

欧智通科技

Fn-Link 8110N-UR

WiFi Single-band 1X1

Module Datasheet

Revision History

Version	Date	Description	Draft	Approved
1.0	2018-07-02	First release	LXY	

1. Introduction	4
2. Hardware Specification	
2.1 8110N-UR module pinout	6
2.2 8110N-UR Interface summary	
2.3 Bootstrap signals	8
2.4 Electrical characteristics	9
2.4.1 Absolute Maximum Ratings	9
2.4.2 Recommended Operating Conditions	9
2.4.3 General DC electrical characteristics	10
2.4.4 8110N-UR radio Rx characteristics	10
2.4.5 8110N-UR radio Tx characteristics	11
2.5 Timing specifications	12
2.5.1 SPI master interface timing	
2.5.2 SPI slave interface timing	13
3. Mechanical Interface Specification	14
4. Manufacture information	15
4.1 Optical Inspection	15
4.2 Rework	
4.3 Handling	15
4.4 Soldering Recommendations	15
5. Package Information	16

1. Introduction

8110N-UR Wi-Fi module provides a highly-integrated and flexible platform for developing and evaluating products and applications based on the QCA4010 SoC.
8110N-UR module includes the following components:

- QCA4010 chip
- An integrated Balun to save cost and size, minimize tuning and tolerance
- A printed antenna
- Apple MFI (optional)
- 2MB SPI Flash memory and etc.

The QCA4010 is a single band 1x1 802.11 b/g/n device optimized for low-power embedded applications with single-stream capability for both Tx and Rx. It has an integrated network processor with a large set of TCP/IP with IPv4/IPv6-based services. These services can be accessed via a serial SPI link or by a UART link connected to an external host CPU.

Figure 1-1 8110N-UR block diagram

8110N-UR Wi-Fi link features

- IEEE 802.11 b/g/n, single stream 1x1
- Single-band 2.4 GHz
- Integrated PA and LNA;
- Green Tx power saving mode
- Low power listen mode
- Four-layer PCB design
- Data rates up to 150 Mbps
- Full security support: WPS,WEP, TKIP,WPA (personal),WPA2 (personal)

8110N-UR manufacturing interface

■ USB 2.0 interface with integrated controller and PHY for manufacturing test and configuration

8110N-UR host interfaces

■ UART host interface to a remote microcontroller with an AT style command set.

2. Hardware Specification

2.1 8110N-UR module pinout

Figure 2-1 8110N-UR top view

Figure 2-2 8110N-UR pinout definition

Table 2-1 8110N-UR module pinout definition and QCA4010 GPIO assignment

Pin	e 2-1 8110N-UR module pinout def Signal/Interface	ALT1	ALT2	ALT3	GPIO No.
			ALIZ	ALI3	GPIO NO.
2	GND	Ground	_	_	CDIO[34]
	WIFI_UART1_RXD	High speed UART RXD	_	_	GPIO[24]
3	WIFI_UART1_TXD	High speed UART TXD			GPIO[23]
4	WIFI_UART1_RTS	High speed UART RTS	_	_	GPIO[22]
5	WIFI_UART1_CTS	High speed UART CTS	_	_	GPIO[21]
6	PWM7	PWM7	_	_	GPIO[13]
7	PWM6	PWM6	_	_	GPIO[12]
8	PWM5_I2CS_SDA0	PWM5	I2C Slave SDA0	_	GPIO[11]
9	PWM4_I2CS_SCK0	PWM4	I2C Slave SCK0	_	GPIO[10]
10	PWM0	PWM0	_	_	GPIO[6]
11	PWM2	PWM2	_	_	GPIO[8]
12	GND	Ground	_	_	_
13	SPI_MISO_SDIO_D0_UART2_RTS	SPI MISO (master or slave)	SDIO Data0	UART RTS	GPIO[4]
14	SPI_CLK_SDIO_CLK_UART2_CTS	SPI CLK (master or slave)	SDIO CLK	UART CTS	GPIO[5]
15	SPI_INT_SDIO_D1_UART2_RXD	SPI Interrupt (slave)	SDIO Data1	UART RXD	GPIO[3]
16	SDIO_D2_UART2_TXD	_	SDIO Data2	UART TXD	GPIO[2]
17	SPI_MOSI_SDIO_D3	SPI MOSI (master or slave)	SDIO Data3	_	GPIO[1]
18	SPI_CS_SDIO_CMD	SPI CS (master or slave)	SDIO Command	_	GPIO[0]
19	CHIP_PWD_L	Module reset, active low	_	_	_
20	IOT_MODE_EN	Wakeup manager enable	_	_	_
21	GND	Ground	_	_	_
22	VDD33	3.3V power supply	_	_	_
23	VDD33	3.3V power supply	_	_	_
24	GND	Ground	_	_	_
25	GND	Ground	_	_	_
26	USB_DPOS	USB Data+	_	_	_
27	USB_DNEG	USB Data-	_	_	_
28	GND	Ground	_	_	_
29	GPIO_IOE1	external wakeup	_	_	_
30	SPIM_CS	Flash memory /CS pin	_	_	GPIO[35]
31	GND	Ground	_	_	_
32	WIFI_I2S_MCLK1	I2S MCLK1	_	_	GPIO[33]
33	WIFI_I2S_WS1	12S WS1	_	_	GPIO[32]
34	WIFI_I2S_SDO1	12S SDO1	_	_	GPIO[31]
35	WIFI_I2S_SDI1	I2S SDI1	_	_	GPIO[30]
36	WIFI_I2S_BLK1	I2S BLK1	_	_	GPIO[27]
37	GND	Ground	_	_	

