ELETROMAGNETISMO

MEFT

8ªSérie de problemas

(Circuitos RC, RL, LC e RLC)

1) Circuito RC

No circuito da figura à direita, os condensadores estão descarregados quando se liga o circuito. As resistências são todas de valor igual a R=5 k Ω , os condensadores têm ambos capacidade C=5 nF e a bateria tem uma força eletromotriz ϵ = 20 V.

- a) Calcule a corrente inicial em todos os ramos do circuito;
- b) Escreva a equação para a tensão nos condensadores e obtenha a dependência com o tempo desta tensão (em cada condensador);
- c) Calcule a carga acumulada nos condensadores quando o circuito atingir o equilíbrio, e as correntes em todos os ramos do circuito.

2) Circuito RC

No circuito da figura à direita os condensadores têm todos a mesma capacidade C = 5 nF e as duas resistências têm valor $R = 5k\Omega$, e a bateria tem a força eletromotriz $\varepsilon = 20 \text{ V}$.

Calcule a carga acumulada nos quatros condensadores e as correntes em todos os ramos do circuito quando o sistema atingir o equilíbrio.

3) Circuito RC

Um flash, por ex. de uma máquina fotográfica, pode ser muito simplesmente modelado por dois circuitos ligados ao mesmo condensador (figura à direita), carregando o mesmo quando o interruptor está em A, e disparando o flash quando se muda o interruptor para a posição B.

Calcule a capacidade e a resistência do lado esquerdo do circuito, assumindo que a corrente máxima na lâmpada pode atingir 1000 A, que a força eletromotriz é $\varepsilon = 400 V$, e que a duração do flash tem de ter a média 1s/125 = 8 ms, pretendendo-se um tempo de carga do flash na ordem de 5 s.

4) Descarga do "condensador" [Exerc. 2.5 de F.Barão e L.F.Mendes]

Para colocar o toner no papel, uma fotocopiadora deposita primeiro uma certa quantidade de carga sobre uma superfície de selénio. Quando a superfície de selénio é iluminada com a imagem da cópia, as zonas claras tornam-se condutoras, escoando-se a carga que lá estava. As zonas negras (sem luz) mantêm-se isolantes, não escoando imediatamente a carga depositada. São essas as zonas escuras que vão atrair o toner e depois transferi-lo para o papel. A velocidade do processo está limitada pelo tempo de permanência da carga aí depositada. Sabendo que a resistividade do selénio utilizado numa determinada fotocopiadora é $\rho = 10^{11} \,\Omega$.m e que a sua permitividade elétrica é $\epsilon = 6\epsilon_0$, estime o tempo que demora a carga a reduzir-se para metade.

5) Circuitos RL

Calcule as correntes através de cada resistência no circuito da figura nas seguintes condições:

- a) No instante em que o interruptor A é fechado;
- b) Muito depois de fechar o interruptor;
- c) Imediatamente após abrir o interruptor quando o circuito já se encontrava em regime estacionário;
- d) Muito depois de abrir o interruptor;
- e) Escreva as equações do circuito quando o interruptor está fechado.

6) Circuitos LC e RLC

Determine o comportamento da tensão de saída V em função da frequência ω da fonte ε para as seguintes configurações de componentes (a) a f)).

7) Circuitos RLC

Um circuito RLC em série com R=50 Ω , L=150 mH, C=100 μ F, está ligado a uma fonte de tensão alterna V(t)=50 sen(300 t).

- a) Escreva a equação do circuito;
- b) Calcule a impedância do circuito;
- c) Calcule a amplitude máxima da corrente i(t) depois de atingido o equilíbrio (já não existirem transientes);
- d) Nas circunstâncias da alínea anterior, qual o desfasamento entre a tensão e a corrente?
- e) Calcule a amplitude máxima das quedas de potencial através de cada elemento do circuito;
- f) Calcule a diferença de potencial máxima através do par LC;
- g) Calcule a frequência de ressonância do circuito, ω_R ;
- h) Calcule a corrente e a tensão através da indutância, na situação de ressonância;
- i) Calcule a potência instantânea e a potência média fornecida pela fonte de tensão, na situação da alínea anterior.

8) Circuitos RLC

Um circuito RLC em paralelo com R=50 Ω , L=150 mH, C=100 μ F, está ligado a uma fonte de tensão alterna V(t)=50 sen(300 t).

- a) Calcule as correntes $i_R(t)$, $i_L(t)$, $i_C(t)$, através da resistência, da indutância e do condensador, respetivamente;
- b) Calcule a corrente total no circuito i(t) e a sua amplitude;
- c) Calcule o desfasamento entre a tensão V(t) e a corrente no circuito i(t);
- d) Calcule a potência instantânea e a potência média fornecidas pela fonte de tensão.

Circuito RLC em série

Circuito *RLC* em paralelo