1. Let function f be defined by the polynomial below:

$$f(x) = -3x^4 - 5x^3 + 8x^2 + 9x + 7$$

Draw lines that match each function reflection with its polynomial:

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions $f,\,g,$ and h are defined by the table below.

\boldsymbol{x}	f(x)	g(x)	$\frac{h(x)}{3}$
1	2	6	3
2	7	3	4
3	8	4	5
4	1	7	7
5	4	1	9
6	6	8	8
7	9	5	1
8	5	9	2
9	3	2	6

3. Evaluate h(7).

$$h(7) = 1$$

4. Evaluate $f^{-1}(8)$.

$$f^{-1}(8) = 3$$

5. Assuming g is an **odd** function, evaluate g(-5).

If function g is odd, then

$$g(-5) = -1$$

6. Assuming h is an **even** function, evaluate h(-6).

If function h is even, then

$$h(-6) = 8$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^2 - 1$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^2 - 1$$
$$p(-x) = -x^2 - 1$$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(-x^2 - 1)$$

 $-p(-x) = x^2 + 1$

c. Is polynomial p even, odd, or neither?

even

d. Explain how you know the answer to part c.

We see that p(x) = p(-x) for all x because p(x) and p(-x) are equivalent polynomials. Thus function p satisfies the criterion for being an even function.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = \frac{x}{9} + 4$$

a. Evaluate f(99).

step 1: divide by 9 step 2: add 4

$$f(99) = \frac{(99)}{9} + 4$$
$$f(99) = 15$$

b. Evaluate $f^{-1}(7)$.

step 1: subtract 4 step 2: multiply by 9

$$f^{-1}(x) = 9(x-4)$$

$$f^{-1}(7) = 9((7)-4)$$

$$f^{-1}(7) = 27$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(2).

$$b(2) = 7$$

b. Evaluate $b^{-1}(5)$.

$$b^{-1}(5) = 3$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	-5	5	5	-5
-1	7	-7	-7	7
0	0	0	0	0
1	-7	7	7	-7
2	5	-5	-5	5

b. Is function f even, odd, or neither?

odd

c. How do you know the answer to part b?

Function f is odd because column -f(-x) matches column f(x) exactly.