1. Multiple access channel Consider a multiple access channel with inputs $\mathcal{X}_1 = \{0, 1, 2, 3\}$ and $\mathcal{X}_2 = \{0, 1\}$ The channel is given by:

$$\mathsf{Y} = \mathsf{X}_1 + \mathsf{X}_2 \bmod 4 \tag{1}$$

Find the capacity region for this channel.

- 2. Slepian-Wolf Let X_i and Z_i be independent random variables with $p_X(x) = [1 p, p]$ and $p_Z(z) = [1 r, r]$ for $0 \le p, r \le 1$. Let $Y_i = X_i \oplus Z_i$ where \oplus denotes addition modulo 2. Let the source vector $\mathbf{X} = (X_1, \dots, X_n)$ be encoded at rate R_1 and let $\mathbf{Y} = (Y_1, \dots, Y_n)$ be encoded at rate R_2 .
 - (a) What is $p_{Y}(y)$?
 - (b) What region of rates allows recovering of \mathbf{X}, \mathbf{Y} with probability of error tending to zero as $n \to \infty$? Draw a pentagon-shpaed region and label the key points.
 - (c) On the same figure, draw the region of achievable rates, assuming the correlation between X and Y is ignored.

- 3. Suppose that (X,Y,Z) are jointly Gaussian and that $X \to Y \to Z$ forms a Markov chain. Let X and Y have correlation coefficient ρ_1 and let Y and Z have correlation coefficient ρ_2 .
 - 1. Find E[XZ]. (Hint: $E[X|Y=y]=\rho_1 \frac{\sigma_X^2}{\sigma_Y^2} y$.) 2. Find I(X;Z).

- 4. Let Pr(X = 1) = p, Pr(X = 0) = 1 p, and let Y = X + Z, where Z is uniform over the interval [0, a], a > 1, and Z is independent of X.
 - 1. Calculate I(X;Y) = H(X) H(X|Y).
 - 2. Now calculate I(X;Y) the other way by I(X;Y) = H(Y) H(Y|X).
 - 3. Calculate the capacity of this channel by maximizing over p.

5. Joint AEP for the binary Z channel The binary Z channel is a DMC with binary inputs $\mathcal{X} = \{0, 1\}$ and binary outputs $\mathcal{Y} = \{0, 1\}$ and conditional probability distribution $p_{Y|X}(y|x)$ given by matrix:

$$\begin{bmatrix} 1 & 0 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} . \tag{32}$$

The channel diagram looks like a "Z":

The channel is memoryless:

$$p_{\mathbf{Y}|\mathbf{X}}(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} p_{\mathbf{Y}|\mathbf{X}}(y|x)(y_i|x_i)$$

Assume the input distribution is uniform $p_{\mathsf{X}}(x) = [\frac{1}{2}, \frac{1}{2}].$

(a) Let m be the number of one's in y. Find $p_Y(y)$.

(b) For what values of m and n does the following hold (equivalent to $\mathcal{T}_{\epsilon}^{(n)}$ with $\epsilon = 0$):

$$-\frac{1}{n}\log p_{\mathbf{Y}}(\mathbf{y}) = H(\mathbf{Y}).$$

- (c) Using the memoryless property, compute the following quantities:
 - $p_{Y|X}(000|001) =$
 - $p_{Y|X}(001|001) =$
 - $p_{Y|X}(010|001) =$
 - $p_{Y|X}(011|001) =$

Continued on next page

Let $\mathbf{x}=(x_1,\ldots,x_n)$ be a sequence with k ones, with $k\leq n$. Consider any sequence \mathbf{x} and \mathbf{y} . If $x_i=0$ and $y_i=1$, then $p_{\mathbf{XY}}(\mathbf{x},\mathbf{y})=0$ (for any $i=1,2,\ldots,n$). Let $\mathcal V$ be the valid sequences:

$$\mathcal{V} = \{(\mathbf{x}, \mathbf{y}) : x_i \neq 0 \text{ or } y_i \neq 1, \text{all } i = 1, 2, \dots, n\}$$

Note that $p(\mathbf{x}, \mathbf{y}|\mathcal{V}^c) = 0$, where \mathcal{V}^c is the complement of \mathcal{V} . For n = 2, here is a list of valid sequences V and invalid sequences V^c :

Valid \mathcal{V} , (x_1x_2, y_1y_2)	Not Valid \mathcal{V}^c , (x_1, x_2, y_1, y_2)
(00,00)	
(00,01)	(01,00)
(01,01)	(10,00)
(00,10)	(11,00)
(10,10)	(10,01)
(00,11)	(11,01)
(01,11)	(01,10)
(10,11)	(11,10)
(11,11)	

(d) Find $\Pr(\mathbf{y}|\mathbf{x}\mathcal{V})$ (That is, find $\Pr(\mathbf{y}|\mathbf{x})$, given a valid input/output sequence). Express using k, the number of ones in \mathbf{x} .

(e) Using your answer to part (d), find $p_{XY}(\mathbf{x}, \mathbf{y})$. Then, find $-\frac{1}{n} \log p_{XY}(\mathbf{x}, \mathbf{y})$. Express using n and k.

(f) Find H(X, Y).

(g) Let \mathcal{T}'_{ϵ} be:

$$\mathcal{T}'_{\epsilon} = \left\{ (x^n, y^n) : \left| -\frac{1}{n} \log p(x^n, y^n) - H(X, Y) \right| < \epsilon \right| \right\}.$$

For n=20 and $\epsilon=0.06,$ describe the sequences that are in the set $\mathcal{T}'_\epsilon.$

- 7. General information theory For each question (a)-(d), write an expression
 - (a) For the Markov chain $X \to Y \to Z$, write the data processing inequality.
 - (b) For variables X and Y, write an inequality expressing "independence bound on entropy"
 - (c) For variables X and Y, write the entropy chain rule:
 - (d) For variables X and Y write an inequality expressing "conditioning reduces entropy":
 - (e) **True** or **False**? A Markov chain $X_1, X_2, X_3 \ldots$, has entropy rate $H(\mathcal{X})$:

$$H(\mathcal{X}) \leq H(X_2).$$

- (f) **True** or **False**? For a continuous random variable X, the uniform distribution $f(x) = \frac{1}{a}$ for $0 \le x \le a$ maximizes the differential entropy $H(X) = \int f(x) \ln f(x) dx$.
- (g) Consider the random variable X:

$$\Pr(X = i) = \begin{cases} \frac{1}{4} & \text{if } i = -1\\ \frac{1}{2} & \text{if } i = 0\\ \frac{1}{4} & \text{if } i = 1 \end{cases}$$

Find H(X). If $g(x) = x^2$, find H(g(X)) and H(g(X)|X).

9. Proof of Fano's Inequality Write a justification (for example, "data processing inequality") for each step in the proof of Fano's inequality

Fano's Inequality For any estimator \widehat{X} such that $X \to Y \to \widehat{X}$, with event $E = \{X \neq \widehat{X}\}$ and with $P_e = \Pr(E)$, we have:

$$h(P_e) + P_e \log |\mathcal{X}| \ge H(X|\widehat{X}).$$
 (34)

Proof:

Justification