

数学分析

作者: hapo

时间: February 14, 2023

目录

1	集合	5与映射	2			
2	实数的完备性 3					
	2.1	数列极限	4			
	2.2	无穷大量	12			
		2.2.1 无穷大的运算	15			
	2.3	收敛准则	18			
3	函数极限与连续函数 26					
	3.1		28			
	3.2	单侧极限	29			
	3.3		 29			
	3.4		31			
	3.5		33			
	3.6		33			
	3.0		33			
			34			
			34 34			
	3.7		35			
	3.8	22/ · =	36			
	3.9		40			
		3.9.1 一致连续概念	41			
4	微分		43			
	4.1	微分和导数	43			
		4.1.1 微分	43			
		4.1.2 导数	43			
	4.2	导数的意义与性质	44			
	4.3		45			
	4.4		49			
			50			
		4.4.2 函数的参数表示	-			
	4.5		51			
	4.5		52			
			53			
			53			
			53			
	4.6		53			
	4.0	同例 恢刀	33			
5	微分	中值定理极其应用	55			
	5.1	微分中值定理	55			
		5.1.1 函数的凸性	56			
		5.1.2 拐点	56			

		目	录
5.2	L'Hosp	al法则	57
5.3	Taylor	项式与插值多项式	59
	5.3.1	Taylor多项式	59
	5.3.2	插值多项式	60
5.4	函数的	Taylor公式及其应用	61
	5.4.1	Taylor公式的应用	62
		5.4.1.1 近似运算	62
		5.4.1.2 求极限	63
		5.4.1.3 证明不等式	63
		5.4.1.4 求曲线的渐近线	63
5.5	应用举	列	64
	5.5.1	极值问题	64
	5.5.2	最值问题	64
	5.5.3	数学建模	65
	5.5.4	函数作图	65

74

75

7 定积分

记录本书的原因是因为我觉得自己的数学分析实在太烂了。因此我决定使用费曼学习法。这是一个链式反应,在我学习随机过程的时候,我发现自己的概率论太差了,而当我学习概率论的时候,我又发现我的测度论太差了,而我学习测度论的时候,我最终发现,我差的是数学分析。而这个最初始的问题是我并没有系统地学过数学分析。而在学习数学分析的过程中,我发现我对好多概念并不明晰,这使得学习的进度缓慢,并且经常容易在概念上卡壳,而卡壳结束后又很快忘记。因此,为了能够更好地记住,我决定使用费曼学习法。在此,我记录下我学习数学分析的过程。

1

第1章 集合与映射

定义 1.1 (集合)

是具有某种特定性质的具体的或抽象的对象汇集的总体,其中的对象称为集合的元素。

集合通常记为A, B, C, X, Y 元素通常记为s, t, a, b, x, y x是集合S的元素, 记为 $x \in S$ 2

第2章 实数的完备性

内容提要

□ 有理数的定义 2.2

□ 数列极限的唯一性 2.2

■ Bolzano-Weierstrass定理 2.13

□ 数列极限的保序性逆命题 2.1

在本章中,我们将介绍实数的完备性。在介绍实数之前,我们需要将实数定义或者说引入。而对于实数的定义是有很多的,而我在此介绍无穷十进制小数表示和戴德金(Dedekind)分割。这部分我将结合陈纪修教授的教材和Ayumu的讲义。

在引入实数之前,我们需要先介绍有理数,而在介绍有理数之前,我们需要规定一些常用集合的记号。而介绍常用集合,则需要先介绍集合(set),在此我们并不介绍集合,我们暂时默认我们已经知道了集合的概念,将来我们会对该部分内容进行扩充。现在让我们来列举一些常用的集合。

定义 2.1 (常用集合表示)

 $\mathbb{N} = \{1, 2, 3, \cdots, n, \cdots\}$

 $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \cdots, \pm n, \cdots\}$

 $\mathbb{Z}^+ = \{ n | n \in \mathbb{Z}, n > 0 \}$

在定义了以上的集合表示之后,我们就能以上的符号来表示有理数:

定义 2.2 (有理数)

若一个数x可以表示成 $\frac{q}{p}$ 的形式,其中 $q \in \mathbb{Z}$, $p \in \mathbb{Z}^+$, 则称x为**有理数**(rational number)。而由有理数组成的集合称为**有理数集**,有理数集常用 \mathbb{Q} 表示,其可以表示为:

$$\mathbb{Q} = \{x | x = \frac{q}{p}, q \in \mathbb{Z}, p \in \mathbb{Z}^+\}$$

在这里,我们可以看到p只需要属于 \mathbb{Z}^+ ,这是因为若x为负的,我们总可以规定负号出现在分子上。

有理数对加减乘除都封闭,并且我们在有理数上定义了大小关系,即有理数也是良序的。但是它并不能满足研究所需。例如,存在长度无法用有理数表示。并且有理数之间存在"空隙",即有理数不连续。而在我们之后的研究中,我们往往需要研究连续性,因此我们需要对有理数进行扩充。在这之前,我们先来证明确实有一些数无法用有理数表示。

例题 2.1 $\sqrt{2}$ 不是有理数。

证明 我们用反证法。假设 $\sqrt{2}$ 为有理数,那么存在 $q \in \mathbb{Z}, p \in \mathbb{Z}^+, p, q$ 互质,使得 $\sqrt{2} = \frac{q}{p}$,即 $q^2 = 2p^2$ 。因为 q^2 可以被2整除,即 q^2 为偶数,则q为偶数。那么q可以表示为 $q = 2m, m \in \mathbb{Z}$ 。代入上式中,得 $p^2 = 2m^2$,即p也为偶数。这与互质矛盾,因此假设不成立, $\sqrt{2}$ 不是有理数。

例题 2.2 若n不是完全平方数,则 \sqrt{n} 不是有理数。

证明

除了以上举例的有些数无法用有理数表示以外,有的函数在实数域和有理数域上的表现完全不一样,比如狄利克雷(dirichlet)函数:

$$D(x) = \begin{cases} 1 & x$$
是有理数
$$0 & x$$
是无理数

可以看到当x属于有理数域时, D(x)是一个恒等于1的常数函数, 而如果x属于实数域时, D(x)则并不是一个常数函数。

定理 2.1 (确界存在定理—实数系连续性定理)

非空有上界的数集必有上确界, 非空有下界的数集必有下确界。

 \Diamond

证明

2.1 数列极限

定义 2.3 (数列极限的定义)

对于数列 $\{a_n\}$, 存在一个实常数a, 对 $\forall \epsilon>0$, $\exists N\in\mathbb{Z}^+$,使得当n>N时, $|a_n-a|<\epsilon$ 成立,则称 $\{a_n\}$ 收敛(convengent)于a或者 $\{a_n\}$ 的极限(limit)为a, 记作

若不存在实数a,满足上述性质,则称数列 $\{a_n\}$ 发散(divergent)。

在这里定义邻域的概念:a的 ϵ 邻域 $O(a,\epsilon)$ 为: $(a-\epsilon,a+\epsilon)$ 。因此数列极限的定义也可以描述为: 当n>N时, a_n 落在a的 ϵ 邻域内。

并且,一个数列的极限还有以下的一些性质。首先,一个数列是否收敛,收敛的话,收敛于哪个数,这与数列的前有限项无关。这是因为,假如数列收敛于A,我对前K项做了修改,那么 $\forall \epsilon > 0$,可以取 $N' = \max\{K, N\}$,此时 $|x_n - A| < \epsilon$,即极限依旧为A。又比如极限不存在时,则 $\exists \epsilon > 0$, $\forall N \in \mathbb{N}^+$, $\exists n > N$, $|x_n - A| > \epsilon$ 。此时, $\forall N > K$, $\exists n > N$, $|x_n - A| > \epsilon$,那么N < K时也成立。因此在求极限的不等式时,可以从选定的一个N开始,有时候会使得不等式的求解方便。

此外, ϵ 还可以限定为小于一定值, 在该限定下证明不等式成立。这是因为当 $\epsilon \leq c$ 时候, 存在了N, 使得n > N时成立, 那么当 $\epsilon > c$ 时, 该N也能使得n > N时成立。

接下来我们定义一个特殊的数列极限: 无穷小量。我们会在之后特殊讨论它, 例如无穷小量的阶。

定义 2.4 (无穷小量的定义)

以零为极限的变量称为无穷小量。

.

例题 2.3 证明:

$$\lim_{n \to \infty} \frac{n}{n+3} = 1$$

证明 令:

$$\left| \frac{n}{n+3} - 1 \right| = \frac{3}{n+3} < \frac{3}{n} < \epsilon$$

因此, 当 $N = \left[\frac{3}{\epsilon}\right] + 1$ 时, $\left|\frac{n}{n+3} - 1\right| < \epsilon$

例题 2.4 证明:

$$\lim_{n \to \infty} q^n = 0(0 < |q| < 1)$$

证明 因为0 < |q| < 1,则 $|q^n| = |q|^n < \epsilon$,则:

$$n > \frac{\lg(\epsilon)}{\lg(|q|)}$$

因为 $N \in \mathbb{N}^+$, 所以取 $N = \max\left\{1, \left\lceil \frac{\lg(\epsilon)}{\lg(|q|)} \right\rceil \right\}$, 当n > N时, $|q^n - 0| < \epsilon$, 即:

$$\lim_{n \to \infty} q^n = 0(0 < |q| < 1)$$

例题 2.5 证明:

$$\lim_{n \to \infty} \sqrt[n]{a} = 1(a > 1)$$

证明 因为a > 1, 所以 $|\sqrt[n]{a} - 1| = \sqrt[n]{a} - 1$:

$$\sqrt[n]{a} - 1 = \sqrt[n]{1 \cdot 1 \cdot 1 \cdot \dots \cdot a} - 1 < \frac{(n-1)+a}{n} - 1 < \frac{a-1}{n} < \frac{a}{n} < \epsilon$$

所以取 $N = \left[\frac{a}{\epsilon}\right] + 1$ 时, $\forall n > N$, $|\sqrt[n]{a} - 1| < \epsilon$, 即 $\lim_{n \to \infty} \sqrt[n]{a} = 1$.

$$a = (1 + y_n)^n = 1 + C_n^1 y_n + C_n^2 y_n^2 + \dots + C_n^n y_n^n$$

则:

$$1 + ny_n < a$$

即:

$$y_n < \frac{a-1}{n} < \epsilon$$

则取 $N = \left[\frac{a-1}{\epsilon}\right] + 1$, $\forall n > N$, $|\sqrt[n]{a} - 1| < \epsilon$, 即 $\lim_{n \to \infty} \sqrt[n]{a} = 1$ $\dot{\mathbf{L}}$ 对于 $\sqrt[n]{1+x}$ 利用均值不等式可以得到一个有意思的不等式:

$$\sqrt[n]{1+x} < 1 + \frac{x}{n}$$

例题 2.6 证明

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

证明 因为 $n \ge 1$, 所以 $|\sqrt[n]{n} - 1| = \sqrt[n]{n} - 1$:

$$\sqrt[n]{n} - 1 = \sqrt[n]{1 \cdot 1 \cdot 1 \cdot \dots \sqrt{n} \cdot \sqrt{n}} - 1 < \frac{n - 2 + 2\sqrt{n}}{n} - 1 < \frac{2}{\sqrt{n}} < \epsilon$$

所以取 $N = \left\lceil \frac{4}{\epsilon^2} \right\rceil + 1$ 时, $\forall n > N$, $\left\lceil \sqrt[n]{n} - 1 \right\rceil < \epsilon$, 即 $\lim_{n \to \infty} \sqrt[n]{n} = 1$.

$$n = (1 + y_n)^n = 1 + C_n^1 y_n + C_n^2 y_n^2 + \dots + C_n^n y_n^n$$

则:

$$1 + C_n^2 y_n^2 < n$$

即

$$y_n < \sqrt{\frac{2}{n}} < \epsilon$$

则取 $N = \left\lceil \frac{2}{\epsilon^2} \right\rceil + 1, \forall n > N, \left\lceil \sqrt[n]{n} - 1 \right\rceil < \epsilon,$ 即 $\lim_{n \to \infty} \sqrt[n]{n} = 1$

 $\dot{\mathbf{L}}$ 实际上, 用以上两种方法, 我们可以证明 $\lim_{n\to\infty} \sqrt[n]{n^k} = 1, (k \in \mathbb{N}^+)$ 。

例题 2.7 证明:

$$\lim_{n \to \infty} \sqrt[n]{n^k} = 1, (k \in \mathbb{N}^+)$$

证明 因为 $n \ge 1$, 所以 $\left| \sqrt[n]{n^k} - 1 \right| = \sqrt[n]{n^k} - 1$:

$$\sqrt[n]{n-1} = \sqrt[n]{1 \cdot 1 \cdot 1 \cdot \dots \sqrt{n} \cdot \sqrt{n} \cdot \sqrt{n}} - 1 < \frac{n-2k+2k\sqrt{n}}{n} - 1 < \frac{2k}{\sqrt{n}} < \epsilon$$

所以取 $N = \left\lceil \frac{4k^2}{\epsilon^2} \right\rceil + 1$ 时, $\forall n > N$, $\left| \sqrt[n]{n^k} - 1 \right| < \epsilon$, 即 $\lim_{n \to \infty} \sqrt[n]{n^k} = 1$ 。

陈老证明方法: 取n > 2k, 令 $y_n = \sqrt[n]{n^k} - 1$, 则:

$$n^k = (1 + y_n)^n = 1 + C_n^1 y_n + \dots + C_n^{k+1} y_n^{k+1} + \dots + C_n^n y_n^n$$

则:

$$\frac{(n-k)^{k+1}}{(k+1)^{k+1}}y_n^{k+1} < C_n^{k+1}y_n^{k+1} < n^k$$

则:

$$y_n < (k+1) \sqrt[k+1]{\frac{n^k}{(n-k)^n(n-k)}}$$

因为n > 2k,则 $n - k = \frac{n}{2} + \frac{n}{2} - k > \frac{n}{2}$,所以:

$$yn < (k+1)^{k+1} \sqrt{\frac{n^k}{(n-k)^n(n-k)}} < (k+1)^{k+1} \sqrt{\frac{2^k}{(n-k)}} < \epsilon$$

则取:

$$N = \max \left\{ 2k, \left\lceil \frac{2^k}{\left(\frac{\epsilon}{k+1}\right)^{k+1}} \right\rceil + k + 1 \right\}$$

 $\exists n > N$ 时, $yn < \epsilon$, 即 $\lim_{n \to \infty} \sqrt[n]{n^k} = 1$

 $\dot{\mathbf{L}}$ 在知道极限的四则运算法则后, $\sqrt[n]{n^k} = (\sqrt[n]{n})^k$ 可以很快得出极限为1。

例题 2.8 设 $a_n > 0$, $\lim_{n\to\infty} a_n = a$, 证明

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a$$

 $\lim_{n\to\infty}\frac{a_1+a_2+\dots+a_n}{n}=a$ 因为 $\lim_{n\to\infty}a_n=a$,所以 $\exists N\in\mathbb{N}^+, \forall n>N, |a_n-a|<\frac{\epsilon}{2}$ 。 证明

$$\left| \frac{a_1 + a_2 + \dots + a_n}{n} - a \right| \le \frac{|a_1 - a| + |a_2 - a| + \dots + |a_n - a|}{n}$$

$$= \frac{|a_1 - a| + \dots + |a_N - a|}{n} + \frac{|a_{N+1} - a| + \dots + |a_n - a|}{n}$$

对于后一项, 当n > N时, 有:

$$\frac{|a_{N+1} - a| + \dots + |a_n - a|}{n} < \frac{n\epsilon/2}{n} < \frac{\epsilon}{2}$$

对于前一项, 因为N为一个有限数, 则取 $M = \max\{|a_1 - a|, |a_2 - a|, \dots, |a_N - a|\}$, 因此:

$$\frac{|a_1 - a| + \dots + |a_N - a|}{n} < \frac{NM}{n}$$

因此取 $N_1 = \left[\frac{2NM}{\epsilon} + 1\right], \, \exists n > N_1$ 时:

$$\frac{|a_1 - a| + \dots + |a_N - a|}{n} < \frac{\epsilon}{2}$$

因此, 取 $N_2 = \max\{N, N_1\}, \exists n > N_2$ 时:

$$\frac{a_1 + a_2 + \dots + a_n}{n} < \epsilon$$

即:

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a$$

在给出数列极限的定义之后,我们来考察下数列极限的性质。因为现在我们只讲了定义,如果求所有的导数 都从定义出发,那么过程会极其地繁琐。因此我们需要总结规律,使得我们能够方便地求解数列极限。

定理 2.2 (数列极限的唯一性)

若

$$\lim_{n \to \infty} x_n = a, \lim_{n \to \infty} x_n = b$$

则

$$= b$$

注 以下我不再写 $N \in \mathbb{N}^+$, 因为过于冗余。

证法一(陈老版本): $\forall \epsilon > 0$, $\exists N_1$, $\forall n > N_1$, $|a_n - a| < \frac{\epsilon}{2}$ 。 $\exists N_2$, $\forall n > N_2$, $|b_n - b| < \frac{\epsilon}{2}$ 。 所以 $\forall n > 0$ $\max\{N_1, N_2\}, \, \hat{\eta}$:

$$|a - b| = |(a - a_n) - (b - a_n)| \le |a_n - a| + |a_n - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

即 $\forall \epsilon, \forall n > \max\{N_1, N_2\}, |a-b| < \epsilon, |a-b| < \epsilon$ 要对所有的 $\epsilon n n$ 都成立, 因此|a-b| = 0,即a = b。 若 $a \neq b$,则 可取 $\epsilon = \frac{|a-b|}{2}$,使得 $\exists n$ 使不等式不成立。

 $\dot{\mathbf{E}}$ 也可以把 $\{a\}$ 看作一个恒等序列, 则 $\forall \epsilon > 0$, $\exists N$, $\forall n > N$, $|a-b| < \epsilon$, 即恒等数列 $\{a\}$ 的极限为 $\{a\}$ 的极限为 $\{a\}$ 0, 则 $\{a\}$ 0, 证法二 :用反证法, 设a > b, 取 $\epsilon = \frac{a-b}{2}$, 则 $\exists N_1, \forall n > N_1, |a_n - a| < \frac{a-b}{2}$, 则 $a_n > \frac{a+b}{2}$ 。 同理可得: $\exists N_2$, $\forall n > N_2, a_n < \frac{a+b}{2}$ 。则 $\forall n > \max\{N_1, N_2\}, \frac{a+b}{2} < a_n < \frac{a+b}{2}$,存在矛盾,即 $a \le b$ 。同理可以证 $a \ge b$,因此a = b。 $\dot{\mathbf{L}}$ 唯一性表明了收敛的数列极限a有且只有一个, 在定义中只说了 $\exists a$, 并没有限定a的个数, 唯一性使得当我们求 得一个极限时,不用再去找别的极限值。

接下来我们再来看数列的有界性,有界性也是极限非常重要的性质,很多时候可以帮助我们放大不等式。

定义 2.5

- 1. 对于数列 $\{x_n\}$, 若 $\exists M \in \mathbb{R}$, $\forall n \in \mathbb{N}^+$, 成立 $x_n \leq M$, 则称M是 $\{x_n\}$ 的一个上界, 或称 $\{x_n\}$ 有上界。
- 2. 对于数列 $\{x_n\}$, 若∃ $m \in \mathbb{R}$, $\forall n \in \mathbb{N}^+$, 成立 $x_n \geq m$, 则称 $m \in \{x_n\}$ 的一个下界, 或称 $\{x_n\}$ 有下界。 $\{x_n\}$ 既有上界又有下界,则称 $\{x_n\}$ 有界。

 $\{x_n\}$ 有界的另一个定义: $\exists X \in \mathbb{R}^+, \forall n \in \mathbb{N}^+, \vec{\mathrm{A}} : \vec{\mathrm{A}} = \vec{\mathrm{A}}$

 $\dot{\mathbb{Z}}$ 我们先说明下这两个定义等价: 若 $\{x_n\}$ 有上界有下界, 则 $\forall n \in \mathbb{N}^+$, $m \leq x_n \leq M$, 则 $|x_n| \leq \max\{|m|, |M|\}$, 则 我们找到了 $X = \max\{|m|, |M|\}$ 。若 $\{x_n\}$ 有界,即 $\exists X \in \mathbb{R}^+, \forall n \in \mathbb{N}^+, |x_n| \leq X, 则 \forall n \in \mathbb{N}^+, -X \leq x_n \leq X, 则$ 我们找到了m = -X, M = X。

定理 2.3 (数列极限的有界性)

若 $\{x_n\}$ 的极限存在,则 $\{x_n\}$ 有界。

证明 设 $\{x_n\}$ 的极限为a, 取 $\epsilon = 1$, 则 $\exists N, \forall n > N, |x_n - a| < 1$, 则 $a - 1 < x_n < a + 1$ 。

因为N是一个固定数,则取 $m = \min\{x_1, x_2, \dots, x_N, a-1\}, M = \max\{x_1, x_2, \dots, x_N, a+1\}, \forall n \in \mathbb{N}^+,$ $m \leq x_n \leq M$ \circ

定理 2.4 (数列极限的保序性)

存在两个数列 $\{x_n\}$ 和 $\{y_n\}$,并且

$$\lim_{n \to \infty} x_n = a, \lim_{n \to \infty} y_n = b, \quad \mathbb{A} \quad a < b$$

则 $\exists N \in \mathbb{Z}^+$, 当n > N时, $x_n < y_n$ 。

证明 取 $\epsilon = \frac{b-a}{2}$, 则 $\exists N_1, \forall a > N_1, |x_n - a| < \frac{b-a}{2}$, 即:

$$x_n - a < \frac{b-a}{2} \to x_n < \frac{b+a}{2}$$

同理, $\exists N_2, \forall n > N_2, |y_n - b| < \frac{b-a}{2}$, 即:

$$y_n - b > -\frac{b-a}{2} \to y_n > \frac{a+b}{2}$$

 $\mathbb{P} \forall n > \max\{N_1, N_2\}, x_n < \frac{a+b}{2} < y_n$.

