

GAP8 Hardware Reference Manual

Version 1.5.5

This document is preliminary and subject to change

Copyright (c) GreenWaves Technologies, SAS. All rights reserved.

Table of Contents

Table of Contents	2
Features	18
Introduction to the GAP8 IoT application processor	19
Device overview	20
Cores	20
Memory areas	20
System bus architecture	21
Clock architecture	21
Security architecture	21
Power architecture	21
Low power modes	22
Power-up sequence	22
Cold boot	22
Warm boot	23
Boot Modes	23
Debug architecture	23
Events and interrupts model	23
Exceptions model	23
Data types supported	23
e-Fuses	24
MPU (Memory Protection Unit)	24
Event Units	24
DMA (direct memory access)	
HWCE (hardware convolution engine)	24
Micro DMA	24
LVDS (Low-voltage differential signaling)	25
SPI master (serial peripheral interface)	25
HyperBus	25
UART (universal asynchronous receiver-transmitter)	25
I2C (inter-integrated circuit)	25
I2S (digital microphone interface) RX	25
CPI (camera parallel interface)	26
GPIOs (general purpose inputs/outputs)	26
SPI slave	26
Basic timers	26
Advanced PWM Timers	26
RTC	26
Performance counters	26
Pin-out and Pin description	27
Pinout	27
Pin Description	27
Memory map	30
Aliased memory map	31
FC aliased address map	31
Cluster aliased address map	31
Device components description	33
RISC-V cores	33
Complex number operations	33
Complex multiplication operations	33

O throughout O consider on the control of the contr	~ -
Subtraction of 2 complexes with post rotation by -j	34
Complex conjugate operation	34
Extensions to existing RI5CY vector operations.	34
Addition of vector of half words with post right shift	34
Subtraction of vectors of half words with post right shift	35
Viterbi specific instructions	35
Enhanced shuffling	36
Cluster Subsystem	36
Cluster Subsystem Events	37
Cluster control unit	37
Cluster control unit registers	38
Cluster control unit registers details	38
End Of Computation status register. (EOC)	38
Cluster cores fetch enable configuration register. (FETCH_EN)	38
Cluster clock gate configuration register. (CLOCK_GATE)	40
Cluster cores debug resume register. (DBG_RESUME)	40
Cluster cores debug halt status register. (DBG_HALT_STATUS)	41
Cluster cores debug halt mask configuration register. (DBG_HALT_MASK)	42
Cluster core 0 boot address configuration register. (BOOT_ADDR0)	43
TCDM arbitration policy ch0 for cluster cores configuration register. (TCDM_ARB_POLICY_CH0)	43
TCDM arbitration policy ch1 for DMA/HWCE configuration register. (TCDM_ARB_POLICY_CH1)	43
Read only duplicate of TCDM_ARB_POLICY_CH0 register (TCDM_ARB_POLICY_CH0_REP)	44
Read only duplicate of TCDM_ARB_POLICY_CH1 register (TCDM_ARB_POLICY_CH1_REP)	44
Cluster timer	44
Cluster timer registers	45
Cluster timer registers details	45
Timer Low Configuration register. (CFG_LO)	45
Timer High Configuration register. (CFG_HI)	46
Timer Low counter value register. (CNT_LO)	47
Timer High counter value register. (CNT_HI)	47
Timer Low comparator value register. (CMP_LO)	47
Timer High comparator value register. (CMP_HI)	48
Start Timer Low counting register. (START_LO)	48
Start Timer High counting register. (START_HI)	48
Reset Timer Low counter register. (RESET_LO)	48
Reset Timer High counter register. (RESET_HI)	49
Cluster event units	49
Cluster event unit registers	49
Cluster event unit (Cluster private) registers	56
Cluster event unit registers details	60
Input event mask configuration register. (EVT_MASK)	60
Hardware task dispatcher push command register. (HW_DISPATCH_PUSH_TASK)	61
Hardware task dispatcher pop command register. (HW_DISPATCH_POP_TASK)	61
Hardware mutex 0 non-blocking put command register. (HW_MUTEX_0_MSG_PUT)	61
Hardware mutex 0 blocking get command register. (HW_MUTEX_0_MSG_GET)	61
Cluster Software event 0 trigger command register. (SW_EVENT_0_TRIG)	62
Cluster Software event 0 trigger and wait command register. (SW_EVENT_0_TRIG_WAIT)	62
Cluster Software event 0 trigger, wait and clear command register. (SW_EVENT_0_TRIG_WAIT_CLEAR)	62
Cluster SoC peripheral event ID status register. (SOC_PERIPH_EVENT_ID)	62
Cluster hardware barrier 0 trigger mask configuration register. (HW BARRIER 0 TRIG MASK)	63

Input event mask update command register with bitwise AND operation. (EVT_MASK_AND)	63
Hardware task dispatcher cluster core team configuration register. (HW_DISPATCH_PUSH_TEAM_CONFIG)	63
Hardware mutex 1 non-blocking put command register. (HW_MUTEX_1_MSG_PUT)	64
Hardware mutex 1 blocking get command register. (HW_MUTEX_1_MSG_GET)	64
Cluster Software event 1 trigger command register. (SW_EVENT_1_TRIG)	64
Cluster Software event 1 trigger and wait command register. (SW_EVENT_1_TRIG_WAIT)	64
Cluster Software event 1 trigger, wait and clear command register. (SW_EVENT_1_TRIG_WAIT_CLEAR)	65
Cluster hardware barrier 0 status register. (HW_BARRIER_0_STATUS)	65
Input event mask update command register with bitwise OR operation. (EVT_MASK_OR)	65
Cluster Software event 2 trigger command register. (SW_EVENT_2_TRIG)	65
Cluster Software event 2 trigger and wait command register. (SW_EVENT_2_TRIG_WAIT)	66
Cluster Software event 2 trigger, wait and clear command register. (SW_EVENT_2_TRIG_WAIT_CLEAR)	66
Cluster hardware barrier summary status register. (HW_BARRIER_0_STATUS_SUM)	66
Interrupt request mask configuration register. (IRQ_MASK)	66
Cluster Software event 3 trigger command register. (SW_EVENT_3_TRIG)	67
Cluster Software event 3 trigger and wait command register. (SW_EVENT_3_TRIG_WAIT)	67
Cluster Software event 3 trigger, wait and clear command register. (SW_EVENT_3_TRIG_WAIT_CLEAR)	67
Cluster hardware barrier 0 target mask configuration register. (HW_BARRIER_0_TARGET_MASK)	68
Interrupt request mask update command register with bitwise AND operation. (IRQ_MASK_AND)	68
Cluster Software event 4 trigger command register. (SW_EVENT_4_TRIG)	68
Cluster Software event 4 trigger and wait command register. (SW_EVENT_4_TRIG_WAIT)	68
Cluster Software event 4 trigger, wait and clear command register. (SW_EVENT_4_TRIG_WAIT_CLEAR)	69
Cluster hardware barrier 0 trigger command register. (HW_BARRIER_0_TRIG)	69
Interrupt request mask update command register with bitwise OR operation. (IRQ_MASK_OR)	69
Cluster Software event 5 trigger command register. (SW_EVENT_5_TRIG)	69
Cluster Software event 5 trigger and wait command register. (SW_EVENT_5_TRIG_WAIT)	70
Cluster Software event 5 trigger, wait and clear command register. (SW_EVENT_5_TRIG_WAIT_CLEAR)	70
Cluster hardware barrier 0 self trigger command register. (HW_BARRIER_0_SELF_TRIG)	70
Cluster cores clock status register. (CLOCK_STATUS)	70
Cluster Software event 6 trigger command register. (SW_EVENT_6_TRIG)	71
Cluster Software event 6 trigger and wait command register. (SW_EVENT_6_TRIG_WAIT)	71
Cluster Software event 6 trigger, wait and clear command register. (SW_EVENT_6_TRIG_WAIT_CLEAR)	71
Cluster hardware barrier 0 trigger and wait command register. (HW_BARRIER_0_TRIG_WAIT)	72
Pending input events status register. (EVENT_BUFFER)	72
Cluster Software event 7 trigger command register. (SW_EVENT_7_TRIG)	72
Cluster Software event 7 trigger and wait command register. (SW_EVENT_7_TRIG_WAIT)	72
Cluster Software event 7 trigger, wait and clear command register. (SW_EVENT_7_TRIG_WAIT_CLEAR)	73
Cluster hardware barrier 0 trigger, wait and clear command register. (HW_BARRIER_0_TRIG_WAIT_CLEAR)	73
Pending input events status register with EVT_MASK applied. (EVENT_BUFFER_MASKED)	73
Cluster hardware barrier 1 trigger mask configuration register. (HW_BARRIER_1_TRIG_MASK)	73
Pending input events status register with IRQ_MASK applied. (EVENT_BUFFER_IRQ_MASKED)	74
Cluster hardware barrier 1 status register. (HW_BARRIER_1_STATUS)	74
Pending input events status clear command register. (EVENT_BUFFER_CLEAR)	74
Cluster hardware barrier summary status register. (HW_BARRIER_1_STATUS_SUM)	74
Software events cluster cores destination mask configuration register. (SW_EVENT_MASK)	75
Cluster hardware barrier 1 target mask configuration register. (HW_BARRIER_1_TARGET_MASK)	75
Software events cluster cores destination mask update command register with bitwise AND operation.	
(SW_EVENT_MASK_AND)	75
Cluster hardware barrier 1 trigger command register. (HW_BARRIER_1_TRIG)	76
Software events cluster cores destination mask update command register with bitwise OR operation.	
(SW_EVENT_MASK_OR)	76

Cluster hardware barrier 1 self trigger command register. (HW_BARRIER_1_SELF_TRIG)	76
Input event wait command register. (EVENT_WAIT)	76
Cluster hardware barrier 1 trigger and wait command register. (HW_BARRIER_1_TRIG_WAIT)	77
Input event wait and clear command register. (EVENT_WAIT_CLEAR)	77
Cluster hardware barrier 1 trigger, wait and clear command register. (HW_BARRIER_1_TRIG_WAIT_CLEAR)	77
Cluster hardware barrier 2 trigger mask configuration register. (HW_BARRIER_2_TRIG_MASK)	77
Cluster hardware barrier 2 status register. (HW_BARRIER_2_STATUS)	78
Cluster hardware barrier summary status register. (HW_BARRIER_2_STATUS_SUM)	78
Cluster hardware barrier 2 target mask configuration register. (HW_BARRIER_2_TARGET_MASK)	78
Cluster hardware barrier 2 trigger command register. (HW_BARRIER_2_TRIG)	78
Cluster hardware barrier 2 self trigger command register. (HW_BARRIER_2_SELF_TRIG)	79
Cluster hardware barrier 2 trigger and wait command register. (HW_BARRIER_2_TRIG_WAIT)	79
Cluster hardware barrier 2 trigger, wait and clear command register. (HW_BARRIER_2_TRIG_WAIT_CLEAR)	79
Cluster hardware barrier 3 trigger mask configuration register. (HW_BARRIER_3_TRIG_MASK)	79
Cluster hardware barrier 3 status register. (HW_BARRIER_3_STATUS)	80
Cluster hardware barrier summary status register. (HW_BARRIER_3_STATUS_SUM)	80
Cluster hardware barrier 3 target mask configuration register. (HW_BARRIER_3_TARGET_MASK)	80
Cluster hardware barrier 3 trigger command register. (HW_BARRIER_3_TRIG)	80
Cluster hardware barrier 3 self trigger command register. (HW_BARRIER_3_SELF_TRIG)	81
Cluster hardware barrier 3 trigger and wait command register. (HW_BARRIER_3_TRIG_WAIT)	81
Cluster hardware barrier 3 trigger, wait and clear command register. (HW BARRIER 3 TRIG WAIT CLEAR)	81
Cluster hardware barrier 4 trigger mask configuration register. (HW_BARRIER_4_TRIG_MASK)	81
Cluster hardware barrier 4 status register. (HW_BARRIER_4_STATUS)	82
Cluster hardware barrier summary status register. (HW_BARRIER_4_STATUS_SUM)	82
Cluster hardware barrier 4 target mask configuration register. (HW_BARRIER_4_TARGET_MASK)	82
Cluster hardware barrier 4 trigger command register. (HW_BARRIER_4_TRIG)	82
Cluster hardware barrier 4 self trigger command register. (HW_BARRIER_4_SELF_TRIG)	83
Cluster hardware barrier 4 trigger and wait command register. (HW_BARRIER_4_TRIG_WAIT)	83
Cluster hardware barrier 4 trigger, wait and clear command register. (HW_BARRIER_4_TRIG_WAIT_CLEAR)	83
Cluster hardware barrier 5 trigger mask configuration register. (HW_BARRIER_5_TRIG_MASK)	83
Cluster hardware barrier 5 status register. (HW_BARRIER_5_STATUS)	84
Cluster hardware barrier summary status register. (HW_BARRIER_5_STATUS_SUM)	84
Cluster hardware barrier 5 target mask configuration register. (HW_BARRIER_5_TARGET_MASK)	84
Cluster hardware barrier 5 trigger command register. (HW_BARRIER_5_TRIG)	84
Cluster hardware barrier 5 self trigger command register. (HW_BARRIER_5_SELF_TRIG)	85
Cluster hardware barrier 5 trigger and wait command register. (HW_BARRIER_5_TRIG_WAIT)	85
Cluster hardware barrier 5 trigger, wait and clear command register. (HW_BARRIER_5_TRIG_WAIT_CLEAR)	85
Cluster hardware barrier 6 trigger mask configuration register. (HW_BARRIER_6_TRIG_MASK)	85
Cluster hardware barrier 6 status register. (HW BARRIER 6 STATUS)	86
Cluster hardware barrier summary status register. (HW BARRIER 6 STATUS SUM)	86
Cluster hardware barrier 6 target mask configuration register. (HW_BARRIER_6_TARGET_MASK)	86
Cluster hardware barrier 6 trigger command register. (HW_BARRIER_6_TRIG)	86
Cluster hardware barrier 6 self trigger command register. (HW BARRIER 6 SELF TRIG)	87
Cluster hardware barrier 6 trigger and wait command register. (HW_BARRIER_6_TRIG_WAIT)	87
Cluster hardware barrier 6 trigger, wait and clear command register. (HW_BARRIER_6_TRIG_WAIT_CLEAR)	87
Cluster hardware barrier 7 trigger mask configuration register. (HW_BARRIER_7_TRIG_MASK)	87
Cluster hardware barrier 7 status register. (HW_BARRIER_7_STATUS)	88
Cluster hardware barrier summary status register. (HW_BARRIER_7_STATUS_SUM)	88
Cluster hardware barrier 7 target mask configuration register. (HW_BARRIER_7_TARGET_MASK)	88
Cluster hardware barrier 7 trigger command register. (HW_BARRIER_7_TRIG)	88
Cluster hardware barrier 7 self trigger command register. (HW_BARRIER_7_SELF_TRIG)	89

Cluster hardware barrier 7 trigger and wait command register. (HW_BARRIER_7_TRIG_WAIT)	89
Cluster hardware barrier 7 trigger and wait command register. (HW_BARRIER_7_TRIG_WAIT) Cluster hardware barrier 7 trigger, wait and clear command register. (HW_BARRIER_7_TRIG_WAIT_CLEAR)	
Cluster instruction cache control unit	89
Cluster instruction cache control unit registers	89
Cluster instruction cache control unit registers details	90
Cluster instruction cache unit enable configuration register. (ENABLE)	90
Cluster instruction cache unit enable command register. (ELNABLE)	90
Cluster instruction cache unit rush command register. (FE03H) Cluster instruction cache unit selective flush command register. (SEL_FLUSH)	90
Hardware convolution engine	90
Hardware convolution engine registers	91
Hardware convolution engine registers Hardware convolution engine registers details	93
Trigger the execution of an offloaded job (TRIGGER)	93
Acquire the lock to offload job (ACQUIRE)	93
Number of concluded jobs since last read (FINISHED_JOBS)	93
Status of the HWCE (STATUS)	94
ID of the currently running job (RUNNING_JOB)	94
Reset HWCE to known idle state (SOFT_CLEAR)	94
Generic configuration register 0 (GEN_CONFIG0)	95
Generic configuration register 0 (GEN_CONFIGU) Generic configuration register 1 (GEN_CONFIG1)	96
Total number of words to be read for yin and yout (Y_TRANS_SIZE)	96
Line stride and length for yin and yout (Y_LINE_STRIDE_LENGTH)	96
Feature (block) stride and length for yin and yout (Y_FEAT_STRIDE_LENGTH)	96
	97
Base address of yout[3] (Y_OUT_3_BASE_ADDR)	97
Base address of yout[2] (Y_OUT_2_BASE_ADDR)	97
Base address of yout[1] (Y_OUT_1_BASE_ADDR)	97
Base address of yout[0] (Y_OUT_0_BASE_ADDR)	98
Base address of yin[3] (Y_IN_3_BASE_ADDR)	
Base address of yin[2] (Y_IN_2_BASE_ADDR)	98
Base address of yin[1] (Y_IN_1_BASE_ADDR)	98
Base address of yin[0] (Y_IN_0_BASE_ADDR)	98
Total number of words to be read for xin (X_TRANS_SIZE)	99
Line stride and length for xin (X_LINE_STRIDE_LENGTH)	
Feature (block) stride and length for xin (X_FEAT_STRIDE_LENGTH)	99
Base address of xin (X_IN_BASE_ADDR)	99 100
Base address of W (W_BASE_ADDR)	
Job configuration register 0 (JOB_CONFIG0) Job configuration register 1 (JOB_CONFIG1)	100 100
DMA	100
	101
DMA registers	101
DMA registers details Cluster DMA configuration register. (CMD)	101
Cluster DMA status register. (CMD) Cluster DMA status register. (STATUS)	101
DMA states	102
DMA state command formats	102
	102
Cluster DMA L1 base address configuration format. (TCDM)	103
Cluster DMA L1 base address configuration format. (TCDM) Cluster DMA transfer status format. (FREE_TID)	103
Cluster DMA transfer status format. (FREE_TID) Cluster DMA transfer identifier format. (GET_TID)	103
	103
Cluster DMA transfer configuration format. (CMD) Cluster DMA L2 base address configuration format. (EXT L2)	104
Giusiei Divia Lz dase address coniiduration ionnat. (EXT Lz)	104

Cluster DMA 2D transfer configuration format. (2D)	105
Cluster RISCY cores	105
Cluster Core 0 (Debug Unit) registers	105
Cluster Core 1 (Debug Unit) registers	107
Cluster Core 2 (Debug Unit) registers	108
Cluster Core 3 (Debug Unit) registers	110
Cluster Core 4 (Debug Unit) registers	111
Cluster Core 5 (Debug Unit) registers	113
Cluster Core 6 (Debug Unit) registers	115
Cluster Core 7 (Debug Unit) registers	116
Cluster RISCY core registers details	118
Debug control configuration register. (CTRL)	118
Debug hit status register. (HIT)	118
Debug exception trap enable configuration register. (IE)	119
Debug trap cause status register. (CAUSE)	120
Core general purpose register 0 value register. (GPR0)	120
Core general purpose register 1 value register. (GPR1)	120
Core general purpose register 2 value register. (GPR2)	121
Core general purpose register 3 value register. (GPR3)	121
Core general purpose register 4 value register. (GPR4)	121
Core general purpose register 5 value register. (GPR5)	121
Core general purpose register 6 value register. (GPR6)	122
Core general purpose register 7 value register. (GPR7)	122
Core general purpose register 8 value register. (GPR8)	122
Core general purpose register 9 value register. (GPR9)	122
Core general purpose register 10 value register. (GPR10)	123
Core general purpose register 11 value register. (GPR11)	123
Core general purpose register 12 value register. (GPR12)	123
Core general purpose register 13 value register. (GPR13)	123
Core general purpose register 14 value register. (GPR14)	124
Core general purpose register 15 value register. (GPR15)	124
Core general purpose register 16 value register. (GPR16)	124
Core general purpose register 17 value register. (GPR17)	124
Core general purpose register 18 value register. (GPR18)	125
Core general purpose register 19 value register. (GPR19)	125
Core general purpose register 20 value register. (GPR20)	125
Core general purpose register 21 value register. (GPR21)	125
Core general purpose register 22 value register. (GPR22)	126
Core general purpose register 23 value register. (GPR23)	126
Core general purpose register 24 value register. (GPR24)	126
Core general purpose register 25 value register. (GPR25)	126
Core general purpose register 26 value register. (GPR26)	127
Core general purpose register 27 value register. (GPR27)	127
Core general purpose register 28 value register. (GPR28)	127
Core general purpose register 29 value register. (GPR29)	127
Core general purpose register 30 value register. (GPR30)	128
Core general purpose register 31 value register. (GPR31)	128
Debug next program counter value register. (NPC)	128
Debug previous program counter value register. (PPC)	128
Core CSR user privilege mode hardware thread ID status register. (CSR_UHARTID)	129
Core CSR machine status value register. (CSR_MSTATUS)	129

Core CSR machine vector-trap base address value register. (CSR_MTVEC)	129
Core CSR machine exception program counter value register. (CSR_MEPC)	130
Core CSR machine trap cause value register. (CSR_MCAUSE)	130
Core CSR performance counter counter register. (CSR_PCCR)	130
Core CSR performance counter enable configuration register. (CSR_PCER)	131
Core CSR performance counter mode configuration register. (CSR_PCMR)	131
Core CSR hardware loop 0 start configuration register. (CSR_HWLP0S)	131
Core CSR hardware loop 0 end configuration register. (CSR_HWLP0E)	132
Core CSR hardware loop 0 counter configuration register. (CSR_HWLP0C)	132
Core CSR hardware loop 1 start configuration register. (CSR_HWLP1S)	132
Core CSR hardware loop 1 end configuration register. (CSR_HWLP1E)	132
Core CSR hardware loop 1 counter configuration register. (CSR_HWLP1C)	133
Cose CSR privilege level status register. (CSR_PRIVLV)	133
Core CSR machine privilege mode hardware thread ID status register. (CSR_MHARTID)	133
SoC Peripherals Subsystem	133
SoC Peripherals Subsystem Events	133
FLLs	135
SoC FLL registers	135
Cluster FLL registers	135
FLL registers details	135
FLL status register. (STATUS)	135
FLL configuration 1 register. (CFG1)	135
FLL configuration 2 register. (CFG2)	136
FLL integrator configuration register. (INTEG)	137
GPIO	137
GPIO registers	137
GPIO registers details	138
GPIO pad direction configuration register. (PADDIR)	138
GPIO pad input value register. (PADIN)	138
GPIO pad output value register. (PADOUT)	138
GPIO pad interrupt enable configuration register. (INTEN)	138
GPIO pad interrupt type bit 0 configuration register. (INTTYPE0)	139
GPIO pad interrupt type bit 1 configuration register. (INTTYPE1)	139
GPIO pad interrupt status register. (INTSTATUS)	139
GPIO pad enable configuration register. (GPIOEN)	139
GPIO pad pin 0 to 3 configuration register. (PADCFG0)	140
GPIO pad pin 4 to 7 configuration register. (PADCFG1)	141
GPIO pad pin 8 to 11 configuration register. (PADCFG2)	142
GPIO pad pin 12 to 15 configuration register. (PADCFG3)	143
GPIO pad pin 16 to 19 configuration register. (PADCFG4)	144
GPIO pad pin 20 to 23 configuration register. (PADCFG5)	145
GPIO pad pin 24 to 27 configuration register. (PADCFG6)	147
GPIO pad pin 28 to 31 configuration register. (PADCFG7)	148
SoC control unit	149
SoC control unit registers	149
SoC control unit registers details	150
Core information register (INFO)	150
Isolate cluster register (CL_ISOLATE)	150
Cluster busy register (CL_BUSY)	151
PMU bypass configuration register (CL_BYPASS)	151

JTAG external register (JTAGREG)	153
L2 sleep configuration register (L2_SLEEP)	153
Alias for SAFE_PMU_SLEEPCTRL (SLEEP_CTRL)	153
EOC and chip status register (CORESTATUS)	154
EOC and chip status register read mirror (CORESTATUS_RO)	154
DC/DC configuration register (SAFE_PMU_RAR)	154
Sleep modes configuration register (SAFE_PMU_SLEEPCTRL)	154
L2 rententive state configuration (SAFE_PMU_FORCE)	158
Mux config register (pad 0-15) (SAFE_PADFUN0)	159
Mux config register (pad 16-31) (SAFE_PADFUN1)	163
Mux config register (pad 32-47) (SAFE_PADFUN2)	166
Sleep config register (pad 0–15) (SAFE_SLEEPPADCFG0)	169
Mux config register (pad 16-31) (SAFE_SLEEPPADCFG1)	173
Mux config register (pad 32-47) (SAFE_SLEEPPADCFG2)	177
Enable Sleep mode for pads (SAFE_PADSLEEP)	181
Function register (pad 0 to 3) (SAFE_PADCFG0)	182
Function register (pad 4 to 7) (SAFE_PADCFG1)	183
Function register (pad 8 to 11) (SAFE_PADCFG2)	184
Function register (pad 12 to 15) (SAFE_PADCFG3)	185
Function register (pad 16 to 19) (SAFE_PADCFG4)	186
Function register (pad 20 to 23) (SAFE_PADCFG5)	187
Function register (pad 24 to 27) (SAFE_PADCFG6)	188
Function register (pad 28 to 31) (SAFE_PADCFG7)	190
Function register (pad 32 to 35) (SAFE_PADCFG8)	191
Function register (pad 36 to 39) (SAFE_PADCFG9)	192
Function register (pad 40 to 43) (SAFE_PADCFG10)	193
Function register (pad 44 to 47) (SAFE_PADCFG11)	194
GPIO power domain pad input isolation register (REG_GPIO_ISO)	195
CAM power domain pad input isolation register (REG_CAM_ISO)	195
LVDS power domain pad input isolation register (REG_LVDS_ISO)	196
Advanced timer	196
Advanced timer registers	196
Advanced timer registers details	197
ADV_TIMER0 command register. (T0_CMD)	197
ADV_TIMER0 configuration register. (T0_CONFIG)	198
ADV_TIMER0 threshold configuration register. (T0_THRESHOLD)	199
ADV_TIMER0 channel 0 threshold configuration register. (T0_TH_CHANNEL0)	199
ADV_TIMER0 channel 1 threshold configuration register. (T0_TH_CHANNEL1)	200
ADV_TIMER0 channel 2 threshold configuration register. (T0_TH_CHANNEL2)	200
ADV_TIMER0 channel 3 threshold configuration register. (T0_TH_CHANNEL3)	201
ADV_TIMER1 command register. (T1_CMD)	201
ADV_TIMER1 configuration register. (T1_CONFIG)	202
ADV_TIMER1 threshold configuration register. (T1_THRESHOLD)	203
ADV_TIMER1 channel 0 threshold configuration register. (T1_TH_CHANNEL0)	203
ADV_TIMER1 channel 1 threshold configuration register. (T1_TH_CHANNEL1)	203
ADV_TIMER1 channel 2 threshold configuration register. (T1_TH_CHANNEL2)	204
ADV_TIMER1 channel 3 threshold configuration register. (T1_TH_CHANNEL3)	204
ADV_TIMER2 command register. (T2_CMD)	205
ADV_TIMER2 configuration register. (T2_CONFIG)	205
ADV_TIMER2 threshold configuration register. (T2_THRESHOLD)	206
ADV_TIMER2 channel 0 threshold configuration register. (T2_TH_CHANNEL0)	207

ADV TIMEDO II and II and II and II and III and	
ADV_TIMER2 channel 1 threshold configuration register. (T2_TH_CHANNEL1)	207
ADV_TIMER2 channel 2 threshold configuration register. (T2_TH_CHANNEL2)	207
ADV_TIMER2 channel 3 threshold configuration register. (T2_TH_CHANNEL3)	208
ADV_TIMER3 command register. (T3_CMD)	208
ADV_TIMER3 configuration register. (T3_CONFIG)	209
ADV_TIMER3 threshold configuration register. (T3_THRESHOLD)	210
ADV_TIMER3 channel 0 threshold configuration register. (T3_TH_CHANNEL0)	210
ADV_TIMER3 channel 1 threshold configuration register. (T3_TH_CHANNEL1)	211
ADV_TIMER3 channel 2 threshold configuration register. (T3_TH_CHANNEL2)	211
ADV_TIMER3 channel 3 threshold configuration register. (T3_TH_CHANNEL3)	212
ADV_TIMERS events configuration register. (EVENT_CFG)	212
ADV_TIMERS channels clock gating configuration register. (CG)	215
SoC event generator	215
SoC event generator registers	215
SoC event generator registers details	215
SoC software events trigger command register. (SW_EVENT)	216
MSB FC event unit event dispatch mask configuration register. (FC_MASK_MSB)	216
LSB FC event unit event dispatch mask configuration register. (FC_MASK_LSB)	216
MSB Cluster event dispatch mask configuration register. (CL_MASK_MSB)	216
LSB Cluster event dispatch mask configuration register. (CL_MASK_LSB)	217
MSB uDMA event dispatch mask configuration register. (PR_MASK_MSB)	217
LSB uDMA event dispatch mask configuration register. (PR_MASK_LSB)	217
MSB event queue overflow status register. (ERR_MSB)	217
LSB event queue overflow status register. (ERR_LSB)	218
FC High Timer source event configuration register. (TIMER_SEL_HI)	218
FC Low Timer source event configuration register. (TIMER_SEL_LO)	218
PMU DLC bridge	218
PMU DLC bridge registers	218
PMU DLC bridge registers details	219
DLC PICL control register. (DLC_PCTRL)	219
DLC PICL data read register (DLC_PRDATA)	219
DLC Status register (DLC_SR)	219
DLC Interrupt mask register (DLC_IMR)	220
DLC Interrupt flag register (DLC_IFR)	221
DLC icu_ok interrupt flag register (DLC_IOIFR)	221
DLC icu_delayed interrupt flag register (DLC_IDIFR)	221
DLC icu_mode_changed interrupt flag register (DLC_IMCIFR)	222
RealTime Counter	222
RealTime Counter registers	222
RealTime Counter registers details	222
RTC APB status register. (APB_SR)	222
RTC APB control register. (APB_CR)	222
RTC APB data register. (APB_DR)	223
RTC APB interrupt control register. (APB_ICR)	223
RTC APB interrupt mask register. (APB_IMR)	223
RTC APB interrupt flag register. (APB_IFR)	224
Efuse	224
Efuse registers	224
Efuse registers details	224
EFUSE command register. (CMD)	224

EFUSE configuration register. (CFG)	225
EFUSE byte read command register. (READ)	225
EFUSE byte bit index write command register. (WRITE)	225
MicroDMA Subsystem	226
uDMA LVDS interface	226
uDMA LVDS interface registers	226
uDMA LVDS interface registers details	226
uDMA RX LVDS/ORCA buffer base address configuration register. (RX_SADDR)	226
uDMA RX LVDS/ORCA buffer size configuration register. (RX_SIZE)	227
uDMA RX LVDS/ORCA stream configuration register. (RX_CFG)	227
uDMA TX LVDS/ORCA buffer base address configuration register. (TX_SADDR)	228
uDMA TX LVDS/ORCA buffer size configuration register. (TX_SIZE)	228
uDMA TX LVDS/ORCA stream configuration register. (TX_CFG)	228
uDMA LVDS configuration register. (RF_CFG)	229
uDMA LVDS status register. (RF_STATUS)	231
uDMA LVDS clock divider enable configuration register. (CLKDIV_EN)	231
uDMA LVDS clock divider configuration register. (CLKDIV_CFG)	231
uDMA LVDS clock divider update configuration register. (CLKDIV_UPD)	231
uDMA ORCA configuration register. (ORCA_CFG)	232
uDMA LVDS RX sample counter configuration register. (RX_SAMPLE_CNT)	232
uDMA SPI master interfaces	232
SPI Master Channel 0 registers	233
SPI Master Channel 1 registers	233
uDMA SPI master interface registers details	233
uDMA RX SPIM buffer base address configuration register. (RX_SADDR)	233
uDMA RX SPIM buffer size configuration register. (RX_SIZE)	234
uDMA RX SPIM stream configuration register. (RX_CFG)	234
uDMA TX SPIM buffer base address configuration register. (TX_SADDR)	235
uDMA TX SPIM buffer size configuration register. (TX_SIZE)	235
uDMA TX SPIM stream configuration register. (TX_CFG)	235
uDMA SPI master interface commands	236
uDMA SPI master interface commands details	236
SPIM configuration command. (SPI_CMD_CFG)	236
SPIM Start of Transfer command. (SPI_CMD_SOT)	237
SPIM send command command. (SPI_CMD_SEND_CMD)	237
SPIM send address command. (SPI_CMD_SEND_ADDR)	238
SPIM dummy RX command. (SPI_CMD_DUMMY)	238
SPIM wait uDMA external event command. (SPI_CMD_WAIT)	239
SPIM send data command (max 64kbits). (SPI_CMD_TX_DATA)	239
SPIM receive data command (max 64kbits). (SPI_CMD_RX_DATA)	239
SPIM repeat next transfer command. (SPI_CMD_RPT)	240
SPIM End of Transfer command. (SPI_CMD_EOT)	240
SPIM end of repeat command. (SPI_CMD_RPT_END)	241
SPIM RX check data command. (SPI_CMD_RX_CHECK)	241
SPIM full duplex mode command. (SPI_CMD_FULL_DUPL)	242
uDMA Hyperbus interface	242
uDMA Hyperbus interface registers	242
uDMA Hyperbus interface registers details	243
uDMA RX HYPERBUS buffer base address configuration register. (RX_SADDR)	243
uDMA RX HYPERBUS buffer size configuration register. (RX_SIZE)	243
uDMA RX HYPERBUS stream configuration register. (RX_CFG)	243

	244
uDMA TX HYPERBUS buffer size configuration register. (TX_SIZE)	244
uDMA TX HYPERBUS stream configuration register. (TX_CFG)	245
Memory access address register. (EXT_ADDR)	245
Memory Control Configuration 0 register. (MEM_CFG0)	246
Memory Control Configuration 1 register. (MEM_CFG1)	246
Memory Control Configuration 2 register. (MEM_CFG2)	247
Memory Control Configuration 3 register. (MEM_CFG3)	247
Memory Control Configuration 4 register. (MEM_CFG4)	248
Memory Control Configuration 5 register. (MEM_CFG5)	249
Memory Control Configuration 6 register. (MEM_CFG6)	250
Memory Control Configuration 7 register. (MEM_CFG7)	250
uDMA UART interface	251
uDMA UART interface registers	251
uDMA UART interface registers details	252
uDMA RX UART buffer base address configuration register. (RX_SADDR)	252
uDMA RX UART buffer size configuration register. (RX_SIZE)	252
uDMA RX UART stream configuration register. (RX_CFG)	252
uDMA TX UART buffer base address configuration register. (TX_SADDR)	253
uDMA TX UART buffer size configuration register. (TX_SIZE)	253
uDMA TX UART stream configuration register. (TX_CFG)	254
uDMA UART status register. (STATUS)	254
UDMA UART configuration register. (SETUP)	255
uDMA I2C interfaces	256
I2C Channel 0 registers	256
I2C Channel 1 registers	256
uDMA I2C interface registers details	257
uDMA RX I2C buffer base address configuration register. (RX_SADDR)	257
uDMA RX I2C buffer size configuration register. (RX_SIZE)	257
uDMA RX I2C buffer size configuration register. (RX_SIZE) uDMA RX I2C stream configuration register. (RX_CFG)	257 257
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
uDMA RX I2C stream configuration register. (RX_CFG)	257
uDMA RX I2C stream configuration register. (RX_CFG) uDMA TX I2C buffer base address configuration register. (TX_SADDR)	257 258
uDMA RX I2C stream configuration register. (RX_CFG) uDMA TX I2C buffer base address configuration register. (TX_SADDR) uDMA TX I2C buffer size configuration register. (TX_SIZE)	257 258 258
uDMA RX I2C stream configuration register. (RX_CFG) uDMA TX I2C buffer base address configuration register. (TX_SADDR) uDMA TX I2C buffer size configuration register. (TX_SIZE) uDMA TX I2C stream configuration register. (TX_CFG)	257 258 258 258
uDMA RX I2C stream configuration register. (RX_CFG) uDMA TX I2C buffer base address configuration register. (TX_SADDR) uDMA TX I2C buffer size configuration register. (TX_SIZE) uDMA TX I2C stream configuration register. (TX_CFG) uDMA I2C Status register. (STATUS)	257 258 258 258 259
uDMA RX I2C stream configuration register. (RX_CFG) uDMA TX I2C buffer base address configuration register. (TX_SADDR) uDMA TX I2C buffer size configuration register. (TX_SIZE) uDMA TX I2C stream configuration register. (TX_CFG) uDMA I2C Status register. (STATUS) uDMA I2C Configuration register. (SETUP)	257 258 258 258 259 260
uDMA RX I2C stream configuration register. (RX_CFG) uDMA TX I2C buffer base address configuration register. (TX_SADDR) uDMA TX I2C buffer size configuration register. (TX_SIZE) uDMA TX I2C stream configuration register. (TX_CFG) uDMA I2C Status register. (STATUS) uDMA I2C Configuration register. (SETUP) uDMA I2C interface commands	257 258 258 258 259 260
uDMA RX I2C stream configuration register. (RX_CFG) uDMA TX I2C buffer base address configuration register. (TX_SADDR) uDMA TX I2C buffer size configuration register. (TX_SIZE) uDMA TX I2C stream configuration register. (TX_CFG) uDMA I2C Status register. (STATUS) uDMA I2C Configuration register. (SETUP) uDMA I2C interface commands uDMA I2C interface commands details	257 258 258 258 259 260 260
uDMA RX I2C stream configuration register. (RX_CFG) uDMA TX I2C buffer base address configuration register. (TX_SADDR) uDMA TX I2C buffer size configuration register. (TX_SIZE) uDMA TX I2C stream configuration register. (TX_CFG) uDMA I2C Status register. (STATUS) uDMA I2C Configuration register. (SETUP) uDMA I2C interface commands uDMA I2C interface commands details I2C Start of Transfer command. (I2C_CMD_START)	257 258 258 258 259 260 260 260
uDMA RX I2C stream configuration register. (RX_CFG) uDMA TX I2C buffer base address configuration register. (TX_SADDR) uDMA TX I2C buffer size configuration register. (TX_SIZE) uDMA TX I2C stream configuration register. (TX_CFG) uDMA I2C Status register. (STATUS) uDMA I2C Configuration register. (SETUP) uDMA I2C interface commands uDMA I2C interface commands details I2C Start of Transfer command. (I2C_CMD_START) I2C wait uDMA external event command. (I2C_CMD_WAIT_EV)	257 258 258 258 259 260 260 260 260
uDMA RX I2C stream configuration register. (RX_CFG) uDMA TX I2C buffer base address configuration register. (TX_SADDR) uDMA TX I2C buffer size configuration register. (TX_SIZE) uDMA TX I2C stream configuration register. (TX_CFG) uDMA I2C Status register. (STATUS) uDMA I2C Configuration register. (SETUP) uDMA I2C interface commands uDMA I2C interface commands details I2C Start of Transfer command. (I2C_CMD_START) I2C wait uDMA external event command. (I2C_CMD_WAIT_EV) I2C End of Transfer command. (I2C_CMD_STOP)	257 258 258 258 259 260 260 260 260 260
uDMA RX I2C stream configuration register. (RX_CFG) uDMA TX I2C buffer base address configuration register. (TX_SADDR) uDMA TX I2C buffer size configuration register. (TX_SIZE) uDMA TX I2C stream configuration register. (TX_CFG) uDMA I2C Status register. (STATUS) uDMA I2C Configuration register. (SETUP) uDMA I2C interface commands uDMA I2C interface commands details I2C Start of Transfer command. (I2C_CMD_START) I2C wait uDMA external event command. (I2C_CMD_WAIT_EV) I2C End of Transfer command. (I2C_CMD_STOP) I2C receive data and acknowledge command. (I2C_CMD_RD_ACK)	257 258 258 258 259 260 260 260 260 261
uDMA RX I2C stream configuration register. (RX_CFG) uDMA TX I2C buffer base address configuration register. (TX_SADDR) uDMA TX I2C buffer size configuration register. (TX_SIZE) uDMA TX I2C stream configuration register. (TX_CFG) uDMA I2C Status register. (STATUS) uDMA I2C Configuration register. (SETUP) uDMA I2C interface commands uDMA I2C interface commands details I2C Start of Transfer command. (I2C_CMD_START) I2C wait uDMA external event command. (I2C_CMD_WAIT_EV) I2C End of Transfer command. (I2C_CMD_STOP) I2C receive data and acknowledge command. (I2C_CMD_RD_ACK) I2C receive data and not acknowledge command. (I2C_CMD_RD_NACK)	257 258 258 258 259 260 260 260 260 261 261
uDMA RX I2C stream configuration register. (RX_CFG)  uDMA TX I2C buffer base address configuration register. (TX_SADDR)  uDMA TX I2C buffer size configuration register. (TX_SIZE)  uDMA TX I2C stream configuration register. (TX_CFG)  uDMA I2C Status register. (STATUS)  uDMA I2C Configuration register. (SETUP)  uDMA I2C interface commands  uDMA I2C interface commands details  I2C Start of Transfer command. (I2C_CMD_START)  I2C wait uDMA external event command. (I2C_CMD_WAIT_EV)  I2C End of Transfer command. (I2C_CMD_STOP)  I2C receive data and acknowledge command. (I2C_CMD_RD_ACK)  I2C receive data and not acknowledge command. (I2C_CMD_RD_NACK)  I2C send data and wait acknowledge command. (I2C_CMD_WR)	257 258 258 258 259 260 260 260 261 261 261
uDMA RX I2C stream configuration register. (RX_CFG)  uDMA TX I2C buffer base address configuration register. (TX_SADDR)  uDMA TX I2C buffer size configuration register. (TX_SIZE)  uDMA TX I2C stream configuration register. (TX_CFG)  uDMA I2C Status register. (STATUS)  uDMA I2C Configuration register. (SETUP)  uDMA I2C interface commands  uDMA I2C interface commands details  I2C Start of Transfer command. (I2C_CMD_START)  I2C wait uDMA external event command. (I2C_CMD_WAIT_EV)  I2C End of Transfer command. (I2C_CMD_STOP)  I2C receive data and acknowledge command. (I2C_CMD_RD_ACK)  I2C receive data and not acknowledge command. (I2C_CMD_RD_NACK)  I2C send data and wait acknowledge command. (I2C_CMD_WAIT)	257 258 258 258 259 260 260 260 261 261 261 261 261 261 261
uDMA RX I2C stream configuration register. (RX_CFG)  uDMA TX I2C buffer base address configuration register. (TX_SADDR)  uDMA TX I2C buffer size configuration register. (TX_SIZE)  uDMA TX I2C stream configuration register. (TX_CFG)  uDMA I2C Status register. (STATUS)  uDMA I2C Configuration register. (SETUP)  uDMA I2C interface commands  uDMA I2C interface commands details  I2C Start of Transfer command. (I2C_CMD_START)  I2C wait uDMA external event command. (I2C_CMD_WAIT_EV)  I2C End of Transfer command. (I2C_CMD_STOP)  I2C receive data and acknowledge command. (I2C_CMD_RD_ACK)  I2C receive data and not acknowledge command. (I2C_CMD_RD_NACK)  I2C send data and wait acknowledge command. (I2C_CMD_WR)  I2C wait dummy cycles command. (I2C_CMD_RT)	257 258 258 259 260 260 260 261 261 261 261 262
uDMA RX I2C stream configuration register. (RX_CFG)  uDMA TX I2C buffer base address configuration register. (TX_SADDR)  uDMA TX I2C buffer size configuration register. (TX_SIZE)  uDMA TX I2C stream configuration register. (TX_CFG)  uDMA I2C Status register. (STATUS)  uDMA I2C Configuration register. (SETUP)  uDMA I2C interface commands  uDMA I2C interface commands details  I2C Start of Transfer command. (I2C_CMD_START)  I2C wait uDMA external event command. (I2C_CMD_WAIT_EV)  I2C End of Transfer command. (I2C_CMD_STOP)  I2C receive data and acknowledge command. (I2C_CMD_RD_ACK)  I2C receive data and not acknowledge command. (I2C_CMD_RD_NACK)  I2C send data and wait acknowledge command. (I2C_CMD_WAIT)  I2C wait dummy cycles command. (I2C_CMD_RPT)  I2C next command repeat command. (I2C_CMD_RPT)  I2C configuration command. (I2C_CMD_CFG)	257 258 258 258 259 260 260 260 261 261 261 261 262 262
uDMA RX I2C stream configuration register. (RX_CFG)  uDMA TX I2C buffer base address configuration register. (TX_SADDR)  uDMA TX I2C buffer size configuration register. (TX_SIZE)  uDMA TX I2C stream configuration register. (TX_CFG)  uDMA I2C Status register. (STATUS)  uDMA I2C Configuration register. (SETUP)  uDMA I2C interface commands  uDMA I2C interface commands details  I2C Start of Transfer command. (I2C_CMD_START)  I2C wait uDMA external event command. (I2C_CMD_WAIT_EV)  I2C End of Transfer command. (I2C_CMD_STOP)  I2C receive data and acknowledge command. (I2C_CMD_RD_ACK)  I2C receive data and not acknowledge command. (I2C_CMD_RD_NACK)  I2C send data and wait acknowledge command. (I2C_CMD_WR)  I2C wait dummy cycles command. (I2C_CMD_WAIT)  I2C next command repeat command. (I2C_CMD_RPT)  I2C configuration command. (I2C_CMD_CFG)	257 258 258 258 259 260 260 260 261 261 261 261 262 262 262

uDMA RX MEMCPY buffer size configuration register. (RX_SIZE)	263
uDMA RX MEMCPY stream configuration register. (RX_CFG)	263
uDMA TX MEMCPY buffer base address configuration register. (TX_SADDR)	264
uDMA TX MEMCPY buffer size configuration register. (TX_SIZE)	264
uDMA TX MEMCPY stream configuration register. (TX_CFG)	265
MEMCPY TX destination address configuration register. (DST_ADDR)	265
MEMCPY RX source address configuration register. (SRC_ADDR)	266
MEMCPY memory source/destination select configuration register. (MEM_SEL)	266
uDMA I2S interface	266
uDMA I2S interface registers	266
uDMA I2S interface registers details	267
uDMA RX I2S channel 0 buffer base address configuration register. (RX_SADDR_CH0)	267
uDMA RX I2S channel 0 buffer size configuration register. (RX_SIZE_CH0)	267
uDMA RX I2S channel 0 stream configuration register. (RX_CFG_CH0)	268
uDMA RX I2S channel 1 buffer base address configuration register. (RX_SADDR_CH1)	268
uDMA RX I2S channel 1 buffer size configuration register. (RX_SIZE_CH1)	269
uDMA RX I2S channel 1 stream configuration register. (RX_CFG_CH1)	269
I2S external clock configuration register. (CFG_EXT)	270
I2S clock and WS generator 0 configuration register. (CFG_CLKGEN0)	270
I2S clock and WS generator 1 configuration register. (CFG_CLKGEN1)	271
I2S channels mode configuration register. (CHMODE)	271
I2S channel 0 filtering configuration register. (FILT_CH0)	273
I2S channel 1 filtering configuration register. (FILT_CH1)	273
uDMA CPI interface	273
uDMA CPI interface registers	273
uDMA CPI interface registers details	274
uDMA RX CPI buffer base address configuration register. (RX_SADDR)	274
uDMA RX CPI buffer size configuration register. (RX_SIZE)	274
uDMA RX CPI stream configuration register. (RX_CFG)	274
uDMA CPI Global configuration register. (CFG_GLOB)	275
uDMA CPI Lower Left corner configuration register. (CFG_LL)	276
uDMA CPI Upper Right corner configuration register. (CFG_UR)	277
uDMA CPI Horizontal Resolution configuration register. (CFG_SIZE)	277
uDMA CPI RGB coefficients configuration register. (CFG_FILTER)	277
uDMA control unit	277
uDMA control unit registers	278
uDMA control unit registers details	278
uDMA interfaces clock gate configuration register. (CFG_CG)	278
uDMA interfaces trigger events configuration register. (CFG_EVENT)	279
Fabric Controller Subsystem	280
Fabric Controller Subsystem Events	281
FC control unit	281
FC control unit registers	282
FC control unit registers details	282
End of computation status register. (EOC)	282
Boot address configuration register. (BOOT_ADDR)	282
FC timer	282
FC timer registers	283
FC event units	283
FC event unit registers	283
FC event unit (FC private) registers	284

FC event unit registers details	286
Input event mask configuration register. (EVT_MASK)	286
Input event mask update command register with bitwise AND operation. (EVT_MASK_AND)	286
Input event mask update command register with bitwise OR operation. (EVT_MASK_OR)	286
Interrupt request mask configuration register. (IRQ_MASK)	287
Interrupt request mask update command register with bitwise AND operation. (IRQ_MASK_A	ND) 287
Interrupt request mask update command register with bitwise OR operation. (IRQ_MASK_OF	R) 287
FC_CORE clock status register. (CLOCK_STATUS)	287
Pending input events status register. (EVENT_BUFFER)	288
Pending input events status register with EVT_MASK applied. (EVENT_BUFFER_MASKED)	288
Pending input events status register with IRQ_MASK applied. (EVENT_BUFFER_IRQ_MASK	(ED) 288
Pending input events status clear command register. (EVENT_BUFFER_CLEAR)	289
Input event wait command register. (EVENT_WAIT)	289
Input event wait and clear command register. (EVENT_WAIT_CLEAR)	289
FC_CORE secured mode interrupt request mask configuration register. (SEC_IRQ_MASK)	289
FC_CORE secured mode interrupt request mask update command register with bitwise AND	operation.
(SEC_IRQ_MASK_AND)	290
FC_CORE secured mode interrupt request mask update command register with bitwise OR of	peration.
(SEC_IRQ_MASK_OR)	290
FC_CORE Software event 0 trigger command register. (SW_EVENT_0_TRIG)	290
FC_CORE Software event 1 trigger command register. (SW_EVENT_1_TRIG)	290
FC_CORE Software event 2 trigger command register. (SW_EVENT_2_TRIG)	291
FC_CORE Software event 3 trigger command register. (SW_EVENT_3_TRIG)	291
FC_CORE Software event 4 trigger command register. (SW_EVENT_4_TRIG)	291
FC_CORE Software event 5 trigger command register. (SW_EVENT_5_TRIG)	291
FC_CORE Software event 6 trigger command register. (SW_EVENT_6_TRIG)	292
FC_CORE Software event 7 trigger command register. (SW_EVENT_7_TRIG)	292
FC_CORE Software event 0 wait command register. (SW_EVENT_0_WAIT)	292
FC_CORE Software event 1 wait command register. (SW_EVENT_1_WAIT)	292
FC_CORE Software event 2 wait command register. (SW_EVENT_2_WAIT)	293
FC_CORE Software event 3 wait command register. (SW_EVENT_3_WAIT)	293
FC_CORE Software event 4 wait command register. (SW_EVENT_4_WAIT)	293
FC_CORE Software event 5 wait command register. (SW_EVENT_5_WAIT)	293
FC_CORE Software event 6 wait command register. (SW_EVENT_6_WAIT)	294
FC_CORE Software event 7 wait command register. (SW_EVENT_7_WAIT)	294
FC_CORE Software event 0 wait and clear command register. (SW_EVENT_0_WAIT_CLEA	
FC_CORE Software event 1 wait and clear command register. (SW_EVENT_1_WAIT_CLEA	
FC_CORE Software event 2 wait and clear command register. (SW_EVENT_2_WAIT_CLEA	
FC_CORE Software event 3 wait and clear command register. (SW_EVENT_3_WAIT_CLEA	
FC_CORE Software event 4 wait and clear command register. (SW_EVENT_4_WAIT_CLEA	
FC_CORE Software event 5 wait and clear command register. (SW_EVENT_5_WAIT_CLEA	
FC_CORE Software event 6 wait and clear command register. (SW_EVENT_6_WAIT_CLEA	
FC_CORE Software event 7 wait and clear command register. (SW_EVENT_7_WAIT_CLEA	
Remote software event 0 trigger command register. (REMOTE_SW_EVENT_0_TRIG)	296
Remote software event 1 trigger command register. (REMOTE_SW_EVENT_1_TRIG)	297
Remote software event 2 trigger command register. (REMOTE_SW_EVENT_2_TRIG)	297
Remote software event 3 trigger command register. (REMOTE_SW_EVENT_3_TRIG)	297
Remote software event 4 trigger command register. (REMOTE_SW_EVENT_4_TRIG)	297
Remote software event 5 trigger command register. (REMOTE_SW_EVENT_5_TRIG)	298
Remote software event 6 trigger command register. (REMOTE_SW_EVENT_6_TRIG)	298
Remote software event 7 trigger command register. (REMOTE SW EVENT 7 TRIG)	298

SoC peripheral event ID status register. (SOC_PERIPH_EVENT_ID)	298
FC Memory protection unit	299
FC Memory protection unit registers	299
FC Memory protection unit registers details	300
MPU enable configuration register (MPU_ENABLE)	300
FC address filter rule (FC_TCDM_RULE)	300
L2 address filter rule (L2_RULE)	300
External peripheral (APB) address filter rule (APB_RULE)	301
FC instruction cache control unit	302
FC instruction cache control unit registers	302
FC instruction cache control unit registers details	302
FC instruction cache unit enable configuration register. (ENABLE)	302
FC instruction cache unit flush command register. (FLUSH)	302
FC instruction cache unit selective flush command register. (SEL_FLUSH)	303
FC instruction cache unit status register. (STATUS)	303
FC secured RISCY core	303
FC Core 0 (Debug Unit) registers	303
FC secured RISCY core registers details	305
Debug control configuration register. (CTRL)	305
Debug hit status register. (HIT)	306
Debug exception trap enable configuration register. (IE)	306
Debug trap cause status register. (CAUSE)	307
Core general purpose register 0 value register. (GPR0)	307
Core general purpose register 1 value register. (GPR1)	308
Core general purpose register 2 value register. (GPR2)	308
Core general purpose register 3 value register. (GPR3)	308
Core general purpose register 4 value register. (GPR4)	308
Core general purpose register 5 value register. (GPR5)	309
Core general purpose register 6 value register. (GPR6)	309
Core general purpose register 7 value register. (GPR7)	309
Core general purpose register 8 value register. (GPR8)	309
Core general purpose register 9 value register. (GPR9)	309
Core general purpose register 10 value register. (GPR10)	310
Core general purpose register 11 value register. (GPR11)	310
Core general purpose register 12 value register. (GPR12)	310
Core general purpose register 13 value register. (GPR13)	310
Core general purpose register 14 value register. (GPR14)	311
Core general purpose register 15 value register. (GPR15)	311
Core general purpose register 16 value register. (GPR16)	311
Core general purpose register 17 value register. (GPR17)	311
Core general purpose register 18 value register. (GPR18)	312
Core general purpose register 19 value register. (GPR19)	312
Core general purpose register 20 value register. (GPR20)	312
Core general purpose register 21 value register. (GPR21)	312
Core general purpose register 22 value register. (GPR22)	313
Core general purpose register 23 value register. (GPR23)	313
Core general purpose register 24 value register. (GPR24)	313
Core general purpose register 25 value register. (GPR25)	313
Core general purpose register 26 value register. (GPR26)	314
Core general purpose register 27 value register. (GPR27)	314
Core general purpose register 28 value register. (GPR28)	314

Core general purpose register 29 value register. (GPR29)	314
Core general purpose register 30 value register. (GPR30)	315
Core general purpose register 31 value register. (GPR31)	315
Debug next program counter value register. (NPC)	315
Debug previous program counter value register. (PPC)	315
Core CSR user status value register. (CSR_USTATUS)	316
Core CSR user vector-trap base address value register. (CSR_UTVEC)	316
Core CSR user privilege mode hardware thread ID status register. (CSR_UHARTID)	316
Core CSR user exception program counter value register. (CSR_UEPC)	317
Core CSR user trap cause value register. (CSR_UCAUSE)	317
Core CSR machine status value register. (CSR_MSTATUS)	317
Core CSR machine vector-trap base address value register. (CSR_MTVEC)	318
Core CSR machine exception program counter value register. (CSR_MEPC)	318
Core CSR machine trap cause value register. (CSR_MCAUSE)	319
Core CSR performance counter counter register. (CSR_PCCR)	319
Core CSR performance counter enable configuration register. (CSR_PCER)	319
Core CSR performance counter mode configuration register. (CSR_PCMR)	320
Core CSR hardware loop 0 start configuration register. (CSR_HWLP0S)	320
Core CSR hardware loop 0 end configuration register. (CSR_HWLP0E)	320
Core CSR hardware loop 0 counter configuration register. (CSR_HWLP0C)	320
Core CSR hardware loop 1 start configuration register. (CSR_HWLP1S)	321
Core CSR hardware loop 1 end configuration register. (CSR_HWLP1E)	321
Core CSR hardware loop 1 counter configuration register. (CSR_HWLP1C)	321
Core CSR current privilege level status register. (CSR_PRIVLV)	321
Core CSR machine privilege mode hardware thread ID status register. (CSR_MHARTID)	322
UDMA specific stream pre-processing protocol for SPIM and I2C interfaces	322
SPI Master stream pre-processing protocol	322
I2C stream pre-processing protocol	323
e-Fuses content	324
FC e-fuse details	324
Info register 1 (INFO)	324
Info register 2 (INFO2)	325
XTAL delta threshold (WAIT_XTAL_DELTA)	326
XTAL minimum stabilization time (WAIT_XTAL_MIN)	326
XTAL maximum stabilization time (WAIT_XTAL_MAX)	326
Electrical characteristics	327
Parameter condition	327
Absolute maximum ratings	327
Operating conditions	327
Package information	328
AQFN88 package mechanical data	328
AQFN88 recommended footprint	328
AQFN88 re-flow curves	328
AQFN88 thermal characteristics	329
Chip part numbering	330
PCB Design	331
Internal Oscillator	331
Schematic Guidelines	331
Placement Rules	331

332
332
333
333
333
334
335
336

### 1 Features

- 1 + 8 high-performance cores: extended RISC-V ISA
  - 1 high performance micro-controller referred to as Fabric Controller or FC (150 MHz @ 1.0V; 250MHz @ 1.2V)
  - 8 cores that execute in parallel for compute intensive tasks referred to as Cluster (87 MHz @ 1.0V; 170MHz @ 1.2V)
  - o Ultra low Power: maximum 25mA @ 1.0V
- Memories:
  - o A level 2 Memory (512KB) for all the cores
  - o A level 1 Memory (64 KB) shared by all the cores in Cluster (0 wait state memory access)
  - o A level 1 memory (8 KB) owned by FC (0 wait state memory access)
  - o Memory Protection Unit
  - HyperBus Interface to connect external HyperFlash or HyperRAM
- Clock, reset and supply management
  - o 1.6V to 3.6V power supply and I/Os
  - o Programmable (0.9V to 1.3V, 50mV steps) Internal Regulator
  - o 2 independent FLLs, 1 for FC and 1 for Cluster
  - o 1 x 32.768kHz RTC
  - o Single 32.768kHz crystal for RTC and FLLs
- Low power
  - o Sleep, Deep Sleep, Retentive states
- Debug Mode
  - JTAG interface
- DMA
  - o A multi-channel 1D/2D cluster-DMA controls the transactions between the L2 Memory and L1 Memory
  - o A smart, lightweight and completely autonomous DMA (micro-DMA) capable of handling complex I/O scheme
- I2S: Standard I2S interface for connecting digital audio devices
  - Up to 4 digital microphones (PDM or PCM)
- CPI: Parallel interface for connecting a camera
  - o 8 bits interface
  - o HSYNC, VSYNC, PCLK
- Up to 5 timers
  - o 4 x 32 bit timers each with up to 4 PWM outputs
  - o 1 32 bit SysTick timer
- Communication Interfaces
  - Up to 2 I2C
  - o 2 x SPI master
  - o 1 x SPI slave
  - o 1 x UART
- Up to 32 fast I/O ports
  - o Different Voltage I/O banks
  - o Interrupt on Change
- A HardWare Convolution Engine (HWCE) for Convolutional Neural Networks based applications.
- LVDS interface
  - $\circ~$  A 128 Mb/s interface for RF

# 2 Introduction to the GAP8 IoT application processor

GAP8 is an IoT application processor based on the <u>PULP</u> (Parallel Ultra-Low-Power Processing Platform) open-source platform which itself implements an extended version of the open-source <u>RISC-V</u> instruction set. GAP8 enables cost-effective development, deployment and autonomous operation of intelligent devices that capture, analyze, classify and act on the fusion of rich data sources such as images, sounds or vibrations. In particular, GAP8 is uniquely optimized to execute a large spectrum of image and audio algorithms including convolutional neural network inference with extreme energy efficiency. This allows industrial and consumer product manufacturers to integrate artificial intelligence and advanced classification into new classes of wireless edge devices for IoT applications including image recognition, counting people and objects, machine health monitoring, home security, speech recognition, consumer robotics and smart toys.

## 3 Device overview

The following figure describes the main functional blocks of GAP8:



Figure 1. GAP8 Overview

GAP8's hierarchical, demand-driven architecture enables ultra-low-power operation by combining:

- A fabric controller (FC) core for control, communications and security functions. This can be viewed like a classic MCU.
- A cluster of 8 cores with an architecture optimized for the execution of vectorized and parallelized algorithms combined with a specialized Convolutional Neutral Network accelerator (HWCE).

All cores and peripherals are power switchable and voltage and frequency adjustable on demand. DC/DC regulators and clock generators with ultra-fast reconfiguration times are integrated. This allows GAP8 to adapt extremely quickly to the processing/energy requirements of a running application. All elements share access to an L2 memory area. The cluster cores and HWCE share access to an L1 (TCDM) memory area and instruction cache. The FC has its own L1 (TCDM) memory area. Multiple DMA units allow autonomous, fast, low power transfers between cluster L1 and L2 memory and between L2 memory and external peripherals. A memory protection unit is included in the FC block to allow secure execution of applications on GAP8.

#### 3.1 Cores

All 9 cores share the same extended RISC-V instruction set architecture. The I (integer), C (compressed instruction), M (Multiplication and division) and a portion of the supervisor ISA subsets are supported. These standard instruction sets are extended with specific instructions to optimize the performance of signal processing and machine learning algorithms. These extensions include zero-overhead hardware loops, pointer post/pre-modified memory accesses, instructions mixing control flow with computation (min, max, etc), multiply/subtract and accumulate, vector operations, fixed-point operations, bit manipulation and dot product. All of these instruction extensions are optimized by the compiler or can be used 'by hand'.

### 3.2 Memory areas

There are 2 different levels of memory internal to GAP8. A larger level 2 area of 512kB which is accessible by all processors and DMA units and two smaller (Tightly Coupled Device Memory - TCDM) level 1 areas, one for the FC (16kB) and one shared by all the cluster cores and HWCE (64kB). The cluster level 1 memory is banked and connected to the cluster cores via a logarithmic interface that is sized to provide single cycle access in 98% of cases.

L2 memory is divided into 4 128kB blocks that can be configured independently as retentive or not when setting GAP8 power mode to retentive sleep state.

Cluster L1 memory supports test-an-set functionality. The test-and-set is an atomic instruction used to write to a memory location and return its old value as a single atomic (i.e. non-interruptible) operation. If multiple processes access the same memory area and if a process is currently performing a test-and-set, no other process may begin another test-and-set until the first process is done.

The instruction caches of the FC (1kB) and cluster (4kB) will automatically cache instructions as needed. The cluster instruction cache is shared between all the cores in the cluster. Generally, the cluster cores will be executing the same area of code on different data hence the shared cluster instruction cache exploits this to reduce memory accesses for loading instructions.

The combination of a high speed shared data and instruction memory in the cluster provides an ideal memory architecture for the execution of code implementing parallelized algorithms.

GAP8 can also access external memory areas over the HyperBus (Flash or RAM) or quad-SPI (Flash) interfaces. We refer to RAM accessed over the HyperBus or quad-SPI interfaces as level 3 memory. Since the energy and performance cost of accessing external RAM over external buses is very high compared to the internal memory, generally this should be avoided as much as possible. In consequence, program code is loaded from external flash at boot into the L2 memory area.

### 3.3 System bus architecture

GAP8 system bus architecture consists of multiple masters and slaves. Possible routings from masters to slaves are represented in below schematic.



Figure 1. GAP8 system bus architecture

#### 3.4 Clock architecture

3 clock domains exist in GAP8:

- one reference clock at 32,768kHz generated from an external crystal and an internal ultra low power oscillator. It is propagated to be used by the FLLs, the RTC and the timers.
- two FLLs: one for the FC and one for the Cluster. The frequencies must be set up respecting the programmed voltage in the DC/DC regulator. The clock source of the FLLs is the 32,768kHz reference clock.

#### 3.5 Security architecture

A MPU controller in the FC and some address filters placed on specific locations in the bus architecture are instantiated to enable/disable access to specific memory map areas depending on User/Machine privilege mode configured in the RI5CY core of the FC and rules defined in the MPU.

Applications stored in external flash memories can also be protected using AES encryption. The ROM boot-loader in charge of loading applications from external memory into L2 memory has the ability to decrypt the image on-the-fly using an AES-128 key stored in the e-Fuses.

#### 3.6 Power architecture

3 power domains exist in GAP8:

- AO always-on domain containing:
  - o JTAG
  - o PMU
  - o internal DC/DC voltage regulator
  - o POR/BOR
  - o RTC
- SoC domain containing:
  - o FC
  - o uDMA and communication interfaces (SPIM, I2S, I2C, UART, CPI)
  - o GPIOs
  - Advanced PWM timers
  - SPI Slave
  - L2 memory
  - o ROM memory
- Cluster domain containing:
  - o 8 cluster RI5CY cores
  - HWCE
  - o DMA
  - o Cluster L1 TCDM
  - Cluster peripherals

The internal DC/DC voltage regulator can be used to power both the FC and the cluster domains. If not, an external regulator must be used to provide VDD and VDD_EXT_CLUSTER.

The internal DC/DC voltage regulator operates in 3 different modes:

- LDO: the output of the regulator is fixed at 0.8V for retentive mode
- LV: the output can be programmed from 0.9V to 1.1V in 50mV steps
- HV: the output can be programmed from 1.1V to 1.3V in 50mV steps

#### 3.6.1 Low power modes

GAP8 can operate in 6 different power modes. The column REG indicates the operating mode of the internal DC/DC voltage regulator. The column FC indicates if the FC and peripherals are powered (ON) or not (OFF). The column CL indicates if the cluster is powered (ON) or not (OFF). The column RET indicates if the retentive mode is active (ON) or not (OFF). In this mode, only a part of the L2 and few configuration registers stay powered.

REG	FC	CL	RET	Remark
LDO	OFF	OFF	OFF	Only a RTC programmed alarm or a change on GPIO pin event can wake up the chip. When waking up, GAP8 performs a full boot sequence
LDO	OFF	OFF	ON	Only a RTC programmed alarm or a change on GPIO pin event can wake up the chip. When waking up GAP8 starts booting from L2
LV	ON	OFF	N/A	Only SOC and peripherals are running
HV	ON	OFF	N/A	Only SOC and peripherals are running
LV	ON	ON	N/A	Whole chip is running
HV	ON	ON	N/A	Whole chip is running
	LDO LV HV LV	LDO OFF  LDO OFF  LV ON  HV ON  LV ON	LDO OFF OFF LV ON OFF LV ON OFF LV ON ON	LDO OFF OFF OFF  LDO OFF OFF ON  LV ON OFF N/A  HV ON OFF N/A  LV ON ON N/A

Table 1. GAP8 Power Modes

#### 3.6.2 Power-up sequence

### 3.6.2.1 Cold boot

GAP8 cold boot is sequenced as follows:

- Provide VBAT externally
- Internal DC/DC voltage regulator stabilizes to 1.2V and send power ok signal to PORBOR
- PORBOR internally resets the chip
- Optionally, external chip reset pin should be asserted then de-asserted
- 32kHz oscillator is activated
- SOC domain is turned on

- SOC FLL is turned on
- FC RI5CY core starts executing first stage boot-loader (FSBL) from ROM memory
  - o Optionally wait for 32kHz oscillator stabilization
  - o Activate PMU cluster bypass mode
  - o SOC FLL is locked at 50MHz (unless redefined by e-Fuses)
  - FSBL prepares secondary boot which will be executed from L2 memory starting at address 0x1C000080 which is the
    address of the reset handler. Multiple boot modes are provided by FSBL to select the location of the application program to
    be loaded and executed.

#### 3.6.2.2 Warm boot

GAP8 can warm boot after going into deep sleep or retentive sleep state. Warm boot possible sequences are described below:

- Before going into deep sleep or retentive sleep states, save all PMU and FLL configurations needed to wake-up in the retentive <u>SAFE_PMU_SLEEPCTRL</u> and <u>SAFE_PMU_RAR</u> registers of the <u>SoC control unit</u>
- Switch GAP8 power state to deep sleep or retentive sleep mode. Only AO power domain will stay powered by the LDO internal voltage regulator.
- Wake-up can be configured to be raised by RTC or external wake-up event on one pin of the chip.
- When wake-up event arises:
  - o if deep sleep mode was chosen, GAP8 chip will continue to boot as described in cold boot sequence
  - o if retentive sleep was selected:
    - FLL and PMU configurations are restored automatically from the <u>SAFE_PMU_SLEEPCTRL</u> and <u>SAFE_PMU_RAR</u> registers of the <u>SoC control unit</u>
    - FC RISCY core starts executing first stage boot-loader (FSBL) from ROM memory. FSBL will directly jump to the reset handler at address 0x1C000080 under the assumption that this part of the L2 memory would have been configured to retentive state before going into retentive sleep mode.

#### 3.7 Boot Modes

GAP8 always boots from the first stage boot-loader contained in ROM memory. Depending on e-Fuses content and retentive state stored in AO power domain, it can boot from:

- JTAG interface
- SPI Slave interface
- external SPI flash
- external HyperFlash
- internal L2 (when waking up from retentive mode)

The security features of GAP8 allows to boot in a secure mode where the code loaded is encrypted with an AES-128 key.

