國 立 成 功 大 學 化 學 研 究 所 碩 士 論 文

以錳鐵為核心單分子磁鐵之合成及磁性研究

 $Synthesis \ and \ Magnetochemistry \ of \\ [Mn_8Fe_4O_{12}]^{16/17+} \ core \ Single \ Molecule \ Magnets.$

研 究 生:楊淑芬

指導教授:蔡惠蓮

中華民國九十三年十二月

國立成功大學碩士論文

研究生:楊淑芬

本論文業經審查及口試合格特此證明論文考試委員

部港水 养鹭

指導教授:蔡 惠 蓮

系(所)主管: 孫 亦 文

中華民國 九十三 年 十二 月 十 日

中文摘要

雜核化合物[$Mn_8Fe_4O_{12}(O_2CR)_{16}(H_2O)_4$] ($R = C_6H_5$ (2) ; C_6H_4 –p- CH_3 (3) ; C_6H_4 -p-Br (4)) 和 [$Mn_8Fe_4O_{12}(O_2CMe)_8(O_2PPh_2)_8(H_2O)_4$] (5) 及 氧 化 態 的 [PPh_4][$Mn_8Fe_4O_{12}(O_2CCHCl_2)_{16}(H_2O)_4$] (8)的合成與磁性研究的報告。 直流磁化率與交流磁化率實數部分的測量,均指出化合物 2、3、4 的 $_MT$ 值介於 4.7 ~ 5.6 emu K moI¹,基態為 S = 3。化合物 5 的 $_MT$ 值介於 $10.7 \sim 12.1$ emu K moI¹,基態為 S = 5。而化合物 8 的 $_MT$ 值

為 7.88 emu K mo Γ^1 , 基態為 S = 7/2。

Abstract

The syntheses and magnetochemical properties of $[Mn_8Fe_4O_{12}(O_2CR)_{16}(H_2O)_4] \ (R=C_6H_5\ (\textbf{2})\ ;\ C_6H_4-p\text{-}CH_3\ (\textbf{3})\ ;\ C_6H_4-p\text{-}Br$

(4)) , $[Mn_8Fe_4O_{12}(O_2CMe)_8(O_2PPh_2)_8(H_2O)_4]$ (5) and

[PPh₄][Mn₈Fe₄O₁₂(O₂CCHCl₂)₁₆(H₂O)₄] (**8**) are reported. DC and AC susceptibility studies of complexes **2**, **3** and **4** indicate that the ground states are S = 3. The complex **5** has an S = 5 ground state, and the complex **8** has an S = 7/2 ground state.

誌謝

首先感謝恩師 蔡惠蓮教授近三年來對於研究態度及學業上的悉心教導與勉勵,使我獲益良多,並使本論文能順利完成,在此敬上最誠摯的謝意。

同時感謝本系 許拱北教授及許鏵芬教授對本論文提供寶貴的建議及文字的斧正,使本論文更臻完善,在此敬上十二萬分之感謝以表心中的謝意。

在研究所的生活中,感謝實驗室學長廷義、宏安、至偉、俊賢、棱峰和振宜在課業與研究上的指導,以及學弟智偉、道威等,在實驗上熱心的協助與幫忙,在此獻上由衷謝意。

最後,感謝父母親及關心我的親友和朋友,給予我支持與鼓勵。

目 錄

第一章	前言
1-1	背景1
1-2	單分子磁鐵[Mn ₁₂ O ₁₂]系列之化合物3
1-3	單分子磁鐵[Mn ₁₂ O ₁₂]系列的磁性7
1-4	研究目標20
第二章	$[Mn_8Fe_4O_{12}(O_2CR)_{16}(H_2O)_4]\ (R=C_6H_5\ ;\ C_6H_4\text{-p-CH}_3\ ;$ $C_6H_4\text{-p-Br})的合成與磁性$
2-1	合成21
2-1-1	實驗儀器25
2-2	單晶 X-ray 繞射分析結果與討論27
2-2-1	化合物 2 結構分析27
2-2-2	化合物 3.4H ₂ O 結構分析34
2-2-3	化合物 4 . 4CH ₂ Cl ₂ ·2C ₆ H ₁₄ 結構分析40
2-3	磁性測量46
2-3-1	直流磁化率46
2-3-2	交流磁化率48
2-4	结論 61

第三章	[Mn ₈ Fe ₄ O ₁₂ (O ₂ CMe) ₈ (O ₂ PPh ₂) ₈ (H ₂ O) ₄]的合成與磁性
3-1	合成62
3-2	單晶 X-ray 繞射分析結果與討論64
3-2-1	化合物 5.12CH ₂ Cl ₂ 結構分析64
3-3	磁性測量71
3-3-1	直流磁化率71
3-3-2	交流磁化率73
3-4	結論79
第四章	[PPh ₄][Mn ₈ Fe ₄ O ₁₂ (O ₂ CCHCl ₂) ₁₆ (H ₂ O) ₄]的合成與磁性
4-1	合成80
4-2	單晶 X-ray 繞射分析結果與討論83
4-2-1	化合物 8 結構分析83
4-3	電化學89
4-4	直流磁化率92
4-5	交流磁化率93
4-6	結論96
參考文	獻97

表 目 錄

表 2-1	化合物 2 之單晶繞射數據表	29
表 2-2	化合物 2 之 BVS 金屬氧化態價數	30
表 2-3	化合物 2 金屬和氧的鍵長	32
表 2-4	化合物 3.4H ₂ O 之單晶繞射數據表	36
表 2-5	化合物 3 之 BVS 金屬氧化態價數	37
表 2-6	化合物 3 金屬和氧的鍵長	38
表 2-7	化合物 4.4CH ₂ Cl ₂ .2C ₆ H ₁₄ 之單晶繞射數據表	42
表 2-8	化合物 4 之 BVS 金屬氧化態價數	43
表 2-9	化合物 4 金屬和氧的鍵長	44
表 3-1	化合物 5.12CH ₂ Cl ₂ 之單晶繞射數據表	66
表 3-2	化合物 5 之 BVS 金屬氧化態價數	67
表 3-3	化合物 5 金屬和氧的鍵長	68
表 3-4	配位基配位的位置及其酸性	70
表 4-1	化合物 8 之單晶繞射數據表	85
表 4-2	化合物 8 之 BVS 金屬氧化態價數	86
表 4-3	化合物 8 金屬和氧的鍵長	87

附 表 目 錄

附表 1	實驗藥品及來源	106
附表 2	化合物 2 的原子座標	107
附表 3	化合物 2 之鍵長與鍵角數據表	111
附表 4	化合物 3.4H ₂ O 的原子座標	117
附表 5	化合物 3.4H ₂ O 之鍵長與鍵角數據表	.122
附表 6	化合物 4 . 4CH ₂ Cl ₂ ·2C ₆ H ₁₄ 的原子座標	128
附表 7	化合物 4.4CH ₂ Cl ₂ ·2C ₆ H ₁₄ 之鍵長與鍵角數據	133
附表 8	化合物 5.12CH ₂ Cl ₂ 的原子座標	140
附表 9	化合物 5.12CH ₂ Cl ₂ 之鍵長與鍵角數據表	.143
附表 10	化合物 8 的原子座標	147
附表 11	化合物 8 之鍵長與鍵角數據表	149

圖 目 錄

圖	1-1	[Mn ₁₂ O ₁₂] ^{0/-/2-} 金屬簇的結構圖。7	
圖	1-2	單分子磁鐵 Mn ₁₂ -Ac 在無外加磁場下的雙位能井。8	
圖	1-3	單分子磁鐵 Mn ₁₂ -Ac 在外加磁場下之共振穿隧機制。9	
圕	1-4	單分子磁鐵 Mn ₁₂ -Ac 交流磁化率。10	
圖	1-5	單分子磁鐵 Mn ₁₂ -Ac 磁滯迴路。11	
圖	1-6	熱活化幫助穿透效應機制。12	
圖	1-7	Mn ₁₂ Ac 在 21200 cm ⁻¹ 的 MCD 及磁滯迴路之比較。14	
圕	1-8	[Mn ₁₂ O ₁₂ (O ₂ CEt) ₁₆ (H ₂ O) ₃]的交流磁化率。15	
圕	1-9	[Mn ₁₂ O ₁₂ (O ₂ CC ₆ H ₄ -4-Me) ₁₆ (H ₂ O) ₄]空間重疊圖。16	
圕	1-10	[Mn ₁₂ O ₁₂ (O ₂ CC ₆ H ₄ -4-Me) ₁₆ (H ₂ O) ₄]交流磁化。16	
圕	1-11	$[Mn_{12}O_{12}(O_2CCH_2Bu^t)_{16}(H_2O)_4] 及 [Mn_{12}O_{12}(O_2CC_6H_4-4$	
		-Me) ₁₆ (H ₂ O) ₄]的 Jahn-Teller 延長軸規則情形。18	
圕	1-12	$[Mn_{12}O_{12}(O_2CCH_2Bu^t)_{16}(H_2O)_4]\cdot CH_2Cl_2\cdot CH_3NO_2$ 在不同	
		天數的交流磁化率虛數部分變化。19	
圕	2-1	化合物 2 之 ORTEP 晶體結構圖。28	
圕	2-2	化合物 2 的 Mn 的 Jahn-Teller 拉長軸方向。32	
圕	2-3	化合物 2 在晶格中的排列情形。33	
圖	2-4	化合物 3 .4H ₂ O 之 ORTEP 晶體結構圖。35	

圖 2-5	化合物 3 的 Mn Jahn-Teller 拉長軸方向。39
圖 2-6	化合物 3 在晶格中的排列情形。39
圖 2-7	化合物 4.4CH ₂ Cl ₂ .2C ₆ H ₁₄ 之 ORTEP 晶體結構圖。41
圖 2-8	化合物 4 的 Mn Jahn-Teller 拉長軸方向。45
圖 2-9	化合物 4 在晶格中的排列情形。45
圖 2-10	化合物 2()、3()、4()的直流磁化率。47
圖 2-11	新鮮化合物 2 的交流磁化。51
圖 2-12	抽乾化合物 2 的交流磁化率。54
圖 2-13	新鮮化合物 3 的交流磁化率。57
圖 2-14	新鮮化合物 4 的交流磁化率。60
圖 3-1	化合物 5.12CH ₂ Cl ₂ 之 ORTEP 晶體結構圖。65
圖 3-2	化合物 5 的 Mn ^{III} Jahn-Teller 拉長軸方向。68
圖 3-3	化合物 5 在晶格中的排列情形。69
圖 3-4	化合物 5 的直流磁化率。72
圖 3-5	新鮮化合物 5 的交流磁化率。75
圖 3-6	抽乾化合物 5 的交流磁化率。78
圖 4-1	化合物 8 之 ORTEP 晶體結構圖。84
圖 4-2	化合物 8 的 Mn Jahn-Teller 拉長軸方向。87
圖 4-3	化合物 8 在晶格中的排列情形。88

圖 4-4	化合物 7 的循環伏安圖。	90
圖 4-5	化合物 8 的循環伏安圖。	91
圖 4-6	化合物 8 的直流磁化率。	92
圖 4-7	新鮮化合物 8 的交流磁化	′ 奔。9:

第一章 前言

1-1 背景

近十年來,單分子磁鐵(single-molecule magnets)受相當大的注 意。(1) 單分子磁鐵在外加磁場下反轉其磁矩時,有不小的能量差 (energy barrier), 而成為磁鐵的特性。能量差來自其本身的電子自旋 值(S)和負值的軸方向零磁場分裂值(axial zero-field splitting parameter, D) $E = |D|S^2$ 。單分子磁鐵在低溫下有下列的特徵:(1)其零 磁場冷卻(zero-field-cooled, ZFC)和磁場冷卻(field-cooled, FC)下的磁 化率,會在固定溫度(blocking temperature)之下分歧。(2)有磁滯迴路 (magnetization hysteresis loops)。若有量子穿透的現象時,則呈階梯 (steps)的特徵。(3)磁化衰減(magnetization decay), 其磁性會隨著時間 而衰減。(4)交流磁化率(alternating current magnetic susceptibility, AC) 在虛數部分呈現磁緩特徵的訊號。這四個特徵會在高溫下,藉由外界 提供的熱能,克服其不等方向性能量障礙而消失,因此對單分子磁鐵 研究都需在低溫下進行。

 $^{(14)}$ (4) Mn_{12} , $\Displaylimits Mn_{12}O_{12}(O_2CMe)_{16}(H_2O)_4$]. $2MeCO_2H$. $4H_2O$ (S = 10). (15)-(43) (5) Mn_{18} , $D [Mn_{18}O_{14}(O_2CMe)_{18}(hep)_4(hepH)_2(H_2O)_2](ClO_4)_2$, hepH = 2-hydroxyethyl-pyridine (S = 13)。 $^{(44)-(45)}$ (6) Mn_{21} , 切 $[Mn_{21}O_{16}(O_2CMe)_{16}(hmp)_6(hmpH)_2(pic)_2(py)(H_2O)](ClO_4)_4$, hmpH = 2-hydroxymethylpyridine (S = 17/2) \circ (45)-(46) (7) Mn_{30} , 如 $[Mn_{30}O_{24}(OH)_8(O_2CCH_2Bu^t)_{32}(H_2O)_2(MeNO_2)_4]\;(S=5)_{\text{o}}^{\quad (47)\text{-}(48)}\;(8)\;Fe_4 \;\;\text{,}$ 如 [$Fe_4(OMe)_6(dpm)_6$] , Hdpm = dipival oyl methane (S = 5)。 (49)-(50)(9) Fe_8 , \sqrt{q} $[Fe_8O_2(OH)_{12}(tacn)_6]Br_8$, tacn = 1,4,7-triazacyclononane (S 10) (10)= Fe_{10} 如 $[Fe_{10}Na_2O_6(OH)_4(O_2CPh)_6(chp)_6(H_2O)_2(Me_2CO)_2]$ chp 6-chloro-2-pyridonato (S = 11)。 $^{(52)}$ (11) Fe_{11} , 如 [NEt₄][$Fe_{11}O_4(O_2CPh)_{10}$ $(thme)_4(dmhp)_2Cl_4$, dmhp = 4,6-dimethyl-2-hydroxypyrimidine, H_3 thme = 1.1.1-tris(hydroxymethyl)-ethane (S = 11/2)_o (53) (12) Fe₁₉, $\sqrt{1}$ $[Fe_{19}(metheidi)_{10}(OH)_{14}(O)_6(H_2O)_{12}]^+$ H₃metheidi N-(1-Hydroxymethylethyl)iminodiacetic acid (S = 33/2)。 (54) (13) V_4 , 如 $[NEt_4][V_4O_2(O_2CEt)_7(pic)_2]$, pic = 2-picolinate $(S = 3)_0$ (55)-(56) (14) Co_4 , 如 $[Co_4(hmp)_4(MeOH)_4Cl_4]$ (S = 6) , (57) (15) Ni_4 , 如 $[Ni_4(OMe)_4(sal)_4(MeOH)_4]$, Hsal = salicylaldehyde (S = 4)_o (58)-(61) (16) Ni_{12} , $D[Ni_{12}(chp)_{12}(O_2CMe)_{12}(H_2O)_6(THF)_6]$ (S = 12), $(62)^{-(63)}$ (17) Ni_{21} ,

如[Ni₂₁(cit)₁₂(OH)₁₀(H₂O)₁₀]¹⁶⁻, cit = citric acid monohydrate (S = 3)。 (64) 其中以高自旋[Mn₁₂O₁₂(O₂CMe)₁₆(H₂O)₄]. 2MeCO₂H. 4H₂O(簡稱 Mn_{12} -Ac)分子研究最徹底,因此成為單分子磁鐵研究的典型。

1-2 單分子磁鐵[Mn₁₂O₁₂]系列之化合物

T. Lis 在 1980 年合成[Mn₁₂O₁₂(O₂CMe)₁₆(H₂O)₄]·2MeCO₂H· 4H₂O 及結構。(15) G. Christou 及 D. N. Hendrickson 在 1988 年也發表 [Mn₁₂O₁₂(O₂CPh)₁₆(H₂O)₄]的合成及結構,從低溫高直流磁場(DC)認為 其基態為 S = 14。 (16) R. Sessoli 在 1993 年發表 $[Mn_{12}O_{12}(O_2CPh)_{16}(H_2O)_4]\cdot PhCO_2H\cdot CH_2Cl_2$ (S = 9)的合成及結構和 $[Mn_{12}O_{12}(O_2CMe)_{16}(H_2O)_4]\cdot MeCO_2H\cdot 4H_2O$ (S = 10)的合成,以低温高 直流磁場,及低溫交流磁場的磁化率來確認其基態。(17) H. J. Eppley 在 1995 年發表 $[Mn_{12}O_{12}(O_2CEt)_{16}(H_2O)_3]\cdot 4H_2O$ (S = 9)及 $[PPh_4][Mn_{12}O_{12}(O_2CEt)_{16}(H_2O)_4]$ (S = 19/2)的合成與結構,以低溫高直 流磁場,及低溫交流磁場的磁化率來確認其基態。(18) 2000 年 A. Jin 發 成. 表 $[Mn_{12}O_{12}(O_2CCH_2CI)_{16}(H_2O)_4]$ 的 及 $[Mn_{12}O_{12}(O_2CC_6H_4-3-Cl)_{16}(H_2O)_3(3-Cl-C_6H_4CO_2H)]\cdot 3-Cl-C_6H_4CO_2H$ 的 合成方法與結構,並由直流磁場的磁化率(_MT)及交流磁場的磁化率 推算其基態分別為 S = 10 和 S = 9。 (19) 同年本實驗室發表 $[Mn_{12}O_{12}(O_2CCH_2CI)_{16}(H_2O)_4]\cdot 3CH_2CI_2\cdot 2H_2O$ 和

[PPh₄][Mn₁₂O₁₂(O₂CCH₂Cl)₁₆(H₂O)₃]·2CH₂Cl₂·2H₂O 的合成及結構,並 且從直流磁場下的磁化率得知這兩個化合物亦為高自旋(high spin) 型 的 態 同 年 發 表 M. Soler [PPh4]2[Mn12O12(O2CCHCl2)16(H2O)4]24CH2Cl2·H2O 的合成與結構,以 低溫高直流磁場,低溫交流磁場磁化率來確認其基態為 S=10. 2001年 S. M. J. Aubin 發表[Mn₁₂O₁₂(O₂CC₆H₄-p-Cl)₁₆(H₂O)₄]·8CH₂Cl₂ 及 $[Mn_{12}O_{12}(O_2CC_6H_4-p-Me)_{16}(H_2O)_4]$ ·Sol (Sol = $HO_2CC_6H_4-p-Me$, $3H_2O$) 的合成與結構,由低溫高直流磁場確認其基態分別為 S=9和 S=10 $^{(23)(24)}$ 而 T. Kuroda-Sowa 發表 $A[Mn_{12}O_{12}(O_2CC_6H_4-o-F)_{16}(H_2O)_4]$ [$A^+ = C_1C_2CC_6H_4-O-F$] PPh_4^+ (S = 21/2), $Fe(C_5Me_5)_2^+$ (S = 19/2), $Co(C_5Me_5)_2^+$ (S = 19/2)]的合 成,以低溫高直流磁場及低溫交流磁場磁化率確認其基態。(25) M. Soler 發表混配位基 [Mn₁₂O₁₂(O₂CCHCl₂)₈(O₂CR´)₈(H₂O)₃] (R´= $O_2CCH_2Bu^t$, O_2CCEt)的合成與結構,以低溫高直流磁場,及低溫交流 磁場的磁化率來確認其基態為 S=10。 $^{(26)}$ C. D. Park 也發表 $[Mn_{12}O_{12}(O_2CCH_2CH_2CI)_{16}(H_2O)_4]\cdot Sol$ (Sol = 0.5CH₂Cl₂·2H₂O, HO₂CCH₂CH₂Cl)的合成及結構。(27) 而 P. Artus 發表混配位基 [Mn₁₂O₁₂(NO₃)₄(O₂CCH₂Bu^t)₁₂(H₂O)₄]·0.5HO₂CCH₂Bu^t 的合成與結構 及[Mn₁₂O₁₂(NO₃)4(O₂CPh)₁₂(H₂O)4]的合成,以低温高直流磁場,及低 溫交流磁場的磁化率來確認其基態為 $S = 10^{(28)}$ 同年 T. Kuroda-Sowa 又發表 [Fe(C₅Me₅)₂]⁻[Mn₁₂O₁₂(O₂CC₆F₅)₁₆(H₂O)₄]·2H₂O 的合成與結

構,以低溫高直流磁場及低溫交流磁場磁化率來確認其基態為 S = (29) 也 發 表 21/2C. Boskovic 混 配 位 基 $[Mn_{12}O_{12}(O_2CMe)_8(O_2PPh_2)_8(H_2O)_4]\cdot Sol$ (Sol 12CH₂Cl₂, 14/3MeCN·4/3H₂O)的合成及結構,以低溫高直流磁場,及低溫交流磁 場磁化率來確認其基態為 S = 10。(30) 同年本實驗室也發表 [Mn₁₂O₁₂(O₂CCH₂Br)₁₆(H₂O)₄]·4CH₂Cl₂ 的合成及結構,從低溫交流磁 場磁化率確認其基態為 S = 10。(31) 之後 J. An 也發表 $[Mn_{12}O_{12}(O_2CCH_2X)_{16}(H_2O)_4]\cdot Sol(X = Cl, Sol = 2CH_2Cl_2\cdot 6H_2O; X =$ Br, Sol = 4CH₂Cl₂)的合成及結構,從低溫交流磁場磁化率確認其基態 (32) 為 S = 102002 年 D. Ruiz-Molina 表 [Mn₁₂O₁₂(O₂CCHCHCH₃)₁₆(H₂O)₄]·H₂O 的合成與結 及 [Mn₁₂O₁₂(O₂CC₆H₄C₆H₅)₁₆(H₂O)₄]·2C₆H₅C₆H₄CO₂H 的合成,以低溫高 直流磁場確認其基態為 S = 10。 (33) 2003 年 J. T. Brockman 發表 [Mn₁₂O₁₂(O₂CPh)₇(O₂PPh₂)₉(H₂O)₄]·3CH₂Cl₂ 的合成及結構,以低溫高 直流磁場,及低溫交流磁場的磁化率來確認其基態為 S=10。 $^{(34)}$ 而 T. 發表含有非單純 Kuroda-Sowa 的羧 某 $[Mn_{12}O_{12}(O_2CC_4H_3S)_{16}(H_2O)_4]$ 的合成,以低溫高直流磁場及低溫交流 磁 場 的 磁 化 率 來 確 認 其 基 態 為 S = 10 ; 而 [PPh4][Mn12O12(O2CC4H3S)16(H2O)4]:3CH2Cl2·H2O 的合成與結構,則以 低温高直流磁場,及低温交流磁場的磁化率來確認其基態為 S = 19/2。(35) M. Soler 又發表[PPh₄]₂[Mn₁₂O₁₂(O₂CCHCl₂)₁₆(H₂O)₄]·Sol (Sol = 4CH₂Cl₂·H₂O, 6CH₂Cl₂)的合成及結構。 (36)-(37) 接著發表 $[Mn_{12}O_{12}(O_2CCH_2Bu^t)_{16}(H_2O)_4]\cdot Sol$ (Sol = CH₂Cl₂·MeNO₂,CH2Cl2·MeCN)的合成與結構。(38) 而 N. E. Chakov 發表混配位基 [Mn₁₂O₁₂(O₂CMe)₈(O₃SPh)₈(H₂O)₄]·4CH₂Cl₂ 的合成及結構,從低溫高 直流磁場,及低溫交流磁場的磁化率確認其基態為 S=10 (39)(40) 2004 年 H. H. Zhao 發表 $[Mn_{12}O_{12}(O_2CCF_3)_{16}(H_2O)_4]$ ·Sol (Sol = 2CF₃CO₂H·4H₂O、CF₃CO₂H·7H₂O)的合成及結構,以低溫高直流磁 場,及低溫交流磁場的磁化率來確認其基態為 S=10。 $^{(41)}$ 總觀上述 Mn₁₂ 的單分子磁鐵化合物,雖然其配位基及鹽類有所不同,但是對 於 分 子 中 心 為 $[Mn_{12}O_{12}]^{0/-/2}$ 的 金 屬 簇 , 除 了 [Mn₁₂O₈Cl₄(O₂CPh)₈(hmp)₆], (42)(43) 其餘結構都是相似的,如圖 1-1 所 示。

圖 1-1 [Mn₁₂O₁₂]^{0/-/2}-金屬簇的結構圖,空心小圓圈為 O 原子,空心大 圓圈為 Mn 原子,實心大圓圈為 Mn 原子。

1-3 單分子磁鐵[Mn₁₂O₁₂]系列的磁性

單分子磁鐵因為具有不小的不等方向性能量障礙而有磁緩行為。以 Mn_{12} -Ac 為例,其基態為 S=10,且零磁場分裂值 D=-0.50 cm $^{-1}$, (65) 其不等方向性能量為 $|D|S^2=50$ cm $^{-1}$ 。在無外加磁場下其自旋量子數 m_s 分布如圖 1-2 對稱的雙位能井。 (28) 在右方位能井,分子的磁動量為"向上" $(m_s$ 為負值),在左方位能井,分子的磁動量為"向下" $(m_s$ 為正值)。在無外加磁場下,因 D 值為負值,其自旋量子數 $m_s=10$ 為最低能量,當 $m_s=0$ 時,為最高能量。

圖 1-2 單分子磁鐵 Mn₁₂-Ac 在無外加磁場下的雙位能井。

若沿分子 Z 軸施加一個磁場時,則雙位能井的對稱性即遭到破壞,此時最簡單的能量表示法為公式(1.1)。在公式中的第一項為零磁場分裂能量(zero-field splitting energy),而第二項則為 Zeeman effect。

$$E = |D|m_s^2 + g\mu_B H_Z m_s$$
 (1.1)

Hz:沿著分子 Z 軸施加的磁場

g:Land'e 常數

μ_B: Bohr 磁子(magneton)

D:零磁場分裂值

當所施加的磁場為正向,此時負值的 m_s (與磁場方向相同)能量變低,但正值的 m_s 能量則變高。當位壘兩邊自旋能階的能量一致時,穿隧現象變為較顯著 (圖 1-3),此時 m_s 與 m_{s+n} 兩能階相等時,經由公式(1.1)計算可得:

$$\operatorname{Hm}_{s,}\operatorname{-m}_{s+n}=\operatorname{-n}\frac{D}{g\mathbf{m}_{s}}$$

代入 $D = -0.5 \text{ cm}^{-1}$ 得到 $Hm_{s_1} - m_{s+n}$ 約為 0.46 T。 (66)

圖 1-3 單分子磁鐵 Mn₁₂-Ac 在外加磁場下之共振穿隧機制。

雖然有不少的 $[Mn_{12}O_{12}(O_2CR)_{16}(H_2O)_4]$ 分子已合成,但只有 Mn_{12} -Ac 有較完整的探討。主要原因是易合成,且為 S_4 對稱的晶體, $^{(17)}$ 容易以單晶(single crystal)的形式,進行方向性排列的磁性或物性 測量。

在 1991 年 A. Caneschi 測量交流磁化率時,發現 Mn₁₂-Ac 交流磁化率實數(real)部分,在 10 K 下隨頻率的不同而有差異。且虛數 (imaginary)部分,其最大值出現的溫度也隨頻率不同而有差異。頻率 低時,其虛數最大值出現在較低的溫度,呈現似超順磁性

(superparamagnet)的磁緩特徵(圖 1-4)。在低溫高磁場下的直流磁化率確定其基態 S=10, 並以遠紅外線雷射 EPR 得到零磁場分裂值(zero field splitting) $|D|\sim 0.5~{\rm cm}^{-1}$ 。 $^{(65)}$ 在 1993 年 R. Sessoli 以單晶測其 c 軸和 ab 面磁化率的不同,證實其不等方向性。並且在零磁場冷卻(ZFC)及磁場冷卻(FC)磁性及磁滯迴路(hysteresis loop)觀測到磁緩現象。在不同溫度下直流磁化率的磁化衰減(decay),所推算之磁緩時間 (relaxation time) t,計算其不等向性能量(anisotropic energy)約 61 K。 $^{(67)}$ 在 1996 年 L. Thomas 測到階梯似(staircase)的磁滯迴路(圖 1-5), 其間隔約 0.44~T。其磁緩時間在此倍數磁場下,有加強而變快速。 $^{(68)}$ 在 2001 年 T. Kubo 以 55 Mn NMR 在磁場對遲緩時間作圖中,每隔 0.45 T 呈現規則明顯的下滑,由此證明磁場對 是有影響的。 $^{(69)}$

圖 1-4 單分子磁鐵 Mn₁₂-Ac 交流磁化率,不同頻率的虛數部分對溫度作圖。

圖 1-5 單分子磁鐵 Mn₁₂-Ac 磁滯迴路。

而 Y. I. Spichkin 以超順磁磁鐵的 Langevin 理論模式上,經由改變外在磁場而導致磁熵(magnetic entropy)的改變量是可以計算的。這個計算顯示出磁性分子物質在低溫範圍(大約小於 20 K)具有磁性冷卻作用。 $^{(70)}$ 而 A. Cornia 以高磁場扭力磁力計(High-field torque magnetometry)研究磁非等量方向性,依照四級自旋的 Hamiltonian 方程式 $H=S^2_z+S^4_z+(S^4_++S^4_-)+\mu_B B\cdot g\cdot S$,經由 HF-EPR 及非彈性中子散射光譜得到 =-0.389(5) cm $^{-1}$ 及 =-8.4(5) × 10^4 cm $^{-1}$ 值,代入方程式可獲得?的參數。 $^{(71)}$ 而 A. M. Gomes 測比熱,系統在無外加磁場,在 3 K以下呈現超順磁性。 $^{(72)}$ 而 K. M. Mertes 以霍

爾檢測(Hall sensor)方法,在溫度 $0.24~\mathrm{K}$ 及 $1.9~\mathrm{K}$ 之間提供一系列數據來了解量子穿隧及熱幫助穿透效應,其穿隧機制如圖 1-6。 $^{(73)-(77)}$ 而 R. Blinc 測 X-band excited-state EPR,在溫度 $50~\mathrm{K}$ 以下分別使用磁場 $Hc=600~\mathrm{G}$, $m=-1\leftrightarrow 0$ 、 $Hc=7800~\mathrm{G}$, $m=0\leftrightarrow -1~\mathrm{D}$ $Hc=9200~\mathrm{G}$, $m=-2\leftrightarrow -1$ 光譜,得到 $T_1T_2~<~10^{-15}~\mathrm{s}^2$ 。 $^{(78)}$ 而 A. B. Sushkov 使用遠紅外光線,在接近波長 $284~\mathrm{cm}^{-1}$ 、 $306~\mathrm{cm}^{-1}\mathrm{D}$ 409 cm^{-1} 的分子內震動會隨外加磁場而改變,尤其 $284~\mathrm{cm}^{-1}$ 呈現很強偶合(coupling)。 $^{(79)}$ 而 L. Rudra 認為這些磁場掃瞄速率、四級非等方向性自旋作用力 (fourth-order anisotropic spin interactions)及橫向磁場的參數,有助於了解磁滯迴路的穿隧機制 $^{(80)}$ 而 R. M. Achey 使用 $^{13}\mathrm{C}$ NMR 測 Mn_{12} -Ac中 醋 酸 根 的 甲 基 ,約 在 $60~\mathrm{K}$ 時 得 最 小 值 $T_1~\mathrm{d}$ ($^{13}\mathrm{C}$ nuclear-spin-lattice-relaxation time) 。 $^{(81)-(82)}$

圖 1-6 熱活化幫助穿透效應機制。

而 Y. Furukawa 在低溫 1.4 K至 3 K對 Mn₁₂-Ac 粉末樣品進行 55Mn NMR 實驗,研究分子動力學的磁性。(83) 而 P. Ghigna 以 X-ray 磁環異 色光譜(magnetic-circular-dichroism, MCD)測量 Mn-L edge 光譜 (84) 而 E. M. Chudnovsky 取 Mn₁₂-Ac 晶體延著 c 軸外加磁場 , 在磁的非等 方向軸局部旋轉產生斷層面,利用橫向磁場提供自旋穿隧。⁽⁸⁵⁾ 而 B. Parks 在穿隧實驗上,使用 time-domain terahertz 光譜測量 Mn₁₂-Ac 中 單質子轉移的位置及線寬。推斷出部分磁場(dipole or hyperfine interactions)並不能觀測線寬,而是不同群集之間,非等方向性常數的 變化。(86)-(87) 而 K. M. Mertes 在磁場平行非等方向性軸,且不同掃瞄 速率下測量 Mn₁₂-Ac 磁的遲緩。對於穿隧引起位能井遭破壞的原因, 是由於二級橫向的非等方向性(second-order transverse anisotropy),不 同類型衍生物應用在偶數及奇數能階,將明確提供奇數共振 (associated with crystal anisotropy) 及偶數共振(which require a transverse magnetic field)間的區別。(88) 而 L. Bokacheva 使用 Micro-Hall magnetometry 研究熱幫助穿透效應及量子穿遂。⁽⁸⁹⁾ 2002 年 J. M. North 利用拉曼光譜發表 Mn₁₂-Ac 振動模式。⁽⁹⁰⁾⁻⁽⁹¹⁾ 而 S. Hill 以 EPR 光譜,探討 Mn₁₂-Ac 的量子穿隧。 (92)-(96) 而 E. J. L. Mcinnes 在溫度4.2 K以上測量磁環異色光譜(MCD)磁化圖,建立基態自旋S= 10 及零磁場參數 D = -0.61 K。 (97) 2003 年 J. M. North 以電阻係數方

法,獲得 Mn_{12} -Ac 活化能 $E_a=0.37\pm0.05$ eV。 ⁽⁹⁸⁾ 而 J. Larionova 以 熱重損失分析儀(Thermogravimetric analyses, TGA)分析 Mn_{12} -Ac。 ⁽⁹⁹⁾ 2004 年 R. S. Edwards 測高頻率電子順磁共振(high frequency electron paramagnetic resonance, HF-EPR),使用 300 GHz 以上的頻率,從光譜 理論計算得到 $D=-0.454~{\rm cm}^{-1}$ 。 ⁽¹⁰⁰⁾ 而 F. Luis 在 Mn_{12} 單分子磁鐵的 非線性動力學反應實驗,發現自旋晶格耦合常數(spin-lattice constant) 相當不靈敏,且最高峰與超順磁性關係呈現相反。這些經由強場與遲緩速率的關係,顯示穿隧發生會導致能階形變(detuning),因此可用 於探測量子效應的發生。 ⁽¹⁰¹⁾ 而 N. Domingo 發表磁性的及磁力光學 測量,在有機玻璃(organic glasses)的兩個 Mn_{12} 單分子磁鐵衍生物的分離。由磁環異色光譜(MCD)的強度圖(hysteresis cycles),發現與磁滯迴路的結果相同(如圖 1-7)。 ⁽¹⁰²⁾

圖 1-7 (a) $Mn_{12}Ac$ 在 21200 cm⁻¹的 MCD 及磁滯迴路之比較。

- (b) Mn₁₂Bz 在 21200 cm⁻¹ 的 MCD 及磁滯迴路之比較。
- (c) Mn₁₂Ac 在 21200 cm⁻¹(dotted)及 19700 cm⁻¹(dashed)的 MCD

除了上述的研究外,一些單分子磁鐵在交流磁化率虛數部分 (out-of-phase)有兩個訊號的產生,也令人感到興趣。一個訊號是出現 在較高的溫度約 4~8~K (high temperature range, HT),而另一個訊號則 出現在較低的溫度約 2~4~K (low temperature range, LT)。

1995年 D. N. Hendrickson首先在[$Mn_{12}O_{12}(O_2CEt)_{16}(H_2O)_3$]觀察到這個現象(圖 1-8), $^{(18)}$ 了解兩個訊號的來源便成為另一個研究的主題。在 1997年 S. M. J. Aubin 合成出新[$Mn_{12}O_{12}(O_2CC_6H_4\text{-p-Me})_{16}(H_2O)_4$]的異構物,其形式分別為[$Mn_{12}O_{12}(O_2CC_6H_4\text{-p-Me})_{16}(H_2O)_4$]·3 H_2O 與 [$Mn_{12}O_{12}(O_2CC_6H_4\text{-p-Me})_{16}(H_2O)_4$]· $HO_2CC_6H_4\text{-p-Me}$ 。這兩種異構化合物在結構上最主要的差別在於其空間上的排列(space group)及配位水位置的不同,如圖 1-9。且其在交流磁化率虚數部分所呈現的訊號,則一種出現在高溫($4\sim7$ K),另一種則出現在低溫($2\sim4$ K),如圖 1-10。

圖 1-8 [$Mn_{12}O_{12}(O_2CEt)_{16}(H_2O)_3$]的交流磁化率虚數部分訊號。

圖 1-9 空間重疊圖[Mn₁₂O₁₂(O₂CC₆H₄-p-Me)₁₆(H₂O)₄]·3H₂O (---) 與 $[Mn_{12}O_{12}(O_2CC_6H_4\text{-p-Me})_{16}(H_2O)_4]\cdot HO_2CC_6H_4\text{-p-Me} \ (\ \textbf{-}\)_{\bullet}$

置

1-10

1999 年 Z. M. Sun 發表造成交流磁化率虛數部分在低溫訊號出現 的另一個原因,是由於[Mn12O12]中的 Mn 的 Jahn-Teller 延長軸上產 生不規則的方向,並把這種效應稱為"Jahn-Teller 異構" (Jahn-Teller isomerism) , 如圖 1-11 (a)當 Jahn-Teller 延長軸出現不規則時 , 其交流 磁化率虛數部分訊號主要出現在低溫範圍 (b)若 Jahn-Teller 延長軸處 於規則的情形下,則交流磁化率虛數部分訊號主要出現在高溫範圍。 (104) 2001 年 S. M. J. Aubin 發表[Mn₁₂O₁₂(O₂CC₆H₄-p-Me)₁₆(H₂O)₄]·Sol (Sol = $3H_2O$, $HO_2CC_6H_4$ -p-Me) , (23)-(24) 及 C. Boskovic 發表 $[Mn_{12}O_{12}(O_2CMe)_8(O_2PPh_2)_8(H_2O)_4]\cdot Sol (Sol = 12CH_2Cl_2, 14/3MeCN\cdot PPh_2)_8(H_2O)_4]\cdot Sol (Sol = 12CH_2Cl_2, 14/3MeCN\cdot PPh_2Cl_2, 14/3MeCN\cdot PPh_2C$ 4/3H₂O), (30) 發現晶格溶劑不同, 導致空間上排列及配位基水的位置 不同,皆會造成交流磁化率虛數部分兩個訊號強度的變化,但造成交 流磁化率虚數部分訊號主要出現在低溫的原因,是由於化合物本身具 有不規則的 Jahn-Teller 延長軸。

2003 年 M. Soler 為了進一步瞭解這現象,合成 $[Mn_{12}O_{12}(O_2CCH_2Bu^t)_{16}(H_2O)_4]\cdot CH_2Cl_2\cdot CH_3NO_2$,從不同的天數測量其交流磁化率虛數部分的變化,如圖 1-12。發現晶體維持母液時的晶格 溶劑 (CH_2Cl_2/CH_3NO_2) ,其訊號峰分佈在低溫,而 Jahn-Teller 延長軸 呈現不規則。但隨著天數的增加,低溫的訊號峰逐漸變弱,高溫的訊號峰逐漸增強。若晶格溶劑重 CH_2Cl_2/CH_3CN 再結晶,其訊號峰分佈

圖 1-11 (a) [Mn₁₂O₁₂(O₂CCH₂Bu^t)₁₆(H₂O)₄]·CH₂Cl₂·CH₃NO₂ 的 Jahn-Teller 延 長 軸 不 規 則 情 形 , (b) [Mn₁₂O₁₂(O₂CC₆H₄-p-Me)₁₆(H₂O)₄]·3H₂O 的 Jahn-Teller 延長 軸規則情形。

圖 1-12 [Mn₁₂O₁₂(O₂CCH₂Bu^t)₁₆(H₂O)₄]·CH₂Cl₂·CH₃NO₂ 在不同天數的 交流磁化率虛數部分變化。

1-4 研究目標

由於 Mn_{12} 系列單分子磁鐵有較完整的探討,而雜核單分子磁鐵 $[Mn_8Fe_4O_{12}(O_2CMe)_{16}(H_2O)_4]$ 的合成,在文獻上首先由 A. R. Schake 在 1992 年所發表, $^{(106)}$ 接著在 1994 年發表結構及磁性。 $^{(107)}$ 本實驗室 也合成 $[Mn_8Fe_4O_{12}(O_2CR)_{16}(H_2O)_4]$ (R = CH_2CI , $CHCI_2$, CH_2Br)的結構 及磁性。然而 $[Mn_8Fe_4O_{12}(O_2CR)_{16}(H_2O)_4]$ 的磁性與 Mn_{12} 系列單分子磁鐵明顯不同。由於之前 $[Mn_8Fe_4O_{12}(O_2CR)_{16}(H_2O)_4]$ 的磁性與 Mn_{12} 系列單分子磁基是拉電子強的鹵素酸配位基,因此我們想藉由拉電子弱的含苯配位基合成 $[Mn_8Fe_4O_{12}(O_2CR)_{16}(H_2O)_4]$ 雜核化合物,探討高自旋分子基態及磁性的影響。

第二章

 $[Mn_8Fe_4O_{12}(O_2CR)_{16}(H_2O)_4]$ $(R=C_6H_5$; C_6H_4 -p-CH₃; C_6H_4 -p-Br)的合成與磁性

2-1 合成

化合物依下列反應式合成:

 $[Mn_8Fe_4O_{12}(O_2CMe)_{16}(H_2O)_4]$ (化合物 1)

根據文獻發表的方法合成。⁽¹⁰⁷⁾ 取醋酸亞鐵(5.1752 克,29.753 mmol)溶在 60 mL 60%醋酸中,加入高錳酸鉀(1.8808 克,11.901 mmol),溶液呈現黑棕色後攪拌十五分鐘。用 300 mL 丙酮緩緩注入於溶液上,數日後,得到黑色晶體。取 200 mL 乙?溶解晶體,過濾,收集濾液,抽乾,得黃

棕色固體 0.956 克,產率約 34%。IR 光譜(KBr,cm⁻¹): 3421(m), 1701(w), 1552(s), 1424(s), 1346(m), 1233(w), 1049(w), 1028(m), 952(w), 711(w), 671(w), 661(w), 642(w), 610(m), 566(m), 539(m), 519(w)。

[Mn₈Fe₄O₁₂(O₂CPh)₁₆(H₂O)₄] (化合物 2)

將化合物 1(0.2027 克,0.1084 mmol),加入苯甲酸(0.5295 克, 4.3359 mmol)在 20 mL 甲苯中攪拌一天。以共沸原理抽乙酸,將溶劑抽 乾。再加入苯甲酸(0.5383 克,4.4079 mmol)及 20 mL 甲苯,攪拌 4 小時, 再將溶劑抽除。再加入 20 mL 甲苯,攪拌 2 小時,將溶劑抽乾,重覆此 步驟 2 次。最後加入 20 mL 二氯甲烷攪拌 , 過濾。將正己烷緩緩注入於 二氯甲烷溶液上,室溫下結晶。數天後,得到黑色方形晶體 0.2275 克, 產率約 73%。 晶體適用 X-ray 結構分析。 IR 光譜(KBr, cm⁻¹): 3065(m), 2926(w), 1701(w), 1598(s), 1534(vs), 1492(s), 1448(m), 1417(vs), 1353(m), 1308(m), 1178(s), 1070(m), 1026(s), 839(m), 718(vs), 673(m), 499(m)。 元素分析結果: 549(m), 647(m), 611(m), [Mn₈Fe₄O₁₂(O₂CPh)₁₆(H₂O)₄] (C₁₁₂H₈₈Fe₄Mn₈O₄₈) ,實驗值(理論值), C: 46.72% (46.96%); H: 3.32% (3.10%); Mn: 16.68% (15.34%); Fe: 8.08% $(7.80\%)_{o}$

[Mn₈Fe₄O₁₂(O₂CC₆H₄-p-CH₃)₁₆(H₂O)₄] (化合物 3)

將化合物 1(0.2024 克,0.1082 mmol)溶在 20 mL 乙?中,加入對甲基 苯甲酸(0.5899 克,4.3327 mmol)在 60 mL 甲苯中攪拌 6 小時。以共沸原 理抽乙酸。溶劑抽除後,再加入對甲基苯甲酸(0.5899 克,4.3327 mmol)和 20 mL 甲苯及 20 mL 乙? , 攪拌一天。溶劑抽除後, 再加入 20 mL 甲苯 及 20mL 乙? , 再將溶劑抽乾, 重覆此步驟 2次。最後加入 20 mL 二氯 甲烷攪拌,過濾。將正己烷緩緩注入於二氯甲烷溶液上,室溫下結晶。 數天後,得到黑色方形晶體 0.1978 克,產率約 59%。晶體適用 X-ray 結 構分析。IR 光譜(KBr, cm⁻¹): 3063(m), 3033(m), 3007(w), 2952(w), 2920(m), 1701(m), 1609(m), 1587(m), 1529(vs), 1417(vs), 1348(m), 1293(m), 1209(m), 1180(vs), 1140(m), 1113(m), 1020(s), 847(s), 764(vs), 693(m), 656(m), 622(m), 547(m), 460(m)。元素分析結果: $[Mn_8Fe_4O_{12}(O_2CC_6H_4-p-CH_3)_{16}(H_2O)_4]$. $4H_2O(C_{128}H_{128}Fe_4Mn_8O_{52})$, 實驗值 (理論值), C: 48.56% (48.63%); H: 4.00% (4.08%); Mn: 14.19% (13.90%); Fe: 6.47% (7.07%)

 $[Mn_8Fe_4O_{12}(O_2CC_6H_4-p-Br)_{16}(H_2O)_4]$ (化合物 4)

將化合物 1(0.3003 克,0.1605 mmol)溶在 30 mL 乙?中,加入對溴苯甲酸(0.6456克,3.2116 mmol)在 65 mL 甲苯中攪拌一天。以共沸原理抽乙酸。溶劑抽去後,再加入對溴苯甲酸(0.6455克,3.2111 mmol)和 65 mL

甲苯及 30 mL 乙? ,攪拌一天。溶劑抽除後,再加入 65 mL 甲苯及 30mL 乙? ,再將溶劑抽乾,重覆此步驟 2 次。最後加入 30 mL 二氯甲烷攪拌,過濾,將正己烷緩緩注入於二氯甲烷溶液上,室溫下結晶。數天後,得到黑色方形晶體 0.2128 克,產率約 32%。晶體適用 X-ray 結構分析。IR 光譜 (KBr, cm⁻¹): 2922(w), 1701(m), 1587(vs), 1537(s), 1485(m), 1415(vs), 1278(m), 1174(s), 1140(m), 1069(s), 1012(vs), 851(m), 767(vs), 685(m), 650(m), 612(m), 526(s)。元素分析結果:[Mn₈Fe₄O₁₂(O₂CC₆H₄-p-Br)₁₆(H₂O)₄]。4CH₂Cl₂·2C₆H₁₄(C₁₂₈H₁₀₈Br₁₆Cl₈Fe₄Mn₈O₄₈),實驗值(理論值),C: 32.83%(32.86%);H: 2.33%(2.33%);Mn: 9.40%(9.39%);Fe: 6.13%(4.77%)。

2-1-1 實驗儀器

元素分析

元素分析中的碳、氫部分是使用成大貴重儀器中心 Vario EL ,且委託技術員蔡佳臻小姐代為偵測。而元素分析中金屬定量部分,則是利用成大化學系綜合實驗室中的 Unican Solaar M seriea 原子吸收光譜元素(AA)來偵測。金屬部分的理論值是依照元素分析中碳、氫部分推求而得。

單晶 X-ray 繞射

晶體結構解析使用 NONIUS KappaCCD 自動繞射儀,且委託台大貴 儀中心技術員李錦祥先生代測,測量溫度為 150 K。

磁性測量

(一) 直流磁化率:

使用台大貴重儀器中心的超導量子干涉儀 (SQUID) 測量磁性,且委託技術員蘇元鏘先生代測。將樣品裝入膠囊中,加熱正二十烷 (eicosane) 包住樣品,使晶體無法在磁場下扭動。在外加直流磁場 1 kOe 下,從溫度 2 K 到 300 K 的直流磁性測量。

(二) 交流磁化率:

使用台大凝態中心林昭吟教授實驗室的 Quantum Design PPMS5 SQUID,且委託技術員鄭淑齡小姐代測。在 100,250,500,1k,2.5k,5k,10k七種不同震盪頻率下,測量其樣品 2.0 K到 10 K溫度範圍內的磁性變化。

2-2 單晶 X-ray 繞射分析結果與討論

2-2-1 化合物 2 結構分析

晶體為黑色方形,其大小為 $0.32 \times 0.18 \times 0.08 \text{ mm}$,自動繞射儀 1.44 25.00° 。 結構為斜方晶系 (Orthorhombic),Fdd2 空間群:a=27.6089(8) Å,b=56.0079(16) Å,c=17.2829(4) Å。V=26724.8(13) ų,Z=8, $D(\text{calcd.})=1.424 \text{ Mg/m}^3$ 。h、k l 的範圍是-30 h 32, -56 k 66, -16 l 20。 共收集到 43163 繞射點,其中有 10051 為獨立 繞射點。吸收度校正最大及最小收集的轉換係數 (transmission factor)為 0.914 及 0.808。利用最小平方精算至收斂後,其最後之可性度值為 R1=0.1199,wR2=0.3144,GoF=1.361,晶體結構列於圖 2-1。晶體繞射數 據列於表 2-1。原子座標、鍵長及鍵角數據分別列於附表 2、3。

圖 2-1 化合物 2 之 ORTEP 晶體結構圖,其配位基- C_5H_5 則省略。

表 2-1 化合物 2 之單晶繞射數據表

Empirical formula $C_{112}H_{88}Fe_4Mn_8O_{48}$

Formula weight 2864.74

Temperature 150(1) K

Wavelength 0.71073 Å

Crystal system Orthorhombic

Space group Fdd2

Unit cell dimensions a = 27.6089(8) Å

b = 56.0079(16) Å

c = 17.2829(4) Å

Volume, z 26724.8(13) Å³, 8

Density (calculated) 1.424 Mg/m³ Absorption coefficient 1.228mm⁻¹

F(000) 11584

Crystal size 0.32 x 0.18 x 0.08mm

range for data collection 1.44 to 25.00°

Limiting indices $-30 \ h \ 32, -56 \ k \ 66, -16 \ l \ 20$

Reflections collected 43163

Independent reflections $10051 (R_{int} = 0.0491)$

Completeness to $= 25.00^{\circ}$ 100.0%

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.914 and 0.808

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 10051 / 1 / 305

Goodness-of-fit on F^2 1.361

Final R indices [I > 2 (I)] R1 = 0.1199, wR2 = 0.3144 R indices (all data) R1 = 0.1535, wR2 = 0.3455

Absolute structure parameter 0.01(5) Extinction coefficient 0.00117(10)

Largest diff. peak and hole $1.300 \text{ and } -2.030 \text{ eÅ}^{-3}$

將化合物 2 中,每個金屬與氧的鍵長代入 BVS (bond valence sum) 公式(2.1), (108) 求出金屬離子的氧化態,其結果為表 2-2。

$$S = exp [(r_0-r)/B]$$
 (2.1)

r: 觀測到的鍵長 r_0 和 B: 文獻上的參數 B=0.37

 r_0 : Fe = 1.734, Fe = 1.759, Mn = 1.790, Mn = 1.760, Mn = 1.753 結構中以 Mn₄O₄立方體的 Mn(1)和 Mn(2), 其值分別為 4.02 和 4.07, 為 Mn 形式。外圍 Mn(3)及 Mn(4), 若為 Mn , 其值分別為 3.26 和 3.27; 若為 Fe , 其值分別為 3.25 和 3.26。而 Fe(1)、Fe(2)及 Fe(3), 若為 Fe , 其值分別為 2.93、3.01 和 3.02; 若為 Mn , 其值分別為 3.15、3.23 和 3.24。 從數據得知外圍八個原子皆為正三價形式。

表 2-2 化合物 2 之 BVS 金屬氧化態價數

atom	Fe	Mn	Mn
Fe(1)	2.934331	3.147944	3.088948
Fe(2)	3.01122	3.230431	3.169889
Fe(3)	3.019283	3.239081	3.178377
Mn(1)	4.085788	4.096846	4.020066
Mn(2)	4.13683	4.148026	4.070288
Mn(3)	<u>3.25051</u>	3.259307	3.198224
Mn(4)	<u>3.258418</u>	3.267237	3.206005

