Security in Computing & Information Technology

Lecture 3
Security Mechanisms
Elementary Cryptography

Lecture Schedule

Foundations

- 1. Introduction
- 2. Vulnerabilities, Threats, Attacks

Basic mechanisms

- 3. Security mechanisms, Elementary cryptography
- 4. Authentication
- 5. Access control

Major computing security areas

- 6. Operating systems
- 7. Databases
- 8. Networks
- 9. Web
- 10. Mobile computing

Applications

- 11. Privacy
- SecComp Lecture 312. Internet banking

Lecture Topics

- Security mechanisms
- Encryption basics
- Secure digest functions
- Digital signatures

The Security Process

- Security is not a static feature
 New threats emerge regularly
 - Technology changes
 - New vulnerabilities are discovered in old systems
 - People change, forget practices, ...
- Security life cycle (infinite loop)
 - Plan
 - Implement
 - Evaluate

Evolution of Technology

NASA Space Flight Control Centre

At the time of Moon landing

Today

Tomorrow

?

The Current Landscape

Increased Internet usage

It has become part of everyday infrastructure

■ Insufficient risk/threat awareness
SecComp Lecture 3

6

■ World III Australia III United Acab Excelles III Novem III Japan III United States

Security Problem Causes

- Software vulnerabilities
 Problems (features) that allow unspecified behaviour
- Maintenance failure
 Not updating software, not applying fixes, hardware maintenance issues
- Operational problems
 Negligence (e.g. not protecting passwords), lack of expertise

Computer Accounts - Legal Aspects

- Provide authorised access to a computer
- Users have rights and responsibilities
- Should be used only for the purpose it was provided for

Security Mechanisms

- Implement security services
- Deal with
 - prevention of incidents
 - detection of incidents
 - recovery from incidents
- Are characterised by resilience
 - Ability to operate in a hostile environment
 - Fault tolerance

Security Mechanisms in Computing

- Protect data content from unauthorised
 - access and
 - modification
- Mostly rely on cryptographic methods
 - To hide content
 - To maintain integrity
- Examples

Encryption, authentication, access control lists (ACLs)

Types of Security Mechanisms

- Pervasive mechanisms
 - Protect against a number of threats
 E.g. network firewalls
 - Protect individual computers or whole networks
 E.g. virus checking programs (email filters)
 - More economical, less accurate
- Specific mechanisms
 - Protect against a specific threat
 E.g. data integrity protection
 - Protect an individual data or a piece of hardware
 E.g. controlling access to individual data items
 - More accurate, less economical

The Cost of Security

- Direct costs
 - Software, equipment, procedures
- Indirect costs
 - Reduced efficiency due to additional procedures
- Savings
 - Avoiding possible, expensive damage
 - Potentially: optimisation of procedures

Security Tradeoffs

- Security features may restrict functionality
 E.g. certain network connections are not allowed
- Security mechanisms may complicate user interaction
 E.g. additional procedures can be required for performing certain operations
- Proper balance between them is needed: Risk analysis

Risk Analysis

- Potential loss in case of an accident
 - Value of assets
 - Replacement value (equipment, software)
 - Potential damage (loss of data, privacy)
 - Probability of an accident
 - Identify potential accidents
 - Assess their frequency
 - Risk = asset value * accident probability
- Risk assessment

Vulnerability assessment

Risk assessment

Threat assessment

Encryption / Decryption

- Encryption (encoding, enciphering): processing a message so that its meaning becomes obscured
- Decryption (decoding, deciphering): the reverse of encryption

Cyphertext = Encrypt (Plaintext)

Plaintext: information is clearly understandable

Ciphertext: information is hidden

- Historical terms
- Cryptosystem: code, cipher (encoding / decoding, enciphering / deciphering)

Terminology

- Breakable encryption
 - The encryption / decryption algorithm can be determined without prior knowledge
 - Theoretically breakable: there is a method to break the encryption
 - Practically breakable: it can be done within reasonable time
- Cryptography
 (The art and science of) keeping messages secure
- Cryptanalysis
 (The art and science of) breaking ciphertext
 - Break a single message
 - Devise a method to break all messages
 - Find weaknesses in the algorithm or in its implementation

Encryption Methods and Keys

- Encryption method
 - The algorithm used to transform the plaintext (e.g. substitute each letter with another letter in the alphabet)
- Encryption key
 - Parameter that enables to translate the same plaintext with the same algorithm to different ciphertexts
 - Ciphertext becomes the function of (Plaintext + Key)
- Good encryption methods rely on the key for secrecy
 - No need to invent a new method for every application
 - Most commonly used encryption algorithms are published
 - Breaking the encryption requires finding the key

Secret and Public Key Encryption

Encryption / decryption keys

The ciphertext depends on the original plaintext, the algorithm, and a parameter called key

Cyphertext = Encrypt (Plaintext, Key)