All the boot modes (and the keys used for secure mode boot) are controlled by internal<u>e-fuses</u> or by the APB SoC control unit register <u>JTAGREG</u>. The JTAGREG allows a host connected via the JTAG or SPI slave interface to control which memory device the FC will boot from while GAP8 chip reset is asserted.

#### 3.8 Debug architecture

GAP8 contains debug functionalities to help the developer observing/controlling application code execution.

Debug functionalities are accessible through JTAG or SPI Slave interfaces using a GDB server. They permit access to the FC RISCY core debug unit and Cluster RISCY cores debug units to break program execution. A direct connection from JTAG or SPI Slave to GAP8 bus architecture also allows access to all the memory mapped registers of the chip.

#### 3.9 Events and interrupts model

To be completed

#### 3.10 Exceptions model

To be completed

### 3.11 Data types supported

The memories are byte addressable so every single data type whose size is a multiple of bytes can be supported either natively if the

number of bytes is less or equal than 4 or through software emulation if it is larger.

#### 3.12 <u>e-Fuses</u>

The GAP8 FC subsystem contains a number of write once <u>e-fuses</u>. These are used to control a number of chip functions including boot device, boot mode, FLL configuration and others. A large section of this e-fuse block is available for customer application use.

### 3.13 MPU (Memory Protection Unit)

The MPU provides features to protect access to L2 memory, FC L1 memory and SOC peripherals memory mapped areas.

#### 3.14 Event Units

Two event units (EU) are available in GAP8. One for the FC and one for the cluster.

The EU allows the RI5CY cores to be put into sleep mode when waiting for an event to occur. In the EUs, the way of treating incoming events can be controlled. The EU can be instructed to react instantly by jumping to an interrupt routine or to delegate the treatment of the event to a software event task controller.

#### 3.15 DMA (direct memory access )

The DMA unit allows the transfer of data between L2 and cluster L1 memory areas. 8 channels can be programmed. Channels can be 1D/2D on the L2 memory and 1D on the cluster L1 side.

#### 3.16 <u>HWCE (hardware convolution engine)</u>

The Hardware Convolution Engine or HWCE is a special-purpose co-processor designed for accelerated computation of convolution-accumulation kernels. In particular, it is targeted towards acceleration of Convolutional Neural Networks (CNNs). The HWCE assumes input and output pixels and convolution weights are 16-bit, 8-bit or 4-bit fixed point numbers.

The GAP8 overview diagram above shows how the HWCE is integrated within GAP8's cluster domain. Differently from most tightly-coupled accelerators, the HWCE is not tied with a specific core but rather is tightly integrated within the cluster. Memory access is performed directly to logarithmic interconnect of the cluster L1 memory, while control of the accelerator is performed by means of a configuration port that is a target of the cluster peripheral interconnect.

This means that the HWCE directly shares data in cluster L1 with the RI5CY cores, similarly to what cores do with one another. Therefore, from the perspective of the shared L1 memory the HWCE is essentially indistinguishable from a cluster core. The HWCE is, however unable to access L2 memory unlike the other cores.

The Hardware Convolution engine is capable of executing the following operations in a single cycle:

- 1. a single 5x5 or 4x7 convolution using 16bit weights and 16bit pixels
- 2. three simultaneous 3x3 convolutions using 16bit weights and 16bit pixels
- 3. two simultaneous 5x5 or 4x7 convolutions using 8bit weights and 16bit pixels
- 4. four simultaneous 5x5 or 4x7 convolutions using 4bit weights and 16bit pixels

Moreover, in all considered cases the precision of weights can be reduced to 8bit or 4bit and that of pixels to 8bit; these changes do not come with a performance improvement outside of the 4 cases considered above, but power and memory bandwidth requirements are relaxed.

The HWCE supports a stride of one only.

#### 3.17 Micro DMA

The micro DMA (UDMA) provides direct transfer of data between L2 memory and the different interfaces provided in GAP8 connected to UDMA. It helps in relaxing the execution load of FC RISCY core. Up to 11 channels can be managed by the UDMA:

- LVDS from/to L2
- Camera to L2
- 1250 to L2
- I2S1 to L2
- FC L1 from/to L2
- I2C0 from/to L2
- I2C1 from/to L2
- UART from/to L2

- HyperBus from/to L2
- SPIM0 from/to L2
- SPIM1 from/to L2

The width of transfers can be selected between 8, 16 or 32 bits. Up to 128kB can be transferred during a single transaction (8kB for SPIM). In the general case, transactions can be bidirectional but depending on the interface, in some cases only one direction is available.

### 3.17.1 LVDS (Low-voltage differential signaling)

A bidirectional LVDS link (differential clock and differential data) is available. It supports double data rate (DDR). It is able to communicate at speeds up to 64MHz.

### 3.17.2 SPI master (serial peripheral interface)

Up to 2 SPI master interfaces are available:

- One Single/Quad SPI (Master) which is able to communicate at speeds up to 50Mbits/s.
- One Single SPI (Master) which is able to communicate at speeds up to 50Mbits/s.

### 3.17.3 HyperBus

A HyperBus interface is available. It is an 8 bits wide data bus and can communicate at speeds up 50MHz in DDR with HyperFlash or HyperRam devices. Combo chips with HyperFlash and HyperRam are also supported.

Please note that the bootloader and the OS drivers make the assumption that the HyperFlash/RAM chip selects are connected as follows.

- HyperCSN0 CS2# (RAM)
- HyperCSN1 CS0# (Flash)

#### 3.17.4 <u>UART (universal asynchronous receiver-transmitter)</u>

One UART interface is available with up to 1Mbits/s baud rate. No dedicated synchronization (CTS/RTS/DTR/DSR/DCD) signals are provided.

### 3.17.5 <u>I2C (inter-integrated circuit)</u>

Up to 2  $l^2$ C (Inter-Integrated Circuit) are provided in GAP8. They support multi-master, multi-slave, single-ended modes.  $l^2$ C uses only two bidirectional open-drain lines, Serial Data Line (SDA) and Serial Clock Line (SCL), pulled up with resistors.

### 3.17.6 <u>I2S (digital microphone interface) RX</u>

Up to 2 RX  $l^2$ S are available for connecting digital audio devices to GAP8 chip. Up to 4 digital microphones (either PCM or PDM format) can be directly connected to GAP8. These are able to communicate at speeds of up to 10Mbits/s.



Figure 2. Standard I2S Transfer

The protocol uses 3 wires SCK(clock), WS(word select) and SD(data). Data is always sampled on the rising edge of the clock. WS indicates which channel the following data is part of. While SD is always in a master to slave direction, SCK and WS can be generated by both the master or slave. The GAP8 I²S interface supports both modes as well as 2 other non standard transfer modes including a DDR (dual data-rate) mode.



Figure 3. DDR Transfer

More details can be found in the section below.

#### 3.17.7 CPI (camera parallel interface)

The CPI interface is 8 bits wide and can communicate at speeds up to 50MHz. VSYNC, HSYNC and PCLK are provided by the camera.

#### 3.18 GPIOs (general purpose inputs/outputs)

Up to 32 digital general purpose I/Os are available. Each I/O can be configured either as an input or output. Interrupts on event can be generated on the rising or the falling or both edges for all I/Os. I/Os can also be configured to act as an external wake up signal.

#### 3.19 SPI slave

One SPI slave interface directly connected to GAP8 bus architecture is available. It is able to access all memory mapped registers and L2 memory. It can communicate at speeds up to 50Mbits/s.

#### 3.20 Basic timers

2 basic timers are available, one connected to the <u>FC</u> and the other to the <u>cluster</u>. They can be configured either as 2 x 32-bit timers or as a single 64-bit timer. The basic timers can either run continuously or trigger just once. Events can be generated using a compare match

Clock sources of these timers can be the:

- FLL
- FLL with pre-scaler
- 32.768kHz reference clock

#### 3.21 Advanced PWM Timers

4 advanced PWM timers are available in the SOC domain. Each of them provides 4 output signal channels that can be used for PWM signal generation with multiple configuration possibilities.

#### 3.22 RTC

A real-time clock is available. It provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function. It provides also alarm and a periodic interrupt features. It is clocked by the 32.768 kHz external crystal.

#### 3.23 Performance counters

Each RISCY cores of the FC and the cluster provide a performance counter. These 32-bit counters can be configured to count the:

- Total number of cycles (also includes the cycles where the core is sleeping)
- Number of cycles the core was active (not sleeping)
- Number of instructions executed
- Number of load data hazards
- Number of jump register data hazards
- Number of cycles waiting for instruction fetches, i.e. number of instructions wasted due to non-ideal caching
- Number of data memory loads executed. Misaligned accesses are counted twice
- Number of data memory stores executed. Misaligned accesses are counted twice
- Number of unconditional jumps (j, jal, jr, jalr)
- Number of both taken and not taken branches
- Number of taken branches
- Number of compressed instructions executed
- Number of memory loads to EXT executed. Misaligned accesses are counted twice. Every non-L1 access is considered external (cluster only)
- Number of memory stores to EXT executed. Misaligned accesses are counted twice. Every non-L1 access is considered external (cluster only)
- Number of cycles used for memory loads to EXT. Every non-L1 access is considered external (cluster only)
- Number of cycles used for memory stores to EXT. Every non-L1 access is considered external (cluster only)
- Number of cycles wasted due to L1/log-interconnect contention (cluster only)
- Number of cycles wasted due to CSR access

# 4 Pin-out and Pin description

### 4.1 Pinout

The following figure describes the pin-out (top view) of GAP8.



Figure 4. GAP8 Pin-out

#### 4.2 Pin Description

The following tables describe GAP8's chip pins. After power-up, each pin is configured in the default mode. Each pin can be configured by software to one of the alternate functions available.

All pins (except UART_RX, UART_TX and SPIS0_SCK which can only be pulled up) can be configured to be pulled down.

Each pin function is described with an indication of whether it is an Input, Output or Supply pin.

Please see the HyperBus section for details of HyperFlash/RAM chip select assignment.

Docition	Voltage Bof	Function (Pin type)			
Position	Position Voltage Ref	Default	Alternate 1	Alternate 2	Alternate 3
D3		VDDIO_LVDS (Supply)			
B20	VDDIO_LVDS	RF_TXD_P (Out)			
A22	VDDIO_LVDS	RF_TXD_N (Out)			
B19	VDDIO_LVDS	RF_TXCLK_P (Out)			
A21	VDDIO_LVDS	RF_TXCLK_N (Out)			
A19	VDDIO_LVDS	RF_RXD_P (In)			
B18	VDDIO_LVDS	RF_RXD_N (In)			
A18	VDDIO_LVDS	RF_RXCLK_P (In)			
B17	VDDIO_LVDS	RF_RXCLK_N (In)			
A1		CAM_VDDIO (Supply)			
A39		CAM_VDDIO (Supply)			
A4	CAM_VDDIO	SPIM1_MISO (In)	GPIOA0 (In/Out)		
В3	CAM_VDDIO	SPIM1_MOSI (Out)	GPIOA1 (In/Out)		
A5	CAM_VDDIO	SPIM1_CS0 (Out)	GPIOA2 (In/Out)	I2C1_SDA (In/Out)	

Position Voltage Ref			Function	on (Pin type)		
Position	Voltage Ref	Default	Alternate 1	Alternate 2	Alternate 3	
B4	CAM_VDDIO	SPIM1_SCK (Out)	GPIOA3 (In/Out)	I2C1_SCL (In/Out)		
A3	CAM_VDDIO	ORCA_TXSYNC (In)	GPIOA0 (In/Out)	iPIOA0 (In/Out) SPIM1_CS0 (Out)		
B2	CAM_VDDIO	ORCA_RXSYNC (In)	GPIOA1 (In/Out)	SPIM1_CS1 (Out)		
A2	CAM_VDDIO	ORCA_TXI (Out)	GPIOA2 (In/Out)			
B1	CAM_VDDIO	ORCA_TXQ (Out)	GPIOA3 (In/Out)			
A44	CAM_VDDIO	ORCA_RXI (In)	GPIOA4 (In/Out)	SPIS0_SDIO0 (In/Out)	SPIS0_SDIO2 (In/Out)	
B40	CAM_VDDIO	ORCA_RXQ (In)	GPIOA5 (In/Out)	SPIS0_SDIO1 (In/Out)	SPIS0_SDIO3 (In/Out)	
A43	CAM_VDDIO	CAM_PCLK (In)	GPIOA4 (In/Out)	TIMER1_CH0 (Out)		
A37	CAM_VDDIO	CAM_HSYNC (In)	GPIOA5 (In/Out)	TIMER1_CH1 (Out)		
B39	CAM_VDDIO	CAM_DATA0 (In)	GPIOA6 (In/Out)	TIMER1_CH2 (Out)		
A42	CAM_VDDIO	CAM_DATA1 (In)	GPIOA7 (In/Out)	TIMER1_CH3 (Out)		
B38	CAM_VDDIO	CAM_DATA2 (In)	GPIOA8 (In/Out)	TIMER2_CH0 (Out)		
A41	CAM_VDDIO	CAM_DATA3 (In)	GPIOA9 (In/Out)	TIMER2_CH1 (Out)		
B37	CAM_VDDIO	CAM_DATA4 (In)	GPIOA10 (In/Out)	TIMER2_CH2 (Out)		
A40	CAM_VDDIO	CAM_DATA5 (In)	GPIOA11 (In/Out)	TIMER2_CH3 (Out)		
B36	CAM_VDDIO	CAM_DATA6 (In)	GPIOA12 (In/Out)	TIMER3_CH0 (Out)		
A38	CAM_VDDIO	CAM_DATA7 (In)	GPIOA13 (In/Out)	TIMER3_CH1 (Out)		
A36	CAM_VDDIO	CAM_VSYNC (In)	GPIOA14 (In/Out)	TIMER3_CH2 (Out)		
B34	CAM_VDDIO	I2C1_SDA (In/Out)	GPIOA15 (In/Out)	TIMER3_CH3 (Out)		
D1	CAM_VDDIO	I2C1_SCL (In/Out)	GPIOA16 (In/Out)	ORCA_CLK (In)		
A27		SAFE_VDDIO (Supply)				
B22	SAFE_VDDIO	I2C0_SDA (In/Out)				
A25	SAFE_VDDIO	I2C0_SCL (In/Out)				
A24	SAFE_VDDIO	I2S0_SCK (In/Out)				
A26	SAFE_VDDIO	12S0_WS (In/Out)				
B23	SAFE_VDDIO	12S0_SDI (In)				
A23	SAFE_VDDIO	RESET_N (In)				
B25	SAFE_VDDIO	JTAG_TCK (In)				
A28	SAFE_VDDIO	JTAG_TDI (In)				
B26	SAFE_VDDIO	JTAG_TDO (Out)				
A29	SAFE_VDDIO	JTAG_TMS (In)				
B27	SAFE_VDDIO	JTAG_TRST (In)				
B24	SAFE_VDDIO	JTAG_TAPSEL_EN (In)				
A12		SPIM_VDDIO (Supply)				
B11	SPIM_VDDIO	TIMERO_CHO (Out)	GPIOA17 (In/Out)			
A13	SPIM_VDDIO	TIMERO_CH1 (Out)	GPIOA18 (In/Out)	TIMER1_CH0 (Out)		
B12	SPIM_VDDIO	TIMERO_CH2 (Out)	GPIOA19 (In/Out)	TIMER2_CH0 (Out)		
A14	SPIM_VDDIO	TIMERO_CH3 (Out)	GPIOA20 (In/Out)	TIMER3_CH0 (Out)		
B13	SPIM_VDDIO	I2S1_SCK (In/Out)	GPIOA21 (In/Out)	SPISO_SCK (In)	I2S1_SDI (In)	
A15	SPIM_VDDIO	I2S1_WS (In/Out)	GPIOA22 (In/Out)	SPISO_CS (In)	HYPER_CKN (Out)	
B14	SPIM_VDDIO	I2S1_SDI (In)	GPIOA23 (In/Out)	SPIS0_SDIO2 (In/Out)	HYPER_CK (Out)	
B6	SPIM_VDDIO	UART_RX (In)	GPIOA24 (In/Out)			
A7	SPIM_VDDIO	UART_TX (Out)	GPIOA25 (In/Out)			
D2	SPIM_VDDIO	SPIM0_SDIO0 (In/Out)			HYPER_DQ[0] (In/Out)	
A11	SPIM_VDDIO	SPIM0_SDIO1 (In/Out)			HYPER_DQ[1] (In/Out)	
B10	SPIM_VDDIO	SPIM0_SDIO2 (In/Out)	GPIOA26 (In/Out)	I2C1_SDA (In/Out)	HYPER_DQ[2] (In/Out)	

Parities Valters Pof		Function (Fin type)				
Position	Voltage Ref	Default	Alternate 1	Alternate 2	Alternate 3	
A10	SPIM_VDDIO	SPIM0_SDIO3 (In/Out)	GPIOA27 (In/Out)	I2C1_SCL (In/Out)	HYPER_DQ[3] (In/Out)	
B8	SPIM_VDDIO	SPIMO_CSO (Out)			HYPER_DQ[4] (In/Out)	
A8	SPIM_VDDIO	SPIMO_CS1 (Out)	GPIOA28 (In/Out)	SPIS0_SDIO3 (In/Out)	HYPER_DQ[5] (In/Out)	
B7	SPIM_VDDIO	SPIMO_SCK (Out)			HYPER_DQ[6] (In/Out)	
A9	SPIM_VDDIO	SPISO_CS (In)	GPIOA29 (In/Out)	SPIM1_CS0 (Out)	HYPER_DQ[7] (In/Out)	
B15	SPIM_VDDIO	SPIS0_SDIO0 (In/Out)	GPIOA30 (In/Out)	SPIM1_CS1 (Out)	HYPER_CSN0 (Out)	
A16	SPIM_VDDIO	SPIS0_SDIO1 (In/Out)	GPIOA31 (In/Out)		HYPER_CSN1 (Out)	
B9	SPIM_VDDIO	SPISO_SCK (In)			HYPER_RWDS (In/Out)	
A31		XTAL_AVSS (Supply)				
B29		XTAL_AVDD (Supply)				
A32	XTAL_AVDD,XTAL_AVSS	XTAL_IN (In)				
B30	XTAL_AVDD,XTAL_AVSS	XTAL_OUT (Out)				
A33		RAR_AVS (Supply)				
A34		RAR_AVD (Supply)				
A35		RAR_VSENSE (Supply)				
B31		RAR_AVDPWR (Supply)				
B32		RAR_GNDSENSE (Supply)				
D4		RAR_LX (Supply)				
B5		VDD_EXT_CLUSTER (Supply)				
B16		VDD_EXT_CLUSTER (Supply)				
B35		VDD_EXT_CLUSTER (Supply)				
A6		VDD_EXT_CLUSTER (Supply)				
A17		VDD (Supply)				
A30		VDD (Supply)				
B33		VDD (Supply)				
A20		VDD_LVDS_1P2V (Supply)				
B28		VQPS (Supply)				
B21		VSS (Supply)				

Table 2. Pin description table

# **5 Memory map**

The following table describes GAP8's memory map. All areas in this map are addressable from any RI5CY cores. The aliased area at the start of the memory map has a different meaning when addressed from FC or Cluster RI5CY cores. See the section on aliasing below.

Address range

Aliased Memory Area
Cluster Subsystem         0x10000000 - 0x103FFFF           Cluster L1 RAM (64kB)         0x10000000 - 0x1000FFF           Cluster L1 memory test and set unit         0x10100000 - 0x1010FFF           Cluster control unit         0x10200000 - 0x102003F           Cluster timer         0x10200400 - 0x10200FF           Cluster event unit         0x10200800 - 0x10200FF           Cluster instruction cache control unit         0x10201400 - 0x102017F           Hardware convolution engine         0x10201800 - 0x10201B
Cluster L1 RAM (64kB)         0x10000000 - 0x1000FFF           Cluster L1 memory test and set unit         0x10100000 - 0x1010FFF           Cluster control unit         0x10200000 - 0x102003F           Cluster timer         0x10200400 - 0x102007F           Cluster event unit         0x10200800 - 0x10200FF           Cluster instruction cache control unit         0x10201400 - 0x102017F           Hardware convolution engine         0x10201800 - 0x10201BF
Cluster L1 memory test and set unit         0x10100000 - 0x1010FFF           Cluster control unit         0x10200000 - 0x102003f           Cluster timer         0x10200400 - 0x102007f           Cluster event unit         0x10200800 - 0x10200Ff           Cluster instruction cache control unit         0x10201400 - 0x102017f           Hardware convolution engine         0x10201800 - 0x102018f
Cluster control unit         0x10200000 - 0x1020038           Cluster timer         0x10200400 - 0x1020078           Cluster event unit         0x10200800 - 0x10200F8           Cluster instruction cache control unit         0x10201400 - 0x1020178           Hardware convolution engine         0x10201800 - 0x1020180
Cluster timer         0x10200400 - 0x1020076           Cluster event unit         0x10200800 - 0x10200F6           Cluster instruction cache control unit         0x10201400 - 0x1020176           Hardware convolution engine         0x10201800 - 0x1020180
Cluster event unit         0x10200800 - 0x10200Ff           Cluster instruction cache control unit         0x10201400 - 0x102017f           Hardware convolution engine         0x10201800 - 0x10201Bf
Cluster instruction cache control unit         0x10201400 - 0x1020176           Hardware convolution engine         0x10201800 - 0x1020186
Hardware convolution engine 0x10201800 - 0x10201BI
Cluster Core 0 (Debug Heit) 0v10200000 0v1020701
Cluster Core 0 (Debug Unit) 0x10300000 - 0x10307FF
<u>Cluster Core 1 (Debug Unit)</u> 0x10308000 - 0x1030FFF
<u>Cluster Core 2 (Debug Unit)</u> 0x10310000 - 0x10317Ff
Cluster Core 3 (Debug Unit) 0x10318000 - 0x1031FFF
<u>Cluster Core 4 (Debug Unit)</u> 0x10320000 - 0x10327Ff
Cluster Core 5 (Debug Unit) 0x10328000 - 0x1032FFF
<u>Cluster Core 6 (Debug Unit)</u> 0x10330000 - 0x10337Ff
<u>Cluster Core 7 (Debug Unit)</u> 0x10338000 - 0x1033FFF
ROM Memory 0x1A000000 - 0x1A0FFF
ROM (8kB) 0x1A000000 - 0x1A001Fl
SoC Peripherals Subsystem 0x1A100000 - 0x1A10FFI
SoC FLL 0x1A100000 - 0x1A10070
<u>Cluster FLL</u> 0x1A100800 - 0x1A100Fl
GPIO 0x1A101000 - 0x1A101FI
<u>SoC control unit</u> 0x1A104000 - 0x1A104Fl
<u>Advanced timer</u> 0x1A105000 - 0x1A105Fi
SoC event generator 0x1A106000 - 0x1A106Fi
PMU DLC bridge 0x1A107000 - 0x1A107Fi
RealTime Counter 0x1A108000 - 0x1A108Fi
<u>Efuse</u> 0x1A109000 - 0x1A109Fl
MicroDMA Subsystem 0x1A102000 - 0x1A102Fl
<u>uDMA LVDS interface</u> 0x1A102000 - 0x1A10200
<u>SPI Master Channel 0</u> 0x1A102080 - 0x1A1020I
<u>SPI Master Channel 1</u> 0x1A102100 - 0x1A10211
<u>uDMA Hyperbus interface</u> 0x1A102180 - 0x1A10211
<u>uDMA UART interface</u> 0x1A102200 - 0x1A1022
<u>I2C Channel 0</u> 0x1A102280 - 0x1A1022
<u>I2C Channel 1</u> 0x1A102300 - 0x1A1023
<u>uDMA MEMCPY interface</u> 0x1A102380 - 0x1A10238

### Address range

		uDMA CPI interface	0x1A102480 - 0x1A1024FF
		uDMA control unit	0x1A102780 - 0x1A1027FF
Fabric Controller Subsystem			0x1B000000 - 0x1B3FFFFF
	FC L1 RAM (16kB)		0x1B000000 - 0x1B003FFF
	FC control unit		0x1B200000 - 0x1B2003FF
	FC timer		0x1B200400 - 0x1B2007FF
	FC event unit		0x1B200800 - 0x1B200FFF
	FC instruction cache control un	<u>iit</u>	0x1B201400 - 0x1B2017FF
	FC Core 0 (Debug Unit)		0x1B300000 - 0x1B307FFF
L2 Memory			0x1C000000 - 0x1FFFFFFF
	L2 RAM (512kB)		0x1C000000 - 0x1C7FFFFF

Table 3. GAP8 memory map table

### 5.1 Aliased memory map

A reserved section of addresses in the overall memory map have specific meaning when addressed from the FC or Cluster RI5CY cores. These are called aliased addresses. They should be preferred over standard addresses since the access will be faster (1 or 2 clock cycles).

### 5.2 FC aliased address map

### Functional unit Aliased address range

FC L1 RAM (16kB)	0x00000000 - 0x00003FFF
FC control unit	0x00200000 - 0x002003FF
FC timer	0x00200400 - 0x002007FF
FC event unit (FC private)	0x00204000 - 0x002043FF
FC Memory protection unit	0x00204400 - 0x002047FF
FC instruction cache control unit	0x00201400 - 0x002017FF
FC Core 0 (Debug Unit)	0x00300000 - 0x00307FFF

Table 4. Fabric Controller Subsystem aliased memory map table

### 5.3 Cluster aliased address map

### Functional unit Aliased address range

Cluster L1 RAM (64kB)	0x00000000 - 0x0000FFFF
Cluster L1 memory test and set unit	0x00100000 - 0x0010FFFF
Cluster control unit	0x00200000 - 0x002003FF
<u>Cluster timer</u>	0x00200400 - 0x002007FF
Cluster event unit (Cluster private)	0x00204000 - 0x002043FF
Cluster instruction cache control unit	0x00201400 - 0x002017FF
Hardware convolution engine	0x00201800 - 0x00201BFF
DMA	0x00204400 - 0x002047FF
Cluster Core 0 (Debug Unit)	0x00300000 - 0x00307FFF
Cluster Core 1 (Debug Unit)	0x00308000 - 0x0030FFFF
Cluster Core 2 (Debug Unit)	0x00310000 - 0x00317FFF
Cluster Core 3 (Debug Unit)	0x00318000 - 0x0031FFFF
Cluster Core 4 (Debug Unit)	0x00320000 - 0x00327FFF

## Functional unit Aliased address range

Cluster Core 5 (Debug Unit)	0x00328000 - 0x0032FFFF
Cluster Core 6 (Debug Unit)	0x00330000 - 0x00337FFF
Cluster Core 7 (Debug Unit)	0x00338000 - 0x0033FFFF

Table 5. Cluster Subsystem aliased memory map table

# 6 Device components description

### 6.1 RISC-V cores

The FC and cluster cores in GAP8 are based on the PULP RI5CY core.

RI5CY supports the following instructions:

- Full support for RV32I Base Integer Instruction Set
- Full support for RV32C Standard Extension for Compressed Instructions
- Partial support for RV32M Standard Extension for Integer Multiplication and Division. Multiplication only.
- The Fabric Controller core supports a subset of the draft RISC-V privileged architecture supporting M and U modes.

The RISCY core design has been extended with the instructions in the sections below. The RISCY core itself implements extensions to the RISC-V instruction set. The datasheet for the RISCY core can be found at <a href="https://pulp-platform.org//wp-content/uploads/2017/11/ri5cy_user_manual.pdf">https://pulp-platform.org//wp-content/uploads/2017/11/ri5cy_user_manual.pdf</a>. Please note that the RISCY cores in GAP8 do not contain a floating point unit. For further explanation of the RISC-V instruction format please refer to the RISC-V standards documents.

#### 6.1.1 Complex number operations

Complex number representation for multiply and subtract operations

C = {Re, Im} represented as a vector of 2 16bits signed numbers. Using gcc vector notation C[0] is the real part, C[1] is the imaginary part.

Position in register in little endian:

Re: bits[15:0]Im: bits[31:16]

### 6.1.1.1 Complex multiplication operations

#### Mnemonic Description

	z compaion
pv.cplxmul.s rD, rA, rB	Vector by Vector rD[15:0] = (rA[15:0]*rB[15:0] - rA[31:16]*rB[31:16])>>15 rD[31:16] = (rA[15:0]*rB[31:16] + rA[31:16]*rB[15:0])>>15
pv.cplxmul.s.div2 rD, rA, rB	Vector by Vector, Div2 rD[15:0] = (rA[15:0]*rB[15:0] - rA[31:16]*rB[31:16])>>16 rD[31:16] = (rA[15:0]*rB[31:16] + rA[31:16]*rB[15:0])>>16
pv.cplxmul.s.div4 rD, rA, rB	Vector by Vector, Div4 rD[15:0] = (rA[15:0]*rB[15:0] - rA[31:16]*rB[31:16])>>17 rD[31:16] = (rA[15:0]*rB[31:16] + rA[31:16]*rB[15:0])>>17
pv.cplxmul.s.sc rD, rA, rB	Vector by Scalar rD[15:0] = (rA[15:0]*rB[15:0] - rA[31:16]*rB[15:0])>>15 rD[31:16] = (rA[15:0]*rB[15:0] + rA[31:16]*rB[15:0])>>15
pv.cplxmul.s.sci	Vector by I6 Scalar rD[15:0 ] = (rA[15:0 ]*ExtS(I6) - rA[31:16]*ExtS(I6))>>15 rD[31:16] = (rA[15:0 ]*ExtS(I6) + rA[31:16]*ExtS(I6))>>15

Table 6. Complex multiplication operations summary table

35		31	26	25	24	20 19 1	5 14 12	17 7	6 0
	funct5		F	S	rs2	rs1	funct3	rD	opcode
	01010		1	0	src2	src1	000	dest	1010111
	01010		1	0	src2	src1	010	dest	1010111
	01010		1	1	src2	src1	010	dest	1010111
	01010		1	0	src2	src1	100	dest	1010111
	01010		1	lr	mm6[5:0]s	src1	110	dest	1010111

Table 7. Complex multiplication operations format table

### 6.1.1.2 Subtraction of 2 complexes with post rotation by -j

R = subrotmj(X, Y), R, X, Y complexes.

R.Re = X.Im - Y.Im R.Im = Y.Re - X.Re

It can be viewed as (XY) rotated by 90 degrees (multiplied by j).

### Mnemonic Description

pv.subrotmj.h rD, rA, rB	rD[15:0] = rA[31:16] - rB[31:16] rD[31:16] = rB[15:0] rA[15:0]
pv.subrotmj.h.div2 rD, rA, rB	rD[15:0] = (rA[31:16] - rB[31:16]) >> 1 rD[31:16] = (rB[15:0] - rA[15:0]) >> 1
pv.subrotmj.h.div4 rD, rA, rB	rD[15:0] = (rA[31:16] - rB[31:16]) >> 2 rD[31:16] = (rB[15:0] - rA[15:0]) >> 2

Table 8. Subtraction of 2 complexes with post rotation by -j summary table

35		31	26	25	24	20 19 1	15 14	12 17 7	76 0
	funct5		F	S	rs2	rs1	funct3	rD	opcode
	01101		1	0	src2	src1	000	dest	1010111
	01101		1	0	src2	src1	010	dest	1010111
	01101		1	1	src2	src1	010	dest	1010111

Table 9. Subtraction of 2 complexes with post rotation by -j format table

### 6.1.1.3 Complex conjugate operation

Mnemonic	Description
pv.cplxconj.h rD, rA	rD[15:0] = rA[15:0] rD[31:16] = -rA[31:16]

Table 10. Complex conjugate operation summary table

35	31	26	25	24	20 19 15	14 1	2 17 7	6	0
funct5		F	S	rs2	rs1	funct3	rD	opcode	
01011		1		000000	src1	000	dest	1010111	1

Table 11. Complex conjugate operation format table

### 6.1.2 Extensions to existing RI5CY vector operations.

### 6.1.2.1 Addition of vector of half words with post right shift

Extends the existing pv.add instruction.

Mnemonic	Description
pv.add.h.div2 rD, rA, rB	rD[15:0] = (rA[15:0] + rB[15:0]) >> 1 rD[31:16] = (rA[31:16] + rB[31:16]) >> 1
pv.add.b.div2 rD, rA, rB	rD[7:0] = (rA[7:0] + rB[7:0]) >> 1 rD[15:8] = (rA[15:8] + rB[15:8]) >> 1 rD[23:16] = (rA[23:16] + rB[23:16]) >> 1 rD[31:24] = (rA[31:24] + rB[31:24]) >> 1
pv.add.h.div4 rD, rA, rB	rD[15:0] = (rA[15:0] + rB[15:0]) >> 2 rD[31:16] = (rA[31:16] + rB[31:16]) >> 2

### Mnemonic Description

pv.add.b.div4 rD, rA, rB	rD[ 7:0 ] = (rA[ 7:0 ] + rB[ 7:0 ]) >> 2 rD[15:8 ] = (rA[15:8 ] + rB[15:8 ]) >> 2 rD[23:16] = (rA[23:16] + rB[23:16]) >> 2 rD[31:24] = (rA[31:24] + rB[31:24]) >> 2
--------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Table 12. Addition of vector of half words with post right shift summary table

35		31	26	25	24	20 19	15 14	12 17	76	0
	funct5		F	S	rs2	rs1	funct3	rD	opcode	
	00000		0	0	src2	src1	010	dest	1010111	
	00000		0	0	src2	src1	011	dest	1010111	
	00000		0	1	src2	src1	010	dest	1010111	
	00000		0	1	src2	src1	011	dest	1010111	

Table 13. Addition of vector of half words with post right shift format table

### 6.1.2.2 Subtraction of vectors of half words with post right shift

Extends the existing pv.sub instruction

tion
ı

c.	Description:
pv.sub.h.div2 rD, rA, rB	rD[15:0] = (rA[15:0] - rB[15:0]) >> 1 rD[31:16] = (rA[31:16] - rB[31:16]) >> 1
pv.sub.b.div2 rD, rA, rB	rD[7:0] = (rA[7:0] - rB[7:0]) >> 1 rD[15:8] = (rA[15:8] - rB[15:8]) >> 1 rD[23:16] = (rA[23:16] - rB[23:16]) >> 1 rD[31:24] = (rA[31:24] - rB[31:24]) >> 1
pv.sub.h.div4 rD, rA, rB	rD[15:0] = (rA[15:0] - rB[15:0]) >> 2 rD[31:16] = (rA[31:16] - rB[31:16]) >> 2
pv.sub.b.div4 rD, rA, rB	rD[7:0] = (rA[7:0] - rB[7:0]) >> 2 rD[15:8] = (rA[15:8] - rB[15:8]) >> 2 rD[23:16] = (rA[23:16] - rB[23:16]) >> 2 rD[31:24] = (rA[31:24] - rB[31:24]) >> 2

Table 14. Subtraction of vectors of half words with post right shift summary table

35		31	26	25	24	20 19	15 14	12 17	76	0
	funct5		F	S	rs2	rs1	funct3	rD	opcode	
	00001		0	0	src2	src1	010	dest	1010111	
	00001		0	0	src2	src1	011	dest	1010111	
	00001		0	1	src2	src1	010	dest	1010111	
	00001		0	1	src2	src1	011	dest	1010111	

Table 15. Subtraction of vectors of half words with post right shift format table

### 6.1.3 Viterbi specific instructions

Selection of the survivor path relies on which branch the vector max2 has taken for each of its vector sub elements. The usual approach here is to have a variant of max setting 2 hardware flags to keep trace of which input operand has been selected for the elaboration of the max2. These 2 flags are then used by a selection operation taking 2 input vectors and the 2 flags and produce as an output a vector that is a selection of shifted by 1 to the left inputs with bit0 set according to flags.

Mnemonic	Description	
----------	-------------	--

# Mnemonic Description

pv.vitop.max rD, rA, rB	rD[31:16] = max(rA[31:16], rB[31:16]) rD[15:0] = max(rA[15:0], rB[15:0]) \$VF0 = (rA[31:16] <= rB[31:16]) \$VF1 = (rA[15:0] <= rB[15:0])
pv.vitop.sel rD, rA, rB	rD[31:16] = ((rA[31:16]<<1)&!\$VF0) (rB[31:16]<<1   \$VF0) rD[15:0] = ((rA[15:0]<<1)&!\$VF1) (rB[15:0]<<1   \$VF1)

Table 16. Viterbi specific instructions summary table

35		31	26	25	24 2	20 19	15 14	12 17	76 0
	funct5		F	S	rs2	rs1	funct3	rD	opcode
	01100		1	0	src2	src1	001	dest	1010111
	01100		1	0	src2	src1	000	dest	1010111

Table 17. Viterbi specific instructions format table

# 6.1.4 Enhanced shuffling

Extension to RI5CY pv.pack.h rD, rA, rB operation

Mnemonic	Description		
pv.pack.h.h rD, rA, rB	rD[31:16] = rA[31:16] rD[15:0] = rB[31:16]		
pv.pack.l.h rD, rA, rB	rD[31:16] = rA[15:0] rD[15:0 ] = rB[15:0]		

Table 18. Enhanced shuffling summary table

35		31	26	25	24 2	0 19	15 14	12 17	76 0
	funct5		F	S	rs2	rs1	funct3	rD	opcode
	11010		0	0	src2	src1	110	dest	1010111
	11010		0	0	src2	src1	100	dest	1010111

Table 19. Enhanced shuffling format table

### 6.2 Cluster Subsystem

## 6.2.1 Cluster Subsystem Events

Event number	Event name	IP instance name	Direction	Description
0	SW_EVT_0	Cluster RISCY cores	Input	Software event 0 from one of the CL_COREs
1	SW_EVT_1	Cluster RISCY cores	Input	Software event 1 from one of the CL_COREs
2	SW_EVT_2	Cluster RISCY cores	Input	Software event 2 from one of the CL_COREs
3	SW_EVT_3	Cluster RISCY cores	Input	Software event 3 from one of the CL_COREs
4	SW_EVT_4	Cluster RISCY cores	Input	Software event 4 from one of the CL_COREs
5	SW_EVT_5	Cluster RISCY cores	Input	Software event 5 from one of the CL_COREs
6	SW_EVT_6	Cluster RISCY cores	Input	Software event 6 from one of the CL_COREs
7	SW_EVT_7	Cluster RISCY cores	Input	Software event 7 from one of the CL_COREs
8	DMA_EVT_0	<u>DMA</u>	Input	DMA event 0
9	DMA_EVT_1	<u>DMA</u>	Input	DMA event 1
10	CL_TIMER_LO_EVT	CL_TIMER_UNIT	Input	Cluster basic timer low event
11	CL_TIMER_HI_EVT	CL_TIMER_UNIT	Input	Cluster basic timer high event
12	HWCE_EVT_0	HWCE	Input	Hardware convolution engine event 0
13	HWCE_EVT_1	HWCE	Input	Hardware convolution engine event 1
14	Reserved			Reserved
15	Reserved			Reserved
16	BARRIER_EVT	CL_EVENT_UNIT	Input	Barrier event
17	MUTEX_EVT	CL_EVENT_UNIT	Input	Mutex event
18	DISPATCHER_EVT	CL_EVENT_UNIT	Input	Dispatcher event
19	Reserved			Reserved
20	Reserved			Reserved
21	Reserved			Reserved
22	Reserved			Reserved
23	Reserved			Reserved
24	Reserved			Reserved
25	Reserved			Reserved
26	Reserved			Reserved
27	SOC_PERIPH_EVT	SOC_EVENT_GENERATOR	Input	SoC peripheral event
28	Reserved			Reserved
29	Reserved			Reserved
30	Reserved			Reserved
31	Reserved			Reserved

Table 20. Cluster Subsystem Events table

## 6.2.2 Cluster control unit

 $\label{lem:cl_ctrl_unit} {\sf CL_CTRL_UNIT}\ component\ manages\ the\ following\ features:$ 

- End of Computation status flag
- Configurable fetch activation for all cores of the Cluster
- Configurable core 0 boot address to define where to fetch first instruction in CL_CORE_0 after releasing the reset
- Configurable full cluster clock gating
- Configurable Cluster L1 memory arbitration policy

- Cluster cores resume command control
- Cluster cores halt status flags
- Configurable cluster cores debug halt command group mask policy

## 6.2.2.1 Cluster control unit registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
EOC	0x10200000	0x00200000	32	Status	R/W	0x0000	End Of Computation status register.
FETCH_EN	0x10200008	0x00200008	32	Config	R/W	0x0000	Cluster cores fetch enable configuration register.
CLOCK_GATE	0x10200020	0x00200020	32	Config	R/W	0x0000	Cluster clock gate configuration register.
DBG_RESUME	0x10200028	0x00200028	32	Config	W	0x0000	Cluster cores debug resume register.
DBG_HALT_STATUS	0x10200028	0x00200028	32	Config	R	0x0000	Cluster cores debug halt status register.
DBG_HALT_MASK	0x10200038	0x00200038	32	Config	R/W	0x0000	Cluster cores debug halt mask configuration register.
BOOT_ADDR0	0x10200040	0x00200040	32	Config	R/W	0x0000	Cluster core 0 boot address configuration register.
TCDM_ARB_POLICY_CH0	0x10200080	0x00200080	32	Config	R/W	0x0000	TCDM arbitration policy ch0 for cluster cores configuration register.
TCDM_ARB_POLICY_CH1	0x10200088	0x00200088	32	Config	R/W	0x0000	TCDM arbitration policy ch1 for DMA/HWCE configuration register.
TCDM ARB POLICY CHO REP	0x102000C0	0x002000C0	32	Config	R/W	0x0000	Read only duplicate of TCDM_ARB_POLICY_CH0 register
TCDM_ARB_POLICY_CH1_REP	0x102000C8	0x002000C8	32	Config	R/W	0x0000	Read only duplicate of TCDM_ARB_POLICY_CH1 register

Table 21. Cluster control unit registers table

# 6.2.2.2 Cluster control unit registers details

## 6.2.2.2.1 End Of Computation status register. (EOC)

Reset value: 0x0000



## Bit 0 - **EOC** (R/W)

End of computation status flag bitfield:

- *0b0*: program execution under going
- *0b1*: end of computation reached

## 6.2.2.2.2 Cluster cores fetch enable configuration register. (FETCH_EN)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bit 7 - **CORE7** (R/W)

Core 7 fetch enable configuration bitfield:

- *0b0*: disabled
- 0b1: enabled

## Bit 6 - **CORE6** (R/W)

Core 6 fetch enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

#### Bit 5 - **CORE5** (R/W)

Core 5 fetch enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

## Bit 4 - **CORE4** (R/W)

Core 4 fetch enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

## Bit 3 - **CORE3** (R/W)

Core 3 fetch enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

## Bit 2 - **CORE2** (R/W)

Core 2 fetch enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

## Bit 1 - **CORE1** (R/W)

Core 1 fetch enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

#### Bit 0 - **COREO** (R/W)

Core 0 fetch enable configuration bitfield:

• *0b0*: disabled

• 0b1: enabled

#### 6.2.2.2.3 Cluster clock gate configuration register. (CLOCK_GATE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	40	12	11	10	•		-	_	-		-	-		_
15	14	13	12	11	10	9	8	,	6	5	4	3	2	1	U

## Bit 0 - **EN** (R/W)

Cluster clock gate configuration bitfield:

• *0b0*: disabled

• *0b1*: enabled

## 6.2.2.2.4 Cluster cores debug resume register. (DBG_RESUME)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bit 7 - **CORE7** (W)

Core 7 debug resume configuration bitfield:

• *0b0*: stay halted

• *0b1*: resume core 7

## Bit 6 - **CORE6** (W)

Core 6 debug resume configuration bitfield:

• *0b0*: stay halted

• *0b1*: resume core 6

## Bit 5 - **CORE5** (W)

Core 5 debug resume configuration bitfield:

• *0b0*: stay halted

• *0b1*: resume core 5

## Bit 4 - **CORE4** (W)

Core 4 debug resume configuration bitfield:

• 0b0: stay halted

• *0b1*: resume core 4

## Bit 3 - **CORE3** (W)

Core 3 debug resume configuration bitfield:

- 0b0: stay halted
- *0b1*: resume core 3

## Bit 2 - **CORE2** (W)

Core 2 debug resume configuration bitfield:

- *0b0*: stay halted
- *0b1*: resume core 2

## Bit 1 - **CORE1** (W)

Core 1 debug resume configuration bitfield:

- *0b0*: stay halted
- *0b1*: resume core 1

## Bit 0 - **COREO** (W)

Core 0 debug resume configuration bitfield:

- *0b0*: stay halted
- *0b1*: resume core 0

## 6.2.2.2.5 Cluster cores debug halt status register. (DBG_HALT_STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bit 7 - **CORE7** (R)

Core 7 debug halt status flag bitfield:

- *0b0*: running
- *0b1*: halted

# Bit 6 - **CORE6** (R)

Core 6 debug halt status flag bitfield:

- *0b0*: running
- *0b1*: halted

## Bit 5 - **CORE5** (R)

Core 5 debug halt status flag bitfield:

- *0b0*: running
- *0b1*: halted

#### Bit 4 - **CORE4** (R)

Core 4 debug halt status flag bitfield:

- 0b0: running
- *0b1*: halted

## Bit 3 - **CORE3** (R)

Core 3 debug halt status flag bitfield:

- *0b0*: running
- *0b1*: halted

## Bit 2 - **CORE2** (R)

Core 2 debug halt status flag bitfield:

- 0b0: running
- 0b1: halted

## Bit 1 - **CORE1** (R)

Core 1 debug halt status flag bitfield:

- *0b0*: running
- 0b1: halted

#### Bit 0 - **COREO** (R)

Core 0 debug halt status flag bitfield:

- *0b0*: running
- 0b1: halted

# 6.2.2.2.6 Cluster cores debug halt mask configuration register. (DBG_HALT_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bit 7 - **CORE7** (R/W)

Core 7 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

## Bit 6 - **CORE6** (R/W)

Core 6 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

## Bit 5 - **CORE5** (R/W)

Core 5 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

#### Bit 4 - CORE4 (R/W)

Core 4 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

#### Bit 3 - **CORE3** (R/W)

Core 3 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

#### Bit 2 - **CORE2** (R/W)

Core 2 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

#### Bit 1 - **CORE1** (R/W)

Core 1 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

#### Bit 0 - COREO (R/W)

Core 0 debug halt mask bitfield. When bit is set, core will be part of mask group and stopped when one of the members of the group stops.

## 6.2.2.2.7 Cluster core 0 boot address configuration register. (BOOT_ADDR0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							В	Α							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 31:0 - **BA** (R/W)

Cluster core 0 boot address configuration bitfield.

## 6.2.2.2.8 TCDM arbitration policy ch0 for cluster cores configuration register. (TCDM_ARB_POLICY_CH0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								POL

### Bit 0 - **POL** (R/W)

 $\label{thm:condition} \mbox{TCDM arbitration policy for cluster cores configuration bit field:}$ 

- 0b0: fair round robin
- 0b1: fixed order

## 6.2.2.2.9 TCDM arbitration policy ch1 for DMA/HWCE configuration register. (TCDM_ARB_POLICY_CH1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bit 0 - **POL** (R/W)

TCDM arbitration policy for DMA/HWCE configuration bitfield:

- *0b0*: fair round robin
- 0b1: fixed order

#### 6.2.2.2.10 Read only duplicate of TCDM_ARB_POLICY_CH0 register (TCDM_ARB_POLICY_CH0_REP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•				Reserved	•							POL

## Bit 0 - **POL** (R/W)

TCDM arbitration policy for cluster cores configuration bitfield:

- *0b0*: fair round robin
- 0b1: fixed order

## 6.2.2.2.11 Read only duplicate of TCDM_ARB_POLICY_CH1 register (TCDM_ARB_POLICY_CH1_REP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bit 0 - **POL** (R/W)

TCDM arbitration policy for DMA/HWCE configuration bitfield:

- *0b0*: fair round robin
- 0b1: fixed order

### 6.2.3 Cluster timer

BASIC TIMER component manages the following features:

- 2 general purpose 32bits up counter timers
- Input trigger sources:
  - FLL clock
  - o FLL clock + Prescaler
  - o Reference clock at 32kHz
  - o External event
- 8bit programmable prescaler to FLL clock
- Counting modes:
  - $\circ~$  One shot mode: timer is stopped after first comparison match
  - o Continuous mode: timer continues counting after comparison match
  - $\circ~$  Cycle mode: timer resets to 0 after comparison match and continues counting

- o 64 bit cascaded mode
- Interrupt request generation on comparison match

## 6.2.3.1 Cluster timer registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CFG_LO	0x10200400	0x00200400	32	Config	R/W	0x0000	Timer Low Configuration register.
CFG_HI	0x10200404	0x00200404	32	Config	R/W	0x0000	Timer High Configuration register.
CNT_LO	0x10200408	0x00200408	32	Data	R/W	0x0000	Timer Low counter value register.
CNT_HI	0x1020040C	0x0020040C	32	Data	R/W	0x0000	Timer High counter value register.
CMP_LO	0x10200410	0x00200410	32	Config	R/W	0x0000	Timer Low comparator value register.
CMP_HI	0x10200414	0x00200414	32	Config	R/W	0x0000	Timer High comparator value register.
START_LO	0x10200418	0x00200418	32	Config	R/W	0x0000	Start Timer Low counting register.
START_HI	0x1020041C	0x0020041C	32	Config	R/W	0x0000	Start Timer High counting register.
RESET_LO	0x10200420	0x00200420	32	Config	R/W	0x0000	Reset Timer Low counter register.
RESET_HI	0x10200424	0x00200424	32	Config	R/W	0x0000	Reset Timer High counter register.

Table 22. Cluster timer registers table

## 6.2.3.2 Cluster timer registers details

## 6.2.3.2.1 Timer Low Configuration register. (CFG_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CASC								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			PV	'AL				CCFG	PEN	ONE_S	MODE	Reserve d	IRQEN	RESET	ENABLE

## Bit 31 - **CASC** (R/W)

Timer low + Timer high 64bit cascaded mode configuration bitfield.

## Bits 15:8 - **PVAL** (R/W)

Timer low prescaler value bitfield. Ftimer = Fclk /  $(1 + PRESC_VAL)$ 

### Bit 7 - **CCFG** (R/W)

Timer low clock source configuration bitfield:

- *0b0*: FLL or FLL+Prescaler
- *0b1*: Reference clock at 32kHz

## Bit 6 - **PEN** (R/W)

Timer low prescaler enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

#### Bit 5 - **ONE_S** (R/W)

Timer low one shot configuration bitfield:

- *ObO*: let Timer low enabled counting when compare match with CMP_LO occurs.
- *0b1*: disable Timer low when compare match with CMP_LO occurs.

## Bit 4 - **MODE** (R/W)

Timer low continuous mode configuration bitfield:

- *0b0*. Continue mode continue incrementing Timer low counter when compare match with CMP_LO occurs.
- *0b1*: Cycle mode reset Timer low counter when compare match with CMP_LO occurs.

## Bit 2 - IRQEN (R/W)

Timer low compare match interrupt enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

#### Bit 1 - RESET (R/W)

Timer low counter reset command bitfield. Cleared after Timer Low reset execution.

#### Bit 0 - ENABLE (R/W)

Timer low enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

### 6.2.3.2.2 Timer High Configuration register. (CFG_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bit 7 - CLKCFG (R/W)

Timer high clock source configuration bitfield:

- *0b0*: FLL or FLL+Prescaler
- 0b1: Reference clock at 32kHz

## Bit 6 - **PEN** (R/W)

Timer high prescaler enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

#### Bit 5 - **ONE_S** (R/W)

Timer high one shot configuration bitfield:

- *0b0*: let Timer high enabled counting when compare match with CMP_LO occurs.
- *0b1*: disable Timer high when compare match with CMP_LO occurs.

## Bit 4 - **MODE** (R/W)

Timer high continuous mode configuration bitfield:

- *0b0*. Continue mode continue incrementing Timer high counter when compare match with CMP_LO occurs.
- *0b1*: Cycle mode reset Timer high counter when compare match with CMP_LO occurs.

## Bit 2 - IRQEN (R/W)

Timer high compare match interrupt enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

## Bit 1 - RESET (W)

Timer high counter reset command bitfield. Cleared after Timer high reset execution.

#### Bit 0 - ENABLE (R/W)

Timer high enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

### 6.2.3.2.3 Timer Low counter value register. (CNT_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CNT	_LO							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - CNT_LO (R/W)

Timer Low counter value bitfield.

### 6.2.3.2.4 Timer High counter value register. (CNT_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CNT	г_ні							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - CNT_HI (R/W)

Timer High counter value bitfield.

## 6.2.3.2.5 Timer Low comparator value register. (CMP_LO)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CMF	_LO							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - CMP_LO (R/W)

Timer Low comparator value bitfield.

## 6.2.3.2.6 Timer High comparator value register. (CMP_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CMF	P_HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 31:0 - CMP_HI (R/W)

Timer High comparator value bitfield.

## 6.2.3.2.7 Start Timer Low counting register. (START_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								STRT_L O

#### Bit 0 - STRT_LO (W)

Timer Low start command bitfield. When executed, CFG_LO.ENABLE is set.

## 6.2.3.2.8 Start Timer High counting register. (START_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15	14	13	12	11	10	9	8 Reserved	7	6	5	4	3	2	1	0 STRT_H

## Bit 0 - STRT_HI (W)

Timer High start command bitfield. When executed, CFG_HI.ENABLE is set.

# 6.2.3.2.9 Reset Timer Low counter register. (RESET_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bit 0 - RST_LO (W)

Timer Low counter reset command bitfield. When executed, CFG_LO.RESET is set.

#### 6.2.3.2.10 Reset Timer High counter register. (RESET_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bit 0 - **RST_HI** (W)

Timer High counter reset command bitfield. When executed, CFG_HI.RESET is set.

#### 6.2.4 Cluster event units

Cluster event unit component manages the following features:

- Cluster software events generation
- Cluster cores clock gate control
- Wait for event functionality
- Input event mask configuration
- Cluster cores IRQ generation
- 2 hardware mutex
- 8 hardware barriers
- 1 message dispatcher

Events managed by Cluster event unit are:

- 1 SoC peripheral event: when this event occurs, the SoC peripheral events fifo must be read to get the SoC event ID.
- 1 message dispatcher event
- 1 barrier event
- up to 4 hardware accelerator events
- 2 Cluster timer events
- 2 DMA events
- 8 software events that can come from cluster cores directly or external triggering.

#### 6.2.4.1 Cluster event unit registers

Name	Address	Size	Туре	Access	Default	Description
EVT_MASK_CORE0	0x10200800	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE0	0x10200804	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE0	0x10200808	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE0	0x1020080C	32	Config	R/W	0x0000	Interrupt request mask configuration register.

Name	Address	Size	Туре	Access	Default	Description
IRQ_MASK_AND_CORE0	0x10200810	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE0	0x10200814	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE0	0x10200818	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE0	0x1020081C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE0	0x10200820	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT BUFFER IRQ MASKED COREO	0x10200824	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_COREO	0x10200828	32	Config	W	0x0000	Pending input events status clear command register.
SW EVENT MASK COREO	0x1020082C	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE0	0x10200830	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE0	0x10200834	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE1	0x10200840	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE1	0x10200844	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE1	0x10200848	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE1	0x1020084C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ MASK AND CORE1	0x10200850	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ MASK OR CORE1	0x10200854	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE1	0x10200858	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE1	0x1020085C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE1	0x10200860	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE1	0x10200864	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE1	0x10200868	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE1	0x1020086C	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW EVENT MASK AND CORE1	0x10200870	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW EVENT MASK OR CORE1	0x10200874	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.

Name	Address	Size	Туре	Access	Default	Description
EVT_MASK_CORE2	0x10200880	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE2	0x10200884	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE2	0x10200888	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE2	0x1020088C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ MASK AND CORE2	0x10200890	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE2	0x10200894	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK STATUS CORE2	0x10200898	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE2	0x1020089C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE2	0x102008A0	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE2	0x102008A4	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE2	0x102008A8	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE2	0x102008AC	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE2	0x102008B0	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE2	0x102008B4	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE3	0x102008C0	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE3	0x102008C4	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE3	0x102008C8	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE3	0x102008CC	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE3	0x102008D0	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE3	0x102008D4	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE3	0x102008D8	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE3	0x102008DC	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE3	0x102008E0	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE3	0x102008E4	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE3	0x102008E8	32	Config	W	0x0000	Pending input events status clear command register.

Name	Address	Size	Туре	Access	Default	Description
SW_EVENT_MASK_CORE3	0x102008EC	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE3	0x102008F0	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE3	0x102008F4	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE4	0x10200900	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE4	0x10200904	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE4	0x10200908	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE4	0x1020090C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ MASK AND CORE4	0x10200910	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE4	0x10200914	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE4	0x10200918	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE4	0x1020091C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE4	0x10200920	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE4	0x10200924	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE4	0x10200928	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE4	0x1020092C	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE4	0x10200930	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE4	0x10200934	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE5	0x10200940	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE5	0x10200944	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE5	0x10200948	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE5	0x1020094C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE5	0x10200950	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ MASK OR CORE5	0x10200954	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.

Name	Address	Size	Туре	Access	Default	Description
CLOCK_STATUS_CORE5	0x10200958	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE5	0x1020095C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE5	0x10200960	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE5	0x10200964	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE5	0x10200968	32	Config	W	0x0000	Pending input events status clear command register.
SW EVENT MASK CORE5	0x1020096C	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE5	0x10200970	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE5	0x10200974	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE6	0x10200980	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND_CORE6	0x10200984	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE6	0x10200988	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK_CORE6	0x1020098C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ MASK AND CORE6	0x10200990	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ MASK OR CORE6	0x10200994	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS_CORE6	0x10200998	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE6	0x1020099C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED_CORE6	0x102009A0	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE6	0x102009A4	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE6	0x102009A8	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE6	0x102009AC	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE6	0x102009B0	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE6	0x102009B4	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
EVT_MASK_CORE7	0x102009C0	32	Config	R/W	0x0000	Input event mask configuration register.
EVT MASK AND CORE7	0x102009C4	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR_CORE7	0x102009C8	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.

Name	Address	Size	Туре	Access	Default	Description
IRQ_MASK_CORE7	0x102009CC	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND_CORE7	0x102009D0	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR_CORE7	0x102009D4	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK STATUS CORE7	0x102009D8	32	Config	R	0x0000	Cluster cores clock status register.
EVENT_BUFFER_CORE7	0x102009DC	32	Config	R	0x0000	Pending input events status register.
EVENT BUFFER MASKED CORE7	0x102009E0	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED_CORE7	0x102009E4	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR_CORE7	0x102009E8	32	Config	W	0x0000	Pending input events status clear command register.
SW_EVENT_MASK_CORE7	0x102009EC	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
SW_EVENT_MASK_AND_CORE7	0x102009F0	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
SW_EVENT_MASK_OR_CORE7	0x102009F4	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
HW_BARRIER_0_TRIG_MASK	0x10200C00	32	Config	R/W	0x0000	Cluster hardware barrier 0 trigger mask configuration register.
HW_BARRIER_0_STATUS	0x10200C04	32	Status	R	0x0000	Cluster hardware barrier 0 status register.
HW_BARRIER_0_STATUS_SUM	0x10200C08	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_0_TARGET_MASK	0x10200C0C	32	Config	R/W	0x0000	Cluster hardware barrier 0 target mask configuration register.
HW_BARRIER_0_TRIG	0x10200C10	32	Config	W	0x0000	Cluster hardware barrier 0 trigger command register.
HW_BARRIER_1_TRIG_MASK	0x10200C20	32	Config	R/W	0x0000	Cluster hardware barrier 1 trigger mask configuration register.
HW_BARRIER_1_STATUS	0x10200C24	32	Status	R	0x0000	Cluster hardware barrier 1 status register.
HW_BARRIER_1_STATUS_SUM	0x10200C28	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_1_TARGET_MASK	0x10200C2C	32	Config	R/W	0x0000	Cluster hardware barrier 1 target mask configuration register.
HW_BARRIER_1_TRIG	0x10200C30	32	Config	W	0x0000	Cluster hardware barrier 1 trigger command register.
HW_BARRIER_2_TRIG_MASK	0x10200C40	32	Config	R/W	0x0000	Cluster hardware barrier 2 trigger mask configuration register.
HW_BARRIER 2_STATUS	0x10200C44	32	Status	R	0x0000	Cluster hardware barrier 2 status register.
HW_BARRIER 2_STATUS_SUM	0x10200C48	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER 2 TARGET_MASK	0x10200C4C	32	Config	R/W	0x0000	Cluster hardware barrier 2 target mask configuration register.

Name	Address	Size	Туре	Access	Default	Description
HW_BARRIER_2_TRIG	0x10200C50	32	Config	W	0x0000	Cluster hardware barrier 2 trigger command register.
HW_BARRIER_3_TRIG_MASK	0x10200C60	32	Config	R/W	0x0000	Cluster hardware barrier 3 trigger mask configuration register.
HW_BARRIER_3_STATUS	0x10200C64	32	Status	R	0x0000	Cluster hardware barrier 3 status register.
HW_BARRIER_3_STATUS_SUM	0x10200C68	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_3_TARGET_MASK	0x10200C6C	32	Config	R/W	0x0000	Cluster hardware barrier 3 target mask configuration register.
HW_BARRIER_3_TRIG	0x10200C70	32	Config	W	0x0000	Cluster hardware barrier 3 trigger command register.
HW_BARRIER_4_TRIG_MASK	0x10200C80	32	Config	R/W	0x0000	Cluster hardware barrier 4 trigger mask configuration register.
HW_BARRIER_4_STATUS	0x10200C84	32	Status	R	0x0000	Cluster hardware barrier 4 status register.
HW_BARRIER_4_STATUS_SUM	0x10200C88	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_4_TARGET_MASK	0x10200C8C	32	Config	R/W	0x0000	Cluster hardware barrier 4 target mask configuration register.
HW_BARRIER_4_TRIG	0x10200C90	32	Config	W	0x0000	Cluster hardware barrier 4 trigger command register.
HW_BARRIER_5_TRIG_MASK	0x10200CA0	32	Config	R/W	0x0000	Cluster hardware barrier 5 trigger mask configuration register.
HW_BARRIER_5_STATUS	0x10200CA4	32	Status	R	0x0000	Cluster hardware barrier 5 status register.
HW_BARRIER_5_STATUS_SUM	0x10200CA8	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_5_TARGET_MASK	0x10200CAC	32	Config	R/W	0x0000	Cluster hardware barrier 5 target mask configuration register.
HW_BARRIER_5_TRIG	0x10200CB0	32	Config	W	0x0000	Cluster hardware barrier 5 trigger command register.
HW_BARRIER_6_TRIG_MASK	0x10200CC0	32	Config	R/W	0x0000	Cluster hardware barrier 6 trigger mask configuration register.
HW_BARRIER_6_STATUS	0x10200CC4	32	Status	R	0x0000	Cluster hardware barrier 6 status register.
HW_BARRIER_6_STATUS_SUM	0x10200CC8	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_6_TARGET_MASK	0x10200CCC	32	Config	R/W	0x0000	Cluster hardware barrier 6 target mask configuration register.
HW_BARRIER_6_TRIG	0x10200CD0	32	Config	W	0x0000	Cluster hardware barrier 6 trigger command register.
HW_BARRIER_7_TRIG_MASK	0x10200CE0	32	Config	R/W	0x0000	Cluster hardware barrier 7 trigger mask configuration register.
HW_BARRIER_7_STATUS	0x10200CE4	32	Status	R	0x0000	Cluster hardware barrier 7 status register.
HW_BARRIER_7_STATUS_SUM	0x10200CE8	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_7_TARGET_MASK	0x10200CEC	32	Config	R/W	0x0000	Cluster hardware barrier 7 target mask configuration register.
HW_BARRIER_7_TRIG	0x10200CF0	32	Config	W	0x0000	Cluster hardware barrier 7 trigger command register.
SW_EVENT_0_TRIG	0x10200E00	32	Config	W	0x0000	Cluster Software event 0 trigger command register.

Name	Address	Size	Туре	Access	Default	Description
SW_EVENT_1_TRIG	0x10200E04	32	Config	W	0x0000	Cluster Software event 1 trigger command register.
SW_EVENT_2_TRIG	0x10200E08	32	Config	W	0x0000	Cluster Software event 2 trigger command register.
SW_EVENT_3_TRIG	0x10200E0C	32	Config	W	0x0000	Cluster Software event 3 trigger command register.
SW_EVENT_4_TRIG	0x10200E10	32	Config	W	0x0000	Cluster Software event 4 trigger command register.
SW_EVENT_5_TRIG	0x10200E14	32	Config	W	0x0000	Cluster Software event 5 trigger command register.
SW_EVENT_6_TRIG	0x10200E18	32	Config	W	0x0000	Cluster Software event 6 trigger command register.
SW_EVENT_7_TRIG	0x10200E1C	32	Config	W	0x0000	Cluster Software event 7 trigger command register.
SOC_PERIPH_EVENT_ID	0x10200F00	32	Status	R	0x0000	Cluster SoC peripheral event ID status register.

Table 23. Cluster event unit registers table

# 6.2.4.2 Cluster event unit (Cluster private) registers

Name	Aliased address	Size	Туре	Access	Default	Description
EVT_MASK	0x00204000	32	Config	R/W	0x0000	Input event mask configuration register.
HW_DISPATCH_PUSH_TASK	0x00204080	32	Config	W	0x0000	Hardware task dispatcher push command register.
HW_DISPATCH_POP_TASK	0x00204080	32	Config	R	0x0000	Hardware task dispatcher pop command register.
HW_MUTEX_0_MSG_PUT	0x002040C0	32	Config	W	0x0000	Hardware mutex 0 non-blocking put command register.
HW_MUTEX_0_MSG_GET	0x002040C0	32	Config	R	0x0000	Hardware mutex 0 blocking get command register.
SW_EVENT_0_TRIG	0x00204100	32	Config	W	0x0000	Cluster Software event 0 trigger command register.
SW_EVENT_0_TRIG_WAIT	0x00204140	32	Config	R	0x0000	Cluster Software event 0 trigger and wait command register.
SW_EVENT_0_TRIG_WAIT_CLEAR	0x00204180	32	Config	R	0x0000	Cluster Software event 0 trigger, wait and clear command register.
HW_BARRIER_0_TRIG_MASK	0x00204200	32	Config	R/W	0x0000	Cluster hardware barrier 0 trigger mask configuration register.
EVT_MASK_AND	0x00204004	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
HW_DISPATCH_PUSH_TEAM_CONFIG	0x00204084	32	Config	W	0x0000	Hardware task dispatcher cluster core team configuration register.
HW_MUTEX_1_MSG_PUT	0x002040C4	32	Config	W	0x0000	Hardware mutex 1 non-blocking put command register.
HW_MUTEX_1_MSG_GET	0x002040C4	32	Config	R	0x0000	Hardware mutex 1 blocking get command register.
SW_EVENT_1_TRIG	0x00204104	32	Config	W	0x0000	Cluster Software event 1 trigger command register.
SW_EVENT_1_TRIG_WAIT	0x00204144	32	Config	R	0x0000	Cluster Software event 1 trigger and wait command register.

Name	Aliased address	Size	Туре	Access	Default	Description
SW EVENT 1 TRIG WAIT CLEAR	0x00204184	32	Config	R	0x0000	Cluster Software event 1 trigger, wait and clear command register.
HW_BARRIER_0_STATUS	0x00204204	32	Status	R	0x0000	Cluster hardware barrier 0 status register.
EVT_MASK_OR	0x00204008	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
SW_EVENT_2_TRIG	0x00204108	32	Config	W	0x0000	Cluster Software event 2 trigger command register.
SW_EVENT_2_TRIG_WAIT	0x00204148	32	Config	R	0x0000	Cluster Software event 2 trigger and wait command register.
SW_EVENT_2_TRIG_WAIT_CLEAR	0x00204188	32	Config	R	0x0000	Cluster Software event 2 trigger, wait and clear command register.
HW_BARRIER_0_STATUS_SUM	0x00204208	32	Status	R	0x0000	Cluster hardware barrier summary status register.
IRQ_MASK	0x0020400C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
SW_EVENT_3_TRIG	0x0020410C	32	Config	W	0x0000	Cluster Software event 3 trigger command register.
SW_EVENT_3_TRIG_WAIT	0x0020414C	32	Config	R	0x0000	Cluster Software event 3 trigger and wait command register.
SW_EVENT_3_TRIG_WAIT_CLEAR	0x0020418C	32	Config	R	0x0000	Cluster Software event 3 trigger, wait and clear command register.
HW_BARRIER_0_TARGET_MASK	0x0020420C	32	Config	R/W	0x0000	Cluster hardware barrier 0 target mask configuration register.
IRQ_MASK_AND	0x00204010	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
SW_EVENT_4_TRIG	0x00204110	32	Config	W	0x0000	Cluster Software event 4 trigger command register.
SW EVENT 4 TRIG WAIT	0x00204150	32	Config	R	0x0000	Cluster Software event 4 trigger and wait command register.
SW EVENT 4 TRIG WAIT CLEAR	0x00204190	32	Config	R	0x0000	Cluster Software event 4 trigger, wait and clear command register.
HW_BARRIER_0_TRIG	0x00204210	32	Config	W	0x0000	Cluster hardware barrier 0 trigger command register.
IRQ_MASK_OR	0x00204014	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
SW_EVENT_5_TRIG	0x00204114	32	Config	W	0x0000	Cluster Software event 5 trigger command register.
SW_EVENT_5_TRIG_WAIT	0x00204154	32	Config	R	0x0000	Cluster Software event 5 trigger and wait command register.
SW_EVENT_5_TRIG_WAIT_CLEAR	0x00204194	32	Config	R	0x0000	Cluster Software event 5 trigger, wait and clear command register.
HW BARRIER 0 SELF TRIG	0x00204214	32	Config	R	0x0000	Cluster hardware barrier 0 self trigger command register.
CLOCK_STATUS	0x00204018	32	Config	R	0x0000	Cluster cores clock status register.
SW_EVENT_6_TRIG	0x00204118	32	Config	W	0x0000	Cluster Software event 6 trigger command register.
SW_EVENT_6_TRIG_WAIT	0x00204158	32	Config	R	0x0000	Cluster Software event 6 trigger and wait command register.
SW_EVENT_6_TRIG_WAIT_CLEAR	0x00204198	32	Config	R	0x0000	Cluster Software event 6 trigger, wait and clear command register.

