

«___» _____ 2017 г.

лист согласования

к Руководству пользователя по программам «Учет энергоресурсо (ДГ, КГ, ПГ) - 2017».	в» и «Калькулятор расхода
СОГЛАСОВАНО:	
увситцу:	
Начальник отдела автоматизации	И.Н.Резепин
Начальник бюро ДПиУЭ	А.В.Суковицин
РАЗРАБОТАЛ:	
Математик	Н.А.Иванов

Оглавление

Анн	отация	4
1.	Описание программы «Учет энергоресурсов»	
1.1.	Общий вид программы	5
1.2.	Формулы	5
1.3.	Константы химического состава газа	7
1.4.	Точки учета	g
1.5.	Обсчет формул	13
2.	Описание программы «Калькулятор расхода (ДГ, КГ, ПГ) - 2017»	19
2.1.	Ввод входных параметров	19
2.2.	Расчет физических свойств	20
2.3.	Создание метрологической таблицы	26
При	ложение №1 «Сравнение результатов расчета программами Расходомер ИСО и Калькулятор расхода	»28
При	ложение №2 «Пример расчета расхода коксового газа программой Расходомер ИСО»	29
При	ложение №3 «Пример расчета расхода доменного газа программой Расходомер ИСО»	35
При	ложение №4 «Пример расчета расхода природного газа программой Расходомер ИСО»	41
Спи	сок используемой литературы	47

Аннотация

В настоящем документе приводятся: методика настройки точек учета (ТУ) в программе «Учет энергоресурсов»; работа в программе «Калькулятор расхода (ДГ, КГ, ПГ) – 2017» написанной на Microsoft Excel 2010; таблицы сверки значений расхода, вычисленных при помощи «Калькулятор расхода (ДГ, КГ, ПГ) – 2017» и программного комплекса «Расходомер ИСО» версии 1.40 от 13.05.2010; расчеты программным комплексом «Расходомер ИСО» физических свойств и расходов доменного, коксового и природного газов.

1. Описание программы «Учет энергоресурсов»

1.1. Общий вид программы

Программное обеспечение Администратор системы «Учет энергоресурсов», предназначен для введения исходных данных по системе учета и для мониторинга технологических параметров. На рис.1 представлен общий вид, для выбора параметров настройки.

Рисунок 1.

1.2. Формулы

Для того чтобы запараметрировать ТУ по новым формулам, необходимо эти формулы добавить. Для этого в главном меню заходим во вкладку «базис системы/ формулы». Как показано на рис. 2. Открывается окно «список формул». В нем переходим во вкладку «точки учета» (рис. 3).

Рисунок 2.

Рисунок 3.

Для создания новой формулы нажимаем кнопку «добавить» и появляется окно настроек (рис.4). В нем необходимо указать номер, название, заголовок, номер входного и выходного поля диспетчера данных (выбираем из свободных), саму формулу (имя функции и параметры). После этого необходимо описать параметры. Для этого в главном меню заходим во вкладку «базис системы/ физические величины» (рис. 5). Открывается окно «физические величины» (рис. 6) в нем выбираем вкладку «константы», для добавления новой записи нажимаем «+» вводим данные (символы должны соответствовать параметрам функции) и «сохранить», кнопка «-» удаляет запись.

Рисунок 4.

Рисунок 5.

Рисунок 6.

1.3. Константы химического состава газа

Информация о реальном химическом составе газов раз в день обновляется для расчета калорийности газа, во вкладке «утилиты/ сервис/ расчет калорийности» (рис. 7,8). Затем значения этих переменных автоматически присваиваются константам, которые заведены во вкладке «параметрирование/ константы» (рис. 9,10). Для того чтобы изменить, добавить новые или удалить старые константы необходимо нажать соответствующие кнопки и заполнить поля данных в появившемся окне. Для того чтобы значения констант обновлялись автоматически, необходимо изменить управляющий триггер. Теперь можно приступать к параметрированию ТУ.

Рисунок 7.

Рисунок 8.

Рисунок 9.

Рисунок 10.

1.4. Точки учета

Для того чтобы начать запараметрировать ТУ необходимо зайти во вкладку «параметрирование/ точки учета» (рис. 11). Открывается окно в котором перечислены все точки учета (рис. 13). При помощи кнопки «шаблон» можно отсортировать список, выбрав нужный энергоресурс (рис. 12).

Рисунок 11.

Рисунок 12.

Рисунок 13.

Для того чтобы перепараметрировать старую ТУ (забить в неё новые формулы) необходимо произвести следующий набор действий:

- 1) Найти информацию о старой ТУ (номера используемых датчиков, значения констант). Эту информацию можно получить двойным кликом мышки по конкретной ТУ (рис. 14).
- 2) Создать новую точку учета, нажав кнопку «добавить» и заполнив пустые поля в появившемся окне (рис. 15). Указывается номер ТУ, наименование, расчетная величина, сокращение, название формулы.
- 3) Добавить необходимые формулы в новую ТУ (рис.16) из появляющегося окна (рис. 17), которые затем обсчитать (рис. 18).
- 4) Удалить формулы в старой ТУ (рис. 26) и скопировать формулы из новой ТУ (рис. 27) в старую (рис. 28). Перезапустить программы нижнего уровня (для этого на основном сервере Газового цеха запустить файлы energo/StopProgram и energo/StartProgram).

Рисунок 14.

Рисунок 15.

Рисунок 16.

Рисунок 17.

Рисунок 18.

1.5. Обсчет формул

Обсчет формул производится следующим образом. Система выдает сообщение в окне, где спрашивает относительно каждого параметра формулы – что это такое?

- 1) Если параметр получает данные с датчика то необходимо выбрать соответствующий тип (рис.19). Откроется окно со списком всех датчиков (рис. 20), выбираем необходимый и нажимаем «выход». Даём согласие на продолжение.
- 2) Если параметр является константой (рис. 21), то вводим нужное значение и жмем «ок». Даём согласие на продолжение.
- 3) Если параметр является именем функции (рис. 22), то выбираем нужную функцию из списка. Даём согласие на продолжение.
- 4) Если параметр является объёмной долей газа (рис. 23), то выбираем тип «константа», далее из списка выбираем нужную нам и жмем кнопку «занести константу». Даём согласие на продолжение.
- 5) Если параметр является типом материала сужающего устройства или трубопровода (рис.24), то выбираем тип «марка стали», нужную нам марку находим в списке. Даём согласие на продолжение.

