# Control architectures for co-operative control of mobile robots

Adwait Datar

PhD Workshop, 2020 Technical University of Hamburg

16<sup>th</sup> Oct,2020

### **Motivating Scenarios**

#### Fukushima Disaster (2011)



#### Truck Platoon Competition (2016)





**EADS Astrium** 



Dyson Swarm (Why not !)

## Abstracting to a Mathematical Problem

#### **Problem Statement:**

Design distributed control algorithms for large networks of mobile robots such that the group shows a desirable behavior.

- Desirable behaviors we consider:
  - Consensus and/or Formation stabilization
  - ► Flocking with/without source seeking
- Complexity in solving the problem can stem through:
  - Complicated dynamics of individual agents
  - Commplicated Interconnection structure and intractible design algorithms for large networks

## Approaching the problem: Divide and Conquer

#### Available literature on

- Control of single complex agent dynamics (e.g LPV, control of differetially flat systems, dynamic inversion)
- Distributed control of large networks of "simple" agent dynamics (e.g single and double intergrators) -> Consensus and Flocking algorithms

#### Consider as building blocks

- ► Closed-loop system  $G_{cl}$  with some guaranteed performance measure such as the induced  $\mathcal{L}_2 \mathcal{L}_2$  or  $\mathcal{L}_2 \mathcal{L}_\infty$  norms
- Consensus or Flocking algorithms for "simple" systems

# Consensus/ Formation with a decoupled architecture: "Small" disturbances and "good" tracking



- ▶ Can bound the  $||q y||_{\mathcal{L}_{\infty}}$  to get an idea about how far the true trajectories given a bound on the disturbance
- ▶ C. Hespe, A. Datar, and H. Werner, "Distributed control of mobile lti and lpv agents using induced  $\mathcal{L}_2$  to  $\mathcal{L}_{\infty}$  norms."
- Discrete-time, positive systems theory-> ACC Submission

# Flocking with a decoupled architecture: "slow" flocking and "good" tracking



- Experimental work: Datar, Adwait, Paulsen, Peter and Werner, Herbert (2020): Flocking Towards the Source: Indoor Experiments with Quadrotors. In 2020 European Control Conference (ECC) (pp. 1638-1643).
- ► Local Velocity Controller
- ► No Analysis yet

# Consensus with a Coupled architecture



- Can show stability (boundedness without assymptotic stability)
- ▶ Input output stability via a small-gain argument (Hespe's M. Thesis)
- Singular perturbation theory with a time-scale separation to prove assymptotic stability

# Flocking with a Coupled architecture



- Attallah, Aly and Datar, Adwait and Werner, Herbert (2020): Flocking of Linear Parameter Varying Agents: Source Seeking Application with Underwater Vehicles. In 21st IFAC World Congress
- No assymptotic stability yet

# A more heuristic and practical architecture



- ► Heuristic: Works well in Simulation
- ▶ No analysis yet

# Another commonly observed architecture



- ► Lot of literature on Stability Analysis for LTI systems
- Some of our past literature on Stability Analysis for LPV systems
- Some recent work on Passivity based analysis by Mark Spong and others

# Thank you