

Lecture 15 - EM Algorithm

Final exam

- When: Friday May 6th at 10am.
- What: 5-7 minute presentation each. (Can join with 1 or 2 others if you prefer.)
- Where: Zoom (room details will be on Blackboard under ZoomPro tab).
- I will be strict with timing so that we are not there all day (with apologies).
- Each person will share their screen when presenting
- Please have fun with it!

The Expectation-Maximization (EM) algorithm

The expectation maximization algorithm is a natural generalization of maximum likelihood estimation to the incomplete data case. – Chuong B Do & Serafim Batzoglou. What is the expectation maximization algorithm? Nature Biotechnology. 2008.

Overall

- A general framework, introduced by Laird and Rubin (1977) to encompass a variety of problems:
 - Filling in missing data
 - Inferring latent variables
 - Estimating HMM parameters
 - Estimating parameters for mixture models
 - Unsupervised cluster learning

EM had been around for a while before it was formally 'christened'...

Newcomb (1887)

McKendrick (1926)

Hartley (1958)

Baum et al. (1970) [The HMM Baum-Welch algorithm is an EM algorithm!]

Canonical example

- Have a mixture distribution.
- Don't know which points belong to which components of the mixture.
- Wish to estimate parameters of underlying mixture (or assign points probabilistically to the mixture components).

Motivating example

- Imagine we have two coins, for each of which the prob. of getting a "Heads", p_1 , p_2 , is unknown.
- Suppose we repeat the following n times:
 - Pick a coin, uniformly at random, and toss it m times, recording the outcome.
- We can construct the maximum likelihood estimators of $p_1 \& p_2$ as
 - MLE of p_1 = proportion of tosses of coin 1 that resulted in a "Heads".
- But what if we don't know which coin was chosen for each of the n trials?

Motivating example

- Possible approach:
 - 1. Choose initial values for $p_1 \& p_2$.
 - 2. Given those values, find the prob. that each of the n trials used coin 1. (Bayes' theorem). Call these numbers $\pi_1, ..., \pi_n$
 - 3. For each i, if $\pi_i > 0.5$ assign the ith trial to coin 1; otherwise assign it to coin 2.
 - 4. Re-estimate $p_1 \& p_2$ assuming the assignments in step 3 were correct.
 - 5. Repeat steps 2-4 until the estimates for $p_1 \& p_2$ converge.

[This is essentially a version of k-means clustering.]

Motivating example

- The EM algorithm does the same thing, but with "soft" assignments.
- So for each trial, i, we would say it has probability π_I of being generated by coin 1 and $(1-\pi_i)$ of being generated by coin 2.
- We then repeat the algorithm on the previous page, but maximizing the likelihood for p_1 and p_2 using these *soft* assignments. So we get terms like

P(HTTHH | trial i) =
$$\pi_i p_1^3 (1-p_1)^2 + (1-\pi_i) p_2^3 (1-p_2)^2$$

in the likelihood term that we are maximizing with respect to p_1 and p_2 .

Old Faithful

Gaussian Mixture Model example

Underlying assumptions:

- 1. There are k components
- 2. Each point is generated by:
 - Sampling a component Y with prob.
 P(Y)
 - Sampling from $N(\mu_Y, \sigma_{Y^2})$

Probability model

• So, in general, for each datapoint, x, we will have:

$$p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)$$
 Component Mixing coefficient

$$\forall k : \pi_k \geqslant 0 \qquad \sum_{k=1}^K \pi_k = 1$$

Maximum likelihood

• The EM algorithm, seeks to maximize the marginal likelihood:

$$\operatorname{argmax}_{\theta} \prod_{j} P(x_{j}) = \operatorname{argmax}_{\theta} \prod_{j} \sum_{k=1}^{K} P(Y_{j}=k, x_{j})$$

where Y_j is the cluster to which x_j is probabilistically assigned.

E-M algorithm

- The algorithm alternates between two steps:
 - Expectation compute conditional probs. to probabilistically fill in missing (unobserved) values conditional on the current parameters.
 - Maximization re-estimate the parameters conditional on the current probabilistic assignments (using maximum likelihood).

EM algorithm - mixture models

- E step: Calculate $P(Y_j=k \mid x_j, \theta)$.
- M step: Set $\theta = \operatorname{argmax}_{\theta} \sum_{j} \sum_{k} P(Y_{j}=k \mid x_{j}, \theta) \log P(Y_{j}=k, x_{j} \mid \theta)$

 X_i = the datapoints

 Y_j = cluster to which x_j is assigned (probabilistic!)

 θ = parameters (Normal means and variances here)

K = cluster index

EM algorithm - mixture models

- E-step:
 - Compute 'expected' clusters of all datapoints

$$P(Y_j = k | x_j, \mu_1 ... \mu_K) \propto \exp\left(-\frac{1}{2\sigma^2} ||x_j - \mu_k||^2\right) P(Y_j = k)$$

EM algorithm - mixture models

- M-step:
 - Compute most likely cluster means given current assignments:

$$\mu_k = \frac{\sum_{j=1}^m P(Y_j = k | x_j) x_j}{\sum_{j=1}^m P(Y_j = k | x_j)}$$

EM Algorithm

- See examples in EM_Algorithm repo from week 15.
- Note: convergence is only guaranteed to a local maximum, so run the algorithm multiple times from different start points.
- Further reading: "What is the expectation maximization algorithm?" Chuong B Do & Serafim Batzoglou, Nature Biotechnology, volume 26, pages 897–899 (2008)

END