Práctico 4 Matemática Discreta I – Año 2021/1 FAMAF

Ejercicios resueltos

(1) *a)* Calcular el resto de la división de 1599 por 39 sin tener que hacer la división.

(Ayuda: $1599 = 1600 - 1 = 40^2 - 1$).

Rta: $1599 \equiv 1^2 - 1 \pmod{39}$, por lo tanto el resto es 0.

- b) Lo mismo con el resto de 914 al dividirlo por 31. Rta: $914 = 30^2 + 14 \equiv (-1)^2 + 14 \pmod{31}$, por lo tanto el resto es 15.
- (2) Sea $n \in \mathbb{N}$. Probar que todo número de la forma $4^n 1$ es divisible por 3. $Rta: 4^n - 1 \equiv 1^n - 1 \equiv 0 \equiv 3$ por lo tanto $3|4^n - 1$.
- (3) Probar que el resto de dividir n^2 por 4 es igual a 0 si n es par y 1 si n es impar.

Rta: Si n = 2k, se tiene $n^2 = 4k^2$, por lo tanto $4|n^2$. Si n = 2k + 1, tenemos $n^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$ y vale el resultado.

(4) a) Probar las reglas de divisibilidad por 2, 3, 4, 5, 8, 9 y 11. Rta:

Regla del 2. Si $n = \sum_{j=0}^{k} a_j 10^j$, $n \equiv \sum_{j=1}^{k} a_j 0^j + a_0 \pmod{2}$ por lo tanto es divisible por 2 si y solo si su dígito de unidades lo es, o sea si termina en 0, 2, 4, 6, 8.

Regla del 3 y 9. Como $10 \equiv 1 \pmod{3}$, $\sum_{j=0}^k a_j 10^j \equiv \sum_{j=0}^k a_j 1^j \pmod{3}$. Por lo tanto 3|n si y sólo si 3 divide a la suma de sus dígitos. Notar que lo mismo pasa con 9 por ser $10 \equiv 1 \pmod{9}$.

Regla del 4 y 8. $10^j \equiv 0 \pmod{4}$ si j > 1 y $10^j \equiv 0 \pmod{8}$ si j > 2. Por lo tanto, al tomar congruencia de n módulo 4 u 8, sólo quedan las dos últimas cifras en el primer caso y las 3 últimas en el segundo. Es decir 4|n si y sólo si $4|10a_1 + a_0$ y 8|n si y sólo si $8|100a_2 + 10a_1 + a_0$.

Regla del 11. $10 \equiv -1 \pmod{11} \Rightarrow n = \sum_{j=0}^k a_j 10^j \equiv \sum_{j=0}^k a_j (-1)^j$ Entonces 11|n si y sólo si 11 divide a la suma de los dígitos que están en lugar par menos la suma delos dígitos que están en lugar impar.

b) Decir por cuáles de los números del 2 al 11 son divisibles los siguientes números:

12342 5176 314573 899.

Rta: $12342 = 2 \cdot 3 \cdot 11^2 \cdot 17$, $5176 = 2^3 \cdot 647$, $314573 = 7 \cdot 44939$, 899 no es divisible por ninguno de ellos.

(5) Sean a, b, c números enteros, ninguno divisible por 3. Probar que

$$a^2 + b^2 + c^2 \equiv 0 \equiv 3$$
.

Rta: Si ninguno es divisible por 3 tenemos que cada uno de ellos es de la forma $x \equiv 1 \pmod{3}$ o $x \equiv 2 \pmod{3}$, por lo tanto $x^2 \equiv 1 \pmod{3}$ o $x^2 \equiv 4 \equiv 1 \pmod{3}$. Luego a^2 , b^2 , c^2 sin congruentes a 1 módulo 3, y en consecuencia

$$a^2 + b^2 + c^2 \equiv 1 + 1 + 1 \equiv 3 \equiv 0 \pmod{3}$$
:

Por lo tanto, $3|a^2 + b^2 + c^2$.

(6) Hallar la cifra de las unidades y la de las decenas del número 7¹⁵.

Rta: Para encontrar dichas cifras tenemos que tomar congruencia módulo 100.

Ahora bien, $7^{15} = (7^2)^7 7 = (50-1)^7 7$ y observar que como $50^k \equiv 0 \pmod{100}$ para k > 1, por la fórmula binomial, $(50-1)^7 7 \equiv (50 \cdot 7 - 1) 7 \pmod{100}$.

