Calcul différentiel

Différentielle

Exercice 1 [00031] [Correction]

- (a) Soit $f: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ définie par $f(M) = M^2$. Justifier que f est différentiable et déterminer la différentielle de f en tout $M \in \mathcal{M}_n(\mathbb{R})$.
- (b) Soit $f: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ définie par $f(M) = \operatorname{tr}(M^3)$. Justifier que f est différentiable et calculer la différentielle de f en tout $M \in \mathcal{M}_n(\mathbb{R})$.

Exercice 2 [00035] [Correction]

Montrer que l'application

$$P \mapsto \int_0^1 P(t)^2 dt$$

définie sur $E = \mathbb{R}_n[X]$ est différentiable et exprimer sa différentielle.

Exercice 3 [00028] [Correction]

Justifier que la fonction $f: \mathbb{C}^* \to \mathbb{C}$ définie par f(z) = 1/z est différentiable et calculer sa différentielle.

Exercice 4 [00032] [Correction]

- (a) Justifier que l'application det: $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ est différentiable.
- (b) Calculer sa différentielle en I_n puis en toute matrice M inversible.
- (c) En introduisant la comatrice de M, exprimer la différentielle de l'application det en tout $M \in \mathcal{M}_n(\mathbb{R})$.

Exercice 5 [00034] [Correction]

Déterminer la différentielle en I_n puis en $M \in GL_n(\mathbb{R})$ de $M \mapsto M^{-1}$.

Exercice 6 [00029] [Correction]

Soient E et F deux \mathbb{R} -espaces vectoriels de dimension finies et $\varphi\colon E\times E\to F$ une application bilinéaire.

Établir que φ est différentiable et calculer sa différentielle d φ .

Exercice 7 [02904] [Correction]

Si $p \in \mathbb{N}$, soit

$$f_p: (x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\} \mapsto (x + y)^p \sin \frac{1}{\sqrt{x^2 + y^2}}$$

- (a) Condition nécessaire et suffisante pour que f_p se prolonge par continuité en (0,0)?
- (b) La condition de a) étant remplie, condition nécessaire et suffisante pour que le prolongement obtenu soit différentiable en (0,0)?

Exercice 8 [00037] [Correction]

Soient E un espace euclidien et u un endomorphisme symétrique de E.

- (a) Montrer que l'application $f: x \in E \mapsto (u(x)|x)$ est différentiable sur E et calculer sa différentielle en tout point.
- (b) Montrer que l'application

$$F: x \in E \setminus \{0_E\} \mapsto \frac{(u(x)|x)}{(x|x)}$$

est différentiable sur $E \setminus \{0_E\}$ et que sa différentielle vérifie

$$dF(a) = \tilde{0} \iff a \text{ est vecteur propre de } u$$

Exercice 9 [00036] [Correction]

Soit $f: E \to F$ différentiable vérifiant $f(\lambda x) = \lambda f(x)$ pour tout $\lambda \in \mathbb{R}$ et tout $x \in E$. Montrer que l'application f est linéaire.

Exercice 10 [03502] [Correction]

Soient $E = C^{\infty}(\mathbb{R}^n, \mathbb{R})$, E^* le dual de E et

$$\mathcal{D} = \left\{ d \in E^* \mid \forall (f, g) \in E^2, d(fg) = f(0)d(g) + g(0)d(f) \right\}$$

- (a) Montrer que \mathcal{D} est un sous-espace vectoriel de E^* .
- (b) Montrer que \mathcal{D} est non réduit à $\{0\}$.
- (c) Soit $d \in \mathcal{D}$ et h une fonction constante. Que vaut d(h)?
- (d) Soit $f \in E$. Montrer

$$\forall x \in \mathbb{R}^n, f(x) = f(0) + \sum_{i=1}^n x_i \int_0^1 \frac{\partial f}{\partial x_i}(tx) \, \mathrm{d}t$$

Vérifier que l'application $x \mapsto \int_0^1 \frac{\partial f}{\partial x_i}(tx) dt$ est dans E.

(e) Soit $d \in \mathcal{D}$. Établir l'existence de $(a_1, \dots, a_n) \in \mathbb{R}^n$ tel que

$$\forall f \in E, d(f) = \sum_{i=1}^{n} a_i \frac{\partial f}{\partial x_i}(0)$$

(f) Déterminer la dimension de \mathcal{D} .

Exercice 11 [04145] [Correction]

Soit $n \in \mathbb{N}^*$ et $f: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}^n$ l'application définie par

$$f(M) = (\operatorname{tr}(M), \operatorname{tr}(M^2), \dots, \operatorname{tr}(M^n))$$

- (a) Montrer que f est différentiable et calculer sa différentielle en $M \in \mathcal{M}_n(\mathbb{R})$.
- (b) Comparer le rang de df(M) et le degré du polynôme minimal de M.
- (c) Montrer que l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ dont le polynôme minimal est de degré n est une partie ouverte de $\mathcal{M}_n(\mathbb{R})$.

Dérivée selon un vecteur

Exercice 12 [01743] [Correction]

Soit f la fonction définie sur \mathbb{R}^2 par

$$f(x,y) = \begin{cases} y^2/x & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

- (a) Montrer que f admet une dérivée au point (0,0) suivant tout vecteur de \mathbb{R}^2 .
- (b) Observer que néanmoins f n'est pas continue en (0,0).

Exercice 13 [01744] [Correction]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Montrer que f admet une dérivée en (0,0) selon tout vecteur sans pour autant y être continue.

Calcul de dérivées partielles

Exercice 14 [01742] [Correction]

Calculer les dérivées partielles des fonctions suivantes :

(a) $f(x, y) = x^y \text{ (avec } x > 0)$

(c) $f(x,y) = x\sin(x+y).$

(b) $f(x, y) = \sqrt{x^2 + y^2}$

Exercice 15 [01745] [Correction]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{xy}{|x|+|y|} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Justifier que f est continue en (0,0).

Étudier les dérivées partielles de f en (0,0).

Exercice 16 [03348] [Correction]

Calculer les dérivées partielles de

$$f(x, y) = \min(x, y^2)$$

Exercice 17 [01746] [Correction]

Soit $\varphi \colon \mathbb{R} \to \mathbb{R}$ dérivable. On pose $f \colon \mathbb{R}^* \times \mathbb{R} \to \mathbb{R}$ définie par $f(x,y) = \varphi(y/x)$. Montrer que f vérifie la relation :

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) = 0$$

Exercice 18 [02466] [Correction]

On considère

$$f: (x,y) \mapsto \sum_{n=1}^{+\infty} \frac{x^n}{1 + y^{2n}}$$

- (a) Déterminer le domaine de définition D de f.
- (b) Étudier l'existence de $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sur D.

Calcul de dérivées partielles d'ordre 2

Exercice 19 [01756] [Correction]

Calculer les dérivées partielles d'ordre 2 des fonctions suivantes :

(a)
$$f(x, y) = x^2(x + y)$$

(b)
$$f(x, y) = \cos(xy)$$

Exercice 20 [01759] [Correction]

Soit f et $\varphi \colon \mathbb{R} \to \mathbb{R}$ deux applications de classe C^2 et $F \colon \mathbb{R}^2 \to \mathbb{R}$ définie par

$$F(x, y) = f(x + \varphi(y))$$

- (a) Justifier que F est de classe C^2 .
- (b) Vérifier l'égalité:

$$\frac{\partial^2 F}{\partial x^2} \frac{\partial F}{\partial y} - \frac{\partial^2 F}{\partial x \partial y} \frac{\partial F}{\partial x} = 0$$

Exercice 21 [00049] [Correction]

Soient $f: (x, y) \mapsto f(x, y)$ de classe C^2 et $g: (r, \theta) \mapsto f(r \cos \theta, r \sin \theta)$. Justifier que g est de classe C^2 et exprimer

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

en fonction des dérivées partielles de g.

Exercice 22 [01760] [Correction]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^2 et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$g(u, v) = f(uv, u^2 + v^2)$$

- (a) Justifier que g est de classe C^2 .
- (b) Exprimer les dérivées partielles d'ordre 2 de g en fonction des dérivées partielles de f.

Dérivées partielles de fonctions composées

Exercice 23 [01749] [Correction]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ différentiable.

On pose $g: \mathbb{R} \to \mathbb{R}$ définie par $g(t) = f(2t, 1 + t^2)$.

Exprimer g'(t) en fonction des dérivées partielles de f.

Exercice 24 [02903] [Correction]

Soient $(x_1, \ldots, x_n, h_1, \ldots, h_n) \in \mathbb{R}^{2n}$, $f \in C^1(\mathbb{R}^n, \mathbb{R})$ et, si $t \in \mathbb{R}$,

$$g(t) = f(x_1 + th_1, \dots, x_n + th_n)$$

Calculer g'(t).

Exercice 25 [01755] [Correction]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction différentiable et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$g(u, v) = f(u^2 + v^2, uv)$$

- (a) Justifier que *g* est différentiable.
- (b) Exprimer $\frac{\partial g}{\partial u}$ et $\frac{\partial g}{\partial v}$ en fonction des dérivées partielles de la fonction f notées $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$.

Exercice 26 [00048] [Correction]

Soient $f: (x, y) \mapsto f(x, y)$ différentiable et $g: (r, \theta) \mapsto f(r \cos \theta, r \sin \theta)$. Justifier que g est différentiable et exprimer les dérivées partielles de f et

Justifier que g est différentiable et exprimer les dérivées partielles de f en fonction de celles de g.

Exercice 27 [01750] [Correction]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction différentiable et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$g(r, \theta) = f(r\cos\theta, r\sin\theta)$$

(a) Justifier que g est différentiable.

Soit $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}\$ et $(r, \theta) \in \mathbb{R}_+^* \times \mathbb{R}$ tels que $x = r \cos \theta$ et $y = r \sin \theta$.

- (b) Exprimer les dérivées partielles de g en (r, θ) en fonction de celles de f en (x, y).
- (c) Exprimer les dérivées partielles de f en (x, y) fonction de celles de g en (r, θ) .

Exercice 28 [00043] [Correction]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ différentiable vérifiant

$$\forall (x, y) \in \mathbb{R}^2, f(x, y) = f(y, x)$$

Quelle relation existe entre les dérivées partielles de f?

3

Exercice 29 [01752] [Correction]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ différentiable.

(a) On suppose

$$\forall t \in \mathbb{R}, \forall (x, y) \in \mathbb{R}^2, f(x + t, y + t) = f(x, y)$$

Montrer

$$\forall (x,y) \in \mathbb{R}^2, \frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) = 0$$

(b) Étudier la réciproque.

Exercice 30 [01753] [Correction]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ différentiable telle que

$$\forall t \in \mathbb{R}, \forall (x, y) \in \mathbb{R}^2, f(tx, ty) = f(x, y)$$

Montrer que

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) = 0$$

Exercice 31 [00045] [Correction]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction différentiable homogène de degré $n \in \mathbb{N}$ c'est-à-dire vérifiant

$$\forall t \in \mathbb{R}, \forall (x, y) \in \mathbb{R}^2, f(tx, ty) = t^n f(x, y)$$

(a) Montrer que

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = nf$$

(b) On suppose $n \ge 1$. Montrer que les dérivées partielles de f sont elles aussi homogènes, préciser leur degré.

Exercice 32 [00046] [Correction]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction différentiable.

On dit que f est homogène de degré $\alpha \in \mathbb{R}$ si, et seulement si,

$$\forall t > 0, \forall (x, y) \in \mathbb{R}^2, \ f(tx, ty) = t^{\alpha} f(x, y)$$

(a) On suppose f homogène de degré α . Montrer

$$\forall (x, y) \in \mathbb{R}^2, \ x \frac{\partial f}{\partial x}(x, y) + y \frac{\partial f}{\partial y}(x, y) = \alpha f(x, y)$$

(b) Établir la réciproque.

Matrice jacobienne

Exercice 33 [01323] [Correction]

Soit $f \in C^2(\mathbb{R}^n, \mathbb{R}^n)$ dont la matrice jacobienne est, en tout point, antisymétrique. Montrer qu'il existe $b \in \mathbb{R}^n$ et $A \in \mathcal{M}_n(\mathbb{R})$ antisymétrique tels que :

$$\forall x \in \mathbb{R}^n, f(x) = Ax + b$$

Classe d'une fonction

Exercice 34 [01747] [Correction]

Étudier la continuité, l'existence et la continuité des dérivées partielles premières de f:

(a)
$$f(x,y) = \begin{cases} x^2y^2 \ln(x^2 + y^2) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

(b)
$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Exercice 35 [03802] [Correction]

On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{\sin(xy)}{|x|+|y|} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

- (a) f est-elle continue?
- (b) f est-elle de classe C^1 ?

Exercice 36 [01758] [Correction]

On définit une fonction $f: \mathbb{R}^2 \to \mathbb{R}$ par

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

- (a) Montrer que f est de classe C^1 .
- (b) La fonction f est-elle de classe C^2 ?

Exercice 37 [02905] [Correction]

On pose

$$f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2}$$

pour x, y réels non tous deux nuls.

La fonction f admet-elle un prolongement continue à \mathbb{R}^2 ? Un prolongement de classe C^1 ? de classe C^2 ?

Exercice 38 [01757] [Correction]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

- (a) Montrer que f est de classe C^1 sur \mathbb{R}^2 .
- (b) Montrer que $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ existent et diffèrent. Qu'en déduire?

Exercice 39 [00040] [Correction]

Soit $f: \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R}$ définie par

$$f(x, y) = (x^2 - y^2) \ln(x^2 + y^2)$$

- (a) Est-il possible de prolonger f par continuité en (0,0)?
- (b) Établir que f est de classe C^1 sur $\mathbb{R}^2 \{(0,0)\}$ et, sans calculs, établir

$$\frac{\partial f}{\partial x}(x, y) = -\frac{\partial f}{\partial y}(y, x)$$

(c) La fonction f est-elle de classe C^1 sur \mathbb{R}^2 ?

Exercice 40 [00041] [Correction]

Soient $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 et $F: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ définie par

$$F(x,y) = \frac{f(x^2 + y^2) - f(0)}{x^2 + y^2}$$

(a) Déterminer $\lim_{(x,y)\to(0,0)} F(x,y)$. On prolonge F par continuité en (0,0) et on suppose de surcroît f de classe C^2 .

- (b) Justifier que F est différentiable en (0,0) et y préciser sa différentielle.
- (c) Montrer que F est de classe C^1 .

Exercice 41 [02460] [Correction]

On pose

$$\varphi(x, y) = \frac{\cos x - \cos y}{x - y}$$
 pour $x \neq y$

- (a) Montrer que φ admet un prolongement par continuité à \mathbb{R}^2 noté encore φ .
- (b) Montrer que φ est de classe C^1 puis C^{∞} .

Exercice 42 [02906] [Correction]

Soit $g: \mathbb{R} \to \mathbb{R}$ de classe C^2 . On pose

$$f(x,y) = \frac{g(x) - g(y)}{x - y} \text{ pour } x \neq y \text{ et } f(x,x) = g'(x)$$

- (a) Exprimer f(x, y) à l'aide d'une intégrale sur l'intervalle [0; 1].
- (b) En déduire que f est de classe C^1 .

Exercice 43 [01748] [Correction]

Soit $\varphi \colon \mathbb{R} \to \mathbb{R}$ continue et $f \colon \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \int_{x}^{y} \varphi(t) \, \mathrm{d}t$$

Montrer que f est de classe C^1 et calculer ses dérivées partielles premières.

Exercice 44 [00051] [Correction]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^1 . On définit

$$F(x) = \int_{2x}^{x^3} f(x+1, t) \, dt$$

Démontrer que F est dérivable sur $\mathbb R$ et préciser sa dérivée.

Exercice 45 [02907] [Correction]

Soit, pour $n \in \mathbb{N}^*$,

$$u_n \colon (x, y) \mapsto \frac{\cos(ny)}{\sqrt{n}} x^n$$

On note D l'ensemble des $(x, y) \in \mathbb{R}^2$ tels que la série de terme général $u_n(x, y)$ converge. On pose

$$f: (x, y) \mapsto \sum_{n=1}^{\infty} u_n(x, y)$$

- (a) Déterminer D.
- (b) Montrer que $f_{\upharpoonright D^{\circ}}$ est de classe C^1 .

Gradient

Exercice 46 [00030] [Correction]

Soit *E* un espace vectoriel euclidien.

- (a) En quels points l'application $x \mapsto ||x||_2$ est-elle différentiable?
- (b) Préciser en ces points le vecteur gradient.

Exercice 47 [03885] [Correction]

Soient u un endomorphisme symétrique d'un espace euclidien E et x_0 un vecteur de E. On étudie la fonction $f: E \to \mathbb{R}$ définie par

$$f(x) = \frac{1}{2}(u(x)|x) + (x_0|x)$$

- (a) Montrer que f est différentiable et exprimer sa différentielle.
- (b) Calculer le gradient de f en tout point de E.

Exercice 48 [00033] [Correction]

- (a) Montrer que l'application $\Delta \colon A \mapsto \det A$ est différentiable sur $\mathcal{M}_n(\mathbb{R})$.
- (b) Calculer sa différentielle en commençant par évaluer ses dérivées partielles.
- (c) On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire canonique défini par $\langle A, B \rangle = \operatorname{tr}({}^tAB)$. Déterminer le vecteur gradient de Δ en A

Recherche d'extremum

Exercice 49 [01762] [Correction]

Déterminer les extrema locaux des fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ suivantes :

- (a) $f(x,y) = x^2 + xy + y^2 3x 6y$
- (b) $f(x,y) = x^2 + 2y^2 2xy 2y + 5$
- (c) $f(x, y) = x^3 + y^3$
- (d) $f(x,y) = (x-y)^2 + (x+y)^3$

Exercice 50 [00061] [Correction]

Trouver les extrema sur \mathbb{R}^2 de

$$f(x,y) = x^2 + xy + y^2 + 2x - 2y$$

Exercice 51 [02910] [Correction]

Trouver les extrema sur \mathbb{R}^2 de

$$f(x, y) = x^4 + y^4 - 2(x - y)^2$$

Exercice 52 [02463] [Correction]

Déterminer les extremums de $x^{\ln x} + y^{\ln y}$ sur $]0; +\infty[^2]$.

Exercice 53 [02530] [Correction]

- (a) Étudier les branches infinies, les variations, la convexité et représenter $f(t) = t \ln t \frac{1}{t}$.
- (b) Résoudre f(t) = 0.
- (c) Trouver les extremums globaux et locaux de

$$g(x, y) = x \ln y - y \ln x$$

Exercice 54 [00058] [Correction]

Déterminer les extrema locaux et globaux de

$$f(x,y) = x^3 + y^3 - 3xy$$

Exercice 55 [00059] [Correction]

Trouver les extrema sur \mathbb{R}^2 de

$$f(x,y) = x^4 + y^4 - 4xy$$

Exercice 56 [00268] [Correction]

Déterminer

$$\sup_{(x,y)\in]0;+\infty]^2} \frac{xy}{(1+x)(1+y)(x+y)}$$

Exercice 57 [00065] [Correction]

Calculer

$$\inf_{x,y>0} \left(\frac{1}{x} + \frac{1}{y} + xy \right)$$

Exercice 58 [00070] [Correction]

Soit a > 0. Montrer que

$$f: (x, y) \mapsto x + y + \frac{a}{xy}$$

admet un minimum strict sur $(\mathbb{R}_+^*)^2$

Exercice 59 [00071] [Correction]

Soit a > 0. On pose, pour x > 0 et y > 0,

$$f(x,y) = x^2 + y^2 + \frac{a}{xy}$$

Montrer que f admet un minimum absolu et calculer ce dernier.

Exercice 60 [03347] [Correction]

On considère l'espace vectoriel \mathbb{R}^n muni de son produit scalaire usuel noté $\langle .,. \rangle$. Soit f un endomorphisme symétrique de \mathbb{R}^n dont toutes les valeurs propres sont strictement positives.

(a) Montrer que

$$\forall x \in \mathbb{R}^n \setminus \{0\}, \langle f(x), x \rangle > 0$$

(b) Soit u un vecteur de \mathbb{R}^n et $g: \mathbb{R}^n \to \mathbb{R}$ l'application définie par

$$g(x) = \frac{1}{2} \langle f(x), x \rangle - \langle u, x \rangle$$

Montrer que g admet des dérivées directionnelles selon tout vecteur de \mathbb{R}^n et les expliciter.

- (c) Montrer que g admet un unique point critique noté z.
- (d) Montrer que g admet un minimum global en z.

Exercice 61 [00072] [Correction]

Soient U un ouvert convexe et $f \colon U \to \mathbb{R}$ une fonction convexe et différentiable. Montrer que tout point critique est un minimum global.

