Assignment 04, Real Analysis MIT

Student Hanseul Kim

Prof Dr. Casey Rodriguez

Answers

0.1 Exercise 1

We say a set $F \subset \mathbb{R}$ is *closed* if its complement $F^c := \mathbb{R} \setminus F$ is open. Since \emptyset and \mathbb{R} is open, it follows that \emptyset and \mathbb{R} are closed as well.

a) Let $a, b \in \mathbb{R}$ with a < b. prove that [a, b] is closed.

Proof:

$$\mathbb{R} \setminus [a, b] = (-\infty, a) \cup (b, \infty)$$

$$\forall x \in (-\infty, a) \cup (b, \infty)$$
if $x < a, \exists \epsilon > 0$ s.t
$$x - \epsilon < x < x + \epsilon < a$$

$$\therefore (x - \epsilon, x + \epsilon) \subset (-\infty, a) \subset (-\infty, a) \cup (b, \infty)$$
if $x > b, \exists \epsilon > 0$ s.t.
$$b < x - \epsilon < x < x + \epsilon$$

$$\therefore (x - \epsilon, x + \epsilon) \subset (b, \infty) \subset (-\infty, a) \cup (b, \infty)$$
Thus, $(b, \infty) \subset (-\infty, a) \cup (b, \infty)$ is open.
$$\therefore [a, b] \text{ is closed.}$$

b) Is the set $\mathbb{Z} \subset \mathbb{R}$ closed?

True. **Proof**:

 $\mathbb{R}\setminus\mathbb{Z}=\dots,(-1,0),(0,1),(1,2),\dots$ Since every set (i,i+1) $(i\in\mathbb{Z})$ is open. The union of open sets $\dots,(-1,0),(0,1),(1,2),\dots$ is open. $\therefore\mathbb{R}\setminus\mathbb{Z} \text{ is closed.}$

c) Is the set of rationals $\mathbb{Q} \subset \mathbb{R}$ closed?

Proof:

We know that the rationals $\mathbb{Q} \subset \mathbb{R}$ are dense in \mathbb{R}

So,

$$\forall x \in \mathbb{R} \setminus \mathbb{Q}, \forall \epsilon > 0$$

$$\exists y \in \mathbb{Q} \text{ s.t.}$$

$$y \in (x - \epsilon, x + \epsilon) \not\subset \mathbb{R} \setminus \mathbb{Q}$$

$$\therefore \mathbb{R} \setminus \mathbb{Q} \text{ is not open.}$$
Hence, \mathbb{Q} is not closed.

0.2 Exercise 2

a) Let Λ be a set, and for each $\lambda \in \Lambda$, let $F_{\lambda} \subset \mathbb{R}$. Prove that if F_{λ} is closed for all $\lambda \in \Lambda$, then the set

$$\bigcap_{\lambda \in \Lambda} F_{\lambda} = \{ x \in \mathbb{R} : x \in F_{\lambda}, \forall \lambda \in \Lambda \}$$

is closed.

Proof:

By definition, $\forall \lambda \in \Lambda$, F_{λ} is closed hence, $\mathbb{R} \setminus F_{\lambda}$ is open.

Hence,

$$\bigcup_{\lambda \in \Lambda} \mathbb{R} \setminus F_{\lambda} \text{ is open}$$

$$\mathbb{R} \setminus F_{\lambda} = \mathbb{R} \cap F_{\lambda}^{c}$$

$$\bigcup_{\lambda \in \Lambda} \mathbb{R} \setminus F_{\lambda} = \bigcup_{\lambda \in \Lambda} \mathbb{R} \cap F_{\lambda}^{c} = \mathbb{R} \cap (\bigcap_{\lambda \in \Lambda} F_{\lambda})^{c}$$

$$= \mathbb{R} \setminus \bigcap_{\lambda \in \Lambda} F_{\lambda}$$

which is union of open sets,

$$\therefore \mathbb{R} \setminus \bigcap_{\lambda \in \Lambda} F_{\lambda}$$
 is open.

