

TTK4135 – Lecture 16 Calculating derivatives and Derivative-free optimization

Lecturer: Lars Imsland

Lecture 16: Calculating derivatives (Ch. 8), and Derivative-free optimization (Ch. 9)

- Brief recap linesearch unconstrained optimization
- Calculating derivatives (gradient/Jacobian and Hessian)
- What can you do when obtaining derivatives is impractical?
 - Derivative-free optimization! For example: Nelder-Mead

Reference: N&W Ch. 8.1, (8.2), Ch. 9.1, 9.5

Learning goal Ch. 2, 3 and 6: Understand this slide Line-search unconstrained optimization

 $\min_{x} f(x)$

- 1. Initial guess x_0
- 2. While termination criteria not fulfilled
 - a) Find descent direction p_k from x_k
 - b) Find appropriate step length α_k ; set $x_{k+1} = x_k + \alpha_k p_k$
 - c) k = k+1
- 3. $x_M = x^*$? (possibly check sufficient conditions for optimality)

A comparison of steepest descent and Newton's method. Newton's method uses curvature information to take a more direct route. (wikipedia.org)

Termination criteria:

Stop when first of these become true:

- $\|\nabla f(x_k)\| \le \epsilon$ (necessary condition)
- $||x_k x_{k-1}|| \le \epsilon$ (no progress)
- $||f(x_k) f(x_{k-1})|| \le \epsilon$ (no progress)
- $k \le k_{\text{max}}$ (kept on too long)

Descent directions:

• Steepest descent
$$p_k = -\nabla f(x_k)$$
• Newton $p_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$
• Quasi-Newton $p_k = -B_k^{-1} \nabla f(x_k)$
 $B_k \approx \nabla^2 f(x_k)$

Step length line search (Wolfe):

How to calculate derivatives - Ch. 8

Quasi-Newton: BFGS method

$$p_k = -B_k^{-1} \nabla f(x_k)$$
$$B_k \approx \nabla^2 f(x_k)$$
$$H_k = B_k^{-1}$$

We use only gradient!

Algorithm 6.1 (BFGS Method).

Given starting point x_0 , convergence tolerance $\epsilon > 0$, inverse Hessian approximation H_0 ;

 $k \leftarrow 0$;

while $\|\nabla f_k\| > \epsilon$;

Compute search direction

$$p_k = -\widehat{H_k} \nabla f_k;$$

Set $x_{k+1} = x_k + \alpha_k p_k$ where α_k is computed from a line search procedure to satisfy the Wolfe conditions (3.6);

Define $s_k = x_{k+1} - x_k$ and $y_k = \nabla f_{k+1} - \nabla f_k$;

Compute H_{k+1} by means of (6.17);

 $k \leftarrow k + 1;$

end (while)

Example (from book)

Using steepest descent, BFGS and inexact Newton on Rosenbrock function

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

- Iterations from starting point (-1.2,1):
 - Steepest descent: 5264
 - BFGS: 34
 - Newton: 21
- Last iterations; value of $||x_k x^*||$

steepest	BFGS	Newton
descent		
1.827e-04	1.70e-03	3.48e-02
1.826e-04	1.17e-03	1.44e-02
1.824e-04	1.34e-04	1.82e-04
1.823e-04	1.01e-06	1.17e-08

Learning goal Ch. 2, 3 and 6: Understand this slide Line-search unconstrained optimization

 $\min_{x} f(x)$

- 1. Initial guess x_0
- 2. While termination criteria not fulfilled
 - a) Find descent direction p_k from x_k
 - b) Find appropriate step length α_k ; set $x_{k+1} = x_k + \alpha_k p_k$
 - c) k = k+1
- 3. $x_M = x^*$? (possibly check sufficient conditions for optimality)

A comparison of steepest descent and Newton's method. Newton's method uses curvature information to take a more direct route. (wikipedia.org)

Termination criteria:

Stop when first of these become true:

- $\|\nabla f(x_k)\| \le \epsilon$ (necessary condition)
- $||x_k x_{k-1}|| \le \epsilon$ (no progress)
- $||f(x_k) f(x_{k-1})|| \le \epsilon$ (no progress)
- $k \le k_{\max}$ (kept on too long)

Descent directions:

- Steepest descent $p_k = -\nabla f(x_k)$
- Newton

$$p_k = -(\nabla^2 f(x_k))^{-1} \nabla f(x_k)$$

Quasi-Newton

$$p_k = -B_k^{-1} \nabla f(x_k)$$

$$B_k \approx \nabla^2 f(x_k)$$

Step length line search (Wolfe):

Need derivatives! How to compute them?

And what if derivatives are not available, or too expensive to compute?

- By hand
 - Time consuming and (very!) error prone for large problems

- By hand
 - Time consuming and (very!) error prone for large problems
- Symbolic differentiation
 - Computer algebra systems (CAS)
 - GeoGebra, Maple, Mathematica, Matlab symbolic toolbox, pySym ...
 - Gives unreadable code, expensive to evaluate&compile, cumbersome to maintain

- By hand
 - Time consuming and (very!) error prone for large problems
- Symbolic differentiation
 - Computer algebra systems (CAS)
 - GeoGebra, Maple, Mathematica, Matlab symbolic toolbox, pySym ...
 - Gives unreadable code, expensive to evaluate&compile, cumbersome to maintain
- Numerical differentiation (finite differences)
 - Easy to implement (do it yourself), but may have low accuracy

- By hand
 - Time consuming and (very!) error prone for large problems
- Symbolic differentiation
 - Computer algebra systems (CAS)
 - GeoGebra, Maple, Mathematica, Matlab symbolic toolbox, pySym ...
 - Gives unreadable code, expensive to evaluate&compile, cumbersome to maintain
- Numerical differentiation (finite differences)
 - Easy to implement (do it yourself), but may have low accuracy
- Automatic (Algorithmic) Differentiation (AD)
 - Best option when it can be done
 - Easy to implement using the right software
 - Exact up to machine precision

Numerical differentiation

$$f:\mathbb{R} \to \mathbb{R}: \quad directional \quad derivative$$

$$f:\mathbb{R}^n \to \mathbb{R}: \quad directional \quad derivative$$

$$\frac{d}{dx} f(x+xp) \Big|_{x=0} = \nabla f(x) P \approx \frac{f(x+xp) - f(x)}{\varepsilon}$$

$$\frac{d}{dx} f(x+xe) \Big|_{x=0} = \nabla f(x) P \approx \frac{f(x+xp) - f(x)}{\varepsilon}$$

$$\frac{d}{dx} f(x+xe) \Big|_{x=0} = \nabla f(x) P \approx \frac{f(x+xp) - f(x)}{\varepsilon}$$

Full gradient: Lospover enlez,...,en.