將鍵長列於表 2-3 數據中 , Mn(1)-O 鍵長範圍為 1.852 到 1.951 ; Mn(2)-O 鍵長範圍為 1.860 到 1.946。 和 [Mn₁₂O₁₂(O₂CPh)₁₆(H₂O)₄] 的 Mn -O 的鍵長範圍 1.838 到 1.988 相似,從鍵長可判斷 Mn(1)及 Mn(2) 為 Mn 。 (17) 而高自旋的 Mn (d⁴)有 Jahn-Teller 拉長軸 , Fe (d⁵)則沒有。 Mn(3)-O 在赤道鍵長範圍為 1.865 到 1.973 , 軸鍵長為 2.186 及 2.236。 Mn(4)-O 在赤道鍵長範圍為 1.881 到 1.953, 軸鍵長為 2.177 及 2.192。 Mn (3) 及 Mn (4)清楚顯示出 Jahn-Teller 拉長軸。圖 2-2 為化合物 2 的 Mn (d⁴)的 Jahn-Teller 拉長軸方向(黑色粗線)。而 Fe(1)-O 鍵長範圍為 1.924 到 2.062。Fe(2)-O 鍵長範圍為 1.921 到 2.032。Fe(3)-O 鍵長範圍為 1.958 到 2.036 和[Mn₈Fe₄O₁₂(O₂CMe)₁₆(H₂O)₄]的 Fe -O 鍵長範圍為 1.925 到 2.097 相似, 並沒有 Jahn-Teller 拉長軸的現象。(107) 因此從 Jahn-Teller 拉長軸可區分 Mn 及 Fe 。圖 2-3 為化合物 2 在晶格中的排列情形,在 晶格中每個分子的磁性主軸方向呈現交錯。

表 2-3 化合物 2 金屬和氧的鍵長

Fe(1)-O(7)	Fe(1)-O(3)	Fe(1)-O(9)#1	Fe(1)-O(7)#1	Fe(1)-O(3)#1	Fe(1)-O(9)
2.062	1.924	2.024	2.062	1.924	2.024
Fe(2)-O(19)	Fe(2)-O(17)	Fe(2)-O(6)#1	Fe(2)-O(19)#1	Fe(2)-O(17)#1	Fe(2)-O(6)
2.032	2.025	1.921	2.032	2.025	1.921
Fe(3)-O(22)	Fe(3)-O(24)	Fe(3)-O(5)	Fe(3)-O(4)	Fe(3)-O(23)	Fe(3)-O(11)
2.007	2.019	1.932	1.958	2.036	1.987
Mn(1)-O(4)	Mn(1)-O(2)	Mn(1)-O(14)	Mn(1)-O(1)#1	Mn(1)-O(3)	Mn(1)-O(1)
1.852	1.937	1.906	1.904	1.867	1.951
Mn(2)-O(5)	Mn(2)-O(6)	Mn(2)-O(15)	Mn(2)-O(2)#1	Mn(2)-O(1)	Mn(2)-O(2)
1.862	1.860	1.888	1.899	1.946	1.933
Mn(3)-O(12)	Mn(3)-O(13)	Mn(3)-O(4)	Mn(3)-O(3)	Mn(3)-O(8)	Mn(3)-O(10)
1.925	2.186	1.865	1.886	2.236	1.973
Mn(4)-O(21)	Mn(4)-O(20)	Mn(4)-O(18)	Mn(4)-O(6)	$Mn(4)-O_x(16)$	Mn(4)-O(5)
1.953	2.177	1.921	1.908	2.192	1.881

圖 2-2 化合物 2 的 Mn 的 Jahn-Teller 拉長軸方向。

圖 2-3 化合物 2 在晶格中的排列情形。

2-2-2 化合物 3.4H₂O 結構分析

晶體為黑色方形,其大小為 $0.42 \times 0.07 \times 0.05 \text{ mm}$,自動繞射儀 $1.55 \times 25.00^\circ$ 。結構為斜方晶系 (Orthorhombic),P2/n 空間群:a=19.0679(4) Å,b=16.1444(3) Å,c=22.7180(6) Å。V=6993.5(3) ų,Z=2,D(calcd.) $=1.501 \text{ Mg/m}^3$ 。h k l 的範圍是 -22 h 22 ,-19 k 19 ,-26 l 26 共收集到 49697 繞射點,其中有 12036 為獨立繞射點。吸收 度校正最大及最小收集的轉換係數(transmission factor)為 0.945 及 0.814。 利用最小平方精算至收斂後,其最後之可性度值為 R1=0.2125,wR2=0.5623,GoF=4.265,晶體結構列於圖 2-4。晶體繞射數據詳見表 2-4。 原子座標、鍵長及鍵角數據分別列於附表 4 5。因 R 值偏高,此結構只供參考。

化合物 3 與化合物 2 的結構極為相似。 4 個 H_2O 分別鍵結在 Fe(1)、 Fe(2)、 Fe(1)A 和 Fe(2)A 上。由於晶體不佳,部份晶格溶劑無法定位,僅找到 4 個 H_2O 。

圖 2-4 化合物 $\bf 3$. $\bf 4H_2O$ 之 ORTEP 晶體結構圖,其配位基的- $\bf C_5H_4$ -p- $\bf CH_3$ 與晶格溶劑 $\bf 4H_2O$ 則省略。

表 2-4 化合物 3.4H₂O 之單晶繞射數據表

Empirical formula $C_{128}H_{128}Fe_4Mn_8O_{52}$

Formula weight 3162.22

Temperature 150(1) K

Wavelength 0.71073 Å

Crystal system Orthorhombic

Space group P2/n

Unit cell dimensions a = 19.0679(4) Å

b= 16.1444(16) Å

c = 22.7180(4) Å

Volume, z 6993.5(3) Å³, 2

Density (calculated) 1.501 Mg/m³ Absorption coefficient 1.183 mm⁻¹

F(000) 3232

Crystal size $0.42 \times 0.07 \times 0.05 \text{ mm}$

range for data collection 1.55 to 25.00°

Limiting indices $-22 \quad h \quad 22, -19 \quad k \quad 19, -26 \quad l \quad 26$

Reflections collected 49697

Independent reflections $12036 (R_{int} = 0.0532)$

Completeness to $= 25.00^{\circ}$ 97.6%

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.945 and 0.814

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 12036 / 2 / 508

Goodness-of-fit on F^2 4.265

Final R indices [I > 2 (I)] R1 = 0.2125, wR2 = 0.5623 R indices (all data) R1 = 0.2457, wR2 = 0.5707

Extinction coefficient 0.040(4)

Largest diff. peak and hole $1.970 \text{ and } -2.041 \text{ eÅ}^{-3}$

將化合物 3 中,每個金屬與氧的鍵長代入 BVS 公式(2.1),求出金屬離子的氧化態,其結果為表 2-5。結構中以 Mn_4O_4 立方體 Mn(1)和 Mn(2),其值為 4.21 和 3.90,為 Mn 形式。外圍 Mn(3)及 Mn(4),若為 Mn ,其值為 3.22 和 3.37,若為 Fe ,其值為 3.21 和 3.36。而 Fe(1)及 Fe(2),若 為 Fe ,其值為 2.84 和 2.96,若為 Mn ,其值為 3.05 和 3.18。從數據得知外圍八個原子皆為正三價形式。

表 2-5 化合物 3 之 BVS 金屬氧化態價數

atom	Fe	Mn	Mn
Fe(1)	<u>2.844566</u>	3.051645	2.994454
Fe(2)	2.96373	3.179484	3.119897
Mn(1)	4.274245	4.285812	<u>4.205491</u>
Mn(2)	3.966398	3.977132	3.902597
Mn(3)	<u>3.214329</u>	3.223029	3.162626
Mn(4)	3.363372	<u>3.372475</u>	3.309271

將鍵長列於表 2-6 數據中,Mn(1)-O 鍵長範圍為 1.816 到 1.952; Mn(2)-O 鍵長範圍為 1.829 到 1.967。和 $[Mn_8Fe_4O_{12}(O_2CMe)_{16}(H_2O)_4]$ 的 Mn -O 鍵長範圍 1.852 到 1.936 相近,可確認為 Mn 。 $^{(107)}$ 而高自旋的 Mn (d^4)有 Jahn-Teller 拉長軸,Fe (d^5)則沒有。Mn(3)-O 在赤道鍵長範圍

為 1.879 到 1.937, 軸鍵長為 2.237 及 2.236。 Mn(4)-O 在赤道鍵長範圍為 1.882 到 1.951, 軸鍵長為 2.119 及 2.113。 Mn(3)及 Mn(4)清楚顯示出 Jahn-Teller 拉長軸。圖 2-5 為化合物 3 的 Mn (d^4)的 Jahn-Teller 拉長軸方向(黑色粗線)。Fe(1)-O 鍵長範圍為 1.940 到 2.098,Fe(2)-O 鍵長範圍為 1.912 到 2.128 而[Mn_8 Fe₄O₁₂(O₂CMe)₁₆(H₂O)₄]的 Fe -O 鍵長範圍為 1.925 到 2.097,沒有 Jahn-Teller 拉長軸的現象。因此,從 Jahn-Teller 拉長軸可區分 Mn 及 Fe 。圖 2-6 為化合物 3 在晶格中的排列情形,在晶格中每個分子的磁性主軸方向呈現平行。

表 2-6 化合物 3 金屬和氧的鍵長

Fe(1)-O(3)	Fe(1)-O(23)	Fe(1)-O(10)	Fe(1)-O(11)	Fe(1)-O(7)	Fe(1)-O(4)
1.962	2.056	2.003	2.025	2.098	1.940
Fe(2)-O(14)	Fe(2)-O(15)	Fe(2)-O(8)	Fe(2)-O(6)	Fe(2)-O(5)	Fe(2)-O(20)
2.025	1.993	2.128	1.912	1.931	2.020
Mn(1)-O(18)	Mn(1)-O(6)	Mn(1)-O(3)	Mn(1)-O(2)	Mn(1)-O(1)	Mn(1)-O(1)#1
1.952	1.816	1.844	1.854	1.922	1.941
Mn(2)-O(2)#1	Mn(2)-O(2)	Mn(2)-O(21)	Mn(2)-O(4)	Mn(2)-O(5)	Mn(2)-O(1)
1.958	1.967	1.923	1.829	1.869	1.948
Mn(3)-O(5)	Mn(3)-O(22)	Mn(3)-O(4)	Mn(3)-O(12)	Mn(3)-O(19)	Mn(3)-O(13)
1.879	2.237	1.904	1.937	2.236	1.920
Mn(4)-O(16)	Mn(4)-O(24)	Mn(4)-O(9)	Mn(4)-O(3)	Mn(4)-O(17)	Mn(4)-O(6)
1.949	2.119	1.951	1.882	2.113	1.896

圖 2-5 化合物 3 的 Mn Jahn-Teller 拉長軸方向。

圖 2-6 化合物 3 在晶格中的排列情形。

2-2-3 化合物 4.4CH₂Cl₂·2C₆H₁₄結構分析

晶體為黑色方形, 其大小為 0.22 x 0.15 x 0.08 mm, 自動繞射儀 1.32 25.00°。結構為單斜晶系(Monoclinic), C2/c 空間群: a = 30.3224(5) Å, b = 18.0012(3) Å, c = 30.2447(5) Å, = 102.7398(6) $^{\circ}$ V = 16102.3(5) \mathring{A}^3 , Z = 4, $D(\text{calcd.}) = 1.914 \, \text{Mg/m}^3$ 。 h k l 的範圍是-36 h35, -21 35。 共收集到 70475 繞射點 , 其中有 14136 為 21. -34 *l* 獨立繞射點。吸收度校正最大及最小收集的轉換係數(transmission factor) 為 0.674 及 0.530。利用最小平方精算至收斂後,其最後之可性度值為 R1 = 0.1004, wR2 = 0.3068, GoF = 1.256。而在結構的錯置(disorder)方面, 錯置原子所佔據位置之分佈為 C3& C3Q C4Q C4L C42 和 Br6 為 0.67。 C38 、C39 、C40 、C41 、C42 和 Br6 為 0.33 Br7 為 0.8, Br7 為 0.2。 Br8 和 Br8 為 0.5。晶體結構列於圖 2-7。晶體繞射數據列於表 2-7。原子 座標、鍵長及鍵角數據分別列於附表 6、7。因 R 值偏高,且錯置原子數 不少,此結構僅為參考之用。

化合物 4 與化合物 2 的結構極為相似。 4 個 H_2O 分別各以 2 個鍵結在 Fe(1)及 Fe(1)A 上。

圖 2-7 化合物 $\bf 4$. $4CH_2Cl_2$. $2C_6H_{14}$ 之 ORTEP 晶體結構圖,其配位基 $-C_5H_4\text{-p-Br}$ 與晶格溶劑 $4CH_2Cl_2$. $2C_6H_{14}$ 則省略。

表 2-7 化合物 4.4CH₂Cl₂.2C₆H₁₄之單晶繞射數據表

Empirical formula $C_{128}H_{108}Br_{16}Cl_8Fe_4Mn_8O_{48}$

Formula weight 4639.22
Temperature 150(1) K
Wavelength 0.71073 Å
Crystal system Monoclinic

Space group C2/c

Unit cell dimensions a = 30.3224(5) Å

b = 18.0012(3) Å beta = $102.7398(6)^{\circ}$

c = 30.2447(5) Å

Volume, z 16102.3(5) Å³, 4

Density (calculated) 1.914 Mg/m³

Absorption coefficient 5.133 mm⁻¹

F(000) 9040

Crystal size 0.22 x0.15 x0.08 mm

range for data collection 1.32 to 25.00°

Limiting indices $-36 \ h \ 35, -21 \ k \ 21, -34 \ l \ 35$

Reflections collected 70475

Independent reflections $14136 (R_{int} = 0.0679)$

Completeness to $= 25.00^{\circ}$ 99.9%

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.674 and 0.530

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 14136 / 1 / 793

Goodness-of-fit on F^2 1.256

Final R indices [I > 2 (I)] R1 = 0.1004, wR2 = 0.3068 R indices (all data) R1 = 0.1470, wR2 = 0.3429

Extinction coefficient 0.00036(6)

Largest diff. peak and hole 2.688 and -1.545 eÅ⁻³

將化合物 4 中,每個金屬與氧的鍵長代入 BVS 公式(2.1),求出金屬離子的氧化態,其結果為表 2-8。結構中以 Mn_4O_4 立方體 Mn(1)和 Mn(2),其值分別為 4.02 和 3.99,為 Mn 形式;外圍 Mn(3)及 Mn(4),若為 Mn ,其值為 3.23 和 3.20,若為 Mn ,其值為 Mn(3)0。而 Mn(4)0。 Mn(4)0。

表 2-8 化合物 4 之 BVS 金屬氧化態價數

atom	Fe	Mn	Mn
Fe(1)	3.055746	3.278198	3.216761
Fe(2)	3.057625	<u>3.280214</u>	3.21874
Fe(3)	3.067119	3.290399	3.228733
Mn(1)	4.084394	4.095448	4.018695
Mn(2)	4.059436	4.070422	3.994138
Mn(3)	<u>3.224779</u>	3.233507	3.172907
Mn(4)	<u>3.196776</u>	3.205427	3.145354

將鍵長列於表 2-9 數據中, Mn(1)-O 鍵長範圍為 1.862 到 1.937; Mn(2)-O 鍵長範圍為 1.862 到 1.951。而 $[Mn_{12}O_{12}(O_2CPh)_{16}(H_2O)_4]$ 的 Mn-O 的鍵長範圍為 1.838 到 1.988,從鍵長可判斷 Mn(1)及 Mn(2)為

Mn 。 (17) 高自旋的 Mn (d⁴)有 Jahn-Teller 拉長軸 , Fe (d⁵)則沒有。而 Mn(3)-O 在赤道鍵長範圍為 1.895 到 1.940 , 軸鍵長為 2.211 到 2.199。 Mn(4)-O 在赤道鍵長範圍為 1.888 到 1.963 , 軸鍵長為 2.210 到 2.188。 Mn (3) 及 Mn (4) 清楚顯示出 Jahn-Teller 拉長軸。圖 2-8 為化合物 4 的 Mn (d⁴)的 Jahn-Teller 拉長軸方向(黑色粗線)。Fe(1)-O 鍵長範圍為 1.905 到 2.066 , Fe(2)-O 鍵長範圍為 1.919 到 2.019 並沒有明顯的拉長軸。因 此從 Jahn-Teller 拉長軸可區分 Mn 及 Fe 。圖 2-9 為化合物 4 在晶格中的排列情形,在晶格中每個分子的磁性主軸方向呈現平行。

表 2-9 化合物 4 金屬和氧的鍵長

Fe(1)-O(7)	Fe(1)-O(14)	Fe(1)-O(16)	Fe(1)-O(8)	Fe(1)-O(5)	Fe(1)-O(4)
2.015	2.012	2.003	2.066	1.926	1.905
Fe(2)-O(6)	Fe(2)-O(18)	Fe(2)-O(20)	Fe(2)-O(20)#1	Fe(2)-O(18)#1	Fe(2)-O(6)#1
1.933	2.007	2.016	2.016	2.007	1.933
Fe(3)-O(11)	Fe(3)-O(24)	Fe(3)-O(3)	Fe(3)-O(3)#1	Fe(3)-O(24)#1	Fe(3)-O(11)#1
2.018	2.019	1.919	1.919	2.019	2.018
Mn(1)-O(3)	Mn(1)-O(1)	Mn(1)-O(1)#1	Mn(1)-O(2)	Mn(1)-O(9)	Mn(1)-O(4)
1.869	1.892	1.929	1.937	1.926	1.862
Mn(2)-O(1)	Mn(2)-O(5)	Mn(2)-O(21)	Mn(2)-O(6)	Mn(2)-O(2)#1	Mn(2)-O(2)
1.934	1.867	1.951	1.862	1.929	1.888
Mn(3)-O(12)	Mn(3)-O(23)	Mn(3)-O(3)	Mn(3)-O(4)	Mn(3)-O(10)	Mn(3)-O(13)
1.927	2.211	1.895	1.899	2.199	1.940
Mn(4)-O(5)	Mn(4)-O(17)	Mn(4)-O(15)	Mn(4)-O(19)	Mn(4)-O(22)	Mn(4)-O(6)
1.894	2.210	1.963	1.941	2.188	1.888

圖 2-8 化合物 4 的 Mn Jahn-Teller 拉長軸方向。

圖 2-9 化合物 4 在晶格中的排列情形。

2-3 磁性測量

2-3-1 直流磁化率

在外加磁場 1 kOe 下, 化合物 2、3 和 4 從溫度 2 K 到 300 K 的磁性 變化如圖 2-10。化合物 2 在 300 K 時 $_{M}T$ 值為 14.01 emu K mol¹, 之後 $_{M}T$ 值隨溫度下降而下降,到 6 K 時 $_{M}T$ 值為 4.68 emu K mol¹,直到 2 K 時 MT 值為 4.04 emu K mol¹。化合物 3 在 300 K 時 MT 值為 13.56 emu K mo Γ^1 , 之後 MT 值隨溫度下降而下降, 到 4.5 K 時 MT 值為 5.57 emu K mo Γ^1 , 直到 2 K 時 $_MT$ 值為 5.04 emu K mo Γ^1 。 化合物 4 在 300 K $_{M}T$ 值為 14.55 emu K mo Γ^{1} , 之後 $_{M}T$ 值隨溫度下降而下降 , 到 5 K $_{M}T$ 值為 5.04 emu K mo I^{1} , 直到 2 K 時 $_{M}T$ 值為 4.39 emu K mo I^{1} 。 理論上 $Mn_4Mn_4Fe_4$ 金屬間沒有交互作用力,只考慮自旋(spin-only), 若 g = 2, 代入公式(2.2), 推測化合物 **2 3** 和 **4**, $_{M}T$ 理論值應為 37.0 emu K mol¹。但是實驗結果比理論值小,表示化合物 2, 3 和 4 金屬間呈現反 鐵磁性作用(antiferromagnetic),因此隨著溫度下降, $_{M}T$ 值也隨之下降。 和文獻上 $[Mn_8Fe_4O_{12}(O_2CMe)_{16}(H_2O)_4]$ 有相同的磁性特徵。

$$_{M}T = 0.125 g^{2} S (S+1)$$
 (2.2)

S: 基態 M: 莫耳磁化率 (emu mo Γ^1)

假設基態 S=2, 且 g 值設為 2, 代入公式(2.2), $_{M}T$ 值應為 3.0 emu

 $K \text{ mof}^1$ 。 若基態 S = 3, g = 2, ${}_{M}T$ 值應為 $6.0 \text{ emu } K \text{ mof}^1$ 。 若基態 S = 4, g = 2, ${}_{M}T$ 值應為 $10.0 \text{ emu } K \text{ mof}^1$ 。 因此從化合物 2 在 6 K 時 ${}_{M}T$ 值 , 化合物 3 在 4.5 K 時 ${}_{M}T$ 值 , 化合物 4 在 5 K 時 ${}_{M}T$ 值 , 其 ${}_{M}T$ 值介於 $4.7 \sim 5.6$,推測化合物 2、3 和 4 基態應為 S = 3。

而化合物 2、3 和 4 在 6 K 以下 , $_{M}T$ 值隨溫度突下降 , 為零磁場分裂(zero-field splitting)及 Zeeman effect 互相作用導致。

圖 2-10 化合物 2()、3()、4()的直流磁化率 $_{M}T$ 與溫度作圖。

2-3-2 交流磁化率

交流磁化率以不同頻率(?)的低磁場(1Oe),測樣品感應到的磁性。所得到的訊號有兩部分,實數(In-phase)部分為平行外加磁場之磁化率,而虚數(Out-of-phase)部分為分子磁動量無法即時隨外加磁場變化時,則有訊號產生。若分子磁動量磁緩速率與外加磁場的頻率相同時,則在訊號虚數部分有最高值,此頻率為其所對應下的溫度之磁緩速率(?t = 1),將不同頻率所對應的溫度經由公式(2.3)求得不等方向性能量(anisotropy energy)以及 t_0 (attempt frequency)值。

$$t = t_0 \exp(U/kT)$$
 或 $\ln(1/t) = \ln(1/t_0) - U/kT$ (2.3)

將新鮮(從母液取出放置約十分鐘)化合物 2.8H₂O 裝入膠囊中,以正二十烷覆蓋樣品防止測量時跳動,以7種頻率分別為100、250、500、1k、2.5k、5k、10k Hz,測量在1.8 K到5.3 K溫度範圍內的磁性變化,結果分別為實數部分[圖2-11(A)]與虛數部分[圖2-11(B)]。

在圖 2-11(A)中,頻率 10k Hz 其 $_MT$ 在 5.3 K 的值為 3.45 emu K mol^1 ,之後 $_MT$ 值隨溫度下降逐漸下降,直到 2 K 時 $_MT$ 值為 2.67 emu K mol^1 。頻率 5k Hz 其 $_MT$ 在 5.3 K 的值為 3.47 emu K mol^1 ,之後 $_MT$ 值隨溫度下降逐漸下降,直到 2 K 時 $_MT$ 值為 2.73 emu K mol^1 。頻率 2.5k Hz 其 $_MT$ 在 5.3 K 的值為 3.49 emu K mol^1 ,之後 $_MT$ 值隨溫度下降逐

漸下降,直到 2 K 時 $_{M}T$ 值為 2.79 emu K mo Γ^{1} 。 頻率 1k Hz 其 $_{M}T$ 在 5.3 K 的值為 3.51 emu K mo Γ^{1} ,之後 $_{M}T$ 值隨溫度下降逐漸下降,直到 2 K 時 $_{M}T$ 值為 2.85 emu K mo Γ^{1} 。 頻率 500 Hz 其 $_{M}T$ 在 5.3 K 的值為 3.47 emu K mo Γ^{1} ,之後 $_{M}T$ 值隨溫度下降逐漸下降,直到 2 K 時 $_{M}T$ 值 為 2.87 emu K mo Γ^{1} 。 頻率 250 Hz 其 $_{M}T$ 在 5.3 K 的值為 3.43 emu K mo Γ^{1} ,之後 $_{M}T$ 值隨溫度下降逐漸下降,直到 2 K 時 $_{M}T$ 值為 2.89 emu K mo Γ^{1} 。 頻率 100 Hz 其 $_{M}T$ 在 5.3 K 的值為 3.60 emu K mo Γ^{1} ,之後 $_{M}T$ 值隨溫度下降逐漸下降,直到 2 K 時 $_{M}T$ 值為 2.89 emu K mo Γ^{1} 。 頻率 100 Hz 其 $_{M}T$ 在 5.3 K 的值為 3.08 emu K mo Γ^{1} ,之後 $_{M}T$ 值隨溫度下降逐漸下降,直到 2 K 時 $_{M}T$ 值為 3.08 emu K mo Γ^{1} , 由各頻 率在 5.3 K 時 $_{M}T$ 值推測,其值會趨向定值 $_{M}T$ = 3.49 emu K mo Γ^{1} ,與 直流磁化率在 6 K 測量的 $_{M}T$ = 4.68 emu K mo Γ^{1} 接近,其基態為 S = 3。

虚數部分,從圖 2-11(B)中,頻率 10k Hz 其 $_M$ "在 5.3 K的值為 6.27 × 10^{-4} emu mo Γ^1 ,之後 $_M$ "值隨著溫度下降磁化率增加,直到 2K 時 $_M$ "值為 6.98 × 10^{-2} emu mo Γ^1 。頻率 5k Hz 其 $_M$ "在 5.3 K的值為 4.92 × 10^{-3} emu mo Γ^1 ,之後 $_M$ "值為 6.39 × 10^{-2} emu mo Γ^1 。頻率 2.5k Hz 其 $_M$ "在 5.3 K的值為 4.99 × 10^{-3} emu mo Γ^1 ,之後 $_M$ "值隨著溫度下降磁化率增加,直到 2K 時 $_M$ "值為 5.93 × 10^{-2} emu mo Γ^1 。頻率 1k Hz 其 $_M$ "在 5.3 K的值為 1.75 × 10^{-3} emu mo Γ^1 ,之後 $_M$ "值隨著溫度下降磁化率增加,直到 2K 時 $_M$ "值為 5.93 × 10^{-2} emu mo Γ^1 。頻率 1k Hz 其 $_M$ "在 5.3 K的值為 1.75 × 10^{-3} emu mo Γ^1 ,之後 $_M$ "值隨著溫度下降磁化率增加,直到 2K 時 $_M$ "值為 5.09 × 10^{-2} emu mo Γ^1 。頻率 500 Hz 其 $_M$ "在 5.3 K的值為

8.54 × 10^{-4} emu mo Γ^1 , 之後 $_M$ " 值隨著溫度下降磁化率增加 , 直到 2 K 時 $_M$ " 值為 4.66 × 10^{-2} emu mo Γ^1 。 頻率 250 Hz 其 $_M$ " 在 5.3 K 的值為 8.48×10^{-4} emu mo Γ^1 , 之後 $_M$ " 值隨著溫度下降磁化率增加 , 直到 2 K 時 $_M$ " 值為 3.71×10^{-2} emu mo Γ^1 。 頻率 100 Hz 其 $_M$ " 在 5.3 K 的值為 4.60×10^{-4} emu mo Γ^1 ,之後 $_M$ " 值隨著溫度下降磁化率增加 ,直到 2 K 時 $_M$ " 值為 2.24×10^{-2} emu mo Γ^1 。 由於樣品需測到更低溫才能得到訊號最大值 ,因此不能求得不等方向性能量(anisotropy energy)以及 t_0

(attempt frequency)值。

圖 2-11 (A) 新鮮化合物 2 的交流磁化率實數部分。

(B) 新鮮化合物 2 的交流磁化率虚數部分。

為了要瞭解分子是否具有溶劑效應(solvate effected),將新鮮樣品取出,放置真空烘箱五天。樣品裝入膠囊中,以正二十烷覆蓋樣品送測。 其結果為實數部分[圖 2-12(A)]與虛數部分[圖 2-12(B)]。

在圖 2-12(A)中, 頻率 10k Hz 其 MT 在 5.3 K 的值為 4.63 emu K mol^{-1} , 之後 $_{M}T$ 值隨溫度下降逐漸下降, 直到 2 K 時 $_{M}T$ 值為 3.51 emu K mol¹。頻率 5k Hz 其 $_{M}T$ 在 5.3 K 的值為 4.66 emu K mol¹, 之後 $_{M}T$ 值隨溫度下降逐漸下降,直到2K時 $_{M}T$ 值為3.60 emu K mo I^{1} 。頻率2.5kHz 其 $_{M}T$ 在 5.3 K 的值為 4.68 emu K mot^{1} , 之後 $_{M}T$ 值隨溫度下降逐 漸下降,直到2K時 $_{\it M}T$ 值為3.69emu K ${
m mol}^1$ 。頻率1k Hz 其 $_{\it M}T$ 在 5.3 K 的值為 4.64 emu K mol^1 , 之後 $_{M}T$ 值隨溫度下降逐漸下降,直到 2K 時 $_{M}T$ 值為 3.76 emu K mol $_{\circ}^{1}$ 頻率 500 Hz 其 $_{M}T$ 在 5.3 K 的值為 4.68 emu K mol¹, 之後 $_{M}T$ 值隨溫度下降逐漸下降, 直到 2 K 時 $_{M}T$ 值為 3.85 emu K mol⁻¹。頻率 250 Hz 其 _MT 在 5.3 K 的值為 4.73 emu K mol⁻¹, 之後 $_{M}T$ 值隨溫度下降逐漸下降,直到 2 K 時 $_{M}T$ 值為 3.92 emu K mol^{1} 。頻率 100 Hz 其 MT 在 5.3 K 的值為 4.78 emu K mol^{1} , 之後 MT值隨溫度下降逐漸下降,直到 2 K 時 $_{M}T$ 值為 $3.99 \text{ emu K mol}^{1}$ 。由各頻 率在 5.3 K 時 $_{M}T$ 值推測,其值會趨向定值 $_{M}T = 4.69 \text{ emu K mol}^{1}$,與 直流磁化率在 6 K 測量的 $_{M}T = 4.68$ emu K mol¹ 接近,其基態為 S = 3。

虚數部分,從圖 2-12(B)中,頻率 10k Hz 其 $_{M}$ "在 5.3 K 的值為 1.89 $\times 10^{-3}$ emu mo Γ^1 , 之後 M " 值隨著溫度下降磁化率增加,直到 2K 時 _M"值為 1.1 × 10⁻¹ emu mol⁻¹。頻率 5k Hz 其 _M"在 5.3 K 的值為 6.65 $\times 10^{-3}$ emu mo Γ^1 , 之後 M 值隨著溫度下降磁化率增加,直到 2K 時 $_{M}$ " 值為 1.0 × 10^{-1} emu mol $_{\circ}$ 頻率 2.5k Hz 其 $_{M}$ " 在 5.3 K 的值為 4.95 $\times 10^{-3}$ emu mo Γ^1 , 之後 M 值隨著溫度下降磁化率增加,直到 2K 時 $_{M}$ " 值為 8.75 × 10^{-2} emu mo Γ_{0}^{1} 頻率 1k Hz 其 $_{M}$ " 在 5.3 K 的值為 5.91 $\times 10^{-3}$ emu mo Γ^1 , 之後 M" 值隨著溫度下降磁化率增加,直到 2 K 時 _M"值為 7.72 × 10⁻² emu mol¹。頻率 500 Hz其 _M"在 5.3 K的值為 3.73 \times 10⁻³ emu mol⁻¹ , 之後 M " 值隨著溫度下降磁化率增加 , 直到 2 K 時 _M"值為 7.0 × 10⁻² emu mol¹。頻率 250 Hz 其 _M"在 5.3 K的值為 1.98 $\times 10^{-3}$ emu mo Γ^1 , 之後 M" 值隨著溫度下降磁化率增加,直到 2 K 時 _M"值為 5.98 × 10⁻² emu mol¹。頻率 100 Hz 其 _M"在 5.3 K的值為 2.30 $\times 10^{-3}$ emu mo Γ^1 , 之後 M" 值隨著溫度下降磁化率增加,直到 2 K 時 $_{\scriptscriptstyle M}$ " 值為 $4.43~\times10^{-2}~\mathrm{emu~mol}^{\,1}$ 。由於樣品需測到更低溫才能得到訊號 最大值,因此不能求得不等方向性能量(anisotropy energy)以及to (attempt frequency)值。

圖 2-12 (A) 抽乾化合物 2 的交流磁化率實數部分。

(B) 抽乾化合物 2 的交流磁化率虚數部分。

將新鮮(從母液取出放置約十分鐘)化合物 3.4H₂O 裝入膠囊中,以正二十烷覆蓋樣品防止測量時跳動,以7種頻率分別為100、250、500、1k、2.5k、5k、10k Hz,測量在1.8 K到5.3 K溫度範圍內的磁性變化,結果分別為實數部分[圖2-13(A)]與虛數部分[圖2-13(B)]。

在圖 2-13(A)中,各頻率在溫度 2.2 K到 3.2 K形成一個階梯狀。頻 率 10k Hz 其 $_{M}T$ 在 5.3 K 的值為 5.32 emu K mol^{1} , 之後 $_{M}T$ 值隨溫度 下降而下降,直到 2 K 時 $_{M}T$ 值為 2.78 emu K mol⁻¹。 頻率 5k Hz 其 $_{M}T$ 在 5.3 K 的值為 5.34 emu K mol^1 , 之後 $_{M}T$ 值隨溫度下降而下降 , 直到 2 K 時 MT 值為 2.84 emu K mol¹。 頻率 2.5k Hz 其 MT 在 5.3 K 的值為 5.36 emu K mol^1 ,之後 $_{M}T$ 值隨溫度下降而下降,直到 2 K 時 $_{M}T$ 值為 2.88 emu K mol¹。頻率 1k Hz 其 MT 在 5.3 K 的值為 5.38 emu K mol¹, $_{M}T$ 值隨溫度下降而下降,直到 2 K 時 $_{M}T$ 值為 2.92 emu K 之後 mol^{-1} 。頻率 500 Hz 其 $_{M}T$ 在 5.3 K 的值為 5.39emu K mol^{-1} , 之後 $_{M}T$ 值隨溫度下降而下降,直到2K時 $_{M}T$ 值為3.0emuK mo I^{1} 。頻率250 Hz 其 $_{M}T$ 在 5.3 K 的值為 5.42 emu K mol^{1} , 之後 $_{M}T$ 值隨溫度下降而下 降,直到2K時 $_{M}T$ 值為 3.11 emu K mol¹。頻率 100 Hz 其 $_{M}T$ 在 5.3 K 的值為 5.46 emu K mol^1 , 之後 $_{M}T$ 值隨溫度下降而下降 , 直到 2 K時 $_{M}T$ 值為 3.14 emu K mo I^{1} 。由各頻率在 5.3 K 時 $_{M}T$ 值推測,其值會趨

向定值 $_MT=5.38$ emu K mo Γ^1 ,與直流磁化率在 4.5 K 測量的 $_MT=5.57$ emu K mo Γ^1 接近,其基態為 S = 3。

虚數部分,圖 2-13(B)在溫度 2.2 到 3.2K 出現磁緩現象。但由於訊號並沒有按照頻率低時,其虛數最大值出現在較低的溫度,頻率高時,其虛數最大值出現在較高的溫度,且雜訊很多。因此求得不等方向性能量(anisotropy energy)以及 t_0 (attempt frequency)值會有很大誤差。

圖 2-13 (A) 新鮮化合物 3 的交流磁化率實數部分。

(B) 新鮮化合物 3 的交流磁化率虚數部分。

將新鮮(從母液取出放置約十分鐘)化合物 $4. \text{ CH}_2\text{Cl}_2 \cdot 2\text{C}_6\text{H}_{14} \cdot \text{HO}_2\text{CC}_6\text{H}_4\text{-p-Br}$ 裝入膠囊中,以正二十烷覆蓋樣品防止測量時跳動,以 7 種頻率分別為 100、 250、 500、 1k、 2.5k、 5k、 10k Hz ,測量在 1.8 K 到 5.3 K 溫度範圍內的磁性變化,結果分別為實數部分[圖 2-14(A)]與虛數部分[圖 2-14(B)]。

在圖 2-14(A)中,頻率 10k Hz 其 MT 在 5.3 K 的值為 3.16 emu K mol^{-1} , 之後 $_{M}T$ 值隨溫度下降逐漸下降, 直到 2 K 時 $_{M}T$ 值為 2.50 emu K mol¹。頻率 5k Hz 其 $_{M}T$ 在 5.3 K 的值為 3.18 emu K mol¹ , 之後 $_{M}T$ 值隨溫度下降逐漸下降,直到2K時 $_{M}T$ 值為2.57 emu K mol 1 。頻率2.5kHz 其 $_{M}T$ 在 5.3 K 的值為 3.18 emu K mol^{1} , 之後 $_{M}T$ 值隨溫度下降逐 漸下降,直到2K時 $_{M}T$ 值為 2.62 emu K mol¹。頻率 1k Hz 其 $_{M}T$ 在 5.3 K 的值為 3.21 emu K mol^1 , 之後 $_{M}T$ 值隨溫度下降逐漸下降 , 直到 2 K 時 MT 值為 2.69 emu K mol¹。頻率 500 Hz 其 MT 在 5.3 K 的值為 3.18 emu K mol^1 , 之後 $_{M}T$ 值隨溫度下降逐漸下降, 直到 2 K H $_{M}T$ 值 為 2.71 emu K mol⁻¹。頻率 250 Hz 其 MT 在 5.3 K 的值為 3.17 emu K mol^{-1} , 之後 $_{M}T$ 值隨溫度下降逐漸下降,直到 2 K 時 $_{M}T$ 值為 2.75 emu K mol¹。頻率 100 Hz 其 $_{M}T$ 在 5.3 K 的值為 3.23 emu K mol¹, 之後 $_{M}T$ 值隨溫度下降逐漸下降,直到 2 K 時 $_{M}T$ 值為 $2.74 \text{ emu K mol}^{1}$ 。由各頻 率在 5.3 K 時 $_{M}T$ 值推測,其值會趨向定值 $_{M}T = 3.19 \text{ emu K mol}^1$,其

基態為 S = 3。

虚數部分,從圖 2-14 (B)中,頻率 10k Hz 其 " "在 5.3 K 的值為-9.58 $\times 10^{-4}$ emu mo Γ^1 , 之後 M " 值隨著溫度下降磁化率增加,直到 2K 時 _M"值為 7.51 × 10⁻² emu mol¹。頻率 5k Hz 其 _M"在 5.3 K的值為 3.19 $\times 10^{-3}$ emu mol¹, 之後 M" 值隨著溫度下降磁化率增加,直到 2K 時 $_{M}$ " 值為 6.73×10^{-2} emu mo Γ^{1} 。 頻率 2.5k Hz 其 $_{M}$ " 在 5.3 K 的值為 4.13×10^{-3} emu mol¹, 之後 $_{M}$ " 值隨著溫度下降磁化率增加,直到 2 K 時 M " 值為 6.42×10^{-2} emu mol 1 。 頻率 1k Hz 其 M " 在 5.3 K 的值 為 1.66×10^{-3} emu mo I^1 ,之後 M " 值隨著溫度下降磁化率增加,直 到 2 K 時 $_M$ " 值為 4.66 × 10^{-2} emu mol 1 。 頻率 500 Hz 其 $_M$ " 在 5.3 K 的值為 3.25×10^{-3} emu mol¹, 之後 $_{M}$ " 值隨著溫度下降磁化率增加, 直到 2 K時 M"值為 3.22 × 10⁻² emu mol⁻¹。頻率 250 Hz 其 M"在 5.3 K 的值為 -3.81×10^{-3} emu mo Γ^1 ,之後 M 值隨著溫度下降磁化率增加, 直到 2 K時 M" 值為 1.94 × 10⁻² emu mol¹。頻率 100 Hz 其 M" 在 5.3 K 的值為 6.42×10^{-3} emu mol¹, 之後 $_{M}$ " 值隨著溫度下降磁化率增加, 直到 2 K 時 $_{M}$ " 值為 5.31×10^{-3} emu mo Γ^{1} 。由於樣品需測到更低溫才能 得到訊號最大值,因此不能求得不等方向性能量(anisotropy energy)以及 t_0 (attempt frequency)值。

圖 2-14 (A) 新鮮化合物 4 的交流磁化率實數部分。

(B) 新鮮化合物 4 的交流磁化率虚數部分。

2-4 結論

化合物 2、化合物 3.4H₂O 和化合物 4.4CH₂Cl₂.2C₆H₁₄在結構上極為相似,差別在取代基、配位水與晶格溶劑。化合物 2 和 4.4CH₂Cl₂.2C₆H₁₄的配位水分別各以 2 個鍵結在 Fe(1)及 Fe(1)A 上;化合物 3.4H₂O 的配位水分別鍵結在 Fe(1)、Fe(1)A 、Fe(2)及 Fe(2)A 上。從直流磁化率與交流磁化率實數部分, $_{M}T$ 值介於 $4.7 \sim 5.6$ emu K mol¹,顯示其基態 為 S = 3。所以改變取代基、配位水與晶格溶劑,對拉電子較弱的含苯配位基,磁性影響不大。

第三章

[Mn₈Fe₄O₁₂(O₂CMe)₈(O₂PPh₂)₈(H₂O)₄]的合成與磁性

3-1 合成

化合物 5 依下列反應式方式合成:

$$[Mn_8Fe_4O_{12}(O_2CMe)_{16}(H_2O)_4] + 8 PPh_2O_2H$$

$$[Mn_8Fe_4O_{12}(O_2CMe)_8(O_2PPh_2)_8(H_2O)_4] + 8 MeCO_2H (化合物 5)$$

 $[Mn_8Fe_4O_{12}(O_2CMe)_8(O_2PPh_2)_8(H_2O)_4]$ (化合物 5)

將化合物 1(0.2048 克,0.1095 mmol)溶在 20 mL 乙?中,加入二苯基磷酸(0.1913 克,0.8768 mmol)在 20 mL 甲苯中攪拌一天。以共沸原理抽乙酸,將溶劑抽乾。加入 20 mL 甲苯及 20 mL 乙?,攪拌 4 小時,將溶劑抽乾,重覆此步驟 2 次。最後加入 20 mL 二氯甲烷攪拌溶解固體,過濾。將正己烷緩緩注入於二氯甲烷溶液上使其結晶。數天後,得到黑色長方形晶體 0.1333 克,產率約 39%。晶體適用 X-ray 結構分析。IR 光譜(KBr, cm⁻¹):3054(m),2928(w),1710(w),1587(vs),1579(vs),1485(m),1437(s),1384(m),1331(vs),1130(vs),1050(s),1022(s),997(s),753(s),728(vs),694(s),678(m),657(m),629(m),601(m),562(m),527(m),477(s),431(m)。元素分析結果:[Mn₈Fe₄O₁₂(O₂CMe)₈(O₂PPh₂)₈(H₂O)₄]

(C₁₁₂H₁₁₂Fe₄Mn₈O₄₈P₈),實驗值(理論值),C:43.02% (42.89%);H:3.72% (3.60%);Mn:14.19% (14.01%);Fe:6.01% (7.12%)。

- 3-2 單晶 X-ray 繞射分析結果與討論
- 3-2-1 化合物 5 . 12CH₂Cl₂ 結構分析

晶體為黑色方形,其大小為 $0.25 \times 0.25 \times 0.20$ mm,自動繞射儀 1.14 27.50° 。 晶體為四方晶系(Tetragonal), $P4_2$ /n 空間群: a=25.2988(3) Å,c=13.4599(2) Å。V=8614.73(19) ų,Z=2,D(calcd.)=1.599 Mg/m³。 h、k、l 的範圍是-25 h 32, -32 k 32, -17 l 17。 共收集到 44290 繞射點,其中有 9809 為獨立繞射點。吸收度校正最大及最小收集的轉換係數(transmission factor)為 0.665 及 0.555。利用最小平方精算至收斂後,其最後之可性度值為 R1=0.0730,wR2=0.2064,GoF=1.032。 而在結構的錯置方面,錯置原子所佔據位置之分佈為 C30 和 C14 為 0.4。 C15、 C15 、 C16 和 C16 ,為 0.5。 晶體結構列於圖 3-1。 晶體繞射數據詳見表 3-1。原子座標、鍵長及鍵角數據分別列於附表 8 9

化合物 5 其結構為 S_4 對稱,中心由 4 個 Mn 所構成 Mn_4O_4 立方體, Mn 以八面體的方式鍵結。外圍 4 個 Mn(2)與 4 個 Fe(1)以近平面方式環 繞在 Mn_4O_4 四周,並以 μ_3 - O^2 與 Mn_4O_4 立方體連接。4 個 Mn(2)經由兩個 μ_3 - O^2 及一個 μ_2 -羧基與每一個 Mn 鍵結。而 4 個 Fe(1)經由兩個 μ_3 - O^2 架橋與兩個不同的 Mn 鍵結。此外 8 個醋酸根及 8 個二苯基磷酸根的配位基,其中 4 個二苯基磷酸根與 4 個醋酸根以交錯形式分佈在赤道位置。 另外 4 個二苯基磷酸根與 4 個醋酸根分佈在軸位置。而 4 個 H_2O 分別鍵

圖 3-1 化合物 5 . 12CH₂Cl₂之 ORTEP 晶體結構圖,其配位基-(C₅H₅)₂及 12CH₂Cl₂則省略。

表 3-1 化合物 5.12CH₂Cl₂之單晶繞射數據表

Empirical formula $C_{124}H_{128}Cl_{24}Fe_4Mn_8O_{48}P_8$
--

Formula weight 4147.74

Temperature 150(1) K

Wavelength 0.71073 Å

Crystal system Tetragonal

Space group $P4_2/n$

Unit cell dimensions a = 25.2988(3) Å

b = 25.2988(3) Åc = 13.4599(2) Å

c = 13.1333(2)11

Volume, z 8614.73(19) Å³, 2

Density (calculated) 1.599 Mg/m³
Absorption coefficient 1.410 mm⁻¹

F(000) 4176

Crystal size $0.25 \times 0.25 \times 0.20 \text{ mm}$

range for data collection 1.14 to 27.50°

Limiting indices -25 h 32, -32 k 32, -17 l 17

Reflections collected 44290

Independent reflections 9809 ($R_{int} = 0.0394$)

Completeness to $= 27.50^{\circ}$ 99.0%

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.665 and 0.555

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 9809 / 7 / 489

Goodness-of-fit on F^2 1.032

Final *R* indices [I>2s(I)] R1 = 0.0730, wR2 = 0.2064 R indices (all data) R1 = 0.1017, wR2 = 0.2334

Absolute structure parameter -0.03(4) Extinction coefficient 0.0033(3)

Largest diff. peak and hole $1.999 \text{ and } -1.138 \text{ eÅ}^{-3}$

將化合物 5 中,每個金屬與氧的鍵長代入 BVS 公式(2.1),求出金屬離子的氧化態,其結果列於表 3-2。結構中以 Mn_4O_4 立方體 Mn(1),其值為 4.02,為 Mn 形式。外圍 Mn(2),若為 Mn ,其值為 3.13;若為 Fe ,其值為 3.12。而 Fe(1),若為 Fe ,其值為 2.91;若為 Mn ,其值為 3.12。 從數據得知外圍八個原子皆為正三價形式。

表 3-2 化合物 5 之 BVS 金屬氧化態價數

atom	Fe	Mn	Mn
Fe(1)	2.90638	<u>3.117959</u>	3.059525
Mn(1)	4.087355	4.098417	4.021609
Mn(2)	<u>3.123533</u>	3.131986	3.073289

將金屬和氧的鍵長列於表 3-3, Mn(1)-O 鍵長範圍為 1.847 到 1.967, 而 $[Mn_8Fe_4O_{12}(O_2CMe)_{16}(H_2O)_4]$ 的 Mn -O 鍵長範圍為 1.852 到 1.936, 從 鍵長可判斷 Mn(1)為 Mn 。而高自旋的 Mn (d^4) 有 Jahn-Teller 拉長軸,Fe (d^5) 則沒有 Mn(2)-O在赤道鍵長範圍為 1.884到 1.975, 軸鍵長為 2.175及 2.187。 Mn(2) 清楚顯示出 Jahn-Teller 拉長軸。圖 3-2 為化合物 5 的 Mn (d^4) 的 Jahn-Teller 拉長軸方向(黑色粗線)。Fe(1)-O 鍵長範圍為 1.935 到 2.134,並沒有明顯的拉長軸。因此從 Jahn-Teller 拉長軸可區分 Mn 及 Fe 。圖 3-3 為化合物 5 在晶格中的排列情形,在晶格中每個分子的

磁性主軸方向之夾角互為 180°。

表 3-3 化合物 5 金屬和氧的鍵長

Fe(1)-O(8)	Fe(1)-O(12)	Fe(1)-O(2)	Fe(1)-O(4)	Fe(1)-O(3)	Fe(1)-O(10)
2.039	1.973	1.935	2.134	1.993	1.971
Mn(1)-O(2)	Mn(1)-O(3)	Mn(1)-O(5)	Mn(1)-O(1)	Mn(1)-O(1)#1	Mn(1)-O(1)#2
1.847	1.858	1.933	1.902	1.913	1.967
Mn(2)-O(7)	Mn(2)-O(9)	Mn(2)-O(6)	Mn(2)-O(3)	Mn(2)-O(2)	Mn(2)-O(11)
1.975	1.944	2.175	1.944	1.884	2.187

圖 3-2 化合物 5 的 Mn^Ⅲ Jahn-Teller 拉長軸方向。

圖 3-3 化合物 5 在晶格中的排列情形。

將配位基配位的位置及其酸性關係列於表 3-4。配位基酸根的 pKa 值大,鍵結能力較強,Mn-O 鍵較短,造成鍵能增加可穩定分子,易分佈在 $Mn_{12}O_{12}$ 的赤道位置。pKa 值小的配位基易分佈在 $Mn_{12}O_{12}$ 的軸位置,因為其鍵結 Mn Mn 及 Mn Mn 之間,而 Mn 有 Jahn-Teller 拉長軸,造成 Mn-O₂CR 鍵結較弱。例如 $[Mn_{12}O_{12}(O_2CCHCl_2)_8(O_2CCH_2Bu^t)_8(H_2O)_3]$ 、 $[Mn_{12}O_{12}(O_2CCHCl_2)_8(O_2CCH_2)_8(O_$

 $[Mn_{12}O_{12}(O_3SPh)_8(O_2CMe)_8(H_2O)_4]$, pKa 值大的配位基 $Bu^tCH_2CO_2$ EtCO₂ 和 $MeCO_2$ 分佈在赤道位置;pKa 值小的 $CHCl_2CO_2$ 和 $PhSO_3$ 分佈在軸位置。但化合物 $\mathbf{5}$ 比較配位基酸根的 pKa 值,不是 pKa 值小分佈在 $Mn_8Fe_4O_{12}$ 赤道位置,而是 $\mathbf{4}$ 個 Ph_2PO_2 與 $\mathbf{4}$ 個 $MeCO_2$ 以交錯形式分佈在赤道位置。 這是由於 Ph_2PO_2 分佈在軸位置時立體障礙太大。此結構與文獻上發表

 $[Mn_{12}O_{12}(O_2CMe)_8(O_2PPh_2)_8(H_2O)_4] 和 \\ [Mn_{12}O_{12}(O_2CPh)_7(O_2PPh_2)_9(H_2O)_4] 類$ 似。

表 3-4 配位基配位的位置及其酸性

	Strong acid		Weak acid	
	axis	equator	axis	equator
$\left[Mn_{12}O_{12}(NO_3)_4(O_2CCH_2Bu^t)_{12}(H_2O)_4\right]^{(28)}$	MnMn	×	MnMn	MnMn
$[Mn_{12}O_{12}(O_2CCHCl_2)_8(O_2CCH_2Bu^t)_8(H_2O)_3]$	MnMn	×	×	MnMn
(26)	MnMn			
[Mn ₁₂ O ₁₂ (O ₂ CCHCl ₂) ₈ (O ₂ CEt) ₈ (H ₂ O) ₄] ⁽²⁶⁾	MnMn	×	×	MnMn
	MnMn			
$[Mn_{12}O_{12}(O_2CMe)_8(O_3SPh)_8(H_2O)_4]^{(39)(40)}$	MnMn	×	×	MnMn
(5	MnMn			
$[Mn_{12}O_{12}(O_2CMe)_8(O_2PPh_2)_8(H_2O)_4]^{(30)}$	MnMn	MnMn	MnMn	MnMn
$[Mn_{12}O_{12}(O_2CPh)_7(O_2PPh_2)_9(H_2O)_4]^{(34)}$	MnMn	MnMn	MnMn	MnMn
pKa 值酸性排列: ButCH2CO2 (5.24)	$> EtCO_2^- (4.8)$	$6) > MeCO_2^-$	(4.76) > PhC	$O_2^-(4.20) >$
$PhSO_3^-(2.55) > Ph_2PO_2^-(2.32) > CHCl_2CO_2^-(1.48) > NO3^-(0.32)$				

3-3 磁性測量

3-3-1 直流磁化率

磁性測量由台大凝態中心,林昭吟教授實驗室的技術員鄭淑齡小姐, 及台大貴儀中心技術員蘇元鏘先生代測。在外加磁場 1 kOe 下,化合物 5 從溫度 2 K 到 300 K 的四次磁性測量為圖 3-4。

將新鮮(從母液取出放置約十分鐘)化合物 5.10H2O()裝入膠囊中, 以正二十烷覆蓋樣品送測。在 300 K 時 , $_{M}T$ 值為 21.03 emu K mol^{1} , 之後 $_{M}T$ 值隨溫度下降而下降,到 5 K 時 $_{M}T$ 值為 12.10 emu K mol^{1} , 直到 2 K 時 $_{M}T$ 值為 10.21 emu K mol¹。而化合物 5() 是將新鮮樣品取 出,放置真空烘箱五天,抽除晶格溶劑。樣品裝入膠囊中,以正二十烷覆 蓋樣品送測。在 300 K 時 , $_{M}T$ 值為 22.09 emu K mot^{1} , 之後 $_{M}T$ 值隨 溫度下降而下降,到5K時 $_{M}T$ 值為 11.56 emu K mol¹,直到2K 時 $_{M}T$ 值為 10.48 emu K mol¹。化合物 **5**()在 300 K 時 , MT 值為 15.53 emu K mol^{-1} , 之後 $_{M}T$ 值隨溫度下降而下降, 到 5 K 時 $_{M}T$ 值為 11.83 emu K mol^{-1} , 直到 2 K 時 $_{M}T$ 值急據下降值為 10.85 emu K mol^{-1} 。化合物 5() 在 300 K 時 , $_{M}T$ 值為 14.56 emu K mol^{1} , 之後 $_{M}T$ 值隨溫度下降而下 降,到5K時 $_{M}T$ 值為10.69 emu K mol^{1} ,直到2K 時 $_{M}T$ 值急據下降 值為 9.85 emu K mol⁻¹。

