The geography of production and sourcing in the weightless economy: Evidence from open-source software

Gábor Békés¹ Julian Hinz² Miklós Koren³ Aaron Lohmann⁴

December 14, 2023

¹Central European University, KRTK, CEPR

²Bielefeld University, Kiel Institute for the World Economy

³Central European University, KRTK, CEPR, Cesifo

⁴Bielefeld University, Kiel Institute for the World Economy

This paper

Big Picture:

• How dispersed developers create great products.

1

This paper

Big Picture:

• How dispersed developers create great products.

Focus of This Paper:

- How and where good Open Source Software (OSS) is produced.
- OSS no fixed costs, and no need for face-to-face interaction pure online.
- Geography may not significantly impact OSS development.

1

This paper

Big Picture:

• How dispersed developers create great products.

Focus of This Paper:

- How and where good Open Source Software (OSS) is produced.
- OSS no fixed costs, and no need for face-to-face interaction pure online.
- Geography may not significantly impact OSS development.

Data:

- Writing code together Collaboration (Github)
- Using other people's code imported dependencies (Dependencies.io).

1

Open Source Software

Open Source Software (OSS) is everywhere

Open Source Software (OSS) has a vast landscape, GitHub hosts over 330 million repositories.

OSS plays an important roles in

- Websites (JavaScript)
- Operating systems (Linux, Android)
- Data (R Tidyverse, Python Pandas, Julia)
- Machine Learning and AI (PyTorch, LLaMA)

OSS mostly free, but present in fee-based platforms

Overleaf

Focus on JavaScript

- JavaScript is one of the biggest programming languages
- → used in web development and app development
- NPM is a package manager
- → organizes packages and provides access

Global industry: Number of JavaScript developer per city

Top cities per number of developers

Top city pairs per number of developers

Most frequent city-pairs for repos developed from 2 cities

Search, Agglomeration and Selection

- Costs of setting up a partnership and maintaining it
- Search costs of inputs (code chunks)
 - Written together finding a collaborator
 - Using already published code finding a package
- Is successful code written within a city or over many locations?
- Agglomeration vs "selection to export"
 - Agglomeration F2F meeting key, depends on "distance"
 - Selection developers of best projects are able to cover this cost

Preview of Findings

- Distance matters a lot for collaboration:
- Distance matters a little for importing repos
- Code written in more cities more likely to be popular
 - Selection strong great products made spatially dispersed
- Being in organization reduce spatial friction

** Possible Mechanism – in progress

- Mechanical. Same distribution of talent in cities. Best match may be elsewhere
- Costly search self selection to export to collab with foreigners
- Comparative advantage: Certain types of code skills in SF vs others in Berlin
- Reverse causality projects get popular more easily if done in many places.

** Possible Mechanism – in progress

- In progress look at dynamics
- How joins what projects

Related literature

- Geographical Distance / Network formation / Agglomeration: Chaney (2014)
 Bernard et al. (2019) Davis and Dingel (2019) Bailey et al. (2021)
- Gravity: Digital: Blum and Goldfarb (2006) Anderson et al. (2018)
- Frictions in services: Stein and Daude (2007) Bahar (2020)
- Patents and science: Bircan et al. (2021), Head et al. (2019), Jaffe et al. (1993), Singh (2008)
- OSS: Lerner and Tirole (2002), Laurentsyeva (2019) Wachs et al. (2022) Fackler et al. (2023)

Open source software vs patents and academia

- R&D and patenting
 - Need machines, secrecy, often top-down
 - Distance matters in collaboration
 - More cited patents geographically focused authors
- Science (math, academic papers)
 - Similar, but often longer projects, not open, F2F important to think and discuss
 - Distance matters in collaboration
 - Major role of top Universities / Centers

Data, methods and results

Open Source vocabulary

- Git: Distributed version control system for software projects
- GitHub: A platform to collaboratively work on software projects
- Dependency: An imported package that provides a functionality
- Package: A unit of software, provision of a (bundle of) functionality
- Repository: A storage for a package (what we observe)
- Commit: The smallest unit of contribution

Data from GHTorrent and Libraries.io

Collaboration — Working on the same code with others

- GHTorrent: Tracks metadata on GitHub usage
- ightarrow Commits, locations and user organisations
- Row: One commit from a developer to a repository
- Focus on links: binary if a developer committed at all to a repository

Dependencies — Sourcing of intermediate inputs

- Libraries.io: Tracks data on single software repositories
- ightarrow dependency linkages
- Row: An imported dependency (package) to repo 1 from repo 2
- ightarrow Can be mapped to repositories on GitHub

Scope of data

- Data coverage: 2013 2019
- We know location as city for developers
- Contributions by 217K developers,
- 300K repos
- 17% of repos have multiple developers (ie have collaboration)

• 70K organizations, with 120K developers

Organizations

- formally a (GitHub) permission system
- Collection of users
- Collection of projects
- We observe public memberships
 - Underestimate their presence.

