

Vidya Jyothi Institute of Technology (AN AUTONOMOUS INSTITUTION)

Aziz Nagar Gate, C.B. Post, Hyderabad - 500075

I B.Tech II Semester (24-25) **QUESTION BANK**

MATHEMATICS-II

(ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS)

UNIT-I: First Order Ordinary Differential Equations and their **Applications**

	IINIT-I Very Sho	rt Answer Questions	
1	Define solution, general solution and part		al equation
2	Define exact differential equation		1
3	Define integrating factor		
4	Define orthogonal trajectories of the fami	ly of curves	
5	State Newton's law of cooling		
6	State law of natural growth and decay		
7	Solve $(x^2 - ay)dx + (y^2 - ax)dy = 0$		
8	Solve $(2x + e^y)dx + xe^y dy = 0$		
9	Solve $xdy - ydx + 2x^3dx = 0$		
10	Solve $xdy - ydx + a(x^2 + y^2)dy = 0$		
11	Find an integrating factor of $y(xy \sin xy)$	$(y + \cos xy)dx + x(xy\sin xy)$	$-\cos xy)dy = 0$
12	Find an integrating factor of $(5x^3 + 12x^2)$	$+6y^2)dx + 6xydy = 0$	
13	Find an integrating factor of $x \cos x \frac{dy}{dx}$	$-(x\sin x + \cos x)y = 1$	
14	Reduce the differential equation $\frac{dy}{dx} + \left(\frac{y}{x}\right)$	$\log y = \frac{y}{x} (\log y)^2 \text{ into linear}$	form
15	Find the orthogonal trajectories of the family of straight lines $y = ax$		
16	Find the orthogonal trajectories of the far	nily of curves $r = ae^{\theta}$	
17	If $(\alpha xy^3 + y\cos x)dx + (3x^2y^2 + \beta\sin x)dy$	$v = 0$ is exact then $\alpha, \beta = $	
			D) $\alpha = 1, \beta = 3$
18	Which of the following is not an integration	$\frac{1}{1} = \frac{1}{2} \int \frac{dy}{dx} - x dy = 0$	
	A) $\frac{1}{x^2}$ B) $\frac{1}{x^3}$	C) $\frac{1}{y^2}$	D) $\frac{1}{xy}$
19	The orthogonal trajectories of the family	of parabolas $y^2 = 4a(x+a)$ is	
	A) $y^2 = 4b(y+b)$ B) $y^2 = 4b(x+b)$	$C) x^2 = 4b(x+b)$	D) $x^2 = 4b(y+b)$
20	The orthogonal trajectories of the family	of curves $r^n = a^n \sin n\theta$ is _	
	A) $r^n = b^n \cos n\theta$ B) $r^n \sin n\theta = b^n$	C) $r^n = b^n \sin n\theta$	D) $r^n \cos n\theta = b^n$

