Problème n°2: (Analyse Factorielle des Correspondances)

Au cours d'une enquête sur un échantillon de taille 60, on a obtenu le tableau de contingence suivant:

Ensemble	Ensemble <i>J</i>	
I	(paramètres)	
(Individus)	1	2
1	10	10
2	5	15
3	15	5

Réaliser une Analyse Factorielle des correspondances (AFC) sur ces données, en répondant aux questions suivantes:

- 1) Donner le tableau des probabilités conjointes et marginales, associé au tableau précédent. (Conseil : Utiliser des fractions au lieu des nombres décimales !)
- 2) Dans l'espace IR^2 , on représente un nuage B(I) des points M_i avec $i \in I$ de coordonnées suivant des axes normalisés.

 - a) Donner tous les points M_i du nuage B(I) en explicitant leurs coordonnées.
 b) Calculer la distance χ² entre les différentes paires des points de nuage B(I).
- 3) a) Déterminer la matrice des variances-covariances W du nuage B(I).
 - b) Déterminer les valeurs propres de la matrice W.
 - c) En déduire la variabilité totale du nuage B(I).
- 4) On projette, maintenant, le nuage B(I) orthogonalement sur un axe, et on note C(I) le nuage projeté. Donner la variabilité totale de nuage projeté C(I).
- 5) Calculer la variabilité expliquée par la projection du nuage B(I).