

École internationale DIADEM

25-29 août 2025 Paris (France)

Machine Learning Interatomic Potentials: General concepts

Noel Jakse

Université Grenoble-Alpes, CNRS, Grenoble INP SIMaP, F-38000 Grenoble, France.

Outline

- Introduction
- Interatomic interactions and potential energy landscape
- Machine learning interatomic potentials (MLIP)
 - Supervised ML: regression tasks
 - representation of the data
 - building a dataset for training
 - Active learning
- Example: homogeneous nucleation
 - Binary alloys: Al-Ni
- Outlook

Matter and complexity

Scales and methods

Scales and methods

Scales and methods

Atomistic simulations

Interatomic interactions

$$U_N(\mathbf{r}^N) = u_0(\rho) + \sum_{i_1} u_1(\mathbf{r}_{i_1}) + \frac{1}{2!} \sum_{i_1 \neq i_2} u_2(\mathbf{r}_{i_1}, \mathbf{r}_{i_2}) + \frac{1}{3!} \sum_{i_1 \neq i_2 \neq i_3} u_3(\mathbf{r}_{i_1 i_2}, \mathbf{r}_{i_1 i_3}, \mathbf{r}_{i_2 i_3}) + \cdots$$

Potential Energy Landscape (PEL)

Image by MIT OpenCourseWare.

Attraction: Formation of chemical bond by sharing of electrons **Repulsion:** Pauli exclusion (too many electrons in small volume)

Interatomic interactions

Put as much as you need for describing the physics of the system

$$V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

Harmonic potential (Hook):

$$V(r) = A(r - r_{\rm eq})^2$$

Morse:

$$V(r) = D \exp\left[-2\alpha(r - r_o)\right] - 2D \exp\left[-\alpha(r - r_o)\right]$$

Buckingham:

$$V(r) = A \exp\left[-\frac{r}{\rho}\right] - \frac{C}{r^6} + \frac{q_1 q_2}{r}$$

Building a ML potential: Supervised learning

Image by MIT OpenCourseWare.

Linear methods

Polynomial on many-body terms

Simple and fast

Relies crafting a representation for the inputs

Kernel / Gaussian process regression

Computes an explicit similarity between points

Fewer data points (+uncertainty for GPR)

O(N³) complexity for training for GPR

Neural Networks

"Universal approximator" with non-linear mappings

High accuracy

Large number of trainable parameters

Linear methods

SNAP (Thompson et al.)

MTP (Shapeev)

ACE (Drautz, Kovács et al.)

Kernel / Gaussian process regression

GPR:

GAP (Bartok et al.)

MLOTF (Li et al.)

FLARE (Vandermause et al.)

Other kernels with:

sGDML (Chmiela et al.)
FCHL repres. (Faber et al.)
Coulomb matrices (Rupp et al.)

Neural Networks

Behler-Parrinello

Representation + NN (DeepMD, ANI etc.)

Deep learning-based NNFF (SchNet etc.)

Deep learning + equivariance (NequIP, PaiNN etc.)

Deep learning + many-body expansion (MACE etc.)

Architecture: High Dimensional Neural Network

J. Behler, Chem. Rev. (2021). Phys. Rev. Lett. 98, 146401 (2007)

Architecture: High Dimensional Neural Network

J. Behler, Chem. Rev. (2021). Phys. Rev. Lett. 98, 146401 (2007)

$$E = \sum_{i} E_{i}$$

Architecture: High Dimensional Neural Network

J. Behler, Chem. Rev. (2021). Phys. Rev. Lett. 98, 146401 (2007)

Representations of local atomic environment

- **Direct coordinates:** are not suitable
- **Invariance:** translation, rotation, permutation
- **Equivariance :** property change, same effect

Molecule figure from: T. Smidt, e3nn (2021). https://e3nn.org

Machine Learning vs Deep Learning workflows

How to building a dataset for the training?

To train a MLIP an appropriate dataset needs to be built for the application

AIMD trajectories sampling:

easy to perform but computationally costly and risk of correlated samples

Normal modes sampling:

- generate configuration along the Hessian matrix from given configurations
- only small displacements allowed

PEL sampling:

- better sampling with enhanced sampling (for ex. Metadynamics)
- tricky to implement and depend on the ab initio technique used

Active learning:

- Improve the dataset over the time
- optimized and computationally cheaper to produce
- but requires a metric for the uncertainty quantification to identify new configurations

How to building a dataset for the training?

To train a MLIP an appropriate dataset needs to be built for the application

AIMD trajectories sampling:

easy to perform but computationally costly and risk of correlated samples

Normal modes sampling:

- generate configuration along the Hessian matrix from given configurations
- only small displacements allowed

PEL sampling:

- better sampling with enhanced sampling (for ex. Metadynamics)
- tricky to implement and depend on the ab initio technique used

Active learning:

- Improve the dataset over the time
- optimized and computationally cheaper to produce
- but requires a metric for the uncertainty quantification to identify new configurations

How to building a dataset for the training?

An example : nucleation pathways in Al-Ni Alloys

Regressor: HDNNP (N2P2 package),

dataset 24000 configurations (AIMD traj. Sampling),

Feature space : 64 dimensions

Performance: RMSE ~2.5 meV/atom

An example: nucleation pathways in Al-Ni Alloys

ML-MD simulation with 125000 atoms

An example: nucleation pathways in Al-Ni Alloys

Outlook

CHGNet (Crystal Hamiltonian Graph neural Network)

https://github.com/CederGroupHub/chgnet https://chgnet.lbl.gov/

Many developments towards universality: MACE-MP-0, ALIGNN, M3GNet, TeaNet, etc

Thank you for your attention

General concepts of ML for materials

