

Propriedades dentro do sistema de coordenadas e sua aplicação no desenvolvimento de jogos

OBJETIVOS DA AULA

- Entender o que é o sistema cartesiano
- O que é possível realizar com as coordenadas de um objeto
- Propriedades de translação, escalonamento e rotação de objetos

O Sistema Cartesiano de coordenadas

É uma ferramenta matemática que especifica diversos pontos (chamados de coordenadas) em um "espaço" com dimensões definidas.

É constituído por dois eixos perpendiculares entre si (x e y).

Na computação gráfica é a ferramenta utilizada para modelar as transformações de objetos do mundo real para suas representações virtuais.

Sistema de coordenadas aplicadas ao desenvolvimento de jogos

O SISTEMA DE COORDENADAS NOS JOGOS

Tá, mas e aí?

O que é possível fazer com esses objetos depois de ter posicionado e ter todos os pontos mapeados?

Guardando as informações

Revisão rápida de matrizes

Linha: matriz que possui apenas uma linha

 $A = \begin{bmatrix} 1 & 4 & 5 \end{bmatrix}_{1 \times 3}$ $B = \begin{bmatrix} 0 & 1 & 4 & 5 \end{bmatrix}_{1 \times 4}$ $C = \begin{bmatrix} -1 & 3 & 1 & 4 & 5 \end{bmatrix}_{1 \times 5}$ $D = \begin{bmatrix} -2 & 1 & 0 & 4 & 5 & \dots \end{bmatrix}_{1 \times n}$

Coluna: matriz que possui apenas uma coluna

Nula: matriz em que todos os elementos são **zero** $A = \begin{bmatrix} o & o \\ o & o \end{bmatrix}$

Quadrada: matriz em que o número de linhas é igual ao de colunas

Identidade: todos os elementos da diagonal principal é igual a 1

The state of the s

Identidade de Ordem 3 $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Transposta: matriz em que linhas da matriz original viram colunas (e as colunas viram linha)

Se
$$A = \begin{bmatrix} 2 & 3 & 0 \\ -1 & -2 & 1 \end{bmatrix}$$
, então $A^{t} = \begin{bmatrix} 2 & -1 \\ 3 & -2 \\ 0 & 1 \end{bmatrix}$

Adição de matrizes

As matrizes devem ser de tamanhos iguais (linhas e colunas) Soma termo a termo entre os elementos da mesma posição.

Adição de matrizes

Multiplicação de matrizes

Só pode ser feita se o número de linhas (m) da primeira matriz for igual ao número de colunas (n) da segunda matriz.

Todas as linhas devem multiplicar todas as colunas.

Guardando as informações de POSIÇÃO da matriz

1 - Translação de um objeto

Sistema de coordenadas aplicadas ao desenvolvimento de jogos

Translação de um objeto

Translação em jogos

Plano de fundo -> sutilmente se movimenta enquanto jogamos Mario. Se move apenas na horizontal.

Nuvem -> criada para "perseguir" o Mário por onde ele for. Movimentação vertical e horizontal.

2 - Escalonamento de um objeto

Escalonamento de um objeto

Escalonamento em jogos

Mario -> Aumenta de tamanho ao consumir um cogumelo

3 - Rotação de um objeto

Rotação de um objeto

Matriz [Y']

Rotação em jogos

Sonic -> O personagem ao correr se transforma em uma bola e rola (rotaciona) para se locomover.

Pokebolas -> Ao capturar um Pokemon, estas Pokebolas ficam rotacionando de um lado para o outro até o bichinho ser capturado.

Exercício

- 1) Escolha uma forma geométrica: **pentágono ou hexágono**
- 2) Posicione-a no plano cartesiano do AVA e pontue as coordenadas de seus vértices
- 3) Realize uma operação de translação em x e y nela, informando a posição final do objeto
- 4) A partir desta nova posição, realize uma operação de escalonamento do objeto
- 5) A partir deste novo objeto, rotacione-o em 45º (seno = cosseno = 0,7)

ENVIAR NO AVA - VALE NOTA!

REFERÊNCIAS

- Material da disciplina de Computação Gráfica da Universidade Federal de Santa Catarina (UFSC)
- Apostila de Computação Gráfica do Prof. Antônio Lopes Apolinário Júnior
- Artigo Interface de Jogos Digitais Autores: Bruno Ribeiro, Fabiano Lucchese e Zady Castañeda. Disponível em: https://www.dca.fee.unicamp.br/ <a href="mainto-maint
- Livro: Computação Gráfica Teoria e Prática Eduardo Azevedo e Aura Conci