MA557 Homework 12

Carlos Salinas

December 9, 2015

CARLOS SALINAS PROBLEM 12.1

Problem 12.1

Let R be a Noetherian domain. Show that the following are equivalent:

- (i) R is a unique factorization domain
- (ii) every prime ideal of R of height one is principal
- (iii) R is normal with Cl(R) = 0.

Proof. (i) \Longrightarrow (ii) Suppose R is a Noetherian domain. Let \mathfrak{p} be a height one prime. Then there exists at least one nonzero element $x \in \mathfrak{p}$. Let $x = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ be the factorization of x into irreducible (prime) elements of R. Set $p := p_i$ for any prime in the factorization of x. Then the ideal generated by p is a prime ideal contained in \mathfrak{p} , i.e., $\langle p \rangle \subset \mathfrak{p}$. But $\operatorname{ht}(\mathfrak{p}) = 1$. Thus, $\langle p \rangle = \mathfrak{p}$.

(ii) \Longrightarrow (ii) Suppose that every height one prime ideal in R is principal. To show that R is a UFD, it suffices to show that every irreducible element p is a prime element, that is, $\langle p \rangle$ is a prime ideal. Let $\mathfrak p$ be the minimal prime containing p. Since $\mathfrak p$ is principal, $\mathfrak p = \langle x \rangle$ for some $x \in \mathfrak p$. Thus, p = xy for some $y \in R$. But p is prime hence, irreducible so either x or y is a unit. If x is a unit, then $\mathfrak p = R$, which is a contradiction. Thus, y must be a unit and we see that $\langle p \rangle = \langle xy \rangle = \mathfrak p$ is prime.

Now, for the following implications we need to know a couple of denfinitions and a theorem: Let D(R) denote the set of divisional fractional R-ideals and F(R) denote the set of all principal fractional ideals. Then the divisor class group of R is the quotient Cl(R) := D(R)/F(R).

Theorem Krull's Principal Ideal Theorem. In a Noetherian ring, every minimal prime ideal of a principal ideal has height at most 1.

MA557 Homework 12

CARLOS SALINAS PROBLEM 12.2

PROBLEM 12.2

Let R be a ring with total ring of quotients K, M an R-module, and

$$Tor(M) = \{ x \in M \mid ax = 0 \text{ for some non zero-divisor } a \text{ of } R \}.$$

The submodule Tor(M) is called the torsion of M, and M is called torsion free if Tor(M) = 0. Show

- (a) $\operatorname{Tor}(M) = \ker(M \to K \otimes_R M)$
- (b) $M/\operatorname{Tor}(M)$ is torsion free.

Proof. (a) Let S denote the set of all regular elements of R and let $\varphi \colon R \to K$, where $K \coloneqq S^{-1}R$, be the canonical localization map $a \mapsto a/1$. We show, by way of double inclusion, that $\operatorname{Tor}(M) = \ker \Phi$, where $\Phi \colon M \to K \otimes_R M$ is the canonical map $x \mapsto 1 \otimes x$. Note that this map, Φ , is well defined by the UMP of the tensor product (HW 2). Now let us show the containment $\operatorname{Tor}(M) \subset \ker \Phi$: Let $x \in \operatorname{Tor}(M)$, then x is a non-zero divisor of R such that ax = 0. Since a is a non-zero divisior, $a \in S$ so a/1 = 0/1 in K. Thus, we have

$$\Phi(xm) = 1 \otimes x = a/1 \otimes x = 0 \otimes x = 0,$$

so $x \in \ker \Phi$. Conversely, suppose that $x \in \ker(\Phi)$. By some theorem from the localization section¹ we have $K \otimes_R M \cong S^{-1}M$. Thus $1 \otimes x = 0$ implies that x = 0 in the localization $S^{-1}M$. This is true if and only if ax = 0 for some non-zero divisor a of R. Thus, $x \in \ker \Phi$ and equality holds.

(b) We prove the statement elementwise. Let x := x' + Tor(M) be in M/Tor(M). Then ax = 0 for some non zero-divisor $a \in R$. This implies that ax' + Tor(M) = 0 + Tor(M) or $ax' \in \text{Tor}(M)$. Then b(ax') = 0 for some non zero-divisor $b \in R$. Since both a and b are non-zero divisors, and (ba)x' = 0 then $x' \in \text{Tor}(M)$. Thus, Tor(M) = 0.

MA557 Homework 12 2

¹Sorry! I misplaced my notebook and I've been taking notes on sheets of computer paper so I hate going through the mess.

CARLOS SALINAS PROBLEM 12.3

PROBLEM 12.3

Let R be a Dedekind domain and M a finitely generated R-module of rank r. Show that:

- (a) If M is torsion free then M is projective (hint: induct on r).
- (b) $M \cong \text{Tor}(M) \oplus P$ with P projective.
- (c) If $M \neq 0$ is projective then $M \cong R^{r-1} \oplus I$ with $I \neq 0$ an ideal.
- (d) If M is torsion (i.e., M = Tor(M)) then

$$M \cong R/I_1 \oplus \cdots \oplus R/I_n$$
 with $I_1 \supset \cdots \supset I_n \neq 0$

ideals (hint: for $p_1, ..., p_s$ the minimal primes of ann(M) and $S = R \setminus (\mathfrak{p}_1 \cup \cdots \cup \mathfrak{p}_s)$, show that $S^{-1}R$ is a PID).

Proof. (a) First, we shall prove the following useful lemma:

Lemma. Let R be an integral domain and M and R-module. Then M is torsionfree if and only if $M_{\mathfrak{m}}$ is a torsionfree $R_{\mathfrak{m}}$ -module for every $\mathfrak{m} \in \mathfrak{m}$ -Spec R.

Proof of lemma. \Longrightarrow Suppose that (r/s)(x/t)=0 for some $s,t\in R\smallsetminus \mathfrak{m},\,r\in R$. Then there exists some $u\in R$ such that urx=0. If $x\neq 0$, then ur=0. But, since R is an integral domain it follows that r=0. Thus, $\mathrm{Tor}_{R_{\mathfrak{m}}}(M_{\mathfrak{m}})=0$.

Conversely, if M is not torsionfree, there exists a nonzero $x \in M$ with $\operatorname{ann}_R x \neq 0$. Let $\mathfrak{m} \in \mathfrak{m}\text{-Spec }R$ contain $\operatorname{ann}_R x$. Then, localizing at \mathfrak{m} , we have $\bar{a}\bar{x}=0$ in $M_{\mathfrak{m}}$.

Now, by induction, let M, generated by x, be a torsionfree R module. Let $\mathfrak{m} \in \mathfrak{m}$ -Spec R. Then $M_{\mathfrak{m}}$ is a torsionfree $R_{\mathfrak{m}}$ -module.

MA557 Homework 12 3