

CMT810X High Reliability Bidirectional I2C Isolators

Features

■ Up to 5000 Vrms insulation voltage

■ I2C Clock rate: up to 2 MHz

■ Power supply voltage: 2.5 V to 5.5 V

■ AEC-Q100 Grade 1 qualified

■ High CMTI: 150 kV/us

■ Chip level ESD: HBM: ± 8 kV

■ High system level EMC performance:

· Enhanced system level ESD, EFT, surge immunity

■ Isolation barrier life: > 60 years

■ Low power consumption: 1.5mA/ch (1 Mbps)

■ Low propagation delay: <15 ns

■ Operation temperature: -40°C~125°C

■ RoHS-compliant packages:

· SOIC-8 narrow body

· SOIC-16 wide body

· SOW-8 wide body

Safety regulatory approvals

UL recognition: up to 5000 Vrms for 1 minute per
 UI 1577

CQC certification per GB4943.1-2011

CSA component notice 5A

• DIN VDE V 0884-11:2017-01

Applications

- Power over Ethernet
- Isolated I2C, SM Bus, or PM Bus interface
- I2C level shifting
- Battery management

Description

The (CMT8100, CMT8101) devices are high reliability bidirectional isolators that are compatible with I2C interface. The CMT810X devices are AEC-Q100 qualified. The CMT810X devices are safety certified by UL1577 supporting several insulation withstand voltages (3.75 kVrms, 5 kVrms), while providing high electromagnetic immunity and low emissions at low power consumption. The I2C clock of the CMT810X is up to 2 MHz, and the common-mode transient immunity (CMTI) is up to 150 kV/us. Wide supply voltage of the CMT810X devices supports to connect with most digital interfaces directly, easy to do the level shift. High system level EMC performance enhances device reliability and stability.

Device Information

١	Part No.	Package	Body Size (mm x mm)		
	CMT810X	NB(N) SOIC-8	5.0 x 4.0		
		WB(W) SOW-8	5.85 x 7.5		
		WB(W) SOIC-16	10.4 x 7.5		
	Refer to section 8 for ordering information.				

SOW-8

CMT8101 NB SOIC-8/WB SOW-8

CMT8100 WB SOIC-16

CMT8101 WB SOIC-16

Table of Contents

Fe	ature	es	1
Αŗ	plica	ations	1
De	scrip	otion	1
1	Abs	olute Maximum Ratings	3
		Description	
3	Typi	cal Application	6
	3.1	Typical Application Schematic	
	3.1	PCB Layout Guidelines	
		cifications	
4	Spec		
	4.1	Electrical Characteristics	
	4.2	Supply Current Characteristics with 5 V Supply	
	4.3	Supply Current Characteristics with 3.3 V Supply	
	4.4	Supply Current Characteristics with 2.5 V Supply	
	4.5	Parameter Measurement Circuit Setup	
5	High	Noltage Feature Specifications	11
	5.1	Insulation and Safety Related Specifications	11
	5.2	DIN VDE V 0884-11(VDE V 0884-11):2017-01 Insulation Characteristics	11
	5.3	Regulation Information	13
6	Fund	ction Description	13
	6.1	Function Overview	13
7	Pack	kaging Information	15
	7.1	CMT8100N/CMT8101N Narrow Body SOIC-8 Package	15
	7.2	CMT8100W/CMT8101W Wide Body SOIC-16 Package	16
	7.3	CMT8100WH/CMT8101WH SOW-8 Package	17
8	Orde	ering Information	18
9	Таре	e and Reel Information	19
10	Revi	ise History	22
		tacts	

1 Absolute Maximum Ratings

Table 1. Absolute Maximum Ratings^[1]

Parameters	Symbol	Condition	Min.	Тур	Max	Unit
Power supply voltage	VDD1, VDD2		-0.5		6.5	V
Maximum input voltage	SDA1, SDA2, SCL1, SCL2		-0.4		VDD+0.4 ^[1]	V
Maximum input pulse voltage	SDA1, SDA2, SCL1, SCL2	Pulse width should be less than 100 ns, and the duty cycle should be less than 10%	-0.8		VDD+0.8	V
Common-Mode transients	CMTI				±150	kV/us
Output current	lo		-15		15	mA
Maximum surge isolation voltage	VIOSM		ci. C		5.3	kV
Operating temperature	Topr		-40		125	°C
Storage temperature	Tstg		-40		150	°C
	НВМ				±8000	٧
Electrostatic discharge	CDM				±2000	V

Notes:

[1]. The maximum voltage must not exceed 6.5 V.