Organizations — Example 1: Tidier for Julia

- No formal org
- share info, practice
- 3 members

Organizations — Example 2: Oracle

- Company
- share info, practice, showcase
- 1.4k members

Raw data to regressions

- Collaboration link developers who contribute to the same repo.
- Dependencies link developers from one package using another
- One observation is one link
- Aggregated at city (city pair) level

MORE: Aggregation

** Search and maintenance costs

- Same model for collaboration and dependency import
- Link depends on search costs
 - Find a partner to collaborate on a project with
 - Find a dependency that can solve a particular problem
- Link depends on maintenance costs
 - Maintain a relationship of writing code
 - Maintain functionality with the imported dependency

** Search costs: where do people meet

- Personal meeting, esp. workplace (CEU, Oracle)
- Local community events, science parks (Xaccelerator)
- Regional events (R Ladies Auckland, VDSG Meetup, PyData Berlin)
- Conferences 1: dozens of events every month such CityJS Berlin, React Summit US,
- Conferences 2: developers directly such as Node-js fwdays23 in Kyiv, where new packages are presented.
- Learn about packages, devs: online forums, Stack Overflow, Twitter

Modelling search and maintenance

$$\Pr(Y_{od}|x_o, x_d, d_{od}) \approx \mathsf{Poisson}[N_o \times N_d \times \exp(\beta_1 x_i + \beta_2 x_j + \beta_3 d_{ij})]$$

- Outcome: Number of links between cities o, d
- ullet d_{ij} Distance measured as a set of indicators / log-linear
- Origin and destination city FE
- $N_o \times N_d$ -Exposure: Number of developers in city $o \times d$

MORE: From logit to Poisson

Modelling search and maintenance costs

- Personal communication distance in terms of travel
 - Same city e.g. universities, office parks
 - Agglomeration (1-50km) regional events
 - Regional (50-200km) national conferences
 - Short trip (200-700km) big conferences
 - Beyond 700km (as base) global events
- Travel difficulty
 - Crossing borders
 - Visa requirement
 - Timezone difference
- Homophily/Communication costs shared language

** What is an observation?

Two interpretations:

- 1. 10 billion potential developer pairs
- 2. 3.7 million city pairs

Results: Distance key in contributions, bit for dependencies

- Exclude links within organizations.
- Exclude small cities: 3.4m city pairs
- Origin city FE
- Dest. city FE.

Dependent Variables: Model:	contr_value (1)	dep_value (2)	contr_value (3)	dep_value (4)
dist_cat = Samecity(0-1)	0.7440***	0.0556***		
dist_cat = Agglo(1-50)	(0.0765) 0.5610***	(0.0106) 0.0592***		
dist_cat = Region(50-200)	(0.0793) 0.2400***	(0.0115) 0.0270***		
dist_cat = Shorttrip(200-700)	(0.0303) 0.0628***	(0.0094) 0.0067**		
cities_in_same_country	(0.0107) 0.1635***	(0.0032) 0.0145**		
common_language	(0.0134) 0.0815***	(0.0071) 0.0244***		
visafree_travel	(0.0140) 0.1348***	(0.0060) 0.0325**		
tz_gap_nothigh	(0.0327) 0.0319***	(0.0148) 0.0102***		
In_dist	(0.0088)	(0.0033)	-0.0953*** (0.0075)	-0.0109*** (0.0020)
Pseudo R ²	0.84942	0.98867	0.84883	0.98865

** Robustness to very popular dependencies

- Maybe a few very large repositories dominate and flatten the curve.
- Take out top 100 projects. Coefficients marginally higher (0.061 vs 0.055 for same city)

Success (popularity) and spatial dispersion

$$Pr(Y_i|.) \approx Poisson[exp(\beta_1 In_devs_i + \beta_2 In_country/dev_i + \beta_3 In_city/country_i)]$$

- Outcome: Number of repos importing this repo i
- *In_devs*_i number of developers (log)
- In_country/dev_i number of countries / developers (log)
- *In_city/country*; number of cities / countries (log)

