

Actuación sobre el entorno

Robótica

Alberto Díaz y Raúl Lara Curso 2022/2023 Departamento de Sistemas Informáticos

License CC BY-NC-SA 4.0

Definición y tipos de actuadores

Un actuador es un dispositivo electromecánico que convierte la energía en trabajo mecánico (o movimiento).

El trabajo puede ser para inducir el movimiento, o para oponerse al movimiento.

Hay diferentes tipos de actuadores disponibles y la mayoría de ellos crean:

- Movimiento lineal
- Movimiento rotacional

El movimiento oscilatorio también es posible, pero es menos común.

Los actuadores necesitan energía para funcionar, y la mayoría de ellos utilizan electricidad, presión de aire, o fluidos para funcionar.

2/22

Actuadores neumáticos

Los actuadores neumáticos utilizan aire comprimido para moverse.

Son muy rápidos, tienen una alta fuerza de empuje, fáciles de de controlar y son muy precisos. Además, son muy fáciles de instalar y muy baratos.

Constan de un cilindro, un pistón, un diafragma, y un muelle.

El aire comprimido se introduce en el cilindro a través del diafragma, y el pistón se mueve hacia adelante. Cuando el aire se libera, el muelle empuja el pistón hacia atrás.

3 / 22

Actuadores hidráulicos

Los actuadores hidráulicos utilizan fluidos para moverse.

Son más lentos que los actuadores neumáticos, pero tienen una alta fuerza de empuje. Comparten el resto de ventajas con los actuadores neumáticos.

El funcionamiento y los componentes son similares a los actuadores neumáticos.

Se utilizan principalmente para sistemas que requieren una fuerza muy grande, pero no muy restrictiva en cuanto a posicionamiento y precisión.

Actuadores eléctricos

Utilizan electricidad para generar el movimiento.

- Actuadores de efecto hall: basados en el efecto hall (campo magnético al pasar una corriente a través de un conductor). Fuerzas pequeñas, pero con una alta precisión.
- Actuadores de efecto magnético: basados en el efecto magnético, que produce una fuerza sobre un conductor cuando se le aplica un campo magnético. Fuerzas grandes.
- Actuadores de efecto piezoeléctrico: basados en el efecto piezoeléctrico, que produce un cambio de forma en un cristal cuando se le aplica una tensión eléctrica. Fuerzas muy pequeñas, pero con una alta precisión.

Solenoides

Los solenoides son actuadores eléctricos que utilizan el efecto magnético para moverse.

El solenoide está formado por una bobina y un núcleo ferroso móvil que convierte la energía eléctrica en energía mecánica creando un movimiento lineal.

Cuando la electricidad fluye a través de una bobina, crea un campo magnético y tira del pistón ferroso (de hierro o acero) hacia ella. Se pueden utilizar varias bobinas para devolver el pistón a su posición original.

Motores eléctricos

Los motores eléctricos se basan en el principio del electromagnetismo.

Se compone de un **rotor** y un **estator**. El **rotor** es un electro-imán móvil que gira alrededor del eje del motor. El **estator** es un conjunto de imanes fijos que rodean al rotor.

Cuando se aplica una corriente eléctrica al rotor, se crea un campo magnético que provoca que el rotor gire alrededor del eje del motor.

La fuerza de empuje del rotor se puede controlar variando la intensidad de la corriente.

Motores de corriente alterna

Los motores de corriente alterna (AC) son motores eléctricos que utilizan corriente alterna para funcionar.

Se clasifican según el número de fases en monofásicos, bifásicos y trifásicos, siendo estos últimos los más utilizados a nivel industrial.

Los motores de corriente alterna son más fáciles de controlar que los motores de corriente continua, pero son más caros y menos eficientes.

Motores de corriente continua

Un motor de corriente continua (DC) es una clase de motor rotativo que convierte la energía eléctrica continua en energía mecánica.

Casi todos los tipos de motores de corriente continua tienen algún mecanismo interno, electromecánico o electrónico, para cambiar periódicamente la dirección de la corriente en una parte del motor.

La velocidad de un motor de corriente continua puede controlarse en un amplio rango, utilizando una tensión de alimentación variable o cambiando la intensidad de la corriente en sus bobinas de campo.

