Dynafit

欧阳兴宇 516080910006

1.整理数据

首先对 MCR-ALS 输出的数据 copt 进行整理。时间为 0-289.5s,每 0.5s 一个记录,生成物浓度为 copt 的第二列。将 仅含时间和浓度的两列数据整合到一个表中,三个平行试验分开。R 语言代码如下。

```
copt<-read.table("F:/ComputationalBiochemistry/dynafit/copt.txt",header = F)</pre>
    copt<-data.frame(copt)
    time < -seq(0,298.5,0.5)
    react1<-data.frame(cbind(time,copt[1:598,1]))
    react2<-data.frame(cbind(time,copt[599:1196,1]))
    react3<-data.frame(cbind(time,copt[1197:1794,1)))
write.table(react1,"F:/ComputationalBiochemistry/dynafit/react1.csv",
 8
                 row.names = F,col.names=F,sep ="
    write.table(react2, "F:/ComputationalBiochemistry/dynafit/react2.csv",
 9
    row.names = F,col.names=F,sep =",")
write.table(react3,"F:/ComputationalBiochemistry/dynafit/react3.csv",
10
11
12
               row.names = F,col.names=F,sep ="
13
    product1<-data.frame(cbind(time,copt[1:598,2]))</pre>
    product2<-data.frame(cbind(time,copt[599:1196,2]))</pre>
15
    product3<-data.frame(cbind(time,copt[1197:1794,2]))</pre>
16
    write.table(product1, "F:/ComputationalBiochemistry/dynafit/product1.csv",
17
                 row.names = F,col.names=F,sep ="
   write.table(product2, "F:/ComputationalBiochemistry/dynafit/product2.csv",
18
19
                 row.names = F,col.names=F,sep =",
    write.table(product3, "F:/ComputationalBiochemistry/dynafit/product3.csv",
20
21
                 row.names = F,col.names=F,sep =",")
22
23
    copt_t<-read.table("F:/ComputationalBiochemistry/dynafit/copt_t.txt",header = F)
24
    copt_t<-data.frame(copt_t)</pre>
25
    time<-seq(0,298.5,0.5)
26
    react_t1<-data.frame(cbind(time,copt_t[1:598,1]))
27
    react_t2<-data.frame(cbind(time,copt_t[599:1196,1]))
28
    react_t3<-data.frame(cbind(time,copt_t[1197:1794,1]))
    write.table(react_t1, "F:/ComputationalBiochemistry/dynafit/react_t1.csv",
29
30
                 row.names = F,col.names=F,sep =
    write.table(react_t2, "F:/ComputationalBiochemistry/dynafit/react_t2.csv",
31
                 row.names = F,col.names=F,sep =",
32
    write.table(react_t3, "F:/ComputationalBiochemistry/dynafit/react_t3.csv",
33
                 row.names = F,col.names=F,sep =
34
    product_t1<-data.frame(cbind(time,copt_t[1:598,2],copt_t[1:598,3]))</pre>
35
36
    product_t2<-data.frame(cbind(time,copt_t[599:1196,3]</pre>
37
    product_t3<-data.frame(cbind(time,copt_t[1197:1794,3]))</pre>
38
    write.table(product_t1,"F:/ComputationalBiochemistry/dynafit/product_t1.csv",
39
                  row.names = F,col.names=F,sep =
40
    write.table(product_t2,"F:/ComputationalBiochemistry/dynafit/product_t2.csv",
41
                  row.names = F,col.names=F,sep ="
    write.table(product_t3,"F:/ComputationalBiochemistry/dynafit/product_t3.csv",
42
43
                  row.names = F,col.names=F,sep =
```

2.漆酶+底物体系(LAC SUB)

对 Laccase + Substance 体系用以下模型通过 dynafit 进行拟合。结果得到三次平行实验的初始反应速率 0.0406341, 0.0402161, 0.0435739,求平均值得到 Initial reaction rate= $0.0414747~\mu$ M / s = $2.488482~\mu$ M / min。

从参数优化结果来看,第一、三次平行实验的优化参数标标准误较大,因此认为第二次的参数更符合实际结果,得到 k1+=3.3; k1-=9.5; k2+=0.348; r=0.0246。

