Detection of communities in social networks.

Rahul Bajaj Manu Bansal

Guide : Prof. Anil Vullikanti NDSSL , Virginia Tech.

Introduction

- "community structures"
- Tendency of vertices to divide into groups with dense connections within groups and only sparser connections between them .
- Social networks, biochemical networks, information networks such as the web have all been shown to posses strong community structures
- Clustering

Clustering Objectives

- Traditional definition of a "good" clustering:
 - Points assigned to same cluster should be highly similar.
 - 2. Points assigned to different clusters should be highly dissimilar.
- Apply these objectives to our graph representation

- 1. Maximize weight of within-group connections
- 2. Minimize weight of between-group connections

Graph Cuts

- Partitioning objectives as a function of the "edge cut" of the partition.
- Cut: Set of edges with only one vertex in a group.

$$cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

Graph Cut Criteria

- Criterion: Minimum-cut
 - Minimise weight of connections between groups $\min cut(A,B)$
- Degenerate case:

- Problem:
 - Only considers external cluster connections
 - Does not consider internal cluster density

Problem Statement

Courtesy: M.E.J. Newman, 2006.

- We had to come up with an algorithm that could divide a social network into clusters.
- The problem was that the algorithm should scale up for graphs containing millions of nodes.
- The quality measure should be such that that it helps analysis of disease spread in the network.

The Quest

- In our quest for the algorithm we encountered the work of computer scientists, mathematicians, physicists working on the problem.
- Spread of Epidemics through a network is related to the spectral radius of the graph[A. Ganesh]
- The spectral radius is related to the conductance.
- Kannan, Vetta and Vempala were using conductance as their quality measure.
- We also looked into the modularity based algorithms proposed by Mark Newman.

Conductance

The conductance of a cut (S, \bar{S}) in G is denoted by:

$$\phi(S) = \frac{\sum_{i \in S, j \notin S} a_{ij}}{\min(a(S), a(\bar{S}))}.$$

Here
$$a(S) = a(S, V) = \sum_{i \in S} \sum_{j \in V} a_{ij}$$
.

Numerator =0.3

Denominator=4.7

The Algorithm

- Step 1 :Normalize the Adjacency matrix
 - Ã=I L

$$L=(D-A)/d$$

- Step 2 :Find the second Eigen vector of A.
- Step 3 :Sort the components of the eigenvector.
- Step 4 :Min-conductance cut based on the sorted eigenvector
- Step 5. If the conductance of the cut is less than the specified measure α , recurse on the cut.
- Step 6 : local refining on the clusters
- Running time : O(kMlog(n))

Differences between this algorithm and the original one proposed by Kannan, et al.

 Kannan et al had used their algorithm mainly on document-term matrices, searching web documents, etc but not in detection of communities in social networks.

(As far as their paper is concerned)

 We are using a different form of normalization. Though its not producing the graph Laplacian the eigenvectors of our normalized matrix is same as that of the graph Laplacian.

Finding the second eigenvector: Power Method

- Used for computing the leading Eigen vector of the matrix.
- One matrix-vector multiplication in each iteration.
- The rate of convergence depends on the ratio between the corresponding eigenvalues.
- Steps:
 - Pick up a random vector vector. In our case because of the normalization, the leading eigenvector is unity.)
 - Normalize u
 - Set v= Av
 - Repeat above two steps O(log n) times.

Experiments

Network: <u>Time(seconds)</u>	<u>Nodes</u>
Zachary karate club network 0.992	34
Dolphin social network 1.532	62
Political books network3.023	104
Political blogs network61.139	1490
Astro collaborator network2 hours	16000

Zachary Karate Club Network.

Dolphin Social Network

Network of political books.

Alternative Approach To Find The Eigen Vector

Deflation Method:

Involves a Dense matrix-vector multiplication in second step.

Was doubling the running time.

Other Clustering Approaches

- Various "modularity" based algorithms by Mark Newman.
- In 'Finding community structure in networks using the eigenvectors of matrices', Newman suggests a method which involves computing the leading eigenvector of Modularity Matrix.
- ·Modularity matrix is **not sparse**. As a result the sparse matrix-vector multiplication in power method becomes a dense matrix-vector multiplication.
- ·We also looked into the work of Wakita, Tsurumi from Tokyo Institute of Technology. They had implemented a faster version of an algorithm proposed by Clauset, Newman and Moore(2004)

Future work

- A strategy of **refining the clusters** obtained from the algorithm.
- Scaling up for the Episims Graph (which has 1.6 million nodes.)
 - •Introducing some heuristics for the matrix multiplication
 - Some local optimization
- Analyze the disease spread on the clusters
- •Relation between Modularity and Conductance.

References

- 1. On clustering: Good, Bad And Spectral. [Kannan, et al]
- . On a Recursive Spectral Algorithm for Clustering from Pair wise Similarities.[Cheng, Kannan, Vempala, Wang]
- . A divide And Merge Methodology for Clustering [Cheng, Kannan, Vempala, Wang]
- . Finding community structure in networks using eigenvectors of matrices.[M.E.] Newman]
- . Modularity And Community Structure In networks[M.E.J Newman]
- . The Effect of Network Topology On the Spread of Epidemics [A. Ganesh]
- 7. A Tutorial On spectral Clustering[Ulrike Von Luxburg]

Thank You.