数值常微分

张阳

2022年3月10日

目录

1	各阶数值微分	3
	1.1 一阶微分	3
	1.1.1 向前差分	3
	1.1.2 向后差分	3
	1.1.3 中心差分	
	1.2 二阶微分	
9	रुद्धः । विद्व	3
4	第一題	
	2.1 题目	
	2.2 数值解	3
3	第二题	4
	3.1 题目	4
	3.2 数值解	4
4	第三题	4
_	4.1 题目	4
	4.2 数值解	
	4.2 双色/研 · · · · · · · · · · · · · · · · · · ·	1
5	第四题	5
	5.1 题目	5
	5.2 数值解	5
6	第五题	5
_	6.1 题目	5
	6.2 数值解	
	0.2	J
7	第六题	6
	7.1 题目	6
	7.9 粉店碗	6

8	5七题	6
	1 题目	6
	2 数值解	6
9	5八题	7
	1 题目	7
	2 数值解	7
10	吴差分析	8

1 各阶数值微分

1 各阶数值微分

- 1.1 一阶微分
- 1.1.1 向前差分

$$u'_F(x) = \frac{u(x+h) - u(x)}{h} - \frac{h}{2}u''(x+\xi)$$

1.1.2 向后差分

$$u'_F(x) = \frac{u(x+h) - u(x)}{h} - \frac{h}{2}u''(x+\xi)$$

1.1.3 中心差分

$$u_C'(x) = \frac{u(x+h) - u(x-h)}{2h} - \frac{h^2}{6}u^{(3)}(x+\xi)$$

1.2 二阶微分

$$u''(x) = \frac{u(x+h) - 2u(x) + u(x-h)}{h^2} + \cdots$$

2 第一题

2.1 题目

$$y'' + 10y = 0, x \in (0, 1); y(0) = 0, y(1) = 1$$

2.2 数值解

$$\begin{cases}
 n = 100, h = \frac{1}{100}, y_0 = 0, y_n = 0 \\
 \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + 10y_i = 0, i = 1, 2, \dots, n-1
\end{cases}$$
(2.1)

写成矩阵形式

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & (10h^2 - 2) & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & (10h^2 - 2) & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 & \vdots \\ 0 & 0 & 0 & 0 & \cdots & (10h^2 - 2) & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

$$(2.2)$$

3 第二题

3.1 题目

$$y'' + 400y = 40\cos(20x), x \in (0,1); y(0) = 0, y(1) = 0$$

3.2 数值解

$$\begin{cases}
 n = 100, h = \frac{1}{100}, y_0 = 0, y_n = 0 \\
 \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + 400y_i = 40\cos(20x_i), i = 1, 2, \dots, n - 1
\end{cases}$$
(3.1)

写成矩阵形式

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & (400h^2 - 2) & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & (400h^2 - 2) & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & (400h^2 - 2) & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{bmatrix} = \begin{bmatrix} 0 \\ h^2 40\cos(20x_1) \\ h^2 40\cos(20x_2) \\ \vdots \\ h^2 40\cos(20x_{n-1}) \\ 1 \end{bmatrix}$$
(3.2)

4 第三题

4.1 题目

$$y'' + 100xy = 0, x \in (0, 1); y'(0) = 0, y(1) = 1$$

4.2 数值解

$$\begin{cases}
 n = 100, h = \frac{1}{100}, y_1 = 1 \\
 \frac{y_1 - y_0}{h} = 0 \\
 \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + 100x_i y_i = 0, i = 1, 2, \dots, n-1
\end{cases}$$
(4.1)

写成矩阵形式

$$\begin{bmatrix} 1 & -1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & (100x_1h^2 - 2) & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & (100x_2h^2 - 2) & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & 0 & \vdots \\ 0 & 0 & 0 & 0 & \cdots & (100x_{n-1}h^2 - 2) & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

$$(4.2)$$

5 第四题

5.1 题目

$$y'' + xy' - 2y = 2, x \in (0, 1); y(0) = 0, y(1) = 1$$

5.2 数值解

$$\begin{cases}
 n = 100, h = \frac{1}{100}, y_0 = 0, y_1 = 1 \\
 \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + x_i \frac{y_{i+1} - y_{i-1}}{2h} - 2y_i = 2, i = 1, 2, \dots, n-1
\end{cases}$$
(5.1)

写成矩阵形式

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ (2-x_1h) & -(4+4h^2) & (2+x_1h) & 0 & \cdots & 0 & 0 \\ 0 & (2-x_2h) & -(4+4h^2) & (2+x_2h) & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -(4+4h^2) & (2+x_{n-1}h) \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{bmatrix} = \begin{bmatrix} 0 \\ 4h^2 \\ 4h^2 \\ \vdots \\ 4h^2 \\ 1 \end{bmatrix}$$
(5.2)

6 第五题

6.1 题目

$$y'' + x^3y' - 3x^2y = 6x, x \in (0, 1); y(0) = 0, y(1) = 1$$

6.2 数值解

$$\begin{cases}
 n = 100, h = \frac{1}{100}, y_0 = 0, y_1 = 1 \\
 \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + x_i^3 \frac{y_{i+1} - y_{i-1}}{2h} - 3x_i^3 y_i = 6x_i, i = 1, 2, \dots, n-1
\end{cases}$$
(6.1)

