DFT - Part 1

- Introduction
- Internal Scan
 - FF-based
 - MUXed-D scan (1973, Stanford)
 - MUXed-D scan flip-flop
 - Test Mode Operation
 - * Clocked scan (1968, NEC)
 - * Other scan
 - Latch-based
 - * LSSD (1977, IBM)
- Scan Design Flow
- Issues and Solutions
- Conclusion

MUXed-D Scan Flip-flop [Williams 73]

- Often used in flip-flop based, standard cell design
- 3 input, 1 output, 1 clock pin
- Scan Enable (SE) pin selects inputs
 - Data in (DI): from logic
 - Scan in (SI): from previous scan FF
- Data output (DO) and Scan output (SO) often share same pin (Q)
- One multiplier (MUX) slower and larger than regular non-scan FF

MUXed-D Scan Flip-flop

- Positive edge triggered MUXed-D scan FF (WWW Fig. 2.9)
 - SE=1, SI→ Q at positive clock edge
 - SE=0, DI→ Q at positive clock edge

	operation			
SE=0	Capture (DI→Q)			
SE=1	Shift (SI→SO)			

SE = 1 enables scan

Muxed-D Scan Architecture

- Original circuit
 - Single clock
 - Positive edge triggered
 - Non-scan DFF

- After scan insertion
 - Three extra pins
 - * SI, SE, SO

SFF = scan FF

Normal Mode Operation

- Always SE = 0
- Same as original circuit

	operation				
SE=0	Capture (DI→Q)				
SE=1	Shift (SI→SO)				

Test Mode Operation

- Stuck-at fault testing
 - One pattern per scan
- Delay fault testing
 - Two-patterns per scan
 - * Launch-on-Shift
 - * Lunch-on-Capture

SAF Operation

load		capture		unload
CK = PPPP		CK=P		CK = PPPP
SE = 1111	SE 1→0	SE = 0	SE 0→1	SE = 1111
SI = X011				SO = HHXX
PI = 1	PO = L			

P = CK pulse H=expected 1 L=expected 0 Left bit first in/out

SO

SI

VLSi Test 11.3 © National Taiwan University

Test Mode Operation

- Stuck-at fault testing
 - One pattern per scan in/out
- Delay fault testing
 - Two-patterns per scan in/out
 - Launch-on-Shift (aka. Skew load)
 - Lunch-on-Capture (aka. Broad-side load)

LOS Operation

load V	1	V_2		Capture		unload
CK =	PPPP	CK=P		CK=P		CK = PPPP
SE = :	1111	SE=1	SE 1→0	SE = 0	SE 0 → 1	SE = 1111
SI = 2	X101	SI=1				SO = HXXX
PI = 2	X	PI=1	PO=L		VI 01 T-	st 11.3 @ National To

LOS -- Pro and Cons

- Advantages
 - Easier for combinational ATPG
- Disadvantages
 - V₂-capture time is not at-speed
 - » Scan_enable signal fall time limitation
 - » Currently, ~ 5ns minimum
 - » Solution: route scan_enable as clock (area overhead)
 - Invoke transitions that never happen in normal operation
 - Some TDF not testable; structure dependency problem
 - » V₂ is shifted version of V₁

Structure Dependency

- STR fault untestable using LOS
- This fault can actually happen in normal operation
 - This fault needs to be tested, but how?

Some faults are untestable by LOS

Test Mode Operation

- Stuck-at fault testing
 - One pattern per scan in/out
- Delay fault testing
 - Two-patterns per scan in/out
 - Launch-on-Shift (aka. Skew load)
 - Lunch-on-Capture (aka. Broad-side load)

LOC Operation

LOC Example

${\tt Load} \ {\tt V}_1$		V_2		capture		unload
CK=PPPPPP		CK=P		CK=P		CK=PPPPPP
SI=1X0001		SI=X				SO=XHXXXX
SE=111111	SE 1→0	SE=0	SE=0	SE=0	SE 0→1	SE=111111
PI=X	PI=1		PO=L		so=x	

LOC -- Pro and Cons

- Advantages
 - V₂-capture can be applied at system clock speed
 - + True at-speed testing
 - Avoid structure dependency problem of LOS
 - Minimum work in physical design, SE can be routed as normal signal
- Disadvantages
 - ATPG is more complex
 - » Requires two time frames

FFT

- Q: Are there faults untestable by LOC?
 - If so, how should we test them?