19 EUNDESREPUBLIK DEUTSCHLAND

o Off	enlegungsschrift	27 15 492
--------------	------------------	-----------

(1) (2) (3) Aktenzeichen:

P 27 15 492.3

Anmeldetag:

6. 4.77

Offenlegungstag:

20. 10. 77

Unionspriorität:

@ @ 0

6. 4.76 Großbritannien 13888-76

Bezeichnung:

Gemisch aus Platin enthaltenden Stoffen, Anwendung des Gemisches

für die Behandlung bösartiger Geschwulste sowie Verfahren zur

Herstellung des Gemisches

Anmelder:

Rustenburg Platinum Mines Ltd., Johannesburg, Transvaal (Südafrika)

®

Vertreter:

Walter, H., Pat.-Anw., 8000 München

_

Erfinder:

Tobe, Martin Leslie, Northwood, Middlesex;

Khokhar, Abdul Rauf, London; Braddock, Peter David Michael, Wigan,

Lancashire (Großbritannien)

A 284 CL /2

Patentansprüche

1. Stoffgemisch, das eine harmonische Platin-Verbindung nach der allgemeinen Strukturformel:

beinhaltet, dadurch gekennzeichnet, das X und Y gleiche oder verschiedene halogenoide Gruppen, wie Chloride sowie Halide bzw. Pseudohalide (Cyanat, Schwefelcyanat, Azide sowie vergleichbare Gruppen) sind, das auch A und B aus der Gruppe gewählt sind, die Ammoniak, NH₃ sowie die geradkettigen aliphatischen Amino-Gruppen beinhaltet, und das diese mit dem Pt durch ihre N-Atome verknüpft sind.

 Stoffgemisch nach Anspruch 1, dadurch gekennzeichnet, daß X sowie Y aus der die Halide und/oder die Pseudohalide enthaltenden Gruppe gewählt sind.

R 70 P 102 6.4.77

_ 15 _

- 3. Stoffgemisch nach Anspruch 2, dadurch gekennzeichnet, daß die Halide Chloride, Bromide, Jodide und Pluoride und daß die Pseudohalide Cyanide, Cyanate, Schwefelcyanate sowie Azide beinhalten.
- 4. Stoffgemisch für die Behandlung von Krebs und bösartigen Geschwulsten nach der allgemeinen Formel

worin X und Y halogenoide Gruppen (gleiche oder auch verschiedene) sowie A und B (gleiche oder verschiedene) aus der Ammoniak, NH₃ sowie geradkettige aliphatische Amino-Gruppen enthaltenden Gruppen gewählt sind, welchen C-substituierte verzweigtkettige aliphatische Amino-Gruppen zugeordnet sind, die mit dem Pt durch ihre N-Atome verknüpft sind, dadurch gekennzeichnet, daß der Aufbau der allgemeinen Formel

Cn R_{2n+1} NH₂

folgt, worin n zwischen 3 bis 9 variiert ist, daß hierin R die gleichen oder unterschiedlichen Gruppen

R 70 P 102 6.4.77

- 16 -

sind und daß diese vorzugsweise alle WasserstoffGruppen sind, daß sie aber auch aus der Gruppe
gewählt sein können, die Wasserstoff, Alkyl, Aryl,
Alkaryl, Aralkyl, Halogene, Pseudohalogene, Hydroxy,
Karbonyl, Formyl, Nitro, Amiod, Amino, Sulfonsäure,
Sulfonsäuresalz, Phenol, Karbolsäuresalz sowie die
substituierten Alkyl-, Aryl-, Alkaryl- und Aralkylgruppen umfaßt.

- 5. Stoffgemisch nach Anspruch 4, dadurch gekennzeichnet, daß X und Y aus der Gruppe der Halide bzw. der Pseudohalide gewählt sind.
- 6. Stoffgemisch nach Anspruch 5, dadurch gekennzeichnet, daß die Halide aus den Chloriden, Bromiden, Iodiden bzw. Fluoriden und die Pseudohalide aus den Cyaniden, Cyanaten, Schwefelcyanaten bzw. Aziden gewählt sind.
- Stoffgemisch nach Anspruch 4, dadurch gekennzeichnet, daß Platin in der Form von Pt⁴⁺ anwesend ist.
- 8. Stoffgemisch nach Anspruch 4, dadurch gekennzeichnet, daß die R-Gruppen die niederen Alkyl-Gruppen und/oder eine Solubilisations-Gruppe beinhalten.