即

$$\begin{cases}
 n = 100, h = \frac{1}{100}, y_0 = 0, y_1 = 1 \\
 (2 - x_i^3 h) y_{i-1} - (4 + 6h^2 x_i^3) y_i + (2 + x_i^3 h) y_{i+1} = 12x_i h^2, i = 1, 2, \dots, n-1
\end{cases}$$
(6.2)

7 第六题 6

写成矩阵形式

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ (2-x_1^3h) & -(4+6h^2x_1^3) & (2+x_1^3h) & 0 & \cdots & 0 & 0 \\ 0 & (2-x_2^3h) & -(4+6h^2x_2^3) & (2+x_2^3h) & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & 0 & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -(4+6h^2x_{n-1}^3) & (2+x_{n-1}^3h) \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{bmatrix} = \begin{bmatrix} 0 \\ 12x_1h^2 \\ 12x_2h^2 \\ \vdots \\ 12x_{n-1}h^2 \\ 1 \end{bmatrix}$$

$$(6.3)$$

7 第六题

7.1 题目

$$y'' + y = \tan(x), x \in (0,1); y(0) = 0, y(1) = 1$$

7.2 数值解

$$\begin{cases}
 n = 100, h = \frac{1}{100}, y_0 = 0, y_n = 1 \\
 \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + y_i = \tan(x_i), i = 1, 2, \dots, n - 1
\end{cases}$$
(7.1)

写成矩阵形式

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 1 & (h^{2} - 2) & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & (h^{2} - 2) & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & 0 & \vdots \\ 0 & 0 & 0 & 0 & \cdots & (h^{2} - 2) & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} y_{0} \\ y_{1} \\ y_{2} \\ \vdots \\ y_{n-1} \\ y_{n} \end{bmatrix} = \begin{bmatrix} 0 \\ h^{2} \tan x_{1} \\ h^{2} \tan x_{2} \\ \vdots \\ h^{2} \tan x_{n-1} \\ 1 \end{bmatrix}$$
(7.2)

8 第七题

8.1 题目

$$y'' + 100x^2y' - xy = 0, x \in (0, 1); y(0) = 0, y(1) = 1$$

8.2 数值解

$$\begin{cases}
 n = 100, h = \frac{1}{100}, y_0 = 0, y_1 = 1 \\
 \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + 100x_i^2 \frac{y_{i+1} - y_{i-1}}{2h} - x_i y_i = 0, i = 1, 2, \dots, n-1
\end{cases}$$
(8.1)

9 第八题 7

即

$$\begin{cases}
 n = 100, h = \frac{1}{100}, y_0 = 0, y_1 = 1 \\
 (2 - 100x_i^2 h)y_{i-1} - (4 + 2h^2 x_i)y_i + (2 + 100x_i^2 h)y_{i+1} = 0, i = 1, 2, \dots, n - 1
\end{cases}$$
(8.2)

写成矩阵形式

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ (2-100x_1^2h) & -(4+2h^2x_1) & (2+100x_1^2h) & 0 & \cdots & 0 & 0 \\ 0 & (2-100x_2^2h) & -(4+2h^2x_2) & (2+100x_2^2h) & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -(4+2h^2x_{i-1}) & (2+100x_{n-1}^2h) \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

9 第八题

9.1 题目

$$y'' + 2x^2y' - 2xy = 0, x \in (0, 1); y(0) = 0, y(1) = 1$$

9.2 数值解

$$\begin{cases}
 n = 100, h = \frac{1}{100}, y_0 = 0, y_1 = 1 \\
 \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} + 2x_i^2 \frac{y_{i+1} - y_{i-1}}{2h} - 2x_i y_i = 0, i = 1, 2, \dots, n-1
\end{cases}$$
(9.1)

即

$$\begin{cases}
 n = 100, h = \frac{1}{100}, y_0 = 0, y_1 = 1 \\
 (2 - 2x_i^2 h)y_{i-1} - (4 + 4h^2 x_i)y_i + (2 + 2x_i^2 h)y_{i+1} = 0, i = 1, 2, \dots, n-1
\end{cases}$$
(9.2)

写成矩阵形式

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ (2-2x_1^2h) & -(4+4h^2x_1) & (2+2x_1^2h) & 0 & \cdots & 0 & 0 \\ 0 & (2-2x_2^2h) & -(4+4h^2x_2) & (2+2x_2^2h) & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & 0 & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -(4+4h^2x_{n-1}) & (2+2x_{n-1}^2h) \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

$$(9.3)$$

10 误差分析 8

10 误差分析

有限差分法的潜在的误差来源是中心差分公式的截断误差,以及在求解方程组时带来的误差。此处我们调用的是 MATLAB 内置的求解方程组的算法,精度较高。因此,截断误差占优,误差是 $O(h^2)$,因而我们期望随着子区间 n+1 升高,误差降低为 $O(h^2)$.

我们对于问题 7 测试了这种方差,图 xx 显示了最大误差对于不同 n 取值对应的解的误差 E 的量级。在 log-log 图中,误差作为 n 的函数,其本质上是一条斜率为 -2 的直线,意味着,lg $E \approx \alpha + b \lg n$,其中 b = -2;换句话说,与我们预期一致,误差为 $E \approx K n^{-2}$