

### Centro Universitário FEI

Sistemas Digitais 2

Relatório Projeto 2

Filippe Franca Neves Filho 15.118.667-3

Vítor Dinis Watanabe 11.219.035-0

### 1. Introdução e Descrição do Projeto

O projeto 2 de Sistemas Digitais 2 tem como objetivo a aplicação dos conhecimentos adquiridos nas aulas de teoria sobre metodologia de projetos de sistemas complexos, sobretudo, projeto no nível de transferência entre registradores (RTL). Com isso, trabalhamos as informações que fluem através de registradores, sendo que entre essas transferências os dados podem ser manipulados por blocos de lógica combinatória.

O projeto 2 consiste na elaboração de sistema de cobrança e medidor de velocidade em uma rodovia com pedágios que não é necessário parar para que a cobrança seja feita. A partir disso, é necessário criar a lógica para o controle das medidas, tais como, medição de velocidade, cobrança de pedágio, controle e verificação de multas, distância totais e parciais, além de sinalizadores e chaves para seleção de modo de operação e controle de crédito.

Para realizar o projeto, realizamos em passos com o acompanhamento da Professora Doutora Maria Claudia Ferrari em nossas aulas semanais. As etapas consistem em: Obter a máquina de estados de alto nível (FSMD) no qual descrevemos o funcionamento do sistema. Elaborar o bloco operacional utilizando os códigos que nos foram disponibilizados. Conectar o bloco operacional a uma unidade de controle. Obter a máquina de estados convertendo o bloco operacional a um bloco de controle (unidade de controle) definindo os sinais de interface.

Para usar o valores da tabela cada grupo usaria o valores de acordo com seu dígito de ra, o dígito que possuir o maior valor usar a linha do DA o de menor usar a linha do DB, entao com nossos ra.s (15.118.667-3 e 11.219.035-0) usariamos a Linha do DA igual a 3 e o DB igual a 0.

| DA | CRI (R\$) | CRM (R\$) | DB | AC (R\$) | TRP (R\$/KM) | LDM (KM) |
|----|-----------|-----------|----|----------|--------------|----------|
| 0  | 2         | 15        | 0  | 5        | 1            | 10       |
| 1  | 3         | 20        | 1  | 4        | 1            | 11       |
| 2  | 4         | 25        | 2  | 3        | 2            | 12       |
| 3  | 5         | 30        | 3  | 2        | 2            | 13       |
| 4  | 6         | 35        | 4  | 5        | 3            | 14       |
| 5  | 7         | 40        | 5  | 4        | 3            | 15       |
| 6  | 8         | 45        | 6  | 3        | 4            | 16       |
| 7  | 9         | 50        | 7  | 2        | 4            | 17       |
| 8  | 10        | 55        | 8  | 4        | 5            | 18       |
| 9  | 11        | 60        | 9  | 6        | 5            | 19       |

CRI = Crédito Inicial, CRM = Crédito Máximo, AC = Valor do Ajuste de Crédito, TRP = Valor da Tarifa de Pedágio e LDM = Valor do Limite Máximo de Distância

### CURSO DE ENGENHARIA ELÉTRICA

### ELD020 - LABORATÓRIO DE SISTEMAS DIGITAIS II

### 1° SEMESTRE DE 2021

### 2. Máquina de Estados de Alto Nível do Sistema (FSMD)

### Dados Utilizados na Máquina de Estados

| DA | CRI | CRM | DB   | AC | TRP | LDM |  |
|----|-----|-----|------|----|-----|-----|--|
| 3  | 5   | 30  | 0,00 | 5  | 1   | 10  |  |

### Estados

ZER RG = zera o registrador

CAR CR = carrega o crédito inicial (5)

AJU\_CR = ajusta o crédito

INC CR = incrementa o crédito

VER CRM = verifica o crédito máximo

MAX\_CR = atribui o valor máximo de crédito (30)

DEC CR = decrementa o crédito

MIN CR = atribui o valor mínimo de crédito (0)

INC\_DP = incrementa distância parcial

INC DT = incrementa distância total

VER DT = verifica distância total

SIN LIM = sinaliza o limite de velocidade

VER CR = verifica crédito

MUL CR = multa por crédito

VF15 = espera o pulso de passagem pelo pórtico ou dispara timer

VF16 = reinicia a distância parcial e apaga o LED de multa por excesso de velocidade

VER VEL = verifica a velocidade

MUL VEL = multa por velocidade

### 3. Diagrama de Estados da Unidade de Controle (FSM)







### 4. Tabela de Sinais de Controle do Fluxo de Dados

A Criação da Tabela de Sinais foi feita através das ações que realmente aconteciam no pedágio do projeto.

