

《机械设计基础》试题库

一、 填空题

(机械原理部分)

1.	牛头刨床滑枕往复运动的实现是应用了平	面四杆机构中的	机构。	
2.	机构具有确定运动的条件是	数目与	数目相等。	
3.	平面四杆机构的压力角愈,传力性能愈	好。		
4.	平面四杆机构的传动角愈,传力性能愈	好。		
5.	有些平面四杆机构是具有急回特性的,其	中两种的名称是	机构、	机构。
6.	在平面四杆机构中,用	系数表示急回运动	的特性。	
7.	摆动导杆机构中,以曲柄为原动件时,最	大压力角等于	度,最小传动角等于_	
8.	在摆动导杆机构中,若导杆最大摆角Φ =	30°,则其行程速比	北系数 K 的值为	
9.	四杆机构是否存在止点,取决于	_ 是否与		
10.	在铰链四杆机构中,当最短杆和最长杆长	度之和大于其他两	杆长度之和时,只能	获得
_	机构。			
11.	平面四杆机构中,如果最短杆与最长杆的	长度之和小于其余	两杆的长度之和,最	短杆为机架,
ì	这个机构叫机构。	X		
	平面连杆机构急回特性系数 K1 时,	机构有急回特性。		
12	以滑块为主动件的曲柄滑块机构有个	小古位黑		
	凸轮机构主要由、、、、		松华组式	
	盘形凸轮的基圆,是指以凸轮的			
	在凸轮机构中,从动件的运动规律完全由 <u></u>			 快定。
	据凸轮的形状,凸轮可分为凸。			
	凸轮机构的压力角是指的运动方			治 角。
	在实际设计和制造中,一对渐开线外啮合			
17.	相等、			
20.	在实际设计和制造中,一对渐开线标准			
		∟ĸĸijĸijſĿĸĸijŢ₩₩₹IJĸ₩	ы н <i>и</i> н <i>и</i>	
21.	————。 一对渐开线标准直齿圆柱齿轮的连续传动	1条件是	0	
	在标准齿轮的分度圆上, 与 数			

23.	斜齿圆柱齿轮传动的重合度比直齿圆柱齿轮传动的重合度,因而承载能力。
24.	.渐开线上各点的压力角不等,向径越大,则压力角越,
25.	单个齿轮的渐开线上任意点的法线必是圆的切线。
26.	渐开线齿轮的五个基本参数是齿数、、、、、系数和顶隙系数。
27.	我国规定齿轮标准压力角为度;模数的单位是。
28.	齿轮切削加工方法可分为仿形法和范成法,用成形铣刀加工齿形的方法属法,用滚刀
	加工齿形的方法属法。
29.	渐开线齿轮上具有标准模数和标准压力角的圆称为圆。
30.	在普通铣床上用铣刀加工斜齿圆柱齿轮时,刀号据
31.	渐开线齿轮的特性称为中心距可分性。
32.	齿轮传动最基本的要求是其瞬时传动比必须。
33.	用齿条型刀具按范成法加工齿轮,如果切齿结束时,刀具的中线与轮坯分度圆相切,则加工
	出来的齿轮是齿轮,刀具的中线与轮坯分度圆不相切,则加工出来的齿轮称为
=	齿轮。
34.	规定渐开线标准斜齿圆柱齿轮面上的参数为标准值。
35.	直齿圆锥齿轮的标准模数规定在端的圆上。
36.	对于正确安装的一对渐开线圆柱齿轮,其啮合角等于圆上的角。
37.	在课本上所介绍的间歇运动机构中,其中两种机构的名称是:机构、
-	机构。
38.	外槽轮机构由、和机架组成,其中拨盘作转动。
(杉	1械零件部分)
1.联	轴器主要用于以实现之间运动与动力的传递。
2.弹	性联轴器因装有
3.操	纵式离合器主要有和两类。
4.在	设计一对闭式传动钢制软齿面齿轮的计算中,先按
万	尺寸,再按
5.在	圆柱齿轮减速器中,为了一般将小齿轮做得比大齿轮宽一些,强度
भ	片算时,按齿轮的宽度进行计算。
6.对	一般工作条件下的闭式齿轮传动,如果是硬齿面齿轮,应按

机械设计基础复习资料

进行设计计算,按_____校核。

7.	阿基米德蜗杆传动的正确啮合条件是:蜗杆的轴向模数应等于蜗轮的,
蚌	B杆
_	角,且两者方向相同。
8. !	蜗杆传动的主要失效形式是、和磨损。
9.	通过蜗杆轴线并与蜗轮轴线垂直的平面称为,在此平面,渐开线蜗杆与蜗轮的
啦	占 合可视为与的啮合。
10.	一对蜗杆蜗轮传动,在其啮合处,蜗杆所受圆周力与蜗轮所受力大小相等,方向
村	目反。
11.	蜗轮材料常用。蜗杆材料常用。
12.	对闭式蜗杆传动除了要进行强度计算外,还需进行计算。
13.	只承受的轴称为传动轴。
14.	既承受的轴称为转轴。
15.	的轴称为心轴。
16.	轴的常用材料是和。
17.	当轴上需要切制螺纹时,应设有。
18.	足够的、合理的和良好的
19.	按用途不同,平键可分为平键、平键、
Ξ	E种。其中
20.	楔键的工作面是,而半圆键的工作面是。平键的工作面是。
21.	标准平键静联接的主要失效形式是。
22.	花键联接由和组成。矩形花键的定心方式有定心、
_	
23.	花键联接的主要失效形式是。
24.	花键联接的主要失效形式,对于静联接为,对于动联接为。
25.	花键联接按齿形的不同分为
26.	花键联接的工作面是
27.	联接可分为动联接和静联接两类,的联接称为静联接。
28.	圆柱普通螺纹的牙型角是指在截面内,的夹角。
29.	圆柱普通螺纹的导程是指同一螺纹线上的在中径线上

