

Formulario PEP 2 Física I Profesor Rubén Montecinos

Definición 1 (Primera ley de Newton (Ley de Inercia)) Un objeto continua moviéndose con velocidad constante a menos que actué una fuerza externa. Si el objeto esta en reposo, continuara en reposo a menos que actué una fuerza externa.

$$\sum \vec{F_{ext}} = 0 \rightarrow \frac{\triangle \vec{v}}{\triangle t} = 0$$

Definición 2 (Segunda ley de Newton (Ley de las masas)) La aceleración, como vector, de un objeto es proporcional a la suma de fuerzas externas que actúa sobre el objeto. La constante de proporcionalidad es la masa.

$$\sum \vec{F_{ext}} = m \cdot \vec{a}$$

En el eje x (con dirección \hat{i}):

$$\sum F_x = m \cdot a_x$$

En el eje x (con dirección \hat{i}):

$$\sum F_y = m \cdot a_y$$

Definición 3 (Tercera ley de Newton (Ley de acción y reacción)) Si un cuerpo A ejerce una fuerza $F_{a,b}$ sobre un cuerpo B, entonces el cuerpo B ejerce una fuerza $F_{b,a}$ opuesta y de igual magnitud sobre el cuerpo A.

$$\vec{F_{a,b}} = -\vec{F_{b,a}}$$

Definición 4 (Torque) Fuerza aplicada sobre un objeto que, debido a un punto fijo de este, genera una rotación.

$$\vec{\tau} = \vec{r} \times \vec{F}$$

Donde \vec{r} corresponde al vector posición desde el punto de apoyo (pivote) del objeto hasta la aplicación de la fuerza \vec{F}

Nota:La relación $\vec{r} \times \vec{f}$ es un producto cruz entre vectores

La magnitud del torque, se expresa como

$$\tau = rFsen\theta$$

Con θ el ángulo de la fuerza respecto a la horizontal.

Sin embargo, para el caso de Física 1, solo se observarán fuerzas que podrían generar una rotación pero debido a igualdades, no se genera esta rotación, es decir que:

$$\sum \vec{\tau} = 0$$

Definición 5 (Energía) El teorema de conservación de la energía nos dice que la energía se conserva en el universo $E_i = E_F$, medida en Joules [J]. Sin embargo, en un sistema pueden existir perdidas o ganancias de energía llamado Trabajo (W) de modo que

$$W = E_f - E_i$$

Definido como:

$$W = \vec{F} \cdot \vec{r}$$

Donde \vec{F} es la fuerza aplicada y \vec{r} el desplazamiento realizado. Los tipos de energía son:

- Energía cinética: Energía debido al movimiento de la partícula, definida con la letra K, de modo que $K = \frac{1}{2}mv^2$.
- Energía potencial: Energía debido a la fuerza gravitatoria que afecta a la partícula, definida con la letra U, de modo que U = mgh.

Donde m es la masa, v la velocidad, g la aceleración de gravedad, h la altura de la partícula según el sistema de referencia. Finalmente, tenemos que

$$W = (K_f + U_f) - (K_i + U_i)$$

Definición 6 (Hidrostática) La presión ejercida sobre un cuerpo se define como:

$$P = \frac{F}{A}$$

Donde F es la fuerza aplicada y A el área donde se aplica esta fuerza. Ahora, la presión sobre un objeto que se encuentra sumergido en un liquido se define como:

$$P = P_0 + \rho q h$$

Donde P_0 es la presión atmosférica, ρ la densidad del liquido, g la aceleración de gravedad g h la altura del objeto

Además, cuando este objeto se encuentra en un liquido se ve afectado por una fuerza denominada empuje, cuyo sentido y dirección esta orientado a la superficie. Esta fuerza se define como:

$$E = \rho v_c g$$

Donde v_c es el volumen sumergido del objeto.

Resumen unidades

Magnitud Física	Unidad (S.I)
Posición	Metro (m)
Tiempo	Segundo (s)
Velocidad	m/s
Aceleración	m/s^2
Masa	Kilogramo (kg)
Fuerza	Newton (N)
Energía	Joules (J)
Presión	Pascal (Pa)
Densidad	kg/m^3
Volumen	m^3

Table 1: Unidades de magnitudes física utilizadas