

CPT-281 - Introduction to Data Structures with C++

Module 8

Trees, Binary Trees

Dayu Wang

CPT-281 - Module 8 - Trees, Binary Trees

2/22

· Overview of Sequential (Linear) Data Structures

Data Structure	Advantages	Disadvantages	Application
Vector	Fast access by index	Slow search Slow insertion Slow deletion	General purpose
Ordered Vector	Fast access by index Fast search	Slow insertion Slow deletion	General purpose
Linked List	Fast insertion Fast deletion	Slow search	Database General purpose
Stack	Last-in-first-out	Slow access otherwise	Expressions
Sequential Queue	First-in-first-out	Slow access otherwise	Scheduling
Deque	Operations on both ends	Slow access otherwise	General purpose

- → They suffer from <u>slow search</u> or <u>slow insertion/deletion</u>.
- It would be nice to have a data structure...
 - → that combines the quick addition/deletion of linked lists and the quick search of ordered vectors.

- Trees
 - → Trees are non-linear abstract data structures.
 - → Trees support both quick insertion/deletion and quick search.
 - → Trees model hierarchical structures.

Family tree

File tree

CPT-281 - Module 8 - Trees, Binary Trees

- Tree Terminology
 - → A tree consists of nodes and edges.

Nodes represent entities like people, car parts, airline reservations.

The lines (edges) between the nodes represent that they are related.

→ A tree is an instance of a general data structure graph.

A graph consists of vertices and edges.

→ Difference between tree and graph

A tree does not have any loop (cycle).

A graph may have loops (cycles).

4/22

---- Root

Α

C

В

Н

Tree Terminology

- → The node at the top is called the root of the tree, or root.
 - A is the root.
- → The successor of a node is called the children of the node.
 - B C D are A's children.
- → The predecessor of a node is called its parent.
 - C is E and F's parent.
- → Nodes that have the same parent are called siblings.
 - B and D are siblings; F and G are not siblings.
- → A node that has no children is called a leaf node (or leaf). Nodes that have children are called internal nodes.

CPT-281 - Module 8 - Trees, Binary Trees

6/22

• Tree Terminology

- → If node X is a parent of node Y, and Y is a parent of Z, then node X is an ancestor of node Y and Z (e.g., A is an ancestor of B,C, and D).
- → If node Z is a child of node Y, and node Y is a child of node X, then node Z is a descendant of node Y and X (e.g., D is a descendant of A and B).
- → The root node is an ancestor of all other nodes, and all other nodes are descendants of the root node.

- Tree Terminology
 - → Branches are the lines connecting a parent to its children.
 - → A subtree of a node is a tree whose root is a child of that node.
 - [Example 1] Left subtree of node B
 - [Example 2] Left subtree of node A

CPT-281 - Module 8 - Trees, Binary Trees

8/22

- Tree Terminology
 - → The depth of a node is a measure of its distance from the root.

The distance between two nodes in a tree is the count of edges (not count of nodes) in the path between the two nodes.

- → A "recursive" algorithm to find the depth of a node N:
 - 1) If N is the root of the tree, then return 0.
 - 2) Otherwise, return 1 + depth of its parent.

- · Tree Terminology
 - → The height of a node is the <u>number of the nodes</u> in the <u>longest path</u> <u>from that node to a leaf</u> <u>node</u>.
 - → The height of a tree is the same as the height of the root.

CPT-281 - Module 8 - Trees, Binary Trees

10/22

- Binary Trees
 - → In a binary tree, each node has at most two branches to subtrees.
 - Left branches are called left subtrees.
 - Right branches are called right subtrees.
 - → Node B has an empty right subtree.
 - → Nodes D and C have empty subtrees (leaf nodes).

Empty trees are represented by NULL pointers.

Fullness and Completeness

Every node has 0 or 2 non-NULL children.

Complete Tree

A complete tree of height h is filled up to depth h-2, and, at depth h-1, any unfilled nodes are on the right.

CPT-281 - Module 8 - Trees, Binary Trees

12/22

• Fullness and Completeness

Resource: http://gsourcecode.files.wordpress.com/2012/02/complete-full-trees1.png

- Expression Trees
 - → Each node is an operator or an operand.
 - The operands are leaf nodes.
 - The operators are internal nodes.
 - → What is the expression that this tree represents?