Como funciona ? Um exemplo. No estado que o usuário carrega o crédito a ação que ele toma é carregar o valor de 5 créditos, porém ao carregar 5 créditos a ação que o sistema toma é carregar o crédito inicial CRI no MUX\_B que seria o valor em código binário de 011 e no MUX\_A nenhuma ação, após isso a nossa ULA( que é basicamente uma unidade que faz operações matemáticas) precisa passar o valor do CRI para o Regulador A, a ação que ela toma em binário é 00 de passar valor de B, e para passar esse valor de B para o regulador A precisa ter o código binário de 001, assim ficaria REG\_C igual a 0, REG\_B igual A zero e REG A igual a 1, é basicamente assim como funciona o FD.



|          | Tabela de Sinais |       |                 |       |       |       |    |  |  |  |  |
|----------|------------------|-------|-----------------|-------|-------|-------|----|--|--|--|--|
| Estado   | SMX_A            | SMX_B | SULA1-SU<br>LA2 | REG_C | REG_B | REG_A | TI |  |  |  |  |
| VF1_RG   | XXX              | 111   | 00              | 1     | 1     | 1     | 1  |  |  |  |  |
| VF2_CR   | XXX              | 011   | 00              | 0     | 0     | 1     | 1  |  |  |  |  |
| VF3_ACR  | XXX              | XXX   | XX              | 0     | 0     | 0     | 1  |  |  |  |  |
| VF4_ICR  | 001              | 000   | 10              | 0     | 0     | 1     | 1  |  |  |  |  |
| VF5_CR   | 101              | 000   | 11              | 0     | 0     | 0     | 1  |  |  |  |  |
| VF6_CR   | XXX              | 101   | 00              | 0     | 0     | 1     | 1  |  |  |  |  |
| VF7_CR   | 001              | 000   | 11              | 0     | 0     | 1     | 1  |  |  |  |  |
| VF8_CR   | XXX              | 111   | 00              | 0     | 0     | 1     | 1  |  |  |  |  |
| VF9_DP   | 000              | 001   | 10              | 0     | 1     | 0     | 1  |  |  |  |  |
| VF10_DT  | 000              | 010   | 10              | 1     | 0     | 0     | 1  |  |  |  |  |
| VF11_DT  | 111              | 010   | 11              | 0     | 0     | 0     | 1  |  |  |  |  |
| VF12_SDM | XXX              | XXX   | XX              | 0     | 0     | 0     | 1  |  |  |  |  |
| VF13CR   | 011              | 000   | 11              | 0     | 0     | 1     | 1  |  |  |  |  |
| V14_CR   | XXX              | 111   | 00              | 0     | 0     | 1     | 1  |  |  |  |  |
| V15_PP   | XXX              | XXX   | XX              | 0     | 0     | 0     | 0  |  |  |  |  |
| V16_DP   | XXX              | 111   | 00              | 0     | 1     | 0     | 0  |  |  |  |  |
| V17_VV   | XXX              | XXX   | XX              | 0     | 0     | 0     | 0  |  |  |  |  |
| V18_VV   | XXX              | 101   | XX              | 0     | 0     | 0     | 0  |  |  |  |  |

### 5. Diagrama de Interconexão do Fluxo de Dados

```
library ieee;
use ieee.std_logic_1164.all;
         ENTITY FD IS PORT(

S_MXA, S_MXB: IN STD_LOGIC_VECTOR (2 DOWNTO 0);

S_ULA: IN STD_LOGIC_VECTOR (1 DOWNTO 0);

LDA, LDB, LDC: IN STD_LOGIC;

IT: IN STD_LOGIC;

CK: IN STD_LOGIC;

FT: OUT STD_LOGIC;

ZR, PO, NG, ES: OUT STD_LOGIC;

REG_A, REG_B, REG_C: OUT STD_LOGIC_VECTOR (7 downto 0));

END FD;
  4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
         BARCHITECTURE BEHAVIOR OF FD IS
            SIGNAL UA, UB: std_logic_vector(7 downto 0);
SIGNAL RIN: std_logic_vector(7 downto 0);
SIGNAL SDT, SDP, SCR: std_logic_vector(7 downto 0);
19
20
21
22
23
24
25
26
27
28
29
30
31
          id component mux8_pj2 is
                           ent mux8_pj2 is
(Da : in std_logic_vector(7 downto 0);
Db : in std_logic_vector(7 downto 0);
Dc : in std_logic_vector(7 downto 0);
Dd : in std_logic_vector(7 downto 0);
De : in std_logic_vector(7 downto 0);
Df : in std_logic_vector(7 downto 0);
Dg : in std_logic_vector(7 downto 0);
Dh : in std_logic_vector(7 downto 0);
S : in std_logic_vector(7 downto 0);
S : in std_logic_vector(2 downto 0);
MX_out : out std_logic_vector(7 downto 0);
                   port(Da
Db
32
33
34
35
            end component mux8_pj2;
         □component ula8_pj2 is
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
55
55
55
55
55
57
58
                                           : in std_logic_vector(7 downto 0); -- vetores de entrada
: in std_logic_vector(1 downto 0); -- código de operação
: out std_logic_vector(7 downto 0);-- vetor de saida
: out std_logic; -- resultado igual a zero
: out std_logic; -- resultado positivo
: out std_logic; -- resultado negativo
: out std_logic -- resultado maoir que 255
                         A, B
Op
ULA_out
                         ZR
                         PO
NG
ES
            end component ula8_pj2;
         end component reg8_pj2;
         CK : IN Std_logic; -- Clock de 50MHz
IT : IN std_logic; -- Reseta e inicia temporização
FT : OUT std_logic -- Final de temporização
           END component timer_1s_pj2;
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
77
78
80
            BEGIN
                       ULA: ula8_pj2 PORT MAP (A=>UA, B=>UB, Op=>S_ULA, ZR=>ZR, PO=>PO, NG=>NG, ES=>ES, ULA_out=>RIN);
                       REG8A: reg8_pj2 PORT MAP (R_in=>RIN, LD=>LDA, CK=>CK, R_out=>SCR);
REG8B: reg8_pj2 PORT MAP (R_in=>RIN, LD=>LDB, CK=>CK, R_out=>SDP);
REG8C: reg8_pj2 PORT MAP (R_in=>RIN, LD=>LDC, CK=>CK, R_out=>SDT);
                        TIMERISEG: timer_1s_pj2 PORT MAP (FT=>FT, IT=>IT, CK=>CK);
                        REG A<=SCR:
                        REG_B<=SDP;
REG_C<=SDT;
           LEND BEHAVIOR:
```

