1.5 GHz Oscillator Design

RF Circuit Design

Salvatore Levantino

2020/2021

Differential CMOS LC Oscillator

Parameters

$$V_T = 0.35V$$
 $\mu_n C_{ox} = 120 \mu A/V^2$
 $\mu_p C_{ox} = 60 \mu A/V^2$

Requirements

$$f_0 = 1.5GHz$$

 $Q = 20$
 $I_{ss} = 3mA$
 $EGF = 5$
Maximize the FoM

Derive values of R, L, C, $(W/L)_n$, $(W/L)_p$

Oscillator Phase Noise and Figure of Merit

$$\mathcal{L}(\Delta\omega) = \frac{S_{v}(\omega_{0} + \Delta\omega)}{S_{v}(\omega_{0})} = \frac{\frac{1}{2} \frac{4K_{b}T}{R} \frac{1}{(2C\Delta\omega)^{2}} F_{a}}{\frac{1}{2}A_{0}^{2}} = \frac{K_{b}TRF_{a}}{Q^{2}A_{0}^{2}} \left(\frac{\omega_{0}}{\Delta\omega}\right)^{2} = \frac{K_{b}TF_{a}}{Q^{2}2\eta P_{diss}} \left(\frac{\omega_{0}}{\Delta\omega}\right)^{2}$$

$$C = Q/(\omega_{0}R)$$

$$\eta = \frac{P_{out}}{P_{diss}} = \frac{\frac{A_0^2}{2R}}{V_{dd}I_{ss}} = \frac{2A_0^2}{\pi A_0 V_{dd}} \propto \frac{A_0}{V_{dd}}$$

$$A_0 = \frac{4}{\pi}I_{ss}R$$

$$FoM = rac{1}{\mathcal{L}(\Delta\omega) P_{diss,mW}} \left(rac{\omega_0}{\Delta\omega}
ight)^2 = 10^{-3} rac{2\eta Q^2}{KTF_a} \propto \eta$$

To maximize the FoM, A₀ has to be maximized

Oscillation Amplitude

$$I_1 = \frac{2}{\pi} 2I_{SS}$$
 $I_{load}(t)$
1st harmonic

Oscillation Amplitude:

$$A_0 = I_1 R = \frac{4}{\pi} I_{ss} R$$

Maximizing the Amplitude

$$A_{0,\text{max}} = 0.9V$$

Deriving the component values

$$A_0 = 0.9V = \frac{4}{\pi} \cdot I_0 R \rightarrow R \approx 236\Omega$$

$$Q=20=\frac{R}{\omega_0L}\to L\approx 1.25nH$$

$$f_0=1.5 ext{GHz}=rac{1}{2\pi\sqrt{LC}}
ightarrow Cpprox 9 pF$$

$$g_m R = 5 \rightarrow \left(\frac{W}{L}\right)_n = 1250 = \left(\frac{75\mu m}{60nm}\right)$$

Try using a <u>spreadsheet</u> to play around with the values

Cadence Simulation

- Start virtual desktop: NX Client
- Applications ➤ Terminal ➤ virtuoso.sh
- File ➤ New ➤ Library (do not need process)
- File ► New ► Cellview (schematic schematic XL)
- "i" to add instances
- Use devices from "analogLib" library (res, cap, ind, nmos4, pmos4, vdc, gnd, idc)
- Use model name nsvt and psvt for nmos4 and pmos4, respectively

Draw Schematic

Model File

Create a text file:

"models.scs"

```
simulator lang=spectre
model nsvt mos1 type=n vto=0.35 kp=120e-6 lambda=5e-2 \
cgso=2e-10 cgdo=2e-10 cgbo=2e-10
model psvt mos1 type=p vto=0.35 kp=60e-6 lambda=5e-2 \
cgso=2e-10 cgdo=2e-10 cgbo=2e-10
```

- Open ADE L
- Menu Setup > Model Libraries (path to your model.scs file)

Model Library

1) DC Analysis

- From ADE L tool
- Menu Analysis: dc
- Menu Results ➤ Print Operating Point
 - $g_m \approx 21.5 \text{ mA/V}$
 - $c_{gs,n} \approx 15 \text{ fF}, c_{gs,p} \approx 15 \text{ fF}$

2) Transient Analysis

Result of Transient Analysis

Set initial conditions!

3) Periodic Steady State

Result of PSS Analysis (frequency domain)

Result of PSS Analysis (time domain)

• $A_0 = 0.89V$

4) Periodic Noise (PNOISE)

Result of PNOISE Analysis

• $\mathcal{L} = -136.9 \text{ dBc/Hz}$

Analog Design Environment (ADE)

Set analyses:

PSS (sweep variable)

PNOISE

Exercise: sweep I_{ss} from 0.7 to 6.0 mA

- Amplitude of differential output increases (but saturates)
- Source average voltage goes down
- Phase noise decreases (but saturates)

Library: rfExamples

oscDiff

scHartley

fOsc

