

Introduction to Mapping | Occupancy Grid Mapping

Prepared By: Youssef Hindawi

By the end of this Presentation, you will be able to:

- Know occupancy grid mapping and its data type
- Introduction to occupancy grid mapping algorithm
- Relate between occupancy grid mapping and use with Bayesian filter
- Know the steps involved for occupancy grid mapping
- Know different types of mapping and its performance

Mapping | Introduction

- Estimating Map with known poses
- Estimating Map and the poses (SLAM)
- Mapping is a process for building a map
- Consideration for mapping
 - Map representation
 - Available sensors
 - Purpose of mapping

Mapping | Introduction

Mapping | Introduction

Mapping | Challenges

- Size
- Noise in sensors
- Perceptional Ambiguity
- Cycles
- Motion involved
- Change over time

Mapping | Types of Map

- Metric Map
- Topological Map
- Semantic Map

Mapping | Metric Map

A location is represented as a coordinate.

Mapping | Topological Map

Part of SEPTA Train Map

Locations are represented as nodes and their connectivity as arcs.

Mapping | Topological Map

Only the connectivity between nodes matter.

Mapping | Topological Map

Graph representation is useful for path planning.

Mapping | Semantic Map

Semantic map is a map with labels.

Example

[cm]
$$0 < x \le 10$$
 $i = 1$ [index] $10 < x \le 20$ $i = 2$ $20 < x \le 30$ $i = 3$ $i = 3$

Example

[cm]
$$0 < x \le 7$$
 $i = 1$ [index] $7 < x \le 14$ $i = 2$

Example

$$i = ceil(x/r)$$

Mapping | Grid Maps

- Occupancy grid mapping represents discrete approximation of the map!
- Discretize the world into cells
- Each cell is assumed to be occupied or free space
- Non-parametric model
- Large maps require substantial memory resources
- Do not rely on a feature detector
- Grid structure is rigid

Occupancy: binary R.V.

$$m_{x,y}$$
: {free, occupied} \rightarrow { 0, 1}

Occupancy grid map

: fine-grained grid map where an occupancy variable associated with each cell

···			<u>x</u>		
	m _{1,1}	$m_{1,2}$	$m_{1,3}$		
ν					
				$m_{x,y}$	

: A Bayesian filtering to maintain a occupancy grid map.

ightharpoonup Recursively update $p(m_{x,y})$ for each cell

Measurement

a range sensor

a range sensor

• Measurement $z \sim \{0,1\}$

Measurement model

$$p(z|m_{x,y})$$

 $p(z=1|m_{x,y}=1)$: True **occupied** measurement

 $p(z=0|m_{x,y}=1)$: False **free** measurement

 $p(z=1|m_{x,y}=0)$: False **occupied** measurement

 $p(z=0|m_{x,y}=0)$: True **free** measurement

• Measurement $z \sim \{0, 1\}$

Measurement model

$$p(z|m_{x,y})$$

[Review – Into Probability] $P(A^{C}|B) = 1 - P(A|B)$

$$p(z = 1|m_{x,y} = 1)$$

$$p(z = 0|m_{x,y} = 1) = 1 - p(z = 1|m_{x,y} = 1)$$

$$p(z = 1|m_{x,y} = 0)$$

$$p(z = 0|m_{x,y} = 0) = 1 - p(z = 1|m_{x,y} = 0)$$

Measurement Model

 $p(z|m_{x,y})$

Map

Posterior Map

Measurement Model

$$p(z|m_{x,y})$$

Prior Map

Posterior
$$n(z|m,...)n(m,...)$$

$$p(m_{x,y}|z) = \frac{p(z|m_{x,y})p(m_{x,y})}{p(z)}$$

Evidence

Review

- Occupancy grid data type and how it is represented in ROS
- Occupancy grid resolutions
- Probability for grid maps
- Introduction to Bayesian filter to the map

By the end of this session you should be able to:

- Know how continuous maps are represented using grid maps
- Probabilities represented for occupied and unoccupied region
- Types of map
- Known position of the robot