随机过程 历年考试真题

2023 版

说明

部分试题或答案有误(且答案错误率不算低), 若发现排印错误或投稿欢迎联系:

lzw2003@mail.ustc.edu.cn

最后修改于 2023 年 7 月 11 日. 可在主页下载最新版

http://home.ustc.edu.cn/~cc22155/resource/SPexam.pdf

如有意制作往年题,请参考此简易教程

没有 title 的 21 级普通学生¹ 2023 年 2 月于合肥

更新日志

- 2023.02.27 2023 版初始版本
- 2023.02.28 将 2022.6 随机 B 期末试卷重制为 PDF 版
- **2023.03.02** 修正 2020.1 随机 B 期末试卷的超链接跳转, 修改了一下排版, 添加页脚显示总页数. 尝试添加页脚跳转到目录页但水平有限失败(悲)
- 2023.03.04 新增 2016.6 随机 B 期末答案, 2017.6 随机 B 期末试卷, 2019.6 随机 B 期末及答案
- 2023.07.01 修改 2023.2 随机 B 期末试卷第四题的矩阵笔误

注:

• 2015-2016 学年第二学期随机过程 B 期末 (第二套试卷) 的五 (2) 是错题

¹欢迎访问主页: http://home.ustc.edu.cn/-cc22155 我终于也能装模作样地在序里写点奇怪的东西了吗 233

目录

1	2012-2013	学年第-	一学期随机过程期	胡末		1
2	2015-2016	学年第二	二学期随机过程	B 期末		3
3	2016-2017	学年第二	二学期随机过程	A 期中		9
4	2016-2017	学年第二	二学期随机过程	A 期末		11
5	2016-2017	学年第-	一学期随机过程	B 期末		13
6	2016-2017	学年第二	二学期随机过程	B 期末		15
7	2017-2018	学年第-	一学期随机过程	B 期末		17
8	2017-2018	学年第二	二学期随机过程	B 期末		19
9	2018-2019	学年第-	一学期随机过程	B 期末		21
10	2018-2019	学年第二	二学期随机过程	B 期末		25
11	2019-2020	学年第-	一学期随机过程	B 期末		29
12	2020-2021	学年第二	二学期随机过程	B 期末		33
13	2021-2022	学年第二	二学期随机过程	B 期末		35
14	2022-2023	学年第-	一学期随机过程	B 期末		37
15	2022-2023	学年第二	二学期随机过程	B 期末		39

2012—2013 学年第一学期考试试卷

考试科目: 随机	<u>几过程</u>	得 分:	
学生所在系:_	姓名	学 号	:
	(2013年1月22	日,开卷)	
一、(20分)设	有随机过程 $X(t) = \xi \cos t + \eta \sin t$	$(0 < t < \pi)$	
其中 ξ 与 η 独立,且	都服从正态分布 $N(0,\sigma^2)$, i	式求:	
(1) $\{X(t), 0\}$	$<$ t $<$ π $\}$ 的均值函数 $\mu_{X}(t)$ 与	协方差函数 $r_X(s,t)$;	
(2) $\{X(t), 0\}$	$< t < \pi$ }的一维与二维分布密	於度。	
二、(20分)公过程,且相互独立,	路某收费站红、黄、蓝三种颜 试求:	i色的汽车到达数分别	为速率3,4,5的泊松
(1) 第一辆车	(红、黄或蓝色) 的平均到达	时间及第一辆红车的	平均到达时间;
(2) 红车首先	到达的概率;		
(3)在相继的i	两辆红车之间恰有 k 辆车到达	的概率($k = 0, 1, 2,$)。
	关某种商品的销售状况共有 24 1, 1, 0, 1, 0, 0, 1, 1, 1 1, 1, 0, 0, 1, 1, 0, 1, (已满足齐次马氏链,	1, 0, 1, 0,	〔1—畅销, 0—滞销〕:
(1) 试确定该	马氏链的一步转移概率矩阵 F) (用转移频率来近似	以转移概率);
(2) 若现在是	畅销,试确定其后第四季度的]销售状况;	

2012-2013 学年, 第一学期, 第1页(共2页)

(3) 若影响销售的所有因素不变, 试分析长期以后销售状况的分布。

四、(18分)设 $\{X_n, n \ge 0\}$ 为区间[0, 3]上的随机游动,其一步转移概率矩阵为:

$$P = \begin{bmatrix} 0 & 1, & 0, & 0, & 0 \\ 1 & \frac{1}{3}, & \frac{1}{3}, & \frac{1}{3}, & 0 \\ 0, & \frac{1}{3}, & \frac{1}{3}, & \frac{1}{3} \\ 0, & 0, & 1, & 0 \end{bmatrix}$$

试求质点由状态 k 出发而被状态 0 吸收的概率 p_k 及吸收的平均时间 v_k (k=1,2,3)。

五、(22 分)设 $\{X_n, n \ge 0\}$ 为独立同分布的随机序列,且 $E(X_0) = 0$, $Var(X_0) = \sigma^2$ 。 又设 $\{N(t), t \ge 0\}$ 为强度 λ 的泊松过程,且与 $\{X_n, n \ge 0\}$ 独立。记 $Y(t) = X_{N(t)}$, $(t \ge 0)$,

- (1) 证明 {Y(t), $t \ge 0$ } 为平稳过程;
- (2) 试求 $\{Y(t), t \ge 0\}$ 的功率谱密度函数。
- (3) $\{Y(t), t \ge 0\}$ 的均值遍历性是否成立?为什么?

(完)

2015-2016学年第二学期期末考试试卷 (A卷)

	考试科目_	随机过程(B)		得分		
学	生所在系		学号		姓名	
		(考试时间:	2016年6月24日,	可用计算器)		
-,	(25分) 判断选择	圣题.				
(1)	设 $\{N(t), t \ge 0\}$	是一个强度为λ > 0的	JPoisson过程,			
	a. $\{N(t), t \ge 0\}$	一定是平稳过程;				()
	b. 给定 $N(t) = r$	n > 0,则第 n 个事件的	的到达时间服从区	[间[0,t]上的均久]分布;	()
	c. $\{M(t), t \ge 0\}$	是另一个强度为 γ >	0的Poisson过程,	则 $\{N(t) + M(t)$	$,t \ge 0$ }是一个	$^{\sim}$ 强度为 $\lambda + \gamma$
	的Poisson 过程;					()
(2)	假设一个马氏链	的所有状态都是常返	的, i 和 j 是两个状	态且 $i \rightarrow j$,则		
	a. $j \to i$;					()
	b. $P_{ij} > 0$ 或 P_{ji}					()
	c. $\sum_{i=1}^{\infty} P_{jj}^{(i)} < 0$	∞ ;				()
(-)		# - / > E	マイケントイロート ニュー・フィー	7.11. N. M. → M.		
(3)		数 $R(\tau)$ 是否可能作为 $^{-2}$	半稳过桯或序列的	的协方差函数		()
	a. $R(\tau) = e^{- \tau }$					()
	b. $R(\tau) = \begin{cases} 1/ \cdot \\ 1, \end{cases}$	$\tau , \tau \neq 0$				()
	(()
	c. $R(\tau) = \tau e^{-\tau}$					()
(4)	设 $\{X_n, n \in N\}$	是一个马氏链,状态	S空间为 S. 下面	说法是否正确.		
	a. $P_{ij}^{(n)} \ge f_{ij}^n$,其中 $i, j \in \mathcal{S}, n \in \Lambda$	<i>T</i> ;			()
	b. 如果状态 <i>i</i>	, j 是互达的, 则存在	n 使得 $P_{ij}^{(n)} > 0$	$P_{ji}^{(n)} > 0;$		()
	c. 如果转移知	巨阵的所有行相同,贝	训所有状态是属于	-相同的类;		()
	d. 如果 f_{ij} <	$1, f_{ji} < 1, 则 i, j$ 不	是互达的;			()
(5)	设有四个位置 1,	, 2, 3, 4 在圆周上逆时	付针排列,一粒子	产在这四个位置」	上随机游动,制	位子从任何一个
	位置,以概率2	/3 逆时针游动到相邻	『位置,以概率1	/3 顺时针游动3	到相邻位置,	以 $X(n) = j$ 表
	示时刻 n 处在位	江置 $j \ (j=1,2,3,4)$.	则 $P(X(n+3) =$	=3, X(n+1) =	1 X(n)=2) =	=
(6)	设 X_1, X_2, \ldots, X_n	X_n 相互独立,且 X_i	$\sim Exp(\lambda_i), i=1$,,n,则概率.	$P(X_i = \min\{.$	$X_1,\ldots,X_n\})=$

- 二、 (15分) 经过高速公路收费站的某物流公司的运货车辆数 $N(t)(t \ge 0)$ 为一强度为100的泊松过程。 设该公司的运货车分为大、中、小三个类型,三类车的数量比例为2:3:5,又设经过收费站的每辆车属 于哪一类是相互独立的。现分别以 $N_1(t)$ 、 $N_2(t)$ 和 $N_3(t)$ 代表到t时刻为止经过收费站的大、中、小三类 车的数目,
- (1) 问 $N_1(t)$ 、 $N_2(t)$ 和 $N_3(t)$ 分别是什么过程?
- (2) 试证明对固定的t > 0, $N_1(t)$ 、 $N_2(t)$ 和 $N_3(t)$ 相互独立;
- (3) 若经过收费站时,大、中、小三类车每辆需缴费80元,50元和30元,试求到时刻t为止该公司运货车所缴纳的总费用X(t)的期望和方差。
- 三、(15分) 设 $\{X_n, n \ge 0\}$ 是一个马氏链,其一步转移概率如下图所示.
- (1) 写出该链的等价类,且讨论所有状态的周期,常返性和正常返性;
- (2) 对所有的n > 0,计算状态1经n步首达状态3的概率 $f_{13}^{(n)}$;
- (3) 计算从状态 6 出发首次到达状态 5 需要的平均步数。

Figure 1: 第三题

四、(15分) 对于某河流每年汛期流量的观测值可用一个三状态的马氏链 $\{X_n, n \geq 0\}$ 来表示,其中状态 -1表示"干旱","0"表示正常,"1"表示洪涝。试根据下列25年连续观察数据:

$$-1, 0, 0, 1, 0, -1, -1, -1, 0, 0, -1, 0, -1, -1, -1, 0, 0, 1, 1, 1, 0, -1, 1, 1, 1$$

- (1) 确定该马氏链的一步转移概率矩阵 P (用转移频率估计转移概率);
- (2) 证明该马氏链是不可约遍历的;
- (3) 试分别求出洪涝与干旱发生的平均间隔(年).

五、(15分)考虑一个随机过程

$$X(t) = U\cos(\omega t) + V\sin(\omega t), \quad -\infty < t < \infty,$$

其中 ω 是常数,U和V是随机变量.

- (1) 证明 如果X(t) 是宽平稳过程,那么 E[U] = E[V] = 0;
- (2) 证明 X(t) 是宽平稳过程当且仅当

$$E[UV] = 0, \ E[U^2] = E[V^2] < \infty.$$

六、 (15分) 已知平稳过程 $\{X(t), -\infty < t < \infty\}$ 的均值函数为 0,谱密度函数为

$$S(\omega) = \frac{\omega^2 + 5}{\omega^4 + 9\omega^2 + 14}, \ -\infty < \omega < \infty.$$

- (1) 求X(t) 的协方差函数 $R(\tau)$;
- (2) X(t)是否有均值遍历性? 为什么?

