3. Matrix Rank

Tuesday, April 11, 2023 4:41 PM

Contents:

- - . How to compute?
- 2) Rank-Nulley Theorem
- 3) Rank & Invertible matrices
- 4) Transpose
 - · Defor & properties
 - . Symmetric matrices

Reference: Strong 223

We define the rank of a family x1,..., The of victors of R"

the dimension of it's span:

 $\text{rank } (x_1, \dots, x_k) \stackrel{\text{def}}{=} \text{ dim } (\text{Span}(x_1, \dots, x_k))$

Rank of a matrix: Definition:

 $M \in \mathbb{R}^{n \times m}$. Let $C_1, \ldots, C_m \in \mathbb{R}^n$ be its columns.

We define:

rank (m) = rank (
$$(1, ..., (m))$$
 = $din(Im(M))$
span of image space = span of radiums of matrix.

Example:

Span(((1,(2,(3))) = ?

 R_k : Span ((C_1,C_2,C_3)) is a subspace of \mathbb{R}^2

- Are they Linearly dependent or Independent?
- are NOT lin. Ind.
- C_1 & C_2 are LI-vectors of \mathbb{R}^2 $C_3 = \frac{1}{2}c_1 + \frac{5}{4}c_2$ (C_1, C_2) is a basis of \mathbb{R}^2 . Thus basis a
 - . Span $((c_1, c_2)) = \mathbb{R}^2$
 - . Span $((c_1, c_2, c_3)) = \mathbb{R}^2$

mak
$$M = dim(Span(Cc_1, c_2, c_3)) = 2$$

Proposition:

Rank of columns = Rente of rows.

Let $M \in \mathbb{R}^{n \times m}$. Let $r_1, ..., r_n \in \mathbb{R}^m$ be rows of M.

Let $r_1, ..., r_n \in \mathbb{R}^n$ be its columns.

Then we have :

nave:
$$rank(x_1,...,x_n) = rank(c_1,...,c_m) = rank(M).$$

$$M = \begin{pmatrix} -\gamma_1 & | \\ -\gamma_2 & | \\ | \\ -\gamma_n \end{pmatrix} = \begin{pmatrix} | & | \\ | & | \\ | & | \\ | & | \end{pmatrix}$$

$$\dim (\operatorname{Span}(\gamma_1 \dots \gamma_n)) = \dim (\operatorname{Span}(\zeta_1, \dots, \zeta_m))$$

a.ka row-column equivalence property or the rank theorem

Proof?

Rook Inhuition from Data Science

Consider a Marin M of size 1000 x 500 :

$$\mathsf{M} = \begin{pmatrix} - \mathsf{r}_1 \\ \vdots \\ - \mathsf{r}_{\mathsf{loo}} \end{pmatrix}$$

What does it mean to say that $\ll rank(M) = 5 \gg ?$

· dim (Span (1,..., 1000)) = 5

(> means to express all those 1000 rows

we actually only need 5 of them.

· there exist 5 rows, which can generate (through livear combinations)
all the 1000 rows

In the sense that there is some dependence between rows & we only need 5 (wrique) rows.

Example:

Imagine now that

- . The rows of M comes pond to Netflish wers
- The column of M corner pond to Netflin's movies
- . The entry Mij is rating of the morne j by the user i, assuming that all the uses have rated the mories.

We claim that this matrix has low rank.

What does that much?

That a lot of similar movies or users.

- · The ratings of a user can be obtained as a linear combination of a small number of « profiles »
- In practise, we don't have access to the full matrix, so we can use this assumption to predict the missing entries.

How do we compute the rank?

For $V_1, \dots, V_k \in \mathbb{R}^n$, and $K \in \mathbb{R} \setminus \{0\}$, $\beta \in \mathbb{R}$ we have

As a consequence, the Gaussian Elimination method keeps the rank of matrix unchanged.

Rank Nullity Theorem

Let $L: \mathbb{R}^m \to \mathbb{R}^n$ be a linear transformation. Then:

Inherition: "Conservation of dimension"

But note that din (Im(L)) = rank (L)

" 2 out of 3 dimensions of TR3 that are mapped to 0."

us solve the Linear system An = 0 characterizing x & Ker (A)

$$\begin{bmatrix} 1 & -1 & 0 & 1 \\ 2 & 0 & 1 & -1 \\ -1 & 5 & 2 & 0 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

1' Augmented Matrix"

$$\begin{pmatrix}
1 & -1 & 0 & 1 & 0 \\
2 & 0 & 1 & -1 & 0 \\
-1 & 5 & 2 & 2 & 0
\end{pmatrix}
\begin{matrix}
R_1 \\
R_2 \\
R_3
\end{matrix}$$

$$\begin{vmatrix} 1 & -1 & 0 & 1 & 0 \\ 0 & 2 & 1 & -3 & 0 \\ 0 & 0 & 0 & 7 & 0 \end{vmatrix} \Rightarrow \begin{cases} x_1 - x_2 + 0x_3 + x_4 = 0 \\ 0 x_1 + 2x_2 + x_3 - 3x_4 = 0 \\ 0 + 0 + 0 + 0 + 7x_4 = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x_1 = -1/2 \times 3 \\ x_2 = -1/2 \times 3 \end{cases}$$

$$x_1 = 0$$

$$x_2 = 0$$

$$x_3 = 0$$

$$\begin{cases} n_1 = -1/2 \text{ ns} \\ n_2 = -1/2 \text{ ns} \\ n_3 = 0 \end{cases}$$

$$\begin{cases} S = \text{Ker } A = \begin{cases} \left(-\frac{1}{2}, -\frac{1}{2}, t, 0\right) \mid t \in \mathbb{R}^2 \\ \text{span} \left(\left(-\frac{1}{2}, -\frac{1}{2}, t, 0\right)\right) \end{cases}$$

$$= \text{span} \left(\left(-\frac{1}{2}, -\frac{1}{2}, t, 0\right)\right)$$

$$\text{will sence as basis of }$$

Dimension of Kernel?

