Uczenie Maszynowe 2

Modele generatywne

dr hab. Piotr Duda, prof. AGH i PCz

Plan wykładu

Wykład 1

Organiczone Maszyny Boltzmanna

Wykład 2

Autoenkodery, VAE, WAE

Wykład 3

• GAN, Normalizing Flows

Wykład 4

Podejście dyfuzyjne, Przegląd "aktualnych" modeli

Wykład 4 – Modele generatywne

- Podejście dyfuzyjne
- Transformery
- Podsumowanie metod
- Przegląd "aktualnych" rozwiązań
- Kolejny krok…

Modele dyfuzyjne $p_{\theta}(x_{t-1}|x_t)$ X_T x_{t-1} $q(x_t|x_{t-1})$ **Forward Diffusion**

Reverse Diffusion

Źródło: https://towardsdatascience.com/diffusion-models-made-easy-8414298ce4da

Koder

Pierwsze przekształcenie:

$$z_1 = \sqrt{1 - \beta_1}x + \sqrt{\beta_1}\epsilon_1$$

Kolejne przekształcenia:

$$z_t = \sqrt{1-\beta_t}z_{t-1} + \sqrt{\beta_t}\epsilon_t,$$
 dla t=2,3,...,T, $\beta_t \in$ [0,1], $\epsilon_t \sim N(0,1)$.

Koder

$$P(z_1|x), P(z_2|z_1), ..., P(z_T|z_{T-1})$$

$$P(z_1, ..., z_T | x) = P(z_1 | x) \prod_{i=2}^{T} P(z_i | z_{i-1})$$

Diffusion kernel

gdzie

a $\epsilon \sim N(0,1)$

$$z_t = \sqrt{\alpha_t}x + \sqrt{1 - \alpha_t}\epsilon,$$

$$\alpha_t = \prod_{i=1}^t 1 - \beta_i \,,$$

Prawdopodobieństwo...

...wygenerowania bardziej zaszumionego obrazu

$$P(z_1|x) \Rightarrow N(\sqrt{1-\beta_1}x,\beta_1I)$$

$$P(z_t|z_{t-1}) \Rightarrow N(\sqrt{1-\beta_t}z_{t-1},\beta_t I)$$

... wygenerowania mniej zaszumionego obrazu

$$P(z_{t-1}|z_t) = \frac{P(z_t|z_{t-1})P(z_{t-1})}{P(z_t)}$$

Dekoder

$$P(z_T) \Rightarrow N(0,I)$$

$$P(z_{t-1}|z_t,\varphi_t) \Rightarrow N(f_t(z_t,\varphi_t),\sigma_t^2I)$$

$$P(x|z_1,\varphi_1) \Rightarrow N(f_1(z_1,\varphi_1),\sigma_1^2 I)$$

$$\underset{\varphi_t}{argmax} \sum_{i=1}^{n} \log P(x_i | \varphi_t)$$

Załóżmy, że $z_{1...T}$ to wielowymiarowa zmienna losowa pochodząca z rozkładu łącznego zmiennych z_1,\dots,z_T . Wówczas

$$\int P(z_{1..T}|x) \log \left(\frac{P(x, z_{1..T}|\varphi_{1,...,T})}{P(z_{1..T}|x)} \right) dz_{1..T} \le \log P(x|\varphi_{1,...,T})$$

$$\int P(z_{1..T}|x) \log \left(\frac{P(x, z_{1..T}|\varphi_{1,...,T})}{P(z_{1..T}|x)} \right) dz_{1..T} \approx \mathbb{E}_{P(z_{1}|x)} \log \left(P(x|z_{1}, \varphi_{1}) \right) - \sum_{i=2}^{T} \mathbb{E}_{P(z_{i}|x)} D_{KL}(P(z_{i-1}|z_{i}, x)) ||P(z_{i-1}|z_{i}, \varphi_{i}))$$

