

WriteHear

Jesse Miller Dayton, OH ISSI

Overview

- I. What is WriteHear?
 - A. Concept
 - B. How it works
 - 1. Software
 - 2. Hardware
- II. Testing and analysis
 - A. Hardware
 - B. Software

What is WriteHear?

Concept

Concept

Motivation

Using audio alone:

- Transcribe handwriting
- Verify signatures
- Send encrypted messages

Past Research

Sketch Recognition Lab at Texas A&M

Did Not

- Continuous character recognition
- Noise reduction
- Test various sets of characters
- Test different hardware setups
- Signature verification

Did

Distinguish between uppercase characters with %86.8 accuracy

System Architecture

Moving Average

Endpoint Noise Removal

$$E = signal\ energy = \frac{1}{n} \sum_{i=1}^{n} S_i^2$$

$$E_{character} > T \times E_{noise}$$
T is a fixed threshold

Dynamic Time Warping

Method for Comparison:

- Stretches signal along time axis
- Independent of signal length

Dynamic Time Warping

- Sakoe-Chiba band width of 8% used to restrict warping and maximize accuracy
- Square root of the signals are used for comparison to maximize accuracy

*see appendix for details

Spellcheck database contains over 58,000 words

Hardware

Testing and Analysis

Type of Mic.

Dynamic

- Electromagnetic induction
- Senses vibrations through air and solid objects
- Susceptible to noise

90 dB Noise Test

Vs.

Contact

- Piezoelectric
- Senses vibrations through solid objects only
- Significantly less effected by noise

90 dB Noise Test

Distance From Mic.

1 inch

- Amplitude = 0.01-0.03
- Unaffected by distance

Vs.

- Amplitude = 0.01-0.03
- Unaffected by distance

Surface Size

15 in²

Vs.

- Time to decay to noise level = 15ms
- More distinct features in writing
- Higher amplitude
- Less susceptible to noise

- Time to decay to noise level = 300ms
- Less distinct features in writing
- Lower amplitude
- More susceptible to noise

Surface Material

Plastic 🕜

 Negligible effect on amplitude

Vs.

 Negligible effect on amplitude

Surface Thickness

1/8" Thick

Vs.

1/2" Thick

• Amplitude = 0.04-0.05

Amplitude = 0.005-0.01 (1/8th the amplitude)

Writing Utensil

• Amplitude = 0.04-0.05

Vs.

• Amplitude = 0.04-0.05

Accuracy

A-Z	a-z	0-9	Spellcheck (A-Z)	Signature
87.5%	77.9%	91.7%	85.9%	Type I Error: 4.8% Type II Error:
Based on: 8 Individuals 832 samples	Based on: 2 Individuals 208 samples	Based on: 3 Individuals 120 samples	Based on: 3 Individuals 78 words	6.3% Based on: 3 Individuals 53 samples

- Similar sound profiles for different characters lowers accuracy
- Character accuracy calculated with a template database of 3 samples per character. A similar method was used by SRL at Texas A&M

Conclusions

- WriteHear is a robust and versatile software that can learn and understand different people's handwriting
- A Contact microphone setup greatly reduces background noise allowing WriteHear to work fine with 90dB (loud traffic)
- WriteHear works with various materials and writing utensils
- WriteHear can catch a forged signature with over 93% accuracy
- WriteHear recognized the upper case letters (A-Z) with 87.5% accuracy, matching the 86.8% accuracy achieved by the Sketch Recognition Lab at Texas A&M

Future Work

- Continue to improve and optimize software
- Test more conditions such as how a persons handwriting varies over time
- Create a user independent system
- Create a more fluid system where the user can write naturally without having to pause between characters

References

• Li, W., & Hammond, T. A. (2011, April). Recognizing Text Through Sound Alone. In *AAAI*.

