Magic Square of Perfect Squares

Adrian Suter

December 20, 2017

1 The maths behind it

Each component s_i , $i=1,2,3,\ldots,9$ of the magic square has to be a perfect square number. Say $s_i=n_i^2$ for $n\in\mathbb{Z}$. From [1] we know that the components need to be such that

$$n_i^2 \equiv 1 \pmod{24} \tag{1}$$

Looking at the smallest perfect square numbers and their modulo 24 (see table 1) we can see some sort of a pattern every 12-th integer. Indeed, as

$$(x+12)^2 \mod 24 = (x^2 + 24x + 144) \mod 24$$
 (2)

for any integer x and as

$$(24x + 144) \mod 24 = 0 \tag{3}$$

we can see that

$$x^2 \mod 24 = (x+12)^2 \mod 24 \tag{4}$$

For $x \in [0,11]$ there are exactly four perfect squares fulfilling the condition (1). Therefore we can build four infinite series \mathbb{S}_j , j=1,2,3,4 for which all members fulfill the condition. Let there be t any integer, then

$$S_1 = 1 + 12t = \{1, 13, 25, \ldots\}$$
 (5)

$$S_2 = 5 + 12t = \{5, 17, 29, \ldots\}$$
 (6)

$$S_3 = 7 + 12t = \{7, 19, 31, \ldots\}$$
 (7)

$$S_4 = 11 + 12t = \{11, 23, 35, \dots\}$$
 (8)

The members of these for sets are all and the only perfect square numbers that fulfill the condition (1).

x	x^2	$x^2 \mod 24$	x	x^2	$x^2 \mod 24$
0	0	0	12	144	0
1	1	1	13	169	1
2	4	4	14	196	4
3	9	9	15	225	9
4	16	16	16	256	16
5	25	1	17	289	1
6	36	12	18	324	12
7	49	1	19	361	1
8	64	16	20	400	16
9	81	9	21	441	9
10	100	4	22	484	4
11	121	1	23	529	1

Table 1: Some perfect square numbers and their modulo 24.

The generator functions $\mathbf{2}$

The above four series can be generated using two generator functions $f_+(g)$ and $f_-(g)$ for any integer g.

$$f_{+} = 6 \cdot g + 1$$
 (9)
 $f_{-} = 6 \cdot g - 1$ (10)

$$f_{-} = 6 \cdot g - 1 \tag{10}$$

References

 $[1]\ \ P.\ Zimmermann,\ P.\ Pierrat,\ and\ F.\ Thiriet,\ "Magic squares of squares."\ {\tt http://www.loria.}$ fr/~zimmerma/papers/squares.pdf.