Esercitazioni di Fondamenti di Informatica - Lez. 1 24/09/2020

Esercizi sulla codifica binaria

Ricordiamo alcune definizioni

codifica = regola per mettere in corrispondenza valori del dato da codificareottengo —> stringa composta da elementi di altro alfabeto

K elementi dell'alfabeto di codifica

M le informazioni distinte da rappresentare (codificare)

 $N = \lceil \log M \rceil$ il numero di elementi necessari per la stringa di codifica approssimati per eccesso all'intero successivo

Quanti bit sono necessari per codificare il numero di articoli da inserire in un carrello online che può contenere al massimo 20 prodotti ?

Nel nostro caso alfabeto (0,1)

devo rappresentare (codificare) M = 21 elementi diversi cioè 0.....20,

da "carrello vuoto " a "carrello pieno ", e il numero di bit necessari é calcolato come

$$log_2 20 + 1 = 4 + 1 = 5$$
 (il log approssimato all'intero successivo)

Il calcolo vale anche per log₂ 21 perché ridondano le configurazioni

2. Quanti bit sono necessari per codificare 32 bandiere?

Se vogliamo codificare 32 elementi diversi.

- Se considero la combinazione di 0 bandiere, ho 33 elementi da considerare 0 ...32,

il numero di bit necessari può essere calcolato come

$$log_2 32 + 1 = 5 + 1 = 6$$
 0...32 compreso

- Se non considero la combinazione di 0 bandiere, ho 32 elementi da codificare 1..32,

ma per rappresentare 32 oggetti il numero di bit necessari sarà

$$log_{2}31 + 1 = 4 + 1 = 5$$
 si riporta a 0..31

Ricordiamo che

La codifica si basa sulla **notazione posizionale o «pesata»** che adottiamo per i numeri in base decimale. Nella notazione posizionale, in qualunque base, il valore numerico rappresentato da una cifra dipende

- dal valore della cifra
- dalla posizione della cifra nel numero,

Per un numero composto da N cifre le posizioni, A PARTIRE DA SINISTRA, sono indicate con N-1....0

Esempio in base 10 $231_{10} = 2 \cdot 10^2 + 3 \cdot 10^1 + 1 \cdot 10^0$

3. Converti 197_{10} in base 2. Verifica la correttezza della conversione, riconvertendo il risultato in base 10.

Possiamo innanzitutto calcolare il numero di cifre necessarie a codificare 197 in base 2

$$-> \log_2 197 + 1 = 7 + 1 = 8$$

L'algoritmo di conversione è il seguente :

Quindi 197₁₀ = 11000101₂

Verifica del risultato:

$$11000101_2 = 1 \cdot 27 + 1 \cdot 26 + 0 \cdot 25 + 0 \cdot 24 + 0 \cdot 23 + 1 \cdot 22 + 0 \cdot 21 + 1 \cdot 20 = 128 + 64 + 4 + 1 = 197_{10}$$

4. Converti 584_{10} in base **11**. Verifica la correttezza della conversione, riconvertendo il risultato in base **10**.

Quindi 584₁₀ = 491₁₁

Verifica del risultato: $491_{11} = 4 \cdot 11^2 + 9 \cdot 11^1 + 1 \cdot 11^0 = 484 + 99 + 1 = 584_{10}$.

Anche in questo caso possiamo sapere a priori il numero di cifre necessarie per la codifica

$$log_{11}584 + 1 = 2 + 1 = 3$$

5. Definire le rappresentazioni in (a) modulo e segno, (b) complemento a uno, (c) complemento a due del numero decimale -512_{10} ; usando il numero minimo di bit necessari.

Per prima cosa, convertiamo il valore assoluto del numero in base 2

512	2
256	0
128	o
64	o
32	o
16	0
8	0
4	0
2	0
1	0
0	1

Abbiamo quindi che $512_{10} = 2^9 = 1000000000_2$

(a)Modulo e segno:

Per avere la rappresentazioneMS aggiungiamo un bit avanti al valore assoluto del numero in base 2

il primo bit é il segno (0 per valori positivi, 1 per valori negativi)

 $-512_{10} = 11000000000_{MS}$ -> numero minimo di bit per questa codifica

(b)Complemento a 1:

numeri positivi sono codificati come : 0 + codifica del valore assoluto in base 2 i numeri negativi sono ottenuti come : 1+ il complemento del valore assoluto in base 2 il primo bit é 0 per numeri positivi, 1 per numeri negativi.

