光学笔记

Optics Notes

丁毅

中国科学院大学,北京 100049

Yi Ding

University of Chinese Academy of Sciences, Beijing 100049, China

2024.8 - 2025.1

長目

目							
1	偏振						
	1.1	偏振光的性质					
		1.1.1 椭圆偏振光					
		1.1.2 线偏振光					
		1.1.3 自然光					
	1.2	偏振光的数学表示					
		1.2.1 斯托克斯参量					
		1.2.2 琼斯矢量					
		1.2.3 琼斯矩阵和穆勒矩阵					
	1.3	双折射					
		1.3.1 双折射现象					
		1.3.2 相位延迟片					
		1.3.3 偏振光的检验					
	1.4	偏振态的计算					
		1.4.1 矩阵法					
		1.4.2 相位注					

第1章 偏振

在这一章,我们将要讨论光会以什么样的状态(即偏振态)进行传播、合成,如何观察、产生和改变光的偏振态,以及如何利用它。相比于干涉和衍射两章,本章内容较为简短,因为许多介绍性的东西都没有放在这里(抄教材不符合我们的初衷),读者若感兴趣,可阅读文献[?]的 Page 425-497。

§1.1 偏振光的性质

偏振光可粗略地分为自然光(非偏振光),部分偏振光,(椭)圆偏振和线偏振。其中,线偏振态又记为 $\mathcal P$ 态,左圆和右圆分别记为 $\mathcal L$ 和 $\mathcal R$ 态。

1.1.1 椭圆偏振光

由于 E 的矢量性,所有偏振光的电矢量 E 都可以分解为两个互相垂直(正交)的光扰动:

$$E_x = E_{0x}\cos(kz - \omega t) \cdot \hat{i}, \quad E_y = E_{0y}\cos(kz - \omega t + \varepsilon) \cdot \hat{j}$$
 (1.1)

其中 \hat{i} 和 \hat{j} 表示分解的方向, E_{0x} 和 E_{0y} 是分量的振幅(可能是时间的函数), ε 为相位差(可能是时间的函数)。对于 E_{0x} 、 E_{0y} 和 ε 都为常量的情况,合成的光多为椭圆偏振光:

$$E_y = E_{0y}\cos(kz - \omega t + \varepsilon) \Longrightarrow \frac{E_y}{E_{0y}} = [\cos(kz - \omega t)\cos\varepsilon - \sin(kz - \omega t)\sin\varepsilon]$$
 (1.2)

由 $\sin^2(kz - \omega t) = 1 - \cos^2(kz - \omega t) = 1 - \frac{E_x^2}{E_{0x}^2}$,可以得到:

$$\left(\frac{E_y}{E_{0y}} - \cos\varepsilon \frac{E_x}{E_{0x}}\right)^2 = \sin^2\varepsilon \left(1 - \frac{E_x^2}{E_{0x}^2}\right) \tag{1.3}$$

$$\Longrightarrow \frac{E_x^2}{E_{0x}^2} + \frac{E_y^2}{E_{0y}^2} - 2\frac{E_x E_y}{E_{0x} E_{0y}} \cos \varepsilon = \sin^2 \varepsilon \tag{1.4}$$

$$\iff \frac{E_x^2}{(E_{0x}\sin\varepsilon)^2} + \frac{E_y^2}{(E_{0y}\sin\varepsilon)^2} - 2\frac{E_x E_y}{(E_{0x}\sin\varepsilon)(E_{0y}\sin\varepsilon)} = 1$$
 (1.5)

由高中的知识可知,当 $\varepsilon \neq k\pi, k \in \mathbb{Z}$ 时,这是一个椭圆(或圆)方程,因为 $\Delta = B^2 - 4AC = 4\cos^2\varepsilon - 4 < 0$ 。这样的的偏振光称为椭圆偏振光。

