Reading a regression table

Outcome: Happiness	(1)	(2)
Gender ;	0.834	0.614
	(0.032)	(0.045)
Education i		-0.739
		(0.036)

Notes: Estimations contain a constant term. Standard errors in parentheses.

- Gender is a dummy variable. Average happiness of individuals with gender=1 is 0.834 higher than of individuals with gender=0. This is significant at the 5% level, because the coefficient is more than twice the standard error
- Conditional on education (keeping education fixed/comparing people with the same level of education), gender=1 is associated with 0.614 higher happiness.
- Conditional on gender, each additional year of education is associated with 0.739 less points on the happiness scale.

Omitted Variable Bias

Let Y_i be the outcome variable, X_i our regressor of interest, W a series of control variables, and Z_i the "omitted" variable.

[Long regression]
$$Y_i = c_1 + \beta_L X_i + \lambda Z_i + W\pi + e_i$$

[Short regression] $Y_i = c_2 + \beta_S X_i + W\pi + u_i$
[Auxiliary regression] $Z_i = c_3 + \pi_1 X_i + W\pi + v_i$

Then, the **Omitted variable bias formula** states that:

$$\beta_{\rm S} = \beta_{\rm L} + \lambda \cdot \pi_{\rm 1}$$
Short = Long + Omitted × Included

The OVB formula describes what happens to our coefficient of interest, β , as we include one additional variable Z in the regression. We call $\lambda\pi_1$ the **omitted variable bias**. Direction of bias: multiply our guesses for the signs of δ and γ .

Good and Bad controls

- Some controls are called "bad controls". These are:
 - Variables that are themselves outcomes of a treatment:
 Treatment → Bad Control
 - 2. Variables that moderate the treatment effect: Treatment \rightarrow Bad Control \rightarrow Outcome
- Rule of Thumb: Good controls are either pre-determined or immutable characteristics.
- Another way to think about it: Controls help us make "apples to apples" comparisons. We want to compare units that, in the absence of the treatment, would have the same outcomes, and differ only because they have different levels of the treatment.

Logs: Cheatsheet

Model	LHS	RHS	A change in x by	is associated with a change in y by
Level-Level	У	Χ	1 unit	eta_1 units
Level-Log	У	log(x)	1%	$\beta_1/100$ units
Log-Level	log(y)	Χ	1 unit	$100\beta_1\%$
Log-Log	log(y)	log(x)	1%	β ₁ %

If you want to get a bonus star from me, write "approximately" in log-interpretations.

Hypothesis testing

$$\left| \frac{\hat{\beta}}{\mathsf{SE}(\hat{\beta})} \right| \ge 1.96$$

$$\Leftrightarrow |\mathsf{t\text{-stat}}| \ge 1.96$$

$$\Leftrightarrow \mathsf{p\text{-value}} \le 0.05$$

$$\Leftrightarrow 0 \notin \mathsf{CI}$$

When testing the null hypothesis H_0 : $\beta = 0$ (against the alternative hypothesis H_0 : $\beta \neq 0$), then if any of these conditions holds, we reject the null.

IV summary

We need the following three assumptions for IV to work:

- 1. **Relevance**: Z must truly affect X
- 2. **Independence/Exogeneity**: *Z* is as good as randomly assigned
- 3. **Exclusion Restriction**: The **only** way that *Z* affects *Y* is via *X*.

6

IV: The LATE is the treatment effect for the compliers

	ential outcomes! (unobserved)	Does not get voucher (Z=0)	
Ü		Eats chocolate (D=1)	Does not eat chocolate (D=0)
voucher (Z=1)	Eats chocolate (D=1)	Always-takers: E(D Z=1)=E(D Z=0)=1 → E(Y Z=1)=E(Y Z=0)	Compliers
Gets 1	Does not eat chocolate (D=0)	Defiers	Never-takers: E(D Z=1)=E(D Z=0)=0 → E(Y Z=1)=E(Y Z=0)

Differences in Differences

	Before	After
Treated	$\alpha + \beta$	$\alpha + \beta + \gamma + \delta$
Untreated	α	$\alpha + \gamma$

We can calculate the DiD estimate in two ways:

$$\begin{aligned} \textit{DiD} &= \textit{E}[\underbrace{\left(Y_{i1}^{\mathsf{T}} - Y_{i0}^{\mathsf{T}}\right)}_{\text{Change for treated}} - \underbrace{\left(Y_{i1}^{\mathsf{C}} - Y_{i0}^{\mathsf{C}}\right)}_{\text{Change for untreated}}] = [(\alpha + \beta + \gamma + \delta) - (\alpha + \beta)] - [(\alpha + \gamma) - (\alpha)] \\ &= \textit{E}[\underbrace{\left(Y_{i1}^{\mathsf{T}} - Y_{i1}^{\mathsf{C}}\right)}_{\text{After-difference}} - \underbrace{\left(Y_{i0}^{\mathsf{T}} - Y_{i0}^{\mathsf{C}}\right)}_{\text{Before-difference}}] = [(\alpha + \beta + \gamma + \delta) - (\alpha + \gamma)] - [(\alpha + \beta) - (\alpha)] \end{aligned}$$

We need to assume parallel trends **after the treatment** for causality. Verify using data **before the treatment**. Estimate DiD with regression:

$$Y_{it} = \alpha + \beta$$
 Treated $i + \gamma$ Post $t + \delta$ Treated $i \cdot$ Post $t + u_{it}$

To generalize, estimate model with unit fixed effects α_i and time FE δ_t :

$$Y_{it} = \alpha_i + \delta_t + \beta^{FE} X_{it} + U_{it}$$

Regression discontinuity designs

Setup: We need a running variable *X*, impacting a treatment *D* discontinuously at a threshold, and an outcome *Y*.

Assumption: The effect of *X* and any other variable *C* on outcome *Y* is smooth around the discontinuity. In particular: No strategic behavior around cutoff. Can do a "balance check" around threshold.

Sharp RD: Probability of *D* jumps from 0 to 1 at threshold. To estimate:

$$Y_i = \alpha + \beta_1 X_i + \beta_2 X_i \cdot D_i + \beta^{RD} D_i + \varepsilon_i$$

Fuzzy RD: Probability jumps at threshold. Then, we simply use IV and instrument for *D* with being just above the threshold.

How to approach an exam question

- 1. Think: About the question, about the real world
- 2. Start with the numbers you see
 - One-sentence summary
 - · Direction (positive or negative?)
 - Statistical significance (significant or insignificant, level?)
 - (Economic) magnitude (big or small?)
- 3. Then: Establish whether estimated relationship is causal or not
 - What do the results mean? Correlation (interesting) or causality (policy-relevant)
 - Is X-variable randomized? Do we have valid counterfactuals?
 - If not: Do you expect bias? Of which sort (OVB, reverse causality, bad controls, ...)?
 - · Find a plausible story for bias (using the OVB formula)