Accuracy is not always a useful metric to validate models

We can prevent Class imbalance, an uneven frequency of classes, through a confusion matrix.

Predicted:	Predicted:
Legitimate	Fraudulent

Actual: Legitimate
Actual: Fraudulent

True Negative	False Positive
False Negative	True Positive

TP = correctly predicted positives

TN = correctly predicted negatives

FP = predicted positive, but actually negative

FN = predicted negative, but actually positive

$$\frac{tp+tn}{tp+tn+fp+fn}$$

precision:

$$\frac{tp}{tp+fp}$$

high precision = lower false positive rate

recall:

$$\frac{tp}{tp+fn}$$

high recall = lower false negative rate

F1: harmonic mean of precision and recall

$$2*\frac{precision*recall}{precision+recall}$$

```
from sklearn.metrics import classification_report, confusion_matrix
knn = KNeighborsClassifier(n_neighbors=7)
X_train, X_test, y_trian, y_test = train_Test_split(X, y, test_size = 0.4,
random_state=42)
knn.fit(X_train, y_train)
```

```
y_pred = knn.predict(X_test)
print(confusion_matrix(y_test, y_pred)) # 1106 tn, 183 fn, 11 fp, 34 tp
print(classification_report(y_test, y_pred))
```

```
print(confusion_matrix(y_test, y_pred))
```

```
[[1106 11]
[ 183 34]]
```

```
print(classification_report(y_test, y_pred))
```

	precision	recall	f1-score	support
Θ	0.86	0.99	0.92	1117
1	0.76	0.16	0.26	217
200112204			0.85	1334
accuracy			0.00	1334
macro avg	0.81	0.57	0.59	1334
weighted avg	0.84	0.85	0.81	1334

Logistic regression and the ROC curve

Used for classification problems

Output probabilities that the data is in a class

If p>0.5, data is labelled as 1. Else, labelled as 0

```
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
# split data
# logreg.fit
# predict
```

```
y_pred_probs = logreg.predict_proba(X_test)[:, 1]
print(y_pred_probs[0])
# default threshold is 0.5
```

The threshold can be varied. The ROC curve shows threshold changes affect results

```
from sklearn.metrics import roc_curve
fpr, tpr, thresholders = roc_curve(y_test, y_pred_probs)
plt.plot([0,1], [0, 1], 'k--')
plt.plot(fpr, tpr) # false positive rate, true positive rate
plt.show()
```

Area under Curve (AUC)

```
from sklearn.metrics import roc_auc_score
print(roc_auc_score(y_test, y_pred_probs)) # 0.67
```

Hyperparameter tuning

Hyperparameters such as alpha or n_neighbors How to choose correct parameters?

- 1. try different values
- 2. fit all separately
- 3. see how they perform
- 4. choose the best values

Important to use CV when hyperparameter tuning

The number of fits = number of hyperparameters *values* folders This doesn't scale well.

```
Ex:
```

```
3-fold, 1 hyperparam, 10 values = 30 fits 10-fold, 3 hyperparams, 30 values = 900 fits
```

Or use RandomizedSearchCV

```
ridge = Ridge()
ridge_cv = GridSearchCV(ridge, param_grid, cv=kf, n_iter=2) # n_iter is the
number of hyperparams tested
ridge_cv.fit(X_train, y_train)
print(ridge_cv.best_params_, ridge_cv.best_score_)

test_score = ridge_cv.score(X_test, y_test)
print(test_score)
```