38	ADC6_UART0_TX	ADC6	Debug UART TXD	_	GPIO[29]
39	ADC7_UART0_RX	ADC7	Debug UART RXD	_	GPIO[28]
40	ADC1	ADC1	_	_	_
41	ADC0	ADC0	_	_	_
42	GND	Ground	_	_	_
43	I2CM_SDA0	I2C Master SDA0	_		GPIO[25]
44	I2CM_SCL0	I2C Master SCL0	_	_	GPIO[26]
45	GND	Ground	_		_
46	GND	Ground	_	_	_

2.2 8110N-UR Interface summary

- Host interface: SPI master x 1, SDIO2.0 x 1, debug UART x 1
- High speed UART x 2
 - □ Up to 3Mbps data rate
- I2C master x 1, I2C slave x 1
- ☐ Standard-mode and fast-mode
- I2S x 1
- PWM x 6
 - □ 18-bit resolution with 8-bit clock prescaler
- ADC x 4
 - □ 12-bit resolution, 400 Ksps for multiple channels and 1 Msps for single channel.
- All signal pins can be multiplexed as GPIO
- USB2.0 x 1, for ART tool

2.3 Bootstrap signals

Table 2-3 Bootstrap signals

Pin NO.	Bootstrap name	Description			
11	Test mode enable	Shou	Should be low while reset released, for normal function		
18	Host mode[1]	Boots	strap for host interface selection.		
13	Host mode[0]	Defau	ult mode is 00.		
		00	USB/manufacturing test and configuration/hostless		
		01	Hostless (serial AT command) mode		
		10	SPI host mode		
		11 SDIO host mode			
20	IOT mode enable	Keep high always, for normal function			

2.4 Electrical characteristics

2.4.1 Absolute Maximum Ratings

Table 2-4-1 summarizes the absolute maximum ratings and Table 2-4-2 lists the recommended operating conditions for the 8110N-UR. Absolute maximum ratings are those values beyond which damage to the device can occur.

Functional operation under these conditions, or at any other condition beyond those indicated in the operational sections of this document, is not recommended.

NOTE: Maximum rating for signals follows the supply domain of the signals.

Table 2-4-1 absolute maximum ratings

symbol	Description	Max rating	unit
VDD33	VDD supply for whole chip	-0.3 to 4.0	V
VIH MIN	Minimum Digital I/O Input Voltage for 1.8 V or 3.3 V I/O Supply	-0.3	V
3.3 V I/O VIH MAX	Maximum Digital I/O Input Voltage for 3.3 V I/O Supply	Vdd +0.3	V
RFin	Maximum RF input (reference to $50-\Omega$ input)	+10	dbm
Tstore	Storage Temperature	-45 to 125	°C
Tj	Tj Junction Temperature		°C
ESD Electrostatic Discharge Tolerance		HBM - 2000 CDM - 500	V

2.4.2 Recommended Operating Conditions

These conditions apply to all DC characteristics unless otherwise specified: $T_{amb} = 25 \, ^{\circ}C$, $V_{dd33} = 3.3 \, V$

Table 2-4-2 Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Max	unit
VDD33	VDD supply for whole chip	3.14	3.3	3.46	V
Operating Temperature Range	E-temp	0	_	85	°C
Storage Temperature Range	_	-45	_	125	°C

2.4.3 General DC electrical characteristics

These conditions apply to all DC characteristics unless otherwise specified: T_{amb} = 25 °C, Vin = 3.3 V

Table 2-4-3 DC Electrical characteristics for digital I/Os

Symbol	Parameter	Min	Тур	Max	Unit
VIH	High level I voltage	1.8	_	3.6	V
VIL	Low level I voltage	-0.3	_	0.3	V
VOH	High level O voltage	2.2	_	3.3	V
VOL	Low level O voltage	0		0.4	V

