Public key encryption from Diffie-Hellman

This slide is made based the online course of Cryptography by Dan Boneh

Recap: public key encryption: (Gen, E, D)

Recap: public-key encryption applications

Key exchange (e.g. in HTTPS)

Encryption in non-interactive settings:

- Secure Email: Bob has Alice's pub-key and sends her an email
- Encrypted File Systems

Recap: public-key encryption applications

Key exchange (e.g. in HTTPS)

Encryption in non-interactive settings:

- Secure Email: Bob has Alice's pub-key and sends her an email
- Encrypted File Systems

Constructions

This week: two families of public-key encryption schemes

- Previous lecture: based on trapdoor functions (such as RSA)
 - Schemes: ISO standard, OAEP+, ...
- This lecture: based on the Diffie-Hellman protocol
 - Schemes: ElGamal encryption and variants (e.g. used in GPG)

Security goals: chosen ciphertext security

The Diffie-Hellman protocol (1977)

Fix a finite cyclic group G (e.g $G = (Z_p)^*$) of order n Fix a generator g in G (i.e. $G = \{1, g, g^2, g^3, ..., g^{n-1}\}$)

Alice

choose random **a** in {1,...,n}

Bob

choose random **b** in {1,...,n}

$$A = g^{a}$$

$$B = g^{b}$$

$$B^a = (g^b)^a =$$

$$\mathbf{k_{AB}} = \mathbf{g^{ab}}$$
 = $(g^a)^b$ = $\mathbf{A^b}$

ElGamal: converting to pub-key enc. (1984)

Fix a finite cyclic group G (e.g $G = (Z_p)^*$) of order n Fix a generator g in G (i.e. $G = \{1, g, g^2, g^3, ..., g^{n-1}\}$)

Alice

choose random **a** in {1,...,n}

 $A = g^a$

Treat as a public key

<u>Bob</u>

ndom **b** in {1,...,n}

compute
$$g^{ab} = A^b$$
,

derive symmetric key k,

 $ct = \begin{bmatrix} B = g^b & encrypt message m & with k \end{bmatrix}$

ElGamal: converting to pub-key enc. (1984)

Fix a finite cyclic group G (e.g $G = (Z_p)^*$) of order n Fix a generator g in G (i.e. $G = \{1, g, g^2, g^3, ..., g^{n-1}\}$)

Alice

choose random a in {1,...,n}

$$A = g^a$$

Treat as a public key ndom **b** in {1,...,n}

compute $g^{ab} = A^b$.

To decrypt: compute $g^{ab} = B^a$, derive k, and decrypt

ct = $\begin{bmatrix} & & derive symmetric key k, \\ B = g^b, & encrypt message m with k \end{bmatrix}$

Traditional Elgamal Version

- Gen: on input 1^n run $\mathcal{G}(1^n)$ to obtain (\mathbb{G}, q, g) . Then choose a uniform $x \in \mathbb{Z}_q$ and compute $h := g^x$. The public key is $\langle \mathbb{G}, q, g, h \rangle$ and the private key is $\langle \mathbb{G}, q, g, x \rangle$. The message space is \mathbb{G} .
- Enc: on input a public key $pk = \langle \mathbb{G}, q, g, h \rangle$ and a message $m \in \mathbb{G}$, choose a uniform $y \in \mathbb{Z}_q$ and output the ciphertext

$$\langle g^y, h^y \cdot m \rangle$$
.

• Dec: on input a private key $sk = \langle \mathbb{G}, q, g, x \rangle$ and a ciphertext $\langle c_1, c_2 \rangle$, output

$$\hat{m} := c_2/c_1^x.$$

Theorem: If the DDH problem is hard relative to \mathcal{G} , then the El Gamal encryption scheme is CPA-secure.

Working in Subgroups of Z_p^*

- DL is hard in subgroup of Z_p^st with prime order q
- DDH is hard in the subgroup with prime order q

Let
$$p = rq + 1$$
 with p, q prime. Then
$$\mathbb{G} \stackrel{\text{def}}{=} \{ [h^r \bmod p] \mid h \in \mathbb{Z}_p^* \}$$
 is a subgroup of \mathbb{Z}_p^* of order q .

If group $oldsymbol{Z}_{oldsymbol{p}}^*$ is used, then traditional Elgamal is not secure in DDH assumption.

