Exercice 1. Calculs de primitives et d'intégrales.

- a) On a th = $\frac{\sinh}{\cosh} = \frac{\cosh'}{\cosh}$. Une primitive est donc donnée par $A: x \mapsto \ln(\cosh(x))$.
- On a, pour $x \in]0,1[\cup]1,+\infty[$, $b(x)=\frac{1}{x}\ln^{-2}(x)$ (forme $u'u^{-2}$, dérivée de $-u^{-1}$). Une primitive est donc $B: x \mapsto -\frac{1}{\ln(x)}$.
- Pour tout x dans [-1,1], on a $c(x)=-\frac{1}{2}(-2x)(1-x^2)^{\frac{1}{2}}$ (on a fait apparaître la forme $u'u^{1/2}$, dérivée de $\frac{2}{3}u^{3/2}$). Une primitive est donc $C: x\mapsto -\frac{1}{2}\cdot \frac{2}{3}(1-x^2)^{3/2}=-\frac{1}{3}(1-x^2)^{3/2}$. Remarque: la dérivabilité de $x\mapsto x^{3/2}$ est claire sur \mathbb{R}_+^* (cours). Il y a aussi dérivabilité en 0, on peut le montrer en revenant au taux d'accroissements.
- Pour tout x dans] -1, 1[, on a $d(x) = -\frac{1}{2}(-2x)(1-x^2)^{-\frac{1}{2}}$ (on a fait apparaître la forme $u'u^{-1/2}$, dérivée de $2u^{1/2}$). Une primitive est donc $D: x \mapsto -\frac{1}{2} \cdot 2(1-x^2)^{1/2} = -(1-x^2)^{1/2}$.
- b) Pour la première intégrale, c'est facile (primitive usuelle!)

$$I = \int_{\ln(2)}^{\ln(3)} \operatorname{ch}(x) dx = \left[\operatorname{sh}(x) \right]_{\ln(2)}^{\ln(3)} = \operatorname{sh}(\ln(3)) - \operatorname{sh}(\ln(2)) = \frac{3 - \frac{1}{3}}{2} - \frac{2 - \frac{1}{2}}{2} = \frac{7}{12}.$$

Pour J on fait un petit coup de +1-1:

$$J = \int_0^1 \frac{t}{\sqrt{t+1}} dt = \int_0^1 \frac{t+1-1}{\sqrt{t+1}} dt = \int_0^1 \left(\sqrt{t+1} - \frac{1}{\sqrt{t+1}}\right) dt$$

d'où

$$J = \left[\frac{2}{3}(t+1)^{3/2} - 2(t+1)^{1/2}\right]_0^1 = 2 - \frac{2}{3}(\sqrt{2}+1) = \boxed{\frac{2}{3}(2-\sqrt{2})}.$$

On calcule alors

$$I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{(1 + \tan^2(t))^2} (1 + \tan^2(t)) dt = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1 + \tan^2(t)} dt = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(t) dt.$$

On linéarise \cos^2 à l'aide d'une formule de duplication : $\cos^2(a) = \frac{1}{2} (1 + \cos(2a))$

$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(t) dt = \frac{1}{2} \left[\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} 1 dt + \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos(2t) dt \right] = \frac{1}{2} \left(\frac{\pi}{2} - \left[-\frac{1}{2} \sin(2t) \right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \right).$$

Ceci amène
$$I = \frac{\pi + 2}{4}$$

2) On a, par linéarité

$$I+J = \int_{-1}^{1} \frac{1}{(1+x^2)^2} dx + \int_{-1}^{1} \frac{x^2}{(1+x^2)^2} dx = \int_{-1}^{1} \frac{1+x^2}{(1+x^2)^2} dx = \int_{-1}^{1} \frac{1}{1+x^2} dx = \frac{\pi}{2}.$$