UNIT-I Long Answer Questions Solve the following differential equations: (i) $(5x^4 + 3x^2y^2 - 2xy^3)dx + (2x^3y - 3x^2y^2 - 5y^4)dy = 0$ (ii) $\frac{dy}{dx} + \frac{y\cos x + \sin y + y}{\sin x + x\cos y + x} = 0$ $(iii \left[y \left(1 + \frac{1}{x} \right) + \cos y \right] dx + \left(x + \log x - x \sin y \right) dy = 0$ (iv) $(2xy + y - \tan y)dx + (x^2 - x \tan^2 y + \sec^2 y)dy = 0$ Solve the following differential equations: (iii) $(x^2y^2 + xy + 1)ydx + (x^2y^2 - xy + 1)xdy = 0$ (i) $(x^2y - 2xy^2)dx - (x^3 - 3x^2y)dy = 0$ $(iii)(xy^3+y)dx + 2(x^2y^2+x+y^4)dy = 0 (iv)(4xy+3y^2-x)dx + x(x+2y)dy = 0$ Solve the following differential equations: (i) $x \log x \frac{dy}{dx} + y = \log x^2$ (ii) $(1+v^2)dx = (\tan^{-1} v - x)dv$ (iii) $2y'\cos x + 4y\sin x = \sin 2x, y(0) = \frac{\pi}{3}$ (iv) $\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right)\frac{dx}{dy} = 1$ Solve the following differential equations: (i) $x \frac{dy}{dx} + y = x^3 y^6$ (ii) $\frac{dy}{dx} = y \tan x - y^2 \sec x$ (iii) $\frac{dy}{dx} - \frac{\tan y}{1+x} = (1+x)e^x \sec y$ (iv) $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$ Find the orthogonal trajectories of the following family of curves: (i) $\frac{x^2}{a^2} + \frac{y^2}{a^2 + \lambda} = 1$ (λ is the parameter) (ii) $x^2 + y^2 + 2gx + c = 0$ (g is the parameter) (iv) $r^n = a^n \cos n\theta$ (a is the parameter) (iii) $r = a(1 - \cos \theta)$ Show that the family of confocal conics $\frac{x^2}{a^2+\lambda} + \frac{y^2}{b^2+\lambda} = 1$ is self orthogonal, λ being parameter (i) A body originally at 80°C cools down to 60°C in 20 minutes, the temperature of the air being 40°C. What will be the temperature of the body after 40 minutes from the original? (ii) If the temperature of air is 30°C and the substance cools from 100°C to 70°C in 15 minutes, find when the temperature will be 40°C. (i) A cake is removed from an oven at 210°F and is placed in a room of constant temperature 70°F. After 30 minutes, the temperature of the cake is 150°F. When will the temperature of the cake be 120°F? (ii) If a substance cools from 370K to 330K in 10 minutes when the temperature of the surrounding air is 290K, find the temperature of the substance after 40 minutes. Also find when the temperature of the substance will become 310K. (i) The number N of bacteria in a culture grew at a rate proportional to N. The value of N was initially 100 and increased to 332 in one hour. What was the value of N after $1\frac{1}{2}$ hours? (ii) The rate at which bacteria multiply is proportional to the instantaneous number present. If the original number doubles in 2 hours, in how many hours will it triple? (i) Radium decomposes at a rate proportional to the amount present. If a fraction p of the original amount disappears in 1 year, how much will remain at the end of 21 years? (ii) If 30% of a radioactive substance disappears in 10 days, how long will it take for 90% of it to disappear?

UNIT-II: Higher Order Linear Differential Equations

UNIT-II Very Short Answer Questions			
1	Define linear differential equation		
2	Solve $\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0$		
3	Solve $(D^2 - 4D + 1)y = 0, D \equiv \frac{d}{dx}$		
4	Solve $\frac{d^4y}{dx^4} - 4\frac{d^3y}{dx^3} + 10\frac{d^2y}{dx^2} - 12\frac{dy}{dx} + 5y = 0$		
5	Find the complementary function of $(D^2+1)^2 y = \cos x$		
6	Find the complementary function of $(D^3 + D^2 + 4D + 4)y = e^x + \sin 2x$		
7	Find the complementary function of $\frac{d^4y}{dx^4} + 4y = e^x \cos x$		
8	Find the particular integral of $(D-1)^3 = 6e^x$		
9	Find the particular integral of $(D^3 + 4D)y = \sin 2x$		
10	Find the particular integral of $(D^4 - 5D^2 + 4)y = 10\cos x$		
11	Find the particular integral of $(D-1)^2 y = x^2$		
12	Find the particular integral of $(D-1)^2 y = 6xe^x$		
13	Find the particular integral of $(D+1)^4 y = e^{-x} \cos x$		
14	Find the Wronskian of the functions e^x , e^{2x}		
15	Reduce $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + 4y = \log x \cos(2\log x)$ into linear differential equation with constant		
	coefficients		
16	Reduce $x^3y''' - x^2y'' - 6xy' + 18y = x^3$ into linear differential equation with constant coefficients		
17	The set of linearly independent solutions of $(D^4 - D^2)y = 0$ is		
	A) $\{1, x, x^2, e^x\}$ B) $\{1, x, xe^{-x}, e^x\}$ C) $\{1, x, e^x, e^{-x}\}$ D) $\{e^x, e^{-x}, xe^x, xe^{-x}\}$		
18	The particular integral of $(D^4 - 2D^3 + 2D^2 - 2D + 1)y = \cos x$ is		
	A) $x \cos x$ B) $\frac{x}{2} \cos x$ C) $\frac{x}{4} \cos x$ D) $\frac{x}{6} \cos x$		
19	The particular integral of $(D^2 - 2D + 2)y = \log 4$ is		
	A) log 2 B) log 4 C) 2log 4 D) 4log 4		
20	The particular integral of $(D^2 - a^2)y = \cosh ax$ is		
	A) $\frac{x}{2a} \cosh ax$ B) $-\frac{x}{2a} \sinh ax$ C) $\frac{x}{2a} \sinh ax$ D) $-\frac{x}{2a} \cosh ax$		
	UNIT-II Long Answer Questions		
1	Solve the following differential equations:		
	(i) $(D^3 - 6D^2 + 11D - 6)y = e^{-2x} + e^{-3x}$ (ii) $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = (1 - e^x)^2$		
	(iii) $y'' - 4y' + 3y = 4e^{3x}$, $y(0) = -1$, $y'(0) = 3$ (iv) $(D^3 - 5D^2 + 7D - 3)y = e^{2x} \cosh x$		

