Tugas Aljabar I

Teosofi Hidayah Agung 5002221132

1. Buatlah contoh subgrup dari $(M_{2\times 2}(\mathbb{R}), +)$.

$$M_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in \mathbb{Z}_{10} \right\}$$

Jelas bahwa \mathbb{Z}_{10} subgrup dari \mathbb{R} akibatnya $M_1\subset M_{2\times 2}(\mathbb{R}),+$ dan M_1 himpunan tak kosong karena $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\in M_1$. Selanjutnya akan dibuktikan untuk sembarang $A, B \in M_1$ berlaku $A + (-B) \in M_1$.

$$A + B^{-1} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} + \begin{bmatrix} -b_1 & -b_2 \\ -b_3 & -b_4 \end{bmatrix}$$
$$= \begin{bmatrix} a_1 - b_1 & a_2 - b_2 \\ a_3 - b_3 & a_4 - b_4 \end{bmatrix} \in M_1$$

- M_1 merupakan subgrup dari $M_{2\times 2}(\mathbb{R})$
- 2. Buatlah contoh bukan subgrup dari $(M_{2\times 2}(\mathbb{R}), +)$.

$$M_2 = \left\{ \begin{bmatrix} a & 1 \\ 1 & d \end{bmatrix} \middle| a, d \in 3\mathbb{Z}, \right\}$$

Perhatikan bahwa M_2 bukan merupakan grup karena $\begin{bmatrix} 3 & 1 \\ 1 & 6 \end{bmatrix} \in M_2$ namun inversnya $\begin{bmatrix} -3 & -1 \\ -1 & -6 \end{bmatrix} \notin M_2$. M_2 bukan subgrup dari $M_{2\times 2}(\mathbb{R})$

- 2.2.1 Dapatkan order elemen dari grup yang berikut ini.

$$a^k = e \Rightarrow |a| = k$$

- 1 $2 \in \mathbb{Z}_3$ Jawab:
 - $2^1 = 2$
 - $2^2 = 4 = 1$

$$|2| = 2$$

$$8 -i \in \mathbb{C}^*$$

$$\bullet (-i)^1 = -i$$

$$\bullet (-i)^1 = -i$$

•
$$(-i)^2 = -1$$

$$\bullet \ (-i)^3 = i$$

•
$$(-i)^4 = 1$$

$$| \cdot \cdot \cdot | - i | = 4$$

2.2.2 Dapatkan setidaknya dua subgrup sejati taktrivial dari grup berikut.

$$\boxed{4} \ \mathbb{Z}_8 = \{[0]_8, [1]_8, [2]_8, [3]_8, [4]_8, [5]_8, [6]_8, [7]_8\}$$

•
$$H = \{[0]_8, [2]_8, [4]_8, [6]_8\}$$

+	$[0]_{8}$	$[2]_{8}$	$[4]_{8}$	$[6]_{8}$
$[0]_{8}$	$[0]_{8}$	$[2]_{8}$	$[4]_{8}$	$[6]_{8}$
$[2]_{8}$	$[2]_{8}$	$[4]_{8}$	$[6]_{8}$	$[0]_{8}$
$[4]_{8}$	$[4]_{8}$	$[6]_{8}$	$[0]_{8}$	$[2]_{8}$
$[6]_{8}$	$[6]_{8}$	$[0]_{8}$	$[2]_{8}$	$[4]_{8}$

 \therefore H subgrup dari \mathbb{Z}_8

• $H' = \{[0]_8, [4]_8\}$

+	$[0]_{8}$	$[4]_{8}$
$[0]_{8}$	$[0]_{8}$	$[4]_{8}$
$[4]_{8}$	$[4]_{8}$	$[0]_{8}$

 $\therefore H'$ juga subgrup dari \mathbb{Z}_8

$$7 \ 8\mathbb{Z} = \{..., -8, 0, 8, 16, 24, ...\}$$

- $16\mathbb{Z} = \{..., -16, 0, 16, 32, 48, ...\}$ (Jelas $16\mathbb{Z}$ subgrup dari $8\mathbb{Z}$)
- $32\mathbb{Z} = \{..., -32, 0, 32, 64, 96, ...\}$ (Jelas $32\mathbb{Z}$ subgrup dari $8\mathbb{Z}$)

$$\boxed{8} \ GL(2,\mathbb{Q}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \,\middle|\, \det(A) \neq 0 \ \mathrm{dan} \ a,b,c,d \in \mathbb{Q} \right\}$$

•
$$SL(2,\mathbb{Q}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid \det(A) = 1 \text{ dan } a,b,c,d \in \mathbb{Q} \right\}$$

Bukti:

Jelas $SL(2,\mathbb{Q})\subseteq GL(2,\mathbb{Q})$. Selanjutnya cek untuk setiap $A,B\in SL(2,\mathbb{Q})$ mengakibatkan $AB^{-1}\in SL(2,\mathbb{Q})$.