CPT-281 - Module 8 - Trees, Binary Trees

14/22

- Exercise
 - → Draw binary expression trees for the following expressions:
 - 1) "x / y + a b * c"
 - 2) (x * a) y / b * (c + d)
 - → Procedure
 - 1) Find out which operator will be evaluated last. That operator will be the root.
 - 2) Apply the same logic to left and right subtree.

$$\rightarrow$$
 "x / y + a - b * c"

$$\rightarrow$$
 "(x * a) - y / b * (c + d)"

• Implementing Binary Trees

A binary tree node

BTNode

left = _____
right = _____

```
1
    /** A binary tree node */
                                                                                  data =
2
    template<class T>
3
    struct BTNode {
4
        // Data fields
5
        T data; // Stores some data in the node.
6
        BTNode<T> *left, *right; // Stores pointers to the left and right child.
7
8
        // Constructor
        BTNode(const T&, BTNode<T>* = NULL, BTNode<T>* = NULL);
9
10
        // Destructor
11
        virtual ~BTNode(); // Avoid warning messages.
12
13
        // Class-member function
14
15
        virtual string to_string() const; // Returns a string containing the data stored in the node.
16 | };
```

CPT-281 - Module 8 - Trees, Binary Trees

16/22

• Exercise

→ Write a function that calculates the height of the a binary tree.

```
/** Calculates the height of a binary tree.
1
2
        @param root: a pointer to the root node of the binary tree
3
        @return: calculated height of the binary tree
4
    */
5
    template<class T>
6
    unsigned int height(const BTNode<T>* root) {
7
        // Base case
8
        if (!root) { return 0; }
9
        // Recurrence relation
10
        return max(height(root->left), height(root->right)) + 1;
11
   }
                                                                                       3
                                                                   *
                                                                                              2
                                            Called
                                                            5
                                            returned
```

• Exercise

→ Please write a function that tests whether a binary tree is full.

```
1
    /** Tests whether a binary tree is full.
        @param root: a pointer to the root node of the binary tree
2
3
        @return: {true} if the binary tree is full; {false} otherwise
4
5
    template<class T>
    bool is full(const BTNode<T>* root) {
6
7
        // Base case
8
        if (!root) { return true; }
9
        if ((bool)root->left + (bool)root->right == 1) { return false; }
10
11
12
        // Recurrence relation
13
        return is_full(root->left) && is_full(root->right);
14 | } // Time complexity: O(n)
```

result = false

ocalled oreturned

CPT-281 - Module 8 - Trees, Binary Trees

18/22

Binary Tree Traversals

→ Often we want to determine the nodes of a tree and their relationship.

We can do this by walking through the tree and visiting the nodes.

Visiting the nodes: processing the information in the nodes

- → This process is called traversal.
- → We will discuss three kinds of traversal algorithms:
 - 1) Preorder traversal
 - 2) Inorder traversal
 - 3) Postorder traversal

Preorder Traversal

→ Algorithm

If the tree is empty, return.

Else

Visit the root.

Preorder traverse the left subtree (recursive).

Preorder traverse the right subtree (recursive).

→ Preorder traversing an expression tree will generate a prefix expression.

```
// Preorder traversal
template<class T>
void preorder_traversal(const BTNode<T>* root, ostream& out)
   if (root) {
       out << root << ' ';
        preorder_traversal(root->left, out);
        preorder_traversal(root->right, out);
} // Time complexity: O(n)
```


/ * 5 3 - 6 * 2 1

CPT-281 - Module 8 - Trees, Binary Trees

20/22

· Inorder Traversal

→ Algorithm

If the tree is empty, return.

Inorder traverse the left subtree (recursive).

Visit the root.

Inorder traverse the right subtree (recursive).

→ Inorder traversing an expression tree will generate an infix expression.

```
// Inorder traversal
template<class T>
void inorder traversal(const BTNode<T>* root, ostream& out) {
    if (root) {
        out << " ( ";
        inorder_traversal(root->left, out);
        out << ' ' << root << ' ';
        inorder_traversal(root->right, out);
       out << " ) ";
} // Time complexity: O(n)
```


Infix Expression

((5 * 3) / (6 - (2 * 1)))

- Postorder Traversal
 - → Algorithm

If the tree is empty, return.

Postorder traverse the left subtree (recursive).

Postorder traverse the right subtree (recursive).

Visit the root.

→ Postorder traversing an expression tree will generate a postfix expression.

```
// Postorder traversal
template<class T>
void postorder_traversal(const BTNode<T>* root, ostream& out) {
    if (root) {
        postorder_traversal(root->left, out);
        postorder_traversal(root->right, out);
        out << root << ' ';
} // Time complexity: O(n)
```


Postfix Expression

53 * 621 * - /

CPT-281 - Module 8 - Trees, Binary Trees

22/22

• Three Binary Tree Traversal Algorithms

Preorder

Inorder

Postorder

If the tree is empty Return

Else

Visit the root Traverse the left subtree **Traverse the right subtree** If the tree is empty Return

Else

Traverse the left subtree Visit the root **Traverse the right subtree** If the tree is empty Return

Else

Traverse the left subtree Traverse the right subtree Visit the root