Introduction to DSP

A short history of Speech Recognition

50's

In **1952**, Bell Laboratories designed the "**Audrey**" system which could recognize a single voice speaking **digits** aloud

In **1962,** IBM introduced "**Shoebox**" which understood and responded to **16 words** in English.

60's

A short history of Speech Recognition

The '80s saw speech recognition vocabulary go from a few hundred words to **several thousand words** thanks to **HMM**

DARPA's system was capable of understanding over **1,000** words. **Siri** was a spin-out of DARPA development:)

A short history of Speech Recognition

90's

Speech recognition was propelled forward in the 90s in large part because of **faster processors**

And then came the era of big data, machine learning and GPUs

A short history of Speech Synthesis

antil 80's

Fig. 8-Schematic circuit of the voder.

Formant-based on rules. You may listen examples in Atari&Sega games:)

In **1939**, The Bell Laboratory's **Voder** was the first attempt to electronically synthesize human speech by breaking it down into its **acoustic components**

A short history of Speech Synthesis

And then came the era of big data, machine learning and GPUs

Concatenative synthesis is a technique for synthesising sounds by concatenating short samples of recorded sound (called *units*).

Voice Technologies Applications

Voice Technologies Mind Map

Voice Technologies Mind Map

Voice Technologies Mind Map

What is sound?

- Sound wave is the pattern of oscillations caused by the movement of energy traveling through the air
- Microphone picks up these air oscillations and converts them into electrical vibrations
- These oscillations are converted into an analog signal and then a digital signal

How is sound stored in the computer?

- The analog signal is discretized, quantized and encoded
- An analog signal is **discretized** in that the signal is represented as a sequence of values taken at discrete points in time **t** with step **d**
- Quantisation of a signal consists in splitting the range of signal values into N levels in increments of d and selecting for each reference the level that corresponds to it
- Signal encoding is just a way of presenting the signal in a more compact form

Kotelnikov Theorem

- If a function **f(t)** contain no frequencies higher than **B hertz**, it is completely determined by giving its ordinates at series of points spaced **1/2B** seconds apart
- **Example:** If signal contains frequency 100 Hz, the sampling rate for this signal needs to be 200 Hz at least

lacktriangle

Analog-to-Digital Conversion

- Converting analog signals to a sequence of numbers having finite precision
- Corresponding devices are called A/D converters (ADCs)

Digital-to-Analog Conversion

- Process of converting a digital signal into an analog signal
- Interpolation
 - Connecting dots in a digital signal
 - o Approximations: zero-order hold (staircase), linear, quadratic, and so on

What other characteristics are there?

- **Sample rate (SR)** number of audio samples per one second (e.g. 8 kHz, 22.05 kHz, 44.1 kHz)
- **Sample size** number of bits per one sample (e.g. 8, 16, 25, 32 bits)
- **Number of channels** -- how many signals we record in parallel (e.g. mono(1), stereo(2))

8000 Hz

The international $\underline{G.711}$ \square^3 standard for audio used in telephony uses a sample rate of 8000 Hz (8 kHz). This is enough for human speech to be comprehensible.

44100 Hz

The 44.1 kHz sample rate is used for compact disc (CD) audio. CDs provide uncompressed 16-bit stereo sound at 44.1 kHz. Computer audio also frequently uses this frequency by default.

48000 Hz

The audio on DVD is recorded at 48 kHz. This is also often used for computer audio.

96000 Hz

High-resolution audio.

192000 Hz

Ultra-high resolution audio. Not commonly used yet, but this will change over time.

What other characteristics are there?

- Assume **f(n)** is our signal where **n** is time
- Power of signal is $f^2(n)$
- Energy of signal is $\sum f^2(n)$
- In practice estimated by some **window**
- ullet Energy in **decibels**: $10\log_{10}E$
- $ullet ext{SNR}_{dB} = 10 \log_{10} rac{E_{ ext{signal}}}{E_{ ext{noise}}}$

What about audio formats?

- Non-compressed formats: **WAV**, **AIFF**, **etc**.
- Lossless compression(2:1): **FLAC**, **ALAC**, **etc**.
- Lossy compression(10:1): **MP3, Opus, etc**
- Bit rate measure a degree of compression. Number of bit that are conveyed or processed per unit of time.

Why is it bad to work with sound in this format?

