

Deciphering the function and evolution of the centromeric repeats in Primates

Sarah Kaddah M2 BI

19/01/2018

Tuteur: Loic Ponger

Département: Régulation, Développement, Diversité Moléculaire

Unité: Structure et Instabilité des génomes

CNRS UMR 7196 / INSERM U1154 / MNHN

About the centromere

- Chromatin structure
- Cell division
- DNA diverse
- Protein involved conserved
- Satellite DNA:
 Tandemly repeated sequence
 (~100 to +10 000)
- Function ?(fixation of proteins ...)

Albert et al, 2002

Satellite DNA in Primates

- Tandemly repeated sequence: α-satellite
- Repeat length ~170 pb
- Similarity: more than 70%
- Hundreds of thousands repeats
- Composed by several families

Specific spatial organisation Centromere Binding sites: -CENP-B -pJalpha Higher Order Repeat (HOR) Monomeric organization Binding site

α-satellites DNA

Studies in human:

Phylogenetic analysis of pericentromeric monomers, Shepelev et al., 2009

- Age-gradient hypothesis: youngest families on centromeric regions

- Identification of 20 families

DXZ1

Shepelev et al., 2009

α-satellites DNA

Studies on Gorillas, Catacchio et al., 2015

- Medium throughput-sequencing
- Identification of 5 families
- Complex HOR organization
- Binding sites for CENP-B

Studies on Cercopithecini,

Cacheux et al., 2016

- High throughput-sequencing
- Identification of 6 families
- Binding sites for pJalpha

Few interspecific comparison

Goals:

Understand the function and evolutionary mechanisms of α -satellite DNA

1 - Choose species for analysis

Janvier	Février	Mars	Avril	Mai	Juin	
					-	

_

1 - Choose species for analysis: several (~3) out of 16

Species	Alpha- Satellite Number		
Cercocebus atys (SRA)	80 884		
Chlorocebus sabaeus	29 842		
Gorilla gorilla	120 864		
Homo sapiens (HGSC, HuRef)	37 204 ; 63 167		
Macaca fascicularis (genome and SRA)	195642 ; 39893		
Macaca mulatta (SRA)	7 365		
Macaca nemestrina (SRA)	462 063		

Janvier	Février	Mars	Avril	Mai	Juin	
---------	---------	------	-------	-----	------	--

- 1 Choose species for analysis
- 2 Identify families for each species : objective and reproducible method
- Process big amount of short sequences
- Classification into families

19/02

- Binary classification

Janvier	Février	Mars	Avril	Mai	Juin	
	20.54					

- 1 Choose species for analysis
- 2 Identify families for each species
- 3 Characterize families into each species:
 - -percentage of similarity
 - -binding sites...

- 1 Choose species for analysis
- 2 Identify families for each species
- 3 Characterize families into each species
- 4 -1. Interspecific comparison
- 4 2. Spatial organization analysis (HOR)

12/04

- 1 Choose species for analysis
- 2 Identify families for each species
- 3 Characterize families into each species
- 4 -1. Interspecific comparison
- 4 -2. Spatial organization analysis (HOR)
- 5 Writing of the report

Thank you for your attention

Data

Espèces	Nombre de séquences		
Cercocebus atys (SRA)	80 884		
Chlorocebus sabaeus	29 842		
Gorilla gorilla	120 864		
Homo sapiens (HGSC, HuRef)	37 204 ; 63 167		
Macaca fascicularis (genome, SRA)	195642 ; 39893		
Macaca mulatta (SRA)	7 365		
Macaca nemestrina (SRA)	462 063		
Mandrillus leucophaeus (WGS)	34 140		
Nasalis larvatus	21 399		
Nomascus leucogenys	392 948		
Pan paniscus (SRA)	272 661		
Pan troglodytes	114 104		
Papio anubis	515 969		
Papio hamadryas (Contigs)	70188		
Pongo_abelii (genome, NCBI)	173 428 ; 175 240		
Rhinopithecus_roxellana	109 811		

Algorithm

3 families