

Creation of Adam a fresco by Michelangelo in the Sistine Chapel This is a symbolic representation of Creation by evolution

Creation of Adam a fresco by Michelangelo in the Sistine Chapel This is a symbolic representation of Creation by evolution

Preface

For almost a century the influence of the theory of evolution has been felt for beyond the limits of biology. In fact, this influence has been growing appeared and in our day the iden of evolution has become an integral part of the intellectual equipment of Western Civilization. In biology this idea is pivotal. To a beginning student no less than to a teacher and to a specialist, the idea of evolution miles sense of what would otherwise be wearisome descriptions of and facts to be memorized, only to be forgotten as soon as the course is over. In the light of evolution the same facts and descriptions of creatures which we have seldom or never seen become fascinating. Learning them turns out to be an intellectual adventure.

Biological evolution is a part of the evolution of the cosmos. The rise and the development of minkind are a part of the story of biological evolution. Man cannot reach a valid understanding of his own nature without a knowledge of his own biological background. It may, then be that the study of evolutionary biology is the most important practical endeavor open to the human mind. Accordingly, an effort is being made in this book to show to the student that biology is not only a craft which is interesting to technicians and devotees but also a part of the fabric of modern humanistic thought. I am quite conscious that this goal is too ambitious and that it has not been fully attained.

I hope that this book may be useful not only as a guide in courses devoted to the study of biological evolution but also as collateral reading in courses of general biology general zoology, general botany, and anthropology. A sizable proportion of the space in this book is devoted to presentation of material which is usually given in elementary courses of genetics. Chapters 2-3, 4, parts of 5 and 11, and smaller parts of other chapters deal with genetics. This emphasis is univoidable since modern evolutionism is incomprehensible except on the basis of familiarity with fundamentals of genetics. Therefore,

Copyright © 1955 by John Wiley & Sons Inc

All Rights Reserved

This book or any part thereof must not be reproduced in any form without the written permission of the publisher

Library of Congress Catalog Card Number 55-10868 Printed in the United States of America veloping more independently than they are now. The history of the evolutionary doctrine as a whole, from a modern standpoint, has never been written, and for the time being it seems more convenient to present the historical information piecemeal.

The 'Suggestions for Further Reading' given at the end of most chapters are meant to assist the student who may wish to go beyond the limits of this book in exploring problems of evolutionary biology. These "Suggestions' are certainly not meant to serve as bibliographics in which a reference to an authority for every fact and name men tioned in the text may be located."

I am deeply indebted to several colleagues and friends who have read chapters of this book and suggested corrections and improvements The greatest thanks go to Professors Ernst Mayr, of Harvard University, Charles Birch, of the University of Sydney Australia, and A B da Cunha, of the University of São Paulo, Brazil, who have read the manuscript in its entirety Chapters 1, 2, and 3 were read also by Drs Alfred Mirsky and Stanley Gartler Chapters 4 and 5 by Dr M Demerec, Chapters 6 and 7 by Dr Phillip M Sheppard, Chapters 6, 7, 8, and 10 by Professor H L Carson, Chapters 8, 10, and 12 by Pro fessor John A Moore, Chapter 9 by Professor P C Mangelsdorf, Chapter 11 by Professor Aubrey Gorbman, and Chapters 13 and 14 by Pro fessor L C Dunn, Mr Stephen Dunn, and Mr M D Coe Quite obviously, I remain solely responsible for all errors of commission and omission which doubtless will be found in the book. Mr Stephen R Peck has drawn many of the excellent illustrations which adorn the text Several colleagues have contributed other illustrations and photographs, as acknowledged in the legends to these figures Finally, thanks are due Miss Adelaide Richardson, who prepared the typescript

TH DOBZHANSKY

Preface

although it has not been my intention to turn this book into a brief textbook of genetics, a student who uses it will acquire an elementary knowledge of the subject. The book will probably fit the requirements of courses given in some institutions of higher learning, courses entitled. Genetics and Evolution, or Evolution and Genetics.

An effort has been made to use, wherever possible, examples deal ing with man and to point out the bearing of the topics discussed on human problems. The opinion once held fairly widely, that man is most unfavorable as material for biological and especially for genetic studies, is becoming less and less prevalent. Even though we cannot arrange many genetical experiments with man, there is an abundance of kinds of information bearing on the genetics and evolution of man which are not available for any other organism. And after all is said and done, the species Homo sapiens happens to be more interesting to most students than any other species, no matter how unserviceable it may be for some experiments. Being men, we understand many biological phenomena in man more easily and more clearly than we do the biology of much simple? Organisms

Although this book is meant to be comprehensible to a student with no more than an elementary previous knowledge of biology (at about high school level), some more advanced material and discussion of a number of unsettled and controversial problems have been included As a result, the book contains more material than can be adequately covered in an average one term course but this superabundance of The subdivision of the chapters into short material is deliberate sections with descriptive subheadings should make deletion of the inwanted material easy. On the other hand, what can be more challenging and inspiring to a student of average and above average in telligence than to learn that science is not something all completed and finished, merely to be memorized from books but a growing body of knowledge, in the development of which this same student may have a hand if he so chooses? Is finding this out not equally, or even more, valuable to a student than learning more facts"?

In place of a conventional chapter on the history of evolutionary theories, the history of various ideas and concepts is discussed in this book in the same chapters which present the modern status of those ideas and concepts. This arrangement of material does not in any sense mean an underestimate of the importance of the history of science or of its interest to an intelligent student. But modern evolutionary thought is a result of confluence and integration of the work of many biological disciplines which even in a recent past were de

Contents

1	Nature and Origin of Life	1
2	The Gene as the Basis of Evolution	23
3	Chromosomes as Gene Curriers	44
4	Heredity, Environment, and Mutation	72
5	Elementary Evolutionary Changes or Microevolution	91
6	Natural Selection and Adaptation	109
7	Individuals Populations and Races	134
8	Species	165
9	Evolution under Domestication and Evolution by Polyploidy	191
10	Evolution of the Organic Form and Function	222
11	Evolution of Sex	253
12	Historical Record of Organic Evolution	284
13	Human Evolution	319
14	Chance, Guidance, and Freedom in Evolution	357
In	dex	381

Nature and Origin of Life

The purpose of science is twofold. Science strives in the first place to understand man and the universe of which he is a part. In the second place, science endeavors to provide man with the means to control his environment. The quest for understanding is a function of theoretical, fundamental, or pure science. Knowledge and understanding are sources of satisfaction even when they do not yield any immediate material benefits. Control of the environment is a function of applied science or technology.

Understanding things, however is the surest approach to controlling them and the distinction between pure and applied science is, there fore not always sharp. This distinction often describes the attitudes of mind of investigators and students rather than the subject matter of their investigations and studes. Some discoveries of greatest practical utility have been made by scientists engaged in exploration of the laws of nature without regard for their possible utilization. For in stance, the germ theory of discase and much of the modern food technology are outgrowths of the studies of the great French biologist Pasteur (1822–1895) on the nature of life.

Cosmic Evolution Discoveries made in various branches of science during the nineteenth and twentieth centuries have converged to establish an evolutionary approach to the understanding of nature. The universe has not always been as it is now. Nature as we observe it today is the outcome of a historical process of development, evolution. The human race with its social intellectual and aristic achievements, the world of living creatures and inanimate nature all evolved gradually and by stages from very different intecedents.

The classical atomist view of nature, which dominated physical sci-

pose that much evolution took place before these organisms could have appeared, and, therefore, that the origin of life took place long before then

The extreme scarcity of the fossil record of the beginning stages of biological evolution is probably due to two causes. First, the most primitive organisms now hing are too small and too delicate to be preserved as fossils, and this was most likely true in the early stages of organic evolution. Second, the geological strata older than 500 million years (and many of those younger than that) were altered by heat and by great pressures in such ways that whatever fossils had been present in them were destroyed. For all these reasons it is conjectured that life appeared on earth much earlier than 500 million years ago. Unaltered pre Cambrian rocks are rare, and they contain a few doubtful fossils, which some authorities interpret as seaweeds and algae but others regard as possibly formed without participation of life. Perhaps more hopeful are very ancient deposits of carbon apparently of organic origin. Holmes claimed in 1954 that one such deposit in Africa is between 26 and 27 billion years old. If confirmed, this claim will mean that organic evolution became supermposed on cosmic evolution very long ago (Table 1.1)

The first land growing plants appeared, as shown by the fossil record, at least 400 million years ago. Land animals were added latersome 300 million years ago. The first known land inhabiting vertebrate animals are still more recent—200 to 250 million years. Mam mals, the class of animals to which man belongs, were evolved some 125 million years ago, and became diversified and widespread at most 75 million years ago. Mankind is a newcomer even among mammals. The first traces of mans presence are less than one million years old, which is less than one per cent of the time span during which mam-

mals are known to have lived

Human Evolution and Evolution of Culture With the appearance of man a third kind of evolution that of the human spirit, became superimposed on the background of the biological and cosmic evolution. Of course the entry of man on the evolutionary stage did not mean that biological evolution had come to an end, no more than the origin of life meant the termination of cosmic evolution. The three kinds of evolution proceeded at the same time.

The Greek Anaximander (611-547 BC), the first evolutionist to leave a trace in the history of human thought, taught that life arose from mud warmed up by sun rays Plants came first, then animals, and finally man But, reasoned Anaximander, man could not have

ences up to the beginning of the current century, held that the basic physical and chemical properties of matter were always as they are today. Matter consists of atoms of several scores of chemical elements, and the atoms combine with each other according to certain rules which the chemists describe. All material objects in the universe consist of different combinations of atoms, but the atoms themselves were believed to be unchangeable and indivisible. The very word "atom" means indivisible in Greek.

Classical atomism was right as far as it went, but it oversimplified the actual situation Physicists have shown that atoms consist of still smaller units-electrons, neutrons, protons Atoms of chemical elements have been transformed in laboratory experiments into other elements Moreover, modern cosmology, the study of the universe, assumes that the atoms which exist today have had a history. One of the theories is that the atoms were formed from a primordial substance, called the 'vlem, and the inference is that they were formed in a tremendous explosion, which occurred supposedly more than 5 billion years ago This stupendous event is then, the first discernible date in the history of the universe and the beginning of cosmic evolution After the formation of the atoms, cosmic evolution led to the concentration of the original cloud of atoms into galaxies This proc ess took a relatively short" time, some 30 million years The stars and planets were formed within the galaxies. Our earth came into existence presumably as one of these planets, it is, therefore, only a little vounger" than the universe itself

The work of geologists has shown that the earth underwent many transformations during its long history. Again and again mountain ranges rose above the plains, and were leveled back by erosion, portions of land sank beneath the seas, and sea bottoms rose to become land, the climates of many parts of the world changed from warm to cold and vice versa.

Biological Evolution Our earth is an insignificantly small particle of the universe, yet we cannot be sure that life exists anywhere except on this small particle. The evolution of life biological evolution, has, to our knowledge been enacted on earth alone. How long ago life appeared on earth, however, is a problem fraught with uncertainties. The most ancient indisputable and abundant fossil remains are estimated to be some 500 million years old. These ancient (Cambrian see Chapter 12) fossils are remains of creatures which inhabited the seas. Because the principal types, or phyla, of the now existing marine organisms are represented among Cambrian fossils we can sup-

nequire the rudiments of human culture. The important thing, however, is that the biological organization which enabled man to acquire and develop culture has conferred on him, for that reason, an immense biological advantage (Chapter 13). Man adapts himself to his environment chiefly by using his technical skills, his knowledge of things, his science, art, religion, in brief his culture. Now, as indicated above, the process of transmission of culture is vastly more efficient than biological heredity, which comes only from our parents and other direct ancestors, and can be transmitted only to our off spring. By contrast, learning, art, belief, or wisdom can be transmitted by precept, by speech or by writing, to any number of human beings, regardless of their being related by descent or not. Every one of us has "inherited" the wisdom of people whom we never met in the flesh. In many instances these people died centuries before we were born (see Chapter 13).

The rise of man from the animal level to truly human estate was slow at first. A few bone fragments of a creature which combined some human-like and some ape-like features were discovered in South Africa, together with charcoal remains. This discovery led the discoverer, Dart, to surmise that the creature was a user of fire, and to name it Australopitheous prometheus (pithecus, ape, Prometheus, the discoverer of fire). The dating of this fossil is, most unfortunately, quite uncertain, the creature may have lived half a million to more than a million years ago. Dart's interpretation of his find is regarded as doubtful.

There is, however, no doubt that at least 20,000 years ago there appeared in Europe a race of people who, judging by their bones, might have looked pretty much like ourselves. The drawings of animals which they made on the wills of the caves which they inhabited on the territory of the present France show that they possessed an exquisite artistic feeling (Figure 1.1)

The first light of recorded history dawned in the valley of the Nile, in Egypt some sixty two centuries ago. Within a few centuries a cultural awakening took place in several countries—in Egypt, in Mesopotamia (Iraq), in India, and somewhat later in China. Despite the numerous, and often grievous, setbacks, the development of human cultures has proceeded since then with, seemingly accelerating tempo

To a philosopher the cosmic, biological, and cultural evolutions are integral parts of the grand drama of Creation. A scientist, though he recognizes the unity of the evolutionary process, must perforce confine his studies within narrower bounds because the methods of in-

Venre Age

TABLE 11

SOME APPROXIMATE DATES OF COSMIC BIOLOGICAL AND HUMAN EVOLUTION

(Approximate)	Events
(Approximate)	Taventa
100	Publication of Darwin's Origin of Species
100-200	Industrial Revolution
300-400	Life of Galileo and birth of modern science
1955	Birth of Christ
3000	Beginning of Greek civilization
3500	Beginning of Chinese civilization
5400	Beginning of civilization in Mesopotamia
5400	Beginning of First Dynasty in Egypt
6200	Introduction of Calendar in Egypt
15-25 thousand	Man in America
20-50 thousand	Cro-Magnon man in Europe
20-75 thousand	Old Stone Age in Furope
500-800 thousand	First man made tools
75 million	Beginning of the Age of Mammals
125 million	The first mammals appear
500 milion	Beginning of the fossil record
2.5 billion	Appearance of life on earth
5 billion	Appearance of atoms of the chemical ele- ments followed by the formation of the

galaxies stars and planets

arisen directly from mud, since as a child he is unable to feed or to take care of himself. Hence he must have arisen from another ani mal This, then, is the first statement of the view that man is biologic cally unique (see Chapter 13) At present we are confident that man is a product of biological evolution his evolution was brought about by the same fundamental cruses as the evolution of all other organ-But in man the biological evolution has transcended itself Man is able to use language symbols, to arrive at decisions by a process of abstraction and reasoning and to distinguish between good and evil Children inherit their biological heredity from their parents through the sex cells, but they inherit their culture by learning from other human beings not necessarily related to them by descent Biological heredity is set at fertilization, and it remains more or less constant thereafter (Chapter 6) Cultural heredity is acquired throughout life, but principally during childhood and youth (Chap ters 13 and 14)

To develop culture, the human species had to evolve a human bio logical organization. No animal not even the anthropoid ages, can

A chemical composition including proteins and nucleic acids A definite organization

Maintenance and growth through assimilation

Reproduction and hereditu

Irritability and adaptation

The living bodies consist very largely of oxygen, carbon, hydrogen, and nitrogen, that is, chemical elements which are quite common also in the morganic nature. To those are added a number of other com mon elements, as shown in the following table, which indicates the percentages of the various elements in the human body

Element	Per Cent	I lement	Per Cen
Ovvgen	65	Potassium	0 35
Carbon	18	Sulphur	0 23
Hydrogen	10	Sodium	0 15
Nitrogen	3	Chlorine	0 15
Calcium	2	Magnesium	0 05
Phosphorus	1	All others	0 05

Some organisms contain rather higher proportions of chemical elements which are present only as traces in the human frame. Thus the blood of many mollusks has a greenish color owing to the presence of copper, and the ascidians (a group of marine animals) con tain some vanadium. But there is certainly no chemical element that would be confined to living protoplism. Carbon comes nearest to deserving to be called the stuff of life because it is capable of form ing innumerable complex compounds with other elements which occur These organic compounds are far more charin living matter acteristic of life than the elements which enter into the composition, of living bodies Proteins and nucleic acids are the two classes of such compounds which are important, because they are universally present in all life. But we cannot be entirely sure that some very different classes of chemical compounds could not produce life

Proteins are large and often huge, molecules, with molecular weights usually in tens or in hundreds of thousands, and often in millions The proteins consist, in turn of chemically linked building blocks known as amino acids About twenty different amino acids are commonly found, all of them characterized by the presence of amino groups NH2 and a carboxyl group, COOH, in their molecular makeup Their molecular weights are in hundreds An important property of amino acids is their ability to combine in a great variety of complex vestigation used by physicists, chemists, astronomers, geologists, igists, unthropologists, sociologists, artists, and theologians are is verse that no one person is able, it present, to use them all with competence. In this book our attention is focused on biological e

Figure 1.1 Drawings of animals on walls of Lascaux caves in France mic man of the Old Stone Age

tion The relevance of the biological findings to human problem well as the importance of the environment in the midst of which evolution of life is enacted, will, however, be pointed out when possible

Characteristics of Living Matter As yet nobody has offere satisfactory formal definition of life, and we shall not attempt to due one. For despite the lack of a definition there is usually

missing parts in lower organisms. Most crystals, however, consist of a single chemical compound, whereas organisms contain enormous numbers of substances arranged into strictly defined patterns.

Living individuals very seldom occur singly. Representatives of a species usually live in communities, members of which are related by mating and parentage bonds. Sometimes members of communities form colonies, and become so completely interdependent that it is no

Figure 1.2 One individual or several? The microscopic alga Pandonian several cells of which live together in a common galatinous envelope. The drawing on the right shows each cell divided to form new groups which are about to become independent.

longer easy to delimit the constituent individuals. Thus some of the lower plants, algie live in colonies composed of several or many cells (Figure 1.2). The whole colonies as well as the constituent cells may be referred to as individuals. Cells are the fundamental building blocks of the bodies of all higher organisms, including man but we have no doubt that it is the whole man rather than each of his cells, that is the individual since the cells of the body are incapable of independent existence (except in utilicial tissue cultures). In some organisms, however, such as corals or the Portuguese man o war, multi-cellular individuals become again associated into colonies and lose their independence to such an extent that it becomes reasonable to regard the colonies as individual units (Figure 1.3). It is obvious that individuality is not an all or-none affair but a matter of degree

patterns such as are found in proteins. The specificity and constrincy of the organization of living beings (see below) is presumed to rest on the specificity of the proteins. Enzymes, chemical substances which mediate many important chemical reactions taking place in living bodies, are among the proteins. The action of enzymes is as a rule highly specific since each enzyme mediates one and only one kind of reaction.

Nucleuc acids are compounds of so called nucleotides. A nucleotide, in turn, consists of a nitrogen containing purine base, a sugar, and a phosphoric acid. Depending on the kind of sugar involved, two types of nucleuc acids can be distinguished, called, respectively, ribonucleic acids (RNA, for short) and desoxyribonucleic acids (or DNA). The DNA is inviriably present in the chromosomes of the cell nucleus whereas RNA is a characteristic constituent of the cell cytoplasm. The nucleotides are in living cells, associated with each other to form compounds of, often, very high molecular weight. Furthermore, nucleic acids link up with proteins to form nucleoproteins. It appears that nucleoproteins are present in all existing living bodies, down to the simplest viruses.

Organization and Individuality There is no question but that comprehension of the chemical processes which occur in living organisms is essential for an understanding of life, and that our knowledge of these processes is as yet insufficient. But we should not think of an organism as though it were simply a mixture of chemical substances. Lafe occurs always in discrete units, in individuals, which possess a fairly constant and usually highly complex structure or organization. From men, elephants and whales to insects, polyps and lowly amoebne and from pine and oak trees to grasses, algae and down to the simplest organisms we can always discern the characteristic external structures (morphology), internal gross and microscopic anatomy, and the physiological properties of individuals of every species of organisms.

Innumnte objects do not usually possess definable individuality Mountain ranges rocks, rivers, or seas are not discrete individuals, since they do not have a colusive structure that would be characteristic also of other individuals of a species. To be sure, crystals seem to foreshadow on the inorganic level the discreteness and the constant organization of living individuals. The shape of crystals is fixed by their chemical structure the atoms inside a crystal are arranged in a definite pattern. Under proper conditions a crystal can grow and even restore missing parts, which makes us think of regeneration of

environment in which the organism lives. For green plants this is water and certain mineral salts taken in from the soil, oxygen and carbon dioxide from the atmosphere, and the energy of a part of the sunlight spectrum. All animals, and most of the chlorophall less plants require for food some of the organic substances found in the bodies of other animals or plants. All life is derived from the energy of sunlight bound by the chlorophall of green plants.

Figure 14 A human egg and a sperm The sperm is magnified more strongly than the egg

When a crystal grows in a supersaturated solution, the growth oc curs by addition of the substance from the solution to the surface of the crystal The growth of living bodies is a different story food undergoes a series of profound chemical changes before it is assimilated that is, becomes a component part of the organism. Thus animals break down the proteins ingested as food into amino acids and then build their own proteins from these constituents. Now it is surely a most significant fact that the body reproduces itself from the food which it consumes in the process of assimilation and growth the food is transformed into a likeness of the assimilating body and of its ancestors. Indeed the human body, whether an embryo or an adult transforms food not merely into human flesh but into an individual who resembles his parents and relatives more or less closely The outcome of growth and development depends very largely on the nature, the heredity, of the body and only secondarily on the food which it assimilates The same kind of diet can maintain life not only

Self reproduction A human being begins his existence when a spermatozoon ferthizes an egg cell (Figure 14). A ferthized human egg cell is just large enough to be visible to a naked eye. Its weight is estimated as about one twenty millionth of an ounce (slightly more

Figure 1.3. A suphonophore a colonial matuo animal consisting of several different kinds of individuals specialized to perform different functions. The appear ance of the colony is shown on the left and a scheme of its structure on the right. The individual which functions to make the colony float vertically in water is marked a b individuals which are as swimming helds or protective "leaves d gasterogoids which insect food e, tentaneum ghelds or protective "leaves d gasterogoids which insect food e, tentaneum ghelds or protective "leaves d gasterogoids which insect food e, tentaneum ghelds or protective "leaves d

than one millionth of a gram) Starting from this insignificant but of matter, the body grows until it attains the adult size and weight of say, 150 to 160 pounds. This is, then an approximately fifty billion fold increase

What is the source of material for this stuperidous growth? Clearly, it is the food consumed—first by the mother in whose body the embryo coming from the fertilized egg develops and then by the growing individual himself. Now food is derived ultimately from the

Consider, for example, the complex physiological processes which are set in motion by wounds, injuries, or bone fractures, and which result in healing and repair of these injuries. Invasion of the body by disease producing breteria, viruses, and other parasites calls forth remarkable defense reactions which tend to localize, combat, and finally extinguish the infections. Owing to the scarcity of oxygen at high elevations in the mountains man experiences difficulties in living and working at high ultitudes. The human body reacts, however, to the high altitude conditions by altering the composition of the blood and by other physiological changes which facilitate securing enough oxygen for respiration.

Homeostasis In all these and in countless other instances we observe a remarkable 'wisdom of the body' Environmental stimuli evoke processes which maintain or restore the welfare of the body in changed environments The organism normally stands to its environ ment in a relation of adaptedness. When the environment changes. this harmonious relation may be disturbed and must be restored by homeostatic reactions on the part of the organism. Adaptedness to the environment can, of course, be observed not only in man but in all organisms animal and plant, primitive and complex. The ubiquity of homeostatic reactions in the living world has even led some biologists to view adaptation as some kind of mystical principle Many vitalists (see page 19) regarded the ability of the organism to respond adaptively to external stimuli as an elemental property of life great Lamarck, one of the pioneers of evolutionism, built his theory on the assumption that organs are always strengthened by intensive use and weakened by prolonged disuse (Chapter 4) It will be shown below (Chapters 5 and 6) that the origin of adaptations can be understood better on the basis of Darwin's theory of natural selection, with out invoking any alleged mystical properties of living matter. For the time being it is sufficient to point out that, although the widespread adaptedness of living beings to their environment justly excites our admiration, in some instances adaptive reactions are con spicuously lacking

The sun tanning reaction of the human skin protects the body from sunburns. There is, however, no protecting reaction to shield the body from harmful X rays, ridium rays, and similar radiations. In general, pain is a writing signal produced by injuries or by invasions of the body by poisons and parasites. Yet in the human species the biologically 'normal and essential function of childbirth is accompanied by intense pain. Most harmful substances are repellent, but some, such

of different men but also of other species of animals, for example, of dogs and cats kept as domestic pets It is the heredity which causes the processes of assimilation to result in self-reproduction

The production of a likeness of the assimilating body and of its uncestors is most strikingly apparent when the organism grows or gives rise to a progeny. An oak tree brings forth acorns, each able to grow into an oak. An oyster gives some hundred million eggs in a single spawning, each potentially a new oyster. Owing to heredity, to self reproduction, every form of life tends to transform the materials in the environment capable of serving as food into copies of itself. Self reproduction continues in adult bodies which no longer grow in size or in weight, it continues as long as life itself. Every organism not only assimilates foods but also breaks down the assimilated products and reconstructs them again. This continuous buildup and breakdown of living matter is the metabolism.

Studies on metabolism have disclosed that most of the components of the animal body are frequently renewed, as can be shown very clearly with the aid of tracers, such as isotopes of the elements which compose the living bodies. For example, an animal can be fed a diet in which certain of the atoms of the usual carbon (C12) have been replaced by those of a radioactive carbon isotope, C14. The radio active carbon presently appears as a component of various tissues of the body, in which it can be localized with the aid of both physical and chemical methods. The C14 thus enters the living protoplasm but after a lapse of a certain time (variable for different tissues and substances), the structures containing C14 are broken down, and the isotope appears in the waste products of the organism. Similar experiments have been done with other isotopes—"heavy water, radioactive sulphur, phosphorus, iodine etc. The phenomenon of self reproduction in living bodies is universal.

Adaptation Every organism responds in definite ways to outside stimuli, the ability of making such responses is referred to as the property of irritability. Even the simplest unicellular animals and plants, such as amoebae and flagellate algae, move towards food and away from too intense heat or cold, and towards moderate light and away from darkness or too intense light. Seeds of the higher and spores of the lower plants respond by sprouting or germination to some conditions and by remaining dormant to others.

A striking and fascinating fact is that many, although not all, responses of living beings to outside influences are adaptive, that is, promote health survival, and reproduction of the reacting organisms

diseases in their hosts, among them such scourges as smallpox, poliomyelitis, yellow fever, measles influenza, and common cold. Plant viruses are responsible for serious losses to agricultural crops. Bac teriophages reproduce in living bacterial cells and cause dissolution (158) of the cells (Figure 5.1).

Some of the viruses, despite their smallness, have proved to be quite complex organisms. This is true, for example, of bacteriophages. It

Figure 15 Viruses as seen in electron microscopes Tobricco mostic virus (left) and bushy stunt virus (right) Very greatly magnified

is a phusible hypothesis that many viruses are actually degenerate descendants of larger organisms such as bacteria. But, especially among viruses which cause plant diseases, there are some forms interesting because of their apparent simplicity. The crystalline tobacco mosaic virus was shown by Stanley to be chemically a nucleoprotein (ribose nucleoprotein). Its molecular weight is estimated to be as high as 50 million.

Is tobacco mosaic virus and are other viruses living beings? Al though a majority of biologists are now of the opinion that this question must definitely be answered in the positive, it is interesting that there existed and still exist some dissenting opinions. The very possibility of such a disagreement suggests that some viruses, such as the tobacco mosaic virus, may be not far removed from the boundary of the living and the non-living

A conclusive evidence of the living nature of the tobacco virus,

as narcotics, produce pleasant sensations instead of pain. Man rely on food for his supply of numerous vitamins essential for he but many other animals, even some mammals, can manufacture of these vitamins for themselves.

There are some basic facts which point towards a solution of problem of adaptation. In general, every living species reacts a tively to the external stimuli which occur frequently in the envients in which this species has evolved. Thus the human species for countless generations to deal with the danger of sunburn, be did not encounter X-ray burns until very recently. The painful of childburth is probably a disharmony resulting from the computely recent acquisition by our species of the erect posture and supply of a species contains an abundance of a certain vitamin, it is no obvoius advantage for this species to manufacture the vitain its own body. Homeostatic reactions are not to be taken for grains gifts of nature, they must be understood and explained. The rem theory of evolution seems to provide a reasonable explanation.

sulted during the eighteenth and nineteenth centuries in the discoof a hitherto unknown world of tiny creatures. Some of them, ticularly bacteria, appeared at first to be mere droplets of a visi substance Yet, despite their small size, bacteria possess an immen complex organization, at any rate immeasurably more complex t anything in inorganic nature Then, in 1892, Ivanovsky discove still smaller organisms which are too small to be seen in ordinary l microscopes They were later named filterable viruses, since they small enough to pass through filters of unglazed porcelain and o materials which retain ordinary bacteria. In recent years many ruses have been made visible by means of electron microscopes 1935 Stanley isolated from tobacco plants infected with the so ca mosaic disease a protein which can form crystal like structures (Fig. 15) A minute amount of this protein injected into healthy pla causes them later to develop the mosaic disease. Most important all, an amount of the virus protein about one million times grethan the amount injected can be obtained from the diseased pla several days after the injection

Viruses known at present are a diversified collection of forms. TI common property, apart from their small size, is that all of them parasites which develop only in living cells of animal or plant he In other words, no free-living viruses are known. Some viruses ca

from the air. He showed that when ment juice was boiled and then scaled airtight no bicteria developed. His experiment did not satisfy all the believers in spontaneous generation, who objected that boiling destroys "the life-guing powers of air and of ment juice. It was Pas

Figure 1 6 Louis Pasteur (1822-1895)

teur (Figure 16) who gave the definitive evidence that life arises only from pre evisting life. He, among others, did the experiment of boiling meat juice and other liquids suitable for the development of bacteria in a special flask which admitted the outside air through a curved tube. The dust with the bacterial spores settled in the curved tube, and the liquid in the flask remained free of bacteria. This work not only established a fund iment il biological principle but led to numer-

lapart from its nucleoproteinaceous structure, is that the virus repro duces itself at the expense of materials in the tobacco leaves. To be sure, the objection has been raised that the virus may somehow be synthesized by the cells of the tobacco plant or may be preformed in these cells Indeed, the virus multiplies only in living not in dead. cells of tobacco leaves The objection is not valid, many a parasite, the living nature of which cannot be doubted, cannot be cultivated outside the body of a host Tobacco cells assuredly contain sub stances which are susceptible of being converted into the virus substance, otherwise the virus could not infect the tobacco plants But the conversion does not take place unless a particle of the virus is first introduced into the plant. Similarly, human intestine contains substances from which intestinal parasites can be built, and grocery store shelves contain materials which can be converted into human bodies Yet in all these cases the conversion occurs only in the self reproducing living, bodies of a given species

The Continuity of Life The idea that life is, in the last analysis, but self-reproduction of living matter is quite foreign to a mind untutored in biological science. Until a few centuries ago nobody doubted abiogenesis or spontaneous generation, that is, origin of living creatures from non hving matter Aristotle (384-322 BC) thought that worms and snails were products of putrefaction and that plants could arise also without seed. This hypothesis was accepted by such pioneers of science as Bacon (1561-1626) and William Harvey (1579-1657) Paracelsus (1493-1541) revealed the recipe, which, he said, had until then been kept in greatest secrecy, for producing a "homun culus' or an artificial man He might be produced, allegedly, through putrefaction of the human semen in a cucurbit placed for 40 weeks inside the belly of a horse The power of heredity was taken equally lightly Plutarch (AD 46-125) records that human beings were born of mares, asses, and goats The notion that wheat and barley transform into wild oats and other weeds was discussed in ancient Rome by Virgil and Pliny, and was believed by some until about the seven teenth century It has quite recently been resurrected by Lysenko and his followers in Russia

The continuity of life and heredity was revealed only gradually Redi (1626-1693) showed that fly maggots did not arise from putrid meat He placed decaying meat in a jar covered with fine gauze, so that the flies were unable to reach the meat No maggots appeared Spallanzani (1729-1799) found that meat or meat juice did not putrefy unless spores of putrefaction bacteria were introduced with dust

Under such conditions simple aldehydes, such as formaldehyde (CH₂O), would be formed, and these might be slowly condensed into sugars. Organic acids also could be formed and, reacting with am monia, could give other compounds, including simple amino acids such as glycine (CH₂NH₂COOH). Proteins would arise by linking together several amino acids.

A possible reason who these chemical compounds do not now exist in non-living media is that they would be used up as food by living organisms soon after being produced. While life was absent, orgunic compounds could accumulate in the water of lakes and seas. Even so, spontaneous formation of complex proteins and nucleoproteins is a most improbable event at least in terms of short time intervals. Given eons of time, a highly improbable event may however, take place somewhere in the universe. Such a lucky lift happened to occur on a small planet earth a mere speck in the vast cosmic spaces. As soon as a particle appeared that was able to reproduce itself, that is, to engender synthesis of its copies from materials present in its environment the evolution of life was launched. The primordial living particle may for example be visualized as a kind of simple varus. Of course this varus must have been able to multiply in the inorganic environment or in environments contuning only the organic compounds accumulated through processes of the kind outlined above.

There are several reasons why the self-reproduction of particles is

stressed as the essential step with which life commenced. Self reproduction of necessity implies growth through assimilation, mainten ince of definite organization and transmission of heredity. It will be shown in the following chapters that self-reproduction and heredity may lead through action of natural selection to adaptation to the environment and to progressive evolution. Formation of the first self-reproducing particle whatever might have been its precise chemical makeup was at least potentially, the dawn of organic evolution, Although at present self-reproduction is not known to occur except in nucleoproteins self in producing units of other composition might have occurred on earth or in other parts of the cosmos.

Vitalism and Mechanism Our understanding of the fundamental life phenomena is admittedly sketchy, and the hypotheses about the origin of life are only conjectures set up to promote further thinking and experimentation. Science in general and biological science in particular have only begun to explore the design and the working of nature. Most biologists believe that the best working hypothesis is that life phenomena involve merely complex patterns of interaction

ous practical applications—pasteurization and sterilization so important in canning and dairy industry as well as in medicine

Hypotheses Regarding Origin of Life on Earth If life comes only from life, then every living creature which exists now is a direct de scendant of the first bit of living protoplasm which appeared on earth (unless life arose from manimate nature repeatedly) The origin of the first life of necessity is a highly speculative issue Indeed, our inability to observe spontaneous generation in nature or to bring it about artificially in laboratory experiments shows that life must have arisen under some conditions which no longer obtain at present and about which we can make only the vaguest guesses

Attempts have even been made to avoid the issue by supposing that life was introduced on our planet from other heavenly bodies. Sports or other germs of life may have arrived on earth in 1 meteor or with cosmic dust. But we are not certain that life exists or ever existed outside the earth, and, if it did, could stand the transport through the interplanetary space. In any case, we must face the problem of the origin of life in the universe.

All life that now exists, including the simplest viruses, has as its physical abode highly complex organic compounds, nucleoproteins Not only nucleoproteins but even their constituent minion acids and nucleic acids are synthesized exclusively in living organisms and never sponteneously from inorganic substances (some of the amino acids can, however, be made synthetically in laboratories) Spontaneous formation of these energy rich compounds is highly improbable on the basis of physicochemical considerations. Nevertheless several scientists, Oparin in Russia Dauviller and Desguin in France, Bernal in England, Urey, Miller, and Blum in America, have tried to visualize conditions under which chemical substances now formed only in living organisms could have arisen without intervention of life.

In the early stages of the history of the earth the prevalent high temperatures permitted the eristence of water only in the form of superheated steam. The atmosphere contained no free oxygen but it may have contained some simple carbon compounds, such is methante (CH₁), which are now found in the atmospheres of some stars. Similarly introgenous compounds such is ammonia (NH₁), were probably formed. With the cooling of the earth and the formation of liquid water some chemical reactions became possible which are not likely to occur now. This is particularly so because high energy ultraviolet radiations were then presumably reaching the earth's surface. They are now absorbed in the upper atmosphere by oxygen and ozone.

processes, a biologist is still obliged to find mechanistic explanations of these processes. Consider, for example, the origin of life from mert matter. Was it the psyche which built the first nucleoprotein molecule from simpler compounds? If so, the psyche must be some enzyme or ome energy rich radiation. No matter how small is the push which you want the supernatural to deliver to a material process, the supernatural is ineverably debased to the level of a physical energy.

Acceptance of mech mism as a biological theory is not, however, inconsistent with esthetic and religious views of existence. Man is a complex of chemical compounds but this fact alone is said to describe him adequately only to those who would use him for fertilizer. Regardless of what he is chemically man yearns for sympathy and understanding. A primeral forest a mountain meadow or a coral reef have beauty which is appreciated the more we become familiar with the organisms which occur there. Religion leads us to appreciate the menuing and value of the world and of man

Suggestions for Further Reading

Gamor G 1952 The Creation of the Universe Viking Press New York

This is a very well written account of cosmic evolution, understandable to non physicists

Bernal J D 1951 The Physical Basis of Life Routledge & Kegan Paul Lon

Blum H F 1951 Time's Arrow and Ecolution Princeton University Press,

Opann A I 1953 Origin of Life 2nd Edition Dover Publications, New York

The books of Bernal Blum and Oparin contain among other things interesting speculations concerning the problem of the origin of life.

Plunkett C R 1944 The primary physicochemical basis of organic evolution

In J Alexander's Colloud Chemistry Volume 5, pp 1173-1197 Reinhold New York

An excellent discussion of the importance of self reproduction as a basis of high

and of evolution

Russell E S 1945 The Directedness of Organic Activities Cambridge University Press London

Sinnott E W 1950 Cell and Psyche The Biology of Purpose University of North Carolin i Press Chapel Hill

The books of Russell and Sinnott outline modern variants of vitalistic theories of life

of physical forces and of chemical reactions. This assumption is called mechanism. Its alternative, vitalism, is that, in addition to the forces similar in kind to those operating in manimate nature, life involves powers which are restricted to the living world.

It is curious to think that vitalism was accepted by most biologists in the seventeenth and eighteenth centuries, together with the belief in the frequent occurrence of spontaneous generation (see page 16) At that time life was regarded as a manifestation of a special vital force (vis vitalis) Such a possibility could not be dismissed outright Physics knows several forms of energy mechanical energy, heat, light, electricity, and the energy of atomic nuclei. There may exist also a yital energy, it is argued. The development of biology in the nine teenth and twentieth centuries has failed, however, to reveal the operations of such an energy, although some of the physical and chemical processes involved in many biological phenomena, such as animal and plant metabolism, muscle contraction, nerve conduction, and other phenomena, have become partly known. This certainly does not mean that all biological processes are now understood in physical and chemical terms, but it is true that the realm of phenomena in which manifestations of the vital force may still be suspected has been shrinking steadily for at least two centuries Few or no biologists now con sider the assumption of vital force a profitable hypothesis, and this notwithstanding the downfall of the belief in spontaneous generation, which seemed to increase the gap between the living and the nonliving

Vitalism, however, continues to exist in a subtly changed form and as a minority opinion. It is admitted that life is basically a complex of physical and chemical processes. And yet Sinnott believes that living cells possess a psyche, a drive akin to human volition, which presides upon the development of a fertilized egg into an embryo and into an adult. The so called finalist school particularly in France and in Germany, believes that the evolution of life has been governed by a perfectionist urge, or by striving to produce man (cf. Chapter 14)

It is hard to see what is gained by such speculation. Just what is the meaning of the assertion that the cell or the body is directed by a psyche or by a perfectionist urge? If these factors somehow direct the flow of physical and chemical processes, they must themselves be forms of physical energy, even though peculiar and as yet unknown ones. But this is a return to the old behef in a vital force, although under different names. If, on the other hand the psyche or the supernatural guide is outside and above the physicochemical matrix of life.

2

The Gene as the Basis of Evolution

Every species of organism reproduces itself. The process of heredity converts the food derived from the environment into more or less furthful copies of the assimilating organism and of its parents and more remote ancestors. The reproductive potentials of many organisms are immense. With abundant food and at favorable temperature, the colon bacteria, Escherichia coli double in number about every twenty munities.

Heredity is a conservative force If children and parents were completely identical, evolution could not occur. Heredity, however, is opposed by a process of chinge, variability. Self reproduction occursionally results in an imperfect copy of the parental living unit, and the altered copy, called a mutant, then reproduces the altered structure until new mutations intervene. One of the major achievements of biology during the current century has been the demonstration that the units both of heredity and of mutation are bodies of molecular dimensions called genes.

In the last analysis evolution is a sequence of changes in the genes. Durwin and other pioneers of evolutionary biology realized very clearly the basic importance of heredity for understanding evolution. However it is only during the current century, and particularly during the last twenty to thirty years, that a theory of evolution based on the findings of the study of heredity genetics, has become possible. A brief outline of the fundamentals of genetics is, therefore, essential in a book dealing with evolution. Such an outline is given in Chapters 2, 3, 4 and also elsewhere in this book in connection with the various problems of general evolutionary biology discussed.

Simpson, G G 1949 The Meaning of Evolution Yale University Press New

Haven

Also available in a paper covered edition. A general discussion of evolution and

its philosophical implications by an outstanding paleontologist

Zirkle C 1936 Animals impregnated by the u.ind Isis Volume 25 pp 95-130 Zirkle C 1951 The knowledge of heredity before 1990 In L C Dunns Genetics in the Twentieth Century Macmillan New York

The two papers by Zirkle give a review of the amizing and amising specula tions concerning generation and heredity put forward from antiquity to relatively recent times. of a person was thought to be an alloy in which the heredities of each of its four grandparents were represented by one quarter, of each of the eight great grandparents by one eighth, etc. (This was called Galtons law of ancestral heredity.) Even so perspicious a mind as Charles Darwin's accepted these beliefs of his time. People unfamiliar with biology accept the notion of "blood heredity even now, indeed, this notion is a part of the everyday language."

Mendel's classical experiments consisted in crossing different varieties of garden peas and observing the distribution of the characteristics of the parental varieties among the hybrid offspring. He published the results of his work in 1865 in a single paper. Although he stated very clearly the laws of heredity now regarded of great importance, his work failed to attract the attention of contemporaries. In 1900 these laws were rediscovered independently by Correns in Germany, De Viries in Holland, and Tschermak in Austria. Their importance was recognized, and the development of a new science, genetics or the study of heredity, proceeded apace.

Mendel crossed varieties of peas differing in single contristing truits or chiracters, such as a variety with purple and one with white flowers, with yellow and with green seeds, with round and with wrinkled seeds, till and dwarf varieties, etc. In the first generation of hybrids, called the F_1 generation, the truit of one of the parents was usually dominant, whereas the alternative trait of the other parent was suppressed, or recessive. Thus the cross purple \times white flowers give hybrids with purple flowers, yellow \times green seeds gave dominance of yellow, round \times wrinkled seeds resulted in recessivity of wrinkled, and tall \times dwarf variety gave hybrids in which the tillness (dominant) masked the dwarf size (recessive)

The Γ_1 hybrids were allowed to produce offspring. The progenies of the Γ_1 hybrids are the second generation (Γ_2) hybrid progenies. In these Γ_2 progenies Mendel observed a fundamental fact the dominant and the recessive grandparental truts reappeared in about three-quarters and one quarter of the progeny respectively (a ratio 3 dominant 1 recessive). Thus Mendel obtained Γ_2 offspring among which approximately 75 per cent of the plants had purple and 25 per cent white flowers (Figure 2.2)

Mendel's Law of Segregation Segregation of the traits of the parental varieties in the Γ_2 generation of hybrids shows that these traits are not inherited through miscible "bloods". They are transmitted from parents to offspring by discrete bodies, which, many years after Mendel's death, Johanssen has named genes. In the hybrids the

Mendel's Experiments on Plant Hybrids The basis of the modern theory of heredity was created by Gregor Mendel (1822-1884) Be

Figure 2 1 Gregor Mendel (1822-1884)

fore Mendel (Figure 2.1) it was believed that heredity is transmitted from pirents to dispring by blood. The parental bloods were supposed to mix in the progen; so that the heredity of the child was a solution, or an alloy, of equal parts of parental heredities. The heredity

genes neither mix nor contaminate each other purple flowers does not fuse with the alternative (allelie) gene for white flowers, even though the purple dominates the development of the color in the flowers of the Γ_1 hybrid plants. The white flowers in the Γ_2 generation are just as white as in the original white variety. They do not become pink or rose-colored, although the contrasting alleles for the purple and white colors are carried for a whole generation side by side in the bodies of the Γ_1 hybrids. When the hybrid, or heterozygous, plants form their sex cells the purple- and white producing genes segregate. The sex cells are "pure" they carry either a purple or a white allele. This is the law of segregation, or Mendel's first law.

It is convenient to symbolize the dominant and the recessive generalleles by capital and by small letters respectively (Figure 2.2). Thus the purple flowering variety of pers can be written RR, and the white-flowering rr. The sex cells carry either R or r. The Γ_1 hybrid plants are heterozygotes Rr. In the process of formation of the sex cells by Rr heterozygotes the alleles segregate, and equal numbers of R-containing and r bearing sex cells are produced. In the formation of the Γ_2 progenies these sex cells combine at random R female cells or r ovules are fertilized by R or r male cells in proportion to their abundance

It can now be predicted that among the Γ_2 plants approximately one quarter will be homozygous for R, that is, will carry two similar alleles, RR (Figure 2.2). About half of the plants will be heterozygous Rr, and about one quarter will be homozygous, rr. Because of the dominance of R and the recessiveness of r, the homozygotes, RR, and the heterozygotes, Rr, will be similar in having purple flowers, whereas the homozygotes, rr, will have white flowers (Figure 2.2). Although the RR and the Rr plants are not distinguishable in their flower color Mendel saw a way to test the validity of the prediction based on his theory. He permitted the purple flowered Γ_- plants to produce further progenies (Γ_1). About a third of these progenies had only purple flowers these were the progenies of RR plants. In about two thirds of the progenies purple—and white flowering plants appeared in ratios approaching 3 purple—1 white, these were the progenies of Rr plants

Mendel's Principle of Independent Assortment In some of the crosses made by Mendel the varieties of pers differed in two or more conspicuous traits. For example, he crossed a variety with yellow and round sc.ds with one having green and wrinkled seeds (Figure 23) Mendel knew that the yellow color is dominant over green, and that

Figure 2.2 Mendels law of segregation Cross of a purple flowered and τ white-flowered strain of peas showing dominance of the purple color and segregation of purple and white in the second generation of hybrids (F_2) R stunds for the gene for purple and r for the gene for white flower color Black rings symbolic purple-flowered and white rings white flowered plants

genes neither mix nor contaminate each other Thus the gene for purple flowers does not fuse with the alternative (allelie) gene for white flowers, even though the purple dominates the development of the color in the flowers of the F₁ hibrid plants. The white flowers in the F₂ generation are just as white as in the original white variety. They do not become pink or rose colored, although the contrasting alleles for the purple and white colors are carried for a whole generation side by side in the bodies of the F₁ hybrids. When the hibrid, or heterozygous, plants form their sex cells the purple and white-producing genes segregate. The sex cells are "purple they carry either a purple or a white allele. This is the law of segregation, or Mendel's first law.

It is convenient to symbolize the dominant and the recessive gene alleles by capital and by small letters respectively (Figure 2.2). Thus the purple flowering variety of peas can be written RR, and the white flowering, rr. The sex cells carry either R or r. The Γ_1 hybrid plants are heteroxygotes, Rr. In the process of formation of the sex cells by Rr heteroxygotes the alleles segregate, and equal numbers of R-containing and r bearing sex cells are produced. In the formation of the F-progenies these sex cells combine at random R female cells or r oxides are fertilized by R or r male cells in proportion to their abundance.

It can now be predicted that among the Γ_2 plants approximately one quarter will be homozygous for R, that is, will curry two similar alleles, RR (Figure 2.2). About half of the plants will be heterozygous Rr, and about one quarter will be homozygous, rr. Because of the dominance of R and the recessiveness of r, the homozygotes, RR, and the heterozygotes, Rr, will be similar in having purple flowers, whereas the homozygotes, rr will have white flowers (Figure 2.2). Although the RR and the Rr plants are not distinguishable in their flower color, Mendel saw a way to test the validity of the prediction based on his theory. He permitted the purple flowered F, plants to produce further progenies (F_1). About a third of these progenies had only purple flowers, these were the progenies of RR plants. In about two-thirds of the progenies purple- and white flowering plants appeared in ratios approaching 3 purple. 1 white these were the progenies of Rr plants

Mendel's Principle of Independent Assortment In some of the crosses made by Mendel the varieties of pens differed in two or more conspicuous traits. For example, he crossed a variety with yellow and round seeds with one having green and wrinkled seeds (Figure 23). Mendel knew that the yellow color is dominant over green, and that

Figure 2.2 Mendels law of segregation Cross of a purple flowered and white flowered strain of pers, showing dominance of the purple color and segregation of purple and white in the second generation of hybrids (F₂) R stands for the gene for purple and r for the gene for white flower color Black rings symbolize purple flowered and white rings white flowered plants

the wrinkled seed surface is recessive to round. The I's generation hybrid seeds were, as expected vellow and round. What, however will the Γ_2 hybrids be like? The traits of the secd color give in Γ_1 segregation in a ratio of 3 vellow (dominant) 1 green (recessive) seeds. The seed surface segregates in a similar ratio 3 round. 1 wrmkled r bybrid seeds. However, will the yellow color be linked in segregation with the smooth surface, and the green color with the wrinkled surface. Or will the characteristics of color and surface sea regate independently? Mendel showed that the latter possibility is realized. The proportions of vellow and green colors among the smooth seeds are the same as among the wrinkled ones. In other words, the Γ_n generation consists of about nine sixteenths ($\frac{1}{2} \times \frac{1}{2}$) of vellow smooth, three sixteenths (34 × 1/4) of vellow wrinkled three sixteenths $(\frac{14}{4} \times \frac{14}{4})$ of green smooth and one sixteenth $(\frac{14}{4} \times \frac{14}{4})$ of green wrinkled seeds. This then, is a segregation in the ratio of 9 double dominants 3 with one dominant and one recessive 3 with the other dominant and the other recessive. I double recessive

The principle of independent assortment, or recombination, is some times referred to as Mendels second law. Although this law is not obeyed in some instances (see page 54), the facts which led to its formulation are important. They show that the heredity transmitted through sex cells is a mosaic of corpuscles, genes which are to some extent independent of each other. The different variants, alleles of the same gene do not fuse but segregate in heterozygotes, and different genes undergo segregation independently of one another.

Mendelan Inheritance in Man Mendel's laws upply to all living beings and thus represent perhaps the most fundamental biological

Figure 2.3 Mendels Law of independent assortment Strains of peas with yellow and smooth seeds and with green and winkled seeds are crossed. The letters A and a stand for the genes for the yellow and green colors and B and b for the smooth and wrinkled seed surfaces respectively

the workled seed surface is recessive to round. The F, generation hybrid seeds were, as expected, yellow and round. What, however, will the Fe hybrids he like? The traits of the seed color give in F a corregation in a ratio of 3 vellow (dominant) 1 green (recessive) seeds The seed surface segregates in a similar ratio 3 round 1 wentled Fo hybrid seeds However, will the vellow color be linked in segregation with the smooth surface, and the green color with the wrolled surface? Or will the characteristics of color and surface segregate independently? Mendel showed that the latter possibility is realized. The proportions of vellow and green colors among the smooth seeds are the same as among the wrinkled ones. In other words the F_0 generation consists of about nine sixteenths (3% × 3%) of yellow smooth, three sixteenths (34 × 14) of yellow wrinkled, threesysteenths ($\frac{3}{4} \times \frac{1}{4}$) of green smooth, and one systeenth ($\frac{1}{4} \times \frac{1}{4}$) of green wrinkled seeds This, then, is a segregation in the ratio of 9 double dominants 3 with one dominant and one recessive 3 with the other dominant and the other recessive. I double recessive

The principle of independent assortment or recombination, is some times referred to as Mendels second law. Although this law is not obeyed in some instances (see page 54), the facts which led to its formulation are important. They show that the heredity transmitted through sex cells is a mostic of corpuscles genes which are to some extent independent of each other. The different variants, alleles, of the same gene do not fuse but segregate in heterozygotes, and different genes undergo segregation independently of one another.

Mendelian Inheritance in Man Mendel's laws apply to all living beings and thus represent perhaps the most fundamental biological laws yet discovered Segregation and recombination of hereditary traits have been observed in most diverse animals and plants. It would be difficult to count the number of species of organisms in which gene heredity has been observed to occur

Soon after 1900, examples of Mendelmn inheritance were found in man. Of course, controlled hybridization experiments cannot be arranged in man, but this drawback is compensated for by the abundance of data on the distribution of various truts in human families and populations. Let us consider as an example the inheritance of the ability to taste the substance known as phenyl thio carbamide (PTC, for short). Solutions of this substance have an intensely bitter taste to about 70 per cent of Americans, but to about 30 per cent they are almost tasteless. The numbers of tasters (those able to taste PTC solutions) and non-tisters (those who find them without taste) in 800 families with 2043 children are summarized in Table 2.1. The

TABLE 21

Inheritance of the Ability to Taste PTC Solutions

(After Spacer)

Number	(<u>-</u>	Children	
of Families	Parents	Tasters	Non-tasters
86	Non taster \times Non taster $(tt \times tt)$	5 (?)	218 (tt)
289	Taster \times Non taster (TT or $Tt \times tt$)	483 (Tt)	278 (tt)
425	$\begin{array}{c} {\rm Taster} \times {\rm Taster} \\ (TT \ {\rm or} \ Tt \times TT \ {\rm or} \ Tt) \end{array}$	929 (TT or Tt)	130 (tt)

explanation which accounts best for the data is that the tasters carry a dominant gene T and the non tasters are homozygous for its reces sive allele, t Marriages between two non tasters ($tt \times tt$) should produce only non taster children Actually 218 non tasters and 5 tasters have been recorded These exceptions are due to the fact that some people who are actually "tasters do not find weak solutions of PTC particularly bitter, in any large material on human heredity the occurrence of some illegitimate children must also be reckoned with Some of the parents recorded as tasters were doubtless homozygous (Tt), and others heterozygous (Tt), for the gene T Some families in which one or both parents were tasters produced, accordingly, only tasters, whereas others produced both taster and nontaster children (Table 2.1)

31

Mendelini inheritance of dozens or even hundreds of human traits has been established with varying degrees of certainty. Many of these traits are perfectly 'normal'. For example, the blue eve color behaves in most families as a recessive to brown (but in other families).

Figure 2.4 An albino boy with his non albino father Albinism is due to homozygosis for a recessive gene which prevents the development of pigmentation (Courtesy of Professor J V Neel)

the situation is more complex, because some people who have the dominant gene for the brown eye color have nevertheless eyes of an indefinite grayish or greenish color). Albinism (virtually pigmentless skin, straw colored hair, usually pink ins of the eyes, Figure 24) is also caused by a recessive gene. Albinios are rare in most human populations, in England about one person in 20 000 is an albinio. Albinio children are usually born in families in which both parents have the dominant normal pigmentation but are heterozygous for the recessive gene for albinism. A few instances of marriages of two albinios are

laws yet discovered Segregation and recombination of hereditary traits have been observed in most diverse animals and plants. It would be difficult to count the number of species of organisms in which gene heredity has been observed to occur.

Soon after 1900, examples of Mendelian inheritance were found in man Of course, controlled hybridization experiments cannot be arranged in man, but this drawback is compensated for by the abundance of data on the distribution of various truts in human families and populations. Let us consider as an example the inheritance of the ability to taste the substance known as phenyl thio carbamide (PTC, for short). Solutions of this substance have an intensely bitter taste to about 70 per cent of Americans but to about 30 per cent they are almost tisteless. The numbers of tisters (those able to taste PTC solutions) and non tasters (those who find them without triste) in 800 families with 2043 children are summarized in Table 21. The

TABLE 21

INHERITANCE OF THE ABILITY TO TASTE PTC SOLUTIONS

Number	(After Sily)	Children	
of Families	Parents	Tasters	Non tasters
86	Non taster \times Non taster $(tt \times tt)$	5 (?)	218 (tt)
289	Taster \times Non taster (TT or $Tt \times tt$)	483 (Tt)	278 (H)
425	Taster \times Taster (TT or $Tt \times TT$ or Tt)	929 (TT or Tt)	130 (tt)

explanation which accounts best for the data is that the tasters carry a dominant gene T, and the non tasters are homozygous for its recessive allele, t Marriages between two non tasters ($t \times t t$) should produce only non taster children Actually 218 non tasters and 5 tasters have been recorded These evceptions? are due to the fact that some people who are actually "tasters" do not find weak solutions of PTC particularly bitter in any large material on human heredity the occurrence of some illegitimate children must also be reckoned with Some of the parents recorded as tasters were doubless homo zygous (TT) and others heterozygous (Tt), for the gene T Some families in which one or both parents were tasters produced, accordingly only tasters whereas others produced both taster and nontaster children (Table 2.1)

by observing Mendelian segregation in progenies of crosses in which the pirents differ in some truts. If all men were tisters, or all non-tasters of PTC, we would not so much as suspect that the genes T-text As a matter of fact, the discovery that PTC tastes bitter to some but not to other people was made by accident, when one chemist working with this substance felt a discomfort which his non-taster colleague found hard to understand. If albinos were unknown, or if everybody in the world had brown eves, or only blue eves, the genes for albinism and for the eye color would remain unknown.

A gene must undergo a change and be represented by at least two alleles before its existence can be ascertained. Very rough estimates of the total number of genes have nevertheless been attempted. These estimates are of the order of 5000 to 15 000 genes in the sex cell of the vinegar fly, Drosophila, and 10,000 to 100,000 genes in a human sex cell.

Mendelini segregation and assortment are observed in the offspring of crosses. Now, crossing or hybridization presupposes that the organisms reproduce sexually. In some lower organisms especially among bacteria, scalar reproduction was unknown until recently, and the existence of genes in such organisms was not rigorously established until Lederberg found that some strains of the colon bacteria can be crossed. Recombination of truits has recently been found even in bacteriophages, making it probable that these organisms, visible only in electron microscopes, contain several genes. Only the simple viruses such as the tobacco mosaic virus are perhaps comparable to single genes. For this reason they are sometimes referred to as including genes.

Some Applications of Mendel's Laws As stated above Mendel crossed a variety of peas that had yellow and smooth seeds with a variety that had green and wrinkled seeds. Owing to the recombination of genes he obtained in the Γ_2 generation of hybrids not two but four varieties with (1) yellow smooth seeds, (2) yellow wrinkled seeds (3) green smooth seeds, and (4) green wrinkled seeds

Crossing hybridization, evidently may lend to production of new varieties, which is important in the breeding of agricultural crops and animals. Suppose that a variety of wheat is valuable because it is genetically resistant to frost but has the drawback of being susceptible to rust fungi. Another variety has a satisfactory rust resistance but is not frost resistant. It is then expedient to cross these varieties, and to look among the Γ_- hybrids for plants resistant both to frost and to rust. Of course plants devoid of either resistance are also

known, and as expected all the children produced by such marriages are albinos

Inheritance of Diseases Many diseases and malformations are caused by defective genes. A recessive gene, which is fortunately rare in most human populations, causes juvenile amaiorate idoo; when homozygous. This disease first manifests itself by failing eye

Figure 2.5 Polydactyly-presence of extra fingers and toes This is inherited as a dominant trait (Courtesy of Professor J V Neel)

sight in children 4 to 7 yeurs ol.1 and leads to blindness mental deteriorition and finally to death before the age of adolescence. Another recessive gene causes a fatal anemia (Cooley s anemia) in homozygous infants but the same gene has a slight dominant effect also in the heterozygote, where it causes some abnormality of the red blood cells and a mild anemia. A dominant gene when heterozygous causes polydactly, or the presence of evtra fingers (Figure 25). Another dominant is responsible for chondrodystrophic dwarfism—very short arms and legs, with a normal sized head and trunk

Number of Genes The number of genes in a sex cell is not known either for man or for any other organism. It is difficult to determine the number of genes because of an important limitation of our methods of studying the genes. Indeed, we discover the existence of a gene

Genetic Endowments of Parents and Children Compared According to the blood theory, a parent transmits his heredity as a whole to every one of his children. On this basis if among your ancestors there was a passenger on the Mayflower, you would possess a particle of every one of his qualities. In contrast to this the gene theory shows that every parent transmits to his child only half of the genes which he himself has. The father and the mother of a single child have transmitted to the future generations one-half of their genes, but the other half of the genes which they carry will be irretrievably lost. However, every child gets a somewhat different set of genes from each parent. A parent of two children has transmitted approximately three-quarters of his genes, and failed to transmit one quarter, a parent of three children has handed down to posternly about seven eighths, and a parent of n children a fraction $1 - (Y_c)^m$ of his genes.

Looked at from the progeny point of view, siblings are likely to have approximately half of their genes in common whereas the other half will be different. The blood theory regarded the heracity of a child a fusion product of parental heredities. If this were so, the heredities of brothers and sisters would be similar or even identical. The outcome of hybridization of sevual union of dissimilar parents had to be a leveling off a neutralization, dissolution, of the differences between the heredities of the varieties crossed. The gene theory leads to precisely opposite conclusions. Sexual reproduction continuously generates new combinations of genes. The diversity of hereditary constitutions is thus maintained and increased by sexual unions, a fact that is of immense importance for evolution. In later chapters it will be shown that sex may be regarded as an adaptation of living matter which permits hiving matter to secure the evolutionary advantages of gene combination.

Munifold, or Pleiotropic, Effects of Genes. In the examples of Mendelum inheritance discussed above, a gene carried in the sex cells was always spoken of as representing a discrete trait of the adult organism. A gene in peas caused a yellow seed color or a wrinkled seed surface, and in man we found genes for tasting PTC, for eye color, for amaioratic idiocy etc. This way of describing and naming genes is convenient because it is concise but it is also misleading because it seems to imply that every gene has an exclusive influence on one and only one character. In reality, the gene theory does not assume that the genes are rudiments or representatives of particular body parts or of particular truts. The development of the organism is due to all the genes acting together in concert. All the genes which the or-

likely to appear Combinations of good as well as of bad genes are impartially produced by the Mendelian segregation. It is, then, the business of the breeder to pick out, to select, the valuable combinations of genes. Some of the most valuable crop varieties have been obtained by selection among hybrid progenies derived by crossing two or several less valuable varieties.

When the parents crossed differ in more than two genes the diversity of genetic constitution obtained by recombination may be very great With three genes eight homozygous gene combinations can be formed among hybrids, with four genes sixteen, with five genes thrity-two, and, in general, with n genes 2^n gene combinations In some F_2 progenies of parents differing in many genes no two individuals may appear allke

Gene Differences among Siblings Segregation and assortment of genes take place not only in the offspring of artificially made crosses In sexually reproducing organisms the individuals that mate differ usually in many traits and in many genes. Every human being, tech nically speaking, is a hybrid, a heterozygote, for many pairs of alleles. With 10 heterozygous genes there may be produced 210 (1024) kinds of sex cells with different combinations of genes, with 20 genes, 1,048,576 kinds of sex cells, and with 250 genes, about as many kinds as there are electrons and protons in the universe. Nothing can be more certain than that only a negligibly small fraction of the potentially possible gene combinations in any species are ever realized.

Nature is produgal in the number of sex cells that are generated in many organisms. In man a single ejaculation contains about 200 million spermatozoa Suppose that an individual who produces these spermatozoa is heterozygous for thirty or more genes. It becomes unlikely that any two spermatoroa will contain the same combination of genes Since most people are heterozygous for probably more than thirty genes, it is most unlikely that any two spermatozoa, or any two eggs, have the same genes. In other words siblings, brothers and sisters rarely if ever receive the same complements of genes from their parents Only identical twins, who arise through division of a single fertilized egg, carry the same genes Unrelated persons would differ, on the average, in more genes than do brothers or sisters. It is. then, a reasonable guess that no two persons alive (identical twins excepted) carry the same genes Every human being is a carrier of a umque unprecedented and probably unrepeatable gene complex This is true as well for sexually reproducing and cross fertilizing species other than man

ultimately biochemical, processes in the cells, tissues, organs, and the whole body. The genes produce, or influence the production of enzymes which are so important in cell metabolism. It may be that every gene is responsible for the production of one and only one enzyme, on the other hand it is possible that the same gene, at any rate in higher organisms, makes different enzymes in different tissues and at different stages of development in the same tissue. However that may be, a change or a removal of an enzyme may alter profoundly the metabolism of cells and of the body. An alteration of this sort may result in a group a syndrome of changes.

"Characters" Are Abstractions that genes determine characters is misleading because a character or a trut is an abstraction which an observer makes to facilitate the description of his observations. For evample, a manual of anatomy contains thousands of names for parts, ridges holes and other structural details of bones, muscles, and other organs. We may say that each name corresponds to a "character but the number of the structures named is limited only by the convenience of those who have to talk and write about these structures. Yet a critic of genetics argued that if we must as sume one or more genes for each structure, the number of genes will be infinite hence the genes do not exist!

The solution of this imaginary difficulty is simple enough. The organism with all its characters is an outcome of a process of development, which is a system of physiological, and ultimately physico chemical events. In the last analysis, these events are by-products of the self reproduction of the genes. Characters or truts which we observe are the outward signs of the occurrence of the development process. How many characters we observe depends on how we look at the organism on how careful and detailed our studies are and above all on how we choose to describe our observations. But the genes are there independent of how we talk or write about them

Interaction of Genes in Development Every gene may affect many visible traits most traits are influenced by several or by many genes Interaction of gene effects in development may lead to some extremely complex situations which are at first sight quite different from simple Mendelian inheritance. Analysis of situations of this sort in terms of the gene theory was one of the outstanding problems of genetics during the first decades of its existence (roughly, from 1900 till 1920).

Breeds of domestic and laboratory animals show quite a variety of coat colors In horses, cattle, sheep, cats, dogs, rabbits, guinea pigs,

grams has interact with the environment, and in so doing they make the ferthized egg develop by stages into a fetus, an infant, a child, an adolescent, an adult, an old man or an old woman, and finally a cadaver. It should always be kept in mind that, despite the shorthand designations which geneticists use in naming genes, many, and probably all, genes influence several or many traits of the organism which carries them. Genes have manifold or pleutropic effects.

Some early geneticists liked to speak of genes determining "unit characters", yet pleiotropism of genes was known already to Mendel He crossed a variety of peas with purple flowers, brown seeds, and a dark spot on the axils of the leaves to a variety with white flowers, light seeds, and no axillary spot on the leaves. In the segregation observed in the hybrids, the just-mentioned traits of the flowers, seeds, and leaves always stayed together as a unit. Their inheritance can be accounted for by a single gene which visibly influences several traits.

The work of Morgan (1866-1945) has made the vinegar fly (Dro sonhila melanogaster) and its relatives classical materials for genetic studies One of the variants (mutants) differs from normal (wild type) flies of this species by having vestigial wings (Figure 45) The cross vestigial × normal gives an F1 progeny with normal wings and a segregation in a ratio 3 normal 1 vestigial in the F. generation The gene for vestigial (pg) is, accordingly, recessive to that for normal wings (Vg) Careful comparison of vestigial and normal flies dis closes, however that the wing size is by no means the only difference between them Vestigial flies have also the third joint of the halteres (balancers) rudimentary, a certain pair of bristles on the body erect instead of flat, and some of the reproductive organs changed in shape Moreover, vestigial flies deposit fewer eggs than normal, their life is on the average shorter, and their larvae are the losers if they are made to compete with normal larvae in crowded cultures. To a human observer, the wing size is certainly the most striking difference between vestigial and normal flies. To the flies, the differences in fecundity, longevity, and viability may be more important

Examples of manifold effects of genes could be multiplied at will Studies on hereditary diseases in man and in higher minimals have shown that the genes produce not single trust but more or less complex systems or syndromes, of characters and physiological functions of the organism

The origin of pleiotropism is easy to understand The genes bring about the development of the organism through physiological and

Figure 2.6 Inheritance of some of the pelige colors in horses Cross of a biy and a chestnut (sorrel) horse gives biy in F_1 and biy blick and chestnut in the F_2 generation. The biy color is produced by simultaneous presence of the genes I and B B without I gives blick whereis homozy gosis for b yields chestnut regardless of whether I is or is not present.

mice, rats, poultry, pigeons, cunary birds, and other species the coat and plumage colors are determined by interaction of numerous genes. We choose the inheritance of the coat colors in horses as an example, although there is no agreement among the investigators about the interpretation of some parts of this complex subject.

Cont Color in Horses The entire cont of some horses, including the mine, tail, muzzle, and lower pirts of the legs, is chestnut (sorrel) in color. Mating of chestnut stallions and mares gives only chestnut foals. Chestnut is due to homozygosis for a recessive gene, b. The dominant allele, B, of the gene turns chestnut into black. Black horses are either homozygous, BB, or heterozygous, Bb, for this gene. An other dominant gene, I, turns black into bay—a brownish cont with black mane, tail, muzzle, and lower parts of legs. A black horse, then, is always homozygous for the recessive allele, it, in addition to having at least one dominant B (Figure 26). But neither I nor i has any visible effects in the absence of B, accordingly, chestnut horses may or may not carry I. As a result, horses of these colors may have the following genetic constitutions.

Chestnut	Black	Bay
bb 11	BB n	BBII
bb Ii	Bb n	Bb~II
bbII		BB Is
		Rh I,

The matings black × black produce then, either only black or black and chestnut foals Black × chestnut may give black, chestnut, and bay All three colors may also appear in the matings bay × bay, bay × black, and bay × chestnut Addition of a further dominint, D, transforms the coat into dun (dilute yellow), sand colored ('buck skin') or bluish ("mouse) coat with black or chestnut mane, tail, muzzle, lower parts of legs and a stripe on the middle of the back Chestnut black, and bay horses are, then, homozygous, dd for the recessive allele d (= non dun) The dun color (BBIIDD) is charac teristic of the wild horse of Mongolia (Equip przeudskii), which is one of the progenitors of the domestic horse. A race of the same species known is tarpan lived in the steppes of Eastern Europe until it was finally destroyed a century ago (see Chapter 9). This race was mouse colored and probably had the genes BBuDD.

Two further genes G and R, make the horse respectively gray and roan A foal homozygous or heterozygous for G (GG or Gg) is born

Negro parent A mulatto produces, then, eight kinds of sex cells, with the genes $P_1P_2P_3$, $P_1P_2P_3$, and $p_1p_2p_3$ Accordingly, marriages of mulattocs will give progenies of the genetic constitution shown in Figure 2.7. It can be seen that almost a third-20 out of 64 mulattocs—of the Γ_2 generation will carry three pigment genes and will accordingly have about the same skin color as the mulattoes of the Γ_1 generation. Almost a half-30 out of

Figure 2.7 Inheritance of the skin color in the white X Negro cross on the assumption that the color difference is due to three pairs of pigment genes which exhibit no dominance. The heights of the bars in the diagram show the percentages among the second generation hybrids of individuals with no with one two three four five, and six color producing genes.

64—will have two or four pigment genes and will have somewhat lighter or somewhat darker skins than the average Γ_1 mulatto. About six in 64 will have five pigment genes and will be intermediate between Negro and mulatto, and about the same number will have one pigment gene and a skin intermediate between mulatto and white And only a minority—one out of 64—will have six pigment genes and full Negro skin color or no pigment genes and a white skin color

Marriages of mulattoes and Negroes or of mulattoes and whites produce children most of whom have skin colors intermediate between those in the parents. Indeed with three pairs of pigment genes at play, three eighths of the sex cells of the mulattoes would have two pigment genes, three eighths, one pigment gene, one eighth three pigment genes and one eighth no pigment genes (Figure 27). The

with only a few white hairs scattered in an otherwise chestnut, black, by, or dun coat (depending on the other genes). The proportion of white hurs rapidly increases, however, with age, making the horse first dappled gray and eventually white (with black skin). The gene for roan (R) acts in a different way it causes the appearance of rather numerous white hairs interspersed with hurs of other colors, the amount of white not greatly increasing with age

There are several further genes the effects of which on the cost color are not completely understood. A dominant gene causes the horse to be pied with large white areas on the trunk (pied, piebald, or pinto horses). The presence of white markings on the face and on the lower parts of the legs seems, however, due to a quite different gene, which is recessive to its normal allele, causing absence of white markings on these parts. A "white" horse, having a light skin (that is, not an old gray), may be due to extreme development of the pinto" markings. There is another gene, however, which gives a white coat when homozygous and a characteristic pale ("palomino") coat in heterozygous condition.

Polygenic Inheritance Analysis of such truts as the cost color in horses is facilitated by the fact that most of the genes which influence the trut produce discrete and easily perceptible effects. Very often, however, the trut is caused by interaction of several or many genes, each of which taken separately produces only a small effect. Such

genes are referred to as multiple genes or polygenes

Inheritance of the Skin Color in Man Davenport has suggested (1913) that the difference in skin color between Negroes and whites may be due to the cooperation of two pairs of genes without dominance. This view undoubtedly oversimplifies the situation. Considerably more than two pairs of genes influence the skin color in man. To explain the principle of polygemen influence, let us assume three pairs of pigment genes, such that a Negro has the genetic structure $P_1P_1P_2P_2P_3P_3$, and a white, $p_1p_1p_1p_2p_2$. Each gene denoted by a capital letter causes production in the skin of a certain amount of dark pigment. The effects of different genes are additive, that is each gene adds a certain amount of pigment regardless of presence or absence of other pigment genes. A Negro, then, would carry six pigment genes and a white no pigment genes (this is admittedly inexact since whites who are not albinos always have some skin pigment).

A Negro \times white marriage produces F_1 hybrids (mulattoes), who should be $P_1p_1P_2p_2P_3p_3$ With three pigment genes the mulattoes have, on the assumptions made half as much skin pigment as the

Suggestions for Further Reading

Sinnott, E. W. Dunn, L. C., and Dobzhansky, Th. 1950. Principles of Concluss
4th Edition. McGraw, Holl. New York.

This is one of the several will ble textbooks of general geneties, containing an outline of the main facts and concepts of this science

Mendel G J 1866 I xperiments on plant hybridization

Trunslated from the original Cemini by William Bateson. This paper appears as an Appendix in the book by Simott Dunn, and Dobzhansky referred to above Mendels paper is a true classe, and it should be read by every student of genetics and of evolution as a splendid example of the application of scientific method in modern expenses of the state.

Gates R R 1946 Human Genetics Macmillan New York
Neel J W and Schull W J 1954 Human Hereditu University of Chicaco

eel J. W. and Schull W. J. 1954. Human Heredity. University of Chicago Press. Chicago

Sorsby A (Editor) 1953 Clinical Genetics Butterworth London

Stern C 1949 Principles of Human Genetics W H Friemin Sim Francisco
These four books are construed specifically with the genetics of man although

Stern's contains an excellent outline of general genetics is well. Sorsh's book, is its name implies is devoted chiefly to the description of the genetically conditioned diseases. Gates book is useful as an extended compilation and bibliography of human genetics up to the time of the Second World War.

Mather R 1949 Biometrical Genetics Dover Publications New York

Lerner I M 1950 Population Cenetics and Animal Improvement Cambridge London

The books by Mather and Lerner deal with the rapidly developing field of study of quantitative or polygenic traits and the mathematical and statistical methods used in this study.

mulatto × Negro cross would, then, give three eighths of the children with five pigment genes, three eighths with four, and one eighth each with six and with three pigment genes. The mulatto × white cross would give three eighths of the progeny with two pigment genes, three eighths with one, and one eighth each with three and with no pigment genes. Marriages between mulattoes and either whites or Negroes give mostly children intermediate between the parents in their skin color.

"Blending" Inheritance Polygenic inheritance was the last type of hereditary transmission to be analyzed in terms of genes. The more multiple genes participate in the formation of a trait, the smaller are the visible effects of each separate gene, and the more difficult is the analysis of the "blending" of the characters which is observed. The inheritance caused by polygenes certainly resembles what was popularly believed to be heredity through blood. As pointed out above, the difference in the skin color between Negroes and whites is caused by probably more than three purs of genes. Different "whites vary in skin color—from albinotic to tan—and this variation quite apart from the color variations due to skin exposure to sunlight. African Negroes are likewise variable in skin color. It is probable that some pigment genes are scattered in white populations and some genes for lightness of the skin in Negro populations. Races differ mostly in relitive frequencies of genes in their populations (see Chapter 7).

Vurieties and breeds of agricultural plants and animals and also races and species of all organisms differ most often in traits caused by polygenes. Classical Mendelism dealt chiefly with clearly alternative traits, which can easily be described as present or obsent in a given individual. Most men are either tasters or non-tasters of PTC, either albinos or non-albinos either braichydact lous or with normal fingers, etc. Polygenic traits are usually matters of more or less of some quality. Such quantitative characters are described by measurement or weighing, and studies of their inheritance require application of often recondite statistical techniques, which have been evolved and perfected especially in recent years.

The polygenes and the genes with discrete major effects are not basically different kinds of genetic units. All conceivable intermediate situations exist. Substitution of a gene for its allele may cause a drastic change in the organism or the change may be slight, or it may be so minute that statistical techniques are needed for its detection. The difference between major genes and polygenes lies not in their nature but in the techniques used for their study.

believed that the mother furnishes mort matter and the father imparts the motion to the new life Spallanzini (1729-1799) found, however, that this motion was not due to some immaterial essence in the seminal fluid of the male, as others supposed he showed that the seminal fluid of the frog lost its ability to fortilize the eggs after a passage through a filter. The furtilizing agent is not a simple liquid

We could not go much beyond this without making use of a new instrument invented and gradually perfected a generation before Spul lanzani s-the microscope. Using microscopes Leeuwenhoek Swam merdam and others discovered that the seminal fluid contains animalcules -spermatozoa (see Chapter 10) At about the same time de Graaf and others found that female mammals produced eggs like birds and frogs only much smaller. But more than a century had to elapse, and more powerful microscopes had to be manufactured, before Oskar Hertwig (1849-1922) finally, in 1876 saw the eggs of a sea urchin being fertilized by spermatozoa, and was able to discern that the most significant event in the process is the union of two about equal nuclei that of the egg and that of the sperm. Very soon thereafter Weismann, Roux Hertwig himself, and others realized that the phenomenon of the fusion of the nuclei during fertilization explains the equal potency of the female and the male in the transmission of heredity from parents to the progeny. The sex cells eggs and spermatozoa, in most organisms are as strikingly unlike as cells can be Yet they contain similar parts—their nuclei and chromosomes. The infer ence was then clear the material basis of heredity resides primarily in the nuclei and their chromosomes

The quarter of the century immediately preceding the rediscovery of Mendels laws roughly from 1875 till 1900 saw a rapid development of cytology, the study of the cell. The following quarter of a century, approximately 1900–1925, brought an even more rapid progress of cytogenetics, a synthesis of the findings of cytology and genetics concerning the mechanisms of the transmission of heredity.