On en déduit que $J = \frac{\pi}{2} - I$, ce qui laisse $J = \frac{\pi - 2}{4}$

d) On intègre par parties, en posant u'(x) = x et $v(x) = (\arctan x)^2$. On a $v'(x) = \frac{2\arctan(x)}{x^2+1}$, et ceci nous incite à considérer comme primitive de u' la fonction $u(x) = \frac{1}{2}(x^2+1)$, ce qui va simplifier les calculs. On obtient alors

$$J = \frac{1}{2} [(x^2 + 1) (\arctan x)^2]_0^1 - \int_0^1 \arctan x dx$$

On calcule la dernière intégrale en réalisant à nouveau une intégration par parties :

$$J = \frac{\pi^2}{16} - \left[x \arctan x\right]_0^1 + \int_0^1 \frac{x}{x^2 + 1} dx = \frac{\pi^2}{16} - \frac{\pi}{4} + \frac{1}{2} \left[\ln\left(x^2 + 1\right)\right]_0^1 = \boxed{\frac{\pi^2}{16} - \frac{\pi}{4} + \frac{1}{2}\ln(2)}$$

e)	x	\sqrt{t}	$t\mapsto \sqrt{t}$ est de classe \mathcal{C}^1 sur $[1,2]$
	$\mathrm{d}x$	$\frac{1}{2\sqrt{t}}dt$	
	x = 1	t = 1	
	$x = \sqrt{2}$	t = 2	

$$\int_{1}^{2} \frac{1}{t + \sqrt{t}} dt = \int_{1}^{2} \frac{2}{\sqrt{t} + 1} \cdot \frac{1}{2\sqrt{t}} dt = \int_{1}^{\sqrt{2}} \frac{2}{x + 1} dx = \left[2\ln|x + 1| \right]_{1}^{\sqrt{2}} = \boxed{2\ln\left(\frac{\sqrt{2} + 1}{2}\right)}$$

f)
$$\begin{vmatrix} x & \frac{1}{u} \\ dx & -\frac{1}{u^2} du \\ x = a & u = \frac{1}{a} \\ x = \frac{1}{a} & u = a \end{vmatrix}$$

$$I_a = \int_{\frac{1}{u}}^a \frac{\arctan(x)}{x} dx = \int_a^{\frac{1}{a}} \frac{\arctan(\frac{1}{u})}{\frac{1}{u}} \left(\frac{1}{u^2}\right) du = \int_{\frac{1}{u}}^a \frac{\arctan(\frac{1}{u})}{u} du.$$

Or, pour $u \in \mathbb{R}_+^*$, on a $\arctan(\frac{1}{u}) = \frac{\pi}{2} - \arctan(u)$. On a donc

$$I_a = \int_{\frac{1}{a}}^{a} \frac{\frac{\pi}{2} - \arctan(u)}{u} du = \frac{\pi}{2} \left[\ln(u) \right]_{\frac{1}{a}}^{a} - I_a.$$

Ainsi
$$2I_a = \frac{\pi}{2} \left(\ln(a) - \ln\left(\frac{1}{a}\right) \right) = \frac{\pi}{2} \cdot 2\ln(a)$$
, soit $I_a = \frac{\pi \ln(a)}{2}$

g) On fait le changement de variable $u = \tan\left(\frac{t}{2}\right)$. On a

	u	$\tan\left(\frac{t}{2}\right)$
a	$\frac{1-u^2}{1+u^2}$	$\cos(t)$
	$2\arctan(u)$	t
	$\frac{2}{1+u^2}\mathrm{d}u$	$\mathrm{d}t$
	u = 0	t = 0
	u = 1	$t = \frac{\pi}{2}$

$$\int_0^{\pi/2} \frac{\mathrm{d}t}{1 + x \cos(t)} = \int_0^1 \frac{1}{1 + \frac{x(1 - u^2)}{1 + u^2}} \times \frac{2 \, \mathrm{d}u}{1 + u^2}$$

$$= \int_0^1 \frac{2 \, \mathrm{d}u}{1 + u^2 + x(1 - u^2)}$$

$$= \int_0^1 \frac{2 \, \mathrm{d}u}{u^2(1 - x) + 1 + x}$$

$$= \frac{1}{1 - x} \times \int_0^1 \frac{2 \, \mathrm{d}u}{u^2 + \frac{1 + x}{1 - x}}$$