引理 2.1 (数列极限的保序性逆命题)

对于 $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} x_n = b$, 若 $\exists N \in \mathbb{N}^+, \forall n > N, x_n \leq y_n$, 则 $a \leq b$ 。

证明 | 反证法 |: 若a > b, 则 $\exists N_1, \forall n > N_1, x_n > y_n$, 则 $\forall, n > \max\{N, N_1\}, x_n > y_n$, 这与 $\forall n > N, x_n \leq y_n$ 条件 矛盾,则假设不成立。

证毕

注

1. $\exists N, forall n > N, x_n < y_n,$ 并不能推出a < b, 例如 $\{x_n = \frac{1}{2n}\}$ 和 $\{y_n = \frac{1}{n}\}$, 它们的极限都是0。

2. 可以直接从极限存在的情况下的逆否命题的角度思考该命题。写出定理 2.4的逆否命题: 对于 $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} x_n = b$, $\forall N$, $\exists n > N$, $x_n \geq y_n$, $\exists n \geq b$, $\exists N$, $\forall n > N$, $x_n \geq y_n$ 满足该情况, 因此 $a \geq b$ 。

引理 2.2

- 1. $\not\exists \lim_{n\to\infty} y_n = b > 0$, $\not M \exists N \in \mathbb{N}^+, \forall n > N, y_n > \frac{b}{2} > 0$.
- 2. 若 $\lim_{n\to\infty} y_n = b < 0$, 则 $\exists N \in \mathbb{N}^+, \forall n > N, y_n < \frac{b}{2} < 0$ 。

证明 利用数列极限的保序性证明。当b>0时,取 $\left\{x_n=\frac{b}{2}\right\}$,则 $\lim_{n\to\infty}x_n=\frac{b}{2}< b$,由数列极限的保序性可知, $\exists N\in\mathbb{N}^+, \forall n>N,$ 有 $y_n>x_n=\frac{b}{2}$ 。

证毕

同理可证明b < 0的情况。

以上推论可以合起来写为:

引理 2.3

若 $\lim_{n\to\infty} y_n = b \neq 0$,则 $\exists N \in \mathbb{N}^+, \forall n > N, |y_n| > \frac{|b|}{2} > 0$ 。

n

证明 除了上一个推论那样分开来证明, 还可以如下证明: $\lim_{n\to\infty}y_n=b$, 即 $\forall\epsilon>0$, $\exists N\in\mathbb{N}^+$, $\forall n>N$, $|y_n-b|<\epsilon$ 。

由三角不等式得:

$$|y_n - b| \ge ||y_n| - |b||$$

即:

$$||y_n| - |b|| \le |y_n - b| < \epsilon$$

因此 $\lim_{n\to\infty} |y_n| = |b|$ 。之后的证明同上。

定理 2.5 (数列极限的夹逼性定理)

对于数列 $\{x_n\}$, $\{y_n\}$, $\{z_n\}$, 若 $\exists N \in \mathbb{N}^+$, $\forall n > N$, 成立 $x_n \leq y_n \leq z_n$, 且 $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a$, 则 $\lim_{n \to \infty} y_n = a$

证明 $\forall \epsilon, \exists N_1 \in \mathbb{N}^+, \forall n > N_1, |x_n - a| < \epsilon,$ 即 $x_n - a > -\epsilon$ 。

同理, $\forall \epsilon, \exists N_2 \in \mathbb{N}^+, \forall n > N_2, |y_n - a| < \epsilon,$ 即 $z_n - a < \epsilon$ 。

取 $N = \max\{N_1, N_2\}, 则$:

$$-\epsilon < x_n - a < y_n - a < z_n - a < \epsilon$$

即:

$$-\epsilon < y_n - a < \epsilon$$

即:

$$|y_n - a| < \epsilon$$

总结起来即为: $\forall \epsilon, \exists N \in \mathbb{N}^+, \forall n > N, |y_n - a| < \epsilon,$ 即 $\lim_{n \to \infty} y_n = a$ 。

证毕

例题 2.9 求:

$$\lim_{n \to \infty} \left(\sqrt{n+1} - \sqrt{n} \right)$$

解 因为 $\sqrt{n+1} > \sqrt{n}$, 所以 $\sqrt{n+1} - \sqrt{n} > 0$ 。

又因为:

$$\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{2\sqrt{n}}$$

因此:

$$0 < \sqrt{n+1} - \sqrt{n} < \frac{1}{2\sqrt{n}}$$

又因为 $\lim_{n\to\infty}\frac{1}{2\sqrt{n}}=0$, 所以根据夹逼定理:

$$\lim_{n \to \infty} \left(\sqrt{n+1} - \sqrt{n} \right) = 0$$

例题 2.10 证明:

$$\lim_{n \to \infty} \left(a_1^n + a_2^n + \dots + a_p^n \right)^{\frac{1}{n}} = \max_{1 \le i \le p} \{ a_i \}$$

其中 $a_1, a_2, \dots, a_p > 0$, 且为常数。

证明 设 $M = \max_{1 < i < p} \{a_i\}, 则$

$$(a_1^n + a_2^n + \dots + a_p^n)^{\frac{1}{n}} > M$$
$$(a_1^n + a_2^n + \dots + a_p^n)^{\frac{1}{n}} \le p^{\frac{1}{n}} M$$

在之前的证明中我们已经证明 $\lim_{n\to\infty} \sqrt[p]{p}=1$, 因此根据夹逼定理:

$$\lim_{n \to \infty} \left(a_1^n + a_2^n + \dots + a_p^n \right)^{\frac{1}{n}} = M$$

证毕

例题 2.11 用夹逼定理证明:

$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

证明 这个用夹逼定理的证明实际上和之前提到的方法1接近,即利用

$$\sqrt[n]{n} = \sqrt[n]{1 \cdot 1 \cdot 1 \cdot \dots \sqrt{n} \cdot \sqrt{n}} < \frac{n - 2 + 2\sqrt{n}}{n} < \frac{2}{\sqrt{n}} + 1$$

例题 2.12 用夹逼定理证明:

$$\lim_{n \to \infty} \sqrt[n]{n^2} = 1$$

证明 这个用夹逼定理的证明实际上也和之前提到的方法1接近,即利用

$$\sqrt[n]{n^2} = \sqrt[n]{1 \cdot 1 \cdot 1 \cdot \dots \sqrt{n} \cdot \sqrt{n} \cdot \sqrt{n} \cdot \sqrt{n}} < \frac{n-4+4\sqrt{n}}{n} < \frac{4}{\sqrt{n}} + 1$$

下面再来介绍下数列极限的四则运算,有了四则运算法则我们可以快速地计算极限。推导四则运算法则需 要用到数列极限的有界性。

定理 2.6 (数列极限的四则运算)

- 2. $\lim_{n\to\infty}(x_ny_n)=ab$
- 3. $\lim_{n\to\infty} \left(\frac{x_n}{y_n}\right) = \frac{a}{b}(b\neq 0)$

证明 首先根据收敛数列的有界性有: $\exists X > 0, |y_n| \leq X$ 。

1. 证明: $\lim_{n\to\infty}(\alpha x_n + \beta y_n) = \alpha a + \beta$ b。 $\forall \epsilon, \exists N_1, \forall n > N_1, |x_n - a| < \frac{\epsilon}{|\alpha| + |\beta|}; \forall \epsilon, \exists N_2, \forall n > N_2, |y_n - b| < \frac{\epsilon}{|\alpha| + |\beta|}$ 则 $\forall \epsilon, \exists N = \max\{N_1, N_2\}, forall n > N, 有:$

$$|\alpha x_n + \beta y_n - \alpha a - \beta b| \le |\alpha| |x_n - a| + |\beta| |y_n - b| < \epsilon$$

即:

$$\lim_{n \to \infty} (\alpha x_n + \beta y_n) = \alpha a + \beta b$$

证毕

2. 证明: $\lim_{n\to\infty}(x_ny_n)=ab$

$$|x_n y_n - ab| = |x_n y_n - a y_n + a y_n - ab| \le |x_n - a| |y_n| + |a| |y_n - b| \le X |x_n - a| + |a| |y_n - b|$$
 $orall \epsilon, \exists N_1, N_2, \forall n > N_1, |x_n - a| < \frac{\epsilon}{X + |a|}, \forall n > N_2, |y_n - b| < \frac{\epsilon}{X + |a|} \circ \text{ M} \forall n > \max\{N_1, N_2\}, \text{ fa}$
 $|x_n y_n - ab| < \epsilon$

即:

$$\lim_{n \to \infty} (x_n y_n) = ab$$

证毕

3. 证明: $\lim_{n\to\infty} \left(\frac{x_n}{y_n}\right) = \frac{a}{b}(b\neq 0)$

因为 $\lim_{n\to\infty}y_n=b\neq 0$,根据引理 2.3: $\exists N_0, \forall n>N_0, |y_n|>\frac{|b|}{2}>0$ 。则:

$$\left| \frac{x_n}{y_n} - \frac{a}{b} \right| = \frac{|bx_n - ay_n|}{|b||y_n|} < \frac{2|bx_n - ab + ab - ay_n|}{|b|^2} \le \frac{2(|b||x_n - a| + |a||y_n - b|)}{|b|^2}$$

 $orall \epsilon, \exists N_1, N_2, orall n > N_1, |x_n - a| < rac{|b|^2 \epsilon}{2(|a| + |b|)}, orall n > N_2, |y_n - b| < rac{|b|^2 \epsilon}{2(|a| + |b|)}$ 。则 $orall n > \max\{N_0, N_1, N_2\}$:

$$\left| \frac{x_n}{y_n} - \frac{a}{b} \right| < \epsilon$$

即:

$$\lim_{n\to\infty}(\frac{x_n}{y_n})=\frac{a}{b}$$

证毕

注

- 1. 对于第三个式子, 我们还可以先证明 $\lim_{n\to\infty}\frac{1}{y_n}=\frac{1}{b}$, 再用第二个式子, 这样的方式简化运算。
- 2. 四则运算的适用范围是极限存在,发散的情况下则不适用了,所以在之后研究无穷大量的时候,我们并没有直接用四则运算。

例题 2.13 求:

$$\lim_{n \to \infty} \frac{5^{n+1} - (-2)^n}{3 \cdot 5^n + 2 \cdot 3^n}$$

解 上下同除以 5^n ,则:

$$\frac{5^{n+1} - (-2)^n}{3 \cdot 5^n + 2 \cdot 3^n} = \frac{5 - \left(-\frac{2}{5}\right)^n}{3 + 2\left(\frac{2}{5}\right)^n}$$

根据极限的四则运算得:

$$\lim_{n \to \infty} \frac{5^{n+1} - (-2)^n}{3 \cdot 5^n + 2 \cdot 3^n} = \frac{5}{3}$$

例题 2.14 当a > 0时, 证明:

$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$

证明 在例题 2.5中我们已经证明了当 a > 1时:

$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$

当a=1时, $\sqrt[n]{a}=1$, 极限显然成立。

当a < 1时:

$$\sqrt[n]{a} = \frac{1}{\sqrt[n]{\frac{1}{a}}}$$

因为a < 1,则 $\frac{1}{a} > 1$,则根据a > 1的情况得:

$$\lim_{n \to \infty} \sqrt[n]{\frac{1}{a}} = 1$$

根据极限的四则运算得:

$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$

综上, $\lim_{n\to\infty} \sqrt[n]{a} = 1$ 。

证毕

例题 2.15 求:

$$\lim_{n \to \infty} n \left(\sqrt{n^2 + 1} - \sqrt{n^2 - 1} \right)$$

解 因为:

$$n\left(\sqrt{n^2+1} - \sqrt{n^2-1}\right) = \frac{2n}{\sqrt{n^2+1} + \sqrt{n^2-1}}$$

所以:

$$\frac{n}{\sqrt{n^2+1}} < n \left(\sqrt{n^2+1} - \sqrt{n^2-1} \right) < \frac{n}{\sqrt{n^2-1}}$$

又因为:

$$\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \left(\frac{1}{n}\right)^2}} = 1$$

同理:

$$\lim_{n \to \infty} \frac{n}{\sqrt{n^2 - 1}} = 1$$

因此根据夹逼定理:

$$\lim_{n \to \infty} n \left(\sqrt{n^2 + 1} - \sqrt{n^2 - 1} \right) = 1$$

陈老的证明

$$n\left(\sqrt{n^2+1} - \sqrt{n^2-1}\right) = \frac{2n}{\sqrt{n^2+1} + \sqrt{n^2-1}} = \frac{2}{\sqrt{1 + \left(\frac{1}{n}\right)^2} + \sqrt{1 - \left(\frac{1}{n}\right)^2}}$$

之后直接进行四则运算。

 $\dot{\mathbf{L}}$ 如果直接对原式使用四则运算,则会得到 $\infty \cdot 0$, 该极限无法计算, 因此需要对式子进行变形。

例题 2.16 求:

$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \cdots + \frac{1}{\sqrt{n^2+n}} \right)$$

解 为了书写方便, 我们令:

$$y_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}}$$

对每一项进行缩放,则:

$$\frac{n}{\sqrt{n^2 + n}} < y_n < \frac{n}{n} = 1$$

又因为:

$$\lim_{n\to\infty}\frac{n}{\sqrt{n^2+n}}=\lim_{n\to\infty}\frac{1}{\sqrt{1+\frac{1}{n}}}=1$$

根据夹逼定理得:

$$\lim_{n \to \infty} y_n = 1$$

注 在数列中有无穷多项时, 我们不能直接用四则运算对每一项进行极限之后加和, 特别是每一项都趋向于0的情况下。四则运算只适用于有限项的情况下, 对于无限项的情况要具体讨论。

例题 2.17 设 $a_n > 0$, $\lim_{n \to \infty} a_n = a$, 证明:

$$\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$$

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \le \sqrt[n]{a_1 a_2 \dots a_n} \le \frac{n_1 + n_2 + \dots + n_a}{a}$$

根据例题 2.8的结果, 我们已知当 $\lim_{n\to\infty} a_n = a$ 时, 有:

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a$$

 $\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=a$ 根据极限的四则运算, 当 $\lim_{n\to\infty}a_n=a$ 时, $\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{a}$, 根据例题 2.8, 有:

$$\lim_{n \to \infty} \frac{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}{n} = \frac{1}{a}$$

则根据夹逼定理:

$$\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$$

若a = 0, 则:

$$0 < \sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{n_1 + n_2 + \cdots + n_a}{a}$$

同上,可以证明:

$$\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = 0$$

综上所诉:

$$\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a \quad (a_n > 0)$$

证毕

注 注意分类讨论a=0的情况。

命题 2.1

若 $\{x_n\}$ 是无穷小量, $\{y_n\}$ 有界 $(|y_n| \le X)$,则 $\{x_ny_n\}$ 也是无穷小量。

证明 因为 $\{x_n\}$ 为无穷小量,则 $\forall \epsilon > 0$, $\exists N, \forall n > N, |x_n| < \frac{\epsilon}{N}$ 。由于 $\{y_n\}$ 有界,即 $|y_n| \leq X$,则 $\forall n > N$,有:

$$|x_n y_n| = |x_n||y_n| < \epsilon$$

即 $\{x_ny_n\}$ 也是无穷小量。

证毕

2.2 无穷大量

除了上一节中介绍的数列收敛的情况外,有时候我们还需要研究数列趋向于无穷的情况。对于极限存在的 情况, 我们是说: $\forall \epsilon$, $\exists N, \forall n > N, |x_n - a| < \epsilon$, 即在n > N之后, 数列的点落在 $\rho(a, \epsilon)$ 邻域内。而对于无穷大的情 况,我们需要适当修改定义,因为我们的极限并不趋于一个具体的有限值,也就无法给出该有限值的邻域。要研究 无穷大量, 我们需要理解什么是无穷。我们可以这样理解无穷: 无穷比任意一个有限值都要大。接下来我们给出 无穷大量的定义:

定义 2.6 (无穷大量)

对于一个数列 $\{x_n\}$,若对于任意给定的G>0,可以找到正整数N,使得当n>N时, $|x_n|>G$,则称数 列 $\{x_n\}$ 是无穷大量, 记为

$$\lim_{n \to \infty} x_n = \infty$$

若对于该数列 $\{x_n\}$, $|x_n| > G$ 可以恒表示为 $x_n > G$, 则称数列 $\{x_n\}$ 是正无穷大量, 记为 $+\infty$ 。 若对于该数列 $\{x_n\}$, $|x_n| > G$ 可以恒表示为 $x_n < -G$, 则称数列 $\{x_n\}$ 是负无穷大量, 记为 $-\infty$ 。

例题 2.18 设|q| > 1,证明 $\{q^n\}$ 是无穷大量。

证明一(陈老证明): 取G > |q|, 令:

$$|q^n| > G$$

则:

$$n > \frac{\lg G}{\lg |q|}$$

则 $\forall G>0$,取 $N=\max\left\{\left\lceil \frac{\lg G}{\lg |q|}\right\rceil,1\right\}$,当n>N时, $|q^n|>G$,即 $\{q^n\}$ 是无穷大量。

证明二:

$$|q^n| = (1 + |q| - 1)^n > n(|q| - 1) > G$$

则orall G>0,取 $N=\max\left\{\left[rac{G}{|q|-1}\right],1
ight\}$,当n>N时, $|q^n|>G$,即 $\{q^n\}$ 是无穷大量。

例题 2.19 证明 $\left\{\frac{n^2-1}{n+5}\right\}$ 是无穷大量。

$$\frac{n^2 - 1}{n + 5} > \frac{n^2 - 25}{n + 5} = n - 5 > G$$

则可取N = [G] + 5, 当n > N时, 有:

$$\left| \frac{n^2 - 1}{n+5} \right| > \frac{n^2 - 1}{n+5} > G$$

则 $\left\{\frac{n^2-1}{n+5}\right\}$ 是无穷大量。

陈老证明: 要证明该数列, 我们可以将分子分母进行缩放。我们希望将分子缩放成 n^2 , 分母缩放成n, 这是做 不到的,但是我们可以将分母缩放成2n。此时,令:

$$\frac{n^2-1}{n+5} > \frac{n^2}{2n} = \frac{n}{2}$$

则我们可以通过解方程:

$$2n^2 - 2 > n^2 + 5n$$

得只要n > 5时,不等式就能成立。因此我们可以取 $N = \max\{[2G], 5\}$,当n > N时候:

$$\frac{n^2 - 1}{n + 5} > \frac{n}{2} > G$$

则 $\left\{\frac{n^2-1}{n+5}\right\}$ 是无穷大量。

注 对于分母是n-c(c为常数)的情况, 我们可以令n>2c, 此时 $n-c>\frac{n}{2}$, 而对于分母是n+c的情况, 我们可以 令n > c, 此时n + c < 2n。

下面我们再来讨论下无穷大量和无穷小量之间的关系。

证明 $\boxed{\hat{\Sigma}$ 充分性]: 因为 $\left\{\frac{1}{x_n}\right\}$ 是无穷小量,则 $\forall G>0$,令 $\epsilon=\frac{1}{G}$, $\exists N$, $\forall n>N$, $\left|\frac{1}{x_n}\right|<\epsilon=\frac{1}{G}$,则 $|x_n|>G$,即 $\{x_n\}$ 是无

必要性: 因为 $\{x_n\}$ 是无穷大量,则 $\forall \epsilon > 0$,令 $G = \frac{1}{G}$, $\exists N, \forall n > N, |x_n| > G = \frac{1}{\epsilon}, \left|\frac{1}{x_n}\right| < \epsilon$,即 $\left\{\frac{1}{x_n}\right\}$ 是无穷小 量。

引理 2.5

 \Diamond

证明 因为 $\{x_n\}$ 是无穷大量,所以 $\forall G > 0$, $\exists N_1, \forall n > N_1, |x_n| > \frac{G}{\delta}$ 。因此取 $N = \max\{N_0, N_1\}, \forall n > N$, 有:

$$|x_n y_n| = |x_n||y_n| \ge G$$

因此, $\{x_ny_n\}$ 是无穷大量。

引理 2.6

设 $\{x_n\}$ 是无穷大量, $\{y_n\}$ 极限存在,且 $\lim_{n\to\infty}y_n=b\neq 0$,则 $\{x_ny_n\}$ 与 $\left\{\frac{x_n}{y_n}\right\}$ 都是无穷大量。

证明 证明 $\{x_ny_n\}$ 是无穷大量: 因为 $\lim_{n\to\infty}y_n=b\neq 0$, 所以根据引理 2.3, $\exists N, \forall n>N, |y_n|>\frac{|b|}{2}$ 。 因此根据引理 2.5知, $\{x_ny_n\}$ 为无穷大量。

证明 $\left\{\frac{x_n}{y_n}\right\}$ 是无穷大量: 因为 $\lim_{n\to\infty}y_n=b\neq 0$,根据极限的四则运算, $\lim_{n\to\infty}\frac{1}{y_n}=\frac{1}{b}\neq 0$,之后的证明同上。

例题 2.20 证明 $\left\{\frac{n}{\sin(n)}\right\}$ 和 $\left\{n \cdot \arctan(n)\right\}$ 是无穷大量。

证明 因为有 $|\sin(n)| \le 1$, 所以:

$$\frac{1}{|\sin(n)|} \ge 1$$

根据引理 2.5得 $\left\{\frac{n}{\sin(n)}\right\}$ 是无穷大量。

因为 $n \ge 1$, 因此有 $|\arctan(n)| \ge \frac{\pi}{4}$, 根据引理 2.5得 $\{n \cdot \arctan(n)\}$ 是无穷大量。

