2016 Algorithm Quiz Solutions

指導教授:謝孫源教授

助教: 盧緯 張耕華 楊順翔 許景添

Question 1(10pts)

```
PPT CH22 P14
BFS(V, E, s)
for each u \in V - \{s\}
    do d[u] \leftarrow \infty
d[s] \leftarrow 0
Q \leftarrow \varphi
ENQUEUE(Q, s)
While Q \neq \phi
   do u \leftarrow \mathsf{DEQUEUE}(Q)
      for each v \in Adj[u]
              do if d[v] = \infty
                     then d[v] \leftarrow d[u] + 1
                           ENQUEUE(Q, v)
```

Complexity O(V + E).

Question 2(10pts)

Figure 1

Question 3(20pts)

```
1: n \leftarrow \text{length}[p] - 1
                                                                     m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] & \text{if } i < j \\ +p_{i-1} \cdot p_k \cdot p_j \} \end{cases}
 2: for i \leftarrow 1 to n do
        m[i,i] \leftarrow 0
 4: end for
 5: for \ell \leftarrow 2 to n do
         for i \leftarrow 1 to n - \ell + 1 do
      j \leftarrow i + \ell - 1
      m[i,j] \leftarrow \infty
            for k \leftarrow i to j-1 do
            q \leftarrow m[i, k] + m[k+1, j] + p_{i-1} \cdot p_k \cdot p_j
10:
          if q < m[i,j] then
11:
            m[i,j] \leftarrow q
12:
                  s[i,j] \leftarrow k
13:
                end if
14:
             end for
15:
         end for
16:
17: end for
```

- 配分(10%)
 - Algorithm(or Pseudocode) 8分
 - Time complexity 2分

We have three nested loops:

- 1. ℓ , length, O(n) iterations
- 2. i, start, O(n) iterations
- 3. k, split point, O(n) iterations

Body of loops: constant complexity.

Total complexity: $O(n^3)$

Question 3(20pts)

	1	2	3	4	5	6
1	0	15750	7875	9375	11875	15125
2		0	2625	4375	7125	10500
3			0	750	2500	5375
4				0	1000	3500
5					0	5000
6						0

				\ '	V
	2	3	4	5	6
1	1	1	3	3	3
2		2	3	3	3
3			3	3	3
4				4	5
5					5

- So, ANS= $((A_1(A_2A_3))((A_4A_5)A_6))$
- ▶ minimum number of scalar multiplications = 15125

Question 4(10pts)

- Ans: group of 7 work, but groups of 3 does not work
- 以課堂上所教之group of 5 為例,決定median of medians x後,至少有 $\frac{3n}{10}$ 6個 elements大於x,所以至多有 $\frac{7n}{10}$ + 6個elements小於x,worst case為在 $\frac{7n}{10}$ + 6中找i-th smallest element Total cost: $T(n) \leq T\left(\left[\frac{n}{5}\right]\right) + T\left(\frac{7n}{10} + 6\right) + O(n) => T(n) = O(n)$ 示意圖:

- ▶ group of 7 也是相同的概念
- ▶ 決定median of medians x後,至少有 $\frac{2n}{7}$ 8 個 elements大於x,所以至多有 $\frac{5n}{7}$ + 8個elements小於x,worst case為在 $\frac{5n}{7}$ +8中找 *i*-th smallest element

Total cost:
$$T(n) \le T\left(\left\lceil \frac{n}{7}\right\rceil\right) + T\left(\frac{5n}{7} + 8\right) + O(n) \Rightarrow T(n) = O(n)$$
 示意圖:

- ► $T(n) \le T\left(\left[\frac{n}{7}\right]\right) + T\left(\frac{5n}{7} + 8\right) + O(n)$ 利用substitution method得到的結果為
- $T(n) \le \frac{6cn}{7} + 9c + an \le cn$ $= cn + \left(-\frac{cn}{7} + 9c + an\right)$

$$-\frac{cn}{7} + 9c + an \le 0$$

$$\frac{cn}{7} - 9c \ge an$$

$$cn - 63c \ge 7an$$

$$c(n - 63) \ge 7an$$

$$取c \ge 7a(\frac{n}{n - 63})$$
 得到 $T(n) = O(n)$

- ▶ group of 3 則不能達到線性時間
- ▶ 決定median of medians x後,至少有 $\frac{n}{3}$ 4個 elements大於x,所以至多有 $\frac{2n}{3}$ + 4個elements小於x,worst case為在 $\frac{2n}{3}$ + 4中找 *i*-th smallest element

