Manual de Ejercicios: Estimación por Intervalos (Diseño y Análisis de Experimentos)

Facultad de Ingeniería Tampico – UAT Autores:

Dr. Alejandro González Turrubiates Dr. Carlos Alfredo Loredo Hernández Dr. Juan Enrique Bermea Barrios

19 de agosto de 2025

Índice

1.	Introducción	1
2.	Ejercicios	1
3.	Rúbrica de evaluación	4

1. Introducción

Este manual reúne ejercicios sobre **estimación por intervalos** aplicados a contextos típicos de *Ingeniería Industrial*. Cada ejercicio incluye: contexto, datos, guía de pasos, y una *clave rápida* para el profesor.

Clave rápida (solo profesor)

Plantilla para nuevos ejercicios

Ejercicio 1. Estime el promedio μ del proceso X

```
Contexto (breve).

Datos (muestra)
12.1, 11.9, 12.7, 13.0, ...

Actividad
```

- 1. Calcule \bar{x} y s.
- 2. Calcule $SE = s/\sqrt{n}$.
- 3. Seleccione el valor crítico (Z o t).
- 4. Obtenga $ME = \text{crítico} \times SE$ e informe el IC $\bar{x} \pm ME$.

5. Interprete el resultado en contexto.

Clave rápida (solo profesor)

Incluya aquí la media, s, SE, ME e IC al 95 %.

2. Ejercicios

Ejercicio 2. Tiempo de setup en prensa (n=40)

En una celda de manufactura se desea estimar el **tiempo promedio** del proceso: *Tiempo de* setup *en prensa*. Se toma una muestra de tamaño n=40 y se solicita construir un **IC al 95**% para la media.

Datos (muestra)

```
12.7, 11.9, 13.4, 12.1, 12.8, 11.6, 14.0, 12.5, 13.1, 12.0, 11.8, 12.9, 13.3, 12.2, 11.7, 12.6, 13.0, 12.4, 11.5, 12.3, 13.2, 12.7, 11.9, 12.8, 13.5, 12.6, 12.0, 11.8, 12.1, 13.1, 12.5, 11.6, 12.9, 13.0, 12.4, 11.7, 12.3, 13.4, 12.2, 11.9
```

Actividad

- 1. Calcule \bar{x} v s.
- 2. Calcule $SE = s/\sqrt{n}$.
- 3. Seleccione el valor crítico (use t con ql = n 1 y compare con Z = 1.96).
- 4. Obtenga $ME = \text{crítico} \times SE$ e informe el IC $\bar{x} \pm ME$.
- 5. Interprete los resultados para la toma de decisiones (p.ej., SMED, balanceo, estandarización).

Clave rápida (solo profesor)

```
Valores de referencia (usando Z = 1,96): \bar{x} \approx 12,485, s \approx 0,618, SE \approx 0,098, ME \approx 0,191, IC95 % \approx (12,294, 12,676).
```

Ejercicio 3. Tiempo de inspección final por lote (n=50)

En una celda de manufactura se desea estimar el **tiempo promedio** del proceso: Tiempo de inspección final por lote. Se toma una muestra de tamaño n=50 y se solicita construir un **IC** al 95% para la media.

Datos (muestra)

```
12.2, 12.6, 11.8, 12.7, 12.9, 12.4, 11.9, 12.2, 12.8, 12.3, 12.3, 11.6, 11.9, 13.7, 12.3, 12.3, 12.0, 13.2, 12.5, 12.4, 12.1, 12.4, 13.5, 12.8, 12.5, 12.7, 12.7, 12.3, 11.8, 12.1, 13.0, 12.2, 12.5, 13.5, 12.7, 12.9, 12.2, 13.0, 11.4, 13.2, 12.0, 12.7, 11.9, 12.1, 12.6, 13.8, 11.4, 12.6, 13.3
```

Actividad

- 1. Calcule \bar{x} y s.
- 2. Calcule $SE = s/\sqrt{n}$.
- 3. Seleccione el valor crítico (use t con gl = n 1 y compare con Z = 1,96).
- 4. Obtenga $ME = \text{crítico} \times SE$ e informe el IC $\bar{x} \pm ME$.
- 5. Interprete los resultados para la toma de decisiones (p.ej., SMED, balanceo, estandarización).

