The University of Texas at Austin Department of Electrical and Computer Engineering

EE381K: Convex Optimization — Fall 2019

Lecture 18

Aryan Mokhtari

Monday, November 4, 2019.

Goal: In this lecture, we talk about the Lagrangian, Lagrange multipliers, (Lagrangian) dual function, and dual problem.

1 The Lagrangian

Consider the following optimization problem in the standard form: (not necessarily convex)

min:
$$f_0(\mathbf{x})$$
 (1)
s.t.: $f_i(\mathbf{x}) \le 0, \quad i = 1, \dots m$
 $h_i(\mathbf{x}) = 0, \quad i = 1, \dots p$

with $\mathbf{x} \in \mathbb{R}^n$, domain \mathcal{D} , and optimal value p^* .

The Lagrangian $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ corresponding to Problem (1) is defined as

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i h_i(\mathbf{x})$$

where $\lambda = [\lambda_1, \dots, \lambda_m] \in \mathbb{R}^m$ and $\boldsymbol{\nu} = [\nu_1, \dots, \nu_p] \in \mathbb{R}^p$.

- 1. each λ_i corresponds to an inequality constraint
- 2. each ν_i corresponds to an equality constraint
- 3. λ and ν are called dual variables or Lagrange multiplier vectors
- 4. L can be interpreted as weighted sum of objective and constraint functions

2 The (Lagrange) Dual Function

We define the (Lagrange) dual function of Problem (1) is defined as the minimum value of the Lagrangian over the primal variable \mathbf{x} , i.e.,

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) := \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) := \inf_{\mathbf{x} \in \mathcal{D}} \left(f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}) + \sum_{i=1}^p \nu_i h_i(\mathbf{x}) \right)$$

Note: The dual function $g(\lambda, \nu)$ can be interpreted as the pointwise infimum of a family of affine functions of (λ, ν) , and therefore, it is a concave function. (Even if Problem (1) is not convex!)

Note: For some choices of (λ, ν) the dual function value could be $-\infty$.

2.1 Lower bound property

The dual function yields lower bounds on the optimal value p^* of the primal problem (when $\lambda \geq 0$). For any $\lambda \geq 0$ and any ν we have $g(\lambda, \nu) \leq p^*$. Why? If $\tilde{\mathbf{x}}$ is feasible and $\lambda \geq 0$ then

$$f_0(\tilde{\mathbf{x}}) \geq L(\tilde{\mathbf{x}}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \geq \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = g(\boldsymbol{\lambda}, \boldsymbol{\nu})$$

by minimizing over all feasible $\tilde{\mathbf{x}}$ we obtain that $p^* \geq g(\lambda, \nu)$.

3 Dual problem

The Lagrange dual problem of Problem (1) is defined as

$$\max: \quad g(\lambda, \nu)$$
s.t.: $\lambda \geq 0$

- 1. Finds best lower bound on p^* , obtained from Lagrange dual function
- 2. Any feasible point of this problem gives a lower bound for p^*
- 3. A convex optimization problem; optimal value denoted d^*

4 Examples of dual function and dual problem

Standard form LP: The standard form of LP is given by

$$\begin{aligned} &\min: & & \mathbf{c}^{\top} \mathbf{x} \\ &\mathrm{s.t.:} & & & \mathbf{A} \mathbf{x} = \mathbf{b}, & & & \mathbf{x} \geq \mathbf{0} \end{aligned}$$

The Lagrangian in this case is defined as

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \mathbf{c}^{\top} \mathbf{x} - \boldsymbol{\lambda}^{\top} \mathbf{x} + \boldsymbol{\nu}^{\top} (\mathbf{A} \mathbf{x} - \mathbf{b})$$
$$= (\mathbf{c} - \boldsymbol{\lambda} + \mathbf{A}^{\top} \boldsymbol{\nu})^{\top} \mathbf{x} - \boldsymbol{\nu}^{\top} \mathbf{b}$$

Hence, the dual function $g(\lambda, \nu)$ is

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = \begin{cases} -\mathbf{b}^{\top} \boldsymbol{\nu} & \text{if } \mathbf{c} - \boldsymbol{\lambda} + \mathbf{A}^{\top} \boldsymbol{\nu} = \mathbf{0} \\ -\infty & \text{otherwise} \end{cases}$$

And therefore the dual problem is

$$\begin{aligned} \max : & -\mathbf{b}^{\top} \boldsymbol{\nu} \\ \text{s.t.} : & \mathbf{c} - \boldsymbol{\lambda} + \mathbf{A}^{\top} \boldsymbol{\nu} = \mathbf{0} \\ & \boldsymbol{\lambda} \geq \mathbf{0}, \end{aligned}$$

which can be simplified as

$$\max: -\mathbf{b}^{\top} \boldsymbol{\nu}$$
s.t.: $\mathbf{c} + \mathbf{A}^{\top} \boldsymbol{\nu} \ge \mathbf{0}$

This is what we have seen in the first part of the class!