2.4.4 8110N-UR radio Rx characteristics

Table 2-4-4 8110N-UR Main Rx characteristics for 2.4Ghz operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
Frx	RX input frequency range	_	2.412	_	2.472	GHz	
	Sensitivity						
	CCV	1Mbps	_	-93	_		
	ССК	11Mbps	_	-87	_		
Srf	05014	6Mbps	_	-89	_	In.	
	OFDM	54Mbps	_	-73	_	dBm	
	HT20	MCS0	_	-89	_		
		MCS7	_	-70	_		
	Adjacent channel rejection						
	ССК	2Mbps	_	47	_		
	OFDM	6Mbps	_	36	_		
Racj		54Mbps	_	21	_	dB	
	LUTZO	MCS0	_	34	_	1	
	HT20	MCS7	_	18	_		
In LPL mode, sensitivity will be degraded by 1~2dB.							

2.4.5 8110N-UR radio Tx characteristics

Table 2-4-5 8110N-UR Tx characteristics for 2.4GHZ operation

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Ftx	Tx output frequency range	_	2.412	_	2.472	GHz
	Output power					
	802.11b mask compliant	1 Mbps	_	19	_	
D t	802.11g mask compliant	6 Mbps	_	19	_	
Pout	802.11g EVM compliant	54 Mbps	_	16	_	dBm
	802.11n HT20 mask compliant	MCS0	_	19	_	
	802.11n HT20 EVM compliant	MCS7	_	15	_	

Refer to IEEE802.11specification for TX spectrum limits:

- 802.11b mask(18.4.7.3)
- 802.11g mask(19.5.4)
- 802.11g EVM(17.3.9.6.3)
- 802.11n HT20 mask(20.3.21.1)
- 802.11n HT20 EVM(20.3.21.7.3)

2.5 Timing specifications

2.5.1 SPI master interface timing

Figure 2-3 8110N-UR SPI master timing

Table 2-5-1 SPI master timing

Parameter	Description	Min	Max	Unit
tCP	Clock period	30.7	1000	ns
tCSD	Chip select valid delay	-5.5	5	ns
tDD	Data valid delay	-5.5	5	ns
tDS	Data setup	3	_	ns
tDH	Data hold	0	_	ns

2.5.2 SPI slave interface timing

Table 2-5-2 SPI slave timing

Parameter	Description	Min	Max	Unit
fpp	Clock frequency	0	48	MHz
$t_{ m WL}$	Clock low time	8.3	_	ns
twH	Clock high time	8.33	_	ns
$t_{ m TLH}$	Clock rise time	_	2	ns
$t_{ m THL}$	Clock fall time	_	2	ns
tisu	Input setup time	5	_	ns
t _{IH}	Input hold time	5	_	ns
to_dly	Output delay	0	5	ns

3. Mechanical Interface Specification

Figure 3-1 8110N-UR module dimensions

Table 3-1 8110N-UR module dimensions

Label	Dimension(mm)
A	16
В	30
С	2.285
D	2.54
E	1.27
F	0.4
G	0.7
H(diameter)	0.5
Module height(including the RF shield)	2.6
Total height (with a coax cable plugged into the U.FL connector)	3.6

4. Manufacture information

4.1 Optical Inspection

After SMT, 8110N-UR PCBA will be automatically sent to do AOI (Automatic Optic Inspection). Longsys uses TR7500 to check every CHIP.

TR7500 features:

- 3CCD camera with 5 detectors
- All pictures have the sense of 3D
- Resolution: 10μm

TR7500 can detect blemishes during SMT to guarantee quality at the first step before IOE and fully functional test.

4.2 Rework

The module can be unsoldered from the host board if the Moisture Sensitivity Level (MSL) requirements are met as described in this data sheet. Never attempt a rework on the module itself, e.g. replacing individual components. Such actions will terminate warranty coverage.

4.3 Handling

The 8110N-UR contains a highly sensitive electronic circuitry. Handling without proper ESD protection may destroy or damage the chip permanently.

4.4 Soldering Recommendations

The 8110N-UR can be SMT on the board following the temperature curve graph:

Figure 4-1 8110N-UR Profile Proposal

5.Package Information TBD

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- —Reorient or relocate the receiving antenna.
- —Increase the separation between the equipment and receiver.
- —Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- —Consult the dealer or an experienced radio/TV technician for help.

FCC RF Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. To comply with FCC RF Exposure compliance requirements, this grant is applicable to only Mobile Configurations. The antennas used for the transmitter must be installed to provide a separation distance of at least 20cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.