

NEUTRINO FACTORIES

Realization & Physics Potential

Why Neutrino Experiments?

- Over the last decade an incredible discovery has emerged in particle physics: Neutrinos have tiny (sub-eV) masses.
- We don't know what new beyond-the-Standard-Model physics is responsible for the tiny masses, but it's bound to be something exciting.
- The long-term goal for the neutrino program is to answer the question:

What new physics is responsible for sub-eV neutrino masses?

Which Neutrino Measurements?

- We don't know exactly what we need to do to pin down the physics responsible for neutrino masses, but there is a broad consensus that the first steps for the accelerator-based neutrino program are:
 - Measure the unknown mixing angle θ_{13} (is it non-zero)?
 - Determine the pattern of neutrino masses (mass hierarchy)
 - Find or constrain CP violation in the neutrino sector (measure or constrain the CP phase δ)
- The less clear longer-term steps may involve finding more neutrino surprises, will probably involve guidance from other experimental results (LHC, CLV, neutrinoless $\beta\beta$...), & will almost certainly involve precision neutrino parameter measurements:
 - Do any of the parameters have special values?
 - Suggestive relationships between parameters?
 - Is 3 flavor mixing the whole story?

WE NEED

NEED

CLUES

A New Type of Neutrino Beam

- A Neutrino Factory would provide a new type of neutrino beam, made from muon decays (c.f. charged pion decays for conventional neutrino beams.
- Since muons live 100 longer than charged pions, to be efficient a linear muon decay channel would have to be tens of km long, hence:

Neutrino Factory Schematic

- Proton Source
 - Beam power ≥ 4MW
 - E ≥ few GeV
 - Short bunches (≤ 3ns)
- Target, capture & decay
 - Create π^{\pm} , decay into μ^{\pm}
- Bunching & Phase Rotation
 - Capture into bunches
 - Reduce ∆E
- Cooling (cost effective but not mandatory)
 - Use Ionization Cooling to reduce transverse emittance to fit within an accelerator

Beam Properties

Well known beam flux
 & spectra (low systematic uncertainties)

- Can measure spectra for events tagged by right-sign muons, wrong-sign muons, electrons, τ^+ , τ^- , or

$$\mu^{+} \rightarrow e^{+} \nu_{e} \overline{\nu}_{\mu} \Rightarrow 50\% \nu_{e} + 50\% \overline{\nu}_{\mu}$$

$$\mu^{-} \rightarrow e^{-} \overline{\nu}_{e} \nu_{\mu} \Rightarrow 50\% \overline{\nu}_{e} + 50\% \nu_{\mu}$$

no leptons; and do all this when there are positive muons stored and when there are negative muons stored \rightarrow a wealth of information.

- Can search for $v_e \rightarrow v_\mu$ oscillations with very low backgrounds (wrong-sign muon signature)

Key Experimental Signature

- Measuring the transitions $v_e \leftrightarrow v_\mu$ is crucial for the future neutrino oscillation program.
- With a conventional neutrino beam this means measuring $\nu_{\mu} \rightarrow \nu_{e}$ oscillations, and hence ν_{e} appearance. With a NF we can measure $\nu_{e} \rightarrow \nu_{\mu}$ oscillations & hence ν_{e} appearance \rightarrow very low backgrounds

 $v_e \rightarrow v_\mu$ oscillations at a neutrino factory result in appearance of a "wrongsign" muon ... one with opposite charge to those stored in the ring:

• Backgrounds to the detection of a wrong-sign muon are expected to be at the 10⁻⁴ level \rightarrow background-free $\nu_e \rightarrow \nu_\mu$ oscillations with probabilities of $O(10^{-4})$ can be measured!

Neutrino Factory Studies

- Over the last decade a series of design studies have developed the NF concept:
 - First Generation "Feasibility":
 - Feasibility Study 1 (FNAL 2000)
 - Japanese Study 1 (2001)
 - CERN Study (2004)
 - Second Generation performance & cost-reduction:
 - Study 2 (BNL 2001): performance
 - Studies 2a & 2b (2005): cost
 - Third Generation International:
 - International Scoping Study: selected 25 GeV NF (RAL 2006) (MOST RECENT COMPLETED STUDY)
 - International Design Study: seeks to deliver a Reference Design report by ~2011 (ONGOING STUDY)
 - Low Energy NF (NEW DEVELOPMENT)

International Scoping Study Reports

ISS Physics Results: θ_{13} Sensitivity

- 10²¹ muon decays/yr
- -4 years \times 50 KT
- E = 50 GeV
- -L = 4000 km
- "Optimized" NF (left edges in plots)
 - 10²¹ muon decays/yr
 - 5 years \times 50 KT \times 2
 - E = 20 GeV
 - -L = 4000 & 7500 km

Even if θ_{13} = 0 at some high mass scale, radiative corrections are likely to make it larger than the limiting NF sensitivity

ISS Physics Results: Mass Hierarchy

If θ_{13} is small, an ~20-25 GeV Neutrino Factory provides exquisite sensitivity that goes well beyond the capability of conventional neutrino beams

What if θ_{13} Large ?

