3. szeminárium: Preferenciák, hasznosság

- a preferenciák leírására közömbösségi görbéket fogunk alkalmazni
- a fogyasztó számára közömbös fogyasztói kosarakat reprezentáló görbe
- a preferenciák különböző szintjeit reprezentáló közömbösségi görbék nem metszhetik egymást!

szigorúan preferált \Rightarrow $(x_A, y_A) \succ (x_B, y_B)$ vagy $A \succ B$ közömbös \Rightarrow $(x_A, y_A) \sim (x_B, y_B)$ vagy $A \sim B$ gyengén preferált \Rightarrow $(x_A, y_A) \succeq (x_B, y_B)$ vagy $A \succeq B$

Általános tulajdonságok

- 1. Teljesség → feltesszük, hogy bármely két kosár összevethető egymással
- 2. Reflexivitás \Rightarrow feltesszük, hogy bármely kosár legalább olyan jó, mint saját maga \Rightarrow $(x_A, y_A) \succeq (x_A, y_A)$
- 3. Tranzitivitás \rightarrow ha $A \succeq B$ és $B \succeq C$, akkor $A \succeq C$

Jól viselkedő preferenciák tulajdonságai

- monotonitás → ami több, az jobb → emaitt negatív meredekségűek
- a fogyasztó az átlagot részesíti előnyben a szélsőségekkel szemben → emaitt konvexek, azaz "C" alakúak

Hasznosság

- a hasznossági függvény az egyik módja annak, hogy minden lehetséges fogyasztási kosárnak értéket tulajdonítsunk → oly módon, hogy a jobban preferált kosarak nagyobb, → a kevésbé preferáltak kisebb számot kapnak.
- geometriailag a hasznossági függvény egy eljárás arra, hogy a közömbösségi görbéket beszámozzuk
- a hasznossági értékadás tulajdonságai közül egyedül az a fontos, hogy ez milyen sorrendbe rendezi a jószágkosarakat → ordinális hasznosság
- a monoton transzformáció az az eljárás, amelynek során a számok egy halmazát egy másik számhalmazzá transzformáljuk oly módon, hogy megtartjuk a számok sorrendjét -> pl. pozitív számmal való szorzás, bármely szám hozzáadása

Példák preferenciatípusokra

1. tökéletes helyettesítés

- tekintsük a piros és a kék ceruzák esetét → a fogyasztó számára csak a ceruzák együttes száma számít
- a hasznosság mértéke tehát természetes módon kifejeződik a ceruzák teljes számában

$$x + y$$

$$U = a \cdot x + b \cdot y$$

$$MU_{x} = \frac{\partial U(x, y)}{\partial x} = a$$
és
$$MU_{y} = \frac{\partial U(x, y)}{\partial y} = b$$

$$|MRS| = \frac{MU_{x}}{MU_{y}} = \frac{a}{b}$$

Varian [2010] 39.o.

2. tökéletes kiegészítés

 $\min\{x;y\}$

- ez a ballábas és a jobblábas cipők esete
- az ilyen preferenciák esetében a fogyasztót csak a cipőpárok száma érdekli, → ezért hasznossági függvényül a cipőpárok számát választjuk

$$U(x,y) = \min \{a \cdot x; b \cdot y\}$$

$$|MRS| = \begin{cases} 0, \text{ ha } x > y \\ \infty, \text{ ha } x < y \\ \text{ nem \'ertelmezhet\'o, ha } x = y \end{cases}$$

Varian [2010] 40.o.

3. Cobb-Douglas preferenciák

$$U(x,y) = A \cdot x^{a} y^{b}$$
$$U(x,y) = x^{a} y^{b}$$

$$\left| \mathbf{MRS} \right| = \frac{\mathbf{a}}{\mathbf{b}} \cdot \frac{\mathbf{y}}{\mathbf{x}}$$

Varian [2010] 64.o.

ha
$$U(x,y) = xy$$

ha
$$U(x,y) = x^{\frac{1}{2}}y^{\frac{1}{2}}$$

4. Kvázilineáris preferenciák

 tegyük fel, hogy a fogyasztó olyan közömbösségi görbékkel rendelkezik, amelyek egymás függőleges eltolásai

Varian [2010] 63.o.

$$U(x,y) = \sqrt{x} + y$$
 vagy $U(x,y) = \ln x + y$

ebben az esetben a hasznossági függvény az y jószágban lineáris, de nem lineáris az x jószágban

így a kvázilineáris hasznosság elnevezés "részben lineáris" hasznosságot jelent

Helyettesítési határarány

helyettesítési határarány: a közömbösségi görbe pontbeli meredeksége a → MRS → Marginal Rate of Substitution → az MRS mutatja azt az arányt, amelyben a fogyasztó az egyik jószágot a másikkal hajlandó helyettesíteni

- tulajdonképpen a közömbösségi görbe meredeksége (MRS) a fogyasztó fizetési határhajlandóságát mutatja
- a szigorúan konvex közömbösségi görbék esetében a helyettesítési határarány csökken, ha x nő
- azaz minél többel rendelkezünk egy jószágból, annál inkább hajlandók vagyunk lemondani róla a másik jószágért cserébe

határhaszon: pl. az x jószág mennyiségének egy kismértékű Δx változására visszavezethető ΔU hasznosságváltozást méri, miközben y jószág mennyisége konstans megmutatja, hogyha ceteris paribus az egyik jószág mennyiségét (végtelen) kis mértékben megváltoztatjuk, akkor mennyivel változik a hasznosság

$$MU_{x} = \frac{\Delta U}{\Delta x} = \frac{U(x + \Delta x, y) - U(x, y)}{\Delta x} \qquad \text{vagy} \qquad MU_{x} = \frac{\partial U(x, y)}{\partial x}$$

$$MU_{y} = \frac{\Delta U}{\Delta y} = \frac{U(x, y + \Delta y) - U(x, y)}{\Delta y} \qquad \text{vagy} \qquad MU_{y} = \frac{\partial U(x, y)}{\partial y}$$