Caution! ESD sensitive device. Precaution should be used when handling the device in order to prevent performance degradation or loss of functionality.

2 Pin Description

Narrow-body (N) 8-pin and wide-body (W) 16-pin SOIC / wide-body(W) 8-pin SOW packages are available for the series part number of CMT8100x, CMT8101x. The pin lists are shown as follows.

Figure 1. CMT8100N Pin List of SOIC-8 NB/ SOW-8 WB

Figure 2. CMT8101N Pin List of SOIC-8 NB/ SOW-8 WB

Figure 3 CMT8100W SOIC-16 Pin List

Figure 4. CMT8101W SOIC-16 Pin List

Table 2. CMT8100N/8101N Pin Description

Pin#	Pin Name	I/O	Description
1	VDD ₁	-	Power supply for isolator side 1.
2	SDA ₁	I/O	Serial data input /output, side 1
3	SCL₁	I/O	Serial clock input /output, side 1.
4	GND₁	-	The ground reference for isolator side 1.
5	GND ₂	-	The ground reference for isolator side 2.
6	SCL ₂	I/O	Serial clock input /output, side 2.
7	SDA ₂	I/O	Serial data input /output, side 2
8	8 VDD ₂ - Power supply for isolator side 2.		Power supply for isolator side 2.

Table 3 CMT8100W/8101W Pin Description

Pin#	Pin Name	I/O	Description
1	GND₁	-	Ground 1, the ground reference for Isolator Side 1
2	NC	-	No Connection.
3	VDD1	-	Power Supply for Isolator Side 1.
4	NC	-	No Connection.
5	SDA ₁	I/O	Serial data input /output, Side 1.
6	SCL₁	I/O	Serial clock input /output, Side 1.
7	GND₁	I/O	Ground 1, the ground reference for Isolator Side 1.
8	NC/GND	-	No Connection/ Connect to the Ground.
9	GND_2	-	Ground 2, the ground reference for Isolator Side 2.
10	NC	-	No Connection.
11	SCL ₂	I/O	Serial clock input /output, Side 2.
12	SDA ₂	I/O	Serial data input /output, Side 2.
13	NC	-	No Connection.
14	VDD ₂	-	Power Supply for Isolator Side 2.
15	NC	-	No Connection.
16	GND ₂	-	Ground 2, the ground reference for Isolator Side 2.

3 Typical Application

3.1 Typical Application Schematic

3.2 PCB Layout Guidelines

The CMT810X requires a $0.1~\mu F$ bypass capacitor between VDD1 and GND1, VDD2 and GND2. The capacitor should be placed as close as possible to the package. The figure below shows the recommended PCB layout. Make sure the space under the chip should keep free from planes, traces, pads and via. The pull-up resistors are required for both side 1 and side 2 buses. And the value of the resistors depends on the number of I2C devices on the bus.

Figure 5. Recommended PCB Layout

4 Specifications

VDD1 = $2.5 \sim 5.5$ V, VDD2 = $2.5 \sim 5.5$ V, Ta = -40° C to 125° C. Unless otherwise noted, typical values are at VDD1 = 5 V, VDD2 = 5 V, Ta = 25° C.

