# Show Me a Funny Face

Dylan Finn, Jennifer Gulmohamad, Loyal Greene, Annie Zeng

### Outline

- Motivation
- Proposed Idea
- Similar Projects
- Tools and Technologies
- Implementation
- Demo
- Summary/Overview
- Future Directions/Considerations
- Conclusion

#### Motivation

- Autism Spectrum Disorder (ASD) is a developmental disability caused by differences in the brain that affect how these people learn, communicate, and interact with others
- According to the CDC, the ASD rates in the US increased from 1 in 150 (2000), 1 in 54 (2016), and to 1 in 44 (2018)
- Common symptoms
  - Restrictive/repetitive behaviors
  - Challenges with social interactions/situations/communication
    - Little to no eye contact
    - Facial expression recognition/display difficult
      - Sometimes incorrect expression made in social situation

# Proposed Idea

- Create application to help people with autism (specifically children)
  - Identify facial expressions
  - Locate and understand social situations
  - Practice facial expressions
- Webcam module that will identify facial expressions in real time
  - Train facial recognition model for webcam module

# Similar Projects

- Kairos
- FaceReader
- MorphCast
- Paul Ekman Group

#### Kairos

- Face Recognition using cloud API
- Pricing ranges from \$19-\$499/month
  - With additional features depending on plan
- Several demos/API examples made available on Github
- Creates JSON responses using a script
  - Emotion charts
  - Facial feature points
- Webcam module possible



#### FaceReader

- Facial expression analysis
  - o Classified into happy, sad, angry, surprised, scared, disgust, neutral
  - Custom possible
- East-Asian and baby models available
- Additional modules possible
- Mostly for research
  - \$2,420—\$10,340/year
  - Most cited facial expression recognition software



# MorphCast

- Interactive videos based on viewer reaction/expressions
- AI HTML5 SDK also available (demo possible with own webcam)
  - JavaScript
- Pay as you go (dependent on amount and average duration of views)
  - Costs may vary from month to month



## Paul Ekman Group

- Three different subscription packages for training
  - o \$119-\$299
- Created by Dr. Paul Ekman
  - Well known for his research
  - Research used to identify seven universal facial expressions
    - Classifications in artificial intelligence, deep learning, neural networks utilize this research
- Closest to our project usagewise



# Show Me a Funny Face!

- Specific to autistic needs
- Focus not only on facial expression detection
- Develop an app to help <u>learn</u> facial expressions
  - Easily accessible
  - No paywall
- Practice facial expressions with live feedback

#### Menu UI Diagram



## Tools and Technologies

- Tensorflow and Keras
  - Machine learning
- Kivy
  - FrontEnd Framework
- OpenCV
  - Computer vision
- Database system
  - Local collection of JSON files

## **DFD**



# Child DFD - Create User Account/Login





# Child DFD - Quiz Selection





# Implementation - Frontend

 The GUI was coded in Python using PyCharm and was implemented using Kivy.



# OpenCV - For Display

OpenCV was used to access the user's webcam in order to capture facial expressions during the quizzes





#### Implementation - Backend

- Machine Learning with Tensorflow and Keras
- Convolutional 2D Neural Network
  - Allows for filters and classification
  - Trained model with 4 emotions
    - Multiclass classification of Happy, Sad, Angry, Surprised
    - Training dataset supplied by Kaggle

```
model = tf.keras.models.Sequential()
model.add(keras.Input(shape=(200, 200, 3)))
model.add(tf.keras.layers.Conv2D(16, (3, 3), padding='same', activation='relu'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.MaxPool2D(2, 2))

model.add(tf.keras.layers.Conv2D(32, (3, 3), padding='same', activation='relu'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.MaxPool2D(2, 2))

model.add(tf.keras.layers.Sonv2D(64, (3, 3), padding='same', activation='relu'))
model.add(tf.keras.layers.BatchNormalization())
model.add(tf.keras.layers.MaxPool2D(2, 2))
```