Diffusion loss function

$$L[\phi_{1...T}] = \sum_{i=1}^{I} \left(-\log \left[\operatorname{Norm}_{\mathbf{x}_{i}} \left[\mathbf{f}_{1}[\mathbf{z}_{i1}, \phi_{1}], \sigma_{1}^{2} \mathbf{I} \right] \right] + \sum_{t=2}^{T} \frac{1}{2\sigma_{t}^{2}} \left\| \frac{1 - \alpha_{t-1}}{1 - \alpha_{t}} \sqrt{1 - \beta_{t}} \mathbf{z}_{it} + \frac{\sqrt{\alpha_{t-1}} \beta_{t}}{1 - \alpha_{t}} \mathbf{x}_{i} - \mathbf{f}_{t}[\mathbf{z}_{it}, \phi_{t}] \right\|^{2} \right),$$

$$\operatorname{target, mean of } q(\mathbf{z}_{t-1}|\mathbf{z}_{t}, \mathbf{x}) \quad \text{predicted } \mathbf{z}_{t-1}$$

Modyfikacja diffusion loss

Pamiętając, że

$$z_t = \sqrt{\alpha_t}x + \sqrt{1 - \alpha_t}\epsilon,$$

mamy

$$x = \frac{1}{\sqrt{\alpha_t}} z_t + \frac{\sqrt{1 - \alpha_t}}{\sqrt{\alpha_t}} \epsilon$$

Diffusion loss function

$$L[\phi_{1...T}] = \sum_{i=1}^{I} \left(-\log \left[\operatorname{Norm}_{\mathbf{x}_{i}} \left[\mathbf{f}_{1}[\mathbf{z}_{i1}, \phi_{1}], \sigma_{1}^{2} \mathbf{I} \right] \right] + \sum_{t=2}^{T} \frac{1}{2\sigma_{t}^{2}} \left\| \left(\frac{1}{\sqrt{1-\beta_{t}}} \mathbf{z}_{it} - \frac{\beta_{t}}{\sqrt{1-\alpha_{t}}\sqrt{1-\beta_{t}}} \boldsymbol{\epsilon}_{it} \right) - \mathbf{f}_{t}[\mathbf{z}_{it}, \phi_{t}] \right\|^{2} \right).$$

Pamiętając, że

$$z_t = \sqrt{1 - \beta_t} z_{t-1} + \sqrt{\beta_t} \epsilon_t$$

mamy

$$z_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} z_t + \frac{\sqrt{\beta_t}}{\sqrt{1 - \beta_t}} \epsilon_t$$

Pamiętając, że

$$z_t = \sqrt{1 - \beta_t} z_{t-1} + \sqrt{\beta_t} \epsilon_t$$

mamy

$$z_{t-1} = \frac{1}{\sqrt{1 - \beta_t}} z_t + \frac{\sqrt{\beta_t}}{\sqrt{1 - \beta_t}} \epsilon_t$$

A skoro $z_{t-1} = f_t(z_t, \varphi_t)$ to

$$z_{t-1} = \frac{1}{\sqrt{1-\beta_t}} z_t + \frac{\sqrt{\beta_t}}{\sqrt{1-\beta_t}} g_t(z_t, \varphi_t)$$

Diffusion loss function

$$L[\boldsymbol{\phi}_{1...T}] = \sum_{i=1}^{I} \sum_{t=1}^{T} \left\| \mathbf{g}_{t}[\mathbf{z}_{it}, \boldsymbol{\phi}_{t}] - \boldsymbol{\epsilon}_{it} \right\|^{2}$$

$$= \sum_{i=1}^{I} \sum_{t=1}^{T} \left\| \mathbf{g}_{t} \left[\sqrt{\alpha_{t}} \cdot \mathbf{x}_{i} + \sqrt{1 - \alpha_{t}} \cdot \boldsymbol{\epsilon}_{it}, \boldsymbol{\phi}_{t} \right] - \boldsymbol{\epsilon}_{it} \right\|^{2},$$

