Non-coding RNA — A New Kid of the Block

Central Dogma – revisited

What is microRNA?

- microRNA: short noncoding single stranded RNA
- Mature miRNA is approximately 22 nucleotides in length
- Currently known: 1881 precursors and 2578 mature microRNAs (Human, miRBase 21.0)
- miRBase Central Depository for microRNA Annotations http://www.mirbase.org/

microRNA biogenesis

- The genes encoding miRNAs are much longer than the processed mature miRNA molecules.
- Many miRNAs are known to reside in introns of their pre-mRNA host genes and share their regulatory elements, primary transcript, and have a similar expression profile. For the remainder of miRNA genes that are transcribed from their own promoters, few primary transcripts have been fully identified.
- MicroRNAs are transcribed by RNA polymerase II as large RNA precursors called pri-miRNAs and comprise of a 5' cap and poly-A tail.

microRNA biogenesis

- The pri-miRNAs are processed in the nucleus by the microprocessor complex, consisting of the RNase III enzyme Drosha, and the double-stranded-RNA-binding protein, Pasha/DGCR8. The resulting pre-miRNAs are approximately 70-nucleotides in length and are folded into imperfect stem-loop structures.
- The pre-miRNAs are then exported into the cytoplasm by the karyopherin exportin
 5 (Exp5) and Ran-GTP complex.
- Once in the cytoplasm, the pre-miRNAs undergo an additional processing step by the RNAse III enzyme Dicer generating a mature miRNA, a single-stranded RNA approximately 22 nucleotides in length.
- Dicer also initiates the formation of the RNA-induced silencing complex (RISC).

microRNA Biogenesis and Function

microRNA Function

Major function of microRNA

Post-transcriptionally regulate gene expression in plants and animals

2 major mechanisms of action of miRNAs in post-transcriptional gene regulation

- 1 Inhibition of translation initiation via complementary elements in the 3 UTRs of their target mRNAs
- 2 mRNA degradation

microRNA Function

Important regulatory role: "Roomkeeping genes"

- developmental timing
- cellular differentiation, proliferation, apoptosis
- insulin secretion, and cholesterol biosynthesis
- moderating immune response
- oncogenesis

microRNA Target Interactions

miRNA 3' U-U-A-G-U-C-G-A-A-A-G-U U-U-A-C-U-A-G-A-G-G 5' miRNA UTR 5' A-A-U-U-A-G-U-U-U-U-C-A C A-A-U-G-A-U-C-U-C-U 3' UTR bulge seed region

Tools for Target Prediction / Identification

Name	Type	URL	Classification
miRanda	L	http://www.microrna.org/microrna/getMirnaF orm	Seed-based
TargetScan	W	http://www.targetscan.org/	
Diana-MicroT	W	http://diana.cslab.ece.ntua.gr/microT/	
RNAHybrid	W/D	http://bibiserv.techfak.uni- bielefeld.de/rnahybrid/	
PicTar	L	http://pictar.mdc-berlin.de/	
TargetBoost	W	https://demo1.interagon.com/targetboost/	Machine learning
miTarget	W	http://cbit.snu.ac.kr/miTarget/	
mirWip	L.	http://mirtargets.org	Target structure integration
MicroTar	D	http://tiger.dbs.nus.edu.sg/microtar/	

W: Webserver D: Downloadable program L: List of predictions

Example: The miR-17/92 cluster

- Experimentally validated targets (blue highlights) and regulators (yellow and red highlights) are shown connected to their corresponding microRNAs (green highlights).
- miR-17/92 cluster is paying increasingly important and numerous roles in health and disease

Role of microRNA in Diseases

microRNA plays important regulatory functions that are organ and tissue specific and disease specific

- Metabolism and Metabolic Disorders
- Hematological System and Immune System: development & diseases
- Cardio vascular system: development & diseases
- Central Nervous System & Neurodegenerative Diseases
- Cancer
- And many other organ specific diseases

Example: MicroRNA regulation of insulin and glucose homeostasis

Known and predicted targets that lack in vivo evidence are marked with a question mark. In disease conditions, such as impaired insulin secretion or insulin r esistance, several miRNAs are upregulated (marked with an arrow).

Microarray analysis of microRNA expression

Eva van Rooij Circ Res. 2011;108:219-234

MiRNA-specific reverse transcription

Eva van Rooij Circ Res. 2011;108:219-234

A Stemloop specific primer

MiRNA-specific reverse transcription

Eva van Rooij Circ Res. 2011;108:219-234

MiRNA biogenesis and research tools

Eva van Rooij Circ Res. 2011;108:219-234

- Microarray analysis for miRNAs
- Deep sequencing
- Realtime PCR
- Northern blotting
- In situ hybridization

Bioinformatics

Target determination

- UTR analysis
- Transcriptome / proteome analysis
- Pull-down assays

In vitro miRNA regulation

- Genetic manipulation of miRNAs
- miRNA inhibition in vivo
- miRNA mimicry in vivo

Detection

Regulation

Opportunities and challenges for microRNA studies