Solve the following differential equations: 2 (ii) $y'' + 4y' + 4y = 3\sin x + 4\cos x$, y(0) = 1, y'(0) = 0(i) $(D^3+1)v = \cos(2x-1)$ Solve the following differential equations: 3 (ii) $(D^2+1)^2 y = x^4 + 2\sin x \cos 3x$ (ii) $(D^2+D+1)y=x^3$ Solve the following differential equations: (i) $(D-2)^2 y = 8(e^{2x} + \sin 2x + x^2)$ (ii) $(D^3-D)y = 2x+1+4\cos x+2e^x$ Solve the following differential equations: (ii) $(D^2 + 4D + 3)y = e^{-x}\sin x + xe^{3x}$ (i) $(D^3 - 7D^2 + 14D - 8)v = e^x \cos 2x$ (iii) $\frac{d^4y}{dx^4} - y = \cos x \cosh x$ Solve the following differential equations: 6 (i) $(D^2 + 2D + 1)v = x\cos x$ (ii) $(D^2 + 16)v = x\sin 3x$ (iii) $(D^2 - 2D + 1)v = xe^x\sin x$ Solve the following differential equations by the method of variation of parameters: 7 $(iii) \frac{d^2y}{dx^2} + 4y = \tan 2x$ (i) $\frac{d^2y}{dx^2} + a^2y = \csc ax$ (ii) $(D^2 + 1)y = \sec x$ Solve the following differential equations by the method of variation of parameters: (i) $y'' - 6y' + 9y = \frac{e^{3x}}{x^2}$ (ii) $y'' - 2y' + y = e^x \log x$ (iii) $y'' - 2y' + 2y = e^x \tan x$ Solve the following differential equations: (i) $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^4$ (ii) $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$ (iii) $x^2 y'' - 3xy' - 5y = \sin(\log x)$ Find the current i in the L-C-R circuit assuming zero initial current and charge. If 10 L = 20 henries, C = 0.01 farads, R = 80 ohms and E = 100 volts.

UNIT-III: Laplace Transforms

	UNIT-III Very Short Answer Questions		
1	Define Laplace transform		
2	Write the sufficient conditions for the existence of Laplace transform of $f(t)$		
3	State first shifting theorem		
4	State change of scale property		
5	Find Laplace transform of unit step function		
6	State second shifting theorem		
7	State Convolution theorem		
8	If $L\{f(t)\}=\frac{1}{\sqrt{s^2+1}}$, evaluate $L\{f(2t)\}$		
9	Find the Laplace transform of $4t^2 + \sin 3t + e^{2t}$		
10	Evaluate $L\{t\cos at\}$		
11	Evaluate $L\left\{\frac{\sin t}{t}\right\}$		