(完)

随机过程期末考试参考答案与评分标准

(2016年6月24日考试)

一、(20分)判断是非与填空:

- (1): 非, 是, 非; (3分)
- (2): 是, 是, 非; (3分)
- (3): 非, 是, 非; (3分)
- (4) 是, 非, 非, 非; (4分)

(5):
$$p_{2,1}p_{1,3}^{(2)} = 5/27$$
; (4 $\%$)

(6):
$$\lambda_i/(\lambda_1+\lambda_2+\cdots+\lambda_n)$$
。(3 分)

二、(16分):

(1) (5分) $N_1(t)$, $N_2(t)$, $N_3(t)$ 分别是强度为 λp_3 , λp_2 , λp_3 的泊松过程,其中:

$$\lambda = 100, p_1 = 0.2, p_2 = 0.3, p_3 = 0.5$$

即强度分别为: 20,30,50。

(2)
$$(6 \%) P\{N_1(t) = n_1, N_2(t) = n_2, N_3(t) = n_3\} =$$

$$= P\{N_1(t) = n_1, N_2(t) = n_2, N_3(t) = n_3 \mid N(t) = n\} P\{N(t) = n\} \quad (\sharp + n = n_1 + n_2 + n_3)$$

$$=\frac{n!}{n_1!n_2!n_3!}p_1^{n_1}p_2^{n_2}p_3^{n_3}\frac{(\lambda t)^n}{n!}e^{-\lambda t}=\frac{(\lambda p_1 t)^{n_1}}{n_1!}e^{-\lambda p_1 t}\frac{(\lambda p_2 t)^{n_2}}{n_2!}e^{-\lambda p_2 t}\frac{(\lambda p_3 t)^{n_3}}{n_3!}$$

$$= P\{N_1(t) = n_1\} P\{N_2(t) = n_2\} P\{N_3(t) = n_3\}.$$

(3)
$$(5 \%)$$
 $X(t) = 80N_1(t) + 50N_2(t) + 30N_3(t)$,

$$EX(t) = 4600t$$
, $Var(X(t)) = 248000t$.

三、(16分):

(1) (5 分){1}与{2}均为瞬过类,前者为非周期,后者周期为无穷; {3,4,5,6}与{7,8}均为遍历类;

(2)
$$(6 \%) f_{13}^{(1)} = 0, f_{13}^{(n)} = (0.5)^n, (n \ge 2);$$

(3)(5分)该马氏链的转移概率矩阵为:

$$P = \begin{cases} 1 & 0.5 & 0.5 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 & 0 & 0.5 & 0 \\ 3 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0.5 & 0 & 0.5 & 0 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 6 & 0 & 0 & 0.5 & 0 & 0 & 0.5 & 0 & 0 \\ 7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0.75 & 0.25 \end{cases}$$

设
$$T = \min\{n: n \ge 0, X_n = 5\}$$
 ,记 $v_i = E(T \mid X_0 = i)$, $(i = 1, 2, \dots, 8)$ 则有:

$$v_6 = E(T \mid X_0 = 6) = \sum_i E(T \mid X_1 = i) p_{6,i} = 0.5E(T \mid X_1 = 3) + 0.5E(T \mid X_1 = 6)$$

$$=0.5(v_3+1)+0.5(v_6+1)$$
, 即有: $v_6=0.5(v_3+1)+0.5(v_6+1)$; 同理可得:

$$v_3 = v_4 + 1$$
, $v_4 = 0.5(v_3 + 1) + 0.5$ \circ 解得: $v_6 = 6$ \circ

四、(16分):

(1) (5
$$\frac{4}{9}$$
) $P = 0$ $\begin{pmatrix} \frac{4}{9} & \frac{4}{9} & \frac{1}{9} \\ \frac{4}{9} & \frac{3}{9} & \frac{2}{9} \\ 0 & \frac{1}{3} & \frac{2}{3} \end{pmatrix}$;

- (2)(6分)由状态转移图分析可证;
- (3) (5分) 求解线性方程组:

$$\pi_{-1} = \frac{4}{9} \pi_{-1} + \frac{4}{9} \pi_{0}, \quad \pi_{0} = \frac{4}{9} \pi_{-1} + \frac{3}{9} \pi_{0} + \frac{1}{3} \pi_{1}, \quad \pi_{1} = \frac{1}{9} \pi_{-1} + \frac{2}{9} \pi_{0} + \frac{2}{3} \pi_{1}, \quad \sum_{i} \pi_{i} = 1$$

得马氏链极限分布: $\pi = (\frac{12}{41}, \frac{15}{41}, \frac{14}{41})$, 所求者为:

$$\mu_{\scriptscriptstyle 1} = \frac{41}{14} \simeq 2.93$$
 , $\quad \mu_{\scriptscriptstyle -1} = \frac{41}{12} \simeq 3.42$ 。

五、(16分):

(1) (8 分) 否则,设 $E[U] \triangleq u$, $E[V] \triangleq v$ 不全为零,则 $u^2 + v^2 > 0$,从而有:

$$\frac{EX(t)}{\sqrt{u^2+v^2}} = \sin(\omega t + \alpha) (t \in \mathbb{R}) 不为常数, (其中 \alpha 满足: \sin \alpha = u / \sqrt{u^2+v^2} ,$$

$$\cos \alpha = v / \sqrt{u^2 + v^2}$$
)矛盾。

(2) (8分) 充分性易证,此时 EX(t)=0, $(\forall t\in \mathbb{R})$ 又若记 $E[U^2]=E[V^2]\triangleq\sigma^2$,则:

$$\gamma_X(t+\tau,t) = EX(t+\tau)X(t) = \sigma^2\cos(\omega\tau) = R_X(\tau)$$
.

必要性: 取 $t_0 \in \mathsf{R}$ 使得: $\sin(\omega t_0) = 0$,则因为X(t)的二阶矩有限,故有:

$$EX^2(t_0) = \cos^2(\omega t_0) E[U^2] < \infty$$
,这说明 $E[U^2] < \infty$,同理可证: $E[V^2] < \infty$ 。

又因 X(t) 为宽平稳, 故其方差: Var(X(t)) =

 $=E[U^2]\cos^2(\omega t)+E[UV]\sin(2\omega t)+E[V^2]\sin^2(\omega t)$ 为常数,对它求导,应有:

$$\omega[E(V^2) - E(U^2)]\sin(2\omega t) + 2\omega E(UV)\cos(2\omega t) = 0, \ (\forall t \in \mathbb{R})$$

显然,与(1)类似,此时必有: E(UV)=0,且 $E(U^2)=E(V^2)$ 。

六、(16分):

(1)
$$(8 \%) R(\tau) = \frac{3\sqrt{2}}{20} e^{-\sqrt{2}|\tau|} + \frac{\sqrt{7}}{35} e^{-\sqrt{7}|\tau|};$$

(2) (8分) 由于 $\int_{-\infty}^{\infty} |R(\tau)| d\tau < \infty$,故X(t)的均值具有遍历性。

《随机过程A》期中考试试题

姓 名	学 号	得 分	
(2017年05月08日上午	9:45-11:45)	

- 一. (30分) 填空或选择题, 答案可以直接写在试卷上.
 - 1. 设随机变量X和Y的矩母函数 $q_X(t)$ 和 $q_Y(t)$ 均存在,则下列说法错误的是().
 - (A) $g_X(t)$ 能唯一决定X的分布
 - (B) 若X的方差存在且 $g_X(t)$ 二阶可导,则 $Var(X) = g''_X(0) [g'_X(0)]^2$
 - (C) X + Y的矩母函数也存在且为 $g_X(t)g_Y(t)$
 - (D) 对任意n > 0, n 阶矩 $E[X_n]$ 一定存在
 - 2. 设 $\{N(t), t \geq 0\}$ 是一个强度为 λ 的Poisson过程, 则 $\mathrm{E}[N(1)N(2)] =$ ______; 若又已知N(3) = 1, 则 $\mathrm{P}(N(2) N(1) = 1) =$ ______.
 - 3. 关于一般的更新过程, 下列说法中通常正确的是().
 - (A) 具有平稳独立增量性
 - (B) 具有独立增量性, 但不具有平稳增量性
 - (C) 不具有独立增量性, 但具有平稳增量性
 - (D) 既不具有独立增量性又不具有平稳增量性
 - 4. 设 $\{X_n, n \geq 0\}$ 是一个 Markov 链, 且一步转移概率矩阵为

$$P = \begin{array}{ccc} 1 & \begin{pmatrix} 0 & 0.5 & 0.5 \\ 0.3 & 0.4 & 0.3 \\ 0.5 & 0.5 & 0 \end{array} \right).$$

若 X_0 的分布律为 $\begin{pmatrix} 1 & 2 & 3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$, 则 X_2 的分布律为_______; 且该 Markov 链的平稳分布为

- 5. 在离散时间 Markov 链中, 关于常返性下列说法正确的是().
 - (A) 若状态 i 常返且 $i \rightarrow i$, 则状态 i 也是常返的
 - (B) 若状态 i 常返且 $i \rightarrow j$, 则状态 j 不一定是常返的
 - (C) 若状态 i 零常返, 则极限 $\lim_{n\to\infty} p_{ii}^{(n)}$ 一定存在
 - (D) 若状态 i 正常返, 则极限 $\lim_{n\to\infty} p_{ii}^{(n)}$ 一定存在
- 6. 关于离散时间 Markov 链的平稳分布和极限分布, 下列说法正确的是().
 - (A) 只要有正常返类, 则必有平稳分布
 - (B) 平稳分布和极限分布都存在, 则它们必相等
 - (C) 极限分布若存在则与 X_0 的取值无关
 - (D) 平稳分布若存在则必唯一

- 7. 关于直线上的简单对称随机游动 $\{X_n, n \geq 0\}$, 下列说法错误的是().
 - (A) 所有状态的周期均为 2
 - (B) $\{X_n, n \ge 0\}$ 为一个 Markov 链且无平稳分布
 - (C) 若 $X_0 = 0$, 则对任意整数 n, 其最终能到达它的概率为 1
 - (D) 若 $X_0 = 0$, 则其首次返回原点所需平均时间是有限的
- 9. 若一连续时间 Markov 链在某个时刻所处的状态为 i, 且已知

$$q_{i,i-1} = \frac{1}{2}, \quad q_{i,i+1} = \frac{1}{3}, \quad q_{i,i+2} = \frac{1}{6}, \quad q_{i,j} = 0, \quad j \notin \{i-1, i, i+1, i+2\},$$

则其状态继续停留在 i 上的时间服从参数为______的指数分布, 然后转移到 i-1 上的概率为_____.

- 二. (12分) 设 $\{X_n, n \ge 0\}$ 是满足第一题8小题条件的分支过程. 对任意 $n \ge 0$, 试求 X_n 的期望 $E[X_n]$ 与方差 $Var[X_n]$.
- 三. (18分) 设某路口轿车和客车分别按速率为 λ_1 和 λ_2 的Poisson过程通过, 且相互独立. 从某个时刻 t 开始, 试求
 - 1. 有第一辆车通过该路口所需的平均时间.
 - 2. 轿车首先通过该路口的概率.
 - 3. 在相继两辆轿车之间恰有 n 辆客车通过该路口的概率, $n = 0, 1, 2, \cdots$
- 四. (20分) 设罐子中装有 4 个球, 它们要么是红色的, 要么是黑色的. 每次从罐中随机取出一个球, 然后换入一个另一种颜色的球. 经过 n 次这样的取球置换后, 记 X_n 为罐中黑球的个数.
 - 1. 写出过程 $\{X_n, n \geq 0\}$ 状态空间, 并说明该过程是否为 Markov 链.
 - 2. 讨论各状态的周期性和常返性(可直接写出你的结论, 无须计算过程).
 - 3. 当 $n \to \infty$ 时, 试讨论 X_n 的极限分布.
 - 4. 若初始时罐中没有黑球,则平均需要多少次取球置换后罐中再次无黑球?
- 五. (20分) 两颗通信卫星放入轨道, 每颗卫星的工作寿命均服从参数为 μ 的指数分布. 一旦有某颗卫星失效就再发射一颗新卫星替换它, 所需的准备及发射时间服从参数为 λ 的指数分布. 记 X(t) 为时刻 t 时在轨道中工作的卫星个数, 则 $\{X(t), t \geq 0\}$ 为一连续时间 Markov 链.
 - 1. 问 $\{X(t), t \geq 0\}$ 是否为一个生灭过程? 说明你的理由并指出状态空间.
 - 2. 写出该 Markov 链的 Q 矩阵.
 - 3. 建立其 Kolmogorov 向前微分方程(要求: 非矩阵形式).
 - 4. 当时间 $t \to \infty$ 时, 在轨工作卫星数服从什么分布?