После окончания обсчета параметры ТУ примут вид (рис. 25). Для того чтобы увидеть мгновенные значения расчета поступающие с ТУ необходимо зайти во вкладку «мгновенные значения/ точек учета и групп», откроется окно (рис. 29). Выбираем из списка сверху нужную нам величину (например «расчет расхода коксового газа»), нажимаем правой кнопкой мыши по нижнему полю и выбираем «добавить параметр». Появятся показания расхода на всех ТУ. Для сортировки нужно нажать кнопку «шаблон» и выбрать нужную группу ТУ.

Рисунок 19.

Рисунок 20.

Рисунок 21.

Рисунок 22.

Рисунок 23.

Рисунок 24.

頭 TУ: (Tec	т)Расход Кі	ТЭЦ север н	ювая математика КГ	
Вы	іход			Удалить
Символ	Тип	Значение	Наименование	подт
CH4_kg	Константа	21,51	Константа: объёмная доля в КГ (%) СН4_kg□□	
CnHn_kg	Константа	1,9	Константа: объёмная доля в КГ (%) CnHn_kg□□	
CO_kg	Константа	8	Константа: объёмная доля в КГ (%) СО_kg□□	
CO2_kg	Константа	1	Константа: объёмная доля в КГ (%) CO2_kg□□	
D_cy_20	Константа	681,75	Константа: диаметр сужающего устройства в (мм) при	
D_it_20	Константа	1004	Константа: диаметр измерительного трубопровода в (
data	Константа	2	Константа: время эксплуатации расходомерного узла,	
dP_max	Константа	101,972	Константа: Перепад давления (тах) по паспорту датч	
dQ_max	Константа	50000	Датчик: Расход(мах) по шкале датчика 🗆 🗆 Констант	
H2_kg	Константа	59,5	Константа: объёмная доля в КГ (%) H2_kg□□	
method	Константа	0	Константа: метод отбора(Угловой=0 Трехрадиусный=1	
nd	Марка ста	17	12X18H10T	
nt	Марка ста	16	20	
Ra	Константа	0,00251	Константа: коэффициент шероховатости2016 🗆 🗆	
m	Константа	0,1	Константа: начальный радиус закругления кромки,ммП	
dQ	Датчик	683	ТЭЦ северная нитка Рабочий расход КГ	КГ
P_bar	Датчик	7	ГРП №1 Барометрическое давление (основной ввод)	ПГ
P_izb	Датчик	679	ТЭЦ северная нитка Давление КГ	КГ
T_cel	Датчик	681	ТЭЦ северная нитка Температура КГ	КГ
KG_2016	Функция	31	Расход КГ (функция, ГОСТ 8.586.1-2005,Физ.Св.2015г	

Рисунок 25.

Рисунок 26.

Рисунок 27.

Рисунок 28.

Рисунок 29.

2. Описание программы «Калькулятор расхода (ДГ, КГ, ПГ) - 2017»

Для проверки правильности вычислений была создана программа расчета физических свойств и расхода доменного, коксового и природного газов по алгоритму, описанному в [1], написанная на Microsoft Excel 2010. Документ включает в себя три листа. Часть величин рассчитаны при помощи макросов, поэтому перед началом работы необходимо их включить.

2.1. Ввод входных параметров

Параметры необходимые для расчета нужно вводить в поля выделенные тёмным цветом (рис. 30,31). Для расчета перепада давления по известному рабочему и максимальному расходу, и максимальному перепаду используется таблица «расчета перепада давления» (рис. 31). Если давление или перепад задан в Паскалях, используется таблица перевода величин (рис. 31). После ввода данных нажимаем кнопки «рассчитать d(СУ) и D(ИТ) в рабочих условиях» и «проверить введённые данные на соответствие ограничениям».

Граничные условия представлены на рисунке 32. Если произошёл выход за границу, программа выдаст сообщение об ошибке с указанием, что не так.

d(рабочее)	0,650080477	м		доменный газ(ДГ)	М(кг/моль)	Zci	$\rho_{ci}(\kappa r/m^3)$	$T_{ki}(K)$	$\mathbf{P}_{ki}(\Pi \mathbf{a})$	\mathbf{k}_{i}	$\mathbf{r}_{i}(\%)$	$\mathbf{x}_{\mathbf{i}}$	μ _ί (Πa*c)
D (рабочее)	1,59973973	м		CH ₄	0,016043	0,9981	0,66692	190,6	4587579,2	1,295	0,4	0,0040029	0,0002729
Ra	7,99363E-05	M		N_2	0,028135	0,9997	1,16455	126,2	3385108	1,4	52,7	0,5265443	0,0005339
$\mathbf{r}_{\mathtt{H}}$	0,00004	м		CO ₂	0,04401	0,9947	1,82954	304,2	7356294,4	1,285	17,7	0,1777359	0,0002721
$\tau_{\mathtt{r}}$	1	год		\mathbf{H}_2	0,0020159	1,0006	0,083803	33,2	1293414,4	1,405	6	0,0598942	0,0004469
(CY)d20	650,229	MM		CO	0,02801	0,9996	1,1644	132,9	3486156	1,4	23,2	0,2318226	0,0005082
(HT)D20	1600	MM		коксовый газ(КГ)	М(кг/моль)	z _{ci}	$\rho_{ci}(\kappa r/m^3)$	Tki(K)	$\mathbf{P}_{ki}(\Pi \mathbf{a})$	\mathbf{k}_{i}	r _i (%)	Xi	μ _i (Πa*c)
Rш	0,251	MM		CH ₄	0,016043	0,9981	0,66692	190,6	4587579,2	1,295	21,6	0,2161831	0,0002729
$\mathbf{r}_{\mathtt{H}}$	0,04	MM		N_2	0,028135	0,9997	1,16455	126,2	3385108	1,4	4,1	0,0409691	0,0005339
№Марки(СУ)	17	nd		CO_2	0,04401	0,9947	1,82954	304,2	7356294,4	1,285	1	0,0100427	0,0002721
№Марки(ИТ)	6	nt		\mathbf{H}_2	0,0020159	1,0006	0,083803	33,2	1293414,4	1,405	59,4	0,5930181	0,0004469
МетодОтбора	0	method		CO	0,02801	0,9996	1,1644	132,9	3486156	1,4	8	0,0799477	0,0005082
Расчитать d((CУ) и D(ИТ) в р	абочих		O ₂	0,0319988	0,9993	1,33022	154,6	5032190,4	1,395	4,1	0,040985	0,000472
	условиях			C _n H _n	0,0650923	0,9537	2,435467	493,1	4984192,6	1,225	1,8	0,018854	0,000192
ИТ - измерипельный трубопровод СУ - сужающее устройство d - диаметр СУ D - диаметр ИТ Метод отбора давления:0-угловой; 1-трёхрадиусный; 2-фланцевый.													

