第二章 随机变量与分布

第五节

常用连续分布

Overview

- 1 常用连续分布
- ② 正态分布
- ③ 均匀分布
- 4 指数分布
- ⑤ 伽玛分布
- 6 贝塔分布
- 常用连续分布的数学期望
- 8 常用连续分布的方差

常用连续分布

常用连续分布都有哪些?

常用连续分布

常用连续分布都有哪些?

正态分布、均匀分布、指数分布、伽玛分布、贝塔分布

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$$
 $-\infty < x < \infty$,

$$p(x) = rac{1}{\sqrt{2\pi}\sigma} \exp\{-rac{(x-\mu)^2}{2\sigma^2}\}$$
 $-\infty < x < \infty$, 称 X 服从正态分布,

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$$
 $-\infty < x < \infty$, 称 X 服从正态分布,称 X 为正态变量,

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$$
 $-\infty < x < \infty$, 称 X 服从正态分布,称 X 为正态变量,记为 $X \sim N(\mu, \sigma^2)$,

$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$$
 $-\infty < x < \infty$, 称 X 服从正态分布,称 X 为正态变量,记为 $X \sim N(\mu, \sigma^2)$, 其中 $\sigma > 0$, $-\infty < \mu < \infty$

正态分布的密度函数

$$p(x)=rac{1}{\sqrt{2\pi}\sigma}\exp\{-rac{(x-\mu)^2}{2\sigma^2}\}$$
 $-\infty < x < \infty$, 称 X 服从正态分布,称 X 为正态变量,记为 $X \sim N(\mu,\sigma^2)$, 其中 $\sigma > 0$, $-\infty < \mu < \infty$

正态分布的分布函数

$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} \exp\{-\frac{(t-\mu)^2}{2\sigma^2}\} dt$$

正态分布的密度函数

$$p(x)=rac{1}{\sqrt{2\pi}\sigma}\exp\{-rac{(x-\mu)^2}{2\sigma^2}\}$$
 $-\infty < x < \infty$, 称 X 服从正态分布,称 X 为正态变量,记为 $X \sim N(\mu,\sigma^2)$, 其中 $\sigma > 0$, $-\infty < \mu < \infty$

正态分布的分布函数

$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} \exp\{-\frac{(t-\mu)^2}{2\sigma^2}\} dt$$

注意

正态分布的密度函数

$$p(x)=rac{1}{\sqrt{2\pi}\sigma}\exp\{-rac{(x-\mu)^2}{2\sigma^2}\}$$
 $-\infty < x < \infty$, 称 X 服从正态分布,称 X 为正态变量,记为 $X \sim N(\mu,\sigma^2)$, 其中 $\sigma > 0$, $-\infty < \mu < \infty$

正态分布的分布函数

$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} \exp\{-\frac{(t-\mu)^2}{2\sigma^2}\} dt$$

注意

- μ 是位置参数
- σ是尺度参数

Figure: $X \sim N(\mu, \sigma^2)$

Figure: 正态分布的性质

正态分布的性质

Figure: 正态分布的性质

● p(x) 关于 µ 是对称的.

正态分布的性质

Figure: 正态分布的性质

① p(x) 关于 μ 是对称的.在 μ 点 p(x) 取得最大值.

Figure: 正态分布的性质

- **●** *p*(*x*) 关于 *µ* 是对称的.在 *µ* 点 *p*(*x*) 取得最大值.
- ② 若 σ 固定, μ 改变,

Figure: 正态分布的性质

- **●** *p*(*x*) 关于 *μ* 是对称的.在 *μ* 点 *p*(*x*) 取得最大值.
- ② 若 σ 固定, μ 改变, 则 p(x) 左右移动, 形状保持不变.