Finalmente

$$(50 \cdot 7 - 1)7 \equiv 350 \cdot 7 - 7 \equiv 50 \cdot 7 - 7 \equiv 350 - 7 \equiv 343 \equiv 43 \pmod{100}$$
.

(7) Hallar el resto en la división de *x* por 5 y por 7 para:

a)
$$x = 1^8 + 2^8 + 3^8 + 4^8 + 5^8 + 6^8 + 7^8 + 8^8$$
;

Rta: Sabemos que si (a, 5) = 1 y por el teorema de Fermat se tiene $a^4 \equiv 1 \pmod{5}$, luego cada sumando salvo 5^8 que es congruente a 0 módulo 5. Su suma da entonces $7 \equiv 2 \pmod{5}$.

También sabemos que $a^7 \equiv a \pmod{7}$, $\forall a$, por lo cual la suma es congruente a $\sum_{i=1}^{8} i^2$ módulo 8. Esto es $1+4+2+2+4+1+0+1=15\equiv 1\pmod{7}$.

b)
$$x = 3 \cdot 11 \cdot 17 \cdot 71 \cdot 101$$
.

Rta:
$$x = 3 \cdot 11 \cdot 17 \cdot 71 \cdot 101 \equiv 3 \cdot 1 \cdot 2 \cdot 1 \cdot 1 \equiv 6 \equiv 1 \pmod{5}$$

$$x = 3 \cdot 11 \cdot 17 \cdot 71 \cdot 101 \equiv 3 \cdot 4 \cdot 3 \cdot 1 \cdot 3 \equiv 108 \equiv 1 \pmod{7}.$$

(8) Hallar todos los x que satisfacen:

a)
$$x^2 \equiv 1 \pmod{4}$$

Rta: Resolvemos primero para $0 \le x \le 3$ y luego sumamos un múltiplo de 4. Esto es x = 1 o x = 3 y por lo tanto x = 1 + 4k o x = 3 + 4k, lo cual también se puede escribir como $x = 4k \pm 1$.

b)
$$x^2 \equiv x \pmod{12}$$

Rta: Soluciones menores que 12: x = 0, 1, 4, 9, 11. Luego el conjunto solución es $\{12k, 12k \pm 1, 12k + 4, 12k - 3\}$.

c)
$$x^2 \equiv 2 \pmod{3}$$

Rta: No tiene soluciones pues $0^2 = 0$, $1^2 = 1$, $2^2 \equiv 1 \pmod{3}$.

d)
$$x^2 \equiv 0 \pmod{12}$$

Rta: Soluciones menores que 12: $\{0,6,\}$. Luego las soluciones son $\{12k, 12k+6\}$.

e) $x^4 \equiv 1 \pmod{16}$

Rta: Notemos que x debe ser impar. Podemos tomar $-8 \le x \le 8$, es decir $x \in \{-7, -5, -3, -1, 1, 3, 5, 7\}$. Los cuadrados son $\{49, 25, 9, 1, 1, 9, 25, 49\}$ que son congruentes módulo 16 a $\{1, 9, 9, 1, 1, 9, 9, 1\}$ A su vez cuando elevamos estos al cuadrado, como $9^2 = 81 \equiv 1 \pmod{16}$ Tenemos que todo número impar es solución de la ecuación.

Alternativamente podríamos elevar 2k+1 a la cuarta con la fórmula binomial $\sum_{j=0}^4 \binom{4}{j} (2k)^j 1^{4-j} = 1+4\cdot 2k+6\cdot 4k^2+4\cdot 4k^3+16k^4=1+8(k+3k^2)+16(k^3+k^4)\equiv 1+8(k+3k^2)$ (mod 16). Si observamos que k(1+3k) siempre es par ya que es uno de los factores es par, tenemos que $(2k+1)^4\equiv 1+16(3k+1)k/2\equiv 1\pmod{16}$.

 $f) \ 3x \equiv 1 \pmod{5}$

Rta: Probamos con x = 0, 1, 2, 3, 4 y vemos que $3 \cdot 2 = 6 \equiv 1 \pmod{5}$. Luego las soluciones son x = 5k + 2.

(9) Sean a, b, $m \in \mathbb{Z}$, d > 0 tales que $d \mid a$, $d \mid b$ y $d \mid m$. Probar que la ecuación $a \cdot x \equiv b(m)$ tiene solución si y sólo si la ecuación

$$\frac{a}{d} \cdot x \equiv \frac{b}{d} \pmod{\frac{m}{d}}$$

tiene solución.

