<u>Project Objective</u>: Predict which customers are likely to churn (stop using the service) and send real-time alerts to the business team.

Key features like:

- 1. Data Collection
- 2. Exploratory Data Analysis (EDA)
- 3. Feature Engineering
- 4. Model Training
- 5. Model Deployment with FastAPI
- 6. Real-Time Dashboard (Streamlit)

Used Tools & Technologies in Project:

- 1. Python (main language)
- 2. Pandas, NumPy, scikit-learn
- 3. Seaborn, Matplotlib (for EDA/visualizations)
- 4. Streamlit (interactive dashboard)
- 5. FastAPI (serve/expose the ML model)

**You can enhance for production grade deployment integrate below features also

- 6. Twilio or SMTP (Gmail) (to send SMS/email alerts)
- 7. Excel/CSV/Database (to store results)

Project architecture:

A. Generate The Training Data as below format using NumPy and pandas

	customer_id	tenure	monthly_charges	contract_type	support_calls	payment_method	churn
0	CUST0000	52	105.57	One year	2	Electronic check	1
1	CUST0001	15	103.02	One year	1	Mailed check	0
2	CUST0002	61	59.72	Two year	1	Mailed check	0
3	CUST0003	21	86.81	Month-to-month	0	Bank transfer	0
4	CUST0004	24	40.50	One year	3	Mailed check	0

B. Exploratory Data Analysis (EDA): Identify trends in churned vs. retained customers. Visualize correlation between churn and other features.

1. Churn Distribution (Churn, No-Churn)

2. Numerical Features vs. Churn based on ('tenure', 'monthly_charges', 'support_calls')

support_calls by Churn

3. Categorical Features vs. Churn by ('contract_type', 'payment_method')

C. Feature Encoding + Model Training (RandomForestClassifier) based on above customer data. Model accuracy is greater than 70%.

	precision	recall	f1-score	support	
0 1	0.78 0.00	0.96 0.00	0.86 0.00	158 42	
accuracy macro avg weighted avg	0.39 0.62	0.48 0.76	0.76 0.43 0.68	200 200 200	

D. After Model Training expose the FastAPI for for churn prediction, return churn probability

E. Real-Time Dashboard (Streamlit) Upload or simulate real-time customer activity.

Display: Churn predictions

Filters: contract type, region, tenure

Alert status

Real-Time Customer Churn Predictor

Fill in customer details below to check churn probability.

Tenure (months) 72 1 Monthly Charges (\$) 75.00 20.00 120.00 Support Calls (last 3 months) 0 10 Contract Type Month-to-month Payment Method Credit card Predict Churn Churn Probability: 52.00% High risk of churn!