Figure: 正态分布的性质

- **●** *p*(*x*) 关于 *μ* 是对称的.在 *μ* 点 *p*(*x*) 取得最大值.
- ② 若 σ 固定, μ 改变, 则 p(x) 左右移动, 形状保持不变.
- ◎ 若μ固定,σ改变,

Figure: 正态分布的性质

- p(x) 关于 μ 是对称的.在 μ 点 p(x) 取得最大值.
- ② 若 σ 固定, μ 改变, 则 p(x) 左右移动, 形状保持不变.
- ③ 若μ固定,σ改变,则σ越大曲线越平坦(矮胖),

Figure: 正态分布的性质

- p(x) 关于 μ 是对称的.在 μ 点 p(x) 取得最大值.
- ② 若 σ 固定, μ 改变, 则 p(x) 左右移动, 形状保持不变.
- ⑤ 若 μ 固定, σ 改变, 则 σ 越大曲线越平坦(矮胖), σ 越小曲线越陡峭(高瘦)

特例:

特例:标准正态分布 N(0,1)

特例:标准正态分布 N(0,1)

特例:标准正态分布 N(0,1)

•
$$\Phi(0) = \frac{1}{2}$$

特例:标准正态分布 N(0,1)

- $\Phi(0) = \frac{1}{2}$
- $\Phi(-x) = 1 \Phi(x)$

特例: 标准正态分布 N(0,1)

- $\Phi(0) = \frac{1}{2}$
- $\Phi(-x) = 1 \Phi(x)$

Figure: 标准正态分布

 $\Phi(x)$ 的计算

$\Phi(x)$ 的计算

① $x \ge 0$ 时, 查标准正态分布函数表 (附表 2 给出了 $\Phi(x)$ 的值 $(0 \le x)$)

$\Phi(x)$ 的计算

- ① $x \ge 0$ 时, 查标准正态分布函数表 (附表 2 给出了 $\Phi(x)$ 的值 $(0 \le x)$)
- ② x < 0 时, 查标准正态分布函数表, 用 $\Phi(-x) = 1 \Phi(x)$

$\Phi(x)$ 的计算

- $x \ge 0$ 时, 查标准正态分布函数表 (附表 2 给出了 $\Phi(x)$ 的值 $(0 \le x)$)
- ② x < 0 时, 查标准正态分布函数表, 用 $\Phi(-x) = 1 \Phi(x)$

若 $X \sim N(0,1)$, 则

$\Phi(x)$ 的计算

- $x \ge 0$ 时, 查标准正态分布函数表 (附表 2 给出了 $\Phi(x)$ 的值 $(0 \le x)$)
- ② x < 0 时, 查标准正态分布函数表, 用 $\Phi(-x) = 1 \Phi(x)$

若
$$X \sim N(0,1)$$
, 则

1 $P(X \le a) =$

$\Phi(x)$ 的计算

- $x \ge 0$ 时, 查标准正态分布函数表 (附表 2 给出了 $\Phi(x)$ 的值 $(0 \le x)$)
- ② x < 0 时, 查标准正态分布函数表, 用 $\Phi(-x) = 1 \Phi(x)$

若
$$X \sim N(0,1)$$
, 则

$\Phi(x)$ 的计算

- $x \ge 0$ 时, 查标准正态分布函数表 (附表 2 给出了 $\Phi(x)$ 的值 $(0 \le x)$)
- ② x < 0 时, 查标准正态分布函数表, 用 $\Phi(-x) = 1 \Phi(x)$

- $P(X \le a) = \Phi(a)$
- ② P(X > a) =

$\Phi(x)$ 的计算

- $x \ge 0$ 时, 查标准正态分布函数表 (附表 2 给出了 $\Phi(x)$ 的值 $(0 \le x)$)
- ② x < 0 时, 查标准正态分布函数表, 用 $\Phi(-x) = 1 \Phi(x)$

- $P(X \le a) = \Phi(a)$
- ② $P(X > a) = 1 \Phi(a)$

$\Phi(x)$ 的计算

- $x \ge 0$ 时, 查标准正态分布函数表 (附表 2 给出了 $\Phi(x)$ 的值 $(0 \le x)$)
- ② x < 0 时, 查标准正态分布函数表, 用 $\Phi(-x) = 1 \Phi(x)$

- **2** $P(X > a) = 1 \Phi(a)$
- P(a < X < b) =

$\Phi(x)$ 的计算

- $x \ge 0$ 时, 查标准正态分布函数表 (附表 2 给出了 $\Phi(x)$ 的值 $(0 \le x)$)
- ② x < 0 时, 查标准正态分布函数表, 用 $\Phi(-x) = 1 \Phi(x)$

