Лабораторная работа 2 Решение систем линейных алгебраических уравнений прямыми методами

1. (+1балл) Создать СЛАУ (размерность не менее 10) с матрицей с заданным числом обусловленности (см. Указания)

Замечание 1. Матрица должна иметь специальные свойства (симметрия, положительная определенность и т.д.) только тогда, когда этого требует метод

- 2. (+1балл) Запрограммировать один из методов решения СЛАУ (по вариантам) с выбором главного элемента по столбцу¹⁾
 - а. Метод Гаусса
 - б. Метод Гаусса с вычислением обратной матрицы
 - в. Метод Жордана (без обратного хода) в прямом порядке
 - г. Метод Жордана с вычислением обратной матрицы
 - д. LU разложение
 - е. LDR разложение

 - ж. LDL^{T} разложение з. SS^{T} разложение Холецкого (метод квадратных корней)

Замечание 1. Выбор главного элемента по строке (по всей матрице) увеличивает количество баллов на 0,5 (1) балла

- 3. Найти решение СЛАУ запрограммированным методом, вычислить
 - а. Норму фактической ошибки $||x-x^*||$
 - б. Норму невязки ||Ax-b||
 - в. Проверить выполнение неравенства $\|\delta x\|/\|x\| \leq cond(A)\|\delta b\|/\|b\|$, возмущение правой части (см. Указания)
- 4. **(+2балла)** При проведении контрольных тестов построить зависимости нормы фактической ошибки решения СЛАУ и нормы невязки от числа обусловленности матрицы
- 5. (+1бонус) Исследование метода на специальных матрицах сравнение со встроенными функциями
 - а. Исследовать поведение метода матрице Гильберта на (число обусловленности матрицы Гильберта зависит от размерности). Как можно улучшить решение
 - б. Проверить работу метода на тестовой матрице нулевым определителем) и на матрице B=10A. В каком месте алгоритм дает сбой?

В MatLab исследовать на построенной матрице встроенную функцию

- в. lu()
- г. linsolve()
- д. chol()

Указания о построении СЛАУ

Число $\operatorname{cond}(A) = ||A|| \cdot ||A^{-1}||$ называется числом обусловленности матрицы. В общем случае, оно зависит от вида нормы. (Число обусловленности, вычисленное по 2й норме минимально). Воспользуемся тем, что число обусловленности диагональной матрицы D вычисляется просто $\operatorname{cond}(D) = \max(|d_i|) / \min(|d_i|)$ и не зависит от вида нормы. С другой стороны, d_i являются собственными числами матрицы D.

Определенность матрицы A такая же как и определенность матрицы D, которая в свою очередь зависит от знаков d_i .

Дальнейшее построение основано на свойстве подобного преобразования, которое не изменяет с.ч. матрицы.

	$D=diag(d_i); \lambda(A) = \lambda(D); det(A) = det(D)$					
		A=			$\mathtt{cond}_{\scriptscriptstyle{\infty}}$	cond ₂
1	<i>B</i> : det(B)≠0	$B^{-1}DB$	$A \neq A^{T}$	зависит от В		
2	$Q: Q^{-1}=Q^{\mathrm{T}}$			>cond(D)		
3		$Q^{-1}UQ$	$A \neq A^{T}$	>cond(D)	>cond(D)	~cond(D)
	U _{ij} =0,i>j					

<u>1 способ</u>. При помощи. Если есть диагональная матрица D (с с.ч. на диагонали), то у матрицы $A=B^{-1}DB$ будут те же самые с.ч. Матрица A в общем случае будет **не симметричной**. Положительная определенность зависит от знаков элементов диагональной матрицы D

<u>2</u> способ. При помощи **ортогональной матрицы** Q. Если есть диагональная матрица D (с с.ч. на диагонали), то у матрицы $A = Q^T D Q$ будут те же самые с.ч. Особенность матрицы A в том, что она будет **симметричной**.

<u>3 способ</u>. Создание **несимметричной** матрицы при помощи **ортогональной** матрицы Q. Если есть треугольная (верхняя или нижняя) матрица B (с с.ч. на диагонали), то у матрицы $A = Q^T B Q$ будут те же самые с.ч. и матрица при этом получится несимметричной

Создание ортогональной матрицы

Ортогональная матрица Q создается или ортогональным разложением любой невырожденной матрицы (в MatLab [Q, r] = qr(rand(n))) или на основе произвольного вектора w преобразованием Хаусхолдера $Q = E - 2ww^T / ||w||^2$

Создание СЛАУ по известной матрице

Задать точное решение x^*

Вычислить правую часть СЛАУ $b = Ax^*$

Задание возмущения правой части

 $\delta b=2(0.5-rand(n,1))b$