$$512_{10} = 01000000000_{C1}$$
 —> 0 + codifica in base2 di 512
-512₁₀ = 10111111111_{C1} —> 1 + complemento dei bit che compongono 512 in base2

(c)Complemento a 2

per rappresentare un numero in Complemento a 2 consideriamo che

 il primo bit é 0 per numeri positivi, 1 per numeri negativi, fa parte della rappresentazione del numero e non deve essere scartato

MODO 1:

- Complemento tutti i bit del numero binario dato, cioe' sostituisco 0 con 1 e viceversa
- Sommo 1 al risultato

Prima calcoliamo il complemento di 512₁₀ che é dato da 0111111111,

a questo sommiamo 1 di modo da ottenere la rappresentazione in complemento a due

 $-512_{10} = 01111111111 + 1 = 10000000000_{C2}$.

MODO 2:

- Scorro il numero da destra verso sinistra (dal bit meno significativo al piu' significativo)
- Copio tutti i bit che leggo nel risultato, sempre da destra verso sinistra, compreso il primo 1 che incontro
- Copio le cifre restanti complementate

$512_{10} = 100000000_2$

ATTENZIONE:

In questo caso abbiamo che è presente un solo 1 al bit più significativo così abbiamo che la rappresentazione in complemento a due é data da $512_{10} = 100000000_{C2}$ che é identica alla rappresentazione binaria di 512

- per numeri positivi il complemento a due è la rappresentazione binaria (coincidono le rapp.)
- per i numeri negativi é il complemento a 1 a cui viene sommato il valore 1.

Tuttavia <u>ció non causa ambiguitá</u> dato che utilizzando 10 bit in complemento a due non possiamo rappresentare il numero 512 e dunque 100000000_{C2} puó solamente corrispondere a -512.

Ricordiamo: con 10 bit in complemento a due possiamo rappresentare i numeri da -512 a 511

6. Spiegare cosa rappresenta il numero binario 1000101 se codificato in (a) modulo e segno, (b) complemento a 1 e (c) complemento a 2.

a) Modulo e segno:

il primo bit é il segno, 1 é per numeri negativi, il resto é la codifica binaria del valore assoluto del numero. $1000101_{MS} = -000101_2 = -5_{10}$

b) Complemento a uno:

il primo bit é il segno, il restante é il complemento del valore assoluto del numero. $1000101_{C1} = -111010_2 = -58_{10}$

c) Complemento a due:

é il complemento a uno del numero a cui viene sommato 1.

 $1000101_{C2} = 1000101 - 1 = 1000100_{C1} = -0111011_2 = -59_{10}$

7. Spiegare cosa rappresenta il numero binario 100000

se codificato in: (a) modulo e segno, (b) complemento a 1 e (c) complemento a 2.

(a) Modulo e segno:

il primo bit é il segno, 1 é per numeri negativi, il resto é la codifica binaria del valore assoluto del numero. $100000_{MS} = -00000_2 = -0_{10}$

(b)Complemento a uno:

il primo bit é il segno, il restante é il complemento del valore assoluto del numero.

$$100000_{C1} = -11111_2 = -31_{10}$$

(c)Complemento a due:

é il complemento a uno del numero a cui viene sommato 1. il complemento a uno del numero a cui viene sommato 1. $100000_{C2} = -32_{10}$. In questo caso il valore binario è il limite inferiore dei valori rappresentabili, che per il complemento a 2 è per convenzione negativo, in questo caso ho 6 bit, quindi ho $-2^6 = -32$

8. Converti 10.25_{10} in base 2. Verifica la correttezza della conversione, riconvertendo il risultato in base 10.

Si considera separatamente la parte intera dalla parte decimale. Parte intera:

Parte intera: 10 la converto in binario

10	2
5	0
2	1
1	О
0	1

Parte decimale: .25 la converto in binario

$$0.25 \cdot 2 = 0.5 \rightarrow 0$$

$$0.5 \cdot 2 = 1.0 \rightarrow 1$$

La conversione quindi é data da 10.25₁₀ => 1010.01₂

Possiamo verificare il risultato:

$$1010.01_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} = 8 + 2 + \frac{1}{4} = 10.25_{10}$$

9. Converti 8.375₁₀ in base 2. Verifica la correttezza della conversione, riconvertendo il risultato in base 10.

Si considera separatamente la parte intera dalla parte decimale.

