MA203 NUMERICAL METHODS

TUTORIAL SHEET 2

(Session: MO/23)

MODULE 1

TOPIC: SOLNS. OF NONLINEAR EQUATIONS

- 1. Using a = 0 and b = 1 as initial approximations to the root, execute four iterations of Bisection method to find the positive real root of $x \cos x = 0$ correct to four decimal places.
- 2. The nonlinear equation $x \log_{10} x = 1.2$ is given:
 - (a) Obtain an interval of unit length which contains the positive real root of the equation.
 - (b) Using end points of the above obtained interval as initial approximations, compute the value of root correct to four decimal places using Regula-Falsi method.
- 3. Apply False Position method to find the smallest positive root of the equation $x e^{-x} = 0$ correct to three decimal places.
- 4. A real root of the equation $f(x) = x^3 5x + 1 = 0$ lies in the interval (0,1). Perform four iterations of the Secant method and Regula Falsi method to obtain the root.
- 5. Derive the Newton's iterative formula for finding $\sqrt[p]{N}$, where N is a positive real number and p is the p^{th} root. Hence, apply it for N=15 and p=2 for obtaining results correct to two decimal places.
- 6. Determine the smallest positive real root of the equation $3x = \cos x + 1$ correct to four decimal places using
 - (a) Newton Raphson method.
 - (b) direct (fixed point) method

Compare the results obtained.

- 7. Use the Secant method to determine the root of the equation $\cos x xe^x = 0$ with 0 and 1 as initial approximations up to four decimals. Compare with results obtained with Regula Falsi method with same initial approximations.
- 8. Identify a suitable representative of the equation $f(x) = x^3 + x^2 1 = 0$ in the form $x = \phi(x)$ for finding its root in the interval (0,1) by iterative (fixed point) method. Hence, using it, find the real root with an accuracy of 10^{-4} .
- 9. The smallest positive root of the equation $f(x) = x^4 3x^2 + x 10 = 0$ is to be obtained:
 - (a) Identify an interval of unit length which contains this root.
 - (b) Using the end points of the above obtained interval as initial approximations, perform two iteration of Bisection method.
 - (c) Taking the mid point of the last interval as the initial approximations, perform three iterations of Newton Raphson method.
- 10. The negative root of the smallest magnitude of the equation $f(x) = 3x^3 + 10x^2 + 10x + 7 = 0$ is to be computed
 - (a) Find an interval of unit length which contains this root.

- (b) Using the end points of the above obtained interval as initial approximations, perform two iteration of Bisection method.
- (c) Taking the end points of the last interval (obtained through Bisection method) as initial approximations, perform three iterations of the Secant method.
- 11. Determine the smallest positive root of the equation: $10 \int_0^x e^{-x^2} dt = 1$ correct to four decimal places using Newton Raphson method.
- 12. Consider the sequence $x_{n+1} = \frac{x_n}{2} + \frac{9}{8x_n}$, $x_0 = 0.5$ obtained from the Newton Raphson method. Show that the sequence converges to 1.5.
- 13. Determine the absolute difference between the 4^{th} and 5^{th} approximation to the real root $f(x) = x^3 5x 7 = 0$ using method of false position up to 4^{th} decimal place.
- 14. The equation $x^2 + ax + b = 0$ has two real roots α and β . Show that the iterative (fixed point) method for the formula $x_{k+1} = -\frac{ax_k + b}{x_k}$ is convergent near $x = \alpha$ if $|\alpha| > |\beta|$.
- 15. Prove that the real sequence generated by iterative scheme $x_n = \frac{x_{n-1}}{2} + \frac{1}{x_{n-1}}$, $n \ge 1$ converges to fixed point $\sqrt{2}$ for $x_0 > \sqrt{\frac{2}{3}}$.
- 16. The equation $f(x) = x^3 7x^2 + 16x 12$ has a double root at x = 2. Starting with initial approximation $x_0 = 1$, find the root correct up to 3- decimal place using
 - (i) Newton-Raphson method (ii) Modified Newton-Raphson method