$12n_{0194} \ (K12n_{0194})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 1.49466 \times 10^{24} u^{47} - 6.85289 \times 10^{24} u^{46} + \dots + 3.04521 \times 10^{25} b + 1.76125 \times 10^{25}, \\ -7.26110 \times 10^{24} u^{47} - 1.15653 \times 10^{25} u^{46} + \dots + 1.01507 \times 10^{25} a - 1.84956 \times 10^{25}, \ u^{48} + 2u^{47} + \dots + 2u - 10^{25} u^{48} + 2u^{48} + 2u^{48$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 54 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

1.
$$-6.85 \times 10^{24} u^{46} + \cdots + 3.05 \times 10^{25} b + 1.76 \times 10^{25}$$
.

 $I. \\ I_1^u = \langle 1.49 \times 10^{24} u^{47} - 6.85 \times 10^{24} u^{46} + \dots + 3.05 \times 10^{25} b + 1.76 \times 10^{25}, \ -7.26 \times 10^{24} u^{47} - 1.16 \times 10^{25} u^{46} + \dots + 1.02 \times 10^{25} a - 1.85 \times 10^{25}, \ u^{48} + 2u^{47} + \dots + 2u + 1 \rangle$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.715331u^{47} + 1.13936u^{46} + \dots + 3.21104u + 1.82211 \\ -0.0490826u^{47} + 0.225039u^{46} + \dots - 0.120857u - 0.578369 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.715331u^{47} + 1.13936u^{46} + \dots + 3.21104u + 1.82211 \\ 0.101581u^{47} + 0.453744u^{46} + \dots - 0.253590u - 0.287070 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1.02410u^{47} + 1.70903u^{46} + \dots - 0.663879u + 2.04259 \\ -0.142572u^{47} - 0.142410u^{46} + \dots - 0.481991u - 0.617041 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{13} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{14} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{15} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{16} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{17} = \begin{pmatrix} u^{3} + 2u \\ -0.298901u^{47} - 0.182262u^{46} + \dots + 0.828027u - 1.26129 \end{pmatrix}$$

$$a_{17} = \begin{pmatrix} u^{3} + 2u \\ -0.438563u^{47} - 0.494226u^{46} + \dots + 0.633886u - 1.37511 \end{pmatrix}$$

$$a_{18} = \begin{pmatrix} 1.86762u^{47} + 3.01187u^{46} + \dots - 0.400029u + 3.80060 \\ 0.297398u^{47} + 0.622443u^{46} + \dots - 0.229865u + 0.150066 \end{pmatrix}$$

