(a,b)-stromy

Zápočtová práce z Programování I pro pokročilé

Jiří Škrobánek¹

14. listopadu 2018, Ostrava

Abstract

This documentation describes the entire functionality of (a,b)-trees implementation in Python 3 by Jiří Škrobánek. Aside from listing all methods, principles of (a,b)-trees are explained and complexity of used algorithms is analysed.

Obsah

1	Definice	
2	Metody	
3	Příkladové použití	
4	Stručný popis algoritmů	
	4.1 Vkládání	
	4.2 Hledání	
	4.3 Mazání	
	4.4 Vyvažování	
5	Analýza složitosti	
	5.1 Minimální vyváženost stromu	
	5.2 Paměťová složitost	
	5.3 Rychlost vyhledávání	
	5 4 Rychlost vyvažování	

1 Definice

(a.b)-strom je strom. Musí platit $(a,b) \in \mathbb{N}^2, 2 \leq a, 2a-1 \leq b$. (a,b)-strom je buďto prázdný, nebo mají všechny vnitřní vrcholy nejméně a synů a nejvýše b synů. Výjimkou je kořen, jenž musí mít mezi 2 a b syny. Všechny listy leží v jedné hladiny. Vnějším vrcholům jsou přiřazeny unikátní klíče (prvky lineárně uspořádané množiny). Vnitřním vrcholům je přiřazen maximální klíč z jeho synů. Ve vnitřním vrcholu jsou uloženy klíče synů ve vzestupném pořadí. Pro každý podstrom platí, že mimo podstrom neexistují vnější vrcholy, které mají nižší klíč než maximální klíč v podstromu a zároveň vyšší klíč než minimální v podstromu.

V tomto stromě se dá vyhledat vnější vrchol dle klíče v logaritmickém čase vzhledem k počtu vnějších vrcholů. Přidávání a odebírání listů rovněž funguje v logaritmickém čase.

Speciálním případem (a,b)-stromů pro 2a-1=b jsou B-stromy, mimo jiné oblíbený 2-3-strom.

¹Matematicko-fyzikální fakulta Univerzity Karlovy, jiri@skrobanek.cz

2 Metody

Knihovna obsahuje třídy InternalNode a ExternalNode pro vnitřní a vnější vrcholy a třídu ABTree, která má metody popsané níže.

```
Počet vnějších vrcholů ve stromě značíme E.
```

```
__init__(a: int,b: int)
Vytvoří (a,b)-strom pro konkrétní hodnoty a,b.
Výjimky: ValueError: Neplatná volba parametrů.
Složitost: \mathcal{O}(1)
insert(self, key: int, value=None)
Vloží do stromu uspořádanou dvojici (key, value). Value může být libovolného typu nebo None.
Výjimky: ValueError: Strom již klíč obsahuje.
Složitost: \Theta(\log(E))
delete(self, key: int)
Vymaže ze stromu vnější vrchol s klíčem key.
Výjimky: ValueError: Strom klíč neobsahuje.
```

contains(self, key: int)

Vrací: bool Zda strom obsahuje daný klíč.

Složitost: $\Theta(\log(E))$

Složitost: $\Theta(\log(E))$

find(self, key: int)

Vrací: Hodnotu ve vnějším vrcholu s daným klíčem.

Výjimky: ValueError: Strom klíč neobsahuje.

Složitost: $\Theta(\log(E))$

item_count(self)

Vrací: int Počet vnějších vrcholů ve stromě.

Složitost: $\mathcal{O}(1)$

find_leq(self, key: int)

Vrací: (k, value) Uspořádaná dvojice klíče a hodnoty z vnějšího vrcholu, který má maximální klíč v množině vrcholů s klíčem v intervalu $(-\infty, key)$

Složitost: $\mathcal{O}(\log E)$

```
find_lesser(self, key: int)
```

Vrací: (k, value) Uspořádaná dvojice klíče a hodnoty z vnějšího vrcholu, který má maximální klíč v množině vrcholů s klíčem v intervalu $(-\infty, key)$

Složitost: $\mathcal{O}(\log E)$

```
find_geq(self, key: int)
```

Vrací: (k, value) Uspořádaná dvojice klíče a hodnoty z vnějšího vrcholu, který má minimální klíč v množině vrcholů s klíčem v intervalu $\langle key, \infty \rangle$

Složitost: $\mathcal{O}(\log E)$

```
find_greater(self, key: int)
```

Vrací: (k, value) Uspořádaná dvojice klíče a hodnoty z vnějšího vrcholu, který má minimální klíč v množině vrcholů s klíčem v intervalu (key, ∞)

Složitost: $\mathcal{O}(\log E)$

```
import abtree

tree = abtree.ABTree(2, 3)  # Create an empty tree, a = 2, b = 3

# Fill tree with entries:
tree.insert(10, 7), tree.insert(20, 2)
tree.insert(30, 5), tree.insert(40, 1)

print("Value at 10: " + str(tree[10]))
print("\nElement greater than 20: " + str(tree.find_greater(20)))
print("\nAmount of entries in the tree: " + str(len(tree)))
```

Obrázek 1: Příkladový program

3 Příkladové použití

Na obrázku 1 vidíme použití stromu. Na vyhledání pomocí klíče můžeme použít funkci __get_item__.

4 Stručný popis algoritmů

4.1 Vkládání

Vkládáme key, value. Pokud je strom prázdný vytvoříme kořen, který bude mít nově vkládaný záznam jako jednoho syna a vrchol s klíčem ∞ jako druhého syna. Začneme u kořene. Z vrcholu přejdeme na jeho syna, který má nejbližší vyšší klíč než key.