Mode1

Mechanism

 $E + S \Rightarrow E.S : k_{1+,S} k_{1-,S}$ $E.S \Rightarrow E + P : k_{2+,P}$

Model equation

The fitting function (model equation) for each individual data set is

$$S(t) = S_0 + \sum_{i=1}^{n} r_i c_i(t)$$

where

 $S\left(t\right)$ the experimental signal observed at time t

So offset on the signal axis (a property of the instrument)

 $_{\it D}$ $\,$ number of unique molecular species participating in the reaction mechanism

 $c_{i}\left(\mathit{t}\right)$ the concentration of the $\mathit{i}\text{th}$ species at time t

 $r_{\rm i}$ the molar response coefficient of the ith species

In this case, $n\!=\!4$. The molecular species participating in the mechanism are: E, S, E.S, P. The concentrations of these molecular species at time tare computed from their initial concentrations (at time zero, t

= 0) by solving an initial-value problem defined by a system of simultaneous first-order Ordinary Differential Equations (ODEs) listed below.

Welcome to DynaFit. Please complete the script template be To get started, choose menu Help :: Getting Started.

```
[task]
  task = fit
  data = progress discontinuous
[mechanism]
  E + S <===> E. S
                            k1+. S
  E. S ----> E + P
                           k2+. P
[constants]
  k1+.S = 1 ?
  k1-. S = 0.01 ?
  k2+.P = 1 ?
[concentrations]
  S = 47
  E = 0.5
[responses]
  P = 10 ?
[data]
               F:/Computational Biochemistry/dynafit
  directory
               product1.csv
  sheet
  column
               auto ?
  offset
[output]
  directory
               F:/ComputationalBiochemistry/dynafit/output
settings]
{Output}
  XAxisLabel = time, sec
  YAxisLabel = product, %
[end]
```

ODE system

Initial value problem: Given the concentrations of molecular species at t=0, compute the concentrations at an arbitrary later time $t \geq 0$ by solving the following system of ODEs. The solution is obtained by numerical integration.

平行实验一

Data and model

Derivatives (reaction rates)

Initial reaction rates

No. Dataset Time Rate
1 F:/ComputationalBiochemistry/dynafit/product1.csv:co1(2) 1 0.0406341

Parameters

Trust Region Algorithm

Optimized Parameters

No.	Par#Set	Initial	Fina1	Std. Error	CA (%)	Note
#1	k1+. S	1	15000	1.4e+008	901089.4	
#2	k1 S	0.01	1.3e-008	0.00045	3458950. 2	
#3	k2+.P	1	0.3824	0.0061	1.6	
#4	r(P)	10	0. 2125	0.0021	1.0	
#5	offset#1	3. 53082	0.714	0. 07	9.8	

平行实验二

Data and model

Derivatives (reaction rates)

Initial reaction rates

No. Dataset Time Rate
1 F:/ComputationalBiochemistry/dynafit/product2.csv:co1(2) 1 0.0402161

Parameters

Trust Region Algorithm

No.	Par#Set	Initia1	Fina1	Std. Error	CV (%)	Note
#1	k1+. S	1	3. 3	1300	40683.1	
#2	k1 S	0.01	9. 5	4000	42331.0	
#3	k2+. P	1	0.348	0. 039	11. 1	
#4	r(P)	10	0.246	0.039	15.8	
#5	offset#1	2. 75703	0.36	0.13	35. 7	

Derivatives (reaction rates)

Initial reaction rates

No. Dataset Time Rate
1 F:/ComputationalBiochemistry/dynafit/product3.csv:co1(2) 1 0.0435739

Parameters

Trust Region Algorithm

Optimized Parameters

No.	Par#Set	Initial	Final	Std. Error	CA (%)	Note
#1	k1+. S	1	8.8	59000	668967.2	
#2	k1 S	0.01	0. 79	200000	24877995.8	
#3	k2+.P	1	0.01	2300	23308981.5	
#4	r(P)	10	8. 7	2e+006	23042252. 0	
#5	offset#1	1.39777	-1.2	0. 76	63. 0	

3.漆酶+介体 TEMPO+底物体系(LAC_TEMPO_SUB)(model 1)

对 Laccase + TEMPO + Substance 体系用以下模型通过 dynafit 进行拟合。结果得到三次平行实验的初始反应速率 0.0645759,0.0816004,0.0932676,求平均值得到 Initial reaction rate=0.07981463 μ M / s =4.788878 μ M / min。 从参数优化结果来看,第一次平行实验的优化参数标标准误最小,因此认为第一次的参数更符合实际结果,得到 k1+=0.00073; k1-=0.00042; k2+=2.8; k3+=0.57; k4+=1e-008; k4-=0.002; k5+=1.1; r=4.8。