椭圆偏振光也分左旋和右旋,这是因为从观察点向光源看去时(光指向"眼睛"),若 $\varepsilon \in (0,\pi)$,我们"看到"的由 E_x 和 E_y 合成后的 E 在逆时针旋转(左旋)。一个典型的例子是 $\varepsilon = \frac{\pi}{2}$ 时,也即 E_x "领先" E_y 相位 $\frac{\pi}{2}$:

$$\mathbf{E}_{x} = E_{0x}\cos(kz - \omega t) = E_{0x}\cos(\omega t - kz) \cdot \hat{i},\tag{1.6}$$

$$\boldsymbol{E_y} = E_{0y}\cos(kz - \omega t + \frac{\pi}{2}) = E_{0y}\sin(\omega t - kz) \cdot \hat{j}$$
(1.7)

由椭圆的参数方程知道, $E = E_x + E_y$ 的极角 $\theta = (\omega t - kz)$ 随时间 t 增大,E 逆时针旋转,称为左圆光。相反,当 $\varepsilon \in (\pi, 2\pi)$ 时(也可以说是 $(-\pi, 0)$),E 顺时针旋转(右旋),称为右圆光。

随着 ε 不同,E 的形状和方向也不同,但总的来讲,椭圆主轴夹角满足:

$$\tan{(2\alpha)} = 2\cos{\varepsilon} \cdot \frac{E_{0x}E_{0y}}{E_{0x}^2 - E_{0y}^2} \tag{1.8}$$

$$\Longrightarrow \alpha = \frac{1}{2}\arctan\left(2\cos\varepsilon \cdot \frac{E_{0x}E_{0y}}{E_{0x}^2 - E_{0y}^2}\right) \tag{1.9}$$

主轴,是指长轴,也即 $2E_{0x}$ 和 $2E_{0y}$ 中更长的轴与对应的 x 或 y 轴夹角。举个例子,当 $E_{0x} > E_{0y}$ 时,x 为 主轴(长轴), α 为长轴与 x 轴的夹角,此时 α 随 ε 的变化如图 1.1 (a) 所示;当 $E_{0x} < E_{0y}$ 时,情况则相反, α 是长轴与 y 轴的夹角,如图 1.1 (b) 所示。

从图中可以看出,随着 ε 不断变化,椭圆会在主轴附近"摆动",而不是转动。

图 1.1: α 随 ε 的变化情况

图 1.2: 主轴为 y 时椭圆的"摆动"情况

特别地,我们指出,若 x 为主轴($E_{0x} > E_{0y}$),则 α 一定在 ($-45^\circ,45^\circ$) 之间,这表明椭圆的长轴更"贴近" x 轴,y 的情况也同理。另外,当 $E_{0x} = E_{0y}$ 时,椭圆退化为圆,不存在 α 的概念,但左旋和右旋仍然存在。

为了方便参考,我们给出平面椭圆的一般公式,设椭圆中心为 (x_0,y_0) ,长轴与 x 轴夹角为 α ,则椭圆方程为:

$$\frac{\left[(x-x_0)\cos\alpha + (y-y_0)\sin\alpha\right]^2}{a^2} + \frac{\left[(x-x_0)\sin\alpha + (y-y_0)\cos\alpha\right]^2}{b^2} = 1$$
(1.10)

对比系数,可以得到公式 1.5 对应椭圆的半长轴 a 和半短轴 b:

$$a^{2} = \frac{E_{0x}^{2} E_{0y}^{2} \left(\cos^{2} \alpha - \sin^{2} \alpha\right)}{E_{0y}^{2} \cos^{2} \alpha - E_{0x}^{2} \sin^{2} \alpha}, \quad b^{2} = \frac{E_{0x}^{2} E_{0y}^{2} \left(\cos^{2} \alpha - \sin^{2} \alpha\right)}{E_{0x}^{2} \cos^{2} \alpha - E_{0y}^{2} \sin^{2} \alpha}$$
(1.11)

1.1.2 线偏振光

当 $\varepsilon = k\pi$, $k \in \mathbb{Z}$ 时,方程退化为:

$$\left(\frac{E_x}{E_{0x}} \pm \frac{E_y}{E_{0y}}\right)^2 = 0 \Longleftrightarrow \frac{E_x}{E_{0x}} \pm \frac{E_y}{E_{0y}} = 0 \tag{1.12}$$

