Propositional logic basic inference rules

Negation Elimination (∼E)	Conditional Elimination (→E)	
~~A ∤ A	$\mathcal{A} ightarrow \mathcal{B}, \mathcal{A} \mid \mathcal{B}$	
<u>Example</u>	Example	
1. ~~P 2. P 1 ~E	1. P → Q 2. P 3. Q 1,2 →E	
Conjunction Introduction (&I)	Conjunction Elimination (&E)	
А, В А&В А, В В&А	А&В А А&В В	
<u>Example</u>	Example	
1. P 2. Q 3. P & Q 1,2 &I	1. P & Q 2. Q 1 & E	
Disjunction Introduction (vI)	Disjunction Elimination (vE)	
A A v B A B v A	$\mathcal{A} \vee \mathcal{B}, \mathcal{A} \rightarrow \mathcal{C}, \mathcal{B} \rightarrow \mathcal{C} \mid \mathcal{C}$ Example	
Example 1. P 2. P v Q 1,2 vl	1. $P \lor Q$ 2. $P \rightarrow R$ 3. $Q \rightarrow R$ 4. R 1,2,3 $\lor E$	
Biconditional Elimination (↔E)	Biconditional Introduction (↔I)	
$egin{array}{ccccc} \mathcal{A} \leftrightarrow \mathcal{B} & dash \mathcal{A} ightarrow \mathcal{B} & dash \mathcal{A} ightarrow \mathcal{B} & dash \mathcal{B} ightarrow \mathcal{A} \end{array}$	$\mathcal{A} ightarrow \mathcal{B}, \mathcal{B} ightarrow \mathcal{A} \mid \mathcal{A} \leftrightarrow \mathcal{B}$ $\mathcal{A} ightarrow \mathcal{B}, \mathcal{B} ightarrow \mathcal{A} \mid \mathcal{B} \leftrightarrow \mathcal{A}$	
Example	Example	
1. P ↔ Q 2. P → Q 1 ↔ E	1. $P \rightarrow Q$ 2. $Q \rightarrow P$ 3. $P \leftrightarrow Q$ 1,2 \leftrightarrow 1	

Important propositional logic equivalences

De Morgan's Rules (DM) ~(A & B) - - ~A ∨ ~B	Transposition (TRANS) $\mathcal{A} \to \mathcal{B} \ \ \ \ \ \ \sim \mathcal{B} \to \sim \mathcal{A}$
$\sim (A \lor B) \mid \sim A \& \sim B$ Material Implication (MI) $A \rightarrow B \mid \sim A \lor B$	Negation Conditional (\sim) \sim ($\mathcal{A} \rightarrow \mathcal{B}$) $\mid \cdot \mid \cdot \mid \mathcal{A} \& \sim \mathcal{B}$
Commutation (COM) A v B - B v A A & B - B & A	Double Negation (DN) A ↓ ├ ~~A
Association (ASS) A & (B & C) (A & B) & C A ∨ (B ∨ C) (A ∨ B) ∨ C	Distribution (DIST) A & (B v C) (A & B) v (A & C) A v (B & C) (A v B) & (A v C)

Schröder-Bernstein theorem

If A and B are sets and $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|.

Important propositional logic derived rules

Hypothetical Syllogism (HS)	Modus Tolens (MT)	
$\mathcal{A} \rightarrow \mathcal{B}, \mathcal{B} \rightarrow \mathcal{C} \mid \mathcal{A} \rightarrow \mathcal{C}$	$\mathcal{A} \rightarrow \mathcal{B}, \sim \mathcal{B} \mid \sim \mathcal{A}$	
Example	<u>Example</u>	
1. P → Q 2. Q → R 3. P → R 1,2 HS	1. P → Q 2. ~Q 3. ~P 1,2 MT	
Disjunctive Syllogism (DS)	Contradiction (CON)	
A ∨ B, ~A B A ∨ B, ~B A	\mathcal{A} , $\sim \mathcal{A} \mid \mathcal{B}$	
<u>Example</u>	<u>Example</u>	
Example 1. P v Q 2. ~P 3. Q 1,2 DS	Example 1. P 2. ~P 2. Q 1,2 CON	
1. P v Q 2. ~P	1. P 2. ~P	
1. P v Q 2. ~P 3. Q 1,2 DS	1. P 2. ~P 2. Q 1,2 CON	
1. P v Q 2. ~P 3. Q 1,2 DS Repeat (RE)	1. P 2. ~P 2. Q 1,2 CON	

Theorem Introduction (TI) Any substitution instance of a previously derived theorem may be introduced at any time.

Leibnizian modal logic inference rules

T Rule (T) $\square \mathcal{A} \upharpoonright \mathcal{A}$ S4 Rule (S4) $\square \mathcal{A} \upharpoonright \square \mathcal{A}$ Brouwer Rule (B) $\mathcal{A} \upharpoonright \square \mathcal{A}$

Necessitation (N) Any substitution instance of a previously derived theorem may be introduced as a necessary truth at any time.

Meinongian free logic inference rules (summary)

Free Existential Introduction (F∃I)

Introduce existential quantifier on one or more occurrences of a only if $\exists x \ a=x$ exists on available line of proof.

Free Existential Elimination (F3E)

Hypothesize to arbitrary: Fa & $\exists x$ a=x, then follow procedure for classical $\exists E$.

Free Universal Introduction (F∀I)

Hypothesize to arbitrary $\exists x \ a=x$. Discharge hypothesis on any line containing a by introducing universal quantifier on all occurrences of a.

Free Universal Elimination (F∀E)

Instantiate to *a* only when ∃x *a*=x

Quantifier Equivalence (QE) is valid in free logic.

Set theoretic definitions

Membership : $\forall x(x \in A \leftrightarrow (x=a \lor x=b \lor x=n))$	{}∈
Identity : $A = B \leftrightarrow \forall x (x \in A \leftrightarrow x \in B)$	{} =
Subset : $A \subseteq B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$	$Def \subseteq$
Proper subset : $A \subset B \leftrightarrow (A \subseteq B \& A \neq B)$	$Def \subset$
Power set: $\forall x(x \in \mathcal{P}(A) \leftrightarrow x \subseteq A)$	$Def\mathcal{P}(A)$
Union : $\forall x (x \in (A \cup B) \leftrightarrow (x \in A \lor x \in B))$	Def U
Intersection: $\forall x (x \in (A \cap B) \leftrightarrow (x \in A \& x \in B))$	Def ∩
Cartesian Prod: AxB = $\{(a,b) \mid a \in A \& b \in B\}$	Def AxB

Functions f: $A \rightarrow B$, g: $B \rightarrow C$

Injective: $\forall x \forall y (f(x) = f(y) \leftrightarrow x = y)$ Def InjSurjective: $\forall y (y \in B \leftrightarrow \exists x (x \in A \& f(x) = y))$ Def SurComp.: $(f \circ g) = \{z \mid z \in C \& \exists x (x \in A \& f(g(x)) = z)\}$ Def f \cdot g