Mode1

Mechanism

Model equation

The fitting function (model equation) for each individual data set is

$$S(t) = S_0 + \sum_{i=1}^{n} r_i c_i(t)$$

where

 $S\left(t
ight)$ the experimental signal observed at time t

 S_0 offset on the signal axis (a property of the instrument)

 $_{\it II}$ $\,$ number of unique molecular species participating in the reaction mechanism

 $c_{\mathrm{i}}\left(t
ight)$ the concentration of the ith species at time t

 $r_{
m i}$ the molar response coefficient of the ith species

In this case, $n\!=\!7$. The molecular species participating in the mechanism are: E, S, E.S, P, M, E.M, M*. The concentrations of these molecular species at time tare computed from their initial concentrations (at time zero, t

= 0) by solving an initial-value problem defined by a system of simultaneous first-order Ordinary Differential Equations (ODEs) listed below.

ODE system

Initial value problem: Given the concentrations of molecular species at t=0, compute the concentrations at an arbitrary later time t>0 by solving the following system of ODEs. The solution is obtained by numerical integration.

```
\begin{split} \mathrm{d}[\mathbb{E}]/\mathrm{d}t &= -k_{1+,S}[\mathbb{E}][S] + k_{1-,S}[\mathbb{E},S] + k_{2+,P}[\mathbb{E},S] - k_{3+,M}[\mathbb{E}][\mathbb{M}] + k_{3-,M}[\mathbb{E},\mathbb{M}] + k_{4+,M+}[\mathbb{E},\mathbb{M}] \\ \mathrm{d}[\mathbb{S}]/\mathrm{d}t &= -k_{1+,S}[\mathbb{E}][S] + k_{1-,S}[\mathbb{E},S] - k_{5+,P}[\mathbb{M}^*][S] \\ \mathrm{d}[\mathbb{E},S]/\mathrm{d}t &= +k_{1+,S}[\mathbb{E}][S] - k_{1-,S}[\mathbb{E},S] - k_{2+,P}[\mathbb{E},S] \\ \mathrm{d}[\mathbb{P}]/\mathrm{d}t &= +k_{2+,P}[\mathbb{E},S] + k_{5+,P}[\mathbb{M}^*][S] \\ \mathrm{d}[\mathbb{M}]/\mathrm{d}t &= -k_{3+,M}[\mathbb{E}][\mathbb{M}] + k_{3-,M}[\mathbb{E},\mathbb{M}] + k_{5+,P}[\mathbb{M}^*][S] \\ \mathrm{d}[\mathbb{E},\mathbb{M}]/\mathrm{d}t &= +k_{3+,M}[\mathbb{E}][\mathbb{M}] - k_{3-,M}[\mathbb{E},\mathbb{M}] - k_{4+,M*}[\mathbb{E},\mathbb{M}] \\ \mathrm{d}[\mathbb{M}^*]/\mathrm{d}t &= +k_{4+,M*}[\mathbb{E},\mathbb{M}] - k_{5+,P}[\mathbb{M}^*][S] \end{split}
```

Welcome to DynaFit. Please complete the script template be To get started, choose menu Help :: Getting Started.

```
[task]
   task = fit
   data = progress discontinuous
[mechanism]
   E + S <===> E. S
                              k1+. S
                                      k1-. S
   E. S ----> E + P
                              k2+. P
   E + M <===> E.M
                              k3+. M
   E. M ----> E + M*
                              k4+. M*
   M* + S ---
              --> M + P
[constants]
   k1+. S = 1 ?
k1-. S = 0. 01 ?
   k2+. P = 1 ?
k3+. M = 1 ?
   k3-.M = 0.01 ?
   k4+. M* = 1 ?
   k5+.P = 1?
[concentrations] ; nM
   S = 47
E = 0.5
   M = 0.5
[responses]
P = 15 ? [data]
   directory
                F:/ComputationalBiochemistry/dynafit
   sheet
                product_t1.csv
   column
   offset
                auto ?
[output]
   directory
                F:/Computational Biochemistry/dynafit/output
[settings]
{Output}
   XAxisLabel = time, sec
   YAxisLabel = product, %
[end]
```

平行实验一

Data and model

Derivatives (reaction rates)