Extremum sur compact

Exercice 62 [00259] [Correction]

Déterminer le maximum de la fonction f définie sur le compact $K = [0; 1]^2$ donnée par

$$f(x,y) = \frac{x+y}{(1+x^2)(1+y^2)}$$

Exercice 63 [03509] [Correction]

Déterminer les extrema de f sur D avec

$$f(x,y) = x^4 + y^4 - 2(x-y)^2$$
 avec $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 4\}$

Exercice 64 [00063] [Correction]

Soit $f: (x, y) \mapsto xy(1 - x - y)$ définie sur

$$T = \{(x, y) \in \mathbb{R}^2 \mid x, y \ge 0, x + y \le 1\}$$

- (a) Justifier que f est continue et présente un maximum à l'intérieur de T.
- (b) Déterminer sa valeur.

Exercice 65 [00064] [Correction]

Soit \mathcal{D} l'ensemble des couples $(x, y) \in \mathbb{R}^2$ tels que $x \ge 0, y \ge 0$ et $x + y \le 1$.

- (a) Montrer que \mathcal{D} est une partie compacte de \mathbb{R}^2 .
- (b) Soient a > 0, b > 0, c > 0 et $f: \mathcal{D} \to \mathbb{R}$ définie par :

$$f(x,y) = x^a y^b (1 - x - y)^c$$

Montrer que f est continue sur \mathcal{D} .

(c) Déterminer

$$\sup_{(x,y)\in\mathcal{D}} f(x,y)$$

Exercice 66 [00066] [Correction]

Déterminer

$$\sup_{[0:\pi/2]^2} \sin x \sin y \sin(x+y)$$

Exercice 67 [00067] [Correction]

On note *C* le cercle trigonométrique.

Quel est le périmètre maximal d'un triangle dont les sommets sont sur *C* ?

Exercice 68 [02911] [Correction]

Calculer l'aire maximale d'un triangle inscrit dans un cercle de rayon r.

Exercice 69 [03349] [Correction]

Soit (ABC) un vrai triangle du plan. Pour un point M du plan, on pose

$$f(M) = MA + MB + MC$$

(a) Étudier la différentiabilité de f.

Établir

- (b) En considérant le disque fermé de centre A et de rayon AB + AC, établir que f possède un minimum absolu dans le plan.
- (c) Soit T un point où ce minimum est atteint. On suppose que T n'est pas un sommet du triangle.

$$\frac{\overrightarrow{TA}}{TA} + \frac{\overrightarrow{TB}}{TB} + \frac{\overrightarrow{TC}}{TC} = \vec{0}$$

(d) Montrer qu'alors le point T voit les sommets du triangle sous un même angle.

Exercice 70 [02465] [Correction]

Soit un triangle ABC et M parcourant l'intérieur de ce triangle. On veut déterminer en quelle position le produit des 3 distances de M à chacun des côtés du triangle est maximal. Indications : ne pas oublier de justifier l'existence de ce maximum, la réponse est le centre de gravité du triangle.

Exercice 71 [04146] [Correction]

Soit f une fonction différentiable au départ de \mathbb{R}^n et à valeurs dans \mathbb{R} . On suppose que $df(x) \cdot x \ge 0$ pour tout vecteur $x \in \mathbb{R}^n$ tel que $||x|| \ge 1$.

Montrer que f admet un minimum absolu.

Équations aux dérivées partielles d'ordre 1

Exercice 72 [01763] [Correction]

En réalisant le changement de variables

$$\begin{cases} u = x + y \\ v = 2x + 3y \end{cases}$$

déterminer les fonctions $f:\mathbb{R}^2\to\mathbb{R}$ de classe C^1 solutions de l'équation aux dérivées partielles :

$$3\frac{\partial f}{\partial x} - 2\frac{\partial f}{\partial y} = 0$$

Exercice 73 [00044] [Correction]

Résoudre sur \mathbb{R}^2 l'équation aux dérivées partielles

$$\frac{\partial f}{\partial x}(x, y) - 3\frac{\partial f}{\partial y}(x, y) = 0 \text{ via } \begin{cases} u = 2x + y \\ v = 3x + y \end{cases}$$

Exercice 74 [01765] [Correction]

Résoudre sur \mathbb{R}^2

$$\frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) = f(x,y) \text{ via } \begin{cases} u = x + y \\ v = x - y \end{cases}$$

Exercice 75 [01764] [Correction]

En réalisant le changement de variables

$$\begin{cases} u = x \\ v = y - x \end{cases}$$

déterminer les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$ de classe C^1 solutions de l'équation aux dérivées partielles :

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = f$$

Exercice 76 [01766] [Correction]

En passant en coordonnées polaires, résoudre sur $\mathbb{R}^2\setminus\{(0,0)\}$ l'équation aux dérivées partielles

$$y\frac{\partial f}{\partial x} - x\frac{\partial f}{\partial y} = 0$$

Exercice 77 [00080] [Correction]

En passant en coordonnées polaires, déterminer les fonctions $f: \mathbb{R} \times \mathbb{R}_+^* \to \mathbb{R}$ de classe C^1 solutions de l'équation aux dérivées partielles

$$y\frac{\partial f}{\partial x} - x\frac{\partial f}{\partial y} = f$$

Exercice 78 [00076] [Correction]

En passant en coordonnées polaires, déterminer les fonctions $f: \mathbb{R}_+^* \times \mathbb{R} \to \mathbb{R}$ de classe C^1 solutions de l'équation aux dérivées partielles

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 0$$

Exercice 79 [01768] [Correction]

En passant en coordonnées polaires, déterminer les fonctions $f: \mathbb{R}_+^* \times \mathbb{R} \to \mathbb{R}$ de classe C^1 solutions de l'équation aux dérivées partielles

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = \sqrt{x^2 + y^2}$$

Exercice 80 [02461] [Correction]

Montrer que $f: \mathbb{R}^n \to \mathbb{R}$ de classe C^1 est homogène de degré p si, et seulement si,

$$\forall (x_1,\ldots,x_n)\in\mathbb{R}^n, \sum_{i=1}^n x_i \frac{\partial f}{\partial x_i}(x_1,\ldots,x_n) = pf(x_1,\ldots,x_n)$$

Exercice 81 [00047] [Correction]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe C^1 telle que

$$\forall (x, y) \in \mathbb{R}^2, x \frac{\partial f}{\partial x}(x, y) + y \frac{\partial f}{\partial y}(x, y) = 0$$

Montrer la constance de l'application suivante

$$\varphi \colon r \mapsto \int_0^{2\pi} f(r\cos t, r\sin t) \, \mathrm{d}t$$

Exercice 82 [03675] [Correction]

Soient $\alpha \in \mathbb{R}$ et $f: \mathbb{R}^2 \to \mathbb{R}$ de classe C^1 tels que

$$\forall (x, y) \in \mathbb{R}^2, x \frac{\partial f}{\partial x}(x, y) + y \frac{\partial f}{\partial y}(x, y) = \alpha f(x, y)$$

Exprimer

$$\varphi \colon r \in [0; +\infty[\mapsto \int_0^{2\pi} f(r\cos t, r\sin t) dt$$

Exercice 83 [03793] [Correction]

On étudie l'équation aux dérivées partielles

(E):
$$x \frac{\partial f}{\partial x}(x, y) + y \frac{\partial f}{\partial y}(x, y) = f(x, y)$$

où la fonction inconnue f est de classe C^1 de \mathbb{R}^2 vers \mathbb{R} .

- (a) Montrer l'existence de solutions non nulles.
- (b) Soit $g: t \mapsto f(tx, ty)$ avec (x, y) un couple de \mathbb{R}^2 . Montrer que g est de classe C^1 et exploiter cette fonction pour résoudre l'équation (E).

Exercice 84 [02912] [Correction]

(a) Soit $\alpha \in \mathbb{R}$. Trouver les $f \in C^1(\mathbb{R} \times \mathbb{R}_+^*, \mathbb{R})$ telles que

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = \alpha f$$

(b) Trouver toutes les $f \in C^1(\mathbb{R} \times \mathbb{R}_+^*, \mathbb{R})$ telles que

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = \frac{x}{y}\sqrt{x^3 + y^3}$$

Exercice 85 [02913] [Correction]

On note U l'ensemble des (x, y) de \mathbb{R}^2 tels que x > 0 et $E = C^{\infty}(U, \mathbb{R})$. Soit $f : U \to \mathbb{R}$ et $\alpha \in \mathbb{R}$; on dit que f est homogène de degré α si $f(tx, ty) = t^{\alpha} f(x, y)$ pour tous $t \in \mathbb{R}_+^*$, $(x, y) \in U$. On pose :

$$\forall f \in E, \forall (x,y) \in U, \Phi(f)(x,y) = x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y)$$

- (a) Déterminer ker Φ.
- (b) Soit $f \in E$. Montrer que f est homogène de degré α si, et seulement si, $\Phi(f) = \alpha f$.
- (c) Résoudre l'équation d'inconnue $f \in E$, $\Phi(f) = h$, h étant la fonction qui à (x, y) associe $(x^2 + y^2)^{3/2}xy$.

Équations aux dérivées partielles d'ordre 2

Exercice 86 [00081] [Correction]

En réalisant le changement de variables

$$\begin{cases} u = x + y \\ v = x - y \end{cases}$$

déterminer les fonctions $f\colon \mathbb{R}^2 \to \mathbb{R}$ de classe C^2 solutions de l'équation aux dérivées partielles

$$\frac{\partial^2 f}{\partial x^2}(x, y) - \frac{\partial^2 f}{\partial y^2}(x, y) = 0$$

Exercice 87 [01769] [Correction]

Soit c > 0. En réalisant le changement de variables

$$\begin{cases} u = x + ct \\ v = x - ct \end{cases}$$

déterminer les fonctions $f:(x,t)\mapsto f(x,t)$ de classe C^2 sur \mathbb{R}^2 solutions de l'équation aux dérivées partielles

$$\frac{\partial^2 f}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2}$$

Exercice 88 [00082] [Correction]

En réalisant le changement de variables

$$\begin{cases} u = x \\ v = x + y \end{cases}$$

déterminer les fonctions $f\colon \mathbb{R}^2 \to \mathbb{R}$ de classe C^2 solutions de l'équation aux dérivées partielles

$$\frac{\partial^2 f}{\partial x^2} - 2 \frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y^2} = 0$$

Exercice 89 [00084] [Correction]

En réalisant le changement de variables

$$\begin{cases} u = xy \\ v = x/y \end{cases}$$

déterminer les fonctions $f: \mathbb{R}_+^* \times \mathbb{R}_+^* \to \mathbb{R}$ de classe C^2 solutions de l'équation aux dérivées partielles

$$x^2 \frac{\partial^2 f}{\partial x^2} - y^2 \frac{\partial^2 f}{\partial y^2} = 0$$

Exercice 90 [01778] [Correction]

[Fonctions harmoniques] Une fonction de classe C^2 est dite harmonique si, et seulement si, son laplacien

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

est nul.

(a) Montrer que si f est harmonique et de classe C^3 alors $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ et $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}$ le sont aussi.

On suppose que $f: \mathbb{R}^2 \setminus \{(0,0)\}$ est radiale *i.e.* qu'il existe une fonction $\varphi: \mathbb{R}_+^* \to \mathbb{R}$ de classe C^2 telle que $f(x,y) = \varphi(x^2 + y^2)$.

- (b) Montrer que f est harmonique si, et seulement si, φ' est solution d'une équation différentielle qu'on précisera.
- (c) En résolvant cette équation, déterminer f.

Exercice 91 [00050] [Correction]

Soient $f \in C^2(\mathbb{R}^2, \mathbb{R})$ telle que

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

et $g(r, t) = f(r \cos t, r \sin t)$.

(a) Trouver une relation liant

$$\frac{\partial}{\partial r} \left(r \frac{\partial g}{\partial r} \right)$$
 et $\frac{\partial^2 g}{\partial t^2}$

(b) Montrer que

$$\varphi \colon r \mapsto \int_0^{2\pi} f(r\cos t, r\sin t) \, \mathrm{d}t$$

est de classe C^2 C^2 sur \mathbb{R} et que $(r\varphi'(r))' = 0$

(c) Conclure que φ est constante.

Exercice 92 [00056] [Correction]

Soit $\sum_{n=0}^{+\infty} a_n z^n$ une série entière de rayon de convergence R > 0. Pour $(x, y) \in \mathbb{R}^2$ tel que $x^2 + y^2 < R^2$, on pose

$$f(x,y) = \sum_{n=0}^{+\infty} a_n (x + iy)^n$$

Établir

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

Exercice 93 [01327] [Correction]

Déterminer les fonctions $f: \mathbb{R}_+^* \to \mathbb{R}$ de classe C^2 telle que

$$F: \begin{cases} \mathbb{R}^n \setminus \{0\} \to \mathbb{R} \\ (x_1, \dots x_n) \mapsto f\left(\sqrt{x_1^2 + \dots + x_n^2}\right) \end{cases}$$

vérifie

$$\sum_{i=1}^{n} \frac{\partial^2 F}{\partial x_i^2} = 0$$

Analyse vectorielle

Exercice 94 [01773] [Correction]

On appelle laplacien d'un champ scalaire F de classe C^2 le champ scalaire défini par

$$\Delta F = \operatorname{div}\left(\overrightarrow{\nabla}F\right)$$

(a) Montrer

$$\Delta F = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2}$$

- (b) Exprimer $\frac{\partial F}{\partial r}(M)$ et $\frac{\partial F}{\partial \theta}(M)$ en fonction de $\frac{\partial F}{\partial x}(M)$ et $\frac{\partial F}{\partial y}(M)$
- (c) Exprimer ΔF en fonction de $\frac{\partial^2 F}{\partial r^2}$, $\frac{\partial F}{\partial r}$ et $\frac{\partial^2 F}{\partial \theta^2}$.

Exercice 95 [01774] [Correction]

Soit F un champ scalaire de classe C^1 de l'espace. Exprimer $\overrightarrow{\nabla} F(M)$ en fonction

$$\frac{\partial F}{\partial \rho}(M), \frac{\partial F}{\partial \varphi}(M), \frac{\partial F}{\partial z}(M)$$

et des vecteurs du repère cylindrique associé au point M.

Exercice 96 [01775] [Correction]

Soit \vec{F} le champ de vecteurs du plan défini par $\vec{F}(M) = \frac{\overrightarrow{OM}}{OM}$

- (a) Calculer $\div \vec{F}(M)$
- (b) Le champ de vecteurs \vec{F} dérive-t-il d'un potentiel?

Exercice 97 [01776] [Correction]

Soit \vec{F} le champ de vecteurs de l'espace défini par $\vec{F}(M) = \frac{\overrightarrow{OM}}{OM^3}$.

- (a) Ce champ de vecteur dérive-t-il d'un potentiel?
- (b) Calculer $\div \vec{F}(M)$ et Rot $\vec{F}(M)$.

Exercice 98 [01777] [Correction]

Soit $\vec{\omega}$ un vecteur de l'espace et \vec{F} le champ de vecteurs de l'espace défini par

$$\vec{F}(M) = \vec{\omega} \wedge \overrightarrow{OM}$$

- (a) Calculer $\div \vec{F}(M)$ et Rot $\vec{F}(M)$.
- (b) Le champ de vecteur \vec{F} dérive-t-il d'un potentiel ?

Exercice 99 [03799] [Correction]

On pose

$$\vec{\gamma}_1(t) = a(1-t)\vec{i} + bt\vec{j} \text{ avec } 0 \le t \le 1$$

$$\vec{\gamma}_2(t) = a\cos(s)\vec{i} + b\sin(s)\vec{j}$$
 avec $0 \le s \le \pi/2$

et le champ de vecteurs

$$\vec{V} = y\vec{i} + 2x\vec{j}$$

- (a) Représenter les courbes paramétrées par $\vec{\gamma}_1$ et $\vec{\gamma}_2$.
- (b) Le champ de vecteurs \vec{V} dérive-t-il d'un potentiel U(x, y)?
- (c) Calculer la circulation de \vec{V} selon $\vec{\gamma}_1$ et $\vec{\gamma}_2$. Conclure.

Corrections

Exercice 1: [énoncé]

(a) L'application $M \mapsto M^2$ est différentiable car polynomiale. Soient $M \in \mathcal{M}_n(\mathbb{R})$ et $H \in \mathcal{M}_n(\mathbb{R})$.

$$f(M + H) - f(M) = MH + HM + H^2 = \varphi(H) + o(||H||)$$

avec $\varphi: H \mapsto MH + HM$ linéaire.

Par suite

$$df(M): H \mapsto HM + MH$$

(b) L'application $M \mapsto M^3$ est différentiable car polynomiale et l'application $M \mapsto \operatorname{tr}(M)$ est différentiable car linéaire.

Par opérations sur les fonctions différentiable, f est différentiable Soient $M \in \mathcal{M}_n(\mathbb{R})$ et $H \in \mathcal{M}_n(\mathbb{R})$.

$$f(M+H) - f(M) = tr(M^2H + MHM + HM^2) + tr(MH^2 + HMH + H^2M) + tr(H^3)$$

Posons φ : $H \to \operatorname{tr}(M^2H + MHM + HM^2) = 3 \operatorname{tr}(M^2H)$. φ est une application linéaire telle que :

$$f(M+H) - f(M) = \varphi(H) + \psi(H)$$

avec $|\psi(H)| \le C ||H||^2$ donc $\psi(H) = o(||H||)$.

Par suite

$$df(M): H \to 3 \operatorname{tr}(M^2 H)$$

Exercice 2: [énoncé]

Posons $f(P) = \int_0^1 P(t)^2 dt$. $f(P+H) = f(P) + 2 \int_0^1 P(t)H(t) dt + \int_0^1 H(t)^2 dt$.

Posons $\ell(H) = 2 \int_0^1 P(t)H(t) dt$ ce qui définit ℓ forme linéaire sur E.

En munissant E de la norme $\|.\| = \|.\|_{\infty}$, on observe $\left| \int_0^1 H(t)^2 dt \right| \le \|H\|_{\infty}^2 = o(\|H\|)$. Ainsi, la relation précédente donne $f(P+H) = f(P) + \ell(H) + o(\|H\|)$ ce qui assure que f est différentiable en P et df(P): $H \mapsto 2 \int_0^1 P(t)H(t) dt$.

Exercice 3: [énoncé]

Soient $a \in \mathbb{C}^*$ et $h \in \mathbb{C}$.

On peut écrire

$$f(a+h) - f(a) = \frac{-h}{a(a+h)} = \ell(h) + \alpha(h)$$

avec $\ell: h \mapsto -\frac{h}{a^2}$ linéaire et

$$\alpha(h) = \frac{-h}{a(a+h)} + \frac{h}{a^2} = \frac{h^2}{a^2(a+h)} = O(h^2) = o(h)$$

La différentielle de f en a est donc

$$\ell \colon h \mapsto -\frac{h}{a^2}$$

Exercice 4: [énoncé]

(a) det est différentiable (et même de classe C^{∞}) car polynomiale en vertu de l'expression générale définissant le déterminant

$$\det M = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n a_{\sigma(i),i}$$

(b) $\det(I + H) = 1 + \varphi(H) + \operatorname{o}(||H||)$ avec $\varphi = \operatorname{d}_I(\det)$. Pour $H = \lambda E_{i,i}$, on obtient

$$\det(I_n + \lambda E_{i,j}) = 1 + \lambda \delta_{i,j} = 1 + \lambda \varphi(E_{i,j}) + o(\lambda)$$

donc $\varphi(E_{i,j}) = \delta_{i,j}$ puis

$$\varphi = \operatorname{tr}$$

Soit *M* inversible.

$$\det(M + H) = \det M \det(I + M^{-1}H) = \det M + \det M \operatorname{tr}(M^{-1}H) + \operatorname{o}(H)$$

donc

$$d(\det)(M): H \mapsto \det M \operatorname{tr}(M^{-1}H)$$

(c) En *M* inversible

$$d(\det)(M): H \mapsto \det M \operatorname{tr}(M^{-1}H) = \operatorname{tr}(^{t}\operatorname{Com} M.H)$$

Les applications $M \mapsto d(\det)(M)$ et $M \mapsto tr({}^{t}Com M \times .)$ sont continues et coïncident sur la partie dense $GL_{n}(\mathbb{R})$, elles sont donc égales sur $\mathcal{M}_{n}(\mathbb{R})$.

Exercice 5 : [énoncé]

On a

$$(I_n + H)(I_n - H) = I_n - H^2 = I_n + o(H)$$

donc

$$(I_n + H)^{-1} = I_n - H + o(H)$$

d'où

$$d(M \mapsto M^{-1})(I) \colon H \mapsto -H$$

On a aussi

$$(M+H)^{-1} = (I_n + M^{-1}H)^{-1}M^{-1} = M^{-1} - M^{-1}HM^{-1} + o(H)$$

donc

$$d(M \mapsto M^{-1})(M) \colon H \mapsto -M^{-1}HM^{-1}$$

Exercice 6 : [énoncé]

On a

$$\varphi(a + h, b + k) = \varphi(a, b) + \varphi(h, b) + \varphi(a, k) + \varphi(h, k) = \varphi(a, b) + \psi(h, k) + o(||(h, k)||)$$

avec ψ : $(h,k) \mapsto \varphi(h,b) + \varphi(a,k)$ linéaire et $\varphi(h,k) = o(||(h,k)||)$ car $|\varphi(h,k)| \le M ||h|| ||k||$. Par suite φ est différentiable en (a,b) et $d\varphi(a,b) = \psi$.

