Name:

M339D=M389D Introduction to Actuarial Financial Mathematics
University of Texas at Austin

Practice Problems for In-Term One

Instructor: Milica Čudina

Notes: This is a closed book and closed notes exam. This exam is graded out of 100 points.

Time: 50 minutes

1.1. TRUE/FALSE QUESTIONS.

Problem 1.1. (2 pts) A (long) put is a short position with respect to the underlying asset price.

Problem 1.2. It is possible for the buyer and the writer of the same option to end up having the same profit on the exercise date.

Problem 1.3. (2 points) Consider a one-year, \$45-strike European call option and a one-year, \$45-strike European put option on the same underlying asset. You observe that the time—0 stock price equals \$40 while the time—1 stock price equals \$50. Then, both of the options are out-of-the-money at expiration. *True or false?*

Problem 1.4. (2 points) An agent is **only** allowed to long a forward contract if he/she is willing to take physical delivery of the underlying asset.

Problem 1.5. (2 points) Denote the continuously compounded, risk-free interest rate by r and denote the equivalent annual effective interest rate by i. Then, $\ln(1+i) = r$. True or false?

Problem 1.6. (2 pts) Two dice are rolled, the single most probable sum of the numbers of the upturned faces is 7. *True or false?*

Problem 1.7. (2 pts) Consider a portfolio consisting of the following four European options with the same expiration date T on the underlying asset S:

- one long call with strike 40,
- two long calls with strike 50,
- one short call with strike 65.

Let S(T) = 69. Then, the payoff from the above position at time T is less than 60.

1.2. MULTIPLE CHOICE QUESTIONS.

Problem 1.8. (5 pts) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be two functions given by

$$f(x) = 2x - 10$$

and

$$g(x) = \begin{cases} \min(x,7) & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

Then, g(f(7)) equals ...

- (a) -4
- (b) 0
- (c) 4
- (d) 7
- (e) None of the above

Problem 1.9. Source: Sample P exam, Problem #176.

In a group of health insurance policyholders, 20% have high blood pressure and 30% have high cholesterol. Of the policyholders with high blood pressure, 25% have high cholesterol. A policyholder is randomly selected from the group. Calculate the probability that a policyholder has high blood pressure, **given** that the policyholder has high cholesterol.

- (a) 1/6
- (b) 1/5
- (c) 1/4
- (d) 2/3
- (e) 5/6

Problem 1.10. Harry plays a simple lottery in which the winnings are distributed as follows:

- \$5 with probability 0.2,
- \$10 with probability 0.4,
- \$20 with probability 0.4.

It turns out that Harry has to pay a fee to collect his winnings. If the actual amount he wins is smaller than \$9, then the fee is defined to equal the amount that Harry won – thus, he walks away with nothing. If the actual amount he wins is between \$9 and \$15, he does not have to pay anything in fees and gets a bonus of \$4. If the actual amount he wins is larger than \$15, then he pays the \$15-fee and pockets the remainder. What is the expected value of the net amount Harry collects?

- (a) 3
- (b) 6.4
- (c) 7.6
- (d) 15
- (e) None of the above.

Problem 1.11. Hermione sells short one share of a non-dividend-paying stock. The stock is currently valued at \$80 per share. The continuously compounded risk-free interest rate is 0.04. Hermione intends to close the short sale in one year. What is the final stock price for which Hermione will break even?

Problem 1.12. The current market price of widgets is \$4 per widget. The widget factory plans to sell their next batch of 100 widgets in half a year. The total aggregate costs of production of widgets will be equal to \$350.

The factory enters 100 short forward contracts on widgets for delivery in half a year. The forward price is \$4.20 per widget.

What is the factory's profit if the final price of widgets in half a year ends up being \$4.40?

- (a) 30
- (b) 50
- (c) 70
- (d) 90
- (e) None of the above.

Problem 1.13. Maryam bakes batches of cupcakes for a cupcake convention. She buys forward 21 pounds of raspberries from a local farmer at the forward price of \$5.60 per pound.

She projects to bake 336 cupcakes and sell each for \$3. The total and aggregate non-raspberry costs of baking the cupcakes are \$200.

If the market price of raspberries on the day of the cupcake convention is \$5.40, what is Maryam's profit?

- (a) \$690.40
- (b) \$694.60
- (c) \$890.40
- (d) \$894.60
- (e) None of the above.

Problem 1.14. The writer of a call option has ...

- (a) an obligation to sell the underlying asset at the strike price.
- (b) a right, but **not** an obligation, to sell the underlying asset at the strike price.
- (c) an obligation to buy the underlying asset at the strike price.
- (d) a right, but **not** an obligation, to buy the underlying asset at the strike price.
- (e) None of the above.