这是一个直线方程,表示线偏振光。

1.1.3 自然光

特别地,对于自然光,我们可以用两个振幅相等、非相干(即相位差 ε 迅速且无规变化)、正交的线偏振光的合成来表示自然光,这是数学上是一种非常方便的处理。

§1.2 偏振光的数学表示

偏振光的状态可以用向量来描述,常见的有斯托克斯(四维)参量和琼斯矢量(二维)。前者可以描述 所有偏振光(包括完全和不完全)和非偏振光,但参数较多,后者仅可以描述偏振光,但较为简洁。相应地, 偏振光器件对偏振光的作用可以用矩阵来表示,分别对应穆勒矩阵(四维)和琼斯矩阵(二维)。

1.2.1 斯托克斯参量

设想有四个滤波片,它们都只能透过一半(强度)的入射光。第一个是简单各向同性地,允许各个方向的偏振通过;第二个是(通光轴)水平的线偏振器,第三个是(通光轴) 45° 的线偏振器;最后一个是右圆起偏器(对 $\mathcal L$ 不透明)。

把每个滤光片分别放在要研究的光束的光路上,也即光路上每次只有一个偏振器,测量到的辐照度分别记为 I_0, I_1, I_2, I_3 ,则斯托克斯参量的定义为:

$$\delta_0 = 2I_0, \begin{cases} \delta_1 = 2I_1 - \delta_0 \\ \delta_2 = 2I_2 - \delta_0 \\ \delta_3 = 2I_3 - \delta_0 \end{cases}$$
 (1.13)

 $\delta_1, \delta_2, \delta_3$ 直接反映了光束的偏振态。具体而言:

- (1) δ_1 反映光束更接近水平 \mathscr{P} 态 $(\delta_1 \to \delta_0)$ 还是竖直 \mathscr{P} 态 $(\delta_1 \to -\delta_0)$;
- (2) δ_2 反映光東更接近 $+45^\circ$ \mathscr{P} 态 $(\delta_2 \to \delta_0)$ 还是 -45° \mathscr{P} 态 $(\delta_2 \to -\delta_0)$;
- (3) δ_3 反映光東更接近右旋 ($\delta_3 \rightarrow \delta_0$) 还是左旋 ($\delta_3 \rightarrow -\delta_0$)

对于准单色光 E,将其分解为 E_x 和 E_y ,可将斯托克斯参量进一步写为:

$$\delta_0 = \langle E_{0x}^2 \rangle_T + \langle E_{0y}^2 \rangle_T, \quad \delta_1 = \langle E_{0x}^2 \rangle_T - \langle E_{0y}^2 \rangle_T \delta_2 = \langle 2E_{0x}E_{0y}\cos\varepsilon\rangle_T, \quad \delta_3 = \langle 2E_{0x}E_{0y}\sin\varepsilon\rangle_T \tag{1.14}$$

我们在上式中略去了常数 $\frac{\epsilon_0 c}{2}$,因此这些参量现在正比于辐照度。把每个参量都除以 δ_0 以归一化常常带来很大的方便,此时 $\delta_k \in [-1,1], \ k=1,2,3$ 。

描述一束光偏振程度的量, 称为偏振度 V, 定义为:

$$\mathbf{V} = \frac{\sqrt{\delta_1^2 + \delta_2^2 + \delta_3^2}}{\delta_0} \tag{1.15}$$

对两束不相干的光 $(\delta'_0, \delta'_1, \delta'_2, \delta'_3)$ 和 $(\delta''_0, \delta''_1, \delta''_2, \delta''_3)$,在斯托克斯参量下,可以直接将它们的偏振态相加,得到合成的光的偏振态为 $(\delta'_0 + \delta''_0, \delta'_1 + \delta''_1, \delta'_2 + \delta''_2, \delta'_3 + \delta''_3)$,用公式表示为:

$$\begin{bmatrix} \delta'_0 \\ \delta'_1 \\ \delta'_2 \\ \delta'_3 \end{bmatrix} + \begin{bmatrix} \delta''_0 \\ \delta''_1 \\ \delta''_2 \\ \delta''_3 \end{bmatrix} = \begin{bmatrix} \delta'_0 + \delta''_0 \\ \delta'_1 + \delta''_1 \\ \delta'_2 + \delta''_2 \\ \delta'_3 + \delta''_3 \end{bmatrix}$$

