Data-Driven Optimization Technique (Inverse Optimization) for **Recommender Systems**

Mahsa Moghaddass, Ph.D.

April, 2020

Problem Statement

Methodology

Data & Experiments

Conclusion

Problem Statement

Methodology

Data & Experiments

Conclusion

What is Inverse Optimization (IO)?

Novel Application in Recommender Systems

Motivation

Problem Statement

0000

- ▶ We **personalize** the customer' recommendations.
- Recommending items of interests will:
 - Increase Customer Engagement and satisfaction
 - Increase **Business** profits and bring **Values** to the system.

Methodology

Optimization Problem

Problem Statement

- **Objective:** Selects the **combination of items** that maximizes the total values of the chosen items.
- Prediction model:

(user features, user/item weighting matrix, item features)

Maximize: (weight) * user-items ratings

S.t: Sum (user-items ratings (1)) ≤ # of Demand(items)

Recommending user-items ratings $\in \{0,1\}$ items of interests

Inverse Optimization finds user/item weighting matrix

Data & Experiments

Data Analysis

- ▶ Total # of users = 116
- ▶ User Attributes (45): Smoking, Drink level, Dress preferences, Budget, Payment methods, etc.
- ► Total # of Restaurants = 130
- ▶ Item Attributes (33): Alcohol area, Smoking area, Dress code, Price, Parking area, etc.
- Training finds matrices.
- ▶ **Testing** uses the matrices in the unused data for prediction.
- The averages of predicted ratings will be compared to the actual ratings.

00000

Data preprocessing (Python)

- Data cleaning.
- Identifying and handling the missing values.
- Feature reduction and selection.
- Encoding the categorical data.
- Splitting data(train,test 80/20)

Training to Find Matrices

► Cutting-Plane Algorithm vs LP-Relaxation Heuristic.

Testing to do Predictions

Problem Statement

Accuracy tells if the recommender system is able to predict those items that have already been rated.

Data & Experiments

00000

Size of Instances	Avg % of Finding Actual Items			
Number of Traning Users	Cu-Pl Sum	Heur Sum	Cu-Pl Min-Max	Heur Min-Max
5 users	71 %	78 %	69 %	70 %
10 Users	81 %	87 %	80 %	82 %
15 Users	86 %	83 %	85 %	80 %
20 Users	81 %	73 %	81 %	76 %
25 Users	87 %	86 %	87 %	76 %

Illustrating Accuracy (C++ using Concert Technology (CPlex).)

Conclusion

Results

- Cutting plane and heuristic with norm 1 performs better than norm infinity.
- The CPU time decrease using heuristics.
- ▶ The average of optimality gaps differences between predicted and actual rated items are pretty small.
- ▶ IO for RS aims to optimize the accuracy(more than 70 %).

- ▶ IO is a data-driven technique for prediction.
- It optimizes decision-making using historical data.

Inverse Optimization	Machine learning		
Cutting-plane algorithm, Heuristics	Collaborative filtering algorithms		
Users are optimizing decisions	Users are satisfied with decisions		
Finding the matrix needs small data	Finding the matrix needs large datasets		
There are no prior item ratings	Some items have already been rated		

Similarities:

- They are data driven techniques for predictive analytics.
- They learn from historical data and similarities with past users
- They can be applied for a real time case.

Application Directions & Challenges

- Considering dynamic behavior of users.
- Using feature selections.

- Adding time, location constraints.
- Clustering users in data sets.
- Comparing IO with machine learning techniques.

Challenges for big-data and real-case

To make it faster for a robust request we can:

Cluster data.

- Use data in the same cluster with the new customer.
- train the model to learn matrix.
- Recommend based on the optimal items to the customer.