- **2** $P(X > a) = 1 \Phi(a)$
- **9** $P(a < X < b) = \Phi(b) \Phi(a)$

$\Phi(x)$ 的计算

- $x \ge 0$ 时, 查标准正态分布函数表 (附表 2 给出了 $\Phi(x)$ 的值 $(0 \le x)$)
- ② x < 0 时, 查标准正态分布函数表, 用 $\Phi(-x) = 1 \Phi(x)$

- $P(X \le a) = \Phi(a)$
- **2** $P(X > a) = 1 \Phi(a)$
- **3** $P(a < X < b) = \Phi(b) \Phi(a)$
- ◆ 若 a ≥ 0, 则

$\Phi(x)$ 的计算

- $x \ge 0$ 时, 查标准正态分布函数表 (附表 2 给出了 $\Phi(x)$ 的值 $(0 \le x)$)
- ② x < 0 时, 查标准正态分布函数表, 用 $\Phi(-x) = 1 \Phi(x)$

- **2** $P(X > a) = 1 \Phi(a)$
- **3** $P(a < X < b) = \Phi(b) \Phi(a)$

$\Phi(x)$ 的计算

- $x \ge 0$ 时, 查标准正态分布函数表 (附表 2 给出了 $\Phi(x)$ 的值 $(0 \le x)$)
- ② x < 0 时, 查标准正态分布函数表, 用 $\Phi(-x) = 1 \Phi(x)$

- **2** $P(X > a) = 1 \Phi(a)$
- **3** $P(a < X < b) = \Phi(b) \Phi(a)$
- **③** 若 $a \ge 0$, 则 $P(|X| < a) = 2\Phi(a) 1$

$\Phi(x)$ 的计算

- $x \ge 0$ 时, 查标准正态分布函数表 (附表 2 给出了 $\Phi(x)$ 的值 $(0 \le x)$)
- ② x < 0 时, 查标准正态分布函数表, 用 $\Phi(-x) = 1 \Phi(x)$

- **2** $P(X > a) = 1 \Phi(a)$
- **3** $P(a < X < b) = \Phi(b) \Phi(a)$
- 若 $a \ge 0$, 则 $P(|X| < a) = 2\Phi(a) 1$ $P(|X| < a) = P(-a < X < a) = \Phi(a) \Phi(-a)$ $= \Phi(a) [1 \Phi(a)] = 2\Phi(a) 1$

例 2.5.1

设 $X \sim N(0,1)$, 求 P(X > -1.96), P(|X| < 1.96)

例 2.5.2

设
$$X \sim N(0,1)$$
, $P(X \le b) = 0.9515$
 $P(X \le a) = 0.04947$, 求 a, b

定理 2.5.1 一般正态分布的标准化

设
$$X \sim N(\mu, \sigma^2)$$
, $Y = \frac{X-\mu}{\sigma}$, 则

定理 2.5.1 一般正态分布的标准化

设
$$X \sim N(\mu, \sigma^2)$$
, $Y = \frac{X-\mu}{\sigma}$, 则 $Y \sim N(0, 1)$.

定理 2.5.1 一般正态分布的标准化

设
$$X \sim N(\mu, \sigma^2)$$
, $Y = \frac{X - \mu}{\sigma}$, 则 $Y \sim N(0, 1)$.

推论:

① 若 $X \sim N(\mu, \sigma^2)$ 则

定理 2.5.1 一般正态分布的标准化

设
$$X \sim N(\mu, \sigma^2)$$
, $Y = \frac{X-\mu}{\sigma}$, 则 $Y \sim N(0, 1)$.

① 若
$$X \sim N(\mu, \sigma^2)$$
 则 $F(x) = \Phi(\frac{x-\mu}{\sigma})$

定理 2.5.1 一般正态分布的标准化

设
$$X \sim N(\mu, \sigma^2)$$
, $Y = \frac{X - \mu}{\sigma}$, 则 $Y \sim N(0, 1)$.

- **①** 若 $X \sim N(\mu, \sigma^2)$ 则 $F(x) = \Phi(\frac{x-\mu}{\sigma})$
- ② 若 $X \sim N(\mu, \sigma^2)$ 则

定理 2.5.1 一般正态分布的标准化

设
$$X \sim N(\mu, \sigma^2)$$
, $Y = \frac{X - \mu}{\sigma}$, 则 $Y \sim N(0, 1)$.

