Nr.	Lastfall	$\mathrm{EI}w_{\mathrm{A}}'$	$\mathrm{EI}w_{\mathrm{B}}'$	$\mathrm{EI}w(x)$	$\mathrm{EI}w_{\mathrm{max}}$	
1	$ \begin{array}{c c} F \\ A \\ A$	$\frac{Fl^2}{6} \left(\beta - \beta^3\right)$	$-\frac{Fl^2}{6}\left(\alpha - \alpha^3\right)$	$\frac{Fl^3}{6} \left[\beta \xi \left(1 - \beta^2 - \xi^2 \right) + \langle \xi - \alpha \rangle^3 \right]$	$\frac{Fl^3}{48}$ für $a=b=\frac{l}{2}$	Prof. P. Hagedor Prof. W. Hauger DiplIng. RR.
2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$rac{q_0l^3}{24}$	$-\frac{q_0 l^3}{24}$	$\frac{q_0 l^4}{24} \left(\xi - 2\xi^3 + \xi^4\right)$	$\frac{5q_0 l^4}{384}$	P. Hagedorn W. Hauger -Ing. RR. Kühn
3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{q_0 l^3}{24} \big(1 \! - \! \beta^2\big)^2$	$ \frac{q_0 l^3}{24} \left[4(1-\beta^3) - 6(1-\beta^2) + (1-\beta^2)^2 \right] $	$ \frac{q_0 l^4}{24} \left[\xi^4 - \langle \xi - \alpha \rangle^4 - 2(1 - \beta^2) \xi^3 + (1 - \beta^2)^2 \xi \right] $		lm
4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{7q_0 l^3}{360}$	$-\frac{q_0 l^3}{45}$	$\frac{q_0 l^4}{360} (7\xi - 10\xi^3 + 3\xi^5)$		
5	$\begin{array}{c c} & M_0 \\ & A $	$\frac{M_0 l}{6} (3\beta^2 - 1)$ $\left[-\frac{M_0 l}{6} \text{ für } b = 0 \right]$	$\frac{M_0 l}{6} (3\alpha^2 - 1)$ $\left[\frac{M_0 l}{3} \text{ für } b = 0\right]$	$\frac{M_0 l^2}{6} \left[\xi (3\beta^2 - 1) + \xi^3 - 3 \langle \xi - \alpha \rangle^2 \right]$	$\frac{\sqrt{3}M_0 l^2}{27}$ für $a=0$	
6	$ \begin{array}{c c} F \\ \hline & a \\ \hline & l \\ \end{array} $ B	0	$rac{Fa^2}{2}$	$\frac{Fl^3}{6} \left[3\xi^2 \alpha - \xi^3 + \langle \xi - \alpha \rangle^3 \right]$	$\frac{Fl^3}{3}$ für $a=l$	
7	$A = \begin{bmatrix} q_0 \\ x \end{bmatrix}$	0	$\frac{q_0 l^3}{6}$	$\frac{q_0 l^4}{24} \left(6\xi^2 - 4\xi^3 + \xi^4\right)$	$\frac{q_0 l^4}{8}$	Zugo
8	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	$ \frac{q_0 l^3}{6} \beta \left(\beta^2 - 3\beta + 3\right) $	$\frac{q_0 l^4}{24} \left[\langle \xi - \alpha \rangle^4 - 4\beta \xi^3 + 6\beta (2 - \beta) \xi^2 \right]$		BIE elassen in
9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	$\frac{q_0 l^3}{24}$	$\frac{q_0 l^4}{120} \left(10\xi^2 - 10\xi^3 + 5\xi^4 - \xi^5\right)$	$\frac{q_0 l^4}{30}$	GELINI der Diplo
10	$\begin{array}{c c} M_0 \\ A \\ & a \\ & l \\ \end{array}$ B	0	M_0a	$\frac{M_0 l^2}{2} \left[\xi^2 - \langle \xi - \alpha \rangle^2 \right]$	$\frac{M_0 l^2}{2}$ für $a=l$	BIEGELINIENTAFEL Zugelassen in der Diplomvorprüfung
Erklärung: $\xi = \frac{x}{l}$, $\alpha = \frac{a}{l}$, $\beta = \frac{b}{l}$, EI = const, $w' = \frac{dw}{dx} = \frac{1}{l} \frac{dw}{d\xi}$, $\langle \xi - \alpha \rangle^n = \begin{cases} (\xi - \alpha)^n & \text{für } \xi > \alpha \\ 0 & \text{für } \xi \leq \alpha \end{cases}$						TEL fung

Technische Universität Darmstadt

FACHBEREICH MECHANIK