R 70 P 102 6.4.77

- 17 -

- Stoffgemisch nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß A und B 1-Aminohexan, 1-Aminoheptan bzw. 1-Aminooktan sind.
- 10. Verfahren zur Behandlung von ADJ/PC 6 bzw. Walker,
 Tumoren bzw. der P. 388 (ascitischen) lymphotischen
 Leukämie, gekennzeichnet durch die Anwendung eines
 harmonischen Platin-Stoffgemisches nach einem der
 Ansprüche 1 bis 9.
- 11. Verfahren zum Herstellen eines Stoffes nach einem der Ansprüche 1 bis 10, gekennzeichnet durch folgende Verfahrensschritte:
 - a) Einschlämmen von 20 Gramm cis- $\int_{-C_n H_{2n+1}}^{Pt} Cl_2$ (normal-- $C_n H_{2n+1} NH_2$) in 50 ml heißes Wasser,
 - b) Zugeben von 100 ml wäßrigem Wasserstoff-Peroxyd(30%),
 - c) Abkühlen auf Raumtemperatur und anschließend auf 0°C 8 Stunden lang herunterkühlen,
 - d) Waschen des Zwischenerzeugnisses in einem Minimum von Wasser und Weingeist,
 - e) Auflösen des Ewischenerzeugnisses in 15 ml ${\rm H_2O_2}$ (30%) sowie 280 ml Wasser und
 - f) Rekristallisieren lassen, unter Vakuum bei 50° C 8 Stunden lang trocknen.

R 70 P 102

n_10004

- 12. Verfahren zum Herstellen von cis-PtCl₂ (n-C₃H₇NH₂), gekennzeichnet durch folgende Verfahrensschritte:
 - a) Auflösen von 50 Gramm R₂ [PtCl₄] in 500 ml Wasser, Umrühren mit aktiver Kohle und Filtern (Porosität 4),
 - b) dem Filtrat 79 Gramm in 200 ml gelöstes Kaliumjodid zufügen und 5 min. lang rühren,
 - c) 21,5 ml n-Propylamin zugeben, die Mischung bei Raumtemperatur 2 Stunden lang rühren,
 - d) das erhaltene $\left[\text{Pt I}_2 \left(n-c_3H_7\text{NH}_2\right)_2\right]$ in Wasser, sowie Weingeist waschen, unter Vakuum trocknen,
 - e) das Zwischenprodukt in 200 ml Wasser bei 40°C einschlämmen, Silbernitrat (38 Gramm, 100 ml) zugeben sowie 2 Stunden lang rühren,
 - f) Ag I-Niederschlag ausfiltern, in Wasser waschen, das Filtrat auf Silberüberschuß durch Zugabe von einem Kristall NaCl prüfen,
 - g) der silberfreien Lösung 50 ml konzentrierte Salzsäure beimischen und zwei Stunden lang bei 40° C rühren,
 - f) die Schlempe des Rohprodukts 8 Stunden lang abkühlen, filtern sowie den Rückstand mit Wasser, Weingeist waschen und unter Vakuuum trocknen. Das Rohprodukt aus NN Dimethylformamid (500 ml) unter Zugabe von 0,1 N Salzsäure rekristallisieren lassen.

R 70 P 102

- 19 -

- 13. Verfahren zum Herstellen von cis-PtCl₄ (nC₃H₇NH₂)₂, gekennzeichnet durch folgende Verfahrensschritte:
 - a) 10 Gramm cis-PtCl $_2$ (n-C $_3$ H $_7$ NH $_2$) $_2$ in 70 ml Wasser einschlämmen und auf 70° C erhitzen.
 - b) Chlorgas 1 Stunde lang blasenförmig durch die Suspension leiten, bis die Farbe von fahl auf dunkelgelb sich verändert hat.
 - c) Nach Abstellen der Chlorzufuhr überschüssiges Chlorgas durch 5 Minuten Kochen beseitigen.
 - d) 8 Stunden lang auf QO C abkühlen und
 - e) Produkt abfiltern, in Wasser und Weingeist waschen sowie unter Vakuum trocknen.
- 14. Verfahren zum Herstellen von PtCl₂ (OH) ₂ (n-C₃H₇NH₂) ₂, gekennzeichnet durch folgende Verfahrensschritte:
 - a) 13 Gramm cis-PtCl₂ (n-C₃H₇NH₂)₂ in 25 ml Wasser einschlämmen, 0,5 Stunden mit 50 ml Wasserstoff-peroxyd (37%) kochen, bis die Schlempe von fahl in dunkelgelb sich verändert hat,
 - b) 8 Stunden lang auf 0° C abkühlen,
 - c) Filtern, mit Wasser und Weingeist waschen sowie unter Vakuum trocknen.