$$(1.16)$$

1.2.2 琼斯矢量

琼斯矢量是直接用 E_x 和 E_y 来表示光的偏振态,它是一个二维复矢量。对一束光 $\mathbf{E} = E_{0x}\cos(kz - \omega t + \varphi_x) \cdot \hat{i} + E_{0y}\cos(kz - \omega t + \varphi_y) \cdot \hat{j}$,它的琼斯矢量定义为:

$$\boldsymbol{E} = \begin{bmatrix} E_{0x} e^{i\varphi_x} \\ E_{0y} e^{i\varphi_y} \end{bmatrix} = E_{0x} e^{i\varphi_x} \begin{bmatrix} 1 \\ \frac{E_{0y}}{E_{0x}} e^{i\varepsilon} \end{bmatrix}$$
(1.17)

实际应用中常常不需要知道具体的振幅的相位,只需要知道相对相位差 $\varepsilon = \varphi_y - \varphi_x$ 即可,因此琼斯矢量也常用归一化的方式来表达。下图列出了常见偏振态的斯托克斯和琼斯矢量表示:

偏振态	斯托克斯矢量	琼斯矢量	偏振态	斯托克斯矢量	琼斯矢量
水平 罗态			-45°的 罗态	1 0 -1 0 J	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
垂直 30态	$\begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$	[0] [1]	*	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -i \end{bmatrix}$
+45°的	$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	<i>9</i> *	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ i \end{bmatrix}$

图 1.3: 常见偏振态的斯托克斯和琼斯矢量表示

上图的圆偏振可以轻松的扩展到椭圆,例如一个右旋椭圆的偏振态可表示为 $E = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ -i \end{bmatrix}$ 。

与斯托克斯参量类似,光偏振态的合成也可以直接在琼斯矢量下进行,即直接将两个琼斯矢量相加即可。例如相同振幅的 \mathscr{D} 态和 \mathscr{L} 态可以合成为水平的 \mathscr{D} 态:

$$\boldsymbol{E}_{\mathscr{R}} + \boldsymbol{E}_{\mathscr{L}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ -i \end{bmatrix} + \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\ i \end{bmatrix} = \sqrt{2} \begin{bmatrix} 1\\ 0 \end{bmatrix}$$
 (1.18)

特别地,当两東光的琼斯矢量相互垂直时,称两个偏振态正交。由于琼斯矢量是复矢量,因此正交不是内积而是 Hermitian 内积,即 $\langle E_1 \mid E_2 \rangle = E_1 \cdot E_2^*$ 。例如 $\mathscr A$ 态和 $\mathscr L$ 态是正交的、水平 $\mathscr P$ 态 (记作 $\mathscr H$) 和垂直 $\mathscr P$ 态 (记作 $\mathscr Y$) 也是正交的:

$$\boldsymbol{E}_{\mathscr{R}} \cdot \boldsymbol{E}_{\mathscr{L}}^{*} = \left\langle \begin{bmatrix} 1 \\ -i \end{bmatrix} \middle| \begin{bmatrix} 1 \\ i \end{bmatrix}^{*} \right\rangle = 1 + i^{2} = 0, \quad \boldsymbol{E}_{\mathscr{H}} \cdot \boldsymbol{E}_{\mathscr{V}}^{*} = \left\langle \begin{bmatrix} 1 \\ 0 \end{bmatrix} \middle| \begin{bmatrix} 0 \\ 1 \end{bmatrix}^{*} \right\rangle = 0 \tag{1.19}$$

由线性代数的知识知道,任何偏振态(即琼斯矢量)都可以由这样的一组正交偏振态合成得到,这也验证了我们之前对自然光"可分解为相位差迅速随机变化的两线偏振光"表述的合理性。

1.2.3 琼斯矩阵和穆勒矩阵

偏振器件对光的作用可以直接由矩阵来描述,常记作 \mathscr{A} (或 A):

$$E_t = \mathscr{A}E_i \tag{1.20}$$

相应地,多个偏振器作用于同一光束时,设第一个通过的是 4,按矩阵乘法有:

$$E_t = \mathcal{A}_n \mathcal{A}_{n-1} \cdots \mathcal{A}_2 \mathcal{A}_1 E_i \tag{1.21}$$