Рисунок 30.

ΔΡ	163,1552	кгс/м2		Таблица перевода (ввод в закрашен				i)
Pc	101325	Па		МПа	0,0016	0,9709568	0,0016	0,256345
Tc	293,15	K		кгс/см2	0,0163155	9,901004	0,016316	2,612156
R	8,31451	Дж/моль*К		KCC/M ²	163,1552	99010,04	163,1552	26140,01
ΔΡ	1600,005942	Па		Па	1600	970956,81	1600,006	256345
P _{őap.}	99047,165	Па						
Ризб	9,901004	кгс/см2		Таблица расч	чета перепад	а давления		
t(C)	5,4	С		Q _{pa6} =	17957	м ³ /ч		
Paőc	1070003,974	Па		Q _{max} =	50000	м ³ /ч		
T(K)	278,56	K		$\Delta P_{max} =$	101,172	кгс/м2		
$P_{\delta ap}$	1,01	кгс/см2		ΔP =	13,04932	кгс/м2		
данные	Проверить введённые данные на соответствие ограничениям							

Рисунок 31.

Рисунок 32.

2.2. Расчет физических свойств

На первом листе программы приводится расчет физических величин доменного и коксового газов (рис. 33-39), на втором листе отображается таблица типов марок стали (рис. 40), на третьем листе приводится расчет физических величин природного газа (рис. 41-45).

Расчет величин производится по формулам выделенным рамками. Поля со значениями расчетных физических величин выделены жирными рамками.

Для расчета динамической вязкости газа и критерия Рейнольдса необходимо нажать на соответствующие кнопки!

ВНИМАНИЕ! При расчете критерия Рейнольдса (рис. 38) определенного газа нужно нажимать **соответствующую ему** кнопку, т.е. для коксового газа кнопку «вычислить Re (КГ)», так как при расчете значения для всех трёх газов записываются в одно поле.

Рисунок 33.

Рисунок 34.

Рисунок 35.

Рисунок 36.

Рисунок 37.

Рисунок 38.

Объёмный расход приведённый к стандартнь	ІМ УСЛОВИЯМ		
$Q_{c} = \frac{3600\pi d^{2}}{4.2} K_{II} K_{II} EC \epsilon (2\rho \Delta P)^{0.5}$	Qc_ДГ =	1845,646165	м ³ /ч
4ρ _c κ <u>ш</u> κ _π Δου(2ρΔ1)	$Qc_K\Gamma =$	2999,136369	${f M}^3/{f q}$
	Qc_ΠΓ =	2494,678531	${ m M}^3/{ m q}$
Гассовый расход			
3600πd ² I/ I/ ECg(2 A D) 0.5	Qm_ДΓ =	2246,412864	кг/ч
$Q_{\rm m} = \frac{3800 \rm kH}{4} K_{\rm m} K_{\rm m} E C \varepsilon (2\rho \Delta P)^{0.5}$	$Qm_K\Gamma =$	1361,918783	кг/ч
	Qm_ΠΓ =	1683,908008	кг/ч

Рисунок 39.

марка стали	\mathbf{a}_0	a ₁	a ₂	α_{t}	K _{cy}	\mathbf{K}_{T}	d(мм)	D(мм)
1) 8	10,9	7,7	2,4	1,09416E-05	0,999840252	0,999840252	650,1251272	1599,744403
2) 10	10,8	9	4,2	1,08487E-05	0,999841609	0,999841609	650,1260094	1599,746574
3) 15	11,1	7,9	3,9	1,11428E-05	0,999837316	0,999837316	650,1232178	1599,739705
4) 15M	10,7	13	13	1,07706E-05	0,99984275	0,99984275	650,1267512	1599,748399
5) 16M	11,1	8,4	3,7	1,11455E-05	0,999837276	0,999837276	650,1231922	1599,739642
6) 20	11,1	7,7	3,4	1,11417E-05	0,999837331	0,999837331	650,1232282	1599,73973
7) 20M	10,7	13	13	1,07706E-05	0,99984275	0,99984275	650,1267512	1599,748399
8) 25	12,2	0	0	0,0000122	0,99982188	0,99982188	650,1131812	1599,715008
9) 30	10,2	10,4	5,6	1,02563E-05	0,999850258	0,999850258	650,1316332	1599,760412
10) 35	10,2	10,4	5,6	1,02563E-05	0,999850258	0,999850258	650,1316332	1599,760412
11) X6CM	10,1	2,7	0	1,01146E-05	0,999852327	0,999852327	650,1329788	1599,763723
12) X7CM	10,1	2,7	0	1,01146E-05	0,999852327	0,999852327	650,1329788	1599,763723
13) 12MX	11,3	3,8	0	1,13205E-05	0,99983472	0,99983472	650,1215304	1599,735553
14) 12X1MΦ	10	9,6	6	1,0052E-05	0,999853241	0,999853241	650,1335728	1599,765185
15) 12X17	9,4	7,4	6	9,44013E-06	0,999862174	0,999862174	650,1393816	1599,779478
16) 12X18H9T	15,6	8,3	6,5	1,5645E-05	0,999771583	0,999771583	650,0804766	1599,634533
17) 12X18H10T	15,6	8,3	6,5	1,5645E-05	0,999771583	0,999771583	650,0804766	1599,634533
18) 14X17H2	9,4	7,5	7,8	9,44073E-06	0,999862165	0,999862165	650,1393759	1599,779465
19) 15XMA	11,1	8,5	5,2	1,11461E-05	0,999837268	0,999837268	650,1231867	1599,739628
20) 15X1M1Φ	10,4	8,1	4,4	1,04439E-05	0,99984752	0,99984752	650,1298528	1599,756031
21) 15X5M	10,1	2,7	0	1,01146E-05	0,999852327	0,999852327	650,1329788	1599,763723
22) 15X12EHMΦ	9,8	3	0	9,8162E-06	0,999856683	0,999856683	650,1358114	1599,770694
23) 15X18H9	15,7	5,7	0	1,57308E-05	0,999770331	0,999770331	650,0796623	1599,632529
24) 20X23H13	15,5	1,7	0	1,55092E-05	0,999773566	0,999773566	650,081766	1599,637706
25) 36X18H25C2	12	10	5,4	1,20542E-05	0,999824009	0,999824009	650,1145657	1599,718415

Рисунок 40.