注 对于 $\{n \cdot \arctan(n)\}$,我们也可以用它的极限为责结合引理 2.6来证明。

例题 2.21 讨论极限

$$\lim_{n \to \infty} \frac{a_0 n^k + a_1 n^{k-1} + \dots + a_{k-1} n + a_k}{b_0 n^l + b_1 n^{l-1} + \dots + b_{l-1} n + b_k}$$

其中 $a_0, b_0 \neq 0, k, l \in \mathbb{Z}^+$ 。

证明 从分子上提出 n^k ,分母上提出 n^l 次,则:

$$\lim_{n \to \infty} \frac{a_0 n^k + a_1 n^{k-1} + \dots + a_{k-1} n + a_k}{b_0 n^l + b_1 n^{l-1} + \dots + b_{l-1} n + b_k} = \lim_{n \to \infty} n^{k-l} \frac{a_0 + a_1 n^{-1} + \dots + a_{k-1} n^{1-k} + a_k n^{-k}}{b_0 + b_1 n^{-1} + \dots + b_{l-1} n^{1-l} + b_l n^{-l}}$$

根据极限的四则运算,有:

$$\lim_{n \to \infty} \frac{a_0 + a_1 n^{-1} + \dots + a_{k-1} n^{1-k} + a_k n^{-k}}{b_0 + b_1 n^{-1} + \dots + b_{l-1} n^{1-l} + b_l n^{-l}} = \frac{a_0}{b_0} \neq 0$$

因此, $\mathbf{j}_k > l$ 时:

$$\lim_{n \to \infty} n^{k-l} = \infty$$

根据引理 2.6有:

$$\lim_{n \to \infty} \frac{a_0 n^k + a_1 n^{k-1} + \dots + a_{k-1} n + a_k}{b_0 n^l + b_1 n^{l-1} + \dots + b_{l-1} n + b_k} = \infty$$

当 $\mathbf{j} = l$ 时:

$$\lim_{n \to \infty} n^{k-l} = 1$$

根据极限的四则运算有:

$$\lim_{n \to \infty} \frac{a_0 n^k + a_1 n^{k-1} + \dots + a_{k-1} n + a_k}{b_0 n^l + b_1 n^{l-1} + \dots + b_{l-1} n + b_k} = \frac{a_0}{b_0}$$

当 \mathbf{j} \mathbf{k} < l 时:

$$\lim_{n \to \infty} n^{k-l} = 0$$

根据极限的四则运算有:

$$\lim_{n \to \infty} \frac{a_0 n^k + a_1 n^{k-1} + \dots + a_{k-1} n + a_k}{b_0 n^l + b_1 n^{l-1} + \dots + b_{l-1} n + b_k} = 0$$

证毕

2.2.1 无穷大的运算

在之上我们已经提到, 极限的四则运算适用于极限存在的情况, 而对于极限发散的情况则并不一定成立, 下面我们来讨论下对于极限趋向于无穷大的情况, 在哪些情况下是可以运用四则运算的。为了方便起见, 我们先做如下定义:

- 1. 若 $\lim_{n\to\infty} x_n = +\infty$,则记 $\{x_n\}$ 为" $+\infty$ "。
- 2. 若 $\lim_{n\to\infty} y_n = \infty$,则记 $\{y_n\}$ 为"-∞"。
- 3. 若 $\lim_{n\to\infty} z_n = \infty$,则记 $\{z_n\}$ 为 ∞ "。
- 4. 若 $\lim_{n\to\infty} w_n = 0$,则记 $\{z_n\}$ 为"0"。

定理 2.7

- 1. $(+\infty) + (+\infty) = +\infty$
- 2. $(+\infty) (-\infty) = +\infty$
- $3. (+\infty) \pm (有界量) = +\infty$
- 4. $(+\infty) \cdot (+\infty) = +\infty$
- 5. $(+\infty) \cdot (-\infty) = -\infty$

以上的极限是可以通过四则运算简单地判断出来的,而以下的极限则无法通过四则运算判断出来,我们将以下的这些极限类型称为"待定型"。

定义 2.7 (待定型)

- 1. $(+\infty) (+\infty) = ?$
- 2. $(+\infty) + (-\infty) = ?$
- 3. $0 \cdot \infty = ?$
- 4. $\frac{0}{0} = ?$
- 5. $\frac{\infty}{\infty} = ?$
- 6. . . .

上述情况称为"待定型"。

定义 2.8

若数列 $\{x_n\}$,有 $x_n \leq x_{n+1}$, $\forall n \in \mathbb{N}^+$,则称数列 $\{x_n\}$ 单调增加,记为 $\{x_n\}$ 个。若有 $x_n < x_{n+1}$,则称数列 $\{x_n\}$ 严格单调增加,记为 $\{x_n\}$ 严格个。

若数列 $\{x_n\}$,有 $x_n \geq x_{n+1}$, $\forall n \in \mathbb{N}^+$,则称数列 $\{x_n\}$ 单调减少,记为 $\{x_n\}$ ↓。若有 $x_n > x_{n+1}$,则称数列 $\{x_n\}$ 严格单调减少,记为 $\{x_n\}$ 严格↓。

定理 2.8 (Stolz定理)

假设 $\{y_n\}$ 严格单调增加数列,且 $\lim_{n\to\infty}y_n=+\infty$ 。若:

$$\lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=a(a$$
有限数, $+\infty,-\infty)$

则:

$$\lim_{n \to \infty} \frac{x_n}{y_n} = a$$

15

证明 因为陈老的证明简洁明了,我们先写陈老的证明:

当 $\mathbf{a} = \mathbf{0}$ 时: 因为 $\lim_{n \to \infty} y_n = +\infty$,则 $\exists N_1 \in \mathbb{N}^+, \forall n > N_1, y_n > 0$ 。

又因为
$$\lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=0$$
,则 $\forall \epsilon>0$, $\exists N_2\in\mathbb{N}^+, \forall n>N_2, \left|\frac{x_n-x_{n-1}}{y_n-y_{n-1}}\right|<\frac{\epsilon}{2}$ 。

 $\mathbb{R}N_3 = \max\{N_1, N_2\}, \forall n > N_3$:

$$|x_n - x_{n-1}| < \frac{\epsilon}{2} |y_n - y_{n-1}|$$

又因为 $\{y_n\}$ 严格单调增加,则上式可以化为:

$$|x_n - x_{n-1}| < \frac{\epsilon}{2} \left(y_n - y_{n-1} \right)$$

根据三角不等式:

$$|x_n - x_{N_3}| \le |x_n - x_{n-1}| + |x_{n-1} - x_{n-2}| + \dots + |x_{N_3+1} - x_{N_3}|$$

根据上两式, 我们可以得出:

$$|x_n - x_{N_3}| < \frac{\epsilon}{2} \left(y_n - y_{N_3} \right)$$

两边同除以 y_n 得:

$$\left|\frac{x_n}{y_n} - \frac{x_{N_3}}{y_n}\right| < \frac{\epsilon}{2} (1 - \frac{y_{N_3}}{y_n}) < \frac{\epsilon}{2}$$

则根据三角不等式:

$$\left|\frac{x_n}{y_n}\right| < \frac{\epsilon}{2} + \left|\frac{x_{N_3}}{y_n}\right|$$

因为 $\lim_{n\to\infty} y_n = +\infty$, $\exists N_4 \in \mathbb{N}^+, \forall n > N_4, y_n > \frac{2|x_{N_3}||}{\epsilon}$

则可以取 $N = \max\{N_3, N_4\}, \forall n > N_4$:

$$\left|\frac{x_n}{y_n}\right| < \epsilon$$

则对于a=0时:

$$\lim_{n \to \infty} \frac{x_n}{y_n} = 0$$

当 $a \neq 0$ 时:

取 $z_n = x_n - ay_n$, 则:

$$\frac{z_n - z_{n-1}}{y_n - y_{n-1}} = \frac{x_n - x_{n-1}}{y_n - y_{n-1}} - a$$

因此:

$$\lim_{n \to \infty} \frac{z_n - z_{n-1}}{y_n - y_{n-1}} = \lim_{n \to \infty} \left(\frac{x_n - x_{n-1}}{y_n - y_{n-1}} - a \right) = 0$$

根据以上证明的a=0的情况可知:

$$\lim_{n \to \infty} \frac{z_n}{y_n} = 0$$

又因为:

$$\frac{x_n}{y_n} = \frac{z_n}{y_n} + a$$

所以当 $a \neq 0$ 时:

$$\lim_{n \to \infty} \frac{x_n}{y_n} = a$$

当 $a = +\infty$ 时:

因为 $\lim_{n\to\infty} \frac{x_n-x_{n-1}}{y_n-y_{n-1}} = +\infty$,则 $\exists N_1 \in \mathbb{N}^+, \forall n > N_1, \frac{x_n-x_{n-1}}{y_n-y_{n-1}} > 1$,即:

$$x_n - x_{n-1} > y_n - y_{n-1}$$

因为 $\{y_n\}$ 严格单调增加,则:

$$x_n - x_{n-1} > y_n - y_{n-1} > 0$$

即 $\{x_n\}$ 严格单调增加。

同时,同其他情况的证明,我们有:

$$x_n - x_N > y_n - y_N$$

又因为 $\lim_{n\to\infty} y_n = +\infty$,则 $\forall G > \max\{0, y_N - x_N\}$, $\exists N_2, \forall n > N_2, y_n > 2G$ 。 则:

$$x_n > y_n - y_N + x_N > G$$

即 $\lim_{n\to\infty} x_n = +\infty$, $\{x_n\}$ 趋向于 $+\infty$

此时考虑 $\frac{y_n-y_{n-1}}{x_n-x_{n-1}}$,因为 $\lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=+\infty$,则 $\lim_{n\to\infty}\frac{y_n-y_{n-1}}{x_n-x_{n-1}}=0$ (引理 2.4)。根据a=0的情况得: $\lim_{n\to\infty}\frac{y_n}{x_n}=0$,因此 $\lim_{n\to\infty}\frac{x_n}{y_n}=\infty$,即 $\forall G>0$, $\exists N_3\in\mathbb{N}^+, \forall n>N_3, \left|\frac{x_n}{y_n}\right|>G$ 。

又因为 $\lim_{n\to\infty} y_n = +\infty$, 则 $\exists N_4 \in \mathbb{N}^+$, $\forall n > N_4$, $y_n > 0$, 同理 $\exists N_5 \in \mathbb{N}^+$, $\forall n > N_5$, $x_n > 0$.

则 当 $n > \max\{N_4, N_5\}$ 时, $\frac{x_n}{y_n} > 0$ 。

即 $\forall G>0, \exists N=\max\{N_3,N_4,N_5\}\in\mathbb{N}^+, \forall n>N, \frac{x_n}{y_n}>G,$ 即 $\lim_{n\to\infty}\frac{x_n}{y_n}=+\infty$ 。 $a=+\infty$ 时也成立。同 理, 也能证明 $a = -\infty$ 的情况。

现在用定义证明:

当a为有限数时:

因为 $\lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=a$,则 $\forall \epsilon>0$, $\exists N_1, \forall n>N_1, \left|\frac{x_n-x_{n-1}}{y_n-y_{n-1}}-a\right|<\frac{\epsilon}{2}$ 。

又因为 $\lim_{n\to\infty} y_n = +\infty$,则 $\exists N_2, \forall n > N_2, y_n > 0$

则 $\forall n > N_3 = \max\{N_1, N_2\}$,结合三角不等式,我们有:

$$\frac{x_n}{y_n} - a < \frac{\epsilon}{2} \left(1 - \frac{y_{N_3}}{y_n} \right) + \frac{x_{N_3} - ay_{N_3}}{y_n} < \frac{\epsilon}{2} + \frac{x_{N_3} - ay_{N_3}}{y_n}$$

因为 $\lim_{n\to\infty}y_n=+\infty$,所以 $\lim_{n\to\infty}\frac{x_{N_3}-ay_{N_3}}{y_n}=0$,即日 N_4 , $\forall n>N_4$, $\left|\frac{x_{N_3}-ay_{N_3}}{y_n}\right|<\frac{\epsilon}{2}$ 。即 $\forall \epsilon>0$,日 $N_5=\max\{N_3,N_4\}$, $\forall n>N_5$, $\frac{x_n}{y_n}-a<\epsilon$ 。

同理可以证明: $\forall n > N_5$, $\frac{x_n}{y_n} - a > -\epsilon$ 。 因此 $\lim_{n \to \infty} \frac{x_n}{y_n} = a$ 。

当 $a=+\infty$ 时:

因为 $\lim_{n\to\infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = +\infty$,则 $\forall G > 0$, $\exists N_1, \forall n > N_1, \frac{x_n - x_{n-1}}{y_n - y_{n-1}} > 3G$ 。

又因为 $\lim_{n\to\infty} y_n = +\infty$,则 $\exists N_2, \forall n > N_2, y_n > 0$ 。

则 $\forall n > N_3 = \max\{N_1, N_2\}$,结合三角不等式,我们有:

$$\frac{x_n}{y_n} > 3G\left(1 - \frac{y_{N_3}}{y_n}\right) + \frac{x_{N_3}}{y_n}$$

因为 $\lim_{n\to\infty}y_n=+\infty$,所以 $\lim_{n\to\infty}\frac{y_{N_3}}{y_n}=0$,则 $\exists N_4,\, \forall n>N_4,\, \left|\frac{y_{N_3}}{y_n}\right|<\frac{1}{3}$ 。 同理, $\exists N_5,\, \forall n>N_5,\, \left|\frac{x_{N_3}}{y_n}\right|<\frac{1}{3}$ G_{\circ}

因此, $\forall G > 0$, $\exists N = \max\{N_3, N_4, N_5\}$, $\forall n > N$, $\frac{x_n}{y_n} > G$, 即 $\lim_{n \to \infty} \frac{x_n}{y_n} = +\infty$.

例题 2.22 用Stolz定理证明, 若 $\lim_{n\to\infty} a_n = a$,则

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a$$

证明 取 $x_n = a_1 + a_2 + \cdots + a_n, y_n = n$,则有 $\{y_n\}$ 严格单调增加,且 $\lim_{n\to\infty} y_n = +\infty$,并且有:

$$\lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = \lim_{n \to \infty} a_n = 0$$

则根据Stolz定理(定理 2.8)得:

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a$$

例题 2.23 求:

$$\lim_{n \to \infty} \frac{1^k + 2^k + \dots + n^k}{n^{k+1}}$$

解 取 $x_n = 1^k + 2^k + \dots + n^k$, $y_n = n^{k+1}$, 其中 y_n 严格单调增加, 且 $\lim_{n \to \infty} y_n = +\infty$, 将 $(n-1)^{k+1}$ 进行多项式 展开有:

$$\lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = \lim_{n \to \infty} \frac{n^k}{n^{k+1} - (n-1)^{k+1}} = \lim_{n \to \infty} \frac{n^k}{(k+1)n^k - C_{n+1}^2 n^{k-1} + \dots + C_{n+1}^{n+1} (-1)^{n+1}}$$

根据例题 2.21有:

$$\lim_{n \to \infty} \frac{x_n - x_{n-1}}{y_n - y_{n-1}} = \frac{1}{k+1}$$

则根据Stolz定理(定理 2.8)得:

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{1^k + 2^k + \dots + n^k}{n^{k+1}} = \frac{1}{k+1}$$

例题 2.24 设 $\lim_{n\to\infty} a_n = a$, 求:

$$\lim_{n\to\infty}\frac{a_1+2a_2+3a_3+\cdots+na_n}{n^2}$$

解 取 $x_n=a_1+2a_2+3a_3+\cdots+na_n,$ $y_n=n^2,$ 其中 y_n 严格单调增加, 且 $\lim_{n\to\infty}y_n=+\infty,$ 并且有:

$$\lim_{n\to\infty}\frac{na_n}{n^2-(n-1)^2}=\lim_{n\to\infty}\frac{na_n}{2n-1}=\lim_{n\to\infty}\frac{a_n}{2-1/n}$$

根据极限的四则运算有:

$$\lim_{n \to \infty} \frac{na_n}{n^2 - (n-1)^2} = \frac{a}{2}$$

则根据Stolz定理(定理 2.8)得:

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{a_1 + 2a_2 + 3a_3 + \dots + na_n}{n^2} = \frac{a}{2}$$

到此为止, 我们已经熟悉了极限的求解方法, 因此接下来我们不会再将极限的求解步骤写得如此详细。

2.3 收敛准则

收敛数列一定有界,但是收敛数列不一定有界。

- 1. 那么有界数列加什么条件收敛?
- 2. 有界数列不加条件的情况下,可以得到什么弱一些的结论?

定理 2.9

单调有界数列必定收敛。

 \Diamond

证明 不妨设 $\{x_n\}$ 单调增加,有上界。

定理意义: 从定义证明时, 我们需要知道极限a, 相当于验证极限为a, 而当极限未知时, 则无法证明。而定理则从数列本身的性质出发, 不需要知道极限是多少。

引理 2.7

若数列 $\{x_n\}$ 从第N项之后开始单调有界,则数列 $\{x_n\}$ 依旧收敛。

 \odot

证明 考虑 $n \geq N$ 后的数组成的数列,设 $n_1 = n - N + 1$,则 $\{x_{n_1}\}$ 单调有界。由于 $\{x_{n_1}\}$ $(n_1 \geq 1)$ 单调有界,则 $\{x_{n_1}\}$ $(n_1 \geq 1)$ 收敛。即 $\exists a, \forall \epsilon > 0, \exists N_1, \forall n_1 > N_1, f|x_{n_1} - a| < \epsilon$ 。那么我们可以取 $N_2 = N_1 + N - 1$,此时 $\forall \epsilon, \exists N_2 = N_1 + N - 1, \forall n > N_2, f|x_n - a| < \epsilon$,即数列 $\{x_n\}$ 极限存在。

命题 2.2

设
$$x_1 > 0, x_{n+1} = 1 + \frac{x_n}{1+x_n}, n = 1, 2, 3, \cdots$$
,证明 $\{x_n\}$ 收敛,并求极限。

证明

命题 2.3

设
$$0 < x_1 < 1, x_{n+1} = x_n(1-x_n), n = 1, 2, 3, \cdots$$
, 证明 $\{x_n\}$ 收敛, 并求极限。

证明

无穷小量的趋近速度。

命题 2.4

对于上题的
$$\{x_n\}$$
,求极限, $\lim_{n\to\infty} nx_n$

证明

命题 2.5

$$x_1 = \sqrt{2}, x_{n+1} = \sqrt{3+2x_n}, n = 1, 2, 3, \dots$$
, 证明 $\{x_n\}$ 收敛, 并求极限。

证明

兔子

命题 2.6 (Fibonacci数列)

$$\{a_n\}$$
为Fibonacci数列, 令 $b_n=rac{a_{n+1}}{a_n}$,讨论 $\{b_n\}$ 数列。

证明

接下来我们来研究π和e

关于π:

命题 2.7

证明
$$\left\{L_n=n\sin\left(rac{180^\circ}{n}
ight)
ight\}$$
收敛。求圆的面积公式。

证明 取 $t = \frac{180^{\circ}}{n(n+1)}$, 当 $n \ge 3$ 时, $nt \le 45^{\circ}$ 。且由三角公式得:

$$\tan(nt) = \frac{\tan[(n-1)t] + \tan(t)}{1 - \tan[(n-1)t]tan(t)}$$

由于 $nt \le 45^\circ$,则tan(kt) < 1(k < n),因此:

$$\tan(nt) = \frac{\tan[(n-1)t] + \tan(t)}{1 - \tan[(n-1)t]\tan(t)} > \tan[(n-1)t] + \tan(t)$$

则:

$$\tan(nt) > \tan[(n-1)t] + \tan(t)$$

$$\tan[(n-1)t] > \tan[(n-2)t] + \tan(t)$$

则:

$$\tan(nt) > n\tan(t)$$

现在来考虑 $\sin[(n+1)t]$:

$$\sin[(n+1)t] = \sin(nt)\cos(t) + \cos(nt)\sin(t)$$

$$= \sin(nt)\cos(t) \left[1 + \frac{\tan(t)}{\tan(nt)}\right]$$

$$< \sin(nt)\cos(t) \left[1 + \frac{1}{n}\right]$$

$$< \sin(nt)\frac{n+1}{n}$$

即:

$$n\sin[(n+1)t] < (n+1)\sin(nt)$$

将 $t = \frac{180^{\circ}}{n(n+1)}$ 代入得:

$$n\sin\left(\frac{180^{\circ}}{n}\right) < (n+1)\sin\left(\frac{180^{\circ}}{n+1}\right)$$

即该数列单调增加。

考虑到单位圆的面积:

$$S' > n \sin\left(\frac{180^{\circ}}{n}\right) \cos\left(\frac{180^{\circ}}{n}\right)$$

并且单位圆的面积小于外接正方形的面积,即:

$$n\sin\left(\frac{180^{\circ}}{n}\right)\cos\left(\frac{180^{\circ}}{n}\right) < S' < 4$$

即:

$$n\sin\left(\frac{180^{\circ}}{n}\right) < \frac{4}{\cos\left(\frac{180^{\circ}}{n}\right)}$$

因为n > 3, 所以:

$$n\sin\left(\frac{180^{\circ}}{n}\right) < 8$$

因此数列 $\left\{L_n = n \sin\left(\frac{180^\circ}{n}\right)\right\}$ 单调有界,则该数列极限存在。

现在定义 $\lim_{n\to\infty}n\sin\left(\frac{180^\circ}{n}\right)=\pi$ 。 再来考虑单位圆的面积S',设内接正多边形的面积为 S_1 ,外接正多边形的面积为 S_2 ,则 $S_1(n)< S'< S_2(n)$ 。 内接正多边形的面积为:

$$S_1(n) = n \sin\left(\frac{180^{\circ}}{n}\right) \cos\left(\frac{180^{\circ}}{n}\right)$$

