

Ayudantía 2 (Solución parcial)

27 de marzo de 2020

Profesores C. Riveros - J. Salas Tamara Cucumides y Bernardo Barías

Pregunta 1

Para dos valuaciones $\bar{v}=(v_1,\ldots,v_n)$ y $\bar{v}'=(v_1',\ldots,v_n')$, decimos que $\bar{v}\leq\bar{v}'$ si para todo $i\leq n$ se cumple que $v_i\leq v_i'$, considerando el orden entre valores de verdad como $0\leq 1$. También, decimos que una fórmula proposicional $\varphi(\bar{p})$ con variables $\bar{p}=(p_1,\ldots,p_n)$ es monótona si cumple que para toda valuación \bar{v} y \bar{v}' , si $\bar{v}\leq\bar{v}'$ entonces $\varphi(\bar{v})\leq\varphi(\bar{v}')$. En otras palabras, φ es monótona si al cambiar algunos valores de la valuación de 0 a 1, el valor de verdad "solo puede subir o quedar igual". Por ejemplo, $\varphi_1(p,q,r)=(p\wedge q)\vee r$ es monótona pero $\varphi_2(p,q)=\neg p\vee q$ no lo es, ya que $\varphi_2(0,0)=1$ y $\varphi_2(1,0)=0$. Por último, decimos que φ es una $\{\wedge,\vee\}$ -fórmula si solo esta compuesta por variables proposicionales, 0, 1, conjunciones y disyunciones. Por ejemplo, φ_1 es una $\{\wedge,\vee\}$ -fórmula, pero φ_2 no lo es.

- 1. Demuestre que toda $\{\land, \lor\}$ -fórmula es monótona. Para esto demuestre que si dos $\{\land, \lor\}$ -fórmulas φ_1 y φ_2 son monótonas, entonces $\varphi_1 \land \varphi_2$ y $\varphi_1 \lor \varphi_2$ también son monótonas.
- 2. Demuestre que si una fórmula φ es monótona, entonces existe una $\{\land,\lor\}$ -fórmula φ' tal que φ es lógicamente equivalente a φ' .

Solución

- 1. Sean φ_1 y φ_2 dos $\{\land,\lor\}$ -fórmulas monótonas. Sean dos valuaciones v y v' tal que $v' \geq v$
 - Queremos demostrar que $\varphi_1 \vee \varphi_2$ es monótona, es decir, $(\varphi_1 \vee \varphi_2)(v') \geq (\varphi_1 \vee \varphi_2)(v)$. Veamos por casos:
 - Si $(\varphi_1 \vee \varphi_2)(v) = 0$, entonces se cumple que $(\varphi_1 \vee \varphi_2)(v') \geq (\varphi_1 \vee \varphi_2)(v)$.
 - Si $(\varphi_1 \vee \varphi_2)(v) = 1$, entonces al menos una formula φ_i (i = 1, 2) cumple $\varphi_i(v) = 1$. Sin perdida de generalidad, suponemos $\varphi_1(v) = 1$, entonces como φ_1 es monótona, necesariamente $\varphi_1(v') = 1$ y se concluye que $(\varphi_1 \vee \varphi_2)(v') = 1$
 - \blacksquare Ahora de manera análoga, demostraremos que $\varphi_1 \wedge \varphi_2$ es monótona.
 - Si $(\varphi_1 \wedge \varphi_2)(v) = 0$, entonces se cumple que $(\varphi_1 \wedge \varphi_2)(v') \geq (\varphi_1 \wedge \varphi_2)(v)$.
 - Si $(\varphi_1 \wedge \varphi_2)(v) = 1$, entonces entonces ambas $\varphi_1(v) = \varphi_2(v) = 1$. Como las dos formulas son monótonas, necesariamente $\varphi_1(v') = \varphi_2(v') = 1$. Finalmente $(\varphi_1 \wedge \varphi_2)(v') = 1$
- 2. Ahora queremos mostrar que cualquier formula monótona φ es equivalente a una $\{\land, \lor\}$ -fórmula. Para esto necesitamos construir una $\{\land, \lor\}$ -formula φ' tal que $\varphi \equiv \varphi'$. Se propone la siguiente construcción (muy similar a la construcción de DNF vista en clases):

$$\varphi' = \bigvee_{v:\varphi(v)=1} \left(\bigwedge_{p_i:p_i(v)=1} p_i \right)$$

Ahora demostraremos que $\varphi \equiv \varphi'$, para lo cual debemos demostrar que para toda valuación v', $\varphi(v') = 1$ si y solo si $\varphi'(v') = 1$.

