Funzione integrale

1) Sia $F(x) = 1 + \int_{2}^{z} \cos(t^2 - 4) dt$ $g(x) = 2x^3 - x + 2$

Scrivere l'equazione della retta tangente al grafico della funzione $F \circ g$ in x = 0.

- 2) Sia f derivabile in R, tangente nel punto di ascissa $x_0 = 1$ alla retta y = 3x 3. Verificare che la funzione $F(x) = \int_{1}^{x} f(t) dt$ ha nel punto $x_0 = 1$ un estremante e precisarne la natura.
- 3) Si verifichi che la funzione $F(x) = \int_{1}^{x} e^{2t-t^2} dt 1$ e' invertibile. Detta G la sua inversa si scriva l'equazione della retta tangente al grafico di G nel punto $y_0 = -1$.
- 4) Determinare dominio, estremanti e limite per $x \to +\infty$ della funzione

$$F(x) = \int_{1}^{x} \frac{t^2 - 5t + 6}{t^3 \ln(t+1)} dt$$

5) Determinare intervalli di monotonia ed estremanti della funzione

$$F(x) = \int_{0}^{x} \frac{e^{4-t}(t-1)}{\sqrt{t^{2}+4}} dt$$

6) Scrivere il polinomio di Taylor arrestato all'ordine 3, nel punto $x_0 = 1$ della funzione

$$F(x) = \int_{1}^{x} (1 - e^{(t-1)^{3}}) dt$$

- 7) Sia f continua in R e infinitesima per $x \to +\infty$, si dimostri che $\lim_{x \to +\infty} \int_{x}^{x+1} f(t) dt = 0$ (Suggerimento: usare il teorema della media integrale)
- 8) Sia F una primitiva di $f(x) = x \ln x$ tale che F(1) = 119. Calcolare F(2).
- 9) Sia $F(x) = \int_{2}^{+\infty} \frac{1}{\ln^{3}(e^{x} + 1)} dx$. Verificare se esiste finito il $\lim_{x \to +\infty} F(x)$.