Problem 1.15. (5 points) Assume the Capital Asset Pricing Model holds.

You are given the following information about stock X, stock Y, and the market:

- The required return and volatility for the market portfolio are 0.10 and 0.25, respectively.
- The required return and volatility for the stock X are 0.08 and 0.4, respectively.
- The correlation between the returns of stock X and the market is -0.2.
- The volatility of stock Y is 0.25.
- The correlation between the returns of stock Y and the market is 0.4.

Calculate the required return for stock Y.

- (a) About 0.075.
- (b) About 0.08.
- (c) About 0.085.
- (d) About 0.09.
- (e) None of the above.

Problem 1.16. (5 points) For a certain stock, you are given that its expected return equals 0.0944 and that its β equals 1.24. For another stock, you are given that its expected return equals 0.068 and that its β equals 0.8. Both stocks lie on the **Security Market Line (SML)**. What is the risk-free interest rate r_f ?

- (a) About 0.02
- (b) About 0.025
- (c) About 0.03
- (d) About 0.035
- (e) None of the above.

Problem 1.17. (5 points) In a market, the risk-free interest rate is given to be 0.04.

Consider an investment I in this market, whose Sharpe ratio is 0.42. You construct an equally weighted portfolio consisting of the investment I and the risk-free asset. The expected return of this portfolio is 0.10.

You decide to rebalance your portfolio so that one quarter of your wealth gets invested in the investment I and the remainder is invested in the risk-free asset. What is the volatility of this new portfolio?

- (a) 0.0625
- (b) 0.0714
- (c) 0.1225
- (d) 0.1625
- (e) None of the above.

Problem 1.18. (5 points) According to your model, the economy over the next year could be *good* or *bad*. You are a pessimist and believe that the economy is twice as likely to be *bad* than *good*.

Consider two assets, X and Y, existing in this market. If the economy is good the return on asset X is 0.12, and the return on asset Y is 0.11. If the economy is bad the return on asset X is -0.03 and the return on asset Y is -0.01.

You construct a portfolio P using assets X and Y so that the portfolio's expected return equals 0.025.

Calculate the volatility of this portfolio's return.

- (a) 0.0458
- (b) 0.0512
- (c) 0.0584
- (d) 0.0637
- (e) None of the above.

Problem 1.19. (5 points) Consider two assets X and Y such that:

- their expected returns are $\mathbb{E}[R_X] = 0.10$ and $\mathbb{E}[R_Y] = 0.08$;
- their volatilities are $\sigma_X = 0.25$ and $\sigma_Y = 0.35$;
- the correlation coefficient of their returns is $\rho_{X,Y} = -1$.

You are tasked with constructing a portfolio consisting of shares of X and Y with a risk-free return. What should the weight w_Y given to asset Y be?

- (a) 5/12
- (b) 1/2
- (c) 7/12
- (d) Such a weight does not exist.
- (e) None of the above.

Problem 1.20. (5 points) For stock S_1 , you are given that its expected return equals 0.08 and its β is 1.22. For stock S_2 , you are given that its expected return equals 0.05 and its β is 0.56. Both of these stocks lie on the *Security Market Line*. For stock S_3 , you are given that its expected return equals 0.07 and its β is 0.7. What is the α of stock S_3 ?

- (a) 0
- (b) 0.0137
- (c) 0.0245
- (d) 0.0455
- (e) None of the above.

Problem 1.21. A market index is currently trading at \$1,000. Which of the following options is/are in the money? More than one answer can be true. You get the credit if you circled all acceptable answers and **none** of the incorrect ones.

- (a) \$1,500-strike put
- (b) \$900-strike put
- (c) \$1,250 strike call
- (d) \$950 strike call
- (e) None of the above.

Problem 1.22. Let the current price of a non-dividend-paying stock equal 100. The forward price for delivery of this stock in 3 months equals \$101.26

Consider a \$90-strike, six-month put option on this stock whose premium today equals \$2.22. What will the profit of this long put option be if the stock price at expiration equals \$96?

- (a) About \$2.28 loss.
- (b) About \$2.22 loss.
- (c) About \$2.28 gain.
- (d) About \$2.22 gain.
- (e) None of the above.

Problem 1.23. (5 points) You are tasked with buying oranges in the market in grove A, transporting the oranges to a juice factory in the market B, and selling the oranges to the juice factory in the market B. You want to hedge. Which of the following would be a satisfactory hedge?

- (a) Long a call in market A and long a put in market B
- (b) Short a call in market A and long a put in market B
- (c) Long a call in market A and short a put in market B
- (d) Short a call in market A and short a put in market B
- (e) None of the above.