Parte intera:

8	2
4	0
2	0
1	0
0	1

Parte decimale:

$$0.375 \cdot 2 = 0.75 \rightarrow 0$$

$$0.75 \cdot 2 = 1.5 \rightarrow 1$$

$$0.5 \cdot 2 = 1.0 \rightarrow 1$$

La conversione quindi data da $8.375_{10} = 1000.011_2$

Possiamo verificare il risultato:

$$1000.011_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3} = 8 + 1/4 + 1/8 = 8.375_{10}$$

OPERAZIONI CON I NUMERI BINARI

10. Calcolare 8 - 5 in base 2 in complemento a 2 usando 5 bit.

Per prima cosa convertiamo i due numeri in binario

Ora rappresentiamo i due numeri utilizzando 5 bit, aggiungendo all'occorrenza degli zeri a sinistra del bit piú significativo

$$8_{10} = 01000_2$$
 $5_{10} = 00101_2$

convertiamo 5₁₀ nel suo negativo con complemento a 2 usando 5 bit

$$-5_{10} = 11011_2$$

La somma tra i due numeri binari é adesso diretta e il suo risultato corrisponderá a quello della sottrazione 8_{10} – 5_{10}

I segni degli addendi sono discordi: il risultato é corretto: $8_{10} - 5_{10} = 3_{10} = 00011_2$

Siccome **il risultato é positivo** il complemento a due é uguale alla rappresentazione binaria del numero corrispondente in base 10

11. Calcolare -3_{10} -2_{10} in base 2 in complemento a 2 usando 5 bit.

- 1) Per prima cosa convertiamo i due numeri in binario
- 2) Ora rappresentiamo i due numeri utilizzando 5 bit, aggiungendo all'occorrenza degli zeri a sinistra del bit piú significativo

$$3_{10} = 00011_2$$
 $2_{10} = 00010_2$

3) convertiamo 3₁₀ e 2₁₀ nel loro negativo con complemento a 2 usando 5 bit

$$-3_{10} = 11101_2$$
 $-2_{10} = 11110_2$

3	2		2	2
1	1	_	1	0
0	1		0	1

4) La somma tra i due numeri binari adesso é diretta e il risultato corrisponderá a quello della sottrazione $-3_{10}-2_{10}$

I segni degli addendi sono concordi e uguali al segno del risultato: risultato corretto.

Siccome **il risultato é negativo** dobbiamo sottrarvi 1 e complementare i bit ottenuti per trovare il modulo del numero corrispondente:

complementiamo i bit —> 00101 che corrisponde a 5

quindi il risultato ottenuto é corretto, dato che -3_{10} – 2_{10} = -5_{10} = 11011₂

12. Calcolare -5_{10} -6_{10} in base 2 in complemento a 2 usando 4 bit

Per prima cosa convertiamo i due numeri in binario

Ora rappresentiamo i due numeri utilizzando 4 bit,

aggiungendo all'occorrenza degli zeri a sinistra del bit piú significativo

$$5_{10} = 0101_2$$

$$6_{10} = 0110_2$$

convertiamo 5₁₀ e 6₁₀ nel loro negativo con complemento a 2 usando 5 bit

$$-5_{10} = 1011_2$$

$$-6_{10} = 1010_2$$

La somma tra i due numeri binari é adesso diretta e il suo risultato corrisponderá a quello della sottrazione -5_{10} – 6_{10}

I segni degli addendi sono concordi ma diversi dal segno del risultato: risultato errato.

In particolare *il risultato esatto -11 ha bisogno di almeno di 5 bit per essere rappresentato* in Complemento a 2.

$$-5_{10} - 6_{10} = -11_{10} = 10101_2$$

Infatti se per esempio avessimo utilizzato 5 bit avremmo avuto che

$$5_{10} = 00101_2$$

$$6_{10} = 00110_2$$

convertiamo 5₁₀ e 6₁₀ nel loro negativo con complemento a 2 usando 5 bit

$$-5_{10} = 11011_2$$

$$-6_{10} = 11010_2$$

La somma tra i due numeri binari adesso é diretta e il suo risultato corrisponderá a quello della sottrazione -5_{10} – 6_{10}

Ora i segni degli addendi sono concordi e uguali a quello del risultato: risultato corretto.