DDH doesn't hold in \mathbb{Z}_p^*

We show that the DDH assumption doesn't hold in \mathbb{Z}_p^* by using a subset of \mathbb{Z}_p^* , called the quadratic residue which is defined as follows.

$$QR_p = \{f : \exists h \in \mathbb{Z}_p^* \ s.t. \ f = h^2\} = \{g^i : i \text{ is even}\}$$

 $f = h^2 = g^{2j \mod p - 1} = g^i, i \text{ is even}$

Claim: $f \in QR_p \iff f^{(p-1)/2} = 1$. This is easy to verify by looking at $f = g^i \Rightarrow f^{(p-1)/2} = g^{i(p-1)/2}$. If i is even, then this $f^{(p-1)/2} = f^{(p-1)} = 1$ and it is not 1 if i is odd.

ху	x is even	x is odd
y is even	even	even
y is odd	even	odd

Random case: 1/2 **Distinguisher!**

The ElGamal system (a modern view)

- G: finite cyclic group of order n
- (E_s, D_s): symmetric auth. encryption defined over (K,M,C)
- H: $G^2 \rightarrow K$ a hash function

We construct a pub-key enc. system (Gen, E, D):

- Key generation Gen:
 - choose random generator g in G and random a in Z_n
 - output sk = a, $pk = (g, h=g^a)$

The ElGamal system (a modern view)

- G: finite cyclic group of order n
- (E_s, D_s): symmetric auth. encryption defined over (K,M,C)
- H: $G^2 \rightarrow K$ a hash function

```
\begin{split} \underline{\textbf{E(pk=(g,h), m)}}: \\ b &\stackrel{\mathbb{R}}{\leftarrow} Z_n, \ u \leftarrow g^b, \ v \leftarrow h^b \\ k \leftarrow H(u,v), \ c \leftarrow E_s(k,m) \\ \text{output } (u,c) \end{split}
```

```
\frac{D(sk=a,(u,c))}{v \leftarrow u^a}
k \leftarrow H(u,v), \quad m \leftarrow D_s(k,c)
output m
```

ElGamal performance

```
E( pk=(g,h), m):

b \leftarrow Z_n, u \leftarrow g^b, v \leftarrow h^b
```

```
<u>D( sk=a, (u,c) )</u>: v ← u<sup>a</sup></u>
```

Encryption: 2 exp. (fixed basis)

- Can pre-compute $[g^{(2^{i})}, h^{(2^{i})}]$ for $i=1,...,log_{2}$ n
- 3x speed-up (or more)

Decryption: 1 exp. (variable basis)

Next step: why is this system chosen ciphertext secure? under what assumptions?

End of Segment

Public key encryption from Diffie-Hellman

ElGamal Security

ElGamal encryption

- a cyclic group \mathbb{G} of prime order q with generator $g \in \mathbb{G}$,
- a symmetric cipher $\mathcal{E}_{s} = (E_{s}, D_{s})$, defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$,
- a hash function $H: \mathbb{G}^2 \to \mathcal{K}$.
- the key generation algorithm runs as follows:

$$G() := egin{array}{ccc} lpha & \overset{ ext{R}}{\leftarrow} \mathbb{Z}_q, & u \leftarrow g^lpha \ pk \leftarrow u, & sk \leftarrow lpha \ ext{output } (pk, sk); \end{array}$$

• for a given public key $pk = u \in \mathbb{G}$ and message $m \in \mathcal{M}$, the encryption algorithm runs as follows:

$$E(pk,m) := \beta \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_q, \quad v \leftarrow g^{\beta}, \quad w \leftarrow u^{\beta}, \quad k \leftarrow H(v,w), \quad c \leftarrow E_{s}(k,m)$$
output (v,c) ;

• for a given secret key $sk = \alpha \in \mathbb{Z}_q$ and a ciphertext $(v, c) \in \mathbb{G} \times \mathcal{C}$, the decryption algorithm runs as follows:

$$D(sk, (v, c)) := w \leftarrow v^{\alpha}, k \leftarrow H(v, w), m \leftarrow D_{s}(k, c)$$

output m .

Semantic security of ElGamal without random oracles

 $k \leftarrow H(v, w)$

 $\mathbf{Random\ oracles} \quad \mathrm{SS^{ro}} \mathsf{adv}[\mathcal{A}, \mathcal{E}_{\mathrm{EG}}] \leq 2Q \cdot \mathrm{CDHadv}[\mathcal{B}_{\mathrm{cdh}}, \mathbb{G}] + \mathrm{SSadv}[\mathcal{B}_{\mathrm{s}}, \mathcal{E}_{\mathrm{s}}].$

random oracle version: the challenger uses **O** in place of **H** for all its computations, and in addition, the adversary is allowed to obtain the value of **O** at arbitrary input points of his choosing.

secure key derivation function

 $\mathrm{SSadv}[\mathcal{A}, \mathcal{E}_{\mathrm{EG}}] \leq 2 \cdot \mathrm{DDHadv}[\mathcal{B}_{\mathrm{ddh}}, \mathbb{G}] + 2 \cdot \mathrm{KDFadv}[\mathcal{B}_{\mathrm{kdf}}, H] + \mathrm{SSadv}[\mathcal{B}_{\mathrm{s}}, \mathcal{E}_{\mathrm{s}}].$

Key derivation

Roughly speaking, the problem is this: we start with some secret data, and we want to convert it into an *n*-bit string that we can use as the key to some cryptographic primitive, like AES.