假設基態 S=4, 且 g 值設為 2, 代入公式(2.2), $_{M}T$ 值應為 10.0 emu

K mol¹。若基態 S = 5, g = 2, $_{M}T$ 值應為 15.0 emu K mol¹。將化合物 5 在 5 K 時 $_{M}T$ 值,其 $_{M}T$ 值介於 10.7 ~ 12.1 emu K mol¹,因此推測化合物 5 其基態應為 S = 5。

圖 3-4 化合物 5 的直流磁化率 $_{M}T$ 與溫度作圖。

3-3-2 交流磁化率

將新鮮(從母液取出放置約十分鐘)化合物 5.10H₂O 裝入膠囊中,以正二十烷覆蓋樣品防止測量時跳動,以 7種頻率分別為 100、250、500、1k、2.5k、5k、10k Hz,測量在 1.8 K到 5.3 K溫度範圍內的磁性變化,結果分別為實數部分[圖 3-5(A)]與虛數部分[圖 3-5(B)]。

在圖 3-5(A)中, 頻率 10k Hz 其 MT 在 5.3 K 的值為 11.78 emu K mol^{-1} , 之後 $_{M}T$ 值隨溫度下降逐漸下降, 直到 2 K 時 $_{M}T$ 值為 7.95 emuK mol¹。頻率 5k Hz 其 $_{M}T$ 在 5.3 K 的值為 11.83 emu K mol¹ , 之後 $_{M}T$ 值隨溫度下降逐漸下降,直到2 K 時 $_{M}T$ 值為8.54 emu K mo 1° 。頻率2.5kHz 其 $_{M}T$ 在 5.3 K 的值為 11.88 emu K mol^{1} , 之後 $_{M}T$ 值隨溫度下降逐 漸下降,直到2K時 $_{M}T$ 值為 9.12 emu K mo I^{1} 。頻率 1k Hz 其 $_{M}T$ 在 5.3 K 的值為 $11.89 \text{ emu K mol}^1$, 之後 MT 值隨溫度下降逐漸下降,直 到 2 K 時 $_{M}T$ 值為 9.74 emu K mol¹。 頻率 500 Hz 其 $_{M}T$ 在 5.3 K 的值 為 $11.91 \text{ emu K mol}^1$,之後 $_{M}T$ 值隨溫度下降逐漸下降,直到 2 K 時_MT 值為 10.13 emu K mol¹。頻率 250 Hz 其 _MT 在 5.3 K 的值為 11.8 emu K mol^{-1} , 之後 $_{M}T$ 值隨溫度下降逐漸下降,直到 2 K 時 $_{M}T$ 值為 10.43 emu $K \text{ mol}^1$ 。頻率 100 Hz 其 MT 在 5.3 K 的值為 12.17 emu $K \text{ mol}^1$, 之後 $_{M}T$ 值隨溫度下降逐漸下降,直到 2 K 時 $_{M}T$ 值為 10.79 emu K mot^{1} 。 由各頻率在 5.3 K時 $_{M}T$ 值數據推測,其值會趨向定值 $_{M}T=11.89$ emu K

 mol^{-1} ,與直流磁化率在 5 K測量的 $_{M}T=12.1$ emu K mol^{-1} 接近,其基態 為 S=5。

虚數部分,從圖 3-5(B)中,頻率 10k Hz 其 $_{\it M}$ " 在 5.3 K 的值為 -3.34 \times 10^{-3} emu mo Γ^1 , 之後 M" 值隨著溫度下降磁化率增加,直到 2 K 時 $_{M}$ " 值為 5.56 × 10^{-1} emu mo Γ^{1} 。頻率 5k Hz 其 $_{M}$ " 在 5.3 K 的值為 1 × 10^{-2} emu mo Γ^1 , 之後 M"值隨著溫度下降磁化率增加,直到 2 K 時 M" 值為 5.86 × 10⁻¹ emu mol¹。頻率 2.5k Hz 其 _M"在 5.3 K 的值為 1.29 × 10^{-2} emu mo Γ^1 , 之後 $_M$ " 值隨著溫度下降磁化率增加,直到 $2\,\mathrm{K}$ 時 值為 5.57×10^{-1} emu mol 1 。 頻率 1k Hz 其 $_M$ " 在 5.3 K的值為 5.97×10^{-3} emu mo Γ^1 , 之後 M 值隨著溫度下降磁化率增加,直到 2 K 時 M " 值為 4.63 × 10⁻¹ emu mol⁻¹。頻率 500 Hz 其 _M"在 5.3 K的值為 4.56 × 10^{-3} emu mo Γ^1 ,之後 $_M$ " 值隨著溫度下降磁化率增加,直到 2~K 時 $_M$ " 值為 3.76 × 10⁻¹ emu mol⁻¹。頻率 250 Hz 其 _M"在 5.3 K的值為 6.58 × 10^{-3} emu mo Γ^1 , 之後 $_M$ "值隨著溫度下降磁化率增加,直到 2~K 時 $_M$ " 值為 2.82×10^{-1} emu mol 编 頻率 100 Hz 其 $_{M}$ " 在 5.3 K 的值為 6.9×10^{-3} emu mo Γ^1 , 之後 $_M$ "值隨著溫度下降磁化率增加,直到 2 K 時 $_M$ "值 為 1.78×10^{-1} emu mo I^1 。由於需更低溫才能測到訊號最大值,因此不能 求得不等方向性能量(anisotropy energy)及 t₀ (attempt frequency)值。

圖 3-5 (A) 新鮮化合物 5 的交流磁化率實數部分。

(B) 新鮮化合物 5 的交流磁化率虚數部分。

為了要瞭解分子是否具有晶格溶劑效應(solvate effected),將新鮮樣品取出,放置真空烘箱五天,抽除晶格溶劑。樣品裝入膠囊中,以正二十烷覆蓋樣品送測。其結果為實數部分[圖 3-6(A)]與虛數部分[圖 3-6(B)]。

在圖 3-6(A)中, 頻率 10k Hz 其 MT 在 5.3 K 的值為 11.52 emu K mol^{-1} , 之後 $_{M}T$ 值隨溫度下降逐漸下降 , 直到 2 K 時 $_{M}T$ 值為 9.0 emu K mol^{-1} 。頻率 5k Hz 其 MT 在 5.3 K 的值為 11.57 emu K mol^{-1} , 之後 MT值隨溫度下降逐漸下降,直到2 K 時 $_{M}T$ 值為9.41 emu K mo I^{1} 。頻率2.5k Hz 其 $_{M}T$ 在 5.3 K 的值為 11.62 emu K mol¹, 之後 $_{M}T$ 值隨溫度下降逐 漸下降,直到2K時 $_{M}T$ 值為 9.76 emu K mol¹。頻率 1k Hz 其 $_{M}T$ 在 5.3 K 的值為 $11.62 \text{ emu K mol}^1$, 之後 $_{M}T$ 值隨溫度下降逐漸下降 , 直 到 2 K 時 $_{M}T$ 值為 10.11 emu K mo Γ^{1} 。頻率 500 Hz 其 $_{M}T$ 在 5.3 K 的值 為 $11.58 \, \text{emu K mol}^1$, 之後 $_{M}T$ 值隨溫度下降逐漸下降, 直到 $2 \, \text{K}$ 時 $_MT$ 值為 10.3 emu K mo I^1 。 頻率 250 Hz 其 $_MT$ 在 5.3 K 的值為 11.67 emu K mol^{1} , 之後 $_{M}T$ 值隨溫度下降逐漸下降,直到 2 K 時 $_{M}T$ 值為 10.53emu K mol¹。頻率 100 Hz 其 MT 在 5.3 K 的值為 11.86 emu K mol¹, 之 後 $_{M}T$ 值隨溫度下降逐漸下降,直到 2 K 時 $_{M}T$ 值為 10.68 emu K mol¹。 由各頻率在 5.3 K時 $_{M}T$ 值數據推測,其值會趨向定值 $_{M}T=11.63$ emu K mol^{-1} , 與直流磁化率在 5 K 測量的 $_{M}T = 11.56$ emu K mol^{-1} 接近, 其基態 為 S = 5。

虚數部分,從圖 3-6(B)中,頻率 10k Hz 其 $_{\it M}$ "在 5.3 K 的值為-5.29 $\times 10^{-3}$ emu mol¹, 之後 M" 值隨著溫度下降磁化率增加,直到 2 K 時 _M"值為 4.12 × 10⁻¹ emu mol⁻¹。頻率 5k Hz 其 _M"在 5.3 K 的值為 9.09 \times 10^{-3} emu mo Γ^1 , 之後 M " 值隨著溫度下降磁化率增加 , 直到 $2~\mathrm{K}$ 時 $_{M}$ " 值為 3.98 × 10^{-1} emu mo l_{0}^{1} 頻率 2.5k Hz其 $_{M}$ " 在 5.3 K的值為 9.46 \times 10^{-2} emu mol $^{-1}$, 之後 $_{M}$ " 值隨著溫度下降磁化率增加 , 直到 $2~\mathrm{K}$ 時 $_M$ " 值為 3.5 × 10^{-1} emu mo 1^{-1} 。 頻率 1k Hz 其 $_M$ " 在 5.3 K 的值為 7.15 × 10^{-3} emu mo Γ^1 , 之後 $_M$ " 值隨著溫度下降磁化率增加,直到 2~K 時 $_M$ " 值為 2.71 × 10⁻¹ emu mol¹。頻率 500 Hz 其 _M"在 5.3 K的值為 6.13 × 10^{-3} emu mo Γ^1 , 之後 $_M$ "值隨著溫度下降磁化率增加,直到 2~K 時 $_M$ " 值為 2.16 × 10⁻¹ emu mol¹。頻率 250 Hz 其 _M"在 5.3 K的值為 1.22 × 10^{-3} emu mo Γ^1 , 之後 $_M$ " 值隨著溫度下降磁化率增加,直到 2~K 時 $_M$ " 值為 1.7×10^{-1} emu mo I_{\circ}^{1} 頻率 100 Hz 其 $_{M}$ " 在 5.3 K 的值為 -6.31×10^{-6} emu mo Γ^1 , 之後 M"值隨著溫度下降磁化率增加,直到 2 K 時 M"值 為 9.99×10^{-2} emu mol¹。由於需更低溫才能測到訊號最大值,因此不能 求得不等方向性能量(anisotropy energy)及 t₀ (attempt frequency)值。

圖 3-6 (A) 抽乾化合物 5 的交流磁化率實數部分。

(B) 抽乾化合物 5 的交流磁化率虚數部分。

3-4 結論

化合物 5 是由 8 個二苯基磷酸根取代 8 個醋酸根。由於二苯基磷酸根立體障礙太大,所以 4 個二苯基磷酸根與 4 個醋酸根以交錯形式分佈在赤道位置。另外 4 個二苯基磷酸根與 4 個醋酸根以交錯形式分佈在軸位置。從直流磁化率與交流磁化率實數部分, $_{M}T$ 值介於 $10.7 \sim 12.1$ emu $_{M}K$ mo $_{L}^{-1}$,顯示其基態為 $_{L}S=5$ 。而交流磁化率虚數部分在化合物 $_{L}S=5$ 0 时 $_{L}S=5$ 0 种 $_{L}S=5$ 0 本需測更低溫才有遲緩現象。所以含 $_{L}S=5$ 0 种 $_{L}S=5$ 0 种 $_{L}S=5$ 0 种 $_{L}S=5$ 0 本需測更低溫才有遲緩現象。所以含 $_{L}S=5$ 0 种 $_{L}S=5$ 0 和 $_{L}S=5$ 0 种 $_{L}S=5$ 0 种 $_{L}S=5$ 0 种 $_{L}S=5$ 0 和 $_{L}S=5$ 0 和

第四章

[PPh4][Mn8Fe4O12(O2CCHCl2)16(H2O)4]的合成與磁性

4-1 合成

化合物依下列反應式合成:

[Mn₈Fe₄O₁₂(O₂CCH₂Cl)₁₆(H₂O)₄] (化合物 6)

取醋酸鐵(8.9663 克,0.0451 mol),加入一氯醋酸(47.807 克,0.5059 mol)在 20 mL 去離子水攪拌,直到完全溶解。緩緩加入高錳酸鉀(2.0367 克,0.013 mol),溶液呈現黑棕色後,攪拌十五分鐘。在室溫靜置一天後,得到黑褐色沉澱物。以 2 mL 丙酮清洗沉澱物,抽乾。取 75 mL 二氯甲烷溶黑褐色沉澱物,過濾。將 75 mL 正己烷緩緩注入於二氯甲烷溶液上,再結晶。一天後,得黑色固體 1.8621 克,產率約 47%。IR 光譜 (KBr,cm⁻¹):

3418(m), 3012(w), 2956(w), 1701(m), 1581(vs), 1430(vs), 1372(w), 1259(s), 955(w), 934(w), 797(s), 685(m), 645(m), 605(s), 561(m), 518(w)_o

[Mn₈Fe₄O₁₂(O₂CCHCl₂)₁₆(H₂O)₄] (化合物 7)

將化合物 **6**(1.8473 克,0.7625 mmol),加入二氯醋酸(3.9332 克,30.505 mmol)在 50 mL 二氯甲烷中,攪拌一天,進行取代。過濾,將 100 mL 正己烷緩緩注入於二氯甲烷溶液上。數天後,得到黑色顆粒狀晶體。再進行取代步驟兩次。得到黑色長條狀晶體 1.5886 克,產率約 64%。IR 光譜 (KBr,cm⁻¹): 3422(m), 3015(w), 1611(vs), 1415(vs), 1368(w), 1226(s), 963(m), 825(s), 785(m), 715(w), 686(w), 644(w), 603(m), 562(w), 513(w)。

[PPh₄][Mn₈Fe₄O₁₂(O₂CCHCl₂)₁₆(H₂O)₄] (化合物 8)

將化合物 7(0.5035 克,0.1693 mmol)溶在 25 mL 二氯甲烷中,攪拌溶解。加入等量莫耳數碘化四苯基磷化物(0.0792 克,0.1698 mmol),攪拌 30 分鐘。將濾液抽乾。抽乾後再加入 25 mL 二氯甲烷攪拌,重覆抽乾步驟,直至抽出的溶液無粉紅色(I₂)為止。再加 25 mL 二氯甲烷溶解,過濾。將 50 mL 正己烷緩緩注入於二氯甲烷溶液上,數天後,得到黑色方形晶

體 0.4891 克,產率約 86%。 晶體結構是在 hexane/CHCl3 室溫下獲得。 IR 光譜 (KBr,cm⁻¹): 3015(m), 1623(vs), 1484(m), 1437(m), 1409(vs), 1223(vs), 1109(vs), 997(m), 958(s), 824(vs), 784(s), 723(s), 689(m), 元 素 析 結 646(m), 608(s),561(m), 527(s) • 分 果 [PPh₄][Mn₈Fe₄O₁₂(O₂CCHCl₂)₁₆(H₂O)₄] -C₆H₁₄ (C₆₂H₅₈Cl₃₂Fe₄Mn₈O₄₈P) ,實 驗值(理論值), C: 21.21% (21.91%) H: 1.74% (1.72%); Mn: 13.94% (12.93%); Fe: 5.85% (6.57%).

4-2 單晶 X-ray 繞射分析結果與討論

4-2-1 化合物 8 結構分析

晶體大小為 0.30 x 0.30 x 0.23 mm, 自動繞射儀 1.38 27.50°。 結構為立方晶系(Cubic), I43m 空間群: a = 29.5128(2) Å, V = 25705.8(3) Å³, Z = 6, D(calcd.) = 1.284 Mg/m³, h, k, l 的範圍是-35 h 38, -36 k 26, -35 l 34。 共收集到 77312 繞射點,其中有 5350 為獨立繞射點。吸收度校正最大及最小收集的轉換係數(transmission factor)為 0.536 及 0.403。利用最小平方精算至收斂後,其最後之可性度值為 R1 = 0.0865, wR2 = 0.2416, GoF = 1.099, 晶體結構列於圖 4-1。 晶體繞射數據詳見表 4-1。 原子座標、鍵長及鍵角數據分別列於附表 10、11。

化合物 8 其結構中心由 4 個 Mn 所構成 Mn_4O_4 立方體,Mn 以八面體的方式鍵結。外圍 4 個 Mn 及 4 個 Fe 以近平面方式環繞在 Mn_4O_4 四周,並以 μ_3 - O^2 與 Mn_4O_4 立方體連接。4 個 Mn 經由兩個 μ_3 - O^2 及一個 μ_2 -羧基與每一個 Mn 鍵結。4 個 Fe 經由兩個 μ_3 - O^2 架橋與兩個不同的 Mn 鍵結。

圖 4-1 化合物 8 之 ORTEP 晶體結構圖,其配位基-HCl₂及共軛離子[PPh₄] 則省略。

表 4-1 化合物 8 之單晶繞射數據表

Formula weight 3313.20
Temperature 150(1) K
Wavelength 0.71073 Å
Crystal system Cubic
Space group I43m

Unit cell dimensions a = 29.5128(2) Å

Volume, z $25705.8(3) \text{ Å}^3$, 6 Density (calculated) 1.284 Mg/m^3 Absorption coefficient 1.458 mm^{-1}

F(000) 9762

Crystal size 0.30 x0.30 x0.23 mm

range for data collection 1.38 to 27.50°

Limiting indices -35 h 38, -36 k 26, -35 l 34

Reflections collected 77312

Independent reflections 5350 ($R_{int} = 0.0376$)

Completeness to $= 27.50^{\circ}$ 99.9%

Absorption correction Semi-empirical from equ alents

Max. and min. transmission 0.536 and 0.403

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 5350 / 3 / 171

Goodness-of-fit on F^2 1.099

Final *R* indices [I>2s(I)] R1 = 0.0865, wR2 = 0.2416 R indices (all data) R1 = 0.1000, wR2 = 0.2611

Absolute structure parameter -0.03(4)

Extinction coefficient 0.00071(12)

Largest diff. peak and hole $1.748 \text{ and } -1.349 \text{ eÅ}^{-3}$

將化合物 8 中,每個金屬與氧的鍵長代入 BVS,求出金屬離子的氧化態,其結果為表 4-2。結構中 Mn_4O_4 立方體 Mn(1)值為 3.91,為 Mn形式。外圍 Mn(2),若為 Mn,其值為 3.20;若為 Fe ,其值為 3.19。而 Fe(3),若為 Mn ,其值為 3.12;若為 Fe ,其值為 3.11。化合物 8 推論 其氧化態為 Mn_4 Fe_4 Mn_3 Mn ,但 BVS 無法找出 Mn 位置,在文獻上 還原態 $[PPh_4][Mn_{12}O_{12}(O_2CPh)_{16}(H_2O)_4]$ 也有相似情形。(109)

表 4-2 化合物 8 之 BVS 金屬氧化態價數

atom	Fe	Mn	Mn	Mn
Mn(1)	3.970307	4.317287	3.981052	3.906443
Mn(2)	3.19164	3.47057	3.200278	3.140302
Fe(3)	3.113602	3.385712	3.122029	3.063518

將金屬和氧的鍵長列於表 4-3, Mn(1)-O 鍵長範圍為 1.852 到 1.951。 和本實驗室發表[PPh_4][$Mn_{12}O_{12}(O_2CCHCl_2)_{16}(H_2O)_4$]的 Mn -O 的鍵長範圍 1.899 到 1.960 相近,從鍵長可判斷 Mn(1)為 Mn 。 而高自旋的 Mn (d^4)有 Jahn-Teller 拉長軸,Fe (d^5)則沒有。Mn(2)-O 在赤道鍵長範圍為 1.881 到 1.970,軸鍵長為 2.215 到 2.168。Mn(2)清楚顯示出 Jahn-Teller 拉長軸。圖 2-8 為化合物 8 的 Mn (d^4)的 Jahn-Teller 拉長軸方向(黑色粗線)。Fe(3)-O 在鍵長範圍為 1.920 到 2.070,而[Mn_8 Fe $_4O_{12}(O_2CMe)_{16}(H_2O)_4$]

的 Fe -O 鍵長範圍為 1.925 到 2.097,並沒有明顯的拉長軸。因此從 Jahn-Teller 拉長軸可區分 Mn 及 Fe 。圖 4-3 為化合物 8 在晶格中的排列情形,在晶格中每個分子的磁性主軸各沿著 a b, c 軸方向呈現平行。

表 4-3 化合物 8 金屬和氧的鍵長

Mn(1)-O(4)	Mn(1)-O(2)	Mn(1)-O(14)	Mn(1)-O(1)#1	Mn(1)-O(3)	Mn(1)-O(1)
1.852	1.937	1.906	1.904	1.867	1.951
Mn(2)-O(6)	Mn(2)-O(4)	Mn(2)-O(6)#1	Mn(2)-O(2)	Mn(2)-O(8)	Mn(2)-O(2)#1
1.970	2.215	1.970	1.881	2.168	1.881
Fe(3)-O(5)	Fe(3)-O(3)	Fe(3)-O(2)	Fe(3)-O(2)	Fe(3)-O(3)	Fe(3)-O(5)
2.032	2.070	1.920	1.920	2.070	2.032

圖 4-2 化合物 8 的 Mn Jahn-Teller 拉長軸方向。

圖 4-3 化合物 8 在晶格中的排列情形。

4-3 電化學

電化學測量是採用循環伏安法(Cyclic Voltammetry, CV)及差異脈衝伏安法(Differential pulse voltammogram, DPV),將樣品溶於 $CH_2Cl_2(用分子篩除水)$ 配製成濃度為 0.1 mM 的溶液,加入 0.1 M 的電解質([$CH_3(CH_2)_3$]₄N. PF₆)。以 Ag/AgCl 電極作為參考電極,玻璃碳(glass-carbon)為工作電極和 Pt 輔助電極,電位的掃描速率為 100 mV /sec,在氦氣下進行。

圖 4-4 為化合物 7 的循環伏安與差異脈衝伏安圖。靜止電位為 1.19 V,由差異脈衝伏安圖,其 0.99 V、0.59 V 及 0.31 V 為不可逆的還原波。在相同條件下,二茂鐵(ferrocene)在 $E_{1/2}=0.48$ V 呈現一個電子的可逆氧化-還原波。

圖 4-5 為化合物 8 的循環伏安與差異脈衝伏安圖。靜止電位為 0.35 V,由差異脈衝伏安圖,其 0.12 V及-0.28 V為不可逆的還原波,0.68 V 為半可逆的氧化波,而在 1.04 V為不可逆的氧化波。在相同條件下,二茂鐵(ferrocene)在 $E_{1/2}=0.50$ V呈現一個電子的可逆氧化-還原波。

將化合物 8 與化合物 7 的差異脈衝伏安圖比較, 化合物 8 有明顯的可逆的氧化波,可證明化合物 8 還原一個電子。

圖 4-4 (A) 化合物 7 的循環伏安圖。

(B) 化合物 7 的差異脈衝伏安圖。

圖 4-5 (A) 化合物 8 的循環伏安圖。

(B) 化合物 8 的差異脈衝伏安圖。

4-4 直流磁化率

在外加磁場 1 kOe 下,化合物 8 從溫度 2 K 到 300 K 的磁性為圖 4-\$ 在 300 K 時 $_MT$ 值為 15.41 emu K mo Γ^1 ,之後 $_MT$ 值随溫度下降而下降,到 5 K 時 $_MT$ 值為 7.07 emu K mo Γ^1 ,直到 2 K 時 $_MT$ 值為 6.42 emu K mo Γ^1 。化合物 8 與化合物 2 3 4 比較,金屬氧化態從 Mn 還原為 Mn。假設基態 S = 5/2,g = 2,代入公式(2.2), $_MT$ 值應為 4.38 emu K mo Γ^1 。若基態 S = 7/2,g = 2, $_MT$ 值應為 7.88 emu K mo Γ^1 。因此從化合物 8 在 5 K 時 $_MT$ 值,推測其基態應為 S = 7/2。

圖 4-6 化合物 8 的直流磁化率 $_{M}T$ 與溫度作圖。

4-5 交流磁化率

將新鮮(從母液取出放置約十分鐘)化合物 8.2C₆H₁₄裝入膠囊中,以正二十烷覆蓋樣品防止測量時跳動,以7種頻率分別為100、250、500、1k、2.5k、5k、10k Hz,測量在1.8 K到5.3 K溫度範圍內的磁性變化,結果分別為實數部分[圖4-6(A)]與虛數部分[圖4-6(B)]。

在圖 4-6(A)中,各頻率在溫度 2.4 K 到 3.4 K 形成一個階梯狀。頻率 10k Hz 其 $_{M}T$ 在 5.3 K 的值為 5.44 emu K mol¹, 之後 $_{M}T$ 值隨溫度下降 而下降,直到2K時 $_{M}T$ 值為 2.42 emu K mol^{1} 。頻率 $5\mathrm{k}$ Hz 其 $_{M}T$ 在 $5.3~\mathrm{K}$ 的值為 $5.46~\mathrm{emu}~\mathrm{K}~\mathrm{mol}^1$,之後 $_{M}T$ 值隨溫度下降而下降,直到 $2~\mathrm{K}$ $_{M}T$ 值為 2.51 emu K mol¹。頻率 2.5k Hz 其 $_{M}T$ 在 5.3 K 的值為 5.49 emu K mol^1 , 之後 $_{\it M}T$ 值隨溫度下降而下降,直到 2 K 時 $_{\it M}T$ 值為 2.6emu K mol¹。頻率 1k Hz 其 MT 在 5.3 K 的值為 5.5 emu K mol¹, 之後 $_{M}T$ 值隨溫度下降而下降,直到 2 K 時 $_{M}T$ 值為 2.69 emu K mol¹。頻 率 500 Hz 其 $_{M}T$ 在 5.3 K 的值為 5.52 emu K mol¹, 之後 $_{M}T$ 值隨溫度 下降而下降,直到 2 K 時 $_{M}T$ 值為 2.79 emu K mo Γ^{1} 。 頻率 250 Hz 其 $_{M}T$ 在 5.3 K 的值為 5.58 emu K mol¹, 之後 $_{M}T$ 值隨溫度下降而下降, 直到 2 K 時 $_{M}T$ 值為 2.89 emu K mo Γ^{1} 。 頻率 100 Hz 其 $_{M}T$ 在 5.3 K 的 值為 5.63 emu K mol^1 , 之後 MT 值隨溫度下降而下降 , 直到 2 K H = MT值為 2.93 emu K mol^1 。由各頻率在 $5.3 \text{ K 時 }_{M}T$ 值推測,其值會趨向定

值 $_{M}T = 5.52 \text{ emu K mol}^{1}$,推測其基態 S = 7/2。

虚數部分,圖 4-6(B)在溫度 2.4 到 3.4K 出現磁緩現象。但由於訊號並沒有按照頻率低時,其虛數最大值出現在較低的溫度,頻率高時,其虛數最大值出現在較高的溫度,且雜訊很多。因此求得不等方向性能量 (anisotropy energy)以及 t_0 (attempt frequency)值會有很大誤差。

圖 4-7 (A) 新鮮化合物 8 的交流磁化率實數部分。

(B) 新鮮化合物 8 的交流磁化率虚數部分。

4-6 結論

還原態[PPh4][Mn8Fe4O12(O2CCHCl2)16(H2O)4]化合物 8 從直流磁化率與交流磁化率實數部分, $_{M}T$ 值介於 $4.7 \sim 5.6$ emu K mol^{-1} ,顯示其基態為 S=7/2。而交流磁化率實數與虛數部分均顯示在低溫有磁緩現象,但由於交流磁化率虛數部分雜訊很多。因此無法求得不等方向性能量(anisotropy energy)以及 t_{0} (attempt frequency)值。但由電化學,化合物 8 與化合物 7 的差異脈衝伏安圖比較,化合物 8 有明顯的可逆的氧化波,可證明化合物 8 還原一個電子。

0

參考文獻

- (1) Gatteschi, D.; Sessoli, R. Angew. Chem. Int. Ed., 2003, 42, 268.
- (2) Aubin, S. M. J.; Wemple, M. W.; Adams, D. M.; Tsai, H.-L.; Christou, G; Hendrickson, D. N. J. Am. Chem. Soc., 1996, 118, 7746.
- (3) Aubin, S. M. J.; Dilley, N. R.; Pardi, L.; Krzystek, J.; Wemple, M. W.; Brunel, L. C.; Maple, M. B.; Christou, G; Hendrickson, D. N. *J. Am. Chem. Soc.*, **1998**, *120*, 4991.
- (4) Andres, H.; Basler, R.; Gudel, H. U.; Aromi, G; Christou, G; Buttner, H.; Ruffle, B. J. Am. Chem. Soc., **2000**, 122, 12469.
- (5) Yoo, J.; Yamaguchi, A.; Nakano, M.; Krzystek, J.; Streib, W. E.; Brunel, L. C.; Ishimoto, H.; Christou, G.; Hendrickson, D. N. *Inorg. Chem.*, **2001**, *40*, 4604.
- (6) Sanudo, E. C.; Grillo, V. A.; Yoo, J.; Huffman, J. C.; Bollinger, J. C.; Hendrickson, D. N.; Christou, G. *Polyhedron*, **2001**, *20*, 1269.
- (7) Aliaga, N.; Folting, K.; Hendrickson, D. N.; Christou, G. *Polyhedron*, **2001**, 20, 1273.
- (8) Bhattacharjee, A.; Miyazaki, Y.; Nakano, M.; Yoo, J.; Christou, G; Hendrickson, D. N.; Sorai, M. *Polyhedron*, **2001**, *20*, 1607.
- (9) Sanudo, E. C.; Grillo, V. A.; Knapp, M. J.; Bollinger, J. C.; Huffman, J. C.; Hendrickson, D. N.; Christou, G. *Inorg. Chem.*, **2002**, *41*, 2441.
- (10) Wernsdorfer, W.; Allaga-Alcalde, N.; Hendrickson, D. N.; Christou, G. *Nature*, **2002**, *416*, 406.
- (11) Yang, E. C.; Harden, N.; Wernsdorfer, W.; Zakharov, L.; Brechin, E. K.; Rheingold, A. L.; Christou, G; Hendrickson, D. N. *Polyhedron*, **2003**, 22, 1857.
- (12) Boskovic, C.; Bircher, R.; Tregenna-Piggott, P. L. W.; Gudel, H. U.; Paulsen, C.; Wernsdorfer, W.; Barra, A. L.; Khatsko, E.; Neels, A.; Stoeckli-Evans, H. *J. Am.*

- Chem. Soc., 2003, 125, 14046.
- (13) Milios, C. J.; Raptopoulou, C. P.; Terzis, A.; Lloret, F.; Vicente, R.; Perlepes, S. P.; Escuer, A. *Angew. Chem. Int. Edit.*, **2004**, *43*, 210.
- (14) Eppley, H. J.; Aubin, S. M. J.; Wemple, M. W.; Adams, D. M.; Tsai, H. -L.; Castro, S. L.; Sun, Z.; Huffman, J. C.; Folting, K.; Christou, G; Hendrickson, D. N. *Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A*, **1997**, *305*, 167.
- (15) Lis, T. Acta Cryst. Sect. B, 1980, 36, 2042.
- (16) Boyd, P. D. W.; Li, Q.; Vincent, J. B.; Folting, K.; Chang, H. R.; Streib, W. E.; Huffman, J. C.; Christou, G; Hendrickson, D. N. J. Am. Chem. Soc., 1988, 110, 8537.
- (17) Sessoli, R.; Tsai, H.-L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G; Hendrickson, D. N. J. Am. Chem. Soc., 1993, 115, 1804.
- (18) Eppley, H. J.; Tsai, H. -L.; Vries, N. D.; Folting, K.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc., **1995**, 117, 301.
- (19) An, J.; Chen, Z.-D.; Bian, J.; Chen, J.-T.; Wang, S.-X.; Gao, S.; Xu, G.-X. *Inorg. Chim. Acta*, **2000**, 299, 28.
- (20) Tsai, H.-L.; Jwo, T.-Y.; Lee, G.-H.; Wang, Y. Chem Lett, 2000, 346.
- (21) Soler, M.; Chandra, S. K.; Ruiz, D.; Davidson, E. R.; Christou, G; Hendrickson, D. N. Chem. Commun., 2000, 2417.
- (22) Soler, M.; Chandra, S. K.; Ruiz, D.; Huffman, J. C.; Christou, G; Hendrickson, D. N. *Polyhedron*, **2001**, *20*, 1279.
- (23) Aubin, S. M. J.; Sun, Z.; Eppley, H. J.; Rumberger, E. M.; Guzei, I. A.; Folting, K.; Gantzel, P. K.; Rheingold, A. L.; Christou, G.; Hendrickson, D. N. *Inorg. Chem.*, **2001**, *40*, 2127.
- (24) Aubin, S. M. J.; Sun, Z. M.; Eppley, H. J.; Rumberger, R. M.; Guzei, I. A.; Folting,

- K.; Gantzel, P. K.; Rheingold, A. L.; Christou, G; Hendrickson, D. N. *Polyhedron*, **2001**, *20*, 1139.
- (25) Kuroda-Sowa, T.; Nakano M.; Christou, G; Hendrickson, D. N. *Polyhedron*, **2001**, 20, 1529.
- (26) Soler, M.; Artus, P.; Folting, K.; Huffman, J. C.; Hendrickson, D. N.; Christou, G. *Inorg. Chem.*, **2001**, *40*, 4902.
- (27) Park, C. D.; Rhee, S. W.; Kim, Y. J.; Jeon, W. S.; Jung, D. K.; Kim, D. H.; Do, Y.; Ri, H. C. *Bull. Korean. Chem. Soc.*, **2001**, 22, 453.
- (28) Artus, P.; Boskovic, C.; Yoo, J.; Streib, W. E.; Brunel, L. C.; Hendrickson, D. N.; Christou, G. *Inorg. Chem.*, **2001**, *40*, 4199.
- (29) Kuroda-Sowa, T.; Lam, M.; Rheingold, A. L.; Frommen, C.; Reiff, W. M.; Nakano, M.; Yoo, J.; Maniero, A. L.; Brunel, L. C.; Christou, G; Hendrickson, D. N. *Inorg. Chem.*, 2001, 40, 6469.
- (30) Boskovic, C.; Pink, M.; Huffman, J. C.; Hendrickson, D. N.; Christou, G. J. Am. Chem. Soc., 2001, 123, 9914.
- (31) Tsai, H.-L.; Chen, D. M.; Yang, C. I.; Jwo, T. Y.; Wur, C. S.; Lee, G. H.; Wang, Y. *Inorg. Chem. Commun.*, **2001**, *4*, 511.
- (32) An, J.; Chen, Z. D.; Zhang, X. X.; Raubenheimer, H. G; Esterhuysen, C.; Gao, S.; Xu, G. X. *J. Chem. Soc. Dalton.*, **2001**, 3352.
- (33) Ruiz-Molina, D.; Gerbier, P.; Rumberger, E.; Amabilino, D. B.; Guzei, I. A.; Folting, K.; Huffman, J. C.; Rheingold, A.; Christou, G.; Veciana, J.; Hendrickson, D. N. *J. Mater. Chem.*, **2002**, *12*, 1152.
- (34) Brockman, J. T.; Abboud, K. A.; Hendrickson, D. N.; Christou, G *Polyhedron*, **2003**, 22, 1765.
- (35) Kuroda-Sowa, T.; Nogami, T.; Konaka, H.; Maekawa, M.; Munakata, M.; Miyasaka, H.; Yamashita, M. *Polyhedron*, **2003**, *22*, 1795.

- (36) Soler, M.; Wernsdorfer, W.; Abboud, K. A.; Huffman, J. C.; Davidson, E. R.; Hendrickson, D. N.; Christou, G. J. Am. Chem. Soc., 2003, 125, 3576.
- (37) Soler, M.; Wernsdorfer, W.; Abboud, K. A.; Hendrickson, D. N.; Christou, G. *Polyhedron*, 2003, 22, 1777.
- (38) Soler, M.; Wernsdorfer, W.; Sun, Z. M.; Ruiz, D.; Huffman, J. C.; Hendrickson, D. N.; Christou, G. *Polyhedron*, **2003**, 22, 1783.
- (39) Chakov, N. E.; Wernsdorfer, W.; Abboud, K. A.; Hendrickson, D. N.; Christou, G. Dalton. T, 2003, 2243.
- (40) Chakov, N. E.; Abboud, K. A.; Zakharov, L. N.; Rheingold, A. L.; Hendrickson, D. N.; Christou, G. *Polyhedron*, **2003**, 22, 1759.
- (41) Zhao, H. H.; Berlinguette, C. P.; Bacsa, J.; Prosvirin, A. V.; Bera, J. K.; Tichy, S. E.; Schelter, E. J.; Dunbar, K. R. *Inorg. Chem.*, **2004**, *43*, 1359.
- (42) Boskovic, C.; Brechin, E. K.; Streib, W. E.; Folting, K.; Christou, G; Hendrickson, D. N. *Chem. Commun.*, **2001**, 467.
- (43) Boskovic, C.; Brechin, E. K.; Streib, W. E.; Folting, K.; Bollinger, J. C.; Hendrickson, D. N.; Christou, G. J. Am. Chem. Soc., 2002, 124, 3725.
- (44) Brechin, E. K.; Boskovic, C.; Wernsdorfer, W.; Yoo, J.; Yamaguchi, A.; Sanudo, E. C.; Concolino, T. R.; Rheingold, A. L.; Ishimoto, H.; Hendrickson, D. N.; Christou, G. J. Am. Chem. Soc., 2002, 124, 9710.
- (45) Sanudo, E C.; Brechin, E K.; Boskovic, C.; Wernsdorfer, W.; Yoo, J.; Yamaguchi, A.; Concolino, T. R.; Abboud, K. A.; Rheingold, A. L.; Ishimoto, H.; Hendrickson, D. N.; Christou, G *Polyhedron*, 2003, 22, 2267.
- (46) Sanudo, E. C.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. *Inorg. Chem.*, **2004**, 43, 4137.
- (47) Soler, M.; Rumberger, E.; Folting, K.; Hendrickson, D. N.; Christou, G. Polyhedron,

- **2001**, 20,1365.
- (48) Soler, M.; Wernsdorfer, W.; Folting, K.; Pink, M.; Christou, G. J. Am. Chem. Soc., **2004**, 126, 2156.
- (49) Barra, A. L.; Caneschi, A.; Cornia, A.; Biani, F. F. de; Gatteschi, D.; Sangregorio, C.; Sessoli, R.; Sorace, L. J. Am. Chem. Soc., 1999, 121, 5302.
- (50) Gatteschi, D.; Sessoli, R.; Cornia, A. Chem. Commun., 2000, 725.
- (51) Barra, A. L.; Gatteschi, D.; Sessoli, R. Chem. Eur. J. 2000, 6, 1608.
- (52) Benelli, C.; Cano, J.; Journaux, Y.; Sessoli, R.; Solan, G. A.; Winpenny, R. E. P. Inorg. Chem., 2001, 40, 188.
- (53) Jones, L. F.; Brechin, E. K.; Collison, D.; Helliwell, M.; Mallah, T.; Piligkos, S.; Rajaraman, G; Wernsdorfer, W. *Inorg. Chem.*, **2003**, *42*, 6601.
- (54) Goodwin, J. C.; Sessoli, R.; Gatteschi, D.; Wernsdorfer, W.; Powell , A. K.; Heath, S. L. J. Chem. Soc., Dalton Trans., 2000, 1835.
- (55) Sun, Z. M.; Grant, C.M.; Castro, S. L.; Hendrickson, D. N.; Christou, G. Chem. Commun., 1998, 721.
- (56) Castro, S. L.; Sun, Z.; Grant, C. M.; Bollinger, J. C.; Hendrickson, D. N.; Christou, G. J. Am. Chem. Soc., 1998, 120, 2365.
- (57) Yang, E. C.; Hendrickson, D. N.; Wernsdorfer, W.; Nakano, M.; Zakharov, L. N.; Sommer, R. D.; Rheingold, A. L.; Ledezma-Gairaud, M.; Christou, G. *J. Appl. Phys.*, **2002**, *91*, 7382.
- (58) Nakano, M.; Matsubayashi, G. E.; Muramatsu, T.; Kobayashi, T. C.; Amaya, K.; Yoo, J.; Christou, G.; Hendrickson, D. N. *Mol. Cryst. Liquid. Cryst.*, **2002**, *376*, 405.
- (59) Boskovic, C.; Rusanov, E.; Stoeckli-Evans, H.; Gudel, H. U. *Inorg. Chem. Commun.*, **2002**, *5*(10), 881.

- (60) Hoshino, N.; Ito, T.; Nihei, M.; Oshio, H. Chem. Lett., 2002, 844.
- (61) Yang, E. C.; Wernsdorfer, W.; Hill, S.; Edwards, R. S.; Nakano, M.; Maccagnano, S.; Zakharov, L. N.; Rheingold, A. L.; Christou, G; Hendrickson, D. N. *Polyhedron*, 2003, 22, 1727.
- (62) Cadiou, C.; Murrie, M.; Paulsen, C.; Villar, V.; Wernsdorfer, W.; Winpenny, R. E. P. *Chem. Commun.*, **2001**, 2666.
- (63) Andres, H.; Basler, R.; Blake, A. J.; Cadiou, C.; Chaboussant, G; Grant, C. M.; Gudel, H. U.; Murrie, M.; Parsons, S.; Paulsen, C.; Semadini, F.; Villar, V.; Wernsdorfer, W.; Winpenny, R. E. P. *Chem. Eur. J.*, **2002**, *8*, 4867.
- (64) Ochsenbein, S. T.; Murrie, M.; Rusanov, E.; Stoeckli-Evans, H.; Sekine, C.; Gudel, H. U. *Inorg. Chem.*, **2002**, *41*, 5133.
- (65) Caneschi, A.; Gatteschi, D.; Sessoli, R.; Barra, A. L.; Brunel, L. C.; Guillot, M. J. Am. Chem. Soc., 1991, 113, 5873.
- (66) Hernandez, J. M.; Zhang, X. X.; Luis, F.; Tejada, J.; Friedman, J. R.; Sarachik, M. P.; Ziolo, R. Phys. Rev. B, 1997, 55, 5858.
- (67) Caneschi, A.; Gatteschi, D.; Sessoli, R.; Novak, M. A. *Nature*, **1993**, *365*, 141.
- (68) Thomas, L.; Lionti, F.; Ballou, R.; Gatteschi, D.; Sessoli, R.; Barbara, B. *Nature*, **1996**, *383*, 145.
- (69) Kubo, T; Koshiba, T.; Goto, T.; Oyamada, A.; Fujii, Y.; Takeda, K.; Awaga, K. *Phys. B*, **2001**, *294*, 310.
- (70) Spichkin, Y. I.; Zvezdin, A. K.; Gubin, S. P.; Mischenko, A. S.; Thishin, A. M. J. *Phys. D: Appl. Phys.* **2001**, *34*, 1162.
- (71) Cornia, A.; Affronte, M.; Gatteschi, D.; Jansen, A. G. M.; Caneschi, A.; Sessoli, R. J. Magn. Magn. Mater., 2001, 226, 2012.
- (72) Gomes, A. M.; Novak, M. A.; Nunes, W. C.; Rapp, R. E. J. Magn. Magn. Mater.,

- **2001**, 226, 2015.
- (73) Mertes, K. M.; Zhong, Y.; Sarachik, M. P.; Paltiel, Y.; Shtrikman, H.; Zeldov, E.; Rumberger, E.; Hendrickson, D. N. *J. Appl. Phys.*, **2001**, *89*, 6802.
- (74) Mertes, K. M.; Zhong, Y.; Sarachik, M. P.; Paltiel, Y.; Shtrikman, H.; Zeldov, E.; Rumberger, E.; Hendrickson, D. N.; Christou, G. *Europhys. Lett.*, **2001**, *55*, 874.
- (75) Mertes, K. M.; Zhong, Y.; Sarachik, M. P.; Paltiel, Y.; Shtrikman, H.; Zeldov, E.; Rumberger, E.; Hendrickson, D. N.; Christou, G. J. Appl. Phys., 2002, 91, 7161.
- (76) Mertes, K. M.; Suzuki, Y.; Sarachik, M. P.; Paltiel, Y.; Shtrikman, H.; Zeldov, E.; Rumberger, E.; Hendrickson, D. N.; Christou, *Phys. Rev. B*, **2002**, *65*(21), 2401.
- (77) Mertes, K. M.; Suzuki, Y.; Sarachik, M. P.; Myasoedov, Y.; Shtrikman, H.; Zeldov, E.; Rumberger, E.; Hendrickson, D. N.; Christou, G. *Solid State Commun.*, **2003**, *127*, 131.
- (78) Blinc, R.; Cevc, P.; Arcon, D.; Dalal, N. S.; Achey, R. M. *Phys. Rev. B*, **2001**, 63(21), 2401.
- (79) Sushkov, A. B.; Jones, B. R.; Musfeldt, J. L.; Wang, Y. J.; Achey, R. M.; Dalal, N. S. *Phys. Rev. B*, **2001**, *63*(21), 4408.
- (80) Rudra, L.; Ramasesha, S.; Sen, D. *Phys. Rev. B*, **2001**, *64*(1), 4408.
- (81) Achey, R. M.; Kuhns, P. L.; Reyes, A. P.; Moulton, W. G.; Dalal, N. S. *Phys. Rev. B*, **2001**, *64*(*6*), 4420.
- (82) Achey, R. M.; Kuhns, P. L.; Moulton, W. G; Reyes, A. P.; Dalal, N. S. *Polyhedron*, **2001**, *20*, 1745.
- (83) Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D. *Phys. Rev. B*, **2001**, *64*(*10*), 4401.
- (84) Ghigna, P.; Campana, A.; Lascialfari, A.; Caneschi, A.; Gatteschi, D.; Tagliaferri, A.; Borgatti, F. *Phys. Rev. B*, **2001**, *64*(*13*), 2413.

- (85) Chudnovsky, E. M.; Garanin, D. A. Phys. Rev. Lett., 2001, 87(18), 7203.
- (86) Parks, B.; Loomis, J.; Rumberger, E.; Hendrickson, D. N.; Christou, G *Phys. Rev. B*, **2001**, *64*(*18*), 4426.
- (87) Parks, B.; Vacca, L.; Rumberger, E.; Hendrickson, D. N.; Christou, G. *Phys. B*, **2003**, *329*, 1181.
- (88) Mertes, K. M.; Suzuki, Y.; Sarachik, M. P.; Paltiel, Y.; Shtrikman, H.; Zeldov, E.; Rumberger, E.; Hendrickson, D. N.; Christou, G. *Phys. Rev. Lett.*, **2001**, *87*(22), 7205.
- (89) Bokacheva, L.; Kent, A. D.; Walters, M. A. Polyhedron, 2001, 20, 1717.
- (90) North, J. M.; Achey, R. M.; Dalal, N. S. *Phys. Rev. B*, **2002**, *66*(*17*), 4437.
- (91) North, J. M.; van de. Burgt, L. J.; Dalal, N. S. *Solid State Commun.*, **2002**, 123, 75.
- (92) Hill, S.; Maccagnano, S.; Park, K.; Achey, R. M.; North, J. M.; Dalal, N. S. *Phys. Rev. B*, **2002**, *65*(22), 4410.
- (93) Park, K.; Novotny, M. A.; Dalal, N. S.; Hill, S.; Rikvold, P. A. *Phys. Rev. B*, **2002**, 66(14), 4409.
- (94) Hill, S.; Edwards, R. S.; North, J. M.; Park, K.; Dalal, N. S. *Polyhedron*, **2003**, 22, 1889.
- (95) Hill, S.; Edwards, R. S.; North, J. M.; Maccagnano, S.; Dalal, N. S. *Polyhedron*, **2003**, 22, 1897.
- (96) Hill, S.; Edwards, R. S.; Jones, S. I.; Dalal, N. S.; North, J. M. *Phys. Rev. Lett.*, **2003**, *90*(21), 7204.
- (97) Mcinnes, E. J. L.; Pidcock, E.; Oganesyan, V. S.; Cheesman, M. R.; Powell, A. K.; Thomson, A. J. *J. Am. Chem. Soc.*, **2002**, *124*, 9219.

- (98) North, J. M.; Zipse, D.; Dalal, N. S.; Choi, E. S.; Jobiliong, E.; Brooks, J. S.; Eaton, D. L. Phys. Rev. B, 2003, 67(17), 4407.
- (99) Larionova, J.; Clerac, R.; Boury, B.; Bideau, J. Le; Lecren, L.; Willemin, S. J. *Mater. Chem.*, **2003**, *13*, 795.
- (100) Edwards, R. S.; Hill, S.; Goy, P.; Wylde, R.; Takahashi, S. *Phys. B*, **2004**, *346*, 211.
- (101) Luis, F.; Gonzalez, V.; Millan, A.; Garcia-Palacios, J. L. *Phys. Rev. Lett.*, **2004**, 92(10), 7201.
- (102) Domingo, N.; Williamson, B. E.; Gomez-Segura, J.; Gerbier, P.; Ruiz-Molina, D.; Amabilino, D. B.; Veciana, J.; Tejada, J. *Phys. Rev. B*, **2004**, *69*(*05*), 2405.
- (103) Aubin, S. M. J.; Sun, Z. M.; Guzei, I. A.; Rheingold, A. L.; Christou, G; Hendrickson, D. N. J. Chem. Soc. Chem. Commun., 1997, 2239.
- (104) Sun, Z. M.; Ruiz, D.; Dilley, N. R.; Soler, M.; Ribas, J.; Folting, K.; Maple, M. B.; Christou, G; Hendrickson, D.N. *Chem. Commun.*, **1999**, 1973.
- (105) Soler, M.; Wernsdorfer, W.; Sun, Z. M.; Huffman, J. C.; Hendrickson, D. N.; Christou, G. Chem. Commun., 2003, 2672.
- (106) Schake, A. R.; Tsai, H. -L.; Devries, N.; Webb, R. J.; Folting, K.; Hendrickson, D. N.; Christou, G. J. Chem. Soc. Chem. Commun., 1992, 181.
- (107) Schake, A. R.; Tsai, H. -L.; Webb, R. J.; Folting, K.; Christou, G; Hendrickson, D. N. *Inorg. Chem.*, **1994**, *33*, 6020.
- (108) Thorp, H. H. Inorg. Chem. 1992, 31, 1585.
- (109) Aubin, S. M. J.; Pardi, Z.; Sun, L.; Krzystek, J.; Folting, K.; Brumel, L. C.; Rheingold, A. L.; Christou, G.; Hendrickson, D. N. *Inorg. Chem.* **1999**, *38*, 5329.

