Electromagnetism Notes

by Ham Kittichet

▶ Table of Contents

บทที่ 1 ไฟ	ฟ้าสถิต	1
▶ 1.1	สนามไฟฟ้า	1
▶ 1.2	Divergence และ Curl ของสนามไฟฟ้าสถิต	2
▶ 1.3	ศักย์ไฟฟ้า	3
▶ 1.4	งานและพลังงาน	5
▶ 1.5	ตัวนำและความจุไฟฟ้า	8
บทที่ 2 ศัก	าย์ไฟฟ้า	12
▶ 2.1	สมการ Laplace	12
▶ 2.2	การจำลองภาพ	14
▶ 2.3	การแยกตัวแปร	15
▶ 2.4	การกระจาย Multipole	19
บทที่ 3 สน	ู่ มามไฟฟ้าในสสาร	23
▶ 3.1	โพลาไรเซชัน	23
▶ 3.2	สนามไฟฟ้าของวัตถุที่ถูกโพลาไรซ์	25
▶ 3.3	การกระจัดไฟฟ้า	26
▶ 3.4	ไดอิเล็กทริกเชิงเส้น	27
บทที่ 4 แม	ม่เหล็กสถิต	32
▶ 4.1	กฎแรง Lorentz	32

บทที่ 4 | แม่เหล็กสถิต

▶ 4.1. กฎแรง Lorentz

แรงแม่เหล็ก

แรง Lorentz. ประจุ Q ที่เคลื่อนที่ด้วยความเร็ว ${f v}$ ในสนามแม่เหล็ก ${f B}$ จะถูกแรงแม่เหล็กกระทำดังนี้:

$$\mathbf{F}_{\text{mag}} = Q(\mathbf{v} \times \mathbf{B}) \tag{4.1}$$

โดยถ้ามีทั้งสนามไฟฟ้าและแม่เหล็ก:

$$\mathbf{F} = Q(\mathbf{E} + (\mathbf{v} \times \mathbf{B})) \tag{4.2}$$

การเคลื่อนที่ใน **B** สม่ำเสมอที่น่าสนใจมีดังนี้:

1. ถ้าประจุ Q เคลื่อนที่ด้วยความเร็ว ${f v}$ ในสนาม ${f B}$ เพียงอย่างเดียว ส่วนของ ${f v}$