Programming Machine Learning Applications

Lecture Three: Proximity and the k-Nearest-Neighbors Algorithm

Dr. Aleksandar Velkoski

Types of Datasets

Instances & Features

Interactive Workshop

Review of Lecture Two

Proximity

k-Nearest-Neighbor Classifier

Interactive Workshop

Lecture Three

Proximity

Similarity - Dissimilarity - Proximity

Similarity

- Numerical measure of how alike two features are
- Value is higher when instances are more ...?

Dissimilarity

- Numerical measure of how different two features are
- Value is higher when instances are more ... ?

Proximity can refer to similarity of dissimilarity

Why is it Important?

Data Mining Tasks

- Clustering
- k-Nearest-Neighbor search, classification, and prediction
- Characterization and Discrimination
- Automatic Categorization
- Correlation Analysis

Real-world Applications

- Personalization
- Recommender Systems
- Document Categorization
- Information Retrieval
- Target Marketing

Measuring Proximity

In order to group similar items, we need a way to measure proximity

It often requires the representation of objects as feature vectors

Employee DB

ID	Gender	Age	Salary
1	F	27	19,000
2	М	51	64,000
3	М	52	100,000
4	F	33	55,000
5	М	45	45,000

Term Frequencies

	T1	T2	T3	T4	T5	T6
Doc1	0	4	0	0	0	2
Doc2	3	1	4	3	1	2
Doc3	3	0	0	0	3	0
Doc4	0	1	0	3	0	0
Doc5	2	2	2	3	1	4

Properties

For all objects A and B, dist(A, B) >= 0, and dist(A, B) = dist(B, A)

For any object A, dist(A, A) = 0

 $dist(A, C) \le dist(A, B) + dist(B, C)$

Representation

Each object can be viewed as an n-dimensional vector, where the dimensions are the features in the data

Example (employee DB): <M, 51, 64000> Example (documents): <3, 1, 4, 3, 1, 2>

The vector representation allows us to compare proximity between pairs of items using standard vector operations

Data Matrix and Distance Matrix

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

```
\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix} \begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \cdots & \cdots & 0 \end{bmatrix}
```

Nominal Features

m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

Binary Features

	Contingency Table								
	1	0	sum						
1	q	r	q+r						
0	s	t	s+t						
sum	q + s	r+t	p						

Symmetric

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

Asymmetric

$$d(i,j) = \frac{r+s}{q+r+s}$$

Numeric Features

Consider two vectors: $X = \langle x_1, x_2, \dots, x_n \rangle$ $Y = \langle y_1, y_2, \dots, y_n \rangle$

Manhattan Distance

$$dist(X,Y) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_n - y_n|$$

Euclidean Distance

$$dist(X,Y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

Numeric Example

Data Matrix

point	attribute1	attribute2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

Manhattan

	x1	x2	х3	x4
<i>x</i> 1	0			
<i>x</i> 2	5	0		
х3	3	6	0	
x4	6	1	7	0

Euclidean

	x1	<i>x</i> 2	х3	x4
<i>x</i> 1	0			
<i>x</i> 2	3.61	0		
<i>x</i> 3	2.24	5.1	0	
x4	4.24	1	5.39	0

Minkowski Distance

Minkowski Distance

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

• where i = (xi1, xi2, ..., xip) and j = (xj1, xj2, ..., xjp) are two p-dimensional data objects, and h is the order (the distance so defined is also called L-h norm)

Note: Euclidean and Manhattan Distances are special cases of Minkowski

Vector Based Measures

In some situations, distances measures provide a skewed view of data

Dot product of vertices:
$$sim(X,Y) = X \bullet Y = \sum_{i} x_i \times y_i$$

Cosine Similarity = Normalized Dot Product

$$sim(X,Y) = \frac{X \bullet Y}{\|X\| \times \|y\|} = \frac{\sum_{i} (x_i \times y_i)}{\sqrt{\sum_{i} x_i^2} \times \sqrt{\sum_{i} y_i^2}}$$

Example: Information Retrieval

Documents are represented as "bags of words" (vectors when used computationally)

- A vector is an array of floating point (or binary in case of bit maps)
- Has direction and magnitude
- Each vector has a place for every term in collection (most are sparse)

Documents and Queries

Documents are represented as vectors in term space

- Typically values in each dimension correspond to the frequency of the corresponding term in the document
- Queries represented as vectors in the same vector-space
- Cosine similarity between the query and documents is often used to rank retrieved documents

