Clustering and PCA

Machine Learning - 1

ANIL KUMAR

PGBPDSBA AUG'2023

Contents

1.0 Problem Statement Digital Ads Data	
1.1 Exploratory Data Analysis	5
1.2 Treatment of Missing Values	8
1.3 Outliers Detection	9
1.4 Do you Think treating outliers is necessary for K means Clustering	10
1.5 Perform Z-Score Scaling	11
1.6 Perform Clustering	12
1.6(A) Perform Hierarchical Clustering	12
1.6(B) Make Elbow Plot	13
1.6(C) Print Silhouette Scores	14
1.7 Profile the ads based on optimum number of clusers	15
1.8 Conclude the Project by providing summary based on your learnings	16
2.0 Problem Statement – India Census Data (PCA)	17
2.1 Exploratory Data Analysis (PCA)	18
2.2 Which state has the highest gender ratio, and which has the lowest	24
2.3 Which District has the highest gender ratio, and which has the lowest	25
2.4 PCA Check Outliers	26
2.5 Scale the Data using Z-Scale Method	28
2.6 Perform PCA	30

Clustering and PCA Project

1.0 Problem Statement – Digital Ads Data

Digital Ads Data:

The ads24x7 is a Digital Marketing company which has now got seed funding of \$10 Million. They are expanding their wings in Marketing Analytics. They collected data from their Marketing Intelligence team and now wants you (their newly appointed data analyst) to segment type of ads based on the features provided. Use Clustering procedure to segment ads into homogeneous groups.

The following three features are commonly used in digital marketing:

CPM = (Total Campaign Spend / Number of Impressions) * 1,000. Note that the Total Campaign Spend refers to the 'Spend' Column in the dataset and the Number of Impressions refers to the 'Impressions' Column in the dataset.

CPC = Total Cost (spend) / Number of Clicks. Note that the Total Cost (spend) refers to the 'Spend' Column in the dataset and the Number of Clicks refers to the 'Clicks' Column in the dataset.

CTR = Total Measured Clicks / Total Measured Ad Impressions x 100. Note that the Total Measured Clicks refers to the 'Clicks' Column in the dataset and the Total Measured Ad Impressions refers to the 'Impressions' Column in the dataset.

The Data Dictionary and the detailed description of the formulas for CPM, CPC and CTR are given in the sheet 2 of the Clustering Clean ads_data Excel File.

Perform the following in given order:

- 1.Read the data and perform basic analysis such as printing a few rows (head and tail), info, data summary, null values duplicate values, etc.
- 2.Treat missing values in CPC, CTR and CPM using the formula given. You may refer to the Bank_KMeans Solution File to understand the coding behind treating the missing values using a specific formula. You have to basically create an user defined function and then call the function for imputing.
- 3. Check if there are any outliers.
- 4.Do you think treating outliers is necessary for K-Means clustering? Based on your judgement decide whether to treat outliers and if yes, which method to employ. (As an analyst your judgement may be different from another analyst).
- 5. Perform z-score scaling and discuss how it affects the speed of the algorithm.
- 6.Perform clustering and do the following:
- 7.Perform Hierarchical by constructing a Dendrogram using WARD and Euclidean distance.
- 8.Make Elbow plot (up to n=10) and identify optimum number of clusters for k-means algorithm.
- Print silhouette scores for up to 10 clusters and identify optimum number of clusters.
- 9. Profile the ads based on optimum number of clusters using silhouette score and your domain understanding

[Hint: Group the data by clusters and take sum or mean to identify trends in clicks, spend, revenue, CPM, CTR, & CPC based on Device Type. Make bar plots.]

10. Conclude the project by providing summary of your learnings.

Executive Summary

The ads24x7 is a Digital Marketing company which has now got seed funding of \$10 Million. They are expanding their wings in Marketing Analytics. They collected data from their Marketing Intelligence team and now wants you (their newly appointed data analyst) to segment type of ads based on the features provided. Use Clustering procedure to segment ads into homogeneous groups.