一. (30分)

中国科学技术大学

2016—2017学年第二学期考试试卷

	考试科目	随机过程(A)	得分	
		学号		
		(2017年6月12日上午14:30	16:30, 半开卷)	
(30)分) 填空或选择题,	答案可以直接写在试	卷上.	
		一个强度为1的Poiss		
	P(N(10) = 9 I	N(5) = 4) =	_; $E[N(10) N(5)] =$	·
2.		上一个更新过程, 且 W	k 为其第 k 个更新点	$(k \ge 1)$,下列中一定
		$\{x_k^{(k)}\} \mapsto \{W_k > t\}$ 等价 $\{x_k^{(k)}\} \mapsto \{W_k < t\}$ 等价		
3.		kov链, 下列说法正确的		
	(A) 如果果个状态; (B) 所有状态不可i	是常返的, 则过程至少 能都是非常返的	会到达它一次	
		态且不可约, 则所有状	态不可能都是正常返	的
	(D) 若两个状态不	互达, 则它们有可能都	是常返的	
4.		arkov链中, 对某个给为		$(t_0) = i$,且已知过程
		为 ν _i , 则下列说法中错 留的时间服从参数为 ι	` /	
	` '	会转移到状态 j , 则继:	- \ /	
	,	状态转移的时间间隔		2 (-/
		继续在 i 上停留的平均		
5.		「{0,1,2} 的生灭过程 日妹我概要	中,每个状态上停留的	的时间均服从参数为
	$\lambda > 0$ 的指数分布,	且积侈概率	1	
		$P_{01} = P_{21} = 1,$	$P_{10} = P_{12} = \frac{1}{2}.$	
	那么该过程的转移	率矩阵 $Q = $	$_{}$,极限分布 $\pi = _{-}$	·
6.		具有Markov性的是(
		(B) 更新过程 (C) Y	ule过程 (D) Brown法	运动
7.	下列过程中不是Gi		:=:h	
		为 (B) 几何Brown (D) 带漂移的Bi		
8.			(0) = 0. 对任意 0 < 3	$s < t < \infty$,随机向量

(B(s), B(t)) 服从二元正态分布 $N(_____)$; $P(B(t) > 1|B(s) = 1) = ____.$

- 9. 设 $\{B_{00}(t), 0 \le t \le 1\}$ 为Brwon桥过程,则对任意 $0 \le s \le 1$, $Var[B_{00}(s)] =$ ______.
- 二. (12分) 假定某天文台观测到的流星流是一个Poisson过程, 据以往资料统计为每小时平均观测到 3 颗流星. 试求:
 - 1. 在晚上 8 点到 10 点期间, 该天文台没有观察到流星的概率.
 - 2. 凌晨 0 点后该天文台观察到第一颗流星的时间的分布函数.
- 三. (18分) 独立重复地掷一枚均匀的骰子, 以 X_n 表示前 n 次结果中的最大点数, 则 $\{X_n, n \geq 1\}$ 为一个Markov链.
 - 1. 写出该Markov链的状态空间和一步转移概率矩阵.
 - 2. 求概率 $P(X_{n+2}=4|X_n=3)$ 及 $P(X_2=X_3=X_4=3)$.
 - 3. 问当 $n \to \infty$ 时, X_n 的极限分布是否存在? 请写出并证明你的结论.
- **四.** (16分) 考虑直线上从原点出发的简单对称随机游动, 记 X_n 表示时刻 n 过程所处的位置, 且

$$Y_n = X_n^2 - n$$
, $Z_n = (-1)^n \cos(\pi X_n)$.

证明 $\{Y_n, n \ge 0\}$ 和 $\{Z_n, n \ge 0\}$ 均为关于 $\{X_n, n \ge 0\}$ 的鞅.

- 五. (8分) 设 $\{X_n, n \geq 0\}$ 为一个鞅, 对任意 $n \geq 0$, 二阶矩 $\mathrm{E}[X_n^2]$ 存在且记 $Y_n = X_n^2$, 问 $\{Y_n, n \geq 0\}$ 是否为一个(上,下)鞅? 证明你的结论.
- 六. (16分) 设 $\{B(t), t \geq 0\}$ 为标准Brown运动, 且 B(0) = 0.
 - 1. 求 B(1) + B(2) + B(3) 的分布.
 - 2. 在 B(2) = 1 的条件下, 分别求 B(1) 和 B(3) 的分布.

2016-2017学年第一学期期末考试试卷 (A卷)

	考试科目	随机过程(B)		得分		_
学	生所在系		 学号		姓名	
		(考试时间: 2017年	1月11日上午8	3:30-10:30,半月	开卷)	
-,	(32分) 判断是非	卡与填空题 .				
(1)	设 $\{N(t), t \ge 0\}$	是一个强度为λ > 0的	Poisson过程,	则 $Cov(N(t), N(t))$	(s))=	
(2)	(判断是非)设	$f = m \ge 1$ 使得对于马	氏链的所有状	念 i ,有 $P_{i,j}^{(m)} >$	· 0,则:	
	A $d(j) m$, 其口	中 $d(j)$ 为 j 的周期;				()
	$B \ d(j) = m;$					()
	C j 是非周期	的;				()
	D j 的周期为 j	无穷;				()
(3)		、灰三种颜色的汽车 、论颜色,第一辆汽车				
(4)	顾客依概率 p 边的每个顾客又 q	:商店门口的顾客数{. 挂入店内,以概率1 - 虫立地以概率q 进行; ; 消费的顾	- p 不进店即 消费, 以概率	离开,且顾客是 $1-q$ 不消费。 \mathbb{Q}	と否进店是相互独立 引进店的顾客数的均	五的; 进店
(5)	一个偶函数,直	$(2\pi\Theta_1t+\Theta_2),\; A\; 为$ 而 $\Theta_2\;$ 服从区间 $[-\pi,\pi]$ 从而该过程为]上的均匀分			
(6)	设马氏链的状态	态 i 是周期为 d 的常	赏返状态, μ_i	为状态 i 的平均	均常返时,则 $\lim_{n o 1}$	$-\infty P_{ii}^{(nd)} =$
	o					
二、 若每 人数	$(16分)$ 设某人 $^{\text{F}}$ 个顾客的订阅季 $^{\text{F}}$, $i=1,2,3.$ 并	甲负责订阅杂志,前来 $ ext{数}Y \sim \left(egin{array}{ccc} 1 & 2 & 3 \ rac{1}{2} & rac{1}{3} & rac{1}{6} \ ootnotesize eta (X(t)) & 表示到时刻 \end{array} ight)$	x 订阅的顾客数 $\begin{pmatrix} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	效是日均到达率 <i>;</i> 择相互独立。设 ! 全部手续费(假	为 6 的泊松过程 $\{N(t)\}$ 大 $N_i(t)$ 为订阅 i 季 i 设每订出一季杂志,	$\{t, t \ge 0\}$ 。 杂志的顾客 甲可得手
续费	1元),	2.3 分别是什么讨程				

(2) 试求: E[X(t)], Var(X(t)), 及X(t) 的矩母函数 $g_{X(t)}(u) = E[e^{uX(t)}]$.

 Ξ 、(20分) 设有夏普、大金两个品牌的空气净化器在某地市场占有率开始时(n=0)均为1/3(其他品牌总的市场占有率为1/3). 而每过一个月(单位时间)顾客消费倾向的改变可以用一个三状态的马氏链 $\{X_n, n \geq 0\}$ 来描述,其一步转移概率(状态1、2、3分别表示购买夏普、大金、其他品牌的空气净化器)如下图所示.

$$\mathbf{P} = \begin{array}{ccc} 1 & \left(\begin{array}{ccc} 0.6 & 0.4 & 0 \\ 0.35 & 0.3 & 0.35 \\ 0 & 0.2 & 0.8 \end{array} \right).$$

- (1) 证明该链为不可约、遍历的;
- (2) 问两个月后各品牌的市场占有率将变成多少?
- (3) 各品牌对市场的占有率最终会稳定于什么样的比例?

四、 (16分) 逐个随机地把球放入到 a个盒子中去(可重复放),以 X_n 表示放了 n个球之后的空盒数,则 $\{X_n, n \geq 0\}$ 为马氏链,

- (1) 写出该马氏链的转移概率矩阵P,并进行状态分类;
- (2) 试求放满 a个盒子的平均时间(次数)。

五、(16分) 已知平稳过程 $\{X(t), -\infty < t < \infty\}$ 的均值函数为 0,谱密度函数为

$$S(\omega) = \frac{\omega^2 + 5}{\omega^4 + 11\omega^2 + 24}, -\infty < \omega < \infty.$$

- (1) 求X(t) 的协方差函数 $R(\tau)$;
- (2) X(t)是否有均值遍历性? 为什么?

(完)

2016—2017学年第二学期考试试卷

考试科目	随机过程(B)	得分
所在系	_ 学号	姓名

(2017年6月22日上午8:30-10:30, 半开卷)

一. (29分) 填空或选择题.

- 1. 设随机变量X和Y的矩母函数 $g_X(t)$ 和 $g_Y(t)$ 均存在,则下列说法错误的是().
 - (A) $g_X(t)$ 能唯一决定X的分布
 - (B) 若X的方差存在且 $g_X(t)$ 二阶可导,则 $Var(X) = g_X''(0) [g_X'(0)]^2$
 - (C) X + Y的矩母函数也存在且为 $g_X(t)g_Y(t)$
 - (D) 对任意n > 0, n 阶矩 $E[X^n]$ 一定存在
- 2. 设 $\{N(t), t \geq 0\}$ 是一个强度为 λ 的Poisson过程,则 E[N(1)N(2)] = _______; E[N(10)|N(5)] = _______; 若又已知N(3) = 1,则 P(N(2) N(1) = 1) = ______;
- 3. 假定某天文台观测到的流星流是一个Poisson过程, 据以往资料统计为每小时平均观测到 3 颗流星. 则在晚上 8 点到 10 点期间, 该天文台没有观察到流星的概率是. 凌晨 0 点后该天文台观察到第一颗流星的时间的分布是...
- 4. 设 $\{X_n, n \ge 0\}$ 是一个Markov 链, 且一步转移概率矩阵为

$$P = \begin{array}{c} 1 \\ 2 \\ 3 \end{array} \left(\begin{array}{ccc} 0 & 0.5 & 0.5 \\ 0.3 & 0.4 & 0.3 \\ 0.5 & 0.5 & 0 \end{array} \right).$$

- 5. 在离散时间Markov 链中, 关于常返性下列说法正确的是().
 - (A) 若状态 i 常返且 $j \rightarrow i$, 则状态 j 也是常返的
 - (B) 若状态 i 常返且 $i \rightarrow j$, 则状态 j 不一定是常返的
 - (C) 若状态 i 零常返, 则极限 $\lim_{n\to\infty} p_{ii}^{(n)}$ 一定存在
 - (D) 若状态 i 正常返, 则极限 $\lim_{n\to\infty} p_{ii}^{(n)}$ 一定存在
- 6. 关于离散时间Markov 链的平稳分布和极限分布, 下列说法正确的是().
 - (A) 只要有正常返类, 则必有平稳分布
 - (B) 平稳分布和极限分布都存在, 则它们必相等
 - (C) 极限分布若存在则与 X_0 的取值无关
 - (D) 平稳分布若存在则必唯一
- 7. 关于直线上的简单对称随机游动 $\{X_n, n \geq 0\}$, 下列说法错误的是().
 - (A) 所有状态的周期均为2