- változzon a fogyasztás mindkét jószágból olyan (Δx , Δy) mértékben, hogy az összhaszon változatlan maradjon!
- ekkor a fogyasztás változása a közömbösségi görbe mentén való mozgást jelent
- ekkor igaz, hogy

$$MU_x \cdot \Delta x + MU_y \cdot \Delta y = \Delta U = 0$$

mivel
$$MU_x = \frac{\Delta U}{\Delta x}$$

kifejezve a közömbösségi görbe meredekségét, a következőhöz jutunk:

$$MRS = \frac{\Delta y}{\Delta x} = -\frac{MU_x}{MU_y}$$

$$\begin{aligned} MU_{x} \cdot \Delta x + MU_{y} \cdot \Delta y &= \Delta U = 0 \\ MU_{x} \cdot \Delta x + MU_{y} \cdot \Delta y &= 0 \\ MU_{y} \cdot \Delta y &= -MU_{x} \cdot \Delta x \\ \frac{\Delta y}{\Delta x} &= -\frac{MU_{x}}{MU_{y}} \end{aligned}$$

 az MRS előjele negatív, hiszen ha több x jószágra teszünk szert, akkor kevesebb y jószágunknak kell lennie abban az esetben, ha tartani akarjuk ugyanazt a hasznossági szintet

Tökéletes helyettesítés

- tekintsük a piros és a kék ceruzák esetét → a fogyasztó számára csak a ceruzák együttes száma számít
- a hasznosság mértéke tehát természetes módon kifejeződik a ceruzák teljes számában

$$U = a \cdot x + b \cdot y$$

$$MU_{x} = \frac{\partial U(x, y)}{\partial x} = a$$
 és
$$MU_{y} = \frac{\partial U(x, y)}{\partial y} = b$$

$$|MRS| = \frac{MU_{x}}{MU_{y}} = \frac{a}{b}$$

- tegyük fel, hogy a fogyasztó 2y jószág fogyasztását hajlandó feláldozni plusz 1x jószág fogyasztásáért cserébe
- ez azt jelenti, hogy az x jószág kétszer olyan értékes a fogyasztó számára, mint az y jószág
- $x < y \rightarrow 2x = y$

$$U = 2 \cdot x + 1 \cdot y$$

$$MU_{x} = \frac{\partial U(x, y)}{\partial x} = 2$$

$$|MRS| = \frac{MU_{x}}{MU_{y}} = \frac{a}{b} = \frac{2}{1} = 2$$
és
$$MU_{y} = \frac{\partial U(x, y)}{\partial y} = 1$$

tekintsük a következő hasznosságokat:

$U_1 = 2$	$U_2 = 4$	$U_3 = 6$
$U = 2 \cdot x + 1 \cdot y$	$U = 2 \cdot x + 1 \cdot y$	$U = 2 \cdot x + 1 \cdot y$
2 = 2x + y	4 = 2x + y	6 = 2x + y
y=2-2x	y=4-2x	y=6-2x

y termék mennyisége

x termék mennyisége

Tökéletes kiegészítés

- ez a ballábas és a jobblábas cipők esete
- az ilyen preferenciák esetében a fogyasztót csak a cipőpárok száma érdekli, \rightarrow ezért hasznossági függvényül a **cipőpárok számát** választjuk
- csak az a lényeg, hogy a bal és jobb lábas cipőből hány pár jön ki → ha van 2 jobb lábas és egy bal lábas, vagy négy ballábas és egy jobb lábas cipő, attól még csak egy darab pár cipőnk van, amit használni tudunk
- a cipőpárok száma megállapítható a jobblábas cipők (x) és a ballábas cipők (y) minimumában
- ahány pár cipőnk van, az lesz egyben az x jobblábas és az y ballábas cipők számának minimuma is
- így a tökéletes kiegészítés hasznossági függvényének formulája:

$$U(x,y) = \min\{a \cdot x; b \cdot y\}$$

$$|MRS| =$$

$$\begin{cases}
0, \text{ ha } x > y \\
\infty, \text{ ha } x < y \\
\text{nem értelmezhető, ha } x = y
\end{cases}$$

• tegyük fel, hogy a fogyasztó 1 db x jószágot csak 2 db y jószággal együtt hajlandó fogyasztani

x termék mennyisége	y termék mennyisége
1	$2 \cdot 1 = 2$
2	$2 \cdot 2 = 4$
3	$2 \cdot 3 = 6$

- mi annak az egyenesnek az egyenlete, ami összeköti a különböző hasznosággal rendelkező közömbösségi görbék minimum pontjait → ez lesz a sarokpontok/ töréspontok egyenlete → azaz nézzük meg, hol egyenlők egymással a minimum függvény x és y argumentumai a megadott arányok esetén →
- $x \le y \rightarrow \text{hogy lesznek egyenlőek?} \rightarrow 2x = y$
- a minimumpontok/ sarokpontok/ töréspontok egyenlete $\rightarrow v = 2x$
- ez kerül be a minimum függvénybe, \rightarrow így ekkor a hasznossági függvény formája:

$$U(x,y) = \min\{2x; y\}$$

• tekintsük a következő hasznosságokat:

$U_1 = 2$	$U_2 = 4$	$U_3 = 6$
$U(x,y) = \min\{2x;y\}$	$U(x,y) = \min\{2x;y\}$	$U(x,y) = \min\{2x;y\}$
$U(1,2) = \min\{2 \cdot 1; 2\} = 2$	$U(2,4) = \min\{2 \cdot 2; 4\} = 4$	$U(3,6) = \min\{2 \cdot 3; 6\} 6 = 6$

y termék mennyisége

Ha x jószág semleges, és y jószág hasznos

$$U(x,y) = y$$
$$|MRS| = 0$$

y termék mennyisége

 \boldsymbol{x} termék mennyisége

Berde 24. o. \rightarrow 7. feladat

Három barátnő, Anna, Bori és Cili különböző preferenciákkal rendelkeznek a sonka és a sajt vonatkozásában. Ha a 30 dkg sonkát (x) és 60 dkg sajtot (y) tartalmazó joszágkosárát (legyen ez az A kosár) a 40 dkg sonkát és 40 dkg sajtot tartalmazó kosárral (legyen ez a B kosár) hasonlítjuk össze, akkor preferenciáik a következők: Anna számára $A \succ B$, Bori számára $A \sim B$. Tudjuk még, hogy mindegyikük számára mindkét jószágból a több az jobb, es hogy az átlagos összetételű kosarat preferálják a szélsőséges összetételűhöz képest.