Data Dictionary

SI_No: Primary key of the records

Customer Key: Customer identification number

Average Credit Limit: Average credit limit of each customer for all credit cards Total credit cards: Total number of credit cards possessed by the customer

Total visits bank: Total number of visits that customer made (yearly) personally to the bank Total visits online: Total number of visits or online logins made by the customer (yearly)

Total calls made: Total number of calls made by the customer to the bank or its customer service

department (yearly)

1.1 EDA- Exploratory Data Analysis

Checking the shape of the dataset

There are 23066 rows and 19 columns.

> Displaying few rows of the dataset

	Timestamp	InventoryType	Ad - Length	Ad- Width	Ad Size	Ad Type	Platform	Device Type	Format	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	СРМ	СРС
0	2020-9-2- 17	Format1	300	250	75000	Inter222	Video	Desktop	Display	1806	325	323	1	0.0	0.35	0.0	0.0031	0.0	0.0
1	2020-9-2- 10	Format1	300	250	75000	Inter227	Арр	Mobile	Video	1780	285	285	1	0.0	0.35	0.0	0.0035	0.0	0.0
2	2020-9-1- 22	Format1	300	250	75000	Inter222	Video	Desktop	Display	2727	356	355	1	0.0	0.35	0.0	0.0028	0.0	0.0
3	2020-9-3- 20	Format1	300	250	75000	Inter228	Video	Mobile	Video	2430	497	495	1	0.0	0.35	0.0	0.0020	0.0	0.0
4	2020-9-4- 15	Format1	300	250	75000	Inter217	Web	Desktop	Video	1218	242	242	1	0.0	0.35	0.0	0.0041	0.0	0.0

> Checking the data types of the columns for the dataset

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23066 entries, 0 to 23065
Data columns (total 19 columns):
```

#	Column	Non-Null Count	Dtype
0	Timestamp	23066 non-null	object
1	InventoryType	23066 non-null	object
2	Ad - Length	23066 non-null	int64
3	Ad- Width	23066 non-null	int64
4	Ad Size	23066 non-null	int64
5	Ad Type	23066 non-null	object
6	Platform	23066 non-null	object
7	Device Type	23066 non-null	object
8	Format	23066 non-null	object
9	Available_Impressions	23066 non-null	int64
10	Matched_Queries	23066 non-null	int64
11	Impressions	23066 non-null	int64
12	Clicks	23066 non-null	int64
13	Spend	23066 non-null	float64
14	Fee	23066 non-null	float64
15	Revenue	23066 non-null	float64
16	CTR	18330 non-null	float64
17	CPM	18330 non-null	float64
18	CPC	18330 non-null	float64

dtypes: float64(6), int64(7), object(6)

memory usage: 3.3+ MB

> Statistical summary of the dataset

There are 6 object variables, 7 integer type and 6 float

Checking the Duplicate Values

No Duplicate Values found

Checking the number of unique values in each column

checking the number of unique values in each column
data.nunique()

→ Timestamp 2018 InventoryType 7 Ad - Length Ad- Width 6 5 Ad Size Ad Type 7 14 Platform 3 2 Device Type Format 2 Available_Impressions 21560 Matched Queries 20919 Matched_Queries Impressions 20405 Clicks 12752 Spend 20467 Fee Revenue 20578 CTR 2066 CPM 2084 CPC 194 dtype: int64

Checking for Missing Values

[13] # checking for missing values
 df.isnull().sum()

\rightarrow	Timestamp	0
	InventoryType	0
	Ad - Length	0
	Ad- Width	0
	Ad Size	0
	Ad Type	0
	Platform	0
	Device Type	0
	Format	0
	Available_Impressions	0
	Matched Queries	0
	Impressions	0
	Clicks	0
	Spend	0
	Fee	0
	Revenue	0
	CTR	4736
	CPM	4736
	CPC	4736
	dtype: int64	

1.2 Treatment of missing values in CPC, CTR and CPM using the formula given

- CPC = Total Cost (spend) / Number of Clicks •
- CTR = Total Measured Clicks / Total Measured Ad Impressions x 100
- CPM = (Total Campaign Spend / Number of Impressions) * 1,000