Intuitively, $H: \mathbb{G}^2 \to \mathcal{K}$ is a secure KDF if no efficient adversary can effectively distinguish between (v, H(w)) and (v, k), where v and w are randomly chosen from \mathbb{G} , and k is randomly chosen from \mathcal{K} .

secure key derivation

Attack Game 11.3 (secure key derivation). For a given hash function $F: \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$, and for a given adversary \mathcal{A} , we define two experiments.

Experiment b (b=0,1):

• The challenger computes

$$x \stackrel{\mathbb{R}}{\leftarrow} \mathcal{X}, \quad y \stackrel{\mathbb{R}}{\leftarrow} \mathcal{Y}, \quad z_0 \leftarrow F(x, y), \quad z_1 \stackrel{\mathbb{R}}{\leftarrow} \mathcal{Z},$$

and sends (x, z_b) to the adversary.

• The adversary outputs a bit $\hat{b} \in \{0, 1\}$.

 $ext{KDFadv}[\mathcal{A}, F] := \left| \Pr[W_0] - \Pr[W_1] \right|$

Semantic security against chosen plaintext attack

Theorem 11.1. If a public-key encryption scheme \mathcal{E} is semantically secure, then it is also CPA secure.

In particular, for every CPA adversary \mathcal{A} that plays Attack Game 11.2 with respect to \mathcal{E} , and which makes at most Q queries to its challenger, there exists an SS adversary \mathcal{B} , where \mathcal{B} is an elementary wrapper around \mathcal{A} , such that

 $\mathrm{CPAadv}[\mathcal{A},\mathcal{E}] = Q \cdot \mathrm{SSadv}[\mathcal{B},\mathcal{E}].$

GAME 0

 $\mathrm{SSadv}^*[\mathcal{A},\mathcal{E}_{\mathrm{EG}}] = |\mathrm{Pr}[W_0] - 1/2|$

GAME 1

 $|\Pr[W_0] - \Pr[W_1]| = \mathrm{DDHadv}[\mathcal{B}_{\mathrm{ddh}}, \mathbb{G}].$

GAME 2

 $|\Pr[W_2] - 1/2| = \mathrm{SSadv}^*[\mathcal{B}_s, \mathcal{E}_s].$

 $|\Pr[W_1] - \Pr[W_2]| = \mathrm{KDFadv}[\mathcal{B}_{\mathrm{kdf}}, H].$

$$\operatorname{SSadv}^*[\mathcal{A}, \mathcal{E}_{\operatorname{EG}}] = |\operatorname{Pr}[W_0] - 1/2|$$

$$|\Pr[W_0] - \Pr[W_1]| = \mathrm{DDHadv}[\mathcal{B}_{\mathrm{ddh}}, \mathbb{G}].$$

$$|\Pr[W_2] - 1/2| = SSadv^*[\mathcal{B}_s, \mathcal{E}_s].$$

$$|\Pr[W_1] - \Pr[W_2]| = KDFadv[\mathcal{B}_{kdf}, H].$$

 $\mathrm{SSadv}^*[\mathcal{A},\mathcal{E}_{\mathrm{EG}}] \leq \mathrm{DDHadv}[\mathcal{B}_{\mathrm{ddh}},\mathbb{G}] + \mathrm{KDFadv}[\mathcal{B}_{\mathrm{kdf}},H] + \mathrm{SSadv}^*[\mathcal{B}_{\mathrm{s}},\mathcal{E}_{\mathrm{s}}].$

Computational Diffie-Hellman Assumption

G: finite cyclic group of order n

Comp. DH (CDH) assumption holds in G if: g, g^a , $g^b \implies g^{ab}$

for all efficient algs. A:

$$Pr[A(g, g^a, g^b) = g^{ab}] < negligible$$

where $g \leftarrow \{\text{generators of G}\}\$, $a, b \leftarrow Z_n$

Hash Diffie-Hellman Assumption

G: finite cyclic group of order n , H: $G^2 \rightarrow K$ a hash function

<u>Def</u>: Hash-DH (HDH) assumption holds for (G, H) if:

$$\left(g,\ g^a,\ g^b\ ,\ H(g^b,g^{ab})\ \right) \quad \approx_p \quad \left(g,\ g^a,\ g^b\ ,\ R\ \right)$$
 where $g \leftarrow \{\text{generators of G}\}$, $a,b \leftarrow Z_n$, $R \leftarrow K$