Rta: La ecuación $\frac{a}{d} \cdot x \equiv \frac{b}{d} \pmod{\frac{m}{d}}$ tiene solución si y sólo si $\frac{m}{d} | \frac{a}{d} \cdot x - \frac{b}{d}$ si y sólo si $\frac{a}{d} \cdot x - \frac{b}{d} \equiv \frac{m}{d} q$ como $d \neq 0$ multiplicando por d, esto ocurre si y sólo si $m \mid a \cdot x - b$, es decir, $a \cdot x \equiv b \pmod{m}$.

(10) Resolver las siguientes ecuaciones:

a) $2x \equiv -21 \pmod{8}$

Como el módulo es par, no hay solución pues el miembro de la derecha es par y el de la izquierda es impar.

b) $2x \equiv -12 \pmod{7}$

Rta: $-12 \equiv 2 \pmod{7}$, por lo tanto la ecuación es equivalente a $2x \equiv 2 \pmod{7}$. Evidentemente 1 es solución de la ecuación y como 1 = (2,7) todas las soluciones son de la forma x = 1 + 7k, $k \in \mathbb{Z}$.

c) $3x \equiv 5 \pmod{4}$.

Rta: $5 \equiv 1 \pmod{4}$, por lo tanto la ecuación es equivalente a $3x \equiv 1 \pmod{4}$. Probando se encuentra que 3 es solución y como 1 = (4, 3), todas las soluciones son de la forma x = 3 + 4k, $k \in \mathbb{Z}$.

(11) Resolver la ecuación $221x \equiv 85 \pmod{340}$. Hallar todas las soluciones x tales que $0 \le x < 340$.

Rta: Notemos que 221, 85 y 340 son divisibles por 17. Sus respectivos cocientes son 13, 5 y 20. Por el ejercicio 9 podemos entonces resolver $13x \equiv 5 \pmod{20}$. Las soluciones de esta ecuación deben ser múltiplos de

5 y menores que 20. Comprobamos que 5 es la única solución menor que 20. las restantes son de la forma 20k + 5. Tenemos que el conjunto buscado es: $\{5, 25, 45, \ldots, 305, 325\} = \{5 + 20k, \}_{k=1}^{20}$.

(12) a) Encontrar todas las soluciones de la ecuación en congruencia

$$36 x \equiv 8 \pmod{20}$$

usando el método visto en clase.

Rta:

$$36 = 20 \times 1 + 16 \Rightarrow 16 = 36 - 20$$

 $20 = 16 \times 1 + 4 \Rightarrow 4 = 20 - 16$
 $16 = 4 \times 4 + 0$.

Luego 4 = (36, 20). Como 4|8 la ecuación tiene solución. Ahora bien,

$$4 = 20 - 16 = 20 - (36 - 20) = (-1) \cdot 36 + 2 \cdot 20$$

por lo tanto, multiplicando por 2 la ecuación, tenemos que $8 = (-2) \cdot 36 + 4 \cdot 20$. Luego,

$$8 \equiv (-2) \cdot 36 \pmod{20},$$

y entonces -2 es solución y todas la soluciones sonde la forma x = -2 + (20/4)k = -2 + 5k, con k entero.

b) Dar todas las soluciones x de la ecuación anterior tales que -8 < x < 30. Rta: Como todas las soluciones son de la forma x = -2 + 5k, con k entero, tomamos valores consecutivos de k y observamos cuando x = -2 + 5k se encuentra en el rango -8 < x < 30. Si empezamos por k = -3, la solución es x = -17 y las soluciones para ese k y los siguientes son

$$-17$$
, -12 , -7 , -2 , 3 , 8 , 13 , 18 , 23 , 28 , 33

Por lo tanto la respuesta es -7, -2, 3, 8, 13, 18, 23, 28.

Rta: (alternativa) Si queremos ser más sistemáticos planteamos las inecuaciones -8 < -2 + 5k < 30. Sumando 2 y dividiendo por 5 en las inecuaciones, obtenemos -6/5 < k < 32/5 o equivalentemente -1.2 < k < 6.4, es decir que k debe tomar los valores -1,0,1,2,3,4,5,6 y por lo tanto x = -2 + 5k toma valores -7, -2, 3, 8, 13, 18, 23, 28.

