SMT-based optimization applied to nonconvex problems

lury Bessa iurybessa@ufam.edu.br

Joint work with: Rodrigo Araújo, Lucas Cordeiro, João Edgar Chaves Filho, and Higo Albuquerque

Consider the following trajectory planning problem:

Consider the following trajectory planning problem:

What is the **shortest** trajectory for this UAV considering the following constraints?

- Obstacles
- Dynamics
- Nonholonomic constraints

Obstacle
1
Obstacle
3

Obstacle 4

How to find a solution that satisfies the constraints and minimizes the path length?

$$\min_{L} J(L),$$
 $s.t.\Omega,$
 $J = \sum_{i=1}^{n-1} ||\vec{R}_{P_i P_{i+1}}||_2$

$$\min_{L} J(L),$$
 The cost function
$$s.t.\Omega,$$

$$J = \sum_{i=1}^{n-1} ||\vec{R}_{P_iP_{i+1}}||_2$$

$$\min_{L} J(L)$$
, The vector from the i-th to the i+1-th point of the trajectory $s.t.\Omega$, $J = \sum_{i=1}^{n-1} \|\vec{R}_{P_iP_{i+1}}\|_2$

$$\min_L J(L), \qquad \text{The trajectory is the sequence of } \\ \text{S.t.}\Omega, \qquad \text{points that solves } \\ J = \sum_{i=1}^{n-1} ||\vec{R}_{P_i P_{i+1}}||_2$$

$$\min_{L} J(L),$$
 The set of constraints
$$s.t.\Omega,$$

$$J = \sum_{i=1}^{n-1} ||\vec{R}_{P_i P_{i+1}}||_2$$

Optimization problems

- Optimization problems appear in various research areas, including computer science and engineering
- The more complex problems (e.g. multiobjective or nonconvex) are usually solved by metaheuristic techniques (e.g. genetic algorithm)
- These techniques provide fast solutions for these complex problems, but are usually trapped by local minima

Optimization problems

- Optimization problems appear in various research areas, including computer science and engineering
- The more complex problems (e.g. multiobjective or nonconvex) are usually solved by metaheuristic techniques (e.g. genetic algorithm)
- These techniques provide fast solutions for these complex problems, but are usually trapped by local minima

How to ensure the global optimization more efficiently than metaheuristic techniques?

Objectives

The main objective of this work is to apply SMT-based optimization to globally optimize nonconvex functions

- Develop an SMT-based optimization algorithm
- Optimize nonconvex functions with the proposed SMT-based optimization algorithm
- Compare the results with other traditional optimization techniques using standard benchmarks

Defining the nonconvex optimization problem

- Let $f:D \to \mathbb{R}$ be a cost function, such $D \subset \mathbb{R}^n$ is the space of decision variables and $f(x_1, x_2, ..., x_n) \equiv f(\mathbf{x})$;
- Let $\Omega \subset \mathbb{R}^n \times \mathbb{R}$ be a set of constraints;
- A multivariable optimization problem consists in finding an optimal vector \mathbf{x}^* which minimizes f considering Ω :

 $\min_{\mathbf{x}} f(\mathbf{x}),$ s.t. Ω ,

• The above problem will be a nonconvex optimization problem *iff* $f(\mathbf{x})$ is a nonconvex function

Example of nonconvex functions

$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)$$

Example of nonconvex functions

$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)$$

Example of nonconvex functions

$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)$$

Modeling the optimization problem using a model checker

- The directives ASSUME and ASSERT should be employed for modeling optimization problems
 - ASSUME: is used for modeling the knowledge about the problem and the constraints set
 - ASSERT: is used for holding the global optimization condition $l_{optimal}$

$$l_{optimal} \Leftrightarrow f(\mathbf{x}) > f_p$$

Modeling the optimization problem using a model checker

- The ESBMC and its intrisic functions
 (__ESBMC_assume and __ESBMC_assert) were
 used in this work, but any other model checker
 could be used
- Decision variables are defined as non-deterministic integers
- The verification engine is executed by iteratively increasing the precision and converging to the optimal solution