- (B) $\{X_n, n \geq 0\}$ 为一个Markov 链且无平稳分布
- (C) 若 $X_0 = 0$, 则对任意整数n, 其最终能到达它的概率为1
- (D) 若 $X_0 = 0$, 则其首次返回原点所需平均时间是有限的
- 8. 关于平稳过程, 下列说法正确的是().
 - (A) 宽平稳过程具有平稳增量性
 - (B) Possion过程是宽平稳过程
 - (C) 初始状态服从平稳分布的Markov过程为严平稳过程
 - (D) 严平稳过程一定是宽平稳过程
- 二. (12分) 假设一个电子管内到达阳极的电子数目 N(t) 服从参数为 λ 的 Poisson 过程,每个电子携带能量相互独立且与电子数目 N(t)相互独立,并均服从区间 [1,2] 上的均匀分布,设到 t 时刻的阳极接受的能量为 S(t). 求S(t) 的均值 E[S(t)] 和 方差Var[S(t)].
- 三. (20分) 现有红色、黄色、蓝色三种汽车,分别按强度为 λ_1 , λ_2 和 λ_3 且相互独立的 Poisson 过程通过公路上的某观察站,
 - (1) 若不论颜色, 求第一辆车通过该观察站所需的时间的概率密度函数与期望;
 - (2) 在已知时刻 t_0 观察到一辆红车的条件下,
 - (a) 下一辆仍是红车的概率是多少? (b) 下一辆是黄车的概率是多少?
 - (3) 已知时刻 t_0 观察到一辆红车的条件下,接下来通过的 k 辆全是红车,而后是非红车的概率是多少? (k > 0)
 - (4) 在相继两辆红车之间通过该观察站的蓝车恰有n 辆的概率, $n = 0, 1, 2, \cdots$
- 四. (15分) 设马氏链 $\{X_n, n \geq 0\}$ 的状态空间为 $S = \{0, 1, 2, ...\}$ (全体非负整数),转移概率为

$$P_{i,i+1} = P_{i,0} = \frac{1}{2}, \quad i \ge 0.$$

- (1) 证明该马氏链为不可约遍历的;
- (2) 试求该马氏链的极限分布 $\pi = \{\pi_i, i \geq 0\}$ 。
- 五. (8分) 设 $X(t) = Y \cos(\omega t + \Theta)$, 其中 ω 为常数,Y 服从均值为 μ , 方差为 σ^2 正态分布, Θ 服从区间 $[0,2\pi]$ 上的均匀分布,且 Y 与 Θ 相互独立. 试判断X(t) 是否为宽平稳过程。如是,请给出证明,否则,请说明原因。
- 六. (16分) 已知平稳过程 $\{X(t), -\infty < t < \infty\}$ 的均值函数为 0,谱密度函数为

$$S(\omega) = \frac{\omega^2 + 4}{\omega^4 + 10\omega^2 + 21}, -\infty < \omega < \infty.$$

- (1) 求X(t) 的协方差函数 $R(\tau)$;
- (2) X(t)是否有均值遍历性? 为什么?

中国科学技术大学期末考试题

考试科目: 随机过程	(B)	得分:
学生所在系:	姓名: _	学号:
	(2018年1月9日,	半开卷)
一、(20分)判断是非与填空	:	
(1) (每空 2 分) 设 $X = \{X_n\}$	$_{i},\geq0\}$ 为一不可约、有队	$\mathbb{R}(\mathbf{N} \uparrow)$ 状态的马氏链,且其转移概率矩阵 P
为双随机的(行和与列和均为1),	则:	
a. X 的平稳分布不一定存	·在(); b.	$m{X}$ 的平稳分布存在但不必唯一();
$c. X$ 的平稳分布为 $(\frac{1}{N}, \frac{1}{N})$	$(\overline{l},,\frac{1}{N})$ (); d .	X 的极限分布为: $(\frac{1}{N}, \frac{1}{N}, \dots, \frac{1}{N})$ () 。
(2)(每空3分) 设公路上某 ³ 钟)的泊松过程。则:	观察站红、黄、蓝三种颜	色的汽车到达数分别是强度为 2、3 和 5 (辆/分
a. 第一辆车到达的平均时间 c . 在第一辆红车到达之前 f	合好到达 k 辆非红车的概	工车首先到达的概率为 (); 率为 ()。 过连续数据 (1一畅销,0一滞销);
1, 1,	, 0, 1, 0, 0, 1, 1, 1,	0, 1, 0,
1, 1,	, 0, 0, 1, 1, 0, 1, 0,	1, 1, 1,
若该商品销售状况满足齐次马氏链	,则据以上数据可估计出	l该马氏链的转移概率矩阵 P 为()。
二、(15 分)设到达某计数器	的脉冲数 $\{N(t), t \ge 0\}$	是一速率为 λ 的泊松过程,每个脉冲被记录的
概率均为 p ,且各脉冲是否被记录	录是相互独立的。现以 $\it N$	$N_1(t)$ 表示被记录的脉冲数,试求 $N_1(t)$ 的矩母
函数 $g_{N_1(t)}(v)$ 以及 $EN_1(t)$, Van	$r[N_1(t)]$ 和 $Cov(N_1(s))$	$(N_1(t))$.
	0)	
三、(20分)设马氏链 $\{X_n, n\}$	$n \ge 0$ } 的转移概率矩阵 †	∃ :
	1(1 2 0)	

$$P = 2 \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 0\\ \frac{1}{3} & 0 & \frac{2}{3}\\ 0 & \frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

(1) 设 $X_0=3$,试求: $\pi_i(1)=P\{X_1=i\}$, $\pi_i(2)=P\{X_2=i\}$, (i=1,2,3),并求: $E(X_1) 和 E(X_2)$;

- (2) 试求该马氏链的极限分布: $\pi_j = \lim_{n \to \infty} p_{i,j}^{(n)}$, (i, j = 1, 2, 3);
- (3)当初始分布 $\pi_i(0)$ (i=1,2,3) 为什么分布时,该马氏链为严格平稳过程?并求此时的 $E(X_n)$ 。

四、(15 分) 把一些球逐个随机地放到 a 个格子中去,若 n 个球放进了 k 个格子,则称系统在时刻 n 的状态为 k 。试用一马氏链 $\{X_n, n \geq 0\}$ 描述此系统,并且

- (1) 写出该马氏链的转移概率矩阵P,并讨论其状态分类;
- (2) 证明过程由状态 k ($0 \le k \le a-1$) 出发,必然进入状态 a;
- (3) 试求放满a个格子的平均时间(假定 $X_0 = 0$)。

五、(15 分) 设有随机过程 $X(t)=A\cos(\omega_0\,t+\Theta)$,其中 Θ 服从均匀分布 $U(0,2\pi)$,A 服从瑞利分布:

$$A \sim f(x) = \frac{x}{\sigma^2} \exp(-\frac{x^2}{2\sigma^2}), (x > 0)$$

且A与 Θ 独立,

- (1) 证明 $\{X(t), t \in R\}$ 为宽平稳过程;
- (2) 试求 $\{X(t), t \in R\}$ 的功率谱密度函数 $S(\omega)$ 。

六、(15分) 在下列四个关于 ω 的函数中:

$$S_1(\omega) = \frac{\omega^2 + 9}{(\omega^2 + 4)(\omega + 1)^2}, \quad S_2(\omega) = \frac{\omega^2 + 64}{\omega^4 + 29\omega^2 + 100},$$

$$S_3(\omega) = \frac{\omega^2 - 4}{\omega^4 + 4\omega^2 + 3}, \quad S_4(\omega) = \frac{\omega^2 \cos \omega}{\omega^4 + 1}$$

- (1)哪一个可以作为一个平稳过程 $\{X(t),\ t\in {\sf R}\}$ (均值为 0)的功率谱密度函数?并求其所对应的协方差函数 $R(\tau)$:
 - (2) 该平稳过程的均值是否具有遍历性? 为什么?

(完)

2017-2018 第二学期期末考试题(2)

考试科目: 随	瓦机过程(B)		得分:		
学生所在系:	#	生名:	学号:		
	(2018年6月29日,半开卷)				
一、(24分。	填空题每空3分,其余	每空2分)判断是非	与填空:		
(1) (判断是	非)设 <i>S</i> 为一不可约马 [夭链 $\{X_n, n \ge 0\}$ 的状	态空间,则对任意 $i, j \in S$:		
(a) i, j 均	为正常返状态 ()	; (b) $\mu_i = \mu_j$, 其	$ \pm \mu_i = \sum_{n=0}^{\infty} n f_{ii}^{(n)} () ; $		
$(c) i, j \dagger$	E必为常返状态();	$(d) \ d(i) = d(j)$	$\in (0, \infty)$ () \circ		
(2) (判断是	非) 设马氏链共有 n 个4	犬态,且 $i \rightarrow j$,则:			
(a) 可用至	3n步由 i 转移到 j (); (b) 由i转移3	到 j 至少要用 n 步($)$ 。		
(3)(填空) 设	战粒子在数轴上由0出发	作对称随机游动,则它	它回到0的平均时间为()。		
(4) (填空)	设 $\{N(t), t \ge 0\}$ 是一强	度为 λ 的 Poisson 过和	$_{\Xi}$, $s,t>0$, 则:		
$P\{N(s)=k\mid$	$N(s+t)=n\big\}=($	$)(0 \le k \le n);$	$E\{N(s+t) N(s)\}$ 的期望为		
(),方差为()。			
二、(15分)	设某路段发生交通事故的	的次数 <i>N(t)</i> 为一 Poi	sson 过程,且平均每月发生交		
	t = 0表示去年 12 月底				
	3 月底为止未发生交通 到今年 3 月底已发生了。		6月底至少发生7次交通事故		
的概率是多少?					
	事故造成的经济损失 <i>Y</i> 试求到6月底为止因交		参数为0.1的指数分布,且各 3失的期望值。		
			a,b,c)的边爬行,假定在时到另外两个顶点(b 和 c)的		
概率都等于1/2。	试用一个马氏链 $\left\{ X_{n},n\right\}$	≥ 0 }描述这个过程(状态: <i>a,b,c</i>), 并且		

(1) 写出该马氏链的转移概率矩阵P;

(2) 试求 $P^{(n)} = P^n$;

(3) 试求
$$\lim_{n\to\infty} P^{(n)} = ?$$

四、(18分)设 $\{X_n, n \ge 0\}$ 为区间 [0,3]上的随机游动,其转移概率矩阵为:

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 \\ 2 & 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix}$$

试求质点由k 出发而被0吸收的概率 p_k 及它被吸收的平均步数 v_k ,(k=1,2,3)。

五、(16 分)设A 与 B独立,都服从[-1, 1]上的均匀分布,定义随机过程:

$$X(t) = A\cos ω_0 t + B\sin ω_0 t$$
, $(t ∈ R, ω_0)$ 为非零常数)

- (1) 证明 $\{X(t), t \in R\}$ 为宽平稳过程;
- (2) 试求其功率谱密度函数 $S(\omega)$ 。

六、(12分) 设平稳过程 $X = \{X(t), t \in R\}$ (均值为 0) 的功率谱密度函数为:

$$S(\omega) = \frac{\omega^2 + 14}{\omega^4 + 13\omega^2 + 36}$$

- (1) 试求 X 的协方差函数 $R(\tau)$;
- (2) 问 X 的均值是否有遍历性? 为什么?