- a) Ábrázoljuk a három barátnő néhány lehetséges közömbösségi görbéjét!
- b) Mit tudunk az adott információk alapján a három barátnőnek a sonkára és sajtra vonatkozó helyettesítési arányáról az x = 30 és x = 40 között (azaz a sonka mennyiségének 10 dkg-al történő növelése érdekeben mennyi sajtról hajlandók lemondani, ha 30 dkg sonkával rendelkeznek)?

sonka $\rightarrow x$	Anna számára $\rightarrow A \succ B$
$sajt \rightarrow y$	Bori számára $\rightarrow A \prec B$
	Cili számára → A ~ B
30 dkg sonka $\rightarrow x_A$	
60 dkg sajt $\rightarrow y_A$	
A (30;60)	
40 dkg sonka $\rightarrow x_B$	
40 dkg sajt $\rightarrow y_B$	
B (40;40)	

lehetséges közömbösségi görbék? RS=?

a) Ábrázoljuk a három barátnő néhány lehetséges közömbösségi görbéjét!

1. Anna közömbösségi görbéi $\Rightarrow A \succ B$

x termék mennyisége (sonka)

2. Bori közömbösségi görbéi $\rightarrow A \prec B$

3. Cili közömbösségi görbéi $\rightarrow A \sim B$

b) Mit tudunk az adott információk alapján a három barátnőnek a sonkára és sajtra vonatkozó helyettesítési arányáról az x = 30 és x = 40 között (azaz a sonka mennyiségének 10 dkg-al történő növelése érdekeben mennyi sajtról hajlandók lemondani, ha 30 dkg sonkával rendelkeznek)?

RS \rightarrow Rate of Substitution, helyettesítési arány; megmutatja azt az arányt, amelyben a fogyasztó az egyik jószágot a másikkal hajlandó helyettesíteni $\rightarrow |RS| = \left|\frac{\Delta y}{\Delta x}\right|$

$$\left| RS_{Cili} \right| = \left| \frac{\Delta y}{\Delta x} \right| = \left| \frac{-20 \, dkg \, sajt}{+10 \, dkg \, sonka} \right| = 2$$

1 dkg sonkáért 2 dkg sajtról hajlandó lemondani

$$\left| RS_{Anna} \right| = \left| \frac{\Delta y}{\Delta x} \right| = \left| \frac{-kevesebb, \min 20 \, dkg \, sajt}{+10 \, dkg \, sonka} \right| < 2$$

1 dkg sonkáért kevesebb, mint 2 dkg sajtról hajlandó lemondani A közömbösségi görbe meredeksége kisebb, mint Cilié.

$$\left| RS_{Bori} \right| = \left| \frac{\Delta y}{\Delta x} \right| = \left| \frac{-t\ddot{o}bb, \text{mint } 20 \, dkg \, sajt}{+10 \, dkg \, sonka} \right| > 2$$

1 dkg sonkáért több, mint 2 dkg sajtról hajlandó lemondani A közömbösségi görbe meredeksége nagyobb, mint Cilié.

Berde 24. o. \rightarrow 8. feladat

A Coca-Cola nyereményakciót hirdet, melyen két terméke, a Coca-Cola és a Coca-Cola Light kupakjai közül összesen 5-öt beküldő fogyasztók egy Coca-Cola feliratú pólót nyerhetnek. Rajzoljuk fel egy, a pólót kedvelő, telhetetlen fogyasztó közömbösségi görbéit a kétféle Cola kupakjaira vonatkozóan! Határozzuk meg a helyettesítési határarányt!

Coca Cola kupak
$$\rightarrow x$$

Coca Cola Light kupak $\rightarrow y$

- minél több kupak, annál jobb
- nincs olyan, hogy 10 kupak elég neki → telhetetlen
- Írjuk fel azokat a kupak kombinációkat, amik egy pólót érnek! → ezek lesznek egy közömbösségi görbén

1 pólót érő kupak kombinációk		2 pólót érő kupak kombinációk	
Coca Cola	Coca Cola Light	Coca Cola	Coca Cola Light
0	5	0	10
1	4	1	9
2	3	2	8
3	2	()	()
4	1	9	1
5	0	10	0
	,	<u></u>	

Mindegy, hogy Coca Cola kupak, vagy Coca Cola Light kupak → 1 Coca Cola kupakért egy Coca Cola Light kupakot hajlandó feláldozni → azaz |MRS|=1 → tökéletes helyettesítés

• azok az (x; y)kosarak, amelyek közömbösek a fogyasztó számára, azaz amelyek 1 pólót érnek:

$$(0;5) \sim (1;4) \sim (2;3) \sim (3;2) \sim (4;1) \sim (5;0)$$

x termék mennyisége (Coca Cola kupak)

• az MRS megmutatja, hogy egy x-ért hány y-t hajlandó feláldozni a fogyasztó

$$MRS = 1 = \frac{a}{b}$$

$$\rightarrow$$

$$a:b=1:1$$

$$\rightarrow$$

$$U = a \cdot x + b \cdot y$$

- $igy U = a \cdot x + b \cdot y$
- de jók lennének a következő hasznossági függvények is:

$$U = 1x + 1y$$

$$U = 5x + 5y$$

$$U = 10x + 10y$$

- mivel $\frac{a}{b} = 1$, ha a = b
- x → Coca Cola kupa
- y → a Coca Cola Light kupak

1 pólót érő kupakok hasznossága	2 pólót érő kupakok hasznossága
$U\left(x,y\right) = 1x + 1y$	$U\left(x,y\right) = 1x + 1y$
$U(0,5) = 1 \cdot 0 + 1 \cdot 5 = 5$	$U(0,10) = 1 \cdot 0 + 1 \cdot 10 = 10$
$U(1,4) = 1 \cdot 1 + 1 \cdot 4 = 5$	$U(1,9) = 1 \cdot 1 + 1 \cdot 9 = 10$
$U(2,3) = 1 \cdot 2 + 1 \cdot 3 = 5$	$U(5,5) = 1 \cdot 5 + 1 \cdot 5 = 10$
$U(3,2) = 1 \cdot 3 + 1 \cdot 2 = 5$	$U(6,4) = 1 \cdot 6 + 1 \cdot 4 = 10$
$U(4,1) = 1 \cdot 4 + 1 \cdot 1 = 5$	$U(7,3) = 1 \cdot 7 + 1 \cdot 3 = 10$
$U(5,0) = 1 \cdot 5 + 1 \cdot 0 = 5$	$U(8,2) = 1 \cdot 8 + 1 \cdot 2 = 10$

y termék mennyisége (Coca Cola Light kupak)

x termék mennyisége (Coca Cola kupak)

b) Coca Cola vagy Coca Cola Light kupakokat gyűjtene inkább, ha egy üveg Coca Cola ára 350 Ft és egy üveg Coca Cola Light ára 400 Ft? Ha a fogyasztó 3500 Ft-ot költ kólára, hány pólót nyerhet?

jövedelem I = 3500Coca Cola kupak $\rightarrow x$ Coca Cola Light kupak $\rightarrow y$ 1 üveg Coca Cola ára $\rightarrow p_x = 350$ 1 üveg Coca Cola Light ára $\rightarrow p_y = 400$

hány pólót nyerhet?

