Varhengighet: Hendelson A og B or uarhengige hvis P(BIA)=P(B)

Merk: Anta 4 og B varkengige.

$$(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B)}{P(B)}$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) \cdot P(A)}{P(B)} = \frac{P(B) \cdot P(A)}{P(B)} = \frac{P(B|A)}{P(A)} = \frac{P(B|A)}{P(B)} = \frac{P(B|A)}{P(B)} = \frac{P(B \cap A)}{P(B)}$$
is Ber wavkery's ar A, so er A wavkery's ar B.

 $P(B) = \frac{C}{36} = \frac{1}{6}$

Teorem (multiplikativ regal)

Els: Kast to terringer, registrar antall eyene re have terring
$$S=\{(1,1),(2,1),(3,1),\ldots,(6,6)\}$$

$$P(AAB) = \frac{1}{36}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{36}}{\frac{1}{6}} = \frac{1}{6}$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \iff P(B|A) = P(B|A) \cdot P(A)$$

Specialt: Hvis
$$A \Rightarrow B \in \text{uarranging}$$
:
$$P(A_1B) = P(A) \cdot P(B)$$

Ex: To wreer need rooth on gulk hater

Vely long wree med companying that
$$\frac{1}{3}$$
 for E

ag $\frac{1}{5}$ of F . Tresh direction on lawle for decime urea.

6. $\frac{1}{5}$ relative rood lawle $\frac{1}{5}$ G. $\frac{1}{5}$ tresher yours lawle $\frac{1}{5}$

P(\hat{F}) = $\frac{1}{3}$. P(\hat{F}) = $\frac{1}{3}$

T($E(\hat{F})$) = $\frac{1}{3}$. P($G(\hat{F})$) = $\frac{1}{3}$

T($E(\hat{F})$) = $\frac{1}{3}$. P($G(\hat{F})$) = $\frac{1}{3}$

P($E_{A}R$) = T($E(\hat{F})$) P($E_{A}R$) = P($E_{A}R$) P($E_{A}R$) = P($E_{A}R$) P($E_{A}R$) = P

Se elsempelet med woner of buler. Busher P(R)=?

$$P(R) = P((E \cap R) \cup (F \cap R)) = \frac{P(E \cap R) + P(F \cap R)}{disjuncte}$$

= P(P|E). P(E) + P(P|F). P(F) =
$$\frac{1}{2}$$
. $\frac{1}{3}$ + $\frac{1}{5}$. $\frac{2}{3}$ = $\frac{3}{10}$

Teorem (Setning on total sannsynlighet)

La
$$B_1$$
, B_2 , ..., B_n vere en partition av S (dus. $B_1 \cup B_2 \cup ... \cup B_n = S$ eg $B_{i,n} B_{j} = \varnothing$ for $i \neq j$)

med $P(B_i) > 0$ for $i = 1, 2, ..., n$

Swaret gis av Bayes regel.

Teoren La A = 8 voire to hundelear hor
$$P(A) > 0$$
. $P(B) > 0$. Da gjelder $P(B|A) = \frac{P(A-B)}{P(A)} = \frac{P(A)}{P(A)}$

4 P(A) Blir arealot or hver bit.

$$P(\varepsilon|x) = \frac{P(x|\varepsilon)P(\varepsilon)}{P(x)}$$