Name	Aliased address	Size	Туре	Access	Default	Description
HW_BARRIER_0_TRIG_WAIT	0x00204218	32	Config	R	0x0000	Cluster hardware barrier 0 trigger and wait command register.
EVENT_BUFFER	0x0020401C	32	Config	R	0x0000	Pending input events status register.
SW_EVENT_7_TRIG	0x0020411C	32	Config	W	0x0000	Cluster Software event 7 trigger command register.
SW_EVENT_7_TRIG_WAIT	0x0020415C	32	Config	R	0x0000	Cluster Software event 7 trigger and wait command register.
SW_EVENT_7_TRIG_WAIT_CLEAR	0x0020419C	32	Config	R	0x0000	Cluster Software event 7 trigger, wait and clear command register.
HW BARRIER 0 TRIG WAIT CLEAR	0x0020421C	32	Config	R	0x0000	Cluster hardware barrier 0 trigger, wait and clear command register.
EVENT_BUFFER_MASKED	0x00204020	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
HW_BARRIER_1_TRIG_MASK	0x00204220	32	Config	R/W	0x0000	Cluster hardware barrier 1 trigger mask configuration register.
EVENT_BUFFER_IRQ_MASKED	0x00204024	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
HW BARRIER 1 STATUS	0x00204224	32	Status	R	0x0000	Cluster hardware barrier 1 status register.
EVENT_BUFFER_CLEAR	0x00204028	32	Config	W	0x0000	Pending input events status clear command register.
HW_BARRIER_1_STATUS_SUM	0x00204228	32	Status	R	0x0000	Cluster hardware barrier summary status register.
SW_EVENT_MASK	0x0020402C	32	Config	R/W	0x0000	Software events cluster cores destination mask configuration register.
HW_BARRIER_1_TARGET_MASK	0x0020422C	32	Config	R/W	0x0000	Cluster hardware barrier 1 target mask configuration register.
SW_EVENT_MASK_AND	0x00204030	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise AND operation.
HW_BARRIER_1_TRIG	0x00204230	32	Config	W	0x0000	Cluster hardware barrier 1 trigger command register.
SW_EVENT_MASK_OR	0x00204034	32	Config	W	0x0000	Software events cluster cores destination mask update command register with bitwise OR operation.
HW_BARRIER_1_SELF_TRIG	0x00204234	32	Config	R	0x0000	Cluster hardware barrier 1 self trigger command register.
EVENT_WAIT	0x00204038	32	Config	R	0x0000	Input event wait command register.
HW_BARRIER_1_TRIG_WAIT	0x00204238	32	Config	R	0x0000	Cluster hardware barrier 1 trigger and wait command register.
EVENT_WAIT_CLEAR	0x0020403C	32	Config	R	0x0000	Input event wait and clear command register.
HW_BARRIER_1_TRIG_WAIT_CLEAR	0x0020423C	32	Config	R	0x0000	Cluster hardware barrier 1 trigger, wait and clear command register.
HW_BARRIER_2_TRIG_MASK	0x00204240	32	Config	R/W	0x0000	Cluster hardware barrier 2 trigger mask configuration register.
HW_BARRIER_2_STATUS	0x00204244	32	Status	R	0x0000	Cluster hardware barrier 2 status register.
HW_BARRIER_2_STATUS_SUM	0x00204248	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_2_TARGET_MASK	0x0020424C	32	Config	R/W	0x0000	Cluster hardware barrier 2 target mask configuration register.

Name	Aliased address	Size	Туре	Access	Default	Description
HW_BARRIER_2_TRIG	0x00204250	32	Config	W	0x0000	Cluster hardware barrier 2 trigger command register.
HW_BARRIER_2_SELF_TRIG	0x00204254	32	Config	R	0x0000	Cluster hardware barrier 2 self trigger command register.
HW_BARRIER_2_TRIG_WAIT	0x00204258	32	Config	R	0x0000	Cluster hardware barrier 2 trigger and wait command register.
HW_BARRIER_2_TRIG_WAIT_CLEAR	0x0020425C	32	Config	R	0x0000	Cluster hardware barrier 2 trigger, wait and clear command register.
HW_BARRIER_3_TRIG_MASK	0x00204260	32	Config	R/W	0x0000	Cluster hardware barrier 3 trigger mask configuration register.
HW_BARRIER_3_STATUS	0x00204264	32	Status	R	0x0000	Cluster hardware barrier 3 status register.
HW_BARRIER_3_STATUS_SUM	0x00204268	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_3_TARGET_MASK	0x0020426C	32	Config	R/W	0x0000	Cluster hardware barrier 3 target mask configuration register.
HW_BARRIER_3_TRIG	0x00204270	32	Config	8	0x0000	Cluster hardware barrier 3 trigger command register.
HW_BARRIER_3_SELF_TRIG	0x00204274	32	Config	R	0x0000	Cluster hardware barrier 3 self trigger command register.
HW_BARRIER_3_TRIG_WAIT	0x00204278	32	Config	R	0x0000	Cluster hardware barrier 3 trigger and wait command register.
HW_BARRIER_3_TRIG_WAIT_CLEAR	0x0020427C	32	Config	R	0x0000	Cluster hardware barrier 3 trigger, wait and clear command register.
HW_BARRIER_4_TRIG_MASK	0x00204280	32	Config	R/W	0x0000	Cluster hardware barrier 4 trigger mask configuration register.
HW_BARRIER_4_STATUS	0x00204284	32	Status	R	0x0000	Cluster hardware barrier 4 status register.
HW_BARRIER_4_STATUS_SUM	0x00204288	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_4_TARGET_MASK	0x0020428C	32	Config	R/W	0x0000	Cluster hardware barrier 4 target mask configuration register.
HW_BARRIER_4_TRIG	0x00204290	32	Config	W	0x0000	Cluster hardware barrier 4 trigger command register.
HW_BARRIER_4_SELF_TRIG	0x00204294	32	Config	R	0x0000	Cluster hardware barrier 4 self trigger command register.
HW_BARRIER_4_TRIG_WAIT	0x00204298	32	Config	R	0x0000	Cluster hardware barrier 4 trigger and wait command register.
HW_BARRIER_4_TRIG_WAIT_CLEAR	0x0020429C	32	Config	R	0x0000	Cluster hardware barrier 4 trigger, wait and clear command register.
HW_BARRIER_5_TRIG_MASK	0x002042A0	32	Config	R/W	0x0000	Cluster hardware barrier 5 trigger mask configuration register.
HW_BARRIER_5_STATUS	0x002042A4	32	Status	R	0x0000	Cluster hardware barrier 5 status register.
HW_BARRIER_5_STATUS_SUM	0x002042A8	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_5_TARGET_MASK	0x002042AC	32	Config	R/W	0x0000	Cluster hardware barrier 5 target mask configuration register.
HW_BARRIER_5_TRIG	0x002042B0	32	Config	W	0x0000	Cluster hardware barrier 5 trigger command register.
HW BARRIER 5 SELF TRIG	0x002042B4	32	Config	R	0x0000	Cluster hardware barrier 5 self trigger command register.

Name	Aliased address	Size	Туре	Access	Default	Description
HW_BARRIER_5_TRIG_WAIT	0x002042B8	32	Config	R	0x0000	Cluster hardware barrier 5 trigger and wait command register.
HW_BARRIER_5_TRIG_WAIT_CLEAR	0x002042BC	32	Config	R	0x0000	Cluster hardware barrier 5 trigger, wait and clear command register.
HW_BARRIER_6_TRIG_MASK	0x002042C0	32	Config	R/W	0x0000	Cluster hardware barrier 6 trigger mask configuration register.
HW_BARRIER_6_STATUS	0x002042C4	32	Status	R	0x0000	Cluster hardware barrier 6 status register.
HW_BARRIER_6_STATUS_SUM	0x002042C8	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_6_TARGET_MASK	0x002042CC	32	Config	R/W	0x0000	Cluster hardware barrier 6 target mask configuration register.
HW_BARRIER_6_TRIG	0x002042D0	32	Config	W	0x0000	Cluster hardware barrier 6 trigger command register.
HW_BARRIER_6_SELF_TRIG	0x002042D4	32	Config	R	0x0000	Cluster hardware barrier 6 self trigger command register.
HW_BARRIER_6_TRIG_WAIT	0x002042D8	32	Config	R	0x0000	Cluster hardware barrier 6 trigger and wait command register.
HW_BARRIER_6_TRIG_WAIT_CLEAR	0x002042DC	32	Config	R	0x0000	Cluster hardware barrier 6 trigger, wait and clear command register.
HW_BARRIER_7_TRIG_MASK	0x002042E0	32	Config	R/W	0x0000	Cluster hardware barrier 7 trigger mask configuration register.
HW_BARRIER_7_STATUS	0x002042E4	32	Status	R	0x0000	Cluster hardware barrier 7 status register.
HW_BARRIER_7_STATUS_SUM	0x002042E8	32	Status	R	0x0000	Cluster hardware barrier summary status register.
HW_BARRIER_7_TARGET_MASK	0x002042EC	32	Config	R/W	0x0000	Cluster hardware barrier 7 target mask configuration register.
HW_BARRIER_7_TRIG	0x002042F0	32	Config	W	0x0000	Cluster hardware barrier 7 trigger command register.
HW_BARRIER_7_SELF_TRIG	0x002042F4	32	Config	R	0x0000	Cluster hardware barrier 7 self trigger command register.
HW_BARRIER_7_TRIG_WAIT	0x002042F8	32	Config	R	0x0000	Cluster hardware barrier 7 trigger and wait command register.
HW BARRIER 7 TRIG WAIT CLEAR	0x002042FC	32	Config	R	0x0000	Cluster hardware barrier 7 trigger, wait and clear command register.

Table 24. Cluster event unit (Cluster private) registers table

# 6.2.4.3 Cluster event unit registers details

# 6.2.4.3.1 Input event mask configuration register. (EVT_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EMSOC	Reserve d							EM	ICL						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		·		·		·	EM	ICL	•		•	•	•	•	

#### Bit 31 - **EMSOC** (R/W)

Soc peripheral input event mask configuration bitfield:

- EMSOC[i]=0b0. Input event request i is masked
- EMSOC[i]=0b1: Input event request i is not masked

## Bits 29:0 - **EMCL** (R/W)

Cluster internal input event mask configuration bitfield:

- EMCL[i]=0b0: Input event request i is masked
- EMCL[i]=0b1: Input event request i is not masked

#### 6.2.4.3.2 Hardware task dispatcher push command register. (HW_DISPATCH_PUSH_TASK)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	SG .							
		13	42	11	10	0		7	6	E .	4	2	2	1	0
15	14	13	12	11	10	9	0	,	0	5	4	3			U

#### Bits 31:0 - MSG (W)

Message to dispatch to all cluster cores selected in HW_DISPATCH_PUSH_TEAM_CONFIG.CT configuration bitfield.

#### 6.2.4.3.3 Hardware task dispatcher pop command register. (HW_DISPATCH_POP_TASK)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	SG .							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 31:0 - MSG (R)

Message dispatched using HW_DISPATCH_PUSH_TASK command and popped by cluster core who issued HW_DISPATCH_POP_TASK command.

## 6.2.4.3.4 Hardware mutex 0 non-blocking put command register. (HW_MUTEX_0_MSG_PUT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	MSG														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **MSG** (W)

Message pushed when releasing hardware mutex 0 configuration bitfiled. It is a non-blocking access.

# ${\bf 6.2.4.3.5~Hardware~mutex~0~blocking~get~command~register.~(HW_MUTEX_0_MSG_GET)}$

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	SG .							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (R)

Message popped when taking hardware mutex 0 data bitfiled. It is a blocking access.

#### 6.2.4.3.6 Cluster Software event 0 trigger command register. (SW_EVENT_0_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16									
							Rese	erved				Reserved												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0									

Bits 7:0 - **SWOT** (W)

Triggers software event 0 for cluster core i if SW0T[i]=0b1.

#### 6.2.4.3.7 Cluster Software event 0 trigger and wait command register. (SW_EVENT_0_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 0 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

### 6.2.4.3.8 Cluster Software event 0 trigger, wait and clear command register. (SW_EVENT_0_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SI 30 29 26 27 20 23 24 23 22 21 20 19 16 17 16 EBM														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 0 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

## 6.2.4.3.9 Cluster SoC peripheral event ID status register. (SOC_PERIPH_EVENT_ID)

Host access bus: PERIPH

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
VALID								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bit 31 - **VALID** (R)

Validity bit of SOC_PERIPH_EVENT_ID.ID bitfield.

Bits 7:0 - ID (R)

Oldest SoC peripheral event ID status bitfield.

## 6.2.4.3.10 Cluster hardware barrier 0 trigger mask configuration register. (HW_BARRIER_0_TRIG_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 7:0 - **HB0TM** (R/W)

Trigger mask for hardware barrier 0 bitfield. Hardware barrier 0 will be triggered only if for all HB0TM[i] = 0b1, HW_BARRIER_0_STATUS.HB0S[i]=0b1. HB0TM=0 means that hardware barrier 0 is disabled.

#### 6.2.4.3.11 Input event mask update command register with bitwise AND operation. (EVT_MASK_AND)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EN	ИΑ							
		42	42	44	10			7	-	-	4	,	2	1	0
15	14	13	12	11	10	9	•	,	0	5	4	י			U

### Bits 31:0 - EMA (W)

Input event mask configuration bitfield update with bitwise AND operation. It allows clearing EMCL[i], EMINTCL[i] or EMSOC[i] if EMA[i]=0b1.

## 6.2.4.3.12 Hardware task dispatcher cluster core team configuration register. (HW_DISPATCH_PUSH_TEAM_CONFIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved	•	•				•	С	Т		•	•

#### Bits 7:0 - CT (R/W)

Cluster cores team selection configuration bitfield. It allows to transmit HW_DISPATCH_PUSH_TASK.MSG to cluster core i if CT[i]=0b1.

## 6.2.4.3.13 Hardware mutex 1 non-blocking put command register. (HW_MUTEX_1_MSG_PUT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	SG .							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (W)

Message pushed when releasing hardware mutex 1 configuration bitfiled. It is a non-blocking access.

#### 6.2.4.3.14 Hardware mutex 1 blocking get command register. (HW_MUTEX_1_MSG_GET)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MS	SG .							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - MSG (R)

Message popped when taking hardware mutex 1 data bitfiled. It is a blocking access.

## 6.2.4.3.15 Cluster Software event 1 trigger command register. (SW_EVENT_1_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **SW1T** (W)

Triggers software event 1 for cluster core i if SW1T[i]=0b1.

## 6.2.4.3.16 Cluster Software event 1 trigger and wait command register. (SW_EVENT_1_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 1 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.2.4.3.17 Cluster Software event 1 trigger, wait and clear command register. (SW_EVENT_1_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	3M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 1 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.2.4.3.18 Cluster hardware barrier 0 status register. (HW_BARRIER_0_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 0 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 0. It is cleared when HBS matches HW_BARRIER_0_TRIG_MASK.HB0TM.

#### 6.2.4.3.19 Input event mask update command register with bitwise OR operation. (EVT_MASK_OR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EN	МО							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EMO (W)

Input event mask configuration bitfield update with bitwise OR operation. It allows setting EMCL[i], EMINTCL[i] or EMSOC[i] if EMO[i]=0b1.

#### 6.2.4.3.20 Cluster Software event 2 trigger command register. (SW_EVENT_2_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							SW	/2T			

Bits 7:0 - SW2T (W)

Triggers software event 2 for cluster core i if SW2T[i]=0b1.

## 6.2.4.3.21 Cluster Software event 2 trigger and wait command register. (SW_EVENT_2_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EE								

Bits 31:0 - EBM (R)

Triggers software event 2 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

### 6.2.4.3.22 Cluster Software event 2 trigger, wait and clear command register. (SW_EVENT_2_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	M							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EB	1.4							

Bits 31:0 - **EBM** (R)

Triggers software event 2 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

## 6.2.4.3.23 Cluster hardware barrier summary status register. (HW_BARRIER_0_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							НВ	SS			

Bits 7:0 - **HBSS** (R)

Current status of hardware barrier 0. HBSS[i] represents a summary of the barrier status for core i.

#### 6.2.4.3.24 Interrupt request mask configuration register. (IRQ_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IMSOC	IMINTCL							IM	CL						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bit 31 - **IMSOC** (R/W)

Soc peripheral interrupt request mask configuration bitfield:

- bit[i]=0b0: Interrupt request i is masked
- bit[i]=0b1: Interrupt request i is not masked

#### Bit 30 - IMINTCL (R/W)

Inter-cluster interrupt request mask configuration bitfield:

- bit[i]=0b0: Interrupt request i is masked
- bit[i]=0b1: Interrupt request i is not masked

#### Bits 29:0 - IMCL (R/W)

Cluster internal interrupt request mask configuration bitfield:

- bit[i]=0b0: Interrupt request i is masked
- bit[i]=0b1: Interrupt request i is not masked

#### 6.2.4.3.25 Cluster Software event 3 trigger command register. (SW_EVENT_3_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 7:0 - SW3T (W)

Triggers software event 3 for cluster core i if SW3T[i]=0b1.

# $\textbf{6.2.4.3.26 Cluster Software event 3 trigger and wait command register.} \ (\textbf{SW_EVENT_3_TRIG_WAIT})$

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•					•	EB	ВМ				•			

### Bits 31:0 - **EBM** (R)

Triggers software event 3 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

## 6.2.4.3.27 Cluster Software event 3 trigger, wait and clear command register. (SW_EVENT_3_TRIG_WAIT_CLEAR)

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 3 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.2.4.3.28 Cluster hardware barrier 0 target mask configuration register. (HW_BARRIER_0_TARGET_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 7:0 - **HBTAM** (R/W)

Cluster hardware barrier 0 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 0 event when HW_BARRIER_0_STATUS will match HW_BARRIER_0_TRIG_MASK.

#### 6.2.4.3.29 Interrupt request mask update command register with bitwise AND operation. (IRQ_MASK_AND)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							IN	1A							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							IN								

## Bits 31:0 - IMA (W)

Interrupt request mask configuration bitfield update with bitwise AND operation. It allows clearing IMCL[i], IMINTCL[i] or IMSOC[i] if IMA[i]=0b1.

#### 6.2.4.3.30 Cluster Software event 4 trigger command register. (SW_EVENT_4_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		·	Rese	arved	•		•		•		SW	ИТ	•	•	

Bits 7:0 - **SW4T** (W)

Triggers software event 4 for cluster core i if SW4T[i]=0b1.

#### 6.2.4.3.31 Cluster Software event 4 trigger and wait command register. (SW_EVENT_4_TRIG_WAIT)

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 4 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.2.4.3.32 Cluster Software event 4 trigger, wait and clear command register. (SW_EVENT_4_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 4 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

## 6.2.4.3.33 Cluster hardware barrier 0 trigger command register. (HW_BARRIER_0_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			D	erved								г			

Bits 7:0 - **T** (W)

Sets HW_BARRIER_0_STATUS.HBS[i] to 0b1 when T[i]=0b1.

#### 6.2.4.3.34 Interrupt request mask update command register with bitwise OR operation. (IRQ_MASK_OR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							IM	10							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - IMO (W)

Interrupt request mask configuration bitfield update with bitwise OR operation. It allows setting IMCL[i], IMINTCL[i] or IMSOC[i] if IMO[i]=0b1.

# 6.2.4.3.35 Cluster Software event 5 trigger command register. (SW_EVENT_5_TRIG)

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **SW5T** (W)

Triggers software event 5 for cluster core i if SW5T[i]=0b1.

#### 6.2.4.3.36 Cluster Software event 5 trigger and wait command register. (SW_EVENT_5_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 5 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.2.4.3.37 Cluster Software event 5 trigger, wait and clear command register. (SW_EVENT_5_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 5 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

## 6.2.4.3.38 Cluster hardware barrier 0 self trigger command register. (HW_BARRIER_0_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1	Γ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **T** (R)

Sets  $HW_BARRIER_0_STATUS.HBS[i]$  to 0b1 when issued by cluster core i.

# 6.2.4.3.39 Cluster cores clock status register. (CLOCK_STATUS)

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **CS** (R)

Cluster core clock status bitfield:

- 0b0: Cluster core clocked is gated
- *0b1*: Cluster core clocked is running

#### 6.2.4.3.40 Cluster Software event 6 trigger command register. (SW_EVENT_6_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **SW6T** (W)

Triggers software event 6 for cluster core i if SW6T[i]=0b1.

## 6.2.4.3.41 Cluster Software event 6 trigger and wait command register. (SW_EVENT_6_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Triggers software event 6 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

## 6.2.4.3.42 Cluster Software event 6 trigger, wait and clear command register. (SW_EVENT_6_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Triggers software event 6 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.2.4.3.43 Cluster hardware barrier 0 trigger and wait command register. (HW_BARRIER_0_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
							_	_				_			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_0[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_0 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

## 6.2.4.3.44 Pending input events status register. (EVENT_BUFFER)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Е	В							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EB** (R)

Pending input events status bitfield.

EB[i]=0b1: one or more input event i request are pending.

## 6.2.4.3.45 Cluster Software event 7 trigger command register. (SW_EVENT_7_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved										SW	17T			

Bits 7:0 - **SW7T** (W)

Triggers software event 7 for cluster core i if SW7T[i]=0b1.

## 6.2.4.3.46 Cluster Software event 7 trigger and wait command register. (SW_EVENT_7_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EB								

#### Bits 31:0 - **EBM** (R)

Triggers software event 7 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.2.4.3.47 Cluster Software event 7 trigger, wait and clear command register. (SW_EVENT_7_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - EBM (R)

Triggers software event 7 to all cluster cores targeted in SW_EVENT_MASK and gate the issuing cluster core clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.2.4.3.48 Cluster hardware barrier 0 trigger, wait and clear command register. (HW_BARRIER_0_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 31:0 - **EBM** (R)

Set HW_BARRIER_0[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_0 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

# 6.2.4.3.49 Pending input events status register with EVT_MASK applied. (EVENT_BUFFER_MASKED)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - EBM (R)

Pending input events status bitfield with EVT_MASK applied.

EBM[i]=0b1: one or more input event i request are pending.

#### 6.2.4.3.50 Cluster hardware barrier 1 trigger mask configuration register. (HW_BARRIER_1_TRIG_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
				44		_	_		_	_	_	_	_	_	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 7:0 - **HB1TM** (R/W)

Trigger mask for hardware barrier 1 bitfield. Hardware barrier 1 will be triggered only if for all HB1TM[i] = 0b1, HW_BARRIER_1_STATUS.HB1S[i]=0b1. HB1TM=0 means that hardware barrier 1 is disabled.

#### 6.2.4.3.51 Pending input events status register with IRQ_MASK applied. (EVENT_BUFFER_IRQ_MASKED)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							IB	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - IBM (R)

Pending input events status bitfield with IRQ_MASK applied.

IBM[i]=0b1: one or more input events i are pending.

#### 6.2.4.3.52 Cluster hardware barrier 1 status register. (HW_BARRIER_1_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			D	erved							HE	20			

Bits 7:0 - **HBS** (R)

Current status of hardware barrier 1 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 1. It is cleared when HBS matches HW_BARRIER_1_TRIG_MASK.HB1TM.

#### 6.2.4.3.53 Pending input events status clear command register. (EVENT_BUFFER_CLEAR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	3C							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBC** (W)

Pending input events status clear command bitfield. It allows clearing EB[i] if EBC[i]=0b1.

# ${\bf 6.2.4.3.54\ Cluster\ hardware\ barrier\ summary\ status\ register.\ (HW_BARRIER_1_STATUS_SUM)}$

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **HBSS** (R)

Current status of hardware barrier 1. HBSS[i] represents a summary of the barrier status for core i.

#### 6.2.4.3.55 Software events cluster cores destination mask configuration register. (SW_EVENT_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **SWEM** (R/W)

Software events mask configuration bitfield:

- bit[i]=0b0: software events are masked for CL_CORE[i]
- bit[i]=0b1: software events are not masked for CL_CORE[i]

# 6.2.4.3.56 Cluster hardware barrier 1 target mask configuration register. (HW_BARRIER_1_TARGET_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		13	-			•	•	•	•	•	•	•		-	•

Bits 7:0 - **HBTAM** (R/W)

Cluster hardware barrier 1 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 1 event when HW_BARRIER_1_STATUS will match HW_BARRIER_1_TRIG_MASK.

# 6.2.4.3.57 Software events cluster cores destination mask update command register with bitwise AND operation. (SW_EVENT_MASK_AND)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **SWEMA** (W)

Software event mask configuration bitfield update with bitwise AND operation. It allows clearing SWEM[i] if SWEMA[i]=0b1.

# 6.2.4.3.58 Cluster hardware barrier 1 trigger command register. (HW_BARRIER_1_TRIG)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							7	Г			

Bits 7:0 - **T** (W)

Sets HW_BARRIER_1_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

# 6.2.4.3.59 Software events cluster cores destination mask update command register with bitwise OR operation. (SW_EVENT_MASK_OR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 7:0 - **SWEMO** (W)

Software event mask configuration bitfield update with bitwise OR operation. It allows setting SWEM[i] if SWEMO[i]=0b1.

# 6.2.4.3.60 Cluster hardware barrier 1 self trigger command register. (HW_BARRIER_1_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1	Г							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								-							

Bits 31:0 - **T** (R)

Sets HW_BARRIER_1_STATUS.HBS[i] to *0b1* when issued by cluster core i.

#### 6.2.4.3.61 Input event wait command register. (EVENT_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	ВМ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Reading this register will gate the Cluster core clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.2.4.3.62 Cluster hardware barrier 1 trigger and wait command register. (HW_BARRIER_1_TRIG_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EB	NA.							

Bits 31:0 - EBM (R)

Set HW_BARRIER_1[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_1 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.2.4.3.63 Input event wait and clear command register. (EVENT WAIT CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
4-	44	42	12	44	10	٥		7	-		4	2	2	1	0
15	14	13	12	11	10	,	۰	,	0	5	4				

Bits 31:0 - **EBM** (R)

Reading this register has the same effect as reading EVENT_WAIT.EBM. In addition, EVENT_BUFFER.EB[i] bits are cleared if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.2.4.3.64 Cluster hardware barrier 1 trigger, wait and clear command register. (HW_BARRIER_1_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
				11	40	•		-	_	-		-	-	4	•
15	14	13	12	11	10	9	8	,	ь	5	4	3	2	1	U

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_1[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_1 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

# 6.2.4.3.65 Cluster hardware barrier 2 trigger mask configuration register. (HW_BARRIER_2_TRIG_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	erved							HB2	2TM			

#### Bits 7:0 - **HB2TM** (R/W)

Trigger mask for hardware barrier 2 bitfield. Hardware barrier 2 will be triggered only if for all HB2TM[i] = 0b1, HW_BARRIER_2_STATUS.HB2S[i]=0b1. HB2TM=0 means that hardware barrier 2 is disabled.

#### 6.2.4.3.66 Cluster hardware barrier 2 status register. (HW_BARRIER_2_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBS (R)

Current status of hardware barrier 2 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 2. It is cleared when HBS matches HW_BARRIER_2_TRIG_MASK.HB2TM.

# 6.2.4.3.67 Cluster hardware barrier summary status register. (HW_BARRIER_2_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				erved							НВ	00			

#### Bits 7:0 - HBSS (R)

 $Current\ status\ of\ hardware\ barrier\ 2.\ HBSS[i]\ represents\ a\ summary\ of\ the\ barrier\ status\ for\ core\ i.$ 

## 6.2.4.3.68 Cluster hardware barrier 2 target mask configuration register. (HW_BARRIER_2_TARGET_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 7:0 - HBTAM (R/W)

Cluster hardware barrier 2 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 2 event when HW BARRIER 2 STATUS will match HW BARRIER 2_TRIG_MASK.

# 6.2.4.3.69 Cluster hardware barrier 2 trigger command register. (HW_BARRIER_2_TRIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_2_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

#### 6.2.4.3.70 Cluster hardware barrier 2 self trigger command register. (HW_BARRIER_2_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1	ī							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **T** (R)

Sets HW_BARRIER_2_STATUS.HBS[i] to *0b1* when issued by cluster core i.

#### 6.2.4.3.71 Cluster hardware barrier 2 trigger and wait command register. (HW BARRIER 2 TRIG WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_2[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_2 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

# 6.2.4.3.72 Cluster hardware barrier 2 trigger, wait and clear command register. (HW_BARRIER_2_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_2[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_2 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER MASKED.EBM

# 6.2.4.3.73 Cluster hardware barrier 3 trigger mask configuration register. (HW_BARRIER_3_TRIG_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 7:0 - **HB3TM** (R/W)

Trigger mask for hardware barrier 3 bitfield. Hardware barrier 3 will be triggered only if for all HB3TM[i] = 0b1, HW_BARRIER_3_STATUS.HB3S[i]=0b1. HB3TM=0 means that hardware barrier 3 is disabled.

#### 6.2.4.3.74 Cluster hardware barrier 3 status register. (HW_BARRIER_3_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBS (R)

Current status of hardware barrier 3 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 3. It is cleared when HBS matches HW_BARRIER_3_TRIG_MASK.HB3TM.

#### 6.2.4.3.75 Cluster hardware barrier summary status register. (HW_BARRIER_3_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				erved							НВ	00			

Bits 7:0 - HBSS (R)

Current status of hardware barrier 3. HBSS[i] represents a summary of the barrier status for core i.

## 6.2.4.3.76 Cluster hardware barrier 3 target mask configuration register. (HW_BARRIER_3_TARGET_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBTAM (R/W)

Cluster hardware barrier 3 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 3 event when HW BARRIER 3 STATUS will match HW BARRIER 3_TRIG_MASK.

# 6.2.4.3.77 Cluster hardware barrier 3 trigger command register. (HW_BARRIER_3_TRIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_3_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

# 6.2.4.3.78 Cluster hardware barrier 3 self trigger command register. (HW_BARRIER_3_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1	ī							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **T** (R)

Sets HW_BARRIER_3_STATUS.HBS[i] to *0b1* when issued by cluster core i.

#### 6.2.4.3.79 Cluster hardware barrier 3 trigger and wait command register. (HW BARRIER 3 TRIG WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	ВМ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_3[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_3 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

# 6.2.4.3.80 Cluster hardware barrier 3 trigger, wait and clear command register. (HW_BARRIER_3_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_3[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_3 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER MASKED.EBM

# 6.2.4.3.81 Cluster hardware barrier 4 trigger mask configuration register. (HW_BARRIER_4_TRIG_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 7:0 - **HB4TM** (R/W)

Trigger mask for hardware barrier 4 bitfield. Hardware barrier 4 will be triggered only if for all HB4TM[i] = 0b1, HW_BARRIER_4_STATUS.HB4S[i]=0b1. HB4TM=0 means that hardware barrier 4 is disabled.

#### 6.2.4.3.82 Cluster hardware barrier 4 status register. (HW_BARRIER_4_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBS (R)

Current status of hardware barrier 4 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 4. It is cleared when HBS matches HW_BARRIER_4_TRIG_MASK.HB4TM.

#### 6.2.4.3.83 Cluster hardware barrier summary status register. (HW_BARRIER_4_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				erved							НВ	00			

#### Bits 7:0 - HBSS (R)

 $Current\ status\ of\ hardware\ barrier\ 4.\ HBSS[i]\ represents\ a\ summary\ of\ the\ barrier\ status\ for\ core\ i.$ 

## 6.2.4.3.84 Cluster hardware barrier 4 target mask configuration register. (HW_BARRIER_4_TARGET_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 7:0 - HBTAM (R/W)

Cluster hardware barrier 4 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 4 event when HW BARRIER 4 STATUS will match HW BARRIER 4_TRIG_MASK.

# 6.2.4.3.85 Cluster hardware barrier 4 trigger command register. (HW_BARRIER_4_TRIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_4_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

#### 6.2.4.3.86 Cluster hardware barrier 4 self trigger command register. (HW_BARRIER_4_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1	ī							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **T** (R)

Sets HW_BARRIER_4_STATUS.HBS[i] to *0b1* when issued by cluster core i.

#### 6.2.4.3.87 Cluster hardware barrier 4 trigger and wait command register. (HW BARRIER 4 TRIG WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	ВМ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_4[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_4 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

# 6.2.4.3.88 Cluster hardware barrier 4 trigger, wait and clear command register. (HW_BARRIER_4_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_4[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_4 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

# 6.2.4.3.89 Cluster hardware barrier 5 trigger mask configuration register. (HW_BARRIER_5_TRIG_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 7:0 - **HB5TM** (R/W)

Trigger mask for hardware barrier 5 bitfield. Hardware barrier 5 will be triggered only if for all HB5TM[i] = 0b1, HW_BARRIER_5_STATUS.HB5S[i]=0b1. HB5TM=0 means that hardware barrier 5 is disabled.

#### 6.2.4.3.90 Cluster hardware barrier 5 status register. (HW_BARRIER_5_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBS (R)

Current status of hardware barrier 5 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 5. It is cleared when HBS matches HW_BARRIER_5_TRIG_MASK.HB5TM.

#### 6.2.4.3.91 Cluster hardware barrier summary status register. (HW_BARRIER_5_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				erved							НВ	00			

#### Bits 7:0 - HBSS (R)

 $Current\ status\ of\ hardware\ barrier\ 5.\ HBSS[i]\ represents\ a\ summary\ of\ the\ barrier\ status\ for\ core\ i.$ 

## 6.2.4.3.92 Cluster hardware barrier 5 target mask configuration register. (HW_BARRIER_5_TARGET_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 7:0 - **HBTAM** (R/W)

Cluster hardware barrier 5 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 5 event when HW BARRIER 5 STATUS will match HW BARRIER 5_TRIG_MASK.

# 6.2.4.3.93 Cluster hardware barrier 5 trigger command register. (HW_BARRIER_5_TRIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_5_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

#### 6.2.4.3.94 Cluster hardware barrier 5 self trigger command register. (HW_BARRIER_5_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1	ī							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **T** (R)

Sets HW_BARRIER_5_STATUS.HBS[i] to *0b1* when issued by cluster core i.

#### 6.2.4.3.95 Cluster hardware barrier 5 trigger and wait command register. (HW BARRIER 5 TRIG WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	ВМ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_5[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_5 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

# 6.2.4.3.96 Cluster hardware barrier 5 trigger, wait and clear command register. (HW_BARRIER_5_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_5[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_5 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER MASKED.EBM

# 6.2.4.3.97 Cluster hardware barrier 6 trigger mask configuration register. (HW_BARRIER_6_TRIG_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 7:0 - **HB6TM** (R/W)

Trigger mask for hardware barrier 6 bitfield. Hardware barrier 6 will be triggered only if for all HB6TM[i] = 0b1, HW_BARRIER_6_STATUS.HB6S[i]=0b1. HB6TM=0 means that hardware barrier 6 is disabled.

#### 6.2.4.3.98 Cluster hardware barrier 6 status register. (HW_BARRIER_6_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBS (R)

Current status of hardware barrier 6 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 6. It is cleared when HBS matches HW_BARRIER_6_TRIG_MASK.HB6TM.

#### 6.2.4.3.99 Cluster hardware barrier summary status register. (HW_BARRIER_6_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				erved							НВ	00			

Bits 7:0 - HBSS (R)

Current status of hardware barrier 6. HBSS[i] represents a summary of the barrier status for core i.

# 6.2.4.3.100 Cluster hardware barrier 6 target mask configuration register. (HW_BARRIER_6_TARGET_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 7:0 - **HBTAM** (R/W)

Cluster hardware barrier 6 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 6 event when HW BARRIER 6 STATUS will match HW BARRIER 6 TRIG MASK.

## 6.2.4.3.101 Cluster hardware barrier 6 trigger command register. (HW_BARRIER_6_TRIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_6_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

# 6.2.4.3.102 Cluster hardware barrier 6 self trigger command register. (HW_BARRIER_6_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							1	ī							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **T** (R)

Sets HW_BARRIER_6_STATUS.HBS[i] to *0b1* when issued by cluster core i.

#### 6.2.4.3.103 Cluster hardware barrier 6 trigger and wait command register. (HW BARRIER 6 TRIG WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	ВМ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_6[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_6 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

# 6.2.4.3.104 Cluster hardware barrier 6 trigger, wait and clear command register. (HW_BARRIER_6_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Set HW_BARRIER_6[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_6 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER MASKED.EBM

# 6.2.4.3.105 Cluster hardware barrier 7 trigger mask configuration register. (HW_BARRIER_7_TRIG_MASK)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 7:0 - **HB7TM** (R/W)

Trigger mask for hardware barrier 7 bitfield. Hardware barrier 7 will be triggered only if for all HB7TM[i] = 0b1, HW_BARRIER_7_STATUS.HB7S[i]=0b1. HB7TM=0 means that hardware barrier 7 is disabled.

#### 6.2.4.3.106 Cluster hardware barrier 7 status register. (HW_BARRIER_7_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - HBS (R)

Current status of hardware barrier 7 bitfield. HBS[i]=0b1 means that cluster core i has triggered hardware barrier 7. It is cleared when HBS matches HW_BARRIER_7_TRIG_MASK.HB7TM.

# 6.2.4.3.107 Cluster hardware barrier summary status register. (HW_BARRIER_7_STATUS_SUM)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				erved							НВ	00			

Bits 7:0 - HBSS (R)

Current status of hardware barrier 7. HBSS[i] represents a summary of the barrier status for core i.

## 6.2.4.3.108 Cluster hardware barrier 7 target mask configuration register. (HW_BARRIER_7_TARGET_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 7:0 - HBTAM (R/W)

Cluster hardware barrier 7 target mask configuration bitfield. HBATM[i]=0b1 means that cluster core i will receive hardware barrier 7 event when HW BARRIER 7 STATUS will match HW BARRIER 7_TRIG_MASK.

## 6.2.4.3.109 Cluster hardware barrier 7 trigger command register. (HW_BARRIER_7_TRIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - T (W)

Sets HW_BARRIER_7_STATUS.HBS[i] to *0b1* when T[i]=*0b1*.

# 6.2.4.3.110 Cluster hardware barrier 7 self trigger command register. (HW_BARRIER_7_SELF_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							7	Γ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **T** (R)

Sets HW_BARRIER_7_STATUS.HBS[i] to *0b1* when issued by cluster core i.

#### 6.2.4.3.111 Cluster hardware barrier 7 trigger and wait command register. (HW BARRIER 7 TRIG WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	ВМ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Set HW_BARRIER_7[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_7 is released. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

# 6.2.4.3.112 Cluster hardware barrier 7 trigger, wait and clear command register. (HW_BARRIER_7_TRIG_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EB	RM	•						

Bits 31:0 - EBM (R)

Set HW_BARRIER_7[i] when issued by cluster core i and gate the issuing cluster core i clock until HW_BARRIER_7 is released. In addition, EVENT_BUFFER.EB[i] bits are cleared after the read if EVT_MASK[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER MASKED.EBM

# 6.2.5 Cluster instruction cache control unit

CL_ICACHE_CTRL component manages the following features:

- Bypassable Cluster instruction cache controller
- Flush and selective flush commands

# 6.2.5.1 Cluster instruction cache control unit registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
ENABLE	0x10201400	0x00201400	32	Config	8	0x0000	Cluster instruction cache unit enable configuration register.
FLUSH	0x10201404	0x00201404	32	Config	W	0x0000	Cluster instruction cache unit flush command register.
SEL_FLUSH	0x1020140C	0x0020140C	32	Config	W	0x0000	Cluster instruction cache unit selective flush command register.

Table 25. Cluster instruction cache control unit registers table

# 6.2.5.2 Cluster instruction cache control unit registers details

#### 6.2.5.2.1 Cluster instruction cache unit enable configuration register. (ENABLE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **EN** (W)

Cluster instruction cache enable configuration bitfield:

- *0b0*: disabled
- 0b1: enabled

## 6.2.5.2.2 Cluster instruction cache unit flush command register. (FLUSH)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **FL** (W)

Cluster instruction cache full flush command.

#### 6.2.5.2.3 Cluster instruction cache unit selective flush command register. (SEL_FLUSH)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							AD	DR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							AD	DR							

Bits 31:0 - **ADDR** (W)

Cluster instruction cache selective flush address configuration bitfield.

# 6.2.6 Hardware convolution engine

The Hardware Convolution Engine or HWCE is a special-purpose coprocessor designed for accelerated computation of convolution-accumulation kernels within GAP. In particular, it is targeted towards acceleration of Convolutional Neural Networks (CNNs). The

HWCE assumes input and output pixels and convolution weights are fixed point numbers. Various bit widths of pixels and weights are available.

Differently from most tightly-coupled accelerator, the HWCE is not tied with a specific core but rather it is tightly integrated within the cluster. Memory access is performed through the ports that are directly plugged into the logarithmic interconnect, while control of the accelerator can be performed by means of a configuration port available via the cluster peripheral interconnect.

This means that the HWCE directly shares data in the L1 with the RISCY cores in the GAP8 cluster, similarly to the way that cores do with each another. Therefore, from the perspective of the shared memory the HWCE is essentially undistinguishable from a cluster core.

While behaving as a core externally, internally the HWCE is a dataflow engine that performs the convolution-accumulation operation over streams of data.

# 6.2.6.1 Hardware convolution engine registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
TRIGGER	0x10201800	0x00201800	32	Config	W	0x0000	Trigger the execution of an offloaded job
ACQUIRE	0x10201804	0x00201804	32	Config	R	0x0000	Acquire the lock to offload job
FINISHED_JOBS	0x10201808	0x00201808	32	Status	R	0x0000	Number of concluded jobs since last read
<u>STATUS</u>	0x1020180C	0x0020180C	32	Status	R	0x0000	Status of the HWCE
RUNNING_JOB	0x10201810	0x00201810	32	Status	R	0x0000	ID of the currently running job
SOFT_CLEAR	0x10201814	0x00201814	32	Config	W	0x0000	Reset HWCE to known idle state
GEN_CONFIG0	0x10201820	0x00201820	32	Config	R/W	0x0000	Generic configuration register 0
GEN_CONFIG1	0x10201824	0x00201824	32	Config	R/W	0x0000	Generic configuration register 1
Y_TRANS_SIZE_ALIASED	0x10201840	0x00201840	32	Config	R/W	0x0000	Total number of words to be read for y _{in} and y _{out}
Y_LINE_STRIDE_LENGTH_ALIASED	0x10201844	0x00201844	32	Config	R/W	0x0000	Line stride and length for y _{in} and y _{out}
Y_FEAT_STRIDE_LENGTH_ALIASED	0x10201848	0x00201848	32	Config	R/W	0x0000	Feature (block) stride and length for y _{in} and y _{out}
Y OUT 3 BASE ADDR ALIASED	0x1020184C	0x0020184C	32	Config	R/W	0x0000	Base address of y _{out} [3]
Y_OUT_2_BASE_ADDR_ALIASED	0x10201850	0x00201850	32	Config	R/W	0x0000	Base address of y _{out} [2]
Y_OUT_1_BASE_ADDR_ALIASED	0x10201854	0x00201854	32	Config	R/W	0x0000	Base address of y _{out} [1]
Y_OUT_0_BASE_ADDR_ALIASED	0x10201858	0x00201858	32	Config	R/W	0x0000	Base address of y _{out} [0]
Y_IN_3_BASE_ADDR_ALIASED	0x1020185C	0x0020185C	32	Config	R/W	0x0000	Base address of y _{in} [3]
Y_IN_2_BASE_ADDR_ALIASED	0x10201860	0x00201860	32	Config	R/W	0x0000	Base address of y _{in} [2]
Y_IN_1_BASE_ADDR_ALIASED	0x10201864	0x00201864	32	Config	R/W	0x0000	Base address of y _{in} [1]
Y_IN_0_BASE_ADDR_ALIASED	0x10201868	0x00201868	32	Config	R/W	0x0000	Base address of y _{in} [0]
X_TRANS_SIZE_ALIASED	0x1020186C	0x0020186C	32	Config	R/W	0x0000	Total number of words to be read for x _{in}
X_LINE_STRIDE_LENGTH_ALIASED	0x10201870	0x00201870	32	Config	R/W	0x0000	Line stride and length for x _{in}
X_FEAT_STRIDE_LENGTH_ALIASED	0x10201874	0x00201874	32	Config	R/W	0x0000	Feature (block) stride and length for x _{in}
X_IN_BASE_ADDR_ALIASED	0x10201878	0x00201878	32	Config	R/W	0x0000	Base address of x _{in}

Name	Address	Aliased address	Size	Туре	Access	Default	Description
W_BASE_ADDR_ALIASED	0x1020187C	0x0020187C	32	Config	R/W	0x0000	Base address of W
JOB_CONFIG0_ALIASED	0x10201880	0x00201880	32	Config	R/W	0x0000	Job configuration register 0
JOB_CONFIG1_ALIASED	0x10201884	0x00201884	32	Config	R/W	0x0000	Job configuration register 1
Y_TRANS_SIZE_CTX0	0x10201940	0x00201940	32	Config	R	0x0000	Total number of words to be read for y _{in} and y _{out}
Y_LINE_STRIDE_LENGTH_CTX0	0x10201944	0x00201944	32	Config	R	0x0000	Line stride and length for $y_{in}$ and $y_{out}$
Y_FEAT_STRIDE_LENGTH_CTX0	0x10201948	0x00201948	32	Config	R	0x0000	Feature (block) stride and length for y _{in} and y _{out}
Y_OUT_3_BASE_ADDR_CTX0	0x1020194C	0x0020194C	32	Config	R	0x0000	Base address of y _{out} [3]
Y_OUT_2_BASE_ADDR_CTX0	0x10201950	0x00201950	32	Config	R	0x0000	Base address of y _{out} [2]
Y_OUT_1_BASE_ADDR_CTX0	0x10201954	0x00201954	32	Config	R	0x0000	Base address of y _{out} [1]
Y_OUT_0_BASE_ADDR_CTX0	0x10201958	0x00201958	32	Config	R	0x0000	Base address of y _{out} [0]
Y IN 3 BASE ADDR CTX0	0x1020195C	0x0020195C	32	Config	R	0x0000	Base address of y _{in} [3]
Y IN 2 BASE ADDR CTX0	0x10201960	0x00201960	32	Config	R	0x0000	Base address of y _{in} [2]
Y_IN_1_BASE_ADDR_CTX0	0x10201964	0x00201964	32	Config	R	0x0000	Base address of y _{in} [1]
Y IN 0 BASE ADDR CTX0	0x10201968	0x00201968	32	Config	R	0x0000	Base address of y _{in} [0]
X_TRANS_SIZE_CTX0	0x1020196C	0x0020196C	32	Config	R	0x0000	Total number of words to be read for x _{in}
X_LINE_STRIDE_LENGTH_CTX0	0x10201970	0x00201970	32	Config	R	0x0000	Line stride and length for x _{in}
X_FEAT_STRIDE_LENGTH_CTX0	0x10201974	0x00201974	32	Config	R	0x0000	Feature (block) stride and length for x _{in}
X IN BASE ADDR CTX0	0x10201978	0x00201978	32	Config	R	0x0000	Base address of x _{in}
W_BASE_ADDR_CTX0	0x1020197C	0x0020197C	32	Config	R	0x0000	Base address of W
JOB_CONFIG0_CTX0	0x10201980	0x00201980	32	Config	R	0x0000	Job configuration register 0
JOB_CONFIG1_CTX0	0x10201984	0x00201984	32	Config	R	0x0000	Job configuration register 1
Y_TRANS_SIZE_CTX1	0x10201A40	0x00201A40	32	Config	R	0x0000	Total number of words to be read for y _{in} and y _{out}
Y_LINE_STRIDE_LENGTH_CTX1	0x10201A44	0x00201A44	32	Config	R	0x0000	Line stride and length for y _{in} and y _{out}
Y_FEAT_STRIDE_LENGTH_CTX1	0x10201A48	0x00201A48	32	Config	R	0x0000	Feature (block) stride and length for y _{in} and y _{out}
Y OUT 3 BASE ADDR CTX1	0x10201A4C	0x00201A4C	32	Config	R	0x0000	Base address of y _{out} [3]
Y_OUT_2_BASE_ADDR_CTX1	0x10201A50	0x00201A50	32	Config	R	0x0000	Base address of y _{out} [2]
Y_OUT_1_BASE_ADDR_CTX1	0x10201A54	0x00201A54	32	Config	R	0x0000	Base address of y _{out} [1]
Y_OUT_0_BASE_ADDR_CTX1	0x10201A58	0x00201A58	32	Config	R	0x0000	Base address of y _{out} [0]
Y IN 3 BASE ADDR CTX1	0x10201A5C	0x00201A5C	32	Config	R	0x0000	Base address of y _{in} [3]
Y IN 2 BASE ADDR CTX1	0x10201A60	0x00201A60	32	Config	R	0x0000	Base address of y _{in} [2]
Y_IN_1_BASE_ADDR_CTX1	0x10201A64	0x00201A64	32	Config	R	0x0000	Base address of y _{in} [1]
Y IN 0 BASE ADDR CTX1	0x10201A68	0x00201A68	32	Config	R	0x0000	Base address of y _{in} [0]
X_TRANS_SIZE_CTX1	0x10201A6C	0x00201A6C	32	Config	R	0x0000	Total number of words to be read for x _{in}

Name	Address	Aliased address	Size	Туре	Access	Default	Description
X_LINE_STRIDE_LENGTH_CTX1	0x10201A70	0x00201A70	32	Config	R	0x0000	Line stride and length for x _{in}
X_FEAT_STRIDE_LENGTH_CTX1	0x10201A74	0x00201A74	32	Config	R	0x0000	Feature (block) stride and length for x _{in}
X_IN_BASE_ADDR_CTX1	0x10201A78	0x00201A78	32	Config	R	0x0000	Base address of x _{in}
W_BASE_ADDR_CTX1	0x10201A7C	0x00201A7C	32	Config	R	0x0000	Base address of W
JOB_CONFIG0_CTX1	0x10201A80	0x00201A80	32	Config	R	0x0000	Job configuration register 0
JOB_CONFIG1_CTX1	0x10201A84	0x00201A84	32	Config	R	0x0000	Job configuration register 1

Table 26. Hardware convolution engine registers table

#### 6.2.6.2 Hardware convolution engine registers details

#### 6.2.6.2.1 Trigger the execution of an offloaded job (TRIGGER)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ΑN	1Y							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - ANY (W)

Write of any value will close the current offload phase by releasing the job offload lock and inserting the currently offloaded job in the control queue.

#### 6.2.6.2.2 Acquire the lock to offload job (ACQUIRE)

Reset value: 0x0000

Any read from this register has the "side effect" of initiating an offload sequence by acquiring the job offload lock. Until the offloading core releases the lock by writing to the TRIGGER register, no other core can start a job offload.

A read to the ACQUIRE register has the further side of effect of copying the full status of the previous context inside the new context to be offloaded, an operation that is performed in 18 cycles.

Any write to this register is ignored.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EF	RR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:8 - ERR (R)

An error code if one of the following conditions apply:

- 1. if the context copy is going on, it will answer 0xffffffd (-3)
- 2. else, if the job offload lock has been established, it will answer 0xfffffffe (-2)
- 3. else, if the job queue is full, it will answer 0xfffffff (-1)

# Bits 7:0 - **ID_ERR** (R)

If ERR is 0 then the ID of the offloaded job. Otherwise, part of the error code

# 6.2.6.2.3 Number of concluded jobs since last read (FINISHED_JOBS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							JO	BS							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

# Bits 31:0 - **JOBS** (R)

The number of jobs that the HWCE executed and finished since the last time the same FINISHED_JOBS register was accessed. A read to FINISHED_JOBS returns:

- 0x0 if no job was completed since the last access
- 0x1 if a single job was completed since the last access
- 0x2 if two or more jobs were completed since the last access

#### 6.2.6.2.4 Status of the HWCE (STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bit 0 - **ST** (R)

Status of the HWCE

- *0b0* Not running a job
- *0b1* Running a job

# 6.2.6.2.5 ID of the currently running job (RUNNING_JOB)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
						_	_		_	_	_	_	_	_	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 7:0 - **ID** (R)

ID of the currently running job

# 6.2.6.2.6 Reset HWCE to known idle state (SOFT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ΑN	1Y							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							AN	1Y							

Bits 31:0 - **ANY** (W)

A write of any value to this register will reset the HWCE to its idle state.

# 6.2.6.2.7 Generic configuration register 0 (GEN_CONFIG0)

#### Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							WST	RIDE							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

# Bits 31:16 - **WSTRIDE** (R/W)

Stride between one FILTER_SIZExFILTER_SIZE filter and the next.

# Bit 13 - NCP (R/W)

No job copy:

- *0b0* do job copy
- 0b1 don't do job copy

#### Bits 12:11 - **CONV** (R/W)

Convolution mode:

- *0b00* mode is 5x5.
- *0b01* mode is 3x3.
- *0b10* mode is 4x7.

# Bits 10:9 - **VECT** (R/W)

Vector mode:

- 0b00 mode is scalar (1 feat/cycle, 1x16-bit weights).
- *0b01* mode is vectorial 2 (2 feat/cycle, 2x8-bit weights).
- *0b10* mode is vectorial 4 (4 feat/cycle, 4x4-bit weights).

# Bit 8 - **UNS** (R/W)

Set unsigned multiplication

- *0b0* Consider multiplication results as signed fixed-point numbers.
- *0b1* Consider multiplication results as unsigned fixed-point numbers.

#### Bit 7 - **NY** (R/W)

No y_in mode:

- *0b0* Normal operation
- 0b1 Disable loading of y_in and add a constant set in the CONFIG2 register

# Bit 6 - **NF** (R/W)

Operation type:

- *0b0* Normal convolution
- *0b1* Does not flip weights (i.e. implements a stencil instead of a mathematical convolution).

#### Bits 5:0 - **QF** (R/W)

Fixed-point format. Pixels will be shifted to the right by QF bits in the

normalization step after the sum-of-products stage.

# 6.2.6.2.8 Generic configuration register 1 (GEN_CONFIG1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Reserved								PIXSHIFTR		
45															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 20:16 - PIXSHIFTR (R/W)

Shift output pixels to the right by this number of positions when PIXMODE is not 16bit.

# Bits 9:8 - PIXMODE (R/W)

Input pixel size

- *0b00* 16bit
- 0b01 8bit
- 0b10 4bit
- *0b11* 16bit bis

# Bits 4:0 - PIXSHIFTL (R/W)

Shift input pixels to the left by this number of positions when PIXMODE is not 16bit.

# 6.2.6.2.9 Total number of words to be read for $y_{in}$ and $y_{out}$ (Y_TRANS_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SIZ	ZE							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

# Bits 31:0 - **SIZE** (R/W)

Contains the total number of words (i.e. double 16bit pixels, quad 8bit pixels, etc.) to be read / written by the streaming source and sink interfaces for  $y_{in}$  and  $y_{out}$  streams.

# 6.2.6.2.10 Line stride and length for $y_{in}$ and $y_{out}$ (Y_LINE_STRIDE_LENGTH)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STF	RIDE							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:16 - **STRIDE** (R/W)

Distance in bytes between two consecutive lines.

## Bits 15:0 - **LENGTH** (R/W)

Length of a line in number of words

# 6.2.6.2.11 Feature (block) stride and length for $y_{in}$ and $y_{out}$ (Y_FEAT_STRIDE_LENGTH)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STR	IIDE							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

# Bits 31:16 - **STRIDE** (R/W)

Distance in bytes between two consecutive lines.

# Bits 15:0 - **LENGTH** (R/W)

Length of a line in number of words

# 6.2.6.2.12 Base address of y_{out}[3] (Y_OUT_3_BASE_ADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							AD	DR							
					40	0		_	_	-		-	-		_
15	14	13	12	11	10	9	8	,	ь	5	4	3	2	1	U

# Bits 31:0 - **ADDR** (R/W)

Pointer into cluster L1 memory (4x4 bit mode)

# 6.2.6.2.13 Base address of yout[2] (Y_OUT_2_BASE_ADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							AD	DR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

# Bits 31:0 - **ADDR** (R/W)

Pointer into cluster L1 memory (4x4 bit mode)

# 6.2.6.2.14 Base address of yout[1] (Y_OUT_1_BASE_ADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							AD	DR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - ADDR (R/W)

Pointer into cluster L1 memory (4x4 bit and 2x8 bit modes)

# $6.2.6.2.15 \ Base \ address \ of \ y_{out}[0] \ (Y_OUT_0_BASE_ADDR)$

#### Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							AD	DR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - ADDR (R/W)

Pointer into cluster L1 memory (4x4 bit, 2x8 bit and 1x16 bit modes)

# 6.2.6.2.16 Base address of $y_{in}[3]$ (Y_IN_3_BASE_ADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							AD	DR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

# Bits 31:0 - **ADDR** (R/W)

Pointer into cluster L1 memory (4x4 bit mode)

# 6.2.6.2.17 Base address of $y_{in}[2]$ (Y_IN_2_BASE_ADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							AD	DR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - **ADDR** (R/W)

Pointer into cluster L1 memory (4x4 bit mode)

# 6.2.6.2.18 Base address of $y_{in}[1]$ (Y_IN_1_BASE_ADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							AD	DR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							AD								

# Bits 31:0 - **ADDR** (R/W)

Pointer into cluster L1 memory (4x4 bit and 2x8 bit modes)

# 6.2.6.2.19 Base address of $y_{in}[0]$ (Y_IN_0_BASE_ADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							AD	DR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - ADDR (R/W)

Pointer into cluster L1 memory (4x4 bit, 2x8 bit and 1x16 bit modes)

#### 6.2.6.2.20 Total number of words to be read for x_{in} (X_TRANS_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SIZ	ZE							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

# Bits 31:0 - **SIZE** (R/W)

Contains the total number of words (i.e. double 16bit pixels, quad 8bit pixels, etc.) to be read / written by the streaming source interface for the  $x_{in}$  stream.

# 6.2.6.2.21 Line stride and length for $x_{in}$ (X_LINE_STRIDE_LENGTH)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STR	RIDE							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

# Bits 31:16 - **STRIDE** (R/W)

Distance in bytes between two consecutive lines.

# Bits 15:0 - **LENGTH** (R/W)

Length of a line in number of words

#### 6.2.6.2.22 Feature (block) stride and length for x_{in} (X_FEAT_STRIDE_LENGTH)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STR	IIDE							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 31:16 - **STRIDE** (R/W)

Distance in bytes between two consecutive lines.

# Bits 15:0 - **LENGTH** (R/W)

Length of a line in number of words

# 6.2.6.2.23 Base address of $x_{in}$ (X_IN_BASE_ADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							AD	DR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - ADDR (R/W)

Pointer into cluster L1 memory

#### 6.2.6.2.24 Base address of W (W_BASE_ADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							AD	DR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

# Bits 31:0 - **ADDR** (R/W)

Pointer into cluster L1 memory

# 6.2.6.2.25 Job configuration register 0 (JOB_CONFIG0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							NOYO	ONST							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:16 - NOYCONST (R/W)

Constant to sum instead of  $y_{in}$  if the NY flag is active in the CONFIG1 register.

#### Bits 9:0 - LBUFLEN (R/W)

 $Line buffer \ virtual \ length. \ Set \ to \ the \ same \ number \ as \ X_LINE_LENGTH. \ Acceptable \ LBUFLEN \ values \ range \ between \ 2 \ and \ LINE BUF_LENGTH.$ 

# 6.2.6.2.26 Job configuration register 1 (JOB_CONFIG1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Rese	erved			LN	LO	Rese	erved			WIF_F	PARAM		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved			WOF_F	PARAM				Rese	erved		,	VECT_DISA	BLE_MASK	

# Bit 25 - **LN** (R/W)

Looping mechanism:

- *0b0* both counters work as inner loops
- *0b1* outer loop feature address is updated only when the feature counter reaches the wrap parameter, inner loop feature address is updated when the counter is less than the wrap parameter and reset when it is reached

# Bit 24 - **LO** (R/W)

Loop order:

- *0b0* output features (OF) are the outer loop
- *0b1* input features (IF) are the outer loop

#### Bits 21:16 - WIF_PARAM (R/W)

Input feature (IF) counter wrap parameter. If both WIF and WOF are 0b0, the looping mechanism is disabled

#### Bits 13:8 - WOF_PARAM (R/W)

Output feature (OF) counter wrap parameter. If both WIF and WOF are 0b0, the looping mechanism is disabled

#### Bits 3:0 - VECT_DISABLE_MASK (R/W)

Vector mode mask. Defaults to 0x0, which means that all vectors are enabled. Can be used to disable unused vector routes when using approximate vector or 3x3 mode. The bits are reversed in order, so bit 3 indicates vector 0, bit 2 vector 1, etc.

#### 6.2.7 DMA

Cluster DMA component manages the following features:

- 8 RX/TX full-duplex channels
- Up to 16 outstanding transfers between L1 and L2 memories
- Linear or 2D transfers modes

#### 6.2.7.1 DMA registers

Name	Aliased address	Size	Туре	Access	Default	Description
CMD	0x00204400	32	Config	R/W	0x0000	Cluster DMA configuration register.
<u>STATUS</u>	0x00204404	32	Status	R/W	0x0000	Cluster DMA status register.

Table 27. DMA registers table

# 6.2.7.2 DMA registers details

#### 6.2.7.2.1 Cluster DMA configuration register. (CMD)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CN	ИD							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CMD (R/W)

Format is operation dependent. See below.

# 6.2.7.2.2 Cluster DMA status register. (STATUS)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STA	TUS							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 31:0 - **STATUS** (R/W)

Format is operation dependent. See below.

#### **6.2.7.3 DMA states**



Figure 5. Queue transaction with ID



Figure 6. Queue transaction without ID



Figure 7. Get DMA status



Figure 8. Free DMA transfer

# 6.2.7.4 DMA state command formats

Format Name	Register	Size	Access type	Description
<u>STATUS</u>	STATUS	32	R	Cluster DMA transfer free command format.

Format Name	Register	Size	Access type	Description
<u>TCDM</u>	CMD	32	W	Cluster DMA L1 base address configuration format.
FREE_TID	STATUS	32	W	Cluster DMA transfer status format.
GET_TID	CMD	32	R	Cluster DMA transfer identifier format.
CMD	CMD	32	W	Cluster DMA transfer configuration format.
EXT_L2	CMD	32	W	Cluster DMA L2 base address configuration format.
<u>2D</u>	CMD	32	W	Cluster DMA 2D transfer configuration format.

Table 28. DMA command format table

#### 6.2.7.4.1 Cluster DMA transfer free command format. (STATUS)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TID_A	LLOC							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TID	TD							

# Bits 31:16 - **TID_ALLOC** (R)

Transfer status bitfield:

- TID_TR[i]=0b0 means that transfer allocator with TID i-16 is free.
- TID_TR[i]=0b1 means that transfer allocator with TID i-16 is reserved.

#### Bits 15:0 - **TID_TR** (R)

Transfer status bitfield:

TID_TR[i]=0b1 means that transfer with TID i is active.

# 6.2.7.4.2 Cluster DMA L1 base address configuration format. (TCDM)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							AD	DR							
							_	_	_	_		_			
15	14	13	12	11	10	9	8	7	6	5	4	3		1	0

# Bits 31:0 - **ADDR** (W)

Transfer L1 base address configuration bitfield.

#### 6.2.7.4.3 Cluster DMA transfer status format. (FREE_TID)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TID_F	REE							

# Bits 15:0 - TID_FREE (W)

Transfer canceller configuration bitfield. Writing a *0b1* in TID_FREE[i] will free transfer with TID i.

# 6.2.7.4.4 Cluster DMA transfer identifier format. (GET_TID)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15 14 13 12 11 10 9 8 7 6 5 4 3										2	1	0			

#### Bits 3:0 - TID (R)

Transfer identifier value bitfield.

#### 6.2.7.4.5 Cluster DMA transfer configuration format. (CMD)

31         30         29         28         27         26         25         24         23         22         21         20         19											19	18	17	16	
	Reserved											ELE	2D	INC	TYPE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bit 21 - **BLE** (W)

Transfer event or interrupt broadcast configuration bitfield:

- *0b0*: event or interrupt is routed to the cluster core who initiated the transfer
- *0b1*: event or interrupt are broadcasted to all cluster cores

#### Bit 20 - ILE (W)

Transfer interrupt generation configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

#### Bit 19 - **ELE** (W)

Transfer event generation configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

# Bit 18 - **2D** (W)

Transfer type configuration bitfield:

- *0b0*: linear transfer
- *0b1*: 2D transfer

# Bit 17 - **INC** (W)

Transfer incremental configuration bitfield:

- *0b0*: non incremental
- *0b1*: incremental

# Bit 16 - **TYPE** (W)

Transfer direction configuration bitfield:

- *0b0*: L1 to L2
- *0b1*: L2 to L1

## Bits 15:0 - **LEN** (W)

Transfer length in bytes configuration bitfield.

# 6.2.7.4.6 Cluster DMA L2 base address configuration format. (EXT_L2)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ADDR														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						-	-	-	_	_	-	_	_	-	

Bits 31:0 - **ADDR** (W)

Transfer L2 base address configuration bitfield.

# 6.2.7.4.7 Cluster DMA 2D transfer configuration format. (2D)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	STRIDE														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:16 - **STRIDE** (W)

2D transfer stride value configuration bitfield.

Bits 15:0 - **LEN** (W)

2D transfer length value configuration bitfield.

# 6.2.8 Cluster RISCY cores

Cluster RI5CY Debug component manages the following features:

- controls break and single step RI5CY core execution modes
- configurable execution behavior on RI5CY core exception occurrence
- access to PC, GPR and CSR RI5CY core registers
- no HW breakpoint are provided

# 6.2.8.1 Cluster Core 0 (Debug Unit) registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
<u>CTRL</u>	0x10300000	0x00300000	32	Config	R/W	0x0000	Debug control configuration register.
HIT	0x10300004	0x00300004	32	Config	R/W	0x0000	Debug hit status register.
<u>IE</u>	0x10300008	0x00300008	32	Config	R/W	0x0000	Debug exception trap enable configuration register.
CAUSE	0x1030000C	0x0030000C	32	Config	R	0x0000	Debug trap cause status register.
GPR0	0x10300400	0x00300400	32	Config	R/W	0x0000	Core general purpose register 0 value register.
GPR1	0x10300404	0x00300404	32	Config	R/W	0x0000	Core general purpose register 1 value register.
GPR2	0x10300408	0x00300408	32	Config	R/W	0x0000	Core general purpose register 2 value register.
GPR3	0x1030040C	0x0030040C	32	Config	R/W	0x0000	Core general purpose register 3 value register.
GPR4	0x10300410	0x00300410	32	Config	R/W	0x0000	Core general purpose register 4 value register.
GPR5	0x10300414	0x00300414	32	Config	R/W	0x0000	Core general purpose register 5 value register.
GPR6	0x10300418	0x00300418	32	Config	R/W	0x0000	Core general purpose register 6 value register.
GPR7	0x1030041C	0x0030041C	32	Config	R/W	0x0000	Core general purpose register 7 value register.
GPR8	0x10300420	0x00300420	32	Config	R/W	0x0000	Core general purpose register 8 value register.
GPR9	0x10300424	0x00300424	32	Config	R/W	0x0000	Core general purpose register 9 value register.
GPR10	0x10300428	0x00300428	32	Config	R/W	0x0000	Core general purpose register 10 value register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
GPR11	0x1030042C	0x0030042C	32	Config	R/W	0x0000	Core general purpose register 11 value register.
GPR12	0x10300430	0x00300430	32	Config	R/W	0x0000	Core general purpose register 12 value register.
GPR13	0x10300434	0x00300434	32	Config	R/W	0x0000	Core general purpose register 13 value register.
GPR14	0x10300438	0x00300438	32	Config	R/W	0x0000	Core general purpose register 14 value register.
GPR15	0x1030043C	0x0030043C	32	Config	R/W	0x0000	Core general purpose register 15 value register.
GPR16	0x10300440	0x00300440	32	Config	R/W	0x0000	Core general purpose register 16 value register.
GPR17	0x10300444	0x00300444	32	Config	R/W	0x0000	Core general purpose register 17 value register.
GPR18	0x10300448	0x00300448	32	Config	R/W	0x0000	Core general purpose register 18 value register.
GPR19	0x1030044C	0x0030044C	32	Config	R/W	0x0000	Core general purpose register 19 value register.
GPR20	0x10300450	0x00300450	32	Config	R/W	0x0000	Core general purpose register 20 value register.
GPR21	0x10300454	0x00300454	32	Config	R/W	0x0000	Core general purpose register 21 value register.
GPR22	0x10300458	0x00300458	32	Config	R/W	0x0000	Core general purpose register 22 value register.
GPR23	0x1030045C	0x0030045C	32	Config	R/W	0x0000	Core general purpose register 23 value register.
GPR24	0x10300460	0x00300460	32	Config	R/W	0x0000	Core general purpose register 24 value register.
GPR25	0x10300464	0x00300464	32	Config	R/W	0x0000	Core general purpose register 25 value register.
GPR26	0x10300468	0x00300468	32	Config	R/W	0x0000	Core general purpose register 26 value register.
GPR27	0x1030046C	0x0030046C	32	Config	R/W	0x0000	Core general purpose register 27 value register.
GPR28	0x10300470	0x00300470	32	Config	R/W	0x0000	Core general purpose register 28 value register.
GPR29	0x10300474	0x00300474	32	Config	R/W	0x0000	Core general purpose register 29 value register.
GPR30	0x10300478	0x00300478	32	Config	R/W	0x0000	Core general purpose register 30 value register.
GPR31	0x1030047C	0x0030047C	32	Config	R/W	0x0000	Core general purpose register 31 value register.
NPC	0x10302000	0x00302000	32	Config	R/W	0x0000	Debug next program counter value register.
PPC	0x10302004	0x00302004	32	Config	R	0x0000	Debug previous program counter value register.
CSR_UHARTID	0x10304050	0x00304050	32	Config	R	0x0000	Core CSR user privilege mode hardware thread ID status register.
CSR_MSTATUS	0x10304C00	0x00304C00	32	Config	R/W	0x0000	Core CSR machine status value register.
CSR_MTVEC	0x10304C14	0x00304C14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.
CSR_MEPC	0x10304D04	0x00304D04	32	Config	R/W	0x0000	Core CSR machine exception program counter value register.
CSR_MCAUSE	0x10304D08	0x00304D08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.
CSR_PCCR	0x10305E00	0x00305E00	32	Config	R/W	0x0000	Core CSR performance counter counter register.
CSR_PCER	0x10305E80	0x00305E80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.
CSR_PCMR	0x10305E84	0x00305E84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.
CSR_HWLP0S	0x10305EC0	0x00305EC0	32	Config	R/W	0x0000	Core CSR hardware loop 0 start configuration register.
CSR_HWLP0E	0x10305EC4	0x00305EC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.
CSR_HWLP0C	0x10305EC8	0x00305EC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.
CSR_HWLP1S	0x10305ED0	0x00305ED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.
CSR_HWLP1E	0x10305ED4	0x00305ED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CSR_HWLP1C	0x10305ED8	0x00305ED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.
CSR_PRIVLV	0x10307040	0x00307040	32	Config	R	0x0000	Cose CSR privilege level status register.
CSR_MHARTID	0x10307C50	0x00307C50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.