```
def calculate_CPC(x):
       Total_Cost=df.Spend
       Number of clicks=df.Clicks
       CPC = (Total_Cost/(Number_of_clicks))
       return CPC
     df['CPC'] = df[['CPC']].apply(lambda x: calculate_CPC(x))
[16] def calculate_CTR(x):
       Total_Measured_Clicks=df.Clicks
       Total_Measured_Impressions=df.Available_Impressions
       CTR = (Total_Measured_Clicks/(Total_Measured_Impressions)*100)
     df['CTR'] = df[['CTR']].apply(lambda x: calculate_CTR(x))
[17] def calculate_CPM(x):
       Total Campaign Spend=df.Spend
       Total Measured Impressions=df.Impressions
       CPM = (Total_Campaign_Spend/(Total_Measured_Impressions)*100)
     df['CPM'] = df[['CPM']].apply(lambda x: calculate_CPM(x))
```

Checking for Missing Values after treatment

```
# Check once again null values
    df.isnull().sum()

→ Timestamp

                                0
    InventoryType
                                0
    Ad - Length
Ad- Width
                                0
                                0
    Ad Size
                                0
    Ad Type
                                0
    Platform
                                0
    Device Type
                                0
    Format
                                0
    Available_Impressions
                               0
    Matched_Queries
                                0
    Impressions
                                0
    Clicks
                                0
    Spend
                                0
    Fee
                                0
    Revenue
                                0
    CTR
                                0
    CPM
                                0
    CPC
                                0
    dtype: int64
```

1.3 Outliers Detection

1.4 Do you think treating outliers is necessary for K-Means clustering? Based on your judgement decide whether to treat outliers and if yes, which method to employ. (As an analyst your judgement may be different from another analyst).

It depends on the specific case and the domain knowledge. If the outliers are caused by errors in data collection or data entry, then it may be necessary to remove them. If the outliers are caused by actual extreme values in the data, then it may be necessary to keep them.

Here we are not removing any outliers

1.5 Perform Z-Score scaling and discuss how it affects the speed of the algorithm.

Z-score scaling standardizes the data by subtracting the mean and dividing by the standard deviation. This can make the data more comparable and can improve the performance of clustering algorithms. However, it can also slow down the algorithm if the dataset is very large.

1.6 Perform Clustering

1.6(A)Perform Hierarchical by constructing a Dendrogram using WARD and Euclidean distance

```
from scipy.cluster.hierarchy import linkage, dendrogram
import matplotlib.pyplot as plt

# Perform linkage
linkage_matrix = linkage(data_scaled, method='ward', metric='euclidean')

# Plot the dendrogram
dendrogram(linkage_matrix)
plt.show()
```


1.6(B) Make Elbow plot (up to n=10) and identify optimum number of clusters for k-means algorithm.

```
# Create an empty list to store the WCSS values
wcss = []

# Perform KMeans for n=1 to n=10
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0)
    kmeans.fit(data_scaled)
    wcss.append(kmeans.inertia_)

#Plot the Elbow plot
plt.plot(range(1, 11), wcss)
plt.title('Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```


1.6 (C)Print silhouette scores for up to 10 clusters and identify optimum number of clusters:


```
for i in range(2,11):
    print('The WSS Value for',i,'Cluster is ',wcss[i-2])
```

```
    The WSS Value for 2 Cluster is 69197.999999998
    The WSS Value for 3 Cluster is 35207.357285089485
    The WSS Value for 4 Cluster is 27830.27819782109
    The WSS Value for 5 Cluster is 21991.60941078634
    The WSS Value for 6 Cluster is 17016.98133651621
    The WSS Value for 7 Cluster is 12361.363629238045
    The WSS Value for 8 Cluster is 10228.814026685915
    The WSS Value for 9 Cluster is 8504.369209650378
    The WSS Value for 10 Cluster is 7448.087166927873
```

1.7 Profile the ads based on optimum number of clusters using silhouette score and your domain understanding:

cluster_o	data.head()												
	Ad - Length	Ad- Width	Ad Size	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	СРМ	СРС
Cluster													
0	438.737228	171.464027	63197.805891	5.165329e+06	2.726854e+06	2.633884e+06	6383.208402	4295.269384	0.326236	3088.291780	0.003323	1.703330	0.627382
1	340.620690	473.651022	123657.088123	2.083759e+05	1.306020e+05	1.087975e+05	14384.643040	1433.056880	0.342252	990.216139	0.137076	13.050454	0.100662
2	403.016393	461.748634	143737.704918	4.473224e+01	2.875410e+01	2.762295e+01	9.748634	0.967650	0.350000	0.628918	0.449220	42.311000	0.097000