R 70 P 102 6.4.77

- 20 -

- 15. Verfahren zum Herstellen des n-Oktylamin-Pt IIKomplexes, gekennzeichnet durch folgende Verfahrensschritte:
 - a) Auflösen von 25 Gramm K₂ [PtCl₄] in 250 ml Wasser
 - b) Filtern durch ein Kohlefilter mit Porosität 4,
 - c) dem Filtrat 22,5 ml n-Oktylamin zugeben sowie
 2 Stunden lang rühren,
 - d) den weißen Niederschlag ausfiltern, in Wasser, Weingeist und Äther waschen, sodann unter Vakuum trocknen.

R 70 P 102 6.4.77

2715492

Anmelder: RUSTENBURG PLATINUM MINES LIMITED,
Consolidated Building, Corner of Fox and
Harrison Streets, Johannesburg, Südafrika

Gemisch aus Platin enthaltenden Stoffen, Anwendung des Gemisches für die Behandlung bösartiger Geschwulste sowie Verfahren zur Herstellung des Gemisches

Die Erfindung bezieht sich auf ein Gemisch aus Platin enthaltenden Stoffen, insbesondere auf solche Gemische, die für die chemotherapeutische Behandlung von Krebs bzw. bösartigen Geschwulsten geeignet sind.

Gegenstand der Erfindung ist allgemein ein Gemisch von Stoffen, die eine harmonische Platin-Verbindung nach folgender Strukturformel haben:

hierin bedeuten X und Y halogenoide Gruppen, die gleich oder unterschiedlich sein können. Vorzugsweise handelt es sich bei beiden Gruppen um Chloride; aber es sind auch andere Halogenide oder Pseudohalide wie Cyanat,

6.4.77

- 2 - .

Schwefelcyanat und andere N₃ enthaltende Verbindungen (Azide) denkbar. A und B sind gleiche oder unterschiedliche verzweigte Kettenglieder aus den aliphatischen Amino-Gruppen, welche mit dem Platin durch ihre N-Atome verknüpft sind.

Mehr gezielt ist Gegenstand der Erfindung ein für die Behandlung von Krebs und von bösartigen Geschwulstbildungen gesignetes Gemisch, das eine harmonische Platin-Verbindung nach folgender Strukturformel aufweist:

Hierin bedeuten X und Y halogenoide Gruppen, die gleich oder unterschiedlich sein können. Vorzugsweise handelt es sich bei beiden Gruppen um Chloride; aber es sind auch andere Halogenide oder Pseudohalide wie Cyanid, Cyanat, Schwefelcyanat und andere N₃ enthaltende Gruppen (Azide) möglich. A und B sind gleiche oder unterschiedliche verzweigte Kettenglieder aus den ammoniakalischen bzw. aliphatischen Amino-Gruppen oder C-substituierte verzweigte Kettenglieder aus den aliphatischen Amino-Gruppen. Diese

R 70 P 102 6.4.77

- 3 -

sind mit dem Pt durch ihre N-Atome verknüpft und genügen der allgemeinen Formel

Cn R_{2n+1}NH₂.

Hierin bewegt sich n zwischen 3 und 9. Alle Glieder der R-Gruppe sind entweder gleich oder auch unterschiedlich, vorzugsweise aber Wasserstoff (hydrogen). Die Glieder können auch aus der Gruppe gewählt werden, die Wasserstoff, Alkyl, Aryl, Alkaryl, Aralkyl, Halogen, Pseudohalogen, Hydroxy, Carbonyl, Formyl, Nitro, Amido, Amino, Sulfonsäure, Sulfonsäure-Salz, Karbolsäure, Karbolsäure-Salz sowie substituierte Alkyl-Reste, ferner Aryl, Alkaryl und Aralkyl-Gruppen umfaßt.

Das Platin ist vorzugsweise als Pt⁴⁺ präsent und bildet dadurch eine neutrale Komplexverbindung mit zwei Hydroxyl-und zwei Halogenid-Ionen (Ligands).