Results 2: Popularity of repos and Spatial dispersion

- Popularity: how many times a repo was used as dependency for other repos
- Spatial dispersion: Number of cities (in categories) developers are located
- More widely adopted repos will be produced by developers located in more cities

Results 2: More popular dependency - higher spatial dispersion

- Only repos used as dependency at least once
- Exclude top few packages
- Robust to size (commits) and N of developers, N dependencies as confounders.
- Col3: only NPM

Dependent Variables:	quality2_count_dependents_all		quality1_count_dependents_npm	
Model:	(1)	(2)	(3)	
Variables				
Constant	8.499***	8.748***	3.176***	
In_count_cities	(0.0002) 0.6906*** (0.0001)	(0.0002)	(0.0017)	
In_count_developers	, ,	0.7332***	1.722***	
In_cities_per_country		(0.0001) 1.326*** (0.0004)	(0.0011) 1.790*** (0.0038)	
In_countries_per_developer		1.664*** (0.0003)	2.526*** (0.0033)	
Observations	15,812	15,812	15,812	
Pseudo R ²	0.03537	0.05010	0.19981	

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Results 3: Organizations are super important

- Confounder: Developers within organization collaborate and import dependencies *much* more
- ullet Heterogeneity: for collaboration it reduces distance elasticity by 1/3

• For repos in organization, dispersion across countries is 50% less relevant, cities 20% less relevant

MORE: Pole of organizations

** Results 3: Organizations are super important

- Exclude links within organizations.
- Exclude small cities: 3.4m city pairs
- Origin city FE
- Dest. city FE.

Dependent Variables:	contr_value	dep_value	contr_value	dep_value
Model:	(1)	(2)	(3)	(4)
dist_cat = Samecity(0-1)	0.5475***	0.0591***		
	(0.0530)	(0.0118)		
$dist_cat = Agglo(1-50)$	0.4096***	0.0120		
	(0.0680)	(0.0176)		
dist_cat = Region(50-200)	0.2311***	0.0180**		
	(0.0363)	(0.0091)		
dist_cat = Shorttrip(200-700)	0.0535***	0.0055*		
	(0.0117)	(0.0032)		
cities_in_same_country	0.1780 * * *	0.0184**		
	(0.0157)	(0.0074)		
common_language	0.0970***	0.0310***		
	(0.0150)	(0.0074)		
visafree_travel	0.1717***	0.0449*		
	(0.0521)	(0.0246)		
tz_gap_nothigh	0.0286***	0.0099**		
	(0.0102)	(0.0039)		
In_dist			-0.0869***	-0.0114***
			(0.0073)	(0.0028)
Within same organization	5.663 * * *	3.374 ***	5.680 * * *	3.374***
	(0.0886)	(0.1499)	(0.0888)	(0.1507)
Pseudo R ²	0.83384	0.98608	0.83312	0.98605

** Results 3: Organizations flatten distance

- Exclude links within organizations.
- Exclude small cities: 3.4m city pairs
- Origin city FE
- Dest. city FE.
- Language, TZ, visa not shown

Dependent Variables: Model:	contr_value (1)	dep_value (2)	contr_value (3)	dep_value (4)
dist_cat = Samecity(0-1)	0.6730***	0.0530***		
	(0.0820)	(0.0100)		
$same_org \times dist_cat = Samecity(0-1)$	-0.4099***	0.0154		
	(0.1514)	(0.0678)		
cities_in_same_country	0.1761***	0.0160**		
	(0.0126)	(0.0066)		
same_org × cities_in_same_country	-0.0452	0.1467		
	(0.1176)	(0.1592)		
Within same organization	5.650***	3.282***	5.437***	3.425***
_	(0.1125)	(0.1418)	(0.1545)	(0.3437)
In_dist			-0.0937***	-0.0112***
			(0.0079)	(0.0021)
In_dist × same org			0.0338**	-0.0075
			(0.0133)	(0.0296)
Pseudo R ²	0.83402	0.98612	0.83318	0.98605

Results 4: More popular dependency - higher spatial dispersion

- Only repos used as dependency at least once
- Exclude top few packages

Dependent Variable:	quality2_count_dependents_all		
in_org Model:	Not in irg (1)	Within org (2)	
Variables			
Constant	8.819***	8.335***	
	(0.0002)	(0.0004)	
In_count_developers	0.6391***	1.223***	
	(0.0002)	(0.0004)	
In_countries_per_developer	1.702***	1.491***	
	(0.0004)	(0.0007)	
In_cities_per_country	1.529***	0.5648***	
	(0.0004)	(0.0008)	
Observations	11,737	4,075	
Pseudo R ²	0.05366	0.05326	