1.8 Conclude the project by providing summary of your learnings:

In this project, we used clustering techniques to segment digital ads data into homogeneous groups based on the features of CPM, CPC and CTR. We first performed basic data analysis, treated missing values, checked for outliers and scaled the data using z-score scaling. We then performed hierarchical clustering and used the elbow plot and silhouette scores to identify the optimum number of clusters. Finally, we profiled the ads based on the optimum number of clusters and identified trends in clicks, spend, revenue, CPM, CTR and CPC based on Device Type.

PART -2

2.0 Problem Statement: India Census Data PCA

PCA FH (FT): Primary census abstract for female headed households excluding institutional households (India & States/UTs - District Level), Scheduled tribes - 2011 PCA for Female Headed Household Excluding Institutional Household. The Indian Census has the reputation of being one of the best in the world. The first Census in India was conducted in the year 1872. This was conducted at different points of time in different parts of the country. In 1881 a Census was taken for the entire country simultaneously. Since then, Census has been conducted every ten years, without a break. Thus, the Census of India 2011 was the fifteenth in this unbroken series since 1872, the seventh after independence and the second census of the third millennium and twenty first century. The census has been uninterruptedly continued despite of several adversities like wars, epidemics, natural calamities, political unrest, etc. The Census of India is conducted under the provisions of the Census Act 1948 and the Census Rules, 1990. The Primary Census Abstract which is important publication of 2011 Census gives basic information on Area, Total Number of Households, Total Population, Scheduled Castes, Scheduled Tribes Population, Population in the age group 0-6, Literates, Main Workers and Marginal Workers classified by the four broad industrial categories, namely, (i) Cultivators, (ii) Agricultural Laborers, (iii) Household Industry Workers, and (iv) Other Workers and also Non-Workers. The characteristics of the Total Population include Scheduled Castes, Scheduled Tribes, Institutional and Houseless Population and are presented by sex and ruralurban residence. Census 2011 covered 35 States/Union Territories, 640 districts, 5,924 sub-districts, 7,935 Towns and 6,40,867 Villages.

The data collected has so many variables thus making it difficult to find useful details without using Data Science Techniques. You are tasked to perform detailed EDA and identify Optimum Principal Components that explains the most variance in data. Use Sklearn only.

Note: The 24 variables given in the Rubric is just for performing EDA. You will have to consider the entire dataset, including all the variables for performing PCA.

Data file - PCA India Data Census.xlsx

2.1 EDA – Exploratory Data Analysis(PCA)

Read the data and perform basic checks like checking head, info, summary, nulls, and duplicates etc.

Checking the shape of the dataset

 $oldsymbol{\exists}$ There are 640 rows and 61 columns.

Displaying few rows of the dataset

	State Code	Dist.Code	State	Area Name	No_HH	тот_м	TOT_F	M_06	F_06	M_SC	F_SC	M_ST	F_ST	M_LIT	F_LIT	M_ILL	F_ILL	TOT_WORK_M	TOT_WORK_F	MAINWORK_M	MAINWORK_F	MAIN_CL_M	MAIN_CL_F	MAIN
0	1	1	Jammu & Kashmir	Kupwara	7707	23388	29796	5862	6196	3	0	1999	2598	13381	11364	10007	18432	6723	3752	2763	1275	486	235	
1	1	2	Jammu & Kashmir	Badgam	6218	19585	23102	4482	3733	7	6	427	517	10513	7891	9072	15211	6982	4200	4628	1733	1098	357	
2	1	3	Jammu & Kashmir	Leh(Ladakh)	4452	6546	10964	1082	1018	3	6	5806	9723	4534	5840	2012	5124	2775	4800	1940	2923	519	1205	
3	1	4	Jammu & Kashmir	Kargil	1320	2784	4206	563	677	0	0	2666	3968	1842	1962	942	2244	1002	1118	491	408	35	102	
4	1	5	Jammu & Kashmir	Punch	11654	20591	29981	5157	4587	20	33	7670	10843	13243	13477	7348	16504	5717	7692	2523	2267	743	766	

