Metody Numeryczne Projekt 2

Martyna Kuśmierz Grupa nr 2

11.01.2023r

1 Polecenie

7. Rozwiązywanie układu równań Ax=b blokową metodą Crouta. Zakładamy, że $A\in\mathbb{R}^{n\times n}$ jest macierzą postaci

$$A = \begin{pmatrix} A_{11} & A_{12} \\ -I & A_{22} \end{pmatrix},$$

gdzie $A_{ij} \in \mathbb{R}^{p \times p}$ i n = 2p.

1. Metody korzystające z rozkładu macierzy na czynniki

We wszystkich tematach dotyczących metod rozwiązywania układu równań liniowych Ax=b, w oparciu o wyznaczony rozkład A=BC, należy wyznaczać:

- \bullet wskaźnik uwarunkowania macierzy $cond(A) \colon cond(A) = \|A^{-1}\| \cdot \|A\|,$
- błąd rozkładu $e_{dec} = \frac{\|A BC\|}{\|A\|},$
- błąd względny e_{rel} : jeśli z jest dokładnym rozwiązaniem układu Ax = b, a x obliczonym numerycznie przybliżeniem (otrzymanym naszym algorytmem), to

$$e_{rel} = \frac{\|x - z\|}{\|z\|},$$

• współczynnik stabilności wsp_{stab} : jeśli z jest dokładnym rozwiązaniem układu Ax=b, a x obliczonym numerycznie przybliżeniem (otrzymanym naszym algorytmem), to

$$wsp_{stab} = \frac{\|x - z\|}{\|z\| \operatorname{cond}(A)},$$

 \bullet współczynnik poprawności wsp_{popr} : jeśli x jest obliczonym numerycznie przybliżeniem (otrzymanym naszym algorytmem), to

$$wsp_{popr} = \frac{\|b - Ax\|}{\|A\| \cdot \|x\|}.$$

1

2 Opis metody

Blokowa metoda Crouta polega na rozkładzie LU macierzy, gdzie macierz U posiada macierze jednostkowe na przekątnej. Następnie wykorzystujemy ten rozkład do rozwiązania układów liniowych.

3 Opis programu

Program składa się ze skryptu oraz 2 funkcji.

• function [x] = Crout(A, b)

Funkcja wykonuje rozkład macierzy A, LU w postaci Crouta oraz rozwiązuje układ liniowy LUx = b.

Parametry wejścia:

- 1. A macierz R^{nxn}
- 2. b wektor układu \mathbb{R}^n

Parametry wyjścia:

- 1. x wektor rozwiązania \mathbb{R}^n
- function [x] = BlockCrout(A,b)

Funkcja rozwiązuje układ liniowy metodą blokową Crouta. Wykorzystuje funkcję Crout(A,b) do rozwiązywania układów równań. Dodatkowo wypisuje takie informacje jak:

- 1. wskaźnik uwarunkowania macierzy
- 2. błąd rozkładu
- 3. błąd względny
- 4. współczynnik stabilności
- 5. współczynnik poprawności

Parametry wejścia:

- 1. A macierz \mathbb{R}^{nxn}
- 2. b wektor układu \mathbb{R}^n

Parametry wyjścia:

- 1. x wektor rozwiazania \mathbb{R}^n
- Skrypt

W skrypcie znajdują się przykładowe macierze oraz wektory i wywołanie dla nich funkcji BlockCrout(A,b). Dodatkowo wynik jest porównywany z wbudowaną funkcją w Matlabie.

4 Przykłady

1. W przypadku poniższej macierzy A wyniki różnią się w miejscu zaokrąglenia. X to wynik obliczony za pomocą algorytmu, a ans to wynik obliczony za pomocą wbudowanej funkcji w Matlabie.