1. 构件是组成机构的各相对运动的单元。

的轴向距离。

30.	圆柱普通螺纹的螺距是指相邻螺牙在中径线上间的
	导程 L 与螺距 P 的关系 式为。
31.	螺纹联接的防松,其根本问题在于防止螺纹副。
32.	根据采用的标准制度不同,螺纹分为制和制,我国除管螺纹外,一般都采
	用制螺纹。
33.	圆柱普通螺纹的公称直径是指径。
34.	圆柱普通螺纹的牙型角为
35.	摩擦带传动的设计准则为和
36.	按带的截面形状,摩擦带可分为带、带、多楔带和带等。
37.	在相同张紧力条件下,V带传动的承载能力比平带传动的承载能力。
38.	摩擦带传动中的弹性滑动会导致从动轮的产生
39.	国家标准中, V 带以
40.	根据工作原理不同,带传动可分为带传动和带传动两类。
41.	普通 V 带传动的主要失效形式有: 带在上打滑和带发生破坏。
42.	带传动常用的张紧方法有两种: 张紧轮法和调整法。
43.	V 带传动工作时,传动带受有应力、离心应力和应力、三种应力叠加后
卓	是大应力发生在紧边绕入处。
44.	按照用途不同,链可分为链、牵引链和链三大类。
45.	滚子链条上的距离称为节距。
46.	链传动常用的张紧方法有调整
47.	按照用途不同,链可分为链、牵引链和链三大类。
48.	按滚动体的形状,滚动轴承可分为轴承和轴承两大类。
49.	国家标准规定滚动轴承内孔与轴的配合采用制,轴承外径与座孔的配合采用
	制。
50.	轴的刚度分为刚度和刚度两种。
<u>=</u> ,	是非题
	(机械原理部分)

()

3. 管螺纹是用于管件联接的一种螺纹。 ()

. 在设计平面四杆机构时,一定要避免死点位置。 ()
. 在铰链四杆机构中, 曲柄一定是最短杆。 ()
. 对心曲柄滑块机构具有急回特性。 ()
. 平面四杆机构中的极位夹角就是从动件在两个极限位置的夹角。 ()
. 平面四杆机构中的死点位置,就是采用任何方法都不能使机构运动的位置。 ()
. 平面四杆机构中至少存在一个曲柄。 ()
. 在曲柄摇杆机构中, 若改变主动件曲柄转速值, 将会使表示急回运动特性的行程速度变
化系数值得到改变。 ()
. 在设计滚子从动件盘形凸轮机构时,滚子的半径可以任意选取。 ()
0. 在设计平底直动从动件盘形凸轮机构时,从动件平底的长度可以任意选取。 ()
1. 凸轮机构压力角的大小对机构运动无影响。 ()
2. 凸轮机构常用于传力较大的场合。 ()
3. 绘制滚子从动件盘形凸轮工作轮廓时,可由其理论轮廓上各点的向径减去滚子半径求得。(
4. 设计盘形凸轮时,取基圆越小越好。()
5. 同一条渐开线上各点的压力角不相等。 ()
6. 变位齿轮的模数、压力角仍和标准齿轮一样。()
7. 正传动齿轮也就是正变位齿轮。()
8. 用仿形法加工标准直齿圆柱齿轮(正常齿)时, 当齿数少于17时产生根切。()
9. 一对外啮合渐开线斜齿圆柱齿轮,轮齿的螺旋角相等,旋向相同。 ()
0. 轮系的传动比,是指轮系中首末两齿轮的齿数比。()
1. 渐开线齿轮上具有标准模数和标准压力角的圆称为分度圆。()
2. 相啮合的一对齿数不相等的齿轮,因为两轮压力角相等,模数相等,所以齿形相同。()
3. 仿形法加工的齿轮比范成法加工的齿轮精度高。 ()
4. 负传动齿轮也就是负变位齿轮。 ()
5. 刚性转子若达到了静平衡,也就是满足了动平衡。 ()
(机械零件部分)
. 一般联接多用细牙螺纹。 ()
. 圆柱普通螺纹的公称直径就是螺纹的最大直径。 ()

4.	三角形螺纹主要用于传动。 ()
5.	梯形螺纹主要用于联接。 ()
6.	金属切削机床上丝杠的螺纹通常都是采用三角螺纹。()
7.	双头螺柱联接适用于被联接件厚度不大的联接。()
8.	圆柱销和圆锥销都是靠过盈配合固定在销孔中。 ()
9.	销和圆锥销的销孔一般均需铰制。 ()
10.	在曲柄摇杆机构中,若改变主动件曲柄转速值,将会使表示急回运动特性的行程速度变
	化系数值得到改变。 ()
11.	.圆柱销是靠微量过盈固定在销孔中的,经常拆装也不会降低定位的精度和联接的可靠性。(
12.	. 带传动和链传动都是属于摩擦传动。 ()
13.	摩擦带传动的包角是指传动带与带轮接触弧所对应的中心角。()
14.	V 带轮的计算直径是指带轮的外径。 ()
15.	弹性滑动是摩擦带传动的主要失效形式之一。 ()
16.	打滑是摩擦带传动的主要失效形式之一。 ()
17.	摩擦带传动中带的弹性滑动是由于带的弹性变形而引起的,可以避免。()
18.	摩擦带传动工作时,带中存在拉应力、弯曲应力和离心应力。 ()
19.	. 在摩擦带传动中, 普通 V 带的传动能力比平带的传动能力强。 ()
20.	在中心距不变情况下,两带轮的基准直径之差越大,则小带轮包角也越大。()
21.	带传动可适用于油污、高温、易燃和易爆的场合。()
22.	摩擦带传动具有过载保护作用,可避免其他零件的损坏。()
23.	由于摩擦带传动具有弹性且依靠摩擦力来传动,所以工作时存在弹性滑动,不能适用于要求
	传动比恒定的场合。()
24.	链传动是依靠啮合力传动,所以它的瞬时传动比很准确。()
25.	滚子链的节距越大,链能够传递的功率也越大。 ()
26.	. 链传动具有过载保护作用。 ()
27.	链传动水平布置时,最好将链条的松边置于上方,紧边置于下方。 ()
28.	在单排滚子链承载能力不够或选用的节距不能太大时,可采用小节距的双排滚子链。()
29.	滚子链传动中链轮的齿数越少,传动越不平稳,冲击、振动加剧。 ()
30.	节距是滚子链条的主要参数。()
31.	滚子链传动中链条的节数采用奇数最好。 ()