### 5. RTL do Fluxo De Dados



### CURSO DE ENGENHARIA ELÉTRICA

### ELD020 - Laboratório de Sistemas Digitais II

### 1° SEMESTRE DE 2021

### 6. Código da UC

```
167890122234567890123345678904444444444555555555555567890
                                          ⊟entity UC is
⊟port( CK : in std_logic;
   RT : in std_logic;
   -- Entradas Externas:
   IC : in std_logic;
   DC : in std_logic;
   RP : in std_logic;
   PP : in std_logic;
   MO : in std_logic;
                                                                                                                                                                                                                                                                                                                               -- clock de 50MHZ
-- reinicio total -> ativo em zero
                                                                                                                                                                                                                                                                                                                       -- incrementa credito -> ativo em um
-- decrementa credito -> ativo em um
-- reinicio parcial -> ativo em um
-- passagem pelo portico -> ativo em um
-- modo de operação -> 1= Normal, O= Ajusta Valor
                                                         MO: In std_logic;
-- Sinais de Estado da ULA:
ZR: in std_logic;
PO: in std_logic;
NG: in std_logic;
ES: in std_logic;
                                                                                                                                                                                                                                                                                                                       -- resultado zero na operação da ULA
-- resultado positivo na operação da ULA
-- resultado negativo na operação da ULA
-- resultado da operação da ULA maior que 255
                                                      NG: in std_logic; -- resultado postivo na operação da ULA
ES: in std_logic; -- resultado negativo na operação da ULA
ES: in std_logic; -- resultado da operação da ULA maior que 255

-- Sinais de Estado do TIMER:
FT: in std_logic; -- fim da temporização de 1 segundo

-- Sinais de Saida para MUX:
Sel_mxa: out std_logic_vector(2 downto 0); -- seleciona entrada de MUX_A
Sel_mxb: out std_logic_vector(2 downto 0); -- seleciona entrada de MUX_B
-- Sinais de Saida para ULA:
Sel_ula: out std_logic_vector(1 downto 0); -- seleciona operação da ULA

-- Sinais de Saida para Registradores:
Lda: out std_logic; -- carrega RA
Ldb: out std_logic; -- carrega RB
Ldc: out std_logic; -- carrega RC

-- Sinais de Saida para TIMER:
IT: out std_logic; -- inicia temporização

-- Sinais de Saida Externos:
MEV: out std_logic; -- sinaliza multa por excesso de velocidade
MFC: out std_logic; -- sinaliza multa por falta de crédito
SDM: out std_logic; -- sinaliza limite de distância total percorrida
                                                                                                                                                                                                                                                                                                                     -- sinaliza multa por excesso de velocidade
-- sinaliza multa por falta de crédito
-- sinaliza limite de distância total percorrida
                                                end uc;
                                          □ architecture FSM of UC is
□ type ESTADOS_ME is (

ZER_RG -- zera registrador
,CAR_CR -- carrega credito
,AJU_CR -- ajusta credito
,INC_CR -- incrementa credito
,VER_CRM -- verifica crm
,MAX_CR -- max valor de cr
                                                                             ,MIN_CR -- max varior de cr
,MIN_CR -- minimo valor de cr
,INC_DP -- incrementa dp
,INC_DT -- incrementa dt
,VER_DT -- verifica dt
,VER_CR -- verifica cr
,SIN_LIM -- sinaliza limite
,MUL_CR -- multa credito
,VF15 -- espera pp ou dispara timer
,VF16 -- reinicia dp e reinicia mev
,REI_DP -- reinicia dp
,REI_MEV -- reinicia mev
,VER_VEL -- verifica velocidade
,MUL_VEL -- multa velocidade
62
634
656
667
688
70
71
77
77
78
80
81
82
82
83
84
84
89
90
91
92
94
95
97
97
99
90
100
                                      | Signal E: ESTADOS_ME; | Begin | Begi
                                                                                                                                                                                                                                                                                                                                      --- espera IC e DC com MO=O para ajustar CR
                                                                                                                                                  elsir MO='0' and IC='0' and DC='1' then
E <= DEC_CR;
elsif MO='0' and IC='0' and DC='0' then
E <= AJU_CR;
end if;
                                                                            end if;
when INC_CR =>
    E <= VER_CRM;
when VER_CRM =>
    if PO='1' then E <= MAX_CR;
    elsif PO='0' then E <= AJU_CR;
when MAX_CR => E <= AJU_CR;
when DEC_CR =>
    if NG='0' then E <= AJU_CR;
    elsif NG='1' then E <= MIN_CR;
end if;</pre>
102
103
104
105
106
107
108
                                             自日十
```

