Basic Morse Theory

Qiuyang Wang (qw2319) 2022.04.21

1 Introduction

Morse theory is mainly about how Morse functions can reflect the topology of a manifold. Here, I will start with basic definitions, then show there are abundant Morse functions by the theorem of existence. Finally, I will talk about handle decomposition, which, from my point of view, is the heart of Morse theory.

2 Morse Function

2.1 Basic Definition

Definition (Critical points)

Let $f: \mathcal{M} \to \mathbf{R}$ be a smooth function, where \mathcal{M} is a smooth manifold with dimension m. A point p_0 is called critical point of f if

$$\frac{\partial f}{\partial x^1} = 0, \frac{\partial f}{\partial x^2} = 0, \dots, \frac{\partial f}{\partial x^m} = 0$$

where (x^1, x^2, \dots, x^m) is a local coordinate system.

There are 2 kinds of critical points, which can be determined by the Hessian matrix $H_f(p) = \left[\frac{\partial^2 f}{\partial x^i \partial x^j}\right](p)$. A critical point p_0 is called non-degenerate if $H_f(p_0) \neq 0$, degenerate if $H_f(p_0) = 0$.

Definition (Morse function)

 $f: \mathcal{M} \to \mathbf{R}$ is a Morse function if every critical point of f is non-degenerate.

The reason why we need non-degenerate critical points is because of stability. Generally speaking, we can always perturb a smooth function to make degenerate critical points vanish. For example, x=0 is the degenerate critical point for $f(x)=x^3$. If we perturb this function linearly $f(x)=x^3+\epsilon x$, then either there is no critical point $(\epsilon>0)$, or split into 2 non-degenerate critical points $x=\pm\sqrt{\frac{-\epsilon}{3}}$ $(\epsilon<0)$.

2.2 Morse Lemma

Morse functions have a nice behavior locally, here is an example.

Theorem (Morse lemma)

Let p_0 be a non-degenerate critical point of $f: \mathcal{M} \to \mathbf{R}$, then we can choose a local coordinate system $(x^1, ..., x^m)$ such that f locally has the standard form:

$$f = -(x^1)^2 - (x^2)^2 - \dots - (x^{\lambda})^2 + (x^{\lambda+1})^2 + \dots + (x^m)^2 + c$$

where p_0 correspond the origin and $c = f(p_0)$.

We then call λ the index of p_0 , which is an integer between 0 and m.

This theorem means f locally looks like a quadratic form near a critical point. Here I give a brief proof. Proof.

It will be easy if we assume f is replaced by $f - f(p_0)$. i.e. $f(p_0) = 0$. Moreover, let $p_0 = (0...0) = \overline{0}$. For f(0...0) = 0, there exist m smooth functions g_i with local coordinate $x^1...x^m$ s.t.

$$f(x^{1}...x^{m}) = \sum_{i=1}^{m} x^{i} g_{i}(x^{1}...x^{m}) \quad \& \quad \frac{\partial f}{\partial x^{i}}(\overline{0}) = g_{i}(\overline{0})$$

Since p_0 is critical point, then $g^i(\overline{0}) = 0$, which means we can apply the same procedure:

$$g_i(x^1...x^m) = \sum_{j=1}^m x^j h_{ij}(x^1...x^m) \quad \& \quad \frac{\partial g_i}{\partial x^j}(\overline{0}) = h_{ij}(\overline{0})$$

Thus, we have

$$f(x^{1}...x^{m}) = \sum_{i,j=1}^{m} x^{i}x^{j}h_{ij}(x^{1}...x^{m})$$

.

Since p_0 is non-degenerate, $\det H_f(\overline{0}) \neq 0$. WLOG, we can assume $\frac{\partial^2 f}{\partial x^1 \partial x^1}(\overline{0}) \neq 0$ (we can do this since $\exists j$ such that $\frac{\partial^2 f}{\partial x^1 \partial x^j}(\overline{0}) \neq 0$, then just reorder the index). Let $H_{ij} = \frac{h_{ij} + h_{ji}}{2}$, can check $H_{11}(\overline{0}) \neq 0$. Since H is continuous, we can find a neighborhood of $\overline{0}$ s.t. $H_{11} \neq 0$.

Now change the coordinate, let

$$y^{1} = \sqrt{|H_{11}|}(x^{1} + \sum_{i=2}^{m} x^{i} \frac{H_{1i}}{H_{11}})$$

We can check the determinant of Jacobian of $(y^1, x^2, ..., x^m)$ is nonzero, thus it's a local coordinate system. Combine the formula of y^1 with $f(x^1...x^m) = \sum_{i,j=1}^m x^i x^j H_{ij}(x^1...x^m)$, we get:

$$f = \pm (y^1)^2 + \sum_{i,j=2}^{m} x^i x^j H_{ij} - (\sum_{i=2}^{m} x^i \frac{H_{1i}}{H_{11}^2})^2$$

. Then we can do the coordinate transform of $y^2,...,y^m$ by induction. In the case of 2 dimension, $y^2 = \sqrt{|\frac{H_{11}H_{22}-H_{12}^2}{H_{11}}|x^2}$. Q.E.D.

