In [0]:

```
# importing libraries
import os
import re
import time
import math
import nltk
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set_style('whitegrid')
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.linear_model import SGDRegressor, Ridge
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import train_test_split
from scipy.sparse import hstack
from scipy import sparse
from scipy.sparse import csr matrix
from tqdm import tqdm
from nltk.corpus import stopwords
from prettytable import PrettyTable
from lightgbm import LGBMRegressor
import xgboost as xgb
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense, Dropout, BatchNormalization
from tensorflow.keras.optimizers import RMSprop, Adam
```

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: Fut ureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.

import pandas.util.testing as tm

/usr/local/lib/python3.6/dist-packages/sklearn/utils/deprecation.py:144: Fut ureWarning: The sklearn.metrics.classification module is deprecated in vers ion 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.metrics. Anything that cannot be imported from sklearn.metrics is now part of the private API.

warnings.warn(message, FutureWarning)

In [0]:

```
# Loading train
train = pd.read_csv('/content/drive/My Drive/Mercari/data/train.tsv', sep='\t')
train.shape
```

Out[2]:

(1482535, 8)

In [0]:

train.head(5)

Out[3]:

	train_id	name	item_condition_id	ndition_id category_name		price	shippin
0	0	MLB Cincinnati Reds T Shirt Size XL	3	Men/Tops/T-shirts	NaN	10.0	
1	1	Razer BlackWidow Chroma Keyboard	3	Electronics/Computers & Tablets/Components & P	Razer	52.0	
2	2	AVA-VIV Blouse	1	Women/Tops & Blouses/Blouse	Target	10.0	
3	3	Leather Horse Statues	1	Home/Home Décor/Home Décor Accents	NaN	35.0	
4	4	24K GOLD plated rose	1	Women/Jewelry/Necklaces	NaN	44.0	
4							•

In [0]:

train.dtypes

Out[4]:

train_id	int64
name	object
<pre>item_condition_id</pre>	int64
category_name	object
brand_name	object
price	float64
shipping	int64
item_description	object
dtype: object	

In [0]:

```
train.describe()
```

Out[5]:

	train_id	item_condition_id	price	shipping
count	1.482535e+06	1.482535e+06	1.482535e+06	1.482535e+06
mean	7.412670e+05	1.907380e+00	2.673752e+01	4.472744e-01
std	4.279711e+05	9.031586e-01	3.858607e+01	4.972124e-01
min	0.000000e+00	1.000000e+00	0.000000e+00	0.000000e+00
25%	3.706335e+05	1.000000e+00	1.000000e+01	0.000000e+00
50%	7.412670e+05	2.000000e+00	1.700000e+01	0.000000e+00
75%	1.111900e+06	3.000000e+00	2.900000e+01	1.000000e+00
max	1.482534e+06	5.000000e+00	2.009000e+03	1.000000e+00

In [0]:

```
train.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1482535 entries, 0 to 1482534
Data columns (total 8 columns):
```

Column # Non-Null Count Dtype -----0 train_id 1482535 non-null int64 1 name 1482535 non-null object 2 item_condition_id 1482535 non-null int64 3 1476208 non-null object category_name 4 brand_name 849853 non-null object 5 1482535 non-null float64 price 6 shipping 1482535 non-null int64 7 item description 1482531 non-null object

dtypes: float64(1), int64(3), object(4)

memory usage: 90.5+ MB

In [0]:

In [0]:

```
# Loading test
test = pd.read_csv('/content/drive/My Drive/Mercari/data/test.tsv', sep='\t')
test.shape
```

Out[7]:

(693359, 7)

In [0]:

test.head()

Out[8]:

	test_id	name	item_condition_id	category_name	brand_name	shipping	item_de
0	0	Breast cancer "I fight like a girl" ring	1	Women/Jewelry/Rings	NaN	1	
1	1	25 pcs NEW 7.5"x12" Kraft Bubble Mailers	1	Other/Office supplies/Shipping Supplies	NaN	1	25 7.5" Bubb
2	2	Coach bag	1	Vintage & Collectibles/Bags and Purses/Handbag	Coach	1	Brand n bag. I [rm] at
3	3	Floral Kimono	2	Women/Sweaters/Cardigan	NaN	0	-flora ne lightw
4	4	Life after Death	3	Other/Books/Religion & Spirituality	NaN	1	Redisco after the
4							•

In [0]:

test.dtypes

Out[9]:

test_id	int64
name	object
<pre>item_condition_id</pre>	int64
category_name	object
brand_name	object
shipping	int64
item_description	object
dtype: object	

In [0]:

```
test.describe()
```

Out[10]:

	test_id	item_condition_id	shipping
count	693359.000000	693359.000000	693359.000000
mean	346679.000000	1.906102	0.447719
std	200155.646984	0.903378	0.497260
min	0.000000	1.000000	0.000000
25%	173339.500000	1.000000	0.000000
50%	346679.000000	2.000000	0.000000
75%	520018.500000	3.000000	1.000000
max	693358.000000	5.000000	1.000000

In [0]:

```
test.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 693359 entries, 0 to 693358

Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	test_id	693359 non-null	int64
1	name	693359 non-null	object
2	<pre>item_condition_id</pre>	693359 non-null	int64
3	category_name	690301 non-null	object
4	brand_name	397834 non-null	object
5	shipping	693359 non-null	int64
6	item_description	693359 non-null	object

dtypes: int64(3), object(4) memory usage: 37.0+ MB

In [0]:

Checking for Null Values