32.	滚子链传动一般不宜用于两轴心连线为铅垂的场合。 ()
33.	在满足传动功率的情况下,应优先选用较大节距的链条。 ()
34.	滚子链传动瞬时传动比恒定,传动平稳。 ()
35.	通常蜗杆传动的效率高于带传动的效率。 ()
36.	一般蜗轮的材料常选用 45 钢。 ()
37.	蜗杆传动的传动比也等于蜗轮、蜗杆的直径比。 ()
38.	开式蜗杆传动只按齿根弯曲疲劳强度设计。 ()
39.	设计闭式蜗杆传动时,应作热平衡核算。 ()
40.	受力较小且不重要的轴,材料应选用 40Cr。()
41.	周向固定的目的是防止轴与轴上零件产生相对转动。()
42.	轴上截面尺寸变化处,应加工为圆角过渡,目的是比较美观。 ()
43.	轴肩和轴环能对轴上零件起准确轴向定位作用。 ()
44.	试图通过采用合金钢来提高轴的刚度是不恰当的。()
45.	平键联接可承受单方向轴向力。 ()
46.	普通平键联接能够使轴上零件周向固定和轴向固定。 ()
47.	键联接主要用来联接轴和轴上的传动零件,实现周向固定并传递转矩。()
48.	紧键联接中键的两侧面是工作面。 ()
49.	紧键联接定心较差。())
50.	单圆头普通平键多用于轴的端部。 ()
51.	半圆键联接,由于轴上的键槽较深,故对轴的强度削弱较大。 ()
52.	键联接和花键联接是最常用的轴向固定方法。 ()
53.	.深沟球轴承主要承受径向载荷,也能承受一定的轴向载荷。()
54.	推力球轴承只能承受轴向载荷,不能承受径向载荷。 ()
55.	滚动轴承的外圈与轴承座孔的配合采用基孔制。 ()
56.	在滚动轴承的尺寸系列代号中,直径系列代号表示具有同一内径而外径不同的轴承系列。(
57.	在相同直径系列、相同内径的情况下,球轴承的极限转速比滚子轴承高。 ()
58.	用轴承盖上的凸缘可以实现滚动轴承外圈的轴向固定。 ()
59.	毛毡圈密封属于非接触式密封。 ()
60.	可以通过增减轴承盖处的垫片厚度来实现轴的轴向位置调整。 ()
61.	一对直齿锥齿轮传动,在其啮合外,主动轮和从动轮所受圆周力大小相等,方向相反。()

9. 阿基米德蜗杆蜗轮的正确啮合条件是什么?

62.	闭式传动中的软齿面齿轮的主要失效形式是磨损。 ()
63.	开式传动中的齿轮,疲劳点蚀是常见的失效形式。 ()
64.	齿轮传动中,一对齿轮的许用接触应力相等。 ()
65.	联轴器和离合器是用来联接两轴,使其一同转动并传递转矩的装置。()
66.	联轴器和离合器在联接和传动作用上是相同的。 ()
67.	用联轴器联接的两根轴,可以在机器运转的过程中随时进行分离或接合。 ()
68.	挠性联轴器可以补偿两轴之间的偏移。 ()
69.	十字轴万向联轴器允许被联接两轴间有较大的角位移。 ()
70.	在牙嵌式安全离合器中,选用矩形齿比选用梯形齿更好。()
三、	简答题
	(机械原理部分)
1.	某凸轮机构的滚子损坏后,是否可任意选取另一滚子来代替?为什么?
2.	为什么要校核凸轮机构的压力角?校核时应满足什么条件?
3.	一对渐开线直齿圆柱齿轮,分度圆与节圆有什么不同?在什么条件下重合?
4.	什么是变位齿轮?什么情况需要采用变位齿轮?
5.	正变位齿轮与正传动齿轮有什么区别?
6.	设计平面四杆机构一般有哪几种方法?各有何特点?
7.	什么是机构运动简图?它和机构示意图有什么区别?
8.	机构的急回特性有什么作用? 急回程度的标志是什么?

10. 在《机械设计课程设计》中,你设计的一对软齿面齿轮其大小齿轮的热处理方法取得不一样, 为什么?

(机械零件部分)

- 1. 对连续工作的闭式蜗杆传动,为什么要进行热平衡计算?
- 2. 阿基米德蜗杆传动的正确啮合的条件是什么?
- 3. 三角带轮的槽角 Φ 为什么要比传动带两侧的夹角 θ 小?
- 4. 什么叫滚动轴承的基本额定寿命?
- 5. 典型的滚动轴承由哪些元件组成,各元件的作用是什么?
- 6. 摩擦带传动中弹性滑动和打滑对传动有什么影响?两者是否能避免?为什么?
- 7. 某车间现有三个 A 型三角带轮,其直径分别为 90mm、112mm、和 200mm,今欲用作转速为 3000r/min 的主动轮,请分析说明是否适用?
- 8. 在 V 带传动设计中, 为什么要限制带轮的最小直径? (10 分)
- 9. 在设计齿轮传动、带传动时,哪些参数要取标准值?
- 10. 在设计软齿面齿轮传动时,为什么常使小齿轮的齿面硬度高于大齿轮齿面硬度 30~50HBS?
- 11. 滚子传动链传动具有运动不均匀性, 试分析其原因。
- 12. 对摩擦带传动,为什么要限制其最小中心距?
- 13. 为什么普通 V 带梯形剖面夹角为 40°, 而其带轮轮槽的楔角却为 34°、36°、或 38°

(即<40°)?

- 14. 阿基米德 蜗杆传动的模数和压力角是在哪个平面上定义的? 该传动的正确啮合条件是什么?
- 15. 为什么滚子链传动不适合高速传动?

