COMP30026 Models of Computation

Lecture 15: Pushdown Automata

Mak Nazecic-Andrlon and William Umboh

Semester 2, 2024

DFAs and NFAs have limited memory.

Pushdown automaton (PDA): NFA with unlimited stack.

This PDA recognises $\{a^nb^n \mid n \geq 0\}$:

Transition notation:

input, top of stack \rightarrow new top of stack

How PDAs Work

Transitions based on 3 things:

- Current state
- Input symbol
- Top of stack

Operation of PDA:

- Start in start state.
- While input remains or not in a final state:
 - **Nondeterministically** pick a valid transition $a, b \rightarrow c$ from current to new state q. Reject if unable.
 - Consume input a.
 - 3 Replace b on top of stack with c.
 - Move to state q.
- Accept.

Pushdown Automata Formally

A pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- Q is a finite set of states,
- \bullet Σ is the finite input alphabet,
- Γ is the finite stack alphabet,
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the transition function,
- $q_0 \in Q$ is the start state, and
- $F \subseteq Q$ are the accept states.

Example Transitions

$$\delta(q_5,\mathtt{a},\mathtt{b})=\{(q_7,\epsilon)\}$$
 means:

If in state q_5 , when reading input symbol a, provided the top of the stack holds 'b', consume the a, pop the b, and go to state q_7 .

$$\delta(q_5, \epsilon, b) = \{(q_6, a), (q_7, b)\}$$
 means:

If in state q_5 , and if the top of the stack holds 'b', either replace that b by a and go to state q_6 , or leave the stack as is and go to state q_7 . In either case do not consume an input symbol.

This PDA recognises $\{a^nb^n \mid n \geq 0\}$:

- $Q = \{q_0, q_1, q_2, q_3\};$
- $\Sigma = \{a, b\};$
- $\Gamma = \{a, \$\};$
- $\delta(q_0, \epsilon, \epsilon) = \{(q_1, \$)\}, \delta(q_1, a, \epsilon) = \{(q_1, a)\},\$ $\delta(q_1, b, a) = \{(q_2, \epsilon)\}, \delta(q_2, b, a) = \{(q_2, \epsilon)\},\$ $\delta(q_2, \epsilon, \$) = \{(q_3, \epsilon)\},\$ for other inputs δ returns \emptyset ;
- $q_0 = q_0$;
- $F = \{q_0, q_3\}.$

Acceptance Precisely

The PDA $(Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts input w iff $w = v_1 v_2 \cdots v_n$ with each $v_i \in \Sigma_{\epsilon}$, and there are states $r_0, r_1, \ldots, r_n \in Q$ and strings $s_0, s_1, \ldots, s_n \in \Gamma^*$ such that

- ② $(r_{i+1}, b) \in \delta(r_i, v_{i+1}, a)$, $s_i = at$, $s_{i+1} = bt$ with $a, b \in \Gamma_{\epsilon}$ and $t \in \Gamma_{\epsilon}^*$.
- \circ $r_n \in F$.

Note 1: There is no requirement that $s_n = \epsilon$, so the stack may be non-empty when the machine stops (even when it accepts).

Note 2: Empty stack cannot be popped.

Let $w^{\mathcal{R}}$ denote the string w reversed.

Let us design a PDA to recognise $\{ww^{\mathcal{R}} \mid w \in \{0,1\}^*\}$, the set of even-length binary palindromes:

This PDA recognises $\{ww^{\mathcal{R}} \mid w \in \{0,1\}^*\}$:

$$0, \epsilon \to 0 \qquad 0, 0 \to \epsilon$$

$$1, \epsilon \to 1 \qquad 1, 1 \to \epsilon$$

$$0, \epsilon \to \epsilon \longrightarrow 0 \qquad 0, 0 \to \epsilon$$

$$1, \epsilon \to \epsilon \longrightarrow 0 \qquad 0, 0 \to \epsilon$$

$$1, \epsilon \to \epsilon \longrightarrow 0 \qquad 0, 0 \to \epsilon$$

$$1, \epsilon \to \epsilon \longrightarrow 0 \qquad 0, 0 \to \epsilon$$

$$1, \epsilon \to \epsilon \longrightarrow 0 \qquad 0, 0 \to \epsilon$$

$$1, \epsilon \to \epsilon \longrightarrow 0 \qquad 0, 0 \to \epsilon$$

$$1, \epsilon \to \epsilon \longrightarrow 0 \qquad 0, 0 \to \epsilon$$

$$1, \epsilon \to \epsilon \longrightarrow 0 \qquad 0, 0 \to \epsilon$$

$$1, \epsilon \to \epsilon \longrightarrow 0 \qquad 0, 0 \to \epsilon$$

$$1, \epsilon \to \epsilon \longrightarrow 0 \qquad 0, \epsilon \to \epsilon$$

$$1, \epsilon \to \epsilon \longrightarrow 0 \qquad \epsilon, \epsilon \to \epsilon$$

$$1, \epsilon \to \epsilon \longrightarrow 0 \qquad \epsilon, \epsilon \to \epsilon$$

$$1, \epsilon \to \epsilon \longrightarrow 0 \qquad \epsilon, \epsilon \to \epsilon$$

$$1, \epsilon \to \epsilon \longrightarrow 0 \qquad \epsilon, \epsilon \to \epsilon$$

$$1, \epsilon \to \epsilon \longrightarrow 0 \qquad \epsilon, \epsilon \to \epsilon$$