12	If $L\left\{\sin\sqrt{t}\right\} = \frac{\sqrt{\pi}}{2s^{3/2}}e^{-\frac{1}{4S}}$ then prove that $L\left\{\frac{\cos\sqrt{t}}{\sqrt{t}}\right\} = \sqrt{\frac{\pi}{S}}e^{-\frac{1}{4S}}$
13	Evaluate $L\left\{\int_{0}^{t}\int_{0}^{t}\cosh au du du\right\}$
14	Evaluate $L^{-1}\left\{\frac{s^2-s+2}{s^3}\right\}$
15	Evaluate $L^{-1}\left\{\frac{s^2}{(s-2)^3}\right\}$
16	Evaluate $L^{-1}\left\{\frac{1}{(s-2)(s-3)}\right\}$
17	If $\delta(t-a)$ denotes Dirac's delta function then $L\{\delta(t-a)\}=$
	A) $\frac{e^{as}}{s}$ B) $\frac{e^{-as}}{s}$ C) e^{-as} D) e^{as}
18	If $L\{f(t)\} = \frac{1}{S^{3/2}}$ and $f(0) = 0$ then $L\{f'(t)\} = $
	A) $\frac{1}{\sqrt{S}}$ B) $\frac{1}{S}$ C) $\frac{1}{S^2}$ D) $\frac{1}{S^{5/2}}$
19	$L^{-1}\left\{\frac{s-3}{(s-3)^2+4}\right\} = \underline{\hspace{1cm}}$
	A) $e^{3t}\sin 4t$ B) $e^{3t}\cos 4t$ C) $e^{3t}\sin 2t$ D) $e^{3t}\cos 2t$
20	$L^{-1}\left\{\frac{Se^{-\frac{\pi}{2}S}}{S^2+1}\right\} = \underline{\hspace{1cm}}$
	A) $u\left(t-\frac{\pi}{2}\right)\cos t$ B) $u\left(t-\frac{\pi}{2}\right)\sin t$ C) $-u\left(t-\frac{\pi}{2}\right)\cos t$ D) $-u\left(t-\frac{\pi}{2}\right)\sin t$
4	UNIT-III Long Answer Questions
$\begin{vmatrix} 1 \end{vmatrix}$	Find the Laplace transforms of the following:
	(i) $e^{2t} + 4t^3 - 2\sin 3t + 3\cos 3t$ (ii) $\sin 2t \sin 3t$ (iii) $\cos^2 2t$ (iv) $\sin^3 2t$
2	(i) Find $L\left\{\frac{\sin at}{t}\right\}$, given that $L\left\{\frac{\sin t}{t}\right\} = \tan^{-1}\left(\frac{1}{s}\right)$
	(ii) If $L\{f(t)\} = \frac{1}{s}e^{-\frac{1}{s}}$, then prove that $L\{e^{-t}f(3t)\} = \frac{1}{s+1}e^{-\frac{3}{s+1}}$
3	Find the Laplace transforms of the following:
	(i) $e^{-3t}(2\cos 5t - 3\sin 5t)$ (ii) $e^{-t}\sin^2 t$ (iii) $te^{2t}\cos t$ (iv) $t^2e^{-3t}\sin 2t$
4	Evaluate the following:
	(i) $L\left\{\frac{e^{-at}-e^{-bt}}{t}\right\}$ (ii) $L\left\{\frac{\cos at-\cos bt}{t}\right\}$ (iii) $L\left\{\frac{\sin 3t\cos t}{t}\right\}$
5	Using Laplace transforms evaluate the following:
	$(i) \int_0^\infty \frac{e^{-at} - e^{-bt}}{t} dt \qquad (ii) \int_0^\infty \frac{\cos 6t - \cos 4t}{t} dt \qquad (iii) \int_0^\infty \frac{e^{-t} \sin^2 t}{t} dt$
6	Find the Laplace transform of the triangular wave function of period 2a given by
	$f(t) = \begin{cases} t, & 0 < t < a \\ 2a - t, & a < t < 2a \end{cases}$

Find the inverse Laplace transforms of the following:

(i) $\frac{2s^2-6s+5}{s^3-6s^2+11s-6}$ (ii) $\frac{4s+5}{(s-1)^2(s+2)}$ (iii) $\frac{5s+3}{(s-1)(s^2+2s+5)}$ (iv) $\frac{s^2+6}{(s^2+1)(s^2+4)}$ 8 Evaluate the following:

(i) $L^{-1}\left\{\log\left(\frac{s+1}{s-1}\right)\right\}$ (ii) $L^{-1}\left\{\log\left(\frac{s^2+4}{s^2+9}\right)\right\}$ (iii) $L^{-1}\left\{\cot^{-1}\frac{s}{2}\right\}$ 9 Evaluate the following using Convolution theorem

(i) $L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$ (ii) $L^{-1}\left\{\frac{s^2}{(s^2+4)(s^2+9)}\right\}$ (iii) $L^{-1}\left\{\frac{s}{(s+2)(s^2+9)}\right\}$ 10 Solve the following differential equation by using Laplace transforms:

(i) y''''+2y''-y'-2y=0, y(0)=y'(0)=0 and y''(0)=6(ii) $\frac{d^2x}{dt^2}-2\frac{dx}{dt}+x=e^t$ with $x=2, \frac{dx}{dt}=-1$ at t=0(iii) $\frac{d^2y}{dt^2}+2\frac{dy}{dt}+5y=e^{-t}\sin t$ given that y(0)=0 and y'(0)=1(iv) $\frac{d^2x}{dt^2}+9x=\cos 2t$, if $x(0)=1, x\left(\frac{\pi}{2}\right)=-1$

UNIT-IV: Multiple Integrals & Vector Differentiation

	UNIT-IV Very Short Answer Questions
1	Evaluate $\int_0^2 \int_0^3 xy dy dx$
2	Evaluate $\int_0^1 \int_0^x e^x dy dx$
3	Evaluate $\int_0^\infty \int_0^y \frac{e^{-y}}{y} dx dy$
4	Evaluate $\int_0^1 \int_0^1 \frac{1}{\sqrt{(1-x^2)(1-y^2)}} dxdy$
5	Evaluate $\int_0^{\pi/2} \int_0^2 \sin\theta dr d\theta$
6	Evaluate $\int_0^1 \int_0^2 \int_0^4 xyz dz dy dx$
7	Evaluate $\int_0^1 \int_0^1 \int_0^1 e^{x+y+z} dx dy dz$
8	Define gradient of a scalar point function, divergence and curl of a vector point function
9	Define solenoidal and irrotational vector point functions
10	Find a unit vector normal to the surface $x^2y + 2xz = 4$ at the point $(2, -2, 3)$
11	Find the maximum value of directional derivative of $\phi = x^2yz^3$ at $(2,1,-1)$
12	Find the greatest rate of increase of $u = xyz^2$ at $(1,0,3)$