Checking the data types of the columns for the dataset

```
23
   MAIN_AL_M
                    640 non-null
                                    int64
24
   MAIN AL F
                   640 non-null
                                    int64
25
   MAIN HH M
                   640 non-null
                                    int64
26
   MAIN HH F
                   640 non-null
                                    int64
27
   MAIN OT M
                   640 non-null
                                    int64
   MAIN OT F
                   640 non-null
28
                                    int64
   MARGWORK M
                   640 non-null
29
                                    int64
   MARGWORK F
30
                   640 non-null
                                    int64
                   640 non-null
   MARG_CL_M
31
                                    int64
32
   MARG_CL_F
                   640 non-null
                                    int64
33
   MARG AL M
                   640 non-null
                                    int64
   MARG AL F
                   640 non-null
                                    int64
34
35
   MARG HH M
                   640 non-null
                                    int64
   MARG HH F
                   640 non-null
36
                                    int64
   MARG OT M
                   640 non-null
                                    int64
37
   MARG OT F
38
                    640 non-null
                                    int64
   MARGWORK_3_6_M 640 non-null
39
                                    int64
40
   MARGWORK_3_6_F 640 non-null
                                    int64
   MARG_CL_3_6_M 640 non-null
41
                                    int64
   MARG CL 3 6 F 640 non-null
42
                                    int64
43
   MARG AL 3 6 M 640 non-null
                                    int64
   MARG_AL_3_6_F 640 non-null
44
                                    int64
   MARG_HH_3_6_M 640 non-null
                                    int64
45
   MARG_HH_3_6_F 640 non-null
46
                                    int64
   MARG_OT_3_6_M 640 non-null
MARG_OT_3_6_F 640 non-null
47
                                    int64
48
                                    int64
49 MARGWORK_0_3_M 640 non-null
                                    int64
50 MARGWORK 0 3 F 640 non-null
                                    int64
```

```
640 non-null
 51 MARG CL 0 3 M
                                     int64
 52 MARG CL 0 3 F
                     640 non-null
                                     int64
 53 MARG AL 0 3 M
                     640 non-null
                                     int64
 54 MARG AL 0 3 F
                     640 non-null
                                     int64
 55 MARG HH 0 3 M
                     640 non-null
                                    int64
                     640 non-null
 56 MARG HH 0 3 F
                                     int64
 57 MARG OT 0 3 M
                     640 non-null
                                    int64
                     640 non-null
 58 MARG OT 0 3 F
                                     int64
    NON WORK M
                     640 non-null
                                     int64
 59
     NON WORK F
                     640 non-null
 60
                                     int64
dtypes: int64(59), object(2)
```