(完)

2018-2019 第一学期期末考试题

考试科目: <u>随机过程(B)</u>		得	骨分:
学生所在系:	性名:	学号:_	
(2019年1	月 10 日,半3	开卷)	
一、(30分。填空题每空3分,其余			
(1) (是非) 若马氏链 <i>X</i> = { <i>X_n</i> , <i>n</i> ≥	0}的初始分布 π	$ \tau = \{\pi_j, \ j \ge 0\} $ 为其等	P稳分布,则:
(a) $\sum_{i\geq 0} \pi_i p_{i,j}^{(n)} = \pi_j, (j\geq 0, n\in N)$) () ; (b) <i>X</i> 为严格平稳;	过程()
(c) $\pi_j = \lim_{n \to \infty} p_{i,j}^{(n)}, (i, j \ge 0)$ (); (d	!) X 必有正常返状?	态 ()。
(2) (是非) 下列关于 τ 的函数 $R(\tau)$	是否为(实或复)	平稳过程的协方差函	函数?
(a) $R(\tau) = e^{- \tau } (\tau + 1)^2$ (); (b)	$) R(\tau) = \mid \tau \mid e^{-\tau}$	$^{2/2}$ (); (c) $R(\tau)$	$=\frac{\sin\tau}{\pi\tau} (\qquad)$
(d) $R(\tau) = \sigma^2 e^{i\lambda \tau}$ (); (e) R	$(\tau) = \sigma^2 e^{-i\lambda \tau } ($)。(注: σ,λ>	$0, i = \sqrt{-1})$
(3) (填空) 设 X_1, X_2, X_3 相互犯	以立,且 $X_i \sim E$	$xp(\lambda_i), i = 1,2,3$ (‡	旨数分布),则
$X_{(1)} = \min\{X_1, X_2, X_3\}$ 的分布为(), 概率 P{Z	$X_1 = X_{(1)}$)。
(4) (填空) 设{N(t), t≥0}是一强	度为λ的 Poissor	n 过程, W_{k} 为其第 k	个事件发生的
时间,并设 $1 \le k \le n, t > 0$,则 $E\{W_k\}$	N(t)=n $=$ $=$), $E(W_k) = ($).
二、(8分) 假设汽车按强度为 λ的:	泊松过程进入一	条单向行驶的无限长	长的公路,进入
的第 i 辆车以速度 V_i 行驶。假定诸 V_i (i	≥1)为相互独立	立的正随机变量,有	共同分布 F 。
试求在时刻 t 位于区间 (a,b) 内的平均汽	车辆数。		
三、 (15 分) 设马氏链 $\{X_n, n \ge 0\}$	的转移概率为:		

(1) 证明该马氏链为不可约常返的,且为非周期;

 $p_{0,j}=a_j>0,\;(j\ge 0)\quad p_{i,i-1}=1,\;(i\ge 1)$

(2) 试求过程由0出发后首次返回到0的平均时间 μ_0 ,并据以回答:过程何时为正常

返?何时为零常返?

- (3) 在正常返时,试求该马氏链的极限分布: $\pi = \{\pi_i, j \geq 0\}$ 。
- 四、(20分)设马氏链 $\{X_n, n \ge 0\}$ 的一步转移概率矩阵为:

$$P = \begin{bmatrix} 1 & 0 & 0.5 & 0.3 & 0.2 \\ 2 & 0 & 0.2 & 0.4 & 0.4 \\ 3 & 0 & 0 & 1 & 0 \\ 4 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- (1) 试讨论该马氏链的状态分类(即:分为几个等价类、各类的周期性如何、是否为常返、是否为正常返?)。
- (2) 试求过程由状态 k 出发而被状态 j 吸收的概率 $f_{k,j}$, (k = 1,2; j = 3,4)。
- 五、(15分)设A与 Θ 独立且分别服从均匀分布U(0,1)与 $U(0,2\pi)$,定义过程:

$$X(t) = A\cos(\omega_0 t + \Theta)$$
 ($t \in R$, ω_0 为非零常数)

- (1) 证明 $\{X(t), t \in R\}$ 为宽平稳过程;
- (2) 试求其功率谱密度函数 $S(\omega)$ 。

六、(12分) 设平稳过程 $X = \{X(t), t \in R\}$ (均值为 0) 的功率谱密度函数为:

$$S(\omega) = \frac{\omega^2 + 3}{\omega^4 + 11\omega^2 + 28}$$

- (1) 试求 X 的协方差函数 $R(\tau)$;
- (2) 问 X 的均值是否有遍历性? 为什么?

(完)

随机过程期末考试参考答案与评分标准

(2019年1月10日)

一、(30分)

- (1) (每空2分): a. (是); b. (是); c. (非); d. (是)。
- (2) (每空 2 分): a. (非); b. (非); c. (是); d. (是); e. (非)。
- (3) (每空3分) ($1/(\lambda_1+\lambda_2+\lambda_3)$), $(\lambda_1/(\lambda_1+\lambda_2+\lambda_3))$ 。
- (4) (每空 3 分) $(\lambda^k x^{k-1} e^{-\lambda x}/(k-1)!)$, $(\lambda t^2/2)$

二、(6分)

若第 i 辆汽车于时刻 s(s < t)进入该公路,则 $P\{a < (t-s)V_i < b\} = F(\frac{b}{t-s}) - F(\frac{a}{t-s})$,故第 i 辆车于时刻 t 位于区间(a,b)的概率 $p = \frac{1}{t} \int_0^t [F(\frac{b}{t-s}) - F(\frac{a}{t-s})] ds$,从而时刻 t 位于区间(a,b)内的平均汽车辆数为 $\lambda pt = \lambda \int_0^t [F(\frac{b}{t-s}) - F(\frac{a}{t-s})] ds$ 。

三、(16分)

- (1) 易证马氏链为不可约($p_{i,j} \ge a_j > 0$, $\forall i \ne j$)、非周期($p_{0,0}^{(1)} = a_0 > 0$),且 $f_{0,0} = \sum_{i=0}^{+\infty} a_j = 1$,故常返;
 - (2) 求得: $\mu_0 = \sum_{n=1}^{+\infty} n f_{0,0}^{(n)} = \sum_{n=1}^{+\infty} n a_{n-1}$, 显然, 马氏链为正常返 $\Leftrightarrow \mu_0 < +\infty$;

(3)
$$\pi_j = \frac{1}{\mu_0} \sum_{k>j} a_k$$
, $(j \ge 0)$ •

四、(20分)

- (1) 四类: $\{1\},\{2\}$ 均为瞬过类, $d(1) = \infty, d(2) = 1$; $\{3\},\{4\}$ 为二遍历类(吸收态)。
- (2) 设T 为过程进入吸收态的时间,记 $f_{k,j} = P\{X_T = j \mid X_0 = k\}$, (k = 1,2; j = 3,4)则有:

$$\begin{split} f_{1,3} &= P\{X_T = 3 \mid X_0 = 1\} = \sum_i P\{X_T = 3 \mid X_1 = i\} p_{1,i} = 0.5 f_{2,3} + 0.3 \\ f_{1,4} &= \sum_i P\{X_T = 4 \mid X_1 = i\} p_{1,i} = 0.5 f_{2,4} + 0.2 \\ f_{2,3} &= \sum_i P\{X_T = 3 \mid X_1 = i\} p_{2,i} = 0.2 f_{2,3} + 0.4 \\ f_{2,4} &= \sum_i P\{X_T = 4 \mid X_1 = i\} p_{2,i} = 0.2 f_{2,4} + 0.4 \end{split}$$

解得: $f_{1.3} = 11/20$, $f_{1.4} = 9/20$, $f_{2.3} = f_{2.4} = 1/2$.

五、(16分)

$$EX(t) = EAE\cos(\omega_0 t + \Theta) = 0$$

(1)
$$\begin{aligned} \gamma_X(t+\tau,t) &= EA^2E\cos[\omega_0(t+\tau)+\Theta]\cos(\omega_0t+\Theta) = \\ &= \frac{1}{2}EA^2E\{\cos[\omega_0(2t+\tau)+2\Theta]+\cos\omega_0\tau\} = \frac{1}{2}EA^2\cos\omega_0\tau \\ &= 4\cos\omega_0\tau = R_X(\tau) \end{aligned}$$

故 $\{X(t), t \in R\}$ 为宽平稳。

(2)
$$R_X(\tau) \leftrightarrow S(\omega) = 4\pi(\delta(\omega + \omega_0) + \delta(\omega - \omega_0))$$
.

六、(12分)

(1)
$$S(\omega) \leftrightarrow R(\tau) = \frac{2\sqrt{7}}{21} e^{-\sqrt{7}|\tau|} - \frac{1}{12} e^{-2|\tau|}$$
.

(2) 该过程的均值有遍历性,因为: $\int_{-\infty}^{\infty} |R(\tau)| d\tau < \infty$ 。

(完)

中国科学技术大学 2018—2019学年第二学期考试试卷

考试科目	随机过程B	得分
学生所在系	姓名	学号

(考试时间: 2019年6月24日下午2:30—4:30, 半开卷)

- 一、(30分)是非判断与填空题
- (1)设X与Y相互独立,分别服从指数分布 $Exp\{\lambda\}$ 与 $Exp\{\mu\}$,则:
- (a) $X + Y \sim Exp\{\lambda + \mu\}$. ()
- (b) $\min\{X, Y\} \sim Exp\{\lambda + \mu\}$. ()
- (c) $\max\{X, Y\} \sim Exp\{\lambda + \mu\}$. (d) $P\{X > h\} = 1 \lambda h + o(h), h \downarrow 0$. (
- (e) $P\{X \le s + t \mid X > s\} = P\{X \le t\}, \ s, t > 0.$ ()
- (2) 关于平稳过程,下列说法是否正确
- (a) 宽平稳过程具有平稳增量性. ()
- (b) Poisson过程是平稳过程. ()
- (c) 二阶矩存在的严平稳一定是宽平稳过程. ()
- (d) 初始状态分布为平稳分布的Markov过程一定是严平稳的. ()
- (3) 设有复合泊松过程 $X(t) = \sum_{i=1}^{N(t)} Y_i$,其中N(t)是强度为 λ 的泊松过程, $Y_i \sim Exp\{\mu\}$.则: EX(t) =________, $E[X^2(t)] =$ ________, $g_{X(t)}(s) = E \exp\{sX(t)\} =$ ________.
- (4) 现有对于一个三状态的马氏链 $\{X_n, n \ge 0\}$ 的25个连续观察数据:

则据此可估计出该马氏链的转移概率矩阵P为____

二、(8分)保险公司的理赔次数N(t)是强度为 λ 的泊松过程,诸次理赔额 $C_i(i \ge 1)$ 为独立同分布,且 与N(t)独立, $EC_i = \mu$. 又设 W_i 为第i次理赔发生的时间($i \ge 1$),则到时刻t为止的理赔总额的折现值 为:

$$C(t) = \sum_{i=1}^{N(t)} C_i e^{-\alpha W_i}$$

其中 $\alpha > 0$ 为折现率, 试求C(t)的期望值.