Hence, $\bigcap_{\lambda \in \Lambda} F_{\lambda}$ is closed.

b) Let $n \in \mathbb{N}$, and let $F_1, \dots F_n \subset \mathbb{R}$. Prove that if F_1, \dots, F_n are closed then the set $\bigcup_{m=1}^n F_m$ is closed **Proof**:

Just like Exercise 2.a) rather than using union of open sets, we can use intersection of open sets to be open.

$$\bigcap_{\lambda \in \Lambda} \mathbb{R} \setminus F_{\lambda} \text{ is open}$$

$$\mathbb{R} \setminus F_{\lambda} = \mathbb{R} \cap F_{\lambda}^{c}$$

$$\bigcap_{\lambda \in \Lambda} \mathbb{R} \setminus F_{\lambda} = \bigcap_{\lambda \in \Lambda} \mathbb{R} \cap F_{\lambda}^{c} = \mathbb{R} \cap (\bigcup_{\lambda \in \Lambda} F_{\lambda})^{c}$$

Which is intersection of open sets,

$$\therefore \mathbb{R} \setminus \bigcup_{\lambda \in \Lambda} F_{\lambda}$$
 is open.

Hence, $\bigcup_{\lambda \in \Lambda} F_{\lambda}$ is closed.

0.3 Exercise 3

. Let $F \subset \mathbb{R}$ be a closed set, and let $\{x_n\}$ be a sequence of elements of F converging to $x \in \mathbb{R}$. Prove that $x \in F$ **Proof**:

Proof by Contradiction:

Let:

$$x \in F^c$$

Since x_n converges to x

$$\forall \epsilon_0 > 0, \ \exists N \in \mathbb{N} \text{ s.t}$$

$$|x_n - x| < \epsilon_0 \ (\forall n \ge N)$$

And since $x \in F^c$ and F is closed (F^c is open),

$$\exists \epsilon > 0$$
s.t

$$(x - \epsilon, x + \epsilon) \subset F^c$$

Let $\epsilon_0 = \epsilon/2$

$$|x_n - x| < \epsilon/2 \quad (\forall n \ge N)$$

$$x_n \in (x - \epsilon/2, x + \epsilon/2) \subset (x - \epsilon, x + \epsilon) \subset F^c$$

$$x_n \in F^c$$

Contradiction.

0.4 Exercise 2.2.3

Prove that if $\{x_n\}$ is a convergent sequence, $k \in \mathbb{N}$, then

$$\lim_{n\to\infty} x_n^k = (\lim_{n\to\infty} x_n)^k$$

Proof:

Proof by induction:

Base Case (k = 1):

$$\lim_{n\to\infty} x_n^1 = (\lim_{n\to\infty} x_n) = (\lim_{n\to\infty} x_n)^1$$

Inductive Step:

Let:

$$\lim_{n \to \infty} x_n^k = \left(\lim_{n \to \infty} x_n\right)^k$$

$$\lim_{n \to \infty} x_n^{k+1} = \lim_{n \to \infty} x_n^k * x_n$$

$$= \lim_{n \to \infty} x_n^k * \lim_{n \to \infty} x_n$$

$$= \left(\lim_{n \to \infty} x_n\right)^k * \lim_{n \to \infty} x_n$$

$$= \left(\lim_{n \to \infty} x_n\right)^{k+1}$$

$$\therefore \lim_{n\to\infty} x_n^k = (\lim_{n\to\infty} x_n)^k$$

Exercise 2.2.5 0.5

Let $x_n := \frac{n - cos(n)}{n}$. show that $\{x_n\}$ converges and find $\lim x_n$.

Proof:

Since,
$$-1 \le cos(n) \le 1$$

$$\frac{-1}{n} \le \frac{-cos(n)}{n} \le \frac{1}{n}$$

$$\frac{n-1}{n} \le \frac{n-cos(n)}{n} \le \frac{n+1}{n}$$

Since,

$$\lim \frac{n-1}{n} = 1 \text{ and } \lim \frac{n+1}{n} = 1$$

By the Squeeze lemma,

$$\lim \frac{n-1}{n} \le \lim \frac{n-\cos(n)}{n} \le \lim \frac{n+1}{n}$$

$$1 \le \lim \frac{n-\cos(n)}{n} \le 1$$

$$\therefore \lim \frac{n-\cos(n)}{n} = 1$$

0.6 Exercise 6

. Let $A \subset \mathbb{R}$ be bounded above, and let a_0 be an upper bound for A. Prove that $a_0 = \sup A$ iff there exists a sequence $\{a_n\}$ of elements of A such that $\lim_{n\to\infty} a_n = a_0$