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Discussion of results

Recap of results

- Strong localization of developers. Distance matters to find partners to develop with.
- Only limited role of geography for dependencies.
- Good code created in dispersed cities
- Within organisations distance matters less.
- Very much in progress.
 - Mechanism, role of selection
 - Dynamics
 - Other languages other types of devs, distribution management

References

- Anderson, James E, Ingo Borchert, Aaditya Mattoo, and Yoto V Yotov, "Dark costs, missing data: Shedding some light on services trade," *European Economic Review*, 2018, 105, 193–214.
- **Bahar, Dany**, "The hardships of long distance relationships: time zone proximity and the location of MNC's knowledge-intensive activities," *Journal of International Economics*, 2020, 125, 103311.
- Bailey, Mike, Abhinav Gupta, Sebastian Hillenbrand, Theresa Kuchler, Robert Richmond, and Johannes Stroebel, "International Trade and Social Connectedness," *Journal of International Economics*, Mar 2021, *129*, 103418.

References ii

- Bernard, Andrew B, Andreas Moxnes, and Yukiko U Saito, "Production networks, geography, and firm performance," *Journal of Political Economy*, 2019, 127 (2), 639–688.
- **Bircan, Cagatay, Beata Javorcik, and Stefan Pauly**, "Creation and Diffusion of Knowledge in the Multinational Firm," 2021. Working Paper.
- **Blum, Bernardo S and Avi Goldfarb**, "Does the internet defy the law of gravity?," *Journal of international economics*, 2006, 70 (2), 384–405.
- **Chaney, Thomas**, "The network structure of international trade," *The American Economic Review*, 2014, *104* (11), 3600–3634.
- Davis, Donald R and Jonathan I Dingel, "A spatial knowledge economy," *American Economic Review*, 2019, 109 (1), 153–170.
- **Fackler, Thomas, Michael Hofmann, and Nadzeya Laurentsyeva**, "Defying Gravity: What Drives Productivity in Remote Teams?," Technical Report, LMU CRCT Discussuion Paper 427 2023.

- **Head, Keith, Yao Amber Li, and Asier Minondo**, "Geography, Ties, and Knowledge Flows: Evidence from Citations in Mathematics," *The Review of Economics and Statistics*, 10 2019, 101 (4), 713–727.
- **Jaffe, Adam B, Manuel Trajtenberg, and Rebecca Henderson**, "Geographic localization of knowledge spillovers as evidenced by patent citations," *Quarterly journal of Economics*, 1993, 108 (3), 577–598.
- **Laurentsyeva, Nadzeya**, "From friends to foes: National identity and collaboration in diverse teams," Technical Report, CESifo Discussion Paper 2019.
- **Lerner, Josh and Jean Tirole**, "Some simple economics of open source," *The journal of industrial economics*, 2002, *50* (2), 197–234.
- **Stein, Ernesto and Christian Daude**, "Longitude matters: Time zones and the location of foreign direct investment," *Journal of International Economics*, 2007, 71 (1), 96–112.

References iv

Wachs, Johannes, Mariusz Nitecki, William Schueller, and Axel Polleres, "The Geography of Open Source Software: Evidence from GitHub," *Technological Forecasting and Social Change*, 2022, *176*, 121478.

Aggregation

Collaboration

- Start with the developer's link to a repository (via commits)
- Directed but (mostly fully) symmetric
- Transform it to developer to developer links
- Aggregate at city level

Links in the contribution network

Figure 1: Developers committing to a repository.

Figure 2: Developers commiting to a repository including implied contributor to contributor links.

Solid lines are what we **observe**. Dashed lines is what we **infer**.

Dependencies

- We observe a repository importing another one as dependency.
- Directed, not symmetric
- Transform it to developer to developer links
 - Use knowledge of producers of the dependency as well
- Aggregate at city level

Links in the dependency network

Figure 3: Dependency of repository 1 on repository 2 with the respective developers.

Figure 4: Dependency of repository 1 on repository 2 with the respective developers. Dashed lines indicate implied links between developers.

Again, solid lines are what we observe. Dashed lines is what we infer.