Geer, Mena, & Pascoli, Phys. Rev. D75, 093001, (2007); Bross, Ellis, Geer, Mena, & Pascoli, Phys. Rev. D77, 093012 (2008) Phys. Rev. Special Topics AB, Ankenbrandt, Bogacz, Bross, Geer, Johnstone, Neuffer, Popovic - in press

- New ideas on how to affordably magnetize a very large low Z fully active detector have opened the possibility of a low energy NF, ideal it θ_{13} is "large"
- •4 GeV NF design simulated \rightarrow 1.4 x 10^{21} useful decays/year of each sign
- •For present physics studies, assume:
 - 4.5 GeV NF
 - $\cdot 1.4 \times 10^{21}$ useful decays/year of each sign
 - ·background level of 10⁻³
 - 20KT detector (Fid. Mass)
 - ·10 year run
 - ·L = 1280 km (FNAL-Homestake)

Totally Active Scintillator Detector
15m long scintillators
triangular cross-section
(base=3cm, ht=1.5cm)
B = 0.5 T

3σ Discovery Potential

•A Low Energy NF with a FNAL - Homestake baseline has discovery sensitivity down to $\sin^2 2\theta_{13} = O(10^{-3} - 10^{-4})!$

Low Energy NF Precision

If θ_{13} is "large", a low energy NF would enable precision measurements

Low Energy NF Precision

Neutrino Factory R&D

- ·Neutrino Factory R&D pursued since 1997.
- Since, in our present designs, the Neutrino Factory and Muon Collider have common front ends (up to & including the initial cooling channel), much of the R&D is in common.
- See Bob Palmer's Muon Collider talk for proton requirements, target, bunching & phase rotation, and cooling design and R&D.
- Key experiments:

MERIT: Target demonstration - complete

MuCool: RF in mag. fields - critical, ongoing

MICE: Cooling channel systems test, ongoing

EMMA: Promising new acceleration scheme

test, in preparation

Targetry

- Need proton beam power of 4MW & short bunches (≤3ns)
- Optimum proton beam energy = 10 ± 5 GeV (ISS study) but at fixed power muon yield drops slowly with energy lose ~30% for E=120 GeV (Mokhov)
 - A 4MW target station design study was part of "Neutrino Factory Study 1" in 2000 → ORNL/TM2001/124
- Facility studied was 49m long = target hall & decay channel, shielding, solenoids, remote handling & target systems.
- Target: liquid Hg jet inside 20T solenoid, identified as one of the main Neutrino Factory challenges requiring proof-ofprinciple demonstration.

4MW Target Station Design

The MERIT Experiment at CERN

- The MERIT experiment was designed as proof-of-principle demonstration of a liquid Hg jet target in high-field solenoid.
- In Fall 2007 MERIT ran at the CERN PS and successfully demonstrated a liquid Hg jet injected into a 15T solenoid, & hit with a suitably intense beam (115 KJ / pulse!).

MERcury Intense Target

MERIT RESULTS

- Jet disrupted on a ms timescale (disruption length <28 cm ~ 2 int. lengths. The jet was observed to re-establish itself after 15ms ... before the next beam pulse arrives → rep. rate 70Hz.
- Preliminary analysis suggests this target technology is good for beams up >8 MW!

Hg jet in a 15T solenoid observed with a high-speed camera

Bunching, Phase Rotation & Cooling

- After drifting down a 57m long pion decay channel, the muons have developed a time-energy correlation. A clever arrangement of RF cavities captures the muons in bunches & then reduces their energy spread.
- An ionization cooling channel reduces trans. phase space of the muon population to fit within the accelerator acceptance.

Ionization Cooling

- Must cool fast (before muons decay)
- Muons lose energy by in material (dE/dx). Re-accelerate in longitudinal direction \rightarrow reduce transverse phase space (emittance). Coulomb scattering heats beam \rightarrow low Z absorber. Hydrogen is best, but LiH also OK for the early part of the cooling channel.

MuCool

- Developing & bench testing cooling channel components
- MuCool Test Area at end of FNAL linac is a unique facility:
 - -Liquid H2 handling
 - -RF power at 805 MHz
 - -RF power at 201 MHz
 - -5T solenoid (805 MHz fits in bore)
 - -Beam from linac (soon)

New beamline

Liq. H2 absorber

RF in Magnetic Fields

 When vac. copper cavities operate in multi Tesla co-axial mag. field, the maximum operating gradient is reduced.

- Effect is not seen in cavities filled with high pressure hydrogen gas possible solution (but needs to be tested in a beam coming soon)
- Other possible ways to mitigate effect:
 - -special surfaces (e.g. beryllium)
 - -Surface treatment (e.g. ALD)
 - Magnetic insulation

MICE

GOALS: Build a section of cooling channel capable of giving the

desired performance for a Neutrino Factory

& test in a muon beam. Measure performance in various

modes of operation.

- Multi-stage experiment.
- First stage being commissioned now.
- Anticipate final stage complete by ~2011

Acceleration

ISS Scheme

Pre-accelerator uses 201 MHz
 SCRF cavities with 17 MV/m
 (11 MV/m demonstrated at Cornell)

 Non-scaling FFAG proof-ofprinciple R&D under preparation → EMMA experiment at Daresbury

Low Energy NF

- Pre-accelerator uses 201 MHz
 SCRF cavities with 12 MV/m –
 performance still OK
- One RLA to get to 4 GeV

FINAL REMARKS

- International Scoping Study prepared the way for the next step - The International Design Study
- •The IDS aspires to deliver a NF Reference Design Report (RDR) by 2012.
- If the community wishes, after a few more years of preconstruction R&D, neutrino factory construction could begin as early as the late 2010's
- The NF & MC front-ends are, in present designs, the same ... and require a 4MW (or more) proton source providing 3ns long (or less) bunches with a rep rate of a few x 10Hz. We believe we have the target technology for this.
- Realizing a NF would mitigate many of the technical risks associated with realizing a MC

A Staged Muon Vision

