Negative binomial mixture branching process model of transmission

Probability mass function

Corresponding chain size distributions for the mixtures for each value of k:

Plot shows that chain size distribution from a mixture is fatter tailed when $R_0 > 1$:

In each of the following, p and δ are varied but $R_0 = R_0^D + \delta$ is fixed at $R_0 = 2$. The following figures show that smaller values of p (and larger values of δ) lead to more heterogeneous epidemics, even if k > 1. Hallmarks of heterogeneous transmission include:

- Greater variability in the number of secondary infections (fat tailed)
- Smaller probability of major epidemics
- Greater variability in chain sizes
- · Larger probability of observing no secondary infections and small chains that go extinct

CV offspring distribution

Probability of major outbreak

Probability of observing a transmission chain of size <=10

Mean chain size

CV chain size