# Implementation - Backend

- Multiclass classification
  - Categorical parameter for model.fit()
  - Softmax for dense layer
- Compile
  - Ir of 0.0001
- Results
  - Accuracy of 99%

```
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(512, activation='relu'))
model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.Dense(256, activation='relu'))
model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.Dense(120, activation='relu'))
model.add(tf.keras.layers.BatchNormalization())

model.add(tf.keras.layers.Dense(4, activation='softmax'))

opt = tf.keras.optimizers.Adam(lr=0.0001)
model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=['accuracy'])

model.fit(train_dataset, batch_size=120, steps_per_epoch=200, epochs=15)
```

#### OpenCV For Classification

- Stream webcam feed to OpenCV
- Use pre-packaged haar cascade classifier to identify faces
- Capture results of facial classifier as grayscale image
- Send image to our model and return prediction

```
def update(self, *args):
   height, width = frame.shape[:2]
   gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
   faces = self.face.detectMultiScale(gray, minNeighbors=5, scaleFactor=1.1, minSize=(25, 25))
       facex = cv2.cvtColor(facex, cv2.COLOR_BGR2GRAY)
       facex = np.expand_dims(facex, axis=0)
       prepred_face = self.img_model.predict(facex)
       prediction = np.argmax(prepred_face, axis=1)
       if prediction[0] == 0:
       if prediction[0] == 1:
       if prediction[0] == 2:
       if prediction[0] == 3:
```

# Demo

# Summary/Overview

- Create application that would help with facial recognition (specifically geared towards autistic children)
- Learn required software for programming application.
- Implement and test.
- Deploy.

# Future Directions/Considerations

- User Interface
  - Different color palettes/more accessibility
- Additional features
  - More training for models
  - More questions, situations
  - Information/educational section about the different expressions?
  - More catered statistics
    - Overall performance/record
    - Which emotions they tend to get wrong
      - Utilize user statistics to query questions database
    - Improvements

#### Conclusion

- Challenges
  - Conflicting schedules
  - Time constraints
    - Change of project topic
      - Less time to work on project
  - Navigating new development tools/environments
  - Usage rights for facial expression dataset limitations
- Learning outcomes
  - Communication

# Application of Knowledge

#### Dylan:

- Data science courses
- Software Engineering
- Personal and Work related projects

#### Jennifer:

- Data mining
- Big DataAnalytics
  - Experience from internships

#### Annie:

- Software engineering
- Program language concepts
- Internet programming

#### Loyal:

- SoftwareEngineering
- Program language concepts

#### Team Member Contribution

- Dylan: Computer Vision, GUI
- Jennifer: Machine Learning
- Annie: Assets and research
- Loyal: Frontend

#### References

[1]]"MorphCast - Best Face and Emotion Recognition AI SDK | Face Recognition Javascript", *MorphCast*. [Online]. Available: https://www.morphcast.com/sdk/.

[2]S. Rucker, "Emotion Demo", *GitHub*. [Online]. Available: https://github.com/kairosinc/api-examples/blob/master/python-demo/static/docs/emotion/Emotion.md.

[3]"Micro Expressions Training Tools", *Paul Ekman Group*. [Online]. Available: https://www.paulekman.com/micro-expressions-training-tools/.

[4]"Face Recognition Features from Kairos", Kairos. [Online]. Available: https://www.kairos.com/features.

[5]"Autism Spectrum Disorder", *National Institute of Mental Health (NIMH)*. [Online]. Available: https://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-asd.

[6] Maenner MJ, Shaw KA, Bakian AV, et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2018. MMWR Surveill Summ 2021;70(No. SS-11):1-16. DOI: <a href="http://dx.doi.org/10.15585/mmwr.ss7011a1">http://dx.doi.org/10.15585/mmwr.ss7011a1</a>

[7] https://www.kaggle.com/datasets/chiragsoni/ferdata