4.1 Electrical Characteristics

Table 4. Electrical Characteristics

Parameters	Symbol	Condition	Min	Тур	Max	Unit
Power on reset	VDD_POR	POR threshold as during power- up		2.2		V
	VDD _{HYS}	POR threshold Hysteresis		0.1		V
Start up time after POR	t _{rbs}			10		usec
Common mode transient immunity	СМТІ		±100		±150	kV/us
Side 1 logic level						
	V _{ILT1}	Input threshold at rising edge	400			mV
Input threshold	V _{IHT1}				600	mV
	V _{IT_HYS1}	Input threshold hysteresis		100		mV
Low level output voltage	V _{OL1}	I _{OL} ≤ 4mA,R _{PULL UP} =1K	650		800	mV
Low-level output voltage to high-level input voltage threshold difference	ΔV_{OIT1}		70			mV
Side 2 Logic Level						
Languit the scale and	V _{ILT2}	Input threshold at rising edge		1.6		V
Input threshold	V _{IT_HYS2}	Input threshold hysteresis		0.4		V
High level input voltage	$V_{\text{IH}2}$		2.0			V
Low level input voltage	V_{IL2}				0.8	V
Low level output voltage	V _{OL}	I _{OL} ≤ 30mA			0.5	V

4.2 Supply Current Characteristics with 5 V Supply

VDD1 = 5 V \pm 10%, VDD2 = 5 V \pm 10%, Ta = -40 °C to 125 °C. Unless otherwise noted, Typical values are at VDD1 = 5 V, VDD2 = 5 V, Ta = 25 °C.

Table 5. Supply Current Characteristics with 5 V Supply

Parameter	Symbol	Condition	Min.	Тур.	Unit
CMT8100					
Supply current	I _{DD1} (Q0)			4.89	mA
All Input 0 V	I _{DD2} (Q0)			3.99	mA

Parameter	Symbol	Condition	Min.	Тур.	Unit
Supply current:	I _{DD1} (Q1)			2.56	mA
All Input at supply	$I_{DD2}(Q1)$			1.97	mA
Supply current:	I _{DD1} (2M)			3.72	mA
All Input with 2MHz, C∟=15pF	I _{DD2} (2M)			2.64	mA
CMT8101		•		•	
Supply current	I _{DD1}			4.19	mA
All Input 0V	I _{DD2}			2.94	mA
Supply current:	I _{DD1}			1.97	mA
All Input at supply,	I _{DD2}			1.92	mA
Supply current:	I _{DD1}			2.63	mA
All Input with 2MHz, C₁=15pF	I _{DD2}			2.37	mA
Clock rate	DR		0	2	MHz
	t _{PLH12}	See figure .6, R1=1500 Ω , R2= 500 Ω , no load		46.66	ns
	t _{PHL12}	See figure .6, R1=1500 Ω , R2= 500 Ω , no load		66.66	ns
Propagation delay	t _{PLH21}	See figure .6, R1=1500 Ω , R2= 500 Ω , no load		38.34	ns
	t _{PHL21}	See figure .6, R1=1500 Ω , R2= 500 Ω , no load		72.34	ns
Dulga width distortion	PWD ₁₂	t PHL12-t PLH12		34	ns
Pulse width distortion	PWD ₂₁	t _{PHL21} - t _{PLH21}		20	ns
	t _{f1}	CL = 30pF		17.1	ns
Falling time	t _{f2}	CL = 300pF		26.2	ns

4.3 Supply Current Characteristics with 3.3 V Supply

VDD1 = 3.3 V \pm 10%, VDD2 = 5 V \pm 10%, Ta = -40 °C to 125 °C. Unless otherwise noted, Typical values are at VDD1 = 3.3 V, VDD2 = 3.3 V, Ta = 25 °C.