Рисунок 41.

Рисунок 42.

$\begin{split} &C_1 = -0.302488 + 1.95861 \cdot 10^{-3} T - 3.16302 \cdot 10^{-6} T^2 \\ &- 4.22876 \cdot 10^{-6} T + 6.88157 \cdot 10^{-9} T^2) \cdot H_3 + (-3.328 \\ &+ 2.2316 \cdot 10^{-9} T - 3.67713 \cdot 10^{-12} T^2) \cdot H_3^2, \end{split}$		10-4-	C ₁ =	0,002393076
$C_2 = 7,8498 \cdot 10^{-3} - 3,9895 \cdot 10^{-5} T + 6,1187 \cdot 10^{-8} T^2$	C ₂ =	0,001379		
$C_3 = 2,0513 \cdot 10^{-3} + 3,4888 \cdot 10^{-5} T - 8,3703 \cdot 10^{-8} T^2$	C ₃ =	0,004935		
$C_{223} = 5,52066 \cdot 10^{-3} - 1,68609 \cdot 10^{-5} T + 1,57169 \cdot 10^{-8} T^2$	C ₂₂₃ =	0,001854		
$C_{233} = 3,58783 \cdot 10^{-3} + 8,06674 \cdot 10^{-6} T - 3,25798 \cdot 10^{-8} T^2$	C ₂₃₃ =	0,003039		
$B^* = 0.72 + 1.875 \cdot 10^{-5} (320 - T)^2$	B*=	0,725317		
C*= 0,92+0,0013 · (T - 270)	C*=	0,963108		
$H_3 = 128,64 + 47,479 \cdot M_3$	H _a =	890,397		
$M_3 = (24,05525 \cdot z_c \rho_c - 28,0135x_a - 44,01x_y)/x_3$	M _s =	16,04408		

Рисунок 43.

Рисунок 44.

Рисунок 45.

2.3. Создание метрологической таблицы

Также программа позволяет произвести расчет таблицы метрологических данных по всем ТУ, в которых используется новая математика (список этих ТУ вместе со всеми их характеристиками находится на листе «Global»). Для того чтобы произвести расчет необходимо на листе «Promgaz» в поле «№ ТУ» указать нужную ТУ и нажать на кнопку «Расчет метрологической таблицы» (рис. 46). После этого на листе «Global» появится таблица, в которой перечислены: №ТУ, наименование ТУ, тип энергоносителя, сила тока с датчиков (давления, температуры, барометрического давления, перепада), рассчитанные величины (абсолютное давление, температура, перепад давления, расход). Всего производится 40 вычислений (рис. 47).

Расчет мет	рологическої	йтаблицы
Nº TУ	Tmax	Tmin
77	100	0
	lmaxQ	lminQ
	20	4
	ImaxPizb	IminPizb
	20	4
	ImaxT	IminT
	20	4
	lmaxPbar	IminPbar
	20	4
	lmax_dP	lmin_dP
	20	4
	Р _{изб} тах	P _{bar} max
	0,2549	1,63155

Рисунок 46.

Nº TУ	77	Наимено	вание	Γ/O №1		ход чистого га	аза)расход	ДГ
№ Измерения	IdP(mA)	І _{Ризб} (mA)	I _T (mA)	$I_{P6ap}(mA)$	T(°C)	Рабс(кгс/см²)	dP(кгс/м²)	Q(м³/ч)
1	7,2	8	6	5,6	12,5	0,227	203,9400024	112224,5
2	10,4	8	6	5,6	12,5	0,227	407,8800049	153367,5
3	13,6	8	6	5,6	12,5	0,227	611,8200073	181095,2
4	16,8	8	6	5,6	12,5	0,227	815,7600098	201060,1
5	20	8	6	5,6	12,5	0,227	1019,700012	215437
6	7,2	12	8	8,8	25	0,617	203,9400024	185015,8
7	10,4	12	8	8,8	25	0,617	407,8800049	258535,5
8	13,6	12	8	8,8	25	0,617	611,8200073	312802,3
9	16,8	12	8	8,8	25	0,617	815,7600098	356724,3
10	20	12	8	8,8	25	0,617	1019,700012	393785,8
11	7,2	16	10	15,2	37,5	1,333	203,9400024	268305,7
12	10,4	16	10	15,2	37,5	1,333	407,8800049	377352,8
13	13,6	16	10	15,2	37,5	1,333	611,8200073	459616,2
14	16,8	16	10	15,2	37,5	1,333	815,7600098	527779,6
15	20	16	10	15,2	37,5	1,333	1019,700012	586781,7
16	7,2	20	12	20	50	1,886	203,9400024	313583,7
17	10,4	20	12	20	50	1,886	407,8800049	441737,3
18	13,6	20	12	20	50	1,886	611,8200073	538910,2
19	16,8	20	12	20	50	1,886	815,7600098	619855,7
20	20	20	12	20	50	1,886	1019,700012	690309,7
21	7,2	8	14	5,6	62,5	0,227	203,9400024	103888,1
22	10,4	8	14	5,6	62,5	0,227	407,8800049	141903
23	13,6	8	14	5,6	62,5	0,227	611,8200073	167516,2
24	16,8	8	14	5,6	62,5	0,227	815,7600098	185955,3
25	20	8	14	5,6	62,5	0,227	1019,700012	199230,8
26	7,2	12	16	8,8	75	0,617	203,9400024	171661,9
27	10,4	12	16	8,8	75	0,617	407,8800049	239785,5
28	13,6	12	16	8,8	75	0,617	611,8200073	290060,8
29	16,8	12	16	8,8	75	0,617	815,7600098	330748
30	20	12	16	8,8	75	0,617	1019,700012	365105,1
31	7,2	16	18	15,2	87,5	1,333	203,9400024	249531,3
32	10,4	16	18	15,2	87,5	1,333	407,8800049	350842,9
33	13,6	16	18	15,2	87,5	1,333	611,8200073	427323,8
34	16,8	16	18	15,2	87,5	1,333	815,7600098	490694,2
35	20	16	18	15,2	87,5	1,333	1019,700012	545546
36	7,2	20	20	20	100	1,886	203,9400024	292373,7
37	10,4	20	20	20	100	1,886	407,8800049	411775,1
38	13,6	20	20	20	100	1,886	611,8200073	502355,2
39	16,8	20	20	20	100	1,886	815,7600098	577807,2
40	20	20	20	20	100	1,886	1019,700012	643478,5

Рисунок 47.