四、解释标记、代号的含义

1、说明图(a)滚动轴承代号、图(b)滚子解释链标记中划线部分的含义 (16分)

2、说明图(a)滚动轴承代号、图(b)平键标记中划线部分的含义 (12分)

3、据下列滚动轴承代号填空

(12分)

轴承内径 d = ____ mm

公差等级为___级

轴承类型为_

7310C/P5

轴承内径 d = mm

公差等级为___级

轴承类型为_____

4、说明图 (a) 滚动轴承代号、图 (b) 平键标记、图 (c) 滚子链标记中划线部分的含义 (15分)

(c)

5、说明下列滚动轴承代号的含义 (14分)

<u>U Z</u>	08/1	I UX	
			-
			-

五、计算题、图解题

1. 计算下列运动链的自由度(若有复合铰链、局部自由度或虚约束,须明确指出)。

3、如图示,已知两对标准直齿圆柱齿轮传动的标准中心距 a_1 = a_2 ,轮 1 与轮 3 的模数 m_1 = m_3 = 4,齿数 Z_1 =60, Z_3 =30, Z_4 =50,求(1)轮 2 的模数 m_2 ; (2)轮 2 的齿数 Z_2 ; (3)当轮 2 的转速 n_2 =1440 r/min 时,轮 4 的转速 n_4 。 (16 分)

北航材料学院学生会 Student Union of School of Materials Science and Engineering, BUAA

- 4、图示为一标准直齿圆柱齿轮机构传动简图。已知轮 1、轮 2 的中心距与轮 3、轮 4 的中心距相等, Z_3 的模数为 5 mm,轮 1 的转速 n_1 =1440r / min,轮 2 的转速 n_2 = 480 r/min,求:
 - (1) Z₂的齿数; (2) Z₁和 Z₂的模数; (3) Z₄的转速。

(16分)

- 6、有一对渐开线标准直齿圆柱齿轮传动如图示,请在图上作出: (10分)
 - (1) 理论啮合线;
 - (2) 节圆;
 - (3) 啮合角。

- 7、有一对渐开线标准直齿圆柱齿轮传动如图示。(10分)请在图上作出:
 - (1) 理论啮合线;
 - (2) 节圆;
 - (3) 啮合角。

8、如图所示凸轮机构,已知凸轮为一偏心圆盘,其半径 $R=30\ mm$,凸轮回转中心 O_1 到圆盘中心 O_2 的距离 为 $O_1O_2=15\ mm$ 。

(1) 求基圆半径 r_b值; (4分)

(2) 求行程 h 值; (4 分)

(3) 求图示位置压力角值; (2分)

(4) 在图上画出基圆。 (2分)

9、如图所示凸轮机构,已知凸轮为一偏心圆盘,其半径 R=40~mm,凸轮回转中心 O_1 到圆盘中心 O_2 的距离为 $O_1O_2=20~mm$,滚子半径 r=10mm ,(1)求基圆半径 r_b 值 ;

(2) 求行程 h 值; (3) 求图示位置压力角值; (4) 在图上画出基圆。 (12分)

10、某机加工车间只能加工 m=3、4、5mm 三种模数的齿轮。现打算在齿轮机构中心距为 180mm 不变的条件下,选配一对 i=3 的标准直齿圆柱齿轮机构。试确定在此车间能加工的 齿轮模数和齿数。 (14分)

11、已知一对直齿圆锥齿轮传动,其主动轮所受三个分力的大小为圆周力Ft = 2220N,径向力Fr = 640N,轴向力Fa = 320N,求从动轮三个分力的大小。 (5分)

12、图(a)所示为直齿圆锥—斜齿圆柱齿轮两级减速器。

在图(b)中(1)分别标出这三个齿轮受力的作用点和三个分力(圆周力Ft、径向力Fr、轴向力Fa)的方向。 (18分)

(若某力作用线垂直纸面,则说明垂直纸面箭头朝里或朝外)。

(2) 用文字说明斜齿圆柱齿轮是左旋齿轮还是右旋齿轮。(2分)

- 13、有一铰链四杆机构,尺寸如图示,AB 为主动件且顺时针转动,CD 为从动件;
 - (1) 写出该机构具体名称及判断依据;
 - (2) 用图解法求机构极位夹角和从动件摆角; (取作图比例为 0.001 m/mm) (18 分)

14、图示为一个大传动比的减速器,已知各轮的齿数为 Z_1 =100, Z_2 =101, Z_3 =100, Z_4 =99, 求原动件 H 对从动件 1 的传动比 i_{H1} , 并说明两者的转向是相同还是相反。 (16 分)

15、图示轮系,已知 $n_1 = 50$ r / min, $n_3 = 200$ r / min, 两者转向相反, $Z_1 = 80$, $Z_2 = 25$, $Z_2 = 35$, $Z_3 = 20$,求行星架 H 的转速 nH 和转向。(16 分)

16、图示轮系,已知 n_1 = 500 r / min, Z_1 =25, Z_2 = 40, Z_3 = 100,求行 星架 H 的转速 n_H 和转向。

17、如图所示的铰链四杆机构 ABCD,已知杆长 $L_{AB} = 100 \text{ mm}$, $L_{BC} = 250 \text{ mm}$, $L_{AD} = 300 \text{ mm}$,试求此机构为双摇杆机构时,摇杆 CD 的长度变化范围。 (20 分)

18、图示某圆锥齿轮减速器的主动轴,由一对圆锥滚子轴承支承,已知轴承承受的径向载荷分别为 Fr1 = 2500N,Fr2 = 700N,圆锥齿轮受轴向力 Fx = 250N,求轴承 I 和 II 所受轴向力 Fa1 和 Fa2。并在图上标出轴承内部轴向力的方向。

(轴承内部轴向力 S=Fr/2Y, 轴承系数 Y=1.6)

(14分).

