

FACULTAD DE INGENIERÍA JEFATURA DE CIENCIAS BÁSICAS MÉTODOS NUMÉRICOS TALLER

Problemas con Valores Iniciales (PVI). Problemas con Valores en la Frontera (PVF).

1. Resuelva el siguiente PVI en el intervalo de t=0 a 2, donde y(0)=1. Muestre todos sus resultados en la misma gráfica.

$$\frac{dy}{dt} = yt^3 - 1.1y$$

- a) Analíticamente.
- b) Método de Euler con h = 0.5 y h = 0.25.
- c) Método de Heun.
- d) Método de punto medio con h=0.5.
- 2. Resuelva el siguiente PVI en el intervalo de x=0 a 1, usando un tamaño de paso de 0.25, donde y(0)=1. Muestre todos sus resultados en la misma gráfica.

$$\frac{dy}{dx} = (1 + 4x)\sqrt{y}$$

- a) Analíticamente.
- b) Método de Euler.
- c) Método de Heun.
- d) Método de punto medio.
- 3. Utilice los métodos de a) Euler y b) Heun para resolver:

$$\frac{d^2y}{dx^2} - 0.5t + y = 0 \,,$$

donde y(0) = 2 y y'(0) = 0. Resuelva de x = 0 a 4, con h = 0.5. Compare los métodos por medio de graficar las soluciones.

4. Resuelva el siguiente PVI con los métodos de Heun y punto medio:

$$\frac{d^2y}{dx^2} + 0.6\frac{dy}{dx} + 8y = 0,$$

donde y(0) = 4 y y'(0) = 0. Resuelva de x = 0 a 5 con h = 0.5. Grafique sus resultados.

5. Use los métodos de a) Euler y b) punto medio para resolver:

$$\frac{dy}{dx} = -2y + 5e^{-t},$$

$$\frac{dz}{dx} = -\frac{yz^2}{2},$$
on pass do 0.4, son $y(x)$

En el rango de x = 0 a 0.4, con un tamaño de paso de 0.4, con y(0) = 2 y z(0) = 4.

6. El movimiento de un sistema acoplado masa-resorte (véase la figura) está descrito por la ecuación diferencial ordinaria que sigue

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = 0,$$

FACULTAD DE INGENIERÍA JEFATURA DE CIENCIAS BÁSICAS **MÉTODOS NUMÉRICOS**

TALLER

donde x es el desplazamiento desde la posición de equilibrio, medido en metros (m), t es el tiempo, medido en segundos (s), m = 20 kg es la masa y c es el coeficiente de amortiguamiento, cuyas unidades son $(N \cdot s/m)$.

El coeficiente de amortiguamiento c adopta tres valores, 5 (subamortiguado), 40 (amortiguamiento crítico) y 200 (sobreamortiguado). La constante del resorte es k = $20 \, N/m$. La velocidad inicial es de cero y el desplazamiento inicial es x = 1m. Resuelva esta ecuación con el uso de un método numérico durante el periodo $0 \le$ $t \leq 15 \, s$. Grafique el desplazamiento *versus* el tiempo para cada uno de los tres valores del coeficiente de amortiguamiento sobre la misma curva.

7. Para simular una población se utiliza el modelo logístico

$$\frac{dp}{dt} = k_{gm} \left(1 - \frac{p}{p_{max}} \right) p$$

donde p es la población, k_{qm} es la tasa máxima de crecimiento en condiciones ilimitadas y p_{max} es la capacidad de carga. Simule la población mundial entre 1950 y 2000, con el empleo de alguno de los métodos numéricos abordados en el curso. Para la simulación, utilice las siguientes condiciones iniciales y valores de parámetros: $p_0(1950)=2555$ millones de personas, k_{qm} 0.026/año y $p_{max}=12\,000$ millones de personas. Haga que la función genere salidas que correspondan a las fechas de los datos siguientes de población. Desarrolle una gráfica de la simulación junto con los datos

t	1950	1960	1970	1980	1990	2000
P	2555	3040	3708	4454	5276	6079

8. El balance de calor de estado estacionario de una barra se representa como:

$$\frac{d^2T}{dx^2} - 0.15T = 0.$$

Obtenga una solución analítica para una barra de 10 m con T(0) = 240 y T(10) = 150.