> Statistical summary of the dataset

There are 2 object variables, 59 integer type

max	75%	50%	25%	min	std	mean	count	index
35.0	24.0	18.0	9.0	1.0	9.426486295388743	17.1140625	640.0	State Code
640.0	480.25	320.5	160.75	1.0	184.89636737012077	320.5	640.0	Dist.Code
310450.0	68892.0	35837.0	19484.0	350.0	48135.40547477947	51222.871875	640.0	No_HH
485417.0	107918.5	58339.0	30228.0	391.0	73384.51111369701	79940.5765625	640.0	тот_м
750392.0	164251.75	87724.5	46517.75	698.0	113600.7172815185	122372.084375	640.0	TOT_F
96223.0	16520.25	9159.0	4733.75	56.0	11500.906880809953	12309.0984375	640.0	M_06
95129.0	15902.25	8663.0	4672.25	56.0	11326.294566668952	11942.3	640.0	F_06
103307.0	19429.75	9591.5	3466.25	0.0	14426.3731297206	13820.946875	640.0	M_SC
156429.0	29180.0	13709.0	5603.25	0.0	21727.887713109423	20778.3921875	640.0	F_SC
96785.0	7658.0	2333.5	293.75	0.0	9912.668947884893	6191.8078125	640.0	M_ST
130119.0	12480.25	3834.5	429.5	0.0	15875.701488196419	10155.640625	640.0	F_ST
403261.0	77989.5	42693.5	21298.0	286.0	55910.28246589229	57967.9796875	640.0	M_LIT
571140.0	84799.75	43796.5	20932.0	371.0	75037.86020746626	66359.565625	640.0	F_LIT
105961.0	29512.5	15767.5	8590.0	105.0	19825.605267802846	21972.596875	640.0	M_ILL
254160.0	78471.0	42386.0	22367.0	327.0	47116.69376939182	56012.51875	640.0	F_ILL
269422.0	50226.75	27936.5	13753.5	100.0	36419.537491220704	37992.4078125	640.0	TOT_WORK_M
257848.0	53234.25	30588.5	16097.75	357.0	37192.36094345711	41295.7609375	640.0	TOT_WORK_F
247911.0	40119.0	21250.5	9787.0	65.0	31480.91567993618	30204.446875	640.0	MAINWORK_M
226166.0	35063.25	18484.0	9502.25	240.0	29998.26268858454	28198.846875	640.0	MAINWORK_F
29113.0	7695.0	4160.5	2023.5	0.0	4739.161969403382	5424.3421875	640.0	MAIN_CL_M
36193.0	7286.25	3908.5	1920.25	0.0	5326.362727592411	5486.0421875	640.0	MAIN_CL_F
40843.0	8067.25	3936.5	1070.25	0.0	6399.507966261204	5849.109375	640.0	MAIN_AL_M
87945.0	10617.5	3933.5	1408.75	0.0	12864.287584362615	8925.9953125	640.0	MAIN_AL_F
16429.0	1099.25	498.5	187.5	0.0	1278.642344576578	883.89375	640.0	MAIN_HH_M
45979.0	1435.75	540.5	248.75	0.0	3179.4144489361515	1380.7734375	640.0	MAIN_HH_F

max	75%	50%	25%	min	std	mean	count	index
240855	21249.5	9598.0	3997.5	36.0	26068.48088563092	18047.1015625	640.0	MAIN_OT_M
209355	14368.25	6380.5	3142.5	153.0	18972.2023686502	12406.0359375	640.0	MAIN_OT_F
47553	9800.25	5627.0	2937.5	35.0	7410.7916905331285	7787.9609375	640.0	MARGWORK_M
66915	18879.25	10175.0	5424.5	117.0	10996.47452796788	13096.9140625	640.0	MARGWORK_F
13201	1281.0	606.5	311.75	0.0	1311.546847376734	1040.7375	640.0	MARG_CL_M
44324	2659.25	1226.0	630.25	0.0	3564.626095357566	2307.6828125	640.0	MARG_CL_F
23719	4300.75	2062.0	873.5	0.0	3781.5557071285475	3304.3265625	640.0	MARG_AL_M
45301	9089.25	4020.5	1402.5	0.0	6773.876297663584	6463.28125	640.0	MARG_AL_F
4298	356.5	166.0	71.75	0.0	462.66189140717603	316.7421875	640.0	MARG_HH_M
15448	962.5	429.0	171.75	0.0	1198.7182132798703	786.6265625	640.0	MARG_HH_F
24728	3985.25	2036.0	935.5	7.0	3609.3918205235764	3126.1546875	640.0	MARG_OT_M
36377	4400.5	2349.5	1071.75	19.0	4115.191314204173	3539.3234375	640.0	MARG_OT_F
300937	57218.75	30315.0	16208.25	291.0	39045.316917993696	41948.16875	640.0	MARGWORK_3_6_M
676450	107924.0	56793.0	26619.5	341.0	82970.40621572598	81076.3234375	640.0	MARGWORK_3_6_F
39106	8167.0	4630.0	2372.0	27.0	6019.806643999657	6394.9875	640.0	MARG_CL_3_6_M
50065	15102.0	8295.0	4351.5	85.0	8467.473429380616	10339.8640625	640.0	MARG_CL_3_6_F
7426	986.0	480.5	235.5	0.0	905.6392793929609	789.8484375	640.0	MARG_AL_3_6_M
27171	2059.0	985.5	497.25	0.0	2496.541513703694	1749.584375	640.0	MARG_AL_3_6_F
19343	3702.25	1714.5	718.75	0.0	3059.5863867296516	2743.6359375	640.0	MARG_HH_3_6_M
36253	7502.25	3294.0	1113.75	0.0	5335.64096021631	5169.85	640.0	MARG_HH_3_6_F
3535	276.0	129.5	58.0	0.0	358.7285666169371	245.3625	640.0	MARG_OT_3_6_M
12094	719.25	320.5	127.75	0.0	900.0258172646815	585.884375	640.0	MARG_OT_3_6_F
20648	3320.25	1681.5	755.0	7.0	3036.9643812728705	2616.140625	640.0	MARGWORK_0_3_M
25844	3610.5	1834.5	833.5	14.0	3327.8369319771195	2834.5453125	640.0	MARGWORK_0_3_F
9875	1714.0	949.0	489.5	4.0	1489.7070515540374	1392.9734375	640.0	MARG_CL_0_3_M

