

Université Ibn Tofaïl Faculté des sciences Département d'Informatique Base de Données I SMI - S5 2023 - 2024

Série N°2 : Dépendances Fonctionnelles et Normalisation

Pr. EL AZAMI

Exercice 1:

On a les données suivantes sur des élèves Matricule, Nom, Age, Club, Salle, avec les DFs:

Matricule \rightarrow Nom, AGE

Matricule → Club

 $Club \rightarrow Salle$

- 1. Que signifie chaque DFs?
- 2. Mettre ces informations dans un ensemble de schémas de relations en 3FN.

Exercice 2:

Soit la relation suivante :

CarnetDeVoyage (numAuteur, nomAuteur, prenomAuteur, numVille, nomVille, nomPays, descriptionVoyage)

- 1. Quelle est la clé de cette relation ? identifiez les DFs existantes dans cette relation.
- 2. La relation CarnetDeVoyage est dans quelle forme normale? Justifiez.
- 3. Proposer un schéma normalisé en 3FN. Justifiez votre réponse.

Exercice 3:

Nous considérons ce schéma relationnel résultant d'une première enquête :

CLIENT(NumClient, RaisonSociale, NumRepresentant, Tauxrepresentant)

D'une part chaque CLIENT n'est affecté qu'à un seul REPRSENTANT

- 1) Représenter les dépendances fonctionnelles
- 2) Quelle est la forme normale de ce schéma relationnel?
- 3) Définir le schéma équivalent en 3e forme normale.

Exercice 4:

En quelle forme normale est la relation suivante, qui concerne les employés d'une société implantée sur plusieurs bâtiments?

EMPLOYES (NumE, Nom, Salaire, Département, Bâtiment)

Sachant qu'un employé travaille dans un département donné, et qu'aucun département ne possède des locaux dans plusieurs bâtiments. Mettre en 3F le cas échéant.

NB: Déterminer d'abord les DFs.

Exercice 5:

Une base de données pour une petite clinique privée a les données suivantes:

 ${\bf NIP}$: désigne n° d'inscription pharmacie associé à un patient. Chaque patient à un numéro inscription à la pharmacie de la clinique pour ses médicaments.

Patient : le nom de famille d'un patient admis à la clinique (supposés tous distincts)

Docteur : le nom de docteur travaillant à la clinique **Médicament** : le nom de marque d'un médicament **Qte** : la quantité d'un médicament prescrite à un patient

et les 4 DFs:

- 1. NIP → Patient
- 2. Patient \rightarrow Docteur
- 3. NIP, Médicament → Docteur
- **4.**Patient, Médicament → Qté
 - 1. Montrer que la DF (3) est redondante (déductible des autres DFs)
 - 2. En déduire un MCD en 3FN pour cette clinique.

Exercice 6:

On voudrait créer une base de données pour la gestion du personnel d'une compagnie organisée comme suit:

La compagnie est constituée d'un ensemble de départements.

Un département est constitué d'un ensemble d'employés, mène un ensemble de projets et possède un ensemble de bureaux.

Pour chaque employé, on a l'historique des emplois qu'il a occupé, et pour chacun de ces emplois, on a l'historique des salaires perçus dans le cadre de cet emploi. Chaque bureau possède un ensemble de postes téléphoniques.

La BD doit contenir les informations:

- Pour chaque département: un numéro de département unique, le budget, l'étage où il est situé et le numéro d'employé du chef de département.
- Pour chaque employé: un numéro d'employé unique, un nom et prénom, le numéro du projet sur lequel il travaille actuellement, le numéro de bureau ainsi que le n°téléphone. On a aussi, le titre de chaque emploi que l'employé a tenu, avec la date et le salaire pour chaque salaire différent perçu pour cet emploi.
- Pour chaque projet: un numéro de projet unique et le budget alloué au projet.
- Pour chaque bureau: un numéro de bureau unique, une superficie en mètre² et les numéros des postes téléphoniques dans ce bureau.

Questions

- 1. Quelle est la liste des données élémentaires et quelles sont les dépendances fonctionnelles qui les lient.
- 2. En déduire un schéma de relations.
- 3. Montrer que ce schéma est en 3FN, sinon le normaliser.