附表 1 實驗藥品及來源

113 D.C 25.3W21CHH326.14W3.			
英文名稱	中文名稱	製造國家	製造廠商
Iron(II) chloride tetrahydrate	氯化鐵	德國	MERCK
Chloroacetic acid	一氯醋酸	美國	Acros
Potassium Permanganate	高錳酸鉀	美國	J.T.Baker
Dichloromethane	二氯甲烷	德國	MERCK
n-Hexane (95%)	正己烷	美國	TEDIA
Dichloroacetic acid	二氯醋酸	英國	Lancaster
Tetraphenylphosphonium Iodium	碘化四苯基磷化物	瑞士	Fluka
Tetrabutylammonium hexafluorophosphate	六氟磷化四丁基銨鹽	瑞士	Fluka
Iron(II) acetate	醋酸鐵	美國	strem
Acetic acid	冰醋酸	美國	TEDIA
Aceton	丙酮	美國	Mallnickdt
Acetonitrile	氰甲烷	美國	TEDIA
Benzoic acid	苯甲酸	日本	SHOWA
Toluene	甲苯	美國	J.T.Baker
p-Toluic acid	甲苯甲酸	瑞士	Fluka
4-Bromobenzoic acid	對溴苯甲酸	英國	Lancaster
Diphenylphosphinic acid	二苯基磷酸	英國	Lancaster

附表 2 化合物 2 的原子座標

Atom	X	Y	Z	Uiso
Fe1	-0. 2500	-0. 2500	-0. 66854(15)	0. 0516(6)
Fe2	-0. 2500	-0. 2500	-0. 17919(15)	0. 0559(7)
Fe3	-0. 34808(8)	-0. 30719(3)	-0. 42709(11)	0.0670(6)
Mn1	-0. 30091(7)	-0. 25275(3)	-0. 48469(10)	0. 0461(5)
Mn2	-0. 25120(7)	-0. 22488(3)	-0. 36321(10)	0.0508(5)
Mn3	-0. 35084(7)	-0. 27747(3)	-0. 59904(11)	0. 0527(5)
Mn4	-0. 20522(10)	-0. 19799(4)	-0. 24938(13)	0.0801(8)
O1	-0. 2540(3)	-0. 22686(14)	-0. 4756(5)	0.046(2)
O2	-0. 2967(3)	-0. 25096(13)	-0. 3730(5)	0.048(2)
O3	-0. 2997(3)	-0. 25521(15)	-0. 5924(5)	0. 0488(19)
O4	-0. 3422(3)	-0. 27871(15)	-0. 4921(5)	0.055(2)
O5	-0. 2041(3)	-0. 20116(15)	-0. 3577(5)	0.061(2)
O6	-0. 2466(3)	-0. 22523(15)	-0. 2559(5)	0.059(2)
O7	-0. 2310(3)	-0. 28552(15)	-0. 6764(5)	0.061(2)
O8	-0. 2982(4)	-0. 30708(17)	-0. 6203(7)	0. 084(3)
O9	-0. 2985(4)	-0. 25458(17)	-0. 7551(5)	0.062(2)
O10	-0. 3611(4)	-0. 2737(3)	-0. 7114(6)	0.096(4)
O11	-0. 4017(6)	-0. 3192(3)	-0. 4931(7)	0. 137(7)
O12	-0. 4014(3)	-0. 30106(17)	-0. 6047(5)	0.068(3)
O13	-0. 4022(4)	-0. 2487(2)	-0. 5753(8)	0. 088(3)
O14	-0. 3533(4)	-0. 23059(18)	-0. 4859(7)	0.075(3)
O15	-0. 3003(4)	-0. 20140(15)	-0. 3618(6)	0.071(3)
O16	-0. 2720(5)	-0. 17775(19)	-0. 2695(7)	0.090(3)
O17	-0. 2496(3)	-0. 22552(18)	-0. 0930(5)	0.060(2)
O18	-00.2089(6)	-0. 1945(2)	-0. 1389(6)	0. 117(5)
O19	-00.1769(3)	-0. 2533(2)	-0. 1715(6)	0.075(3)
O20	-00.1428(4)	-0. 2213(3)	-0. 2344(7)	0.096(4)
O21	-00.1629(5)	-0. 1701(2)	-0. 2473(7)	0. 108(5)
O22	-00.1408(6)	-0. 1623(2)	-0. 3690(6)	0. 110(5)
O23	-00.3008(6)	-0. 32646(17)	-0. 4926(7)	0. 108(5)
H23A	-00.3067	-0. 3409	-0. 5050	0. 130
H23B	-00.2748	-0. 3199	-0. 5107	0. 130
O24	-00.4002(4)	-0. 2926(3)	-0. 3601(7)	0. 097(4)
H24B	-00.4253	-0. 3010	-0. 3471	0. 117
H24C	-00.3988	-0. 2782	-0. 3456	0. 117

C1	-0. 2531(4)	-0. 3052(2)	-0. 6527(8)	0. 119(7)
C2	-0. 2298(4)	-0. 3257(2)	-0. 6700(8)	0. 150
C3	-0. 1818(4)	-0. 3223(2)	-0. 6918(8)	0. 150
НЗА	-0. 1694	-0. 3066	-0. 6979	0. 180
C4	-0. 1475(4)	-0. 3451(2)	-0. 7067(8)	0. 150
H4A	-0. 1141	-0. 3440	-0. 7194	0. 180
C5	-0. 1707(4)	-0. 3649(2)	-0. 6995(8)	0. 150
H5A	-0. 1513	-0. 3788	-0. 7060	0. 180
C6	-0. 2239(4)	-0. 3698(2)	-0. 6822(8)	0. 150
H6A	-0. 2406	-0. 3846	-0. 6829	0. 180
C7	-0. 2422(4)	-0. 3475(2)	-0. 6653(8)	0. 150
H7A	-0. 2737	-0. 3488	-0. 6436	0. 180
C8	-0. 3402(4)	-0. 26386(17)	-0. 7606(6)	0.064(3)
C9	-0. 3613(4)	-0. 26423(17)	-0. 8382(6)	0. 150
C10	-0. 3390(4)	-0. 25233(17)	-0. 8991(6)	0. 150
H10A	-0. 3072	-0. 2461	-0. 8928	0. 180
C11	-0. 3631(4)	-0. 24951(17)	-0. 9690(6)	0. 150
H11A	-0. 3454	-0. 2433	-1. 0116	0. 180
C12	-0. 4082(4)	-0. 25482(17)	-0. 9798(6)	0. 150
H12A	-0. 4256	-0. 2494	-1.0237	0. 180
C13	-0. 4320(4)	-0. 27046(17)	-0. 9172(6)	0. 150
H13A	-0. 4623	-0. 2780	-0. 9262	0. 180
C14	-0. 4079(4)	-0. 27329(17)	-0. 8473(6)	0. 150
H14A	-0. 4231	-0. 2814	-0. 8057	0. 180
C15	-0. 4151(4)	-0. 3174(2)	-0. 5597(8)	0.095(5)
C16	-0. 4527(4)	-0. 3337(2)	-0. 5865(8)	0. 150
C17	-0. 4635(4)	-0. 3336(2)	-0. 6650(8)	0. 150
H17A	-0. 4465	-0. 3233	-0. 6991	0. 180
C18	-0. 4994(4)	-0. 3487(2)	-0. 6937(8)	0. 150
H18A	-0. 5068	-0. 3486	-0. 7474	0. 180
C19	-0. 5244(4)	-0. 3637(2)	-0. 6438(8)	0. 150
H19A	-0. 5489	-0. 3740	-0. 6634	0. 180
C20	-0. 5135(4)	-0. 3638(2)	-0. 5653(8)	0. 150
H20A	-0. 5306	-0. 3741	-0. 5312	0. 180
C21	-0. 4777(4)	-0. 3488(2)	-0. 5366(8)	0. 150
H21A	-0. 4703	-0. 3488	-0. 4829	0. 180
C22	-0. 3954(4)	-0. 2337(2)	-0. 5228(7)	0. 089(5)
				

C23	-0. 4264(4)	-0. 2158(2)	-0. 4728(7)	0. 150
C24	-0. 4294(4)	-0. 2064(2)	-0. 3985(7)	0. 150
H24A	-0. 4054	-0. 2103	-0. 3611	0. 180
C25	-0. 4676(4)	-0. 1914(2)	-0. 3789(7)	0. 150
H25A	-0. 4697	-0. 1850	-0. 3281	0. 180
C26	-0. 5027(4)	-0. 1858(2)	-0. 4335(7)	0. 150
H26A	-0. 5288	-0. 1755	-0. 4201	0. 180
C27	-0. 4997(4)	-0. 1952(2)	-0. 5078(7)	0. 150
H27A	-0. 5237	-0. 1913	-0. 5452	0. 180
C28	-0. 4615(4)	-0. 2102(2)	-0. 5275(7)	0. 150
H28A	-0. 4594	-0. 2166	-0. 5783	0. 180
C29	-0. 3019(3)	-0. 1831(2)	-0. 3176(7)	0. 087(5)
C30	-0. 3433(3)	-0. 1688(2)	-0. 3332(7)	0. 150
C31	-0. 3504(3)	-0. 1515(2)	-0. 2768(7)	0. 150
H31A	-0. 3367	-0. 1535	-0. 2268	0. 180
C32	-0. 3776(3)	-0. 1312(2)	-0. 2935(7)	0. 150
H32A	-0. 3824	-0. 1194	-0. 2549	0. 180
C33	-0. 3977(3)	-0. 1283(2)	-0. 3666(7)	0. 150
H33A	-0. 4163	-0. 1145	-0. 3781	0. 180
C34	-0. 3906(3)	-0. 1457(2)	-0. 4230(7)	0. 150
H34A	-0. 4043	-0. 1437	-0. 4730	0. 180
C35	-0. 3634(3)	-0. 1659(2)	-0. 4063(7)	0. 150
H35A	-0. 3586	-0. 1778	-0. 4449	0. 180
C36	-0. 2269(3)	-0. 20705(19)	-0. 0841(7)	0.078(4)
C37	-0. 2202(3)	-0. 19848(19)	-0. 0018(7)	0. 150
C38	-0. 1808(3)	-0. 18389(19)	0. 0149(7)	0. 150
H38A	-0. 1603	-0. 1785	-0. 0256	0. 180
C39	-0. 1716(3)	-0. 17713(19)	0. 0908(7)	0. 150
H39A	-0. 1447	-0. 1672	0. 1022	0. 180
C40	-0. 2017(3)	-0. 18497(19)	0. 1501(7)	0. 150
H40A	-0. 1953	-0. 1804	0. 2020	0. 180
C41	-0. 2410(3)	-0. 19956(19)	0. 1334(7)	0. 150
H41A	-0. 2616	-0. 2049	0. 1739	0. 180
C42	-0. 2503(3)	-0. 20632(19)	0. 0574(7)	0. 150
H42A	-0. 2772	-0. 2163	0. 0460	0. 180
C43	-0. 1403(4)	-0. 2427(2)	-0. 2008(7)	0. 085(5)
C44	-0. 0933(4)	-0. 2560(2)	-0. 1923(7)	0. 150

C45	-0. 0502(4)	-0. 2441(2)	-0. 2075(7)	0. 150
H45A	-0. 0507	-0. 2277	-0. 2209	0. 180
C46	-0. 0064(4)	-0. 2563(2)	-0. 2032(7)	0. 150
H46A	0. 0231	-0. 2481	-0. 2136	0. 180
C47	-0. 0057(4)	-0. 2803(2)	-0. 1836(7)	0. 150
H47A	0. 0243	-0. 2886	-0. 1806	0. 180
C48	-0. 0488(4)	-0. 2923(2)	-0. 1683(7)	0. 150
H48A	-0. 0483	-0. 3087	-0. 1550	0. 180
C49	-0. 0926(4)	-0. 2801(2)	-0. 1727(7)	0. 150
H49A	-0. 1221	-0. 2883	-0. 1623	0. 180
C50	-0. 1379(4)	-0. 1599(2)	-0. 2978(8)	0. 118(7)
C51	-0. 1087(4)	-0. 1382(2)	-0. 2699(8)	0. 150
C52	-0. 1033(4)	-0. 1335(2)	-0. 1886(8)	0. 150
H52A	-0. 1215	-0. 1426	-0. 1525	0. 180
C53	-0. 0735(4)	-0. 1168(2)	-0. 1629(8)	0. 150
H53A	-0. 0738	-0. 1116	-0. 1106	0. 180
C54	-0. 0393(4)	-0. 1064(2)	-0. 2213(8)	0. 150
H54A	-0. 0171	-0. 0945	-0. 2053	0. 180
C55	-0. 0391(4)	-0. 1131(2)	-0. 2903(8)	0. 150
H55A	-0. 0144	-0. 1074	-0. 3239	0. 180
C56	-0. 0740(4)	-0. 1286(2)	-0. 3192(8)	0. 150
H56A	-0. 0742	-0. 1326	-0. 3726	0. 180
			13/1.	

附表 3 化合物 2 之鍵長與鍵角數據表

	ナ/日女人]/水へく		
Fe(1)-O(3)#1	1. 924(8)	Fe(1)-O(3)	1. 924(8)
Fe(1)-O(9)	2. 024(9)	Fe(1)-O(9)#1	2. 024(9)
Fe(1)-O(7)	2. 062(8)	Fe(1)-O(7)#1	2. 062(8)
Fe(2)-O(6)#1	1. 921(9)	Fe(2)-O(6)	1. 921(9)
Fe(2)-O(17)	2. 025(9)	Fe(2)-O(17)#1	2. 025(9)
Fe(2)-O(19)#1	2. 032(9)	Fe(2)-O(19)	2. 032(9)
Fe(3)-O(5)#1	1. 932(8)	Fe(3)-O(4)	1. 958(9)
Fe(3)-O(11)	1. 987(11)	Fe(3)-O(22)#1	2. 007(10)
Fe(3)-O(24)	2. 019(12)	Fe(3)-O(23)	2. 036(14)
Mn(1)-O(4)	1. 852(8)	Mn(1)-O(3)	1.867(8)
Mn(1)-O(1)#1	1. 904(8)	Mn(1)-O(14)	1. 906(9)
Mn(1)-O(2)	1. 937(8)	Mn(1)-O(1)	1. 951(8)
Mn(1)- $Mn(3)$	2. 779(3)	Mn(1)-Mn(1)#1	2. 828(4)
Mn(1)-Mn(2)#1	2. 837(3)	Mn(1)- $Mn(2)$	2. 954(2)
Mn(2)-O(6)	1.860(8)	Mn(2)-O(5)	1.862(8)
Mn(2)-O(15)	1. 888(9)	Mn(2)-O(2)#1	1. 899(9)
Mn(2)-O(2)	1. 933(8)	Mn(2)-O(1)	1. 946(8)
Mn(2)- $Mn(4)$	2. 784(3)	Mn(2)-Mn(2)#1	2. 815(4)
Mn(2)-Mn(1)#1	2. 837(3)	Mn(3)-O(4)	1.865(9)
Mn(3)-O(3)	1. 886(8)	Mn(3)-O(12)	1. 925(8)
Mn(3)-O(10)	1. 973(10)	Mn(3)-O(13)	1. 186(11)
Mn(3)-O(8)	2. 236(10)	Mn(4)-O(5)	1. 881(9)
Mn(4)-O(6)	1. 908(8)	Mn(4)-O(18)	1. 921(11)
Mn(4)-O(21)	1. 953(10)	Mn(4)-O(20)	2. 177(14)
Mn(4)-O(16)	2. 192(13)	O(1)-Mn(1)#1	1. 904(8)
O(2)-Mn(2)#1	1. 899(9)	O(5)-Fe(3)#1	1. 932(8)
O(7)-C(1)	1. 326(15)	O(8)-C(1)	1. 368(15)
O(9)-C(8)	1. 268(13)	O(10)-C(8)	1. 167(14)
O(11)-C(15)	1. 213(16)	O(12)-C(15)	1. 258(14)
O(13)-C(22)	1. 251(16)	O(14)-C(22)	1. 337(14)
O(15)-C(29)	1. 279(14)	O(16)-C(29)	1. 208(17)
O(17)-C(36)	1. 218(14)	O(18)-C(36)	1. 280(16)
O(19)-C(43)	1. 278(14)	O(20)-C(43)	1. 331(18)
O(21)-C(50)	1. 248(15)	O(22)-C(50)	1. 240(17)
O(22)-Fe(3)#1	2. 007(10)	C(1)-C(2)	1. 3510
C(2)-C(7)	1. 2660	C(2)-C(3)	1. 3898

C(3)-C(4)	1. 6081	C(4)-C(5)	1. 2864
C(5)-C(6)	1. 5262	C(6)-C(7)	1. 3791
C(8)-C(9)	1. 4623	C(9)-C(14)	1. 3899
C(9)-C(10)	1. 3901	C(10)-C(11)	1. 3901
C(11)-C(12)	1. 2930	C(12)-C(13)	1. 5385
C(13)-C(14)	1. 3898	C(15)-C(16)	1. 4598
C(16)-C(17)	1. 3901	C(16)-C(21)	1. 3903
C(17)-C(18)	1. 3901	C(18)-C(19)	1. 3899
C(19)-C(20)	1. 3901	C(20)-C(21)	1. 3897
C(22)- $C(23)$	1. 5770	C(23)-C(24)	1. 3898
C(23)-C(28)	1. 3901	C(24)-C(25)	1. 3901
C(25)-C(26)	1. 3898	C(26)-C(27)	1. 3899
C(27)-C(28)	1. 3899	C(29)-C(30)	1. 4226
C(30)-C(31)	1. 3900	C(30)-C(35)	1. 3900
C(31)-C(32)	1. 3899	C(32)-C(33)	1. 3899
C(33)-C(34)	1. 3899	C(34)-C(35)	1. 3900
C(36)-C(37)	1. 5121	C(37)-C(38)	1. 3900
C(37)-C(42)	1. 3901	C(38)-C(39)	1. 3899
C(39)-C(40)	1. 3899	C(40)-C(41)	1. 3899
C(41)- $C(42)$	1. 3902	C(43)-C(44)	1. 5049
C(44)-C(45)	1. 3899	C(44)-C(49)	1. 3907
C(45)-C(46)	1. 3902	C(46)-C(47)	1. 3901
C(47)- $C(48)$	1. 3893	C(48)-C(49)	1. 3899
C(50)-C(51)	1. 5393	C(51)-C(56)	1. 3900
C(51)-C(52)	1. 4382	C(52)-C(53)	1. 3226
C(53)-C(54)	1. 4978	C(54)-C(55)	1. 2498
C(55)-C(56)	1. 3900		
O(3)#1-Fe(1)-O(3)	93. 7(5)	O(3)#1-Fe(1)-O(9)	175. 4(4)
O(3)-Fe(1)-O(9)	90. 8(4)	O(3)#1-Fe(1)-O(9)#1	90. 8(4)
O(3)-Fe(1)-O(9)#1	175. 4(4)	O(9)-Fe(1)-O(9)#1	84. 6(6)
O(3)#1-Fe(1)-O(7)	90. 5(4)	O(3)-Fe(1)- $O(7)$	94. 6(4)
O(9)-Fe(1)-O(7)	89. 9(4)	O(9)#1-Fe(1)-O(7)	84. 6(4)
O(3)#1-Fe(1)-O(7)#1	94. 6(4)	O(3)-Fe(1)-O(7)#1	90. 5(4)
O(9)-Fe(1)-O(7)#1	84. 6(4)	O(9)#1-Fe(1)-O(7)#1	89. 9(4)
O(7)-Fe(1)-O(7)#1	172. 5(5)	O(6)#1-Fe(2)-O(6)	92. 8(5)
O(6)#1-Fe(2)-O(17)	175. 5(4)	O(6)-Fe(2)-O(17)	91. 1(4)

O(6)#1-Fe(2)-O(17)#1	91. 1(4)	O(6)-Fe(2)-O(17)#1	175. 5(4)
O(17)-Fe(2)-O(17)#1	85. 2(6)	O(6)#1-Fe(2)-O(19)#1	93. 5(4)
O(6)-Fe(2)-O(19)#1	91. 7(4)	O(17)-Fe(2)-O(19)#1	84. 1(4)
O(17)#1-Fe(2)-O(19)#1	90. 4(4)	O(6)#1-Fe(2)-O(19)	91. 7(4)
O(6)-Fe(2)-O(19)	93. 5(4)	O(17)-Fe(2)- $O(19)$	90. 4(4)
O(17)#1-Fe(2)-O(19)	84. 1(4)	O(19)#1-Fe(2)-O(19)	172. 5(6)
O(5)#1-Fe(3)-O(4)	95. 6(3)	O(5)#1-Fe(3)-O(11)	173. 9(5)
O(4)-Fe(3)-O(11)	90. 5(4)	O(5)#1-Fe(3)-O(22)#1	90. 6(4)
O(4)-Fe(3)-O(22)#1	173. 8(4)	O(11)-Fe(3)-O(22)#1	83. 4(5)
O(5)#1-Fe(3)-O(24)	94. 5(5)	O(4)-Fe(3)- $O(24)$	93. 4(5)
O(11)-Fe(3)-O(24)	86. 2(6)	O(22)-Fe(3)- $O(24)$	87. 0(6)
O(5)#1-Fe(3)-O(23)	89. 8(5)	O(4)-Fe(3)- $O(23)$	93. 4(4)
O(11)-Fe(3)-O(23)	88. 8(7)	O(22)#1-Fe(3)-O(23)	85. 6(5)
O(24)-Fe(3)-O(23)	171. 6(5)	O(4)-Mn(1)-O(3)	83. 3(4)
O(4)-Mn(1)-O(1)#1	91. 4(4)	O(3)-Mn(1)-O(1)#1	91. 4(4)
O(4)-Mn(1)-O(14)	92. 5(4)	O(3)-Mn(1)-O(14)	92. 9(4)
O(1)#1-Mn(1)-O(14)	174. 5(4)	O(4)-Mn(1)-O(2)	98. 5(4)
O(3)-Mn(1)-O(2)	175. 4(4)	O(1)#1-Mn(1)-O(2)	84. 3(4)
O(14)-Mn(1)-O(2)	91. 3(4)	O(4)-Mn(1)-O(1)	176. 3(4)
O(3)-Mn(1)-O(1)	97. 1(4)	O(1)#1-Mn(1)-O(1)	84. 9(3)
O(14)-Mn(1)-O(1)	91. 2(4)	O(2)-Mn(1)- $O(1)$	80. 8(3)
O(4)-Mn(1)-Mn(3)	41. 8(3)	O(3)-Mn(1)-Mn(3)	42. 5(2)
O(1)#1-Mn(1)-Mn(3)	98. 9(2)	O(14)-Mn(1)-Mn(3)	86. 6(3)
O(2)-Mn(1)-Mn(3)	139. 9(3)	O(1)-Mn(1)-Mn(3)	139. 2(3)
O(4)-Mn(1)-Mn(1)#1	134. 2(3)	O(3)-Mn(1)-Mn(1)#1	89. 5(2)
O(1)#1-Mn(1)-Mn(1)#1	43. 5(2)	O(14)-Mn(1)-Mn(1)#1	133. 1(3)
O(2)-Mn(1)-Mn(1)#1	86. 2(3)	O(1)-Mn(1)-Mn(1)#1	42. 2(2)
Mn(3)-Mn(1)-Mn(1)#1	123. 19(7)	O(4)-Mn(1)-Mn(2)#1	91. 0(3)
O(3)-Mn(1)-Mn(2)#1	134. 2(3)	O(1)#1-Mn(1)-Mn(2)#1	43. 1(3)
O(14)-Mn(1)-Mn(2)#1	132. 9(4)	O(2)-Mn(1)-Mn(2)#1	41. 8(3)
O(1)-Mn(1)-Mn(2)#1	86. 1(3)	Mn(3)-Mn(1)-Mn(2)#1	123. 92(8)
Mn(1)#1-Mn(1)-Mn(2)#1	62. 87(6)	O(4)-Mn(1)-Mn(2)	138. 6(3)
O(3)-Mn(1)-Mn(2)	137. 7(3)	O(1)#1-Mn(1)-Mn(2)	83. 6(2)
O(14)-Mn(1)-Mn(2)	90. 9(3)	O(2)-Mn(1)-Mn(2)	40. 2(2)
O(1)-Mn(1)-Mn(2)	40. 6(2)	Mn(3)- $Mn(1)$ - $Mn(2)$	177. 49(9)
Mn(1)#1-Mn(1)-Mn(2)	58. 71(6)	Mn(2)#1-Mn(1)-Mn(2)	58. 12(8)
O(6)-Mn(2)-O(5)	84. 74(4)	O(6)-Mn(2)-O(15)	92. 5(4)

O(5)-Mn(2)- $O(15)$	90. 2(5)	O(6)-Mn(2)-O(2)#1	91. 9(4)
O(5)-Mn(2)-O(2)#1	91. 5(4)	O(15)-Mn(2)-O(2)#1	175. 4(4)
O(6)-Mn(2)-O(2)	97. 1(3)	O(5)-Mn(2)-O(2)	175. 7(4)
O(15)-Mn(2)- $O(2)$	93. 5(4)	O(2)#1-Mn(2)- $O(2)$	84. 6(4)
O(6)-Mn(2)-O(1)	175. 8(4)	O(5)-Mn(2)-O(1)	96. 8(4)
O(15)-Mn(2)-O(1)	91. 4(4)	O(2)#1-Mn(2)-O(1)	84. 2(4)
O(2)- $Mn(2)$ - $O(1)$	81. 0(3)	O(6)-Mn(2)-Mn(4)	43. 1(2)
O(5)-Mn(2)-Mn(4)	42. 2(3)	O(15)- $Mn(2)$ - $Mn(4)$	86. 6(3)
O(2)#1-Mn(2)-Mn(4)	97. 5(3)	O(2)-Mn(2)-Mn(4)	140. 0(3)
O(1)-Mn(2)-Mn(4)	138. 9(2)	O(6)-Mn(2)-Mn(2)#1	89. 3(3)
O(5)-Mn(2)-Mn(2)#1	134. 2(3)	O(15)-Mn(2)-Mn(2)#1	135. 5(3)
O(2)#1-Mn(2)-Mn(2)#1	43. 2(2)	O(2)-Mn(2)-Mn(2)#1	42. 3(3)
O(1)-Mn(2)-Mn(2)#1	86. 8(2)	Mn(4)-Mn(2)-Mn(2)#1	122. 01(9)
O(6)-Mn(2)-Mn(1)#1	134. 3(3)	O(5)-Mn(2)-Mn(1)#1	89. 9(3)
O(15)-Mn(2)-Mn(1)#1	132. 9(3)	O(2)#1-Mn(2)-Mn(1)#1	42. 8(2)
O(2)-Mn(2)-Mn(1)#1	86. 0(3)	O(1)-Mn(2)-Mn(1)#1	42. 0(2)
Mn(4)-Mn(2)-Mn(1)#1	122. 05(9)	Mn(2)#1-Mn(2)-Mn(1)#1	63. 04(6)
O(6)-Mn(2)-Mn(1)	137. 3(3)	O(5)-Mn(2)-Mn(1)	137. 6(3)
O(15)-Mn(2)-Mn(1)	92. 5(3)	O(2)#1-Mn(2)-Mn(1)	83. 3(3)
O(2)-Mn(2)-Mn(1)	40. 3(2)	O(1)-Mn(2)-Mn(1)	40. 8(2)
Mn(4)- $Mn(2)$ - $Mn(1)$	179. 10(11)	Mn(2)#1-Mn(2)-Mn(1)	58. 85(6)
Mn(1)#1-Mn(2)-Mn(1)	58. 42(8)	O(4)-Mn(3)-O(3)	82. 4(4)
O(4)-Mn(3)-O(12)	96. 8(4)	O(3)-Mn(3)-O(12)	178. 0(4)
O(4)-Mn(3)-O(10)	175. 9(5)	O(3)-Mn(3)-O(10)	95. 6(4)
O(12)-Mn(3)-O(10)	85. 3(4)	O(4)-Mn(3)-O(13)	85. 7(5)
O(3)-Mn(3)-O(13)	89. 3(4)	O(12)-Mn(3)-O(13)	92. 6(4)
O(10)-Mn(3)-O(13)	90. 7(6)	O(4)-Mn(3)-O(8)	93. 0(4)
O(3)-Mn(3)-O(8)	90. 8(4)	O(12)-Mn(3)-O(8)	87. 4(4)
O(10)-Mn(3)-O(8)	90. 6(5)	O(13)-Mn(3)-O(8)	178. 6(5)
O(4)-Mn(3)-Mn(1)	41. 4(3)	O(3)-Mn(3)-Mn(1)	42. 0(3)
O(12)-Mn(3)-Mn(1)	137. 6(3)	O(10)-Mn(3)-Mn(1)	135. 9(4)
O(13)-Mn(3)-Mn(1)	79. 7(3)	O(8)-Mn(3)-Mn(1)	99. 4(3)
O(5)-Mn(4)-O(6)	82. 9(4)	O(5)-Mn(4)-O(18)	177. 9(6)
O(6)-Mn(4)-O(18)	96. 2(4)	O(5)-Mn(4)-O(21)	94. 8(4)
O(6)-Mn(4)-O(21)	177. 7(4)	O(18)-Mn(4)-O(21)	86. 1(4)
O(5)-Mn(4)-O(20)	92. 8(4)	O(6)-Mn(4)-O(20)	90. 0(4)
O(18)-Mn(4)-O(20)	89. 1(6)	O(21)-Mn(4)-O(20)	90. 3(6)

O(5)-Mn(4)-O(16)	84. 5(4)	O(6)-Mn(4)-O(16)	84. 3(4)
O(18)-Mn(4)-O(16)	93. 5(6)	O(21)-Mn(4)- $O(16)$	95. 3(6)
O(20)-Mn(4)-O(16)	174. 0(4)	O(5)-Mn(4)-Mn(2)	41. 7(2)
O(6)-Mn(4)-Mn(2)	41. 7(3)	O(18)-Mn(4)-Mn(2)	137. 1(3)
O(21)-Mn(4)-Mn(2)	136. 0(4)	O(20)-Mn(4)-Mn(2)	96. 9(3)
O(16)-Mn(4)-Mn(2)	77. 5(3)	Mn(1)#1-O(1)-Mn(2)	94. 9(4)
Mn(1)#1-O(1)-Mn(1)	94. 4(3)	Mn(2)-O(1)-Mn(1)	98. 6(3)
Mn(2)#1-O(2)-Mn(2)	94. 5(4)	Mn(2)#1-O(2)-Mn(1)	95. 4(4)
Mn(2)-O(2)-Mn(1)	99. 5(4)	Mn(1)-O(3)-Mn(3)	95. 5(4)
Mn(1)-O(3)-Fe(1)	133. 1(5)	Mn(3)-O(3)-Fe(1)	126. 3(5)
Mn(1)-O(4)-Mn(3)	96. 8(4)	Mn(1)-O(4)-Fe(3)	130. 6(5)
Mn(3)-O(4)-Fe(3)	126. 0(4)	Mn(2)-O(5)-Mn(4)	96. 1(4)
Mn(2)-O(5)-Fe(3)#1	131. 5(5)	Mn(4)-O(5)-Fe(3)#1	127. 4(5)
Mn(2)-O(6)-Mn(4)	95. 2(4)	Mn(2)-O(6)-Fe(2)	133. 8(5)
Mn(4)-O(6)-Fe(2)	124. 5(5)	C(1)-O(7)-Fe(1)	131. 7(8)
C(1)-O(8)-Mn(3)	127. 0(9)	C(8)-O(9)-Fe(1)	135. 1(8)
C(8)-O(10)-Mn(3)	134. 1(9)	C(15)-O(11)-Fe(3)	138. 0(10)
C(15)-O(12)-Mn(3)	133. 2(8)	C(22)- $O(13)$ - $Mn(3)$	122. 2(9)
C(22)-O(14)-Mn(1)	125. 4(8)	C(29)-O(15)-Mn(2)	126. 1(9)
C(29)-O(16)-Mn(4)	123. 7(9)	C(36)-O(17)-Fe(2)	132. 1(8)
C(36)-O(18)-Mn(4)	134. 5(9)	C(43)-O(19)-Fe(2)	135. 9(9)
C(43)-O(20)-Mn(4)	129. 3(9)	C(50)-O(21)-Mn(4)	133. 0(10)
C(50)-O(22)-Fe(3)#1	126. 6(10)	O(7)-C(1)-C(2)	114. 9(6)
O(7)-C(1)-O(8)	127. 5(12)	C(2)-C(1)-O(8)	117. 4(7)
C(7)-C(2)-C(1)	132. 4	C(7)-C(2)-C(3)	114. 1
C(1)-C(2)-C(3)	113. 4	C(2)-C(3)-C(4)	119. 6
C(5)-C(4)-C(3)	112. 1	C(4)-C(5)-C(6)	130. 7
C(7)-C(6)-C(5)	103. 4	C(2)-C(7)-C(6)	139. 3
O(10)-C(8)-O(9)	126. 1(11)	O(10)-C(8)-C(9)	117. 7(7)
O(9)-C(8)-C(9)	115. 9(6)	C(14)-C(9)-C(10)	120. 0
C(14)-C(9)-C(8)	118. 5	C(10)-C(9)-C(8)	120. 7
C(11)-C(10)-C(9)	120. 0	C(12)-C(11)-C(10)	124. 1
C(11)-C(12)-C(13)	116. 2	C(14)-C(13)-C(12)	118. 1
C(13)-C(14)-C(9)	120. 0	O(11)-C(15)-O(12)	123. 9(12)
O(11)-C(15)-C(16)	117. 7(8)	O(12)-C(15)-C(16)	118. 2(7)
C(17)-C(16)-C(21)	120. 0	C(17)-C(16)-C(15)	117. 5
C(21)-C(16)-C(15)	122. 5	C(16)-C(17)-C(18)	120. 0

C(19)-C(18)-C(17)	120. 0	C(18)-C(19)-C(20)	120. 0
C(21)-C(20)-C(19)	120. 0	C(20)-C(21)-C(16)	120. 0
O(13)-C(22)-O(14)	124. 5(11)	O(13)-C(22)-C(23)	137. 9(7)
O(14)-C(22)-C(23)	97. 3(7)	C(24)-C(23)-C(28)	120. 0
C(24)-C(23)-C(22)	141. 2	C(28)-C(23)-C(22)	98. 7
C(23)-C(24)-C(25)	120. 0	C(26)-C(25)-C(24)	120. 0
C(25)-C(26)-C(27)	120. 0	C(28)-C(27)-C(26)	120. 0
C(27)-C(28)-C(23)	120. 0	O(16)-C(29)-O(15)	125. 9(12)
O(16)-C(29)-C(30)	122. 6(8)	O(15)-C(29)-C(30)	111. 4(7)
C(31)-C(30)-C(35)	120. 0	C(31)-C(30)-C(29)	111. 9
C(35)-C(30)-C(29)	124. 0	C(32)-C(31)-C(30)	120. 0
C(31)-C(32)-C(33)	120. 0	C(32)-C(33)-C(34)	120. 0
C(33)-C(34)-C(35)	120. 0	C(34)-C(35)-C(30)	120. 0
O(17)-C(36)-O(18)	124. 9(12)	O(17)-C(36)-C(37)	116. 8(7)
O(18)-C(36)-C(37)	118. 3(7)	C(38)-C(37)-C(42)	120. 0
C(38)-C(37)-C(36)	118. 6	C(42)- $C(37)$ - $C(36)$	121. 3
C(39)-C(38)-C(37)	120. 0	C(38)-C(39)-C(40)	120. 0
C(41)-C(40)-C(39)	120. 0	C(40)- $C(41)$ - $C(42)$	120. 0
C(37)-C(42)-C(41)	120. 0	O(19)-C(43)-O(20)	123. 3(11)
O(19)-C(43)-C(44)	114. 2(7)	O(20)-C(43)-C(44)	122. 4(7)
C(45)-C(44)-C(49)	120. 0	C(45)-C(44)-C(43)	118. 7
C(49)-C(44)-C(43)	121. 2	C(44)-C(45)-C(46)	120. 0
C(47)-C(46)-C(45)	120. 0	C(48)-C(47)-C(46)	120. 0
C(47)-C(48)-C(49)	120. 0	C(48)-C(49)-C(44)	120. 0
O(22)-C(50)-O(21)	127. 6(13)	O(22)-C(50)-C(51)	115. 3(8)
O(21)-C(50)-C(51)	115. 5(8)	C(56)-C(51)-C(52)	117. 2
C(56)-C(51)-C(50)	118. 4	C(52)-C(51)-C(50)	120. 3
C(53)-C(52)-C(51)	121. 3	C(52)-C(53)-C(54)	116. 1
C(55)-C(54)-C(53)	122. 1	C(54)-C(55)-C(56)	121. 6
C(51)-C(56)-C(55)	120. 0		

Symmetry transformations used to generate equivalent atoms:

#1 -x-1/2,-y-1/2,z

附表 4 化合物 $3.4H_2O$ 的原子座標

Atom	X	Y	Z	Uiso
Mn1	1. 19561(12)	1. 18172(15)	0. 70329(12)	0.0568(9)
Mn2	1. 19520(12)	1. 30086(16)	0. 79612(12)	0. 0574(9)
Mn2	1. 09278(13)	1. 30900(16)	0. 88318(13)	0.0615(9)
Mn2	1. 40838(13)	1. 17826(15)	0. 88307(12)	0.0581(9)
Fe1	1. 03011(13)	1. 24390(16)	0. 74814(13)	0.0656(9)
Fe2	1. 24669(14)	1. 23492(18)	0. 93424(13)	0.0710(10)
O1	1. 2031(5)	1. 1811(6)	0. 7877(4)	0.050(3)
O2	1. 2980(5)	1. 2959(6)	0. 7898(4)	0. 043(2)
O3	1. 0991(6)	1. 1857(6)	0. 6994(6)	0.061(3)
O4	1. 0997(5)	1. 2918(6)	0.8005(5)	0.054(3)
O5	1. 1905(6)	1. 2959(7)	0. 8782(6)	0.064(3)
O6	1. 3102(6)	1. 1945(7)	0.8760(5)	0.059(3)
O7	1. 0193(7)	1. 1382(7)	0.8010(6)	0. 075(4)
H7B	0. 9894	1. 1013	0. 7903	0.090
H7C	1. 0451	1. 1272	0. 8313	0.090
O8	1. 3091(8)	1. 3429(11)	0. 9468(8)	0. 108(5)
H8D	1. 2979	1. 3777	0. 9748	0. 130
H8E	1. 3461	1. 3507	0. 9281	0. 130
O9	1. 5090(7)	1. 1569(10)	0. 8875(7)	0. 087(4)
O10	0. 9506(7)	1. 1979(9)	0.7004(7)	0.077(4)
O11	0. 9508(8)	1. 2928(11)	0. 7959(8)	0.097(5)
O12	0. 9915(8)	1. 3167(9)	0. 8862(7)	0. 088(4)
O13	1. 0931(7)	1. 3411(8)	0. 9645(7)	0. 082(4)
O14	1. 1873(11)	1. 2853(14)	0. 9987(7)	0. 135(7)
O15	1. 3001(8)	1. 1786(10)	0. 9983(7)	0.094(5)
O16	1. 4111(6)	1. 1649(8)	0. 9683(6)	0.073(4)
O17	1. 3825(6)	1. 0515(8)	0. 8747(6)	0.073(4)
O18	1. 3002(6)	1. 0614(8)	0. 8041(6)	0.066(3)
O19	1. 0784(6)	1. 1743(7)	0. 9029(6)	0.070(3)
O20	1. 1858(7)	1. 1326(9)	0. 9333(8)	0.095(5)
O21	1. 1888(7)	1. 4195(7)	0. 7911(7)	0. 087(4)
O22	1. 1082(7)	1. 4434(8)	0.8630(7)	0. 085(4)
O23	1. 0253(7)	1. 3480(9)	0. 6962(7)	0.081(4)
O24	1. 4246(7)	1. 3074(7)	0. 8930(6)	0.072(3)
C1	0. 9430(10)	1. 1658(16)	0. 6534(13)	0.086(7)

C2	0. 8736(11)	1. 1360(12)	0. 6342(9)	0. 073(5)
C3	0. 8213(15)	1. 1410(18)	0. 6812(13)	0. 115(8)
H3A	0. 8287	1. 1667	0. 7183	0. 138
C4	0. 7550(17)	1. 0999(18)	0. 6624(14)	0. 124(9)
H4A	0. 7188	1. 0973	0. 6910	0. 149
C5	0. 7408(16)	1.0668(19)	0. 6108(14)	0. 122(9)
C6	0. 7893(15)	1. 0747(17)	0. 5674(13)	0. 111(8)
H6A	0. 7760	1.0612	0. 5282	0. 134
C7	0. 8555(13)	1. 1008(15)	0. 5776(11)	0. 093(7)
H7A	0. 8900	1. 0961	0. 5477	0. 111
C8	0. 6611	1. 0379	0. 5946	0. 200
H8A	0. 6309	1. 0433	0. 6281	0. 300
H8B	0. 6642	0. 9807	0. 5835	0. 300
H8C	0. 6423	1. 0695	0. 5624	0. 300
C9	0. 9478(7)	1. 3197(8)	0. 8504(6)	0.096(8)
C10	0. 8694(7)	1. 3361(8)	0.8648(6)	0. 107(8)
C11	0. 8156(7)	1. 3184(8)	0. 8253(6)	0. 198(18)
H11A	0. 8263	1. 2999	0. 7867	0. 238
C12	0. 7461(7)	1. 3277(8)	0. 8424(6)	0. 149(12)
H12A	0. 7093	1. 3156	0. 8154	0. 178
C13	0. 7304(7)	1. 3548(8)	0. 8989(6)	0. 165(14)
C14	0. 7842(7)	1. 3725(8)	0. 9384(6)	0. 139(11)
H14A	0. 7735	1. 3910	0. 9770	0. 167
C15	0. 8537(7)	1. 3632(8)	0. 9213(6)	0. 112(8)
H15A	0. 8905	1. 3753	0. 9483	0. 135
C16	0. 645(4)	1. 374(6)	0. 930(4)	0. 38(5)
H16A	0. 6088	1. 3614	0. 9010	0. 574
H16B	0. 6417	1. 4325	0. 9417	0. 574
H16C	0. 6388	1. 3389	0. 9649	0. 574
C17	1. 1401(6)	1. 3308(7)	1. 0064(5)	0. 073(5)
C18	1. 1284(6)	1. 3726(7)	1. 0623(5)	0. 083(6)
C19	1. 0741(6)	1. 4287(7)	1. 0709(5)	0. 102(7)
H19A	1. 0441	1. 4431	1. 0391	0. 123
C20	1. 0638(6)	1. 4636(7)	1. 1261(5)	0. 141(11)
H20A	1. 0266	1. 5019	1. 1320	0. 169
C21	1. 1077(6)	1. 4426(7)	1. 1726(5)	0. 22(2)
C22	1. 1530(6)	1. 3843(7)	1. 1617(5)	0.46(7)

H22A	1. 1758	1. 3613	1. 1952	0. 555
C23	1. 1724(6)	1. 3515(7)	1. 1088(5)	0. 181(16)
H23A	1. 2125	1. 3173	1. 1042	0. 217
C24	1. 075(2)	1. 453(3)	1. 2355(7)	0. 29(3)
H24A	1. 0366	1. 4933	1. 2337	0. 430
H24B	1. 1109	1. 4723	1. 2630	0. 430
H24C	1. 0566	1. 3994	1. 2489	0. 430
C25	1. 3630(10)	1. 1603(9)	1. 0093(8)	0.060(4)
C26	1. 3831(10)	1. 1317(11)	1.0646(8)	0.066(5)
C27	1. 3368(17)	1. 1400(19)	1. 1092(13)	0. 123(9)
H27A	1. 2939	1. 1688	1. 1031	0. 148
C28	1. 3528(14)	1. 1041(17)	1. 1672(12)	0. 104(8)
H28A	1. 3183	1. 1019	1. 1972	0. 125
C29	1. 4233(13)	1. 0720(16)	1. 1773(11)	0. 098(7)
C30	1. 4637(12)	1. 0673(14)	1. 1327(10)	0. 086(6)
H30A	1. 5090	1. 0441	1. 1386	0. 103
C31	1. 4467(12)	1. 0937(14)	1.0760(10)	0. 086(6)
H31A	1. 4791	1. 0854	1. 0449	0. 104
C32	1. 4385(15)	1. 0315(17)	1. 2322(12)	0. 112(8)
H32A	1. 4871	1. 0120	1. 2322	0. 168
H32B	1. 4069	0. 9841	1. 2372	0. 168
H32C	1. 4317	1. 0706	1. 2646	0. 168
C33	1. 3333(9)	1. 0216(11)	0. 8481(11)	0. 074(6)
C34	1. 3074(9)	0. 9328(11)	0. 8643(8)	0.060(4)
C35	1. 2534(10)	0. 8962(12)	0. 8281(9)	0.069(5)
H35A	1. 2315	0. 9265	0. 7972	0. 083
C36	1. 2354(11)	0. 8179(12)	0. 8397(9)	0. 074(5)
H36A	1. 2050	0. 7885	0. 8139	0. 089
C37	1. 2630(12)	0. 7787(14)	0.8920(10)	0. 089(6)
C38	1. 3134(12)	0. 8084(14)	0. 9204(10)	0. 089(6)
H38A	1. 3374	0. 7757	0. 9489	0. 107
C39	1. 3351(11)	0. 8938(13)	0. 9094(9)	0. 081(6)
H39A	1. 3683	0. 9204	0. 9343	0. 097
C40	1. 2358(16)	0. 6918(18)	0. 9073(13)	0. 119(9)
H40A	1. 2594	0. 6719	0. 9430	0. 179
H40B	1. 2456	0. 6539	0. 8747	0. 179
H40C	1. 1851	0. 6942	0. 9141	0. 179

C41	1. 1233(11)	1. 1212(12)	0. 9206(11)	0. 083(6)
C42	1. 0942(10)	1. 0343(12)	0. 9303(9)	0.072(5)
C43	1. 0264(10)	1. 0186(12)	0. 9225(9)	0.073(5)
H43A	0. 9952	1. 0619	0. 9116	0.088
C44	1. 0002(10)	0. 9346(12)	0. 9306(8)	0.070(5)
H44A	0. 9514	0. 9240	0. 9268	0. 084
C45	1. 0460(12)	0. 8688(13)	0. 9441(10)	0. 083(6)
C46	1. 1212(11)	0. 8908(14)	0. 9507(10)	0. 083(6)
H46A	1. 1554	0. 8502	0. 9603	0. 099
C47	1. 1394(14)	0. 9726(16)	0. 9422(11)	0.099(7)
H47A	1. 1878	0. 9864	0. 9451	0. 119
C48	1. 0208(11)	0. 7859(13)	0. 9558(10)	0.080(6)
H48A	0. 9700	0. 7838	0. 9493	0. 120
H48B	1. 0314	0. 7710	0. 9967	0. 120
H48C	1. 0440	0. 7468	0. 9292	0. 120
C49	1. 1414(10)	1. 4650(11)	0. 8219(12)	0.088(7)
C50	1. 1338(11)	1. 5473(13)	0. 7957(9)	0.078(5)
C51	1. 0874(11)	1. 5997(14)	0. 8281(10)	0. 084(6)
H51A	1. 0644	1. 5814	0. 8628	0. 101
C52	1. 0776(12)	1. 6829(14)	0.8047(10)	0.086(6)
H52A	1. 0557	1. 7232	0. 8289	0. 103
C53	1. 0968(11)	1. 7042(13)	0. 7538(9)	0.079(5)
C54	1. 1428(13)	1. 6526(15)	0. 7208(11)	0.098(7)
H54A	1. 1623	1. 6700	0. 6844	0. 118
C55	1. 1574(11)	1. 5746(13)	0. 7450(9)	0.079(5)
H55A	1. 1867	1. 5386	0. 7230	0. 095
C56	1. 0800(13)	1. 7922(15)	0. 7250(11)	0. 102(7)
H56A	1. 0469	1. 8223	0. 7500	0. 153
H56B	1. 0595	1. 7841	0. 6858	0. 153
H56C	1. 1235	1. 8241	0. 7216	0. 153
C57	1. 0478(6)	1. 3636(8)	0. 6431(7)	0.095(7)
C58	1. 0355(6)	1. 4451(8)	0. 6208(7)	0.095(7)
C59	1. 0165(6)	1. 5068(8)	0.6603(7)	0. 149(12)
H59A	1. 0099	1. 4938	0. 7007	0. 179
C60	1. 0071(6)	1. 5876(8)	0. 6407(7)	0. 24(2)
H60A	1. 9941	1. 6299	0. 6676	0. 290
C61	1. 0168(6)	1. 6067(8)	0. 5816(7)	0. 126(9)
_				

C62	1. 0358(6)	1. 5449(8)	0. 5421(7)	0. 22(2)
H62A	1. 0467	1. 5542	0. 5019	0. 262
C63	1. 0369(6)	1. 4685(8)	0. 5689(7)	0. 184(16)
H63A	1. 0393	1. 4240	0. 5417	0. 221
C64	1. 0045(17)	1. 6828(19)	0. 5549(14)	0. 133(10)
H64A	0. 9877	1. 7224	0. 5843	0. 199
H64B	0. 9690	1. 6762	0. 5239	0. 199
H64C	1. 0481	1. 7034	0. 5375	0. 199
O25	0. 6083(10)	0. 9866(12)	0. 2846(8)	0. 117(6)
O26	1. 216(2)	1. 476(3)	0. 961(2)	0. 272(18)