Table 6. Supply Current Characteristics with 3.3 V Supply

	• • •					
Parameter	Symbol	Condition	Min.	Тур.	Unit	
CMT8100						
Supply current	I _{DD1} (Q0)			4.87	mA	
All Input 0V	I _{DD2} (Q0)			3.98	mA	
Supply current:	I _{DD1} (Q1)			2.53	mA	
All Input at supply,	I _{DD2} (Q1)			1.95	mA	
Supply current:	I _{DD1} (2M)			3.51	mA	
All Input with 2MHz, C₁=15pF	I _{DD2} (2M)			2.78	mA	

Parameter	Symbol	Condition	Min.	Тур.	Unit
CMT8101					
Supply current	I _{DD1}			4.17	mA
All Input 0V	I _{DD2}			2.93	mA
Supply current:	I _{DD1}			1.94	mA
All Input at supply,	I _{DD2}			1.89	mA
Supply current:	I _{DD1}			2.73	mA
All Input with 2MHz, C₁=15pF	I _{DD2}			2.29	mA
Clock rate	DR		0	2	MHz
	t PLH12	See figure 6, R1=1500 Ω, R2= 500Ω, no load		46.66	ns
	t PHL12	See figure 6, R1=1500 Ω, R2= 500Ω, no load		66.66	ns
Propagation delay	t _{PLH21}	See figure 6, R1=1500 Ω , R2= 500 Ω , no load		38.34	ns
	t _{PHL21}	See figure 6, R1=1500 Ω , R2= 500 Ω , no load		72.34	ns
Pulse width distortion	PWD ₁₂	t PHL12 - t PLH12		34	ns
ruise width distortion	PWD ₂₁	t PHL21-t PLH21		20	ns
	t _{f1}	CL = 30pF		17.1	ns
Falling time	t _{f2}	CL = 300pF		26.2	ns

4.4 Supply Current Characteristics with 2.5 V Supply

VDD1 = 2.5 V \pm 10%, VDD2 = 2.5 \pm 10%, Ta = -40 °C to 125 °C. Unless otherwise noted, Typical values are at VDD1 = 2.5 V, VDD2 = 2.5 V, Ta = 25 °C.

Table 7. Supply Current Characteristics with 2.5 V Supply

Parameter	Symbol	Condition	Min.	Тур.	Unit
CMT8100					
Supply current	I _{DD1} (Q0)			4.85	mA
All Input 0V	I _{DD2} (Q0)			3.96	mA
Supply current:	I _{DD1(} Q1)			2.53	mA
All Input at supply,	I _{DD2} (Q1)			1.94	mA
Supply current:	I _{DD1} (2M)			3.43	mA
All Input with 2MHz, C _L =15pF	I _{DD2} (2M)			2.85	mA
CMT8101					
Supply current	I _{DD1}			4.15	mA
All Input 0V	I _{DD2}			2.91	mA
Supply current:	I _{DD1}			1.97	mA

Parameter	Symbol	Condition	Min.	Тур.	Unit
All Input at supply,	I _{DD2}			1.91	mA
Supply current:	I _{DD1}			2.8	mA
All Input with 2MHz, CL=15pF	I _{DD2}			2.25	mA
Clock rate	DR		0	2	MHz
	t _{PLH12}	See figure 6, R1=1500 Ω , R2= 500 Ω , no load		47.5	ns
	t _{PHL12}	See figure .6, R1=1500 Ω, R2= 500Ω, no load		89.5	ns
Propagation delay	t _{PLH21}	See figure .6, R1=1500 Ω, R2= 500Ω, no load		40.84	ns
	t PHL21	See figure .6, R1=1500 Ω, R2= 500Ω, no load	^ C	96.64	ns
Dulge width distortion	PWD ₁₂	t _{PHL12} - t _{PLH12}	XV	42	ns
Pulse width distortion	PWD ₂₁	t _{PHL21} - t _{PLH21}		55.8	ns
Falling time	t _{f1}	C _L = 30pF		31	ns
	t _{f2}	C _L = 300pF		42	ns