13	If $\vec{A} = 3x^2\hat{i} + 5xy^2\hat{j} + xyz^3\hat{k}$ then find $\nabla \cdot \vec{F}$ at $(1, 2, 3)$			
14	If $\vec{f} = (2x+3y)\hat{i} + (4y-z)\hat{j} + (x-pz)\hat{k}$ is solenoidal, then find p			
15	Determine constants	a,b,c so that \vec{F} :	$= (4x + 3y + az)\hat{i} + (bx - az)\hat{i} + (bx -$	$(-y+z)\hat{j} + (2x+cy+z)\hat{k}$
	is irrotational vector p	point function		
16	Show that $r^n \vec{r}$ is irro	tational		
17	The iterated integral for $\int_0^1 \int_0^{\sqrt{1-x^2}} y^2 dy dx$ after changing the order of integration is			
	$A) \int_0^1 \int_0^{\sqrt{1-y^2}} y^2 dx dy$	$B) \int_0^1 \int_0^1 y^2 dx dy$	C) $\int_0^1 \int_0^{1-y^2} y^2 dx dy$	$D) \int_0^1 \int_0^y y^2 dx dy$
18	$\int_0^{\frac{\pi}{4}} \int_0^{\infty} e^{-r^2} r dr d\theta = $			
	A) $\frac{\pi}{2}$	B) $\frac{\pi}{4}$	C) $\frac{\pi}{8}$	D) $\frac{\pi}{16}$
19	If $\phi = x^3 + y^3 + z^3 - \frac{1}{2}$	-3xyz then the val	ue of $curl(grad \phi)$ at ((1,2,3) =
	A) $\hat{i} - 2\hat{j}$	B) $2\hat{j} - 3\hat{k}$	$C) \hat{i} - 2\hat{j} + 3\hat{k}$	D) $\vec{0}$
20	If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ an	$dr = \vec{r} $ then $\nabla (r^n)$	(a) =	
	A) $nr^{n-1}\vec{r}$	B) $nr^{n-2}\vec{r}$	C) $nr^n\vec{r}$	D) $nr^{n-3}\vec{r}$
	U	NIT-IV Long A	nswer Questions	
1	(i) Evaluate $\iint xy(x-t)$	+y) $dxdy$ over the	area between $y = x^2$ ar	$\operatorname{ind} y = x$
	(ii) Evaluate $\iint_R xy dx$	dy, where R is the	e domain bounded by	the x-axis, the ordinate
	x = 2a and the curve	$x^2 = 4ay$		
2	(i) Evaluate $\iint r \sin\theta dr d\theta$ over the cardioid $r = a(1 - \cos\theta)$ above the initial line			
	(ii) Evaluate $\iint r^3 dr$	$d\theta$ over the area	included between the	e circles $r = 2\sin\theta$ and
	$r = 4\sin\theta$			
3	(i) Evaluate $\int_0^\infty \int_0^\infty e^{-it}$	$-(x^2+y^2)_{dxdy}$ by	changing to polar coord	linates. Hence show that
	$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$			
	(ii) Evaluate $\int_0^2 \int_0^{\sqrt{2x-1}} dx$	$\frac{x}{x^2 + y^2} dx dy b$	y transforming into pola	ar coordinates
4	Evaluate the followin	g integrals by chan	ging the order of the int	egration
	$(i) \int_0^{4a} \int_{\frac{\chi^2}{4a}}^{2\sqrt{ax}} dy dx$	$(ii) \int_0^3 \int_0^{\sqrt{4-y}}$	$(x+y)dxdy \qquad \qquad ($	$(iii) \int_0^1 \int_{x^2}^{2-x} xy dy dx$
5	Evaluate the followin			
	$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} dx$	$dydz$ (ii) $\int_{0}^{1} \int_{y^{2}}^{1} \int_{0}^{1-}$	$\int_{-1}^{x} x dz dx dy (iii) \int_{-1}^{1} \int_{0}^{z} dz dx dy$	$\int_{x-z}^{x+z} (x+y+z) dx dy dz$

(i) Find the values of a and b such that the surfaces $ax^2 - byz = (a+2)x$ and 6 $4x^2y + z^3 = 4$ cut orthogonally at (1, -1, 2). (ii) Calculate the angle between the normals to the surface $xy = z^2$ at the points (4,1,2) and (3,3,-3)(i) Find the directional derivative of $\phi(x, y, z) = x^2yz + 4xz^2$ at the point (1, -2, -1) in 7 the direction of the vector $2\hat{i} - \hat{j} - \hat{k}$ (ii) Find the directional derivative of $\phi = 5x^2y - 5y^2z + 2.5z^2x$ at the point P(1,1,1) in the direction of the line $\frac{x-1}{2} = \frac{y-3}{-2} = z$ (iii) Find the directional derivative of $\phi(x, y, z) = xy^2 + yz^3$ at the point (2, -1, 1) in the direction of the normal to the surface $x \log z - y^2 = -4$ at (-1,2,1)(iv) Find the directional derivative of $f(x, y, z) = x^2 - y^2 + 2z^2$ at the point P(1,2,3)in the direction of the line PQ, where Q(5,0,4)(i) Find $div \vec{F}$ and $curl \vec{F}$ at the point (1,-1,1), where $\vec{F} = xy^2\hat{i} + 2x^2yz\hat{j} - 3yz^2\hat{k}$ 8 (ii) Find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$, where $\vec{F} = \operatorname{grad}(x^3 + y^3 + z^3 - 3xyz)$. Show that the following vector point functions are irrotational and find the scalar 9 potential in each case: (i) $\vec{F} = (x^2 - yz)\hat{i} + (y^2 - zx)\hat{j} + (z^2 - xy)\hat{k}$ (ii) $\vec{F} = (6xy + z^3)\hat{i} + (3x^2 - z)\hat{j} + (3xz^2 - v)\hat{k}$ (i) Prove that $div(r^n\vec{r}) = (n+3)r^n$. Hence show that $\frac{\vec{r}}{r^3}$ is solenoidal. 10 (ii) Show that $\operatorname{div}(\operatorname{grad} r^n) = \nabla^2(r^n) = n(n+1)r^{n-2}$