Приложение №1 «Сравнение результатов расчета программами Расходомер ИСО и Калькулятор расхода»

Расчет расхода ДГ в Excel и Расходомер ИСО по параметрам указанным в Приложении №3.

Абсолютное	Температура,	Перепад	Объёмный	Объёмный	Относительная
давление,	Град.	давления,	расход при ст.	расход при	погрешность,
мПа	Цельсия	кПа	условиях	CT.	%
			(Расходомер	условиях	
			ИСО), м ³ /ч	(Excel), м ³ /ч	
1,07	5,4	1,6	125000	125741,45	0,59
1,07	5,4	1,024	100026	100619,68	0,59
1,07	5,4	0,784	87535	88054,44	0,59
1,07	5,4	0,4	62544,8	62916,14	0,59
1,07	5,4	0,256	50046,2	50343,31	0,59
1,07	5,4	0,144	37545	37768	0,59

Расчет расхода КГ в Excel и Расходомер ИСО по параметрам указанным в Приложении №2.

Абсолютное	Температура,	Перепад	Объёмный	Объёмный	Относительная
давление,	Град.	давления,	расход при ст.	расход при	погрешность,
мПа	Цельсия	кПа	условиях	CT.	%
			(Расходомер	условиях	
			ИСО), м ³ /ч	(Excel), м ³ /ч	
1,07	5,4	1,6	8000	8024,25	0,302
1,07	5,4	1,024	6402,53	6422,36	0,308
1,07	5,4	0,784	5603,49	5621,11	0,313
1,07	5,4	0,4	4004,86	4018	0,327
1,07	5,4	0,256	3205,27	3216,12	0,337
1,07	5,4	0,144	2405,45	2414	0,354

Расчет расхода ПГ в Excel и Расходомер ИСО по параметрам указанным в Приложении №4.

Абсолютное	Температура,	Перепад	Объёмный	Объёмный	Относительная
давление,	Град.	давления,	расход при ст.	расход при	погрешность,
мПа	Цельсия	кПа	условиях	CT.	%
			(Расходомер	условиях	
			ИСО), м ³ /ч	(Excel), м ³ /ч	
1,07	5,37	0,919	4620,08	4666,66	0,998
1	-20	0,0827	1412,91	1426,93	0,982
1	30	0,5882	3417,58	3451,84	0,992
1,1	-20	0,2297	2470,17	2494,67	0,982
1,1	30	0,147	1796,62	1814,16	0,967

Программный комплекс Расходомер ИСО версии 1.40 от 13.05.2010 Владелец данной копии программы:

ОАО «ЧМК» ПКЦ КИПиА

Расчет № 0 от 26.04.2017

выполнен в соответствии с ГОСТ 8.586.(1-5)-2005

К/Б №8. Коксовый газ

Вид расчета - Расчёт сужающего устройства

ХАРАКТЕРИСТИКА ИЗМЕРЯЕМОЙ СРЕДЫ

Измеряемая среда - Коксовый газ

Абсолютное давление......1,07 МПа

Температура......5,4 ° С

Плотность в рабочих условиях......4,791 кг/м3

Плотность в стандартных условиях......0,4307 кг/м3

Относительная погрешность определения плотности в стандартных условиях

дополнительная......0 %

Динамическая вязкость......14,2 мкПа*с

Показатель адиабаты......1,37

ХАРАКТЕРИСТИКА СУЖАЮЩЕГО УСТРОЙСТВА

Сужающее устройство:

Диафрагма с угловым способом отбора давления

- * Диаметр сужающего устройства при 20° С......127,798 мм
- * Диаметр сужающего устройства при рабочих условиях......127,767 мм
- * Относительный диаметр отверстия сужающего устройства

в рабочих условиях......0,3102

Материал сужающего устройства - Сталь 12X18H12T,12X18H10T(15X25T)

Коэффициент линейного расширения материала

сужающего устройства1,624E-5 1/°С
* Поправочный коэффициент на расширение
материала сужающего устройства0,99976
Способ определения радиуса входной кромки диафрагмыОценивается визуально
Начальный радиус закругления входной кромки0,04 мм
Период поверки диафрагмы, в годах1
* Средний радиус закругления входной кромки диафрагмы0,06319 мм
* Поправочный коэффициент на неостроту входной кромки диафрагмы1,00091
Способ отбора давления - через камеру усреднения или соединенные отверстия
Смещение оси отверстия сужающего
устройства относительно оси трубопровода0 мм
Отклонение от плоскостности входного торца
* Допустимые значения толщины диафрагмы от2,84899 мм
до20,5966 мм
* Допустимые значения цилиндрической части диафрагмы (е) от2,06 мм
до8,239 мм
* Наибольшее значение шероховатости
поверхности входного торца0,01278 мм
* Наибольшее значение шероховатости
поверхности выходного торца0,1 мм
* Рекомендуемый допуск на изготовление диаметра СУ0,0511 мм
Модуль упругости при заданной температуре198 ГПа
Предел текучести240 МПа
ХАРАКТЕРИСТИКА ТРУБОПРОВОДА
Диаметр трубопровода при 20° С412 мм
К/Б №8. Коксовый газ Страница № 1 от 26.04.2017
* Диаметр трубопровода в рабочих условиях411,933 мм
Материал трубопровода - Сталь 20
Коэффициент линейного расширения материала трубопровода1,114E-5 1/°C
* Поправочный коэффициент на расширение материала трубопровода0,99984

Эквивалентная шероховатость стенок трубопровода0,25 мм
Тип и состояние трубы - стальная ржавая
* Поправочный коэффициент на шероховатость трубопровода1
Способ определения шероховатости трубопроводаВыбирается из таблицы
КОМПЛЕКСНЫЕ ПАРАМЕТРЫ РАСХОДОМЕРА
Верхний предел перепада давления1,6 кПа
* Коэффициент скорости входа1,00466
* Число Рейнольдса208333
* Коэффициент расширения0,99961
* Коэффициент истечения
* Коэффициент расхода0,60259
* Потери давления1425 Па
Заданный нижний предел измеряемого расхода3600 м3/ч
Заданный верхний предел измеряемого расхода8000 м3/ч
Расчет расхода (проверка) при верхнем пределе перепада давления:
Расчет расхода (проверка) при верхнем пределе перепада давления: * Массовый расход3445,6 кг/ч
* Массовый расход3445,6 кг/ч
* Массовый расход
* Массовый расход3445,6 кг/ч * Объёмный расход в стандартных условиях8000 м3/ч ХАРАКТЕРИСТИКА ИЗМЕРИТЕЛЬНОГО УЧАСТКА
* Массовый расход

