Lógica

Mauro Polenta Mora

Ejercicio 6

Consigna

Considere un lenguaje de primer orden de tipo $\langle -; 2; 1 \rangle$ con un símbolo de función f_1 y un símbolo de constante c_1 .

- (a) En las siguientes fórmulas determine cuáles ocurrencias de variables son libres y cuáles son ligadas. Para aquellas que sean ligadas, señale el cuantificador al cual están ligadas.
 - 1. $x_2 = x_1$
- 2. $x_1 = x_1$
- 3. $x_2 = c_1$
- 4. $(\exists x_2) f_1(x_2, x_3) = c_1$
- 5. $((\forall x_4)f_1(x_1, x_3) = c_1) \land ((\exists x_2)x_3 = x_1)$ 6. $((\forall x_3)x_3 = x_4) \rightarrow ((\forall x_5)x_5 = x_2)$
- 7. $((\exists x_3)x_3 = c_1) \vee ((\exists x_4)x_3 = x_4)$
- (b) Realice las siguientes sustituciones:
- 1. $x_2 = x_1[x_1/x_1]$
- 2. $x_1 = x_1[x_3/x_1]$
- $3. \ x_2 = c_1[f_1(x_1,x_3)/x_3]$
- 4. $((\forall x_4)f_1(x_1, x_3) = c_1) \wedge ((\exists x_2)x_3 = x_1)[f_1(x_1, x_2)/x_3]$
- 5. $((\forall x_3)x_3 = x_4) \rightarrow ((\forall x_5)x_5 = x_2)[f_1(x_1, x_2)/x_5]$
- 6. $((\exists x_3)x_3 = c_1) \lor ((\exists x_4)x_3 = x_4)[f_1(x_1, x_2)/x_3][x_1/x_1]$
- (c) Para las fórmulas resultados de las sustituciones anteriores determine cuáles ocurrencias de variables son libres y cuáles son ligadas. Para aquellas que sean ligadas, señale el cuantificador al cual están ligadas. Compare el resultado con los obtenidos en la parte a.

Resolución

Parte a

Determinemos las ocurrencias ligadas y las ocurrencias libres de cada variable en las siguientes fórmulas.

Fórmula 1

$$x_2 = x_1$$

- x_2 tiene 1 ocurrencia libre.
- x_1 tiene 1 ocurrencia libre.

Fórmula 2

$$x_1 = x_1$$

• x_1 tiene 2 ocurrencias libres.

Fórmula 3

$$x_2 = c_1$$

• x_2 tiene 1 ocurrencia libre.

Fórmula 4

$$(\exists x_2) f_1(x_2, x_3) = c_1$$

- x_2 tiene 2 ocurrencias ligadas. Ligada a $(\exists x_2)$.
- x_3 tiene 1 ocurrencia libre.

Fórmula 5

$$((\forall x_4)f_1(x_1,x_3) = c_1) \wedge ((\exists x_2)x_3 = x_1)$$

- x_4 tiene 1 ocurrencia ligada. Ligada a $(\forall x_4)$.
- x_1 tiene 2 ocurrencias libres.
- x_3 tiene 2 ocurrencias libres.
- x_2 tiene 1 ocurrencia ligada. Ligada a $(\exists x_2)$.

Fórmula 6

$$((\forall x_3)x_3=x_4)\to ((\forall x_5)x_5=x_2)$$

- x_3 tiene 2 ocurrencias ligadas. Ligada a $(\forall x_3)$.
- x_4 tiene 1 ocurrencia libre.
- x_5 tiene 2 ocurrencias ligadas. Ligada a $(\forall x_5)$.
- x_2 tiene 1 ocurrencia libre.

Fórmula 7

$$((\exists x_3)x_3 = c_1) \vee ((\exists x_4)x_3 = x_4)$$

- x_3 tiene 2 ocurrencias ligadas. Ligada a $(\exists x_3).$
- x_3 tiene 1 ocurrencia libre.
- x_4 tiene 2 ocurrencias ligadas. Ligada a $(\exists x_4)$.

Parte b

En esta parte realizamos las sustituciones dadas.

Sustitución 1

$$x_2 = x_1[x_1/x_1]$$

El resultado es:

$$x_2 = x_1$$

Sustitución 2

$$x_1 = x_1[x_3/x_1]$$

El resultado es:

$$x_3 = x_3$$

Sustitución 3

$$x_2 = c_1[f_1(x_1,x_3)/x_3]$$

El resultado es:

$$x_2 = c_1$$

Sustitución 4

$$((\forall x_4)f_1(x_1,x_3)=c_1)\wedge ((\exists x_2)x_3=x_1)[f_1(x_1,x_2)/x_3]$$

El resultado es:

$$((\forall x_4)f_1(x_1,f_1(x_1,x_2))=c_1)\wedge ((\exists x_2)f_1(x_1,x_2)=x_1)$$

 $\mathbf{ATENCIÓN}:$ Nos apareció una nueva ligadura en la subfórmula: $(\exists x_2)f_1(x_1,x_2)=x_1$

Sustitución 5

$$((\forall x_3)x_3 = x_4) \rightarrow ((\forall x_5)x_5 = x_2)[f_1(x_1, x_2)/x_5]$$

El resultado es:

$$((\forall x_3)x_3 = x_4) \to ((\forall x_5)x_5 = x_2)$$

En este caso la fórmula queda igual, ya que las dos ocurrencias de \boldsymbol{x}_5 son ligadas.

Sustitución 6

$$((\exists x_3)x_3 = c_1) \vee ((\exists x_4)x_3 = x_4)[f_1(x_1, x_2)/x_3][x_1/x_1]$$

Vayamos paso a paso:

$$((\exists x_3)x_3 = c_1) \lor ((\exists x_4)f_1(x_1, x_2) = x_4)[x_1/x_1]$$

El resultado final es:

$$((\exists x_3)x_3 = c_1) \vee ((\exists x_4)f_1(x_1, x_2) = x_4)$$

Parte c

Análoga a la parte (a).