=				b =
1	2	3	4	1
5	6	7	8	2
-1	0	9	10	3
0	-1	11	12	4
	5 -1	1 2 5 6 -1 0	1 2 3 5 6 7 -1 0 9	1 2 3 4 5 6 7 8 -1 0 9 10

Wskaźnik uwarunkowania macierzy: 80.0998

Bład rozkładu: 0	x =	ans =
Bład względny: 1.2452e-15	0.1562	0.1563
Współczynnik stabilności: 1.5546e-17	-0.2188	-0.2188
WSportezymirk Stabilhosel. 1.3540c 17	-0.0312	-0.0313
Współczynnik poprawności: 0	0.3438	0.3438

2. Podmacierze macierzy B są macierzami hilberta. Wektor b jest ten sam. Błędy rozkładu i względne są bardzo niewielkie.

```
B =
   1.0000 0.5000 1.0000 0.5000
   0.5000 0.3333 0.5000 0.3333
  -1.0000 0 1.0000 0.5000
      0 -1.0000 0.5000
                          0.3333
Wskaźnik uwarunkowania macierzy:
  26.2887
Bład rozkładu: 3.0260e-17
                                   x = ans =
Bład względny: 9.6259e-17
                                      -0.6897
                                                  -0.6897
                                      -1.2414
                                                  -1.2414
Współczynnik stabilności: 3.6616e-18
                                       -7.3103
                                                  -7.3103
                                      19.2414
                                                  19.2414
Współczynnik poprawności: 4.6933e-17
```

3. Macierz C podobnie jak macierz B składa się z macierzy hilberta. Jej wskaźnik uwarunkowania jest większy niż w przypadku poprzedniej macierzy. Błędy są jednak porównywalne.

C =

1.0000	0.5000	0.3333	1.0000	0.5000	0.3333
0.5000	0.3333	0.2500	0.5000	0.3333	0.2500
0.3333	0.2500	0.2000	0.3333	0.2500	0.2000
-1.0000	0	0	1.0000	0.5000	0.3333
0	-1.0000	0	0.5000	0.3333	0.2500
0	0	-1.0000	0.3333	0.2500	0.2000

d =

2 3

5

Wskaźnik uwarunkowania macierzy:

763.4293		х –	ans –
Bład rozkładu: 3.0170e-1	3.0170e-17		-0.7764
		-1.5928	-1.5928
Bład względny: 1.5778e-1	5	-1.9525	-1.9525
		27.7764	27.7764
Współczynnik stabilności:	2.0667e-18	-190.4072	-190.4072
Współczynnik poprawności:	5.1189e-17	211.9525	211.9525

4. Podmacierze macierzy D składają się z macierzy Pascala. Wskąźnik uwarunkowania jest niewielki, a wszystkie współczynniki wynoszą 0.

5. Wyznacznik macierzy E wynosi 0. Program jednak nie obsługuje macierzy osobliwych.

Error using <u>BlockCrout</u> Macierz jest osobliwa

6. Macierz F jest macierzą o bardzo wysokim wskaźniku uwarunkowania. Niewielka zmiana w wektorze c1 powoduje znaczącą zmianę wyniku.

```
F =
   -0.5000 -1.0000
   -1.0000 -1.9990
c1 =
    4.0000
    7.9999
Wskaźnik uwarunkowania macierzy:
   1.2492e+04
Bład rozkładu:
                                                   ans =
Bład względny:
                                                      -7.8000
                                         -7.8000
Współczynnik stabilności:
                                         -0.1000
                                                      -0.1000
Współczynnik poprawności:
                        c2 =
                             4
                             8
                        x =
                                 ans =
                            -8
                                      -8
                             0
                                      0
```

5 Analiza wyników

Przy użyciu algorytmu otrzymujemy identyczne wyniki jak w przypadku wbudowanej funkcji w Matlabie do rozwiązania układu równań liniowych. Niemożliwe jest rozwiązanie układu dla macierzy osobliwych. Błędy rozkładów poszczególnych macierzy są bardzo niewielkie lub zerowe. Uzyskujemy prawidłowe wyniki również dla macierzy o wysokim wskaźniku uwarunkowania.