Approach

Suppose Given Grid is

0	0	0	1
0	0	0	0
0	0	0	0
1	0	0	0

DO BFS and store the min distance for each cell from thieves

4	3	2	1[Thief]
3	4	3	2
2	3	4	3
1[Thie	2	3	4

For distance >= 2, a path exist as shown

4	3	2	1
3	4	3	2
2	3	4	3
1	2	3	4

For distance >= 3 a path exist as shown

4	3	2	1
3	4	3	2
2	3	4	3
1	2	3	4

For distance >= 4 no path exist..

Answer will be distance - 1

Now, answer ranges from [1,400] so try binary search and visit path having grid cell greater then (1+400)/2. if it is possible to reach end with all cell greater than (1+400)/2 = 200 Try for (201+400)/2 and so on..