INSTRUCTIONS

1. How to Compile (on Windows, for example)

Install MinGW-W64 GCC on Windows, and enter in Command Prompt

```
g++ md.cpp lb.cpp dtw.cpp pnt.cpp
```

which will generate an executable named a.exe, or enter in Command Prompt

```
g++ md.cpp lb.cpp dtw.cpp pnt.cpp -o any name you like.exe
```

which will generate an executable any name you like.exe

Note: Our version of g++ provided by MinGW-w64 GCC is 7.1.0. If you have MinGW-W64 GCC installed, and enter in Command Prompt

```
g++ --version
```

the machine will print on screen something like

2. How to Use (on Windows, for example)

Examples

(1) Assume the executable's name is a.exe. Enter in Command Prompt

a

then the program will run on a self-generated random time series with default parameters.

(2) Assume you have a data file eeg400 (included) in the data folder. Enter in Command Prompt a data\eeg400

then the program will run on eeg400 with default parameters.

(3) Assume you have a data file ox866 (included) in the data folder. Enter in Command Prompt

a data\ox866 2

then the program will run on 0x866 with Sakoe-Chiba band r = 2.

(4) Assume you have a data file light1189 (*included*) in the data folder. This data has 1,189 points. You don't want that long. Enter in Command Prompt

```
a data\light1189 1000 1
```

then the program will run on the first 1,000 data points with Sakoe-Chiba band r = 1.

(5) Assume you have a data file sea1400 (*included*) in the data folder. This data has 1,400 points. You want the subsequence length m to be 200. Enter in Command Prompt

a data\sea1400 1400 1 200

then the program will run with Sakoe-Chiba band r = 1, and subsequence length m = 200.

(6) Assume you have a data file forex1000 (*included*) in the data folder. This data has 1,000 points. You want the subsequence length m to be 5% of total length. Enter in Command Prompt

```
a data\forex1000 1000 1 0.05
```

then the program will run with Sakoe-Chiba band r = 1, and subsequence length m = 0.05 * 1000 = 50.

Command Line Options

```
# 1: [command]
# 2: [command] [filename]
# 3: [command] [filename] [band width r]
# 4: [command] [filename] [length n] [band width r]
# 5: [command] [filename] [length n] [band width r] [subsequence length m]
# 6: [command] [filename] [length n] [band width r] [subsequence proportion mm]
```

Requirements

```
# Require Time Series Data Length n > 100
# Require Sakoe-Chiba Band r in [0, m/2]
# Require Subsequence Length m in [1, n/2], or Subsequence Proportion mm in (0, 0.5]
# Max Time Series Data Length n = 10000
# Default Time Series Data Length n = 1000
# Default Sakoe-Chiba Band r = 1
# Default Subsequence Length m = n/10, or Subsequence Proportion mm = 0.1
# If No Data File (#1), Program will Generate a Random Time Series.
```

3. Descriptions of Source Files and Dataset

Source Files

md.hpp	header for md.cpp
lb.hpp	header for lb.cpp
dtw.hpp	header for dtw.cpp
pnt.hpp	header for pnt.cpp
mat.hpp	template functions for [MAT]rix
md.cpp	$[\mathbf{M}]$ atrix profile with $[\mathbf{D}]$ ynamic time warping, the main source file
lb.cpp	[L]ower [B]ound functions
dtw.cpp	[D]ynamic [T]ime [W]arping functions
pnt.cpp	[P]ri[NT]ing functions

Dataset

eeg3600	EEG (electroencephalogram) recordings. 3,600 data points.
eeg400	EEG (electroencephalogram) recordings. 400 data points.
forex1000	daily USD/GBP exchange rates. 1,000 data points.
light1189	10-day mean light intensity recordings from S Carinae star. 1,189 data points.
ox866	oxygen-18 to oxygen-16 ratio in about 2.5 million years. 866 data points.
sea1400	Darwin Sea level pressures (monthly), from 1882 to 1998. 1,400 data points.
soi540	the Southern Oscillation Index, related to climate change. 540 data points.

^{*} This dataset is acquired from the Department of Statistical Science of Duke University.

http://www2.stat.duke.edu/~mw/ts data sets.html

4. An Example to Show How to Run the Program

Assume the executable's name is a.exe, and you have a data file light1189 (included) in the data folder. Enter in Command Prompt

a data\light1189 1000 1 0.05

The program will run on the first 1,000 data points of light1189, with Sakoe-Chiba band r = 1, and use 5% of the total length, which is 50, as the query subsequence length. Shortly it will print on screen

```
Length of Time Series Data n = 1000
Length of Subsequence m = 50
Length of Matrix Profile 1 = 951
Length of Forbidden Zone f = 13
Entries to Compute g = 880782
Sakoe-Chiba Band r = 1
DTW Brutal Force : Time = 6.2 s
Lower Bound Direct : Time = 2.0 s
Lower Bound Incremental : Time = 0.7 s
::::Lower Bound Consistency Check Begins::::::
::::Lower Bound Consistency Check Ends:::::::
::::Lower Boundedness Check Begins:::::::::
::::Lower Boundedness Check Ends::::::::::
DTW Lower Bound : Time = 0.4 s
# Saved = 857231 (97%)
::::Matrix Profile Consistency Check Begins::::
::::Matrix Profile Consistency Check Ends:::::
DTW Randomized : Time = 1.1 \text{ s}
# Saved = 864752 (98\%)
DTW Simulated Annealing : Time = 1.2 s
# Saved = 864133 (98\%)
::::Matrix Profile Consistency Check Begins::::
::::Matrix Profile Consistency Check Ends:::::
```

This tells you, after printing the basic information, line by line,

- (1) the run time of computing DTW by brutal force for the entire matrix (6.2 s);
- (2) the run time of directly computing the lower bounds for the entire matrix (2.0 s);
- (3) the run time of incrementally computing the lower bounds for the entire matrix (0.7 s);
- (4) the two sets of lower bounds are the same (pass the consistency check);
- (5) the run time of computing DTW sequentially with the help of lower bounds (0.4 s);
- (6) the number (857231) and percentage (97%) of entries saved from expensive computation of DTW;
- (7) the two sets of matrix profiles are the same (pass the consistency check);
- (8) the run time of computing DTW in a randomized way with the help of lower bounds (1.1 s);
- (9) the number (864752) and percentage (98%) of entries saved from expensive computation of DTW;
- (10) the run time of computing DTW with simulated annealing with the help of lower bounds (1.2 s);
- (11) the number (864133) and percentage (98%) of entries saved from expensive computation of DTW;
- (12) the two sets of matrix profiles are the same (pass the consistency check).

5. More Information

naming of variables in source code

```
t - time series
n - length of entire time series data
m - query length of subsequence
l - length of matrix profile, which is (n - m + 1)
f - length of forbidden zone, where there is no need to compute
g - number of entries to compute (all entries in matrix except for the forbidden)
r - Sakoe-Chiba band
e - random engine
...
```

^{*} The main() functions that commented out in dtw.cpp and Lb.cpp alone can be used as test functions for the individual source files. Indeed, I (Fu Lei) implemented more functions than what are printed on screen. For example, setting hdebug to true may let the program to print out the optimal path of the DTW like $(0,0) \rightarrow (0,1) \rightarrow (0,2) \rightarrow (1,2) \rightarrow (2,3) \rightarrow (3,3)$.