Exercice 7 : [énoncé]

(a) En polaires, $x = r \cos \theta$, $y = r \sin \theta$,

$$f_p(x, y) = (\cos \theta + \sin \theta)^p r^p \sin \frac{1}{r}$$

Si $p \ge 1$ alors $|f_p(x, y)| \le 2^p r^p \longrightarrow_{(x, y) \to (0, 0)} 0$ et on peut prolonger f par continuité en (0, 0).

Si p = 0 alors $f_0(x, y) = \sin \frac{1}{\sqrt{x^2 + y^2}}$ diverge car le sinus diverge en $+\infty$.

(b) On suppose $p \ge 1$.

Pour p = 2:

$$f_2(x, y) = (x + y)^2 \sin \frac{1}{\sqrt{x^2 + y^2}} = O(||(x, y)||^2)$$

ce qui s'apparente à un développement limité à l'ordre 1 en (0,0). La fonction f_2 est donc différentiable en (0,0) de différentielle nulle. Pour p > 2:

$$f_p(x, y) = (x + y)^{p-2} f_2(x, y)$$

La fonction f_p est différentiable par produit de fonctions différentiables.

Pour p = 1:

Quand $h \to 0^+$,

$$\frac{1}{h}\left(f_1(h,0) - f_1(0,0)\right) = \sin\frac{1}{h}$$

diverge. Ainsi f n'est pas dérivable en (0,0) selon le vecteur (1,0), elle ne peut donc y être différentiable.

Exercice 8 : [énoncé]

(a) Pour $a, h \in E$,

$$f(a+h) - f(a) = (u(a)|h) + (u(h)|a) + (u(h)|h) = \ell(h) + o(||h||)$$

avec $\ell(h) = 2(u(a)|h)$ définissant une application linéaire et (u(h)|h) = o(||h||) car $|(u(h)|h)| \le ||u|| ||h||^2$. Ainsi f est différentiable en tout $a \in E$ et

$$df(a): h \mapsto 2(u(a)|h)$$

(b) F est différentiable en tant que rapport défini de fonctions différentiables. La formule

$$d\left(\frac{f}{g}\right) = \frac{g \, df - f \, dg}{g^2}$$

donne

$$dF(a): h \mapsto 2\frac{(u(a)|h)}{(a|a)} - 2\frac{(u(a)|a)(a|h)}{(a|a)^2} = 2(v(a)|h)$$

avec

$$v(a) = \frac{u(a)}{\|a\|^2} - \frac{(u(a)|a)}{\|a\|^4}a$$

Si $dF(a) = \tilde{0}$ alors v(a) = 0 et donc u(a) est colinéaire à a. La réciproque est aussi vraie.

Exercice 9 : [énoncé]

Remarquons

$$f(0) = f(0.0) = 0. f(0) = 0$$

et notons $\ell = df(0)$.

D'une part

$$f(\lambda x) = f(0) + \ell(\lambda x) + o(\lambda ||x||)$$

et d'autre part

$$f(\lambda x) = \lambda f(x)$$

On en déduit

$$\lambda \ell(x) + o(\lambda ||x||) = \lambda f(x)$$

En simplifiant par λ et en faisant $\lambda \to 0^+$, on obtient $f(x) = \ell(x)$. Ainsi, l'application f est linéaire.

Exercice 10: [énoncé]

- (a) immédiat.
- (b) L'application d_h : $f \mapsto d_h f(0)$ fait l'affaire pour n'importe quel $h \in \mathbb{R}^n$ non nul.
- (c) Si h est constante égale à λ alors pour toute fonction $f \in E$ on a par linéarité

$$d(fh) = \lambda d(f)$$

et par définition des éléments de \mathcal{D} .

$$d(fh) = f(0)d(h) + \lambda d(f)$$

En employant une fonction f ne s'annulant pas en 0, on peut affirmer d(h) = 0.

(d) Soit $x \in \mathbb{R}^n$, puisque la fonction $\varphi : t \in [0; 1] \mapsto f(tx)$ est de classe C^1 , on a

$$\varphi(1) = \varphi(0) + \int_0^1 \varphi'(t) \, \mathrm{d}t$$

ce qui donne

$$f(x) = f(0) + \int_0^1 \sum_{i=1}^n x_i \frac{\partial f}{\partial x_i}(tx) dt$$

Soit K un compact de \mathbb{R}^n .

Toutes les dérivées partielles en x de $(x,t) \mapsto \frac{\partial f}{\partial x_i}(tx)$ sont continues sur $K \times [0;1]$ donc bornées.

Par domination sur tout compact, on peut affirmer que la fonction $f_i \colon x \mapsto \int_0^1 \frac{\partial f}{\partial x_i}(tx) \, dt$ est de classe C^{∞} .

(e) Notons $p_i : x \mapsto x_i$. Par linéarité de d, on a

$$d(f) = \sum_{i=1}^{n} d(p_i f_i) = \sum_{i=1}^{n} d(p_i) f_i(0)$$

car d(f(0)) = 0 et $p_i(0) = 0$. En posant $a_i = d(p_i)$ et sachant

$$f_i(0) = \int_0^1 \frac{\partial f}{\partial x_i}(0) dt = \frac{\partial f}{\partial x_i}(0)$$

on obtient

$$\forall f \in E, d(f) = \sum_{i=1}^{n} a_i \frac{\partial f}{\partial x_i}(0)$$

(f) L'application qui à $h \in \mathbb{R}^n$ associe d_h est donc une surjection de \mathbb{R}^n sur \mathcal{D} . Cette application est linéaire et aussi injective (prendre $f: x \mapsto (h|x)$ pour vérifier $d_h = 0 \implies h = 0$) c'est donc un isomorphisme et

$$\dim \mathcal{D} = n$$

Exercice 11: [énoncé]

(a) Pour $k \in [1:n]$, l'application $M \mapsto M^k$ est différentiable par produit de fonctions qui le sont. La trace étant linéaire, l'application composée $M \mapsto \operatorname{tr}(M^k)$ est aussi différentiable. Enfin, ses différentes fonctions coordonnées dans la base de \mathbb{R}^n étant différentiables, l'application f est aussi différentiable.

Calculons la différentielle de f en $M \in \mathcal{M}_n(\mathbb{R})$. Pour $H \in \mathcal{M}_n(\mathbb{R})$ de limite la matrice nulle, on peut affirmer par développement

$$(M+H)^k = M^k + M^{k-1}H + M^{k-2}HM + \dots + HM^{k-1} + o(H)$$

(le terme o(H) regroupe tous les termes contenant au moins deux facteurs H). Par linéarité de la trace et l'identité tr(AB) = tr(BA), on obtient

$$tr((M+H)^k) = tr(M^k) + k tr(M^{k-1}H) + o(H)$$

Ceci déterminer la différentielle de chacune des fonctions coordonnées de f. Finalement, on peut exprimer l'action de la différentielle de f en M:

$$\forall H \in \mathcal{M}_n(\mathbb{R}), df(M) \cdot H = (tr(H), 2 tr(MH), \dots, n tr(M^{n-1}H))$$

(b) Soit $M \in \mathcal{M}_n(\mathbb{R})$. Pour calculer le rang de l'application linéaire $\mathrm{d}f(M)$, on détermine son novau. Soit $H \in \mathcal{M}_n(\mathbb{R})$. On a

$$df(M) \cdot H = 0_{\mathbb{R}^n} \iff \forall k \in [0:n-1], tr(M^{k-1}H) = 0$$

En introduisant le produit scalaire canonique sur $\mathcal{M}_n(\mathbb{R})$ défini par

$$\forall (A, B) \in (\mathcal{M}_n(\mathbb{R}))^2, \langle A, B \rangle = \operatorname{tr}({}^t A B)$$

on peut réinterpréter l'appartenance au noyau :

$$H \in \ker(\mathrm{d}f(M)) \iff H \in \mathrm{Vect}(I_n, {}^tM, \dots, {}^t(M^{n-1}))^{\perp}$$

L'espace vectoriel engendré par les matrices I_n , tM , ..., ${}^t(M^{n-1})$ se confond avec l'espace des polynômes en la matrice ^tM. Cet espace a la dimension du degré du polynôme minimal de ${}^{t}M$ et ce dernier se confond avec le polynôme minimal de M. On en déduit

$$\dim \ker(\mathrm{d}f(M)) = \dim \mathcal{M}_n(\mathbb{R}) - \deg \pi_M$$

Par application de la formule de rang, on conclut

$$\operatorname{rg}(\operatorname{d} f(M)) = \dim \mathcal{M}_n(\mathbb{R}) - \ker(\operatorname{d} f(M)) = \deg \pi_M$$

(c) Soit une matrice $M_0 \in \mathcal{M}_n(\mathbb{R})$ dont le polynôme minimal est de degré n. Nous allons vérifier qu'il existe une boule centrée en M_0 dans laquelle les matrices ont leurs polynômes minimaux tous de degré n.

Par l'étude qui précède, la différentielle de f en M_0 est de rang n (autrement dit surjective). Si on introduit (e_1, \ldots, e_n) la base canonique de \mathbb{R}^n , on peut assurer l'existence de matrices $H_1, \ldots, H_n \in \mathcal{M}_n(\mathbb{R})$ telles que

$$(e_1,\ldots,e_n)=(\mathrm{d} f(M_0)\cdot H_1,\ldots,\mathrm{d} f(M_0)\cdot H_n)$$

Considérons ensuite l'application qui à une matrice $M \in \mathcal{M}_n(\mathbb{R})$ associe le déterminant dans la base canonique de la famille de vecteurs de \mathbb{R}^n :

$$(\mathrm{d}f(M)\cdot H_1,\ldots,\mathrm{d}f(M)\cdot H_n)$$

Cette application est continue et prend la valeur 1 en M_0 . Il existe alors un voisinage de M_0 sur lequel cette application ne s'annule pas. En les matrices de ce voisinage, la différentielle de f est surjective et donc leurs polynômes minimaux sont de degré n.

Exercice 12: [énoncé]

(a) Soit $h = (\alpha, \beta) \in \mathbb{R}^2$.

$$\frac{1}{t}(f(t.h) - f(0,0)) = \frac{1}{t}(f(t\alpha, t\beta)) = \begin{cases} 0 & \text{si } \alpha = 0\\ \beta^2/\alpha & \text{sinon} \end{cases}$$

Donc

$$D_h f(0,0) = \begin{cases} \beta^2 / \alpha & \text{si } \alpha \neq 0 \\ 0 & \text{si } \alpha = 0 \end{cases}$$

(b) $f(1/n, 1/\sqrt{n}) = 1 \rightarrow 1 \neq f(0, 0)$

donc f n'est pas continue en (0,0).

Exercice 13: [énoncé]

Ouand $n \to +\infty$

$$f\left(\frac{1}{n}, \frac{1}{n^2}\right) \rightarrow \frac{1}{2} \neq f(0, 0)$$

donc f n'est pas continue en (0,0).

Soit $h = (\alpha, \beta) \in \mathbb{R}^2$,

$$\frac{1}{t}(f(t\alpha, t\beta) - f(0, 0)) = \frac{t^2 \alpha^2 \beta}{t^4 \alpha^4 + t^2 \beta^2} \to \begin{cases} 0 & \text{si } \beta = 0\\ \alpha^2 / \beta & \text{sinon} \end{cases}$$

Exercice 14: [énoncé]

- (a) $\frac{\partial f}{\partial x}(x, y) = yx^{y-1}$ et $\frac{\partial f}{\partial y}(x, y) = \ln x \cdot x^y$.
- (b) $\frac{\partial f}{\partial x}(x,y) = \frac{x}{\sqrt{x^2+y^2}}$ et $\frac{\partial f}{\partial y}(x,y) = \frac{y}{\sqrt{x^2+y^2}}$.
- (c) $\frac{\partial f}{\partial x}(x, y) = \sin(x + y) + x\cos(x + y)$ et $\frac{\partial f}{\partial y}(x, y) = x\cos(x + y)$.

Exercice 15 : [énoncé]

$$|f(x, y)| \le |y| \frac{|x|}{|x| + |y|} \le |y| \to 0$$

donc $f(x, y) \to 0$.

$$\frac{1}{h}(f(h,0) - f(0,0)) = 0$$

donc $\frac{\partial f}{\partial x}(0,0) = 0$ et de même $\frac{\partial f}{\partial x}(0,0) = 0$.

Exercice 16: [énoncé]

La courbe Γ d'équation $y^2 = x$ est une parabole séparant le plan en deux portions ouvertes

$$U = \{(x, y) \mid x < y^2\} \text{ et } V = \{(x, y) \mid x > y^2\}$$

Soit $(x_0, y_0) \in U$. Au voisinage de ce couple, f(x, y) = x et donc

$$\frac{\partial f}{\partial x}(x_0, y_0) = 1$$
 et $\frac{\partial f}{\partial y}(x_0, y_0) = 0$

Soit $(x_0, y_0) \in V$. Au voisinage de ce couple, $f(x, y) = y^2$ et donc

$$\frac{\partial f}{\partial x}(x_0, y_0) = 0$$
 et $\frac{\partial f}{\partial y}(x_0, y_0) = 2y_0$

Soit $(x_0, y_0) \in \Gamma$ (on a donc $x_0 = y_0^2$). Sous réserve d'existence

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{t \to 0} \frac{1}{t} \left(f(x_0 + t, y_0) - f(x_0, y_0) \right)$$

Pour t > 0,

$$\frac{1}{t}\left(f(x_0+t,y_0)-f(x_0,y_0)\right) = \frac{1}{t}\left(y_0^2-y_0^2\right) = 0$$

et pour t < 0,

$$\frac{1}{t}\left(f(x_0+t,y_0)-f(x_0,y_0)\right)=\frac{1}{t}\left(x_0+t-x_0\right)=1$$

On en déduit que la première dérivée partielle de f en (x_0, y_0) n'est pas définie. Sous réserve d'existence

$$\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{t \to 0} \frac{1}{t} \left(f(x_0, y_0 + t) - f(x_0, y_0) \right)$$

Si $y_0 \neq 0$ alors pour t du signe de y_0 ,

$$\frac{1}{t}\left(f(x_0, y_0 + t) - f(x_0, y_0)\right) = \frac{1}{t}\left(x_0 - x_0\right) = 0$$

et pour t du signe opposé à celui de y_0 ,

$$\frac{1}{t}\left(f(x_0, y_0 + t) - f(x_0, y_0)\right) = \frac{1}{t}\left((y_0 + t)^2 - y_0^2\right) = 2y_0 + t$$

On en déduit que la deuxième dérivée partielle de f en (x_0, y_0) n'est pas définie.

Si $y_0 = 0$ (et alors $x_0 = 0$) alors pour tout $t \neq 0$

$$\frac{1}{t}\left(f(0,0+t) - f(0,0)\right) = 0$$

donc la deuxième dérivée partielle de f en (0,0) est définie et

$$\frac{\partial f}{\partial y}(0,0) = 0$$

Exercice 17 : [énoncé]

On a

$$\frac{\partial f}{\partial x}(x, y) = -\frac{y}{x^2}\varphi'(y/x)$$
 et $\frac{\partial f}{\partial y}(x, y) = \frac{1}{x}\varphi'(y/x)$

d'où la relation.

Exercice 18: [énoncé]

(a) Si $|y| \le 1$ alors la série définissant f(x, y) converge si, et seulement si, |x| < 1 Si |y| > 1 alors la série définissant f(x, y) converge si, et seulement si, $|x| < |y^2|$ car $\frac{x^n}{1+y^{2n}} = \left(\frac{x}{y^2}\right)^n$.

Finalement $D = \{(x, y) \in \mathbb{R}^2 \mid |x| < \max(1, y^2)\}$

(b) $u_n(x,y) = \frac{x^n}{1+y^{2n}}$. Soit $a \in [0; 1[$ et $D_a = \{(x,y) \in \mathbb{R}^2 \mid |x| \le a \max(1,y^2)\}$. Pour $(x,y) \in D_a$:

$$\left| \frac{\partial u_n}{\partial x}(x, y) \right| = \left| \frac{nx^{n-1}}{1 + y^{2n}} \right|$$

Si $|y| \le 1$ alors $|x| \le a$ et

$$\left|\frac{\partial u_n}{\partial x}(x,y)\right| = \left|\frac{nx^{n-1}}{1+y^{2n}}\right| \le \frac{na^{n-1}}{1+y^{2n}} \le na^{n-1}$$

Si |y| > 1 alors $|x| \le ay^2$ et

$$\left| \frac{\partial u_n}{\partial x}(x, y) \right| = \left| \frac{n x^{n-1}}{1 + y^{2n}} \right| \le \frac{n a^{n-1} y^{2n-2}}{1 + y^{2n}} \le \frac{n a^{n-1}}{y^2} \le n a^{n-1}$$

Dans les deux cas $\left| \frac{\partial u_n}{\partial x}(x,y) \right| \le na^{n-1}$ qui est le terme général d'une série convergente.

$$\left| \frac{\partial u_n}{\partial y}(x, y) \right| = \left| \frac{2ny^{2n-1}x^n}{(1+y^{2n})^2} \right| \le \frac{2nx^n}{1+y^{2n}} \operatorname{car} \frac{y^{2n-1}}{1+y^{2n}} \le 1$$

Si $|y| \le 1$ alors $|x| \le a$ et

$$\left| \frac{\partial u_n}{\partial y}(x, y) \right| \le \frac{2na^n}{1 + y^{2n}} \le 2na^n$$

Si |y| > 1 alors $|x| \le ay^2$ et

$$\left| \frac{\partial u_n}{\partial y}(x, y) \right| \le \frac{2na^n y^{2n}}{1 + y^{2n}} \le 2na^n$$

Dans les deux cas $\left|\frac{\partial u_n}{\partial y}(x,y)\right| \le 2na^n$ qui est le terme général d'une série convergente. Par convergence normale, $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ existent sur D_a et comme ceci vaut pour tout $a \in [0;1[,\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ existent sur D.

Exercice 19: [énoncé]

(a)
$$\frac{\partial f}{\partial x}(x, y) = 3x^2 + 2xy$$
, $\frac{\partial f}{\partial y}(x, y) = x^2$, $\frac{\partial^2 f}{\partial x^2}(x, y) = 6x + 2y$, $\frac{\partial^2 f}{\partial x \partial y}(x, y) = 2x$, $\frac{\partial^2 f}{\partial y^2}(x, y) = 0$.

(b)
$$\frac{\partial f}{\partial x}(x, y) = -y \sin(xy), \frac{\partial f}{\partial y}(x, y) = -x \sin(xy), \frac{\partial^2 f}{\partial x^2}(x, y) = -y^2 \cos(xy),$$

 $\frac{\partial^2 f}{\partial x \partial y}(x, y) = -\sin xy - xy \cos(xy)$ et $\frac{\partial^2 f}{\partial y^2}(x, y) = -x^2 \cos(xy).$

Exercice 20: [énoncé]

- (a) Par composition F est C^2 .
- (b) Par calcul

$$\frac{\partial F}{\partial x}(x, y) = f'(x + \varphi(y)), \frac{\partial F}{\partial y}(x, y) = \varphi'(y)f'(x + \varphi(y)),$$

$$\frac{\partial^2 F}{\partial x^2}(x, y) = f''(x + \varphi(y)) \text{ et } \frac{\partial^2 F}{\partial x \partial y}(x, y) = \varphi'(y)f''(x + \varphi(y)).$$

Par suite l'égalité proposée est vérifiée.

