Parcial número 2 Metodo de interpolacion y lange Metodos numericos

Nombre de alumnos:

Rodrigo Jimenez Torres / 736454

Monterrey, Nuevo León. México a de 28 junio del 2025

Rodrigo Timenez Torves 736454
Metodo de Iterpolación y Metodo de Lange
Lange
Metodo de Interpolución
De finicion
La interpolación es un método numérico que permite estimar el valor de una función para un ponto no conocido, a partir
de un conjunto de datos conocidos. En otras plabras, se utiliza para construir nuevos puntos dentro del rango de un
conjunto discreto de pontos conocidos
A
Antecedentes
El concepto de interpolación se remonta a tiempos antiguos. Eve tormalizado en matemáticas con los trabajos de Newton y
Gregory
método, relacionados Formula
 Interpolación lineal Interpolación polinomica Nowton
· Splines
· Ajuste de curvas
Algoritmo
Dado un punto x entre xo y X1 calcular: y=y0+ (x-x0)(y1-y0)
Usar interpolación polinomica
Aplicaciones en la vida cotidiana
· Previsión meteorológica
· Generación de gráficos y visualizacioner
· Reconocimien to de voz e imágenes
· Ingeneria en la simulación de valores internedios

Metodo de interpolación de Lagrange

De finicion

El método de Lagrange es una técnica de interpolación polinómica que permite encontrar un único polinómico de grado n que pare por n+1 pontos dados. No requiere resolven sistemas de ecuaciones.

Antecedentes

El metodo fue desurrollado por Joseph-Louis Lugrange en el siglo XVII

Método relacionado

· Interpolación de Nemton

 $P_{(x)} = \sum_{i=0}^{k} y_i \cdot L_{i}(x)$

· Metodo de Interpolación polinómica

· Fórmula de cuadrante númerica.

Algoritmo

- · Se tienen n+1 pontos (xo, yo), (x1, y1)
- · Para cada ponto i, construir Lica
- · Multiplicar cada Lick por y.
- · Sumar todo los términos pura obtener P(x)

Aplicacioner en la vida cotidiana

- · Restauración de imágenes
- · Control automático
- · Modelado económico
- · Simulación en física e Ingeneria
- · Procesamiento digital de señales

N= 3

$$\begin{array}{ccc} (0,1), (1,3); (2,0) \\ \chi_0 = 0 & f(\chi_0) = 1 \\ \chi_1 = 1 & f(\chi_1) = 3 & y = f(y) \\ \chi_2 = 2 & f(\chi_2) = 0 \end{array}$$

Heracion 1

$$\int_{0}^{1} (x)^{2} \frac{1}{x^{2} - (x^{2} - 2x + 2)}$$

$L_1(x) = -x^2 + 2x$

Iteración 2

Iteración }

$$\frac{\hat{\lambda}=2; \hat{j}=0,1}{\left(\frac{\chi-\chi_0}{\chi_2-\chi_0}\right)\cdot\frac{(\chi-\chi_1)}{(\chi_2-\chi_1)}}$$

$$\begin{bmatrix}
\chi & (y) = \frac{(\chi - 0)}{(\chi - 0)} & \frac{(\chi - 1)}{\chi - 1} \\
\chi & (y) = \frac{\chi(\chi - 1)}{\chi}
\end{bmatrix}$$

$$L_2(x) = \frac{1}{2} (x^2 - x)$$

Construir el polinomio

$$\frac{\int (x)^{2} \frac{2}{50}}{\int (x_{1}) L_{1}(x)}$$

$$P(x) = f(x_0) L_0(x) + f(x_1) L_1(x) + f(x_2) L_2(x)$$

$$P(x) = f(x_0) L_0(x) + f(x_1) L_1(x) + f(x_2) L_2(x)$$

$$\frac{\int_{0}^{1} (x)^{2} = (1) \left[\frac{1}{2} (x^{2} - \beta_{x} + 2) \right] + (3) (-x^{2} + 2x) + 0}{1 + (3) \left[\frac{1}{2} (x^{2} - \beta_{x} + 2x) + 0 \right]}$$

$$\int (x)^2 \frac{3}{1} x_3 - \frac{5}{1} x + 1 - 3x_3 + 6x$$

$$p(x) = -\frac{5}{5}x^2 + \frac{9}{2}x + \frac{1}{2}$$

$$X = P(x)$$

$$(3,4)$$
 $\frac{x-1}{3-1} = \frac{y-1}{2}$

$$2\left(\frac{x-3}{2}\right)+4\left(\frac{x-1}{2}\right)=-(x-3)+2(x-1)$$

$$P(x) = -x + 3 + 2x - 2$$

 $(-x + 2x) + (3 - 2) = x + 1$