外接正多边形的面积为:

$$S_2(n) = n \tan\left(\frac{180^{\circ}}{n}\right) = n \frac{\sin\left(\frac{180^{\circ}}{n}\right)}{\cos\left(\frac{180^{\circ}}{n}\right)}$$

并且根据数列极限的四则运算有:

$$\lim_{n \to \infty} S_1(n) = \lim_{n \to \infty} n \sin\left(\frac{180^{\circ}}{n}\right) \lim_{n \to \infty} \cos\left(\frac{180^{\circ}}{n}\right) = \pi$$

$$\lim_{n \to \infty} S_2(n) = \frac{\lim_{n \to \infty} n \sin\left(\frac{180^{\circ}}{n}\right)}{\lim_{n \to \infty} \cos\left(\frac{180^{\circ}}{n}\right)} = \pi$$

则根据夹逼性定理得:

$$S' = \pi$$

其中,对于外接正多边形的面积,考虑:

$$(n+1)\tan(nt) - n\tan[(n+1)t] = (n+1)\frac{\sin(nt)}{\cos(nt)} - n\frac{\sin[(n+1)t]}{\cos[(n+1)t]}$$

$$= \frac{(n+1)\sin(nt)\cos[(n+1)t] - n\sin[(n+1)t]\cos(nt)}{\cos(nt)\cos[(n+1)t]}$$

$$= \frac{\sin(nt)\cos[(n+1)t] - n\sin(t)}{\cos(nt)\cos[(n+1)t]}$$

$$= \frac{\sin[(2n+1)t] - \sin(t) - 2n\sin(t)}{2\cos(nt)\cos[(n+1)t]}$$

$$= \frac{\sin[(2n+1)t] - (2n+1)\sin(t)}{2\cos(nt)\cos[(n+1)t]}$$

并且当 $n \geq 3$ 时,有:

$$\sin[(2n+1)t] = \sin(2nt)\cos(t) + \cos(2nt)\sin(t) < \sin(2nt) + \sin(t)$$

$$\sin(2nt) = \sin[(2n-1)t]\cos(t) + \cos[(2n-1)t]\sin(t) < \sin[(2n-1)t] + \sin(t)$$

因此:

$$sin[(2n+1)t] < (2n+1)\sin(t)$$

因此:

$$(n+1)\tan(nt) < n\tan[(n+1)t]$$

即:

$$(n+1)\tan\left(\frac{180^{\circ}}{n+1}\right) < n\tan\left(\frac{180^{\circ}}{n}\right)$$

因此数列 $\left\{n\tan\left(\frac{180^{\circ}}{n}\right)\right\}$ 单调递减。因为外接正多边形面积必然大于内接正方形,因此:

$$n \tan\left(\frac{180^{\circ}}{n}\right) > 2$$

因此数列 $\left\{n\tan\left(\frac{180^{\circ}}{n}\right)\right\}$ 单调有界,则该数列极限存在。

命题 2.8

考虑两个数列:

$$\left\{ x_n = \left(1 + \frac{1}{n}\right)^n \right\} \quad \text{for} \quad \left\{ y_n = \left(1 + \frac{1}{n}\right)^{n+1} \right\}$$

证明这两个数列极限存在且相等。

证明 因为

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_2}} \le \sqrt[n]{a_1 a_2 \cdots a_n}$$

所以:

$$\left(1+\frac{1}{n}\right)^{n+1} = 1 \cdot \left(1+\frac{1}{n}\right)^{n+1} < \left(\frac{n+2}{1+(n+1)\cdot\frac{1}{1+\frac{1}{n}}}\right)^{n+2} = \left(\frac{n+2}{n+1}\right)^{n+2} = \left(1+\frac{1}{n+1}\right)^{n+2}$$

所以 $\left\{y_n = \left(1 + \frac{1}{n}\right)^{n+1}\right\}$ 单调递减。 定义 $\ln = \log_e$ 为自然对数,e自然对数的底数。

命题 2.9

证明

p=1时, $a_n=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ 为调和级数,它是正无穷大量,我们想知道它趋近无限的速度。

命题 2.10

证明

$$b_n = \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) - \ln n$$

收敛。

证明 极限记为 γ , 称为欧拉常熟。 $\gamma >= 0.577215$

命题 2.11

证明

$$\lim_{n \to \infty} \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} = \ln 2$$

证明 除了夹逼定理,还能用上一个数列相减计算。

命题 2.12

$$d_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{n+1} + \frac{1}{n}$$

证明

以上是与e相关的数列

定义 2.9 (闭区间套)

有一列闭区间 $\{[a_n,b_n]\}$, 满足:

- 1. $[a_{n+1}, b_{n+1}] \subset [a_n, b_n], n = 1, 2, 3, \cdots$
- 2. $b_n a_n \to 0 (n \to \infty)$

则称这样的一列闭区间是一个闭区间套。

定理 2.10 (闭区间套定理)

假如 $[a_n,b_n]$ 是一个闭区间套,则存在唯一的实数 ξ ,它属于一切闭区间 $[a_n,b_n]$ 。 且 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\xi$ 。

证明

定理 2.11

实数集不可列。

 \circ

证明 反证法

子列

定义 2.10

存在一个数列 $\{x_n\}$,取一列严格单调增加的正整数 $n_1 < n_2 < n_3 < \cdots < n_k < \cdots$,则 $x_{n_1}, x_{n_2}, \cdots, x_{n_k}$,称为 $\{x_n\}$ 的一个子列,记为 $\{x_{n_k}\}$, k代表子列中的第k项,又恰好是 $\{x_n\}$ 中的第 n_k 项。

其中 $n_k \ge k, \forall k, n_j > n_k, \forall j > k$ 。

定理 2.12

设 $\{x_n\}$ 收敛于a, 则它的任何一个子列也收敛于a。即 $\lim_{n\to\infty}x_n=a$,证明 $\lim_{k\to\infty}a_{n_k}=a$

 \Diamond

证明

可以用于证明数列不收敛。

命题 2.13

若 $\{x_n\}$ 存在两个子列收敛于不同的极限,则 $\{x_n\}$ 发散。

•

证明

定理 2.13 (Bolzano-Weierstrass定理)

有界数列必有收敛子列。

 \heartsuit

证明 设数列为 $\{x_n\}$, 因为数列有界, 所以 $\forall n > 0$, 存在 $a \le x_n \le b$, 则取 $[a_1, b_1] = [a, b]$ 。

将 $[a_1,b_1]$ 分为两个闭区间,分别为 $[a_1,\frac{a_1+b_1}{2}]$ 和 $[\frac{a_1+b_1}{2},b_1]$,其中至少有一个区间包含无穷多个数列的元素,因为若两个区间都有有限个数列元素,则数列 $\{x_n\}$ 的元素有限。那么我们可以取包含无穷多个数列元素的区间为 $[a_2,b_2]$ 。

同理, 我们可以取出 $[a_3,b_3]$, $[a_4,b_4]$, \cdots 。每一个区间中都包含无穷多个数列元素。

对于这些区间, $\forall n > 0$, (1). $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$, (2). $\lim_{n \to \infty} (b_n - a_n) = \lim_{n \to \infty} \frac{b-a}{2^{n-1}} = 0$, 则这些闭区间组成了一个闭区间套。根据闭区间套定理, 存在唯一的实数 γ 属于一切闭区间 $[a_n, b_n]$ 。

则我们可以这样构造子列:

从 $[a_1,b_1]$ 中取 x_{n_1} ,使得 $n_1>0$,这必然可以实现,因为 $[a_1,b_1]$ 中有无限多个数列元素。

从 $[a_2,b_2]$ 中取 x_{n_2} , 使得 $n_2 > n_1$, 这必然可以实现, 因为 $[a_2,b_2]$ 中有无限多个数列元素, 即 $\forall n_1, \exists n_2 > n_1$ 。

 $\mathcal{M}[a_3,b_3]$ 中取 x_{n_3} ,使得 $n_3 > n_2$,这必然可以实现,因为 $[a_3,b_3]$ 中有无限多个数列元素,即 $\forall n_2,\exists n_3 > n_2$ 。

.

对于子列 $\{x_{n_k}\}$, $x_{n_k} \in [a_k, b_k]$, 则 $\forall \epsilon > 0$, 取 $K = \max\{\left[\log_2\left(\frac{b-a}{\epsilon}\right)\right] + 2, 1\}$, $\forall k > K, b_k - a_k < \epsilon$, 同时 $x_{n_k} \in [a_k, b_k]$, $\gamma \in [a_k, b_k]$, 则 $\forall k > K, |x_{n_k} - \gamma| < b_k - a_k < \epsilon$ 。

即 $\forall \epsilon > 0, \exists K \in \mathbb{N}^+, \forall k > K, |a_{n_k} - \gamma| < \epsilon,$ 则 $\lim_{k \to \infty} x_{n_k} = \gamma$, 该子列收敛于 γ 。

在陈老的视频是,陈老是用夹逼性证明 $\{x_{n_k}\}$ 收敛于 γ ,证明如下:

 $\forall k, a_k \leq x_{n_k} \leq b_k$, 且 $\lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k = \gamma$, 则根据夹逼性, $\lim_{k \to \infty} x_{n_k} = \gamma$ 。**非常巧妙!**

定理 2.14

假设 $\{x_n\}$ 是无界数列,则存在子列 $\{x_{n_k}\}$,它是无穷大量。

 \sim

证明

Cauchy收敛原理

定义 2.11

 $\{x_n\}$ 满足:

 $\forall \xi > 0, \exists N, \forall n, m > N, |x_n - x_m| < \xi$

则称 $\{x_n\}$ 为基本数列。

.

也可以是 $\forall m > n > N$

证明

命题 2.14

判断

$$x_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$

是否为基本数列。

证明

命题 2.15

判断

$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

是否为基本数列。

证明

定理 2.15 (Cauchy收敛原理)

 $\{x_n\}$ 收敛的充分必要条件是 $\{x_n\}$ 是基本数列。

 \odot

证明 必要性: 即 $\{x_n\}$ 收敛 $\Rightarrow \{x_n\}$ 是基本数列。

假设 $\{x_n\}$ 收敛于A,则 $\forall \epsilon > 0$, $\exists N \in \mathbb{N}^+, \forall n > N, |x_n - A| < \frac{\epsilon}{2}$ 。

则对于 $\forall n, m > N, |x_n - x_m| < |x_n - A| + |x_m - A| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon, 则\{x_n\}$ 为基本数列。

充分性: 即 $\{x_n\}$ 是基本数列 $\Rightarrow \{x_n\}$ 收敛。

因为 $\{x_n\}$ 为基本数列,即对于 $\forall \epsilon > 0$, $\exists N \in \mathbb{N}^+$, $\forall m, n > N$, $|x_m - x_n| < \epsilon$ 。取m = N + 1,则 $\forall n > N$, $|x_{N+1} - x_n| < \epsilon$,即 $x_{N+1} - \epsilon < x_n < x_{N+1} + \epsilon$ 。则我们可以取 $a = \min\{x_1, x_2, \dots, x_N, x_{N+1} - \epsilon\}$, $b = \max\{x_1, x_2, \dots, x_N, x_{N+1} + \epsilon\}$,此时 $\forall n \in \mathbb{N}^+$:

$$a \le x_n \le b$$

即, $\{x_n\}$ 数列有界。

根据Bolzano-Weierstrass定理(定理 2.13), 则存在收敛子列 $\{x_{n_k}\}$, 假设该收敛子列 $\{x_{n_k}\}$ 收敛于A, 则 $\forall \epsilon > 0$, $\exists K \in \mathbb{N}^+, \forall k > K, |x_{n_k} - A| < \frac{\epsilon}{2}$, 又由于 $\{x_n\}$ 为基本数列, 则 $\forall \epsilon > 0$, $\exists N' \in \mathbb{N}^+, \forall m', n' > N', |x_{N+1} - x_{n'}| < \frac{\epsilon}{2}$ 。

取 $N'' = \max\{N', n_K\}$, 因为 $\{x_{n_{k'}}\}$ 由无穷多项, 则必然存在 $n_{k'} > N'' \ge n_K$, 即k' > K,。此时,因为 $n_{k'} > N'' \ge N'$, 则 $\forall n' > N'$, $|x_{n'} - x_{n_{k'}}| < \frac{\epsilon}{2}$, 又因为k' > K, 则 $|x_{n_{k'}} - A| < \frac{\epsilon}{2}$, 因此 $\forall n' > N'$, $|x_{n'} - A| < |x_{n'} - x_{n_{k'}}| + |x_{n_{k'}} - A| < \epsilon$, 即数列 $\{x_n\}$ 收敛。

而陈老是这样证明充分性的:

取 $\epsilon = 1$, 因为 $\{x_n\}$ 是基本数列, 则 $\exists N \in \mathbb{N}^+$, $\forall n > N$, $|x_n - x_{N+1}| < 1$, 因此 $|x_n| < |x_n - x_{N+1}| + |x_{N+1}| < |x_{N+1}| + 1$ 。取 $M = \max\{|x_1|, |x_1|, \dots, |x_N|, |x_{N+1}| + 1\}$, 则:

$$\forall n \in \mathbb{N}^+, |x_n| \leq M$$

即 $\{x_n\}$ 有界。

根据根据Bolzano-Weierstrass定理(定理 2.13), 则存在收敛子列 $\{x_{n_k}\}$, 假设该收敛子列 $\{x_{n_k}\}$ 收敛于A。

根据 $\{x_n\}$ 是基本数列,则 $\forall \epsilon > 0$, $\exists N_1 \in \mathbb{N}^+, \forall n, m > N_1, |x_n - x_m| < \frac{\epsilon}{2}$, 现在固定 x_m , 取 x_n 为子列 $\{x_{n_k}\}$ 。现在考虑数列 $\{|x_{n_k} - x_m|\}$ 和数列 $\{\frac{\epsilon}{2}\}$, 取 $K = N_1$,则 $\forall k > K$, 有 $n_k > n_K \geq K = N_1$,即 $\forall k > K$, $|x_{n_k} - x_m| < \frac{\epsilon}{2}$,根据数列极限的保序性逆命题(推论 2.1), $|A - x_m| \leq \frac{\epsilon}{2} < \epsilon$ 。这对于 $\forall m > N_1$ 都成立,即数列 $\{x_n\}$ 极限存在且为A。

命题 2.16

 $\{x_n\}$ 满足压缩性条件,即

$$|x_{n+1} - x_n| \le k |x_n - x_{n-1}|, 0 < k < 1, \forall n = 2, 3, \dots$$

则 $\{x_n\}$ 是收敛的。

证明

实数系的基本定理

- 1. 确界存在定理(实数系的连续性定理)
- 2. 单调有界数列收敛定理
- 3. 闭区间套定理
- 4. Bolzano-Weierstrass定理
- 5. Cauchy收敛原理(实数系完备性)

以上都是在实数系中考虑, 实数系上的基本数列必然是收敛数列, 因此Cauchy收敛原理也被称为实数系的完备性定理。实数系有完备性, 有理数不具备完备性。例如 $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ 是有理数列, 但是它的极限是无理数。以上五个定理等价。我们需要证明这五个定理等价。从Cauchy收敛原理推出闭区间套定理, 再从闭区间套定理推出确界存在定理。

定理 2.16

实数系的完备性等价于实数系的连续性。

 \Diamond

证明 (1)Cauchy收敛原理⇒闭区间套定理。

(2)闭区间套定理⇒确界存在定理。

图 2.1: 陈老视频中, 实数系定理的关系

第3章 函数极限与连续函数

函数极限

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

定义 3.1

y=f(x)在 $O(x_0,\rho)\setminus\{x_0\}$ 上有定义,如果存在一个数A,使得对任意给定的 $\epsilon>0$,可以找到 $\delta>0$,当 $0<|x-x_0|<\delta$ 时,成立 $|f(x)-A|<\epsilon$,则称A是f(x)在 x_0 点的极限,记为 $\lim_{x\to x_0}f(x)=A$ 或者 $f(x)\to A(x\to x_0)$ 。如果不存在满足上述性质的A,则称f(x)在 x_0 点极限不存在。

 $O(x_0, \rho) \setminus \{x_0\}$ 称为去心邻域。

命题 3.1

证明:

$$\lim_{x \to 0} e^x = 1$$

证明

命题 3.2

证明:

$$\lim_{x \to 2} x^2 = 4$$

证明

命题 3.3

证明:

$$\lim_{x \to 1} \frac{x(x-1)}{x^2 - 1} = \frac{1}{2}$$

证明

函数极限的性质

定理 3.1 (函数极限的唯一性)

设A, B都是f(x)在 x_0 的极限, 则A = B。

证明 证明类似证明数列极限的唯一性

定理 3.2 (函数极限的局部保序性)

若
$$\lim_{x\to x_0} f(x) = A, \lim_{x\to x_0} g(x) = B, A>B,$$
 则 $\exists \delta>0,$ 当x有 $0<|x-x_0|<\delta$ 时, $f(x)>g(x)$

证明 证明类似证明数列极限的保序性

引理 3.1

$$\lim_{x \to x_0} f(x) = A \neq 0, \text{ M} \exists \delta > 0, \forall x (0 < |x - x_0| < \delta), |f(x)| > \frac{|A|}{2}$$

证明 请使用局部保序性证明

引理 3.2

假设
$$\lim_{x\to x_0} f(x) = A, \lim_{x\to x_0} g(x) = B, 若 \exists \delta > 0, \forall x(x < |x-x_0| < \delta), 有 f(x) \ge g(x), 则 A \ge B$$

证明

定理 3.3 (函数极限的局部有界性)

证明 请使用局部保序性证明

定理 3.4 (函数极限的夹逼性定理)

若
$$\exists r > 0, \ \forall x(x < |x - x_0| < r), \ \lnot g(x) \le f(x) \le h(x), \ \mathbb{L} \lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = A,$$
 则 $\lim_{x \to x_0} f(x) = A$

证明

命题 3.4

证明:

$$\lim_{x\to 0}\frac{\sin x}{x}=1$$

证明 使用夹逼性证明。

再用数列逼近证明。

定理 3.5 (函数极限四则运算)

假设 $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} g(x) = B$, 则:

- 1. $\lim_{x\to x_0} \alpha f(x) + \beta g(x) = \alpha A + \beta B$
- 2. $\lim_{x\to x_0} f(x)g(x) = AB$
- 3. $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B} (B \neq 0)$

证明

命题 3.5

求:

$$\lim_{x \to 0} \frac{\sin \alpha x}{x}$$

的极限。

证明

命题 3.6

求:

$$\lim_{x\to 0}\frac{\sin\alpha x}{\sin\beta x}$$

的极限。

证明

3.1 函数极限和数列极限的关系

定理 3.6 (否定命题的分析表示)

 $\{x_n\}$ 以a为极限: $\forall \epsilon > 0$, $\exists N$, $\forall n > N$, $|x_n - a| < \epsilon$ 。 $\{x_n\}$ 不以a为极限: $\exists \epsilon > 0$, $\forall N$, $\exists n > N$, $|x_n - a| \ge \epsilon$

က

定理 3.7 (heine定理)

 $\lim_{x\to x_0}f(x)=A$ 存在的充分必要条件是: 对于任意的满足 $x_n\neq x_0$, $\lim_{n\to\infty}x_n=x_0$ 的数列 $\{x_n\}$, $\{f(x_n)\}$ 收敛于A。

证明 证明必要性, 即证明:

若 $\lim_{x\to x_0} f(x) = A$,则对于任意的满足 $x_n \neq x_0$, $\lim_{n\to\infty} x_n = x_0$ 的数列 $\{x_n\}$, $\{f(x_n)\}$ 收敛于A。因为 $\lim_{x\to x_0} f(x) = A$,则 $\forall \epsilon > 0$, $\exists \delta > 0$, $\forall x(0 < |x-x_0| < \delta)$,成立 $|f(x) - A| < \epsilon$ 。又因为对于 $\{x_n\}$,有 $x_n \neq x_0$ 且 $\lim_{n\to\infty} x_n = 0$,即 $\forall \delta > 0$, $\exists N \in \mathbb{N}^+$, $\forall n > N$,成立 $0 < |x_n - x_0| < \delta$ 。则 $\forall \epsilon > 0$, $\exists \delta > 0$,对于该 δ , $\exists N \in \mathbb{N}^+$, $\forall n > N$,有 $0 < |x_n - x_0| < \delta$,且在该 δ 下有 $|f(x_n) - A| < \epsilon$ 。证**毕**

证明充分性,即证明:

若对于任意的满足 $x_n \neq x_0$, $\lim_{n \to \infty} x_n = x_0$ 的数列 $\{x_n\}$, $\{f(x_n)\}$ 收敛于A, 则 $\lim_{x \to x_0} f(x) = A$ 。 利用反证法,若 $\lim_{x \to x_0} f(x) \neq A$,则 $\exists \epsilon_0 > 0$, $\forall \delta > 0$, $\exists x(0 < |x - x_0| < \delta)$,使得 $|f(x) - A| \ge \epsilon_0$ 取 $\delta_n = \frac{1}{n}, n = 1, 2, 3, \cdots$,则对于 ϵ_0 ,有:

$$\exists x_1(0 < |x_1 - x_0| < 1), |f(x_1) - A| \ge \epsilon_0$$

$$\exists x_2(0 < |x_2 - x_0| < \frac{1}{2}), |f(x_2) - A| \ge \epsilon_0$$

$$\exists x_3(0 < |x_3 - x_0| < \frac{1}{3}), |f(x_3) - A| \ge \epsilon_0$$

.

