Otimização - COS360

Programação Não Linear Irrestrita Convexidade

Prof Luidi Simonetti <u>luidisimonetti@poli.ufrj.br</u>

Profa Laura Bahiense laura@cos.ufrj.br

- Conjuntos convexos
- Funções convexas
- Relembrando matrizes definidas positivas e semidefinidas positivas

Conjunto convexo

Definição

Um conjunto $C \subset \mathbb{R}^n$ é dito convexo quando dados $x, y \in C$, o segmento

$$[x,y] = \{(1-t)x + ty \mid t \in [0,1]\}$$

estiver inteiramente contido em C.

Conjunto convexo

Conjunto não convexo

Interseção e união de conjuntos convexos

Interseção x União

Sejam C_i , i = 1, ..., m conjuntos convexos.

- O conjunto interseção $C = \bigcap_{i=1}^{m} C_i$ também é convexo.
- Por outro lado, a união de convexos não é convexa.

Exemplo

O conjunto solução de um sistema de equações lineares é convexo.

- $C = \{ x \in \mathbb{R}^n \mid Ax = b \}.$
- ▶ Se Ax = b e Ay = b. Fazendo x' = (1 t)x + ty.
- A[(1-t)x + ty] = Ax tAx + tAy = b tb + tb = b.
- Logo o ponto x' também pertence ao conjunto C.

Norma 2 e convexidade

▶ Sejam $u, v \in \mathbb{R}^n$ com $u \neq v$. Se $||u||_2 = ||v||_2 = r$, então $||(1-t)u+tv||_2 < r$, para todo $t \in (0,1)$.

▶ Basta aplicar a designaldade triangular: $||(1-t)u + tv||_2 \le (1-t)||u||_2 + t||v||_2 = r$

Projeções

▶ Dado um conjunto $S \subset \mathbb{R}^n$ e um ponto $z \in \mathbb{R}^n$, o problema de encontrar o ponto de S mais próximo de z pode não ter solução, ter solução única ou ter soluções múltiplas.

- ▶ Lema Seja $S \subset \mathbb{R}^n$ um conjunto fechado não vazio. Dado $z \in \mathbb{R}^n$, existe $\bar{z} \in S$ tal que $\|z - \bar{z}\| \le \|z - x\|$, para todo $x \in S$.
 - ightharpoonup Se o conjunto S for convexo, o lema acima muda para existe um único \overline{z} .

Projeção - caracterização

Teorema

Sejam $S \subset \mathbb{R}^n$ um conjunto não vazio, convexo e fechado, $z \in \mathbb{R}^n$ e $\bar{z} = \operatorname{proj}_S(z)$. Então

$$(z-\bar{z})^T(x-\bar{z})\leq 0,$$

para todo $x \in S$.

▶ Lembrando que $A.B = ||A|| ||B|| \cos \theta$

Se um ponto z̄ satisfaz o teorema acima, isso é suficiente para caracterizar que z̄ é a projeção de z em S.

Minimização em conjuntos convexos fechados

Teorema

Sejam $f: \mathbb{R}^n \to \mathbb{R}$ uma função diferenciável e $C \subset \mathbb{R}^n$ convexo e fechado. Se $x^* \in C$ é minimizador local de f em C, então

$$\operatorname{proj}_{C}(x^{*} - \alpha \nabla f(x^{*})) = x^{*},$$

para todo $\alpha \geq 0$.

Funções convexas

- As funções convexas possuem ótimas propriedades no contexto de Otimização.
- A presença de convexidade garante, p.ex., que os minimizadores locais são também globais, ou, equivalentemente, que pontos estacionários são minimizadores.

Seja $C \subset \mathbb{R}^n$ um conjunto convexo. Uma função $f : \mathbb{R}^n \to \mathbb{R}$ é convexa em C quando, para todos $x, y \in C$ e $t \in [0, 1]$,

$$f((1-t)x+ty) \le (1-t)f(x)+tf(y).$$

$$f\big((1-t)x+ty\big)\leq (1-t)f(x)+tf(y)$$

$$f\big((1-t)x+ty\big)\leq (1-t)f(x)+tf(y)$$

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y)$$

Função convexa × não convexa

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y)$$

Função não convexa

Funções convexa e estritamente convexa

$$f((1-t)x + ty) < (1-t)f(x) + tf(y)$$

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y)$$

CONVEXA

Função convexa – exemplos

$$f((1-t)x+ty) \le (1-t)f(x)+tf(y)$$

Exemplos de funções convexas $f:\mathbb{R} o \mathbb{R}$

- $f(x) = x^2$.
- $f(x) = e^x.$

Função convexa – x^2

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y)$$

- ▶ Mostre que $f(x) = x^2$ é convexa.
- $f((1-t)x + ty) = f(x + t(y x)) = (x + t(y x))^{2}$ $= x^{2} + 2tx(y x) + t^{2}(y x)^{2}.$
- Como *t* ≤ 1,

$$x^{2} + 2tx(y - x) + t^{2}(y - x)^{2} \le x^{2} + 2tx(y - x) + t(y - x)^{2}$$
$$= x^{2} + t(y^{2} - x^{2}).$$

- $(1-t)f(x) + tf(y) = (1-t)x^2 + ty^2 = x^2 + t(y^2 x^2).$
- ▶ Logo f(x) é convexa.