Motores DC de escobillas

En un motor de corriente continua con escobillas, el rotor tiene imanes permanentes y el estator tiene electroimanes.

Como el motor necesita una forma de detectar la orientación del rotor, utiliza escobillas como conmutador, que es una pieza del rotor que toca el eje.

Cuando el rotor gira (a su vez, la escobilla gira), detecta el cambio de orientación e invierte la corriente.

Estos motores pueden girar a velocidades muy altas, pero con un torque muy bajo. Podemos mejorar el torque conectando el rotor a un reductor (sistema de engranajes).

Motores DC sin escobillas

En un motor sin escobillas, el rotor es de imán permanente y el estator es de electroimán.

Para detectar un cambio de orientación, los motores sin escobillas suelen utilizar sensores de efecto Hall para detectar el campo magnético del rotor y consecutivamente su orientación.

Los motores sin escobillas son muy útiles en los robots, ya que son más capaces; proporcionan un par suficiente, y mayores velocidades que los motores con escobillas.

Los motores sin escobillas son caros debido a la complejidad de su diseño y necesitan un controlador para controlar su velocidad y rotación.

Servomotores

Se trata de motores de corriente continua acoplados a un circuito de control de retroalimentación, un sistema de engranajes para aumentar el par y un dispositivo de detección de posición (normalmente un potenciómetro).

Cuando se envía una señal (pulso), se mueve el eje del motor hasta la posición deseada utilizando la retroalimentación de posición de un potenciómetro.

Los servos no presentan una rotación continua, sino que están limitados a un rango específico (generalmente 200° hacia adelante y hacia atrás).

Ya que los servos esperan una señal de control, hay un cable adicional que va hacia el servo que toma los pulsos de control. Por lo tanto, tienen tres cables: tierra, potencia y pulso de control.

Motores paso a paso

Es un motor eléctrico de corriente continua sin escobillas que divide una rotación completa en un número de pasos iguales.

La posición del motor puede controlarse para que se mueva y se mantenga en uno de estos pasos sin ningún sensor de posición.

Los motores paso a paso son muy precisos y tienen un par de torsión muy alto, pero son más lentos que los servos.

Debido a su precisión, se usan en aplicaciones como impresoras 3D, máquinas de coser, máquinas de grabado láser, etc.

Motores lineales

Un motor lineal es un motor eléctrico al que se le ha "desenrollado" el estator y el rotor, por lo que, en lugar de producir un par (rotación), produce una fuerza lineal a lo largo de su longitud.

Sin embargo, los motores lineales no son necesariamente rectos. La sección activa de un motor lineal suele tener extremos, mientras que los motores más convencionales están dispuestos en forma de bucle continuo.

Suelen emplearse en aplicaciones de alta precisión.

LED

Un LED (del inglés light-emitting diode, diodo emisor de luz) es un dispositivo semiconductor que emite luz cuando se le aplica una tensión.

Se puede utiliar para indicar el estado de un robot, iluminar el entorno, etc.

Algunos pueden emitir una luz de color diferente, dependiendo de la tensión aplicada. Lo normal es que emitan luz del mismo color.

Dado que pueden alternar su estado millones de veces por segundo pueden usarse como un mecanismo de comunicación con un elevado ancho de banda.

Pantalla LCD

Una pantalla LCD es un dispositivo que muestra información en una pantalla de cristal líquido.

Son muy populares en los robots, ya que son baratas, fáciles de usar y tienen un alto contraste.

Las pantallas LCD se pueden usar para mostrar información, como el estado de un robot, el tiempo restante, etc.

Las últimas pantallas LCD son táctiles, lo que permite al usuario interactuar con el robot. Además tienen resoluciones muy altas y son capaces de mostrar imágenes y vídeos en color.

- Actuadores lineales
- Actuadores solenoides
- Motor rotativo
 - Motor continuo
 - Actuador servomotor
 - Motor paso a paso

Actuadores más concretos

- Freno: Simulación de frenado mecánico (como zapatas de una bicicleta o discos de freno)
 - https://www.techbriefs.com/component/content/article/tb/supplements/ md/features/articles/28812
- Conector: Simulación de sistema de acoplamiento mecánico y rompible (como un lego)
- Pantalla: Simula una pantalla

Gracias