Fengyi, Zhao 29352739 Assignment 1 CSC/DSC 265 Spring 201) Due February 14th Q1 Given a simple linear regression model Y= Bo + Bix. (a) Bis the least squares estimates of Bis i = 0.1. A constant c is added to each response We want to know: the new least equares estimates of Pi. B, = Z=1 (x; -x) (y; -y) Y=f(x)+c Y=Bo+Bix+c for i=0.] So we define the residual sum of squares I'm (x1-x)()+1-()+1. RSS = c'+ c'+ c'+ ... + c' = ne' = (71 - Po - B, X1) + (72 - Bo - B, X2) + ... + (4n - Bo - B, Xn) B= Z記(水-ガ)(リーガ) Bo = 7 - 1 X 三二(ガーガン(ガナヒー(ガナロ) New Equations = 之品 (水)-X) 4 = B+B, x = B+L+B, x where Bo = Bo +L Bo is referred to as a summary of the vertical location of ing the constant c of part (a) is directly observable So construct a new intercept wa at any vertical line X = x. The least equies estimate will be ux = Bo + Pix. What analytical criterion that minimize the varience. to the formular (3.2) the value of the varience on the line of hest fit to pass through (7. 1) Q2 We are given a hat matrix associated with multiple linear regression with a predict His a linear transformation of an prolimensional response vector y to the prolimensional fitter vector $\hat{y} = Hy$. \hat{y} is obtained by minimizing the SSE, the action taken by Hon y is to project it outo the q-dimensional subspace Sq C R" spanned by the q predictors if is the potnt in Sq closet to y.