

Mining Data Streams (Part 3)

A. Farzindar farzinda@usc.edu

Mining of Massive Datasets

Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University http://www.mmds.org

Today's Lecture

- More algorithms for streams:
 - Sampling data from a stream
 - Filtering a data stream: Bloom filters
 - Counting distinct elements: Flajolet-Martin
 - Estimating moments: AMS method.

Counting Distinct Elements

Counting Distinct Elements

Problem:

- Data stream consists of a universe of elements chosen from a set of size N
- Maintain a count of the number of distinct elements seen so far

Obvious approach:

Maintain the set of elements seen so far

That is, keep a hash table of all the distinct elements seen so far.

Applications

- How many different words are found among the Web pages being crawled at a site?
 - Unusually low or high numbers could indicate artificial pages (spam?)
- How many unique users visited Facebook this month?
- How many different Web pages does each customer request in a week?
- How many distinct products have we sold in the last week?

Using Small Storage

- Real problem: What if we do not have space to maintain the set of elements seen so far?
- Estimate the count in an unbiased way
- Accept that the count may have a little error,
 but limit the probability that the error is large.

Flajolet-Martin algorithm

- Estimating the counts
- 1. Hash every element a to a sufficiently long bit-string (e.g., h(a) = 1100)
- 2. Maintain R = length of longest trailing zeros among all bit-strings (e.g., R = 2)
- 3. Estimate count = 2^R (e.g., need to hash about 4 elements before we see a bit string with 2 trailing 0's).

Example

- Consider 4 distinct elements: a, b, c, d
- Hash value into bit string of length 4
- How likely do we see at least one hash value with a 0 in the last bit?
 - hash(a) = 0010
 - hash(b) = 0111
 - hash(c) = 1010
 - hash(d) = 1111

Example: at least one ends with o

- E.g.,
 - hash(a) = 0010
 - hash(b) = 0111
 - hash(c) = 1010
 - hash(d) = 1111
- Prob. of none of hash values ending with 0:
 - $-(1-\frac{1}{2})^4$
- Prob. of at least one ending with 0:
 - $-1-(1-\frac{1}{2})^4=.9375$

Example: at least one ends with oo

- E.g.,
 - hash(a) = 0100
 - hash(b) = 0111
 - hash(c) = 1010
 - hash(d) = 1111
- Prob. of none ending with 00:
 - $(1-(\frac{1}{2})^2)^4=.32$
- Prob. of at least one ending with 00:
 - **1**-.32 = .68

Example: at least one ends with ooo

- E.g.,
 - hash(a) = 0000
 - hash(b) = 0111
 - hash(c) = 1010
 - hash(d) = 1111
- Prob. of none ending with 000:
 - $(1-(\frac{1}{2})^3)^4=.59$
- Prob. of at least one ending with 000:
 - **1**-.59 = .41

Why It Works: Intuition

- Very very rough and heuristic intuition why Flajolet-Martin works:
 - h(a) hashes a with equal prob. to any of N values
 - Then h(a) is a sequence of log₂ N bits, where 2^{-r} fraction of all as have a tail of r zeros
 - So, it takes to hash about 2^r items before we see one with zero-suffix of length r.

Why It Works: More formally

- What is the probability that a given h(a) ends in at least r zeros is 2^{-r}
 - h(a) hashes elements uniformly at random
 - Probability that a random number ends in at least r zeros is 2-r
- Then, the probability of NOT seeing a tail of length r among m elements:

where m is the number of distinct elements seen so far in the stream

Why It Works: More formally

Note=
$$(1-2^{-r})^m = (1-2^{-r})^{2^r(m2^{-r})} \approx e^{-m2^{-r}}$$

 Prob. that h(a) for some element a has at least r trailing 0's

$$p = 1 - (1 - 2^{-r})^m = 1 - e^{-\frac{m}{2^r}}$$

1) If
$$2^{r} \gg m$$
, $p = 1 - e^{-\frac{m}{2^{r}}} \approx 1 - (1 - \frac{m}{2^{r}}) \approx \frac{m}{2^{r}} \approx 0$
2) If $2^{r} \ll m$, $p = 1 - 1/e^{\frac{m}{2^{r}}} \to 1$ First 2 terms
$$e^{ix} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \cdots$$

where m is the number of distinct elements seen so far in the stream

• Thus, 2^R will almost always be around m.

Why It Doesn't Work

- E[2^R] is actually infinite
 - Probability halves when $R \rightarrow R+1$, but value doubles
- Workaround involves using many hash functions
 h_i and getting many samples of R_i
- How are samples R_i combined?
 - Average? What if one very large value 2^{R_i} ?
 - Median? All estimates are a power of 2.

Solution

- Partition your samples into small groups
 - Log n, where n=size of universal set, suffices
- Take the average of groups
- Then take the median of the averages.

