Diagonalisation des opérateurs symétriques compacts

Leçons: 203, 205, 213

Théorème 1

Soit H un Hilbert séparable et $T \in \mathcal{L}(H)$ un opérateur symétrique $(T = T^*)$ compact non nul. Il existe $(e_n)_{n \in \mathbb{N}}$ base hilbertienne de H constituée de vecteurs propres de T. La suite des valeurs propres de T, notée $(\lambda_n)_{n \in \mathbb{N}}$ tend vers 0 et pour tout $x \in H$, $T(x) = \sum_{n=0}^{+\infty} \lambda_n \langle x, e_n \rangle e_n$.

Lemme 2

L'opérateur symétrique compact T admet $\|T\|$ ou $-\|T\|$ pour valeur propre.

Démonstration. Montrons d'abord que $||T||^2$ est valeur propre de T^2 . On a pour tout élément x de H:

$$\begin{split} \|T^2(x) - \|T\|^2 x\|^2 &= \|T^2 x\|^2 + \|T\|^4 \|x\|^2 - 2 \mathrm{Re} \langle T^2 x, x \rangle \|T\|^2 \\ &\stackrel{T = T^*}{=} \|T^2 x\|^2 + \|T\|^4 \|x\|^2 - 2 \|T\|^2 \|Tx\|^2 \\ &\leqslant \|T\|^2 (\|T\|^2 \|x\|^2 - \|Tx\|^2. \end{split}$$

Prenons une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments unitaires tels que $||T(x_n)|| \xrightarrow[n\to+\infty]{} ||T||$. Comme T est compact et (x_n) est bornée, quitte à extraire une sous-suite, on peut supposer que $T(x_n)$ admet une limite y. Donc $T^2(x_n)$ tend vers T(y).

Par ailleurs, l'inégalité ci-dessus nous assure que $(\|T^2x_n-\|T\|^2x_n\|^2)_n$ tend vers 0 car $\|T\|^2(\|T\|^2-\|T(x_n)\|^2)\xrightarrow[n\to+\infty]{}0$. Ainsi, $\|T\|^2x_n\xrightarrow[n\to+\infty]{}T(y)$, de sorte que x_n tend vers $x=\frac{T}{\|T\|^2}y\neq 0$. Comme $T^2x_n\xrightarrow[n\to+\infty]{}T(y)=\|T\|^2x$, on a $T^2(x)=\|T\|^2x$: x est un vecteur propre de T^2 associé à $\|T\|^2$.

Mais $T^2 - ||T||^2 = (T - ||T||)(T + ||T||)$ donc ou bien (T + ||T||)(x) = 0 et -||T|| est valeur propre de T, ou bien $x' = (T + ||T||)(x) \neq 0$ et x' est vecteur propre de T associé à la valeur propre ||T||.

Démonstration (du théorème). Construisons par récurrence une suite $(\lambda_n)_{n\in\mathbb{N}}$ décroissante en module de valeurs propres de T.

On pose $T_1 = T \neq 0$. Selon la première étape, on peut trouver une valeur propre λ_1 de module ||T|| de T. Comme T est compact, l'espace propre $E_1 = \ker(T - \lambda_1 \mathrm{id})$ est de dimension finie donc fermé; d'où, selon le théorème du supplémentaire orthogonal $H = E_1 \oplus E_1^{\perp}$.

Supposons construits $\lambda_1, \ldots, \lambda_n$ valeurs propres de T telles que λ_k est de module $||T_k||$ où $||T_k||$ est la restriction de T à $\left(\bigoplus_{i=1}^{k-1} E_i\right)^{\perp}$ où $E_i = \ker(T - \lambda_i)$ (sous-espace stable par T symétrique comme orthogonal d'un sous-espace stable). En particulier, $|\lambda_n| \ge \cdots \ge |\lambda_1|$.

Si T_{n+1} est nul, la construction s'arrête.

