ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN – ĐIỆN TỬ NĂM HỌC 2019 – 2020

*____

KỸ THUẬT SỐ NÂNG CAO BÁO CÁO BÀI TẬP LỚN

GVHD: TRẦN HOÀNG LINH

Tên MSSV

Nguyễn Duy Tân 1713068

Nguyễn Mỹ Hằng 1711215

TP.HCM, ngày 15 tháng 12 năm 2019

LỜI NÓI ĐẦU

Chúng em gửi lời cảm ơn đến thầy Trần Hoàng Linh, người đã hướng dẫn cho chúng em một đề tài rất hay về mảng thiết kế vi mạch.

Mặc dù chúng em đều không theo hướng vi mạch nhưng mà đây cũng được xem như là trải nghiệm đáng nhớ, cũng như đem lại cho chúng em nhiều hiểu biết hơn về mảng thiết kế vi mạch.

Qua sự tìm hiểu hai tháng chúng em đã thiết kế thành công bộ FPAU, cùng với đó là các bộ lủy thừa, bộ căn bậc n.

Ngoài ra chúng em có tìm hiểu về Matlab, làm cách nào để chuyển từ số thực sang số floatting point 32bits cũng như chuyển đổi ngược lại.

MỤC LỤC

NỘI DU	J NG	5
Chươ	rng 1: Các Bộ Dùng Chung	5
1.	Bộ Normalize	5
2.	Bộ Mux	6
3.	Bộ Shift Right	7
4.	Bộ Shift Left	8
5.	Bộ Check_input	9
6.	Bộ Find Bit1	10
Chươ	yng 2:Bộ Cộng Trừ	11
1.	Giải thuật CLA	11
2.	Giải thuật RCA	12
3.	Bộ tổng quát	13
4.	Các module nhỏ	14
5.	Kết quả mô phỏng	17
Chươ	ơng 3: Bộ Nhân	18
1.	Giải thuật Double	18
2.	Giải thuật vedic	20
3.	Bộ tổng quát	23
4.	Các module nhỏ	24
5.	Kết quả mô phỏng	25
Chươ	ong 4:Bộ Chia	26
1.	Lưu đồ giải thuật Restoring-Division	26
2.	Khối chính	27
3.	Khối module thành phần	28
4.	Kết quả mô phỏng	32
Chươ	vng 5: Bộ FPAU	33
1.	Mô hình	33
2.	Kết quả chạy mô phỏng	34
Chươ	ơng 6 : Bộ Lũy Thừa	35
1.	Module tổng quát	35
2.	Module Element_N	36

3. Module Element_4	37
4. Result_Ex	38
5. Kết quả mô phỏng	39
Chương 7: Bộ Căn bậc 2	40
1. Module tổng quát	40
2. Module Rs_Element	41
3. Module Unit	42
4. Result_Rs	43
5. Kết quả mô phỏng	44
Chương 8: Bộ Căn bậc n	45
1. Mô hình chung	45
2. Module Rs_Element	46
3. Module Unit	47
4. Result_Rs	48
5. Kết quả mô phỏng	49
Chương 9: Chuyển Đổi Floating Point 32bits Trong Matlab	50
1. Chuyển từ số thực sang float 32bit	50
2. Chuyển từ số float 32bit sang số thực	51
3. Kết quả chạy trên matlab	52
KÉT LUẬN	53
TÀLLIÊU THAM KHẢO	5.4

NỘI DUNG

Chương 1: Các Bộ Dùng Chung

1. Bộ Normalize

2. Bộ Mux

3. Bộ Shift Right

a.Khối chung:

b. Khối Chi tiết:

4. Bộ Shift Left

a.Khối chung:

b. Khối Chi tiết:

5. Bộ Check_input

Exponent	Fraction	Flag
00000000	000000000000000000000000000000000000000	FlagZero
11111111	111111111111111111111111111111111111111	FlagNaN
11111111	000000000000000000000000000000000000000	FlagInf

6. Bộ Find Bit1

Sử dụng bộ mã hóa ưu tiên:

A24	A23	A22	A21	A20	A19	A18		S4	S3	S2	S1	SO
X	1	X	X	X	X	X	•	0	0	0	0	1
X	0	1	X	X	X	X	-	0	0	0	1	0
X	0	0	1	X	X	X	-	0	0	0	1	1
X	0	0	0	1	X	X	-	0	0	1	0	0
X	0	0	0	0	1	X	-	0	0	1	0	1
X	0	0	0	0	0	1	-	0	0	1	1	0
•••	•••	•••	•••	•••	•••	•••		•••	•••	•••	•••	•••