(ii) Obstruction class = -1

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{48} + 17u^{47} + \dots + 7933u + 81$
c_2, c_4	$u^{48} - 7u^{47} + \dots - 133u + 9$
c_3, c_7	$u^{48} - 3u^{47} + \dots - 1344u + 576$
<i>C</i> ₅	$u^{48} - 2u^{47} + \dots - 4494u + 1721$
c_6, c_{10}, c_{11}	$u^{48} + 2u^{47} + \dots + 2u + 1$
c_8, c_9, c_{12}	$u^{48} + 2u^{47} + \dots + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{48} + 35y^{47} + \dots - 36429289y + 6561$
c_2, c_4	$y^{48} - 17y^{47} + \dots - 7933y + 81$
c_3, c_7	$y^{48} - 39y^{47} + \dots - 8331264y + 331776$
<i>c</i> ₅	$y^{48} + 22y^{47} + \dots + 1757040y + 2961841$
c_6, c_{10}, c_{11}	$y^{48} + 46y^{47} + \dots - 16y + 1$
c_8, c_9, c_{12}	$y^{48} - 38y^{47} + \dots - 16y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.690041 + 0.629311I		
a = 1.34542 + 0.54858I	-0.39368 - 5.38356I	-9.68744 + 3.01224I
b = 0.393714 + 0.635247I		
u = -0.690041 - 0.629311I		
a = 1.34542 - 0.54858I	-0.39368 + 5.38356I	-9.68744 - 3.01224I
b = 0.393714 - 0.635247I		
u = 0.920254		
a = 0.610728	-8.80254	-4.25000
b = 0.171718		
u = -0.782668 + 0.456230I		
a = -0.93137 - 1.43141I	-0.95064 + 10.34180I	-10.86039 - 7.63801I
b = 0.071750 - 1.022760I		
u = -0.782668 - 0.456230I		
a = -0.93137 + 1.43141I	-0.95064 - 10.34180I	-10.86039 + 7.63801I
b = 0.071750 + 1.022760I		
u = 0.752519 + 0.427199I		
a = 1.20108 - 1.15434I	3.81939 - 5.33756I	-6.88950 + 5.69391I
b = 0.232758 - 0.968603I		
u = 0.752519 - 0.427199I		
a = 1.20108 + 1.15434I	3.81939 + 5.33756I	-6.88950 - 5.69391I
b = 0.232758 + 0.968603I		
u = 0.628454 + 0.590544I		
a = -1.21299 + 1.06633I	4.41535 + 0.69519I	-5.16048 + 0.01684I
b = -0.215800 + 0.693349I		
u = 0.628454 - 0.590544I		
a = -1.21299 - 1.06633I	4.41535 - 0.69519I	-5.16048 - 0.01684I
b = -0.215800 - 0.693349I		
u = -0.173421 + 1.158010I		
a = 0.104728 + 0.511624I	2.41934 + 2.18121I	-2.04928 - 4.16619I
b = 0.326208 + 0.117818I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.173421 - 1.158010I		
a = 0.104728 - 0.511624I	2.41934 - 2.18121I	-2.04928 + 4.16619I
b = 0.326208 - 0.117818I		
u = -0.700574 + 0.375620I		
a = -1.38109 - 0.68287I	0.679050 + 0.119673I	-8.77552 - 2.21849I
b = -0.565990 - 0.710333I		
u = -0.700574 - 0.375620I		
a = -1.38109 + 0.68287I	0.679050 - 0.119673I	-8.77552 + 2.21849I
b = -0.565990 + 0.710333I		
u = -0.582865 + 0.514097I		
a = 0.93465 + 1.68545I	1.22382 + 4.04218I	-8.14910 - 5.14084I
b = 0.017056 + 0.699009I		
u = -0.582865 - 0.514097I		
a = 0.93465 - 1.68545I	1.22382 - 4.04218I	-8.14910 + 5.14084I
b = 0.017056 - 0.699009I		
u = -0.073726 + 1.279840I		
a = 0.763442 + 1.165900I	-2.23973 + 2.01164I	0
b = 0.95067 + 2.94188I		
u = -0.073726 - 1.279840I		
a = 0.763442 - 1.165900I	-2.23973 - 2.01164I	0
b = 0.95067 - 2.94188I		
u = 0.454285 + 1.267740I		
a = -0.084057 + 0.439948I	-4.87446 - 4.89245I	0
b = -0.212998 + 0.558035I		
u = 0.454285 - 1.267740I		
a = -0.084057 - 0.439948I	-4.87446 + 4.89245I	0
b = -0.212998 - 0.558035I		
u = 0.039248 + 1.349580I		