Theoretical accuracy of numerical differentiation

$$f: |R^{n} \to R, \text{ assume } || \nabla^{2} f(x) || \leq L, \forall x$$

$$Taylor: || f(x+p) - (f(x) + \nabla f(x)^{T} p)|| = \frac{1}{2} || p^{T} ||^{2} f(x+tp) || p||^{2}$$

$$|| f(x+ee_{i}) - f(x) - e^{T} || f(x)^{T} e_{i}|| \leq \frac{1}{2} e^{2}$$

$$|| f(x+ee_{i}) - f(x)|| = \frac{1}{2} e^{2}$$

Taylor's theorem

$$f: \mathbb{R}^n \to \mathbb{R}, \, p \in \mathbb{R}^n$$

First order: If f is continuously differentiable,

$$f(x+p) = f(x) + \nabla f(x+tp)^{\top} p$$
, for some $t \in (0,1)$

• Second order: If *f* is twice continuously differentiable

$$f(x+p) = f(x) + \nabla f(x)^{\top} p + \frac{1}{2} p^{\top} \nabla^2 f(x+tp) p, \quad \text{for some } t \in (0,1)$$

Finite differences and accuracy

One-sided difference:
$$\frac{\partial f}{\partial x_i} = \frac{f(x + \epsilon e_i) - f(x)}{\epsilon} + O(\epsilon)$$

Two-sided difference:
$$\frac{\partial f}{\partial x_i} = \frac{f(x + \epsilon e_i) - f(x - \epsilon e_i)}{2\epsilon} + O(\epsilon^2)$$

Theoretically: Smaller & to higher accuracy
However: Too small &: Accuracy destroyed
due to finite precision

Norwegian University of Science and Technology

Numerical differentiation (finite differences)

• Scalar $f: \mathbb{R} \to \mathbb{R}$: For some small ϵ ,

$$\frac{\mathrm{d}f}{\mathrm{d}x} \approx \frac{f(x+\epsilon) - f(x)}{\epsilon}$$

• Directional derivative of $f: \mathbb{R}^n \to \mathbb{R}$

$$\nabla f^{\mathsf{T}} p \approx \frac{f(x + \epsilon p) - f(x)}{\epsilon}$$

- Full gradient ∇f : Directional derivatives along all axes $p = \epsilon e_i$ ($e_1 = (1, 0, 0, ...)^\mathsf{T}, e_2 = (0, 1, 0, ...)^\mathsf{T}, ...$)
 - Note: Not necessary to calculate full gradient if you only need directional derivative!
 (Also valid for AD!)
- How to choose epsilon?
 - Theoretical error proportional to ϵ , but too small ϵ gives numerical noise
 - Rule of thumb: $\epsilon = \sqrt{\rm eps}$, where eps is machine precision (or precision of computing f) (IEEE double precision: $\epsilon = 10^{-8}$)

Approximating the Hessian

• In many cases, the gradient is available, but not the Hessian. We can then use finite differences on the gradient:

$$\nabla^2 f(x) p \approx \frac{\nabla f(x + \epsilon p) - \nabla f(x)}{\epsilon}$$

If the gradient is not available, use finite differences "twice" for Hessian:

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{f(x + \epsilon e_i + \epsilon e_j) - f(x + \epsilon e_i) - f(x + \epsilon e_j) + f(x)}{\epsilon^2} + O(\epsilon)$$

(but usually better to use Quasi-Newton then...)

AD – Automatic (algorithmic) differentiation

- Software tools that automatically computes derivatives of your code
- The principle is simple: Extensive/automated use of 'chain rule'

- Two (main) implementation variants
 - Source code transformation
 - Operator overloading (object oriented language)

 $f(x_1, x_2, x_3) = x_1x_2 + x_3\cos(x_1) + x_3$

Variables	Derivatives
$x_4 = x_1 x_2$	$\frac{\partial x_4}{\partial x_1} = x_2, \frac{\partial x_4}{\partial x_2} = x_1$
$x_5 = \cos(x_1)$	$\frac{\partial x_{5}}{\partial x_{1}} = -\sin(x_{1})$
$x_6 = x_5 x_3$	$\frac{\partial x_6}{\partial x_3} = x_5, \frac{\partial x_6}{\partial x_5} = x_3$
$x_7 = x_4 + x_6 + x_3$	$\frac{\partial x_7}{\partial x_2} = \frac{\partial x_7}{\partial x_2} = \frac{\partial x_7}{\partial x_2} =$

- Requires (more or less) that your implementation is differentiable
- Example software:
 - Optimization: ADOL-C, CppAD, CasADi, JuMP, ...
 - Machine learning: Tensorflow, Pytorch, ...

AD – forward and reverse

- Forward mode
 - Both X_i and ∇X_i are calculated by forward traversing computation graph

$$f(x_1, x_2, x_3) = x_1x_2 + x_3\cos(x_1) + x_3$$

Variables	Derivatives
$x_4 = x_1 x_2$	$\frac{\partial x_4}{\partial x_1} = x_2, \frac{\partial x_4}{\partial x_2} = x_1$
$x_5 = \cos(x_1)$	$\frac{\partial x_{5}}{\partial x_{1}} = -\sin(x_{1})$
$x_6 = x_5 x_3$	$\frac{\partial x_6}{\partial x_3} = x_5, \frac{\partial x_6}{\partial x_5} = x_3$
$x_7 = x_4 + x_6 + x_3$	$\frac{\partial x_7}{\partial x_3} = \frac{\partial x_7}{\partial x_4} = \frac{\partial x_7}{\partial x_6} = 1$

- Reverse mode
 - First, calculate X_i by traversing graph forward
 - Then, calculate derivatives by traversing graph backward