Nuclei and Chromosomes Cell nuclei were described by Brown in 1831, even before the promulgation of the cell theory by Schleiden and Schwann in 1839. Soon thereafter (in 1848) Hofmeister observed the process of division of hiving cells in the plant spiderworth (Tradescantia). He saw in the nuclei of dividing cells rod like bodies, which later were found to stain deeply in fixed preparations by certain dyes and called since 1888 chromosomes (stainable bodies). These staining reactions are now known to be due to the class of substances called

3

Chromosomes as Gene Carriers

Almost 400 years ago the versatile philosopher Montaigne admitted being completely baffied by the mystery of heredity. He thought that he had inherited from his father a disease—a stone, in the bladder, but his father suffered from this disease some years after Montaigne was born. How, then, could the father transmit to his son something which he himself did not have at the time the son was conceived? And, besides, the semen was believed to be mere liquid. How could a liquid transmit a stone in the bladder?

To dispel even a part of the mystery which worried Montaigne much biology had to be learned. At present we would say that Montaigne did not inherit a stone in the bladder, what he inherited were genes which engendered a constitution, a development prittern, which included a predisposition towards formation of bladder stones. Fur thermore, we know that the genes have a physical basis in the chromosomes in the nuclei of the sex cells which are highly organized structures with complex and orderly behavior that makes heredity possible. The physical basis of heredity is necessarily also the physical basis of evolution.

See Cells and Fertilization Leonardo da Vinci (1452–1519), who was so much ahead of his times in so many things, realized the basic fact that the father and mother contribute equally to the heredity of the child as shown by the following quotation. The black races of Ethiopia are not the products of the sun for if black gets black with child in Sey thin, the offspring is black. But if a black gets a white woman with child the offspring is gray. And this shows that the seed of the mother has power in the fetus equally with that of the father." From Aristotle on, until as late as the eighteenth century, most people

14

C leontodontoides C neglecta C monlana

Figure 3.1 Chromosomes of six species of Crepis (plants of the sunflower

family) Each pair of chromosomes differs from all others in its relative size

Figure 3.2. Chromosomes of males of six species of Drosophila flies x and y denote the x- and y-chromosomes (After Patterson and Stone and other sources)

nucleoproteins, and particularly desoxyribose nucleic acids (DNA), which all chromosomes contain

The number of chromosomes in a nucleus was found, with few exceptions, to be constant for a species. In many organisms different chromosomes in the cell nuclei are recognizably different from each other. This led Boveri (1862–1915), Wilson (1856–1939), Navashin, and others (around 1900) to the correct inference that chromosomes are unlike in their genetic contents (Figures 3 1 and 3 2).

Strasburger, Butschli, Fleming Roux, and others found that cells divide usually by a remarkably precise mechanism called mitosis (Figure 33) Mitosis begins with a prophase stage, when chromosomes appear in the nucleus as slender threads, which are often composed of bend like chromomeres. The chromomeres may be of different sizes and shapes, making each chromosome in a nucleus recognizable by a definite sequence of large and small chromomeres following each other in a longitudinal file. The constancy of the chromomere pattern is visible evidence of the chromosome being longitudinally differentiated into qualitatively different segments. This differentiation reflects the constant linear arrangement of the genes (see page 58)

The chromomere structure of the chromosomes is particularly evident in the giant chromosomes of cells of the salivary glands of larvae of certain flies (Figure 3 4) These giant chromosomes, first described by Balbiam in 1881, and correctly interpreted by Heitz, Bauer, and Painter in 1933, are used extensively in genetic and evolutionary research

The prophase stage is followed by metaphase The chromosomes shorten and thicken (by being thrown into a fine spiral) A spindle-shaped figure, composed of thin fibers or threads, arises in the cyto plasm. The nuclear membrane disappears and the chromosomes become arranged usually in a single plane, midway between the poles of the spindle. The chromosomes now divide longitudinally into exactly equal halves and during the anaphase the halves pass to the opposite poles of the spindle. The cell also divides, the chromosomes enter the telophase and form the nuclei of the daughter cells (Figure 33).

In most organisms the disjunction of the daughter halves of the chromosomes and their distribution to the poles of the mitotic spindle are governed by the centromeres. A centromere is a specialized segment of the chromosome permanently fixed in position which seems to act as the insertion point of the fiber connecting the chromosome with the pole of the spindle.

Figure 3.1 Chromosomes of six species of Crepis (plants of the sunflower family). Each pur of chromosomes differs from all others in its relative size and in shipe. (After Babeock.)

Figure 3.2 Chromosomes of miles of six species of Drosophila flies x and y denote the \(\ \) and \(\)-chromosomes (After Patterson and Stone and other sources \)

Figure 3.3 Mitotic cell division in root tip of the common onion (Allium cepa). The disgrammatic drawings represent the behavior of a single chromosome at different stages of mitosis. A interphase B prophase C metaphyse D ana phase E telophase F the daughter nuclei (After Belar modified).

Between the successive mitoses the cell nucleus is in the interphase. The chromosomes become diffuse and usually not visible as discrete bodies. During interphase the genes reproduce themselves, that is, synthesize their copies. This can be inferred among other things from the fact that the DNA content of the nucleus becomes doubled

Figure 3.4 The grant chromosomes in a cell of the salvary glund of a larva of the fly Drosophila melanogaster (Courtesy of Dr. Jack Schultz.)

during the interphase. The name, the resting stage, applied to the interphase by old cytologists is, then, most impropriate. The lack of the visible activity during the interphase, activity which is so obvious during mitosis is contrasted with intense physiological work. Mitosis is an impressively efficient mechanism which insures accurate distribution of genes from one cell generation to the other

Meiosis Fertilization brings about fusion of the nuclei of the uniting see cells or gametes. The uniting gametes normally contains 24 chromosomes in the hyploid nucleus contains 24 chromosomes in the fly Drosophila melanogaster 4 chromosomes, in corn (maize) 10 chromosomes. A zygote which arises from the union

Figure 33 Matotic cell disison in root tip of the common omon (Alluum cepa). The diagrammatic drawings represent the behavior of a single chromosome at different stages of mitosis. A interphase B prophase C metaphase D and phase, E telophase F, the daughter nuclei. (After Belvir modified.)

of the gametes contains the sum of the chromosomes which were car ried in the gametes. The diploid chromosome numbers are 48 in man 8 in Drosophila melanogaster, 20 in corn

Figure 3.6 Digrimmatic representation of the stages of meious shown in Figure 3.5. The digrims show only a single pur of chromosomics the paternal chromosome being represented black and the maternal white. The centromeres are shown as white circles.

Sooner or later the diploid zygote must give rise to hiploid gametes. This change is accomplished by a remarkable modification of the mitotic cell division, known as meiosis. In some lower organisms

Figure 3.5 Meiosis in a male grisshopper (Stenobothrus). A Chromosome complement in a spermatogorul cell showing the diploid set of chromosomes B Early prophase in a primary spermatocyte. C Pachytene strge in a primary spermatocyte showing the paternal and material chromosomes united in purs permatocyte showing the paternal and material chromosomes united in purs D Diplotene stage showing the pater chromosomes (bualents) held together by chiamrat. E Metriphase or early anaphase of the first meiotic division showing the buildent chromosomes on the spindle. F Telophase of the first meiotic division the haltes of the buildent have disjoined and pussed to the opposite poles of the spindle. C The two cells (secondary spermatocytes) resulting from the first meiotic division. If Anaphase of the second meiotic division resulting in formation of cells (spermatody) containing single chromosomes of each kind which the species possesses (After Belar modified).

chromosomes at meiosis, is responsible for this recombination of linked genes. Morgan advanced the hypothesis that the frequency of recombination is a function of the distance between the genes in the chromosome. Other things being equal, the further apart the genes are the more likely it is that a chromosome are strongly linked those farther apart are exchanged more frequently. Of course the likelihood of chiasma formation depends on many things besides the distance between the genes. It happens that in the spermatogenesis of male Drosophila no chiasmata are formed in the chromosomes. Accordingly, no recombination of linked genes takes place in the offspring of hybrid Drosophila males.

Morgan's hypothesis was amply confirmed and developed by Bridges, Muller, Sturtevant, and others. Numerous experiments were carried out in which the recombination of linked genes was studied in his brids of Drosophila and in other organisms. Sturtevant found a regularity which holds strictly for rather closely linked genes namely, if the frequency of recombination between genes A and B is x, and between B and C is y, then the recombination between A and C is either x + y or x - y. Such a relationship is expected if the genes A, B, and C are arranged in the chromosome in a single linear file. Although complications arise with loosely linked genes, the experimental data as a whole are consistent with the theory.

This theory has enabled geneticists to map the distribution of genes in the chromosomes of genetically well known species. Figure 3.10 shows maps of this sort for the most thoroughly studied form, Drosophila melanogaster. These genetic maps indicate which genes belong to each linkage group, the order in which the genes of a given linkage group are arranged in the chromosome, and the 'distances between the genes, expressed in map units, which, in turn represent the frequencies of recombination between the genes expressed in percentages.

Genetic chromosome maps, all of them less detailed than those shown in Figure 3 10 now exist for several species of Drosophila, for maize, for peas (Pisum), sweet peas (Lathyrus) beans morning glorx, the fungus Neurospora the mouse Very sketchi maps, showing the location of very few genes exist for some chromosomes of about two dozen more species of plants and animals, including man

Sex Chromosomes During the early years of the current century, Wilson Sutton, McClung Montgomery Stevens, and others investi

traits, which showed Mendelian inheritunce in crosses with normal flies and with each other. However, in some of these crosses certain traits failed to show the expected independent assortment. Examples of such crosses are shown in Figures 38 and 39.

When a fly with vestigial wings but with a normal, gray, body color is crossed with a fly which has a black body but normal wings, the F₁ hybrids are wild type, that is have normal wings and a normal body color. Vestigial wings are, then, recessive to normal wings, and black is recessive to the normal gray. Let these hybrids be back crossed to a double recessive strain with vestigial wings and black bodies. According to Mendels second law, the hybrids should produce four kinds of gametes in equal numbers, and the progeny of the backcross should consist of black-vestigial, black, vestigial, and wild type flies in equal proportions (1 1 1 1).

This expectation is not realized. When F₁ hybrid males are back

This expectation is not realized When F_1 hybrid males are back crossed to black vestignal females the offspring are vestignal gray-bodied and black long winged files in equal numbers (Figure 3.8) When F_1 hybrid females are used, the four expected classes appear in the off spring, but not in equal numbers The parental combinations of genes, that is, the vestignal gray and the black long-winged files constitute about 83 per cent of the progeny. The products of recombination of genes, wild type and black vestignal files, make up only about 17 per cent of the progeny.

Morgan saw that this infringement of Mendels second law is expected if the genes for the black body color and for vestigal wings are borne on the same chromosome. The F₁ hybrids shown in Figures 3.8 and 3.9 carry one chromosome with the normal allele of vestigal and the gene for black. The genes in a chromosome are linked in inheritance. At present more than 500 genes are known in Drosophila melanogaster. They fall into four linkage groups corresponding to the 4 chromosomes in the haploid set of this species. In maize ten linkage groups are known that correspond to the ten chromosomes in the haploid set. In the mouse thirteen linkage groups are known, seven more linkage groups remain to be discovered since the haploid set consists of 20 chromosomes.

Linear Arrangement of Genes The linkage of genes located in a chromosome need not be absolute In the vestigial × black cross 17 per cent of recombination appeared in the offspring of F₁ hybrid femiles (Figure 39) The occurrence of chasmata (page 52), of the exchanges of sections between the paired paternal and maternal

half of the spermatozon curry the unpaired chromosome, called the X-chromosome, and the others are free of it In oogenesis, meiosis is

Figure 3.9 Linkage and crossing over of the genus for the blick body color and vestigial wings in Drosophila melanogaster The meaning of the symbols is like that in Figure 3.8 Crossing over occurs in the F_1 hybrid heterozygous female (From C Stern)

normal all the chromosomes form pairs, ind all the eggs liave the same chromosome complements, including the X chromosome

The Y chromosomes are concerned with sex determination. If an egg is fertilized by an X carrying spermatozoon, the resulting indi-

gated some remarkable differences observed between the chromosomes of females and males in many organisms. In some grasshoppers and

Figure 3.8 Linkage of the genes for the blick body color (b) and vestigal wing (v) in Drosophila melanogaster. The alleles of these genes giving the normal gray body color and normal wings are symbolized by + The linkage in this cross is complete because the F_1 hybrid heterozygote is a male (From C Stern)

bugs the males have one chromosome fewer than the females. The chromosome numbers in females are even, those in males are odd. A meiosis in spermatogenesis one of the chromosomes is left unpaired, and at the meiotic divisions passes into half of the cells. As a result

sists of unequal members (Figure 3.2) This is the case in many flies, including Drosophila, in many beetles, and in mammals, including man (Figure 3.11) The female has two \ chromosomes, and all eggs con-

Figure 3.11 Human chromosomes shown as mentic bivolutts in a spermatocyte. The bivalent continuing the sex determining \(\) and \(Y \) chromosomes is in dicuted by an arrow. (Courtesy of Dr. Jack Schultz.)

tain a single X. The male has one X- and one Y-chromosome. At meiosis the X and the Y pair and form an unequal bivilent. At the meiotic divisions the X and the Y separate and pass to different cells. Half of the spermatozoa carry the X-chromosome, and the other half carry the Y. When an egg is fertilized by an X-bearing spermato zoon the result is an XY zygote, which is a female. A spermatozoon with a Y chromosome gives an XY individual, which is a male.

For example in min hilf of the spermatozoa carry 24 chromosomes, including in \ chromosome, and half contain 24 chromosomes, includ

vidual will have two X chromosomes, and will be a female—But if a spermatozoon without an X fertilizes an egg the result is an odd number of chromosomes, a single X chromosome, and a male

Figure 3.10 Genetic maps of the chromosomes of Drosophila melanogaster showing the relative positions in the chromosomes of some of the genes known in this organism

In many organisms, the chromosome number is equal and even in both sexes, but the male has one of the chromosome pairs which con Since 1910 a great deal of information relevant to the theory has been accumulated. In poultry and certain other birds, males were found extologically to have two \(\lambda \) chromosomes and females an \(\lambda \) and

Figure 3.12 Inheritance of a gene carried in the sex chromosome. A white eye female of Drosophila melanogaster is outcrossed to a red eyed mile, and the Drogeny are inbred. The symbols w and + stand for the genes for the whind the red eye colors respectively the \(\chi\) chromosomes are shown rectanguland the \(\chi\) chromosomes hook shiped.

a Y chromosome. In accordance with this the sex linded inheritance in birds is of the same kind as in moths. Drosophili min, and man other organisms including some dioecious plants (with separate sexes were found cytologically to have an X and a Y-chromosome in male two Y chromosomes in femiles. In man the vision defect I movin a

ing a Y All the eggs have 24 chromosomes, one of which is the A chromosome Fertilization restores the diploid chromosome complement, 48, but in about half the cases this complement will contain two X chromosomes, and will give a girl. The other half of the fertilized eggs will carry an X- and a Y-chromosome, and will give a boy

Curiously enough, in birds, butterflies, moths, some fish, and probably in at least some of the amphibians and reptiles, the conditions are reversed. Namely, it is the male which has two X chromosomes and forms spermatozon all of which carry an λ . Females are XY, and half of the eggs carry in λ , whereas the other half carry the Y chromosome

Sex Linked Inheritance In 1910 Morgan found a mutant individual of Drosophila melanogaster which had white instead of the normal red eyes. This fly was the progenitor of a strain of white eyed flies. When white eyed females from this strain were crossed to nor mal red eyed males, the offspring consisted of red eyed daughters and white eyed sons, as shown in Figure 3.12. The F2 generation had about equal numbers of white eyed and red eyed females and males. The reciprocal cross, normal red eyed females to white eyed males, gave the result shown in Figure 3.13. The F2 flies were red eyed, whereas in F2 half of the males were white eyed, and the other half of the males and all the females were red eyed.

This sex linked inheritance follows if the dominant gene for red, and its recessive allele for white, eyes are borne in the X chromosomes. The Y-chromosome has no allele of this gene. A male derives his single X chromosome from his mother, a female receives one X from her mother and another X from her father. A father transmits his X-chromosome to all of his daughters but to none of his sons. The Y chromosome is transmitted from father to sons only in the male line. An interesting historical detail is that in 1910 Morgan's hypothesis.

An interesting instorical otentil is trait in 1910 Morgan's hypothesis did not appear to be free of difficulties. Proposing this hypothesis required a great deal of courage. Indeed it so happened that, before the studies of Drosophila ser linked inheritance was discovered in a species of moth. But moths, as indicated above, have a sex determing mechanism which is the reverse of that in Drosophila, XX males and XX females. Accordingly the sex linked inheritance in moths is also reversed. I female transmits her sex linked genes to all of her sons but to none of her daughters. In 1910 the sex chromosomes of Drosophila and of moths had not been studied cytologically and all the insects which had been examined had XY males (or XO males devoid of Y chromosomes). The inheritance of genes and the inheritance of chromosomes did not seem to agree very well.

increased if the parents are treated with λ rays or temperature shocks. In 1916 Bridges (1889–1938) published his classical work analyzing these exceptions

Bridges reasoned that a white eved drughter of a red cycl father must possess two \(\lambda\) chromosomes (since she is a female), both carring the gene white (since she has white eyes). She can have recived these \(\lambda\) chromosomes only from her mother. A red eyed son must have a single \(\lambda\) chromosome (since he is a male), derived from his father (since he has red eyes). How can such distribution of the sex chromosomes take place? Bridges is hypothesis was that the process of meiosis in the females goes wrong in about one among 2000 to 3000 cells (Figure 3.14). Instead of the two X-chromosomes of the female disjoining normally, both of them either remain in the egg or are eliminated in the polar body. This failure of the chromosome disjunction yields exceptional eggs with two \(\lambda\) chromosomes or with no \(\lambda\) chromosome.

An egg with two \(\lambda\) s may be fertilized by a Y bearing spermatozoon and will give rise to a white eyed female. This exceptional female must, if the hypothesis is correct, differ from normal females by having a Y chromosome in addition to her two \(\lambda\) chromosomes. Normally, of course the Y-chromosome is found only in males. Here, then, is an opportunity to test the validity of the hypothesis. Bridges proved cytologically that the exceptional females have the extra Y chromosome as predicted. An exceptional egg with no \(\lambda\)-chromosome, fertilized by an \(\lambda\)-bearing spermatozoon, will give a red eyed exceptional male. The exceptional males, however, must lack the Y-chromosome. This prediction also proved correct

The exceptional eggs with two \(\lambda\) s, fertilized by an X bearing sperm, will give individuals with three X chromosomes. Such individuals are poorly viable but they occasionally survive as so called superfemales. They were identified by Bridges in another experiment. The eggs devoid of \(\lambda\) chromosome, fertilized by a Y-bearing sperm, are inviable, such dying eggs were identified in the experiments of \(\mathbb{L}\) i and of Poulson. Bridges analyzed also the progeny of the exceptional, \(\lambda\) XY, females crossed to normal males he was able to make certain predictions regarding the composition of these progenies which were found to be correct.

Changes in Chromosome Numbers — Occasional failures of the normally very precise processes of mitosis and meiosis may have important consequences — Non disjunction gives—rise to cells with one of the chromosomes represented more, or fewer, times than the other chromo

color bluddness, the blood disease known as hemophilia, and certain other normal and pathological traits exhibit the sex linked inheritance and are, accordingly, localized in the X chromosome

Figure 3.13. Inheritance of a gene carried in the sex chromosome. A red eved female of Drosophila melanogaster is outcrossed to a white eyed male and the F_1 progeny are inbred. The symbols are like those in Figure 3.12.

Non disjunction of Sex Chromosomes as Proof of the Chromosomal Theory of Heredity In Drosophila melanogaster the crosses of white-eyed females and red eyed males give the outcome shown in Figure 3 12 in most, but not in all cases. About one white eyed female fly appears in the Fi generation among 2000 to 3000 red eyed ones about one red eyed male may be found among similar numbers of white eved ones. The frequency of such exceptional individuals is apprecably

the cell division may fail, despite the chromosomes' having normally split into daughter halves. Such failures of the cell division occasionally occur in apparently normal individuals. Within the list two decades chromosome doubling without cell division has been induced artificially with the aid of certain drugs, particularly the alkaloid

Figure 3.15 A scheme showing different kinds of chromosomal aberrations A
Two pairs of onginal or normal chromosomes B Deficience C Duplication
D and F Heterozygous and homozygous translocations respectively
Heterozygous and homozygous inversions respectively (From Sinnott Dunn and
Dobzhansky courtesy of the McGraw-Hill Book Company)

colchicine As a result of the chromosome doubling sex cells arise which carry a diploid instead of the normal reduced or haploid, chromosome set Whole individuals are thus obtained with three (triploid) four (tetraploid), or higher polyploid chromosome complements Polyploidy is of considerable importance in the evolution of the plant kingdom (Chapter 9)

Changes in Gene Dosage Most genes are represented once and only once in the haploid chromosome complement. However, from time to time individuals appear which have a block of genes lost (deficiency) or present in excess (duplication) (Figure 3.15) Just as

somes of a set Individuals with extra chromosomes, or with some chromosomes missing, are termed ancunioids

In organisms with small numbers of chromosomes ancuploids are

Figure 3.14 The inheritance of the white eye color in *Drosophila melanogaster* caused by accidental failures of the X-chromosomes of a white eyed mother to disjoin at meiosis. Compare with Figures 3.12 and 3.13

usually inviable but in forms with many small chromosomes the neuploids survive more easily. In certain grasses, such as the blue grass. Poa which produce seeds without fertilization aneuploids are common in natural populations.

Even more important are polyploids which carry more than two entire chromosome sets in their cells. Both at mitosis and at meiosis

one and only one centromere Chromosome fragments devoid of centromere become lost Similarly, new chromosomes formed by the union of fragments are lost if they include two centromeres. Cyto logical examination of dividing cells exposed to strong doses of X rays usually shows chromosome fragments which are eliminated from the nuclei on account of failure to include a centromere Such cells come to contain deficiencies for blocks of genes and eventually die off. This effect of \range rays on chromosome breakage is responsible for a major part of the radiation damage to hving tissues as well as for the re gression of \ray-treated cancerous growths

Genetic and Cytological Study of Chromosomal Aberrations Com parative genetic and cytological investigation of deficiencies, duplications, translocations, and inversions has vielded final proof of the validity of the theory of linear arrangement of the genes. Every one of these chromosomal aberrations can be diagnosed in genetically wellknown organisms by making crosses with strains containing suitable genetic markers And in organisms favorable for cytological investigations the aberrant structure of the chromosomes can be seen under the microscope

Consider for example, the study of the Notch deficiency in the fly Drosophila melanogaster made by Mohr (1923) Females heterozygous for Notch have a notched wing margin and there are certain disturbances in the arrangement of the small bristles on the thorax of the fly Males which receive the \(\lambda\)-chromosome containing Notch from their mothers are inviable. Notch is, accordingly, a sex-linked condition which has a dominant effect on the wings and bristles when heterozygous and a recessive lethal effect in the male

Mohr crossed Notch females to males with white eyes As we know. white eves in Drosophila are due to a recessive sex-linked gene (Fig. ure 3 12) As expected, half of the females in the Γ_1 generation of this cross showed Notch wings the other half had normal wings. But unexpectedly the Γ_1 Notch females also had white eyes whereas the non-Notch females had normal red eyes In the presence of Notch the white eye color behaves as though it were dominant to the normal red Another normally recessive trait, namely, facet eye, also acted as a dominant in Notch flies but other recessive sex-linked traits behaved quite normally (see the man of the A chromosome in Fig. ure 310) Mohr concluded that Notch is not due to a change in a single gene but represents a deficiency in the chromosome comprising a block of genes which includes white and facet

Under the microscope a deficiency can be detected most easily in

with aneuploids, deficiencies and duplications for large sections of chromosomes are often inviable. It is interesting that the organism withstands the duplication of a block of genes generally more easily than a deficiency of the same genes. In particular, the loss of a gene or a group of genes from both chromosome sets in a diploid organism (a homozygous deficiency) is usually lethal. This fact strongly suggests that almost every gene which the organism has must be present at least once to permit life and development.

Deficiencies, and especially duplications, have doubtless played important roles in evolution. The evolutionary development of the living world has, on the whole, led from simple to more complex forms of life. It is reasonable to suppose that this progression from the simple to the complex was accompanied by an increase in the number of genes which a species carries. Duplication and polyploidy are the only known methods whereby such increase could occur, since the appearance of self reproducing genes from non-self reproducing cell structures seems improbable. When a duplication occurs, the genes in the repeated sections are, to start with, merely copies of each other. In the process of evolution, however, they may suffer divergent chantes (by mutation) and thus become different genes.

Changes in Gene Arrangement The linear arrangement of genes in the chromosomes is usually constant in all individuals of a species However, changes in the chromosome structure occasionally occur, their frequency is materially increased in the offspring of \$\lambda\$-ray treated individuals. The starting point of these changes is breakage of the chromosomes. Suppose, for example, that two different normal chromosomes which carry the genes \$ABCD\$ and \$EFGH\$, respectively breakinto fragments \$AB\$, \$CD\$, \$EF\$, and \$GH\$. The fragments are usually lost unless the broken off ends re-establish connections with other broken off ends. New connections may however, arise thus \$ABGH\$ and \$EFCD\$. Such exchange of segments between different chromosomes is known as translocation. (Figure 3.15)

A single chromosome may be broken at two or more points. Thus the chromosome ABCD may give fragments A, BC, and D. The middle fragment may rotate through 180 degrees, and a new chromosome may have a section inverted compared with the original arrangement ACBD. This is known as inversion of a chromosome section (Figure 3.15).

There are some simple rules which govern the formation of truns locations and inversions. In organisms in which the chromosomes have localized centromeres, each rearranged chromosome must have

or homozygous for deficiencies or duplications are usually different from normal in external appearance and sometimes inviable. But transforations and inversions involve changes only in the arrangement of genes in the chromosomes. Transforation and inversion beteroxygotes and homozygotes should have the same genes as individuals free of these chromosomal abstrations, even though these genes are differently arranged in the chromosomes.

It might seem that the appearance of the organism and its physiological functions should not be changed by the occurrence of translocations or inversions. This is indeed often the case. But many exceptions are known, particularly in Drosophila. In some instances normally dominant genes lose their dominance when placed in the chromosomes with changed gene order. In other instances the rearrangement of the genes results in some of these genes behaving as though they had suddenly become very unstable and had undergone frequent changes, or mutations during the development of the organism. This last type of behavior gives rise to spotted or 'mosaic distribution of colors and other traits not uncommon among garden varieties of some ornamental plants. Finally some translocations and inversions are poorly viable or lethal when homory gous.

The above position effects are forcing geneticists to revise their ide is about the relationships between the genes and chromosomes. Until the discovery of the position effects there was nothing to contradict the assumption that a chromosome is an aggregate of completely independent units genes arranged in a fortuitous linear order. This was certainly the simplest hypothesis that we could make and it served well for a time but the real situation is not quite so simple. The genes which lie in the chromosome next to each other are neighbors because their proximity makes them act together well. A chromosome is not just a container for genes but a harmonious system of interacting genes. The arrangement of genes in a chromosome his developed gradually during the evolution of the organism to which the chromosome belongs, the structure of a chromosome like the structure of any organ is a product of adaptive evolution.

Evolution of Heredity Among the now existing organisms possibly only the simplest viruses may be simple self-reproducing molecules, or naked genes. All other organisms have many genes. It is tempting to speculate that his appeared at first in the form of virus like molecules which caused formation of their copies from non-living substances in the environment. These primordial viruses then became diversified in response to the variety of environments which could

the giant chromosomes of the salivary glands. Pairing of the maternal and the piternal homologues is very intimate, disc by disc, in these chromosomes. The discs which correspond to the genes missing in the deficiency chromosome have, then, nothing to pair with, and they form a buckle of a kind shown in Figure 3.16. If the genes which are missing are known from genetic study, like that carried out by Mohr it is reasonable to conclude that these genes are located in a normal chromosome which forms the "buckle". Thus the location

Figure 3.16. A section of a chromosome in the larval salivary glund cell of Drosophila pseudoobscura showing a deficiency buckle. The guart chromosomes in the salivary gland cells consist of the corresponding paternal and material chromosomes tightly paired. The individual represented in this figure lacked a block of genes. The corresponding section in the normal chromosome has formed the funchle.

of the genes becomes known not only on the genetic "map" but also in the actual chromosomes visible in the microscope

In genetically well known organisms, such as Drosophila flies or corn plants knowledge of the behavior of a given chromosomal aber ration in crossing experiments permits prediction of the chromosomal configurations to be found by cytological study. Conversely, the appearance of the chromosomes under the microscope permits prediction of the outcome of certain crosses. Obviously this correlation of genetical and cytological findings attests the correctness of the chromosomal theories of heredity which make the predictions possible

Position Effects There is an important difference between the de ficiencies and duplications on one hand and translocations and inversions on the other. The former two types of chromosomal aberrations involve subtraction or addition of some genes or gene blocks, that is changes in gene dosage or the gene balance. Individuals heterozygous Wilson E B 1928 The Cell in Development and Herodity 3rd Edition Macmillan New York

Though antiquited this is a classic worth reading to unvoody interested in genetics or extogenetics

Morgan T II 1919 The Physical Basis of Heredity Lappincott Philadelphia This is another classic which placed a tremendously important role in the correlation of centric and expolorical findings

sustain their self reproduction (Chapter 5) The next step in the progressive evolution involved association of two or several unlike simple viruses into compounds, development of a mutural usefulness and interdependence, and final integration of the associated viruses, or genes, into organismic units, which might have been primitive cells Cells again formed colonies. At first the colonies consisted of equivalent and later of differentiated members. The latter became multi-

Association of interdependent self reproducing bodies, or genes, raised biological problems which the "naked genes" did not have to face. Consider what happens when a complex of interdependent units, such as a cell, gives rise to a progeny. The progeny must be endowed with a fixed number of copies of each of the constituent units. The reproduction of compound units must be accurate. In the process of evolution this problem of precision was solved by assembling genes into aggregates, known as chromosomes, and elaboration of mechanisms of cell division, or mitosis.

The sexual process brought with it the evolutionary advantage of continuous production of ever new gene combinations (Chapter 11) Sexual reproduction, however, requires mechanisms that would alter nately place together gene sets derived from different parents and recombine and sort out new gene complements. This requirement became satisfied with the appearance and perfection of the mechanisms of fertilization and of reduction division or meiosis. Aggregation and interdependence of genes in complex organisms thus led to the evolution of the genes being supplemented by the evolution of chromosomes.

Suggestions for Further Reading

Sinnott E W Dunn L C and Dobzhansky, Th 1950 Principles of Genetics

4th Edition McGraw Hill New York

Chapters VII-XI of this textbook of genetics discuss the basic facts of cyto

genetics

White, M J D 1954 Animal Cytology and Evolution 2nd Edition Cambridge University Press London

This is the best available outline of cytogenetics of animals and of its bearing on evolutionary problems

Riley, H P 1948 Genetics and Cytogenetics John Wiley New York

A textbook of genetics with an emphasis on plant cytogenetics

Wilson E B 1928 The Cell in Development and Heredity 3rd Edition Macmillan New York

Though antiquated this is a classic worth reading to anybody interested in genetics or extogenetics

Morgan T H 1919 The Physical Basis of Heredity Lappincott Philadelphra. This is another classic which placed a tremendously important role in the correlation of genetic and extological findings.

sustain their self reproduction (Chapter 5) The next step in the progressive evolution involved association of two or several unlike simple viruses into compounds, development of a mutual usefulness and interdependence, and final integration of the associated viruses, or genes, into organismic units, which might have been primitive cells Cells again formed colonies At first the colonies consisted of equiva lent and later of differentiated members. The latter became multicellular organisms

Association of interdependent self-reproducing bodies, or genes, raised biological problems which the naked genes did not have to face Consider what happens when a complex of interdependent units, such as a cell, gives rise to a progeny. The progeny must be endowed with a fixed number of copies of each of the constituent units The reproduction of compound units must be accurate. In the process of evolution this problem of precision was solved by assembling genes into aggregates, known as chromosomes, and elaboration of mechanisms of cell division, or mitosis

The sexual process brought with it the evolutionary advantage of continuous production of ever new gene combinations (Chapter 11) Sexual reproduction however, requires mechanisms that would alter nately place together gene sets derived from different parents and recombine and sort out new gene complements This requirement became satisfied with the appearance and perfection of the mechanisms of fertilization and of reduction division or meiosis Aggregation and interdependence of genes in complex organisms thus led to the evolution of the genes being supplemented by the evolution of chromosomes

Suggestions for Further Reading

Sinnott, E W Dunn L C and Dobzhansky Th 1950 Principles of Genetics 4th Edition McGraw Hill New York

Chapters VII-XI of this textbook of genetics discuss the basic facts of cyto genetics

White M I D 1954 Animal Cytology and Evolution 2nd Edition Cam bridge University Press London

This is the best available outline of cytogenetics of animals and of its bearing on evolutionary problems

Riley H P 1948 Genetics and Cytogenetics John Wiley New York A textbook of genetics with an emphasis on plant cytogenetics

Heredity in Different Environments. All organisms, from simplest viruses to man, build their bodies, and those of their offspring from materials derived from the environment. Every organism can reproduce itself from a certain range of food materials, and under a variety of environmental conditions. An organism that could exist in only a single environment would not remain alive for long because the environment does not remain the same from one instant to the next. Every organism, therefore is adapted to live in a certain variety of environments. How can this adaptedness be retained in changing environments?

Let A stand for a self reproducing entity—a gene, a virus, or the sum total of the genes which an organism entries (the genotype scobolow). Suppose that A builds its repliers in different environments or from different materials (foods) B_1 , B_2 , B_3 , etc. The process of self-reproduction may, then be visualized as follows.

$$A + B_1 = 21 + C_1$$

 $A + B_2 = 21 + C_2$
 $1 + B_2 = 2A + C_2$

 C_1 , C_2 and C_3 may stand for by products of the gene reproduction or for the non self reproducing cell parts, or for the bodily forms which are the outcomes of the development of the organism in different en aronnents. The essential point of this scheme is that, so long as the environment is capable of maintaining life of a given kind of gene or of gene system the genes reproduce their copies (A becomes 2A), or else they do not reproduce at all. In contrast to this the organisms (C) produced in different environments vary

Genotype and Phenotype The fundamental nature of the distinction between A and C in the above scheme was perceived in 1909 by Johannsen (1857-1927). He called the heredity received by an or gains its genotype, and the appearance of this organism its phenotype. The phenotype changes continuously so long as the organism remains alive. A screek of photographis, taken at intervals from infancy to old age, illustrates the changes in the phenotype of a person

On the other hand the genotype of a person is relatively constant It is presumably much the same during manhood as it was in youth and in childhood and as it will be during senescence. The nature of this constancy must be clearly understood. Although the chemistry of the gene reproduction is unknown, it is quite certain that synthesis of nucleoproteins must entail a complex series of chemical reactions.

4

Heredity, Environment, and Mutation

Everyday language uses the word "heredity both for biological in heritance and for legal inheritance of property. The statement that a person has inherited from his parents a dark, or a light, skin color does not mean the same thing as the statement that this person has inherited from his relatives a house or a farm. Inherited houses and farms are buildings or pieces of land which change their owners, the skin color is not transferred in this manner. The narrow bridge which connects parents and offspring is formed by the sex cells, and human sex cells have no color, and for that matter no skin. Inheritance of skin color refers to a developmental pattern which leads to the formation of a certain amount of pigment in the skin.

Just how much skin pigment is formed depends, however, not only on the presence of certain genes but also on the environment in which the carriers of these genes live Exposure of the skin to sunlight, or to ultriviolet rays of certain wavelengths darkens the skin color. The trait (skin color) that develops is thus determined by interaction of the heredity and the environment.

The environment concerned, however, is not only that prevailing at a given moment, but also the whole sequence of environments which the organism met during its lifetime. The color of my skin today is determined not only by the sunshine or its absence now but also by the amount of time spent outdoors and indoors during the preceding months. The personality of every human being is determined by his heredity upbringing education relationships to other persons, disease mutrition etc. Every one of us is a product of his life experience, his biography. Nobody, can escripe his prist. Living organisms are time-linding machines, they are products of their histories.

Heredity in Different Environments. All organisms, from simplest viruses to man, build their bodies, and those of their offspring from materials derived from the environment. Every organism can reproduce itself from a certuin range of food materials, and under a viriety of environmental conditions. An organism that could exist in only a single environment would not remain alive for long because the environment does not remain the same from one instant to the next. Every organism, therefore is adapted to live in a certain variety of environments. How can this adaptedness be retuined in changing environments?

Let A stand for a self reproducing entity—a gene, a virus, or the sum total of the genes which an organism carries (the genotype see below). Suppose that A builds its replicas in different cavironments or from different materials (foods) B₁, B₂, B₃ etc. The process of self-reproduction may then be visualized as follows.

$$A + B_1 = 2 1 + C_1$$

 $A + B_2 = 2A + C_2$
 $A + B_3 = 2A + C_3$

C₁, C₂, and C₃ may stand for by-products of the gene reproduction or for the non self reproducing cell parts, or for the bodils forms which are the outcomes of the development of the organism in different ensuronments. The essential point of this scheme is that, so long as the environment is capable of maintaining life of a given kind of gene or of gene system the genes reproduce their copies (A becomes 2A), or else they do not reproduce at all. In contrast to this, the organisms (C) produced in different environments vary

Genotype and Phenotype The fundamental nature of the distinction between A and C in the above scheme was perceived in 1909 by Johannsen (1857–1927). He called the hiredity received by an organism its genotype, and the appearance of this organism its phenotype. The phenotype changes continuously so long as the organism remains like. A series of photographs, taken at intervals from infancy to old age illustrates the changes in the phenotype of a person.

On the other hand the genotype of a person is relatively constant It is presumably much the same during manhood as it was in youth and in childhood and as it will be during senescence. The nature of this constancy must be clearly understood. Although the chemistry of the gene reproduction is unknown, it is quite certain that synthesis of nucleoproteins must entail a complex series of chemical reactions.

Far from being mert and insulated from the environment, the genes are perhaps the most active cell constituents. The constancy of the genes is, then, singularly dynamic—they interact with the environment to transform a part of it into their own copies.

Germplasm and Soma Even before Johannsen, Weismann (1834-1914) drew the distinction between the germplasm and the soma The germplasm has its seat in the sex cells and the cells of the reproductive organs which give rise to the sex cells. The soma is the rest of the body. The germplasm is potentially immortal, indeed, every sex cells able, under favorable conditions, to give rise to a new individual with another crop of sex cells. The soma is mortal, it is the body which houses the sex cells, and which is cast off in every generation owing to death.

Weismann's concepts of germplasm and soma were an important landmark in the process of understanding heredity and evolution. But they should not be confused with the modern genotype phenotype concepts. Not all the genes are carried in the reproductive cells, they are present as well in every body cell, in other words also in Weismann's soma.

Norm of Reaction The question whether the genotype or the environment is more important in the formation of the phenotype or the personality is evidently meaningless (although frequently and acrimoniously discussed) The phenotype is the outcome of a process of organic development. There is no organic development without an organism, and no organism without a genotype. Equally, every or ganism exists in an environment and at the expense of an environment. As pointed out above, any organism is the product of its genotype and of its life experience or biography.

The genotype determines the course which the development may take in any environment. In other words, the genotype of an individual determines the norm of reaction of the individual in all possible environments (Figure 41). A newborn infant has a great range of possible futures, which of these possibilities are realized and become actualities depends upon the succession of the environments gradurilly unfolding during the lifetime. The ranges of possibilities are, however, different for carriers of different genotypes. For example, the genotype of an albino causes little or no pigment to form regardless of the amount of skin exposure to sunlight. The genotypes of most "whites" make the skin colors vary within wide limits depending upon exposure to sunlight. And the genotypes of Negroes make the skin

pigment develop rapidly within a few days after birth, and the skin to become dark independently of sun exposure

The norm of reaction of a genotype is at best only incompletely known. Complete knowledge of a norm of reaction would require placing the carriers of a given genotype in all possible environments, and observing the phenotypes that develop. This is a practical im

Figure 4.1 A remarkable plasticity of the phenotype in the water crowfoot (Ranunculus aquatilis). The norm of reaction of this plant is such that the leaves submerged in water develop to look very different from the leaves which are above the water level. (After Weaver and Clements from Robbins and Weier.)

possibility The existing variety of environments is immense, and new environments are constantly produced. Invention of a new drug, a new diet, a new type of housing, a new educational system, a new political regime introduces new environments. It would be very useful to know how various human genotypes would respond to all these ten ironments.

Adaptive and Non adaptive Modifications Our ancestors of only a century ago lived under conditions radically different from our own The environment changes also within the lifetime of an individual, it is never the same for two individuals or for one individual on two successive days. This is true not only for man, but also for any species. In order to survive an organism must respond to changing environ-

ments in ways that enable it to secure its livelihood. The survival depends upon the norm of reaction

In Chapter 1 (proges 13-14) it has been pointed out that many, although not all, modifications of the phenotype produced by changes in the environment are adaptive. The organism reacts to many environmental changes by homeostatic modifications of the developmental patterns, which favor the perpetuation of life in the changed

However, different genotypes often differ in their ability to produce adaptive responses to environmental changes. The albinos in man do not develop the protective sun tan, and may suffer dangerous sun burns. The albino genotype is not well adapted to environments with intense sunshine. The genotypes of most whites develop the protective tan if their curners are exposed to sunshine but the pigment is lost after a prolonged lick of sun exposure. This list reaction is also believed by some authorities to be adaptive, since unpigmented skin may facilitate the formation of vitamin D (the "sunshine vita nini") in climates and during seasons when sunshine is scarce. The genotypes of whites are, then, adaptive in seasonally changeable climates, such as those of northern and central Europe. It is no accident that most human races which inhabit the tropical and subtropical regions have dark skins. These are the regions of abundant and intense sunshine (see Chanter 13)

Superior and Inferior Norms of Reaction. When carriers of a genotype are placed in an environment to which their genotype is not adapted they react by loss of health or by death. Hereditary defects and diseases are genotypic variants which react to environments usual for the species or race by production of ill adopted phenotypes. There is, consequently no hard and fast distinction between "hereditary" and "non hereditary" diseases. Most or all human beings may come down with in asless if exposed as children to an environment contrining the virus of measles. On the other hand, only some people develop diabetes. Accordingly, we call measles a non hereditary and diabetes a hereditary disease. But there may be some persons genotypically immune to measles. And a person with hereditary diseases may enjoy good health if he receives injections of proper amounts of insulin at regular intervals. Either genotype may produce disease in some and health in other environments.

We should beware of assuming that some genotypes are always normal" and others "abnormal," except in the sense that some are met with more and others less often in nature. The more frequent geno-

types by and large, are those which are better fit to survive under usual, frequently met with environmental conditions. But it may be misleading to say that the carriers of a certain genotype must reach certain "intrinsic height or weight, or skin color, or intelligence level. Any height or weight or intelligence a person may have is intrinsic, in the sense that the phenotype observed is the necessary outcome of the development brought about by a certain genotype in a certain succession of an ironments. We can never be sure that any of these truts have reached the maximal development possible with a given genotype. The performance of a genotype cannot be tested in all possible environments, because the latter are infinitely variable.

Non inheritance of Acquired Characters It is a matter of every day experience that children resemble their parents, the influence on organisms of nutrition climate and living conditions is also evident Putting these facts together popular imagination concluded that en vironmental modifications of the hodies of parents are transmitted by heredity to the offspring. The belief that acquired characters are inherited was originally not a scientific theory at was, and still is, a part of the folklore

Buffon (1707-1788) was one of the precursors of evolutionism, who believed that the environment may change the nature of organisms (denature them, as he preferred to put it) He took it for granted that the changes induced by the chyronment in what we would now call the phenotype would be inherited Lamarck (1744-1829) the first thorough going evolutionist emphasized particularly the fact that, in animals, extensive use or exercise of organs strengthens them whereas continued disuse workens them For example, muscles be come larger and stronger as a result of exercise and are reduced by prolonged disuse It seemed evident to Lamirck that such acquired changes would be transmitted to the offspring Darwin (1809-1882) considered natural selection (Chapter 6) the fountumbered of evolution Nevertheless he accepted the inheritance of acquired modifications as an important if subsidiary force a view that was shared by most of Darwin's immediate followers. For example, the Negro race was considered "a child of the African sun The tanning of the skin by exposure to intense sunlight over many generations was beheved to produce a progressive darkening which becomes fixed in the heredity of the inhabitants of Africa Similarly, the absence of eyes in many subterranean animals was ascribed to inheritance of the effects of long continued disuse of the eyes owing to the life in darkness

The assumption that acquired characters are inherited was finally challenged by Weismann (whose principal work was published in 1892) Weismann's famous experiment consisted in cutting off the tails of newborn mice in a series of successive generations. The tails were no shorter in the progeny of experimental mice. This experi ment seems rather naive at present, but it is only fair to say that heritable degeneration of an organ as a result of its amoutation in the parents is even now an accepted belief among some of the fol lowers of Lamarck

Many experiments were carried out in the closing decade of the nineteenth, and the first two decades of the current century, to test the hypothesis of inheritance of acquired traits. The results of these experiments were overwhelmingly negative. Most biologists came to the conclusion that the hypothesis must be rejected

One of the last alleged instances of such inheritance created some thing of a stir, because it was espoused by the eminent physiologist Payloy (1849-1936) in Russia and McDougall in America Dougall's experiments rats were dropped into a water tank with two exits, one lighted and the other dark. The rats had to learn to use the dark exit, the lighted one being provided with a mechanism which gave an electric shock to an animal attempting to use it Different rats require different numbers of "lessons to be taught. It was con tended that the offspring of trained rats were taught more easily than those of the untrained ones apparently an inheritance of acquired training Repetition of these experiments disclosed a more complex situation than was originally suspected Among rats there exist strains which differ genotypically in their response to training. The original experiments involved an unconscious selection of rats with norms of reaction favorable to truining as parents of the next generations

The Hypothesis of Pangenesis The view that the earth is round was not accepted without struggle, because everybody could so easily see that the earth is flat Scientific theories gain acceptance with diffi culty if they contradict popular behefs The negative outcome of experiments on the inheritance of acquired traits fuled to convince some people Is it possible that the outcome of such experiments would be different if the action of the environment inducing the traits were continued ten times or a thousand times longer than it actually was? Perhaps the most satisfactory answer to such doubts is that they mechanism of heredity revealed by modern genetics makes inheritance of acquired characters highly improbable

How, indeed can the skin color produced by sun exposure influence

the genes in the sex cells which will determine the skin color of the next generation? An imaginative solution of this problem was sug gested by Maupertuis (1698–1759), made popular by one of Darwins bitterest critics, Samuel Butler, in 1879, and worked out in detail by the vitalist Semon (1904). They compared biological heredity to memory. The sex cells as it were, remember the structure of the body which produced them and choose materials from the enformment which can build a similar body. The acquired characters are simply remembered. The trouble is that this ingenious theory fails to explain anything. Ascribing memory to sex cells, like ascribing a vital force to the living matter increty takes for grunted the natural phenomena which have to be explained.

Darwin, who as we know, also believed in the inheritance of acquired characters, proposed in 1868 his provisional hypothesis of pringenesis. He assumed that all organs of the body, perhaps all cells, produce diminutive vestiges of themselves called genimiles or pangenes. The genimiles are shed into the blood stream, and are transported by blood to the sex glands, where the genimiles of different organs are assembled to form sex cells. Body cells modified by the environment might produce modified genimiles which will reproduce the modification in the next generation (see Figure 4.2). The hypothesis of pangenesis had the virtue of being easy to test Galton in 1875, and other investigators later, made experiments of blood transfusion or of transplantation of ovaries, between white and black varieties of rabbits and of poultry. The hypothesis would lead us to expect the birth of spotted, black and white, offspring from experimental animals. This expectation was not fulfilled.

The hypotheses of pangenesis, and of heredity as organic memory, are mivalid. The reason why they are discussed at all is that as pointed out by Zirkle (1946), variants of these hypotheses are, explicitly or implicitly, a necessary part of every belief in the inheritance of acquired traits. The Russian agriculturist Lysenko has gained much notoriety owing to the suppression of genetics in the USSR. Lysenko is a believer in the inheritance of acquired traits, and apparently unaware of Darwins authorship, he propounds an hypothesis of pan genesis as his own invention. Similarly, he ascribes a power of memory to the sex cells.

In reality, the genes do not arise from generalles cast off by the body cell they reproduce by synthesizing their own copies — The selfreproduction of the genes sets the norm of reaction of the organism in different environments

• Germ tell O Somatic cell Germrule

9. The relationship between the germ cells and the body cells

Figure 4.2. The relationship between the germ cells and the body cells according to the gene theory and the theory of pangenesis. According to the former theory the germ cells (sex cells) arise by division of other cells of the germ line according to the latter theory the germ cells are compounded of particles (genimules) produced by body cells.

Gene Destruction and Gene Change Can genes be changed by the environment? Assuredly they can The problem however is what are the consequences of gene change. Proteins including nu cleoproteins are easily changed, denatured, by high temperature, salts of heavy metals hydrogen ion concentration, etc. These factors un donbtedly change the genes also

To give a crude example when an egg is boiled for breakfast the genes contained in its chromosomes are altered so radically that they never divide again. This is, indeed, the most frequent consequence of induced gene change fulure of the changed structure to perpetute itself by self-reproduction. But a gene that does not reproduce itself is no longer a gene. Concertably methods will some day be discovered which will permit destruction of specific genes without dis

turbing the rest. Thus we could produce a deficiency for the gene white in Drosophila flics (see pages 67-68), or remove the genes responsible for the skin pigment in man, but at present such methods are unlarge.

It is only a special and rare type of gene change that interests biologists. A gene may be altered without losing the ability to reproduce itself, and the altered structure is copied when the reproduction occurs. Such changes are gene mutations. Mutations give rise to variants, alleles of the gene. Individuals which carry a mutant gene possess a new norm of reaction to the environment. Usually they can be recognized by their external appearance.

History of the Mutation Concept Plant and animal breeders have observed from time to time the appearance of sudden hereditary

Figure 4.3 A short legged mutation in domestic sheep (left) and an individual with normal legs (right) (From Weimer)

changes or sports. A lumb with short, dachshund like legs was born on a New England farm late in the eighteenth century (Figure 4.3). This single lamb became the progenitor of the Ancon breed of sheep which was for a time popular with farmers, but was eventually lost. Another lamb with similar legs was born from normal parents, in Norway some thirty five years ago. In 1853 a girl who had a black skin irregularly splotched with white was born to Negro parents with uniformly dark skin. About half of the children of this girl by a black man also had pied skins. The girl born in 1853 was heterozygous for a dominant mutant gene for white spotting.

Darwin considered 'sports' too rare to be of much importance in evolution He ascribed more importance to the small, "fluctuating," inheritable differences which occur between individuals of any species Men, even members of the same family, differ in height, shades of skin, hair, and eye colors, shape of the head and face, and many other traits

De Vries (1848-1935) took the opposite view, in his Mutation Theory (1901) he muntuned that evolution proceeds by large, dis crete, and sudden changes, which he called mutations He supported his thesis with observations on the evening primrose, Oenothera la marchiana, which in his garden produced several mutations Vries regarded mutations as new species of plants, and their real nature was discovered only much later Some of them represented chromosomal aberrations triploids, tetraploids, or aneuploids. Others were homozygotes for recessive genes for which the parents were heterozygous Only a minority were due to mutational changes in the genes which took place in the experimental plantings

Is Evolution Continuous or Discontinuous? After the publication of de Vries's work there was much discussion between Darwinists and mutationists Darwinists contended that evolution resulted from gradual shifts in the characteristics of a species over a long series of generations Mutationists thought that evolution consists of rela tively rare but drastic mutations. At present, we know that this issue was a spurious one

Beginning in 1910, Morgan and his collaborators described many mutations in species of vinegar flies. Drosophila Some of the muta tions produce striking changes flies with vestigial wings or with no wings at all with eyes of bizarre shapes or without eyes, with yellow or with black bodies instead of the normal gray, etc. Some mutations are so drastic that they kill the organism, such mutations are called lethal But many, in fact most mutants produce changes so slight that an expert eye is necessary to notice them at all Mutations range all the way from minute to drastic changes Evolution is a gradual and continuous process, but it results from the summation of many dis continuous changes mutations a great majority of which are small Mutationism is certainly not opposed but supplementary to Dar winism

Mutations in Different Organisms Mutations have been observed in diverse organisms from man to the simplest viruses. When the mutants can be crossed to the ancestral form, the mutant truts are usually inherited according to Mendel's laws Most mutations appear to be changes in single genes. The mutant alleles are sometimes dominant ones, but more often recessive to the ancestral condition. Some mutations, however, produce changes in the chromosome structure, chromosomal aberrations (Chapter 3)

Contrary to de Vriess opinion, mutations do not produce new species. The mutants of Drosophila are still flies which belong to the same species of Drosophila to which their ancestors belonged (see, however, the species formation through polyploidy Chapter 9)

Murational changes affect all organs of the body and all kinds of truts. Drosophila mutants differ in the color of the body, of the eves, and of some internal organs in size and shape of the whole body, of the eves, wings bristles legs (eggs, havie, and puppe (Figures 44 and 45). The viability, length of life fertility, and behavior of the flies may be altered. Physiological and biochemical truts have be affected.

Because of the work of Beadle and others numerous biochemical mutants have recently been found in the fungus Neurospora, in versts, and in some breteria. These mutants show a great variety of metabolic patterns. They require the presence in their food of vatamins, amino acids, or other substances, which are not needed for normal growth of the ancestral form or of other mutants. The cells of the mutants accumulate chemical substances which in the ancestral forms are intermediate products of certain metabolic reaction chains. Such biochemical mutants are involuble for the study of cell plusiology. A new branch of science, biochemical genetics, is evolving on the borderline between genetics and chemical physiology. Apart from its intrinsic interest this science promises also valuable technological applications.

Lethal mutants cause the death of their carriers. Death may occur, in different lethals, at any stage of the development, from clervage of the fertilized egg to the adult organism. Poulson, Hadorn, and others have studied the causes of death in some lethals in Drosophila, and Dunn, Landauer and others in mice poultry, and other animals. Some of the lethal syndromes resemble certain human hereditary discress. Gene changes by mutation may drastically modify the basic developmental processes of the organism.

Homeotic Mutants Fundamental, as well as superficial, traits are under the control of genes and are subject to mutation. Of course the distinction between the fundamental and the superficial is, to a large extent, arbitrary. This is particularly clear in homeotic mutants, which transform some organs into others. In at least three species of Drosophila mutants are known which turn the halancers.

of the fly into a second pur of wings (Figure 45). The order of flee Diptera to which Drosophila belongs, differs from other insect order among other things, by the presence of one pur of wings and one pur of balancers. Yet the "tetraptera" mutant can be crossed to a normal fly, the mutant condition is recessive to normal and seems to be produced by a change in a single gene.

Other homeotic mutants in Drosophila have the antenne of the liv

Figure 4.4 The mulants but eyes (left) and rudimentary wings (nght)

Drosophila melanogaster (Ongin ils drawn by E Walkice)

turned into legs, or e)cs replaced by antennae, or a third pair of win formed on the prothorm (where no other himm insect his wings be some fossil insect had), or the mouth parts of the fit radically change in structure. These and similar mutants are fascinating interals from morphological studies. Whether they are of much significance in each lution is a different matter. Most evolutionists are of the opinion that the development of the living world rarely if ever mothed major changes produced by single mutational steps. Among recent authors. Goldschimdt (1940), however, has defended the opposite view to him the homeotic mutants illustrate the possible mode of origin of perhaps classes of organisms.

Frequency of Mutation The surest way to observe mutations in any organism is to examine large numbers of individuals. Most col

tures of Drosophila contain no mutants, but an occasional culture in a vield a single fly with white eves, among many normal rid eved sibs. Another culture may contain an individual with a villow body or with cut wings or with forked bristles etc. Some genes mutate more frequently than others. Table 41 shows the frequency of mutation of

Figure 45 The mutants bithorix (left) and vestigral wings (right) of Drosoph tha melanogaster (After E Wallace redrawn)

several genes in muze (coin) The gene R is relatively mutable whereas the gene Wx has failed to mutate in a million and a half individuals studied

Hildrine Morch Penrose Neel and others have made estimates of the frequency of mutation of human genes which produce certain hereditary disease. One of these diseases is hemophila (bleeding) which is due to a recessive gene curried in the Velioimosome (a sex-linked gene Chapter 3). According to Hald inc. two to three out of 100 000 human sex cells which cury in Velioimosome contain a hemophila gene newly trisen by mutation. There is reason to think that the British queen Victoria had such a newly mutated gene which she transmitted to some of her progeny. The dominant gene for chondro dystrophy (dwarfism due to shortness of the arms and legs with head and trink of normal size) irises by mutation more frequently than that for hemophila. The gene for epiloa (tuberous selerosis) mutates less than once in every 100,000 sex cells

to be changes in single genes. The mutant alleles are sometimes dominant ones, but more often recessive to the ancestral condition. Some mutations, however, produce changes in the chromosome structure chromosomal aberrations (Chapter 3)

Contrary to de Vries's opinion, mutations do not produce new species. The mutants of Drosophila are still files which belong to the same species of Drosophila to which their ancestors belonged (see, however, the species formation through polyploidy, Chapter 9)

Mutational changes affect all organs of the body and all kinds of truts. Drosophila mutants differ in the color of the body of the cyes and of some internal organs, in size and shape of the whole body, of the eyes, wings, bristles, legs, eggs, larvae, and pupic (Figures 44 and 45). The viability, length of life, fertility, and behavior of the flies may be altered. Physiological and biochemical truts may be affected.

Because of the work of Bendle and others, numerous biochemical mutants have recently been found in the fungus Neurospora, in versts, and in some bacteria. These mutants show a great variety of metabolic patterns. They require the presence in their food of vitamins amino acids, or other substances, which are not needed for normal growth of the ancestral form or of other mutants. The cells of the mutants accumulate chemical substances which in the ancestral forms are intermediate products of certain metabolic reaction chains. Such biochemical mutants are invaluable for the study of cell physiology. A new branch of science, biochemical genetics, is evolving on the borderline between genetics and chemical physiology. Apart from its interior, this science promises also valuable technological applications.

Leth'd mutants cause the death of their carriers Death may occur in different lethals, at any stage of the development, from cleavage of the ferthized egg to the adult organism Poulson, Hadorn, and others have studied the causes of death in some lethals in Drosophila, and Dunn Landauer, and others in mice poultry, and other animals Some of the lethal syndromes resemble certain human hereditary diseases Gene changes by mutation may drastically modify the basic developmental processes of the organism

Homeotic Mutants Fundamental, as well as superficial, truts are under the control of genes and are subject to mutation. Of course the distinction between the fundamental and the superficial is to a large extent, arbitrary. This is particularly clear in homeotic mutants, which transform some organs into others. In at least three species of Drosophila mutants are known which turn the "bulincers"

of the fly into a second pair of wings (Figure 45). The order of flies, Diptera to which Drosophila belongs, differs from other insect orders, among other things, by the presence of one pair of wings and one pair of balancers. Yet the tetraptera" mutant can be crossed to a normal fly, the mutant condition is recessive to normal and seems to be produced by a change in a single gene.

Other homeotic mutants in Drosophila have the antennae of the fly

Figure 4.4 The mutants bar eyes (left) and rudimentary wings (right) of Drosophila melanogaster (Originals drawn by E Wallace)

turned into legs, or eyes replaced by antennue, or a flurd pur of wings formed on the prothorm (where no other living insect has wings, but some fossil insect had) or the mouth parts of the fly radically changed in structure. These and similar mutants are fascinating materials for morphological studies. Whether they are of much significance in evolution is a different matter. Most evolutionists are of the opinion that the development of the living world rarely if ever involved major changes produced by single mutantional steps. Among recent authors, Goldschmidt (1940) however, has defended the opposite view. To him the homeotic mutants illustrate the possible mode of origin of novel types of body structure, and, hence, of new families, orders, and perhaps classes of organisms.

Frequency of Mulation The surest way to observe mulations in any organism is to examine large numbers of individuals Most cul-

tures of Drosophila contain no mutants, but an occasional culture may yield a single fly with white eyes, among many normal red eyed sibs Another culture may contain an individual with a vellow body, or with forked bristles, etc. Some genes mutate more frequently than others. Table 41 shows the frequency of mutation of

Figure 4.5 The mutants bithorix (left) and vestignd wings (right) of Drosophila melanogaster (After E William redrawn)

several genes in maize (coin) The gene R is relatively mutable, whereas the gene Wx has failed to mutate in a million and a half individuals studied

Haldane, Morch Penrose Necl and others have made estimates of the frequency of mutation of human genes which produce certain hereditary diseases. One of these diseases is hemophilia (bleeding) which is due to a recessive gene curried in the Veliromosome (a sexhibled gene. Chapter 3). According to Haldane two to three out of 100 000 human sex cells which carry in Veliromosome contain a hemophilia gene newly insen by mutation. There is reason to think that the British queen Victoria had such a newly mutated gene which she transmitted to some of her progeny. The dominant gene for chondro dystrophy (dwarfism due to shortness of the arms and legs, with head and trunk of normal size) arises by mutation more frequently than that for hemophilia. The gene for epiloia (tuberous sclerosis) mutates less than once in every 100,000 sex cells.

TABLE 41

MUTATIONS OBSERVED IN SEVEN GENES IN MAIZE

(Miter Stadler)

Gene	Individuals Frammed	Mutations Observed	Mutations per 1 000 000 Individuals
R (color factor)	334,786	273	192
I (color inhibitor)	262,391	28	106
P2 (purple color)	647,102	7	11
Su (sugary)	1,678,736	\$	2 4
I (yellow seeds)	1,745,980	1	2 2
Sh (shrunken seeds)	2 469,285	3	12
II x (navy seeds)	1,503,744	0	0

Mutations in any single gene may be rare. But since a chromosome complement contains thousands or tens of thousands of genes (Chapter 3), many mutations arise in most species in every generation. In Drosophila melanogaster, approximately 2 out of every 1000 X chromosomes acquire a new lethal mutant gene per generation. Mutations which produce small changes are doubtless more numerous than lethals. The frequency of such small mutations is little known, since it is hard to notice them all, although they are doubtless more frequent than lethals.

Thus it comes about that Timofceff-Ressovsky (1939) has estimated that, in *Drosophila melanogaster*, 2 to 3 per cent of individuals in every generation carry one or more newly arisen mutual genes. Muller's estimate for man is even higher. Ten to 40 per cent of human sex cells in every generation carry a newly arisen mutation. The stability of the gene as a self-reproducing unit is compatible with the production of numerous mutuals which serve as raw materials for evolutionary changes.

Environment and Mutation For more than half a century biologists have tried to discover the causes which bring mutations about, and the problem is still fir from being solved We do not know how to produce a given kind of mutation where and when desired

Mutations appear as a rule in single individuals so that only one of the many sex cells produced by the parents of a mutant carries a gene which suffers a given kind of mutational change. Mutation in a diploid cell affects only one chromosome, although two chromosomes of the same kind with more or less similar genes are present in the cell. This stolated occurrence of mutations is suggestive. The imme diate causes, whatever they may be, which make the gene mutate are strictly localized within a cell, in the immediate vicinity of the gene which undergoes the change. It may be, although this is not proven, that mutations occur when the genes reproduce themselves. One or both copies of a gene formed by the self reproduction process may differ from the original in structure.

However that may be, several environmental factors are known which speed up the mutation process. Muller, who was later awarded a Nobel prize for his discovery, announced in 1927 that X rays are mutagenic (mutation inducing). Muller observed many mutations in the progeny of X-rayed Drosophila. Depending upon the amount of X rays applied, mutations may be tens and even hundreds of times more frequent in the progeny of irradiated flies than in the non irradiated control flies.

 λ rays are mutagenic in all animals and plints which have been experimented with, and there is every reason to think that they are mutagenic in all organisms, including man. The fact that the number of mutations induced is proportional to the amount of the rays reaching the sex cells is important λ rays are now used extensively in medicine, and many people are becoming exposed to the radiations produced by the release of atomic energy. Misus, of X rays may raise the specter of uncontrolled increase of the mutability in human populations a disaster for public health.

Chemical and Biological Mutagens Several strongly mutagenic chemical compounds are now known Experimenting with Drosophila, Auerbach (1949) found that mustard gas is a powerful mutagen It is one of the war gases (CI CH₂ CH₂)₂S. When applied in concentrations just short of those which kill the flies, this gas increases the mutation rates almost as much as the strongest practicable X ray treatments. Several chemicals are mutagenic when mixed with the food on which Drosophila larvae grow and develop. Among them the effects of formalin and urethane are best ascertained. Demerce has discovered (1952) that the mutation rates in certain bacteria are greatly increased by treatments with manganous and ferrous compounds. Organic perovides are also mutagenic at least in bacteria.

An environmental factor that may be important as a mutagen under natural conditions is high temperature. Muller and Timofeeff-Res sovsky (1935) found that, in Drosophila mutation rates are doubled or trebled with every 10°C rise in temperature. Although this is a relatively small increase compared with what can be produced by

A ray treatments, it may be important for evolution if the mutation rates remain high for many generations

Doubtless important, and yet little studied, are the genetic modifiers of the mutability. Ives (1950) found that different strains of the same species of Drosophila show different mutability in the same en vironment. In some instances it was possible to show that such differently mutable strains differed in a single gene, which did not have any visible effects on the flies other than the modification of the mutation rates. The mutability of a gene depends, therefore, not only upon its own structure but also upon other genes which the organism carries. The physiological mechanisms which bring about such modifications of the mutability are completely unknown.

Spontaneous and Induced Mutations When mutants appear in the progeny of parents which were not treated with any known mutagens, the mutations are said to have arisen spontaneously. Of course, the word "spontaneous applied to any natural phenomenon means only that the actual causes of this phenomenon are unknown. After the discovery of the mutagenic effects of \(\nabla\) rays and similar radiations a suspicion arose that the spontaneous mutability may be caused by cosmic rays and other high energy radiations. The amounts of such radiations, however, proved sufficient to account for less than one per cent of spontaneous mutations.

It is important to remember that X rays, and all other mutagens so far discovered, merely increase the frequency of the same kinds of mutations which also arise spontaneously. In other words, when we apply a mutagen to a culture of Drosophila or of bacteria, the treat ment is likely to give in different individuals all sorts of mutations in all genes instead of definite mutations in genes of our choice. All though the discovery of these mutagens has been a great achievement of biological science, we cannot help wishing that means would be found to transform genes in desired ways. In theory, there is no reason why specific transforming principles could not be found. The search for them has indeed met with some success.

Cytoplasmic Heredity Apart from the genes carried in the chromosomes, some self-reproducing units exist also in the cytoplasm of some, and perhaps of all, cells Examples of such units are the chloroplast, the chlorophyll carriers of green plants. The chloroplasts arise from self reproducing primordia in the cytoplasm. In recent years evidence has been accumulating that the cytoplasm of many organisms contains plasmagenes, self reproducing structures too small to be seen even with the aid of microscopes.

When a cell divides, the genes in the chromosomes are apportioned to the daughter cells by means of the high precision mechanism known as mitosis (Chapter 3), but there is no mechanism of comparable accuracy for the division of the plasmagenes. A cell usually carries several or many plasmagenes of each kind, and at cell division each daughter cell receives roughly half of the plasmagenes present in the mother cell.

Someborn, Beale (1949), and others have observed remarkable transformations in the infusorium Paramecium aurelia. When infusoria of this species are injected into rabbits, the blood serum of the rabbit comes to contain antibodies which paralyze the infusoria placed in a drop of liquid containing this serum. Different strains of infusoria however, induce formation of different antibodies, so that the infusoria can be classified into groups or serotypes, A, B, C, D, etc. Under standard culture conditions each strain of infusoria breeds true as to its serotype. But the serotype can be changed.

The most potent agency to induce the change is exposure of the infusora to the serum with antibodies of the proper type. The concentration of the serum must not of course, be strong enough to kill the infusora. The simplest way to explain these changes is to suppose that the infusora carry in their cytoplasm plasmagenes of several serotypes. However, at any one time, one kind of plasmagene out numbers the others, and the most frequent kind determines the actual serotype to which an infusorium belongs. If this plasmagene is suppressed or destroyed by the antibodies in the serum, one of the other kinds of plasmagenes multiplies instead, the change in the serotype is the result.

It should be strongly emphrosized that the induced transformations do not resemble the inheritance of acquired characters as imagined by the early evolutionists (or by Lysenko in Russia). An "acquired character is a modification of a part of the body such as the darkening of the skin under the influence of sunlight. To be inherited the modified body part must produce some substance that would reach the genes in the sex cells and cause a specific transformation of those, and only those, genes which determine the traits of the same body part in the offspring. There is not a trace of evidence that such transformations occur. Moreover, this view treith assumes that there is a one to one correspondence between a gene and an organ or a part of the adult body, this, however, is not true. Genes determine developmental patterns of the whole organism in different environments. In other words,

genes determine which traits will appear in a given environment, but the genes are not determined by the traits which happen to be realized

Suggestions for Further Reading

Burks B S 1942 A study of identical turns reared apart under different types of family relationships In McNemar and Merrill's Studies of Personality McGraw Hill New York

Cutell R B 1950 Personality McGraw Hill New York

Hildane J B S 1938 Heredity and Politics Norton New York

Hogben L 1941 Nature and Nurture Norton New York Osborn F 1951 Preface to Eugenics Harper New York

Penrose L S 1949 The Biology of Mental Defect Sidgwich & Jackson, London

Schemfeld A 1950 The New You and Heredity Lippincott Philadelphia Stern, C 1949 Principles of Human Genetics W II Freeman, San Francisco

The above books and articles are representative of modern points of view concerning the relationships of heredity and environment nurticularly in man

Irikle C 1946 The early history of the idea of the inheritance of acquired characters and of pangenesis Transactions of the American Philosophical Society, Volume 35 m 91-151

This is an excellent outline and unilysis of one of the mistaken ideas which perertheless placed an important role in the listory of biology

Zirkle C 1949 Death of a Science in Russia University of Pennsylvania Press

A documented review of the so called Lysenko controversy and its background

Dobzhansky Th 1951 Genetics and the Ongin of Species 3rd Edition Columbia University Press New York

Chapter II of this book deals with the problem of mutation in its relation to evolution

Genes and mutations 1951 Cold Spring Harbor Symposium on Quantitative Biology Volume 16

This volume contains articles by fifty four authors representing various approaches and points of view concerning the study of geres and mutations

5

Elementary Evolutionary Changes or Microevolution

Adaptedness and Adaptation Darwin wrote in 1859 We see beautiful adaptations everywhere and in every part of the organic world' Indeed, the capacity of life to master even most inhospitable environments is remarkable. During summer months, margins of permanent snow fields in high mountains may acquire a pinkish color owing to the presence of the alga Sphaerella nualis This alga is adapted to live and reproduce at temperatures close to freezing. In contrast to it, some algae inhabit hot springs of Yellowstone Park with temperatures up to 85°C (185°F), which are well above the limit of toleration for most organisms. The emperor penguins inhabit the Antarche ace, and breed during the long and bitterly cold winters No nests are constructed, the birds incubate the eggs by placing them on their feet and covering them by a skin fold which they have on the Both seves and all members of a colony compete for the privilege of incubating the eggs, regardless of whether they are the actual parents

The universal adaptedness of life to its environment is, next to the nature of life itself, the greatest problem which biology has to face Darwin has attempted to explain the process of adaptation as an out come of natural selection impinging upon organic variation. In our present terminology, this means that the conservation of heredity is counterbalanced by the dynamism of mutation and sevual reproduction. Some of the genotypes generated by these processes are adaptive in certain environments, and are perpetuated by natural selection other genotypes fail to be perpetuated. Some simplest examples of evolutionary adaptation are discussed in the following pages.

Resistance of Bacteria to Bacteriophages D Herelle (1917) discovered organisms, too small to be seen in ordinary microscopes, which were called bacteriophages, or simply phages. Under electron mero scopes planges appear as tiny spheres, with or without a minute "tail" (Figure 5.1) If a suspension of bacteriophages is added to a culture of bacteria, the plages penetrate and multiply inside the bacterial cells. The bacteria break down, and large, numbers of phages are released, ready to attack new bacteria. Planges, then, are parasites preying on bacteria. Many studies have been carried out on phages which attack colon bacteria, Escherichia coli, which occur in the intestinal tract of man and of other animals.

If a culture contains many bacteria, one or several bacterial cells may prove resistant to bacteriophinge attack. If the bacteria are kept on a solid nutrient medium in a Petri plate, the resistant cells multiply and form colonies of bacteria, which are seen with the naked eye as white specks on the surface of the medium (Figure 5.2). From such colonies, new cultures of bacteria may be started which are completely resistant to the phage. The resistance is a genotypic trait of the bacterial struin which is retained indefinitely when the struin is transferred to fresh cultures.

The origin of bacterial strains resistant to bacteriophage attacks has been studied by many investigators, among whom Burnet (1929), Luria and Delbruck (1943), and Demerec and Fino (1945) are the pioneers Two working hypotheses can be considered (1) The re sistance arises by spontaneous mutation in any bacterial culture re gardless of whether that culture is or is not exposed to the phage Suppose that a resistant cell appears about once in ten million to one hundred million bacterial cell divisions Cultures which contain hun dreds of millions of bacteria are therefore, likely to have one or several resistant cells In the absence of phages, the resistant cells are simply lost among great masses of normal cells When a phage is introduced all normal cells fall prey to its attacks, only the few resistant cells survive and reproduce, forming the resistant colonies which are easily picked out (2) The resistance may, conceivably, be induced in a small proportion of the cells by their contact with bacteriophages The cells that become resistant survive, and the susceptible ones are destroved

According to the first hypothesis, the origin of resistant mutants is independent of the phages which act simply as selecting agents a sort of sieve which retains only the resistant cells. According to the second hypothesis exposure to the phage is the cause which trans

Figure 5.1 Bacteriophages which attack colon bacteria Escherichia coli. A Bacteriophage priticles magnified about 29 000 times and in C magnified about 75 000 times. B Bacterii cells with bacteriophages adhering to their surface at a somewh t lower mignification. (After Lurii from Curtis and Guthric.)

forms some susceptible cells into resistant ones. A test of the validity of these working hypotheses has been made by a statistical analysis of the experimental findings. If the second hypothesis were correct a butterial culture would contain no resistant cells until and unless exposed to the plage. The first hypothesis assumes that resistant mutants appear in the cultures before they are exposed to the phage.

Let us, then, take several bacterial cultures, each grown from a

Figure 5.2 Two Petri plates with colonies of colon breteria (Escherichia coli) which have acquired by mutation a resistance to the attacks of breteriophages. The number of mutatis on the plate on the right is obviously greater than on that on the left (Courtesy of Dr. M. Demeree)

single or a few cells. All cultures are simultaneously exposed to phages and the numbers of resistant cells which survive are counted According to the second hypothesis, the cultures should contain a certain mean number of mutants, subject only to the variation due to statistical errors of sampling. The mathematical theory of probability shows that these sampling errors will obey a simple rule, namely, that the variance (the sum of squared deviation from the mean, divided by the number of observations) will be about as great as the mean it self. If the first hypothesis is correct, the numbers of resistant cells in different cultures will be far more variable. If the mutation takes place early when the growing culture contains few cells the mutant cell will multiply and produce a large progeny. By the time the bacteriophage is introduced in the culture many resistant bacteria may be present. On the contrary a mutation taking place just before the

application of the phage will yield a single resistant cell—Statistically, the result will be that the variance of the number of resistant hacteria will be greater than the mean number of such bacteria in different cultures—Experiments have shown that the variances are indeed much greater than the means—This is a rigorous proof of the validity of the first hypothesis, that of spontaneous mutation

Ability of Bacteriophages to Attack Bacteria

If a phage suspension is applied to a culture of colon bacteria, a mutant line of the bacteria can be obtained which is resistant to the phage. Several strains of phages, however, have been discovered which differ in their appearance under electron microscopes and in certain physiological characteristics. Now a line of bacteria resistant to one phage strain may be fully susceptible to other phages. The resistance in the bacteria is specific to the phage strain which was applied as the selector of the resistant mutant cells.

A line of bacteria which hid become resistant to one phage strain may be made resistant also to other phages. To do so, the bacteria are exposed successively to different phage strains and the resistant mutants are isolated. Bacteria have been obtained which are resistant to several phages. The simplest explanation of this situation is that the colon bacteria carry many genes, and that the resistance to different phage strains is due to mutation of different genes. Multiple resistance is due to occurrence of several mutations.

The selection of resistant mutants adopts bacteria to live in environments in which phages also occur. The phages meet this situation by a similar adaptive process. If a large number of phage particles are added to a bacterial culture which is resistant to that particular phage a new strain of the phage may be obtained which can prey on these bacteria. The new phage strain can be maintained on cultures of sensitive bacteria. The bacteria may, however, become resistant to the "new phage by another mutation, and the phage may overcome that second resistance by still another mutational step."

