PS Analysis 3 WS 2024/25

Übungszettel 4 (CA)

Karin Schnass ankreuzbar bis 29.10., 8:00

1. The usual suspects and their derivatives.

Berechne die Ableitung von exp, \cos , \sin auf \mathbb{C} bzw. \log auf \mathbb{C}^- .

2. Domains - a star is born.

- (a) Zeige, dass \mathbb{C}^- und jede konvexe Teilmenge von \mathbb{C} sternförmig sind.
- (b) Zeige, dass \mathbb{C}^* und $B_R(z_0) \setminus \bar{B}_r(z_0)$ für 0 < r < R Gebiete aber nicht sternförmig ist.

3. I walk the line and other curves.

- (a) Zeige, dass zwei äquivalente glatte Kurven $\gamma, \tilde{\gamma}$ dasselbe Kurvenintegral besitzen.
- (b) Zeige, dass zwei einfache, gleichorientierte und stückweise glatte Kurven, mit $Bild(\gamma) = Bild(\tilde{\gamma})$ dasselbe Kurvenintegral besitzen. Hinweis: Verwende a) und Satz 2.18).
- (c) Es sei $\gamma:[a,b]\to U$ eine glatte Kurve und $\tilde{\gamma}:[a,b]\to U$ die umgekehrte Kurve oder Rückkurve, also $\tilde{\gamma}(t)=\gamma(a+b-t)$. Zeige, dass für $f:U\to\mathbb{C}$ stetig gilt

$$\int_{\overline{\gamma}} f(z) dz = -\int_{\gamma} f(z) dz.$$

4. Per qualche integrale in piú.

Sei r > 0, $a \in \mathbb{C}$. Berechne für $\gamma_k : [0, 2\pi] \to \mathbb{C}$ mit $\gamma_1(t) = a + re^{it}$, $\gamma_2(t) = a + re^{2it}$, $\gamma_{-1}(t) = a + re^{-it}$ das folgende Kurvenintegral

$$\int_{\gamma_h} \frac{1}{z-a} \, \mathrm{d}z.$$

Folgere, dass die drei Kurven nicht äquivalent sind. Was fällt noch auf?

5. \mathbb{C}^- für \log - as good as it gets.

Zeige, dass es keine offene Menge U mit $\mathbb{C}^- \subset U$ gibt, auf welcher der komplexe Logarithmus, also eine Umkehrfunktion von exp, stetig definiert werden kann.

Hinweis: Überlege, wovon log auf U Stammfunktion wäre und verwende 4).

6. Dogma: $f' = 0 \Rightarrow f \equiv c$.

Beweise Korollar 2.22. Verwende Satz 2.21 und, dass je 2 Punkte eines Gebiets durch einen stückweise linearen (affinen) Weg verbunden werden können.