Table 29. Cluster Core 0 (Debug Unit) registers table

# 6.2.8.2 Cluster Core 1 (Debug Unit) registers

HII	Name	Address	Aliased address	Size	Туре	Access	Default	Description
E	CTRL	0x10308000	0x00308000	32	Config	R/W	0x0000	Debug control configuration register.
CAUSE	<u>HIT</u>	0x10308004	0x00308004	32	Config	R/W	0x0000	Debug hit status register.
GPRO         0x10308400         0x00308400         32         Config         R/W         0x0000         Core general purpose register 0 value register.           GPRI         0x10308404         0x00308404         32         Config         R/W         0x0000         Core general purpose register 1 value register.           GPR2         0x10308408         0x00308408         32         Config         R/W         0x0000         Core general purpose register 2 value register.           GPR3         0x10308410         0x0308410         32         Config         R/W         0x0000         Core general purpose register 4 value register.           GPR3         0x10308411         0x00308414         32         Config         R/W         0x0000         Core general purpose register 4 value register.           GPR6         0x10308411         0x00308414         32         Config         R/W         0x0000         Core general purpose register 6 value register.           GPR6         0x10308412         0x00308418         32         Config         R/W         0x0000         Core general purpose register 6 value register.           GPR8         0x10308422         0x00308418         32         Config         R/W         0x0000         Core general purpose register 10 value register.           GPR10	<u>IE</u>	0x10308008	0x00308008	32	Config	R/W	0x0000	
GPR1         0x10308404         0x00308404         32         Config         R/W         0x0000         Core general purpose register 1 value register.           GPR2         0x10308408         0x00308408         32         Config         R/W         0x0000         Core general purpose register 2 value register.           GPR3         0x1030840C         0x0030840C         32         Config         R/W         0x0000         Core general purpose register 3 value register.           GPR4         0x10308410         0x00308414         32         Config         R/W         0x0000         Core general purpose register 4 value register.           GPR5         0x10308418         0x00308414         32         Config         R/W         0x0000         Core general purpose register 5 value register.           GPR6         0x10308416         0x00308416         32         Config         R/W         0x0000         Core general purpose register 6 value register.           GPR8         0x10308420         0x00308420         32         Config         R/W         0x0000         Core general purpose register 7 value register.           GPR8         0x10308424         0x0308428         32         Config         R/W         0x0000         Core general purpose register 10 value register.           GPR11	CAUSE	0x1030800C	0x0030800C	32	Config	R	0x0000	Debug trap cause status register.
GPR2         0x10308408         0x00308408         32         Config         R/W         0x00000         Core general purpose register 2 value register.           GPR3         0x1030840C         0x0030840C         32         Config         R/W         0x00000         Core general purpose register 3 value register.           GPR4         0x10308410         0x00308410         32         Config         R/W         0x00000         Core general purpose register 4 value register.           GPR5         0x10308414         0x00308418         32         Config         R/W         0x0000         Core general purpose register 5 value register.           GPR6         0x10308416         0x00308412         32         Config         R/W         0x0000         Core general purpose register 5 value register.           GPR8         0x10308420         0x00308424         32         Config         R/W         0x0000         Core general purpose register 9 value register.           GPR9         0x10308424         0x00308424         32         Config         R/W         0x0000         Core general purpose register 10 value register.           GPR10         0x10308438         0x00308422         32         Config         R/W         0x0000         Core general purpose register 11 value register.           GPR11 <td>GPR0</td> <td>0x10308400</td> <td>0x00308400</td> <td>32</td> <td>Config</td> <td>R/W</td> <td>0x0000</td> <td>Core general purpose register 0 value register.</td>	GPR0	0x10308400	0x00308400	32	Config	R/W	0x0000	Core general purpose register 0 value register.
GPR3         0x1030840C         0x0030840C         32         Config         R/W         0x0000         Core general purpose register 3 value register.           GPR4         0x10308410         0x00308410         32         Config         R/W         0x0000         Core general purpose register 4 value register.           GPR5         0x10308414         0x00308414         32         Config         R/W         0x0000         Core general purpose register 5 value register.           GPR6         0x10308418         0x00308418         32         Config         R/W         0x0000         Core general purpose register 6 value register.           GPR7         0x10308410         0x00308412         32         Config         R/W         0x0000         Core general purpose register 7 value register.           GPR8         0x10308420         0x00308420         32         Config         R/W         0x0000         Core general purpose register 9 value register.           GPR10         0x10308424         0x00308428         32         Config         R/W         0x0000         Core general purpose register 10 value register.           GPR11         0x10308430         0x00308421         32         Config         R/W         0x0000         Core general purpose register 11 value register.           GPR12	GPR1	0x10308404	0x00308404	32	Config	R/W	0x0000	Core general purpose register 1 value register.
GPB4         0x10308410         0x00308410         32         Config         R/W         0x0000         Core general purpose register 4 value register.           GPB5         0x10308414         0x00308414         32         Config         R/W         0x0000         Core general purpose register 5 value register.           GPB6         0x10308418         0x00308418         32         Config         R/W         0x0000         Core general purpose register 6 value register.           GPB7         0x10308410         0x0308410         32         Config         R/W         0x0000         Core general purpose register 7 value register.           GPB8         0x10308420         0x0308424         32         Config         R/W         0x0000         Core general purpose register 7 value register.           GPB10         0x10308424         0x030308424         32         Config         R/W         0x0000         Core general purpose register 9 value register.           GPB11         0x10308426         0x030308428         32         Config         R/W         0x0000         Core general purpose register 10 value register.           GPB11         0x10308430         0x030308432         32         Config         R/W         0x0000         Core general purpose register 11 value register.           GPB12 <td>GPR2</td> <td>0x10308408</td> <td>0x00308408</td> <td>32</td> <td>Config</td> <td>R/W</td> <td>0x0000</td> <td>Core general purpose register 2 value register.</td>	GPR2	0x10308408	0x00308408	32	Config	R/W	0x0000	Core general purpose register 2 value register.
GPR5         0x10308414         0x00308414         32         Config         R/W         0x0000         Core general purpose register 5 value register.           GPR6         0x10308418         0x00308418         32         Config         R/W         0x0000         Core general purpose register 5 value register.           GPR7         0x10308410         0x00308410         32         Config         R/W         0x0000         Core general purpose register 7 value register.           GPR8         0x10308420         0x0308424         32         Config         R/W         0x0000         Core general purpose register 7 value register.           GPR9         0x10308424         0x0308424         32         Config         R/W         0x0000         Core general purpose register 9 value register.           GPR10         0x10308426         0x030308428         32         Config         R/W         0x0000         Core general purpose register 10 value register.           GPR11         0x10308430         0x030308434         32         Config         R/W         0x0000         Core general purpose register 11 value register.           GPR12         0x10308434         0x030308434         32         Config         R/W         0x0000         Core general purpose register 13 value register.           GPR13 <td>GPR3</td> <td>0x1030840C</td> <td>0x0030840C</td> <td>32</td> <td>Config</td> <td>R/W</td> <td>0x0000</td> <td>Core general purpose register 3 value register.</td>	GPR3	0x1030840C	0x0030840C	32	Config	R/W	0x0000	Core general purpose register 3 value register.
GPR6         0x10308418         0x00308418         32         Config         R/W         0x0000         Core general purpose register 6 value register.           GPR7         0x1030841C         0x0030841C         32         Config         R/W         0x0000         Core general purpose register 7 value register.           GPR8         0x10308420         0x00308420         32         Config         R/W         0x0000         Core general purpose register 9 value register.           GPR9         0x10308424         0x00308424         32         Config         R/W         0x0000         Core general purpose register 9 value register.           GPR10         0x10308428         0x00308428         32         Config         R/W         0x0000         Core general purpose register 10 value register.           GPR11         0x1030842C         0x0030842C         32         Config         R/W         0x0000         Core general purpose register 11 value register.           GPR12         0x10308430         0x00308434         32         Config         R/W         0x0000         Core general purpose register 12 value register.           GPR13         0x10308435         0x00308443         32         Config         R/W         0x0000         Core general purpose register 13 value register.           GPR15 </td <td>GPR4</td> <td>0x10308410</td> <td>0x00308410</td> <td>32</td> <td>Config</td> <td>R/W</td> <td>0x0000</td> <td>Core general purpose register 4 value register.</td>	GPR4	0x10308410	0x00308410	32	Config	R/W	0x0000	Core general purpose register 4 value register.
GPRZ         0x1030841C         0x0030841C         32         Config         R/W         0x0000         Core general purpose register 7 value register.           GPR8         0x10308420         0x00308420         32         Config         R/W         0x0000         Core general purpose register 8 value register.           GPR9         0x10308424         0x00308424         32         Config         R/W         0x0000         Core general purpose register 9 value register.           GPR10         0x10308428         0x00308428         32         Config         R/W         0x0000         Core general purpose register 10 value register.           GPR11         0x1030842C         0x0300842C         32         Config         R/W         0x0000         Core general purpose register 11 value register.           GPR12         0x10308430         0x00308430         32         Config         R/W         0x0000         Core general purpose register 12 value register.           GPR13         0x10308434         0x00308434         32         Config         R/W         0x0000         Core general purpose register 13 value register.           GPR14         0x10308438         0x00308436         32         Config         R/W         0x0000         Core general purpose register 14 value register.           GPR16	GPR5	0x10308414	0x00308414	32	Config	R/W	0x0000	Core general purpose register 5 value register.
GPR8         0x10308420         0x00308420         32         Config         R/W         0x0000         Core general purpose register 8 value register.           GPR9         0x10308424         0x00308424         32         Config         R/W         0x0000         Core general purpose register 9 value register.           GPR10         0x10308428         0x00308428         32         Config         R/W         0x0000         Core general purpose register 10 value register.           GPR11         0x1030842C         0x0030842C         32         Config         R/W         0x0000         Core general purpose register 11 value register.           GPR12         0x10308430         0x030308430         32         Config         R/W         0x0000         Core general purpose register 12 value register.           GPR13         0x10308434         0x00308434         32         Config         R/W         0x0000         Core general purpose register 13 value register.           GPR14         0x10308438         0x00308438         32         Config         R/W         0x0000         Core general purpose register 14 value register.           GPR15         0x10308440         0x00308440         32         Config         R/W         0x0000         Core general purpose register 16 value register.           GP	GPR6	0x10308418	0x00308418	32	Config	R/W	0x0000	Core general purpose register 6 value register.
GPR9         0x10308424         0x00308424         32         Config         R/W         0x0000         Core general purpose register 9 value register.           GPR10         0x10308428         0x00308428         32         Config         R/W         0x0000         Core general purpose register 10 value register.           GPR11         0x1030842C         0x0030842C         32         Config         R/W         0x0000         Core general purpose register 11 value register.           GPR12         0x10308430         0x00308430         32         Config         R/W         0x0000         Core general purpose register 12 value register.           GPR13         0x10308434         0x00308434         32         Config         R/W         0x0000         Core general purpose register 13 value register.           GPR14         0x10308438         0x00308438         32         Config         R/W         0x0000         Core general purpose register 14 value register.           GPR15         0x10308430         0x00308434         32         Config         R/W         0x0000         Core general purpose register 15 value register.           GPR16         0x10308440         0x00308440         32         Config         R/W         0x0000         Core general purpose register 17 value register.           G	GPR7	0x1030841C	0x0030841C	32	Config	R/W	0x0000	Core general purpose register 7 value register.
GPR10         0x10308428         0x00308428         32         Config         R/W         0x0000         Core general purpose register 10 value register           GPR11         0x1030842C         0x0030842C         32         Config         R/W         0x0000         Core general purpose register 11 value register           GPR12         0x10308430         0x00308430         32         Config         R/W         0x0000         Core general purpose register 12 value register           GPR13         0x10308434         0x00308434         32         Config         R/W         0x0000         Core general purpose register 13 value register           GPR14         0x10308438         0x00308438         32         Config         R/W         0x0000         Core general purpose register 14 value register           GPR15         0x10308430         0x0308434         32         Config         R/W         0x0000         Core general purpose register 15 value register           GPR16         0x10308440         0x0308440         32         Config         R/W         0x0000         Core general purpose register 16 value register           GPR17         0x10308444         0x0308444         32         Config         R/W         0x0000         Core general purpose register 17 value register           GPR18	GPR8	0x10308420	0x00308420	32	Config	R/W	0x0000	Core general purpose register 8 value register.
GPR11         0x1030842C         0x0030842C         32         Config         R/W         0x0000         Core general purpose register 11 value register           GPR12         0x10308430         0x00308430         32         Config         R/W         0x0000         Core general purpose register 12 value register           GPR13         0x10308434         0x00308434         32         Config         R/W         0x0000         Core general purpose register 13 value register           GPR14         0x10308438         0x00308438         32         Config         R/W         0x0000         Core general purpose register 14 value register           GPR15         0x10308430         0x00308430         32         Config         R/W         0x0000         Core general purpose register 15 value register           GPR16         0x10308440         0x00308440         32         Config         R/W         0x0000         Core general purpose register 16 value register           GPR16         0x10308444         0x00308444         32         Config         R/W         0x0000         Core general purpose register 17 value register           GPR19         0x10308446         0x00308448         32         Config         R/W         0x0000         Core general purpose register 19 value register           GPR20 </td <td>GPR9</td> <td>0x10308424</td> <td>0x00308424</td> <td>32</td> <td>Config</td> <td>R/W</td> <td>0x0000</td> <td>Core general purpose register 9 value register.</td>	GPR9	0x10308424	0x00308424	32	Config	R/W	0x0000	Core general purpose register 9 value register.
GPR12         0x10308430         0x00308430         32         Config         R/W         0x0000         Core general purpose register 12 value register           GPR13         0x10308434         0x00308434         32         Config         R/W         0x0000         Core general purpose register 13 value register           GPR14         0x10308438         0x00308438         32         Config         R/W         0x0000         Core general purpose register 14 value register           GPR15         0x10308440         0x00308440         32         Config         R/W         0x0000         Core general purpose register 15 value register           GPR16         0x10308440         0x030308440         32         Config         R/W         0x0000         Core general purpose register 16 value register           GPR17         0x10308444         0x00308444         32         Config         R/W         0x0000         Core general purpose register 17 value register           GPR18         0x10308448         0x00308444         32         Config         R/W         0x0000         Core general purpose register 18 value register           GPR19         0x10308450         0x00308450         32         Config         R/W         0x0000         Core general purpose register 20 value register           GPR21<	GPR10	0x10308428	0x00308428	32	Config	R/W	0x0000	Core general purpose register 10 value register.
GPR13         0x10308434         0x00308434         32         Config         R/W         0x0000         Core general purpose register 13 value register           GPR14         0x10308438         0x00308438         32         Config         R/W         0x0000         Core general purpose register 14 value register           GPR15         0x1030843C         0x00308440         32         Config         R/W         0x0000         Core general purpose register 15 value register           GPR16         0x10308440         0x00308440         32         Config         R/W         0x0000         Core general purpose register 16 value register           GPR17         0x10308444         0x0308444         32         Config         R/W         0x0000         Core general purpose register 17 value register           GPR18         0x10308448         0x00308444         32         Config         R/W         0x0000         Core general purpose register 18 value register           GPR19         0x10308440         0x00308444         32         Config         R/W         0x0000         Core general purpose register 19 value register           GPR20         0x10308450         0x00308450         32         Config         R/W         0x0000         Core general purpose register 21 value register           GPR21 <td>GPR11</td> <td>0x1030842C</td> <td>0x0030842C</td> <td>32</td> <td>Config</td> <td>R/W</td> <td>0x0000</td> <td>Core general purpose register 11 value register.</td>	GPR11	0x1030842C	0x0030842C	32	Config	R/W	0x0000	Core general purpose register 11 value register.
GPR14         0x10308438         0x00308438         32         Config         R/W         0x0000         Core general purpose register 14 value register           GPR15         0x1030843C         0x0030843C         32         Config         R/W         0x0000         Core general purpose register 15 value register           GPR16         0x10308440         0x00308440         32         Config         R/W         0x0000         Core general purpose register 16 value register           GPR17         0x10308444         0x00308444         32         Config         R/W         0x0000         Core general purpose register 17 value register           GPR18         0x10308448         0x00308444         32         Config         R/W         0x0000         Core general purpose register 18 value register           GPR19         0x10308440         0x0030844C         32         Config         R/W         0x0000         Core general purpose register 19 value register           GPR20         0x10308450         0x00308450         32         Config         R/W         0x0000         Core general purpose register 20 value register           GPR21         0x10308454         0x00308454         32         Config         R/W         0x0000         Core general purpose register 21 value register           GPR23 </td <td>GPR12</td> <td>0x10308430</td> <td>0x00308430</td> <td>32</td> <td>Config</td> <td>R/W</td> <td>0x0000</td> <td>Core general purpose register 12 value register.</td>	GPR12	0x10308430	0x00308430	32	Config	R/W	0x0000	Core general purpose register 12 value register.
GPR15         0x1030843C         0x0030843C         32         Config         R/W         0x0000         Core general purpose register 15 value register           GPR16         0x10308440         0x00308440         32         Config         R/W         0x0000         Core general purpose register 16 value register           GPR17         0x10308444         0x00308444         32         Config         R/W         0x0000         Core general purpose register 17 value register           GPR18         0x10308448         0x00308448         32         Config         R/W         0x0000         Core general purpose register 18 value register           GPR19         0x10308440         0x00308444         32         Config         R/W         0x0000         Core general purpose register 19 value register           GPR20         0x10308450         0x00308450         32         Config         R/W         0x0000         Core general purpose register 20 value register           GPR21         0x10308454         0x00308454         32         Config         R/W         0x0000         Core general purpose register 21 value register           GPR23         0x10308458         0x00308458         32         Config         R/W         0x0000         Core general purpose register 23 value register           GPR24 </td <td>GPR13</td> <td>0x10308434</td> <td>0x00308434</td> <td>32</td> <td>Config</td> <td>R/W</td> <td>0x0000</td> <td>Core general purpose register 13 value register.</td>	GPR13	0x10308434	0x00308434	32	Config	R/W	0x0000	Core general purpose register 13 value register.
GPR16         0x10308440         0x00308440         32         Config         R/W         0x0000         Core general purpose register 16 value register           GPR17         0x10308444         0x00308444         32         Config         R/W         0x0000         Core general purpose register 17 value register           GPR18         0x10308448         0x00308448         32         Config         R/W         0x0000         Core general purpose register 18 value register           GPR19         0x1030844C         0x0030844C         32         Config         R/W         0x0000         Core general purpose register 19 value register           GPR20         0x10308450         0x00308450         32         Config         R/W         0x0000         Core general purpose register 20 value register           GPR21         0x10308454         0x00308454         32         Config         R/W         0x0000         Core general purpose register 21 value register           GPR22         0x10308458         0x00308458         32         Config         R/W         0x0000         Core general purpose register 22 value register           GPR23         0x10308460         0x0030846C         32         Config         R/W         0x0000         Core general purpose register 24 value register           GPR25 </td <td>GPR14</td> <td>0x10308438</td> <td>0x00308438</td> <td>32</td> <td>Config</td> <td>R/W</td> <td>0x0000</td> <td>Core general purpose register 14 value register.</td>	GPR14	0x10308438	0x00308438	32	Config	R/W	0x0000	Core general purpose register 14 value register.
GPR17         0x10308444         0x00308444         32         Config         R/W         0x0000         Core general purpose register 17 value register           GPR18         0x10308448         0x00308448         32         Config         R/W         0x0000         Core general purpose register 18 value register           GPR19         0x1030844C         0x0030844C         32         Config         R/W         0x0000         Core general purpose register 19 value register           GPR20         0x10308450         0x00308450         32         Config         R/W         0x0000         Core general purpose register 20 value register           GPR21         0x10308454         0x00308454         32         Config         R/W         0x0000         Core general purpose register 21 value register           GPR22         0x10308458         0x00308458         32         Config         R/W         0x0000         Core general purpose register 22 value register           GPR23         0x10308450         0x00308450         32         Config         R/W         0x0000         Core general purpose register 23 value register           GPR24         0x10308460         0x00308460         32         Config         R/W         0x0000         Core general purpose register 25 value register           GPR26 </td <td>GPR15</td> <td>0x1030843C</td> <td>0x0030843C</td> <td>32</td> <td>Config</td> <td>R/W</td> <td>0x0000</td> <td>Core general purpose register 15 value register.</td>	GPR15	0x1030843C	0x0030843C	32	Config	R/W	0x0000	Core general purpose register 15 value register.
GPR18         0x10308448         0x00308448         32         Config         R/W         0x0000         Core general purpose register 18 value register           GPR19         0x1030844C         0x0030844C         32         Config         R/W         0x0000         Core general purpose register 19 value register           GPR20         0x10308450         0x00308450         32         Config         R/W         0x0000         Core general purpose register 20 value register           GPR21         0x10308454         0x00308454         32         Config         R/W         0x0000         Core general purpose register 21 value register           GPR22         0x10308458         0x00308458         32         Config         R/W         0x0000         Core general purpose register 22 value register           GPR23         0x1030845C         0x0030845C         32         Config         R/W         0x0000         Core general purpose register 23 value register           GPR24         0x10308460         0x00308460         32         Config         R/W         0x0000         Core general purpose register 24 value register           GPR25         0x10308464         0x00308464         32         Config         R/W         0x0000         Core general purpose register 25 value register           GPR26 </td <td>GPR16</td> <td>0x10308440</td> <td>0x00308440</td> <td>32</td> <td>Config</td> <td>R/W</td> <td>0x0000</td> <td>Core general purpose register 16 value register.</td>	GPR16	0x10308440	0x00308440	32	Config	R/W	0x0000	Core general purpose register 16 value register.
GPR19         0x1030844C         0x0030844C         32         Config         R/W         0x0000         Core general purpose register 19 value register           GPR20         0x10308450         0x00308450         32         Config         R/W         0x0000         Core general purpose register 20 value register           GPR21         0x10308454         0x00308454         32         Config         R/W         0x0000         Core general purpose register 21 value register           GPR22         0x10308458         0x00308458         32         Config         R/W         0x0000         Core general purpose register 22 value register           GPR23         0x1030845C         0x0030845C         32         Config         R/W         0x0000         Core general purpose register 23 value register           GPR24         0x10308460         0x00308460         32         Config         R/W         0x0000         Core general purpose register 25 value register           GPR25         0x10308468         0x00308464         32         Config         R/W         0x0000         Core general purpose register 25 value register           GPR26         0x10308468         0x00308468         32         Config         R/W         0x0000         Core general purpose register 25 value register           GPR27 </td <td>GPR17</td> <td>0x10308444</td> <td>0x00308444</td> <td>32</td> <td>Config</td> <td>R/W</td> <td>0x0000</td> <td>Core general purpose register 17 value register.</td>	GPR17	0x10308444	0x00308444	32	Config	R/W	0x0000	Core general purpose register 17 value register.
GPR20         0x10308450         0x00308450         32         Config         R/W         0x0000         Core general purpose register 20 value register           GPR21         0x10308454         0x00308454         32         Config         R/W         0x0000         Core general purpose register 21 value register           GPR22         0x10308458         0x00308458         32         Config         R/W         0x0000         Core general purpose register 22 value register           GPR23         0x1030845C         0x0030845C         32         Config         R/W         0x0000         Core general purpose register 23 value register           GPR24         0x10308460         0x00308460         32         Config         R/W         0x0000         Core general purpose register 24 value register           GPR25         0x10308464         0x00308464         32         Config         R/W         0x0000         Core general purpose register 25 value register           GPR26         0x10308468         0x00308468         32         Config         R/W         0x0000         Core general purpose register 26 value register           GPR27         0x1030846C         0x0030846C         32         Config         R/W         0x0000         Core general purpose register 27 value register	GPR18	0x10308448	0x00308448	32	Config	R/W	0x0000	Core general purpose register 18 value register.
GPR21         0x10308454         0x00308454         32         Config         R/W         0x0000         Core general purpose register 21 value register           GPR22         0x10308458         0x00308458         32         Config         R/W         0x0000         Core general purpose register 22 value register           GPR23         0x1030845C         0x0030845C         32         Config         R/W         0x0000         Core general purpose register 23 value register           GPR24         0x10308460         0x00308460         32         Config         R/W         0x0000         Core general purpose register 24 value register           GPR25         0x10308464         0x00308464         32         Config         R/W         0x0000         Core general purpose register 25 value register           GPR26         0x10308468         0x00308468         32         Config         R/W         0x0000         Core general purpose register 26 value register           GPR27         0x1030846C         0x0030846C         32         Config         R/W         0x0000         Core general purpose register 27 value register	GPR19	0x1030844C	0x0030844C	32	Config	R/W	0x0000	Core general purpose register 19 value register.
GPR22         0x10308458         0x00308458         32         Config         R/W         0x0000         Core general purpose register 22 value register           GPR23         0x1030845C         0x0030845C         32         Config         R/W         0x0000         Core general purpose register 23 value register           GPR24         0x10308460         0x00308460         32         Config         R/W         0x0000         Core general purpose register 24 value register           GPR25         0x10308464         0x00308464         32         Config         R/W         0x0000         Core general purpose register 25 value register           GPR26         0x10308468         0x00308468         32         Config         R/W         0x0000         Core general purpose register 26 value register           GPR27         0x1030846C         0x0030846C         32         Config         R/W         0x0000         Core general purpose register 27 value register	GPR20	0x10308450	0x00308450	32	Config	R/W	0x0000	Core general purpose register 20 value register.
GPR23         0x1030845C         0x0030845C         32         Config         R/W         0x0000         Core general purpose register 23 value register           GPR24         0x10308460         0x00308460         32         Config         R/W         0x0000         Core general purpose register 24 value register           GPR25         0x10308464         0x00308464         32         Config         R/W         0x0000         Core general purpose register 25 value register           GPR26         0x10308468         0x00308468         32         Config         R/W         0x0000         Core general purpose register 26 value register           GPR27         0x1030846C         0x0030846C         32         Config         R/W         0x0000         Core general purpose register 27 value register	GPR21	0x10308454	0x00308454	32	Config	R/W	0x0000	Core general purpose register 21 value register.
GPR24         0x10308460         0x00308460         32         Config         R/W         0x0000         Core general purpose register 24 value register           GPR25         0x10308464         0x00308464         32         Config         R/W         0x0000         Core general purpose register 25 value register           GPR26         0x10308468         0x00308468         32         Config         R/W         0x0000         Core general purpose register 26 value register           GPR27         0x1030846C         0x0030846C         32         Config         R/W         0x0000         Core general purpose register 27 value register	GPR22	0x10308458	0x00308458	32	Config	R/W	0x0000	Core general purpose register 22 value register.
GPR25         0x10308464         0x00308464         32         Config         R/W         0x0000         Core general purpose register 25 value register           GPR26         0x10308468         0x00308468         32         Config         R/W         0x0000         Core general purpose register 26 value register           GPR27         0x1030846C         0x0030846C         32         Config         R/W         0x0000         Core general purpose register 27 value register	GPR23	0x1030845C	0x0030845C	32	Config	R/W	0x0000	Core general purpose register 23 value register.
GPR26         0x10308468         0x00308468         32         Config         R/W         0x0000         Core general purpose register 26 value register           GPR27         0x1030846C         0x0030846C         32         Config         R/W         0x0000         Core general purpose register 27 value register	GPR24	0x10308460	0x00308460	32	Config	R/W	0x0000	Core general purpose register 24 value register.
GPR27 0x1030846C 0x0030846C 32 Config R/W 0x0000 Core general purpose register 27 value register	GPR25	0x10308464	0x00308464	32	Config	R/W	0x0000	Core general purpose register 25 value register.
	GPR26	0x10308468	0x00308468	32	Config	R/W	0x0000	Core general purpose register 26 value register.
GPR28 0x10308470 0x00308470 32 Config R/W 0x0000 Core general purpose register 28 value register	GPR27	0x1030846C	0x0030846C	32	Config	R/W	0x0000	Core general purpose register 27 value register.
	GPR28	0x10308470	0x00308470	32	Config	R/W	0x0000	Core general purpose register 28 value register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
GPR29	0x10308474	0x00308474	32	Config	R/W	0x0000	Core general purpose register 29 value register.
GPR30	0x10308478	0x00308478	32	Config	R/W	0x0000	Core general purpose register 30 value register.
GPR31	0x1030847C	0x0030847C	32	Config	R/W	0x0000	Core general purpose register 31 value register.
<u>NPC</u>	0x1030A000	0x0030A000	32	Config	R/W	0x0000	Debug next program counter value register.
PPC	0x1030A004	0x0030A004	32	Config	R	0x0000	Debug previous program counter value register.
CSR_UHARTID	0x1030C050	0x0030C050	32	Config	R	0x0000	Core CSR user privilege mode hardware thread ID status register.
CSR_MSTATUS	0x1030CC00	0x0030CC00	32	Config	R/W	0x0000	Core CSR machine status value register.
CSR_MTVEC	0x1030CC14	0x0030CC14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.
CSR_MEPC	0x1030CD04	0x0030CD04	32	Config	R/W	0x0000	Core CSR machine exception program counter value register.
CSR_MCAUSE	0x1030CD08	0x0030CD08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.
CSR_PCCR	0x1030DE00	0x0030DE00	32	Config	R/W	0x0000	Core CSR performance counter counter register.
CSR_PCER	0x1030DE80	0x0030DE80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.
CSR_PCMR	0x1030DE84	0x0030DE84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.
CSR_HWLP0S	0x1030DEC0	0x0030DEC0	32	Config	R/W	0x0000	Core CSR hardware loop 0 start configuration register.
CSR_HWLP0E	0x1030DEC4	0x0030DEC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.
CSR_HWLP0C	0x1030DEC8	0x0030DEC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.
CSR_HWLP1S	0x1030DED0	0x0030DED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.
CSR_HWLP1E	0x1030DED4	0x0030DED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.
CSR_HWLP1C	0x1030DED8	0x0030DED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.
CSR_PRIVLV	0x1030F040	0x0030F040	32	Config	R	0x0000	Cose CSR privilege level status register.
CSR_MHARTID	0x1030FC50	0x0030FC50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.

Table 30. Cluster Core 1 (Debug Unit) registers table

# 6.2.8.3 Cluster Core 2 (Debug Unit) registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CTRL	0x10310000	0x00310000	32	Config	R/W	0x0000	Debug control configuration register.
<u>HIT</u>	0x10310004	0x00310004	32	Config	R/W	0x0000	Debug hit status register.
<u>IE</u>	0x10310008	0x00310008	32	Config	R/W	0x0000	Debug exception trap enable configuration register.
CAUSE	0x1031000C	0x0031000C	32	Config	R	0x0000	Debug trap cause status register.
<u>GPR0</u>	0x10310400	0x00310400	32	Config	R/W	0x0000	Core general purpose register 0 value register.
GPR1	0x10310404	0x00310404	32	Config	R/W	0x0000	Core general purpose register 1 value register.
GPR2	0x10310408	0x00310408	32	Config	R/W	0x0000	Core general purpose register 2 value register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
GPR3	0x1031040C	0x0031040C	32	Config	R/W	0x0000	Core general purpose register 3 value register.
GPR4	0x10310410	0x00310410	32	Config	R/W	0x0000	Core general purpose register 4 value register.
GPR5	0x10310414	0x00310414	32	Config	R/W	0x0000	Core general purpose register 5 value register.
GPR6	0x10310418	0x00310418	32	Config	R/W	0x0000	Core general purpose register 6 value register.
GPR7	0x1031041C	0x0031041C	32	Config	R/W	0x0000	Core general purpose register 7 value register.
GPR8	0x10310420	0x00310420	32	Config	R/W	0x0000	Core general purpose register 8 value register.
GPR9	0x10310424	0x00310424	32	Config	R/W	0x0000	Core general purpose register 9 value register.
GPR10	0x10310428	0x00310428	32	Config	R/W	0x0000	Core general purpose register 10 value register.
GPR11	0x1031042C	0x0031042C	32	Config	R/W	0x0000	Core general purpose register 11 value register.
GPR12	0x10310430	0x00310430	32	Config	R/W	0x0000	Core general purpose register 12 value register.
GPR13	0x10310434	0x00310434	32	Config	R/W	0x0000	Core general purpose register 13 value register.
GPR14	0x10310438	0x00310438	32	Config	R/W	0x0000	Core general purpose register 14 value register.
GPR15	0x1031043C	0x0031043C	32	Config	R/W	0x0000	Core general purpose register 15 value register.
GPR16	0x10310440	0x00310440	32	Config	R/W	0x0000	Core general purpose register 16 value register.
GPR17	0x10310444	0x00310444	32	Config	R/W	0x0000	Core general purpose register 17 value register.
GPR18	0x10310448	0x00310448	32	Config	R/W	0x0000	Core general purpose register 18 value register.
GPR19	0x1031044C	0x0031044C	32	Config	R/W	0x0000	Core general purpose register 19 value register.
GPR20	0x10310450	0x00310450	32	Config	R/W	0x0000	Core general purpose register 20 value register.
GPR21	0x10310454	0x00310454	32	Config	R/W	0x0000	Core general purpose register 21 value register.
GPR22	0x10310458	0x00310458	32	Config	R/W	0x0000	Core general purpose register 22 value register.
GPR23	0x1031045C	0x0031045C	32	Config	R/W	0x0000	Core general purpose register 23 value register.
GPR24	0x10310460	0x00310460	32	Config	R/W	0x0000	Core general purpose register 24 value register.
GPR25	0x10310464	0x00310464	32	Config	R/W	0x0000	Core general purpose register 25 value register.
GPR26	0x10310468	0x00310468	32	Config	R/W	0x0000	Core general purpose register 26 value register.
GPR27	0x1031046C	0x0031046C	32	Config	R/W	0x0000	Core general purpose register 27 value register.
GPR28	0x10310470	0x00310470	32	Config	R/W	0x0000	Core general purpose register 28 value register.
GPR29	0x10310474	0x00310474	32	Config	R/W	0x0000	Core general purpose register 29 value register.
GPR30	0x10310478	0x00310478	32	Config	R/W	0x0000	Core general purpose register 30 value register.
GPR31	0x1031047C	0x0031047C	32	Config	R/W	0x0000	Core general purpose register 31 value register.
NPC	0x10312000	0x00312000	32	Config	R/W	0x0000	Debug next program counter value register.
PPC	0x10312004	0x00312004	32	Config	R	0x0000	Debug previous program counter value register.
CSR_UHARTID	0x10314050	0x00314050	32	Config	R	0x0000	Core CSR user privilege mode hardware thread ID status register.
CSR_MSTATUS	0x10314C00	0x00314C00	32	Config	R/W	0x0000	Core CSR machine status value register.
CSR_MTVEC	0x10314C14	0x00314C14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.
CSR_MEPC	0x10314D04	0x00314D04	32	Config	R/W	0x0000	Core CSR machine exception program counter value register.
CSR_MCAUSE	0x10314D08	0x00314D08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.
CSR_PCCR	0x10315E00	0x00315E00	32	Config	R/W	0x0000	Core CSR performance counter counter register.
CSR_PCER	0x10315E80	0x00315E80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.
CSR_PCMR	0x10315E84	0x00315E84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CSR_HWLP0S	0x10315EC0	0x00315EC0	32	Config	R/W	0x0000	Core CSR hardware loop 0 start configuration register.
CSR_HWLP0E	0x10315EC4	0x00315EC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.
CSR_HWLP0C	0x10315EC8	0x00315EC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.
CSR_HWLP1S	0x10315ED0	0x00315ED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.
CSR_HWLP1E	0x10315ED4	0x00315ED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.
CSR_HWLP1C	0x10315ED8	0x00315ED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.
CSR_PRIVLV	0x10317040	0x00317040	32	Config	R	0x0000	Cose CSR privilege level status register.
CSR_MHARTID	0x10317C50	0x00317C50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.

Table 31. Cluster Core 2 (Debug Unit) registers table

# 6.2.8.4 Cluster Core 3 (Debug Unit) registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CTRL	0x10318000	0x00318000	32	Config	R/W	0x0000	Debug control configuration register.
HIT	0x10318004	0x00318004	32	Config	R/W	0x0000	Debug hit status register.
<u>IE</u>	0x10318008	0x00318008	32	Config	R/W	0x0000	Debug exception trap enable configuration register.
CAUSE	0x1031800C	0x0031800C	32	Config	R	0x0000	Debug trap cause status register.
GPR0	0x10318400	0x00318400	32	Config	R/W	0x0000	Core general purpose register 0 value register.
GPR1	0x10318404	0x00318404	32	Config	R/W	0x0000	Core general purpose register 1 value register.
GPR2	0x10318408	0x00318408	32	Config	R/W	0x0000	Core general purpose register 2 value register.
GPR3	0x1031840C	0x0031840C	32	Config	R/W	0x0000	Core general purpose register 3 value register.
GPR4	0x10318410	0x00318410	32	Config	R/W	0x0000	Core general purpose register 4 value register.
GPR5	0x10318414	0x00318414	32	Config	R/W	0x0000	Core general purpose register 5 value register.
GPR6	0x10318418	0x00318418	32	Config	R/W	0x0000	Core general purpose register 6 value register.
GPR7	0x1031841C	0x0031841C	32	Config	R/W	0x0000	Core general purpose register 7 value register.
GPR8	0x10318420	0x00318420	32	Config	R/W	0x0000	Core general purpose register 8 value register.
GPR9	0x10318424	0x00318424	32	Config	R/W	0x0000	Core general purpose register 9 value register.
GPR10	0x10318428	0x00318428	32	Config	R/W	0x0000	Core general purpose register 10 value register.
<u>GPR11</u>	0x1031842C	0x0031842C	32	Config	R/W	0x0000	Core general purpose register 11 value register.
GPR12	0x10318430	0x00318430	32	Config	R/W	0x0000	Core general purpose register 12 value register.
GPR13	0x10318434	0x00318434	32	Config	R/W	0x0000	Core general purpose register 13 value register.
GPR14	0x10318438	0x00318438	32	Config	R/W	0x0000	Core general purpose register 14 value register.
GPR15	0x1031843C	0x0031843C	32	Config	R/W	0x0000	Core general purpose register 15 value register.
GPR16	0x10318440	0x00318440	32	Config	R/W	0x0000	Core general purpose register 16 value register.
GPR17	0x10318444	0x00318444	32	Config	R/W	0x0000	Core general purpose register 17 value register.
GPR18	0x10318448	0x00318448	32	Config	R/W	0x0000	Core general purpose register 18 value register.
GPR19	0x1031844C	0x0031844C	32	Config	R/W	0x0000	Core general purpose register 19 value register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
GPR20	0x10318450	0x00318450	32	Config	R/W	0x0000	Core general purpose register 20 value register.
GPR21	0x10318454	0x00318454	32	Config	R/W	0x0000	Core general purpose register 21 value register.
GPR22	0x10318458	0x00318458	32	Config	R/W	0x0000	Core general purpose register 22 value register.
GPR23	0x1031845C	0x0031845C	32	Config	R/W	0x0000	Core general purpose register 23 value register.
GPR24	0x10318460	0x00318460	32	Config	R/W	0x0000	Core general purpose register 24 value register.
GPR25	0x10318464	0x00318464	32	Config	R/W	0x0000	Core general purpose register 25 value register.
GPR26	0x10318468	0x00318468	32	Config	R/W	0x0000	Core general purpose register 26 value register.
GPR27	0x1031846C	0x0031846C	32	Config	R/W	0x0000	Core general purpose register 27 value register.
GPR28	0x10318470	0x00318470	32	Config	R/W	0x0000	Core general purpose register 28 value register.
GPR29	0x10318474	0x00318474	32	Config	R/W	0x0000	Core general purpose register 29 value register.
GPR30	0x10318478	0x00318478	32	Config	R/W	0x0000	Core general purpose register 30 value register.
GPR31	0x1031847C	0x0031847C	32	Config	R/W	0x0000	Core general purpose register 31 value register.
<u>NPC</u>	0x1031A000	0x0031A000	32	Config	R/W	0x0000	Debug next program counter value register.
PPC	0x1031A004	0x0031A004	32	Config	R	0x0000	Debug previous program counter value register.
CSR_UHARTID	0x1031C050	0x0031C050	32	Config	R	0x0000	Core CSR user privilege mode hardware thread ID status register.
CSR_MSTATUS	0x1031CC00	0x0031CC00	32	Config	R/W	0x0000	Core CSR machine status value register.
CSR_MTVEC	0x1031CC14	0x0031CC14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.
CSR_MEPC	0x1031CD04	0x0031CD04	32	Config	R/W	0x0000	Core CSR machine exception program counter value register.
CSR_MCAUSE	0x1031CD08	0x0031CD08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.
CSR_PCCR	0x1031DE00	0x0031DE00	32	Config	R/W	0x0000	Core CSR performance counter counter register.
CSR_PCER	0x1031DE80	0x0031DE80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.
CSR_PCMR	0x1031DE84	0x0031DE84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.
CSR_HWLP0S	0x1031DEC0	0x0031DEC0	32	Config	R/W	0x0000	Core CSR hardware loop 0 start configuration register.
CSR_HWLP0E	0x1031DEC4	0x0031DEC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.
CSR_HWLP0C	0x1031DEC8	0x0031DEC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.
CSR_HWLP1S	0x1031DED0	0x0031DED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.
CSR_HWLP1E	0x1031DED4	0x0031DED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.
CSR_HWLP1C	0x1031DED8	0x0031DED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.
CSR_PRIVLV	0x1031F040	0x0031F040	32	Config	R	0x0000	Cose CSR privilege level status register.
CSR_MHARTID	0x1031FC50	0x0031FC50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.

Table 32. Cluster Core 3 (Debug Unit) registers table

# 6.2.8.5 Cluster Core 4 (Debug Unit) registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
<u>CTRL</u>	0x10320000	0x00320000	32	Config	R/W	0x0000	Debug control configuration register.
HIT	0x10320004	0x00320004	32	Config	R/W	0x0000	Debug hit status register.
<u>IE</u>	0x10320008	0x00320008	32	Config	R/W	0x0000	Debug exception trap enable configuration register.
CAUSE	0x1032000C	0x0032000C	32	Config	R	0x0000	Debug trap cause status register.
GPR0	0x10320400	0x00320400	32	Config	R/W	0x0000	Core general purpose register 0 value register.
GPR1	0x10320404	0x00320404	32	Config	R/W	0x0000	Core general purpose register 1 value register.
GPR2	0x10320408	0x00320408	32	Config	R/W	0x0000	Core general purpose register 2 value register.
GPR3	0x1032040C	0x0032040C	32	Config	R/W	0x0000	Core general purpose register 3 value register.
GPR4	0x10320410	0x00320410	32	Config	R/W	0x0000	Core general purpose register 4 value register.
GPR5	0x10320414	0x00320414	32	Config	R/W	0x0000	Core general purpose register 5 value register.
GPR6	0x10320418	0x00320418	32	Config	R/W	0x0000	Core general purpose register 6 value register.
GPR7	0x1032041C	0x0032041C	32	Config	R/W	0x0000	Core general purpose register 7 value register.
GPR8	0x10320420	0x00320420	32	Config	R/W	0x0000	Core general purpose register 8 value register.
GPR9	0x10320424	0x00320424	32	Config	R/W	0x0000	Core general purpose register 9 value register.
GPR10	0x10320428	0x00320428	32	Config	R/W	0x0000	Core general purpose register 10 value register.
<u>GPR11</u>	0x1032042C	0x0032042C	32	Config	R/W	0x0000	Core general purpose register 11 value register.
GPR12	0x10320430	0x00320430	32	Config	R/W	0x0000	Core general purpose register 12 value register.
GPR13	0x10320434	0x00320434	32	Config	R/W	0x0000	Core general purpose register 13 value register.
GPR14	0x10320438	0x00320438	32	Config	R/W	0x0000	Core general purpose register 14 value register.
GPR15	0x1032043C	0x0032043C	32	Config	R/W	0x0000	Core general purpose register 15 value register.
GPR16	0x10320440	0x00320440	32	Config	R/W	0x0000	Core general purpose register 16 value register.
GPR17	0x10320444	0x00320444	32	Config	R/W	0x0000	Core general purpose register 17 value register.
GPR18	0x10320448	0x00320448	32	Config	R/W	0x0000	Core general purpose register 18 value register.
GPR19	0x1032044C	0x0032044C	32	Config	R/W	0x0000	Core general purpose register 19 value register.
GPR20	0x10320450	0x00320450	32	Config	R/W	0x0000	Core general purpose register 20 value register.
GPR21	0x10320454	0x00320454	32	Config	R/W	0x0000	Core general purpose register 21 value register.
GPR22	0x10320458	0x00320458	32	Config	R/W	0x0000	Core general purpose register 22 value register.
GPR23	0x1032045C	0x0032045C	32	Config	R/W	0x0000	Core general purpose register 23 value register.
GPR24	0x10320460	0x00320460	32	Config	R/W	0x0000	Core general purpose register 24 value register.
GPR25	0x10320464	0x00320464	32	Config	R/W	0x0000	Core general purpose register 25 value register.
GPR26	0x10320468	0x00320468	32	Config	R/W	0x0000	Core general purpose register 26 value register.
GPR27	0x1032046C	0x0032046C	32	Config	R/W	0x0000	Core general purpose register 27 value register.
GPR28	0x10320470	0x00320470	32	Config	R/W	0x0000	Core general purpose register 28 value register.
GPR29	0x10320474	0x00320474	32	Config	R/W	0x0000	Core general purpose register 29 value register.
GPR30	0x10320478	0x00320478	32	Config	R/W	0x0000	Core general purpose register 30 value register.
GPR31	0x1032047C	0x0032047C	32	Config	R/W	0x0000	Core general purpose register 31 value register.
NPC	0x10322000	0x00322000	32	Config	R/W	0x0000	Debug next program counter value register.
PPC	0x10322004	0x00322004	32	Config	R	0x0000	Debug previous program counter value register.
CSR_UHARTID	0x10324050	0x00324050	32	Config	R	0x0000	Core CSR user privilege mode hardware thread ID status register.
CSR_MSTATUS	0x10324C00	0x00324C00	32	Config	R/W	0x0000	Core CSR machine status value register.
CSR_MTVEC	0x10324C14	0x00324C14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CSR_MEPC	0x10324D04	0x00324D04	32	Config	R/W	0x0000	Core CSR machine exception program counter value register.
CSR_MCAUSE	0x10324D08	0x00324D08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.
CSR_PCCR	0x10325E00	0x00325E00	32	Config	R/W	0x0000	Core CSR performance counter counter register.
CSR_PCER	0x10325E80	0x00325E80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.
CSR_PCMR	0x10325E84	0x00325E84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.
CSR_HWLP0S	0x10325EC0	0x00325EC0	32	Config	R/W	0x0000	Core CSR hardware loop 0 start configuration register.
CSR_HWLP0E	0x10325EC4	0x00325EC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.
CSR_HWLP0C	0x10325EC8	0x00325EC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.
CSR_HWLP1S	0x10325ED0	0x00325ED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.
CSR_HWLP1E	0x10325ED4	0x00325ED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.
CSR_HWLP1C	0x10325ED8	0x00325ED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.
CSR_PRIVLV	0x10327040	0x00327040	32	Config	R	0x0000	Cose CSR privilege level status register.
CSR_MHARTID	0x10327C50	0x00327C50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.

Table 33. Cluster Core 4 (Debug Unit) registers table

# 6.2.8.6 Cluster Core 5 (Debug Unit) registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
<u>CTRL</u>	0x10328000	0x00328000	32	Config	R/W	0x0000	Debug control configuration register.
HIT	0x10328004	0x00328004	32	Config	R/W	0x0000	Debug hit status register.
<u>IE</u>	0x10328008	0x00328008	32	Config	R/W	0x0000	Debug exception trap enable configuration register.
CAUSE	0x1032800C	0x0032800C	32	Config	R	0x0000	Debug trap cause status register.
GPR0	0x10328400	0x00328400	32	Config	R/W	0x0000	Core general purpose register 0 value register.
GPR1	0x10328404	0x00328404	32	Config	R/W	0x0000	Core general purpose register 1 value register.
GPR2	0x10328408	0x00328408	32	Config	R/W	0x0000	Core general purpose register 2 value register.
GPR3	0x1032840C	0x0032840C	32	Config	R/W	0x0000	Core general purpose register 3 value register.
GPR4	0x10328410	0x00328410	32	Config	R/W	0x0000	Core general purpose register 4 value register.
GPR5	0x10328414	0x00328414	32	Config	R/W	0x0000	Core general purpose register 5 value register.
GPR6	0x10328418	0x00328418	32	Config	R/W	0x0000	Core general purpose register 6 value register.
GPR7	0x1032841C	0x0032841C	32	Config	R/W	0x0000	Core general purpose register 7 value register.
GPR8	0x10328420	0x00328420	32	Config	R/W	0x0000	Core general purpose register 8 value register.
GPR9	0x10328424	0x00328424	32	Config	R/W	0x0000	Core general purpose register 9 value register.
GPR10	0x10328428	0x00328428	32	Config	R/W	0x0000	Core general purpose register 10 value register.
<u>GPR11</u>	0x1032842C	0x0032842C	32	Config	R/W	0x0000	Core general purpose register 11 value register.
GPR12	0x10328430	0x00328430	32	Config	R/W	0x0000	Core general purpose register 12 value register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
GPR13	0x10328434	0x00328434	32	Config	R/W	0x0000	Core general purpose register 13 value register.
GPR14	0x10328438	0x00328438	32	Config	R/W	0x0000	Core general purpose register 14 value register.
GPR15	0x1032843C	0x0032843C	32	Config	R/W	0x0000	Core general purpose register 15 value register.
GPR16	0x10328440	0x00328440	32	Config	R/W	0x0000	Core general purpose register 16 value register.
GPR17	0x10328444	0x00328444	32	Config	R/W	0x0000	Core general purpose register 17 value register.
GPR18	0x10328448	0x00328448	32	Config	R/W	0x0000	Core general purpose register 18 value register.
GPR19	0x1032844C	0x0032844C	32	Config	R/W	0x0000	Core general purpose register 19 value register.
GPR20	0x10328450	0x00328450	32	Config	R/W	0x0000	Core general purpose register 20 value register.
GPR21	0x10328454	0x00328454	32	Config	R/W	0x0000	Core general purpose register 21 value register.
GPR22	0x10328458	0x00328458	32	Config	R/W	0x0000	Core general purpose register 22 value register.
GPR23	0x1032845C	0x0032845C	32	Config	R/W	0x0000	Core general purpose register 23 value register.
GPR24	0x10328460	0x00328460	32	Config	R/W	0x0000	Core general purpose register 24 value register.
GPR25	0x10328464	0x00328464	32	Config	R/W	0x0000	Core general purpose register 25 value register.
GPR26	0x10328468	0x00328468	32	Config	R/W	0x0000	Core general purpose register 26 value register.
GPR27	0x1032846C	0x0032846C	32	Config	R/W	0x0000	Core general purpose register 27 value register.
GPR28	0x10328470	0x00328470	32	Config	R/W	0x0000	Core general purpose register 28 value register.
GPR29	0x10328474	0x00328474	32	Config	R/W	0x0000	Core general purpose register 29 value register.
GPR30	0x10328478	0x00328478	32	Config	R/W	0x0000	Core general purpose register 30 value register.
GPR31	0x1032847C	0x0032847C	32	Config	R/W	0x0000	Core general purpose register 31 value register.
<u>NPC</u>	0x1032A000	0x0032A000	32	Config	R/W	0x0000	Debug next program counter value register.
PPC	0x1032A004	0x0032A004	32	Config	R	0x0000	Debug previous program counter value register.
CSR_UHARTID	0x1032C050	0x0032C050	32	Config	R	0x0000	Core CSR user privilege mode hardware thread ID status register.
CSR_MSTATUS	0x1032CC00	0x0032CC00	32	Config	R/W	0x0000	Core CSR machine status value register.
CSR_MTVEC	0x1032CC14	0x0032CC14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.
CSR_MEPC	0x1032CD04	0x0032CD04	32	Config	R/W	0x0000	Core CSR machine exception program counter value register.
CSR_MCAUSE	0x1032CD08	0x0032CD08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.
CSR_PCCR	0x1032DE00	0x0032DE00	32	Config	R/W	0x0000	Core CSR performance counter counter register.
CSR_PCER	0x1032DE80	0x0032DE80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.
CSR_PCMR	0x1032DE84	0x0032DE84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.
CSR_HWLP0S	0x1032DEC0	0x0032DEC0	32	Config	R/W	0x0000	Core CSR hardware loop 0 start configuration register.
CSR_HWLP0E	0x1032DEC4	0x0032DEC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.
CSR_HWLP0C	0x1032DEC8	0x0032DEC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.
CSR_HWLP1S	0x1032DED0	0x0032DED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.
CSR_HWLP1E	0x1032DED4	0x0032DED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.
CSR_HWLP1C	0x1032DED8	0x0032DED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CSR_PRIVLV	0x1032F040	0x0032F040	32	Config	R	0x0000	Cose CSR privilege level status register.
CSR_MHARTID	0x1032FC50	0x0032FC50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.

Table 34. Cluster Core 5 (Debug Unit) registers table

# 6.2.8.7 Cluster Core 6 (Debug Unit) registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
<u>CTRL</u>	0x10330000	0x00330000	32	Config	R/W	0x0000	Debug control configuration register.
<u>HIT</u>	0x10330004	0x00330004	32	Config	R/W	0x0000	Debug hit status register.
<u>E</u>	0x10330008	0x00330008	32	Config	R/W	0x0000	Debug exception trap enable configuration register.
CAUSE	0x1033000C	0x0033000C	32	Config	R	0x0000	Debug trap cause status register.
GPR0	0x10330400	0x00330400	32	Config	R/W	0x0000	Core general purpose register 0 value register.
GPR1	0x10330404	0x00330404	32	Config	R/W	0x0000	Core general purpose register 1 value register.
GPR2	0x10330408	0x00330408	32	Config	R/W	0x0000	Core general purpose register 2 value register.
GPR3	0x1033040C	0x0033040C	32	Config	R/W	0x0000	Core general purpose register 3 value register.
GPR4	0x10330410	0x00330410	32	Config	R/W	0x0000	Core general purpose register 4 value register.
GPR5	0x10330414	0x00330414	32	Config	R/W	0x0000	Core general purpose register 5 value register.
GPR6	0x10330418	0x00330418	32	Config	R/W	0x0000	Core general purpose register 6 value register.
GPR7	0x1033041C	0x0033041C	32	Config	R/W	0x0000	Core general purpose register 7 value register.
GPR8	0x10330420	0x00330420	32	Config	R/W	0x0000	Core general purpose register 8 value register.
GPR9	0x10330424	0x00330424	32	Config	R/W	0x0000	Core general purpose register 9 value register.
GPR10	0x10330428	0x00330428	32	Config	R/W	0x0000	Core general purpose register 10 value register.
GPR11	0x1033042C	0x0033042C	32	Config	R/W	0x0000	Core general purpose register 11 value register.
GPR12	0x10330430	0x00330430	32	Config	R/W	0x0000	Core general purpose register 12 value register.
GPR13	0x10330434	0x00330434	32	Config	R/W	0x0000	Core general purpose register 13 value register.
GPR14	0x10330438	0x00330438	32	Config	R/W	0x0000	Core general purpose register 14 value register.
GPR15	0x1033043C	0x0033043C	32	Config	R/W	0x0000	Core general purpose register 15 value register.
GPR16	0x10330440	0x00330440	32	Config	R/W	0x0000	Core general purpose register 16 value register.
GPR17	0x10330444	0x00330444	32	Config	R/W	0x0000	Core general purpose register 17 value register.
GPR18	0x10330448	0x00330448	32	Config	R/W	0x0000	Core general purpose register 18 value register.
GPR19	0x1033044C	0x0033044C	32	Config	R/W	0x0000	Core general purpose register 19 value register.
GPR20	0x10330450	0x00330450	32	Config	R/W	0x0000	Core general purpose register 20 value register.
GPR21	0x10330454	0x00330454	32	Config	R/W	0x0000	Core general purpose register 21 value register.
GPR22	0x10330458	0x00330458	32	Config	R/W	0x0000	Core general purpose register 22 value register.
GPR23	0x1033045C	0x0033045C	32	Config	R/W	0x0000	Core general purpose register 23 value register.
GPR24	0x10330460	0x00330460	32	Config	R/W	0x0000	Core general purpose register 24 value register.
GPR25	0x10330464	0x00330464	32	Config	R/W	0x0000	Core general purpose register 25 value register.
GPR26	0x10330468	0x00330468	32	Config	R/W	0x0000	Core general purpose register 26 value register.
GPR27	0x1033046C	0x0033046C	32	Config	R/W	0x0000	Core general purpose register 27 value register.
GPR28	0x10330470	0x00330470	32	Config	R/W	0x0000	Core general purpose register 28 value register.
GPR29	0x10330474	0x00330474	32	Config	R/W	0x0000	Core general purpose register 29 value register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
GPR30	0x10330478	0x00330478	32	Config	R/W	0x0000	Core general purpose register 30 value register.
GPR31	0x1033047C	0x0033047C	32	Config	R/W	0x0000	Core general purpose register 31 value register.
<u>NPC</u>	0x10332000	0x00332000	32	Config	R/W	0x0000	Debug next program counter value register.
PPC	0x10332004	0x00332004	32	Config	R	0x0000	Debug previous program counter value register.
CSR_UHARTID	0x10334050	0x00334050	32	Config	R	0x0000	Core CSR user privilege mode hardware thread ID status register.
CSR_MSTATUS	0x10334C00	0x00334C00	32	Config	R/W	0x0000	Core CSR machine status value register.
CSR_MTVEC	0x10334C14	0x00334C14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.
CSR_MEPC	0x10334D04	0x00334D04	32	Config	R/W	0x0000	Core CSR machine exception program counter value register.
CSR_MCAUSE	0x10334D08	0x00334D08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.
CSR_PCCR	0x10335E00	0x00335E00	32	Config	R/W	0x0000	Core CSR performance counter counter register.
CSR_PCER	0x10335E80	0x00335E80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.
CSR_PCMR	0x10335E84	0x00335E84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.
CSR_HWLP0S	0x10335EC0	0x00335EC0	32	Config	R/W	0x0000	Core CSR hardware loop 0 start configuration register.
CSR_HWLP0E	0x10335EC4	0x00335EC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.
CSR_HWLP0C	0x10335EC8	0x00335EC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.
CSR_HWLP1S	0x10335ED0	0x00335ED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.
CSR_HWLP1E	0x10335ED4	0x00335ED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.
CSR_HWLP1C	0x10335ED8	0x00335ED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.
CSR_PRIVLV	0x10337040	0x00337040	32	Config	R	0x0000	Cose CSR privilege level status register.
CSR_MHARTID	0x10337C50	0x00337C50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.

Table 35. Cluster Core 6 (Debug Unit) registers table

# 6.2.8.8 Cluster Core 7 (Debug Unit) registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CTRL	0x10338000	0x00338000	32	Config	R/W	0x0000	Debug control configuration register.
HIT	0x10338004	0x00338004	32	Config	R/W	0x0000	Debug hit status register.
<u>IE</u>	0x10338008	0x00338008	32	Config	R/W	0x0000	Debug exception trap enable configuration register.
CAUSE	0x1033800C	0x0033800C	32	Config	R	0x0000	Debug trap cause status register.
GPR0	0x10338400	0x00338400	32	Config	R/W	0x0000	Core general purpose register 0 value register.
GPR1	0x10338404	0x00338404	32	Config	R/W	0x0000	Core general purpose register 1 value register.
GPR2	0x10338408	0x00338408	32	Config	R/W	0x0000	Core general purpose register 2 value register.
GPR3	0x1033840C	0x0033840C	32	Config	R/W	0x0000	Core general purpose register 3 value register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
GPR4	0x10338410	0x00338410	32	Config	R/W	0x0000	Core general purpose register 4 value register.
GPR5	0x10338414	0x00338414	32	Config	R/W	0x0000	Core general purpose register 5 value register.
GPR6	0x10338418	0x00338418	32	Config	R/W	0x0000	Core general purpose register 6 value register.
GPR7	0x1033841C	0x0033841C	32	Config	R/W	0x0000	Core general purpose register 7 value register.
GPR8	0x10338420	0x00338420	32	Config	R/W	0x0000	Core general purpose register 8 value register.
GPR9	0x10338424	0x00338424	32	Config	R/W	0x0000	Core general purpose register 9 value register.
GPR10	0x10338428	0x00338428	32	Config	R/W	0x0000	Core general purpose register 10 value register.
GPR11	0x1033842C	0x0033842C	32	Config	R/W	0x0000	Core general purpose register 11 value register.
GPR12	0x10338430	0x00338430	32	Config	R/W	0x0000	Core general purpose register 12 value register.
GPR13	0x10338434	0x00338434	32	Config	R/W	0x0000	Core general purpose register 13 value register.
GPR14	0x10338438	0x00338438	32	Config	R/W	0x0000	Core general purpose register 14 value register.
GPR15	0x1033843C	0x0033843C	32	Config	R/W	0x0000	Core general purpose register 15 value register.
GPR16	0x10338440	0x00338440	32	Config	R/W	0x0000	Core general purpose register 16 value register.
GPR17	0x10338444	0x00338444	32	Config	R/W	0x0000	Core general purpose register 17 value register.
GPR18	0x10338448	0x00338448	32	Config	R/W	0x0000	Core general purpose register 18 value register.
GPR19	0x1033844C	0x0033844C	32	Config	R/W	0x0000	Core general purpose register 19 value register.
GPR20	0x10338450	0x00338450	32	Config	R/W	0x0000	Core general purpose register 20 value register.
GPR21	0x10338454	0x00338454	32	Config	R/W	0x0000	Core general purpose register 21 value register.
GPR22	0x10338458	0x00338458	32	Config	R/W	0x0000	Core general purpose register 22 value register.
GPR23	0x1033845C	0x0033845C	32	Config	R/W	0x0000	Core general purpose register 23 value register.
GPR24	0x10338460	0x00338460	32	Config	R/W	0x0000	Core general purpose register 24 value register.
GPR25	0x10338464	0x00338464	32	Config	R/W	0x0000	Core general purpose register 25 value register.
GPR26	0x10338468	0x00338468	32	Config	R/W	0x0000	Core general purpose register 26 value register.
GPR27	0x1033846C	0x0033846C	32	Config	R/W	0x0000	Core general purpose register 27 value register.
GPR28	0x10338470	0x00338470	32	Config	R/W	0x0000	Core general purpose register 28 value register.
GPR29	0x10338474	0x00338474	32	Config	R/W	0x0000	Core general purpose register 29 value register.
GPR30	0x10338478	0x00338478	32	Config	R/W	0x0000	Core general purpose register 30 value register.
GPR31	0x1033847C	0x0033847C	32	Config	R/W	0x0000	Core general purpose register 31 value register.
<u>NPC</u>	0x1033A000	0x0033A000	32	Config	R/W	0x0000	Debug next program counter value register.
PPC	0x1033A004	0x0033A004	32	Config	R	0x0000	Debug previous program counter value register.
CSR_UHARTID	0x1033C050	0x0033C050	32	Config	R	0x0000	Core CSR user privilege mode hardware thread ID status register.
CSR_MSTATUS	0x1033CC00	0x0033CC00	32	Config	R/W	0x0000	Core CSR machine status value register.
CSR_MTVEC	0x1033CC14	0x0033CC14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.
CSR_MEPC	0x1033CD04	0x0033CD04	32	Config	R/W	0x0000	Core CSR machine exception program counter value register.
CSR_MCAUSE	0x1033CD08	0x0033CD08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.
CSR_PCCR	0x1033DE00	0x0033DE00	32	Config	R/W	0x0000	Core CSR performance counter counter register.
CSR_PCER	0x1033DE80	0x0033DE80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.
CSR_PCMR	0x1033DE84	0x0033DE84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CSR_HWLP0S	0x1033DEC0	0x0033DEC0	32	Config	R/W	0x0000	Core CSR hardware loop 0 start configuration register.
CSR_HWLP0E	0x1033DEC4	0x0033DEC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.
CSR_HWLP0C	0x1033DEC8	0x0033DEC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.
CSR_HWLP1S	0x1033DED0	0x0033DED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.
CSR_HWLP1E	0x1033DED4	0x0033DED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.
CSR_HWLP1C	0x1033DED8	0x0033DED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.
CSR_PRIVLV	0x1033F040	0x0033F040	32	Config	R	0x0000	Cose CSR privilege level status register.
CSR_MHARTID	0x1033FC50	0x0033FC50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.

Table 36. Cluster Core 7 (Debug Unit) registers table

# 6.2.8.9 Cluster RISCY core registers details

# 6.2.8.9.1 Debug control configuration register. (CTRL)

Reset value: 0x0000

Always accessible, even when the RI5CY core is running.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								HALT/H ALT_ST ATUS
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								SSTE

# Bit 16 - **HALT** (W)

Debug mode configuration bitfield:

- *0b0*: exits debug mode
- *0b1*: enters debug mode breaking code execution

# Bit 16 - HALT_STATUS (R)

Debug mode status bitfield:

- *0b0*: running mode
- *0b1*: debug mode

## Bit 0 - **SSTE** (R/W)

Single step mode configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

# 6.2.8.9.2 Debug hit status register. (HIT)

#### Reset value: 0x0000

Always accessible, even when the RI5CY core is running.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								SLEEP
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bit 16 - **SLEEP** (R)

Sleep mode status bitfield:

- *0b0*: running core is in running state
- 0b1: sleeping core is in sleeping state and waits for en event to wake up

## Bit 0 - **SSTH** (R/W)

Single step hit status bitfield:

- *0b0*: disabled single step mode disabled
- *0b1*: enabled single step mode enabled

Sticky bit that must be cleared by external debugger.

### 6.2.8.9.3 Debug exception trap enable configuration register. (IE)

Reset value: 0x0000

Always accessible, even when the RI5CY core is running.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved		ECALL		Reserved		ELSU_D UP	Reserve	ELSU	Reserve	EBRK	EILL	Rese	erved

#### Bit 11 - **ECALL** (R/W)

Environment call trap configuration bitfield:

- *0b0*: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

### Bit 7 - ELSU_DUP (R/W)

Load/store access fault trap configuration bitfield:

- *0b0*: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

This bitfield is duplicates the ELSU bitfield.

### Bit 5 - **ELSU** (R/W)

Load/store access fault trap configuration bitfield:

- *0b0*: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

#### Bit 3 - **EBRK** (R/W)

Environment break trap configuration bitfield:

- 0b0: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

## Bit 2 - **EILL** (R/W)

Illegal instruction trap configuration bitfield:

- *0b0*: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

### 6.2.8.9.4 Debug trap cause status register. (CAUSE)

Reset value: 0x0000

Always accessible, even when the RI5CY core is running.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IRQ								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bit 31 - **IRQ** (R)

Core in debug mode due to interrupt trap status bitfield:

- *0b0*: false
- *0b1*: true

### Bits 4:0 - **CAUSE** (R)

Exception ID bitfield. If IRQ is *0b1* contains interrupt number otherwise:

- 0x2: sigill Illegal Instruction
- Ox3: sigtrap breakpoint
- *0xB*: sigecall eCall user mode
- 0xB sigecall eCall machine mode
- Ox1F sigstop core was halted by an external signal

## 6.2.8.9.5 Core general purpose register 0 value register. (GPR0)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							GP	R0							

Bits 31:0 - **GPR0** (R/W)

General purpose register 0 value bitfield.

## 6.2.8.9.6 Core general purpose register 1 value register. (GPR1)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R1							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR1** (R/W)

General purpose register 1 value bitfield.

### 6.2.8.9.7 Core general purpose register 2 value register. (GPR2)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R2							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR2** (R/W)

General purpose register 2 value bitfield.

# 6.2.8.9.8 Core general purpose register 3 value register. (GPR3)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R3							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR3** (R/W)

General purpose register 3 value bitfield.

## 6.2.8.9.9 Core general purpose register 4 value register. (GPR4)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R4							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR4** (R/W)

General purpose register 4 value bitfield.

# 6.2.8.9.10 Core general purpose register 5 value register. (GPR5)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R5							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR5** (R/W)

General purpose register 5 value bitfield.

## 6.2.8.9.11 Core general purpose register 6 value register. (GPR6)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R6							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR6 (R/W)

General purpose register 6 value bitfield.

## 6.2.8.9.12 Core general purpose register 7 value register. (GPR7)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R7							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR7** (R/W)

General purpose register 7 value bitfield.

## 6.2.8.9.13 Core general purpose register 8 value register. (GPR8)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R8							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR8** (R/W)

General purpose register 8 value bitfield.

## 6.2.8.9.14 Core general purpose register 9 value register. (GPR9)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R9							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR9** (R/W)

General purpose register 9 value bitfield.

## 6.2.8.9.15 Core general purpose register 10 value register. (GPR10)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R10							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR10 (R/W)

General purpose register 10 value bitfield.

## 6.2.8.9.16 Core general purpose register 11 value register. (GPR11)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPF	R11							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							GPF	311							

Bits 31:0 - **GPR11** (R/W)

General purpose register 11 value bitfield.

## 6.2.8.9.17 Core general purpose register 12 value register. (GPR12)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R12							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR12** (R/W)

General purpose register 12 value bitfield.

## 6.2.8.9.18 Core general purpose register 13 value register. (GPR13)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R13							
4-				11		١ ،	_	_	_	_		_	_		_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR13** (R/W)

General purpose register 13 value bitfield.

## 6.2.8.9.19 Core general purpose register 14 value register. (GPR14)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R14							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR14 (R/W)

General purpose register 14 value bitfield.

