Different Kind of Ciphers

Prepared by T. Sree Sharmila

Classical Ciphers

- Plaintext is viewed as a sequence of elements (e.g., bits or characters)
- Substitution cipher: replacing each element of the plaintext with another element.
- Transposition (or permutation) cipher: rearranging the order of the elements of the plaintext.
- Product cipher: using multiple stages of substitutions and transpositions

Caesar Cipher

- Earliest known substitution cipher
- Invented by Julius Caesar
- Each letter is replaced by the letter three positions further down the alphabet.
- Plain: a b c d e f g h i j k l m n o p q r s t u v w x y z

Cipher: DEFGHIJKLMNOPQRSTUVWXYZ ABC

Example: ohio state → RKLR VWDWH

Caesar Cipher

 Mathematically, map letters to numbers:

Then the general Caesar cipher is:

$$c = \mathsf{E}_{\kappa}(p) = (p + k) \bmod 26$$

$$p = D_K(c) = (c - k) \mod 26$$

Can be generalized with any alpha

Cryptanalysis of Caesar Cipher

- Key space: {0, 1, ..., 25}
- Vulnerable to brute-force attacks.
- E.g., break ciphertext "UNOU YZGZK"

- Need to recognize it when have the plaintext
- What if the plaintext is written in Swahili?

Monoalphabetic Substitution Cipher

 Shuffle the letters and map each plaintext letter to a different random ciphertext letter:

Plain letters: abcdefghijklmnopqrstuvwxyz

Cipher letters:

DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: ifwewishtoreplaceletters

Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

What does a key look like?

Monoalphabetic Cipher Security

- Now we have a total of $26! = 4 \times 10^{26}$ keys.
- With so many keys, it is secure against brute-force attacks.
- But not secure against some cryptanalytic attacks.
- Problem is language characteristics

Language Statistics and Cryptanalysis

- Human languages are not random.
- Letters are not equally frequently used.
- In English, E is by far the most common letter, followed by T, R, N, I, O, A, S.
- Other letters like Z, J, K, Q, X are fairly rare.
- There are tables of single, double & triple letter frequencies for various languages

English Letter Frequencies

Statistics for double & triple letters

In decreasing order of frequency

Double letters:
 th he an in er re es on,

Triple letters:
 the and ent ion tio for nde, ...

Use in Cryptanalysis

- Key concept: monoalphabetic substitution does not change relative letter frequencies
- To attack, we
 - calculate letter frequencies for ciphertext
 - compare this distribution against the known one

Example Cryptanalysis

Given ciphertext:

```
UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
```

- Count relative letter frequencies (see next page)
- Guess {P, Z} = {e, t}
- Of double letters, ZW has highest frequency, so guess ZW = th and hence ZWP = the
- Proceeding with trial and error finally get:
 it was disclosed yesterday that several informal but
 direct contacts have been made with political
 representatives of the viet cong in moscow

Letter frequencies in ciphertext

Р	Н	F	В	C
13.33	5.83	3.33	1.67	0.00
Z	D	W	G	K
11.67	5.00	3.33	1.67	0.00
S	Е	Q	Υ	L
8.33	5.00	2.50	1.67	0.00
U	V	Т	Ι	N
8.33	4.17	2.50	0.83	0.00
0	X	Α	J	R
7.50	4.17	1.67	0.83	0.00
M				
6.67				

Playfair Cipher

- Not even the large number of keys in a monoalphabetic cipher provides security.
- One approach to improving security is to encrypt multiple letters at a time.
- The Playfair Cipher is the best known such cipher.
- Invented by Charles Wheatstone in 1854, but named after his friend Baron Playfair.

Playfair Key Matrix

- Use a 5 x 5 matrix.
- Fill in letters of the key (w/o duplicates).
- Fill the rest of matrix with other letters.
- E.g., key = MONARCHY.

M	0	N	A	R		
C	Н	Y	В	D		
E	F	G	I/J	K		
L	Р	Q	S	Т		
U	٧	W	X	Z		

Encrypting and Decrypting

Plaintext is encrypted two letters at a time.