- No "invariant" regarding noise and transformations
- One letter/sound consists of 2000-4000 amplitudes, so they are expensive to process and store
- Periodical nature of audio signals

Decompose into periodic basis

https://en.wikipedia.org/wiki/Sine_wave

Complex functions basis

• Euler's formula

$$e^{jx} = \cos x + j\sin x$$

Complex exponential basis

$$e^{-jwx}, w \in \mathbb{C}$$

- The function must meet the following conditions:
 - o to be **bounded**
 - o to be **absolutely integrable**
 - to have a **finite number** of minimas, maximas and discontinuities

Fourier Transform

- The Fourier transform(FT) is a mathematical formula that allows us to decompose a signal into its individual frequencies and the frequency's amplitude
- FT transfer a signal from the time domain to the frequency domain

$$F(y) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x y} dx$$
 time o frequency

Discrete Fourier transform

$$egin{aligned} m{X} &= \mathbf{M} m{x} \ M_{mn} &= \exp\left(-2\pi i rac{(m-1)(n-1)}{N}
ight) \ &= egin{aligned} 1 & 1 & 1 & \dots & 1 \ 1 & e^{-rac{2\pi i}{N}} & e^{-rac{4\pi i}{N}} & e^{-rac{6\pi i}{N}} & \dots & e^{-rac{2\pi i}{N}(N-1)} \ 1 & e^{-rac{4\pi i}{N}} & e^{-rac{8\pi i}{N}} & e^{-rac{12\pi i}{N}} & \dots & e^{-rac{2\pi i}{N}2(N-1)} \ 1 & e^{-rac{6\pi i}{N}} & e^{-rac{12\pi i}{N}} & e^{-rac{18\pi i}{N}} & \dots & e^{-rac{2\pi i}{N}3(N-1)} \ dots & dots & dots & dots & dots & dots & dots \ 1 & e^{-rac{2\pi i}{N}(N-1)} & e^{-rac{2\pi i}{N}2(N-1)} & e^{-rac{2\pi i}{N}3(N-1)} & \dots & e^{-rac{2\pi i}{N}(N-1)^2} \end{pmatrix}$$

Discrete Fourier transform

$$A \cos(\omega t + \phi) = B \cos(\omega t) + C \sin(\omega t)$$

$$A = \sqrt{B^2 + C^2}, \quad \tan \varphi = \frac{C}{B}$$

Example of DFT

Example of DFT

$$f(t) = 5 + 2\sin(2t + 2) - 3\cos(0.2t - 1)$$

Why spectrum is mirroring?

$$X_m = \sum_{n=0}^{N-1} x_n \exp\left(-j2\pi rac{m}{N}n
ight) \ X_{N-m} = \sum_{n=0}^{N-1} x_n \exp\left(-j2\pi rac{N-m}{N}n
ight) \ = \sum_{n=0}^{N-1} x_n \exp\left(-j2\pi n + j2\pi rac{m}{N}n
ight) \ = \sum_{n=0}^{N-1} x_n \exp\left(j2\pi rac{m}{N}n
ight) \ = (X_m)^*$$

Short-time Fourier transform

FFT + Windowing

Short-time Fourier transform

FFT + Windowing

Spectrograms

Mel Scale

$$egin{align} m = 2595 \log_{10} igg(1 + rac{f}{700}igg) = 1127 \lnigg(1 + rac{f}{700}igg) \ f = 700 ig(10^{rac{m}{2595}} - 1ig) = 700 ig(e^{rac{m}{1127}} - 1ig) \ \end{aligned}$$

Cepstrum

- Fourier spectrum of voice has **periodic** structure
- Apply DCT (Discrete Cosine Transform) to spectrum and obtain Cepstrum
- ullet **Peak** in Cepstrum should be located at $\dfrac{1}{F_0}$

power cepstrum of signal= $\left| \mathcal{F}^{-1} \left\{ \log \left(\left| \mathcal{F} \left\{ x(t) \right\} \right|^2 \right) \right\} \right|^2$

Cepstrum of speech segment

Mel-Frequency Cepstral Coefficients (MFCCs)

Spectrogram after multiplication with mel-weighted filterbank

Corresponding MFCCs

Pros:

- Easy to calculate
- Extracts 'correct' frequencies

Cons:

- Not robust to noise
- No theoretical motivation
- Don't work for synthesis