Please check the examination details belo	ow before entering your candidate information
Candidate surname	Other names
Pearson Edexcel Intern	national Advanced Level
Monday 10 June 202	24
Morning (Time: 1 hour 20 minutes)	Paper reference WPH16/01
Physics International Advanced Le UNIT 6: Practical Skills in	
You must have: Scientific calculator, ruler	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all your working out in calculations and include units where appropriate.

Information

- The total mark for this paper is 50.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- The list of data, formulae and relationships is printed at the end of this booklet.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

(2)

Answer ALL questions.

The electrolytic capacitor shown can be used to store energy.

(Source: © Andrei Kuzmik/Shutterstock)

A student connected the electrolytic capacitor into the circuit below.

(a) State **two** safety precautions the student should take when connecting and using the circuit.

|
 |
|------|
|
 |
|
 |
| |

2

(b) The student used the switch in position 1 to charge the capacitor.

The student changed the switch to position 2 to discharge the capacitor through the motor.

As the capacitor discharged, the motor raised a small mass m through a height h, as shown.

The student used a metre rule to measure h.

Describe an accurate method to determine a single value of h using a metre rule.

You may include additional apparatus.

` /

(3)

(c) The student repeated the procedure in (b) several times. She recorded the following measurements.

h/m 0.246 0.239 0.243 0.241

(i) Calculate the mean value of h.

(1)

Mean value of
$$h =$$

(ii) Determine the percentage uncertainty in the mean value of h.

(2)

(iii) Determine the efficiency of the electric motor.

maximum potential difference across capacitor = 6V capacitance of capacitor = $4700 \mu F$ m = 20 g

(3)

Efficiency =

(Total for Question 1 = 11 marks)

2 A student investigated the flow of water through a horizontal pipe using the apparatus shown.

The mass M of water leaving the pipe in a time t is given by the formula

$$M = \frac{\pi \rho P r^4 t}{8\eta L}$$

where

 ρ = density of water

P = pressure difference between the ends of the pipe

r =internal radius of the pipe

 η = viscosity of water

L = distance between digital pressure gauges

(a) Show that the formula gives the unit for η as N s m⁻².

1	1	1
-	- /	- 1

(b) The student used a metre rule to measure L and a stopwatch to measure t . He adjusted the water tap to give a constant flow of water.	
Describe a method to determine an accurate value for η .	
Your method should use a suitable graph.	(6)
(c) The mass balance can be connected to a data logger. The data logger records the mass shown on the balance.	
Give two reasons why using a data logger would improve this investigation.	(2)
(Total for Question 2 = 10 m	arks)

3 A student investigated the rotational oscillations of a mass on a spring, using the apparatus shown.

When the mass is displaced through a small angle, the mass performs rotational oscillations about a vertical axis through the spring.

(a) The student used a stopwatch to determine the time period T of the rotational oscillations.

Describe how the student should determine an accurate value for *T*.

(3)

(b) The student predicted that the relationship between T and the mass M was of the form

$$T = aM^b$$

where a and b are constants.

(i) Explain how a graph of $\log T$ against $\log M$ can be used to determine the value of b.

(2)

(ii) The student varied M and determined the corresponding values of T. She recorded the following data.

M/kg	T/s	
0.200	1.46	
0.300	1.86	
0.400	2.14	
0.500	2.36	
0.600	2.63	
0.700	2.88	

Plot a graph of $\log T$ against $\log M$ on the grid opposite.

Use the additional columns for your processed data.

(6)

(3)

Gradient =

(3)

a =

(Total for Question 3 = 17 marks)

A student made measurements of the plastic protractor shown.

(Source: © Natsmith1/Shutterstock)

(a) (i) The student used a micrometer screw gauge to measure the thickness t of the plastic protractor.

Explain **one** technique she should use when measuring t.

(2)

(ii) The student determined a value of t as 1.41 mm.

Explain why a micrometer screw gauge is an appropriate instrument for this measurement.

Your answer should include a calculation.

(2)

(b) The student determined the volume V of the plastic protractor from the measurements shown.