(13) a) Encontrar todas las soluciones de la ecuación en congruencia

$$21 x \equiv 6 \pmod{30}$$

usando el método visto en clase.

Rta: 3 = (21, 30) y $3 = (-7) \cdot 21 + 5 \cdot 30$, por lo tanto $6 = (-14) \cdot 21 + 10 \cdot 30$. Haciendo congruencia módulo 30 obtenemos: $6 \equiv (-14) \cdot 21 \equiv 6 \cdot 21$ (mod 30). Luego la ecuación tiene como soluciones x = 6 + (30/10)k = 6 + 10k, con k entero.

b) Dar todas las soluciones x de la ecuación anterior tales que 0 < x < 35.

Rta: En base al punto anterior, 0 < x < 35, es equivalente a 0 < 6+10k < 35. Restando 6 y luego dividiendo por 10 las inecuaciones, obtenemos -6/10 < k < 29/10 o bien -0.6 < k < 2.9, por lo tanto k toma valores 0, 1, 2 y las soluciones son 6, 16, 26.

(14) Encontrar todas las soluciones de los siguientes sistemas de ecuaciones en congruencia

a)
$$4x \equiv 7 \pmod{11}$$
$$7x \equiv 8 \pmod{12}$$

Rta: Para resolver la ecuación $4x \equiv 7 \pmod{11}$ observemos que -1 es solución. Como 1=(4,11) todas las soluciones de $4x \equiv 7 \pmod{11}$ son de la forma x=-1+11k, para k entero. Ahora, debemos encontrar los $k \in \mathbb{Z}$ soluciones de la ecuación

$$7(-1+11k) \equiv 8 \pmod{12}$$
.

Expandiendo el lado izquierdo de la ecuación obtenemos

$$7 \times (-1) + 7 \times 11k \equiv -7 + 77k \equiv 5 + 5k \pmod{12}$$
.

Luego, debemos resolver $5+5k\equiv 8\pmod{12}$ o equivalentemente, $5k\equiv 3\pmod{12}$. Una solución a esta ecuación es 3. Como 1=(5,12), todas las soluciones son de la forma k=3+12h con $h\in \mathbb{Z}$.

La solución al sistema entonces será x=-1+11k=-1+11(3+12h). Es decir x=32+132h para $h\in\mathbb{Z}$.

$$x \equiv -1 \pmod{7}$$
b) $x \equiv 3 \pmod{10}$
 $x \equiv -2 \pmod{11}$.

Rta: Las soluciones de la primera ecuación son x=-1+7k para $k\in\mathbb{Z}$. Especializando estas soluciones en la segunda ecuación obtenemos $-1+7k\equiv 3\pmod{10}$, lo que es equivalente a $7k\equiv 4\pmod{10}$, cuyas soluciones son k=2+10h para $h\in\mathbb{Z}$. Luego las soluciones para el sistema que forman las dos primeras ecuaciones son x=-1+7k=-1+7(2+10h)=13+70h para $h\in\mathbb{Z}$.

Finalmente, especificando estas soluciones en la tercera ecuación obtenemos $13+70h\equiv -2\pmod{11}$ o equivalentemente $70h\equiv -15\pmod{11}$ o bien $4h\equiv 7\pmod{11}$, cuyas soluciones son h=-1+11t para $t\in\mathbb{Z}$. Luego, x=13+70h=13+70(-1+11t)=-57+770t.

Concluyendo: las soluciones del sistema son x = -57 + 770t para $t \in \mathbb{Z}$.

$$x \equiv -1 \pmod{2}$$
c) $x \equiv 5 \pmod{9}$
 $x \equiv -3 \pmod{7}$.

Rta: Las soluciones de la primera ecuación son x=1+2k para $k\in\mathbb{Z}$. Especializando estas soluciones en la segunda ecuación obtenemos $1+2k\equiv 5\pmod 9$, lo que es equivalente a $2k\equiv 4\pmod 9$, cuyas soluciones son k=2+9h para $h\in\mathbb{Z}$. Luego las soluciones para el sistema que

forman las dos primeras ecuaciones son x=1+2k=1+2(2+9h)=5+18h para $h\in\mathbb{Z}$.