The changes in the bacteriophiges, like those in the bacteria, seem explicible on either of the two hypotheses outlined above for bacteria (page 94). First mutations which chable phages to attack previously resistant bacteria may arise spontaneously in phage cultures, and may be selected when resistant bacteria are exposed to the mixture of mutant and original phages. Second, the ability of the phage to attack resistant bacteria may be acquired only through contact with such bacteria. In 1945 Luria demonstrated that the first hypothesis is correct. Hershey then estimated that the mutations which overcome

the resistance of the bacteria occur, on the average, in two to three out of every billion phage particles

Resistance of Bacteria to Antibiotics Discovery of chemothera peutic and untibiotic drugs has been a great advance in modern medicine. These drugs kill certuin disease creating microorganisms, often when applied in extremely small doses. Their efficacy, however, may be severely reduced by the development of strains of microorganisms resistant to the antibiotics. Resistant bacteria appear in laboratory cultures in which the bacteria are kept on nutrient media to which a certain antibiotic has been added. They can be isolated also from experimental animals or from human patients who were repeatedly treated with a chemotherapeutic or antibiotic drug.

A concentration of the antibiotic streptomycin as low as 25 milli grams per liter of the nutrient medium stops the growth of the colon bacteria, Escherichia coli. However, if several billion bacteria are placed on streptomycin containing medium, one or several cells con tinue to grow and divide, and form colonies from which strains per manently resistant to even very high doses of streptomycin may be established. The situation is quite parallel to that described above for the development of bacteriophage resistant strains of the same bacteria. Demerce found that mutations to streptomycin resistance arise in about one out of a billion divisions of the bacterial cells. The mutations are not induced by streptomycin. The role of the streptomycin is that of a selecting agent, it removes vast numbers of non-resistant cells, and permits only mutant cells to survive.

"Training" of Bacteria The development of resistance to penicillin in the bacterium Staphylococcus aureus, studied by Demerec, appears at first sight less easy to account for on the basis of the mutation selection hypothesis. If about one hundred million cells of these bacteria are placed on a nutrient medium containing 0.1 of an "Oxford unit of penicillin per cubic centimeter (milliliter) of the medium, usually less than ten cells survive and reproduce. But the progeny of these cells survives well on this medium, and a few cells per billion survive at concentrations of penicillin up to 0.2 of an Oxford unit per milliliter of the medium. These relatively resistant survivors can now be exposed to still higher concentrations of penicillin. By stepping up the concentrations of penicillin five times, bacteria are obtained which can grow in the presence of as much as 250 units of penicillin per milliliter of the medium.

This gradual "training of the bacteria to withstand the presence of penicillin comes through summation of several mutational steps, each

of which taken separately confers only partial resistance on the bacteria. Demerce estimates that these mutations occur spontaneously at a rate of about one per one hundred million bacterial cells (10^{-8}) Suppose, then, that four or five such mutations must occur to make the bacteria completely resistant to penicillin. Simultaneous mutation of two such genes in the same cell is likely to occur about once in a number of cell divisions expressed by a figure with sixteen zeros (10^{-10}). Simultaneous mutation of five genes has an utterly negligible probability of occurrence. And yet rigorous selection accumulates such mutations so efficiently that the experiments on induced resist ince are easily reproducible.

Resistant Bacteria in Animal Hosts Hundreds of reports have been published in recent years on patients developing drug fast infections as a result of treatment with authorities and chemotherapeutic drugs. It is now recognized that most infections treated with streptomycin must be brought under control by sufficient doses of the drug within a few days from the beginning of the treatment. If the doses of the drug used are too small to accomplish this end, the infection is likely to become streptomycin resistant, and further treatment with this authorities in ineffective.

When many people are treated with chemotherapy resistant mutants of pathogenic bacteria acquire so great an advantage over susceptible broteria that the drugs become effective in fewer and fewer patients. This is what happened as a result of mass application of sulfornmide drugs for treatment of certain venereal diseases. The proportion of cases of disease which fulled to respond to sulfornmide treatment has increased. An unpremeditated experiment of this kind was also made in certain training centers of the Navy during the last way. An attempt was made to reduce the incidence of diseases produced by Streptococcus broteria by giving to large numbers of men small doses of a sulfonamid drug. The result was what any competent geneticist could have predicted a sharp increase of infections with sulfonamid resistant strains of streptococci.

There has been much discussion as to whether the drug resistant bacteria arise in the treated patients, or are always present in bacterial populations. This is a spurious problem. Any mutation has a certain probability of occurrence, the application of the antibiotics does not influence the rate of origin of the resistant mutants. Nevertheless the antibiotics are responsible for the spread of such mutants, giving them an adaptive advantage which they do not possess outside the environments in which the drugs are present.

Reversibility of the Effects of Mutation and Selection Mutant bac teria resistant to breteriophages or to antibiotics are superior to sensitive breteria in environments in which bacteriophages or antibiotics are present. Sensitive breteria are killed off, the resistant ones survive. Yet resistant mutants are not induced by the phages or the antibiotics, they arise regardless of whether the environmental selecting igents from them or not. Why, then, are most colon bacteria found outside of laboratories still susceptible to breteriophage attacks and sensitive to streptomycin? Why have the resistant mutants not crowded out the sensitive genotypes? The theory leads us to infer that the resistant mutants must in some respects be at a disadvantage compared to sensitive breteria in the absence of phages and anti-

This theoretical inference is strikingly verified in some experiments. Close to 60 per cent of the streptomyein resistant mutants in colon bacteria are also streptomyein dependent, these mutants are unable to grow on culture media free of streptomyein. A substance which is poisonous to normal sensitive bacteria is essential for life of the resistant mutants! E. H. Anderson has shown that some bacteriophage resistant strains of colon bacteria require for growth certain food substances which are not needed for the growth of sensitive bacteria. The resistant mutants will be wiped out in environments in which the required foods are not available.

Just what puts some mutants at a disadvantage in competition with normal types is unknown at present. Some streptomycin resistant mutants can grow without streptomycin, and some phage resistant mutants are not known to possess special food requirements. It should be noted, however, that advantages and disadvantages which are easiest to discover are of the all or-nothing type all streptomycin sensitive bacteria are killed in the presence of streptomycin and all streptomycin dependent bacteria die in the absence of this substrince. But the advantages and the disadvantages may also be quite small and yet very effective in the long run. Suppose that a mutant grows slightly slower than the parental type in a certain environment. The mutant will then be quite rare and yet it may not be easy to discover the nature of the handicap which keeps it rare.

Where the advantages and disadvantages are of the all or-none type, the importance of the environment in selecting the best adapted geno types can be demonstrated with remarkable clarity. Demerce and his collaborators showed that the changes from streptomycin sensitivity to resistance and dependence are reversible. A large number of colon

bacteria of a streptomycin dependent strain are placed on a Petri plate with nutrient medium free of streptomycin. Only the mutant cells which can grow without streptomycin survive and form colonies of streptomycin independent bacteria. The mutation from streptomycin dependence to independence occurs about forty times per one billion divisions of the bacterial cells.

Virulence of Pathogenic Microorganisms Disease-producing microorganisms often lose their ability to infect their normal hosts after prolonged cultivation on artificial media in laboratories, but the virulence of such degenerate bacteria may sometimes be restored. For this purpose a large number of the bacteria which lost their virulence are inoculated in a host susceptible to the disease. If the bacteria are able to multiply in such a host, a new virulent strain may be isolated.

Fowl typhoid, a disease often fatal to chickens, is caused by the bicterium Salmonella gallinarum. In an experiment by Gowen, an originally highly strulent strain of these bicteria lost its virulence after some months of cultivation in the laboratory. Inoculation of about 100 000 bacteria of the virulent strain in a bird results in disease which is fatal to some 70 per cent of the birds, the same dose of avirulent bacteria produces no disease. A thousand times greater (100 000 000) dose of avirulent bacteria results in the death of only 34 per cent of the chickens. The full virulence, however, is restored by inoculating about two billion avirulent bacteria into each of several chickens, after a week, new cultures of the bacteria are re isolated from the infected birds. Such passage of the bacterial strain through living hosts was repeated six times. New virulent strains of bicteria were obtained.

The simplest interpretation of the loss and reacquisition of the virulence is that different genotypes are advantageous in bacteria which live as parasites in lying hosts, and multiply in Paboratory test tubes. When bacteria grow on laboratory media, mutants are selected which enable them to live most successfully in this artificial environment, even though the mutants lose the ability to invade a host s body. Conversely when laboratory strains of bacteria are inoculated in a host s body, the mutants which restore the ability to overcome the resistance of the host acquire a clear survival advantage.

Genetics and Epidemics Mankind has always dreaded the recur rent scourge of epidemics Some 25 million people perished from black death in Europe in 1347 and 1348, between a quarter and a third of the population. Outbreaks of infections occur also in wild and in domestic animals and plants.

We have seen that mutations in pathogenic microorganisms make them more or less virulent, and more or less sensitive to antibiotics There exist also genetic variations in the susceptibility to diseases among the hosts which the pathogens attack. Perhaps the clearest example is the resistance of varieties of the common onions to attacks by the smudge fungus. Colletotrichum Onion varieties which have white bulbs are easily infected with the fungus, cream colored or yellow bulbs are slightly susceptible, and deeply colored red or purple bulbs are resistant. The resistance is due to the presence in the scales of the colored bulbs of catechol and protocatechuse acid, substances which can be shown to be poisonous to the spores of the fungus Walker and his students have shown that the color of the bulbs, the presence in them of catechol and protocatechuic acid (which are colorless substances), and the resistance or susceptibility are manifes tations of the same genes The gene I, when homozygous (II), makes the bulbs white and susceptible to the infection. The heterozygotes, It, are yellow and only slightly susceptible, whereas the homozygotes, u, are deeply colored and resistant

There is no doubt that genetic variations in the susceptibility to infection occur also among higher animals and among men. Gowen has described strains of chickens some of which were more resistant than others to the fowl typhoid, resulting from infections with Salmo nella (see above). Genetic resistance interacts, of course, with the immunity to certain diseases acquired by individuals as a result of the formation of protective antibodies in their blood. The formation of protective antibodies may be induced by a previous infection or, artificially, by vaccination. The genotype determines, as we know, the responses of the organism to the environment. The actual resist ance or susceptibility of an individual (his phenotype) will depend upon his genetic constitution as well as upon his previous contacts with the disease.

An epidemic, then, will affect at first those individuals in the hosts population which are phenotypically and genetically most susceptible to the infection. An epidemic may start when a strongly virulent strain of the pathogen appears. The spread of the infection will be more and more rapid as the number of its victims increases but the point will be reached when a majority of the highly susceptible individuals will be either dead or recovered from the disease. An epidemic grows so long as each victim transmits the infection on the

average, to more than one new victim. When the frequency of the transmission drops below one, the epidemic subsides. The outcome of an epidemic may be a genetic change in the composition of the populations of both the host and the parasite.

Rust Fungi Attacking Wheat As far as man is concerned, the foregoing picture of the genetic background of epidemics is rather hypothetical. It is, however borne out by observations particularly on the diseases of certain crop plants. The rust fungus, Puccinia graminis tritica, is responsible for one of the most serious diseases which affect wheat plantings. This species of rust contains some 200 varieties (called "physiological races by the students of these fungi.) The rust varieties are distinguished from each other by their ability to infect different varieties of wheat. Most wheat varieties are susceptible to infection by some, but resistant to other varieties of the rust.

The spores of the rust are distributed by winds and air currents. Since the degree of infestation of whert fields by the rusts influences the yield of the crop, annual census of the relative frequencies of the spores of different rust varieties is made in the United States and in other wheat growing countries. The incidence of the different rust varieties undergoes striking changes with time (Table 5.1)

(After Stakman and Others)

TABLE 5 1

Prequencies (in Per Cents of the Total) of the Spores of the Difffrent Varieties of the Rust Fungus Puccinia gramma Indic in the United States

n 2 26 0 2 43

Variety Number Year 0.3 0.6 0 9 0.6 Q 0 9 0.6 0.6 1 5 q ß 0.8 0.6 G 0.8 0.9 0.4 a n 0.8 0.6 O 0 5 0 1 υl Ð o 0 3 0 2 Q 0.1 0.1 0.4

1944 0 21 0 0

The changes in the relative frequencies of the rust varieties are largely due to the introduction of new varieties of wheat for mass planting by the farmers. Wheat breeders are constantly trying to create new kinds of wheats resistant to infection by the rusts. They are often successful, to the extent that new wheat genotypes are obtained by hybridization and selection which are resistant to the rust varieties that are prevalent at the time when the breeding work is done. These new kinds of wheat are then multiplied and planted by many farmers. At first, the yields of wheat are stusfactory. But the new wheats begin to be attacked by rust varieties which were hitherto unknown or rare, and soon the rust infestations become so heave that the wheat yields decline. Eventually it becomes necessary to use another assortment of wheats for plunting.

For example, the outbreak of rust variety 56 in 1934 and thereafter (see Table 5 1) seems to be connected with large-scale planting in the United States of the wheat variety called Ceres. In 1925 this high yielding wheat was planted on a large scale. About ten years later Ceres was so heavily attacked by rust that its plantings rapidly shrank in number. This is a genetic and epidemiological experiment conducted on a grand scale. Introduction by man of a new host plant initiates a process of selection of genotypes in the parasite which can invade this host, with the result that the adaptedness of the host genotypes declines. An unstable equilibrium is temporarily restored by a genotypic change in the host.

Insect Pests Resistant to Poisons Experiments on adaptation through selection of useful mutants have been made chiefly with bac teria and other microorganisms because the experimenter can easily manage huge numbers of individuals and of generations, which would be out of the question with larger creatures. Similar adaptive processes occur also in higher organisms although usually more slowly. Many insecticides, poisons which kill insect pests, have been discovered. A particularly powerful insecticide is dichloro diphenyl trichlorethane, popularly known as DDT. This substance is highly poisonous to most insects in such low concentrations as to deserve being placed among the wonder drugs. The struggle of man against insect pests has nevertheless not ended, owing to the emergence of DDT resistant varieties of insects.

The housefly, Musca domestica, is often controlled by DDT sprays Yet Missiroli and Weismann reported independently in 1947 that houseflies from certain localities in Italy and in Sweden respectively had become relatively resistant to DDT. The concentrations of DDT

which in previous years were sufficient to destroy most of the house flies in these localities no longer were effective when applied in the customary way. Since 1947 similar reports have come from Denmark, England, Greece, Egypt Peru, Venezuela, Mevico, and parts of the United States as widely separated as New Jersey, Florida, California, and Oregon. In many places DDT can no longer be relied upon to bring housefly infestations under control.

Strains of houseflies resistant to DDT have been obtained also in laboratory experiments. Lindquist and Wilson exposed a normal sensitive strain to a dose of DDT which killed about 90 per cent of the individuals, and used the survivors as parents of the next generation A significant resistance to DDT appeared after three generations of such selection.

There is no agreement among different investigators about how permanent is the resistance once acquired by a fit strain. In some instances the resistance has been retained for ten or more generations without renewed exposures to DDT in others the resistance has been alleged to become weaker or lost. This situation may be interpreted in several ways. It is possible that the DDT resistance is due to a single mutation, analogous to that which confers the streptomy cin resistance on bacteria (page 98). It may also be that the resistance is produced by a combination of several genes which are normally present in most fly populations. In either case, a resistant strain may actually be a mixture of more or less resistant and of sensitive genotypes. The average resistance may vary greatly from generation to generation, and it may be more or less fixed or changeable in different strains.

Theoretically, we might expect the resistant houseflies to be adaptively inferior to the sensitive ones in the absence of DDT treatments. Indeed, some investigators have found that resistant flies take more time to develop than the normal ones. If confirmed, this difference may be very significant, since a rapid development may be advantageous to the flies in their normal habitats. Other investigators have found indications of important physiological differences between sensitive and resistant flies.

The emergence of struns of insect pests resistant to various insecticides has assumed in recent years, the proportions of a major problem to those concerned with pest control. Resistances to DDT treatments have been described in several species of mosquitoes in filter flies (Psychoda) cockroaches, body lice, bedbugs, and bark beetles (Scolytus). Even before the advent of the DDT, strains resistant to

fumigation with hydrocyanic grs were known to have developed in at least three different species of scale insects (Coccidie) in the fruit orchirds of California Similarly, the coding moth (Carpocapse pomonella), the larva of which is responsible for the "wormy" apples, his developed in Colorado and in New York State rices resistant to lead arsenate sprays. From South Africa have come reports that ticks which infest cuttle are becoming resistant to arsenic biths. New cases of resistance of various pests to insecticides are constantly reported in the literature. Genetically oriented studies in this field are urgently necessary.

Industrial Melanism Perhaps the most striking and longest known examples of observed evolutionary changes concern the development

Figure 5.3 Light colored and dark varieties of the moths Amphidosys betularia and Odontoptera bidentata. The dark varieties have greatly increased in the quencies in some industrial districts of England and other European countries (After W Bowater).

of dark, melanic, varieties in several species of moths in the industrial ized regions of western Europe particularly in England Each of these moth species has two varieties, one relatively light and the other dark (Figure 53). The two varieties differ in a single Men

delian gene, the dark variety being usually dominant to the light one. The light varieties are the normal ones, in the sense that until recently the moths were represented in nature by light individuals, the dark ones being exceptional or altogether unknown. But beginning in the middle of the nineteenth century the dark varieties have been recorded as occurring more and more often, especially in the vicinity of large industrial centers. In many industrial regions the incidence of dark varieties has grown rapidly from decade to decade, some of the populations now consist of dark individuals with or without an admitture of light ones.

The most satisfactory interpretation of the spread of the melanic varieties has been suggested by Ford, who believes that the dark vi neties are in general more vigorous than the light ones. In one succies, Boarmia renandata, he was able to demonstrate the superior vigor of the melanic forms experimentally. Why, then are the dark varieties crowding out the normal light ones only in industrial regions and not everywhere? Ford's answer is that the light varieties compensate for the deficient vigor by being protectively colored. In other words, they are camouflaged by matching the coloration of their surroundings and escape being detected and eaten by their enemies, insectivorous birds. more often than do the more conspicuous durk varieties. The situr tion is different in industrial regions, where the countryside is contaminated by soot and other waste products. Here, on darker backgrounds, the light varieties are no longer camouflaged, whereas the dark varieties may more nearly match the colors of their surroundings Industrialization of a region removes then the disadvantages of the dark varieties, which spread and eventually supplant the light ones

Deleterious Character of Most Mutations Most mutants which arise in any organism are more or less disadvantageous to their possessors. The classical mutants obtained in Drosophila usually show deterioration, breakdown, or disappearance of some organs (Figures 44 and 45). Mutants are known which diminish the quantity or destroy the pigment in the eyes, and in the body reduce the wings, eyes, bristles legs. Many mutants are, in fact, lethal to their possessors. Mutants which equal the normal fix in vigor are a minority, and mutants that would make a major improvement of the normal organization in the normal environments are unknown.

And, yet modern theories of evolution consider the process of mutation to be the source of the raw materials from which evolutionary changes may be constructed. The deleterious character of most mutants seems to be a very serious difficulty A more careful consideration shows, however, that the difficulty is much less formidable than it may appear at first sight

Are the mutations which make the colon bettern resistant to bac teriophages or to streptomycin harmful or useful? Is the resistance to DDT sprays deleterious or advantageous to the houseflies? Obviously, these questions are meaningless when the nature of the environments in which the mutants are placed is not specified. On media containing bacteriophages or streptomycin, the resistance is necessary to the bacteria, since the carriers of the non resistant genotypes are destroyed. Flies or scales resistant to the DDT or to hydrocyanic gas have evident advantages in localities sprayed or fumigated with these poisons, but the same genotypes are disadvantageous when phages, antibiotics, and inspectivales are absent.

Useful Muritions Useful mutations, therefore, are known. They are in fact not uncommon when organisms are placed in environments other than those in which these organisms usually occur, but in environments in which the species normally lives useful mutations are not observed. A closer consideration will show that this is, indeed, as it should be Every kind of mutation that a biologist observes in his experiments has a certain probability of occurrence, and it has occurred repeatedly in the history of the species. The mutations which improve the adaptedness of the species to its normal environments were tried out by natural selection, and have become incorporated into the normal. That is, frequently met with, genotypes. The normal genotypes are compounded of just such useful mutations. Hence the mutations that take place are deleterious.

But when the environment changes, the adaptedness of the organism is disrupted and the harmony between the environment and its in habitants can be restored only through a genotypic reconstruction Some mutations prove useful in new environments and in combination with new components of the species genotype. The mutant genes replace the genes that were normal in the old environment, and become the new adaptive "norm. Although the old genes may reappear from time to time by mutation, they will now be deleterious and will be eliminated. This is what happens when colon bacteria resistant to streptomycin are kept on media with high streptomycin content. The mutants which restore the sensitivity to strepomycin are destroyed.

The Price of Adaptation Many mutants which are deleterious in a certain environment may be useful in altered circumstances. It does

not follow, however, that every mutant which occurs in any species must necessarily be useful in some environment, numerous mutants in Drosophila and in man produce hereditary diseases which can hardly be useful in any environment. It is difficult to imagine an environment which would make hemophilia or the amaurotic idiocy useful.

There is nothing surprising in the appearance of such adaptively worthless mutants. A mutation is essentially a dislocation taking place in the delicate self reproducing mechanism of the gene. Random changes in any complex mechanism, such as a watch or an automobile, are more likely to injure than to improve it and yet watches and automobiles are changed for the better, step by step, in their historical development just as the organisms are in their evolutionary development. The improvements in non-living mechanisms are due to the skill of the engineers, those in living beings are established by initural selection perpetuating the useful mutants and gene combinations, and failing to perpetuate the useless ones.

But why it may be asked should useless mutations be produced at all? It would be vastly better if the organisms produced only useful mutations where and when needed. A little thought will show how naive such a question really is The normal colon bacteria produce bacteriophage resistant and streptomycin resistant mutants, a great majority of which are lost, because they are useless in the absence of phages and of streptomyon In order to produce only phage resistance in the cultures to which phages are applied, only strentomy can resistance in the cultures which are brought in contact with strep tomycin and neither mutant in cultures which remain in normal en vironments, bacteria would have to possess a prescience of the future When the phages attack it is too late the non resistant bacteria perish All kinds of mutants are produced regardless of whether any of them will prove useful A living species that would suppress the mutation process, by making the gene reproduction absolutely accurate, might grin a temporary advantage. In a static environment such a non mutable species would not beget the useless and harmful mutants but when the environment changed and made some of the mutants better fit than the old norm to survive, a non mutable species would be the loser In the long run, mutability is a useful trait, even though most mutants are harmful in any one environment. Herein lay the fundamental error of the belief in the inheritance of acquired traits it assumed that the genes are made to mutate in a determined direction by every change in the development of the body

Suggestions for Further Reading

Dirwin Ch 1859 On the Origin of Species by Means of Natural Selection

This is one of the greatest books of all time and an acquaintince with it is a must for every student of evolution. There are numerous editions of this work. The first edition (1859) has recently been reprinted by the Philosophical Library New York, with a forward by C. D. Dirlington (1951).

Cutcheside, D. G. 1951. The Cenetics of Microorganisms. Pitman, New York Brum. W. 1953. Bacterial Genetics. Saunders Philadelphia.

The books of Catcheside and of Brum review the experiments on the genetics of microorg misms

Dunn, L C (Lditor) 1951 Genetics in the Twentieth Century Michillan New York

This is a symposium hild in 1950 to commemorate the fifteth ammersity of the rediscovery of Mendels work and of the birth of genetics. Several pipers in this symposium are pertinent to the topics discussed in the present chapter, especially Genetic studies in bacteria by J. Lederberg, Genetics and disease resistance by J. W. Goven, Genetics and plant pathology by J. C. Walker.

6

Natural Selection and Adaptation

It is a commonplace observation that every living being is so constructed that it is able to live in a certain environment (Figure 6.1). A fish is adapted to live in water, a bird is an efficient flying machine, a cow and a deer have digestive organs which enable them to feed on herbage and foliage, the human mind permits man to acquire and transmit culture. The origin of this apparent purposefulness of biological organization is a riddle which several generations of biologists have attempted to solve. Some have taken the easy way out by supposing that every living species is endowed by the Creator with those features which it needs in order to live in the habitats in which it is actually found. This is, however, a spurious solution, it implicitly blames the Creator also for all the imperfections and all the sufferings found in human and biological nature.

So far the only scientifically tenable solution of the riddle was proposed by Darwin in 1859. According to Darwin, organisms become indapted to the environment in the process of evolution, this process is controlled by natural selection of genetic variants which are relatively better fitted than others to survive and to reproduce in certain environments. The theory accepted by a majority of modern evolutionists is clerify derived from Darwin's theory, however, it is just as clerify intidentical with the Darwinian prototype. The changes in the theory are due to the mass of new evidence discovered by biologists since 1859. The modern theories are often referred to as neo-Darwinism, which would be a good name if it were not for the fact that it was applied also to the theories developed by Weismann and others around 1900, and they are as different from the modern ones as they were from Darwins. Synthetic theory and hiological theory of evolution

Figure 6.1 Different kinds of birds are adapted to different foods, different types of country and different ways of life. The figure shows examples of the adaptive reduction in modern birds together with the primitive and possibly ancestral form Archatopterys which is known only as a fossil. (From Colbert)

are better names, because they emphasize that modern theories are a result of synthesis of the findings of many biological disciplines—genetics, systematics, comparative morphology, paleontology, embryology, ecology, etc.

History of the Idea of Natural Selection Some historians believe that a germ of the theory of natural selection is as old as the myths of the Greek philosopher Empedocles (fifth century BC) and the Roman poet Lucretius (first century BC). According to these myths, parts of human bodies, heads, trunks, arms, and legs appeared in the world before complete human beings. These isolated parts proceeded to combine at random giving rise to many invible combinations which were lost, and to complete human bodies which survived and reproduced their likes.

According to Darwin himself, the idea of natural selection was suggested to him by the Essay on the Principles of Population, published in 1798 by the English country parson and amteur sociologist and mathematician T R Malthus Malthus pointed out that human populations tend to increase in numbers in geometric progression, that growing populations sooner or later outrun their food supply, that more children are born than live to maturity, because of the struggle for existence, hunger war, and disease keep the population numbers in check. Darwin saw that this is obviously true for any living species from a microbe to the elephant. Indeed an ovster produces up to 114 000 000 eggs in a single spawning under favorable conditions, some bacteria can double in number in less than half an hour. Higher animals, mammals and birds, produce only few young, but on the average always more than two per pair of parents. Given enough time, the number of individuals of any species could become too large for the earth to support them.

In reality the populations of most species oscillate within rather narrow limits and only rarely do some populations grow as fast as their reproductive powers might permit. The struggle for existence causes a part, and often a very large part of the progeny to due before reaching sexual maturity. Living beings "fight against the physical environment—excessive cold, heat dryness, wind, etc. They are destroyed by predators parasites and diseases. And they compete with individuals of their own and other species for food, for shelter, and for mates.

Darwin saw further the relation between the Malthusian struggle for existence and the fact that agriculturists have since time immemorial improved the quality of domestic animals and plants by selecting for reproduction those individuals which possessed the qualities which were useful or desirable to the breeders. Now, the survivors in the struggle for existence are likely to differ in their genotype from the victims which succumb in this struggle. Provided that the survivors differ in heredity from those who do not survive, the struggle for existence will automatically result in natural selection of the fitter genotypes. The hereditary endowment of the succeeding generations will differ from that of the preceding generations in the direction of superior fitness.

Competition and Cooperation The logic of Darwin's reasoning was unassailable. Nevertheless, he and his theories were uttacked by those who believed that the recognition of min as a pint of nature is subversive to religion and insulting to human dignity. In the ensuing polemics some unfortunate overstatements were made. Herbert Spencer said that the struggle for existence led to the survival of the fittest. The use of the superlative gave a subtle overemphasis to the supposed struggle and competition—as though only one fittest survived and all the rest died. Spencer's statement sounded very much like the concept of Superman, advanced by the German philosopher Nietzsche, which in turn played a role in the development of racist and Nazi ideas.

Phrases such as "struggle for existence" 'nature red in tooth and claw," eat or be eaten" were very freely used, especially by popular writers on evolution, in the late mneteenth and early twentieth cen turies. This phraseology seemed to appeal to the emotions of many people of those days. With the development of genetics and with a change of the intellectual clamate during the current century, it began to be realized that the fierceness of the struggle for existence leading to natural selection was greatly exaggerated. It is simply the fit, rather than the fittest,' who survive

Evolutionary success is determined by the ability of the carriers of a given genotype to transmit their genes to the greatest possible number of individuals in the following generations "Struggle," competition, and like expressions have a metaphorical meaning when applied to the process of natural selection which should not be confused with their usage when applied to human affairs. Thus trees "struggle" against the danger of being felled by wind by developing stronger root systems, mammals and birds struggle against cold by developing heat insulation, temperature regulation or by remaining domaint during winter months, desert plants "struggle" against dryness by having leaves transformed into spines. Plants and animals "compete for food

when food is scarce, but they do not necessarily fight against one an other

Among the early critics of Darwin, the English writer, Samuel Butler, and particularly the Russian political philosopher, Kropotkin, sought to replace Darwin's theory of struggle by one which made cooperation and mutual help the principal agents of evolution Re cently this idea was developed further and modernized by Allee and by Ashley Montagu As a corrective against the abuse of Darwinism by political propagandists this emphasis on the importance of cooperativeness in natural selection is very useful. Indeed, pugnicity and aggressiveness are often less conducive to biological success than is inclination to live and let live and to cooperate with other indi viduals of the same and of other species. The fact is that both competition and cooperation are observed in nature. Natural selection is neither egotistic nor altruistic. It is rather, opportunistic life is pro moted now by struggle and now by mutual help Thus parental care and defense of the offspring are obviously advantageous for the sur vivil of the species and vet members of an established colony of a certain species of ant in Australia destroy the daughter colonies as soon as the latter appear on the surface of the ground in the vicinity of the parental nest

Johannsen and Pure Lines Less specticular but more important than the misunderstanding of the relative importance of competition and cooperation in natural selection was another difficulty of Darwin's theory. As pointed out above, Darwin realized quite clearly that natural selection will produce permanent improvements only provided that the surviving "fit differ in genotype from the eliminated unfit." If the individuals which breed and those which are prevented from breeding are alike in genetic endowment, their progenies should be alike and selection should be ineffective. This matter was clarified long after Darwin's death by the Danish botanist Johannsen (1857–1927).

Johannsen (1909) started his experiments with garden beans by choosing seeds of different sizes and weights from a commercial variety and keeping the progenies of the plants grown from each seed separately (Figure 6.2). The garden bean is a plant species which, like Mendel's pea reproduces mostly by self pollination. Progenies obtained from a single individual of such species by self fertilization are called pure lines, and individuals which belong to the same pure line usually have similar genotypes. The pure lines obtained by Johannsen from larger beans produced, on the average, larger seeds

than did the pure lines bred from smaller beans, when planted under similar environmental conditions. This amounts to saying that the original variety contained a variety of genotypes. Next, Johannsen

A mixed population of a commercial variety of beans. In mixed populations the offspring of small beans is smaller on the average than the offspring of large beans Selection is effective 00000 = 00000C

The offspring of small beans is on the average of the same size as the offspring of large beans. In the pure lines selection is ineffective

Figure 6.2 The main results of Johannsen's experiments on pure lines in becase The commercially planted varieties of beans are mixtures of lines with different genotypes. From such a variety genetically different pure lines with larger or smaller seeds can be isolated by selection. But the offspring of large or small beans from any one pure line are similar.

sclected the largest and the smallest seeds within each of his pure lines. When planted under similar conditions, the offspring of the large and the small beans had the same average size. This experiment proved that selection is ineffective within a pure line. The differences in size between seeds produced by plants of the same pure line are not genotypic, they are acquired because of the unavoidable minor variations in the environmental conditions under which the plants grow, they are within the norm of reaction of the genotype of the pure lines

Johannsen's work was confirmed by other investigators working with pure lines and with clones. A clone is the offspring of a single individual obtained by ascural means such as simple fission and budding. Clones can be easily obtained in most microorganisms and in some plants and animals which can reproduce ascurally. Selection is ineffective in a clone (unless mutation intervenes, see below)

In effect, the work of Johannsen proved only that acquired characters are not inherited (see Chapter 4). Indeed, phenotypic differences between genotypically uniform individuals are acquired through environmental modification but in the 1910's these results were interpreted as a blow to Darwin's theory of natural selection. For Johann sen found that selection was effective only in the original material which was a mixture of several genotypically different pure lines Selection, then has done nothing creative, it has merely isolated some of the genotypes which were already present in the original mixture. In the absence of pre existent genotypic differences, selection is powerless to effect evolutionary changes.

The modern solution of the foregoing difficulty is simple enough Selection operates with genetic raw materials supplied by mutation and sexual reproduction. Mutation and sex produce an abundance of genetic variability, interacting with which selection becomes a creative process (see Chapter 11). But before this solution could be reached, another and apparently even more formidable, difficulty of the Darwinian theory had to be removed.

Gene Frequency and Gene Pool According to the blood theory of heredity, which was quite generally accepted in Darwin's day, the heredity of a child is a solution, or an alloy, of the heredities of the parents Consider then, what happens in a population which contains genotypes that produce, in a certain environment, individuals of a middle stature genotypes which produce tall and short people and a few genotypes which produce giants and dwarfs. In the genetic sense a population a Mendelian population is a community of sexually reproducing individuals among whom marriages are concluded Suppose furthermore that our Mendelian population is panimetic with respect to stiture in other words, that the likelihood of an individuals marrying a partner of any stature, is proportional to the relative frequencies of these stitures in the population. It is easy to see that in such a panimetic population individuals who are taller than

Ch. Sarvin
1 igure 63 Charles Darwin (1809-1882)

the average will often marry partners who are shorter than themselves, whereas persons who are shorter than the average will usually marry mates who are taller than they are

If the blood theory of heredity were true, the heredity of children would be a compromise between the heredities of their parents. A panimetre population would then become less and less variable in stature and in other characters as one generation followed the other. In other words, a sexual parametre population would become more and more uniform, and eventually it could reach the point where all individuals composing the population would be uniform in hereditary endowment. Such a genetically homogeneous population could be called a pure race.

Darwin realized that a necessary consequence of the acceptance of the blood theory of heredity was the behef that sexual reproduction tended to level off any genetic variability that might be present in a sexual population. And yet, if evolution is to occur, populations must always possess a supply of hereditary variability. Darwin admitted that the contradiction was insoluble in his time. At present it is known that the contradiction was spurious because, as shown so clearly by Mendel heredity is transmitted by genes rather than by blood. The problem was solved in 1908, independently by Hardy in England and by Weinberg in Germany.

Suppose that a sexually reproducing population lives isolated from other populations of the same species, for example on an occanic island. Suppose, furthermore that the population consists of individuals homozygous for a gene AA, and of individuals homozygous for aa. Let the proportion of AA individuals in the population be represented by a fraction q, and the proportion of aa by (1-q). If the population is parimictic with respect to this gene, there will be q^2 matings $AA \times AA$, which will produce AA children, $(1-q)^2$ matings $aa \times aa$, which will give aa children and 2q(1-q) matings $AA \times aa$, which will give aa children and aa can which will give heterozygous, aa, progeny

Instead of considering the genotypes of the parents who mate at is more convenient to consider the sex cells which they produce Suppose then that all individual members of a sexual population are equally fertile and contribute equal numbers of sex cells or gametes to the 'gene pool' of the population. If the population is primitive, these sex cells untent at random so that A and a eggs are fertilized by A and a sperms in proportion to their frequency in the gene pool. Let the fraction of the sex cells which carry A be q, and the fraction of

sex cells a in the gene pool be (1-q) The progeny, consequently, will be

		Eggs		
		gA_	(1-q)a	
perms	b^{b}	q* 1A	q(1-q)Aa	
Sper	(1 - 9)	(1 q)q Aa	(1 - q) aa	

In other words, there will be respectively q^2 and $(1-q)^2$ of homozygous AA and aa and 2q(1-q) of the heterozygotes Aa. The important problem is what the distribution of the genotypes will be in the next generation. Let us again consider the composition of the gene pool. The homozygotes AA and aa produce only A and a gametes whereas the heterozygotes Aa produce equal numbers of A and a sex cells. The total frequencies of the A and a gametes in the gene pool will accordingly be

$$A = q^{2} + q(1 - q) = q^{2} + q - q^{2} = q$$

$$a = q(1 - q) + (1 - q)^{2} = q - q^{2} + 1 - 2q + q^{2} = 1 - q$$

The frequencies of the genes A and a in the gene pool will thus remain constant at the levels q and (1-q), and the distribution of the genotypes among the zygotes in the population will be

$$q^2AA \ 2q(1-q)Aa \ (1-q)^2aa$$

This is the Hardy-Weinberg formula, which describes the equilibrium condition in a sexually reproducing population and is the corner stone of modern population genetics. The gene frequencies, q and (1-q), remain constant in sexually reproducing populations. Con sider again the example of a human population consisting of persons different in stature. Some people are tall and others short, owing to the presence in the population of genes affecting the stature. Each of these genes, which may be called A and a B and b etc. has a cer tain frequency in the gene pool. In the absence of any of the factors changing the gene frequencies described below, the population will always have some tall, average, and short persons, as well as some giants and dwarfs

Factors Which Change Gene Frequencies The Hardy-Weinberg theorem describes the statics of a Mendelian population If all gene

frequencies in all populations remained constant evolution would not take place Evolution may be defined in a most general way as a change in gene frequencies In reality, agents are known which may alter the gene frequencies in populations. The dynamic forces are as follows

(1) Mutation If the allele A changes into a, or vice versa, the fre-

quencies q and (1 - q) may be come altered

(2) Selection The Hardy Weinberg theorem assumed that the carners of all genotypes contribute equally to the gene pool of the following generation This is not necessarily the case Some gene-types may be more fecund than others, or they may have different viabilities different longevities some may be sexually more active than others etc. Most differences of this kind cause variations in the adantive values of carriers of genotypes and may bring about changes in gene frequencies

(3) Migration Relatively more carriers of the gene A than of a

may emigrate from or immigrate into a population

(4) Genetic Drift The assumption implicit in the Hardy Weinberg theorem is that the population consists of so many individuals that chance variations in gene frequencies are negligible. Strictly speaking this condition could obtain only in ideal, infinitely large popula tions. In reality all populations are finite, and some populations are small

In deriving the Hardy Weinberg formula it was assumed that the populations are parimictic. For some natural populations this assump tion does not hold true. For example, many higher plants and some hermaphroditic animals reproduce by self-fertilization. In wheats, oats, beans, peas and some other crop plants the oxules are fertilized mostly by pollen from the same flower Inbreeding mating of close relatives and self fertilization lead to increased frequencies of homo zygotes and decreased frequencies of heterozygotes compared to panmictic populations Gene frequencies are not usually altered by deviations from panniala

Adaptive Value, Darwinian Fitness, and Selection Coefficient The carriers of some hereditary endowments are more viable and reach the reproductive age more often than do carriers of other genotypes Representatives of different genotypes vary also in fecundity (num bers of young born or of eggs or seeds produced), in sexual activity, in the duration of the reproductive period and in other properties which favor the reproductive success of the organism The viability and the reproductive success determine the contribution which the sex cells a in the gene pool be (1-q) The progeny, consequently, will be

		I 6,59		
		qA	(1-q)a	
Sperms	ψb	q* i i	$q(1 \leftarrow q)Aa$	
	(1-q)q	(1 − q)q ∠ta	$(1-q)^{a}a$	

In other words, there will be respectively q^2 and $(1-q)^2$ of homozygous AA and aa, and 2q(1-q) of the heterozygotes Aa. The important problem is what the distribution of the genotypes will be in the next generation. Let us again consider the composition of the gene pool. The homozygotes AA and aa produce only A and a gametes, whereas the heterozygotes Aa produce equal numbers of A and a sex cells. The total frequencies of the A and a gametes in the gene pool will accordingly be

$$A = q^2 + q(1 - q) = q^2 + q - q^2 = q$$

$$a = q(1 - q) + (1 - q)^2 = q - q^2 + 1 - 2q + q^2 = 1 - q$$

The frequencies of the genes A and a in the gene pool will thus remain constant at the levels q and (1-q), and the distribution of the genotypes among the zygotes in the population will be

$$q^2AA \ 2q(1-q)Aa \ (1-q)^2aa$$

This is the Hardy Weinberg formula, which describes the equilibrium condition in a sexually reproducing population and is the cornerstone of modern population genetics. The gene frequencies, q and (1-q), remain constant in sexually reproducing populations. Con sider again the example of a human population consisting of persons different in stature. Some people are tall and others short, owing to the presence in the population of genes affecting the stature. Each of these genes, which may be called A and a, B and b etc. has a cer tain frequency in the gene pool. In the absence of any of the factors changing the gene frequencies described below, the population will always have some tall, average, and short persons as well as some giants and dwarfs.

Factors Which Change Gene Frequencies The Hardy Weinberg theorem describes the statics of a Mendelian population If all gene

TABLE 61

THE PROGRESS OF SELECTION AGAINST A RECESSIVE GENE

(The table shows the frequency in the gane pool of a human population of the gene for taste blindness (t) expected if all taste blind persons are prevented from reproduction in several generations)

Genera- tions of Selection	Gene 1 requency	Genera- tions of Selection	Gene Frequency
Initial	0 55	10	0 085
1	0 35	15	0 0 0 9
2	0 26	20	0 046
3	0 21	30	0.036
4	0 17	40	0 021
5	0 15	50	0 019
6	0 13	100	0 010
7	0 11	500	0 002
8	0 10	1000	0 001
9	0 09		

portant conclusion to be gleaned from Table 61 is that selection against a recessive gene is less effective the rarer that gene is in the population. Two generations of selection suffice to reduce the frequency of the gene t from the original 0.55 to less than half of the original—0.26 but four generations are needed to cause another halfing of the gene frequency, to 0.13. Starting with a frequency of 0.010, we need 400 generations to depress the frequency down to 0.002. This shows the immense difficulty which would be encountered by selection against rare recessive defects or discusses in man, contemplated by some eugenical programs. Taking into consideration that the length of a human generation is at present some 25 years such eugenical measures would have very little effect in a predictable future

In the example just considered, the selection was supposed to be absolutely thorough (s=10). With less intense selection, when only a part of the recessives is debarred from reproduction (s less than 10), the progress would be slower still. And yet no matter how small the selection may be it will, given enough time, change the gene frequencies in the direction favored by the environment or by the breeder. This is important to know because one of the objections made against Darwin's theory of selection was that selection in nature will have no effect since most variable truits of organisms are neither very useful nor very harmful to their possessors. In reality even small genetic advantages and disadvantages may be important in evolution.

carriers of a genotype make to the gene pool of the next generation of the species or of a population. This contribution is a measure of the adaptive value, or Darwinian fitness, of the genotype. Thus, if a genotype produces, on the average, 100 surviving offspring where an other genotype produces 90 offspring, the adaptive value of the former is 100 and of the latter 0.90. It is also said that the second genotype is opposed by a selection coefficient of s = 0.10.

An Example of Estimation of the Speed of Selection Haldane, Fisher, Wright, and other investigators have analyzed mathematically the changes which occur in populations under the influence of various forms of selection. It will be sufficient here to consider a single ex ample About 70 per cent of the American white population feel a bitter taste in certain solutions of the PTC substance, whereas about 30 per cent are non tasters The non tasters are homozygous for a recessive gene t, the tasters are either homozygous or heterozygous for the dominant T (TT or Tt, of Chapter 2, page 30) Since people do not usually know whether they are tasters or non tasters of PTC, the population may be assumed to be paramictic with respect to this trut According to the Hardy-Weinberg formula, the frequencies of the tasters and non tasters should be $q^2TT + 2q(1-q)Tt + (1-q)^2tt$ Since the non tasters, tt constitute 0.3 (30 per cent) of the population the frequency of the gene t in the gene pool should be $(1-q) = \sqrt{03} = 0.548$ The frequency of the gene T in the gene pool is, then a = 1 - 0.548 = 0.452 The frequencies of the three genotypes will then, be

$$q^2TT = 0.204$$
 $2q(1-q)Tt = 0.495$, $(1-q)^2tt = 0.300$

Assume now that all non tasters, tt, are removed from the population or are prevented from reproduction. The genotype tt will, then have an adaptive value zero, and will be opposed by a selection of s=100. What will be the frequency of tasters in the next generation? The homozygous tasters will contribute only T sex cells to the gene pool of the next generation, whereas the heterozygous tasters will produce equal numbers of T and t gametes. The gene frequencies in the next generation will be 0.65 of T (0.204 + 0.247 = 0.451 or 65 per cent of the total) and 0.35 of t (0.247, or 35 per cent of the total).

Supposing that the tasters of PTC are prevented from reproduction generation after generation, the frequency of the t gene in the gene pool of the population will decrease as shown in Table 61 An im-

not change the organism from without, as some theorists of the past believed. The environment furnishes the chillenge, to which a living species may respond by adaptive transformations of its gene pool. Whether the species does or does not respond to the challenge depends on the presence in the gene pool of the proper raw materials, mutant genes and gene combinations. Thus a culture of colon bacteria exposed to a bacteriophage produces a bacteriophage-resistant strain only if it happens to contain resistant cells previously arisen by mutation. No strains of colon bacteria expable of growing at a temperature of 80 to 85°C have been found, and this species apparently does not produce mutants which could resist such temperatures. Nevertheless algae which live at such temperatures are known in the hot springs of Yellowstone Park.

Natural Selection and Self reproduction Natural selection is universal in the living world. It is implicit in the process of living. The origin of life on earth meant the appearance of self-reproducing units which tended to transform the susceptible materials (food) in the environment into their own copies. However, the process of self-reproduction is not absolutely perfect, and deviating mutant, copies appear from time to time. If the mutants reproduce themselves less efficiently thin the ancestral units, they are eliminated. If the mutants are more efficient, they crowd out the ancestral form. Finally, if the mutants can maintuin themselves in an environment unsuitable to the ancestor (that is, can subsist on a new food), the ancestral form and the mutant may continue to exist side by side. Thus life is diversified.

Self reproduction brings in its train natural selection, and the two together result in evolutionary progress. Self reproduction therefore may reasonably be regarded the fundamental property of life (Chapter 1)

Selection in Asexual and Self fertilizing Organisms. It will be shown in Chapter 7 that pure races do not exist and never have existed in man or in other organisms which reproduce sexually and by cross fertilization. But 'pure rices can be formed in organisms which propagate asexually by parthenogenesis, or by self fertilization. In such organisms the entire offspring usually have the same genotype as the mother. Unless mut ition intervenes, clones and pure lines are formed which consist of individuals with identical heredity. As shown by Johannsen (cf. page 113) selection may be observed at its simplest in organisms which form clones or pure lines. A field of wheat, or of barley or of beans, or a culture of bacteria usually consists of mix-

Adaptive Value and the Environment Differences in the adaptive value may be of diverse origin. Adaptive value, or Darwinian fitness, is not the same thing as bodily strength, vigor, or bravery. The "fit test" may actually be a relative weaking if he gives birth to more children than his hale and hearty neighbor.

Furthermore, the adaptive value of a genotype depends on the en vironment in which it lives as examples given in Chapter 5 abundantly Here we may consider only the situation in domesticated and mals and plants and in man Primitive cattle breeds yield only two or three quarts of milk per cow per day, modern dairy breeds produce several times more (as much as 10 000 pounds of milk and 300 or more pounds of butterfat per cow per year) On the other hand, primitive cattle can live well with little care under harsh conditions, whereas their modern counterparts require special feeding and attention. Has, then, the selection practiced for centuries by cattle breeders improved or damaged the fitness of the domestic cattle? The question is evi dently meaningless if the environment is not specified. Clearly, the breed which produces much milk has a superior fitness in the environ ment of a dairy farm, even though it becomes more fastidious in its diet, less able to resist inclement weather, and quite unable to defend itself against wolves and other enemies

For a similar reason the often met with statement that natural selection has ceased to operate in modern human societies does not stand critical examination. True enough the importance for survival and reproduction of such qualities as the ability to withstand cold with out protective clothing, to find and kill wild animals with bare hands or with stones, to eat uncooked food, and to give birth without ob stetrical help is presumably less in modern man than in his remote ancestors The importance of possession of a nervous system which permits learning complex techniques and withstanding the wear and tear of modern tempos is presumably greater for modern man Mod ern medicine has transformed some diseases that were fatal in primi tive man into passing annoyances in modern man, but modern life requires a greater plasticity of behavioral traits than was needed be fore (cf Chapter 14) In any case whatever traits are favored or discriminated against under civilized conditions are by definition the traits which increase or diminish the fitness of their possessors in civil ized environments. Calling selection natural only if it selects traits which we deem desirable is a lax use of words

Modern theories of evolution consider the environment to be the directive force in the evolutionary process But the environment does

selection of a resistant strain (Chapter 5) The variety of oranges known as Navel arose by mutation on a single tree found at Bahia, Brazil, in 1870. The many thousands of Navel oranges cultivated in California and elsewhere are direct descendants of the original mutant propagated by grafting (that is, asexually). The smooth-skinned peaches (nectarines) and some varieties of apples and other fruit trees are descendants of single lucky mutants.

Selection in Sexual Cross fertilizing Populations The situation in organisms which reproduce sexually and by cross fertilization is very different from that in species which form clones or pure lines. The chief biological consequence of sexuality is emergence of an endless variety of genotypes in sexual populations. As shown in Chapter 2 an individual heterozygous for n genes is able to produce 2ⁿ kinds of sex cells carrying different combinations of the parental genes. The result is that in sexually reproducing species no two individuals are likely to have the same genotype.

A relatively more constant characteristic of a sexual population is its gene pool, in which various genes are represented each with a definite frequency Except for identical twins, no two persons are likely to have the same genotype, but every human population can be described as having certain frequencies of the blood group genes. of genes for tasting and non-tasting certain chemical substances, for different eve colors, skin colors etc (see Chapter 7 for further discussion of this point) Natural or artificial selection may increase the frequencies of some genes and decrease the frequencies of others, in the gene pool of a sexual population Since new genotypes are constantly produced by the sexual process selection has always new materials to work with The improvements brought about by selection in sexual populations may, therefore, far exceed the limits of variation in the original materials even if no mutation intervenes. Surely, no wild hen ever laid as many eggs as do modern poultry breeds and no wild boar reached weights which are usual for hogs on Iowa farms Long-continued application of artificial selection has brought about radical changes in the genotypes of domesticated animals

Table 6.3 shows the results of a selection experiment carried by corn breeders and geneticists at the Illinois Agricultural Experiment Station for more than half a century. The original variety with which the work was started in 1896 had an average protein content of 10.92 per cent and an average oil content of 4.70 per cent in its seed. Selection was carried both in the direction of increasing and in the direction of decreasing the protein and oil contents. By 1949 lines were obtained

tures of pure lines or clones. When a breeder picks out a seed from the sturdiest plant in his field, he isolates a single pure line, which may give rise to a new variety. Some of the most valuable varieties of the self fertilizing crop plants are descendants of single selected individual progenitors. Within a pure line or a clone, selection is, according to Johannsen, without effect, since the selected individuals are not genetically different from the rest.

When a mature of pure lines or clones is exposed to natural selection, the multiplication of some lines may be favored and other lines may be discriminated against. Harlan and Martini planted the same mixture consisting of equal parts of eleven varieties of barley in several regions of the United States having different climates and other environmental conditions. For several years thereafter the mixture was hare ested and replanted again in the same regions. The proportions of the varieties in the mixture have become radically altered some varieties were climinated altogether, others increased in frequencies. Interestingly enough, different varieties were favored by selection in different regions. Thus the variety Hannchen was victorious in Minne sort, the variety White Smyrna in Montana and Oregon, Manchuria in New York State etc. (see Table 62).

TABLE 62

SURVIVAL OF BARLEY VARIETIES FROM THE SAME MIXTURE AFTER REPEATED
SOWINGS IN DIFFERENT ENVIRONMENTS

(After Harlan Martini and Stebbins)

Varieties	V _{tr-} gma	New York	Minne- sota	Montana	Oregon	Calı forma	
Coast & Trebi	89 2	11 4	16 6	17 4	12	72 4	
Hannchen	0.8	68	61 0	38	08	68	
White Smyrna	08	0	08	48 2	97 8	13 0	
Manchuria	0 2	68 6	0.4	4 2	0	0	
Gatamı	26	18	3 2	11 6	0	0 2	
Meloy	0.8	0	0	08	0	5 2	
Others	5 6	11 4	18.0	14 0	0.2	2 4	

Note The figures show the percentages of the different varieties which resulted from selection

When a single "pure race" is isolated the progress of selection comes to an end However the occurrence of a mutation in a pure line or a clone may open a new field of action for selection just as the occur rence of a mutation to streptomycin resistance in breteria permits

likely to be the number of differences between them, and the greater the diversity of genotypes resulting from segregation in hybrid progenies. Breeders of domestic animals and plants often resort to more or less remote hybridization. Thus the Thoroughbred horse arose several centuries ago from hybrids between the light Arabian and Barbary, and the heavier European horses (see Chapter 9). To take a more recent example, the Santa Certrudis cattle are derivatives of a cross between shorthorn and the Indian (zebu) cattle.

Introgressive Hybridization In making use of hybrids between dissimilar varieties and species, the breeders have borrowed a method which is of some importance also in evolution in nature, at least in the plant kingdom. The work of botanists (in recent years particularly of Anderson and of Stebbins) has shown that distinct species of plants, when they inhabit the same territory, occasionally cross and produce fertile offspring. Of course crossing within a species remains more frequent than that between species. Interspecific crosses however, cause a diffusion, or introgression, of genes from one species to unother. The gene transfer augments the genetic variability and furnishes great opportunities for natural and artificial selection.

Ins fulia and Ins hexagona are two species of inses studied by Rilev in southern Louisiana. They differ in a number of ways in the former species the tube of the flower is golden yellow, and in the latter it is green, in the former the sepals are coppery red and relatively short, in the latter they are blue-violet and relatively long, etc. Furthermore, Ins fulia grows chiefly on drier lands, in woods, and on slopes of ridges, Ins hexagona occurs on low lands, on wet clay and in full sun. It appears that before man came and started to cut the forests and to drain the marshes for pastures and fields the two species of inses kept well separated in their respectively different habitats. Mans activities have created new habitats on which both species, as well as hybrids between them can grow. Riley has found colonies of inses in which varying proportions of individuals were clearly of hybrid origin, containing mixtures of genes of both species. Another example of hybridization, involving the cultivated corn (maize) will be discussed in Chapter 9

Genetic Drift Another agency which cooperates with natural selection in bringing about evolutionary changes is genetic drift, the action of which was studied mathematically in a series of important works chiefly by Sewall Wright The nature of this agency is simple enough Since a sex cell contains only half the chromosomes present in the diploid organism, a parent transmits to each child only half of his

TABLL 63

PROGRESS OF SPLECTION FOR HIGH AND FOR LOW CONTENTS OF PROTEIN AND

(Mer Woodworth, Lang and Jugenheimer)

Generation	High	Ines	Low I mes		
	Per Cent Protein	Per Cent Oil	Per Cent Protein	Per Cent Oil	
Initial	10 9	47	10.9	4 7	
5	13 8	6 2	9 6	3 4	
10	14 3	7 4	8 6	27	
15	13 8	7 5	7 9	2 1	
20	15 7	8 5	8 7	2 1	
ري	16 7	9 9	0 1	17	
30	18 2	10 2	6.5	1 4	
35	20 1	11 8	7 1	12	
40	22 9	10 2	8 0	1 2	
45	17 8	13 7	58	10	
50	19 4	15 4	4.9	10	

having as much as 19 45 per cent protein and 15 36 per cent oil, and lines with as little as 4 91 per cent protein and 1 01 per cent oil. It does not seem that the selection has yet reached the limits of its effectiveness

Selection and Hybridization The success of selection depends upon the presence of genetic variability in the population to which the selection is applied. As we have seen, among ascural or self-fertilizing organisms selection can only isolate the best genotypes already present when the selection is started. Sexual crossing and recombination of genes among hybrids yield a vast supply of ever new genotypes, some of which may be superior to the old ones. This is the reason why many valuable varieties obtained by modern breed ers are isolated from among hybrids between two or several older varieties. For example the Thatcher wheat variety which now grows on many millions of acres of wheat fields has a combination of genes derived from the varieties Iumillo, Marquis, and Kanred

In sexual organisms hybridization is in a sense, the regular method of reproduction. Any heterozygous genotype is a hybrid genotype. In this sense, any human being is a hybrid, and any marriage a hybridization. But the word hybridization is also used to describe crossing of more or less dissimilar parents, different breeds races, and species. The more dissimilar are the parents crossed, the greater is

= 0.5 Suppose, next, that the sample consists of one million sex cells (500,000 individuals) The gene frequency in the next generation may deviate from 0.5 by a standard error which will be equal to $\sqrt{0.5\times0.5}$ 1,000,000 = 0.0005. This standard error is only one thousandth of the gene frequency, and, consequently, the gene frequency may be said to be unchanged. The situation will be different may sample of 100 sex cells (50 individuals). The standard error will now be $\sqrt{0.5\times0.5}$ 100 = 0.05. This is one tenth of the original gene frequency, and the gene frequency in the next generation will probably he between 0.45 and 0.55, but it may easily be between 0.44 and 0.6, and even as low as 0.35 or as high as 0.65.

Variations in gene frequencies due to sampling errors in finite populations are known as genetic drift. Mutation and selection tend to change the gene frequency in a population systematically in the same direction, generation after generation. Genetic drift has an unsystematic effect in one generation it may pull the gene frequency up ward, then downward, or leave it unchanged. Nevertheless given enough time (enough generations), the genetic drift may produce large changes in populations consisting of small numbers of breeding in dividuals.

Drift and Selection in Isolated Populations. Many organisms do not occur everywhere in the countries in which they live but form more or less isolated groups, or colonies each containing only some tens or hundreds of individuals. Thus land animals and plants may form colonies on dry land isolated by water, whereas water dwelling organisms often live in lakes or ponds isolated by stretches of land Many creatures occur only on certain soils, or live only where a cer tain kind of food is available. At the dawn of history mankind con sisted of many small nations or tribes, more or less isolated from each other, with marriages occurring mostly within a tribe

Suppose that the isolated colonies of a species have, to begin with, similar gene pools, with a certain gene A having the frequency, for example of 0.5. If this gene is not acted upon by mutation and selection, its frequency in the species as a whole will continue to remain 0.5, in accordance with the Hardy Weinberg rule. But consider the separate tribes. If these tribes have small populations, the gene frequencies will owing to genetic drift, become higher than 0.5 in some tribes and lower than 0.5 in others. In the course of time, the tribes will tend to drift apart in gene frequencies. In fact, some tribes may come to have only the gene A and others only a

genes, and fuls to trunsmit the other half. In a stationary population (that is, a population which neither expands nor contracts in numbers in successive generations) every pair of parents produces on the average two surviving offspring. With two children, half of the parental genes will be represented once each, one quarter will be represented twice each, and one quarter will be altogether lost. In the next generation some of the genes will again be reduplicated and others will be lost. In the course of many generations some 'lucky' genes will be considerably increased in frequency, but many others will no longer exist. For this reason, it can be said that only a fraction of the genes which were present in the gene pool of the human species in, for example, the time when the pyramids were being built, or during the Stone Age, still exist in the now living minkind. But these genes have become, birring mutation, greatly increased in numbers.

In reality, even in a stationary population the offspring of some parents are lost, whereas other parents leave numerous progeny Many populations (of, for example, insects) alternately expand greatly in numbers in some years, and then are decimated until only few indi viduals are left. The genetic consequence of such expansions and con tractions is that many genes are lost and others are increasing in frequencies The author once visited a village with a population of perhaps three hundred individuals isolated in a remote corner of Asia The singular condition in this village was that most of the inhabitants had the same family name. The explanation of this condition was simple-apparently an early settler happened to raise a large family consisting mostly of boys, and his sons were in turn fathers of large families The genes of the early settler have become, within perhaps half a dozen generations, incorporated in many individuals. If this settler lived in a large city the multiplication of his family name would not be conspicuous, since the carriers of this name would be scattered among other people In a village the result seemed striking Sup ture which is rare in the general population. The village in question has come to have a population in the gene pool of which this gene or chromosome could be unusually frequent

As pointed out on page 119, the Hardy-Weinberg theorem of constancy of gene frequencies presupposes that the population consists of infinitely many breeding individuals. The individuals of a given generation may be said to come from a random sample of sex cells taken from the gene pool of the preceding generation. Suppose that this gene pool had equal numbers of the genes A and a, q = (1-q)

lines and clones (see page 114), but the objection became invalid in the light of modern biological knowledge

We should clearly distinguish the two basic evolutionary processes that of the origin of the raw materials from which evolutionary changes can be constructed, and that of building and perfecting the organic form and function Evolution can be compared to a factory any factory needs a supply of raw materials to work with, but when the materials are available they must be transformed into a finished product by means of some manufacturing process. The raw materials of evolution are the genotypes which arise by gene and chromosome mutation and by recombination engendered in the process of sexual reproduction But, according to the apt phrase of Sewall Wright mutation alone would produce an array of freaks, not evolution. It is selection which gives order and shape to the genetic variability and directs it into adaptive channels. Some of the classical theorists of evolution believed that evolution was produced by natural selection others thought that it was produced by mutation or by hybridization They were equally in error since it is the interaction of all these processes which results in evolutionary changes

Mutation and recombination yield a supply of genetic variability which is then organized by natural selection in accordance with the demands of the environment. Most mutants, however are deleterious to the organism in normal environments, they produce defects, and form those and hereditary diseases of various degrees of gravity. The action of selection, accordingly, has two aspects which Schmidhausen has called the stabilizing selection and the dynamic selection. The former keeps down the number of deleterious mutant genes and gene combinations (cf. Chapter 7), and in so doing it protects and stabilizes the normal developmental pattern of the species. On the other hand, the environment changes in time and in space. The dynamic natural selection permits the species to keep its hold on the changing ecological inches which it occupies and also to conquer and control new ecological opportunities.

Even the stabilizing function of natural selection involves more than a purely negative action of blocking the spread in populations of bad mutants. It is frequently forgotten that the environment which we call "normal for a species is in reality a complex of a great many different environments. Just think how profoundly different are the environments to which any species inhabiting temperate or cold lands is exposed in summer and in winter. In order to survive such species must of necessity be adapted to all the environments which recur

It is possible, although not proven (cf. Chapter 7), that the differences between human races in traits which seem to be adaptively neutral arose through genetic drift in small populations. Most human populations contain persons of different blood groups, tasters and non tasters of PTC, etc., however, the incidence of these traits varies in different parts of the world (Tigures 76 and 77). These variations could have arisen through genetic drift in the isolated tribes of which early mankind was composed, and subsequently impressed upon the much larger and no longer strictly isolated modern races. Colonies and local races of many animals and plants often show minor differences in color patterns, size, shapes of various parts, etc., which also may be neither useful nor harmful to their possessors. Genetic drift in small populations is one of the possible hypotheses to account for such differences between providitions.

Interesting situations arise in small populations which are acted upon simultaneously by natural selection and by genetic drift Selection always tends to fix the frequencies of genes in the populations at values most advantageous under the environments in which these populations live The genetic drift causes variations up and down from these values The separate, partially or completely isolated, populations of a species act then, as evolutionary trial parties which explore the adaptive possibilities of various genetic structures Most of these trial parties discover nothing of interest, and eventually get lost and supplanted by the more successful populations The important thing however is that in some populations, perhaps in only a single population gene combinations may arise which are not very useful, perhaps even slightly disadvantageous, but possess new adap tive potentialities. Such evolutionary inventions" are then perfected by natural selection and occupy new ecological niches which were unattainable to the original species The importance of the genetic drift in evolution is that its interaction with natural selection confers a greater adaptive plasticity than a living species would possess other-

Conservative and Creative Aspects of Selection Some philosophers and some biologists have doubted that natural selection can be the guiding agent in evolution because selection, allegedly, produces nothing new, and merely removes from the populations degenerate variants and malformations (cf. Chapter 14). This objection seemed particularly impressive when Johnnisen demonstrated that selection does not induce hereditary variations in genotypically uniform pure

live in the world at present, were not preformed in the primeval amoebic or in the primordial viruses. They have evolved gradually in the history of the earth under the control of natural selection.

Suggestions for Further Reading

Darwin Ch 1859 On the Origin of Species by Means of Natural Selection

This is the original statement of the theory of natural selection. For further comment see the Suggestions for Further Reading at the end of Chapter 5

Osborn H F 1896 From Greeks to Darwin 2nd Edition Macmillan New York

Although antiquated this work remains a useful account of the early history

Andrewartha, H G and Birch L C 1954 The Distribution and Abundance of Animals Chicago University Press Chicago

Dobzhansky, Th. 1951 Genetics and the Origin of Species 3rd Edition Columbia University Press New York

Schmalhausen I I 1949 Factors of Evolution the Theory of Stabilizing Selection Blakston Philadelphia

Stebbins G. L. 1950 Variation and Evolution in Plants Columbia University Press New York

These books (Andrewartha and Birch to Stebbins) should be consulted for discussions of modern versions of the theory of intural selection

Allee W C 1951 Cooperation among Animals Schumann New York Argorithm P 1917 Mutual And Angoni New York

Also avulable in a Penguin Books edition (London 1939)

Ashley Montagu, M F 1952 Darwin Competition and Cooperation

These three books (Allee to Ashley-Montagu) emphasize cooperation as against struggle as an important factor leading to natural selection

Li C C 1955 Population Genetics Chicago University Press Lerner I M 1950 Population Genetics and Animal Improvement Cambridge University Press London

The books of Li and Lerner may be consulted for a mathematical theory of selection and of genetic drift. These books are intended for advanced students and research workers.

For a very elementary treatment of the same topics see also

Dunn L C and Dobzhansky Th 1952 Heredity Race and Society 2nd Edition New American Library New York

Anderson E 1949 Introgressue Hybridization John Wiley, New York

The author of this last book believes that introgressive hybridization is rather

more important in the evolution of life than it is usually credited with being Another discussion of this phenomenon can be found in the book by Stebbins quoted above. scasonally, or from time to time, in their native country Many trop ical and subtropical plants can grow well enough during the summers in the United States but they do not survive winters, in California and Florida some of them survive average winters but are killed by exceptionally severe ones. How many, if any, offspring are produced by the carriers of any genotype depends on the reactions of this genotype not to just one but to many different environments—in other words, on the norm of reaction of this genotype (cf. Chapter 4). Adaptively most valuable genotypes are those which react favorably in all the environments to which the species is exposed in its natural habitats. The stabilizing natural selection favors, then, the genotypes which can withstand the environmental shocks which the organism is likely to meet. The result of selection is the development of homeo stasis (cf. Chapter 1). The organism of man, of a frog, of a Drosophila fly, of a corn plant, and in fact of any species develops and maintains its normal structures and functions despite the manifold and often erratic changes in the environments. The "stabilization" of organic development permits a great deal of genetic and evolutionary progress

New developmental patterns become necessary, however, when the environment changes permanently. This change may occur because of alterations in the climate, because of ecological upsets produced by the appearance of new diseases, parasites, predators or competitors, because the species becomes adapted to eat new kinds of food to grow on different soils, and for many other reasons. Dynamic natural selection involves, then, the establishment of new genotypes, adapted to the new conditions. It is fair to say that selection produces new genotypes even though we know that the immediate causes of the origin of all genotypes are mutation and recombination. It is only no organisms which reproduce exclusively by asexual means or by self fertilization that selection, in the short run, merely picks out some of the available genotypes and suppresses others. In the long run, selection is the directing agent because it determines which genotypes are available for new mutations to occur in

Sexual reproduction and cross fertilization are immensely efficient trial and error mechanisms which generate new genotypes. Their action in a given generation depends however, on the composition of the gene pool of the population, which in turn has been determined through natural selection in the ancestral generations. Thus it comes about that we can obtain, by selection, strains with characters which far exceed the limits of variation in the ancestral materials (see page 195). The human species, and all other species of organisms which

species or races, and each category has been given a name. A name stands for a group of individuals which have some traits in common. Thus all individuals called for terrier' have many properties in common, some of these properties are shared by all individuals referred to the species dog (Canis familians), to the genus Canis, the familiar Canidae, the order of curnivores (Curnivora), the class of mammals (Mammalia), and the phylum of vertebrates (Chordata). The properties common to each category may be represented schematically in a picture or in a description such schemes are very useful in teaching zoology and botans.

The types of dog, curnivores, vertebrates, etc., do not exist, however, apart from the real animils. It was perhaps this kind of illusion which led Lumneus to conclude that species were units created by God. In the nineteenth century the French comparative anatomist Cuvier and many others believed in types or basic plans which existed in some ideal world and of which the real animals and plants were but imperfect copies. The great poet Goethe created a schematic generalized plant ("Urpflanze") of which the plants that actually Grow were supposed to be agrants (Chapter 10).

grow were supposed to be variants (Chapter 10)

Much harm came from the notions of typical or pure" white Nords. Germanic and other "pure races of man. No two min look alike and different countries are inhabited by people who look obviously different. Some anthropologists from the cighteenth century to the present time have succumbed to the temptation of supposing that this great variety of human beings arose through mixture of a relatively small number of "pure" races. These anthropologists assume that the 'pure races have lived at some unspecified time in the past, and arbitrarily endow them with combinations of truits, such as stature head shape, skin and hair colors. Very occasionally a living person is found who more or less resembles the imaginary standard of the pure race but a great myority of human beings have to be regarded as mixtures of two or of several races. Authorities seldom agree on either the number or the characteristics of the supposed "pure races this disagreement is not surprising since, in the words of the emiment anthropologist Howells these races were arrived at by "a kind of divination." All this would have made trouble only for anthropologists but politicians and bigots found the pure races convenient instruments to stir up race prejudice and unhealthy nationalism.

Pure Races? As shown in the foregoing chapter pure races con forming to a single genetic type could exist in sexually reproducing

7

Individuals, Populations, and Races

Experience shows that every person we meet is different from any met before Individual differences exist also among animals and plants, and for that matter no two material objects are completely identical. Yet human language forces the infinite variety of experience into categories symbolized by words—man, horse, dog pine, etc. It is easy to mistake words for actual objects, and to conclude that each word refers to some metaphysical entity or idea. Plato, the greatest philosopher of antiquity, actually taught that individual men, horses, pine trees, etc., are imperfect and temporary expressions of the eternal and unchangeable ideal Man, Horse, and Pine

Although few modern philosophers and still fewer scientists take Platos "ideas" literally, his way of thinking is deeply rooted in miny minds. It is common to here people speak glibly of a typical Frenchman or "real American, or "ideal horse. Such expressions are legitimate only so long as the speaker realizes that the type or "ideal is a composite image which he endows with properties commonly met with in actual individuals or considered desirable or pleasing. The trouble is that people are frequently tempted to think of these abstractions as though they were real entities. This typiological thinking may even be carried to the point when the imaginary Man or the imaginary American is substituted for real men and for living persons who compose a nation as objects of sympathy and affection.

Types and Classifications The typological approach is convenient in the branches of biology which deal with description and classification of animals and plants Just as a large library must be systematized and catalogued to be usable so living organisms have been divided into phyla, classes, orders families, genera, species, and sub

Such a statement does not, however, describe an average or a type, but the composition of the gene pool of the population

Sympatric and Allopatric Variability Mendelian populations may be of various orders of magnitude. In man marriages are concluded most often among residents of the same community, town, city, and country Every individual human being encounters during his repro ductive age a certain number of individuals of the opposite sex who may be regarded as his potential mates. These groups of potential mates are the elementary Mendelian populations, to which in human genetics and anthropology the term isolates is often applied But the isolates are seldom completely isolated from each other. Intermarriages between isolates occur more or less frequently, giving rise to Mendelian populations of higher orders The language which people speak, the nation and the country to which they belong, influence the frequencies of intermarriage and make larger isolates Finally, mankind as a whole is a great Mendelian population. Any two human beings of reproductive age and of opposite sex anywhere in the world are potentially able to mate and to produce offspring. There is actually some gene flow direct or indirect, continuous or intermittent. between all isolates of the human species

Individuals of the same or of different species who live together in the same territory are called sympatric. Residents of different territories are allopatric. These terms may be defined more precisely as follows. The places where the parents are born are usually separated by some distance from the birthplaces of their offspring. Individuals who live within the average distance between the birthplaces of parents and offspring are sympatric and those living at greater distances are allopatric. Mattings occur usually between sympatric individuals, and these individuals are members of elementary Mendelian populations. Although this distinction is obviously not sharp because adjacent populations commonly overlap, it is of considerable importance in evolutionary biology.

Genetic differences are observed, of course between sympatric as well as between allopatric individuals. People in an American town differ in appearance from the inhabitants of a Japanese town, but individual Americans as well as individual Japanese differ also among themselves. But the differences between sympatric individuals arise through combination of genes coming from the same gene pool, and, unless the individual dies childless the genes revert again to the gene pool. Allopatric populations have separate gene pools, although there may be some diffusion of genes between these pools, owing to

organisms only if heredity were transmitted by blood instead of genes Then the 'type" of a race or of a species could represent t limiting condition which a sexually reproducing population wor reach after a prolonged period of breeding in isolation. But in real groups of genetically uniform individuals-clones and pure lines-ex only in asexual or self fertilizing populations. Hardy and Weinbe (see Chapter 6) have firmly established that sexually reproducing a cross fertilizing populations do not become any "purer" with time, a that when applied to such populations the notion of "nure" race abened

Although members of a sexual cross fertilizing population are rare if ever, genetically identical, and although individuals of a clone or pure line usually are genetically uniform, individuals in a sexual speci are far more interdependent than those in clones or pure lines clone of bacteria, every cell may give rise by division to a progen but individuals of a clone are independent from one another in repr duction In sexual species, an isolated individual can leave no progei and is lost to the species. Members of a sexual population are inte dependent. They are bound together by ties of mating and parentag Every individual derives its genes from the common gene pool of the population, and returns its genes to the same gene pool

The word population" is sometimes used loosely to refer to ar group of living beings, thus we speak of the bird population of forest or of the fish population of a lake But a Mendelian population is a reproductive community of sexual and cross fertilized individua among whom matings regularly occur and who, consequently, have common gene pool

In theory Mendelian populations may be homozygous for all the genes, but this happens rarely or never in reality Every member of Mendelian population (identical twins excepted) is likely to have a genotype of its own not found in any other individual. It would be meaningless to say that every individual belongs to a separat It is also easy to see how little meaning except in a purel descriptive sense, has the idea of 'type when applied to a Mendelia population Such expressions as the average condition or the typi cal' phenotype may be entirely misleading For example, most human populations consist of persons with O A, B, and AB blood groups, bu there is no such thing as an average" blood group We can say only that in some populations persons belonging to certain blood groups are relatively more frequent than those belonging to other blood groups perfectly clear cut, since, when tested by competent observers, there is never any doubt about the blood group to which a person belongs. The situation with tasting the PTC substance is a little less definite, since some persons find weak solutions of PTC tasteless but strong solutions bitter. Classification of such persons as "tasters or non-tasters may be ambiguous. With many other truts, especially those determined by polygenes (cf. Chapter 2), the different genotypes ful to produce discrete phenotypic classes. Thus the pigmentation of human skin varies all the way from allino to black. Similarly, the color of the hair and eyes, the shape of the head, and countless other human characteristics vary continuously from one extreme to another

Dominant Deleterious Genes and Hereditary Diseases. We have seen in Chapters 4 and 5 that, in any living species, there occur from time to time mutations and chromosomal changes, most of which are more or less deleterious to their carriers in the environments which are normal for the species. There exist, of course, all transitions between mutants which produce dangerous hereditary diseases and mutant genes which are neutral and even useful to the organism.

Some mutants act as dominant lethals, that is, they hill their carriers even in heterozygous condition. Thus in Drosophila many eggs de posited by an untrented female mated to a male treated with X-rays full to produce larvae. The death of the eggs is due to induction by X-rays of dominant lethals (mostly myrible chromosome breakages) in the treated spermatozoa. An example of a spontaneously arising lethal in man is retinoblastoma. A form of tumor in the retina of the eye which causes death usually during infancy. According to Neel and Falls, about 4 in 100,000 infants born in the State of Michigan are new retinoblastoma mutants.

Deleterious mutants which are not completely lethal may be retained in a population for several generations. This is the case with numerous hereditary defects and diseases in human populations. Thus the chondrodystrophic dwarfism (see Chapter 2, page 32) is a semilethal in the genetic sense. These dwarfs enjoy satisfactory health, but according to Haldane, produce on the average only about one fifth as many children as do normal persons.

Recessive Deleterious Genes and Hereditary Diseases A newly arisen recessive mutant is likely to be carried in an individual heterozygous for the recessive and for the dominant normal allele. Even if the recessive mutant is lethal when homozygous, the heterozygous carriers may be normal in appearance and in health. A vast majority of genes for rare recessive hereditary diseases are carried in populations in

migration and to intermarriage of people whose parents were born in remote parts of the world

The existence of genetic differences between sympatric individuals, members of the same Mendelian population, is referred to as individual variability or as polymorphism Genetic differences between Mendel Jan populations are called racial or subspecific Race and subspecies are synonyms, the former word being used most often in connection with man, and the latter for organisms other than man Breeds of domestic animals and carieties of cross fertilized cultivated plants are races It should be noted, however, that, although most races of free living species are allopatric, breeds and varieties of domesticated species may be either sympatric or allopatric, since their mating is con trolled by man Human races were originally allopatric, but with the development of the cultural regulation of marriage they have become partly sympatric (see Chapter 13) The word "variety" has been used in so many different senses that it is at present worthless as a scientific term. It is sometimes applied to clones of asexual species and even to sympatric genotypes within a polymorphic Mendelian population, which cannot legitimately be called rices or subspecies

Some Examples of Polymorphism in Human Populations As shown in Chapter 6, a Mendelian population may be described most ade quately in terms of relative frequencies of various genes and chromo somal variants in its gene pool. For example most human populations are polymorphic with respect to the blood groups. The American white population consists of approximately 47 per cent of group B, and 5 per cent of group AB. Since human populations are panimetic with respect to the blood groups (nobody chooses his mate according to the blood group), it can be deduced that the three alleles which determine the blood groups, 1°, 1^s, and 1th have the frequencies in the gene pool respectively of 0 67, 0 26, and 0 07

Of course human populations are polymorphic with respect to many genes other than those which determine the blood groups. In the foregoing chapter it has been mentioned that some 70 per cent of American whites are tasters and some 30 per cent are non tisters of the PTC substance. In the gene pool about 55 per cent of the sex cells carry the recessive gene t for non tasting and the remaining 45 per cent contain the dominant gene T for tasting.

