Appello – Parte 1

25/01/2022 — versione 1 —

♦♥♣♠♦♠♣♥♠♣

32 pt - durata 1h 30' - MS Forms

Gli studenti aventi diritto a svolgere la **prova ridotta** del 30% secondo la L.170/2010 (indicazioni **Multichance** team) **NON** svolgono i quesiti contrassegnati con (***)

TEST - 15 pt

1-1 pt (***) No Multichance

Sia dato l'insieme dei numeri floating point $\mathbb{F}(2,t,-5,5)$ dipendente dal parametro $t\in\mathbb{N}$. Per quali valori di t è possibile garantire che il valore dell'epsilon macchina (in base 10) sia $\epsilon_M\leq \frac{1}{64}$?

 $t \geq 7$

2-1 pt

Dato $A \in \mathbb{R}$, con A > 1, la serie $S_N = \sum_{n=1}^N \frac{1}{n} \left(1 - \frac{1}{A}\right)^n$ rappresenta, per $N \in \mathbb{N}$ "sufficientemente" grande, un'approximazione di $\log(A)$. Posti A = 25 e N = 100,

si riporti il valore dell'approssimazione di log(A) così ottenuta.

3.2155

3-1 pt

Si considerino 10 sistemi lineari $A \mathbf{x}_j = \mathbf{b}_j$ per $j = 1, \dots, 10$, dove la matrice $A \in \mathbb{R}^{60 \times 60}$ è fissata e non singolare, mentre i vettori $\mathbf{b}_j \in \mathbb{R}^{60}$ rappresentano diversi termini noti. Qual è il numero di operazioni stimato per la risoluzione di tali sistemi lineari per $j = 1, \dots, 10$ attraverso un uso computazionalmente efficiente del metodo della fattorizzazione LU?

216000

4 — 2 pt

Si consideri un metodo diretto per risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$, dove $A \in \mathbb{R}^{100 \times 100}$ è una matrice non singolare, $\mathbf{b} = \mathbf{1} \in \mathbb{R}^{100}$ e $\mathbf{x} \in \mathbb{R}^{100}$. Sapendo che il numero di condizionamento è $K_2(A) = 10^{10}$ e che il residuo associato alla soluzione numerica $\widehat{\mathbf{x}}$ è tale che $\|\mathbf{r}\| = \|\mathbf{b} - A\widehat{\mathbf{x}}\| = 10^{-12}$, si stimi l'errore relativo commesso $e_{rel} = \frac{\|\mathbf{x} - \widehat{\mathbf{x}}\|}{\|\mathbf{x}\|}$.

 10^{-3}

5 — 2 pt

Si consideri la matrice $A=\left[\begin{array}{ccc} 3 & -1/2 & 0\\ 1/2 & 1 & 0\\ 1 & 2 & 8 \end{array}\right]$. Si applichi il metodo delle

potenze *inverse* per l'approssimazione di $\lambda_3(A)$ a partire dal vettore iniziale $\mathbf{x}^{(0)} = \mathbf{1}$. Si riportino i valori delle approssimazioni $\lambda^{(0)}$, $\lambda^{(1)}$ e $\lambda^{(2)}$ di tale autovalore.

5.0000, 1.3479, 1.2278

6 - 2 pt (***) No Multichance

Si considerino la matrice $A = \begin{bmatrix} 7 & 3 \\ -1 & 3 \end{bmatrix}$ e il metodo della fattorizzazione QR per l'approssimazione dei suoi autovalori λ_1 e λ_2 . Si applichino 2 iterazioni del metodo e si riportino le approssimazioni $\lambda_1^{(2)}$ e $\lambda_2^{(2)}$ così ottenute.

6.4043, 3.5957

7-1 pt

Si consideri una funzione $f \in C^{\infty}(\mathbb{R})$, dotata dello zero α . Si supponga di approssimare α tramite un metodo iterativo convergente con ordine p=2 e che all'iterata k-esima sia associato l'errore $\left|x^{(k)}-\alpha\right|=0.1$. Assumendo che $\left|x^{(k+1)}-\alpha\right|=0.005$, si riporti il valore stimato dell'errore $\left|x^{(k+2)}-\alpha\right|$.

 $1.25 \cdot 10^{-5}$

8 — 2 pt

Si consideri il metodo di Newton per l'approssimazione dello zero $\alpha=2$ della funzione $f(x)=(x-2)\log(x-1)$. Si riportino i valori delle iterate $x^{(1)}$ e $x^{(2)}$ ottenute applicando il metodo a partire da $x^{(0)}=4$.

2.7553, 2.3273

9-1 pt

Si consideri la funzione di iterazione $\phi(x)=x+\frac{1}{3}\left(1-e^{3x-1}\right)$. Qual è l'ordine di convergenza p atteso dal metodo delle iterazioni di punto fisso al punto fisso $\alpha=\frac{1}{3}$ partendo dall'iterata iniziale $x^{(0)}$ "sufficientemente" vicino ad α ?

2

10 — 2 pt (***) No Multichance

Si considerino il sistema di funzioni non lineari $\mathbf{F}(\mathbf{x}): \mathbb{R}^2 \to \mathbb{R}^2$, dove $\mathbf{x} = (x_1, x_2)^T \in \mathbb{R}^2$ e $\mathbf{F}(\mathbf{x}) = (x_1^2 - 2x_1 - x_2 + 3, x_2^2 - 4x_2 + 4)^T \in \mathbb{R}^2$, e l'approssimazione dello zero $\boldsymbol{\alpha} = (1, 2)^T \in \mathbb{R}$ di $\mathbf{F}(\mathbf{x})$ tramite il metodo di Newton. Posta l'iterata iniziale $\mathbf{x}^{(0)} = (3, 3)^T$, si applichi un'iterazione del metodo e si riporti l'iterata $\mathbf{x}^{(1)}$ così ottenuta.

