II SEMESTER M.C.A. I INTERNAL EXAMINATION FEB 2020

SUBJECT: DATA ANALYTICS - [MCA 4521]

Date: 10/06/2020 Max.Marks: 15 Duration: 1 Hour

Instructions to Candidates:

- ❖ Answer ALL the questions & missing data may be suitable assumed
- Use of calculators is permitted

Q1.	Differentiate	e hetwee	n the fo	llowing	with c	nitable	AVO	mnle	20						3					
Q1.		er learnei		_		unaon	CAa	шрк	.s.)					
	_	ervised L		•		ised le	arnir	ισ												
		sification	_		-			1 5												
0.2											0.0				_					
Q2.	2. The follo	_		vs the re	elations	ship be	etwe	en th	e am	ount	of fert	ılızer	used a	and	4					
	the height of	f a plant.																		
	Fertilizer	10 5	12	17 14	7		13	6	8	10	11			17						
	Height	0.7 0.4		1.3 1.1		L L	1.1	0.6	0.7	0.7	0.65	II_		1.3						
		Calculate a simple linear regression equation using Fertilizer as the descriptor and																		
	Height as the response.																			
	ii. Predict the height when fertilizer is 9.3.																			
	iii. Visu	ıalize usi	ng a sca	atter plo	t.															
Q3.	. Given the	following	g data:												4					
	ROLLNO	S1	S2	S3	S4	S5		S6	S	7	S8	S9	S	10						
	AGE	5	6	4	7	8		10	1	2	4	15	2	20						
	MARKS	10	8	5	10	12		9	1	1	6	25	1	8						
	i. Grou	ip the da	ta into	3 cluster	s using	K-me	eans	clust	ering	metl	hod. l	Let the	Initia	al	4					
	i. Group the data into 3 clusters using K-means clustering method. Let the Initial centroids be S3,S5 and S9.																			
	ii. Visualize using a group scatter plot.																			
				•	•															
Q4.	Using the tr	aining d	ata set	specified	l belov	v, clas	sify	the f	ollow	ing o	bserv	ation (X) us	sing	4					
	the Naïv	e Bayesi	ian Cla	ssifier n	nethod	and i	nfer	as to	o wh	ether	"X" i	is like	ly to	get						
	Diabetes	•												-						
	X: BP = High; Weight = Above average; Family history = Yes; Age= 50+																			

Blood pressure	Weight	Family history	Age
Average	Above average	Yes	50+
Low	Average	Yes	0-50
High	Above average	No	50+
Average	Above average	Yes	50+
High	Above average	Yes	50+
Average	Above average	Yes	0-50
Low	Below average	Yes	0-50
High	Above average	No	0-50
Low	Below average	No	0-50
Average	Above average	Yes	0-50
High	Average	No	50+
Average	Average	Yes	50+
High	Above average	No	50+
Average	Average	No	0-50
Low	Average	No	50+
Average	Above average	Yes	0-50
High	Average	Yes	50+
Average	Above average	No	0-50
High	Above average	No	50+
High	Average	No	0-50