Finalmente, especificando estas soluciones en la tercera ecuación obtenemos $5+18h\equiv -3\pmod 7$ o equivalentemente $18h\equiv -8\pmod 7$ o bien $4h\equiv 6\pmod 7$, cuyas soluciones son h=5+7t para $t\in \mathbb{Z}$. Luego, x=5+18h=5+18(5+7t)=95+126t.

Concluyendo: las soluciones del sistema son x = 95 + 126t para $t \in \mathbb{Z}$.

- (15) Dado $t \in \mathbb{Z}$, decimos que t es *inversible módulo m* si existe $h \in \mathbb{Z}$ tal que $th \equiv 1 \ (m)$.
 - a) ¿Es 5 inversible módulo 17? Rta: Si, $5 \cdot 7 \equiv 1 \pmod{17}$
 - b) Probar que t es inversible módulo m, si y sólo si (t, m) = 1. Rta: Si t es inversible módulo m sea h tal que $th \equiv 1 \pmod{m}$. Esto es th - 1 = mq, y por lo tanto 1 = th - mq, lo cual dice que (t, m) = 1. Recíprocamente si (t, m) = 1 existen enteros h y q tales que 1 = th + mq y esto nos dice que m divide a 1 - th o sea $th \equiv 1 \pmod{m}$.
 - c) Determinar los inversibles módulo m, para m = 11, 12, 16. Rta: $\{1, 2, 3, ..., 9, 10\}, \{1, 5, 7, 11\}, \{1, 3, 5, 7, 9, 11, 13, 15\}$.
- (16) Encontrar los enteros cuyos cuadrados divididos por 19 dan resto 9. Rta: Si resolvemos $x^2 \equiv 9 \pmod{3}$ vemos que 3 y 16 son los únicos restos que son solución. Luego, todas las soluciones buscadas son $19k \pm 3$.
- (17) Probar que todo número impar a satisface: $a^4 \equiv 1 \pmod{16}$, $a^8 \equiv 1 \pmod{32}$, $a^{16} \equiv 1 \pmod{64}$.

¿Se puede asegurar que $a^{2^n} \equiv 1 \pmod{2^{n+2}}$?

Rta: Si n = 1, $a^2 - 1$ es divisible por 8 ya que $a^2 - 1 = (2k + 1)^2 - 1 = 4k^2 + 4k = 4k(k + 1)$ y 2|k(k + 1).

Si $a^{2^n} \equiv 1 \pmod{2^{n+2}}$ entonces 2^{n+2} divide a $a^{2^n} - 1$ multiplicando por $a^{2^n} + 1$, que es par, tenemos que 2^{n+1+2} divide a $(a^{2^n} - 1)(a^{2^n} + 1) = a^{2^{n+1}} - 1$.

- (18) Encontrar el resto en la división de a por b en los siguientes casos:
 - a) $a = 11^{13} \cdot 13^{8}$; b = 12; $Rta: 11^{13} \cdot 13^{8} \equiv (-1)^{13} \cdot 1^{8} \equiv 11 \pmod{12}$.
 - b) $a = 4^{1000}$; b = 7; Rta: $4^{1000} = (4^6)^{166}4^4 \equiv (4^2)^2 \equiv 2^2 \pmod{12}$.
 - c) $a = 123^{456}$; b = 31; $Rta: 123^{456} \equiv (-1)^{456} \equiv 1 \pmod{31}$.
 - d) $a = 7^{83}$; b = 10. Rta: $7^{83} = (7^4)^{20}7^3 \equiv 1^{20}343 \equiv 3 \pmod{10}$.
- (19) Obtener el resto en la división de 2^{21} por 13; de 3^8 por 5 y de 8^{25} por 127.

Rta: $2^{21} = 2^{13}2^8 \equiv 2 \cdot 2^8 \pmod{13}$ Como $2^32^9 = 2^{12} \equiv 1 \pmod{13}$, se tiene $82^9 \equiv 1 \pmod{13}$ y esto dice que $2^9 \equiv 5 \pmod{13}$ ya que $8 \cdot 5 = 3 \cdot 13 + 1$. $3^8 = 3^4 \cdot 3^4 \equiv 1 \cdot 1 \pmod{13}$.