* Расширенная неопределенность определения перепада давления0,36 %
* Расширенная неопределенность определения температуры0,11 %
* Расширенная неопределенность определения абсолютного давления0,27 %
* Расширенная неопределенность определения показателя адиабаты0,05 %
* Расширенная неопределенность определения плотности
в стандартных условиях0,05 %
* Расширенная неопределенность определения плотности0,05 %
* Расширенная неопределенность коэффициента расширения0,0038 %
* Расширенная неопределенность массового расхода газа0,57 %
* Расширенная неопределенность объемного расхода газа,
приведенного к стандартным условиям0,57 %
Верхний предел измерения 1-го дифманометра1,6 кПа
Функция преобразования измерительного преобразователя
(дифманометра) - с извлечением корня
приведенная погрешность, % измерительного преобразователя (дифманометра)
Основная0,15 %
Основная
Дополнительная0,0 %
Дополнительная0,0 % * Массовый расход при верхнем пределе измерения 1-го дифманометра3445,6 кг/ч
Дополнительная0,0 % * Массовый расход при верхнем пределе измерения 1-го дифманометра3445,6 кг/ч * Объёмный расход в стандартных условиях
Дополнительная

приведенная погрешность, % 1-го преобразователя абсолютного давления
Основная0,1 %
Дополнительная0 %
Верхний предел измерения средства измерения температуры150 ° С
Нижний предел измерения средства измерения температуры0 ° С
абсолютная погрешность измерительного преобразователя
(задается формулой) - 0,25 + 0,0035 * t
приведенная погрешность, % 1-го преобразователя температуры
Основная0,1 %
Дополнительная0 %
Нижняя граница измерения 1-го преобразователя температуры0
Верхняя граница измерения 1-го преобразователя температуры65
относительная погрешность вычисления расхода контроллером (вычислителем)
Основная0,1 %
Дополнительная0 %

Стандартные условия - 293,15 К и 0,101325 МПа

Таблица расчёта неопределенностей измерения расхода при заданных отклонениях температуры и давления среды и заданных значениях перепада давления.

Температур	pa, ° C	5,4				
Абс. давление, МПа		1,07				
Перепад давления, кПа (%)				цартных усло: ная неопреде	виях, м3/ч ленность, (%)
1,6	(100)	8000 0,57	-	-	-	-
1,024	(64)	6402,53 0,61	-	-	-	-
0,784	(49)	5603,49	-	-	-	-
0,4	(25)	4004,86	-	-	-	-
0,256	(16)	3205,27 1,25	-	-	-	-
0,144	(9)	2405,45		-	-	-

Максимально-допустимая расширенная неопределенность определения расхода 4 %

Исполнитель:	Заха	рова	H.A.
--------------	------	------	------

Приложение №3 «Пример расчета расхода доменного газа программой Расходомер исо»

Программный комплекс Расходомер ИСО версии 1.40 от 13.05.2010

Владелец данной копии программы:

ОАО «ЧМК» ПКЦ КИПиА

Расчет № 0 от 26.04.2017

выполнен в соответствии с ГОСТ 8.586.(1-5)-2005

ДП №1. Доменный газ на блок воздухонагревателей

Вид расчета - Расчёт сужающего устройства

ХАРАКТЕРИСТИКА ИЗМЕРЯЕМОЙ СРЕДЫ

Измеряемая среда - Доменный газ

Абсолютное давление......1,07 МПа

Температура......5,4 ° С

Плотность в рабочих условиях......13,66 кг/м3

Плотность в стандартных условиях......1,2175 кг/м3

Относительная погрешность определения плотности в стандартных условиях

основная......0,05 %

дополнительная......0 %

Динамическая вязкость......16,4 мкПа*с

Показатель адиабаты......1,39

ХАРАКТЕРИСТИКА СУЖАЮЩЕГО УСТРОЙСТВА

Сужающее устройство:

Диафрагма с угловым способом отбора давления

- * Диаметр сужающего устройства при 20° С.......650,229 мм
- * Диаметр сужающего устройства при рабочих условиях.............650,075 мм
- * Относительный диаметр отверстия сужающего устройства

в рабочих условиях......0,4064

Материал сужающего устройства - Сталь 12Х18Н12Т,12Х18Н10Т(15Х25Т)

Коэффициент линейного расширения материала

сужающего устройства1,624E-5 1/°C
* Поправочный коэффициент на расширение
материала сужающего устройства0,99976
Способ определения радиуса входной кромки диафрагмыОценивается визуально
Начальный радиус закругления входной кромки0,04 мм
Период поверки диафрагмы, в годах1
* Средний радиус закругления входной кромки диафрагмы0,06319 мм
* Поправочный коэффициент на неостроту входной кромки диафрагмы1
Способ отбора давления - через камеру усреднения или соединенные отверстия
Смещение оси отверстия сужающего
устройства относительно оси трубопровода0 мм
Отклонение от плоскостности входного торца0, мм
* Допустимые значения толщины диафрагмы от11,5352 мм
до79,987 мм
* Допустимые значения цилиндрической части диафрагмы (е) от7,999 мм
до31,995 мм
* Наибольшее значение шероховатости
поверхности входного торца0,06501 мм
* Наибольшее значение шероховатости
поверхности выходного торца0,1 мм
* Рекомендуемый допуск на изготовление диаметра СУ0,26 мм
Модуль упругости при заданной температуре198 ГПа
Предел текучести240 МПа
ХАРАКТЕРИСТИКА ТРУБОПРОВОДА
Диаметр трубопровода при 20° С1600 мм
ДП №1. Доменный газ на блок воздухонагревателей Страница № 1 от 26.04.2017
* Диаметр трубопровода в рабочих условиях1599,74 мм
Материал трубопровода - Сталь 20
Коэффициент линейного расширения материала трубопровода1,114E-5 1/°C
* Поправочный коэффициент на расширение материала трубопровода0,99984