Example: Document Similarities

	T1	T2	Т3	T4	T5	Т6	T7	T8
Doc1	0	4	0	0	0	2	1	3
Doc2	3	1	4	3	1	2	0	1
Doc3	3	O	0	O	3	0	3	O
Doc4	0	1	0	3	O	0	2	O
Doc5	2	2	2	3	1	4	0	2

Dot-Product(Doc2,Doc4) =
$$\langle 3,1,4,3,1,2,0,1 \rangle * \langle 0,1,0,3,0,0,2,0 \rangle$$

 $0+1+0+9+0+0+0+0=10$
Norm (Doc2) = SQRT(9+1+16+9+1+4+0+1) = 6.4
Norm (Doc4) = SQRT(0+1+0+9+0+0+4+0) = 3.74

Cosine(Doc2, Doc4) = 10 / (6.4 * 3.74) = 0.42

Correlation as Similarity

In cases where there could be high mean variance across objects, Pearson is used

$$corr(x, y) = \frac{cov(x, y)}{stdev(x) \cdot stdev(y)}$$

Often used in recommender systems based on Collaborative Filtering

Distance-Based Classification

Classify new instances based on similarity to instances we've seen before.

Simplest form of MBR (Minimum Bounding Rectangle): Rote Learning

- Learning by memorization
- Save all previously encountered instances; given a new instance, find one from the memorized set that most closely "resembles" the new one; assign new instance to the same class as the "nearest neighbor"
- More general methods try to find "k" nearest neighbors

Challenges

How do we define "resembles"?

k-Nearest Neighbors

kNN Classifier

If it walks like a duck, quacks like a duck, then it's probably a duck

kNN Strategy

Given object x, find the k most similar objects to x

- The k nearest neighbors
- Variety of distance or similarity measures can be used to identify and rank neighbors
- Note that this requires comparison between x and all objects in the database

Classification

- Find the class label for each of the k neighbor
- Use a voting or weighted voting approach to determine the majority class among the neighbors (a combination function)
- Weighted voting means the closest neighbors count more
- Assign the majority class label to x

Prediction

- Identify the value of the target attribute for the k neighbors
- Return the weighted average as the predicted value of the target attribute for x

kNN Strategy

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

Combination Functions

Voting: the "democracy" approach

- poll the neighbors for the answer and use the majority vote
- the number of neighbors (k) is often taken to be odd in order to avoid ties
 - o works when the number of classes is two
 - o if there are more than two classes, take k to be the number of classes plus 1

Impact of k on predictions

- in general different values of k affect the outcome of classification
- we can associate a confidence level with predictions (this can be the % of neighbors that are in agreement)
- problem is that no single category may get a majority vote
- if there is strong variations in results for different choices of k, this an indication that the training set is not large enough

Voting Approach

Will a new customer respond to solicitation?

	ID	Gender	Age	Salary	Respond?
	1	F	27	19,000	no
	2	М	51	64,000	yes
٠	3	М	52	105,000	yes
	4	F	33	55,000	yes
	5	М	45	45,000	no
	new	F	45	100,000	?

Using the voting method without confidence

	Neighbors	Answers	k =1	k = 2	k = 3	k = 4	k = 5
D man	4,3,5,2,1	Y,Y,N,Y,N	yes	yes	yes	yes	yes
D euclid	4,1,5,2,3	Y,N,N,Y,Y	yes	?	no	?	yes

Using the voting method with a confidence

	k =1	k = 1 k = 2		k = 4	k = 5	
D_man	yes, 100%	yes, 100%	yes, 67%	yes, 75%	yes, 60%	
D euclid	yes, 100%	yes, 50%	no, 67%	yes, 50%	yes, 60%	

Document Categorization

	T1	T2	T3	T4	T5	T6	T7	T8	Cat
DOC1	2	0	4	3	0	1	0	2	Cat1
DOC2	0	2	4	0	2	3	0	0	Cat1
DOC3	4	0	1	3	0	1	0	1	Cat2
DOC4	0	1	0	2	0	0	1	0	Cat1
DOC5	0	0	2	0	0	4	0	0	Cat1
DOC6	1	1	0	2	0	1	1	3	Cat2
DOC7	2	1	3	4	0	2	0	2	Cat2
DOC8	3	1	0	4	1	0	2	1	?

