Author	Technology	Research	Key Results	Limitations
[21]	IoT/Environmental monitoring	Development and validation of low- cost IoT system for poultry farms	and calibrated sensors. Cost 13% of conventional. 97.8%	Limitations in ammonia measurement at high concentrations. Dependence on internet quality.
[22]	Integrated IoT/ML System	intelligent mobile		ity and diversity
[23]	Environmental control/DHT22/ESP8266	Implementation of temperature/hu- midity control sys- tem	Precise control of	Monitoring limited to basic variables
[24]	Environmental monitoring/IoT	bile app for control	Automatic environ- mental control with intuitive interface	Validation in single installation
[25]	Poultry manage- ment/IoT/Monitoring	Experimental design of automated system for regulation and feeding	Automated IoT system with smart win-	ence on predeter- mined configura- tions without ad-
[26]	IoT/ML/Monitoring	plementation of	Integrated system with measurement of environmental parameters and animal health. Interface for visualization.	ited validation period. Insufficient
[27]	Database Design/IoT	Development of database model for poultry manage- ment in Baltic farms	optimization. Cloud architecture with MQTT agent.	mentation (Bal- tic). Primarily en-
[28]	Precision Livestock Farming/IoT	Literature review on PLF applica- tions in animal production sys- tems	Technologies: IoT sensors, cloud, big data, 5G networks. Applications in dif-	vs. commercial implementation. Limited economic analysis. Insufficient addressing
[29]	Poultry management systems	Aihen platform with production	prediction, web/mobile interface, rec-	Limited historical data. Inconsistent data. Sensor vari- ability between farms.
[10]	Edge Computing, WSN, IoT Sensors	Experimental development	Real-time environ- mental monitoring system with autono- mous control capa- bility	implementation
[5]	IoT/Environmental monitoring	Implementation of IoT system with sensors, Lo-RaWAN gateway and cloud platform. Collection for 1 week/30min.	parameters (temp 29-34°C, humidity ~70%, CO2 max 1100 ppm). SMS alert system.	Limited period (1 week). Study in a single farm. Without automatic control. Interferences from building structure.
[30]	IoT/Environmental control	validation of monitoring/control sys-	Successful monitoring with DHT22 vs traditional thermometer. Automatic fan	small prototype. Only tempera-

Author	Technology	Research	Key Results	Limitations
		and threshold implementation	control. Functional Blynk interface.	Dependence on internet.
[31]	Poultry monitor- ing/ML/IoT	ture analysis on CV and ML for	Identification of technologies for automatic monitoring. Analysis of AI/IoT for poultry health control.	tory/movement of chickens. Without
[32]	IoT/Precision agriculture		>99% for temperature/humidity/CO2. Robust system	nodes. Problems with CO2 sensors
[33]	IoT/ML/Prediction	Predictive model- ing for poultry growth	90% accuracy in growth predictions	1 0
[34]	ML/Monitoring	Implementation of hybrid LSTM-RF model for monitor- ing	95% accuracy in dis-	Limited to a spe- cific type of farm
[35]	Precision agriculture	algorithm for pro-	Evaluation of ML	structure. Insufficient data for optimal training
[36]	IoT/ML	Implementation and evaluation of integrated system with ML algorithms	mance with 95% ac-	
[37]	Cybersecurity in IoT	Implementation of hybrid deep learn- ing model using RT-IoT2022	(MOTT Publish	Need for optimization for large- scale environ- ments. High com- putational re- quirements.