• npn Cascode:

ac Schematic

High-Frequency Equivalent

- > Looks intimidating, but extremely easy to solve (just by inspection)
- Also known as *Wideband* (or *Broadband*)

 Amplifier due to its superb frequency response

> Reason:

- The circuit does have an input-output coupling capacitor (C_{u1})
- *Miller Effect Multiplication Factor* (MEMF) of $C_{\mu 1} = (1 A_{v1})$ $A_{v1} = voltage \ gain \ of \ Q_1 = -r_{E2}/r_{E1} = -1$
 - (since Q_1 and Q_2 are biased with the same I_C) \Rightarrow Thus, the *MEMF of C*_{ul} is only 2
- For *NMOS Cascode* stage, the *MEMF of C_{gd1}* of M_1 (*CS stage*) will be $[1 + 1/(1 + \chi_2)]$ (*verify this expression*), which is *even less than 2*

$\succ C_{\pi l}$:

By inspection:

$$R_{\pi 1}^{0} = R_{S} || r_{\pi 1} \implies \tau_{1} = R_{\pi 1}^{0} C_{\pi 1}$$

- $\succ C_{\mu l}$:
 - Can be easily identified as the *Three-Legged Creature*

$$\Rightarrow R_{\mu 1}^{0} = R_{\pi 1}^{0} + r_{E2} + g_{m1} R_{\pi 1}^{0} r_{E2}$$
$$\Rightarrow \tau_{2} = R_{\mu 1}^{0} C_{\mu 1}$$

- $\succ C_{\pi 2}$:
 - **By inspection**:

$$\mathbf{R}_{\pi 2}^{0} = \mathbf{r}_{E2} \quad \Longrightarrow \mathbf{\tau}_{3} = \mathbf{R}_{\pi 2}^{0} \mathbf{C}_{\pi 2}$$

- $> C_{\mu 2}$:
 - **By inspection:**

$$R_{\mu 2}^{0} = R_{L} \quad \Rightarrow \tau_{4} = R_{\mu 2}^{0} C_{\mu 2}$$

- Senerally, for this circuit, $C_{\pi 1}$ is the *dominant* capacitor that determines f_H , since it sees the largest resistance
- The resistance seen by $C_{\mu l}$, which is the largest for CE stage, becomes quite small here, due to the low gain of Q_1
- Note how *simple* it is to use this *technique* even for *multi-stage amplifiers*!

• NMOS 2-Stage Cascaded CS:

- Except C_{sb} , all other capacitors will be present for both devices
- > 6 capacitors
 - \Rightarrow 6 time constants

ac Schematic

High-Frequency Equivalent

- > Note: An exact analysis would have required solving a 6^{th} -order equation in ω !
- Let's perform a *quantitative analysis* of this circuit
- Data: $g_{m1} = 3 \text{ mA/V}$, $g_{m2} = 6 \text{ mA/V}$, $C_{gs1} = 5 \text{ pF}$, $C_{gs2} = 10 \text{ pF}$, $C_{gd1} = C_{gd2} = 1 \text{ pF}$, $C_{db1} = C_{db2} = 2 \text{ pF}$, $R_S = 10 \text{ k}\Omega$, $R_{L1} = 10 \text{ k}\Omega$, and $R_{L2} = 5 \text{ k}\Omega$.
 - C_{gs1} :

$$R_{gs1}^{0} = R_{S} = 10 \text{ k}\Omega \implies \tau_{1} = R_{gs1}^{0}C_{gs1} = 50 \text{ ns}$$