Topic 3 - Trigonometry

Trigonometric Functions - The form asinx + bcosx

$$asinx + bcosx \equiv Rsin(x + \alpha)$$

$$asinx - bcosx \equiv Rsin(x - \alpha)$$

$$acosx + bsinx \equiv Rcos(x - \alpha)$$

$$acosx - bsinx \equiv Rcos(x + \alpha)$$

where R > 0 and α is an acute angle.

Example 1

Find the value of R and $\tan \alpha$ in these identities.

a
$$4\cos\theta + 3\sin\theta \equiv R\cos(\theta - \alpha)$$

a
$$4\cos\theta + 3\sin\theta \equiv R\cos(\theta - \alpha)$$
 b $2\cos\theta - 3\sin\theta \equiv R\cos(\theta + \alpha)$

c
$$7\cos\theta + \sin\theta \equiv R\sin(\theta + \alpha)$$

c
$$7\cos\theta + \sin\theta \equiv R\sin(\theta + \alpha)$$
 d $3\sin\theta - 4\cos\theta \equiv R\sin(\theta - \alpha)$

a 5,
$$\frac{3}{4}$$
 b $\sqrt{13}$, $\frac{3}{2}$ **c** $5\sqrt{2}$, 7 **d** 5, $\frac{4}{3}$

Example 2

Solve these equations for $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$.

a
$$\sqrt{3}\cos\theta + \sin\theta = 1$$

b
$$5\sin\theta - 12\cos\theta = 6$$

$$c \sin \theta + \cos \theta = \frac{1}{2}$$

d
$$2\cos 2\theta + \sin 2\theta = 1$$

a $\theta=90^{\circ}, 330^{\circ}$

b $\theta = 94.9^{\circ}, 219.9^{\circ}$

c $\theta = 114.3^{\circ}, 335.7^{\circ}$

d $\theta = 45^{\circ}, 225^{\circ}; 161.6^{\circ}, 341.6^{\circ}$

Example 3

- **a** Show that $3\cos\theta + 4\sin\theta$ may be written in the form $5\cos(\theta \alpha)$ where $\tan \alpha = \frac{4}{3}$.
- **b** Hence find the values of these functions at their local maxima and minima, giving the smallest positive values of θ , in degrees, for which they occur.

i
$$3\cos\theta + 4\sin\theta$$

ii
$$6+3\cos\theta+4\sin\theta$$

iii
$$10 - 3\cos\theta - 4\sin\theta$$

iv
$$\frac{1}{3\cos\theta + 4\sin\theta}$$

$$\mathbf{v} = \frac{1}{2 + 3\cos\theta + 4\sin\theta}$$

vi
$$\frac{7}{12 + 3\cos\theta + 4\sin\theta}$$

$$\mathbf{vii} \ (3\cos\theta + 4\sin\theta)^2$$

iv
$$\frac{1}{3\cos\theta + 4\sin\theta}$$
 v $\frac{1}{2 + 3\cos\theta + 4\sin\theta}$ vi $\frac{7}{12 + 3\cos\theta + 4\sin\theta}$ vii $(3\cos\theta + 4\sin\theta)^2$ viii $\frac{1}{1 + (3\cos\theta + 4\sin\theta)^2}$

b i 5, 53.1°; -5, 233.1° ii 11, 53.1°; 1, 233.1° iii 15, 233.1°; 5, 53.1° iv $-\frac{1}{5}$, 233.1°; $\frac{1}{5}$, 53.1° $\mathbf{v} = -\frac{1}{3}, 233.1^{\circ}; \frac{1}{7}, 53.1^{\circ}$

vi 1, 233.1°; $\frac{7}{17}$, 53.1°

vii 25, 53.1°; 0, 143.1°

viii 1, 143.1°; $\frac{1}{26}$, 53.1°

Exercise - The form asinx + bcosx.

