Tacmaths: Dérivation

Ewen Le Bihan

2020-09-01

Dans tout le chapitre

- $f:I\to\mathbb{R}$
- I est un intervalle non-trivial¹
- $\bullet \ a \in I$

1 Définition

1.1 Nombre dérivé en un point

Le nombre dérivé de f en a noté f'(a) est la limite $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ si elle existe et est finie

1.2 Fonction dérivée

On dit que f est dérivable sur x pour tout $a \in I$, f'(a) existe, auquel cas on a défini une fonction f' et:

$$f'$$
 $\begin{cases} I & \to \mathbb{R} \\ a & \mapsto f'(a) \end{cases}$.

appellée fonction dérivée de f.

2 Méthode de calcul

2.1 Dérivées usuelles

2.1.1

$$f \begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto x^2 \end{cases}.$$

est dérivable sur \mathbb{R} de dérivée

$$f' \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 2x \end{cases}.$$

 $^{^{1}\}mathrm{Au}$ moins deux éléments

2.1.2 Plus généralement

$$f \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^n \end{cases} .$$

est dérivable sur $\mathbb R$ de dérivée

$$f' \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto nx^{n-1} \end{cases} .$$

2.1.3

$$f \begin{cases} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto \ln x \end{cases} \quad q.$$

est dérivable sur $\mathbb R$ de dérivée

$$f' \begin{cases} \mathbb{R}_+^* \to \mathbb{R} \\ x \mapsto \frac{1}{X} \end{cases} .$$

2.2 Opérations sur les dérivées

Théorème Soient $u, v : I \to \mathbb{R}$ deux fonctions dérivables sur I. Alors:

2.2.1

Soient λ et μ deux réels.

 $\lambda + \mu$ est dérivable et $(\lambda u + \mu v)' = \lambda u' + \mu v'$

2.2.2

 $u\cdot v$ est dérivable de dérivée u'v+v'u

2.2.3

Si v ne s'annule pas, u/v est dérivable de dérivée

$$\frac{u'v - v'u}{v^2}.$$

2.3 Dérivation des fonctions

Notation Si $f \in \mathcal{D}(I, \mathbb{R})^2$, alors on peut noter:

$$\frac{d}{dx}f(x) = f'(x).$$

 $^{^2\}mathcal{D}^n(I,O)$ est l'ensemble des fonctions n-dérivables définies dans O pour $x\in I$

Example

$$\frac{d}{dx}(\cos x) = -\sin x.$$

Théorème: Dérivation des fonctions composées Soient $u:I\to J$ et $v:J\to\mathbb{R}$ dérivable avec I,J des intervalles.

Alors
$$\begin{cases} I \to \mathbb{R} \\ x \mapsto v(u(x)) \end{cases} \quad \text{est dérivable et } \tfrac{d}{dx} \left(v(u(x)) \right) = u'(x) \cdot v'(u(x)).$$

Examples

- $\bullet \ (e^u)' = u'e^u$
- $(\ln u)' = u' \frac{1}{u} = \frac{u'}{u}$
- $(u^2)' = u'2u = 2u'u$

3 Utilisation

3.1 Théorème du signe de la dérivée (TSD)

On suppose que $f \in \mathcal{D}(I, J)$

3.2

Si on a $f' \ge 0$ (resp. f' > 0) sur I alors f est croissante (resp. strictement croissante) sur I.

3.3

Si on a $f' \leq 0$ (resp. f' < 0) sur I alors f est décroissante (resp. strictement décroissante) sur I.

3.4

Si f' = 0 sur I alors f croissante sur I.

Danger L'hypothèse "I intervalle" est importante: (\mathbb{R}^* n'est pas une intervalle)

Example $\begin{cases} \mathbb{R}^* \to \mathbb{R} \\ x \mapsto \frac{1}{x} \end{cases}$

f n'est pas décroissante sur \mathbb{R}^* .

3.5 Signe de la dérivée seconde

3.5.1

f est dite convexe (resp. concave) sur I lorsque C_f est au dessus (resp. en dessous) de toutes ses tangeantes. f est convexe (resp. concave) quand, pour tout $x \in D_{f''}$, $f''(x) \le 0$ (resp. $f''(x) \ge 0$).

3