4.5 Parameter Measurement Circuit Setup

Figure 6. Switching Characteristic Test Circuit and Voltage Waveforms

Figure 7. Common-Mode Transient Immunity Test Circuit

5 High Voltage Feature Specifications

5.1 Insulation and Safety Related Specifications

Table 8. Insulation and Safety Related Specifications

Parameter	Symbol	Condition	Value		Unit
rai ailletei	Symbol		SOIC-8	SOW-8/SOIC-16	Offic
Minimum External Air Gap (Clearance)	1 ((()1)	Shortest terminal-to-terminal distance through air	4.0	8.0	mm
Minimum External Tracking (Creepage)	1 (102)	Shortest terminal-to-terminal distance across the package surface	4.0	8.0	mm
Minimum internal gap	DTI	Distance through insulation		25	um
Tracking Resistance (Comparative Tracking Index)		DIN EN 60112 (VDE 0303-11); IEC 60112		>400	V
Material Group				1	

5.2 DIN VDE V 0884-11(VDE V 0884-11):2017-01 Insulation Characteristics

Table 9. DIN VDE V 0884-11(VDE V 0884-11):2017-01 Insulation Characteristics

Description	Symbol	Test Condition	Value		
			SOIC-8	SOW-8/SOIC-16	Unit
Installation classification per DIN VDE 0110					
For rated mains voltage ≤ 150 V _{rms}			I to IV	I to IV	
For rated mains voltage ≤ 300 Vrms			I to Ⅲ	I to IV	
For rated mains voltage ≤ 400 V _{rms}			I to Ⅲ	I to IV	
Climatic classification			10/105/21	10/105/21	

Pollution degree per DIN VDE 0110, table 1			2	2	
Maximum repetitive isolation voltage	V_{IORM}		565	849	Vpeak
Input to output test voltage, method B1	$V_{pd\ (m)}$	V IORM × 1. 5 = $V_{pd (m)}$, 100% production test, $t_{ini} = t_m = 1$ sec, partial discharge < 5 pC	847	1273	Vpeak
Input to output test voltage, method A					
After environmental tests subgroup 1	$V_{pd\ (m)}$	$V_{IORM} \times 1.2 = V_{pd (m)},$ $t_{ini} = 60 \text{ sec}, t_m = 10 \text{ sec},$ partial discharge < 5 pC	678	1019	Vpeak
After Input and /or safety test subgroup 2 and subgroup 3	$V_{pd\ (m)}$	$V_{IORM} \times 1.2 = V_{pd (m)},$ $t_{ini} = 60 \text{ sec}, t_m = 10 \text{ sec},$ partial discharge < 5 pC	678	1019	Vpeak
Maximum transient isolation voltage	V_{IOTM}	t = 60 sec	5300	7000	Vpeak
Maximum surge isolation voltage	V_{IOSM}	Test method per IEC 60065,1.2/50us waveform, VTEST=1.3×VIOSM	5300	7000	Vpeak
Isolation resistance	R _{IO}	V _{IO} =500V	>10 ⁹	>10 ⁹	Ω
UL1577					
Isolation withstand voltage	Viso	V TEST = V ISO, $t = 60 \text{ s}$ (certified); V TEST = 1.2 \times V ISO, $t = 1 \text{ s}$ (100% mass production)	3750	5000	Vrms
Isolation capacitance	C_{IO}	f = 1MHz	0.6	0.6	pF
Input capacitance	Cı		2	2	pF
Total power dissipation at 25°C	Ps			1499	mW
Case temperature	Ts		150	150	°C

Figure 8. CMT8100N/8101N Thermal Derating Curve, Dependence of Safety Limiting Values with Case
Temperature per DIN VDE V 0884-11

Figure 9. CMT8100W/8101W Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN VDE V 0884-11

5.3 Regulation Information

The CMT8100N/CMT8101N are approved by the organizations listed in table below.

Table 10. CMT8100N / CMT8101N Regulation Conformation

UL		VDE	CQC		
UL 1577 Component Recognition Program		DIN VDE V 0884- 11(VDE V 0884-	Certified by CQC11- 471543- 2012 GB4943.1-2011		
Certificate number: UL-US-2439077-1	Certificate number: UL-CA-2429797-0	IFIIA (nandina)	File: CQC23001382478		

The CMT8100W/CMT8101W are approved by the organizations listed in table below.