Tökéletes helyettesítés (MRS = 1) esetén három lehetséges esetünk van:

1. |MRS| = 1 esetén \rightarrow ha $\mathbf{p_x} < \mathbf{p_y}$ (pl. $\frac{p_x}{p_y} = \frac{1}{5}$), $\rightarrow |MRS| > \left| \frac{\mathbf{p_x}}{\mathbf{p_y}} \right|$ akkor a költségvetési

egyenes laposabb, meredeksége kisebb, mint a közömbösségi görbék meredeksége \rightarrow ebben az esetben az optimális kosár az lesz, amikor a **fogyasztó minden pénzét az** x

jószág vásárlására költi
$$\Rightarrow \left(\frac{I}{p_x};0\right)$$

2. $|\mathbf{MRS}| = 1$ esetén \rightarrow ha $\mathbf{p}_{x} > \mathbf{p}_{y}$ (pl. $\frac{p_{x}}{p_{y}} = \frac{5}{1}$), $\rightarrow |\mathbf{MRS}| < \left| \frac{\mathbf{p}_{x}}{\mathbf{p}_{y}} \right|$ akkor a fogyasztó csak

az y jószágot fogja vásárolni
$$\Rightarrow \left(0; \frac{\mathbf{I}}{\mathbf{p}_{y}}\right)$$

3. |MRS| = 1 esetén \rightarrow ha $p_x = p_y$, $\rightarrow |MRS| = \left| \frac{p_x}{p_y} \right|$ akkor egy egész tartomány optimális

választás lehet \Rightarrow az x és y jószág bármilyen, a költségvetési korlátba éppen beleütköző kombinációja optimális lesz

Azaz:

- ha két jószág egymás tökéletes helyettesítője, akkor a fogyasztó azt a terméket veszi meg, amelyért legalább annyit, vagy többet hajlandó fizetni, mint az adott termék relatív ára
- ha mindkét jószágnak ugyanakkora az ára, akkor a fogyasztónak mindegy, hogy melyiket veszi meg
- a költségvetési korlát:

$$p_x x + p_y y = I$$
$$350x + 400y = 3500$$

• a költségvetési egyenes meredeksége abszolút értékben:

$$\frac{\frac{I}{p_y}}{\frac{I}{p_x}} = \frac{I}{p_y} \cdot \frac{p_x}{I} = \frac{p_x}{p_y}$$

• mivel |MRS| = 1, ezért az x és y termék árának viszonyát is vizsgálhatjuk:

$$p_x < p_y$$

350<400 → a költségvetési egyenes laposabb lesz, mint a közömbösségi görbe → így x terméket (Coca Cola) választja

A költségvetési egyenes meredeksége abszolút értékben:

$$\left| \frac{p_x}{p_y} \right| = \frac{350}{400} = 0.875$$

A helyettesítési határráta meredeksége abszolút értékben:

$$|MRS| = 1$$

Hasonlítsuk össze őket:

$$|MRS|$$
? $\left|\frac{p_x}{p_y}\right|$

$$|MRS| > \left| \frac{p_x}{p_y} \right|$$

Mivel többet hajlandó fizetni a Coca Cola kupakokért (több y-t hajlandó adni egy x-ért), mint amennyit a költségvetési korlátjából következően képes, → ezért CSAK Coca Cola kupakokat (x) fog gyűjteni.

A közömbösségi görbe meredeksége	A költségvetési egyenes meredeksége	
MRS = 1	$\left \frac{p_x}{p_y} \right = 0.875$	
1 Coca Cola Light kupakot (y) hajlandó	0.875 Coca Cola Light kupakot (y) kell	
fizetni a fogyasztó 1 Coca Cola kupakért (x)	fizetni a piacon 1 Coca Cola kupakért (x)	

A költségvetési egyenes laposabb lesz, mint a közömbösségi görbe \Rightarrow így az x terméket (Coca Cola kuapk) választja $\Rightarrow \mathbf{A}(\mathbf{x}^*;\mathbf{y}^*) = (\mathbf{10};\mathbf{0})$.

Grafikus megoldás:

$$\frac{I}{p_x} = \frac{3500}{350} = 10$$

$$\frac{I}{p_y} = \frac{3500}{4500} = 8.75$$

y termék mennyisége (Coca Cola Light kupak)

x termék mennyisége (Coca Cola kupak)

Ellenőrzés:

• nézzük meg a hasznosságát a két lehetséges optimális kosárnak:

$$A(x;y) = (10;0) \rightarrow$$
 ekkor csak x terméket (fagyit) fogyaszt

$$B(x;y) = (0;8.75) \rightarrow$$
 ekkor csak y terméket (jégkrémet) fogyaszt

$$U(A) = x + y = 10 + 0 = 10$$

$$U(B) = x + y = 0 + 8.75 = 8.75$$

$$U(A) = 10$$
 > $U(B) = 8.75$

Az optimális választás a 10 Coca Cola kupak lesz, amit két pólóra tud beváltani a fogyasztó.

Berde 24. o. \rightarrow 9. feladat

Makroökonómia tárgybál a diákok 2 zárthelyit írnak, az első zárthelyi könnyebb, ezért 1/3-ad, a második nehezebb, ezért 2/3-ad súllyal számít bele a jegybe.

- a) Rajzoljuk fel a diákok közömbösségi görbéit!
- b) Milyen alakúak a közömbösségi görbék, ha a 2 zárthelyi közül csak a jobbik számít?
- c) És ha csak a rosszabbik?

a) Rajzoljuk fel a diákok közömbösségi görbeit!

