Remark: In contrast with the previous examples, given a matrix $A \in M_n(\mathbb{R})$, the equations asserting that $A^{\top}A = I$ are not linear constraints. For example, for n = 2, we have

$$a_{11}^2 + a_{21}^2 = 1$$
$$a_{21}^2 + a_{22}^2 = 1$$
$$a_{11}a_{12} + a_{21}a_{22} = 0.$$

Remarks:

- (1) The notation V^0 (resp. U^0) for the orthogonal of a subspace V of E (resp. a subspace U of E^*) is not universal. Other authors use the notation V^{\perp} (resp. U^{\perp}). However, the notation V^{\perp} is also used to denote the orthogonal complement of a subspace V with respect to an inner product on a space E, in which case V^{\perp} is a subspace of E and not a subspace of E^* (see Chapter 12). To avoid confusion, we prefer using the notation V^0 .
- (2) Since linear forms can be viewed as linear equations (at least in finite dimension), given a subspace (or even a subset) U of E^* , we can define the set $\mathcal{Z}(U)$ of common zeros of the equations in U by

$$\mathcal{Z}(U) = \{ v \in E \mid u^*(v) = 0, \text{ for all } u^* \in U \}.$$

Of course $\mathcal{Z}(U) = U^0$, but the notion $\mathcal{Z}(U)$ can be generalized to more general kinds of equations, namely polynomial equations. In this more general setting, U is a set of polynomials in n variables with coefficients in a field K (where $n = \dim(E)$). Sets of the form $\mathcal{Z}(U)$ are called algebraic varieties. Linear forms correspond to the special case where homogeneous polynomials of degree 1 are considered.

If V is a subset of E, it is natural to associate with V the set of polynomials in $K[X_1, \ldots, X_n]$ that vanish on V. This set, usually denoted $\mathcal{I}(V)$, has some special properties that make it an ideal. If V is a linear subspace of E, it is natural to restrict our attention to the space V^0 of linear forms that vanish on V, and in this case we identify $\mathcal{I}(V)$ and V^0 (although technically, $\mathcal{I}(V)$ is no longer an ideal).

For any arbitrary set of polynomials $U \subseteq K[X_1, \ldots, X_n]$ (resp. subset $V \subseteq E$), the relationship between $\mathcal{I}(\mathcal{Z}(U))$ and U (resp. $\mathcal{Z}(\mathcal{I}(V))$ and V) is generally not simple, even though we always have

$$U \subseteq \mathcal{I}(\mathcal{Z}(U))$$
 (resp. $V \subseteq \mathcal{Z}(\mathcal{I}(V))$).

However, when the field K is algebraically closed, then $\mathcal{I}(\mathcal{Z}(U))$ is equal to the radical of the ideal U, a famous result due to Hilbert known as the Nullstellensatz (see Lang [109] or Dummit and Foote [54]). The study of algebraic varieties is the main subject