```
In [0]:
```

```
train.isnull().any()
Out[12]:
                      False
train_id
name
                      False
                      False
item_condition_id
                       True
category_name
                       True
brand_name
                      False
price
                      False
shipping
item_description
                       True
dtype: bool
In [0]:
test.isnull().any()
Out[13]:
test_id
                      False
name
                      False
                      False
item_condition_id
category_name
                       True
                       True
brand_name
```

item_description
dtype: bool

shipping

In [0]:

Replacing Null Values

False

False

```
In [0]:
```

```
# Train

train['category_name'].fillna("Others", inplace=True)
train['brand_name'].fillna("Unknown", inplace=True)
train['item_description'].fillna("No description", inplace=True)

# Checking for Null values
train.isnull().any()
```

Out[14]:

False train id False name False item_condition_id category_name False brand_name False price False False shipping item_description False dtype: bool

In [0]:

```
# Test

test['category_name'].fillna("Others", inplace=True)
test['brand_name'].fillna("Unknown", inplace=True)
#test['item_description'].fillna("No description", inplace=True)

# Checking for Null values
test.isnull().any()
```

Out[15]:

test_id False
name False
item_condition_id False
category_name False
brand_name False
shipping False
item_description False
dtype: bool

In [0]:

Data Analysis

1. Price

In [0]:

```
train['price'].describe()
```

Out[16]:

count 1.482535e+06 2.673752e+01 mean 3.858607e+01 std min 0.000000e+00 25% 1.000000e+01 50% 1.700000e+01 75% 2.900000e+01 2.009000e+03 Name: price, dtype: float64

In [0]:

```
#Histogram
fig, ax = plt.subplots(figsize=(14,8))
ax.hist(train['price'], bins=30, range=[0,200], label="Price")
plt.title('Price distribution', fontsize=15)
ax.set_xlabel('Price')
ax.set_ylabel('No of items')
plt.show()
```


We can clearly see that the most of the products price is in between 15 and 30

In [0]:

```
#We will add log(price) as a column in our train data
train["Log_Price"] = np.log1p(train["price"])
train.head()
```

Out[18]:

	train_id	name	item_condition_id	category_name	brand_name	price	shippin
0	0	MLB Cincinnati Reds T Shirt Size XL	3	Men/Tops/T-shirts	Unknown	10.0	
1	1	Razer BlackWidow Chroma Keyboard	3	Electronics/Computers & Tablets/Components & P	Razer	52.0	
2	2	AVA-VIV Blouse	1	Women/Tops & Blouses/Blouse	Target	10.0	
3	3	Leather Horse Statues	1	Home/Home Décor/Home Décor Accents	Unknown	35.0	
4	4	24K GOLD plated rose	1	Women/Jewelry/Necklaces	Unknown	44.0	

In [0]:

```
#Histogram
fig, ax = plt.subplots(figsize=(14,8))
ax.hist(train['Log_Price'], bins=30, range=[0,7], label="Price")
plt.title('Price distribution', fontsize=15)
ax.set_xlabel('Price')
ax.set_ylabel('No of items')
plt.show()
```


2. Shipping

In [0]:

```
train['shipping'].value_counts()
```

Out[20]:

819435663100

Name: shipping, dtype: int64

In [0]:

```
# Shipping vs Price
sns.boxplot(x=train['shipping'] ,y=train['price'],orient='v')
```

Out[21]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f277744bb70>

In [0]:

```
# Shipping vs Log_Price
sns.boxplot(x=train['shipping'] ,y=train['Log_Price'],orient='v')
```

Out[22]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f2777983a90>

3. item_condition_id

In [0]:

```
train['item_condition_id'].value_counts()
```

Out[23]:

640549 1 3 432161 2 375479 4 31962 5 2384 Name: item_condition_id, dtype: int64

```
In [0]:
```

```
fig, ax = plt.subplots(figsize=(15,7))
sns.countplot(x='item_condition_id', data=train, ax=ax)
plt.title('Item count by item_condition_id',fontsize=25)
plt.ylabel('No of items',fontsize=25)
plt.xlabel('')
plt.xticks(rotation=70, fontsize=20)
plt.yticks(fontsize=20)
plt.show()
```


In [0]:

4. category_name

```
In [0]:
```

```
len(train['category_name'].unique())
```

Out[25]:

1288

In [0]:

train['category_name'].value_counts()[:10]

Out[26]:

Women/Athletic Apparel/Pants, Tights, Leggings	60177
Women/Tops & Blouses/T-Shirts	46380
•	
Beauty/Makeup/Face	34335
Beauty/Makeup/Lips	29910
Electronics/Video Games & Consoles/Games	26557
Beauty/Makeup/Eyes	25215
Electronics/Cell Phones & Accessories/Cases, Covers & Skins	24676
Women/Underwear/Bras	21274
Women/Tops & Blouses/Tank, Cami	20284
Women/Tops & Blouses/Blouse	20284
Name: category name dtype: int64	

Name: category_name, dtype: int64

In [0]:

train.head()

Out[27]:

	train_id	name	item_condition_id	category_name	brand_name	price	shippin
0	0	MLB Cincinnati Reds T Shirt Size XL	3	Men/Tops/T-shirts	Unknown	10.0	
1	1	Razer BlackWidow Chroma Keyboard	3	Electronics/Computers & Tablets/Components & P	Razer	52.0	
2	2	AVA-VIV Blouse	1	Women/Tops & Blouses/Blouse	Target	10.0	
3	3	Leather Horse Statues	1	Home/Home Décor/Home Décor Accents	Unknown	35.0	
4	4	24K GOLD plated rose	1	Women/Jewelry/Necklaces	Unknown	44.0	
4							•

In [0]:

```
# Train
# Splitting categories into 3 features: main_cat, sub_cat_1, sub_cat_2

#main_cat, sub_cat_1, sub_cat_2 = train['category_name'].split('/')

main_cat = []
sub_cat_1 = []
sub_cat_2 = []

for row in tqdm(train['category_name']):
    try:
        main, sub_1, sub_2 = row.split('/')
        main_cat.append(main)
        sub_cat_1.append(sub_1)
        sub_cat_2.append(sub_2)
    except:
        main_cat.append("Others")
        sub_cat_1.append("Others")
        sub_cat_2.append("Others")
        sub_cat_2.append("Others")
```

100%| 1482535/1482535 [00:01<00:00, 922202.01it/s]

In [0]:

```
print(len(main_cat))
print(len(sub_cat_1))
print(len(sub_cat_2))
```

1482535 1482535

1482535

In [0]:

```
# Adding these new features to the train dataframe
train['main_cat'] = main_cat
train['sub_cat_1'] = sub_cat_1
train['sub_cat_2'] = sub_cat_2
train.head()
```

Out[30]:

	train_id	name	item_condition_id	category_name	brand_name	price	shippin
0	0	MLB Cincinnati Reds T Shirt Size XL	3	Men/Tops/T-shirts	Unknown	10.0	
1	1	Razer BlackWidow Chroma Keyboard	3	Electronics/Computers & Tablets/Components & P	Razer	52.0	
2	2	AVA-VIV Blouse	1	Women/Tops & Blouses/Blouse	Target	10.0	
3	3	Leather Horse Statues	1	Home/Home Décor/Home Décor Accents	Unknown	35.0	
4	4	24K GOLD plated rose	1	Women/Jewelry/Necklaces	Unknown	44.0	

In [0]:

```
print("No of unique values in main_cat: ", len(train['main_cat'].unique()))
print("No of unique values in sub_cat_1: ", len(train['sub_cat_1'].unique()))
print("No of unique values in sub_cat_2: ", len(train['sub_cat_1'].unique()))
```

No of unique values in main_cat: 11 No of unique values in sub_cat_1: 113 No of unique values in sub_cat_2: 113

In [0]:

```
fig, ax = plt.subplots(figsize=(15,7))
sns.countplot(x='main_cat', data=train, ax=ax)
plt.title('Item count by main_cat',fontsize=25)
plt.ylabel('No of items',fontsize=25)
plt.xlabel('')
plt.xticks(rotation=70,fontsize=20)
plt.yticks(fontsize=20)
plt.show()
```


In [0]:

train['sub_cat_1'].value_counts()[:10].plot(kind='bar', figsize = (15,7), title="sub_cat_1
plt.show()

In [0]:

train['sub_cat_2'].value_counts()[:10].plot(kind='bar', figsize = (15, 7), title="sub_cat_2
plt.show()

In [0]:

```
# Test
# Splitting categories into 3 features: main_cat, sub_cat_1, sub_cat_2
#main_cat, sub_cat_1, sub_cat_2 = train['category_name'].split('/')
main_cat = []
sub_cat_1 = []
sub_cat_2 = []
for row in tqdm(test['category_name']):
        main, sub_1, sub_2 = row.split('/')
        main_cat.append(main)
        sub_cat_1.append(sub_1)
        sub_cat_2.append(sub_2)
    except:
        main_cat.append("Others")
        sub_cat_1.append("Others")
        sub_cat_2.append("Others")
print(len(main_cat))
print(len(sub_cat_1))
print(len(sub_cat_2))
```

100%| 693359/693359 [00:00<00:00, 842217.48it/s]
693359
693359
693359

In [0]:

```
# Adding these new features to the test dataframe
test['main_cat'] = main_cat
test['sub_cat_1'] = sub_cat_1
test['sub_cat_2'] = sub_cat_2
test.head()
```

Out[36]:

	test_id	name	item_condition_id	category_name	brand_name	shipping	item_de
0	0	Breast cancer "I fight like a girl" ring	1	Women/Jewelry/Rings	Unknown	1	
1	1	25 pcs NEW 7.5"x12" Kraft Bubble Mailers	1	Other/Office supplies/Shipping Supplies	Unknown	1	25 7.5" Bubb
2	2	Coach bag	1	Vintage & Collectibles/Bags and Purses/Handbag	Coach	1	Brand n bag. [[rm] at
3	3	Floral Kimono	2	Women/Sweaters/Cardigan	Unknown	0	-flora ne lightw
4	4	Life after Death	3	Other/Books/Religion & Spirituality	Unknown	1	Redisco after the

In [0]:

```
print("No of unique values in main_cat: ", len(test['main_cat'].unique()))
print("No of unique values in sub_cat_1: ", len(test['sub_cat_1'].unique()))
print("No of unique values in sub_cat_2: ", len(test['sub_cat_1'].unique()))
```

```
No of unique values in main_cat: 11
No of unique values in sub_cat_1: 113
No of unique values in sub_cat_2: 113
```