19、图示某齿轮减速器的主动轴,其转速 $n=3000\,r/min$,由一对角接触球轴承支承,已知轴承承受的径向载荷分别为 $Fr_1=1000N$, $Fr_2=2100N$,外加轴向载荷 Fx=900N,求轴承 1和 2 所受轴向力 Fa_1 和 Fa_2 。并在图上标出轴承内部轴向力 Fs 的方向。 (14 分)(轴承内部轴向力 $Fs=0.68\,Fr$)

- 20、根据给出的已知条件,(1)在图 a)中标出蜗轮的转向并用文字说明旋向;
 - (2) 在图 b) 中标出蜗杆的 转向;
 - (3) 在图 c) 中标出斜齿轮 2 轮齿的螺旋线方向, 并用文字分别说明这两个齿轮是左旋齿轮还是右旋齿轮。 (16 分)

21、两块钢板由 4 个 M8 螺栓以普通螺栓联接形式联接以传递横向载荷,螺栓材料为 Q235 (相当旧牌 号 A3),其抗拉强度为 410~470MPa,屈服极限为 240MPa,设联接安全系数 S =1.3,联接支承面间的摩擦系数 f=0.15,联接的可靠性系数 C=1.3,求该联接能传递的横向载荷 R。(10 分)

(M8的小径为 6.647mm)。

22、两块钢板由 4 个螺栓以普通螺栓联接形式联接,传递的横向载荷 R 的最大值为 2270N,螺栓材料为 Q235(相当旧牌号 A3),其抗拉强度为 410~470MPa,屈服极限为 240MPa,设联接安全系数 S=1.3,联接支承面间的摩擦系数 f=0.15,联接的可靠性系数 C=1.3,求满足该螺栓联接的螺栓小径值。

机械设计基础试题库答案

一、填空题

- 1. 最短杆 2. 增大基圆半径 3. Z/COSB3 4. 重叠共线 5. 双摇杆 6. b>=a 7. 没有 8. 大、平直、厚 9. 偏距为 10. 点 线 11. 曲柄摇杆,双曲柄 12. 匀速 刚性 13. 节线 一对 14. 模数 m 压力角 15. 相等 不相等 16. 打滑 疲劳断裂 17. 计算功率 Pc 小轮转速 n1 18. 越大? 增大 19. 弯矩 转矩半径,凸轮转动中心为圆心的圆 20. 模数、压力角、螺旋角
- 21 双曲柄机构 曲柄摇杆机构
- 22 曲柄与连杆共线时为
- 23 传动角
- 24 凸轮轮廓曲线
- 25 大 小
- 26 摩擦力
- 27 B型键宽度 b=18mm, 长度 L=80mm
- 28 利用螺纹零件把需要固定在一起的零件固连起来。利用螺纹零件实现回转运动转换成直线运动
- 29 外径 细牙螺纹外径 12mm, 螺距 1.5
- 30 双头螺栓联接 三角形细牙螺纹
- 31 2
- 32 Y Z A B C D E B 型基准长度 2240mm
- 33 0.022
- 34 10
- 35 节圆
- 36 78
- 37 分度圆与节圆重合
- 38 越多 平稳
- 39 模数 齿数
- 40 4000N 1455. 9N
- 41 深沟球轴承 直径系列 2 内径 75mm
- 42 滚子轴承 球轴承
- 43 额定寿命 106 寿转, L=1(106 转)时轴承所能承受的最大载荷
- 44 既承受弯矩也承受扭矩 只承受扭矩
- 45 轴头 轴颈 轴身
- 46 构件
- 47 最短杆 整周回转

- 48 主动件 从动件
- 49 凸轮轮廓曲线
- 50 12
- 51B 基准长度(公称)
- 52 主要 依据 正比
- 53 法面 法面 螺旋角 相反
- 54 头数 正切
- 55 弯矩 扭矩
 - 56 原动件数等于机构的自由度数

571

- 58 双曲柄机构
- 59 不存在
- 60 大 小
- 61 周向固定 传递运动和转矩
- 62 安装一对平键
- 63 外径 左旋细牙螺纹公称直径 12
- 64 扭转
- 65 1/3
- 66 Y Z A B C D E 基准长度 2240mm
 - 67 带和两轮接触面之间的摩擦力
 - 68 小于40度
 - 69 变小
 - 70 基圆
 - 71 模数相等,压力角相等
 - 72 多 平稳

- 73 76
- 74 齿面接触疲劳 齿根弯曲疲劳强度
- 75 定轴轮系 行星轮系
- 76 直接接触 联接
- 77 最短杆 对面
- 78 K>1
- 79 主动 从动
- 80 凸轮廓线
- 81 A型平键 宽度 b=20mm, 长度 L=70mm
- 82 C型 公称长度 2800
- 83 棘轮机构
- 84 基圆半径的反比
- 85 200, 标准值 相等
- 86 1
- 87 1
- 88 双曲柄机构
- 89 110≤d≤190
- 90 凸轮廓线
- 91 实际轮廓线上的最小
- 92 沿周向固定并传递扭距
- 93 B
- 94 安装一对平键

- 95 导程角和牙型角
- 96 双头螺柱联接
- 97 拉断
- 98 剪切与剂压破坏
- 99 传动效率高
- 100. Y Z A B C D E Y A 型标准长度 1000mm
- 101 与负载无关
- 102 减小
- 103 传动轴
- 104 基圆
- 105 齿顶圆,齿根圆,分度圆,基圆
- 106 模数和压力角相等
- 107 蜗轮蜗杆传动
- 108 轮系传动
- 109 m=5
- 110. 齿根弯曲疲劳强度 模数
- 111 确定运动 机械功 能量
- 112 曲柄摇杆机构 双曲柄机构 曲柄摇杆机构 双摇杆机构
- 113 基圆
- 114 棘轮、槽轮机构
- 115 600 外径
- 116 Y Z A B C D E 400
- 117 抖动 老化(失效)
- 118 大 200
- 119 法面模数和压力角相等,螺旋角大小相等,方向相反。