### CURSO DE ENGENHARIA ELÉTRICA

### ELD020 - LABORATÓRIO DE SISTEMAS DIGITAIS II

### 1° SEMESTRE DE 2021

```
111
112
113
114
115
                               when MIN_CR =>
                                                              <= AJU CR:
                              when INC_DP =>
E <= INC_DT;
when INC_DT =>
 113
116
117
118
119
120
121
122
                              when INC_DI =>
    E <= VER_DT;
when VER_DT =>
        if PO='1' then E <= SIN_LIM; SDM<='1';
        elsif PO='0' then E <= VER_CR;
end if;</pre>
                               when SIN_LIM =>
                             E <= VER_CR,
when VER_CR =>
    if NG='1' then E <= MUL_CR; MFC<= '1';
    elsif NG='0' then E <= VF15;
    end if;
                                                             <= VER CR:
 123
124
125
 126
127
128
129
130
131
132
                              when MUL_CR =>
E <= VF15;
                             when VF15 =>
    if PP='0' and RP='0' then E <= VF15;
    elsif RP='1' and PP='0' then E <= VF16; MEV<= '0';|
    elsif PP='1' then E <= VER_VEL;</pre>
 132
133
134
135
136
137
138
139
                              when VF16 =>
E <= VF15;
                             when VER_VEL => if FT='0' then E <= MUL_VEL; MEV<= '1'; elsif FT='1' then E <= INC_DP; end if; when MUL_VEL => E <= INC_DP;
 140
141
142
143
144
145
146
                               when others => Null:
                    end case;
end if;
end process;
                 147
148
149
150
151
152
153
154
155
156
157
158
159
                        case E is
when ZER_RG =>
                             incrementa CR <= "10";
                                                          CR => -- incrementa Cr

Sel_mxa <= "001"; Sel_mxb <= "000"; Sel_ula <= '1';

Ldc <= '0'; Ldb <= '0'; Lda <= '1'; IT <= '1';

-- verifica CRM
 160
                               when INC_CR =>
 161
162
163
164
165
166
                                                        Sel_mixa \( \) Ldc \( <= '0'; \) Ldb \( <= '0'; \) Lua \( \sigma \) -- verifica \( \color \co
                               Ldc <= when VER_CRM =>
                                                          CR => Sel_mxa <= "XXX"; Sel_mxb <= "101"; Sel_ula <= Ldc <= '0'; Ldb <= '0'; Lda <='1'; IT <= '1'; -- decrementa (
                               when MAX_CR =>
 167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
                                                                                                                                                                  IT <= 1 ,
decrementa CR <= "11";
                                                          ___ decrementa c
Sel_mxa <= "001"; Sel_mxb <= "000"; Sel_ula <=
Ldc <= '0'; Ldb <= '0'; Lda <='1'; IT <= '1';
___ minimo valor
                               when DEC_CR =>
                                                         when MIN CR =>
                              Ldc <=
when INC_DP_=>
                                                         Ldc <= '0'; Ldb <= '1'; Lda <= '0'; IT <= '1';

Ldc <= '0'; Ldb <= '1'; Lda <= '0'; IT <= '1';

Ldc <= '0'; Ldb <= '1'; Lda <= '0'; IT <= '1';
                                                         when INC DT =>
                               when VER DT =>
                              182
183
184
                                                         LIM => -- sinaliza inmite

Sel_mxa <= "XXX"; Sel_mxb <= "XXX"; Sel_ula <= "XX";

Ldc <= '0'; Ldb <= '0'; Lda <='0'; IT <= '1';

CR => -- verifica CR
                            185
186
  187
 188
189
  190
 191
192
193
194
195
196
197
198
200
201
202
203
204
205
206
207
208
209
                                                         Ldc <=
when MUL_VEL =>
                                                         when others => Null:
                    end case;
end process;
end FSM:
```