The phenotypic manifestation of the genetic polymorphism in Men delian populations may or may not be very conspicuous. In human populations the polymorphism with respect to the blood groups is Chetverikov devised a technique of bringing to light the recessive mutants which are hidden in normally appearing heterozygous individuals. The principle of this technique consists in breeding the individual flies collected in nature in laboratory cultures and obtaining progenies in which certain individuals carry in duplicate chromosomes which were present in a single dose in the free living ancestor. The

Figure 7.1 The sickle shipes assumed by the red blood cells of persons heterozygous (lcft) or homozygous (right) for a gene for sickle-cell anema when subjected to reduced oxygen supply (Courtess of Professor J V Neel)

results of the study were startling. Almost every "normal fly living in the state of nature proved to be heterozygous for one or more recessive genes which are lethal or semilethal, or cause sterility or modify in various ways the physiological characteristics or the external appearance of the homozygous individuals. Many mutants previously found in laboratories were shown to be present also in natural populations, many new mutants were discovered.

Table 71 provides an illustration of the degree to which the geno type of a sexually reproducing species may be riddled with deleterious mutants. We must of course remember that every fly carries two second and two third chromosomes (one received from the mother and the other from the father). It is obvious then that few, if any flies in nature are free of the potentially deleterious genes. On the

normal appearing heterozygotes, making it difficult to detect and to eliminate them by any plausible eugenical measures. Thus the juvenile amaturotic idioev cruises the death of the homozygotes before the onset of sexual maturity, and yet the parents of the afflicted children are normal people. Albinism in man may be classed as a midly deleterious condition due to homozygosis for a recessive gene, but the parents of the albino are normally pigmented. Muller has estimated that a "normal" and healthy person in human populations is heterozy gous, on the average, for eight recessive genes which could produce, in homozygous condition, more or less grave defects or diseases

Perhaps most interesting at this point are human genes which are disabling or even fatal to homozygotes but are also detectable in heterozygotes. Individuals homozygous for the gene for thalassemia die of a fatal anemia, usually in childhood. The parents of the anemics may have a mild form of anemia (thalassemia minor"), and their red blood cells show certain peculiarities detectable under the microscope. The gene is, then, lethal in homozygous and subvital in heterozygous condition. The remarkable condition is that the thalassemia occurs chiefly among people native to the Mediterranean region (Italians, Greeks, Syrians, etc.). In populations of some parts of Italy this gene reaches, however, astonishingly high frequencies—10 or more per cent of the gene pool.

Another form of lethal anema is due to homozygosis for another recessive gene which occurs chiefly among people of African extraction. This anemia or sickle cell disease, causes the red blood cells to assume characteristic shapes (Figure 71) when placed in a medium deficient in oxygen. The heterozygous carriers of this gene are normal or very mildly anemic. The frequency of the sickle cell gene in some Negro populations exceeds 40 per cent, although in other populations it is low.

It is certain that man is not the only species afflicted by accumulation of deleterious genes in its gene pool. Most, or all, sexually reproducing organisms share the same fate. The most detailed relevant studies, begun in 1925 by a Russian geneticist Chetverikov, have been made on natural populations of Drosophila flies. It may be noted that a fair number of mutants had been found before 1925 in Drosophila in laboratory cultures, but the outdoor populations of these flies seemed quite uniform and free of mutants. So much so that some authorities at that time suspected that mutants are just laboratory artifacts which never occur in nature.

selection will act to retain both alleles, A and a, in the population in definitely. The population will, accordingly, be polymorphic, polymorphism munitained by selection is known as balanced polymorphism. The genes under the conditions outlined above will reach equilibrium frequencies at the following values.

$$q = s_2/(s_1 + s_2)$$
 and $(1 - q) = s_1/(s_1 + s_2)$

This little evercise of mathematics leads to interesting biological conclusions. First of all the mechanism of balanced polymorphism will maintain in the population any gene which produces a heterotic heterozygote, no matter how poorly viable, or even lethal, may be the homozygote. Assume for example, that the homozygote, aa, is lethal ($s_{-}=10$) and the other homozygote, AA, is slightly less fit than the heterozygote (let s_{1} be 0.1). Natural selection will establish an equilibrium at which the gene a will have a frequency of q per cent in the gene pool [0.17(1+0.1)=0.09]

It is quite conceivable that the occurrence of some recessive hereditary defects and diseases in human and other species may be kept up by balanced polymorphism. There is some evidence (Allison, 1954) that heterozygous carriers of the gene for the sickle cell anemia are less susceptible to malaria (tropical fevers) than are the "normal homozygotes. In countries where malaria is prevalent even a relative immunity may constitute an important adaptive advantage. Natural selection will then maintain a certain incidence of the genes for the sickle cell anemia in the population of malaria ridden countries, despite the fact that the homozygotes for this gene die of fatal anemia.

Chromosomal Inversions in Drosophila Populations Experimental verification of the hypothesis of balanced polymorphism proved possible in populations of Drosophila Natural populations of some species of these flies vary with respect to a rather recondite trait, namely, the structure of their chromosomes. The arrangement of the genes in the chromosomes is visibly reflected in the grant chromosomes of the salivary glands of Drosophila larvae (Figure 72). Different chromosomal variants found in the same free-hing population differ in inversions of blocks of genes (cf. page 66). The flies which have chromosomes with different gene arrangements interbreed freely, therefore, some flies possess two chromosomes of a pur with identical gene arrangements (inversion homozygotes), and other flies have the two chromosomes with different gene arrangements (inversion heterozygotes).

TABLE 71

PERCENTAGES OF THE SECOND AND THIRD CHROMOSOMES IN SOUTH AMERICAN POPULATIONS OF Drosophila williston; Which Contain Various Deleteroos Recessive Mutant General Contains and Contains Various Deleteroos

(After Pavan and Collaborators)

I ffects in Homory gotes	Second Chromosome	Third Chromosom	
Lethal or semilethal	51 2	5 2 1	
Subvital	57 5	49 1	
Sterility	31 0	27 7	
Ret irded development	31 8	35 7	
Accelerated development	13 7	28	
Visible abnormalities	15 9	16 1	

other hand, we must remember that Table 71 shows the total fre quencies of all kinds of lethals, semilethals, subvitals (relatively mild hereditary diseases) sturnity genes, etc. Most of these mutant genes are not allelie, and flies heterozygous for two or even for several lethal genes are quite viable and normal in appearance.

Heterosis and Balanced Polymorphism Most of the genes considered up to this point produced heterozygotes which were similar to or intermediate between, the corresponding homozygotes (that is the heterozygotes Aa, either resemble one of the homozygotes, AA or aa, or are intermediate between them). It happens, however, that some genes produce heterozygotes, Aa, which are superior in vigor or in fit ness to both AA and aa homozygotes. A superiority of the hybrids, heterozygotes, is known as hybrid vigor, or heterosis. This condition is common in nature, and it is very important in agricultural practice. The exploitation of heterosis in hybrid corn in the United States has resulted in an increase of the yield of about 15 bushels per acre. It is estimated that the aggregate increase of the yield for the whole country in 1946 was between 832 and 924 millions of bushels (see Chapter 9).

The dynamics of a population with heterotic heterozygotes can be described as follows Suppose that the adaptive value of a heterozygote, Aa, is equal to 1. The adaptive values of the homozygotes AA and aa, are, respectively, $1-s_1$ and $1-s_2$ (s_1 and s_2 are of course selection coefficients, see Chapter 6). Suppose that the frequencies of the genes A and a in the gene pool of the population are q and (1-q). It can be shown mathematically that when the adaptive value of a heterozygote is above those of both homozygotes, natural

Figure 7.3. A population eage used in studies on the processes of natural selection in experimental populations of Drosophila. The eage contains fifteen cups with the nutrient medium adapted for raising Drosophila files in Hobertutnies. The cups with used up medium can be removed and replaced by cups with fresh food without losing any of the files in the eage. (After Dobzhansky courtesy of Scientific American)

The flies homozygous and heterozygous for different chromosomal variants look externally alike. It is, nevertheless, possible to demon strate by experiments that the inversion heterozygotes usually show hybrid vigor, that is, are superior in fitness to the homozygotes. The experiments are conducted on artificial populations living in "populations in "in " populations in " in " populations in the state of the state of

Figure 7.2. An inversion in Drosophila pseudobscura a The Standard" ar rangement of discs in the third chromosome b The 'Arrowhead arrangement ε and d' The inversion loop formed in the third chromosome in the cells of lurval salivary glands in individuels heterozygous for the inversion that is carrying one Standard and one Arrowhead chromosome In dr the chromosomes are drawn with a space between them in order to show more clearly the method of pairing (From Moore)

lation cages (Figure 73) A population of Drosophila flies with known frequencies of different chromosomal structures is placed in the cage, fresh food is introduced at intervals, and the used up food removed, from time to time samples of the larvae are taken, and their chromosomes evamined under the microscope

If flies with chromosomes of a given kind were superior in fitness to other chromosomal types natural selection would make the population uniform for the favored chromosomal structure. In actual experiments this uniformity occurs only rarely. More often, the population in the cage reaches an equilibrium at which two or several

Figure 7.3. A population cage used in studies on the processes of natural selection in experimental populations of Drosophila. The cage contrains fifteen cups with the nutrent medium adapted for raising Drosophila files in laboritories. The cups with used up medium can be removed and replaced by cups with fresh food without losing any of the files in the cage. (After Dobzhansky courtesy of Scientific American.)

kinds of chromosomes occur side by side. Now, as shown above, such an equilibrium is expected if the inversion heterozygotes are superior in adaptive value to the homozygotes.

Figure 74 shows the outcome of an experiment in which a popula tion of *Drosophila pseudoobscura* placed initially in the cage had 10

Figure 7.4 Progress of natural selection in a population of Drosophila pseudoobscura kept in a population cage (see Figure 7.3) The gene pool of this population contained originally about 11 per cent of one kind of chromosome and 89 per cent of another The bars show a gradual increase in the frequency of the chromosomes which were originally rure in the population and an eventual attainment of a stable equilibrium

per cent of the chromosomes with the gene arrangement called "ST" and 90 per cent of the chromosomes with the arrangement known is CH. The graph shows that the incidence of the ST chromosomes in the population rose rapidly (and that of CH declined). However, in about 250 days after the start of the population (corresponding to some ten fly generations), the population reached an equilibrium state with approximately 70 per cent ST and 30 per cent CH chromosomes.

somes The changes observed in this population indicate the following adaptive values for the different chromosomal types

Chromosomal Types		Adaptive Value		Selection Coefficient	
Heterozygotes	ST/CH	1	00	0	
Homozy gotes	ST/ST	0	90	$s_1 = 0$	10
Homozygotes	CII/CII	0	41	$r_2 = 0$	59

According to the formula given above (page 143), the population is expected to reach an equilibrium when the ST chromosomes amount to $q_{ST}=s_{\perp}/(s_1+s_{\perp})=0.85$ or 85 per cent of the total. The frequency of ST chromosomes observed in the experimental populations a veri after the start of the selection process is slightly below the predicted frequency.

Individuals and Populations as Units of Natural Selection. The experiment just described raises an interesting problem. The outcome of natural selection in a population containing ST and CH chromo somes has been to establish an equilibrium condition at which the population consists of certain proportions of the chromosomal heterozygotes ST/CH, as well as of the homozygotes, ST/ST and CH/CH. These homozygotes, particularly CH/CH possess a low fitness. We may say that the CH/CH homozygotes are afflicted with a grave hereditary disease, a fitness of 41 per cent means that the genotype is effectively semilethal. Natural selection, then causes the appearance in every generation of a certain number of genetically crippled individuals. It seems very strange that natural selection should fail to climinate from the population the unfit genotypes.

The solution of this paridox, however, is simple. Let us keep in mind that the fittest genotypes in many populations are heterozygotes endowed with hybrid vigor. But a sexual population consisting en tirely of heterozygotes for a pair of allelic genes or chromosomal structures would produce according to Mendel's first law a progeny consisting of only 50 per cent of heterozygotes and 50 per cent of homozygotes. What natural selection does is to establish proportions of the genotypes at which the average fitness of an individual in the population is the highest attainable one, but the high fitness of the population as a whole is purchased at the price of producing some genetically unfit individuals (the homozygotes). We are compelled to conclude that with sexual reproduction, it is the Mendelian population, as well as the individual which is the unit of natural selection and evolution

The hybrid vigor is a very widesprend phenomenon in sexually reproducing populations of both wild and domesticated animals and plants. We shall discuss it in more detail in Chapter 9. The fitness of these populations is maintained by natural selection by means of mechanisms such as are described for Drosophila nonulations.

Chromosomal Races in Drosophila A population of Drosophila living in nature, like the experimental populations considered above,

Figure 7.5 The relative frequencies (symbolized by the dimensions of the squaries) of three different kinds of chromosomes in populations of *Drosophila* pseudoobscura which live at different ledevations in the Starts Nevada in or near losemite Park California Suppled white and shaded squares represent three different kinds of chromosomes. The fly populations which occur at different elevations are racially distinct.

may be characterized by the relative frequencies of the various chromosomal variants in its gene pool. Thus a population of *Drosophila pseudoobscura* near Mather, in the Sierra Nevada of Culforny, con tains about 32 per cent of third chromosomes with the gene arrangement called ST, about 19 per cent of the chromosomes with the gene arrangement CH about 37 per cent with the arrangement AR, about 9 per cent with the arrangement TL and the remaining 3 per cent with other gene arrangements. Since, as the experiments have shown, the flies carrying different chromosomes differ from each other in fitness the populations which inhabit localities with different climatic and other conditions often show distinct differences in composition Figure 75 illustrates the composition of the populations of several

localities in the Sierra Nevada not far removed from Mather, but Iving at different elevations. The sizes of the squares symbolize the frequencies of the different chromosomes, stippled squares represent frequencies of the chromosoms with the ST gene arrangement, white squares show the frequencies of AR chromosomes, and cross-hatched squares refer to the frequencies of CH chromosomes. Now, at the locality Iving at the lowest elevation above the scalevel (on the left in Figure 75) the ST chromosomes are the commonest, followed by AR, and CH chromosomes are relatively rare. As one ascends the mountain range (moving to the right in Figure 75), the ST chromosomes become progressively less frequent, and AR chromosomes more and more frequent.

The situation observed in the lowly Drosophila fly is very instructive, for it illustrates the nature of races in many sexually reproducing organisms including man. Consider that the population of the highest locality (elevation 10,000 feet above the sea level, the rightmost population in Figure 75) is very different in composition from the population of the lowest locality. But Figure 75 shows that localities intermediate in elevation have populations of intermediate composition. The frequencies of genes and chromosomal variants in the gene pools of adjacent populations change gradually, they form geographic gradients or clines.

It is clear that knowing the blood group of an individual human being (or the chromosomal constitution of an individual *Drosophila* pseudoobscura) is, with some exceptions, quite insufficient to determine his "rice or the geographic location of the population from

quencies of the genes shown in the Americas and in continents

quencies in the Americas and in Australia refer to the indigenous populations of these continents Geographic distribution of the gene In giving rise to the B blood group in man Figure 77

which the individual cume For this purpose we must have a sample of individuals from a population, and the greater the sample, the more exactly can its geographic origin be inferred

A question may perhaps be asked at this point. Why not divide the human species into four races corresponding to the four blood groups, or the species Drosonlila pseudoobscura into a number of races cor responding to the several chromosomal types? The answer is simple brothers and sisters often belong to blood groups (or chromosomal types) different from each other and from their parents For example, if the two parents belong to O and AB blood groups, respectively, half of their children will belong to A and the other half to B blood groups Furthermore, mankind varies not only with respect to the gene Io IA-IB but with respect to many other genes Thus some people have Rhesus positive and others Rhesus negative blood, and this trait is determined by alleles of another gene, Rh A person of any of the four blood groups, O, A, B and AB, may be either Rhesus positive or Rhesus negative Human populations are differentiated with respect to the Rhesus gene, the Rhesus negative allele being most frequent in the populations of Western Europe, particularly among the Basques of northern Spain and southern France To these must be added several other known genes which determine the properties of human bloods, the various combinations of which give several thousand blood genotypes each of which would have to be considered a separate race But there are also many other genes which are variable in human populations the combinations of which are so numerous that no two indi viduals are likely to have the same genotype We come, then, to the conclusion already stated above races are not distinct individuals or genotypes, but populations which differ in the incidence of some genes or chromosome structures in their gene pools

The Problem of 'Neutral' Race Differences

The Problem of 'Neutral' Race Differences

Human races charac

terized by blood group frequencies differ in an important respect from

the chromosomal races in Drosophila discussed above In Drosophila

some of the chromosomal types are adaptively superior to others in

certain environments and the chromosomal races are adapted to the

environments of the territories in which they occur But in min there

is little wholly convincing evidence that the differences between hu

man races are or are not adaptive Is the straight thick hur charac
teristic of the yellow race best suited for living in Asia, the thinner

straight, wavy, or curly hair of the white race for living in Europe,

and the kinky Negro hair for living in Africa? Is there any advantage

in having the thick Negro lips in Africa, and thinner lips in Europe

and Asin? Why should round (brachveephalic) heads be common imong the inhibitints of Central Europe and long (dolichocephalic) heads among the northern and the southern Europeans? The dark shin color of many human populations appears to be advantageous for living in hot climates, and the light color in temperate climates and yet, although sunburns are health hizards, most persons of the white race develop the protective suntain easily enough and can with strind exposure to the tropical sun. There is a possibility that pale skin colors are advantageous when sunshine is scarce, because they facilitate the formation in the organism of the protective autirachite vitamin. D. The Aydeine for this is however, not decisive

Many races of animal and plant species differ from each other in colors, in proportions of some body parts, and in other traits which do not seem to facilitate the survival or reproduction of their carriers in the environments in which they occur. Some zoologists and hotanists accordingly believe that many, or even most, race differences are adaptively neutral-they neither help nor handicap their possessors There even was an opinion which for some years was current among both biologists and anthropologists, that the traits used to distinguish and to classify races and species should be adaptively neutral. Adam tively significant differences are so the argument ran, too easily modi fied by the environment and consequently not reliable as basis of classification. But if the differences between races and species are adaptively neutral, how could they be established by natural selection, which perpetuates useful and eliminates harmful traits? Those who believe that organic evolution is brought about chiefly through the action of mutation, gene recombination, and natural selection are inclined to think that most race and species differences are adaptive. or at least were so at the time when these races and species were in the process of formation

The plain truth is that little research has been done to study the possible effects on fitness of the genetic differences among individuals within human populations or between the populations (races). All too often it has been assumed that all normal human beings function very nearly similarly. This typological thinking has doubtless prevented the discovery of the adaptive significance of numerous human traits. It should be remembered that even slight selective advantages may be important in evolution. If the possessors of darker skins produce, in the tropical climates an average of 101 surviving children for every 100 children produced by persons with lighter skins, the tropical countries will eventually be populated by dark races.

Furthermore, selective advantages need not necessarily be expressed in robust health. Suppose that in certain cultures the possessors of curly hair will be sexually more attractive to the opposite sex than individuals with straight hair. This preference might lead to the formation of a race with curly hair.

Finally, the externally visible racial "traits" may be only outward "marks of physiological differences which are important in adapta tion As pointed out in Chapter 2, a gene difference often produces a whole complex of traits, some more and others less striking to an observer's eye An excellent example of such a manifold effect of genes has been discovered in the common garden onion by Walker and his collaborators (see Chapter 5) The resistance or susceptibility of the onion bulbs to smudge (a parasitic fungus) is determined by the pres ence or absence in the onion scales of certain chemical substances (catechol and protocatechuic acid) White onions do not contain these substances and are susceptible to the smudge, colored (red or purple) onions are resistant. The color of the onion bulb is known to be determined by several genes. Is, then, the color of the omon bulb adaptively important? It may well be that being white or purple is of no importance to the welfare of the plant. However, the color genes also cruse resistance to smudge infections, and this re sistance may be very important for the plants growing in localities in which these infections occur It is most probable that many allegedly "neutral genes in man will be found to induce physiological characteristics of importance in health or disease

Experiments on Mountain and Valley Races of Plants Although we are often unable to see the selective advantages of racial traits, there is no doubt that the process of formation of races in general serves to adapt different populations of a species to live in the environments of different countries in which these populations occur Experiments bearing on this problem have been made on races of certain

California plants by Clausen, Keck, and Hiesey

Figure 78 shows races of yarrow (Achillea) from different parts of California The race growing on the humid Pacific Coast near San Francisco is a compact plant, with a thick stem, which grows throughout the year, including the mild winters in the maritime climate of this race. In the hot and dry interior valley of California there is a race consisting of very tall plants with gray pubescent leaves, which grow chiefly during the winter and spring seasons when there is some rain, and are dormant during the long rainless summer. In the forest belt of the Sierra Nevada grows a relatively tall race with a slender erect

stem Because the winters in its native hibitat are severe the plints become dormant when the weather turns cold, and the active growth and flowering occur during the spring and summer Finally, in the high alpine zone of the Sierra Nevida is a dwarf race which is able to grow, flower, and mature its seeds during the very short mountain summer and to remain dormant over the long cold season

The question which naturally arises is this. To what extent are the differences between the races of varrow due to diversity of their genotypes, and to what degree are they induced directly by the environments which these races inhabit? With varrows, this question can be resolved by experiments more conclusively than is possible with human races A varrow plant can be cut in two or several parts, the parts may be replanted in soil, where they continue to grow and eventually flower. The parts have the same genotype, they are mem bers of a clone. The differences which may appear among the plants growing from parts of the same individual replanted in different localities are due to the environments of these localities. In the experi ments of Clausen Keck and Hiesey, individuals of the different races of varrow were subdivided, each into three parts, and the parts were replanted in three experimental gardens. One of the gardens lies in the constal region of California, the second, at a moderate elevation about the sea level in the forest cone of the Sierra Nevada, and the third high in the alone zone of these mountains

The coastal race of the varrow planted in the forest zone of the mountains is forced into dormancy during the winters, grows slowly during the spring and the early summer, and flowers much later than the native race does The coastal race is usually killed in the alone zone during the first winter, and it never develops flowers, the geno type of the constal race may be said to be lethal in the alpine zone The race native in the forest zone of the mountains grows mute tall when planted in the coastal garden, but about two thirds of the individuals become dormant during winter. In the alone garden this race shows a variable behavior some individuals die, others grow only slowly and still others grow tall and come into flower, although too late in the season to ripen seed. Finally, the alpine race can grow and flower at both the coastal and the mountain gardens, but it is the only race which is able to cope successfully with the rigors of its native habitat. On the coast and in the forest zone the alpine race is, however much weaker than indigenous plants

There is no doubt, then, that the parrow races have different hereditary endowments On the other hand, both the external appearance

Furthermore, selective advantages need not necessarily be expressed in robust health Suppose that in certain cultures the possessors of curly hair will be sexually more attractive to the opposite sex than individuals with straight hur. This preference might lead to the formation of a race with curly hair

Finally, the externally visible racial "traits" may be only outward "marks of physiological differences which are important in adapta tion As pointed out in Chapter 2, a gene difference often produces a whole complex of traits, some more and others less striking to an ob server's eye. An excellent example of such a manifold effect of genes has been discovered in the common garden onion by Walker and his collaborators (see Chapter 5) The resistance or susceptibility of the onion bulbs to smudge (a parasitic fungus) is determined by the pres ence or absence in the onion scales of certain chemical substances (catechol and protocatechuic acid) White onions do not contain these substances and are susceptible to the smudge, colored (red or purple) onions are resistant. The color of the onion bulb is known to be determined by several genes Is then, the color of the onion bulb adaptively important? It may well be that being white or pur ple is of no importance to the welfare of the plant. However, the color genes also cause resistance to smudge infections, and this re sistance may be very important for the plants growing in localities in which these infections occur It is most probable that many allegedly "neutral genes in man will be found to induce physiological charac teristics of importance in health or disease

Experiments on Mountain and Valley Races of Plants Although we are often unable to see the selective advantages of ricial traits there is no doubt that the process of formation of races in general serves to adapt different populations of a species to live in the environ ments of different countries in which these populations occur periments bearing on this problem have been made on races of certain California plants by Clausen, Keck, and Hiesey

Figure 7.8 shows races of varrow (Achillea) from different parts of California The race growing on the humid Pacific Coast near San Francisco is a compact plant with a thick stem, which grows through out the year, including the mild winters in the maritime climate of this In the hot and dry interior valley of California there is a race consisting of very tall plants with gray pubescent leaves, which grow chiefly during the winter and spring seasons when there is some rain, and are dormant during the long rainless summer In the forest belt of the Sierra Nevada grows a relatively tall race with a slender erect

Figure 78 (continued)

Figur. 7.8 Baces of yarrow (Achillea) from California. The upper middle and lower horizontal rows represent plants rative in the alpine zone in the mountains and in the valley respectively. The vertical row on the left shows these plants as they appear when grown in an experiment if garden at the sea level in the middle the plants grown in an experimental garden at a moderate altitude (4500 feet above sea level) on the right the plants grown in the alpine zone (1000 feet above sea level) on the right the plants grown in the alpine zone (1000 feet above sea level). These pictures show then the norms of reaction of three races as manifested in three different environments.

body has a relatively smaller body surface than a smaller body of the same shape. The body surface loses heat by radiation and by convection, accordingly, a relatively small body surface will be favored in cold climates, and a large body surface in hot climates. We need only to recall the discomfort felt in our ears in very cold weather to understand that relative reductions in size of such protruding body parts as ears, legs, and tails will be favored by natural selection in cold climates. In hot climates, on the contrary, these protruding body parts will facilitate the cooling of the body.

Major and Minor Races Authorities in anthropology often disagree on just how many races compose mankind. Two to more than two hundred races have been distinguished by different specialists in race studies. So wide a divergence of opinion arose because race differences are quantitative rather than qualitative. Some races differ very slightly, others are quite distinct (see Chapter 13)

We have seen that the populations of Drosophila pseudoobscura which live at different elevations in the Sierra Nevida of California differ in the meidence of certain chromosomal structures (Figure 7.5). The same kinds of chromosomal structures occur at all elevations, although in different proportions. Much greater differences have been found between populations of this species of fly in California and in central Mexico. Most chromosomal structures which occur in California do not occur in Mexico, and vice versa, those which do occur in both regions have different frequencies. It can be stated that populations which live at different elevations in the California mountains are racially distinct from eich other. Populations of California are racially distinct from populations of Mexico, but the differences between the California populations are much smaller than those between California and Mexico populations.

In man, the native populations of Europe (white), of central Africa (Negro), and of central Asia (Mongoloids) are obviously different, even to a superficial observer. The populations of different European countries are also different, but much less strikingly so. All these populations are racially distinct. Should we conclude that there exist major and minor races? In a way this is a correct description of the situation but we must emphasize that there are also all possible transitions between very slightly and very strongly marked racial distinctions. Race differences of all magnitudes may be encountered. To a classifier of races this fact creates great difficulties, since it makes agreement on the number of races to be recognized virtually unattainable. To an evolutionist, however, the same fact is most significant.

and the physiological functions of individuals of each race are profoundly modified by transplantation to foreign environments, as Figure 78 clearly shows It is neither heredity alone, nor the environment alone, which makes a parrow race what it is It is the developmental pattern engendered by a certain heredity in a certain environment

Some Rules of Racial Variation If we examine races of several more or less related species inhabiting the same country, some re semblances between them are often noticed. For example, many species of beetles are represented in Arizona and in California by races which are colored more lightly than the races of the same species in the humid Pacific Northwest and in western Canada It is as though the inhabitants of a given country followed a common 'style" The existence of such styles or trends was noticed by zoologists and bot anists of the past century They interpreted these observations in a way which is not acceptable at the present time they assumed that the geographic environment directly alters in some mysterious way the genotypes of diverse organisms. The problem has been re exam med more recently by Rensch, Mayr, and others These investigators concluded that some, and probably all, rules of racial variation result from parallel development by natural selection of analogous adapta tions in different species of organisms

It is easy to see that natural selection in cold climates will favor in diverse animals adaptations which minimize the heat loss, in hot climates arrangements will be favored which facilitate the cooling of the body. Accordingly the races of many manimals that live in cold countries have longer but finer fur than races of the same species in hot countries. Thus for the mountain lon (puma) in the relatively cool climate of the mountains of Mexico the mean length of the hair in the pelage is about 31 millimeters, whereas for the race of the same species in the equatorral climate of the Amazon valley the mean hair length in the comparable part of the pelage is only 12 millimeters. The European fox has fur 46 millimeters long in eastern Germany, and in subtropical Algeria only 39 millimeters. The otter fur in eastern Germany is 23 millimeters long, and in tropical Ceylon only 15 millimeters long.

Races of many animals (warm blooded as well as cold blooded ones) which inhabit cold climates tend to be larger in body size than races which live in warm countries. Moreover, races of warm blooded animals in cold countries have relatively shorter tails legs, ears, and beaks than the inhabitants of warmer climates. The biological significance of these rules is understandable if we consider that a larger

venuence and common sense. For some purposes, for example for an elementary course of anthropology, it is better to recognize only a small number of major' races. For a detailed study of the inhabitants of a country a finer subdivision may be called for. The human species, and other species, contain as many races as we see fit to distinguish (see Chapter 13)

Figure 79 Races of the golden whistler (Pachycephala pectoralis) which live on different islands of the Solomon Archipelago in tropical Pacific (After Mayr)

However there is a biological phenomenon which may be made use of in order to make the racial groups more objective than they would otherwise be. One of the major difficulties with race classifications has been that, although the geographically remote populations are clearly distinct the intermediate populations connect the extremes by insensible gradations. As we have seen, these gradations are due to the existence of gene gradients or clines. It frequently happens, however that the gradients are not even they do not consist of so much percentage increase, or decrease, of gene frequencies per every mile or every hundred miles traveled. Instead, in some geographic regions the gradients are more abrupt, in others they are less steep. For example, the human populations which reside on the two sides of

It shows that race formation is a gradual process, which leads to a progressive divergence of populations in response to the environmental differences encountered in the territories which those populations inhabit.

Are Races "Real" or "Man Made"? The abuse of the race concept by politicians has made many people skeptical of the usefulness of distinguishing any races at all. Indeed, do races actually cust as bio logical entities? Or are races arbitrary subdivisions which anthropologists and biologists have made for their own convenience? A proposal has also been made to abolish the term "race" altogether, and to distinguish instead "ethnic groups" in the human species. The argument in favor of this course is that the word "race" has become charged with too much emotion and prejudice.

It may well be doubted whether race prejudice can be effectively combated by calling races ethnic groups or by some other names. A better way would seem to be to explain to people the elementary biological facts underlying the scientific race concept. It is a plain fact, obvious to any reasonable observer, that mankind consists of populations, chiefly allogater ones, which differ in the incidence of various genetic characters. The genetic differences between human populations are of the same kind as can be observed between races or subspecies of domestic and wild species of animals and plants.

How Many Races? Much of the misunderstanding surrounding the concept of race is due to people's confusing two logically and methodo logically separate problems The first problem is a biological one and it may be presented as a question 'Are the populations which inhabit certain countries genetically, and hence racially, distinct?" The second problem is a question of classification and nomenclature "Do certain -populations differ sufficiently to deserve being given different names?" The first problem can, with adequate study, be solved quite objectively If the populations in question do differ in the incidence of some genetic variants in their gene pools they are racially distinct. Race differences are manifestly real and ascertainable facts But the differences between the fly populations of adjacent sections of a forest or between human populations of neighboring towns or districts, are very small, the differences between remote populations are large would be most inconvenient to give a separate racial name to every local population and would merely burden the scientific literature It is, then, up to the investigator to decide how great should the racial differences be to justify giving them names It is arbitrary how many races we distinguish in a species or rather it is a matter of consympatric, allopatric, and temporal levels has an important biological function to perform in making the populations adapted to live in different environments. No genotype is perfect, in the sense of making its carriers ideally adapted to live in all possible environments genotype may be superior to others in a certain environment but inferior in other environments. A genetically uniform species would be able to exploit successfully only a few ecological niches available in the territory where it lives A polymorphic species can occupy a greater number of habitats. A species differentiated into races, other things being equal, may occupy a greater territory than a single race could And a species which alters its genetic constitution when the environment changes, again other things being equal, is more likely to endure than a rigidly fixed species. It is most probable that, on the human level the polymorphism within and the race differences between, the populations have furnished the creative leaven for the cultural development of mankind

Suggestions for Further Reading

Mayr E 1942 Systematics and the Origin of Species Columbia University Press New York

This work has played in important role in achieving a synthesis of zoological systematics with the modern theory of evolution which was originally based thiefly on the findings of genetics. A parallel but more inclusive work dealing with botanical systematics is Stebbins book quoted among the suggested readings in Chapter 6. The books by Andrewartha and Birch and by Dobzhansky also quoted in Chapter 6 may also be useful for understanding the race and species concepts as used in modern biology.

- Clausen J 1951 Stages in the Evolution of Plant Species Cornell University Press Ithaca
- Clausen J Keck D D and Hiesey W M 1948 Experimental studies on the nature of species III Euronomental responses of climatic races of Achillea Carnegie Institution of Washington Publication 581
- Dobzhansky, Th. and Ephing C. 1944. Contributions to the genetics taxonomy and ecology of Dosophila pseudoobscura and its relatives. Carnegie Institution of Washington Publication 554.
- Lack D L. 1947 Darwin's Finches Cambridge University Press London Puterson J T and Stone W S. 1952 Evolution of the Genus Drosophila Macmillan New York

These five books (Clausen to Patterson and Stone) describe experimental and observational studies on races and species of organisms which are particulurly favorable for such studies.

the Himriaya Mountains or those living north and south of the Sahara Desert are furtly distinct. The reasons for this are not far to seek Not only is the environment likely to be rather different on the two sides of a major geographic barrier, but such a barrier impedes the travel and migration between the populations which it separates. The racial divergence, then, is accelerated by geographic barriers. The race classifier turns this situation to his advantage by making his dividing lines between races or subspecies coincide with the zones of the steep gene gradients. The Himrilayas separate the Hindu branch of the white race (or the Hindu race) from the yellow race, the Sahara separates the white and the Negro races.

Genetic Differences and Adaptation To some people uniformity has a considerable emotional appeal, especially where man is involved To gratify this emotion, J. J. Rousseau (1712-1778) invented his theory of tabula rasa," according to which a newborn infant is a "blank page" on which environment and education write this or that story of the individuals life. Somewhat similar views have more recently been espoused by the behaviorist school of psychologists, as well as by certain fashionable exponents of psychologists, and cultural anthropology.

In part, the appeal of all these variants of the tabula rasa" theory is due to the confusion of biological uniformity with social, legal and religious equality. The idea of equality is certainly precious since it is the basis of democracy and of humanitarian thinking in general. But this idea is derived not from biology but from the Christian tradition which is the basis of Western civilization. People are most certainly not biologically alike but they need not be so in order to be equal before the Law and before God. In fact, democracy may be regarded as an arrangement which permits unlike and yet equal persons to live together and to collaborate for the good of society and of mankind (see Chapter 14).

It is an ascertainable fact that the human species, as well as probably all other sexually reproducing species, show a greater or lesser amount of genetic diversity. This diversity is expressed within a Mendelian population in genetic differences among individual members of a breeding community. It is expressed in space by formation of allopatric or geographic races or subspecies, and it is expressed in time in changes which Mendelian populations undergo from generation to generation in the process of evolution.

There can be no doubt that most of the organic diversity in the

Species

Darwin's great book was entitled The Origin of Species (the full title was rather more ponderous. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life.) Darwin knew as well as anybody that formation of races and species is only a part of the grand story of evolution. The origin of species however was of crucial importance in Darwin's day, because of the current view that species were created entities which could not be produced by natural processes.

In a different way, species formation is also regarded as a critical stage of the evolutionary process in modern theories. Races of a species are populations which can and often do cross and exchange genes. Hybridization of races may and sometimes does lead to their fusion in a single population. This has actually happened, for example, to some human races, the members of which intermarried so frequently that the races disappeared as separate Mendelian populations. Races are genetically open systems, and the divergence of races is a resurrishle process it can be undone by hybridization. Species, on the other hand are genetically closed systems, since they exchange genes rurely, or not at all. Evolutionary divergence of Mendelian populations tends to become interestable once the species level is reached. For example, man and champanee are most unlikely ever to exchange genes or to form a hybrid population.

A minority of modern evolutionists, among whom Goldschmidt is most prominent, believe that the known factors of evolution-mutation, gene recombination selection, and genetic drift-account only for microcyolution, which is usually equated with race formation. Other,

Individuals, Populations, and Races

Count, E. W. (Editor) 1950 This Is Race Schumann New York

This is an anthology of anthropological writings concerned with the race con cent as applied to man. With some exceptions, the writings included belong to the pregenetical period

Boyd, W C 1950 Cenetics and the Races of Man Little Brown Boston

Application of the genetical concept of race to man

164

Coon. C S. Garn. S M and Birdsell J B 1950 Races a Study of the Prob lems of Race Formation in Man Ch Thomas Springfield, Ill

A classification of human races and a discussion of the possible adaptive sig ruficance of human racial characteristics

Origin and evolution of man 1950 Cold Spring Harbor Sumposia on Quantita tive Biology, Volume 15

The volume contains articles by thirty seven authors dealing with the problems of human polymorphism race formation and other aspects of human evo lution

sympatric species are usually quite discrete, no individuals intermediate between the species being found. If we collect animals or plants for example in the vicinity of New York, we usually find little difficulty in classifying the specimens into clear-cut species. The gaps between the species appear to be absolute and unbridgeable. To such species the hypothesis of constancy seems to apply reasonably well.

The late eighteenth and the nineteenth centuries were the times of rapid geographical exploration of the world. Collections of animals and plants were made in near and remote lands and were deposited in the museums of Europe and of America. Zoologists and botanists had more and more allopatric (page 137) forms of life to classify Here difficulties began to arise and to multiply, until the successors of Linneus saw themselves forced to abandon the idea that species are fixed.

We have seen, in Chapter 7, that populations of the same species which live in neighboring territories usually differ only slightly in the incidence of some genes and of bodily truts which these genes determine R ices found in remote territories, or in territories which are separated by barriers making migration difficult, may be more sharply distinct. If we knew only the native inhabitants of Europe and of central Africa, they would appear to us very different. But if we study people in all parts of the world we find all kinds of races intermediate between those of Europe and central Africa. Remote races of many species differ even more than remote human races. In fact, remote races of a species may appear about as distinct as separate species.

Lamarck, whose long life was spent in classifying species of plants and animals, was perhaps the first to see clearly that a new working hypothesis was demanded by the new evidence. This hypothesis was that species evolve from races. Races and species are stages in the evolutionary divergence produced by the adaptation of the organisms to their environments. Lamarck's contemporaries were not convinced that so radical a hypothesis was necessary, but some thirty years later. Darwin came to the same conclusion. In all these several respects the species of large genera present a strong analogy with varieties. And we can clearly understand these analogies if species have once existed as varieties, and have thus originated, whereis, these analogies are utterly inexplicable if each species has been independently created."

It is at this point immaterial that Lamarck and Darwin had different views concerning the processes which bring about the formation of new races and species Lamarck thought that new races and species and as yet unknown, processes should explain "macroevolution"—the origin of species and species groups

Hypothesis of Constancy of Species Living beings seem infinitely variable, no two individuals are completely alike. But the variation is not entirely haphizard, since on closer acquaintance living creatures are seen to fall into discrete groups. The evidence of these discrete groups, refers to them as kinds' of an mals or of plants, and gives to each kind' a vernacular name—cat, hion tiger, jaguar, and puma (mountain lion), etc. Linnaeus (1707–1778), the father of systematic biology, called the 'kinds' species, and gave to each species known to him a name in Latin. The species referred to above are Felis maniculata, Felis leo, Felis tigris, Felis onca, and Felis concolor, respectively

The belief in constancy of species was not accepted by everybody before Darwin Weirdest transformations of species were often cred ited. Greek and other mythologics are full of stories of gods transforming themselves or men into animals and back into men or gods. Theophrastos in uncient Greece, Pliny in ancient Rome, Albertus Magnus in the thirteenth century, Paracelsus in the sixteenth, Telliamed in the seventeenth, and Lysenko in the twentieth, all believed in transformation of one species into another. They thought that wheat occasionally produces rye or burley that fishes turn into birds, etc. Oppian (third century Rome) reached the peak of absurdity he believed that the ostrich arose from a cross between a cunel and a sparrow.

Linnaeus faced the enormous task of classifying the organisms and making the immense variety of living forms intelligible. To him, the species was the elementry unit of classification, and supposing that this unit was fixed and unchangeable was a tenable opinion. He stated this opinion in his famous dictum. Species tot sunt, quot diversas formas ab initio produkt Infinitum Ens. (Species are as many as were produced at the beginning by The Infinite). It is important to real ize that in Linnaeus's day such a view did not appear contrary to facts, as it so clearly does now.

Development of the Species Concept from Linnaeus to Darwin In 1758 Linnaeus knew 4235 species of animals. At present approximately 1,000 000 animal and about 265 000 plant species have been described Furthermore, Linnaeus worked mostly in Sweden and in other coun tries of northwestern Europe, and his collections came naturally from that part of the world, with only a scattering of specimens from other countries. In other words, Linnaeus worked chiefly with sympatric (page 137) species. It happens that, for reasons explained below,

sympatrically, in the same territory. Biologically, this is an unusual siturtion, since races of sevual and cross breeding organisms are nor mally allopatric, but it is easy to see how it happens. In man the biological urge to mate is channeled by social custom. The regulation of marriage by custom has the biological result of slowing down the exchange of genes between different mating groups, such as social or economic classes and sympatric or allopatric races. In domesticated animals and plants the control of reproduction is exercised by man Consider the races (breeds) of dogs, many of which live sympatrically. The gene exchange between them is restricted or prevented by man When this restriction is weakened, the once separate sympatric races fuse into a single variable race—the mongrel

In the state of nature the gene exchange between races of sexual organisms is limited by distance, by separation in space, by geographic isolation. This is why most races are allopatric. Neighboring allopatric populations usually interbreed more or less frequently, but the diffusion of genes from one race to other remote races is slow enough, so that the races remain distinct. Migration or diffusion of genes tends to make populations or races converge, intural selection and genetic drift tend to make them diverge. Actual convergence or divergence depends upon which of these factors get the upper hand

Different, even closely related, species are often sympatric. For example, Patterson and Stone found that about forty species of Dro sophila live together in one locality near Austin, Texas. Nevertheless, hybrids between these species are rare or absent. Why do races hybridize and exchange genes wherever possible, whereas species do not? The answer is that gene exchange between species is prevented by a variety of causes, known collectively as reproductive isolating mechanisms, in addition to geographic isolation which may or may not be present.

Distinct species may live either in the same or in different territories, both sympatric and allopatric species are common. The exchange of genes between sympatric species is limited or prevented by reproductive isolation, that between allopatric species, by geographic as well as by reproductive isolating mechanisms. For example, the wild ancestors of the domestic horse and of the domestic ass may have been in part sympatric. Under domestication, hybrids between them, mules, can be obtained, but mules are almost invariably sterile. Gene exchange between the populations of horses and asses is absent. The species are reproductively isolated. On the other hand, wild horses and zebras were allopatric species, since the former occurred, in his

were formed chiefly through inheritance of the results of use and disuse of organs, whereas Darwin considered natural selection to be the most effective agent. They agreed that the absence of any dividing lines between races and species shows that races are incipient species. Thus the difficulty of making clear cut classifications, which systematists found so annoying in their work, became the foundation of probably the greatest discovery which biological science has yet made.

Theory of Geographic Speciation Although Darwin was quite familiar with species composed of geographic races, it remained for his successors to develop a theory of geographic species formation (speciation). This theory was stated by M. Wagner (1868 and later), Jordan (1905), and in our day by Rensch (1929) and by Mayr (1942). Any species tends to spread over the surface of the earth into all territories where it can live. Populations of a species may thus be exposed to different climatic or soil conditions, to different predators, parasites, and discusses, and generally to varying environments. Through natural selection, populations respond adaptively to the environmental differences, by becoming genotypically and pheno typically differentiated into races or subspecies. It stands to reason that geographically remote territories are likely to have more sharply different environments than adjacent territories. Accordingly, remote territories are likely to be inhabited by most distinct races. Some of the allopatric races may gradually become very different in genetic structure and in external appearance from other races. If and when this happens, the single ancestral species breaks up into two or several derived species. When the new species are fully formed, they may invade each other's territories, come to live side by side, and thus become sympatric species.

Most biologists are now agreed that the usual method by which one species may split up into two or more species is by way of divergence of geographic races. Whether this is the only method is questionable Some investigators believe that populations may differentiate and become species by becoming specialized to eat different foods or to grow on different soils in the same territory sympatrically. It is, indeed, probable that such sympatric species formation occurs in organisms which are able to reproduce asexually or by self-fertilization. Species formation by allopoly ploidy (Chapter 9) is necessarily sympatric.

Geographic and Reproductive Isolation Different races of man and different breeds of domesticated animals and plants often live

sympatrically, in the same territory Biologically, this is an unusual situation, since races of sexual and cross breeding organisms are nor mally allopatric, but it is easy to see how it happens. In man the highway are to mate is channeled by social custom. The regular tion of marriage by custom has the biological result of slowing down the exchange of genes between different miting groups, such as social or economic classes and sympatric or allopatric races. In domesticated animals and plants the control of reproduction is exercised by man Consider the races (breeds) of dogs, many of which live sympatrically The gene exchange between them is restricted or prevented by man When this restriction is weakened, the once separate sympatric races fuse into a single variable race—the mongrel

In the state of nature the gene exchange between races of sexual organisms is limited by distance, by separation in space, by geographic isolation. This is why most rices ire allopatric. Neighboring allo patric populations usually interbreed more or less frequently, but the diffusion of genes from one race to other remote races is slow enough so that the races remain distinct. Migration or diffusion of genes tends to make populations or races converge, natural selection and genetic drift tend to make them diverge. Actual convergence or divergence. depends upon which of these factors get the upper hand

Different even closely related, species are often sympatric. For example Patterson and Stone found that about forty species of Dro sophila live together in one locality near Austin, Texas Nevertheless, hybrids between these species are rare or absent. Why do races hybridize and exchange genes wherever possible, whereas species do not? The answer is that gene evaluage between species is prevented by a variety of causes, known collectively as reproductive isolating mechanisms, in addition to geographic isolation which may or may not be present

Distinct species may live either in the same or in different territories both sympatric and allopatric species are common. The extories both sympatric and anoptitic species are common. The exchange of genes between sympatric species is limited or prevented by reproductive isolation, that between allopatric species, by geographic as well as by reproductive isolating mechanisms. For example, the wild uncestors of the domestic borse and of the domestic ass may have been in part sympatric. Under domestication, hybrids between them. mules can be obtained, but mules are almost invariably sterile exchange between the populations of horses and asses is absent. The species are reproductively isolated. On the other hand, wild horses and zebras were allopatric species, since the former occurred, in his170 Species

torical times, in Europe and Asia and the latter in Africa (Chapter 9) Hybrids between domestic horses and zebris are known, but they are sterile. Horses and zebras could live in the same territory as sympatric species, although they did not actually do so. as far as known.

Figure 8.1 Geographic distribution of two closely related species of flies Drosophila pseudoobscura and Drosophila persimilis

Reproductive Isolation between Two Species of Drosophila Drosophila pseudoobscura and Drosophila persimilis are very closely related species. They hive together, sympatrically, over a large territory from British Columbia to the mountains of California D pseudoobscura occurs alone in a much larger territory, extending to the Rocky Mountains, Texas, Mexico, and Guatemala (Figure 81)

Where the species are sympatric they show some ecological or habitat isolation, that is, preference for different habitats D pseudo-

obscura is more frequent in warmer and direr locations, and at lower elevations in the mountains, than D persimilis. The habitat isolation, however is incomplete, and in many places the two species occur side by side. Their hybridization is impeded, however, by sexual isolation, that is, by preference for mating within, rather than between, the species, as can be demonstrated by a simple experiment. A mixture of virgin females of both species is exposed to males of one of them. The males inseminate a greater proportion of females of their own than of the foreign species (Table 8.1). If females of either species

TABLE 81

SEXUAL ISOLATION NETWEEN Drosophila pseudoobscura AND Drosophila persumits (Equal numbers of females of the two species were exposed to males of one of them. The numbers show the percentages of the females meanmated and left virgin in such experiments.)

Females	pseudoobscura		persımılıs	
Males	Inseminated	Virgin	Insemmated	Virgin
pseudoobscura persimilis	84 3 22 5	15 7 77 5	7 0 79 2	93 0 20 8

are offered a choice of mating with males of both species they mate with conspecific males much more frequently than with foreign males

Observations in nature have shown that under natural conditions the sexual isolation between the species is even stronger than the experimental data in Table 8.1 might suggest. Females inseminated by males of foreign species are exceedingly rare. This fact may be due in part to an ethological isolation the two species being somewhat different in behavior. Described by proceedings are active during the afternoon and Described by proceedings of the first process of the ethological isolation (of which sexual isolation is a part) is also in complete, since some individuals of both species fly both in the morning and in the afternoon.

Hybrids between D pseudoobscura and D persimilis can be rather easily obtained in laboratory cultures, if females of one species are confined with males of the other. The hybrid flies of both seves are as

vigorous as the pure species, just as mules are not inferior in vigor either to horses or to donkeys. Again, like mules, the hybrid male flies show a complete hybrid sterility. They fail to produce any functional spermatozoa, on account of gross disturbances in their reproductive cells (see page 200). The female hybrids, on the contrary, are fully fertile, they deposit numerous eggs, which, when fertilized by males of either parental species, may produce viable larvae. However, the backcross hybrid progenies so obtained suffer a hybrid breakdown, they are so deficient in vigor and vitality that they survive only under fryorble conditions in laboratory cultures.

To summarize The gene exchange between D pseudoobscura and D persimils is impeded by cooperation of at least five reproductive isolating mechanisms. None of these mechanisms is by itself sufficient to prevent completely all the gene exchange between the species, yet the combination of them does accomplish this function in nature. In laboratory experiments some gene exchange can be obtained, however It is not an uncommon situation that species which never cross in nature can sometimes be crossed in experiments.

Reproductive Isolation between Species of Animals Detailed studies of the reproductive isolation between various species of Drosophila have been mide, especially by Pitterson, Stone, and Spieth They have revealed two significant facts First, the gene exchange between species is apparently always prevented not by one but by a combination of several isolating mechanisms. Second, different pairs of species are kept apart by different combinations of isolating mechanisms. By and large, sexual isolation is most widespread. Spieth found that almost every species which he studied has its own characteristic methods of courtship and copulation. And yet, some undoubtedly distinct species, especially allopatine ones which never meet each other in the state of nature, show little or no sexual isolation. As a rule males are less discriminating than females whereas males may court females of their own and of a foreign species, females accept males of their own species more easily than they do other males.

Some pairs of species show gametic isolation, which seems to be absent between Drosophila pseudoobscura and D persimilis, discussed above. The sperm delivered by a male into the genital ducts of a female is stored in a special organ, the seminal receptacle. When the male and the female belong to the same species the sperm in the seminal receptacle remains alive for days and even weeks. But when a male of Drosophila virilis impregnates a female of D americana (or male D americana, female D virilis) the sperm loses its fertilizing

173

ability a day or two later Some species of Drosophila have the socalled insemination reaction the copulation is followed by a swelling of certain parts of the genital ducts of the female, which temporarily prevents the deposition of eggs and new copulations. The insemination reaction produced by an insemination by the sperm of a foreign species may be so violent that the females become permanently sterile, yet other species of Drosophila show no trace of insemination reaction

A very common isolating mechanism is hubrid inviability. Fertilization of eggs of one species by spermatozoa of another may be accomplished, but the hybrid zygote may fail to develop normally Thus a belief was long current that domestic goats occasionally produce hybrids with domestic sheep Controlled experiments, with both natural and artificial insemination, showed, however, that cross fertilization between these species does take place, but the hybrid embryos are aborted at a very early stage of pregnancy. It is virtually certain that a similar fate overtakes the hybrids between rabbits and hares, although alleged viable hybrids of this kind have been repeatedly clumed since 1780, and were even given a name-"leporids In many marine animals no conulation occurs, eggs and spermatozoa are simply released into ambient water, and fertilization occurs outside the bodies of the This external fertilization makes possible experimental by bridization of some very unlike organisms. In the classical experi ments of Godlewsky (1906) and Baltzer (1910), several different genera of sea archins were intercrossed, and sea archin ages were fertilized with the sperm of a sea lily. Sea urchins and sea lilies belong to different classes of the phylum of echinoderms. Such remote hybridization never yields normally developing hybrid embryos Either the chromosomes of the father, brought in by the spermatozoon are thrown out of the egg nucleus and disintegrate in which case the embryo develops as that of the species of the mother Or else, if the parental chromosomes divide and are included in the cleavage nuclei. the embryos show gross abnormalities and soon die off

Isolating mechanisms which operate between species of higher animals are pretty much the same as those found between species of Drosophila and other invertebrates. As in Drosophila the precise struction varies endlessly from species to species. Sexual isolation is often important since the courtship behavior is generally unlike even in closely related species of birds and mammals. This sexual isolation may account for the fact that species hybrids are on the whole quite rare in the state of nature, although they are often obtained fairly easily in experiments. Thus, in captivity, many species and even genera of

ducks produce hybrids, some of them quite viable and fertile, and yet very few hybrid ducks have ever been found in natural hibitats Dice and Blair found the same to be true for some species of deer mice (Peromyseus)

Various crosses have been made in captivity between domestic cattle (Bos taurus), American buffalo (Bos americanus), European buffalo (Bos bonasus), Asratic yak (Pheophagus grunnicus), and In donesian banteng (Bibos banteng). The hybrids are fully viable, although difficulties occur at parturation when a relatively small mother (domestic cow) gives birth to calves sired by large fathers (European buffalo). The I₁ hybrid bulls are completely sterile, but the cows are fertile even when intergeneric hybridization is involved, as in the case of cattle X yak. The hybrid cows, then, can be backcrossed to either parental species, among the resulting progenies, the females as well as some of the males may be fertile. Indeed, some introgression (see page 127) of genes from the yak into populations of cattle has taken place in some parts of central Asia, where the two species are kept together as domestic animals.

Reproductive Isolation in Plants Among plant species we again meet a variety of isolating mechanisms. Hybrid inviability and hybrid sterility occur in plants as well as in animals. An interesting example of the former is hybrids between certain species of flax described by Laibach (1925). The hybrid embryos are so weak that they are unable to break the outer seed coat and they die within the seed. Yet when they are artificially freed from the seed coat they give healthy seedlings and mature and fertile plants. Blakeslee and Satina (1944) found an even more extreme situation among hybrids between certain species of Jimson weed (Datura), where the hybrid embryos have to be cultivated on artificial media supplied with certain chemical substances, but may eventually grow normally. Some sterile plant hybrids will be discussed in the next chapter.

Some plant species are able, in experiments, to produce viable and fertile hybrids, but do not do so or do only rarely in nature. Their success may depend upon habitat isolation, as for two species of violets, Viola arvensis and Viola tricolor. The former species grows chiefly on calcareous soils, the latter occurs mostly on acid soils. The two species seldom meet (Clausen 1922). In the Yosemite region of the Sierra Nevada of California, the manzanita bush Arctostaphylos mariposa, grows at lower elevations in the mountains than the related species, Arctostaphylos patula. In some places, however, the alti-

tudinal ranges of the two species overlap, and there some hybrid

The isolation of some species is due wholly or in part to the fact that their flowers attract different animals to transport their pollen Grant (1951) found that the columbine Aquilegia formosa in the mountains of the Sierra Nevada is pollimited chiefly by humming birds, whereas the related Aquilegia pubescens attracts chiefly hawk moths. But bumblebees visit both species, and as a consequence some hybrids are produced in natural habitats. An extreme case of insect specificity has been discovered among certain orchids in North Africa. These species have a part of the flower resembling in shape and in color the females of species of wasps or bees, the male insects are attracted to these flowers and engage in copulatory movements during which they receive and deposit the pollen of the plant. But different orchids resemble different species of wasps, making hybridization unlikely.

If flowers of one species receive the pollen of mother species, hybrids are by no means always produced. In some plants the pollen of one species grows poorly in the style of a different species, and fails to reach the ovules in time to accomplish the fertilization. This, in addition to the inviability of the hybrid seeds, prevents the gene exchange between some species which grow in close proximity and are pollinated by unselective agents, such as wind

Single Genes and Gene Systems For the sake of simplicity, we have so far considered only the simplest microevolutionary changes, which involved substitution of one or of few genes. The transformation of colon bacteria susceptible to bacteriophage attack into resist ant ones requires apparently a single gene change (Chapter 5). The same is probably true of the resistance of these bacteria to streptomycin and of the resistance of the scale to cyanide gas. When, as in the development of the resistance to peniculin in Staphylococcus bacteria the modification occurs gradually, the process is due to accumulation of several mutations, each of which increases the resistance by a small amount (Chapter 5). Such mutations are said to be additive

But evolution often involves more complex situations, some of which must be considered to gain an understanding of the biological meaning of species formation. The development of a living body, especially in higher organisms involves joint action of all the genes which the body possesses. In evolution, the gene system as a whole undergoes changes although the changes of the gene system are compounded

of changes in individual genes. A gene system may be likened to a mosue picture, and the genes to the component stones. The nature and quality of a mosue picture are determined obviously by the pat term in which the stones are placed, as well as by the characters of the separate stones.

In Chapter 2 we have considered as an example of interaction of genes the determination of the coat color in horses. Here many genes are involved, the color being the result of co-action of all of them Particularly interesting is the gene I, which in the presence of the gene B transforms the black coat color into bay, but in the absence of B has no known effects. The bi and bi horses are both chestnut (sorrel) in color. Suppose, for the sake of argument, that having the bay color is adaptively advantageous to the horse, should the gene I then be considered favorable or neutral? Obviously, this would depend upon the other genes which the organism has, particularly on the gene B

Another example of gene interaction with which we are familiar is the chromosomal variants in natural populations of *Drosophila pseudo obscura* (Chapter 7). These chromosomes differ, it may be recalled, by inversions of blocks of genes in certain chromosomes. The hetero zygotes which carry the two chromosomes of a pair with different gene arrangements are heterotic, that is, have a higher fitness than do the inversion homozygotes. Now this heterosis is produced by compleves of genes carried in the respective chromosomes. By using letters as symbols for genes, the matter may be represented thus one chromosome has the genes $A_1B_1C_1D_1E_1$ and the other $A_2D_2C_2B_2E_2$. The heterosis is produced by the interaction of all these genes in the heterozy gotes $A_1B_1C_1D_1E_1/A_2D_2C_2B_2E$. whereas the homozygotes which have two chromosomes with $A_1B_1C_1D_1E_1$, or two chromosomes $A_2D_2C_2B_2E$. have inferior fitness. The importance of the inversion of a segment of the chromosome is that the inversion prevents or greatly reduces the crossing over between the chromosomes (see page 144), and consequently the recombination of genes and the breakup of the gene complexes which produce the hybrid vigor

Species as Systems of Genes Heterosis found in inversion heterozygotes in populations of Drosophila sheds some light on a fir more general problem that of structure of the gene pool in many or all orgunisms which reproduce sexually and by cross fertilization. Let us recall (Table 71) that a high proportion of the chromosomes in Drosophila populations produce low fitness when present in double dose (in homozygous condition), yet natural populations of Drosoph-

ala consist of individuals most of which are healthy and vigorous Human populations behave like those of Drosophila flies most normal human beings probably carry in heterozygous condition genes which would produce more or less serious disabilities if they were illowed to become homozygous. The chances of their becoming homozygous are increased when relatives marry, this is why the incidence of hereditry diseases is high in small populations in which inbreeding is common. For most natural populations, at least in common and successful species, inbreeding however, is rather rare. Most of the genes in such populations are represented by numcrous different alleles, any one of which is scidom homozygous. The fitness of the homozygotes, then, is of relatively little importance to the species far more important for the adaptedness of the population is the fitness of the heterozygous combinations, since most individuals in sexual populations are heterozygotes.

The situation just described has an interesting and important consequence natural selection retains in natural populations those gene illeles which yield vigorous heterozygotes with other alleles present in the same populations. The gene pool of a sexual population comes therefore, to consist of genes that are coadapted, that is, that fit well together when present in heterozygous individuals. To use a simile, natural selection in sexual organisms encourages genes that are good mivers, rather than rugged individualists.

The process of cond-pitation makes a species something more than a collection of individuals. A sexual population (Mendchan population) is a system of genes which fit together, and yield highly fit individuals in the environments in which the population lives

Hybrid Breakdown Natural selection eliminates from populations of a species the genes which do not have the property of being "good mixers with other genes in the same populations. But genes in different species or even in remote races of the same species, need not be good mixers. Thus at least some of the genes of the horse are not coadapted with the genes of the ass. The hybrids between these species miles show a disharmony—they are sterile. Even though mules may be vigorous and resistant animals as individuals, their adaptive value in the genetic sense is zero, they do not pass their genes to any progeny. Species of cottons produce vigorous and sometimes fertile Γ_1 hybrids. The F_2 hybrids or the progenies obtained by brockcrosses to the parental species however, suffer a breakdown of fitness. Such hybrids are mostly weak and stunted rogues which cannot compete

178 Species

with their parents either as wild or as agricultural plants (see more about cotton hybrids in Chapter 9)

Not only hybrids between species but even those between remote races may suffer genetic breakdown Wallace, Vetukhov, and Briefe have recently found that when populations of Drosophila pseudoobscura which live in the states of California, Nevada, Utali, and Colo rado are intercrossed there is a perceptible loss of fitness among the Fa hybrid progenies Moore has shown (1946 and later) that when leonard frogs (Rana pipiens) from the northern part of the Umted States (for example, from New England) are crossed to frogs of the same species from Florida or from Texas the hybrid embrans die be fore completing their development. The northern and the southern leopard frogs behave as though they belonged to different species they show in Moore's experiments a complete reproductive isolation because of the inviability of their hybrids. These northern and south ern races are nevertheless capable of eachanging genes through the con necting populations which live in geographically intermediate areas Thus the leopard frogs from New Jersey or from Oklahoma produce normally viable, or only slightly abnormal hybrids, when crossed to Vermont frogs It is, then, perfectly conceivable that a useful gene, or gene combination, arising in Texas may eventually reach the Vermont populations, and vice versa

Different species have different genes because they are adapted to live in different environments. Each species occupies a certain ecological inche in the economy of nature. Thus Drosophila pseudo obscura lives in warmer and drier hibitats than Drosophila pseudo obscura lives in warmer and drier hibitats than Drosophila pseudo occupy its ecological niche and to lead a certain mode of life. The low fitness of interspecific hybrids, therefore, is a by-product of the parental species becoming adapted to different environments. Gene evchanges between populations of distinct species are likely to produce genotypes which are adapted to neither of the environments to which their parents are adapted. As the popular saying goes, they are likely to fall between two stools.

The harmful results of gene exchange between species however should not be exaggerated Some of the combinations of genes which arise owing to hybridization of species may actually be valuable, since they may be adapted to environments to which neither purent is adapted. In the state of nature the adaptive value of mules would be zero, on account of their sterility but this limitation does not prevent mules from being very useful as farm animals. Some of the

most important cultivated plants are descendants of species hybrids (Chapter 9). Cultivated plants and animals live in man created environments, which are often greatly different from natural environments. To fit his crops and his herds to the new environments, man had to provide them with new genotypes adapted to these environments. Such genotypes were produced in most instances by unrelenting artificial selection within a single species, but in some instances also by selection among hybrids between species. In doing so man merely followed the methods of nature, which occasionally makes use of introgressive hybridization (page 127) to contrive adaptations to certain environments.

Origin of Reproductive Isolation between Species of the northern and the southern races of the leopard frog resulted, in Moore's experiments, in the production of invable hybrids (see above) Such hybrids, however, are not produced in nature since the frog races involved are allopatric, the Vermont frogs have no chance to meet Florida frogs except in the laboratory of a biologist. The diffusion of genes between these races takes place only through the geographically intermediate races, which yield viable hybrids with their neighbors.

Compare with this the situation of the two Drosophila species—Drosophila pseudoobscura and Drosophila persimilis (see pages 170-171). They live side by side in a territory extending from British Columbra to California (Figure 8.1) and in this whole territory they can meet, mate, and beget hybrid offspring. The hybrid males are sterile and the backcross progenies suffer a hybrid breakdown, and are weaklings if they survive at all. The hybrids may be said to be adaptively worthless, at least in the state of nature. Yet when hybrids are produced, they consume food and occupy the place in the sun which can otherwise be exploited by the parental species. Building up reproductive isolating mechanisms that would prevent the hybridization of the species and the production of the hybrids should, then be promoted by natural selection.

An experimental demonstration that selection can, indeed build up reproductive isolation of species has been given by Koopman (1950). We have seen (Table 81) that one of the mechanisms which keep the species Drosophila pseudoobscura and Drosophila persunits apart is sexual isolation. The flies show a preference for mating within the species and an aversion for mating between species. For reasons that are obscure, this sexual isolation is more nearly complete in the natural habitats of the flies than it is under laboratory conditions. In

particular, the sexual isolation is weakened in the laboratory at low temperatures. If a mixture of equal proportions of the two species is kept at 15°C (59°F), the copulations between species are only slightly less frequent than those within the species.

Koopman made mixed populations of the two species, and main tuned them for several generations The experiment was so arranged that the hybrid flies that were produced were, in every generation picked out and discarded. The non hybrid flies, which were pro duced evidently by intraspecific matings, served to propagate the populations further The result of the experiment was that the pro portions of the hybrids produced in the populations waned from gen eration to generation, the proportions of the matings within the species gradually increased, and the proportions of interspecific copulations dwindled The interpretation of these experimental results is simple The original populations of one or of both species were evidently not uniform with respect to their sexual preferences. Some flies in ex perimental environments were more prone to mate with individuals of the foreign species than were other flies. Since the hybrids were eliminated from the populations, the flies which mated only with those of their own species contributed more offspring to the following generations than the more promiscuous individuals This situation caused a process of selection of the more discriminating variants and the outcome was an intensification of the sexual isolation. It is a reasonable working hypothesis that some of the isolating mechanisms between species are perfected also in nature by a process of natural selection

Static and Dynamic Approaches to the Study of Species The concept of species was developed in biology with a practical end in view Linnaeus and his successors described and named species of animals and plants and built a classification of living beings. This work of systematization and classification is obviously the foundation of scien tific biology We must know, and be able to tell others, with just what creatures we are working Linnaeus's work is being continued now by numerous investigators on the staffs of zoological and botanical museums in all civilized countries, as well as by individual specialists When an insect pest is found to injure the crops or an organism is suspected of being involved in the distribution of a disease, or simply when anyone finds an interesting creature it is first of all sent to a specialist to be determined, that is to have its species name attached to it Living and fossil species and races are so numerous that nobody knows all or even a large part of them, the work of systematics has necessarily to be done by specialists

It is not surprising that for the practical work of naming and labeling species of animals and plants it is convenient to treat these species, so far as possible, as completely discrete pigeonholes in which to place museum specimens. When subspecies or races are described, it is expedient to treat them also as discrete pigeonholes. This is why Linnaeus espoused the view that species are created entities (page 166). But the knowledge of species as biological phenomena has not stood still since Linnaeus. Lamarck and Darwin, and since Darwin a great majority of biologists, regard species as branches of the stream of evolution. These branches become subdivided further and further when populations of a species living in different countries differentiate genetically and become different races. Diverging geographic races become incipient species when they begin to develop reproductive isolation. The speciation becomes consummated and arreversible when the reproductive isolation is complete.

Of course modern systematists not only accept the evolutionary view of species but also contribute greatly to the study and the under standing of the process of speciation. There is nevertheless, some dualism in the usage of the species concept in biology To a practical systematist whose task is to label species and races, intermediate specimens transitional between these species and races are obviously a nuisance It is hard to assign names to intermediates. By contrast a biologist who studies the process of speciation will look for just such transitions, for races which are about to become species or for incipient species which have not yet completed the development of the reproductive barriers between them As a result, an investigator who gives names to species and races is likely to prefer a more static species concept, whereas one who studies the process of evolution will incline towards a more dynamic view. This explains the fact which seems otherwise very odd nobody has yet proposed a definition of what constitutes a species that would be satisfactory to all biologists

Rigid Definition of Species Is Impossible. In the history of biology attempts have been made again and again to give a definition of species with the aid of which we could always decide whether certain groups of organisms are races of the same species or are distinct species. For example, it has repertedly been suggested that forms which produce inviable or sterile hybrids when crossed belong to different species, whereas those which produce fertile hybrids belong to the same species. Such a definition of species is unsatisfactory on two counts. First, the sterility and inviability of hybrids are matters of degree. Some fairly well authenticated instances of fertility of

182 Species

female mules are on record but it would be entirely unreasonable to say that horse and ass belong to the same species because one female mule per thousand is fertile. On the other hand, the Vermont and Florida races of the leopard frog are races of a single species, despite the fact that the hybrids between them are invable. These races are able to exchange genes by way of geographically intervening popula tions. Second, as pointed out above, some very distinct species produce fertile hybrids in laboratory experiments but do not cross at all or only rarely in nature. Species may be kept apart by various reproductive isolating mechanisms, not only by hybrid inviability and sterility.

An even more fundamental reason why species cannot be rigidly defined is that the process of evolution and of species formation is in general a slow and gradual one. When we observe the animals and plants which live in the world around us, we see a single cross section in time of the evolutionary family tree, as shown schematically in Figure 82. The branches of this family tree are, like cables consisting of many strands—Mendelian populations which inhabit various localities. At the time level A strands form a single cable—a species not differentiated into clear-cut traces. At another time level B, the strands are already segregated into two or more bundles and a few inter mediate strands. This is a species broken up into races or incipient new species. At the time level C, we find separate cables of fully formed species. At the time levels at which we happen to live, some species are in the state A, others in the state B, and still others are groups of species as in C.

When we observe the situation A, or one intermediate between A and B there is no doubt at all that we are dealing with a single species. Thus mankind is a single biological species Homo sapiens, subdivided into genetically not very sharply demarcated races which have not begun to evolve reproductive isolation. The situation C is equally clear. Nobody doubts that man, chimpanzee, gorilla, and orangutan are distinct species. So are the domestic cat, lion, tiger, jugura, and puma. The situation B, however, is the difficult one. Here the populations are caught in transition, at the borderline between rices and species. Here Diministrations advice is applicable. "In determining whether a form should be ranked as a species or a variety, the opinion of naturalists having sound judgment and wide experience seems the only guide to follow. This is, for example, the case with the "rings of trees" discussed below (page 185).

It may be recalled at this point that the impossibility of drawing an

absolute distinction between races and species was perhaps the principal argument which convinced Lamarck and Darwin that species are not fixed entities and that evolution does occur. It is, then, not a paradox to say that if some one should succeed in inventing a univer-

Figure 8.2 Diagrammatic representation of the process of splitting of a single species (time level A) into two derived species (time level C). The species consist of populations or races symbolized in the diagram is strands composing a bundle. Some of these strands brunch (a population becoming divided into two or more populations) fuse together (rices merging into single populations), or end blindly (populations becoming extinct). The cross sections shown on the right indicate the situations as seen on three successive time levels. A B and C.

sally applicable, static definition of species he would cast serious doubts on the validity of the theory of evolution

Species in Sexual Cross fertilizing Organisms. A majority of living beings, and certainly most of the higher organisms reproduce sexually and by cross fertilization we may, then, concentrate our attention on the nature of species in sexual forms. As a starting point in the argument, let us recall that in sexual species races are usually allopatric-confined to different territories. It is the geographic separation of races which prevents them from crossing and exchanging genes at rates which would result in fusion of these races into a single variable

population Until civilization had developed, human races were also allopatric (see Chapter 13) At present some human races exist also sympatrically, as do also races (breeds) of domestic animals and plants. This became possible because of the rise of social isolating forces (in man) and of the regulation of the reproduction by human conscious or unconscious effort (in domesticated forms).

Yet as races diverge more and more, they become adapted to different environments in their respective territories or to different modes of life. Suppose, for example, that two races of an insect species became adapted to feed on different plants, on pine and on fit trees. In many places pine trees and fir trees grow together, in mixed stands So long as the races are allopatric they cannot fully exploit the available resources of food. They cannot exist together for long in the same territory, because when they meet they mate and produce hybrid offspring, soon the hybrids would far outnumber the parental races. What is the escape from this biological dilemma? It is, clearly, the development of reproductive isolation between the races. A reproductively isolated species specialized to feed on pines, and one specialized to live on fir trees, can live together wherever both food plants are available, and separately where only pines or only firs are present.

The essential feature of the process of speciation, of transformation of races into species, is, then, the development of reproductive isolation between Mendelium populations. Species are the outcome of this process, species of sexual and cross fertilizing organisms may accordingly be defined as reproductively isolated populations or groups of populations. Main is a single species, because the races of which it is composed show no reproductive isolation, and are in fact exchanging genes at increasing rates in many parts of the world the social and cultural barriers notwithstanding. Horse and ass are different species because they are reproductively almost completely isolated, and the gene exchange between them if any, is of negligible importance for the species as wholes.

Borderlines between Species and Race The above definitions of speciation and of species do not permit drawing an absolute distinction between race and species, even in sexually reproducing organisms. When a situation like that represented as the level B in Figure 82 is encountered it would be arbitrary to say whether certain populations are to be considered races or species. Such situations do occur in nature. We have considered above the races of the leopard frog studied by Moore. The races in Vermont and in Florida are repro-

ductively isolated, since the hybrids between them are invisible happen to live in different places, and gene exchange between them can occur only via the geographically intervening populations. But suppose that the Vermont and the Florida races should occur in the same territory, they would then behave as though they were different

Figure 8.8 Races of hering gulls. In northwestern Europe two populations Larus argentatus and Larus fuscus (shown in the figure as A and M) share the sime territory without hybridization, and consequently behave as different species. Nevertheless they are connected by a circle of races (B C D F G and L) lings in North America and northern Ass. (After Max.)

species since gene exchange between them is excluded by reproductive isolation

Such conditions are actually known. In northwestern Europe (British Isles, Seandanava) live two species of herring gulls (Latis argenish Isles, Seandanava) live two species of herring gulls (Latis argenish Islessa) which do not mix form no intermediate populations, and in general behave as reproductively isolated species usually do According to Mayr these two European good species' of gulls are, however connected by an unbroken chain of intergrading races (Figure 83). These races live around the Polar Ocean, in Labrador,

186 Species

Canada, northerstern Siberia, northwestern Siberia, and northern Rus sia. The argentatus and fuscus populations of gulls may, it would seem, exchange genes, but not by forming hybrids in western Europe where they live together. Instead, the gene exchange must take the circuitous route through Asia and North America. Argentatus and

Figure 8.4. The two species of towhees which intercross in certain localities in central Mexico. Above is Physilo ocut and below Physilo erythrocephalus. (After R Stebbins and Ch. C Sibley.)

fuscus appear to be races of the same species. The biological situation being what it is these gulls may be called races or species, whichever may seem most convenient to those who study them

Sibley has recently described the intergradations between the spotted towhee (Pipulo erythrophthalmus) and the collared towhee (Pipulo ocal). The first of these very distinctive looking birds occurs in the mountains of northern Mexico and in the United States (Figure 84). The second occurs only in some localities in southern Mexico. In at least one of these localities the spotted and the collared towhees

live together, apparently without mixing. But elsewhere in southern Mexico the populations are variable mixtures of the two pure forms. If the locality, or localities, where the two towhees live together did not exist or were not discovered, we would be justified in placing all these birds in a single species with several races. The existence of the sympatric and evidently reproductively isolated populations makes this interpretation inadequate. We may think that this is a case of relatively recent hybridization of species which until then were behaving like good species ecologically isolated in different habitats. The burning of the forests, the cultivation of land, and other man made changes in the environment have created new habitats, in which both towhees can live and in which they are no longer isolated.

Biological Species and Species of Systematics. We have chosen to regard the development of reproductive isolation between diverging races as the touchstone of species formation. This is not an arbitrary choice. As pointed out above, the attainment of reproductive isolation is a very significant stage in the evolutionary path of a population. It transforms genetically open systems (races) into genetically closed systems (species), it makes the evolutionary divergence of populations irreversible it puts, so to speak, a seal of finality on the populations being committed to different ways of life.

To discover directly whether certain populations are or are not reproductively isolated, experiments must be made to test whether or not virious isolating mechanisms discussed above are present or absent. Zoological and botamical systematists who describe species and races of animals and plants are however, very seldom in a position to make such experiments. Indeed, systematists work mostly with dead and preserved specimens stored in museums and herburn. Most species are described by people who never had a chance either to see them alive or to visit the territories where these species occur. How can systematists find out whether the organisms which they study are or are not reproductively isolated? Fortunately, this can be done in many instances. The methods of study used by modern systematists yield indirect but usually reliable evidence on this score.