## 6.2.8.9.20 Core general purpose register 15 value register. (GPR15)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R15							
	1					_	_	_				_	_	_	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR15** (R/W)

General purpose register 15 value bitfield.

## 6.2.8.9.21 Core general purpose register 16 value register. (GPR16)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R16							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR16** (R/W)

General purpose register 16 value bitfield.

## 6.2.8.9.22 Core general purpose register 17 value register. (GPR17)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R17							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR17** (R/W)

General purpose register 17 value bitfield.

## 6.2.8.9.23 Core general purpose register 18 value register. (GPR18)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R18							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR18 (R/W)

General purpose register 18 value bitfield.

## 6.2.8.9.24 Core general purpose register 19 value register. (GPR19)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R19							
		40	12	11	10			-	_	-		- 2	•	-1	_
15	14	13	12	11	10	9	0	,	b	כ	4	3	2		U

Bits 31:0 - **GPR19** (R/W)

General purpose register 19 value bitfield.

## 6.2.8.9.25 Core general purpose register 20 value register. (GPR20)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R20							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR20** (R/W)

General purpose register 20 value bitfield.

## 6.2.8.9.26 Core general purpose register 21 value register. (GPR21)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R21							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR21** (R/W)

General purpose register 21 value bitfield.

## 6.2.8.9.27 Core general purpose register 22 value register. (GPR22)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R22							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR22 (R/W)

General purpose register 22 value bitfield.

## 6.2.8.9.28 Core general purpose register 23 value register. (GPR23)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R23							
						_	_	_	_	_	_	_	_		_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR23** (R/W)

General purpose register 23 value bitfield.

## 6.2.8.9.29 Core general purpose register 24 value register. (GPR24)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R24							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR24** (R/W)

General purpose register 24 value bitfield.

## 6.2.8.9.30 Core general purpose register 25 value register. (GPR25)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R25							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR25** (R/W)

General purpose register 25 value bitfield.

## 6.2.8.9.31 Core general purpose register 26 value register. (GPR26)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R26							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR26 (R/W)

General purpose register 26 value bitfield.

## 6.2.8.9.32 Core general purpose register 27 value register. (GPR27)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R27							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR27** (R/W)

General purpose register 27 value bitfield.

## 6.2.8.9.33 Core general purpose register 28 value register. (GPR28)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R28							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR28** (R/W)

General purpose register 28 value bitfield.

## 6.2.8.9.34 Core general purpose register 29 value register. (GPR29)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPF	R29							
15	14	13	12	11	10	a	8	7	6	E	4	2	2	1	0
		2	12		10	,	Ü	,	U	3	4	3			U

Bits 31:0 - **GPR29** (R/W)

General purpose register 29 value bitfield.

## 6.2.8.9.35 Core general purpose register 30 value register. (GPR30)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R30							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR30 (R/W)

General purpose register 30 value bitfield.

## 6.2.8.9.36 Core general purpose register 31 value register. (GPR31)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R31							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR31** (R/W)

General purpose register 31 value bitfield.

## 6.2.8.9.37 Debug next program counter value register. (NPC)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							NF	PC O							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **NPC** (R/W)

Next program counter value bitfield.

## 6.2.8.9.38 Debug previous program counter value register. (PPC)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PF	C							
			12	11			_	_	_						_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **PPC** (R)

Previous program counter value bitfield.

## 6.2.8.9.39 Core CSR user privilege mode hardware thread ID status register. (CSR_UHARTID)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved					CLUST	TER_ID			Reserve d		COR	E_ID	

Bits 10:5 - CLUSTER_ID (R)

Cluster ID value bitfield.

Bits 3:0 - **CORE_ID** (R)

RI5CY core ID value bitfield.

### 6.2.8.9.40 Core CSR machine status value register. (CSR_MSTATUS)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 12:11 - MPP (R/W)

Hardwired to *0b11*.

# Bit 7 - **MPIE** (R/W)

Machine privilege mode previous interrupt enable value bitfield. When an interrupis encountered, MPIE will store the value existing in MIE. When mret instruction is executed, the value of MPIE is restored into MIE.

## Bit 3 - MIE (R/W)

Machine privilege mode interrupt enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

# 6.2.8.9.41 Core CSR machine vector-trap base address value register. (CSR_MTVEC)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	MTVEC														
15															
15	14	13	12	11	10	9	8	7	6	5	4	3		1	U

# Bits 31:8 - **MTVEC** (R/W)

Machine trap-vector base address value bitfield.

## 6.2.8.9.42 Core CSR machine exception program counter value register. (CSR_MEPC)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ME	PC							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•			•	•	•	ME	DC	•	•	•	•			

#### Bits 31:0 - MEPC (R/W)

Machine exception program counter value bitfield. When an exception is encountered, the current program counter is saved in MEPC, and the core jumps to the exception address. When an mret instruction is executed, the value from MEPC is restored to the current program counter.

### 6.2.8.9.43 Core CSR machine trap cause value register. (CSR_MCAUSE)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IRQ								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	2	2	1	0
						-	•	,	•	-	-	_	_		

## Bit 31 - **IRQ** (R)

Core triggered an exception due to interrupt status bitfield:

- *0b0*: false
- *0b1*: true

# Bits 4:0 - **CAUSE** (R)

Exception ID bitfield. If IRQ is *0b1* contains interrupt number otherwise:

- 0x2: sigill Illegal Instruction
- Ox3: sigtrap breakpoint
- 0xB: sigecall eCall user mode
- OxB sigecall eCall machine mode
- *0x1F* sigstop core was halted by an external signal

## 6.2.8.9.44 Core CSR performance counter counter register. (CSR_PCCR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PC	CR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

# Bits 31:0 - **PCCR** (R/W)

Program counter counter value bitfield.

## 6.2.8.9.45 Core CSR performance counter enable configuration register. (CSR_PCER)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved												PCER		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 20:0 - PCER (R/W)

See documentation on RISCY core for details.

### 6.2.8.9.46 Core CSR performance counter mode configuration register. (CSR_PCMR)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Rese	erved							GE	SAT

## Bit 1 - **GE** (R/W)

Performance counter activation configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

# Bit 0 - **SAT** (R/W)

Performance counter saturation mode configuration bitfield:

- *0b0*: wrap around wrap-around mode
- *0b1*: saturation saturation mode

## 6.2.8.9.47 Core CSR hardware loop 0 start configuration register. (CSR_HWLP0S)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STA	ART							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	START														

### Bits 31:0 - **START** (R/W)

Hardware loop start address configuration bitfield.

### 6.2.8.9.48 Core CSR hardware loop 0 end configuration register. (CSR_HWLP0E)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	END														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	END														

### Bits 31:0 - END (R/W)

Hardware loop end address configuration bitfield.

## 6.2.8.9.49 Core CSR hardware loop 0 counter configuration register. (CSR_HWLP0C)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	CNT														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 31:0 - CNT (R/W)

Hardware loop counter configuration bitfield.

## 6.2.8.9.50 Core CSR hardware loop 1 start configuration register. (CSR_HWLP1S)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	START														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	START														

# Bits 31:0 - **START** (R/W)

Hardware loop start address configuration bitfield.

## 6.2.8.9.51 Core CSR hardware loop 1 end configuration register. (CSR_HWLP1E)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EN	ND							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **END** (R/W)

Hardware loop end address configuration bitfield.

## 6.2.8.9.52 Core CSR hardware loop 1 counter configuration register. (CSR_HWLP1C)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	CNT														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	CNT														

Bits 31:0 - CNT (R/W)

Hardware loop counter configuration bitfield.

# 6.2.8.9.53 Cose CSR privilege level status register. (CSR_PRIVLV)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15   14   13   12   11   10   9   8   7   6   5   4   3   2   Reserved													PL	FV

Bits 1:0 - **PLEV** (R)

Hardwired to *0b11*.

## 6.2.8.9.54 Core CSR machine privilege mode hardware thread ID status register. (CSR_MHARTID)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved					CLUST	ER_ID			Reserve d		COR	E_ID	

Bits 10:5 - CLUSTER_ID (R)

Cluster ID value bitfield.

Bits 3:0 - **CORE_ID** (R)

RI5CY core ID value bitfield.

# 6.3 SoC Peripherals Subsystem

# 6.3.1 SoC Peripherals Subsystem Events

Event number	Event name	IP instance name	Direction	Description
0	LVDS_RX_EVT	<u>LVDS</u>	Input	uDMA LVDS RX channel transfer done event
1	LVDS_TX_EVT	<u>LVDS</u>	Input	uDMA LVDS TX channel transfer done event
2	SPIMO_RX_EVT	<u>SPIM0</u>	Input	uDMA SPIM0 RX channel transfer done event
3	SPIM0_TX_EVT	SPIM0	Input	uDMA SPIM0 TX channel transfer done event

Event number	Event name	IP instance name	Direction	Description
4	SPIM1_RX_EVT	SPIM1	Input	uDMA SPIM1 RX channel transfer done event
5	SPIM1_TX_EVT	SPIM1	Input	uDMA SPIM1 TX channel transfer done event
6	HYPER_RX_EVT	HYPER	Input	uDMA HYPER RX channel transfer done event
7	HYPER_TX_EVT	HYPER	Input	uDMA HYPER TX channel transfer done event
8	UART_RX_EVT	<u>UART</u>	Input	uDMA UART RX channel transfer done event
9	UART_TX_EVT	<u>UART</u>	Input	uDMA UART TX channel transfer done event
10	I2C0_RX_EVT	<u>12C0</u>	Input	uDMA I2C0 RX channel transfer done event
11	I2C0_TX_EVT	<u>12C0</u>	Input	uDMA I2C0 TX channel transfer done event
12	I2C1_RX_EVT	<u>I2C1</u>	Input	uDMA I2C1 RX channel transfer done event
13	I2C1_TX_EVT	<u>I2C1</u>	Input	uDMA I2C1 TX channel transfer done event
14	MEMCPY_RX_EVT	MEMCPY	Input	uDMA MEMCPY RX channel transfer done event
15	MEMCPY_TX_EVT	MEMCPY	Input	uDMA MEMCPY TX channel transfer done event
16	I2S_CH0_RX_EVT	I2S	Input	uDMA I2S RX channel transfer done event
17	I2S_CH1_RX_EVT	<u>I2S</u>	Input	uDMA I2S TX channel transfer done event
18	CPI_RX_EVT	CPI	Input	uDMA CPI RX channel transfer done event
19	Reserved	<u> </u>		Reserved
20	LVDS_HP_0_EVT	<u>LVDS</u>	Input	LVDS High priority event 0. It occurs when LVDS transceiver has received a number of sample corresponding to LVDS.RX_SAMPLE_CNT.CMP_VAL bitfield.
22	SPIM0_EOT_EVT	SPIM0	Input	uDMA SPIM0 End of Transaction event
23	SPIM1_EOT_EVT	SPIM0	Input	uDMA SPIM1 End of Transaction event
24	Reserved			Reserved
25	Reserved			Reserved
26	Reserved			Reserved
27	Reserved			Reserved
28	Reserved			Reserved
29	Reserved			Reserved
30	Reserved			Reserved
31	CL_POK_EVT	DLC_BRIDGE	Input	PMU cluster power ok event
32	Reserved			Reserved
33	Reserved			Reserved
34	Reserved			Reserved
35	CL_CG_EVT	DLC_BRIDGE	Input	PMU cluster clock gated ok event
36	PICL_OK	DLC_BRIDGE	Input	PMU register write done event
37	SCU_OK	DLC_BRIDGE	Input	PMU operating point reached event
38	ADV_TIMER_EVT_0	APB_ADV_TIMER	Input	ADV_TIMER event 0
39	ADV_TIMER_EVT_1	APB_ADV_TIMER	Input	ADV_TIMER event 1
40	ADV_TIMER_EVT_2	APB_ADV_TIMER	Input	ADV_TIMER event 2
41	ADV_TIMER_EVT_3	APB_ADV_TIMER	Input	ADV_TIMER event 3
42	GPIO_EVT	APB_GPIO	Input	GPIO event
43	RTC_APB_EVT	RTC	Input	RTC register R/W access done event
44	RTC_EVT	RTC	Input	RTC 32kHz reference clock rise event
45	Reserved			Reserved
46	Reserved			Reserved
47	Reserved			Reserved

I able 2	17. JUC FEITPHELAIS J		//C	
Event	Event name	IP instance	Direction	Description
number	Lvent name	name	Direction	Description

## 6.3.2 FLLs

FLL component manages the following features:

- generation of a clock signal that is locked to a frequency requested
- 2 configurable modes: normal and standalone
- output clock can be gated when unlocked

# 6.3.2.1 SoC FLL registers

Name	Address	Size	Туре	Access	Default	Description
<u>STATUS</u>	0x1A100000	32	Config	R/W	0x0000	FLL status register.
CFG1	0x1A100004	32	Config	R/W	0x0000	FLL configuration 1 register.
CFG2	0x1A100008	32	Config	R/W	0x0000	FLL configuration 2 register.
<u>INTEG</u>	0x1A10000C	32	Config	R/W	0x0000	FLL integrator configuration register.

Table 38. SoC FLL registers table

# 6.3.2.2 Cluster FLL registers

Name	Address	Size	Туре	Access	Default	Description
STATUS	0x1A100800	32	Config	R/W	0x0000	FLL status register.
CFG1	0x1A100804	32	Config	R/W	0x0000	FLL configuration 1 register.
CFG2	0x1A100808	32	Config	R/W	0x0000	FLL configuration 2 register.
INTEG	0x1A10080C	32	Config	R/W	0x0000	FLL integrator configuration register.

Table 39. Cluster FLL registers table

# 6.3.2.3 FLL registers details

## 6.3.2.3.1 FLL status register. (STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							М	F							

Bits 15:0 - MF (R)

Current DCO multiplication factor value bitfield.

## 6.3.2.3.2 FLL configuration 1 register. (CFG1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CKM	CKG		CK	DIV						IC	s				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bit 31 - CKM (R/W)

FLL operation mode configuration bitfield:

- 0b0: standalone
- 0b1: normal

## Bit 30 - **CKG** (R/W)

FLL output gated by LOCK signal configuration bitfield:

- *0b0*: not gated
- *0b1*: gated

## Bits 29:26 - **CKDIV** (R/W)

FLL output clock divider configuration bitfield.

### Bits 25:16 - ICS (R/W)

DCO input code in standalone mode bitfield.

## Bits 15:0 - MFN (R/W)

Target clock multiplication factor in normal mode bitfield.

### 6.3.2.3.3 FLL configuration 2 register. (CFG2)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
DITH	OL	CKSEL	Reserve d						Ľ	Т					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		SC	KL					UC	KL				L	G	

## Bit 31 - **DITH** (R/W)

Dithering activation bitfield:

- *0b0*: disabled
- 0b1: enabled

## Bit 30 - **OL** (R/W)

Open loop when locked activation bitfield:

- *0b0*: disabled
- *0b1*: enabled

# Bit 29 - **CKSEL** (R/W)

Configuration clock selection in standalone mode bitfield:

- *0b0*: DCO clock
- *0b1*: Reference clock

# Bits 27:16 - **LT** (R/W)

Lock tolerance configuration bitfield. It is the margin around multiplication factor within which the output clock is considered stable.

### Bits 15:10 - **SCKL** (R/W)

Number of stable REFCLK cycles until LOCK assert in normal mode. Upper 6-bit of LOCK assert counter target in standalone mode.

### Bits 9:4 - **UCKL** (R/W)

Number of unstable REFCLK cycles until LOCK de-assert in normal mode. Lower 6-bit of LOCK assert counter target in standalone mode.

### Bits 3:0 - **LG** (R/W)

FLL loop gain setting bitfield.

## 6.3.2.3.4 FLL integrator configuration register. (INTEG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Rese	erved							INT	EG				
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 25:16 - INTEG (R/W)

integer part of integrator state bitfield. It corresponds to DCO unit bits.

### Bits 15:6 - FRAC (R/W)

Fractional part of integrator state bitfield. It corresponds to dither unit input.

## 6.3.3 GPIO

GPIO component manages the following features:

- 32 general purpose input/ouput pads
- configurable pull and drive strength on each GPIOs
- configurable event trigger on GPIO event

# 6.3.3.1 GPIO registers

Name	Address	Size	Туре	Access	Default	Description
<u>PADDIR</u>	0x1A101000	32	Config	R/W	0x0000	GPIO pad direction configuration register.
<u>PADIN</u>	0x1A101004	32	Config	R	0x0000	GPIO pad input value register.
PADOUT	0x1A101008	32	Config	R/W	0x0000	GPIO pad output value register.
<u>INTEN</u>	0x1A10100C	32	Config	R/W	0x0000	GPIO pad interrupt enable configuration register.
INTTYPE0	0x1A101010	32	Config	R/W	0x0000	GPIO pad interrupt type bit 0 configuration register.
INTTYPE1	0x1A101014	32	Config	R/W	0x0000	GPIO pad interrupt type bit 1 configuration register.
<u>INTSTATUS</u>	0x1A101018	32	Status	R	0x0000	GPIO pad interrupt status register.
GPIOEN	0x1A10101C	32	Config	R/W	0x0000	GPIO pad enable configuration register.
PADCFG0	0x1A101020	32	Config	R/W	0x0000	GPIO pad pin 0 to 3 configuration register.
PADCFG1	0x1A101024	32	Config	R/W	0x0000	GPIO pad pin 4 to 7 configuration register.
PADCFG2	0x1A101028	32	Config	R/W	0x0000	GPIO pad pin 8 to 11 configuration register.
PADCFG3	0x1A10102C	32	Config	R/W	0x0000	GPIO pad pin 12 to 15 configuration register.
PADCFG4	0x1A101030	32	Config	R/W	0x0000	GPIO pad pin 16 to 19 configuration register.

Name	Address	Size	Туре	Access	Default	Description
PADCFG5	0x1A101034	32	Config	R/W	0x0000	GPIO pad pin 20 to 23 configuration register.
PADCFG6	0x1A101038	32	Config	R/W	0x0000	GPIO pad pin 24 to 27 configuration register.
PADCFG7	0x1A10103C	32	Config	R/W	0x0000	GPIO pad pin 28 to 31 configuration register.

Table 40. GPIO registers table

## 6.3.3.2 GPIO registers details

## 6.3.3.2.1 GPIO pad direction configuration register. (PADDIR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DI	IR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

# Bits 31:0 - **DIR** (R/W)

GPIO direction configuration bitfield:

- bit[i]=0b0: Input mode for GPIO[i]
- bit[i]=0b1: Output mode for GPIO[i]

## 6.3.3.2.2 GPIO pad input value register. (PADIN)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DAT	A_IN							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DAT	A 151							

### Bits 31:0 - **DATA_IN** (R)

GPIO input data read bitfield. DATA_IN[i] corresponds to input data of GPIO[i].

## 6.3.3.2.3 GPIO pad output value register. (PADOUT)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DATA	_OUT							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 31:0 - **DATA_OUT** (R/W)

GPIO output data read bitfield. DATA_OUT[i] corresponds to output data set on GPIO[i].

## 6.3.3.2.4 GPIO pad interrupt enable configuration register. (INTEN)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							INT	EN							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 31:0 - INTEN (R/W)

GPIO interrupt enable configuration bitfield:

- bit[i]=0b0: disable interrupt for GPIO[i]
- bit[i]=0b1: enable interrupt for GPIO[i]

### 6.3.3.2.5 GPIO pad interrupt type bit 0 configuration register. (INTTYPE0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							INTT	YPE0							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 31:0 - **INTTYPE0** (R/W)

GPIO[15:0] interrupt type configuration bitfield:

- bit[2*i+1:2*i]=0b00: interrupt on falling edge for GPIO[i]
- bit[2*i+1:2*i]=0b01: interrupt on rising edge for GPIO[i]
- bit[2*i*+1:2*i*]=0b10: interrupt on rising and falling edge for GPIO[i]
- bit[2*i+1:2*i]=0b11: RFU

### 6.3.3.2.6 GPIO pad interrupt type bit 1 configuration register. (INTTYPE1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	INTTYPE1														
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 INTTYPE1														

## Bits 31:0 - **INTTYPE1** (R/W)

GPIO[31:16] interrupt type configuration bitfield:

- bit[2*i+1:2*i]=0b00: interrupt on falling edge for GPIO[16+i]
- bit[2i+1:2i]=0b01: interrupt on rising edge for GPIO[16+i]
- bit[2*i*+1:2*i*]=0b10: interrupt on rising and falling edge for GPIO[16+i]
- bit[2*i+1:2*i]=*0b11*: RFU

# 6.3.3.2.7 GPIO pad interrupt status register. (INTSTATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							INTST	ATUS							
15															

### Bits 31:0 - INTSTATUS (R)

GPIO Interrupt status flags bitfield. INTSTATUS[i]=1 when interrupt received on GPIO[i]. INTSTATUS is cleared when it is red. GPIO interrupt line is also cleared when INTSTATUS register is red.

## 6.3.3.2.8 GPIO pad enable configuration register. (GPIOEN)

#### Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	OEN							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 31:0 - **GPIOEN** (R/W)

GPIO clock enable configuration bitfield:

- bit[i]=0b0: disable clock for GPIO[i]
- bit[i]=0b1: enable clock for GPIO[i]

GPIOs are gathered by groups of 4. The clock gating of one group is done only if all 4 GPIOs are disabled.

Clock must be enabled for a GPIO if it's direction is configured in input mode.

## 6.3.3.2.9 GPIO pad pin 0 to 3 configuration register. (PADCFG0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Rese	erved			GPIO3_ DS	GPIO3_ PE		Reserved					GPIO2_ DS	GPIO2_ PE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

# Bit 25 - **GPIO3_DS** (R/W)

GPIO[3] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

# Bit 24 - **GPIO3_PE** (R/W)

GPIO[3] pull activation configuration bitfield:

- *0b0*: pull disabled
- 0b1: pull enabled

## Bit 17 - **GPIO2_DS** (R/W)

GPIO[2] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

## Bit 16 - **GPIO2_PE** (R/W)

GPIO[2] pull activation configuration bitfield:

- *0b0*: pull disabled
- 0b1: pull enabled

### Bit 9 - **GPIO1_DS** (R/W)

GPIO[1] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

# Bit 8 - **GPIO1_PE** (R/W)

GPIO[1] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

## Bit 1 - **GPIO0_DS** (R/W)

GPIO[0] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

# Bit 0 - **GPIO0_PE** (R/W)

GPIO[0] pull activation configuration bitfield:

- *0b0*: pull disabled
- 0b1: pull enabled

## 6.3.3.2.10 GPIO pad pin 4 to 7 configuration register. (PADCFG1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Rese	erved		GPI07_ GPI07_ Reserved GF							GPIO6_ DS	GPIO6_ PE		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15   14   13   12   11   10   Reserved						GPIO5_ PE			Res	erved	•		GPIO4_ DS	GPIO4_ PE

## Bit 25 - **GPIO7_DS** (R/W)

GPIO[7] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

## Bit 24 - **GPIO7_PE** (R/W)

GPIO[7] pull activation configuration bitfield:

- 0b0: pull disabled
- *0b1*: pull enabled

## Bit 17 - **GPIO6_DS** (R/W)

GPIO[6] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 16 - **GPIO6_PE** (R/W)

GPIO[6] pull activation configuration bitfield:

- 0b0: pull disabled
- *0b1*: pull enabled

# Bit 9 - **GPIO5_DS** (R/W)

GPIO[5] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

## Bit 8 - **GPIO5_PE** (R/W)

GPIO[5] pull activation configuration bitfield:

- 0b0: pull disabled
- 0b1: pull enabled

# Bit 1 - **GPIO4_DS** (R/W)

GPIO[4] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

### Bit 0 - **GPIO4_PE** (R/W)

GPIO[4] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

## 6.3.3.2.11 GPIO pad pin 8 to 11 configuration register. (PADCFG2)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Rese	erved			GPIO11 _DS	GPIO11 _PE			Res	erved			GPIO10 _DS	GPIO10 _PE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15   14   13   12   11   10   Reserved						GPIO9_ PE			Res	erved			GPIO8_ DS	GPIO8_ PE

## Bit 25 - **GPIO11_DS** (R/W)

GPIO[11] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 24 - **GPIO11_PE** (R/W)

GPIO[11] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

### Bit 17 - GPIO10_DS (R/W)

GPIO[10] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

# Bit 16 - **GPIO10_PE** (R/W)

GPIO[10] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

## Bit 9 - **GPIO9_DS** (R/W)

GPIO[9] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

# Bit 8 - **GPIO9_PE** (R/W)

GPIO[9] pull activation configuration bitfield:

- *0b0*: pull disabled
- 0b1: pull enabled

### Bit 1 - **GPIO8_DS** (R/W)

GPIO[8] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

# Bit 0 - **GPIO8_PE** (R/W)

GPIO[8] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

## 6.3.3.2.12 GPIO pad pin 12 to 15 configuration register. (PADCFG3)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Rese	erved			GPIO15 _DS	GPIO15 _PE			Rese	erved			GPIO14 _DS	GPIO14 _PE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			GPIO13 DS	GPIO13 PE			Rese	erved			GPIO12 DS	GPIO12 PE

### Bit 25 - **GPIO15_DS** (R/W)

GPIO[15] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 24 - **GPIO15_PE** (R/W)

GPIO[15] pull activation configuration bitfield:

- 0b0: pull disabled
- *0b1*: pull enabled

# Bit 17 - **GPIO14_DS** (R/W)

GPIO[14] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

## Bit 16 - **GPIO14_PE** (R/W)

GPIO[14] pull activation configuration bitfield:

- 0b0: pull disabled
- 0b1: pull enabled

# Bit 9 - **GPIO13_DS** (R/W)

GPIO[13] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

### Bit 8 - **GPIO13_PE** (R/W)

GPIO[13] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

# Bit 1 - **GPIO12_DS** (R/W)

GPIO[12] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

# Bit 0 - **GPIO12_PE** (R/W)

GPIO[12] pull activation configuration bitfield:

- *0b0*: pull disabled
- 0b1: pull enabled

# 6.3.3.2.13 GPIO pad pin 16 to 19 configuration register. (PADCFG4)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		D				GPIO19	GPIO19			GPIO18	GPIO18				
		Hese	erved		Reserved							_DS	_PE		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Deed				GPIO17	GPIO17	Reserved						GPIO16	GPIO16
		Rese	erved			_DS	_PE			Resi	ervea			_DS	_PE

#### Bit 25 - GPIO19_DS (R/W)

GPIO[19] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

## Bit 24 - **GPIO19_PE** (R/W)

GPIO[19] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

### Bit 17 - **GPIO18_DS** (R/W)

GPIO[18] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

#### Bit 16 - **GPIO18_PE** (R/W)

GPIO[18] pull activation configuration bitfield:

- 0b0: pull disabled
- 0b1: pull enabled

#### Bit 9 - **GPIO17_DS** (R/W)

GPIO[17] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

## Bit 8 - **GPIO17_PE** (R/W)

GPIO[17] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

# Bit 1 - **GPIO16_DS** (R/W)

GPIO[16] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

## Bit 0 - **GPIO16_PE** (R/W)

GPIO[16] pull activation configuration bitfield:

- 0b0: pull disabled
- *0b1*: pull enabled

# 6.3.3.2.14 GPIO pad pin 20 to 23 configuration register. (PADCFG5)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Rese	erved			GPIO23 _DS	GPIO23 _PE			Res	erved			GPIO22 _DS	GPIO22 _PE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			GPIO21 _DS	GPIO21 _PE			Res	erved			GPIO20 _DS	GPIO20 _PE

### Bit 25 - **GPIO23_DS** (R/W)

GPIO[23] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

#### Bit 24 - **GPIO23_PE** (R/W)

GPIO[23] pull activation configuration bitfield:

- 0b0: pull disabled
- *0b1*: pull enabled

### Bit 17 - **GPIO22_DS** (R/W)

GPIO[22] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

## Bit 16 - **GPIO22_PE** (R/W)

GPIO[22] pull activation configuration bitfield:

- *0b0*: pull disabled
- 0b1: pull enabled

## Bit 9 - **GPIO21_DS** (R/W)

GPIO[21] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

### Bit 8 - **GPIO21_PE** (R/W)

GPIO[21] pull activation configuration bitfield:

- *0b0*: pull disabled
- 0b1: pull enabled

# Bit 1 - **GPIO20_DS** (R/W)

GPIO[20] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

#### Bit 0 - **GPIO20_PE** (R/W)

GPIO[20] pull activation configuration bitfield:

- 0b0: pull disabled
- *0b1*: pull enabled

#### 6.3.3.2.15 GPIO pad pin 24 to 27 configuration register. (PADCFG6)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Door	erved			GPIO27	GPIO27			Poor	erved			GPIO26	GPIO26
		Rese	ervea			_DS	_PE			Rese	ervea			_DS	_PE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15	14		12 erved	11	10	<b>9</b> GPIO25		7	6	5	4 erved	3	2	1 GPIO24	

#### Bit 25 - **GPIO27_DS** (R/W)

GPIO[27] drive strength configuration bitfield:

- *0b0*: low drive strength
- 0b1: high drive strength

#### Bit 24 - **GPIO27_PE** (R/W)

GPIO[27] pull activation configuration bitfield:

- 0b0: pull disabled
- *0b1*: pull enabled

### Bit 17 - **GPIO26_DS** (R/W)

GPIO[26] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

## Bit 16 - **GPIO26_PE** (R/W)

GPIO[26] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

### Bit 9 - **GPIO25_DS** (R/W)

GPIO[25] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 8 - **GPIO25_PE** (R/W)

GPIO[25] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

#### Bit 1 - **GPIO24_DS** (R/W)

GPIO[24] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

## Bit 0 - **GPIO24_PE** (R/W)

GPIO[24] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

### 6.3.3.2.16 GPIO pad pin 28 to 31 configuration register. (PADCFG7)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Rese	erved			GPIO31 _DS	GPIO31 _PE			Rese	erved			GPIO30 _DS	GPIO30 _PE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Deed	erved	<u> </u>	<u> </u>	GPIO29	GPIO29			Deed	erved	<u> </u>		GPIO28	GPIO28

### Bit 25 - **GPIO31_DS** (R/W)

GPIO[31] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 24 - **GPIO31_PE** (R/W)

GPIO[31] pull activation configuration bitfield:

- 0b0: pull disabled
- *0b1*: pull enabled

## Bit 17 - **GPIO30_DS** (R/W)

GPIO[30] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 16 - **GPIO30_PE** (R/W)

GPIO[30] pull activation configuration bitfield:

- 0b0: pull disabled
- *0b1*: pull enabled

### Bit 9 - **GPIO29_DS** (R/W)

GPIO[29] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

#### Bit 8 - **GPIO29_PE** (R/W)

GPIO[29] pull activation configuration bitfield:

- *0b0*: pull disabled
- *0b1*: pull enabled

## Bit 1 - **GPIO28_DS** (R/W)

GPIO[28] drive strength configuration bitfield:

- *0b0*: low drive strength
- *0b1*: high drive strength

## Bit 0 - **GPIO28_PE** (R/W)

GPIO[28] pull activation configuration bitfield:

- 0b0: pull disabled
- 0b1: pull enabled

# 6.3.4 SoC control unit

The APB SoC Controller allows control of various SoC features such as:

- PAD mux configuration
- JTAG boot mode
- Sleep modes
- L2 retentive state configuration
- DC/DC voltage regulator configuration in bypass mode

## 6.3.4.1 SoC control unit registers

Name	Address	Size	Туре	Access	Default	Description
INFO	0x1A104000	32	Status	R	0x0018	Core information register
<u>CL_ISOLATE</u>	0x1A10400C	32	Config	R/W	0x0001	Isolate cluster register
CL_BUSY	0x1A10406C	32	Status	R	0x0000	Cluster busy register
CL_BYPASS	0x1A104070	32	Config	R/W	0x0400	PMU bypass configuration register
<u>JTAGREG</u>	0x1A104074	32	Config	R/W	0x0000	JTAG external register
L2_SLEEP	0x1A104078	32	Config	R/W	0x0001	L2 sleep configuration register
SLEEP_CTRL	0x1A10407C	32	Status	R	0x0000	Alias for SAFE_PMU_SLEEPCTRL
CORESTATUS	0x1A1040A0	32	Status	R/W	0x0000	EOC and chip status register
CORESTATUS_RO	0x1A1040C0	32	Status	R	0x0000	EOC and chip status register read mirror
SAFE_PMU_RAR	0x1A104100	32	Config	R/W	0x2A52D	DC/DC configuration register
SAFE_PMU_SLEEPCTRL	0x1A104104	32	Config	R/W	0x0000	Sleep modes configuration register
SAFE_PMU_FORCE	0x1A104108	32	Config	R/W	0x0000	L2 rententive state configuration
SAFE_PADFUN0	0x1A104140	32	Config	R/W	0x0000	Mux config register (pad 0–15)
SAFE_PADFUN1	0x1A104144	32	Config	R/W	0x0000	Mux config register (pad 16–31)
SAFE_PADFUN2	0x1A104148	32	Config	R/W	0x0000	Mux config register (pad 32–47)
SAFE_SLEEPPADCFG0	0x1A104150	32	Config	R/W	0x0000	Sleep config register (pad 0–15)
SAFE_SLEEPPADCFG1	0x1A104154	32	Config	R/W	0x0000	Mux config register (pad 16–31)

Name	Address	Size	Туре	Access	Default	Description
SAFE_SLEEPPADCFG2	0x1A104158	32	Config	R/W	0x0000	Mux config register (pad 32–47)
SAFE_PADSLEEP	0x1A104160	32	Config	R/W	0x0000	Enable Sleep mode for pads
SAFE_PADCFG0	0x1A104180	32	Config	R/W	0x0000	Function register (pad 0 to 3)
SAFE_PADCFG1	0x1A104184	32	Config	R/W	0x0000	Function register (pad 4 to 7)
SAFE_PADCFG2	0x1A104188	32	Config	R/W	0x0000	Function register (pad 8 to 11)
SAFE_PADCFG3	0x1A10418C	32	Config	R/W	0x0000	Function register (pad 12 to 15)
SAFE_PADCFG4	0x1A104190	32	Config	R/W	0x0000	Function register (pad 16 to 19)
SAFE_PADCFG5	0x1A104194	32	Config	R/W	0x0000	Function register (pad 20 to 23)
SAFE_PADCFG6	0x1A104198	32	Config	R/W	0x0000	Function register (pad 24 to 27)
SAFE_PADCFG7	0x1A10419C	32	Config	R/W	0x0000	Function register (pad 28 to 31)
SAFE_PADCFG8	0x1A1041A0	32	Config	R/W	0x0000	Function register (pad 32 to 35)
SAFE_PADCFG9	0x1A1041A4	32	Config	R/W	0x0000	Function register (pad 36 to 39)
SAFE_PADCFG10	0x1A1041A8	32	Config	R/W	0x0000	Function register (pad 40 to 43)
SAFE_PADCFG11	0x1A1041AC	32	Config	R/W	0x0000	Function register (pad 44 to 47)
REG_GPIO_ISO	0x1A1041C0	32	Config	R/W	0x0000	GPIO power domain pad input isolation register
REG_CAM_ISO	0x1A1041C4	32	Config	R/W	0x0000	CAM power domain pad input isolation register
REG_LVDS_ISO	0x1A1041C8	32	Config	R/W	0x0000	LVDS power domain pad input isolation register

Table 41. SoC control unit registers table

# 6.3.4.2 SoC control unit registers details

## 6.3.4.2.1 Core information register (INFO)

Reset value: 0x0018

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							NB_C	ORES							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:16 - **NB_CORES** (R)

Reset value: 0x00

Number of cores

Bits 15:0 - **NB_CL** (R)

Reset value: 0x18

Number of clusters

# 6.3.4.2.2 Isolate cluster register (CL_ISOLATE)

Reset value: 0x0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
45		40	42	44	40	٥		-	_	-		2	- 1	- 1	•
15	14	13	12	11	10	9	8	/	ь	כ	4	י	2		U

#### Bit 0 - **EN** (R/W)

Reset value: 0b1

Isolate cluster. Inhibits AXI transactions from cluster to SoC:

- *0b0*: Disable
- 0b1: Enable

## 6.3.4.2.3 Cluster busy register (CL_BUSY)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bit 0 - **BUSY** (R)

Cluster busy flag (i.e. It's 1 if there is at least 1 active block in the cluster)

### 6.3.4.2.4 PMU bypass configuration register (CL_BYPASS)

Reset value: 0x0400

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Rese	erved							PMUPO WDOWN	TRCPO WOK
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bit 17 - PMUPOWDOWN (R/W)

Reset value: 0b0

Cluster power down from Maestro PMU status bitfield.

#### Bit 16 - TRCPOWOK (R/W)

Reset value: 0b0

Cluster power ok from cluster TRC status bitfield

# Bit 13 - **RST** (R/W)

Reset value: 0b0

Cluster reset configuration bitfield:

- 1'b0: nothing
- 1'b1: reset the cluster

## Bit 12 - **FLL_RET** (R/W)

Reset value: 0b0

Cluster FLL retentive configuration bitfield:

- 1'b0: FLL on
- 1'b1: FLL retentive mode

#### Bit 11 - **FLL_PWD** (R/W)

Reset value: 0b0

Cluster FLL shutdown configuration bitfield:

- 1'b0: FLL on
- 1'b1: FLL shutdown mode

#### Bit 10 - **CG** (R/W)

Reset value: 0b1

Cluster clock gate configuration bitfield:

- 1'b0: disabled
- 1'b1: enabled

It should always be used before switching cluster FLL to shutdown or retentive mode.

#### Bit 9 - BYP CLK (R/W)

Reset value: 0b0

Bypass cluster clock and reset control by Maestro PMU configuration bitfield:

- 1'b0: disabled
- 1'b1: enabled

#### Bits 8:7 - PROG_DEL (R/W)

Reset value: 0b00

Number of REFCLK 32kHz after cluster power ok has arised to release TR isolation configuration bitfield.

#### Bits 6:4 - CURRSET (R/W)

Reset value: 0b000

Max current allowed on cluster TRC configuration bitfield.

### Bit 3 - CL_STATE (R/W)

Reset value: 0b0

Cluster state configuration and status bitfield:

- 1'b0: off
- 1'b1: on

Status information is correct only when bypass mode is enabled.

#### Bit 1 - BYP_CFG (R/W)

Reset value: 0b0

Bypass Maestro PMU configuration selection configuration bitfield:

- 1'b0: use default
- 1'b1: use user configuration (bitfields from bits 3 to 15 of CL_BYPASS register)

#### Bit 0 - **BYP_POW** (R/W)

Reset value: 0b0

Bypass Maestro PMU controller configuration bitfield:

• 1'b0: disabled

• 1'b1: enabled

## 6.3.4.2.5 JTAG external register (JTAGREG)

Reset value: 0x0000

This register is used for synchronisation and boot mode configuration from an external debugger.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved			EXT_BT_M	)	EXT_SY NC		Rese	erved			INT_BT_MD	)	INT_SY NC

#### Bits 11:9 - **EXT_BT_MD** (R)

JTAG external register used for selecting boot mode configuration from external debugger

#### Bit 8 - EXT_SYNC (R)

JTAG external register used for synchronisation from external debugger

### Bits 3:1 - INT_BT_MD (R/W)

JTAG internal register used for selecting boot mode configuration from external debugger

### Bit 0 - INT_SYNC (R/W)

JTAG internal register used for synchronisation from external debugger

### 6.3.4.2.6 L2 sleep configuration register (L2_SLEEP)

Reset value: 0x0001

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	•		•		Reserved	•	•	•				•	L2_SLE EP

# Bit 0 - **L2_SLEEP** (R/W)

Reset value: 0b1

L2 memory sleep configuration

### 6.3.4.2.7 Alias for SAFE_PMU_SLEEPCTRL (SLEEP_CTRL)

Reset value: 0x0000

This register will be accessible in 1 clock cycle

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SLEEP	_CTRL							
		42	12	44	10	0		7	-	E	4	2	2	1	0
15	14	13	12	11	10	9	۰	,	0	,	-		_		

#### Bits 31:0 - SLEEP_CTRL (R)

Alias for SAFE_PMU_SLEEPCTRL(i.e. will be accessible in 1 clock cycle)

#### 6.3.4.2.8 EOC and chip status register (CORESTATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STA	TUS							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - **STATUS** (R/W)

EOC and chip status register

### 6.3.4.2.9 EOC and chip status register read mirror (CORESTATUS_RO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STA	TUS							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 31:0 - **STATUS** (R)

EOC and chip status register

### 6.3.4.2.10 DC/DC configuration register (SAFE_PMU_RAR)

Reset value: 0x2A52D

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved				RV_VOLT				Reserved				LV_VOLT		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved				MV_VOLT				Reserved				NV_VOLT		

#### Bits 28:24 - RV_VOLT (R/W)

Reset value: 0x0

DC/DC Retentive Voltage setting

#### Bits 20:16 - LV_VOLT (R/W)

Reset value: 0x2

DC/DC Low Voltage setting

### Bits 12:8 - MV_VOLT (R/W)

Reset value: 0x5

DC/DC Medium Voltage setting (not used)

### Bits 4:0 - **NV_VOLT** (R/W)

Reset value: 0xD

DC/DC Nominal Voltage setting

### 6.3.4.2.11 Sleep modes configuration register (SAFE_PMU_SLEEPCTRL)

#### Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					Reserved						CL_WAK E	ВТТ	YPE	EXTINT	BTDEV
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bit 20 - **CL_WAKE** (R/W)

Cluster state to restore after warm boot:

- 1'b0: off
- 1'b1: on

#### Bits 19:18 - **BTTYPE** (R/W)

Select boot type:

- *0b00*: cold boot
- *0b01*: deep sleep
- *0b10*: retentive deep sleep

### Bit 17 - **EXTINT** (R)

External wake-up interrupt status (automatically resetted after read)

- *0b0*: wake-up triggered by RTC
- *0b1*: wake-up triggered by external event

#### Bit 16 - **BTDEV** (R/W)

Warm bootmode:

- *0b0*: Boot from ROM
- *0b1*: Boot from L2

## Bit 14 - WAKESTATE (R/W)

Power state to restore after warm boot

- *0b0*: SoC_LV
- *0b1*: SoC_HV

## Bit 13 - EXTWAKE_EN (R/W)

Enable external wake-up;

- *0b0*; external wake-up disabled
- *0b1*: external wake-up enabled

# Bits 12:11 - EXTWAKE_TYPE (R/W)

Select external wake-up mode:

- *0b00*: rise event
- *0b01*: fall event
- *0b10*: high level
- *0b11*: low level

#### Bits 10:6 - EXTWAKE_SRC (R/W)

Select external wake-up source (GPIO ID):

- *0b00000*: GPIO 0
- *0b00001*: GPIO 1
- 0b00010: GPIO 2
- *0b00011*: GPIO 3
- 0b00100: GPIO 4
- *0b00101*: GPIO 5
- *0b00110*: GPIO 6
- *0b00111*: GPIO 7
- *0b01000*: GPIO 8
- 0b01001: GPIO 9
- *0b01010*: GPIO 10
- 0b01011: GPIO 11
- *0b01100*: GPIO 12
- 0b01101: GPIO 13
- *0b01110*: GPIO 14
- *0b01111*: GPIO 15
- *0b10000*: GPIO 16
- *0b10001*: GPIO 17
- *0b10010*: GPIO 18
- *0b10011*: GPIO 19
- *0b10100*: GPIO 20
- *0b10101*: GPIO 21 *0b10110*: GPIO 22
- *0b10111*: GPIO 23
- *0b11000*: GPIO 24
- *0b11001*: GPIO 25
- *0b11010*: GPIO 26
- *0b11011*: GPIO 27
- *0b11100*: GPIO 28
- *0b11101*: GPIO 29
- *0b11110*: GPIO 30
- 0b11111: GPIO 31

#### Bit 5 - CL_FLL (R/W)

Configure retention mode for cluster FLL:

- *0b0*: Non retentive
- *0b1*: Retentive

## Bit 4 - SOC_FLL (R/W)

Configure retention mode for SoC FLL:

- *0b0*: Non retentive
- *0b1*: Retentive

## Bit 3 - **L2_R3** (R/W)

Configure retention mode for region 3 of L2 memory:

- *0b0*: Non retentive
- *0b1*: Retentive

### Bit 2 - **L2_R2** (R/W)

Configure retention mode for region 2 of L2 memory:

- *0b0*: Non retentive
- *0b1*: Retentive

#### Bit 1 - **L2_R1** (R/W)

Configure retention mode for region 1 of L2 memory:

- *0b0*: Non retentive
- *0b1*: Retentive

## Bit 0 - **L2_R0** (R/W)

Configure retention mode for region 0 of L2 memory:

- *0b0*: Non retentive
- *0b1*: Retentive

### 6.3.4.2.12 L2 rententive state configuration (SAFE_PMU_FORCE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Door	erved				PD_L2_	PD_L2_	PD_L2_	PD_L2_	RET_L2	RET_L2	RET_L2	RET_L2
			nese	erveu				R3	R2	R1	R0	R3	R2	R1	R0

## Bit 7 - **PD_L2_R3** (R/W)

Force power down on region 3 of L2 memory:

*0b0*: power up

*0b1*: power down

#### Bit 6 - PD_L2_R2 (R/W)

Force power down on region 2 of L2 memory:

*0b0*: power up

*0b1*: power down

## Bit 5 - **PD_L2_R1** (R/W)

Force power down on region 1 of L2 memory:

*0b0*: power up

*0b1*: power down

### Bit 4 - **PD_L2_R0** (R/W)

Force power down on region 0 of L2 memory:

*0b0*: power up

*0b1*: power down

### Bit 3 - **RET_L2_R3** (R/W)

Force retentive state on region 3 of L2 memory:

0b0: not state retentive

*0b1*: state retentive

### Bit 2 - **RET_L2_R2** (R/W)

Force retentive state on region 2 of L2 memory:

*0b0*: not state retentive

*0b1*: state retentive

## Bit 1 - **RET_L2_R1** (*R/W*)

Force retentive state on region 1 of L2 memory:

*0b0*: not state retentive

*0b1*: state retentive

### Bit 0 - **RET_L2_R0** (*R/W*)

Force retentive state on region 0 of L2 memory:

0b0: not state retentive

*0b1*: state retentive

# 6.3.4.2.13 Mux config register (pad 0-15) (SAFE_PADFUN0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Α	41	В	38	Α	42	В	39	A	37	A	43	В	40	A	44
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:30 - **A41** (R/W)

#### Configure A41 functionality:

- 0b00: Alternate 0 CAM_DATA3 (default)
- *0b01*: Alternate 1 GPIOA9
- *0b10*: Alternate 2 TIMER2_CH1
- *0b11*: Alternate 3 -

### Bits 29:28 - **B38** (R/W)

### Configure **B38** functionality:

- 0b00: Alternate 0 CAM_DATA2 (default)
- 0b01: Alternate 1 GPIOA8
- 0b10: Alternate 2 TIMER2_CH0
- *0b11*: Alternate 3 -

#### Bits 27:26 - **A42** (R/W)

#### Configure A42 functionality:

- 0b00: Alternate 0 CAM_DATA1 (default)
- *0b01*: Alternate 1 GPIOA7
- 0b10: Alternate 2 TIMER1_CH3
- 0b11: Alternate 3 -

# Bits 25:24 - **B39** (R/W)

## Configure <u>B39</u> functionality:

- 0b00: Alternate 0 CAM_DATA0 (default)
- *0b01*: Alternate 1 GPIOA6
- *0b10*: Alternate 2 TIMER1_CH2
- *0b11*: Alternate 3 -

### Bits 23:22 - **A37** (R/W)

## Configure <u>A37</u> functionality:

- *0b00*: Alternate 0 CAM_HSYNC (default)
- *0b01*: Alternate 1 GPIOA5
- 0b10: Alternate 2 TIMER1_CH1
- *0b11*: Alternate 3 -

#### Bits 21:20 - A43 (R/W)

#### Configure A43 functionality:

- 0b00: Alternate 0 CAM_PCLK (default)
- *0b01*: Alternate 1 GPIOA4
- *0b10*: Alternate 2 TIMER1_CH0
- *0b11*: Alternate 3 -

### Bits 19:18 - **B40** (R/W)

## Configure <u>B40</u> functionality:

- 0b00: Alternate 0 ORCA_RXQ (default)
- *0b01*: Alternate 1 GPIOA5
- 0b10: Alternate 2 SPIS0_SDIO1
- 0b11: Alternate 3 SPIS0_SDIO3

#### Bits 17:16 - **A44** (R/W)

#### Configure A44 functionality:

- *0b00*: Alternate 0 ORCA_RXI (default)
- *0b01*: Alternate 1 GPIOA4
- 0b10: Alternate 2 SPIS0_SDIO0
- *0b11*: Alternate 3 SPIS0_SDIO2

# Bits 15:14 - **B1** (R/W)

## Configure <u>B1</u> functionality:

- 0b00: Alternate 0 ORCA_TXQ (default)
- *0b01*: Alternate 1 GPIOA3
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 -

### Bits 13:12 - **A2** (R/W)

## Configure A2 functionality:

- *0b00*: Alternate 0 ORCA_TXI (default)
- *0b01*: Alternate 1 GPIOA2
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 -

#### Bits 11:10 - **B2** (R/W)

#### Configure **B2** functionality:

- 0b00: Alternate 0 ORCA_RXSYNC (default)
- *0b01*: Alternate 1 GPIOA1
- *0b10*: Alternate 2 SPIM1_CS1
- *0b11*: Alternate 3 -

### Bits 9:8 - **A3** (R/W)

## Configure <u>A3</u> functionality:

- 0b00: Alternate 0 ORCA_TXSYNC (default)
- *0b01*: Alternate 1 GPIOA0
- 0b10: Alternate 2 SPIM1_CS0
- *0b11*: Alternate 3 -

### Bits 7:6 - **B4** (R/W)

#### Configure **B4** functionality:

- *0b00*: Alternate 0 SPIM1_SCK (default)
- *0b01*: Alternate 1 GPIOA3
- 0b10: Alternate 2 I2C1_SCL
- *0b11*: Alternate 3 -

## Bits 5:4 - **A5** (R/W)

## Configure <u>A5</u> functionality:

- *0b00*: Alternate 0 SPIM1_CS0 (default)
- *0b01*: Alternate 1 GPIOA2
- *0b10*: Alternate 2 I2C1_SDA
- *0b11*: Alternate 3 -

### Bits 3:2 - **B3** (R/W)

## Configure $\underline{\mathsf{B3}}$ functionality:

- *0b00*: Alternate 0 SPIM1_MOSI (default)
- *0b01*: Alternate 1 GPIOA1
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 -

#### Bits 1:0 - **A4** (R/W)

#### Configure A4 functionality:

- 0b00: Alternate 0 SPIM1_MISO (default)
- *0b01*: Alternate 1 GPIOA0
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 -

#### 6.3.4.2.14 Mux config register (pad 16-31) (SAFE_PADFUN1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Α	۸7	Е	86	В	14	A ⁻	15	B1	13	A ⁻	14	В	12	A1	13
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:30 - **A7** (R/W)

#### Configure A7 functionality:

- 0b00: Alternate 0 UART_TX (default)
- *0b01*: Alternate 1 GPIOA25
- *0b10*: Alternate 2 -
- 0b11: Alternate 3 -

### Bits 29:28 - **B6** (R/W)

### Configure **B6** functionality:

- *0b00*: Alternate 0 UART_RX (default)
- 0b01: Alternate 1 GPIOA24
- *0b10*: Alternate 2 -
- 0b11: Alternate 3 -

### Bits 27:26 - **B14** (R/W)

## Configure <u>B14</u> functionality:

- 0b00: Alternate 0 I2S1_SDI (default)
- *0b01*: Alternate 1 GPIOA23
- *0b10*: Alternate 2 SPIS0_SDIO2
- *0b11*: Alternate 3 HYPER_CK

### Bits 25:24 - **A15** (R/W)

### Configure A15 functionality:

- 0b00: Alternate 0 I2S1_WS (default)
- *0b01*: Alternate 1 GPIOA22
- *0b10*: Alternate 2 SPIS0_CS
- *0b11*: Alternate 3 HYPER_CKN

#### Bits 23:22 - **B13** (R/W)

#### Configure <u>B13</u> functionality:

- ObOO: Alternate 0 I2S1_SCK (default)
- *0b01*: Alternate 1 GPIOA21
- *0b10*: Alternate 2 SPIS0_SCK
- *0b11*: Alternate 3 I2S1_SDI

### Bits 21:20 - **A14** (R/W)

### Configure A14 functionality:

- 0b00: Alternate 0 TIMER0_CH3 (default)
- *0b01*: Alternate 1 GPIOA20
- 0b10: Alternate 2 TIMER3_CH0
- *0b11*: Alternate 3 -

#### Bits 19:18 - **B12** (R/W)

#### Configure <u>B12</u> functionality:

- 0b00: Alternate 0 TIMERO_CH2 (default)
- *0b01*: Alternate 1 GPIOA19
- 0b10: Alternate 2 TIMER2_CH0
- 0b11: Alternate 3 -

# Bits 17:16 - **A13** (R/W)

## Configure A13 functionality:

- 0b00: Alternate 0 TIMER0_CH1 (default)
- *0b01*: Alternate 1 GPIOA18
- *0b10*: Alternate 2 TIMER1_CH0
- *0b11*: Alternate 3 -

### Bits 15:14 - **B11** (R/W)

## Configure <u>B11</u> functionality:

- 0b00: Alternate 0 TIMERO_CH0 (default)
- *0b01*: Alternate 1 GPIOA17
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 -

#### Bits 13:12 - **D1** (R/W)

#### Configure <u>D1</u> functionality:

- ObOO: Alternate 0 I2C1_SCL (default)
- *0b01*: Alternate 1 GPIOA16
- *0b10*: Alternate 2 ORCA_CLK
- *0b11*: Alternate 3 -

### Bits 11:10 - **B34** (R/W)

### Configure **B34** functionality:

- 0b00: Alternate 0 I2C1_SDA (default)
- *0b01*: Alternate 1 GPIOA15
- 0b10: Alternate 2 TIMER3_CH3
- *0b11*: Alternate 3 -

#### Bits 9:8 - **A36** (R/W)

#### Configure A36 functionality:

- *0b00*: Alternate 0 CAM_VSYNC (default)
- 0b01: Alternate 1 GPIOA14
- 0b10: Alternate 2 TIMER3_CH2
- *0b11*: Alternate 3 -

# Bits 7:6 - **A38** (R/W)

## Configure A38 functionality:

- 0b00: Alternate 0 CAM_DATA7 (default)
- *0b01*: Alternate 1 GPIOA13
- *0b10*: Alternate 2 TIMER3_CH1
- *0b11*: Alternate 3 -

### Bits 5:4 - **B36** (R/W)

# Configure <u>B36</u> functionality:

- *0b00*: Alternate 0 CAM_DATA6 (default)
- *0b01*: Alternate 1 GPIOA12
- *0b10*: Alternate 2 TIMER3_CH0
- *0b11*: Alternate 3 -

#### Bits 3:2 - A40 (R/W)

#### Configure A40 functionality:

- 0b00: Alternate 0 CAM_DATA5 (default)
- *0b01*: Alternate 1 GPIOA11
- *0b10*: Alternate 2 TIMER2_CH3
- *0b11*: Alternate 3 -

### Bits 1:0 - **B37** (R/W)

## Configure <u>B37</u> functionality:

- 0b00: Alternate 0 CAM_DATA4 (default)
- *0b01*: Alternate 1 GPIOA10
- 0b10: Alternate 2 TIMER2_CH2
- *0b11*: Alternate 3 -

## 6.3.4.2.15 Mux config register (pad 32-47) (SAFE_PADFUN2)

#### Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
В	23	A	26	A	24	A	25	B2	22	В	9	A1	16	B1	15
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					-	-	-		•	_	-	_	_		-

### Bits 31:30 - **B23** (R/W)

### Configure **B23** functionality:

- 0b00: Alternate 0 I2S0_SDI (default)
- *0b01*: Alternate 1 -
- *0b10*: Alternate 2 -
- 0b11: Alternate 3 -

### Bits 29:28 - **A26** (R/W)

## Configure <u>A26</u> functionality:

- 0b00: Alternate 0 I2S0_WS (default)
- *0b01*: Alternate 1 -
- 0b10: Alternate 2 -
- *0b11*: Alternate 3 -

## Bits 27:26 - **A24** (R/W)

### Configure A24 functionality:

- 0b00: Alternate 0 I2S0_SCK (default)
- *0b01*: Alternate 1 -
- *0b10*: Alternate 2 -
- 0b11: Alternate 3 -

#### Bits 25:24 - **A25** (R/W)

#### Configure A25 functionality:

- 0b00: Alternate 0 I2C0_SCL (default)
- *0b01*: Alternate 1 -
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 -

### Bits 23:22 - **B22** (R/W)

### Configure **B22** functionality:

- 0b00: Alternate 0 I2C0_SDA (default)
- *0b01*: Alternate 1 -
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 -

### Bits 21:20 - **B9** (R/W)

#### Configure **B9** functionality:

- *0b00*: Alternate 0 SPIS0_SCK (default)
- *0b01*: Alternate 1 -
- 0b10: Alternate 2 -
- *0b11*: Alternate 3 HYPER_RWDS

## Bits 19:18 - **A16** (R/W)

## Configure A16 functionality:

- *0b00*: Alternate 0 SPIS0_SDIO1 (default)
- *0b01*: Alternate 1 GPIOA31
- *0b10*: Alternate 2 -
- 0b11: Alternate 3 HYPER_CSN1

### Bits 17:16 - **B15** (R/W)

## Configure <u>B15</u> functionality:

- *0b00*: Alternate 0 SPIS0_SDIO0 (default)
- *0b01*: Alternate 1 GPIOA30
- *0b10*: Alternate 2 SPIM1_CS1
- *0b11*: Alternate 3 HYPER_CSN0

#### Bits 15:14 - A9 (R/W)

#### Configure A9 functionality:

- 0b00: Alternate 0 SPIS0_CS (default)
- *0b01*: Alternate 1 GPIOA29
- *0b10*: Alternate 2 SPIM1_CS0
- *0b11*: Alternate 3 HYPER_DQ[7]

### Bits 13:12 - **B7** (R/W)

## Configure <u>B7</u> functionality:

- 0b00: Alternate 0 SPIM0_SCK (default)
- *0b01*: Alternate 1 -
- *0b10*: Alternate 2 -
- 0b11: Alternate 3 HYPER_DQ[6]

#### Bits 11:10 - **A8** (R/W)

#### Configure **A8** functionality:

- *0b00*: Alternate 0 SPIM0_CS1 (default)
- *0b01*: Alternate 1 GPIOA28
- 0b10: Alternate 2 SPIS0_SDIO3
- *0b11*: Alternate 3 HYPER_DQ[5]

# Bits 9:8 - **B8** (R/W)

## Configure <u>B8</u> functionality:

- *0b00*: Alternate 0 SPIM0_CS0 (default)
- *0b01*: Alternate 1 -
- *0b10*: Alternate 2 -
- *0b11*: Alternate 3 HYPER_DQ[4]

### Bits 7:6 - **A10** (R/W)

## Configure <u>A10</u> functionality:

- 0b00: Alternate 0 SPIM0_SDIO3 (default)
- *0b01*: Alternate 1 GPIOA27
- *0b10*: Alternate 2 I2C1_SCL
- *0b11*: Alternate 3 HYPER_DQ[3]

#### Bits 5:4 - **B10** (R/W)

#### Configure <u>B10</u> functionality:

- 0b00: Alternate 0 SPIM0_SDIO2 (default)
- *0b01*: Alternate 1 GPIOA26
- *0b10*: Alternate 2 I2C1_SDA
- *0b11*: Alternate 3 HYPER_DQ[2]

### Bits 3:2 - **A11** (R/W)

## Configure A11 functionality:

- 0b00: Alternate 0 SPIM0_SDIO1 (default)
- *0b01*: Alternate 1 -
- *0b10*: Alternate 2 -
- 0b11: Alternate 3 HYPER_DQ[1]

### Bits 1:0 - **D2** (R/W)

#### Configure <u>D2</u> functionality:

- 0b00: Alternate 0 SPIM0_SDIO0 (default)
- *0b01*: Alternate 1 -
- 0b10: Alternate 2 -
- *0b11*: Alternate 3 HYPER_DQ[0]

### 6.3.4.2.16 Sleep config register (pad 0-15) (SAFE_SLEEPPADCFG0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
VAL_A4 1	DIR_A41	VAL_B3 8	DIR_B38	VAL_A4 2	DIR_A42	VAL_B3 9	DIR_B39	VAL_A3 7	DIR_A37	VAL_A4 3	DIR_A43	VAL_B4 0	DIR_B40	VAL_A4 4	DIR_A4 4
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VAL_B1	DIR_B1	VAL_A2	DIR_A2	VAL_B2	DIR_B2	VAL_A3	DIR_A3	VAL_B4	DIR_B4	VAL_A5	DIR_A5	VAL_B3	DIR_B3	VAL_A4	DIR_A4

#### Bit 31 - VAL_A41 (R/W)

#### Select A41 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

# Bit 30 - **DIR_A41** (R/W)

## Select A41 sleep direction

- *0b0*: Input
- *0b1*: Output

#### Bit 29 - VAL_B38 (R/W)

### Select **B38** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 28 - **DIR_B38** (R/W)

## Select **B38** sleep direction

- *0b0*: Input
- *0b1*: Output

### Bit 27 - **VAL_A42** (R/W)

#### Select A42 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 26 - **DIR_A42** (R/W)

## Select A42 sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 25 - **VAL_B39** (R/W)

## Select <u>B39</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 24 - **DIR_B39** (R/W)

## Select **B39** sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 23 - **VAL_A37** (R/W)

### Select A37 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 22 - **DIR_A37** (R/W)

### Select A37 sleep direction

- *0b0*: Input
- *0b1*: Output

#### Bit 21 - VAL_A43 (R/W)

Select A43 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 20 - **DIR_A43** (R/W)

Select A43 sleep direction

- *0b0*: Input
- *0b1*: Output

### Bit 19 - **VAL_B40** (R/W)

Select **B40** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 18 - **DIR_B40** (R/W)

Select **B40** sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 17 - **VAL_A44** (R/W)

Select A44 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 16 - **DIR_A44** (R/W)

Select A44 sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 15 - **VAL_B1** (R/W)

Select **B1** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 14 - **DIR_B1** (R/W)

Select <u>B1</u> sleep direction

- *0b0*: Input
- *0b1*: Output

#### Bit 13 - VAL_A2 (R/W)

#### Select A2 sleep state

- *0b0*: Input or output low
- 0b1: Input or output high

## Bit 12 - **DIR_A2** (R/W)

## Select A2 sleep direction

- *0b0*: Input
- *0b1*: Output

### Bit 11 - **VAL_B2** (R/W)

#### Select **B2** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 10 - **DIR_B2** (R/W)

## Select **B2** sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 9 - **VAL_A3** (R/W)

## Select A3 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 8 - **DIR_A3** (R/W)

### Select A3 sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 7 - **VAL_B4** (R/W)

### Select **B4** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 6 - **DIR_B4** (R/W)

### Select **B4** sleep direction

- *0b0*: Input
- *0b1*: Output

### Bit 5 - **VAL_A5** (R/W)

Select A5 sleep state

- *0b0*: Input or output low
- 0b1: Input or output high

## Bit 4 - **DIR_A5** (R/W)

Select A5 sleep direction

- *0b0*: Input
- *0b1*: Output

### Bit 3 - **VAL_B3** (R/W)

Select **B3** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 2 - **DIR_B3** (R/W)

Select **B3** sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 1 - **VAL_A4** (R/W)

Select A4 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 0 - **DIR_A4** (R/W)

Select A4 sleep direction

- *0b0*: Input
- 0b1: Output

#### 6.3.4.2.17 Mux config register (pad 16-31) (SAFE_SLEEPPADCFG1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
VAL_A7	DIR_A7	VAL_B6	DIR_B6	VAL_B1	DIR_B14	VAL_A1 5	DIR_A15	VAL_B1 3	DIR_B13	VAL_A1	DIR_A14	VAL_B1 2	DIR_B12	VAL_A1	DIR_A1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bit 31 - **VAL_A7** (R/W)

Select A7 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

#### Bit 30 - **DIR_A7** (R/W)

Select A7 sleep direction

- *0b0*: Input
- 0b1: Output

## Bit 29 - **VAL_B6** (R/W)

Select **B6** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

#### Bit 28 - **DIR_B6** (R/W)

Select **B6** sleep direction

- *0b0*: Input
- *0b1*: Output

### Bit 27 - **VAL_B14** (R/W)

Select <u>B14</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 26 - **DIR_B14** (R/W)

Select <u>B14</u> sleep direction

- *0b0*: Input
- *0b1*: Output

### Bit 25 - **VAL_A15** (R/W)

Select A15 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 24 - **DIR_A15** (R/W)

Select A15 sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 23 - **VAL_B13** (R/W)

Select <u>B13</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

#### Bit 22 - **DIR_B13** (R/W)

### Select <u>B13</u> sleep direction

- *0b0*: Input
- 0b1: Output

## Bit 21 - **VAL_A14** (R/W)

## Select A14 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 20 - **DIR_A14** (R/W)

#### Select A14 sleep direction

- *0b0*: Input
- 0b1: Output

### Bit 19 - VAL_B12 (R/W)

## Select <u>B12</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 18 - **DIR_B12** (R/W)

## Select <u>B12</u> sleep direction

- *0b0*: Input
- *0b1*: Output

#### Bit 17 - VAL_A13 (R/W)

### Select A13 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 16 - **DIR_A13** (R/W)

## Select A13 sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 15 - **VAL_B11** (R/W)

### Select <u>B11</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

#### Bit 14 - **DIR_B11** (R/W)

#### Select **B11** sleep direction

- *0b0*: Input
- 0b1: Output

## Bit 13 - **VAL_D1** (R/W)

### Select <u>D1</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 12 - **DIR_D1** (R/W)

### Select <u>D1</u> sleep direction

- *0b0*: Input
- 0b1: Output

### Bit 11 - VAL_B34 (R/W)

## Select <u>B34</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 10 - **DIR_B34** (R/W)

## Select <u>B34</u> sleep direction

- *0b0*: Input
- *0b1*: Output

### Bit 9 - **VAL_A36** (R/W)

### Select A36 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 8 - **DIR_A36** (R/W)

### Select A36 sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 7 - **VAL_A38** (R/W)

### Select A38 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

#### Bit 6 - **DIR_A38** (R/W)

Select A38 sleep direction

- *0b0*: Input
- 0b1: Output

## Bit 5 - **VAL_B36** (R/W)

Select <u>B36</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 4 - **DIR_B36** (R/W)

Select **B36** sleep direction

- *0b0*: Input
- 0b1: Output

### Bit 3 - **VAL_A40** (R/W)

Select A40 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 2 - **DIR_A40** (R/W)

Select A40 sleep direction

- *0b0*: Input
- *0b1*: Output

### Bit 1 - **VAL_B37** (R/W)

Select <u>B37</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

# Bit 0 - **DIR_B37** (R/W)

Select **B37** sleep direction

- *0b0*: Input
- *0b1*: Output

# 6.3.4.2.18 Mux config register (pad 32–47) (SAFE_SLEEPPADCFG2)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
VAL_B2	DIR_B23	VAL_A2 6	DIR_A26	VAL_A2 4	DIR_A24	VAL_A2 5	DIR_A25	VAL_B2 2	DIR_B22	VAL_B9	DIR_B9	VAL_A1 6	DIR_A16	VAL_B1 5	DIR_B1 5
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bit 31 - VAL_B23 (R/W)

#### Select **B23** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 30 - **DIR_B23** (R/W)

## Select **B23** sleep direction

- *0b0*: Input
- *0b1*: Output

### Bit 29 - **VAL_A26** (R/W)

#### Select A26 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 28 - **DIR_A26** (R/W)

## Select A26 sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 27 - **VAL_A24** (R/W)

## Select A24 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

#### Bit 26 - DIR_A24 (R/W)

### Select A24 sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 25 - **VAL_A25** (R/W)

### Select A25 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 24 - **DIR_A25** (R/W)

### Select A25 sleep direction

- *0b0*: Input
- *0b1*: Output

#### Bit 23 - VAL_B22 (R/W)

Select **B22** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 22 - **DIR_B22** (R/W)

Select **B22** sleep direction

- *0b0*: Input
- *0b1*: Output

### Bit 21 - **VAL_B9** (R/W)

Select **B9** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 20 - **DIR_B9** (R/W)

Select <u>B9</u> sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 19 - **VAL_A16** (R/W)

Select A16 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 18 - **DIR_A16** (R/W)

Select A16 sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 17 - **VAL_B15** (R/W)

Select <u>B15</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 16 - **DIR_B15** (R/W)

Select <u>B15</u> sleep direction

- *0b0*: Input
- *0b1*: Output

#### Bit 15 - VAL_A9 (R/W)

#### Select A9 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 14 - **DIR_A9** (R/W)

### Select A9 sleep direction

- *0b0*: Input
- *0b1*: Output

### Bit 13 - **VAL_B7** (R/W)

#### Select **B7** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 12 - **DIR_B7** (R/W)

## Select <u>B7</u> sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 11 - **VAL_A8** (R/W)

## Select A8 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 10 - **DIR_A8** (R/W)

### Select A8 sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 9 - **VAL_B8** (R/W)

### Select **B8** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 8 - **DIR_B8** (R/W)

### Select **B8** sleep direction

- *0b0*: Input
- *0b1*: Output

#### Bit 7 - VAL_A10 (R/W)

#### Select A10 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 6 - **DIR_A10** (R/W)

### Select A10 sleep direction

- *0b0*: Input
- *0b1*: Output

### Bit 5 - **VAL_B10** (R/W)

#### Select <u>B10</u> sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 4 - **DIR_B10** (R/W)

## Select <u>B10</u> sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 3 - **VAL_A11** (R/W)

## Select A11 sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

### Bit 2 - **DIR_A11** (R/W)

### Select A11 sleep direction

- *0b0*: Input
- *0b1*: Output

## Bit 1 - **VAL_D2** (R/W)

### Select **D2** sleep state

- *0b0*: Input or output low
- *0b1*: Input or output high

## Bit 0 - **DIR_D2** (R/W)

### Select <u>D2</u> sleep direction

- *0b0*: Input
- *0b1*: Output

## 6.3.4.2.19 Enable Sleep mode for pads (SAFE_PADSLEEP)

#### Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17														16	
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bit 0 - **EN** (R/W)

