INFO 284 - Machine Learning

Introduction to Machine Learning

Bjørnar Tessem

Machine Learning

- Part of Artificial Intelligence
- Using data to get knowledge
 - Induction
 - Statistical approach
- Resulting MODELs are used for support of decision making in new situations

Types of machine learning

- Supervised learning
- Unsupervised learning
- Reinforcement learning
- Inductive logic programming
- Explanation based learning

K-nearest neighbours (kNN)

What is the type of the green dot?

 Red triangle or blue square

Principle:

- Use nearest neighbours and count each category
- Classify as the same as the majority

UNIVERSITY OF BERGEN

Example

Age	No.Cars	Owns house	No. children	Marital status	Owns a dog	Bought a boat	
66	1	yes	2	widowed	no	yes	
52	2	yes	3	married	no	yes] :
22	0	no	0	married	yes	no	
25	1	no	1	single	no	no] .
44	0	no	2	diverced	yes	no] .
39	1	yes	2	married	yes	no]
26	1	no	2	single	no	no	
40	3	yes	1	married	yes	no]
53	2	yes	2	divorced	no	yes]
64	2	yes	3	divorced	no	no] .
58	2	yes	2	married	yes	yes]
33	1	no	1	single	no	no] .

X: 52 years, 0 cars, no house, 3 children, married, no dog

What will X do?

k-Nearest Neighbour

- The training phase of the algorithm consists only of storing the <u>feature vectors</u> and class labels of the training samples.
- k is a user defined constant.
- A new data 'point' is assigned the label of the most frequent among the k 'closest' training data points
- 'Closest' or 'most similar' is defined in different ways

Supervised learning

Given: a set of input-output pairs

input

output

Learned: predicting output for a given input

- Supervised learning involves observing several examples
 of a arbitrary vector x and an associated value or vector y
 then learning to predict y from x:
- by estimating F(x) = y
- To understand the above a quick dive into linear algebra

7

Linear algebra

- Algebra the study of (mathematical) structures and the rules for manipulating these structures
- Linear special types of structures $a_1x_1 + \cdots + a_nx_n = b$
- Scalar single number
- Vector array of numbers.
- An array is a container object that holds a fixed number of values of a single type.

8

Vector

- In a vector the numbers are arranged in an order.
- We can identify each number by its index.
- Vector notation bold small case. Eg. x

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

NFO284

Matrix

- Matrix is a two dimensional array of numbers.
- We can identify each number in a matrix by two indices.
- Matrix notation bold uppers case. Eg. A

$$\mathbf{A} = egin{bmatrix} A_{1,1}, A_{1,2}, \cdots, A_{1_m} \ A_{2,1}, A_{2,2}, \cdots, A_{2_m} \ dots \ A_{n,1}, A_{n,2}, \cdots, A_{n_m} \end{bmatrix}$$

NFO284

Tensor

- Tensor is an array of numbers arranged on a regular grid with a variable number of axes.
- An n-ranked tensor has n indices.
- Usage:
 - Sometimes used to describe a matrix of values together with how those values are transformed by some function
 - Sometimes used to represent whole collections of two-dimensional data

Tensor

FO284

kNN - Closest with continuous features

- Most often the Euclidean distance function is used
- Given two vectors (data points with n features)

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$
 $\mathbf{x}' = (x'_1, x'_2, \dots, x'_n)$

$$d(\mathbf{x}, \mathbf{x}') = \sqrt{(x_1' - x_1)^2 + (x_2' - x_2)^2 + \cdots + (x_n' - x_n)^2}$$

$$\mathbf{x'}$$
 [4.6 3.1 1.5 0.2]

$$d(\mathbf{x}, \mathbf{x}') = \sqrt{(4.6 - 4.7)^2 + (3.1 - 3.2)^2 + (1.5 - 1.3)^2 + (0.2 - 0.2)^2)} = 0.245$$

kNN – Closest with discrete features

- Most often the Hamming distance function is used
- Given two vectors (data points with n features)

$$\mathbf{x} = (x_1, x_2, \dots, x_n) \mathbf{x}' = (x'_1, x'_2, \dots, x'_n)$$

$$d_H(\mathbf{x}, \mathbf{x}') = |\{i \mid x_i \neq x'_i\}|$$

	ш						
39		1	yes	2	married	yes	no
40	П	3	yes	1	married	yes	no
	П	П		П		•	•

Some issues

- When k>1 neighbour
 - For discrete output values (classification) the majority category from k closest is selected
 - For continuous output values (regression) the average of the k closest is selected
- Higher number of neighbours and features → higher complexity, less quality
- Different variation in dimensions
 - Min-max-normalisation
- Combining continuous and discrete features
 - Euclid with Hamming distance for discrete features, real numbers for continuous features
- Case.based learning
 - Weighting features
 - Transform discrete features to indicator variables one-hot encoding

Supervised learning

- Supervised learning involves observing several examples of an arbitrary vector x in the a feature space, together with an associated value or vector y, then learning to predict y from x.
- Given a training set of N example input-output pairs $(x_1,y_1), (x_2,y_2),...,(x_N,y_N)$ where each y_i was generated by an unknown function $y_i=f(x_i)$, discover a function h that approximates the true function f.

Hypothesis space H

- Hypothesis space is the set of all functions h that approximate f.
- A learning problem is realisable if the hypothesis space contains the true function f.
 - We cannot always tell if a learning problem is realisable
- We go for approximations!

Finding a good hypothesis

- Learning is a search through the space of possible hypothesis to find one that **performs** well.
- We may measure how well a hypotheses performs in terms of accuracy. To do this we "give it" a test set of examples that are distinct from the training set.
- Accuracy the fraction of examples from the test set for which the output was assigned correctly.

uib.no