Document Categorization

	T1	T2	Т3	T4	T5	T6	T7	T8	Norm	Sim(D8,Di)
DOC1	2	0	4	3	0	1	0	2	5.83	0.61
DOC2	0	2	4	0	2	3	0	0	5.74	0.12
DOC3	4	0	1	3	0	1	0	1	5.29	0.84
DOC4	0	1	0	2	0	0	1	0	2.45	0.79
DOC5	0	0	2	0	0	4	0	0	4.47	0.00
DOC6	1	1	0	2	0	1	1	3	4.12	0.73
DOC7	2	1	3	4	0	2	0	2	6.16	0.72
DOC8	3	1	0	4	1	0	2	1	5.66	

```
Sim(D8,D7) = (D8 * D7) / (Norm(D8).Norm(D7))
= (3x2+1x1+0x3+4x4+1x0+0x2+2x0+1x2) / (5.66 x 6.16)
= 25 / 34.87 = 0.72
```

Document Categorization

Simple voting:

Cat for DOC 8 = Cat2 with confidence 2/3 = 0.67

Weighted voting:

Cat for DOC 8 = Cat2 Confidence: (0.84 + 0.73) / (0.84 + 0.79 + 0.73) = 0.66

	T1	T2	Т3	T4	Т5	Т6	T7	T8	Cat	Sim(D8,Di)
DOC1	2	0	4	3	0	1	0	2	Cat1	0.61
DOC2	0	2	4	0	2	3	0	0	Cat1	0.12
DOC3	4	0	1	3	0	1	0	1	Cat2	0.84
DOC4	0	1	0	2	0	0	1	0	Cat1	0.79
DOC5	0	0	2	0	0	4	0	0	Cat1	0.00
DOC6	1	1	0	2	0	1	1	3	Cat2	0.73
DOC7	2	1	3	4	0	2	0	2	Cat2	0.72
DOC8	3	1	0	4	1	0	2	1	5.66	

Combination Functions

Weighted Voting: not so "democratic"

- similar to voting, but the vote some neighbors counts more
- "shareholder democracy?"
- question is which neighbor's vote counts more?

How can weights be obtained?

- Distance-based
 - closer neighbors get higher weights
 - "value" of the vote is the inverse of the distance (may need to add a small constant)
 - the weighted sum for each class gives the combined score for that class
 - o to compute confidence, need to take weighted average
- Heuristic
 - weight for each neighbor is based on domain-specific characteristics of that neighbor

Advantage of weighted voting

- introduces enough variation to prevent ties in most cases
- helps distinguish between competing neighbors

Example: Collaborative Filtering

Movie Rating SYstem

Rating Scale: 1 = "hate it"; 7 = "love it"

Historical DB of users includes ratings of movies

Karen is a new user who has rated 3 movies, but has not yet seen "Independence Day"; should we recommend it to her?

	Sally	Bob	Chris	Lynn	Karen
Star Wars	7	7	3	4	7
Jurassic Park	6	4	7	4	4
Terminator II	3	4	7	6	3
Independence Day	7	6	2	2	?

Example: Collaborative Filtering

	Star Wars	Jurassic Park	Terminator 2	Indep. Day	Average	Cosine	Distance	Euclid	Pearson	
Sally	7	6	3	7	5.33	0.983	2	2.00	0.85	
Bob	7	4	4	6	5.00	0.995	1	1.00	0.97	
Chris	3	7	7	2	5.67	0.787	11	6.40	-0.97	
Lynn	4	4	6	2	4.67	0.874	6	4.24	-0.69	
Karen	7	4	3	?	4.67	1.000	0	0.00	1.00	

K	Pearson					
1	6	-				
2	6.5					
3	5					

K is the number of nearest neighbors used in to find the average predicted ratings of Karen on <u>Indep</u>, Day.

Pearson(Sally, Karen) = ((7-5.33)*(7-4.67) + (6-5.33)*(4-4.67) + (3-5.33)*(3-4.67))/ SQRT(((7-5.33)2 + (6-5.33)2 + (3-5.33)2) * ((7-4.67)2 + (4-4.67)2 + (3-4.67)2)) = 0.85

Collaborative Filtering

In practice a more sophisticated approach is used to generate the predictions based on the nearest neighbors

To generate predictions for a target user a on an item i: $p_{a,i} = \bar{r}_a + \frac{\sum_{u=1}^k (r_{u,i} - \bar{r}_u) \times sim(a,u)}{\sum_{u=1}^k sim(a,u)}$

- ra = mean rating for user a
- u1, ..., uk are the k-nearest-neighbors to a
- ru,i = rating of user u on item I
- sim(a,u) = Pearson correlation between a and u

This is a weighted average of deviations from the neighbors' mean ratings (and closer neighbors count more)

Wrapping-up the Lecture

Questions

What is the difference between a data and distance matrix?

What is the intuition behind k-Nearest-Neighbors Classifier?