Job No.:
 Graham Petrie
 Address:
 36 Kew Road, Westport 7825, New Zealand
 Date:
 27/11/2024

 Latitude:
 -41.761819
 Longitude:
 171.617129
 Elevation:
 4 m

General Input

Roof Live Load	0.25 KPa	Roof Dead Load	0.25 KPa	Roof Live Point Load	1.1 Kn
Snow Zone	N2	Ground Snow Load	0 KPa	Roof Snow Load	0 KPa
Earthquake Zone	3	Subsoil Category	D	Exposure Zone	D
Importance Level	1	Ultimate wind & Earthquake ARI	100 Years	Max Height	3 m
Wind Region	NZ2	Terrain Category	2.61	Design Wind Speed	36.17 m/s
Wind Pressure	0.78 KPa	Lee Zone	NO	Ultimate Snow ARI	50 Years
Wind Category	Medium	Earthquake ARI	100		

Note: Wind lateral loads are governing over Earthquake loads, So only wind loads are considered in calculations

Pressure Coefficients and Pressues

Shed Type = Mono Enclosed

For roof Cp, i = -0.3

For roof CP,e from 0 m To 2.85 m Cpe = -0.9 pe = -0.64 KPa pnet = -0.64 KPa

For roof CP,e from 2.85 m To 5.7 m Cpe = -0.5 pe = -0.35 KPa pnet = -0.35 KPa

For wall Windward Cp, i = -0.3 side Wall Cp, i = -0.3

For wall Windward and Leeward CP,e from 0 m To 10.8 m Cpe = 0.7 pe = 0.49 KPa pnet = 0.73 KPa

For side wall CP,e from 0 m To 2.85 m Cpe = pe = -0.46 KPa pnet = -0.46 KPa

Maximum Upward pressure used in roof member Design = 0.64 KPa

Maximum Downward pressure used in roof member Design = 0.38 KPa

Maximum Wall pressure used in Design = 0.73 KPa

Maximum Racking pressure used in Design = 0.94 KPa

Design Summary

Purlin Design

Purlin Spacing = 900 mm Purlin Span = 3450 mm Try Purlin 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1~Short~term=1~~K1~Medium~term=0.8~~K1~Long~term=0.6~~K4=1~~K5=1~~K8~Downward=1.00~Long~term=0.6~~K4=1~~K5=1~~K8~Downward=1.00~Long~term=0.8~~K1~Long~ter

K8 Upward =0.73 S1 Downward =9.63 S1 Upward =18.72

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M1.35D	0.45 Kn-m	Capacity	1.26 Kn-m	Passing Percentage	280.00 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.35 Kn-m	Capacity	1.68 Kn-m	Passing Percentage	124.44 %
$M_{0.9D\text{-W}nUp}$	-0.56 Kn-m	Capacity	-1.54 Kn-m	Passing Percentage	108.45 %
V _{1.35D}	0.52 Kn	Capacity	7.24 Kn	Passing Percentage	1392.31 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	1.06 Kn	Capacity	9.65 Kn	Passing Percentage	910.38 %
$ m V_{0.9D-WnUp}$	-0.64 Kn	Capacity	-12.06 Kn	Passing Percentage	1884.38 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3 considering at least 4 members acting together

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 9.97 mm Deflection under Dead and Service Wind = 11.47 mm Limit by Woolcock et al, 1999 Span/240 = 14.17 mm Limit by Woolcock et al, 1999 Span/100 = 34.00 mm

Reactions

Second page

Maximum downward = 1.06 kn Maximum upward = -0.64 kn

Number of Blocking = 0 if 0 then no blocking required, if 1 then one midspan blocking required

Rafter Design Internal

Internal Rafter Load Width = 3600 mm

Internal Rafter Span = 7850 mm

Try Rafter 2x300x45 LVL13

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =1.00 S1 Downward =7.61 S1 Upward =7.61

Shear Capacity of timber = 5.3 MPa Bending Capacity of timber = 48 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

M _{1.35D}	9.36 Kn-m	Capacity	31.1 Kn-m	Passing Percentage	332.26 %
M1.2D+1.5L 1.2D+Sn 1.2D+WnDn	18.86 Kn-m	Capacity	41.48 Kn-m	Passing Percentage	219.94 %
Mo.9D-WnUp	-11.51 Kn-m	Capacity	-51.84 Kn-m	Passing Percentage	450.39 %
V _{1.35D}	4.77 Kn	Capacity	46.02 Kn	Passing Percentage	964.78 %
V1.2D+1.5L 1.2D+Sn 1.2D+WnDn	9.61 Kn	Capacity	61.36 Kn	Passing Percentage	638.50 %
$V_{0.9D\text{-W}nUp}$	-5.86 Kn	Capacity	-76.7 Kn	Passing Percentage	1308.87 %

Deflections

Modulus of Elasticity = 11000 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 23.275 mm
Deflection under Dead and Service Wind = 29.735 mm

Limit by Woolcock et al, 1999 Span/240 = 33.33 mm Limit by Woolcock et al, 1999 Span/100 = 80.00 mm

