Ejercicio Final Introducción Al LATEX

Autor Wilson Eduardo Jerez Hernández 20181167034 wejerezh@correo.udistrital.edu.co

Profesor Jhonatan Steven Mora Rodriguez.

Universidad Distrital Francisco José de Caldas Facultad de Ciencias y Educación Matemáticas

Índice

		Página
1.	La Ecuación de Clase	3
2.	Los teoremas de Sylow	4

1. La Ecuación de Clase

Antes de hablar de la Ecuación de clase vamos a demostar el siguiente teorema.

Teorema 1.1. Sea G un grupo finito y sea X un G-conjunto finito. si $x \in X$, entonces $|O_x| = [G:G_x]$.

Demostración.

Sabemos que $|G|/|G_x|$ es el número de clases laterales iz1quierdas de G_x en G por el Teorema de Lagrange. Definemos una función biyectiva ϕ de la órbita O_x de x al conjunto de clases laterales izquierdas L_{G_x} de G_x en G. Sea $y \in O_x$. ENtonces existye g en G tal que gx = y. Definamos ϕ de forma que $\phi(y) = gG_x$. Para mostrar que ϕ es 1-1, supongamos que $\phi(y_1) = \phi(y_2)$. Entonces

$$\phi(y_1) = g_1 G_x = g_2 G_x = \phi(y_2),$$

donde $g_1x = y_1$ y $g_2x = y_2$. Como $g_1G_x = g_2G_x$, existe $g \in G_x$ tal que $g_2 = g_1g$,

$$y_2 = g_2 x = g_1 g x = g_1 x = y_1;$$

por lo tanto. la función ϕ es 1-1. Finalmente, debemos mostrar que ϕ es epiyectiva. sea gG_x una clase lateral izquierda. Si gx=y, entonces $\phi(y)=gG_x$. \mathbf{QED}

Sea X un G- conjunto y X_G el conjunto de puntos fijos en X; es decir,

$$X_G = \{x \in X : gx = x \text{ para todo } g \in G\}.$$

Como las órbitas de la acción particionan a X,

$$|X| = |X_G| + \sum_{i=k}^{n} |O_{x_i}|$$

donde x_k, \dots, x_n son representantes de las distintas órbitas no triviales de X (aquellas órbitas que contienen más de un elemento).

Ahora consideremos el caso especial en el que G actua en sí mismo por conjugación, $(g, x) \to gxg^{-1}$. El **centro** de G,

$$Z(G) = \{x : xg = gx \text{ para todo } g \in G\},\$$

es el conjunto de puntos que quedan fijos por conjugación. La órbitas de la acción se llaman **clases de conjugación** de G. Si x_1, \dots, x_k on representantes de cada una de las clases de conjugación no-triviales de G y $|O_{x_1}| = n_1, \dots, |O_{x_k}| = n_k$, entonces

$$|G| = |Z(G)| + n_1 + \dots + n_k$$
.

Cada uno de los subgrupos estabilizadores de uno de los x_i , $C(x_i) = \{g \in G : gx_i = x_ig\}$, se llama subgrupo centralizador de x_i . Por el Teorema 1.1, obtemos la ecuación de clase:

$$|G| = |Z(G)| + [G:C(x_1)] + \cdots + [G:C(x_k]].$$

Una de las conseciuencias de la ecuación de clase es que el orden de cada clase de conjugación divide al orden de G.

Ejemplo 1.1. Es fácil verificar que las clases de conjugación en S_3 son las siguientes:

$$\{(1)\},\ \{(123),(132)\},\ \{(12),(13),(23)\}.$$

La ecuación de clase es 6 = 1 + 2 + 3.

2. Los teoremas de Sylow

Usaremos lo que hemos aprendido sobre acciones de grupo para demostrar los Teoremas de Sylow. Recordemos por un momento los que significa que G actúe en sí mismo por conjugación y cómo las clases de conjugación se distribuyen en el grupo de acuerdo a la ecuación de clase. Un grupo G actúa en si mismo por conjugación de manera que $(g,x) \to gxg^{-1}$. Sean x_1, \dots, x_k representantes de cada una de las distintas clases de conjugación de G que contienen más de un elemento. Entonces la ecuación de clase se escribe como

$$|G| = |Z(G)| + [G : C(x_1)] + \dots + [G : C(x_k)],$$

donde $Z(G) = \{g \in G : gx = xg \text{ para todo } x \in G\}$ es el centro de G y $C(x_i) = \{g \in G : gx_i = x_ig\}$ es el subgrupo centralizador de x_i .