Geninar 7

1. Studiati convergența simplă și uniformă fintre sumatocule siruri de functii:

a) $f_n: [0, \infty) \rightarrow \mathbb{R}_1 f(\mathfrak{X}) = \frac{\mathfrak{X}}{\mathfrak{X}+n}$

Lol: Convergnta rimpla

Fix xx [an).

=> fn - s> f, unde $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \frac{x}{x+n} = 0$

 $f: [o, \infty) \rightarrow \mathbb{R}, f(x) = 0.$

Convergenta unisoma

 $\frac{n}{n+n} = \frac{1}{2} \xrightarrow{n \to \infty} 0 \Rightarrow f_n \xrightarrow{n \to \infty} f_n$

 $\forall f_n: [2,3] \rightarrow \mathbb{R}, f_n(x) = \frac{x}{x+n}$

Id: Convergenta simpla

Fix *E[2/3].

 $\frac{\mathcal{X}}{\mathcal{X}+\mathcal{N}} = 0 \Rightarrow \text{fm} \xrightarrow{\Lambda} f, \text{ unde } f: [2:3] \rightarrow \mathbb{R},$ $f(\mathcal{X}) = 0.$ $\lim_{n\to\infty} f_n(t) = \lim_{n\to\infty}$

Genvergenta uniformà $f_{n}(x) - f(x) = \frac{x}{x+n} - 0 = \frac{x}{x+n}$ Fie $f_n: [2,3] \rightarrow R$, $f_n(x) = \frac{x}{x+n}$. $\int_{N}^{1}(x) = \frac{x+n-x}{(x+n)^{2}} - \frac{n}{(x+n)^{2}} > 0 + x \in [2,3], + n \in \mathbb{N}.$ Dei for este crescatoare + nFF. Dei $_{\frac{1}{2\sqrt{3}}}\left|f_{n}(x)-f(x)\right|=\frac{3}{3+n}$ $\xrightarrow{n\to\infty}$ \circ . tradar from N-100 f. a e) fn: [0,00) -> R, fn(x)= /x2+1 +n +n E/x. St: Convergența simplă Fir xe [0,10). $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} |x^2 + \frac{1}{n} = |x| = x \Rightarrow f_n \xrightarrow{n\to\infty} f, \text{ under$

$$\frac{\mathcal{X}([0],\infty)}{\mathcal{X}([0],\infty)} = \frac{\mathcal{X}([0],\infty)}{\mathcal{X}([0],\infty)} = \frac{\mathcal{$$

$$= \sqrt{\frac{1}{2}} \left| - \frac{\sqrt{12}}{\sqrt{2}} \right| = \sqrt{\frac{\sqrt{12}}{2}}$$

$$g_{n}(t) = \frac{x + n - x}{(x + n)^{2}} = \frac{n}{(x + n)^{2}} > 0 + x \in [0, \infty), \forall n \in \mathbb{N}^{+}$$

Dui My
$$\frac{\pm}{\pm +n} = \lim_{x \to \infty} \frac{\pm}{\pm +n} = 1$$
 $\xrightarrow{x \to \infty} D$.

lim
$$f_n(x) = \lim_{n \to \infty} x^n = \begin{cases} 0 ; x \in (0,1) = 0 \\ 1 ; x = 1 \end{cases}$$

under $f: (0,1) \to \mathbb{R}, f(x) = \begin{cases} 0 ; x \in (0,1) \\ 1 ; x = 1, \end{cases}$

$$\frac{\langle \xi, u, \xi \rangle}{\int n}$$
 for $\frac{\langle \xi, u, \xi \rangle}{\int n}$ for $\frac{\langle \xi, u, \xi, u, \xi \rangle}{\int n}$ for $\frac{\langle \xi, u, \xi, u, \xi \rangle}{\int n}$ for $\frac{\langle \xi, u, \xi, u, \xi \rangle}{\int n}$ for $\frac{\langle \xi, u, \xi, u, \xi, u, \xi \rangle}{\int n}$ for $\frac{\langle \xi, u, \xi, u,$

Fig.
$$4e \left[\frac{1}{2}, 1\right]$$
.