Initial reaction rates

No. Dataset Time Rate

1 F:/ComputationalBiochemistry/dynafit/product_t1.csv:co1(2) 1 0.0645759

Parameters

Trust Region Algorithm

Optimized Parameters

No.	Par#Set	Initial	Final	Std. Error	CV (%)	Note
#1	k1+. S	1	0.00073	0.0058	791.5	
#2	k1 S	0.01	0.00042	0. 33	78369. 5	
#3	k2+.P	1	2.8	23	831.6	
#4	k3+. M	1	0. 57	1. 4	245. 7	
#5	k3M	0.01	1e-008	1.6e-006	16038.3	
#6	k4+. M≭	1	0.002	0.01	501.6	
#7	k5+.P	1	1. 1	540	49319.4	
#8	r(P)	15	4.8	41	858. 4	
#9	offset#1	1.79074	2. 78	0.13	4.8	

平行实验二

Data and model

Derivatives (reaction rates)

Initial reaction rates

No. Dataset Time Rate $1 \quad \text{F:/ComputationalBiochemistry/dynafit/product_t2.csv:col(2)} \quad 1 \quad 0.0816004$

Parameters

Trust Region Algorithm

No.	Par#Set	Initial	Final	Std. Error	CV (%)	Note
#1	k1+. S	1	0.86	77	8900. 5	
#2	k1 S	0.01	2.6	110	4147.0	
#3	k2+.P	1	0.016	1. 1	6995. 9	
#4	k3+. M	1	4. 1	430	10481.4	
#5	k3 M	0. 01	0.0022	0.005	225. 1	
#6	k4+. M*	1	3.1e-006	0.0012	40258.0	
#7	k5+.P	1	1	310	30853.7	
#8	r(P)	15	13	900	6913.0	
#9	offset#1	1. 14014	1. 7	0.14	8. 0	

平行实验三

Derivatives (reaction rates)

Initial reaction rates

No. Dataset Time Rate 1 F:/ComputationalBiochemistry/dynafit/product_t3.csv:co1(2) 1 0.0932676

Parameters

Trust Region Algorithm

Optimized Parameters

No.	Par#Set	Initial	Final	Std. Error	CV (%)	Note
#1	k1+. S	1	0.49	150	30941.2	
#2	k1 S	0.01	1e-008	2.1e-005	207942.4	
#3	k2+.P	1	0.001	0.029	2878.0	
#4	k3+.M	1	11	3500	31651.8	
#5	k3 M	0.01	0.004	2. 4	59363. 9	
#6	k4+. M*	1	0.063	2. 3	3657.1	
#7	k5+.P	1	1	540	54208.1	
#8	r(P)	15	16	570	3558.8	
#9	offset#1	0	0.1	0.12	120. 7	

4.漆酶+介体 TEMPO+底物体系(LAC_TEMPO_SUB)(model 2)

对 Laccase + TEMPO + Substance 体系用以下模型通过 dynafit 进行拟合。结果得到三次平行实验的初始反应速率 0.018622, 0.0195482, 0.0221405, 求平均值得到 Initial reaction rate=0.02010357 μM / s =1.206214 μM / min。

从参数优化结果来看,第二次平行实验的优化参数标标准误最小,因此认为第二次的参数更符合实际结果,得到 k1+=12; k1-=1.6e-008; k2+=9.6; k3+=0.0063; r=0.145.

已知介体能一定程度提升漆酶活性,因此 Laccase + TEMPO + Substance 体系反应速率应比 Laccase + Substance 体系 反应速率快,可推断 Laccase + TEMPO + Substance 的 model1 更符合理想结果。

Mode1

Mechanism

 $E + M \Rightarrow E.M : k_{1+,M} k_{1-,M}$ $E. M \rightarrow E + M* : k_{2+.M*}$ $M* + S \rightarrow M + P : k_{3+,P}$

Model equation

The fitting function (model equation) for each individual data set is

$$S(t) = S_0 + \sum_{i=1}^{n} r_i c_i(t)$$

where

S(t)the experimental signal observed at time t

offset on the signal axis (a property of the instrument)

number of unique molecular species participating in the $_{B}$ reaction mechanism

 $c_i(t)$ the concentration of the ith species at time t

the molar response coefficient of the ith species r_i

In this case, $n\!=\!6$. The molecular species participating in the mechanism are: E, M, E.M, M*, S, P. The concentrations of these molecular species at time tare computed from their initial concentrations (at time zero, t

= 0) by solving an initial-value problem defined by a system of simultaneous first-order Ordinary Differential Equations (ODEs) listed below.