Modeling the optimization problem using a model checker

 An integer variable controls the precision and discretizes the state-space:

$$p=10^{n(i)}$$

• The *i*-th verification step stops when:

$$f(\mathbf{x}^{(i)}) \leq f_p$$

• When it occurs, f_p is updated with the $f(\mathbf{x}^{(i)})$ from the counterexample

SMT-based Optimization Algorithm

Input: a cost function f(x), a constraint set Ω , and a desired precision \mathcal{E} **Output:** the optimal decision variable vector \mathbf{x}^* , and the optimal function value $f(\mathbf{x}^*)$

```
1. Initialize f(\mathbf{x}^{(0)}) randomly and the precision variable with p=1
     Declare decision variables (x) as non-deterministic integer variables
     while p < \varepsilon do
                Define the bounds for x with assume
 4.
 5.
                Describe a model for f(x)
                Constrain f(\mathbf{x}^{(i)}) < f(\mathbf{x}^{(i-1)}) with assume
 6.
                for every f_{c} \le f(x^{(i-1)}) do
 7.
                      Check the satisfiability of \neg I_{optimal}
 8.
                      if ¬I<sub>optimal</sub> is SAT then
 9.
                            Update f(\mathbf{x}^{(i)}) and \mathbf{x}^{(i)} from the counterexample
10.
                            Go back to step 6
11.
12.
                      end
13.
                end
14.
                Update the precision variable p = 10p
15. end
16. return x^* = x^{(i)} and f(x^*) = f(x^{(i)})
```

Let our optimization problem be:

$$\min_{\substack{x_1, x_2 \\ \text{s.} t. -7 \le x_1 \le 0}} f(x_1, x_2)$$

$$\text{s.} t. -7 \le x_1 \le 0$$

$$0 \le x_2 \le 7$$

$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

 This is the Himmelblau's function constrained to the 2nd quadrant

```
1 int nondet int();
 2 int main(){
 3
       int p = 1; //precision variable
      float f ant = 100; // f ant: previous obj function value
 4
 5
       int v = (int)(f ant*p + 1);
      int X1 = nondet int();
 6
 7
      int X2 = nondet int();
      float x1, x2, fobj, fc;
 9
       assume((X1>=-7*p) && (X1<=0*p));
10
      assume((X2>=0*p) && (X2<=7*p));
11
      x1 = (float) X1/p;
12
      x2 = (float) X2/p;
13
      fobj = (x1*x1+x2-11)*(x1*x1+x2-11)+(x1+x2*x2-7)*(x1+x2*x2-7);
14
      assume( fobj < f ant );</pre>
      for (int i = 0; i <= v; i++){</pre>
15
16
          fc = (float) i/p;
17
          assert( fobj > fc );
18
19
      return 0;
20 }
```

```
The precision variable
 1 int nondet int();
                                       \mathbf{r} is started as 10^{\circ}
   int main(){
 3
      (int p = 1;) //precision variable
       float f ant = 100; // f ant: previous obj function value
 4
 5
       int v = (int)(f ant*p + 1);
       int X1 = nondet int();
 6
       int X2 = nondet int();
       float x1, x2, fobj, fc;
 9
       assume((X1>=-7*p) && (X1<=0*p));
10
       assume((X2>=0*p) && (X2<=7*p));
11
       x1 = (float) X1/p;
12
       x2 = (float) X2/p;
13
       fobj = (x1*x1+x2-11)*(x1*x1+x2-11)+(x1+x2*x2-7)*(x1+x2*x2-7);
14
       assume( fobj < f ant );</pre>
       for (int i = 0; i <= v; i++) {
15
          fc = (float) i/p;
16
17
          assert( fobj > fc );
18
19
       return 0;
20 }
```