Exercice 21: [énoncé]

$$\frac{\partial g}{\partial r} = \cos \theta \frac{\partial f}{\partial x} + \sin \theta \frac{\partial f}{\partial y}, \frac{\partial g}{\partial \theta} = -r \sin \theta \frac{\partial f}{\partial x} + r \cos \theta \frac{\partial f}{\partial y}$$

et

$$\frac{\partial^2 g}{\partial r^2} = \cos^2 \theta \frac{\partial^2 f}{\partial x^2} + 2\cos \theta \sin \theta \frac{\partial^2 f}{\partial x \partial y} + \sin^2 \theta \frac{\partial^2 f}{\partial y^2}$$
$$\frac{1}{r^2} \frac{\partial^2 g}{\partial \theta^2} = \sin^2 \theta \frac{\partial^2 f}{\partial x^2} - 2\cos \theta \sin \theta \frac{\partial^2 f}{\partial x \partial y} + \cos^2 \theta \frac{\partial^2 f}{\partial y^2} - \frac{1}{r}\cos \theta \frac{\partial f}{\partial x} - \frac{1}{r}\sin \theta \frac{\partial f}{\partial y}$$

donc

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 g}{\partial r^2} + \frac{1}{r} \frac{\partial g}{\partial r} + \frac{1}{r^2} \frac{\partial^2 g}{\partial \theta^2}$$

Exercice 22: [énoncé]

- (a) g est C^2 par composition.
- (b) Les dérivées partielles d'ordre 1 sont

$$\frac{\partial g}{\partial u}(u,v) = v\frac{\partial f}{\partial x}(uv, u^2 + v^2) + 2u\frac{\partial f}{\partial y}(uv, u^2 + v^2),$$

$$\frac{\partial g}{\partial v}(u,v) = u\frac{\partial f}{\partial x}(uv, u^2 + v^2) + 2v\frac{\partial f}{\partial v}(uv, u^2 + v^2).$$

les dérivées partielles d'ordre 2 sont

$$\frac{\partial^2 g}{\partial u^2}(u,v) = v^2 \frac{\partial^2 f}{\partial x^2}(uv, u^2 + v^2) + 4uv \frac{\partial^2 f}{\partial x \partial y}(uv, u^2 + v^2)$$

$$+ 4u^2 \frac{\partial^2 f}{\partial y^2}(uv, u^2 + v^2) + 2\frac{\partial f}{\partial y}(uv, u^2 + v^2),$$

$$\frac{\partial^2 g}{\partial u \partial v}(u,v) = uv \frac{\partial^2 f}{\partial x^2}(uv, u^2 + v^2) + 2(u^2 + v^2) \frac{\partial^2 f}{\partial x \partial y}(uv, u^2 + v^2)$$

$$+ 4uv \frac{\partial^2 f}{\partial y^2}(uv, u^2 + v^2) + \frac{\partial f}{\partial x}(uv, u^2 + v^2),$$

$$\frac{\partial^2 g}{\partial v^2}(u,v) = u^2 \frac{\partial^2 f}{\partial x^2}(uv, u^2 + v^2) + 4uv \frac{\partial^2 f}{\partial x \partial y}(uv, u^2 + v^2)$$

$$+ 4v^2 \frac{\partial^2 f}{\partial v^2}(uv, u^2 + v^2) + 2\frac{\partial f}{\partial y}(uv, u^2 + v^2).$$

Exercice 23: [énoncé]

Par composition la fonction g est dérivable et

$$g'(t) = 2\partial_1 f(2t, 1 + t^2) + 2t\partial_2 f(2t, 1 + t^2)$$

Exercice 24: [énoncé]

Par dérivation de fonctions composées

$$g'(t) = \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i} (x_1 + th_1, \dots, x_n + th_n)$$

Exercice 25: [énoncé]

(a) $(u, v) \mapsto (u^2 + v^2, uv)$ est différentiable de \mathbb{R}^2 vers \mathbb{R}^2 car à composantes polynomiales.

Par composition g est différentiable.

(b)
$$\frac{\partial g}{\partial u}(u,v)=2u\frac{\partial f}{\partial x}(u^2+v^2,uv)+v\frac{\partial f}{\partial y}(u^2+v^2,uv)$$

 $\frac{\partial g}{\partial v}(u, v) = 2v \frac{\partial f}{\partial x}(u^2 + v^2, uv) + u \frac{\partial f}{\partial v}(u^2 + v^2, uv)$

Exercice 26: [énoncé]

et

Par composition de fonctions différentiables, g est différentiable

$$\frac{\partial g}{\partial r}(r,\theta) = \cos\theta \frac{\partial f}{\partial x}(r\cos\theta, r\sin\theta) + \sin\theta \frac{\partial f}{\partial y}(r\cos\theta, r\sin\theta)$$

et

$$\frac{\partial g}{\partial \theta}(r,\theta) = -r\sin\theta \frac{\partial f}{\partial x}(r\cos\theta, r\sin\theta) + r\cos\theta \frac{\partial f}{\partial y}(r\cos\theta, r\sin\theta)$$

En combinant ces deux relations, on obtient

$$\frac{\partial f}{\partial x}(x, y) = \cos \theta \frac{\partial g}{\partial r}(r, \theta) - \frac{\sin \theta}{r} \frac{\partial g}{\partial \theta}(r, \theta)$$
 et

$$\frac{\partial f}{\partial y}(x,y) = \sin\theta \frac{\partial g}{\partial r}(r,\theta) + \frac{\cos\theta}{r} \frac{\partial g}{\partial \theta}(r,\theta)$$

Exercice 27: [énoncé]

- (a) $(r, \theta) \mapsto (r \cos \theta, r \sin \theta)$ est différentiable donc g l'est aussi par composition.
- (b) Par dérivation de la composition $g(r, \theta) = f(r \cos \theta, r \sin \theta)$

$$\frac{\partial g}{\partial r}(r,\theta) = \cos\theta \frac{\partial f}{\partial x}(x,y) + \sin\theta \frac{\partial f}{\partial y}(x,y)$$
$$\frac{\partial g}{\partial \theta}(r,\theta) = -r\sin\theta \frac{\partial f}{\partial x}(x,y) + r\cos\theta \frac{\partial f}{\partial y}(x,y)$$

(c) En résolvant le système formé par les deux équations précédentes.

$$\frac{\partial f}{\partial x}(x, y) = \cos \theta \frac{\partial g}{\partial r}(r, \theta) - \frac{1}{r} \sin \theta \frac{\partial g}{\partial \theta}(r, \theta)$$
$$\frac{\partial f}{\partial y}(x, y) = \sin \theta \frac{\partial g}{\partial r}(r, \theta) + \frac{1}{r} \cos \theta \frac{\partial g}{\partial \theta}(r, \theta)$$

avec $(x, y) = (r \cos \theta, r \sin \theta)$.

Exercice 28: [énoncé]

Par dérivation de fonctions composées

$$\frac{\partial f}{\partial x}(x,y) = \frac{\mathrm{d}}{\mathrm{d}x}(f(x,y)) = \frac{\mathrm{d}}{\mathrm{d}x}(f(y,x)) = \frac{\partial f}{\partial y}(y,x)$$

Exercice 29: [énoncé]

- (a) On dérive la relation par rapport à t avant d'évaluer en t = 0.
- (b) Soit $(x, y) \in \mathbb{R}^2$. On introduit la fonction $\varphi \colon \mathbb{R} \to \mathbb{R}$ définie par $\varphi(t) = f(x + t, y + t)$. La fonction φ est dérivable et $\varphi'(t) = 0$ en vertu de l'hypothèse de travail. On en déduit que la fonction φ est constante. L'identité $\varphi(t) = \varphi(0)$ produit celle voulue.

Exercice 30 : [énoncé]

On dérive la relation par rapport à t avant d'évaluer en t = 1.

Exercice 31: [énoncé]

(a) En dérivant la relation $f(tx, ty) = t^n f(x, y)$ en la variable t

$$x\frac{\partial f}{\partial x}(tx, ty) + y\frac{\partial f}{\partial y}(tx, ty) = nt^{n-1}f(x, y)$$

En évaluant en t = 1, on obtient

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) = nf(x,y)$$

(b) En dérivant la relation $f(tx, ty) = t^n f(x, y)$ en la variable x

$$t\frac{\partial f}{\partial x}(tx, ty) = t^n \frac{\partial f}{\partial x}(x, y)$$

donc, pour $t \neq 0$,

$$\frac{\partial f}{\partial x}(tx, ty) = t^{n-1} \frac{\partial f}{\partial x}(x, y)$$

Cette identité se prolonge aussi en t=0 grâce à la continuité de $\frac{\partial f}{\partial x}$. On peut conclure que $\frac{\partial f}{\partial x}$ est de homogène de degré n-1. Idem pour $\frac{\partial f}{\partial y}$.

Exercice 32: [énoncé]

(a) En dérivant la relation $f(tx, ty) = t^{\alpha} f(x, y)$ en la variable t:

$$x\frac{\partial f}{\partial x}(tx, ty) + y\frac{\partial f}{\partial y}(tx, ty) = \alpha t^{\alpha - 1} f(x, y)$$

En évaluant en t = 1, on obtient

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) = \alpha f(x,y)$$

(b) Supposons que f vérifie l'équation proposée. Pour $(x, y) \in \mathbb{R}^2$, considérons $\varphi \colon t \mapsto f(tx, ty) - t^{\alpha} f(x, y)$ définie sur \mathbb{R}_+^* . φ est dérivable et $t\varphi'(t) = \alpha \varphi(t)$. Après résolution et puisque $\varphi(1) = 0$, on obtient $\varphi(t) = 0$ et donc f est homogène de degré α .

Exercice 33: [énoncé]

Notons f_1, \ldots, f_n les fonctions composantes de f et d_1, \ldots, d_n les opérateurs de dérivées partielles.

L'antisymétrie de la matrice jacobienne de f donne

$$\forall i, j \in \{1, ..., n\}, d_i(f_i) = -d_i(f_i)$$

Exploitons cette propriété pour établir que les dérivées partielles de f sont constantes Soient $i, j, k \in \{1, ..., n\}$. Par antisymétrie

$$d_k(d_i f_i) = -d_k(d_i f_i)$$

Par le théorème de Schwarz, puis par antisymétrie

$$d_k(d_i f_i) = -d_i(d_k f_i) = d_i(d_i f_k)$$

À nouveau par le théorème de Schwarz et par antisymétrie

$$d_k(d_i f_i) = d_i(d_i f_k) = -d_i(d_k f_i)$$

Enfin, en vertu du théorème de Schwarz, on obtient

$$d_k(d_i f_i) = 0$$

Ainsi toutes les dérivées partielles de $d_j f_i$ sont nulles et donc $d_j f_i$ est constante. En posant $a_{i,j}$ la valeur de cette constante, on obtient

$$\operatorname{Jac}(f) = \left(a_{i,j}\right)_{1 \le i \le n, 1 \le j \le n} = A \in \mathcal{M}_n(\mathbb{K})$$
 antisymétrique

Enfin en intégrant, on obtient

$$f(x) = Ax + b$$
 avec $b = f(0)$

Exercice 34: [énoncé]

(a) f est clairement continue sur $\mathbb{R}^2 \setminus \{(0,0)\}$. Étudions la continuité en (0,0)

$$f(x,y) = (xy) \left(\frac{xy}{x^2 + y^2} \right) \left((x^2 + y^2) \ln(x^2 + y^2) \right) \xrightarrow[(x,y) \to (0,0)]{} 0$$

f est donc continue en (0,0).

Étudions l'existence de la dérivée partielle par rapport à x.

Par composition $\frac{\partial f}{\partial x}$ existe et est continue sur $\mathbb{R}^2 \setminus \{(0,0)\}$.

De plus

$$\frac{\partial f}{\partial x}(x, y) = 2xy^2 \ln(x^2 + y^2) + \frac{2x^3y^2}{x^2 + y^2}$$

et

$$\frac{1}{t}(f(t,0) - f(0,0)) = 0 \xrightarrow[t \to 0]{} 0$$

Donc $\frac{\partial f}{\partial x}(0,0)$ existe et $\frac{\partial f}{\partial x}(0,0) = 0$.

Enfin

$$\frac{\partial f}{\partial x}(x,y) \underset{(x,y)\to(0,0)}{\longrightarrow} 0$$

car

$$2xy^{2}\ln(x^{2}+y^{2}) = 2y\frac{xy}{x^{2}+y^{2}}(x^{2}+y^{2})\ln(x^{2}+y^{2})$$

Par suite $\frac{\partial f}{\partial x}$ existe et est continue sur \mathbb{R}^2 .

Étudions l'existence de la dérivée partielles par rapport à y.

Comme f(x, y) = f(y, x) l'étude de $\frac{\partial f}{\partial y}$ est identique.

(b) Soit $g: \mathbb{R}_+ \to \mathbb{R}$ la fonction définie par

$$g(t) = \begin{cases} t \sin 1/\sqrt{t} & \text{si } t \neq 0 \\ 0 & \text{sinon} \end{cases}$$

La fonction g et continue sur \mathbb{R}_+ et comme $f(x,y) = g(x^2 + y^2)$, f est continue sur \mathbb{R}^2 . La fonction g est de classe C^1 sur \mathbb{R}_+^* donc f admet des dérivées partielles continues sur $\mathbb{R}^2 \setminus \{(0,0)\}$.

De plus

$$\frac{\partial f}{\partial x}(x,y) = 2x \sin \frac{1}{\sqrt{x^2 + y^2}} - \frac{x}{\sqrt{x^2 + y^2}} \cos \frac{1}{\sqrt{x^2 + y^2}}$$

et

$$\frac{\partial f}{\partial y}(x,y) = 2y\sin\frac{1}{\sqrt{x^2 + y^2}} - \frac{y}{\sqrt{x^2 + y^2}}\cos\frac{1}{\sqrt{x^2 + y^2}}$$

Étudions l'existence de dérivées partielles en (0,0).

$$\frac{1}{t}(f(t,0) - f(0,0)) = t \sin \frac{1}{|t|} = O(t) \xrightarrow[t \to 0]{} 0$$

donc $\frac{\partial f}{\partial x}(0,0)$ existe pas et vaut 0. Il en est de même pour $\frac{\partial f}{\partial y}(0,0)$.

$$\frac{\partial f}{\partial x} \left(\frac{1}{n}, 0 \right) = \frac{2}{n} \sin n - \cos n$$

diverge quand $n \to +\infty$, donc $\frac{\partial f}{\partial x}$ n'est pas continue en (0,0). Il en est de même de $\frac{\partial f}{\partial x}$.

Exercice 35: [énoncé]

(a) La fonction f est évidemment continue sur $\mathbb{R}^2 \setminus \{(0,0)\}$. En passant en coordonnées polaires

$$f(x,y) \mathop{\sim}_{(x,y)\to 0} \frac{r^2 \cos \theta \sin \theta}{r |\cos \theta| + |\sin \theta|} \to 0 = f(0,0)$$

car le facteur

$$\frac{\cos\theta\times\sin\theta}{|\cos\theta|+|\sin\theta|}$$

est bornée en tant que fonction continue et 2π -périodique. La fonction f est donc continue sur \mathbb{R}^2 .

(b) On a

$$\frac{\partial f}{\partial r}(0,0) = \lim_{t \to 0} \frac{1}{t} (f(t,0) - f(0,0)) = 0$$

Or pour x, y > 0

$$\frac{\partial f}{\partial x}(x,y) = \frac{y\cos(xy)(x+y) - \sin(xy)}{(x+y)^2}$$

et donc

$$\frac{\partial f}{\partial x}(t,t) = \frac{2t^2 \cos(t^2) - \sin(t^2)}{(2t)^2} \xrightarrow[t \to 0^+]{} \frac{1}{2}$$

La fonction f n'est donc pas de classe C^1 .

Exercice 36: [énoncé]

(a)

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{1}{t} (f(t,0) - f(0,0)) = 0$$

et de même $\frac{\partial f}{\partial v}(0,0) = 0$.

Par opérations, f est de classe C^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$ et pour $(x,y) \neq (0,0)$,

$$\frac{\partial f}{\partial x}(x,y) = \frac{y(x^4 - y^4 + 4x^2y^2)}{(x^2 + y^2)^2}, \frac{\partial f}{\partial y}(x,y) = \frac{x(x^4 - y^4 + 4x^2y^2)}{(x^2 + y^2)^2}$$

En passant en coordonnées polaires, on vérifie aisément

$$\frac{\partial f}{\partial x}(x,y) \underset{(x,y)\to(0,0)}{\longrightarrow} 0 = \frac{\partial f}{\partial x}(0,0)$$

Il en est de même pour $\frac{\partial f}{\partial v}$. On en déduit que f est de classe C^1 sur \mathbb{R}^2 .

21

(b) $\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{t \to 0} \frac{1}{t} \left(\frac{\partial f}{\partial x}(0,t) - \frac{\partial f}{\partial x}(0,0) \right) = -1 \text{ et } \frac{\partial^2 f}{\partial x \partial y}(0,0) = 1$

On en déduit que f n'est pas de classe C^2 car la conclusion du théorème de Schwarz n'est pas vérifié.

Exercice 37: [énoncé]

En passant en coordonnées polaires, on écrit

$$x = r \cos \theta$$
 et $y = r \sin \theta$ avec $r = \sqrt{x^2 + y^2} \xrightarrow[(x,y) \to (0,0)]{} 0$

On a alors

$$f(x, y) = r^2 \cos \theta \sin \theta \cos(2\theta) \xrightarrow[(x,y)\to(0,0)]{} 0$$

On prolonge f par continuité en (0,0) en posant f(0,0) = 0.

Par opérations sur les fonctions, on peut affirmer que f est de classe C^2 sur $\mathbb{R}^2 \setminus \{(0,0)\}$ et

$$\frac{\partial f}{\partial x}(x,y) = y \frac{x^4 + 4x^2y^2 - y^4}{(x^2 + y^2)^2}$$

Aussi

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{1}{t} (f(t,0) - f(0,0)) = 0$$

En passant en coordonnées polaires, on obtient

$$\frac{\partial f}{\partial x}(x,y) \underset{(x,y)\to(0,0)}{\longrightarrow} 0$$

Ainsi $\frac{\partial f}{\partial x}$ est définie et continue sur \mathbb{R}^2 .

L'étude pour $\frac{\partial f}{\partial y}$ est identique puisque

$$f(x, y) = -f(y, x)$$

Ainsi f est de classe C^1 sur \mathbb{R}^2 .

Cependant

$$\frac{\partial^2 f}{\partial v \partial x}(0,0) = \lim_{h \to 0} \frac{1}{h} \left(\frac{\partial f}{\partial x}(0,h) - \frac{\partial f}{\partial x}(0,0) \right) = -1$$

alors que

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = 1$$

La fonction f ne peut donc être de classe C^2 .

Exercice 38: [énoncé]

(a) Par composition f est de classe C^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$.

$$\frac{\partial f}{\partial x}(x,y) = \frac{y^3}{x^2 + y^2} - \frac{2x^2y^3}{(x^2 + y^2)^2} \text{ et } \frac{\partial f}{\partial y}(x,y) = \frac{3xy^2}{x^2 + y^2} - \frac{2xy^4}{(x^2 + y^2)^2}$$

De plus

$$\frac{1}{t}(f(t,0) - f(0,0)) = 0$$

et

$$\frac{1}{t}(f(0,t) - f(0,0)) = 0,$$

donc $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$ existent et on a

$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0.$$

Aussi

$$\left| \frac{\partial f}{\partial x}(x, y) \right| \le |y| \frac{y^2}{x^2 + y^2} + 2|y| \left(\frac{xy}{x^2 + y^2} \right)^2 \underset{(x, y) \to (0, 0)}{\longrightarrow} 0$$

et

$$\left|\frac{\partial f}{\partial y}(x,y)\right| \le 3 \left|y\right| \frac{|xy|}{x^2 + y^2} + 2 \left|y\right| \frac{|xy|}{x^2 + y^2} \frac{y^2}{x^2 + y^2} \xrightarrow[(x,y) \to (0,0)]{} 0.$$

Par suite f est de classe C^1 sur \mathbb{R}^2 .

(b) $\frac{1}{t} \left(\frac{\partial f}{\partial x}(0, t) - \frac{\partial f}{\partial x}(0, 0) \right) = 1 \to 1$

et

$$\frac{1}{t} \left(\frac{\partial f}{\partial y}(t,0) - \frac{\partial f}{\partial y}(0,0) \right) = 0 \to 0.$$

Donc $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ et $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ existent et on a

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = 0$$
 et $\frac{\partial^2 f}{\partial y \partial x}(0,0) = 1$.

On en déduit que f n'est pas de classe C^2 le théorème de Schwarz n'étant pas vérifié.

Exercice 39: [énoncé]

(a) Quand $(x, y) \to (0, 0)$, on peut écrire $x = r \cos \theta$ et $y = r \sin \theta$ avec $r = \sqrt{x^2 + y^2} \to 0$. On a alors

$$f(x, y) = 2r^2(\cos^2\theta - \sin^2\theta) \ln r \to 0$$

 $car r^2 ln r \rightarrow 0$

On prolonge f par continuité en (0,0) en posant f(0,0) = 0.

(b) f est C^1 sur $\mathbb{R}^2 - \{(0,0)\}$ par opérations. On observe f(x,y) = -f(y,x) donc en dérivant cette relation en la variable x on obtient

$$\frac{\partial f}{\partial x}(x, y) = -\frac{\partial f}{\partial y}(y, x)$$

(c) On a

$$\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{1}{t} (f(t,0) - f(0,0)) = 0$$

et de même $\frac{\partial f}{\partial y}(0,0) = 0$. Pour $(x, y) \neq (0, 0)$

$$\frac{\partial f}{\partial x}(x, y) = 2x \ln(x^2 + y^2) + \frac{2x(x^2 - y^2)}{x^2 + y^2}$$

Quand $(x, y) \to (0, 0)$, on peut écrire $x = r \cos \theta$ et $y = r \sin \theta$ avec $r = \sqrt{x^2 + y^2} \to 0$

$$\frac{\partial f}{\partial x}(x, y) = 4r \ln r + 2r(\cos^2 \theta - \sin^2 \theta) \to 0 = \frac{\partial f}{\partial x}(0, 0)$$

Ainsi $\frac{\partial f}{\partial x}$ est continue en (0,0) et par le résultat de b), on obtient le même résultat pour $\frac{\partial f}{\partial y}$.

