1 Обязательные задачи

1.

- а) Нашли медиану, сделали массив из элементов |pos(x) pos(median)|, нашли там k-ую порядковую, выписали все элементы, которые меньше этой k-ой. **Update:** Найдём элемент, для которого pos(x) = pos(median) - k / 2 и такой, что pos(x) = pos(median) + k / 2. Тогда все элементы между ними и есть k ближайших к медиане.
- b) Нашли медиану, сделали массив из элементов |x median|, нашли там kую порядковую, выписали все элементы, которые меньше этой k-ой.

2.

- а) $f=\sum_i(w_i(x_i-x^*)^2), f'=0$ при $x^*=\frac{w_ix_i}{n}, O(n)$. b) По каждой из осей можно решать независимо, то есть у нас есть задача $\sum_{i}(w_{i}|x_{i}-x^{*}|) \rightarrow min$, а это просто найти взвешенную медиану, O(n).
- $\overline{\mathbf{c}}$) Повернём на $\frac{\pi}{4}$, теперь вместро суммы $|x_i-x^*|+|y_i+y^*|$ у нас $\max(|x_i-x^*|,|y_i-y_i|)$ $y^*|) o$ ответ на задачу – максимум из максимумов, то есть снова независмые задачи по каждой из координат. Надо решить задачу $max_i(w_i|x_i-x^*|) \to min$. Это можно представить как отрезки, расширяющиеся со скоростью w_i , и нам надо найти первый момент времени, когда их пересечение непусто. Давайте посмотрим, где будет находиться самая левая из правых границ отрезков в каждый момент времени. Это возврастающая функция и она кусочно-линейная, её можно построить за O(sort+n), отсортировав точки по w_i и построив пересечение полуплоскостей. Аналогично строим для самой правой из левых границ. Нам нужен момент времени, когда самая правая из левых \geq самой левой из правых \rightarrow надо найти, где две кусочно-линейные функции пересекаются, это делается двумя указателями. Итого O(sort + n).
- 3. Отсортируем массив. Теперь если мы поставим две точки куда-то, то одна будет отвечать за некоторый префикс этого массива, а другая – за оставшийся суффикс. Пусть мы решили, за какой префикс должна отвечать первая точка. Тогда нам надо её поставить во взвешенную медиану этого префикса, а вторую – во взвешенную медиану оставшегося суффикса. Если мы будем перебирать этот предполагаемый префикс слева направо, то эти медианы можно поддерживать, как и суммы \rightarrow можно решить за O(sort+n) с помощью трёх указателей. **Update:** Насчитаем префиксные суммы по w_i в отсортированном массиве. Тогда первый указатель будет показывать в такой первый элемент і, что префсумма на і-ом префиксе > половины префсуммы на ј-ом префиксе, где ј мы как раз перебираем слева направо. Аналогично поддерживаем указатель на суффиксе с помощью суффиксных сумм. Поддерживать легко: пусть мы увеличили j, тогда while(pr[i] < pr[j] / 2) i++. Поддерживать сумму взвешенных расстояний тоже легко: пусть слева от указателя і сумма весов w_1 , а справа w_2 . Тогда если мы сдвинем і в і + 1, то сумма расстояний изменится на (q[і + 1] - q[i]) $(w_1 - w_2)$. w_1 и w_2 тоже легко поддерживать.

- 4. **Update:** Отсортируем p_i за O(n + m) подсчётом, затем будем действовать так: найдём элемент, который будет стоять в отсортированном массиве на позиции $p_{m/2}$. Тогда для всех i < m / 2 их элементы будут лежать слева от найденного и наоборот. Рекурсивно спустимся в левую часть и найдём все p_i -ые статистики, где i < m / 2, потом в правую аналогично. На каждом уровне рекурсии мы делаем $\Theta(n)$ действий, а уровней $\Theta(\log m)$. Итого $O(n \log m + n + m) = O(n \log m + m)$ действий. чтд.
- 5.

a)
$$T(n) = \Theta(n) + T(\frac{n}{7}) + T(\frac{3n}{4}), \frac{1}{7} + \frac{3}{4} < 1 \rightarrow T(n) = \Theta(n)$$

b) $T(n) = \Theta(n) + T(\frac{n}{3}) + T(\frac{3n}{4}), \frac{1}{3} + \frac{3}{4} > 1 \rightarrow T(n) = \Theta(\alpha^n), \alpha > 1$

2 Дополнительные задачи

1. При фиксированном y^* и движении x^* слева направо функция будет выпуклой вниз, и то же самое для $y^* \to$ давайте сделаем два вложенных тернарных поиска.

Update: Доказывать сложно и грустно, давайте лучше сделаем линейное решение. Мы умеем решать для случая, когда точки невзвешенные, рандомным алгоритмом находя минимальную охватывающую окружность. Давайте сделаем ровно то же самое, изменив две вещи:

- 1) Метрикой теперь будет не расстояние между точками, а расстояние w_i , поэтому принадлежность точки окружности мы будем проверять сравнением радиуса с этим новым взвешенным расстоянием.
- 2) Когда мы хотим построить окружность, на которой лежит три выбранных точки, мы хотим новую точку О такую, что расстояние от О до трёх данных равно. Раньше ГМТ О таких, что $\operatorname{dist}(O, A) = \operatorname{dist}(O, B)$ было серединным перпендикуляром к отрезку AB, а теперь $w_A \cdot \operatorname{dist}(O, A) = w_B \cdot \operatorname{dist}(O, B) \to \frac{\operatorname{dist}(O, A)}{\operatorname{dist}(O, B)} = \operatorname{const}$. Это окружность Аполлония. Чтобы найти подходящую точку О, мы должны будем пересечь две окружности Аполлония.

Эти модификаций с метрикой достаточно, чтобы в остальном алгоритм не изменился и в итоге мы решили задачу за O(n).

- 2. Пусть p[i][j] позиция, куда лучше всего поставить последнюю точку, если мы хотим оптимально разбить префикс длины i с помощью j точек. Заметим, что dp[i][j] \leq dp[i + 1][j] \rightarrow можно сделать Divide-and-conquer, пересчитывая p по слоям (разбить с помощью j точек это выбрать последнюю и потом разбить оставшийся префикс с помощью j 1 точки), решение за $O(nk\log n) = O(n\log n)$ в нашем случае.
- 3. Давайте научимся делать merge двух куч за O(h), где h высота максимальной из них. Как это сделать? Пусть корень первой кучи < корня второй. Тогда сделаем его корнем новой кучи, вторую кучу подвесим к нему слева, а справа подвесим merge его детей. Тогда $T(h) = 1 + T(h-1) = \Theta(h)$. Теперь давайте хранить две кучи основную и дополнительную, размера $\log n$. Add делаем

во вторую за $O(\log\log n)$. Когда она становится больше $\log n$, мёржим её с первой за $\Theta(\log n)$, таких операций будет сделано не больше $\frac{n}{\log n} \to$ суммарно они работают за $\Theta(n)$. Когда мы извлекаем элемент, то просто хотим извлечь минимальный из двух куч. Таким образом, Add работает за $O(\log\log n)$, а асимптотика других функций не испортилась. Успех.