附表 5 化合物 3 . 4H₂O 之鍵長與鍵角數據表

Mn(1)-O(6)#1 1. 816(12) Mn(1)-O(3) 1. 844(11) Mn(1)-O(2)#1 1. 854(10) Mn(1)-O(1) 1. 922(11) Mn(1)-O(1)#1 1. 941(10) Mn(1)-O(18)#1 1. 952(13) Mn(1)-Mn(4)#1 2. 785(4) Mn(1)-Mn(2)#1 2. 834(3) Mn(1)-Mn(2) 2. 854(4) Mn(1)-Mn(1)#1 2. 962(5) Mn(2)-O(4) 1. 829(10) Mn(2)-O(5) 1. 869(13) Mn(2)-O(2) 1. 948(11) Mn(2)-O(1) 1. 948(11) Mn(2)-O(2)#1 1. 958(10) Mn(2)-O(2) 1. 967(10) Mn(2)-Mn(3) 2. 788(4) Mn(2)-Mn(1)#1 2. 834(3) Mn(2)-Mn(3) 2. 788(4) Mn(2)-Mn(1)#1 2. 834(3) Mn(2)-Mn(3) 2. 788(4) Mn(2)-Mn(1)#1 2. 834(3) Mn(2)-Mn(3) 1. 945(12) Mn(3)-O(5) 1. 87(11) Mn(3)-O(4) 1. 904(12) Mn(3)-O(13) 1. 920(15) Mn(3)-O(13) 1. 920(15) Mn(3)-O(22) 2. 237(14) Mn(3)-O(12) 1. 934(12) Mn(4)-O(3)#1 1. 882(13) Mn(4)-O(3) 1		及牙蜒仍然		
Mn(1)-O(1)#1 1. 941(10) Mn(1)-O(18)#1 1. 952(13) Mn(1)-Mn(4)#1 2. 785(4) Mn(1)-Mn(2)#1 2. 834(3) Mn(1)-Mn(2) 2. 854(4) Mn(1)-Mn(1)#1 2. 962(5) Mn(2)-O(4) 1. 829(10) Mn(2)-O(5) 1. 869(13) Mn(2)-O(21) 1. 923(11) Mn(2)-O(1) 1. 948(11) Mn(2)-O(2)#1 1. 958(10) Mn(2)-O(2) 1. 967(10) Mn(2)-Mn(3) 2. 788(4) Mn(2)-Mn(1)#1 2. 834(3) Mn(2)-Mn(2)#1 2. 965(5) Mn(3)-O(5) 1. 879(11) Mn(3)-O(2) 1. 879(11) Mn(3)-O(5) 1. 879(11) Mn(3)-O(2) 1. 937(14) Mn(3)-O(22) 2. 237(14) Mn(3)-O(12) 1. 937(14) Mn(3)-O(22) 2. 237(14) Mn(3)-O(19) 2. 236(12) Mn(4)-O(3)#1 1. 882(13) Mn(4)-O(6) 1. 896(11) Mn(4)-O(16) 1. 949(14) Mn(4)-O(9) 1. 951(14) Mn(4)-O(17) 2. 113(13) Mn(4)-O(24) 2. 119(12) Mn(4)-O(17) 2. 13(13) Fe(1)-O(1) 2.	Mn(1)-O(6)#1	1. 816(12)	Mn(1)-O(3)	1. 844(11)
Mn(1)-Mn(4)#1 2. 785(4) Mn(1)-Mn(2)#1 2. 834(3) Mn(1)-Mn(2) 2. 854(4) Mn(1)-Mn(1)#1 2. 962(5) Mn(2)-O(4) 1. 829(10) Mn(2)-O(5) 1. 869(13) Mn(2)-O(2) 1. 948(11) Mn(2)-O(2) 1. 948(11) Mn(2)-O(2)#1 1. 958(10) Mn(2)-O(2) 1. 967(10) Mn(2)-Mn(3) 2. 788(4) Mn(2)-Mn(1)#1 2. 834(3) Mn(2)-Mn(2)#1 2. 965(5) Mn(3)-O(5) 1. 879(11) Mn(3)-O(4) 1. 904(12) Mn(3)-O(13) 1. 920(15) Mn(3)-O(12) 1. 937(14) Mn(3)-O(22) 2. 237(14) Mn(3)-O(12) 1. 937(14) Mn(3)-O(22) 2. 237(14) Mn(3)-O(19) 2. 236(12) Mn(4)-O(3)#1 1. 882(13) Mn(4)-O(6) 1. 896(11) Mn(4)-O(3)#1 1. 882(13) Mn(4)-O(6) 1. 951(14) Mn(4)-O(17) 2. 113(13) Mn(4)-O(24) 2. 119(12) Mn(4)-Mn(1)#1 2. 785(4) Fe(1)-O(4) 1. 940(12) Fe(1)-O(3) 1. 962(12) Fe(1)-O(10) 2.	Mn(1)-O(2)#1	1. 854(10)	Mn(1)-O(1)	1. 922(11)
Mn(1)-Mn(2) 2.854(4) Mn(1)-Mn(1)#1 2.962(5) Mn(2)-O(4) 1.829(10) Mn(2)-O(5) 1.869(13) Mn(2)-O(21) 1.923(11) Mn(2)-O(1) 1.948(11) Mn(2)-O(2)#1 1.958(10) Mn(2)-O(2) 1.967(10) Mn(2)-Mn(3) 2.788(4) Mn(2)-Mn(1)#1 2.834(3) Mn(2)-Mn(2)#1 2.965(5) Mn(3)-O(5) 1.879(11) Mn(3)-O(4) 1.904(12) Mn(3)-O(13) 1.920(15) Mn(3)-O(2) 1.937(14) Mn(3)-O(22) 2.237(14) Mn(3)-O(19) 2.236(12) Mn(4)-O(3)#1 1.882(13) Mn(4)-O(6) 1.896(11) Mn(4)-O(3)#1 1.882(13) Mn(4)-O(6) 1.896(11) Mn(4)-O(16) 1.949(14) Mn(4)-O(9) 1.951(14) Mn(4)-O(17) 2.113(13) Mn(4)-O(24) 2.119(12) Mn(4)-Mn(1)#1 2.785(4) Fe(1)-O(4) 1.940(12) Fe(1)-O(3) 1.962(12) Fe(1)-O(10) 2.035(14) Fe(1)-O(1) 2.025(14) Fe(1)-O(3) 1.962(12) 1.931(13) </td <td>Mn(1)-O(1)#1</td> <td>1. 941(10)</td> <td>Mn(1)-O(18)#1</td> <td>1. 952(13)</td>	Mn(1)-O(1)#1	1. 941(10)	Mn(1)-O(18)#1	1. 952(13)
Mn(2)-O(4) 1. 829(10) Mn(2)-O(5) 1. 869(13) Mn(2)-O(21) 1. 923(11) Mn(2)-O(1) 1. 948(11) Mn(2)-O(2)#1 1. 958(10) Mn(2)-O(2) 1. 967(10) Mn(2)-Mn(3) 2. 788(4) Mn(2)-Mn(1)#1 2. 834(3) Mn(2)-Mn(2)#1 2. 965(5) Mn(3)-O(5) 1. 879(11) Mn(3)-O(4) 1. 904(12) Mn(3)-O(13) 1. 920(15) Mn(3)-O(12) 1. 937(14) Mn(3)-O(22) 2. 237(14) Mn(3)-O(19) 2. 236(12) Mn(4)-O(3)#1 1. 882(13) Mn(4)-O(6) 1. 896(11) Mn(4)-O(16) 1. 949(14) Mn(4)-O(6) 1. 951(14) Mn(4)-O(17) 2. 113(13) Mn(4)-O(24) 2. 119(12) Mn(4)-Mn(1)#1 2. 785(4) Fe(1)-O(4) 1. 940(12) Fe(1)-O(3) 1. 962(12) Fe(1)-O(4) 1. 940(12) Fe(1)-O(3) 1. 962(12) Fe(1)-O(4) 1. 940(12) Fe(1)-O(3) 1. 962(12) Fe(1)-O(10) 2. 003(14) Fe(1)-O(3) 1. 962(12) Fe(2)-O(6) 1. 912(12)<	Mn(1)-Mn(4)#1	2. 785(4)	Mn(1)-Mn(2)#1	2. 834(3)
Mn(2)-O(21) 1. 923(11) Mn(2)-O(2) 1. 948(11) Mn(2)-O(2)#1 1. 958(10) Mn(2)-O(2) 1. 967(10) Mn(2)-Mn(3) 2. 788(4) Mn(2)-Mn(1)#1 2. 834(3) Mn(2)-Mn(2)#1 2. 965(5) Mn(3)-O(5) 1. 879(11) Mn(3)-O(4) 1. 904(12) Mn(3)-O(13) 1. 920(15) Mn(3)-O(12) 1. 937(14) Mn(3)-O(22) 2. 237(14) Mn(3)-O(19) 2. 236(12) Mn(4)-O(3)#1 1. 882(13) Mn(4)-O(6) 1. 896(11) Mn(4)-O(16) 1. 949(14) Mn(4)-O(9) 1. 951(14) Mn(4)-O(17) 2. 113(13) Mn(4)-O(24) 2. 119(12) Mn(4)-Mn(1)#1 2. 785(4) Fe(1)-O(4) 1. 940(12) Fe(1)-O(3) 1. 962(12) Fe(1)-O(4) 1. 940(12) Fe(1)-O(3) 1. 962(12) Fe(1)-O(4) 1. 940(12) Fe(1)-O(3) 1. 962(12) Fe(1)-O(23) 2. 056(14) Fe(1)-O(7) 2. 098(12) Fe(2)-O(6) 1. 912(12) Fe(2)-O(5) 1. 931(3) Fe(2)-O(6) 1. 993(15) </td <td>Mn(1)-$Mn(2)$</td> <td>2. 854(4)</td> <td>Mn(1)-Mn(1)#1</td> <td>2. 962(5)</td>	Mn(1)- $Mn(2)$	2. 854(4)	Mn(1)-Mn(1)#1	2. 962(5)
Mn(2)-O(2)#1 1. 958(10) Mn(2)-O(2) 1. 967(10) Mn(2)-Mn(3) 2. 788(4) Mn(2)-Mn(1)#1 2. 834(3) Mn(2)-Mn(2)#1 2. 965(5) Mn(3)-O(5) 1. 879(11) Mn(3)-O(4) 1. 904(12) Mn(3)-O(13) 1. 920(15) Mn(3)-O(12) 1. 937(14) Mn(3)-O(22) 2. 237(14) Mn(3)-O(19) 2. 236(12) Mn(4)-O(3)#1 1. 882(13) Mn(4)-O(6) 1. 896(11) Mn(4)-O(16) 1. 949(14) Mn(4)-O(9) 1. 951(14) Mn(4)-O(17) 2. 113(13) Mn(4)-O(24) 2. 119(12) Mn(4)-Mn(1)#1 2. 785(4) Fe(1)-O(4) 1. 940(12) Fe(1)-O(3) 1. 962(12) Fe(1)-O(6) 1. 940(12) Fe(1)-O(3) 1. 962(12) Fe(1)-O(2) 1. 90(11) <td>Mn(2)-O(4)</td> <td>1.829(10)</td> <td>Mn(2)-O(5)</td> <td>1.869(13)</td>	Mn(2)-O(4)	1.829(10)	Mn(2)-O(5)	1.869(13)
Mn(2)-Mn(3) 2. 788(4) Mn(2)-Mn(1)#1 2. 834(3) Mn(2)-Mn(2)#1 2. 965(5) Mn(3)-O(5) 1. 879(11) Mn(3)-O(4) 1. 904(12) Mn(3)-O(13) 1. 920(15) Mn(3)-O(12) 1. 937(14) Mn(3)-O(22) 2. 237(14) Mn(3)-O(19) 2. 236(12) Mn(4)-O(3)#1 1. 882(13) Mn(4)-O(6) 1. 896(11) Mn(4)-O(16) 1. 949(14) Mn(4)-O(9) 1. 951(14) Mn(4)-O(17) 2. 113(13) Mn(4)-O(24) 2. 119(12) Mn(4)-Mn(1)#1 2. 785(4) Fe(1)-O(4) 1. 940(12) Fe(1)-O(3) 1. 962(12) Fe(1)-O(10) 2. 003(14) Fe(1)-O(11) 2. 025(14) Fe(1)-O(23) 2. 056(14) Fe(1)-O(11) 2. 025(14) Fe(2)-O(6) 1. 912(12) Fe(2)-O(5) 1. 931(13) Fe(2)-O(15) 1. 993(15) Fe(2)-O(20) 2. 020(15) Fe(2)-O(14) 2. 025(15) Fe(2)-O(8) 2. 128(16) O(1)-Mn(1)#1 1. 941(10) O(2)-Mn(1)#1 1. 854(10) O(2)-Mn(2)#1 1. 958(10) O(3)-Mn(4)#1 1. 882(13) O(6)-Mn(1)#1	Mn(2)-O(21)	1. 923(11)	Mn(2)-O(1)	1. 948(11)
Mn(2)-Mn(2)#1 2. 965(5) Mn(3)-O(5) 1. 879(11) Mn(3)-O(4) 1. 904(12) Mn(3)-O(13) 1. 920(15) Mn(3)-O(12) 1. 937(14) Mn(3)-O(22) 2. 237(14) Mn(3)-O(19) 2. 236(12) Mn(4)-O(3)#1 1. 882(13) Mn(4)-O(6) 1. 896(11) Mn(4)-O(16) 1. 949(14) Mn(4)-O(9) 1. 951(14) Mn(4)-O(17) 2. 113(13) Mn(4)-O(24) 2. 119(12) Mn(4)-Mn(1)#1 2. 785(4) Fe(1)-O(4) 1. 940(12) Fe(1)-O(3) 1. 962(12) Fe(1)-O(4) 1. 940(12) Fe(1)-O(11) 2. 025(14) Fe(1)-O(10) 2. 003(14) Fe(1)-O(11) 2. 025(14) Fe(1)-O(23) 2. 056(14) Fe(1)-O(7) 2. 098(12) Fe(2)-O(6) 1. 912(12) Fe(2)-O(5) 1. 931(13) Fe(2)-O(15) 1. 993(15) Fe(2)-O(5) 1. 931(13) Fe(2)-O(14) 2. 025(15) Fe(2)-O(20) 2. 020(15) Fe(2)-O(14) 2. 025(15) Fe(2)-O(8) 2. 128(16) O(1)-Mn(1)#1 1. 941(Mn(2)-O(2)#1	1. 958(10)	Mn(2)-O(2)	1. 967(10)
Mn(3)-O(4) 1.904(12) Mn(3)-O(13) 1.920(15) Mn(3)-O(12) 1.937(14) Mn(3)-O(22) 2.237(14) Mn(3)-O(19) 2.236(12) Mn(4)-O(3)#1 1.882(13) Mn(4)-O(6) 1.896(11) Mn(4)-O(16) 1.949(14) Mn(4)-O(9) 1.951(14) Mn(4)-O(17) 2.113(13) Mn(4)-O(24) 2.119(12) Mn(4)-Mn(1)#1 2.785(4) Fe(1)-O(4) 1.940(12) Fe(1)-O(3) 1.962(12) Fe(1)-O(4) 2.003(14) Fe(1)-O(3) 1.962(12) Fe(1)-O(23) 2.056(14) Fe(1)-O(7) 2.098(12) Fe(2)-O(6) 1.912(12) Fe(2)-O(5) 1.931(13) Fe(2)-O(6) 1.912(12) Fe(2)-O(5) 1.931(13) Fe(2)-O(14) 2.025(15) Fe(2)-O(8) 2.128(16) O(1)-Mn(1)#1 1.941(10) O(2)-Mn(1)#1 1.854(10) O(2)-Mn(2)#1 1.958(10) O(3)-Mn(4)#1 1.882(13) O(6)-Mn(1)#1 1.816(12) O(9)-C(1)#1 1.31(2) O(10)-C(1) 1.20(3) O(11)-C(9) 1.31(2) O(12)-C(9) 1.162(19) O(13)-C(17	Mn(2)- $Mn(3)$	2. 788(4)	Mn(2)-Mn(1)#1	2. 834(3)
Mn(3)-O(12) 1. 937(14) Mn(3)-O(22) 2. 237(14) Mn(3)-O(19) 2. 236(12) Mn(4)-O(3)#1 1. 882(13) Mn(4)-O(6) 1. 896(11) Mn(4)-O(16) 1. 949(14) Mn(4)-O(9) 1. 951(14) Mn(4)-O(17) 2. 113(13) Mn(4)-O(24) 2. 119(12) Mn(4)-Mn(1)#1 2. 785(4) Fe(1)-O(4) 1. 940(12) Fe(1)-O(3) 1. 962(12) Fe(1)-O(10) 2. 003(14) Fe(1)-O(11) 2. 025(14) Fe(1)-O(23) 2. 056(14) Fe(1)-O(7) 2. 098(12) Fe(2)-O(6) 1. 912(12) Fe(2)-O(5) 1. 931(13) Fe(2)-O(6) 1. 912(12) Fe(2)-O(5) 1. 931(13) Fe(2)-O(14) 2. 025(15) Fe(2)-O(8) 2. 128(16) O(1)-Mn(1)#1 1. 941(10) O(2)-Mn(1)#1 1. 854(10) O(2)-Mn(2)#1 1. 958(10) O(3)-Mn(4)#1 1. 882(13) O(6)-Mn(1)#1 1. 816(12) O(9)-C(1)#1 1. 31(3) O(10)-C(1) 1. 20(3) O(11)-C(9) 1. 31(2) O(12)-C(9) 1. 162(19)<	Mn(2)-Mn(2)#1	2. 965(5)	Mn(3)-O(5)	1. 879(11)
Mn(3)-O(19) 2. 236(12) Mn(4)-O(3)#1 1. 882(13) Mn(4)-O(6) 1. 896(11) Mn(4)-O(16) 1. 949(14) Mn(4)-O(9) 1. 951(14) Mn(4)-O(17) 2. 113(13) Mn(4)-O(24) 2. 119(12) Mn(4)-Mn(1)#1 2. 785(4) Fe(1)-O(4) 1. 940(12) Fe(1)-O(3) 1. 962(12) Fe(1)-O(10) 2. 003(14) Fe(1)-O(11) 2. 025(14) Fe(1)-O(23) 2. 056(14) Fe(1)-O(7) 2. 098(12) Fe(2)-O(6) 1. 912(12) Fe(2)-O(5) 1. 931(13) Fe(2)-O(15) 1. 993(15) Fe(2)-O(20) 2. 020(15) Fe(2)-O(14) 2. 025(15) Fe(2)-O(20) 2. 020(15) Fe(2)-O(14) 2. 025(15) Fe(2)-O(8) 2. 128(16) O(1)-Mn(1)#1 1. 941(10) O(2)-Mn(1)#1 1. 854(10) O(2)-Mn(2)#1 1. 958(10) O(3)-Mn(4)#1 1. 882(13) O(6)-Mn(1)#1 1. 816(12) O(9)-C(1)#1 1. 31(3) O(10)-C(1) 1. 20(3) O(11)-C(9) 1. 31(2) O(12)-C(9) 1. 162(19) O(13)-C(17) 1. 316(18) O(14)-C(17) <t< td=""><td>Mn(3)-O(4)</td><td>1. 904(12)</td><td>Mn(3)-O(13)</td><td>1. 920(15)</td></t<>	Mn(3)-O(4)	1. 904(12)	Mn(3)-O(13)	1. 920(15)
Mn(4)-O(6) 1. 896(11) Mn(4)-O(16) 1. 949(14) Mn(4)-O(9) 1. 951(14) Mn(4)-O(17) 2. 113(13) Mn(4)-O(24) 2. 119(12) Mn(4)-Mn(1)#1 2. 785(4) Fe(1)-O(4) 1. 940(12) Fe(1)-O(3) 1. 962(12) Fe(1)-O(10) 2. 003(14) Fe(1)-O(11) 2. 025(14) Fe(1)-O(23) 2. 056(14) Fe(1)-O(7) 2. 098(12) Fe(2)-O(6) 1. 912(12) Fe(2)-O(5) 1. 931(13) Fe(2)-O(15) 1. 993(15) Fe(2)-O(20) 2. 020(15) Fe(2)-O(14) 2. 025(15) Fe(2)-O(20) 2. 020(15) Fe(2)-O(14) 2. 025(15) Fe(2)-O(8) 2. 128(16) O(1)-Mn(1)#1 1. 941(10) O(2)-Mn(1)#1 1. 854(10) O(2)-Mn(2)#1 1. 958(10) O(3)-Mn(4)#1 1. 882(13) O(6)-Mn(1)#1 1. 816(12) O(9)-C(1)#1 1. 31(3) O(10)-C(1) 1. 20(3) O(11)-C(9) 1. 31(2) O(12)-C(9) 1. 162(19) O(13)-C(17) 1. 316(18) O(14)-C(17) 1. 17(2) O(15)-C(25) 1. 26(2) O(16)-C(25) 1.	Mn(3)-O(12)	1. 937(14)	Mn(3)-O(22)	2. 237(14)
Mn(4)-O(9) 1.951(14) Mn(4)-O(17) 2.113(13) Mn(4)-O(24) 2.119(12) Mn(4)-Mn(1)#1 2.785(4) Fe(1)-O(4) 1.940(12) Fe(1)-O(3) 1.962(12) Fe(1)-O(10) 2.003(14) Fe(1)-O(11) 2.025(14) Fe(1)-O(23) 2.056(14) Fe(1)-O(7) 2.098(12) Fe(2)-O(6) 1.912(12) Fe(2)-O(5) 1.931(13) Fe(2)-O(15) 1.993(15) Fe(2)-O(20) 2.020(15) Fe(2)-O(14) 2.025(15) Fe(2)-O(8) 2.128(16) O(1)-Mn(1)#1 1.941(10) O(2)-Mn(1)#1 1.854(10) O(2)-Mn(2)#1 1.958(10) O(3)-Mn(4)#1 1.882(13) O(6)-Mn(1)#1 1.816(12) O(9)-C(1)#1 1.31(3) O(10)-C(1) 1.20(3) O(11)-C(9) 1.31(2) O(12)-C(9) 1.162(19) O(13)-C(17) 1.316(18) O(14)-C(17) 1.17(2) O(15)-C(25) 1.26(2) O(16)-C(25) 1.31(2) O(17)-C(33) 1.22(2) O(18)-C(33) 1.34(2) O(18)-Mn(1)#1 1.952(13) O(19)-C(41) 1.28(2) O(20)-C(41) <td>Mn(3)-O(19)</td> <td>2. 236(12)</td> <td>Mn(4)-O(3)#1</td> <td>1. 882(13)</td>	Mn(3)-O(19)	2. 236(12)	Mn(4)-O(3)#1	1. 882(13)
Mn(4)-O(24) 2. 119(12) Mn(4)-Mn(1)#1 2. 785(4) Fe(1)-O(4) 1. 940(12) Fe(1)-O(3) 1. 962(12) Fe(1)-O(10) 2. 003(14) Fe(1)-O(11) 2. 025(14) Fe(1)-O(23) 2. 056(14) Fe(1)-O(7) 2. 098(12) Fe(2)-O(6) 1. 912(12) Fe(2)-O(5) 1. 931(13) Fe(2)-O(15) 1. 993(15) Fe(2)-O(20) 2. 020(15) Fe(2)-O(14) 2. 025(15) Fe(2)-O(8) 2. 128(16) O(1)-Mn(1)#1 1. 941(10) O(2)-Mn(1)#1 1. 854(10) O(2)-Mn(2)#1 1. 958(10) O(3)-Mn(4)#1 1. 882(13) O(6)-Mn(1)#1 1. 816(12) O(9)-C(1)#1 1. 31(3) O(10)-C(1) 1. 20(3) O(11)-C(9) 1. 31(2) O(12)-C(9) 1. 162(19) O(13)-C(17) 1. 316(18) O(14)-C(17) 1. 17(2) O(15)-C(25) 1. 26(2) O(16)-C(25) 1. 31(2) O(17)-C(33) 1. 22(2) O(18)-C(33) 1. 34(2) O(18)-Mn(1)#1 1. 952(13) O(19)-C(41) 1. 28(2) O(20)-C(41) 1. 24(3) O(21)-C(49) 1. 36(2)<	Mn(4)-O(6)	1. 896(11)	Mn(4)-O(16)	1. 949(14)
Fe(1)-O(4) 1. 940(12) Fe(1)-O(3) 1. 962(12) Fe(1)-O(10) 2. 003(14) Fe(1)-O(11) 2. 025(14) Fe(1)-O(23) 2. 056(14) Fe(1)-O(7) 2. 098(12) Fe(2)-O(6) 1. 912(12) Fe(2)-O(5) 1. 931(13) Fe(2)-O(15) 1. 993(15) Fe(2)-O(20) 2. 020(15) Fe(2)-O(14) 2. 025(15) Fe(2)-O(8) 2. 128(16) O(1)-Mn(1)#1 1. 941(10) O(2)-Mn(1)#1 1. 854(10) O(2)-Mn(2)#1 1. 958(10) O(3)-Mn(4)#1 1. 882(13) O(6)-Mn(1)#1 1. 816(12) O(9)-C(1)#1 1. 31(3) O(10)-C(1) 1. 20(3) O(11)-C(9) 1. 31(2) O(12)-C(9) 1. 162(19) O(13)-C(17) 1. 316(18) O(14)-C(17) 1. 17(2) O(15)-C(25) 1. 26(2) O(16)-C(25) 1. 31(2) O(17)-C(33) 1. 22(2) O(18)-C(33) 1. 34(2) O(18)-Mn(1)#1 1. 952(13) O(19)-C(41) 1. 28(2) O(20)-C(41) 1. 24(3) O(21)-C(49) 1. 36(2) O(22)-C(49) 1. 18(2) O(23)-C(57) 1. 305(19) <td>Mn(4)-O(9)</td> <td>1. 951(14)</td> <td>Mn(4)-O(17)</td> <td>2. 113(13)</td>	Mn(4)-O(9)	1. 951(14)	Mn(4)-O(17)	2. 113(13)
Fe(1)-O(10) 2.003(14) Fe(1)-O(11) 2.025(14) Fe(1)-O(23) 2.056(14) Fe(1)-O(7) 2.098(12) Fe(2)-O(6) 1.912(12) Fe(2)-O(5) 1.931(13) Fe(2)-O(15) 1.993(15) Fe(2)-O(20) 2.020(15) Fe(2)-O(14) 2.025(15) Fe(2)-O(8) 2.128(16) O(1)-Mn(1)#1 1.941(10) O(2)-Mn(1)#1 1.854(10) O(2)-Mn(2)#1 1.958(10) O(3)-Mn(4)#1 1.882(13) O(6)-Mn(1)#1 1.816(12) O(9)-C(1)#1 1.31(3) O(10)-C(1) 1.20(3) O(11)-C(9) 1.31(2) O(12)-C(9) 1.162(19) O(13)-C(17) 1.316(18) O(14)-C(17) 1.17(2) O(15)-C(25) 1.26(2) O(16)-C(25) 1.31(2) O(17)-C(33) 1.22(2) O(18)-C(33) 1.34(2) O(18)-Mn(1)#1 1.952(13) O(19)-C(41) 1.28(2) O(20)-C(41) 1.24(3) O(21)-C(49) 1.36(2) O(22)-C(49) 1.18(2) O(23)-C(57) 1.305(19) O(24)-C(57)#1 1.332(18) C(1)-O(9)#1 1.45(3) C(2)-C(3)	Mn(4)-O(24)	2. 119(12)	Mn(4)-Mn(1)#1	2. 785(4)
Fe(1)-O(23) 2. 056(14) Fe(1)-O(7) 2. 098(12) Fe(2)-O(6) 1. 912(12) Fe(2)-O(5) 1. 931(13) Fe(2)-O(15) 1. 993(15) Fe(2)-O(20) 2. 020(15) Fe(2)-O(14) 2. 025(15) Fe(2)-O(8) 2. 128(16) O(1)-Mn(1)#1 1. 941(10) O(2)-Mn(1)#1 1. 854(10) O(2)-Mn(2)#1 1. 958(10) O(3)-Mn(4)#1 1. 882(13) O(6)-Mn(1)#1 1. 816(12) O(9)-C(1)#1 1. 31(3) O(10)-C(1) 1. 20(3) O(11)-C(9) 1. 31(2) O(12)-C(9) 1. 162(19) O(13)-C(17) 1. 316(18) O(14)-C(17) 1. 17(2) O(15)-C(25) 1. 26(2) O(16)-C(25) 1. 31(2) O(17)-C(33) 1. 22(2) O(18)-C(33) 1. 34(2) O(18)-Mn(1)#1 1. 952(13) O(19)-C(41) 1. 28(2) O(20)-C(41) 1. 24(3) O(21)-C(49) 1. 36(2) O(22)-C(49) 1. 18(2) O(23)-C(57) 1. 305(19) O(24)-C(57)#1 1. 332(18) C(1)-O(9)#1 1. 45(3) C(2)-C(3) 1. 47(3)	Fe(1)-O(4)	1. 940(12)	Fe(1)-O(3)	1. 962(12)
Fe(2)-O(6) 1. 912(12) Fe(2)-O(5) 1. 931(13) Fe(2)-O(15) 1. 993(15) Fe(2)-O(20) 2. 020(15) Fe(2)-O(14) 2. 025(15) Fe(2)-O(8) 2. 128(16) O(1)-Mn(1)#1 1. 941(10) O(2)-Mn(1)#1 1. 854(10) O(2)-Mn(2)#1 1. 958(10) O(3)-Mn(4)#1 1. 882(13) O(6)-Mn(1)#1 1. 816(12) O(9)-C(1)#1 1. 31(3) O(10)-C(1) 1. 20(3) O(11)-C(9) 1. 31(2) O(12)-C(9) 1. 162(19) O(13)-C(17) 1. 316(18) O(14)-C(17) 1. 17(2) O(15)-C(25) 1. 26(2) O(16)-C(25) 1. 31(2) O(17)-C(33) 1. 22(2) O(18)-C(33) 1. 34(2) O(18)-Mn(1)#1 1. 952(13) O(19)-C(41) 1. 28(2) O(20)-C(41) 1. 24(3) O(21)-C(49) 1. 36(2) O(22)-C(49) 1. 18(2) O(23)-C(57) 1. 305(19) O(24)-C(57)#1 1. 332(18) C(1)-O(9)#1 1. 31(3) C(1)-C(2) 1. 47(3) C(2)-C(7) 1. 45(3) C(2)-C(3) 1. 47(4)	Fe(1)-O(10)	2. 003(14)	Fe(1)-O(11)	2. 025(14)
Fe(2)-O(15) 1.993(15) Fe(2)-O(20) 2.020(15) Fe(2)-O(14) 2.025(15) Fe(2)-O(8) 2.128(16) O(1)-Mn(1)#1 1.941(10) O(2)-Mn(1)#1 1.854(10) O(2)-Mn(2)#1 1.958(10) O(3)-Mn(4)#1 1.882(13) O(6)-Mn(1)#1 1.816(12) O(9)-C(1)#1 1.31(3) O(10)-C(1) 1.20(3) O(11)-C(9) 1.31(2) O(12)-C(9) 1.162(19) O(13)-C(17) 1.316(18) O(14)-C(17) 1.17(2) O(15)-C(25) 1.26(2) O(16)-C(25) 1.31(2) O(17)-C(33) 1.22(2) O(18)-C(33) 1.34(2) O(18)-Mn(1)#1 1.952(13) O(19)-C(41) 1.28(2) O(20)-C(41) 1.24(3) O(21)-C(49) 1.36(2) O(22)-C(49) 1.18(2) O(23)-C(57) 1.305(19) O(24)-C(57)#1 1.332(18) C(1)-O(9)#1 1.31(3) C(1)-C(2) 1.47(3) C(2)-C(7) 1.45(3) C(2)-C(3) 1.47(4)	Fe(1)-O(23)	2. 056(14)	Fe(1)-O(7)	2. 098(12)
Fe(2)-O(14) 2. 025(15) Fe(2)-O(8) 2. 128(16) O(1)-Mn(1)#1 1. 941(10) O(2)-Mn(1)#1 1. 854(10) O(2)-Mn(2)#1 1. 958(10) O(3)-Mn(4)#1 1. 882(13) O(6)-Mn(1)#1 1. 816(12) O(9)-C(1)#1 1. 31(3) O(10)-C(1) 1. 20(3) O(11)-C(9) 1. 31(2) O(12)-C(9) 1. 162(19) O(13)-C(17) 1. 316(18) O(14)-C(17) 1. 17(2) O(15)-C(25) 1. 26(2) O(16)-C(25) 1. 31(2) O(17)-C(33) 1. 22(2) O(18)-C(33) 1. 34(2) O(18)-Mn(1)#1 1. 952(13) O(19)-C(41) 1. 28(2) O(20)-C(41) 1. 24(3) O(21)-C(49) 1. 36(2) O(22)-C(49) 1. 18(2) O(23)-C(57) 1. 305(19) O(24)-C(57)#1 1. 332(18) C(1)-O(9)#1 1. 31(3) C(1)-C(2) 1. 47(3) C(2)-C(7) 1. 45(3) C(2)-C(3) 1. 47(4)	Fe(2)-O(6)	1. 912(12)	Fe(2)-O(5)	1. 931(13)
O(1)-Mn(1)#1 1. 941(10) O(2)-Mn(1)#1 1. 854(10) O(2)-Mn(2)#1 1. 958(10) O(3)-Mn(4)#1 1. 882(13) O(6)-Mn(1)#1 1. 816(12) O(9)-C(1)#1 1. 31(3) O(10)-C(1) 1. 20(3) O(11)-C(9) 1. 31(2) O(12)-C(9) 1. 162(19) O(13)-C(17) 1. 316(18) O(14)-C(17) 1. 17(2) O(15)-C(25) 1. 26(2) O(16)-C(25) 1. 31(2) O(17)-C(33) 1. 22(2) O(18)-C(33) 1. 34(2) O(18)-Mn(1)#1 1. 952(13) O(19)-C(41) 1. 28(2) O(20)-C(41) 1. 24(3) O(21)-C(49) 1. 36(2) O(22)-C(49) 1. 18(2) O(23)-C(57) 1. 305(19) O(24)-C(57)#1 1. 332(18) C(1)-O(9)#1 1. 31(3) C(1)-C(2) 1. 47(3) C(2)-C(7) 1. 45(3) C(2)-C(3) 1. 47(4)	Fe(2)-O(15)	1. 993(15)	Fe(2)-O(20)	2. 020(15)
O(2)-Mn(2)#1 1. 958(10) O(3)-Mn(4)#1 1. 882(13) O(6)-Mn(1)#1 1. 816(12) O(9)-C(1)#1 1. 31(3) O(10)-C(1) 1. 20(3) O(11)-C(9) 1. 31(2) O(12)-C(9) 1. 162(19) O(13)-C(17) 1. 316(18) O(14)-C(17) 1. 17(2) O(15)-C(25) 1. 26(2) O(16)-C(25) 1. 31(2) O(17)-C(33) 1. 22(2) O(18)-C(33) 1. 34(2) O(18)-Mn(1)#1 1. 952(13) O(19)-C(41) 1. 28(2) O(20)-C(41) 1. 24(3) O(21)-C(49) 1. 36(2) O(22)-C(49) 1. 18(2) O(23)-C(57) 1. 305(19) O(24)-C(57)#1 1. 332(18) C(1)-O(9)#1 1. 31(3) C(1)-C(2) 1. 47(3) C(2)-C(7) 1. 45(3) C(2)-C(3) 1. 47(4)	Fe(2)-O(14)	2. 025(15)	Fe(2)-O(8)	2. 128(16)
O(6)-Mn(1)#1 1.816(12) O(9)-C(1)#1 1.31(3) O(10)-C(1) 1.20(3) O(11)-C(9) 1.31(2) O(12)-C(9) 1.162(19) O(13)-C(17) 1.316(18) O(14)-C(17) 1.17(2) O(15)-C(25) 1.26(2) O(16)-C(25) 1.31(2) O(17)-C(33) 1.22(2) O(18)-C(33) 1.34(2) O(18)-Mn(1)#1 1.952(13) O(19)-C(41) 1.28(2) O(20)-C(41) 1.24(3) O(21)-C(49) 1.36(2) O(22)-C(49) 1.18(2) O(23)-C(57) 1.305(19) O(24)-C(57)#1 1.332(18) C(1)-O(9)#1 1.31(3) C(1)-C(2) 1.47(3) C(2)-C(7) 1.45(3) C(2)-C(3) 1.47(4)	O(1)-Mn(1)#1	1. 941(10)	O(2)-Mn(1)#1	1. 854(10)
O(10)-C(1) 1. 20(3) O(11)-C(9) 1. 31(2) O(12)-C(9) 1. 162(19) O(13)-C(17) 1. 316(18) O(14)-C(17) 1. 17(2) O(15)-C(25) 1. 26(2) O(16)-C(25) 1. 31(2) O(17)-C(33) 1. 22(2) O(18)-C(33) 1. 34(2) O(18)-Mn(1)#1 1. 952(13) O(19)-C(41) 1. 28(2) O(20)-C(41) 1. 24(3) O(21)-C(49) 1. 36(2) O(22)-C(49) 1. 18(2) O(23)-C(57) 1. 305(19) O(24)-C(57)#1 1. 332(18) C(1)-O(9)#1 1. 31(3) C(1)-C(2) 1. 47(3) C(2)-C(7) 1. 45(3) C(2)-C(3) 1. 47(4)	O(2)-Mn(2)#1	1. 958(10)	O(3)-Mn(4)#1	1. 882(13)
O(12)-C(9) 1. 162(19) O(13)-C(17) 1. 316(18) O(14)-C(17) 1. 17(2) O(15)-C(25) 1. 26(2) O(16)-C(25) 1. 31(2) O(17)-C(33) 1. 22(2) O(18)-C(33) 1. 34(2) O(18)-Mn(1)#1 1. 952(13) O(19)-C(41) 1. 28(2) O(20)-C(41) 1. 24(3) O(21)-C(49) 1. 36(2) O(22)-C(49) 1. 18(2) O(23)-C(57) 1. 305(19) O(24)-C(57)#1 1. 332(18) C(1)-O(9)#1 1. 31(3) C(1)-C(2) 1. 47(3) C(2)-C(7) 1. 45(3) C(2)-C(3) 1. 47(4)	O(6)-Mn(1)#1	1. 816(12)	O(9)-C(1)#1	1. 31(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(10)- $C(1)$	1. 20(3)	O(11)-C(9)	1. 31(2)
O(16)-C(25) 1. 31(2) O(17)-C(33) 1. 22(2) O(18)-C(33) 1. 34(2) O(18)-Mn(1)#1 1. 952(13) O(19)-C(41) 1. 28(2) O(20)-C(41) 1. 24(3) O(21)-C(49) 1. 36(2) O(22)-C(49) 1. 18(2) O(23)-C(57) 1. 305(19) O(24)-C(57)#1 1. 332(18) C(1)-O(9)#1 1. 31(3) C(1)-C(2) 1. 47(3) C(2)-C(7) 1. 45(3) C(2)-C(3) 1. 47(4)	O(12)-C(9)	1. 162(19)	O(13)-C(17)	1. 316(18)
O(18)-C(33) 1. 34(2) O(18)-Mn(1)#1 1. 952(13) O(19)-C(41) 1. 28(2) O(20)-C(41) 1. 24(3) O(21)-C(49) 1. 36(2) O(22)-C(49) 1. 18(2) O(23)-C(57) 1. 305(19) O(24)-C(57)#1 1. 332(18) C(1)-O(9)#1 1. 31(3) C(1)-C(2) 1. 47(3) C(2)-C(7) 1. 45(3) C(2)-C(3) 1. 47(4)	O(14)-C(17)	1. 17(2)	O(15)-C(25)	1. 26(2)
O(19)-C(41) 1. 28(2) O(20)-C(41) 1. 24(3) O(21)-C(49) 1. 36(2) O(22)-C(49) 1. 18(2) O(23)-C(57) 1. 305(19) O(24)-C(57)#1 1. 332(18) C(1)-O(9)#1 1. 31(3) C(1)-C(2) 1. 47(3) C(2)-C(7) 1. 45(3) C(2)-C(3) 1. 47(4)	O(16)-C(25)	1. 31(2)	O(17)-C(33)	1. 22(2)
O(21)-C(49) 1. 36(2) O(22)-C(49) 1. 18(2) O(23)-C(57) 1. 305(19) O(24)-C(57)#1 1. 332(18) C(1)-O(9)#1 1. 31(3) C(1)-C(2) 1. 47(3) C(2)-C(7) 1. 45(3) C(2)-C(3) 1. 47(4)	O(18)-C(33)	1. 34(2)	O(18)-Mn(1)#1	1. 952(13)
O(23)-C(57) 1. 305(19) O(24)-C(57)#1 1. 332(18) C(1)-O(9)#1 1. 31(3) C(1)-C(2) 1. 47(3) C(2)-C(7) 1. 45(3) C(2)-C(3) 1. 47(4)	O(19)-C(41)	1. 28(2)	O(20)-C(41)	1. 24(3)
C(1)-O(9)#1 1. 31(3) C(1)-C(2) 1. 47(3) C(2)-C(7) 1. 45(3) C(2)-C(3) 1. 47(4)	O(21)-C(49)	1. 36(2)	O(22)-C(49)	1. 18(2)
C(2)-C(7) 1. 45(3) C(2)-C(3) 1. 47(4)	O(23)-C(57)	1. 305(19)	O(24)-C(57)#1	1. 332(18)
	C(1)-O(9)#1	1. 31(3)	C(1)- $C(2)$	1. 47(3)
<u>C(3)-C(4)</u> 1. 49(4) <u>C(4)-C(5)</u> 1. 32(4)	C(2)-C(7)	1. 45(3)	C(2)-C(3)	1. 47(4)
	C(3)-C(4)	1. 49(4)	C(4)-C(5)	1. 32(4)

_			_
C(5)-C(6)	1. 36(4)	C(5)-C(8)	1. 63(3)
C(6)-C(7)	1. 35(3)	C(9)-C(10)	1. 5537
C(10)-C(15)	1. 3899	C(10)-C(11)	1. 3899
C(11)-C(12)	1. 3900	C(12)- $C(13)$	1. 3901
C(13)-C(14)	1. 3899	C(13)-C(16)	1. 80(9)
C(14)-C(15)	1. 3900	C(17)-C(18)	1. 4547
C(18)-C(19)	1. 3898	C(18)-C(23)	1. 3901
C(19)-C(20)	1. 3899	C(20)- $C(21)$	1. 3901
C(21)-C(22)	1. 3019	C(21)-C(24)	1. 570(13)
C(22)-C(23)	1. 3649	C(25)-C(26)	1. 39(3)
C(26)-C(27)	1. 35(3)	C(26)-C(31)	1. 38 (3)
C(27)-C(28)	1. 47(4)	C(28)-C(29)	1. 46(3)
C(29)-C(30)	1. 28(3)	C(29)-C(32)	1. 44(3)
C(30)-C(31)	1. 39(3)	C(33)-C(34)	1. 56(3)
C(34)-C(39)	1. 31(3)	C(34)-C(35)	1. 44(3)
C(35)-C(36)	1. 34(3)	C(36)-C(37)	1. 44(3)
C(37)-C(38)	1. 25(3)	C(37)-C(40)	1. 54(4)
C(38)-C(39)	1. 46(3)	C(41)- $C(42)$	1. 52(3)
C(42)-C(43)	1. 33(3)	C(42)- $C(47)$	1. 34(3)
C(43)-C(44)	1. 46(3)	C(44)-C(45)	1. 41(3)
C(45)-C(48)	1. 45(3)	C(45)-C(46)	1. 48(3)
C(46)-C(47)	1. 38(3)	C(49)-C(50)	1. 46(3)
C(50)-C(55)	1. 31(3)	C(50)-C(51)	1. 43(3)
C(51)-C(52)	1. 46(3)	C(52)-C(53)	1. 26(3)
C(53)-C(54)	1. 42(3)	C(53)-C(56)	1. 60(3)
C(54)-C(55)	1. 40(3)	C(57)-C(24)#1	1. 332(18)
C(57)-C(58)	1. 4289	C(58)-C(63)	1. 2385
C(58)-C(59)	1. 3900	C(59)-C(60)	1. 3900
C(60)-C(61)	1. 3899	C(61)-C(64)	1. 39(3)
C(61)-C(62)	1. 3901	C(62)-C(63)	1. 3754
O(6)#1-Mn(1)-O(3)	83. 7(5)	O(6)#1-Mn(1)-O(2)#1	88. 6(5)
O(3)-Mn(1)-O(2)#1	92. 0(4)	O(6)#1-Mn(1)-O(1)	173. 7(5)
O(3)-Mn(1)-O(1)	96. 8(5)	O(2)#1-Mn(1)-O(1)	85. 1(4)
O(6)#1-Mn(1)-O(1)#1	99. 4(5)	O(3)-Mn(1)-O(1)#1	176. 3(5)
O(2)#1-Mn(1)-O(1)#1	86. 0(4)	O(1)-Mn(1)-O(1)#1	79. 8(5)
O(6)#1-Mn(1)-O(18)#1	91. 7(5)	O(3)-Mn(1)-O(18)#1	94. 1(5)

O(2)#1-Mn(1)-O(18)#1	173. 8(5)	O(1)-Mn(1)-O(18)#1	94. 5(5)
O(1)#1-Mn(1)-O(18)#1	87. 9(4)	O(6)#1-Mn(1)-Mn(4)#1	42. 5(4)
O(3)-Mn(1)-Mn(4)#1	42. 1(4)	O(2)#1-Mn(1)-Mn(4)#1	97. 3(3)
O(1)-Mn(1)-Mn(4)#1	138. 9(3)	O(1)#1-Mn(1)-Mn(4)#1	141. 3(3)
O(18)#1-Mn(1)-Mn(4)#1	87. 1(3)	O(6)#1-Mn(1)-Mn(2)#1	88. 3(4)
O(3)-Mn(1)-Mn(2)#1	135. 2(3)	O(2)#1-Mn(1)-Mn(2)#1	43. 7(3)
O(1)-Mn(1)-Mn(2)#1	86. 9(3)	O(1)#1-Mn(1)-Mn(2)#1	43. 3(3)
O(18)#1-Mn(1)-Mn(2)#1	130. 2(3)	Mn(4)#1-Mn(1)-Mn(2)#1	122. 55(12)
O(6)#1-Mn(1)-Mn(2)	131. 0(4)	O(3)#1-Mn(1)-Mn(2)	90. 4(4)
O(2)#1-Mn(1)-Mn(2)	42. 9(3)	O(1)#1-Mn(1)-Mn(2)	42. 8(3)
O(1)#1-Mn(1)-Mn(2)	86. 0(3)	O(18)#1-Mn(1)-Mn(2)	137. 3(4)
Mn(4)#1-Mn(1)-Mn(2)	122. 01(11)	Mn(2)#1-Mn(1)-Mn(2)	62. 82(11)
O(6)#1-Mn(1)-Mn(1)#1	138. 7(4)	O(3)-Mn(1)-Mn(1)#1	137. 0(4)
O(2)#1-Mn(1)-Mn(1)#1	83. 9(3)	O(1)-Mn(1)-Mn(1)#1	40. 2(3)
O(1)#1-Mn(1)-Mn(1)#1	39. 7(3)	O(18)#1-Mn(1)-Mn(1)#1	91. 9(3)
Mn(4)#1-Mn(1)-Mn(1)#1	178. 50(12)	Mn(2)#1-Mn(1)-Mn(1)#1	58. 95(8)
Mn(2)-Mn(1)-Mn(1)#1	58. 29(9)	O(4)-Mn(2)-O(5)	83. 8(5)
O(4)- $Mn(2)$ - $Mn(21)$	91. 2(5)	O(5)-Mn(2)- $O(21)$	95. 6(6)
O(4)-Mn(2)-Mn(1)	90. 2(5)	O(5)-Mn(2)-O(1)	93. 5(5)
O(21)-Mn(2)-O(1)	170. 9(6)	O(4)-Mn(2)-O(2)#1	96. 9(5)
O(5)-Mn(2)-O(2)#1	175. 1(5)	O(21)-Mn(2)-O(2)#1	89. 2(6)
O(1)-Mn(2)-O(2)#1	81. 7(4)	O(4)-Mn(2)-O(2)	173. 0(5)
O(5)-Mn(2)-O(2)	97. 1(5)	O(21)- $Mn(2)$ - $O(2)$	95. 7(5)
O(1)- $Mn(2)$ - $O(2)$	82. 8(4)	O(2)#1-Mn(2)-O(2)	81. 7(4)
O(4)-Mn(2)-O(3)	42. 7(4)	O(5)-Mn(2)-Mn(3)	42. 1(3)
O(21)-Mn(2)-O(3)	87. 2(4)	O(1)-Mn(2)-Mn(3)	99. 9(3)
O(2)#1-Mn(2)-O(3)	139. 3(3)	O(2)-Mn(2)-Mn(3)	139. 0(3)
O(4)-Mn(2)-Mn(1)#1	132. 6(3)	O(5)-Mn(2)-Mn(1)#1	90. 2(4)
O(21)-Mn(2)-Mn(1)#1	136. 3(4)	O(1)-Mn(2)-Mn(1)#1	43. 1(3)
O(2)#1-Mn(2)-Mn(1)#1	85. 7(3)	O(2)-Mn(2)-Mn(1)#1	40. 6(3)
Mn(3)-Mn(2)-Mn(1)#1	123. 03(12)	O(4)-Mn(2)-Mn(1)	89. 5(4)
O(5)-Mn(2)-Mn(1)	135. 1(4)	O(21)-Mn(2)-Mn(1)	128. 9(5)
O(1)-Mn(2)-Mn(1)	42. 1(3)	O(2)#1-Mn(2)-Mn(1)	40. 1(3)
O(2)- $Mn(2)$ - $Mn(1)$	85. 0(3)	Mn(3)- $Mn(2)$ - $Mn(1)$	124. 04(12)
Mn(1)#1-Mn(2)-Mn(1)	62. 76(11)	O(4)-Mn(2)-Mn(2)#1	137. 9(4)
O(5)-Mn(2)-Mn(2)#1	137. 9(4)	O(21)-Mn(2)-Mn(2)#1	90. 2(4)
O(1)-Mn(2)-Mn(2)#1	82. 8(3)	O(2)#1-Mn(2)-Mn(2)#1	41. 1(3)

O(2)-Mn(2)-Mn(2)#1	40. 8(3)	Mn(3)-Mn(2)-Mn(2)#1	177. 28(7)
Mn(1)#1-Mn(2)-Mn(2)#1	58. 92(8)	Mn(1)-Mn(2)-Mn(2)#1	58. 26(9)
O(5)-Mn(3)-Mn(4)	81. 5(5)	O(5)-Mn(3)-O(13)	95. 1(6)
O(4)-Mn(3)-Mn(13)	171. 6(6)	O(5)-Mn(3)-O(12)	176. 9(6)
O(4)-Mn(3)-Mn(12)	96. 7(6)	O(13)-Mn(3)-O(12)	87. 0(7)
O(5)-Mn(3)-O(22)	88. 0(5)	O(4)-Mn(3)- $O(22)$	86. 0(5)
O(13)-Mn(3)-O(22)	86. 3(6)	O(12)-Mn(3)- $O(22)$	94. 4(6)
O(5)-Mn(3)-O(19)	91. 4(5)	O(4)- $Mn(3)$ - $O(19)$	93. 7(5)
O(13)- $Mn(3)$ - $O(19)$	94. 0(6)	O(12)-Mn(3)-O(19)	86. 2(5)
O(22)-Mn(3)- $O(19)$	179. 4(5)	O(5)-Mn(3)-Mn(2)	41. 8(4)
O(4)-Mn(3)-Mn(2)	40. 7(3)	O(13)-Mn(3)-Mn(2)	134. 1(4)
O(12)-Mn(3)-Mn(2)	136. 8(5)	O(22)-Mn(3)-Mn(2)	78. 9(4)
O(19)- $Mn(3)$ - $Mn(2)$	100. 5(4)	O(3)#1-Mn(4)-O(6)	80. 5(5)
O(3)#1-Mn(4)-O(16)	176. 1(5)	O(6)-Mn(4)-O(16)	97. 0(5)
O(3)#1-Mn(4)-O(9)	97. 7(6)	O(6)-Mn(4)-O(9)	177. 1(5)
O(16)-Mn(4)-O(9)	84. 6(6)	O(3)#1-Mn(4)-O(17)	87. 5(5)
O(6)-Mn(4)-O(17)	84. 1(4)	O(16)-Mn(4)- $O(17)$	89. 3(5)
O(9)-Mn(4)-O(17)	93. 6(5)	O(3)#1-Mn(4)-O(24)	93. 0(5)
O(6)-Mn(4)-O(24)	90. 9(5)	O(16)-Mn(4)- $O(24)$	90. 0(5)
O(9)-Mn(4)-O(24)	91. 5(6)	O(17)-Mn(4)-O(24)	174. 8(5)
O(3)#1-Mn(4)-Mn(1)#1	41. 1(3)	O(6)-Mn(4)-Mn(1)#1	40. 3(4)
O(16)-Mn(4)-Mn(1)#1	135. 9(4)	O(9)-Mn(4)-Mn(1)#1	137. 5(4)
O(17)-Mn(4)-Mn(1)#1	77. 9(3)	O(24)-Mn(4)-Mn(1)#1	99. 1(4)
O(4)-Fe(1)-O(3)	94. 5(5)	O(4)-Fe(1)- $O(10)$	174. 0(5)
O(3)-Fe(1)- $O(10)$	91. 4(6)	O(4)-Fe(1)-O(11)	91. 5(6)
O(3)-Fe(1)-O(11)	173. 1(6)	O(10)-Fe(1)- $O(11)$	82. 5(7)
O(4)-Fe(1)-O(23)	93. 2(5)	O(3)-Fe(1)- $O(23)$	95. 5(5)
O(10)-Fe(1)-O(23)	87. 7(6)	O(11)-Fe(1)-O(23)	87. 5(6)
O(4)-Fe(1)-O(7)	92. 4(5)	O(3)-Fe(1)- $O(7)$	90. 1(5)
O(10)-Fe(1)-O(7)	86. 2(6)	O(11)-Fe(1)-O(7)	86. 3(6)
O(23)-Fe(1)- $O(7)$	171. 8(5)	O(6)-Fe(2)- $O(5)$	94. 0(5)
O(6)-Fe(2)-O(15)	91. 5(5)	O(5)-Fe(2)- $O(15)$	174. 3(5)
O(6)-Fe(2)- $O(20)$	94. 5(6)	O(5)-Fe(2)- $O(20)$	95. 3(5)
O(15)-Fe(2)-O(20)	85. 8(7)	O(6)-Fe(2)-O(14)	174. 2(8)
O(5)-Fe(2)-O(14)	87. 8(7)	O(15)-Fe(2)-O(14)	86. 6(7)
O(20)-Fe(2)-O(14)	90. 8(9)	O(6)-Fe(2)- $O(8)$	91. 0(5)
O(5)-Fe(2)-O(8)	88. 8(6)	O(15)-Fe(2)-O(8)	89. 5(8)

O(20)-Fe(2)-O(8)	172. 9(7)	O(14)-Fe(2)-O(8)	83. 6(8)
Mn(1)-O(1)-Mn(1)#1	100. 2(5)	Mn(1)-O(1)-Mn(2)	95. 0(5)
Mn(1)#1-O(1)-Mn(2)	93. 6(4)	Mn(1)#1-O(2)-Mn(2)#1	97. 0(4)
Mn(1)#1-O(2)-Mn(2)	95. 7(4)	Mn(2)#1-O(2)-Mn(2)	98. 1(4)
Mn(1)-O(3)-Mn(4)#1	96. 7(6)	Mn(1)-O(3)-Fe(1)	131. 1(7)
Mn(4)#1-O(3)-Fe(1)	123. 0(6)	Mn(2)-O(4)-Mn(3)	96. 6(5)
Mn(2)-O(4)-Fe(1)	132. 7(6)	Mn(3)-O(4)-Fe(1)	127. 8(6)
Mn(2)-O(5)-Mn(3)	96. 1(6)	Mn(2)-O(5)-Fe(2)	130. 6(6)
Mn(3)-O(5)-Fe(2)	124. 4(6)	Mn(1)#1-O(6)-Mn(4)	97. 2(5)
Mn(1)#1-O(6)-Fe(2)	133. 5(6)	Mn(4)-O(6)-Fe(2)	128. 0(6)
C(1)#1-O(9)-Mn(4)	129. 2(16)	C(1)- $O(10)$ - $Fe(1)$	137. 2(14)
C(9)-O(11)-Fe(1)	132. 0(12)	C(9)-O(12)-Mn(3)	133. 6(13)
C(17)- $O(13)$ - $Mn(3)$	131. 4(10)	C(17)-O(14)-Fe(2)	142. 2(15)
C(25)-O(15)-Fe(2)	137. 4(14)	C(25)-O(16)-Mn(4)	134. 1(12)
C(33)-O(17)-Mn(4)	127. 5(12)	C(33)-O(18)-Mn(1)#1	121. 4(11)
C(41)- $O(19)$ - $Mn(3)$	129. 4(12)	C(41)-O(20)-Fe(2)	132. 5(12)
C(49)-O(21)-Mn(2)	123. 3(11)	C(49)-O(22)-Mn(3)	121. 3(12)
C(57)-O(23)-Fe(1)	132. 3(11)	C(57)#1-O(24)-Mn(4)	131. 5(11)
O(10)-C(1)-O(9)#1	127 (2)	O(10)-C(1)-C(2)	121 (2)
O(9)#1-C(1)-C(2)	113 (2)	C(7)-C(2)-C(3)	121 (2)
C(7)-C(2)-C(1)	127 (2)	C(3)-C(2)-C(1)	112 (2)
C(2)-C(3)-C(4)	110 (3)	C(5)-C(4)-C(3)	127 (3)
C(4)-C(5)-C(6)	118 (3)	C(4)-C(5)-C(8)	120 (3)
C(6)-C(5)-C(8)	120 (3)	C(7)-C(6)-C(5)	123 (3)
C(6)-C(7)-C(2)	120 (2)	C(12)-C(9)-C(11)	127. 7(14)
O(12)-C(9)-O(10)	123. 2(10)	O(11)-C(9)-C(10)	107. 4(9)
C(15)-C(10)-C(11)	120. 0	C(15)-C(10)-C(9)	117 2
C(11)-C(10)-C(9)	122. 5	C(10)-C(11)-C(12)	120 0
C(11)-C(12)-C(13)	120. 0	C(14)-C(13)-C(12)	120 0
C(14)-C(13)-C(16)	112 (3)	C(12)-C(13)-C(16)	128 (3)
C(13)-C(14)-C(15)	120. 0	C(10)-C(15)-C(14)	120 0
O(14)-C(17)-O(13)	119. 4(14)	O(14)-C(17)-C(18)	122 7(11)
O(13)-C(17)-O(18)	117. 7(7)	C(19)-C(18)-C(23)	120 0
C(19)-C(18)-C(17)	122. 8	C(23)-C(18)-C(17)	117 1
C(18)-C(19)-C(20)	120. 0	C(19)-C(20)-C(21)	120 0
C(22)-C(21)-C(20)	115. 5	C(22)-C(21)-C(24)	121 1(9)
C(20)-C(21)-C(24)	115. 1(8)	C(21)-C(22)-C(23)	129 0

