3

ELECTRICAL MACHINES

SEMESTER - 5

Time	:	3	Hours	1	ĺ
------	---	---	-------	---	---

[Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

Cho	ose tl	he correct alternatives for any ten of	the following:		$10\times1=10$
i)	The	e damping winding in a synchronous	motor is genera	ally used to	
	a)	provide starting torque only	• 10 mg		
	b)	reduce noise		* * * -	•
	c)	reduce eddy current			
*	d)	prevent hunting and provide start	ing torque.		
ii)	If th	ne field of a synchronous motor is u	nderexcited, the	power factor	r will be
	a)	lagging b)	leading		e ·
	c)	unity d)	zero.		
iii)		a synchronous generator operating a nature reaction is	at zero power fa	actor lagging,	the effect of
	a)	Magnetising			No.
	b)	Demagnetising		•	
	c)	Cross-magnetising			
	d)	Both magnetising and cross-magne	etising.		
iv)	The	positive reactance of an alternator is	s almost same a	S	
	a)	field winding reactance	$\frac{1}{2}$		
	b)	total armature reactance			
•	c)	leakage of field winding	en e		
	d)	armature leakage reactance			
	e)	none of these.			

5005

v)	Which motor has the starting torque proportional to iron loss?								
	a)	Stepper motor b) Hysteresis motor							
	c)	Permanent magnet motor d) Switch reluctance motor.							
vi)	The	direction of rotation of a single phase induction motor can be reversed by							
	a)	reversing the leads of main winding							
	b)	reversing the leads of auxiliary winding							
	c)	reversing the supply leads							
	d)	either (a) or (b).							
vii)	'Cra	wling' in an induction motor is due to							
	a)	time harmoneis in supply							
	b)	slip-ring rotor							
	c)	insufficient starting torque							
	d)	space harmonics produced by winding currents.							
viii)	Which is responsible for developing electromagnetic torque in doubly excited magnetic system?								
	a)	self inductance of stator circuit and mutual inductance between stator and rotor circuit							
	b).	self inductance of rotor circuit and mutual inductance between stator and rotor circuit							
	c)	mutual inductance between stator and rotor circuit only							
	d)	self inductance of stator and rotor circuit only.							
ix)	The	function of compensating winding in a single phase series motor is to							
	a)	improve the commutation							
	b)	reduce the reactance drop and degrade the commutation							
	c)	reduce the reactance drop and improve commutation							
	d)	none of these.							

/			VV	ww.iiianat	at.com					
CS/I	в.тесн	(EE)/S	BEM-5/EE-501/07/(08)	5	(SOLVA) (OS AS/P-MOS.	Ulech				
	x)	A ca	A capacitor selected for capacitor-start induction motor should be rated for							
		a)	peak voltage	b)	r.m.s. voltage					
		c)	average voltage	d)	none of these.					
	xi)	The	division of active power	amongst al	ternators running in pa	rallel depends				
		a)	speed-load characteristi	cs of prime	movers					
10		b)	volt-ampere characterist	ics of altern	ators					
		c)	excitation emfs of altern	ators						
	(Selle	d)	all of these.							
	xii)	Wha	at type of motor is most su	utable for a	computer printer drive ?					
		a)	Reluctance motor	b)	Hysteresis motor					
		c)	Shaded pole motor	d)	Stepper motor.					
			and our collection of the	. betauted	dinament and trans					
			the steam of 10 more	ROUP - B	on measure to that to					
		- 10	(Short Ans	wer Type Q	uestions)					
		1	Answer any three	of the follow	ving questions.	$3 \times 5 = 15$				
2.	Why	is a	single phase induction mo	tor not self	starting? Name the vario	us methods of				
EL .			and mention which mode orque.	villaciji teratr	n men mandelh sand	ng as well as				
3.			a.c. series motors designed			in by drawing				

Explain the difference between cylindrical-rotor theory and two reaction theory.

while salient pole alternators have large diameter and small core length?

Explain why cylindrical rotor alternators have small diameter and large core length

What is a damper winding? Why is damper winding used in salient pole synch onous

The state of the s

5005

machine?

4.

5.

6.

6

GROUP - C

(Long Answer Type Questions)

Answer any three questions.

 $3\times15=45$

- 7. a) Define voltage regulation of an alternator. Is it possible to have the full-load terminal voltage greater than the no-load terminal voltage? Explain.
 - A 3-φ star connected alternator is rated 1600 kVA, 13500 V. The armature effective resistance and synchronous reactance are 1.5 Ω and 30 Ω respectively per phase. Calculate the percentage regulation for a load of 1280 kW at a p.f. of
 (i) 0.8 leading, (ii) unity and (iii) 0.8 lagging.
- 8. a) A 3300 V, star connected synchronous motor has synchronous impedance of 0.4 + j5 ohm per phase. For an excitation emf of 4000 V and motor input power of 1000 kW at rated voltage, compute line curent and power factor.
 - b) A 20 MVA, 3-phase star connected alternator, with an impedance of 5 ohms and a resistance of 0.5 ohm, is operating in parallel with constant voltage 11 kV busbar. If its field current is adjusted to give an excitation voltage of 12 kV, then calculate (i) Maximum power output from the alternator and (ii) Armature current and pf under maximum power condition.
- 9. a) Derive the equations of rotational and transformer *emf* of a single phase commutator machine as produced by the pulsating field.
 - b) At synchronous speed show that a.c. commutator motor with a.c. input voltage and brush displaced from neutral position acts as a phase shifter.
- 10. a) A 240 V, single phase induction motor gave the following test results:

Blocked rotor test: 120 V, 9.6 A, 460 W

No-load test: 220 V, 4.6 A, 125 W.

The stator winding resistance is 1.5Ω and during the block rotor test, the starting winding is open. Find equivalent circuit parameters. Also find the core friction and windage losses.

b) Show with the help of phasor diagrams that a compensated series motor possesses better speed-torque characteristics, better power factor and improved commutation as compared to an uncompensated series motor.

5005

CS/B.TECH (EE)/SEM-5/EE-501/07/(08)

11. a) What is Park's Transformation Matrix. Convert a synchronous machine and a induction machine to Kron's Primitive machine using the concept of generalized theory.

7

- b) Explain the principle of operation of Linear Induction motor.
- 12. a) Explain the transformation from axis (a, b, c) to axis (α , β , 0). Explain transformation from rotating to stationary axis.
 - b) Obtain transform impedance matrix and new voltage matrix using generalized theory.

END