$$AB^{-1} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \frac{1}{\det(B)} \begin{bmatrix} b_4 & -b_2 \\ -b_3 & b_1 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \frac{1}{1} \begin{bmatrix} b_4 & -b_2 \\ -b_3 & b_1 \end{bmatrix}$$

$$= \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \begin{bmatrix} b_4 & -b_2 \\ -b_3 & b_1 \end{bmatrix}$$

$$= \begin{bmatrix} a_1b_4 - a_2b_3 & a_2b_1 - a_1b_2 \\ a_3b_4 - a_4b_3 & a_4b_1 - a_3b_2 \end{bmatrix} \in SL(2, \mathbb{Q})$$

 $\therefore SL(2,\mathbb{Q})$ subgrup dari $GL(2,\mathbb{Q})$.

• $SL(2,\mathbb{Z}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| \det(A) = 1 \operatorname{dan} a, b, c, d \in \mathbb{Z} \right\}$ Bukti: Karena $\mathbb{Z} \subset \mathbb{Q}$, maka $SL(2,\mathbb{Z}) \subseteq GL(2,\mathbb{Z}) \subseteq GL(2,\mathbb{Q})$. Selanjutnya cek untuk setiap $A, B \in SL(2,\mathbb{Z})$ mengakibatkan $AB^{-1} \in SL(2,\mathbb{Z})$.

$$\begin{split} AB^{-1} &= \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \begin{bmatrix} b_1 & b_2 \\ b_3 & b_4 \end{bmatrix}^{-1} \\ &= \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \frac{1}{\det(B)} \begin{bmatrix} b_4 & -b_2 \\ -b_3 & b_1 \end{bmatrix} \\ &= \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \frac{1}{1} \begin{bmatrix} b_4 & -b_2 \\ -b_3 & b_1 \end{bmatrix} \\ &= \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \begin{bmatrix} b_4 & -b_2 \\ -b_3 & b_1 \end{bmatrix} \\ &= \begin{bmatrix} a_1 b_4 - a_2 b_3 & a_2 b_1 - a_1 b_2 \\ a_3 b_4 - a_4 b_3 & a_4 b_1 - a_3 b_2 \end{bmatrix} \in SL(2, \mathbb{Z}) \end{split}$$

 $\therefore SL(2,\mathbb{Z})$ juga subgrup dari $GL(2,\mathbb{Q})$.

2.2.9 Dalam $SL(2,\mathbb{Z}_{10})$, misalkan

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

(a) Hitung A^3 dan A^{11} .

$$A^{3} = A \cdot A \cdot A$$

$$= \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1+0 & 2+2 \\ 0+0 & 0+1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix}$$

$$A^{11} = A^{3} \cdot A^{3} \cdot A^{3} \cdot A^{2}$$

$$= \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 12 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 6 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 18 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 22 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

(b) Dapatkan order dari A.

Perhatikan bahwa dilihat dari pola perpangkatan pada matriks A, dapat disimpulkan

$$A^k = \begin{bmatrix} 1 & 2k \\ 0 & 1 \end{bmatrix}, k \in \mathbb{N}$$

Akibatnya $A^5 = \begin{bmatrix} 1 & 2(5) \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 10 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Sehingga dapat disimpulkan order dari A adalah 5.

2.2.10 Dalam $SL(3,\mathbb{R})$, untuk sebarang $a,b\in\mathbb{R}$, misalkan

$$D(a, b, c) = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$$

Tunjukkan bahwa $H = \{D(a,b,c) \mid a,b,c \in \mathbb{R}\}$ adalah subgrup dari $SL(3,\mathbb{R})$.

Jawab:

Perhatikan bahwa $M \in H$ merupakan matriks segitiga atas, yang dimana determinannya diperoleh dari mengalikan semua elemen diagonal utamanya. Sehingga untuk setiap $M \in H$ berakibat $\det(M) = 1 \cdot 1 \cdot 1 = 1$. Jadi $H \subseteq SL(3,\mathbb{R})$.

Selanjutnya ambil sembarang $A, B \in H$ dan akan dibuktikan $AB^{-1} \in H$.

$$AB^{-1} = \begin{bmatrix} 1 & a_1 & a_2 \\ 0 & 1 & a_3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & b_1 & b_2 \\ 0 & 1 & b_3 \\ 0 & 0 & 1 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} 1 & a_1 & a_2 \\ 0 & 1 & a_3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -b_1 & b_1b_3 - b_2 \\ 0 & 1 & -b_3 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & a_1 - b_1 & -a_1b_3 + a_2 - b_2 + b_1b_3 \\ 0 & 1 & a_3 - b_3 \\ 0 & 0 & 1 \end{bmatrix} \in H$$

Dapat disimpulkan bahwa $AB^{-1} \in H$

 $\therefore H$ merupakan subgrup dari $SL(3,\mathbb{R})$.