Immunology Innate Immune System

Raymart Jay E. Canoy

August 23, 2023

1 Overview

- Innate immune response
 - Fast
 - Germline encoded
 - Limited specificity
 - Contains the infection
 - Activates the adaptive immune response
- The innate immune system senses
 - Foreign molecules
 - Host proteins modified by muicrobial enzymes
 - Changes caused by infections
 - Missing or stressed self
- The innate immune system relies on four main types of receptors
 - Complement system
 - Fc receptors
 - Natural Killer cells receptors
 - Pattern recognition receptors
 - * Toll-like receptors
 - · TLR involved in bacterial PAMPs recognition
 - (i) TLR2/1 and 2/6: Lipoprotein,
 - (ii) TLR4: Lipopolysaccharide,
 - (iii) TLR5: Flagelline,
 - (iv) TLR9: CpG DNA
 - · TLR involved in viral and parasitic PAMPs recognition
 - (i) TLR2/1 and 2/6: Lipoprotein,
 - (ii) TLR3: double-stranded RNA
 - (iii) TLR7 and 8: single-stranded RNA
 - (iv) TLR9: CpG DNA

- The four key mechanisms that are involved in innate immune responses to microorganisms:
 - 1. Phagocytosis
 - 2. Intracellular killing
 - 3. Cell recruitment
 - 4. Antigen presentation

2 Complement system

- Responds immediately and binds to molecular components of pathogens, particularly those that are already coated with antibodies
- Successive complement proteins become activated in a sequential manner through:
 - Cleavage (splitting), and/or
 - Structural changes leading to a series of enzymatic cascade events that result in pathogen description
- Derives its name from the fact that it is complementary to the antibody response of adaptive immunity.

• Effector functions

- 1. Opsonisation
- 2. Leukocyte activation
- 3. Cell lysis: Membrane attack complex
- Classical Pathway
 - Triggered by binding of C1q to Fc portions of Immunoglobulin G (IgG) and $_{\rm IgM}$
 - CH2 domain of Fc of IgG3 ; 1 ; 2
 - CH3 domain of IgM
- Lectin Pathway
 - Mannose-binding lectin interacting with carbohydrate patterns
 - Ficolins interacting with acetyl patterns
 - Shares activation proteins with the classical pathway
 - C4b2a
- Alternative pathway
 - Constitutively active
 - C3bBb
 - C3b amplification
 - C3b is capable of cleaving C5

3 Microbiota

- Microbiota or commensal bacterial colonizes the majority of healthy epithelial tissues to keep pathogens under control.
 - These species can produce antimicrobial molecules or trigger their production by the epithelial cells.
 - Microbiota homeostasis can be disturbed by different environmental factors or host genetics which leads to dysbiosis and can influence host inflammatory responses.
- Functions of the innate immune system
 - Function 1: Immediate, non-specific host defences
 - Function 2: Initiates appropriate adaptive responses
- Mucosal epithelium
 - Neutrophil
 - * Polymorphonuclear leukocyte
 - * Not in mucosal tissue
 - * Firs recruited by inflammation
 - Macrophage and Dendritic cell
 - * Monuclear phagocytosis
 - * Patrol mucosal tissue
 - * Normally recruited after neutrophils
- Cytokines produced by macrophage:
 - Interleukin 1
 - * Vascular activation
 - * Local tissue destruction
 - * Increase access of immune cells
 - * Systemic effect: fever
 - Tumour Necrosis Factor α
 - * Vascular permeability
 - * Increase access of immune cells
 - * Systemic effect: fever
 - Interleukin 6
 - * Lymphocytes activation
 - * Stimulates antibody production
 - * Systemic effect: fever
 - Interleukin 8
 - * Chemotactic factor
 - * Immune cells recruitment

- The intestinal microbiota
 - Humans have 10^{14} intestinal bacteria
 - Provide nutrients and block pathogens
 - Many immune disorders connected to microbiota disruption
- Disruption of the microbiota leads to
 - Poorer responses to cancer treatment,
 - Type 1 diabetes,
 - Autoimmunity,
 - Susceptibility to infection
- Germ-free animals are shown to have
 - Smaller lymphoid structures,
 - Fewer dendritic cells and macrophages,
 - Fewer B cells and Th17 lymphocytes
- The signals from the microbiota result to an enhanced immune response by the innate immune system.
- The commensal bacteria benefit from a nutritionally rich and protected habitat in the human GI tract, while they in turn benefit the host by making indigestible nutrients available to the body.
- Some beneficial bacteria help restrict the access of pathogenic microorganisms to the gut tissue b building a protective biofilm.
- The benefits of human microbe symbiosis can be extended to human mental health
 - The bidirectional communication between the resident microbes of the GI tract and the brain plays a key role in maintaining brain health.
 - The GI microbiota influences human behavior and may affect the pathophysiology of mental illnesses.
 - The study of germ-free animals shows that brain development is abnormal when the gut microbiome is missing.
 - The gut microbiome influences the inflammatory reactions within the brain by modulating the activation of microglial cells and affecting myelination and neurogenesis in adult brains.
 - Apart from the ENS, the vagus nerve is instrumental for the flow of information from the gut to the brain.