Systematists regard as species groups of creatures which are clearly different in body structure and among which transitional or interme drate specimens are absent. Domestic cat, hon tiger, jaguar, and puma have always been considered species and not races, because no specimen has ever been found which could not be assigned to one of these species with certainty. The absence of intermediates between populations is a presumptive evidence that these populations are

reproductively isolated. If they were not isolated and exchanged genes, intermediates probably would appear. Thus intermediates be tween even the most distinctive human races are known. If the populations live in the same country, sympatrically, and yet intermediates between them do not occur, they are almost certainly isolated reproductively. We must, of course, beware of mistaking the clear cut variants within a polymorphic population for distinct species (see Chapter 7). Intermediates between the different blood groups in man are absent, but this does not make the carriers of these blood groups belong to different species. Mistakes of this sort have been made from time to time, and this is why Darwin considered "sound judgment and wide experience" necessary in those who study species. A more serious source of difficulty in recognizing species is the

existence of distinctive allopatric forms. Sympatric species produce no intermediates because they are reproductively isolated. But when populations live in different countries, allogatrically, and testing them experimentally is not practicable, the decision is often hard to reach Most often the systematist resorts to studying the populations of geographically intervening territories, if these populations are interine diate between those found in remote places, there is probably some gene exchange between all the populations, and they belong to a single species. This is why we could for example infer that man is a single species even if we did not know directly that there is no reproductive isolation between any human populations. But what to do with the syemore, *Platanus occidentalis* and the plane tree, *Plat* anus orientalis, which are native respectively to eastern United States and to southeastern Europe and western Asia? They are quite distinctive in appearance, but they can be crossed artificially and pro duce vigorous and fertile hybrids. No intermediates between them occur in nature, but such intermediates have little chance of being formed since the geographic distributions of the two kinds of trees are widely separated and the intervening countries have no native plane trees at all Botanists regard them as distinct species because they look so different and the geneticist Stebbins agrees because they would probably be kept apart by ecological isolation if they were brought together in the same territory

Sibling Species and Species in Asexual Organisms The reproductive isolation between *Drosophila pseudoobscura* and *Drosophila per similis* has been discussed above (pages 170-171) There can be no doubt that biologically they are distinct species, yet these files are so similar in external appearance that a zoologist who studies them

under a small magnification of a microscope cannot distinguish them at all (they do differ in a more recondite way—the gentalic armatures of the males show a slight but constant difference). Species which are clearly distinct biologically but are very similar or identical in appearance are referred to as sibling species. Their existence may be troublesome to systematists working with insects preserved on pains in museum drawers, but it is very enlightening to the science of biology as a whole.

When we observe that two organisms are different in appearance, it should be kent in mind that externally visible differences are only the outward signs of physiological differences, which are in turn based on genetic differences. It happens that in most living creatures genetic differences are reflected in externally visible distinctions. This fact validates the methods of study of species used by systematists species and biological species are usually the same things some organisms, such as the two Drosophila species discussed above. genetic differences great enough to give rise to reproductive isolation have not produced visible changes in external body structures. Con sidered biologically these species deserve being recognized as such no less than the tiger and the lion, which happen to be easily distinguishable in external appearance. To say that insect species must necessarily be distinguishable in museum specimens, pinned and dried out as has been customary with insect collectors for two centuries, is like asking modern physicians to use only the instruments and drugs which physicians used two hundred years ago

The definition of species as reproductively isolated populations has, however, no meaning where sexuality is lost or where self fertilization is the usual or exclusive method of begetting progeny. Yet broteriologists have to describe broteria which reproduce chiefly sexually and form clones, and botanists have to deal with plants like wheats most of which reproduce chiefly by self pollimation and form pure lines. Since Linnaeus, it has been customary to give species names to all organisms, regardless of the methods by which they reproduce (and these methods of reproduction have become understood only recentify anyway). The clones of bactura and the pure lines of wheats do form assemblages are called species. This is a reasonable procedure, we assemblages are called species. This is a reasonable procedure, we ishould only keep in mind that the "species" in asexual and in self fertilizing organisms are not the same biological phenomena as species of insects, birds, mammals, or of cross fertilizing higher plants.

Are Species Arbitrary Groupings or Natural Entities? The world around us is infinitely variable. We never encounter twice the same situation, and objects which we observe, whether living or manimate, change with time. To make this infinite variety intelligible and man ageable, the human mind combines the situations and objects which it regards as similar in some respects into groups, and gives to each grouping a name. Thus there is a class of objects called furniture. within this class we may distinguish tables, chairs, shelves, etc., among tables, office tables, dining room tables, kitchen tables, etc., can be distinguished Living organisms are a part of our environment they are enormously diversified, and they have to be classified in order to be comprehensible. The species has served, and is serving, as a convenient category of classification

However, sexual reproduction makes species of sexual organisms something more than a tool for classification. Individuals of sexual species are interdependent in a way analogous to cells in a multicellu lar body Cells are physiologically, and individuals of sexual species are reproductively, interrelated The reproductive interdependence of members of sexual species is necessary for continued existence of their kind, generation after generation. Thus mankind is more than a name for a class of objects. It is a biological reality, not only because all men are kin to each other by virtue of common descent, but even more so because all human beings are, at least potentially, part and parcel of the gene pool from which the genetic endowments of their posterity will arise A sexual species is the ultimate extension of the ancestral family, it is also the family of the future

Suggestions for Further Reading

The references given at the end of Chapter 7 will be useful for a study of the problem of species The problems of race and species are closely interrelated

0

Evolution under Domestication and Evolution by Polyploidy

When The Origin of Species was published in 1859, neither Darwin nor any one else claimed to have witnessed one species giving rise to Darwin's theory was a scientifically legitimate inference from indirect evidence. Numerous facts in biology made sense on the hypothesis that species evolve by gradual change and differentiation from races. Nevertheless Darwin collected with great care the observed facts which showed that organisms undergo genetic changes and may become altered in the course of time. He found many such facts recorded by the breeders of domesticated animals and plants The breeders produce new varieties of animals and plants to suit their needs or fancies. Moreover, they do so by means of artificial selection, often following hybridization of diverse varieties or races Darwin's natural selection was a counterpart of artificial selection which had been known to be effective in domesticated forms. In 1869 Darwin summarized the evidence concerning evolution under domestication in a book entitled The Variation of Animals and Plants under Domestication

Experimental evidence of the occurrence of evolution is at present much greater than it was in Darwin's time. Among microorganisms evolutionary changes due to interaction of mutation and selection can be observed under controlled experimental conditions (see Chapter 5). To be sure, these changes involve alterations of single genes or, at most, of small numbers of genes. They are called microevolutionary changes to distinguish them from macroevolution, which results in production of new genera, families and classes. Macroevolution entails changes in many, perhaps in all, genes composing the genotype. Evolution under domestication continues to be interesting to modern

Are Species Arbitrary Groupings or Natural Entities? The world around us is infinitely variable. We never encounter twice the same situation, and objects which we observe, whether hving or inanimate, change with time. To make this infinite variety intelligible and man ageable, the human mind combines the situations and objects which it regards as similar in some respects into groups, and gives to each grouping a name. Thus there is a class of objects called furniture, within this class we may distinguish tables, chairs, shelves, etc., among tables, office tables, during from tables, kitchen tables, etc., can be distinguished. Living organisms are a part of our environment, they are enormously diversified, and they have to be classified in order to be comprehensible. The species has served, and is serving, as a convenient entegory of classification.

However, sexual reproduction makes species of sexual organisms something more than a tool for classification. Individuals of sexual species are interdependent in a way analogous to cells in a multicellular body. Cells are physiologically, and individuals of sexual species are reproductively, interrelated. The reproductive interdependence of members of sexual species is necessary for continued existence of their kind, generation after generation. Thus mankind is more than a name for a class of objects. It is a biological reality, not only because all men are kin to each other by virtue of common descent, but even more so because all human beings are, at least potentially part and parcel of the gene pool from which the genetic endowments of their posterity will arrise. A sexual species is the ultimate extension of the uncestral family it is also the family of the future.

Suggestions for Further Reading

The references given at the end of Chipter 7 will be useful for a study of the problem of species. The problems of race and species are closely interrelated

TABLE 91

Place and Approximate Date of Domestication of Principal Domestic Annuals

(After Krumbiegel modified)

Common Name	Scientific Name	Place of Domestication	Date of Domestication	Number of Domestic Varieties
Dog	Canss familiars	Northern Hemisphere	10 000-8000 в с	200
Cat	Felis maniculata	Egypt	2000 в с	25
Cattle	Bos taurus	Furope western Asia	Neolithic 6000-2000 g c	60
Water buffalo	Bos bubalus	India	Prelustone	,
Balı cattle	Bibne sondarcus	Indonesia	Prehistorie	?
Yak	Porplagus grunniens	Tibet Turkestan	Prehistone	?
Sheep	Ovis aries	Europe middle Asia	Mesolithic and Neolithic	50
Goat	Capra hircus	Europe middle 4sia	Mesolithic and Neolithic	20
Maral	Cereus maral	Southern Siberia	AD 18>0	1
Pig	Sus scrofa	Europe western Asia	Neolithic 5000-2000 B C	35
Horse	Equus caballus	Europe Asia	Neolithic and Bronze 3000-2000 b c	60
Ass	Equus annus	North Africa	Prehistoric	15
Camel	Camelus bactrianus	Middle Asia	Prehistorie	?
Dromedary	Camelus dromedarsus	Africa	Prehistorie	7
Llama	Lama husnacus	Peru Chile	Prehistorie	•
Rabbit	Oryetolagus cunsculus	Mediterranean	1000 s c	20
Guinea pig	Carra porcellus	Peru Chile	Prehistoric	25
Tame mouse	Mus musculus	China Europe(*)	7	,
Goose	Anger anser	Western Asia Europe	Bronze Age(?)	20
Duck	Anas platyrhynchos	China surope	1000 вс (?)	30
Chicken	Gallus domesticus	India Indochina	3000 n c (*)	12.
Turkey	Meleogrus gallopaco	Mexico I astern USA	I re Columbian	6
Currea hen	Vumida numida	West Africa	Prehistoric and A D 1.00	1
Peacock	I ato cristatus	India	Parly Historic	4
l igeon	Columba livia	Asia Minor(*) India(*)	1 rehistorie	140
Canary	Serinus canaria	Canaty Lilands	A P 1,00	20
Budgeriger	Melopsittacus undu-	Australia	AP 1840	5

Table 91 is a brief summary of the available information concerning the time and the place of the domestication of the chief domestic animals. Much of this information is very inevact and subject to doubt often all that can be said is that the domestication took place in prehistoric times, that is before the light of history had dawned in the part of the world where the domestication of a given species had occurred. Two things, nevertheless, are clear. First, different peoples in all parts of the world realized the value of having domestication. Second, the longer a species has been domesticated the more numerous and more diversified are its domestic virieties. Thus the dog is the most ancient domestic animal, and has produced the largest number of brieds. Furthermore some dog breeds differ so much in appearance as well as in temperament and behavior, that it is hard

evolutionists, it involves genetic changes of a magnitude intermediate between microevolution, which is easily observable in a test tube, and macroevolution which requires time on a geological scale

A special kind of experimentally observable evolutionary change is caused by the doubling of the chromosome complement—by polyploidy (see pages 201–208). The polyploids often behave with respect to their progenitors as full fledged new species. Here we have, then, experimental origination of new species—a feat which was beyond reach of biologists in Darwins time. Moreover, the production of new species by polyploidy is known to occur not only in experiments but in nature as well. Experimental demonstration of the origin of species was completed when some naturally occurring polyploid species were resynthesized from other species in experiments.

Degree and Antiquity of Domestication There is no generally ac cepted definition of what a domesticated animal or plant is our purposes it will be satisfactory to regard as domesticated those forms which regularly reproduce in captivity and whose populations are controlled by man. It is man who determines how much wheat or corn is to be sown, and which kittens or puppies are to be kept and which disposed of Even with this definition it is hard to tell how many animal and plant species have been domesticated. Some forms have been so thoroughly domesticated that they are utterly unable to exist except with man's help. In corn (maize) the seeds are firmly anchored in the cob, and the whole ear is enclosed in a protective cover (the husks) which prevents the seeds reaching the soil wild plant with such an arrangement of seeds could possibly survive, and, as will be shown below, the problem of the origin of corn is not an easy one On the other hand the rubber tree (Hevea brasiliensis) grows wild in the jungles of equatorial Brazil, as well as on plantations in tropical Asia The wild and the planted populations of the rubber trees are only beginning to diverge genetically The domestication of the dog took place 10 000 to 12 000 years ago, in the Middle Stone Age (Mesolithic), that of the maral deer in Asia and of the little Australian parrot budgerigar only a century ago Domesticated forms of some species were obtained and then lost Thus in ancient Egypt, about 3000 to 1000 BC, there were domesticated varieties of the Nilotic goose and of at least two species of antelopes, which now exist only as wild species Some authorities believe that the inhabitants of southern Chile had, in pre Columbian days, domesticated the giant sloth, a huge animal at present known only as a fossil, its bones as well as remains of its skin hair, and dung have been found

Figure 9.1 The nine centers of origin of cultivited plants (After Vivilov)

to believe that they all belong to the same species. Compare the little Chilhuahua with a Great Dane, or an chillient Fox Terrier with a stolid Saint Bernard. Nevertheless, all these breeds do belong to one species, since they are expable of exchinging genes, and often do so, either directly by occasional hybridization, or via the intermedinte breeds where crossing is impossible because of an extreme difference in size. The dog species has a common gene pool, subdivided, to be sure, into the gene pools of the various breeds. Domestic chickens and pigeons are the most ancient domesticated birds, and they also form numerous breeds. The domestic goose is an exception to the rule, its domestication is undoubtedly ancient, but it has given rise to relatively few distinct breeds.

Centers of Origin of Domesticated Plants The number of plant species in various stages of domestication is conservatively estimated at three hundred which is many times greater than the number of species of domestic animals. Pioneer studies concerning the origins of cultivated plants were made in the last century by A de Candolle (1778–1841) and Darwin and in the current century by Vavilos (1857–1942). Vavilos came to the conclusion that most species of cultivated plants were first domesticated in a relatively small number of countries. These, countries are called the centers of origin, their location is shown on the map in Figure 9.1. It is not surprising that the centers of origin of cultivated plants largely coincide with the ancient centers of human civilization.

Vavilov has distinguished eight or nine such centers (1) Chinese, including China, particularly its mountainous interior, and Korea This center has given mankind many varieties of oats, barleys, mil lets, sova and other beans, bamboo, sugar cane, some cabbages, oranges and lemons peaches apricots, pears, prunes cherries, tea, poppy, and many other useful plants less well known to our Western civilization (2) and (3) Indian and Indomalayan centers, which may also be treated as a single one embracing India (but not western Pakistan), Burma, Indochina, and western Indonesia This is the land of the origin of rice, which is estimated to be the main staple to perhaps 60 per cent of humanity, sorghum (Indian), some beans, eggplant, cucumber, bamboos sugar cane (Indomalayan), bananas (Indomalayan), mango (Indian), some oranges and lemons breadfruit (Indo malayan), cocoanut palm (Indomalayan) diploid cotton pepper (In dian) and many less widely known plants (4) Middle-Asiatic, in northern Pakistan, Kashmir, Afghanistan, in the southern part of Rus

wild ass (Equus asinus) in northeastern Africa. The latter is without

Neither the zebras nor the asses have a part in the ancestry of the domestic horse. Domestic horses and domestic asses are crossed on a large scale to produce mules. In 1920 there were about 5,650,000, and in 1949 about 2,353,000 mules on farms in the United States alone. The practice of breeding mules is an ancient one, well known to Aristotle. But mules are interspecific hybrids which are almost marinably sterile, the few recorded fertile female mules certainly do not provide a channel for a regular gene exchange between the gene pools of these species (see Chapter 8). Zebras have been crossed to horses in zoological gardens, but the hybrids, called zebroids, are sterile. Zebras, asses and horses are close relatives which arose rather recently, geologically speaking from a common ancestor (see Chapter 12). But they have diverged genetically far enough to become reproductively completely isolated. Their evolutionary paths are separate.

The only true wild horse lives in a part of middle Asia, more precisely in the deserts of western Mongola. It has been given a specific name of Przevalsky horse (Equius przevalska)—which is even more difficult for English speakers to pronounce than is the name of the author of this book. The wild horse is only as tall as a small pony, 12 to 15. hands (48 to 52 inches) from the ground to the withers, and rather ungainly in appearance from the standpoint of a lover of horsessesh. It should be noted that it has a short erect mane, no forelock, and is a dun color (cf. page 38). It is wild and intractable even after a prolonged life in captaint. The wild and the domestic horses cross easily and produce fertile procesin.

The wild Przevalsky horse is the last survivor of a species which in historical times was much more widespread. A wild horse called tarpin was quite common in the steppes of southern and southeastern Russia as recently as the last century. Tarpins were a nuisance to the pioneer settlers since they interfered with the crops and led away domestic mares. They were hunted and exterminated the last tarpin having been killed around 1860 in the steppe north of the Black Sea. The ancient Romans encountered numerous forest horses when their empire spread to what are at present Spain, France, and Germany How different the tarpins and the forest horses were from the Przevalsky horse is not exactly known. The tarpin was allegedly mouse colored instead of dun this difference may be due to a single gene (see page 38). The forest horse was relatively tall (about 60 inches),

sian Middle Asia (Turkestan) Here are found most soft (bread) wheats, some beans, melons, onions, spinich, some apricots, upples, pears, almonds, grapes, and walnuts (5) Western Asiatic, in the in terior of Asia Minor, Transcaucasia, and northern Iran flax, poppy, melons, pumpkins, carrots, and some varieties of pears, cherries, almonds, grapes, figs, and other fruits (6) Mediterranean, countries around the Mediterranean Sea This center give some varieties of wheats (relatively little used at present), peas, flax, sugar beets, cabbages, asparagus, and olives (7) Ethiopian, in Ethiopia and Eritrea This is the center of hard wheats, many varieties of bar leys, sorghum, flax sesame, and coffee (8) Central American, embracing southern Mexico, Guatemala, and possibly some of the West Indian Islands This is the source of such immensely important cultures as corn (muze), some beans, sweet potatoes, upland cottons peppers, papaya and many other tropical fruit trees (9) South American or Andean, in Peru and adjacent parts of Equador and Bo livia This region shares the credit for having given origin to corn and to some of the most useful varieties of cottons, and also to nota toes, tomatoes tobacco, and the quinine tree Somewhere to the east of the Andern center, in tropical Brazil, pinerpples, ercro, and the rubber tree originated

It is hard to estimate the importance to mankind of the achieve ments of the primitive agriculturists in the above lands. They man aged the critical first steps of the evolution under domestication of most of the plant species which now nourish mankind. They did this immensely difficult work without the benefit of modern scientific knowledge or of modern technology.

Wild Relatives of the Domestic Horse We choose for a more de tailed consideration of evolution under domestication one animal species, the horse, and two plant species, cotton and corn These three species will exemplify different kinds of evolutionary changes that occur, and will illustrate the different kinds of uncertainties with which the research in this field of evolutionary biology has to cope

The genus Equus, to which belongs the domestic horse (Equus caballus), contains three groups of species now living in the wild state. One of the groups is the zebras, which comprise three species with numerous races living in eastern and southern Africa. Another group consists of the asses of which two species are recognized—the onager (Equus hemionus) in the steppes of middle Asia, and the true

were used for different purposes, and each purpose was best served by different genotypes in the horse populations. Natural and artificial selection perpetuated the suitable genotypes and eliminated the unsuitable ones. The custing diversity of horse breeds is the result

Nomadic cultures most completely dependent on horses developed particularly in Mongolia and in Middle Asia. Here horses were and still are, used as meat and milk animals, as well as for riding and for transportation of the tents in which the nomads live and their furnishings Horse meat and fermented mare's milk still are important staples in some parts of Asia. The horse breeds suitable for these multiple uses must be before all else sturdy, tireless, able to subsist on scant food, and to resist inclement weather. This type required relatively little change from the wild horse condition, except development of some tameness The horses of Mongolia are the most primitive' existing breeds, clearly resembling the wild Przevalsky horse, including the possession of an erect mane and a high frequency of the dun coat color The hordes of Genghis Khan, mounted on such horses, erupted from Asia into Europe in the thirteenth century. They swept all resistance before them, this Scourge of God" could not have occurred except for a perfect balance between the cultural heredity of a human population and the biological heredity of a horse population

Quite different types of horses appeared in western Europe, where horses were used and valued primarily for warfare. But here the mounted warrior tried to make himself less vulnerable by donning progressively heavier armor. The speed of the horse had to be sacrificed to its ability to carry great weights. Hence the Middle Ages saw the appearance in Europe of large, heavy, and powerful breeds of horses, perhaps having a strong dose of the genes of the forest horse which lived wild in these parts.

The invention of firearms, however, ended the usefulness of armor The horses which used to carry kinghts in battle now began to serve a different purpose transportation of heavy loads and heavy farm labor. Thus arose the powerful cold-blooded draft horses Percherons in France, Belgians in Belgium, Clydesdales, Shires, and Suffolks in England. Stallions of these breeds are often enormous animals 64 to 70 inches tall weighing 1800, 2000, and even 2200 pounds. The American farm horses carry some genes derived from these breeds, together with those of miscellaneous utility horses of western European origin.

Still other horse breeds were developed in Mediterranean countries

with stout limbs and a long but nurrow head — Its portrait, drawn by an artist of the Stone Age on a cave wall at Altamira, Spain, shows an erect mane, like that of the now living wild horse

Is the Domestic Horse Monophylette or Polyphylette? Just when and where the first horses were domesticated is unknown. The first historical records of domestic horses appear at ilmost the opposite ends of Asia, in Mesopotamia (Iriq) and in China, about simul taneously, around 2000 n.c. Horses were brought to Mesopotamia from the north, possibly from the Russian steppe. It is, hence, conjectured that the tarpan was domesticated by the nomad inhabitants of the steppe a few centuries earlier, possibly around 2500 n.c. But the horses that came to China were most likely the descendants of the Przevalsky horse, domesticated in the wilds of Mongolia quite independently from the tarpan.

It is most likely, though obviously unprovable, that horses were domesticated many times and in many places in the steppes and deserts of eastern Europe and Asia, and in the forest zone of western Europe. The first record of a horse hitched to a chariot appears in Greece around 1700 BC, in Egypt 1600 BC, in India 1500 BC. By 1000 BC horses were known and widely used in most parts of Europe, and in Asia and Africa outside the tropical forest zones. Mounted horsemen first participated in the Olympic games in 648 BC.

The problem of whether the now living domestic horses are de scended from a single wild ancestor (monophyletically) or from two or several ancestors (polyphyletically) has been long and incon clusively discussed by the students of the horse origins Perhaps it does not really matter. If the gene pool of the domestic horse contained genes of two different species, such as horse and ass, every one would agree with the polyphyletic hypothesis But the Przeval sky horse, the tarpan, and the forest horse were clearly geographic races of the same wild species, which at one time was distributed perhaps from the Atlantic coast of Europe to the Pacific coast of Asia Most likely this species could be divided not into three but into more numerous races, and quite possibly most or all of these races contributed their genes to the gene pool of the modern horse The recombination of the genes contributed by these races plus the genes which arose by mutation since the domestication, gave rise to the variety of horse breeds

The Domestic Horse Breeds Regardless of how many wild an cestral races were domesticated their descendants underwent considerable genetic changes. These changes took place because the horses

A thoroughbred is also an animal requiring the most elaborate care and feeding, and it is too nervous and high strung to be used for any purposes other than running on a race track or crossing to other horse breeds to improve the breed

To an evolutionist, the thoroughbred horse is an interesting example of a great change in the direction chosen by man which can be wrought in an organism by selection within a rather small number of generations. And if we compare the thoroughbred with the wild horse from Mongolia we find the two animals certainly as distinct as or more distinct than are natural species of the genus Equus. Why, then, have no reproductive isolating mechanisms developed to make them full fledged species? The answer is necessarily speculative but it is reasonable to think that it is because breeds of domesticated animals are isolated from each other and from their progenitors owing to the control of their reproduction by man

Cultivated Cottons Despite the recent invention of synthetic fibers (rayon, nylon etc.), the cotton plant is, and will probably remain, the chief source of the textiles which clothe humanity the most ancient cotton textiles. Inown are dated about 3000 nc. They have been found in the excavations of Mohenjo Daro, among remains of the Indus civilization, which is one of the three most uncent civilizations in the world (the other two being Egyptian and Babylonian). Moreover, the Mohenjo Daro textiles are obviously made by a skilled craftsman, indicating that cotton must have first been used at some time prior 3000 nc. Probably quite independently of the Indus Civilization, cotton was domesticated also in the Americas, since cotton textiles are found in the pre Inca graves in Peru. Cotton was used extensively by many tribes in pre Columbian days, including some of the tribes in the southwestern United States.

There is, however an important difference between the Old World and the New World cultivated cottons. All cottons native to the Old World have 26 chromosomes (13 pairs) in their cells (Figure 9.2). All New World cultivated cottons have twice as many chromosomes (52 or 26 pairs), hence the New World cottons are polyploid or, to be more exact tetraploid (see page 65).

How did this difference arise? One of the possibilities is that the New World cottons arose from a single ancestral species, having 26 chromosomes simply by reduplication of the chromosome complement (by autopolyploidy) Another possibility is that two different species each having 26 chromosomes, have crossed and that the duplication of the chromosome complement took place in the hybrid. If so, the

and in the Neur East, also in response to war needs. Until the invention of saddles with stirrups, the cavalry either fought standing in a horse-drawn chariot or the men dismounted to begin combat. The Greeks and Romans did not have stirrups. The stirrups, invented somewhere in Asia, furnish fulcra which permit mounted combat The speed, againty, and alertness of the cavalry horse now became Accordingly, there appeared various breeds of light riding horses, among which the Barb in northern Africa and the Arabian were most important. Just when these breeds first appeared is un certain, but by the time of Mohammed, in the seventh century AD, Arabia possessed a highly valued variety of horses The Arabian horse is regarded by many people as the most beautiful of all horse breeds. if, indeed, not the most beautiful of all animals. However that may be, it is certain that the Arabian and related Eastern breeds have been highly esteemed as riding animals for centuries. Their genes have become diffused the world over in many more recent breeds

The Race Horse If the origins of the breeds discussed above are lost in the mists of antiquity, that of the English thoroughbred breed is known in fur detail. After the passing of the heavily amored medieval knights mounted on slow horses, light but first Enstern horses were imported into western Europe at increasingly frequent intervals. A population of progressively lighter riding horses gradually resulted from hybridization of the imported and local breeds. A new breed was started in England by mating several local mares with three stullions imported from the East between 1689 and 1730. These stallions were either pure Arabian, or at any rate curried many genes derived from the Arabian breed. The hybrid offspring were mated among themselves and in the second generation three stallions were selected—Matchem, Eclipse and Herod. Most thoroughbred horses are descended from these stallions and from their female siblings and relatives.

The pedigree of the thoroughbreds, carefully recorded in the so called stud books, is a most complex network of descent relationships beginning with the horses named above. All individuals are multiply related to each other. It should be realized, however, that this pedigree involves also a most intense and careful selection of individuals possessing the desired properties, and of these the most desired has been speed. A modern thoroughbred horse is a strikingly different animal from its Arabian (or neur-Arabian) ancestors. It is considerably taller (64 inches or higher), and capable of much greater speeds—the present record is a mile run in 1 minute and 33½ seconds.

cultivated in tropical America) are, as we know, tetraploid, with 52 chromosomes. So is a wild and lintless species which lives on the Hawaum Islands (G tomentosum)

Hybrids between Species of Cotton By artificial cross-pollimition it is furly easy to obtain hybrids between species of Gossypium. The progeny of an American wild diploid species (26 chromosomes), crossed to an American cultivated tetraploid species (52 chromosomes), will have 39 chromosomes, and will be triploid. Such triploid hybrids are largely sterile, but the behavior of the chromosomes at meiosis can be observed under the microscope. The cells at meiosis show about 13 bivalents (that is, 26 chromosomes that have come to gether in pairs) and 13 univalents. Next, let us cross an American cultivated tetraploid to an Old World diploid species. The progeny is again triploid 39 chromosomes, largely sterile, and showing approximately 13 bivalents and 13 univalents at meiosis.

What do the above observations mean? The most reasonable interpretation is that the chromosomal complement of an American tetraploid cotton (26) contains a set of 13 chromosomes sufficiently like those of the American diploid cotton species, so that these chromosomes pur up and make 13 bivalents at meiosis in the hybrid. By the same token, the American tetraploid cotton must contain 13 chromosomes like those of the Old World species (see Figure 9.2)

The validity of this interpretation can be tested by more experiments. Let us obtain hybrids between diploid species. Hybrids between different American diploid species are, of course, diploid they are fertile and show 13 bivalents at meiosis. The same is true for hybrids between different Old World diploid species, but things go differently when an American diploid species is crossed to an Old World diploid. The hybrid is more or less sterile, and its 26 chromosomes form few or no bivalents at meiosis. The chromosomes of different Old World species are still so nearly similar that they recognize each other and pair in hybrids. The same is true for chromosomes of different diploid American species. But the chromosomes of American diploids become in the process of evolution so different from the chromosomes of the Old World species that they pair no longer.

[•] The story as here presented is somewhat oversimplified. Actually the chromosomal pairing in hybrid meiosis is variable and in some cells some chromosomes fail to pair which do pair in other cells of the same hybrid. This is due to the occurrence of structural changes in the chromosomes in the evolutionary process (see pages 65 148). The chromosomal similarity or dissimilarity is not an all-or none affair.

52 chromosome cotton contains chromosome complements of two different ancestral species—Such a polyploid is called allopolyploid To find out which of these possibilities is the right one, certain observations and experiments have to be carried out, as described below

Wild Cottons All cottons belong to the botanical genus Gossypium, which contains at least 20 different species The technical differences

Figure 9.2 The chromosomes of a cuttrated tetrapoid species of courts (C) and an damentan (A) and an Old World (B) diploid species. The tetrapold (C) arose presumably by hybridization of the two diploids (A and B), followed by a displication of the chromosome complement. (After Sikkri Ihsan ur Rahman and Afzal.)

by which a botanist recognizes these species do not interest us here, but the numbers of chromosomes in them do interest us. In the Old World (in Africa, southern Asia, and Australia) 9 of the species exist. Two of them (Gossypium arboreum and Gossypium herbaccium) hive spinnable lint on their seeds and are cultivated and 7 of them are lutless and grow as wild plants. All these species are diploid with 26 chromosomes (Figure 9.2). In the New World (in Arizona, Mexico Peru, and the Galapagos Islands) 8 wild species exist which have no lint. All these species are also diploid, with 26 chromosomes. The two native American species cultivated for their lint (G. hirsitum, the cotton of the Cotton Belt of the United States, and G. barbadonse.

seeds of an Asiatic diploid cotton with spinnable lint. The plants which grew from these seeds then crossed to a native American diploid species which grew near by, and gave an allotetraploid with superior lint quality, which was picked up and cultivated by the Indians

Neither hypothesis can be considered proven, although recent cyto logical and distributional data make Harland's hypothesis, or some modification of it, more probable Anyway, the evolution of cotton under domestication went remarkably fast. As we know, the wild species of cotton have no spinnable lint, but only useless fuzz on their seeds. Before cotton textiles were made at Mohenio Daro in 3000 BC (see above), a considerable amount of selection work must have been done. Egypt the economic welfare of which depends at present largely on its cotton crop, received cotton much later about 500 BC Ancient Egyptian and Bibylonian textiles were made of flix or of wool The development of the cotton crop in China and in Middle Asia is even more recent-between Ap. 700 and 1300. This is probably because cotton is originally a tropical plant which is peren nial in habit, that is, grows for several years Before it could be grown successfully in temperate lands, annual races (which complete their development, from seed to seed, within a year) had to be developed Such races were developed both in the Old and in the New World If the Hutchinson-Silow-Stephens hypothesis is correct, the American cultivated cottons arose, possibly somewhere in Peru on the Pacific Coast of South America perhaps some two thousand years ago Yet by the time Columbus landed, there were two distinct cultivated species, Gossipium hirsutum and G barbadense, with numerous varieties Some of these varieties were of such high quality that they were intro duced in the Old World and largely displaced there the native diploid cottons The commercial cotton crop the world over consists at present predominantly of tetraploids, which are native in tropical America

Raphanobrassica, an Experimental New Species — The hypothes's of allopoly ploid origin of cultivated American cottons is made necessary by much experimental and observational evidence — The event postulated by this hypothesis occurred however, in the dim past, but a quite analogous process has actually been observed in experiments on other plants — The classical example is the new allotetraploid species obtained by Karpechenko (1926) by crossing the common cab bage (Brassica oleracca) and radish (Raphanus sativus) — These plants, as their names show belong to different botanical genera, but they have similar chromosome numbers—18 (9 pairs) — Karpechenko ob-

When Did the Tetraploid Cottons Appear? The tetraploid Amen can cultivated cottons are allotetraploid, that is, they contain a set of chromosomes like those still evisting in American diploid species, and one set like those in Old World diploid species. An ancestor of the cotton plants now growing on a field in Alabama must have been an Γ_1 hybrid between two different species of cottons, one of which must have resembled cottons now growing wild in America and the other growing in the Old World. All students of the problem of origin of cottons now agree that such hybridization must have occurred. They do not agree nearly so well about the place and the time of the by bridization.

Indeed, in order to produce hybrids, the cotton species which now live on different continents on the opposite sides of the globe had to meet somewhere. Wild cottons now grow only in tropical and sub tropical lands, intense and prolonged selection was necessary to obtain cotton varieties capable of being cultivated in warm temperate climites, like that of the southern United States. The only place where the American continent meets the Old World continental mass is the vicinity of the Bering Strait, in the Arctic. The climate of the Bering Strait region is far too cold for any cotton to survive. The alternative is to suppose that seeds of the Old World cottons were somehow transported to tropical America either from Asia across the whole wide Pacific Ocean, or from Africa across the Atlantic. Cotton seeds, however, are rapidly killed by sea water, so that they could not be transported by ocean currents. They are too heavy to be transported by wind.

Hurland (1939) sought to escape the above dilemma by supposing that the crossing of the diploid species which gave rise to the American tetraploid cottons took place in Cretaceous or in Eccene times, many millions of years ago (Table 12.1) Geologists believe that in those remote times the climates of the whole earth including the present arctic regions, were much warmer than at present. Some also be lieved that there may have existed a continent in the place of the present Pacific Ocean, but most geologists now definitely oppose this idea. Be that as it may, Harland surmised that the tetraploid cottons arose very long ago.

On the contrary, Hutchinson, Silow, and Stephens (1947) assume that the American tetraploids are of relatively very recent origin. The inhabitants of the South Sea Islands have mide many journeys across the unchirted ocean. Suppose, then, that some of these senfacers came to the West Coast of South America and brought with them.

cling to the forlorn hope that all changes observed in experimental organisms are intraspecific changes. Indeed, a mutant of *Drosophila melanogaster* is still a fly and belongs to the same species as its an cestors. A thoroughbred horse is still a horse. But Raphanobrassica is evidently neither a cabbage nor a radish, it is a new and hitherto unknown organism—Raphanobrassica.

Natural Allopolyploids During the thirty years since Karpechenko's pioneer experiments, several new species have been synthesized by allopolyploidy. These experiments merely copy a method of species formation which nature has used on a fairly large scale, at least in the plant kingdom. As we have seen above, there is strong evidence that the cultivated American species of cotton arose by this method. Other species of cultivated and wild plants, among them most wheats, oats, sugar cane, tobacco, potato, tomato, coffee, most cultivated roses, raspherries, and many other useful plants, are allopolyploids. Allopolyploids was probably the method of species formation in plant genera in which the chromosome numbers of the known species form a series of multiples of some low "basic number. Thus wheats and related grasses have species with 14, 28, and 42 chromosomes (the basic number is then, 7)

Particularly interesting are the experiments in which experimentally synthesized illopolyploid species are similar to or identical with naturally occurring ones. Here the evolutionary process which has at some time in the past produced certain natural species is repeated in experiments. Beasley (1942) came close to resynthesizing an American tetraploid cotton from hybrids of a wild American diploid (Gossipum thurberi) from Arizona and an African cultivated diploid (Gossipum arboreum). He obtained a tetraploid hybrid which was sterile as a male (that is failed to produce functional pollen grains). Its meiosis, however was normal and it set seed freely when pollinated by ordinary American tetraploid cotton. The meiosis in these backcross hybrids was also nearly normal. It is likely that the Arizona wild cotton is not the American diploid species which is the ancestor of the tetraploids but it is close to the true ancestor.

A full success was gruned for the first time by the Swedish geneticist Muntzing (1930) The species Galeopsis tetrahit, of the mint family, has twice as many chromosomes (32) as the related species, G speciosa and G pubescens (16) Muntzing crossed the latter two species, and among the offspring of their hybrids selected plants with doubled chromosome complements. These plants he called "artificial tetrahit," since they reproduced the natural species of that name, freely cross-

trined diploid cubbage × radish hybrids, which had, as expected, 18 eliromosomics, 9 from cubbage and 9 from radish. The cubbage and radish chromosomes ful to pair at meiosis in this hybrid, and the hybrid is sterile.

This is a situation observed also in many other, in fact in most, sterile interspecific hybrids. It was first seen by the Finnish geneticist Federley, in 1913 in hybrids between certain species of moths. Owing to the occurrence in evolution of inversions, translocations and other chromosomal changes, the gene arrangement in the chromosomes of different species becomes so thoroughly scrambled that these chromosomes no longer 'recognize' each other as homologues. The difference in the chromosome structure becomes manifest particularly at meiosis in the hybrids, when the chromosomes of the parents should normally come together in pairs (Chapter 3). Their failure to do so initiates grave disturbances in the processes of sex cell formation. The result is that the hybrid although it may be quite normal and vigorous, fails to produce normal sex cells and is sterile.

The cabbrage \times radish hybrid, however, was not completely sterile Karpechenko obtuned from it several seeds and grew τ small F_2 generation. These F_2 plants proved to be tetraploid, they had 36 chromosomes in their cells, 18 chromosomes of cabbage and 18 of radish Such seeds arose from ovules and pollen gruns in which the meiosis failed altogether, and came to possess the entire chromosome complement of the hybrid-9 cubbage and 9 radish chromosomes

The tetraploid hybrids grew to be till and vigorous plants called Raphanobrissica. Agriculturally this new plant is, alas, useless, since it happens to have a root like cibbage and foliage like ridish. But it is a very important plant for a biologist, being the first new species (or genus) produced in experiment. Indeed, the illotetraploid Raphanobrassica is quite fertile its meiosis being quite normal with 18 bivalents normally formed. Since it has 18 cabbage and 18 radish chromosomes in its cells there is no difficulty in pairing, and 9 cabbage and 9 radish bivalents arise. Despite its hybrid origin, Raphanobrassica breeds true. Moreover, it is reproductively isolated from its own ancestors—the cabbage and the radish. The Raphanobrassica x cabbage and Raphanobrassica x radish hybrids are formed with difficulty, they are triploid (27 chromosomes), and largely sterile. In short, Raphanobrassica is a new plant species by any reasonable definition of species.

The experimental production of new species is an important achieve ment of evolutionary biology Some still surviving anti evolutionists

main stalk Another resemblance to corn is that the female flowers (which produce ovules and seeds) are borne on spikes which, like the ears of corn, are produced on the sides of the main stalk. The seed

spike of teosinte, however, is quite unlike that of corn since it easily breaks up when the seeds are ripe and lets the seeds fall out. Teosinte seeds are also very different from corn seeds. They are en closed in horny shells, which are made up of parts of the rachis or stem and modified glumes, protective covers on the seeds of most grasses (Figure 9.3). In modern corn the glumes are reduced to mere scales unbedded in the col-

Another relative of corn is the genus Tripsacum (gama grass), of which several species are known native to Central, South, and North America Tripsacum are perennial grasses, with narrow leaves and numerous tillers that is stalks coming out of the same root system In contrast both to maize and to teosinte it his male and female flowers on the same spike it the top of the stalk. The seeds have horny glumes and the spike disarticulates when the seeds are ripe Although the spike is partially enclosed in husks (protective covers made by modified leaves), the seeds easily full out (Figure 92) Finally whereas

Figure 93 The two presumed parents and their progeny. On the left are shown an inflorescence and some seeds of a gamma grass (Tripsacum) of 7 teosite in the middle and of cultivated com on the right. Teosite arose probably from a hybrid between Tripsacum and primitive com. (Courtesy of Professor P C Mangelsdoff.)

com and most teosintes are diploids with 20 chromosomes (10 pairs), gama grass is either diploid with 36 or tetraploid with 72 chromosomes

Is Teosinte the Parent or Offspring of Corn? A hypothesis of the origin of corn put forward by Ascherson (1875), and supported by Vaulov and most other authorities until 1939, was that teosinte is the progenitor from which maize developed by a series of mutations fa-

to the latter, and gave fertile hybrids with normal chromosome pairing. In short, Muntzing has recreated G tetrahit, a natural species which arose by a similar process of crossing two other species and doubling the chromosome complement in the hybrid. Since 1930 several other natural species have been so recreated

Origin of new species by polyploidy is, of course, not the most usual method of emergence of species in evolution, although polyploidy has played an important role in certain groups of organisms, especially in the plant kingdom. The doubling of the chromosome number is a process which, when it occurs in a species hybrid, may create a new species almost instantaneously. This is why species which have arisen by polyploidy may sometimes be reproduced in experiments. The emergence of new species from races is, as discussed in Chapter 8, a slow process which takes quasi geological time to be completed. Species which arise in that way may have similar or different chromosome numbers, but they seldom have chromosome numbers which are multiples of each other. More important than changes in the numbers are the internal reconstructions which take place in the chromosomes by mutation, inversion, translocation, duplication, and deletion of genes.

Com and Its Relatives Except in very cold countries and in wet tropical lowlands, maize or Indian com (Zea mays) is one of the principal crops which nourish mankind. The land area annually planted to corn is estimated at 221 million acres. The origin of this highly important plant however, is far from completely known. As will be shown below the uncertainties encountered in studies of corn origins are of a quite different nature from those to be contended with in the domestic horse and in cotton evolution.

As pointed out above corn has been so profoundly modified in the process of adapting it to mans a needs that it is utterly unable to propa gate itself without human help and to live as a wild plant. Its wild progenitor must necessarily have been a rather different looking plant Botanists place corn among the Maydeae, a subdivision of the grass family. Sugar cane and sorghum belong to the same family, but they are not closely related to corn. A much closer relative is teosinte, Zea mexicana (or Euchlaena mevicana, since it is considered by some to belong to a different genus), which grows in parts of southern Mexico and of Guatemala, mostly as a weed in or near fields of cultivated corn. Teosinte is a tall grass with rather broad leaves, though not as broad as corn leaves. It resembles corn also in having male flowers (producing pollen) concentrated in a "tassel at the top of the

Figure 9.4 Terminal portion of the ear of a primitive Guarany pod corn from South America Slightly enlarged (After Mangelsdorf)

wored by artificial selection. This would mean that corn arose some where in Central America, where teosinte is now still growing in semi wild condition. To be sure, teosinte is not at present used as food, but its seeds can be "popped" by heat, thus shattering the horny cover and exposing the more palatable grain.

It now appears, however, that the teosinte hypothesis was a false clue to the riddle of maize origin. Mangelsdorf and Reeves suggested in 1939 that teosinte, far from being the ancestor of corn, is derived from corn by means of hybridization of primitive corn with a species of Tripsacum. According to this view, teosinte is in fact genetically a corn with some sections of Tripsacum chromosomes included in its genotype.

The evidence that this extraordinary situation actually obtains in reality comes chiefly from experiments of crossing teosinte with modern cultivated corn. The hybrids are fertile, and the segregation in T_2 and later generations shows that the genes which determine the visible differences between corn and teosinte are concentrated mainly in four chromosome segments in as many chromosome purs. Both maize and teosinte have 10 pairs of chromosomes and it is most un usual for species of either plants or animals to have most chromosomes remain similar in the process of evolution the changes being confined to only a few segments of chromosomes. These blocks of genes are supposed to be acquired from Tripsacum through hybridization which took place at some unknown time in the past, presumably in Central America where corn, Tripsacum, and teosinte often occur together Despite the striking differences in appearance between corn and teosinte, Mangelsdorf and Reeves propose to consider the latter not a separate genus, but only a species or even a variety of corn.

Primitive Corn If teosinte is not the wild ancestor of corn, then whit was this ancestor like and where did it live? This problem must be regarded as still unsolved, but Mangelsdorf and his collaborators have obtained interesting data which suggest a probable solution More than a century ago, Saint-Hilaire (1829) surmised that corn might have developed from the so called pod corn (Figure 94) The chief characteristics of the pod corn are produced by alleles of a single dominant gene, called tunicate, the presence of which causes rather drastic changes in the body of the plant. The seeds of pod corn are each enclosed in a papery cover consisting of enlarged glumes (the same structures which give the horny covers of the teosinte and gama grass seeds, see above). The ears on the sides of the main stalk of the plant are suppressed or are elongated, branched, and protrud-

The first and means of some a find some was formed by a Nor-Value. He is not never some times for the condition of a first or a time will then resulted in the final angular file of a local condition of the c

California Com. The rose of the promite on to 1/1/1/1 Are their the Pipes 32 & a desired company to anythem to Surely the public relations the transportation of the 100 and the remainder organization of the following the company of the co ರವಾದ ವ ವರ್ಷ ಕ ಇಟ್ಟೆ ೨ ರರ ವರ್ಷ ಬ ಕಿರ್. ನಗಗಗ ಗಗ Finite formal months and inspectors in later a man hi Carea carrier Terione here or a think att la to proceed are not one animalist outen be ... I I while فستحدث فكجد فتحدة حد وحداتها مرائر مرا الاراران where one a comment Some of these varieties in i'll the tot in Figure SE 1 -- Ein and in Iowa may be in the at the and was seen. The troops suretes are genetically adopted to the short d. a said the tomorate land varieties to the long vinner dies which occur wise the field are normally planted. This simple tail to flower when exposed to days and nights of a duration abnormal for them As a matter of fact, corn is so sensitive to the consummental conditions that for optimal yields we have to brief countries Inf ored" to each part cular region in which they are to be crown. This is who separa's combreeding programs are pursued not only in dil ferent countries by also in every state of the United Mills when corn culture is corner all important.

Mangelsdorf Andertoria and others suppose that some of the reaction building blocks for the execution of the varieties adapted to so main different local conditions may have been furnished by hybriditation of the domestic corn with add to exers of Trips cum. Although Lippose cum is a grass very sharply different from corn in almost every clear acter they can be crossed. The hybrids are largely stealer, but some steels can be obtained by pollinating the linking disclosely with cornidores. There may occur an introgression (page 127) of Hipponeim genes into corn populations. As we have seen above traviale may

ing from the husks—Much of the plant's energy is diverted to massive tassels on the top of the stalk, but the tassels contain both female and male flowers—Pod corn is not cultivated as such, but it does occur as an admixture in the fields of indigenous insize raised by some Indians, particularly in South America.

Figure 9.5 Reconstruction of a ear of a primitive variety of corn cultivated by Indian agriculturists in the American South west some \$900 years ago (From M ingelsdorf and Smith)

Mangelsdorf has pointed out that pod corn has some of the char ieteristics which were most likely present in the wild corn progenitor. This does not mean that pod corn as it custs now is that progenitor, wild corn immodified by culture is probably extinct. But an important event in the evolution of corn from a wild to a cultivated plint might well have been a mutation of the tunicate gene, which transformed a pod corn into something more like the modern corn. Just where and when this mutation was first observed and utilized by man is quite unknown.

Again, we should not think that the transformation of wild into cultivated corn was due to a single mutation. On the contrary, the process involved numerous gene substitutions. Some idea of what these were may be gained by studying the primitive corn ruised by prehistoric lindring and discovered by archeologists. The most interesting of such discoveries has been made in a cave in New Mexico, and described by Mangelsdorf and Smith. The oldest corn remains in this cave are estimated by ridio carbon dating of associated charcoal to be about 310 years). A reconstruction of an ear of this ancient corn is shown in Figure 9.5. This is

already a developed, cultivated, not a wild, plant, but it is a dwarf compared to the ear in modern com. More important still, the kernels are partially enclosed in glumes, leading to the inference that this come carried a weak allele of the tunicate gine. Furthermore, the miniature ear was not tightly enclosed in busks as in modern com, but merely had its bise surrounded by a loose cover of leaf sheaths which surrounded the young inflorescence when the silks first appeared but stread open when the grains were mature.

It is fair to say that the most primitive corn from the New Mexico

(1877) that plant progenies obtained by self-pollination within a flower, by cross pollination of different flowers of the same plant, or of different individuals of the same strain, are deficient in vigor. They suffer inbreeding degeneration. Conversely, the progenies obtained by crossing different strains exhibit hybrid vigor (or heterosis, as it is now called).

In 1905 and 1909 the geneticist C H Shull published his studies on inbreeding and crossing in corn. A corn plant can be "selfed by transferring the pollen from the tassel to the stigmas (silks) of the same individual. In a cornfield most seeds come, however, from cross pollination of silks of one individual by pollen grains of other individuals. The normal vigor of the field "variety is maintained by the cross pollination. Shull found that inbred lines, obtained by systematic selfing rapidly dwindle in vigor, size, and yield of the plants. Intercrossing different inbred lines gives progenies in which the vigor is restored up to the average level of the variety from which the inbred lines were obtained. But hybrids between some inbred lines may even exceed the original variety in productiveness.

Here, then, was a theoretical investigation which resulted in a first rate practical discovery. Before this discovery could be exploited in practical farming, however, another problem had to be solved. The hybrid seed must be obtained from inbred lines which consist of weak plants giving poor yields. Getting enough seed from them to plant large fields is prohibitively expensive. Jones (1917) solved the problem by means of the so called double cross method (Figure 97). Instead of two inbred lines four inbred ones are used. They are first intercrossed in pairs, $A \times B$ and $C \times D$. The two hybrids obtained are vigorous and high yielding. They are interplanted in parallel rows and the tassels are removed from one of the hybrids, so that its silks can receive pollen only from the other hybrid $(A \times B) \times (C \times D)$. The resulting seeds are planted on ordinary farms and grow into high yielding plants. However, the very high yields occur in only one generation, and the fields have to be replanted every year with fresh hybrid seeds.

Corn breeding programs based on hybrid corn were started soon after 1917, and by 1933 hybrid corn acquired a considerable importance in commercial plantings. The average yield of corn on farms in the United States in the early nineteen thirties was estimated at about 22 bushels per acre, by 1950 it was about 33 bushels per acre, and colossal yields of more than 100, and even above 200 bushels per acre, are reported under exceptionally favorable conditions. Most, though not

be one of the products resulting from such introgression. It may serve as a bridge for further transfusion of Tripsacum genes into com. Whether the hypothesis of Tripsacum introgression is justified, only

Figure 9.6 Diversity of varieties of corn cultivated at the present time in differ ent parts of the world (Courtes) of Professor P C Mangelsdorf)

the future can tell it is certainly useful because it inspires many interesting experiments

Hybrid Com Within the last two or three decades a spectacular improvement of the yield of corn plantings in the United States and elsewhere has been obtained by the introduction of hybrid corn. The success of hybrid corn may be regarded as the most important contribution of evolutionary biology to human welfare yet produced. The essentials of the story are as follows. Darwin showed long ago

(1877) that plant progenies obtained by self-pollination within a flower, by cross pollination of different flowers of the same plant, or of different individuals of the same strain, are deficient in vigor. They suffer inbreeding degeneration. Conversely, the progenies obtained by crossing different strains exhibit hybrid vigor (or heterosis, as it is now called).

In 1908 and 1909 the geneticist C H Shull published his studies on inbreeding and crossing in corn. A corn plant can be 'selfed by transferring the pollen from the tassel to the stigmas (silks) of the same individual. In a cornfield most seeds come, however, from cross pollination of silks of one individual by pollen grains of other individuals. The normal vigor of the field variety' is maintained by the cross pollination. Shull found that inbred lines, obtained by systematic selfing rapidly dwindle in vigor, size, and yield of the plants. Intercrossing different inbred lines gives progenies in which the vigor is restored up to the iverage level of the variety from which the inbred lines were obtained. But hybrids between some inbred lines may even exceed the original variety in productiveness.

Here, then, was a "theoretical investigation which resulted in a first rate 'practical discovery Before this discovery could be exploited in practical farming however, another problem had to be solved. The hybrid seed must be obtained from inbred lines which consist of weak plants giving poor yields. Getting enough seed from them to plant large fields is prohibitively expensive. Jones (1917) solved the problem by means of the so called double cross method (Figure 97). Instead of two inbred lines, four inbred ones are used. They are first intercrossed in pairs, $A \times B$ and $C \times D$. The two hybrids obtained are vigorous and high yielding. They are interplanted in parallel rows, and the trissels are removed from one of the hybrids, so that its silks can receive pollen only from the other hybrid ($A \times B$) \times ($C \times D$). The resulting seeds are planted on ordinary farms and grow into high yielding plants. However, the very high yields occur in only one generation and the fields have to be replanted every year with fresh hybrid seeds.

Corn breeding programs based on hybrid corn were started soon rifter 1917, and by 1933 hybrid corn acquired a considerable importance in commercial plantings. The average yield of corn on farms in the United States in the early nineteen thirties was estimated at about 22 bushels per acre, by 1950 it was about 33 bushels per acre and colossal yields of more than 100, and even above 200 bushels per acre, are reported under exceptionally favorable conditions. Most, though not

Figure 97 A diagram showing the method of production of hybrid corn Four inbred lines denoted A, B C and D are intercrossed in pairs giving vigorous single cross hybrids these are in turn intercrossed giving the double cross seeds which are used for commercial plantings

all, of this phenomenal improvement is ascribible to the introduction of the hybrid corn. It is not surprising, then, that by 1950 more than 75 per cent of the corn-producing fields in the United States, estimated at about 65 million acres, was planted to hybrid corn. In the chief corn producing states, such as Iowa, the hybrid corn plantings occupy close to 100 per cent of the corn acreage. It became urgently neces sary to save the original field varieties of corn from total extinction. Their persistence is important because they carry the gene pool from which new inbred lines can be isolated, which may yield hybrids even superior to the now available ones.

Heterosis in Different Organisms. The spectacular success of hybrid corn has inspired attempts to exploit hybrid vigor in other cultivated plants and domestic animals. These attempts are mostly in the experimental stage, but at least some of them are vielding encouraging results. Heterosis is a phenomenon of obvious practical, as well as theoretical, importance. The understanding of its biological nature is, nevertheless, far from satisfactory.

Darwin concluded on the basis of his experiments (see above) that hybrid vigor arises from the union of diverse heredities serving as a stimulus inducing powerful growth and general well being of the In modern terms, this would mean that heterozygosis for many genes is per se a viability stimulus. But this cannot be the whole story The loss of vigor produced by inbreeding and the luxuriant development induced by crossing of different strains are much more pronounced in some organisms than in others Thus heterosis in corn is very important, whereas in wheat it is absent or barely detectable According to Mangelsdorf, even the best inbred lines of corn yield no more than half as much as do the open pollmated varieties from which the inbred lines are isolated. Many of the inbred lines are so weak that they can be maintained at all only with difficulty. In contrast, self fertilization is the rule in many wheats, oats, barleys, beans, etc A field of wheat consists, then, of a single or of several inbred lines which have been selected because they are vigorous and high yielding In general, the inbreeding depression is most pronounced in species which normally live in large cross-fertilizing populations, such as corn or rye In normally self-fertilizing forms there is little inbreeding depression and little heterosis upon crossing Man stands somewhere in the middle of this heterosis range History records that some royal dynasties practiced brother sister marriage, which is a very close inbreeding, for many generations without known adverse effects. On

Figure 9.7 A diagram showing the method of production of hybrid corn. Four inbred lines denoted A B C and D are intercrossed in pairs giving vigorous single-cross hybrids these are in turn intercrossed giving the double cross seeds which are used for commercial plantings.

There is no doubt that a part of the degeneration of the progeny resulting from consanguinity and inbreeding in such species as man or corn results from homozygosis for recessive deleterious genes. There is also no doubt that the absence of deleterious effects of consan guinity in normally self fertilizing species is due in part to the rapid elimination of the deleterious recessive mutants. In wheat a dele terious recessive mutant is not sheltered for long in heterozygotes, and is eliminated by natural selection far more rapidly than it would be in corn or in man. Nevertheless, mutational heterosis is only a part of the whole heterosis phenomenon and at present it is not certain how large or how small a part

Another mechanism which causes hybrid vigor is balanced heterosis, which we have discussed in another connection (Chapter 7, pages 142-147) In Drosophila natural populations of some species consist mostly of individuals heterozy gous for certain chromosomal inversions. and such individuals possess high fitness But chromosomal homozygotes are also produced in the populations, and these homozygotes are less fit than are the heterozygotes Natural selection maintains a balanced polymorphism, with a certain optimal proportion of hetero and homozygotes arising in each generation. It is certain that bal anced polymorphism is widespread in sexual species in which inbreedmg is normally rare, but just how widespread we are not certain

Populations of many species consist of two or more phases which differ in color, in shape of some body parts, or in other traits though the phases may appear very strikingly different to the human eye (Figure 98) they interbreed freely both in nature and in experi ments In a number of cases it has been shown (by Ford in some butterflies, by da Cunha in a species of Drosophila, etc.) that the phases differ in a single gene or in a few genes, and that their mainte nance in nature is due to the heterozygotes being adaptively superior to the homozygotes Allison (1954) found that at least one hereditary disease is maintained in human populations by a similar mechanism Heterozygous carriers of the gene for the sickle cell anemia are more resistant to malaria than are "normal homozygotes which do not carry this gene at all Yet the sickle cell homozygotes die of an acute anemia (see page 141)

Bulanced heterosis is likely to be most important in sexual species which are so well adapted and successful in their environments that they build large variable, and panmictic populations Crow (1948 1952) came to the conclusion that at least 95 per cent of the hybrid vigor in corn is due to balanced heterosis, and 5 per cent or less to

the other hand, recessive hereditary diseases occur most frequently in families with much consanguinty, that is, where parents are relatives
Genetic Mechanisms Which Bring about Heterosis
As pointed out in Chapter 7, "heterosis' is a common name for several different phe nomena Perhaps the simplest of these is mutational heterosis We have seen (pages 139-142) that recessive mutants accumulate in popu lations of species which reproduce sexually and by cross fertilization No matter how deleterious, or even lethal, may be a mutant when homozygous, it is "sheltered" in heterozygotes with normal dominant alleles A heterozygous carrier of a serious recessive hereditary dis ease may enjoy robust health. Thus it happens that in wild popula tions of Drosophila, and doubtless of many other organisms as well, most individuals are carriers of one or more deleterious recessives The frequency of any one deleterious mutant in the gene pool, however, is usually so low that, when individuals who mate are not very closely related the probability that both parents would by chance carry the same deleterious recessive mutants is not very great. The defective homozygotes are consequently, rare in the populations so long as consanguinity is avoided

Suppose that a recessive gene which is deleterious when homo zygous has a frequency q = 0.01 in the gene pool of a population Assume that this population reproduces sexually, that it consists of large number of individuals, and that it is panmictic (the matings occur at random) The frequency of homozygotes who will suffer from the harmful effects of this gene in this population will, then, be $q^2 = 0.01^2$, or one per 10,000 individuals (see Chapter 6, and particu larly page 120) The hereditary disease or malformation produced by the homozygosis for this gene will be a rare one in the population But suppose now that we are dealing with a population in which matings of brothers and sisters occasionally take place Brothers and sisters have a fifty fifty chance of having both inherited a given gene from their parents. The probability that the siblings who mate will both carry a recessive which one of their parents carried in heterozy gous condition is $0.5 \times 0.5 = 0.25$, or one quarter A quarter of their progeny is likely to be homozygous for the recessive. Thus one six teenth of the progeny of a brother sister mating will be homozygous for any one gene inherited from the grandparents Self fertilization is, of course, a form of inbreeding even more extreme than brother sister mating If a self fertilizing individual of for example, wheat is heterozygous for a recessive mutant gene, a quarter of its progeny will be homozygous for that gene

eral blood groups and of taste blindness is due to bilanced polymorphism? May the excessively fit and excessively lean persons which occur in human populations represent the homozygotes, the eustence of which in the species is a necessary by-product of the 'normal well-proportioned heterozygotes being in a majority in these populations? Only more research can answer these and other fundamental questions of basic population biology of man

Suggestions for Further Reading

Darwin Ch 1868 Variations of Plants and Animals under Domestication

Though the evidence which Darwin had at his disposal concerning the origins of domesticated animals and plants was much less than is available at present his book remains a classic which is well worth reading. It is available in several editions

Simpson G G 1951 Horses Oxford University Press New York

A delightfully written as well as scholarly discussion of the evolution of fossil and living horses

Hutchinson J B Silow, R A and Stephens S G 1947 The Evolution of Gossypium and the Cultivated Cottons Oxford University Press London

A study of the wild and cultivated cottons and their origins

Mangelsdorf P C 1947 The origin and evolution of maize Advances in Genetics Volume 1 pages 161-207

Mangelsdorf P C, and Smith C E Jr 1949 New archeological exidence on evolution in mace: Harvard University Botanical Museum Leaflets, Volume 13 Piges 213-247

Stebbins C L 1950 Variation and Ecolution in Plants Columbia University Press New York

Chapters VIII and IX contain an excellent discussion of the origin of species by polyploids

Gowen J W (Editor) 1952 Heterosis

A symposium on heterosis and its applications in agriculture. The articles written by J. F. Crow and P. C. Mangelsdorf are particularly interesting

Lerner I M 1954 Genetic homeostasis John Wiley New York

The most modern discussion of the genetic basis of heterosis and of its evolutionary significance

mutational heterosis In large populations the effects of a rare gene on the fitness of homozygotes are relatively unimportant compared to its effects in heterozygotes This is because the homozygotes for rare

living in many parts of Brazil These patterns are produced by homozygosis and heterozygosis for two alleles of a single gene denoted E and e Female and male abdomens of each genotype are shown (From da Cunha)

genes occur much less frequently relative to the heterozygotes (see page 121) Wallace (1931) has shown that balanced heterosis develops in laboratory populations of Drosophila subjected to continuous treatment with radium rays, although this treatment induces numerous deleterous mutants. How important is the balanced heterosis in maintaining the "normal fitness in populations of domestic animals and in man lumself? Is it possible that the existence in man of sev

eral blood groups and of taste blundness is due to balanced polymorphism? May the excessively fat and excessively lean persons which occur in human populations represent the homozygotes, the evistence of which in the species is a necessary by-product of the normal" well-proportioned heterozygotes being in a majority in these populations? Only more research can answer these and other fundamental questions of basic population biology of man

Suggestions for Further Reading

Darwin, Ch. 1868 Variations of Plants and Animals under Domestication

Though the evidence which Darwin had at his disposal concerning the origins of domesticated animals and plants was much less than is available at present his book remains a classic which is well worth reading. It is available in several editions

Sumpson, G G 1951 Horses Oxford University Press New York

A delightfully written as well as scholarly discussion of the evolution of fossil and hving horses

Hutchinson J B, Silow R A, and Stephens S G 1947 The Evolution of Gossypium and the Cultivated Cottons Oxford University Press London

A study of the wild and cultivated cottons and their origins

Mangelsdorf, P C 1947 The origin and evolution of maize Advances in Genetics, Volume 1 pages 161-207

Mangelsdorf P C and Smith C E, Jr 1949 New archeological endence on evolution in maize Harvard University Botanical Museum Leaflets Volume 13 pages 213-247

Stebbins, C. L. 1950 Variation and Evolution in Plants Columbia University Press New York

Chapters VIII and IN contain an excellent discussion of the origin of species by polyploidy

Gowen J W (Editor) 1952 Heterosis

A symposium on heterosis and its applications in agriculture. The articles written by J. F. Crow and P. C. Mangelsdorf are particularly interesting

Lerner 1 M 1954 Genetic homeostasis John Wiley New York

The most modern discussion of the genetic bisis of heterosis and of its evolutionary significance

10

Evolution of the Organic Form and Function

Preformation and Epigenesis Having retired early from a profitable business. Antony van Leeuwenhoek of Delft, Holland, became an umateur microscopist erger to examine anything under his microscope. In 1675 he examined the seminal fluids of several animals including man. He saw swimming in these fluids the "animalcules," or the spermatozon as we would say now. This was a discovery enough to make anybody famous, but a few years later another countryman of Leeuwenhoek. Improved on it by publishing a picture of a human spermatozoon in the head of which he saw a "homunculus," a tiny figure of a man (1694). This seemed a really magnificent discovery, for it appeared to solve at one stroke the difficult problems of heredity and development. The human body is all ready, preformed, in the male sex cell, all it needs to become an adult man is to increase in size.

To be sure, some of the authorities of that time did not feel convinced that the horiunculus resides in spermatozoa, and preferred to look for him in the female sex cell the egg. But whether they belonged to the school of animalculists" or to that of ovists," they believed the idea of preformation to be an excellent one. Especially so when Jan Swammerdam of Leyden, Holland, developed the idea by supposing that the homunculi in the sex cells contain within them still smaller homunculi, those have more minute homunculi, and so ad infinitum. The reproductive organs of Adam—or of Eve—contained within them the entire mankind to come, packed like boxes within boxes. The utter absurdity of this notion was not obvious at the time since it was not realized that within a few generations the homunculi would have to be smaller than atoms.

The preformation theory, and its extreme version the "box theory,

appealed strongly to many people To the Culvinists it gave a scientific confirmation of the doctrine of predestination. The philosopher Leibniz (1648-1716) saw that the theory explained very simply the whole creation, as well as the immortality of the soul and the dogma of original sin. The whole world was preformed all at once, for all ages to come All that has happened in the universe since then is a gradual unfolding of something that was there from the beginning

The homunculus variety of the preformation theory was disproved by Malpighi (1628-1694) and Kispar Wolff (1733-1794), who showed that the hens egg contains at the beginning nothing whatever re-

sembling a miniature chick chick embryo develops gradually, passing through a succession of stages which are by no means just larger or smaller copies of one another The development is em genetic, it is a succession of qualitatively different processes following each other in a definite sequence Wolff regarded this ent genesis to be a product of a vital force and it remained for Karl von Baer (1792-1876) to give a scientific version of the epigenetic theory of embryonic development

Figure 10 1 A homunculus imagined to exist in a human spermatozoon by an early microscopist (After Hart soeker 1694 from Curtis and Guthrie)

Do not imagine, however, that the preformist way of thinking in biology is dead. As we shall see, in one form or another it always existed, and probably always will exist. The same is true of the enigenetic way of thinking The idea that things are preformed, predestined just writing around the corner for their turn to appear, is pleasing and comforting to many people Everything is destiny, fate But to other people predestination is a denial of freedom and novelty They prefer to think that the flow of events in the world may be changed creatively, and that new things do arise. The influence of these two types of thinking is very clear in the development of bio logical theories

Progression of Living Beings The living things which we observe in the world around us are tremendously diversified. What sense, if any, is there in their diversity? A possible answer is that we see in nature a progression of things from a less perfect to a more perfect state and that the hang creatures occupy different steps in this single ladder of progress To Aristotle (384-322 BC), "The nature advances by small steps from inanimate things to animate of lifeless things, there follows the realm of plants appear to be animate compared to other things, but inanimate compared to the animals. Among marine life we find, according to Aristotle, creatures which occupy steps, intermediate between plants and animals. Thus sponges are almost exactly like plants, whereas oysters and mussels are somewhat more animal like. Then follow "bloodless" animals (which we now call invertebrates), and those which have blood (vertebrates). Among the last, we have the different steps of perfection represented by fishes, birds, oviparous quadrupeds (reptiles), and viviparous quadrupeds (mammals). The top rung of the ladder is occupied by man. Just below man are the monkeys, which share some human and some quadruped properties

To Aristotle the ladder of progress did not mean that the occupants of the upper rungs have arisen by an evolutionary process from those lower down on the ludder (see Chapter 14) The ladder is just there. it is preformed. This idea was tremendously popular right down to the nineteenth century. To Leibniz, the "force of the principle of continuity" is so great that he ventures to predict that whenever some rungs of the ladder seem to be unoccupied (that is, when intermedi ates between some groups of living beings are unknown), their occu pants will be discovered by further studies This sounds almost like the assurance of an evolutionist that "missing links" between existing groups of organisms have existed in the past and become extinct Leibniz it meant only that the preformed order of nature cannot be incomplete The Swiss zoologist Bonnet (1720-1793) worked out the ladder of nature in greatest detail. It begins (starting at the top) with man-orangutan-monkey-quadruped-flying squirrel-bat-ostrich-bird-etc The steps between animals and plants are occupied by polyps-sea anemones-sensitive plant (Mimosa)-plants, and the steps between the living and non living by truffles-corals-fossils-asbestos-talcum The bottom is "pure earth"-water-air-fire-"finer matters"

Lamarck (1744-1829) the pioneer of evolutionism, took the leap into the future by asserting that the more complex organisms have actually evolved from the simpler ones. The diversity of living creatures is not preformed, it has arisen in the course of time. But Lamarck still clung to the notion of a single ladder of progress although he had it branch in some places. This mustake cost him dearly. His adversary Cuvier (1768-1833), the great anatomist and paleontologist, had little difficulty in showing that no single ladder

Tupes 225

of progress exists in the biological world. The contemporaries thought that Cuvier had invalidated the idea of evolution as well

Types Living creatures are obviously too diverse to be arranged in a single file from the highest to the lowest. A slight acquiritance with the anatomy of a bat will show that, contrary to Bonnet, it is in on way intermediate between a mammal and a bird. Another notion can be tried instead—the notion of type, which has already been mentioned in another connection (page 134). According to Plato (427–347 Be), the world as we see it consists of mere shidows of the real but invisible world of eternal, unchangeable, and perfect ideas of things. Men as we see them are variable, and many are miserable specimens, but there exists in some heaven the Idea of Man of in conceivable purity, beauty, and perfection. Animals and plants are also variable, but an acquaintance with them shows that many organisms resemble each other, as though they were variations on a limited number of basic themes. These basic themes were called types or ground plans.

In 1790 the great poet Goethe (1749-1832) published a biological work, The Metamorphoses of Plants, in which he devised the Primeval Plant' (Urpflanze, in German) According to Goethe, "Everything is What he means is that various organs of the plant, such as the cotyledons of seeds, petals and senals of flowers, stamens and pistils which are the male and the female organs, are all modifications of a single structure—the leaf (Figure 102) Through this simplicity,' says Goethe. becomes possible the greatest diversity of forms among plants, which he has carefully observed himself and studied in the works of others Goethe is quite explicit in saying that the Primeval Plant which he describes and figures does not actually exist now, and presumably never existed as an ancestor of all other plants Although some historians are eager to make Goethe an evolutionist, he was not one The Primeval Plant is the ideal type of a plant and the plants that actually grow are varying manifestations of this type. Goethe, and his younger countryman Oken (1779-1851), tried also to devise a ground plan of the vertebrate animals, or rather of skulls. The skull bones are modifications of six vertebrae. Again this did not mean a reconstruction of an actual ancestor with six extra vertebrae in place of a head, it meant only the concept, the Idea of the animal

We have already mentioned Cuvier as an opponent of Lumarck To Cuvier, all animals were variations of four great types or ground plans those of the vertebrates, mollusks, segmented animals (arthropods and worms), and radially symmetrical animals Having extensively studied

Figure 10 2 $\,$ Goethe's theoretical prototype of flowering plants

the fossils found in the vicinity of Puris, Cuvier knew well that his four types are represented in the different strata by different animals. Had he studied fossils also in other countries, he might have seen that the changes of the inhabitants from stratum to stratum meant evolution. But it so happens that near Paris there are six sharply different geological formations, the intermediates between which are not represented. To Cuvier, this meant that life on earth was repeatedly destroyed by some catastrophes, and repeatedly created anew, and always according to the same ground plans!

Homology The idealistic philosophy of Plato, leading to construction of ideal types or ground plans, proved to be a wrong guide to the understanding of organic form. Nevertheless, the work of the typologists yielded many facts that are of enduring value. In comparing different animals or plants, we readily notice that some of their organs and body parts have the same fundamental structure, although they may be different in appearance and in use. The English anatomist Owen proposed in 1843 to call such organs or body parts homologous. But the phenomenon to which this name applies was known to Aristotle, who saw quite clearly that human arms are the homologues of the forelegs of quadruped mammals. In 1555 the Frenchman Belon of the forelegs of quadruped mammals. In 1555 the Frenchman Belon compared the skeletons of a bird and a man and identified the homologous bones, which he indicated by similar letters in the two drawings in Figure 10.3. Belon's drawings are perfectly acceptable in a manual of computative anatomy today.

In modern terms Goethe's Primeval Plant embodies his correct recognition of the homology between corresponding parts of the same plant such as leaves and flower petals (this is called scrial homology), as well as between parts of different plants (special homology). Cuvier's four types of animal structure were also based on his ability to perceive the homologies of the corresponding parts in different animals. The great problem is this how does homology arise? The solution of this problem was supplied by Darwin different organisms possess homologous organs because they are descended from a common ancestor. By and large, the greater the similarity in the body structure, the closer is the common ancestry, the less the similarity, the more remote is the descent relationship.

Homology does not prove evolution in the sense that nobody has actually witnessed the gradual changes in the millions of consecutive generations which led from a common ancestor to a bird on the one hand and to man on the other. But homology suggests evolution, the facts of homology make sense if they are supposed to be due to

Figure 10 2 Goethe's theoretical prototype of flowering plants

Homologies of the Mouth Parts in Insects
homologies of the mouth parts in some insects
The homologous parts
are shown similarly labeled. At first sight, the mouth parts of the

Figure 10.4 Homologous mouth parts in a grasshopper a hone; bee and a mos quito 1b labrum with its palpi 1r labrum md mandables mx mavilla with its palpi on antenna

biting type like those of a cockroach or of a grasshopper, are different from those of a sucking type found in a bee a mosquito, or in a fig. But a patient study not only of the extreme kinds of mouth parts shown in Figure 10.4 but also of many other kinds of insects, some of which seem to bridge the gaps," gradually sheds light on the situr-

evolution of now different organisms from a common stock. They do not make sense otherwise. To be sure, some die-hard anti-evolutionists still insist that homology means only that the Creator gratual tously chose to make homologous organs in quite unrelated organisms. This opinion may be stid to be implicitly blasphemous it actually ac-

Figure 10 3 Homologous bones in the skeleton of a bird and a man as drawn by Belon in 1555 (After Zimmermann)

cuses the Creator of arranging things so that they suggest evolution merely to mislead honest students of His works

The phenomena of homology explained by evolution are, of course, innumerable Descriptive zoology and botany may be said to be concerned chiefly with detecting homologies. Belons homologizing the skeletons of man and bird was of course, followed by similar successful comparisons of the skeletons of all vertebrates, from fish to man. The science of comparative anatomy of vertebrates deals with identification and description of homologous organs in the different vertebrate animals.

Homologies of the Mouth Parts in Insects Figure 10.4 shows the homologies of the mouth parts in some insects. The homologous parts are shown similarly labeled. At first sight, the mouth parts of the

Figure 10.4 Homologous mouth parts in a grasshopper a honey bee and a mos quito lb labium with its palpi. Ir labrum md mandables mr maulla with its palpi. an antenna.

biting type, like those of a cockroach or of a grasshopper, are differ ent from those of a sucking type, found in a bee a mosquito, or in a fix. But a patient study not only of the extreme kinds of mouth parts shown in Figure 10.4 but also of many other kinds of insects some of which seem to "bridge the gaps," gradually sheds light on the situation The student begins to perceive what pieces of the mouth michinery of a mosquito correspond to the different parts of the cock roach mouth. Finally, it becomes evident that all the innumerable insects really have their mouth apparatus built out of homologous pieces, but these pieces can be vastly different in form. Pre Darwin an biologists would have said that all insects have their mouth parts built as variants of the same ground plan. We must add that the only reasonable interpretation of the generality of the ground plan yet proposed is that it indicates common descent. All insects have evolved in the course of time from similar progenitors.

Next, we should ask ourselves this question what has caused the mosquito mouth to appear so different from the cockroach mouth? The reasonable hypothesis is that these insects have different mouth parts because they feed on different foods. A cockroach bites off pieces of solid or semi solid foods with its mandibles, then masticites the food with its mandibles and maxillae, and finally pushes it down the mouth opening located at the base of the labium. It has organs of chemical sense on the pulpi of the maxillae and the labium, which test the quality of the food The delicate parts of the mouth are pro tected by the shield of the labium. A female mosquito gets its food in an entirely different way, by drawing blood from animals much larger than itself. With the mouth parts of a cockroach it might never bite through the skin, or if it did would cause the animal much pain and a defense reaction. Instead, a mosquito pierces the skin with the aid of its mindibles and maxillae transformed into finest and sharpest needles The operation is often so nearly painless that the animal frequently does not perceive the presence of the bloodthirsty insect and does not drive it away. The mosquito sucks the blood up into its mouth through a fine tube formed by its labium. The mouth parts of a cockroach would be far less efficient for this purpose, and a mosquito would be quite unable to feed on the kind of food which a cock roach eats

However, we must beware of thinking that the nature of an organ is explained by finding out the function which this organ performs Animals and plants do not get organs just because they need them or can conveniently use them. To think so would mean ascribing purposes to nature. This is teleological reasoning, which has no place in science because it explains nothing. But the fear of teleology, can be carried too far. Some biologists go to the extreme of saying that the function of an organ has nothing to do with its being there. Yet no-body can deny that man has eyes to see with, and a mosquito has its

mouth parts to get blood with It is pedantic to quibble even about the statement that the purpose of the eyes is seeing. There is really nothing objectionable about such a statement, which simply describes what the organ does, provided that one always keeps in mind that the presence of an organ and its function are at the opposite ends of a long and complex chrun of cruse and effect relationships. Some of the connecting links in this crusal chrun are the processes of mutation, sevual recombination, and natural selection over a long series of generations. Darwin has done away with teleology, by giving a rational explination of the evolutionary processes which mold an organ so that it becomes fit for the performance of a given function. (For further discussion of this problem, see Chapter 14.)