Função convexa — e^x

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y)$$

- Mostre que $g(x) = e^x$ é convexa.
- ▶ Sabendo que $e^d \ge 1 + d$, para todo $d \in \mathbb{R}$, e fazendo z = (1 t)x + ty.
- $e^{x-z} = e^x \frac{1}{e^z} \ge 1 + x z \rightarrow e^x \ge e^z + e^z (x z).$
- ▶ Chegamos a resultado similar para e^{y-z} \rightarrow $e^y \ge e^z + e^z(y-z)$.
- $(1-t)e^x + te^y \ge (1-t)(e^z + e^z(x-z)) + t(e^z + e^z(y-z))$
- $ightharpoonup = e^z + e^z(x-z) te^z te^z(x-z) + te^z + te^z(y-z)$
- $= e^z + e^z(x-z) te^z(x-z) + te^z(y-z)$
- $= e^z(1+x-z-tx+ty)$
- $ightharpoonup = e^z(1+x-(1-t)x-ty-ty-tx+ty) = e^z = e^{(1-t)x+ty}$.
- ▶ Logo g(x) é convexa.

Função convexa: minimizador local é global

Teorema

Sejam $C \subset \mathbb{R}^n$ convexo e $f: C \to \mathbb{R}$ uma função convexa. Se $x^* \in C$ é minimizador local de f, então x^* é minimizador global de f.

Prova:

- ▶ Seja $\delta > 0$ tal que $f(x^*) \le f(x)$, para todo $x \in C$ onde $||x x^*|| \le \delta$.
- ▶ Dado $y \in C$, $||y x^*|| > \delta$, tome t > 0 de modo que $t||y x^*|| < \delta$.
- O ponto $x' = (1 t)x^* + ty$ satisfaz $||x' x^*|| = t||y x^*|| \le \delta$.
- ▶ Portanto $x' \in C$ e $||x' x^*|| \le \delta$.
- Deste modo temos

$$f(x^*) \le f(x') \le (1-t)f(x^*) + tf(y) \to f(x^*) \le f(y)$$
.

Função convexa diferenciável está sempre acima de sua aproximação linear

Teorema

Sejam $f: \mathbb{R}^n \to \mathbb{R}$ uma função diferenciável e $C \subset \mathbb{R}^n$ convexo. A função f é convexa em C se, e somente se, para todos $x,y \in C$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x).$$

Função convexa diferenciável todo ponto estacionário é minimizador global

Teorema

Sejam $f: \mathbb{R}^n \to \mathbb{R}$ uma função diferenciável e $C \subset \mathbb{R}^n$ convexo. A função f é convexa em C se, e somente se, para todos $x,y \in C$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x).$$

Corolário

Sejam $f: \mathbb{R}^n \to \mathbb{R}$ uma função convexa, diferenciável e $C \subset \mathbb{R}^n$ convexo. Se $\nabla f(x^*)^T (y-x^*) \geq 0$, para todo $y \in C$, então x^* é um minimizador global de f em C. Em particular, todo ponto estacionário é minimizador global.

Função convexa diferenciável todo ponto estacionário é minimizador global

Corolário

Sejam $f: \mathbb{R}^n \to \mathbb{R}$ uma função convexa, diferenciável e $C \subset \mathbb{R}^n$ convexo. Se $\nabla f(x^*)^T (y - x^*) \ge 0$, para todo $y \in C$, então x^* é um minimizador global de f em C. Em particular, todo ponto estacionário é minimizador global.

Hipóteses satisfeitas

Hipóteses não satisfeitas

Função convexa diferenciável outra condição suficiente

Teorema

Sejam $f:\mathbb{R}^n\to\mathbb{R}$ uma função convexa diferenciável e $C\subset\mathbb{R}^n$ convexo e fechado. Se

$$\operatorname{proj}_{C}(x^{*} - \nabla f(x^{*})) = x^{*},$$

então $x^* \in C$ é minimizador global de f em C.

Função convexa diferenciável classe C² critério para caracterizar convexidade

Teorema

Sejam $f: \mathbb{R}^n \to \mathbb{R}$ uma função de classe C^2 e $C \subset \mathbb{R}^n$ convexo.

- (i) Se $\nabla^2 f(x) \ge 0$, para todo $x \in C$, então f é convexa em C.
- (ii) Se f é convexa em C e int $C \neq \emptyset$, então $\nabla^2 f(x) \geq 0$, para todo $x \in C$.

Relembrando os conceitos de matriz definida positiva e semidefinida positiva

- ▶ Seja a matriz $A_{m \times n}$, a matriz $A^T A$ é simétrica e semidefinida positiva, ou seja $x^T A^T A$ $x \ge 0$, $\forall x \in \mathbb{R}^n$.
- A matriz A^TA é definida positiva se e somente se posto(A) = n.
- Se n=m, então a matriz A^TA é definida positiva se e somente se A é não singular.
- ▶ Uma matriz quadrada é definida positiva se e somente se todos os seus autovalores são positivos (> 0).
- ▶ Uma matriz quadrada é semidefinida positiva se e somente se todos os seus autovalores são não negativos (≥ 0).
- A inversa de uma matriz definida positiva simétrica é definida positiva simétrica.

Sugestão de bibliografia complementar

- Bertsekas, D.P.; Nedic, A.; Ozdaglar, A.E. Convex Analysis and Optimization, Athena Scientific, 2003.
- Hiriart-Urruty J-B.; Lemaréchal, C. Convex Analysis and Minimization Algorithms I, Springer-Verlag, 1993.
- Friedlander, A. Elementos de programação não linear, Unicamp, 1994.