4 Antigen processing - MCH Class I and Class II

- Innate immune responses are maintained in part by professional antigen presenting cells (APCs):
 - Dendritic cells,
 - Monocytes/macrophages,
 - B cells
- The different routes in which various antigen peptides (epitopes) can be processed and presented to a cell.
 - 1. A pathogen or extracellular antigen is phagocytized by an antigen-presenting cell (dendritic cell) and placed into a vesicle. Ingested pathogens are digested by lysosomes to extract their antigens.
 - 2. The antigens bind with MHC proteins that enter the vesicle.
 - 3. The MHC proteins, now carrying antigens, are released from the vesible and travel to the outer surface of the cell membrane.
 - 4. The dendritic cell is now presenting antigens, which will activate T cells that bind with the MHC proteins.
- Class II versus Class I
 - Human Leukocyte Antigen II
 - * Expressed by specialised antigen presenting cells but expression can be induced on some other cell types.
 - * Composed of α chain plus β chain heterodimer
 - * Presents antigenic peptides to CD4 helper cells
 - * Has a peptide groove that can accommodate peptides of variable lengths, around 10-20 amino acids
 - * Peptides are derived from uptake and processing of exogenous antigen, for example bacterial protein
 - * Can present intracellular antigens
 - Human Leukocyte Antigen I
 - * Expressed by all nucleated cells (all cells, except red blood cells)
 - * Composed of a single 'heavy' chain plus β -2-microglobulin
 - * Presents antigenic peptides to CD8 cytotoxic cells
 - * Has a peptide groove with rather constrained peptide binding, accommodating peptides around 8-10 amino acids
 - * Peptides are derived from endogenously transcribed antigens for example viral or tumour antigens
 - * Can present exogenous peptides

5 Natural Killer Cells

- Natural killer cell in a nutshell
 - Natural killer cells belong to group I Innate Lymphocytes (ILCs)
 - Responsible for a prompt response to a large variety of pathogenic microorganisms
 - Effective killers of virally infected cells and control early signs of cancer
 - Prior activation are not required for their activation
 - Function: These immune cells can recognise and kill the cells of someone's body that had been infected with a pathogen. Natural killer cells can also recognise and destroy tumour cells.
 - Disease People who have deficient natural killer cells, usually because of an inherited immune disorder, may be more prone to certain viruses.
 - Location: Natural killer cells (transcription factor: E4BP4) are present in the block and can move into other tissues to find targets.

Helper-like non-cytotoxic Innate Lymphocytes

- There are three main groups of non-cytotoxic ILCs
 - * The groups are based on the cytokines they produce and the transcription factors that regulate their development and function
 - * Many ILCs seem to reside at the body surfaces where they play a critical role in regulating epithelial cell responses and maintaining homeostasis.
 - * ILC1 (T-bet) \rightarrow Interferon- γ and TNF α : Protect against infections and can be found in the intestinal epithelium
 - * ILC2 (ROR γ t) \rightarrow IL5, IL13, and IL9: Respond to epithelial-derived cytokines, e.g., IL25 and IL33, by proliferating and producing IL5 and IL13
 - * ILC3 (GATA3) \to IL17 and IL22: Support lymphoid tissue development, help mucosal response via IL22, and support anti-bacterial defence via IFN γ

• Natural killer cells

- NK cell development primarily occurs within the bone marrow
- Bone marrow ablation associated with dramatic defects in NK cell homeostasis and function
- Third major lymphocyte subset: represent approximately 10-15% of the peripheralblood lymphocytes in humans
- Potent lytic cells and cytokine producers
- Part of the innate immune system so pivotal before the adaptive immunity develops
- Act quickly as they do not need pre-sensitisation
- Their activity is further boosted by cytokines, such as: IFN α , IFN β , IFN γ , TNF α , IL-12 and IL18

- Main effector function
 - * Killing of target cells
 - * Secretion of pro-inflammatory cytokines
- Main effector mechanisms
 - * Use of stored cytotoxic proteins such as perforin and granzyme
 - * Induce apoptosis through FASL and TRAIL
 - * Secrete cytokines such as IFN γ and TNF α

- Inhibitory NK receptors

- * Recognise MHC class I molecules
- * Binding of MHC class I to the receptor leads to an inhibitory signal preventing the NK cell from killing a healthy cell
- * Inhibitory receptors carry distinct motifs called Immunoreceptor Tyrosine-based inhibitory motif (ITIM)
- * ITIM motifs recruit inhibitory tyrosine phosphatases SHP-1 and SHP-2 which leads to inhibition of signalling

- Activating NK receptors

- $\ast\,$ Recognise either MHC class I or non-MHC class I molecules
- * Binding of an activating receptor in the absence of inhibitory signals leads to NK activation and cytotoxic activity
- * Some activating receptors can overcome inhibitory signals (NKG2D)

- Two cell death pathways

- * Perforin-dependent
 - · NK carry 'lytic' or cytotoxic granules which are released when it interacts closely (forms a close synapse) and actively with a target cell
 - · The main content of granules are perforin and several kinds of granzymes
 - · Granzymes are serine proteases (enzymes) that cause DNA breakage and fragmentation
- * Death receptor-dependent