Reactions

Maximum downward = 9.61 kn Maximum upward = -5.86 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J2 Joint Group for Pole =J5

Minimum Bolt edge, end and spacing for Load perpendicular to grains = 60 mm

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 12.6 fpj = 22.7 Mpa for Rafter with effective thickness = 90 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Capacity under short term loads = 29.11 Kn > -5.86 Kn

Rafter Design External

External Rafter Load Width = 1800 mm

External Rafter Span = 3803 mm

Try Rafter 200x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and timber does not remain in continuous wet condition after installation)

K1 Short term = 1 K1 Medium term = 0.8 K1 Long term = 0.6 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =1.00 S1 Downward =11.27 S1 Upward =11.27

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

Pole Shed App Ver 01 2022 1 10 Kn-m Capacity 2.23 Kn-m Passing Percentage 202.73 % M_{1.35D} 2.21 Kn-m 2.97 Kn-m Passing Percentage 134.39 % Capacity $M_{\rm 1.2D+1.5L~1.2D+Sn~1.2D+WnDn}$ -1.35 Kn-m -3.72 Kn-m Passing Percentage 275.56 % M_{0.9D-WnUp} Capacity 1.16 Kn Capacity 9.65 Kn Passing Percentage 831.90 % $V_{1.35D}$ 2.33 Kn Capacity 12.86 Kn Passing Percentage 551.93 % V_{1.2D+1.5L} 1.2D+Sn 1.2D+WnDn -1.42 Kn Capacity -16.08 Kn Passing Percentage 1132.39 % V_{0.9D-WnUp}

Deflections

Modulus of Elasticity = 5400 MPa NZS3603 Amt 4, Table 2.3

k2 for Long Term Loads = 2

Deflection under Dead and Live Load = 10.00 mm
Deflection under Dead and Service Wind = 11.50 mm

Limit by Woolcock et al, 1999 Span/240= 16.67 mm Limit by Woolcock et al, 1999 Span/100 = 40.00 mm

Reactions

Maximum downward = 2.33 kn Maximum upward = -1.42 kn

Rafter to Pole Connection check

Bolt Size = M12 Number of Bolts = 2

Calculations as per NZS 3603:1993 Amend 2005 clause 4.4

Joint Group for Rafters =J5 Joint Group for Pole = J5

Factor of Safety = 0.7

For Perpendicular to grain loading

K11 = 14.9 fpj = 12.9 Mpa for Rafter with effective thickness = 50 mm

For Parallel to grain loading

K11 = 2.0 fcj = 36.1 Mpa for Pole with effective thickness = 100 mm

Eccentric Load check

V = phi x k1 x k4 x k5 x fs x b x ds (Eq 4.12) = -14.70 kn > -1.42 Kn

Single Shear Capacity under short term loads = -10.84 Kn > -1.42 Kn

Girt Design Front and Back

Girt's Spacing = 900 mm

Girt's Span = 3600 mm

Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.71 S1 Downward =9.63 S1 Upward =19.27

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

 Mwind+Snow
 1.06 Kn-m
 Capacity
 1.48 Kn-m
 Passing Percentage
 139.62 %

 Vo.9D-WnUp
 1.18 Kn
 Capacity
 12.06 Kn
 Passing Percentage
 1022.03 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 15.25 mm

Limit by Woolcock et al, 1999 Span/100 = 36.00 mm

Sag during installation = 10.18 mm

Reactions

Maximum = 1.18 kn

Girt Design Sides

Girt's Spacing = 900 mm Girt's Span = 4000 mm Try Girt 150x50 SG8 Dry

Moisture Condition = Dry (Moisture in timber is less than 16% and does not remain in continuous wet condition after installation)

K1 Short term = 1 K4 = 1 K5 = 1 K8 Downward = 1.00

K8 Upward =0.65 S1 Downward =9.63 S1 Upward =20.31

Shear Capacity of timber = 3 MPa Bending Capacity of timber = 14 MPa NZS3603 Amt 4, table 2.3

Capacity Checks

$M_{Wind+Snow}$	1.31 Kn-m	Capacity	1.38 Kn-m	Passing Percentage	105.34 %
V _{0.9D-WnUp}	1.31 Kn	Capacity	12.06 Kn	Passing Percentage	920.61 %

Deflections

Modulus of Elasticity = 6700 MPa NZS3603 Amt 4, Table 2.3

Deflection under Snow and Service Wind = 23.24 mm

Limit by Woolcock et al. 1999 Span/100 = 40.00 mm

Sag during installation =15.52 mm

Reactions

Maximum = 1.31 kn

Middle Pole Design

Geometry

175 UNI H5	Dry Use	Height	2700 mm
Area	24041 mm2	As	18030.46875 mm2
Ix	46015259 mm4	Zx	525889 mm3
Iy	46015259 mm4	Zx	525889 mm3
Lateral Restraint	2700 mm c/c		

Loads

Total Area over Pole = 14.4 m2

Dead	3.60 Kn	Live	3.60 Kn
Wind Down	5.47 Kn	Snow	0.00 Kn
Moment wind	5.70 Kn-m		
Phi	0.8	K8	0.88
K1 snow	0.8	K1 Dead	0.6
K1wind	1		