a = -0.345427 + 0.509536I	2.14165 - 1.06169I	0
b = 0.63799 + 2.52080I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.039248 - 1.349580I		
a = -0.345427 - 0.509536I	2.14165 + 1.06169I	0
b = 0.63799 - 2.52080I		
u = 0.155366 + 1.377490I		
a = -1.307130 - 0.198976I	0.76215 - 5.52514I	0
b = -2.06559 - 0.51195I		
u = 0.155366 - 1.377490I		
a = -1.307130 + 0.198976I	0.76215 + 5.52514I	0
b = -2.06559 + 0.51195I		
u = -0.116249 + 1.408890I		
a = 0.761077 - 0.196541I	4.62872 + 2.83878I	0
b = 0.629505 - 0.923500I		
u = -0.116249 - 1.408890I		
a = 0.761077 + 0.196541I	4.62872 - 2.83878I	0
b = 0.629505 + 0.923500I		
u = 0.062207 + 1.412420I		
a = -0.430089 + 0.015361I	2.19914 - 0.22626I	0
b = 1.62377 - 1.63866I		
u = 0.062207 - 1.412420I		
a = -0.430089 - 0.015361I	2.19914 + 0.22626I	0
b = 1.62377 + 1.63866I		
u = 0.502435 + 0.225000I		
a = 1.62411 + 2.01656I	-4.30776 - 3.16023I	-15.4533 + 7.2289I
b = -0.083166 + 0.268273I		
u = 0.502435 - 0.225000I		
a = 1.62411 - 2.01656I	-4.30776 + 3.16023I	-15.4533 - 7.2289I
b = -0.083166 - 0.268273I		
u = -0.27530 + 1.46413I		
a = -0.012438 + 0.946406I	6.60020 + 3.71986I	0
b = 1.06530 + 2.28274I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.27530 - 1.46413I		
a = -0.012438 - 0.946406I	6.60020 - 3.71986I	0
b = 1.06530 - 2.28274I		
u = -0.497658		
a = -2.81262	-5.97931	-18.9670
b = 0.489265		
u = -0.20208 + 1.49219I		
a = 0.230181 - 1.263210I	7.72797 + 6.91935I	0
b = 0.03507 - 3.40945I		
u = -0.20208 - 1.49219I		
a = 0.230181 + 1.263210I	7.72797 - 6.91935I	0
b = 0.03507 + 3.40945I		
u = 0.27968 + 1.48874I		
a = 0.168905 + 1.066710I	10.01550 - 9.11070I	0
b = -0.65284 + 2.93812I		
u = 0.27968 - 1.48874I		
a = 0.168905 - 1.066710I	10.01550 + 9.11070I	0
b = -0.65284 - 2.93812I		
u = -0.28574 + 1.50317I		
a = -0.330652 + 1.097020I	5.3958 + 14.2406I	0
b = 0.10316 + 3.23436I		
u = -0.28574 - 1.50317I		
a = -0.330652 - 1.097020I	5.3958 - 14.2406I	0
b = 0.10316 - 3.23436I		
u = 0.19752 + 1.51758I		
a = 0.024863 - 1.091200I	11.29460 - 2.26941I	0
b = 0.57543 - 3.00555I		
u = 0.19752 - 1.51758I		
a = 0.024863 + 1.091200I	11.29460 + 2.26941I	0
b = 0.57543 + 3.00555I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.374037 + 0.273421I		
a = -0.98022 + 1.25843I	-0.755503 + 1.062600I	-8.41291 - 6.25143I
b = 0.051210 + 0.628665I		
u = -0.374037 - 0.273421I		
a = -0.98022 - 1.25843I	-0.755503 - 1.062600I	-8.41291 + 6.25143I
b = 0.051210 - 0.628665I		
u = -0.19300 + 1.54906I		
a = -0.209237 - 0.861034I	6.83914 - 2.22391I	0
b = -0.98283 - 2.41559I		
u = -0.19300 - 1.54906I		
a = -0.209237 + 0.861034I	6.83914 + 2.22391I	0
b = -0.98283 + 2.41559I		
u = 0.220939 + 0.378134I		
a = 0.89297 + 1.37411I	-3.36304 + 0.79471I	-10.44549 + 7.25850I
b = 0.48463 + 1.82610I		
u = 0.220939 - 0.378134I		
a = 0.89297 - 1.37411I	-3.36304 - 0.79471I	-10.44549 - 7.25850I
b = 0.48463 - 1.82610I		
u = -0.419380		
a = -0.806662	-0.865778	-11.4160
b = -0.421185		
u = 0.310865		
a = 1.35509	-2.07975	2.78660
b = -1.07781		