Least-norm solution of linear equations: Consider the following problem

$$min: \mathbf{x}^{\top}\mathbf{x}$$
s.t.:
$$\mathbf{A}\mathbf{x} = \mathbf{b}.$$

The Lagrangian in this case is defined as

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = L(\mathbf{x}, \boldsymbol{\nu}) = \mathbf{x}^{\top} \mathbf{x} + \boldsymbol{\nu}^{\top} (\mathbf{A} \mathbf{x} - \mathbf{b})$$
$$= \mathbf{x}^{\top} \mathbf{x} + \mathbf{x}^{\top} \mathbf{A}^{\top} \boldsymbol{\nu} - \boldsymbol{\nu}^{\top} \mathbf{b}$$

which is a quadratic function with respect to \mathbf{x} . Hence, by computing the gradient and setting it to zero we can find the optimal solution which is

$$abla_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{
u}) = \mathbf{0} \quad \Leftrightarrow \quad 2\mathbf{x} + \mathbf{A}^{\top} \boldsymbol{
u} = \mathbf{0} \quad \Leftrightarrow \quad \mathbf{x}^* = -\frac{1}{2} \mathbf{A}^{\top} \boldsymbol{
u}$$

and therefore we can write the dual function as

$$g(\boldsymbol{\nu}) = \inf_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\nu}) = L(\mathbf{x}^*, \boldsymbol{\nu}) = \frac{1}{4} \boldsymbol{\nu}^{\top} \mathbf{A} \mathbf{A}^{\top} \boldsymbol{\nu} - \frac{1}{2} \boldsymbol{\nu}^{\top} \mathbf{A} \mathbf{A}^{\top} \boldsymbol{\nu} - \boldsymbol{\nu}^{\top} \mathbf{b}$$
$$= -\frac{1}{4} \boldsymbol{\nu}^{\top} \mathbf{A} \mathbf{A}^{\top} \boldsymbol{\nu} - \mathbf{b}^{\top} \boldsymbol{\nu}$$

In this case, the dual problem is unconstrained and defined as

$$\max : -\frac{1}{4} \boldsymbol{\nu}^{\top} \mathbf{A} \mathbf{A}^{\top} \boldsymbol{\nu} - \mathbf{b}^{\top} \boldsymbol{\nu}$$

5 Lagrange dual function and conjugate function

Recall that the definition of the conjugate function f^* of a function $f: \mathbb{R}^n \to \mathbb{R}$ is given by

$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \mathbf{dom} f} (\mathbf{y}^\top \mathbf{x} - f(\mathbf{x})).$$

There is a connection between the conjugate function and Lagrangian dual function. To see this connection consider the following optimization problems:

5.1 Linear constraints

Consider the following optimization problem with linear constraints:

min:
$$f_0(\mathbf{x})$$

s.t.: $\mathbf{A}\mathbf{x} \leq \mathbf{b}$, $\mathbf{C}\mathbf{x} = \mathbf{d}$.

By using the definition of the conjugate function we can write the dual function as

$$g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$$

$$= \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + \boldsymbol{\lambda}^\top (\mathbf{A}\mathbf{x} - \mathbf{b}) + \boldsymbol{\nu}^\top (\mathbf{C}\mathbf{x} - \mathbf{d}) \right)$$

$$= -\boldsymbol{\lambda}^\top \mathbf{b} - \boldsymbol{\nu}^\top \mathbf{d} + \inf_{\mathbf{x}} \left(f_0(\mathbf{x}) + (\mathbf{A}^\top \boldsymbol{\lambda} + \mathbf{C}^\top \boldsymbol{\nu})^\top \mathbf{x} \right)$$

$$= -\boldsymbol{\lambda}^\top \mathbf{b} - \boldsymbol{\nu}^\top \mathbf{d} - \sup_{\mathbf{x}} \left(-f_0(\mathbf{x}) + (-\mathbf{A}^\top \boldsymbol{\lambda} - \mathbf{C}^\top \boldsymbol{\nu})^\top \mathbf{x} \right)$$

$$= -\boldsymbol{\lambda}^\top \mathbf{b} - \boldsymbol{\nu}^\top \mathbf{d} - f_0^* (-\mathbf{A}^\top \boldsymbol{\lambda} - \mathbf{C}^\top \boldsymbol{\nu})$$

and the domain of $g(\lambda, \nu)$ is defined as $\mathbf{dom}g = \{(\lambda, \nu) | -\mathbf{A}^{\top}\lambda - \mathbf{C}^{\top}\nu \in \mathbf{dom}f_0^*\}.$

5.2 Minimum volume covering ellipsoid

Consider an optimization problem with variable $\mathbf{X} \in \mathbf{S}_{++}^n$. Further, recall that for any given positive definite matrix \mathbf{X} the expression $(\mathbf{z} - \mathbf{a})^{\top} \mathbf{X} (\mathbf{z} - \mathbf{a}) \leq 1$, the set of points \mathbf{z} that satisfy this condition create an ellipsoid where the center of that ellipsoid is \mathbf{a} . Therefore, if we focus on an ellipsoid that is centered at the origin its expression can be written as $\mathbf{z}^{\top} \mathbf{X} \mathbf{z} \leq 1$. Considering these observations, if we have an optimization problem with the following constraints

$$\mathbf{a}_i^{\mathsf{T}} \mathbf{X} \mathbf{a}_i \leq 1, \quad i = 1, \dots, m,$$

it means that we want to find a matrix \mathbf{X} such that its corresponding ellipsoid centered at the origin contains (covers) points $\mathbf{a}_1, \dots, \mathbf{a}_m$.

