ARM Mali GPU Architecture

ARM

Sam Martin
Graphics Architect, ARM

ARM Game Developer Day - London 03/12/2015

Agenda

- Mali architecture and tiling introduction
- Behind the scenes power limits
- Vulkan

Mali GPU Taxonomy In a Nutshell

- Mali 4xx series
 → OpenGL ES 2.0
 - I-8 shaders cores, separate fragment and vertex processors
- Mali 6xx − 8xx → OpenGL ES 3.x
 - Unified "tri-pipe" shader core
 - Larger core configurations, max 16 cores from Mali 760 +
 - AFBC, ASTC, Transaction Elimination, ...
- All tile-based GPUs

Tile-based GPUs

Fragments >> Geometry

- Phased structure
 - I. Buffer all operations into "render passes"
 - 2. Transform + bin all geometry into screen space tiles
 - 3. Fully shade each tile into local memory, then write back

Mali Architecture

- Hardware tiling
- Forward Pixel Kill
 - Reduce overdraw
- Framebuffer memory on-chip
 - 4x MSAA for "free"
 - Advanced on-chip shading
- Bandwidth efficiencies
 - ARM Framebuffer Compression
 - Transaction elimination
 - ASTC

Mobile Power Limits

- Lifetime constrained by <u>battery</u>
- High-end performance constrained by <u>heat</u>
- Thermal Design Power/Point (TDP)
 - Capacity constrained by ability to dissipate heat
- Memory bandwidth particularly expensive
 - Rule of thumb: I00mW / GB/s, assume I W total

<u>Phones</u>	I-3 Watts
Tablets	3-5 Watts
Small laptop-like	10-25 Watts
Regular laptop	25-50 Watts
Integrated desktop	40-100 Watts

- Low-mid end GPUs are constrained by die area
 - Savings prolong battery life but may not increase performance

Similarly capable mobile GPUs

Die areas shown to scale

NVIDIA GeForce
GTX Titan

ARM

Low-end

- I-I0x range, just within mobile phones
- Servicing such a wide range demands scalable GPU designs
- GPU feature set cannot indicate performance capability

CPU - big

CPU - LITTLE

GPU

GL Benchmark 2.7 (T-Rex HD) [3 Runs]

Median filtered chart for clarity

Time (s)

- CPU big
- CPU LITTLE
- GPU

Vulkan

- Good match for mobile and tiling architectures
 - Explicit multi-pass render passes
 - No hidden costs (copies, allocs, shader recompiles, etc)
 - Multi-threaded
 - Low overhead

- Gloves-off API
 - Needs care look out for future info post-release

Thanks! Questions?

sam.martin@arm.com @palgorithm

- Coming up:
- Increase texturing efficiency and quality
 - Daniele Di Donato, "Get the most out of ASTC" up next!
- Advanced use of tiled framebuffers
 - Marius Bjørge, "Fast Approximate Indirect Lighting on Mobile", I Iam
- Compute shaders & tessellation
 - Hans-Kristian Arntzen, "Real-time GPU-driven Ocean Rendering on Mobile", 11.30am

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

Copyright © 2015 ARM Limited