图 1.4 给出了常见偏振器的琼斯矩阵和穆勒矩阵。需要指出,我们指介绍了矩阵方法较重要的一些内容,对这个专题的完备讨论远远超出了本课程的范围。

线性光学元件		琼斯矩阵	7 穆勒矩阵
水平的线起偏器	→ *)		$ \begin{array}{c ccccc} & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} $
铅直的线起偏器	ţ	$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
+45°的线起偏器	P	$\frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
-45°的线起偏器	\$	$\frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$	$ \frac{1}{2} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} $
四分之一波片, 快轴铅直		$e^{i\pi/4}\begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
四分之一波片, 快轴水平		$e^{i\pi/4}\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$
同质右旋圆起偏器	ວ	$\frac{1}{2}\begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$	$\frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$
同质左旋圆起偏器	o	$\frac{1}{2} \begin{bmatrix} 1 & -i \\ i & 1 \end{bmatrix}$	$ \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} $

图 1.4: 常见偏振器的琼斯矩阵和穆勒矩阵

§1.3 双折射

1.3.1 双折射现象

一些特殊的晶体是光学各向异性的,最直接的表现是双折射。双折射是指光在晶体中传播时,不同偏振态(即不同电矢量)的光有不同的折射率,因此会有不同的折射角。这种具有两个(两套)折射率的性质称为双折射。

这样的晶体一般都有一个特殊方向(称为光轴),当光沿此方向入射时,无论偏振态如何,都不会发生双折射,退化到普通入射现象,称为单轴晶体。当光线的传播方向 k 确定时,与光轴垂直的分量称为 o 光,平行的分量称为 e 光(o 和 e 正交)。对于单轴晶体,o 光和 e 光的折射率是不同的,准确的说,o 光的折射率是一个常数,而 e 光的折射率是与光轴夹角 θ 的函数(在光轴方向上 $n_e(\theta)=n_o$)。由不同方向上折射率大小构成的曲面是一个椭球面,称为折射率椭球。 $n_{e0} < n_o$ 的单轴晶体称为负晶体(等价于 $v_o < v_e$), $n_{e0} > n_o$ ($v_o > v_e$)的称为正晶体。

以光轴为 z 轴,则单轴晶体的折射率椭球可写为:

$$\frac{x^2 + y^2}{n_o^2} + \frac{z^2}{n_o^2} = 1 ag{1.22}$$

为了研究较一般的情况,我们先给出主截面和入射面的概念:

- (1) 主截面:介质表面法线与光轴共同构成的平面;
- (2) 入射面:介质表面法线与入射光线构成的平面。

当入射面和主截面重合时(入射光线在主截面)内,折射的o光和e光都在主截面内,可由惠更斯原理推出o光和e光各自的折射方向,如下图所示:

图 1.5: 用惠更斯作图法求折射线

下面讨论几种特殊的情况:

- (1) 光轴垂直于表面,光线正入射 (图 1.6 (a)): $n_o = n_e(\theta)$,没有发生双折射。
- (2) 光轴平行于表面,光线正入射(图 1.6 (b)): $n_o \neq n_e(\theta)$,尽管两光方向相同,但波速不同(这会引起相位差,将在后文提到),发生了双折射。
- (3) 光轴垂直于入射面,光线斜入射 (图 1.6 (c)): $n_o \neq n_e(\theta)$,两光方向和波速都不同。

图 1.6: 不同情形下 o 光与 e 光的行为

设 θ 是折射 o 光与光轴的夹角, ξ 是折射 e 光与光轴的夹角,则有法向折射率 n_N :

$$\cot \xi = \frac{n_e^2}{n_o^2} \cot \theta, \quad n_N = n_N(\theta) = \sqrt{\frac{n_o^2 n_e^2}{n_o^2 \sin^2 \theta + n_e^2 \cos^2 \theta}}$$
(1.23)

由上面两个公式可以分别确定法向折射率 n 和 ξ ,而 ξ 又可以确定 e 光的折射方向。需要注意,上式中的 n_N 是法向折射率,如图 1.7 (d),对于正入射,o 光和 e 光的光程差是 $\Delta L = n_N(\theta)d - n_od$,而不是 $n_N(\theta)\frac{d}{\cos\alpha} - n_od$ 。后一种应该用射线折射率 $n_r = n_r(\xi)$ 。