对于数列 $\{x_n\}$,对于 ϵ_0 , $\forall n$, $|f(x_n) - A| \ge \epsilon_0$ 恒成立。

即: $\exists \epsilon = \epsilon_0 > 0$, $\forall N \in \mathbb{N}^+$, $\exists n > N$, $|f(x_n) - A| > \epsilon$ 。则存在数列 $\{x_n\}$ 不收敛于A。这与条件矛盾,则假设不成立。

证毕

命题 3.7

 $f(x) = \sin \frac{1}{x} \alpha x_0 = 0$ 处极限不存在。

_

证明

引押 3 3

 $\lim_{x\to x_0}f(x)$ 存在并且有限(收敛)的充分必要条件是: 对任意满足 $x_n\neq x_0$, $\lim_{n\to\infty}x_n=x_0$ 的 $\{x_n\}$, $\{f(x_n)\}$ 收敛。

证明

3.2 单侧极限

定义 3.2

假设f(x)在 $(x_0-\rho,x_0)$ 有定义, 如果存在B, $\forall \epsilon>0$, $\exists \delta>0$, $\forall x(-\delta< x-x_0<0)$, 成立 $|f(x)-B|<\epsilon$, 则称B是f(x)在 x_0 的左极限, 记为 $\lim_{x\to x_0^-}f(x)=B(f(x)\to B(x\to x_0^-))$ 。

类似地,假如存在C, $\exists \epsilon > 0$, $\exists \delta > 0$, $\forall x (0 < x - x_0 < \delta)$, 成立 $|f(x) - C| < \epsilon$, 则称C是f(x)在 x_0 的右极限,记为 $\lim_{x \to x_0^+} f(x) = C(f(x) \to C(x \to x_0^+))$ 。

 $\mathbb{M}\lim_{x\to x_0} f(x) = A \Leftrightarrow \lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x) = A$

命题 3.8

$$sign(x) = \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases}$$

证明

命题 3.9

$$f(x) = \begin{cases} \frac{\sin 2x}{x} & x < 0\\ 2\cos(x^2) & x \ge 0 \end{cases}$$

3.3 函数极限定义的扩充

可以将自变量x的趋向扩充成以下六种:

- 1. $x \rightarrow x_0$
- $2. \ x \to x_0^+$
- 3. $x \to x_0^-$
- 4. $x \to +\infty$
- 5. $x \to -\infty$
- 6. $x \to \infty$

而应变量f(x)的趋向可以扩充成以下四种:

- 1. $f(x) \to A$
- 2. $f(x) \to +\infty$
- 3. $f(x) \to -\infty$
- 4. $x \to \infty$

现在加上对应的分析表述,对于自变量x:

- 1. $x \to x_0 : \exists \delta > 0, \forall x (0 < |x x_0| < \delta)$
- 2. $x \to x_0^+ : \exists \delta > 0, \forall x (0 < x x_0 < \delta)$
- 3. $x \to x_0^- : \exists \delta > 0, \forall x (-\delta < x x_0 < 0)$
- 4. $x \to +\infty : \exists X > 0, \forall x (x > X)$
- 5. $x \to -\infty$: $\exists X > 0, \forall x (x < -X)$
- 6. $x \to \infty : \exists X > 0, \forall x(|x| > X)$

对于应变量f(x):

- 1. $f(x) \to A : \forall \epsilon > 0, \dots, |f(x) A| < \epsilon$
- 2. $f(x) \to +\infty : \forall G > 0, \dots, f(x) > G$
- 3. $f(x) \to -\infty : \forall G > 0, \dots, f(x) < -G$
- 4. $x \to \infty : \forall G > 0, \dots, |f(x)| > G$

命题 3.10

写出:

$$\lim_{x \to x_0^+} f(x) = \infty$$

的分析表述。

证明

命题 3.11

写出:

$$\lim_{x \to +\infty} f(x) = A$$

的分析表述。

证明

命题 3.12

写出:

$$\lim_{x \to -\infty} f(x) = +\infty$$

的分析表述。

证明

命题 3.13

证明:

$$\lim_{x \to -\infty} e^x = 0$$

证明

命题 3.14

证明

$$\lim_{x \to 1^-} \frac{x^2}{x - 1} = -\infty$$

证明

我们讲了函数极限的性质和函数极限的四则运算。讲函数极限的性质的时候是对于收敛函数来讨论的。对于扩充后的函数极限则不一定成立,特别对于 ∞ 。性质要排除 ∞ ,四则运算要排除待定型。

对于扩充后的heine定理应该如何书写: $\lim_{x\to+\infty} f(x) = A$ 充分必要条件: 对任意的满足 $x_n \to +\infty (n \to \infty)$ 的数列 $\{x_n\}$,成立 $\{f(x_n)\}$ 收敛于A。

 $\lim_{x\to+\infty} f(x)$ 存在且有限的充分必要条件是: 对任意满足 $x_n\to+\infty$ $(n\to+\infty)$ 的数列 $\{x_n\}$, $\{f(x_n)\}$ 收敛。

命题 3.15

设:

$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_k x^k}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_j x^j} (a_n, a_k \neq 0, b_m, b_j \neq 0)$$

考虑 $\lim_{x\to\infty} f(x)$ 和 $\lim_{x\to 0} f(x)$ 。

证明 $x \to \infty$ 的情况:

分三种情况讨论:

- 1. n = m:
- 2. n > m:
- 3. n < m:

 $x \to 0$ 的情况:

分三种情况讨论:

- 1. k = j:
- 2. k > j:
- 3. k < j:

命题 3.16

证明:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

证明 提示: 夹逼法。同时 $\lim_{x\to\infty} \left(1-\frac{1}{x}\right)^x = \frac{1}{e}$

函数极限的Cauchy收敛原理

回忆以下数列的情况: $\lim_{n\to\infty} x_n$ 收敛 $\iff \forall \epsilon > 0, \exists N, \forall n, m > N, |x_n - x_m| < \epsilon$.

在函数中, 我们做了拓广, 并不是所有的拓广都有Cauchy收敛原理。

对于函数发散时是没有Cauchy收敛原理的。

定理 3.8 (函数极限的Cauchy收敛原理)

 $\lim_{x \to +\infty} f(x)$ 存在并且有限(收敛) $\Longleftrightarrow orall \epsilon > 0, \exists X > 0, orall x', x'' > X, |f(x') - f(x'')| < \epsilon$

证明

3.4 连续函数

分析上讲, f(x)在 x_0 点连续: 当 $x \to x_0$ 时, $f(x) \to f(x_0)$ 。

定义 3.3

设f(x)在 x_0 的某个邻域中有定义,且成立

$$\lim_{x \to x_0} f(x) = f(x_0)$$

则称f(x)在 x_0 点连续, x_0 是f(x)的连续点。

符号表述: $\forall \epsilon > 0, \exists \delta > 0, \forall x(|x - x_0| < \delta), 成立 |f(x) - f(x_0)| < \epsilon$ 。

开区间情况:

定义 3.4

若f(x)在(a,b)的每一点上都连续,则称f(x)在开区间(a,b)上连续。

命题 3.17

证明:

$$f(x) = \frac{1}{x}$$

在(0,1)连续。

证明

闭区间情况:

定义 3.5

若 $\lim_{x \to x_0^-} f(x) = f(x_0)$, 则称f(x)在 x_0 点左连续。

若 $\lim_{x\to x_0^+} f(x) = f(x_0)$, 则称f(x)在 x_0 点右连续。

符号表示:

左连续: $\forall \epsilon > 0, \exists \delta > 0, \forall x(-\delta < x - x_0 \le 0): |f(x) - f(x_0)| < \epsilon$.

右连续: $\forall \epsilon > 0, \exists \delta > 0, \forall x (0 \le x - x_0 < \delta): |f(x) - f(x_0)| < \epsilon.$

定义 3.6

f(x)在(a,b)上连续,且在a点右连续,在b点左连续,则称f(x)在闭区间[a,b]上连续。

命题 3.18

证明:

$$f(x) = \sqrt{x(1-x)}$$

在(0,1)闭区间上连续。

证明

注:关于函数f(x)在一个区间里面连续,整合以上的定义。

定义 3.7

设f(x)定义在某区间X上, 若 $\forall x_0 \in X$, 及 $\forall \epsilon > 0$, $\exists \delta > 0$, $\forall x \in X(|x-x_0| < \delta)$, $|f(x)-f(x_0)| < \epsilon$ 。则称f(x)在区间X上连续。

命题 3.19

证明:

$$f(x) = \sin(x)$$

 $\Delta(-\infty, +\infty)$ 上连续。

证明 同理 $f(x) = \cos(x)$ 在 $(-\infty, +\infty)$ 上连续。

命题 3.20

证明:

$$f(x) = a^x (a > 0, a \neq 1)$$

 $在(-\infty, +\infty)$ 上连续。

证明

 \Diamond

3.5 连续函数的四则运算

定理 3.9

有 $\lim_{x\to x_0} f(x) = f(x_0)$, $\lim_{x\to x_0} g(x) = g(x_0)$, 则:

- 1. $\lim_{x \to x_0} \alpha f(x) + \beta g(x) = \alpha f(x_0) + \beta g(x_0)$
- 2. $\lim_{x \to x_0} f(x)g(x) = f(x_0)g(x_0)$
- 3. $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \frac{f(x_0)}{g(x_0)} (g(x_0) \neq 0)$

命题 3.21

求:

$$\lim_{x \to 2} \frac{x^2 + \sin x}{3^x + 2x}$$

证明

命题 3.22

$$P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$
$$Q(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_0}$$

证明 f(x) = c, g(x) = x

命题 3.23

已知 $\sin(x)$, $\cos(x)$ 在 $(-\infty, +\infty)$ 上连续。

$$\begin{split} \tan(x) &= \frac{\sin(x)}{\cos(x)}, \, \text{在}\big\{x \, \big| x \neq k\pi + \frac{\pi}{2}, k \in \mathbb{Z}\big\}$$
上连续。 $\cot(x) &= \frac{\cos(x)}{\sin(x)}, \, \text{在}\big\{x \, \big| x \neq k\pi, k \in \mathbb{Z}\big\}$ 上连续。

证明

3.6 不连续点的类型

连续的定义: $\lim_{x\to x_0} f(x) = f(x_0)$

该定义包含了如下几层意思:

- 1. f(x)在 x_0 点有定义。
- 2. $\lim_{x \to x_0^+} f(x) = f(x_0)$
- 3. $\lim_{x \to x_0^-} f(x) = f(x_0)$

3.6.1 第一类不连续点

$$\lim_{x \to x_0^+} f(x) \neq \lim_{x \to x_0^-} f(x)$$

命题 3.24

$$sign(x) = \begin{cases} -1 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases}$$

称第一类不连续点为跳跃点。

3.6.2 第二类不连续点

 $\lim_{x\to x_0^+}f(x)$ 和 $\lim_{x\to x_0^-}f(x)$ 至少有一个不存在。

命题 3.25

 $f(x) = \sin(\frac{1}{x}), x = 0$ 是它的第二类不连续点。

证明

命题 3.26

 $f(x) = e^{\frac{1}{x}}, x = 0$ 是它的第二类不连续点。

证明

3.6.3 第三类不连续点

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) \begin{cases} \neq f(x_0) \\ f(x) 在 x_0 点没定义。 \end{cases}$$

命题 3.27

 $f(x) = x \sin(\frac{1}{x})$, 在x = 0极限存在, 但是没有定义。

证明

第三类不连续点称为可去不连续点。

命题 3.28

$$D(x) = \begin{cases} 1 & x \neq x \neq x \\ 0 & x \neq x \neq x \end{cases}$$

Dirichlet函数属于第二类不连续点。

证明

命题 3.29

黎曼(Riemann)函数:

$$\mathbf{R}(x) = \begin{cases} 0 & x \in \mathbb{Z} \\ \frac{1}{p} & x = \frac{q}{p}, p \in \mathbb{N}^+, q \in \mathbb{Z} \setminus \{0\}, p, q \subseteq \mathbb{Z} \\ 1 & x = 0 \end{cases}$$

 $\forall x_0 \in (-\infty, +\infty)$, $\lim_{x \to x_0} \mathbf{R}(x) = 0$ 。 $\operatorname{pR}(x)$ 在一切无理点连续, 在一切有理点不连续。

为什么定义0的时候是1? 因为1可以写成 $\frac{0}{1}$,并且Riemann函数有周期性,为了保持周期性,因此定义0的时候是1。

证明

命题 3.30

区间(a,b)上的单调函数的不连续点必为第一类。

证明

3.7 反函数

映射: $f: X \to Y$ 为单射, 则 $\exists f^{-1}: R_f \to X$ 。 存在性、连续性、可导性(可导性暂时不讲) 严格单调增加: $\forall x_1 < x_2 \Rightarrow f(x_1) < f(x_2)(y_1 < y_2)$, 即 $x_1 \neq x_2, y_1 \neq y_2$ 。

定理 3.10 (反函数存在定理)

证明

定理 3.11 (反函数连续性定理)

假设y = f(x)在[a,b]上连续且严格单调增加,设 $f(a) = \alpha$, $f(b) = \beta$,则反函数在 $[\alpha,\beta]$ 上连续。

证明

命题 3.31

 $y = \sin(x), y = \arcsin(x)$ $y = \cos(x), y = \arccos(x)$ $y = \tan(x), y = \arctan(x)$

证明

命题 3.32

$$\begin{split} y &= a^x (a > 0, a \neq 1), y = \log_a(x) \\ y &= x^n, n \in \mathbb{Z} \\ y &= x^\alpha = e^{\ln x^\alpha} = e^{\alpha \ln x} \end{split}$$

证明

讨论一个问题, $\lim_{u\to u_0}f(x)=A$, $\lim_{x\to x_0}g(x)=u_0$ 那么 $\lim_{x\to x_0}f\circ g(x)$ 是否等于A? 反例:

$$f(u) = \begin{cases} 0 & u = 0 \\ 1 & u \neq 0 \end{cases}$$

$$g(x) = x \sin\left(\frac{1}{x}\right)$$

则复合起来为:

$$f \circ g(x) \begin{cases} 0 & x = \frac{1}{n\pi} \\ 1 & x \neq \frac{1}{n\pi} \end{cases}$$

定理 3.12

u = g(x)在 x_0 连续, $g(x_0) = u_0$, f(u)在 u_0 连续。则 $f \circ g$ 在 x_0 连续。

 \Diamond

证明

命题 3.33

$$sh(x) = \frac{e^x - e^{-x}}{2}, ch(x) = \frac{e^x + e^{-x}}{2}$$

证明

命题 3.34

对任意实数 α , $f(x) = x^{\alpha} \alpha(0, +\infty)$ 上连续。

证明

定理 3.13

一切初等函数在它的定义域上连续。

 $^{\circ}$

命题 3.35

$$\lim_{x \to 0} (\cos x)^{\frac{1}{x^2}}$$

证明

命题 3.36

放射性物质的质量变化:

设t=0时,物质的总量为M=M(0),放射的比例系数为k,求时刻t的时候,M(t)为多少?

证明

3.8 无穷小量与无穷大量的阶

无穷小量的阶:

在数列极限的时候, 我们提及: $\lim_{n\to\infty} x_n = 0$, $\{x_n\}$ —无穷小量。

对于函数极限: $\lim_{x\to x_0} f(x) = 0$, 则称当 $x\to x_0$ 时, f(x)是无穷小量。

当 $x \to x_0, u(x), v(x)$ 都是无穷小量。

定义 3.8

$$\lim_{x\to x_0}\frac{u(x)}{v(x)}=0, \, \text{则称当}\, x\to x_0 \, \text{时}, \, u(x) \\ \text{足}v(x) \, \text{的高阶无穷小量, } \text{记为}u(x)=o(v(x)), (x\to x_0).$$

*

命题 3.37

$$\lim_{x \to x_0} \frac{1 - \cos(x)}{x}$$

命题 3.38

$$\lim_{x \to 0} \frac{\tan(x) - \sin(x)}{x^2}$$

证明

定义 3.9

若存在A>0,当x在 x_0 的某一去心邻域中 $\{x|0<|x-x_0|<\rho\}$,成立 $\left|\frac{u(x)}{v(x)}\right|\leq A$,则称当 $x\to x_0$ 时, $\frac{u(x)}{v(x)}$ 是有界量,记为u(x)=O(v(x)),($x\to x_0$)。

命题 3.39

$$u(x) = x \sin\left(\frac{1}{x}\right), u(x) = O(v(x))$$

证明

定义 3.10

命题 3.40

$$u(x) = x(1 + \sin\left(\frac{1}{x}\right)), v(x) = x, (x \to 0)$$

证明

命题 3.41

$$u(x) = x(2 + \sin\left(\frac{1}{x}\right)), v(x) = x, (x \to 0)$$

定义 3.11

若
$$\lim_{x\to x_0} \frac{u(x)}{v(x)} = 1$$
,则称当 $x\to x_0$ 时, $u(x)$ 与 $v(x)$ 是等价无穷小量,记为 $u(x)\sim v(x)$, $(x\to x_0)$ 。

命题 3.42

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1, \sin(x) \sim x(x \to x_0)$$

证明

命题 3.43

$$\lim_{x \to 0} \frac{1 - \cos(x)}{\frac{1}{2}x^2}$$

命题 3.44

$$\lim_{x \to 0} \frac{\tan(x) - \sin(x)}{\frac{1}{2}x^3}$$

注:(1) 取 $v(x) = (x - x_0)^k$ 可知u(x)是几阶的无穷小量。

 $(2)x \to 0^+, \frac{-1}{\ln(x)}$ 是正无穷小量。对任意的 $\alpha > 0, \frac{-1}{\ln(x)}$ 是 x^{α} 的低阶无穷小量, 即:

$$\lim_{x \to 0^{+}} \frac{\frac{-1}{\ln(x)}}{x^{\alpha}} = +\infty$$

这时候, 记 $\frac{-1}{\ln(x)} = o(1), (x \to 0^+)$

又比如 $u(x) = \sin\left(\frac{1}{x}\right)(x \to 0)$,不是无穷小量但是是有界量,则记为 $u(x) = O(1), (x \to 0)$ 。

无穷大量的阶:

 $\lim_{x\to x_0} f(x) = \infty(+\infty, -\infty)$, 则称当 $x\to x_0$ 时, f(x)是(正, 负)无穷大量。

定义 3.12

假设u(x),v(x)当 $x\to x_0$ 时都是无穷大量,若 $\lim_{x\to x_0}\frac{u(x)}{v(x)}=\infty$,这说明当 $x\to x_0$ 时,u(x)是v(x)的高阶无穷大量。

$$n^n >> n! >> a^n(a > 1) >> n^{\alpha}(\alpha > 0) >> \ln^{\beta}(n)(\beta > 0)$$

命题 3.45

设a > 1, k是正整数, 求:

$$\lim_{x\to +\infty} \frac{a^x}{x^k}$$

$$\lim_{x \to +\infty} \frac{\ln^k(x)}{x}$$

定义 3.13

若存在A > 0, 在 $\{x|0 < |x - x_0| < \rho\}$, 成立:

$$\left| \frac{u(x)}{v(x)} \right| \le A$$

则称当 $x \to x_0$ 时, $\frac{u(x)}{v(x)}$ 是有界量,记为 $u(x) = O(v(x)), (x \to x_0)$

定义 3.14

若存在 $0 < a < A < +\infty$, 在 $\{x|0 < |x-x_0| < \rho\}$, 成立:

$$0 < a \le \left| \frac{u(x)}{v(x)} \right| \le A < +\infty$$

则称当 $x \to x_0$ 时, u(x), v(x)是同阶无穷大量。

若 $\lim_{x\to x_0} \frac{u(x)v(x)}{=}c\neq 0$,则u(x),v(x)一定是同阶无穷大量。

定义 3.15

若 $\lim_{x \to x_0} \frac{u(x)}{v(x)} = 1$,则称u(x)与v(x)是等价无穷大量,记为 $u(x) \sim v(x), (x \to x_0)$ 。

命题 3.46

$$u(x) = x^3 \sin\left(\frac{1}{x}\right), v(x) = x^2$$

证明

命题 3.47

$$\lim_{x \to \frac{\pi}{2}^{-}} \left(\frac{\pi}{2} - x\right) \tan(x)$$

证明

当 $x \to 0^+$, $\frac{-1}{\ln(x)}$ 关于 x^{α} 都是低阶无穷小量。

命题 3.48

 $x \to 0^+$, k为任意的正整数, $\left(\frac{-1}{\ln(x)}\right)^k$ 关于x是低阶无穷小量。

证明

命题 3.49

当 $x \to 0^+, e^{-\frac{1}{x}}$ 关于 x^k 是高阶无穷小量。

证明

等价量:

 $\sin(x) \sim x$

命题 3.50

$$\ln(1+x) \sim x, (x \to 0)$$

证明

命题 3.51

$$e^x - 1 \sim x, (x \to 0)$$

证明

命题 3.52

$$(1+x)^{\alpha} \sim \alpha x, (x \to 0)$$

证明

命题 3.53

$$u(x) = \sqrt{x + \sqrt{x}}$$

讨论 $x \to +\infty$ 和 $x \to 0$ +时的阶数。

证明

命题 3.54

$$v(x) = 2x^3 + 3x^5$$

讨论 $x \to \infty$ 和 $x \to 0$ 时的阶数。

定理 3.14

u(x), v(x), w(x)在 x_0 的某个去心邻域上有定义,且

$$\lim_{x \to x_0} \frac{v(x)}{w(x)} = 1, v(x) \sim w(x), (x \to x_0)$$

则

- 1. $\lim_{x\to x_0} u(x)w(x) = A \iff \lim_{x\to x_0} u(x)v(x) = A$
- 2. $\lim_{x\to x_0} \frac{u(x)}{w(x)} = A \iff \lim_{x\to x_0} \frac{u(x)}{v(x)} = A$

 \odot

命题 3.55

计算:

$$\lim_{x \to 0} \frac{\ln(1+x^2)}{(e^{2x}-1)\tan(x)}$$

证明

命题 3.56

计算:

$$\lim_{x \to 0} \frac{\sqrt{1+x} - e^{\frac{x}{3}}}{\ln(1+2x)}$$

证明

命题 3.57

计算:

$$\lim_{x \to \infty} x \left(\sqrt[3]{x^3 + x} + \sqrt[3]{x^3 - x} \right)$$

证明

命题 3.58

计算:

$$\lim_{x\to 0}\frac{\sqrt{1+x}-1-\frac{x}{2}}{x^2}$$

3.9 闭区间上的连续函数

定理 3.15 (有界性定理)

f(x)在闭区间[a,b]上连续,则f(x)在闭区[a,b]上有界。

 \Diamond

证明

定理 3.16 (最值定理)

f(x)在[a,b]上连续,则f(x)必能在[a,b]上取到最大值和最小值,即 $\exists \xi, \eta \in [a,b]$,使得 $f(\xi) \leq f(x) \leq f(\eta), \forall x \in [a,b]$ 。

证明

定理 3.17 (零点存在定理)

f(x)在[a,b]上连续, 如果f(a)f(b) < 0, 则 $\exists \xi \in [a,b]$, 使得 $f(\xi) = 0$ 。

 \Diamond

证明

命题 3.59

$$p(x) = 2x^3 - 3x^2 - 3x + 2$$

证明

命题 3.60

f(x)在[a,b]上连续, $f([a,b]) \subset [a,b]$, 则 $\exists \xi \in [a,b]$, 使得 $f(\xi) = \xi(\xi 称为f$ 的不动点)。

_

证明

命题 3.61

f(x)在(a,b)上连续, $f((a,b)) \subset (a,b)$, 则是否f也有不动点?