Enable pad sleep mode:

0b0: disable

*0b1*: enable

## 6.3.4.2.20 Function register (pad 0 to 3) (SAFE_PADCFG0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved					DR_B4	PULL_B 4			Rese	erved			DR_A5	PULL_A 5
15	15 14 13 12 11 10 Reserved						8	7	6	5	4	3	2	1	0

## Bit 25 - **DR_B4** (R/W)

Select **B4** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

## Bit 24 - **PULL_B4** (R/W)

Select **B4** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

## Bit 17 - **DR_A5** (R/W)

Select A5 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

## Bit 16 - **PULL_A5** (R/W)

Select A5 pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

## Bit 9 - **DR_B3** (R/W)

Select **B3** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

#### Bit 8 - **PULL_B3** (R/W)

Select **B3** pull activation

- 0b0: pull disabled
- 0b1: pull enabled

## Bit 1 - **DR_A4** (R/W)

Select A4 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 0 - **PULL_A4** (R/W)

Select A4 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

## 6.3.4.2.21 Function register (pad 4 to 7) (SAFE_PADCFG1)

Reset value: 0x0000

31	31 30 29 28 27 26						24	23	22	21	20	19	18	17	16
	Reserved					DR_B1	PULL_B 1			Rese	erved			DR_A2	PULL_A 2
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15 14 13 12 11 10 Reserved														

## Bit 25 - **DR_B1** (R/W)

Select **B1** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 24 - **PULL_B1** (R/W)

Select **B1** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

# Bit 17 - **DR_A2** (R/W)

Select A2 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 16 - **PULL_A2** (R/W)

Select A2 pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

#### Bit 9 - **DR_B2** (R/W)

Select B2 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

## Bit 8 - **PULL_B2** (R/W)

Select **B2** pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

### Bit 1 - **DR_A3** (R/W)

Select A3 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

### Bit 0 - **PULL_A3** (R/W)

Select A3 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

### 6.3.4.2.22 Function register (pad 8 to 11) (SAFE_PADCFG2)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved					DR_A37	PULL_A 37			Res	erved			DR_A43	PULL_A 43
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			DR_B40	PULL_B 40			Res	erved			DR_A44	PULL_A 44

#### Bit 25 - **DR_A37** (R/W)

Select A37 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

# Bit 24 - **PULL_A37** (R/W)

Select A37 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

### Bit 17 - **DR_A43** (R/W)

Select A43 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

#### Bit 16 - PULL_A43 (R/W)

Select A43 pull activation

- 0b0: pull disabled
- 0b1: pull enabled

## Bit 9 - **DR_B40** (R/W)

Select **B40** drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

### Bit 8 - **PULL_B40** (R/W)

Select **B40** pull activation

- *0b0*: pull disabled
- 0b1: pull enabled

#### Bit 1 - **DR_A44** (R/W)

Select A44 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

## Bit 0 - **PULL_A44** (R/W)

Select A44 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

## 6.3.4.2.23 Function register (pad 12 to 15) (SAFE_PADCFG3)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved					DR_A41	PULL_A 41			Rese	erved			DR_B38	PULL_B 38
15	4.4					٥									
13							8	7	6	5	4	3	2	1	0

# Bit 25 - **DR_A41** (R/W)

Select A41 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 24 - **PULL_A41** (R/W)

Select A41 pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

#### Bit 17 - **DR_B38** (R/W)

Select **B38** drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

## Bit 16 - **PULL_B38** (R/W)

Select **B38** pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

### Bit 9 - **DR_A42** (R/W)

Select A42 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

### Bit 8 - **PULL_A42** (R/W)

Select A42 pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

## Bit 1 - **DR_B39** (R/W)

Select **B39** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 0 - **PULL_B39** (R/W)

Select **B39** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

#### 6.3.4.2.24 Function register (pad 16 to 19) (SAFE_PADCFG4)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved					DR_A38	PULL_A 38			Rese	erved			DR_B36	PULL_B 36
15						9	8	7	6	5	4	3	2	1	0
		• • •		,	·	,	Ū	,	-	,	-	•	Ū		

### Bit 25 - **DR_A38** (R/W)

Select A38 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

#### Bit 24 - PULL_A38 (R/W)

Select A38 pull activation

- 0b0: pull disabled
- 0b1: pull enabled

## Bit 17 - **DR_B36** (R/W)

Select **B36** drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

### Bit 16 - PULL_B36 (R/W)

Select **B36** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

### Bit 9 - **DR_A40** (R/W)

Select A40 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

## Bit 8 - **PULL_A40** (R/W)

Select A40 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

### Bit 1 - **DR_B37** (R/W)

Select **B37** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

## Bit 0 - **PULL_B37** (R/W)

Select **B37** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

## 6.3.4.2.25 Function register (pad 20 to 23) (SAFE_PADCFG5)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Rese	erved			DR_B11	PULL_B 11			Rese	erved			DR_D1	PULL_D 1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15 14 13 12 11 10 Reserved						PULL_B								PULL_A

#### Bit 25 - **DR_B11** (R/W)

#### Select B11 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

## Bit 24 - **PULL_B11** (R/W)

### Select **B11** pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

### Bit 17 - **DR_D1** (R/W)

### Select D1 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

### Bit 16 - **PULL_D1** (R/W)

### Select D1 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

## Bit 9 - **DR_B34** (R/W)

## Select **B34** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 8 - **PULL_B34** (R/W)

### Select **B34** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

## Bit 1 - **DR_A36** (R/W)

### Select A36 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

## Bit 0 - **PULL_A36** (R/W)

### Select A36 pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

### 6.3.4.2.26 Function register (pad 24 to 27) (SAFE_PADCFG6)

#### Reset value: 0x0000

31	30	1 30 29 28 27 26						23	22	21	20	19	18	17	16
	Reserved					DR_B13	PULL_B 13			Rese	erved			DR_A14	PULL_A 14
15	15 14 13 12 11 10 Reserved						8	7	6	5	4	3	2	1	0

### Bit 25 - **DR_B13** (R/W)

Select **B13** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 24 - **PULL_B13** (R/W)

Select <u>B13</u> pull activation

- *0b0*: pull disabled
- 0b1: pull enabled

### Bit 17 - **DR_A14** (R/W)

Select A14 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

## Bit 16 - **PULL_A14** (R/W)

Select A14 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

## Bit 9 - **DR_B12** (R/W)

Select <u>B12</u> drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 8 - **PULL_B12** (R/W)

Select <u>B12</u> pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

# Bit 1 - **DR_A13** (R/W)

Select A13 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

#### Bit 0 - **PULL_A13** (R/W)

Select A13 pull activation

- 0b0: pull disabled
- 0b1: pull enabled

## 6.3.4.2.27 Function register (pad 28 to 31) (SAFE_PADCFG7)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved						PULL_A			Res	erved			DR_B6	PULL_B
15	15 14 13 12 11 10						8	7	6	5	4	3	2	1	0
	15 14 13 12 11 10 Reserved						PULL_B 14			Res	erved			DR_A15	PULL_A 15

### Bit 25 - **DR_A7** (R/W)

Select A7 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

### Bit 24 - **PULL_A7** (R/W)

Select A7 pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

## Bit 17 - **DR_B6** (R/W)

Select **B6** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 16 - **PULL_B6** (R/W)

Select **B6** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

# Bit 9 - **DR_B14** (R/W)

Select <u>B14</u> drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 8 - **PULL_B14** (R/W)

Select <u>B14</u> pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

#### Bit 1 - **DR_A15** (R/W)

Select A15 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

## Bit 0 - **PULL_A15** (R/W)

Select A15 pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

### 6.3.4.2.28 Function register (pad 32 to 35) (SAFE_PADCFG8)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Rese	erved			DR_A10	PULL_A 10			Rese	erved			DR_B10	PULL_B 10
15	14	11	10	9	8	7	6	5	4	3	2	1	0		

### Bit 25 - **DR_A10** (R/W)

Select A10 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

## Bit 24 - **PULL_A10** (R/W)

Select A10 pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

### Bit 17 - **DR_B10** (R/W)

Select <u>B10</u> drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

# Bit 16 - **PULL_B10** (R/W)

Select <u>B10</u> pull activation

- *0b0*: pull disabled
- 0b1: pull enabled

### Bit 9 - **DR_A11** (R/W)

Select A11 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

#### Bit 8 - **PULL_A11** (R/W)

Select A11 pull activation

- 0b0: pull disabled
- 0b1: pull enabled

## Bit 1 - **DR_D2** (R/W)

Select D2 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 0 - **PULL_D2** (R/W)

Select D2 pull activation

- *0b0*: pull disabled
- 0b1: pull enabled

### 6.3.4.2.29 Function register (pad 36 to 39) (SAFE_PADCFG9)

Reset value: 0x0000

31	31 30 29 28 27 26						24	23	22	21	20	19	18	17	16
	Reserved					DR_A9	PULL_A 9			Rese	erved			DR_B7	PULL_B 7
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15 14 13 12 11 10 Reserved														

## Bit 25 - **DR_A9** (R/W)

Select A9 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 24 - **PULL_A9** (R/W)

Select A9 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

# Bit 17 - **DR_B7** (R/W)

Select **B7** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

## Bit 16 - **PULL_B7** (R/W)

Select **B7** pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

#### Bit 9 - **DR_A8** (R/W)

Select A8 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

## Bit 8 - **PULL_A8** (R/W)

Select A8 pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

### Bit 1 - **DR_B8** (R/W)

Select **B8** drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

### Bit 0 - **PULL_B8** (R/W)

Select **B8** pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

### 6.3.4.2.30 Function register (pad 40 to 43) (SAFE_PADCFG10)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved						PULL_B 22			Res	erved			DR_B9	PULL_B 9
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			DR_A16	PULL_A 16			Res	erved			DR_B15	PULL_B 15

#### Bit 25 - **DR_B22** (R/W)

Select **B22** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

## Bit 24 - **PULL_B22** (R/W)

Select **B22** pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

## Bit 17 - **DR_B9** (R/W)

Select **B9** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

#### Bit 16 - **PULL_B9** (R/W)

Select **B9** pull activation

- 0b0: pull disabled
- 0b1: pull enabled

## Bit 9 - **DR_A16** (R/W)

Select A16 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 8 - **PULL_A16** (R/W)

Select A16 pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

### Bit 1 - **DR_B15** (R/W)

Select <u>B15</u> drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

## Bit 0 - **PULL_B15** (R/W)

Select <u>B15</u> pull activation

- *0b0*: pull disabled
- *0b1*: pull enabled

## 6.3.4.2.31 Function register (pad 44 to 47) (SAFE_PADCFG11)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Rese	erved			DR_B23	PULL_B 23			Rese	erved			DR_A26	PULL_A 26
15	14	13	12	11	10	9	8	7	6	5	4	2	2	1	0
						,	٥	,	U			,			٠

# Bit 25 - **DR_B23** (R/W)

Select **B23** drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

### Bit 24 - PULL_B23 (R/W)

Select **B23** pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

#### Bit 17 - DR_A26 (R/W)

Select A26 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

## Bit 16 - **PULL_A26** (R/W)

Select A26 pull activation

- 0b0: pull disabled
- 0b1: pull enabled

#### Bit 9 - DR_A24 (R/W)

Select A24 drive strength

- *0b0*: low drive strength
- 0b1: high drive strength

#### Bit 8 - PULL_A24 (R/W)

Select A24 pull activation

- 0b0: pull disabled
- *0b1*: pull enabled

## Bit 1 - **DR_A25** (R/W)

Select A25 drive strength

- *0b0*: low drive strength
- *0b1*: high drive strength

#### Bit 0 - **PULL_A25** (R/W)

Select A25 pull activation

- *0b0*: pull disabled
- 0b1: pull enabled

#### 6.3.4.2.32 GPIO power domain pad input isolation register (REG_GPIO_ISO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								ISO

### Bit 0 - **ISO** (R/W)

Configuration of GPIO domain pads isolation:

- *0b0*: not isolated
- 0b1: isolated

### 6.3.4.2.33 CAM power domain pad input isolation register (REG_CAM_ISO)

#### Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								ISO

#### Bit 0 - ISO (R/W)

Configuration of CAM domain pads isolation:

- 0b0: not isolated
- 0b1: isolated

## 6.3.4.2.34 LVDS power domain pad input isolation register (REG_LVDS_ISO)

### Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bit 0 - **ISO** (R/W)

Configuration of LVDS domain pads isolation:

- *0b0*: not isolated
- *0b1*: isolated

### 6.3.5 Advanced timer

ADV_TIMER component manages the following features:

- 4 advanced timers with 4 output signal channels each. Provides PWM generation functionality
- multiple trigger input sources:
  - o output signal channels of all timers
  - o 32 GPIOs
  - o reference clock at 32kHz
  - SoC FLL clock
- configurable input trigger modes
- configurable prescaler for each timer
- configurable counting mode for each timer
- configurable channel threshold action for each timer
- 4 configurable output events
- configurable clock gating of each timer

## 6.3.5.1 Advanced timer registers

Name	Address	Size	Туре	Access	Default	Description
T0_CMD	0x1A105000	32	Config	R/W	0x0000	ADV_TIMER0 command register.
T0_CONFIG	0x1A105004	32	Config	R/W	0x0000	ADV_TIMER0 configuration register.

Name	Address	Size	Туре	Access	Default	Description
T0_THRESHOLD	0x1A105008	32	Config	R/W	0x0000	ADV_TIMER0 threshold configuration register.
T0_TH_CHANNEL0	0x1A10500C	32	Config	R/W	0x0000	ADV_TIMER0 channel 0 threshold configuration register.
T0_TH_CHANNEL1	0x1A105010	32	Config	R/W	0x0000	ADV_TIMER0 channel 1 threshold configuration register.
T0_TH_CHANNEL2	0x1A105014	32	Config	R/W	0x0000	ADV_TIMER0 channel 2 threshold configuration register.
T0_TH_CHANNEL3	0x1A105018	32	Config	R/W	0x0000	ADV_TIMER0 channel 3 threshold configuration register.
T0_COUNTER	0x1A10502C	32	Status	R	0x0000	ADV_TIMER0 counter register.
T1_CMD	0x1A105040	32	Config	R/W	0x0000	ADV_TIMER1 command register.
T1_CONFIG	0x1A105044	32	Config	R/W	0x0000	ADV_TIMER1 configuration register.
T1_THRESHOLD	0x1A105048	32	Config	R/W	0x0000	ADV_TIMER1 threshold configuration register.
T1_TH_CHANNEL0	0x1A10504C	32	Config	R/W	0x0000	ADV_TIMER1 channel 0 threshold configuration register.
T1_TH_CHANNEL1	0x1A105050	32	Config	R/W	0x0000	ADV_TIMER1 channel 1 threshold configuration register.
T1_TH_CHANNEL2	0x1A105054	32	Config	R/W	0x0000	ADV_TIMER1 channel 2 threshold configuration register.
T1_TH_CHANNEL3	0x1A105058	32	Config	R/W	0x0000	ADV_TIMER1 channel 3 threshold configuration register.
T1_COUNTER	0x1A10506C	32	Status	R	0x0000	ADV_TIMER1 counter register.
T2_CMD	0x1A105080	32	Config	R/W	0x0000	ADV_TIMER2 command register.
T2_CONFIG	0x1A105084	32	Config	R/W	0x0000	ADV_TIMER2 configuration register.
T2_THRESHOLD	0x1A105088	32	Config	R/W	0x0000	ADV_TIMER2 threshold configuration register.
T2_TH_CHANNEL0	0x1A10508C	32	Config	R/W	0x0000	ADV_TIMER2 channel 0 threshold configuration register.
T2_TH_CHANNEL1	0x1A105090	32	Config	R/W	0x0000	ADV_TIMER2 channel 1 threshold configuration register.
T2_TH_CHANNEL2	0x1A105094	32	Config	R/W	0x0000	ADV_TIMER2 channel 2 threshold configuration register.
T2_TH_CHANNEL3	0x1A105098	32	Config	R/W	0x0000	ADV_TIMER2 channel 3 threshold configuration register.
T2_COUNTER	0x1A1050AC	32	Status	R	0x0000	ADV_TIMER2 counter register.
T3_CMD	0x1A1050C0	32	Config	R/W	0x0000	ADV_TIMER3 command register.
T3_CONFIG	0x1A1050C4	32	Config	R/W	0x0000	ADV_TIMER3 configuration register.
T3_THRESHOLD	0x1A1050C8	32	Config	R/W	0x0000	ADV_TIMER3 threshold configuration register.
T3_TH_CHANNEL0	0x1A1050CC	32	Config	R/W	0x0000	ADV_TIMER3 channel 0 threshold configuration register.
T3_TH_CHANNEL1	0x1A1050D0	32	Config	R/W	0x0000	ADV_TIMER3 channel 1 threshold configuration register.
T3_TH_CHANNEL2	0x1A1050D4	32	Config	R/W	0x0000	ADV_TIMER3 channel 2 threshold configuration register.
T3_TH_CHANNEL3	0x1A1050D8	32	Config	R/W	0x0000	ADV_TIMER3 channel 3 threshold configuration register.
T3_COUNTER	0x1A1050EC	32	Status	R	0x0000	ADV_TIMER3 counter register.
EVENT_CFG	0x1A105100	32	Config	R/W	0x0000	ADV_TIMERS events configuration register.
<u>CG</u>	0x1A105104	32	Config	R/W	0x0000	ADV_TIMERS channels clock gating configuration register.

Table 42. Advanced timer registers table

# 6.3.5.2 Advanced timer registers details

## 6.3.5.2.1 ADV_TIMER0 command register. (T0_CMD)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bit 4 - **ARM** (R/W)

ADV_TIMER0 arm command bitfield.

### Bit 3 - **RESET** (R/W)

ADV_TIMER0 reset command bitfield.

### Bit 2 - **UPDATE** (R/W)

ADV_TIMER0 update command bitfield.

#### Bit 1 - **STOP** (R/W)

ADV_TIMER0 stop command bitfield.

### Bit 0 - START (R/W)

ADV_TIMER0 start command bitfield.

### 6.3.5.2.2 ADV_TIMER0 configuration register. (T0_CONFIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved							PRI	ESC			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		UPDOW NSEL	CLKSEL		MODE					INS	SEL			

#### Bits 23:16 - **PRESC** (R/W)

ADV_TIMER0 prescaler value configuration bitfield.

### Bit 12 - UPDOWNSEL (R/W)

ADV_TIMER0 center-aligned mode configuration bitfield:

- *0b0*: The counter counts up and down alternatively.
- *0b1*: The counter counts up and resets to 0 when reach threshold.

## Bit 11 - **CLKSEL** (R/W)

ADV_TIMER0 clock source configuration bitfield:

- *0b0*: FLL
- *0b1*: reference clock at 32kHz

#### Bits 10:8 - MODE (R/W)

ADV_TIMER0 trigger mode configuration bitfield:

- *0b000*: trigger event at each clock cycle.
- *0b001*: trigger event if input source is 0
- 0b010: trigger event if input source is 1
- *0b011*: trigger event on input source rising edge
- 0b100: trigger event on input source falling edge
- *0b101*: trigger event on input source falling or rising edge
- *0b110*: trigger event on input source rising edge when armed
- *0b111*: trigger event on input source falling edge when armed

#### Bits 7:0 - INSEL (R/W)

ADV_TIMER0 input source configuration bitfield:

- 0-31: GPIO[0] to GPIO[31]
- 32-35: Channel 0 to 3 of ADV_TIMER0
- 36-39: Channel 0 to 3 of ADV_TIMER1
- 40-43: Channel 0 to 3 of ADV_TIMER2
- 44-47: Channel 0 to 3 of ADV_TIMER3

### 6.3.5.2.3 ADV_TIMER0 threshold configuration register. (T0_THRESHOLD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TH	_HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TH_	LO							

#### Bits 31:16 - TH_HI (R/W)

ADV_TIMER0 threshold high part configuration bitfield. It defines end counter value.

#### Bits 15:0 - **TH_LO** (R/W)

ADV_TIMER0 threshold low part configuration bitfield. It defines start counter value.

### 6.3.5.2.4 ADV_TIMER0 channel 0 threshold configuration register. (T0_TH_CHANNEL0)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 18:16 - MODE (R/W)

ADV_TIMERO channel 0 threshold match action on channel output signal configuration bitfield:

- *0b000*. set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- *0b110*: clear then next threshold match action is set.

## Bits 15:0 - **TH** (R/W)

 ${\tt ADV_TIMER0}\ channel\ 0\ threshold\ configuration\ bitfield.$ 

### 6.3.5.2.5 ADV_TIMER0 channel 1 threshold configuration register. (T0_TH_CHANNEL1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 18:16 - **MODE** (R/W)

ADV_TIMERO channel 1 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- *0b100*: clear.
- *0b101*: toggle then next threshold match action is set.
- 0b110. clear then next threshold match action is set.

#### Bits 15:0 - TH (R/W)

ADV_TIMERO channel 1 threshold configuration bitfield.

### 6.3.5.2.6 ADV_TIMER0 channel 2 threshold configuration register. (T0_TH_CHANNEL2)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 18:16 - MODE (R/W)

ADV_TIMERO channel 2 threshold match action on channel output signal configuration bitfield:

- *0b000*. set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- *0b110*: clear then next threshold match action is set.

## Bits 15:0 - **TH** (R/W)

ADV_TIMER0 channel 2 threshold configuration bitfield.

### 6.3.5.2.7 ADV_TIMER0 channel 3 threshold configuration register. (T0_TH_CHANNEL3)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 18:16 - **MODE** (R/W)

ADV_TIMERO channel 3 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- *0b100*: clear.
- *0b101*: toggle then next threshold match action is set.
- 0b110. clear then next threshold match action is set.

#### Bits 15:0 - TH (R/W)

ADV_TIMERO channel 3 threshold configuration bitfield.

### 6.3.5.2.8 ADV_TIMER1 command register. (T1_CMD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bit 4 - **ARM** (R/W)

ADV_TIMER1 arm command bitfield.

#### Bit 3 - RESET (R/W)

ADV_TIMER1 reset command bitfield.

#### Bit 2 - UPDATE (R/W)

ADV_TIMER1 update command bitfield.

#### Bit 1 - **STOP** (R/W)

ADV_TIMER1 stop command bitfield.

#### Bit 0 - START (R/W)

ADV_TIMER1 start command bitfield.

#### 6.3.5.2.9 ADV_TIMER1 configuration register. (T1_CONFIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved							PRI	ESC			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		UPDOW NSEL	CLKSEL		MODE					INS	SEL			

#### Bits 23:16 - PRESC (R/W)

ADV_TIMER1 prescaler value configuration bitfield.

#### Bit 12 - UPDOWNSEL (R/W)

ADV_TIMER1 center-aligned mode configuration bitfield:

- *0b0*: The counter counts up and down alternatively.
- *0b1*: The counter counts up and resets to 0 when reach threshold.

#### Bit 11 - **CLKSEL** (R/W)

ADV_TIMER1 clock source configuration bitfield:

- *0b0*: FLL
- *0b1*: reference clock at 32kHz

### Bits 10:8 - **MODE** (R/W)

ADV_TIMER1 trigger mode configuration bitfield:

- *0b000*. trigger event at each clock cycle.
- *0b001*: trigger event if input source is 0
- *0b010*: trigger event if input source is 1
- *0b011*: trigger event on input source rising edge
- *0b100*: trigger event on input source falling edge
- *0b101*: trigger event on input source falling or rising edge
- *0b110*: trigger event on input source rising edge when armed
- *0b111*: trigger event on input source falling edge when armed

#### Bits 7:0 - INSEL (R/W)

ADV_TIMER1 input source configuration bitfield:

- 0-31: GPIO[0] to GPIO[31]
- 32-35: Channel 0 to 3 of ADV_TIMER0
- 36-39: Channel 0 to 3 of ADV_TIMER1
- 40-43: Channel 0 to 3 of ADV_TIMER2
- 44-47: Channel 0 to 3 of ADV_TIMER3

#### 6.3.5.2.10 ADV_TIMER1 threshold configuration register. (T1_THRESHOLD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TH	_HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 31:16 - **TH_HI** (R/W)

ADV_TIMER1 threshold high part configuration bitfield. It defines end counter value.

### Bits 15:0 - **TH_LO** (R/W)

ADV_TIMER1 threshold low part configuration bitfield. It defines start counter value.

#### 6.3.5.2.11 ADV_TIMER1 channel 0 threshold configuration register. (T1_TH_CHANNEL0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							T	Н							

#### Bits 18:16 - **MODE** (R/W)

ADV_TIMER1 channel 0 threshold match action on channel output signal configuration bitfield:

- *0b000*: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- *0b100*: clear.
- 0b101: toggle then next threshold match action is set.
- *0b110*. clear then next threshold match action is set.

Bits 15:0 - TH (R/W)

ADV_TIMER1 channel 0 threshold configuration bitfield.

## 6.3.5.2.12 ADV_TIMER1 channel 1 threshold configuration register. (T1_TH_CHANNEL1)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 18:16 - MODE (R/W)

ADV_TIMER1 channel 1 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- 0b011: toggle.
- *0b100*: clear.
- *0b101*: toggle then next threshold match action is set.
- *0b110*. clear then next threshold match action is set.

Bits 15:0 - TH (R/W)

ADV_TIMER1 channel 1 threshold configuration bitfield.

#### 6.3.5.2.13 ADV_TIMER1 channel 2 threshold configuration register. (T1_TH_CHANNEL2)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 18:16 - MODE (R/W)

ADV_TIMER1 channel 2 threshold match action on channel output signal configuration bitfield:

- *0b000*: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100. clear.
- *0b101*: toggle then next threshold match action is set.
- *0b110*: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER1 channel 2 threshold configuration bitfield.

#### 6.3.5.2.14 ADV_TIMER1 channel 3 threshold configuration register. (T1_TH_CHANNEL3)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 18:16 - MODE (R/W)

ADV_TIMER1 channel 3 threshold match action on channel output signal configuration bitfield:

- 0b000: set
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- 0b100. clear.
- *0b101*: toggle then next threshold match action is set.
- *0b110*: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER1 channel 3 threshold configuration bitfield.

### 6.3.5.2.15 ADV_TIMER2 command register. (T2_CMD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bit 4 - **ARM** (R/W)

ADV_TIMER2 arm command bitfield.

### Bit 3 - RESET (R/W)

ADV_TIMER2 reset command bitfield.

#### Bit 2 - **UPDATE** (R/W)

ADV_TIMER2 update command bitfield.

#### Bit 1 - **STOP** (R/W)

ADV_TIMER2 stop command bitfield.

## Bit 0 - START (R/W)

ADV_TIMER2 start command bitfield.

#### 6.3.5.2.16 ADV_TIMER2 configuration register. (T2_CONFIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved							PRI	ESC			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		UPDOW NSEL	CLKSEL		MODE					INS	SEL			

#### Bits 23:16 - PRESC (R/W)

ADV_TIMER2 prescaler value configuration bitfield.

#### Bit 12 - UPDOWNSEL (R/W)

ADV_TIMER2 center-aligned mode configuration bitfield:

- *0b0*: The counter counts up and down alternatively.
- *0b1*: The counter counts up and resets to 0 when reach threshold.

### Bit 11 - CLKSEL (R/W)

ADV_TIMER2 clock source configuration bitfield:

- 0b0: FLL
- *0b1*: reference clock at 32kHz

#### Bits 10:8 - **MODE** (R/W)

ADV_TIMER2 trigger mode configuration bitfield:

- *0b000*: trigger event at each clock cycle.
- *0b001*: trigger event if input source is 0
- *0b010*: trigger event if input source is 1
- 0b011: trigger event on input source rising edge
- 0b100: trigger event on input source falling edge
- *0b101*: trigger event on input source falling or rising edge
- 0b110. trigger event on input source rising edge when armed
- *0b111*: trigger event on input source falling edge when armed

## Bits 7:0 - **INSEL** (R/W)

ADV_TIMER2 input source configuration bitfield:

- 0-31: GPIO[0] to GPIO[31]
- 32-35: Channel 0 to 3 of ADV_TIMER0
- 36–39: Channel 0 to 3 of ADV_TIMER1
- 40-43: Channel 0 to 3 of ADV_TIMER2
- 44–47: Channel 0 to 3 of ADV_TIMER3

### 6.3.5.2.17 ADV_TIMER2 threshold configuration register. (T2_THRESHOLD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TH	_HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:16 - **TH_HI** (R/W)

ADV_TIMER2 threshold high part configuration bitfield. It defines end counter value.

## Bits 15:0 - **TH_LO** (R/W)

ADV_TIMER2 threshold low part configuration bitfield. It defines start counter value.

### 6.3.5.2.18 ADV_TIMER2 channel 0 threshold configuration register. (T2_TH_CHANNEL0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 18:16 - MODE (R/W)

ADV_TIMER2 channel 0 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- *0b100*. clear.
- *0b101*: toggle then next threshold match action is set.
- 0b110. clear then next threshold match action is set.

Bits 15:0 - TH (R/W)

ADV_TIMER2 channel 0 threshold configuration bitfield.

### 6.3.5.2.19 ADV_TIMER2 channel 1 threshold configuration register. (T2_TH_CHANNEL1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 18:16 - **MODE** (R/W)

ADV_TIMER2 channel 1 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- 0b100. clear.
- *0b101*: toggle then next threshold match action is set.
- *0b110*: clear then next threshold match action is set.

Bits 15:0 - TH (R/W)

ADV_TIMER2 channel 1 threshold configuration bitfield.

### 6.3.5.2.20 ADV_TIMER2 channel 2 threshold configuration register. (T2_TH_CHANNEL2)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 18:16 - MODE (R/W)

ADV_TIMER2 channel 2 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- *0b100*: clear.
- *0b101*: toggle then next threshold match action is set.
- *0b110*. clear then next threshold match action is set.

Bits 15:0 - TH (R/W)

ADV_TIMER2 channel 2 threshold configuration bitfield.

#### 6.3.5.2.21 ADV_TIMER2 channel 3 threshold configuration register. (T2_TH_CHANNEL3)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
							_	_	_	_		_	_	_	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 18:16 - MODE (R/W)

ADV_TIMER2 channel 3 threshold match action on channel output signal configuration bitfield:

- *0b000*. set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- 0b011: toggle.
- 0b100. clear.
- *0b101*: toggle then next threshold match action is set.
- *0b110*: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER2 channel 3 threshold configuration bitfield.

### 6.3.5.2.22 ADV_TIMER3 command register. (T3_CMD)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bit 4 - **ARM** (R/W)

ADV_TIMER3 arm command bitfield.

### Bit 3 - **RESET** (R/W)

ADV_TIMER3 reset command bitfield.

#### Bit 2 - UPDATE (R/W)

ADV_TIMER3 update command bitfield.

#### Bit 1 - **STOP** (R/W)

ADV_TIMER3 stop command bitfield.

### Bit 0 - START (R/W)

ADV_TIMER3 start command bitfield.

### 6.3.5.2.23 ADV_TIMER3 configuration register. (T3_CONFIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved							PRI	ESC			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		UPDOW NSEL	CLKSEL		MODE					INS	SEL			

#### Bits 23:16 - **PRESC** (R/W)

ADV_TIMER3 prescaler value configuration bitfield.

### Bit 12 - UPDOWNSEL (R/W)

ADV_TIMER3 center-aligned mode configuration bitfield:

- *0b0*: The counter counts up and down alternatively.
- *0b1*: The counter counts up and resets to 0 when reach threshold.

## Bit 11 - **CLKSEL** (R/W)

ADV_TIMER3 clock source configuration bitfield:

- *0b0*: FLL
- *0b1*: reference clock at 32kHz

#### Bits 10:8 - MODE (R/W)

ADV_TIMER3 trigger mode configuration bitfield:

- *0b000*: trigger event at each clock cycle.
- *0b001*: trigger event if input source is 0
- 0b010: trigger event if input source is 1
- *0b011*: trigger event on input source rising edge
- 0b100: trigger event on input source falling edge
- *0b101*: trigger event on input source falling or rising edge
- *0b110*: trigger event on input source rising edge when armed
- *0b111*: trigger event on input source falling edge when armed

#### Bits 7:0 - INSEL (R/W)

ADV_TIMER3 input source configuration bitfield:

- 0-31: GPIO[0] to GPIO[31]
- 32-35: Channel 0 to 3 of ADV_TIMER0
- 36-39: Channel 0 to 3 of ADV_TIMER1
- 40-43: Channel 0 to 3 of ADV_TIMER2
- 44-47: Channel 0 to 3 of ADV_TIMER3

### 6.3.5.2.24 ADV_TIMER3 threshold configuration register. (T3_THRESHOLD)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TH_	_HI							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TH_	LO							

#### Bits 31:16 - TH_HI (R/W)

ADV_TIMER3 threshold high part configuration bitfield. It defines end counter value.

#### Bits 15:0 - **TH_LO** (R/W)

ADV_TIMER3 threshold low part configuration bitfield. It defines start counter value.

### 6.3.5.2.25 ADV_TIMER3 channel 0 threshold configuration register. (T3_TH_CHANNEL0)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 18:16 - MODE (R/W)

ADV_TIMER3 channel 0 threshold match action on channel output signal configuration bitfield:

- *0b000*. set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- *0b110*: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER3 channel 0 threshold configuration bitfield.

### 6.3.5.2.26 ADV_TIMER3 channel 1 threshold configuration register. (T3_TH_CHANNEL1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 18:16 - **MODE** (R/W)

ADV_TIMER3 channel 1 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- *0b100*: clear.
- *0b101*: toggle then next threshold match action is set.
- 0b110. clear then next threshold match action is set.

Bits 15:0 - TH (R/W)

ADV_TIMER3 channel 1 threshold configuration bitfield.

### 6.3.5.2.27 ADV_TIMER3 channel 2 threshold configuration register. (T3_TH_CHANNEL2)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 18:16 - MODE (R/W)

ADV_TIMER3 channel 2 threshold match action on channel output signal configuration bitfield:

- *0b000*. set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- 0b100: clear.
- 0b101: toggle then next threshold match action is set.
- *0b110*: clear then next threshold match action is set.

Bits 15:0 - **TH** (R/W)

ADV_TIMER3 channel 2 threshold configuration bitfield.

### 6.3.5.2.28 ADV_TIMER3 channel 3 threshold configuration register. (T3_TH_CHANNEL3)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								MODE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 18:16 - MODE (R/W)

ADV_TIMER3 channel 3 threshold match action on channel output signal configuration bitfield:

- 0b000: set.
- *0b001*: toggle then next threshold match action is clear.
- *0b010*: set then next threshold match action is clear.
- *0b011*: toggle.
- *0b100*: clear.
- *0b101*: toggle then next threshold match action is set.
- 0b110. clear then next threshold match action is set.

Bits 15:0 - TH (R/W)

ADV_TIMER3 channel 3 threshold configuration bitfield.

## ${\bf 6.3.5.2.29~ADV_TIMERS~events~configuration~register.~(EVENT_CFG)}$

Reset value: 0x0000

31	ı	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Rese	erved							EN	۱A	
15	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		SE	L3			SE	L2			SE	L1			SE	L0	

Bits 19:16 - ENA (R/W)

ADV_TIMER output event enable configuration bitfield. ENA[i]=1 enables output event i generation.

#### Bits 15:12 - SEL3 (R/W)

ADV_TIMER output event 3 source configuration bitfiled:

- 0b0000: ADV_TIMER0 channel 0.
- 0b0001: ADV_TIMER0 channel 1.
- 0b0010: ADV_TIMER0 channel 2.
- *0b0011*: ADV_TIMER0 channel 3.
- 0b0100: ADV_TIMER1 channel 0.
- 0b0101: ADV_TIMER1 channel 1.
- *0b0110*: ADV_TIMER1 channel 2.
- 0b0111: ADV_TIMER1 channel 3.
- *0b1000*: ADV_TIMER2 channel 0.
- *0b1001*: ADV_TIMER2 channel 1.
- *0b1010*: ADV_TIMER2 channel 2.
- 0b1011: ADV_TIMER2 channel 3.
- *0b1100*: ADV_TIMER3 channel 0.
- 0b1101: ADV_TIMER3 channel 1.
- *0b1110*: ADV_TIMER3 channel 2.
- 0b1111: ADV_TIMER3 channel 3.

## Bits 11:8 - **SEL2** (R/W)

ADV_TIMER output event 2 source configuration bitfiled:

- *0b0000*: ADV_TIMER0 channel 0.
- 0b0001: ADV_TIMER0 channel 1.
- *0b0010*: ADV_TIMER0 channel 2.
- 0b0011: ADV_TIMER0 channel 3.
- *0b0100*: ADV_TIMER1 channel 0.
- *0b0101*: ADV_TIMER1 channel 1.
- *0b0110*: ADV_TIMER1 channel 2.
- 0b0111: ADV_TIMER1 channel 3.
- *0b1000*: ADV_TIMER2 channel 0.
- *0b1001*: ADV_TIMER2 channel 1.
- *0b1010*: ADV_TIMER2 channel 2.
- *0b1011*: ADV_TIMER2 channel 3.
- *0b1100*: ADV_TIMER3 channel 0.
- *0b1101*: ADV_TIMER3 channel 1.
- *0b1110*: ADV_TIMER3 channel 2.
- *0b1111*: ADV_TIMER3 channel 3.

#### Bits 7:4 - SEL1 (R/W)

ADV_TIMER output event 1 source configuration bitfiled:

- 0b0000: ADV_TIMER0 channel 0.
- *0b0001*: ADV_TIMER0 channel 1.
- 0b0010: ADV_TIMER0 channel 2.
- *0b0011*: ADV_TIMER0 channel 3.
- 0b0100: ADV_TIMER1 channel 0.
- 0b0101: ADV_TIMER1 channel 1.
- *0b0110*: ADV_TIMER1 channel 2.
- 0b0111: ADV_TIMER1 channel 3.
- 0b1000: ADV_TIMER2 channel 0.
- *0b1001*: ADV_TIMER2 channel 1.
- *0b1010*: ADV_TIMER2 channel 2.
- *0b1011*: ADV_TIMER2 channel 3.
- *0b1100*: ADV_TIMER3 channel 0.
- 0b1101: ADV_TIMER3 channel 1.
- *0b1110*: ADV_TIMER3 channel 2.
- 0b1111: ADV_TIMER3 channel 3.

## Bits 3:0 - **SELO** (R/W)

ADV_TIMER output event 0 source configuration bitfiled:

- *0b0000*: ADV_TIMER0 channel 0.
- 0b0001: ADV_TIMER0 channel 1.
- *0b0010*: ADV_TIMER0 channel 2.
- 0b0011: ADV_TIMER0 channel 3.
- *0b0100*: ADV_TIMER1 channel 0.
- *0b0101*: ADV_TIMER1 channel 1.
- *0b0110*: ADV_TIMER1 channel 2.
- 0b0111: ADV_TIMER1 channel 3.
- *0b1000*: ADV_TIMER2 channel 0.
- *0b1001*: ADV_TIMER2 channel 1.
- *0b1010*: ADV_TIMER2 channel 2.
- *0b1011*: ADV_TIMER2 channel 3.
- *0b1100*: ADV_TIMER3 channel 0.
- *0b1101*: ADV_TIMER3 channel 1.
- *0b1110*: ADV_TIMER3 channel 2.
- *0b1111*: ADV_TIMER3 channel 3.

### 6.3.5.2.30 ADV_TIMERS channels clock gating configuration register. (CG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 15:0 - **ENA** (R/W)

ADV_TIMER clock gating configuration bitfield.

- ENA[i]=0: clock gate ADV_TIMERi.
- ENA[i]=1: enable ADV_TIMERi.

## 6.3.6 SoC event generator

SoC event generator component manages the following features:

- Soc events dispatching to FC event unit, Cluster event unit and uDMA
- FC High and Low timers input trigger events configuration
- SoC software event generation
- Event queue of width 2 for each event line with overflow error event generation
- 2 high priority events generation

Input events managed by SoC event generator are:

- 32kHz reference clock
- 48 SoC peripherals events inciming from uDMA interfaces, PMU, Advanced timers, GPIOs and RTC
- 8 software events

### 6.3.6.1 SoC event generator registers

Name	Address	Size	Туре	Access	Default	Description
SW_EVENT	0x1A106000	32	Config	W	0x0000	SoC software events trigger command register.
FC_MASK_MSB	0x1A106004	32	Config	R/W	0xFFFFFFF	MSB FC event unit event dispatch mask configuration register.
FC_MASK_LSB	0x1A106008	32	Config	R/W	0xFFFFFFF	LSB FC event unit event dispatch mask configuration register.
CL_MASK_MSB	0x1A10600C	32	Config	R/W	0xFFFFFFF	MSB Cluster event dispatch mask configuration register.
CL_MASK_LSB	0x1A106010	32	Config	R/W	0xFFFFFFF	LSB Cluster event dispatch mask configuration register.
PR_MASK_MSB	0x1A106014	32	Config	R/W	0xFFFFFFF	MSB uDMA event dispatch mask configuration register.
PR_MASK_LSB	0x1A106018	32	Config	R/W	0xFFFFFFF	LSB uDMA event dispatch mask configuration register.
ERR_MSB	0x1A10601C	32	Status	R	0x0000	MSB event queue overflow status register.
ERR_LSB	0x1A106020	32	Status	R	0x0000	LSB event queue overflow status register.
TIMER_SEL_HI	0x1A106024	32	Config	R/W	0x0000	FC High Timer source event configuration register.
TIMER_SEL_LO	0x1A106028	32	Config	R/W	0x0000	FC Low Timer source event configuration register.

Table 43. SoC event generator registers table

## 6.3.6.2 SoC event generator registers details

### 6.3.6.2.1 SoC software events trigger command register. (SW_EVENT)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 7:0 - **EVENT** (W)

Writing a one-hot value into EVENT bitfield triggers SoC software event i. 8 software events are provided.

#### 6.3.6.2.2 MSB FC event unit event dispatch mask configuration register. (FC_MASK_MSB)

Reset value: 0xFFFFFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							FC_MAS	SK_MSB							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - FC_MASK_MSB (R/W)

MSB event mask to enable/disable event dispatch to FC event unit.

- Setting bit[i] to *0b1* disable dispatching event[32+i] to FC event unit.
- Setting bit[i] to *0b0* enable dispatching event[32+i] to FC event unit.

### 6.3.6.2.3 LSB FC event unit event dispatch mask configuration register. (FC_MASK_LSB)

Reset value: 0xFFFFFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							FC_MA	SK_LSB							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							FC MA	SK LSB							

#### Bits 31:0 - FC_MASK_LSB (R/W)

LSB event mask to enable/disable event dispatch to FC event unit.

- $\bullet \;$  Setting bit[i] to Ob1 disable dispatching event[i] to FC event unit.
- Setting bit[i] to *0b0* enable dispatching event[i] to FC event unit.

#### 6.3.6.2.4 MSB Cluster event dispatch mask configuration register. (CL_MASK_MSB)

Reset value: 0xFFFFFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CL_MAS	SK_MSB							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - CL_MASK_MSB (R/W)

MSB event mask to enable/disable event dispatch to Cluster event unit.

- Setting bit[i] to *0b1* disable dispatching event[32+i] to Cluster event unit.
- Setting bit[i] to *0b0* enable dispatching event[32+i] to Cluster event unit.

### 6.3.6.2.5 LSB Cluster event dispatch mask configuration register. (CL_MASK_LSB)

Reset value: 0xFFFFFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CL_MAS	SK_LSB							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - CL_MASK_LSB (R/W)

LSB event mask to enable/disable event dispatch to Cluster event unit.

- Setting bit[i] to *0b1* disable dispatching event[i] to Cluster event unit.
- Setting bit[i] to *0b0* enable dispatching event[i] to Cluster event unit.

#### 6.3.6.2.6 MSB uDMA event dispatch mask configuration register. (PR_MASK_MSB)

Reset value: 0xFFFFFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PR_MAS	SK_MSB							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - PR_MASK_MSB (R/W)

MSB event mask to enable/disable event dispatch to UDMA peripherals.

- Setting bit[i] to *0b1* disable dispatching event[32+i] to uDMA.
- Setting bit[i] to *0b0* enable dispatching event[32+i] to uDMA.

### 6.3.6.2.7 LSB uDMA event dispatch mask configuration register. (PR_MASK_LSB)

Reset value: 0xFFFFFFF

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PR_MAS	SK_LSB							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PR_MAS	SK LSB							

# Bits 31:0 - **PR_MASK_LSB** (*R/W*)

LSB event mask to enable/disable event dispatch to UDMA peripherals.

- Setting bit[i] to *0b1* disable dispatching event[i] to uDMA.
- Setting bit[i] to *0b0* enable dispatching event[i] to uDMA.

#### 6.3.6.2.8 MSB event queue overflow status register. (ERR_MSB)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ERR_	MSB							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - ERR_MSB (R)

Report MSB event queue overflows. Cleared after read.

Reading a *0b1* at ERR_MSB[i] means that an overflow occurred for SoC event[32+i] FIFO queue.

### 6.3.6.2.9 LSB event queue overflow status register. (ERR_LSB)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ERR_	LSB							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ERR_	LSB							

#### Bits 31:0 - ERR_LSB (R)

Report LSB event queue overflows. Cleared after read.

Reading a *0b1* at ERR_LSB[i] means that an overflow occurred for SoC event[i] FIFO queue.

### 6.3.6.2.10 FC High Timer source event configuration register. (TIMER_SEL_HI)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 5:0 - TIMER_SEL_HI (R/W)

Configure which SoC event generator input event is propagated to FC Timer High input trigger event.

### 6.3.6.2.11 FC Low Timer source event configuration register. (TIMER_SEL_LO)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 5:0 - TIMER_SEL_LO (R/W)

Configure which SoC event generator input event is propagated to FC Timer Low input trigger event.

### 6.3.7 PMU DLC bridge

Maestro PMU component manages the following features:

- control of the power network of GAP8 chip: start-up, wake-up and low power transition sequences
- control the reset of the power islands

# 6.3.7.1 PMU DLC bridge registers

Name	Address	Size	Туре	Access	Default	Description
DLC_PCTRL	0x1A107000	32	Config	R/W	0x0000	DLC PICL control register.
DLC_PRDATA	0x1A107004	32	Config	R	0x0000	DLC PICL data read register
DLC_SR	0x1A107008	32	Status	R	0x0000	DLC Status register

Name	Address	Size	Туре	Access	Default	Description
DLC_IMR	0x1A10700C	32	Config	R/W	0x0000	DLC Interrupt mask register
DLC_IFR	0x1A107010	32	Status	R	0x0000	DLC Interrupt flag register
DLC_IOIFR	0x1A107014	32	Status	R	0x0000	DLC icu_ok interrupt flag register
DLC_IDIFR	0x1A107018	32	Status	R	0x0000	DLC icu_delayed interrupt flag register
DLC_IMCIFR	0x1A10701C	32	Status	R	0x0000	DLC icu_mode_changed interrupt flag register

Table 44. PMU DLC bridge registers table

## 6.3.7.2 PMU DLC bridge registers details

#### 6.3.7.2.1 DLC PICL control register. (DLC_PCTRL)

Reset value: 0x0000

Comntains PICL address, data to write and go bit.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PWD	ATA							
15	14	13	12	11	10	0	0	7	6		4	3	2	1	n
		13	12		10	9	٥	,	U	3	4	3	-	•	U

### Bits 31:16 - PWDATA (R/W)

Data to write on the PICL bus.

### Bit 15 - **DIR** (R/W)

Direction of the transfer on the PICL bus.

- *0b0*: write operation
- 0b1: read operation

### Bits 14:1 - **PADDR** (R/W)

Address of the transfer on the PICL bus.

### Bit 0 - START (R/W)

Start of PICL access sequence. A rising edge of the start bit starts a PICL picl transfer. Start bit remains high until the end of the sequence, which means that no new access can be performed if an access is on going.

# 6.3.7.2.2 DLC PICL data read register (DLC_PRDATA)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 7:0 - **PRDATA** (R)

Data read on the PICL bus. This data is valid after a PICL read operation, when the picl_busy bit of the DLC_SR register becomes low.

### 6.3.7.2.3 DLC Status register (DLC_SR)

#### Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Rese	erved							SCU_BU SY	PICL_B USY

#### Bit 1 - SCU_BUSY (R)

SCU busy. This bit is set to 0b1 if when a SCU sequence is on going. This bit is cleared at the end of the sequence.

#### Bit 0 - PICL_BUSY (R)

PICL busy. This bit is set to *0b1* if when a transfer is ongoing on the PICL bus. This bit is cleared at the end of the transfer.

### 6.3.7.2.4 DLC Interrupt mask register (DLC_IMR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserved						SCU_OK	PICL_O K	ICU_MD _CHG	ICU_DL YD	ICU_OK

#### Bit 4 - **SCU_OK** (R/W)

Mask of scu_ok interrupt.

- 0b0: mask cleared
- *0b1*: mask set

# Bit 3 - **PICL_OK** (*R/W*)

Mask of picl_ok interrupt.

- *0b0*: mask cleared
- *0b1*: mask set

## Bit 2 - ICU_MD_CHG (R/W)

Mask of icu_mode_changed interrupt.

- *0b0*: mask cleared
- *0b1*: mask set

# Bit 1 - ICU_DLYD (R/W)

Mask of icu_delayed interrupt.

- *0b0*: mask cleared
- *0b1*: mask set

# Bit 0 - **ICU_OK** (R/W)

Mask of icu_ok interrupt.

- *0b0*: mask cleared
- 0b1: mask set

#### 6.3.7.2.5 DLC Interrupt flag register (DLC_IFR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserved						SCU_OK	PICL_O K	ICU_MD _CHG	ICU_DL YD	ICU_OK

#### Bit 4 - **SCU_OK** (R)

Set to *0b1* when SCU sequence is finished. Cleared by writing 1 to bit 4 of the DLC_IFR register.

#### Bit 3 - PICL_OK (R)

Set to 0b1 when PICL transfer is finish. Cleared by writing 1 to bit 3 of the DLC_IFR register.

#### Bit 2 - ICU_MD_CHG (R)

Set to 0b1 when at least one of the bit of the DLC_IMCIFR register is set. Cleared by reading the DCL_IMCIFR register.

#### Bit 1 - ICU_DLYD (R)

Set to 0b1 when at least one of the bit of the DLC_IDIFR register is set. Cleared by reading the DCL_IDIFR register.

#### Bit 0 - **ICU_OK** (R)

Set to 0b1 when at least one of the bit of the DLC_IOIFR register is set. Cleared by reading the DCL_IOIFR register.

### 6.3.7.2.6 DLC icu_ok interrupt flag register (DLC_IOIFR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ICU_Ok	_FLGS							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						IC	U_OK_FLG	iS							Reserve d

## Bits 31:1 - ICU_OK_FLGS (R)

Flags of the icu_ok interrupts. Bit[x] is set to *0b1* when a rising edge of the signal i_icu_ok_irq[x] occurs and MSP is requester of the change mode order of the ICU[x]. A read of this register clears the register and the bit icu_ok_flag of the DLC_IFR register.

## 6.3.7.2.7 DLC icu_delayed interrupt flag register (DLC_IDIFR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ICU_DLY	D_FLGS							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						ICL	J_DLYD_FL	GS							Reserve d

## Bits 31:1 - ICU_DLYD_FLGS (R)

Flags of the icu_delayed interrupts. Bit[x] is set to 0b1 when a rising edge of the signal i_icu_delayed_irq[x] occurs and MSP is requester of the change mode order of the ICU[x]. A read this register clears the register and the bit icu_delayed_flag of the DLC_IFR register.

### 6.3.7.2.8 DLC icu_mode_changed interrupt flag register (DLC_IMCIFR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ICU_MD_CI	HNG_FLGS							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						ICU_N	MD_CHNG_	FLGS							Reserve d

### Bits 31:1 - ICU_MD_CHNG_FLGS (R)

Flags of the icu_mode_changed interrupts. Bit [x] is set to *0b1* when a rising edge of the signal i_icu_mode_changed_irq[x] occurs. A read this register clears the register and the bit icu_mode_changed_flag of the DLC_IFR register.

#### 6.3.8 RealTime Counter

RTC is an always-operating function used to keep track of "time of the day", even when the most of the device is off. It can also be used to wake up the device from low power modes on regular intervals.

### 6.3.8.1 RealTime Counter registers

Name	Address	Size	Туре	Access	Default	Description
APB_SR	0x1A108000	32	Status	R	0x0000	RTC APB status register.
APB_CR	0x1A108004	32	Config	R/W	0x0000	RTC APB control register.
APB_DR	0x1A108008	32	Data	R/W	0x0000	RTC APB data register.
APB_ICR	0x1A10800C	32	Config	R/W	0x0000	RTC APB interrupt control register.
APB_IMR	0x1A108010	32	Config	R/W	0x0000	RTC APB interrupt mask register.
APB_IFR	0x1A108014	32	Status	R/W	0x0000	RTC APB interrupt flag register.

Table 45. RealTime Counter registers table

## 6.3.8.2 RealTime Counter registers details

### 6.3.8.2.1 RTC APB status register. (APB_SR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Rese	erved							IN	JT.

Bits 1:0 - **INT** (R)

APB interrupt status bitfield:

- *0b0*: No interruption has been requested
- *0b1*: Interruption requested

### 6.3.8.2.2 RTC APB control register. (APB_CR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								OP
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bit 16 - **OP** (R/W)

Indirect access operation configuration bitfield:

- *0b0*: APB read operation
- *0b1*: APB write operation

## Bits 5:0 - **ADDR** (R/W)

Indirect address configuration bitfield.

### 6.3.8.2.3 RTC APB data register. (APB_DR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							DA	TA							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - DATA (R/W)

Indirect data bitfield.

#### 6.3.8.2.4 RTC APB interrupt control register. (APB_ICR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

# Bits 1:0 - **MODE** (R/W)

APB interrupt signal mode configuration bitfield:

- *0b00*: APB interrupt is a high level signal
- *0b01*: APB interrupt is a low level signal
- *0b10*. APB interrupt is a high level pulse of 1 PCLK duration
- *0b11*: APB interrupt is a low level pulse of 1 PCLK duration

# 6.3.8.2.5 RTC APB interrupt mask register. (APB_IMR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bit 1 - WM (R/W)

APB write operation interrupt mask bitfield:

- *0b0*: enabled
- *0b1*: disabled

#### Bit 0 - RM (R/W)

APB read operation interrupt mask bitfield:

• *0b0*: enabled

• 0b1: disabled

#### 6.3.8.2.6 RTC APB interrupt flag register. (APB_IFR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bit 1 - **WF** (R/W)

APB write operation status flag bitfield:

- *0b0*: nothing
- *0b1*: write operation done

### Bit 0 - **RF** (R/W)

APB read operation status flag bitfield:

- 0b0: nothing
- *0b1*: read operation done and requested indirect data is available

### 6.3.9 Efuse

EFUSE component manages the following features:

- provides 128 bytes one time programmable.
- access in read mode by byte.
- byte program bit per bit operation.
- configurable low power sleep mode.

## 6.3.9.1 Efuse registers

Name	Address	Size	Туре	Access	Default	Description
CMD	0x1A109000	32	Config	R/W	0x0000	EFUSE command register.
<u>CFG</u>	0x1A109004	32	Config	R/W	0x0000	EFUSE configuration register.
READ	0x1A109200	8	Data	R	0x0	EFUSE byte read command register.
WRITE	0x1A109200	8	Data	W	0x0	EFUSE byte bit index write command register.

Table 46. Efuse registers table

### 6.3.9.2 Efuse registers details

## 6.3.9.2.1 EFUSE command register. (CMD)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
4-		45	12	11	40		_	_	_						_
15	14	13	12	11	10	9	8	7	6	5	4	3		1	U

## Bits 7:0 - **STATUS** (R)

Status is not currently used:

• *0b0*: Always returns 0

### Bits 7:0 - **CMD** (W)

EFUSE command configuration bitfield:

- *0b1*: Start EFUSE read mode.
- 0b10: Start EFUSE program mode.
- *0b100*. EFUSE sleep mode.

### 6.3.9.2.2 EFUSE configuration register. (CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	erved					LO	NG						MED	IUM	
15	14	13	13         12         11         10         9         8         7         6         5         4         3         2         1         0           MEDIUM         SHORT												

### Bits 29:20 - **LONG** (R/W)

EFUSE long delay configuration bitfield.

### Bits 19:10 - **MEDIUM** (R/W)

EFUSE medium delay configuration bitfield.

### Bits 9:0 - **SHORT** (R/W)

EFUSE short delay configuration bitfield.

### 6.3.9.2.3 EFUSE byte read command register. (READ)

Reset value: 0x0

7	6	5	4	3	2	1	0
			RD_I	DATA			

### Bits 7:0 - **RD_DATA** (R)

EFUSE byte data read at address (base+Regld*4). Regld goes from 0 to 0x7F.

# 6.3.9.2.4 EFUSE byte bit index write command register. (WRITE)

Reset value: 0x0

7	6	5	4	3	2	1	0
			WR_DATA				

### Bits 7:0 - WR_DATA_BIT_IDX (W)

EFUSE bit index to burn to value 1 of the byte at address (base+RegId*4). RegId goes from 0 to 0x7F.

## 6.3.10 MicroDMA Subsystem

#### 6.3.10.1 uDMA LVDS interface

LVDS/ORCA component manages the following features:

- controls the LVDS PAD configuration
- enables TX serializer and RX deserializer
- 2 modes are supported:
  - o One is with specific HW support to interface with AT86RF215.
  - o The other performs acquisition of the serial stream and synchronization is performed by software.
- supports ORCA protocol (documention to be completed)

#### 6.3.10.1.1 uDMA LVDS interface registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A102000	32	Config	R/W	0x0000	uDMA RX LVDS/ORCA buffer base address configuration register.
RX_SIZE	0x1A102004	32	Config	R/W	0x0000	uDMA RX LVDS/ORCA buffer size configuration register.
RX_CFG	0x1A102008	32	Config	R/W	0x0000	uDMA RX LVDS/ORCA stream configuration register.
TX_SADDR	0x1A102010	32	Config	R/W	0x0000	uDMA TX LVDS/ORCA buffer base address configuration register.
TX_SIZE	0x1A102014	32	Config	R/W	0x0000	uDMA TX LVDS/ORCA buffer size configuration register.
TX_CFG	0x1A102018	32	Config	R/W	0x0000	uDMA TX LVDS/ORCA stream configuration register.
RF_CFG	0x1A102020	32	Config	R/W	0x0013	uDMA LVDS configuration register.
RF_STATUS	0x1A102028	32	Status	R	0x0000	uDMA LVDS status register.
CLKDIV_EN	0x1A102030	32	Config	R/W	0x0000	uDMA LVDS clock divider enable configuration register.
CLKDIV_CFG	0x1A102034	32	Config	R/W	0x0000	uDMA LVDS clock divider configuration register.
CLKDIV_UPD	0x1A102038	32	Config	W	0x0000	uDMA LVDS clock divider update configuration register.
ORCA_CFG	0x1A10203C	32	Config	R/W	0x0000	uDMA ORCA configuration register.
RX_SAMPLE_CNT	0x1A102040	32	Status	R/W	0x0000	uDMA LVDS RX sample counter configuration register.

Table 47. uDMA LVDS interface registers table

### 6.3.10.1.2 uDMA LVDS interface registers details

#### 6.3.10.1.2.1 uDMA RX LVDS/ORCA buffer base address configuration register. (RX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15   14   13   12   11   10   9   8   7   6   5   4   3   2   1   0   RX_SADDR														

## Bits 15:0 - RX_SADDR (R/W)

RX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

### 6.3.10.1.2.2 uDMA RX LVDS/ORCA buffer size configuration register. (RX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								RX_SIZ E
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RX_	SIZE							

#### Bits 16:0 - **RX_SIZE** (R/W)

RX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

### 6.3.10.1.2.3 uDMA RX LVDS/ORCA stream configuration register. (RX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					CLR/PE NDING	EN		Reserved		CONTIN OUS

### Bit 5 - **CLR** (W)

RX channel clear and stop transfer:

- *0b0*: disabled no action
- *0b1*: stop and clear stop and clear the on-going transfer

### Bit 5 - **PENDING** (R)

RX transfer pending in queue status flag:

- *ObO*: no pending no pending transfer in the queue
- *0b1*: pending pending transfer in the queue

### Bit 4 - **EN** (R/W)

RX channel enable and start transfer bitfield:

- *0b0*: disabled
- *0b1*: start enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

### Bit 0 - CONTINOUS (R/W)

RX channel continuous mode bitfield:

- *0b0*: disabled
- *0b1*: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

### 6.3.10.1.2.4 uDMA TX LVDS/ORCA buffer base address configuration register. (TX_SADDR)

#### Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  TX SADDR														

#### Bits 15:0 - TX_SADDR (R/W)

TX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets buffer base address

### 6.3.10.1.2.5 uDMA TX LVDS/ORCA buffer size configuration register. (TX_SIZE)

#### Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								TX_SIZE
15   14   13   12   11   10   9   8   7   6   5   4   3   2   1   0   TX_SIZE													0		

### Bits 16:0 - TX_SIZE (R/W)

TX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

#### 6.3.10.1.2.6 uDMA TX LVDS/ORCA stream configuration register. (TX_CFG)

### Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved		CLR/PE NDING	EN		Reserved		CONTIN OUS			

#### Bit 5 - CLR (W)

TX channel clear and stop transfer bitfield:

- *0b0*: disabled
- *0b1*: stop and clear the on-going transfer

## Bit 5 - **PENDING** (R)

TX transfer pending in queue status flag:

- *0b0*: no pending no pending transfer in the queue
- *0b1*: pending pending transfer in the queue

#### Bit 4 - EN (R/W)

TX channel enable and start transfer bitfield:

- 0b0: disabled
- 0b1: enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

#### Bit 0 - CONTINOUS (R/W)

TX channel continuous mode bitfield:

- *0b0*: disabled
- 0b1: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

#### 6.3.10.1.2.7 uDMA LVDS configuration register. (RF_CFG)

Reset value: 0x0013

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved		RF_MO DE_RX	RF_MO DE_VAL	RF_MO DE	RF_CLK SEL	Rese	erved	RF_SD_ TX_EN	RF_SD_ RX_EN	RF_RX_ ENB	RF_TX_ VSEL	RF_TX_ MODE	RF_TX_ OEB	RF_TX_ ENB

### Bit 12 - RF_MODE_RX (R/W)

Reset value: 0b0

RX AT86RF215 synchronization bits detection bitfield:

- *0b0*: enable synchronization bits detection on the RxLVDS pad. The 2 bits of synchronization are on the 16bits MSB for I and Q of IQ data received.
- 0b1: disable potential of 16 bits data versus 13bits for AT86RF215 but synchronization to be managed by software

### Bit 11 - RF_MODE_VAL (R/W)

Reset value: 0b0

TX set data bit0 value bitfield:

- 0b0: NO_IMMEDIATE_TX set bit0 at 0, indicate AT86RF215 no immediate TX so TX is triggered by SPI command
- 0b1: IMMEDIATE_TX set bit0 at 1, indicate AT86RF215 immediate TX in case its register RF_IQIFC0.EEC(bit0)=1

## Bit 10 - **RF_MODE** (*R/W*)

Reset value: 0b0

TX configuration specific to AT86RF215 bitfield:

- *0b0*: enable add synchronisation bits on bit15–14 and bit0 used for immediate TX, payload is on bits 13 to 1.
- *0b1*: disable this means SW to manage synchronisation with the 16bits data to TX

#### Bit 9 - RF_CLKSEL (R/W)

Reset value: 0b0

CLK selection bitfield:

- *0b0*: EXT_RX_CLK use the external RX clk received by RX LVDS PAD
- *0b1*: SOC_CLK use the SoC clk (useful for early functionality tests). For SoC clk availability, RF_CLKDIV_EN as to be 1(enabled) then the minimum clock ratio is divided by 2 if RF_CLKDIV_CFG is 0.

### Bit 6 - RF_SD_TX_EN (R/W)

Reset value: 0b0

Enable TX serializer bitfield:

- *0b0*: disabled
- *0b1*: enabled

### Bit 5 - RF_SD_RX_EN (R/W)

Reset value: 0b0

Enable RX serdes bitfield:

- *0b0*: disabled
- 0b1: enabled

### Bit 4 - RF_RX_ENB (R/W)

Reset value: 0b1

Enable RX LVDS PAD bitfield:

- *0b0*: enabled
- *0b1*: disabled

#### Bit 3 - RF_TX_VSEL (R/W)

Reset value: 0b0

TX LVDS PAD Core voltage selector bitfield:

- *0b0*: VDD_1_0V if VDD=1.0V
- 0b1: VDD_1_2V if VDD=1.2V

### Bit 2 - **RF_TX_MODE** (R/W)

Reset value: 0b0

TX LVDS PAD Current selector pin bitfield:

- *0b0*: low current MODE = 0 selects low current
- *0b1*: high current MODE = 1 selects high current

### Bit 1 - RF_TX_OEB (R/W)

Reset value: 0b1

TX LVDS PAD Output Enable bitfield:

- *0b0*: enable enable output
- *0b1*: disable disable output

#### Bit 0 - RF_TX_ENB (R/W)

Reset value: 0b1

TX LVDS PAD Active-high power down mode select bitfield:

- *0b0*: enable enable output
- *0b1*: disable disable output

### 6.3.10.1.2.8 uDMA LVDS status register. (RF_STATUS)

Reset value: 0x0000

only bit0: RX serdes synchronization flag with at86rf215

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								RF_SYN C_FLAG

### Bit 0 - RF_SYNC_FLAG (R)

Read only RX Synchronization flag between RX serdes block and the AT86RF215 bitfield:

- *0b0* not synchonized
- *0b1* synchonized Rx serdes synchronized with external AT86RF215 synchronization

#### 6.3.10.1.2.9 uDMA LVDS clock divider enable configuration register. (CLKDIV_EN)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								RF_CLK DIV_EN

### Bit 0 - RF_CLKDIV_EN (R/W)

Clock divider activation bitfield.

## 6.3.10.1.2.10 uDMA LVDS clock divider configuration register. (CLKDIV_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 7:0 - RF_CLKDIV_CFG (R/W)

Clock division ratio increased by power of 2 suite. 0 is divided by 2, 1 by 4, 2 by 8... 7 by 256

# ${\bf 6.3.10.1.2.11\ uDMA\ LVDS\ clock\ divider\ update\ configuration\ register.\ (CLKDIV_UPD)}$

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															RF_CLK
							Reserved								DIV_UP
															D

### Bit 0 - RF_CLKDIV_UPD (W)

Apply effectively CLKDIV_CFG configuration

### 6.3.10.1.2.12 uDMA ORCA configuration register. (ORCA_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Reserved				ORCA_E N		ORCA_	DELAY			ORCA	_SIZE	

#### Bit 8 - ORCA_EN (R/W)

ORCA Channel enable and start transfer bitfield:

- 0b0: disabled
- *0b1*: enabled

### Bits 7:4 - ORCA_DELAY (R/W)

ORCA delay between first data to TXSYNC signal in cycle for TX bitfield (minimum 1 cycle delay).

Default value is 0x0 for 1 cycle delay. 0X1 for 2 cycle delay etc.

## Bits 3:0 - ORCA_SIZE (R/W)

ORCA data size in bits bitfield (16Bits maximum).

### 6.3.10.1.2.13 uDMA LVDS RX sample counter configuration register. (RX_SAMPLE_CNT)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved E												ENA			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CMP	_VAL							

#### Bit 16 - **ENA** (R/W)

 ${\tt LVDS}\ event\ generation\ on\ compare\ match\ with\ {\tt CMP_VAL}\ configuration\ bitfield:$ 

- *0b0*: disabled
- *0b1*: enabled

#### Bits 15:0 - CMP_VAL (R/W)

LVDS RX sample comparison value configuration bitfield.

### 6.3.10.2 uDMA SPI master interfaces

SPIM component manages the following features:

- Controls all SPI master bus specific sequencing, protocol, arbitration and timing.
- Standard or Quad half-duplex and full-duplex SPI master interface modes.
- Configurable CPOL and CPHA parameters.
- Configurable SPIM clock frequencey related to SoC clock frequency.

SPIM interface uses a <u>stream pre-processing protocol</u> to ease the construction of SPIM transfers combining commands and data stream. A list of the available commands and their encoding is shown in the <u>table below</u>.

#### 6.3.10.2.1 SPI Master Channel 0 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A102080	32	Config	R/W	0x0000	uDMA RX SPIM buffer base address configuration register.
RX_SIZE	0x1A102084	32	Config	R/W	0x0000	uDMA RX SPIM buffer size configuration register.
RX_CFG	0x1A102088	32	Config	R/W	0x0000	uDMA RX SPIM stream configuration register.
TX_SADDR	0x1A102090	32	Config	R/W	0x0000	uDMA TX SPIM buffer base address configuration register.
TX_SIZE	0x1A102094	32	Config	R/W	0x0000	uDMA TX SPIM buffer size configuration register.
TX_CFG	0x1A102098	32	Config	R/W	0x0000	uDMA TX SPIM stream configuration register.

Table 48. SPI Master Channel 0 registers table

### 6.3.10.2.2 SPI Master Channel 1 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A102100	32	Config	R/W	0x0000	uDMA RX SPIM buffer base address configuration register.
RX_SIZE	0x1A102104	32	Config	R/W	0x0000	uDMA RX SPIM buffer size configuration register.
RX_CFG	0x1A102108	32	Config	R/W	0x0000	uDMA RX SPIM stream configuration register.
TX_SADDR	0x1A102110	32	Config	R/W	0x0000	uDMA TX SPIM buffer base address configuration register.
TX_SIZE	0x1A102114	32	Config	R/W	0x0000	uDMA TX SPIM buffer size configuration register.
TX_CFG	0x1A102118	32	Config	R/W	0x0000	uDMA TX SPIM stream configuration register.