 $8^{25}=2^{75}$ como $2^7=128\equiv 1$ (mod 127); tenemos que $2^{75}=(2^7)^{10}2^5\equiv 2^5$ (mod 127). Por lo tanto $8^{25}\equiv 32$ (mod 127)

- (20) a) Probar que no existen enteros no nulos tales que $x^2 + y^2 = 3z^2$. Rta: Si x,y,z fuesen solución y tuvieran un factor común t es claro que también x/t,y/t.z/t cumpliría las condiciones. Luego podemos asumir que x,y,z no tienen factor en común salvo ± 1 . Ahora bien, $0^2 \equiv 0 \pmod{3}$, $1^2 \equiv 1 \pmod{3}$ y $2^2 \equiv 1 \pmod{3}$. Por lo tanto, si tomamos congruencia módulo 3 en ambos miembros vemos que la suma de dos cuadrados módulo 3 sólo puede ser 0 si ambos números son divisibles por 3. Luego x = 3a, y = 3b, y por lo tanto $x^2 = 9a^2, y^2 = 9b^2$. Podemos simplificar la ecuación y obtenemos $3a^2 + 3b^2 = z^2$. Tomando congruencia módulo 3 nuevamente tenemos que 3 divide a z^2 y por lo tanto divide a z. Esto contradice el hecho que x,y,z no tenían factor común.
 - b) Probar que no existen números racionales no nulos a, b, r tales que $3(a^2+b^2)=7r^2$.

 Rta: Aquí también podemos asumir que a, b, r no tienen factores en común. Tomando congruencia módulo 3 vemos que 3 divide a r o sea r=3t, $r^2=9t^2$. Reemplazando y simplificando tenemos $a^2+b^2=3t^2$, que sabemos por el inciso anterior que no tiene solución.
- (21) Probar que si (a, 1001) = 1 entonces 1001 divide a $a^{720} 1$. Rta: Notemos que $1001 = 7 \cdot 11 \cdot 13$. Por lo tanto (a, 1001) = 1 implica (a, 7) = (a, 11) = (a, 13) = 1. Entonces $a^6 \equiv 1 \pmod{7}$; $a^{10} \equiv 1 \pmod{11}$ y $a^{12} \equiv 1 \pmod{13}$. Por lo tanto $a^{720} = ((a^6)^{10})^{12} \equiv 1 \pmod{7} \cdot 11 \cdot 13$.
- (22) Sea *p* primo impar.
 - a) Probar que las únicas raíces cuadradas de 1 módulo p, son 1 y -1 módulo p. Es decir, probar que $x^2 \equiv 1 \pmod{p}$, entonces $x \equiv \pm 1 \pmod{p}$. Rta: $x^2 \equiv 1 \pmod{p} \Rightarrow x^2 1 \equiv 0 \pmod{p}$, como $x^2 1 = (x 1)(x + 1)$, obtenemos $(x 1)(x + 1) \equiv 0 \pmod{p}$. Esto quiere decir que p|(x 1)(x + 1). Como p es primo, p|x 1 o p|x + 1, es decir

$$x - 1 \equiv 0 \pmod{p} \lor x + 1 \equiv 0 \pmod{p} \Leftrightarrow x \equiv 1 \pmod{p} \lor x \equiv -1 \pmod{p}.$$

b) Sea $p = d \cdot 2^s + 1$ donde d es impar. Dado a entero tal que 0 < a < p, probar que

$$\circ a^d \equiv 1 \pmod{p}$$
, o

∘ $a^{2^{r} \cdot d} \equiv -1 \pmod{p}$ para algún r tal que $0 \le r < s$.

Rta: Consideremos la sucesión $a^{2^{s} \cdot d}$, $a^{2^{s-1} \cdot d}$, ..., a^{2d} , a^{d} . La demostración la haremos usando el teorema de Fermat, el resultado del inciso anterior y observando que cada término de la sucesión es el cuadrado del siguiente.

- o Por el teorema de Fermat $a^{2^{s} \cdot d} = a^{p-1} \equiv 1 \pmod{p}$. Luego $(a^{2^{s-1} \cdot d})^2 \equiv 1 \pmod{p}$ y por lo tanto $a^{2^{s-1} \cdot d}$ es una raíz cuadrada de 1 módulo p. Por el inciso anterior entonces $a^{2^{s-1} \cdot d} \equiv \pm 1 \pmod{p}$.
- o Si $a^{2^{s-1} \cdot d} \equiv -1 \pmod{p}$, listo, en caso contrario $a^{2^{s-1} \cdot d} \equiv 1 \pmod{p}$, luego $(a^{2^{s-2} \cdot d})^2 \equiv 1 \pmod{p}$ y por lo tanto $a^{2^{s-2} \cdot d}$ es una raíz cuadrada de 1 módulo p. Por el inciso anterior entonces $a^{2^{s-2} \cdot d} \equiv \pm 1 \pmod{p}$.
- o Iterando el razonamiento anterior concluimos que alguno de los términos de la sucesión $a^{2^r \cdot d}$ es congruente a -1 módulo p o bien todos los términos son congruentes a 1, en particular $a^d \equiv 1 \pmod{p}$.
- § **Ejercicios de repaso.** Los ejercicios marcados con ^(*) son de mayor dificultad.
- (23) Dada la ecuación de congruencia