- 120 轴径
- 121 角接触 3、7(6) 向心 6、N
- 122 周向、轴向
- 123 原动件数等于自由度数
- 124 扭转强度
- 125 不存在
- 126 大、小
- 127 凸轮上接触点的法线与该点的线速度方向
- 128 B型长度50mm
- 129 A B C
- 130 B C A D
- 131 外径 细牙螺纹外径 16 螺距 2
- 132 三角形细牙螺纹
- 133 2
- 134 Y Z A B C D E B 型 长度 2280mm
- 135 带和两轮之间接触面之间的摩擦力
- 136 增大
- 137 <40 度
- 138 0.022
- 139 10
- 140 基圆
- 141 模数压力角相等
- 142 节圆分度圆重合
- 143 多 平稳
- 144. Z m
- 145. 深沟球轴承 直径系列 3 内径 60
- 146. L=1(106转)时承受的载荷
- 147. 滚动体与滚道的工作表面产生疲劳点蚀。

二、选择题

1. C 2. D 3. D 4. C 5. C 6. B 7. D 8. D 9. A 10. A 11. B 12. B 13. B 14. B 15. D 16. B 17. B 18. B 19. C 20. B 21. D 22. B 23. D24. B 25. D 26. C 27. D 28. D 29. D 30. D 31. C 32. C 33. D 34. C 35. C 36. B 37. B 38. C

- 40. 1
- 41. 极位夹角 θ = 0 K=1
- 42 .110mm≤d≤190mm
- 43. 不存在
- 44.实际轮廓线上的最小
- 45. 凸轮上接触点的法线与从动件的运动方向
- 46. 沿周向固定并传递扭矩
- 47.两侧面的挤压力
- 48. b-c-a-d
- 49. 安装一对平键
- 50. 升角和牙型角
- 51. 可拆联接
- 52. 扭转
- 53 . 拉断
- 54 . 450
- 55. 传动效率高
- 56 . 传递的功率
- 57. 增大
- 58 . 减小
- 59 . 减小
- 60. 带的紧边与松边拉力不等
- 61. 2.2%
- 62 . b-a-e-c-f-d-g
- 63.模数
- 64. 齿顶圆,分度圆,基圆和齿根圆
- 65 . 78
- 66. 有两个
- 67. 最短杆
- 68. 齿顶圆、齿根圆 分度圆、基圆
- 69. 等于零
- 70. Z<17
- 71. 轮毂的挤压强度
- 72. 先按接触强度条件计算
- 73. 轴面

- 74. 连杆与摇杆之间所夹锐角
- 75. 减小滚子半径
- 三、简答题

123 略

4、(a): F=3×4-2×60=0, ∴机构不能运动,设计不合理修改如下:

则 $F=3\times5-2\times7=1$

运动确定

- (b) : F3×4-2×5-2=2, 而原动件数目为 1
- :: 机构运动不确定,设计不合理,修改如下:

此时 F=3×3-2×4=1

还动确定

- 5、解: (1) 取 μ1=1mm/mm, 画机构图
- (2) 先将整个机构加一个 (-ω1) 角速度使构件 1 相对固定,得一转化机

构, 取 μ V=2mm/s/mm

求转化机构的 VD

VD: VC = VD + VCD

大小?? √?

方向 LBC? LAD LCD

式中: VC=ω21.1CB=2×30=60/S

画速度多边形 pcd, 其中 \overline{PC} =VC/ μ V

得转化机构的 $VD=\overline{pd}$. μV

 $VCD = \overline{cd}_{\mu V}$

则
$$\omega 41=\overline{l_{AD}}=(\overline{pd}, \mu V)$$
 /1AD= (25×2) /40=1.25S-1

$$\omega 31 = \frac{v_{CD}}{l_{CD}} = (\overline{pd} \cdot \mu V) / 1CD = (33 \times 2) / 25 = 2.64S - 1$$

 $\omega 1 = -\omega 41 = -1.25S - 1$

故 ω 3= ω 31+ ω 1=2.64-1.25=1.39S-1

(注意: ωk1=ωk-ω1)

mz

6、解: (1) 由 V 刀=ω1r=ω1. 2

得:
$$Z = \frac{2v_{\pi}}{\varpi_1 \cdot m} = \frac{2 \times 60}{1 \times 4} = 30$$

- ::被加工齿轮的齿数为30
- (2) 由 L=r+xm

$$4: \frac{L-r}{x=m}$$

其中:
$$r = \frac{mz}{2} = \frac{4 \times 30}{2} = 60 \text{mm}$$

∴x= 4 =-0.5 ∴是负变位齿轮

- 7、所谓齿廓啮合基本定律是指:作平面啮合的一对齿廓,它们的瞬时接触点的公法线,必于两齿轮的连心线交于相应的节点 C,该节点将齿轮的连心线所分的两个线段的与齿轮的角速成反比。
- 8、螺纹连接的防松方法按工作原理可分为摩擦防松、机械防松及破坏螺纹副防松。

摩擦防松有: 弹簧垫圈、双螺母、椭圆口自锁螺母、横向切口螺母

机械防松有: 开口销与槽形螺母、止动垫圈、圆螺母止动垫圈、串连钢丝

破坏螺纹副防松有:冲点法、端焊法、黏结法。

- 9、初拉力 Fo 包角 a 摩擦系数 f 带的单位长度质量 q 速度 v
- 10. 解: 此四杆机构的四杆满足杆长和条件

Lab+Lad 《 Lbc+Lcd

且由题已知机构以最短杆的邻边为机架,故此机构为曲柄摇杆机构

- 11. 解:
- 1) 3齿轮为右旋
- 2) 受力方向如图

12.

1) 解: F=3n-2PL-Ph

$$=3*3-2*3-2$$

=1

此题中存在局部自由度,存在2个高副。

此机构主动件数等于自由度数,机构运动确定

2) 解: F=3n-2PL-Ph

$$=3*7-2*10-0$$

=1

此构主动件数等于自由度数, 机构运动确定构运动确定

13.