Table 11, CMT8100W / CMT8101W Regulation Conformation

iable in chinestott, chinestott itogulation comormation					
UL		VDE	cqc		
UL 1577 Component Recognition Program	Approved under CSA	,	Certified by CQC11- 471543- 2012 GB4943.1-2011		
Certificate number: UL-US-2439077-1	Certificate number: UL-CA-2429797-0		File: CQC23001385762		

6 Function Description

6.1 Function Overview

The CMT810X is a bidirectional isolator based on a capacitive isolation barrier technique. The CMT810X devices are compatible with I2C interface. Internally, the I2C interface is split into two unidirectional channels communicating in opposite directions via a dedicate capacitive isolation channel for each. The digital signal is modulated with RF carrier generated by the internal oscillator at the Transmitter side. Then it is transferred through the capacitive isolation barrier and demodulated at the Receiver side.

The CMT8100 devices are high reliability dual-channel bidirectional isolators for clock and data lines while CMT8101 has a

bidirectional data and a unidirectional clock channel. The CMT8100 is suitable for multi-master application while CMT8101 is useful in a single master application.

The side 2 logic levels of CMT810X are standard I2C value, and the maximum load for side 2 is ≤ 400 pF. So multiple CMT810X devices connected to a bus by their Side 2 pins can communicate with each other and with other I2C compatible devices.

The side 1 logic levels of CMT810X are not standard value. The output low level of CMT810X is 650mV, while low-level output voltage to high-level input voltage threshold is 50 mV. This prevents an output logic low at Side 1 being transmitted back to Side 2 and pulling down the I2C bus.

The CMT810X devices are AEC-Q100 qualified. The CMT810X device is safety certified by UL1577 support several insulation withstand voltages (3.75 kVrms, 5 kVrms), while providing high electromagnetic immunity and low emissions at low power consumption. The I2C clock of the CMT810X is up to 2 MHz, and the common-mode transient immunity (CMTI) is up to 150 kV/us. Wide supply voltage of the CMT810X device supports to connect with most digital interfaces directly, easy to do the level shift. High system level EMC performance enhances reliability and stability.

The table below shows the functional status of CMT810X. The CMT810X is high impedance output when VDDIN is unready and VDDOUT is ready as shown in the table below.

Rev 0.7 | Page 14/23

Input	VDD1 Status	VDD2 Status	Output	Comment
Н	Ready	Ready	Z	
L	Ready	Ready	L	Normal operation.
Х	Unready	Ready Z		The output follows the same status with the input within 60 us after
Λ	Officady	ready	2	input side VDD1 is powered on.
	Poody	Harady V		The output follows the same status with the input within 60 us after
_ ^	X Ready Unready		Х	output side VDD2 is powered on.

7 Packaging Information

The packaging information of the CMT810X is shown in the figures below.

7.1 CMT8100N/CMT8101N Narrow Body SOIC-8 Package

Figure 10. Narrow Body SOIC-8 Packaging

Table 13. Narrow Body SOIC-8 Packaging Scale

Cumbal	Size (mm)			
Symbol	Min	Тур	Max	
А	-	-	1.75	
A1	0.10	0.18	0.25	
A2	1.30	1.40	1.50	
A3	0.60	0.65	0.70	
b	0.33	0.42	0.51	
С	0.17	0.21	0.25	
D	4.80	5.00	5.20	
E	5.80	6.00	6.20	

Symbol	Size (mm)				
	Min	Тур	Max		
E1	3.90	4.00	4.10		
е	1.27 BSC				
h	0.25	-	0.50		
L	0.40	0.60	0.80		
L1	1.05 BSC				
θ	0	-	8°		

7.2 CMT8100W/CMT8101W Wide Body SOIC-16 Package

Figure 11. Wide Body SOIC-16 Packaging

Table 14. Wide Body SOIC-16 Packaging Scale

Cumbal	Scale (mm)			
Symbol	Min.	Тур.	Max.	
Α	-	•	2.65	
A1	0.10	0.20	0.30	
A2	2.25	2.30	2.35	
А3	1.00	1.05	1.10	
b	0.35	0.37	0.43	
С	0.15	0.20	0.30	
D	10.30	10.40	10.50	
Е	10.10	10.30	10.50	