2.3 Existence of Morse Function

Till now, what we did is defining Morse function. However, to make Morse theory useful, we wish we can always find a Morse function given a smooth manifold \mathcal{M} .

Theorem (Existence of Morse function)

Let \mathcal{M} be a smooth compact closed manifold and $f: \mathcal{M} \to \mathbf{R}$ is a smooth function. Then there exist a Morse function $g: \mathcal{M} \to \mathbf{R}$, and g is a (C^2, ϵ) approximation of f. (i.e. under C^2 topology)

Definition $((C^2, \epsilon)$ approximation)

f, g are defined on a compact set K, then f is a (C^2, ϵ) approximation of g if for $\forall \epsilon > 0$

$$|f^{(k)}(p) - g^{(k)}(p)| < \epsilon$$

 $\forall p \in K, \forall 0 \le k \le 2$, where k is the order of derivation.

This theorem means whenever there is a smooth function $\mathcal{M} \to \mathbf{R}$, there is a Morse function. Here is a sketch of proof.

Proof. First, we need a lemma:

Lemma Let U be an open set in \mathbb{R}^m , and $f: U \to \mathbb{R}$ is smooth. Then exist $a_1, ..., a_m$ such that $g(x^1...x^m) = f(x^1...x^m) - (a_1x^1 + \cdots + a_mx^m)$ is a Morse function. And $|a_1|, ..., |a_m|$ can be arbitrarily small.

To prove the lemma, define $h:U\to \mathbf{R}^m$ $(x^1,...,x^m)\mapsto (\frac{\partial f}{\partial x^1}...\frac{\partial f}{\partial x^m})$. Then the Jacobian of h becomes the Hessian of f. We know that p_0 is the critical point of h if and only if the Jacobian is 0. i.e. $\det H_f(p_0)=0$. By Sard's Theorem, the set of critical points of h has measure zero, which suggests we can always choose $(a_1,...,a_m)$ not a critical value of h with arbitrarily small absolute value.

Suppose p_0 is the critical point of g, then can check $h(p_0) = (a_1...a_m)$. Choose $(a_1...a_m)$ s.t. p_0 is not a critical point of h. i.e. $H_f(p_0) \neq 0$. Then $H_g(p_0) = H_f(p_0) \neq 0$. Thus p_0 is a non-degenerate critical point of g. This completes the proof of lemma.

Now since \mathcal{M} is compact, we can choose finite charts $U_1...U_k$ that cover \mathcal{M} .

We prove this theorem inductively. Suppose f_{i-1} is a Morse function defined on C_{i-1} , where $C_i = U_1 \cup ... \cup U_i$. Define:

$$f_i = f_{i-1} + (a_1 x^1 + \dots + a_m x^m) h_i(x^1 \dots x^m)$$

where h_i is a smooth function defined on C_i , $0 \le h_i \le 1$. For two neighborhood V, K of $C_{i-1}(C_{i-1} \subset V \subset K \subset C_i)$, $h_i = 1$ in V and $h_i = 0$ outside K. Thus, f_i is smooth on C_i .

Since the 1st and 2nd derivative of h is bounded, we can take arbitrarily small $(a_1, ..., a_m)$ to make f_i is a (C^2, ϵ) approximation of f_{i-1} . By induction, $f_k = g$ is the Morse function we need. Q.E.D.

3 Handle Decomposition

We have discussed some properties of Morse functions. Now, it's time to see how they are related to the topology of manifolds. In this section, we will show a manifold could be built with some basic blocks.

Theorem Let $f: \mathcal{M} \to \mathbf{R}$ be a Morse function and \mathcal{M} is a closed manifold. If f has no critical values in [a,b], then $\mathcal{M}_{[a,b]} \cong f^{-1}(a) \times [0,1]$. $(\mathcal{M}_{[a,b]} = \{p \in \mathcal{M} | a \leq f(p) \leq b\})$

Note that two manifolds $\mathcal{N} \cong \mathcal{M}$ means \exists diffeomorphism $f : \mathcal{N} \to \mathcal{M}$.

Before beginning our proof, I give a theorem about gradient-like vector field without proof.

Theorem(Gradient-like vector field)

 $f: \mathcal{M} \to \mathbf{R}$ is Morse function on compact manifold \mathcal{M} , then there exist a gradient like vector field X for f. Where (i) Xf > 0 if not at critical points

 $(ii)X = -2x^1 \frac{\partial}{\partial x^1} - \dots 2x^{\lambda} \frac{\partial}{\partial x^{\lambda}} + \dots + 2x^m \frac{\partial}{\partial x^m}$ on a neighborhood of critical points.