If a pair is a repeated letter, insert filler like 'X'.
 BALLOON→ BA LX LO ON

- 1. If both letters fall in the same row, replace each with the letter to its right (circularly). AR→RM
- 2. If both letters fall in the same column, replace each with the letter below it (circularly). MU→CM
- 3. Otherwise, each the letter is replaced by the letter in the same row but in the column of the other letter of the pair. HS→BP & EA→IM (or JM)

Security of Playfair Cipher

- Equivalent to a monoalphabetic cipher with an alphabet of 26 x 26 = 676 characters.
- Security is much improved over the simple monoalphabetic cipher.
- Was widely used for many decades
 - eg. by US & British military in WW1 and early WW2
- Once thought to be unbreakable.
- Actually, it can be broken, because it still leaves some structure of plaintext intact.

Hill Cipher

- Takes two or three or more letter combinations to the same size combinations, e.g. "the" → "rqv"
- Uses simple linear equations
- An example of a "block" cipher encrypting a block of text at a time
- Numbered alphabet: a = 0, b = 1, c = 3, etc.
 - (in CAP, use ASCII code)

Example

C1 =
$$9*p1 + 18*p2 + 10*p3 \pmod{26}$$

C2 = $16*p1 + 21*p2 + 1*p3 \pmod{26}$
C3 = $5*p1 + 12*p2 + 23*p3 \pmod{26}$

$$\begin{pmatrix}
C1 \\
C2 \\
= \\
\begin{pmatrix}
16 \\
21 \\
5 \\
12 \\
23
\end{pmatrix}
\begin{pmatrix}
p1 \\
p2 \\
p3
\end{pmatrix}$$
 (mod 26)

I can't do it

→ EOM TMY SVJ

8 2 0 13 19 3 14 8 19

$$\begin{pmatrix} 4 \\ 14 \\ 12 \end{pmatrix} = \begin{pmatrix} 9 & 18 & 10 \\ 16 & 21 & 1 \\ 5 & 12 & 23 \end{pmatrix} \begin{pmatrix} 8 \\ 2 \\ 0 \end{pmatrix} \pmod{26}$$

$$\begin{pmatrix} 19 \\ 12 \end{pmatrix} = \begin{pmatrix} 9 & 18 & 10 \\ 16 & 21 & 1 \\ 5 & 12 & 23 \end{pmatrix} \begin{pmatrix} 13 \\ 19 \\ 3 \end{pmatrix} \pmod{26}$$

$$\begin{pmatrix}
18 \\
21
\end{pmatrix} = \begin{pmatrix}
9 & 18 & 10 \\
16 & 21 & 1 \\
5 & 12 & 23
\end{pmatrix}
\begin{pmatrix}
14 \\
8 \\
19
\end{pmatrix}$$
(mod 26)

Hill – key is matrix

Generalize to any size, larger blocks

Matrix must be invertible

Polyalphabetic Substitution Ciphers

- A sequence of monoalphabetic ciphers (M₁, M₂, M₃, ..., M_k) is used in turn to encrypt letters.
- A key determines which sequence of ciphers to use.
- Each plaintext letter has multiple corresponding ciphertext letters.
- This makes cryptanalysis harder since the letter frequency distribution will be flatter.

Vigenère Cipher

- Simplest polyalphabetic substitution cipher
- Consider the set of all Caesar ciphers:

$$\{ C_a, C_b, C_c, ..., C_z \}$$

- Key: e.g. security
- Encrypt each letter using C_s, C_e, C_c,
 C_u, C_r, C_i, C_t, C_v in turn.
- Repeat from start after C_y.
- Decryption simply works in reverse.

Example of Vigenère Cipher

• Keyword: deceptive

key: deceptivedeceptive

plaintext: wearediscoveredsaveyourself

ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

GHIJKLMNOPQRS O P G. M N QR BBC G CICDE EIE GIG $H \mid H$ В Z В N N O P O O P PP E G. D F В D E G NOPQRS A B Е G ΧI K. L M 0 IN.