The student recorded the following measurements.

$$D = 10.10 \,\mathrm{cm} \pm 0.05 \,\mathrm{cm}$$

$$x = 4.5 \, \text{mm} \pm 0.1 \, \text{mm}$$

$$t = 1.40 \,\mathrm{mm} \pm 0.02 \,\mathrm{mm}$$

(i) Show that V is about $6.2 \,\mathrm{cm}^3$.

(2)

(ii) Show that the uncertainty in V is about $0.2 \,\mathrm{cm}^3$.

(4)

	(Total for Question 4 = 12 mar	·ks)
	Your answer should include a calculation.	(2)
	Explain whether the student's measurements suggest that the protractor could be made of Perspex.	
	The accepted value of the density of Perspex is 1.18 g cm ⁻³ .	
(c)	The student determined the density of the plastic as $1.04\mathrm{gcm^{-3}}$ with a percentage uncertainty of 3%.	

TOTAL FOR PAPER = 50 MARKS

List of data, formulae and relationships

Acceleration of free fall
$$g = 9.81 \text{ m s}^{-2}$$
 (close to Earth's surface)

Boltzmann constant
$$k = 1.38 \times 10^{-23} \text{ J K}^{-1}$$

Coulomb's law constant
$$k = 1/4\pi\varepsilon_0$$

$$= 8.99 \times 10^9 \ N \ m^2 \ C^{-2}$$

Electron charge
$$e = -1.60 \times 10^{-19} \text{ C}$$

Electron mass
$$m_e = 9.11 \times 10^{-31} \text{ kg}$$

Electronvolt
$$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$$

Gravitational constant
$$G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$$

Gravitational field strength
$$g = 9.81 \text{ N kg}^{-1}$$
 (close to Earth's surface)

Permittivity of free space
$$\varepsilon_0 = 8.85 \times 10^{-12} \, \mathrm{F m^{-1}}$$

Planck constant
$$h = 6.63 \times 10^{-34} \text{ J s}$$

Proton mass
$$m_{\rm p} = 1.67 \times 10^{-27} \, \text{kg}$$

Speed of light in a vacuum
$$c = 3.00 \times 10^8 \text{ m s}^{-1}$$

Stefan-Boltzmann constant
$$\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$$

Unified atomic mass unit
$$u = 1.66 \times 10^{-27} \text{ kg}$$

Unit 1

Mechanics

Kinematic equations of motion
$$s = \frac{(u+v)t}{2}$$

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

Forces
$$\Sigma F = ma$$

$$g = \frac{F}{m}$$

$$W = mg$$

Momentum
$$p = mv$$

Moment of force
$$moment = Fx$$

Work and energy
$$\Delta W = F \Delta s$$

$$E_{\rm k} = \frac{1}{2} m v^2$$

$$\Delta E_{\rm grav} = mg\Delta h$$

Power
$$P = \frac{E}{t}$$

$$P = \frac{W}{t}$$

Efficiency

$$efficiency = \frac{useful energy output}{total energy input}$$

Materials

Density

Stokes' law $F = 6\pi \eta r v$

Hooke's law $\Delta F = k\Delta x$

Elastic strain energy $\Delta E_{\rm el} = \frac{1}{2} F \Delta x$

Young modulus $E = \frac{\sigma}{\varepsilon}$ where

Stress $\sigma = \frac{F}{A}$

 $\rho = \frac{m}{V}$

Strain $\varepsilon = \frac{\Delta x}{x}$

Unit 2

Waves

Wave speed $v = f\lambda$ Speed of a transverse wave on a string $v = \sqrt{\frac{T}{\mu}}$