三、(20分)质点在一正N边形(N > 3)的周边上作随机游动(项点1, 2, ..., N按顺时针方向排列),质点以 概率p顺时针游动一格,以概率q = 1 - p 逆时针游动一格,试用一马氏链 $\{X_n, n \ge 0\}$ 描述该模型,并 (1)写出该马氏链的转移概率矩阵P,并作状态分类;

- (2)求出该马氏链的平稳分布;
- (3)该马氏链是否存在极限分布?为什么?
- 四、(20分)设马氏链 $\{X_n, n \geq 0\}$ 的转移概率矩阵为:

$$P = \begin{pmatrix} 1 & 0 & 0.6 & 0.2 & 0.1 & 0.1 \\ 2 & 0 & 0.3 & 0.4 & 0.2 & 0.1 \\ 0 & 0 & 0.2 & 0.4 & 0.4 \\ 4 & 0 & 0 & 0 & 1 & 0 \\ 5 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- (1)试对该马氏链作状态分类(分为几类、各类的周期性、常返性、正常返性等);
- (2)试求过程从状态k出发而被状态4吸收的概率 $f_{k,4}$ 及 $f_{k,5}$, (k = 1, 2, 3).
- 五、(15分)考察下列函数 $S_i(\omega), (\omega \in R)$:

$$S_{1}(\omega) = \frac{\omega^{2} + 9}{(\omega^{2} + 4)(\omega + 1)^{2}}, \qquad S_{2}(\omega) = \frac{\omega^{2} + 1}{\omega^{4} + 5\omega^{2} + 6}, \qquad S_{3}(\omega) = \frac{\omega^{2} + 4}{\omega^{4} - 4\omega^{2} + 3},$$
$$S_{4}(\omega) = \frac{\omega^{2} - 4}{\omega^{4} + 4\omega^{2} + 3}, \qquad S_{5}(\omega) = \frac{e^{-i\omega^{2}}}{\omega^{2} + 2}(i = \sqrt{-1}), \qquad S_{6}(\omega) = \frac{4a\cos\omega}{\omega^{2} + a^{2}}(a > 0).$$

- (1) 问哪些可以作为平稳过程的谱密度函数?并进而求出其对应的协方差函数 $R(\tau)$.
- (2) 问相应的平稳过程的均值是否有遍历性? 为什么?

六、 (7分) 设

$$X_t = S_t + \varepsilon_t = b\cos(\omega t + U) + \varepsilon_t, \quad t \in \mathbb{Z}$$

其中 $U \sim U(0, 2\pi)$, $\{\varepsilon_t\}$ 零均值平稳, 方差为 σ^2 的白噪声序列, $U = \{\varepsilon_t\}$ 独立. 作矩形窗滤波, M > 0:

$$Y_t = \frac{1}{2M+1} \sum_{j=-M}^{M} X_{t-j}$$

- 1)试问Y,是平稳过程吗? 为什么?
- 2)求出Y_t的方差.

随机过程期末考试参考答案与评分标准

(2019年6月24日)

一、(30分)

- (1) (每空2分): a. (非); b. (是); c. (非); d. (是); e. (是)。
- (2) (每空2分): a. (非); b. (非); c. (是); d. (是)。
- (3) (每空3分) $\left(\frac{\lambda t}{\mu}\right)$; $\left(\frac{\lambda t(2+\lambda t)}{\mu^2}\right)$; $\left(\exp\left(\frac{\lambda ts}{\mu-s}\right)\right)$

(4) (3
$$\Rightarrow$$
) ($P = 0$ $\begin{pmatrix} \frac{4}{9} & \frac{4}{9} & \frac{1}{9} \\ \frac{4}{9} & \frac{3}{9} & \frac{2}{9} \\ 1 & 0 & \frac{1}{3} & \frac{2}{3} \end{pmatrix}$)

二、(8分)

$$EC(t) = E\left\{E\left[\sum_{i=1}^{N(t)} C_i e^{-\alpha W_i} \mid N(t)\right]\right\} = \frac{\lambda \mu (1 - e^{-\alpha t})}{\alpha} .$$

三、(20分)

(1)
$$P = \begin{pmatrix} 1 & 0 & p & 0 & 0 & \cdots & 0 & 0 & q \\ 2 & q & 0 & p & 0 & \cdots & 0 & 0 & 0 \\ 0 & q & 0 & p & \cdots & 0 & 0 & 0 \\ 0 & 0 & q & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \cdots \\ N-2 & N-1 & 0 & 0 & 0 & \cdots & 0 & p & 0 \\ N & 0 & 0 & 0 & \cdots & q & 0 & p \\ p & 0 & 0 & 0 & \cdots & 0 & q & 0 \end{pmatrix}$$
, (双随机)

不可约、正常返、周期为2(N偶)或非周期(N奇)。

(2) 求解:
$$\pi = \pi P, \sum_{i} \pi_{j} = 1$$
, 由

$$\begin{cases} \pi_1 = q\pi_2 + p\pi_N \\ \pi_2 = p\pi_1 + q\pi_3 \\ \cdots \\ \pi_{N-1} = p\pi_{N-2} + q\pi_N \\ \pi_N = q\pi_1 + p\pi_{N-1} \\ 1 = \pi_1 + \pi_2 + \cdots + \pi_N \end{cases}$$
解得平稳分布: $\pi = (\frac{1}{N}, \frac{1}{N}, \cdots, \frac{1}{N})$

(3) 当 N 为奇数时,极限分布存在: $\lim_{n\to\infty}P_{i,j}^{(n)}=\frac{1}{N},(1\leq i,j\leq N)$,否则不存在。

四、(20分)

- (1) 每个状态自成一类。1,2,3 均为瞬过类,其中 1 的周期为无穷,其余为非周期; 4,5 为遍历类(吸收态)。
- (2) 设T 为过程进入吸收态 4 或 5 的时间,则

$$\begin{split} f_{k,4} &= P\{X_T = 4 \mid X_0 = k\}, \ f_{k,5} = P\{X_T = 5 \mid X_0 = k\}, (k = 1,2,3) \ \ \, \ \, \\ f_{1,4} &= \sum_i P\{X_T = a \mid X_1 = i\} p_{1,i} = 0.6 f_{2,4} + 0.2 f_{3,4} + 0.1 \\ f_{2,4} &= 0.3 f_{2,4} + 0.4 f_{3,4} + 0.2 \\ f_{3,4} &= 0.2 f_{3,4} + 0.4 \end{split}$$

解得: $f_{1,4} = \frac{19}{35}$, $f_{2,4} = \frac{4}{7}$, $f_{3,4} = \frac{1}{2}$ 。 类似可求得: $f_{1,5} = \frac{16}{35}$, $f_{2,5} = \frac{3}{7}$, $f_{3,5} = \frac{1}{2}$ 。

五、(15分)

- (1) $S_2(\omega)$ 是谱密度函数。 $S_2(\omega) \leftrightarrow R(\tau) = -\frac{\sqrt{2}}{4}e^{-\sqrt{2}|\tau|} + \frac{\sqrt{3}}{3}e^{-\sqrt{3}|\tau|}$ 。
- (2) 该过程的均值有遍历性,因为: $\int_{0}^{\infty} |R(\tau)| d\tau < \infty$.

六、(7分)

(1) 先求 $EX_t = E(S_t + \varepsilon_t) = 0$,

$$\gamma_X(t,t) = E(S_t + \varepsilon_t)^2 = E(S_t^2 + \varepsilon_t^2) = ES_t^2 + \sigma^2 = E[b^2 \cos^2(\omega t + U)] + \sigma^2$$

$$= \frac{b^2}{4\pi} \int_0^{2\pi} [\cos(2\omega t + 2u) + 1] du + \sigma^2 = \frac{b^2}{2} + \sigma^2$$

$$\gamma_X(t+\tau,t) = EX_{t+\tau}X_t = \frac{b^2}{2}\cos\omega\tau + \delta(\tau)\sigma^2, \ (:\delta(\tau) = \begin{cases} 1 & \tau = 0\\ 0 & \tau \neq 0 \end{cases})$$

$$\begin{split} \gamma_{Y}(t+\tau,t) &= EY(t+\tau)Y(t) = \frac{1}{(2M+1)^{2}} \sum_{i,j=-M}^{M} EX_{t+\tau-i} X_{t-j} \\ \\ \text{从而: } EY_{t} &= 0 \, \text{ L:} \\ &= \frac{1}{(2M+1)^{2}} \sum_{i,j=-M}^{M} (\frac{b^{2}}{2} \cos \omega (\tau-i+j) + \delta(\tau-i+j)\sigma^{2}) \end{split}$$

故Y,平稳。

(2)
$$\gamma_{Y}(t,t) = \frac{1}{(2M+1)^{2}} \sum_{i,j=-M}^{M} (\frac{b^{2}}{2} \cos \omega (i-j) + \delta (i-j)\sigma^{2})$$

$$= \frac{1}{(2M+1)^{2}} (\sum_{i,j=0}^{2M} \frac{b^{2}}{2} \cos \omega (i-j) + (2M+1)\sigma^{2})$$

2019-2020 第一学期期末考试题

考试科目: <u>随机过程(B)</u>		得分:
学生所在系:	姓名:	_ 学号:
(2020年	1月6日,半开卷)
一、(30分,每空2分)判断是非	与填空:	
(1) $\aleph X_0 = 0, X_n = \sum_{i=1}^n \xi_i, (n \ge 1)$	≥1),其中 $\{\xi_i, i \ge 1\}$ 为 i.i	.d., $\coprod P\{\xi_i = -1\} =$
$=P\{\xi_i=1\}=0.5$,则 $\{X_n,n\geq 0\}$ 为:		
a. 独立增量过程 (); b.	平稳独立增量过程 ();
c. 正常返马氏链 (); d.	瞬过马氏链 ();	$e. \lim_{n\to\infty} P\{X_n=0\}=0 \ .$
(2)下列函数是否为平稳过程的谱	管密度函数:	
$a. S_1(\omega) = \frac{\omega^2 - 16}{\omega^4 + 11\omega^2 + 18}$ ();	$b. S_2(\omega) = \frac{\omega^2 + 1}{\omega^4 + 5\omega^2 + 6}$ ();
$c. S_3(\omega) = \frac{\omega^2 \cos \omega}{\omega^4 + 1} ();$	$d.S_4(\omega) = \frac{e^{-i \omega }}{\omega^2 + a^2}, (i =$	$\sqrt{-1}$) ()
(3)到达某邮箱的正常电子邮件是 互独立。则第一封邮件的平均到达时 k 封正常邮件的概率为()。		
(4) 设 $\{X(t), t \ge 0\}$ 是强度为 λ 的	的泊松过程,命 $X_T = \frac{1}{T} \int_0^T$	X(t)dt,则:
$E(X_T) = (), Var(X_T) = ($)。	
(5) 到达某商店的顾客数 $N(t)$ 是	上一强度为 $\lambda(t) = 2 + t/2$	的非齐次泊松过程,若该商
店早上 8:00 开门,则午时段(11:00-13 的平均人数为()。	3:00)没有顾客到达的概率	为(),午时段到达商店
二、(15分)设某种健康险投保者	音中的出险人数 $N(t)$ 为一	强度为 5 的泊松过程, 若以
Y_i 表示第 i 个出险者应获赔偿,并假定	$Y_i \sim U(1,3)$ (均匀分布,	单位:万元),且 $\{Y, i \ge 1\}$
为 i.i.d., 试求到时刻 t 为止保险公司应	付全部赔偿 $X(t) = \sum_{i=1}^{N(t)}$	$^{)}Y_{i}$ 的期望 $EX(t)$ 、方差
$Var[X(t)]$ 及矩母函数 $g_{X(t)}(s)$ 。(均久]分布矩母函数: g(s)==	$\left(\frac{e^{bs}-e^{as}}{b-a)s}\right)$

三、(18分) 圆周上有 1,2,3,4 四个位置按顺时针方向排列,一个粒子在这四个位置上(沿圆周)作随机游动。它从任何一个位置各以概率 0.5 顺时针方向或逆时针方向游动至其相邻位置,若以 $X_n=j$ 表示时刻 n 粒子处于位置 j (j=1,2,3,4),则 $\{X_n,n\geq 0\}$ 为一马氏链,

- (1) 求该马氏链的转移概率矩阵 P 及 $P^{(2)}$,并求 $P\{X_{n+3}=3,X_{n+1}=1\,|\,X_n=2\}=?$
- (2) 讨论该马氏链状态分类并求其平稳分布 $\pi = (\pi_1, \pi_2, \pi_3, \pi_4)$;
- (3) 极限 $\lim_{n\to\infty} P^{(n)}$ 是否存在? 为什么?