$$f_{N}(x) = \frac{1+x}{\ell^{2}x} + n \in \mathbb{N}^{*}$$

$$\frac{\frac{1}{2}}{q(x)} = \frac{1}{2-2}$$

$$\frac{1}{2(x)} = \frac{1}{2-2}$$

Dei 1/2) <0 4 xt[[1], i.l. Hx< e2 4 xt[[1/2]], i.e. $0 < \frac{HH}{\rho^{2H}} < 1 \forall He \left[\frac{1}{2}\right]$. trem $f_n(x) = (f_1(x))^n \xrightarrow{n \to \infty} 0$. Deci (+ x) (fr 1) f, unde f: [\frac{1}{2},1] -> R, f(x) =0, 1) $\begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$ multime sompactà. 2) for continua +ne | *, f. continuà. 3) $\propto \frac{x+1}{2^{2x}} < 1 + x \in \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix} =) \left(\frac{x+1}{2^{2x}} \right)^{x} > \left(\frac{x+1}{2^{2x}} \right)^{x} + x \in \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$ =) (fn) (strict) describer. 4) fn ~~~ . Jeremei lui Dini weelta sa fn non f. D

g) fn: [1/2, 1/2] -> P, fn(x)= cos x + n E H*. Jel: 6, 1. Tu & [1/2, 7/2]. $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} f_n = \lim_{n\to\infty} f_n$ under ていまらしりり み たを「ちって」 $f: \left[\frac{1}{2}, \frac{3}{2}\right] \rightarrow \mathbb{R}, \quad f(x) = 0.$ G.W. > sorx ute durinscontrant => for durinscontrant

* HIH trem: 1) fn: [2,1] -> R, fn(x)= cos^x + nEnt. 2) In discussatione + ne= * 3) fm 1/2 /. 4) f continua. bonform Tevenei lui Polya rezulta ca fri não f. D 2. Studiati convergența simpla și uniformă pentul (fn)n si (fn)n, unde:

a)
$$f_{n}: [0,T] \rightarrow \mathbb{R}$$
, $f_{n}(x) = \frac{tot_{n}x}{n} + n \in \mathbb{R}^{+}$.

Let $x \in [0,T]$.

The $x \in [0,T]$.

therem $x = \frac{\pi}{2} \in [0, \pi]$. thatin ia (fn (=) nu este cono. $f_{4m}\left(\frac{1}{2}\right) = -\lim_{N \to \infty} f_{n}\left(\frac{1}{2}\right) = 0 \xrightarrow{N \to \infty} 0.$ $f_{4n+1}\left(\frac{1}{2}\right) = -\sin\left(\frac{1}{4n}\frac{1}{2} + \frac{1}{2}\right) = -\sin\frac{\pi}{2} = -1 \xrightarrow{n-n} 1$ Deci $\neq \lim_{n\to\infty} f_n(\frac{1}{2}).$ Azadar (fm)n nu est simple convergent. France (fn) nu este simple convergent resultà cà (fn) n me este uniform convergent. $\rightarrow R$, $fn(t) = \frac{\text{arcty } n \times}{M} + n \in \mathbb{R}^*$ (r) fn: R-Sol: Pentru (fn)n

Fix xER.

Deir lim fn(x)=0. Arabar fn 1/2 f, unde

f: R-R, f(t) = 0.

Y.W.

 $\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = \sup_{x \in \mathbb{R}} |\frac{\arctan_x}{n} - 0| =$

 $= \sum_{n=1}^{\infty} \frac{|n|^{n}}{n} = \sum_{n=1}^{\infty} \frac{|n|^{n}}{n}$

 $\Rightarrow f_n \xrightarrow[n\to\infty]{} f_i D$

Tentre (fr.)

 $f_n(x) = \frac{1}{x}$, $\frac{1}{1+n^2x^2}$, $x = \frac{1}{1+n^2x^2}$ $+x \in \mathbb{R}$, $+n \in \mathbb{R}$.

J.N.

Fix XER.

 $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \frac{1}{1 + n^2 x^2} = \begin{cases} 1; x=0 \\ 0; x \neq 0 \end{cases}$

=) $f_n \xrightarrow{N \to \infty} g$, unde $g: \mathbb{R} \to \mathbb{R}, g(x) = \begin{cases} 1; x = 0 \\ 0; x \neq 0. \end{cases}$ $f_n \xrightarrow{N \to \infty} f_n \xrightarrow{N \to \infty} f_n \xrightarrow{N \to \infty} g$ $g \xrightarrow{N \to \infty} f_n \xrightarrow{N \to \infty} g$ $g \xrightarrow{N \to \infty} f_n \xrightarrow{N \to \infty} g$