

Centralna Komisja Egzaminacyjna

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Układ graficzny © CKE 2010

WDISTIF 7DATACV

VV 1	ISUJE ZDAJĄC I	na naklejkę
KOD	PESEL	z kodem
		dysleksja

EGZAMIN MATURALNY **Z MATEMATYKI**

POZIOM ROZSZERZONY

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19 stron Ewentualny (zadania 1 - 11). brak przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 4. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MAJ 2012

Czas pracy: 180 minut

Liczba punktów do uzyskania: 50

MMA-R1 1P-122

Zadanie 1. *(4 pkt)*Wyznacz cztery kolejne liczby całkowite takie, że największa z nich jest równa sumie kwadratów trzech pozostałych liczb.

	Nr zadania	1.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 2. (4 pkt)

Rozwiąż nierówność $x^4 + x^2 \ge 2x$.

Zadanie 3. (4 pkt) Rozwiąż równanie $\cos 2x + 2 = 3\cos x$.

	Nr zadania	2.	3.
Wypełnia	Maks. liczba pkt	4	4
egzaminator	Uzyskana liczba pkt		

Zadanie 4. (6 pkt)

Oblicz wszystkie wartości parametru m, dla których równanie $x^2 - (m+2)x + m + 4 = 0$ ma dwa różne pierwiastki rzeczywiste x_1 , x_2 takie, że $x_1^4 + x_2^4 = 4m^3 + 6m^2 - 32m + 12$.

	Nr zadania	4.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 5. *(6 pkt)*

Trzy liczby tworzą ciąg geometryczny. Jeżeli do drugiej liczby dodamy 8, to ciąg ten zmieni się w arytmetyczny. Jeżeli zaś do ostatniej liczby nowego ciągu arytmetycznego dodamy 64, to tak otrzymany ciąg będzie znów geometryczny. Znajdź te liczby. Uwzględnij wszystkie możliwości.

	Nr zadania	5.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 6. (6 pkt)

W układzie współrzędnych rozważmy wszystkie punkty P postaci: $P = \left(\frac{1}{2}m + \frac{5}{2}, m\right)$, gdzie $m \in \langle -1, 7 \rangle$. Oblicz najmniejszą i największą wartość $|PQ|^2$, gdzie $Q = \left(\frac{55}{2}, 0\right)$.

	Nr zadania	6.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 7. *(3 pkt)*

Udowodnij, ze jeżeli $a+b \ge 0$, to prawdziwa jest nierówność $a^3+b^3 \ge a^2b+ab^2$.

Zadanie 8. (4 pkt)

Oblicz, ile jest liczb naturalnych ośmiocyfrowych takich, że iloczyn cyfr w ich zapisie dziesiętnym jest równy 12.

	Nr zadania	7.	8.
Wypełnia	Maks. liczba pkt	3	4
egzaminator	Uzyskana liczba pkt		

Zadanie 9. *(5 pkt)*

Dany jest prostokąt \overrightarrow{ABCD} , w którym |AB| = a, |BC| = b i a > b. Odcinek AE jest wysokością trójkąta DAB opuszczoną na jego bok BD. Wyraź pole trójkąta AED za pomocą a i b.

	Nr zadania	9.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 10. *(5 pkt)*

Podstawą ostrosłupa \overrightarrow{ABCS} jest trójkąt równoramienny ABC. Krawędź AS jest wysokością ostrosłupa oraz $|AS| = 8\sqrt{210}$, |BS| = 118, |CS| = 131. Oblicz objętość tego ostrosłupa.

	Nr zadania	10.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 11. *(3 pkt)*

Zdarzenia losowe A, B są zawarte w Ω oraz $P(A \cap B') = 0,7$ (A' oznacza zdarzenie przeciwne do zdarzenia A, B' oznacza zdarzenie przeciwne do zdarzenia B). Wykaż, że $P(A' \cap B) \le 0,3$.

	Nr zadania	11.
Wypełnia	Maks. liczba pkt	3
egzaminator	Uzyskana liczba pkt	

BRUDNOPIS