四、 (12分) 设 $\{X_n, n \ge 0\}$ 为区间 [0,3]上的随机游动,其转移概率矩阵为:

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ 2 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 3 & 0 & 0 & 1 & 0 \end{bmatrix}$$

试求粒子由k 出发而被0吸收的概率 p_k 及它被吸收的平均步数 v_k , (k=1,2,3)。

五、(15 分)设 A 与 Θ 独立, $A \sim Exp(1/3)$ (指数分布), $\Theta \sim U(0, 2\pi)$ (均匀分布),定义随机过程:

$$X(t) = A\cos(t + \Theta), \quad (t \in R)$$

- (1) 证明 $\{X(t), t \in R\}$ 为宽平稳过程;
- (2) 试求其功率谱密度函数 $S(\omega)$ 。

六、(10分) 设平稳过程 $X = \{X(t), t \in R\}$ (均值为 0) 的功率谱密度函数为:

$$S(\omega) = \frac{\omega^2 + 3}{\omega^4 + 11\omega^2 + 28}$$

- (1) 试求 X 的协方差函数 $R(\tau)$;
- (2) 问 X 的均值是否有遍历性? 为什么?

随机过程期末考试参考答案与评分标准

(2020年1月6日)

一、(30分,每空2分)

- (1) a. (是); b. (是); c. (是); d. (非); e. (是)。
- (2) a. (非); b. (是); c. (非); d. (非)。
- (3) $(\frac{1}{12})$, $((\frac{1}{4})(\frac{3}{4})^k)_{\circ}$
- (4) $(\lambda T/2)$, $(\lambda T/3)$.
- (5) $(e^{-8} \approx 0.0003)$, (8 Å).

二、(15分)

$$EX(t) = EN(t)EY = \lambda t \times 2 = 10t(\overline{D}, \overline{\Xi}),$$

$$VarX(t) = EN(t)VarY + VarN(t)(EY)^{2}$$
$$= 5t \times 4/12 + 5t \times 4 = 65t/3,$$

$$g_{X(t)}(s) = e^{\lambda t(g_Y(s)-1)} = e^{5t(\frac{e^{3s}-e^s-2s}{2s})}$$
.

三、(18分)

(1)
$$P = \begin{cases} 1 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 4 & 0 & \frac{1}{2} & 0 \end{cases} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix},$$

$$P^{(2)} = P^2 = \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$P\{X_{n+3} = 3, X_{n+1} = 1 \mid X_n = 2\} =$$

$$= P\{X_{n+1} = 1 \mid X_n = 2\} P\{X_{n+3} = 3 \mid X_n = 2, X_{n+1} = 1\}$$

$$= p_{21} p_{13}^{(2)} = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \circ$$

$$\pi_1 = \frac{1}{2}(\pi_2 + \pi_4)$$

$$\pi_2 = \frac{1}{2}(\pi_1 + \pi_3)$$

(2) 求解:
$$\pi_3 = \frac{1}{2}(\pi_2 + \pi_4)$$
 , 易得: $\pi_1 = \pi_2 = \pi_3 = \pi_4 = 1/4$;
$$\pi_4 = \frac{1}{2}(\pi_1 + \pi_3)$$

$$\pi_1 + \pi_2 + \pi_3 + \pi_4 = 1$$

状态分类:不可约、正常返、周期为2。

(3) $\lim_{n\to\infty} P^{(n)}$ 不存在。例如: $\lim_{n\to\infty} p_{ii}^{(2n)} = \frac{2}{\mu_i} = \frac{2}{4} = \frac{1}{2} > 0$,但 $p_{ii}^{(2n-1)} \equiv 0$,($\forall n \ge 1$),故

极限 $\lim_{n\to\infty} p_{ii}^{(n)}$ 不存在。

四、(12分)

设 $T = \min\{n: n \geq 0, X_n = 0\}$,则:

$$\begin{cases} p_1 = \frac{1}{3} + \frac{1}{3} p_1 + \frac{1}{3} p_2 \\ p_2 = \frac{1}{3} p_1 + \frac{1}{3} p_2 + \frac{1}{3} p_3 \end{cases}, \quad \mathcal{E} \begin{cases} v_1 = \frac{1}{3} + \frac{1}{3} (v_1 + 1) + \frac{1}{3} (v_2 + 1) \\ v_2 = \frac{1}{3} (v_1 + 1) + \frac{1}{3} (v_2 + 1) + \frac{1}{3} (v_3 + 1) \\ v_3 = v_2 + 1 \end{cases}$$

解得:

五、(15分)

$$EX(t) = EAE \cos(t + \Theta) = 3 \times 0 = 0,$$

(1)
$$\gamma_X(t+\tau,t) = EX(t+\tau)X(t) = EA^2E\cos(t+\tau+\Theta)\cos(t+\Theta)$$
,
= $18 \times \frac{1}{2}\cos\tau = 9\cos\tau$

故{X(t), t ∈ R} 为宽平稳。

(2)
$$R_X(\tau) \leftrightarrow S(\omega) = 9\pi(\delta(\omega+1) + \delta(\omega-1))$$
.

六、(10分)

(1)
$$S(\omega) = \frac{\omega^2 + 3}{(\omega^2 + 4)(\omega^2 + 7)} \leftrightarrow R(\tau) = \frac{2\sqrt{7}}{21} e^{-\sqrt{7}|\tau|} - \frac{1}{12} e^{-2|\tau|};$$

(2) 该过程的均值有遍历性,因为:
$$\int_{-\infty}^{\infty} |R(\tau)| d\tau < \infty$$
 。

(完)

2020—2021学年第二学期期末试卷

考试科目	随机过程B	_ 得分		
所在系	姓名	学号		
	考试时间: 2021年7月5	日8:30—10:30		
. (30分) 是非填空选择	题(答案请写在答题纸	上):		
1). 具有平稳增量 2). 若两个状态不 3). 若有无穷个状 4). 若某个状态是	常返的,则过程至少会	链. () 都是常返的. () 状态不可能都是常返的. ()		
		知过程, 非负随机变量 T 与 $N(t)$ 独 $N(T)=k)=$	$D \square P(T > $	
A. Poisson过程是		· 常返态出发只能到达常返态 限状态的MC一定存在正常返态		
$\max\{n: S_n \le t\},$		可隔 $X_n \sim \exp(\mu) (n \ge 1, \mu > 0)$ S_n 的分布密度函数为 $f_{S_n}(x) = _$ $\ge 0).$		
5. (3分) 下列说法正确的是 A. $\{N(t)\}$ 与 $\{M(t)\}$ 是Poisson过程, 则 $N(t)+M(t)$ 也是Poisson过程. B. 若到达的车辆数服从Poisson过程, 每间隔一辆车记录一下, 则被记录下的车辆数也服从Poisson过程. C. $R(\tau) = \tau e^{-\tau^2/2}$ 有可能成为某个平稳过程(或序列)的协方差函数. D. 初始分布为平稳分布的Markov链为严平稳过程.				
	为 Gauss 平稳过程, 均 5,1] 中的概率为	的值为零,功率谱密度 $S(\omega) = \frac{1}{2}$	$\frac{1}{1+\omega^2}$ 。 则	
数器关闭一段时间	目 r . 当一个粒子到达时	来到一个计数器,每个到达的料 ,若计数器未处于关闭状态,有 一个粒子的概率为(t	它就被记录	

- 二. (12分) 某网站负责某项职业考试的网上报名工作,该项考试共有A、B、C三门课程,考生中报考这三门课程的考生所占的比例分别为35%、40% 和25%, 而三门考试的报名费分别为30元、30元和50元. 设考生按速率为 λ 的泊松过程到该网站报名,其中 $\lambda=10$ 人/天, 若以X(t) 表示到第t 天为止该网站收到的报名费总额,试求X(t) 的期望EX(t)、方差Var(X(t)) 和矩母函数 $g_{X(t)}(\mu)=Ee^{\mu X(t)}$ 。
- 三. (15分) 市场上有a 种牌号的牙膏,记为 $\{1,2,\ldots,a\}$. 假定消费者相继使用的牙膏 牌号构成马氏链,选用第i 种牌号牙膏的消费者继续使用第i 种牌号牙膏的概率 为 $p_{i,i}, (0 < p_{i,i} < 1, i = 1, 2, \ldots, a)$. 若他对原来使用的牙膏不满意,就在其它a-1 种牙膏中任选一种,即有: $p_{i,j} = \frac{1-p_{i,i}}{a-1}, (j \neq i)$,
 - (1) 试写出该马氏链的转移概率矩阵P 并对马氏链作状态分类;
 - (2) 试求长时间后第i 种牌号牙膏的市场占有率 π_i , (i = 1, 2, ..., a).
- 四. (15分)设一质点在正整数点上做随机游动, 质点处于正整数点i时,以概率 p_i 往右走一格,概率 $1-p_i$ 退回到点 $1, p_i = e^{-\frac{1}{i}}, i = 1, 2, \ldots$ 记 X_n 表示时刻n质点所处的位置,
 - (1) 写出过程的状态空间, 说明该过程为Markov链.
 - (2) 讨论该各状态的周期性和常返性。
- 五. (16分)设 $\{X(t), -\infty < t < +\infty\}$ 是均值为0的平稳过程,令 $Y(t) = X(t)\cos(\omega_0 t + \Theta)$, $-\infty < t < +\infty$,其中 ω_0 是实常数, $\Theta \sim U[0, 2\pi]$,且 $\{X(t), -\infty < t < +\infty\}$ 与 Θ 相互独立, $R_X(\tau)$ 和 $S_X(\omega)$ 分别是 $\{X(t), -\infty < t < +\infty\}$ 的协方差函数和功率谱密度. 试证:
 - (1) $\{Y(t), -\infty < t < +\infty\}$ 是平稳过程,且协方差函数

$$R_Y(\tau) = \frac{1}{2} R_X(\tau) \cos \omega_0 \tau.$$

(2) $\{Y(t), -\infty < t < +\infty\}$ 的功率谱密度为

$$S_Y(\omega) = \frac{1}{4} \left[S_X \left(\omega - \omega_0 \right) + S_X \left(\omega + \omega_0 \right) \right].$$

六. (12分) 已知平稳过程 $\{X(t), -\infty < t < \infty\}$ 的均值函数为0, 谱密度函数为

$$S(\omega) = \frac{\omega^2 + 2}{\omega^4 + 7\omega^2 + 12}, -\infty < \omega < \infty$$

- (1) 求X(t) 的协方差函数 $R(\tau)$;
- (2) X(t) 是否有均值遍历性? 为什么?