C(22)-C(23)-C(18)	114. 2	O(15)-C(25)-O(16)	120 8(18)
O(15)-C(25)-C(26)	121. 1(18)	O(16)-C(25)-C(26)	118 1(17)
C(27)-C(26)-C(31)	118 (2)	C(27)-C(26)-C(25)	118 (2)
C(31)-C(26)-C(25)	123. 7(18)	C(26)-C(27)-C(28)	120 (3)
C(29)-C(28)-C(27)	118 (3)	C(30)-C(29)-C(32)	123 (3)
C(30)-C(29)-C(28)	117 (2)	C(32)-C(29)-C(28)	119 (2)
C(29)-C(30)-C(31)	125 (2)	C(26)-C(31)-C(30)	121 (2)
O(17)-C(33)-O(18)	122. 7(18)	O(17)-C(33)-C(34)	119. 5(19)
O(18)-C(33)-C(34)	117. 8(16)	C(39)-C(34)-C(35)	122. 2(18)
C(39)-C(34)-C(33)	120. 0(17)	C(35)-C(34)-C(33)	117. 8(16)
C(36)-C(35)-C(34)	117. 2(18)	C(35)-C(36)-C(37)	119 (2)
C(38)-C(37)-C(36)	122 (2)	C(38)-C(37)-C(40)	120 (2)
C(36)-C(37)-C(40)	118 (2)	C(37)-C(38)-C(39)	119 (2)
C(34)-C(39)-C(38)	118 (2)	O(20)-C(41)-O(19)	128. 1(18)
O(20)-C(41)-C(42)	116. 9(18)	O(19)-C(41)-C(42)	114. 9(18)
C(43)-C(42)-C(47)	121 (2)	C(43)-C(42)-C(41)	120. 6(19)
C(47)-C(42)-C(41)	119 (2)	C(42)-C(43)-C(44)	119. 6(19)
C(45)-C(44)-C(43)	121. 1(18)	C(44)-C(45)-C(48)	122 (2)
C(44)-C(45)-C(46)	116. 1(19)	C(48)-C(45)-C(46)	121. 7(19)
C(47)-C(46)-C(45)	117 (2)	C(42)-C(47)-C(46)	125 (2)
O(22)-C(49)-O(21)	127. 2(17)	O(22)-C(49)-C(50)	122. 5(17)
O(21)-C(49)-C(50)	110. 3(18)	C(55)-C(50)-C(51)	118 (2)
C(55)-C(50)-C(49)	129 (2)	C(51)-C(50)-C(49)	112. 9(19)
C(50)-C(51)-C(52)	116 (2)	C(53)-C(52)-C(51)	123 (2)
C(52)-C(53)-C(54)	120 (2)	C(52)-C(53)-C(56)	124 (2)
C(54)-C(53)-C(56)	115 (2)	C(55)-C(54)-C(53)	116 (2)
C(50)-C(55)-C(54)	125 (2)	O(23)-C(57)-O(24)#1	124. 7(13)
O(23)-C(57)-C(58)	116. 7(8)	O(24)#1-C(57)-C(58)	118. 3(8)
C(63)-C(58)-C(59)	113. 6	C(63)-C(58)-C(57)	128. 0
C(59)-C(58)-C(57)	118. 4	C(58)-C(59)-C(60)	120. 0
C(61)-C(60)-C(59)	120. 0	C(64)-C(61)-C(60)	126. 5(15)
C(64)-C(61)-C(62)	113. 4(15)	C(60)-C(61)-C(62)	120. 0
C(63)-C(62)-C(61)	111. 2	C(58)-C(63)-C(62)	134. 1

Symmetry transformations used to generate equivalent atoms:

^{#1 -}x+5/2,y,-z+3/2

附表 6 化合物 4 . $4CH_2Cl_2$ $2C_6H_{14}$ 的原子座標

Atom	X	Y	Z	Uiso
Fe1	0. 38699(5)	-0. 07803(7)	0. 14041(5)	0. 0367(4)
Fe2	0. 5000	0. 15910(10)	0. 2500	0. 0316(5)
Fe3	0. 5000	-0. 31076(11)	0. 2500	0.0552(7)
Mn1	0. 49164(5)	-0. 13389(7)	0. 20211(4)	0. 0303(4)
Mn2	0. 45212(5)	-0. 01756(7)	0. 24289(5)	0. 0301(4)
Mn3	0. 44074(5)	-0. 24480(8)	0. 15012(5)	0. 0351(4)
Mn4	0. 39950(5)	0. 09324(8)	0. 19279(5)	0. 0330(4)
O1	0. 4575(2)	-0. 1245(3)	0. 2472(2)	0. 0308(15)
O2	0. 4959(2)	-0. 0268(3)	0. 20747(19)	0. 0281(14)
O3	0. 4878(2)	-0. 2375(3)	0. 2028(2)	0. 0325(15)
O4	0. 4389(2)	-0. 1401(3)	0. 1571(2)	0. 0342(15)
O5	0. 4059(2)	-0. 0113(3)	0. 1908(2)	0. 0320(15)
O6	0. 4523(2)	0. 0857(3)	0. 2393(2)	0. 0334(15)
O7	0. 3486(3)	-0. 1392(4)	0. 1732(3)	0.0501(19)
H7A	0. 3216	-0. 1502	0. 1611	0.060
H7B	0. 3601	-0. 1559	0. 2003	0.060
O8	0. 4175(3)	-0. 0139(4)	0.0990(2)	0.058(2)
H8A	0. 4028	-0. 0018	0. 0726	0.070
H8B	0. 4450	-0. 0010	0. 1079	0.070
O9	0. 5276(2)	-0. 1338(4)	0. 1570(2)	0. 0355(16)
O10	0. 4931(3)	-0. 2249(4)	0. 1115(2)	0. 0442(18)
O11	0. 4877(5)	-0. 3943(4)	0. 2044(3)	0. 105(5)
O12	0. 4472(3)	-0. 3497(4)	0. 1404(2)	0. 0481(19)
O13	0. 3915(3)	-0. 2522(4)	0. 0971(2)	0. 0482(19)
O14	0. 3632(3)	-0. 1370(4)	0. 0837(2)	0. 0445(18)
O15	0. 3452(2)	0. 0991(4)	0. 1436(2)	0. 0434(17)
O16	0. 3310(3)	-0. 0176(4)	0. 1180(3)	0.063(3)
O17	0. 4414(2)	0. 1080(4)	0. 1422(2)	0. 0354(16)
O18	0. 5026(2)	0. 1637(4)	0. 1843(2)	0. 0411(17)
O19	0. 3915(2)	0. 1999(4)	0. 1964(2)	0. 0471(19)
O20	0. 4550(2)	0. 2431(3)	0. 2417(2)	0. 0406(17)
O21	0. 4077(3)	-0. 0168(4)	0. 2808(2)	0. 0404(17)
O22	0. 3615(3)	0. 0715(4)	0. 2450(3)	0. 0498(19)
O23	0. 3898(3)	-0. 2595(4)	0. 1917(2)	0. 0482(19)
O24	0. 4352(3)	-0. 3176(6)	0. 2563(3)	0. 082(3)

C1	0. 5217(4)	-0. 1769(5)	0. 1222(3)	0. 039(2)
C2	0. 5529(4)	-0. 1618(6)	0. 0911(4)	0. 047(3)
C3	0. 5623(5)	-0. 2173(7)	0. 0636(4)	0.061(3)
Н3А	0. 5481	-0. 2643	0. 0635	0. 073
C4	0. 5928(5)	-0. 2053(8)	0. 0357(4)	0. 063(4)
H4A	0. 6014	-0. 2454	0. 0191	0. 076
C5	0. 6095(5)	-0. 1389(9)	0. 0325(4)	0.062(4)
C6	0. 5988(5)	-0. 0786(8)	0. 0584(4)	0.067(4)
H6A	0. 6103	-0. 0303	0. 0552	0.080
C7	0. 5710(4)	-0. 0915(7)	0. 0885(4)	0.055(3)
H7A	0. 5645	-0. 0525	0. 1072	0.066
C8	0. 4676(5)	-0. 4011(6)	0. 1664(4)	0.060(3)
C9	0. 4645(4)	-0. 4776(5)	0. 1447(4)	0. 053(3)
C10	0. 4845(5)	-0. 5378(7)	0. 1696(5)	0. 074(4)
H10A	0. 5004	-0. 5307	0. 2001	0. 089
C11	0. 4820(5)	-0. 6072(6)	0. 1514(4)	0.064(4)
H11A	0. 4968	-0. 6481	0. 1683	0. 077
C12	0. 4570(5)	-0. 6164(7)	0. 1072(5)	0.075(4)
C13	0. 4387(5)	-0. 5586(7)	0. 0821(5)	0. 080(5)
H13A	0. 4220	-0. 5664	0. 0520	0. 097
C14	0. 4438(5)	-0. 4868(6)	0. 0998(4)	0.063(4)
H14A	0. 4332	-0. 4452	0. 0812	0.076
C15	0. 3665(4)	-0. 2046(6)	0. 0735(3)	0. 040(3)
C16	0. 3368(4)	-0. 2318(6)	0. 0299(3)	0. 046(3)
C17	0. 3382(4)	-0. 3023(6)	0. 0170(4)	0.052(3)
H17A	0. 3576	-0. 3361	0. 0362	0.062
C18	0. 3117(4)	-0. 3282(8)	0. 0245(4)	0.062(3)
H18A	0. 3130	-0. 3783	0. 0340	0. 074
C19	0. 2843(5)	-0. 2777(8)	0. 0500(4)	0.063(4)
C20	0. 2811(4)	-0. 2060(7)	0. 0384(4)	0.052(3)
H20A	0. 2610	-0. 1732	0. 0576	0.063
C21	0. 3083(4)	-0. 1804(7)	0.0029(4)	0.056(3)
H21A	0. 3072	-0. 1301	0. 0121	0.067
C22	0. 3228(4)	0. 0512(6)	0. 1174(4)	0. 041(3)
C23	0. 2840(3)	0. 0779(5)	0. 0826(3)	0. 034(2)
C24	0. 2589(4)	0. 0290(6)	0. 0517(4)	0. 048(3)
H24A	0. 2663	-0. 0224	0. 0535	0. 057

C25	0.2242(4)	0.0527(7)	0.0102(4)	0.051(2)
C25	0. 2243(4)	0. 0527(7)	0. 0193(4)	0. 051(3)
H25A	0. 2061	0. 0180	-0.0003	0. 061
C26	0. 2150(4)	0. 1288(7)	0. 0144(4)	0. 054(3)
C27	0. 2394(5)	0. 1785(7)	0. 0423(4)	0. 059(3)
H27A	0. 2331	0. 2301	0. 0388	0. 071
C28	0. 2750(4)	0. 1519(6)	0. 0774(4)	0. 052(3)
H28A	0. 2929	0. 1863	0. 0975	0. 062
C29	0. 4824(4)	0. 1312(6)	0. 1488(3)	0. 043(3)
C30	0. 5077(4)	0. 1209(6)	0. 1122(4)	0. 045(3)
C31	0. 4836(4)	0. 1097(6)	0.0669(4)	0. 048(3)
H31A	0. 4516	0. 1068	0.0600	0. 058
C32	0. 5068(5)	0. 1032(6)	0. 0338(4)	0.053(3)
H32A	0. 4911	0. 0959	0. 0033	0.064
C33	0. 5525(5)	0. 1071(7)	0. 0442(4)	0.059(3)
C34	0. 5764(5)	0. 1167(8)	0. 0870(4)	0.066(4)
H34A	0. 6085	0. 1176	0. 0935	0.080
C35	0. 5531(4)	0. 1253(7)	0. 1219(4)	0. 055(3)
H35A	0. 5693	0. 1341	0. 1521	0.066
C36	0. 4162(4)	0. 2513(5)	0. 2170(3)	0. 037(2)
C37	0. 3982(4)	0. 3281(6)	0. 2099(5)	0.058(3)
C38	0. 3671(7)	0. 3409(10)	0. 1684(7)	0.059(5)
H38A	0. 3559	0. 3012	0. 1483	0.070
C39	0. 3529(7)	0. 4162(10)	0. 1579(7)	0.062(5)
H39A	0. 3325	0. 4273	0. 1301	0. 075
C40	0. 3681(7)	0. 4693(10)	0. 1864(6)	0.056(5)
C41	0. 3999(6)	0. 4583(10)	0. 2280(6)	0.056(5)
H41A	0. 4085	0. 4967	0. 2498	0.067
C42	0. 4173(6)	0. 3876(9)	0. 2343(6)	0. 048(4)
H42A	0. 4441	0. 3800	0. 2569	0. 058
C38 '	0. 3515	0. 3308	0. 1990	0. 107
H38B	0. 3333	0. 2874	0. 1943	0. 128
C39 '	0. 3300	0. 4159	0. 1946	0. 143
H39B	0. 3006	0. 4302	0. 1785	0. 172
C40 '	0. 3584	0. 4553	0. 2156	0. 108
C41 '	0. 3926	0. 4432	0. 2560	0.050
H41B	0. 4019	0. 4736	0. 2820	0.060
C42 '	0. 4077	0. 3773	0. 2465	0. 044

H42B	0. 4305	0. 3590	0. 2707	0. 053
C43	0. 3734(4)	0. 0234(7)	0. 2747(4)	0.046(3)
C44	0. 3430(5)	0. 0171(10)	0. 3071(4)	0.068(4)
C45	0. 3173(6)	0. 0773(10)	0. 3154(5)	0.089(5)
H45A	0. 3166	0. 1224	0. 2989	0. 107
C46	0. 2910(6)	0. 0685(13)	0. 3510(7)	0. 110(7)
H46A	0. 2740	0. 1087	0. 3589	0. 131
C47	0. 2917(5)	0.0040(10)	0. 3714(6)	0.080(5)
C48	0. 3128(7)	-0. 0570(12)	0. 3619(6)	0. 105(6)
H48A	0. 3088	-0. 1037	0. 3751	0. 126
C49	0. 3436(6)	-0. 0477(10)	0. 3288(6)	0.089(5)
H49A	0. 3627	-0. 0871	0. 3236	0. 107
C50	0. 3965(4)	-0. 2824(5)	0. 2346(4)	0. 110(7)
C51	0. 3574(4)	-0. 2740(5)	0. 2561(4)	0. 120(7)
C52	0. 3662(4)	-0. 2699(5)	0. 3031(4)	0. 145(8)
H52A	0. 3963	-0. 2757	0. 3203	0. 174
C53	0. 3311(4)	-0. 2574(5)	0. 3250(4)	0. 185(12)
H53A	0. 3372	-0. 2546	0. 3571	0. 221
C54	0. 2872(4)	-0. 2489(5)	0. 2998(4)	0. 224(15)
C55	0. 2783(4)	-0. 2529(5)	0. 2528(4)	0. 243(17)
H55A	0. 2483	-0. 2471	0. 2356	0. 291
C56	0. 3134(4)	-0. 2655(5)	0. 2309(4)	0. 141(8)
H56A	0. 3074	-0. 2683	0. 1988	0. 170
Br1	0. 64813(6)	-0. 11965(11)	-0. 00786(5)	0. 0888(6)
Br2	0. 45172(9)	-0. 71324(8)	0. 08255(7)	0. 1395(11)
Br3	0. 24609(6)	-0. 31234(10)	-0. 10588(5)	0. 0865(5)
Br4	0. 16713(5)	0. 16245(9)	-0. 03298(5)	0.0782(5)
Br5	0. 58472(7)	0. 10210(10)	-0. 00355(6)	0. 0897(6)
Br6	0. 34885(9)	0. 56949(10)	0. 16962(13)	0. 1102(12)
Br6 '	0. 3316(4)	0. 5586(7)	0. 2140(4)	0. 093(4)
Br7	0. 25852(7)	-0. 00344(14)	0. 41788(7)	0.0930(7)
Br7 '	0. 2541(3)	-0. 1223(5)	0. 3965(3)	0.095(3)
Br8	0. 2492(4)	-0. 2240(4)	0. 3386(5)	0. 287(7)
Br8'	0. 2188(2)	-0. 2788(6)	0. 3047(2)	0. 189(3)
C57	0. 0078	0. 1116	0. 4843	0. 300
H57A	0. 0078	0.0612	0. 4720	0. 450
H57B	0. 0039	0. 1477	0. 4595	0. 450

H57C	-0. 0171	0. 1167	0. 4999	0. 450
C58	0. 0484	0. 1245	0. 5145	0.300
H58A	0.0704	0. 1119	0. 4959	0.360
H58B	0. 0497	0. 0822	0. 5356	0.360
C59	0.0742	0. 1848	0. 5461	0.300
H59A	0.0960	0. 2048	0. 5290	0.360
H59B	0. 0515	0. 2246	0. 5453	0.360
C60	0. 1010	0. 1847	0. 5957	0.300
H60A	0. 1150	0. 2344	0. 5952	0.360
H60B	0. 1252	0. 1503	0. 5913	0.360
C61	0. 1094	0. 1772	0. 6476	0.300
H61A	0.0792	0. 1792	0. 6549	0.360
H61B	0. 1207	0. 1260	0. 6546	0.360
C62	0. 1400	0. 2275	0. 6827	0.300
H62A	0. 1393	0. 2105	0. 7133	0. 450
H62B	0. 1291	0. 2788	0. 6787	0. 450
H62C	0. 1711	0. 2251	0. 6784	0. 450
C63	0. 4127	0. 5147	0. 4078	0.300
H63A	0. 3929	0. 4736	0. 3934	0.360
H63B	0. 4419	0. 4945	0. 4249	0.360
Cl1	0. 4200	0. 5834	0. 3683	0.300
Cl2	0. 3885	0. 5668	0. 4386	0.300
C64	0. 2381	0. 4929	0. 3069	0.300
H64A	0. 2163	0. 4852	0. 3265	0. 360
H64B	0. 2263	0. 5344	0. 2862	0. 360
Cl3	0. 2365	0. 4279	0. 2795	0.300
Cl4	0. 2873	0. 5231	0. 3412	0. 300

附表 7 化合物 $\mathbf{4}$. $4CH_2Cl_2$ $2C_6H_{14}$ 之鍵長與鍵角數據

Fe(1)-O(4) 1. 905(6) Fe(1)-O(5) 1. 926(6) Fe(1)-O(16) 2. 003(8) Fe(1)-O(14) 2. 012(7) Fe(1)-O(7) 2. 015(8) Fe(1)-O(8) 2. 066(7) Fe(2)-O(6) 1. 933(7) Fe(2)-O(6)#1 1. 933(7) Fe(2)-O(18)#1 2. 007(7) Fe(2)-O(18) 2. 007(7) Fe(2)-O(20)#1 2. 016(7) Fe(2)-O(20) 2. 016(7) Fe(3)-O(3)#1 1. 919(6) Fe(3)-O(3) 1. 919(6) Fe(3)-O(3)#1 1. 919(6) Fe(3)-O(1)#1 2. 018(8) Fe(3)-O(24) 2. 019(11) Fe(3)-O(24)#1 2. 019(11) Mn(1)-O(4) 1. 862(6) Mn(1)-O(3) 1. 869(6) Mn(1)-O(1) 1. 882(6) Mn(1)-O(9) 1. 926(6) Mn(1)-Mn(3) 2. 7876(19) Mn(1)-Mn(2) 2. 8273(19) Mn(1)-Mn(1)#1 2. 829(3) Mn(1)-Mn(2)#1 2. 9681(19) Mn(2)-O(6) 1. 862(6) Mn(2)-O(5) 1. 867(6) Mn(2)-O(1) 1. 934(6) Mn(2)-O(2)#1 1. 929(6) Mn(2)-O(1) 1. 934(6)		2001114 Z # K	アー XE / TI X X I / M	
Fe(1)-O(7) 2.015(8) Fe(1)-O(8) 2.066(7) Fe(2)-O(6) 1.933(7) Fe(2)-O(6)#1 1.933(7) Fe(2)-O(18)#1 2.007(7) Fe(2)-O(18) 2.007(7) Fe(2)-O(20)#1 2.016(7) Fe(2)-O(20) 2.016(7) Fe(3)-O(3)#1 1.919(6) Fe(3)-O(3) 1.919(6) Fe(3)-O(11) 2.018(8) Fe(3)-O(11)#1 2.018(8) Fe(3)-O(24) 2.019(11) Fe(3)-O(24)#1 2.019(11) Mn(1)-O(4) 1.862(6) Mn(1)-O(3) 1.869(6) Mn(1)-O(1) 1.892(6) Mn(1)-O(3) 1.869(6) Mn(1)-O(1)#1 1.929(6) Mn(1)-O(2) 1.937(6) Mn(1)-Mn(3) 2.7876(19) Mn(1)-Mn(2) 2.8273(19) Mn(1)-Mn(1)#1 2.829(3) Mn(1)-Mn(2)#1 2.9681(19) Mn(2)-O(6) 1.862(6) Mn(2)-O(5) 1.867(6) Mn(2)-O(2) 1.888(6) Mn(2)-O(2)#1 1.929(6) Mn(2)-O(1) 1.934(6) Mn(2)-O(2)#1 1.929(6) Mn(2)-Mn(4) 2.7844(19) Mn(2)-O(2)#1	Fe(1)-O(4)	1. 905(6)	Fe(1)-O(5)	1. 926(6)
Fe(2)-O(6) 1.933(7) Fe(2)-O(18)#1 1.933(7) Fe(2)-O(18)#1 2.007(7) Fe(2)-O(18) 2.007(7) Fe(2)-O(20)#1 2.016(7) Fe(2)-O(20) 2.016(7) Fe(3)-O(3)#1 1.919(6) Fe(3)-O(3) 1.919(6) Fe(3)-O(11) 2.018(8) Fe(3)-O(11)#1 2.018(8) Fe(3)-O(24) 2.019(11) Fe(3)-O(24)#1 2.019(11) Mn(1)-O(4) 1.862(6) Mn(1)-O(3) 1.869(6) Mn(1)-O(1) 1.892(6) Mn(1)-O(9) 1.926(6) Mn(1)-O(1)#1 1.929(6) Mn(1)-O(2) 1.937(6) Mn(1)-Mn(3) 2.7876(19) Mn(1)-Mn(2) 2.8273(19) Mn(1)-Mn(1)#1 2.829(3) Mn(1)-Mn(2)#1 2.9681(19) Mn(2)-O(6) 1.862(6) Mn(2)-O(5) 1.867(6) Mn(2)-O(1) 1.934(6) Mn(2)-O(2)#1 1.951(7) Mn(2)-O(1) 1.934(6) Mn(2)-O(2)#1 1.951(7) Mn(2)-Mn(4) 2.7844(19) Mn(2)-O(2)#1 2.840(3) Mn(2)-Mn(1)#1 2.9681(19) Mn(3)-O(3)<	Fe(1)-O(16)	2. 003(8)	Fe(1)-O(14)	2. 012(7)
Fe(2)-O(18)#1 2.007(7) Fe(2)-O(20) 2.016(7) Fe(2)-O(20)#1 2.016(7) Fe(2)-O(20) 2.016(7) Fe(3)-O(3)#1 1.919(6) Fe(3)-O(3) 1.919(6) Fe(3)-O(11) 2.018(8) Fe(3)-O(11)#1 2.018(8) Fe(3)-O(24) 2.019(11) Fe(3)-O(24)#1 2.019(11) Mn(1)-O(4) 1.862(6) Mn(1)-O(3) 1.869(6) Mn(1)-O(1) 1.892(6) Mn(1)-O(9) 1.926(6) Mn(1)-O(1)#1 1.929(6) Mn(1)-O(2) 1.937(6) Mn(1)-Mn(3) 2.7876(19) Mn(1)-Mn(2) 2.8273(19) Mn(1)-Mn(1)#1 2.829(3) Mn(1)-Mn(2)#1 2.9681(19) Mn(2)-O(6) 1.862(6) Mn(2)-O(5) 1.867(6) Mn(2)-O(2) 1.888(6) Mn(2)-O(2)#1 1.929(6) Mn(2)-O(1) 1.934(6) Mn(2)-O(2)#1 1.951(7) Mn(2)-Mn(4) 2.7844(19) Mn(2)-Mn(2)#1 2.840(3) Mn(2)-Mn(1)#1 2.9681(19) Mn(3)-O(12) 1.927(7) Mn(3)-O(13) 1.940(7) Mn(3)-O(12)	Fe(1)-O(7)	2. 015(8)	Fe(1)-O(8)	2. 066(7)
Fe(2)-O(20)#1 2.016(7) Fe(2)-O(20) 2.016(7) Fe(3)-O(3)#1 1.919(6) Fe(3)-O(3) 1.919(6) Fe(3)-O(11) 2.018(8) Fe(3)-O(11)#1 2.018(8) Fe(3)-O(24) 2.019(11) Fe(3)-O(24)#1 2.019(11) Mn(1)-O(4) 1.862(6) Mn(1)-O(3) 1.869(6) Mn(1)-O(1) 1.892(6) Mn(1)-O(9) 1.926(6) Mn(1)-O(1)#1 1.929(6) Mn(1)-O(2) 1.937(6) Mn(1)-Mn(3) 2.7876(19) Mn(1)-Mn(2) 2.8273(19) Mn(1)-Mn(1)#1 2.829(3) Mn(1)-Mn(2)#1 2.9681(19) Mn(2)-O(6) 1.862(6) Mn(2)-O(5) 1.867(6) Mn(2)-O(1) 1.934(6) Mn(2)-O(2)#1 1.929(6) Mn(2)-O(1) 1.934(6) Mn(2)-O(2)#1 1.951(7) Mn(2)-Mn(4) 2.7844(19) Mn(2)-O(2)#1 2.840(3) Mn(2)-Mn(4) 1.894(6) Mn(3)-O(3) 1.895(6) Mn(3)-O(4) 1.899(6) Mn(3)-O(10) 2.199(8) Mn(3)-O(3) 1.940(7) Mn(3)-O(10)	Fe(2)-O(6)	1. 933(7)	Fe(2)-O(6)#1	1. 933(7)
Fe(3)-O(3)#1 1. 919(6) Fe(3)-O(11)#1 2. 018(8) Fe(3)-O(24) 2. 019(11) Fe(3)-O(24)#1 2. 019(11) Mn(1)-O(4) 1. 862(6) Mn(1)-O(3) 1. 869(6) Mn(1)-O(1) 1. 892(6) Mn(1)-O(9) 1. 926(6) Mn(1)-O(1)#1 1. 929(6) Mn(1)-O(2) 1. 937(6) Mn(1)-Mn(3) 2. 7876(19) Mn(1)-Mn(2) 2. 8273(19) Mn(1)-Mn(1)#1 2. 829(3) Mn(1)-Mn(2)#1 2. 9681(19) Mn(2)-O(6) 1. 862(6) Mn(2)-O(5) 1. 867(6) Mn(2)-O(1) 1. 934(6) Mn(2)-O(2)#1 1. 929(6) Mn(2)-O(1) 1. 934(6) Mn(2)-O(2)#1 1. 929(6) Mn(2)-O(1) 1. 934(6) Mn(2)-O(2)#1 1. 951(7) Mn(2)-Mn(4) 2. 7844(19) Mn(2)-Mn(2)#1 2. 840(3) Mn(3)-O(1) 1. 895(6) Mn(3)-O(12) 1. 927(7) Mn(3)-O(3) 1. 895(6) Mn(3)-O(12) 1. 927(7) Mn(3)-O(13) 1. 940(7) Mn(3)-O(10) 2. 199(8) Mn(3)-O(23) 2. 211(8)	Fe(2)-O(18)#1	2. 007(7)	Fe(2)-O(18)	2. 007(7)
Fe(3)-O(11) 2. 018(8) Fe(3)-O(11)#I 2. 019(11) Fe(3)-O(24) 2. 019(11) Fe(3)-O(24)#I 2. 019(11) Mn(1)-O(4) 1. 862(6) Mn(1)-O(3) 1. 869(6) Mn(1)-O(1) 1. 892(6) Mn(1)-O(9) 1. 926(6) Mn(1)-O(1)#I 1. 929(6) Mn(1)-O(2) 1. 937(6) Mn(1)-Mn(3) 2. 7876(19) Mn(1)-Mn(2) 2. 8273(19) Mn(1)-Mn(1)#1 2. 829(3) Mn(1)-Mn(2)#I 2. 9681(19) Mn(2)-O(6) 1. 862(6) Mn(2)-O(5) 1. 867(6) Mn(2)-O(2) 1. 888(6) Mn(2)-O(2)#1 1. 929(6) Mn(2)-O(1) 1. 934(6) Mn(2)-O(2)#1 1. 929(6) Mn(2)-O(1) 1. 934(6) Mn(2)-O(21) 1. 951(7) Mn(2)-Mn(4) 2. 7844(19) Mn(2)-Mn(2)#I 2. 840(3) Mn(3)-O(1) 1. 895(6) Mn(3)-O(3) 1. 895(6) Mn(3)-O(4) 1. 899(6) Mn(3)-O(12) 1. 927(7) Mn(3)-O(13) 1. 940(7) Mn(3)-O(10) 2. 199(8) Mn(3)-O(23) 2. 211(8)	Fe(2)-O(20)#1	2. 016(7)	Fe(2)-O(20)	2. 016(7)
Fe(3)-O(24) 2. 019(11) Fe(3)-O(24)#1 2. 019(11) Mn(1)-O(4) 1. 862(6) Mn(1)-O(3) 1. 869(6) Mn(1)-O(1) 1. 892(6) Mn(1)-O(9) 1. 926(6) Mn(1)-O(1)#1 1. 929(6) Mn(1)-O(2) 1. 937(6) Mn(1)-Mn(3) 2. 7876(19) Mn(1)-Mn(2) 2. 8273(19) Mn(1)-Mn(1)#1 2. 829(3) Mn(1)-Mn(2)#1 2. 9681(19) Mn(2)-O(6) 1. 862(6) Mn(2)-O(5) 1. 867(6) Mn(2)-O(2) 1. 888(6) Mn(2)-O(2)#1 1. 929(6) Mn(2)-O(1) 1. 934(6) Mn(2)-O(2)#1 1. 929(6) Mn(2)-O(1) 1. 934(6) Mn(2)-O(2)#1 1. 929(6) Mn(2)-Mn(4) 2. 7844(19) Mn(2)-O(2)#1 1. 951(7) Mn(2)-Mn(4) 2. 7844(19) Mn(2)-Mn(2)#1 2. 840(3) Mn(3)-O(1) 1. 894(6) Mn(3)-O(12) 1. 997(7) Mn(3)-O(4) 1. 899(6) Mn(3)-O(12) 1. 997(8) Mn(3)-O(3) 1. 949(8) Mn(4)-O(6) 1. 888(7) Mn(3)-O(23) 2. 211(8)	Fe(3)-O(3)#1	1. 919(6)	Fe(3)-O(3)	1. 919(6)
Mn(1)-O(4) 1. 862(6) Mn(1)-O(3) 1. 869(6) Mn(1)-O(1) 1. 892(6) Mn(1)-O(9) 1. 926(6) Mn(1)-O(1)#1 1. 929(6) Mn(1)-O(2) 1. 937(6) Mn(1)-Mn(3) 2. 7876(19) Mn(1)-Mn(2) 2. 8273(19) Mn(1)-Mn(1)#1 2. 829(3) Mn(1)-Mn(2)#1 2. 9681(19) Mn(2)-O(6) 1. 862(6) Mn(2)-O(5) 1. 867(6) Mn(2)-O(2) 1. 888(6) Mn(2)-O(2)#1 1. 929(6) Mn(2)-O(1) 1. 934(6) Mn(2)-O(2)#1 1. 929(6) Mn(2)-O(1) 1. 934(6) Mn(2)-O(2)#1 1. 929(6) Mn(2)-O(1) 1. 934(6) Mn(2)-O(2)#1 1. 929(6) Mn(2)-Mn(4) 2. 7844(19) Mn(2)-O(2)#1 1. 951(7) Mn(2)-Mn(4) 2. 7844(19) Mn(3)-O(3) 1. 895(6) Mn(3)-O(1) 1. 895(6) Mn(3)-O(12) 1. 927(7) Mn(3)-O(13) 1. 940(7) Mn(3)-O(12) 1. 929(7) Mn(3)-O(23) 2. 211(8) Mn(4)-O(6) 1. 888(7) Mn(4)-O(5) 1. 894(6) <	Fe(3)-O(11)	2. 018(8)	Fe(3)-O(11)#1	2. 018(8)
Mn(1)-O(1) 1.892(6) Mn(1)-O(9) 1.926(6) Mn(1)-O(1)#1 1.929(6) Mn(1)-O(2) 1.937(6) Mn(1)-Mn(3) 2.7876(19) Mn(1)-Mn(2) 2.8273(19) Mn(1)-Mn(1)#1 2.829(3) Mn(1)-Mn(2)#1 2.9681(19) Mn(2)-O(6) 1.862(6) Mn(2)-O(5) 1.867(6) Mn(2)-O(2) 1.888(6) Mn(2)-O(2)#1 1.929(6) Mn(2)-O(1) 1.934(6) Mn(2)-O(21) 1.951(7) Mn(2)-O(1) 1.934(6) Mn(2)-O(21) 1.951(7) Mn(2)-Mn(4) 2.7844(19) Mn(2)-Mn(2)#1 2.840(3) Mn(2)-Mn(1)#1 2.9681(19) Mn(3)-O(3) 1.895(6) Mn(3)-O(4) 1.899(6) Mn(3)-O(12) 1.927(7) Mn(3)-O(13) 1.940(7) Mn(3)-O(10) 2.199(8) Mn(3)-O(23) 2.211(8) Mn(4)-O(6) 1.888(7) Mn(4)-O(5) 1.894(6) Mn(4)-O(19) 1.941(7) Mn(4)-O(17) 2.210(7) O(1)-Mn(1)#1 1.929(6) O(2)-Mn(2)#1 1.929(6) O(9)-C(1)	Fe(3)-O(24)	2. 019(11)	Fe(3)-O(24)#1	2. 019(11)
Mn(1)-O(1)#1 1. 929(6) Mn(1)-O(2) 1. 937(6) Mn(1)-Mn(3) 2. 7876(19) Mn(1)-Mn(2) 2. 8273(19) Mn(1)-Mn(1)#1 2. 829(3) Mn(1)-Mn(2)#1 2. 9681(19) Mn(2)-O(6) 1. 862(6) Mn(2)-O(5) 1. 867(6) Mn(2)-O(2) 1. 888(6) Mn(2)-O(2)#1 1. 929(6) Mn(2)-O(1) 1. 934(6) Mn(2)-O(21) 1. 951(7) Mn(2)-Mn(4) 2. 7844(19) Mn(2)-Mn(2)#1 2. 840(3) Mn(2)-Mn(1)#1 2. 9681(19) Mn(3)-O(3) 1. 895(6) Mn(3)-O(4) 1. 899(6) Mn(3)-O(12) 1. 927(7) Mn(3)-O(13) 1. 940(7) Mn(3)-O(10) 2. 199(8) Mn(3)-O(23) 2. 211(8) Mn(4)-O(6) 1. 888(7) Mn(4)-O(5) 1. 894(6) Mn(4)-O(19) 1. 941(7) Mn(4)-O(15) 1. 963(7) Mn(4)-O(22) 2. 188(8) Mn(4)-O(17) 2. 210(7) O(1)-Mn(1)#1 1. 929(6) O(2)-Mn(2)#1 1. 929(6) O(9)-C(1) 1. 288(12) O(10)-C(1) 1. 216(12)	Mn(1)-O(4)	1. 862(6)	Mn(1)-O(3)	1.869(6)
Mn(1)-Mn(3) 2. 7876(19) Mn(1)-Mn(2) 2. 8273(19) Mn(1)-Mn(1)#1 2. 829(3) Mn(1)-Mn(2)#1 2. 9681(19) Mn(2)-O(6) 1. 862(6) Mn(2)-O(5) 1. 867(6) Mn(2)-O(2) 1. 888(6) Mn(2)-O(2)#1 1. 929(6) Mn(2)-O(1) 1. 934(6) Mn(2)-O(21) 1. 951(7) Mn(2)-Mn(4) 2. 7844(19) Mn(2)-Mn(2)#1 2. 840(3) Mn(2)-Mn(1)#1 2. 9681(19) Mn(3)-O(3) 1. 895(6) Mn(3)-O(4) 1. 899(6) Mn(3)-O(12) 1. 927(7) Mn(3)-O(13) 1. 940(7) Mn(3)-O(10) 2. 199(8) Mn(3)-O(23) 2. 211(8) Mn(4)-O(6) 1. 888(7) Mn(4)-O(5) 1. 894(6) Mn(4)-O(19) 1. 941(7) Mn(4)-O(5) 1. 894(6) Mn(4)-O(19) 1. 941(7) Mn(4)-O(17) 2. 210(7) O(1)-Mn(1)#1 1. 929(6) O(2)-Mn(2)#1 1. 929(6) O(9)-C(1) 1. 288(12) O(10)-C(1) 1. 216(12) O(1)-C(8) 1. 183(14) O(12)-C(8) 1. 281(14)	Mn(1)-O(1)	1. 892(6)	Mn(1)-O(9)	1. 926(6)
Mn(1)-Mn(1)#1 2. 829(3) Mn(1)-Mn(2)#1 2. 9681(19) Mn(2)-O(6) 1. 862(6) Mn(2)-O(5) 1. 867(6) Mn(2)-O(2) 1. 888(6) Mn(2)-O(2)#1 1. 929(6) Mn(2)-O(1) 1. 934(6) Mn(2)-O(21) 1. 951(7) Mn(2)-Mn(4) 2. 7844(19) Mn(2)-Mn(2)#1 2. 840(3) Mn(2)-Mn(1)#1 2. 9681(19) Mn(3)-O(3) 1. 895(6) Mn(3)-O(4) 1. 899(6) Mn(3)-O(12) 1. 927(7) Mn(3)-O(13) 1. 940(7) Mn(3)-O(10) 2. 199(8) Mn(3)-O(23) 2. 211(8) Mn(4)-O(6) 1. 888(7) Mn(4)-O(5) 1. 894(6) Mn(4)-O(19) 1. 941(7) Mn(4)-O(5) 1. 894(6) Mn(4)-O(19) 1. 941(7) Mn(4)-O(17) 2. 210(7) O(1)-Mn(1)#1 1. 929(6) O(2)-Mn(2)#1 1. 929(6) O(9)-C(1) 1. 288(12) O(10)-C(1) 1. 216(12) O(11)-C(8) 1. 183(14) O(12)-C(8) 1. 281(14) O(13)-C(15) 1. 257(13) O(14)-C(15) 1. 263(13)	Mn(1)-O(1)#1	1. 929(6)	Mn(1)-O(2)	1. 937(6)
Mn(2)-O(6) 1.862(6) Mn(2)-O(5) 1.867(6) Mn(2)-O(2) 1.888(6) Mn(2)-O(2)#1 1.929(6) Mn(2)-O(1) 1.934(6) Mn(2)-O(21) 1.951(7) Mn(2)-Mn(4) 2.7844(19) Mn(2)-Mn(2)#1 2.840(3) Mn(2)-Mn(1)#1 2.9681(19) Mn(3)-O(3) 1.895(6) Mn(3)-O(4) 1.899(6) Mn(3)-O(12) 1.927(7) Mn(3)-O(13) 1.940(7) Mn(3)-O(10) 2.199(8) Mn(3)-O(23) 2.211(8) Mn(4)-O(6) 1.888(7) Mn(4)-O(5) 1.894(6) Mn(4)-O(19) 1.941(7) Mn(4)-O(15) 1.963(7) Mn(4)-O(22) 2.188(8) Mn(4)-O(17) 2.210(7) O(1)-Mn(1)#1 1.929(6) O(2)-Mn(2)#1 1.929(6) O(9)-C(1) 1.288(12) O(10)-C(1) 1.216(12) O(11)-C(8) 1.183(14) O(12)-C(8) 1.281(14) O(13)-C(15) 1.257(13) O(14)-C(15) 1.263(13) O(15)-C(22) 1.264(13) O(16)-C(22) 1.264(13) O(17)-C(29) 1.284(13) O(18)-C(29) 1.259(12) O(19)-C(36)	Mn(1)- $Mn(3)$	2. 7876(19)	Mn(1)- $Mn(2)$	2. 8273(19)
Mn(2)-O(2) 1. 888(6) Mn(2)-O(2)#1 1. 929(6) Mn(2)-O(1) 1. 934(6) Mn(2)-O(21) 1. 951(7) Mn(2)-Mn(4) 2. 7844(19) Mn(2)-Mn(2)#1 2. 840(3) Mn(2)-Mn(1)#1 2. 9681(19) Mn(3)-O(3) 1. 895(6) Mn(3)-O(4) 1. 899(6) Mn(3)-O(12) 1. 927(7) Mn(3)-O(13) 1. 940(7) Mn(3)-O(10) 2. 199(8) Mn(3)-O(23) 2. 211(8) Mn(4)-O(6) 1. 888(7) Mn(4)-O(5) 1. 894(6) Mn(4)-O(6) 1. 888(7) Mn(4)-O(5) 1. 963(7) Mn(4)-O(22) 2. 188(8) Mn(4)-O(17) 2. 210(7) O(1)-Mn(1)#1 1. 929(6) O(2)-Mn(2)#1 1. 929(6) O(9)-C(1) 1. 288(12) O(10)-C(1) 1. 216(12) O(11)-C(8) 1. 183(14) O(12)-C(8) 1. 281(14) O(13)-C(15) 1. 257(13) O(14)-C(15) 1. 263(13) O(15)-C(22) 1. 264(13) O(16)-C(22) 1. 264(13) O(17)-C(29) 1. 284(13) O(18)-C(29) 1. 259(12) O(19)-C(36) 1. 265(12) O(20)-C(36) 1. 255(12)<	Mn(1)-Mn(1)#1	2. 829(3)	Mn(1)-Mn(2)#1	2. 9681(19)
Mn(2)-O(1) 1. 934(6) Mn(2)-O(21) 1. 951(7) Mn(2)-Mn(4) 2. 7844(19) Mn(2)-Mn(2)#1 2. 840(3) Mn(2)-Mn(1)#1 2. 9681(19) Mn(3)-O(3) 1. 895(6) Mn(3)-O(4) 1. 899(6) Mn(3)-O(12) 1. 927(7) Mn(3)-O(13) 1. 940(7) Mn(3)-O(10) 2. 199(8) Mn(3)-O(23) 2. 211(8) Mn(4)-O(6) 1. 888(7) Mn(4)-O(5) 1. 894(6) Mn(4)-O(19) 1. 941(7) Mn(4)-O(15) 1. 963(7) Mn(4)-O(22) 2. 188(8) Mn(4)-O(17) 2. 210(7) O(1)-Mn(1)#1 1. 929(6) O(2)-Mn(2)#1 1. 929(6) O(9)-C(1) 1. 288(12) O(10)-C(1) 1. 216(12) O(11)-C(8) 1. 183(14) O(12)-C(8) 1. 281(14) O(13)-C(15) 1. 257(13) O(14)-C(15) 1. 263(13) O(15)-C(22) 1. 264(13) O(16)-C(22) 1. 264(13) O(17)-C(29) 1. 284(13) O(18)-C(29) 1. 259(12) O(19)-C(36) 1. 265(12) O(20)-C(36) 1. 255(12) O(21)-C(43) 1. 246(13) O(22)-C(43) 1. 369(Mn(2)-O(6)	1. 862(6)	Mn(2)-O(5)	1.867(6)
Mn(2)-Mn(4) 2. 7844(19) Mn(2)-Mn(2)#1 2. 840(3) Mn(2)-Mn(1)#1 2. 9681(19) Mn(3)-O(3) 1. 895(6) Mn(3)-O(4) 1. 899(6) Mn(3)-O(12) 1. 927(7) Mn(3)-O(13) 1. 940(7) Mn(3)-O(10) 2. 199(8) Mn(3)-O(23) 2. 211(8) Mn(4)-O(6) 1. 888(7) Mn(4)-O(5) 1. 894(6) Mn(4)-O(19) 1. 941(7) Mn(4)-O(15) 1. 963(7) Mn(4)-O(22) 2. 188(8) Mn(4)-O(17) 2. 210(7) O(1)-Mn(1)#1 1. 929(6) O(2)-Mn(2)#1 1. 929(6) O(9)-C(1) 1. 288(12) O(10)-C(1) 1. 216(12) O(11)-C(8) 1. 183(14) O(12)-C(8) 1. 281(14) O(13)-C(15) 1. 257(13) O(14)-C(15) 1. 263(13) O(15)-C(22) 1. 264(13) O(16)-C(22) 1. 264(13) O(17)-C(29) 1. 284(13) O(18)-C(29) 1. 259(12) O(19)-C(36) 1. 265(12) O(20)-C(36) 1. 255(12) O(21)-C(43) 1. 246(13) O(22)-C(43) 1. 241(13) O(23)-C(50) 1. 333(13) O(24)-C(50) 1. 3	Mn(2)-O(2)	1. 888(6)	Mn(2)-O(2)#1	1. 929(6)
Mn(2)-Mn(1)#1 2. 9681(19) Mn(3)-O(3) 1. 895(6) Mn(3)-O(4) 1. 899(6) Mn(3)-O(12) 1. 927(7) Mn(3)-O(13) 1. 940(7) Mn(3)-O(10) 2. 199(8) Mn(3)-O(23) 2. 211(8) Mn(4)-O(6) 1. 888(7) Mn(4)-O(5) 1. 894(6) Mn(4)-O(19) 1. 941(7) Mn(4)-O(15) 1. 963(7) Mn(4)-O(22) 2. 188(8) Mn(4)-O(17) 2. 210(7) O(1)-Mn(1)#1 1. 929(6) O(2)-Mn(2)#1 1. 929(6) O(9)-C(1) 1. 288(12) O(10)-C(1) 1. 216(12) O(11)-C(8) 1. 183(14) O(12)-C(8) 1. 281(14) O(13)-C(15) 1. 257(13) O(14)-C(15) 1. 263(13) O(15)-C(22) 1. 264(13) O(16)-C(22) 1. 264(13) O(17)-C(29) 1. 284(13) O(16)-C(29) 1. 259(12) O(19)-C(36) 1. 265(12) O(20)-C(36) 1. 255(12) O(21)-C(43) 1. 246(13) O(22)-C(43) 1. 241(13) O(23)-C(50) 1. 333(13) O(24)-C(50) 1. 369(15) C(1)-C(2) 1. 500(15) C(2)-C(3) 1. 369(16)	Mn(2)-O(1)	1. 934(6)	Mn(2)-O(21)	1. 951(7)
Mn(3)-O(4) 1. 899(6) Mn(3)-O(12) 1. 927(7) Mn(3)-O(13) 1. 940(7) Mn(3)-O(10) 2. 199(8) Mn(3)-O(23) 2. 211(8) Mn(4)-O(6) 1. 888(7) Mn(4)-O(5) 1. 894(6) Mn(4)-O(19) 1. 941(7) Mn(4)-O(15) 1. 963(7) Mn(4)-O(22) 2. 188(8) Mn(4)-O(17) 2. 210(7) O(1)-Mn(1)#1 1. 929(6) O(2)-Mn(2)#1 1. 929(6) O(9)-C(1) 1. 288(12) O(10)-C(1) 1. 216(12) O(11)-C(8) 1. 183(14) O(12)-C(8) 1. 281(14) O(13)-C(15) 1. 257(13) O(14)-C(15) 1. 263(13) O(15)-C(22) 1. 264(13) O(14)-C(15) 1. 263(13) O(15)-C(22) 1. 264(13) O(16)-C(22) 1. 264(13) O(17)-C(29) 1. 284(13) O(18)-C(29) 1. 259(12) O(19)-C(36) 1. 265(12) O(20)-C(36) 1. 255(12) O(21)-C(43) 1. 246(13) O(22)-C(43) 1. 241(13) O(23)-C(50) 1. 333(13) O(24)-C(50) 1. 369(15) C(1)-C(2) 1. 500(15) C(2)-C(3) 1. 369(16)<	Mn(2)- $Mn(4)$	2. 7844(19)	Mn(2)-Mn(2)#1	2. 840(3)
Mn(3)-O(13) 1. 940(7) Mn(3)-O(10) 2. 199(8) Mn(3)-O(23) 2. 211(8) Mn(4)-O(6) 1. 888(7) Mn(4)-O(5) 1. 894(6) Mn(4)-O(19) 1. 941(7) Mn(4)-O(15) 1. 963(7) Mn(4)-O(22) 2. 188(8) Mn(4)-O(17) 2. 210(7) O(1)-Mn(1)#1 1. 929(6) O(2)-Mn(2)#1 1. 929(6) O(9)-C(1) 1. 288(12) O(10)-C(1) 1. 216(12) O(11)-C(8) 1. 183(14) O(12)-C(8) 1. 281(14) O(13)-C(15) 1. 257(13) O(14)-C(15) 1. 263(13) O(15)-C(22) 1. 264(13) O(14)-C(22) 1. 264(13) O(17)-C(29) 1. 284(13) O(18)-C(29) 1. 259(12) O(19)-C(36) 1. 265(12) O(20)-C(36) 1. 255(12) O(21)-C(43) 1. 246(13) O(22)-C(43) 1. 241(13) O(23)-C(50) 1. 333(13) O(24)-C(50) 1. 369(15) C(1)-C(2) 1. 500(15) C(2)-C(3) 1. 369(16) C(2)-C(7) 1. 388(16)	Mn(2)-Mn(1)#1	2. 9681(19)	Mn(3)-O(3)	1. 895(6)
Mn(3)-O(23) 2. 211(8) Mn(4)-O(6) 1. 888(7) Mn(4)-O(5) 1. 894(6) Mn(4)-O(19) 1. 941(7) Mn(4)-O(15) 1. 963(7) Mn(4)-O(22) 2. 188(8) Mn(4)-O(17) 2. 210(7) O(1)-Mn(1)#1 1. 929(6) O(2)-Mn(2)#1 1. 929(6) O(9)-C(1) 1. 288(12) O(10)-C(1) 1. 216(12) O(11)-C(8) 1. 183(14) O(12)-C(8) 1. 281(14) O(13)-C(15) 1. 257(13) O(14)-C(15) 1. 263(13) O(15)-C(22) 1. 264(13) O(16)-C(22) 1. 264(13) O(17)-C(29) 1. 284(13) O(18)-C(29) 1. 259(12) O(19)-C(36) 1. 265(12) O(20)-C(36) 1. 255(12) O(21)-C(43) 1. 246(13) O(22)-C(43) 1. 241(13) O(23)-C(50) 1. 333(13) O(24)-C(50) 1. 369(15) C(1)-C(2) 1. 500(15) C(2)-C(3) 1. 369(16) C(2)-C(7) 1. 388(16)	Mn(3)-O(4)	1. 899(6)	Mn(3)-O(12)	1. 927(7)
Mn(4)-O(5) 1. 894(6) Mn(4)-O(19) 1. 941(7) Mn(4)-O(15) 1. 963(7) Mn(4)-O(22) 2. 188(8) Mn(4)-O(17) 2. 210(7) O(1)-Mn(1)#1 1. 929(6) O(2)-Mn(2)#1 1. 929(6) O(9)-C(1) 1. 288(12) O(10)-C(1) 1. 216(12) O(11)-C(8) 1. 183(14) O(12)-C(8) 1. 281(14) O(13)-C(15) 1. 257(13) O(14)-C(15) 1. 263(13) O(15)-C(22) 1. 264(13) O(16)-C(22) 1. 264(13) O(17)-C(29) 1. 284(13) O(18)-C(29) 1. 259(12) O(19)-C(36) 1. 265(12) O(20)-C(36) 1. 255(12) O(21)-C(43) 1. 246(13) O(22)-C(43) 1. 241(13) O(23)-C(50) 1. 333(13) O(24)-C(50) 1. 369(15) C(1)-C(2) 1. 500(15) C(2)-C(3) 1. 369(16) C(2)-C(7) 1. 388(16)	Mn(3)-O(13)	1. 940(7)	Mn(3)-O(10)	2. 199(8)
Mn(4)-O(15) 1. 963(7) Mn(4)-O(22) 2. 188(8) Mn(4)-O(17) 2. 210(7) O(1)-Mn(1)#1 1. 929(6) O(2)-Mn(2)#1 1. 929(6) O(9)-C(1) 1. 288(12) O(10)-C(1) 1. 216(12) O(11)-C(8) 1. 183(14) O(12)-C(8) 1. 281(14) O(13)-C(15) 1. 257(13) O(14)-C(15) 1. 263(13) O(15)-C(22) 1. 264(13) O(16)-C(22) 1. 264(13) O(17)-C(29) 1. 284(13) O(18)-C(29) 1. 259(12) O(19)-C(36) 1. 265(12) O(20)-C(36) 1. 255(12) O(21)-C(43) 1. 246(13) O(22)-C(43) 1. 241(13) O(23)-C(50) 1. 333(13) O(24)-C(50) 1. 369(15) C(1)-C(2) 1. 500(15) C(2)-C(3) 1. 369(16) C(2)-C(7) 1. 388(16)	Mn(3)-O(23)	2. 211(8)	Mn(4)-O(6)	1. 888(7)
Mn(4)-O(17) 2. 210(7) O(1)-Mn(1)#1 1. 929(6) O(2)-Mn(2)#1 1. 929(6) O(9)-C(1) 1. 288(12) O(10)-C(1) 1. 216(12) O(11)-C(8) 1. 183(14) O(12)-C(8) 1. 281(14) O(13)-C(15) 1. 257(13) O(14)-C(15) 1. 263(13) O(15)-C(22) 1. 264(13) O(16)-C(22) 1. 264(13) O(17)-C(29) 1. 284(13) O(18)-C(29) 1. 259(12) O(19)-C(36) 1. 265(12) O(20)-C(36) 1. 255(12) O(21)-C(43) 1. 246(13) O(22)-C(43) 1. 241(13) O(23)-C(50) 1. 333(13) O(24)-C(50) 1. 369(15) C(1)-C(2) 1. 500(15) C(2)-C(3) 1. 369(16) C(2)-C(7) 1. 388(16)	Mn(4)-O(5)	1. 894(6)	Mn(4)-O(19)	1. 941(7)
O(2)-Mn(2)#1 1. 929(6) O(9)-C(1) 1. 288(12) O(10)-C(1) 1. 216(12) O(11)-C(8) 1. 183(14) O(12)-C(8) 1. 281(14) O(13)-C(15) 1. 257(13) O(14)-C(15) 1. 263(13) O(15)-C(22) 1. 264(13) O(16)-C(22) 1. 264(13) O(17)-C(29) 1. 284(13) O(18)-C(29) 1. 259(12) O(19)-C(36) 1. 265(12) O(20)-C(36) 1. 255(12) O(21)-C(43) 1. 246(13) O(22)-C(43) 1. 241(13) O(23)-C(50) 1. 333(13) O(24)-C(50) 1. 369(15) C(1)-C(2) 1. 500(15) C(2)-C(3) 1. 369(16) C(2)-C(7) 1. 388(16)	Mn(4)-O(15)	1. 963(7)	Mn(4)-O(22)	2. 188(8)
O(10)-C(1) 1. 216(12) O(11)-C(8) 1. 183(14) O(12)-C(8) 1. 281(14) O(13)-C(15) 1. 257(13) O(14)-C(15) 1. 263(13) O(15)-C(22) 1. 264(13) O(16)-C(22) 1. 264(13) O(17)-C(29) 1. 284(13) O(18)-C(29) 1. 259(12) O(19)-C(36) 1. 265(12) O(20)-C(36) 1. 255(12) O(21)-C(43) 1. 246(13) O(22)-C(43) 1. 241(13) O(23)-C(50) 1. 333(13) O(24)-C(50) 1. 369(15) C(1)-C(2) 1. 500(15) C(2)-C(3) 1. 369(16) C(2)-C(7) 1. 388(16)	Mn(4)-O(17)	2. 210(7)	O(1)-Mn(1)#1	1. 929(6)
O(12)-C(8) 1. 281(14) O(13)-C(15) 1. 257(13) O(14)-C(15) 1. 263(13) O(15)-C(22) 1. 264(13) O(16)-C(22) 1. 264(13) O(17)-C(29) 1. 284(13) O(18)-C(29) 1. 259(12) O(19)-C(36) 1. 265(12) O(20)-C(36) 1. 255(12) O(21)-C(43) 1. 246(13) O(22)-C(43) 1. 241(13) O(23)-C(50) 1. 333(13) O(24)-C(50) 1. 369(15) C(1)-C(2) 1. 500(15) C(2)-C(3) 1. 369(16) C(2)-C(7) 1. 388(16)	O(2)-Mn(2)#1	1. 929(6)	O(9)-C(1)	1. 288(12)
O(14)-C(15) 1. 263(13) O(15)-C(22) 1. 264(13) O(16)-C(22) 1. 264(13) O(17)-C(29) 1. 284(13) O(18)-C(29) 1. 259(12) O(19)-C(36) 1. 265(12) O(20)-C(36) 1. 255(12) O(21)-C(43) 1. 246(13) O(22)-C(43) 1. 241(13) O(23)-C(50) 1. 333(13) O(24)-C(50) 1. 369(15) C(1)-C(2) 1. 500(15) C(2)-C(3) 1. 369(16) C(2)-C(7) 1. 388(16)	O(10)-C(1)	1. 216(12)	O(11)-C(8)	1. 183(14)
O(16)-C(22) 1. 264(13) O(17)-C(29) 1. 284(13) O(18)-C(29) 1. 259(12) O(19)-C(36) 1. 265(12) O(20)-C(36) 1. 255(12) O(21)-C(43) 1. 246(13) O(22)-C(43) 1. 241(13) O(23)-C(50) 1. 333(13) O(24)-C(50) 1. 369(15) C(1)-C(2) 1. 500(15) C(2)-C(3) 1. 369(16) C(2)-C(7) 1. 388(16)	O(12)-C(8)	1. 281(14)	O(13)-C(15)	1. 257(13)
O(18)-C(29) 1. 259(12) O(19)-C(36) 1. 265(12) O(20)-C(36) 1. 255(12) O(21)-C(43) 1. 246(13) O(22)-C(43) 1. 241(13) O(23)-C(50) 1. 333(13) O(24)-C(50) 1. 369(15) C(1)-C(2) 1. 500(15) C(2)-C(3) 1. 369(16) C(2)-C(7) 1. 388(16)	O(14)-C(15)	1. 263(13)	O(15)-C(22)	1. 264(13)
O(20)-C(36) 1. 255(12) O(21)-C(43) 1. 246(13) O(22)-C(43) 1. 241(13) O(23)-C(50) 1. 333(13) O(24)-C(50) 1. 369(15) C(1)-C(2) 1. 500(15) C(2)-C(3) 1. 369(16) C(2)-C(7) 1. 388(16)	O(16)-C(22)	1. 264(13)	O(17)-C(29)	1. 284(13)
O(22)-C(43) 1. 241(13) O(23)-C(50) 1. 333(13) O(24)-C(50) 1. 369(15) C(1)-C(2) 1. 500(15) C(2)-C(3) 1. 369(16) C(2)-C(7) 1. 388(16)	O(18)-C(29)	1. 259(12)	O(19)-C(36)	1. 265(12)
O(24)-C(50) 1. 369(15) C(1)-C(2) 1. 500(15) C(2)-C(3) 1. 369(16) C(2)-C(7) 1. 388(16)	O(20)-C(36)	1. 255(12)	O(21)-C(43)	1. 246(13)
C(2)-C(3) 1. 369(16) C(2)-C(7) 1. 388(16)	O(22)-C(43)	1. 241(13)	O(23)-C(50)	1. 333(13)
	O(24)-C(50)	1. 369(15)	C(1)-C(2)	1. 500(15)
C(3)-C(4) 1. 398(17) C(4)-C(5) 1. 309(19)	C(2)-C(3)	1. 369(16)	C(2)-C(7)	1. 388(16)
	C(3)-C(4)	1. 398(17)	C(4)-C(5)	1. 309(19)