Ly of (Span of single vectors) 1.. n) = 1

Kernel Since only 1 vector -

dim (Ker H) -
By Rank Multipy Theorem:
dim
$$(Im(A)) = Input space - dim (Ker A)$$

dim $(Im(A)) = 4 - 1$
dim $(Im(A)) = 3$

Important Inequalities:

Proposition:

 $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times k}$. Then the following holds: 1.) [Rank (A) < min (m, n)

dim
$$(In(A))$$

Renk $(A,B) \leq min(rank(A), rank(B))$

 $Rank(A) \leq min(m,n)$

$$A = \begin{pmatrix} 1 & 1 & 1 \\ c_1 & c_2 & \dots & C_n \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -7_1 & \dots \\ \vdots & & \\ -7_m & \dots \end{pmatrix}$$

Recall that $\frac{1}{1}$ that $\frac{1}{1}$ and $\frac{1}{1}$ $\frac{1$

rank
$$A = dim(Span(c_1,...,c_n)) \leqslant n$$

= $dim(Span(r_1,...,r_m)) \leqslant m$

Show that (Rank (AB)
$$\leq \operatorname{rank}(A)$$
)

Rank (AB) $\leq \operatorname{rank}(B)$

A $\in \mathbb{R}^{n \times m}$ B $\in \mathbb{R}^{m \times k}$

AB $\in \mathbb{R}^{n \times k}$

Trank (AB) $\leq \min(n, k)$

Permutations:

Permutations:

Permutations:

Permutations:

Permutations:

Permutations:

Tonk (A) $\leq \min(n, m)$ if $n = m$

Tonk (B) $\leq \min(m, k)$ if $n \neq m$

Tonk (B) $\leq \min(m, k)$ if $n \neq m$

Tonk (B) $\leq \min(m, k)$ if $n \neq k$

Tonk (B) $\leq m$.

Rank & Invertible Matrices

Theorem:

Let MER . Then the following are equivalent:

3. Ker (M) =
$$\{0\}$$
.
4. For all $y \in \mathbb{R}^n$, there exists a unique $x \in \mathbb{R}^n$ such that $Mx = y$.

M is hvertible if there enists M-1 such that MM-1 = N-1 M = Idn

Note:

Point 2 and 3 are equivalent Rank Nullity Theoren:

Rank Nullity Theorem:

$$Rank(M) + dim(ker(M)) = n$$

$$\int dim (Ker(M)) = 0$$

Proof:

1) M is invertible
$$\Rightarrow$$
 (3) chin (Ker(M)) = 0

if $x \in \text{Ker}(M)$, Mr = 0

using the assumption that M is invertible.

using the assumption that M is invertible,

Ker M C 803 And Soz C Ker M So Ker M= {0} (=> dim Ker M = 0

- a) rank M = n
- dim (Ker M) = 0
- exists urique x solution Mn=y for any y in TR".

- we have (A)

 Tourk M = n what can we say about Im(M)?

 Im(M) is a subspace of \mathbb{R}^n Tourk (M) = dim Span (....) = dim Im (M) = n

 Trank (M) = \mathbb{R}^n .

 Trank (M) = \mathbb{R}^n .

 Any y in \mathbb{R}^n belong to Im(M), so there exists

 a solution of \mathbb{R}^n .

 Solution is unique because $Ker(M) = \{0\}$.

Let's also prove the other way round to establish equivalence.

For every
$$y \in \mathbb{R}^n$$
, unique κ M $\kappa = y$

for every
$$y \in \mathbb{R}$$
, which is an index $\mathbb{R}^n \longrightarrow \mathbb{R}^n$ with $\widehat{\mathbb{L}}$ canonical Let's define:

L: $y \longrightarrow x$

in terms of composition of capm rees is

Thus,

MOL = Idn

ML = Idn

 \Rightarrow M is invertible and $\stackrel{\sim}{L} = \stackrel{\sim}{M}^{-1}$.

Transpose of a Matrix

Let MERnxm. We define its transpose MTERMXn by

$$(M^{\tau})_{i,j} = M_{j,i}$$

for all $i \in \{1,...,m\}$ and $j \in \{1,...,n\}$

Remarks:

we have
$$(M^T)^T = M$$

. We have
$$(M^T)^T = M$$

. We have $(M^T)^T = M$
. The mapping $M \longrightarrow M^T$ is linear. $(\alpha A)^T = \alpha A^T$

Properties of the Transpose:

Proposition:

For all
$$A \in \mathbb{R}^{n \times m}$$
 9 $\operatorname{rank}(A) = \operatorname{rank}(A^T)$ 3 $\operatorname{rank}(A) = \operatorname{rank}(A)$ 4 $\operatorname{rank}(A) = \operatorname{rank}(A)$ 6 $\operatorname{rank}(A) = \operatorname{rank}(A)$ 7 $\operatorname{rank}(A) = \operatorname{rank}(A)$ 8 $\operatorname{rank}(A)$ 9 $\operatorname{$

$$\left[(AB)^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}} \mathsf{A}^{\mathsf{T}} \right]$$

Symmetric Matrices

Definition: A square matrix $A \in \mathbb{R}^{n \times n}$ is said to be symmetric if:

or, equivalently if $A = A^T$.

Remark: For all ME R^{nxm} the matrix MM^T is symmetric