Final Exam

Numerical Analysis (15 June 2021)

Answer the following questions.

Q 1: Use Euler's method with step size 0.3 to compute the approximate y-value y(0.9) of the solution of the initial-value problem

$$\frac{dy}{dx} + x^2, \ y(0) = 1$$

Q 2: Use the Gauss-Seidal iteration method to approximate the solution to the system of equations given

$$83x + 11y - 4z = 95$$

$$7x + 52y + 13Z = 104$$

$$3x + 8y + 29z = 71$$

Q 3: Use Lagrange polynomial to estimate f(3) and f'(3) from the following given data.

x: 0 1 2 5

f(x): 2 3 12 147

Q 4: Using newton's divided difference formula to find the value of f(8), f(9) and f(15) from the following given data.

x: 4 5 7 10 11 13

f(x): 48 100 294 900 1210 2028

Q 5: By use of Richardson extrapolation find $f'(x_3)$ with h=2, given function is $f'(x) = 2^x \ln |2|$

x: 1 2 3 4 5

f(x):2 4 8 16 32