

BİÇİMSEL DİLLER VE OTOMATA TEORİSİ

Biçimsel Diller ve Otomata Teorisi

6. Hafta

DR. ÖĞR. ÜYESİ. HÜSEYİN VURAL

Ders İzlencesi

- Düzenli Diller(Regular Languages)
- Düzenli İfadeler(Regular expressions)

Düzenli Diller

Belirli bir düzenli dil sınıfı belirli işlemler uygulandığında yine aynı sınıf içinde kalmaktadır

 Bu işlemlerden bazıları union(birleşim), concatenation(ard arda sıralanma) ve kleene star(yıldız) işlemleridir

Düzenli Dillerde Birleşim

N1 NFA'sı A, dilini tanımlamakta

N2 NFA'sı A₂ dilini tanımlamakta

Düzenli Dillerde Birleşim

N, NFA'sı $A_1 \cup A_2$ dilini tanımlamakta

Düzenli Dillerde Sıralama

N1 NFA'sı A, dilini tanımlamakta

N2 NFA'sı A₂ dilini tanımlamakta

Düzenli Dillerde Sıralama

 $A_1 \circ A_2$ dilini tanımlamakta

Düzenli Dillerde Yıldız

N1 NFA'sı A dilini tanımlamakta

Düzenli Dillerde Yıldız

• Matematik'te + ve x gibi operatörleri kullanarak (5+3)x4 gibi matematiksel ifadeler tanımlayabiliriz.

- Benzer şekilde, bu operatörleri kullanarak dilleri tanımlayan düzenli ifadeler de tanımlayabiliriz.
 - Ör: (0 u 1)0*

• Üstteki matematiksel ifadenin sonucu 32'dir. Altta ki düzenli ifadenin sonucuda bir dildir.

• (0 ∪ 1)0*

• Bu örnekte ki ifadenin tanımladığı dil; 0 veya 1 ile başlayan ve sonsuz 0 içerebilecek bir dildir.

• (0 u 1)0* ifadesinde concatenation kullanılmıştır.

• $(0 \cup 1)0^* = (0 \cup 1) \circ 0^*$

 Matematik'te parantez en öncelikli işlemdir daha sonra çarpma daha sonrasında toplama operatörü önceliklidir.

• Düzenli ifadelerde ise en öncelikli opertör *(star)'dır. Daha sonra concatenation daha sonrasında birleştirme operatörü gelmektedir.

• Bir ifadenin **düzeli ifade olarak** kabul edilebilmesi için belli şartlar taşıması gerekmektedir.

- 1. Bir alfabedeki (Σ) bir a sembolü düzenli ifadedir,
- 2. €, boş bir string (null) içerebilir
- 3. Ø, düzenli ifade boş küme dili içerebilir
- 4. R₁ U R₂ ifadesi de bir düzenli ifadedir
- 5. R₁ ° R₂ ifadesi de bir düzenli ifadedir
- 6. (R,*) ifadesi de bir düzenli ifadedir

- Σ ={0,1}, alfabesini göz önünde bulunduralım
- 0*10*
- Σ*1Σ*
- Σ*001Σ*
- (01+)*
- (ΣΣ)*
- (ΣΣΣ)*
- $01010 = \{01,10\}$

- Σ ={0,1}, alfabesini göz önünde bulunduralım
- ΟΣ*Ου1Σ*1υΟυ1
- $(0 \cup \epsilon) 1^* = 01^* \cup 1^*$

 Bir dil eğer düzenli ifadeler tarafından tanımlanabiliyorsa o zaman düzenli dil olarak kabul edilebilir.

- Σ ={0,1}, alfabesini göz önünde bulunduralım
- 0*10* = sadece birtane 1 içerir
- $\Sigma^*1\Sigma^*$ = en az bir tane 1 içerir
- Σ *001 Σ * = 001 substringini mutlaka içerir
- (01+)* = Her O'dan sonra mutlaka 1 gelmelidir
- $(\Sigma\Sigma)^*$ = çift uzunluktaki stringleri içerir
- $(\Sigma\Sigma\Sigma)^* = 3$ veya 3'ün katı uzunluktaki strignleri içerir
- \bullet 01010 = {01,10}

- Σ ={0,1}, alfabesini göz önünde bulunduralım
- $0\Sigma*0u1\Sigma*1u0u1=0$ ile başlayıp 1 ile biten stringleri içerir
- $(0 \cup \varepsilon) 1^* = 01^* \cup 1^* = 0$ ile başlar ve sonsuz 1 içerebilir

 Bir dil eğer düzenli ifadeler tarafından tanımlanabiliyorsa o zaman düzenli dil olarak kabul edilebilir.

• (aub)*aba düzenli ifadesi için NFA oluşturalım

aba