Exercice 40 : [énoncé]

- (a) Par le théorème des accroissements finis, il existe $c_{x,y} \in]0$; $x^2 + y^2[$ tel que F(x,y) = f'(c). Quand $(x,y) \to (0,0)$ alors $c_{x,y} \to 0$ puis $F(x,y) \to f'(0)$.
- (b) Par Taylor-Young:

$$F(x,y) = F(0,0) + \frac{x^2 + y^2}{2}f''(0) + (x^2 + y^2)\varepsilon(x^2 + y^2) = F(0,0) + \varphi(x,y) + o(x,y)$$

avec $\varphi = 0$.

Donc *F* est différentiable en (0,0) et dF(0,0) = 0.

(c) F est de classe C^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$ par opérations.

$$\frac{\partial F}{\partial x}(x,y) = \frac{2x}{x^2 + y^2} (f'(x^2 + y^2) - F(x,y)) = x(f''(0) + o(1)) \underset{(x,y) \to (0,0)}{\longrightarrow} 0$$

et de même

$$\frac{\partial F}{\partial y}(x,y) \underset{(x,y)\to(0,0)}{\longrightarrow} 0$$

donc F est de classe C^1 .

Exercice 41: [énoncé]

- (a) On pose $\varphi(a, a) = -\sin a$ et on observe que $\varphi(x, y) \to \varphi(a, a)$ quand $(x, y) \to (a, a)$ avec $x \neq y$ et avec x = y.
- (b) En vertu de

$$\cos p - \cos q = -2\sin\left(\frac{p-q}{2}\right)\sin\left(\frac{p+q}{2}\right)$$

on a

$$\varphi(x, y) = -\operatorname{sinc}\left(\frac{x - y}{2}\right) \sin\left(\frac{x + y}{2}\right)$$

avec sinc de classe C^{∞} car développable en série entière.

Exercice 42: [énoncé]

(a) Puisque la fonction g est de classe C^1 , on peut écrire

$$g(x) = g(y) + \int_{y}^{x} g'(t) dt$$

Par le changement de variable t = y + u(x - y), on obtient

$$g(x) = g(y) + (x - y) \int_0^1 g'(y + u(x - y)) du$$

Ainsi

$$f(x,y) = \int_0^1 g'(y + u(x - y)) du$$

et cette relation vaut pour $x \neq y$ et aussi pour x = y.

(b) Soit $y \in \mathbb{R}$ fixé.

L'application $\varphi: (x, u) \mapsto g'(y + u(x - y))$ admet une dérivée partielle

$$\frac{\partial \varphi}{\partial x}(x, u) = ug''(y + u(x - y))$$

Cette dérivée partielle est continue en x et continue par morceaux en u Pour $[a;b] \subset \mathbb{R}$ assez grand pour que y en soit élément, on a

$$\forall x \in [a; b], \forall u \in [0; 1], y + u(x - y) \in [x; y] \subset [a; b]$$

La fonction g'' est continue donc bornée par un certain $M \in \mathbb{R}_+$ sur le segment [a;b]. On a alors

$$\forall (x, u) \in [a; b] \times [0; 1], \left| \frac{\partial \varphi}{\partial x}(x, u) \right| \le M = \psi(u)$$

La fonction ψ est évidemment intégrable sur [0; 1] et donc, par domination sur tout segment, on peut affirmer que l'application $x \mapsto \int_0^1 \varphi(x, u) du$ est de classe C^1 et

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_0^1 \varphi(x, u) \, \mathrm{d}u \right) = \int_0^1 \frac{\partial \varphi}{\partial x}(x, u) \, \mathrm{d}u$$

Ainsi f admet une dérivée partielle

$$\frac{\partial f}{\partial x}(x,y) = \int_0^1 ug''(y + u(x - y)) \, \mathrm{d}u$$

De plus, la fonction $(x, y, u) \mapsto ug''(y + u(x - y))$ est continue sur $\mathbb{R}^2 \times [0; 1]$ et par une domination sur $[a;b] \times [a;b]$, on obtient la continuité sur \mathbb{R}^2 de l'application $\frac{\partial f}{\partial x}$ De même, on montre que la deuxième dérivée partielle de f existe et est continue.

Exercice 43: [énoncé]

Introduisons ϑ primitive de φ sur \mathbb{R} . ϑ existe et est de classe C^1 car φ est continue.

$$f(x, y) = \vartheta(y) - \vartheta(x)$$

donc par opérations f est de classe C^1 avec

$$\frac{\partial f}{\partial x}(x, y) = -\vartheta'(x) = -\varphi(x) \text{ et } \frac{\partial f}{\partial y}(x, y) = \vartheta'(y) = \varphi(y)$$

Exercice 44: [énoncé]

On peut écrire

$$F(x) = \int_0^{x^3} f(x+1,t) dt - \int_0^{2x} f(x+1,t) dt = \varphi(x,x^3) - \varphi(x,2x)$$

avec

$$\varphi(x, u) = \int_0^u f(x+1, t) dt = \int_0^1 u f(x+1, tu) dt$$

Fixons $u \in \mathbb{R}$ et considérons g(x, t) = uf(x + 1, tu) définie sur $\mathbb{R} \times [0; 1]$.

La fonction g est continue en x et continue par morceaux en t.

Soit $[a;b] \subset \mathbb{R}$. La fonction f étant continue sur le compact $[a+1;b+1] \times [0;u]$, elle y est bornée par un certain $M \in \mathbb{R}_+$.

On a alors

$$\forall (x, u) \in [a; b] \times [0; u], |g(x, t)| \leq M = \psi(t)$$

La fonction ψ est intégrable sur [0; u] et donc, par intégration sur un segment, on obtient que la fonction $x \mapsto \varphi(x, u)$ est de classe C^1 et

$$\frac{\mathrm{d}}{\mathrm{d}x}(\varphi(x,u)) = \frac{\partial \varphi}{\partial x}(x,u) = \int_0^1 u \frac{\partial f}{\partial x}(x+1,tu) \,\mathrm{d}t$$

Ainsi φ admet une dérivée partielle $\frac{\partial \varphi}{\partial x}$ et, une domination analogue à la précédente permet d'établir que cette fonction est continue en le couple $(x, u) \in \mathbb{R}^2$.

D'autre part, $u \mapsto \varphi(x, u)$ est évidemment dérivable et

$$\frac{\mathrm{d}}{\mathrm{d}u}(\varphi(x,u)) = \frac{\partial \varphi}{\partial u}(x,u) = f(x+1,u)$$

Ainsi φ admet une dérivée partielle $\frac{\partial \varphi}{\partial u}$ et celle-ci est clairement continue. Finalement φ est de classe C^1 sur \mathbb{R}^2 .

Notons enfin que les dérivées partielles de φ sont continues en (x, u) et donc la fonction φ est de classe C^1 .

Puisque, F est de classe C^1 .

Par dérivation de fonctions composées

$$F'(x) = \frac{\partial \varphi}{\partial x}(x, x^3) + 3x^2 \frac{\partial \varphi}{\partial u}(x, x^3) - \frac{\partial \varphi}{\partial x}(x, x^2) - 2\frac{\partial \varphi}{\partial u}(x, 2x)$$

Enfin

$$F'(x) = \int_{2x}^{x^3} \frac{\partial f}{\partial x}(x+1,t) dt + 3x^2 f(x+1,x^3) - 2f(x+1,2x)$$

Exercice 45: [énoncé]

(a) Cas |x| < 1:

$$|u_n(x, y)| = o(x^n)$$

donc la série $\sum u_n(x, y)$ est absolument convergente.

Cas |x| > 1:

Si la série $\sum u_n(x, y)$ converge alors $u_n(x, y) \xrightarrow[n \to +\infty]{} 0$ donc

$$\cos(ny) = u_n(x, y) \frac{\sqrt{n}}{x^n} \to 0$$

par croissance comparée.

Mais alors

$$\cos(2ny) = 2\cos^2(ny) - 1 \rightarrow -1$$

ce qui est incohérent avec l'affirmation qui précède.

Ainsi la série $\sum u_n(x, y)$ diverge.

Cas x = 1:

Si y = 0 [2 π] alors $u_n(1, y) = \frac{1}{\sqrt{n}}$ et $\sum u_n(1, y)$ diverge.

Si $y \neq 0$ [2 π] alors par une transformation d'Abel, on obtient la convergence de la série $\sum u_n(1, y)$.

Cas x = -1:

On remarque

$$u_n(-1, y) = u_n(1, y + \pi)$$

Ainsi $\sum u_n(-1, y)$ converge si, et seulement si, $y \neq \pi$ [2 π].

Finalement

$$D = \{(x, y) \in \mathbb{R}^2 \mid |x| < 1\} \cup \{(1, y)/y \neq 0 \quad [2\pi]\} \cup \{(-1, y)/y \neq \pi \quad [2\pi]\}$$

(b) L'intérieur de D est alors

$$D^{\circ} = \{(x, y) \in \mathbb{R}^2 \mid |x| < 1\}$$

Soient $a \in [0; 1[$ et $D_a = \{(x, y) \in \mathbb{R}^2 \mid |x| < a\}.$

 u_n est de classe C^1 sur D_a et la série de fonctions $\sum u_n(x, y)$ converge simplement sur D_a .

La série de fonctions $\sum \frac{\partial u_n}{\partial x}(x,y)$ converge normalement sur D_a via

$$\left|\frac{\partial u_n}{\partial x}(x,y)\right| \le \sqrt{n}a^{n-1}$$

Enfin, la série de fonctions $\sum \frac{\partial u_n}{\partial y}(x,y)$ converge normalement sur D_a via

$$\left| \frac{\partial u_n}{\partial y}(x, y) \right| \le \sqrt{n} a^n$$

On peut alors appliquer les théorèmes usuels qui affirment que

$$(x,y) \mapsto \sum_{n=0}^{+\infty} u_n(x,y)$$

admet deux dérivées partielles continues sur D_a . C'est donc une fonction de classe C^1 sur D_a . Enfin, ceci valant pour tout $a \in [0; 1[$, on obtient une fonction de classe C^1 sur l'intérieur de D.

Exercice 46: [énoncé]

(a) Pour x = 0, $\frac{1}{t}(\|0 + t \cdot h\| - \|0\|) = \frac{|t|}{t}\|h\|$ n'a pas de limite en 0. Par suite $\|.\|$ n'est pas différentiable en 0.

Pour $x \neq 0$,

$$||x + h|| = \sqrt{||x||^2 + 2(x|h) + ||h||^2} = ||x|| \sqrt{1 + 2\frac{(\sqrt[4]{h})}{||x||^2} + \frac{||h||^2}{||x||^2}} = ||x|| + \frac{(\sqrt[4]{h})}{||x||} + o(h) \text{ donc } ||.||$$
 est différentiable en x et de différentielle $h \mapsto \frac{(\sqrt[4]{h})}{||x||}$.

(b) Le vecteur gradient en $x \neq 0$ est x/||x||.

Exercice 47: [énoncé]

(a) Soit $a \in E$. On peut écrire

$$f(a+h) = \frac{1}{2} ((u(a)|a) + (u(a)|h) + (u(h)|a) + (u(h)|h)) + (x_0|a) + (x_0|h)$$

Sachant (u(h)|a) = (u(a)|h), on obtient

$$f(a+h) = f(a) + \ell(h) + (u(h)|h)$$

avec ℓ la forme linéaire donnée par

$$\ell(h) = (u(a) + x_0 | h)$$

Puisque

$$|(u(h)|h)| \le ||u(h)|| \, ||h|| \text{ avec } ||u(h)|| \underset{h \to 0_E}{\longrightarrow} 0$$

on obtient le développement limité à l'ordre 1

$$f(a+h) = f(a) + \ell(h) + o(h)$$

Finalement f est différentiable en a et

$$df(a).h = (u(a) + x_0|h)$$

(b) Le gradient de f en a est alors

$$\operatorname{grad} f(a) = u(a) + x_0$$

Exercice 48: [énoncé]

Notons $A = (a_{i,j})$

(a) Puisque

$$\Delta(A) = \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{\sigma(i),i}$$

la fonction Δ est différentiable sur $\mathcal{M}_n(\mathbb{R})$ par somme et produit de fonctions qui le sont (à savoir les application linéaires $A \mapsto a_{i,i}$).

(b) En développant le déterminant selon la *i*-ème ligne, on obtient

$$\det A = \sum_{i=1}^{n} a_{i,j} A_{i,j}$$

avec $A_{i,j}$ cofacteur d'indice (i, j). On en déduit.

$$\partial_{(i,j)}\Delta(A)=A_{i,j}$$

Par conséquent la différentielle de Δ en A est

$$\mathrm{d}\Delta(A) \colon H \mapsto \sum_{i,j=1}^n A_{i,j} h_{i,j}$$

(c) On observe

$$d\Delta(A) \cdot H = tr(^t Com(A)H)) = \langle Com(A), H \rangle$$

Le vecteur gradient de Δ en A est donc Com(A).

Exercice 49: [énoncé]

(a) Point critique (0,3), f(0,3) = -9. Posons u = x et v = y - 3.

$$f(x,y) - f(0,3) = u^2 + uv + v^2 = \frac{1}{2}(u^2 + v^2) + \frac{1}{2}(u+v)^2 \ge 0$$

f admet un minimum en (0,3).

(b) Point critique (1, 1), f(1, 1) = 4. Posons u = x - 1 et v = y - 1

$$f(x, y) - f(1, 1) = u^2 + 2v^2 - 2uv = (u - v)^2 + v^2 \ge 0$$

f admet un minimum en (1, 1).

(c) Point critique (0, 0). Pour tout $n \in \mathbb{N}^*$.

$$f(1/n,0) > 0$$
 et $f(-1/n,0) < 0$

Pas d'extremum.

(d) Point critique (0,0).

$$f(1/n, 0) = \frac{1}{n^2} + \frac{1}{n^3} \sim \frac{1}{n^2} > 0$$
 et $f(-1/n, -1/n + 1/n^2) \sim -\frac{2}{n^3} < 0$

Pas d'extremum.

Exercice 50: [énoncé]

(-2,2) seul point critique.

En posant x = -2 + u et y = 2 + v, puis $u = r \cos \theta$ et $v = r \sin \theta$

$$f(x,y) - f(-2,2) = u^2 + uv + v^2 = r^2(1 + \cos\theta\sin\theta) \ge 0$$

Il y a un minimum global en (-2, 2).

Exercice 51 : [énoncé]

La fonction $f: (x, y) \mapsto x^4 + y^4 - 2(x - y)^2$ est de classe C^{∞} sur \mathbb{R}^2 . Après résolution ses points critiques sont : (0, 0), $(\sqrt{2}, -\sqrt{2})$ et $(-\sqrt{2}, \sqrt{2})$. En (0, 0) : f(0, 0) = 0, $f(1/n, 0) \sim -2/n^2 < 0$ et $f(1/n, 1/n) \sim 2/n^4 > 0$.

Pas d'extremum local en (0,0)

En $(\sqrt{2}, -\sqrt{2})$: r = 20, t = 20 et s = 4. $rt - s^2 > 0$ et r > 0.

Il y a un minimum local en $(\sqrt{2}, -\sqrt{2})$.

$$f(\sqrt{2} + u, -\sqrt{2} + v) = -8 + 10(u^2 + v^2) + 4uv + 4\sqrt{2}(u^3 - v^3) + u^4 + v^4$$

On exploite

$$2(u^2 + v^2) + 4uv = 2(u + v)^2$$
 et $8u^2 + 4\sqrt{2}u^3 + u^4 = u^2(u + 2\sqrt{2})^2$

pour affirmer

$$f(\sqrt{2} + u, -\sqrt{2} + v) = f(\sqrt{2}, -\sqrt{2}) + 2(u + v)^2 + u^2(u + 2\sqrt{2})^2 + v^2(v + 2\sqrt{2})^2$$

Ainsi ($\sqrt{2}$, $-\sqrt{2}$) est un minimum global.

En $(-\sqrt{2}, \sqrt{2})$: l'étude est identique puisque f(x, y) = f(y, x).

Exercice 52: [énoncé]

L'étude des points critiques donne (1, 1) seul point critique.

La fonction $t \mapsto t^{\ln t}$ admet un minimum en 1, donc $(x, y) \mapsto x^{\ln x} + y^{\ln y}$ admet un minimum en (1, 1).

Exercice 53: [énoncé]

- (a) f est définie sur $]0; +\infty[$, strictement croissante, concave sur]0; 2] et convexe sur $[2; +\infty[$. Asymptote verticale en 0 et branche parabolique de direction y = x en $+\infty$.
- (b) t = 1 est solution et c'est la seule car f est strictement croissante.
- (c) g est de classe C^1 . Recherchons, ses points critiques :

$$\begin{cases} \frac{\partial g}{\partial x}(x,y) = 0 \\ \frac{\partial g}{\partial y}(x,y) = 0 \end{cases} \iff \begin{cases} \ln y - \frac{y}{x} = 0 \\ \frac{x}{y} - \ln x = 0 \end{cases} \iff \begin{cases} x = y \\ x = 0 \end{cases}$$

On conclut que (e, e) est le seul point critique.

On étudie alors le signe de

$$d(x, y) = g(x, y) - g(e, e) = x \ln y - y \ln x$$

On procède à une translation

$$\begin{cases} x = e + u \\ y = e + v \end{cases}$$

et à développement limité à l'ordre 2

$$d(x,y) = (e+u)\left(1 + \frac{v}{e} - \frac{v^2}{2e} + v^2\varepsilon(v)\right) - (e+v)\left(1 + \frac{u}{e} - \frac{u^2}{2e} + u^2\varepsilon(u)\right)$$

avec $\varepsilon \xrightarrow{0} 0$. Après simplification

$$d(x, y) = \frac{u^2 - v^2}{2} + (u^2 + v^2)\tilde{\varepsilon}(u, v)$$

avec $\tilde{\varepsilon} \longrightarrow 0$.

En considérant u = 1/n et v = 0 ou, à l'inverse u = 0 et v = 1/n, on obtient que d prend des signes différents au voisinage de (e, e) qui n'est donc pas extremum de f.

Exercice 54: [énoncé]

f est de classe C^1 sur l'ouvert \mathbb{R}^2 .

Figure 1 – Une représentation de la fonction g

Recherchons les points critiques.

$$\frac{\partial f}{\partial x}(x, y) = 3x^2 - 3y, \frac{\partial f}{\partial y}(x, y) = 3y^2 - 3x$$

On a

$$\begin{cases} 3x^2 - 3y = 0 \\ 3y^2 - 3x = 0 \end{cases} \iff \begin{cases} x^2 = y \\ y^2 = x \end{cases} \iff \begin{cases} y = x^2 \\ x^4 = x \end{cases} \iff \begin{cases} y = x^2 \\ x = 0 \text{ ou } 1 \end{cases}$$

(0,0),(1,1) sont donc les seuls points critiques Étude en (0,0)

$$g(x,y) = f(x,y) - f(0,0) = x^3 + y^3 - 3xy$$

 $g\left(\frac{1}{n},0\right) = \frac{1}{n^3} > 0$ et $g\left(-\frac{1}{n},0\right) = -\frac{1}{n^3} < 0$ donc (0,0) n'est pas extremum local. Étude en (1,1)

$$g(x, y) = f(x, y) - f(1, 1) = x^3 + y^3 - 3xy + 1$$

Procédons à la translation

$$\begin{cases} x = 1 + u \\ y = 1 + v \end{cases}$$

On obtient

$$g(x, y) = 3u^2 + 3v^3 - 3uy + u^3 + v^3$$

Passons en coordonnées polaires

$$\begin{cases} u = r\cos\theta\\ v = r\sin\theta \end{cases}$$

On obtient

$$g(x,y) = r^2 \left(3 - \frac{3}{2}\sin 2\theta + r\cos^3\theta + r\sin^3\theta \right)$$

Quand $(x, y) \rightarrow (1, 1)$, on a $(u, v) \rightarrow (0, 0)$ donc $r \rightarrow 0$ puis

$$3 - \frac{3}{2}\sin 2\theta + r\cos^3\theta + r\sin^3\theta = 3 - \frac{3}{2}\sin 2\theta + o(1) \ge \frac{3}{2} + o(1) \ge 0$$

(1, 1) est un minimum local.

Cependant $f(t,0) = t^3 \longrightarrow_{t \to -\infty} -\infty$ donc f n'est pas minorée et donc (1,1) n'est pas un minimum global.

Exercice 55: [énoncé]

f est de classe C^1 sur l'ouvert \mathbb{R}^2 .

Recherchons les points critiques.

$$\frac{\partial f}{\partial x}(x, y) = 4x^3 - 4y, \frac{\partial f}{\partial y}(x, y) = 4y^3 - 4x$$

On a

$$\begin{cases} 4x^3 - 4y = 0 \\ 4y^3 - 4x = 0 \end{cases} \iff \begin{cases} x^3 = y \\ y^3 = x \end{cases} \iff \begin{cases} y = x^3 \\ x^9 = x \end{cases} \iff \begin{cases} y = x^2 \\ x = 0, -1 \text{ ou } 1 \end{cases}$$

(0,0),(1,1) et (-1,-1) sont donc les seuls points critique Étude en (0,0)

$$f(1/n, 1/n) \sim -\frac{4}{n^2} < 0$$
 et $f(1/n, -1/n) \sim \frac{4}{n^2} > 0$

(0,0) n'est pas extremum local de f.

