Question Number	Answer		Mark
19(a)(i)	• See mass = $4\pi r^3 \rho/3$	1	
() ()	• See $6\pi \eta v r = 4\pi r^3 \rho g/3$	1	
	Suitable algebra	1	(3)
19(a)(ii)	$9\eta v$		
	• Use of $r = \sqrt{\frac{9\eta v}{2\rho g}}$	1	(2)
	• $r = 2.2 \times 10^{-6} \text{ m}$	1	(2)
	2.2 × 10 M		
	Example of calculation		
	$r = \sqrt{(9 \times 1.86 \times 10^{-5} \text{ Pa s} \times 5.35 \times 10^{-4} \text{ m s}^{-1} / 2 \times 904 \text{ kg})}$		
	$m^{-3} \times 9.81 \text{ N kg}^{-1}$		
	$= 2.247 \times 10^{-6} \mathrm{m}$		
19(a)(iii)	• Use of $W = mg$	1	
	• Use of $E = V/d$	1	
	• Use of $F = EQ$	1	(4)
	• $Q = 4.8 \times 10^{-19} \mathrm{C}$	1	(4)
	Example of coloulation		
	Example of calculation $W = 3.03 \times 10^{-14} \text{ kg} \times 9.81 \text{ N kg}^{-1}$		
	$W = 3.03 \times 10^{-10} \text{ kg} \times 9.81 \text{ N kg}$ = $2.97 \times 10^{-13} \text{ N}$		
	E = 9910 V / 0.016 m		
	$= 619\ 000\ \text{V m}^{-1}$		
	$2.97 \times 10^{-13} \mathrm{N} = 619000 \mathrm{V} \mathrm{m}^{-1} \times Q$		
	$Q = 4.8 \times 10^{-19} \mathrm{C}$		
19(b)	• The maxima are integer multiples of 1.6×10^{-19} C	1	
	Or The peaks are at intervals of 1.6×10^{-19} C		
	The spread about the maxima is small	1	
	This could be due to experimental error, so the statement is supported	1	(3)
19(c)	• (Since $r = \sqrt{\frac{9\eta v}{2\rho g}}$,) if the viscosity is too small, then (calculated) r will be		
	• (Since $r = \sqrt{\frac{r}{20a}}$) if the viscosity is too small, then (calculated) r will be		
	too small	1	
	Therefore the value used as the mass/weight of the droplet (to balance the		
	upward electrical force) must be too small	1	
	• The electrical force will be smaller, so the charge will be smaller	1	
	Or		
	• If the charge is smaller, the electrical force is smaller		
	Therefore the value used as the mass/weight of the droplet (to balance the		
	upward electrical force) must be too small		
	$9\eta v$		
	• (Since $r = \sqrt{\frac{9\eta v}{2\rho a}}$,) if the (calculated) r is too small, it is because viscosity		
	is too small		(3)
	Total for Question 19		15