```
In [0]:
```

5. item_description

```
In [0]:
```

```
# description is text column. We can use the length of each row
```

In [0]:

```
# https://stackoverflow.com/questions/37335598/how-to-get-the-length-of-a-cell-value-in-pan
desc_length = train['item_description'].apply(len)
print(len(desc_length))
```

1482535

In [0]:

```
train['desc_length'] = desc_length
train.head()
```

Out[40]:

	train_id	name	item_condition_id	category_name	brand_name	price	shippin
0	0	MLB Cincinnati Reds T Shirt Size XL	3	Men/Tops/T-shirts	Unknown	10.0	
1	1	Razer BlackWidow Chroma Keyboard	3	Electronics/Computers & Tablets/Components & P	Razer	52.0	
2	2	AVA-VIV Blouse	1	Women/Tops & Blouses/Blouse	Target	10.0	
3	3	Leather Horse Statues	1	Home/Home Décor/Home Décor Accents	Unknown	35.0	
4	4	24K GOLD plated rose	1	Women/Jewelry/Necklaces	Unknown	44.0	
4							•

In [0]:

6. brand_name

In [0]:

```
# Unique brands
len(train['brand_name'].unique())
```

Out[41]:

4810

In [0]:

```
train['brand_name'].value_counts()[:10].plot(kind='bar', figsize = (15, 7), title="Top 10 E
plt.show()
```


-	$\Gamma \cap \Gamma$	
ın	пип	٠.
T11	v	

Data Preprocessing

In [0]:

```
# https://stackoverflow.com/a/47091490/4084039

def decontracted(phrase):
    # specific
    phrase = re.sub(r"won't", "will not", phrase)
    phrase = re.sub(r"can\'t", "can not", phrase)

# general
    phrase = re.sub(r"\'re", " are", phrase)
    phrase = re.sub(r"\'s", " is", phrase)
    phrase = re.sub(r"\'s", " is", phrase)
    phrase = re.sub(r"\'d", " would", phrase)
    phrase = re.sub(r"\'ll", " will", phrase)
    phrase = re.sub(r"\'t", " not", phrase)
    phrase = re.sub(r"\'t", " have", phrase)
    phrase = re.sub(r"\'ve", " have", phrase)
    phrase = re.sub(r"\'m", " am", phrase)
    return phrase
```

In [0]:

In [0]:

Train: item_description

```
In [0]:
```

```
# Train['item_description']

preprocessed_item_description = []
# tqdm is for printing the status bar
for sentance in tqdm(train['item_description'].values):
    sent = decontracted(sentance)
    sent = sent.replace('\\r', '')
    sent = sent.replace('\\r', '')
    sent = sent.replace('\\r', '')
    sent = re.sub('[^A-Za-z0-9]+', '', sent)
    # https://gist.github.com/sebleier/554280
    sent = ''.join(e for e in sent.split() if e.lower() not in stopwords)
    preprocessed_item_description.append(sent.lower().strip())
```

```
100%|| 1482535/1482535 [01:55<00:00, 12796.05it/s]
```

In [0]:

```
train['item_description'] = preprocessed_item_description
```

Test: item_description

In [0]:

```
# test['item_description']

preprocessed_item_description = []
# tqdm is for printing the status bar
for sentance in tqdm(test['item_description'].values):
    sent = decontracted(sentance)
    sent = sent.replace('\\r', '')
    sent = sent.replace('\\r', '')
    sent = sent.replace('\\r', '')
    sent = re.sub('[^A-Za-Z0-9]+', '', sent)
# https://gist.github.com/sebleier/554280
    sent = ''.join(e for e in sent.split() if e.lower() not in stopwords)
    preprocessed_item_description.append(sent.lower().strip())
```

```
100%| 693359/693359 [00:52<00:00, 13167.45it/s]
```

In [0]:

```
test['item_description'] = preprocessed_item_description
```

Train: title

In [0]:

```
# Train['name']

preprocessed_name = []
# tqdm is for printing the status bar

for sentance in tqdm(train['name'].values):
    sent = decontracted(sentance)
    sent = sent.replace('\\r', '')
    sent = sent.replace('\\"', '')
    sent = sent.replace('\\"', '')
    sent = re.sub('[^A-Za-z0-9]+', '', sent)
    # https://gist.github.com/sebleier/554280
    sent = ''.join(e for e in sent.split() if e.lower() not in stopwords)
    preprocessed_name.append(sent.lower().strip())
```

100%| 1482535/1482535 [00:34<00:00, 42389.22it/s]

In [0]:

```
train['name'] = preprocessed_name
```

Test: title

In [0]:

```
# Test['name']

preprocessed_name = []
# tqdm is for printing the status bar
for sentance in tqdm(test['name'].values):
    sent = decontracted(sentance)
    sent = sent.replace('\\r', '')
    sent = sent.replace('\\", '')
    sent = sent.replace('\\", '')
    sent = re.sub('[^A-Za-z0-9]+', '', sent)
    # https://gist.github.com/sebleier/554280
    sent = ''.join(e for e in sent.split() if e.lower() not in stopwords)
    preprocessed_name.append(sent.lower().strip())
```

100%| 693359/693359 [00:16<00:00, 42427.87it/s]

In [0]:

```
test['name'] = preprocessed_name
```

In [0]:

train.head()

Out[53]:

	train_id	name	item_condition_id	category_name	brand_name	price	shippinç
0	0	mlb cincinnati reds shirt size xl	3	Men/Tops/T-shirts	Unknown	10.0	1
1	1	razer blackwidow chroma keyboard	3	Electronics/Computers & Tablets/Components & P	Razer	52.0	(
2	2	ava viv blouse	1	Women/Tops & Blouses/Blouse	Target	10.0	1
3	3	leather horse statues	1	Home/Home Décor/Home Décor Accents	Unknown	35.0	1
4	4	24k gold plated rose	1	Women/Jewelry/Necklaces	Unknown	44.0	(
4							•

In [0]:

test.head()

Out[54]:

	test_id	name	item_condition_id	category_name	brand_name	shipping	item_des
0	0	breast cancer fight like girl ring	1	Women/Jewelry/Rings	Unknown	1	
1	1	25 pcs new 7 5 x12 kraft bubble mailers	1	Other/Office supplies/Shipping Supplies	Unknown	1	25 pcs x12 kra mailer:
2	2	coach bag	1	Vintage & Collectibles/Bags and Purses/Handbag	Coach	1	brand ne bag b coa
3	3	floral kimono	2	Women/Sweaters/Cardigan	Unknown	0	flora ne lightweigh
4	4	life death	3	Other/Books/Religion & Spirituality	Unknown	1	rediscov loss k tony c
4							•

```
In [0]:
```

```
train.shape
Out[55]:
(1482535, 13)
```

In [0]:

```
test.shape
```

Out[56]:

(693359, 10)

Train Validation Split

In [0]:

```
# Storing Log_Price in y_val
y_val = train['Log_Price']

# Dropping some columns
train.drop(['price', 'train_id','Log_Price'], axis=1, inplace=True) # desc_length
```

In [0]:

```
train.drop('desc_length', axis=1, inplace=True)
```

In [0]:

```
train.head()
```

Out[59]:

	name	item_condition_id	category_name	brand_name	shipping	item_descripti
0	mlb cincinnati reds shirt size xl	3	Men/Tops/T-shirts	Unknown	1	no description
1	razer blackwidow chroma keyboard	3	Electronics/Computers & Tablets/Components & P	Razer	0	keyboard grocondition wo like came box
2	ava viv blouse	1	Women/Tops & Blouses/Blouse	Target	1	adorable top h lace key h back pale pin
3	leather horse statues	1	Home/Home Décor/Home Décor Accents	Unknown	1	new tags leatl horses retail stand foot l
4	24k gold plated rose	1	Women/Jewelry/Necklaces	Unknown	0	compli certifica authentic
4						•

In [0]:

```
# Stroing the test_id into a seperate vaariable
test_ids = test['test_id'].values.astype(np.int32)
test.drop("test_id", axis=1, inplace=True)
```

In [0]:

test.head()

Out[61]:

	name	item_condition_id	category_name	brand_name	shipping	item_description
0	breast cancer fight like girl ring	1	Women/Jewelry/Rings	Unknown	1	size 7
1	25 pcs new 7 5 x12 kraft bubble mailers	1	Other/Office supplies/Shipping Supplies	Unknown	1	25 pcs new 7 5 x12 kraft bubble mailers lined
2	coach bag	1	Vintage & Collectibles/Bags and Purses/Handbag	Coach	1	brand new coach bag bought rm coach outlet
3	floral kimono	2	Women/Sweaters/Cardigan	Unknown	0	floral kimono never worn lightweight perfect h
4	life death	3	Other/Books/Religion & Spirituality	Unknown	1	rediscovering life loss loved one tony cooke p
4						>

In [0]:

```
print(train.shape)
print(test.shape)
```

(1482535, 9) (693359, 9)

In [0]:

In [0]:

```
# Train Validation Split
```

x_train, x_val, y_train, y_val = train_test_split(train, y_val, test_size=0.2, random_state

```
In [0]:

print(x_train.shape, y_train.shape)
print(x_val.shape, y_val.shape)

(1186028, 9) (1186028,)
(296507, 9) (296507,)

In [0]:
```

Vectorizing for Text and Categorical Features

1. Name

```
In [0]:
```

```
# Name
vectorizer = CountVectorizer(max_features=500, min_df=5)

# Train
vectorizer.fit(x_train['name'].values)
train_name = vectorizer.transform(x_train['name'].values)

# Validation
val_name = vectorizer.transform(x_val['name'].values)

# Test
test_name = vectorizer.transform(test['name'].values)

print("Shapes:")
print("Train: ", train_name.shape)
print("Val: ", val_name.shape)
print("Test: ", test_name.shape)
Shapes:
```

Train: (1186028, 500)

Val: (296507, 500) Test: (693359, 500)

2. item_description

```
In [0]:
```

```
# item_description
vectorizer = CountVectorizer(max_features=5000, min_df=5)

# Train
vectorizer.fit(x_train['item_description'].values)
train_item_desc = vectorizer.transform(x_train['item_description'].values)

# Validation
val_item_desc = vectorizer.transform(x_val['item_description'].values)

# Test
test_item_desc = vectorizer.transform(test['item_description'].values)

print("Shapes:")
print("Shapes:")
print("Train: ", train_item_desc.shape)
print("Val: ", val_item_desc.shape)
print("Test: ", test_item_desc.shape)
```

Shapes:

Train: (1186028, 5000) Val: (296507, 5000) Test: (693359, 5000)

3. brand name