- Secret (symmetric) key encryption: E_Key can be easily calculated from D_Key
 - Simple, fast
- Public key (asymmetric) encryption: The keys cannot be calculated from each other in reasonable time
- SecComp Lecture 3 More Secure, very slow

Cryptanalysis Attacks against Encryption (1)

- Ciphertext-only attack
 - The cryptanalyst has access to encrypted messages only, the aim is to recover the plaintext, and possibly deduce the encryption / decryption key
- Known-plaintext attack
 - The cryptanalyst has access not only to the ciphertext, but also to the plaintext of those messages; the aim is to recover the key
- Chosen-plaintext attack
 - The cryptanalyst can even choose the plaintext of the messages
- Adaptive-chosen-plaintext attack
 - The cryptanalyst chooses the plaintext by using the results of previous encryptions (more efficient than simple chosen-plaintext attack)
- Chosen-ciphertext attack
 - The cryptanalyst can choose ciphered messages and has access to the decrypted messages
- Chosen-key attack
- The key is given; used for evaluating an algorithm, not really an attack

Cryptanalysis Attacks against Encryption (2)

- Brute force attack: tries all possible solutions
 - (There may be a way easier than brute force to break the encryption)
- Classes
 - P (polynomial):
 - Problems for which the solution growth rate is a polynomial function
 - NP (nondeterministic polynomial):
 - The correctness of a guessed solution can be checked in polynomial time
 - EXP (exponential)
 - A deterministic solution exists in exponential time

Practical Security of Cryptosystems

- Security
 - Theoretically not breakable
 - Unconditionally secure
 - Practically not breakable
- Computationally secure or strong
 - Work factor
 - Computing time and power needed to recover the key
 - E.g. work factor = 2^{128} (2^{128} operations are needed)
 - Operations' complexity and computing time may change
- Confusion
 - Complexity of the relationship between plaintext and ciphertext
 - Breaking a few messages should not allow the breaking of all messages
- Diffusion
- How the statistical properties of the encrypted text reflect the statistical properties of the plaintext

Stream & Block Ciphers

Stream ciphers

- The transformation depends only on the actual symbol, does not consider the previous or next symbol(s)
- Fast
- Low error propagation
- Low diffusion (easy to break), susceptible to malicious insertions, modifications

Block ciphers

- Transforms a group of data (a block) at a time
- Higher diffusion, immune to insertions
- Slower encryption (Has to wait for whole blocks)
- Error propagation problems
 One error affects a number of symbols

Classical Secret-Key Algorithms

Substitutions Ciphers

- Simple substitution cipher
 - One character of plaintext replaced with a corresponding character
- Homophonic cipher
 - A single character can map to one of several characters
- Polyalphabetic substitution cipher
 - Multiple simple substitution ciphers
 - The actual one used changes with the position of each character
- Polygram substitution cipher
 - Blocks of characters are encrypted in groups

Simple Substitution

Caesar Cipher

Translate a letter to the letter n places to the right in the alphabet

$$c_i = E(p_i) = p_i + n$$

E.g. n = 3

а	b	С	d	е	f	9	•••
V	Ψ	Ψ	V	V	V	\rightarrow	\rightarrow
d	е	f	9	h	i	j	•••

"treaty impossible" → "wuhdwb lpsrvvleoh "

Other Substitution Methods

- Homophonic substitution
 - A single character can map into one of several characters in ciphertext e.g. $A' \rightarrow 3$ or $A' \rightarrow 3$
- Polyalphabetic substitution
 - First key encrypts the first letter, second key the second letter etc. after using all keys, the keys are recycled

Transposition Ciphers

- (used in World War I)
- Characters of the plaintext remain the same, but their order is changed
- Arrange the text in columns (or in other patterns) E.g.

```
write direction
timahsegi sesas
```

- Complexity
 - Time: proportional to the length of message
 - Space: length of the message (not good for long messages)

read direction ----

- Usage
 - Substitution is far more common

Rotor Machines

Enigma (used in World War II)

http://www.math.miami.edu/~ha rald/enigma/enigma.html

- Automate the process of encryption
 - Each rotor makes a substitution
 - After the substitution the last rotor rotates one step
- Combination of rotors makes it difficult to break (Period 26ⁿ)

One-Time Pads

Method

- Pad of a large, non-repeating set of truly random keys
- Each letter of the message is encrypted with a corresponding key from the pad
- Used once, then destroyed (otherwise not secure)
- Perfect (theoretically not breakable) as long as keys are randomly selected
- Problems
 - Safe only with really random numbers (not with pseudorandom ones)
 - Length of key sequence is equal to the length of message (not feasible for a 1 Mbps channel)
- Usage
 - Ultrasecure low-bandwidth channels
 - One-time passwords are similar constructs

Secret-Key Encryption Example (1)