Étude en (1, 1). On peut écrire

$$f(x,y) - f(1,1) = (x^2 - 1)^2 + (y^2 - 1)^2 + 2(x - y)^2 \ge 0$$

donc (1, 1) est minimum global.

Il en est de même (-1, -1) car f(-x, -y) = f(x, y).

Exercice 56 : [énoncé]

Posons

$$f(x,y) = \frac{xy}{(1+x)(1+y)(x+y)}$$

définie et de classe C^{∞} sur]0; $+\infty[^2]$

Soit x > 0 fixé. Posons

$$\varphi \colon y \to f(x,y)$$

On a

$$\varphi'(y) = \frac{x(x - y^2)}{(1 + x)(1 + y)^2(x + y)^2}$$

La fonction φ admet donc un maximum en $y = \sqrt{x}$ dont la valeur est

$$\psi(x) = f(x, \sqrt{x}) = \frac{x}{(1+x)(1+\sqrt{x})^2}$$

On a

$$\psi'(x) = \frac{x\sqrt{x} - 1}{(1+x)^2(1+\sqrt{x})^3}$$

La fonction ψ admet donc un maximum en x = 1 dont la valeur est

$$\psi(1) = f(1,1) = \frac{1}{8}$$

Au final

$$\sup_{(x,y)\in[0:+\infty]^2} \frac{xy}{(1+x)(1+y)(x+y)} = \max_{(x,y)\in[0:+\infty]^2} \frac{xy}{(1+x)(1+y)(x+y)} = \frac{1}{8}$$

Exercice 57: [énoncé]

Soit $f(x, y) = xy + \frac{1}{x} + \frac{1}{y}$ définie sur $(\mathbb{R}_+^*)^2$.

Soit x > 0 fixé.

L'application $y \mapsto f(x, y)$ a pour dérivée $-\frac{1}{y^2} + x$, elle donc minimale pour $y = \frac{1}{\sqrt{x}}$.

Considérons $g: x \mapsto f(x, \frac{1}{\sqrt{x}}) = \frac{1}{x} + 2\sqrt{x}$.

g est dérivable sur \mathbb{R}_+^* et $g'(x) = -\frac{1}{x^2} + \frac{1}{\sqrt{x}} = \frac{x\sqrt{x}-1}{x^2}$.

g est minimale pour x = 1, puis f est minimale en (1, 1) avec f(1, 1) = 3.

Exercice 58 : [énoncé]

L'étude des points critiques donne $(\sqrt[3]{a}, \sqrt[3]{a})$ seul point critique.

Posons $\alpha = \sqrt[3]{a}$.

$$f(x,y) - f(\alpha,\alpha) = x + y + \frac{\alpha^3}{xy} - 3\alpha = \frac{x^2y + xy^2 + \alpha^3 - 3\alpha xy}{xy}$$

Étudions φ : $\alpha \mapsto x^2y + xy^2 + \alpha^3 - 3\alpha xy$. Cette application admet un minimum en \sqrt{xy} de valeur

$$x^2y + xy^2 - 2xy\sqrt{xy} = xy(x + y - 2\sqrt{xy}) = xy(\sqrt{x} - \sqrt{y})^2 \ge 0$$

donc pour tout x, y > 0,

$$f(x, y) \ge f(\alpha, \alpha)$$

De plus, il y a égalité si, et seulement si, $\sqrt{x} = \sqrt{y}$ et $\alpha = \sqrt{xy}$ i.e. $x = y = \alpha$.

Exercice 59: [énoncé]

Soit x > 0 fixé.

L'application $y \mapsto f(x, y)$ a pour dérivée $2y - \frac{a}{xy^2}$, elle donc minimale pour $y = \sqrt[3]{\frac{a}{2x}}$. Considérons

$$g: x \mapsto f(x, \sqrt[3]{\frac{a}{2x}}) = x^2 + \frac{3}{2} \sqrt[3]{\frac{2a^2}{x^2}}$$

g est dérivable sur \mathbb{R}_+^* et $g'(x) = 2x - \frac{\sqrt[4]{2}a^2}{x^{5/3}}$, $g'(x) = 0 \iff 2x^{8/3} = 2^{1/3}a^{2/3} \iff x = \sqrt[4]{\frac{a}{2}}$. g est minimale pour $x = \sqrt[4]{a/2}$, puis f admet un minimum en $(\sqrt[4]{a/2}, \sqrt[4]{a/2})$ de valeur $2\sqrt{2a}$.

Exercice 60: [énoncé]

(a) Soit (e_1, \ldots, e_n) une base orthonormée de vecteurs propres de f. Pour

$$x = x_1 e_1 + \dots + x_n e_n$$

on a

$$f(x) = \lambda_1 x_1 e_1 + \dots + \lambda_n x_n e_n$$

avec $\lambda_i > 0$ valeur propre associée au vecteur propre e_i . Ainsi, pour $x \neq 0$,

 $\langle f(x), x \rangle = \lambda_1 x_1^2 + \dots + \lambda_n x_n^2 > 0$

(b) Par opérations, la fonction g est de classe C^1 donc admet des dérivées partielles relatives à n'importe quelle base. Dans la base (e_1, \ldots, e_n) , ses dérivées partielles sont

$$d_u g(x) = \lim_{t \to 0} \frac{1}{t} \left(g(x + t.u) - g(x) \right) = \lambda_i x_i - u_i$$

en notant $u_1, \ldots u_n$ les composantes de u.

(c) Il est alors immédiat que g admet un unique point critique qui est

$$z = \frac{u_1}{\lambda_1}e_1 + \dots + \frac{u_n}{\lambda_n}e_n = f^{-1}(u)$$

Tout ceci serait plus simple, en parlant de différentielle plutôt que de dérivées partielles.

(d) Pour $h \in E$,

$$g(f^{-1}(u) + h) = \frac{1}{2}(u + f(h) \mid f^{-1}(u) + h) - (u \mid f^{-1}(u) + h)$$

donc

$$g(f^{-1}(u) + h) = g(f^{-1}(u)) + \frac{1}{2}(f(h) \mid h) \ge g(f^{-1}(u))$$

 $\operatorname{car}(f(h) \mid f^{-1}(u)) = \langle h, u \rangle$ par adjonction.

Exercice 61 : [énoncé]

Soit a point critique de f.

Pour tout $b \in U$, on a par convexité de f:

$$\forall \lambda \in [0; 1], f((1 - \lambda)a + \lambda b) \le (1 - \lambda)f(a) + \lambda f(b)$$

Par suite

$$\frac{1}{\lambda}\left(f(a+\lambda(b-a))-f(a)\right) \le f(b)-f(a)$$

En passant à la limite quand $\lambda \to 0^+$,

$$df(a).(b-a) \le f(b) - f(a)$$

Or df(a) = 0 donc $f(b) \ge f(a)$.

Exercice 62: [énoncé]

Rappelons que toute fonction réelle définie et continue sur un compact non vide y admet un maximum. Puisque la fonction f est continue sur le compact K, on est assuré de l'existence du maximum étudié.

Notons *U* l'ouvert donné par

$$U = K^{\circ} = [0; 1]^{2}$$

La fonction f est de classe C^1 sur U.

$$\frac{\partial f}{\partial x}(x,y) = \frac{1 - 2xy - x^2}{(1 + x^2)^2 (1 + y^2)} \text{ et } \frac{\partial f}{\partial y}(x,y) = \frac{1 - 2xy - y^2}{(1 + x^2)(1 + y^2)^2}$$

Après résolution, seul le couple $(1/\sqrt{3},1/\sqrt{3})$ est point critique de f dans U. La valeur de f en ce couple est

$$f\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) = \frac{3\sqrt{3}}{8}$$

Sur le bord de K, les valeurs prises par f sont les valeurs prises sur [0;1] par les fonctions

$$\varphi(t) = f(t,0) = f(0,t) = \frac{t}{1+t^2} \text{ et } \psi(t) = f(t,1) = f(1,t) = \frac{1+t}{2(1+t^2)}$$

D'une part

$$\varphi(t) \le \frac{1}{2}$$

et d'autre part

$$\psi'(t) = \frac{1 - 2t - t^2}{2(1 + t^2)^2}$$

donne que le maximum de ψ est en $\sqrt{2}-1$ avec $\psi(\sqrt{2}-1)=\frac{\sqrt{2}+1}{4}>\frac{1}{2}$. Puisque

$$\frac{3\sqrt{3}}{8} > \frac{\sqrt{2}+1}{4}$$

on peut affirmer que le maximum de f n'évolue pas sur le bord du compact K, il est donc forcément dans U et c'est alors un point critique de f qui ne peut qu'être le couple $(1/\sqrt{3}, 1/\sqrt{3})$.

Exercice 63: [énoncé]

La fonction f est continue sur le compact D et donc y admet un minimum et un maximum.

Si ces extremum sont à l'intérieur de D, ce sont des points critiques de f.

$$\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0 \\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases} \iff \begin{cases} x^3 - (x-y) = 0 \\ y^3 + (x-y) = 0 \end{cases}$$

Après résolution on obtient les points critiques (0,0), $(\sqrt{2}, -\sqrt{2})$ et $(-\sqrt{2}, \sqrt{2})$ mais les deux derniers ne sont pas éléments de l'intérieur de D.

La valeurs de f en (0,0) est 0.

Il reste à étudier les valeurs prises par f sur le bord de D.

$$f(2\cos t, 2\sin t) = -8\sin^2(2t) + 8\sin(2t) + 8$$

L'étude des variations de la fonction $x \mapsto -8x^2 + 8x + 8$ sur [-1; 1] donne les valeurs extrémales -8 et 10.

On en déduit que le minimum de f vaut -8 et son maximum 10.

plot3d(eval([x, y, x^4+y^4-2*(x-y)^2], [x=r*cos(t), y=r*sin(t)]), r=0..2, t=0..2*Pi, grid=[50, 50]);

Exercice 64: [énoncé]

- (a) f est polynomiale donc continue. T est compact donc f présente un maximum sur T. Comme f prend des valeurs strictement positives et des valeurs nulles sur le bord de T, f présente son maximum à l'intérieur de T.
- (b) f est de classe C^1 sur l'ouvert $U = T^\circ$ donc le maximum de f est point critique.

$$\frac{\partial f}{\partial x}(x, y) = y(1 - 2x - y) \text{ et } \frac{\partial f}{\partial y}(x, y) = x(1 - x - 2y)$$

Après résolution, on obtient que seul le couple (1/3,1/3) est point critique de f et on a

$$f(1/3, 1/3) = \frac{1}{27}$$

Figure 2 – Surface représentant f au dessus de D

Exercice 65 : [énoncé]

- (a) \mathcal{D} est fermée et bornée donc compacte.
- (b) Pour $\alpha > 0$, la fonction $t \mapsto t^{\alpha} = \begin{cases} e^{\alpha \ln t} & \text{si } t > 0 \\ 0 & \text{si } t = 0 \end{cases}$ est continue sur [0; 1] donc f est continue par composition.
- (c) Puisque f est continue sur un compact il y admet un maximum. Puisque f est positive et non nulle ce maximum est à valeur strictement positive. Or f est nulle sur le bord de $\mathcal D$ donc ce maximum est dans l'ouvert $U = \{(x,y) \in \mathbb R^2 \mid x,y>0 \text{ et } x+y<1\}$ et c'est donc un point critique de f car f est C^1 sur l'ouvert U.

$$\frac{\partial f}{\partial x}(x,y) = x^{a-1}y^b(1-x-y)^{c-1} (a(1-x-y)-cx) \text{ et}$$

$$\frac{\partial f}{\partial y}(x,y) = x^a y^{b-1} (1-x-y)^{c-1} (b(1-x-y)-cy)$$

Il n'y a qu'un seul point critique c'est :

$$\left(\frac{a}{a+b+c}, \frac{b}{a+b+c}\right)$$

Finalement

$$\sup_{(x,y)\in\mathcal{D}} f(x,y) = \frac{a^a b^b c^c}{(a+b+c)^{a+b+c}}$$

Exercice 66 : [énoncé]

La fonction $f: (x, y) \mapsto \sin x \sin y \sin(x + y)$ est continue sur le compact $[0; \pi/2]^2$ donc y admet un maximum.

Le seul point critique intérieur à $[0; \pi/2]^2$ est en $x = y = \pi/3$ et la valeur y est $\frac{3\sqrt{3}}{8}$. Sur le bord de $[0; \pi/2]^2$ le maximum est celui de la fonction φ avec

$$\varphi(t) = \sin t \sin (\pi/2 - t) = \sin t \cos t = \frac{1}{2} \sin 2t$$

Ce maximum vaut 1/2.

Puisque

$$\frac{3\sqrt{3}}{8} \ge \frac{1}{2}$$

on a

$$\sup_{[0;\pi/2]^2} \sin x \sin y \sin(x+y) = \frac{3\sqrt{3}}{8}$$

Exercice 67: [énoncé]

On peut supposer l'un des sommets être (1,0) et les deux autres repérés par des angles $0 < \alpha < \beta < 2\pi$.

Cela nous amène à considérer

$$f: (\alpha, \beta) \mapsto 2\left(\sin\frac{\alpha}{2} + \sin\frac{\beta - \alpha}{2} + \sin\frac{\beta}{2}\right)$$

sur l'ouvert

$$U = \left\{ (\alpha, \beta) \in \mathbb{R}^2 \mid 0 < \alpha < \beta < 2\pi \right\}$$

Le maximum, qui existe, est alors point critique de cette fonction de classe C^1 . Cela nous amène à résoudre le système

$$\begin{cases} \cos\frac{\alpha}{2} - \cos\frac{\beta - \alpha}{2} = 0\\ \cos\frac{\beta}{2} + \cos\frac{\beta - \alpha}{2} = 0 \end{cases}$$

L'équation $\cos \frac{\alpha}{2} = \cos \frac{\beta - \alpha}{2}$ donne

$$\frac{\alpha}{2} = \frac{\beta - \alpha}{2}$$
 [2 π] ou $\frac{\alpha}{2} = \frac{\alpha - \beta}{2}$ [2 π]

L'alternative $\frac{\alpha}{2} = \frac{\alpha - \beta}{2}$ [2 π] est à exclure et il reste $\beta = 2\alpha$ avec de plus $\alpha \in]0$; $\pi[$. L'équation $\cos \frac{\beta}{2} = -\cos \frac{\beta - \alpha}{2}$ donne alors $\cos \alpha = -\cos \frac{\alpha}{2}$ d'où $\alpha = \frac{2\pi}{3}$ puisque $\alpha \in]0$; $\pi[$. Finalement le triangle correspondant est équilatéral.

Exercice 68: [énoncé]

Notons A, B, C les points définissant notre triangle et O le centre du cercle circonscrit. En introduisant les mesures α, β, γ des angles $(\overrightarrow{OC}, \overrightarrow{OB}), (\overrightarrow{OB}, \overrightarrow{OA})$ et $(\overrightarrow{OA}, \overrightarrow{OB})$, on vérifie

$$\alpha + \beta + \gamma = 0 \quad [2\pi]$$

et on peut calculer l'aire algébrique des triangles (OAB), (OBC) et (OCA) qui sont respectivement

$$\frac{1}{2}r^2\sin\alpha, \frac{1}{2}r^2\sin\beta \text{ et } \frac{1}{2}r^2\sin\gamma = -\frac{1}{2}r^2\sin(\alpha+\beta)$$

L'aire algébrique du triangle (ABC) est alors

$$f(\alpha, \beta) = \frac{1}{2}r^2(\sin \alpha + \sin \beta - \sin(\alpha + \beta))$$

L'étude des points critiques de cette fonction de classe C^1 sur $]0; 2\pi[^2$ conduit à résoudre le système

$$\begin{cases} \cos \alpha = \cos(\alpha + \beta) \\ \cos \beta = \cos(\alpha + \beta) \end{cases}$$

dont les seules solutions dans $]0; 2\pi[^2]$ sont

$$\left(\frac{2\pi}{3}, \frac{2\pi}{3}\right)$$
 et $\left(\frac{4\pi}{3}, \frac{4\pi}{3}\right)$

Ce sont les situations des triangles équilatéraux resp. direct et indirect.

L'extremum trouvé vaut

$$\frac{3\sqrt{3}r^2}{4}$$

Exercice 69: [énoncé]

(a) La fonction $M \mapsto MA$ est différentiable sauf en A et sa différentielle en un point M est

$$\vec{h} \mapsto \frac{\overrightarrow{MA}.\vec{h}}{MA}$$

On en déduit que f est différentiable en tout point du plan sauf en A, B et C et

$$\mathrm{d}f(M) \colon \vec{h} \mapsto \left(\frac{\overrightarrow{MA}}{MA} + \frac{\overrightarrow{MB}}{MB} + \frac{\overrightarrow{MC}}{MC}\right) \vec{h}$$

(b) La fonction f est continue sur le disque \mathcal{D} considéré. Puisque ce dernier est compact, la fonction f admet un minimum sur ce disque en un certain point T:

$$\forall M \in \mathcal{D}, f(M) \geq f(T)$$

Puisque le point A appartient au disque \mathcal{D} , on a

$$f(T) \le f(A)$$

Pour un point M en dehors de ce disque, on a

$$f(M) \ge MA > AB + AC = f(A) \ge f(T)$$

Le point T apparaît donc comme étant un minimum absolu de f sur le plan.

(c) La différentielle de f en T est nulle donc

$$\frac{\overrightarrow{TA}}{TA} + \frac{\overrightarrow{TB}}{TB} + \frac{\overrightarrow{TC}}{TC} = \vec{0}$$

(d) Les trois vecteurs sommés sont unitaires. Notons *a*, *b*, *c* leurs affixes dans un repère orthonormé direct donné. La relation vectorielle ci-dessus donne

$$a + b + c = 0$$
 avec $|a| = |b| = |c| = 1$

En multipliant par a^{-1} , on obtient

$$1 + x + y = 0$$
 avec $|x| = |y| = 1$

où
$$x = a^{-1}b$$
 et $y = a^{-1}c$

Les parties imaginaires de x et y sont alors opposées et la somme de leurs parties réelles vaut -1. On en déduit qu'à l'ordre près x = j et $y = j^2$.

Finalement on obtient

$$(\overrightarrow{TA}, \overrightarrow{TB}) = (\overrightarrow{TB}, \overrightarrow{TC}) = (\overrightarrow{TC}, \overrightarrow{TA}) = \pm \frac{2\pi}{3}$$
 [2\pi]

Notons qu'on peut en déduire un procédé construisant le point *T* comme intersection de cercles que l'on pourra définir en exploitant le théorème de l'angle au centre...

Exercice 70: [énoncé]

Méthode analytique :

L'intérieur du triangle et son bord forment un compact. La fonction considérée est continue sur celui-ci donc admet un maximum. Celui-ci ne peut être au bord car la fonction prend des valeurs strictement positives alors qu'elle est nulle sur le bord. Il existe donc un maximum à l'intérieur du triangle et celui-ci annule la différentielle de la fonction.

En introduisant un repère, A(0,0), B(1,0) et C(a,b) (ce qui est possible qui à appliquer une homothétie pour que AB=1) la fonction étudiée est

$$f(x,y) = y(bx - ay)(b(x - 1) - (a - 1)y)$$

On résout le système formé par les équations

$$\frac{\partial f}{\partial x}(x, y) = 0$$
 et $\frac{\partial f}{\partial y}(x, y) = 0$

Le calcul est très lourd sans logiciel de calcul formel mais on parvient à conclure. Méthode géométrique (plus élégante) :

Le point M peut s'écrire comme barycentre des points A, B, C affectés de masses $a, b, c \ge 0$ vérifiant a + b + c = 1.

L'aire du triangle (MBC) est donné par

$$\frac{1}{2} \left| \det(\overrightarrow{BM}, \overrightarrow{BC}) \right|$$

Or

$$\overrightarrow{BM} = a\overrightarrow{BA} + b\overrightarrow{BB} + c\overrightarrow{BC}$$

donc

$$\det(\overrightarrow{BM}, \overrightarrow{BC}) = a \det(\overrightarrow{BA}, \overrightarrow{BC})$$

En notant \mathcal{A} l'aire du triangle ABC et d_A le distance de M à la droite (BC), on obtient

$$a = \frac{d_A.BC}{\mathcal{A}}$$

De façon analogue,

$$b = \frac{d_B AC}{\mathcal{A}} \text{ et } c = \frac{d_C AB}{\mathcal{A}}$$

avec des notations entendues.

Par suite, maximiser le produit $d_A d_B d_C$ équivaut à maximiser le produit abc avec les contraintes a + b + c = 1 et $a, b, c \ge 0$

La maximisation de ab(1-a-b) avec $a,b \ge 0$ et $a+b \le 1$ conduit à a=b=1/3, d'où c=1/3 et le point M est au centre de gravité.

Exercice 71: [énoncé]

Notons B la boule unité fermée pour la norme en cours. La fonction f est différentiable donc continue sur B: elle y admet un minimum en un certain élément a. L'enjeu est alors d'établir que ce minimum sur B est aussi un minimum sur \mathbb{R}^n .