Aggregation – weights

- Two people with three repository will generate 3 links
- Unweighted by intensity in terms of commits

Aggregation - Variation at city level

- Key developer observable: city.
- We can aggregate up to city pairs.
- How many collaborations are there between London and San Francisco?
- How many dependencies made in London are imported by packages made in SF?
- Take into account that dependencies may be made in multiple cities. Single import multiple cities get links

Example I: City-level aggregation of collaboration

Repository 1 developers: A in Vienna, B and C in Budapest.

• Vienna - Budapest: 1

• Budapest - Vienna: 2

• Budapest - Budapest: 1

• Vienna - Vienna: 0

Example II: City level aggregation of dependencies

Let repository 2 (D lives in Kiel) depend on repository 1 (A live in Vienna and B and C in Budapest.).

- Vienna Budapest and Budapest Vienna: 0
- Budapest Kiel: 2
- Vienna Kiel: 1

Note, that even though links are on level of repository, city links are based on the users.

Most packages are done in a few, few by many cities

Table 1: Cities per repository excluding single-developer repositories

- Most repositories are *located* in 1-3 cities.
- 1.6% done in dozen(s) of cities

Number of cities per repository	Share of Repositories	
1	38.31%	
2	38.20%	
3 - 5	17.98%	
6 - 10	3.89%	
11-100	1.57%	
100+	0.03%	

Estimation metrics

Individual matching decision

Collaboration or dependency link between developer i and j,

$$\Pr(Y_{ij} = 1 | x_i, x_j, d_{ij}) = \Pi(\beta_1 x_i + \beta_2 x_j + \beta_3 d_{ij})$$

with

$$\Pi(z) = e^z/(1+e^z)$$

the logistic function

Assumption: Independence across links, add fixed effects

Aggregate to Poisson

In practice, distance only varies at the city level. Take origin city o and destination city d.

$$Y_{od} := \sum_{i \in o} \sum_{j \in d} Y_{ij}$$

$$Pr(Y_{od}|x_o, x_d, d_{od}) = Binomial[N_o \times N_d, \Pi(\beta_1 x_i + \beta_2 x_j + \beta_3 d_{ij})]$$

Here $N_o \times N_d$ is the total number of *potential* links between cities o and d.

When Π is small,

$$\Pr(Y_{od}|x_o, x_d, d_{od}) \approx \text{Poisson}[N_o \times N_d \times \exp(\beta_1 x_i + \beta_2 x_j + \beta_3 d_{ij})]$$

Aggregate to Poisson (2)

We may also look at a subsample (like users not in the same GitHub organization)

$$Y_{od, \mathsf{not} \; \mathsf{org}} := \sum_{i \in o} \sum_{j \in d, j \not \in \mathsf{org}(i)} Y_{ij}$$

This changes the exposure variable,

$$\Pr(Y_{od, \text{not org}} | x_o, x_d, d_{od}) \approx \text{Poisson}[N_{od, \text{not org}} \times \exp(\beta_1 x_i + \beta_2 x_j + \beta_3 d_{ij})],$$

with $N_{od,not org}$ the number of user pairs in city o, d, not sharing an organization.

Important: $N_{od,not org}$ may be zero.

What is a Poisson regression?

First-order conditions for Maximum Likelihood:

$$\sum_{o} \sum_{d} x_{i} [Y_{od} - N_{od} \exp(\beta_{1}x_{i} + \beta_{2}x_{j} + \beta_{3}d_{ij})] = 0$$

$$\sum_{o} \sum_{d} x_{j} [Y_{od} - N_{od} \exp(\beta_{1}x_{i} + \beta_{2}x_{j} + \beta_{3}d_{ij})] = 0$$

$$\sum_{o} \sum_{d} d_{ij} [Y_{od} - N_{od} \exp(\beta_{1}x_{i} + \beta_{2}x_{j} + \beta_{3}d_{ij})] = 0$$

- Level (not log) error terms are orthogonal to RHS variables.
- Exposure variable has fixed exponent of 1 (\approx weighting).
- Standard errors computed from GMM, not ML. E.g., we allow for two-way city clustering.

Organizations and causality

Organizations and causality?

- ullet Causal statement is: Organizations reduce spatial frictions (org o distance)
- Instead we see that link frequency within organizations tend to be less dependent on distance
- ullet More dispersed developers create organization to co-ordinate (distance o org)
- ullet Top developers gather in org and they don't care about distance confounding results. (topdev o org + topdev o distance)

Organization and professionalism

- Another way to think about organizations is bringing some professionalism and "organization"
- Confirm when we look at top 10% of repos in terms of commits distance friction also drops