CDF of a sample F(x)Discrete adiabatic evolutions $\,U_i\,$ $\hat{F}(x)
ightarrow |\psi(au)
angle = \prod^{\longleftarrow} U_j |\psi_0
angle$ At this point, any time can called! $\mathcal{C}(au)
ightarrow \mathcal{C}_R = R_z[heta_3(au)] R_x[heta_2(au)] R_z[heta_1(au)]$ $|\psi(au)
angle = \mathcal{C}(au)|\psi_0
angle$ Rotations as functions of the time $\mathrm{d} au o 0$ limit $\hat{
ho}(x) = rac{\mathrm{d}\hat{F}(x)}{\mathrm{d}x} = \sum_{i=1}^3 rac{\partial\hat{F}}{\partial heta_i} rac{\partial heta_i}{\partial au}$ derivative of \mathcal{C}_R PDF of the sample $\rho(x)$