Avaliação de Modelos Estatísticos com Testes de Resíduos

Avaliar a qualidade de um modelo não é apenas olhar o *R2R^2* — precisamos garantir que **os resíduos** (erros) se comportem conforme as hipóteses do modelo linear:

Independência

Normalidade

Homocedasticidade (variância constante)

Os testes a seguir ajudam nisso:

O que é:

É um teste combinado que avalia **se os resíduos seguem uma distribuição normal**.

Considera Skewness (assimetria) e Kurtosis (achatamento) ao mesmo tempo.

Valores esperados:

Um p-valor alto (> 0.05) sugere que os resíduos seguem uma distribuição normal.

Problemas:

p-valor baixo (< 0.05) indica que os resíduos **não seguem** distribuição normal, o que pode afetar inferências (intervalos de confiança, p-valores, etc).

O que é:

Mede o grau de **simetria** da distribuição dos resíduos.

Em uma distribuição normal ideal, **Skewness** ≈ **0**.

Valores esperados:

Entre **-0.5 e 0.5**: razoavelmente simétrico.

Problemas:

Valores muito fora desse intervalo sugerem que os resíduos são **tendenciosos para um lado** (cauda longa para direita ou esquerda), o que pode afetar previsões.

O que é:

Mede a concentração de valores no centro e caudas da distribuição.

Para uma normal ideal, **Kurtosis ≈ 3** (excesso de curtose = 0).

Valores esperados:

Perto de 3 para curtose simples.

Excesso de curtose (kurtosis - 3) \approx 0.

Problemas:

Curtose alta (>3): distribuição mais "pontuda" (muitos outliers).

Curtose baixa (<3): distribuição "achatada" (menos extremos que o normal).

O que é:

Teste específico para avaliar **normalidade dos resíduos** baseado em **Skewness** e **Kurtosis**.

Valores esperados:

p-valor > 0.05 → Aceita-se que resíduos seguem distribuição normal.

Problemas:

p-valor < 0.05 \rightarrow Evidência de que os resíduos **não são normais**, impactando a validade dos testes ttt e FFF.

Durbin-Watson (Autocorrelação dos Resíduos)

O que é:

Avalia **se há autocorrelação** dos resíduos (especialmente entre observações próximas no tempo).

Valores esperados:

Valor de **Durbin-Watson** ≈ 2 sugere que não há autocorrelação.

Interpretação:

Valor de DW	Interpretação
≈ 2	Sem autocorrelação
< 2	Autocorrelação
	positiva
> 2	Autocorrelação
	negativa

Problemas:

Autocorrelação dos resíduos viola a suposição de independência, o que gera estimativas e previsões **inconsistentes**.

Importância Conjunta dos Testes

Teste	O que garante	Impacto se violado
Omnibus, Jarque-	Normalidade dos	Inferências estatísticas incorretas
Bera	resíduos	interencias estatisticas incorretas
Skewness	Simetria dos resíduos	Erros enviesados
Kurtosis	Presença de outliers	Intervalos de confiança imprecisos
Durbin-Watson	Independência dos	Previsões inconsistentes e variância mal
	resíduos	estimada

Omnibus e Jarque-Bera: normalidade

Skewness e Kurtosis: **forma da distribuição** Durbin-Watson: **independência dos erros**