max	75%	50%	25%	min	std	mean	count	index
21611.0	3599.75	1928.0	957.25	30.0	2788.7766756194146	2757.05	640.0	MARG_CL_0_3_F
5775.0	270.75	114.5	47.0	0.0	453.3365940290036	250.8890625	640.0	MARG_AL_0_3_M
17153.0	568.75	247.5	109.0	0.0	1117.64274823112	558.0984375	640.0	MARG_AL_0_3_F
6116.0	642.0	308.0	136.5	0.0	762.5789912585069	560.690625	640.0	MARG_HH_0_3_M
13714.0	1710.75	717.0	298.0	0.0	1585.377936100369	1293.43125	640.0	MARG_HH_0_3_F
895.0	79.0	35.0	14.0	0.0	107.89762678259842	71.3796875	640.0	MARG_OT_0_3_M
3354.0	240.0	113.0	43.0	0.0	309.74085402556176	200.7421875	640.0	MARG_OT_0_3_F
6456.0	604.5	326.0	161.0	0.0	610.6031868227664	510.0140625	640.0	NON_WORK_M
10533.0	853.5	464.5	220.5	5.0	910.2092250266159	704.778125	640.0	NON_WORK_F

➤ Checking the Duplicate Values

No Duplicate Values found

```
[11] df_pca.duplicated().sum()
```

There are no duplicate values

0

➤ Checking for Missing Values

There are no missing values

0	<pre># checking for df_pca.isnull(</pre>	_
∃	State Code	0
	Dist.Code	0
	State	0
	Area Name	0
	No_HH	0
	TOT_M	0
	TOT_F	0
	M_06	0
	F_06	0
	M_SC	0
	F_SC	0
	M_ST	0
	F_ST	0
	M_LIT	0
	F_LIT	0
	M_ILL	0
	F_ILL	0
	TOT_WORK_M	0
	TOT_WORK_F	0
	MAINWORK_M	0
	MAINWORK_F	0
	MAIN_CL_M	0
	MAIN_CL_F	0
	MAIN_AL_M	0
	MAIN_AL_F	0
	MAIN_HH_M	0
	MAIN_HH_F	0

MAIN_OT_M	0
MAIN_OT_F	0
MARGWORK_M	0
MARGWORK_F	0
MARG_CL_M	0
MARG_CL_F	0
MARG_AL_M	0
MARG_AL_F	0
MARG_HH_M	0
MARG_HH_F	0
MARG_OT_M	0
MARG_OT_F	0
MARGWORK_3_6_M	0
MARGWORK_3_6_F	0
MARG_CL_3_6_M	0
MARG_CL_3_6_F	0
MARG_AL_3_6_M	0
MARG_AL_3_6_F	0
MARG_HH_3_6_M	0
MARG_HH_3_6_F	0
MARG_OT_3_6_M	0
MARG_OT_3_6_F	0
MARGWORK_0_3_M	0
MARGWORK_0_3_F	0
MARG_CL_0_3_M	0
MARG_CL_0_3_F	0
MARG_AL_0_3_M	0
MARG_AL_0_3_F	0
MARG_HH_0_3_M	0

Perform detailed Exploratory analysis

2.2 Which state has the highest gender ratio, and which has the lowest?

```
# (i) Which state has the highest gender ratio, and which has the lowest?
gender_ratio = data.groupby('State').agg({'TOT_M': 'sum', 'TOT_F': 'sum'})
gender_ratio['gender_ratio'] = gender_ratio['TOT_M'] / gender_ratio['TOT_F']
gender_ratio.sort_values(by='gender_ratio', ascending=False)
```


The State with the highest gender ratio is Lakshadweep. The State with the lowest gender ratio is Andhra Pradesh.