- 1) 曲柄存在的条件如下:
- 1) 最长杆与最短杆的长度之和小于或等于其余俩杆长度之和
- 2) 最短杆或其相邻杆应为机架
- 2) a 曲柄摇杆机构 满足杆长和条件,且以最短杆的邻边为机架
- b 双曲柄机构 满足杆长和条件, 且以最短杆为机架
- c 双摇杆机构 满足杆长和条件, 且以最短杆的对边为机架
- d 双摇杆机构 不满足杆长和条件,不管以什么为机架只能得到双摇杆机构。
 - 14 具有确定运动

15 略

16 略

17 速度大离心力过大 绕转的圈数多寿命低

18 1 具有确定运动

- 19 压力角 200 模数为标准值,分度圆齿厚等于齿槽宽的齿轮
- 20 范成法加工齿轮齿数低于17 发生根切
- 21 直齿圆柱齿轮和斜齿圆柱齿轮(传动平稳、承载大)
- 22 传动带是弹性体,受到拉力后会产生弹性伸长,伸长量随拉力大小的变化而改变。带由紧边绕过主动轮进入松边时,带的拉力由 F1 减小为 F2, 其弹性伸长量也由 $\delta 1$ 减小为 $\delta 2$ 。这说明带在绕过带轮的过程中,相对于轮面向后收缩了($\delta 1$ - $\delta 2$),带与带轮轮面间出现局部相对滑动,导致带的速度逐步小于主动轮的圆周速度,这种由于带的弹性变形而产生的带与带轮间的滑动称为弹性滑动。

弹性滑动和打滑是两个截然不同的概念。打滑是指过载引起的全面滑动,是可以避免的。而弹性滑动是由于拉力差引起的,只要传递圆周力,就必然会发生弹性滑动,所以弹性滑动是不可以避免的。

23 例 牛头刨床空程速度快提高生产率

24. 略

- 25. 螺旋升角小于当量摩擦角 由于当量摩擦角的关系,三角螺纹自锁最好,矩形最差
- 26. 离心力大 转数多
- 27. 大小齿轮材料及热处理硬度差50左右,由于小齿轮转数多,更快失效
- 28. 有急回特性 极位夹角不等于零
- 29. 运动时克服,固定夹紧时利用

- 30. 有影响
- 31. 向径、高度无变化
- 32. Ft1=2T1/d1 Fr1=Ft1tg200
- 33. 向径、高度无变化
- 34. 2 不具有确定的运动
- 35. 升角小于等于当量摩擦角 三角螺纹自锁最好,梯形次之,矩形最差。效率矩形自锁最好,梯形次之,三角螺纹最差。
- 36. 轴上零件的轴向、周向定位,装拆,加工工艺
- 37. 1
- 38. 由于牙型角三角螺纹自锁最好,梯形次之,矩形最差。效率矩形自锁最好,梯形次之,三角螺纹最差。
- 39. 范成法加工齿轮齿数少于 17 发生根切
- 40. 配对材料大齿轮硬度大小齿轮硬度 50 左右 因为小齿轮受载次数多,齿根薄
- 41. 2 具有确定的运动
- 42. 1
- 43. 疲劳点蚀
- 44. 三角螺纹用于联接,梯形、锯齿、矩形螺纹用于传动
- 45. 小带轮上
- 46. 考虑轴上零件轴向定位、装拆
- 47. 轴承轴向、周向定位,装拆,润滑密封等

四、计算题

- 1.解(1)由AD为最短构件,且满足杆长和条件得:
- 1AD+1BC <1CD+1AB
- ∴1AB≥100+150-120=130mm
- : 1AB 的最小值为 130mm
 - (2) 由于 1AB+1BC=60+150=210mm
- 1CD+1AD=120+100=220mm
- 即 210mm<220mm 满足杆长和条件
- :.机构存在曲柄,AB为曲柄,得到的是曲柄摇杆机构。
- 2. (1) 滑块 1 的力平衡方程式为:

$$\overline{P}_{+}\overline{Q}_{+}\overline{R_{21}}_{=0}$$

则由力的三角形得:
$$\frac{P}{\sin(\alpha+\varphi)} = \frac{Q}{\cos(\alpha+\varphi+\beta)}$$

$$\therefore_{\mathbb{Q}=\text{Pcos}} \frac{(\alpha+\varphi+\beta)}{\sin(\alpha+\Phi)} \xrightarrow{\sup_{\mathbb{P}=\mathbb{Q}} \frac{\sin(\alpha+\varphi)}{\cos(\alpha+\varphi+\beta)}}$$

(2) 上滑时不自锁的条件是:

η> 0 或 Q >0

$$\sup_{\mathbb{RP}} \frac{\cos(\alpha + \varphi + \beta)}{\sin(\alpha + \varphi)} >_0$$

$$\pm \cos (\alpha + \varphi_{+\beta}) > 0$$

$$\mathbb{Q} \mid \alpha + \varphi + \beta 90^{\circ}$$

得
$$\alpha < 90-(^{\phi}+\beta)=90^{\circ}-(8^{\circ}+10^{\circ})=72^{\circ}$$

:.不自锁条件为要小于 72°

3. 解:

$$\begin{vmatrix} a = \frac{m}{2}(z_1 + z_2) \\ i_{12} = \frac{z_2}{z_1} \end{vmatrix} \Rightarrow \underbrace{\frac{mz_1}{2}}_{\alpha = \frac{20}{5 \times (2.5 + 1)}} = \underbrace{0}_{=20}$$

$$Z2=i12. Z1=2. 5 \times 20=50$$

 $d2=mz2=5 \times 50=250mm$

 $df2=m (z2-2.5) =5 \times (50-2.5) =237.5mm$

 $da2=m (z2+2) =5 \times (50+2) =260mm$

 $db2=d2cos=250 \times cos20^{\circ} =234.9mm$

4.

- a) 假想凸轮固定,从动件及其导路顺时针旋转,在偏距圆上顺时针方向转过 45°. 求作。
- b) 假想凸轮固定, 机架 OA 顺时针转过 45°, 找出摆杆的位置来确定摆杆的角位移 Ψ.
- 5. 解:轮系为周转轮系,在转化机构中:

$$\frac{n_1^H}{i^{13}} = \frac{n_1^H}{n_3^H} = \frac{n_1 - n_H}{n_3 - n_H} = + \frac{z_2 z_3}{z_1 \cdot z_2'} = + \frac{101 \times 99}{100 \times 100}$$

$$= \frac{9999}{10000} :_{n3=0}$$

$$\frac{n_1 - n_H}{n_1} = \frac{1 - \frac{n_H}{n_1}}{-\frac{n_H}{n_1}} = \frac{9999}{10000}$$

 n_H

iH1= [№]1 =+10000 ∴H 轴与 I 轴转向相同

6.

a) 解: F=3n-2PL-Ph

=3*5-2*7-0

=1

此题中存在复合铰链

备注: 此题中5个构件组成复合铰链,共有4个低副

b)解:F=3n-2PL-Ph

=3*4-2*5-1

=1

此题中滚子为局部自由度

7.