Obwohl als R-Gruppen andere als Wasserstoff üblicherweise nicht vorgezogen werden, können solche wie niedere Alkyle (z.B. Methyl oder Athyl) oder eine aus der Solubilisier-Gruppe wie aus der Sulfonsäure-Salz-Gruppe in Betracht kommen. Solubilisier-Gruppen als Substituenten wie Karbol-

R 70 P 102 6.4.77

- A -

säure, Sulfonsäure, Karbolsäure-Salz, Sulfonsäuresalz, E.B. Soda, Potasche oder Lithium-Salz kommen dann in Betracht, wenn die klinischen Bedingungen eine hohe Löslichkeit erfordern.

In dieser Beschreibung und den Patentansprüchen sind unter dem Ausdruck "Halogenoid" immer Halide (Chlorid, Bromid, Jodid oder Fluorid) oder Pseudohalide (Cyanid, Cyanat, Schwefelcyanat oder Azide = N₃ enthaltende Verbindungen) zu verstehen.

Für die Gruppen A und B sind geeignete Verbindungen aus den geradkettigen Amino-Verbindungen z.B. 1-Aminohexan, 1-Aminoheptan bzw. 1-Aminooktan anwendbar.

Nachstehend die Ergebnisse, die bei Anwendung des Transdihydroxo-Komplexes von Pt (IV) erhalten wurden, worin X und Y nach obiger Formel jeweils Chlorid sowie A und B die gleichen Moleküle (Ammoniak) sind:

R 70 P 102 6.4.77

- 5 -

Tumor:

ADJ/PC6

Lösungsmittel:

Erdnu801 /intraperitoneal

Subjekt:

Balb-c weiße Mäuse

Dosis: mgm/kgm	% Inhibition	wirksame Ed 90	Dosis LD 50	Lethal-Dosis TI
12	95.4	∠ 12	135	>11.2
60	97.1			
300	3D/3 +)			
1500	3D/3 +)			

⁺⁾ Drei Todesfälle bei drei Tieren.

Der therapeutische Index (TI) ist demnach größer als 11.25.

Ein bevorzugtes Herstellungsverfahren zum Herstellen von Trans-Dihydroxo-Cis-Chloro-Diamin- (oder Diamine, wobei A=B=NH₃)-Pt(IV)-Komplexen aus dem entsprechenden Pt(II)- Komplex ist folgendes:

20g cis- Pt Cl₂ (normal - C_n H_{2n+1}NH₂)₂ werden in 50 ml heißes Wasser eingeschlämmt, sodann 100 ml wäßriges Wasserstoffxeroxyd (30% W/V)⁺⁾ hinzugefügt. Die Suspension wird 30 min. lang gekocht, auf Raum-

R 70 P 102 6.4.77

- 6 -

⁺⁾ W/V = Gewicht/Volumen

50.745

temperatur abgekühlt und vor dem Filtern eine Nacht lang gekühlt (chilled). Das Rohprodukt wird in einem Minimum von Wasser und Weingeist gewaschen und danach an der Luft getrocknet. Dieses Rohprodukt (Ergebnis 69 Gewichts %) wird aus H₂O₂ (15 ml 30% W/V) in 280 ml Wasser rekristallisiert und unter Vakuum bei 50° C eine Nacht lang getrocknet. Ergebnis 35%.

Herstellen von n-Alkylamin-Platin-IV-Komplexen

$$\begin{bmatrix} \text{PtCl}_4 & (\text{n-RNH}_2)_2 \end{bmatrix} & \text{und} & \begin{bmatrix} \text{PtCl}_2 & (\text{OH})_2 & (\text{n-RNH}_2)_2 \end{bmatrix} \\ \text{wobel } R = C_3H_7 & --- & \text{Propyl} \\ & C_4H_9 & --- & \text{Butyl} \\ & CH_3OC_3H_6 & --- & 3-\text{Methoxypropyl} \\ & C_8H_{17} & --- & \text{Oktyl} \\ \end{bmatrix}$$

Herstellen von cis-PtCl $_2$ (n-C $_3$ H $_7$ NH $_2$) $_2$, dem Ausgangs-stoff zum Bereiten der Test-Präparate.

50 g K₂ [PtCl₄] wurden in 500 ml Wasser zur Lösung gebracht, mit aktiver Kohle umgerührt und über ein Filter mit Porösitätsgrad 4 gefiltert. Sodann wurden 79 g Kaliumjodid in 200 ml Wasser zu dem Filtrat hinzugegeben, 5 min. lang gerührt und danach 21,5 ml n-Propylamin hinzugefügt. Die Mischung wurde bei

R 70 P 102 6.4.77

- 7 -

Raumtemperatur zwei Stunden lang gerührt, gefiltert und das $\left[\text{PtI}_2\left(n-C_3H_7\text{NH}_2\right)_2\right]$ in Wasser und in Äthanol gewaschen und schließlich unter Vakuum getrocknet.