Or $\frac{1+x}{1-x} > 0$ est positif. On récrit $\int_0^{\pi/2} \frac{dt}{1+x\cos(t)} = \frac{2}{1-x} \times \int_0^1 \frac{du}{u^2 + \sqrt{\frac{1+x}{1-x}}^2}$.

Comme $x \longmapsto \frac{1}{a} \times \arctan\left(\frac{x}{a}\right)$ est une primitive de $x \longmapsto \frac{1}{x^2 + a^2}$, il vient,

$$\int_0^{\pi/2} \frac{dt}{1 + x \cos(t)} = \frac{2}{1 - x} \times \left[\frac{1}{\sqrt{\frac{1 + x}{1 - x}}} \times \arctan\left(\frac{u}{\sqrt{\frac{1 + x}{1 - x}}}\right) \right]_0^1$$

$$= \frac{2}{1 - x} \times \left[\sqrt{\frac{1 - x}{1 + x}} \times \arctan\left(u \times \sqrt{\frac{1 - x}{1 + x}}\right) \right]_0^1$$

$$= \frac{2}{1 - x} \times \sqrt{\frac{1 - x}{1 + x}} \times \left[\arctan\left(u \times \sqrt{\frac{1 - x}{1 + x}}\right) \right]_0^1$$

$$= \frac{2}{\sqrt{(1 - x)(1 + x)}} \times \arctan\left(\sqrt{\frac{1 - x}{1 + x}}\right)$$

$$= \frac{2}{\sqrt{1 - x^2}} \times \arctan\left(\sqrt{\frac{1 - x}{1 + x}}\right)$$

Exercice 2...

1. On a
$$I_0 = \int_0^{\frac{\pi}{4}} 1 dx = \frac{\pi}{4}$$
 et
$$I_1 = \int_0^{\frac{\pi}{4}} \frac{\sin x}{\cos x} dx = \left[-\ln(\cos x) \right]_0^{\frac{\pi}{4}} = -\ln\left(\frac{\sqrt{2}}{2}\right) + 0 = \frac{\ln(2)}{2}.$$

2. Soit $n \in \mathbb{N}$. Par linéarité de l'intégrale, on a

$$I_n + I_{n+2} = \int_0^{\frac{\pi}{4}} (1 + \tan^2 x) \tan^n x dx$$
$$= \int_0^{\frac{\pi}{4}} \tan' x \cdot \tan^n x dx$$
$$= \left[\frac{1}{n+1} (\tan x)^{n+1} \right]_0^{\frac{\pi}{4}}$$
$$= \frac{1}{n+1}.$$

3. Soit $n \in \mathbb{N}$. On a

$$I_{n+1} - I_n = \int_0^{\frac{\pi}{4}} (\tan x - 1) \tan^n(x) dx.$$

Sur $[0, \frac{\pi}{4}]$, tan est positive et $\tan x \le \tan \frac{\pi}{4} = 1$, d'où $1 - \tan x \le 0$.

On est donc en train d'intégrer une fonction continue et négative, et $0 \le \frac{\pi}{4}$.

Cela assure que $I_{n+1} - I_n \le 0$; la suite $|(I_n)|$ est décroissante |.

La même propriété permet aussi de prouver que pour tout entier $n, I_n \ge 0$. La suite (I_n) est décroissante et minorée (par 0).

D'après le théorème de la limite monotone, (I_n) est convergente. Notons $\ell = \lim u_n$.

