

3. Solving ODEs with Fourier Series

Course > Unit 1: Fourier Series > and Signal Processing

> 5. Near resonance

5. Near resonance

Problem 5.1 If the system response of $\sin nt$ is $\frac{\sin nt}{50-n^2}$, for which input signal $\sin nt$ is the gain the largest?

Solution: The gain is $\left| rac{1}{50-n^2}
ight|$, which is largest when $|50-n^2|$ is smallest. This happens for n=7.

The gain for $\sin 7t$ is 1, and the next largest gain, occurring for $\sin 6t$ and $\sin 8t$, is $\frac{1}{14}$. Thus the system approximately filters out all the Fourier components of f(t) except for the $\sin 7t$ term.

Problem 5.2 Let x(t) be the periodic solution to

$$\ddot{x}+50x=rac{\pi}{4}\mathrm{Sq}\left(t
ight) .$$

Which Fourier coefficient of x(t) is largest? Which is second largest?

Solution: The input signal

$$rac{\pi}{4} \mathrm{Sq}\left(t
ight) = \sum_{n \geq 1,\,\mathrm{odd}} rac{\sin nt}{n}$$

elicits the system response

$$x(t) = \sum_{n \ge 1, \text{ odd}} \left(\frac{1}{50 - n^2}\right) \frac{\sin nt}{n}$$

 $\approx 0.020 \sin t + 0.008 \sin 3t + 0.008 \sin 5t + 0.143 \sin 7t - 0.004 \sin 9t - \text{(even smaller terms)}$

so the coefficient of $\sin 7t$ is largest, and the coefficient of $\sin t$ is second largest. (This makes sense since the Fourier coefficient $\frac{1}{(50-n^2)n}$ is large only when one of n or $50-n^2$ is small.)

Remark 5.3 Even though the system response is a complicated Fourier series, with infinitely many terms, only one or two are significant, and the rest are negligible.

5. Near resonance

Topic: Unit 1: Fourier Series / 5. Near resonance

Hide Discussion

Add a Post

Show all posts by recent activity

Filtering
What does this sentence mean "Thus the system approximately filters out all the Fourier components of f(t) except for the sin7t term"

5

© All Rights Reserved