光栅衍射

院	系:	自动化系
班	级:	自 35 班
学生	姓名:	夏弘宇
学	号:	2023011004
组	号:	单三晚 L
座 优	i 号:	04

2025 年 4 月 6 日 2020011075

目录

1	实验	目的	2
2	实验	仪器	2
3	数据	处理	2
	3.1	光线垂直入射测光栅常数和光波波长	2
	3.2	测量汞灯光谱中波长较短的黄线的波长	4
4	实验	总结	5
5	原始	数据	6

1 实验目的

1. 进一步熟悉分光计的调整与使用;

2. 学习利用衍射光栅测定光波波长及光栅常数的原理和方法;

3. 加深理解光栅衍射公式及其成立条件。

2 实验仪器

分光计;光栅;汞灯;平面镜

3 数据处理

3.1 光线垂直入射测光栅常数和光波波长

1. i=0 时,测定光栅常数和光波波长

光栅编号: __14__; $\Delta_{\varnothing} = __1'$; 入射光方位 $\varphi_{10} = __0\circ 0'$; $\varphi_{20} = __179\circ 55'$ __;

波长 / n m 黄 1		1	黄 2		546.1		紫	
衍射光谱级次m	3		3		3		3	
游标	I	II	I	II	I	II	I	II
左侧衍射光方位 $_{oldsymbol{arphi}_{\!\scriptscriptstyle E}}$	31°20′	211°15′	31°25′	211°20′	29°25′	209°20′	23°5′	203°0′
右侧衍射光方位 $_{arphi_{\pi}}$	328°40′	148°35′	328°35′	148°30′	331°40′	151°35′	337°0′	156°55′
$2arphi_{\scriptscriptstyle m} = arphi_{\scriptscriptstyle extrm{ iny \infty}} - arphi_{\scriptscriptstyle extrm{ iny \infty}}$	62°40′	62°40′	62°50′	62°50′	57°45′	57°45′	46°5′	46°5′
$\overline{2arphi_{\scriptscriptstyle m m}}$	62°40′		62°50′		57°45		46°5′	
$\overline{arphi_{\scriptscriptstyle m II}}$	31°20′		31°25′		28°52.5′		23°2.5′	

图 1: 测定光栅常数和光波波长数据

由于:

$$d\sin\varphi_m = m\lambda$$

对于绿光: $\lambda = 546.1 \text{ nm}, \varphi_m = 28^{\circ}52.5'$ 故代人公式得到:

$$d = 3393 \text{ nm}$$

由计算出的 d = 3393 nm 和测得的各光线的 φ_m 值计算出:

紫光: $\varphi_m = 23^{\circ}2.5'$

$$\lambda = \frac{d\sin\varphi_m}{m} = 442.6 \text{ nm}$$

黄 1:
$$\varphi_m = 31^{\circ}20'$$

$$\lambda = \frac{d\sin\varphi_m}{m} = 588 \text{ nm}$$

黄 2:
$$\varphi_m = 31^{\circ}25'$$

$$\lambda = \frac{d \sin \varphi_m}{m} = 589.5 \text{ nm}$$

综上所述:

根据绿光波长计算出的光栅常数为:

$$d = 3393nm$$

根据光栅常数计算其他光的波长为:

紫光:

$$\lambda=442.6\mathrm{nm}$$

偏差为:

$$\delta = \frac{\lambda \cancel{\$} - \lambda}{\lambda \cancel{\$}} = 1.56\%$$

黄 1:

$$\lambda = 588 \mathrm{nm}$$

偏差为:

$$\delta = \frac{\lambda_{\mbox{\colored} \mbox{\colored} 1} - \lambda}{\lambda_{\mbox{\colored} \mbox{\colored} 1}} = 1.90\%$$

黄 2:

$$\lambda = 589.5 \text{nm}$$

偏差为:

$$\delta = \frac{\lambda_{\mbox{\colored} \pm 2} - \lambda}{\lambda_{\mbox{\colored} \pm 2}} = 1.80\%$$

3.2 测量汞灯光谱中波长较短的黄线的波长

2. i = 15°0′时,测量波长较短的黄线的波长

光栅平面法线方位 $\varphi_{1n} = \underline{15°0'}; \quad \varphi_{2n} = \underline{194°55'}$

