CS 321: Assignment 2

Jared Wasinger

October 7, 2016

1. Answer:

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$$

$$F = \{q_5, q_6\}$$

Transition table

State	a	b
$\overline{\{q_0\}}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_1\}$	$\{q_1,q_3\}$	$\{q_1\}$
$\{q_2\}$	$\{q_2\}$	$\{q_2, q_4\}$
$\{q_3\}$	$\{q_3,q_5\}$	$\{q_3\}$
$\{q_4\}$	$\{q_4\}$	$\{q_4, q_6\}$
$\{q_5\}$	$\{q_5\}$	$\{q_5\}$
$\{q_6\}$	$\{q_6\}$	$\{q_6\}$

2. Answer: $Q = \{\{1\}, \{1,2\}, \{1,2,3\}, \{1,2,3,4\}\}$ $F = \{q_5,q_6\}$

Transition table

State	a	b
{1}	$\{1, 2, 3, 4\}$	Ø
$\{1, 2\}$	$\{1, 2, 3, 4\}$	$\{1, 2\}$
$\{1, 2, 3\}$	$\{1, 2, 3, 4\}$	$\{1, 2\}$
$\{1, 2, 3, 4\}$	$\{1, 2, 3, 4\}$	$\{1, 2, 3\}$

3. TODO

4. Answer:

(a) Let A be the set of all strings with '011' inserted only once: $\Sigma_A =$

$$Q_A = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$$

 $F_A = \{q_3, q_4, q_5\}$
A Transition Table:

State	0	1
q_0	q_1	q_0
q_1	q_0	q_2
q_2	q_0	q_3
q_3	q_4	q_3
q_4	q_3	q_5
q_5	q_3	q_6
q_6	q_6	q_6

(b) Let B be the set of all strings divisible by 3. $\Sigma_B = \{0, 1\}$ $Q_B = \{q_0, q_1, q_2\}$ $F_B = \{q_0\}$ B Transition Table:

$$Q_B = \{q_0, q_1, q_2\}$$

$$F_B = \{q_0\}$$

State	0	1
q_0	q_0	q_1
q_1	q_2	q_0
q_2	q_1	q_2

- (c) Then, the final answer $C = A \cap B$
- (d) Intersection is closed under the set of regular languages so C is regular.