```
In [0]:
```

```
# brand_name
vectorizer = CountVectorizer()

# Train
vectorizer.fit(x_train['brand_name'].values)
train_brand_name = vectorizer.transform(x_train['brand_name'].values)

# Validation
val_brand_name = vectorizer.transform(x_val['brand_name'].values)

# Test
test_brand_name = vectorizer.transform(test['brand_name'].values)

print("Shapes:")
print("Shapes:")
print("Train: ", train_brand_name.shape)
print("Val: ", val_brand_name.shape)
print("Test: ", test_brand_name.shape)
```

Shapes:

Train: (1186028, 4822) Val: (296507, 4822) Test: (693359, 4822)

4. main_cat

```
In [0]:
```

```
# main cat
vectorizer = CountVectorizer()
# Train
vectorizer.fit(x_train['main_cat'].values)
train_main_cat = vectorizer.transform(x_train['main_cat'].values)
# Validation
val_main_cat = vectorizer.transform(x_val['main_cat'].values)
# Test
test_main_cat = vectorizer.transform(test['main_cat'].values)
print("Shapes:")
print("Train: ", train_main_cat.shape)
print("Val: ", val_main_cat.shape)
print("Test: ", test_main_cat.shape)
Shapes:
```

Train: (1186028, 13) Val: (296507, 13) Test: (693359, 13)

5. sub cat 1

In [0]:

```
# sub_cat_1
vectorizer = CountVectorizer()
# Train
vectorizer.fit(x_train['sub_cat_1'].values)
train_sub_cat_1 = vectorizer.transform(x_train['sub_cat_1'].values)
# Validation
val_sub_cat_1 = vectorizer.transform(x_val['sub_cat_1'].values)
# Test
test_sub_cat_1 = vectorizer.transform(test['sub_cat_1'].values)
print("Shapes:")
print("Train: ", train_sub_cat_1.shape)
print("Val: ", val_sub_cat_1.shape)
print("Test: ", test_sub_cat_1.shape)
```

Shapes:

Train: (1186028, 141)Val: (296507, 141) Test: (693359, 141)

6. sub cat 2

```
In [0]:
```

```
# sub cat 2
vectorizer = CountVectorizer()
# Train
vectorizer.fit(x_train['sub_cat_2'].values)
train_sub_cat_2 = vectorizer.transform(x_train['sub_cat_2'].values)
# Validation
val_sub_cat_2 = vectorizer.transform(x_val['sub_cat_2'].values)
# Test
test_sub_cat_2 = vectorizer.transform(test['sub_cat_2'].values)
print("Shapes:")
print("Train: ", train_sub_cat_2.shape)
print("Val: ", val_sub_cat_2.shape)
print("Test: ", test_sub_cat_2.shape)
Shapes:
```

Train: (1186028, 950) Val: (296507, 950) Test: (693359, 950)

7. item condition id

```
In [0]:
```

```
# item_condition_id
encoder = OneHotEncoder()
# Train
encoder.fit(x_train['item_condition_id'].values.reshape(-1, 1))
train_item_condition_id = encoder.transform(x_train['item_condition_id'].values.reshape(-1,
# Validation
val_item_condition_id = encoder.transform(x_val['item_condition_id'].values.reshape(-1, 1))
# Test
test_item_condition_id = encoder.transform(test['item_condition_id'].values.reshape(-1, 1))
print("Shapes:")
print("Train: ", train_item_condition_id.shape)
print("Val: ", val_item_condition_id.shape)
print("Test: ", test item condition id.shape)
Shapes:
```

Train: (1186028, 5) Val: (296507, 5) Test: (693359, 5)

8. shipping

In [0]:

```
# shipping
encoder = OneHotEncoder()

# Train
encoder.fit(x_train['shipping'].values.reshape(-1, 1))
train_shipping = encoder.transform(x_train['shipping'].values.reshape(-1, 1))

# Validation
val_shipping = encoder.transform(x_val['shipping'].values.reshape(-1, 1))

# Test
test_shipping = encoder.transform(test['shipping'].values.reshape(-1, 1))

print("Shapes:")
print("Shapes:")
print("Train: ", train_shipping.shape)
print("Val: ", val_shipping.shape)
print("Test: ", test_shipping.shape)
```

Shapes:

Train: (1186028, 2) Val: (296507, 2) Test: (693359, 2)

Stacking Data

In [0]:

```
x_train.head()
```

Out[74]:

	name	item_condition_id	category_name	brand_name	shipping	item_(
1416089	lularoe kids I xl leggings	3	Kids/Boys (4+)/Bottoms	Unknown	1	wo
1423955	bundle 5 display mannequins	1	Other/Other/Other	Unknown	0	
403867	living proof perfect hair day dry shampo	1	Beauty/Hair Care/Styling Products	Unknown	0	listir bottles
701974	palazzo pants	2	Women/Pants/Casual Pants	Unknown	0	like ne
1124330	reserved ms jas pink boyshorts large	1	Women/Underwear/Panties	PINK	1	new ta
4						•

```
In [0]:
```

```
# Stacking Train data
x_train_final = hstack((train_name, train_item_desc, train_brand_name, train_main_cat, train_shipping)).tocsr()

# Stacking Validation Data
x_val_final = hstack((val_name, val_item_desc, val_brand_name, val_main_cat, val_sub_cat_1,

# Stacking Test Data
x_test_final = hstack((test_name, test_item_desc, test_brand_name, test_main_cat, test_sub_test_shipping)).tocsr()
```

In [0]:

