

WEIGHT OPTIMIZATION USING DESIGN **TOPOLOGY AND MULTI-MATERIALS FOR AM APPLICATION IN MULTHEM PROJECT**

Brunel University London, UK Presenter:

Conference: ECCOMAS 2024

Organiser: CIMNE

Location: LISBON, PORTUGAL

4th IUNF 2024 Date:

WEIGHT OPTIMIZATION USING DESIGN **TOPOLOGY AND MULTI-MATERIALS FOR** AM APPLICATION IN MULTHEM PROJECT

Brunel University London, UK Presenter:

Dr. Azeem Uddin Azeem Islam (Research Fellow, CEDPS, Brunel University London, UK)

Dr. Eujin Pei (Associate Dean, CEDPS, Brunel University London, UK)

Dr. Marta Alvarez-Leal (CETEMET, Spain)

Dr. Julia Ureña (CETEMET, Spain)

Dr. Vedant Modi (Eire Composites, Ireland)

Jose Soler (AirElectric, Spain)

Jamie Solleiro Rodriguez (AirElectric, Spain)

Background...

Visit us at: multhem.eu

MULTHEM

Multi Material Additive Manufacturing for Lightweight and Thermal Management

- Current trend of metal replacement for high performance.
- E.g., airplanes...

Source: Xu et al. 2018, Advanced Composites and Hybrid Materials vol 1 p. 460 477

Visit us at: multhem.eu

Multi-Materials and Design Optimization

- MULTHEM: Multi Material Additive Manufacturing for Lightweight and Thermal Management
- Additive Manufacturing: Design flexibility
- Multi-Materials: Light weight high performance CFC + Al alloy
- Design Optimization: Topology optimization
- Applications: Transport sector (aviation + locomotive)

MULTHEM – EU Horizon Europe Project

DOI 10.3030/101091495 Start date End date 1 December 2022 30 November 2025 Funded under Digital, Industry and Space Total cost € 4 071 977.50

This project has received funding from the European Union's Horizon Europe Research & Innovation programme 2021 -2027 under grant agreement number:101091495

EU contribution € 4 071 977

Multi-Materials and Design Optimization

MULTHEM: Real Use Cases

Components...

Visit us at: multhem.eu

Methodology

Characterised Materials with Joining Data:

3D Printed (CFC + AI / metal) various combinations. Initial trials with original metal material

Simulation Analysis:

- Multiple inputs
- 3D printing constraints
- Remodelling & Multi-system Design Analyses
- Iterative

Weight Reduction:

- CAD Simplifications
- Multi-materials
- Topology optimization

PEKK-CF E = 9125 MPa HDT = 285 °C $\rho = 1.33 \text{ g/cm}^3$

F = 5500 MPaHDT = 140 °C $\rho = 1.21 \, \text{g/cm}^3$

Source: https://multhem.eu/documents/LightMe%20Conference.pdf

The Use Cases

Mass Target Set: e.g., 30% - 50% reduction

- Mass Target Set: e.g., 30% 50% reduction
- Process...

■ Mass Target Set: e.g., 30% - 50% reduction

Iteration #	Material	Original Battery Mass (kg)	Optimized Battery Mass (kg)	> Reduction (%)	TD - 45deg (mm)
1	sCF-PA6 + Al	0.631		Trial	
2	sCF-PA6 + Al	0.631		Trial	
3	sCF-PA6 + Al	0.631	0.27536	56.36%	0.058406
4	sCF-PA6 + Al	0.631	0.27536	56.36%	0.058463
5	sCF-PA6 + Al	0.631	0.27536	56.36%	0.058402
6	sCF-PA6 + Al	0.631	0.24478	61.21%	0.069147
7	sCF-PEKK + Al	0.631	0.28366	55.05%	0.07391
8	cCF-PA6 + Al	0.631	0.2843	54.94%	0.04562
9	cCF-PEKK + Al	0.631	ТВС	ТВС	ТВС

- Mass Target Set: e.g., 30% 50% reduction
- Design Summary...

Electrical motor housing

- Mass Target Set: e.g., 30% reduction
- Multi-analysis...

Mass Target Set: e.g., 30% reduction

Reduced Mass: 27.7%

Original Mass	1.1663 kg
Final Mass	0.84333 kg
Percent Mass of Original	72.307

Electrical motor housing

Mass Target Set: 30% - 50% reduction

Reduced Mass: 37.94%

Original Mass	0.37187 kg	
Final Mass	0.2308 kg	
Percent Mass of Original	62.065	

• Multi-materials: Next set of iterations...

Multi-material Assignation in Process

Where to place CFC and where to place the metal...

Decisions are based on...

Material properties

- ➤ Structural with CF traction in mind where highest strength is observed
- ➤ Thermal below the max. temperature limit.

3D printing constraints

- Printing process
- Line width, Layer height etc.

Joining Methods

- > Feasibility checks with tests
- Joint strength for the given loads

UNDER INVESTIGATION

A Glimpse of Joining Methods

- EBW (Electron Beam Welding)
- LBW (Laser Beam Welding)
- **FSW** (Friction Stir Welding)

Joined PA6 CFC + Al Alloy Credit: Fraunhofer

FSW (CFC + AL) Credit: CETEMET

Visit us at: multhem.eu

MULTHEM - https://multhem.eu

MULTHEM - https://multhem.eu THANK YOU!

