SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

SEMINAR

Obrana od napada na multimodalne modele

Dominik Jambrović Voditelj: prof. dr. sc. Siniša Šegvić

SADRŽAJ

1.	Uvod	1
2.	Samonadzirano učenje	2
	2.1. Općenito o samonadziranom učenju	2
	2.2. Kontrastno samonadzirano učenje	2
	2.3. Arhitektura i okvir učenja CLIP	3
	2.3.1. Arhitektura	3
	2.3.2. Okvir učenja	4
	2.4. Zero-shot učenje	5
3.	Zaključak	6
4.	Literatura	7
5.	Sažetak	9

1. Uvod

Duboki modeli primjenjuju se u brojnim aspektima našeg života. Pritom, velik broj modela naučen je koristeći nadzirano učenje [12]. Iako ova paradigma učenja ima izvrsne rezultate u brojnim poljima primjene, ona ima i jedan velik nedostatak, a to je potreba za velikim označenim skupovima podataka. Označavanje velikih skupova podataka poput ImageNet-a [4] je skupo, zahtijeva velik broj radnika i veliku količinu vremena.

U današnje vrijeme, javno su dostupne velike količine podataka. Nažalost, većina tih podataka nije označena ili ima slabe oznake poput opisa slika. Korištenjem paradigme samonadziranog učenja [8], možemo iskoristiti ove podatke kako bismo naučili modele koji izvrsno generaliziraju i primjenjivi su u brojnim svakodnevnim situacijama. Iako ovi modeli za specifične primjene znaju biti lošiji od modela nadziranog učenja, često nam je značajno isplativije učiti samonadzirano.

Unutar područja samonadziranog učenja, jedan od mogućih zadataka je učenje više modaliteta tj. multimodalno učenje. Neki od najčešćih modaliteta su slika i tekst. Jedan od najpoznatijih modela koji radi s ova dva modaliteta je CLIP [10]. Na temelju ugrađivanja dobivenih CLIP-om, moguće je provoditi zadatke poput *zero-shot* učenja [15] i multimodalnog dohvata [14].

Iako su modeli samonadziranog učenja često u primjeni, pokazuje se da su oni veoma osjetljivi na napade [1] poput trovanja podataka [3]. Glavni cilj ovog rada je reprodukcija jedne moguće obrane multimodalnih modela od napada [16].

2. Samonadzirano učenje

2.1. Općenito o samonadziranom učenju

Samonadzirano učenje[8] je paradigma strojnog učenja kod koje model uči korisne reprezentacije tj. značajke ulaznih podataka na temelju zadataka bez oznaka. Dobivene reprezentacije dalje se mogu koristiti za nizvodne zadatke poput klasifikacije i detekcije objekata.

Ključno pitanje kod samonadziranog učenja je formiranje zadatka učenja tj. odlučivanje o tome na temelju čega će model dobivati signal za učenje. Rješavanjem zadatka učenja, model posredno uči izlučivati korisne reprezentacije ulaznih podataka ili uočavati korisne odnose između podataka. Područje samonadziranog učenja dijeli se na temelju korištenog tipa zadatka, a neka od najpoznatijih područja su autoasocijativno samonadzirano učenje i kontrastno samonadzirano učenje [7].

2.2. Kontrastno samonadzirano učenje

Kontrastno učenje [7] jedno je od područja samonadziranog učenja. Ono podrazumijeva učenje izlučivanja korisnih reprezentacija tj. ugrađivanja ulaznih podataka na temelju parova podataka. Ako su ugrađivanja normirana, a sličnost dvaju ugrađivanja možemo dobiti promatrajući neku od standardnih metrika, govorimo o metričkim ugrađivanjima [2] tj. ugrađivanjima u metrički prostor.

Kod kontrastnog učenja razlikujemo sidro, pozitivne i negativne primjere. Trenutno promatrani podatak nazivamo sidrom, podatak sličan sidru nazivamo pozitivan primjer, a podatak različit od sidra nazivamo negativan primjer. Pozitivne primjere često dobivamo perturbacijom sidra, dok negativnim primjerima često smatramo sve ostale podatke iz minigrupe.