Siccome il risultato é negativo dobbiamo sottrarvi 1 e complementare i bit ottenuti per trovare il modulo del numero corrispondente:

- 1 10101 1 = 10100
- 2 complementiamo i bit e otteniamo 01011 che corrisponde a 11, ora il risultato ottenuto é corretto, dato che -5_{10} 6_{10} = -11_{10} = 10101_2

13. Convertire il numero decimale 3.25 in base 2 in virgola mobile in singola precisione usando lo standard IEEE 754.

Ricordiamo: rappresentazione divisa in tre parti S(1bit) E (8bit) M(23 bit)

-caso 32 bit

----codifico

Per prima cosa convertiamo il numero in binario.

Prima la parte intera

poi la parte decimale

$$0.25 \cdot 2 = 0.5 \rightarrow 0$$

$$0.5 \cdot 2 = 1.0 \rightarrow 1$$

perció otteniamo $3.25_{10} = 11.01_2$

----normalizzo

ora scriviamo la forma normalizzata del numero che abbiamo ottenuto $3.25_{10} = 1.101_2 \cdot 2^1$

----- calcolo esponente e segno

-----scrivo il numero

Il numero in virgola mobile in singola precisione usando lo standard IEEE 754 é quindi dato da **0 10000000 1010000000000000000000**

S(1 bit) E(8 bit) M(23 bit)

14. Convertire il numero decimale -23.375 in base 2 in virgola mobile in singola precisione usando lo standard IEEE 754.

----codifica

Per prima cosa convertiamo il numero in binario. Prima la parte intera

poi la parte decimale $0.375 \cdot 2 = 0.75 \rightarrow 0$

 $0.75 \cdot 2 = 1.5 \rightarrow 1$

 $0.5 \cdot 2 = 1 \rightarrow 1$

perció otteniamo 23.375₁₀ = 10111.011_2

----normalizzo

ora scriviamo la forma normalizzata del numero che abbiamo ottenuto $23.375_{10} = 1.0111011_2 \cdot 24$

-----segno ed esponente

Segno \rightarrow S = 1

Esponente \rightarrow E = $e + k = 4 + 127 = 131 = 10000011_2$

-----scrivo il numero

S (1 bit) E (8 bit)

M (23 bit)

15. Convertire il numero decimale -127.25 in base 2 in virgola mobile in singola precisione usando lo standard IEEE 754.

Per prima cosa convertiamo il numero in binario. Prima la parte intera

127	2
63	1
31	1
15	1
7	1
3	1
1	1
Ω	1

poi la parte decimale $0.25 \cdot 2 = 0.5 \rightarrow 0$

$$0.5 \cdot 2 = 1 \rightarrow 1$$

perció otteniamo 127.25₁₀ = 1111111.01₂

ora scriviamo la forma normalizzata del numero che abbiamo ottenuto $127.25_{10} = 1.11111101_2 \cdot 2^6$ Segno \rightarrow S = 1

16. Tema d'esame novembre 2011 - esercizio 1 - terza domanda

Supponendo di avere un alfabeto di 43 simboli, indicare il numero minimo di bit necessari per definire una loro rappresentazione binaria.

logaritmo di 43 è un valore tra 5 e 6, lo approssimo per eccesso.

17. Dal tema di esame 8 settembre 2020

Si ipotizzi un codice composto da 3 lettere maiuscole (supponiamo 20 possibili alternative), due numeri (10 alternative) e altre 2 lettere.

- Quanti codici diversi si possono ottenere?

Il codice ha la forma LLL NN LL

Definiamo card L = 20 card N = 10

numero di bit per codificare LLL \rightarrow 203 = 8000

numero di bit per codificare NN \rightarrow 10² = 100

numero di bit per codificare LL \rightarrow 20^{2.} = 400

Quindi 8000 x 100 x 400 = 320 000 000

Quanti bit servirebbero per una rappresentazione minima del singolo codice?

L ha bisogno di $\log 20 + 1 = 5$ —> LLL —> 5x3 = 15 bit LL —> 5x2 = 10 bit N ha bisogno di $\log 10 + 1 = 4$ —> NN —> 4x3 = 12 bit

$$15 + 12 + 10 = 37$$
 bit

- Sarebbe possibile usare la codifica ASCII per ogni singolo carattere e numero?

Nella codifica ASCII ogni carattere ha bisogno di 8 bit per la sua rappresentazione,

LLL NN LL sono 7 caratteri -> se usiamo 8 bit per ogni carattere 7x8 = 56 bit necessari

Non si potrebbe codificare in ASCII disponendo dei 37 bit della configurazione minima