Algorithm 18.1: Diffusion model training

Accumulate losses for batch and take gradient step

until converged

Generowanie danych

```
Algorithm 18.2: Sampling

Input: Model, \mathbf{g}_t[\bullet, \phi_t]
Output: Sample, \mathbf{x}
\mathbf{z}_T \sim \operatorname{Norm}_{\mathbf{z}}[\mathbf{0}, \mathbf{I}] \qquad // \text{ Sample last latent variable }
for t = T \dots 2 do
\hat{\mathbf{z}}_{t-1} = \frac{1}{\sqrt{1-\beta_t}} \mathbf{z}_t - \frac{\beta_t}{\sqrt{1-\alpha_t}\sqrt{1-\beta_t}} \mathbf{g}_t[\mathbf{z}_t, \phi_t] \qquad // \text{ Predict previous latent variable }
\epsilon \sim \operatorname{Norm}_{\epsilon}[\mathbf{0}, \mathbf{I}] \qquad // \text{ Draw new noise vector }
\mathbf{z}_{t-1} = \hat{\mathbf{z}}_{t-1} + \sigma_t \epsilon \qquad // \text{ Add noise to previous latent variable }
\mathbf{x} = \frac{1}{\sqrt{1-\beta_1}} \mathbf{z}_1 - \frac{\beta_1}{\sqrt{1-\alpha_1}\sqrt{1-\beta_1}} \mathbf{g}_1[\mathbf{z}_1, \phi_1] \qquad // \text{ Generate sample from } \mathbf{z}_1 \text{ without noise}
```


Struktura transformera Encoder-Decoder

Struktura transformera Encoder-Decoder

Elementy struktur

Struktura transformera Encoder-Decoder

Elementy struktur:

Multi-head attention

Struktura transformera Encoder-Decoder

Elementy struktur:

- Multi-head attention
- Embeddingi

Struktura transformera Encoder-Decoder

Elementy struktur:

- Multi-head attention
- Embeddingi

Uczenie

Porównanie podejść generacyjnych zalety - wady

Metoda	Zalety	Wady
Modele dyfuzyjne	- Wysoka jakość generowanych próbek - Stabilność treningu - Umożliwiają iteracyjną kontrolę nad generacją	- Wysokie wymagania obliczeniowe - Powolny proces generacji (wiele kroków samplingu)
Normalizing Flows	- Łatwość obliczenia prawdopodobieństwa danych - Odwracalność modelu	 Trudność w skalowaniu do bardziej złożonych danych Wymagają bardzo dokładnych parametrów
GAN	- Szybka generacja danych - Wysoka jakość próbek, zwłaszcza obrazów	- Trudność w stabilnym trenowaniu (problem zbalansowania generatora i dyskryminatora) - Mniej intuicyjna kontrola
VAE	- Łatwość implementacji - Naturalne modelowanie zmiennych latentnych	 Generowane próbki mogą być mniej realistyczne niż GAN Rozmyte wyniki dla obrazów
WAE	- Lepsza jakość niż klasyczne VAE - Stabilniejszy trening	 Wciąż słabsza jakość generacji niż GAN Problemy z kosztami obliczeń dla dużych zbiorów danych
RBM	- Prosta implementacja dla małych zbiorów danych - Dobre do modelowania nieliniowych relacji	Problemy ze skalowalnościąSłaba wydajność przy bardziej złożonych danych

Porównanie podejść generacyjnych Zastosowania

Modele dyfuzyjne: Nadają się do aplikacji wymagających wysokiej jakości i elastyczności generacji, np. edycji obrazów.

Normalizing Flows: Używane, gdy obliczenie dokładnego prawdopodobieństwa danych jest istotne (np. w analizie anomalii).

GAN: Idealne do generowania realistycznych obrazów. Popularne w grafice komputerowej i sztuce cyfrowej.

VAE: Sprawdzają się w analizie danych i uczeniu reprezentacji, gdzie zmienne latentne są ważne.