证明

定理 3.18 (中间值定理)

f(x)在闭区间[a,b]上连续,则它一定能取到最大值M与最小值m之间的任何一个值。

 \sim

证明

3.9.1 一致连续概念

定义 3.16

X是某一区间, f(x)在X上连续, 是指f(x)在X上的每一点连续(在端点指右或者左连续)。 分析表述: $\forall x_0 \in X, \forall \epsilon > 0, \exists \delta > 0, \forall x \in X(|x-x_0| < \delta), |f(x)-f(x_0)| < \epsilon$

 $\delta = \delta(\epsilon, x_0)$, 能否找到对一切 x_0 适用的 $\delta > 0$?

若能找到这样的 $\delta > 0$, 则有:

 $\forall \epsilon > 0, \exists \delta = \delta(\epsilon) > 0, \forall x', x'' \in X(|x' - x''| < \delta): |f(x') - f(x'')| < \epsilon.$

问题: 这样的 $\delta(\epsilon) > 0$ 是否一定能找到?不一定!

存在 $\delta(\epsilon) > 0 \iff \inf_{x_0 \in X} \delta^*(\epsilon, x_0) > 0$ (令所有适用的 $\delta(\epsilon, x_0)$)中的最大者(或上确界)为 $\delta^*(\epsilon, x_0)$)

定义 3.17 (一致连续)

f(x)在区间X上有定义,假如 $\forall \epsilon>0, \exists \delta>0, \forall x', x''\in X(|x'-x''|<\delta): |f(x')-f(x'')|<\epsilon,$ 则称f(x)在区间X上一致连续。

f(x)在X上一致连续 \Rightarrow f(x)在区间X上连续

命题 3.62

证明:

$$y = \sin(x)$$

 $在(-\infty, +\infty)$ 上一致连续。

命题 3.63

$$f(x) = \frac{1}{x}$$

在区间(0,1)上不是一致连续。

证明

定理 3.19

假设f(x)在区间X上有定义,则f(x)在X上一致连续的充分必要条件是: 对任意点列 $x_n', x_n'' \in X$,只要 $\lim_{n \to \infty} (x_n' - x_n'') = 0$,则有 $\lim_{n \to \infty} (f(x_n') - f(x_n'')) = 0$ 。

证明

命题 3.64

用以上的定理证明:

$$f(x) = \frac{1}{x}$$

在区间(0,1)上不是一致连续。

证明

命题 3.65

证明:

$$f(x) = \frac{1}{x}$$

 $在(\eta,1), 0 < \eta < 1$ 上一致连续。

命题 3.66

$$f(x) = x^2$$

 $在(0,+\infty)$ 上非一致连续。

证明

命题 3.67

$$f(x) = x^2$$

在(0,A)上一致连续。

证明

定理 3.20 (Cantor定理)

若f(x)在闭区间[a,b]连续,则f(x)在[a,b]上一致连续。

证明

定理 3.21

f(x)在有限开区间(a,b)连续,则f(x)在开区间(a,b)上一致连续的充分必要条件是: $f(a^+)$, $f(b^-)$ 存在。

第4章 微分

4.1 微分和导数

4.1.1 微分

考虑y = f(x), 当 $x \to x + \Delta x$ 时, $f(x) \to f(x + \Delta x)$, 令 $\Delta y = f(x + \Delta x) - f(x)$ 。 应该怎么简单地表示 Δy ?

定义 4.1 (微分的定义)

 $x_0 \in D_f$, 若存在只与 x_0 有关, 与 Δx 无关的 $g(x_0)$,使得当 $\Delta x \to 0$ 时:

$$\Delta y = g(x_0)\Delta x + o(\Delta x)$$

则称f(x)在 x_0 可微。

若f(x)在区间X的每一点可微,则称f(x)在区间X可微。

 $g(x_0)\Delta x$ 称为 Δy 的线性主要部分。

 $\Delta x \to 0$, 记 Δx 为dx, 若f(x)在x点可微, 则有 $\Delta y = g(x)\Delta x + o(\Delta x)$, $(\Delta x \to 0)$ 。 则记 Δy 为dy, 并将上式写为dy = g(x)dx。

命题 4.1

$$y = f(x) = x^2$$

 $\forall x \in (-\infty, +\infty)$, 求微分表示。

证明

命题 4.2

$$y = f(x) = \sqrt[3]{x^2}$$

考虑f在 $x_0 = 0$ 是否可微。

证明

可微⇒连续

4.1.2 导数

y = f(x)在 x_0 可微, 则 $\Delta y = g(x_0)\Delta x + o(\Delta x), (\Delta x \to 0)$, 那么:

$$\frac{\Delta y}{\Delta x} = g(x_0) + \frac{o(\Delta x)}{\Delta x}$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = g(x_0)$$

定义 4.2

设 $x_0 \in D_f$, 若极限

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

存在, 则称f(x)在 x_0 可导, 记这个极限值为 $f'(x_0)$ (或 $y'(x_0)$, $\frac{dy}{dx}\Big|_{x=x_0}$, $\frac{df}{dx}\Big|_{x=x_0}$)。

f(x)可导的范围是 D_f 的子集,于是我们可以得到在这子集上的f(x)的导函数,记为f'(x)(或y'(x), $\frac{dy}{dx}$, $\frac{df}{dx}$)。可微⇒可导,且 $f'(x_0) = g(x_0)$ 。

可导是否一定可微?

可导,则:

 $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0)$

则:

$$\lim_{\Delta x \to 0} \left(\frac{\Delta y}{\Delta x} - f'(x_0) \right) = 0$$

$$\frac{\Delta y}{\Delta x} - f'(x_0) = o(1), (\Delta x \to 0)$$

$$\Delta y = f'(x_0)\Delta x + o(1)\Delta x$$

$$\Delta y = f'(x_0)\Delta x + o(\Delta x)$$

即,可导⇒可微(一元函数下)。

4.2 导数的意义与性质

命题 4.3

抛物线:

$$y^2 = 2px$$

 (x_0,y_0) 是抛物线上一点, 求过 (x_0,y_0) 的切线方程。

证明

命题 4.4

椭圆:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

求椭圆上过 (x_0,y_0) 点的切线。

证明

f(x)在 x_0 处的导数为以下极限:

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

称:

$$f'_{+}(x_0) = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

为f(x)在 x_0 的右导数。称:

$$f'_{-}(x_0) = \lim_{\Delta x \to 0^{-}} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

为f(x)在 x_0 的左导数。

因此, f(x)在 x_0 可导 \iff f(x)在 x_0 的左右导数存在且相等。

以下两个记号不好弄混: $f'_{+}(x_0)$ 是f(x)在 x_0 的右导数, $f'(x_0^+)$ 是f(x)导数在 x_0 的右极限。

同理, $f'_{-}(x_0)$ 是f(x)在 x_0 的左导数, $f'(x_0^-)$ 是f(x)导数在 x_0 的左极限。

命题 4.5

f(x) = |x|在 x_0 的左右导数。

证明

命题 4.6

$$f(x) = \begin{cases} x \sin(1/x) & x > 0 \\ 0 & x \le 0 \end{cases}$$

求f(x)在x = 0的左右导数。

证明

命题 4.7

$$f(x) = \begin{cases} x^2 + b & x > 2\\ ax + 1 & x \le 2 \end{cases}$$

要求确定a,b使得f(x)在 $x_0 = 2$ 可导。

证明

f(x)在(a,b)上每一点可导,则称f(x)在(a,b)区间上可导。

f(x)在(a,b)上每一点可导,在x = a上有右导数,x = b又左导数,则称f在闭区间[a,b]上可导。

4.3 导数四则运算与反函数求导法则

命题 4.8

求

 $y = \sin(x)$

的导数。

证明

同理 $y = \cos(x), y'(x) = -\sin(x)$ 。

命题 4.9

求

 $y = \ln(x)$

的导数。

证明

命题 4.10

求

 $y = e^x$

的导数。

求

$$y = a^x$$

的导数。

证明

命题 4.12

求

$$y = x^{\alpha}, \alpha \in \mathbb{R}$$

在定义域 $(0,+\infty)$ 的导数。

证明

定理 4.1

若f, g在同一区间可导, 则 $c_1 f(x) + c_2 g(x)$ 也在该区间可导, 且有:

$$(c_1 f(x) + c_2 g(x))' = c_1 f'(x) + c_2 g'(x)$$

定理 4.2

若f, g在同一区间可导, 则 $f(x)\dot{g}(x)$ 也在该区间可导, 且有:

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

证明

命题 4.13

求:

$$y = x^3 \cos(x)$$

的导数。

证明

命题 4.14

求:

$$y = \frac{\sin(x)}{x}$$

的导数。

证明

定理 4.3

设g(x)在某一个区间可导, $g(x) \neq 0$, 则 $\frac{1}{g(x)}$ 也在该区间可导, 且

$$\left(\frac{1}{g(x)}\right)' = \frac{-g'(x)}{g^2(x)}$$

命题 4.15

求:

$$y = \sec(x), \left(\sec(x) = \frac{1}{\cos(x)}\right)$$

的导数。

证明

命题 4.16

求:

$$y = \csc(x), \left(\csc(x) = \frac{1}{\sin(x)}\right)$$

的导数。

证明

引理 4.1

f, g在同一区间可导, $g(x) \neq 0$, 则 $\frac{f(x)}{g(x)}$ 在该区间可导, 且:

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

证明

命题 4.17

求:

$$y = \tan(x)$$

的导数。

证明

命题 4.18

求:

$$y = \cot(x)$$

的导数。

证明

定理 4.4 (反函数求导定理)

f(x)在(a,b)连续并且严格单调并且可导, $f'(x) \neq 0$, $\alpha = \min(f(a^+),f(b^-))$, $\beta = \max(f(a^+),f(b^-))$,则 $f^{-1}(y)$ 在 (α,β) 上可导,且:

$$\left(f^{-1}(y)\right)' = \frac{1}{f'(x)}$$

证明

命题 4.19

求:

 $y = \arctan(x)$

的导数。

证明

命题 4.20

求:

 $y = \operatorname{arccot}(x)$

的导数。

证明

命题 4.21

求:

 $y = \arcsin(x)$

的导数。

证明

命题 4.22

求:

 $y = \arccos(x)$

的导数。

证明

命题 4.23

考虑:

$$sh(x) = \frac{e^x - e^{-x}}{2}$$
 for $ch(x) = \frac{e^x + e^{-x}}{2}$

的导数。

证明

命题 4.24

考虑:

$$\operatorname{th}(x) = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} \quad \text{fo} \quad \operatorname{cth}(x) = \frac{\operatorname{ch}(x)}{\operatorname{sh}(x)}$$

的导数。

证明

命题 4.25

考虑:

$$\operatorname{sh}^{-1}(x)$$
 for $\operatorname{ch}^{-1}(x)$

的导数。

证明

注

- 1. $\left(\sum_{i=1}^{n} c_i f_i(x)\right)' = \sum_{i=1}^{n} c_i f_i'(x)$ 2. $\prod_{i=1}^{n} f_i(x) = \sum_{j=1}^{n} \left(f_j'(x) \prod_{i=1, i \neq j}^{n} f_i(x)\right)$

命题 4.26

求

$$y = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

的导数。

证明

命题 4.27

求:

$$y = e^x (x^2 + 3x - 1) \arcsin(x)$$

证明

4.4 复合函数求导法则及其应用

命题 4.28

$$u=g(x)$$
在 x_0 可导, $g(x_0)=u_0,$ $u=f(u)$ 在 $u=u_0$ 可导, 则 $y=f(g(x))$ 在 $x=x_0$ 可导, 且:
$$\left[f\left(g(x)\right)\right]_{x=x_0}'=f'(u_0)g'(x_0)$$

证明 有缺陷证明:

证明:

复合函数求导法则又叫链式法则。

例题 4.1 用复合函数求导法则求:

$$y = x^{\alpha}$$

的导数。

证明

例题 4.2 用复合函数求导法则求:

$$y = e^{\cos(x)}$$

的导数。

证明

例题 4.3 用复合函数求导法则求:

$$y = \sqrt{1 + x^2}$$

的导数。

证明

命题 4.29

求:

$$y = e^{\sqrt{1 + \cos(x)}}$$

的导数。

幂指函数:

例题 4.4 求:

$$y = f(x) = u(x)^{v(x)}$$

的导数。

证明

例题 4.5

$$y = (\sin(x))^{\cos(x)}$$

证明

定理 4.5 (一阶微分的形式不变性)

设y = f(u), 则y'(u) = f'(u), dy = f'(u)du, 其中u是自变量。

设y = f(u), u = g(x), 则y(x) = f(g(x)), y'(x) = f'(u)g'(x), y'(x) = f'(g(x))g'(x),dy = f'(g(x))g'(x)dx, 则 dy = f'(g(x))dg(x) = f'(u)du, 其中u是中间变量。

无论u是自变量还是中间变量, $\mathrm{d}y=f'(u)\mathrm{d}u$

C

4.4.1 隐函数的求导与微分

隐函数:f(x,y) = 0。

例题 4.6

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

求y关于x的微分。

例题 4.7

$$e^{xy} + x^2y - 1 = 0$$

求y关于x的微分。

证明

命题 4.30

$$\sin(y^2) = \cos(\sqrt{x})$$

求y关于x的微分。

证明

例题 4.8

$$e^{x+y} - xy - e = 0$$

(0,1)在曲线上,求过(0,1)点的切线方程。

证明

注

1. $y \frac{1}{q(x)}$ 也可以看作:

$$\begin{cases} y = \frac{1}{u} \\ u = g(x) \end{cases}$$

则 $y'(x) = -\frac{1}{g^2(x)} \cdot g'(x)$, 定义证明和复合函数结果一致。

2. $y = f(x), x = f^{-1}(y), 则f^{-1}((f(x))) = x$, 使用复合函数求导, 则 $1 = (f^{-1}(y))'f'(x)$, 即 $(f^{-1}(y)) = \frac{1}{f'(x)}$, 用 复合函数求导法则可以推导反函数求导。

4.4.2 函数的参数表示

函数的参数表示:

$$\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases} \quad \alpha \le t \le \beta$$

 ϕ, ψ 可微, ϕ 严格单调, $\phi'(t) \neq 0$ 。由反函数可导定理t可以表示为 $t = \phi^{-1}(x)$,则:

$$y = \psi(\phi^{-1}(x))$$

则:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \psi'(t)(\phi'(x))' = \psi'(t) \cdot \frac{1}{\phi(t)} = \frac{\psi'(t)}{\phi'(t)}$$

例题 4.9 求旋轮线:

$$\begin{cases} x = t - \sin(t) \\ y = 1 - \cos(t) \end{cases}$$

的导数。

证明

例题 4.10 t = 0时, 水平速度与垂直向上的速度分别为 v_1, v_2 , 问在什么时刻, 速度的方向是水平的?

证明

例题 4.11

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

分别用三种表示方法的求导方式求导。

证明

4.5 高阶导数和高阶微分

定义 4.3 (高阶导数的定义)

y = f(x), 若f'(x)任然可导,则记它的导函数为:

$$[f'(x)]' = f''(x)$$

称它为f(x)的二阶导数。也可记为y''(x), $\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)=\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$, $\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}f}{\mathrm{d}x}\right)=\frac{\mathrm{d}^2f}{\mathrm{d}x^2}$ 。

若f''(x)仍可导,则它的导数称为f(x)的三阶导数,记为f'''(x),也可以记为y'''(x), $\frac{d}{dx}\left(\frac{d^2y}{dx^2}\right) = \frac{d^3y}{dx^3}$, $rac{\mathrm{d}}{\mathrm{d}x}\left(rac{\mathrm{d}^2f}{\mathrm{d}x^2}
ight) = rac{\mathrm{d}^3f}{\mathrm{d}x^3}$ 。 从四阶开始记为 $f^{(4)}(x), f^{(5)}(x), \cdots, f^{(n)}(x), \cdots$

定义 4.4

设f的n-1阶导数 $f^{(n-1)}(x)$ 仍然可导,则它的导数记为 $\left[f^{(n-1)}(x)\right]'=f^{(n)}(x)$,也可记为 $y^{(n)}(x)$, $\frac{\mathrm{d}^n f}{\mathrm{d} x^n}$, $\frac{\mathrm{d}^n y}{\mathrm{d} x^n}$

例题 4.12 求

$$y = e^x$$

的高阶导数。

证明

例题 4.13 求

$$y = a^x$$

的高阶导数。

证明

例题 4.14 求

$$y = \sin(x)$$

的高阶导数。

证明

例题 4.15 求

$$y = x^m$$
 (m是正整数)

的高阶导数。

证明

例题 4.16 求

$$y = \ln(x)$$

的高阶导数。

证明

4.5.1 高阶导数的运算法则

定理 4.6

f(x), g(x)都是n次可导,则

$$[c_1 f(x) + c_2 g(x)]^{(n)} = c_1 f^{(n)}(x) + c_2 g^{(n)}(x)$$

定理 4.7 (Leibniz公式)

f(x), g(x)都是n次可导, 则

$$(f(x)g(x))^{(n)} = \sum_{k=0}^{n} C_n^k f^{(n-k)}(x)g^k(x)$$

 \Diamond

证明

例题 4.17 求

$$y = (3x^2 - 2)\sin(2x)$$

的100阶导数。

证明

 $\left[\frac{f(x)}{g(x)}\right]^n$ 无固定公式,要考虑成 $\left[f(x)\cdot\frac{1}{g(x)}\right]^n$ 来算。 复合函数,隐函数,参数表示的高阶导数并不简单。

4.5.2 复合函数

先考虑y = f(u), u = g(x)的复合函数的二阶导数:

$$y''(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x} \right)$$
$$= \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}u} \right) \cdot \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right)$$
$$= \frac{\mathrm{d}}{\mathrm{d}u} \left(\frac{\mathrm{d}y}{\mathrm{d}u} \right) \cdot \frac{\mathrm{d}u}{\mathrm{d}x} \cdot \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}^2y}{\mathrm{d}x^2}$$
$$= f''(u)(g'(x))^2 + f'(u)g''(x)$$

再求三阶导数:

4.5.3 隐函数

隐函数也没有固定的公式, 所以我们通过例题来说明。

例题 4.18 求隐函数:

$$e^{xy} + x^2y - 1 = 0$$

的y的二阶导数。

证明

4.5.4 参数表示

问题 4.1 函数的参数表示:

$$\begin{cases} x = \phi(t) \\ y = \psi(t) \end{cases} \quad \alpha \le t \le \beta$$

如何求y的二阶导数。

证明

例题 4.19(旋轮线) 己知:

$$\begin{cases} x = t - \sin(t) \\ y = 1 - \cos(t) \end{cases} \quad 0 \le t \le 2\pi$$

求y的一阶和二阶导数。 $t = \pi$ 时y的二阶导数是多少。

4.6 高阶微分

问题 **4.2** 已知y = f(x), 求y的高阶微分。

证明 $d^2y = d(dy) = d(f'(x)dx)$, 其中的d(dx)怎么求微分, 我们可以考虑:

$$\Delta y = f'(x)\Delta x + o(\Delta x) \quad (f'(x) \neq 0)$$

该等式除了说明 $\Delta y \sim f'(x)\Delta x$, 还说明在上式中 Δx 是与x无关的量, 因为 Δx 的变动与x无关, 因此可以看作是x的常数函数。

注高阶微分没有形式不变性。

问题 **4.3** 考虑y = f(u), u = g(x),求 d^2y 以u为自变量和以x为自变量下的形式。

例题 4.20 求:

$$y = e^{\sin(x)}$$

的二阶微分。

证明 解1:

$$\mathrm{d}^2 y = f''(x) \mathrm{d} x^2$$

解2:

$$d^2y = f''(u)du^2 + f'(u)d^2u \quad (u = \sin(x))$$

第5章 微分中值定理极其应用

5.1 微分中值定理

定义 5.1

设 f(x) 的定义区间为 $(a,b), x_0 \in (a,b),$ 若 \exists , $O(x_0,\rho) \subset (a,b)$, 使得 $f(x) \leq f(x_0), x \in O(x_0,\rho)$,则 称 x_0 是 f 的一个极大值点, $f(x_0)$ 是一个极大值。