- Data Encryption Standard (DES 1977)
 - Was the most widely used algorithm until the late 1990s
 - Maps a 64 bit plain text into a 64 bit ciphertext using a 56 bit key
 - Has 16 key-dependent rounds, in which data is rotated and transposed
 - Split data in half, scramble right half, swap two halves
 - Successful attacks against it are possible
 - key is small enough for brute force attack
 - has been around for quite long, has been well analysed
 - Triple DES
 - DES is not considered to be secure anymore
 - Triple DES uses DES three times with three different keys
 - Most often as encrypt-decrypt-encrypt (EDE)

Secret-Key Encryption Example (2)

- Advanced Encryption Standard (AES)
 - Adopted as a standard in 2001
 - A version of the Rijndael block cipher
 - block size: 128 bits (4x4 array of bytes)
 - key sizes: 128, 192, 256 bits (10, 12, 14 rounds of calculations)
 - Each round has four steps
 - AddRoundKey each byte is combined (XOR-ed) with the subkey
 - SubBytes non-linear substitution of each byte by using a lookup table
 - ShiftRows cyclically shifts the bytes in each row by a certain offset
 - MixColumns combines the bytes in each column by using a linear transformation (in the last round this is replaced by another AddRoundKey)
 - A brute-force attack (computationally prohibitively expensive) was published in 2002

Cipher Modes

Electronic code book (ECB)

A plaintext always encrypts to the same ciphertext

A "code book" can be built for each key (and any plaintext-ciphertext combination can be entered into this book)

Suitable e.g. for database encryption

Improved method: Cipher block chaining (CBC)

- The plaintext is XOR-ed with the previous ciphertext block and then encrypted
- At decryption time the block is
 - (i) decrypted and
 - (ii) saved as ciphertext for feedback until the next block is decrypted
- A random initialisation vector (IV) is used for the first block
- Error propagation and extension
 - A small error in the ciphertext can lead to a large error in the decrypted plaintext - needs integrity protection

ECB and CBC

Problems of Symmetric Key Systems

- If key is revealed, security is broken (Keys in real systems are changed fairly frequently)
- Distribution of keys should be secure By hand (e.g. by a courier), in pieces on separate channels, etc.
- Simple methods can be vulnerable to attacks
- Number of keys increases with the square of the number of participants

Public-Key Systems

- Public and private keys
 - Private encryption key: message can not be falsified
 Used for verifying authenticity: digital signature
 - Private decryption key: message can not be decoded
 Used for confidentiality/secrecy
- Some common methods and their use
 - RSA encryption and digital signatures
 - El Gamal & DSS digital signatures
 - Diffie-Hellman establish a shared secret
- The principle first published in the mid 1970s
- Public-key algorithms are
 - much slower than symmetric-key systems
 - often used to encrypt a symmetric key (session key)
 - Faster data exchange by using a symmetric key
 - Symmetric key is secured by public-key encryption

Diffie-Hellman Key Agreement

- Protocol for establishing a shared secret via an insecure communication channel
- Solution
 - Two parties jointly calculate a shared secret via negotiation
- Features
 - Data exchanged during the negotiation is not sufficient to break the key
 - The established secret is never sent to the other side in any form (encrypted or otherwise)
- The algorithm is very frequently used in secure communication protocols

Secure Digest Functions Principle

- Fixed-length pattern characterising an arbitrary-length message h = H(M)
 - Given M, it is easy to compute h
 - Given h, it is hard to compute M

- H is a one-way function
- Given M, it is hard to find another message M' such that H(M) =
 H(M') collision-secure
- AKA One Way Hash, Message Digest, Digital Fingerprint
- Usage: Digital signatures, protecting messages from alteration
- Types
 - Non-keyed: depends on the message alone
 AKA message integrity code (MIC), modification detection code (MDC)
 - Keyed: depends on the message and on a secret key
 AKA message authentication code (MAC)

Secure Digest Functions Practical Aspects

- Exploiting collisions: Birthday attack
 - 1. Alice prepares two versions M and M', M is favourable for Bob, M' is not
 - 2. Alice makes several versions of M and M' that are visually indistinguishable from each other (e.g. by adding spaces at the end of lines) until she finds an M and an M' so that the calculated h is the same for the two
 - 3. Alice sends the favourable document M to Bob to sign it
 - 4. When Bob returns the signed document, Alice replaces M with M'
- Widely used hash functions
 - MD5: one of the most efficient methods, produces a 128bit digest, makes only one pass over the data, vulnerable
 - SHA-0, SHA-1: produce a 160-bit digest attacks have been found
 - SHA-2 (SHA-224, SHA-256, SHA-384, and SHA-512):
 still considered to be secure

Digital Signatures

- A recipient of a document can verify that the claimed originator is the real originator, and the message has not subsequently been altered.
- Calculated e.g. by encrypting a hash of the document with the signer's private key

A digital signature is appended to document, i.e.

Checking Digital Signatures

Summary

- Encryption is the mostly used way of hiding information content of data
- The main difference between secret-key and public-key encryption methods is in applicability and speed
- Data authenticity can also be proven via cryptographic methods