Security of Vigenère Ciphers

- There are multiple (how many?) ciphertext letters corresponding to each plaintext letter.
- So, letter frequencies are obscured but not totally lost.
- To break Vigenere cipher:
 - 1. Try to guess the key length. How?
 - 2. If key length is N, the cipher consists of N Caesar ciphers. Plaintext letters at positions k, N+k, 2N+k, 3N+k, etc., are encoded by the same cipher.
 - 3. Attack each individual cipher as before.

Guessing the Key Length

- Main idea: Plaintext words separated by multiples of the key length are encoded in the same way.
- In our example, if plaintext =
 "...thexxxxxxxthe..." then "the" will be
 encrypted to the same ciphertext words.
- So look at the ciphertext for repeated patterns.
- E.g. repeated "VTW" in the previous example suggests a key length of 3 or 9:
 - ciphertext: zicvtwqngrzgvtwavzhcqyglmgj
- Of course, the repetition could be a random fluke.

Rotor Cipher Machines

- Before modern ciphers, rotor machines were most common complex ciphers in use.
- Widely used in WW2.
- Used a series of rotating cylinders.
- Implemented a polyalphabetic substitution cipher of period K.
- With 3 cylinders, $K = 26^3 = 17,576$.
- With 5 cylinders, $K = 26^5 = 12 \times 10^6$.
- What is a key?
 - If the adversary has a machine
 - If the adversary doesn't have a machine

Figure 2.7 Three-Rotor Machine With Wiring Represented by Numbered Contacts

German secret setting sheets

Geheim! Secret indeed! This is an example of the setting shee

icinil In Flance	mitarka	1		Sonder-Maschinenschlüssel BGT												
Datum	Waterslage		Ringstellung		Strekerverbindungen											
31.	1	٧	111	06	20	24	UA	PF	RQ	80	NI	BY	BG	HL	TX	2
10.	V	II	III	01	07	12	GF.	KV	JM	: 13	UW	LX	TD	QS	NA	2
29.	7.9	T	U	1.11	77	26	CI	OK	pv	ZL	HX	27.75	AW	DI	WIN.	9

Date

Which rotors to use (there were 10 rotors)

Ring setting

Plugboard setting

The Rotors

Enigma Rotor Machine

Enigma Rotor Machine

Transposition Ciphers

- Also called **permutation** ciphers.
- Shuffle the plaintext, without altering the actual letters used.
- Example: Row Transposition Ciphers

Row Transposition Ciphers

Plaintext is written row by row in a rectangle.

 Ciphertext: write out the columns in an order specified by a key.

Key: 3 4 2 1 5 6 7

Product Ciphers

- Uses a sequence of substitutions and transpositions
 - Harder to break than just substitutions or transpositions
- This is a bridge from classical to modern ciphers.

Unconditional & Computational Security

- A cipher is unconditionally secure if it is secure no matter how much resources (time, space) the attacker has.
- A cipher is computationally secure if the best algorithm for breaking it will require so much resources (e.g., 1000 years) that practically the cryptosystem is secure.
- All the ciphers we have examined are not unconditionally secure.

An unconditionally Secure Cipher

Vernam's one-time pad cipher

- Key = $k_1k_2k_3k_4$ K (random, used one-time only)
- Plaintext = $m_1 m_2 m_3 m_4 K$
- Ciphertext = $c_1c_2c_3c_4$ K where $c_i = m_i \oplus k_i$
- Can be proved to be unconditionally secure.

One-time Pad

- Use a random key as long as the message. Must not reuse the key sequence ever again.
- Both parties must have key sequence
- Hotline between USA and USSR was rumoured to use a one-time pad.
- Destroy key sequence after use

EXAMPLE

Key is number of places to shift letter

K 321424

P launch

C OCVREL

 Suggest a good 1-time pad function for binary data?

Steganography

- Hide a message in another message.
- E.g., hide your plaintext in a graphic image
 - Each pixel has 3 bytes specifying the RGB color
 - The least significant bits of pixels can be changed w/o greatly affecting the image quality
 - So can hide messages in these LSBs
- Advantage: hiding existence of messages
- Drawback: high overhead