Proof. Def $Y = \frac{X}{Xf}$ since there is no critical value in [a,b]. $\forall p \in f^{-1}(a)$, we can always find a curve $c_p(t)$ with $\frac{d}{dt}f(c_p(t)) = \frac{dc}{dt}f = Y_{c(t)}f = 1$. We can check $c_p(t)$ is the diffeomorphism between $f^{-1}(a) \times [0,b-a]$ and $M_{[a,b]}$ since different $c_p(t)$ will never meet.

Corollary Let $f: \mathcal{M} \to \mathbf{R}$ be a Morse function and \mathcal{M} is a closed manifold. If f has no critical values in [a,b], then $\mathcal{M}_a \cong \mathcal{M}_b$. $(\mathcal{M}_t = \{p \in \mathcal{M} | f(p) \leq t\}$, called the sublevel set).

Proof. Similarly, since there is no critical value in [a, b], then we can let the curve flow along the gradient-like vector field. And after a finite time, \mathcal{M}_a meets \mathcal{M}_b .

This telles us if the shape of \mathcal{M}_t wouldn't change unless t pass a critical value. But how does the shape change exactly? We then need the theorem of handle decomposition.

Definition(λ handle)

A λ handle is the Cartesian product of a λ disk and $m - \lambda$ disk: $D^{\lambda} \times D^{m-\lambda}$. Here, the λ is the index of critical points and m is the dimension of manifold. D represents disk.

Theorem

Let c_i be critical value with index λ . Then $\mathcal{M}_{c_i+\epsilon} \cong \mathcal{M}_{c_i-\epsilon} \cup (D^{\lambda} \times D^{m-\lambda})$.

Figure 1.[1] $\mathcal{M}_{c_i-\epsilon}$ attached with a λ handle

An intuitive way of thinking is given the quadratic form of Morse function near critical point, the 'bridge' area could be thought as

$$(x^{1})^{2} + \dots + (x^{\lambda})^{2} - (x^{\lambda+1})^{2} - \dots (x^{m})^{2} \le \epsilon$$

 $(x^{\lambda+1})^{2} + \dots + (x^{m})^{2} \le \delta \le \epsilon$

We could see such handles are building blocks of manifold. Here is the precise theorem about it:

Definition(Handle body)

Let \mathbb{D}^m be a disk. After attaching handles one after one,

$$D^m \cup_{\varphi_1} (D^{\lambda_1} \times D^{m-\lambda_1}) \cup_{\varphi_2} \cdots \cup_{\varphi_n} (D^{\lambda_n} \times D^{m-\lambda_n}) = \mathcal{H}(D^m, \varphi_1, \dots, \varphi_n)$$

Such a manifold is called m-dimensional handlebody.

Here, \bigcup_{φ_i} means using a 'gluing' diffeomorphism φ_i : $\partial \mathcal{H}(D^m, \varphi_1, \dots, \varphi_{i-1}) \to \partial(D^{\lambda_i} \times D^{m-\lambda_i})$. Note that after attaching, the manifold is then smoothed out.

Theorem(Handle decomposition)

 $f: \mathcal{M} \to \mathbf{R}$ is a Morse function defined on closed manifold \mathcal{M} , then a structure of handlebody is determined by f.

The index of handles corresponds to the critical points.

This theorem tells us that a closed manifold could be cut into several building blocks(handles). Proof. By induction. For $i=0,\ M_{c_0+\epsilon}\cong D^m$. Assume that $M_{c_{i-1}+\epsilon}\cong \mathcal{H}(D^m,\varphi_1,\ldots,\varphi_{i-1})$. Since there is no critical point in $[c_{i-1}+\epsilon,c_i-\epsilon],\ M_{c_{i-1}+\epsilon}\cong M_{c_i-\epsilon}$. By the theorem above, $M_{c_i+\epsilon}\cong M_{c_i-\epsilon}\cup_{\varphi_i}(D^{\lambda_i}\times D^{m-\lambda_i})$. Thus $M_{c_i+\epsilon}\cong \mathcal{H}(D^m,\varphi_1,\ldots,\varphi_i)$. This completes the proof.

Note that there may be more than one way to glue handles. For example, as shown in fig2, in \mathbb{R}^2 , there are two ways to attach a 1-handle $D^1 \times D^1$ to a 2-handle D^2 . We can check the first one is diffeomorphic to a cylinder, while the second one is diffeomorphic to a Mobius strip.

Figure 2. two ways to attach a 1-handle of 2 dimension

We then show an example of handle decomposition to end this article. Fig3 shows the handle decomposition of a torus T^2 .

Figure 3. handle decomposition of a torus T^2

4 Reference

- [1] Matsumoto, Y. (2002). An introduction to Morse theory. Providence, R.I. American Mathematical Society.
- [2] Geiges, H. (2017). How to depict 5-dimensional manifolds. Jahresbericht der Deutschen Mathematiker-Vereinigung, 119(4), 221-247.
- [3] Nicolaescu, L. I. (2007). An invitation to Morse theory (pp. xiv+-241). New York: Springer.
- [4] Tu, L. W. (2011). An Introduction to Manifolds. Springer, New York, NY.