注

- 1. 极值是局部概念。
- 2. 极小值可以大于极大值。
- 3. 极值点可以有无穷多个, 例如: $y = \sin(1/x)$ 。
- 4. 极值概念与连续、可导等概念无关。

引理 5.1 (Fermat引理)

设 x_0 是f(x)的一个极值点, 若f在 x_0 可导, 则 $f'(x_0) = 0$

 \odot

证明

注 导数等于0,并不一定是极值点,例如 $f(x) = x^3$ 的x = 0点。

定理 5.1 (Rolle定理)

f(x)在闭区间[a,b]连续,在开区间(a,b)可导,f(a)=f(b),则至少存在一个 $\xi \in (a,b)$,使 $f'(\xi)=0$ 。

 \sim

证明

例题 5.1(Legendre多项式) 若有函数:

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

则它在(-1,1)有n个不同的根。

证明

定理 5.2 (Lagrange中值定理)

f(x)在[a,b]连续,在(a,b)可导,则 $\exists \xi \in (a,b)$,使:

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

 \sim

证明

注除了以上形式之外,还能写成别的形式,例如

1.
$$f(b) - f(a) = f'(\xi)(b - a)$$

2.
$$f(b) - f(a) = f'[a + \theta(b - a)](b - a), \theta \in (0, 1)$$

3.
$$f(x + \Delta x) - f(x) = f'(x + \theta \Delta x) \Delta x, \theta \in (0, 1)$$

4.
$$\Delta y = f'(x + \theta \Delta x) \Delta x$$

例题 5.2 用Lagrange中值定理讨论函数:

我们已知
$$f(x) = c \Rightarrow f'(x) = 0$$

现在证明
$$f'(x) = 0 \Rightarrow f(x) = c$$

定理 5.3 (一阶导数与函数的单调性关系)

f(x)在区间I定义,且可导,则f(x)在I上单调增加的充分必要条件是: $f'(x) \geq 0, \forall x \in I$ 。 若 $\forall x \in I, f'(x) > 0, 则 f(x)$ 在I上严格单调增加(充分条件)。

 \Diamond

证明 充分性:

必要性:

注 若f(x)在I上连续,除了有限个点 x_1, x_2, \cdots, x_n 之外, f'(x) > 0,则f'(x)在I上严格单调增加。

5.1.1 函数的凸性

convex(凸), convave(凹), 陈老版本将前者定义为下凸, 后者定义为上凸。 几何上, 下凸: 弦在曲线上方; 上凸: 弦在曲线上方。

定义 5.2

f(x)在区间I上有定义,若 $\forall x_1, x_2 \in I$, $\forall \lambda \in (0,1)$,成立 $f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2)$,则称f(x)在区间I上是下凸函数。

设f(x)在I上二阶可导,则f(x)在I下凸的充分必要条件是: $f''(x) \geq 0$, $\forall x \in I$ 。若在I上有f''(x) > 0,则f(x)在I上严格下凸。

 \Diamond

证明 必要性:

充分性:

5.1.2 拐点

(拐点会使得作图像样)

定理 5.5

f(x)在区间I上连续, $(x_0 - \delta, x_0 + \delta) \subset I$:

- 1. f(x)在 $(x_0 \delta, x_0)$ 与 $(x_0, x_0 + \delta)$ 上都二阶可导,f''(x)在 $(x_0 \delta, x_0)$ 与 $(x_0, x_0 + \delta)$ 上符号相反,则 $(x_0, f(x_0))$ 是拐点。f(x)在 $(x_0 \delta, x_0)$ 与 $(x_0, x_0 + \delta)$ 上都二阶可导,f''(x)在 $(x_0 \delta, x_0)$ 与 $(x_0, x_0 + \delta)$ 上符号相同,则 $(x_0, f(x_0))$ 不是拐点。

 \sim

证明

例题 **5.3** 求曲线 $y = \sqrt[3]{x^2}(x^2 - 4x)$ 的拐点。

证明

定理 5.6 (Jensen不等式)

f(x)在区间I下凸,则对于 $\forall x_1, x_2, \cdots, x_n \in I, \forall \lambda_1, \lambda_2, \cdots, \lambda_n, (\lambda_i > 0, \sum_i \lambda_i = 1),$ 成立:

$$f(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} f(x_{i})$$

 \sim

证明

例题 5.4 取 $f(x) = \ln(x)$, 证明:

$$\frac{x_1 + x_2 + \dots + x_n}{n} > \sqrt[n]{x_1 x_2 \cdots x_n}$$

证明

例题 5.5 证明:

$$|\arctan(b) - \arctan(a)| \le |b - a|$$

证明

例题 5.6 证明等式:

$$\arctan\left(\frac{1+x}{1-x}\right) - \arctan(x) = \begin{cases} \frac{\pi}{4} & x < 1\\ -\frac{3\pi}{4} & x > 1 \end{cases}$$

证明

例题 5.7 判断 e^{π} 和 π^{e} 的大小。

证明

例题 5.8 证明: 当x > 0时候,

$$\sin(x) > x - \frac{1}{6}x^3$$

证明

$$a\ln(a) + b\ln(b) \ge (a+b)[\ln(a+b) - \ln 2]$$

证明

例题 **5.10** $a, b \ge 0, p, q > 0$, 满足 $\frac{1}{p} + \frac{1}{q} = 1$, 则:

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q$$

证明

定理 5.7 (Cauchy中值定理)

f(x),g(x)在[a,b]上连续,在(a,b)上可导,对 $\forall x\in(a,b),g'(x)\neq0$,则至少存在 $\xi\in(a,b)$,使得:

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

 \Diamond

证明 证法一:

例题 5.11 设f(x)在 $[1,+\infty)$ 连续,在 $(1,+\infty)$ 可导, $\mathrm{e}^{-x^2}f'(x)$ 在 $(1,+\infty)$ 上有界,则 $x\mathrm{e}^{-x^2}f(x)$ 也在 $(1,+\infty)$ 上有界。证明

5.2 L'Hospital法则

L'Hospital是求待定型的一种重要方法(有的书翻译成洛必达, 有的书翻译成罗比塔)。

定理 5.8 (L'Hospital法则)

f(x), g(x)在(a, a+d)上可导, $g'(x) \neq 0$, 若这时有:

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0$$

或者:

$$\lim_{x\to a^+}g(x)=\infty(\cancel{\hbox{χ-x}} \lim_{x\to a^+}f(x)=\infty)$$

且
$$\lim_{x\to a^+} \frac{f'(x)}{g'(x)} = A($$
或 $\infty)$,则:

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}$$

注

1. $x \to a^+$ 也适用于 $x \to x_0, x \to x_0^-, x \to \pm \infty, x \to \infty$ 。

2. $\lim_{x\to a^+} \frac{f'(x)}{g'(x)}$,也适用于 $\frac{f'(x)}{g'(x)}\to\infty$, $+\infty$, $-\infty$ 。
3. $\lim_{x\to a^+} \frac{f(x)}{g(x)}$,是 $\frac{0}{0}$ 型或者 $\frac{*}{\infty}$ 型。

证明 情况一:

情况二:

例题 5.12 求:

 $\lim_{x\to 0}\frac{1-\cos(2x)}{x^2}$

证明

例题 5.13 求:

 $\lim_{x \to \infty} \frac{\frac{\pi}{2} - \arctan(x)}{\sin \frac{1}{x}}$

证明

例题 5.14 求:

 $\lim_{x\to 0}\frac{x-\tan(x)}{x^3}$

证明

例题 5.15 求:

 $\lim_{x \to +\infty} \frac{x^a}{e^{bx}} \quad (a > 0, b > 0)$

证明

例题 5.16 求:

 $\lim_{x \to 0^+} x \ln(x)$

证明

例题 5.17 求:

 $\lim_{x \to 0^+} \cot(x) - \frac{1}{x}$

证明

例题 5.18 求:

 $\lim_{x \to 0^+} x^x$

证明

例题 5.19 求:

 $\lim_{x\to x^+}\ln^x(\frac{1}{x})$

证明

例题 5.20 求:

 $\lim_{x \to \frac{\pi}{2}^+} (\sin(x))^{\tan(x)}$

证明

反例(不可用洛必达):

例题 5.21 求:

$$\lim_{x \to \frac{\pi}{2}} \frac{1 + \sin(x)}{1 - \cos(x)}$$

证明

例题 5.22 求:

$$\lim_{x \to \infty} \frac{x + \cos(x)}{x}$$

证明

5.3 Taylor多项式与插值多项式

5.3.1 Taylor多项式

定理 5.9 (带Peano余项的Taylor公式)

设f(x)在 x_0 有n阶导数,则在 x_0 的领域,成立:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n + r_n(x)$$

其中:

$$r_n(x) = o((x - x_0)^n) \quad (x \to x_0)$$

设:

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n$$

 $P_n(x)$ 称为 f 在 $x = x_0$ 处的n次 Taylor 多项式。 $r_n(x)$ 称为 f 在 $x = x_0$ 处的Peano 余项。

证明

定理 5.10 (带Lagrange余项的泰勒公式)

设f(x)在[a,b]有n阶连续导数,在(a,b)上有n+1阶导数,设 $x_0 \in [a,b]$ 为一定点,则对任意的 $x \in [a,b]$,有:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n + r_n(x)$$

其中:

 $\dot{\mathbf{L}}$ 带Lagrange余项的泰勒公式并不要求 $x \to x_0$,它可以描述一定区间的内的情况。

证明 陈老证明(惊为天人): 这部分我们暂不写, 待整体的进度到了再写。

证明二:设两个辅助函数:

$$G(x) = f(x) - \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k$$

$$H(x) = (x - x_0)^{k+1}$$

 $H(x) = (x - x_0)^{k+1}$

并且 $G(x_0) = 0$, $H(x_0) = 0$ 。考察G(x)和H(x)导数:

$$G'(x) = f'(x) - \sum_{k=0}^{n-1} \frac{1}{k!} f^{(k+1)}(x_0) (x - x_0)^k$$

$$H'(x) = (n+1)(x-x_0)^n$$

并且有 $G'(x_0) = 0$, $H'(x_0) = 0$ 。 依次类推, $G^{(i)}(x)$ 和 $H^{(i)}(x)$ 为:

$$G^{(i)}(x) = f^{(i)}(x) - \sum_{k=0}^{n-i} \frac{1}{k!} f^{(k+i)}(x_0)(x - x_0)^k$$

$$H^{(i)}(x) = \frac{(n+1)!}{(n+1-i)!}(x-x_0)^{n+1-i}$$

并且 $G^{(i)}(x_0) = 0$, $H^{(i)}(x) = 0$ 。

现在不妨设 $x > x_0$,则根据Cauchy中值定理(定理 5.7):

$$\frac{G(x)}{H(x)} = \frac{G(x) - G(x_0)}{H(x) - H(x_0)} = \frac{G'(\xi_1)}{H'(\xi_1)} = \frac{G'(\xi_2)}{H'(\xi_2)} = \dots = \frac{G'(\xi_n)}{H'(\xi_n)} = \frac{f^n(\xi_n) - f^{(n)}(x_0)}{(n+1)!(\xi_n - x_0)} = \frac{f^{(n+1)}(\xi_{n+1})}{(n+1)!}$$

因此:

$$r_n(x) = G(x) = \frac{f^{(n+1)}(\xi_{n+1})}{(n+1)!}(x-x_0)^{n+1}$$

注 取n=0:

$$f(x) = f(x_0) + f'(\xi)(x - x_0)$$

即Lagrange中值定理,因此带Lagrange余项的Taylor展开是Lagrange中值定理的推广。

5.3.2 插值多项式

假设有一个多项式:

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

要确定多项式的系数,则需要n+1个条件。

设f(x)定义于[a,b]上有n阶导数, 取 $x_0, x_1, x_2, \cdots, x_m \in [a,b]$, 要求 $P_n(x)$ 满足:

$$P_n^{(j)}(x_i) = f^{(j)}(x_i) \quad (i = 0, 1, 2, \dots, m; j = 0, 1, 2, \dots, n_i - 1)$$

即, 在 x_i 点, 有 n_i 个条件。那么假设 $n+1=\sum_{i=0}^m n_i$, 那么我们就能用这些条件确定n阶多项式 P_n 。现在, 我们用 m_j 表示 $f^{(j)}(x)$ 的条件个数, 那么 $n+1=\sum_j m_j$ 。

现在有两个问题:

- 1. 如何找 $P_n(x)$?
- 2. 如何求余项 $r_n(x)$?

定理 5.11 (插值多项式的余项定理)

f(x)在[a,b]上有n阶连续导数,在(a,b)上有n+1阶导数, $x_0,x_1,x_2,\cdots,x_m\in[a,b]$,设 $P_n(x)$ 是满足插值条件

$$P_n^{(j)}(x_i) = f^{(j)}(x_i) \quad (i = 0, 1, 2, \dots, m; j = 0, 1, 2, \dots, n_i - 1)$$

的n次插值多项式,则:

$$r_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{m} (x - x_i)^{n_i}$$

其中
$$\xi \in (x_{min}, x_{max}), x_{min} = \min\{x, x_0, x_1, \dots, x_m\}, x_{max} = \max\{x, x_0, x_1, \dots, x_m\}$$

证明

现在我们已经证明了余项的公式,接下来我们来讨论如何找插值多项式 $P_n(x)$,但是关于找插值多项式的内容已经超出了数学分析的内容,因此我们只讨论两种特殊的多项式:

1. 情况一:
$$n_0 = n_1 = \dots = n_m = 1$$

在该情况下, 因为 $\sum_{i=0}^m n_m = n + 1$, 因此 $n = m$ 。考虑 $\omega_{n+1} = \prod_{i=0}^n (x - x_i) = \prod_{i=0}^m (x - x_i)$, 现在我们定

义基函数:

$$q_k(x) = \frac{\prod_{i=0, i \neq k}^{n} (x - x_i)}{\prod_{i=0, i \neq k}^{n} (x_k - x_i)}$$

这样定义的 $q_k(x)$ 是一个n次多项式,并且有以下的性质:

$$q_k(x_i) = \begin{cases} 1 & i = k \\ 0 & i \neq k \end{cases}$$

现在我们定义:

$$P_n(x) = \sum_{k=0}^n f(x_k)q_k(x) = f(x_0)q_0(x) + f(x_1)q_1(x) + \dots + f(x_n)q_n(x)$$

2. 情况二: 节点仅一个 x_0 在该情况下. 插值条件为:

$$P_n^{(j)}(x_0) = f^{(j)}(x_0) \quad (j = 0, 1, 2, \dots, n)$$

定义基函数 $g_k(x) = \frac{(x-x_0)^k}{k!}$,那么基函数 $q_k(x)$ 有如下性质:

$$q_k^{(j)}(x_0) = \begin{cases} 0 & j < k \\ 1 & j = k \\ 0 & j > k \end{cases}$$

那么我们就可以用基函数定义:

$$P_n(x) = \sum_{k=0}^n f^{(k)}(x_0)q_k(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$

这是f在 x_0 的Taylor多项式。

5.4 函数的Taylor公式及其应用

对于泰勒公式:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + r_n(x)$$

当 $x_0 = 0$ 时,该公式又称为Maclaurin公式。

例题 5.23 求:

$$f(x) = e^x$$

在x = 0的Taylor公式。

证明

例题 5.24 求:

$$f(x) = \sin(x)$$

证明

例题 5.25 求:

$$f(x) = \cos(x)$$

证明

例题 5.26 求:

$$f(x) = (1+x)^{\alpha}$$

在x = 0的Taylor公式。

证明

注

- 1. $\alpha = n$
- 2. $\alpha = -1$
- 3. $\alpha = 1/2$
- 4. $\alpha = -1/2$

例题 5.27 求:

$$f(x) = 2^x$$

在x = 0的Taylor公式。

证明

例题 5.28 求:

$$f(x) = \sin(x)$$

证明

例题 5.29 求

$$f(x) = \sqrt[3]{2 - \cos(x)}$$

在x = 0的Talyor公式(展开到 x^4)。

证明

定理 5.12

设f(x)在 x_0 有n+2阶导数,则它的n+1次Taylor多项式的导数就是f'(x)的n次多项式。

 \sim

证明

例题 5.30 求

$$f(x) = \ln(1+x)$$

在x = 0的Talyor公式。

证明

例题 5.31 求

$$f(x) = \arctan(x)$$

在x = 0的Talyor公式。

证明

5.4.1 Taylor公式的应用

5.4.1.1 近似运算

例题 5.32 已知 e^x 的Taylor公式为:

$$e^x = 1 + x + \frac{1}{2!}x^2 + \dots + \frac{1}{n!}x^n + r_n(x)$$

其中:

$$r_n = \frac{e^{\theta x}}{(n+1)!} x^{n+1} \quad \theta \in (0,1)$$

求计算e。

是否所有的情况都能用Taylor公式算近似值?

例题 5.33 求ln 2的近似值。

证明

注 我们在算完一个近似值后要估算下精确度是多少。

例题 5.34 用:

$$f(x) = \ln\left(\frac{1+x}{1-x}\right)$$

的Taylor公式估算ln 2。

5.4.1.2 求极限

例题 5.35 求:

$$\lim_{x \to 0} \frac{\cos(x) - e^{-\frac{x^2}{2}}}{x^4}$$

证明

例题 5.36 求:

$$\lim_{x \to 0} \frac{\ln(1 + \sin^2(x)) - 6(\sqrt[3]{2 - \sin(x)} - 1)}{x^4}$$

证明

5.4.1.3 证明不等式

例题 5.37 设 $\alpha > 1$, 证明当x > -1时:

$$(1+x)^{\alpha} \ge 1 + \alpha x$$

等号成立当且仅当x=0。

证明

例题 5.38 f(x)在[0,1]上有二阶导数, 在[0,1]1:

$$|f(x)| \le A, \quad |f''(x)| \le B$$

则:

$$|f'(x)| \le 2A + \frac{1}{2}B, \quad x \in [0, 1]$$

证明

5.4.1.4 求曲线的渐近线

 $x \to +\infty$, y = ax + b是函数 f(x) 的图像的渐近线的充分必要条件是:

$$\lim_{x \to +\infty} [f(x) - (ax + b)] = 0$$

如何求出一条渐近线?

例题 5.39 求:

$$y = \frac{(x-1)^2}{3(x+1)}$$

的渐近线。

证明

例题 5.40 求:

$$y = \sqrt[3]{x^3 - x^2 - x + 1}$$

的渐近线。

证明

例题 5.41 求:

$$y = x^3 \left(e^{\frac{1}{x}} + e^{-\frac{1}{x}} - 2 \right)$$

的渐近线。

证明

现在我们用Taylor公式来证明下e是无理数。

例题 5.42 证明e不是有理数。

证明 反证法:

5.5 应用举例

5.5.1 极值问题

已知函数y = f(x), 现在我们要讨论它的极大值和极小值, 假设 $x = x_0$ 是极值点, 则 $f'(x_0) = 0$, 或 $f'(x_0)$ 不存在。

定理 5.13 (极值点的判定定理)

设f(x)在 x_0 的某一个领域中有定义,且f(x)在 x_0 连续。

- 1. 设 $\exists \delta > 0, f(x)$ 在 $(x_0 \delta, x_0), (x_0, x_0 + \delta)$ 上可导
 - (a) $\Delta(x_0 \delta, x_0)$, $f'(x) \ge 0$; $\Delta(x_0, x_0 + \delta)$, $\Delta(x_0 + \delta)$, Δ
 - (b) $ext{ } ext{ }$
 - (c) $f'(x_0)$ 在 $(x_0 \delta, x_0)$ 与 $(x_0, x_0 + \delta)$ 上同号,则 x_0 不是极值点。
- 2. 设 $f'(x_0) = 0$, f(x)在 x_0 二阶可导。
 - (a) $f''(x_0) < 0$, 则 x_0 是极大值点。
 - (b) $f''(x_0) > 0$, 则 x_0 是极小值点。
 - (c) $f''(x_0) = 0$, 则无法判断。

C

证明 证明情况1:

证明情况2:泰勒公式

注

例题 5.43 求:

$$f(x) = \sqrt[3]{(2x - x^2)^2}$$

的极值点。

证明

例题 5.44 求:

$$f(x) = (x^3 - 1)^3 + 1$$

的极值点。

解

5.5.2 最值问题

y = f(x)在[a,b]上连续,则f(x)在[a,b]上能取到最大最小值。若最值点在(a,b)上,则它必是极值点。那么或者 $f'(x_0) = 0$ 或者 $f'(x_0)$ 不存在。所以求解最值问题先求解(a,b)上的极值问题,求出极值可能点,然后再加上x = a和x = b,比较在这些点的函数值。

例题 5.45 求:

$$f(x) = \sqrt[3]{(2x - x^2)^2}$$

在[-1,4]上的最大值、最小值。

解

例题 5.46 做圆柱形的罐头, 顶盖的厚度是其他部分的三倍, 问高h与底边半径r的比例是多少时, 最省材料?

