Assignment 1 - Report

Training Artificial Neural Networks Using Cross-Entropy Loss

Objective

This report derives the formulas for updating weights in a feedforward neural network using the **cross-entropy loss function**. We focus on calculating:

- The error signal δ for each neuron
- The weight update Δw for both output and hidden layer neurons

1. Neural Network Structure

Let:

- x_i input to neuron j
- w_{ii} weight from neuron i to neuron j
- b_j bias of neuron j
- $v_j = \sum_i w_{ji}x_i + b_j$ net input to neuron j
- $y_i = \phi(v_i)$ output of neuron j, where ϕ is the activation function

2. Cross-Entropy Loss Function

For binary classification with sigmoid activation:

$$\mathcal{L} = -[d \cdot \log(y) + (1 - d) \cdot \log(1 - y)]$$

Where:

- *d* desired output (label)
- y predicted output

For multi-class classification with SoftMax activation:

$$\mathcal{L} = -\sum_{j} d_{j} \cdot \log(y_{j})$$

3. Output Layer Derivation

Activation Function: Sigmoid

$$y_j = \phi(v_j) = \frac{1}{1 + e^{-v_j}}$$

Derivative of Sigmoid

$$\phi'(v_i) = y_i(1 - y_i)$$

Error Signal for Output Neuron

For cross-entropy loss with sigmoid activation, the error simplifies to:

$$\delta_i = y_i - d_i$$

Weight Update Rule

Using gradient descent:

$$\Delta w_{ji} = -\mu \cdot \frac{\partial \mathcal{L}}{\partial w_{ji}} = -\mu \cdot \delta_j \cdot x_i$$

So, the updated weight becomes:

$$w_{ji}^{\text{new}} = w_{ji}^{\text{old}} - \mu \cdot \delta_j \cdot x_i$$

4. Hidden Layer Derivation

Error Signal for Hidden Neuron

Hidden neurons receive error signals from the next layer:

$$\delta_j = \phi'(v_j) \cdot \sum_k \delta_k \cdot w_{kj}$$

Where:

- δ_k error from neuron k in the next layer
- w_{kj} weight from hidden neuron j to output neuron k

Weight Update Rule

$$\Delta w_{ji} = -\mu \cdot \delta_j \cdot x_i$$

5. Training Procedure Summary

- 1. Initialize weights w_{ii} randomly
- 2. Forward pass: compute outputs y_i
- 3. Compute loss using cross-entropy
- 4. Backpropagate errors:
 - \circ Output layer: $\delta_j = y_j d_j$
 - o Hidden layer: $\delta_j = \phi'(v_j) \cdot \sum_k \delta_k \cdot w_{kj}$
- 5. Update weights:
 - $\circ \quad w_{ji} \leftarrow w_{ji} \mu \cdot \delta_j \cdot x_i$
- 6. Repeat for all training samples until convergence

6. Example: One Output Neuron

Given:

- Input: $x = [x_1, x_2]$
- Weights: $w = [w_1, w_2]$
- Bias: b
- Desired output: d

Steps:

- 1. Compute net input: $v = w_1x_1 + w_2x_2 + b$
- 2. Apply activation: $y = \frac{1}{1+e^{-v}}$
- 3. Compute error signal: $\delta = y d$
- 4. Update weights: $\Delta w_1 = -\mu \cdot \delta \cdot x_1 \Delta w_2 = -\mu \cdot \delta \cdot x_2$

Report Location

https://github.com/sharaba22/cda01/tree/main/Assignment%201