AD – forward vs. reverse

7 f = [...] m

- Given a function $f: \mathbb{R}^n \to \mathbb{R}^m$
 - Costs of calculating derivatives with AD:
 - Forward mode (one "column"):
 - Forward mode (entire Jacobian):
 - Reverse mode (one "row"):
 - Reverse mode (entire Jacobian):

$$cost(\nabla f^{\mathsf{T}} p) \leq 2 \operatorname{cost}(f) \\
cost(\nabla f) \leq 2n \operatorname{cost}(f) \\
cost(\lambda^{\mathsf{T}} \nabla f) \leq 3 \operatorname{cost}(f) \\
cost(\nabla f) \leq 3m \operatorname{cost}(f)$$

AD – forward vs. reverse

- Given a function $f: \mathbb{R}^n \to \mathbb{R}^m$
 - Costs of calculating derivatives with AD:
 - Forward mode (one "column"):
 - Forward mode (entire Jacobian):
 - Reverse mode (one "row"):
 - Reverse mode (entire Jacobian):

$$cost(\nabla f^{\mathsf{T}} p) \le 2 \cos t(f)
cost(\nabla f) \le 2n \cos t(f)
cost(\lambda^{\mathsf{T}} \nabla f) \le 3 \cos t(f)$$

$$cost(\nabla f) \leq 3m \ cost(f)$$

- Forward mode: Similar cost as numerical differentiation, but more accurate
- If m >> n, forward mode is fastest

- If $\hat{n} >> m$ reverse mode is fastest

How AD software is implemented

- Prototype procedure:
 - Decompose original code into "intrinsic" functions (e.g. x_1x_2 , sin(x), ln(x), etc.)
 - Differentiate the intrinsic functions ('symbolically', or make a lookup table) $(\sin(x)' = \cos(x), \text{ etc.})$
 - Put everything together according to the chain rule (either forward or reverse mode)
- How to automatically transform your program into a program with derivatives? Two approaches:
 - Source code transformation (Typical: C, Fortran)
 - Operator overloading (C++, Fortran 90, Java, Matlab, Python, Julia, ...)

Example (C/C++)

$$f(x_1,x_2,x_3) = x_1x_2 + x_3\cos(x_1) + x_3$$

```
function.c

double f(double x1, double x2, double x3) {
    double x4, x5, x6, x7;

    x4 = x1*x2;
    x5 = cos(x1);
    x6 = x3*x5;
    x7 = x4 + x6 + x3;

    return x7;
}
```

function.c

Source code transformation (forward mode)

```
diff_function.c

double* f(double x1, double x2, double x3, double dx1, double dx2, double dx3) {
    double x4, x5, x6, x7, dx4, dx5, dx7, df[2];

    x4 = x1*x2;
    dx4 = dx1*x2 + x1*dx2;
    x5 = cos(x1);
    dx5 = -sin(x1)*dx1;
    x6 = x3*x5;
    dx6 = dx3*x5 + x3*dx5;
    x7 = x4 + x6 + x3;
    dx7 = dx4 + dx6 + dx3;

    df[0] = x7;
    df[1] = dx7;
    return df;
}
```

```
function.c AD tool diff_function.c compiler diff_function.o
```


Operator overloading example (using CppAD)

• Implement function as you do normally, but with other types (here: using C++ templates):

```
function.cpp

template <class vector>
vector f(vector x) {
    vector ... // possible temporary variables
    return x[1]*x[2] + x[3]*cos(x[1]) + x[3];
}
```

Record operation sequence when you use the function:

```
CppAD::vector<ADdouble> x(3), f_res;
x[1] = pi; x[2] = 4; x[3] = 3;

// declare that x contains the independent variables (and start recording)
CppAD::Independent(x);

f_res = f(x);

// create the AD function object F : x -> f_res (and stop recording)
CppAD::ADFun<double> F(x, f_res);

std::vector<double> jac( NS*NS ) = F.Jacobian;
...
```

```
function.cpp and user program

compiler

object file with derivatives
```

Software etc.

- General information
 - http://www.autodiff.org/
 - http://en.wikipedia.org/wiki/Automatic differentiation
- Many libraries of different maturity/robustness/performance, for different languages and for different applications
- Some mature libraries for optimization
 - C++(ADOL-C,)CppAD
 - Developed for control&optimization: CasADi (Matlab/Octave, Python, C++)
- Book:
 - A. Griewank, A. Walther, "Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation",
 2nd edition. SIAM, 2008.

AD - example (from R. Ringset)

• Calculate gradient of $f(x_1, x_2, x_3) = x_1x_2 + x_3\cos(x_1) + x_3$

at
$$\begin{bmatrix} \pi & 4 & 3 \end{bmatrix}^T$$

Variables	Derivatives
$x_4 = x_1 x_2$	$\frac{\partial x_4}{\partial x_1} = x_2, \frac{\partial x_4}{\partial x_2} = x_1$
$x_5 = \cos(x_1)$	$\frac{\partial x_{5}}{\partial x_{1}} = -\sin(x_{1})$
$x_6 = x_5 x_3$	$\frac{\partial x_6}{\partial x_3} = x_5, \frac{\partial x_6}{\partial x_5} = x_3$
$x_7 = x_4 + x_6 + x_3$	$\frac{\partial x_7}{\partial x_3} = \frac{\partial x_7}{\partial x_4} = \frac{\partial x_7}{\partial x_6} = 1$

AD - forward mode

$$f(x_1, x_2, x_3) = x_1 x_2 + x_3 \cos(x_1) + x_3$$

 $x = (\pi, 4, 3)^{\top}$

$$\nabla x_{1} = e_{1}
\nabla x_{2} = e_{2}
\nabla x_{3} = e_{3}
\nabla x_{4} = ?
\nabla x_{5} = ?
\nabla x_{6} = ?
\nabla x_{7} = ?$$

$$e_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad e_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad e_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad e_{4} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad e_{5} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad e_{6} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad e_{7} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad e_{8} =$$

