A Fast Supervised Learning Method for High-Dimensional Problems

Manav Vohra, Paromita Nath, Sankaran Mahadevan

January 1, 2019

PRINCIPAL COMPONENT—ACTIVE SUBSPACE (PCAS) METHOD

$$G(\eta) \to z_k(\boldsymbol{\theta}) \to \mathcal{S}$$

M. Vohra AM Defects: PCAS Method manav.vohra@vanderbilt.edu

FINITE ELEMENT MODEL

Heat Transfer:

$$\rho C_p(T) = \nabla \cdot \boldsymbol{q}(\boldsymbol{r}, t) + Q(\boldsymbol{r}, t)$$
$$\boldsymbol{q} = -\kappa(T) \nabla T$$

$$Q = f(z, P) \exp(f(x, y, v))$$

P: Laser Power (W), v: Scan speed (m/s)

Stress Calculation:

M. Vohra AM Defects: PCAS Method manav.vohra@vanderbilt.edu 2 / 5

RESIDUAL STRESS FIELD

Principal Component Analysis

Parameter	Nominal Value
Scan Speed, v (mm/s)	500
Laser Power, P (W)	160
Pre-heat Temperature, T_0 (C)	650
Yield Strength, Y (MPa)	825
Elastic Strength, E (GPa)	110
Density, ρ (kg/m ³)	4428
Specific heat, $C_p = C_0 + C_1T + C_2T^2$ (J/kg/K)	540, 0.43, -3.2×10 ⁻⁵
Thermal Conductivity, $\kappa = D_0 + D_1T + D_2T^2$ (W/m/K)	7.2, 0.011, 1.4×10 ⁻⁶

3/5

M. Vohra AM Defects: PCAS Method manav.vohra@vanderbilt.edu

ACTIVE SUBSPACE DISCOVERY

4/5

GSA: ACTIVITY SCORES

$$\nu_{i,r}(f) = \sum_{j=1}^{r} \lambda_j w_{i,j}^2, i = 1, \dots, N_p$$

