1.
$$i R_{1} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac$$

	2. a									
-	١		a	-1	\ R26	RitRY	1		α	-1 \
-	-1	(04)	(5-0)	(a+1) =>		0	a	2	$\begin{vmatrix} -1 \\ \alpha \\ \alpha^2 + 6 \end{vmatrix}$
1	ь	(20+6) (Ta+7	$\begin{vmatrix} -1 \\ \alpha + 1 \end{vmatrix}$	R ₃ €1	R3-6/ R1	0	20	a+7	$\left \alpha^2 + 6 \right $
11) I	1	0	(u-2)(a						
	\ C) (2	a						
	/ 0) 0	α-3	(v-2)(o	-3)					
	(i)			Since						
				Malce th						7
	(ii) XXX(41	y one	solution:	α:	s long	as	a	≠ 3	
	(iii)	mtni (tmlor gn	ibn ;	a= :	3 ·	So than	Row	3
	р.									
	(041)	δ 0	-0	(24A)		/ (a-	417	0	-a (Lta) \
+	(170)	(477)	- (0+ 7)	(A+4)	1			2	-2	2
1	(1+1)	0\	(Q2-6)	(a2 - 2a +c	f) /	0		0 (1/2 -	tu-P) (vz.	-3a+25
	(20147) 50	(0-3)(0+5) J	(N, - V+P) /	0 /			a-6) (a	
	Simplis	ry.							·	1
	\		(atl)		1 (2.					
			0							
			0	0 (0+3)(0	1-5) (W-7	-10/-1)	-the	20,000		
		_	0	0 (M+3)(0	v-y) (a-z	1(a-1)	_/	. 00014	•	
ζi) No	Solution		-3 · last						١.
				- 0-						
				v4lov8:			Vov	= (0	00 10)

3.	(i)		40	S	Now	6	+d	€L	(A)	. (ve	ned		-1 0	Show	_{در}	The	'n+					
	(,,								10														
														b)	ond	(A	[d]	loon	Н				
														1))=									
														oe -									
								α,							.,			'					
						,																	
	ii))	to		Shov	4	-tha	+	t.	ь	<u>.</u> _	(A)	, 1	Λe	Neo	ıα	-t 0	ďΛ	ρW				
									44														
														074	٥٧	æ	sow.	<i>\</i> -\					
														4						i ll n			
												,		spere									
														tik							٨.		
					102.															,500			

a. This type of mortrix does exist. 4. For example, (1 2 3): there must be one free sountions. b. This type of morthix does exist. For example, one of the nows of this matrix $A \in M_n \times a$ is all zero, like Aman = [1 2] by could be (), where XER. be wind be (x2), were X1, X2 EP. and X2 +0. C. Suppose my contradiction. Let there be a motion A Heat there exists b. , b. E. R. where (A/62) was intinite amount of solutions and (Albs) has no aution. Then at least one row in A's eduction form veeds to be zeros. This will create a free variable that would receive in intinite solutions for any $b \in \mathbb{R}$. There fore, there vanidin't be any to that can make the (Alb) have only one solution. d. There cannot be a matrix like this because a row of zeros vuews there's a fue variable, which suggests that there's Intimitery amont of solutions. o. There's no such Matrix. If this echelon from was one vow of zeros, then if the woresponding by is o it was intinitely many solutions. It the corresponds bor is not 0, then it was no sounting.

to It doesn't exist, for a Nomogeneous system, if (A10) has on non-trivial sountile, then it was infinite amount of Solutions. Then there must be a free variable, so the evulor form of the system must have at least one row of zeros. 8. (1) (A11 A12 A13 O) A3×3 (3 O) (A1 A12 A13 O) (A14 it exists h. Yes, there exists sun matrix. 12+ A= (1-1-1) then (1-1-110)= X -V - 3 -0. x = y+ 2. if y = s, Z = t, thun x = S+t. i. Thus exists sum A. A = (00). the solution of (A10) is { 5 t | 5, tep 3 2+ 1 (an prove 15+1) = (5++ 5+1 5, + 6 12), thun the solution of (A10) and also be {(set set) | s.t = A} 0 to (x,y) 6 {, s,t) | s, t & R } 1x, y 1 = 1x+y x-y x+y x+y x+y x+y x-y + { 5, + 1/5, + 6/R} 11 (5.t) (5(5++), (5-t)) (2) for (X, y) E { ((s++), (s-+)) / s, + c R) x = 1+t, y= 5-t, so (x, y) = { (5. t) | 5. t & P} 1. EG++1 (5-4) > E (5.4) 1, (2,4) = (S++, 4-+). · · Salwhon of (0000) = {(Sat sut)(s.t = R},