Chương 2:Bộ Cộng Trừ

1. Giải thuật CLA

a. Bộ CLB

$$g_{i} = a_{i}.b_{i}, P_{i} = a_{i}(xor)b_{i}$$

$$C_{0} = C_{in}$$

$$C_{1} = g_{0} + p_{0}C_{0}$$

$$C_{2} = g_{1} + p_{1}C_{1}$$

$$C_{3} = g_{2} + p_{2}C_{2}$$

$$g_{out} = g_{3} + p_{2}g_{2} + p_{3}p_{2}g_{1} + p_{3}p_{2}p_{1}g_{0}$$

$$p_{out} = p_{3}p_{2}p_{1}p_{0}$$

$$S_{i} = p_{i}(xor)c_{i}$$

b. Bộ CLA 12bits

2. Giải thuật RCA

a. RCA 8bits

b. RCA 9bits

c. RCA 26bits

3. Bộ tổng quát

4. Các module nhỏ

a. Module Pre_Adder

- Mô hình chung

- Mô hình chi tiết

b. Module Post_Adder

- Mô hình chung

- Mô hình chi tiết

c. Module ResultS_addsub

A	В	S
Inf	-Inf	
-Inf	Inf	
NaN	NaN	NaN
NaN	X	
X	NaN	
Inf	X	Inf
X	Inf	Inf
A	0	A
0	В	В
0	0	0
A	В	AnsS

5. Kết quả mô phỏng

Hình 1. Mô phỏng với giải thuật CLA

Hình 2. Mô phỏng với giải thuật RCA

Chương 3: Bộ Nhân

1. Giải thuật Double

a. Double 2x2

b. Double 24x24

2. Giải thuật vedic

a. Mô tả Vedic 4bits

S = A*B

A: binary 4 bits

B: binary 4 bits

S: binary 8 bits

b. Chi tiết

c. Vedic 8bits

d. Vedic 24bits

3. Bộ tổng quát

4. Các module nhỏ

a. Result_mult

A	В	s
inf	inf	Inf
0	inf	
inf	0	
NaN	X	NaN
X	NaN	
NaN	NaN	
0	X	
X	0	0
0	0	
A	В	AnsS

5. Kết quả mô phỏng

Hình 1. Mô phỏng với giải thuật Vedic

Hình 2. Mô phỏng với giải thuật Double

Chương 4:Bộ Chia

1. Lưu đồ giải thuật Restoring-Division

2. Khối chính

a. Khối chung

$$S = \frac{A}{B}$$

A: floating point 32bits S: floating point 32bits

B: floating point 32bits

Giải thuật: Restoring_Devision

b. Khối chi tiết

3. Khối module thành phần

a. Module Div

Chi tiết:

b. Module Unit_Div

Chi tiết:

c. Module Initinray

Chi tiết:

d. Module Results_Div

A	В	S
Inf	X	Inf
X	0	Inf
0	X	0
NaN	NaN	
NaN	X	NaN
X	NaN	
Inf	Inf	±1
0	0	NaN
A	В	AnsS

4. Kết quả mô phỏng

Hình 1. Kết quả chạy mô phỏng lần 1

Hình 2. Kết quả chạy mô phỏng lần 2

Chương 5: Bộ FPAU

1. Mô hình

A: floating point 32bits S: floating point 32bits B: floating point 32bits SEL: unsiged 2bits

SEL:

$$+ 0 : S = A + B$$

$$+1: S = A - B$$

$$+2$$
: $S = AxB$

$$+ 3 : S = \frac{A}{B}$$

- Chi tiết:

2. Kết quả chạy mô phỏng

Hình 1. Kết quả chạy mô phỏng lần 1

Hình 2. Kết quả chạy mô phỏng lần 2

Hình 2. Kết quả chạy mô phỏng lần 3

Chương 6 : Bộ Lũy Thừa

1. Module tổng quát

a. Mô tả:

$$S = A^n$$

A: floating point 32bits

S: floating point 32bits

N: unsigned 5bits

b. Giải thuật:

Cổ điển:
$$S_{n+1} = S_n *A; S_0 = A$$

c. Chi tiết

Α

5bits

32bits

2. Module Element_N

a. Mô hình chung

b. Mô hình chi tiết

3. Module Element_4

a. Mô tả:

 $Out = In _temp.In$

b. Chi tiết

4. Result_Ex

n	A	S
Odd	inf	signA,inf
Event		inf
X	NaN	NaN
0	0	NaN
0	A	1
X	A	Ans

5. Kết quả mô phỏng

Hình1. Kết quả mô phỏng bộ lủy thừa

Chương 7: Bộ Căn bậc 2

1. Module tổng quát

a. Mô tả:

$$S = \sqrt{A}$$

A: floating point 32bits S: floating point 32bits

b. Giải thuật:

Approximately:
$$S_{n+1} = S_n + (\frac{A}{S_n} - S_n)/2$$

c. Chi tiết:

2. Module Rs_Element

a. Mô hình chung

b. Mô hình chi tiết

3. Module Unit

a. Mô tả

$$OUT = PRE _OUT + (\frac{A}{PRE _OUT} - PRE _OUT) / 2$$

b. Chi tiết

4. Result_Rs

A	S
Inf	Inf
-Inf	NaN
0	0
NaN	NaN
A>0	AnsS
A<0	NaN

5. Kết quả mô phỏng

Hình 1. Kết quả mô phỏng lần 1

Hình 2. Kết quả mô phỏng lần 2

Chương 8: Bộ Căn bậc n

1. Mô hình chung

a. Mô tả:

$$S = \sqrt[n]{A}$$

A: floating point 32bits

S: floating point 32bits

N: unsigned 3bits

b. giải thuật:

Approximately:
$$S_{n+1} = S_n - \frac{S_n}{n} + \frac{A}{S_n^{n-1}.n}$$

c. Chi tiết:

2. Module Rs_Element

a. Mô hình chung

b. Mô hình chi tiết

3. Module Unit

a. Mô tả:

$$Out = \Pr e _out - \frac{\Pr e _out}{n} + \frac{In}{\Pr e _out^{n-1}.n}$$

b. Mô hình chi tiết

4. Result_Rs

n	A	S
0	X	NaN
1	X	A
X	Inf	Inf
Odd	-Inf	-Inf
Event		NaN
X	0	0
X	NaN	NaN
Odd	X	ansS
Event	A<0	NaN
	A>0	ansS

5. Kết quả mô phỏng

Hình 1. Kết quả mô phỏng lần 1

Hình 2. Kết quả mô phỏng lần 2

Chương 9: Chuyển Đổi Floating Point 32bits Trong Matlab

1. Chuyển từ số thực sang float 32bit

2. Chuyển từ số float 32
bit sang số thực

3. Kết quả chạy trên matlab

```
Command Window
 >> real2fp
 Input Real: 0
 >> fp2real
 Input floating point 32bits:
  >> Bit sign (1bit): 0
 >> Exponent (8bit): 00000000
 Real numbers: 0
 >> real2fp
 Input Real: 1235.314
 Floating point 32bits: 0 | 10001001 | 00110100110101000001100
 >> fp2real
 Input floating point 32bits:
 >> Bit sign (1bit): 0
 >> Exponent (8bit): 10001001
 >> Fraction (23bit): 00110100110101000001100
 Real numbers: 1.235314e+03
  >> real2fp
 Input Real: -0.000231
 Floating point 32bits: 1 | 01110010 | 11100100011100010010111
 >> fp2real
 Input floating point 32bits:
 >> Bit sign (1bit): 1
 >> Exponent (8bit): 01110010
 >> Fraction (23bit): 11100100011100010010111
 Real numbers: -2.310000e-04
```

KẾT LUẬN

- Thiết kế và mô phỏng thành công mô hình Floating Point Arthmetic Unit. Tính toán chính xác với bộ cộng trừ dùng giải thuật CLA, bộ nhân dùng giải thuật Double, chia dùng giải thuật Restoring Division.
- Chuyển thành công số floating point 32bits thành số real và ngược lại, mô phỏng được tất cả các số trên Matlab.
- Thiết kế và chạy thành công bộ Root Square of n dùng giải thuật Xấp xỉ.
- Thiết kế và chạy thành công bộ nhân dùng giải thuật Vedic
- Thiết kế và chạy thành công bộ cộng trừ dùng giải thuật
 CRA.
- Thiết kế và chạy thành công bộ lủy thừa dùng giải thuật Cổ Điển.
- Thiết kế và chạy thành công bộ Căn bậc 2 dùng giải thuật
 Xấp Xỉ.

TÀI LIỆU THAM KHẢO

- **1.** DEVELOPING AN EFFICIENT IEEE 754 COMPLIANT FPU IN VERILOG (by RUBY DEV (108CS069)).
- **2.** DESIGN OF SINGLE PRECISION FLOAT ADDER (32-BIT NUMBERS) ACCORDING TO IEEE 754 STANDARD USING VHDL (by Dr. Roman Zálusky).
- **3.** A Hierarchical Verification of the IEEE-754 Table-Driven Floating-Point Exponential Function using HOL (by Amr Talaat Abdel-Hamid)
- **4.** Computer Arithmetic (by Reto Zimmermann).