- 9. Use los métodos de Diferencias Finitas y Funciones de Base Radial para resolver el problema 8.
- 10. Emplee los métodos de diferencias finitas y funciones de base radial para resolver

$$7\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - y + x = 0,$$

con las condiciones de frontera y(0) = 5 y y(20) = 8

11. Utilice diferencias finitas para resolver la ecuación diferencial ordinaria con valores en la frontera

$$\frac{d^2u}{dx^2} + 6\frac{du}{dx} - u = 2,$$

con condiciones de frontera u(0) = 10 y u(2) = 1. Grafique los resultados de u versus x. Utilice $\Delta x = 0.1$.

FACULTAD DE INGENIERÍA JEFATURA DE CIENCIAS BÁSICAS **MÉTODOS NUMÉRICOS TALLER**

12. Una barra caliente con una fuente de calor uniforme se puede modelar con la ecuación de Poisson

$$\frac{d^2T}{dx^2} = -f(x) .$$

Dada una fuente de calor f(x) = 25 y las condiciones en la frontera T(0) = 40 y T(10) = 200, resuelva para la distribución de temperatura con a) el método de diferencias finitas (h=2) y b) el método de funciones de base radial.

- 13. Repita el problema 12, pero para la siguiente fuente de calor $f(x) = 0.12x^3 2.4x^2 + 12x$.
- 14. Suponga que la posición de un objeto que cae está gobernada por la siguiente ecuación diferencial:

$$\frac{d^2x}{dt^2} + \frac{c}{m}\frac{dx}{dt} - g = 0,$$

donde c es un coeficiente de arrastre de primer orden con valor igual a 12.5 kg/s, m es la masa con valor de 70 kg y g es la aceleración de la gravedad que se toma igual a 9.81 m/s^2 . Use los métodos de diferencias finitas y funciones de base radial para hallar la posición y velocidad de un objeto cuya caída satisface las condiciones de frontera x(0) = 0 y x(12) = 500.

15. Use el método de diferencias finitas para aproximar la solución de los siguientes PVF:

a)
$$y'' = -4x^{-1}y' + 2x^{-2}y + 2x^{-2}\ln x$$
, $1 \le x \le 2$, $y(1) = -\frac{1}{2}$, $y(2) = \ln 2$, $h = 0.05$.
b) $y'' = -(x+1)y' + 2y + (1-x^2)e^{-x}$, $0 \le x \le 1$, $y(0) = -1$, $y(1) = 0$, $h = 0.1$.

b)
$$y'' = -(x+1)y' + 2y + (1-x^2)e^{-x}$$
, $0 \le x \le 1$, $y(0) = -1$, $y(1) = 0$, $h = 0.1$.

c)
$$y'' = x^{-1}y' + 3x^{-2}y + x^{-1}\ln x - 1$$
, $1 \le x \le 2$, $y(1) = y(2) = 0$, $h = 0.1$.

d)
$$y'' = 2y' - 2y$$
, $0 \le x \le \pi$, $y(0) = 1$, $y'(\pi) = 0$ $h = 0.1$.

e)
$$y'' = -y$$
, $0 \le x \le \pi/2$, $y'(0) = 0$, $y'(\pi/2) = 2$ $h = 0.1$.

- 16. Solucionar el ejercicio 15 utilizando el método de funciones de base radial tipo a) $\phi(x) = e^{-r^2/c}$ y b) $\phi(x) =$ $[r^2+c^2]^{1/2}$. En ambos casos use c=0.05 y 5 puntos sobre cada intervalo.
- 17. El PVF que rige la deflexión de una viga con los extremos soportados sujetos a una carga uniforme es

$$\frac{d^2w}{dx^2} = \frac{S}{EI}w + \frac{qx}{2EI}(x-l), \quad 0 < x < l,$$

con las condiciones de frontera w(0) = w(l) = 0. Suponga que la viga es de acero tipo W10, con las siguientes características: longitud l=120~pulg, intensidad de carga uniforme q=100~lb/pie, módulo de elasticidad $E = 3.0 \times 10^7 \ lb/pulg^2$, esfuerzo en los extremos $S = 1000 \ lb$ y momento central de inercia $I = 625 \ pulg^4$. Aproxime la deflexión w(x) de la viga cada 6 pulgadas.

18. Solucionar el ejercicio 17 utilizando el método de funciones de base radial tipo a) $\phi(x) = e^{-r^2/c}$ y b) $\phi(x) =$ $[r^2 + c^2]^{1/2}$. En ambos casos use c = 0.05 y 21 puntos sobre el intervalo [0,120].

57)4 339 1010