Question 1

By expressing $8 \sin \theta - 6 \cos \theta$ in the form $R \sin(\theta - \alpha)$, solve the equation

$$8\sin\theta - 6\cos\theta = 7$$
,

for $0^{\circ} \le \theta \le 360^{\circ}$.

[7]

10sin (θ- 36.9°), 81.3°, 172.4°

Question 2

- Express $3\cos x^{\circ} + \sin x^{\circ}$ in the form $R\cos(x-\alpha)^{\circ}$ where R > 0and $0 < \alpha < 90$.
- (ii) Using your answer to part (a), or otherwise, solve the equation

$$6\cos^2 x^\circ + \sin 2x^\circ = 0,$$

for x in the interval $0 \le x \le 360$, giving your answers to 1 decimal place where appropriate.

$$i\sqrt{10}\cos(x-18.4)^{\circ}$$
, $ii) x = 90, 108.4 (1dp), 270, 288.4 (1dp)$

Question 3

- (i) Express $7\cos\theta + 24\sin\theta$ in the form $R\cos(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places. [3]
- (ii) Hence solve the equation

$$7\cos\theta + 24\sin\theta = 15$$
,

giving all solutions in the interval $0^{\circ} \le \theta \le 360^{\circ}$.

[4]

i)25, 73.74 ii) 20.6, 126.9

Question 4

Given that $f(x) = 4\cos x - b\sin x = \sqrt{20} \cos (x + \alpha)$, b > 0, $0 < \alpha < \frac{\pi}{2}$,

- (i) find the value of b and the value of $\tan \alpha$.
- (ii) Solve the equation $f(x) = \sqrt{5}$, for $0 < x < 2\pi$, giving your answer to 3 significant figures.
- (iii) Find the maximum value of $\frac{1}{f(x)+5}$, $x \in \Re$.

i) 2, ½ ii) 0.584, 4.77 iii) 1.89

Question 5

(i) Express $4 \sin \theta - 3 \cos \theta$ in the form $R \sin(\theta - \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, stating the value of α correct to 2 decimal places. [3]

Hence

(ii) solve the equation

$$4\sin\theta-3\cos\theta=2,$$

giving all values of θ such that $0^{\circ} < \theta < 360^{\circ}$,

[4]

[1]

(iii) write down the greatest value of $\frac{1}{4\sin\theta - 3\cos\theta + 6}$.

i)5,36.87 ii) 60.4,193.3 iii) 1

Question 6

It is given that $f(x) = 10 \cos^2 x - 8 \sin x \cos x + 4 \sin^2 x$.

Express f(x) in the form $a \cos 2x + b \sin 2x + c$, where a, b and c are constants. [3]

Hence, by rewriting f(x) in the form $R \cos(2x + \alpha) + c$, or otherwise, show that the greatest and least values of f(x) are 12 and 2 respectively. [3]

Question 7

Show that the equation $2 \sec \theta^{\circ} - \tan \theta^{\circ} = 3$ can be expressed in the form $R\cos (\theta - \alpha)^{\circ} = 2$ where the values of R and α with $(0 < \alpha < 90)$ are to be stated. Hence solve the equation $2 \sec \theta^{\circ} - \tan \theta^{\circ} = 3$, giving all values of θ such that $0 < \theta < 360$.

 $\sqrt{10}$, 18.4; 69.2, 327.7

- (i) Show that $\tan \theta + \cot \theta = 2\cos ec2\theta$. [2]
 - (ii) Find all solutions of the equation $2\cos ec2\theta = 3\tan\theta + 1$ for $-\pi \le \theta \le \pi$.
 - (iii) Express $3\cos\theta \sin\theta$ in the form $R\cos(\theta + \alpha)$ where R > 0and $0^{\circ} < \alpha < 90^{\circ}$. Hence or otherwise, solve the equation $3\cos\theta - \sin\theta = -1 \text{ for } -180^{\circ} \le \theta \le 180^{\circ}.$ [4]

ii) 0.464, -0.786, -2.68, 2.36 iii) 90, -126.9