Soit $x \in \mathbb{R}^n$. Si $||x|| \le 1$ alors $f(x) \ge f(a)$ par définition de a. Si ||x|| > 1, introduisons $x_0 = \lambda x$ avec $\lambda = 1/||x||$. L'élément x_0 est de norme 1, il appartient donc au bord de B et vérifie ainsi $f(x_0) \ge f(a)$. Au surplus, en considérant le paramétrage $\gamma : t \mapsto tx_0$ pour t allant de 1 à ||x||, on peut écrire

$$f(x) - f(x_0) = \int_1^{\|x\|} \frac{\mathrm{d}}{\mathrm{d}t} (f(\gamma(t))) \, \mathrm{d}t = \int_1^{\|x\|} \mathrm{d}f(tx_0) \cdot x_0 \, \mathrm{d}t \ge 0$$

car pour tout $t \in [1; ||x||]$, $df(tx_0) \cdot x_0$ est du signe de $df(tx_0) \cdot tx_0$ à savoir positif puisque tx_0 est de norme supérieure à 1. On obtient ainsi $f(x) \ge f(x_0)$ donc $f(x) \ge f(a)$. Finalement, a est un minimum absolu de la fonction f.

Exercice 72 : [énoncé]

$$\begin{cases} u = x + y \\ v = 2x + 3y \end{cases} \iff \begin{cases} x = 3u - v \\ y = v - 2u \end{cases}$$

Posons $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ définie par

$$\phi(u, v) = (3u - v, v - 2u)$$

 ϕ est une bijection de classe C^1 .

Soient $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^1 et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par g(u, v) = f(3u - v, v - 2u),

Par composition $g = f \circ \phi$ est de classe C^1 sur \mathbb{R}^2 et

$$\frac{\partial g}{\partial u}(u,v) = 3\frac{\partial f}{\partial x}(3u - v, v - 2u) - 2\frac{\partial f}{\partial y}(3u - v, v - 2u)$$

f est solution de l'équation aux dérivées partielles étudiée si, et seulement si, $\frac{\partial g}{\partial u} = 0$ ce qui conduit à g(u, v) = h(v) puis f(x, y) = h(2x + 3y) avec h fonction de classe C^1 .

Exercice 73: [énoncé]

$$\begin{cases} u = 2x + y \\ v = 3x + y \end{cases} \iff \begin{cases} x = v - u \\ y = 3u - 2v \end{cases}$$

Posons $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ définie par

$$\phi(u, v) = (v - u, 3u - 2v)$$

 ϕ est une bijection de classe C^1 (et même un C^1 -difféomorphisme) Soient $f: \mathbb{R}^2 \to \mathbb{R}$ de classe C^1 et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par « g(u, v) = f(x, y) » *i.e.* g(u, v) = f(v - u, 3u - 2v) $g = f \circ \phi$ est de classe C^1 et

$$\frac{\partial g}{\partial u}(u, v) = -\frac{\partial f}{\partial x}(x, y) + 3\frac{\partial f}{\partial y}(x, y)$$

f est solution de l'équation si, et seulement si, $\frac{\partial g}{\partial u} = 0$ soit $g(u, v) = \varphi(v)$ avec φ fonction de classe C^1 .

Les solutions de l'équation aux dérivées partielles sont $f(x, y) = \varphi(3x + y)$ avec φ de classe C^1 .

Exercice 74: [énoncé]

$$\begin{cases} u = x + y \\ v = x - y \end{cases} \iff \begin{cases} x = (u + v)/2 \\ y = (u - v)/2 \end{cases}$$

Posons $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ l'application définie par

$$\phi(u,v) = \left(\frac{u+v}{2}, \frac{u-v}{2}\right)$$

 ϕ est une bijection de classe C^1 .

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^1 et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par g(u, v) = f((u + v)/2, (u - v)/2).

Par composition $g = f \circ \phi$ est de classe C^1 et

$$\frac{\partial g}{\partial u}(u, v) = \left(\frac{1}{2}\frac{\partial f}{\partial x}(x, y) + \frac{1}{2}\frac{\partial f}{\partial y}(x, y)\right)_{(x, y) = \phi(u, v)}$$

Par suite f est solution de l'équation aux dérivées partielles étudiée si, et seulement si, g est solution de l'équation aux dérivées partielles

$$2\frac{\partial g}{\partial u} = g$$

Après résolution, on obtient $g(u, v) = C(v)e^{u/2}$ avec C fonction de classe C^1 définie sur \mathbb{R} puis

$$f(x, y) = C(x - y)e^{(x+y)/2}$$

Exercice 75 : [énoncé]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^1 sur \mathbb{R}^2 solution de

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = f$$

Soit $g: \mathbb{R}^2 \to \mathbb{R}$ définie par g(u, v) = f(u, u + v). Par composition g est de classe C^1 sur \mathbb{R}^2 et

$$\frac{\partial g}{\partial u}(u,v) = \frac{\partial f}{\partial x}(u,u+v) + \frac{\partial f}{\partial y}(u,u+v) = f(u,u+v) = g(u,v)$$

La fonction $u \mapsto g(u, v)$ est solution de l'équation différentielle y' = y donc il existe $C(v) \in \mathbb{R}$ tel que $g(u, v) = C(v)e^{u}$.

Notons que $C: \mathbb{R} \to \mathbb{R}$ est de classe C^1 car C(v) = g(0, v) avec g de classe C^1 .

Par suite, on obtient $f(x, y) = C(y - x)e^x$.

Inversement, de telles fonctions sont solutions.

Exercice 76: [énoncé]

Soient $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ de classe C^1 et $g: \mathbb{R}_+^* \times \mathbb{R} \to \mathbb{R}$ définie par $g(r,\theta) = f(r\cos\theta, r\sin\theta)$.

Par composition, g est de classe C^1 .

On a

$$\frac{\partial g}{\partial \theta}(r,\theta) = \left(-y\frac{\partial f}{\partial x}(x,y) + x\frac{\partial f}{\partial y}(x,y)\right)_{x=r\cos\theta, y=r\sin\theta}$$

Par surjectivité de l'application

$$\begin{cases} \mathbb{R}_+^* \times \mathbb{R} \to \mathbb{R}^2 \setminus \{(0,0)\} \\ (r,\theta) \to (r\cos\theta, r\sin\theta) \end{cases}$$

on peut affirmer que f est solution de l'équation aux dérivées partielles étudiée si, et seulement si,

$$\frac{\partial g}{\partial \theta}(r,\theta) = 0$$

c'est-à-dire, si, et seulement si, $g(r, \theta) = C(r)$ avec C fonction de classe C^1 définie sur $[0; +\infty[$.

On obtient alors $f(x, y) = C(\sqrt{x^2 + y^2})$ puis $f(x, y) = D(x^2 + y^2)$ avec D fonction de classe C^1 définie sur $[0; +\infty[$.

Exercice 77: [énoncé]

Soit $f: \mathbb{R} \times \mathbb{R}_+^*$ une fonction de classe C^1 solution de

$$y\frac{\partial f}{\partial x} - x\frac{\partial f}{\partial y} = f$$

Soit $g: \mathbb{R}_+^* \times]0$; $\pi[\to \mathbb{R} \text{ l'application définie par } g(r, \theta) = f(r \cos \theta, r \sin \theta)$. Par composition g est de classe C^1 sur $\mathbb{R}_+^* \times]0$; $\pi[$ et

$$\frac{\partial g}{\partial \theta}(r,\theta) = -r\sin\theta \frac{\partial f}{\partial x}(r\cos\theta, r\sin\theta) + r\cos\theta \frac{\partial f}{\partial y}(r\cos\theta, r\sin\theta)$$

ce qui donne

$$\frac{\partial g}{\partial \theta}(r,\theta) = -y \frac{\partial f}{\partial x}(x,y) + x \frac{\partial f}{\partial y}(x,y) = -g(r,\theta)$$

Pour $r \in \mathbb{R}_+^*$ fixé, $\theta \mapsto g(r, \theta)$ est solution de l'équation différentielle $y'(\theta) = -y(\theta)$. Après résolution il existe $C(r) \in \mathbb{R}$ tel que $g(r, \theta) = C(r) e^{-\theta}$

De plus, la fonction $r \mapsto C(r) = g(r, 0)$ est une fonction de classe C^1 sur \mathbb{R}_+^* . Ainsi

$$f(x, y) = C(\sqrt{x^2 + y^2}) e^{\arctan(x/y) - \pi/2} = h(x^2 + y^2) e^{\arctan(x/y)}$$

où h est C^1 sur \mathbb{R}_+^* .

Inversement de telles fonctions sont bien solutions.

Exercice 78: [énoncé]

Soient $f: \mathbb{R}_+^* \times \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 et $g: \mathbb{R}_+^* \times]-\pi/2$; $\pi/2[\to \mathbb{R}$ définie par $g(r,\theta) = f(r\cos\theta, r\sin\theta)$. Par composition g est C^1 sur $\mathbb{R}_+^* \times]-\pi/2$; $\pi/2[$ et

$$r\frac{\partial g}{\partial r}(r,\theta) = r\cos\theta \frac{\partial f}{\partial x}(r\cos\theta, r\sin\theta) + r\sin\theta \frac{\partial f}{\partial y}(r\cos\theta, r\sin\theta)$$

f est solution de l'équation aux dérivées partielles étudiée si, et seulement si, $r\frac{\partial g}{\partial r}(r,\theta) = 0$ ce qui conduit à $g(r,\theta) = h(\theta)$ puis $f(x,y) = h\left(\arctan\frac{y}{x}\right) = \tilde{h}\left(\frac{y}{x}\right)$ avec \tilde{h} fonction de classe C^1 définie sur \mathbb{R} .

Exercice 79: [énoncé]

Soient $f: \mathbb{R}_+^* \times \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 et $g: \mathbb{R}_+^* \times]-\pi/2$; $\pi/2[\to \mathbb{R}$ définie par $g(r,\theta) = f(r\cos\theta, r\sin\theta)$. Par composition g est de classe C^1 sur $\mathbb{R}_+^* \times]-\pi/2$; $\pi/2[$ et

$$r\frac{\partial g}{\partial r}(r,\theta) = r\cos\theta\frac{\partial f}{\partial x}(r\cos\theta, r\sin\theta) + r\sin\theta\frac{\partial f}{\partial y}(r\cos\theta, r\sin\theta)$$

f est solution de l'équation aux dérivées partielles étudiée si, et seulement si,

$$r\frac{\partial g}{\partial r}(\rho,\theta) = r$$

ce qui conduit à $g(r, \theta) = r + h(\theta)$ puis

$$f(x,y) = \sqrt{x^2 + y^2} + h\left(\arctan\frac{y}{x}\right) = \sqrt{x^2 + y^2} + k\left(\frac{y}{x}\right)$$

avec k fonction de classe C^1 définie sur \mathbb{R} .

Exercice 80 : [énoncé]

Supposons f homogène de degré p i.e.

$$\forall t > 0, f(tx_1, \dots, tx_n) = t^p f(x_1, \dots, x_n)$$

En dérivant cette relation par rapport à t et en évaluant en t = 1, on obtient

$$\sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i}(x_1, \dots, x_n) = pf(x_1, \dots, x_n)$$

Inversement, posons

$$g(t) = f(tx_1, \dots, tx_n)$$

Si f vérifie l'équation aux dérivées partielles proposée, la fonction $t \mapsto g(t)$ est solution de l'équation différentielle

$$tg'(t) = pg(t)$$

et, après résolution, on obtient

$$g(t) = t^p g(1)$$

ce qui donne f homogène de degré p.

Notons que pour n = 1, $f(x) = |x|^3$ vérifie la relation et n'est pas homogène de degré 3 que dans le sens précisé initialement.

Exercice 81: [énoncé]

L'application φ est bien définie car $\varphi(r)$ est l'intégrale sur un segment d'une fonction continue.

Posons $g: (r,t) \mapsto f(r\cos t, r\sin t)$.

La fonction g admet une dérivée partielle $\frac{\partial g}{\partial r}$ et celle-ci est continue sur $\mathbb{R} \times [0; 2\pi]$.

Pour a > 0, la fonction $\frac{\partial g}{\partial r}$ est continue sur le compact $[-a; a] \times [0; 2\pi]$ et donc il existe $M \in \mathbb{R}_+$ vérifiant

$$\forall (r,t) \in [-a;a] \times [0;2\pi], \left| \frac{\partial g}{\partial r}(r,t) \right| \leq M = \psi(t)$$

La fonction ψ est évidemment intégrable sur $[0; 2\pi]$ et donc, par domination sur tout segment, la fonction φ est de classe C^1 sur \mathbb{R} et

$$\varphi'(r) = \int_0^{2\pi} \cos t \frac{\partial f}{\partial x} (r\cos t, r\sin t) + \sin t \frac{\partial f}{\partial y} (r\cos t, r\sin t) dt$$

On en déduit $r\varphi'(r) = 0$ puis $\varphi'(r) = 0$, d'abord pour $r \neq 0$, puis pour tout $r \in \mathbb{R}$, par continuité.

Par suite φ est constante égale à $\varphi(0) = 2\pi f(0)$.

Exercice 82 : [énoncé]

L'application φ est bien définie car $\varphi(r)$ est l'intégrale sur un segment d'une fonction continue.

Posons $g: (r,t) \mapsto f(r\cos t, r\sin t)$.

La fonction g admet une dérivée partielle $\frac{\partial g}{\partial r}$ et celle-ci est continue sur $\mathbb{R}_+ \times [0; 2\pi]$. Pour a > 0, la fonction $\frac{\partial g}{\partial r}$ est continue sur le compact $[0; a] \times [0; 2\pi]$ et donc il existe $M \in \mathbb{R}_+$ vérifiant

$$\forall (r,t) \in [-a;a] \times [0;2\pi], \left| \frac{\partial g}{\partial r}(r,t) \right| \leq M = \psi(t)$$

La fonction ψ est évidemment intégrable sur $[0; 2\pi]$ et donc, par domination sur tout segment, la fonction φ est de classe C^1 sur \mathbb{R}_+ et

$$\varphi'(r) = \int_0^{2\pi} \cos t \frac{\partial f}{\partial x} (r\cos t, r\sin t) + \sin t \frac{\partial f}{\partial y} (r\cos t, r\sin t) dt$$

On en déduit

$$r\varphi'(r) = \lambda\varphi(r)$$

puis après résolution de cette équation différentielle sur]0; +∞[

$$\varphi(r) = \lambda r^{\alpha}$$

La fonction φ étant définie et continue en 0, le cas où $\alpha < 0$ oblige $\lambda = 0$ et alors $\varphi(r) = 0$. Le cas $\alpha \ge 0$, n'impose rien de particulier et alors $\varphi(r) = \lambda r^{\alpha}$ pour tout $r \ge 0$.

Exercice 83: [énoncé]

- (a) Les fonctions données par f(x, y) = ax + by sont solutions.
- (b) Par composition, la fonction g est de classe C^1 et

$$g'(t) = x \frac{\partial f}{\partial x}(tx, ty) + y \frac{\partial f}{\partial y}(tx, ty)$$

de sorte que

$$tg'(t) = f(tx, ty) = g(t)$$

La résolution de l'équation différentielle ty'(t) = y après raccord donne

$$y(t) = \lambda t \text{ avec } \lambda \in \mathbb{R}$$

On en déduit

$$\forall (x, y) \in \mathbb{R}^2, \forall t \in \mathbb{R}, f(tx, ty) = tf(x, y)$$

En dérivant cette relation en le paramètre x, on obtient

$$\forall (x, y) \in \mathbb{R}^2, \forall t \in \mathbb{R}, t \frac{\partial f}{\partial x}(tx, ty) = t \frac{\partial f}{\partial x}(x, y)$$

En simplifiant par t

$$\forall (x, y) \in \mathbb{R}^2, \forall t \in \mathbb{R}^*, \frac{\partial f}{\partial x}(tx, ty) = \frac{\partial f}{\partial x}(x, y)$$

Or la relation engage des fonctions continues, elle donc encore valable en t = 0 ce qui fourni

$$\forall (x, y) \in \mathbb{R}^2, \frac{\partial f}{\partial x}(x, y) = \frac{\partial f}{\partial x}(0, 0)$$

De même, on obtient

$$\forall (x, y) \in \mathbb{R}^2, \frac{\partial f}{\partial y}(x, y) = \frac{\partial f}{\partial y}(0, 0)$$

Enfin, en posant

$$a = \frac{\partial f}{\partial x}(0,0)$$
 et $b = \frac{\partial f}{\partial y}(0,0)$

l'équation initiale fournit

$$f(x, y) = ax + by$$

Exercice 84: [énoncé]

(a) On passe en coordonnées polaires avec $r = \sqrt{x^2 + y^2}$ et $\theta = \arctan(x/y)$ de sorte que $x = r \sin \theta$ et $y = r \cos \theta$.

On parvient à

$$f(x, y) = C(x/y)(x^2 + y^2)^{\alpha/2}$$

avec C une fonction de classe C^1 définie sur \mathbb{R} .

(b) Idem, on parvient à

$$f(x,y) = \frac{2}{3} \frac{x}{y} \sqrt{x^3 + y^3} + C(x/y)$$

avec C une fonction de classe C^1 définie sur \mathbb{R} .

Exercice 85: [énoncé]

(a) L'application ϕ est clairement un endomorphisme de E.

Posons $x = r \cos \theta$, $y = r \sin \theta$ avec $r = \sqrt{x^2 + y^2}$ et $\theta = \arctan \frac{y}{x}$, $(r, \theta) \in V = \mathbb{R}_+^* \times]-\pi/2$;

Pour $f \in E$, on considère $g \in C^{\infty}(V, \mathbb{R})$ définie par $g(r, \theta) = f(r \cos \theta, r \sin \theta)$. On remarque

$$r\frac{\partial g}{\partial r}(r,\theta) = r\cos\theta \frac{\partial f}{\partial x}(r\cos\theta, r\sin\theta) + r\sin\theta \frac{\partial f}{\partial y}(r\cos\theta, r\sin\theta)$$

Ainsi

$$\Phi(f) = 0 \iff r \frac{\partial g}{\partial r}(r, \theta) = 0$$

pour tout $(r, \theta) \in V$.

La résolution de cette équation aux dérivées partielles donne $g(r, \theta) = C(\theta)$ avec C de classe C^{∞} sur $]-\pi/2$; $\pi/2$ [.

Par suite on obtient la solution générale $f(x, y) = C(\arctan(y/x)) = D(y/x)$ avec D fonction de classe C^{∞} sur \mathbb{R} .

(b) Si f est homogène de degré α alors en dérivant la relation $f(tx, ty) = t^{\alpha} f(x, y)$ par rapport à t puis en évaluant le résultat en t = 1 on obtient l'égalité $\Phi(f) = \alpha f$. Inversement si $\Phi(f) = \alpha f$ alors en introduisant g comme ci-dessus, on obtient

$$r\frac{\partial g}{\partial r}(r,\theta) = \alpha g(r,\theta)$$

ce qui donne $g(r, \theta) = C(\theta)r^{\alpha}$ puis

$$f(x, y) = D(y/x)(x^2 + y^2)^{\alpha/2}$$

avec D fonction de classe C^{∞} sur \mathbb{R} . Il est alors facile de vérifier que f est homogène de degré α .

(c) La fonction h est homogène de degré 5, donc h/5 est solution particulière de l'équation linéaire $\Phi(f) = h$. L'ensemble des solutions de l'équation est alors le sous-espace affine $h/5 + \ker \Phi$.

Exercice 86: [énoncé]

On a

$$\begin{cases} u = x + y \\ v = x - y \end{cases} \iff \begin{cases} x = (u + v)/2 \\ y = (u - v)/2 \end{cases}$$

Soient $f: \mathbb{R}^2 \to \mathbb{R}$ de classe C^2 et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$g(u, v) = f((u + v)/2, (u - v)/2)$$

g est de classe C^2 .

f est solution de l'équation aux dérivées partielles étudiée si, et seulement si,

$$\frac{\partial^2 g}{\partial u \partial v}(u, v) = 0$$

soit g(u, v) = C(u) + D(v) avec C, D fonction de classe C^2 .

Ainsi les solutions sont

$$f(x,y) = C(x+y) + D(x-y)$$

Exercice 87: [énoncé]

Soient $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^2 sur \mathbb{R}^2 et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$g(u, v) = f((u + v)/2, (u - v)/2c).$$

Par composition g est de classe C^2 sur \mathbb{R}^2 et, par calculs, f est solution de l'équation aux dérivées partielles étudiée si, et seulement si,

$$\frac{\partial^2 g}{\partial u \partial v}(u, v) = 0$$

On obtient g(u, v) = C(u) + D(v) puis f(x, t) = C(x + ct) + D(x - ct) avec C et D fonctions de classe C^2 .