$$II. \\ I_2^u = \langle u^5 - 2u^4 + 5u^3 - 4u^2 + 3b + 3u - 1, \ a, \ u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ -\frac{1}{3}u^{5} + \frac{2}{3}u^{4} + \dots - u + \frac{1}{3} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0 \\ -\frac{1}{3}u^{5} + \frac{2}{3}u^{4} + \dots - u + \frac{1}{3} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{3}u^{5} + \frac{2}{3}u^{4} + \dots - 2u + \frac{1}{3} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 2u \\ -u^{3} - u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} - 2u \\ -u^{3} - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{5} + u^{4} - 2u^{3} + u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $\frac{7}{9}u^5 \frac{41}{9}u^4 + \frac{62}{9}u^3 \frac{103}{9}u^2 + 6u \frac{178}{9}u^3$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^6$
c_{3}, c_{7}	u^6
C ₄	$(u+1)^6$
c_5,c_8,c_9	$u^6 - u^5 - 3u^4 + 2u^3 + 2u^2 + u - 1$
	$u^6 + u^5 + 3u^4 + 2u^3 + 2u^2 + u - 1$
c_{10}, c_{11}	$u^6 - u^5 + 3u^4 - 2u^3 + 2u^2 - u - 1$
c_{12}	$u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_3, c_7	y^6
c_5, c_8, c_9 c_{12}	$y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1$
c_6, c_{10}, c_{11}	$y^6 + 5y^5 + 9y^4 + 4y^3 - 6y^2 - 5y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.873214		
a = 0	-9.30502	-20.9320
b = -0.414549		
u = -0.138835 + 1.234450I		
a = 0	1.31531 + 1.97241I	-10.03735 - 3.88708I
b = -0.632705 + 1.176960I		
u = -0.138835 - 1.234450I		
a = 0	1.31531 - 1.97241I	-10.03735 + 3.88708I
b = -0.632705 - 1.176960I		
u = 0.408802 + 1.276380I		
a = 0	-5.34051 - 4.59213I	-15.2999 - 0.2296I
b = 0.449122 + 0.449614I		
u = 0.408802 - 1.276380I		
a = 0	-5.34051 + 4.59213I	-15.2999 + 0.2296I
b = 0.449122 - 0.449614I		
u = -0.413150		
a = 0	-2.38379	-24.8380
b = 1.11505		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^6)(u^{48} + 17u^{47} + \dots + 7933u + 81)$
c_2	$((u-1)^6)(u^{48} - 7u^{47} + \dots - 133u + 9)$
c_3, c_7	$u^6(u^{48} - 3u^{47} + \dots - 1344u + 576)$
c_4	$((u+1)^6)(u^{48} - 7u^{47} + \dots - 133u + 9)$
c_5	$(u^6 - u^5 - 3u^4 + 2u^3 + 2u^2 + u - 1)(u^{48} - 2u^{47} + \dots - 4494u + 1721)$
c_6	$(u^6 + u^5 + 3u^4 + 2u^3 + 2u^2 + u - 1)(u^{48} + 2u^{47} + \dots + 2u + 1)$
c_8, c_9	$ (u^6 - u^5 - 3u^4 + 2u^3 + 2u^2 + u - 1)(u^{48} + 2u^{47} + \dots + 2u + 1) $
c_{10}, c_{11}	$ (u6 - u5 + 3u4 - 2u3 + 2u2 - u - 1)(u48 + 2u47 + \dots + 2u + 1) $
c_{12}	$ (u6 + u5 - 3u4 - 2u3 + 2u2 - u - 1)(u48 + 2u47 + \dots + 2u + 1) $

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^6)(y^{48} + 35y^{47} + \dots - 36429289y + 6561)$
c_2, c_4	$((y-1)^6)(y^{48} - 17y^{47} + \dots - 7933y + 81)$
c_3, c_7	$y^6(y^{48} - 39y^{47} + \dots - 8331264y + 331776)$
c_5	$(y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1)$ $\cdot (y^{48} + 22y^{47} + \dots + 1757040y + 2961841)$
c_6, c_{10}, c_{11}	$(y^6 + 5y^5 + \dots - 5y + 1)(y^{48} + 46y^{47} + \dots - 16y + 1)$
c_8, c_9, c_{12}	$(y^6 - 7y^5 + \dots - 5y + 1)(y^{48} - 38y^{47} + \dots - 16y + 1)$