Analogy Different functions make homologous organs dissimilar in form Similar functions may make different, non homologous organs come to resemble each other Owen (1843) proposed to call such organs analogous A classical example of analogy is the wings of a bird, a bat, and a butterfly These organs are unquestionably similar in function—they are, indeed, wings. But they are very different in organization. A bat wing is a skin fold between the four fingers of a hand, the bones of the fingers being lengthened to perform a supporting function, like the ribs of an umbrella A fifth finger, the thumb, is short and has a strong claw, by means of which the animal suspends itself while at rest from a branch of a tree or a ceiling of a cave In a bird the supporting surface of the wing is composed of feathers, not of a skin fold. The skeletal framework of a bird wing corresponds to that of the whole human arm but the finger bones (phalanges) are elongated in only one finger, other fingers being rudimentary Now, although the bones of a bat wing and a bird wing are homologous, the wings themselves are quite differently constructed The wings of a butterfly consist of a membrane formed by two layers of cells, supported by wing veins which are thickenings of the membrane Parts of a butterfly wing are not homologous to parts of either bat or bird wings These are analogous organs

As stated above, early zoologists regarded bats to be intermediate between mammals and birds (Bonnet, in the eighteenth century, still earlier Gesner, in the sixteenth, and others). We can see that the resemblance of bats to birds is due chiefly to analogy, to the presence of organs of dissimilar structure which however, serve similar functions—wings for flying. Otherwise the bodies of bats are built like those of mammals, bats, indeed, are mammals. Whales were considered gigantic fishes, until John Ray (1627–1705) pointed out that they

breathe with lungs instead of with galls, have a heart with two ven tricles like mammals instead of a single ventricle like fishes, and resemble mammals in everything except in the almost complete absence of liver. And yet whiles and porposes certainly resemble fishes in body shape more than they do any other mammals. The reason for this is not far to seek, the streamlined body shape and the presence of fins instead of legs are greatly advantageous for living in water. Natural selection has favored in water dwelling animals, whether in fish or in mumils, those characteristics which fit them for the water life. As far as the body shape is concerned the ancestors of a fish and a whale were presumably less similar than these namnla are today. The evolution was in this case convergent. But note that the convergence has affected only some traits which have a direct bearing on the way of hier as a water inhabitant. The body structures as a whole have not converged.

Natural and Artificial Classification "Without classification—only chaos," such was the admonition of Limineus (1707–1778) to the young science of biology. Animals and plants must be classified for the same reason that books must be classified in any large labrary or stumps in any large collection. Anybody who has tried to find a book misplaced in labrary stacks knows this by experience. But how should the classification be made? The difficulty arises because different systems of classification are possible. Stumps are classified usually by country, then by time of issue by denomination and by variations in the slade of color and of perforation. But books may be classified according to the name of the author or by language or according to the subject matter or the date of publication. Living beings vary in many more ways than either stumps or books, hence the choice of their classification system is even more comblex.

None of the methods of classifying books are intrinsically better than the others and each method is more convenient, and is therefore used in some libraries. The convenience of a classification when it is being used is then, the criterion of its validity. The Book of Leviticus divides the water dwelling animals into those which have fins and scales and those which do not. This division separates for example the cels from fishes and combines them with a lot of most diverse invertebrate animals. The Roman Plany divided the animals into those living on earth in water and in the air. This system combines bats with birds, whales and proposes with fishes and places the amphibians athuart the dividing line. Biologists find these classifications inconvenient because, it is said they are artificial instead of natural

A natural classification must take into account the greatest possible number of characteristics of the organisms classified. Thus saying that an animal is a fish tells a zoologist at once that it respires with gills, has a heart with a single ventricle, a certain structure of the brun, of the kidneys, and many other things. A mammal respires with lungs, has a heart with two ventricles, different brain and kidney structures, feeds its young with milk, usually has hrur, etc. Plinys classification does not do so well for the purposes of a zoologist, because it tells him at most whether he should look for the animal in water or out, and next to nothing about the body structure of that animal. This is, of course, not a valid objection against an artificial classification, such as that of the Book of Leviticus, masmuch as its author had in mind purposes quite different from those of a zoologist.

In making the natural classification we must, then, distinguish between homology and analogy To do this requires a great deal of study and insight, and it took centuries to erect what we reasonably believe to be the natural system of the animal and plant kingdoms As a matter of fact, Aristotle made a classification which we consider much superior to Pliny's For example, he did distinguish mammals, birds, reptiles and fishes although he did not percente that a cuttlefish (a cephalopod mollusk) is an animal really very different from an ordinary fish Linnaeus keenly appreciated the advantages of natural classification, and yet his division of the plant kingdom into twentyfour classes is pretty artificial by modern standards. The Linnaean classes were based entirely on the structure of the reproductive organs (flowers), and fifteen of the classes differ merely in the numbers of the stamens which a flower possesses Cuvier did much better classifying animals, but his group Radiata, combining forms as diverse as corals, sponges and sea urchins, is an artificial one

Phylogenetic System Quite a new understanding of the meaning of natural classification was given by Darwin Before Darwin, zoologists and botanists had to strive for classifications which expressed the fundamental, rather than only superficial, similarities and dissimilarities of the animals and plants But the classification so arrived at was completely static, it was just there, preformed in the order of things. To Darwin the fundamental similarities (homologies) meant evidence of descent from common ancistors. A classification which expressed these similarities became, then a description of the evolutionary development, of the phylogeny, of the organisms so classified A natural system is one which puts together the near kin, and separates the distant relatives.

To some of Darwin's successors, especially to Haeckel (1834-1919), this idea became the cornerstone and the inspiration of their work. Building the natural system of animals and plants is now more than construction of a catalogue of organism for the convenience of fel low biologists. It is also a study of the pedigree of the living world, of the history of its evolutionary development. It is fair to say that the last decades of the nineteenth century were dominated in biologiby the building of the system of organisms under the guise of studying their phylogeny. The modern classification of animals and plants was achieved thanks to the labors of a multitude of zoologists and botanists chiefly of that century.

This immense work may now be regarded as finished in the main although, of course, numerous special problems still await solution. For example, there is no reasonable doubt that mammals, birds, and reptiles are natural classes. But the Australian monotremes (the duckbill and the spin) anteater) are a curious group, the evaluation of which is still in doubt. They have hair and nurse their young like mammals, and yet lay eggs in reptilian frashion and have some other odd structural features. Some authorities consider them intermediate between reptiles and mammals and related to the ancestral stock by means of which a group of reptiles give rise to the mammals. Other authorities believe the monotremes to be rather an independent off shoot from the reptiles, the mammals having arisen from something quite unlike the monotremes.

eny, a Sketch of a Natural System of Organisms Based on their Descent, in which he presented what he believed to have been a genealogic tree of the living world Many biologists are at present rather less opti mistic about the reliability of such genealogies than were biologists in Haeckels day After all, the modern natural classification of organisms is still based on the same kind of data which were used by Lin naeus and by Cuvier. To be sure these data are at present incomparably more complete and detailed than they were a century or two centuries ago but the phylogenetic interpretation of the natural system has not changed the classification to any appreciable extent There is no reason to doubt that similarities between organisms usually indicate common descent, except when the similarities are due to analogy rather than to homology However, if we desire to learn something about the actual history of life on earth the study of the now living organisms no matter how detailed, is no safe substitute for the study of fossils

Biogenetic Law The end of the mineteenth and the beginning of the present century saw most biologists busily constructing phylogenies of the animal and plant kingdoms. As we have seen, the chief method used for this purpose was careful comparative study of the body structures of diverse organisms, which usually permitted homologies to be distinguished from analogies. Another and almost equally potent method was the study of the development of the organisms, especially of the embryonic development.

The bodies of animals and plants are often most intricately and wonderfully built let these bodies arise from very obscure begin nings, single egg cells fertilized by single sperms, and by means of developmental processes which have seemed utterly mysterious preformation and box theories (see above) tried to solve the problem by mushing it back to the act of original creation, but this proved a wrong lead Examination of the embryos of different organisms showed at once that these theories lacked foundation Grew (1682) found that an apple seed contains a structure which in no way resembles a miniature apple tree Animal embryos were studred beginning with Fabricius of Aquapendente in Padua (1537-1619) and his great English pupil, William Harvey (1578-1657) Malpighi (1628-1694) was apparently the first to apply to this study the then novel instrument—the microscope Wolff, von Baer (see page 223), Purking (1787-1869), and their successors built the science of em bryology, which progressively unraveled the developmental stages of all classes of living beings. Everywhere the development proved to be epigenetic rather than preformistic

Embryologists were impressed by a rither different aspect of the matter. In 1821 Meckel concluded. Embryos of higher animals pass, before they complete their development, through a succession of stages.

The embryos of higher animals of mammals and especially of man prass through stages resembling more or less completely, in the appearance of separate organs as well as of the whole body the lower animals. Indeed, the body starts by being a single cell and is to that extent like the unicellular organisms. Then it becomes composed of two layers of cells the ectoderm and the endoderm like a hydra or a coral. Especially impressive was the discovery that mammalian and human embryos at a certain stage have in the neck region gill pouches and gill bars. In these embryos these structures never function in respiration but in the fishes they do. A mammalian embryo then passes a fish stage." The embryonic development of higher organisms seems to retrace a sequence of body structures cor-

responding first to the lower and then to progressively higher forms. Darwin pointed out that the above observations are most easily understood if the higher organisms are the evolutionary descendants of the lower ones. Haeckel, who had a talent for making pithly for mulae, expressed the idea thus "Ontogeny (the development of an individual) is a brief and rapid recapitulation of the phylogeny," and he gave to this formula the ambitious name of the "basic biogenetic law" (1866). If the embryo of an organism is an archive which contains a telescoped evolutionary history, the study of the embryonic development becomes a method of unriveling the phylogeny of the group. Haeckel and his many followers eagerly proceeded to do just that The result was accumulation of accurate and detailed data on the embryology of all kinds of organisms. However, most biologists are at present inclined to believe that the "basic biogenetic law" rather overstrated the extent to which the embryonic development is an accurate record of the past evolutionary history. The situation may be

vant to the issue

Development of the Urogenital Organs in Vertebrates. Three kinds of kidneys occur among the vertebrates, known as pronephros, meso nephros, and metanephros. A pronephros is a series of tubules, which draw waste products not from the blood stream but directly from the liquid filling the spaces between the organs in the body cavity. These waste products are conducted to the outside of the body by means of a pair of tubes—the pronephric ducts. The pronephros functions as a kidney only in the most primitive vertebrates, such as young lampreys (Cyclostomata) but a pronephros is nevertheless formed in the embryos of all other vertebrates. In the mammalian embryo it never functions as an organ of excretion, but it is there just the same (Figure 10.5)

understood best by considering two examples of the evidence rele-

Next, there appears in the embryos of all vertebrates a pair of kid neys of quite different structure—the mesonephros. These kidneys have an abundant supply of blood vessels from which the renal tibules draw the waste products. The mesonephros communicates with the outside by means of a duct called the Wolffian duct which develops by modification of the pronephric duct. This is the functional kidney of most fishes and of amphibians but it is formed, next to the proneph ros, also in the embryos of the reptiles, birds, and mammals. In these embryos, however, it is only a temporary arrangement, which soon disappears leaving behind the Wolffian duct which is put to other uses (Figure 10.5).

Figure 10.5 Diagrammatic representation of the urogenital organ 53 stem in various vertebrate runnials. The ser gland is shown stippled primary kidney (pronephros) by horizontal shading secondary kidney (mesonephros) by vertical shading and tertian kidney (metanephros) by cross shading B, urinary bladder G gut M Wullerian duct (oxiduct), P, penis, U wreter W Wolffian duct

In the higher vertebrates there arises a third kidney, the metaneph ros, which is the urine secretor in the adult animals. It has a duct of its own, called the ureter. The metanephros and its ureters are wholly absent in fishes and amphibians.

The development of the everttory organs, the kidneys, is intimitely connected with the development of the reproductive organs. In the frog and other amphibians the sperm produced by the testes is con ducted to the outside through the mesoncipline, Wolffan, ducts. The eggs from the ovary are picked up by another pair of ducts, the Mullerian ducts. These two pairs of ducts, the Wolffan and the Mullerian, are formed in the embryos of most vertebrates. Thus the human embryo about six weeks old has both of them. In the male embryo the Wolffan ducts persist and become the sperm ducts, losing all relation to the adult kidneys in the repulse, birds, and mammals. The Mullerian ducts disappear, except for small vestiges. In the female, the Mullerian ducts develop into the oviducts, and in mammals also into the uterus and a part of the vigina. The Wolffan ducts dis

appear, leaving behind two rudiments in the overy (Figure 105)
Why should pronephros and mesonephros, which are the kidneys of the lower vertebrates, be formed and then disappear in the embryos of the higher vertebrates? This would certainly be inexplicable if the higher vertebrates were not the descendants of the lower Again, an anti evolutionist would have to blame God for having arranged things just to mislead the zoologist The biogenetic law does contain an important kernel of truth. But it does not follow that a human embryo is in a lamprey stage when it has the pronephros, and in a frog stage when it has a mesonephros. At these or at any other stages the human embryo has no far-reaching resemblance to any adult am mal Von Baer stated the facts clearly as early as 1828, when he wrote "An embryo of a higher animal is never basically like any other animal only like the embryo of the latter In other words, the develop ment of the embryo does not reproduce for our benefit the portraits of the near or remote ancestors But the evolutionary descent is mani fest in embryos forming certain organs homologous to those found in

the adults of quite different, but phylogenetically related, organisms. Larvae of Some Crustaceans Just as with the embryos remark able similarities are often found between the larvae of animals which are quite dissimilar as adults. Many lower crustaceans such as the little copepod Cyclops, produce eggs from which hatches a very tiny but characteristic free swimming larva called the nauplius (Figure 106). The nauplius with its three pairs of legs, eventually meta-

Figure 10.6 Similarity of the lart il stages (below) in crustaceans which are very different as adults (above). From left to right (A a) The free swimming copepod Cyclops (B b) the gooseneck birnacle Lepas which lives attriched to rocks by a pediuncle and (C c) Sicculium which in adult condition lives as a parasite on crabs. Sacculinas body gives off root like outgrowths which penetrate inside of the body of the victum and envelop its internal organs (shown only on the left side in C). The different animals are not drawn to same scale.

morphoses into an adult Cyclops, having several pairs of legs and leg like appendages, a complex nerve system and sense organs, as well as organs of reproduction. The barancles look in the adult condition about as unlike a Cyclops as can be imagined. Instead of swimming freely in water (in the plankton), a barrancle is attached to rocks or to the surface of other organisms on the sea bottom or in the tidal zone. It usually has a hard shell consisting of several calcareous pieces, in side of which is found an animal glued to its support by its head.

The classification of barracles was long in doubt. Even so perspica cious a zoologist as Lamarck placed them in his phylogenetic system between the segmented worms and the mollusks. It was not until it was discovered that the barnacles begin their existence as typical nauphius larvae that they were placed as an order, Carripedia, among the crustaceans (Figure 10.6). Some other close relatives of the Cyclops and of the barracles are in the adult condition unlike either. Thus the Sacculina is a parasite living on crabs. Its body is a shapeless sack containing chiefly the enormous reproductive organs, this sack is connected to a system of root like processes which penetrate inside the crab's body and envelop the digestive tube of the latter. Sacculina needs no digestive organs of its own because it absorbs the food digested by the gut of the crabl. And yet the larval form of this para site which has lost almost all semblance of animal form is still a free-swimming nauphius (Figure 10.6).

Taking the biogenetic law literally, we would have to conclude that the ancestor of Cyclops, of barracles, and of Sacculina was a kind of nauplius which reached sexual maturity and reproduced in a state which in its descendants is a passing larval phase. But no such animal actually exists, and it is regarded unlikely that it ever existed. The nauplius phase is there not for the enlightenment of zoologists but because having it is useful to the creatures. Barnacles and Sacculina do not move freely when mature, the nauplius larva being the stage in which they become dispersed and find places to live. The develop mental and embryonic stages, like the adult condition, are subject to evolutionary changes. Mutations occur which alter the embryo and natural selection perpetuates the genotypes which yield developmental patterns most advantageous not only in the adult stage but also during the whole lifetime.

The common ancestor of the Cyclops and of the Cirripedia was not a nauplius but it probably did pass a nauplius like larval stage. Having this kind of larva proved selectively advantageous for many of its descendants, although the adult forms became adapted to quite dif

ferent ways of life and became very strikingly unlike. An embryo or a larva is not simply an archive of the evolutionary records. It is a living organism, a dynamic biological system, which is maintained or modified by natural selection in accordance with the demands of the environment in which the organism lives. It is only fair to add that Hackel realized all this, but he nevertheless created for his phylogenies a lot of theoretical intermediate links between the now-evisting organisms. These intermediates have lived only on the pages of books in which they were described

Vestigial Organs Another line of evidence bearing on the evolutionary history is found in the presence in many organisms of vestigial

Figure 10.7 Skeleton of a whale including a vestigual pelvis which seems to perform no useful function in this animal (After Romanes from Newman)

organs Thus the spinal column in man ends in several small vertebrae which form the bone called coccyx. The coccyx is buried among muscles instead of projecting to the outside, but it is obvious that the coccyx is the homologue of the tail vertebrae of other vertebrates. Indeed, the human embryo develops a tail which to begin with is about as prominent as the tails of embryonic mammals which have tails when adults. However, in the human embryo the tail does not grow as fast as the body does, and by the sixth week of pregnancy at may already be classed as a vestige. To give another example, the whale has under the skin in the belly region some relatively small bones which are the remains of the pelvis and of the hind legs.

morphoses into an adult Cyclops, living several purs of legs and le like appendages, a complex nerve system and sense organs, as we as organs of reproduction. The brinacles look in the adult condition about as unlike a Cyclops as can be imagined. Instead of swimmin freely in water (in the plankton), a barnacle is attached to rocks or the surface of other organisms on the sea bottom or in the tidal zon It usually has a bard shell consisting of several calcarcous pieces, it side of which is found an animal glued to its support by its head. The classification of barnacles was long in doubt. Even so perspect

240

nauplius larvae that they were placed as an order, Cirripedia, amon the crustaceans (Figure 106) Some other close relatives of the Cy clops and of the barnacles are in the adult condition unlike either Thus the Sacculina is a parasite living on crabs. Its body is a shapeles sack containing chiefly the enormous reproductive organs, this sack i connected to a system of root like processes, which penetrate inside the crab's body and envelop the digestive tube of the latter Sacculing needs no digestive organs of its own because it absorbs the food di gested by the gut of the crab! And yet the larval form of this para site which has lost almost all semblance of animal form is still a free swimming nauplius (Figure 106) Taking the biogenetic law literally, we would have to conclude that the ancestor of Cyclops, of barnacles, and of Sacculina was a kind of nauphus which reached sexual maturity and reproduced in a state which in its descendants is a passing larval phase. But no such anima nctually exists, and it is regarded unlikely that it ever existed. The nauplius phase is there not for the enlightenment of zoologists but because having it is useful to the creatures Barnacles and Sacculina do not move freely when mature the nauplius larva being the stage

cious a zoologist as Lamarck placed them in his phylogenetic system between the segmented worms and the mollusks. It was not until was discovered that the barnacles begin their existence as typical

tal patterns most advantageous not only in the adult strige but also during the whole lifetime

The common ancestor of the Cyclops and of the Cirripedia was not a nauplius, but it probably did pass a nauplius like larval stage. Having this kind of larva proved selectively advantageous for many of its descendants, although the adult forms became adapted to quite dif

in which they become dispersed and find places to live. The developmental and embryonic stages like the adult condition, are subject to evolutionary changes. Mutations occur which alter the embryo, and natural selection perpetuates the genotypes which yield development.

law, in the last analysis, is simply an expression of the unity and of a relative stability of the developmental system in evolution

Biochemical Homology Morphology, the study of the external and matomical structure of the body, developed in the history of biological science before physiology, which investigates the processes which take place in the organisms. The theory of evolution was a great generalization derived chiefly from morphological evidence. We have, how ever, pointed out that a body structure is always an outcome of developmental processes which are basically physical and chemical. A trut," such as color or shape of some body part is an outward sign of physiological processes which have brought it about. The current century has seen rapid progress in physiology, and it is now becoming possible to trace physiological evolution just as classical evolutionists traced its morphological aspect. Some biologists even believe that "our final theory of evolution will see it largely as a biochemical process" (Haldane, 1937)

Almost two centures ago Lavoisier, the father of chemistry, discovered that the process of respiration resembles in a general way that of combustion. A molecule of sugar combines with six molecules of oxygen to give carbon dioxide, water, and heat thus

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + Energy$$

But the work of the last quarter of a century has shown that the combustion in the living body is a vastly more intricate and interesting process, which occurs with the aid of many enzymes and involves many intermediate steps. A description of this process, which has been studied in most detail in the muscles of higher animals can be found in any modern textbook of physiology or biochemistry most general way, complex sugars (such as glycogens in animals or starches in plants) are first split to the simplest sugar, glucose cose is combined with phosphoric acid ("phosphorylated") to a glucose phosphate and through some ten further reactions facilitated by a series of specific enzymes, turned into pyrusic acid (CaHiOa) phosphorylation occurs with the aid of a remarkable substance, ideno sine triphosphate abbreviated ATP ATP has a high energy content which it transfers to the phosphorylated glucose. The degradation of the glucose phosphate to pyruvic acid involves, however, liberation of much energy which is used up in the functioning of the hving cell (such as contraction of the muscle) Pyruvic acid is then broken down to carbon dioxide and water by an even more complex system of enzymatic reactions, known as the citric acid cycle. The im-

Why should man possess a token of a tail and a whale have a trace of the pelvis? Why should mammalian embryos develop pronephros kidneys which they never use? There was a time when the zoologist Severino (1580-1650) and the botanist de Candolle (1778-1841) re garded vestigial organs simply as somenirs left by nature to indicate the type, or ground plan, which it followed in constructing a given creature With Darwin and his followers the vestigial organs became the show pieces of evolutionism. Man's coccy's testifies that our ancestors possessed a waggable tril, while's pelvis is there because while's ancestors had four legs and made use of their pelves. Human embryos have a pronephros because our fish like ancestors had one

There is, undeed no doubt that vestigial rudimentary organs silently proclaim the fact of evolution But evolution closs not explain their presence completely After all some organs may be lost in evolution without leaving a trace. The vermiform appendix of the caecum in testine is a vestigial organ in man but the intestine of the cat has no vermiform appendix. If the human coccyx, the vermiform appendix, or the breasts in male mammals are really useless to their possessors why did they not disappear entirely?

To understand this, we must remember that heredity, development and evolution are essentially epigenetic and not preformistic. We do not inherit from our ancestors, close or remote, separate characters or organs functional or vestigial. What we do inherit is, instead, genes which determine the pattern of developmental processes tilized egg is a single cell which becomes many cells these cells become compounded into various organs and require various physio logical functions, the body grows reaches a stage when it is capable of reproducing its like and finally becomes old and dies. Embryonic recapitulations and vestigial organs are integral parts of the developmental patterns which the now living organisms have inherited from their evolutionary ancestry The coccy's arises in the process of build ing the spinal column, the development of a while embryo follows some of the paths which are common to all mammals and involve formation of a pelvis and of hind legs the pronephros appears because the progenital system grises by this method. When we talk or write about the anatomy of man or of some other organism we are likely to represent the body as the sum of organs or tissues which develop independently in ontogeny and in phylogeny But in reality it is the developmental system as a whole which is preserved or modified by natural selection in the process of evolution. Haeckel's biogenetic

Form 0. Built mineral is some order of Some order in a control with the order order mention in control and the control order o

VI or of a kind of animals that were related to the a cost in of both New-phrates and echimoderms

Recently a map of English biochemists (Needs): I Rillywor and Yudkin) produced strong supporting explores in two or the thome high pothesis. Associated with the adenosise triphosphite (AIP see above) in the muscle cells is another substance phosphician which is in of ed in the resynthesis of the ATP after muscle contraction. But the phosphagens are not the same in the muscles of obligation animals. Muscles of vertebrates have a kind of phosphician called creatine phosphate. The invertibrates use a related but different substance argining phosphate. But there are exceptions; the law muscles of some sea urchain contain both our time phosphate and argining phosphate, side by side the bittle stars appear to have

portant thing here is that the chemical reactions are reversible, so that the processes can go in either direction, depending on the presence in the cells of various substances involved and on the need for or the variability of excess energy. Such an arrangement, according to the principles of physical chemistry which we need not consider here, is most economical in that it does not waste energy on heat production, and in that the living cell can respond adaptively to changes in its convenient.

It is most significant for our purposes that this elaborate chemical mechanicry is remarkably widespread in the living world. It is found not only in quite different kinds of cells in higher animals (muscles, liver, kidney nerve cells), but also in quite different organisms, such as insects, mollusks, protozoans, plants, yeasts, and even bacteria. It is at present impossible to tell how great may be the differences between the processes of cellular respiration in different groups of organisms. But it is very clear that these processes have much more in common in most diverse organisms than any biologist would have centured to speculate until these similarities were actually found. We are dealing here with most striking biochemical homologies which attest that the whole living world is really one large family adapted to subsist in different manners in different environments. An anti-evolutionist would have a hard time to account for the inexplicable captice of a deity who chose to install exactly the same enzymatic mechanisms in a human body cell and in a yeast cell.

Biochemical Variations and Evolutionary Relationships. Here we

Biochemical Variations and Evolutionary Relationships Here we may consider just one example of the kind of biochemical evidence which throws light on the evolutionary relationships of morphologically

quite different organisms

The evolutionary derivation of the phylum of vertebrates, to which belong the higher animals from fish to the gentle reader of this book, has been a happy hunting ground for speculation imong zoologists Every major animal phylum was at one time or another considered a possible ancestor or cousin of the vertebrates, there was even an at tempt to derive the vertebrates from fossil relutives of modern spiders, the so called water scorpions. The least strained of these speculations related the vertebrates to the echinoderm phylum (sea urchins starfishes, brittle stars, sea cucumbers, etc.) The chief evidence in favor of this view is an obscure murine animal, the acorn worm (Balano glossus, Figure 10.8). This animal has its nerve system located on the dorsal side from the gut as in all vertebrates, and not on the belly (ventral) side as in the invertebrates. It has gill slits like a fish

(remember the presence of gill bits in mammalian embryos!), and a structure which some authorities considered to resemble the notochord of a vertebrate. None of the echinoderms has a trace of any of these features. But the larva of the acom worm has a most un vertebrate appearance, and an unmistakable resemblance to the larvae of the echinoderms. It may be, then, that the acom worm is the last sur-

Figure 10.8 Bilanoglossus a representative of Hemichordata a group which may contain greatly modified descendants of the common ancestors of screenings and echinode may as explained in the text (After Deringin)

vivor of a kind of animals that were related to the ancestors of both vertebrates and echinoderms

Recently a group of English buochemists (Neidham, Bildwin, and Yudkin) produced strong supporting evidence in favor of the above hypothesis. Associated with the adenosine triphosphate (ATP, see above) in the muscle cells is another substance phosphagen, which is involved in the resenthesis of the ATP after muscle contraction. But the phosphagens are not the same in the muscles of different animals. Muscles of vertibrates have a kind of phosphagen called creating phosphate. The invertebrates use a related but different substance arguing phosphate. But there are exceptions the jaw muscles of some sea urchins contain both creating phosphate and arguing phosphate, side by side, the buttle stars appear to have

portant thing here is that the chemical reactions are reversible, so that the processes can go in either direction, depending on the presence in the cells of various substances involved and on the need for or the availability of excess energy. Such an arrangement, according to the principles of physical chemistry which we need not consider here, is most economical in that it does not waste energy on heat production, and in that the living cell can respond adaptively to changes in its environment.

It is most significant for our purposes that this elaborate chemical machinery is remarkably widespread in the living world. It is found not only in quite different kinds of cells in higher animals (muscles, liver, kidney, nerve cells), but also in quite different organisms, such as insects, mollusks, protozoans, plants, yeasts, and even bacteria. It is at present impossible to tell how great may be the differences between the processes of cellular respiration in different groups of organisms. But it is very clear that these processes have much more in common in most diverse organisms than any biologist would have ventured to speculate until these similarities were actually found. We are dealing here with most striking biochemical homologies which attest that the whole living world is really one large family adapted to subsist in different manners in different environments. An anti-evolutionist would have a hard time to account for the inexplicable captrice of a deity who chose to install exactly the same enzymatic mechanisms in a human body cell and in a yeast cell.

Biochemical Variations and Evolutionary Relationships Here we may consider just one example of the kind of biochemical evidence which throws light on the evolutionary relationships of morphologically

quite different organisms

The evolutionary derivation of the phylum of vertebrates, to which belong the higher animals from fish to the gentle reider of this book has been a happy hunting ground for speculation among zoologists Every major animal phylum was at one time or another considered a possible ancestor or cousin of the vertebrates, there was even an at tempt to derive the vertebrates from fossil relatives of modern spiders, the so called water scorpions. The least strained of these speculations related the vertebrates to the echinoderm phylum (sea urchins, starfishes, brittle stars, sea cucumbers, etc.) The chief evidence in favor of this view is an obscure manne animal, the acorn worm (Balanoglossis, Figure 10.8) This animal has its nerve system located on the dorsal side from the gut, as in all vertebrates, and not on the belly (ventral) side as in the invertebrates. It has gill slits like a fish

but still perceptible A dog serum gives little or no precipitate at all

With proper technical refinements the serological tests are made to give quantitative data which may be used to evaluate the biochemical (or, more precisely, serological) resemblances and differences between Such serological comparisons have been made for a va riety of animals and also for some plants By and large, the serological differences go hand in hand with the differences in the body structure. and consequently with the position of the organisms involved in the modern natural classification system. This being so, some interesting attempts were made to use serological reactions as a criterion of rela tionship where the usual morphological data yield not wholly satisfactory results. Thus some zoologists consider rabbits and hares to be so different from mice squirrels, guinea pigs, and beniers that they nut the rabbits and hares in a separate order. Lagomorpha, and the latter group in the old order Rodentia (rodents). Other zoologists consider the lagomorphs and rodents to be members of a single order. Bodentia Moody and his collaborators found that rabbits are sero logically very unlike the rodents. In fact, their data show a closer similarity between a rabbit and cattle than between a rabbit and a guinea pig or a rat This is, of course, evidence in favor of giving the lagomorphs the status of a separate order

Genc Homology The resemblance between the hearts of a whale and of other mammals is unquestionably due to homology, whereas the resemblance between the fins of a whale and of a fish is due to analogy The while is undoubtedly a mammal and not a fish, but the distinction between homology and analogy is not always so easy. The lagomorphs and the rodents have very similar gnawing incisor teeth. Should we give a greater weight to the morphological similarity of the teeth or to the biochemical difference revealed by the serological tests? Have the lagomorphs and the rodents inherited their gnawing incisors from common ancestors or acquired them independently by convergent evolution? Because of the possibility of such doubts, it is interesting that the phenomenon of homology extends right down to the gene level of biological organization.

Suppose that half of the male progeny of a Drosophila female are red eyed and the other half are white-eved (cf page 61) Ignoring the possibility of mutation, we can say that the red-eyed males carry the same gene for red eyes, or, more precisely, the division products of the red gene which their mother carried in its A chromosome Similarly, the white eyed sons have white genes descended from the white

creatine phosphite, like the vertebrates. At least one species of star fish has only arginine phosphate. The only other animal which is innorthedox in this respect is again the acorn worm. Some species of Balanoglossus have only creatine phosphate, but one species has been reported to have both creatine and arginine phosphates.

This does not mean, of course, that the vertebrate animals have descended from sea urchins or from acorn worms, any more than Darwins theory meant that "man is descended from a monke," The now hiving echinoderms are about as inhikely ancestors of the vertebrates as any animal can be. The biochemical machinery of the echinoderm muscles shows, however, a spectricular variability, such as could be expected in a group of animals the ancestors of which were also the ancestors of the accorn worms and of the vertebrates.

Scrological Reactions One of the most remarkable adaptive reactions in the higher ariumals is their ability to protect themselves aguinst the invasions of pathogenic microorganisms by formation of antibodies (see page 13). When bacteria or viruses, alive or killed, are introduced into the blood stream there appear in the blood serum (the liquid portion of the blood) chemical substances, antibodies, which can kill or neutralize the microorganisms of the same kind which induced the formation of the antibodies. This natural protective reaction however, may be used experimentally to produce data bearing on the problems of biochemical similarities and dissimilarities between organisms.

Suppose that human blood, or minced tissue, is injected into a suitable animal such as a rabbit. After a while the serum of the injected rabbit will contain antibodies to the human blood. This change can be detected by mixing in a test tube some serum of the immunized rabbit with human serum, the "immune reaction will be manifested by the formation of a precipitate which will settle on the bottom of the test tube. Of course this immune reaction will develop with a serum of any human being not only that of the individual who fur inshed the material injected into the rabbit. This fact means that all human beings are chemically similar enough so that a rabbit immunized adainst the serum of one is immunized to all human series.

Next, the serum of a rabbit immunized against human serum may be mixed with the serum of a chimpanzee or other anthropoid apes. A precipitate is formed, showing that the chimpanzee blood proteins are much like the human ones. But the serum of a monkey, such is a baboon, gives a very much weaker immune reaction with less precipitate. Here the chemical similarities are evidently more limited but still perceptible A dog serum gives little or no precipitate at all Man and dog sera are chemically very different

With proper technical refinements the serological tests are made to give quantitative data which may be used to evaluate the biochemical (or, more precisely, serological) resemblances and differences between organisms. Such serological comparisons have been made for a va nety of animals and also for some plants By and large, the serological differences go hand in hand with the differences in the body structure, and consequently with the position of the organisms involved in the modern natural classification system This being so, some interesting attempts were made to use serological reactions as a criterion of relationship where the usual morphological data yield not wholly satisfactory results Thus some zoologists consider rabbits and haves to be so different from mice, squirrels, guines pigs, and beavers that they put the rabbits and hares in a separate order. Lagomorpha, and the latter group in the old order Rodentia (rodents). Other zoologists consider the lagomorphs and rodents to be members of a single order. Rodentia Moody and his collaborators found that rabbits are sero logically very unlike the rodents. In fact, their data show a closer similarity between a rabbit and cattle than between a rabbit and a guinea pig or a rat. This is, of course, evidence in favor of giving the lagomorphs the status of a separate order

Gene Homology The resemblance between the hearts of a while and of other mammals is unquestionably due to homology, whereas the resemblance between the fins of a whale and of a fish is due to analogy The while is undoubtedly a mammal and not a fish, but the distinction between homology and analogy is not always so easy. The ligomorphs and the rodents have very similar gnawing incisor teeth. Should we give a greater weight to the morphological similarity of the teeth or to the biochemical difference revealed by the serological tests? Have the lagomorphs and the rodents inherited their gnawing incisors from common ancestors or acquired them independently by convergent evolution? Because of the possibility of such doubts, it is interesting that the phenomenon of homology extends right down to the gene level of biological organization.

Suppose that half of the male progeny of a Drosophila female are red eyed and the other half are white eyed (cf page 61) Ignoring the possibility of mutation, we can say that the red eyed males carry the same gene for red eyes, or, more precisely, the division products of the red gene which their mother carried in its X-chromosome Similarly, the white eyed sons have white genes descended from the white

gene in the other \(\) chromosome of their mother \(\) We can take a long further step and say that the red and the white genes, which act as alleles, are both descendants of a gene which was present in a common ancestor of the flies crossed \(\) Indeed, mutations which produce white alleles from red lave been repeatedly observed. The white and the red alleles of the "white gene" in \(\) Drosophila melanogaster are certainly homologous

Drosophila simulans, a species very similar to Drosophila melanogas ter, also his red eyes, and also produces by mutation white eyed strains Does Drosophila simulans have a homologue of the "white gene" of Drosophila melanogaster? We can be sure that it does, because the two species can be crossed, and, although the offspring are sterile, they show that the eye color in the hybrids between the species is inherited exietly as it is within either parental species Sturtevant has found by means of similar evidence that Drosophila melanogaster and Drosophila simulans curry a number of homologous genes. In fact, no gene has been found present in one species but lacking a homologue in the other. Gene homology was demonstrated by similar experiments also in some other pairs of species that can be crossed and produce hybrids. Harland, Stephens, and others have carried out particularly elegant investigations of this sort in several related species of cottons (concerning these species, see Chapter 9). The presence of homologous genes in different species is, of course, the strongest possible evidence of the descent of these species from a common an ecestor short of actual resynthesis of these species in experiments (cf. Chapter 9).

Many species cannot be crossed, or produce hybrids which fail to survive to the stage when certain body traits, such as coloration, develop. Such species may nevertheless produce strikingly similar mutants. For example, white eyed mutants due to set linked recessive genes are known in about a dozen different species of Drosophila Even more remarkable is that different species of rodents and lagomorphs (domestic mouse, rat, guinea pig, rabbit) and even representatives of other orders of mammals (cattle, sheep horse, dog cat, man) give rise to kindred mutants. Thus most of the species named have albino forms due to recessive gene alleles, genes which produce characteristic kinds of spotting genes which give the "wild" (agout) coloration of the pelage etc. A not very rare dominant gene in man gives a light "forelock of hair, as well as an albinotic condition of parts of the skin on the face chest, and abdomen (the manifestation of this gene is particularly striking in normally dark skinned races). It is

tempting to compare this gene with genes which give a similar distribution of white parts in other animals, such as dogs and cats

Different species, genera, and even different orders of mammals may still have some homologous genes, descended from the genes which were carried in their common ancestors This is, indeed, most likely nustified, at least for the parallel color mutants in the different rodents. but we must beware of placing too much reliance on inferences of this kind. When the gene homology in different species cannot be dem onstrated by crossing these species and examining their hybrids, the phenotypically similar mutants may be analogous rather than homolo gous That this danger is a very real one is shown by the existence within the same species of phenotypically similar mutants which are produced by non homologous, and non allelic genes. For example, several eve color mutants are known in Drosophila melanogaster which differ from the normal fly by having a bright red eve It is hard to distinguish these mutants (called vermilion, cinnabar, scarlet, cardinal, etc) by inspection, and yet the genes which produce them lie in different chromosomes, and the hybrid offspring of the different recessive mutants have a normal eve color Human genetics has also several instances when similar traits are produced by different genes. For example, there are it least two different genes which give color blind-

Are Genes Preformistic? The discovery that many fundamental biochemical processes are similar in most diverse organisms (see above) makes the problem of gene homology especially difficult. It is the more so since the important work of Beadle and his school his developed the idea that an intimate relationship exists between genes and enzymes. Working particularly with the fungus Neurospora, this school found, especially after 1940, that many mutations induced by ultraviolet treatments and other means have each just one step blocked in some metabolic reaction chain. It looks as though every gene is responsible for the production of just one enzyme which mediates some chemical reaction in the metabolic muchinery of the cell, or at least that there is a one gene-one function relationship in the cell physiology.

Several enzymes performing apparently identical functions have been discovered in organisms as different as minimals and verst or bacterial cells, and there is every likelihood that such discoveries will be multiplied in the years to come Should we conclude on this basis that man and bacteria still possess some genes in common? Some biologists regard such a conclusion as likely and others as improbable

218

one in the other A-chromosome of their mother. We can take a long irther step and say that the red and the white genes, which act as lleles, are both descendants of a gene which was present in a common neestor of the flies crossed Indeed, mutations which produce white lleles from red have been repeatedly observed. The white and the ed alleles of the 'white gene" in Drosophila melanogaster are certainly omologous

Drosophila simulans, a species very similar to Drosophila melanogas r, also has red eyes, and also produces by mutation white-eyed strains loes Drosophila simulans have a homologue of the "white gene" of rosophila melanogaster? We can be sure that it does, because the vo species can be crossed, and, although the offspring are sterile, iey show that the eye color in the hybrids between the species is herited exactly as it is within either parental species. Sturtevant as found by means of similar evidence that Drosophila melanogaster ad Drosophila simulans carry a number of homologous genes. In ict, no gene has been found present in one species but lacking a omologue in the other Gene homology was demonstrated by similar operiments also in some other pairs of species that can be crossed ad produce hybrids Harland, Stephens, and others have carried out articularly elegant investigations of this sort in several related species cottons (concerning these species, see Chapter 9) The presence homologous genes in different species is, of course, the strongest assible evidence of the descent of these species from a common anistor short of actual resynthesis of these species in experiments (cf. hapter 9)

Many species cannot be crossed, or produce hybrids which ful to rvive to the stage when certain body traits, such as coloration, deslop Such species may nevertheless produce strikingly similar mu nts For example, white eved mutants due to sex-linked recessive mes are known in about a dozen different species of Drosophila ven more remarkable is that different species of rodents and lagoorphs (domestic mouse, rat, guinea pig, rabbit) and even reprentatives of other orders of mammals (cattle, sheep, horse, dog cat, an) give rise to kindred mutants Thus most of the species named ive albino forms due to recessive gene alleles, genes which produce paracteristic kinds of spotting genes which give the wild" (agouti) loration of the pelage etc. A not very rare dominant gene in man ves a light forelock of hair, as well as an albinotic condition of parts the skin on the face, chest, and abdomen (the manifestation of this me is particularly striking in normally dark skinned races). It is

began to decipher the chemical nature of these reactions, the gene became tied to an enzyme or to a "function"

There the matter rests for the present. More knowledge about the nature of the gene action and of the embry onic development is needed to throw new light on the fundamental biological problems involved here In conclusion however, it should be stressed that similarity of the known end effects of genes does not prove that these genes are identical Consider, for example, the fact that all classes of vertebrates have eves of basically the same structure. Harland pointed out (1936) that it does not follow from this that the same genes make the eves of a fish of a bird and of man. In fact, there may not be any particular genes which make the eye in any of these. The formation of the eye in the development is a part of the development of the embryo as a whole which is governed not by any one gene but by the whole genotype Of course changes (mutations) of some genes are known to strike at some parts of the developmental machiners (such as the development of the eye or of some of its parts) more than at other developmental processes However, it is not only possible but, indeed, likely that different, non-homologous and non-allelic, genes may show such effects in different organisms. Muller (1939) has called this the change of the gene function, the role which a gene plays in the development of the organism does not remain constant in the evolutionary process even though some organs (such as eyes) remain clearly homologous for long times during the evolutionary history The presence of the same enzymes in human beings and in yeast cells means, then that these enzymes play adaptively very im portant, and perhaps irreplaceable, functions in the cellular metabolism But even if the specificity of each enzyme is impressed upon it by one and only one gene it is probable that different genes do it in man and in the yeast

Suggestions for Further Reading

Locy W A 1925 Growth of Biology Holt New York Nordenskiold E 1928 The History of Biology Knopf, New York Durlington C D 1953 The Facts of Life Allen & Unwin London

Dirlington's book contains a very interestingly written if partism account of the history of some basic ideas of genetics and evolution. The other two books formula good factual descriptions but their interpretations are not always in tune with modern biology.

Buchsbaum R 1948 Animals without Backbones 2nd Edition Chicago University Press Chicago The attitudes of different biologists towards this unsolved problem reflect in a most interesting manner the preformist and the epigenetic types of thinking which, as we have seen, are traceable in biological science, almost from its preception.

As described in Chapter 4, the early ideas concerning the nature of heredity were clearly preformistic. Darwin's hypothesis of pangenesis assumed a two way relationship between the organs of the body and the sex cells The organs and tissues manufacture each their own vestiges called gemmules, the gemmules are transported to the re productive glands through the blood stream or similar means, in the developing embryo each gemmule gives the organ of which it is the likeness According to Weismann, whose views were influential around the turn of the century when genetics got its start, there evisted a strictly one way street between the sex cells and the body The germ plasm in the sex cells consists of "determinants" which reproduce themselves by division. The development is essentially a sorting out the determinants present in the fertilized egg until each organ and cell comes to contain only the determinant which makes that cell what it should be in the finished organism Surely Weismann has not imagined a "homunculus hidden in a sex cell or in a chromosome, but in effect his determinants amounted to a sort of a dismem bered mosaic the stones of which could make a homunculus when put in the right order And, incidentally, it was when Weismann attempted to figure out how this mosaic was put together in the em bryonic development that his ingenious theory broke down

The gene of the geneticists was, to begin with, uncommitted either to preformism or to epigenesis. Johannsen who invented the word "gene (1909), was especially anxious to keep it austerely pure of any such implications, to him the gene was just "something in the sex cells which determines various "properties of the organism. He wisely refrained from speculating about how the determination occurred. But the purity did not last long partly because of the lan guage which biologists were using. When one speaks of the gene for white eyes in Drosophila, a wrong impression is created that this gene is concerned with the development of the eye color and nothing else (see however, the discussion of manifold effects of genes, page 35). The preformism put out by the front door returned by the back door. Every gene was named for something an organ or a character or a disease. A visible character, however, is a sign that some physiological reaction had taken place.

began to decipher the chemical nature of these reactions, the gene became tied to an enzyme or to a "function'

There the matter rests for the present. More knowledge about the nature of the gene action and of the embryonic develonment is needed to throw new light on the fundamental biological problems involved here. In conclusion, however, it should be stressed that similarity of the known end effects of genes does not prove that these genes are identical Consider for example the fact that all classes of vertebrates have eves of basically the same structure. Harland nointed out (1936) that it does not follow from this that the same gines make the eyes of a fish of a bird, and of man. In fact, there may not be any particular genes which make the eye in any of these. The formation of the eye in the development is a part of the development of the embryo as a whole which is governed not by any one gene but by the whole genotype Of course changes (mutations) of some genes are known to strike at some parts of the developmental machinery (such as the development of the eye or of some of its parts) more than at other developmental processes However, it is not only possible but indeed likely that different, non homologous and non allelic, genes may show such effects in different organisms. Muller (1939) has called this the change of the gene function the role which a gene plays in the development of the organism does not remain constant in the evolutionary process, even though some organs (such as eyes) remain clearly homologous for long times during the evolutionary history The presence of the same enzymes in human beings and in yeast cells means, then, that these enzymes play adaptively very im portant, and perhaps irreplaceable, functions in the cellular metabo lism But even if the specificity of each enzyme is impressed upon it by one and only one gene, it is probable that different genes do it in man and in the yeast

Suggestions for Further Reading

Locy W A 1925 Grouth of Biology Holt, New York Nordenskiold E 1928 The History of Biology Knopf New York Darlington C D 1953 The Facts of Life Allen & Unwin London

Darlington's book contains a very interestingly written if partisan account of the history of some brase ideas of genetics and evolution. The other two books furnish good factual descriptions but their interpretations are not always in tune with modern biology.

Buchsbaum R 1948 Animals without Backbones 2nd Edition Chicago University Press Chicago The attitudes of different biologists towards this unsolved problem reflect in a most interesting manner the preformist and the epigenetic types of thinking which, as we have seen, are traceable in biological science almost from its incention

As described in Chapter 1, the early ideas concerning the nature of heredity were clearly preformistic. Darwin's hypothesis of pangenesis assumed a two way relationship between the organs of the body and the sex cells The organs and tissues manufacture each their own vestiges called gemmules, the gemmules are transported to the re productive glands through the blood stream or similar means, in the developing embryo each gemmule gives the organ of which it is the likeness According to Weismann, whose views were influential around the turn of the century when genetics got its start, there existed a strictly one-way street between the sex cells and the body The germ plasm in the sex cells consists of "determinants" which reproduce themselves by division. The development is essentially a sorting out the determinants present in the fertilized egg, until each organ and cell comes to contain only the determinant which makes that cell what it should be in the finished organism. Surely Weismann has not imagined a "homunculus" hidden in a sex cell or in a chromo some, but in effect his determinants amounted to a sort of a dismem bered mosaic the stones of which could make a homunculus when put in the right order. And, incidentally, it was when Weismann attempted to figure out how this mostic was put together in the embryonic development that his ingenious theory broke down

The gene of the geneticists was, to begin with, uncommitted either to preformism or to epigenesis. Johannsen who invented the word gene (1909), was especially anxious to keep it austerely pure of any such implications, to him the gene was just "something in the sex cells which determines various properties of the organism. He wisely refrained from speculating about how the determination occurred. But the purity did not last long partly because of the language which biologists were using. When one speaks of the gene for white eyes in Drosophila, a wrong impression is created that this gene is concerned with the development of the eye color and nothing else (see, however, the discussion of manifold effects of genes, page 35). The preformism put out by the front door returned by the back door. Every gene was named for something an organ or a character, or a disease. A visible character, however, is a sign that some physiological reaction had taken place.

began to decipher the chemical nature of these reactions, the gene became tied to an enzyme or to a 'function

There the matter rests for the present More knowledge about the nature of the gene action and of the embryonic development is needed to throw new light on the fundamental biological problems involved here In conclusion, however, it should be stressed that similarity of the known end effects of genes does not prove that these genes are identical Consider, for example, the fact that all classes of vertebrates have eyes of basically the same structure. Harland pointed out (1936) that it does not follow from this that the same genes make the eves of a fish, of a bird, and of man In fact, there may not be any particular genes which make the eve in any of these. The formation of the eve in the development is a part of the development of the embryo as a whole, which is governed not by any one gene but by the whole genotype Of course changes (mutations) of some genes are known to strike at some parts of the developmental machinery (such as the development of the eye or of some of its parts) more than at other developmental processes However, it is not only possible but, indeed, likely that different, non-homologous and non allelic, genes may show such effects in different organisms Muller (1939) has called this the change of the gene function the role which a gene plays in the development of the organism does not remain constant in the evolutionary process even though some organs (such as eyes) remain clearly homologous for long times during the evolutionary history The presence of the same enzymes in human beings and in yeast cells means, then, that these enzymes play adaptively very im portant, and perhaps irreplaceable, functions in the cellular metabo lism But even if the specificity of each enzyme is impressed upon it by one and only one gene, it is probable that different genes do it in man and in the yeast

Suggestions for Further Reading

Locy W A 1925 Growth of Biology Holt New York Nordenskiold E 1928 The History of Biology Knopf New York Darlington C D 1933 The Facts of Life Allen & Unwin London

Darlington's book contains a very interestingly written, if partisan account of the history of some basic ideas of genetics and evolution. The other two books furnish good factual descriptions but their interpretations are not always in tune with modern biology.

Buchsbaum R 1948 Animals without Backbones 2nd Edition Chicago University Press Chicago

The attitudes of different biologists towards this unsolved problem reflect in a most interesting manner the preformist and the epigenetic types of thinking which, as we have seen, are traceable in biological science almost from its incention

As described in Chapter 4, the early ideas concerning the nature of heredity were clearly preformistic. Darwin's hypothesis of pangenesis assumed a two way relationship between the organs of the body and the sex cells The organs and tissues manufacture each their own vestiges called gemmules, the gemmules are transported to the re-productive glands through the blood stream or similar means, in the developing embryo each gemmule gives the organ of which it is the likeness According to Weismann, whose views were influential around the turn of the century when genetics got its start, there existed a strictly one-way street between the sex cells and the body The germ plasm in the sex cells consists of "determinants" which reproduce themselves by division. The development is essentially a sorting out the determinants present in the fertilized egg, until each organ and cell comes to contain only the determinant which makes that cell what it should be in the finished organism Surely Weismann has not imagined a "homunculus hidden in a sex cell or in a chromosome, but in effect his determinants amounted to a sort of a dismem bered mosaic the stones of which could make a homunculus when put in the right order. And, incidentally, it was when Weismann attempted to figure out how this mosaic was put together in the em bryonic development that his ingenious theory broke down

The gene of the geneticists was, to begin with, uncommitted either to preformism or to epigenesis. Johannsen, who invented the word gene' (1909), was especially invious to keep it austerely pure of any such implications, to him the gene was just something" in the sex cells which determines various properties" of the organism. He wisely refrained from speculating about how the determination occurred. But the purity did not last long, partly because of the language which biologists were using. When one speaks of the gene for white eyes in Drosophila, a wrong impression is created that this gene is concerned with the development of the eye color and nothing else (see, however, the discussion of manifold effects of genes, page 185). The preformism put out by the front door returned by the back door. Every gene was named for something an organ or a character or a disease. A visible character, however, is a sign that some physiological reaction had taken place.

П

Evolution of Sex

According to Plato's romantic myth, the world was at some remote time populated by perfect beings who were female on one side of the body and male on the other. Then angry gods sundered the two sides, and made the detached halves, females and males, forever seek to restore the lost wholeness in love. Until the beginning of the current century, Plato's myth was about as good an elucidation of the origin and meaning of sex as could be had. Aristotle, Plato's more realistic-minded disciple and rival, declared that the female supplies the matter and the male the motion of the future life. He thought that the female was cold and the male hot. Consequently, the conceptions which occur when warm winds are blowing give more males, and cold winds bring more females. The conjectures and speculations concerning sex which were being solemnly discussed in Darwins dry were not much above the level reached by Aristotle more than two thousand years earlier.

Two discoveries changed the situation at the turn of the twentieth century. First, the microscope revealed the existence of sec chromo somes (see Chapter 3). In organisms with separate seves every cell of a femile body differs in the chromosome complement from every male cell. The behavior of the sex chromosomes at meiosis explains very simply how the sex of an individual is decided at the moment when the egg is fertilized. Second, an insight into the biological mean ing of sex was obtained by deduction from Mendels discoveries. Mendels work showed that gene recombination in sexually produced progenies creates an immense amount of genetic variability and of raw materials for evolution (Chapter 2). Sex arose in organic evolution is a master adaptation which makes all other evolutionary adaptations more readily accessible.

252 Evolution of the Organic Form and Lunction

De Beer, G. R. 1951. Embruos and Ancestors. 2nd Edition. Oxford Univer-5its Press. New York Gregory, W k 1051 Evolution Francisco Macmillan, New York

Romer, A S 1949 The Vertebrate Body Saunders Philadelphia Sumpson G G 1911 The principles of classification and a classification of mam mals Bulletin of the American Museum of Natural History Volume 85

Young, J 7 1950 The Life of Vertebrates Clarendon Press Oxford

These six books (Buchsbaum to Young) furnish excellent accounts of compara

tive anatomy and embryology viewed in evolutionary perspective Baldwin E 1918 An Introduction to Comparative Biochemistry Academic

Press. New York

Florkin M and Morgulis S 1949 Biochemical Fulution Academic Press New York

Haldane J B S 1954 The Biochemistry of Genetics Allen & Unwin London Wild G 1918 The chemical evolution of vision The Harvey Lectures Senes

41 pages 117-160 Wald G 1952 Biochemical evolution In Modern Trends in Physiology and

Biochemistry Academic Press New York Physiology and biochemistry are the biological disciplines which have thus far been least influenced by evolutionary thought. The works cited above represent pioneering attempts in studies on the evolution of biochemical systems

П

Evolution of Sex

According to Plato's romantic myth, the world was at some remote time populated by perfect beings who were female on one side of the body and male on the other Then angry gods sundered the two sides and made the detached halves, females and males, forever seek to restore the lost wholeness in love. Until the beginning of the current century. Plato's myth was about as good an elucidation of the origin and meaning of sex as could be had. Aristotle, Plato's more realistic-minded disciple and rival, declared that the female supplies the matter and the male the motion of the future life that the female was cold and the male hot Consequently, the conceptions which occur when warm winds are blowing give more males, and cold winds bring more females. The conjectures and speculations concerning sex which were being solemnly discussed in Darwin's day were not much above the level reached by Aristotle more than two thousand years earlier

Two discoveries changed the situation at the turn of the twentieth century. First, the microscope revealed the existence of sex chromosomes (see Chapter 3). In organisms with separate sexes every cell of a female body differs in the chromosome complement from every male cell. The behavior of the sex chromosomes at meiosis explains very simply how the sex of an individual is decided at the moment when the egg is fertilized. Second an insight into the biological meaning of sex was obtained by deduction from Mendels discoveries. Mendels work showed that gene recombination in sexually produced progenies creates an immense amount of genetic variability and of raw materials for evolution (Chapter 2). Sex arose in organic evolution as a master adaptation which makes all other evolutionary adaptations more readily accessible.

Since the importance of sex in evolution is so great, sex itself under went a long and complex evolution. Perhaps no other biological function appears in such a bewildering diversity of forms in different originisms as does sexual reproduction. Yet, despite this diversity, sex everywhere series the same basic biological function—production of genetic variability by gene segregation and recombination. The story

Figure 11.1 Sexual process in a primitive alga Dunaliella. The cells that unite are so similar that neither of them can be regarded as female or male (After Lerche).

of the evolution of sex has an intrinsic interest, and moreover it reveals evolutionary principles of vide significance

Sexuality in Unicellular Organisms All the fundamental charac teristics of sexual reproduction appear fully formed even in the sim plest organisms. Figure 11 I shows the sexual process in the one celled green alga, Dunahella. The individual cells propelled by their fingella, lead independent lives in water, and propagate chiefly asexually, by simple fission. But under appropriate conditions of light and nutrition they come together and unite in pairs, their bodies fuse completely and their nuclei do likewise. The resulting cell (cyagote) has of course, twice as many chromosomes in its nucleus as were present in the cells which fused (gametes). The zygote may enter upon a

period of rest, or it may undergo at once two meiotic divisions. These divisions yield four cells, each with half as many chromosomes as were present in the 2x gote, the cells separate and start a new cycle of independent evistence and asexual reproduction.

The critical events in any sexual process are two, fertilization and meiosis. Both are observed in the alga shown in Figure 11 I, but it may be noted that the cells which fuse are so much alike in appearance that neither of them can be regarded as female or as male. The two sexes in these primitive organisms are called simply plus and minus. That the plus sex is genetically different from the minus can be demonstrated by a simple experiment. Single cells are isolated, and their assevial progenies (clones) are kept in separate cultures. No sexual fusions take place within a clone, since all cells are of the same sex. But when cells from different clones are mixed, pairs may be formed. Clones which give rise to pairs are of different sex. The difference between the plus and minus sexes is inherited very simply, among the four cells which arise from a zygote as a result of meiosis, two cells give rise to plus and two to minus clones.

A situation known as relative sexuality, which at first sight seems to be paradoxical, arises in some algae and some lower fungi which have not two but several seves. Figure 11.2 illustrates a cise when eight seves can be distinguished, beginning with "strong plus (+4), weak plus (+1) weak minus (-1), and so on to "strong minus" (-4). Any plus strain gives sexual fusions with any minus strain, but a strong plus gives fusions also with a weak plus, and a strong minus with a weak minus. The extremes of each sexual group behave towards each other as representatives of different seves. The inheritance of relative sexuality is rather complex and not completely worked out.

Female and Male Sex Cells In unicellular organisms every cell may under proper environmental conditions act as a gamete that is participate in a sevual fusion. In multicellular creatures there is a division of labor between cells of different tissues, cells are specialized to perform different functions. An animal body consists of skin cells, muscle cells, bone cells, glandular cells, nerve cells, and finally sex cells which carry the function of reproduction. The sex cells which unite may be alike or they may be different. In some marine brown algae the sex cells are as much thike as the gametes shown in Figure 11.1 Here we cannot, therefore, speak of female and male sex cells but in other brown algae one of the gametes that fuse is much larger than its partner. The larger gamete contains a supply of nutritive

materials, it is the female cell. The smaller gamete contains little food supply but it is efficiently motile, it is the male gamete

The differences between female and male sex cells are the outcome

Sex	우 4	Ŷ 3	₽ 2	Ŷ 1	81	82	d 3	84
9	-	-	weak	medium	strong	strong	strong	strong
3	-	-	_	west	strong	strong	strong	strong
9+2	weak	-	-	-	strong	strong	strong	strong
9	medium	weak	-	-	medium	strong	strong	strong
01	strong	strong	strong	medium	_	1	weak	medium
402	strong	strong	strong	strong	1	-	1	weak
то 3	strong	strong	strong	strong	-	-	-	-
8	strong	strong	strong	strong	medium	weak	-	-

Figure 11.2 Relative sexuality in the alga Chlamydomonas Eight types of strains are distinguished which exhibit varying degrees of sexual affinity for each other. The dash — shows that no sexual unions occur in certain combinations. In other combinations a weak medium or strong sexual affinity is exhibited (After Moewus).

of division of labor. The female furnishes the nourishment for the future organism, whereas male cells are specialized for rapid mobility. In a way, Anstotle was right when he said that the female is the provider of matter and the male of motion. What Aristotle could not know was that the female and male sexual elements are alike in that both carry nuclei with similar chromosome complements, and consequently are equility potent and efficient in the transmission of heredity. In all higher organisms, animals as well as plants, female and male gametes are extremely different in size appearance, and structure. An egg cell may have a mass millions of times greater than the sperma tozoon, and yet the female and male cells are very much alike in their genetic contents.

Hermaphroditism However striking are the differences between female and male gametes eggs and spermatozoa, both kinds of sex

cells may be produced in the body of the same individuals An organism which gives rise to female as well as to male sex cells is called a hermanhrodite Many invertebrate animals are hermaphrodites A majority of flowering plants are also monoecious or hermaphroditic A flower usually contains female parts which produce ovules, and male parts which give rise to pollen grains Some plants such as willows however are dioectous or bisexual. A willow tree produces either female or male flowers but not both.

In snails and slugs (pulmonate mollusks), every individual has a sungle hermaphrodite gland which produces eggs and spermatozoa at the same time. The sexual ducts which carry these eggs and spermatozoa to the outside however, are separate and so are the female and male copulators organs (Figure 113) Self-fertilization of the eggs by the spermatozoa of the same individual occurs only rarely The usual situation is that two hermaphroditic snails mate and the eggs of each are fertilized by the spermatozoa of the other In earthworms the male and the female sex glands are separate and so are the sexual ducts The copulation leads usually to mutual insemination. Hermaphroditism is rare among insects and among vertebrate animals Among the latter it occurs only in

Figure II 3 Reproductive organs in a hermaphrodute snail. g the oco-terits or hermaphrodute gland, in which both egg cells and spermatozoa are formed d hermaphrodute duct, through which both egg cells and spermatozoa pass og accessory gland od oviduct, and sd sperm duct, respectively spr spermatheca, in which the sperm of another individual is stored after copulation poems of fagellium ld "love dart," used in the courtship process mg mucus selands.

materials, it is the female cell. The smaller gamete contains little food supply but it is efficiently motile, it is the male gamete

The differences between female and male sex cells are the outcome

Sex	♀ 4	Ŷ 3	₹ 2	Ŷ 1	d 1	82	83	84
0+4		-	weak	meďum	strong	strong	strong	strong
0+3	-	-	_	west	strong	strong	strong	streng
0+2	weak	-	-	-	strong	strong	strong	strong
0 + 1	medium	weak	-	-	medium	strong	strong	strong
*01	strong	strong	strong	medium	-	-	weak	medium
o 2	strong	strong	strong	strong	-	-	-	weak
o 3	strong	strong	strong	strong		_	_	_
d 4	strong	strong	strong	strong	medium	weak	_	_}

Figure 11.2 Relative sexuality in the alga Chlamydomonas Eight types of strains are distinguished which exhibit varying degrees of sexual affinity for each other. The dash — shows that no sexual umons occur in certain combinations. In other combinations a week, medium or strong sexual affinity is exhibited (After Moewus)

of division of labor. The female furnishes the nourishment for the future organism, whereas male cells are specialized for rapid mobility. In a way, Aristotle was right when he said that the female is the provider of matter and the male of motion. What Aristotle could not know was that the female and male sexual elements are alike in that both carry nuclei with similar chromosome complements, and conse quently are equally potent and efficient in the transmission of heredity. In all higher organisms, animals as well as plants, female and male gametes are extremely different in size, appearance, and structure. An egg cell may have a mass millions of times greater than the sperma tozoon, and yet the female and male cells are very much alike in their genetic contents.

in which self-fertilization is the only method of reproduction probably lack evolutionary plasticity

Many hermaphrodites, therefore, have contrived in the process of evolution various more or less ingenious adaptations to avoid selffertilization Perhaps the simplest of such adaptations, found in many plants, is that the male reproductive organs (anthers) mature either before or after the female organs do The pollen of a given individual is thus available only for fertilization of oxules of other individuals A more radical method which accomplishes the same function is self-Thus in rye, which belongs to a genus (Secale) closely re lated to wheat (Triticum) most of the pollen grains fail to germinate on the stigma of the same plant which produces the pollen an obligatory cross fertilizer Self sterility occurs also in some hermaphroditic animals For example, the sea squirt (Ciona) produces sperm which is incapable of fertilizing the eggs of the same individual, although there is usually no difficulty in making it fertilize the eggs of any other individual Sea squirts in adult condition live attached to underwater rocks, they discharge their eggs and sperm in the sea water, and fertilization occurs outside the bodies of the parents The sex cells that unite are derived from different individuals

Origin of Bisexuality Separation of seves, bisexuality, is a radical method to insure that all reproduction takes place by cross-ferthization. Some individuals become females and produce only eggs, and others become males and give only spermatozoa. Ferthization involves necessarily a union of gametes coming from different individuals. Bisexuality has also the advantage over hermaphroditism that it permits a division of labor between the sexes. Among animals, males are often more mobile and active than females, or males furnish protection to the females and cooperate in raising the offspring, or, simply, the two sexes carry different organs which it might be difficult to combine in the body of one individual

In many animals, though not in all, males actively search for females and may be highly polygamous, females tend to be more passive but more choosy. Beyond doubt the necessity for the two sexes to find each other and to perform the actions needed to bring about fertilization has raised numerous biological problems that could be solved only with the rud of highly developed nervous systems. Thus the evolution of mental abilities, culminating in man, might have been initiated by the separation of seves.

Organisms are known with various intermediate stages between hermaphroditism and bisevuality. They make it easy to visualize the

some fishes, in which a young individual first develops and functions as one sex, for example, as a female, but then changes into a male A vestignal hermaphroditism of a similar kind has been found by Witschi also in some species of from

In hermaphrodites the femile and male sex cells, as well as the reproductive organs in which they are produced, have the same chromo somes and genes. At first sight this may seem strange. Why do some genetically similar cells develop into eggs and others into spermato zoa? Why, in dioecious plants, has the same flower ovules and pollen grains? Actually this is no more remarkable than that some body cells become, for example, liver cells and others brain cells, although they have, at least initially, the same genotype. It should be remembered that in a cell, as in an entire organism, the genotype determines the reactions to the environment. The fate of a cell may depend upon its position in the developing body, and on association with other cells. The male and female parts of a hermaphrodite are simply different organs of the same body.

Self fertility and Self-sterility Since hermaphroditism occurs chiefly among lower and not at all among higher animals, it is probable that hermaphroditism is the primitive condition, and that bisevuality arose later in the process of the evolution of sex. Plato was wrong after all it is the separation of sexes into female and male individuals not the hermaphroditism, that may be regarded as the more 'perfect' condition (see above). But the situation is actually too complex for any such facile judgment. Separation of sexes has no unconditional advantages over hermaphroditism.

In many hermaphrodute plants, such as wheat self fertilization occurs when the pollen falls on the stigma of the same flower. In some of these self pollinating plants the flowers are so constructed that the pollination takes place before the flowers open and before the pollen can be transferred to other flowers by wind, by insects, or by other means. Such an arrangement his advantages as well as disadvantages. An obvious advantage of self pollination is that a regular seed set is assured regardless of the vagaries of weather or of insects which transport the pollen in most cross-fertilizing plants. To offset this advantage, continuous self pollination, like a very close inbreeding (see Chapter 9), leads to formation of homozygous pure lines. In the long run, these pure lines deplete the store of hereditary variability, and rob the species of the chief advantage of sexual reproduction, which is production of new gene combinations. Species

individual or individuals in the pile are females, the topmost individuals are males. The individuals in the middle are in the process of changing from the male to the female sex. According to Coc. (1936–1948), the maleness in the limpet is a juvenile characteristic, which are individual outgrows as it becomes older and as other individuals become attached to it. The transition from hermaphroditism to be sexuality occurs in the boat shell within the lifetime of an individual.

Chromosomal Sex Determination In many groups of organisms as among insects and vertebrates, hermaphroditism is rare, and the bisevual condition has become firmly exhibitshed in the course of evolution. The reproductive organs and functions of females and males differ so greatly that any sexual intermediates (interseves, see below) are stenle and useless to the species. It becomes, then, important to have the sex of every individual decided so firmly that it will develop either as a female or as a male. Any risk of the appearance of sexually abnormal individuals should be eliminated or minimized. The sex determination which satisfies the above requirement is by means of sex chromosomes. The populations consist of two kinds of individuals, females and males, which differ in their chromosomal complements and have different porms of reaction to the environment.

The pioneer microscopist Leeuwenhoek clumed in 1680 that he saw two kinds of spermatozoa in the seminal fluid of man and also in that of the dog. He conjectured that one kind gave females and the other, males. The curious thing is that his conjecture was right even though his observation wrong. More than two centuries after Leeuwenhoek it was discovered that in many animals half of the sperma tozoa centain an X chromosome and the other half a Y chromosome, and that the former give rise to females and the latter to males (Chapter 3, pages 55-60). But even under modern microscopes the X-bearing and the 1 bearing spermatozoa cannot be distinguished by their appearance in the seminal fluids.

The chromosomal theory of sex determination has elucidated the problem which excited man seuriosity for many centuries what makes some individuals develop into females and others into males? The answer is that in most though not in all, biscural organisms, sex is decided at fertilization by the chromosomal constitution which the fertilized egg comes to possess. Just how the determination of the normal seves takes place can be inferred best by studies of some in stance of abnormal or experimentally modified sexuality.

Triploid Intersexes in Drosophila The female flies of Drosophila melanogaster have two sets of four chromosomes, including a pair of

transitions which may have occurred in evolution. Some plants produce female flowers, and male flowers, as well as hermaphroditic flowers on the same individual. In corn (maize) the flowers at the top of the stalk (tassel) are male and produce evclusively pollen, whereas the flowers lateral to the stalk (ear) are female and produce only ovules. The plant as a whole is a hermaphrodite. However,

Figure 11.4 Change of sex in the mollusk Crepidula depending on the position of the individual in the colony. At the bottom are femiles (?), in the middle hermaphrodites (?) and at the top males (?). The lower part of the figure shows the anatomy of the successive stages of the transformation of sex, p, penus o, oviduct (After Orton and Coc from Caullery).

Jones and others found mutant genes which make corn bisexual. A recessive mutant called tassel-seed causes development of female flowers in the trissel, and makes the plant a female. Another recessive mutant silkless, suppresses the development of the silks in the female flowers, making the plant function only as a pollen parent, that is, a male. Some relatives of corn (Tripsacum, see Chapter 9) normally have female as well as male flowers in the tassel

A mollusk known as the boat shell or shpper lampet (Crepidula) lives in small colonies consisting of several individuals firmly attached to each other chain fashion (Figure 114) The colony is started when a larva of the boat shell settles and becomes attached to a stone or some other support. A second larva settles and becomes attached to the first, and then another, until a small pile is formed. The bottom

The fertilization yields, therefore, the eight kinds of offspring, which are shown in Table 11.1

TABLE 11 1
SEXUAL TYPES IN THE PROGENY OF TRIPLOID DROSOPHILA

Sex	X-Chromosomes	Sets of Autosomes (A)	Y Chromosome (Y)	Ratio X A
Superfemale	3	2		1 50
Triploid female	3	3		1 00
Diploid female	2	2		1 00
Diploid (XXI) femal	e 2	2	1	1 00
Intersex	2	3		0 67
Intersex	2	3	1	0 67
Male	1	2	1	0 50
Supermale	1	3	1	0 33

Before the discovery of triploid females and their progeny, it was possible to entertain the hypothesis that the X-chromosome contains genes which impel the development towards femaleness, and that the Y-chromosome is the seat of genes which tend to maleness. Thus NY = female, and XY = male. But this hypothesis is contradicted by the fact that individuals which have a Y-chromosome in addition to two Y-chromosomes are normal females, provided that they have two sets of autosomes (Figure 3.14). Bridges concluded that, in Dro sophila the maleness is carried not in the Y-chromosome but in the autosomes, and the femaleness in the X-chromosomes. Sea is determined by a balance of the tendencies towards femaleness and maleness. This balance is decided by the ratio of the number of X-chromosomes and of sets of autosomes which an individual carries. This ratio for the various sexual types is shown in the rightmost column of Table 11.1.

The ratio is unity both in diploid and in triploid females, although the former have two and the latter three \$\lambda\$ chromosomes. The ratio of 0.5 makes a male. An intermediate ratio of 0.67 gives an intersex, that is, an individual which is neither a male nor a female but intermediate between the two seves (Figures 11.5 and 11.6). Intersexes are sterile (in contrast to hermaphrodites which have both female and male organs and are fertile). Finally, the ratios of 1.5 and 0.83 give superfemales and supermales. These are weak and sterile individuals resembling females and males respectively. The "super" parts of their names indicate that they have sex determining ratios more

X chromosomes (that is, a total of 8 chromosomes) The male flies have one of the X-chromosomes replaced by a Y-chromosome (Figure 115) Around 1920, Bridges discovered some females which were triploid, that is, had three sets of chromosomes, including three X's (a total of 12 chromosomes) Triploid females are normal in appearance and behavior, and they produce progeny when mitted to normal diploid males. This progeny consists of ordinary diploid females,

Figure 11 5 Chromosome complements of the different sexual types in Drosoph the melanogaster The X chromosomes are red like and the Y-chromosomes hook shaped

diploid males, triploid females, and three new sexual types known as intersexes, superfemiles, and supermales

The origin of these sexual types becomes clear if the meiosis in their triploid mother is considered. Let us distinguish between the X- and Y-chromosomes on one hand and the autosomes on the other-the latter being chromosomes which are alike in females and in males. A triploid female carries, then, three X chromosomes and three sets of autosomes. It produces four kinds of eggs (1) carrying one X chromosome and one set of autosomes, (2) carrying one X and two sets of autosomes, (3) carrying two X chromosomes and two sets of autosomes, and (4) carrying two Xs and one set of autosomes (there are also some inviable eggs produced which need not be considered here). A normal male produces of course, two kinds of spermatozoa, with an X- or a Y-chromosome and with a single set of autosomes.

extreme than the normal seves The Y-chromosome carries, in Dro sophila, no sex genes Its presence or absence fails to modify the sexual characters as set by the other chromosomes

Polyploids in Melandrium The fact that in Drosophila the femaleness is carried in the X-chromosome and the maleness in the autosomes does not mean that this is so in all bisexual organisms. The same biological problem, see determination, has been solved in different ways in different organisms. As an example of such diversity of ways we may consider the studies—carried out by Warmke and Blakeslee in the United States and by Westergaard in Denmark—of sex determination in the plant Melandrium album.

In this plant some individuals produce only female flowers and others only male flowers. Plants of both seves have 22 autosomes (11 pairs), females have in addition a pair of X chromosomes, and males one X- and one Y chromosome. The investigators obtained also triploid (33 autosomes) and tetraploid (44 autosomes) plants, with one to four X chromosomes and with none, one, or two Y chromosomes. In con trast to Drosophila, Melandrium proved to be female regardless of the ratio between the numbers of X-chromosomes and sets of autosomes, provided only that the Y-chromosome is absent.

Individuals with two \(\lambda\) chromosomes and three sets of autosomes are pure females in Melandrium and intersexes in Drosophila. Aguin contrasting with Drosophila, plants which carry one or more Y-chromo somes are either males or hermaphrodites (which have flowers with both pollen and ovules) Diploid, triploid, and tetraploid plints are male when they carry one \(\lambda\) and it least one \(\bar{1}\) When two or three X chromosomes are present, one \(\bar{1}\) chromosome gives male plants with an occasional hermaphroditic flower, but two \(\bar{1}\) chromosomes cause the plint to be a pure male \(\bar{1}\) A tetraploid plant with four \(\bar{1}\)s and one \(\bar{1}\) is a hermaphroditic.

It is clear from this evidence that in Melandrium the Y chromosome carries a gene, or genes, for maleness. The Y chromosome is the carrier of femaleness, the autosomes seem to be sexually neutral. It should also be noted that in Drosophila sexual unbalance gives sterile intersexes. In Melandrium the sex intergrades are plants with more or less perfect hermaphroditic flowers, which are at least partially fertile.

Diploid Interseves The method of determination of sex which has proved most successful in evolution is by means of sex chromosomes. In Drosophila the sex of an individual is decided by the number of λ chromosomes in relation to the number of autosomes in Melandrium.

Figure 116 A triplind female (a) a female like (b), and a mule like (c) intersex of Drosophila inclanogator (The fly in a Figure 116 A triplind female (a) a female like (b), and a multiplicate (a) (Original drawings by Miss E. Wallace)

(Lymantria dispar) described by Goldschmidt in numerous publications from 1911 to 1938. In this insect, the females and males differ strongly in coloration (Figure 11.7) and in behavior. The female is sluggish, the male is an agile flier. The species occurs in most of Europe and in northern Asia—from the Atlantic Ocean to Japan. It was also introduced, and became a pest, in the United States. When ever female and male gypsy moths from the same locality in this enormous territory are crossed, the sex determining mechanism functions perfectly—the offspring consists of normal females and males. But crosses between moths from Japan and those from Europe produce some normal females or males and also some intersexes.

The details of this case are complex, but the main features of the story are clear enough. All races of the gypsy moth are diploid, and in all of them the male has two X-chromosomes and the female one X- and one Y chromosome. The X carries the gene (or genes) for maleness, whereas the femaleness is carried, according to Goldschmidt, not in the chromosomes at all but in the cytoplasm. The situation, then, is quite different from that observed in Drosophila or in Melandrium. Within the population of any one geographic region, the genetic determiners of femaleness and of maleness have become mutually adjusted by countless generations of natural selection. The result is that two doses of maleness brought in by two X-chromosomes overpower the femaleness of the cytoplasm, and produce a normal male. Let one dose of maleness yields to the femaleness, and an \$\text{\text{A}}\$ individual is always a normal female.

The strength of the sex determiners in the race living in Japan is greater than that of the sex determiners in European races. An X-chromosome of the Japanese race meets, in the hybrids between the races the evtoplasm and the Y-chromosome of European origin. The maleness of the zygote is, then, too strong to submit to the female tendency and the result is an XY individual which is not a female but an intersex. On the other hand, a race hybrid may also have two X-chromosomes with weak. European maleness opposed by a 'strong Japanese femaleness in the cytoplasm. The result is an XX individual, which is not a male but an intersex.

Diploid interseves teach us two important lessons. First, sex is not a rigidly fived quality but a variable quantity. There may be more or less femaleness and maleness in an organism. Second, the strength of the sex determiners is a matter which is so adjusted by natural selection that in all environments to which a species is normally exposed the sex mechanism functions smoothly.

it is the presence of a Y chromosome and the number of X chromosomes that make the plants females or males. But we know that chromosomes contain genes. If so, could a gene mutation after sexual characteristics? It has, indeed, been observed. An individual which is chromosomally like a normal female or a male may nevertheless be interestual.