Variables	Derivatives
$x_4 = x_1 x_2$	$\frac{\partial x_4}{\partial x_1} = x_2, \frac{\partial x_4}{\partial x_2} = x_1$
$x_5 = \cos(x_1)$	$\frac{\partial x_{5}}{\partial x_{1}} = -\sin(x_{1})$
$x_6 = x_5 x_3$	$\frac{\partial x_6}{\partial x_3} = x_5, \frac{\partial x_6}{\partial x_5} = x_3$
$x_7 = x_4 + x_6 + x_3$	$\frac{\partial x_7}{\partial x_3} = \frac{\partial x_7}{\partial x_4} = \frac{\partial x_7}{\partial x_6} = 1$

AD - forward mode

$$f(x_1, x_2, x_3) = x_1 x_2 + x_3 \cos(x_1) + x_3$$

 $x = (\pi, 4, 3)^{\top}$

$$\nabla x_{1} = e_{1}$$

$$\nabla x_{2} = e_{2}$$

$$\nabla x_{3} = e_{3}$$

$$\nabla x_{4} = \frac{\partial x_{4}}{\partial x_{1}} \nabla x_{1} + \frac{\partial x_{4}}{\partial x_{2}} \nabla x_{2} = \begin{bmatrix} x_{2} & x_{1} & 0 \end{bmatrix}^{T} = \begin{bmatrix} 4 & \pi & 0 \end{bmatrix}^{T}$$

$$\nabla x_{5} = ?$$

$$\nabla x_{6} = ?$$

$$\nabla x_{7} = ?$$

Variables	Derivatives
$x_4 = x_1 x_2$	$\frac{\partial x_4}{\partial x_1} = x_2, \frac{\partial x_4}{\partial x_2} = x_1$
$x_5 = \cos(x_1)$	$\frac{\partial x_{5}}{\partial x_{1}} = -\sin(x_{1})$
$x_6 = x_5 x_3$	$\frac{\partial x_6}{\partial x_3} = x_5, \frac{\partial x_6}{\partial x_5} = x_3$
$x_7 = x_4 + x_6 + x_3$	$\frac{\partial x_7}{\partial x_3} = \frac{\partial x_7}{\partial x_4} = \frac{\partial x_7}{\partial x_6} = 1$

AD – forward mode

$$f(x_1, x_2, x_3) = x_1x_2 + x_3\cos(x_1) + x_3$$

 $x = (\pi, 4, 3)^{\top}$

$ abla x_1 = e_1$
$ abla x_2 = e_2$
$\nabla x_3 = e_3$
$ abla x_4 = \left[\begin{array}{ccc} 4 & \pi & 0 \end{array} \right]^T$
$\nabla x_5 = \frac{\partial x_5}{\partial x_1} \nabla x_1 = -\sin(x_1)e_1 = 0$
$\nabla x_6 = ?$
$\nabla x_7 = ?$

Variables	Derivatives
$x_4 = x_1 x_2$	$\frac{\partial x_4}{\partial x_1} = x_2, \frac{\partial x_4}{\partial x_2} = x_1$
$x_5 = \cos(x_1)$	$\frac{\partial x_{5}}{\partial x_{1}} = -\sin(x_{1})$
$x_6 = x_5 x_3$	$\frac{\partial x_6}{\partial x_3} = x_5, \frac{\partial x_6}{\partial x_5} = x_3$
$x_7 = x_4 + x_6 + x_3$	$\frac{\partial x_7}{\partial x_3} = \frac{\partial x_7}{\partial x_4} = \frac{\partial x_7}{\partial x_6} = 1$

AD - forward mode

$$f(x_1, x_2, x_3) = x_1x_2 + x_3\cos(x_1) + x_3$$

 $x = (\pi, 4, 3)^{\top}$

$$\nabla x_{1} = e_{1}$$

$$\nabla x_{2} = e_{2}$$

$$\nabla x_{3} = e_{3}$$

$$\nabla x_{4} = \begin{bmatrix} 4 & \pi & 0 \end{bmatrix}^{T}$$

$$\nabla x_{5} = 0$$

$$\nabla x_{6} = \frac{\partial x_{6}}{\partial x_{3}} \nabla x_{3} + \frac{\partial x_{6}}{\partial x_{5}} \nabla x_{5} = x_{5} e_{3} + x_{3} 0 = \cos(\pi) e_{3} = -e_{3}$$

$$\nabla x_{7} = ?$$

Variables	Derivatives
$x_4 = x_1 x_2$	$\frac{\partial x_4}{\partial x_1} = x_2, \frac{\partial x_4}{\partial x_2} = x_1$
$x_5 = \cos(x_1)$	$\frac{\partial x_{5}}{\partial x_{1}} = -\sin(x_{1})$
$x_6 = x_5 x_3$	$\frac{\partial x_6}{\partial x_3} = x_5, \frac{\partial x_6}{\partial x_5} = x_3$
$x_7 = x_4 + x_6 + x_3$	$\frac{\partial x_7}{\partial x_3} = \frac{\partial x_7}{\partial x_4} = \frac{\partial x_7}{\partial x_6} = 1$

AD – forward mode

$$f(x_1, x_2, x_3) = x_1x_2 + x_3\cos(x_1) + x_3$$

 $x = (\pi, 4, 3)^{\top}$

$$abla x_1 = e_1

abla x_2 = e_2

abla x_3 = e_3
abla x_4 = $\begin{bmatrix} 4 & \pi & 0 \end{bmatrix}^T
abla x_5 = 0
abla x_6 = -e_3$$$

$$\nabla x_7 = \nabla f(x) = \frac{\partial x_7}{\partial x_4} \nabla x_4 + \frac{\partial x_7}{\partial x_6} \nabla x_6 + \frac{\partial x_7}{\partial x_3} \nabla x_3 = \begin{bmatrix} 4 \\ \pi \\ 0 \end{bmatrix} - e_3 + e_3 = \begin{bmatrix} 4 \\ \pi \\ 0 \end{bmatrix}$$

Variables	Derivatives
$x_4 = x_1 x_2$	$\frac{\partial x_4}{\partial x_1} = x_2, \frac{\partial x_4}{\partial x_2} = x_1$
$x_5 = \cos(x_1)$	$\frac{\partial x_{5}}{\partial x_{1}} = -\sin(x_{1})$
$x_6 = x_5 x_3$	$\frac{\partial x_6}{\partial x_3} = x_5, \frac{\partial x_6}{\partial x_5} = x_3$
$x_7 = x_4 + x_6 + x_3$	$\frac{\partial x_7}{\partial x_3} = \frac{\partial x_7}{\partial x_4} = \frac{\partial x_7}{\partial x_6} = 1$