Now consider the problem that we want to find the ellipsoid centered at the origin that contains points $\mathbf{a}_1, \dots, \mathbf{a}_m$ and has the minimum possible volume. As the volume of the ellipsoid $(\mathbf{z} - \mathbf{a})^{\top} \mathbf{X} (\mathbf{z} - \mathbf{a}) \leq 1$ is proportional to $(\det(\mathbf{X}^{-1}))^{1/2}$, our problem of interest can be written as

min:
$$f_0(\mathbf{X}) := \log(\det(\mathbf{X}^{-1}))$$

s.t.: $\mathbf{a}_i^{\top} \mathbf{X} \mathbf{a}_i \le 1, \quad i = 1, \dots, m.$

The inequality constraints in this problem can be written as

$$\operatorname{tr}(\mathbf{X}\mathbf{a}_i\mathbf{a}_i^{\top}) \le 1, \quad i = 1, \dots, m.$$

Further, the conjugate of the objective function f_0 is

$$f_0^*(\mathbf{Y}) = -n + \log(\det(-\mathbf{Y}^{-1}))$$

Since the constrains are affine, we can use the previous result and show that the dual function is

$$\begin{split} g(\boldsymbol{\lambda}) &= \inf_{\mathbf{X}} L(\mathbf{x}, \boldsymbol{\lambda}) \\ &= \inf_{\mathbf{X}} \left(\log(\det(\mathbf{X}^{-1}))) + \sum_{i=1}^{m} \lambda_{i} (\operatorname{tr}(\mathbf{X} \mathbf{a}_{i} \mathbf{a}_{i}^{\top}) - 1) \right) \\ &= -\sum_{i=1}^{m} \lambda_{i} + \inf_{\mathbf{X}} \left(\log(\det(\mathbf{X}^{-1}))) + \sum_{i=1}^{m} \operatorname{tr}(\mathbf{X} \lambda_{i} \mathbf{a}_{i} \mathbf{a}_{i}^{\top}) \right) \\ &= -\boldsymbol{\lambda}^{\top} \mathbf{1} + \inf_{\mathbf{X}} \left(\log(\det(\mathbf{X}^{-1}))) + \operatorname{tr} \left(\mathbf{X} \left(\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i} \mathbf{a}_{i}^{\top} \right) \right) \right) \\ &= -\boldsymbol{\lambda}^{\top} \mathbf{1} - \sup_{\mathbf{X}} \left(-\log(\det(\mathbf{X}^{-1}))) + \operatorname{tr} \left(\mathbf{X} \left(-\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i} \mathbf{a}_{i}^{\top} \right) \right) \right) \\ &= -\boldsymbol{\lambda}^{\top} \mathbf{1} - f_{0}^{*} \left(-\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i} \mathbf{a}_{i}^{\top} \right) \\ &= -\boldsymbol{\lambda}^{\top} \mathbf{1} + n - \log \left(\det \left(\left(\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i} \mathbf{a}_{i}^{\top} \right) - 1 \right) \right) \\ &= -\boldsymbol{\lambda}^{\top} \mathbf{1} + n + \log \left(\det \left(\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i} \mathbf{a}_{i}^{\top} \right) \right) \end{split}$$

where the last two equalities are correct if $\sum_{i=1}^{m} \lambda_i \mathbf{a}_i \mathbf{a}_i^{\top} \succ \mathbf{0}$. Hence, the dual function is

$$g(\boldsymbol{\lambda}) = \begin{cases} -\boldsymbol{\lambda}^{\top} \mathbf{1} + n + \log \left(\det \left(\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i} \mathbf{a}_{i}^{\top} \right) \right) & \text{if } \sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i} \mathbf{a}_{i}^{\top} \succ \mathbf{0} \\ -\infty & \text{otherwise} \end{cases}$$

Therefore, the dual problem is

$$\max: \quad g(\lambda) = n - \lambda^{\top} \mathbf{1} + \log \left(\det \left(\sum_{i=1}^{m} \lambda_i \mathbf{a}_i \mathbf{a}_i^{\top} \right) \right)$$

s.t.: $\lambda \geq \mathbf{0}$.

and its domain is $\mathbf{dom}g = \{\sum_{i=1}^m \lambda_i \mathbf{a}_i \mathbf{a}_i^\top \succ \mathbf{0}\}$. We can also think of $\sum_{i=1}^m \lambda_i \mathbf{a}_i \mathbf{a}_i^\top \succ \mathbf{0}$ as an implicit constraint.