- 1. ZH pontszáma $\rightarrow x$
- 2. ZH pontszáma $\rightarrow y$
- tegyük fel, hogy 100 pontos a ZH
- a lényeg, hogy összeszedjük a 100 pontot, mindegy, hogy az első vagy a második ZH pontszámából → tehát az első ZH pontszáma helyettesíthető a második ZH pontszámával
- a kérdés csak az, hogy milyen arányban:

$$\frac{1}{3} + \frac{2}{3} = \frac{3}{3}$$
 / \cdot 3

- csak a két súly egymáshoz viszonyított aránya számít a feladatban → mert a határon kell gondolkodni
- csak az számít, hogy a $\frac{2}{3}$ kétszerese az $\frac{1}{3}$ -nak
- ezek a határhasznok $\Rightarrow a = \frac{1}{3}$ $b = \frac{2}{3}$ vagy a = 1 b = 2
- tökéletes helyettesítés esetén a hasznossági függvény alakja: $U = a \cdot x + b \cdot y$
- ez esetben: $U = \frac{1}{3} \cdot x + \frac{2}{3} \cdot y$ vagy U = x + 2y
- monoton transzformáció → a közömbösségi görbéket át lehet számozni; ez meg fogja tartani a kosarak sorrendjét

17

$$U = \frac{1}{3} \cdot x + \frac{2}{3} \cdot y$$
 / ·3
 $3U = x + 2y$ ez átírható $\Rightarrow U = x + 2y$ formába

- csak az a lényeg, hogy a jobb kosarak magasabb számot kapjanak
- nekünk csak az ordinális hasznosságra van szükségünk → csak a sorrend számít, a kosarak közti különbségek nem (az kardinális hasznosság lenne)

Soroljunk fel 100 pontot érő (x;y) kosarakat, amik U_1 hasznosságot képviselnek! Majd soroljunk fel 120 pontot (x;y) kosarakat, amik U_2 hasznosságot képviselnek

100 pontot érő ZH pontszámok kombinációja (U_1)		120 pontot érő ZH pontszámok kombinációja (U_2)	
1. ZH pontszáma	ontszáma 2. ZH pontszáma 1. ZH pontszáma 2		2. ZH pontszáma
20	40	120	0
40	30	100	10
60	20	80	20
80	10	60	30
100	0	40	40
0	50	0	60

$$U_1$$
: $(20;40) \sim (40;30) \sim (60;20) \sim (80;10) \sim (100;0) \sim (0;50)$
 U_2 : $(120;0) \sim (100;10) \sim (80;20) \sim (60;30) \sim (40;40) \sim (0;60)$

100 pontot érő ZH pontszámok	120 pontot érő ZH pontszámok
hasznossága	hasznossága
$U_1(x,y) = 1x + 2y$	$U_2(x,y) = 1x + 2y$
$U_1(20,40) = 1 \cdot 20 + 2 \cdot 40 = 100$	$U_2(120,0) = 1 \cdot 120 + 2 \cdot 0 = 120$
$U_1(40,30) = 1.40 + 2.30 = 100$	$U_2(100,10) = 1.100 + 2.10 = 120$
$U_1(60,20) = 1.60 + 2.20 = 100$	$U_2(80,20) = 1.80 + 2.20 = 120$
$U_1(80,10) = 1.80 + 2.10 = 100$	$U_2(60,30) = 1.60 + 2.30 = 120$
$U_1(100,0) = 1.100 + 2.0 = 100$	$U_2(40,40) = 1.40 + 2.40 = 120$
$U_1(0,50) = 1 \cdot 0 + 2 \cdot 50 = 100$	$U_2(0,60) = 1 \cdot 0 + 2 \cdot 60 = 120$

Ábrázoláshoz

$$U_1(x,y) = 1x + 2y$$

ezt lehet monoton transzformálni ->

$$U_2(x,y) = 1x + 2y + 20$$

$$U_1 \rightarrow 1x + 2y = 100$$

$$U_2 \rightarrow 1x + 2y = 120$$

$$1x + 2y = 100$$

$$2y = 100 - x$$

$$y = 50 - \frac{1}{2}x$$

$$1x + 2y = 120$$

$$2y = 120 - x$$

$$y = 60 - \frac{1}{2}x$$

$$U_1(x, y) = 1x + 2y$$

$$MU_x = \frac{\partial U(x,y)}{\partial x} = 1$$

$$MU_y = \frac{\partial U(x, y)}{\partial y} = 2$$

$$|MRS| = \frac{MU_x}{MU_y} = \frac{a}{b} = \frac{1}{2}$$

$$|MRS| = \frac{MU_x}{MU_y} = \frac{a}{b} = \frac{1}{2}$$
 vagy az eredeti súlyokkal $|MRS| = \frac{MU_x}{MU_y} = \frac{a}{b} = \frac{\frac{1}{3}}{\frac{2}{3}} = \frac{1}{3} \cdot \frac{3}{2} = \frac{1}{2}$

y termék mennyisége

x termék mennyisége (1. ZH pontszáma)

b) Milyen alakúak a közömbösségi görbék, ha a 2 zárthelyi közül csak a jobbik számít?

- tekintsünk egy tetszőleges ZH pontszámot → pl. legyen az egyik ZH 40 pont
- most nézzük meg azokat a pontszámkombinációkból álló (x; y) kosarakat, melyek közömbösek a fogyasztó számára, > tehát egy közömbösségi görbén helyezkednek el
- mindegy milyen pontszámot szúrunk ki \rightarrow csak az számít, hogy a fogyasztó számára közömbös kosarakat tudjunk felírni \rightarrow ha csak a jobbik pontszám számít, akkor a másik ZH pontszámának kisebbnek, vagy egyenlőnek kell lennie, mint 40 pont
- tehát írjunk fel olyan kosarakat, melyekben a 40 pont lesz a jobbik pontszám

• nézzük meg ugyanezt egy 50 pontos ZH esetén

A fogyasztó számára közömbös kosarak egy 40 pontos ZH esetén (U_1)		A fogyasztó számára közömbös kosarak egy 50 pontos ZH esetén (U_2)	
1. ZH pontszáma 2. ZH pontszáma		1. ZH pontszáma	2. ZH pontszáma
10	40	10	50
30	40	30	50
40	40	50	50
40	30	50	30
40	20	50	20
40	10	50	10

$$U_1: (10;40) \sim (30;40) \sim (40;40) \sim (40;30) \sim (40;20) \sim (40;10)$$
$$U_2: (10;50) \sim (30;50) \sim (50;50) \sim (50;30) \sim (50;20) \sim (50;10)$$

$$U(x,y) = \max\{x;y\}$$

A fogyasztó számára közömbös kosarak hasznossága egy 40 pontos ZH esetén (U_1)	A fogyasztó számára közömbös kosarak hasznossága egy 50 pontos ZH esetén (U_2)
$U_1(x,y) = \max\{x;y\}$	$U_2(x,y) = \max\{x;y\}$
$U_1(10,40) = \max\{10;40\} = 40$	$U_2(10,50) = \max\{10;50\} = 50$
$U_1(30,40) = \max\{30,40\} = 40$	$U_2(30,50) = \max\{30,50\} = 50$
$U_1(40,40) = \max\{40,40\} = 40$	$U_2(50,50) = \max\{50;50\} = 50$
$U_1(40,30) = \max\{40,30\} = 40$	$U_2(50,30) = \max\{50,30\} = 50$
$U_1(40,20) = \max\{40;20\} = 40$	$U_2(50,20) = \max\{50;20\} = 50$
$U_1(40,10) = \max\{40,10\} = 40$	$U_2(50,10) = \max\{50;10\} = 50$

$$|MRS| = \begin{cases} 0, \text{ ha } x < y \\ \infty, \text{ ha } x > y \end{cases}$$
nem értelmezhető, ha $x = y$

y termék mennyisége

(2. ZH pontszáma)

x termék mennyisége (1. ZH pontszáma)

c) Milyen alakúak a közömbösségi görbék, ha a 2 zárthelyi közül csak a rosszabbik számít?