UNIT-V: Vector Integration

	UNIT-V Very Short Answer Questions
1	Evaluate $\int_C y dx + x dy$, where C is the arc of the parabola $y = x^2$ from (0,0) to (1,1)
2	Find the circulation of $\vec{F} = y\hat{i} - x\hat{j} + z\hat{k}$ along the circle $x^2 + y^2 = 1$ in xy-plane
3	Find the total work done by the force $\vec{F} = (2x + 3y^2)\hat{i} - 2xy\hat{j}$ when it moves a particle
	in xy-plane along the curve $C: x = t^2$, $y = t$ from $t = 0$ to $t = 1$
4	State Green's theorem
5	State Stoke's theorem
6	State Gauss's divergence theorem
7	Use Green's theorem to evaluate $\oint_C (2xy - x^2)dx + (x^2 + y^2)dy$, where C is the closed
	curve of the region bounded by $y = x^2$ and $y^2 = x$

8	Apply Green's the	corem to evaluate $\oint_C xyd$	$dx + x^2 dy$, where C is the	ne square bounded by
	$0 \le x \le 1$ and $0 \le y \le 1$			
9	Apply Stoke's th	eorem to evaluate \oint	$e^x dx + 2y dy - dz$, who	ere C is the curve
		C		
10	Evaluate $\int_{S} \vec{r} \cdot \vec{n} ds$,	where S is the surface G	of the sphere $x^2 + y^2 + z$	$z^2 = 9$
11	- 5			
	S			
12	If S is a closed s	surface enclosing a vol	ume V and $\vec{F} = ax\hat{i} + c$	$by\hat{j} + cz\hat{k}$, then prove
	that $\int_{S} \vec{F} \cdot \vec{n} ds = (a$	(a+b+c)V		
13	If C is the curve $x = C$	$= t^2, y = 2t \ (0 \le t \le 1) \text{ th}$		vdy =
	A) 2	B) 3	C) 4	D) 6
14	If C is the circle x	$^{2}+y^{2}=4$, then $\int_{C} (3y+c)$	$\cos x)dx + (7x - e^y)dy =$	=
		C		
15		<u>'</u>		
	then $A = $			
	A) $\oint_C (xdy - ydx)$	$B) \frac{1}{2} \oint_C (x dy - y dx)$	$C) \frac{1}{2} \oint_C (y dx - x dy)$	$D) \oint_C (y dx - x dy)$
16	If S is the surface	of the cuboid bounded	by the planes $0 \le x \le a$	$u, 0 \le y \le b, 0 \le z \le c$
	then $\iint_S (x+z)dydz$	z + (y+z)dzdx + (x+y)) <i>dxdy</i> =	
	A) 0	B) abc	C) 2abc	D) 3abc
1	(i) If $\vec{F} = 3xy\hat{i} - y^2$	\hat{j} , evaluate $\int_C \vec{F} \cdot d\vec{r}$, who	ere C is the curve $y =$	$=2x^2$ in the xy-plane
	from $(0,0)$ to $(1,2)$.			
	(ii) Compute the	line integral $\int y^2 dx - y$	$x^2 dy$ about the triangle	e whose vertices are
	C			
2				0) 4 (1.1.1) 1 41
2			tate $\int A \cdot dr$ from $(0,0,$	0) to $(1,1,1)$ along the
		$z=t^3$.		
3	Find the work don	ne in moving a particle	e in the force $\vec{F} = 3x$	$2\hat{i} + (2xz - y)\hat{j} + z\hat{k}$
	along (i) the straight line from $(0,0,0)$ to $(2,1,3)$			
	(ii) the curv	We defined by $x^2 = 4y$, 3.	$x^3 = 8z$ from $x = 0$ to .	x = 2
4	T. 1 1			
	Find the total wor	k done in moving a pa	article in a force field	$\vec{F} = 3xy\hat{i} - 5z\hat{j} + 10x\hat{k}$
	9 0 1 2 3 6 1 2	O $\leq x \leq 1$ and O $\leq z$ Apply Stoke's the $x^2 + y^2 = 9$ and $z = 0$ Evaluate $\int_S \vec{r} \cdot \vec{n} ds$, Apply divergence surface of the sphere z If z is a closed surface of the curve z is the curve z is the curve z is z A) z If z is the circle z A) z If z is the area of z A) z If z is the surface of z A) z If z is the surface of z A) z If z is the surface of z A) z If z is the surface of z A) z If z is the surface of z C If z is the surface of z If z is the surfa	Apply Stoke's theorem to evaluate $\oint_C x^2 + y^2 = 9$ and $z = 2$ Evaluate $\int_S \vec{r} \cdot \vec{n} ds$, where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ If S is a closed surface enclosing a voluthat $\int_S \vec{F} \cdot \vec{n} ds = (a+b+c)V$ If C is the curve $x = t^2$, $y = 2t$ $(0 \le t \le 1)$ that A is the area of a plane region bounded then $A = A$ is the surface of the cuboid bounded then $A = A$ is the surface $A = A$ is the surf	Apply Stoke's theorem to evaluate $\oint_C e^x dx + 2y dy - dz$, where $x^2 + y^2 = 9$ and $z = 2$ 0 Evaluate $\int_S \vec{r} \cdot \vec{n} ds$, where S is the surface of the sphere $x^2 + y^2 + z^2 = 1$ 1 Apply divergence theorem to evaluate $\iint_S x dy dz + y dz dx + z dx + z dx = 1$ 2 If S is a closed surface enclosing a volume V and $\vec{F} = ax\hat{i} + ax\hat{i} $