2021-2022 学年第二学期期末试卷

	考试科目 随机过程 B — 得分
	所在系 姓名 学号
	考试时间:2022 年 6 月 14 日 8:30-10:30
— 、	(30 分) 是非填空选择题 (答案请写在答题纸上):
	1. (10 分) 判断下列有关离散时间 Markov 链说法正确与否.
	1). Poisson 过程是平稳过程也是连续 Markov 链.()
	2). 在直线上简单对称的随机游动所有状态都是零常返的.()
	3). 一个有限状态的 Markov 链一定存在平稳分布.()
	4). 若 Markov 链某个状态是吸收态,则过程最终会停留在这个吸收态.()
	5). Gauss 平稳过程一定是严平稳过程.()
	2. (4 分) 某加油站红、银、白三种汽车到达过程分别为强度 1 、 3 、 5 (辆/ 10 分钟) 自 Poisson 过程,则第一辆车的到达的平均时间为 第一辆白车到达前恰好有 k 辆非白车到达的概率为($k \ge 0$).
	3. (4 分) 下列可以成为某平稳过程的谱密度函数是
	$A.S(\omega) = \frac{\omega^2 + 1}{\omega^4 + 5\omega^2 + 6}$ $C.S(\omega) = \frac{e^{-i\omega^2}}{\omega^2 + 2} (i = \sqrt{-1})$ $B.S(\omega) = \frac{\omega^2 + 4}{\omega^4 - 4\omega^2 + 3}$ $D.S(\omega) = \frac{\cos \omega}{\omega^2 + 2}$
	$C.S(\omega) = \frac{e^{-i\omega^2}}{\omega^2 + 2} (i = \sqrt{-1})$ $D.S(\omega) = \frac{\cos \omega}{\omega^2 + 2}$
	4. (4 分) 已知实平稳过程 $\{X(t)\}$ 的自相关函数为 $R_X(\tau) = 25 + 4/(1 + 6\tau^2)$,并且满足 $\tau \to \infty$ 时, $X(t)$ 与 $X(t+\tau)$ 独立,则 $\{X(t)\}$ 的均值为,方差为
	5. (4 分) 下列说法正确的是
	A. 平稳独立增量过程一定是平稳过程.
	B. 只要存在正常返类,离散时间的 Markov 链一定存在平稳分布.
	C. 极限分布和平稳分布均存在则一定相同.
	D. 有限状态的 Markov 链一定是遍历的 Markov 链.
	6. $(4 \ \beta)$ 若 $\{X(t), t \ge 0\}$ 为一平稳独立增量过程,则
	A. $\{X(t), t \geq 0\}$ 是 Poisson 过程 B. $\{X(t), t \geq 0\}$ 是 Markov 过程
	$C.\{X(t), t \ge 0\}$ 是平稳过程 $D.\{X(t), t \ge 0\}$ 是严平稳过程
二、	(15 分)设某个服务系统只有一个服务器,从早上 8:00 开始接受服务,此时已有无数顺

客在进行排队。每次只能服务一个顾客,服务的平均时间为20分钟,且每次服务的时间

为独立同分布的指数分布,N(t) 表示从 8:00 后 t 时间内服务的顾客数。求

- (1) 上午 8:00 到 12:00 的平均服务顾客数.
- (2) 这段时间内服务完的顾客停留的平均时间.
- 三、(15分) 市场上三种品牌的牛奶 (1,2,3) 在某一地区的市场占有率开始时均为 1/3, 而每过一个季度后顾客的消费倾向发生改变, 我们用一个三状态的 Markov 链来描述, 其一步转移概率的均值为

$$\begin{array}{cccc}
1 & 2 & 3 \\
1 & 0.6 & 0.3 & 0.1 \\
2 & 0.3 & 0.2 & 0.5 \\
3 & 0.1 & 0.2 & 0.7
\end{array}$$

- (1) 半年之后三种牛奶的市场占有率为多少?
- (2) 从状态 2 到状态 3 的平均首达时间是多少?
- (3) 各品牌牛奶市场占有率最终会稳定于什么样的比例?
- 四、 (15 分) 从数 $1,2,\ldots,N$ 任取一个数作为 X_1 , 对 n>1, 从 $1,2,\ldots,X_{n-1}$ 中任取一个数作为 X_n , 则 $\{X_n,n\geq 1\}$ 为一 Markov 链.
 - (1) 写出 $\{X_n, n \ge 1\}$ 的一步转移概率矩阵 **P**.
 - (2) 对该 Markov 链进行状态分类 (几个等价类,周期性,是否常返,正常返等)
 - (3) 极限 $\lim_{n\to\infty} \mathbf{P}^{(n)}$ 是否存在? 为什么.
- 五、 $(10 \, \text{分})$ 已知平稳过程 $\{X(t), -\infty < t < +\infty\}$ 的均值函数为 0,谱密度函数为

$$S(\omega) = \frac{\omega^2 + 6}{\omega^4 + 8\omega^2 + 15}, -\infty < \omega < +\infty,$$

求 X(t) 的协方差函数 $R(\tau)$;

- 六、 $(15\ 分)$ 设 $X(t)=A\sin(t+\Phi), -\infty < t < +\infty$,其中 A 与 Φ 是相互独立的随机变量,且 $P(\Phi=\pi/4)=1/2, P(\Phi=-\pi/4)=1/2, \ A$ 服从区间 (-1,1) 内的均匀分布,讨论
 - (1) $\{X(t), -\infty < t < +\infty\}$ 的平稳性.
 - (2) $\{X(t), -\infty < t < +\infty\}$ 的均值遍历性。

2022 2023 学年第一学期期末过类

2022	2020 子平和	子朔朔小叫气	<u> </u>
(回忆版,	表述无法	完全复现	[原卷]

考试科目	随机过程 B	得分
所在系	姓名	学号

考试时间:2023 年 2 月 27 日 8:30-10:30

- 1. $\{N_1(t), N_2(t)\}$ 是遵循 λ_1, λ_2 的相互独立的 Poisson 过程, 判断以下是否正确. $(1)N_1(t) - N_2(t)$ 是 Poisson 过程 $(2)N_1(t) + N_2(t)$ 是 Poisson 过程 ()
 - 2. 对于一个不可约遍历的马尔可夫链, 以下说法正确的是: (1) 其平稳分布和极限分布都存在() (2) 其平稳分布必定是极限分布()
 - 3. 下列随机过程一定属于宽平稳的是: A. 马尔可夫链 B. 严平稳过程 C. 泊松过程 D. 白噪声过程
 - 4. X_1, X_2, \dots, X_n 独立同分布, 且 $X_i \sim Exp(\lambda)$, 则 $X_1 + X_2 + \dots + X_n$ 是____ 分
 - 5. $\{N_1(t)\},\{N_2(t)\}$ 分别遵循参数为 2,3 的 Poisson 过程, 且相互独立. 则在 $\{N_1(t)\}$ 任意两个相邻事件之间, $\{N_2(t)\}$ 恰好发生 k 次的概率为_
- 二、 $\{N(t)\}$ 是参数为 λ 的 Poisson 过程, $Y(t)=(-1)^{N(t)}X$,X 是一个随机变量,且 P(X=t) $(a > 0) = P(X = a) = \frac{1}{4}, P(X = 0) = \frac{1}{2}$ (a > 0). 问 Y(t) 是否是宽平稳过程, 给出判断和 依据.
- 三、 科大东区地铁站以 5 人/分钟的强度到达, 设每两趟地铁间隔恒为 20 分钟.
 - 1. 在两趟地铁相邻的 20 分钟内, 问到站人数的分布.
 - 2. 在地铁离开后的 10 分钟时间段内, 求到站乘客等待总时间的期望.
 - 3. 在地铁到达前的 10 分钟时间段内, 求到站乘客等待总时间的期望.
- 四、 某 Markov 链有以下转移概率矩阵:

$$\mathbf{P} = \begin{array}{ccc} 1 & 2 & 3 \\ 1 & 0.3 & 0.7 & 0 \\ 0 & 0.2 & 0.8 \\ 3 & 0.3 & 0 & 0.7 \end{array}$$

- 1. 若 Markov 链的初始分布为 $P(X_0 = 1) = 0.2, P(X_0 = 2) = 0.5, P(X_0 = 3) = 0.3,$ 求转移两步之后为状态 2 的概率.
- 2. 求该 Markov 链的平稳分布, 和平均常返时.
- 五、 小鼠在以下迷宫内游走,1 位置有食物,6 位置有捕鼠夹. 每个单位时间小鼠移动一步, 并 且往每个出口方向移动的概率相同.

- 1. 试写出小鼠位置的转移概率矩阵.
- 2. 求小鼠从 i 位置出发, 最终吃到食物的概率 p_i (i=2,3,4,5)
- 3. 求小鼠从 i 位置出发, 最终在吃到食物前被捕鼠夹捕捉的概率 q_i (i = 2, 3, 4, 5)

六、 $\{X_t, t>0\}$ 为均值为 0 的高斯过程, 其功率谱密度函数为 $S(\omega)=\frac{4}{\omega^2+4}$

- 1. 试求该高斯过程的分布.
- 2. 若 $Y = X_t X_s$ (s < t), 求 Y 的方差.

参考答案

- 一. 1. 判断是非题
 - 1) a. 错 b. 对 c. 错.
 - 2) a. 错 b. 对 c. 对 d. 对.
 - 3) a. 错 b. 错 c. 对.
 - 2. 5/9, 20分钟.

3.
$$\begin{pmatrix} 1 & 2 & 3 \\ \frac{41}{150} & \frac{34}{75} & \frac{41}{150} \end{pmatrix}$$
, $(\frac{3}{11}, \frac{5}{11}, \frac{3}{11})$.

- 4. $\frac{1}{2}(\sin t + \cos t), \quad \frac{1}{4}(\cos \tau \sin(\tau + 2t))$
- 三. (1) 转移矩阵

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 & \dots & \dots \\ \frac{1}{3} & 0 & \frac{2}{3} & 0 & \dots & \dots \\ \frac{1}{4} & 0 & 0 & \frac{3}{4} & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \frac{1}{i+2} & 0 & 0 & 0 & \dots & \frac{i+1}{i+2} & \dots \end{pmatrix}$$

(2)所有状态均互达(不可约); 非周期; 零常返因为 $f_{00}^{(n)} = \frac{1}{n \times (n+1)}$, 所以

$$f_{00} = \lim_{n \to \infty} \sum_{m=1}^{n} f_{00}^{(m)} = \lim_{n \to \infty} \sum_{m=1}^{n} \frac{1}{(m+1) \times m} = \lim_{n \to \infty} \frac{n}{n+1} = 1$$
$$\mu_0 = \sum_{n=1}^{\infty} n f_{00}^{(n)} = \sum_{n=1}^{\infty} \frac{n}{(n+1) \times n} = \sum_{n=1}^{\infty} \frac{1}{(n+1)} = \infty$$

- (3)没有平稳分布(零常返类)
- 四. (1)转移矩阵

$$\begin{pmatrix}
0 & 1 & 0 & 0 & \dots & \dots \\
0 & \frac{1}{a} & \frac{a-1}{a} & 0 & \dots & \dots \\
0 & 0 & \frac{2}{a} & \frac{a-2}{a} & \dots & \dots \\
\dots & \dots & \dots & \dots & \dots \\
0 & 0 & 0 & 0 & \dots & \frac{a-1}{a} & \frac{1}{a} \\
0 & 0 & 0 & 0 & \dots & 0 & 1
\end{pmatrix}$$

每个状态各为1类: $\{0\}$, $\{1\}$, ... $\{a-1\}$ 为瞬过, $\{a\}$ 为正常返; $\{0\}$ 的周期为 $+\infty$, 其余状态周期为1。

 $(2){a}$ 为吸收态.

$$(3)E[T] = a(\frac{1}{a} + \frac{1}{a-1} + \frac{1}{a-2} + \dots + 1).$$

五. (1)均值为0: E[X(t)] = 0;

协方差函数仅与时间间隔有关: $R_X(\tau) = e^{-|\tau|}\cos(w\tau)$;

二阶矩有限: $E[X(t)]^2 = 1 < \infty$.

(2)因为

$$\int_{-\infty}^{\infty} |R_X(\tau)| d\tau = 2 < \infty,$$

根据课本推论4.1,均值遍历性成立,

六.

$$S_X(w) = \frac{\alpha}{\alpha^2 + (w+\beta)^2} + \frac{\alpha}{\alpha^2 + (w-\beta)^2}$$