Proof:

Case $a_0 = \sup A \to \exists \{a_n\} \text{ s.t. } \lim_{n \to \infty} a_n = a_0$

By lemma in assignment 3,

if $a_0 = \sup A$ then $\forall n \in \mathbb{N} \ \exists a_n \in A \text{ s.t.}$

$$a_0 - \frac{1}{n} < a_n \le a_0$$

$$\forall \epsilon > 0$$
, $\exists n \in N$ s.t,

 $\frac{1}{n} < \epsilon$ (By Archimedean principle)

$$\left|a_n - a_0\right| \le \frac{1}{n} < \epsilon$$

By definition

$$\lim_{n\to\infty}a_n=a_0$$

Case $\exists \{a_n\}$ s.t $\lim_{n\to\infty} a_n = a_0 \to a_0 = \sup A$ By definition,

$$\forall \epsilon > 0, \exists N \in \mathbb{N}$$

 $\left| a_n - a_0 \right| < \epsilon \ \forall n \ge N$
 $a_0 - \epsilon < a_n < a_0 + \epsilon$

Since a_0 is a upper bound,

$$a_n \leq a_0$$

So,

$$\forall \epsilon > 0 \exists N \in \mathbb{N} \text{ s.t}$$

$$\forall n \geq N,$$

$$a_0 - \epsilon < a_n < a_0$$

By definition of Least upper bound,

 a_0 is a least upper bound.

 $\therefore a_0 = \sup A$ iff there exists a sequence $\{a_n\}$ of elements of A such that $\lim_{n\to\infty} a_n = a_0$

0.7 Exercise 7

. Let $E \subset \mathbb{R}$ be a nonempty set of real numbers. We say $x \in \mathbb{R}$ is a *cluster point* of E if for every $\epsilon > 0$

$$(x - \epsilon, x + \epsilon) \cap E \setminus \{x\} \neq \emptyset$$

a) Prove that x is a cluster point of E iff there exists a sequence $\{x_n\}$ of elements of $E\setminus\{x\}$ such that $\lim_{n\to\infty}x_n=x$

Forward Proof:

By definition, if x is a cluster point of E,

$$\forall n \in \mathbb{N}, \quad \exists x_n \in E \text{ with } x_n \neq x \text{ s.t.}$$

$$x - \frac{1}{n} < x_n < x + \frac{1}{n}$$

$$\forall \epsilon > 0, \exists n \in \mathbb{N}, \text{ s.t.}$$

$$\frac{1}{n} < \epsilon \quad \text{(By Archimedean principle)}$$

$$\left| x_n - x \right| < \frac{1}{n} < \epsilon$$

$$\therefore \lim_{n \to \infty} x_n = x$$

Backward Proof:

Hence $\lim_{n\to\infty} x_n = x$, $x_n \neq x$

$$\forall \epsilon > 0, \quad \exists N \in \mathbb{N} \text{ s.t.}$$

$$|x_n - x| < \epsilon \quad (\forall n \ge N)$$
Since $x_n \ne x$

$$x_n \in E \setminus \{x\}$$

$$x_n \in (x - \epsilon, x + \epsilon) \cap E \setminus \{x\}$$

$$\therefore (x - \epsilon, x + \epsilon) \cap E \setminus \{x\} \text{ is non-empty}$$
By definition, x is a cluster point of E

b) Prove that the set of all cluster point of *E* is closed **Proof**:

non-cluster point x

$$\exists \epsilon > 0, (x - \epsilon, x + \epsilon) \cap E \setminus \{x\} = \emptyset$$

Then for the set of all of the cluster points C,

$$\exists \epsilon > 0 \text{ s.t}$$

 $(x - \epsilon, x + \epsilon) = \{x\} \subset C$

Since we can set sufficient epsilon that contains only \boldsymbol{x} . Hence, set of non-cluster points is open

 \therefore set of all cluster points of E is closed.