AD – forward and reverse

- Forward mode
 - Both x_i and ∇x_i are calculated by forward traversing computation graph

$$f(x_1,x_2,x_3) = x_1x_2 + x_3\cos(x_1) + x_3$$

Variables	Derivatives
$x_4 = x_1 x_2$	$\frac{\partial x_4}{\partial x_1} = x_2, \frac{\partial x_4}{\partial x_2} = x_1$
$x_5 = \cos(x_1)$	$rac{\partial x_{5}}{\partial x_{1}} = -\sin(x_{1})$
$x_6 = x_5 x_3$	$\frac{\partial x_6}{\partial x_3} = x_5, \frac{\partial x_6}{\partial x_5} = x_3$
$x_7 = x_4 + x_6 + x_3$	$\frac{\partial x_7}{\partial x_3} = \frac{\partial x_7}{\partial x_4} = \frac{\partial x_7}{\partial x_6} = 1$

- Reverse mode
 - First, calculate X_i by traversing graph forward
 - Then, calculate derivatives by traversing graph backward

AD - reverse mode

$$f(x_1, x_2, x_3) = x_1x_2 + x_3\cos(x_1) + x_3$$

 $x = (\pi, 4, 3)^{\top}$

$$\frac{\partial f}{\partial x_7} = \frac{\partial x_7}{\partial x_7} = 1$$

$$\frac{\partial f}{\partial x_i} = \sum_{x_n \text{ child of } x_i} \frac{\partial f}{\partial x_n} \frac{\partial x_n}{\partial x_i}$$

Variables	Derivatives
$x_4 = x_1 x_2$	$\frac{\partial x_4}{\partial x_1} = x_2, \frac{\partial x_4}{\partial x_2} = x_1$
$x_5 = \cos(x_1)$	$\frac{\partial x_{5}}{\partial x_{1}} = -\sin(x_{1})$
$x_6 = x_5 x_3$	$\frac{\partial x_6}{\partial x_3} = x_5, \frac{\partial x_6}{\partial x_5} = x_3$
$x_7 = x_4 + x_6 + x_3$	$\frac{\partial x_7}{\partial x_3} = \frac{\partial x_7}{\partial x_4} = \frac{\partial x_7}{\partial x_6} = 1$

AD - reverse mode

$$f(x_1, x_2, x_3) = x_1x_2 + x_3\cos(x_1) + x_3$$

 $x = (\pi, 4, 3)^{\top}$

$$\frac{\partial f}{\partial x_7} = \frac{\partial x_7}{\partial x_7} = 1$$

$$\frac{\partial f}{\partial x_4} = \frac{\partial f}{\partial x_7} \frac{\partial x_7}{\partial x_4} = 1$$

Variables	Derivatives
$x_4 = x_1 x_2$	$\frac{\partial x_4}{\partial x_1} = x_2, \frac{\partial x_4}{\partial x_2} = x_1$
$x_5 = \cos(x_1)$	$\frac{\partial x_{5}}{\partial x_{1}} = -\sin(x_{1})$
$x_6 = x_5 x_3$	$\frac{\partial x_6}{\partial x_3} = x_5, \frac{\partial x_6}{\partial x_5} = x_3$
$x_7 = x_4 + x_6 + x_3$	$\frac{\partial x_7}{\partial x_3} = \frac{\partial x_7}{\partial x_4} = \frac{\partial x_7}{\partial x_6} = 1$

AD - reverse mode

$$f(x_1, x_2, x_3) = x_1 x_2 + x_3 \cos(x_1) + x_3$$

 $x = (\pi, 4, 3)^{\top}$

$\frac{\partial f}{\partial x_7}$	$=\frac{\partial x_7}{\partial x_7}=1$	
$\frac{\partial f}{\partial x_4}$	$=\frac{\partial f}{\partial x_7}\frac{\partial x_7}{\partial x_4}=$	1
$\frac{\partial f}{\partial x_6}$	$=\frac{\partial f}{\partial x_7}\frac{\partial x_7}{\partial x_6}=$	1

Variables	Derivatives
$x_4 = x_1 x_2$	$\frac{\partial x_4}{\partial x_1} = x_2, \frac{\partial x_4}{\partial x_2} = x_1$
$x_5 = \cos(x_1)$	$\frac{\partial x_{5}}{\partial x_{1}} = -\sin(x_{1})$
$x_6 = x_5 x_3$	$\frac{\partial x_6}{\partial x_3} = x_5, \frac{\partial x_6}{\partial x_5} = x_3$
$x_7 = x_4 + x_6 + x_3$	$\frac{\partial x_7}{\partial x_3} = \frac{\partial x_7}{\partial x_4} = \frac{\partial x_7}{\partial x_6} = 1$

AD - reverse mode

$$f(x_1, x_2, x_3) = x_1x_2 + x_3\cos(x_1) + x_3$$

 $x = (\pi, 4, 3)^{\top}$

$$\begin{split} \frac{\partial f}{\partial x_7} &= \frac{\partial x_7}{\partial x_7} = 1\\ \frac{\partial f}{\partial x_4} &= \frac{\partial f}{\partial x_7} \frac{\partial x_7}{\partial x_4} = 1\\ \frac{\partial f}{\partial x_6} &= \frac{\partial f}{\partial x_7} \frac{\partial x_7}{\partial x_6} = 1\\ \frac{\partial f}{\partial x_3} &= \frac{\partial f}{\partial x_7} \frac{\partial x_7}{\partial x_3} + \frac{\partial f}{\partial x_6} \frac{\partial x_6}{\partial x_3} = 1 + x_5 = 1 + \cos(\pi) = 0 \end{split}$$