Figure 117 Female (A), male (F) and interserse (B to E) in the gypsv moth

Lymantria dispar (After Coldschmidt redrawn)

Spassky found a dominant mutant gene in Drosophila pseudoobscura which turns females into intersexes. The presence of the same gene in a chromosomal male (that is, in an individual which carries one X- and one Y-chromosoma) has no effects on sex. The intersexes have their sexual organs reduplicated, one set being more or less female-like and the other male like. These intersexes are evidently chromosomal females (that is, they have two X-chromosomes and two sets of autosomes)

The classical example of diploid intersexuality is the gypsy moth

intersexes can also be produced by selection If we select the triploid females which yield, in a given environment, most female-like, or most male like, intersexes, strains are soon established which differ in their sexual tendencies

Factor of Safety The experiments concerning the influence of the environment on intersexes are made by exposing the progenies of triploid mothers to different temperatures or other influences. Now their progenies contrain not only intersexes but also diploid females and males, triploid females, superfemales, and supermales. An astonishing fact, at first sight, is that the temperature variations which alter greatly the sexual phenotype of the intersexes have apparently no effects on the females and males. The sexual development of females and males is homeostatic (see page 13), that is, it is so buffered against environmental disturbances that a female chromosomal constitution always yields a normal female phenotype, and male chromosomes yield a normal male. The developmental pattern of the intersexes on the contrary, is set so precarnously that it is easily swayed towards other femaleness or maleness by both environmental and by genetic changes.

The reason for the more perfect homeostatic adjustments in females and males than in interseves is not far to seek. The whole evistence of the species depends upon the reproductive performance of the females and males of which it is composed. Natural selection accordingly, has built in a "factor of safety" in the norms of reaction of females and males. This "factor of safety operates in such a manner that in all environments to which the species is exposed the development always culminates in either femaleness or in maleness. The absence of the factor of safety in the interseces is also understand able. Interseces are rare or absent in nature, and their norm of reaction has not been perfected by natural selection. It is poised between femaleness and maleness, and can be turned towards or away from either.

Sex and Caste in Hymenopteran Insects Once we understand that sex is a form of evolutionary adaptation, the many curious variations of the sex determining mechanisms found in various creatures become intelligible. The same end may be attained by different means, and any method of sexual reproduction which safeguards the procreative capacities of the species may become perfected and established in evolution.

Bees, wasps ants, saw flies parasitic and gall wasps constitute the insect order Hymenoptera, which is generally regarded as the most

are produced, and sex intergrades which are useless to the species are

Sex and Environment Many of the spurious solutions of the problem of sex determination which were in vogue before the discovery of sex chromosomics assumed that the sex of an individual is decided by the environment in which this individual develops. Such notions still error up from time to time, especially in the popular press

Can the environment influence sex? We know that most bisexual organisms produce either two kinds of spermatozoa (mammals, most insects), or two kinds of eggs (birds, butterflies, and moths), and that the chromosomal sex of an individual is decided at fertilization is, then, conceivable that methods will be found (though none have been found so far in higher animals) which will favor fertilization of eggs, for example, by male determining spermatozoa and will dis criminate against female determining ones, or vice versa. On the other hand, what is fixed in the zygote at fertilization is its genotype. But the genotype sets only the norm of reaction of the organism to the environment, and does not necessarily decide any characters or structures One may distinguish the sexual genotype from its actual mani festation, the sexual phenotype. Sexual truts of an individual may, then, depend on the environment as well as on the genotype fication of the sexual phenotype by the environment is, in principle, quite possible

Triploid interseves in Drosophila (see above) have two X-chromo somes and three sets of autosomes. Yet, despite their chromosomal uniformity, these interseves are quite variable in sexual characters (Figure 11 6). Some of them resemble normal males in behavior and in the structure of reproductive organs, others are female like. Still others have mixtures of malformed organs of both sexes. In short all transitions between female and male states can be found among the intersects.

What causes these great variations in the sexual phenotype? The environment has a great deal of influence in this mutter. When triploid females are crossed to normal diploid males the progeny consists of several sexual types, including intersexes (see Table 11.1). Cultures of triploid females were exposed to four different temperatures—15°, 20°, 24°, and 28°C. In cultures which developed at the lowest temperature most of the intersexes developed male-like characters. Con versely, at high temperatures the intersexes proved more female like Cold turns the development of Drosophila towards misculinity, and heat towards feminimity. Changes in the sexual phenotype of the

grow they lose their male organs and acquire female ones. Older individuals are females. The females may be turned back into males by severil means. One of these means is strivation, another is addition of potassium ions to the water in which the worms live, still an other is amputation of the posterior part of the body. Ophryotrocha

Figure 11.8 A female and a male Bonellia tiridis. The femile is shown slightly enlarged the male is magnified since its real dimensions are so small that it can barely be seen with the naked eye. (After Baltzer redrawn)

thus seems to be a hermaphrodite which functions first as a male and later as a female—Bacci (1953) finds, however, that some individuals are genetically more predisposed towards maleness, and others towards femaleness—The genotype sets the response to the environment, some genotypes making the individual turn into a female or into a male more easily than others

Perhaps the most spectacular example of a difference between females and males, and at the same time of sex determination by environmental influences, has been studied in the marine worm Bonella unities by Baltzer (from 1912 on) The female of this worm has a rounded body with a proboscis about an inch in length (Figure 11 8)

progressive among insects. However, see chromosomes of the usual kind are missing in this order. Instead, eggs which remain unfertilized develop parthenogenetically into males. Eggs of the same mother which are fertilized by spermatozon develop into females. Thus females have twice as many chromosomes as males, the former are diploid and the latter haploid. Virgin females deposit eggs which yield only sons, females impregnated by males deposit some eggs which yield daughters and others which give sons. It appears that a female can control the access of spermatozoa to some of her eggs and can withhold them from others.

Where sex is determined by sex chromosomes (the XX-XY mech anism) the number of femule and male 23 gotes that are formed is, with some rare and little understood exceptions, not far from equality. The diploid haploid sex mechanism of the Hymenoptera permits the progeny to contrain any proportions of sons and daughters. Females often greatly outnumber the males, especially among social insects, right exerts.

An ant colony contains several categories of individuals An ant nest usually has numerous "workers, and in some species also "sol diers,' which are diploid individuals, and hence genetically females Their reproductive organs, however, remain underdeveloped A rela tively small number of sexually developed females and males suffice to take care of the perpetuation of the species. The males have haploid chromosome complements, whereas the sexually developed females ("queens) and the workers are chromosomally identical, having diploid chromosome complements. Whether a diploid zygote develops into a queen or into a worker depends, at least in the domes tic honey bee and in some ant species entirely upon the kind of food which the workers give to the growing larvae in the honeycomb or in the ant nest. The diploid chromosome complement thus sets a norm of reaction which permits the development of either a worker or a queen. What develops from a given egg is decided by the en vironment However, the Brazilian geneticist Kerr has found that in stingless bees of the genus Melipona the difference between queens and workers is brought about by their genotypes. Different repro ductive mechanisms have arisen in evolution even in such closely related forms as different genera of bees

Sex in Ophryotrocha and in Bonellia. We have seen above that in the boat shells the sex of an individual varies with its age and its position in the colony. Hartmann and his students (1936, 1938) found a somewhat similar situation in the marine worm Ophryotrocha puerilis. All young individuals of this worm are males, but as the worms

Gynandromorphs Where sex is determined by chromosomes, it is decided at the moment of fertilization. In Drosophila, as in man, a diploid zygote with two X chromosomes is a female, and an XY zygote is a male But early embryos look alike, and, in man, the females begin to be distinguishable from males only towards the third month

of pregnancy The female and male chromosomes determine developmental patterns, which in most environments result in "normal girls or 'normal' boys, and then in "normal women or "normal men The ways in which the chromosomes determine these developmental patterns vary, however, in different organisms

In man, in Drosophila, and in many other forms, every cell of a female body has a female chromosome complement. and every cell of a male has male chromosomes However, in Drosophila as in most insects, the sexual characteristics of a body part depend entirely on the sex chromosomes in the cells which compose it, and are independent of the sex of other cells or parts of the same It is otherwise in man and in most other vertebrates In these higher animals hormonal mechanisms have developed in the course of evolution, the sexual characters of a body part are influenced to a greater or lesser degree by the condition of other parts and of the body as a whole

Figure 11 10 A gynandromorph Drosophila melanogaster obtained in a cross in which the sex linked genes for eosin eve color and ministure wings were involved The left side is female, and the right showing the mutant genes 15 male (After Morgan and Bridges redrawn)

In many insects occasional individuals occur in nature as well as in laboratory cultures which have one side of the body of one sex, for example female and the other side of the opposite sex. Such sexual mosaics are called gynandromorphs (Figures 119 and 1110) Gynandromorphs should not be confused with intersexes, which are sex intergrades more or less intermediate between females and males (see above), or with hermaphrodites, which have more or less complete reproductive organs of both sexes Sexual intermediates which occur in man are mostly interseves (see below) and not hermaphrodites

The origin of gynandromorphs in Drosophila has been clarified in

The male is birely visible to the niked eye, several such miles live, parisite-like, in the genital ducts of each adult female. The male licks digestive organs, and is accordingly quite incapable of independent

Figure 11 9 A gynandromorphic specimen of the butterfly, Colias philodice the right side being female and the left male (From Ch L Remington courtesy of the Academic Press)

existence Females and males develop from eggs and larvae which look identical. The sex of the developing larva is determined by whether it lives free, swimming and feeding in sex water, or settles on the surface of the proboscis of a female specimen. The free living larvae develop into females, those in contact with the female proboscis into miles.

The proboscs must contain a chemical substance which exerts a masculinizing influence on the larvae. When larvae are placed in sea water containing an extract of the proboscs, they become intersectual or male like. It may be that some larvae are more susceptible than others to the masculinizing action of the female proboscis. But even if this were proven, it would remain true that sex determination in Bonellia is effectively environmental.

important as coordinators of physiological functions, and particularly in the manifestations of sex. Furthermore, the effects of many endo crine glands in mammals and in man are so closely interlocked that the system of endocrines functions as an interdependent whole. Thus a deficiency or an excess of the hormones of the pituitary gland affects the functions of the thyroid gland, of the adrenal cortex, of production of insulin, of male and female reproductive glands, of parathyroids, of the rate of growth of the body, etc.

It has been known since antiquity that castration of boys results in lack of development of many secondary secural characters, for example, of masculine voice, of facial hair, masculine body shape, and male sexual drive. Similar changes have long been known in castrated males of other animals, such as capons, geldings, and oven (castrated roosters, stallions, and bulls respectively). These changes are caused primarily by the absence of testosterone, a hormone produced by the interstitial cells of the testicles (not by the cells which give rise to spermatozon!). Testosterone belongs to the class of compounds known as sterols, and is related to cholesterol, which is present in many animal tissues.

In the adult human female an egg is shed, usually from either the right or the left ovary, once in about 4 weeks. During the reproductive age, from the first menstruation to menopause, a total of some 400 eggs is produced. Each egg cell grows in a so called Granfian follicle, which is a liquid filled vesicle under the surface of the ovary. The Graafian follicles are apparently the source also of the hormone estrogen. Estrogen stimulates the development of the lining and glands of the inner surface of the uterus. After the egg is shed, the Graafian follicle develops into a glandular structure of a different kind, the corpus luteum. This structure secretes a hormone progesterone, which causes further changes in the lining of the uterus, and assists in the implantation of the fertilized egg if pregnancy is achieved.

The estrogen hormone was isolated by Doisy in 1929 and synthesized by Butenandt in 1930 Progesterone was isolated and synthesized by Butenandt in 1934 The chemical structures of both hormones are related to cholesterol and to the masculine hormone, testosterone (Figure 11 11) However, their effects are of course, quite different The estrogens play an important role in the development of female secondary sexual characters, such as feminine body shape, voice, and feminine sexual drive

Pezard (1918), Zavadovsky (1922) and many investigators since then have experimented with castration and with transplantation of the classical work of Bridges and Morgan (1919) Gynandromorphs begin their existence as female zygotes, having, of course, two X-chromosomes Normally both X's are reduplicated at cell divisions, and are inherited by all cells of the developing embryo. But about once in some tens of thousands of eggs (and more often under the influence of X-ray treatments) one of the X-chromosomes may be accidentally lost, and a cell is formed which contains a single X-chromosome (and two normal sets of autosomes). A single X-chromosome results in a male chromosome complement. All the cells which arise by division from the cell that has a single X-chromosome are, then male cells. A part of the body of a gynandromorph, therefore, is male, and the remainder is female. The relative sizes of the female and male parts depend, of course, on whether the X-chromosome is eliminated early or late during the development of the egg.

The important fact is that, in Drosophila, the dividing line between the female and male fractions of the body of the gynandromorph is usually sharp. Even when the male fraction is small and is completely surrounded by female tissues, or vice versa, the sexual characteristics are of one sex or the other. The sex of a tissue is independent of contacts with cells of the same or of the opposite sex.

See Hormones in Vertebrates About a century ago the great physiologist Clude Bernard (1813-1878) pointed out that in some glands the secretions leave the gland by way of a duct, whereas other glands secrete their products in the blood stream. The latter are called glands of internal secretion or endocrines. Their secretions are hormones, chemical messengers which are carried to various parts of the body, where they influence the activities of cells and tissues.

Adrenalin, a hormone of the adrenal gland, was discovered by Abel in 1898, and secretin, prepared by certain intestinal glands was found by Bayliss and Starling in 1902. Since then, numerous hormones have been discovered and studied in more or less detail, more than twenty compounds are produced by the cortex of the adrenal gland alone Many hormones have been isolated, analyzed, and synthesized artificially. Thus adrenalin (or epinephrin) was isolated in 1901 and synthesized in 1904, thyroxin isolated in 1916 and synthesized in 1927, testosterone crystallized and synthesized in 1935, etc. Hormones may operate in incredibly low concentrations, epinephrin for instance, is active in a dilution of 1 300,000,000

Hormones exist not only in the higher but also in the lower animals and in plants. But it is in the vertebrates that they have become most

important as coordinators of physiological functions, and particularly in the manifestations of sex. Furthermore, the effects of many endo crine glands in mammals and in man are so closely interlocked that the system of endocrines functions as an interdependent whole. Thus a deficiency or an excess of the hormones of the pituitary gland affects the functions of the thyroid gland, of the adrenal cortex, of production of insulin, of male and female reproductive glands, of parathyroids, of the rate of growth of the body, etc.

It has been known since antiquity that castration of boys results in lack of development of many secondary secural characters for example, of masculine voice, of facial hair, misculine body shape, and male sexual drive. Similar changes have long been known in castrated males of other animals, such as capons, geldings, and oven (castrated roosters, stallions, and bulls respectively). These changes are caused primarily by the absence of testosterone, a hormone produced by the interstitual cells of the testicles (not by the cells which give rise to spermatozoal). Testosterone belongs to the class of compounds known as sterols, and is related to cholesterol, which is present in many animal tissues.

In the adult human female an egg is shed, usually from either the right or the left overy, once in about 4 weeks. During the reproductive age, from the first menstruation to menopuse a total of some 400 eggs is produced. Each egg cell grows in a so called Granfan follicle, which is a liquid filled vesicle under the surface of the overy. The Granfan follicles are apparently the source also of the hormone estrogen. Estrogen stimulates the development of the lining and glands of the inner surface of the uterus. After the egg is shed the Granfan follicle develops into a glandular structure of a different kind the corpus luteum. This structure secretes a hormone progesterone, which causes further changes in the lining of the uterus, and assists in the implantation of the fertilized egg if pregnance is achieved.

The estrogen hormone was isolated by Doisy in 1929 and synthesized by Butenandt in 1930 Progesterone was isolated and synthesized by Butenandt in 1934 The chemical structures of both hormones are related to cholesterol and to the masculine hormone, testosterone (Figure 11 11) However their effects are, of course, quite different The estrogens play an important role in the development of female secondary sexual characters, such as feminine body shape, voice, and feminine sexual drive

Pezard (1918), Zavadovski (1922), and many investigators since then have experimented with castration and with transplantation of gonads (testes or ovaries) in birds, particularly in poultry. Castrated roosters (capons) retain most of their "misculine" plumage, but the combs and wattles shrink and lose their turgulaty, the animal ceases to crow and loses its pugnicity and its sexual drive. Castrated hers acquire, after a molt, a capon like plumage, and come to resemble in appearance the eastrated miles. The plumage of a capon and underdevelopment of combs and wattles are thus sexually neutral characters, male plumage is suppressed by the hormones secreted by the ovaries, whereas testicular hormones stimulate the development of combs, wattles, and suirs. Implantation into castrated males and females

Figure 11 11 Chemical structure of three sex hormones

of gonads from other individuals produces the characteristic feminizing or masculinizing effects, and these regardless of what the chromo somal sex of the individual may be. An implanted ovary causes the development of female plumage, implanted testes give cocks comband wattles together with behavior characteristic of the sex of the implanted gonad. However, the larger body size of roosters compared to the hens seems to be independent of the hormones

Hormonal Intersexuality Castration, transplantation of gonads, and injection of sex hormones obviously do not change the chromo somal sex of the individual. It is fallacious to speak of the effects on sex of genes and of hormones as though they were alternatives, which they are certainly not. The hormone system is a part of the developmental mediumism whereby the genoty pe becomes realized in a certain sexual phenotype. The functioning of the hormone producing glands is itself determined by the genes it is a part of the phenotype Castration and hormone injections are environmental agencies.

Hormonal disturbances result, in man and in other animals, from many pathological conditions, crused in turn either by defective heredity or by environmental mishaps. Cases of sexual intermediacy

were known even in antiquity, and some of them were immortalized in ancient art. Instances of individuals who "changed their sev" are reported from time to time in medical literature and in the duly press. More or less masculine women and woman-like men are not uncommon.

Some of the alleged 'changes' of sev are simply cases where the sex wis incorrectly determined at birth owing to malformation in the external sex organs. Others are instances of hormonal intersexuality Hormonal intersexuality may be due either to developmental accidents or to genetic causes. At least one group of human pedigrees from Sweden, recently described by Pettersen and Bonnier, suggests a domant mutant gene which has no effects in females (individuals with two \chap4 chromosomes) but which transforms the males (\(\Delta Y\) individuals) into intersexes. The situation is comparable to diploid intersexuality in Drosophila (see page 266, in Drosophila it is, however, the genetic females which become intersexual)

Lillie, Tandler, and Keller (1916) have furnished a very clear analysis of one kind of developmental accident. It had been known for a long time that when a cow gave birth to a pair of twins of unlike sex, the female calf, called a freemartin, was often sexually abnormal Freemartins have underdeveloped external genitals of female type, but the internal reproductive organs are intersexual, verging towards maleness. Lillie and his colleagues found that this condition occurs when the fetuses share a common placenta and common blood circulation which are often established between the twin embryos during pregnancy (Figure 1112) Freemartin is the female member of a pair of fraternal twins (which arise from two separate eggs fertilized by different spermatozon) The chromosomal constitution of the freemartin is certainly XX, but the sexual development is interfered with by the hormones received through blood from the male co twin A connection between the blood circulations of the two embryos may be established quite early during the pregnancy, and the male hormones may upset the development of the female twin in its most sensitive stages

Sexual Selection In 1871 Darwin published his theory of sexual selection, to account for the origin in evolution of conspicuous secondary sexual characters, such as the antlers of male deer, the bright plumages and elaborate displays and songs of many birds, the horismane and facial hair growth in the human male. Since these characters according to Darwin, are not sufficiently useful to the species to be formed by natural selection, he believed that their usefulness by

gonads (testes or ovaries) in birds, particularly in poultry. Castrated roosters (capons) retuin most of their "masculine" plumage, but the combs and wattles shrink and lose their turgidity, the animal ceases to crow and loses its pugnacity and its sexual drive. Castrated heris acquire, after a molt, a capon like plumage, and come to resemble in appearance the castrated males. The plumage of a capon and under development of combs and wattles are thus sexually neutral characters male plumage is suppressed by the hormones secreted by the ovaries, whereas testicular hormones stimulate the development of combs, wattles, and spurs. Implantation into castrated males and females

Figure 11 11 Chemical structure of three ser hormones

of gonads from other individuals produces the characteristic feminizing or musculinizing effects and these regardless of what the chromosomal set of the individual may be. An implanted over causes the development of female plurnage implanted testes give cocks comband wattles together with behavior characteristic of the set of the implanted gonad. However the larger body size of roosters compared to the hens seems to be independent of the hormones.

Hormonal Intersexuality Castration, transplantation of gonads, and injection of sex hormones obviously do not change the chrome somal sex of the individual. It is fallacious to speak of the effects on sex of genes and of hormones as though they were alternatives which they are certainly not. The hormone system is a part of the developmental mechanism whereby the genotype becomes realized in a certain sexual phenotype. The functioning of the hormone producing glands is itself determined by the genes, it is a part of the phenotype Castration and hormone injections are environmental agencies.

Hormonal disturbances result in man and in other animals from many pathological conditions, caused in turn either by defective heredity or by environmental mishaps. Cases of sexual intermediacy

mechanisms between animal species Related species may look different, have different voices, and act differently in part because these differences are recognition marks that enable individuals to identify each other as members of the same species. These recognition marks may reach almost incredible degrees of complexity.

In many species of moths males locate females by scent Experiments of Fabre (1823-1915), one of the keenest students of insect behavior showed that males may be attracted from considerable dis tances, and may overcome various obstacles to reach a female confined in a cage. The scent, quite imperceptible to the human nose, is strictly specific so that males of wrong species are seldom or never attracted In other animals, including some insects, vision is more important than smell in finding a mate. This is probably true in many birds In still others sound stimuli are important. The songs of a bird, a cricket or a locust, the croaking of a toad, and the buzzing of at least some mosquitoes are among the methods whereby the sexes advertise their presence and find each other. How different may be the requirements of even very closely related species is shown by the flies Drosombila pseudoobscura and Drosombila subobscura. The lat ter species copulates only in the presence of light, the former copulates in the light or in the dark apparently indiscriminately

Sexual Behavior In many animals the behavior patterns connected with reproduction became complex rituals of courtship and mating In a species of the fly family Empidiae a courting male alights near a female and obrates his wings. The obration probably gives an auditory stimulus, and eventually the female responds by a similar obration. The male now lifts up his front legs and waves them about, moving closer and closer to the female until they caress each other with their uplifted front legs, a tactile or a chemical stimulation seems to be involved in this caressing. In a different species of the same family, the male catches another insect as a prey (these flies are predators), he then swaddles the prey in silk threads, seeks out a female and presents the prey to her. She accepts the gift, and mating takes place, while she is busily unwrapping the food. The presentation of the "gift is in some species, but not in others, accompanied by a special "duncing ceremony", the dancing may be done by the male alone, or both seves may take part.

Among birds the greatest complexity of sexual behavior is reached probably in Australian bower birds. Here the male builds a kind of shelter consisting of boughs and twigs. Then he proceeds to decorate the shelter with colored materials, such as flower petals feath-

rather in the competition between males for the possession of females, or in making a male or a female, particularly attractive to potential mates

The theory of sexual selection does not seem compelling to most biologists in its original form. In many animals the males do not engage in actual combat or rivalry for females, and, where they do, the victors do not father greater progenies as the theory demands. A R

Figure 11.12 A pair of twins in critile, a mile on the left and a female on the right. Their blood circulations are united by the blood vessel marked I. The female twin becomes a hormonal interset or freemartin. (From Newman, courtesy of the University of Chicago Press.)

Wallice, the co author with Darwin of the theory of natural selection, rejected the theory of sevind selection. However, Willaces counter proposal that sexual characters arise because of a "superabundant withity" of their possessors, is secreely more substactory. The situation is really complex and should be considered from a different angle.

The very existence of a bisevual species depends upon the sexual drive which makes individuals of the opposite seres come together and perform the acts needed to bring about fertilization and production of offspring. Elaborate physiological and psychological mechanisms which arose in the process of evolution by natural selection bolster the sexual drive and direct it into channels useful to the species. The fact that these mechanisms differ in different species, often in very closely related ones is intelligible. As pointed out in Chapter 8, sexual isolation is one of the most important reproductive isolating.

precise causation is little known. Increasing complexities of human societies may at times lead to misdirection of the sexual urge. On the other hand, there is some evidence that certain forms of homosexulality may have a genetic basis. Kallmann and his collaborators (1953) found that, among 44 pairs of male identical twins one member of which had shown overt homosexual behavior as an adult, the co-twin in every case also evinced behavior of this kind. And yet, among 51 pairs of friternal (two egg) twins where one of the twins was known to be a homosexual, the co-twin showed evidence of similar condition in only 13 cases. It appears, then, that some human geno types react by evolving homosexual behavior in it least some social and cultural environments.

Sex Reversal A cruend proof that the genotype merely sets the stage for the development of a certain sex in a certain range of environ ments is afforded by sex reversals. Males of some species of toads have, next to the testis, a so called organ of Bidder (Figure 1113), which under the microscope reveals a structure resembling an ovary. The function of the organ of Bidder in normal males is unknown But Harms, Ponse, Witschi, and others have shown that when a male toad is castrated (that is, when the testes are removed by a surgical operation), the organ of Bidder increases in size and becomes a diminutive over in which a certain number of fertilizable eggs are produced. The custrated male now functions as a female, and may produce progens when mated to a normal male.

A castrated male must conserve, despute its sex reversal, its normal chromosomal composition. This can be proven by observing the sex distribution in the offspring of the cross, castrated male × normal Miss Ponse found this offspring to consist entirely of males, and interpreted the result to mean that in toads the male sex has two A chromosomes (XX) and the female sex an X and a Y chromosome All the sperms of a normal male, and all the eggs of a male transformed into a female will then carry an X-chromosome, and the experimental progeny will be purely masculine. The experiments of Harms, however, gave an entirely different result about one quarter of the eggs died, half of the eggs developed into males, and one quarter into females He interprets this to mean that a male toad had an X- and a Y-chromosome, and consequently that two kinds of eggs and two kinds of sperms were produced by his experimental animals. If so, half of the resulting zygotes will be XI (males), one-quarter XX (females), and one quarter Y1 (these are inviable) The results of Ponse and Harms are not necessarily contradictory, since different

ers, or fruits Most remarkable of all, a race of bower birds displays a definite color preference, selecting objects within a certain color range for the decorations. If materials of a wrong color are placed in

Figure 1113 Urogenital organs of a male toad Bufo ucodhousel showing the organ of Bidder (Bo) Wd Wolfflan duct Md Mullerian duct or vestigal ovidies sm vs, seminal vesicles t, testis fb fat body k kidney pvc blood vessel (From Bhaduri)

or near the bower by an experimenter, the bird removes them out of sight. The male then locates a female, and entices her to the bower, where the mating takes place

The very elaborateness and complexity of sexual behavior patterns make them vulnerable to environmental as well as to genetic breakdowns. One of such breakdowns is homosexuality, which occurs in a minority of individuals in human as well as in animal populations. Its

Koeli F C and Smith, P E (l'ditors) 1942 Sex hormones Biological Symposia, Volume 9 Jaques Cittell Press Lancaster Robson J M 1947 Recent Advances in Sex and Reproductive Physiology 3rd Edition Blakston, Philadelphia

The literature on sex hormones is enormous but it is reviewed very well in the three books just cited

Burton M 1954 Animal Courtship F Praeger, New York

A well written review of courtship habits in various animals, but the interpretation given is out of tune with modern evolutionism

Wenneh D H (Editor) 1954 Sex in Microorganisms American Association for the Advancement of Science Washington

This is a symposium on sexual processes in lower organisms

Those familiar with the German and French languages will find also the following two books most useful

Hutminn M 1947 Allgemeine Biologie 3rd Edition Gustiv Fischer Jena Caullery M 1951 Organisme et sexualite 2nd Edition G Doin Paris

Figure 11 14 Courtship in a species of scorpion (Buthus occitorus) and a species of spider (Salticus scenicus) (After Vachon and Bristowe redriven)

species and even races of toads may have different chromosomal mechanisms

Suggestions for Further Reading

White M J D 1954 Animal Cytology and Ecolution 2nd Edition Cam bridge University Press London

Chapters XV to XVIII of this book contain an excellent account of the mech anisms of sex determination in different groups of animals A briefer and more popular account may also be found in

Crew F A E 1954 Sex Determination 3rd Edition John Wiley New York Burrovs, H 1949 Biological Action of Sex Hormones 2nd Edition Cambridge University Press London The Fossil Record Is Incomplete Evolution is a continuous process, composed, though, of small discontinuous mutation steps. From the continuity of evolution it follows, of course, that forms intermediate between the now-living organisms must have existed in the past. Provided that man and the simplest virus are really descended from common ancestors, then, if all organisms which lived in the past were fossilized and recovered, we would see in unbroken chain of organisms intermediate between man and the virus. (This assumes, of course, that the entire living world is monophyletic, descended from a single common ancestor.)

In reality, only an infinitesimal fraction of individuals who lived in the past have become preserved as fossils. The fossil record is incomplete by the very nature of things The remains of a creature are nre served in the sediments that form the stratified rocks of the earth's crust only as a result of rare accidents. Soft bodied organisms are preserved only quite exceptionally, although some of them did leave their shadow pictures as prints in the rocks. For organisms which nossess hard parts such as solid calcareous shells or skeletons or teeth, the chances of preservation are relatively much greater, though still very small in the absolute sense Moreover, fossilization of the remains of a creature is not enough. Many sedimentary rocks, which doubtless contained fossils, were eroded away at various stages of the earth's history, and the fossils were thus irretrievable lost. Very noturally, more ancient fossils were lost in this manner more often than relatively more recent ones Other old rocks were burned under enormous weights of newer sediments, and consequently subjected to very high pressures and high heat. This heat has led to the rocks being metamorphosed and recrystallized, and again to the loss of the fossils which the rocks had contained Ancient rocks are metamorphosed, of course more frequently than recent ones. The paleontologists have thus far discovered and studied only an infinitesimal fraction of the fossils that are preserved

In view of all this it is not surprising that the known fossil record is nowhere near sufficient to reconstruct even approximately the phylogenetic relationships of all organisms. In fact, so obvious is the incompleteness of this record that Darwin expended rather more effort in his Origin of Species to show that paleontology does not contradict evolution than he did to show that it proves evolution. Since Darwin, the unrelenting efforts of paleontologists have filled many gaps in the fossil record, but many more remain to be filled. In some particularly favorable instances the fossils are so ibundant that the changes

12

Historical Record of Organic Evolution

Almost one and one half centuries ago (1809) Lumarck compared the process of evolution to the movement of the hour hand of a clock A creature whose lifetime lasted one second would perceive no motion at all in the hour hand. Even thirty consecutive generations of such a creature might doubt whether the hand really moves. With respect to observing evolution in geological time, man is in the position of such a creature.

Since Lamarck, biologists did find ways to perceive some motion in the hour hand of the evolutionary clock. They used for this purpose the speeded up processes of evolution by polyploidy, evolution under domestication (Chapter 9), and the experimental evolution, chiefly in microorganisms (Chapter 5) But with respect to the evolution which has actually taken place in the history of the earth, an observer of only the now living animals and plants is still in a position of judging a long movie film by only the last picture frame. Let us, though, give the credit which is due to this observer from the only picture at his disposal he has correctly inferred that there was a story back of this picture Moreover, he has successfully used the experimental method to find out some of the mainsprings of action in the story. He can even make intelligent guesses as to what kinds of events could and could not have occurred. But to learn what events did actually occur and in what sequence, the last picture frame is not enough. Fortu nately, some fossil remains of the living beings of the past epochs are preserved in the geological strata They furnish us with some torn up fragments of the preceding picture frames of the story It is the busi ness of paleontologists to restore these fragments as much as possible and to arrange them in the proper sequence

Geological Time

TABLE 12.1

THE GEOLOGICAL PERIODS AND THE GEOLOGICAL TIME SCALE
(After Colbert.)

Eras	Periods	Epochs	Duration in Millions of Years	Millions of Years Since Beginning
Сеподоне	Quaternary Tertiary	Recent Pleistocene Pliocene Miocene Oligocene Locene Paleocene	0 025 1 10 15 10 19	0 025 1 11 26 36 55
Мезозове	Cretaceous Jurassie Triassie		60 35 35	130 165 200
Paleozoic	Permian Pennsylvanian Mississippian Devonian Silurian Ordovician Cambrian		30 20 30 30 30 70 90	230 250 280 330 360 430 520
Pre Cambr	•		1500(*)	2000(2)

tion because of the atomic bombs) ineverably and steadily decomposes into helium and an isotope of lead has furnished a more relible method. The relative amounts of uranium and of that lead iso tope in a given mineral are a function of the age of the mineral. For recent fossils the occurrence in them of certain carbon isotopes, as well as the contents of fluorine, give better estimates of age. Of course, the figures given in Table 121 may have to be revised in the future they may conceavably be half as large or twice as large as the real ones, but they cannot be one-tenth as large or ten times as large. The best estimate for the duration of the time when the fossils are reasonably abundant since the beginning of the Cambrian period, is, then, about half a billion years.

from stratum to stratum appear very gradual, and the sequence of the clinings is completely recorded. One of the famous examples of such gradual changes is in the shells of the snail shown in Figure 12.1. The snails are quite different in appearance in the youngest and the oldest strata in which they are found, but the intermediate strata contain an unbroken series of intermediates. The chief interest of paleon tological data lies, however, not in their demonstration that evolution did occur but in their showing just how it occurred.

Figure 12.1 A remarkably gradual and continuous colutionary change in the shape of the shell of the snail Paludina from successive geological strata of Phocene age (After Neumayr, modified)

Geological Time Earth's history did not always flow smoothly There were times of more intense mountain building and times of predominance of the mountain leveling erosion, times of more uniform and humid climate, and times of more and and diversified climate times when many creatures died out and new ones appeared and times of relative stability. Partly because of these variations and partly because strata of certain ages are poorly represented in geologically most widely studied countries, it is customary to divide the geological record in the eras, periods, and epochs shown in Table 12.1 (The epochs are given only for the Cenozoic era.)

The absolute chronology of these periods in terms of years is a more difficult matter, and until recently the estimates were quite unreliable. The discovery that the element uranium (of the now sinister reputa

289

when Cambrian rocks were formed, but this enormous time span has left almost no fossil record (see Chapter 1, page 2) The pre-Cambrian rocks are mostly metamorphosed, and as such devoid of fossils. The exceptional non-metamorphosed rocks have yielded disappointingly little. It is possible that the remains of the most ancient life are lost forever, at any rate they have not been discovered.

Extinction and Replacement Not even a brief group by group description of the fossil record of all forms of life can be given in this book. We must limit ourselves to consideration of only some exam-

ples which illustrate certain general principles

One of the most striking facts of paleontology is that the inhabitants of a given period are descended not from all the inhabit ints of prior periods, but from only a part of them. In other words, many creatures leave no descendants at all, their race becomes extinct. As a matter of fact, the most probable fate of any group of animals or plants in the course of time is extinction. If we examine the fossils of any re mote geological age say Mesozoic or Paleozoic, we find that most of them represent organisms which have no direct descendants living at present. They have succumbed at some point in time. On the other hand, some few of the denizens of the past have multiplied greatly. and their descendants, usually modified by evolutionary changes fill the earth today For one of the things which the fossil record shows beyond reasonable doubt is that the diversity of life has become greater and greater in the course of time. The dying out groups of organisms are replaced not only by the surviving ones, but also by quite new organisms, which exploit the environment in novel ways. and are added from time to time. The known history of the landdwelling vertebrate animals illustrates well the phenomena of extinc tion and replacement

The Age of Amphibians and the Age of Reptiles The most primitive backboned animals that live on land belong to the class Amphibia, of which frogs, toads and salamanders are the best known living representatives. The most ancient known amphibians have left some fossils in the late Devonian deposits of Greenland. The ancestors of these early amphibians apparently belonged to a group of fishes (crossoptergians), some of which inhabited fresh water pools and streams of this remote age. It is a plausible guess that the development of the lungs for air breathing and the development of walking legs in the place of the fins occurred in response to a periodic dryingup of these pools and streams. Such periodic streams can still be observed in countries where rainy and dry se isons alternate. It is

Most Ancient Life Until the Devonan time, that is, from Cambrian through Silurian periods (Table 12.1), all the fossils known are remains of water dwelling organisms, and chiefly of sea life. This is in agreement with the inference that life has originated in the sea, reached by evolutionists even before Darwin. The basis of this inference was that most of the now living primitive organisms are water dwellers and particularly sea dwellers. Recent physiological studies have brought an unexpected corroboration of this view. The salt concentration in the blood and other body fluids of land animals is approximately like that in sea water and in marine animals. It is as though land animals still lived in the sea as far as their internal environment is concerned. It seems, then, quite natural that remains of land life appear in the fossil record some 150 to 200 million years later than do remains of marine life.

Another fact which seems appropriate from the evolutionary point of view is that the most highly organized phylum of animals, the verte brates, are not represented at all in the Cambrian rocks. The verte brates appear in the Ordovician period (see Table 121), and the first remains of the vertebrates are those of jawless fishes. This is the most primitive class of the vertebrates now living. (The best known modern representative is the lamprey.)

But beyond the above two features Cambrian remains do not strike us either as particularly primitive or lacking in diversity. These re muins include, representatives of most of the mijor groups of animals which live in modern seas. This means that at least some of the Cambrian creatures were quite elaborate and advanced in body structure. Such a situation may seem to be just about the reverse of what was expected at least by the nineteenth century phylogenetic school of evolutionists (see Chapter 10). They liked to picture the hypothetical common ancestors of the now hving organisms as lacking the special characteristics which these latter have, in other words as types or "ground plans of the modern creatures. But evidently the seas and the continents of the past were not inhabited by mere schemes, these inhabitants were adapted to cope with their environments, just as modern life is adapted to modern environments.

Quite evidently, the Cambrian fossils represent organisms which were nowhere near the first to inhabit the earth. The origin of life from manimate matter must have taken place very much earlier, and quite a lot of evolution must have intervened before the Cambrian sea dweller could have arisen. There is no doubt but that the earth was more than four billion, and possibly more than five billion, years old

The first reptiles have been found in the Pennsylvanian deposits and during the Permian period the reptiles became numerous. They increased in diversity and in importance during the Mesozoic Age of Reptiles, reaching a climax in the Cretaceous period. A great crisis came in late Cretaceous and early Tertiary times, when most groups of reptiles died out and were replaced by mammals and birds.

Adaptive Radiation The skeletons of the earliest known reptiles (cotylosaurs) were so amphibian-like that, in the absence of information on what kind of eggs these animals laid, assigning them to either class is rather arbitrary. Such clear transitions between different classes and other large groups of animals and plants are so rare in the fossil record that their existence should be noted (some paleontologists even doubted that such transitional forms ever lived, see Chapter 14)

From the humble beginning in the cotylosiums, the reptiles blos somed out during the subsequent geological periods in a variety of creatures ranging in size from a mouse to grants with bodies up to 87 feet long, some living on land and others in water or in the air. When a group of organisms becomes diversified in time into subgroups with different body structures and ways of life, it is said to undergo adaptive radiation. The following very brief account shows how great was the adaptive radiation of the reptilium stock.

By far the most famous of the fossil reptiles were the dinosaurs, some of which (though by no means all) reached enormous sizes They belonged to two distinct orders, one of which developed a structure of the pelvis bones resembling that found in birds, although these dinosaurs were not the ancestors of birds. The similarity of the pelvis structure is, then, an instance of convergent evolution. Some of the dinosaurs were flesh enters, preying probably on other reptiles Tvranosaurus stood some 19 feet tall, which makes this Cretaceous dinosaur the largest known carmyore The largest dinosaurs (Diplodocus and Brachiosaurus the latter estimated to have weighed some 50 tons) were, however, vegetarians It is hard to see how animals of such bulk could have moved on land, and some paleontologists conjecture that they wided partly submerged in shallow swamps or lakes Stegosaurus and Ankylosaurus had bodies armored with bony plates, and were slow moving herbivores, perhaps not unlike the living hippopotami Triceratops had two horns above the eyes, and one on the nose like a rhinoceros

Other reptiles invaded the air, and produced the order of pterosaurs. These are again not the ancestors of the birds. Their flying

evidently a great advantage for the stream inhabitants in such climates to be able to respire both in water and in the air, and to be able to walk overland in search of bodies of writer that have not dried up. Once provided with lungs and with walking legs, the ancent amphibians became able to exploit also a new source of food, which was not available to their writer dwelling ancestors, namely, the in sects which were becoming numerous at about the same time. We see that the lungs and legs were "evolutionary inventions" which were made probably in response to peculiar aquatic environments—period ically drying up pools and streams. But these same "inventions," so to speak, opened inadvertently much wider possibilities of adaptation to quite novel land environments hitherto unexploited by ver telepate angusts.

However that may be, the amphibitus have become very numerous and diversified in the Pennsylvanian period, some 30 to 40 million years after their first known appearance in the Devonian. Many strikingly large and powerful forms appeared, some of them resembling modern crocodiles in size and possibly in habits. Such rapid rises in abundance and diversity of novel groups of organisms adapted to novel ways of life are sometimes described as "evolutionary explosions—a description more dramatic than accurate in view of the immense time spans actually involved.

The dominance of amphibians among the land life continued into the Permian period, but it was soon surrendered to another set of newcomers—the reptiles. Most of the ancient types of amphibians died out without issue. Some few of them, however, clung to life, and eventually produced new groups—frogs and toads, which are reasonably successful today but were rare or did not yet exist during the Age of Amphibians.

The reptiles may be described as the most successful descendants of a small group of uncent imphibrins. It is reasonably clear which evolutionary invention caused their success. Amphibians are unable to live entirely on land since they pass through larval stages (tad poles, pollywogs) which live in water. It is interesting that a total emaneipation from the necessity of beginning their lives in water has been attempted in some toads, in which the tadpoles develop in special skin pouches on the back of the parent. But, of course, it is the appearance of eggs provided with abundant food for the development of the embryo, and with a shell to prevent drying that solved the problem of life on dry land. The reptiles, and among their descendants the birds and some few mammals. lay such eggs.

reptilian order. This order may be a slightly modified descendant of the reptiles which gave rise to dinosaurs, true lizards, and perhaps other orders. Anyway, the living Sphenodon is not easily distinguishable from a fossil discovered in Jurissic rocks of an estimated age of more than 135 million years. This is a case of evolutionary conservatism amounting to a complete stagnation, and bringing the animal to the very brink of extinction. The fact that Sphenodon has been preserved only in New Zealand will be commented upon below (page 296)

The Age of Mammals This name is applied to the time span from the early Tertury to the present, some 70 million years. During this time the earth came to be dominated by the two highest classes of backboned animals, mammals and birds, and also by the flowering plants and by insects (some people prefer to call it the Age of Insects).

Mammals and birds have reached a level of organization greatly superior to that of the reptiles and other animals (Figure 122) The most important advance, especially in the mammals, has to do with improved care of the young Lower animals produce generally numcrous offspring, most of which fall prey to environmental accidents and to predators. An individual matters little, the gamble is that a small part of the offspring will escape destruction. One of the trends observed in the progressive evolution of the living world has been to make the individual's survival not a matter of lucky chance but of his constitutional and genotypic fitness to survive (see Chapter 14) The progeny becomes, therefore, less numerous, but every infant is provided with maximum protection against the hostile world mals are viviparous, the embryo developing inside the mother's body (except the Australian duckbill and spiny anteater, which lay reptilelike eggs) The great mammalian invention is the placenta a nexus of blood vessels of the embryo and of the wall of the mother's uterus through which the embryo is supplied with food and with ovegen (the marsupials, of which the opossums and kangaroos are representatives have, however no placenta or an imperfect one) Furthermore. all mammals including the duckbill and the spiny anteater, nurse their young on milk secreted by mammary glands which may be modified swent glands

Another evolutionary invention, made by birds as well as by mammals is the warm bloodedness, or, more precisely, a physiological homeostatic (see page 13) mechanism which maintains the body temperature constant. This mechanism permits the mammals and

apparatus consisted of wings formed apparently by a skin fold like the wings of modern bats, but supported only by a greatly enlarged fourth finger. The pterosaur wing is, then, completely homologous neither to a bird wing nor to a bird wing, although it performed the same function, that is, flying. At least two reptilian orders, ichthyosaurs and plesiosaurs, reverted to life in water, and transformed their walking legs into paddles or fin like structures, although they, of course, continued to respire by lungs. Some ichthyosaurs probably looked superfleailly like the modern dolphins and porpoises, and led similar likes.

Just what caused the dying out of these varied and apparently well adapted animals at the end of the Cretacous period is obscure. The mammals at that time were undergoing an adaptive radiation of their own, and soon, together with the birds, replaced the reptiles. However, it is doubtful that the previously dominant reptiles could have been destroyed by the mammals. More probably the reverse was true the removal of the reptiles opened the evolutionary opportunities to the mammals and birds, and they responded by adaptive radiations, which filled the "vacances" in the economy of nature hereto fore preempted by the reptiles.

It is also instructive to note that the ancestors of the now-living reptiles played rather inconspicuous roles during the Age of Reptiles Lizards and snakes are the most successful of the modern reptiles, yet lizards have been known only since the Jurassic period, and snakes since the Cretaceous, and these orders can in no sense be regarded as replacing the extinct "ruling reptiles-in the biological domains of the latter Two other orders of reptiles, the crocodiles and the turtles exemplify a different situation Crocodiles have been known since the Triassic, and the turtles perhaps even since the Permian periods Both orders were more abundant and diversified in the past than they are now but by and large they underwent no major evolutionary changes Although the dinosaurs and other orders had their time of rapid evolution triumphant success, and then downfall and complete extinction, the turtles and crocodiles kept on placidly exploiting their neculiar ways of life without striking success but also without irrevo cable disaster They show an evolutionary conservatism, often met with in organisms specialized for some peculiar ways of life in which they have no serious competitors

On an island off New Zealand, now carefully protected by the New Zealand government there lives a superficially lizard-like reptile Sphenodon (or tuatara), which is a representative of a primitive birds to remain active regardless of the temperature fluctuations in the environment. It is easy to see how great an advantage in the struggle for existence is such an independence of the organisms from the vigaries of weather. The development of hair (in mammals) and of feathers (in birds) in place of the repulsian scales was probably a concomitant of the regulation of the body temperature.

Mammals have developed also a leg posture superior to that of the reptiles. The legs of amphibians and reptiles, having evolved from the fins of their aquatic anecistors, are usually widely sprawled out sidewise from the body, so that at rest the belly lies on the ground In mammals the legs have been placed under the body, which now rests on the legs. This change, minor though it may seem, has necessitated widespread alterations of the skeleton and the musculature Finally, mammals have greatly elaborated their teeth. Instead of the simple peg-like teeth of the reptile, there is a great variety of mammalian teeth adapted for nipping grasping, piercing, cutting, pound on the sides. To be sure, mammals have sacrificed the indefinite amount of tooth replacement, barring artificial ones, mammals have just two sets of teeth, the milk' and the 'permanent dentition (Figure 12.2).

A remarkable thing about the evolutionary history of mammals is that they appeared long before they became dominant and the Age of Mammals began In fact mammal-like reptiles, the so called therap sids, had appeared already at the beginning of the Age of Reptiles. in the Triassic and even in the late Permian periods. The mammalianlike characters of the therapsids are found in the structure of their skeletons, since, obviously, there is no way of telling whether they had already embarked on the development of the temperature regulation and the improved care of the young In the Jurassic period four different orders of mammals already existed, none of which survives today They were small, rare, and inconspicuous animals. Unfortunately very few of them were preserved as fossils, and those that were are represented not by complete skeletons but by fragments, mostly by teeth There is, again, no way of telling how rapid was the progress in the evolution of mammalian physiological adaptations, since only bone fragments are found But by the late Cretaceous, as the Age of Reptiles was drawing to its close, some mammals appeared whose bones are indistinguishable from those living now, particularly opossums and small insectivores not very different from modern shrews And only in the early Tertiary, during Paleocene and Eocene, did the

Figure 12 2 Some of the structural and physiological differences distinguishing reptiles (left) and mammals (right) (From Colbert)

long geological periods From top downward A coelacanth fish (Latimeria) horseshoe crab (Limulus) a young opossum (Didelphis), a brachopod (Limulus) and the tustara (Sphenodon) The figures are not drawn to the same scale

adaptive radiation of mammals burst forth, and every mammalian order now living, and some that are extinct became represented by more or less numerous forms. (This radiation appears, however, less sudden if we recall that the Paleocene and Locene together lasted for some 35 million years!) As indicated above, the coincidence of the adaptive radiation in mammals with the disappearance of the previously dominant reptiles can hardly be due to chance, but the causal relations between the two events are far from clear.

Evolutionary Rates It should already be clear from the foregoing discussion that the evolutionary changes do not proceed at anything like uniform rates in all organisms Organic evolution is in this re spect radically different from such meyorably even paced processes as the decomposition of radioactive elements. The evolution of some grouns appears to have come to a halt (Figure 123) The opossum, which in late Cretaceous was one of the evolutionally most progressive forms, has changed little during the 75 or more million years since The Sphenodon (see page 292) has not changed appreciably for some 135 million years since the Jurassie A living fossil" which became famous in 1939 is a coclacanth fish (Latimeria) which belongs to a group believed to have been extinct since the Creticeous period until a fisherman caught it alive in the Indian Ocean, off South Africa In cidentally the coelacanths are regarded as the descendants of the order of fishes which probably gave use (during the Paleozoic time) to the land vertebrates, and consequently to ourselves The horseshoe "crab (Limulus) which is a familiar sight on the Atlantic Coast beaches in late spring and early summer, is not very different from some fossils which were alive some 200 million years ago. But the animal that can be used as a symbol of a really staunch conservatism is the little marine bruchionod Lingula, which has not changed, at least on the outside, for about 400 million years, since the Ordovician times (Figure 123)

At the opposite extreme are the dangerous radicals which change so rapidly that the fossil record becomes quite inndequate to register the changes. The class of mammals as a whole belongs here, since, with few exceptions indicated above none of the modern forms existed in the late Cretaceous. Few of the modern species of mammals existed even in the late Tertiany (although all the modern orders and many families and genera did.) The human species is one of the worst radicals, since it evolved so rapidly that our ancestors only one million years ago were quite appreciably different from ourselves.

Evolutionary progressiveness or conservatism are not permanent

the family of horses (Equidae), whereas Phenacodus is placed in the extinct order Condylarthra Otherwise, Echippus resembles Phenacodus more than it does a modern horse Cohippus was, in fact, even

Figure 12 4 Comparison of the skull teeth and feet of Phenacodus and Eohip pus (From C G Simpson by permission of the Oxford University Press)

similer than Phenacodus, various species of the former ranging from 10 to perhaps 20 inches tall at the shoulders—the height of a medium-sized dog. But its front feet had only four toes, and the hind feet only three toes, each toe ending in a separate hoof (Figures 12.5 and

properties of a group of organisms Even Lingula must have at some time evolved from more primitive ancestors. A rapidly evolving group may enter upon a period of evolutionary stagnation, and the opposite change may also occur Some biologists supposed that every group of organisms has its "evolutionary youth" when it evolves rapidly, its maturity when it is common and produces many species and varieties in different parts of the world and in different habitats, and its "evolutionary old age,' when it stops evolving or evolves in wrong direc tions, leading to extinction. This matter will be discussed in the concluding chapter of this book For the time being it is sufficient to say that evolutionary "youth" and "semility" are words which are mis leading, since they suggest a wrong analogy between the develop ment of an individual and the evolution of a species, a genus, or a class The evolutionary fate is to a great extent determined by the relationships between the organism and its environment and has no inexor able course, as the life of an individual does This fact can be seen best by considering a concrete evolutionary history, and we choose for this purpose the example of the evolution of the horse family (Equi due), which has been studied in detail by some of the most eminent paleontologists

Evolution of Horses According to Simpson, the foremost authority on mammalian origins. It may be, indeed that the lion and the lamb are cousins' He has said this because the ungulate mammals, to which horses and lambs belong and the carmvores to which hons belong are greatly modified descendants of the closely related condylarths and creodonts Condylarths and creodonts were rather common animals during the earliest Tertiary epoch Paleocene They became ev tinct as such during the next epoch. Eocene, presumably being re placed by their own modified or better fit to survive descendants The best known condylarth called Phenacodus, resembled a horse about as little as it did a lion or a lamb. It was an animal rather smaller than the smallest pony, with feet having five toes, each toe provided with a small hoof (Figure 124) Its teeth were small and pointed, the canines being somewhat larger and remotely dog like Such teeth suggest that Phenacodus was probably omnivorous, eating the various foods, both vegetable and animal, that it could get

During the Eocene Hyracotherium lived It is more widely known under the name of Eohippus, the dawn horse There is a break in the fossil record between the condylarths and Eohippus, that is, no intermediates between them have yet been found. It is chiefly for this reason that Eohippus is placed in the order of ungulates and in

the family of horses (Equidae), whereas Phenacodus is placed in the estinct order Condylarthra Otherwise, Echippus resembles Phenacodus more than it does a modern horse Echippus was, in fact, even

Figure 12.4 Comparison of the skull teeth and feet of Phenacodus and Eohip pus (From C C Simpson by permission of the Oxford University Press)

smaller than Phenacodus, various species of the former ranging from 10 to perhaps 20 inches tall at the shoulders—the height of a medium sized dog. But its front feet had only four toes, and the hind feet only three toes, each toe ending in a separate hoof (Figures 125 and

Figure 12.5 Evolution of the horse as illustrated by an exhibit at the American Museum of Natural History New York (From Weimer)

Figure 12.6 Restorations of the fossil horses Neohippanon (A) Mesohippus (B) and Eohippus (C) (From Weimer)

12 6) The head of Eohippus was, again, not very different from the head of Phenacodus, but the molar teeth had already begun to develop the crests which serve to grind the food, whereas the front teeth (in cisors) became modified for nipping and picking up leaves, and a gap (diastem) appeared between the incisors and the cannes. This gap is present in the later and in the modern horses. Eohippus did not graze on grass, but probably browsed on leaves, buds, and perhaps on fruits and seeds. Having the benefit of lundsight, we recognize that Eohippus was evolving not in the direction of lons, but in the direction of lunds, or rather of lonses.

Many textbooks and popular accounts of biology represent the evolution of the horse family as starting with Eohippus, and progressing in a direct line towards the modern horse, Equus This evolutionary progress involved, allegedly, the animals getting steadily larger and larger, while their feet were losing toe after toe, until just a single hoof was left According to Simpson, this oversimplification really amounts to a falsification. In reality things happened in a far more complex yet more meaningful way, summarized in Figure 12.7, which still shows only the principal events of a long history.

During the Eocene epoch Cohippus evolved slowly, and produced several species and related genera (Orohippus, Epihippus) which lived both in North America and in Eurasia. Later on, all the Old World species died out, while one or more American species gave rise to a new genus, called Mesohippus. During the Oligocene epoch, Mesohippus became a very common animal in North America to judge by the large number of its remains that have been discovered. It was taller than Eohippus (24 inches tall on the average), and it had long and slender legs, each with three toes. The brain casts of Mesohippus show another important advance—an increased size of the cerebral hemispheres. The success of this animal may have been due as much to its growing more intelligent is to growing more fleet footed.

During the next epoch, the Miocene, the Mesohippus stock blos somed out in a viriety of new genera, among which Anchitherium, Hypohippus, and Merychippus are most important (see Figures 126 and 127) The first two were great travelers, and spread out from their native North America to the Old World, where they became quite common. These successful colonizers were getting somewhat taller as time went on but they still had three toes on each foot, and their teeth indicate that they were, like their ancestors, browsing on foliage Merychippus stayed at home in North America, but it made an evolutionary invention which affected all subsequent evolution of

Figure 12.7 A schemutic representation of the evolution of the horse tribe showing the geographic distribution of the different forms and their mode of securing food by browsing or by grizing (From G G Simpson, by permission of the Oxford University Press)

the horse family This invention is the high crowned teeth with a complex pattern of crests and ridges, the horses now hving have teeth of this kind, though, of course, they are much larger than those in Merychippus Such teeth made possible a change in diet Merychippus and its numerous descendants, including the modern horses, fed by grazing on grass instead of by browsing on leaves

It was not a fortuitous chance that the switch from browsing to grazing took place in horse evolution during Miocene In Eocene and during much of Oligocene, most of the earth enjoyed warm and humid climates Tropical evergreen and temperate broad leaved forests were the widespread types of vegetation, and they offered ample food to browsing horses But as time went on, the climates tended to become cooler, and in many parts of the world also drier Grassy steppes. prairies, and savannas were becoming more and more widespread And yet, during Miocene, few animals, or at least few mammals, were adapted to utilize grass as their main diet. Grass is very harsh food, and the low crowned teeth of the browsing horses would have been worn down to the gums by tough grass Merychipnus evolved teeth which enabled it to feed on grass, and its descendants inherited the earth,' or at least the grass covered part of it. But the new way of life necessitated also qualities other than high crowned teeth grassy plains, animals can be seen from greater distances than in forests Accordingly, natural selection favored larger, stronger, and faster grazing horses, which could defend themselves or could escape from their enemies

The net result of the change in the diet was a quickening of the pace of evolution in the Merychippus line. The horses of the next epoch, Phocene were derived chiefly from Merychippus, whereas the browsing horses lingered on, and eventually became extinct (Figures 125 to 127). One of the most successful descendants of Merychippus was the genus Hipparion, which repeated the exploits of the Miocene browsing horses, and spread from North America to the Old World, colonizing not only Asia and Europe but Africa as well. This was an animal of about the size of a modern cow pony, but it still had three toes on each foot Meanwhile, in North America there arose still another horse, Phohippus, in which the side toes were finally lost, leaving just a single toe on each foot. Phohippus appears to be the progenitor of the genus Equis to which belong the modern horses zebras, and asses (see Chapter 9)

The last chapter of the history of the horse family is a puzzling one During the Ice Age (Pleistocene) the genus Equus spread from North

America to Eurasia, giving rise to species of horses and asses, to Africa where zebras were formed, and finally to South America. Just what the indigenous North American horses were like in color and in habits is anybody is guess, but it is furly certain that the early human imparts of the Americas (Indians) found horses abundant in many parts of the continents. It is quite certain however, that by the time white men came to the Americas, the native horses had died out, and horses were re introduced from Europe. What or who killed the native American horses? Was it an infectious disease, or animal predators or hunting by the Indians? The cause is unknown, and serious objections can be raised against all these hypotheses.

Another puzzle of the horse evolution is that all major evolutionary advances have taken place on the North American continent As Figure 127 shows, horses repeatedly invaded the Old World from North America, had a brief efflorescence there, but each time died out without leaving descendants Remains of Echippus, Anchitherium, and Hipparion were found in Europe before fossil horses were discovered in America The pioneer Russian paleontologist Kovalevsky, who mide a classical study of the European fossils in 1873, concluded that Echippus-Anchitherium-Hipparion-Equus formed 2 line of descent This was one of the first triumphs of evolutionism in paleontology kovalevsky, of course was right in his conclusion that the fossils he was studying represented successive stages of horse evolution, but he had no way of knowing that the forms which he had at his disposal were blind offshoots of an evolutionary development which took place on the other side of the globe Only since the American paleontologists Marsh, Cope, Osborn, Matthew, and Simpson have discovered and studied the American fossil horses has the evolution of the horse family become one of the best-known and most instructive examples of the historical development of a group of living beings

Evolution and Opportunity Although this interpretation is not universally accepted (see Chapter 11), it seems probable that the important advances in the evolution of the horse family occurred when the animals adopted new ways of life. Thus the high crowned teeth with complex grinding surfaces arose presumably when the horses were becoming grazers instead of browsers. In turn, the development of the grazing habit was a response to the evistence of an abundant and hitherto little exploited food supply—grass. Such a causal connection between ecological opportunity (a new and plentiful food supply) and evolutionary change (development of organs able to utilize this food) is exactly what is expected if evolution is brought about

by natural selection of fit gene combinations. Modern paleontologists and biologists are certainly not yet in a position to give crusal explanations along similar lines to all the evolutionary changes of which the fossil record bears witness. We can, however, take comfort in the fact that as our knowledge both of living and of fossil organisms increases, the ecological factors responsible for evolutionary changes emerge more and more clearly in more and more evolutionary his tories.

One of the most fascinating and suggestive phenomena which can be understood in the light of the above theory is evolutionary parallelism. It has been pointed out in Chapter 10 that organisms which are not closely related often develop analogous organs, serving similar functions, when these organisms have similar ways of life. Thus fishes, ichthyosaurs, and whales and porpoises evolved remarkably similar streamlined body shapes. Comparison of the inhabitants of certain countries reveals evolutionary parallelism on even grander scale. We shall consider two examples in this category comparison of the mammals of Australia with those of the rest of the world, and comparison of the histories of the mammals inhabiting North and South America.

It has already been stated (page 293) that the mammals which give birth to living young can be divided into placentils and marsipials. In the former, the fetus obtains its nourishment from the mothers body through the placenta, and is born at an advanced stage of development. In the marsipials the young are born quite small, and are taken care of in a special pouch on the mother's belly, which serves as an incubator and a perambulator combined. In the world at large, placental mammals greatly outnumber the marsipials. Thus in North America the only marsipials are the opossums, in Europe there are none at all. Australia, however, is an exception. The most conspicuous and characteristic Australian mammals are marsipials. Further more, and this is the point worth a particular emphasis, among the Australian marsipials many kinds of animals exist which resemble, both in appearance and in ways of life, placental types living elsewhere

Figure 12.8 shows some examples There exist wolf-like marsupials (Tasmanian wolf), mole like, squirrel like (phalangers), rodent like (wombats corresponding to our woodchucks) and even anteater like marsupials There is nothing quite like horses, deer, antelopes, or other ungulates in Australia, but their place is taken by the herbivorous kangaroos, which are represented by many species of different sizes

There are no marsupial bats, and this exception truly proves the rule, for placental bats are a group of placental mammals abundantly represented in Australia

The reason the marsupials have developed in Australia many ecological and structural types represented by parallel placental forms

Figure 12.8 Adaptive radiation of massipal mammals in Australia which has given rise to a greet variety of forms resembling certain kinds of placental mammals which live outside Australia (From Colbert)

elsewhere is reasonably clear. It is the absence in Australia of these placentals. Australia is an island continent, separated from other continents by wide occurs or (from Asia) by deep and relatively broad sea straits. Australia has been an island continent for a long time although there is no unanimity among geologists as to just how long. During the Cretaceous and the early Tertiary periods, both the primitive marsupials and the placentals were widely distributed. The marsupials happened to reach Australia at an early time (just when, however is unknown), whereas the placentals did not reach there until much later. Such accidents when some creatures do and others

do not happen to colonize an island, are quite common (see page 313) Australia offers about as rich a variety of ecological opportunities as larger continents. It has temperate and tropical forests, steppes, deserts, mountains, and plains. To the existence of these opportunities life has responded by evolving parallel adaptive organizations. A marsupial mole is astonishingly like a "reil" placental mole, both in general appearance and in labits. And yet any competent anatomist sees easily that the similarities are due to analogy and not to homology (see page 231). But the opportunity to develop a marsupial "hat" was cut off by the invasion of placental buts from Asia, the bits can nego tate marine struits perhaps more easily than non flying mammals can

The Mammalian Inhabitants of North and South America The drawback to the story of the Australian mammalian fauna is that its geological history is little known. In this respect a comparison of the mammalia of North and South America is more instructive. For South America was an island continent on and off during its history, and again it was repeatedly connected to North America by land bridges such as the Isthmus of Panama is at present. It happens that during most of the Tertiary Age of Mammals, South America was an island On the contrary, North America, at least during the Tertiary, was always connected with, or separated by only a narrow strait like the present Bering Strait, from the great Eurasi in land mass. The connection was through Alaska and northeastern Siberia, and organisms able to negotiate the climatic conditions of that region passed freely between the New and the Old Worlds. We have seen that ancient horses made use of this route several times.

By Eocene times both placental and marsupial minimals were spread widely over the surface of the earth. Their fossilized remains have been discovered in both North and South America. Of course they belonged not only to extinct species, but also with few exceptions (such as the opossum) to families and even to orders which have since become replaced by greatly modified descendants. From Eocene onward, however. South America became an island, since there was a sea strait in place of the Isthmus of Panama. The mammals of South America evolved, then independently from those of North America, with little or no interchange of inhabitions between the two continents. The results of these independent developments were remarkable.

During the later part of the Tertiary period (Miocene and Pliocene epochs) both North and South America had diversified mammalian

inhabitants, more than twenty different families having been preserved as fossils on each continent (see Table 12.2.) The striking fact, how-

TABLE 122

NUMBERS OF DIFFERENT FAMILIES OF MANUALS WHICH ARE KNOWN TO HAVE LIVED ON THE NORTH AMERICAN AND THE SOUTH AMERICAN CONTINENTS AT DIFFERENT TIMES INCLUDING THE I AMILIES WHICH WERE COMMON TO ROTH CONTINENTS.

(According to Simpson)

Time	I amilies in North America	Families in South America	Families in Both Continents
Recent	23	30	15
Pleistocene	32	36	21
Late Phocene	27	26	5
Larly Phocene	28	26	2
Late Miocene	26	24	1
Mid Missons	97	03	0

ever, is that almost all the North American mammals were quite different from the South American ones. Only a few families, and no genera, lived on both continents. In other words, the independent evolutionary developments have produced different animals in the two Americas.

And yet, the North American and the South American Tertiary mammals often represented strikingly parallel biological types Thus in North America (and in the Old World) there appeared dog like and cat like carmyores, the order Carmyora belonging of course, to the placental mammals In South America there also appeared some animals resembling wolves and others resembling saber-toothed tigers But these South American carmyores are marsupials not placentals! In the Old World (including North America) herbyorous ungulates developed, including horses, camels, rhinoceroses, etc In South Americh two now completely extinct orders evolved, known as litopterns and notoungulates which have produced some forms amazingly simi lar to ungulates (Figure 129) Thus the family Proterotherudae, be longing to the Litopterna, became horse-like, including the reduction of the number of toes in one line to three and in the other to a single toe on each foot These one toed litopterns had already appeared in Miocene, whereas one-toed horses are known only from Pliocene on Curiously enough the three toed and one toed litopterns did not de velop grazing teeth but another group (Notohippidae) did acquire grazing teeth but not the legs specialized for running that horses have

Still other htopterns became camel like, whereas the toxodonts (be longing to an extinct South American order Notoungulata) were rhinoceros like

Of course the South American litoptern pseudo horse is in no sense identical with a real horse, just as the Australian marsupial "wolf" is

Figure 12.9 Convergent evolution of the foot bones in the horses (A and C) and in the South American Hopterns (B and D) A and B three-toed forms C and D one toed forms (From Colbert)

still a marsupial and not a placental wolf According to Simpson, "it would be a stupid anatomist who could not distinguish the two (wolves) from any single bone or organ in the body" And yet, the two "wolves do appear strikingly similar externally and it is certainly not a coincidence that they lead more or less similar lives The modern placental wolf, the Australian marsupial "wolf," and the extinct South American marsupial "wolves" (borhyaenid) are made out of different genetic materials, but they are cast, as it were in the same mold Because of the similar mold these different animals were able

to preempt the ecological niche, the profession, of a wolf like animal Most of the peculiar and fascinating South American mammals of the Tertiary have become extinct. In late Phocene or in Pleistocene times the Isthmus of Panama rose from the sea and made a land corridor linking the two continents. Through this corridor the North American mammalian families, including horses, typirs, deer, camels, cats, wolves, rodents, and many others, invaded South America. Simi larly, North America acquired armadillos, porcupines, sloths, and other forms from South America. During Pleistocene and Recent times more than half of the mammalian families occurring on either continent occur also on the other continent (Table 12.2)

The invasion from the North had disastrous effects on many native animals of South America, several whole orders and many families died out. The litoptern pseudo horse and the marsupial pseudo-wolf were simply no match for the real horse and the real wolf Strangely enough the immigrants from the South did not wreak any havoc in North America, and the extinction of only a few North American natives is ascribable to the competition of the invaders from the South Just why this should be so is a matter of speculation. One guess, put forward originally by Matthew is that, among land organisms, the successful products of evolution are most likely to arise close to the center of large continental masses, where the numbers of competing forms are largest and the competition is toughest. Isolated islands and remote corners of continents, on the contrary, may harbor some organisms relatively less resistant to the rigors of competition During the Tertiary, South America was an island while North America was exchanging inhabitants with the great Asian-European African land mass Many of the native South American mammals were, then, sup planted by the tougher invaders

Oceanic and Continental Islands and Their Inhabitants In 1835 Charles Darwin then a young naturalist, visited the Galapagos Islands, located on the Equator some 600 miles off the West Coast of South America (Figure 12 12) He was greatly impressed by finding that most of the animals and plants in Galapagos were endemic, that is occurred nowhere else in the world. At the same time many of them resembled the inhabitants of the neighboring South America Darwin correctly surmised that the Galapagos endemics were more or less profoundly modified descendants of immigrants from the South American continent. Here, then, the occurrence of an evolutionary process was reasonably obvious. Some two decades later, A. R. Wallace, the co-discoverer with Darwin of the principle of natural selection, reached

Still other litopterns became camel like, whereas the toxodonts (be longing to an extinct South American order Notoungulata) were rhinoceros like

Of course the South American litoptern pseudo horse is in no sense identical with a real horse, just as the Australian marsupial "wolf" is

Figure 12.9 Convergent evolution of the foot bones in the horses (A and C) and in the South American Integerns (B and D) A and B three toed forms C and D, one toed forms (From Colbert)

still a marsupial and not a placental wolf. According to Simpson, it would be a stupid anatomist who could not distinguish the two (wolves) from any single bone or organ in the body. And yet, the two wolves do appear strikingly similar externally, and it is certainly not a coincidence that they lead more or less similar lives. The modern placental wolf, the Australian marsupial "wolf, and the extinct South American marsupial "wolves (borhyaenid) are made out of different genetic materials, but they are cast, as it were in the same mold. Because of the similar mold these different animals were able

to preempt the ecological niche, the profession, of a wolf like animal Most of the peculiar and fascinating South American mammals of the Tertian have become extinct. In late Phocene or in Pleistocene times the Isthmus of Panama rose from the sea and made a land corn dor linking the two continents. Through this corridor the North American mammalian families, including horses, tipirs, deer, camels, cats, wolves, rodents, and many others, invaded South America. Similarly, North America acquired armadillos, porcupines, sloths, and other forms from South America. During Pleistocene and Recent times more than half of the mammalian framilies occurring on either continent of Table 12.2.)

The invasion from the North had disastrous effects on many native animals of South America, several whole orders and many families died out. The literature pseudo horse and the marsupial pseudo-wolf were simply no match for the real horse and the real wolf Strangely enough the immigrants from the South did not wreak any havoc in North America, and the extinction of only a few North American natives is ascribable to the competition of the invaders from the South Just why this should be so is a matter of speculation. One guess but forward originally by Matthew, is that, among land organisms, the successful products of evolution are most likely to arise close to the center of large continental masses, where the numbers of competing forms are largest and the competition is toughest. Isolated islands and remote corners of continents, on the contrary, may harhor some organisms relatively less resistant to the rigors of competition During the Tertiary, South America was an island while North America was exchanging inhabitants with the great Asian European African land mass Many of the native South American mammals were, then, sunplanted by the tougher invaders

Oceanic and Continental Islands and Their Inhabitants In 1835 Charles Darwin, then a young naturalist, visited the Galapagos Islands, located on the Equator some 600 miles off the West Coast of South America (Figure 1212) He was greatly impressed by finding that most of the animals and plants in Galapagos were endemic, that is, occurred nowhere else in the world. At the same time many of them resembled the inhabitants of the neighboring South America. Darwin correctly surmised that the Galapagos endemics were more or less profoundly modified descendants of immigrants from the South American continent. Here, then, the occurrence of an evolutionary process was reasonably obvious. Some two decades later, A. R. Wallace, the co-discoverer with Darwin of the principle of natural selection, reached

similar conclusions by studying the inhabitants of islands on the opposite side of the globe—in Indonesia

Two kinds of islands may be conveniently distinguished-the oceanic

Figure 12 10 Darwin's finches of the Galapagos Islands This is a group of birds which became adapted to diverse modes of life and developed a great variety of adaptations, particularly in the structure of the beak (From Lack, courtesy of Cambridge University Press)

and the continental ones Oceanic islands have never been connected by land with any continent or were so connected only long ago Galapagos and the Hawanan islands are good examples of the oceanic kind, they are islands of volcanic origin, and they rose from the bottom of the ocean far from any land Continental islands are separated from the mainland generally by shallow straits, and were parts of the mainland in geologically recent times Long Island near New York.

Newfoundland off the coast of Canada, or the British Isles off Furope are examples

Continental islands have rather few or no endemic plants or animals then flore and fames differ little from the adjacent mainland flore or farms of an occanic island, on the contrary, are more or less strongly different from those of other islands or continents. Not only do occanic islands have many endemics, but their floras and farmas are usually "unbalanced that is, they lack whole groups of plants and animals which occur metty much everywhere in the world where suitable claustic and other conditions are as allable Hus we know that the occanic island continent of Australia has few placental main The occanic Galanagos Islands have their manunalian inhah flants restricted to some buts and some rats, but they have factored a remarkable forms of reptiles including the famous glant tortoises and herbivorous lizards. Many kinds of birds familiar on the South American continent are also missing on Calabagos, but one group of birds, the finches are represented by numerous and diversified forms these Darwin's finches recently subjected to penetrating study by Lack have evolved on Calanagos species with beaks adapted for feeding on large or on small seeds, with strong woodpecker like heals feeding on insect larvae with parrot like beaks feeding on buds and fruits with stender be its feeding on small insects etc

these facts are comprehensible only in the light of the history of life on oceanic islands. An island arising in the midst of an ocean cm be populated only through accidental introductions of plants and animals by occanic currents, by winds, storms etc. Just which kinds of plants and animals will arrive and when will depend, of course on then ability to remain alive during the transport. But it will depend also on chance or luck. Simpson has called the accidental methods of colonization of new territories succeptakes dispersal. How low are the chances of winning in these sweepstakes has been estimated by /innucroan for the Hawaiian Islands | These Islands have about 3700 endemic species of insects and about 1000 endemic smalls. Zimmerman reckons that they may have arisen from about 250 Juscet and 25 small species introduced in Hawaii from elsewhere. On geological grounds Hawaii is estimated to be of the order of 5 million veers old. This me ans a successful introduction of a new insect species once in 20 000 years and of a snail species once in 200 000 years on the average!

The peculiar flor is and faunas of occanic Islands are, therefore, due to the accidental nature of their colonization. A linch, arriving to Galapagos when these islands had few or no other bird inhabitants. similar conclusions by studying the inhabitants of islands on the opposite side of the globe—in Indonesia

Two kinds of islands may be conveniently distinguished-the oceanic

Figure 12 10 Darwin's finches of the Galapagos Islands This is a group of birds which became adapted to therese modes of life and developed a great variety of adaptations particularly in the structure of the beak (From Lack, courtesy of Cambridge University Press)

and the continental ones Oceanic islands have never been connected by land with any continent, or were so connected only long ago Galapagos and the Hawaurin islands are good examples of the oceanic kind, they are islands of volcanic origin, and they rose from the bottom of the ocean far from any land Continental islands are separated from the mainland generally by shallow strats and were parts of the mainland in geologically recent times Long Island near New York,

matter may respond by evolution of forms adapted to occupy these

Zoographic and Phytogeographic Regions The second half of the eighteenth century saw the completion of the first phase of the geographic exploration of the world By that time all the continents and the major islands had been discovered. At the same time, the descriptive studies of the geographic distribution of living creatures began to reveal that every land area and every section of the sea have their own sets of animals and of plants. Much depends, of course on the climate, but this is far from the whole story Parts of California of Mediterranean countries of Australia South Africa and western South America have rather similar climates, and yet the native in habitants of these countries are quite different. Tropical rainforests occupy extensive territory in the basin of the Amazon in South Amerca, the Congo Basin in Africa, and in southeastern Asia and Austral asia, but the plants and animals of these rainforests are different These facts were generalized during the second half of the nineteenth Century, when the world was subdivided into several zoogeographic (faunal) and phytogeographic (floral) regions. Although the details of this subdivision are not even now fully agreed upon, the man in Figure 12.12 summarizes the essentials of the story

The United States, Canada and the highlands of Mevico are inhabited by the Nearctic fauna. This fauna is not very different from the Palearetic fauna—in Europe, Asia down to the southern slope of the Himalaya Mountains, and Africa north of Sahira Desert. The Nearctic and Palearetic fauna may consequently, be parts of a larger Holaretic fauna. South America, Central America, and the Neucan lowlands are inhabited by the Neotropic fauna. Africa south of Sahara has the Ethiopian fauna southern Asia and Indonesia the Oriental or Indo-Malayan fauna, and Australia is a world unto itself—here is the Australian fauna.