 $(17/8, 5/2)^T$

ESERCIZIO – 17 pt

Si consideri il sistema lineare $A \mathbf{x} = \mathbf{b}$, dove A è una matrice pentadiagonale

$$A = \text{pentadiag}(1, -2, 6, -2, 1) \in \mathbb{R}^{n \times n}$$

e $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$ per $n \ge 1$. Si considerino in particolare n = 300 e il termine noto \mathbf{b} tale che la soluzione esatta sia $\mathbf{x} = \mathbf{1}$.

Punto 1) — 3 pt

I metodi di Jacobi e Gauss–Seidel, applicati al sistema lineare $A\mathbf{x} = \mathbf{b}$, risultano convergenti per ogni scelta dell'iterata iniziale $\mathbf{x}^{(0)}$? Si motivi la risposta definendo tutta la notazione utilizzata e riportando i principali comandi Matlab[®] usati.

Spazio per risposta lunga $(\rho_{BJ} = 0.9999 < 1, \rho_{GS} = 0.3535 < 1)$

Punto 2) — 1 pt

Dopo aver risposto al Punto 1), quale dei due metodi iterativi utilizzereste per risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$? Si motivi la risposta data.

Spazio per risposta lunga (GS)

Punto 3) — 3 pt

Si applichi il metodo iterativo individuato al Punto 2) per risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$ usando la funzione Matlab[®] .m corrispondente. Si consideri l'iterata iniziale $\mathbf{x}^{(0)} = \mathbf{b}$, la tolleranza sul criterio d'arresto $tol = 10^{-6}$ e il numero massimo di iterazioni nmax=1000.

Si riportino: i) il numero di iterazioni N_{it} effettuate; ii) il valore dell'errore relativo $e_{rel}^{(N_{it})}$; iii) il valore del residuo normalizzato $r_{norm}^{(N_{it})}$ corrispondente. Si riportino i principali comandi Matlab® utilizzati.

Infine, si fornisca la stima dell'errore ottenuto a partire dal residuo normalizzato $r_{norm}^{(N_{it})}$ e lo si confronti con l'errore relativo $e_{rel}^{(N_{it})}$.

```
Spazio per risposta lunga (N_{it}=13,\,r_{norm}^{(N_{it})}=7.3717\cdot 10^{-7},\,e_{rel}^{(N_{it})}=6.1157\cdot 10^{-7},\,err_{stim}=2.9482\cdot 10^{-6})
```

Punto 4) — 2 pt

Si consideri ora il metodo del gradiente per la soluzione del sistema lineare con la matrice A. Senza applicare esplicitamente l'algoritmo, si stimi l'errore in norma A, ovvero $\|\mathbf{x}^{(k)} - \mathbf{x}\|_A$, dopo k = 20 iterazioni del metodo, sempre considerando $\mathbf{x}^{(0)} = \mathbf{b}$. Si giustifichi la risposta data definendo tutta la notazione utilizzata.

Spazio per risposta lunga (0.0038)

Punto 5) — 3 pt

Si consideri ora il metodo del gradiente precondizionato per risolvere il sistema lineare associato alla matrice A. In particolare, si consideri la seguente matrice di precondizionamento simmetrica e definita positiva:

$$P = \text{tridiag}(-1, \beta, -1) \in \mathbb{R}^{300 \times 300},$$

dipendente dal parametro $\beta > 0$. Per quale valore del parametro β a scelta tra 2, 3, 4 e 5, il metodo del gradiente precondizionato converge più rapidamente alla soluzione per ogni scelta dell'iterata iniziale? Si motivi dettagliatamente la risposta data, riportando i principali comandi Matlab[®] usati.

Spazio per risposta lunga $(\beta = 4)$

Punto 6) — 2 pt (***) No Multichance

Si consideri ora il metodo del gradiente coniugato (non precondizionato) per risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$, usando opportunamente la funzione Matlab[®] pcg con vettore iniziale $\mathbf{x}^{(0)} = \mathbf{b}$, tolleranza $tol = 10^{-6}$ e un opportuno numero massimo di iterazioni. Si risolva il problema e si riportino: i) il numero di iterazioni effettuate N_{it} e ii) l'errore $\|\mathbf{x}^{(N_{it})} - \mathbf{x}\|_A$ corrispondente. Si riportino i principali comandi Matlab[®] utilizzati.

Spazio per risposta lunga $(12, 2.2694 \cdot 10^{-5})$

Punto 7) — 3 pt (***) No Multichance

Si definisca un algoritmo per stimare il numero di condizionamento K(A) della matrice A che preveda l'uso dei metodi delle potenze e potenze inverse (si osservi che per A simmetrica e definita positiva, allora $K(A) = \lambda_{max}/\lambda_{min}$, dove λ_{max} e λ_{min} sono rispettivamente il massimo e minimo degli autovalori di A). Si riporti l'algoritmo e lo si applichi opportunamente alla stima di K(A), riportando i comandi Matlab[®] utilizzati. Si stimi inoltre il numero di operazioni effettuato per l'approssimazione di K(A).

Spazio per risposta lunga