图 1.7: e 光折射方向与光程差

为了继承原有的惯性思维(沿光线传播方向上的折射率),我们推荐使用 n_r 而不是 n_N ,如下:

$$\cot \xi = \frac{n_e^2}{n_o^2} \cot \theta, \quad n_r = n_r(\theta) = \frac{\cos \alpha}{n_o^2 \sin^2 \theta + n_e^2 \cos^2 \theta} = \frac{\cos(\xi - \theta)}{n_o^2 \sin^2 \theta + n_e^2 \cos^2 \theta}$$
 (1.24)

此时图 1.7 (d) 中的光程差便是直觉上的 $\Delta L = n_r \frac{d}{\cos \alpha} - n_o d$ 。 ^①

1.3.2 相位延迟片

再回来思考图 1.6 (b) 中发生的情况: e 光和 o 光方向都不变,但是它们的光程却不同,相位延迟片便是这样构成的。o 光相对于 e 光的相位增量是:

$$\Delta \phi_o = \phi_o - \phi_e = (n_o - n_e)d\tag{1.25}$$

这样便可以用先前的 ε 来判断相位延迟片(又称波晶片)对偏振态的影响。最常用的波晶片是四分之一波片(简称 $\frac{\lambda}{4}$ 片),对应 $\Delta\phi_o=\frac{\pi}{2}$ 。

[®]这一节如果不好理解,可以到网址 here 观看视频的 11:00 - 12:00 部分,在动画的帮助下很快能懂。

不能混淆的是,一些教材喜欢用"落后"或"领先"来表达这样的相位关系,尽管我们不提倡,但还是要指明,在 $(kz-\omega t)$ 的情形中,相位增加 $\Delta\phi_o$ 意味着延迟(落后),即从 $(kz-\omega t)$ 变为 $(kz-\omega t+\Delta\phi_o)$ 。现在我们把各种光经过四分之一波片后偏振态的变化做一个总结,如下图所示:

入射光	λ/4 片光轴取向	出射光
	e 轴或 O 轴与偏振方向一致*	线偏振
线偏振	e 轴或 o 轴与偏振方向成 45° 角	圆偏振
100	其它取向	椭圆偏振
圆偏振	任何取向	线偏振
lat but the les	e 轴或 O 轴与椭圆主轴一致	线偏振
椭圆偏振	其它取向	椭圆偏振

图 1.8: 偏振光经过四分之一波片后偏振态的变化

1.3.3 偏振光的检验

检验入射光到底是哪种偏振态,只需要一个偏振片和一个四分之一波片,具体方法如下图所示:

第一步	令入射光通过偏振片 I ,改变偏振片 I 的透振方向 P_{i} ,观察透光强度的变化(图 $6-58a$)					
观察到的现象	察到的现象 有消光		强度无变化		强度有变化,但无消光	
结 论	线偏振	自然光或圆	编振	部分偏振或	椭圆偏振	
第二步		a. 令入射光依次通过 $\lambda/4$ 片和偏振片 II ,改变偏振片 II 的透振方向 P_2 ,观察透射光的强度变化(6-58b)		b. 同 a,只 光轴 向方振力 步度 大量 大重 大重 大重	须与第一 【产生的 极小的透	
观察到的现象		有消光	无消光	有消光	无消光	
结 论		圆偏振	自然光	椭圆偏振	部分偏振	

图 1.9: 偏振光的检验

§1.4 偏振态的计算

本小节我们讨论不同偏振态经过不同厚度的波片(相位延迟片)后,会得到怎样的偏振态。一般有矩阵和相位两种方法,前者是利用偏振态和波片的琼斯矢量(矩阵),直接作矩阵乘法,后者是利用波片对 o 光的相位延迟作用。从数学地角度上,前者更直接,计算也更简单,但后者更能体现物理上的直观,有助于对偏振态的理解。