- **①** 若 $X \sim N(\mu, \sigma^2)$ 则 $F(x) = \Phi(\frac{x-\mu}{\sigma})$
- ② 若 $X \sim N(\mu, \sigma^2)$ 则 $P(x < a) = \Phi(\frac{a-\mu}{\sigma})$,

定理 2.5.1 一般正态分布的标准化

设
$$X \sim N(\mu, \sigma^2)$$
, $Y = \frac{X - \mu}{\sigma}$, 则 $Y \sim N(0, 1)$.

- **①** 若 $X \sim N(\mu, \sigma^2)$ 则 $F(x) = \Phi(\frac{x-\mu}{\sigma})$
- ② 若 $X \sim N(\mu, \sigma^2)$ 则 $P(x < \mathbf{a}) = \Phi(\frac{\mathbf{a} \mu}{\sigma})$, $P(x > \mathbf{a}) = 1 \Phi(\frac{\mathbf{a} \mu}{\sigma})$

例 2.5.3

设 $X \sim N(10, 4)$, 求 P(10 < X < 13), P(|X - 10| < 2).

例 2.5.4

设 $X \sim N(\mu, \sigma^2)$, $P(X \le -5) = 0.045$, $P(X \le 3) = 0.618$ 求 μ 及 σ .

设
$$X \sim N(\mu, \sigma^2)$$
, 则

设
$$X \sim N(\mu, \sigma^2)$$
,则 $P(|X - \mu| < \sigma) = 0.6826$

设
$$X \sim N(\mu, \sigma^2)$$
, 则 $P(|X - \mu| < \sigma) = 0.6826$ $P(|X - \mu| < 2\sigma) = 0.9545$

设
$$X \sim N(\mu, \sigma^2)$$
,则
$$P(|X - \mu| < \sigma) = 0.6826$$

$$P(|X - \mu| < 2\sigma) = 0.9545$$

$$P(|X - \mu| < 3\sigma) = 0.9973$$

$$P(|X - \mu| < k\sigma) = \Phi(k) - \Phi(-k) = 2\Phi(k) - 1$$

$$p(X) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & Others \end{cases}$$

$$p(X) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & Others \end{cases}$$
称 X 服从区间 (a, b) 上的均匀分布,

$$p(X) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & Others \end{cases}$$
 称 X 服从区间 (a,b) 上的均匀分布,记作 $X \sim U(a,b)$,

均匀分布

$$p(X) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & Others \end{cases}$$

称 X 服从区间 (a,b) 上的均匀分布,记作 $X \sim U(a,b)$,其分布函数为:

$$p(X) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & Others \end{cases}$$
称 X 服从区间 (a,b) 上的均匀分布,记作 $X \sim U(a,b)$,其分布函数为:
$$F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \leq x < b \\ 1 & b < x \end{cases}$$

$$p(X) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & Others \end{cases}$$
称 X 服从区间 (a,b) 上的均匀分布,记作 $X \sim U(a,b)$,其分布函数为:
$$F(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \leq x < b \\ 1 & b < x \end{cases}$$

例 2.5.5

 $X \sim U(2,5)$. 现在对 X 进行三次独立观测,试求至少有两次观测值大于 3 的概率.

指数分布密度函数和分布函数

指数分布密度函数和分布函数

指数分布密度函数和分布函数

指数分布密度函数和分布函数

$$p(x) = \begin{cases} \lambda e^{-\lambda x} & , x \geq 0 \\ 0 & , x < 0 \end{cases}$$
 称 X 服从指数分布,记为 $X \sim Exp(\lambda)$, 其中 $\lambda > 0$.

分布函数如下:

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$$

指数分布密度函数和分布函数

$$p(x) = \begin{cases} \lambda e^{-\lambda x} & , x \geq 0 \\ 0 & , x < 0 \end{cases}$$
 称 X 服从指数分布,记为 $X \sim Exp(\lambda)$,其中 $\lambda > 0$.

分布函数如下:

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$$

特别:指数分布具有无忆性,即

指数分布密度函数和分布函数

$$p(x) = \begin{cases} \lambda e^{-\lambda x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$$
 称 X 服从指数分布,记为 $X \sim Exp(\lambda)$,其中 $\lambda > 0$.

