

PROGRAMMING and ALGORITHMS II

Brief Recap on

COMPLEXITY BASICS

Eulerian Cycles

(use each edge once to cycle the graph)

source: Wolfram Mathworld

Hamiltonian Cycles

(use each node once to cycle the graph)

Computability Classes...

describe sets of problems (or languages) that can be solved (decided/recognised) at all by a given machine (e.g. a Turing Machine)...

Complexity Classes...

describe sets of problems (or languages) that can be solved by a given machine (e.g. a Turing Machine) in a **bounded amount** of time, space or other resource...

Computability Theory

- Computability Theory aims at working out what can be computed at all
- Not everything can be computed! some problems/languages cannot be decided by a Turing Machine ... e.g. halting problem (board)

DECIDABLE UNDECIDABLE (see COMS20002) (see COMS11700)

TM

• Type 0: recursively enumerable

$$X \rightarrow Y$$

Type 1: context-sensitive
 XAY → XZY

• Type 2: context-free

$$A \rightarrow X$$

Type 3: regular

$$\frac{A \to a; A \to aB}{\uparrow}$$

trivial

X,Y,Z... strings of terminals and non-terminals

a,b,c ... terminals

 $A, B, C \dots$ non-terminals

A Noam Chomsky

Modelling Problem Difficulty

problem complexity

Decidable

Tractable

Intractable

Complexity Boundaries

(1960s - today)

1960s: Hartmanis and

Stearns: Complexity classes

1971: Cook/Levin, Karp: P=NP?

1976: Knuth's O, Ω, Θ

Undecidable

Computability Boundaries

(1800s – 1960s)

1900: Hilbert's Problems

1936: Turing's Computable Numbers

1957: Chomsky's Syntactic Structures

Recap: Big-O and Big-Ω

f(n) = O(g(n)) defines an upper bound and means: There are *positive* constants c and n_0 such that

$$f(n) \le cg(n)$$
 for all $n \ge n_0$

 $f(n) = \Omega(g(n))$ defines a lower bound and means: There are *positive* constants c and n_0 such that

$$f(n) \ge cg(n)$$
 for all $n \ge n_0$

Recap: Big-O and Big- Ω

Theta (`order of') Notation

Intuitively: $f(n) = \Theta(g(n))$ stipulates a set of functions that grow as fast as f that is:

Formally: $f(n) = \Theta(g(n))$ if and only if:

$$f(n) = O(g(n))$$

and
 $f(n) = \Omega(g(n))$

We then say f is of order g'

Recap: Game Verifiers

Given a path through a game, can you check if it is a valid winning path in polynomial time?

Example Problem:

Is x=96 part of the list A=(9,4,55,67,...,96,8)?

Deterministic Algorithm

```
• for i=1 to n {
   if (A(i) = x) return true;
}
return false;
```

Non-deterministic Algorithm

• j oracle_choice (1:n)
if {A(j) = x} return true
else return false;

Deterministic Machines...

running on a particular input will always produce the same output ... and the underlying machine model (e.g. a Turing Machine) will always pass through the same pre-determined sequence of states based on the input data and program.

Non-deterministic Machines (with an oracle) ...

can 'guess correctly' at decision points and their output can be verified quickly by checking the produced certificate in polynomial time.

Complexity Classes P vs NP BRISTOL Department of Computer Science

A decision problem is in P ...

if and only if it can be decided by a deterministic polynomial time Turing Machine.

A decision problem is in NP ...

if and only if it can be decided by a non-deterministic polynomial time Turing Machine

A language is in NP ...

if and only if it has a polynomial time verifier. That is, there is a certificate which can check that a string is part of the language in polynomial time.

Problem Complexity Overview