- ismét tekintsünk egy tetszőleges ZH pontszámot → pl. legyen az egyik ZH 20 pont
- most nézzük meg azokat a pontszámkombinációkból álló (x; y) kosarakat, melyek közömbösek a fogyasztó számára, \rightarrow tehát egy közömbösségi görbén helyezkednek el
- mindegy milyen pontszámot szúrunk ki → csak az számít, hogy a fogyasztó számára közömbös kosarakat tudjunk felírni → ha csak a rosszabbik pontszám számít, akkor a másik ZH pontszámának nagyobbnak vagy egyenlőnek kell lennie, mint 20 pont
- tehát írjunk fel olyan kosarakat, melyekben a 20 pont lesz a rosszabbik pontszám
- nézzük meg ugyanezt egy 30 pontos ZH esetén

A fogyasztó számára közömbös kosarak egy 20 pontos ZH esetén (U_1)		A fogyasztó számára közömbös kosarak egy 30 pontos ZH esetén (U_2)	
1. ZH pontszáma 2. ZH pontszáma		1. ZH pontszáma	2. ZH pontszáma
40	20	50	30
30	20	40	30
20	20	30	30
20	30	30	40
20	40	30	50
20	50	30	60

$$U_1: (40;20) \sim (30;20) \sim (20;20) \sim (20;30) \sim (20;40) \sim (20;50)$$

$$U_2$$
: $(50;30) \sim (40;30) \sim (30;30) \sim (30;40) \sim (30;50) \sim (30;60)$

$$U(x,y) = \min\{x;y\}$$

A fogyasztó számára közömbös kosarak hasznossága egy 20 pontos ZH esetén (U_1)	A fogyasztó számára közömbös kosarak hasznossága egy 30 pontos ZH esetén (U_2)
$U_1(x,y) = \min\{x;y\}$	$U_2(x,y) = \min\{x;y\}$
$U_1(40,20) = \max\{40;20\} = 20$	$U_2(50,30) = \min\{50;30\} = 30$
$U_1(30,20) = \max\{30;20\} = 20$	$U_2(40,30) = \min\{40,30\} = 30$
$U_1(20,20) = \max\{20,20\} = 20$	$U_2(30,30) = \min\{30,30\} = 30$
$U_1(20,30) = \max\{20,30\} = 20$	$U_2(30,40) = \min\{30,40\} = 30$
$U_1(20,40) = \max\{20,40\} = 20$	$U_2(30,50) = \min\{30;50\} = 30$
$U_1(20,50) = \max\{20,50\} = 20$	$U_2(30,60) = \min\{30,60\} = 30$

$$|MRS| = \begin{cases} 0, \text{ ha } x > y \\ \infty, \text{ ha } x < y \\ \text{nem értelmezhető, ha } x = y \end{cases}$$

y termék mennyisége (2. ZH pontszáma)

x termék mennyisége (1. ZH pontszáma)

a preferencia típusa → tökéletes kiegészítés

Berde 25. o. \rightarrow 14. feladat

A Varga családban mindenki szereti a **paprikát** es **paradicsomot.** Apa es fia azonban kizárólag lecsó formájában hajlandó fogyasztani a két zöldséget, és a lecsó készítésénél mindig **feleannyi paradicsomot** használnak, mint **paprikát**. Anya es lánya viszont csak nyersen, zöldségsaláta formájában fogyasztjak, és számukra közömbös, hogy adott mennyiségű **paprikából** vagy feleannyi **paradicsomból** készül-e a saláta.

- a) Ábrázoljuk a család tagjainak paprikára és paradicsomra vonatkozó preferenciáit! Milyen jószág a paprika és a paradicsom a Varga család férfi és női tagjai számára?
- b) Keressünk olyan hasznossági függvény(eke)t, amelyek leírják a fenti preferenciákat

paprika $\rightarrow y$

paradicsom $\rightarrow x$

apa és fia → lecsó készítésénél mindig feleannyi paradicsomot használnak, mint paprikát anya és lánya → számukra közömbös, hogy adott mennyiségű paprikából vagy feleannyi paradicsomból készül-e a saláta

paprikára és paradicsomra vonatkozó preferenciák ábrázolás a preferenciákat leíró hasznossági függvények megadása

Apa és fia

- lecsó készítésénél mindig feleannyi paradicsomot (x) használnak, mint paprikát (y) → egy x jószághoz mindig 2y jószágot fogyaszt
- ez tökéletes kiegészítés \rightarrow azaz a hasznossági függvény alakja: $U(x,y) = \min\{a \cdot x; b \cdot y\}$
- szükség van a töréspontok egyenletére \rightarrow azaz, ahol egyenlők egymással a minimum függvény x és y argumentumai a megadott arányok esetén
- $\bullet \qquad x < y \implies 2x = y$
- így a hasznossági függvény alakja: $U(x,y) = min\{2x;y\}$
- tekintsük a következő hasznosságokat:

$U_1 = 2$	$U_2 = 4$	$U_3 = 6$
$U(x,y) = \min\{2x;y\}$	$U(x,y) = \min\{2x;y\}$	$U(x,y) = \min\{2x;y\}$
$U(1,2) = \min\{2 \cdot 1; 2\} = 2$	$U(2,4) = \min\{2 \cdot 2; 4\} = 4$	$U(3,6) = \min\{2 \cdot 3; 6\} 6 = 6$

y termék mennyisége (paprika)

x termék mennyisége (paradicsom)

