Hand in Friday, April 19.

Definition. Let $f: S \to C$ be a continuous map from a circle in the plane to a circle in the plane. Define the **degree** of f to be the winding number of this map around the point \vec{c} at the center of C. If you prefer to think of winding numbers in terms of continuous maps from intervals, give the name θ to a variable running through the interval $[0, 2\pi]$, let $\gamma: [0, 2\pi] \to S$ parametrize S by $\gamma(\theta) = (x_0 + r \cos \theta, y_0 + r \sin \theta)$ for appropriate x_0, y_0 , and r, and define the degree of f to be the winding number of $f \circ \gamma$ around \vec{c} . [from the textbook by Fulton]

1. Show that, for an f as in the above definition, if f is not surjective, then the degree of f equals zero.

Proof. Using the parametrization $\gamma:[0,2\pi]\to S$ by $\gamma(\theta)=(x_0+r\cos\theta,y_0+r\sin\theta)$ where (x_0,y_0) is the center of S and r is the radius of S. Then we have that f is a closed curve as

$$f \circ \gamma(0) = f(x_0 + r\cos 0, y_0 + r\sin 0) = f(x_0 + r\cos 2\pi, y_0 + r\sin 2\pi) = f \circ \gamma(2\pi)$$

Now let $\vec{p_1} \in C$ be a point that is not in the image of f. Then we have a point $\vec{p_2} \in C$ that is colinear with the line intersecting (x_0, y_0) and $\vec{p_1}$.

We have the constant curve $g: S \to C$ given by the equation $g(\vec{x}) = \vec{p}_2$ for all $\vec{x} \in S$.

Then we create the homotopy $H:[0,2\pi]\times[0,1]$ given by $H(\theta,s)=f(\gamma(\theta))(1-s)+s\cdot\vec{p_2}$ for all $\theta\in[0,2\pi]$ and $s\in[0,1]$.

We have $H(\theta,0) = f(\gamma(\theta)) + 0 \cdot \vec{p}_2 = f(\gamma(\theta))$, and $H(\theta,1) = f(\gamma(\theta)) \cdot 0 + 1 \cdot \vec{p}_2 = g(\gamma(\theta))$. Lastly to show that H is continuous.

2. Calculate the degree of each of the following maps from the unit circle centered at the origin to the unit circle centered at the origin.

a. f(x,y) = (x,y) Using the parametrization $\gamma(\theta) = (\cos \theta, \sin \theta)$ for $\theta \in [0, 2\pi]$. I will be using the three sectors

$$U_1 = \{(x, y) : 0 < \text{angle in polar}(x, y) < 3\pi/2\}$$

$$U_2 = \{(x, y) : \pi/2 < \text{angle in polar}(x, y) < 2\pi\}$$

$$U_3 = \{(x, y) : \pi < \text{angle in polar}(x, y) < 5\pi/2\}$$

With the following four subdivisions $t_0 = 0, t_1 = \pi/2, t_2 = \pi, t_3 = 2\pi$.

Each angle function θ_i just gives the angle in polar coordinates.

Then

$$W(f, \vec{0}) = \frac{1}{2\pi} \left(\theta_1(\gamma(t_1)) - \theta_1(\gamma(t_0)) + \theta_2(\gamma(t_2)) - \theta_2(\gamma(t_1)) + \theta_3(\gamma(t_3)) - \theta_3(\gamma(t_2)) \right)$$

We have that for each angle function θ_i that $\theta_i(f(\gamma(t_i))) = \theta_i(\gamma(t_i)) = t_i$. After canceling terms in the equation we get $W(f, \vec{0}) = \frac{1}{2\pi}(2\pi) = 1$

b.
$$g(x,y) = (-x, -y)$$

Using the same parametrization as before. With the sectors

$$U_1 = \{(x, y) : 0 < \text{angle in polar}(x, y) < 3\pi/2\}$$

$$U_2 = \{(x, y) : \pi/2 < \text{angle in polar}(x, y) < 2\pi\}$$

$$U_3 = \{(x, y) : \pi < \text{angle in polar}(x, y) < 5\pi/2\}$$

$$W(g, \vec{0}) = \frac{1}{2\pi} \left(\theta_3(g(\gamma(t_3)) - \theta_1(g(\gamma(t_0)))) \right)$$

c.
$$h(x,y) = (x,-y)$$

d. $k(\cos(\theta), \sin(\theta)) = (\cos(n\theta), \sin(n\theta))$, where n is an arbitrary integer

Definition. If Y is a topological subspace of a topological space X, a **retraction** from X to Y is a continuous map $r: X \to Y$ that satisfies, for all $y \in Y$, r(y) = y. When such a retraction exists, we call Y a **retract** of X. [from the textbook by Fulton]

- **3.** Show that, if Y is a retract of X and if every continuous map from X to X has a fixed point, then every continuous map from Y to Y has a fixed point. **Hint.** Start with an arbitrary continuous map $f: Y \to Y$. How can you make a continuous map $g: X \to X$ whose behavior has the needed implications for f's behavior?
- **4.** Let B be the open unit disk in \mathbb{R}^2 and let D be the closed unit disk in \mathbb{R}^2 . Show that, for any $\vec{p} \in B$, the unit circle C in \mathbb{R}^2 is a retract of $D \setminus \{\vec{p}\}$. **Hint.** When \vec{p} is the origin, the map $\vec{x} \mapsto \frac{\vec{x}}{|\vec{x}|}$ is the retraction. When \vec{p} is more general, consider solving $|\vec{p} + t(\vec{x} \vec{p})| = 1$ for t.
- **5.** Let S and C be circles in the plane, and let $f: S \to C$ be a continuous map. Show that, for every \vec{p} in the open disk bounded by C, the winding number of f around \vec{p} equals the degree of f. (In particular the winding number is the same, regardless of which \vec{p} in the open disk is used.)