Completed.	Scale (mm)			
Symbol	Min.	Тур.	Max.	
E1	7.40	7.50	7.60	
е	1.14	1.27	1.40	
L	0.65	0.70	0.85	
L1	1.40			
θ	0	-	8°	

7.3 CMT8100WH/CMT8101WH SOW-8 Package

Figure 12. CMT810X SOW-8 WB Packaging

Table 15. CMT810X SOW-8 WB Packaging Scale

Symbol	Scale (mm)			
Symbol	Min.	Тур.	Max.	
A	-	-	2.80	
A1	0.36	-	0.46	
A2	2.20	2.30	2.40	
A3	-	0.25	-	
Q	0.97	1.02	1.07	
b	0.31	0.41	0.51	
С	0.13	-	0.33	
D	5.75	5.85	5.95	
E	7.40	7.50	7.60	
E1	11.25	11.50	11.75	
е	1.27 bsc			

Symbol	Scale (mm)			
	Min.	Тур.	Max.	
L		2.00 bsc		
Lp	0.50	-	1.00	
Υ	-	0.10	-	
θ	0	-	8°	

8 Ordering Information

Table 16. Part Number Information List

Part No.	Isolation Rating(kV)	MOQ	Numbers of input channel	Max Clock Rate (MHz)	Temperature	Automotive	Package	MSL
CMT8100N	3.75	3000	2	2	-40 to 125℃	NO	NB SOIC8	1
CMT8101N	3.75	3000	2	2	-40 to 125℃	NO	NB SOIC8	1
CMT8100WH	5	1000	2	2	-40 to 125℃	NO	WB SOW8	3
CMT8101WH	5	1000	2	2	-40 to 125℃	NO	WB SOW8	3
CMT8100W	5	1000	2	2	-40 to 125℃	NO	WB SOIC16	3
CMT8101W	5	1000	2	2	-40 to 125℃	NO	WB SOIC16	3

Part Number Naming Rule:

Please visit www.hoperf.com for more product/product line information.

Please contact sales@hoperf.com or your local sales representative for sales or pricing requirements.

9 Tape and Reel Information

Figure 13. CMT810X WB SOIC-16 Tape and Reel Information

Figure 14. CMT810X WB SOIC-16 Tape and Reel Information

Figure 15. CMT810X NB SOIC-8 Tape and Reel Information

Figure 16. CMT810X NB SOIC-8 Tape and Reel Information

10 Revise History

Table 17. Revise History Records

Version No.	Chapter	Description	Date	
0.1	All	Initial version	2021/11/02	
0.2	4	Update the supply current characteristic data	2022/08/31	
0.3	All	Revise the NB SOIC-8 package size	2022/10/24	
0.4	8	Update silver print information	2023/03/29	
	10	Added tape information		
0.5	All	Delete the silver printing section	2023/04/20	
		Added the CQC cercificate number		
0.6	All	Revise the 8 th pin of NC to NC/GND in package SOIC16.	2023/09/11	
0.7	All	Added package of SOW8 WB	2024/5/21	
		Add MSL level in order information	2024/12/3	

11 Contacts

Shenzhen Hope Microelectronics Co., Ltd.

Address: 30th floor of 8th Building, C Zone, Vanke Cloud City, Xili Sub-district, Nanshan, Shenzhen, GD, P.R. China

Tel: +86-755-82973805 / 4001-189-180

Fax: +86-755-82973550

Post Code: 518052

Sales: sales@hoperf.com
Website: www.hoperf.com

Copyright. Shenzhen Hope Microelectronics Co., Ltd. All rights are reserved.

The information furnished by HOPERF is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of HOPERF and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of HOPERF. HOPERF products are not authorized for use as critical components in life support devices or systems without express written approval of HOPERF. The HOPERF logo is a registered trademark of Shenzhen Hope Microelectronics Co., Ltd. All other names are the property of their respective owners.