Variables	Derivatives
$x_4 = x_1 x_2$	$\frac{\partial x_4}{\partial x_1} = x_2, \frac{\partial x_4}{\partial x_2} = x_1$
$x_5 = \cos(x_1)$	$\frac{\partial x_{5}}{\partial x_{1}} = -\sin(x_{1})$
$x_6 = x_5 x_3$	$\frac{\partial x_6}{\partial x_3} = x_5, \frac{\partial x_6}{\partial x_5} = x_3$
$x_7 = x_4 + x_6 + x_3$	$\frac{\partial x_7}{\partial x_3} = \frac{\partial x_7}{\partial x_4} = \frac{\partial x_7}{\partial x_6} = 1$

AD - reverse mode

$$f(x_1, x_2, x_3) = x_1x_2 + x_3\cos(x_1) + x_3$$

 $x = (\pi, 4, 3)^{\top}$

$$\begin{split} \frac{\partial f}{\partial x_7} &= \frac{\partial x_7}{\partial x_7} = 1\\ \frac{\partial f}{\partial x_4} &= \frac{\partial f}{\partial x_7} \frac{\partial x_7}{\partial x_4} = 1\\ \frac{\partial f}{\partial x_6} &= \frac{\partial f}{\partial x_7} \frac{\partial x_7}{\partial x_6} = 1\\ \frac{\partial f}{\partial x_3} &= \frac{\partial f}{\partial x_7} \frac{\partial x_7}{\partial x_3} + \frac{\partial f}{\partial x_6} \frac{\partial x_6}{\partial x_3} = 1 + x_5 = 1 + \cos(\pi) = 0\\ \frac{\partial f}{\partial x_5} &= \frac{\partial f}{\partial x_6} \frac{\partial x_6}{\partial x_5} = x_3 = 3 \end{split}$$

Variables	Derivatives
$x_4 = x_1 x_2$	$\frac{\partial x_4}{\partial x_1} = x_2, \frac{\partial x_4}{\partial x_2} = x_1$
$x_5 = \cos(x_1)$	$\frac{\partial x_{5}}{\partial x_{1}} = -\sin(x_{1})$
$x_6 = x_5 x_3$	$\frac{\partial x_6}{\partial x_3} = x_5, \frac{\partial x_6}{\partial x_5} = x_3$
$x_7 = x_4 + x_6 + x_3$	$\frac{\partial x_7}{\partial x_3} = \frac{\partial x_7}{\partial x_4} = \frac{\partial x_7}{\partial x_6} = 1$

AD – reverse mode

$$f(x_1, x_2, x_3) = x_1x_2 + x_3\cos(x_1) + x_3$$

 $x = (\pi, 4, 3)^{\top}$

$$\frac{\partial f}{\partial x_{7}} = \frac{\partial x_{7}}{\partial x_{7}} = 1$$

$$\frac{\partial f}{\partial x_{4}} = \frac{\partial f}{\partial x_{7}} \frac{\partial x_{7}}{\partial x_{4}} = 1$$

$$\frac{\partial f}{\partial x_{6}} = \frac{\partial f}{\partial x_{7}} \frac{\partial x_{7}}{\partial x_{6}} = 1$$

$$\frac{\partial f}{\partial x_{3}} = \frac{\partial f}{\partial x_{7}} \frac{\partial x_{7}}{\partial x_{3}} + \frac{\partial f}{\partial x_{6}} \frac{\partial x_{6}}{\partial x_{3}} = 1 + x_{5} = 1 + \cos(\pi) = \underline{0}$$

$$\frac{\partial f}{\partial x_{5}} = \frac{\partial f}{\partial x_{6}} \frac{\partial x_{6}}{\partial x_{5}} = x_{3} = 3$$

$$\frac{\partial f}{\partial x_{1}} = \frac{\partial f}{\partial x_{4}} \frac{\partial x_{4}}{\partial x_{1}} + \frac{\partial f}{\partial x_{5}} \frac{\partial x_{5}}{\partial x_{1}} = x_{2} - 3\sin(x_{1}) = 4 - 3\sin(\pi) = \underline{4}$$

$$\frac{\partial f}{\partial x_{2}} = \frac{\partial f}{\partial x_{4}} \frac{\partial x_{4}}{\partial x_{2}} = x_{1} = \underline{\pi}$$

Variables	Derivatives
$x_4 = x_1 x_2$	$\frac{\partial x_4}{\partial x_1} = x_2, \frac{\partial x_4}{\partial x_2} = x_1$
$x_5 = \cos(x_1)$	$\frac{\partial x_{5}}{\partial x_{1}} = -\sin(x_{1})$
$x_6 = x_5 x_3$	$\frac{\partial x_6}{\partial x_3} = x_5, \frac{\partial x_6}{\partial x_5} = x_3$
$x_7 = x_4 + x_6 + x_3$	$\frac{\partial x_7}{\partial x_3} = \frac{\partial x_7}{\partial x_4} = \frac{\partial x_7}{\partial x_6} = 1$

Example: optimization using CasADi

- CasADi (<u>https://casadi.org/</u>)
 - "CasADi is a symbolic framework for numeric optimization implementing automatic differentiation in forward and reverse modes on sparse matrix-valued computational graphs."


```
rosenbrock.m
import casadi.*
% Create NLP: Solve the Rosenbrock problem:
      minimize x^2 + 100 \times z^2
      subject to z + (1-x)^2 - y == 0
y = SX.sym('y');
% Create IPOPT solver object
solver = nlpsol('solver', 'ipopt', nlp);
% Solve the NLP
res = solver('\times0', [2.5 3.0 0.75],... % solution guess
             'lbx', -inf,... % lower bound on x
             'ubx', inf,...
                                   % upper bound on x
            'lbg', 0,... % lower bound on g 'ubg', 0); % upper bound on g
% Print the solution
f opt = full(res.f)
                            % >> 0
                    % >> [0; 1; 0]
x opt = full(res.x)
lam x opt = full(res.lam x) % >> [0; 0; 0]
lam g opt = full(res.lam g) % >> 0
```