Anya és lánya

- számukra közömbös, hogy adott mennyiségű paprikából (y) vagy feleannyi paradicsomból (x) készül-e a saláta → 2y vagy 1x
- csak a paprika és a paradicsom együttes mennyisége számít
- ez tökéletes helyettesítés \rightarrow azaz a hasznossági függvény alakja: $U = a \cdot x + b \cdot y$

$$MU_x = \frac{\partial U(x, y)}{\partial x} = a$$
 és $MU_y = \frac{\partial U(x, y)}{\partial y} = b$
 $|MRS| = \frac{MU_x}{MU_y} = \frac{a}{b}$

- ez azt jelenti, hogy az x jószág kétszer olyan értékes a fogyasztó számára, mint az y jószág
- a megadott arányok mellett a hasznossági függvényben szereplő összeg két tagja mikor lesz egyenlő → y > x → 2x = y
- tegyük fel, hogy a fogyasztó 2y jószág fogyasztását hajlandó feláldozni plusz 1x jószág fogyasztásáért cserébe → azaz a meredekség −2

$$U = 2 \cdot x + 1 \cdot y$$

$$MU_{x} = \frac{\partial U(x, y)}{\partial x} = 2$$

$$|MRS| = \frac{MU_{x}}{MU_{y}} = \frac{a}{b} = \frac{2}{1} = 2$$
és
$$MU_{y} = \frac{\partial U(x, y)}{\partial y} = 1$$

tekintsük a következő hasznosságokat:

$U_1 = 2$	$U_2 = 4$	$U_3 = 6$
$U = 2 \cdot x + 1 \cdot y$	$U = 2 \cdot x + 1 \cdot y$	$U = 2 \cdot x + 1 \cdot y$
2 = 2x + y	4 = 2x + y	6 = 2x + y
y=2-2x	y = 4 - 2x	y=6-2x

y termék mennyisége

x termék mennyisége (paradicsom)

Berde 26. o. → 17. feladat

Egy fogyasztó hasznossági függvénye $U = \sqrt{xy^3}$.

- a) Határozzuk meg az $U=10\,$ hasznossági szinthez tartozó közömbösségi görbe egyenletét!
- b) Határozzuk meg mindkét jószág határhaszon-függvényét és a helyettesítési határrátát!
- c) Az U=200 hasznossági szinthez tartozó közömbösségi görbe mely pontjában lesz a helyettesítési határráta (abszolút értékben) $\frac{4}{3}$?

a) Határozzuk meg az U = 10 hasznossági szinthez tartozó közömbösségi görbe egyenletét!

$$U = \sqrt{xy^3}$$

$$10 = \sqrt{xy^3}$$

$$100 = xy^3$$

$$\frac{100}{x} = y^3$$

$$\sqrt[3]{\frac{100}{x}} = y$$

b) Határozzuk meg mindkét jószág határhaszon-függvényét és a helyettesítési határrátát!

Ha a hasznossági függvény Cobb-Douglas alakú, akkor az MRS megkapható az x kitevője osztva az y kitevője szorozva $\frac{y}{x}$.

Azaz, ha
$$U = A \cdot x^a y^b \rightarrow \text{akkor} \left| MRS \right| = \frac{a}{b} \cdot \frac{y}{x}$$

$$U = \sqrt{xv^3}$$

$$U = \left(xy^3\right)^{\frac{1}{2}}$$

$$U = x^{\frac{1}{2}} \cdot v^{3 \cdot \frac{1}{2}}$$

$$U = x^{\frac{1}{2}} \cdot y^{\frac{3}{2}} \implies |MRS| = \frac{a}{b} \cdot \frac{y}{x} = \frac{\frac{1}{2}}{\frac{3}{2}} \cdot \frac{y}{x} = \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{y}{x} = \frac{1}{3} \cdot \frac{y}{x} = \frac{\mathbf{y}}{3\mathbf{x}}$$

VAGY

$$U = x^{\frac{1}{2}} \cdot y^{\frac{3}{2}}$$

$$MU_x = \frac{\partial U(x, y)}{\partial x} = \frac{1}{2} \cdot x^{-\frac{1}{2}} \cdot y^{\frac{3}{2}}$$

$$MU_y = \frac{\partial U(x, y)}{\partial y} = x^{\frac{1}{2}} \cdot \frac{3}{2} \cdot y^{\frac{1}{2}}$$

$$|MRS| = \left| -\frac{MU_x}{MU_y} \right| = \frac{\frac{1}{2} \cdot x^{-\frac{1}{2}} \cdot y^{\frac{3}{2}}}{\frac{3}{2} \cdot x^{\frac{1}{2}} \cdot y^{\frac{1}{2}}}$$

$$|MRS| = \frac{1}{2} \cdot \frac{2}{3} \cdot x^{-\frac{1}{2} - \frac{1}{2}} \cdot y^{\frac{3}{2} - \frac{1}{2}} = \frac{1}{3} \cdot x^{-\frac{2}{2}} \cdot y^{\frac{2}{2}}$$

$$|MRS| = \frac{1}{3} \cdot x^{-1} \cdot y = \frac{\mathbf{y}}{3\mathbf{x}}$$

c) Az U = 200 hasznossági szinthez tartozó közömbösségi görbe mely pontjában lesz a helyettesítési határráta (abszolút értékben) $\frac{4}{3}$?

$$U = \sqrt{xy^3}$$

$$|MRS| = \frac{y}{3x}$$

1.
$$200 = \sqrt{xy^3}$$

$$2. \ \frac{y}{3x} = \frac{4}{3}$$

$$\frac{y}{3x} = \frac{4}{3}$$

$$y = 3x \cdot \frac{4}{3}$$

$$y = 4x$$

$$200 = \sqrt{xy^3} \qquad \left(\right)^2$$

$$40000 = xy^3$$

helyettesítsük be az y = 4x-et:

$$40000 = xy^3$$

$$40\,000 = x\left(4x\right)^3$$

$$40000 = x \cdot 64x^3$$

$$40000 = 64x^4$$

$$625 = x^4$$
 / $\sqrt[4]{}$

$$x = 5$$

$$y = 4x$$

$$y = 4.5$$

$$y = 20$$

$$200 = \sqrt{xy^3}$$

$$200 = \sqrt{x(4x)^3}$$

$$200 = \sqrt{64x^4}$$

$$200 = 8x^2$$

$$25 = x^2$$

$$5 = x$$

A vizsgált hasznossági függvény (x;y)=(5;20) pontjában lesz a helyettesítési határráta $\frac{4}{3}$.