Эквивалентная шероховатость стенок трубопровода0,25 мм
Тип и состояние трубы - стальная ржавая
* Поправочный коэффициент на шероховатость трубопровода1
Способ определения шероховатости трубопроводаВыбирается из таблицы
КОМПЛЕКСНЫЕ ПАРАМЕТРЫ РАСХОДОМЕРА
Верхний предел перепада давления1,6 кПа
* Коэффициент скорости входа1,01392
* Число Рейнольдса2051603
* Коэффициент расширения0,99961
* Коэффициент истечения0,60107
* Коэффициент расхода0,60943
* Потери давления1309 Па
Заданный нижний предел измеряемого расхода80000 м3/ч
Заданный верхний предел измеряемого расхода125000 м3/ч
Расчет расхода (проверка) при верхнем пределе перепада давления:
гасчет расхода (проверка) при верхнем пределе перепада давления.
* Массовый расход152188 кг/ч
* Массовый расход152188 кг/ч
* Массовый расход152188 кг/ч * Объёмный расход в стандартных условиях125000 м3/ч
* Массовый расход

* Расширенная неопределенность определения перепада давления0,36 %
* Расширенная неопределенность определения температуры0,11 %
* Расширенная неопределенность определения абсолютного давления0,27 %
* Расширенная неопределенность определения показателя адиабаты0,05 %
* Расширенная неопределенность определения плотности
в стандартных условиях0,05 %
* Расширенная неопределенность определения плотности0,05 %
* Расширенная неопределенность коэффициента расширения0,0038 %
* Расширенная неопределенность массового расхода газа0,55 %
* Расширенная неопределенность объемного расхода газа,
приведенного к стандартным условиям0,55 %
Верхний предел измерения 1-го дифманометра1,6 кПа
Функция преобразования измерительного преобразователя
(дифманометра) - с извлечением корня
приведенная погрешность, % измерительного преобразователя (дифманометра)
Основная0,15 %
Дополнительная0,0 %
* Массовый расход при верхнем пределе измерения 1-го дифманометра 152188 кг/ч
* Массовый расход при верхнем пределе измерения 1-го дифманометра 152188 кг/ч * Объёмный расход в стандартных условиях
* Объёмный расход в стандартных условиях
* Объёмный расход в стандартных условиях при верхнем пределе измерения 1-го дифманометра125000 м3/ч
* Объёмный расход в стандартных условиях при верхнем пределе измерения 1-го дифманометра125000 м3/ч ДП №1. Доменный газ на блок воздухонагревателей Страница № 2 от 26.04.2017
* Объёмный расход в стандартных условиях при верхнем пределе измерения 1-го дифманометра125000 м3/ч ДП №1. Доменный газ на блок воздухонагревателей Страница № 2 от 26.04.2017 Функция преобразования 1-го преобразователя
* Объёмный расход в стандартных условиях при верхнем пределе измерения 1-го дифманометра
* Объёмный расход в стандартных условиях при верхнем пределе измерения 1-го дифманометра
* Объёмный расход в стандартных условиях при верхнем пределе измерения 1-го дифманометра
* Объёмный расход в стандартных условиях при верхнем пределе измерения 1-го дифманометра
* Объёмный расход в стандартных условиях при верхнем пределе измерения 1-го дифманометра

приведенная погрешность, % 1-го преобразователя абсолютного давления
Основная0,1 %
Дополнительная0 %
Верхний предел измерения средства измерения температуры150 ° С
Нижний предел измерения средства измерения температуры ° С
абсолютная погрешность измерительного преобразователя
(задается формулой) - 0,25 + 0,0035 * t
приведенная погрешность, % 1-го преобразователя температуры
Основная0,1 %
Дополнительная0 %
Нижняя граница измерения 1-го преобразователя температуры0
Нижняя граница измерения 1-го преобразователя температуры0 Верхняя граница измерения 1-го преобразователя температуры65
Верхняя граница измерения 1-го преобразователя температуры65
Верхняя граница измерения 1-го преобразователя температуры65 относительная погрешность вычисления расхода контроллером (вычислителем)

Таблица расчёта неопределенностей измерения расхода при заданных отклонениях температуры и давления среды и заданных значениях перепада давления.

Температур	oa, ° C	5,4					
Абс. давление, МПа		1,07					
Перепад давления, кПа (%)		Объемный расход, в стандартных условиях, м3/ч Относительная расширенная неопределенность, (%)					
1,6	(100)	125000 0,55	-	-	-	-	
1,024	(64)	100026 0,59	-	-	- -	-	
0,784	(49)	87535 0,64	-	-	-	-	
0,4	(25)	62544,8	-	-	-	-	
0,256	(16)	50046,2	-	-	-	-	
0,144	(9)	37545 2,07	-	-	-	_ _	

**********************	· *
Расход рассчитан в соответствии с рекомендациями МИ 3152-2008	
(без учета силы тяжести)	
*************************	. *

Максимально-допустимая расширенная неопределенность определения расхода 4 %

Исполнитель:	Захарова Н.А.
MCHOMENTEME.	Sakapoba n.A.

Программный комплекс Расходомер ИСО версии 1.40 от 13.05.2010 Владелец данной копии программы:

ОАО «ЧМК» ПКЦ КИПиА

Расчет № 0 от 11.10.2016

выполнен в соответствии с ГОСТ 8.586.(1-5)-2005

Природный газ.

Вид расчета - Расчёт расхода

ХАРАКТЕРИСТИКА ИЗМЕРЯЕМОЙ СРЕДЫ

Измеряемая среда - Природный газ							
молярные % азота(N2)0,79 %							
Относительная погрешность определения азота							
основная0,05 %							
дополнительная0 %							
молярные % двуокиси углерода(СО2)0,12 %							
Относительная погрешность определения двуокиси углерода							
основная0,05 %							
дополнительная0 %							
Абсолютное давление1,07 МПа							
Температура5,373 ° С							
Метод расчета коэффициента сжимаемости - NX-19 мод. (ГОСТ 30319-96)							
* Фактор сжимаемости в рабочих условиях0,97638							
* Фактор сжимаемости в стандарных условиях0,99811							
* Коэффициент сжимаемости0,97822							
* Плотность в рабочих условиях7,6694 кг/м3							
Плотность в стандартных условиях0,675 кг/м3							
Относительная погрешность определения плотности в стандартных условиях							
основная0,05 %							