Clave rápida (solo profesor)

```
Valores de referencia (usando Z = 1,96): \bar{x} \approx 12,496, s \approx 0,553, SE \approx 0,078, ME \approx 0,153, IC95 % \approx (12,343, 12,649).
```

Ejercicio 4. Tiempo de cambio de herramienta CNC (n=39)

En una celda de manufactura se desea estimar el **tiempo promedio** del proceso: *Tiempo de cambio de herramienta CNC*. Se toma una muestra de tamaño n=39 y se solicita construir un **IC al 95** % para la media.

Datos (muestra)

```
12.2, 11.2, 12.4, 12.6, 11.8, 12.5, 12.5, 12.6, 12.5, 11.3, 12.2, 12.9, 12.8, 11.8, 12.0, 12.2, 12.8, 12.8, 12.3, 11.0, 12.9, 13.3, 13.4, 12.5, 12.8, 12.3, 12.2, 12.5, 12.6, 13.1, 13.6, 12.6, 12.6, 11.8, 12.2, 11.4, 11.9, 12.8, 11.6
```

Actividad

- 1. Calcule \bar{x} y s.
- 2. Calcule $SE = s/\sqrt{n}$.
- 3. Seleccione el valor crítico (use t con gl = n 1 y compare con Z = 1.96).
- 4. Obtenga $ME = \text{crítico} \times SE$ e informe el IC $\bar{x} \pm ME$.
- 5. Interprete los resultados para la toma de decisiones (p.ej., SMED, balanceo, estandarización).

Clave rápida (solo profesor)

```
Valores de referencia (usando Z = 1,96): \bar{x} \approx 12,372, s \approx 0,590, SE \approx 0,094, ME \approx 0,185, IC95 % \approx (12,187, 12,557).
```

Ejercicio 5. Tiempo de transporte interno por pallet (n=46)

En una celda de manufactura se desea estimar el **tiempo promedio** del proceso: Tiempo de transporte interno por pallet. Se toma una muestra de tamaño n=46 y se solicita construir un **IC al 95** % para la media.

Datos (muestra)

```
12.3, 13.7, 13.0, 11.6, 11.9, 12.8, 12.7, 12.4, 12.4, 12.7, 13.1, 12.4, 13.4, 13.3, 12.1, 13.0, 12.2, 12.2, 12.9, 12.8, 10.9, 12.4, 12.9, 11.2, 13.2, 12.7, 13.1, 11.8, 12.8, 12.7, 12.2, 11.6, 12.6, 13.3, 12.3, 12.8, 11.2, 12.8, 12.2, 12.4, 11.8, 13.6, 12.0, 12.3, 12.8, 12.4
```

Actividad

- 1. Calcule \bar{x} y s.
- 2. Calcule $SE = s/\sqrt{n}$.
- 3. Seleccione el valor crítico (use t con gl = n 1 y compare con Z = 1.96).
- 4. Obtenga $ME = \text{crítico} \times SE$ e informe el IC $\bar{x} \pm ME$.
- 5. Interprete los resultados para la toma de decisiones (p.ej., SMED, balanceo, estandarización).

Clave rápida (solo profesor)

```
Valores de referencia (usando Z = 1,96): \bar{x} \approx 12,498, s \approx 0,621, SE \approx 0,091, ME \approx 0,179, IC95 % \approx (12,318, 12,677).
```

Ejercicio 6. Tiempo de verificación dimensional (n=45)

En una celda de manufactura se desea estimar el **tiempo promedio** del proceso: Tiempo de verificación dimensional. Se toma una muestra de tamaño n=45 y se solicita construir un **IC al 95**% para la media.

