IFRS Campus Rio Grande

Matemática II - Prof^a Aline - Números Complexos – Lista de Exercícios de Vestibulares

- (Fafi-MG) Se $z_1 = 3 + 2i$ e $z_2 = 4 i$, assinale a única alternativa falsa:
 - a) $z_1 + z_2 = 7 + i$
 - b) $z_2 z_1 = 1 3i$
 - c) $z_1 z_2 = 14 + 5i$
 - d) $|z_1|^2 = 13$
 - e) $\frac{z_1}{z_2} = \frac{3}{4} 2i$
- (Facs-BA) O módulo do complexo
 - $1 + 2i + i(1 i) \frac{2}{1 + i}$ é igual a:
- b) $\sqrt{3}$
- e) 2
- c) $\sqrt{5}$
- (FEI-SP) Se a soma dos valores comple $xos z + 2\bar{z} + 3z + 4\bar{z} \in 320 + 28i (\bar{z} \in o$ conjugado de z), então:
 - a) z = 10 2i
- d) z = 32 2i
- b) z = 10 + 2i
- e) z = 2 + 14i
- c) z = 32 14i
- (UF-RN) Os valores dos números reais a e b, de forma que o número complexo
 - $\frac{1+i}{1-i}$ seja igual a a + bi, são:
 - a) a = 0 e b = -1 c) a = 0 e b = 1
 - b) a = 1 e b = 0
- d) a = -1 e b = 0
- (UF-AL) Seja o número complexo $Z = i^{101} + i^{102} + i^{103} + i^{104} + i^{105} + i^{106}$ Calculando-se z², obtém-se:
 - a) 2i
- d) 2 2i
- b) 2i
- e) -6 + 6i
- c) -1 + i
- (Ucsal-BA) Se o número complexo z = a + bi é tal que $z^2 = (\bar{z})^2$, então é verdade que:
 - a) $a = 0 e b \neq 0$
 - b) a = 0 ou b = 0
 - c) $a \ne 0$ e b = 0
 - d) $a \neq 0$ ou $b \neq 0$
 - e) $a \neq 0$ e b $\neq 0$
- 7 (Furg-RS) Para que (5 2i) (k + 3i) seja um número real, o valor de k deverá ser:
 - a) $\frac{2}{15}$ c) $\frac{15}{2}$
- b) $-\frac{2}{15}$ d) $-\frac{15}{2}$
- (PUC-PR) Sabendo-se que o complexo z = a + bi satisfaz a expressão iz + 2z == 2i - 11, então z^2 é igual a:
 - a) 16 9i
- d) 25 + 24i
- b) 17 24i
- e) 7 24i
- c) 25 24i

- (Unificado-RJ) Considere um número complexo z tal que o seu módulo é 10 e a soma dele com o seu conjugado é 16. Sabendo que o afixo de z pertence ao 4º quadrante, pode-se afirmar que z é igual a:
 - a) 6 + 8i
- d) 8 6i
- b) 8 + 6ic) 10
- e) 6 8i
- 10 (UF-PB) A representação cartesiana dos números complexos 1 + 2i, -2 + i e -1 - 2i são vértices de um quadrado. O quarto vértice desse quadrado corresponde a:
 - a) 1 i
- d) 1 2ie) -2 - 2i
- b) 2 i
- c) 1 + i
- 11 (FEBA-FACCEBA) Considerando-se que os pontos A, B e C são os afixos dos números complexos $z_1 = 2 - i$, $z_2 = 2 + i$ e $z_3 = -4 + 4i$, pode-se afirmar que a área do triângulo ABC é igual a:
 - a) 4 u.a.
- d) 10 u.a.
- b) 6 u.a.
- e) 12 u.a. c) 8 u.a.
- (UF-RN) Se a e b são números reais tais
 - que o número complexo $z = \frac{a bi}{a}$ tem módulo igual a 1, então:
 - a) a = 2b
- d) $a^2 b^2 = 12$
- b) a b = 2c) a + b = 6
- e) $a^2 + b^2 = 20$
- **13** (Fatec-SP) Seja $i^2 = -1$ e os números complexos $z_i = \cos \theta + i \cdot \sin \theta e$
 - $z_2 = \operatorname{sen} \theta + i \cdot \cos \theta$.
 - É verdade que:
 - a) o módulo de z₁+z₂ é igual a 2.
 - b) o módulo de $z_1 z_2$ é igual a 1.
 - c) $z_1 = i \cdot z_2$
 - d) $z_2 = i \cdot z_1$
 - e) $z_1 \cdot z_2$ é um número real.
- (14) (Unificado-RJ) Um complexo z possui módulo igual a 2 e argumento $\frac{\pi}{2}$. Sendo z o conjugado de z, a forma algébrica do complexo z é:
 - a) $1 i\sqrt{3}$
- d) $1 + \sqrt{3} i$
- b) $\sqrt{3} i$
- e) $2(\sqrt{3} i)$
- c) $\sqrt{3} + i$