Table 49. SPI Master Channel 1 registers table

# 6.3.10.2.3 uDMA SPI master interface registers details

#### 6.3.10.2.3.1 uDMA RX SPIM buffer base address configuration register. (RX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15:0 - RX_SADDR (R/W)

RX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

### 6.3.10.2.3.2 uDMA RX SPIM buffer size configuration register. (RX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								RX_SIZ E
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RX_	SIZE							

#### Bits 16:0 - **RX_SIZE** (R/W)

RX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

### 6.3.10.2.3.3 uDMA RX SPIM stream configuration register. (RX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					CLR/PE NDING	EN	Reserve d	DATA	ASIZE	CONTIN OUS

#### Bit 5 - **CLR** (W)

RX channel clear and stop transfer:

- *0b0*: disable
- *0b1*: stop and clear stop and clear the on-going transfer

### Bit 5 - **PENDING** (R)

RX transfer pending in queue status flag:

- *ObO*: no pending no pending transfer in the queue
- *0b1*: pending pending transfer in the queue

### Bit 4 - **EN** (R/W)

RX channel enable and start transfer bitfield:

- *0b0*: disable
- *0b1*: start enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

### Bits 2:1 - DATASIZE (R/W)

 ${\sf RX}$  channel transfer size used to increment uDMA SPIM  ${\sf RX}$  buffer address pointer:

- *0b00*: plus 1 +1 (8 bits)
- *0b01*: plus 2 +2 (16 bits)
- 0b10: plus 4 +4 (32 bits)
- *0b11*: plus 0 +0

#### Bit 0 - CONTINOUS (R/W)

RX channel continuous mode bitfield:

- 0b0: disabled
- *0b1*: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

## 6.3.10.2.3.4 uDMA TX SPIM buffer base address configuration register. (TX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TX S/								

#### Bits 15:0 - TX_SADDR (R/W)

TX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets buffer base address

### 6.3.10.2.3.5 uDMA TX SPIM buffer size configuration register. (TX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								TX_SIZE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TX_S	SIZE							

## Bits 16:0 - **TX_SIZE** (R/W)

TX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

#### 6.3.10.2.3.6 uDMA TX SPIM stream configuration register. (TX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	6	5	4	3	2	1	0			
				Rese	erved					CLR/PE NDING	EN		Reserved		CONTIN OUS

## Bit 5 - **CLR** (W)

TX channel clear and stop transfer bitfield:

- *0b0*: disabled
- *0b1*: stop and clear stop and clear the on-going transfer

#### Bit 5 - PENDING (R)

TX transfer pending in queue status flag:

- *0b0*: no pending no pending transfer in the queue
- *0b1*: pending pending transfer in the queue

## Bit 4 - **EN** (R/W)

TX channel enable and start transfer bitfield:

- 0b0: disabled
- *0b1*: start enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

#### Bit 0 - CONTINOUS (R/W)

TX channel continuous mode bitfield:

- *0b0*: disabled
- 0b1: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

#### 6.3.10.2.4 uDMA SPI master interface commands

Name	Command number	Size	Description
SPI_CMD_CFG	0	32	SPIM configuration command.
SPI_CMD_SOT	1	32	SPIM Start of Transfer command.
SPI_CMD_SEND_CMD	2	32	SPIM send command.
SPI_CMD_SEND_ADDR	3	32	SPIM send address command.
SPI_CMD_DUMMY	4	32	SPIM dummy RX command.
SPI_CMD_WAIT	5	32	SPIM wait uDMA external event command.
SPI_CMD_TX_DATA	6	32	SPIM send data command (max 64kbits).
SPI_CMD_RX_DATA	7	32	SPIM receive data command (max 64kbits).
SPI_CMD_RPT	8	32	SPIM repeat next transfer command.
SPI_CMD_EOT	9	32	SPIM End of Transfer command.
SPI_CMD_RPT_END	10	32	SPIM end of repeat command.
SPI_CMD_RX_CHECK	11	32	SPIM RX check data command.
SPI_CMD_FULL_DUPL	12	32	SPIM full duplex mode command.

Table 50. uDMA SPI master interface commands table

### 6.3.10.2.5 uDMA SPI master interface commands details

### 6.3.10.2.5.1 SPIM configuration command. (SPI_CMD_CFG)

# Command number: 0

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (0)							Rese	rved					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			CPOL	CPHA				CLK	DIV			

#### Bits 31:28 - SPI_CMD

SPIM command to be processed is "CFG" in this case.

#### Bit 9 - CPOL

SPIM clock polarity bitfield:

- *0b0*: leading edge is rising edge
- 0b1: leading edge is falling edge

#### Bit 8 - CPHA

SPIM clock phase bitfield:

- *0b0*: the "out" side changes the data on the trailing edge of the preceding clock cycle, while the "in" side captures the data on the leading edge of the clock cycle.
- *0b1*: the "out" side changes the data on the leading edge of the current clock cycle, while the "in" side captures the data on the trailing edge of the clock cycle.

### Bits 7:0 - CLKDIV

SPIM clock divider bitfield.

#### 6.3.10.2.5.2 SPIM Start of Transfer command. (SPI_CMD_SOT)

#### Command number: 1

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (1)							Rese	rved					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15 14 13 12 11 10 9 8 7 6 5 4 3 2 Reserved												С	S	

### Bits 31:28 - **SPI_CMD**

SPIM command to be processed is "SOT" in this case.

### Bits 1:0 - **CS**

SPIM Chip Select (CS) bitfield:

- 0b00: select csn0
- *0b01*: select csn1
- 0b10: select csn2
- *0b11*: select csn3

## 6.3.10.2.5.3 SPIM send command. (SPI_CMD_SEND_CMD)

#### Command number: 2

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (2)		QPI	PI Reserved CMD_SIZE										
45															
SPI_CMD (2) QPI Reserved CMD_SIZE										1	0				

### Bits 31:28 - SPI_CMD

SPIM command to be processed is "SEND_CMD" in this case.

#### Bit 27 - **QPI**

SPIM mode configuration bitfield:

- *0b0*: Standard
- 0b1: Quad

### Bits 20:16 - CMD_SIZE

SPIM command to send size in bits bitfield. The value is (num bits – 1).

#### Bits 15:0 - CMD_VALUE

SPIM command to send bitfield. MSB of the command must be left aligned if command size is lower than 16.

## 6.3.10.2.5.4 SPIM send address command. (SPI_CMD_SEND_ADDR)

#### Command number: 3

This command is followed by extra parameter bytes that are SPI_CMD_SEND_ADDR.CMD_SIZE bits long. The value following the SPI_CMD_SEND_ADDR command indicates address value.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (3)		QPI											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Rese	erved							

#### Bits 31:28 - SPI_CMD

SPIM command to be processed is "SEND_ADDR" in this case.

#### Bit 27 - **QPI**

SPIM mode configuration bitfield:

- *0b0*: Standard
- *0b1*: Quad

#### Bits 20:16 - CMD_SIZE

SPIM address to send size in bits bitfield. The value is (num bits – 1).

## 6.3.10.2.5.5 SPIM dummy RX command. (SPI_CMD_DUMMY)

### Command number: 4

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (4)					Reserved					DU	JMMY_CYC	LE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Rese	rved							

### Bits 31:28 - **SPI_CMD**

SPIM command to be processed is "DUMMY" in this case.

### Bits 20:16 - DUMMY_CYCLE

SPIM dummy cycles value bitfield.

#### 6.3.10.2.5.6 SPIM wait uDMA external event command. (SPI_CMD_WAIT)

#### Command number: 5

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (5)							Rese	rved					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Rese	erved							EVEN	NT_ID

#### Bits 31:28 - SPI_CMD

SPIM command to be processed is "WAIT" in this case.

### Bits 1:0 - EVENT_ID

SPIM uDMA external event bitfield.

#### 6.3.10.2.5.7 SPIM send data command (max 64kbits). (SPI_CMD_TX_DATA)

Command number: 6

This command is followed by extra parameter bytes that are SPI_CMD_TX_DATA.DATA_SIZE bits long. The value following the SPI_CMD_TX_DATA command indicates data value stream to transmit.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (6)		QPI	BYTE_A LIGN					Rese	erved				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•		•		•	•	DATA	SIZE				•	•		

#### Bits 31:28 - SPI_CMD

SPIM command to be processed is "TX_DATA" in this case.

### Bit 27 - **QPI**

SPIM mode configuration bitfield:

- *0b0*: Standard
- *0b1*: Quad

## Bit 26 - BYTE_ALIGN

SPIM byte alignment configuration bitfield:

- *0b0*: enable byte alignment
- *0b1*: disable byte alignment

#### Bits 15:0 - DATA_SIZE

SPIM bits size to send bitfield (max 64kbits). The value is (num bits – 1).

### 6.3.10.2.5.8 SPIM receive data command (max 64kbits). (SPI_CMD_RX_DATA)

Command number: 7

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (7)		QPI	BYTE_A LIGN					Rese	erved				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DATA	SIZE							

#### Bits 31:28 - SPI_CMD

SPIM command to be processed is "RX_DATA" in this case.

#### Bit 27 - **QPI**

SPIM mode configuration bitfield:

- *0b0*: Standard
- *0b1*: Quad

### Bit 26 - BYTE_ALIGN

SPIM byte alignment configuration bitfield:

- *0b0*: enable byte alignment
- *0b1*: disable byte alignment

# Bits 15:0 - DATA_SIZE

SPIM bits size to receive bitfield (max 64kbits). The value is (num bits – 1).

#### 6.3.10.2.5.9 SPIM repeat next transfer command. (SPI_CMD_RPT)

### Command number: 8

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (8)							Rese	erved					
45	14	13	12	11	10	9	8	7	6	E	4	3	2	1	0
15	14	13	12		10	,	٥	,	U	3	4	3	-	•	

#### Bits 31:28 - SPI_CMD

SPIM command to be processed is "RPT" in this case.

#### Bits 15:0 - RPT_CNT

SPIM transfer repeat count value bitfield (max 64k).

### 6.3.10.2.5.10 SPIM End of Transfer command. (SPI_CMD_EOT)

#### Command number: 9

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_C	MD (9)							Rese	erved					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								EVENT_ GEN

### Bits 31:28 - **SPI_CMD**

SPIM command to be processed is "EOT" in this case.

#### Bit 0 - EVENT_GEN

SPIM uDMA EOT event generation bitfield:

- 0b0: disabled
- 0b1: enabled

### 6.3.10.2.5.11 SPIM end of repeat command. (SPI_CMD_RPT_END)

#### Command number: 10

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_CI	MD (10)							Rese	rved					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 31:28 - **SPI_CMD**

SPIM command to be processed is "RPT_END" in this case.

### 6.3.10.2.5.12 SPIM RX check data command. (SPI_CMD_RX_CHECK)

#### Command number: 11

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_CM	MD (11)		QPI	BYTE_A LIGN	CHECK	_TYPE		Rese	rved			STATU	S_SIZE	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							COMP	_DATA							

### Bits 31:28 - SPI_CMD

SPIM command to be processed is "RX_CHECK" in this case.

### Bit 27 - **QPI**

SPIM mode configuration bitfield:

- *0b0*: Standard
- *0b1*: Quad

### Bit 26 - BYTE_ALIGN

SPIM byte alignment configuration bitfield:

- *0b0*: enable byte alignment
- *0b1*: disable byte alignment

## Bits 25:24 - CHECK_TYPE

SPIM check mode bitfield:

- *0b00*: compare bit to bit
- *0b01*: compare only ones
- *0b10*: compare ony zeros

### Bits 19:16 - STATUS_SIZE

SPIM read data size in bits bitfield. The value is (num bits – 1).

### Bits 15:0 - COMP_DATA

SPIM comparison value bitfield (max 16bits).

### 6.3.10.2.5.13 SPIM full duplex mode command. (SPI_CMD_FULL_DUPL)

#### Command number: 12

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	SPI_CM	ИD (12)		Reserve d	BYTE_A LIGN					Rese	erved				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•					DATA	SIZE			•	•	•		

#### Bits 31:28 - SPI_CMD

SPIM command to be processed is "FULL_DUPLEX" in this case.

#### Bit 26 - BYTE_ALIGN

SPIM byte alignment configuration bitfield:

- 0b0: enable byte alignment
- *0b1*: disable byte alignment

### Bits 15:0 - DATA_SIZE

SPIM bits size to send bitfield (max 64kbits). The value is (num bits - 1).

# 6.3.10.3 uDMA Hyperbus interface

HYPERBUS component manages the following features:

- Controls all HYPERBUS bus specific sequencing, protocol, arbitration and timing.
- Supports RAM and Flash memories types

# 6.3.10.3.1 uDMA Hyperbus interface registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A102180	32	Config	R/W	0x0000	uDMA RX HYPERBUS buffer base address configuration register.
RX_SIZE	0x1A102184	32	Config	R/W	0x0000	uDMA RX HYPERBUS buffer size configuration register.
RX_CFG	0x1A102188	32	Config	R/W	0x0000	uDMA RX HYPERBUS stream configuration register.
TX_SADDR	0x1A102190	32	Config	R/W	0x0000	uDMA TX HYPERBUS buffer base address configuration register.
TX_SIZE	0x1A102194	32	Config	R/W	0x0000	uDMA TX HYPERBUS buffer size configuration register.
TX_CFG	0x1A102198	32	Config	R/W	0x0000	uDMA TX HYPERBUS stream configuration register.
EXT_ADDR	0x1A1021A0	32	Config	R/W	0x0000	Memory access address register.
MEM_CFG0	0x1A1021A8	32	Config	R/W	0x3700	Memory Control Configuration 0 register.
MEM_CFG1	0x1A1021AC	32	Config	R/W	0x888888	Memory Control Configuration 1 register.
MEM_CFG2	0x1A1021B0	32	Config	R/W	0x0000	Memory Control Configuration 2 register.
MEM_CFG3	0x1A1021B4	32	Config	R/W	0x0004	Memory Control Configuration 3 register.
MEM_CFG4	0x1A1021B8	32	Config	R/W	0x3001	Memory Control Configuration 4 register.

Name	Address	Size	Туре	Access	Default	Description
MEM_CFG5	0x1A1021BC	32	Config	R/W	0x888888	Memory Control Configuration 5 register.
MEM_CFG6	0x1A1021C0	32	Config	R/W	0x0000	Memory Control Configuration 6 register.
MEM_CFG7	0x1A1021C4	32	Config	R/W	0x0004	Memory Control Configuration 7 register.

Table 51. uDMA Hyperbus interface registers table

### 6.3.10.3.2 uDMA Hyperbus interface registers details

## 6.3.10.3.2.1 uDMA RX HYPERBUS buffer base address configuration register. (RX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 15:0 - **RX_SADDR** (R/W)

RX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

### 6.3.10.3.2.2 uDMA RX HYPERBUS buffer size configuration register. (RX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								RX_SIZ E
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RX_								

## Bits 16:0 - **RX_SIZE** (R/W)

RX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

## 6.3.10.3.2.3 uDMA RX HYPERBUS stream configuration register. (RX_CFG)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved	•			•	CLR/PE NDING	EN		Reserved		CONTIN OUS

#### Bit 5 - CLR (W)

RX channel clear and stop transfer:

- *0b0*: disable
- *0b1*: stop and clear stop and clear the on-going transfer

## Bit 5 - **PENDING** (R)

RX transfer pending in queue status flag:

- *0b0*: no pending no pending transfer in the queue
- *0b1*: pending pending transfer in the queue

### Bit 4 - **EN** (R/W)

RX channel enable and start transfer bitfield:

- 0b0: disable
- *0b1*: start enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

#### Bit 0 - CONTINOUS (R/W)

RX channel continuous mode bitfield:

- 0b0: disabled
- *0b1*: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

## 6.3.10.3.2.4 uDMA TX HYPERBUS buffer base address configuration register. (TX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 15:0 - TX_SADDR (R/W)

TX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets buffer base address

### 6.3.10.3.2.5 uDMA TX HYPERBUS buffer size configuration register. (TX_SIZE)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								TX_SIZE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
13	17					•	•	•	,	,		•	-		

#### Bits 16:0 - TX_SIZE (R/W)

TX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

### 6.3.10.3.2.6 uDMA TX HYPERBUS stream configuration register. (TX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					CLR/PE NDING	EN		Reserved		CONTIN OUS

#### Bit 5 - **CLR** (W)

TX channel clear and stop transfer bitfield:

- *0b0*: disabled
- *0b1*: stop and clear stop and clear the on-going transfer

### Bit 5 - **PENDING** (R)

TX transfer pending in queue status flag:

- *0b0*: no pending no pending transfer in the queue
- *0b1*: pending pending transfer in the queue

### Bit 4 - **EN** (R/W)

TX channel enable and start transfer bitfield:

- *0b0*: disabled
- *0b1*: start enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

### Bit 0 - CONTINOUS (R/W)

TX channel continuous mode bitfield:

- *0b0*: disabled
- *0b1*: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

### 6.3.10.3.2.7 Memory access address register. (EXT_ADDR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SAE	DDR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - **SADDR** (R/W)

Memory access address bitfield.

### 6.3.10.3.2.8 Memory Control Configuration 0 register. (MEM_CFG0)

Reset value: 0x3700

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 13:12 - WRAP_SIZEO (R/W)

Reset value: 0b11

Wrapped Burst Size bitfield:

- 0b00: not used
- 0b01: 64 bytes
- 0b10: 16 bytes
- *0b11*: 32 bytes

#### Bits 11:8 - LATENCYO (R/W)

Reset value: 0b0111

Latency Cycle value for HyperRAM bitfield. When using HyperRAM memory, this bit should be set to the same value as the read latency in configuration register of HyperRAM memory the read latency in configuration register of HyperRAM memory.

- *0b0000*: 5 CK
- *0b0001*: 6 CK
- 0b1110: 3 CK
- *0b1111*: 4 CK
- Others: 6 CK

## Bits 7:0 - MBRO (R/W)

Reset value: 0x0

Memory Base Address 0 for RAM bitfield. The base address of addressable region to each memory is set up. Since register can be set in 16M bytes boundary, lower 24 bit is fixed to 0.

#### 6.3.10.3.2.9 Memory Control Configuration 1 register. (MEM_CFG1)

Reset value: 0x888888

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved					WR_0	CSH0			WR_	CSS0	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		CSHI0			RD_0					CSS0			RD_0		

#### Bits 23:20 - WR_CSH0 (R/W)

Reset value: 0b1000

Write Chip Select Hold After CK Falling Edge bitfield = 1 CK * (1 + val)

Bits 19:16 - WR_CSSO (R/W)

Reset value: 0b1000

Write Chip Select Setup to next CK Rising Edge bitfield = 1 CK * (1 + val)

Bits 15:12 - WR_CSHIO (R/W)

Reset value: 0b1000

Write Chip Select High Between Operations bitfield = 1.5 CK * (1 + val)

Bits 11:8 - RD_CSH0 (R/W)

Reset value: 0b1000

Read Chip Select Hold After CK Falling Edge bitfield = 1 CK * (1 + val)

Bits 7:4 - **RD_CSSO** (R/W)

Reset value: 0b1000

Read Chip Select Setup to next CK Rising Edge bitfield = 1 CK * (1 + val)

Bits 3:0 - RD_CSHIO (R/W)

Reset value: 0b1000

Read Chip Select High Between Operations bitfield = 1.5 CK * (1 + val)

#### 6.3.10.3.2.10 Memory Control Configuration 2 register. (MEM_CFG2)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Reserved							WR_	MAX_LENC	OHT			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 24:16 - WR_MAX_LENGTH0 (R/W)

Write Maximum Length bitfield = 2 CK * (1 + val)

## Bits 8:0 - RD_MAX_LENGTH0 (R/W)

Read Maximum Length bitfield (Maximum access data length in order to restrict HyperBus CS# assertion time) = 2 CK * (1 + val)

#### 6.3.10.3.2.11 Memory Control Configuration 3 register. (MEM_CFG3)

Reset value: 0x0004

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved			RD	S_DELAY_/	ADJ	Rese	erved	WR_MA X_LEN_ EN0	RD_MA X_LEN_ EN0	CRT0	DT0	TCO0	ACS0

Bits 10:8 - RDS_DELAY_ADJ (R/W)

Reset value: 0b000

RDS Delay Configuration bitfield

#### Bit 5 - WR_MAX_LEN_ENO (R/W)

Reset value: 0b0

Write Maximum Length Enable bitfield (enables maximum access data length control for restricting HyperBus CS# assertion time by MAXLEN bit):

- 0b0: Disable maximum access data length control.
- 0b1: Enable maximum access data length control.

#### Bit 4 - RD_MAX_LEN_ENO (R/W)

Reset value: 0b0

Read Maximum Length Enable bitfield (enables maximum access data length control for restricting HyperBus CS# assertion time by MAXLEN bit):

- 0b0: disable Disable maximum access data length control.
- *0b1*: enable Enable maximum access data length control.

### Bit 3 - CRT0 (R/W)

Reset value: 0b0

Configuration Register Target bitfield (indicates whether access is to memory space or register space):

- This bit is mapped to CA[46] bit in command/address cycle to HyperRAM device.
- When using HyperFlash memory, this bit should be set to 0.
- *0b0*: memory Memory space.
- *0b1*: config Configuration register space.

### Bit 2 - **DT0** (R/W)

Reset value: 0b1

Device Type bitfield (set as a device type of connected memory):

- *0b0*: HyperFlash
- 0b1: HyperRAM

## Bit 1 - **TCO0** (R/W)

Reset value: 0b0

True Continuous Merging Option bitfield (set when the wrap transaction and subsequent continuous transaction can be merged):

- 0b0: no merge No merging WRAP and INCR.
- 0b1: merge Merging WRAP and INCR.

## Bit 0 - **ACS0** (R/W)

Reset value: 0b0

Asymmetry Cache System Support bitfield (set when the different wrap size (cache size) is required by multi-core in system):

- *0b0*: no merge No merging WRAP and INCR.
- 0b1: merge Merging WRAP and INCR.

#### 6.3.10.3.2.12 Memory Control Configuration 4 register. (MEM_CFG4)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
45															1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 13:12 - WRAP_SIZE1 (R/W)

Reset value: 0b11

Wrapped Burst Size bitfield:

- *0b00*: not used
- *0b01*: 64 bytes
- 0b10: 16 bytes
- *0b11*: 32 bytes

#### Bits 11:8 - LATENCY1 (R/W)

Reset value: 0b0000

This bit is ignored when the DEVTYPE in HYPERBUS_CTRL_MCRi register is chosen to the HyperFlash memory (Defult latency is 1 for write, 5 for read).

#### Bits 7:0 - MBR1 (R/W)

Reset value: 0x1

Memory Base Address1 for FLASH bitfield. HYPERBUS_MBRi+1 register for CSi+1# must be set higher than HYPERBUS_MBRi register for CSi#

#### 6.3.10.3.2.13 Memory Control Configuration 5 register. (MEM_CFG5)

Reset value: 0x888888

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved					WR_0	CSH1			WR_0	CSS1	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 23:20 - WR_CSH1 (R/W)

Reset value: 0b1000

Write Chip Select Hold After CK Falling Edge bitfield = 1 CK * (1 + val)

# Bits 19:16 - WR_CSS1 (R/W)

Reset value: 0b1000

Write Chip Select Setup to next CK Rising Edge bitfield = 1 CK * (1 + val)

### Bits 15:12 - WR_CSHI1 (R/W)

Reset value: 0b1000

Write Chip Select High Between Operations bitfield = 1.5 CK * (1 + val)

### Bits 11:8 - **RD_CSH1** (R/W)

Reset value: 0b1000

Read Chip Select Hold After CK Falling Edge bitfield = 1 CK * (1 + val)

#### Bits 7:4 - RD_CSS1 (R/W)

Reset value: 0b1000

Read Chip Select Setup to next CK Rising Edge bitfield = 1 CK * (1 + val)

#### Bits 3:0 - RD_CSHI1 (R/W)

Reset value: 0b1000

Read Chip Select High Between Operations bitfield = 1.5 CK * (1 + val)

#### 6.3.10.3.2.14 Memory Control Configuration 6 register. (MEM_CFG6)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Reserved							WR_	MAX_LENG	TH1			
45	4.4	13	12	11	10	٥	•	7	6	E	4	2	2	1	_
15	14	13	12		10	,	0	,	U	3	4	3	_		

#### Bits 24:16 - WR_MAX_LENGTH1 (R/W)

Write Maximum Length bitfield = 2 CK * (1 + val)

#### Bits 8:0 - RD_MAX_LENGTH1 (R/W)

Read Maximum Length bitfield (Maximum access data length in order to restrict HyperBus CS# assertion time) = 2 CK * (1 + val)

#### 6.3.10.3.2.15 Memory Control Configuration 7 register. (MEM_CFG7)

Reset value: 0x0004

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										WR_MA	RD_MA				
				Rese	erved					X_LEN_	X_LEN_	CRT1	DT1	TCO1	ACS1
										EN1	EN1				

### Bit 5 - WR_MAX_LEN_EN1 (R/W)

Reset value: 0b0

Write Maximum Length Enable bitfield (enables maximum access data length control for restricting HyperBus CS# assertion time by MAXLEN bit):

- *0b0*: disable Disable maximum access data length control.
- *0b1*: enable Enable maximum access data length control.

### Bit 4 - **RD_MAX_LEN_EN1** (R/W)

Reset value: 0b0

Read Maximum Length Enable bitfield (enables maximum access data length control for restricting HyperBus CS# assertion time by MAXLEN bit):

- *0b0*: disable Disable maximum access data length control.
- *0b1*: enable Enable maximum access data length control.

#### Bit 3 - CRT1 (R/W)

Reset value: 0b0

Configuration Register Target bitfield (indicates whether access is to memory space or register space):

- *0b0*: memory Memory space.
- *0b1*: config Configuration register space.

This bit is mapped to CA[46] bit in command/address cycle to HyperRAM device.

When using HyperFlash memory, this bit should be set to 0.

#### Bit 2 - **DT1** (R/W)

Reset value: 0b1

Device Type bitfield (set as a device type of connected memory):

- 0b0: HyperFlash
- 0b1: HyperRAM

#### Bit 1 - TCO1 (R/W)

Reset value: 0b0

True Continuous Merging Option bitfield (set when the wrap transaction and subsequent continuous transaction can be merged):

- 0b0: no merge No merging WRAP and INCR.
- *0b1*: merge Merging WRAP and INCR.

#### Bit 0 - ACS1 (R/W)

Reset value: 0b0

Asymmetry Cache System Support bitfield (set when the different wrap size (cache size) is required by multi-core in system):

- *0b0*: no merge No merging WRAP and INCR.
- 0b1: merge Merging WRAP and INCR.

### 6.3.10.4 uDMA UART interface

 ${\sf UART\ component\ manages\ the\ following\ features:}$ 

- Standard full-duplex UART interface
- Configurable baudrate related to SoC domain clock frequency
- Configurable parity bit generation and check
- Configurable stop bit length
- Configurable character length

## 6.3.10.4.1 uDMA UART interface registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A102200	32	Config	R/W	0x0000	uDMA RX UART buffer base address configuration register.
RX_SIZE	0x1A102204	32	Config	R/W	0x0000	uDMA RX UART buffer size configuration register.
RX_CFG	0x1A102208	32	Config	R/W	0x0000	uDMA RX UART stream configuration register.
TX_SADDR	0x1A102210	32	Config	R/W	0x0000	uDMA TX UART buffer base address configuration register.
TX_SIZE	0x1A102214	32	Config	R/W	0x0000	uDMA TX UART buffer size configuration register.

Name	Address	Size	Туре	Access	Default	Description
TX_CFG	0x1A102218	32	Config	R/W	0x0000	uDMA TX UART stream configuration register.
<u>STATUS</u>	0x1A102220	32	Status	R	0x0000	uDMA UART status register.
<u>SETUP</u>	0x1A102224	32	Config	R/W	0x0000	UDMA UART configuration register.

Table 52. uDMA UART interface registers table

### 6.3.10.4.2 uDMA UART interface registers details

### 6.3.10.4.2.1 uDMA RX UART buffer base address configuration register. (RX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 15:0 - **RX_SADDR** (R/W)

RX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

### 6.3.10.4.2.2 uDMA RX UART buffer size configuration register. (RX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved											RX_SIZ E			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RX_SIZE														

## Bits 16:0 - **RX_SIZE** (R/W)

RX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

## 6.3.10.4.2.3 uDMA RX UART stream configuration register. (RX_CFG)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										CLR/PE NDING	EN	Reserved			CONTIN OUS

### Bit 5 - CLR (W)

RX channel clear and stop transfer:

- *0b0*: disable
- *0b1*: stop and clear the on-going transfer

## Bit 5 - **PENDING** (R)

RX transfer pending in queue status flag:

- *0b0*: no pending transfer in the queue
- *0b1*: pending transfer in the queue

## Bit 4 - **EN** (R/W)

RX channel enable and start transfer bitfield:

- 0b0: disable
- *0b1*: enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

### Bit 0 - CONTINOUS (R/W)

RX channel continuous mode bitfield:

- 0b0: disabled
- *0b1*: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

## 6.3.10.4.2.4 uDMA TX UART buffer base address configuration register. (TX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 15:0 - TX_SADDR (R/W)

TX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets buffer base address

## 6.3.10.4.2.5 uDMA TX UART buffer size configuration register. (TX_SIZE)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								TX_SIZE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
13	17					•	•	•	,	,		•	-		

### Bits 16:0 - TX_SIZE (R/W)

TX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

## 6.3.10.4.2.6 uDMA TX UART stream configuration register. (TX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					CLR/PE NDING	EN		Reserved		CONTIN OUS

### Bit 5 - **CLR** (W)

TX channel clear and stop transfer bitfield:

- *0b0*: disabled
- *0b1*: stop and clear the on-going transfer

## Bit 5 - **PENDING** (R)

TX transfer pending in queue status flag:

- *0b0*: no pending transfer in the queue
- *0b1*: pending transfer in the queue

## Bit 4 - **EN** (R/W)

TX channel enable and start transfer bitfield:

- *0b0*: disabled
- *0b1*: enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

## Bit 0 - CONTINOUS (R/W)

TX channel continuous mode bitfield:

- *0b0*: disabled
- *0b1*: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

## 6.3.10.4.2.7 uDMA UART status register. (STATUS)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Reserved							RX_PE	RX_BUS Y	TX_BUS Y

### Bit 2 - **RX_PE** (R)

RX parity error status flag:

- *0b0*: no error
- *0b1*: RX parity error occurred

## Bit 1 - RX_BUSY (R)

RX busy status flag:

- *0b0*: no RX transfer on-going
- *0b1*: RX transfer on-going

## Bit 0 - TX_BUSY (R)

TX busy status flag:

- *0b0*: no TX transfer on-going
- 0b1: TX transfer on-going

### 6.3.10.4.2.8 UDMA UART configuration register. (SETUP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CLK	DIV							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Rese	erved			RX_ENA	TX_ENA		Rese	erved		STOP_B ITS	BIT_LE	ENGTH	PARITY _ENA

## Bits 31:16 - **CLKDIV** (R/W)

 ${\tt UART\ Clock\ divider\ configuration\ bitfield.\ The\ baudrate\ is\ equal\ to\ SOC_FREQ/CLKDIV.}$ 

## Bit 9 - **RX_ENA** (R/W)

RX transceiver configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

# Bit 8 - **TX_ENA** (R/W)

TX transceiver configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

## Bit 3 - STOP_BITS (R/W)

Stop bits length bitfield:

- *0b0*: 1 stop bit
- *0b1*: 2 stop bits

# Bits 2:1 - BIT_LENGTH (R/W)

Character length bitfield:

- 0b00: 5 bits
- *0b01*: 6 bits
- 0b10: 7 bits
- *0b11*: 8 bits

## Bit 0 - PARITY_ENA (R/W)

Parity bit generation and check configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

## 6.3.10.5 uDMA I2C interfaces

I2C component manages the following features:

- Controls all I2C bus specific sequencing, protocol, arbitration and timing.
- Configurable I2C clock frequency related to SoC clock frequency.
- Status flags for busy bus and arbitration lost.

I2C interface uses a <u>stream pre-processing protocol</u> to ease the construction of I2C transfers combining commands and data stream. A list of the available commands and their encoding is shown in the <u>table below</u>.

### 6.3.10.5.1 I2C Channel 0 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A102280	32	Config	R/W	0x0000	uDMA RX I2C buffer base address configuration register.
RX_SIZE	0x1A102284	32	Config	R/W	0x0000	uDMA RX I2C buffer size configuration register.
RX_CFG	0x1A102288	32	Config	R/W	0x0000	uDMA RX I2C stream configuration register.
TX_SADDR	0x1A102290	32	Config	R/W	0x0000	uDMA TX I2C buffer base address configuration register.
TX_SIZE	0x1A102294	32	Config	R/W	0x0000	uDMA TX I2C buffer size configuration register.
TX_CFG	0x1A102298	32	Config	R/W	0x0000	uDMA TX I2C stream configuration register.
<u>STATUS</u>	0x1A1022A0	32	Status	R/W	0x0000	uDMA I2C Status register.
<u>SETUP</u>	0x1A1022A4	32	Config	R/W	0x0000	uDMA I2C Configuration register.

Table 53. I2C Channel 0 registers table

### 6.3.10.5.2 I2C Channel 1 registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A102300	32	Config	R/W	0x0000	uDMA RX I2C buffer base address configuration register.
RX_SIZE	0x1A102304	32	Config	R/W	0x0000	uDMA RX I2C buffer size configuration register.
RX_CFG	0x1A102308	32	Config	R/W	0x0000	uDMA RX I2C stream configuration register.
TX_SADDR	0x1A102310	32	Config	R/W	0x0000	uDMA TX I2C buffer base address configuration register.
TX_SIZE	0x1A102314	32	Config	R/W	0x0000	uDMA TX I2C buffer size configuration register.
TX_CFG	0x1A102318	32	Config	R/W	0x0000	uDMA TX I2C stream configuration register.
<u>STATUS</u>	0x1A102320	32	Status	R/W	0x0000	uDMA I2C Status register.

Name	Address	Size	Туре	Access	Default	Description
SETUP	0x1A102324	32	Config	R/W	0x0000	uDMA I2C Configuration register.

Table 54. I2C Channel 1 registers table

### 6.3.10.5.3 uDMA I2C interface registers details

### 6.3.10.5.3.1 uDMA RX I2C buffer base address configuration register. (RX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 15:0 - RX_SADDR (R/W)

RX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

## 6.3.10.5.3.2 uDMA RX I2C buffer size configuration register. (RX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								RX_SIZ E
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RX S	SIZE							

## Bits 16:0 - **RX_SIZE** (R/W)

RX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

### 6.3.10.5.3.3 uDMA RX I2C stream configuration register. (RX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					CLR/PE NDING	EN		Reserved		CONTIN OUS

## Bit 5 - **CLR** (W)

RX channel clear and stop transfer:

- *0b0*: disable
- *0b1*: stop and clear the on-going transfer

### Bit 5 - PENDING (R)

RX transfer pending in queue status flag:

- *0b0*: no pending transfer in the queue
- *0b1*: pending transfer in the queue

## Bit 4 - **EN** (R/W)

RX channel enable and start transfer bitfield:

- *0b0*: disable
- *0b1*: enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

### Bit 0 - CONTINOUS (R/W)

RX channel continuous mode bitfield:

- *0b0*: disabled
- 0b1: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

### 6.3.10.5.3.4 uDMA TX I2C buffer base address configuration register. (TX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 15:0 - TX_SADDR (R/W)

TX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets buffer base address

### 6.3.10.5.3.5 uDMA TX I2C buffer size configuration register. (TX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved										TX_SIZE					
		45	12	11	10	•		١ -	_	-		-	2	1	^
15	14	13	12	11	10	9	8	,	b	כ	4	3	2		U

### Bits 16:0 - TX_SIZE (R/W)

TX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

# 6.3.10.5.3.6 uDMA TX I2C stream configuration register. (TX_CFG)

#### Reset value: 0x0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Reserved														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ī	Reserved										CLR/PE NDING	EN		Reserved		CONTIN OUS

### Bit 5 - **CLR** (W)

TX channel clear and stop transfer bitfield:

- *0b0*: disabled
- *0b1*: stop and clear the on-going transfer

#### Bit 5 - **PENDING** (R)

TX transfer pending in queue status flag:

- *0b0*: no pending transfer in the queue
- *0b1*: pending transfer in the queue

## Bit 4 - **EN** (R/W)

TX channel enable and start transfer bitfield:

- 0b0: disabled
- *0b1*: enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

## Bit 0 - CONTINOUS (R/W)

TX channel continuous mode bitfield:

- *0b0*: disabled
- *0b1*: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

## 6.3.10.5.3.7 uDMA I2C Status register. (STATUS)

## Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved									ARB_LO ST	BUSY				

### Bit 1 - ARB_LOST (R/W)

I2C arbitration lost status flag:

- *0b0*: no error
- *0b1*: arbitration lost error

### Bit 0 - **BUSY** (R/W)

I2C bus busy status flag:

- *0b0*: no transfer on-going
- *0b1*: transfer on-going

## 6.3.10.5.3.8 uDMA I2C Configuration register. (SETUP)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved										DO_RS T				

## Bit 0 - **DO_RST** (R/W)

Reset command used to abort the on-going transfer and clear busy and arbitration lost status flags.

### 6.3.10.5.4 uDMA I2C interface commands

Name	Command number	Size	Description
I2C_CMD_START	0	8	I2C Start of Transfer command.
I2C CMD WAIT EV	1	8	I2C wait uDMA external event command.
I2C_CMD_STOP	2	8	I2C End of Transfer command.
I2C_CMD_RD_ACK	4	8	I2C receive data and acknowledge command.
I2C CMD RD NACK	6	8	I2C receive data and not acknowledge command.
I2C_CMD_WR	8	8	I2C send data and wait acknowledge command.
I2C_CMD_WAIT	10	8	I2C wait dummy cycles command.
I2C_CMD_RPT	12	8	I2C next command repeat command.
I2C_CMD_CFG	14	8	I2C configuration command.

Table 55. uDMA I2C interface commands table

### 6.3.10.5.5 uDMA I2C interface commands details

## 6.3.10.5.5.1 I2C Start of Transfer command. (I2C_CMD_START)

Command number: 0



## Bits 7:0 - **I2C_CMD**

I2C Start of Transfer command.

## 6.3.10.5.5.2 I2C wait uDMA external event command. (I2C_CMD_WAIT_EV)

Command number: 1

This command is followed by extra parameter bytes that are 1 byte (bit[1:0] - event_id). long. The value following the

I2C_CMD_WAIT_EV command indicates selected uDMA external event ID.

7	6	5	4	3	2	1	0
			120 0	MD (1)			

### Bits 7:0 - **I2C_CMD**

I2C wait uDMA external event command.

### 6.3.10.5.5.3 I2C End of Transfer command. (I2C_CMD_STOP)

### Command number: 2

7	6	5	4	3	2	1	0
			I2C_C	MD (2)			

### Bits 7:0 - **I2C_CMD**

12C End of Transfer command.

### 6.3.10.5.5.4 I2C receive data and acknowledge command. (I2C_CMD_RD_ACK)

#### Command number: 4

7	6	5	4	3	2	1	0
				MD (4)			

## Bits 7:0 - **I2C_CMD**

I2C receive data and acknowledge command.

### 6.3.10.5.5.5 I2C receive data and not acknowledge command. (I2C_CMD_RD_NACK)

## Command number: 6

7	6	5	4	3	2	1	0			
	I2C CMD (6)									

## Bits 7:0 - **I2C_CMD**

I2C receive data and not acknowledge command.

## 6.3.10.5.5.6 I2C send data and wait acknowledge command. (I2C_CMD_WR)

#### Command number: 8

This command is followed by extra parameter bytes that are 1 byte or many bytes if preceded by a I2C_CMD_RPT command. long. The value following the I2C_CMD_WR command indicates byte value to transmit or multiple byte values to transmit if this command is preceded by a I2C_CMD_RPT command.



### Bits 7:0 - **I2C_CMD**

I2C send data and wait acknowledge command.

### 6.3.10.5.5.7 I2C wait dummy cycles command. (I2C_CMD_WAIT)

Command number: 10

This command is followed by extra parameter bytes that are 1 byte. long. The value following the I2C_CMD_WAIT command indicates I2C dummy clock cycles value.



## Bits 7:0 - **I2C_CMD**

I2C wait dummy cycles command.

#### 6.3.10.5.5.8 I2C next command repeat command. (I2C_CMD_RPT)

Command number: 12

This command is followed by extra parameter bytes that are 1 byte. long. The value following the I2C_CMD_RPT command indicates number of times to repeat next command.

7	6	5	4	3	2	1	0
			12C_C1	MD (12)			

#### Bits 7:0 - I2C_CMD

I2C next command repeat command.

## 6.3.10.5.5.9 I2C configuration command. (I2C_CMD_CFG)

Command number: 14

This command is followed by extra parameter bytes that are 2 bytes. long. The value following the I2C_CMD_CFG command indicates I2C clock divider 16bits value related to SoC clock frequency. MSB byte is sent first.

7	6	5	4	3	2	1	0
			I2C_CM	MD (14)			

## Bits 7:0 - **I2C_CMD**

I2C configuration command.

## 6.3.10.6 uDMA MEMCPY interface

MEMCPY component manages the following features:

- memory copy functionality
- one source/destination is always L2 memory
- second source/destination can be FC_TCDM or L2 memory

### 6.3.10.6.1 uDMA MEMCPY interface registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR	0x1A102380	32	Config	R/W	0x0000	uDMA RX MEMCPY buffer base address configuration register.

Name	Address	Size	Туре	Access	Default	Description
RX_SIZE	0x1A102384	32	Config	R/W	0x0000	uDMA RX MEMCPY buffer size configuration register.
RX_CFG	0x1A102388	32	Config	R/W	0x0000	uDMA RX MEMCPY stream configuration register.
TX_SADDR	0x1A102390	32	Config	R/W	0x0000	uDMA TX MEMCPY buffer base address configuration register.
TX_SIZE	0x1A102394	32	Config	R/W	0x0000	uDMA TX MEMCPY buffer size configuration register.
TX_CFG	0x1A102398	32	Config	R/W	0x0000	uDMA TX MEMCPY stream configuration register.
DST_ADDR	0x1A1023A0	32	Config	R/W	0x0000	MEMCPY TX destination address configuration register.
SRC_ADDR	0x1A1023A4	32	Config	R/W	0x0000	MEMCPY RX source address configuration register.
MEM_SEL	0x1A1023A8	32	Config	R/W	0x0000	MEMCPY memory source/destination select configuration register.

Table 56. uDMA MEMCPY interface registers table

### 6.3.10.6.2 uDMA MEMCPY interface registers details

## 6.3.10.6.2.1 uDMA RX MEMCPY buffer base address configuration register. (RX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 15:0 - **RX_SADDR** (R/W)

RX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

## 6.3.10.6.2.2 uDMA RX MEMCPY buffer size configuration register. (RX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								RX_SIZ E
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RX_	SIZE							

### Bits 16:0 - **RX_SIZE** (R/W)

RX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

# $\textbf{6.3.10.6.2.3 uDMA RX MEMCPY stream configuration register. (RX_CFG) }$

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					CLR/PE NDING	EN		Reserved		CONTIN OUS

### Bit 5 - CLR (W)

RX channel clear and stop transfer:

- *0b0*: disable
- *0b1*: stop and clear stop and clear the on-going transfer

## Bit 5 - **PENDING** (R)

RX transfer pending in queue status flag:

- *0b0*: no pending no pending transfer in the queue
- *0b1*: pending pending transfer in the queue

### Bit 4 - **EN** (R/W)

RX channel enable and start transfer bitfield:

- *0b0*: disable
- *0b1*: start enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

## Bit 0 - CONTINOUS (R/W)

RX channel continuous mode bitfield:

- 0b0: disabled
- *0b1*: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

### 6.3.10.6.2.4 uDMA TX MEMCPY buffer base address configuration register. (TX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 15:0 - TX_SADDR (R/W)

TX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets buffer base address

# 6.3.10.6.2.5 uDMA TX MEMCPY buffer size configuration register. (TX_SIZE)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								TX_SIZE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 16:0 - **TX_SIZE** (R/W)

TX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

## 6.3.10.6.2.6 uDMA TX MEMCPY stream configuration register. (TX_CFG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					CLR/PE NDING	EN		Reserved		CONTIN OUS

### Bit 5 - CLR (W)

TX channel clear and stop transfer bitfield:

- 0b0: disabled
- *0b1*: stop and clear stop and clear the on-going transfer

## Bit 5 - **PENDING** (R)

TX transfer pending in queue status flag:

- *0b0*: no pending no pending transfer in the queue
- *0b1*: pending pending transfer in the queue

### Bit 4 - **EN** (R/W)

TX channel enable and start transfer bitfield:

- 0b0: disabled
- *0b1*: start enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

## Bit 0 - **CONTINOUS** (R/W)

TX channel continuous mode bitfield:

- *0b0*: disabled
- *0b1*: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

# 6.3.10.6.2.7 MEMCPY TX destination address configuration register. (DST_ADDR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								DST_AD DR
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DST_/	ADDR							

### Bits 16:0 - DST_ADDR (R/W)

TX destination start address configuration bitfield. MEMCPY TX transfer copy data from L2 TX_CFG.TX_SADDR address to FC_TCDM or L2 memories DST_ADDR address.

### 6.3.10.6.2.8 MEMCPY RX source address configuration register. (SRC_ADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								SRC_A DDR
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							SRC	ADDR							

#### Bits 16:0 - SRC_ADDR (R/W)

RX source start address configuration bitfield. MEMCPY RX transfer copy data from FC_TCDM or L2 memories SRC_ADDR address to L2 RX_CFG.RX_SADDR address.

### 6.3.10.6.2.9 MEMCPY memory source/destination select configuration register. (MEM_SEL)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								MEM_S EL

## Bit 0 - MEM_SEL (R/W)

Memory selection configuration bitfield:

- 0b0: L2 from/to FC_TCDM
- 0b1: L2 from/to L2

## 6.3.10.7 uDMA I2S interface

I2S component manages the following features:

- Controls all I2S bus specific sequencing, protocol, arbitration and timing.
- Configurable I2S clock frequency related to SoC clock frequency.
- Configurable slave and master modes for clock and WS signals management.
- 2 available clock/WS generators.
- Support PCM and PDM formats.
- PDM filtering feature with decimation and normalization functionalities.
- Support DDR mode.

## 6.3.10.7.1 uDMA I2S interface registers

Name	Address	Size	Туре	Access	Default	Description
RX_SADDR_CH0	0x1A102400	32	Config	R/W	0x0000	uDMA RX I2S channel 0 buffer base address configuration register.
RX_SIZE_CH0	0x1A102404	32	Config	R/W	0x0000	uDMA RX I2S channel 0 buffer size configuration register.
RX_CFG_CH0	0x1A102408	32	Config	R/W	0x0004	uDMA RX I2S channel 0 stream configuration register.
RX_SADDR_CH1	0x1A102410	32	Config	R/W	0x0000	uDMA RX I2S channel 1 buffer base address configuration register.
RX_SIZE_CH1	0x1A102414	32	Config	R/W	0x0000	uDMA RX I2S channel 1 buffer size configuration register.
RX_CFG_CH1	0x1A102418	32	Config	R/W	0x0004	uDMA RX I2S channel 1 stream configuration register.
CFG_EXT	0x1A102420	32	Config	R/W	0x0000	I2S external clock configuration register.
CFG_CLKGEN0	0x1A102424	32	Config	R/W	0x0000	I2S clock and WS generator 0 configuration register.
CFG_CLKGEN1	0x1A102428	32	Config	R/W	0x0000	I2S clock and WS generator 1 configuration register.
CHMODE	0x1A10242C	32	Config	R/W	0x0000	I2S channels mode configuration register.
FILT_CH0	0x1A102430	32	Config	R/W	0x0000	I2S channel 0 filtering configuration register.
FILT_CH1	0x1A102434	32	Config	R/W	0x0000	I2S channel 1 filtering configuration register.

Table 57. uDMA I2S interface registers table

### 6.3.10.7.2 uDMA I2S interface registers details

### 6.3.10.7.2.1 uDMA RX I2S channel 0 buffer base address configuration register. (RX_SADDR_CH0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15:0 - **RX_SADDR** (R/W)

I2S channel 0 RX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

### 6.3.10.7.2.2 uDMA RX I2S channel 0 buffer size configuration register. (RX_SIZE_CH0)

Reset value: 0x0000



Bits 16:0 - **RX_SIZE** (R/W)

I2S channel 0 RX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

## 6.3.10.7.2.3 uDMA RX I2S channel 0 stream configuration register. (RX_CFG_CH0)

Reset value: 0x0004

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					CLR/PE NDING	EN	Reserve d	DATA	ASIZE	CONTIN OUS

#### Bit 5 - **CLR** (W)

Reset value: 0b0

I2S channel 0 RX Channel clear and stop transfer:

- 0b0: disable
- 0b1: stop and clear stop and clear the on-going transfer

### Bit 5 - PENDING (R)

Reset value: 0b0

I2S channel 0 RX Transfer pending in queue status flag:

- *0b0*: no pending no pending transfer in the queue
- *0b1*:pending pending transfer in the queue

## Bit 4 - **EN** (R/W)

Reset value: 0b0

12S channel 0 RX Channel enable and start transfer bitfield:

- 0b0: disable
- *0b1*: start enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

## Bits 2:1 - DATASIZE (R/W)

Reset value: 0b10

RX channel transfer size used to increment uDMA I2S channel 0 RX buffer address pointer:

- *0b00*: plus 1 +1 (8 bits)
- *0b01*: plus 2 +2 (16 bits)
- *0b10*: plus 4 +4 (32 bits)
- *0b11*: plus 0 +0

## Bit 0 - CONTINOUS (R/W)

Reset value: 0b0

12S channel 0 RX channel continuous mode bitfield:

- *0b0*: disabled
- *0b1*: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

### 6.3.10.7.2.4 uDMA RX I2S channel 1 buffer base address configuration register. (RX SADDR CH1)

#### Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 15:0 - TX_SADDR (R/W)

12S channel 1 RX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

# 6.3.10.7.2.5 uDMA RX I2S channel 1 buffer size configuration register. (RX_SIZE_CH1)

### Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								TX_SIZE
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TX S								

### Bits 16:0 - TX_SIZE (R/W)

I2S channel 1 RX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

## 6.3.10.7.2.6 uDMA RX I2S channel 1 stream configuration register. (RX_CFG_CH1)

### Reset value: 0x0004

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					CLR/PE NDING	EN	Reserve d	DATA	ASIZE	CONTIN OUS

### Bit 5 - **CLR** (W)

Reset value: 0b0

I2S channel 1 RX Channel clear and stop transfer:

- *0b0*: disable
- *0b1*: stop and clear stop and clear the on-going transfer

# Bit 5 - **PENDING** (R)

Reset value: 0b0

I2S channel 1 RX Transfer pending in queue status flag:

- *0b0*: no pending no pending transfer in the queue
- *0b1*: pending pending transfer in the queue

### Bit 4 - EN (R/W)

Reset value: 0b0

12S channel 1 RX Channel enable and start transfer bitfield:

- *0b0*: disable
- 0b1: start enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

### Bits 2:1 - DATASIZE (R/W)

Reset value: 0b10

RX channel transfer size used to increment uDMA I2S channel 1 RX buffer address pointer:

- 0b00: plus 1 +1 (8 bits)
- *0b01*: plus 2 +2 (16 bits)
- 0b10: plus 4 +4 (32 bits)
- *0b11*: plus 0 +0

#### Bit 0 - CONTINOUS (R/W)

Reset value: 0b0

12S channel 1 RX channel continuous mode bitfield:

- *0b0*: disabled
- 0b1: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

## 6.3.10.7.2.7 I2S external clock configuration register. (CFG_EXT)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserved								r bits wo		

## Bits 4:0 - EXT_BITS_WORD (R/W)

External clock word length in bits bitfield. The value is (num bits - 1).

## 6.3.10.7.2.8 I2S clock and WS generator 0 configuration register. (CFG_CLKGEN0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CLK	DIV							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 31:16 - CLK_DIV (R/W)

Clock generator 0 clock divider related to SoC clock frequency.

### Bit 8 - **CLK_EN** (R/W)

Clock generator 0 enable bitfield:

- 0b0: disabled
- *0b1*: enabled enabled. Clock and WS signal are generated.

## Bits 4:0 - BITS_WORD (R/W)

Clock generator 0 word length in bits bitfield. The value is (num bits - 1).

### 6.3.10.7.2.9 I2S clock and WS generator 1 configuration register. (CFG_CLKGEN1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CLK_	DIV							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 31:16 - CLK_DIV (R/W)

Clock generator 1 clock divider related to SoC clock frequency.

#### Bit 8 - CLK_EN (R/W)

Clock generator 1 enable bitfield:

- *0b0*: disabled
- *0b1*: enabled enabled. Clock and WS signal are generated.

## Bits 4:0 - BITS_WORD (R/W)

Clock generator 1 word length in bits bitfield. The value is (num bits - 1).

### 6.3.10.7.2.10 I2S channels mode configuration register. (CHMODE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Rese	erved		CH1_I	MODE	CH0_I	MODE			Rese	erved			CH1_US EDDR	CH0_US EDDR
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese	erved	CH1_PD M_EN	CH0_PD M_EN	Rese	erved	CH1_PD M_USEF ILTER	_		erved	CH1_LS B_FIRST	CH0_LS B_FIRST		Rese	erved	

#### Bits 27:26 - CH1_MODE (R/W)

I2S channel 1 clock/WS mode configuration bitfield:

- *0b00*: clock gen 0 use clock generator 0 (clock and WS generated by clkgen)
- *0b01*: clock gen 1 use clock generator 1 (clock and WS generated by clkgen)
- *0b10*: ext clock int ws use external clock but internal generated WS by clock generator 0
- *0b11*: ext clock ext ws use external clock and external WS

### Bits 25:24 - CH0_MODE (R/W)

I2S channel 0 clock/WS mode configuration bitfield:

- *0b00*: clock gen 0 use clock generator 0 (clock and WS generated by clkgen)
- *0b01*: clock gen 1 use clock generator 1 (clock and WS generated by clkgen)
- *Ob10*: ext clock int ws use external clock but internal generated WS by clock generator 0
- *0b11*: ext clock ext ws use external clock and external WS

## Bit 17 - CH1_USEDDR (R/W)

I2S channel 1 DDR mode activation bitfield:

- 0b0: disabled
- *0b1*: enabled

### Bit 16 - CHO_USEDDR (R/W)

I2S channel 0 DDR mode activation bitfield:

- 0b0: disabled
- *0b1*: enabled

### Bit 13 - CH1_PDM_EN (R/W)

12S channel 1 PDM demodulation activation bitfield:

- 0b0: disabled
- 0b1: enabled

## Bit 12 - CHO_PDM_EN (R/W)

I2S channel 0 PDM demodulation activation bitfield:

- *0b0*: disabled
- *0b1*: enabled

## Bit 9 - CH1_PDM_USEFILTER (R/W)

I2S channel 1 PDM filter activation bitfield:

- *0b0*: disabled
- *0b1*: enabled

## Bit 8 - CH0_PDM_USEFILTER (R/W)

I2S channel 0 PDM filter activation bitfield:

- *0b0*: disabled
- *0b1*: enabled

### Bit 5 - CH1_LSB_FIRST (R/W)

I2S channel 1 LSB first configuration for word serialization bitfield:

- *0b0*: MSB first
- *0b1*: LSB first

### Bit 4 - CH0_LSB_FIRST (R/W)

I2S channel 0 LSB first configuration for word serialization bitfield:

- 0b0: MSB first
- 0b1: LSB first

## 6.3.10.7.2.11 I2S channel 0 filtering configuration register. (FILT_CH0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								SHIFT	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - **SHIFT** (R/W)

12S channel 0 PDM filter normalisation right shift value bitfield.

## Bits 9:0 - **DECIMATION** (R/W)

12S channel 0 PDM filter decimation value bitfield.

## 6.3.10.7.2.12 I2S channel 1 filtering configuration register. (FILT_CH1)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						Reserved								SHIFT	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 18:16 - SHIFT (R/W)

I2S channel 1 PDM filter normalisation right shift value bitfield.

## Bits 9:0 - **DECIMATION** (R/W)

12S channel 1 PDM filter decimation value bitfield.

### 6.3.10.8 uDMA CPI interface

CPI component manages the following features:

- Controls all CPI bus specific sequencing, protocol, arbitration and timing.
- Configurable CPI clock frequencey related to SoC clock frequency.
- Frame dropping feature.
- Frame slicing feature.
- RAW, RGB565, RGB555 and RGB444 frame format supported.

## 6.3.10.8.1 uDMA CPI interface registers

Name		Address	Size	Туре	Access	Default	Description
RX_SAE	<u>DR</u>	0x1A102480	32	Config	R/W	0x0000	uDMA RX CPI buffer base address configuration register.

Name	Address	Size	Туре	Access	Default	Description
RX_SIZE	0x1A102484	32	Config	R/W	0x0000	uDMA RX CPI buffer size configuration register.
RX_CFG	0x1A102488	32	Config	R/W	0x0000	uDMA RX CPI stream configuration register.
CFG_GLOB	0x1A1024A0	32	Config	R/W	0x0000	uDMA CPI Global configuration register.
CFG_LL	0x1A1024A4	32	Config	R/W	0x0000	uDMA CPI Lower Left corner configuration register.
CFG_UR	0x1A1024A8	32	Config	R/W	0x0000	uDMA CPI Upper Right corner configuration register.
CFG_SIZE	0x1A1024AC	32	Config	R/W	0x0000	uDMA CPI Horizontal Resolution configuration register.
CFG_FILTER	0x1A1024B0	32	Config	R/W	0x0000	uDMA CPI RGB coefficients configuration register.

Table 58. uDMA CPI interface registers table

## 6.3.10.8.2 uDMA CPI interface registers details

### 6.3.10.8.2.1 uDMA RX CPI buffer base address configuration register. (RX_SADDR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 15:0 - **RX_SADDR** (R/W)

RX buffer base address bitfield:

- Read: returns value of the buffer pointer until transfer is finished. Else returns 0.
- Write: sets RX buffer base address

### 6.3.10.8.2.2 uDMA RX CPI buffer size configuration register. (RX_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								RX_SIZ E
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 16:0 - **RX_SIZE** (*R/W*)

RX buffer size bitfield in bytes. (128kBytes maximum)

- Read: returns remaining buffer size to transfer.
- Write: sets buffer size.

## 6.3.10.8.2.3 uDMA RX CPI stream configuration register. (RX_CFG)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Rese	erved					CLR/PE NDING	EN	Reserve d	DATA	ASIZE	CONTIN

### Bit 5 - CLR (W)

RX Channel clear and stop transfer:

- *0b0*: disable
- *0b1*: stop and clear stop and clear the on-going transfer

## Bit 5 - **PENDING** (R)

RX Transfer pending in queue status flag:

- *0b0*: no pending transfer in the queue
- *0b1*: pending transfer in the queue

## Bit 4 - **EN** (R/W)

RX Channel enable and start transfer bitfield:

- *0b0*: disable
- *0b1*: start enable and start the transfer

This signal is used also to queue a transfer if one is already ongoing.

### Bits 2:1 - DATASIZE (R/W)

RX channel transfer size used to increment uDMA CPI RX buffer address pointer:

- 0b00: plus 1 +1 (8 bits)
- *0b01*: plus 2 +2 (16 bits)
- 0b10: plus 4 +4 (32 bits)
- *0b11*: plus 0 +0

### Bit 0 - CONTINOUS (R/W)

RX channel continuous mode bitfield:

- *0b0*: disabled
- *0b1*: enabled

At the end of the buffer transfer, the uDMA reloads the address / buffer size and starts a new transfer.

## 6.3.10.8.2.4 uDMA CPI Global configuration register. (CFG_GLOB)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
EN								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserve d		SH	IFT			FORMAT		FRAME SLICE_E N			FRAMED	ROP_VAL			FRAME DROP_ EN

### Bit 31 - EN (R/W)

CPI interface acquisition enable bitfield:

- *0b0*: disabled
- 0b1: enabled

The enable/disable happens only at the beginning of a frame, meaning when VSYNC pulse occurs.

### Bits 14:11 - SHIFT (R/W)

Right shift value for final pixel normalisation bitfield. Not used if CFG_GLOB.FORMAT = BYPASS

### Bits 10:8 - FORMAT (R/W)

Input frame format bitfield:

- 0b000: RGB565
- *0b001*: RGB555
- 0b010: RGB444
- 0b100: BYPASS_LITEND
- 3'b101: BYPASS_BIGEND

## Bit 7 - FRAMESLICE_EN (R/W)

Input frame slicing bitfield:

- 0b0: disabled
- *0b1*: enabled

## Bits 6:1 - FRAMEDROP_VAL (R/W)

Frame dropping value bitfield.

## Bit 0 - FRAMEDROP_EN (R/W)

Frame dropping bitfield:

- *0b0*: disabled
- *0b1*: enabled

### 6.3.10.8.2.5 uDMA CPI Lower Left corner configuration register. (CFG_LL)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							FRAMESI	LICE_LLY							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 31:16 - FRAMESLICE_LLY (R/W)

Y coordinate of lower left corner of slice bitfield. Origin reference of a frame is left up corner.

### Bits 15:0 - FRAMESLICE_LLX (R/W)

X coordinate of lower left corner of slice bitfield. Origin reference of a frame is left up corner.

## 6.3.10.8.2.6 uDMA CPI Upper Right corner configuration register. (CFG_UR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							FRAMESL	LICE_URY							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:16 - FRAMESLICE_URY (R/W)

Y coordinate of upper right corner of slice bitfield. Origin reference of a frame is left up corner.

## Bits 15:0 - FRAMESLICE_URX (R/W)

X coordinate of upper right corner of slice bitfield. Origin reference of a frame is left up corner.

#### 6.3.10.8.2.7 uDMA CPI Horizontal Resolution configuration register. (CFG_SIZE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							ROW	/LEN							
				- 44			_					_			_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:16 - ROWLEN (R/W)

Frame horizontal pixel length bitfield. It is used for slice mode. Value set into the bitfield must be equal to (rowlen - 1).

### 6.3.10.8.2.8 uDMA CPI RGB coefficients configuration register. (CFG_FILTER)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Rese	erved							R_CC	DEFF			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			G_CC	DEFF							B_CC	DEFF			

### Bits 23:16 - **R_COEFF** (R/W)

R component coefficient bitfield. Not used if CFG_GLOB.FORMAT = BYPASS.

## Bits 15:8 - **G_COEFF** (R/W)

G component coefficient bitfield.Not used if CFG_GLOB.FORMAT = BYPASS.

## Bits 7:0 - **B_COEFF** (R/W)

B component coefficient bitfield. Not used if CFG_GLOB.FORMAT = BYPASS.

## 6.3.10.9 uDMA control unit

uDMA controller component manages the following features:

- uDMA interfaces clock gating
- uDMA interface trigger events configuration

### 6.3.10.9.1 uDMA control unit registers

Name	Address	Size	Туре	Access	Default	Description
CFG_CG	0x1A102780	32	Config	R/W	0x0000	uDMA interfaces clock gate configuration register.
CFG_EVENT	0x1A102784	32	Config	R/W	0x0000	uDMA interfaces trigger events configuration register.

Table 59. uDMA control unit registers table

### 6.3.10.9.2 uDMA control unit registers details

## 6.3.10.9.2.1 uDMA interfaces clock gate configuration register. (CFG_CG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bit 9 - **CPI** (R/W)

uDMA interfaces clock gate configuration for CPI:

- *0b0*: CPI interface clock gate is enabled
- *0b1*: CPI interface clock gate is disabled

## Bit 8 - **I2S** (R/W)

uDMA interfaces clock gate configuration for I2S:

- *0b0*: I2S interface clock gate is enabled
- *0b1*: I2S interface clock gate is disabled

### Bit 7 - **TCDM** (R/W)

uDMA interfaces clock gate configuration for TCDM:

- *0b0*: TCDM interface clock gate is enabled
- *0b1*: TCDM interface clock gate is disabled

### Bit 6 - **I2C1** (R/W)

uDMA interfaces clock gate configuration for I2C1:

- *0b0*: I2C1 interface clock gate is enabled
- *0b1*: I2C1 interface clock gate is disabled

# Bit 5 - **I2C0** (R/W)

uDMA interfaces clock gate configuration for I2C0:

- *0b0*: I2C0 interface clock gate is enabled
- *0b1*: I2C0 interface clock gate is disabled

#### Bit 4 - **UART** (R/W)

uDMA interfaces clock gate configuration for UART:

- *0b0*: UART interface clock gate is enabled
- 0b1: UART interface clock gate is disabled

## Bit 3 - HYPER (R/W)

uDMA interfaces clock gate configuration for HYPER:

- *0b0*: HYPER interface clock gate is enabled
- 0b1: HYPER interface clock gate is disabled

### Bit 2 - **SPIM1** (R/W)

uDMA interfaces clock gate configuration for SPIM1:

- *0b0*: SPIM1 interface clock gate is enabled
- 0b1: SPIM1 interface clock gate is disabled

### Bit 1 - **SPIM0** (R/W)

uDMA interfaces clock gate configuration for SPIM0:

- 0b0: SPIM0 interface clock gate is enabled
- 0b1: SPIM0 interface clock gate is disabled

#### Bit 0 - LVDS (R/W)

uDMA interfaces clock gate configuration for LVDS:

- *0b0*: LVDS interface clock gate is enabled
- 0b1: LVDS interface clock gate is disabled

### 6.3.10.9.2.2 uDMA interfaces trigger events configuration register. (CFG_EVENT)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			EV	/T3							EV	T2			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

### Bits 31:24 - EVT3 (R/W)

uDMA interfaces trigger event 3 configuration bitfield. CFG_EVT3 selects which SoC event is propageted to uDMA interface trigger event 3.

### Bits 23:16 - **EVT2** (R/W)

uDMA interfaces trigger event 2 configuration bitfield. CFG_EVT2 selects which SoC event is propageted to uDMA interface trigger event 2.

## Bits 15:8 - **EVT1** (R/W)

uDMA interfaces trigger event 1 configuration bitfield. CFG_EVT1 selects which SoC event is propageted to uDMA interface trigger event 1.

## Bits 7:0 - **EVT0** (R/W)

uDMA interfaces trigger event 0 configuration bitfield. CFG_EVT0 selects which SoC event is propageted to uDMA interface trigger event 0.

# 6.4 Fabric Controller Subsystem

# 6.4.1 Fabric Controller Subsystem Events

Event number	Event name	IP instance name	Direction	Description
0	SW_EVT_0	FC_CORE	Input	Software event 0 from FC_CORE or FC interconnect
1	SW_EVT_1	FC_CORE	Input	Software event 1 from FC_CORE or FC interconnect
2	SW_EVT_2	FC_CORE	Input	Software event 2 from FC_CORE or FC interconnect
3	SW_EVT_3	FC_CORE	Input	Software event 3 from FC_CORE or FC interconnect
4	SW_EVT_4	FC_CORE	Input	Software event 4 from FC_CORE or FC interconnect
5	SW_EVT_5	FC_CORE	Input	Software event 5 from FC_CORE or FC interconnect
6	SW_EVT_6	FC_CORE	Input	Software event 6 from FC_CORE or FC interconnect
7	SW_EVT_7	FC_CORE	Input	Software event 7 from FC_CORE or FC interconnect
8	Reserved			Reserved
9	Reserved			Reserved
10	FC_TIMER_LO_EVT	FC_TIMER_UNIT	Input	FC timer low event
11	FC_TIMER_HI_EVT	FC_TIMER_UNIT	Input	FC timer high event
12	Reserved			Reserved
13	Reserved			Reserved
14	Reserved			Reserved
15	Reserved			Reserved
16	Reserved			Reserved
17	Reserved			Reserved
18	Reserved			Reserved
19	Reserved			Reserved
20	Reserved			Reserved
21	Reserved			Reserved
22	Reserved			Reserved
23	Reserved			Reserved
24	Reserved			Reserved
25	Reserved			Reserved
26	Reserved			Reserved
27	SOC_PERIPH_EVT	SOC_EVENT_GENERATOR	Input	SoC peripherals event
28	MPU_ERR_EVT	FC_MPU	Input	MPU error event
29	SOC_PERIPH_ERR_EVT	SOC_EVENT_GENERATOR	Input	SoC peripherals event fifo overflow error event
30	HP_EVT_0	SOC_EVENT_GENERATOR	Input	High priority event 0
31	HP_EVT_1	SOC EVENT GENERATOR	Input	High priority event 1

Table 60. Fabric Controller Subsystem Events table

# 6.4.2 FC control unit

FC_CTRL component manages the following features:

• End of Computation status flag

• configurable boot address to define where to fetch first instruction in FC_CORE after releasing the reset

## 6.4.2.1 FC control unit registers

Name	Address Aliased address		Size	Туре	Access	Default	Description
<u>EOC</u>	0x1B200000	0x00200000	32	Status	R	0x0000	End of computation status register.
BOOT_ADDR	0x1B200040	0x00200040	32	Config	R/W	0x1A000000	Boot address configuration register.

Table 61. FC control unit registers table

## 6.4.2.2 FC control unit registers details

### 6.4.2.2.1 End of computation status register. (EOC)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **EOC** (R)

End of computation status bitfield:

- *0b0*: computation still on-going on SoC domain and/or Cluster domain.
- *0b1*: no more computation on SoC domain nor Cluster domain.

## 6.4.2.2.2 Boot address configuration register. (BOOT_ADDR)

Reset value: 0x1A000000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							В	A							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **BA** (R/W)

Boot address configuration bitfield. The FC_CORE will fetch first instruction at (BA+RESET_EXCEPTION_OFFSET).

# 6.4.3 FC timer

BASIC TIMER component manages the following features:

- 2 general purpose 32bits up counter timers
- Input trigger sources:
  - o FLL clock
  - o FLL clock + Prescaler
  - o Reference clock at 32kHz
  - o External event
- 8bit programmable prescaler to FLL clock
- Counting modes:
  - o One shot mode: timer is stopped after first comparison match

- o Continuous mode: timer continues counting after comparison match
- o Cycle mode: timer resets to 0 after comparison match and continues counting
- o 64 bit cascaded mode
- Interrupt request generation on comparison match

## 6.4.3.1 FC timer registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CFG_LO	0x1B200400	0x00200400	32	Config	R/W	0x0000	Timer Low Configuration register.
CFG_HI	0x1B200404	0x00200404	32	Config	R/W	0x0000	Timer High Configuration register.
CNT_LO	0x1B200408	0x00200408	32	Data	R/W	0x0000	Timer Low counter value register.
CNT_HI	0x1B20040C	0x0020040C	32	Data	R/W	0x0000	Timer High counter value register.
CMP_LO	0x1B200410	0x00200410	32	Config	R/W	0x0000	Timer Low comparator value register.
CMP_HI	0x1B200414	0x00200414	32	Config	R/W	0x0000	Timer High comparator value register.
START_LO	0x1B200418	0x00200418	32	Config	R/W	0x0000	Start Timer Low counting register.
START_HI	0x1B20041C	0x0020041C	32	Config	R/W	0x0000	Start Timer High counting register.
RESET_LO	0x1B200420	0x00200420	32	Config	R/W	0x0000	Reset Timer Low counter register.
RESET_HI	0x1B200424	0x00200424	32	Config	R/W	0x0000	Reset Timer High counter register.