例题 5.47 汽车从平面的A点到达草原的B点, A点距离交界线距离为 h_1 , B点距离交界线距离为 h_2 , AB投影到交界面的距离为l, 汽车在平面上的速度为 v_1 , 在草原上的速度为 v_2 , 则汽车在交界线上经过哪一点时的时间最短?之后

解

5.5.3 数学建模

例题 5.48(Malthus人口模型) 某地区人口数量函数P(t)和单位时间内的人口增长量有如下关系:

$$P'(t) = \lambda P(t)$$

并且假设 $P(t_0) = P_0$, 求t时刻的人口数量P(t)。

解

例题 5.49(液体过滤问题) Q(t)为液体流量, Q'(t)为液体流速, 初始流速为 q_0 。流速的减少 $q_0 - Q'(t)$ 与流量成正比:

$$q_0 - Q'(t) = \lambda Q(t)$$

并且Q(0) = 0, 求t时刻的流量Q(t)。

解 妙妙妙

5.5.4 函数作图

首先考虑对称性,周期性。其次:

- 1. 考虑不连续点。
- 2. 考虑f'(x) = 0或f'(x)不存在的点。
- 3. 考虑f''(x) = 0或f''(x)不存在的点。
- 4. 列表, 利用 f'(x), f''(x)的数据决定 f(x)的性质。
- 5. 找出渐近线,加上一些特殊点。

例题 5.50 作:

$$y = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

的图像。

解

例题 5.51 作:

$$y = \frac{(x-1)^2}{3(x+1)}$$

的图像。

解

例题 5.52 作:

$$y = \sqrt[3]{x^3 - x^2 - x + 1}$$

的图像。

解

5.5.5 方程的近似求解

求解方程的方法有解析方法和数值方法,本节我们主要学习数值方法。在本节中,我们主要介绍二分法和牛顿迭代法。

命题 5.1 (二分法)

求 $f(x) = 0, x \in [a, b]$, 其中f(x)x在[a, b]上连续, f(a)f(b) < 0, 则∃ $x^* \in (a, b)$, 使 $f(x^*) = 0$ 。

证明

命题 5.2 (Newton迭代法(Newton切线法))

f(x)在[a,b]上连续, f(a)f(b) < 0, $f'(x) \neq 0$ 。

证明

例题 5.53 设f(x)在[a,b]上有二阶导数,满足:

- 1. f(a)f(b) < 0
- 2. f'(x)在(a,b)保号
- 3. f''(x)在(a,b)保号

取 x_0 满足 $f(x_0)f''(x_0) > 0$,则由 $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$ 得到的 $\{x_k\}$ 单调收敛于f(x) = 0的解。

第6章 不定积分

6.1 不定积分的概念和运算法则

6.1.1 不定积分的概念

在之前讨论人口模型和液体过滤问题时,实际上我们已经涉及了积分的概念。

定义 6.1

在某个区间上, F'(x) = f(x), 则称F(x)是f(x)的一个原函数。

 $\mathbf{\dot{z}}$ 这里说一个, 是因为原函数不唯一。设G(x)是该区间上的另一个原函数, 则(F(x)-G(x))'=f(x)-f(x)=0, 则F(x)-G(x)=C, C为常数。

定义 6.2

一个函数f(x)的原函数的全体称为这个函数的不定积分,记作 $\int f(x)dx$ 。其中, \int 为积分号,f(x)为被积函数,x是积分变量。不定积分可以记为:

$$\int f(x)\mathrm{d}x = F(x) + C$$

例题 6.1 求:

$$\int \sin(x) dx$$

解

例题 6.2 求:

$$\int x^{\alpha} dx \quad (\alpha \neq -1)$$

解

例题 6.3 求:

$$\int \frac{1}{x} \mathrm{d}x$$

解

不定积分表

6.1.2 不定积分的线性性质

定理 6.1 (不定积分的线性性质)

设f(x), g(x)的原函数都存在, k_1 , k_2 是任意常数, 则:

$$\int [k_1 f(x) + k_2 g(x)] dx = k_1 \int f(x) dx + k_2 \int g(x) dx$$

证明

例题 6.4 求:

$$\int \tan^2(x) \mathrm{d}x$$

解

例题 6.5 求:

$$\int \sin^2(\frac{x}{2}) \mathrm{d}x$$

解

例题 6.6 求:

$$\int \frac{(x+\sqrt{x})(x-2\sqrt{x})^2}{\sqrt{x}} \mathrm{d}x$$

解

例题 6.7 求:

$$\int \frac{x^4}{1+x^2} \mathrm{d}x$$

例题 **6.8** 曲线g=f(x)在没一点(x,f(x))切线的斜率为 x^2 , 且曲线经过(3,2), 求y=f(x)。 解

6.2 换元积分法和分步积分法

6.2.1 第一类换元积分法

定理 6.2 (第一类换元积分法)

若要求 $\int f(x)dx$,若 f(x) 可以写成 $f(x)=\widetilde{f}(g(x))g'(x)$,且 $\int \widetilde{f}(u)du=F(u)+C$,则 $\int f(x)dx=F(g(x))+C$ 。

证明

注 第一类换元积分法又称为"凑微分法"。

例题 6.9 求:

$$\int \frac{\mathrm{d}x}{x-a}$$

解

例题 6.10 求:

$$\int \frac{\mathrm{d}x}{(x-a)^n}$$

解

例题 6.11 求:

$$\int \frac{\mathrm{d}x}{x^2 - a^2}$$

解

例题 6.12 求:

$$\int \frac{\mathrm{d}x}{x^2 + a^2}$$

解

例题 6.13 求:

$$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}}$$

解

例题 6.14 求:

$$\int \tan(x) dx$$

解

例题 6.15 求:

$$\int \cot(x) \mathrm{d}x$$

解

例题 6.16 求:

$$\int \sec(x) \mathrm{d}x$$

解

例题 6.17 求:

$$\int \csc(x) \mathrm{d}x$$

解

例题 6.18 求:

$$\int \frac{\mathrm{d}x}{\sqrt{x}(1+x)} \tag{6.1}$$

解

例题 6.19 求:

$$\int \sin(mx)\cos(nx)dx \quad (m \neq n) \tag{6.2}$$

解

例题 6.20 求:

$$\int \sin(mx)\cos(nx)\mathrm{d}x\tag{6.3}$$

解

例题 6.21 求:

$$\int \cos(mx)\cos(nx)\mathrm{d}x\tag{6.4}$$

解

例题 6.22 求:

$$\int \sin(mx)\sin(nx)\mathrm{d}x\tag{6.5}$$

解

6.2.2 第二类换元积分法

定理 6.3 (第二类换元积分法)

若要求
$$\int f(x)dx$$
, 若存在 $x=\phi(t)$ 使得 $\int f(\phi(t))\phi'(t)\mathrm{d}t=F(t)+C$, 则 $\int f(x)\mathrm{d}x=F(\phi^{-1}(x))+C$

注

$$\int f(x)dx = \int f(\phi(t))d\phi(t) = \int f(\phi(t))\phi'(t)dt$$

若 $\int f(\phi(t))\phi'(t)dt = F(t) + C$, 則 $\int f(x)dx = F(\phi^{-1}(t)) + C$ 。

例题 6.23 求:

$$\int \sqrt{a^2 - x^2} \mathrm{d}x$$

解

例题 6.24 求:

$$\int \frac{\mathrm{d}x}{\sqrt{x^2 - a^2}}$$

解

例题 6.25 求:

$$\int \frac{\mathrm{d}x}{\sqrt{x^2 + a^2}} \tag{6.6}$$

解

例题 6.26 求:

$$\int x(2x-1)^{100} \mathrm{d}x$$

解

例题 6.27 求:

$$\int \frac{\mathrm{d}x}{x^2 \sqrt{1+x^2}}$$

请分别用第一类和第二类换元法(两种)求解。

解

6.2.3 分步积分法

定理 6.4 (分步积分法)

若要求 $\int u(x)v'(x)dx$, 且已知 $\int v(x)u'(x)dx = F(x) + c$, 则:

$$\int u(x)v'(x)dx = u(x)v(x) - F(x) + C$$

 $^{\circ}$

例题 6.28 求:

$$\int x \cos(x) \mathrm{d}x$$

解

例题 6.29 求:

$$\int x^2 e^x dx$$

解

注

1. $\Diamond P_n(x)$ 是n次多项式:

$$\int P_n(x)\sin(\alpha x)dx$$
, $\int P_n(x)\cos(\lambda x)dx$, $\int P_n(x)e^{\lambda x}dx$

都可以用分步积分法,其中要把 $\sin(\alpha x)$, $\cos(\lambda x)e^{\lambda x}$ 放入微分符号内。

2. 对于 $\int P_n(x) \arcsin(x) dx$, $\int P_n(x) \arctan(x) dx$, $\int P_n(x) \ln(x) dx$, 需要把 $P_n(x)$ 放入微分符号内。

例题 6.30 求:

$$\int \ln(x) \mathrm{d}x$$

解

例题 6.31 求:

$$\int x \arctan(x) \mathrm{d}x$$

解

例题 6.32 求:

$$\int \frac{x}{1 + \cos(x)} \mathrm{d}x$$

解

考虑 $\int e^{\lambda x} \cos(\alpha x) dx$, $\int \sin(\lambda x) dx$, $\int \sqrt{a^2 + x^2} dx$, 如果使用分步积分法会无法简化。

例题 6.33 求:

$$\int e^x \sin(x) dx$$

解

例题 6.34 求:

$$\int \sqrt{x^2 + a^2} \mathrm{d}x$$

解

例题 6.35 求:

$$\int \sqrt{x^2 - a^2} \mathrm{d}x$$

解

注 现在我们已经求解了 $\int \frac{\mathrm{d}x}{\sqrt{a^2-x^2}}, \int \frac{\mathrm{d}x}{\sqrt{x^2\pm a^2}}, \int \sqrt{a^2-x^2} \mathrm{d}x, \int \sqrt{x^2\pm a^2} \mathrm{d}x$ 。

 \mathbf{i} 要求求 $\int f^n(x) dx$, 可以通过分部积分法降低 f(x) 的次数, 得到一个递推公式。

例题 6.36 求:

$$\int \frac{\mathrm{d}x}{(x^2 + a^2)^n} \tag{6.7}$$

解

积分表

例题 6.37 求:

$$\int \sqrt{x^2 - 2x + 5} \mathrm{d}x$$

解

例题 6.38 求:

$$\int (x+1)\sqrt{x^2 = 2x + 5} \mathrm{d}x$$

解

6.3 有理函数的不定积分及其应用

 $\int \frac{\sin(x)}{x} \mathrm{d}x, \int \mathrm{e}^{\pm x^2} \mathrm{d}x, \int \sqrt{1 - k^2 \sin^2(x)} \mathrm{d}x \quad (0 < k^2 < 1)$ 无法用初等函数表示。

定义 6.3 (有理函数)

记有理函数 $R(x) = \frac{p_m(x)}{q_n(x)}, p_m(x), q_n(x)$ 分别是次数为m, n的多项式。

*

定理 6.5

若f(x)是有理函数,则 $\int f(x)dx$ 是初等函数。

证明 不妨设 p_m , q_n 没有公因式, $q_n(x)$ 最高次的系数为1, 且m < n, 即R(x)是真分数。

$$q_n(x) = \prod_{k=1}^{i} (x - \alpha_k)^{m_k} \prod_{k=1}^{j} (x^2 + 2\xi_k x + \eta_k^2)^{n_k}$$

定理 6.6

设有 $\frac{p(x)}{q(x)}$, 多项式q(x)有k重根, 即 $q(x)=(x-\alpha)^kq_1(x),q_1(\alpha)\neq 0$, 则存在实数 λ 和 $p_1(x)(p_1(x)$ 次数小于 $(x-\alpha)^{k-1}q_1(x)$ 的次数), 使得

$$\frac{p(x)}{q(x)} = \frac{\lambda}{(x-\alpha)^k} + \frac{p_1(x)}{(x-\alpha)^{k-1}q_1(x)}$$
(6.8)

证明

定理 6.7

设有 $\frac{p(x)}{q(x)}$, 多项式q(x)有l重共轭虚根 $\beta \pm i\lambda$, 即 $q(x) = (x^2 + 2\xi x + \eta^2)^l q * (x), q * (\beta \pm i\lambda) \neq 0$, 其中 $\xi = -\beta, \eta^2 = \gamma^2 + \beta^2$, 则存在实数 μ, ν , 多项式p * (x)(p*次数小于 $(x^2 + 2\xi x + \eta^2)^{l-1}q * (x)$ 的次数), 使得

$$\frac{p(x)}{q(x)} = \frac{\mu x + \nu}{(x^2 + 2\xi x + \eta^2)^l} + \frac{q * (x)}{(x^2 + 2\xi x + \eta^2)^{l-1} q * (x)}$$
(6.9)

证明

最后 $\frac{p_m(x)}{q_n(x)}$ 可以写成

$$\frac{p_m(x)}{q_n(x)} = \sum_{k=1}^{i} \sum_{r=1}^{m_k} \frac{\lambda_r}{(x - \alpha_k)^r} + \sum_{k=1}^{j} \sum_{r=1}^{n_k} \frac{\mu_r x + \nu_r}{(x^2 + 2\xi_k x + \eta_k^2)^r}$$

部分分式

$$\int \frac{\mathrm{d}x}{(x-\alpha)^n} = \begin{cases} \ln|x-\alpha| + C & n=1\\ \frac{1}{-n+1}(x-\alpha)^{-n+1} + C & n \ge 2 \end{cases}$$

$$\int \frac{\mu x + \nu}{(x^2 + 2\xi x + \eta^2)^n} \mathrm{d}x = \frac{\mu}{2} \int \frac{2x + 2\xi}{(x^2 + 2\xi x + \eta^2)^n} \mathrm{d}x + (\nu - \mu \xi) \int \frac{\mathrm{d}x}{(x^2 + 2\xi x + \eta^2)^n}$$

$$\int \frac{(2x + 2\xi)\mathrm{d}x}{(x^2 + 2\xi x + \eta^2)^n} = \begin{cases} \ln|x^2 + 2\xi x + \eta^2| + C & n = 1\\ \frac{1}{-n+1}(x^2 + 2\xi x + \eta^2)^{-n+1} + C & n \ge 2 \end{cases}$$

令

$$I_n = \int \frac{\mathrm{d}x}{(x^2 + 2\xi x + \eta^2)^n}$$

则

$$I_n = \int \frac{\mathrm{d}(x+\xi)}{((x+\xi)^2 + a^2)^n} = \int \frac{\mathrm{d}u}{(u^2 + a^2)^n}$$

$$= \frac{1}{2(\eta^2 - \xi^2)(n-1)} \left[(2n-3)I_{n-1} + \frac{x+\xi}{(x^2 + 2\xi x + \eta^2)^{n-1}} \right]$$

$$I_1 = \int \frac{\mathrm{d}x}{x^2 + 2\xi x + \eta^2} = \frac{1}{\sqrt{\eta^2 - \xi^2}} \arctan\left(\frac{x+\xi}{\sqrt{\eta^2 - \xi^2}}\right) + C$$

例题 6.39 求:

$$\int \frac{4x^3 - 13x^2 + 3x + 8}{(x+1)(x-2)(x-1)^2} dx$$

解

注 待定系数法

例题 6.40 求:

$$\int \frac{x^4 + x^3 + 3x^2 - 1}{(x^2 + 1)^2 (x - 1)} dx$$

解

可化为有理函数不定积分的例子

(1) 带有根式的不定积分

R(u,v)是关于u,v的有理函数,即 $R(u,v)=rac{p(u,v)}{q(u,v)},$ p(u,v), q(u,v)都是关于u,v的多项式。现在令u=x, $v=\sqrt[n]{rac{\xi x+u}{\mu x+v}}$,通过令 $t=\sqrt[n]{rac{\xi x+u}{\mu x+v}}$ 可以化为有理函数。

例题 6.41 求:

$$\int \frac{x dx}{\sqrt{4x - 3}}$$

解

例题 6.42 求:

$$\int \frac{\mathrm{d}x}{x(\sqrt[3]{x} - \sqrt{x})}$$

解

例题 6.43 求:

$$\int \frac{\sqrt{1+x}}{x\sqrt{1-x}} \mathrm{d}x$$

解

(1)考虑 $\sqrt[n]{(\xi x + \eta)^i(\mu x + \nu)^j}$, 其中 $i + j = kn, k \in \mathbb{N}^+$, 则该函数的积分可以化为有理函数。因为

$$\sqrt[n]{(\xi x + \eta)^{i}(\mu x + \nu)^{j}} = \sqrt[n]{(\xi x + \eta)^{kn} \frac{(\mu x + \nu)^{j}}{(\xi x + \eta)^{j}}} = (\xi x + \eta)^{k} \sqrt[n]{\left(\frac{\mu x + \nu}{\xi x + \eta}\right)^{j}}$$

例题 6.44 求:

$$\int \frac{\mathrm{d}x}{\sqrt[3]{(x-1)^2(x+1)^4}}$$

解

R(u,v)定义如(1),则 $R(\sin(x),\cos(x))$ 代表了所有三角函数的有理函数。考虑

$$I = \int R(\sin(x), \cos(x)) dx$$

 \Rightarrow tan $\left(\frac{x}{2}\right) = t$, 则:

$$\sin(x) = \frac{2t}{1+t^2}$$
$$\cos(x) = \frac{1-t^2}{1+t^2}$$
$$I = \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2}{1+t^2} dt$$

例题 6.45 求:

$$\int \frac{\mathrm{d}x}{4 + 4\sin(x) + \cos(x)}$$

例题 6.46 求:

$$\int \frac{\cot(x) dx}{1 + \sin(x)}$$

解 解法一:

第7章 定积分

设f(x)定义在区间(a,b)上,讨论f(x)在[a,b]上的定积分,首先必须要求f(x)有界。无界的情况是之后的推广,现在阶段我们只考虑有界情况。

定义 7.1 (定积分的定义)

设f(x)在[a,b]有界,对[a,b]作划分 $P: a = x_0 < x_1 < x_2 < \cdots < x_n = b$,任取 $\xi_i \in [x_{i-1},x_i]$,若极限

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i \quad (\lambda = \max\{\Delta x_i\})$$

存在,且极限值与划分P及取点 ξ_i 无关。则称f(x)在闭区间[a,b]上Riemann可积,简称可积。极限值I称为f(x)在[a,b]上的定积分,记为

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i = I = \int_a^b f(x) dx$$

其中极限中的和式称为Riemann和。

注 定义中, a < b, 若 $a \ge b$, 规定 $\int_a^b f(x) \mathrm{d}x = -\int_b^a f(x) \mathrm{d}x$ 。根据以上的定义可知 $\int_a^a f(x) \mathrm{d}x = 0$ 。

定义 7.2 (Riemann可积的" ϵ - δ "语言)

 $\exists I, \, \forall \epsilon > 0, \, \exists \delta > 0, \,$ 使得 $\forall P \colon a < x_0 < x_1 < x_2 < \dots < x_n = b, \, \forall \xi_i \in [x_{i-1}, x_i], \,$ 只需 $\lambda = \max\{\Delta x_i\} < \delta$,成立

$$\left| \sum_{i=1}^{n} f(\xi_i) \Delta x_i - I \right| < \epsilon$$

则f(x)在[a,b]上可积。

例题 7.1Dirichlet函数 证明

$$D(x) = \begin{cases} 1 & x$$
是有理数
$$0 & x$$
是无理数

在[0,1]区间上不可积。

证明

现在我们要讨论哪些函数是可积的,哪些函数是不可积的。在讨论函数是可积的还是不可积的之前我们先介绍Darboux和(达布和)。

定义 7.3

f(x)在[a,b]闭区间上有界,设 $M=\sup_{x\in [a,b]}f(x),\, m=\inf_{x\in [a,b]}f(x),\,$ 存在划分 $P:\, a=x_0< x_1< x_2<\cdots< x_n=b,$ 并且设 $M_i=\sup_{x\in [x_{i-1},x_i]}f(x),\, m_i=\inf_{x\in [x_{i-1},x_i]}f(x),\,$ 则称

$$\bar{S}(P) = \sum_{i=0}^{n} M_i \Delta x_i$$

为达布大和, 称

$$\underline{\mathbf{S}}(P) = \sum_{i=0}^{n} m_i \Delta x_i$$

为达布小和。

引理 7.1

若在原来的划分中增加分点,则大和不增,小和不减。

证明

引理 7.2

对任意的划分 P_1, P_2 ,

$$m(b-a) \le \underline{\mathbf{S}}(P_2) \le \bar{S}(P_2) \le M(b-a)$$

证明

下面我们做一些规定:

- 1. 京表示对一切划分的达布大和构成的集合。
- 2. S表示对一切划分的达布小和构成的集合。

再令 $L = \inf\{\bar{S}(P)|\bar{S}(P) \in \bar{S}\}, l = \sup\{\underline{S}(P)|\underline{S}(P) \in \underline{S}\}, 那么则有<math>\underline{S}(P) \leq l \leq L \leq \bar{S}(P_1)$

定理 7.1 (Darboux定理)

f(x)在[a,b]有界,则有

$$\lim_{\lambda \to 0} \bar{S}(P) = L \quad \lim_{\lambda \to 0} \underline{S}(P) = l$$

证明

7.1 可积的充要条件

定理 7.2 (可积的充要条件)

f(x)在[a,b]上可积的充分必要条件是:

$$\lim_{\lambda \to 0} \bar{S}(P) = \lim_{\lambda \to 0} \underline{\mathbf{S}}(P) \Longleftrightarrow L = l$$

 \sim

证明 必要性

充分性

 $M_i - m_i$ 表示了f(x)在 $[x_{i-1}, x_i]$ 上的振幅, 记为 ω_i 。

定理 7.3

f(x)在[a,b]上可积的充分必要条件是:

$$\lim_{\lambda \to 0} \sum_{i=0}^{n} \omega_i \Delta x_i = 0$$

 \odot

例题 7.2Dirichlet函数 用以上的定理证明:

$$D(x) = \begin{cases} 1 & x$$
是有理数
$$0 & x$$
是无理数

在[0,1]区间上不可积。

证明

引理 7.3

闭区间上的连续函数一定可积。

 \sim

证明

引理 7.4

闭区间上的单调函数一定可积。

 \Diamond

证明

定理 7.4

在[a,b]上有界的函数f(x)可积的充分必要条件是: $\forall \epsilon>0$, $\exists P$, 使得 $\sum_{i=0}^n \omega_i \Delta x_i < \epsilon$.

 \bigcirc