実解析第2同演習・演習第1回

2022年10月14日

問 A-1

集合 $X = \{0,1\}$ と X の部分集合の族

$$\mathcal{O}_X = \{\emptyset, \{0\}, X\}$$

を考える.

- (1) (X, \mathcal{O}_X) は \mathcal{O}_X を開集合系とする位相空間であることを示せ.
- (2) \mathcal{O}_X を含む最小の σ -algebra を求めよ.
- (3) $Y = \{0,1,2\}$ と $\mathcal{O}_Y = \{\emptyset, \{0\}, Y\}$ について同様の考察を行え.

問 A-2

集合 X 上の σ -algebra からなる空でない族 $\mathcal{G} = \{G_{\lambda} \mid \lambda \in \Lambda\}$ について,

$$\bigcap_{\lambda \in \Lambda} G_{\lambda}$$

も σ -algebra であることを示せ.

問 A-3

一般に、可測空間 (X, \mathcal{F}) と (Y, \mathcal{G}) に対し、写像 $f: X \to Y$ が可測であるとは、任意の $A \in \mathcal{G}$ について $f^{-1}(A) \in \mathcal{F}$ となることをいう、写像が可測であるかどうかは σ -algebra の取り方によるので、これを $f: (X, \mathcal{F}) \to (Y, \mathcal{G})$ とも表記する.

- (1) 恒等写像 id : $(X,\mathcal{F}) \to (X,\mathcal{F})$ は可測であることを示せ、別の σ -algebra \mathcal{G} をとり, id : $(X,\mathcal{F}) \to (X,\mathcal{G})$ を考えると、これは可測になるか?
- (2) 可測写像 $f:(X,\mathcal{F})\to (Y,\mathcal{G})$ と $g:(Y,\mathcal{G})\to (Z,\mathcal{H})$ について、その合成 $g\circ f:(X,\mathcal{F})\to (Z,\mathcal{H})$ も可測であることを示せ.

問 A-4

 $X=\{1,2,3,\cdots,n\}$ とする.非負の実数 p_i $(i=1,2,3,\cdots,n)$ が $\sum_i p_i=1$ を満たすとき, $\mu:\mathcal{P}(X)\to\mathbb{R}$ を

$$\mu(A) := \sum_{i \in A} p_i$$

と定義する. このとき, $(X, \mathcal{P}(X), \mu)$ は測度空間であることを示せ.

問 B-1

 $(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$ を位相空間とする.

- (1) 写像 $f: X \to Y$ が連続であれば、可測空間 $(X, \mathcal{B}(X))$ から $(Y, \mathcal{B}(Y))$ への写像とみたとき、f は可測であることを示せ.
- (2) 位相空間 (X, \mathcal{O}_X) について,F を X 上の σ -algebra で $\mathcal{O}_X \subset F$ となるものとする.この とき,以下は同値であることを示せ.
 - (a) $\mathcal{F} = \mathcal{B}(X)$.
 - (b) 任意の位相空間 (Z, \mathcal{O}_Z) と連続関数 $f: Z \to X$ について,f は $(Z, \mathcal{B}(Z))$ から (X, \mathcal{F}) への写像とみて可測.

問 B-2

 (X,\mathcal{F},μ) を測度空間とする.集合の列 $A_i\in\mathcal{F}$ $(i=1,2,\cdots)$ が $\sum_{i=1}^\infty\mu(A_i)<\infty$ をみたすとき、

$$\mu\left(\bigcap_{i=1}\bigcup_{j\geq i}A_j\right)=0$$

であることを示せ. (この結果は Borel-Cantelli の補題とよばれる.)

問 B-3

 $f: X \to Y$ を写像, (X, \mathcal{F}, μ) を測度空間とする.

- (1) 集合族 $f(\mathcal{F}) := \{E \subset Y \mid f^{-1}(E) \in \mathcal{F}\}$ は σ -algebra であり, $f: (X, \mathcal{F}) \to (Y, f(\mathcal{F}))$ は 可測であることを示せ.
- (2) $\nu: f(\mathcal{F}) \to [0,\infty)$ を $\nu(E) = \mu(f^{-1}(E))$ で定めると、 ν は $f(\mathcal{F})$ 上の測度であることを示せ、なお、この測度は μ の押し出しといい、 $f_*(\mu)$ と書かれる.
- (3) さらに写像 $g:Y\to Z$ が与えられたとする.このとき, $(g\circ f)(\mathcal{F})=g(f(\mathcal{F}))$ であり, $(g\circ f)_*(\mu)=g_*(f_*(\mu))$ であることを示せ.