Glavni cilj kontrastnog učenja je približiti ugrađivanja pozitivnih parova, ali i istovremeno udaljiti ugrađivanja negativnih parova. Kako bismo ovo postigli, veoma je važno definirati prikladnu funkciju gubitka. Neke od mogućih funkcija gubitka su trojni gubitak [11] i gubitak N parova, također poznat i kao infoNCE gubitak [9]. infoNCE gubitak možemo definirati jednadžbom:

$$L_{infoNCE} = -\log \frac{\exp(\langle z_a, z_p \rangle / \tau)}{\sum_{i=1}^{N} \exp(\langle z_a, z_{ni} \rangle / \tau)}$$
(2.1)

Pritom z_a označava ugrađivanje sidra x_a , z_p ugrađivanje pozitivnog primjera x_p , z_{ni} ugrađivanje i-tog negativnog primjera iz minigrupe x_{ni} , a τ parametar temperature. Oznaka $\langle ... \rangle$ označava skalarni produkt elemenata unutar zagrada.

2.3. Arhitektura i okvir učenja CLIP

CLIP (engl. *Contrastive Language-Image Pretraining*) [10] je jedan od najpoznatijih primjera multimodalnog samonadziranog učenja. Pod istim imenom podrazumijevamo arhitekturu, ali i okvir učenja. Glavni cilj CLIP-a je naučiti ugrađivanje slika i teksta u isti metrički prostor.

2.3.1. Arhitektura

Kako bi model mogao raditi i sa slikama i s tekstom, važno je imati arhitekturu koja to podržava. Konkretno, CLIP se sastoji od slikovnog kodera, kao i tekstualnog kodera. Slikovni koder najčešće je vizualni transformer [5] ili rezidualna mreža (npr. ResNet [6]). Tekstualni koder uobičajeno je model utemeljen na slojevima pažnje tj. transformer [13].

Na slici 2.1 možemo vidjeti interakciju slikovnog i tekstualnog kodera CLIP-a. Slikovni koder označen je zelenom bojom, a tekstualni koder ljubičastom. Koderi ugrađuju slike odnosno tekst u isti metrički prostor. Cilj je naučiti ugrađivanja tako da je sličnost ugrađivanja određene slike najveća upravo s ugrađivanjem njenog odgovarajućeg opisa. Pritom sličnost ugrađivanja možemo izračunati kao skalarni umnožak istih - tada je u pitanju kosinusna sličnost.

(1) Contrastive pre-training

Slika 2.1: Interakcija slikovnog i tekstualnog kodera CLIP-a. Preuzeto iz [10].

2.3.2. Okvir učenja

Kada govorimo o CLIP-u kao okviru učenja, tada govorimo o okviru za multimodalno samonadzirano kontrastno učenje. Cilj učenja je naučiti i istovremeno uskladiti ugrađivanja dviju modalnosti. Kako bismo ovo postigli, prilikom učenja slikovnog i tekstualnog kodera želimo maksimizirati sličnost ugrađivanja slika i njihovih odgovarajućih opisa. Dodatno, želimo i minimizirati sličnost ugrađivanja krivo uparenih slika i opisa. CLIP za učenje ovog zadatka koristi infoNCE gubitak primijenjen dvosmjerno. CLIP gubitak možemo prikazati jednadžbom:

$$L_{CLIP} = -\frac{1}{2N} \sum_{j=1}^{N} \log \frac{\exp(\langle z_j^I, z_j^T \rangle / \tau)}{\sum_{k=1}^{N} \exp(\langle z_j^I, z_k^T \rangle / \tau)} - \frac{1}{2N} \sum_{k=1}^{N} \log \frac{\exp(\langle z_k^I, z_k^T \rangle / \tau)}{\sum_{j=1}^{N} \exp(\langle z_j^I, z_k^T \rangle / \tau)}$$
(2.2)

Pritom z_j^I označava slikovno ugrađivanje slike primjera x_j^I , z_j^T tekstualno ugrađivanje opisa primjera x_j^T , a τ parametar temperature. Kao i prije, oznaka $\langle ... \rangle$ označava skalarni produkt elemenata unutar zagrada. CLIP gubitak sastoji se od dvije komponente jer želimo imati simetričnu usklađenost ugrađivanja slika i teksta u zajedničkom metričkom prostoru.