Po vložení zavoláme algoritmus vyvažování na otce nově vzniklého vnějšího vrcholu.

4.2 Hledání

Pokud hledáme podle klíče key, začneme v kořeni a sestupujeme na syny s nejbližším vyšším klíčem, nebo případně klíčem rovným key. Pokud nedojdeme do vnějšího vrcholu s hledaným klíčem, strom klíč neobsahuje.

4.3 Mazání

Pokud je třeba vrchol vymazat, nejdříve ho je třeba najít ve stromě a potom odstranit. Pokud byl navíc maximálním klíčem v některých vnitřních vrcholech, je třeba změnit v jeho předcích klíče na druhý nejvyšší vrchol v otci mazaného vrcholu (Takový musí existovat.)

Může být porušeno vyvážení stromu, proto je třeba zavolat vyvažování na bývalého otce smazaného vrcholu.

4.4 Vyvažování

Pokud jsme přidávali nebo mazali od posledního spuštění vyvažování pouze jeden vrchol, povolený počet synů ve vrcholech může být porušen o nejvýše 1.

Pokud ve stromě zůstal kořen a jeden vrchol (∞) , strom se stane prázdným.

Kontrolu stromu vždy začínáme v nějakém vrcholu. A může se vyvíjet několika způsoby:

- Pokud je kontrolovaný vrchol kořen, který má jediného syna, odstraníme ho z grafu a jeho syn se stane novým kořenem. Ukončíme vyvažování.
- ullet Pokud je kontrolovaný vrchol kořen a má více než b synů, rozdělíme ho na dva a vytvoříme jim nového otce, který bude kořenem stromu. Ukončíme vyvažování.

Obrázek 2: Příkladový (3,5)-strom

- Pokud má kontrolovaný vrchol více než b synů: Rozdělíme jej na dva, oba vrcholy získají nejméně a synů, rozdělených podle velikosti. Tím mohl otec získat příliš mnoho synů, kontrolu pokračujeme na něm.
- Pokud má kontrolovaný vrchol méně než a synů: Zkontrolujeme, zda se nemůže levý nebo pravý rozdělit o syny s tímto vrcholem, aby měly oba alespoň a synů. Pokud toto nejde, sloučením s jedním z nich vznikne vrchol s povoleným počtem synů. Poté je potřeba pokračovat s kontrolou v otci, protože ztratil jednoho syna.
- Pokud je vše s vrcholem v pořádku, vyvažování ukončíme.

Výsledkem vyvažování je platný (a,b)-strom.

5 Analýza složitosti

5.1 Minimální vyváženost stromu

Pokud má strom e vnějších vrcholů, strom má hloubku nejvýše $\lceil \log_a e \rceil + 1$.

Z definice musejí mít všechny vnitřní vrcholy nejméně a synů, a proto počet vrcholů hloubky h ve stromě je nejméně a^h .

5.2 Paměťová složitost

Strom s parametry (a,b) a e záznamy zabírá v paměti $\Theta(e)$. Neuvažujeme, kolik zabírají samotné údaje, které do stromu ukládáme, pouze strukturu stromu a klíče. Strom má nejvýše hloubku $\lceil \log_a e \rceil + 1$. Jeden vnitřní vrchol v sobě obsahuje klíče a ukazatele na nejvýše b dalších vrcholů.

Můžeme tedy provést horní odhad tak, že všechny hladiny budou plné a bude jich teoretický maximální počet. V tomto případě je počet vnějších vrcholů roven a. Další úroveň obsahuje ve vrcholech klíče a ukazatele na externí vrcholy, ale všechny další obsahují nejméně a-krát méně klíčů, je jich a-krát méně. Součet takovéto geometrické řady je vždy pouze konstantním násobkem prvního členu, tedy e.

5.3 Rychlost vyhledávání

Vyhledávání se použije nejen v případě, že je potřeba získat z pole záznam, ale také při vkládání a odstraňování, je tedy nutné, aby probíhalo rychle.

Jak plyne z algoritmu, začíná se ve stromě a sestupuje se až na spodní hladinu. V každém prošlém vrcholu se přitom porovná až b klíčů. Pokud je hledání nakonec neúspěšné, proces se liší až posledním krokem.

Dohromady to dává $\Theta(b \log_a e)$ operací ve stromě s e záznamy.

5.4 Rychlost vyvažování

Vyvažování spouštíme na nějakém konkrétním vrcholu, pouze pro tento vrchol hrozí porušení počtu synů. Provádí se de facto dvě operace:

Slučování Pokud se uskuteční sloučení vrcholu, vrchol vzniklý po sloučení bude mít počet synů v pořádku. Jen jeho otce bude třeba preventivně zkusit vyvážit (pokud existuje). Nově vzniklý vrchol už je ale vyvážený a nebude se k němu potřeba vracet.

Hledání vrcholů ke sloučení i vyrábění nového vrcholu je práce s $\mathcal{O}(b)$ klíči.

Rozdělování Vrcholy vzniklé rozdělením mají správný počet synů, vyvažování pokračuje otcem těchto vrcholů.

Protože máme již určeno jaká je maximální hloubka stromu a vyvažuje se maximálně 1 vrchol v každé hloubce, můžeme říci, že během vyvažování proběhne $\mathcal{O}(e)$ operací.

Seznam obrázků

1	Příkladový program	3
2	Příkladový (3,5)-strom	4

Seznam tabulek

Seznam příloh

- A. Zdrojový kód knihovny
- B. Zdrojové kódy příkladů

Reference

[1] KNUTH, Donald Ervin. The Art of Computer Programming. Upper Saddle River, NJ: Addison-Wesley, 2011. ISBN 978-0321751041.