分布函数如下:

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$$

特别: 指数分布具有无忆性, 即

$$P(X > s + t | X > s) = P(X > t)$$

$$p(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$$

$$p(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$$
 称 X 服从伽玛分布,

$$p(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} &, x \geq 0 \\ 0 &, x < 0 \end{cases}$$
 称 X 服从伽玛分布,记为 $X \sim Ga(\alpha, \lambda)$,

$$p(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} &, x \ge 0 \\ 0 &, x < 0 \end{cases}$$
 称 X 服从伽玛分布,记为 $X \sim Ga(\alpha, \lambda)$,其中 $\alpha > 0$, $\lambda > 0$.

$$p(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$$
 称 X 服从伽玛分布,记为

$$X \sim Ga(\alpha, \lambda)$$
, 其中 $\alpha > 0$, $\lambda > 0$.

注意:
$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx$$
 为伽玛函数

伽玛分布密度函数和分布函数

$$p(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$$
 称 X 服从伽玛分布,记为 $X \sim Ga(\alpha, \lambda)$, 其中 $\alpha > 0$, $\lambda > 0$.

注意:
$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx$$
 为伽玛函数

伽玛分布密度函数和分布函数

$$p(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} &, x \ge 0 \\ 0 &, x < 0 \end{cases}$$
 称 X 服从伽玛分布,记为 $X \sim Ga(\alpha, \lambda)$, 其中 $\alpha > 0$, $\lambda > 0$.

注意: $\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx$ 为伽玛函数

1
$$\Gamma(1) = 1, \Gamma(1/2) = \sqrt{\pi}, \Gamma(n+1) = n!$$

伽玛分布密度函数和分布函数

$$p(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} , x \ge 0 \\ 0, x < 0 \end{cases}$$
 称 X 服从伽玛分布,记为

 $X \sim Ga(\alpha, \lambda)$, 其中 $\alpha > 0$, $\lambda > 0$.

注意: $\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx$ 为伽玛函数

注意点

- **1** $\Gamma(1) = 1, \Gamma(1/2) = \sqrt{\pi}, \Gamma(n+1) = n!$
- ② 两个特例:

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

伽玛分布密度函数和分布函数

$$p(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$$
 称 X 服从伽玛分布,记为 $X \sim Ga(\alpha, \lambda)$, 其中 $\alpha > 0$, $\lambda > 0$.

注意:
$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx$$
 为伽玛函数

注意点

- $\Gamma(1) = 1, \Gamma(1/2) = \sqrt{\pi}, \Gamma(n+1) = n!$
- ② 两个特例: $Ga(1,\lambda) = Exp(\lambda)$,

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

伽玛分布密度函数和分布函数

$$p(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} & , x \ge 0 \\ 0 & , x < 0 \end{cases}$$
 称 X 服从伽玛分布,记为 $X \sim Ga(\alpha, \lambda)$, 其中 $\alpha > 0$, $\lambda > 0$.

注意: $\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha-1} e^{-x} dx$ 为伽玛函数

- $\Gamma(1) = 1, \Gamma(1/2) = \sqrt{\pi}, \Gamma(n+1) = n!$
- ② 两个特例: $Ga(1, \lambda) = Exp(\lambda)$, $Ga(n/2, 1/2) = \chi^2(n)$

贝塔分布

$$p(x) = \begin{cases} \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} & , 0 < x < 1 \\ 0 & , others \end{cases}$$
 称 X 服从贝塔分布,记为 $X \sim Be(a,b)$,其中 $a > 0, b > 0$.

贝塔分布

$$p(x) = \begin{cases} \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} & , 0 < x < 1 \\ 0 & , others \end{cases}$$
 称 X 服从贝塔分布,记为 $X \sim Be(a,b)$,其中 $a > 0, b > 0$. 称 $B(a,b) = \int_0^1 x^{\alpha-1} (1-x)^{b-1} dx$ 为贝塔函数

贝塔分布

$$p(x) = \begin{cases} \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} &, 0 < x < 1 \\ 0 &, others \end{cases}$$
 称 X 服从贝塔分布,记为 $X \sim Be(a,b)$,其中 $a > 0, b > 0$. 称 $B(a,b) = \int_0^1 x^{\alpha-1} (1-x)^{b-1} dx$ 为贝塔函数