Welcome to DynaFit. Please complete the script template be To get started, choose menu Help :: Getting Started.

```
[task]
   task = fit
data = progress discontinuous
[mechanism]
   E + M <===> E. M
                              k1+. M k1-. M
   E + M <===> E.M : k1+.M

E.M ----> E + M* : k2+.M*

M* + S ----> M + P : k3+.I
                                 k3+. P
[constants]
   k1+.M = 1 ?
   k1-.M = 0.01 ?
   k2+. M* = 1 ?
   k3+.P = 1 ?
[concentrations] ; nM
   S = 47
   E = 0.5
   M = 0.5
[responses]
  P = 15 ?
[data]
                 F:/ComputationalBiochemistry/dynafit
   directory
                 product_t1.csv
   sheet
   column
  offset
                 auto ?
[output]
   directory
                F:/ComputationalBiochemistry/dynafit/output
[settings]
{Output}
   XAxisLabel = time, sec
   YAxisLabel = product,%
end
```

ODE system

Initial value problem: Given the concentrations of molecular species at $t=\theta$, compute the concentrations at an arbitrary later time $t \ge$ by solving the following system of ODEs. The solution is obtained by numerical integration.

```
= - k_{1+.M}[E][M] + k_{1-.M}[E.M] + k_{2+.M*}[E.M]
d[E]/dt
\texttt{d[M]}/\texttt{d}t = -k_{1+,M}[\texttt{E}][\texttt{M}] + k_{1-,M}[\texttt{E},\texttt{M}] + k_{3+,P}[\texttt{M}*][\texttt{S}]
d[E. M]/dt = + k_{1+.M}[E][M] - k_{1-.M}[E. M] - k_{2+.M*}[E. M]
d[M*]/dt = + k_{2+,M*}[E.M] - k_{3+,P}[M*][S]
d[S]/dt = -k_{3+,P}[M*][S]
d[P]/dt = + k_{3+P}[M*][S]
```

平行实验一

Data and model

Derivatives (reaction rates)

Initial reaction rates

No. Dataset Time Rate

F:/ComputationalBiochemistry/dynafit/product_t1.csv:co1(2) 1

Parameters

Trust Region Algorithm

Optimized Parameters

No.	Par#Set	Initial	Final	Std. Error	CV (%) Note
#1	k1+. M	1	630	9.8e+006	1550534. 8
#2	k1 M	0.01	0.0002	34000	16984455116.8
#3	k2+.M≭	1	500	1.2e+007	2420547. 2
#4	k3+.P	1	0.0068	0.0041	60. 7
#5	r(P)	15	0.117	0.023	19. 9
#6	offset#1	1.79074	2.81	0. 15	5. 3

平行实验二

Data and model

Derivatives (reaction rates)

Initial reaction rates

No. Dataset Time Rate

1 F:/ComputationalBiochemistry/dynafit/product_t2.csv:col(2) 1 0.0195482

Parameters

Trust Region Algorithm

No.	Par#Set	Initial	Final	Std. Error	CA (%)	Note
#1	k1+. M	1	12	4300	35567. 0	
#2	k1 M	0.01	1.6e-008	2	12811791104.0	
#3	k2+.M≭	1	9. 6	5100	52612. 1	
#4	k3+.P	1	0.0063	0.0079	125. 3	
#5	r(P)	15	0. 145	0.061	42. 1	
#6	offset#1	1.14014	2. 23	0. 17	7. 7	

$Data\ and\ model$

Derivatives (reaction rates)

Initial reaction rates

No. Dataset Time Rate
1 F:/ComputationalBiochemistry/dynafit/product_t3.csv:co1(2) 1 0.0221405

Parameters

Trust Region Algorithm

No.	Par#Set	Initial	Final	Std. Error	CA (%)	Note
#1	k1+. M	1	2300	1.2e+008	5285979. 6	
#2	k1 M	0.01	0.00016	47000	29110485758.5	
#3	k2+.M≭	1	1900	1.5e+008	7966478. 1	
#4	k3+.P	1	0.009	0.0043	47.3	
#5	r(P)	15	0. 105	0.013	12.3	
#6	offset#1	0	0.89	0. 15	17. 3	