Ergebnis 63,9 g oder 94 %.

Dieser Stoff wurde bei 40°C in 200 ml Wasser eingeschlämmt und dann 38 g bzw. 100 ml einer wäßrigen
Lösung von Silbernitrat zugegeben sowie zwei Stunden
lang gerührt. Ausgefälltes Ag I wurde ausgefiltert,
sodann in Wasser gewaschen und das Filtrat durch Zufügen
von einem Kristal (NaCl (Kochsalz) auf überschüssiges
Silber geprüft. Der silberfreien Lösung wurden 50 ml
konzentrierte Salzsäure zugefügt und zwei Stunden lang
bei 40°C gerührt. Das Rohprodukt in Form einer Schlempe
wurde eine Nacht lang abgekühlt, gefiltert, der Rückstand
in Wasser und Weingeist gewaschen und schließlich
unter Vakuum getrocknet. Das Rohprodukt wurde aus NN
Dimethylformamid (500 ml) unter Zugabe von 1 Liter 0,1 N
Salzsäure rekristallisiert.

Ergebnis: 36,7 g; 80%

IR) Pt-Cl 320 cm⁻¹ (Infrarotspektrum).

R 70 P 102

- 8 -

Herstellen von cis-PtCl4 (nC3H7NH2)2:

10 g cis-PtCl₂ (n-C₃H₇NH₂)₂ wurden in 70 ml Wasser eingeschlämmt und auf 70° C erwärmt. Durch die Suspension wurde eine Stunde lang Chlorgas blasenförmig durchgeleitet; dabei wechselte die Farbe von fahl zu dunkelgelb. Nach Abstellen der Chlorgaszufuhr wurde die Schlempe 5 min. lang gekocht, um überschüssiges Chlorgas zu entfernen; es folgte ein Tiefabkühlen bei 0° C eine Nacht lang. Das Erhaltene wurde gefiltert, in Wasser und Weingeist gewaschen sowie unter Vakuum getrocknet.

Ergebnis: 9,9 g; 83,5% IR 7 Pt-Cl 340 cm⁻¹

Herstellen von PtCl₂(OH)₂(n-C₃H₇NH₂)₂:

13 g cis - PtCl₂ (n-C₃H₇NH₂)₂ in 25 ml Wasser ein-schlämmen und 1/2 Stunde unter Zugabe von 50 mg Wasser-stoffperoxyd (37%) kochen, bis die Schlempe von fahl zu dunkelgelb sich verändert hat. Eine Nacht lang auf 0° C abkühlen, danach filtern, mit Wasser und Weingeist waschen sowie unter Vakuum trocknen:

Ergebnis: 11,6 g; 79% . IR Pt-Cl 333 cm⁻¹.

R 70 P 102 6.4.77

Reaktions-Verlauf

Platin (IV)

cis -Dichlor-trans-Dihydroxobis (n-Propylamin)
Platin (IV)

Elementen-Analyse

	Pt	c	н	N	0	Cl
PtCl ₂ (n-C ₃ H ₇ NH ₂) ₂	50.79	18.75	4.69	7.29	-	18.48
erhalten		18.85	4.74	7.32	-	18.42
PtC14 (n-C3H7NH2) 2	42.87	15.82	3.96	6.15	-	31.20
erhalten		15.90	4.04	6.07	-	30.77
PtCl ₂ (OH) ₂ (n-C ₃ H ₇ N	H ₂) ₂					
	46.66	17.22	4.78	6.70	7.65	16.98
erhalten		7.23	4.82	6.60	7.69	16.75

R 70 P 102

- 10 -

Die gleichen Verfahren wurden auf die n-Butyl- und die 3-Methoxypropyl-Komplexe angewandt:

Elementen-Analyse Pt					
Pt	C	H	N	0	Cl
[PtCl ₂ (n-C ₄ H ₉ NH ₂) ₂] 47.34	23.30	5.34	6.79	-	17.23
[PtCl ₄ (n-C ₄ H ₉ NH ₂) 2 40.39	19.87	4.55	5.80	-	29.39
[PtCl ₂ (OH) ₂ (n-C ₄ H ₇ NH ₂) ₂]					
43.73	21.52	5.38	6.28	7.17	15,92
· -	21.78	5.45	6.34	7.25	15.63