The decision variables are declared as non-deterministic integers

```
1 int nondet int();
   int main(){
 3
       int p = 1; //precision variable
       float f_ant = 100; // f_ant: previous obj function value
 4
 5
       int v = (int)(f ant*p + 1);
       int X1 = nondet int();
 6
      int X2 = nondet int();
 7
       float x1, x2, fobj, fc;
 9
       assume((X1>=-7*p) && (X1<=0*p));
10
       assume((X2>=0*p) \&\& (X2<=7*p));
11
       x1 = (float) X1/p;
12
       x2 = (float) X2/p;
13
       fobj = (x1*x1+x2-11)*(x1*x1+x2-11)+(x1+x2*x2-7)*(x1+x2*x2-7);
14
       assume( fobj < f ant );</pre>
       for (int i = 0; i <= v; i++){</pre>
15
          fc = (float) i/p;
16
17
          assert( fobj > fc );
18
19
       return 0;
20 }
```

```
1 int nondet int();
   int main(){
 3
      int p = 1; //precision variable
      float f ant = 100; // f ant: previous obj function value
      int v = (int)(f ant*p + 1);
      int X1 = nondet int();
      int X2 = nondet int();
      float x1, x2, fobj, fc;
      assume((X1>=-7*p) \&\& (X1<=0*p));
10
      assume((X2>=0*p) \&\& (X2<=7*p));
11
      x1 = (float) X1/p;
12
      x2 = (float) X2/p;
13
      fobj = (x1*x1+x2-11)*(x1*x1+x2-11)+(x1+x2*x2-7)*(x1+x2*x2-7);
14
     assume( fobj < f ant );</pre>
      for (int i = 0; i \le v; i++) {
15
                                               Assumptions are
          fc = (float) i/p;
16
17
          assert( fobj > fc );
                                               used for reducing
18
                                               the state-space
19
      return 0;
                                               and specifying the
20 }
                                               constraints
```

```
1 int nondet int();
   int main(){
 3
      int p = 1; //precision variable
      float f ant = 100; // f ant: previous obj function value
 4
      int v = (int)(f ant*p + 1);
      int X1 = nondet int();
      int X2 = nondet int();
      float x1, x2, fobj, fc;
      assume((X1>=-7*p) && (X1<=0*p));
10
      assume((X2>=0*p) \&\& (X2<=7*p));
11
      x1 = (float) X1/p;
12
      x2 = (float) X2/p;
13
      fobj = (x1*x1+x2-11)*(x1*x1+x2-11)+(x1+x2*x2-7)*(x1+x2*x2-7);
14
      assume( fobj < f ant );</pre>
       for (int i = 0; i \le v; i++) {
15
                                              The objective function
          fc = (float) i/p;
                                              is evaluated until the
          assert( fobj > fc );
                                              previous iteration
18
19
      return 0:
                                              solution
20 }
```

```
1 int nondet int();
   int main(){
 3
      int p = 1; //precision variable
      float f ant = 100; // f ant: previous obj function value
 4
 5
      int v = (int)(f ant*p + 1);
 6
      int X1 = nondet int();
      int X2 = nondet int();
      float x1, x2, fobj, fc;
      assume((X1>=-7*p) && (X1<=0*p));
10
      assume((X2>=0*p) && (X2<=7*p));
11
      x1 = (float) X1/p;
12
      x2 = (float) X2/p;
13
      fobj = (x1*x1+x2-11)*(x1*x1+x2-11)+(x1+x2*x2-7)*(x1+x2*x2-7);
14
      assume( fobj < f ant );</pre>
                                           When this condition
      for (int i = 0; \bar{i} \le v; i++) {
15
          fc = (float) i/p;
16
                                           is false, the optimal
          assert(fobj > fc)
17
                                           candidate is updated
18
                                           and the verification is
19
      return 0;
20 }
                                           repeated
                                                                     27
```

```
1 int nondet int();
   int main(){
 3
      int p = 1; //precision variable
      float f ant = 100; // f ant: previous obj function value
 4
 5
      int v = (int)(f ant*p + 1);
 6
      int X1 = nondet int();
      int X2 = nondet int();
      float x1, x2, fobj, fc;
      assume((X1>=-7*p) && (X1<=0*p));
10
      assume((X2>=0*p) \&\& (X2<=7*p));
11
      x1 = (float) X1/p;
12
      x2 = (float) X2/p;
13
      fobj = (x1*x1+x2-11)*(x1*x1+x2-11)+(x1+x2*x2-7)*(x1+x2*x2-7);
14
      assume( fobj < f ant );</pre>
      for (int i = 0; \bar{i} <= v; i++) {
15
          fc = (float) i/p;
16
                                              If the assertion is
          assert(fobj > fc);
17
                                              maintained, then
18
                                              the optimal value
19
      return 0;
20 }
                                              is already known
```