Berde 27. o. \rightarrow 19. feladat

Határozzuk meg az X és Y jószágok határhaszon-függvényeit, amennyiben különböző fogyasztók preferenciáit az alábbi hasznossági függvényekkel írhatjuk le. Írjuk fel a helyettesítési határrátákat is!

a)
$$U = xy$$

b)
$$U = \ln x + \ln y$$

c)
$$U = x^3 y^2$$

d)
$$U = (x+2)(y-2)$$

e)
$$U = 5x + y$$

f)
$$U = \sqrt{x} + v$$

g)
$$U = \min\{2x, 3y\}$$

Azaz, ha
$$U = A \cdot x^a y^b \rightarrow \text{akkor} \left| \mathbf{MRS} \right| = \frac{\mathbf{a}}{\mathbf{b}} \cdot \frac{\mathbf{y}}{\mathbf{x}}$$

$$MU_x = \frac{\partial U(x, y)}{\partial x}$$
 $MU_y = \frac{\partial U(x, y)}{\partial y}$

$$MU_{y} = \frac{\partial U(x, y)}{\partial y}$$

a)
$$U = xy$$

$$MU_x = \frac{\partial U(x, y)}{\partial x} = y$$

$$MU_y = \frac{\partial U(x, y)}{\partial y} = x$$

$$|MRS| = \left| -\frac{MU_x}{MU_y} \right| = \frac{y}{x}$$

$$MRS = -\frac{y}{x}$$

$$\mathbf{b)} \ U = \ln x + \ln y$$

$$(\ln x)' = \frac{1}{x}$$

$$MU_x = \frac{\partial U(x, y)}{\partial x} = \frac{1}{x}$$

$$MU_y = \frac{\partial U(x, y)}{\partial y} = \frac{1}{y}$$

$$|MRS| = \left| -\frac{MU_x}{MU_y} \right| = \frac{\frac{1}{x}}{\frac{1}{y}} = \frac{1}{x} \cdot \frac{y}{1} = \frac{y}{x}$$

$$MRS = -\frac{y}{x}$$

$$\mathbf{c)} \ U = x^3 y^2$$

$$|MRS| = A \cdot \frac{a}{b} \cdot \frac{y}{x} = 1 \cdot \frac{3}{2} \cdot \frac{y}{x} = \frac{3y}{2x}$$

$$MU_x = \frac{\partial U(x, y)}{\partial x} = 3x^2y^2$$

$$MU_y = \frac{\partial U(x, y)}{\partial y} = x^3 \cdot 2y$$

$$|MRS| = \left| -\frac{MU_x}{MU_y} \right| = \frac{3x^2y^2}{x^3 \cdot 2y} = \frac{3y}{2x}$$

$$MRS = -\frac{3y}{2x}$$

d)
$$U = (x+2)(y-2)$$

emeljük ki a konstansként kezelt tagot

$$MU_x = \frac{\partial U(x,y)}{\partial x} = \frac{\partial}{\partial x} ((x+2)(y-2)) = (y-2) \cdot \frac{\partial}{\partial x} (x+2)$$

$$MU_x = (y-2) \cdot \left(\frac{\partial}{\partial x}x + \frac{\partial}{\partial x}2\right) = (y-2) \cdot (1+0) = \mathbf{y} - \mathbf{2}$$

$$MU_{y} = \frac{\partial U(x, y)}{\partial y} = \frac{\partial}{\partial y} ((x+2)(y-2)) = (x+2) \cdot \frac{\partial}{\partial y} (y-2)$$

$$MU_y = (x+2) \cdot \left(\frac{\partial}{\partial y} y - \frac{\partial}{\partial y} 2\right) = (x+2) \cdot (1-0) = \mathbf{x} + \mathbf{2}$$

$$|MRS| = \left| -\frac{MU_x}{MU_y} \right| = \frac{\mathbf{y} - \mathbf{2}}{\mathbf{x} + \mathbf{2}}$$

$$MRS = -\frac{\mathbf{y} - \mathbf{2}}{x + 2}$$

e)
$$U = 5x + y$$

$$MU_x = \frac{\partial U(x,y)}{\partial x} = 5$$

$$MU_y = \frac{\partial U(x, y)}{\partial y} = 1$$

$$|MRS| = \left| -\frac{MU_x}{MU_y} \right| = \frac{5}{1} = \mathbf{5}$$

$$MRS = -5$$

$$f) U = \sqrt{x} + y$$

$$MU_{x} = \frac{\partial U(x,y)}{\partial x} = \frac{\partial}{\partial x} \left(x^{\frac{1}{2}} + y \right) = \frac{\partial}{\partial x} x^{\frac{1}{2}} + \frac{\partial}{\partial x} y = \frac{1}{2} x^{-\frac{1}{2}} + 0 = \frac{1}{2\sqrt{x}}$$

$$MU_{y} = \frac{\partial U(x,y)}{\partial y} = \frac{\partial}{\partial y} \left(\sqrt{x} + y \right) = \frac{\partial}{\partial y} \sqrt{x} + \frac{\partial}{\partial y} y = 0 + 1 = 1$$

$$|MRS| = \left| -\frac{MU_x}{MU_y} \right| = \frac{\frac{1}{2\sqrt{x}}}{1} = \frac{1}{2\sqrt{x}}$$

$$MRS = -\frac{1}{2\sqrt{x}}$$

g)
$$U = \min\{2x, 3y\}$$

a töréspontok egyenlete:

$$2x = 3y$$

$$y = \frac{2}{3}x$$

$$MU_x = \frac{\partial U(x, y)}{\partial x} = \frac{\partial}{\partial x} 2x = 2$$
 ha $x < \frac{3}{2}y$

$$MU_x = \frac{\partial U(x, y)}{\partial x} = \frac{\partial}{\partial x} 3y = 0$$
 ha $x > \frac{3}{2}y$

$$MU_y = \frac{\partial U(x, y)}{\partial y} = \frac{\partial}{\partial y} 3y = 3$$
 ha $y < \frac{2}{3}x$

$$MU_y = \frac{\partial U(x, y)}{\partial y} = \frac{\partial}{\partial y} 2x = 0$$
 ha $y > \frac{2}{3}x$

y termék mennyisége

x termék mennyisége

$$|MRS| = 0$$
 ha $x > \frac{3}{2}y$ Pl.: ha $y = 2 \rightarrow x > \frac{3}{2}y \rightarrow x > 3$
 $|MRS| = \infty$ ha $x < \frac{3}{2}y$ Pl.: ha $y = 4 \rightarrow x < \frac{3}{2}y \rightarrow x < 6$

 $MRS = -\infty$ ha $x < \frac{3}{2}y$

nem értelmezhető, ha $y = \frac{2}{3}x \rightarrow$ a töréspontokban