дополнительная0 %	
* Динамическая вязкость	10,5923 мкПа*с
* Показатель адиабаты	.1,31011
ХАРАКТЕРИСТИКА СУЖАЮЩЕГО УСТРОЙСТЕ	ЗА
Сужающее устройство:	
Диафрагма с угловым способом отбора давлени	Я
Диаметр сужающего устройства при 20° С	122,38 мм
* Диаметр сужающего устройства при рабочих ус	словиях122,351 мм
* Относительный диаметр отверстия сужающего	устройства
в рабочих условиях0	,4762
Материал сужающего устройства - Сталь 12Х18	H12T,12X18H10T(15X25T)
Коэффициент линейного расширения материала	1
сужающего устройства	1,624E-5 1/°C
* Поправочный коэффициент на расширение	
материала сужающего устройства	0,99976
Способ определения радиуса входной кромки ди	афрагмыОценивается визуально
Начальный радиус закругления входной кромки	0,04 мм
Период поверки диафрагмы, в годах	1
* Средний радиус закругления входной кромки д	иафрагмы0,06319 мм
* Поправочный коэффициент на неостроту входн	ной кромки диафрагмы1,0011
Способ отбора давления - через камеру усредне	ния или соединенные отверстия
Смещение оси отверстия сужающего	
устройства относительно оси трубопровода	0 мм
Отклонение от плоскостности входного торца	0, мм
ХАРАКТЕРИСТИКА ТРУБОПРОВОДА	
Природный газ. Страница № 1 от 11.10.2016	
Диаметр трубопровода при 20° С	257 мм
* Диаметр трубопровода в рабочих условиях	256,958 мм
Материал трубопровода - Сталь 20	
Коэффициент линейного расширения материала	а трубопровода1,114E-5 1/°C

* Поправочный коэффициент на расширение материала трубопровода0,99984
Эквивалентная шероховатость стенок трубопровода0,00251 мм
* Поправочный коэффициент на шероховатость трубопровода1
Способ определения шероховатости трубопроводаИзмеряется
КОМПЛЕКСНЫЕ ПАРАМЕТРЫ РАСХОДОМЕРА
Перепад давления0,919 кПа
* Коэффициент скорости входа1,02674
* Число Рейнольдса405236
* Коэффициент расширения0,99976
* Коэффициент истечения
* Коэффициент расхода
* Потери давления694 Па
* Массовый расход3118,55 кг/ч
* Объёмный расход в стандартных условиях4620,08 м3/ч
ХАРАКТЕРИСТИКА ИЗМЕРИТЕЛЬНОГО УЧАСТКА
На расстоянии 100D до сужающего устройства местных сопротивлений нет
После сужающего устройства нет местных сопротивлений
Гильзы термометра нет

Длины прямолинейных участков трубопровода соответствуют ГОСТ 8.586.1-5.2005

РАСЧЁТ НЕОПРЕДЕЛЕННОСТЕЙ
* Расширенная неопределенность коэффициента истечения0,5 %
* Расширенная неопределенность коэффициента шероховатости0 %
* Расширенная неопределенность коэффициента притупления кромки0,15 %
* Расширенная неопределенность диаметра сужающего устройства0,04 %
* Расширенная неопределенность диаметра трубопровода0,2 %
* Расширенная неопределенность определения перепада давления0,22 %
* Расширенная неопределенность определения температуры0,07 %
* Расширенная неопределенность определения абсолютного давления0,17 %

* Расширенная неопределенность определения показателя адиабаты2,31 %
* Расширенная неопределенность определения плотности
в стандартных условиях0,05 %
* Расширенная неопределенность определения плотности0,23 %
* Расширенная неопределенность коэффициента расширения0,0024 %
* Расширенная неопределенность массового расхода газа0,56 %
* Расширенная неопределенность объемного расхода газа,
приведенного к стандартным условиям0,56 %
Верхний предел измерения 1-го дифманометра0,919 кПа
Функция преобразования измерительного преобразователя
(дифманометра) - с извлечением корня
приведенная погрешность, % измерительного преобразователя (дифманометра)
Основная0,1 %
Дополнительная0,05 %
* Массовый расход при верхнем пределе измерения 1-го дифманометра3118,55 кг/ч
* Offi SMULIX POOYOR B CTOUROPTULIX VOROPIAGY
* Объёмный расход в стандартных условиях
при верхнем пределе измерения 1-го дифманометра4620,08 м3/ч
при верхнем пределе измерения 1-го дифманометра4620,08 м3/ч
при верхнем пределе измерения 1-го дифманометра4620,08 м3/ч Верхний предел измерения абсолютного давления1,6 МПа
при верхнем пределе измерения 1-го дифманометра4620,08 м3/ч Верхний предел измерения абсолютного давления1,6 МПа приведенная погрешность, % измерительного преобразователя (манометра)
при верхнем пределе измерения 1-го дифманометра

Верхняя граница измерения 1-го преобразователя температуры50						
относительная погрешность вычисления расхода контроллером (вычислителем)						
Основная0,1 %						
Дополнительная0 %						

Стандартные условия - 293,15 К и 0,101325 МПа						
·····						

Таблица расчёта неопределенностей измерения расхода при заданных отклонениях температуры и давления среды и заданных значениях перепада давления.

Температур	a, ° C	-20	-20	5,37	30	30		
Абс. давление, МПа		1	1,1	1,07	1	1,1		
Перепа кПа	д давления, (%)	Объемный расход, в стандартных условиях, м3/ч Относительная расширенная неопределенность, (%)						
0,919	(100)	4696,48 0,56	4933,27 0,56	4620,08 0,56	4269,79 0,56	4481,62 0,56		
0,5882	(64)	3758,91 0,58	3948,36 0,58	3697,81 0,58	3417,58 0,58	3587,06 0,58		
0,4503	(49)	3289,96	3455,74 0,6	3236,52 0,6	2991,31 0,6	3139,62 0,6		
0,2297	(25)	2351,72 0,71	2470,17	2313,59	2138,45 0,71	2244,41 0,71		
0,147	(16)	1882,4	1977,18	1851,93 0,89	1711,82 0,89	1796,62 0,89		
0,0827	(9)	1412,91 1,36	1484,02	1390,11	1285,02 1,36	1348,65 1,36		

Максимально-допустимая расширенная неопределенность определения расхода $4\ \%$

Исполнитель:		Зε	ìΧ	a	р	DΒ	а	Н		A	
--------------	--	----	----	---	---	----	---	---	--	---	--

Список используемой литературы

- 1. Математическое обеспечение. Алгоритм расчета доменного, коксового и природного газов. Челябинск, 2017.
- 2. Автоматизированная система диспетчерского управления газообразным топливом на ОАО "МЕЧЕЛ" (газовый цех) том 3. Программное обеспечение. Книга 4. Руководство по ведению базы данных. Челябинск, 2004.
- 3. Г. 3. Гарбер. Основы программирования на Visual Basic и VBA в Excel 2007. Москва, 2008.