Experimental Evaluation

- Objectives:
 - Check the performance of the SMT-based optimization algorithm
 - Compare with other traditional optimization methods
- Three functions are employed for evaluating our present method:
 - Himmelblau
 - Styblinski-Tang
 - Goldstein-Price

Experimental Evaluation

- The SMT-based optimization is compared to other two traditional techniques (genetic algorithm and gradient descent)
- Genetic algorithm (GA)
 - Population: 10
 - Generations: 50
- Gradient descent (GD)
 - Stop criteria: gradient less than 0.1
 - Learning rate: 0.01 (5e-5 for Goldstein-Price)

Experimental Setup

- Model checker: ESBMC 3.0 64-bits
- SMT Solver: Boolector v2.1.1
- Fedora 21 64-bits
- Dell Inspiron 5000, 16 GB RAM, Intel i7-5500U 3 GHz
- The time for the GA and GD are measured using an appropriate MATLAB function
- The time for the SMT-based optimization technique is measured with the UNIX time command

Stiblinski-Tang's function

$$f(x_1, x_2) = \frac{1}{2}(x_1^4 - 16x_1^2 + 5x_1 + x_2^4 - 16x_2^2 + 5x_2)$$

Optimum point:

$$\mathbf{x}^* = (-2.903, -2.903)$$

 $f(\mathbf{x}^*) = -78.332$

• Domain:

$$x_1 \in [-5,5]$$

 $x_2 \in [-5,5]$

Himmelblau's function #1

$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

Optimum point:

$$\mathbf{x}^* = (-2.805, 3.131)$$
 $f(\mathbf{x}^*) = 0$

• Domain:

$$x_1 \in [-7,0]$$

 $x_2 \in [0,7]$

Himmelblau's function #2

$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

Optima points:

$$\mathbf{x}^* = (3,2)$$
 $\mathbf{x}^* = (-2.805, 3.131)$
 $\mathbf{x}^* = (-3.779, -3.283)$
 $\mathbf{x}^* = (3.584, -1.848)$
 $f(\mathbf{x}^*) = 0$

Domain:

$$x_1 \in [-5,5]$$

 $x_2 \in [-5,5]$

Goldstein-Price's function

$$f(x_1, x_2) = [1 + (x_1 + x_2 + 1)^2 (19 - 14x_1 + 3x_1^2 - 14x_2 + 6x_1x_2 + 3x_2^2)]$$

$$[30 + (2x_1 - 3x_2)^2 (18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2)]$$

• Optimum point: $\mathbf{x}^* = (0, -1)$

$$\mathbf{x}^* = (\mathbf{0}, -1)$$
$$f(\mathbf{x}^*) = 3$$

Domain:

$$x_1 \in [-2,2]$$

 $x_2 \in [-2,2]$

Experimental Results

Function	Method	Correct Answer (%)	Execution Time (s)
Himmelblau #1	GD	55	<1
	GA	100	<1
	SMT	100	1622
Himmelblau #2	GD	100	<1
	GA	100	<1
	SMT	100	4
Styblinski-Tang	GD	21	<1
	GA	9	<1
	SMT	100	1045
Goldstein-Price	GD	0	1
	GA	69	<1
	SMT	100	14

Absolute error X iteration (Himmelblau #2)

Absolute error X iteration (Styblinski-Tang)

Absolute error X iteration (Goldstein-Price's)

Conclusions

- We presented an SMT-based optimization method applied to nonconvex optimization problems
- The proposal ensures the global optimization but it takes longer time than GD and GA
- SMT-based optimization is a flexible technique and can be used for any class of function
- Further work:
 - Multiobjective optimization
 - UAV trajectory planning and mission planning
 - Parallelize the optimization process