Instrumentation

Joseph Moerschell, Marc Nicollerat

Hes.so// Waldis

4 Régression linéaire et calibration

- Calcul de la meilleure droite
- Etalonnage
- Chaîne de calibration

n

4.1 Calcul de la meilleure droite

Calcul de la meilleure droite de la fonction

$$signal = f(mesurande)$$

forcément tous alignés du fait de l'imprécision des mesures ou des imperfections dans L'étalonnage du capteur fournit à l'expérimentateur un certain nombre de points associés (xi, yi) qui, même pour un capteur théoriquement linéaire, ne sont pas la réalisation du capteur.

Solution: Le Calcul De La "meilleure droite"!

4.2 Meilleure droite

On cherche une droite qui minimise l'erreur entre les mesures et les points calculés. Ceci revient à chercher a et b dans l'équation de la droite :

$$y = a \cdot x + b$$

Si on mesure N points x_i , y_i , on aura N erreurs de mesure $\sigma_i = y(x_i) - y_i$.

On définit :

$$S = \sum_{i=1}^{N} \sigma_i^2$$

qu'on veut minimiser en choisissant bien $\it a$

() Important

Il s'agit d'une droite de régression linéaire basée sur la méthode des moindres carrés.

4.3 Calcul des coefficients de la meilleure droite

On peut calculer les coefficients de la meilleure droite avec les équations suivantes :

$$S_{1} = \sum_{i=1}^{N} 1 = N \qquad S_{x} = \sum_{i=1}^{N} x_{i}$$

$$S_{y} = \sum_{i=1}^{N} y_{i} \qquad S_{xx} = \sum_{i=1}^{N} x_{i}^{2}$$

$$S_{xy} = \sum_{i=1}^{N} x_{i} \cdot y_{i}$$

$$D = S_{1} \cdot S_{xx} - S_{x}^{2}$$

$$a = \frac{S_{1} \cdot S_{xy} - S_{x} \cdot S_{y}}{D} \qquad b = \frac{S_{y} \cdot S_{xx} - S_{x} \cdot S_{xy}}{D}$$

ou avec python:

▼ Code

```
1 import numpy as np
2 poly=np.polyfit(Gs, RSs,1)
3 poly
```

array([2.03439267, 2.97474592])

4.4 Résolution avec calcul matriciel

On peut résoudre le problème avec le calcul matriciel :

 $y = A \cdot \theta$

$$A = \begin{bmatrix} x_1 & 1 \\ \dots & \dots \\ x_N & 1 \end{bmatrix}, \theta = \begin{bmatrix} a \\ b \end{bmatrix}, y = \begin{bmatrix} y_1 \\ \dots \\ y_N \end{bmatrix}$$

$$E2 = \sum_{i=1}^N \sigma_i^2 = (y - A \cdot \theta)^T \cdot (y - A \cdot \theta)$$

$$E2 = y^T y - (A\theta)^T y - y^T A\theta + (A\theta)^T A\theta$$

$$E2 = y^T y - 2(A\theta)^T y + (A\theta)^T A\theta$$

$$\theta = (A^T A)^{-1} A^T y$$

4.5 Exercice

Soient les trois points suivants de calibration:

- x correspond à la mesurande (mesurée en °C).
- y correspond au signal (mesuré en volts).

1			
b	1.0	0.1	0.1
>	2	3	7
×	1	3	7
•-	1	2	C

3.0 C C S

1. Déterminer a et b de la meilleure droite passant par les points de calibration

- a. sans tenir compte de l'erreur
- b. en tenant compte de l'erreur
- 2. Quelle est la sensibilité de ce capteur

4.6 Etalonnage

L'étalonnage consiste à vérifier qu'un instrument fonctionne correctement et avec la précision convenue.

4.6.1 Comparaison à une référence

4.6.2 Comparaison avec un instrument de référence

4.7 Chaîne de calibration

Afin d'avoir tous les mêmes références, le système est organisé en pyramide. Chaque pays y va de son institut!

- Institut fédéral de métrologie METAS
- Bureau international des poids et mesures
- Physikalish-Technische Bundesanstalt
- National Metrology Institute of Italy
- National Institue of Standards and technology
- National Metrology Institute of Japan

Chaine de calibration

4.8 Exercice: Etalonnage par comparaison

- Selon documents Pr. Joseph Moerschell (cyberlearn)
- ex_4.1-etalonnage-par-comparaison.ipynb