	游标	入射光方位 $oldsymbol{arphi}_0$	入射角 i	ī		
入射角	I	<u>0°0′</u>	15°0′	1.4	15°0′	
八別用	II	<u>179°55′</u>	15°0′	13	5-0	
光谱级次m	游标	左侧衍射光方位 $oldsymbol{arphi}_{oldsymbol{\pm}}$	衍射角 $oldsymbol{arphi}_{ extit{ iny m}_{ extit{ iny m}_{ extit{ iny m}}}}$	$\overline{oldsymbol{arphi}}_{m_{\!\!\!/\!$	同(异)侧	
2	I	30°10′	15°10′	15°10′	同侧	
3	II	210°5′	15°10′	15°10'		
光谱级次m	游标	右侧衍射光方位 $oldsymbol{arphi}_{\pi}$	衍射角 $oldsymbol{arphi}_{ extit{ iny m}_{ au}}$	$\overset{m{-}}{m{arphi}}_{m_{\!\!\!/\!$	同(异)侧	
2	I	337°55′	37°5′	37°5′	已加	
2	II	157°50′	37°5′	3/3	异侧	

图 2: 测量波长较短的黄线的波长

由于 $\varphi_{m\pm} = 15^{\circ}10'$ 与入射光线位于法线同侧, 故:

$$d \cdot (\sin \varphi_{m \pm} + \sin 15^{\circ}) = m\lambda$$

故:

$$\lambda = \frac{d(\sin\varphi_{m/\!\!\!\pm} + \sin 15^\circ)}{m} = 588.6~\mathrm{nm}$$

偏差为:

$$\delta = \frac{\lambda_{\mbox{\colored} 1} - \lambda}{\lambda_{\mbox{\colored} 1}} = 2.01\%$$

由于 $\varphi_{m\bar{n}} = 37^{\circ}5'$ 与入射光线位于法线异侧, 故:

$$d \cdot (\sin \varphi_{m = 1} - \sin 15^\circ) = m\lambda$$

故:

$$\lambda = \frac{d(\sin\varphi_{m\not\equiv 1} + \sin 15^\circ)}{m} = 583.8 \text{ nm}$$

偏差为:

$$\delta = \frac{\lambda_{\mbox{\colored} \mbox{\colored} 1} - \lambda}{\lambda_{\mbox{\colored} \mbox{\colored} 1}} = 1.18\%$$

4 实验总结

本学期实验中,老师讲授部分会减少,主要培养我们自己根据实验指示进行实验的能力。但由于上学期已经进行了分光计使用训练,所以难度也不是很大,直接根据实验指导往下做就挺容易的。

本次实验的实验误差居于 1% - 2% 之间,存在一定误差,经讨论,发现是最初的光栅常数测得有 2% 的误差,就成为累积误差,牵连了后续的计算。因此在以后的实验中,此类特别重要的实验数据需要测量多次,避免对基于此数据做的后续计算造成影响。

最后,感谢老师的悉心指导!

清华大学 5 物理实验 B(2)

202011075

5 原始数据

附录 1 实验剂量敷料记录参考表格

实验图11,光和伯别实验

图名,夏孙宇、中日2023011004 实验用日,中三晚上、实验台号,04 、实验日111120250402

1.1=0时討定光栅常数 // 和步 党师编号: _ 4 Δ			、 射光力	(Lι φιο-	00	1 σ ₂₀ –	179°	ξ5'
证据处例包含医(nm)	英1		M 2		546,1		紫	
前射光谱级次 m	3,		3		3		3	
∂// l á:	1	11	1	11	1	11	1	II
左侧衍射光方位 φ,	31-20			2(1 20	29"25"	20] 20′	23°05'	2010
右侧衍射光方位φι	对 用	148'35	3550	179.00	331 fo'	151.92,	337°0'	126.22,
$2\varphi_m = \varphi_{\xi_i} - \varphi_{\xi_i}$	62.40	62.40	6/50'	62°50'	5745	5745	46051	463
$2\varphi_m$	62"	40'	628	o'	57°4	3 '	46'5	••
φ_{\bowtie}	310	<u>ر</u>	31.	25'	28°5	2.5'	23"1.	51
havo	1- 50	q	1-80	45			447	2.6

mm 入= 588 589.**9**5 ⇒ d= m人 = 3.393×10⁻⁶ コラロー 15°0′ 内製用波长牧短的文色谱线对应波长 コラロー 15°0′ m= 194° いい

	With:	入射光方位m	入射角;		i	
入射角	1	o°o′	150	.,	٠,	
/ \///	П	179-56	(500'	12	o '	
光谱级次m	व्यक्ति ।	左侧衍射光方位 p 。	衍射角 卯。。	$\overline{\varphi}_{mh}$	同(异)例	
	ı	30°10′	15%	11-21 '	同侧	
3	11	210°5'	15010	1510	(12)1/2)	
光谱级次 m	游标	右侧衍射光方位φ	ர்ர்பி 10 த	$\overline{\varphi}_{mti}$	同(异)倒	
٦	1	337°55′	37°5′	770-1	异侧	
2	11.	157.50	37°5'	37°5′	7112	

588.6

583.8

3. 最小偏向角法测量波长较长的黄色谱线对应波长

图 3: 原始数据