贝塔分布

$$p(x) = \begin{cases} \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} &, 0 < x < 1 \\ 0 &, others \end{cases}$$
 称 X 服从贝塔分布,记为 $X \sim Be(a,b)$,其中 $a > 0, b > 0$. 称 $B(a,b) = \int_0^1 x^{\alpha-1} (1-x)^{b-1} dx$ 为贝塔函数

- $B(a,b) = \Gamma(a)\Gamma(b)/\Gamma(a+b)$

贝塔分布

$$p(x) = \begin{cases} \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} &, 0 < x < 1 \\ 0 &, others \end{cases}$$
 称 X 服从贝塔分布,记为 $X \sim Be(a,b)$,其中 $a > 0, b > 0$. 称 $B(a,b) = \int_0^1 x^{\alpha-1} (1-x)^{b-1} dx$ 为贝塔函数

- B(a, b) = B(b, a)
- $B(a,b) = \Gamma(a)\Gamma(b)/\Gamma(a+b)$
- **3** Be(1,1) = U(0,1)

• 正态分布 $N(\mu, \sigma^2)$, $E(X) = \mu$

- 正态分布 $N(\mu, \sigma^2)$, $E(X) = \mu$
- 均匀分布 U(a,b), E(X) = (a+b)/2

- 正态分布 $N(\mu, \sigma^2)$, $E(X) = \mu$
- 均匀分布 U(a,b), E(X) = (a+b)/2
- 指数分布 $Exp(\lambda)$, $E(X) = 1/\lambda$

- 正态分布 $N(\mu, \sigma^2)$, $E(X) = \mu$
- 均匀分布 U(a,b), E(X) = (a+b)/2
- 指数分布 $Exp(\lambda)$, $E(X) = 1/\lambda$
- 伽玛分布 $Ga(\alpha, \lambda)$, $E(X) = \alpha/\lambda$

- 正态分布 $N(\mu, \sigma^2)$, $E(X) = \mu$
- 均匀分布 U(a,b), E(X) = (a+b)/2
- 指数分布 $Exp(\lambda)$, $E(X) = 1/\lambda$
- 伽玛分布 $Ga(\alpha, \lambda)$, $E(X) = \alpha/\lambda$
- 贝塔分布 Be(a, b), E(X) = a/(a + b)

• 正态分布 $N(\mu, \sigma^2)$ 的方差 = σ^2

- 正态分布 $N(\mu, \sigma^2)$ 的方差 = σ^2
- 均匀分布 U(a,b) 的方差 = $(b-a)^2/12$

- 正态分布 $N(\mu, \sigma^2)$ 的方差 = σ^2
- 均匀分布 U(a,b) 的方差 = $(b-a)^2/12$
- 指数分布 $Exp(\lambda)$ 的方差 = $1/\lambda^2$
- 伽玛分布 $Ga(\alpha, \lambda)$ 的方差 = α/λ^2

- 正态分布 $N(\mu, \sigma^2)$ 的方差 = σ^2
- 均匀分布 U(a,b) 的方差 = $(b-a)^2/12$
- 指数分布 $Exp(\lambda)$ 的方差 = $1/\lambda^2$
- 伽玛分布 $Ga(\alpha, \lambda)$ 的方差 = α/λ^2
- 贝塔分布 Be(a, b) 的方差 $= ab/(a+b)^2(a+b+1)$

- 正态分布 $N(\mu, \sigma^2)$ 的方差 = σ^2
- 均匀分布 U(a,b) 的方差 = $(b-a)^2/12$
- 指数分布 $Exp(\lambda)$ 的方差 = $1/\lambda^2$
- 伽玛分布 $Ga(\alpha, \lambda)$ 的方差 = α/λ^2
- 贝塔分布 Be(a, b) 的方差 = $ab/(a+b)^2(a+b+1)$

P119, 表 2.5.1 常用概率分布及其数学期望和方差。

例 2.5.6

已知随机变量 X 服从二项分布,且 E(X) = 2.4, Var(X) = 1.44,则参数 n, p 的值为多少?

例 2.5.7

设 X 表示 10 次独立重复射击命中目标的次数, 每次射中目标的概率为 0.4, 则 $E(X^2)$ 的值为多少?

作业

书 P120: 1, 2, 5, 10, 13, 15, 17, 23