### CURSO DE ENGENHARIA ELÉTRICA ELD020 – LABORATÓRIO DE SISTEMAS DIGITAIS II

1° SEMESTRE DE 2021

### 7. Código da Junção da UC com FD

```
library ieee;
use ieee.std_logic_1164.all;
2
3
4
5
6
7
8
9
10
11
12
                            y juncao_2FV IS PORT(
PPP, ICC, DCC, CKK, RTT, RPP, MOO: IN std_logic;
LD1, LD2, LD3: OUT STD_LOGIC;
REGA, REGB, REGC: OUT std_logic_vector(7 downto 0);
ITT, FTT: buffer std_logic);
              END juncao_2FV;
           □ARCHITECTURE BEHAVIOR OF juncao_2FV IS
SIGNAL Z, P, N, E: std_logic;
SIGNAL SA, SB: std_logic_VECTOR(2 DOWNTO 0);
SIGNAL SU: STD_LOGIC_VECTOR (1 DOWNTO 0);
SIGNAL LA, LB, LC: std_logic;
SIGNAL CR, DT, DP: std_logic_vector(7 downto 0);
                            S_MXA, S_MXB: IN STD_LOGIC_VECTOR (2 DOWNTO 0);
S_ULA: IN STD_LOGIC_VECTOR (1 DOWNTO 0);
LDA, LDB, LDC: IN STD_LOGIC;
IT: IN STD_LOGIC;
CK: IN STD_LOGIC;
---PERGUNT
                                                                                                                 ---PERGUNTAR PRA PROFESSORA SE É NECESSARIO O CK NA FD
             ZR, PO, NG, ES: OUT STD_LOGIC;
REG_A, REG_B, REG_C: OUT STD_LOGIC_vector(7 downto 0));
END component FD;
           -- clock de 50MHz
-- reinicio total -> ativo em zero
              -- Entradas Externas:
IC : in std_logic;
DC : in std_logic;
RP : in std_logic;
PP : in std_logic;
MO : in std_logic;
                                                                                         -- incrementa credito -> ativo em um
-- decrementa credito -> ativo em um
-- reinicio parcial -> ativo em um
-- passagem pelo portico -> ativo em um
-- modo de operação -> 1= Normal, O= Ajusta Valor
              MO: In std_logic;
-- Sinais de Estado da ULA:
ZR: in std_logic;
PO: in std_logic;
NG: in std_logic;
ES: in std_logic;
                                                                                         -- resultado zero na operação da ULA
-- resultado positivo na operação da ULA
-- resultado negativo na operação da ULA
-- resultado da operação da ULA maior que 255
               -- Sinais de Estado do TIMER:
FT : in std_logic; -- fim da temporização de 1 segundo
-- Sinais de Saida para MUX:
Sel_mxa : out std_logic_vector(2 downto 0); -- seleciona entrada de MUX_A
              Sel_mxb : out std_logic_vector(2 downto 0); -- seleciona entrada de MUX_B
-- Sinais de Saida para ULA:
    Sel_ula : out std_logic_vector(1 downto 0); -- seleciona operação da ULA
-- Sinais de Saida para Registradores:
    Lda : out std_logic; -- carrega RA
    Ldb : out std_logic; -- carrega RB
    Ldc : out std_logic; -- carrega RC
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
66
66
67
70
71
                                                                                         -- carrega RC
              -- Sinais de Saida para TIMER:
              IT : out std_logic;
-- Sinais de Saida Externos:
                                                                                         -- inicia temporização
                                                                                        -- sinaliza multa por excesso de velocidade
-- sinaliza multa por falta de crédito
-- sinaliza limite de distância total percorrida
                                     : out std_logic;
: out std_logic;
: out std_logic
              - );
end component UC;
              begin
                     UC1 : UC port MAP (PP=>PPP, IC=>ICC, DC=>DCC, CK=>CKK, RT=>RTT, RP=>RPP, MO=>MOO, ZR=>Z, PO=>P, NG=>N, ES=>E, FT=>FTT, IT=>ITT, Sel_mxa=>SA, Sel_mxb=>SB, Sel_ula=>SU, Lda=>LA, Ldb=>LB, Ldc=>LC,MEV=>LD1,MFC=>LD2,SDM=>LD3);
              END BEHAVIOR:
```