Passons à la limite dans l'égalité $I_n + I_{n+2} = \frac{1}{n+1}$: on a $\ell + \ell = 0$: $\lim I_n = 0$.

4. Procédons par récurrence en notant, pour un entier naturel n:

$$\mathcal{P}_n: \quad \ll (-1)^n I_{2n} = \frac{\pi}{4} + \sum_{k=1}^n \frac{(-1)^k}{2k-1} \quad \text{et} \quad (-1)^n I_{2n+1} = \frac{\ln(2)}{2} + \sum_{k=1}^n \frac{(-1)^k}{2k}.$$

• $(-1)^0 I_{2\cdot 0} = I_0 = \frac{\pi}{4} + \sum_{k=1}^0 \frac{(-1)^k}{2k-1}$ d'après la question 1.

De plus $(-1)^0 I_{2\cdot 0+1} = I_1 = \frac{\ln(2)}{2} + \sum_{k=1}^0 \frac{(-1)^k}{2k}$.

La proposition \mathcal{P}_0 est donc vraie.

• Soit $n \in \mathbb{N}$. Supposons \mathcal{P}_n . Montrons \mathcal{P}_{n+1} . Dans les calculs qui suivent, on utilise la question précédente en écrivant $I_{2n} + I_{2n+2} = \frac{1}{2n+1}$ et $I_{2n+1} + I_{2n+3} = \frac{1}{2n+2}$.

$$(-1)^{n+1}I_{2(n+1)} = (-1)^{n+1}I_{2(n+1)+1}$$

$$= (-1)^{n+1}I_{2n+2} = (-1)^{n+1}I_{2n+3}$$

$$= (-1)^n \cdot (-1) \cdot \left(\frac{1}{2n+1} - I_{2n}\right) = (-1)^{n+1} \cdot (-1) \cdot \left(\frac{1}{2n+2} - I_{2n+1}\right)$$

$$= (-1)^n I_{2n} - (-1)^n \frac{1}{2n+1} = (-1)^n I_{2n+1} - (-1)^n \frac{1}{2n+2}$$

$$= \frac{\pi}{2} + \sum_{k=1}^n \frac{(-1)^k}{2k-1} + \frac{(-1)^{n+1}}{2(n+1)-1} = \frac{\ln(2)}{2} + \sum_{k=1}^n \frac{(-1)^k}{2k} + \frac{(-1)^{n+1}}{2(n+1)}$$

$$= \frac{\pi}{4} + \sum_{k=1}^{n+1} \frac{(-1)^k}{2k-1}.$$

$$= \frac{\ln(2)}{2} + \sum_{k=1}^{n+1} \frac{(-1)^k}{2k}.$$

On a prouvé que \mathcal{P}_{n+1} est vraie.

• D'après le principe de récurrence, \mathcal{P}_n est vraie pour tout entier naturel n.

5. Soit $n \in \mathbb{N}$. D'après la question précédente, $(-1)^n I_{2n+1} = \frac{\ln(2)}{2} + \frac{1}{2} \sum_{k=1}^n \frac{(-1)^k}{k}$, d'où

$$\sum_{k=1}^{n} \frac{(-1)^k}{k} = -2 \cdot \frac{\ln(2)}{2} + 2 \cdot (-1)^n \cdot I_{2n+1}.$$

On a prouvé en question 3 que $I_n \to 0$. On a donc $\lim_{n \to +\infty} \sum_{k=1}^n \frac{(-1)^k}{k} = -\ln(2)$.

De la même façon, on a $(-1)^n I_{2n} = \frac{\pi}{4} + \sum_{k=1}^n \frac{(-1)^k}{2k-1}$, donc

$$\sum_{k=1}^{n} \frac{(-1)^k}{2k-1} = -\frac{\pi}{4} - (-1)^n I_{2n} \quad \text{Puisque } I_n \to 0, \text{ on a}$$

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^k}{2k-1} = -\frac{\pi}{4}.$$