

PROCESO DE GESTIÓN DE FORMACIÓN PROFESIONAL INTEGRAL TALLER DE CIENCIA DE DATOS

(Machine Learging – Arboles Clasificación)

IDENTIFICACIÓN DEL TALLER

- Denominación del Programa de Formación: Tecnólogo en Análisis y Desarrollo de Software
- Código del Programa de Formación: 228118
- Nombre del Proyecto: 2417781 Desarrollo de software como recurso para la gestión de información de las organizaciones en el contexto de la innovación, transformación digital y en el marco de políticas y requisitos de la empresa.
- Fase del Proyecto: Evaluación
- Actividad de Proyecto: Desarrollar las tareas de configuración y puesta en marcha del software
- Competencia: Construcción del software
- Resultados de Aprendizaje Alcanzar: Codificar la solución que cumpla con el diseño establecido.
- Duración del Taller: 04 horas

2. DESCRIPCION DEL TALLER:

2.1 Contexto:

La agricultura de precisión es una de las técnicas del agro que se encuentra en auge en el valle de aburra; debido a que ayuda a los agricultores a tomar decisiones informadas sobre la estrategia agrícola. A continuación, se socializa un conjunto de datos que permitiría a los agricultores construir un modelo predictivo para recomendar los cultivos más adecuados para crecer en una granja en particular en función de varios parámetros, tales como: nitrógeno, potasio, fósforo, temperatura, humedad entre otros. El conjunto de datos contiene 2201muestras diferentes tipos de cultivos como arroz, maíz, garbanzo, frijol, lentejas, granada, banana, entre otros.

2.2 Información de las etiquetas:

- N- relación del contenido de nitrógeno en el suelo
- P- relación de contenido de fósforo en el suelo
- K- relación del contenido de potasio en el suelo
- **temperatura** temperatura en grados Celsius
- humedad humedad relativa en %
- ph- valor de ph del suelo
- precipitacion precipitación en mm

2.3 Procedimiento sugerido:

- 1. Preparación de los datos.
- 2. División de los datos
- 3. Construcción y aprendizaje del modelo de clasificación
- 4. Evaluación de modelo de machine learning
- 5. Predicción futura

2.4 Requerimientos

- El sistema debe estar en capacidad de predecir cual es tipo de culto optimo bajo las siguientes condiciones:
 - o N = 13
 - o P = 5
 - o K = 8
 - o Temperatura = 2.385.340.379
 - Humedad = 9.010.522.549
 - o Ph = 7.474.710.503
 - o Precipitación = 103.923.226
- La solución presentada debe ser una aplicación web según estándares de programación (validación y seguridad).

2.5 Restricciones

• Para solución del ejercicio solo se podrá utilizar el método de Arboles.

2.6 Dataset

 https://github.com/majash29/CienciaDatosSENAV02/raw/main/05-ModeloArboles/08 TallerArbolesClasificacion/Dataset/agricultura.xlsx

3. ENTREGABLES DEL TALLER

- En el LMS se debe entregar la URL del repositorio de GitHub con la siguiente información:
 - o Notebook de Python con los scripts utilizados.
 - Código fuente utilizado para la implementación del IA como una aplicación Web de predicción.
 - URL del despliegue realizado de la aplicación.

4. CONTROL DEL DOCUMENTO

	Nombre	Cargo	Dependencia	Fecha
Autor (es)	Alvaro Pérez Niño	Instructor	ADSO	30 agosto de 2023