WAE: Dobry wybór dla kompromisu między prostotą a jakością generowanych danych.

RBM: Raczej przestarzałe, dobre dla małych zbiorów danych lub nauki podstawowych zasad generatywnych.

Porównanie podejść generacyjnych Implementacje

Metoda	implementacja	Krótki opis
Modele dyfuzyjne	Stable Diffusion / DALL-E 2	Modele do generacji obrazów wysokiej jakości z opisów tekstowych.
Normalizing Flows	RealNVP / Glow	RealNVP wprowadził odwracalne transformacje, a Glow poprawił ich efektywność.
GAN	StyleGAN / BigGAN	StyleGAN jest używany do realistycznej generacji obrazów twarzy, BigGAN do dużych zbiorów danych.
VAE	Beta-VAE	Modyfikacja klasycznego VAE z regulacją wpływu zmiennej latentnej na generację.
WAE	WAE-GAN / WAE-MMD	Połączenie idei autoenkoderów z dystansem Wassersteina dla lepszej jakości wyników.
RBM	Deep Belief Networks (DBN)	Rozszerzenie RBM do głębszych struktur, używane w analizie danych.

Obszary zastosowań a modele

Zastosowanie	Model / Metoda
Generowanie obrazów	Stable Diffusion
	StyleGAN
Generowanie tekstu	GPT
	VAE-LSTM
Generowanie dźwięku / mowy	WaveNet
Generowanie uzwięku / mowy	DiffWave
Generowanie muzyki	MuseNet
	Jukebox
Obróbka i edycja obrazów	DALL-E
	CycleGAN

Obszary zastosowań a modele

Zastosowanie	Model / Metoda
Uczenie reprezentacji danych	Beta-VAE
Oczenie reprezentacji danych	Deep Belief Networks
Wykrywanie anomalii	Glow
	VAE
Tworzenie 3D	NeRF
	GAN3D
Generowanie wideo	Video Diffusion Models
	MoCoGAN
Symulacje w nauce	Schrodinger Bridge Models
	PhysicsGAN

Przegląd implementacji

Stable Diffusion 3.5

https://stability.ai/news/introducing-stable-diffusion-3-5

StyleGAN

https://github.com/NVlabs/stylegan

GPT

https://github.com/openai/gpt-2

WaweNet

https://deepmind.google/discover/blog/wavenet-a-generative-model-for-raw-audio/

Przegląd implementacji

```
MuseNet
     https://openai.com/index/musenet/
Jukebox
     https://openai.com/index/jukebox/
DALL-E
     https://openai.com/index/dall-e-3/
CycleGAN
     https://junyanz.github.io/CycleGAN/
```

Od czego zacząć?

Documentations

Q Search across all docs

• Hub

Host Git-based models, datasets and Spaces on the Hugging Face Hub.

Hub Python Library

Client library for the HF Hub: manage repositories from your Python runtime.

Inference API (serverless)

Experiment with over 200k models easily using the serverless tier of Inference Endpoints.

 Accelerate Optimum

Transformers

State-of-the-art ML for Pytorch, TensorFlow, and JAX.

Datasets

Access and share datasets for computer vision, audio, and NLP tasks.

Huggingface.js

A collection of JS libraries to interact with Hugging Face, with TS types included.

• Inference Endpoints (dedicated)

Easily deploy models to production on dedicated, fully managed infrastructure.

PEFT

Diffusers

Gradio

Parameter efficient finetuning methods for large models.

State-of-the-art Machine Learning for the web. Run

Transformers directly in your browser, with no

State-of-the-art diffusion models for image and

Build machine learning demos and other web

audio generation in PyTorch.

apps, in just a few lines of Python.

Transformers.js

need for a server.

AWS Trainium & Inferentia

Gdzie szukać teorii?

Simon JD. Prince, *Understanding deep learning*.

MIT press, 2023.

https://udlbook.github.io/udlbook/

Pytania / Komentarze / Uwagi