Norwegian University of Science and Technology

Example Octave/Matlab

Python

C++

```
from casadi import *
x = MX.sym('x',2); # Two states
p = MX.sym('p'); # Free parameter
# Expression for ODE right-hand side
z = 1-x[1]**2;
rhs = vertcat(z*x[0]-x[1]+2*tanh(p),x[0])
# ODE declaration with free parameter
ode = {'x':x,'p':p,'ode':rhs}
# Construct a Function that integrates over 1s
F = integrator('F','cvodes',ode,{'tf':1})
# Control vector
u = MX.sym('u',4,1)
x = [0.1] # Initial state
for k in range(4):
 # Integrate 1s forward in time:
 # call integrator symbolically
 res = F(x0=x,p=u[k])
 x = res["xf"]
# NLP declaration
nlp = {'x':u,'f':dot(u,u),'g':x};
# Solve using IPOPT
solver = nlpsol('solver', 'ipopt', nlp)
res = solver(x0=0.2, lbg=0, ubg=0)
plot(res["x"])
```

Derivative-free optimization

- If you have derivatives (gradients, possibly Hessian), use them!
 - "Always" more efficient than not using them!
- However, sometimes, obtaining derivatives is prohibitive
 - Typically: Objective function (and constraints) are calculated using "heavy" simulators
 - Often models from computational fluid dynamics (CFD)

- (Or you are optimizing a "real" system without a model!)
- This motivates "derivative-free optimization" methods

Derivative-free optimization (DFO)

- DFO use function values at a set of sample points to determine new iterates.
- Coarsely, two different classes of methods:
- 1. "Model-based": sample points -> approximate model -> search directions
 - 2. "Metaheuristics": Often inspired by processes in nature, such as "genetic algorithm", "simulated annealing", "particle swarm optimization", "wolf pack optimization", ...
- Many of the metaheuristic methods claim to do "global optimization" and tackle "non-differentiable problems", however: Guarantees are seldom given.
- The "model-based" methods are based on a solid theoretic framework, and are generally preferable (in my opinion)
- But for all methods:
 - DFO generally works best if the number of optimization variables is relatively small
- Here: Nelder-Mead (old&simple, but OK)

Nelder-Mead Simplex method (Ch. 9.5)

min f(x) - can evaluate f(x), x EIRN f(x) - but not $\nabla f(x)$

"Simplex": "generalized triangle"

Simplex 2D

Starting point:

- Initial simplex: $S = \{x_1, x_2, \dots, x_{n+1}\}$
- Matrix $V(S) = \begin{bmatrix} x_2 x_1 & x_3 x_1 & \dots & x_{n+1} x_1 \end{bmatrix}$ is non-singular
- ordered vertices :

Simplex 3D

■ NTNU

Norwegian University of Science and Technology $f(x_1) \leq f(x_2) \leq \cdots \leq f(x_1)$

Nelder-Mead Simplex method (Ch. 9.5)

Define centraid of best n points
$$\bar{x} = \frac{1}{x} \sum_{i=1}^{\infty} x_{i}$$

$$\bar{x}(t)$$

n+1 vertices $\{x_1,x_2,\ldots,x_{n+1}\}$ of nonsingular simplex, ordered such that $f(x_1) \leq f(x_2) \leq \ldots \leq f(x_{n+1})$ Define centroid of n best points, $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.


```
Compute \bar{x}(-1) and evaluate f_{-1} = f(\bar{x}(-1))
  if f(x_1) \le f_{-1} < f(x_n) "\bar{x}(-1) is OK"
        replace x_{n+1} by \bar{x}(-1), go to next iteration.
  else if f_{-1} < f(x_1) "\bar{x}(-1) is great, try further"
        evaluate f_{-2} = f(\bar{x}(-2))
        if f_{-2} < f_{-1}
              replace x_{n+1} by \bar{x}(-2), go to next iteration.
         else
              replace x_{n+1} by \bar{x}(-1), go to next iteration.
  else if f_{-1} \ge f(x_n) "\bar{x}(-1) is bad"
        if f(x_n) \le f_{-1} < f(x_{n+1})
              evaluate f_{-1/2} = f(\bar{x}(-1/2))
              if f_{-1/2} \leq f_{-1}
                   replace x_{n+1} by \bar{x}(-1/2), go to next iteration.
        else (f_{-1} > f(x_{n+1}))
              evaluate f_{1/2} = f(\bar{x}(1/2))
              if f_{1/2} < f_{n+1}
                   replace x_{n+1} by \bar{x}(1/2), go to next iteration.
        replace x_i \leftarrow \frac{1}{2}(x_1 + x_i), i = 2, 3, ..., n + 1 "shrink"
```


Reflection

```
Compute \bar{x}(-1) and evaluate f_{-1} = f(\bar{x}(-1))
  if f(x_1) \le f_{-1} < f(x_n) "\bar{x}(-1) is OK"
  replace x_{n+1} by \bar{x}(-1), go to next iteration.
else if f_{-1} < f(x_1) "\bar{x}(-1) is great, try further"
         evaluate f_{-2} = f(\bar{x}(-2))
         if f_{-2} < f_{-1}
               replace x_{n+1} by \bar{x}(-2), go to next iteration.
         else
              replace x_{n+1} by \bar{x}(-1), go to next iteration.
  else if f_{-1} \ge f(x_n) "\bar{x}(-1) is bad"
         if f(x_n) \le f_{-1} < f(x_{n+1})
               evaluate f_{-1/2} = f(\bar{x}(-1/2))
               if f_{-1/2} \leq f_{-1}
                    replace x_{n+1} by \bar{x}(-1/2), go to next iteration.
         else (f_{-1} > f(x_{n+1}))
               evaluate f_{1/2} = f(\bar{x}(1/2))
               if f_{1/2} < f_{n+1}
                    replace x_{n+1} by \bar{x}(1/2), go to next iteration.
         replace x_i \leftarrow \frac{1}{2}(x_1 + x_i), i = 2, 3, ..., n + 1 "shrink"
```