### CURSO DE ENGENHARIA ELÉTRICA

### ELD020 – Laboratório de Sistemas Digitais II

### 1° SEMESTRE DE 2021

### 8. Código VHDL do Projeto Completo

```
1 library ieee;
      use ieee.std_logic_1164.all;
  3
       BENTITY projeto2final IS PORT(
                  SDO, KEYO, KEY1, CLK1_50, SW9, SW0, SW1 : IN STD_LOGIC;
NCS, SDI, SCLK : OUT STD_LOGIC;
LEDO, LED1, LED2, LED3 : OUT STD_LOGIC;
  6
                   DECAD, DECBD, DECCD, DECAU, DECBU, DECCU : OUT STD_LOGIC_VECTOR(6 DOWNTO 0) );
  8
        LEND projeto2final;
       BARCHITECTURE BEHAVIOR OF projeto2final IS
| SIGNAL P, IC, DC, RT, RP, MO, MEV, MFC, SDM, SI, DB : STD_LOGIC;
| SIGNAL AD, BD, CD : std_logic_vector(7 downto 0);
11
12
13
14
15
16
17
18
       PPP, ICC, DCC, CKK, RTT, RPP, MOO: IN std_logic;
LD1, LD2, LD3: OUT STD_LOGIC;
19
20
21
22
23
                   REGA, REGB, REGC: OUT std_logic_vector(7 downto 0));
          END COMPONENT juncao_2FV;
 24
        ÉCOMPONENT SINCRON IS
25
               PORT ( CK : IN STD_LOGIC; -- clock de 50MHz

RST : IN STD_LOGIC; -- reset (ativo em zero)

KEY : IN STD_LOGIC; -- botao de entrada (ativo em zero)
26
27
28
29
                       SINC : OUT STD_LOGIC ); -- pulso de sinal de saida (ativo em um)
          END COMPONENT SINCRON;
30
 31
        ECOMPONENT DECODIFICADOR_BCD IS -- declaracao da entidade DECODIFICADOR_BCD
32
              ( Q : IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- vetor de 8 bits de entrada D, U : OUT STD_LOGIC_VECTOR(6 DOWNTO 0)); -- vetores dezena e unidade
33
33
34
35
36
         END COMPONENT DECODIFICADOR_BCD;
37
38
39
        ECOMPONENT debouncing2 is
                (ck : in std_logic;
rst : in std_logic;
ch : in std_logic;
ch_db : out std_logic);
               (ck
                                                                   -- periodo de referencia
                                                                     -- iniciacao da contagem
-- sinal com oscilacao
40
41
42
                                                                     -- sinal sem oscilacao
43
          END COMPONENT debouncing2;
44
45
                                                                 -- declaração da entidade GEADORE_PP
       COMPONENT GERADOR_PP IS
46
              PORT
47
                 CLK, RST: IN STD_LOGIC;
                                                           -- sinais de controle
                  PP : OUT STD_LOGIC;
LP : BUFFER STD_LOGIC;
48
                                                         -- puso de pórtico
                                                        -- led de sinalização de frequência
49
50
                  SDO: IN STD_LOGIC;
                                                             -- entrada de dados do sensor ADXL345
51
                  SCLK,SDI,NOT_CS: OUT STD_LOGIC); -- sinais de comunicação com sensor ADXL345
52
53
54
        -END COMPONENT GERADOR_PP;
         BEGIN
           GERADOR_PP1 : GERADOR_PP PORT MAP ( SD0=>SD0, CLK=>clk1_50, RST=>SW9, NOT_CS=>NCS, SDI=>SDI, SCLK=>SCLK, LP=>LED0, PP=>P); SINCROND : SINCRON PORT MAP ( KEY=>KEY0, CK=>clk1_50, RST=>SW9, SINC=>IC); SINCRON PORT MAP ( KEY=>KEY1, CK=>clk1_50, RST=>SW9, SINC=>DC);
55
56
57
58
59
           debouncing21 : debouncing2 PORT MAP ( ch=>SW0, ck=>clk1_50, rst=>SW9, ch_db=>RP);
debouncing22 : debouncing2 PORT MAP ( ch=>SW1, ck=>clk1_50, rst=>SW9, ch_db=>M0);
60
61
62
           juncao_2FV1 : juncao_2FV PORT MAP ( PPP=>P, ICC=>SI, DCC=>SI, CKK=>Clk1_50, RTT=>SW9, RPP=>RP,
63
           MOO=>MO, LD1=>LED1, LD2=>LED2, LD3=>LED3, REGA=>AD, REGB=>BD, REGC=>CD);
64
           DECODIFICADOR_BCD1 : DECODIFICADOR_BCD PORT MAP (Q=>AD, D=>DECAD, U=>DECAD);
DECODIFICADOR_BCD2 : DECODIFICADOR_BCD PORT MAP (Q=>BD, D=>DECBD, U=>DECBD);
DECODIFICADOR_BCD3 : DECODIFICADOR_BCD PORT MAP (Q=>CD, D=>DECCD, U=>DECCD);
65
66
67
68
           END BEHAVIOR:
```

