Problema 1 (2 puntos)

Un canal está caracterizado por la siguiente matriz de probabilidades de transición:

$$X \begin{bmatrix} 0 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\ 1/6 & 1/3 & 1/3 & 1/6 & 0 & 0 & 0 \end{bmatrix}$$

1) Calcula la Capacidad de Canal

Problema 2 (8 puntos)

Hace unos meses Aldous terminó la valoración confidencial de un proyecto docente. Para notificar su resultado a Simón utilizó el último mecanismo de seguridad por e-mail que tenían acordado, el cual es como sigue:

- A) Permutar el mensaje con la matriz (6 4 2 1 3 5 12 10 8 7 9 11...) y luego codificarlo con un compresor ARI de extensión variable. Para ello se fija un intervalo mínimo de compresión, igual a 0.0000024, y se aumenta un orden si el intervalo a codificar es superior o igual a este valor. Una vez encontrada la extensión, elegir un número de ese intervalo con la precisión mínima necesaria y enviarlo sin el 0 ni el punto.
- C) Tal como sucede en PGP enviar el mensaje, encriptado con un algoritmo simétrico, y concatenar la clave de sesión de ese algoritmo, encriptada de forma asimétrica. En este caso el cifrado síncrono simétrico realiza la suma módulo 10 dígito a dígito de la salida del compresor con una secuencia pseudo-aleatoria S_3 de dígitos decimales. La clave de sesión x_{30} es el número necesario para la inicialización del generador S_3 y se envía cifrado con un RSA. Para generar S_3 mezclan 2 secuencias S_1 y S_2 , de forma que un valor x_{5n} de S_3 mod p pertenece a S_1 y mod q pertenece a S_2 . El valor n-ésimo de x_{1n} de S_1 es $a_1 \cdot x_{1n-1}$ mod p y el de S_2 es $a_2 \cdot x_{2n-1}$ mod q, con n=1, p y q primos, a_1 y a_2 raíces primitivas en $a_1 \cdot a_2$ respectivamente. La secuencia $a_2 \cdot a_3$ es la concatenación de todos los a_3 generados.
 - 1) (0.5 puntos) ¿Cuál es el periodo de S_1 y S_2 ?
 - 2) (0.5 puntos) ¿Cuál es el número de inicializaciones posibles para generar S₃?
 - 3) (1 punto) ¿Cuál es el periodo de S₃?, ¿es el máximo posible?, ¿el número 1 está en S₃?

Si se ha recibido el criptograma 3897 21352824628 (clave de sesión cifrada | | mensaje cifrado):

- 4) (2 puntos) Encuentra la clave de sesión x₃₀
- 5) (0,25 puntos) ¿Cuál es la extensión mínima y máxima que permite el compresor?
- 6) (1.5 puntos) Calcula el mensaje en claro sin descomprimir
- 7) (2 puntos) Encuentra el mensaje descomprimido
- 8) (0,25 puntos) Encuentra el mensaje enviado

DATOS: En el compresor ARI los símbolos están ordenados alfabéticamente:

Xi	$p(x_i)$	F(x _i)
A	1/13	1/13=0.07692
В	1/182	15/182=0.082
С	1/182	8/91=0.08791
D	1/182	17/182=0.093
E	1/13	31/182=0.170
F	1/182	16/91=0.1758
G	1/182	33/182=0.181
Н	1/182	17/91=0.1868

I	1/13	24/91=0.2637
J	1/182	7/26=0.26923
K	1/182	25/91=0.2747
L	1/182	51/182=0.280
M	1/182	2/7=0.285714
N	1/182	53/182=0.291
О	1/13	67/182=0.368
P	1/182	34/91=0.3736
Q	1/182	69/182=0.379

R	1/182	5/13=0.3846
S	1/13	6/13=0.4615
T	1/13	7/13=0.5384
U	1/13	8/13=0,6153
V	1/13	9/13=0.6923
W	1/13	10/13=0.769
X	1/13	11/13=0.846
Y	1/13	12/13=0.923
Z	1/13	1

 $RSA: e = 9301963, \, p = 4591 \,\, y \,\, q = 6229, \, n = pq, \, ?(n) = mcm(p-1,q-1) = 1588140$

 $S_1 y S_2$: p=4591 y q=6229, a_1 =4136 y a_2 =3787

Las secuencias de salida del compresor y del generador siempre comienzan por el dígito de mayor peso Para el apartado 7) utilizar el mensaje **46945026419** si no se encontró el del apartado 6)