Material

Shaving	Steaming	Normal	Dry Use
fb =	34.325 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	20.75 MPa	E =	8793 MPa

Capacities

PhiNex Wind	305.77 Kn	PhiMnx Wind	12.75 Kn-m	PhiVnx Wind	42.70 Kn
PhiNcx Dead	183.46 Kn	PhiMnx Dead	7.65 Kn-m	PhiVnx Dead	25.62 Kn

Checks

(Mx/PhiMnx)+(N/phiNcx) = 0.49 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.24 < 1 \text{ OK}$

Deflection at top under service lateral loads = 16.02 mm < 27.00 mm

Drained Lateral Strength of Middle pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}}$

Geometry For Middle Bay Pole

Ds = 0.6 mm Pile Diameter L = 1300 mm Pile embedment length

f1 = 2250 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

 $\label{eq:moment Wind} \begin{tabular}{ll} Moment Wind = & & 5.70 \ Kn-m \\ Shear Wind = & & 2.53 \ Kn \end{tabular}$

Pile Properties

Safety Factory 0.55

Hu = 5.51 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.51 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.76 < 1 OK

End Pole Design

Geometry For End Bay Pole

Geometry

150 UNI H5	Dry Use	Height	2800 mm
Area	17663 mm2	As	13246.875 mm2
Ix	24837891 mm4	Zx	331172 mm3
Iy	24837891 mm4	Zx	331172 mm3
Lateral Restraint	mm c/c		

Loads

Total Area over Pole = 7.2 m^2

 Dead
 1.80 Kn
 Live
 1.80 Kn

 Wind Down
 2.74 Kn
 Snow
 0.00 Kn

Moment Wind 1.90 Kn-m

 Phi
 0.8
 K8
 0.74

 K1 snow
 0.8
 K1 Dead
 0.6

K1wind 1

Material

Shaving	Steaming	Normal	Dry Use
fb =	34.325 MPa	$f_S =$	2.96 MPa
fc =	18 MPa	fp =	7.2 MPa
ft =	20.75 MPa	E =	8793 MPa

Capacities

PhiNcx Wind187.15 KnPhiMnx Wind6.69 Kn-mPhiVnx Wind31.37 KnPhiNcx Dead112.29 KnPhiMnx Dead4.01 Kn-mPhiVnx Dead18.82 Kn

Checks

6/8

(Mx/PhiMnx)+(N/phiNcx) = 0.32 < 1 OK

 $(Mx/PhiMnx)^2+(N/phiNcx) = 0.11 < 1 OK$

Deflection at top under service lateral loads = 10.97 mm < 29.93 mm

 $\begin{array}{lll} \text{Ds} = & 0.6 \text{ mm} & \text{Pile Diameter} \\ \text{L} = & 1300 \text{ mm} & \text{Pile embedment length} \\ \end{array}$

f1 = 2250 mm Distance at which the shear force is applied f2 = 0 mm Distance of top soil at rest pressure

Loads

Total Area over Pole = 7.2 m^2

 $\label{eq:moment_moment} \begin{tabular}{ll} Moment Wind = & 1.90 \ Kn-m \\ Shear Wind = & 0.84 \ Kn \end{tabular}$

Pile Properties

Safety Factory 0.55

Hu = 5.51 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.51 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.25 < 1 OK

Drained Lateral Strength of End pile in cohesionless soils Free Head short pile

Assumed Soil Properties

Gamma 18 Kn/m3 Friction angle 30 deg Cohesion 0 Kn/m3

 $K0 = \frac{(1-\sin(30)) / (1+\sin(30))}{Kp} = \frac{(1+\sin(30)) / (1-\sin(30))}{(1-\sin(30))}$

Geometry For End Bay Pole

Ds = 0.6 mm Pile Diameter L = 1300 mm Pile embedment length

f1 = 2250 mm Distance at which the shear force is applied

f2 = 0 mm Distance of top soil at rest pressure

Loads

Moment Wind = 1.90 Kn-m Shear Wind = 0.84 Kn

Pile Properties

Safety Factory 0.55

Hu = 5.51 Kn Ultimate Lateral Strength of the Pile, Short pile

Mu = 7.51 Kn-m Ultimate Moment Capacity of Pile

Checks

Applied Forces/Capacities = 0.25 < 1 OK

Uplift Check

Density of Concrete = 24 Kn/m3

Density of Timber Pole = 5 Kn/m3

Due to cast in place pile, the surface interaction between soil and pile will be rough thus angle of friction between both is taken equal to soil angle of internal friction

 $Ks \ (Lateral \ Earth \ Pressure \ Coefficient) for \ cast \ into \ place \ concrete \ piles = 1.5$

Formula to calculate Skin Friction = Safecty factor (0.55) x Density of Soil(18) x Height of Pile(1300) x Ks(1.5) x 0.5 x tan(30) x Pi x Dia of Pile(0.6) x Height of Pile(1300)

Skin Friction = 13.65 Kn

Weight of Pile + Pile Skin Friction = 17.68 Kn

Uplift on one Pile = 5.98 Kn

Uplift is ok