Exercice 88 : [énoncé]

Soient $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^2 sur \mathbb{R}^2 et $g: \mathbb{R}^2 \to \mathbb{R}$ définie par g(u, v) = f(u, v - u). Par composition g est C^2 sur \mathbb{R}^2 ,

$$\frac{\partial g}{\partial u}(u, v) = \frac{\partial f}{\partial x}(u, v - u) - \frac{\partial f}{\partial v}(u, v - u)$$

et

$$\frac{\partial^2 g}{\partial u^2}(u,v) = \frac{\partial^2 f}{\partial x^2}(u,v-u) - 2\frac{\partial^2 f}{\partial x \partial y}(u,v-u) + \frac{\partial^2 f}{\partial y^2}(u,v-u)$$

f est solution de l'équation aux dérivées partielles étudiée si, et seulement si,

$$\frac{\partial^2 g}{\partial u^2}(u, v) = 0$$

soit g(u, v) = uC(v) + D(v) puis f(x, y) = xC(x + y) + D(x + y) avec C, D fonctions de classe C^2 .

Exercice 89: [énoncé]

Soit $f: \mathbb{R}_+^* \times \mathbb{R}_+^* \to \mathbb{R}$ une fonction de classe C^2 solution de

$$x^2 \frac{\partial^2 f}{\partial x^2} - y^2 \frac{\partial^2 f}{\partial y^2} = 0$$

Soit $g: \mathbb{R}_+^* \times \mathbb{R}_+^* \to \mathbb{R}$ l'application définie par

$$g(u, v) = f(\sqrt{uv}, \sqrt{u/v})$$

Par composition g est C^2 sur $\mathbb{R}_+^* \times \mathbb{R}_+^*$ et

$$\frac{\partial g}{\partial v} = \frac{\sqrt{u}}{2\sqrt{v}} \frac{\partial f}{\partial x} \left(\sqrt{uv}, \sqrt{u/v} \right) - \frac{\sqrt{u}}{2v} \frac{\partial f}{\partial v} \left(\sqrt{uv}, \sqrt{u/v} \right)$$

$$\frac{\partial^2 g}{\partial u \partial v} = \frac{1}{4} \frac{\partial^2 f}{\partial x^2} - \frac{1}{4v^2} \frac{\partial^2 f}{\partial y^2} + \frac{1}{4\sqrt{uv}} \frac{\partial f}{\partial x} - \frac{1}{4v\sqrt{uv}} \frac{\partial f}{\partial y} = \frac{1}{2u} \frac{\partial g}{\partial v}$$

Pour $v \in \mathbb{R}_+^*$ fixé, $u \mapsto \frac{\partial g}{\partial v}(u, v)$ est solution de l'équation différentielle 2u.y'(u) = y(u). Par suite il existe $C(v) \in \mathbb{R}$ telle que

$$\frac{\partial g}{\partial v}(u, v) = C(v)\sqrt{u}$$

De plus la fonction $v \mapsto C(v)$ est de classe C^1 et si G désigne une primitive de celle-ci : $g(u,v) = G(v) \sqrt{u} + H(u)$ où H est une fonction dont le caractère C^2 n'échappe à personne. Finalement

$$f(x,y) = G(x/y)\sqrt{xy} + H(xy)$$

où G et H sont des fonctions de classe C^2 .

Inversement de telles fonctions sont bien solutions.

Exercice 90 : [énoncé]

(a) On a

$$\Delta \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} \left(\Delta f \right) = 0$$

car

$$\frac{\partial^2}{\partial x^2} \left(\frac{\partial}{\partial x} f \right) = \frac{\partial}{\partial x} \left(\frac{\partial^2}{\partial x^2} f \right) \text{ et } \frac{\partial^2}{\partial y^2} \left(\frac{\partial}{\partial x} f \right) = \frac{\partial}{\partial x} \left(\frac{\partial^2}{\partial y^2} f \right)$$

Ainsi $\frac{\partial f}{\partial x}$ est harmonique et il en est de même de $\frac{\partial f}{\partial y}$.

$$\Delta \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} \right) = x \frac{\partial^3 f}{\partial x^3} + \frac{\partial^2 f}{\partial x^2} + y \frac{\partial^3 f}{\partial x^2 \partial y} + x \frac{\partial^3 f}{\partial y^2 \partial x} + y \frac{\partial^3 f}{\partial y^3} + \frac{\partial^2 f}{\partial y^2}$$

donne

$$\Delta \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} \right) = x \Delta \left(\frac{\partial f}{\partial x} \right) + y \Delta \left(\frac{\partial f}{\partial y} \right) + \Delta f = 0$$

(b) On a

$$\frac{\partial f}{\partial x} = 2x\varphi'(x^2 + y^2)$$

puis

$$\frac{\partial^2 f}{\partial x^2} = 2\varphi'(x^2 + y^2) + 2x^2\varphi''(x^2 + y^2)$$

$$\frac{\partial^2 f}{\partial y^2} = 2\varphi'(x^2 + y^2) + 2y^2\varphi''(x^2 + y^2)$$

Donc

$$\Delta f = 0 \iff \forall (x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}, (x^2 + y^2) \varphi''(x^2 + y^2) + \varphi'(x^2 + y^2) = 0$$

d'où

$$\Delta(f) = 0 \iff \forall r \in \mathbb{R}_+^*, r\varphi''(r) + \varphi'(r) = 0$$

 φ' est solution sur \mathbb{R}_+^* de l'équation différentielle

$$xy' + y = 0$$

(c) Les solutions de l'équation xy' + y = 0 sont les fonctions y(x) = C/x. On en déduit

$$\varphi(x) = C \ln x + D \text{ avec } C, D \in \mathbb{R}$$

Les fonction harmoniques radiales sont les

$$f(x, y) = C' \ln(x^2 + y^2) + D$$

avec $C', D \in \mathbb{R}$.

Exercice 91: [énoncé]

(a) g est de classe C^2 par opérations sur les fonctions C^2 .

D'une part :

$$\frac{\partial g}{\partial r} = \cos t \frac{\partial f}{\partial x} + \sin t \frac{\partial f}{\partial y}$$

et

$$\frac{\partial}{\partial r} \left(r \frac{\partial g}{\partial r} \right) = \cos t \frac{\partial f}{\partial x} + \sin t \frac{\partial f}{\partial y} + r \cos^2 t \frac{\partial^2 f}{\partial x^2} + 2r \cos t \sin t \frac{\partial^2 f}{\partial x \partial y} + r \sin^2 t \frac{\partial^2 f}{\partial y^2}$$

D'autre part :

$$\frac{\partial g}{\partial t} = -r\sin t \frac{\partial f}{\partial x} + r\cos t \frac{\partial f}{\partial y}$$

et

$$\frac{\partial^2 g}{\partial t^2} = -r\cos t \frac{\partial f}{\partial x} - r\sin t \frac{\partial f}{\partial y} + r^2\sin^2 t \frac{\partial^2 f}{\partial x^2} - 2r^2\cos t \sin t \frac{\partial^2 f}{\partial x \partial y} + r^2\cos^2 t \frac{\partial^2 f}{\partial y^2}$$

donc

$$r\frac{\partial}{\partial r}\left(r\frac{\partial g}{\partial r}\right) + \frac{\partial^2 g}{\partial t^2} = r^2\left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial f^2}{\partial y^2}\right) = 0$$

(b) $g: (r,t) \mapsto f(r\cos t, r\sin t)$ admet des dérivées partielles $\frac{\partial g}{\partial r}, \frac{\partial^2 g}{\partial r^2}$

Pour tout $r \in \mathbb{R}$, les applications $t \mapsto g(r,t)$ et $t \mapsto \frac{\partial g}{\partial r}(r,t)$ sont continue par morceaux donc intégrables sur $[0; 2\pi]$.

 $\frac{\partial^2 g}{\partial r^2}$ est continue en t et continue par morceaux en t.

Soit $[a;b] \subset \mathbb{R}$. $\frac{\partial^2 g}{\partial r^2}$ est continue sur le compact $[a;b] \times [0;2\pi]$ donc bornée par un certain $M \in \mathbb{R}_+$

$$\forall (x,t) \in [a\,;b] \times [0\,;2\pi], \left| \frac{\partial^2 g}{\partial r^2}(r,t) \right| \leq M = \psi(t)$$

La fonction ψ est intégrable sur $[0; 2\pi]$ et donc, par intégration sur tout segment, on peut affirmer que φ est de classe C^2 sur \mathbb{R} avec

$$\varphi'(r) = \int_0^{2\pi} \frac{\partial g}{\partial r}(r, t) dt \text{ et } \varphi''(r) = \int_0^{2\pi} \frac{\partial^2 g}{\partial r^2}(r, t) dt$$

Ainsi

$$r(r\varphi'(r))' = r\varphi'(r) + r^2\varphi''(r) = -\int_0^{2\pi} \frac{\partial^2 g}{\partial t^2}(r,t) \, \mathrm{d}t = \left[\frac{\partial g}{\partial t}(r;t)\right]_0^{2\pi}$$

Puisque $t \mapsto g(r, t)$ est 2π périodique, il en est de même de $t \mapsto \frac{\partial g}{\partial t}(r, t)$ et donc

$$r(r\varphi'(r))' = 0$$

Puisque $r \mapsto (r\varphi'(r))'$ est continue et nulle sur \mathbb{R}^* , cette fonction est continue nulle sur \mathbb{R} .

(c) Par suite, il existe $C \in \mathbb{R}$ tel que $r\varphi'(r) = C$ puis

$$\varphi'(r) = \frac{C}{r}$$

et

$$\varphi(r) = C \ln|r| + D$$

sur \mathbb{R}^* .

Or φ est définie et continue sur \mathbb{R} donc C=0 et finalement φ est constante.

Exercice 92 : [énoncé]

Pour $y \in]-R$; R[fixé, on peut appliquer le théorème dérivation sous le signe somme à l'application

$$x \mapsto \sum_{n=0}^{+\infty} a_n (x + iy)^n$$

sur les segments [a;b] inclus dans]-r;r[avec $r=\sqrt{R^2-y^2}.$

En effet, la série entière dérivée de $\sum_{n=0}^{+\infty} a_n z^n$ a pour rayon de convergence R et donc celle-ci converge normalement sur tout compact inclus dans le disque ouvert D(0, R), en particulier sur le compact $[a;b] \times \{y\}$

On obtient alors

$$\frac{\partial f}{\partial x}(x,y) = \sum_{n=1}^{+\infty} na_n(x+iy)^{n-1}$$

De même

$$\frac{\partial^2 f}{\partial x^2}(x, y) = \sum_{n=2}^{+\infty} n(n-1)a_n(x+iy)^{n-2}$$

et aussi

$$\frac{\partial^2 f}{\partial y^2}(x,y) = \sum_{n=2}^{+\infty} -n(n-1)a_n(x+iy)^{n-2}$$

d'où la conclusion.

Exercice 93: [énoncé]

Par composition de fonctions de classe C^2 , la fonction F est de classe C^2 sur $\mathbb{R}^n \setminus \{0\}$ On calcule les dérivées partielles de F

$$\frac{\partial F}{\partial x_i}(x_1,\ldots,x_n) = \frac{x_i}{\sqrt{x_1^2 + \cdots + x_n^2}} f'\left(\sqrt{x_1^2 + \cdots + x_n^2}\right)$$

$$\frac{\partial^2 F}{\partial x_i^2}(x_1, \dots, x_n) = \frac{x_i^2}{x_1^2 + \dots + x_n^2} f'' \left(\sqrt{x_1^2 + \dots + x_n^2} \right) + \frac{x_1^2 + \dots + x_n^2 + \dots + x_n^2}{(x_1^2 + \dots + x_n^2)^{3/2}} f' \left(\sqrt{x_1^2 + \dots + x_n^2} \right)$$

On en déduit

$$\sum_{i=1}^{n} \frac{\partial^{2} F}{\partial x_{i}^{2}} = f'' \left(\sqrt{x_{1}^{2} + \dots + x_{n}^{2}} \right) + \frac{n-1}{\sqrt{x_{1}^{2} + \dots + x_{n}^{2}}} f' \left(\sqrt{x_{1}^{2} + \dots + x_{n}^{2}} \right)$$

Puisque $t = \sqrt{x_1^2 + \dots + x_n^2}$ parcourt \mathbb{R}_+^* quand (x_1, \dots, x_n) parcourt $\mathbb{R}^n \setminus \{0\}$, l'équation $\sum_{i=1}^n \frac{\partial^2 F}{\partial x_i^2} = 0$ est vérifiée si, et seulement si, f est solution sur \mathbb{R}_+^* de l'équation différentielle

$$f''(t) + \frac{(n-1)}{t}f'(t) = 0$$

Après résolution on obtient

$$f(t) = \frac{\lambda}{t^{n-2}} + \mu \text{ avec } \lambda, \mu \in \mathbb{R} \text{ si } n \neq 2 \text{ et } f(t) = \lambda \ln t + \mu \text{ si } n = 2$$

Exercice 94: [énoncé]

(a) Puisque

$$\overrightarrow{\nabla} F = \frac{\partial F}{\partial x} \overrightarrow{i} + \frac{\partial F}{\partial y} \overrightarrow{j}$$

on a

$$\Delta F = \overrightarrow{\text{div}} \overrightarrow{\text{grad}} F = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2}$$

(b) Introduisons f et \tilde{f} les représentations cartésiennes et polaires de F. On a

$$F(M) = \tilde{f}(r,\theta) = f(r\cos\theta, r\sin\theta)$$

donc

$$\frac{\partial \tilde{f}}{\partial r}(r,\theta) = \cos\theta \frac{\partial f}{\partial x}(r\cos\theta, r\sin\theta) + \sin\theta \frac{\partial f}{\partial y}(r\cos\theta, r\sin\theta)$$

ce qu'on réécrit

$$\frac{\partial F}{\partial r}(M) = \cos\theta \frac{\partial F}{\partial x}(M) + \sin\theta \frac{\partial F}{\partial y}(M)$$

De même

$$\frac{\partial F}{\partial \theta}(M) = -r \sin \theta \frac{\partial F}{\partial x}(M) + r \cos \theta \frac{\partial F}{\partial y}(M)$$

(c) Aussi

$$\frac{\partial^2 F}{\partial r^2}(M) = \cos^2 \theta \frac{\partial^2 F}{\partial x^2}(M) + \sin^2 \theta \frac{\partial^2 F}{\partial y^2}(M) + 2\cos \theta \sin \theta \frac{\partial^2 F}{\partial x \partial y}(M)$$

et

$$\begin{split} \frac{\partial^2 F}{\partial \theta^2}(M) &= r^2 \sin^2 \theta \frac{\partial^2 F}{\partial x^2}(M) + r^2 \cos^2 \theta \frac{\partial^2 F}{\partial y^2}(M) - 2r^2 \cos \theta \sin \theta \frac{\partial^2 F}{\partial x \partial y}(M) \\ &- r \cos \theta \frac{\partial F}{\partial x}(M) - r \sin \theta \frac{\partial F}{\partial y}(M) \end{split}$$

On observe alors

$$r^2 \frac{\partial^2 F}{\partial r^2}(M) + r \frac{\partial F}{\partial r}(M) + \frac{\partial^2 F}{\partial \theta}(M) = r^2 \left(\frac{\partial^2 F}{\partial x^2}(M) + \frac{\partial^2 F}{\partial y^2}(M) \right)$$

et donc

$$\Delta F = \frac{\partial^2 F}{\partial r^2} + \frac{1}{r} \frac{\partial F}{\partial r} + \frac{1}{r^2} \frac{\partial^2 F}{\partial \theta^2}$$

Exercice 95 : [énoncé]

Introduisons les représentations cartésiennes et cylindriques de F.

$$F(M) = \tilde{f}(\rho, \varphi, z) = f(\rho \cos \varphi, \rho \sin \varphi, z)$$

On en tire

$$\frac{\partial \tilde{f}}{\partial \rho}(\rho, \varphi, z) = \cos \varphi \frac{\partial f}{\partial x}(\rho \cos \varphi, \rho \sin \varphi, z) + \sin \varphi \frac{\partial f}{\partial y}(\rho \cos \varphi, \rho \sin \varphi, z)$$

qu'on réécrit :

$$\frac{\partial F}{\partial \rho}(M) = \cos \varphi \frac{\partial F}{\partial x}(M) + \sin \varphi \frac{\partial F}{\partial y}(M)$$

De même:

$$\frac{\partial F}{\partial \varphi}(M) = -\rho \sin \varphi \frac{\partial F}{\partial x}(M) + \rho \cos \varphi \frac{\partial F}{\partial y}(M)$$

Sachant $\vec{u}_{\rho} = \cos(\varphi) \cdot \vec{i} + \sin(\varphi) \cdot \vec{j}$ et $\vec{u}_{\varphi} = -\sin(\varphi) \cdot \vec{i} + \cos(\varphi) \cdot \vec{j}$, on obtient :

$$\frac{\partial F}{\partial \rho}(M)\vec{u}_{\rho} + \frac{1}{\rho}\frac{\partial F}{\partial \varphi}(M)\vec{u}_{\varphi} + \frac{\partial F}{\partial z}(M)\vec{k} = \frac{\partial F}{\partial x}(M)\vec{i} + \frac{\partial F}{\partial y}(M)\vec{j} + \frac{\partial F}{\partial z}(M)\vec{k}$$

Ainsi

$$\overrightarrow{\nabla}F = \frac{\partial F}{\partial \rho}\vec{u}_{\rho} + \frac{1}{\rho}\frac{\partial F}{\partial \omega}\vec{u}_{\varphi} + \frac{\partial F}{\partial z}\vec{k}$$

Exercice 96 : [énoncé]

$$\vec{F}(M) = \frac{x}{\sqrt{x^2 + y^2}} \vec{i} + \frac{\vec{y}}{\sqrt{x^2 + y^2}} \vec{j}.$$

(a)
$$\div \vec{F}(M) = \left(\frac{1}{\sqrt{x^2 + y^2}} - \frac{x^2}{\sqrt{x^2 + y^2}}\right) + \left(\frac{1}{\sqrt{x^2 + y^2}} - \frac{y^2}{\sqrt{x^2 + y^2}}\right) = \frac{1}{OM}.$$

(b) \vec{F} dérive du potentiel $V(M) = \sqrt{x^2 + y^2} = OM$.

Exercice 97: [énoncé]

$$\vec{F}(M) = \frac{x}{\sqrt{x^2 + y^2 + z^2}} \vec{i} + \frac{y}{\sqrt{x^2 + y^2 + z^2}} \vec{j} + \frac{z}{\sqrt{x^2 + y^2 + z^2}} \vec{k}$$

(a) \vec{F} dérive du potentiel $V(M) = -\frac{1}{\sqrt{x^2 + y^2 + z^2}} = -\frac{1}{OM}$.

(b)
$$\div \vec{F}(M) = \left(\frac{1}{OM^3} - 3\frac{x^2}{OM^5}\right) + \left(\frac{1}{OM^3} - 3\frac{y^2}{OM^5}\right) + \left(\left(\frac{1}{OM^3} - 3\frac{z^2}{OM^5}\right)\right) = -\frac{2}{OM^3}.$$

 $\overrightarrow{Rot} \overrightarrow{F} = \overrightarrow{o} \operatorname{car} \overrightarrow{F} \operatorname{d\acute{e}rive} \operatorname{d'un} \operatorname{potentiel}.$

Exercice 98: [énoncé]

$$\vec{\omega} = \omega_x \vec{i} + \omega_y \vec{j} + \omega_z \vec{k}.$$

$$\vec{F}(M) = (\omega_{y}z - \omega_{z}y)\vec{i} + (\omega_{z}x - \omega_{x}z)\vec{j} + (\omega_{x}y - \omega_{y}x)\vec{k}$$

(a)
$$\div \vec{F}(M) = 0$$
. $\overrightarrow{Rot}\vec{F}(M) = 2\omega_x \vec{i} + 2\omega_y \vec{j} + 2\omega_z \vec{k} = 2\vec{\omega}$.

(b) Lorsque $\vec{\omega} \neq \vec{0}$, le champ \vec{F} ne dérive pas d'un potentiel. Lorsque $\vec{\omega} = \vec{0}$, le champ \vec{F} est nul et donc d'un dérive de n'importe quel potentiel constant.

Exercice 99: [énoncé]

(a) $\vec{\gamma}_2$ paramètre le quart d'une ellipse partant du sommet A(a,0) jusqu'au sommet B(0,b).

 $\vec{\gamma}_1$ paramètre le segment [A; B] de A vers B.

(b) Le champ de vecteurs \vec{V} dérive du potentiel U si, et seulement si,

$$\frac{\partial U}{\partial x}(x, y) = y \text{ et } \frac{\partial U}{\partial y}(x, y) = 2x$$

Un tel potentiel est alors de classe C^2 et l'égalité de Schwarz

$$\frac{\partial^2 U}{\partial x \partial y} = \frac{\partial^2 U}{\partial y \partial x}$$

n'étant pas vérifiée, on peut conclure à l'inexistence de U.

(c) La circulation de \vec{V} le long de $\vec{\gamma}_1$ est

$$\int_0^1 -abt + 2ab(1-t) dt = \frac{ab}{2}$$

et celle le long de $\vec{\gamma}_2$ est

$$\int_0^{\pi/2} -ab \sin^2(s) + 2ab \cos^2(s) \, ds = \frac{ab\pi}{4}$$

Par la différence des deux valeurs obtenues, on retrouve que \vec{V} ne dérive pas d'un potentiel.