

Dynamical Systems Lecture 5.06

EEU45C09 / EEP55C09 Self Organising Technological Networks

> Nicola Marchetti nicola.marchetti@tcd.ie

What is a Fractal?

Objects with "self-similarity" at different scales

Trees are Fractal

Self-Similarity

Self-Similarity

Self-Similarity

Broccoli is Fractal

Leaf Veins are Fractal

Galaxy Clusters are Fractal

Mountain Ranges are Fractal

The WWW is Fractal

The forefather

Benoit Mandelbrot, 1924-2010

Many mathematicians have studied the notions of self-similarity, and of "fractional dimension" and what an object with a fractional dimension would look like.

The term *fractal*, to describe such objects, was coined by the mathematician Benoit Mandelbrot, from the Latin root for "fractured".

Mandelbrot's goal was to develop a mathematical "theory of roughness" to better describe the natural world.

He brought together the work of different mathematicians in different fields to create the field of *Fractal Geometry*.

Fractal Dimension

Bisecting Sides

What happens when you continually bisect (cut in two equal halves) the sides of lines, squares, cubes, etc.?

Dimension 1: Each level is made up of two 1/2-sized copies of previous level

Dimension 2: Each level is made up of four 1/4-sized copies of previous level

Dimension 3: Each level is made up of eight 1/8-sized copies of previous level

Dimension 4: Each level is made up of sixteen 1/16-sized copies of previous level

Dimension 20: Each level is made up of ??

Trisecting Sides

Dimension 1: Each level is made up of three 1/3-sized copies of previous level

Dimension 2: Each level is made up of nine 1/9-sized copies of previous level

Dimension 3: Each level is made up of 27 1/27-sized copies of previous level

M-secting Sides

Dimension 1: Each level is made up of three 1/3-sized copies of previous level

M 1/M-sized copies

Dimension 2: Each level is made up of nine 1/9-sized copies of previous level

M² 1/M²-sized copies

Dimension D: Each level is made up of M^D 1/ M^D -sized copies of previous level

Dimension 3: Each level is made up of 27 1/27-sized copies of previous level M^3 1/ M^3 -sized copies

Definition of Dimension

Create a geometric structure from a given D-dimensional object (e.g., line, square, cube, etc) by repeatedly dividing the length of its sides by a number M.

Then each level is made up of M^D copies of the previous level.

Call the number of copies N.

Then $N = M^D$.

We have:

$$\log N = D \log M$$

$$\mathbf{D} = \log \mathbf{N} / \log \mathbf{M}$$

$$log N = D log M$$

$$D = \log N / \log M$$

Dimension 1:
$$N = 2$$
, $M = 2$, $D = log 2 / log 2 = 1$

$$N = 3$$
, $M = 3$, $D = log 3 / log 3 = 1$

Dimension 2:
$$N = 4$$
, $M = 2$, $D = \log 4 / \log 2 = 2$

$$N = 9$$
, $M = 3$, $D = log 9 / log 3 = 2$

Koch curve: Here, N = 4, M = 3

So Fractal Dimension = log 4 / log 3

 ≈ 1.26

A measure of how the increase in number of copies scales with the decrease in size of the segment -- Roughly -- the density of the self-similarity.

Hausdorff Dimension

N = number of copies of previous level = 4

M = reduction factor from previous level = 3

Dimension $D = \log N / \log M = \log 4 / \log 3 \approx 1.26$

This version of fractal dimension is called *Hausdorff*Dimension, after the German mathematician Felix Hausdorff

Cantor Set

Cauliflower

Fractal Structure of a White Cauliflower

Sang-Hoon Kim*

Division of Liberal Arts, Mokpo National Maritime University, Mokpo 530-729 and Institute for Condensed Matter Theory, Chonnam National University, Gwangju 500-757

(Received 17 September 2004)

The fractal s
its cross section
direction. From
The vertical cro
discuss the con
an angle of 67° in our model.

 $D \approx 2.8$

the box-counting method on ± 0.02, independent of the of a cauliflower is about 2.8. set of a rectangular tree. We the vertical cross section has

Logistic Map's Bifurcation Diagram

Fractal dimension ≈ 0.538

Coastlines

West Coast of Great Britain: D ≈ 1.25

Coast of Australia: D ≈ 1.13

Coast of South Africa: D ≈ 1.02

Number of boxes	Length of side
36	10

Number of boxes	Length of side
36	10
34	11

Hausdorff and Box Counting

Hausdorff dimension:

$$\log N = D \log M$$
,

where N = number of copies of figure from previous level, and M = size reduction factor of a side of the previous level.

For box-counting, this can be approximated by

log [number of boxes] = D log [1/length-of-side]

D is called the **Box-Counting Dimension**

Hausdorff and Box Counting

log [number of boxes] = D log [1/box-size]

log [1/length-of-side]

Ackowledgement

Melanie Mitchell, Santa Fe Institute