(UF-RS) Os vértices do retângulo sombreado da figura abaixo representam os números complexos *p*, *q*, *r*, *s*.

Pode-se afirmar que p + q + r + s é o número complexo:

- a) i
- d) 0
- b) i
- e) 1 + i
- c) 1
- (U. Amazonas-AM) Sobre o número complexo $(1-i)^{1000}$, podemos afirmar que:
 - a) é igual a zero;
 - b) é um número imaginário puro;
 - c) é um número real negativo;
 - d) tem módulo igual a 1;
 - e) é um número real positivo.
- (Ucsal-BA) O produto dos números complexos

$$z_1 = 2 \cdot \left(\cos \frac{\pi}{4} + i \cdot \sin \frac{\pi}{4}\right) e$$

$$z_2 = 5 \cdot \left(\cos \frac{\pi}{3} + i \cdot \sin \frac{\pi}{3}\right)$$
 é:

a)
$$10 \cdot \left(\cos \frac{\pi^2}{12} + i \cdot \sin \frac{\pi^2}{12}\right)$$

b)
$$10 \cdot \left(\cos \frac{\pi}{12} + i \cdot \sin \frac{\pi}{12}\right)$$

c)
$$10 \cdot \left(\cos \frac{5\pi}{12} + i \cdot \sin \frac{5\pi}{12}\right)$$

d)
$$10 \cdot \left(\cos \frac{7\pi}{12} + i \cdot \sin \frac{7\pi}{12}\right)$$

e)
$$5 \cdot \left(\cos \frac{3\pi}{4} + i \cdot \sin \frac{3\pi}{4}\right)$$

- (Fuvest-SP) Sabendo que α é um número real e que a parte imaginária do número complexo $\frac{2+i}{\alpha+2i}$ é zero, então α é:
 - a) 4
- d) 2
- b) -2
- e) 4
- c) 1

(UFF-RJ) Na figura abaixo, os números complexos z₁, z₂, ..., z₈ estão sobre os vértices de um octógono regular. Com isso, pode-se afirmar que o produto z₈ · z₂ · z₆ é:

- a) \bar{z}_1
- d) \bar{z}_6
- b) z₄
- e) \bar{z}_8
- c) \bar{z}_5
- **20** (U.F. Viçosa-MG) Os números complexos z e w são tais que w + iz = -2 i e z + iw = 5 + 2i. Então z e w são, respectivamente:
 - a) -2 + 2i e 3i
 - b) 2 + 2i e 3i
 - c) 2 + 2i e 3i
 - d) -2 2i e -3i
 - e) -2 2i e 3i
- **22** (ITA-SP) O valor da potência $\left(\frac{\sqrt{2}}{1+i}\right)^{93}$ é:
 - a) $\frac{-1+i}{\sqrt{2}}$
- d) $(\sqrt{2})^{93}i$
- b) $\frac{1+i}{\sqrt{2}}$
 - e) $(\sqrt{2})^{93} + i$
- c) $\frac{-1 i}{\sqrt{2}}$
- **24** (Unit-MG) No conjunto dos números complexos, os três números cujo cubo vale 1 são:
 - a) 1, −1, i
 - b) 1, 1 + i, 1 i

c) 1, i,
$$\frac{1}{2} + \frac{\sqrt{3}}{2}$$
 i

d) 1,
$$-\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
, $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$

- (UF-SE) Uma das raízes quadradas do número complexo 4i é:
 - a) -2i
 - b) $\sqrt{2} + i$
 - c) $-\sqrt{2} i$
 - d) $\sqrt{2} (1 i)$
 - e) $\sqrt{2} (1 + i)$

Respostas:

1 e	10 b	19 b
2 d	11 b	20 c
3 c	12 e.	
4 c	13 d	22 a
5 a	14 a	
6 b	15 d	24 d
7 c	16 e	
8 e	17 d	
9 d	18 e	27 e