Intensity of radiation $I = \frac{P}{A}$

Refractive index $n_1 \sin \theta_1 = n_2 \sin \theta_2$

 $n = \frac{c}{v}$

Critical angle $\sin C = \frac{1}{n}$

Diffraction grating $n\lambda = d\sin\theta$

Electricity

Potential difference $V = \frac{W}{Q}$

Resistance $R = \frac{V}{I}$

Electrical power, energy P = VI

 $P = I^2 R$ V^2

 $P = \frac{V^2}{R}$

W = VIt

Resistivity $R = \frac{\rho l}{A}$

Current $I = \frac{\Delta Q}{\Delta t}$

I = nqvA

Resistors in series $R = R_1 + R_2 + R_3$

Resistors in parallel $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

Particle nature of light

Photon model E = hf

Einstein's photoelectric $hf = \phi + \frac{1}{2} m v_{\text{max}}^2$ equation

de Broglie wavelength $\lambda = \frac{h}{p}$

Unit 4

Further mechanics

Impulse $F\Delta t = \Delta p$

Kinetic energy of a non-relativistic particle $E_{k} = \frac{p^{2}}{2m}$

Motion in a circle $v = \omega r$

 $T = \frac{2\pi}{\omega}$

 $a = \frac{v^2}{r}$

 $a = r\omega^2$

Centripetal force $F = ma = \frac{mv^2}{r}$

 $F = mr\omega^2$

Electric and magnetic fields

Electric field $E = \frac{F}{Q}$

Coulomb's law $F = \frac{Q_1 Q_2}{4\pi \varepsilon_0 r^2}$

 $E = \frac{Q}{4\pi\varepsilon_0 r^2}$

 $E = \frac{V}{d}$

Electrical potential $V = \frac{Q}{4\pi\varepsilon_0 r}$

Capacitance $C = \frac{Q}{V}$

Energy stored in capacitor $W = \frac{1}{2}QV$

 $W = \frac{1}{2}CV^2$

 $W = \frac{1}{2} \frac{Q^2}{C}$

Capacitor discharge $Q = Q_0 e^{-t/RC}$

Resistor-capacitor discharge

$$I = I_0 \mathrm{e}^{-t/RC}$$

$$V = V_0 e^{-t/RC}$$

$$\ln Q = \ln Q_0 - \frac{t}{RC}$$

$$\ln I = \ln I_0 - \frac{t}{RC}$$

$$\ln V = \ln V_0 - \frac{t}{RC}$$

In a magnetic field

$$F = Bqv \sin \theta$$

$$F = BIl \sin \theta$$

Faraday's and Lenz's laws

$$\mathcal{E} = \frac{-\mathrm{d}(N\phi)}{\mathrm{d}t}$$

Nuclear and particle physics

In a magnetic field

$$r = \frac{p}{BQ}$$

Mass-energy

$$\Delta E = c^2 \, \Delta m$$

Unit 5

Thermodynamics

Heating $\Delta E = mc\Delta\theta$

 $\Delta E = L\Delta m$

Ideal gas equation pV = NkT

Molecular kinetic theory $\frac{1}{2}m < c^2 > = \frac{3}{2}kT$

Nuclear decay

Mass-energy $\Delta E = c^2 \Delta m$

Radioactive decay $A = \lambda N$

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\lambda N$$

$$\lambda = \frac{\ln 2}{t_{1/2}}$$

$$N = N_0 e^{-\lambda t}$$

$$A = A_0 e^{-\lambda t}$$

Oscillations

Simple harmonic motion F = -kx

 $a = -\omega^2 x$

 $x = A \cos \omega t$

 $v = -A\omega \sin \omega t$

 $a = -A\omega^2 \cos \omega t$

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

$$\omega = 2\pi f$$

Simple harmonic oscillator $T = 2\pi \sqrt{\frac{m}{k}}$

$$T = 2\pi \sqrt{\frac{l}{g}}$$

Astrophysics and cosmology

Gravitational field strength
$$g = \frac{F}{m}$$

Gravitational force
$$F = \frac{Gm_1m_2}{r^2}$$

Gravitational field
$$g = \frac{Gm}{r^2}$$

Gravitational potential
$$V_{\text{grav}} = \frac{-Gm}{r}$$

Stefan-Boltzmann law
$$L = \sigma A T^4$$

Wien's law
$$\lambda_{\text{max}} T = 2.898 \times 10^{-3} \,\text{mK}$$

Intensity of radiation
$$I = \frac{L}{4\pi d^2}$$

Redshift of electromagnetic
$$z = \frac{\Delta \lambda}{\lambda} \approx \frac{\Delta f}{f} \approx \frac{v}{c}$$
 radiation

Cosmological expansion
$$v = H_0 d$$