Sinon, T_{n+1} est symétrique compact non nul donc selon le lemme, il admet une valeur propre λ_{n+1} de module $||T_{n+1}||$. C'est également une valeur propre de T et $H = \bigoplus_{i=1}^{n+1} E_i \oplus \bigoplus_{i=1}^{n+1} E_i$, les sommes directes étant orthogonales puisque $\ker(T - \lambda_{n+1}) = \ker(T_{n+1} - \lambda_{n+1}) \subset \bigoplus_{i=1}^n E_i$.

Montrons que les λ_n forment une suite tendant vers 0 et qu'elles sont les seules valeurs propres non nulles de T. Ceci est clair si la récurrence précédente s'arrête puisqu'il existe un $N \in \mathbb{N}$ tel que $\left(\bigoplus_{i=1}^N \ker(T - \lambda_i)\right)^{\perp} \subset \ker T$ donc

$$H = \bigoplus_{i=1}^{N} \ker(T - \lambda_i) \oplus \ker T.$$

Supposons donc $\{\lambda_n, n \in \mathbb{N}\}$ infini. La suite $(|\lambda_n|)$ est décroissante et minorée donc tend vers sa borne inférieure $m \geq 0$. Si $m \neq 0$, prenons pour tout n, un élément (e_n) unitaire tel que $T(e_n) = \lambda_n e_n$. Comme T est compact et $\left(\frac{e_n}{\lambda_n}\right)$ est bornée, quitte à extraire une soussuite, on a $e_n = T\left(\frac{e_n}{\lambda_n}\right) \xrightarrow[n \to +\infty]{} z \in H$. Mais comme les espaces propres associés aux λ_n sont deux à deux orthogonaux, on a pour tout $n \neq m$, $\|e_n - e_m\|^2 = 2$: (e_n) n'étant pas de Cauchy, elle ne peut donc converger.

Ainsi, m = 0 et $|\lambda_n|$ tend vers 0.

Maintenant, si $F=\bigoplus_{n\in\mathbb{N}^*}E_n$, on a $F^\perp\subset\ker T$. En effet, si $T_{|F^\perp}$ était non nul, cet opérateur symétrique compact admettrait une valeur propre λ de module $\|T_{|F^\perp}\|$. Or, pour tout $n,\,\lambda_n$ est de module $\|T_{|E^\perp}\| \ge \|T_{|F^\perp}\|$ donc en faisant tendre n vers l'infini, $\lambda=0$ ce qui est absurde. D'où $F^\perp\subset\ker T$, l'autre inclusion étant également facilement vérifiable.

Conclusion: par le théorème du supplémentaire orthogonal, $H = \overline{\bigoplus_{n \in \mathbb{N}^*} E_n} \oplus \ker T$, les sommes étant orthogonales. Pour tout n, $E_n = \ker(T - \lambda_n)$ est de dimension finie 1 , on en prend une base orthonormée $(e_n^m)_{1 \le m \le N_m}$. En concaténant ces bases, on obtient $(e_n^m)_{n,m}$ base hilbertienne de $\overline{\bigoplus_{n \in \mathbb{N}^*} E_n}$ formée de vecteurs propres de T. Par ailleurs, on peut fixer une base hilbertienne $(e_n^m)_{m \in \mathbb{N}}$ de $\ker T$ (qui est séparable $\ker H$ l'est). La réunion de $\ker H$ annoncée.

Référence: Inspiré de Michel WILLEM (2003). *Analyse fonctionnelle élémentaire*. Cassini, pp. 38-40, mais largement remanié par Salim Rostam (http://perso.eleves.ens-rennes.fr/~srostam/html/Agreg/index.html).

^{1.} $T_{|E_n} = \lambda_n$ id est compact donc $\lambda_n \overline{B_{E_n}(0,1)}$ est compact, ce qui selon le théorème de Riesz ne peut se produire que si E_n est de dimension finie.