C(5)-C(6)	1. 417(19)	C(5)-Br(1)	1. 901(12)
C(6)-C(7)	1. 389(17)	C(8)-C(9)	1. 520(15)
C(9)-C(14)	1. 376(16)	C(9)-C(10)	1. 382(16)
C(10)- $C(11)$	1. 360(17)	C(11)-C(12)	1. 394(18)
C(12)- $C(13)$	1. 335(18)	C(12)-Br(2)	1. 888(12)
C(13)-C(14)	1. 393(17)	C(15)-C(16)	1. 505(14)
C(16)-C(17)	1. 331(16)	C(16)-C(21)	1. 399(16)
C(17)-C(18)	1. 413(16)	C(18)-C(19)	1. 352(19)
C(19)-C(20)	1. 347(18)	C(19)-Br(3)	1. 930(11)
C(20)-C(21)	1. 413(16)	C(22)-C(23)	1. 475(14)
C(23)-C(28)	1. 363(15)	C(23)-C(24)	1. 384(15)
C(24)-C(25)	1. 337(15)	C(25)-C(26)	1. 400(16)
C(26)-C(27)	1. 336(17)	C(26)-Br(4)	1. 900(10)
C(27)-C(28)	1. 419(16)	C(29)-C(30)	1. 490(16)
C(30)-C(35)	1. 347(17)	C(30)-C(31)	1. 415(15)
C(31)-C(32)	1. 350(16)	C(32)-C(33)	1. 351(18)
C(33)-C(34)	1. 349(18)	C(33)-Br(5)	1. 916(12)
C(34)-C(35)	1. 400(16)	C(36)-C(37)	1. 483(15)
C(37)-C(42)	1. 35(2)	C(37)-C(38 ')	1. 382(12)
C(37)-C(42 ')	1. 395(13)	C(37)-C(38)	1.41(2)
C(38)-C(39)	1. 44(3)	C(39)-C(40)	1. 30(3)
C(40)- $C(41)$	1. 42(3)	C(40)-Br(6)	1. 930(18)
C(41)- $C(42)$	1. 37(2)	C(38 ')-C(39 ')	1. 6589
C(39 ')-C(40 ')	1. 1878	C(40 ')-C(41 ')	1. 4335
C(40 ')-Br(6 ')	2. 026(12)	C(41 ')-C(42 ')	1. 3248
C(43)-C(44)	1. 490(17)	C(44)-C(49)	1. 34(2)
C(44)-C(45)	1. 39(2)	C(45)-C(46)	1. 49(2)
C(46)-C(47)	1. 31(3)	C(47)-C(48)	1. 33(2)
C(47)-Br(7)	1. 905(15)	C(48)-C(49)	1. 52(2)
C(50)-C(51)	1. 4801	C(51)-C(56)	1. 3900
C(51)-C(52)	1. 3901	C(52)-C(53)	1. 3900
C(53)-C(54)	1. 3900	C(54)-C(55)	1. 3898
C(54)-Br(8)	1. 871(13)	C(54)-Br(8 ')	2. 180(13)
C(55)-C(56)	1. 3902	Br(7)-Br(7 ')	2. 230(10)
Br(7 ')-Br(8)	2. 515(14)	Br(8)-Br(8')	1. 569(12)
C(57)-C(58)	1. 3802	C(58)-C(59)	1. 5416
C(59)-C(60)	1. 5404	C(60)-C(61)	1. 5412

C(61)-C(62)	1. 5402	C(63)-Cl(2)	1. 6095
C(63)-Cl(1)	1.7671	C(64)-Cl(3)	1. 4293
C(64)-Cl(4)	1. 7058		
O(4)-Fe(1)-O(5)	94. 1(3)	O(4)-Fe(1)-O(16)	175. 2(3)
O(5)-Fe(1)-O(16)	90. 6(3)	O(4)-Fe(1)-O(14)	92. 1(3)
O(5)-Fe(1)- $O(14)$	172. 9(3)	O(16)-Fe(1)-O(14)	83. 1(3)
O(4)-Fe(1)-O(7)	94. 7(3)	O(5)-Fe(1)- $O(7)$	93. 2(3)
O(16)-Fe(1)-O(7)	85. 7(4)	O(14)-Fe(1)-O(7)	89. 7(3)
O(4)-Fe(1)-O(8)	91. 9(3)	O(5)-Fe(1)-O(8)	92. 1(3)
O(16)-Fe(1)-O(8)	87. 2(4)	O(14)-Fe(1)-O(8)	84. 4(3)
O(7)-Fe(1)-O(8)	171. 2(3)	O(6)-Fe(2)-O(6)#1	93. 8(4)
O(6)-Fe(2)-O(18)#1	90. 1(3)	O(6)#1-Fe(2)-O(18)#1	93. 1(3)
O(6)-Fe(2)-O(18)	93. 1(3)	O(6)#1-Fe(2)-O(18)	90. 1(3)
O(18)#1-Fe(2)-O(18)	175. 3(4)	O(6)-Fe(2)-O(20)#1	174. 2(3)
O(6)#1-Fe(2)-O(20)#1	91. 8(3)	O(18)#1-Fe(2)-O(20)#1	91. 1(3)
O(18)-Fe(2)-O(20)#1	85. 3(3)	O(6)-Fe(2)- $O(20)$	91. 8(3)
O(6)#1-Fe(2)-O(20)	174. 2(3)	O(18)#1-Fe(2)-O(20)	85. 3(3)
O(18)-Fe(2)-O(20)	91. 1(3)	O(20)#1-Fe(2)-O(20)	82. 7(4)
O(3)#1-Fe(3)- $O(3)$	93. 2(4)	O(3)#1-Fe(3)-O(11)	175. 2(3)
O(3)-Fe(3)-O(11)	91. 6(3)	O(3)#1-Fe(3)-O(11)#1	91. 6(3)
O(3)-Fe(3)-O(11)#1	175. 2(3)	O(11)-Fe(3)-O(11)#1	83. 7(5)
O(3)#1-Fe(3)-O(24)	90. 1(4)	O(3)-Fe(3)- $O(24)$	94. 7(3)
O(11)-Fe(3)-O(24)	89. 0(5)	O(11)#1-Fe(3)-O(24)	85. 8(5)
O(3)#1-Fe(3)-O(24)#1	94. 7(3)	O(3)-Fe(3)-O(24)#1	90. 1(4)
O(11)-Fe(3)-O(24)#1	85. 8(5)	O(11)#1-Fe(3)-O(24)#1	89. 0(5)
O(24)-Fe(3)-O(24)#1	173. 0(6)	O(4)-Mn(1)-O(3)	84. 4(3)
O(4)-Mn(1)-O(1)	90. 8(3)	O(3)-Mn(1)-O(1)	92. 1(3)
O(4)-Mn(1)-O(9)	90. 7(3)	O(3)-Mn(1)-O(9)	93. 1(3)
O(1)-Mn(1)-O(9)	174. 7(3)	O(4)-Mn(1)-O(1)#1	174. 3(3)
O(3)-Mn(1)-O(1)#1	96. 9(3)	O(1)-Mn(1)-O(1)#1	83. 6(3)
O(9)-Mn(1)-O(1)#1	94. 8(3)	O(4)-Mn(1)-O(2)	98. 7(3)
O(3)-Mn(1)-O(2)	174. 6(3)	O(1)-Mn(1)-O(2)	83. 6(3)
O(9)-Mn(1)-O(2)	91. 2(3)	O(1)#1-Mn(1)-O(2)	79. 6(3)
O(4)-Mn(1)-Mn(3)	42. 69(19)	O(3)-Mn(1)-Mn(3)	42. 6(2)
O(1)-Mn(1)-Mn(3)	98. 47(19)	O(9)-Mn(1)-Mn(3)	86. 0(2)
O(1)#1-Mn(1)-Mn(3)	139. 28(19)	O(2)-Mn(1)-Mn(3)	141. 14(19)

O(4)-Mn(1)-Mn(2)	89. 1(2)	O(3)-Mn(1)-Mn(2)	134. 5(2)
O(1)-Mn(1)-Mn(2)	42. 92(18)	O(9)-Mn(1)-Mn(2)	132. 0(2)
O(1)#1-Mn(1)-Mn(2)	85. 97(18)	O(2)-Mn(1)-Mn(2)	41. 67(18)
Mn(3)- $Mn(1)$ - $Mn(2)$	122. 77(7)	O(4)-Mn(1)-Mn(1)#1	132. 9(2)
O(3)-Mn(1)-Mn(1)#1	89. 23(19)	O(1)-Mn(1)-Mn(1)#1	42. 74(19)
O(9)-Mn(1)-Mn(1)#1	136. 4(2)	O(1)#1-Mn(1)-Mn(1)#1	41. 75(19)
O(2)-Mn(1)-Mn(1)#1	85. 45(17)	Mn(3)-Mn(1)-Mn(1)#1	121. 98(6)
Mn(2)-Mn(1)-Mn(1)#1	63. 31(5)	O(4)-Mn(1)-Mn(2)#1	138. 34(19)
O(3)-Mn(1)-Mn(2)#1	136. 6(2)	O(1)-Mn(1)-Mn(2)#1	82. 62(19)
O(9)-Mn(1)-Mn(2)#1	92. 9(2)	O(1)#1-Mn(1)-Mn(2)#1	39. 84(18)
O(2)-Mn(1)-Mn(2)#1	39. 76(18)	Mn(3)-Mn(1)-Mn(2)#1	178. 60(7)
Mn(2)-Mn(1)-Mn(2)#1	58. 63(6)	Mn(1)#1-Mn(1)-Mn(2)#1	58. 33(4)
O(6)-Mn(2)-O(5)	84. 4(3)	O(6)-Mn(2)-O(2)	92. 5(3)
O(5)-Mn(2)-O(2)	91. 0(3)	O(6)-Mn(2)-O(2)#1	96. 8(3)
O(5)-Mn(2)-O(2)#1	173. 9(3)	O(2)-Mn(2)-O(2)#1	83. 0(3)
O(6)-Mn(2)-O(1)	175. 1(3)	O(5)-Mn(21)- $O(1)$	98. 8(3)
O(2)-Mn(2)-O(1)	83. 7(3)	O(2)#1-Mn(2)-O(1)	79. 6(3)
O(6)-Mn(2)-O(21)	92. 2(3)	O(5)-Mn(2)-O(21)	90. 5(3)
O(2)- $Mn(2)$ - $O(21)$	175. 2(3)	O(2)#1-Mn(2)-O(21)	95. 4(3)
O(1)-Mn(2)-O(21)	91. 5(3)	O(6)-Mn(2)-Mn(4)	42. 4(2)
O(5)- $Mn(2)$ - $Mn(4)$	42. 61(19)	O(2)-Mn(2)-Mn(4)	98. 31(19)
O(2)#1-Mn(2)-Mn(4)	139. 19(18)	O(1)-Mn(2)-Mn(4)	141. 17(19)
O(21)-Mn(2)-Mn(4)	85. 9(2)	O(6)- $Mn(2)$ - $Mn(1)$	135. 0(2)
O(5)- $Mn(2)$ - $Mn(1)$	89. 3(2)	O(2)-Mn(2)-Mn(1)	43. 00(18)
O(2)#1-Mn(2)-Mn(1)	85. 62(18)	O(1)-Mn(2)-Mn(1)	41. 79(19)
O(21)-Mn(2)-Mn(1)	132. 5(2)	Mn(4)-Mn(2)-Mn(1)	122. 70(6)
O(6)-Mn(2)-Mn(2)#1	89. 6(2)	O(5)-Mn(2)-Mn(2)#1	132. 8(2)
O(2)-Mn(2)-Mn(2)#1	42. 49(19)	O(2)#1-Mn(2)-Mn(2)#1	41. 37(18)
O(1)-Mn(2)-Mn(2)#1	85. 51(19)	O(21)-Mn(2)-Mn(2)#1	136. 5(2)
Mn(4)-Mn(2)-Mn(2)#1	121. 77(6)	Mn(1)-Mn(2)-Mn(2)#1	63. 16(5)
O(6)-Mn(2)-Mn(1)#1	136. 7(2)	O(5)-Mn(2)-Mn(1)#1	138. 4(2)
O(2)-Mn(2)-Mn(1)#1	82. 35(19)	O(2)#1-Mn(2)-Mn(1)#1	39. 94(18)
O(1)-Mn(2)-Mn(1)#1	39. 72(18)	O(21)-Mn(2)-Mn(1)#1	93. 5(2)
Mn(4)-Mn(2)-Mn(1)#1	178. 89(7)	Mn(1)-Mn(2)-Mn(1)#1	58. 37(6)
Mn(2)#1-Mn(2)-Mn(1)#1	58. 21(4)	O(3)-Mn(3)-O(4)	82. 7(3)
O(3)-Mn(3)-O(12)	96. 4(3)	O(4)-Mn(3)- $O(12)$	174. 7(3)
O(3)-Mn(3)-O(13)	178. 7(3)	O(4)-Mn(3)-O(13)	97. 1(3)

O(12)-Mn(3)-O(13)	83. 9(3)	O(3)-Mn(3)-O(10)	86. 3(3)
O(4)-Mn(3)- $O(10)$	86. 5(3)	O(12)-Mn(3)-O(10)	88. 2(3)
O(13)- $Mn(3)$ - $O(10)$	94. 9(3)	O(3)-Mn(3)-O(23)	91. 3(3)
O(4)-Mn(3)-O(23)	90. 9(3)	O(12)-Mn(3)-O(23)	94. 4(3)
O(13)-Mn(3)-O(23)	87. 5(3)	O(10)-Mn(3)-O(23)	176. 6(3)
O(3)-Mn(3)-Mn(1)	41. 86(18)	O(4)-Mn(3)-Mn(1)	41. 66(19)
O(12)-Mn(3)-Mn(1)	136. 5(2)	O(13)-Mn(3)-Mn(1)	138. 1(2)
O(10)-Mn(3)-Mn(1)	78. 92(19)	O(23)-Mn(3)-Mn(1)	97. 7(2)
O(6)-Mn(4)-O(5)	82. 9(3)	O(6)-Mn(4)-O(19)	97. 2(3)
O(5)-Mn(4)-O(19)	177. 9(3)	O(6)-Mn(4)-O(15)	178. 6(3)
O(5)-Mn(4)-O(15)	96. 0(3)	O(19)-Mn(4)-O(15)	84. 0(3)
O(6)-Mn(4)-O(22)	86. 8(3)	O(5)-Mn(4)- $O(22)$	85. 4(3)
O(19)-Mn(4)-O(22)	92. 5(3)	O(15)-Mn(4)-O(22)	93. 9(3)
O(6)-Mn(4)-O(17)	90. 1(3)	O(5)-Mn(4)- $O(17)$	91. 1(3)
O(19)-Mn(4)-O(17)	91. 1(3)	O(15)-Mn(4)-O(17)	89. 1(3)
O(22)-Mn(4)- $O(17)$	175. 6(3)	O(6)-Mn(4)-Mn(2)	41. 69(19)
O(5)-Mn(4)-Mn(2)	41. 88(19)	O(19)- $Mn(4)$ - $Mn(2)$	137. 8(2)
O(15)-Mn(4)-Mn(2)	137. 3(2)	O(22)-Mn(4)-Mn(2)	79. 0(2)
O(17)-Mn(4)-Mn(2)	96. 60(18)	Mn(1)-O(1)-Mn(1)#1	95. 5(3)
Mn(1)-O(1)-Mn(2)	95. 3(3)	Mn(1)#1-O(1)-Mn(2)	100. 4(3)
Mn(2)-O(2)-Mn(2)#1	96. 1(3)	Mn(2)-O(2)-Mn(1)	95. 3(3)
Mn(2)#1-O(2)-Mn(1)	100. 3(3)	Mn(1)-O(3)-Mn(3)	95. 6(3)
Mn(1)-O(3)-Fe(3)	133. 8(3)	Mn(3)-O(3)-Fe(3)	124. 3(3)
Mn(1)-O(4)-Mn(3)	95. 7(3)	Mn(1)-O(4)-Fe(1)	133. 2(3)
Mn(3)-O(4)-Fe(1)	126. 6(4)	Mn(2)-O(5)-Mn(4)	95. 5(3)
Mn(2)-O(5)-Fe(1)	131. 8(3)	Mn(4)-O(5)-Fe(1)	129. 1(3)
Mn(2)-O(6)-Mn(4)	95. 9(3)	Mn(2)-O(6)-Fe(2)	133. 2(4)
Mn(4)-O(6)-Fe(2)	123. 7(3)	C(1)- $O(9)$ - $Mn(1)$	125. 4(7)
C(1)- $O(10)$ - $Mn(3)$	122. 0(7)	C(8)-O(11)-Fe(3)	135. 9(8)
C(8)-O(12)-Mn(3)	131. 8(7)	C(15)-O(13)-Mn(3)	132. 9(7)
C(15)-O(14)-Fe(1)	133. 1(7)	C(22)-O(15)-Mn(4)	133. 1(7)
C(22)-O(16)-Fe(1)	133. 5(7)	C(29)-O(17)-Mn(4)	128. 1(6)
C(29)-O(18)-Fe(2)	135. 1(7)	C(36)-O(19)-Mn(4)	133. 2(7)
C(36)-O(20)-Fe(2)	133. 0(6)	C(43)- $O(21)$ - $Mn(2)$	125. 3(7)
C(43)-O(22)-Mn(4)	122. 0(7)	C(50)-O(23)-Mn(3)	128. 0(7)
C(50)-O(24)-Fe(3)	132. 6(7)	O(10)-C(1)-O(9)	127. 5(10)
O(10)-C(1)-C(2)	118. 2(9)	O(9)-C(1)-C(2)	114. 2(9)

C(3)-C(2)-C(7)	119. 5(11)	C(3)-C(2)-C(1)	119. 6(10)
C(7)-C(2)-C(1)	120. 8(10)	C(2)-C(3)-C(4)	120. 4(12)
C(5)-C(4)-C(3)	120. 3(12)	C(4)-C(5)-C(6)	121. 2(12)
C(4)-C(5)-Br(1)	121. 2(11)	C(6)-C(5)-Br(1)	117. 6(11)
C(7)-C(6)-C(5)	118. 7(12)	C(2)-C(7)-C(6)	119. 6(11)
O(11)-C(8)-O(12)	126. 7(11)	O(11)-C(8)-C(9)	118. 9(11)
O(12)-C(8)-C(9)	114. 5(10)	C(14)-C(9)-C(10)	119. 6(10)
C(14)-C(9)-C(8)	120. 5(10)	C(10)-C(9)-C(8)	119. 9(11)
C(11)-C(10)-C(9)	121. 3(12)	C(10)-C(11)-C(12)	118. 0(11)
C(13)-C(12)-C(11)	121. 4(11)	C(13)-C(12)-Br(2)	120. 5(10)
C(11)- $C(12)$ - $Br(2)$	118. 0(9)	C(12)-C(13)-C(14)	120. 5(12)
C(9)-C(14)-C(13)	118. 6(11)	O(13)-C(15)-O(14)	126. 0(9)
O(13)-C(15)-C(16)	116. 4(9)	O(14)-C(15)-C(16)	117. 6(10)
C(17)-C(16)-C(21)	121. 0(10)	C(17)-C(16)-C(15)	121. 0(10)
C(21)-C(16)-C(15)	117. 9(10)	C(16)-C(17)-C(18)	121. 7(12)
C(19)-C(18)-C(17)	116. 3(12)	C(20)-C(19)-C(18)	124. 5(11)
C(20)- $C(19)$ - $Br(3)$	118. 3(10)	C(18)-C(19)-Br(3)	117. 1(10)
C(19)-C(20)-C(21)	118. 8(11)	C(16)-C(21)-C(20)	117. 7(11)
O(15)-C(22)-O(16)	125. 6(10)	O(15)-C(22)-C(23)	117. 4(9)
O(16)-C(22)-C(23)	117. 0(9)	C(28)-C(23)-C(24)	118. 5(9)
C(28)-C(23)-C(22)	120. 6(9)	C(24)-C(23)-C(22)	120. 6(9)
C(25)-C(24)-C(23)	121. 2(10)	C(24)-C(25)-C(26)	119. 8(11)
C(27)-C(26)-C(25)	121. 2(10)	C(27)-C(26)-Br(4)	119. 2(9)
C(25)-C(26)-Br(4)	119. 6(9)	C(26)-C(27)-C(28)	118. 1(11)
C(23)-C(28)-C(27)	121. 1(10)	O(18)-C(29)-O(17)	123. 8(10)
O(18)-C(29)-C(30)	117. 3(11)	O(17)-C(29)-C(30)	118. 9(9)
C(35)-C(30)-C(31)	120. 2(11)	C(35)-C(30)-C(29)	120. 0(10)
C(31)-C(30)-C(29)	119. 8(11)	C(32)-C(31)-C(30)	119. 2(12)
C(31)-C(32)-C(33)	119. 8(12)	C(34)-C(33)-C(32)	122. 4(12)
C(34)-C(33)-Br(5)	118. 3(11)	C(32)-C(33)-Br(5)	119. 3(10)
C(33)-C(34)-C(35)	119. 0(13)	C(30)-C(35)-C(34)	119. 3(11)
O(20)-C(36)-O(19)	125. 6(9)	O(20)-C(36)-C(37)	117. 5(9)
O(19)-C(36)-C(37)	116. 9(9)	C(42)-C(37)-C(38')	113. 2(11)
C(42)-C(37)-C(42 ')	23. 0(7)	C(38 ')-C(37)-C(42 ')	100. 8(8)
C(42)-C(37)-C(38)	118. 4(14)	C(38 ')-C(37)-C(38)	48. 1(9)
C(42 ')-C(37)-C(38)	125. 4(11)	C(42)-C(37)-C(36)	124. 0(12)
C(38 ')-C(37)-C(36)	113. 1(9)	C(42 ')-C(37)-C(36)	118. 2(10)

C(38)-C(37)-C(36)	115. 6(12)	C(37)-C(38)-C(39)	117. 32(17)
C(40)-C(39)-C(38)	120 (2)	C(39)-C(40)-C(41)	123. 8(18)
C(39)-C(40)-Br(6)	118. 0(16)	C(41)-C(40)-Br(6)	118. 1(14)
C(42)-C(41)-C(40)	114. 6(17)	C(37)-C(42)-C(41)	123. 6(17)
C(37)-C(38 ')-C(39 ')	114. 7(5)	C(40 ')-C(39 ')-C(38 ')	106. 4
C(39 ')-C(40 ')-C(41 ')	132. 0	C(39 ')-C(40 ')-Br(6 ')	107. 2(4)
C(41 ')-C(40 ')-Br(6 ')	111. 8(4)	C(42 ')-C(41 ')-C(40 ')	99. 9
C(41 ')-C(42 ')-C(37)	136. 0(5)	O(22)-C(43)-O(21)	127. 8(10)
O(22)-C(43)-C(44)	113. 7(11)	O(21)-C(43)-C(44)	118. 4(11)
C(49)-C(44)-C(45)	122. 6(14)	C(49)-C(44)-C(43)	116. 5(15)
C(45)-C(44)-C(43)	120. 9(14)	C(44)-C(45)-C(46)	117. 4(15)
C(47)-C(46)-C(45)	118. 7(16)	C(46)-C(47)-C(48)	125. 8(17)
C(46)-C(47)-Br(7)	116. 9(14)	C(48)-C(47)-Br(7)	117. 3(13)
C(47)-C(48)-C(49)	116. 4(17)	C(44)-C(49)-C(48)	118. 4(16)
O(23)-C(50)-O(24)	122. 7(11)	O(23)-C(50)-C(51)	115. 6(6)
O(24)-C(50)-C(51)	121. 4(7)	C(56)-C(51)-C(52)	120. 0
C(56)-C(51)-C(50)	122. 3	C(52)-C(51)-C(50)	117. 6
C(53)-C(52)-C(51)	120. 0	C(52)-C(53)-C(54)	120. 0
C(55)-C(54)-C(53)	120. 0	C(55)-C(54)-Br(8)	130. 4(6)
C(53)-C(54)-Br(8)	109. 4(6)	C(55)-C(54)-Br(8')	94. 8(4)
C(53)-C(54)-Br(8')	138. 4(3)	Br(8)-C(54)-Br(8')	44. 8(5)
C(54)-C(55)-C(56)	120. 0	C(51)-C(56)-C(55)	120. 0
C(47)-Br(7)-Br(7')	82. 0(6)	Br(7)-Br(7 ')-Br(8)	153. 0(5)
Br(8 ')-Br(8)-Cr(54)	78. 1(5)	Br(8 ')-Br(8)-Br(7 ')	148. 2(7)
C(54)-Br(8)-Br(7')	131. 3(6)	Br(8)-Br(8 ')-C(54)	57. 1(4)
C(57)-C(58)-C(59)	141.8	C(60)-C(59)-C(58)	133. 6
C(59)-C(60)-C(61)	157. 8	C(62)-C(61)-C(60)	126. 1
Cl(2)-C(63)-Cl(1)	97. 2	Cl(3)-C(64)-Cl(4)	121. 8

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+1/2

附表 8 化合物 $\mathbf{5}$. $12CH_2Cl_2$ 的原子座標

Jiso 8(2)
8(2)
5(2)
1(2)
6(3)
2(3)
2(6)
6(7)
7(7)
2(8)
7(7)
5(8)
3(8)
0(9)
3(8)
2(8)
6(8)
3(9)
5(11)
7(15)
0(12)
9(18)
6(16)
(2)
(3)
,
(3)
(-)
(3)

H9A	-0. 1079	0. 4193	0. 3950	0. 096
C10	-0. 0654(3)	0. 3539(3)	0. 3568(7)	0. 073(2)
H10A	-0. 0739	0. 3548	0. 2880	0. 087
C11	-0. 0614(2)	0. 2342(2)	0. 2499(6)	0. 0514(15)
C12	-0. 0661(3)	0. 2356(3)	0. 1493(7)	0.076(2)
H12A	-0. 0410	0. 2543	0. 1103	0. 091
C13	-0. 1086(4)	0. 2091(5)	0. 1032(9)	0. 118(4)
H13A	-0. 1126	0. 2101	0. 0330	0. 142
C14	-0. 1437(3)	0. 1820(4)	0. 1603(11)	0. 109(4)
H14A	-0. 1718	0. 1636	0. 1289	0. 131
C15	-0. 1398(3)	0. 1806(4)	0. 2591(11)	0. 098(3)
H15A	-0. 1651	0. 1620	0. 2978	0. 117
C16	-0. 0980(2)	0. 2067(3)	0. 3043(7)	0. 072(2)
H16A	-0. 0947	0. 2056	0. 3745	0. 087
C17	0.0779(2)	0. 1297(2)	0. 0190(4)	0. 0412(12)
C18	0. 1226(3)	0. 1182(4)	-0. 0367(5)	0. 075(2)
H18A	0. 1530	0. 1036	-0.0060	0. 090
C19	0. 1221(4)	0. 1285(5)	-0. 1388(6)	0. 101(4)
H19A	0. 1528	0. 1214	-0. 1773	0. 121
C20	0. 0781(4)	0. 1488(4)	-0. 1838(6)	0. 081(3)
H20A	0. 0783	0. 1550	-0. 2534	0. 097
C21	0. 0341(3)	0. 1601(3)	-0. 1302(5)	0.066(2)
H21A	0. 0039	0. 1747	-0. 1619	0.080
C22	0. 0333(3)	0. 1502(2)	-0. 0284(5)	0.0500(14)
H22A	0.0023	0. 1575	0.0089	0.060
C23	0. 0252(2)	0. 0748(2)	0. 1806(4)	0. 0398(12)
C24	0. 0271(3)	0. 0237(2)	-0. 1419(6)	0. 0584(17)
H24A	0. 0549	0. 0139	-0. 0980	0.070
C25	-0. 0113(3)	-0.0128(3)	-0. 1671(6)	0. 073(2)
H25A	-0. 0100	-0.0478	-0. 1415	0. 087
C26	-0. 0523(3)	0.0027(3)	-0. 2313(6)	0.070(2)
H26A	-0. 0785	-0.0223	-0. 2500	0. 084
C27	-0. 0551(2)	0. 0519(3)	-0. 2665(5)	0. 0587(17)
H27A	-0. 0835	0.0616	-0. 3090	0. 070
C28	-0. 0165(2)	0. 0894(2)	-0. 2415(5)	0. 0450(13)
H28A	-0. 0189	0. 1245	0. 2661	0. 054
C29	0. 2014(3)	0. 0267(4)	-0. 5646(7)	0. 085(3)

H29A	0. 2377	0. 0382	0. 5479	0. 102
H29B	0. 1812	0. 0235	0. 5019	0. 102
Cl1	0. 17224(15)	0. 07293(18)	0. 6386(3)	0. 1525(15)
Cl2	0. 20375(15)	-0.03474(15)	0. 6237(3)	0. 1441(14)
C30	-0. 0533(4)	0. 1352(7)	-0. 4529(11)	0. 147(11)
H30A	-0. 0605	0. 1733	-0. 4432	0. 176
H30B	-0. 0270	0. 1323	-0. 5071	0. 176
Cl3	-0. 0258(2)	0. 1130(2)	-0. 3512(3)	0. 1685(17)
Cl4	-0. 1056(2)	0. 10881(18)	-0. 4898(4)	0. 1095(14)
C30 '	-0. 0117(13)	0. 1648(10)	-0. 426(2)	0. 118(9)
H30C	0. 0266	0. 1683	-0. 4393	0. 142
H30D	-0. 0315	0. 1635	-0. 4895	0. 142
Cl4 '	-0. 0345(4)	0. 2122(4)	-0. 3489(7)	0. 141(3)
C31	-0. 2974(11)	0. 1894(6)	0. 2082(9)	0. 287(13)
H31A	-0. 2851	0. 2256	0. 2242	0. 344
H31B	-0. 3365	0. 1916	0. 2098	0. 344
H31C	-0. 3338	0. 1950	0. 1829	0. 344
H31D	-0. 2716	0. 2073	0. 1644	0. 344
C15	-0. 2832(8)	0. 1556(7)	0. 3117(11)	0. 283(7)
Cl6	-0. 2835(4)	0. 1839(4)	0. 0785(8)	0. 186(4)
Cl5 '	-0. 2904(9)	0. 2086(7)	0. 3381(12)	0. 349(10)
Cl6'	-0. 2830(4)	0. 1243(3)	0. 2260(7)	0. 154(3)
<u> </u>				

附表 9 化合物 5.12CH₂Cl₂ 之鍵長與鍵角數據表

FIJAC 7 TO EN 75 : 12C112C		ロタ人がたく	
Fe(1)-O(2)#1	1. 935(3)	Fe(1)-O(10)	1. 971(3)
Fe(1)-O(12)#1	1. 973(3)	Fe(1)-O(3)	1. 993(3)
Fe(1)-O(8)#1	2. 039(4)	Fe(1)-O(4)	2. 134(4)
Mn(1)-O(2)	1. 847(3)	Mn(1)-O(3)	1. 858(3)
Mn(1)-O(1)	1. 902(3)	Mn(1)-O(1)#1	1. 913(3)
Mn(1)-O(5)	1. 933(3)	Mn(1)-O(1)#2	1. 967(3)
Mn(1)- $Mn(2)$	2. 7779(9)	Mn(1)-Mn(1)#1	2. 8632(12)
Mn(1)-Mn(1)#2	2. 8632(12)	Mn(1)-Mn(1)#3	2. 9573(13)
Mn(2)-O(2)	1. 884(3)	Mn(2)-O(9)	1. 944(3)
Mn(2)-O(3)	1. 944(3)	Mn(2)-O(7)	1. 975(3)
Mn(2)-O(6)	2. 175(4)	Mn(2)-O(11)	2. 187(4)
P(1)-O(10)	1. 503(4)	P(1)-O(9)	1. 513(4)
P(1)-C(5)	1. 796(6)	P(1)-C(11)	1.807(6)
P(2)-O(12)	1.510(4)	P(2)-O(11)	1. 524(3)
P(2)-C(17)	1. 793(6)	P(2)-C(23)	1. 799(5)
O(1)-Mn(1)#2	1. 913(3)	O(1)-Mn(1)#1	1. 967(3)
O(2)-Fe(1)#2	1. 935(3)	O(5)-C(1)	1. 297(6)
O(6)-C(1)	1. 241(6)	O(7)-C(3)	1. 259(6)
O(8)-C(3)	1. 250(6)	O(8)-Fe(1)#2	2. 039(4)
O(12)-Fe(1)#2	1. 973(3)	C(1)- $C(2)$	1. 498(8)
C(3)-C(4)	1. 525(7)	C(5)-C(10)	1. 378(10)
C(5)-C(6)	1. 381(11)	C(6)-C(7)	1. 398(11)
C(7)-C(8)	1. 347(13)	C(8)-C(9)	1. 358(13)
C(9)-C(10)	1. 389(10)	C(11)- $C(12)$	1. 361(11)
C(11)-C(16)	1. 370(10)	C(12)- $C(13)$	1. 409(11)
C(13)-C(14)	1. 360(17)	C(14)-C(15)	1. 334(17)
C(15)-C(16)	1. 387(12)	C(17)-C(18)	1. 386(9)
C(17)-C(22)	1. 397(8)	C(18)-C(19)	1. 399(12)
C(19)-C(20)	1. 368(14)	C(20)- $C(21)$	1. 358(12)
C(21)-C(22)	1. 392(10)	C(23)-C(28)	1. 384(8)
C(23)-C(24)	1. 397(8)	C(24)-C(25)	1. 383(9)
C(25)-C(26)	1. 406(11)	C(26)-C(27)	1. 333(10)
C(27)-C(28)	1. 403(8)	C(29)-Cl(1)	1. 703(11)
C(29)-Cl(2)	1. 748(9)	C(30)-Cl(4)	1. 561(10)
C(30)-Cl(3)	1. 636(16)	Cl(3)-C(30')	1. 69(3)
C(30')-Cl(4')	1. 687(10)	C(31)-Cl(5)	1. 674(9)

-			
C(31)-Cl(6')	1. 704(10)	C(31)-Cl(6)	1. 787(9)
C(31)-Cl(5')	1. 823(9)		
0(0) 4 F (4) 0(40)	4	0.00.111	0.4 (7.4.4)
O(2)#1-Fe(1)-O(10)	167. 66(16)	O(2)#1-Fe(1)-O(12)#1	94. 65(14)
O(10)-Fe(1)-O(12)#1	94. 62(15)	O(2)#1-Fe(1)-O(3)	96. 18(13)
O(10)-Fe(1)-O(3)	91. 49(14)	O(12)#1-Fe(1)-O(3)	92. 81(15)
O(2)#1-Fe(1)-O(8)#1	87. 56(14)	O(10)-Fe(1)-O(8)#1	84. 17(15)
O(12)#1-Fe(1)-O(8)#1	90. 82(16)	O(3)-Fe(1)- $O(8)$ #1	174. 56(14)
O(2)#1-Fe(1)-O(4)	86. 72(14)	O(10)-Fe(1)-O(4)	83. 87(15)
O(12)#1-Fe(1)-O(4)	178. 27(15)	O(3)-Fe(1)- $O(4)$	88. 09(14)
O(8)#1-Fe(1)-O(4)	88. 19(15)	O(2)-Mn(1)-O(3)	84. 91(14)
O(2)-Mn(1)-O(1)	95. 11(14)	O(3)-Mn(1)-O(1)	91. 64(14)
O(2)-Mn(1)-O(1)#1	172. 95(13)	O(3)-Mn(1)-O(1)#1	102. 03(13)
O(1)-Mn(1)-O(1)#1	83. 55(14)	O(2)-Mn(1)-O(5)	92. 28(14)
O(3)-Mn(1)-O(5)	94. 26(14)	O(1)-Mn(1)-O(5)	170. 92(13)
O(1)#1-Mn(1)-O(5)	88. 47(13)	O(2)-Mn(1)-O(1)#2	92. 42(13)
O(3)-Mn(1)-O(1)#2	172. 99(14)	O(1)-Mn(1)-O(1)#2	82. 13(14)
O(1)#1-Mn(1)-O(1)#2	80. 54(13)	O(5)-Mn(1)-O(1)#2	92. 33(13)
O(2)-Mn(1)-Mn(2)	42. 39(9)	O(3)-Mn(1)-Mn(2)	44. 29(10)
O(1)-Mn(1)-Mn(2)	104. 31(9)	O(1)#1-Mn(1)-Mn(2)	144. 63(9)
O(5)-Mn(1)-Mn(2)	84. 71(9)	O(1)#2-Mn(1)-Mn(2)	134. 29(9)
O(2)-Mn(1)-Mn(1)#1	138. 20(11)	O(3)-Mn(1)-Mn(1)#1	92. 93(11)
O(1)-Mn(1)-Mn(1)#1	43. 13(9)	O(1)#1-Mn(1)-Mn(1)#1	41. 22(9)
O(5)-Mn(1)-Mn(1)#1	129. 46(10)	O(1)#2-Mn(1)-Mn(1)#1	84. 73(9)
Mn(2)-Mn(1)-Mn(1)#1	130. 76(4)	O(2)-Mn(1)-Mn(1)#2	88. 75(10)
O(3)-Mn(1)-Mn(1)#2	131. 90(11)	O(1)-Mn(1)-Mn(1)#2	41. 52(9)
O(1)#1-Mn(1)-Mn(1)#2	85. 67(9)	O(5)-Mn(1)-Mn(1)#2	133. 68(10)
O(1)#2-Mn(1)-Mn(1)#2	41. 39(9)	O(2)-Mn(1)-Mn(1)#2	123. 19(4)
Mn(1)#1-Mn(1)-Mn(1)#2	62. 19(3)	Mn(2)-Mn(1)-Mn(1)#2	131. 99(10)
O(3)-Mn(1)-Mn(1)#3	142. 98(10)	O(1)-Mn(1)-Mn(1)#3	83. 21(9)
O(1)#1-Mn(1)-Mn(1)#3	41. 01(9)	O(5)-Mn(1)-Mn(1)#3	87. 94(9)
O(1)#2-Mn(1)-Mn(1)#3	39. 67(8)	O(2)-Mn(1)-Mn(1)#3	170. 33(3)
Mn(1)#1-Mn(1)-Mn(1)#3	58. 907(14)	Mn(1)#2-Mn(1)-Mn(1)#3	58. 907(14)
O(2)-Mn(2)-O(9)	176. 71(14)	O(2)-Mn(2)-O(3)	81. 57(13)
O(9)-Mn(2)-O(3)	95. 17(14)	O(2)-Mn(2)-O(7)	93. 87(14)
O(9)-Mn(2)-O(7)	89. 34(15)	O(3)-Mn(2)-O(7)	172. 77(15)
O(2)-Mn(2)-O(6)	90. 50(14)	O(9)-Mn(2)-O(6)	89. 05(15)

O(3)-Mn(2)-O(6)	88. 92(14)	O(7)-Mn(2)-O(6)	85. 50(15)
O(2)-Mn(2)- $O(11)$	91. 44(13)	O(9)-Mn(2)-O(11)	89. 28(15)
O(3)-Mn(2)-O(11)	95. 87(14)	O(7)-Mn(2)-O(11)	89. 83(14)
O(6)-Mn(2)-O(11)	175. 05(13)	O(2)-Mn(2)-Mn(1)	41. 38(9)
O(9)-Mn(2)-Mn(1)	135. 36(11)	O(3)-Mn(2)-Mn(1)	41. 87(9)
O(7)-Mn(2)-Mn(1)	132. 23(11)	O(6)-Mn(2)-Mn(1)	80. 47(9)
O(11)-Mn(2)-Mn(1)	103. 94(9)	O(10)-P(1)-O(9)	115. 5(2)
O(10)-P(1)-C(5)	110. 2(3)	O(9)-P(1)-C(5)	107. 6(3)
O(10)-P(1)-C(11)	106. 9(3)	O(9)-P(1)-C(11)	109. 7(3)
C(5)-P(1)-C(11)	106. 7(3)	O(12)-P(2)-O(11)	116. 13(19)
O(12)-P(2)-C(17)	106. 6(2)	O(11)-P(2)-C(17)	108. 2(2)
O(12)-P(2)-C(23)	108. 7(2)	O(11)-P(2)-C(23)	109. 0(2)
C(17)-P(2)-C(23)	107. 9(2)	Mn(1)-O(1)-Mn(1)#2	97. 27(14)
Mn(1)-O(1)-Mn(1)#1	95. 47(13)	Mn(1)#2-O(1)-Mn(1)#1	99. 32(13)
Mn(1)-O(2)-Mn(2)	96. 22(14)	Mn(1)-O(2)-Fe(1)#2	132. 01(17)
Mn(2)-O(2)-Fe(1)#2	129. 71(16)	Mn(1)-O(3)-Mn(2)	93. 84(14)
Mn(1)-O(3)-Fe(1)	127. 20(17)	Mn(2)-O(3)-Fe(1)	129. 20(17)
C(1)-O(5)-Mn(1)	127. 6(3)	C(1)-O(6)-Mn(2)	121. 8(3)
C(3)-O(7)-Mn(2)	133. 0(3)	C(3)-O(8)-Fe(1)#2	133. 5(3)
P(1)-O(9)-Mn(2)	127. 7(2)	P(1)-O(10)-Fe(1)	136. 1(2)
P(2)-O(11)-Mn(2)	124. 9(2)	P(2)-O(12)-Fe(1)#2	137. 3(2)
O(6)-C(1)-O(5)	125. 1(5)	O(6)-C(1)-C(2)	120. 4(5)
O(5)-C(1)-C(2)	114. 5(5)	O(8)-C(3)-O(7)	126. 2(5)
O(8)-C(3)-C(4)	117 2(5)	O(7)-C(3)-C(4)	116. 7(5)
C(10)-C(5)-C(6)	119. 7(6)	C(10)-C(5)-P(1)	120. 4(6)
C(6)-C(5)-P(1)	119. 9(5)	C(5)-C(6)-C(7)	118. 5(8)
C(8)-C(7)-C(6)	121. 3(10)	C(7)-C(8)-C(9)	120. 4(7)
C(8)-C(9)-C(10)	119. 8(8)	C(5)-C(10)-C(9)	120. 2(9)
C(12)-C(11)-C(16)	118. 9(7)	C(12)-C(11)-P(1)	120. 7(5)
C(16)-C(11)-P(1)	120. 3(6)	C(11)-C(12)-C(13)	119. 6(9)
C(14)-C(13)-C(12)	119. 2(11)	C(15)-C(14)-C(13)	121. 9(8)
C(14)-C(15)-C(16)	118. 7(10)	C(11)- $C(16)$ - $C(15)$	121. 6(10)
C(18)-C(17)-C(22)	119. 2(6)	C(18)-C(17)-P(2)	120. 6(5)
C(22)-C(17)-P(2)	120. 2(5)	C(17)-C(18)-C(19)	119. 1(8)
C(20)-C(19)-C(18)	120. 8(8)	C(21)-C(20)-C(19)	120. 7(7)
C(20)-C(21)-C(22)	119. 8(7)	C(21)-C(22)-C(17)	120. 4(7)
C(28)-C(23)-C(24)	119. 6(5)	C(28)-C(23)-P(2)	121. 7(4)

C(24)-C(23)-P(2)	118. 6(5)	C(25)-C(24)-C(23)	120. 1(6)
C(24)-C(25)-C(26)	118. 9(6)	C(27)-C(26)-C(25)	121. 2(6)
C(26)-C(27)-C(28)	120. 6(7)	C(23)-C(28)-C(27)	119. 5(6)
Cl(1)-C(29)-Cl(2)	111. 0(5)	Cl(4)-C(30)-Cl(3)	118. 6(12)
C(30)-Cl(3)-C(30 ')	47. 5(12)	Cl(4 ')-C(30 ')-Cl(3)	96. 5(14)
Cl(5)-C(31)-Cl(6 ')	48. 9(7)	Cl(5)-C(31)-Cl(6)	136. 9(12)
Cl(6 ')-C(31)-Cl(6)	91. 1(8)	Cl(5)-C(31)-Cl(5 ')	46. 9(7)
Cl(6 ')-C(31)-Cl(5 ')	95. 8(6)	Cl(6)-C(31)-Cl(5 ')	160 (2)

Symmetry transformations used to generate equivalent atoms:

 $\#1 \ y, -x+1/2, -z+1/2 \ \#2 \ -y+1/2, x, -z+1/2 \ \#3 \ -x+1/2, -y+1/2, z$

附表 10 化合物 8 的原子座標

	V	V	7	IFaa
Atom	X	Y	Z	Uiso
Mn1	0. 53521(3)	0. 53521(3)	1. 03294(4)	0. 0341(3)
Mn2	0. 5000	0. 64214(4)	1. 0000	0. 0374(3)
Mn3	0. 60241(3)	0. 60241(3)	1. 03424(5)	0. 0446(4)
Fe2	0. 5000	0. 64214(4)	1. 0000	0. 0374(3)
Fe3	0. 60241(3)	0. 60241(3)	1. 03424(5)	0. 0446(4)
Cl1	0. 57060(10)	0. 57060(10)	0. 86474(14)	0. 0958(12)
Cl2	0. 63970(11)	0. 63970(11)	0. 86791(15)	0. 0894(10)
Cl3	0. 43305(9)	0. 75629(7)	0. 89237(8)	0. 0733(6)
Cl4	0. 35286(7)	0. 75680(7)	0. 94930(11)	0. 0829(8)
Cl5	0. 5354(6)	0. 6150(4)	1. 1844(7)	0. 178(6)
C15 '	0. 5546(8)	0. 5941(8)	1. 2114(7)	0. 220(8)
Cl6	0. 5279(7)	0. 5279(7)	1. 1993(10)	0. 201(10)
O1	0. 52963(12)	0. 52963(12)	0. 96846(19)	0. 0337(11)
O2	0. 53900(13)	0. 59870(13)	1. 02873(17)	0. 0420(9)
O3	0. 53853(16)	0. 64895(16)	0. 94179(19)	0. 0568(12)
Н3А	0. 5316	0. 6697	0. 9175	0.068
Н3В	0. 5611	0. 6320	0. 9319	0.068
O4	0. 61104(16)	0. 61104(16)	0. 9602(3)	0. 0586(17)
O5	0. 46396(15)	0. 69456(14)	0. 97365(18)	0. 0490(11)
O6	0. 39442(16)	0. 66859(14)	0. 9576(2)	0. 0594(14)
O7	0. 53812(17)	0. 53812(17)	1. 0991(2)	0. 0526(16)
O8	0. 5932(2)	0. 5932(2)	1. 1065(3)	0.0610(18)
C1	0. 5774(5)	0. 6300(4)	0. 9332(5)	0. 047(3)
C2	0. 5868(6)	0. 6275(6)	0. 8818(6)	0. 066(4)
H2A	0. 5655	0. 6472	0.8627	0. 079
C3	0. 4243(2)	0. 69847(19)	0. 9607(3)	0. 0479(14)
C4	0. 4114(2)	0. 7472(2)	0. 9472(3)	0. 0544(17)
H4A	0. 4262	0. 7682	0. 9679	0. 065
C5	0. 5649(4)	0. 5649(4)	1. 1211(5)	0. 074(3)
C6	0. 5621(6)	0. 5621(6)	1. 1649(6)	0. 20(2)
P1	0. 7980(5)	0. 7980(5)	0. 7980(5)	0. 161(7)
C7	0. 8082	0. 7411	0. 8082	0. 100
C8	0. 7670	0. 7120	0. 8158	0. 100
H8A	0. 7376	0. 7258	0. 8124	0. 120
C9	0. 7688	0. 6663	0. 8275	0. 100