 Total cost: $T(n) < T([\frac{n}{3}]) + T(\frac{2n}{3} + 4) + O(n)$

Total cost:
$$T(n) \le T\left(\left\lceil \frac{n}{3}\right\rceil\right) + T\left(\frac{2n}{3} + 4\right) + O(n)$$
 示意圖:

► $T(n) \le T\left(\left[\frac{n}{3}\right]\right) + T\left(\frac{2n}{3} + 4\right) + O(n)$ 當n足夠大時 $T\left(\frac{2n}{3} + 4\right)$ 可視為 $T\left(\frac{2n}{3}\right)$ 利用substitution method得到的結果為

$$T(n) \le T(n/3) + T(2n/3) + cn$$

 $\le d(n/3) \lg(n/3) + d(2n/3) \lg(2n/3) + cn$
 $= (d(n/3) \lg n - d(n/3) \lg 3) + (d(2n/3) \lg n - d(2n/3) \lg(3/2)) + cn$
 $= d n \lg n - d((n/3) \lg 3 + (2n/3) \lg(3/2)) + cn$
 $= d n \lg n - d((n/3) \lg 3 + (2n/3) \lg 3 - (2n/3) \lg 2) + cn$
 $= d n \lg n - d n (\lg 3 - 2/3) + cn$
 $\le d n \lg n$ if $- d n (\lg 3 - 2/3) + cn \le 0$,

 $T(n) = O(n \log n)$

- ▶ 配分方式(10%)
 - ▶ Group 7:yes 5%(yes or no 一分/解釋 四分)
 - ▶ Group 3:no 5%(yes or no 一分/解釋 四分)

Question 5(10pts)

Question 6(10pts)

item	value	weight	Value/weight
1	8	6	4/3
2	6	5	6/5
3	3	3	3/3

- Maximum capacity of knapsack is 8
- (4/3)*6 + (6/5)*(8-6) = 8 + 12/5 = 10.4

Question 7(10pts)

False

```
不必記錄所有子問題也能計算出所需的解答
以fibonacci number為例,我們可以只用O(1) 空間去計算
令n為想求出的fibonacci number sequence的index(index從0開始)
prev = curr = 1;
i=2;
while(i<n){
    next = prev + curr;
    prev = curr;
    curr = next;
}
```

Question 8(10pts)

▶ (I) false

fractional knapsack才能以greedy strategy解決

► (II)false

Theorem[CH22, p31]

In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.

(III)true

[CH15, p16]

Two basic approaches: top-down with memoization, and bottom-up.

▶ (IV)true

從圖可得知 q到t的最長path是q-r-t 但是q-r並不是q到r的最長path (應該是q-s-t-r) 而r-t也不是r到t的最長path (應該是r-q-s-t) 所以不具有optimal substructure.

所以个具有optimal substructi (V)true

Lemma[CH22, p35]

A directed graph G is acyclic if and only if a DFS of G yields no back edges.

Question 9(10pts)

根據題意為0-1背包問題

利用公式建立表格, 選取 item 1 + item 2 + item 3 + item 7, 最佳總價值是38

$$profit[i][j] = \begin{cases} profit[i-1][j], & if \ weight[i] > j \\ \max \begin{pmatrix} profit[i-1][j], \\ profit[i-1][j-weight[i]] + v[i] \end{pmatrix}, & otherwise \end{cases}$$

size Item	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
2	0	8	8	8	14	14	14	14	14	14	14	14	14	14	14	14
3	0	8	8	8	15	15	23	23	23	29	29	29	29	29	29	29
4	0	8	8	8	15	15	23	23	23	29	29	29	29	32	32	32
5	0	8	8	8	15	15	23	23	23	29	29	29	31	32	32	32
6	0	8	8	13	15	15	23	23	28	29	29	34	34	34	36	37
7	0	8	8	13	15	15	23	23	28	29	29	34	34	34	37	38