2.3 Which District has the highest gender ratio, and which has the lowest?

(ii) Which District has the highest and lowest gender ratio?

```
# (ii) Which District has the highest and lowest gender ratio?
data['gender_ratio'] = data['TOT_M'] / data['TOT_F']
highest_gr_district = data.sort_values('gender_ratio', ascending=False)['Area Name'].iloc[0]
lowest_gr_district = data.sort_values('gender_ratio')['Area Name'].iloc[0]
print(f"The District with the highest gender ratio is {highest_gr_district}.")
print(f"The District with the lowest gender ratio is {lowest_gr_district}.")
The District with the highest gender ratio is Lakshadweep.
The District with the lowest gender ratio is Krishna.
```

The Distict with the highest gender ratio is Lakshadweep. The District with the lowest gender ratio is Krishna.

2.4 PCA – Check Outliers

It is important to treat outliers as they can significantly affect the results of PCA. However, for this case, we have chosen not to treat outliers.

2.5 Scale the Data using Z-Scale Method

Scaling the Data

```
[102] selected_variables = ['No_HH', 'TOT_M', 'TOT_F', 'M_06', 'F_06']
    eda_data = data[selected_variables]

[103] scaler = StandardScaler()
    scaled_data = scaler.fit_transform(eda_data)
```

0 -0.904738 -0.771236 -0.815563 -0.561012 -0.507738 1 -0.935695 -0.823100 -0.874534 -0.681096 -0.725367 2 -0.972412 -1.000919 -0.981466 -0.976956 -0.965262 3 -1.037530 -1.052224 -1.041001 -1.022118 -0.995393 4 -0.822676 -0.809381 -0.813933 -0.622359 -0.649908
2 -0.972412 -1.000919 -0.981466 -0.976956 -0.965262 3 -1.037530 -1.052224 -1.041001 -1.022118 -0.995393
3 -1.037530 -1.052224 -1.041001 -1.022118 -0.995393
4 -0.822676 -0.809381 -0.813933 -0.622359 -0.649908

Scaling can affect the outliers by changing their values, but it does not remove them. We can compare the boxplots before and after scaling to see the impact on outliers.

2.6 Perform PCA

```
pca = PCA()
pca.fit(scaled_data)
covariance_matrix = pca.get_covariance()
explained_variance = pca.explained_variance_ratio_

# Get eigenvalues and eigenvectors
eigen_values, eigen_vectors = np.linalg.eig(covariance_matrix)

# Get the principal components
pca_components = pca.transform(scaled_data)
```

```
▼ PCA
PCA(n_components=24)
```

To identify the optimum number of principal components (PCs), we can use the scree plot. The scree plot shows the eigenvalues of each PC in descending order, with the corresponding proportion of explained variance. We can plot the eigenvalues against the PCs and observe where the eigenvalues start to level off.

Compare PCs with Actual Columns and identify which is explaining most variance

	PC1	PC2	PC3	PC4	PC5
тот_ғ	0.976837	-0.042508	0.126860	0.030172	-0.145558
тот_м	0.971085	-0.132210	0.135699	-0.087106	-0.100343
TOT_WORK_M	0.962974	-0.089059	0.172254	0.057946	-0.054318
M_LIT	0.956773	-0.134921	0.190662	-0.005288	-0.136287
No_HH	0.948326	0.067300	0.084132	0.198024	-0.158814
F_ILL	0.940527	0.087902	-0.161351	-0.098190	0.031781
MAINWORK_M	0.930236	-0.075424	0.187415	0.149184	-0.069751
TOT_WORK_F	0.898294	0.300577	-0.045322	0.226760	-0.060523