2.4. Zero-shot učenje

Zero-shot učenje [15] zadatak je dubokog učenja kod kojeg model na ulaz dobiva primjere iz neviđenih razreda te treba predvidjeti njihove oznake tj. razrede. Modeli učeni multimodalnim samonadziranim učenjem poput CLIP-a pogodni su za ovaj zadatak, no zahtijevaju dodatne informacije kako bi ga mogli obavljati.

Na slici 2.2 možemo vidjeti kako se provodi *zero-shot* učenje kod CLIP-a. Kako bi CLIP mogao predvidjeti jedan od neviđenih razreda, na ulaz tekstualnog kodera dobiva opise u koje su ugrađena imena mogućih razreda. Za svaki od opisa izračuna se pripadno ugrađivanje te se ono usporedi s ugrađivanjem željene slike. Predviđeni razred je onaj za koji je sličnost pripadnog tekstualnog ugrađivanja sa slikovnim ugrađivanjem najveća.

(2) Create dataset classifier from label text

Slika 2.2: Zero-shot učenje kod CLIP-a. Preuzeto iz [10].

3. Zaključak

Zaključak.

4. Literatura

- [1] Nicholas Carlini, Matthew Jagielski, Christopher A Choquette-Choo, Daniel Paleka, Will Pearce, Hyrum Anderson, Andreas Terzis, Kurt Thomas, i Florian Tramèr. Poisoning web-scale training datasets is practical. U 2024 IEEE Symposium on Security and Privacy (SP), stranice 407–425. IEEE, 2024.
- [2] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, i José Luis Marroquín. Searching in metric spaces. *ACM computing surveys (CSUR)*, 33(3):273–321, 2001.
- [3] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, i Dawn Song. Targeted backdoor attacks on deep learning systems using data poisoning. *arXiv preprint arXiv:1712.05526*, 2017.
- [4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, i Li Fei-Fei. Imagenet: A large-scale hierarchical image database. U *2009 IEEE conference on computer vision and pattern recognition*, stranice 248–255. Ieee, 2009.
- [5] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, i Yunhe Wang. Transformer in transformer. *Advances in neural information processing systems*, 34: 15908–15919, 2021.
- [6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, i Jian Sun. Identity mappings in deep residual networks. U *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14*, stranice 630–645. Springer, 2016.
- [7] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, i Fillia Makedon. A survey on contrastive self-supervised learning. *Technologies*, 9(1):2, 2020.
- [8] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, i Jie

- Tang. Self-supervised learning: Generative or contrastive. *IEEE transactions on knowledge and data engineering*, 35(1):857–876, 2021.
- [9] Aaron van den Oord, Yazhe Li, i Oriol Vinyals. Representation learning with contrastive predictive coding. *arXiv preprint arXiv:1807.03748*, 2018.
- [10] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. U *International conference on machine learning*, stranice 8748–8763. PMLR, 2021.
- [11] Florian Schroff, Dmitry Kalenichenko, i James Philbin. Facenet: A unified embedding for face recognition and clustering. U *Proceedings of the IEEE conference on computer vision and pattern recognition*, stranice 815–823, 2015.
- [12] Zhiyi Tian, Lei Cui, Jie Liang, i Shui Yu. A comprehensive survey on poisoning attacks and countermeasures in machine learning. *ACM Computing Surveys*, 55 (8):1–35, 2022.
- [13] A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.
- [14] Kaiye Wang, Qiyue Yin, Wei Wang, Shu Wu, i Liang Wang. A comprehensive survey on cross-modal retrieval. *arXiv preprint arXiv:1607.06215*, 2016.
- [15] Yongqin Xian, Christoph H Lampert, Bernt Schiele, i Zeynep Akata. Zeroshot learning—a comprehensive evaluation of the good, the bad and the ugly. *IEEE transactions on pattern analysis and machine intelligence*, 41(9):2251–2265, 2018.
- [16] Wenhan Yang, Jingdong Gao, i Baharan Mirzasoleiman. Better safe than sorry: Pre-training clip against targeted data poisoning and backdoor attacks. *arXiv* preprint arXiv:2310.05862, 2023.

5. Sažetak

Sažetak.