Infrarotspektrum (IR)

Die IR Werte für die nachstehenden Komplexe sind unten aufgeführt:

IR
$$[PtCl_2(n-butylNH_2)_2]$$
 \nearrow Pt-Cl 322 cm⁻¹ $[PtCl_4(n-butylNH_2)_2]$ \nearrow Pt-Cl 330,340,350 cm⁻¹ $[PtCL_2(OH)_2(n-butylNH_2)_2]$ \nearrow Pt-Cl 335 cm⁻¹ a = CH₃OC₃H₆NH₂ Komplexe

R 70 P 102 6.4.77

	Ergebnis
roh PtI ₂ a ₂	90%
rein PtCl ₂ a ₂	71%
IR) PtC1 = 318 cm ⁻¹	
PtCl ₄ a ₂ =	27%
IR) Ptc1 = 330,349 cm ¹⁻	
PtCl ₂ (OH) ₂ a ₂	30%
PtCl ₂ (OH) ₂ a ₂ IR \rightarrow PtCl = 340 cm ⁻¹	

Die IR-Werte zeigen den Oxydations-Status des Platin an. Alle untersuchten Komplexe beruhen auf Pt (IV), für das die typische gespreizte Pt-Cl Frequenz im Bereich von 330-350 cm $^{-1}$ liegt. Andererseits hat das Ausgangsmaterial d.h. cis-PtCl $_2$ (n-C $_n$ H $_{2n+1}$ NH $_2$) $_2$, Pt (II), eine typische gespreizte Pt-Cl Frequenz von etwa 220 cm $^{-1}$.

Elementen-Analyse in %

	Pt	С	н	N	0	Cl
PtCl ₂ a ₂ (errechnet)	43.93	21.62	4.95	6.30	7.20	15.79
(ermittelt)		21.69	4.96	6.37	7.48	15.75
PtCl ₄ a ₂ (errechnet)	37.88	18.64	4.27	5.44	6.21	27.57
(ermittelt)		19.10	4.40	5.52	6.24	25:87
PtCl ₂ (OH) ₂ a ₂ (errechne	t)					
2 2 2	40.81	20.08	5.02	5.86	13.39	14.85
(ermittell)		20.01	5,03	5.90	13.42	14.62

R 70 P 102

- 12 -

Der n-Oktylamin-PtII-Komplex wurde auf eine etwas andere Weise bereitet, nämlich:

25 g K₂ PtCl₄ wurde in 250 ml Wasser und durch einen Kohlefilter mit einer Porösität 4 gefiltert. Dem Filtrat wurden 22,5 ml n-Oktylamin sugegeben und swei Stunden lang gerührt. Danach wurde der erhaltene weiße Niederschlag heraus gefiltert, in Wasser, Weingeist sowie Kther gewaschen und schließlich unter Vakuum getrocknet. Das Rohprodukt wurde wie zuvor aus DMF/O.IN CC1 rekristallisiert.

PtCl₄
$$\stackrel{2^-}{\rightarrow}$$
 +2 Amino $\stackrel{\text{cis}}{\longrightarrow}$ -PtCl₂(a)₂ $\stackrel{2^-}{\rightarrow}$ Pt-Cl = 322 cm⁻¹

Der PtCl₄ a₂- Abkömmling wurde wie oben beschrieben, erhalten.

In nachstehender Tafel sind die bei Anwendung von trans-Dihydroxy-Komplexen erhaltenen Ergebnisse zusammengestellt,

R 70 P 102 6.4.77

- 13 -

wobei sich ein therapeutischer Effekt von größer als 11,2 ergab. Wie bei den weiter oben mitgeteilten Ergebnissen handelt es sich um ADJ/PC6-Tumore, als Träger wurde Erdnußöl verwendet und das Mittel bei Balb-C weißen Mäusen peritoneal angewandt.

Komplex	Lethal- Dosis Ld ₅₀	Inhibitiv. Dosis ID ₉₀	Therapeutischer Index TI		
trans-OH n-Pentyl	665	37.5	17.7		
Cl ₄ n-Pentyl	26.5	<12	>2.2		
trans-OH-Butyl	220	12.5	17.6		
Cl ₄ n-Butyl	56	< 5	11.2		
Cl ₄ 'n=Octyl	270	-	-		
•	•	(< 20% inhibitiv)			

(ZIVE IMILDICITY)

R 70 P 102 6.4.77

- 14 -