

NCERT IN TEXT QUESTIONS

10.1. Write structures of the following compounds:

- (i) 2-Chloro-3-methylpentane
- (ii) 1-Chloro-4-ethylcydohexane
- (iii) 4-tert. Butyl-3-iodoheptane
- (iv) 1,4-Dibromobut-2-ene
- (v) 1-Bromo-4-sec. butyl-2-methylbenzene. Ans:

10.2. Why is sulphuric acid not used during the reaction of alcohols with $\mbox{Kl}?$

Ans. $\rm H_2SO_4$ is an oxidising agent. It oxidises HI produced during the reaction to $\rm I_2$ and thus prevents the reaction between an alcohol and HI to form alkyl iodide. To prevent this, a non-oxidising acid like $\rm H_3PO_3$ is used.

$$2KI + H_2SO_4 \rightarrow 2KHSO_4 + 2HI;$$

 $2HI + H_2SO_4 \rightarrow H_2O + I_2 + SO_2$
 $CH_3CH_2OH + KI + H_3PO_4 \xrightarrow{\Delta}$
 $CH_3CH_2 - I + KH_2PO_4 + H_2O$

10.3. Write structures of different dihalogen derivatives of propane. Ans: Four isomers are possible. These are:

10.4. Among the isomeric alkanes of mdlecular formula C_5H_{12} , identify the one that on photochemical chlorination yields

- (i) A single monochloride.
- (ii) Three isomeric monochlorides.
- (iii) Four isomeric monochlorides. Ans:

cH₃CH₂CH₂CH₂CH₂CH₃ *n*-pentane. a, b, c are the three sets of equivalent hydrogens. Therefore, three isomeric monochlorides are possible.

there are four sets of equivalent hydrogens Designated as a, b, c, d. Thus, four isomeric monochlorides are possible.

10.5. Draw the structures of major monohalo products in each of the following reactions:

(i)
$$OH + SOCl_2 \longrightarrow$$

(iv)
$$CH_3$$
 + HI \rightarrow

Ans:

(i)
$$+ SO_2 + HCI$$

Br

 $CH - CH_3$

(ii) CH_2CI

(iii) $CH_3CH_2I + NaBr$

Br

(vi) $CH_3CH_2I + NaBr$

10.6. Arrange each set of compounds in order of increasing boiling points.

- (i) Bromomethane, Bromoform, Chloromethane, Dibromomethane.
- (ii) 1-Chloropropane, Isopropyl chloride, 1-Chlorobutane.
- (i) Chloromethane < Bromomethane < Dibromomethane < Bromoform

The reason is:

- (a) for same alkyl group, B.Pt increases with size of halogen atom.
- (b) B.Pt increases as number of halogen atoms increase.
- (ii) Isopropyl chloride < 1 Chloropropane < 1 Chlorobutane Reason:
- (a) For same halogen, B.Pt. increases as size of alkyl group increases.
- (b) B.Pt. decreases as branching increases.

10.7. Which alkyl halide from the following pairs would you expect to react more rapidly by an $\rm S_N2$ mechanism? Explain your answer.

Ans: In $\rm S_N 2$ mechanism, reactivity depends upon the steric hindrance around the C-atom carrying the halogen. Lesser the steric hindrance, faster the reaction.

- (i) CH₃CH₂CH₂CH₂Br 1° alkyl halide CH₃CH₂CH(Br)CH₃ 2° alkyl halide As steric hindrance in 2° alkyl halide is more, thus reactivity of CH₃CH₂CH₂CH₂Br > CH₃CH₂CH(Br)CH₃
- (ii) CH₃ CH₂ CH (Br) CH₃ 2° alkyl halide(CH₃)₃ CBr 3° alkyl halide

As steric hindrance in (CH₃)₃ CBr is more, thus it is less reactive than CH₃CH₂CH (Br) CH₃

(iii) Both are 2° alkyl halides but CH₃ group at C₂ is closer to Br atom than – CH₃ group at C₃. As a result CH₃CH₂CH(CH₃) CH₂Br suffers greater steric hindrance than CH₃ CH (CH₃) CH₂CH₂Br and will thus be less reactive in S_N2.

10.8. In the following pairs of halogen compounds, which compound undergoes faster $S_{\rm N}1$ reaction?

(i)
$$\stackrel{Cl}{\longleftarrow}$$
 and $\stackrel{Cl}{\longleftarrow}$ (ii) $\stackrel{Cl}{\longleftarrow}$ and $\stackrel{Cl}{\longleftarrow}$

Ans:

Reactivity in S_N1 is governed by stability of carbocations.

10.9. Identify A, B, C, D, E, R and R¹ in the following:

Ans:

$$CH_{3} \longrightarrow CH_{3} \longrightarrow C$$

10.10. A hydrocarbon C_5H_{10} does not react with chlorine in dark but gives a single monochloro compound C_5H_9Cl in bright sunlight. Identify the hydrocarbon.

Ans: The hydrocarbon with molecular formula C_5H_{10} can either a cycloalkane or an alkene. Since the compound does not react with Cl_2 in the dark, therefore it cannot be an alkene but must be a cycloalkane. Since the cycloalkane reacts with Cl_2 in the presence of bright sunlight to give a single monochloro compound, C_5H_9Cl , therefore, all the ten hydrogen atoms of the cycloalkanes must be equivalent. Thus, the cycloalkane is cyclopentane.