H9A	0. 7417	0. 6500	0. 8354	0. 120
C10	0. 8128	0. 6439	0. 8275	0. 100
H10A	0. 8148	0. 6114	0. 8290	0. 120
C11	0. 8505	0. 6690	0. 8253	0. 100
H11A	0. 8793	0. 6553	0. 8319	0. 120
C12	0. 8486	0. 7147	0. 8136	0. 100
H12A	0. 8771	0. 7299	0. 8087	0. 120
C13	0. 8327	0. 8327	0. 8327	0. 100
C14	0. 8639	0.8080	0. 8639	0. 100
H14A	0. 8629	0. 7754	0. 8629	0. 120
C15	0. 8911	0. 8255	0. 8911	0. 100
H15A	0. 9211	0. 8144	0. 8971	0. 120
C16	0. 8690	0. 8690	0. 9145	0. 100
H16A	0. 8815	0. 8815	0. 9419	0. 120

附表 11 化合物 8 之鍵長與鍵角數據

Cl(2)-C(2)	門状 11 10日初 6 之姓 区兴姓	刊 女人] /		
Mn(1)-O(1)#3 1. 921(3) Mn(1)-O(7) 1. 955(7) Mn(1)-Mn(3) 2. 8051(17) Mn(1)-Mn(1)#2 2. 846(2) Mn(1)-Mn(1)#3 2. 846(2) Mn(1)-Mn(1)#4 2. 939(2) Mn(2)-O(2)#2 1. 920(4) Mn(2)-O(5)#2 2. 032(4) Mn(2)-O(3)#2 2. 070(5) Mn(2)-O(3) 2. 070(5) Mn(3)-O(2)#1 1. 881(4) Mn(3)-O(2) 1. 881(4) Mn(3)-O(6)#2 1. 970(4) Mn(3)-O(6)#5 1. 970(4) Mn(3)-O(8) 2. 168(8) Mn(3)-O(4) 2. 215(8) Cl(1)-C(2) 1. 818(18) Cl(1)-C(2)#1 1. 818(18) Cl(2)-C(2) 1. 652(18) Cl(2)-C(2)#1 1. 652(18) Cl(3)-C(4) 1. 761(9) Cl(4)-C(4) 1. 752(7) Cl(5)-Cl(5)* 1. 16(3) Cl(5)-C(6) 1. 840(9) Cl(5)*-Cl(5)*#1 1. 65(5) Cl(5)*-C(6) 1. 681(10) Cl(5)*-Cl(5)*#1 1. 65(5) Cl(6)*-Cl(6)#4 2. 33(6) O(1)*-Mn(1)#2 1. 921(3) O(1)*-Mn(1)#3 1. 921(3) O(3)*-C(1) 1. 301	Mn(1)-O(2)	1. 881(4)	Mn(1)-O(2)#1	1. 881(4)
Mn(1)-Mn(3) 2. 8051(17) Mn(1)-Mn(1)#2 2. 846(2) Mn(1)-Mn(1)#3 2. 846(2) Mn(1)-Mn(1)#4 2. 939(2) Mn(2)-O(2)#2 1. 920(4) Mn(2)-O(5)#2 2. 032(4) Mn(2)-O(3)#2 2. 070(5) Mn(2)-O(3) 2. 070(5) Mn(3)-O(2)#1 1. 881(4) Mn(3)-O(6)#5 1. 970(4) Mn(3)-O(6)#2 1. 970(4) Mn(3)-O(6)#5 1. 970(4) Mn(3)-O(8) 2. 168(8) Mn(3)-O(4) 2. 215(8) Cl(1)-C(2) 1. 818(18) Cl(1)-C(2)#1 1. 818(18) Cl(2)-C(2) 1. 652(18) Cl(2)-C(2)#1 1. 652(18) Cl(3)-C(4) 1. 761(9) Cl(4)-C(4) 1. 752(7) Cl(5)-Cl(5)* 1. 16(3) Cl(5)-C(6) 1. 840(9) Cl(5)-Cl(5)* 1. 16(3) Cl(5)-C(6) 1. 840(9) Cl(5)-Cl(5)* 1. 16(3) Cl(5)-C(6) 1. 840(9) Cl(5)-Cl(5)* 1. 16(3) Cl(6)-C(6) 1. 754(10) Cl(5)-Cl(5)* 1. 1. 30(115) O(1)-Mn(1)#3 1. 921(3) O(1)-Mn(1)#2 1. 921(3) </td <td>Mn(1)-O(1)</td> <td>1. 917(6)</td> <td>Mn(1)-O(1)#2</td> <td>1. 921(3)</td>	Mn(1)-O(1)	1. 917(6)	Mn(1)-O(1)#2	1. 921(3)
Mn(1)-Mn(1)#3 2. 846(2) Mn(1)-Mn(1)#4 2. 939(2) Mn(2)-O(2)#2 1. 920(4) Mn(2)-O(2) 1. 920(4) Mn(2)-O(5) 2. 032(4) Mn(2)-O(5)#2 2. 032(4) Mn(2)-O(3)#2 2. 070(5) Mn(2)-O(3) 2. 070(5) Mn(3)-O(2)#1 1. 881(4) Mn(3)-O(6)#5 1. 970(4) Mn(3)-O(6)#2 1. 970(4) Mn(3)-O(6)#5 1. 970(4) Mn(3)-O(8) 2. 168(8) Mn(3)-O(4) 2. 215(8) Cl(1)-C(2) 1. 818(18) Cl(1)-C(2)#1 1. 818(18) Cl(2)-C(2) 1. 652(18) Cl(2)-C(2)#1 1. 652(18) Cl(3)-C(4) 1. 761(9) Cl(4)-C(4) 1. 752(7) Cl(5)-Cl(5 'y) 1. 16(3) Cl(5)-C(6) 1. 840(9) Cl(5)-Cl(6) 2. 14(4) Cl(6)-C(6) 1. 754(10) Cl(5)-Cl(6) 2. 14(4) Cl(6)-C(6) 1. 754(10) Cl(5)-Cl(6) 2. 14(4) Cl(6)-Cl(6)#4 2. 33(6) O(1)-Mn(1)#2 1. 921(3) O(1)-Mn(1)#3 1. 921(3) O(3)-C(1) 1. 301(15)	Mn(1)-O(1)#3	1. 921(3)	Mn(1)-O(7)	1. 955(7)
Mn(2)-O(2)#2 1. 920(4) Mn(2)-O(5) 1. 920(4) Mn(2)-O(5) 2. 032(4) Mn(2)-O(5)#2 2. 032(4) Mn(2)-O(3)#2 2. 070(5) Mn(2)-O(3) 2. 070(5) Mn(3)-O(2)#1 1. 881(4) Mn(3)-O(6)#5 1. 881(4) Mn(3)-O(6)#2 1. 970(4) Mn(3)-O(6)#5 1. 970(4) Mn(3)-O(8) 2. 168(8) Mn(3)-O(4) 2. 215(8) Cl(1)-C(2) 1. 818(18) Cl(1)-C(2)#1 1. 818(18) Cl(2)-C(2) 1. 652(18) Cl(2)-C(2)#1 1. 652(18) Cl(3)-C(4) 1. 761(9) Cl(4)-C(4) 1. 752(7) Cl(5)-Cl(5 ')#1 1. 665(5) Cl(5)-C(6) 1. 840(9) Cl(5)-Cl(5 ')#1 1. 65(5) Cl(5)-C(6) 1. 840(9) Cl(5)-Cl(6) 2. 14(4) Cl(6)-C(6) 1. 754(10) Cl(6)-Cl(5 ')#1 1. 65(5) Cl(5')-C(6) 1. 681(10) Cl(6)-Cl(5 ')#1 2. 14(4) Cl(6)-Cl(6)#4 2. 33(6) O(1)-Mn(1)#2 1. 921(3) O(1)-Mn(1)#3 1. 921(3) O(3)-C(1) 1. 301(15) <td>Mn(1)-$Mn(3)$</td> <td>2. 8051(17)</td> <td>Mn(1)-Mn(1)#2</td> <td>2. 846(2)</td>	Mn(1)- $Mn(3)$	2. 8051(17)	Mn(1)-Mn(1)#2	2. 846(2)
Mn(2)-O(5) 2. 032(4) Mn(2)-O(5)#2 2. 032(4) Mn(2)-O(3)#2 2. 070(5) Mn(2)-O(3) 2. 070(5) Mn(3)-O(2)#1 1. 881(4) Mn(3)-O(2) 1. 881(4) Mn(3)-O(6)#2 1. 970(4) Mn(3)-O(6)#5 1. 970(4) Mn(3)-O(8) 2. 168(8) Mn(3)-O(4) 2. 215(8) Cl(1)-C(2) 1. 818(18) Cl(1)-C(2)#1 1. 818(18) Cl(2)-C(2) 1. 652(18) Cl(2)-C(2)#1 1. 652(18) Cl(3)-C(4) 1. 761(9) Cl(4)-C(4) 1. 752(7) Cl(5)-Cl(5) 1. 16(3) Cl(5)-C(6) 1. 840(9) Cl(5)-Cl(5)*#1 1. 65(5) Cl(5)-C(6) 1. 840(9) Cl(5)-Cl(6) 2. 14(4) Cl(6)-C(6) 1. 754(10) Cl(6)-Cl(5)*#1 2. 14(4) Cl(6)-Cl(6)#4 2. 33(6) O(1)-Mn(1)#2 1. 921(3) O(1)-Mn(1)#3 1. 921(3) O(3)-C(1) 1. 301(15) O(4)-C(1) 1. 390(16) O(6)-C(3) 1. 251(8) O(6)-Fe(3)#2 1. 970(4) O(6)-Mn(3)#2 1. 970(4) <td< td=""><td>Mn(1)-Mn(1)#3</td><td>2. 846(2)</td><td>Mn(1)-Mn(1)#4</td><td>2. 939(2)</td></td<>	Mn(1)-Mn(1)#3	2. 846(2)	Mn(1)-Mn(1)#4	2. 939(2)
Mn(2)-O(3)#2 2.070(5) Mn(2)-O(3) 2.070(5) Mn(3)-O(2)#1 1.881(4) Mn(3)-O(2) 1.881(4) Mn(3)-O(6)#2 1.970(4) Mn(3)-O(6)#5 1.970(4) Mn(3)-O(6)#2 1.970(4) Mn(3)-O(6)#5 1.970(4) Mn(3)-O(8) 2.168(8) Mn(3)-O(4) 2.215(8) Cl(1)-C(2) 1.818(18) Cl(1)-C(2)#1 1.818(18) Cl(2)-C(2) 1.652(18) Cl(2)-C(2)#1 1.652(18) Cl(3)-C(4) 1.761(9) Cl(4)-C(4) 1.752(7) Cl(5)-Cl(5) 1.16(3) Cl(5)-C(6) 1.840(9) Cl(5)-Cl(5)* 1.16(3) Cl(6)-C(6) 1.754(10) Cl(5)-Cl(5)* 1.16(3) Cl(6)-Cl(6) 1.754(10) Cl(6)-Cl(5)* 1.19(1) 1.301(15) Cl(1)-M	Mn(2)-O(2)#2	1. 920(4)	Mn(2)-O(2)	1. 920(4)
Mn(3)-O(2)#1 1.881(4) Mn(3)-O(2) 1.881(4) Mn(3)-O(6)#2 1.970(4) Mn(3)-O(6)#5 1.970(4) Mn(3)-O(8) 2.168(8) Mn(3)-O(4) 2.215(8) Cl(1)-C(2) 1.818(18) Cl(1)-C(2)#1 1.818(18) Cl(2)-C(2) 1.652(18) Cl(2)-C(2)#1 1.652(18) Cl(3)-C(4) 1.761(9) Cl(4)-C(4) 1.752(7) Cl(5)-Cl(5) 1.16(3) Cl(5)-C(6) 1.840(9) Cl(5)-Cl(5) '** 1.16(3) Cl(5)-C(6) 1.754(10) Cl(5)-Cl(5) '** 1.21(4) Cl(6)-Cl(6) </td <td>Mn(2)-O(5)</td> <td>2. 032(4)</td> <td>Mn(2)-O(5)#2</td> <td>2. 032(4)</td>	Mn(2)-O(5)	2. 032(4)	Mn(2)-O(5)#2	2. 032(4)
Mn(3)-O(6)#2 1.970(4) Mn(3)-O(6)#5 1.970(4) Mn(3)-O(8) 2.168(8) Mn(3)-O(4) 2.215(8) Cl(1)-C(2) 1.818(18) Cl(1)-C(2)#1 1.818(18) Cl(2)-C(2) 1.652(18) Cl(2)-C(2)#1 1.652(18) Cl(3)-C(4) 1.761(9) Cl(4)-C(4) 1.752(7) Cl(5)-Cl(5)* 1.16(3) Cl(5)-C(6) 1.840(9) Cl(5)-Cl(5)*#1 1.65(5) Cl(5)-C(6) 1.681(10) Cl(5)-Cl(6) 2.14(4) Cl(6)-Cl(6)#4 2.33(6) O(1)-Mn(1)#2 1.921(3) O(1)-Mn(1)#3 1.921(3) O(3)-C(1) 1.301(15) O(4)-C(1) 1.390(16) O(4)-C(1)#1 1.390(16) O(5)-C(3) 1.236(8) O(6)-C(3) 1.251(8) O(6)-Fe(3)#2 1.970(4) O(6)-Mn(3)#2 1.970(4) O(7)-C(5) 1.294(16) O(8)-C(5) 1.256(17) C(1)-C(2) 1.54(2) C(2)-C(2)#1 1.70(3) C(3)-C(4) 1.54(8) C(5)-C(6) 1.30(2) C(6)-Cl(5)*#1 1.681(10) <td>Mn(2)-O(3)#2</td> <td>2. 070(5)</td> <td>Mn(2)-O(3)</td> <td>2. 070(5)</td>	Mn(2)-O(3)#2	2. 070(5)	Mn(2)-O(3)	2. 070(5)
Mn(3)-O(8) 2. 168(8) Mn(3)-O(4) 2. 215(8) Cl(1)-C(2) 1. 818(18) Cl(1)-C(2)#1 1. 818(18) Cl(2)-C(2) 1. 652(18) Cl(2)-C(2)#1 1. 652(18) Cl(3)-C(4) 1. 761(9) Cl(4)-C(4) 1. 752(7) Cl(5)-Cl(5 ') 1. 16(3) Cl(5)-C(6) 1. 840(9) Cl(5 ')-Cl(5 ')#1 1. 65(5) Cl(5 ')-C(6) 1. 681(10) Cl(5 ')-Cl(6) 2. 14(4) Cl(6)-C(6) 1. 754(10) Cl(6)-Cl(5 ')#1 2. 14(4) Cl(6)-Cl(6)#4 2. 33(6) O(1)-Mn(1)#2 1. 921(3) O(1)-Mn(1)#3 1. 921(3) O(3)-C(1) 1. 301(15) O(4)-C(1) 1. 390(16) O(4)-C(1)#1 1. 390(16) O(5)-C(3) 1. 236(8) O(6)-C(3) 1. 251(8) O(6)-Fe(3)#2 1. 970(4) O(6)-Mn(3)#2 1. 970(4) O(7)-C(5) 1. 294(16) O(8)-C(5) 1. 256(17) C(1)-C(2) 1. 54(2) C(2)-C(2)#1 1. 70(3) C(3)-C(4) 1. 541(8) C(5)-C(6) 1. 30(2) C(Mn(3)-O(2)#1	1. 881(4)	Mn(3)-O(2)	1. 881(4)
Cl(1)-C(2)	Mn(3)-O(6)#2	1. 970(4)	Mn(3)-O(6)#5	1. 970(4)
Cl(2)-C(2)	Mn(3)-O(8)	2. 168(8)	Mn(3)-O(4)	2. 215(8)
Cl(3)-C(4) 1. 761(9) Cl(4)-C(4) 1. 752(7) Cl(5)-Cl(5 ') 1. 16(3) Cl(5)-C(6) 1. 840(9) Cl(5 ')-Cl(5 ')#1 1. 65(5) Cl(5 ')-C(6) 1. 681(10) Cl(5 ')-Cl(6) 2. 14(4) Cl(6)-C(6) 1. 754(10) Cl(6)-Cl(5 ')#1 2. 14(4) Cl(6)-Cl(6)#4 2. 33(6) O(1)-Mn(1)#2 1. 921(3) O(1)-Mn(1)#3 1. 921(3) O(3)-C(1) 1. 301(15) O(4)-C(1) 1. 390(16) O(4)-C(1)#1 1. 390(16) O(5)-C(3) 1. 236(8) O(6)-C(3) 1. 251(8) O(6)-Fe(3)#2 1. 970(4) O(6)-Mn(3)#2 1. 970(4) O(7)-C(5) 1. 294(16) O(8)-C(5) 1. 256(17) C(1)-C(2) 1. 54(2) C(2)-C(2)#1 1. 70(3) C(3)-C(4) 1. 541(8) C(5)-C(6) 1. 30(2) C(6)-Cl(5 ')#1 1. 681(10) C(6)-Cl(5)#1 1. 839(9) P(1)-C(7)#6 1. 732(9) P(1)-C(7)#7 1. 732(9) P(1)-C(7) 1. 732(9) P(1)-C(13) 1. 77(2) C(7)-C(12) 1. 4353 C(7)-C(12)#8 1. 6846	Cl(1)-C(2)	1. 818(18)	Cl(1)-C(2)#1	1. 818(18)
Cl(5)-Cl(5') Cl(5')-Cl(6) Cl(5')-Cl(6) Cl(5')-Cl(6) Cl(5')-Cl(6) Cl(5')-Cl(6) Cl(5')-Cl(6) Cl(5')-Cl(6) Cl(6) Cl(5')-Cl(6) Cl(6) Cl(6)-Cl(5')#1 Cl(6)-Cl(6) #4 Cl(6)-Cl(6)#4 Cl(6)-Cl(6)#4 Cl(6)-Cl(6)#4 Cl(6)-Cl(6)#4 Cl(6)-Cl(1)#3 Cl(1)-Mn(1)#2 Cl(1)-Mn(1)#3 Cl(1)-Mn(1)#3 Cl(2)-Cl(1) Cl(3)-Cl(1) Cl(4)-Cl(1)#1 Cl(5)-Cl(6) Cl(5')-Cl(1) Cl(6)-Cl(6)#4 Cl(6)-Cl(1) Cl(6)-Cl(1) Cl(1)-Mn(1)#3 Cl(1)-Cl(1) Cl(1)-Cl(1) Cl(1)-Cl(1) Cl(1)-Cl(1) Cl(1)-Cl(1) Cl(1)-Cl(2) Cl(2)-Cl(2)-Cl(2) Cl(2)-Cl(2)-Cl(2) Cl(2)-Cl(2)-Cl(2) Cl(3) Cl(4) Cl(5)-Cl(5) Cl(5)-Cl(6) Cl(6)-Cl(5)-Cl(6) Cl(6)-Cl(5)-Cl(6) Cl(6)-Cl(6	Cl(2)-C(2)	1. 652(18)	Cl(2)-C(2)#1	1. 652(18)
Cl(5 ')-Cl(5 ')#1 1. 65(5) Cl(5 ')-C(6) 1. 681(10) Cl(5 ')-Cl(6) 2. 14(4) Cl(6)-C(6) 1. 754(10) Cl(6)-Cl(5 ')#1 2. 14(4) Cl(6)-Cl(6)#4 2. 33(6) O(1)-Mn(1)#2 1. 921(3) O(1)-Mn(1)#3 1. 921(3) O(3)-C(1) 1. 301(15) O(4)-C(1) 1. 390(16) O(4)-C(1)#1 1. 390(16) O(5)-C(3) 1. 236(8) O(6)-C(3) 1. 251(8) O(6)-Fe(3)#2 1. 970(4) O(6)-Mn(3)#2 1. 970(4) O(7)-C(5) 1. 294(16) O(8)-C(5) 1. 256(17) C(1)-C(2) 1. 54(2) C(2)-C(2)#1 1. 70(3) C(3)-C(4) 1. 54(8) C(5)-C(6) 1. 30(2) C(6)-Cl(5)*#1 1. 681(10) C(6)-Cl(5)#1 1. 839(9) P(1)-C(7)#6 1. 732(9) P(1)-C(7)#7 1. 732(9) P(1)-C(7) 1. 732(9) P(1)-C(13) 1. 77(2) C(7)-C(12) 1. 4353 C(7)-C(12)#8 1. 4353 C(7)-C(8) 1. 5053 C(8)-C(12)#8 1. 6846 C(8)-C(8)#8 2. 0385 C(9)-C(10) 1. 4589 C(9)-C(11)	Cl(3)-C(4)	1.761(9)	Cl(4)-C(4)	1. 752(7)
Cl(5 ')-Cl(6) 2. 14(4) Cl(6)-Cl(6) 1. 754(10) Cl(6)-Cl(5 ')#1 2. 14(4) Cl(6)-Cl(6)#4 2. 33(6) O(1)-Mn(1)#2 1. 921(3) O(1)-Mn(1)#3 1. 921(3) O(3)-C(1) 1. 301(15) O(4)-C(1) 1. 390(16) O(4)-C(1)#1 1. 390(16) O(5)-C(3) 1. 236(8) O(6)-C(3) 1. 251(8) O(6)-Fe(3)#2 1. 970(4) O(6)-Mn(3)#2 1. 970(4) O(7)-C(5) 1. 294(16) O(8)-C(5) 1. 256(17) C(1)-C(2) 1. 54(2) C(2)-C(2)#1 1. 70(3) C(3)-C(4) 1. 541(8) C(5)-C(6) 1. 30(2) C(6)-Cl(5 ')#1 1. 681(10) C(6)-Cl(5)#1 1. 839(9) P(1)-C(7)#6 1. 732(9) P(1)-C(7)#7 1. 732(9) P(1)-C(7) 1. 732(9) P(1)-C(13) 1. 77(2) C(7)-C(12) 1. 4353 C(7)-C(12)#8 1. 4353 C(7)-C(8)#8 1. 5053 C(7)-C(8) 1. 5053 C(8)-C(9) 1. 3930 C(8)-C(12)#8 1. 6846 C(8)-C(8)#8 2. 0385 C(9)-C(10) 1. 4589 C(9)-C(11)#8	Cl(5)-Cl(5 ')	1. 16(3)	Cl(5)-C(6)	1. 840(9)
Cl(6)-Cl(5 ')#1 2. 14(4) Cl(6)-Cl(6)#4 2. 33(6) O(1)-Mn(1)#2 1. 921(3) O(1)-Mn(1)#3 1. 921(3) O(3)-C(1) 1. 301(15) O(4)-C(1) 1. 390(16) O(4)-C(1)#1 1. 390(16) O(5)-C(3) 1. 236(8) O(6)-C(3) 1. 251(8) O(6)-Fe(3)#2 1. 970(4) O(6)-Mn(3)#2 1. 970(4) O(7)-C(5) 1. 294(16) O(8)-C(5) 1. 256(17) C(1)-C(2) 1. 54(2) C(2)-C(2)#1 1. 70(3) C(3)-C(4) 1. 541(8) C(5)-C(6) 1. 30(2) C(6)-Cl(5 ')#1 1. 681(10) C(6)-Cl(5)#1 1. 839(9) P(1)-C(7)#6 1. 732(9) P(1)-C(7)#7 1. 732(9) P(1)-C(7) 1. 732(9) P(1)-C(13) 1. 77(2) C(7)-C(12) 1. 4353 C(7)-C(8) 1. 5053 C(8)-C(9) 1. 3930 C(8)-C(12)#8 1. 6846 C(8)-C(8)#8 2. 0385 C(9)-C(10) 1. 4589 C(9)-C(11)#8 1. 8016 C(9)-C(10)#8 1. 9051 C(10)-C(10)#8 0. 6123 C(10)-C(11)#8 1. 0704 C(10)-C(11)	Cl(5 ')-Cl(5 ')#1	1. 65(5)	Cl(5 ')-C(6)	1. 681(10)
O(1)-Mn(1)#2 1. 921(3) O(1)-Mn(1)#3 1. 921(3) O(3)-C(1) 1. 301(15) O(4)-C(1) 1. 390(16) O(4)-C(1)#1 1. 390(16) O(5)-C(3) 1. 236(8) O(6)-C(3) 1. 251(8) O(6)-Fe(3)#2 1. 970(4) O(6)-Mn(3)#2 1. 970(4) O(7)-C(5) 1. 294(16) O(8)-C(5) 1. 256(17) C(1)-C(2) 1. 54(2) C(2)-C(2)#1 1. 70(3) C(3)-C(4) 1. 541(8) C(5)-C(6) 1. 30(2) C(6)-Cl(5 ')#1 1. 681(10) C(6)-Cl(5)#1 1. 839(9) P(1)-C(7)#6 1. 732(9) P(1)-C(7)#7 1. 732(9) P(1)-C(7) 1. 732(9) P(1)-C(13) 1. 77(2) C(7)-C(12) 1. 4353 C(7)-C(12)#8 1. 4353 C(7)-C(8)#8 1. 5053 C(7)-C(8) 1. 5053 C(8)-C(9) 1. 3930 C(8)-C(12)#8 1. 6846 C(8)-C(8)#8 2. 0385 C(9)-C(10) 1. 4589 C(9)-C(11)#8 1. 8016 C(9)-C(10)#8 1. 9051 C(10)-C(11)#8 0. 6123 C(10)-C(11)#8 1. 0704 C(10)-C(11) 1	Cl(5 ')-Cl(6)	2. 14(4)	Cl(6)-C(6)	1. 754(10)
O(3)-C(1) 1. 301(15) O(4)-C(1) 1. 390(16) O(4)-C(1)#1 1. 390(16) O(5)-C(3) 1. 236(8) O(6)-C(3) 1. 251(8) O(6)-Fe(3)#2 1. 970(4) O(6)-Mn(3)#2 1. 970(4) O(7)-C(5) 1. 294(16) O(8)-C(5) 1. 256(17) C(1)-C(2) 1. 54(2) C(2)-C(2)#1 1. 70(3) C(3)-C(4) 1. 541(8) C(5)-C(6) 1. 30(2) C(6)-Cl(5)#1 1. 681(10) C(6)-Cl(5)#1 1. 839(9) P(1)-C(7)#6 1. 732(9) P(1)-C(7)#7 1. 732(9) P(1)-C(7) 1. 732(9) P(1)-C(13) 1. 77(2) C(7)-C(12) 1. 4353 C(7)-C(12)#8 1. 4353 C(7)-C(8)#8 1. 5053 C(7)-C(8) 1. 5053 C(8)-C(9) 1. 3930 C(8)-C(12)#8 1. 6846 C(8)-C(8)#8 2. 0385 C(9)-C(10) 1. 4589 C(9)-C(11)#8 1. 8016 C(9)-C(10)#8 1. 9051 C(10)-C(10)#8 0. 6123 C(10)-C(11)#8 1. 0704 C(10)-C(11) 1. 3374	Cl(6)-Cl(5 ')#1	2. 14(4)	Cl(6)-Cl(6)#4	2. 33(6)
O(4)-C(1)#1 1. 390(16) O(5)-C(3) 1. 236(8) O(6)-C(3) 1. 251(8) O(6)-Fe(3)#2 1. 970(4) O(6)-Mn(3)#2 1. 970(4) O(7)-C(5) 1. 294(16) O(8)-C(5) 1. 256(17) C(1)-C(2) 1. 54(2) C(2)-C(2)#1 1. 70(3) C(3)-C(4) 1. 541(8) C(5)-C(6) 1. 30(2) C(6)-Cl(5 ')#1 1. 681(10) C(6)-Cl(5)#1 1. 839(9) P(1)-C(7)#6 1. 732(9) P(1)-C(7)#7 1. 732(9) P(1)-C(7) 1. 732(9) P(1)-C(13) 1. 77(2) C(7)-C(12) 1. 4353 C(7)-C(12)#8 1. 4353 C(7)-C(8)#8 1. 5053 C(7)-C(8) 1. 5053 C(8)-C(9) 1. 3930 C(8)-C(12)#8 1. 6846 C(8)-C(8)#8 2. 0385 C(9)-C(10) 1. 4589 C(9)-C(11)#8 1. 8016 C(9)-C(10)#8 1. 9051 C(10)-C(10)#8 0. 6123 C(10)-C(11)#8 1. 0704 C(10)-C(11) 1. 3374	O(1)-Mn(1)#2	1. 921(3)	O(1)-Mn(1)#3	1. 921(3)
O(6)-C(3) 1. 251(8) O(6)-Fe(3)#2 1. 970(4) O(6)-Mn(3)#2 1. 970(4) O(7)-C(5) 1. 294(16) O(8)-C(5) 1. 256(17) C(1)-C(2) 1. 54(2) C(2)-C(2)#1 1. 70(3) C(3)-C(4) 1. 541(8) C(5)-C(6) 1. 30(2) C(6)-Cl(5 ')#1 1. 681(10) C(6)-Cl(5)#1 1. 839(9) P(1)-C(7)#6 1. 732(9) P(1)-C(7)#7 1. 732(9) P(1)-C(7) 1. 732(9) P(1)-C(13) 1. 77(2) C(7)-C(12) 1. 4353 C(7)-C(12)#8 1. 4353 C(7)-C(8)#8 1. 5053 C(7)-C(8) 1. 5053 C(8)-C(9) 1. 3930 C(8)-C(12)#8 1. 6846 C(8)-C(8)#8 2. 0385 C(9)-C(10) 1. 4589 C(9)-C(11)#8 1. 8016 C(9)-C(10)#8 1. 9051 C(10)-C(10)#8 0. 6123 C(10)-C(11)#8 1. 0704 C(10)-C(11) 1. 3374	O(3)-C(1)	1. 301(15)	O(4)-C(1)	1. 390(16)
O(6)-Mn(3)#2 1. 970(4) O(7)-C(5) 1. 294(16) O(8)-C(5) 1. 256(17) C(1)-C(2) 1. 54(2) C(2)-C(2)#1 1. 70(3) C(3)-C(4) 1. 541(8) C(5)-C(6) 1. 30(2) C(6)-Cl(5 ')#1 1. 681(10) C(6)-Cl(5)#1 1. 839(9) P(1)-C(7)#6 1. 732(9) P(1)-C(7)#7 1. 732(9) P(1)-C(7) 1. 732(9) P(1)-C(13) 1. 77(2) C(7)-C(12) 1. 4353 C(7)-C(12)#8 1. 4353 C(7)-C(8)#8 1. 5053 C(7)-C(8) 1. 5053 C(8)-C(9) 1. 3930 C(8)-C(12)#8 1. 6846 C(8)-C(8)#8 2. 0385 C(9)-C(10) 1. 4589 C(9)-C(11)#8 1. 8016 C(9)-C(10)#8 1. 9051 C(10)-C(10)#8 0. 6123 C(10)-C(11)#8 1. 0704 C(10)-C(11) 1. 3374	O(4)-C(1)#1	1. 390(16)	O(5)-C(3)	1. 236(8)
O(8)-C(5) 1. 256(17) C(1)-C(2) 1. 54(2) C(2)-C(2)#1 1. 70(3) C(3)-C(4) 1. 541(8) C(5)-C(6) 1. 30(2) C(6)-Cl(5 ')#1 1. 681(10) C(6)-Cl(5)#1 1. 839(9) P(1)-C(7)#6 1. 732(9) P(1)-C(7)#7 1. 732(9) P(1)-C(7) 1. 732(9) P(1)-C(13) 1. 77(2) C(7)-C(12) 1. 4353 C(7)-C(12)#8 1. 4353 C(7)-C(8)#8 1. 5053 C(7)-C(8) 1. 5053 C(8)-C(9) 1. 3930 C(8)-C(12)#8 1. 6846 C(8)-C(8)#8 2. 0385 C(9)-C(10) 1. 4589 C(9)-C(11)#8 1. 8016 C(9)-C(10)#8 1. 9051 C(10)-C(10)#8 0. 6123 C(10)-C(11)#8 1. 0704 C(10)-C(11) 1. 3374	O(6)-C(3)	1. 251(8)	O(6)-Fe(3)#2	1. 970(4)
C(2)-C(2)#1 1. 70(3) C(3)-C(4) 1. 541(8) C(5)-C(6) 1. 30(2) C(6)-Cl(5 ')#1 1. 681(10) C(6)-Cl(5)#1 1. 839(9) P(1)-C(7)#6 1. 732(9) P(1)-C(7)#7 1. 732(9) P(1)-C(7) 1. 732(9) P(1)-C(13) 1. 77(2) C(7)-C(12) 1. 4353 C(7)-C(12)#8 1. 4353 C(7)-C(8)#8 1. 5053 C(7)-C(8) 1. 5053 C(8)-C(9) 1. 3930 C(8)-C(12)#8 1. 6846 C(8)-C(8)#8 2. 0385 C(9)-C(10) 1. 4589 C(9)-C(11)#8 1. 8016 C(9)-C(10)#8 1. 9051 C(10)-C(10)#8 0. 6123 C(10)-C(11)#8 1. 0704 C(10)-C(11) 1. 3374	O(6)-Mn(3)#2	1. 970(4)	O(7)-C(5)	1. 294(16)
C(5)-C(6) 1. 30(2) C(6)-Cl(5 ')#1 1. 681(10) C(6)-Cl(5)#1 1. 839(9) P(1)-C(7)#6 1. 732(9) P(1)-C(7)#7 1. 732(9) P(1)-C(7) 1. 732(9) P(1)-C(13) 1. 77(2) C(7)-C(12) 1. 4353 C(7)-C(12)#8 1. 4353 C(7)-C(8)#8 1. 5053 C(7)-C(8) 1. 5053 C(8)-C(9) 1. 3930 C(8)-C(12)#8 1. 6846 C(8)-C(8)#8 2. 0385 C(9)-C(10) 1. 4589 C(9)-C(11)#8 1. 8016 C(9)-C(10)#8 1. 9051 C(10)-C(10)#8 0. 6123 C(10)-C(11)#8 1. 0704 C(10)-C(11) 1. 3374	O(8)-C(5)	1. 256(17)	C(1)- $C(2)$	1. 54(2)
C(6)-Cl(5)#1 1. 839(9) P(1)-C(7)#6 1. 732(9) P(1)-C(7)#7 1. 732(9) P(1)-C(7) 1. 732(9) P(1)-C(13) 1. 77(2) C(7)-C(12) 1. 4353 C(7)-C(12)#8 1. 4353 C(7)-C(8)#8 1. 5053 C(7)-C(8) 1. 5053 C(8)-C(9) 1. 3930 C(8)-C(12)#8 1. 6846 C(8)-C(8)#8 2. 0385 C(9)-C(10) 1. 4589 C(9)-C(11)#8 1. 8016 C(9)-C(10)#8 1. 9051 C(10)-C(10)#8 0. 6123 C(10)-C(11)#8 1. 0704 C(10)-C(11) 1. 3374	C(2)-C(2)#1	1. 70(3)	C(3)-C(4)	1. 541(8)
P(1)-C(7)#7 1. 732(9) P(1)-C(7) 1. 732(9) P(1)-C(13) 1. 77(2) C(7)-C(12) 1. 4353 C(7)-C(12)#8 1. 4353 C(7)-C(8)#8 1. 5053 C(7)-C(8) 1. 5053 C(8)-C(9) 1. 3930 C(8)-C(12)#8 1. 6846 C(8)-C(8)#8 2. 0385 C(9)-C(10) 1. 4589 C(9)-C(11)#8 1. 8016 C(9)-C(10)#8 1. 9051 C(10)-C(10)#8 0. 6123 C(10)-C(11)#8 1. 0704 C(10)-C(11) 1. 3374	C(5)-C(6)	1. 30(2)	C(6)-Cl(5 ')#1	1. 681(10)
P(1)-C(13) 1. 77(2) C(7)-C(12) 1. 4353 C(7)-C(12)#8 1. 4353 C(7)-C(8)#8 1. 5053 C(7)-C(8) 1. 5053 C(8)-C(9) 1. 3930 C(8)-C(12)#8 1. 6846 C(8)-C(8)#8 2. 0385 C(9)-C(10) 1. 4589 C(9)-C(11)#8 1. 8016 C(9)-C(10)#8 1. 9051 C(10)-C(10)#8 0. 6123 C(10)-C(11)#8 1. 0704 C(10)-C(11) 1. 3374	C(6)-Cl(5)#1	1. 839(9)	P(1)-C(7)#6	1. 732(9)
C(7)-C(12)#8 1. 4353 C(7)-C(8)#8 1. 5053 C(7)-C(8) 1. 5053 C(8)-C(9) 1. 3930 C(8)-C(12)#8 1. 6846 C(8)-C(8)#8 2. 0385 C(9)-C(10) 1. 4589 C(9)-C(11)#8 1. 8016 C(9)-C(10)#8 1. 9051 C(10)-C(10)#8 0. 6123 C(10)-C(11)#8 1. 0704 C(10)-C(11) 1. 3374	P(1)-C(7)#7	1. 732(9)	P(1)-C(7)	1. 732(9)
C(7)-C(8) 1.5053 C(8)-C(9) 1.3930 C(8)-C(12)#8 1.6846 C(8)-C(8)#8 2.0385 C(9)-C(10) 1.4589 C(9)-C(11)#8 1.8016 C(9)-C(10)#8 1.9051 C(10)-C(10)#8 0.6123 C(10)-C(11)#8 1.0704 C(10)-C(11) 1.3374	P(1)-C(13)	1.77(2)	C(7)-C(12)	1. 4353
C(8)-C(12)#8 1. 6846 C(8)-C(8)#8 2. 0385 C(9)-C(10) 1. 4589 C(9)-C(11)#8 1. 8016 C(9)-C(10)#8 1. 9051 C(10)-C(10)#8 0. 6123 C(10)-C(11)#8 1. 0704 C(10)-C(11) 1. 3374	C(7)-C(12)#8	1. 4353	C(7)-C(8)#8	1. 5053
C(9)-C(10) 1. 4589 C(9)-C(11)#8 1. 8016 C(9)-C(10)#8 1. 9051 C(10)-C(10)#8 0. 6123 C(10)-C(11)#8 1. 0704 C(10)-C(11) 1. 3374	C(7)-C(8)	1. 5053	C(8)-C(9)	1. 3930
C(9)-C(10)#8 1. 9051 C(10)-C(10)#8 0. 6123 C(10)-C(11)#8 1. 0704 C(10)-C(11) 1. 3374	C(8)-C(12)#8	1. 6846	C(8)-C(8)#8	2. 0385
C(10)-C(11)#8 1. 0704 C(10)-C(11) 1. 3374	C(9)-C(10)	1. 4589	C(9)-C(11)#8	1.8016
	C(9)-C(10)#8	1. 9051	C(10)-C(10)#8	0. 6123
	C(10)-C(11)#8	1. 0704	C(10)- $C(11)$	1. 3374
C(10)-C(9)#8 1. 9051 C(11)-C(11)#8 1. 0501	C(10)-C(9)#8	1. 9051	C(11)-C(11)#8	1. 0501

C(11)-C(10)#8	1. 0704	C(11)-C(12)	1. 3927
C(11)-C(9)#8	1. 8016	C(11)-C(12)#8	1. 8643
C(12)-C(12)#8	1. 4629	C(12)-C(8)#8	1. 6846
C(12)-C(11)#8	1. 8643	C(13)-C(14)	1. 4924
C(13)-C(14)#6	1. 4924	C(13)-C(14)#7	1. 4924
C(14)-C(15)	1. 2472	C(15)-C(16)	1. 5970
C(15)-C(16)#7	1. 5970	C(16)-C(15)#6	1. 5970
C(16)-C(16)#6	1. 8990	C(16)-C(16)#7	1. 8991
O(2)-Mn(1)-O(2)#1	82. 9(2)	O(2)-Mn(1)- $O(1)$	91. 4(2)
O(2)#1-Mn(1)-O(1)	91. 4(2)	O(2)-Mn(1)-O(1)#2	98. 24(17)
O(2)#1-Mn(1)-O(1)#2	174. 8(2)	O(1)-Mn(1)-O(1)#2	83. 4(2)
O(2)-Mn(1)-O(1)#3	174. 8(2)	O(2)#1-Mn(1)-O(1)#3	98. 24(17)
O(1)-Mn(1)-O(1)#3	83. 4(2)	O(1)#2-Mn(1)-O(1)#3	80. 1(2)
O(2)-Mn(1)- $O(7)$	91. 1(2)	O(2)#1-Mn(1)-O(7)	91. 1(2)
O(1)-Mn(1)-O(7)	176. 6(3)	O(1)#2-Mn(1)-O(7)	94. 0(2)
O(1)#3-Mn(1)-O(7)	94. 0(2)	O(2)-Mn(1)-Mn(3)	41. 80(12)
O(2)#1-Mn(1)-Mn(3)	41. 80(12)	O(1)-Mn(1)-Mn(3)	97. 75(16)
O(1)#2-Mn(1)-Mn(3)	139. 92(12)	O(1)#3-Mn(1)-Mn(3)	139. 92(12)
O(7)-Mn(1)-Mn(3)	85. 7(2)	O(2)-Mn(1)-Mn(1)#2	89. 90(14)
O(2)#1-Mn(1)-Mn(1)#2	133. 01(17)	O(1)-Mn(1)-Mn(1)#2	42. 19(10)
O(1)#2-Mn(1)-Mn(1)#2	42. 09(17)	O(1)#3-Mn(1)-Mn(1)#2	85. 56(15)
O(7)-Mn(1)-Mn(1)#2	135. 56(15)	Mn(3)-Mn(1)-Mn(1)#2	121. 71(5)
O(2)-Mn(1)-Mn(1)#3	133. 01(17)	O(2)#1-Mn(1)-Mn(1)#3	89. 90(13)
O(1)-Mn(1)-Mn(1)#3	42. 19(10)	O(1)#2-Mn(1)-Mn(1)#3	85. 56(15)
O(1)#3-Mn(1)-Mn(1)#3	42. 09(17)	O(7)-Mn(1)-Mn(1)#3	135. 56(15)
Mn(3)-Mn(1)-Mn(1)#3	121. 71(5)	Mn(1)#2-Mn(1)-Mn(1)#3	62. 17(5)
O(2)-Mn(1)-Mn(1)#4	138. 28(12)	O(2)#1-Mn(1)-Mn(1)#4	138. 28(12)
O(1)-Mn(1)-Mn(1)#4	83. 02(16)	O(1)#2-Mn(1)-Mn(1)#4	40. 10(12)
O(1)#3-Mn(1)-Mn(1)#4	40. 10(12)	O(7)-Mn(1)-Mn(1)#4	93. 6(2)
Mn(3)-Mn(1)-Mn(1)#4	179. 22(4)	Mn(1)#2-Mn(1)-Mn(1)#4	58. 91(2)
Mn(1)#3-Mn(1)-Mn(1)#4	58. 91(2)	O(2)#2-Mn(2)-O(2)	96. 2(2)
O(2)#2-Mn(2)-O(5)	91. 47(17)	O(2)-Mn(2)-O(5)	172. 31(18)
O(2)#2-Mn(2)-O(5)#2	172. 31(18)	O(2)-Mn(2)-O(5)#2	91. 47(17)
O(5)-Mn(2)-O(5)#2	80. 8(3)	O(2)#2-Mn(2)-O(3)#2	95. 8(2)
O(2)-Mn(2)-O(3)#2	91. 6(2)	O(5)-Mn(2)-O(3)#2	87. 5(2)
O(5)#2-Mn(2)-O(3)#2	84. 0(2)	O(2)#2-Mn(2)-O(3)	91. 6(2)

O(2)-Mn(2)-O(3)	95. 8(2)	O(5)-Mn(2)-O(3)	84. 0(2)
O(5)#2-Mn(2)-O(3)	87. 5(2)	O(3)#2-Mn(2)-O(3)	168. 9(3)
O(2)#1-Mn(3)-O(2)	82. 9(2)	O(2)#1-Mn(3)-O(6)#2	177. 8(3)
O(2)-Mn(3)-O(6)#2	96. 64(18)	O(2)#1-Mn(3)-O(6)#5	96. 64(18)
O(2)-Mn(3)-O(6)#5	177. 8(3)	O(6)#2-Mn(3)-O(6)#5	83. 7(3)
O(2)#1-Mn(3)-O(8)	87. 3(2)	O(2)-Mn(3)-O(8)	87. 3(2)
O(6)#2-Mn(3)-O(8)	90. 6(2)	O(6)#5-Mn(3)-O(8)	90. 6(2)
O(2)#1-Mn(3)-O(4)	92. 1(2)	O(2)-Mn(3)-O(4)	92. 1(2)
O(6)#2-Mn(3)-O(4)	90. 1(2)	O(6)#5-Mn(3)-O(4)	90. 1(3)
O(8)-Mn(3)-O(4)	179. 2(3)	O(2)#1-Mn(3)-Mn(1)	41. 80(12)
O(2)-Mn(3)-Mn(1)	41. 80(12)	O(6)#2-Mn(3)-Mn(1)	137. 41(15)
O(6)#5-Mn(3)-Mn(1)	137. 41(15)	O(8)-Mn(3)-Mn(1)	80. 6(2)
O(4)-Mn(3)-Mn(1)	98. 59(19)	C(2)-Cl(1)-C(2)#1	55. 7(11)
C(2)-Cl(2)-C(2)#1	61. 9(11)	Cl(5 ')-Cl(5)-C(6)	63. 5(7)
Cl(5)-Cl(5 ')-Cl(5 ')#1	136. 3(10)	Cl(5)-Cl(5 ')-C(6)	78. 4(10)
Cl(5 ')#1-Cl(5 ')-Cl(6)	60. 6(9)	Cl(5)-Cl(5 ')-Cl(6)	101. 1(17)
Cl(5 ')#1-Cl(5 ')-C(6)	67. 3(7)	C(6)-Cl(5 ')-Cl(6)	53. 1(8)
C(6)-Cl(6)-Cl(5 ')	50. 0(8)	C(6)-Cl(6)-Cl(5 ')#1	50. 0(8)
Cl(5 ')-Cl(6)-Cl(5 ')#1	45. 4(15)	C(6)-Cl(6)-Cl(6)#4	144. 6(12)
Cl(5 ')-Cl(6)-Cl(6)#4	155. 1(7)	Cl(5 ')#1-Cl(6)-Cl(6)#4	155. 1(7)
Mn(1)-O(1)-Mn(1)#2	95. 7(2)	Mn(1)-O(1)-Mn(1)#3	95. 7(2)
Mn(1)#2-O(1)-Mn(1)#3	99. 8(2)	Mn(1)-O(2)-Mn(3)	96. 40(19)
Mn(1)-O(2)-Mn(2)	131. 2(2)	Mn(3)-O(2)-Mn(2)	126. 5(2)
C(1)- $O(3)$ - $Mn(2)$	127. 2(7)	C(1)-O(4)-C(1)#1	104. 3(12)
C(1)- $O(4)$ - $Mn(3)$	122. 0(6)	C(1)#1-O(4)-Mn(3)	122. 0(6)
C(3)-O(5)-Mn(2)	133. 2(4)	C(3)-O(6)-Fe(3)#2	131. 0(4)
C(3)-O(6)-Mn(3)#2	131. 0(4)	Fe(3)#2-O(6)-Mn(3)#2	0.00(9)
C(5)-O(7)-Mn(1)	123. 7(8)	C(5)-O(8)-Mn(3)	120. 2(7)
O(3)-C(1)-O(4)	133. 7(12)	O(3)-C(1)-C(2)	111. 8(12)
O(4)-C(1)-C(2)	114. 5(11)	C(1)-C(2)-Cl(2)	113. 7(13)
C(1)-C(2)-C(2)#1	99. 3(8)	Cl(2)-C(2)-C(2)#1	59. 1(6)
C(1)-C(2)-Cl(1)	105. 5(11)	Cl(2)-C(2)-Cl(1)	112. 4(8)
C(2)#1-C(2)-Cl(1)	62. 2(6)	O(5)-C(3)-O(6)	128. 7(5)
O(5)-C(3)-C(4)	113. 6(5)	O(6)-C(3)-C(4)	117. 7(5)
C(3)-C(4)-Cl(4)	112. 7(5)	C(3)-C(4)-Cl(3)	106. 8(5)
Cl(4)-C(4)-Cl(3)	111. 4(4)	O(8)-C(5)-O(7)	129. 8(12)
O(8)-C(5)-C(6)	115. 1(15)	O(7)-C(5)-C(6)	115. 0(16)

C(5)-C(6)-Cl(5 ')	141. 9(14)	C(5)-C(6)-Cl(5 ')#1	141. 9(14)
Cl(5 ')-C(6)-Cl(5 ')#1	58. 7(19)	C(5)-C(6)-Cl(6)	130. 6(19)
Cl(5 ')-C(6)-Cl(6)	76. 9(15)	Cl(5 ')#1-C(6)-Cl(6)	76. 9(15)
C(5)-C(6)-Cl(5)	106. 6(10)	Cl(5 ')-C(6)-Cl(5)	38. 0(10)
Cl(5 ')#1-C(6)-Cl(5)	95. 6(14)	Cl(6)-C(6)-Cl(5)	93. 5(11)
C(5)-C(6)-Cl(5)#1	106. 6(10)	Cl(5 ')-C(6)-Cl(5)#1	95. 6(14)
Cl(5 ')#1-C(6)-Cl(5)#1	38. 0(10)	Cl(6)-C(6)-Cl(5)#1	93. 5(11)
Cl(5)-C(6)-Cl(5)#1	128. 9(17)	C(7)#6-P(1)-C(7)#7	107. 8(8)
C(7)#6- $P(1)$ - $C(7)$	107. 8(8)	C(7)#7-P(1)-C(7)	107. 8(8)
C(7)#6- $P(1)$ - $C(13)$	111. 1(8)	C(7)#7-P(1)-C(13)	111. 1(8)
C(7)-P(1)-C(13)	111. 1(8)	C(12)-C(7)-C(12)#8	61.3
C(12)-C(7)-C(8)#8	69. 9	C(12)#8-C(7)-C(8)#8	110. 2
C(12)-C(7)-C(8)	110. 2	C(12)#8-C(7)-C(8)	69. 9
C(8)#8-C(7)-C(8)	85. 2	C(12)-C(7)-P(1)	133. 7(5)
C(12)#8-C(7)-P(1)	133. 7(5)	C(8)#8-C(7)-P(1)	116. 0(5)
C(8)-C(7)-P(1)	116. 0(5)	C(9)-C(8)-C(7)	123. 9
C(9)-C(8)-C(12)#8	82. 6	C(7)-C(8)-C(12)#8	53. 1
C(9)-C(8)-C(8)#8	98. 5	C(7)-C(8)-C(8)#8	47. 4
C(12)#8-C(8)-C(8)#8	80. 2	C(8)-C(9)-C(10)	118. 3
C(8)-C(9)-C(11)#8	95. 0	C(10)-C(9)-C(11)#8	36. 4
C(8)-C(9)-C(10)#8	108. 4	C(10)-C(9)-C(10)#8	14. 4
C(11)#8-C(9)-C(10)#8	42. 2	C(10)#8-C(10)-C(11)#8	101.8
C(10)#8-C(10)-C(11)	51. 6	C(11)#8-C(10)-C(11)	50. 2
C(10)#8-C(10)-C(9)	129. 1	C(11)#8-C(10)-C(9)	89. 5
C(11)-C(10)-C(9)	119. 2	C(10)#8-C(10)-C(9)#8	36. 5
C(11)#8-C(10)-C(9)#8	104. 8	C(11)-C(10)-C(9)#8	64. 8
C(9)-C(10)-C(9)#8	92. 6	C(11)#8-C(11)-C(10)#8	78. 2
C(11)#8-C(11)-C(10)	51. 6	C(10)#8-C(11)-C(10)	26. 6
C(11)#8-C(11)-C(12)	98. 5	C(10)#8-C(11)-C(12)	124. 2
C(10)-C(11)-C(12)	121. 1	C(11)#8-C(11)-C(9)#8	112. 9
C(10)#8-C(11)-C(9)#8	54. 1	C(10)-C(11)-C(9)#8	73. 1
C(12)-C(11)-C(9)#8	78. 4	C(11)#8-C(11)-C(12)#8	47. 6
C(10)#8-C(11)-C(12)#8	105. 0	C(10)-C(11)-C(12)#8	84. 2
C(12)-C(11)-C(12)#8	50. 9	C(9)#8-C(11)-C(12)#8	98. 9
C(11)-C(12)-C(7)	125. 8	C(11)-C(12)-C(12)#8	81. 5
C(7)-C(12)-C(12)#8	59. 4	C(11)-C(12)-C(8)#8	100. 3
C(7)-C(12)-C(8)#8	57. 0	C(12)#8-C(12)-C(8)#8	99. 8

C(11)-C(12)-C(11)#8	33. 9	C(7)-C(12)-C(11)#8	98. 6
C(12)#8-C(12)-C(11)#8	47. 6	C(8)#8-C(12)-C(11)#8	103. 3
C(14)-C(13)-C(14)#6	102. 8	C(14)-C(13)-C(14)#7	102. 8
C(14)#6-C(13)-C(14)#7	102. 8	C(14)-C(13)-P(1)	115. 496(1)
C(14)#6-C(13)-P(1)	115. 496(3)	C(14)#7-C(13)-P(1)	115. 496(1)
C(15)-C(14)-C(13)	126. 3	C(14)-C(15)-C(16)	110. 4
C(14)-C(15)-C(16)#7	110. 4	C(16)-C(15)-C(16)#7	73. 0
C(15)#6-C(16)-C(15)	118. 0	C(15)#6-C(16)-C(16)#6	53. 5
C(15)-C(16)-C(16)#6	105. 2	C(15)#6-C(16)-C(16)#7	105. 2
C(15)-C(16)-C(16)#7	53. 5	C(16)#6-C(16)-C(16)#7	60. 0

Symmetry transformations used to generate equivalent atoms:

#1 y,x,z #2 -x+1,y,-z+2 #3 x,-y+1,-z+2 #4 -x+1,-y+1,z #5 y,-x+1,-z+2 #6 y,z,x #7 z,x,y #8 z,y,x