### 9. Diagrama RTL do Projeto Completo



### 11. Pinagem do Projeto(Pin Planner)

Top View - Wire Bond MAX 10 - 10M50DAF484C7G



| Node Name    | Direction | Location | I/O Bank | VREF Group | Fitter Location | I/O Standard | Reserved | Current Strength | Slew Rate          | Differential Pair | Strict Preservation |
|--------------|-----------|----------|----------|------------|-----------------|--------------|----------|------------------|--------------------|-------------------|---------------------|
| L CLK1_50    | Input     | PIN_P11  | 3        | B3_N0      | PIN_P11         | 2.5 V        |          | 12mA (default)   |                    |                   |                     |
| DECAD[6]     | Output    | PIN_B17  | 7        | B7_N0      | PIN_B17         | 2.5 V        |          | 12mA (default)   | 2 (default)        |                   |                     |
| DECAD[5]     | Output    | PIN_A18  | 7        | B7_N0      | PIN_A18         | 2.5 V        |          | 12mA (default)   | 2 (default)        |                   |                     |
| DECAD[4]     | Output    | PIN_A17  | 7        | B7_N0      | PIN_A17         | 2.5 V        |          | 12mA (default)   | 2 (default)        |                   |                     |
| DECAD[3]     | Output    | PIN_B16  | 7        | B7_N0      | PIN_B16         | 2.5 V        |          | 12mA (default)   | 2 (default)        |                   |                     |
| DECAD[2]     | Output    | PIN_E18  | 6        | B6_N0      | PIN_E18         | 2.5 V        |          | 12mA (default)   | 2 (default)        |                   |                     |
| DECAD[1]     | Output    | PIN_D18  | 6        | B6_N0      | PIN_D18         | 2.5 V        |          | 12mA (default)   | 2 (default)        |                   |                     |
| DECAD[0]     | Output    | PIN_C18  | 7        | B7_N0      | PIN_C18         | 2.5 V        |          | 12mA (default)   | 2 (default)        |                   |                     |
| DECAU[6]     | Output    | PIN_C17  | 7        | B7_N0      | PIN_C17         | 2.5 V        |          | 12mA (default)   | 2 (default)        |                   |                     |
| DECAU[5]     | Output    | PIN_D17  | 7        | B7_N0      | PIN_D17         | 2.5 V        |          | 12mA (default)   | 2 (default)        |                   |                     |
| DECAU[4]     | Output    | PIN_E16  | 7        | B7_N0      | PIN_E16         | 2.5 V        |          | 12mA (default)   | 2 (default)        |                   |                     |
| DECAU[3]     | Output    | PIN_C16  | 7        | B7_N0      | PIN_C16         | 2.5 V        |          | 12mA (default)   | 2 (default)        |                   |                     |
| DECAU[2]     | Output    | PIN_C15  | 7        | B7_N0      | PIN_C15         | 2.5 V        |          | 12mA (default)   | 2 (default)        |                   |                     |
| DECAU[1]     | Output    | PIN_E15  | 7        | B7_N0      | PIN_E15         | 2.5 V        |          | 12mA (default)   | 2 (default)        |                   |                     |
| DECAU[0]     | Output    | PIN_C14  | 7        | B7_N0      | PIN_C14         | 2.5 V        |          | 12mA (default)   | 2 (default)        |                   |                     |
| DECBD[6]     | Output    | PIN_E17  | 6        | B6_N0      | PIN_E17         | 2.5 V        |          | 12mA (default)   | 2 (default)        |                   |                     |
| DECBD[5]     | Output    | PIN_D19  | 6        | B6_N0      | PIN_D19         | 2.5 V        |          | 12mA (default)   | 2 (default)        |                   |                     |
| DECBD[4]     | Output    | PIN_C20  | 6        | B6_N0      | PIN_C20         | 2.5 V        |          | 12mA (default)   | 2 (default)        | lindows           |                     |
| DECBD[3]     | Output    | PIN_C19  | 7        | B7_N0      | PIN_C19         | 2.5 V        |          | 12mA (default)   | 2 (default)        | lindows           |                     |
| OUT DECBD[2] | Output    | PIN E21  | 6        | B6 N0      | PIN E21         | 2.5 V        |          | 12mA (default)   | 2 (default) Config |                   | atıvar o Windo      |

