Functions (Classes)

1. Function Classes (1)

Classes of Function

The following mapping is given: $f: A \to B$ with $x \mapsto x^3 + x^2 + 1$ for all $x \in A$. Its graph ist plotte below for values between $-12 \le x \le 12$:

Use the graph to decide whether the mapping represents a function and to which class of functions it belongs depending on sets A and B.

(a) For $A = \mathbb{R}, B = \mathbb{R}$ the mapping is

no function
a function
an injection
a surjection
a bijection ✓

(b) For $A = \mathbb{Z}, B = \mathbb{R}$ th

the mapping is
no function
an injection ✓
a surjection
a bijection

(c) For $A = \mathbb{R}, B = \mathbb{Z}$ the mapping is

no function ✓
a function
an injection
a surjection
a bijection

2. Function Classes (2)

Classes of Function

The following mapping is given: $f: A \to B$ with $x \mapsto \sqrt{|x|}$ for all $x \in A$. Its graph ist plotte below for values between $-12 \le x \le 12$:

Use the graph to decide whether the mapping represents a function and to which class of functions it belongs depending on sets A and B.

(a) For $A = \mathbb{R}, B = \mathbb{R}_0^+$ the mapping is

no function
a function
an injection
a surjection ✓
a bijection

(b) For $A = \mathbb{Z}, B = \mathbb{R}^+$

the mapping is \checkmark .
no function
an injection
a surjection
a bijection

(c) For $A = \mathbb{R}^+, B = \mathbb{R}^+$ the mapping is

no function
a function
an injection
a surjection
a bijection √

3. Function Classes (3)

Classes of Function

The following mapping is given: $f: A \to B$ with $x \mapsto \frac{x}{|x|} \cdot \sqrt{|x|}$ for all $x \in A$. Its graph ist plotte below for values between $-12 \le x \le 12$:

Use the graph to decide whether the mapping represents a function and to which class of functions it belongs depending on sets A and B.

(a) For $A = \mathbb{R} \setminus \{0\}$, $B = \mathbb{R} \setminus \{0\}$ the mapping is

no function
a function
an injection
a surjection
a bijection ✓

(b) For $A = \mathbb{Z} \setminus \{0\}, B = \mathbb{R} \setminus \{0\}$

ŀ	the mapping is
	no function
	an injection ✓
	a surjection
	a bijection

(c) For $A = \mathbb{N}, B = \mathbb{R} \setminus \{0\}$ the mapping is

no function
a function
an injection ✓
a surjection
a bijection

4. Function Classes (4)

Classes of Function

The following mapping is given: $f: A \to B$ with $x \mapsto f(x) = \lfloor x \rfloor$, i.e. the largest number $\leq x$ for all $x \in A$.

Its graph ist plotte below for values between $-12 \le x \le 12$:

Use the graph to decide whether the mapping represents a function and to which class of functions it belongs depending on sets A and B.

(a) For $A = \mathbb{R}, B = \mathbb{R}$ the mapping is

no function
a function ✓
an injection
a surjection
a bijection

(b) For $A = \mathbb{R}, B = \mathbb{Z}$ the mapping is

no function
an injection
a surjection ✓
a bijection

(c) For $A = \mathbb{N}, B = \mathbb{Z}$ the mapping is

no function
a function
an injection ✓
a surjection
a bijection