$$14 x \equiv 10 (26)$$
,

hallar todas las soluciones en el intervalo [-20, 10]. Hacerlo con el método usado en la teórica.

(24) Dada la ecuación de congruencia

$$21 x \equiv 15 (39)$$

hallar todas las soluciones en el intervalo [-10,30]. Hacerlo con el método usado en la teórica.

(25) Hallar todos los enteros que satisfacen simultáneamente:

$$x \equiv 1 \ (3); \qquad x \equiv 1 \ (5); \qquad x \equiv 1 \ (7).$$

- (26) (*) ¿Para qué valores de n es $10^n 1$ divisible por 11? Rta: Como $10 \equiv -1 \pmod{11}$, se tiene $10^n - 1 \equiv (-1)^n - 1 \pmod{11}$. Entonces $10^n - 1$ es divisible por 11 si y solo si n es par.
- (27) (*) Probar que para ningún $n \in \mathbb{N}$ se puede partir el conjunto $\{n, n+1, \ldots, n+5\}$ en dos partes disjuntas no vacías tales que los productos de los elementos que las integran sean iguales.

Rta: Notemos que si fuera posible dicha partición. el n+2 dividiría a ambos productos y uno de ellos no lo contiene. Entonces n+2 debe dividir a (n+2-2)(n+2-1)(n+2+1)(n+2+2)(n+2+3). Esto nos dice que n+2 debe dividir a $(-1)(-2) \cdot 1 \cdot 2 \cdot 3 = 12$. Las posibilidades para n+2 son entonces: 1,

2, 3, 4, 6,12. Pero 1 y 2 dan $n \le 0$ y las restantes dan $n \in \{1, 2, 4, 10\}$. Las primera no puede ser pues en el conjunto $\{1,2,3,4,5,6\}$ hay un único elemento divisible por 5, que debería ser divisor de ambos productos de la partición. La misma razón dice que n no puede ser 2 ni 4. Finalmente si n = 10, el conjunto sería $\{10,11,12,13,14,15\}$ que posee un único elemento divisible por 7 (el 14) y vale el mismo razonamiento que antes con 7 en lugar de 5.

Alternativamente: Notemos que 7 divide a lo sumo a uno de los 6 números. Si $\prod_{i=0}^5 (n+i) = u_1u_2$ con $u_1 = u_2$, entonces 7 no divide a ninguno de los factores ya que si divide a un factor de u_1 divide a un factor de u_2 . Tenemos así que las congruencias módulo 7 dan los 6 restos posibles y su producto 720 es congruente a 6 módulo 7. Pero entonces $u_1^2 = u_1u_2 \equiv 720 \equiv 6 \pmod{7}$ se tendría que 6 es un cuadrado módulo 7 lo cual es falso.

(28) (*) El número 2²⁹ tiene nueve dígitos y todos son distintos. ¿Cuál dígito falta? (No está permitido el uso de calculadora).

Rta: Primero nos planteamos la siguiente pregunta, ¿Cuánto suman sus dígitos? Si $2^{29} = \sum_{i=0}^8 a_i 10^i$, entonces $\sum_{i=0}^8 a_i = \sum_{i=0}^9 i - d$, donde d es el dígito que falta. Esto es $\sum_{i=0}^8 a_i = 45 - d$. Además $2^{29} = \sum_{i=0}^8 a_i 10^i \equiv \sum_{i=0}^8 a_i \pmod{9}$. Entonces si calculamos esta congruencia podemos obtener d: $2^{29} = (2^6)^4 2^5 \equiv 2^5 \pmod{9}$ y $2^5 \equiv 5 \pmod{9}$ por lo tanto $d \equiv -5 \pmod{9}$ o sea d = 4 es el dígito faltante.