| - SW1<br>- SW9       | Input  | PIN_E15            | 7 | B7_N0<br>B7_N0 | PIN_F15            | 2.5 V          | 12mA (default)                   | Ativar o Windows  Acesse Configurações para ativar o Window |
|----------------------|--------|--------------------|---|----------------|--------------------|----------------|----------------------------------|-------------------------------------------------------------|
| _ SW0<br>_ SW1       | Input  | PIN_C10<br>PIN_C11 | 7 | B7_N0<br>B7_N0 | PIN_C10<br>PIN_C11 | 2.5 V<br>2.5 V | 12mA (default)<br>12mA (default) |                                                             |
| SDO                  | Input  | PIN_V12            | 4 | B4_N0          | PIN_V12            | 2.5 V          | 12mA (default)                   |                                                             |
| SDI                  | Output | PIN_V11            | 4 | B4_N0          | PIN_V11            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| SCLK                 | Output | PIN_AB15           | 4 | B4_N0          | PIN_AB15           | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| NCS                  | Output | PIN_AB16           | 4 | B4_N0          | PIN_AB16           | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| LED3                 | Output | PIN_B10            | 7 | B7_N0          | PIN_B10            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| LED2                 | Output | PIN_A10            | 7 | B7_N0          | PIN_A10            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| LED1                 | Output | PIN_A9             | 7 | B7_N0          | PIN_A9             | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| LED0                 | Output | PIN_A8             | 7 | B7_N0          | PIN_A8             | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| ⊢ KEY1               | Input  | PIN_A7             | 7 | B7_N0          | PIN_A7             | 2.5 V          | 12mA (default)                   |                                                             |
| ⊢ KEY0               | Input  | PIN_B8             | 7 | B7_N0          | PIN_B8             | 2.5 V          | 12mA (default)                   |                                                             |
| DECCU[0]             | Output | PIN_F18            | 6 | B6_N0          | PIN_F18            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| DECCU[1]             | Output | PIN_E20            | 6 | B6_N0          | PIN_E20            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| DECCU[2]             | Output | PIN_E19            | 6 | B6_N0          | PIN_E19            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
|                      | Output | FIN_510            | U | DO_140         | FII4_510           | 2.5 ¥          | 12111A (default)                 | E facility                                                  |
| DECCU[3]             | Output | PIN_H19            | 6 | B6_N0          | PIN_H19            | 2.5 V          | 12mA (default)                   | 2 (default) 2 (default) Configurações para ativar o Windo   |
| DECCU[4]             | Output | PIN_H19            | 6 | B6_N0          | PIN_H19            | 2.5 V          | 12mA (default)                   | 2 (default) o Windows                                       |
| DECCU[5]             | Output | PIN_F20<br>PIN_F19 | 6 | B6_N0<br>B6_N0 | PIN_F20            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| DECCD[0]             | Output | PIN_J20<br>PIN_F20 | 6 | B6_N0          | PIN_J20<br>PIN_F20 | 2.5 V          | 12mA (default)<br>12mA (default) | 2 (default) 2 (default)                                     |
| DECCD[1]             | Output | PIN_K20            | 6 | B6_N0          | PIN_K20            | 2.5 V<br>2.5 V | 12mA (default)                   | 2 (default)<br>2 (default)                                  |
| DECCD[2]<br>DECCD[1] | Output | PIN_L18            | 6 | B6_N0          | PIN_L18            | 2.5 V          | 12mA (default)<br>12mA (default) | 2 (default)                                                 |
| DECCD[3]             | Output | PIN_N18            | 6 | B6_N0          | PIN_N18            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| DECCD[4]             | Output | PIN_M20            | 6 | B6_N0          | PIN_M20            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| DECCD[5]             | Output | PIN_N19            | 6 | B6_N0          | PIN_N19            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| DECCD[6]             | Output | PIN_N20            | 6 | B6_N0          | PIN_N20            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| DECBU[0]             | Output | PIN_B20            | 6 | B6_N0          | PIN_B20            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| DECBU[1]             | Output | PIN_A20            | 7 | B7_N0          | PIN_A20            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| DECBU[2]             | Output | PIN_B19            | 7 | B7_N0          | PIN_B19            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| DECBU[3]             | Output | PIN_A21            | 6 | B6_N0          | PIN_A21            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| DECBU[4]             | Output | PIN_B21            | 6 | B6_N0          | PIN_B21            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| DECBU[5]             | Output | PIN_C22            | 6 | B6_N0          | PIN_C22            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| DECBU[6]             | Output | PIN_B22            | 6 | B6_N0          | PIN_B22            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| DECBD[0]             | Output | PIN_F21            | 6 | B6_N0          | PIN_F21            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |
| DECBD[1]             | Output | PIN_E22            | 6 | B6_N0          | PIN_E22            | 2.5 V          | 12mA (default)                   | 2 (default)                                                 |

### 12. Diagrama de Estados da UC gerado pelo Quartus Prime









### 12. Simulação Funcional da UC + FD





### 13.Conclusão

Após a execução do projeto conseguimos afirmar que colocamos em prática o conhecimento que é passado na teoria, desde o planejamento do projeto com a utilização de ferramentas e métodos que auxiliam no desenvolvimento e na simulação da sua funcionalidade a partir da descrição de hardware com a linguagem VHDL.

Sentimos dificuldades na elaboração da máquina de estados, no criação do código VHDL para que este funcionasse exatamente como o esperado e na simulação, entretanto, a partir da simulação conseguimos identificar aonde estava os erros na máquina de estados e no VHDL, junto com as orientações da professora. Exercitamos conceitos importantes para a criação de projetos de sistemas digitais, tais como, fluxo de dados, unidade de controle, banco de registradores e metodologia de projetos RTL.

Se fossemos realizar o projeto novamente leríamos o roteiro com mais atenção e levaríamos mais dúvidas às aulas. Para futuros projetos nos manteríamos esse processo da realização em parte, isso faz com que os erros sejam resolvidos aos poucos fazendo com que no final do projeto os erros sejam bem menores.

Gostaríamos de agradecer o professor de teoria Valter Avelino e a professora de laboratório Maria Claudia por ensinar a gente a matéria de Sistemas Digitais 2 e por ter paciência e dedicação aos alunos.