- $\blacksquare \ \to \)$ Suponemos que $\varphi(v')=1,$ entonces por construcción se cumplirá $\varphi'(v')=1$
- ullet \leftarrow) Ahora suponemos que $\varphi'(v')=1$. Digamos que

$$\varphi' = \bigvee_{v:\varphi(v)=1} \left(\bigwedge_{p_i:p_i(v)=1} p_i \right) = \bigvee_{i=1}^m C_i$$

Como $\varphi'(v')=1$ entonces existe i tal que $C_i(v')=1$. Veamos que $C_i=\bigwedge_{p_i:p_i(v)=1}p_i$. De aquí se tiene que $v'\geq v$ (pues al menos hace verdaderos a los mismos literales que hacia verdaderos v). Finalmente, como $\varphi(v)=1,\ v'\geq v$ y φ es monótona, necesariamente $\varphi(v')=1$, lo que concluye la demostración.

Pregunta 3

Para las siguientes preguntas considere la siguiente interpretación $\mathcal I$ con predicados binarios $O(\cdot,\cdot)$ y $E(\cdot,\cdot)$:

$$\begin{array}{lll} \mathcal{I}(\mathrm{Dom}) & := & \mathbb{N} \\ \mathcal{I}(O(x,y)) & := & x \leq y \\ \mathcal{I}(E(x,y)) & := & x = y \end{array}$$

Además, decimos que un elemento a en el dominio $\mathcal{I}(Dom)$ es definible bajo la interpretación \mathcal{I} si existe una fórmula en lógica de predicados $\varphi(x)$ tal que $\mathcal{I} \models \varphi(b)$ si, y solo si, b = a.

- 1. Demuestre que el número 0 es definible con la interpretación \mathcal{I} .
- 2. Demuestre que el número 2 es definible con la interpretación \mathcal{I} .
- 3. Demuestre que cualquier número natural $n \in \mathbb{N}$ es definible bajo la interpretación \mathcal{I} , esto es, para todo $n \in \mathbb{N}$ existe una fórmula $\varphi_n(x)$ tal que $\mathcal{I} \models \varphi_n(a)$ si, y solo si, a = n.

Para las formulas anteriores usted solo puede utilizar lógica de predicados $(\forall x, \exists y, \land, \lor, \neg, \ldots)$ y los predicados $O(\cdot, \cdot)$ y $E(\cdot, \cdot)$ asumiendo que esta en el dominio .

Solución

- 1. $Cero(x) = \forall z \ E(x, z)$
- 2. $Uno(x) = \neg Cero(x) \land (\forall z \neg Cero(z) \implies E(x, z))$
- 3. $Dos(x) = \neg Cero(x) \land \neg Uno(x) \land (\forall z (\neg Cero(z) \land \neg Uno(z)) \implies E(x,z))$

Para un caso general, podemos definir la relacion binaria Sucesor(-, -) de tal manera que Sucesor(x, y) = 1 ssi y es el sucesor de x.

■ Sucesor
$$(x,y) = \neg E(x,y) \land O(x,y) \land (\forall z (O(x,z) \land \neg E(x,z)) \implies O(y,z))$$

De este modo, teniendo Cero(x), tendremos que:

$$\bullet \ \operatorname{Uno}(x) = \forall y (\operatorname{Cero}(y) \implies \operatorname{Sucesor}(y,x))$$

Y en general,

$$\varphi_n(x) = \forall y (\varphi_{n-1}(y) \implies \text{Sucesor}(y, x))$$