Datos (muestra)

```
13.2, 11.8, 12.6, 13.1, 11.5, 13.0, 13.4, 12.9, 12.4, 12.9, 13.5, 12.4, 11.8, 12.6, 11.7, 12.2, 13.2, 13.3, 12.3, 13.0, 13.1, 12.0, 12.8, 10.9, 12.4, 12.0, 12.2, 12.0, 13.4, 12.1, 12.2, 12.6, 12.5, 12.5, 13.4, 13.9, 12.9, 12.8, 11.8, 13.0, 12.1, 12.4, 13.0, 13.3, 13.2
```

Actividad

- 1. Calcule \bar{x} y s.
- 2. Calcule $SE = s/\sqrt{n}$.
- 3. Seleccione el valor crítico (use t con gl = n 1 y compare con Z = 1.96).
- 4. Obtenga $ME = \text{crítico} \times SE$ e informe el IC $\bar{x} \pm ME$.
- 5. Interprete los resultados para la toma de decisiones (p.ej., SMED, balanceo, estandarización).

Clave rápida (solo profesor)

```
Valores de referencia (usando Z = 1,96): \bar{x} \approx 12,607, s \approx 0,624, SE \approx 0,093, ME \approx 0,182, IC95 % \approx (12,424, 12,789).
```

Ejercicio 7. Tiempo de soldadura por punto (n=47)

En una celda de manufactura se desea estimar el **tiempo promedio** del proceso: *Tiempo de soldadura por punto*. Se toma una muestra de tamaño n=47 y se solicita construir un **IC al 95**% para la media.

Datos (muestra)

```
12.2, 13.4, 12.0, 12.5, 12.2, 12.8, 12.0, 13.5, 13.2, 13.1, 11.6, 11.9, 12.6, 12.6, 11.6, 12.5, 11.2, 12.5, 11.8, 12.9, 12.3, 12.6, 12.1, 13.1, 12.8, 12.5, 12.5, 12.2, 13.3, 12.6, 12.1, 12.3, 12.0, 12.9, 11.8, 12.4, 12.8, 12.6, 12.2, 12.2, 12.8, 12.7, 12.8, 12.9, 13.0, 12.3, 12.7
```

Actividad

- 1. Calcule \bar{x} y s.
- 2. Calcule $SE = s/\sqrt{n}$.
- 3. Seleccione el valor crítico (use t con gl = n 1 y compare con Z = 1.96).
- 4. Obtenga $ME = \text{crítico} \times SE$ e informe el IC $\bar{x} \pm ME$.
- 5. Interprete los resultados para la toma de decisiones (p.ej., SMED, balanceo, estandarización).

Clave rápida (solo profesor)

```
Valores de referencia (usando Z = 1,96): \bar{x} \approx 12,481, s \approx 0,495, SE \approx 0,072, ME \approx 0,141, IC95 % \approx (12,339, 12,622).
```

3. Rúbrica de evaluación

La siguiente rúbrica aplica a todos los ejercicios de esta sección.

Criterio	Descripción	Puntos
Cálculo de la media muestral	Correcto cálculo de la media de los datos.	10
Cálculo de la desviación estándar muestral	Obtención adecuada de la desviación estándar.	10
Cálculo del error estándar (SE)	Determinación correcta de $SE = s/\sqrt{n}$.	10
Selección del valor crítico	Elección correcta entre Z o t y justificación.	15
Margen de error (ME)	Cálculo correcto del margen de error.	10
Construcción del interva- lo de confianza	Intervalo calculado correctamente.	20
Interpretación de resultados	Explicación contextualizada en Ingeniería Industrial.	15
Presentación y orden	Trabajo ordenado, claro y legible.	10

Cuadro 1: Rúbrica de evaluación (100 puntos).