Expansion

```
Compute \bar{x}(-1) and evaluate f_{-1} = f(\bar{x}(-1))
  if f(x_1) \le f_{-1} < f(x_n) "\bar{x}(-1) is OK"
        replace x_{n+1} by \bar{x}(-1), go to next iteration.
  else if f_{-1} < f(x_1) "\bar{x}(-1) is great, try further"
        evaluate f_{-2} = f(\bar{x}(-2))
        if f_{-2} < f_{-1}
              replace x_{n+1} by \bar{x}(-2), go to next iteration.
         else
              replace x_{n+1} by \bar{x}(-1), go to next iteration.
  else if f_{-1} \geq f(x_n) "\bar{x}(-1) is bad"
        if f(x_n) \le f_{-1} < f(x_{n+1})
              evaluate f_{-1/2} = f(\bar{x}(-1/2))
              if f_{-1/2} \leq f_{-1}
                   replace x_{n+1} by \bar{x}(-1/2), go to next iteration.
        else (f_{-1} > f(x_{n+1}))
              evaluate f_{1/2} = f(\bar{x}(1/2))
              if f_{1/2} < f_{n+1}
                   replace x_{n+1} by \bar{x}(1/2), go to next iteration.
        replace x_i \leftarrow \frac{1}{2}(x_1 + x_i), i = 2, 3, \dots, n+1 "shrink"
```


Contraction (outside)

```
Compute \bar{x}(-1) and evaluate f_{-1} = f(\bar{x}(-1))
  if f(x_1) \le f_{-1} < f(x_n) "\bar{x}(-1) is OK"
        replace x_{n+1} by \bar{x}(-1), go to next iteration.
  else if f_{-1} < f(x_1) "\bar{x}(-1) is great, try further"
        evaluate f_{-2} = f(\bar{x}(-2))
        if f_{-2} < f_{-1}
              replace x_{n+1} by \bar{x}(-2), go to next iteration.
        else
              replace x_{n+1} by \bar{x}(-1), go to next iteration.
  else if f_{-1} \geq f(x_n) "\bar{x}(-1) is bad"
        if f(x_n) \le f_{-1} < f(x_{n+1})
              evaluate f_{-1/2} = f(\bar{x}(-1/2))
              if f_{-1/2} \leq f_{-1}
                   replace x_{n+1} by \bar{x}(-1/2), go to next iteration.
        else (f_{-1} > f(x_{n+1}))
              evaluate f_{1/2} = f(\bar{x}(1/2))
              if f_{1/2} < f_{n+1}
                   replace x_{n+1} by \bar{x}(1/2), go to next iteration.
        replace x_i \leftarrow \frac{1}{2}(x_1 + x_i), i = 2, 3, ..., n + 1 "shrink"
```

n+1 vertices $\{x_1, x_2, \dots, x_{n+1}\}$ of nonsingular simplex, ordered such that $f(x_1) \leq f(x_2) \leq \dots \leq f(x_{n+1})$ Define centroid of n best points, $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$. Define $\bar{x}(t) = \bar{x} + t(x_{n+1} - \bar{x})$

Contraction (inside)

```
Compute \bar{x}(-1) and evaluate f_{-1} = f(\bar{x}(-1))
  if f(x_1) \le f_{-1} < f(x_n) "\bar{x}(-1) is OK"
        replace x_{n+1} by \bar{x}(-1), go to next iteration.
  else if f_{-1} < f(x_1) "\bar{x}(-1) is great, try further"
        evaluate f_{-2} = f(\bar{x}(-2))
        if f_{-2} < f_{-1}
             replace x_{n+1} by \bar{x}(-2), go to next iteration.
        else
             replace x_{n+1} by \bar{x}(-1), go to next iteration.
  else if f_{-1} \ge f(x_n) "\bar{x}(-1) is bad"
        if f(x_n) \le f_{-1} < f(x_{n+1})
              evaluate f_{-1/2} = f(\bar{x}(-1/2))
              if f_{-1/2} \leq f_{-1}
                  replace x_{n+1} by \bar{x}(-1/2), go to next iteration.
        else (f_{-1} > f(x_{n+1}))
              evaluate f_{1/2} = f(\bar{x}(1/2))
              if f_{1/2} < f_{n+1}
                  replace x_{n+1} by \bar{x}(1/2), go to next iteration.
```

replace $x_i \leftarrow \frac{1}{2}(x_1 + x_i), i = 2, 3, \dots, n+1$ "shrink"

Shrinkage

```
Compute \bar{x}(-1) and evaluate f_{-1} = f(\bar{x}(-1))
  if f(x_1) \le f_{-1} < f(x_n) "\bar{x}(-1) is OK"
        replace x_{n+1} by \bar{x}(-1), go to next iteration.
  else if f_{-1} < f(x_1) "\bar{x}(-1) is great, try further"
        evaluate f_{-2} = f(\bar{x}(-2))
        if f_{-2} < f_{-1}
              replace x_{n+1} by \bar{x}(-2), go to next iteration.
        else
              replace x_{n+1} by \bar{x}(-1), go to next iteration.
  else if f_{-1} \ge f(x_n) "\bar{x}(-1) is bad"
        if f(x_n) \le f_{-1} < f(x_{n+1})
              evaluate f_{-1/2} = f(\bar{x}(-1/2))
              if f_{-1/2} \leq f_{-1}
                   replace x_{n+1} by \bar{x}(-1/2), go to next iteration.
        else (f_{-1} > f(x_{n+1}))
              evaluate f_{1/2} = f(\bar{x}(1/2))
              if f_{1/2} < f_{n+1}
                  replace x_{n+1} by \bar{x}(1/2), go to next iteration.
        replace x_i \leftarrow \frac{1}{2}(x_1 + x_i), i = 2, 3, \dots, n+1 "shrink"
```

Termination and convergence

Termination: $|f(x_1) - f(x_{n+1})| \le \text{tol}$

Convergence: The average value $\frac{1}{n+1} \sum_{i=1}^{n+1} f(x_i)$ decrease in most iterations

Examples

Three different DFO methods, three examples

Methods:

- Nelder-Mead
- Coordinate descent
- Particle swarm (a metaheuristic method)

Examples

- Himmelblau (four local minimums, global min x = (3,2))
- Rosenbrock (one local/global minimum at x = (0,0))
- Salomon (many local minimums, global min x = (0,0))

Examples: Nelder-Mead, Himmelblau

Example: Nelder-Mead, Rosenbrock

Example: Nelder-Mead, Salomon

Example: Coordinate Descent, Himmelblau

Example: Coordinate Descent, Rosenbrock

Example: Coordinate Descent, Salomon

Example: Particle Swarm, Himmelblau

Example: Particle Swarm, Rosenbrock

Example: Particle Swarm, Salomon