1.4.1 矩阵法

在玻片平面上建立平面直角坐标系,将光轴所在角度记为 ϕ ,称为波片的方位角。入射光束由琼斯矩阵 $m{E} = \begin{bmatrix} E_{0x} & E_{0y} \end{bmatrix}^T$ 来描述。考虑光线垂直入射到厚度为 d 的波片(光线与光轴垂直),波片对 o 光的相位延迟是 $\Delta \varepsilon = \frac{2\pi}{2}(n_o - n_e)d$,所以其琼斯矩阵 $m{W}$ 可写为:

$$\mathbf{W} = \mathbf{R}^{-1} \mathbf{W}_0 \mathbf{R}, \quad \mathbf{R} = \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix}, \quad \mathbf{W} = \mathbf{e}^{i\varphi} \begin{bmatrix} e^{i\frac{\Delta \varepsilon}{2}} & 0 \\ 0 & e^{-i\frac{\Delta \varepsilon}{2}} \end{bmatrix}$$
(1.26)

其中 R 是二维旋转矩阵,满足 $R^{-1}=R^T$,而 W_0 是波片在 oe 坐标系下的琼斯矩阵, $\varphi=\frac{1}{2}\cdot\frac{2\pi}{\lambda}(n_o+n_e)d$ 称为平均相位变化。由于 $e^{i\varphi}$ 一项同时作用在 E_x 和 E_y ,不会影响出射光的偏振态。在绝大多数情况下,我们仅关心相对相位差 $\varepsilon_0=\varepsilon+\Delta\varepsilon$,因此这一项常常被略去,此时波片的琼斯矩阵写为:

$$\boldsymbol{W} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \cdot \begin{bmatrix} e^{i\frac{\Delta \varepsilon}{2}} & 0 \\ 0 & e^{-i\frac{\Delta \varepsilon}{2}} \end{bmatrix} \cdot \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix}$$
(1.27)

1.4.2 相位法

利用相位法,可以在脑海中形成偏振态关于 ε 变化的"动图",便于理解偏振态的变化过程。下面的讨论都默认波片的 $n_o > n_e$,也即 e 轴是快轴。一束光入射波片,分别以玻片的 e 轴、o 轴为 x 和 y 轴建系(注意 e 是横轴),则入射光可在 eo 坐标系下分解为:

$$E_e = E_x = E_{0x}\cos(kr - \omega t), \quad E_o = E_y = E_{0y}\cos(kr - \omega t + \varepsilon_0)$$
(1.28)

注意不要与矩阵法中统一的 $x \times y$ 轴混淆。波片对光的作用,等价于 o 光发生了相位增量 $\Delta \varepsilon$,出射光变为:

$$E_x = E_{0x}\cos(kr - \omega t), \quad E_y = E_{0y}\cos(kr - \omega t + \varepsilon_0 + \Delta\varepsilon)$$
 (1.29)

此时相位差 ε_0 变为 $\varepsilon = \phi_y - \phi_x = \varepsilon_0 + \Delta \varepsilon$,其中 $\Delta \varepsilon = \frac{2\pi}{\lambda} (n_o - n_e) d$ 。回到最开始我们讨论 ε 对偏振态 "形状"的影响,这相当于 ε 在 $[0, 2\pi]$ 上的周期性变化,引起偏振态的周期性变化。

设入射光线是线偏振光(等价于 $\varepsilon_0 = 0$),且与 x 轴(e 轴)夹角为 $\alpha \in [0, \frac{\pi}{2}]$ (否则作对称变换),夹角 α 即确定了 E_{0x} 和 E_{0y} (准确的说是比值)。当 $E_{0x}E_{0y} \neq 0$ 且 $E_{0x} \neq E_{0y}$ 时,波片对线偏振光的作用,可以用下图来直观表示(以 $E_y > E_x$ 为例):

图 1.10: 波片对线偏振光的作用, $E_y > E_x > 0$

当 $E_{0x}E_{0y} \neq 0$ 且 $E_{0x} = E_{0y}$ 时,随着 ε 的变化,偏振态依次经过右线、右椭圆、圆、左椭圆、左线,然后又依次返回到右线。且线、椭圆(和圆)都在 $\pm 45^{\circ}$ 线上,如下图所示:

图 1.11: 波片对线偏振光的作用, $E_y=E_x>0$

特别地,当 $E_{0x}E_{0y}=0$ 时(至少有一个为零),由于不存在两分量的合成,偏振态不会发生任何变化(除了固有的相位增量)。