```
print('x_train_final shape: ', x_train_final.shape, "||| y_train shape", y_train.shape)
print('x_val_final shape: ', x_val_final.shape, "||| y_test shape", y_val.shape)
print('x_test_final shape: ', x_test_final.shape)

x_train_final shape: (1186028, 11433) ||| y_train shape (1186028,)
```

```
x_train_final shape: (1186028, 11433) ||| y_train shape (1186028,)
x_val_final shape: (296507, 11433) ||| y_test shape (296507,)
x_test_final shape: (693359, 11433)
```

In [0]:

SGDRegressor

```
In [0]:
```

```
%%time
# Training the Model
model = SGDRegressor()
model.fit(x_train_final, y_train)

CPU times: user 4.86 s, sys: 101 ms, total: 4.96 s
Wall time: 4.86 s
```

In [0]:

```
# Predictions on Train Data
train_pred = model.predict(x_train_final)
sgd_train_RMSLE = np.sqrt(mean_squared_error(y_train, train_pred))
print("Train RMSLE: ", sgd_train_RMSLE)
```

Train RMSLE: 0.5171098022044266

In [0]:

```
# Predictions on Validation data
val_pred = model.predict(x_val_final)
sgd_val_RMSLE = np.sqrt(mean_squared_error(y_val, val_pred))
print("Validation RMSLE: ", sgd_val_RMSLE)
```

Validation RMSLE: 0.5216289416569649

```
In [0]:
# Predictions on Test data
test_pred_sgd = model.predict(x_test_final)
test_pred_sgd.shape

Out[81]:
(693359,)
In [0]:
```

```
Ridge
In [0]:
%%time
# Training the Model
model = Ridge()
model.fit(x_train_final, y_train)
CPU times: user 1min 2s, sys: 43.4 s, total: 1min 45s
Wall time: 53.9 s
In [0]:
# Predictions on Train Data
train_pred = model.predict(x_train_final)
ridge_train_RMSLE = np.sqrt(mean_squared_error(y_train, train_pred))
print("Train RMSLE: ", ridge_train_RMSLE)
Train RMSLE: 0.5070766597901347
In [0]:
# Predictions on Validation data
val_pred = model.predict(x_val_final)
ridge_val_RMSLE = np.sqrt(mean_squared_error(y_val, val_pred))
print("Validation RMSLE: ", ridge_val_RMSLE)
Validation RMSLE: 0.5135844086283321
In [0]:
# Predictions on Test data
test_pred_ridge = model.predict(x_test_final)
test_pred_ridge.shape
Out[85]:
(693359,)
In [0]:
```

XGBRegressor

```
In [0]:
%%time
# Training the Model
model = xgb.XGBRegressor()
model.fit(x_train_final, y_train)
[12:16:51] WARNING: /workspace/src/objective/regression_obj.cu:152: reg:line
ar is now deprecated in favor of reg:squarederror.
CPU times: user 3min 35s, sys: 899 ms, total: 3min 36s
Wall time: 3min 37s
In [0]:
# Predictions on Train Data
train_pred = model.predict(x_train_final)
xgb_train_RMSLE = np.sqrt(mean_squared_error(y_train, train_pred))
print("Train RMSLE: ", xgb_train_RMSLE)
Train RMSLE: 0.6146981403019418
In [0]:
# Predictions on Validation data
val_pred = model.predict(x_val_final)
xgb_val_RMSLE = np.sqrt(mean_squared_error(y_val, val_pred))
print("Validation RMSLE: ", xgb_val_RMSLE)
Validation RMSLE: 0.6162700673572676
In [0]:
# Predictions on Test data
test_pred_xgb = model.predict(x_test_final)
test_pred_xgb.shape
Out[89]:
(693359,)
In [0]:
```

LGBMRegressor

```
In [0]:
```

```
%%time
# Training the Model
model = LGBMRegressor()
model.fit(x_train_final, y_train)
```

CPU times: user 2min 58s, sys: 158 ms, total: 2min 58s

Wall time: 2min 58s

```
In [0]:
```

```
# Predictions on Train Data
train_pred = model.predict(x_train_final)
lgbm_train_RMSLE = np.sqrt(mean_squared_error(y_train, train_pred))
print("Train RMSLE: ", lgbm_train_RMSLE)
Train RMSLE: 0.5425120498796302
In [0]:
# Predictions on Validation data
val pred = model.predict(x val final)
lgbm_val_RMSLE = np.sqrt(mean_squared_error(y_val, val_pred))
print("Validation RMSLE: ", lgbm_val_RMSLE)
Validation RMSLE: 0.5445418450757752
In [0]:
# Predictions on Test data
test_pred_LGBM = model.predict(x_test_final)
test_pred_LGBM.shape
Out[94]:
(693359,)
In [0]:
```

Multilayer Perceptron

```
In [0]:
```

```
# Using sequential model
model = Sequential()

model.add(Dense(256, activation='relu', input_dim=11433)) # 11433 is the shape of x_train_
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.3))
model.add(BatchNormalization())
model.add(Dense(64, activation='relu'))
model.add(Dense(1))
```

```
In [0]:
```

In [0]:

```
model.summary()
```

Model: "sequential"

Layer (type)	Output	Shape	Param #
dense (Dense)	(None,	256)	2927104
dense_1 (Dense)	(None,	128)	32896
dropout (Dropout)	(None,	128)	0
batch_normalization (BatchNo	(None,	128)	512
dense_2 (Dense)	(None,	64)	8256
dense_3 (Dense)	(None,	1)	65

Total params: 2,968,833

Trainable params: 2,968,577 Non-trainable params: 256

In [0]:

In [0]:

```
. . .
# https://intellipaat.com/community/19874/keras-sparse-matrix-issue
def batch_generator(X, y, batch_size):
    number_of_batches = X.shape[0]/batch_size
    counter=0
    shuffle_index = np.arange(np.shape(y)[0])
    np.random.shuffle(shuffle_index)
    X = X[shuffle_index, :]
    y = y[shuffle_index]
    while 1:
        index_batch = shuffle_index[batch_size*counter:batch_size*(counter+1)]
        X_batch = X[index_batch,:].todense()
        y_batch = y[index_batch]
        counter += 1
        yield(np.array(X_batch),y_batch)
        if (counter < number_of_batches):</pre>
            np.random.shuffle(shuffle_index)
            counter=0
```

In [0]:

In [0]:

```
EPOCHS = 5
BATCH_SIZE = 128
```

In [0]:

```
WARNING:tensorflow:From <ipython-input-100-85c441c7f0b7>:3: Model.fit_genera
tor (from tensorflow.python.keras.engine.training) is deprecated and will be
removed in a future version.
Instructions for updating:
Please use Model.fit, which supports generators.
Epoch 1/5
9266/9265 [============== ] - 925s 100ms/step - loss: 0.2718
- mae: 0.3878 - mse: 0.2718 - val_loss: 0.2310 - val_mae: 0.3565 - val_mse:
0.2310
Epoch 2/5
9266/9265 [================ ] - 899s 97ms/step - loss: 0.2107 -
mae: 0.3400 - mse: 0.2107 - val loss: 0.2294 - val mae: 0.3594 - val mse: 0.
2294
Epoch 3/5
9266/9265 [================ ] - 890s 96ms/step - loss: 0.1935 -
mae: 0.3229 - mse: 0.1935 - val_loss: 0.2218 - val_mae: 0.3511 - val_mse: 0.
2218
Epoch 4/5
9266/9265 [================ ] - 892s 96ms/step - loss: 0.1802 -
mae: 0.3098 - mse: 0.1802 - val loss: 0.2177 - val mae: 0.3447 - val mse: 0.
2177
Epoch 5/5
9266/9265 [============== ] - 874s 94ms/step - loss: 0.1709 -
mae: 0.3002 - mse: 0.1709 - val loss: 0.2204 - val mae: 0.3466 - val mse: 0.
2204
```

In [0]:

```
# Reference https://keras.io/visualization/

# Plot training & validation loss values

plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()
```


In [0]:

In [0]:

```
# Predictions on Train Data
train_pred = model.predict(x_train_final)
mlp_train_RMSLE = np.sqrt(mean_squared_error(y_train, train_pred))
print("Train RMSLE: ", mlp_train_RMSLE)
```

Train RMSLE: 0.39874828766074355

In [0]:

```
# Predictions on Validation data
val_pred = model.predict(x_val_final)
mlp_val_RMSLE = np.sqrt(mean_squared_error(y_val, val_pred))
print("Train RMSLE: ", mlp_val_RMSLE)
```

Train RMSLE: 0.46947987528516916

```
In [0]:

# Predictions on Test data
test_pred_MLP = model.predict(x_test_final)
test_pred_MLP = test_pred_MLP.flatten()
test_pred_MLP.shape

Out[106]:
(693359,)

In [0]:
In [0]:
```

Ensemble

```
In [0]:
```

```
# Not using XGBRegressor predictions for Ensembling.
# Using weighted ensemble by giving some weight values

final = (test_pred_sgd * 0.2 + test_pred_ridge * 0.3 + test_pred_LGBM * 0.1 + test_pred_MLF
final.shape

out[110]:
(693359,)

In [0]:
```

```
In [0]:
```

```
# Making submission file

test_id = test_ids

submission = pd.DataFrame({
    'test_id': test_id,
    'price': final
    })
```

```
In [0]:
```

submission.to_csv("/content/drive/My Drive/Mercari/new_submission_1.csv", index=False)

Conclusion

In [0]:

```
x = PrettyTable()
x. field_names = ['Model', 'Train RMSLE', 'Validation RMSLE']
x.add_row(['SGDRegressor', round(sgd_train_RMSLE, 2), round(sgd_val_RMSLE, 2)])
x.add_row(['Ridge', round(ridge_train_RMSLE, 2), round(ridge_val_RMSLE, 2)])
x.add_row(['XGBRegressor', round(xgb_train_RMSLE, 2), round(xgb_val_RMSLE, 2)])
x.add_row(['LGBMRegressor', round(lgbm_train_RMSLE, 2), round(lgbm_val_RMSLE, 2)])
x.add_row(['Multilayer Perceptron', round(mlp_train_RMSLE, 2), round(mlp_val_RMSLE, 2)])
print(x)
```

+		
Model	Train RMSLE	Validation RMSLE
SGDRegressor	0.51	0.52
Ridge	0.50	0.51
XGBRegressor	0.61	0.61
LGBMRegressor	0.54	0.54
Multilayer Perceptron	0.39	0.46