H acts as an extractor: strange distribution on $G^2 \Rightarrow uniform$ on K

ElGamal is sem. secure under Hash-DH

KeyGen:
$$g \leftarrow \{generators of G\}$$
, $a \leftarrow Z_n$
output $pk = (g, h=g^a)$, $sk = a$

$$\frac{D(sk=a,(u,c))}{k \leftarrow H(u,u^a), \quad m \leftarrow D_s(k,c)}$$
 output m

ElGamal is sem. secure under Hash-DH

ElGamal chosen ciphertext security?

To prove chosen ciphertext security need stronger assumption

Interactive Diffie-Hellman (IDH) in group G:

IDH holds in G if: ∀efficient A: Pr[A outputs gab] < negligible

ElGamal chosen ciphertext security?

Security Theorem:

If **IDH** holds in the group G, (E_s, D_s) provides auth. enc. and $H: G^2 \longrightarrow K$ is a "random oracle" then **ElGamal** is CCA^{ro} secure.

Questions: (1) can we prove CCA security based on CDH?

(2) can we prove CCA security without random oracles?

End of Segment

Public key encryption from Diffie-Hellman

ElGamal Variants
With Better Security

Review: ElGamal encryption

KeyGen:
$$g \leftarrow \{generators of G\}$$
, $a \leftarrow Z_n$

output
$$pk = (g, h=g^a)$$
, $sk = a$

E(pk=(g,h), m):
$$b \leftarrow Z_n$$

 $k \leftarrow H(g^b,h^b)$, $c \leftarrow E_s(k,m)$
output (g^b,c)

$$\begin{array}{c} \underline{\textbf{D(sk=a,(u,c))}:} \\ \\ k \leftarrow H(u,u^a) \;, \;\; m \leftarrow D_s(k,c) \\ \\ \text{output } m \end{array}$$

ElGamal chosen ciphertext security

Security Theorem:

If IDH holds in the group G, (E_s, D_s) provides auth. enc. and $H: G^2 \longrightarrow K$ is a "random oracle" then **ElGamal** is CCA^{ro} secure.

Can we prove CCA security based on CDH $(g, g^a, g^b \rightarrow g^{ab})$?

- Option 1: use group G where CDH = IDH (a.k.a bilinear group)
- Option 2: change the ElGamal system

Variants: twin ElGamal [CKS'08]

KeyGen: $g \leftarrow \{\text{generators of G}\}$, $a1, a2 \leftarrow Z_n$

output $pk = (g, h_1=g^{a1}, h_2=g^{a2})$, sk = (a1, a2)

E(pk=(g,h₁,h₂), m): $b \leftarrow Z_n$ $k \leftarrow H(g^b, h_1^b, h_2^b)$ $c \leftarrow E_s(k, m)$

output (g^b, c)

D(sk=(a1,a2), (u,c)):

$$k \leftarrow H(u, u^{a1}, u^{a2})$$

 $m \leftarrow D_s(k, c)$
output m

Chosen ciphertext security

Security Theorem:

If CDH holds in the group G, (E_s, D_s) provides auth. enc. and $H: G^3 \longrightarrow K$ is a "random oracle" then **twin ElGamal** is CCA^{ro} secure.

Cost: one more exponentiation during enc/dec

— Is it worth it? No one knows ...

ElGamal security w/o random oracles?

Can we prove CCA security without random oracles?

- Option 1: use Hash-DH assumption in "bilinear groups"
 - Special elliptic curve with more structure [CHK'04 + BB'04]

Option 2: use Decision-DH assumption in any group [CS'98]

Further Reading

- The Decision Diffie-Hellman problem.
 D. Boneh, ANTS 3, 1998.
- Universal hash proofs and a paradigm for chosen ciphertext secure public key encryption. R. Cramer and V. Shoup, Eurocrypt 2002
- Chosen-ciphertext security from Identity-Based Encryption.
 D. Boneh, R. Canetti, S. Halevi, and J. Katz, SICOMP 2007
- The Twin Diffie-Hellman problem and applications.
 D. Cash, E. Kiltz, V. Shoup, Eurocrypt 2008
- Efficient chosen-ciphertext security via extractable hash proofs.
 H. Wee, Crypto 2010