Statistics in Data Analytics

Making Sense of Data Through Numbers and Trends

What is Statistics in Data Analytics?

 Statistics is the branch of mathematics dealing with data collection, analysis, interpretation, and presentation.

Why Statistics Matters in Data Analytics

- Helps summarize complex datasets into meaningful insights.
- Enables data-driven decision-making in businesses.
- Provides tools to model uncertainty and make predictions.
- Measures the reliability of conclusions.

Types of Data

Data can be broadly categorized as:

- 1. Quantitative (e.g., sales figures).
- 2. Qualitative (e.g., customer feedback).
- Additionally, data can be continuous (e.g., height) or discrete (e.g., number of customers).

Descriptive Statistics

Descriptive statistics summarize and describe data features:

- Mean: Average value. Summarizes central tendency.
- Median: Middle value. The median is less affected by outliers.
- Mode: Most frequent value.
- Standard Deviation: Spread of data values.

Visualizing Data

Visualization is key to understanding data.

Common tools include:

- 1. Bar Charts: Compare categories.
- 2. Line Graphs: Show trends over time.
- 3. Scatter Plots: Explore relationships between variables.

Probability in Data Analytics

Probability is the likelihood of an event happening. It quantifies uncertainty, and predicts outcomes in analytics.

Example:

- Probability of a coin landing heads: 50%.
- Probability of rolling a 6 on a dice: 1/6 or 16.67%.
- Probability of drawing a red card from a deck: 26/52 or 50%.

Correlation vs. Causation

- Correlation shows a relationship between variables. Correlation shows a relationship between variables (e.g., ice cream sales and temperature).
- Causation proves one variable directly affects another. Causation indicates one variable directly affects another (e.g., flipping a light switch causes the light to turn on).

Example:

Ice cream sales and temperature are correlated but not causal. Ice cream sales and temperature are correlated but one doesn't cause the other.

Correlation B

Measures the relationship between two variables.

Positive correlation, no correlation, and negative correlation are determined by the correlation coefficient. The correlation coefficient ranges from -1 to 1.

Examples:

Positive correlation: More study hours \rightarrow Higher grades.

Negative correlation: More screen time \rightarrow Less sleep.

Always remember that : Correlation ≠ causation

Correlation Coefficient

Correlation coefficient quantifies correlation (-1 to 1).

-1: Perfect negative

o: No correlation

1: Perfect positive.

Example: Correlation of o.8 indicates a strong positive relationship

Regression Analysis

- Regression predicts relationships between variables.
- Example: Predicting house prices based on size, location, and age.
 Predicting sales based on advertising spend.

Identifying Outliers

Outliers are extreme values that differ from the rest of the data.

Example:

- A student scoring 100% when the average is 70%.
- A customer aged 160 years.

Statistical Inference

Statistical inference allows generalizing insights from a sample to a population. That is: drawing conclusions about a population based on a sample.

Key Tools: Estimation (e.g., confidence intervals) and hypothesis testing

Example:

Estimating the taste of a pot of soup by taking a spoon of it.

Estimating national average income using a survey.

Estimating the height of males in a country using a survey.

Hypothesis Testing A

A method to test assumptions about data. Testing assumptions about data through:

- Null Hypothesis (Ho): No effect or change.
- Alternative Hypothesis (H1): Effect or change exists.

Example:

- Testing if a new drug improves recovery rates.
- Testing if a new marketing strategy increases sales.
- Are customers spending more after a promotional campaign?

Hypothesis Testing B

A method to test an assumption about a population parameter.

Key Steps:

- State null (H_0) and alternative (H_1) hypotheses.
- Choose a significance level (e.g., α = 0.05).
- Conduct the test and interpret results.

P-Value

The p-value is the probability of obtaining results at least as extreme as observed, assuming H_0 is true.

Interpretation:

If $P < \alpha$: Reject H_0 (significant result).

If $P \ge \alpha$: Fail to reject H_0 (no significant evidence).

Example: "If P = 0.03, there's a 3% chance the result is due to random variation."

Confidence Interval

A range of values that is likely to contain the true population parameter.

Example: "We are 95% confident that the average height of adults is between 160 cm and 170 cm."

Confidence interval is useful because:

It simplifies uncertainty.

It helps make predictions about a population based on a sample.

Statistical Tests

Common Tests:

T-test: Compares means of two groups.

Chi-square test: Examines relationships between categorical variables.

ANOVA: Compares means across multiple groups.

Regression: Explores relationships between variables.

Scenarios:

T-test: Comparing test scores of two classes.

Chi-square: Testing if gender influences purchasing habits.

ANOVA: Analyzing sales performance across regions.

Probability Distribution

Probability distribution is a function showing all possible values and their probabilities.

Types:

- Normal distribution: Bell-shaped curve.
- Binomial distribution: Success/failure outcomes.
- Poisson distribution: Rare events in a fixed interval.

etc

Conclusion

- Statistics is the backbone of data analytics, providing tools to make sense of complex data.
- Understanding these concepts ensures better decisions and insights.