Table 62. FC timer registers table

Registers details are identical to Cluster timer defined above

### 6.4.4 FC event units

FC_CORE event unit component manages the following features:

- FC_CORE software events generation
- FC_CORE clock gate control
- Wait for event functionality
- Input event mask configuration
- FC_CORE IRQ generation
- FC_CORE secured and non-secured mode IRQ mask configuration

Events managed by FC event unit are:

- 2 SoC high prioriy events
- 1 SoC event generator fifo overflow error event
- 1 MPU error event
- 1 SoC peripheral event: when this event occurs, the SoC peripheral events fifo must be read to get the SoC event ID.
- 2 FC timer events
- $\bullet~$  8 software events that can come from FC_CORE directly or external triggering.

## 6.4.4.1 FC event unit registers

Name	Address	Size	Туре	Access	Default	Description
EVT_MASK	0x1B200800	32	Config	R/W	0x0000	Input event mask configuration register.

Name	Address	Size	Туре	Access	Default	Description
EVT_MASK_AND	0x1B200804	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR	0x1B200808	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK	0x1B20080C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND	0x1B200810	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.
IRQ_MASK_OR	0x1B200814	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS	0x1B200818	32	Config	R	0x0000	FC_CORE clock status register.
EVENT_BUFFER	0x1B20081C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED	0x1B200820	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED	0x1B200824	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR	0x1B200828	32	Config	W	0x0000	Pending input events status clear command register.
SEC_IRQ_MASK	0x1B200840	32	Config	R/W	0x0000	FC_CORE secured mode interrupt request mask configuration register.
REMOTE_SW_EVENT_0_TRIG	0x1B200E00	32	Config	W	0x0000	Remote software event 0 trigger command register.
REMOTE_SW_EVENT_1_TRIG	0x1B200E04	32	Config	W	0x0000	Remote software event 1 trigger command register.
REMOTE_SW_EVENT_2_TRIG	0x1B200E08	32	Config	W	0x0000	Remote software event 2 trigger command register.
REMOTE_SW_EVENT_3_TRIG	0x1B200E0C	32	Config	W	0x0000	Remote software event 3 trigger command register.
REMOTE_SW_EVENT_4_TRIG	0x1B200E10	32	Config	W	0x0000	Remote software event 4 trigger command register.
REMOTE_SW_EVENT_5_TRIG	0x1B200E14	32	Config	W	0x0000	Remote software event 5 trigger command register.
REMOTE_SW_EVENT_6_TRIG	0x1B200E18	32	Config	W	0x0000	Remote software event 6 trigger command register.
REMOTE_SW_EVENT_7_TRIG	0x1B200E1C	32	Config	W	0x0000	Remote software event 7 trigger command register.
SOC_PERIPH_EVENT_ID	0x1B200F00	32	Status	R	0x0000	SoC peripheral event ID status register.

Table 63. FC event unit registers table

# 6.4.4.2 FC event unit (FC private) registers

Name	Aliased address	Size	Туре	Access	Default	Description
<u>EVT_MASK</u>	0x00204000	32	Config	R/W	0x0000	Input event mask configuration register.
EVT_MASK_AND	0x00204004	32	Config	W	0x0000	Input event mask update command register with bitwise AND operation.
EVT_MASK_OR	0x00204008	32	Config	W	0x0000	Input event mask update command register with bitwise OR operation.
IRQ_MASK	0x0020400C	32	Config	R/W	0x0000	Interrupt request mask configuration register.
IRQ_MASK_AND	0x00204010	32	Config	W	0x0000	Interrupt request mask update command register with bitwise AND operation.

Name	Aliased address	Size	Туре	Access	Default	Description
IRQ_MASK_OR	0x00204014	32	Config	W	0x0000	Interrupt request mask update command register with bitwise OR operation.
CLOCK_STATUS	0x00204018	32	Config	R	0x0000	FC_CORE clock status register.
EVENT_BUFFER	0x0020401C	32	Config	R	0x0000	Pending input events status register.
EVENT_BUFFER_MASKED	0x00204020	32	Config	R	0x0000	Pending input events status register with EVT_MASK applied.
EVENT_BUFFER_IRQ_MASKED	0x00204024	32	Config	R	0x0000	Pending input events status register with IRQ_MASK applied.
EVENT_BUFFER_CLEAR	0x00204028	32	Config	W	0x0000	Pending input events status clear command register.
EVENT_WAIT	0x00204038	32	Config	R	0x0000	Input event wait command register.
EVENT_WAIT_CLEAR	0x0020403C	32	Config	R	0x0000	Input event wait and clear command register.
SEC_IRQ_MASK	0x00204040	32	Config	R/W	0x0000	FC_CORE secured mode interrupt request mask configuration register.
SEC_IRQ_MASK_AND	0x00204044	32	Config	W	0x0000	FC_CORE secured mode interrupt request mask update command register with bitwise AND operation.
SEC_IRQ_MASK_OR	0x00204048	32	Config	W	0x0000	FC_CORE secured mode interrupt request mask update command register with bitwise OR operation.
SW_EVENT_0_TRIG	0x00204100	32	Config	W	0x0000	FC_CORE Software event 0 trigger command register.
SW_EVENT_1_TRIG	0x00204104	32	Config	W	0x0000	FC_CORE Software event 1 trigger command register.
SW_EVENT_2_TRIG	0x00204108	32	Config	W	0x0000	FC_CORE Software event 2 trigger command register.
SW_EVENT_3_TRIG	0x0020410C	32	Config	W	0x0000	FC_CORE Software event 3 trigger command register.
SW_EVENT_4_TRIG	0x00204110	32	Config	W	0x0000	FC_CORE Software event 4 trigger command register.
SW_EVENT_5_TRIG	0x00204114	32	Config	W	0x0000	FC_CORE Software event 5 trigger command register.
SW_EVENT_6_TRIG	0x00204118	32	Config	W	0x0000	FC_CORE Software event 6 trigger command register.
SW_EVENT_7_TRIG	0x0020411C	32	Config	W	0x0000	FC_CORE Software event 7 trigger command register.
SW_EVENT_0_WAIT	0x00204140	32	Config	R	0x0000	FC_CORE Software event 0 wait command register.
SW_EVENT_1_WAIT	0x00204144	32	Config	R	0x0000	FC_CORE Software event 1 wait command register.
SW_EVENT_2_WAIT	0x00204148	32	Config	R	0x0000	FC_CORE Software event 2 wait command register.
SW_EVENT_3_WAIT	0x0020414C	32	Config	R	0x0000	FC_CORE Software event 3 wait command register.
SW_EVENT_4_WAIT	0x00204150	32	Config	R	0x0000	FC_CORE Software event 4 wait command register.
SW_EVENT_5_WAIT	0x00204154	32	Config	R	0x0000	FC_CORE Software event 5 wait command register.
SW_EVENT_6_WAIT	0x00204158	32	Config	R	0x0000	FC_CORE Software event 6 wait command register.
SW_EVENT_7_WAIT	0x0020415C	32	Config	R	0x0000	FC_CORE Software event 7 wait command register.

Name	Aliased address	Size	Туре	Access	Default	Description
SW_EVENT_0_WAIT_CLEAR	0x00204180	32	Config	R	0x0000	FC_CORE Software event 0 wait and clear command register.
SW_EVENT_1_WAIT_CLEAR	0x00204184	32	Config	R	0x0000	FC_CORE Software event 1 wait and clear command register.
SW_EVENT_2_WAIT_CLEAR	0x00204188	32	Config	R	0x0000	FC_CORE Software event 2 wait and clear command register.
SW_EVENT_3_WAIT_CLEAR	0x0020418C	32	Config	R	0x0000	FC_CORE Software event 3 wait and clear command register.
SW_EVENT_4_WAIT_CLEAR	0x00204190	32	Config	R	0x0000	FC_CORE Software event 4 wait and clear command register.
SW_EVENT_5_WAIT_CLEAR	0x00204194	32	Config	R	0x0000	FC_CORE Software event 5 wait and clear command register.
SW_EVENT_6_WAIT_CLEAR	0x00204198	32	Config	R	0x0000	FC_CORE Software event 6 wait and clear command register.
SW_EVENT_7_WAIT_CLEAR	0x0020419C	32	Config	R	0x0000	FC_CORE Software event 7 wait and clear command register.

Table 64. FC event unit (FC private) registers table

## 6.4.4.3 FC event unit registers details

### 6.4.4.3.1 Input event mask configuration register. (EVT_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							El	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EM (R/W)

Input event mask configuration bitfield:

- EM[i]=0b0: Input event request i is masked
- EM[i]=0b1: Input event request i is not masked

### 6.4.4.3.2 Input event mask update command register with bitwise AND operation. (EVT_MASK_AND)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EN	ЛΑ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EMA (W)

Input event mask configuration bitfield update with bitwise AND operation. It allows clearing EM[i] if EMA[i]=0b1.

## 6.4.4.3.3 Input event mask update command register with bitwise OR operation. (EVT_MASK_OR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EM	10							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EMO** (W)

Input event mask configuration bitfield update with bitwise OR operation. It allows setting EM[i] if EMO[i]=0b1.

### 6.4.4.3.4 Interrupt request mask configuration register. (IRQ_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	IM														
							_			_	-	_			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - IM (R/W)

Interrupt request mask configuration bitfield:

- bit[i]=0b0: Interrupt request i is masked
- bit[i]=0b1: Interrupt request i is not masked

## 6.4.4.3.5 Interrupt request mask update command register with bitwise AND operation. (IRQ_MASK_AND)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	IMA														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - IMA (W)

Interrupt request mask configuration bitfield update with bitwise AND operation. It allows clearing IM[i] if IMA[i]=0b1.

# 6.4.4.3.6 Interrupt request mask update command register with bitwise OR operation. (IRQ_MASK_OR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	IMO														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•				-	_		_						,

Bits 31:0 - **IMO** (W)

Interrupt request mask configuration bitfield update with bitwise OR operation. It allows setting IM[i] if IMO[i]=0b1.

## 6.4.4.3.7 FC_CORE clock status register. (CLOCK_STATUS)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 0 - **CS** (R)

FC_CORE clock status bitfield:

- CS=0b0: FC_CORE clocked is gated
- CS=0b1: FC_CORE clocked is running

## 6.4.4.3.8 Pending input events status register. (EVENT_BUFFER)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	EB														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
13						-	-			-					

Bits 31:0 - **EB** (R)

Pending input events status bitfield.

EB[i]=0b1 means that one or more input event i request are pending.

# $6.4.4.3.9\ Pending\ input\ events\ status\ register\ with\ EVT_MASK\ applied.\ (EVENT_BUFFER_MASKED)$

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	EBM														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Pending input events status bitfield with EM applied.

EBM[i]=0b1 means that one or more input event i request are pending.

# $6.4.4.3.10\ Pending\ input\ events\ status\ register\ with\ IRQ_MASK\ applied.\ (EVENT_BUFFER_IRQ_MASKED)$

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	IBM														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IBM														

Bits 31:0 - IBM (R)

Pending input events status bitfield with IM applied.

IBM[i]=0b1 means that one or more input events i are pending.

## 6.4.4.3.11 Pending input events status clear command register. (EVENT_BUFFER_CLEAR)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	3C							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBC (W)

Pending input events status clear command bitfield. It allows clearing EB[i] if EBC[i]=0b1.

## 6.4.4.3.12 Input event wait command register. (EVENT_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Reading this register will gate the FC_CORE clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

## 6.4.4.3.13 Input event wait and clear command register. (EVENT_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
13						_		-	_	-		-			

Bits 31:0 - **EBM** (R)

Reading this register has the same effect as reading EVENT_WAIT.EBM. In addition, EVENT_BUFFER.EB[i] bits are cleared if EVT_MASK.EM[i]=0b1. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

## 6.4.4.3.14 FC_CORE secured mode interrupt request mask configuration register. (SEC_IRQ_MASK)

Reset value: 0x0000

Host access bus: PERIPH/DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SI	М							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - SIM (R/W)

Interrupt request mask configuration bitfield when FC_CORE is in secured mode:

- bit[i]=0b0: Interrupt request I is masked
- bit[i]=0b1: Interrupt request I is not masked

# 6.4.4.3.15 FC_CORE secured mode interrupt request mask update command register with bitwise AND operation. (SEC_IRQ_MASK_AND)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SIM	MΑ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - SIMA (W)

Interrupt request mask configuration bitfield update with bitwise AND operation when FC_CORE is in secured mode. It allows clearing IM[i] if IMA[i]=0b1.

# 6.4.4.3.16 FC_CORE secured mode interrupt request mask update command register with bitwise OR operation. (SEC_IRQ_MASK_OR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SIN	МО							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

# Bits 31:0 - **SIMO** (W)

Interrupt request mask configuration bitfield update with bitwise OR operation when FC_CORE is in secured mode. It allows setting IM[i] if IMO[i]=0b1.

# 6.4.4.3.17 FC_CORE Software event 0 trigger command register. (SW_EVENT_0_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SW	/0T							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **SWOT** (W)

Writing to this register triggers FC_CORE software event 0.

## 6.4.4.3.18 FC_CORE Software event 1 trigger command register. (SW_EVENT_1_TRIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SW	/1T							
				11			_	_	_	_		_	_	_	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **SW1T** (W)

Writing to this register triggers FC_CORE software event 1.

## 6.4.4.3.19 FC_CORE Software event 2 trigger command register. (SW_EVENT_2_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SW	/2T							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **SW2T** (W)

Writing to this register triggers FC_CORE software event 2.

# 6.4.4.3.20 FC_CORE Software event 3 trigger command register. (SW_EVENT_3_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SW	/3T							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							SW	/3T							

Bits 31:0 - **SW3T** (W)

Writing to this register triggers FC_CORE software event 3.

## 6.4.4.3.21 FC_CORE Software event 4 trigger command register. (SW_EVENT_4_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SW	/4T							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **SW4T** (W)

Writing to this register triggers FC_CORE software event 4.

## 6.4.4.3.22 FC_CORE Software event 5 trigger command register. (SW_EVENT_5_TRIG)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SW	/5T							
15	14	13	12	11	10	0		7	_	-		١ -	١ ،		•
13		13	12	- ''	10	,	٥	,	О	ס	4	3	2	1	U

Bits 31:0 - **SW5T** (W)

Writing to this register triggers FC_CORE software event 5.

## 6.4.4.3.23 FC_CORE Software event 6 trigger command register. (SW_EVENT_6_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SW	/6T							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - SW6T (W)

Writing to this register triggers FC_CORE software event 6.

## 6.4.4.3.24 FC_CORE Software event 7 trigger command register. (SW_EVENT_7_TRIG)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							SW	7T							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							SW	7T							

Bits 31:0 - **SW7T** (W)

Writing to this register triggers FC_CORE software event 7.

## 6.4.4.3.25 FC_CORE Software event 0 wait command register. (SW_EVENT_0_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Reading this register will trigger FC_CORE sofware event 0 and gate the FC_CORE clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

## 6.4.4.3.26 FC_CORE Software event 1 wait command register. (SW_EVENT_1_WAIT)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EB								

Bits 31:0 - **EBM** (R)

Reading this register will trigger FC_CORE sofware event 1 and gate the FC_CORE clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.4.4.3.27 FC_CORE Software event 2 wait command register. (SW_EVENT_2_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - EBM (R)

Reading this register will trigger FC_CORE sofware event 2 and gate the FC_CORE clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.4.4.3.28 FC_CORE Software event 3 wait command register. (SW_EVENT_3_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Reading this register will trigger FC_CORE sofware event 3 and gate the FC_CORE clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

# 6.4.4.3.29 FC_CORE Software event 4 wait command register. (SW_EVENT_4_WAIT)

Reset value: 0x0000

Host access bus: DEMUX



Bits 31:0 - **EBM** (R)

Reading this register will trigger FC_CORE sofware event 4 and gate the FC_CORE clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

# 6.4.4.3.30 FC_CORE Software event 5 wait command register. (SW_EVENT_5_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Reading this register will trigger FC_CORE sofware event 5 and gate the FC_CORE clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.4.4.3.31 FC_CORE Software event 6 wait command register. (SW_EVENT_6_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								-							

Bits 31:0 - **EBM** (R)

Reading this register will trigger FC_CORE sofware event 6 and gate the FC_CORE clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

## 6.4.4.3.32 FC_CORE Software event 7 wait command register. (SW_EVENT_7_WAIT)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
	4.4	42	12	11	10	0	0	7	6	E	4	3	2	1	0
15	14	13	12		10	9	٥	,	U	3	4	,	-	•	

Bits 31:0 - **EBM** (R)

Reading this register will trigger FC_CORE sofware event 7 and gate the FC_CORE clock until at least one unmasked event occurs. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.4.4.3.33 FC_CORE Software event 0 wait and clear command register. (SW_EVENT_0_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **EBM** (R)

Reading this register will trigger FC_CORE sofware event 0 and gate the FC_CORE clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared if EVT_MASK.EM[i]=0b1 after the read. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.4.4.3.34 FC_CORE Software event 1 wait and clear command register. (SW_EVENT_1_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	ВМ							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - EBM (R)

Reading this register will trigger FC_CORE sofware event 1 and gate the FC_CORE clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared if EVT_MASK.EM[i]=0b1 after the read. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.4.4.3.35 FC_CORE Software event 2 wait and clear command register. (SW_EVENT_2_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
			42	- 44	10	•		7	-	-	4	,	- 1	1	_
15	14	13	12	11	10	9	٥	,	0	5	4	3	2		U

#### Bits 31:0 - **EBM** (R)

Reading this register will trigger FC_CORE sofware event 2 and gate the FC_CORE clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared if EVT_MASK.EM[i]=0b1 after the read. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

# 6.4.4.3.36 FC_CORE Software event 3 wait and clear command register. (SW_EVENT_3_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EE	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - EBM (R)

Reading this register will trigger FC_CORE sofware event 3 and gate the FC_CORE clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared if EVT_MASK.EM[i]=0b1 after the read. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.4.4.3.37 FC_CORE Software event 4 wait and clear command register. (SW_EVENT_4_WAIT_CLEAR)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - EBM (R)

Reading this register will trigger FC_CORE sofware event 4 and gate the FC_CORE clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared if EVT_MASK.EM[i]=0b1 after the read. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.4.4.3.38 FC CORE Software event 5 wait and clear command register. (SW EVENT 5 WAIT CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - EBM (R)

Reading this register will trigger FC_CORE sofware event 5 and gate the FC_CORE clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared if EVT_MASK.EM[i]=0b1 after the read. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

#### 6.4.4.3.39 FC_CORE Software event 6 wait and clear command register. (SW_EVENT_6_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 31:0 - **EBM** (R)

Reading this register will trigger FC_CORE sofware event 6 and gate the FC_CORE clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared if EVT_MASK.EM[i]=0b1 after the read. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

# 6.4.4.3.40 FC_CORE Software event 7 wait and clear command register. (SW_EVENT_7_WAIT_CLEAR)

Reset value: 0x0000

Host access bus: DEMUX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EB	BM							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							EB	1.4							

#### Bits 31:0 - EBM (R)

Reading this register will trigger FC_CORE sofware event 7 and gate the FC_CORE clock until at least one unmasked event occurs. In addition, EVENT_BUFFER.EB[i] bits are cleared if EVT_MASK.EM[i]=0b1 after the read. The read content of this bitfield is equivalent to EVENT_BUFFER_MASKED.EBM

# 6.4.4.3.41 Remote software event 0 trigger command register. (REMOTE_SW_EVENT_0_TRIG)

Reset value: 0x0000

Host access bus: PERIPH

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TR	IG							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - TRIG (W)

Writing any value will trigger SoC software event 0

## 6.4.4.3.42 Remote software event 1 trigger command register. (REMOTE_SW_EVENT_1_TRIG)

Reset value: 0x0000

Host access bus: PERIPH

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TR	RIG							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - TRIG (W)

Writing any value will trigger SoC software event 1

# ${\bf 6.4.4.3.43~Remote~software~event~2~trigger~command~register.~(REMOTE_SW_EVENT_2_TRIG)}$

Reset value: 0x0000

Host access bus: PERIPH

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TR	IG							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							TR	IG							

Bits 31:0 - TRIG (W)

Writing any value will trigger SoC software event 2

## 6.4.4.3.44 Remote software event 3 trigger command register. (REMOTE_SW_EVENT_3_TRIG)

Reset value: 0x0000

Host access bus: PERIPH

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TR	RIG							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - TRIG (W)

Writing any value will trigger SoC software event 3

# 6.4.4.3.45 Remote software event 4 trigger command register. (REMOTE_SW_EVENT_4_TRIG)

Reset value: 0x0000

Host access bus: PERIPH

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TR	IIG							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - TRIG (W)

Writing any value will trigger SoC software event 4

## 6.4.4.3.46 Remote software event 5 trigger command register. (REMOTE_SW_EVENT_5_TRIG)

Reset value: 0x0000

Host access bus: PERIPH

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TR	IIG							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - TRIG (W)

Writing any value will trigger SoC software event 5

# 6.4.4.3.47 Remote software event 6 trigger command register. (REMOTE_SW_EVENT_6_TRIG)

Reset value: 0x0000

Host access bus: PERIPH

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TR	IIG							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - TRIG (W)

Writing any value will trigger SoC software event 6

## 6.4.4.3.48 Remote software event 7 trigger command register. (REMOTE_SW_EVENT_7_TRIG)

Reset value: 0x0000

Host access bus: PERIPH

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							TR	IIG							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - TRIG (W)

Writing any value will trigger SoC software event 7

## 6.4.4.3.49 SoC peripheral event ID status register. (SOC_PERIPH_EVENT_ID)

Reset value: 0x0000

Host access bus: PERIPH

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
VALID								Reserved							
	1														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bit 31 - **VALID** (R)

Validity bit of SOC_PERIPH_EVENT_ID.ID bitfield.

Bits 7:0 - ID (R)

Oldest SoC peripheral event ID status bitfield.

# 6.4.5 FC Memory protection unit

FC_MPU component manages the protection of the FC L1, L2 and peripheral memory mapped areas. Protection rules are positive. i.e. If there is no rule in place access will be denied. The rules protect access of these areas from FC code running in user mode, peripherals and all cluster code. By default the MPU is disabled. It would normally be enabled by a second stage bootloader that would manage loading user code.

## 6.4.5.1 FC Memory protection unit registers

Name	Aliased address	Size	Туре	Access	Default	Description
MPU_ENABLE	0x00204400	32	Config	R/W	0x0000	MPU enable configuration register
FC_TCDM_RULE0	0x00204440	32	Config	R/W	0x0000	FC address filter rule 0
FC_TCDM_RULE1	0x00204444	32	Config	R/W	0x0000	FC address filter rule 1
FC_TCDM_RULE2	0x00204448	32	Config	R/W	0x0000	FC address filter rule 2
FC_TCDM_RULE3	0x0020444C	32	Config	R/W	0x0000	FC address filter rule 3
FC_TCDM_RULE4	0x00204450	32	Config	R/W	0x0000	FC address filter rule 4
FC_TCDM_RULE5	0x00204454	32	Config	R/W	0x0000	FC address filter rule 5
FC_TCDM_RULE6	0x00204458	32	Config	R/W	0x0000	FC address filter rule 6
FC_TCDM_RULE7	0x0020445C	32	Config	R/W	0x0000	FC address filter rule
L2_RULE0	0x00204480	32	Config	R/W	0x0000	L2 address filter rule 0
L2_RULE1	0x00204484	32	Config	R/W	0x0000	L2 address filter rule 1
L2_RULE2	0x00204488	32	Config	R/W	0x0000	L2 address filter rule 2
L2_RULE3	0x0020448C	32	Config	R/W	0x0000	L2 address filter rule 3
L2_RULE4	0x00204490	32	Config	R/W	0x0000	L2 address filter rule 4
L2_RULE5	0x00204494	32	Config	R/W	0x0000	L2 address filter rule 5
L2_RULE6	0x00204498	32	Config	R/W	0x0000	L2 address filter rule 6
L2_RULE7	0x0020449C	32	Config	R/W	0x0000	L2 address filter rule
APB_RULE0	0x002044C0	32	Config	R/W	0x0000	External peripheral (APB) address filter rule 0
APB_RULE1	0x002044C4	32	Config	R/W	0x0000	External peripheral (APB) address filter rule 1
APB_RULE2	0x002044C8	32	Config	R/W	0x0000	External peripheral (APB) address filter rule 2
APB_RULE3	0x002044CC	32	Config	R/W	0x0000	External peripheral (APB) address filter rule 3
APB_RULE4	0x002044D0	32	Config	R/W	0x0000	External peripheral (APB) address filter rule 4
APB_RULE5	0x002044D4	32	Config	R/W	0x0000	External peripheral (APB) address filter rule 5
APB_RULE6	0x002044D8	32	Config	R/W	0x0000	External peripheral (APB) address filter rule 6
APB_RULE7	0x002044DC	32	Config	R/W	0x0000	External peripheral (APB) address filter rule

Table 65. FC Memory protection unit registers table

# 6.4.5.2 FC Memory protection unit registers details

## 6.4.5.2.1 MPU enable configuration register (MPU_ENABLE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								ENABLE

#### Bit 0 - ENABLE (R/W)

MPU enable status

- 0b0: MPU disabled
- 0b1: MPU enabled

## 6.4.5.2.2 FC address filter rule (FC_TCDM_RULE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
,	A	Reserve d							BASE						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BASE	Reserve d							SIZE							ST

#### Bits 31:30 - A (R/W)

Area (MSB indicates aliased memory area, LSB indicates L1 memory or peripheral memory)

- 0b00 L1 memory (0x01B00000)
- *0b01* Peripheral memory (0x1B200000)
- *0b10* L1 memory aliased (0x10000000)
- *0b11* Peripheral memory aliased (0x10200000)

The unprotected area will start at the A base + 64K * base and will be 64K * size long

Bits 28:15 - **BASE** (R/W)

Area address base in 64kB pages

Bits 13:1 - SIZE (R/W)

Area size in 64KB pages

Bit 0 - **ST** (R/W)

Rule state

- 0b0: Rule diabled
- *0b1*: Rule enabled

## 6.4.5.2.3 L2 address filter rule (L2_RULE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
,	A	Reserve d							BASE						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BASE	Reserve d							SIZE							ST

Bits 31:30 - A (R/W)

Area

Not used. Always 0x1C000000.

Bits 28:15 - **BASE** (R/W)

Area address base in 64kB pages

Bits 13:1 - **SIZE** (R/W)

Area size in 64KB pages

Bit 0 - **ST** (R/W)

Rule state

- *0b0*: Rule diabled
- *0b1*: Rule enabled

## 6.4.5.2.4 External peripheral (APB) address filter rule (APB_RULE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
,	A	Reserve d							BASE						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BASE	Reserve d							SIZE							ST

Bits 31:30 - A (R/W)

Area

- *0b00* L1 memory (0x01B00000)
- *0b01* Peripheral memory (0x1B200000)
- *0b10* APB memory (0x1A100000)

The unprotected area will start at the A base + 64K * base and will be 64K * size long

Bits 28:15 - **BASE** (R/W)

Area address base in 64kB pages

Bits 13:1 - **SIZE** (R/W)

Area size in 64KB pages

## Bit 0 - **ST** (R/W)

Rule state

- *0b0*: Rule diabled
- *0b1*: Rule enabled

## 6.4.6 FC instruction cache control unit

FC_ICACHE_CTRL component manages the following features:

- Bypassable FC instruction cache controller
- Flush and selective flush commands
- FC instruction cache pending action status flag

# 6.4.6.1 FC instruction cache control unit registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
<u>ENABLE</u>	0x1B201400	0x00201400	32	Config	W	0x0000	FC instruction cache unit enable configuration register.
<u>FLUSH</u>	0x1B201404	0x00201404	32	Config	W	0x0000	FC instruction cache unit flush command register.
SEL_FLUSH	0x1B201408	0x00201408	32	Config	W	0x0000	FC instruction cache unit selective flush command register.
<u>STATUS</u>	0x1B20140C	0x0020140C	32	Status	R	0x0000	FC instruction cache unit status register.

Table 66. FC instruction cache control unit registers table

# 6.4.6.2 FC instruction cache control unit registers details

# 6.4.6.2.1 FC instruction cache unit enable configuration register. (ENABLE)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								EN

## Bit 0 - **EN** (W)

FC instruction cache enable configuration bitfield:

- *0b0*: disabled
- *0b1*: enabled

## 6.4.6.2.2 FC instruction cache unit flush command register. (FLUSH)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								FL

#### Bit 0 - **FL** (W)

FC instruction cache fully flush command.

#### 6.4.6.2.3 FC instruction cache unit selective flush command register. (SEL_FLUSH)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							AD	DR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - ADDR (W)

FC instruction cache selective flush address configuration bitfield.

## 6.4.6.2.4 FC instruction cache unit status register. (STATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

# Bit 0 - STATUS (R)

FC instruction cache pending action status flag:

- *0b0*: no pending caching action
- *0b1*: pending caching action

## 6.4.7 FC secured RISCY core

RI5CY Debug component manages the following features:

- controls break and single step RI5CY core execution modes
- configurable execution behavior on RI5CY core exception occurrence
- access to PC, GPR and CSR RI5CY core registers
- no HW breakpoint are provided

## 6.4.7.1 FC Core 0 (Debug Unit) registers

Name	Address	Aliased address	Size	Туре	Access	Default	Description
<u>CTRL</u>	0x1B300000	0x00300000	32	Config	R/W	0x0000	Debug control configuration register.
<u>HIT</u>	0x1B300004	0x00300004	32	Config	R/W	0x0000	Debug hit status register.
<u>IE</u>	0x1B300008	0x00300008	32	Config	R/W	0x0000	Debug exception trap enable configuration register.
<u>CAUSE</u>	0x1B30000C	0x0030000C	32	Config	R	0x0000	Debug trap cause status register.
GPR0	0x1B300400	0x00300400	32	Config	R/W	0x0000	Core general purpose register 0 value register.
GPR1	0x1B300404	0x00300404	32	Config	R/W	0x0000	Core general purpose register 1 value register.
GPR2	0x1B300408	0x00300408	32	Config	R/W	0x0000	Core general purpose register 2 value register.
GPR3	0x1B30040C	0x0030040C	32	Config	R/W	0x0000	Core general purpose register 3 value register.
GPR4	0x1B300410	0x00300410	32	Config	R/W	0x0000	Core general purpose register 4 value register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
GPR5	0x1B300414	0x00300414	32	Config	R/W	0x0000	Core general purpose register 5 value register.
GPR6	0x1B300418	0x00300418	32	Config	R/W	0x0000	Core general purpose register 6 value register.
GPR7	0x1B30041C	0x0030041C	32	Config	R/W	0x0000	Core general purpose register 7 value register.
GPR8	0x1B300420	0x00300420	32	Config	R/W	0x0000	Core general purpose register 8 value register.
GPR9	0x1B300424	0x00300424	32	Config	R/W	0x0000	Core general purpose register 9 value register.
GPR10	0x1B300428	0x00300428	32	Config	R/W	0x0000	Core general purpose register 10 value register.
GPR11	0x1B30042C	0x0030042C	32	Config	R/W	0x0000	Core general purpose register 11 value register.
GPR12	0x1B300430	0x00300430	32	Config	R/W	0x0000	Core general purpose register 12 value register.
GPR13	0x1B300434	0x00300434	32	Config	R/W	0x0000	Core general purpose register 13 value register.
GPR14	0x1B300438	0x00300438	32	Config	R/W	0x0000	Core general purpose register 14 value register.
GPR15	0x1B30043C	0x0030043C	32	Config	R/W	0x0000	Core general purpose register 15 value register.
GPR16	0x1B300440	0x00300440	32	Config	R/W	0x0000	Core general purpose register 16 value register.
GPR17	0x1B300444	0x00300444	32	Config	R/W	0x0000	Core general purpose register 17 value register.
GPR18	0x1B300448	0x00300448	32	Config	R/W	0x0000	Core general purpose register 18 value register.
GPR19	0x1B30044C	0x0030044C	32	Config	R/W	0x0000	Core general purpose register 19 value register.
GPR20	0x1B300450	0x00300450	32	Config	R/W	0x0000	Core general purpose register 20 value register.
GPR21	0x1B300454	0x00300454	32	Config	R/W	0x0000	Core general purpose register 21 value register.
GPR22	0x1B300458	0x00300458	32	Config	R/W	0x0000	Core general purpose register 22 value register.
GPR23	0x1B30045C	0x0030045C	32	Config	R/W	0x0000	Core general purpose register 23 value register.
GPR24	0x1B300460	0x00300460	32	Config	R/W	0x0000	Core general purpose register 24 value register.
GPR25	0x1B300464	0x00300464	32	Config	R/W	0x0000	Core general purpose register 25 value register.
GPR26	0x1B300468	0x00300468	32	Config	R/W	0x0000	Core general purpose register 26 value register.
GPR27	0x1B30046C	0x0030046C	32	Config	R/W	0x0000	Core general purpose register 27 value register.
GPR28	0x1B300470	0x00300470	32	Config	R/W	0x0000	Core general purpose register 28 value register.
GPR29	0x1B300474	0x00300474	32	Config	R/W	0x0000	Core general purpose register 29 value register.
GPR30	0x1B300478	0x00300478	32	Config	R/W	0x0000	Core general purpose register 30 value register.
GPR31	0x1B30047C	0x0030047C	32	Config	R/W	0x0000	Core general purpose register 31 value register.
NPC	0x1B302000	0x00302000	32	Config	R/W	0x0000	Debug next program counter value register.
PPC	0x1B302004	0x00302004	32	Config	R	0x0000	Debug previous program counter value register.
CSR_USTATUS	0x1B304000	0x00304000	32	Config	R/W	0x0000	Core CSR user status value register.
CSR_UTVEC	0x1B304014	0x00304014	32	Config	R/W	0x0000	Core CSR user vector-trap base address value register.
CSR_UHARTID	0x1B304050	0x00304050	32	Config	R	0x0000	Core CSR user privilege mode hardware thread ID status register.
CSR_UEPC	0x1B304104	0x00304104	32	Config	R/W	0x0000	Core CSR user exception program counter value register.
CSR_UCAUSE	0x1B304108	0x00304108	32	Config	R/W	0x0000	Core CSR user trap cause value register.
CSR_MSTATUS	0x1B304C00	0x00304C00	32	Config	R/W	0x0000	Core CSR machine status value register.
CSR_MTVEC	0x1B304C14	0x00304C14	32	Config	R/W	0x0000	Core CSR machine vector-trap base address value register.
CSR_MEPC	0x1B304D04	0x00304D04	32	Config	R/W	0x0000	Core CSR machine exception program counter value register.
CSR_MCAUSE	0x1B304D08	0x00304D08	32	Config	R/W	0x0000	Core CSR machine trap cause value register.
CSR_PCCR	0x1B305E00	0x00305E00	32	Config	R/W	0x0000	Core CSR performance counter counter register.

Name	Address	Aliased address	Size	Туре	Access	Default	Description
CSR_PCER	0x1B305E80	0x00305E80	32	Config	R/W	0x0000	Core CSR performance counter enable configuration register.
CSR_PCMR	0x1B305E84	0x00305E84	32	Config	R/W	0x0000	Core CSR performance counter mode configuration register.
CSR_HWLP0S	0x1B305EC0	0x00305EC0	32	Config	R/W	0x0000	Core CSR hardware loop 0 start configuration register.
CSR_HWLP0E	0x1B305EC4	0x00305EC4	32	Config	R/W	0x0000	Core CSR hardware loop 0 end configuration register.
CSR_HWLP0C	0x1B305EC8	0x00305EC8	32	Config	R/W	0x0000	Core CSR hardware loop 0 counter configuration register.
CSR_HWLP1S	0x1B305ED0	0x00305ED0	32	Config	R/W	0x0000	Core CSR hardware loop 1 start configuration register.
CSR_HWLP1E	0x1B305ED4	0x00305ED4	32	Config	R/W	0x0000	Core CSR hardware loop 1 end configuration register.
CSR_HWLP1C	0x1B305ED8	0x00305ED8	32	Config	R/W	0x0000	Core CSR hardware loop 1 counter configuration register.
CSR_PRIVLV	0x1B307040	0x00307040	32	Config	R	0x0000	Core CSR current privilege level status register.
CSR_MHARTID	0x1B307C50	0x00307C50	32	Config	R	0x0000	Core CSR machine privilege mode hardware thread ID status register.

Table 67. FC Core 0 (Debug Unit) registers table

# 6.4.7.2 FC secured RISCY core registers details

# 6.4.7.2.1 Debug control configuration register. (CTRL)

Reset value: 0x0000

Always accessible, even when the RI5CY core is running.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								HALT/H ALT_ST ATUS
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								SSTE

Bit 16 - **HALT** (W)

Debug mode configuration bitfield:

- *0b0*: exit debug exits debug mode
- *0b1*: enter debug enters debug mode breaking code execution

# Bit 16 - HALT_STATUS (R)

Debug mode status bitfield:

- *0b0*: running mode
- *0b1*: debug mode

#### Bit 0 - **SSTE** (R/W)

Single step mode configuration bitfield:

• 0b0: disabled

• 0b1: enabled

#### 6.4.7.2.2 Debug hit status register. (HIT)

Reset value: 0x0000

Always accessible, even when the RI5CY core is running.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								SLEEP
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Reserved								SSTH

#### Bit 16 - **SLEEP** (R)

Sleep mode status bitfield:

- *0b0*: running core is in running state
- *0b1*: sleeping core is in sleeping state and waits for en event to wake up

## Bit 0 - **SSTH** (R/W)

Single step hit status bitfield:

- *0b0*: disabled single step mode disabled
- *0b1*: enabled single step mode enabled

Sticky bit that must be cleared by external debugger.

## 6.4.7.2.3 Debug exception trap enable configuration register. (IE)

Reset value: 0x0000

Always accessible, even when the RI5CY core is running.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Rese	erved		ECALL		Reserved		ELSU_D UP	Reserve d	ELSU	Reserve d	EBRK	EILL	Rese	erved

#### Bit 11 - **ECALL** (R/W)

Environment call trap configuration bitfield:

- *0b0*: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

#### Bit 7 - ELSU_DUP (R/W)

Load/store access fault trap configuration bitfield:

- 0b0: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

This bitfield is duplicates the ELSU bitfield.

#### Bit 5 - **ELSU** (R/W)

Load/store access fault trap configuration bitfield:

- 0b0: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

## Bit 3 - **EBRK** (R/W)

Environment break trap configuration bitfield:

- *0b0*: normal normal exception behavior mode
- *0b1*: cause trap exception causes trap and core switch into debug mode

## Bit 2 - **EILL** (R/W)

Illegal instruction trap configuration bitfield:

- *0b0*: normal normal exception behavior mode
- 0b1: cause trap exception causes trap and core switch into debug mode

#### 6.4.7.2.4 Debug trap cause status register. (CAUSE)

Reset value: 0x0000

Always accessible, even when the RI5CY core is running.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IRQ								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bit 31 - **IRQ** (R)

Core in debug mode due to interrupt trap status bitfield:

- *0b0*: false
- *0b1*: true

#### Bits 4:0 - **CAUSE** (R)

Exception ID bitfield. If IRQ is *0b1* contains interrupt number otherwise:

- 0x2: sigill Illegal Instruction
- 0x3: sigtrap breakpoint
- *0xB*: sigecall eCall user mode
- OxB sigecall eCall machine mode
- ullet Ox1F sigstop core was halted by an external signal

# 6.4.7.2.5 Core general purpose register 0 value register. (GPR0)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							GP								

Bits 31:0 - **GPR0** (R/W)

General purpose register 0 value bitfield.

#### 6.4.7.2.6 Core general purpose register 1 value register. (GPR1)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R1							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							GP	n .							

Bits 31:0 - **GPR1** (R/W)

General purpose register 1 value bitfield.

#### 6.4.7.2.7 Core general purpose register 2 value register. (GPR2)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R2							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR2** (R/W)

General purpose register 2 value bitfield.

## 6.4.7.2.8 Core general purpose register 3 value register. (GPR3)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R3							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR3** (R/W)

General purpose register 3 value bitfield.

## 6.4.7.2.9 Core general purpose register 4 value register. (GPR4)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R4							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR4** (R/W)

General purpose register 4 value bitfield.

## 6.4.7.2.10 Core general purpose register 5 value register. (GPR5)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R5							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							GP	R5							

Bits 31:0 - **GPR5** (R/W)

General purpose register 5 value bitfield.

# 6.4.7.2.11 Core general purpose register 6 value register. (GPR6)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R6							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR6** (R/W)

General purpose register 6 value bitfield.

## 6.4.7.2.12 Core general purpose register 7 value register. (GPR7)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R7							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR7** (R/W)

General purpose register 7 value bitfield.

# 6.4.7.2.13 Core general purpose register 8 value register. (GPR8)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R8							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR8** (R/W)

General purpose register 8 value bitfield.

## 6.4.7.2.14 Core general purpose register 9 value register. (GPR9)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R9							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR9** (R/W)

General purpose register 9 value bitfield.

#### 6.4.7.2.15 Core general purpose register 10 value register. (GPR10)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	₹10							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR10** (R/W)

General purpose register 10 value bitfield.

# 6.4.7.2.16 Core general purpose register 11 value register. (GPR11)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R11							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR11** (R/W)

General purpose register 11 value bitfield.

# 6.4.7.2.17 Core general purpose register 12 value register. (GPR12)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R12							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							GPI	D10							

Bits 31:0 - **GPR12** (R/W)

General purpose register 12 value bitfield.

# 6.4.7.2.18 Core general purpose register 13 value register. (GPR13)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPF	₹13							
15	14	13	12	11	10			-		-		-	-		•
13	14	13	12		10	9	8	,	6	5	4	3	2	1	U

Bits 31:0 - **GPR13** (R/W)

General purpose register 13 value bitfield.

## 6.4.7.2.19 Core general purpose register 14 value register. (GPR14)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R14							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR14 (R/W)

General purpose register 14 value bitfield.

## 6.4.7.2.20 Core general purpose register 15 value register. (GPR15)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R15							
	1					_	_	_				_	_	_	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR15** (R/W)

General purpose register 15 value bitfield.

## 6.4.7.2.21 Core general purpose register 16 value register. (GPR16)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R16							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR16** (R/W)

General purpose register 16 value bitfield.

## 6.4.7.2.22 Core general purpose register 17 value register. (GPR17)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPF	R17							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR17** (R/W)

General purpose register 17 value bitfield.

## 6.4.7.2.23 Core general purpose register 18 value register. (GPR18)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R18							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR18 (R/W)

General purpose register 18 value bitfield.

## 6.4.7.2.24 Core general purpose register 19 value register. (GPR19)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPF	₹19							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							GPF	319							

Bits 31:0 - **GPR19** (R/W)

General purpose register 19 value bitfield.

## 6.4.7.2.25 Core general purpose register 20 value register. (GPR20)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GP	R20							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR20** (R/W)

General purpose register 20 value bitfield.

## 6.4.7.2.26 Core general purpose register 21 value register. (GPR21)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R21							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR21** (R/W)

General purpose register 21 value bitfield.

## 6.4.7.2.27 Core general purpose register 22 value register. (GPR22)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R22							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR22 (R/W)

General purpose register 22 value bitfield.

## 6.4.7.2.28 Core general purpose register 23 value register. (GPR23)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R23							
						_	_	_	_	_	_	_	_		_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR23** (R/W)

General purpose register 23 value bitfield.

## 6.4.7.2.29 Core general purpose register 24 value register. (GPR24)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R24							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR24** (R/W)

General purpose register 24 value bitfield.

## 6.4.7.2.30 Core general purpose register 25 value register. (GPR25)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPF	R25							
15	14	13	12	11	40			-		-					
15	14	15	12	11	10	9	8	,	6	5	4	3	2	1	U

Bits 31:0 - **GPR25** (R/W)

General purpose register 25 value bitfield.

## 6.4.7.2.31 Core general purpose register 26 value register. (GPR26)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R26							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR26 (R/W)

General purpose register 26 value bitfield.

## 6.4.7.2.32 Core general purpose register 27 value register. (GPR27)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R27							
						_	_	_				_	_	_	_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR27** (R/W)

General purpose register 27 value bitfield.

## 6.4.7.2.33 Core general purpose register 28 value register. (GPR28)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R28							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR28** (R/W)

General purpose register 28 value bitfield.

## 6.4.7.2.34 Core general purpose register 29 value register. (GPR29)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R29							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **GPR29** (R/W)

General purpose register 29 value bitfield.

## 6.4.7.2.35 Core general purpose register 30 value register. (GPR30)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R30							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - GPR30 (R/W)

General purpose register 30 value bitfield.

## 6.4.7.2.36 Core general purpose register 31 value register. (GPR31)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							GPI	R31							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							GPI	231							

Bits 31:0 - **GPR31** (R/W)

General purpose register 31 value bitfield.

## 6.4.7.2.37 Debug next program counter value register. (NPC)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							NF	PC .							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **NPC** (R/W)

Next program counter value bitfield.

## 6.4.7.2.38 Debug previous program counter value register. (PPC)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PP	C							
15	14	13	12	11	10			-		-		-			
13	14	15	12	11	10	9	8	,	6	5	4	3	2	1	U

## Bits 31:0 - PPC (R)

Previous program counter value bitfield.

## 6.4.7.2.39 Core CSR user status value register. (CSR_USTATUS)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bit 4 - **UPIE** (R/W)

User privilege mode previous interrupt enable value bitfield. When an interrupis encountered, UPIE will store the value existing in UIE. When uret instruction is executed, the value of UPIE is restored into UIE.

#### Bit 0 - **UIE** (R/W)

User privilege mode interrupt enable configuration bitfield:

- 0b0: disabled
- *0b1*: enabled

## 6.4.7.2.40 Core CSR user vector-trap base address value register. (CSR_UTVEC)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							UTV	/EC							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

# Bits 31:8 - **UTVEC** (R/W)

Machine trap-vector base address value bitfield. When an exception is encountered, the core jumps to the corresponding handler using the content of the MTVEC as base address.

## 6.4.7.2.41 Core CSR user privilege mode hardware thread ID status register. (CSR_UHARTID)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Reserved					CLUST	TER_ID			Reserve d		COR	E_ID	

Bits 10:5 - CLUSTER_ID (R)

Cluster ID value bitfield.

Bits 3:0 - **CORE_ID** (R)

RI5CY core ID value bitfield.

## 6.4.7.2.42 Core CSR user exception program counter value register. (CSR_UEPC)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							UE	PC							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

## Bits 31:0 - **UEPC** (R/W)

Machine exception program counter value bitfield. When an exception is encountered, the current program counter is saved in MEPC, and the core jumps to the exception address. When an mret instruction is executed, the value from MEPC is restored to the current program counter.

## 6.4.7.2.43 Core CSR user trap cause value register. (CSR_UCAUSE)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IRQ								Reserved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserved								CAUSE		

#### Bit 31 - IRQ (R)

Core triggered an exception due to interrupt status bitfield:

- *0b0*: false
- *0b1*: true

Bits 4:0 - **CAUSE** (R)

Exception ID bitfield.

## 6.4.7.2.44 Core CSR machine status value register. (CSR_MSTATUS)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 12:11 - MPP (R/W)

Machine privilege mode previous privilege mode value bitfield:

- 0b00: User mode
- *0b11*: Machine mode

## Bit 7 - **MPIE** (R/W)

Machine privilege mode previous interrupt enable value bitfield. When an interrupis encountered, MPIE will store the value existing in MIE. When mret instruction is executed, the value of MPIE is restored into MIE.

#### Bit 4 - **UPIE** (R/W)

User privilege mode previous interrupt enable value bitfield. When an interrupis encountered, UPIE will store the value existing in UIE. When uret instruction is executed, the value of UPIE is restored into UIE.

#### Bit 3 - MIE (R/W)

Machine privilege mode interrupt enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

## Bit 0 - **UIE** (R/W)

User privilege mode interrupt enable configuration bitfield:

- 0b0: disabled
- 0b1: enabled

# ${\it 6.4.7.2.45~Core~CSR~machine~vector-trap~base~address~value~register.~(CSR_MTVEC)}$

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							MT\	/EC							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

# Bits 31:8 - MTVEC (R/W)

Machine trap-vector base address value bitfield. When an exception is encountered, the core jumps to the corresponding handler using the content of the MTVEC as base address.

# 6.4.7.2.46 Core CSR machine exception program counter value register. (CSR_MEPC)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MEPC														
45	MEPC														
15	14	13	12	111	10	9	8	,	6	5	4	3		1	U

#### Bits 31:0 - MEPC (R/W)

Machine exception program counter value bitfield. When an exception is encountered, the current program counter is saved in MEPC, and the core jumps to the exception address. When an mret instruction is executed, the value from MEPC is restored to the current program counter.

#### 6.4.7.2.47 Core CSR machine trap cause value register. (CSR_MCAUSE)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IRQ															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Reserved								CAUSE		

## Bit 31 - **IRQ** (R)

Core triggered an exception due to interrupt status bitfield:

- *0b0*: false
- *0b1*: true

#### Bits 4:0 - **CAUSE** (R)

Exception ID bitfield. If IRQ is *0b1* contains interrupt number otherwise:

- 0x2: sigill Illegal Instruction
- Ox3: sigtrap breakpoint
- *0xB*: sigecall eCall user mode
- 0xB sigecall eCall machine mode
- *0x1F* sigstop core was halted by an external signal

## 6.4.7.2.48 Core CSR performance counter counter register. (CSR_PCCR)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							PC	CR							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

#### Bits 31:0 - PCCR (R/W)

Program counter counter value bitfield.

#### 6.4.7.2.49 Core CSR performance counter enable configuration register. (CSR_PCER)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	30   29   28   27   26   25   24   23   22     Reserved												PCER		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 20:0 - PCER (R/W)

See documentation on RI5CY core for details.

# 6.4.7.2.50 Core CSR performance counter mode configuration register. (CSR_PCMR)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Rese	erved							GE	SAT

## Bit 1 - **GE** (R/W)

Performance counter activation configuration bitfield:

- 0b0: disabled
- 0b1: enabled

#### Bit 0 - **SAT** (R/W)

Performance counter saturation mode configuration bitfield:

- *0b0*: wrap around wrap-around mode
- *0b1*: saturation saturation mode

## 6.4.7.2.51 Core CSR hardware loop 0 start configuration register. (CSR_HWLP0S)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STA	ART							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **START** (R/W)

Hardware loop start address configuration bitfield.

## 6.4.7.2.52 Core CSR hardware loop 0 end configuration register. (CSR_HWLP0E)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EN	ND							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - END (R/W)

Hardware loop end address configuration bitfield.

## 6.4.7.2.53 Core CSR hardware loop 0 counter configuration register. (CSR_HWLP0C)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CN	NT							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - CNT (R/W)

Hardware loop counter configuration bitfield.

#### 6.4.7.2.54 Core CSR hardware loop 1 start configuration register. (CSR_HWLP1S)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							STA	ART							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - **START** (R/W)

Hardware loop start address configuration bitfield.

# 6.4.7.2.55 Core CSR hardware loop 1 end configuration register. (CSR_HWLP1E)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							EN	ND							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Bits 31:0 - END (R/W)

Hardware loop end address configuration bitfield.

## 6.4.7.2.56 Core CSR hardware loop 1 counter configuration register. (CSR_HWLP1C)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							CI	NT							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							CI	_							

Bits 31:0 - CNT (R/W)

Hardware loop counter configuration bitfield.

## 6.4.7.2.57 Core CSR current privilege level status register. (CSR_PRIVLV)

Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Rese	erved				-	-		PL	EV

Bits 1:0 - PLEV (R)

Current privilege level status bitfield:

- 0b00: User mode
- *0b11*: Machine mode

#### 6.4.7.2.58 Core CSR machine privilege mode hardware thread ID status register. (CSR_MHARTID)

Reset value: 0x0000

Only accessible if the RI5CY core is halted.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved					CLUSTER_ID					Reserve d	CORE_ID			

Bits 10:5 - CLUSTER_ID (R)

Cluster ID value bitfield.

Bits 3:0 - **CORE_ID** (R)

RI5CY core ID value bitfield.

#### 6.5 UDMA specific stream pre-processing protocol for SPIM and I2C interfaces

#### 6.5.1 SPI Master stream pre-processing protocol

SPI Master defines basic types of streams, each of them begins with a chip-select assertion and ends with chip-select de-assertion.

All SPI Master transfers can be assembled into a coherent buffer of commands and data. With different combinations of available commands, any type of SPI transfer can be generated. GAP8's SPI Master interface fetches both commands and data from L2 memory. In this way UDMA stream pre-processing protocol component can create complex SPI transfer fully autonomously and without any intervention of the Fabric Controller RISCY core. The code below shows an example of 2 SPI transfer buffers that generate a read and a write on a standard SPI flash memory.

```
PULP L2 DATA unsigned int spi cmd readdata[] = {
                                                     (SPI_CMD_SOT CS0).
     SPT CMD SOT
     SPI_CMD_SEND_CMD (0x13, SPI_CMD_SIZE(0x8), SPI_CMD_QPI_DIS), // send command read memory 4read
     SPI_CMD_SEND_ADDR(32, SPI_CMD_QPI_DIS),
      (SECTOR_4KB_NUM * SECTOR_4KB_SIZE),
     SPI_CMD_RX_DATA (PAGE_PROGRAM_BUFFER_SIZE*8, SPI_CMD_QPI_DIS, SPI_CMD_BYTE_ALIGN_ENA),
     SPI_CMD_EOT
                                                      (SPI_CMD_EOT_EVENT_ENA)
PULP_L2_DATA unsigned int spi_cmd_writedata1[] = {
                                                    (SPI_CMD_SOT_CS0),
     SPI CMD SOT
     SPI_CMD_SEND_CMD (0x12, SPI_CMD_CMD_SIZE(0x8), SPI_CMD_QPI_DIS) , // 4pp page program
     SPI_CMD_SEND_ADDR(32, SPI_CMD_QPI_DIS),
     (SECTOR_4KB_NUM * SECTOR_4KB_SIZE),
SPI_CMD_TX_DATA (PAGE_PROGRAM_BUFFER_SIZE*8, SPI_CMD_QPI_DIS, SPI_CMD_BYTE_ALIGN_ENA),
     0x83828180, 0x87868584, 0x8b8a8988, 0x8f8e8d8c, 0x93929190, 0x97969594, 0x9b9a9998, 0x9f9e9d9c,
     0xa3a2a1a0, 0xa7a6a5a4, 0xabaaa9a8, 0xafaeadac, 0xb3b2b1b0, 0xb7b6b5b4, 0xbbbab9b8, 0xbfbebdbc,
     0 \verb|xc3c2c1c0|, 0 \verb|xc7c6c5c4|, 0 \verb|xcbcac9c8|, 0 \verb|xcfcecdcc|, 0 \verb|xd3d2d1d0|, 0 \verb|xd7d6d5d4|, 0 \verb|xdbdad9d8|, 0 \verb|xdfdedddc|, 0 \|xdfdeddd
     0xe3e2e1e0, 0xe7e6e5e4, 0xebeae9e8, 0xefeeedec, 0xf3f2f1f0, 0xf7f6f5f4, 0xfbfaf9f8, 0xfffefdfc,
     0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c, 0x13121110, 0x17161514, 0x1b1a1918, 0x1f1e1d1c,
     0x23222120, 0x27262524, 0x2b2a2928, 0x2f2e2d2c, 0x33323130, 0x37363534, 0x3b3a3938, 0x3f3e3d3c,
     0x43424140, 0x47464544, 0x4b4a4948, 0x4f4e4d4c, 0x53525150, 0x57565554, 0x5b5a5958, 0x5f5e5d5c,
```

```
0x63626160, 0x67666564, 0x6b6a6968, 0x6f6e6d6c, 0x73727170, 0x77767574, 0x7b7a7978, 0x7f7e7d7c, SPI_CMD_EOT (SPI_CMD_EOT_EVENT_ENA), }:
```

#### 6.5.2 I2C stream pre-processing protocol

I²C defines basic types of streams, each of which begins with a START and ends with a STOP:

- Single message where a master writes data to a slave;
- Single message where a master reads data from a slave;
- Combined messages, where a master issues at least two reads and/or writes to one or more slaves.

All  $I^2C$  transfers can be assembled into a coherent buffer of commands and data. With different combinations of available commands, any type of  $I^2C$  transfer can be generated. GAP8's  $I^2C$  interface fetches both commands and data from L2 memory. In this way UDMA stream pre-processing protocol component can create complex  $I^2C$  transfer fully autonomously and without any intervention of the Fabric Controller RI5CY core. The code below shows an example of a  $I^2C$  transfer buffer that generates a write on a 24LC1024 EEProm.

```
char i2c_cmd_buffer[] = {
   I2C_CMD_START,
   I2C CMD WR, 0xA4,
   I2C\_CMD\_WR, 0x00,
   I2C_CMD_WR,0x00,
   I2C_CMD_RPT,0x10,
   I2C_CMD_WR,0x00,0x01,0x02,0x03,
                0 \times 04, 0 \times 05, 0 \times 06, 0 \times 07,
                0x08,0x09,0x0A,0x0B,
                0x0C,0x0D,0x0E,0x0F,
   I2C_CMD_STOP,
   I2C CMD WAIT, 0x10,
   I2C_CMD_START,
   I2C_CMD_WR, 0xA4,
   I2C\_CMD\_WR, 0x00,
   I2C CMD WR, 0x00,
   I2C_CMD_START,
   I2C_CMD_WR, 0xA5,
   I2C_CMD_RPT,0x0F,
   I2C_CMD_RD_ACK,
   I2C CMD RD NACK,
   I2C_CMD_STOP
```

The command sequence starts by generating a start bit on the bus followed by a byte write and waiting for the slave acknowledge. The first byte, following the I²C standard sends the 7 bit address with the last bit coding the access type(0 for write 1 for read) so in this case 0x52 is the address and access is a write. The following two writes are the internal address of the EEProm (0x0000). The following instructions tell the I²C IP to repeat the next instructions 16 times. The instruction to be repeated is the write and the data for each write instruction is queued. Here we do write 16 bytes 0x00, 0x01...0x0F. The I2C_CMD_STOP generates the stop bits and ends the transfer. I2C_CMD_WAIT waits some I2C cycles (in this case 16) and the following I2C_CMD_START restart a new I²C transfer. The start is followed by the address of the peripheral and then by the internal address. I2C_CMD_START generates a restart condition needed by the EEPRom and then sends the 7 bit address but this time with a read flag(0xA5). The next command says to read 15 bytes and sends acknowledge at each byte and then read the last byte followed by a not acknowledge to inform the slave that we are done with the transfer. A stop bit then finalizes the transfer. All the commands are read through the TX port while each read pushes data to the RX channel.

# 7 e-Fuses content

The e-fuses are accessed via the <u>e-fuse registers</u>. The e-fuse registers are indexed by the e-fuse register ID (RegID) and are read and written at an offset from the read and write registers. Each register is 8 bits long however the register offset is calculated as RegID * 4. i.e. the register occupies the LSB of a word where the other bytes are unused.

#### 7.0.3 FC e-fuse details

Name	Regld No of registers		Description			
INFO	0	1	Info register 1			
INFO2	1	1	Info register 2			
AES_KEY	2	16	Secure boot AES key			
AES_IV	18	16	Secure boot AES IV			
WAIT_XTAL_DELTA	26	2	XTAL delta threshold			
WAIT_XTAL_MIN	28	1	XTAL minimum stabilization time			
WAIT_XTAL_MAX	29	1	XTAL maximum stabilization time			
HYPER_RDS_DELAY	30	1	HyperFlash read delay			
FLL_FREQ	31	1	FLL frequency			
FLL_TOLERANCE	32	1	FLL tolerance			
FLL_ASSERT_CYCLES	33	1	FLL assert cycles			
RESERVED	35	6	Reserved for future use			
USER	40	88	Free for application use			

Table 68. e-fuses table

# 7.0.3.1 Info register 1 (INFO)

7	6	5	4	3	2	1	0		
WAIT_XTAL	ENCRYPTED		BOOT		PLT				

## Bit 7 - WAIT_XTAL

Wait for clock to settle:

- *0b0*: Don't wait
- *0b1*: Wait

## Bit 6 - **ENCRYPTED**

Encrypted boot code:

- *0b0*: Not encrypted
- *0b1*: Encrypted

#### Bits 5:3 - **BOOT**

## Platform type:

- *0b000*: Other
- *0b001*: SPIS_ALT2
- *0b010*: JTAG
- *0b011*: SPIS_DFLT
- 0b100: PRELOAD
- *0b101*: HYPER
- *0b110*. SPIM
- *0b111*: SPIM_QPI

#### Bits 2:0 - **PLT**

## Platform type:

- *0b000*: Other
- *0b001*: FPGA
- *0b010*: RTL
- *0b011*: VP
- 0b100. Chip

## 7.0.3.2 Info register 2 (INFO2)

7	6	5	4	3	2	1	0
Reserved				SPIM_CLKDIV	FLL_BYPASS_LOC K	FLL_CONF	FLL_FREQ_SET

#### Bit 3 - SPIM_CLKDIV

SPIM clock division factor

- *0b0*: 1
- *0b1*: 2

## Bit 2 - FLL_BYPASS_LOCK

Gate FLL output:

- *0b0*: Don't gate
- *0b1*: Gate

## Bit 1 - FLL_CONF

Configure FLL:

- *0b0*: Don't configure
- *0b1*: Configure

#### Bit 0 - FLL_FREQ_SET

Set FLL frequency:

- *0b0*: Don't set
- *0b1*: Set

## 7.0.3.3 XTAL delta threshold (WAIT_XTAL_DELTA)

A fixed point Q15 fraction. The variation between 2 consecutive measurement should not be higher than this percentage.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	LSB						MSB								

Bits 15:8 - **LSB** 

LSB of delta

Bits 7:0 - **MSB** 

MSB of delta

## 7.0.3.4 XTAL minimum stabilization time (WAIT_XTAL_MIN)

7	6	5	4	3	2	1	0	
TIME								

Bits 7:0 - **TIME** 

Minimum time that the clock must be under the threshold to be considered stable.

## 7.0.3.5 XTAL maximum stabilization time (WAIT_XTAL_MAX)



Bits 7:0 - **TIME** 

Maximum amount of time to wait for clock stabilization

## 8 Electrical characteristics

## 8.1 Parameter condition

Name	Min	Тур	Max	Unit
RAR Switching frequency		1		MHz
RAR DC Output accuracy		3		%
RAR Output current		100		mA
OSC nominal frequency		32.768		kHz
OSC frequency accuracy		50		ppm

Table 69. Parameter condition table

## 8.2 Absolute maximum ratings

Clock minimum resolution: 32768 Hz, Voltage resolution: 50mV

Voltage (V)	SOC max clock Freq. (MHz)	Cluster max clock Freq. (MHz)	
1.20	250	170	
1.15	225	149	
1.10	200	129	
1.05	175	108	
1.00	150	87	

Table 70. Absolute maximum ratings table

## 8.3 Operating conditions

Name	Min	Тур	Max	Unit
XTAL_VDD	1.1	1.2	1.3	V
VDD	1.0	1.1	1.2	V
VDD_EXT_CLUSTER	1.0	1.1	1.2	V
VDD_LVDS_1P2V	1.0	1.1	1.2	V
RAR_AVDD	1.6		3.6	V
SAFE_VDDIO	1.6		3.6	V
SPIM_VDDIO	1.6		3.6	V
CAM_VDDIO	1.6		3.6	V
VDDIO_LVDS		2.5		V
XTAL_IN		32768		Hz

Table 71. Operating conditions table

## 9 Package information

## 9.1 AQFN88 package mechanical data

The following figure describes the different dimensions of the package elements.



Figure 9. AFN88 package

#### 9.2 AQFN88 recommended footprint

The following figure describes the recommended land patterns on the PCB. Corner pattern sizes are 0.35mm. Other patterns are 0.30mm.



Figure 10. AFN88 Land Patterns

#### 9.3 AQFN88 re-flow curves

The following figure describes the recommended temperatures during the re-flow process

	A.Ramp Up Rate (25~150C)		C.Ramp Up (200C~ peak)		E.Peak Temp	G.Cooling Rate (peak ~25C)
SPEC.	<1.2C/s	60~90 sec	<1C/s	60~90 sec	230~255C	<6C/s



Figure 11. Re-flow Curve

## 9.4 AQFN88 thermal characteristics

Rating	Value	Unit
Storage temperature range	-65 to 150	°C
Operating temperature range	-40 to 125	°C
Maximum junction temperature	150	°C

Table 72. GAP8 AQFN88 thermal characteristics

# 10 Chip part numbering



Figure 12. GAP8 chip part numbering

Line Number	Parameter	Description
2	LLLLLLLLL	Assembly Lot Number
3	YY	Last digit of the year of the assembly date
3	WW	Week number of the assembly date
3	TWN	Location of the assembly process : TAIWAN

Table 73. GAP8 chip part numbering

## 11 PCB Design

#### 11.1 Internal Oscillator

The GAP8 internal oscillator is an ultra-low power oscillator and is thus sensitive to parasitic coupling and noise. The following guidelines for PCB design and signal routing must be followed with care.

#### 11.1.1 Schematic Guidelines

When using on-board capacitors, two configurations are available:

- 1. In-parallel configuration: a capacitor is connected between XTAL_IN (noted XA on pictures) and XTAL_OUT(noted XB on pictures)
- 2. In-series configuration: a capacitor is connected between XTAL_IN and ground, another between XTAL_OUT and ground.

The in-series configuration is recommended to achieve high precision especially when the recommended load capacitance value is low. The in-parallel configuration requires only one capacitor with half of the value of the in-series configuration. In-parallel configuration is recommended when area and cost need to be optimized.

The following picture illustrates the in-series configuration:



Figure 13. In-series configuration

The following picture illustrates the in-parallel configuration :



Figure 14. In-parallel configuration

#### 11.1.2 Placement Rules

In both configurations, the crystal has to be placed as close as possible (less than ** 0.4inch or 10mm**) to the chip to reduce parasitic capacitance. External capacitors must be placed as close as possible to the pin they are connected to.

#### 11.1.3 Routing Rules

1. When using a multi-layer PCB, it is recommended that a ground plane layer below the top layer is used to provide better noise

immunity. Guard rings around external signals XTAL_IN/XTAL_OUT and external components are recommended to increase isolation. Guards have to be implemented on the top layer and underneath ground layer(s). Note that when using a ground layer under top layer, parasitic coupling to ground will increase and thus has to be taken into account in C L calculations.

- 2. When using a single-layer PCB, it is recommended that you implement a guard ring around external signals XTAL_IN/XTAL_OUT and external components in order to increase isolation.
- 3. It is recommended that you have an unclosed guard ring instead of a closed guard ring.
- 4. Return currents across the GAP8 oscillator region must be avoided.
- 5. To prevent frequency accuracy degradation, avoid coupling with other clock signals or signals with fast transitions. Do not route high-frequency signals underneath the GAP8 oscillator region.
- 6. If on-board capacitances with in-series configuration are used, the connection of the two capacitors to the ground should be as short as possible and made at a single point.
- 7. Do not use wide PCB traces for crystal and capacitor connections in order to minimize coupling with other parasitic signals.
- 8. PCB layout has to be symmetrical (refer to the figures below for an example).

The following picture illustrates layout placement and constraints in a single layer environment:



Figure 15. Single layer layout

The following picture illustrates layout placement and constraints in a multiple layer environment:



Figure 16. Multiple layer layout

#### 11.2 Internal Regulator (RAR)

#### 11.2.1 Schematic Guidelines

The following figure illustrates the recommended power scheme :



Figure 17. Power connections

#### 11.2.2 Placement Rules

External capacitor CIN and COUT must be placed as close as possible to the pins they are connected to.

## 11.2.3 Routing Rules

- 1. Routing between AVD pin, AVDPWR pin, and the battery must be wide and short in order to minimize the parasitic resistance of this connection.
- 2. It is recommended to connect the ground pins to PCB plane with wide traces.

## 11.2.4 Device Selection Rules

- 1. CIN and COUT capacitance should be 4.7uF
- 2. CIN and COUT should be X5R or X7R
- 3. L inductance should be 22uH

# 12 Revision history

Date	Revision	Changes	
15 Dec 2017	0.2	First Draft	
31 Jan 2018	1.0	Initial Release	
28 Feb 2018	1.1	B14 name update and PCB layout guidelines	
8 March 2018	1.2	Further corrections	
19 March 2018	1.3	VDD operating Condition	
17 April 2018	1.4	Include all IP information	
15 May 2018	1.5	Complete Device overview and add content	
09 Sept 2018	1.5.1	Detail default HyperBus chip selects	
11 Oct 2018	1.5.2	Correct efuse list	
25 Oct 2018	1.5.3	Correct PADCFG bit location	
07 Nov 2018	1.5.4	Correct register description	
30 Jan 2019	1.5.5	Correct DC/DC inductance value	

## 13 IMPORTANT NOTICE - PLEASE READ CAREFULLY

GreenWaves Technologies SAS reserves the right to make changes, corrections, enhancements, modifications, and improvements to GreenWaves Technologies products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on GreenWaves Technologies products before placing orders. GreenWaves Technologies products are sold pursuant to GreenWaves Technologies' terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of GreenWaves Technologies products and GreenWaves Technologies assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by GreenWaves Technologies herein.

Resale of GreenWaves Technologies products with provisions different from the information set forth herein shall void any warranty granted by GreenWaves Technologies for such product.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

# **14 Copyright Notice**

Copyright 2017–2018 GreenWaves Technologies, SAS All rights reserved.