Computing Moments

Generalization: Moments

- Suppose a stream has elements chosen from a set A of N values
- Let m_i be the number of times value i occurs in the stream
- The kth moment is

$$\sum_{i \in A} (m_i)^k$$

Special Cases

$$\sum_{i \in A} (m_i)^k$$

- Othmoment = number of distinct elements
 - The problem just considered
- 1st moment = count of the numbers of elements = length of the stream
 - Easy to compute
- 2nd moment = surprise number S = a measure of how uneven the distribution is.

Example: Surprise Number

- Stream of length 100
- 11 distinct values
- Unsurprising:
- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
 Surprise S = 910
 - Surprise number = $10^2 + 10 * 9^2 = 910$
- Surprising :
- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
- Surprise *S* = ?
- Surprise number = $90^2 + 10 * 1^2 = 8,110$

AMS (Alon-Matias-Szegedy) Method

- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2nd moment S
- We pick and keep track of many variables X:
 - For each variable X
 - X.element: element in X
 - X.value: # of occurrences of X from time t to n
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute $S = \sum_i m_i^2$

One Random Variable (X)

- Assume stream has length n
- Pick a random time to start, so that any time is equally likely
- Let the chosen time have element a in the stream
- X = n * (twice the number of a's in the stream starting at the chosen time) 1)
 - **Note:** store *n* once, count of *a*'s for each *X*.

Expectation Analysis

- 2nd moment is $S = \sum_i m_i^2$
- $E[f(X)] = (1/n) \sum_{t=1}^{n} n^{t}$ ((twice the number of a's in the stream starting at the chosen time) 1)
- c_t ... number of times item at time t appears from time t onwards ($c_1 = m_a$, $c_2 = m_a 1$, $c_3 = m_b$)
- $E[f(X)] = \frac{1}{n} \sum_{t=1}^{n} n(2c_t 1)$ = $\frac{1}{n} \sum_{i} n (1 + 3 + 5 + \dots + 2m_i - 1)$ Time t when

Group times by the value seen

Time t when the last i is seen $(c_t=1)$

Time t when the penultimate i is seen ($c_t=2$)

Time t when the first i is seen $(c_t=m_i)$

m_i ... total count of item *i* in the stream (we are assuming stream has length *n*)

Expectation Analysis

- $E[f(X)] = \frac{1}{n} \sum_{i} n (1 + 3 + 5 + \dots + 2m_i 1)$
 - Little side calculation: $(1+3+5+\cdots+2m_i-1)=\sum_{i=1}^{m_i}(2i-1)=2\frac{m_i(m_i+1)}{2}-m_i=(m_i)^2$
 - Note: $1+3+...+(2n-1)=n^2$
- Then $E[f(X)] = \frac{1}{n} \sum_i n (m_i)^2$
- So, $E[f(X)] = \sum_{i} (m_i)^2 = S$
- We have the second moment (in expectation)!

Higher-Order Moments

- For estimating kth moment we essentially use the same algorithm but change the estimate:
 - For k=2 we used $n (2 \cdot c 1)$
 - For k=3 we use: $n(3\cdot c^2 3c + 1)$ (where c=X.val)
- Why?
 - For k=2: Remember we had $(1+3+5+\cdots+2m_i-1)$ and we showed terms **2c-1** (for **c=1,...,m**) sum to m^2
 - $\sum_{c=1}^{m} 2c 1 = \sum_{c=1}^{m} c^2 \sum_{c=1}^{m} (c-1)^2 = m^2$
 - So: $2c 1 = c^2 (c 1)^2$
 - For k=3: $c^3 (c-1)^3 = 3c^2 3c + 1$
- Generally: Estimate = $n(c^k (c-1)^k)$.

Combining Samples

In practice:

- Compute f(X) = n(2c-1) for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages,

Problem: Streams never end

- We assumed there was a number n, the number of positions in the stream
- But real streams go on forever, so n is a variable – the number of inputs seen so far.

Streams Never End: Fixups

- (1) The variables X have n as a factor keep n separately; just hold the count in X
- (2) Suppose we can only store k counts.
 We must throw some Xs out as time goes on:
 - Objective: Each starting time t is selected with probability k/n
 - Solution: (fixed-size sampling!)
 - Choose the first k times for k variables
 - When the n^{th} element arrives (n > k), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables X out, with equal probability.

Summary

- Sampling a fixed proportion of a stream
 - Sample size grows as the stream grows
- Sampling a fixed-size sample
 - Reservoir sampling
- Filtering a data stream: Bloom filters
 - Select elements with property x from stream
- Counting distinct elements: Flajolet-Martin
 - Number of distinct elements in the last k elements of the stream
- Estimating moments: AMS method
 - Estimate std. dev. of last k elements.