DERIVATIVES OF INVERSE (TRIG) FUNCTIONS

INTRODUCTION TO CALCULUS

Calculate the derivative of an inverse function.

Recognize the derivatives of the standard inverse trigonometric functions.

OUTLINE

THE RELATIONSHIP BETWEEN THE DERIVATIVE OF A FUNCTION AND THE DERIVATIVE OF ITS INVERSE

- For functions whose derivatives we already know, we can use this relationship to find derivatives of inverses without having to use the limit definition of the derivative.
- In particular, we will apply the formula for derivatives of inverse functions to trigonometric functions.

HOW TO FIND THE RELATION?

HOW TO FIND THE RELATION?

HOW TO FIND THE RELATION

HOW TO FIND THE RELATION

HOW TO FIND THE RELATION

$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$$

Method two

Recall that

$$x = f(f^{-1}(x)).$$

Differentiating both sides of this equation (using the chain rule on the right), we obtain

$$1 = f'(f^{-1}(x))(f^{-1})'(x).$$

Solving for $(f^{-1})'(x)$, we obtain

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

HOW TO FIND THE RELATION

SUMMARY

Inverse Function Theorem

Let f(x) be a function that is both invertible and differentiable. Let $y = f^{-1}(x)$ be the inverse of f(x). For all x satisfying $f'(f^{-1}(x)) \neq 0$,

$$\frac{dy}{dx} = \frac{d}{dx} (f^{-1}(x)) = (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

Alternatively, if y = g(x) is the inverse of f(x), then

$$g'(x) = \frac{1}{f'(g(x))}.$$

EXAMPLE

• Use the inverse function theorem to find the derivative of $g(x) = \sqrt{x-1}$. Compare the result obtained by differentiating g(x) directly.

EXAMPLE

$$f(x) = x^2 + 1, x \ge 0$$

$$g(x) = f^{-1}(x) = \sqrt{x-1}$$

•
$$f'(x) = 2x, x \ge 0$$

$$g'(x) = \frac{1}{f'(g(x))} = \frac{1}{2\sqrt{x-1}}$$

TWO IMPORTANT APPLICATIONS

Extend the Power Rule to Rational Exponents

EXTEND THE POWER RULE TO RATIONAL EXPONENTS

Extending the Power Rule to Rational Exponents

The power rule may be extended to rational exponents. That is, if n is a positive integer, then

$$\frac{d}{dx}\left(x^{1/n}\right) = \frac{1}{n}x^{(1/n)-1}.$$

Also, if n is a positive integer and m is an arbitrary integer, then

$$\frac{d}{dx}(x^{m/n}) = \frac{m}{n}x^{(m/n)-1}.$$

THE GENERAL POWER RULE

$$\frac{d}{dx}(x^{m/n}) = \frac{m}{n}x^{(m/n)-1}.$$

$$\frac{d}{dx}\left(x^{1/n}\right) = \frac{1}{n}x^{(1/n)-1}.$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

PROOF

$$\frac{d}{dx}(x^{1/n}) = \frac{1}{n}x^{(1/n)-1}.$$

We first try $g(x) = x^{1/n}$.

$$f(x) = x^n$$

$$g(x) = f^{-1}(x) = x^{1/r}$$

$$f'(x) = nx^{n-1}$$

$$g'(x) = \frac{1}{nx^{(n-1)/n}} = \frac{1}{n}x^{-(n-1)/n} = \frac{1}{n}x^{(1/n)-1}$$

PROOF

$$\frac{d}{dx}(x^{m/n}) = \frac{m}{n}x^{(m/n)-1}.$$

We then try $g(x) = x^{m/n}$.

$$g(x) = x^{m/n} = (x^{1/n})^m$$

Apply the chain rule!

$$g'(x) = m(x^{1/n})^{m-1} \cdot \frac{1}{n} x^{(1/n)-1} = \frac{m}{n} x^{(m-1)/n} \cdot x^{(1/n)-1} = \frac{m}{n} x^{(m/n)-1}$$

DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

- The derivatives of inverse trigonometric functions are actually algebraic functions.
- Previously, derivatives of algebraic functions have proven to be algebraic functions and derivatives of trigonometric functions have been shown to be trigonometric functions.
- Here, for the first time, we see that the derivative of a function need not be of the same type as the original function.

$$g'(x) = \frac{1}{f'(g(x))}.$$

Derivative of the Inverse Sine Function

• Use the inverse function theorem to find the derivative of $g(x) = \sin^{-1}(x)$.

$$g'(x) = \frac{1}{f'(g(x))}.$$

- Since for x in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], f(x) = \sin(x)$ is in the inverse of $g(x) = \sin^{-1}(x)$, begin by finding f'(x).
- Since $f'(x) = \cos(x)$, it follows that $f'(g(x)) = \cos(\sin^{-1}(x))$ and $g'(x) = \frac{1}{\cos(\sin^{-1}(x))}$.
- But what on earth is $cos(sin^{-1}(x))$?

- What is $\cos(\sin^{-1}(x))$?
- Set $\sin^{-1}(x) = \theta$. Therefore, $\sin(\theta) = x$, where $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.
- We first consider the case where $0 < \theta < \frac{\pi}{2}$.

 $\cos(\sin^{-1}(x)) = \cos(\theta) = \sqrt{1 - x^2}.$

- In the case where $-\frac{\pi}{2} < \theta < 0$, we make the observation that $0 < -\theta < \frac{\pi}{2}$ and hence
- $\cos(\sin^{-1}(x)) = \cos(\theta) = \cos(-\theta) = \sqrt{1 x^2}.$

- Now if $\theta = \frac{\pi}{2}$ or $\theta = -\frac{\pi}{2}$, x = 1 or x = -1. And since in either case $\cos(\theta) = 0$ and $\sqrt{1 x^2} = 0$, we have
- $\cos(\sin^{-1}(x)) = \cos(\theta) = \sqrt{1 x^2} = 0.$

- Consequently, in all cases, $\cos(\sin^{-1}(x)) = \sqrt{1 x^2}$.
- $g(x) = \sin^{-1}(x).$
- $g'(x) = \frac{1}{\cos(\sin^{-1}(x))} = \frac{1}{\sqrt{1 x^2}}.$

$$g'(x) = \frac{1}{f'(g(x))}.$$

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

EXERCISE

• Use the inverse function theorem to find the derivative of $tan^{-1}(x)$.

Derivatives of Inverse Trigonometric Functions

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1 - (x)^2}}$$

$$\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-(x)^2}}$$

$$\frac{d}{dx}\tan^{-1}x = \frac{1}{1+(x)^2}$$

SUMMARY

EXERCISE ONE

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-(x)^2}}$$

Applying the Chain Rule to the Inverse Sine Function

Find the derivative of $h(x) = \sin^{-1}(g(x))$ and use the result to find the derivative of $h(x) = \sin^{-1}(2x^3)$.

EXERCISE TWO

$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1 - (x)^2}}$$

Applying Differentiation Formulas to an Inverse Sine Function

■ Find the derivative of $h(x) = x^3 \sin^{-1}(x)$.

EXERCISE THREE

$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1 + (x)^2}$$

Applying Differentiation Formulas to an Inverse Tangent Function

Find the derivative of $h(x) = \tan^{-1}(x^2 + x + 1)$.