5	Evaluate $\int_{S} \vec{F} \cdot \vec{n} ds$, where $\vec{F} = 18z\hat{i} - 12\hat{j} + 3y\hat{k}$ and S is the portion of the plane
	2x+3y+6z=12 in the first octant.
6	Evaluate $\int_{S} \vec{F} \cdot \vec{n} ds$, where $\vec{F} = z\hat{i} + x\hat{j} - 3y^2z\hat{k}$ and S is the surface $x^2 + y^2 = 16$ included
	in the first octant between $z = 0$ and $z = 5$
7	(i) Verify Green's theorem for $\oint_C (xy + y^2) dx + x^2 dy$, where C is bounded by $y = x$ and
	$y = x^2$
	(ii) Verify Green's theorem for $\oint_C (3x-8y^2)dx + (4y-6xy)dy$, where C is the boundary
	of the region bounded by $x = 0$, $y = 0$ and $x + y = 1$
8	(i) Verify Green's theorem for $\oint_C (x^2 - \cosh y) dx + (y + \sin x) dy$, where C is the
	boundary of the rectangle formed by $0 \le x \le \pi$, $0 \le y \le 1$
	(ii) Verify Green's theorem for $\oint_C (x^2 - xy^3) dx + (y^2 - 2xy) dy$, where C is the square
	with vertices $(0,0),(2,0),(2,2)$ and $(0,2)$
9	(i) Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)\hat{i} - 2xy\hat{j}$ taken around the rectangle
	bounded by the lines $x = \pm a$, $y = 0$ and $y = b$
	(ii) Verify Stoke's theorem for the vector field $\vec{F} = (2x - y)\hat{i} - yz^2\hat{j} - y^2z\hat{k}$ over the
	upper half surface of $x^2 + y^2 + z^2 = 1$, bounded by its projection on the xy-plane
10	(i) Verify Gauss's divergence theorem for $\vec{F} = (x^2 - yz)\hat{i} + (y^2 - zx)\hat{j} + (z^2 - xy)\hat{k}$
	taken over the rectangular parallelepiped $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$.
	(ii) Verify Gauss's divergence theorem for $\vec{F} = 4xz\hat{i} - y^2\hat{j} + yz\hat{k}$ taken over the cube
	bounded by $x = 0$, $x = 1$; $y = 0$, $y = 1$; $z = 0$, $z = 1$