解:由题意的得,5-3-6-4组成行星轮系

i54H = n5-nH/n4-nH = -Z3*Z4/Z5*Z6

因为1-2-5组成定轴轮系

i12=n1/n2=n1/n5=Z2/Z1

所以 n5=450r/min

把 n4=0 及 n5=450r/min 代入上式

得到

nH=5.55r/min

这表明系杆 H 的旋转方向和齿轮 1 的一致

8.

解:

单个螺栓的 Q=Q'+F=2.6F

Q*Z = S*P*A

2.6F*6=2*3.14*D2/4

得 F=2264.4N

 $[\sigma] = 300/2 = 150 \text{N/mm}$

所以 d1 由公式得, d1=15.81mm

取螺栓的直径为 16mm

9. 略

10.

- (1. 无垫片, 无法调整轴承的游系
- (2. 轴肩过高,无法拆卸轴承
- (3. 齿轮用油润滑,轴承用脂润滑,但无挡油盘
- (4. 轴套长度应小于轮毂的长度
- (5. 同一根轴上的两个键槽应布置在同一母线上。
- (6. 套筒顶不住齿轮(过定位)
- (7. 套筒应低于轴承外圈
- (8. 轴承端盖与相应轴段处应有密封件,且与轴间不应接触,应有间隙。
- (9. 连轴器无轴向固点, 且与端盖间隙太小, 易接触
- (10. 键顶部与轮毂糟间应有间隙
- 11. m=5 d1=100 d2=220 da1=100+10=110 da2=220+10=230 df1=100-12.5=87.5 df2=220-12.5=207.5 p=3.14*5=15.7 s=e=7.85
- 12 . n3=n4

$$(n4/n6) = (z6/z4) = 3$$

nH=n6

$$(n1-n6)/(n3-n6) = -(z3/z1) = -4$$
 $i16=-7$

- 13. 略
- 14. z2-z1=z3-z2' z3=z2-z1+z2'=48-20+20=48 (n1-nH)/(n3-nH)=z2z3/z1z2

- 15. i16=(20*25*z4)/(18*25*z)=100/4.5 z4=40
 - 16. n2=480 a=75 p=6.28
 - 17. (200-nH)/(50-nH)=-25*60/15*20 nH=75
 - 18. 3*5-2*7=1
 - 19. S1=Fr1/2Y=5200/2*0.4ctg140=1620

S2=Fr2/2Y=3800/2*0.4ctg140=1184

S1+Fx>S2 1620+2200>1184

Fa2=S2=1184

Fa1= S1+Fx=3820

Fa1/Fr1=3800/5200=0.73>e=0.37

Fa2/Fr2=1184/3800=0.31<e=0.37

P1=0. 4*5200+0. 4ctg140*3820=8208

P2=Fr2=3800

20. m=420/(40+2)=10

d1=400 d2= 800 da2=800+20=820

df1=400-2*1.25m=375

df2=800-2*1.25m=775

a=10/2(40+80)=600

p=3.14*m=31.4

21. (n1-nH)/(0-nH)=z2 z3/z1 z2'

(-n1/nH)+1=z2 z3/z1 z2'

i1H=1-(39*39/41*41)=0.095

22. 78=m(24+2)

m=3

a=m/2(z1+z2)

135=3/2(24+z2)

z2 = 66

da2=3*66+2*3=204

df2=3*66-2*1.25*3=190.5

i=66/24=2.75

23. i16=z2z4z5z6/z1z2'z4'z5'

24. z2-z1=z3-z2' z3=z2-z1+z2'=48-20+20=48

(n1-nH)/(n3-nH)=z2z3/z1z2

n3=0

i1H=1-48*48/20*20=-4.76

25. S=0.68Fr

S1=0.68Fr1=0.68*3300N=2244N

S2=0.68Fr2=0.68*1000N=680N

S2+Fx=680+900=1580N<S1

Fa1=S1=2244N

Fa2=S1-Fx=2244-900=1344N

Fa1/Fr1=2244/3300=0.68=e

Fa2/Fr2=1340/1000=1.344>e

P1=3300N

P2= 0.41*1000+0.87*1344=1579N

26. 144=4/2(Z1+iZ1)

Z1=18 Z2=3*18=54

d1=4*18 =72

d2=4*54 =216

da1=72+2*4=80 ra1=(72+2*4)/2=40

da2=216+2*4=224

ra2=(216+2*4)/2=112

df1=72-2*1, 25*4=62

rf1=(72-2*1, 25*4)/2=31

df2=216-2*1, 25*4=206

rf2=(216-2*1, 25*4)/2=103

27. (n2-nH1)/(n5-nH1) = -Z1Z5/Z2Z1

n5=0 n2/nH1=1+Z1Z5/Z2Z1'

nH1=100 求出 n2=305.6

(n2-nH2)/(n4-nH2)=-Z4/Z2

n2/nH2=1+Z4/Z2

305.6/nH2=1+25/25

nH2=152.8

28. 略

29. 哨

30. (n1-nH)/(n3-nH) = -Z3/Z1

n3=0

i1H=1+Z3/Z1=1+56/20=3.8

31. n3=0

(n1-nH)/(-nH) = -Z2Z3/Z1Z2'

n1/nH=2.64 nH=37.88

32. Z2=iZ1=4*20=80

m=2a/(z1+z2)=2*150/120=2.5

da2 = mZ2 = 200

da2=200+2*2.5=205

df2=200-2*1.25*2.5=193.5

33. i17=Z2Z3Z4Z5Z6Z7/Z1Z2'Z3'Z4'Z5'Z6=50*40*20*18*22/2*1*30*26*46= 220.7