Darwin, Wallace, and among their successors particularly Lidekker (1896) and the Schiters saw clearly that the existence of this regional differentiation of the living world is comprehensible only as an out come of an interaction between the geological history of the earth and the organic evolution. We have already discussed the history of the Australian region (page 307). The marsupial mammals underwent there an adaptive radiation, being protected from competition of the placental mammals by the island nature of Australian. The Australian tree flora is dominated by species of eucalypts and of acacias, which have evolved almost every conceivable ecological type of tree. Out-

314

started an adaptive radiation of finches which eventually resulted in claboration of adaptive types. They exploit kinds of food which on continents are caten by groups of birds other than finches (wood

Figure 12.11 Drepantid bards of the Hausiran Islands. These bards, not at all closely related to Darwan's finches (see Figure 12.10) gave ruse to diverse adaptations particularly different forms of the beak used to subsist on different kinds of food. (Courtesy of Dr. Dean Amadon.)

peckers parrots warblers, etc.) In Hawau it is a different family of birds which underwent a similar adaptive radiation—the honey creepers—Drepanndae. The history of a flora or a fauna of an oceanic island teaches us the same lesson as does the history of the living world as a whole. The existence of unexploited possibilities of life, of unfilled "ecological niches," acts as a challenge to which the living arose in connection with the hypothesis of continent drift developed by the German geologist Wegener — According to this hypothesis, continents are blocks of relatively light rocks floating on the surface of the viscous and heavier strato of the earth's crust — Wegener visualized that the present continents during the Paleozoic and earlier times formed one or two enormous land masses — Africa was united with southern Asia, and through South America also with Antarctica and Australia, into a single mass — This mass broke up into the present continents, which then proceeded to drift apart, the Atlantic, Indian, and Antarctic oceans forming between them

Some zoologists and botanists believed that the continental drift hypothesis explained some found and floristic resemblances, particularly between Africa and South America, South America and Australia. and Africa and Australia Indeed, there are examples of animals and plants which occur on almost any pair of continents now separated by wide oceans and not in the territories linking these continents. In Chapter 9 we saw a situation of this sort exemplified by species of cottons. However, the hypothesis of continental drift has encountered grave and apparently insuperable difficulties, and is now abandoned by most geologists. The biological facts which were adduced in its favor were never compelling and most of the modern biogeographers believe that this hypothesis should be rejected also on biological grounds. The scattered instances of discontinuous distribution of animals and plants on remote continents have to be considered each on its own merits. Sometimes we are dealing with organisms which were widely distributed in the past but now survive only in some widely separated territories. Thus species of incense cedar (Libocedrus) are now known in California Chile, and New Zealand Sometimes there are instances of "sweepstakes distribution"

Suggestions for Further Reading

Simpson G G 1941 Tempo and Mode in Evolution 1st Edition 1953 The Major Features of Evolution 2nd Edition Columbia University Press New York

Simpson C G 1949 The Meaning of Ecolution Yale University Press, New Haven

Many pulcontologists questioned whether the evidence of the fossil record could be reconciled with the biological theory of evolution. Simpson's books have shown that a synthesis of paleontology and the rest of evolutionary biology is indeed possible. In fact these works have to a considerable extent created the modern version of this theory. They should be read by every evolutionist.

side Australia the eucalypts are native only on some of the neighboring islands, and nowhere else in the world

The divergent features of the fauna and flora of the Neotropic regions crose because of a situation similar to that obtaining in Australia South America was an island during the Tertary times, but it became linked to North America and metrchanged inhabitants with the latter

Figure 12 12 Zoogeographic or faunal regions of the world and some of the oceanic islands having peculiar faunas mentioned in the text

from Pleastocene times on (page 311) Conversely, the relative un formity of the enormous Holarctic region including parts of four continents, is understundable because these continents interchanged in habitants more or less continuously. In particular, North America was for a long time close to Eurasian in the vicinity of the Bering Strait (page 204). The inhibitants of Africa (Ethiopian region) developed in relative isolation from those of Eurasia, because of the existence until geologically relatively recent times of a sea in place of the present Sahara Desert (Figure 12 12)

The above facts have now been familiar to biologists for so long that it is useful to point out that the history of the world fauna and flora is still far from completely known and that many basic problems in the field still await solution. One of the most controversial issues

arose in connection with the hypothesis of continent drift developed by the German geologist Wegener. According to this hypothesis, continents are blocks of relatively light rocks floating on the surface of the viscous and heavier strate of the earth's crust. Wegener visualized that the present continents during the Paleoroic and earlier times formed one or two enormous land masses. Africa was united with southern Asia, and through South America also with Antarctica and Australia, into a single mass. This mass broke up into the present continents, which then proceeded to drift apart, the Atlantic, Indian, and Antarctic oceans forming between them.

Some zoologists and botanists believed that the continental drift hypothesis explained some faunal and floristic resemblances, particularly between Africa and South America, South America and Australia. and Africa and Australia Indeed there are examples of animals and plants which occur on almost any pair of continents now separated by wide oceans, and not in the territories linking these continents. In Chapter 9 we saw a situation of this sort exemplified by species of cottons However, the hypothesis of continental drift has encountered grave and apparently insuperable difficulties and is now abandoned by most geologists. The biological facts which were adduced in its favor were never compelling, and most of the modern biogeographers believe that this hypothesis should be rejected also on biological grounds The scattered instances of discontinuous distribution of animals and plants on remote continents have to be considered, each on its own merits. Sometimes we are dealing with organisms which were widely distributed in the past, but now survive only in some widely separated territories. Thus species of incense cedar (Libocedrus) are now known in California, Chile and New Zealand Sometimes there are instances of "sweepstakes distribution"

Suggestions for Further Reading

Simpson G G 1914 Tempo and Mode in Evolution 1st Edition 1953 The Major Features of Evolution 2nd Edition Columbia University Press New York

Sunpson G G 1949 The Meaning of Evolution Yale University Press, New Haven

Many poleontologusts questioned whether the evidence of the fossil record could be reconciled with the biological theory of evolution. Surpson s books have shown that a synthesis of paleontology and the rest of evolutionary biology is indeed possible. In fact, these works have to a considerable extent created the modern version of this theory. They should be read by every evolutionary.

318 Historical Record of Organic Evolution

Dunbar, C O 1919 Historical Geology John Wiley, New York

Colbert, E H 1951 The Dinosaur Book 2nd Edition McGraw Hill New York

Colbert, E H 1955 Feolution of the Vertebrater John Wiley New York

Gregory, W K 1951 Feolution Emerging Macmillan New York

Romer A S 1911 Man and the Vertebrates University of Chicago Press Chicago

Romer A S 1945 Vertebrate Paleontology 2nd Edition University of Clucago Fress Chicago

Sumpson, G. G. 1950. History of the fauna of Latin America. American Scientist Volume 33 pages 301-389. Also in Britsell's Science in Progress. Volume 7

Simpson G G 1951 Horses Orlord University Press New York

The basic facts of historical geology and paleontology can be found in the eight

books (Dunbar to Simpson) cited above

Mayr E 1941 Wallaces line in the light of recent zoogeographic studies Quarterly Review of Biology Volume, 19 pages 1-44 Mayr E 1946 History at the North American bird fauna. Wilson Bulletin

Mayr E 1946 History of the North American bird fauna Wilson Bulletin Volume 58 pages 3-41

Matthew W D 1939 Climate and Fulution 2nd Edition New York Academy of Science New York

Sumpson G G 1953 Prolution and Congraphy Oregon State System of Higher Education Eugene

Stebbins G L. 1950 Variation and Evolution in Plants Columbia University Press New York

Chapter VIV contains a concess discussion of phytogeography The works of Majr Multhew and Sunpson discuss fundamentals of zoogeography

The following three works are concerned specifically with the frunas of oceanic

islands Amadon D 1950 The Hawaiian honeycreepers Bulletin of the American

Museum of Natural History Volume 95

Lack D 1947 Darwin's Finches Cambridge University Press London

Lack D 1941 Dartum's Finches Cambridge University of Hawaii Press Honolulu

13

Human Evolution

Darwin's discovery that min is a descendant of non human ances tors seemed repugnant to some of his contemporaries. The story goes that, on hearing about Darwins theory, a lady cried 'Descended from the apes! My dear, we will hope that it is not true. But if it is let us pray that it may not become generally known' To her, it was terribly degrading to be related, however distantly, to an ape. But the news became rather generally known, and most people grew reconciled to the strange relative.

At present the dust has settled sufficiently to see things more clearly Man is a biological species subject to the action of biological forces, and a product of a long evolutionary development. It does not matter whether the evolutionary origin of man is called an hypothesis or a fact' Events which occurred before there were observers capable of recording and of transmitting their observations must of necessity be inferred from evidence now available for study. But the evidence shows conclusively that man arose from forebears who were not men. although we have only the most fragmentary information concerning the stages through which the process has passed. Nobody has seen that the earth is a sphere or that it revolves around the sun rather than vice versa nobody has caught a glimpse of atoms or of things within atoms. Are atoms, then, factual or hypothetical? The least that can be said is that in our activities we take the earth to be a sphere and treat atoms as though they were facts. For similar reasons it is not a matter of personal taste whether or not we "believe in evolution The evidence for evolution is compelling Moreover. human evolution is going on at present, and, what is more, biology is

in the process of acquiring knowledge which may permit man to con trol and to direct this evolution

Biologists have been so preoccupied with proving that man is a product of organic evolution that they have scarcely noticed that man is an extraordinary and unique product of this evolution. He is unique in a purely biological sense Some forces which are important in the evolution of man occur at most as vestiges in the evolution of other creatures. The leading forces of human evolution are intelligence. ability to use linguistic symbols, and the culture which man has develoned These exclusively, or nearly exclusively, human phenomena affect the biological evolution of man so profoundly that it cannot be understood without taking them into account. Conversely, human society and culture are products of the biological evolution of our species. Human evolution is wholly intelligible only as an outcome of the interaction of biological and social forces Biologists and sociologists are equally guilty of underestimation of this fact.

Characteristics of the Class of Primates Although Limneus was not an evolutionist, he correctly placed man Homo sapiens, in the order of primates, of the class of mammals, of the vertebrate phylum

Except for man, who now lives in all climates which the earth has to offer, primates are tropical or subtropical animals Several groups of primates are known as shown in Table 13 1 and Figures 13 1 and 13 2

	TA	ABLE 13 1				
SYSTEMATIC POSITION OF MAN AND HIS LIVING RELATIVES BELONGING TO THE ORDER OF PRIMATES OF THE CLASS OF MAMMALS						
(After Sumpson)						
Suborder	Infraorder or Superfamily	Vernacular Name and Geographic Distribution				
Anthropoidea	Hommoidea	Family Hominidae Men (World wide) Family Pongidae Apes (Tropical Asia and Africa)				
	Cercopithecoidea	Old World Monkeys (Tropical Asia and Africa)				
	Ceboidea	New World Monkeys (Tropical America)				
Prosumn	(Tarsuformes	Tarsiers (Indonesia Philippines)				
	Lonsiformes	Loris and Galagos (Tropical Asia and Africa)				
	Daubentonioidea	Aye Aye (Madagascar)				
	Lemuroidea	Lemurs (Madagascar)				
	Tupatoides	Tree Shrews (Tropical Asia)				

Very few distinctive traits are common to all primates Most, though not all occur in tropical forests and are tree dwellers. The thumb. and usually also the great toe, are opposable to the other digits—an advantage for creatures that must climb and jump among tree navantage for creatures that must climb and jump among the branches Man, however, has lost the opposibility of the great toe which his ancestors possessed Most, though again not all, primates use their hands and feet for grasping and handling objects rather than for walking Man's ancestors lost the use of their feet for grisping as they attained their erect posture. The emancipation of the hands from walking duties made possible their use for delicate manual operations of which man alone is crypble. The teeth of primites are not specialized for just one kind of food, as the teeth are specialized in, for example, grazing animals, in rodents, or in carnivores Primate teeth deal successfully with diversified diets, both vegetable and animal In mammals the eves are placed usually on the two sides of the head, permitting a very broad field of vision (consider the position of the eyes, for example, in a rabbit or in a horse) In most primates both eyes are directed forward, as in man. This position facilitates hinocular vision and correct estimation of distances, which is vitally important in animals which dwell among branches of tall

Living Relatives of Man Man resembles the anthropoid spes (family Pongidse, Table 181) in body structure more than any other group of animals. This family comprises two species of gibbons, living in southeastern Asia, orangutan on the islands of Sumatra and Borneo, and chimpanzee and gorilla in equatorial Africa. Not only do the anthropoid spes share with man a relatively large size and many details of the structure of the brain and the skull, but they approach each other in posture, in position of internal organs, absence of a tail, and in many physiological traits, especially those dealing with reproduction (menstruation, the position of the fetus in the womb, etc.) The differences between the families Homundae and Pongidse are those which are expected between animals which wilk erect on the ground and animals which dwell among tree branches

About 140 species of New World monkeys and some 200 species of Old World monkeys have been named. The number of species is in reality only a fraction of the above numbers, because of the habit of some taxonomists of giving species names to races of the same species. Nevertheless, a considerable diversity of forms is involved. Monkeys vary in size from marmosets, which are about as small as squirrels, to baboons, which are of the size of large dogs. Some have long and

Figure 13 1 Representatives of prosumians and monkeys A squirel monkey, C tarsier D lemur E galago F, tree shrew (Not drawn after Athley Montagu and other sources)

Figure 13.2 Representatives of anthropoids A chimpanzee B orangutan, C, gorilla, D gibbon (Not drawn to exact scale)

powerful prehensile tails which act as a "third hand," but others (dwelling on the ground rather than in trees) are tailless

The primate suborder Proximit (Table 131) stands between the anthropoids on one side and the non primate mammals on the other Lemurs and lorises (Figure 18.1) vary in size from that of a eat down to that of a newborn kitten. In contrast to monkeys and ones, they have movable and usually large ears, and clongated snouts rather than flattened "faces" Their tails are usually long and bushy but not prehensile. Lemurs do not menstruate. True lemurs are a re liet grown which is now confined to the island of Madagascar in the Indian Ocean off Africa (see Figure 1212) Their fossil remains, however, occur over much of the Old World and North America currous creature called aye ave (Daubentonia) has remarkably large front treth which resemble those of mice and other rodents and has claws on all digits except the hig toes, which have flat male. The third finger of each hand is much longer than the others, the animal uses this long finger to extract insects, on which it feeds, from cracks in the bark and similar places

The spectral tarsier (Tarsius spectrum, Figure 131) is the only living representative of a group of primates which was much more common and widesprend in the past, to judge from fossil remains de scribed from Eccene strata of North America and Europe The structures of the face hips, and brain of the spectral tursier make this little animal (about the size of a two week old litten) a connecting link be tween the Prosimu on one side and the anthropoids on the other. And vet the tarsier shows several features which make him quite unique His eyes are relatively larger than in any other primate (it is an ex clusively nocturnal animal) and his hind legs are modified to enable him to make powerful mans among tree branches. The tarsioids of the past may have given rise to the lemuroid stock on one hand and to the anthropoid stock on the other. The spectral tursier is an aber rant and greatly modified relic of the primitive tarsioids known only as fossils. Wood Jones has even conjectured that the human stock arose directly from the tarsioids, rather than through monkey like and ane like ancestors. This conjecture is far-fetched, and it is mentioned only to emphasize the interest of the tarsioids as a group which may have been ancestral to other groups of primates

Even more remarkable than the tursioids are the tree shrews (Table 13 1 and Figure 13 1). These animals have a superficial resemblance to squarrels, both in size and in general aspect. But their body structures are such that some zoologists have placed them in the order of

insectivores (to which belong moles, ordinary shrews, and hedgehogs), but other zoologists have placed them among the primates. Now the insectivores are generally considered to be the most primitive order of living placental mammals (see Chapter 12), whereas the primates, to which we belong, are at or near the top. The tree shrews indicate, then, the probable origin of the ancestral primates from ancient insectivores. Tree shrews have claws instead of nails on their fingers and toes, which give to their feet a non-primate-like appearance, but their digits have a greater range of movements than those of mammals other than primates. Their brain is too small for a primate but too large for an insectivore, and it shows a considerable development of the part of the cortex concerned with the function of vision.

Fossil Non human Primates The fossil record of primates is unfortunately merger. As stated above, most primates dwell in tropical forests, an environment highly unfavorable for the preservation of the remains of hang creatures as fossils. Furthermore, whatever remains are found are usually fragments of bones and teeth. It is a difficult matter to get from such fragments an idea of what the whole animal might have been like. Because of this difficulty the disagreements between different authorities on fossil human and prehuman beings are often extreme and rather exasperating to non specialists. Nevertheless, so great is the interest in human evolution that the utmost efforts are expended to find fossil evidence, and whatever is discovered is studied in the minutest detail. It is not too optimistic to hope that much more satisfactory fossil evidence than is now available will be forthcoming before very long.

During the Pileocene and Eocene (see Tible 12.1), there existed several families of animals, about rat like or mouse-like in size, which had an unmistikable resemblance to modern tree shrews. During the Eocene, Europe and North America enjoyed tropical climates, and among their inhabitants were some tarsoids and lemurs. By the Oligocene and Miocene, the prosimians disappeared in Europe and North America, which became climatically unsuitable. Traces of them, however, have been found in the Miocene of eastern Africa, and in the Phocene abundant remains were preserved on the island of Madagascar, where living lemurs are found now.

The most ancient known ape is represented by a fragment of a mandible found in the lower Ohjoocene strata of Egypt to which the name Parapithecus has been given. In some respects this mandible resembles the tarsier, which agrees with the notion that the Anthropoidea arose from a tarsioid stock (Table 131). By the Miocene a

variety of ane like animals existed in Africa and in Asia. A number of fragmentary remains have been due up in Kenya (east central Africa), a small form, called Limnonitheous, may have resembled the aiblion (which now lives only in southeastern Asia) A larger one Proconsul discovered in 1948 by Leaker, may have been an ancestor or a relative of the living chimpanzee, but it had certain human fea tures which are absent in the chimpanzee A little later, by the mid dle ind upper Miocene, there lived in Africa, India and southwest Eurone (Spain) the fossil ares Dryonitheeus and Sivanitheeus. They show many similarities with the now living great apes (chimpanzee, gorilla, orangutan), and yet some characters of their teeth adum brate those known in fossil men. Fragments of a thigh bone and of an arm hone suggest that Dryopitheeus did not have the long and power ful limbs which the modern great ares have developed to enable them to live in the tropical forest trees. The human ancestors probably were not as strongly specialized tree du ellers as the modern ones are Discovery of complete remains of Dryonitheens must be awaited before we can judge whether this animal can be regarded as one of the ancestore of man

Man Apes of South Africa It is clear that a large scale adaptive radiation of anthropoid primites took place during the Tertiary period, particularly in Africa Some of the most interesting products of that radiation lived in the southern part of that continent. Exception ally abundant, if fragmentary, relies of the animals concerned, coming from at least 65 individuals have been discovered in recent years by Dart, Broom, Robinson and their collaborators. Counting isolated teeth, the remains may belong to over 100 individuals. The rate of discovery has been so high that unprecedentedly abundant material on fossil man may soon be accumulated. Those fossils have been described under several generic names (Australopithecus Plesianthropus, Paranthropus etc.), although it is most probable that the animals of which these fossils are fragmentary remains belonged to only one or two closely related species of the same genus. Australopithecus

No agreement has been reached concerning the position of Australo pithecus among the primates. Some authorities regard it as a peculiar ape which had nothing to do with human descent. Others and probably a majority, put it in a special subfamily, Australopithecinae, which has no living representatives, but in which the characteristics of the human family (Hominidae) and of the ape family (Pongidae) are blended in such a way that it is arbitrary to say whether the Australomthecinae are to be considered apes or hominoids.

Evolutionists of the past, and especially popular writers, frequently spoke of a 'missing link' between apes and man, the discovery of which was eagerly awaited. One school of thought among those who study fossil human remains believes that Australopitheeinae come close to having the skeletal structure which such a link might be expected to have had. The skull of Australopitheeus resembled in ap

Figure 13.3 A fossil skull of an australopithecine (Plesianthropus transvaalensis) from South Africa (After Ashley Montagu)

pearance (Figure 133) an ape such as a chimpanzee or a gorilla, the volume of its brain is estimated as about 600 cubic centimeters, which is only about half as large as that of man. The forehead, however, was more rounded and consequently more human like than that of the living apes. The form of the palate and the teeth are more human than ape like. In addition, the structure of the part of the skull which is attached to the spinal column shows that Australopitheous had a standing body posture approaching that of man rather than of an ape. This is borne out by the structure of its pelvic bone.

Since some of the Australopithecus skulls are found in caves, together with remains of crushed bones of other animals and of cracked variety of ane like animals existed in Africa and in Asia. A number of fragmentary remains have been dur up in Kenya (east central Africa), a small form, called Limnonitheous, may have recombled the gibbon (which now lives only in southeastern Asia). A larger one. Proconsul, discovered in 1948 by Lealey, may have been an ancestor or a relative of the living chimpanzee, but it had certain human fea tures which are absent in the chimpanaic. A little later, he the mid dle and upper Miocene, there lived in Africa, India, and southwest Eu rope (Spain) the fossil ones Dramitheeus and Spanitheeus show many similarities with the now having great ares (chimpanzee, gorilly, orangutan), and yet some characters of their teeth adum brate those known in fossil men. Fragments of a thigh hone and of an arm bone suggest that Dryonthicus did not have the long and nowerful limbs which the modern great ares have developed to enable them to live in the tropical forest trees. The human ancestors probably were not as strongly specialized tree dwellers as the modern ones are Discovery of complete remains of Dryopitheeus must be awaited be fore we can judge whether this animal can be recarded as one of the ancestors of man

Man Apes of South Africa. It is clear that a large-scale adaptive radiation of anthropoid primates took place during the Tertical period, particularly in Africa. Some of the most interesting products of that radiation lived in the southern part of that continent. Exception ally abundant, if fragmentary, relies of the animals concerned, coming from at least 65 individuals have been discovered in recent years by Dart, Broom Robinson, and their collaborators. Counting isolated teeth the remains may belong to over 100 individuals. The rate of discovery has been so high that unprecedentedly abundant material on fossil man may soon be accumulated. Those fossils have been described under several generic names (Australopitheous Plesianthropus Paranthropus etc.), although it is most probable that the animals of which these fossils are fragmentary remains belonged to only one or two closely related species of the same genus. Australopitheous

No agreement has been reached concerning the position of Australo patheous among the primities. Some authorities regard it as a peculiar ape which had nothing to do with human descent. Others, and probably a majority put it in a special subfamily, Australopitheemae which has no hving representatives, but in which the characteristics of the human family (Hominidae) and of the ape family (Pongidae) are blended in such a way that it is arbitrary to say whether the Australomitheemae are to be considered apes or hominioids.

and lips must have projected forward beyond the level of the nose and the rest of the face The limb bones, however, are very similar to those of modern mun, making it certain that Homo erectus walked

Figure 13.4 Hypothetical restorations of fossil human and pre-human forms (From Colbert)

erect as we do

Primitive stone tools have been found near the remains of Peking Man, he lived in caves and rock shelters, used fire and was a hunter who pursued and killed deer. There is even a suspicion that he had already discovered the gentle art of cannibalism since the remains of his skulls are broken in a fashion suggesting extraction of the brain.

shells. Dart and others conclude that Australopathecus was "an am mal hunting, flesh cating, shell cracking and hope breaking ane." Cer tainly no living one subsists on such a diet. The possibility that Aus tralonithecing were ancestors of mankind as seriously considered by some authorities. For the time being this is only a possibility. Most unfortunately, the geological conditions in which the Australomithe cinac fossils were found make precise determination of their age doubtful. They may extend in time from as early as the Unper Plancone to as late as the Middle Pleistocene, in other words, they may be appreciably older or appreciably sounger than one million years If they lived well into the Pleistocene it would follow that they were contemporaries, rather than ancestors of carly man. Robinson beheves that Australonitheous in fact coexisted with man

Java and Peking Men Early hominoids which possessed enough intelligence to fashion and use stone tools and yet had some unmistakably and like features lived during the Pleistocene (Ice) Age in Asia In 1891 the Dutch anthropologist Dubois found the first remains, a skull can and a thigh hone of Java Man, whom he called Pithecanthropus erectus (ane man walking erect) In 1936 and later, von Konigswald and others found in the central part of the island of Java the remains of two more Java men Between 1929 and 1940, Black and Weidenreich found in cases near Peking China, the remains of perhaps as many as forty individuals of Peking Man, which became known as Sinenthropus pekinensis. These Latin names, however, are misleading, since we are dealing undoubtedly not with distinct genera and species but merely with races of a single species of man A better terminology is (according to Mavr)

Homo erectus erectus = Java Man = Pithecanthropus

Homo erectus pekinensis = Peking Man = Smanthropus pekinensis Java Man hved during the Pleistocene age (first Interglacial to second Interglacial times), perhaps some half million or more years ago (Figure 134) He was rather undersized by modern standards (average height estimated at about 5 feet), and the brain size varied, m the known skulls from 750 to 900 cubic centimeters, compared to 900 to 1200 cubic centimeters in Peking Man and an average of about 1350 cubic centimeters in modern man The skull bones are consist ently thicker than in modern skulls, the foreheads slope gradually backwards from very prominent eyebrow ridges which are continuous above the root of the nose The lower raws are large and powerful. with large teeth and without a chin This must have made the face of Homo erectus markedly prognathous that is, the mindible, front teeth

Interglicial ages, and therefore we are giving in Tible 13.2 what is known as 'relative' chronology of various findings of fossil man, rather than absolute 'chronology (in years)

In any case, during the Third Interglicial and the Fourth Glacial ages, Europe, western Asia, and north Africa were inhibited by a very distinctive Neanderthal race of man (Homo sapiens neanderthalensis), of which the remains of close to 100 individuals in varying degrees of preservation have been found in places ranging from the Atlantic coast of Europe to Asia (France, Gibraltar, Italy, Germany, Yugoslavia, southern Russia, Turkestan, Palestine)

The Neanderthalrans (Figure 134) were of short stature, about 5 feet, but of exceedingly rugged build. They had a stooping posture, powerful neck muscles, and massive heads with surprisingly large brains—1450 cubic centimeters on the average, that is, is large as or larger than in modern man. The bones of the skull were thick, the brow ridges were large, although not as prominent as in Javi Man. The forehead was retreating and the braincase flattened. The lower jaw was heavy, without a chin, but with rather large teeth, and with attachments for strong muscles which operated the jaws.

The Neanderth 1 race attained a relatively high cultural level. All though the stone tools which they used were primitive, belonging to the Old Stone Age types the Neanderthalians had a social organization which enabled them to hunt large and powerful game such is mammoths and the woolly rhinoceros which at that time inhibited Europe. There are evidences of religious activities, since their bones are found under conditions suggesting ceremonial burial. In a Neanderthalian cave in Switzerland an altar has been found on which a bear skull was placed.

Emergence of Modern Man Some 75,000 years 190, while Europe was in the grip of the last Ice Age, the Mousterian culture of Neinder thal man was replaced by the Aurignaviru culture, and the Neander thalini inhabitants by another race, which, to judge from its bones was like the modern mun—Homo sapiens sapiens. The Aurignavian stone tools are more expertly made than the Mousterian ones, the makers, named Cro Mignons from the cave in which the first remuns were discovered were fine physical specimens up to 6 feet tall and with brains up to 1650 cubic contimeters in volume (Figure 134). There is of course no way to tell what they were like in such external truts as skin color and hair shape. Some of the remains in southern Europe yield measurements which can be matched in the skeletons of certain living Negro populations in Africa, but it does not follow

Neanderthal Men Europe and North America offered some very harsh environments during the Pleistocene Age Four times enormous ice sheets covered large parts of these continents, making climatic conditions perhaps not unlike those now found in Greenland The four Ice Ages were separated by warmer interglacial times (Table 132) We are living during what may prove to be the Fourth Inter-

TABLE, 18.2

RELATIVE CHRONOLOGY OF HUMAN PHYSICAL AND CULTURAL EVOLUTION DURING THE TOP AGE

	IIII ICI IGI			
(After Vallois and Movius Oakley Le Gros Clark and other sources)				
Time	Fossil Human Races and Species	Cultures (m Europe)		
Modern	Races of sapiens	Historic Neolithic (New Stone Age) Mesolithic (Middle		
Fourth Glacial (Würm)	Cro-Magnon and relatives	Stone Age) Magdalenian Solutrean Aurignacian Perigordian		
Third Interglacial	Neanderthal Mount Carmel Neanderthal	Mousterian		
	Fontechevade Ehringsdorf	Levalloisian		
Third Glacial (Riss)	Steinheim Peking Man(2)	Acheulian Clactonian		
Second Interglacial	Swanscombe Peking Man			

Second Glacial (Mindel)
Peking Man(?)
Java Man
Prest Intervious Java Man
Prest Intervious Java Man
Prest Intervious Java Man
Prest Man
P

| Tirst Interglacial | Java Man Australopitheeus(?) | Tirst Glacial (Gunz) | Australooutheeus(?) | Villafranchian

glacial Age Concerning the duration of the Pleistocene Age and of its glacial and interglacial stages, specialists are not in agreement One school (Milankovitch and Zeuner) thought that the Pleistocene might have been about 600,000 years long, and that the Fourth (Wurm) glaciation lasted from about 125,000 to about 20,000 years ago Now it seems more probable (according to Movius, Flint, and others) that the Pleistocene was perhaps one million years long. There are as yet no definitive estimates of the dates of the various Glacial and

Interglacial ages, and therefore we are giving in Table 13.2 what is known as 'relative chronology of various findings of fossil man, rather than absolute" chronology (in years)

In any case, during the Third Interglacial and the Fourth Glacial ages, Europe, western Asia, and north Africa were inhabited by a very distinctive Neunderthal race of man (Homo samens neanderthalensis), of which the remains of close to 100 individuals in varying degrees of preservation have been found in places ranging from the Atlantic coast of Europe to Asia (France, Gibraltar, Italy, Germany, Yugoslavia, southern Russia, Turkestan, Palestine)

The Neanderthalians (Figure 134) were of short stature, about 5 feet, but of exceedingly rugged build. They had a stooping posture, powerful neck muscles, and massive heads with surprisingly large bruns-1450 cubic centimeters on the average that is, as large as or larger than in modern man. The bones of the skull were thick, the brow ridges were large, although not as prominent as in Java Man The forehead was retreating, and the bruncase flattened The lower Jaw was heavy, without a chin, but with rather large teeth, and with

attachments for strong muscles which operated the pass

The Neanderthal race attained a relatively high cultural level Although the stone tools which they used were primitive, belonging to the Old Stone Age types, the Neanderthalians had a social organization which enabled them to hunt large and powerful game such as mammoths and the woolly rhinoceros which at that time inhabited Europe There are evidences of religious activities since their bones are found under conditions suggesting ceremonal burn! In a Nean derthalian cave in Switzerland an altar has been found on which a bear skull was placed

Emergence of Modern Man Some 75,000 years ago, while Europe was in the grip of the last Ice Age, the Mousterian culture of Neander that man was replaced by the Aurignacian culture, and the Neanderthalian inhabitants by another race, which, to judge from its bones was like the modern man-Homo sapiens sapiens. The Aurignacian stone tools are more expertly made than the Mousterran ones the makers, named Cro Magnons from the cave in which the first remains were discovered, were fine physical specimens up to 6 feet tall and with bruns up to 1650 cubic centimeters in volume (Figure 134) There is of course no way to tell what they were like in such external traits as skin color and hur shape Some of the remains in southern Europe yield measurements which can be matched in the skeletons of certain living Negro populations in Africa, but it does not follow

known as 'relative' chronology of various findings of fossil man, rather Interglacial ages, and therefore we are giving in Table 132 what is

than absolute' chronology (in years)

slavin southern Russia Turkestan, Palestine) coust of Europe to Asia (France, Cibraltar, Italy, Germany, Yugopreservation have been found in places ranging from the Atlantic of which the remains of close to 100 individuals in varying degrees of distinctive Neanderthal race of man (Homo suprens neanderthalensis), ages, Europe, western Asia, and north Africa were inhabited by a very In any case, during the Third Interglacial and the Fourth Clucial

attachments for strong muscles which operated the laws law was heavy, without a chin, but with rather linge teeth, and with The forehead was retreating, and the braincase flattened. The lower brow ridges were large, although not as prominent is in Java Min larger than in modern man. The bones of the shull were thick, the brains-1450 cubic centimeters on the average, that is, as large as or powerful neck muscles, and massive heads with surprisingly large feet, but of exceedingly rugged build. They had a stooping posture, The Meanderthalians (Figure 134) were of short strutte, about 5

from which enabled them to hunt large and powerful game such as the Old Stone Age types, the Neanderthalians had a social organiza though the stone tools which they used were primitive, belonging to The Neanderthal race attained a relatively lugh cultural level. Al

pear synji was placed derthalian cave in Switzerland an alt'it has been found on which a are found under conditions suggesting ceremonial burn! In a Mean There are evidences of religious activities, since their bones mammoths and the nootly rhinoceros which at that time inhabited

or certain living Negro populations in Africa, but it does not follow grande hield measurements which can be matched in the skeletons traits as skin color and hair shape. Some of the remains in southern there is, of course, no way to tell what they were like in such external with brains up to 1650 cubic centimeters in volume (Figure 134) were discovered, were fine physical specimens, up to 6 feet tall and makers, named Cro Magnons from the cave in which the first remains stone tools are more expertly made than the Mousterian ones, the was the the modern man-Homo supiens supiens. The Autignacian thalian inhabitants by another race, which, to judge from its bones thal man was replaced by the Aurignacian culture, and the Meanderwas in the grip of the last Ice Age, the Mousterian culture of Meander-Emergence of Modern Man Some 75,000 years 1go, while Europe

Wenderthal Men Europe and North America oliered some very harsh environments during the Pleascoene Age Four times enormous ice sheets covered large, parts of these continents, mahing elimant conditions perhaps not unble those now found in Greenland The four Ice Ages were separated by warmer interglacial times (Table to Mes were separated by warmer interglacial times (Table 1923) We are living during what may prove to be the Fourth Inter-

TIBLE 13 2

Relative Chrosology of Humas Physical and Cultural Esolution during

Villatranchian	pithecus(?) Australopithecus(?)	First Glacial (Gunz)			
Abbevillian	Java Man, Australo- Java Man, Australo-	Inst Interglacial			
Сівстопіви Арреуліцан	Java Man Peking Man(9)	Second Glacial (Mindel)			
	Peking Man(?) Swaiiscombe Peking Man	Second Interglacial			
Acheulian Clactonian	Ehringsdorf Steinheim Pelung Man(2)	Third Glacial (Riss)			
Ley allowan	Veanderthal Fontechevade	Interglatini buill'			
Solutrean Типурасная Репустава Монятеглай	Neanderthal Mount Carmel				
Age.) Mesoluthic (Middle Stone Age) Magdaleman	Cro-Magnon and relatives	Fourth Glacial (Hurm)			
Historic Acolithic (New Stone	Races of saprena	птэроМ			
Cultures (m Europe)	Fossil Human Races and Species	Дине			
(Met Vallors and Morns Oables, Le Gros Clark and other sources)					

glacial Age Concerning the duration of the Pleatoceate Age and of the glacial and interglacial stage, specialists are not in agreement for echool (Milanboutch and Zenner) thought that the Pleatocene might have been about 600,000 years long, and that the Fourth and the fourth glaciation lasted from about 125,000 to about 20,000 years of the Milanbout 20,000 years of the fourth age Now it seems more probable (according to Movins, Fluit, and others) that the Pleatocene was pertraps one million years long. There others that the Pleatocene was pertraps one million years long. There are as yet no definitive estimates of the dates of the various Clacial and size as yet no definitive estimates of the dates of the various Clacial and are as yet no definitive estimates of the dates of the various Clacial and

known as 'relative" chronology of various findings of fossil man, rather Interglacial ages, and therefore we are giving in Table 13 2 what is

than "absolute chronology (in years)

slivia, southern Russia, Turkestan, Palestine) corst of Europe to Asia (France, Cibralt u, Italy, Cermany, Yugopreservation have been found in places ranging from the Atlantic of which the remains of close to 100 individuals in varying degrees of distinctive Neanderthal race of man (Homo sapiens neanderthalensis), ages, Europe, western Asia, and north Africa were inhabited by a very In any case, during the Third Interglacial and the Fourth Clicial

law was heavy, without a chin, but with rather large teeth, and with The forehead was retreating and the braincase firstened. The lower brow ridges were large, although not as prominent is in Java Min larger than in modern man. The bones of the skull were thick, the brains-1450 cubic centimeters on the average that is, as large as or powerful neck muscles, and massive heads with surprisingly large feet, but of exceedingly rugged build. They had a stooping posture, The Neanderthalians (Figure 134) were of short stature, ibout 5

pear skull was placed derthrhan cave in Switzerland an ritar has been found on which a are found under conditions suggesting ceremonal burial In a Nean-Europe There are evidences of religious activities, since their bones mammoths and the woolly thunoceros which at that time inhabited tion which enabled them to hunt large and powerful game such as the Old Stone Age types the Neanderthalians had a social organizathough the stone tools which they used were primitive, belonging to The Neanderthal race attained a relatively high cultural level. Al attachments for strong muscles which operated the laws

of certain living Negro populations in Africa, but it does not follow Europe yield measurements which can be matched in the skeletons trute as sein color and hair shape. Some of the remains in southern There is, of course, no way to tell what they were like in such external with brains up to 1650 cubic centimeters in volume (Figure 134) were discovered, were fine physical specimens up to 6 feet tall and makers named Cro Magnons from the cave in which the first remains stone tools are more expertly made than the Mousterran ones, the was like the modern man-Homo sapiens sapiens. The Aurignacian thalian inhabitants by another race which, to judge from its bones that man was replaced by the Aurignacian culture and the Neanderwas in the grip of the last Ice Age, the Mousterian culture of Meander-Emergence of Modern Man Some 75,000 years ago, while Europe

Weanderthal Men Europe and Morth America offered some very harsh conviounments during the Fletsbocke Age Four times knownous conditions porthags not unitse thouse now found in Greenfand The four Ice Ages were separated by warmer interglacial innes (Table four Ice Ages were separated by warmer interglacial innes (Table 2) We are hiving what may prove to be the Fourth Inter-

TABLE 132

He latte Chrologor of Houal Prescalas Culterae Elocottol duning the Latte Chrologor of Houal Prescalas

Villatranchian	prinecus(?) Instratopripecus(?)	First Glacial (Gunz)			
Abbevillian	dava Man, Australo-	landlanding ferrel			
Clactonian, Abbevilhan	Refing Man (?) Para Man Refing Man (?)	Second Glacial (Mindel)			
	Snanscombe	Second Interglacial			
Acheulian, Clactonian	Ehringsdorf Stemheim	Thurd Glacial (Risa)			
passollars.I	Mount Carmel Reanderthal Funtecherade	Third Interglacial			
Модения Водинения Модения	Neanderthal				
	Cro-Magnon and relatives	Fourth Glacial (Wirm)			
Jinoleill	Races of sapiens	Modern			
Cultures (in Europe)	Fossil Human Races and Species	1 me			
(After Valious and Movius, Onkley, Le Gros Clark, and other sources)					

glacent Age Concerning the duration of the Pleatocone Age and of the glacent and concerning the duration of the Pleatocene are glacent and Electronic and integration and Acuner; thought that the Pleatocene might have been about 600,000 years long, and that the Fourth ways the condition of the court of the court of the condition of

that these early Europeans were Negroes in appearance or, even less, in culture Anyway, from the Aurignacian Pengordian times on, Europe and probably the rest of the world as well, was inhabited by Homo sapiens sapiens

Where did modern man come from? Where did he first arise? The problem is very complex, speculation concerning it rife, and no con vincing solution is yet in sight. Some students have conjectured that modern man developed in Africa, others that he came to Europe from Asia and destroyed the Neanderthalian natives. According to some authorities. Europe had some human inhabitants who resembled mod ern men during the second interglacial period (350,000 or more years ago), before the appearance of the Neanderthalians Very few re mains of this hypothetical race have been found, and those which have come to light are fragments not easily interpretable. The skull fragments found at Fontechevade in France, at Swanscombe in England and at Steinheim and at Ehringsdorf in Germany may have been rather samens like, despite their great age. It looks as though there lived in Europe during the middle of the Ice Age a race rather like ourselves and vet not uncestral to us Some experts, in a kind of desperation, regarded all fossil hominoids, except the Cro Magnons and more recent races, as collateral branches of the human family tree, which became extinct without contributing to the direct ancestry of modern This makes the origin of modern man more puzzling than ever

Light is shed on this problem by the work of McCown and Keith (1939), who studied a fine series of human remains found in the cives of Mount Carmel in Palestine. These people lived at about the same time that Europe was inhabited by the Neunderthalans. But the dwellers of Mount Carmel range in physical type all the way from indubitable Neanderthalans to more sapiens like individuals. The most reasonable explanation of this is that Palestine formed, at that age (probably the third Interglacial), the geographic boundary between the Neanderthal race (Homo sapiens neanderthalensis), which lived to the northwest, in Europe, and a more nearly modern race (Homo sapiens sapiens) which lived perhaps farther southward, in Africa. The inhabitants of Palestine were, then, either hybrids between the two races, or else they were an intermediate population of a kind usually found at race boundaries (see Chapter 7).

In either case one thing that is certain is that the Neanderthalians belonged to the same species as ours. The replacement of the Nean derthalians by the Cro Magnons in Europe may have occurred partly by destruction and partly by hybridization with the incoming race,

which possessed a superior technology Coon and other anthropologists are probably right that some modern European populations show persistence of genes derived from the Neanderthalians. In like fashion, within the last few centuries the white race has displaced the red skinned men in the Americas and the blackfellows in Australia it is possible that the Neunderthalians themselves had, at a much earlier time, displaced the Swinscombe and similar populations which had inhabited Europe before them

The cultural development of the Cro-Magnons and other related races who soon appeared in Europe was superior to that of the Nean-derthalians, which might explain the rapid replacement of the latter by the former. The Cro-Magnons and their relatives fashioned more efficient stone tools, they probably knew the use of the bow and of harpoons. Most remarkable of all, they have left superb drawings of animals on the walls of the caves which they inhabited (Figure 1.1). The artistic feeling which these drawings display is admired even by modern man.

Specific Unity of Mankind It is important to keep in mind that new species do not arise in any single place but in large territories (except polyploid species, see Chapter 9) A species is a Mendelian population which lives in a more or less extensive area and which gradually alters its genetic composition. Students of fossil man have a habit of giving resounding Latin specific and generic names to almost every bone froment which they discover, which conveys the mis tiken impression that there existed in the past many different man like species and genera Weidenreich however, has pointed out that when the remains of human or prehuman forms which lived more or less simultaneously are compared the differences between them are only of the order of those found between the now living human races (see There is no fossil evidence of the existence at any one time of more than a single human or human like species, except, possibly, in the case of the Australopithecinae (see above) Minkind preserved its specific unity throughout its evolutionary development during the Pleistocene times, although it always was, as it still is, subdivided into races Human evolution never led to differentiation of a single species into a group of derived species, some of which might have become lost and others survived Mankind was and is a species which evolves as a body

Any living species, race, or population tends to expand in numbers as soon as it encounters favorable environment. In doing so a population often overflows into neighboring territories occupied by other

populations, and the immigrants usually intermirry with the natives If the genotype of the immigrants is adaptively superior to that of the nitives, the population resulting from the mixture comes to resemble the former immigrants. Our species, Homo sapiens, evolved from its ancestors, Homo creatus, and perhaps other species as yet undiscovered, in an extensive territory, comprising perhaps most of the Old World. Evolutionary improvements, that is new and adaptively superior genotypes, arose from time to time in various parts of this territory. The populations in which these improvements arose expanded and transmitted their advantages to more widespread populations. Where two genetic improvements met, new populations of still superior adaptedness were formed, and expanded in turn

To ask where Homo sapiens first appeared is therefore meaningless Races and local populations are evolutionary trial parties which explore the various possibilities of adaptation. The gene pool of the now living mankind contains genetic elements which were present in

many and perhaps in all major populations of the past

Development of the Brain as the Moving Force of Human Evolu tion However incomplete our knowledge of human ancestry, there is scarcely any doubt that the development of brain power, of intelligence, was the decisive force in the evolutionary process which culminated in the appearance of the species to which we belong Natural selection has brought about the evolutionary trend towards increasing brain power because brain power confers enormous adaptive advan tages on its possessors. It is obviously brain power, not body power, which makes man by far the most successful biological species which living matter has produced. The unprecedented and unparalleled success of man as a species has led to an increase in the numbers of living individuals from perhaps some hundreds of thousands during the Ice Age to about two and a half billion at present. Man has spread and occupied all continents and major islands except, perhaps the interior of Antarctica He has destroyed or reduced to insignifi cance other organisms which were his competitors, or which preyed on him as predators or parasites. He has domesticated many animal and plant species, made them serve his needs and changed them genetically to improve their serviceability to him Finally, man is in the process of the acquisition of knowledge which may permit him to control his own future evolution

The human skeleton and particularly the skull, underwent many changes during the evolutionary transition from ape-like ancestors (such as the Australopithecinae) to modern man. At first sight some

of these changes, such as those in the shape of the skull, the presence of brow ridges, or in the presence or absence of a chin, may appear fortuitous and without meaning. Actually, careful comparative analysis of these truts in different races and species shows that most of them are part and parcel of the basic trend—the development of the brain. To quote Weidenreich. One of the most impressive experiences a student of human evolution can have is to realize the extent to which all the smaller structural alterations of the human skull are correlated with and depend upon each other, and the extent to which they are governed by the trend of the skull transformation as a whole."

Examples shown in Figures 13.5 and 13.6 illustrate what is meant by such correlations. The brain of an Irish wolfhound, a large dog breed. is only about twice as heavy as that in the King Charles spaniel, the weight of the body, however, is about ten times greater in the large than in the small dog. In other words, a small dog has a relatively much larger brain than a large one The relatively large brain can be accommodated in the small skull only by reducing the parts other than the brun cavity According to Weidenreich, transitions between the gorilla skull, that of Java Man, and that of modern man entail changes strikingly parallel to those found in large and small dogs Of course man is not strikingly smaller than the gorilla in body size, but his brain is both absolutely and relatively larger. A greater size of the brain does not necessarily prove a higher intelligence. Among living men the brain size varies greatly and there is no strict relation between its size and intellectual capacity. Among the great writers the brains of Jonathan Swift and of Ivan Turgenev measured about 2000 cubic centimeters each, while that of Anatole France was only 1100 cubic centimeters in volume This does not contradict the fact that groups of animals with larger brains show a higher intelligence on the average

The trend towards increasing brain size has played an important role in the evolution not of man alone but of the whole primate order. The sequence of forms beginning with the tree shiews and going to other prosimians monkeys, apes, and man, is characterized above all by a growth of the brain and of intelligence. There have been other evolutionary trends among the primates interacting with the brain development. Washburn (1951) regards the achievement of erect posture and of efficient bipedal locomotion a critically important stage of human evolution. To be able to walk and to run on the ground, instead of climbing on tree branches, our ancestors had to modify their

Figure 13.5 Skulls of various primates A Notharctus a fossil lemuroid B Tetonius, a fossil tarsioid C Mesopithecus a fossil Old World monkey D chimpanzee E Australopithecus F Java man G Neanderthal man H Cro Magnon man (From Colbert)

pelvis bones and the musculature attached thereto, as well as their thigh, leg, and foot bones and muscles

The use of the arms for handling objects rather than for walking was stimulated by the developing brain, and has in turn stimulated further progress in intelligence. Living in the crowns of tropical

Figure 136 On the left Compruson of skulls of large (A) medium sized (B) and small (C) breeds of dogs On the right Skulls of male gorilla (A) Java man (B) and modern mrn (C) The brain cavities are shown shaded. The three dogs skulls are drawn to the same scale and so are the three anthropoid skulls (From Weidenwerch courtes) of the Umersity of Chicago Press)

forest trees has made the primates rely more on good vision, rather than on the sense of smell which is paramount in most other mambian orders, and to rely on speed, agility, and cunning, rather than on concealment, for protection against their enemies. This condition not only led to changes in the skull, making the eyes look forward instead of Interally, but also necessitated the development of the parts of the brain concerned with vision. Although the ancestors of man at some time abandoned the trees and the tropical forests and became animals walking on the ground and living in more and and treeless terrain, they have kept their good vision and turned it to other uses, such as fashioning of tools.

The Humanity of Man It is hard to tell at what point in the evolution of the hominoid stock the prehiman animal became a human being. To some extent this is a matter of definition of whit constitutes a "human being. According to Le Gros Clark (1953) the segregation of the family Homindae (including Australopithecinae) from the ape family (Pongidae) occurred in the Miocene ten or more million years ago. The most ancient and primitive tools (coliths) appear at the transition from the Phocene to the Pleistocene periods in Europe. However, the coliths are so much like ordinary stones that their nature is a matter of controversy. Unmistakable stone artifacts date from early to middle Pleistocene, perhaps close to a million years ago, and more than 100,000 years ago expertly made tools were available.

Man is not simply a very clever age, but a possessor of mental abili ties which occur in other animals only in most rudimentary forms, if at all Many animals utter sounds as warning signals or as manifesta tion of emotions. A dog may bark howl, growl, and whine in many different ways, the meaning of which may be comprehensible to his master and to other does and human beings. But only man uses words to express concepts or to designate entegones of objects or nets. A word, after all, is a noise which the human larvax and mouth are able to produce. But to become a word this noise must be invested with a conventional meaning. Thus the sounds of the word "table" are in no way descriptive of the object they denote, they become so by virtue of a certain group of people having learned to associate them with definite objects Furthermore, the use of sounds for objects in volves abstract thinking "table" means not only an individual piece of furniture but many and diversified pieces having certain properties in common

Cultural Heredity Mnn has developed cultural heredity or culture. There are several definitions of culture. One of them is "The total life way of a people, the social legacy the individual acquires from his group. Or culture can be regarded as that part of the environment that is the creation of man" (Kluckholin). The essential thing about culture is that it has to be acquired by each individual by learning from others, it is not transmitted from parents to offspring through the sex cells as is biological heredity. For example, nobody is born able to speak, read, and write any language. Children have to be taught speaking, reading and writing.

And yet human infants are born able to perform the complex senes of muscular movements needed to obtain milk from their mothers

breasts This is a biologically inherited behavior pattern, an instinct Many animals have wonderfully complex and efficient behavior patterns of courtship, copulation, and care of offspring. These behavior putterns need not be learned. They are set by the genes. Of course cultural and biological heredity are not isolated from each other, they constantly interact. For example, although we have to learn reading and writing the ability to learn is genotypic. The human sexual drive, though instinctive at base, is overlaid with so great a mass of culturally acquired conditionings and elaborations that it is chiefly non genetic in its manifestations.

Culture is acquired, and like all acquired traits it is not transmitted through genes in the sex cells. This may at first glance seem to diminish the adaptive effectiveness of culture. In reality the opposite is true culture is a powerful means for controlling human environments exactly because it is not biologically inherited. We inherit our genes only from parents and other direct ancestors. We transmit them only to children and to direct descendants. There is no way to transmit our genes to even the most dearly beloved friends. The biological heredity of populations can be changed only by the relatively slow process of breeding and selection. By contrast culture can be transmitted to any number of contemporaneous individuals or to future generations, regardless of biological descent or relationships The founders of great religions, scientists, inventors, poets, philosophers and men of action have influenced the cultural heredity of munkind for many generations and perhaps forever Cultural evolution is vastly more rapid and efficient than biological evolution (see further discussion of this in Chapter 14)

Because of the great efficiency of the transmission of culture, man has been able to master an immense variety of environments. Organisms other than man become adapted to their environments by changing their bodies and their genes by the relatively inefficient process of natural selection. Man alone adapts himself, in a large part, by actively or even deliberately changing the environment, and by inventing and creating new environments.

He uses his immense powers to modify the environment not always wisely, but on a scale so grand that he has become an important not only biological but also geological agent. He has plowed up the soil and changed it by destruction of forests and other vegetation. The adaptive advantage of the ability to acquire even the most rudimentary forms of culture must have been so great in the early stages of human evolution that natural selection rapidly propagated the geno

types which permitted the acquisition of culture throughout the human species. The gene controlled capacity to learn, absorb, and use new techniques and tools was, then, developed, intensified, and diffused by means of biological evolution, making our species more and more human.

Rudiments of Cultural Transmission among Animals Human intellectual abilities seem to be not only quantitatively but also qualitatively different from those of animals other than men. It is important, therefore, to demonstrate that rudiments of these specifically human abilities can be found in certain animals. Natural selection found in the ancestors of our species the raw materials from which the present genetic endowment of mankind was compounded.

It can easily be observed that, at least among mammals and birds the offspring acquire certain behavior patterns by initiation and learning from their parents. Wolves and eats instruct their young in hunting techniques. But all this does not necessarily result in the formation of learned tradition comparable to human culture. In animals, the individuals of one generation transmit to those of the next what they themselves learned from their parents—not more and not less Every generation learns the same thing which its parents have learned in only very few instances the evidence is conclusive that the learned behavior can be modified or added to, and that the modifications and additions are transmitted to subsequent generations.

Promptov, Sick, and others found that some details of the song of some birds vary in different local races, and that young birds learn them by imitating their parents and other birds in the neighborhood (The ability to produce certain notes is, of course, a genetic trait of each bird species, just as the ability to learn to read is a genetic trait of the human species). Three populations of the chaffinch, near Stuttgart, Germany, each live in a definite neighborhood, and differ in the calls which males utter in their breeding territories. One of these populations is confined to a certain large park, which is known to be about 300 years old. It is probable that the special "dalect" of the chaffinches in this part has evolved within this period of time

A spectacular instance of development of a "custom" has been ob served in the kea parrot (Nestor notabilis) in New Zealand. At some time late in the last century the kea started to attrick and kill sheep and rapidly became a serious pest and an economic problem. Until the arrival of the white man, New Zealand had no sheep and no animals of similar size and character, the sheep killing is a new libit which has spread among the kea parrots by imitation and learning

According to Luck, the finch Camarhynchus pallidus on the Galapagos Islands uses a cactus spine which it carries in its beak to poke into crevices of tree bark to get at insects on which it feeds. This animal is, then, using a primitive 'tool', it would be interesting to ascertain whether this tool using habit is acquired by young birds by a process of learning and whether it can be modified.

Brilliant experiments of von Frisch have shown that honey bees have a 'language which, as recently pointed out by the anthropologist Kroeber, involves the use of some genuine symbols, which otherwise are known for sure only in man. A bee which has located a source of food returns to the hive and performs a special "dirace, which imports to the hive mates information concerning the direction from the hive where the food is to be had. The movements of which the dance is composed indicate the direction in a purely symbolic fashion.

Insect Societies Allee (1951) and Ashley Montagu (1950) main that all animals are social to some extent. Indeed, even the relationships between the sexes and between parents and offspring involve some cooperation (protocooperation according to Allee) and social behavior. Some animals however live in complex and highly organized societies. Most monkeys and apes are social animals, they live in bands or herds, warn each other of approaching danger, announce the finding of food, etc. It is probable that the development of cooperation in the social life of prehuman primates was quite important in the origin of human mental abilities.

Apart from man, the most highly organized societies occur not among mammals or birds but among insects-wasps, bees, and especirilly ants and termites The study of the social life of these insects has yielded some of the most fascinating stories which biology has to offer Ants and termites live in colonies which may consist of many thousands of individuals A colony builds a nest, often of elaborate and species-specific architecture. Food is collected and stored in special chambers Larvae and different classes of adults may be provided with different diet Some species of ants engage in "agriculture" -the) collect pieces of leaves, store them in their nests seed them with spores of special fungi harvest the fungus growth when it reaches a certum degree of maturity, and use it for food. Ants and termites often have in their nests other kinds of insects or other animals which stand to their hosts in a relation analogous to that of domesticated mimals to man Some of these guests of the ant and termite nests ire unable to live independent lives since they are fed and eared for

by their hosts. The benefits which the hosts derive from their charges sometimes appear far-fetched, for example, some ant guests produce odorferous secretions which the hosts lick with avidity.

Most remarkable of all is the division of labor between the different kinds, or 'castes, of individuals in ant and termite colonies (Figure 137). A colony of ants has one or more 'queens and kings,' which are females and males whose business is reproduction and who are fed and cared for by the workers. Workers are sexually underdevel oped females who collect food and build the nest, soldiers, also underdeveloped females, who take care of the defense from outside into plugs to close the nest entrances, and living barrels, with enor mously swollen abdomens in which certain provisions are stored. All members of a colony show complete unselfishness, and devotion to the common good.

Innate and Learned Behavior In describing insect societies, it is hard to avoid expressions like 'unselfishness and 'devotion, borrowed from the human social and ethical vocabulary. We must, how ever, beware of the fallacy of anthropomorphism, which ascribes to animals human motivations and emotions. Yet some biologists have again and again tendered the quaint advice that human societies ought to be reformed to emulate the virtues" of insect societies. How mice, it would be if our society were organized for the benefit of all, if every person was an expert in some useful function and performed at to the best of his ability, and if all men were heroes ready to sacrifice themselves for makind!

Such counsels are naive, because the behavior of social insects is innate or instinctive, and is fixed by heredity, human social behavior is learned from others or devised through reasoning and choice. It is important to realize the implications of this distinction

Innate behavior is a wonderful instrument which efficiently serves the needs of the species in the environments in which this species normally lives. The behavior of an insect building a nest or arranging things for its progeny appears highly competent and wise. Most important their behavior needs not to be learned. Among the marvels of ant and termite societies one thing is conspicuously absent. No where is there a school for the young workers or soldiers! An ant just

Figure 13.7 Specialized individuals (castes) in ants. A soldier, B worker C a winged male. D a female who has lost her wings of Pheidole instabilis. E a replete or honey barrel of Myrmecocystus hortideorum. F a soldier door keeper of Colobopus etiolata. and G its head in front view. (After Wheeler, redrawn.)

hatched from a pupa, or just having reached a certain stage of its development, is just as expert at performing its work as it will be after having done this work repeatedly. By contrast, human infants are utterly helpless and must undergo prolonged training and education before they can take care of themselves and become useful members of society. In no other animal is this period during which the young require protection and care so long as in man. But during this period the young absorb the accumulated cultural experience of the human species, they need not learn things only by trial and error or make all the mistakes and discoveries which others have made before them. However time consuming may be the individual apprenticeship, a very much longer process of cultural development is telescoped in the upbringing and education (see Chapter 14).

There is an all important limitation to the apparent wisdom of un ite behavior it may no longer function to the advantage of either the individual or the species in new environments, which the species has seldom or never encountered in the past. The classical experi ments of Fabre (1823-1915) illustrate well the rigidity of instinctive behavior One example will suffice here. The mason bee (Chalicodoma) constructs pot shaped cells from pellets of clay, fills them with honey and pollen, deposits an egg on these provisions which the larva hatching from the egg will eat, and finally seals the opening of the pot with a clay cover. While the bee is in the process of constructing the cell, she notices and repairs any damage which the construction suffers. As soon as the building is finished and the insect begins to collect the provisions, repairs are no longer made. Fabre made in a cell a hole through which the honey then escaped. The bee went on trying to fill the bottomless barrel Similarly, while the provisions are being collected, the insect removes and throws away any extraneous particles that may happen to get into the cell But when the egg is laid and the opening is to be sealed, it is sealed regardless of the presence of conspicuous debris on the surface of the food

This does not mean that instinctive behavior is absolutely fived. In nate behavior patterns, like other truits determined by the genotype, can be modified within certain limits by the environment. As always, the genotype determines the norm of response to the environment Environmental variations which the species often meets evoke modifications of the innate behavior patterns which are, as a rule, beneficial to the organism. For example, the drive which makes birds of a given species migrate in spring and in autumn to different countries is innate, and is released by a physiological mechanism of a hormonal

nature But the birds do adjust their winderings to some extent to weather conditions. Similarly, ants can use a certain range of miterials for the construction of their nests and adjust the shape of the nest to local conditions. Innate behavior, however, is less plastic and less versatile than learned behavior.

Human Diversity Man inhabits all parts of the world and all climes. He is consequently exposed to a great variety of environments. Moreover, he uses his ingenuity, his technological competence, to invent ever new environments. Consequently, environments in which men live change rapidly with time. To be sure, the diversity and changeability of human environments are due chiefly to cultural rather than to physical causes. The physical environments in which men live are, in fact, becoming progressively more standardized. The clothing which men wear, the houses in which they live, artificial heating, lighting, and assured food supply make the physical environments perhaps more uniform now than they were during the formative period of the biological evolution of our species.

Quite the reverse is true of social and cultural environments. Here the diversity is enormous and ever increasing. Even in primitive, societies there is a division of labor among their members. Some individuals gather or produce food, others make implements and vessels, still others act as priests, witch doctors, or leaders. In advanced societies the functions to be performed are not only highly diversified, but new ones constantly appear and the old ones vanish. Finally, every individual performs different functions as a child, an adolescent, an adult, and an old man or woman.

We know that a living species adopts itself to diverse and variable environments by two methods (Chapters 6 and 7). First, a variety of genotypes is produced, each specialized to fit a certain part of the avuilable range of environments. Second, genotypes are evolved which permit their possessors to adjust themselves successfully to a certain spectrum of environments by homeostatic modification of the phenotype. The first method involves genetic specialization, the second emphasizes the adaptive plasticity of the phenotype.

The first method of adaptation makes the inhabitants of different regions of the cirth diverge genetically and form illopatric geographic races. It also makes people living in the same region genetically diversified, and causes genetic variation between individuals and polymorphism in human populations. The second method makes people able to adjust themselves to circumstances. Human plasticity and educability make it possible to have most normal human beings trained

to perform competently whetever functions the society may need to have ministered to, although some persons may be genetically conditioned to succeed in the performance of some functions more than of others (see Chapter 14)

Classification of Human Races The fact that human populations of different countries are visibly and genetically different is, then, a reflection of the diversity of environments in these countries. Human races have developed through the adaptation of human populations to their surroundings.

It has, however, been shown in Chapter 7 that the number of races which one chooses to recognize in a species by giving them names is largely a matter of convenience. It is not surprising, therefore that different authorities have held widely divergent opinions concerning the number of human races.

Perhaps the simplest division of the human species is in three major races. Negroid, Mongoloid, and White or Caucasoid. Negroids have dark brown to black skins, frizzly or kinky hur, broad flat noses, and usually thick lips. In Mongoloids the face is flattened hair straight and coarse, nose flat at the root and with moderately spread nostrils. Whites have usually, though not always, pale skin, narrow and often long noses, and straight, wavy, or curly hair. By distinguishing the natives of Australia from the Negroids, the pre Columbian inhabitants of the Americas from the Mongoloids, and the inhabitants of the South Sea Islands, from Hawaii to New Zealand, which are hard to place in the three race scheme, we arrive at the following six races (1) Negroid, (2) Mongoloid (3) White or Caucasoid, (4) Australoid

(5) American Indian, and (6) Polynesian

The six race scheme obviously fails to do justice to differences easily observable among human populations. For example, the white race of this scheme includes people as different as the predominantly blond northern Europeans, the brunet Arabs, and the tawny Hindus. Very naturally, anthropologists attempted to split the races further and further in the vain hope of making them more uniform and more clear-cut. The result has been a useless multiplication of racial names. The dividing lines between the small races are often completely blurred by the intermarriage and gene exchange which have been going on for centuries and millennia and are becoming more and more frequent as time goes on. Moreover, no classifications satisfactory to all anthropologists has been arrived at different authorities have proposed different numbers of races.

A reasonable proposal made in 1950 by three outstanding American

anthropologists, Coon, Garn, and Birdsell, recognizes thirty races, listed in Table 13 3 and Figure 13 8. Without attempting to describe the races in any detail, some interesting features of this classification deserve to be mentioned.

In the first place, Coon, Garn, and Birdsell claim no finality for their there race classification They recognize that race is not a static but a dynamic entity Old races may disappear, either because human nonulations may the out or because races may merge together owing to frequent intermarriage. New races are formed by selection, hybridization and genetic drift. Some of the races listed in Table 18.3 did not exist a thousand years ago, others were relatively more numerous than now many have become distributed more widely, while some have contracted the areas of their habitation. Thus the Murrayian race in Australia (1) and the Ainu race (2) in eastern Asia are on the verge of extinction or of being engulfed by intermarringe with other races Both these races showed high frequencies of heavy brow ridges, large teeth and thick skull bones, which are traits often met with in early human races and species known as fossils (see above) Lanns (6). Negritos (9). Bushmen (10), Carpentarians (18), and Dravidians (14) may also be engulfed by the more numerous races near whom they live

On the other hand, the beginnings of the formation of the races (19), (20), (28), and (30), Table 13 3, date back only some centuries. The North American Colored race (19) is a result of admixture of genes of European origin, and of some American Indian genes in the gene pool formed by a mixture of several races native to Africa. An unalogous population is South African Colored (20) which arose by hybridization of races (10) and (11) with immigrants from western Europe. The Ladinos (28) are a series of populations which exist as castes or classes in some Latin American countries, they arose by hybridization of the immigrant Mediterrancins (17) with the native Indians (27, some 26) and, in places, some Negroes. Finally the Neo Hawaurans (30) are a very recent population arising from hybridization of the Polynesian race (29) with migrants from various parts of Asia, America, and Europe

These new races are biologically no less real than the old ones which have contributed to their formation. No race of a sexual and cross fertilizing species ever consists of genetically identical individuals. It cannot be too often emphasized that pure races exist only in asexual organisms and are figments of the imagination as far as man is concerned. Gene exchange between races of a sexual spectrum of the sexual sexu

The numbers on the map refer Figure 138 Geographic location of the races of man listed in Tible 133. The nur to diffuse in the table (After Coon Gam and Burdsell redrawn

TARLE 193

RACIAL CLASSIFICATION OF MANKING ACCORDING TO COON, GARN AND BIRDSFLL

1 Murrayian Aboriginal population of southerstern Austr	
2 Amu Aborgand population of Japan 3 Alnine Central Europe to western Asia	alia

3 Alpine Central Europe to western Asia
4 Northwest European Native in northern and western Europe now worldwide

5 Northeast European Russia and Poland
6 Lapp Northern Scandmavia
7 Porest Negro Western Africa and Congo

8 Melanesian New Guinea to Fin and New Caledonia

9 Negrito Enclaves in Africa Philippines New Guinea, Andaman Islands

10 Bushmen Aboriginal population of South Africa 11 Bantu East and South Africa

12 Sudanese Upper Nile Sudan
13 Carpentarian Aborigines of northern and central Australia

14 Drayidian Aboriginal population of southern India

15 Hamite East Africa and Sudan 16 Hindu India

17 Mediterranean Southern Lurope North Mrica Near East
18 Nordic Northern and western Europe

18 Nordic Northern and western Europe
19 North American The colored 'population of United States
Colored

20 South African The 'colored population of South Africa Colored
21 Classic Mongoloid Eastern Siberia Mongolia Korca Japan Fskimo

22 North Chinese
23 Southeast Asiatie
24 Theto Indonesia Philippines
25 Southeast China Siam Indonesia Philippines
26 Thet northern Burma parts of Indonesia

Mongoloid
25 Furkic Turkestan, Central Asia
26 American Indian Most of American Indians

Marginal
American Indian
Central
Southwestern United States to Bolivia

98 Ladino Mexico to Bolivia

29 Polynesian Islands of central Pacific Ocean

30 Neo Hawanan Hawanan Islands

cies is always likely to take place. It occurred between the Neanderthalians and the more modern looking races of *Homo sapiens* during the Ice Age (see page 332). In organisms other than man biologists can study only the situation as it appears today and can it best make conjectures concerning the past. The history of human populations

Figure 13.9 Representatives of some of the races of the human species A Murrayan (No 1) B Polynesian (No 29) C Melanesian (No 8) D Neo Hawman (No 30) Numbers refer to the racial classification of Coon Garn and Birdsell summarized in Table 13.3 (After Coon Garn Birdsell and other sources redrawn)

Figure 13:10 Representatives of some of the races of the human species A Classic Mongoloid (No 21) B Turkie (No 25), C Southeast Asiatic (No 23) D American Indian (No 26)

Figure 13 11 Representatives of some of the races of the human species A Forest Negro (No 7), B Bantu (No 11) C Bushman (No 10) D Hamite (No 15)

Figure 13 12 Representatives of some of the races of the human species 4 Alpine (No 3) B Northwest European (No 4) C, Mediterranean (No 17), D Hindu (No 16)

is known much better, and this allows some insight to be graned into the processes of race formation and amalgamation

Adaptive Nature of Human Races Mans most powerful means of adaptivion to his environments is learned and required knowledge, the ability to choose consciously and to create new environments, in short his culture. In the concluding chapter of this book it will be argued that the genetic enclowments which permit the acquisition and maintenance of culture are the property of the human species is a whole, not of any one race. Relative to the efficiety of cultural adaptation, the importance of the genetic differences between the prices is very small indeed. It is also diminishing with time, as evaluation discovers ever new methods of controlling environments. In fact, surprisingly, little is known about the adaptive significance of the particular traits which distinguish human races. Coon, Garn, and Birdsell (1950) and Coon (1954) however, have made some tentative suggestions which may be rejected here.

People with black or chocolate brown skin are native to the forests and grasslands of Central Africa Melanesia (New Guinea and islands to the southeast), southern India and some islands on the fringe of southern Asia. All these regions are located in the torrid zone along the Equator, where the suplight is intense and the danger of sunburn is great. The skin pigment absorbs the ultraviolet radiation which is responsible for the suppurp. No dark skinned population has yet developed in the American tropics, partly because human occupancy of these lands is relatively recent, and partly, according to Coon, because most normations there live either in the shade of dense forests or in the mountains People native in temperate and cold climates can develop the protective tan following skin exposure to light, or can bleach if covered with clothing or if the weather is cloudy Bleached skin is supposedly advantageous because it permits the scarce ultraviolet rays to produce enough of the vitamin D, the "sunshine vitamin" which is necessary for health. Skin which can either darken or bleach is therefore, advantageous where the amount of sunshine is variable with the season (cf., however, Chapter 7)

In bodies of similar shape, the surface grows as the square, and the volume (or weight) as the cube of the linear dimensions. In other words, the smaller the body, the greater its surface in relation to the volume. Body surface is relatively greater in tall and slender people than in short and rotund people of similar bulk long arms and legs and large flat hands and feet also increase the body surface. The body surface acts as a radiator of an automobile does cruising dissipation.

of heat and cooling of the body It follows that an increase of the body surface relative to the body mass is desirable in hot climates, and a decrease in cold climates. There is some evidence that the observed recial variation is on the whole in accord with these requirements. In Europe the bulkiest people inhabit the North, whereas the Mediterranean people tend to be more slight and gracile. Among the Mongoloids, northern Chinese are larger people than their southern countrymen, Annamites, and Siamese. In the Americas, the Maya of southern Mexico and Guatemala, and the Amazonian Indians are small, whereas the Indians of Alaska, Canada, the northern United States, and of southern Argentina are more bulky. In Africa, the Nilotic Negroes are among the tallest people in the world, but they are also exceptionally slim. Coon is also of the opinion that the characteristic fee itures of the Mongoloid face may represent an adaptation to the cold, dry and windy climates of the great interior of Asia.

Not all racial truits need be so utilitizinan as suggested above. Some facial features, hur shapes, and perhaps body forms may have become established by natural selection in response to the vagaries of popular tastes and ideals of bodily beauty. The possessors of traits considered comely and pleasing may have been favored as mates and placed in superior positions to raise large families. Much study and research are necessary before the origin of human racial characters can be fully understood.

uny understood

Suggestions for Further Reading

Darwin, Ch 1871 The Descent of Man

This book remains a great classic of evolutionary literature

For more up to date information on human origins consult the following five books

Coon C S 1954 The Story of Man Knoof New York

Howells W W 1945 Mankind so Far Doubleday New York

Howells W W 1954 Back of History The Story of Our Own Origins

Doubleday New York
Ashley Montroy M. F. 1951 An Introduction to Physical Arthropology 9. 1

Ashley Montragu M F 1951 An Introduction to Physical Anthropology 2nd Edition Ch Thomas Springfield III

Weidenreich F 1948 Apes Giants and Man University of Chicago Press Chicago

Concerning human origins as well as concerning the problems of human race and rivid classification consult also the books of Count Boyd Coon Garn and Bridsell and the Symposium on the Origin and Evolution of Man cited among the suggested readings in Chapter 7

is known much better, and this allows some insight to be gained into the processes of race formation and amalgamation

Adaptive Nature of Human Races Man's most powerful means of adaptation to his environments is learned and required knowledge, the ability to choose consciously and to create new environments, in short his culture. In the concluding chapter of this book it will be argued that the genetic endowments which permit the requisition and maintenance of culture are the property of the human species as a whole, not of any one race. Belinte to the efficacy of cultural adaptation, the importance of the genetic differences between the races is very small indeed. It is also diminishing with time, as envilvation discovers ever new methods of controlling environments. In fact, surprisingly little is known about the adaptive significance of the particular traits which distinguish human races. Coon, Garn, and Birdsell (1950) and Coon (1934), however, have made some tentative suggestions which may be reviewed here.

People with black or chocolate brown skin are native to the forests and grasslands of Central Africa Melanesia (New Guinea and islands to the southeast), southern India, and some islands on the fringe of southern Asia. All these regions are located in the torrid zone along the Equator, where the sunlight is intense and the danger of sunburn is great. The skin pigment absorbs the ultraviolet radiation which is responsible for the sunburn No dark skinned population has yet developed in the American tropics, partly because human occupancy of these lands is relatively recent, and partly, according to Coon, because most populations there live either in the shade of dense forests or in the mountains. People native in temperate and cold climates can develop the protective tan following skin exposure to light, or can bleach if covered with clothing or if the weather is cloudy Bleached skin is supposedly advantageous because it permits the scarce ultra violet rays to produce enough of the vitamin D, the "sunshine vitamin" which is necessary for health. Skin which can either darken or bleach is, therefore, advantageous where the amount of sunshine is variable with the season (cf however, Chapter 7)

In bodies of similar shape, the surface grows as the square, and the volume (or weight) as the cube of the linear dimensions. In other words the smaller the body, the greater its surface in relation to the volume. Body surface is relatively greater in tall and slender people than in short and rotund people of similar bulk long arms and legs and large flat hands and feet also increase the body surface. The body surface acts as a radiator of an automobile does, causing dissipation.

14

Chance, Guidance, and Freedom in Evolution

The idea of evolution, of transformation of one kind of organism into another, certainly antedates Darwin Before scientific biology appeared, even the weirdest stories of transformation were often credited (see page 166) In classical antiquity, the creation myths of Anaximander, Empedocles and Lucretius fancied that living beings arose from very different progenitors and from inanimate matter (page 111) H F Osborn (1857-1935) and others claimed that Aristotle was also an evolutionist, since he maintained that nature advances from the manimate to the animate, and from less perfect to more perfect creatures (page 224) It is not, however, certain whether Aristotle meant this advancement as a concrete historical event, or only as a part of his more general philosophical view that a vital force, a soul, gives a recognizable actuality and form' to potentiality and primary matter Aristotelian views were taken over by medieval philosophers and theologians particularly by St Thomas Aquinas, who did not interpret them in any recognizably evolutionist sense On the other hand, Descartes (1596-1650) and Buffon (1707-1788) apparently did arrive at evolutionist views of nature. But in their day such views were regarded as subversive, and Descartes and Buffon accepted the dictates of authority and were in no mood to risk their privileged positions They saw fit to disguise their views as mere amusing paridoxes or idle play of the intellect Maupertuis (1698-1759), Erasmus Darwin (grandfather of Charles, 1731-1802), Goethe and several others mentioned in Chapter 10 approached the problem of evolution in various ways. The possibility that the world of life might be a product of evolution was, indeed, "in the air when Charles Darwin started his work

The story of social insects and the relations between the innate (instructive) and the learned behavior are discussed in the following books

Allee W C, Emerson A E, Park, O, Park, Th and Schmidt K P 1949

Principles of Animal Leology Saunders Philadelphia

See particularly Chapters 23 21 and 35

Haskins C P 1915 Of Ants and Men Allen & Unwin, London Haskins, C P 1951 Of Societies and Men Norton, New York

Lorenz, K. 1952 King Solomon's Ring New Light on Animal Ways. Crowell, New York previous states and the cause of its future states. Once this is granted, it moutably follows that the evolution of life of man, and indeed of the whole cosmos was predetermined and fixed from the start. This conclusion harmonizes very nicely with the biological preformation theory (Chapter 10) Primordial life contained within itself all the evolution to come as a flower bud contains all parts of the future flower Evolutionary changes arise, some biologists suppose, from inside the organism. autogeneticallu, and lead only to the unfolding of whit was there from the beginning. It was not natural selection at all which has shaped the diversity of hving creatures. If evolution is brought about by autogenesis, then intural selection can accept only what is fit to survive in a given environment and reject what is unfit. An analogy will make clearer what is meant by autogenesis The element uranium decomposes into helium and lead, the rate of decomposition is constant and largely independent of the environment. it is possible to predict that after a certain number of years a certain fraction of the uranium will have turned to lead. May organic evothuton be caused by a similar process? L. S. Berg (1926) thought that it might. According to him, evolution is 'nomogenesis, that is, devel opment according to law residing in the living matter itself. What evolution produces is what it is destined to produce, just is a flower bud is destined to produce a flower Rosa's hologenesis (1931) is a Similar notion

We need not be mechanistic materialists to believe in autogenesis A modern braid of vitalism known as finalism, credits this notion Cuenot (1941) and Vandel (1949) in France, their popularizer Du Nouy (1947) in the United States, Naef (1919) and Dicqué (1931, 1940) in Germany and other finalists have no use for crude material forces such is mutation and selection. The problem of evolution is resolved more simply. Evolution strives to reach a predetermined goal or and. This goal is assumed to be the production of man. To Dicque, the amochae fishes, amphibia etc. are disguised states of mankind, whatever this may mean. To Vandel. Matter was at its origin rich in power and in unrealized possibilities, able to engender the organic as well as the inorganic, the living and the mert. In giving birth to life, matter prissed to the latter the essence of its creative energy, and this effort reduced matter to a degraded relie, devitalized, and having lost most of its incestral qualities. Having produced man, the evolution of life has done its job, and has terminated. Organisms other than man are "by products, slags, left over after its (mans) production. H. F. Osborn (1934) held opinions close to those of the

The greatness of Lamurck and of Darwin was that they not only adduced new and compelling evidence of evolution (which they cer tamly did), but that they also made the occurrence of evolution in telligible Lamarck and Darwin agreed that the evolution of life on earth had been brought about by causes which continue to be in operation even now These causes can, then, be observed and experimented It happens that a century and a half of observations and experiments have failed to confirm Lamarch's surmise of what these cruses are Darwin's ideas have stood the test of time much better Both Lamarck and Darwin were innovators who proved that life has had history, and that this history is not unfathomable. Although we shall never be able to have the evolution of the living world re-enreted as a whole before our eyes, at least some elementary evolutionary events have been reproduced (Chapters 5 and 9) Man may yet learn to direct the future course of the evolution of species, including his own

The general biological theory of evolution outlined in this book developed, by an unbroken continuity of thought from the Darwinsan prototype (Chapter 6) However, biology has not stood still since Darwin therefore, the modern theory differs greatly from Darwins Not all biologists however, are satisfied that this theory is valid Quite properly, they have tried to suggest alternative possibilities and these alternatives should be given consideration. Even though none of them may prove acceptable, a clearer perspective of evolution are biology will be gained in the process.

Autogenesis and Tinalism. The longing to know the future is deeply ingruned in human nature. Science helps to understand the present, to comprehend the past, and to predict the future. Astrono mers can foresee the second when a sun eclipse will be visible from any given point of the carth's surface, and can describe eclipses which happened centuries ago. The astronomer Laplace (1749-1827) asserted that, given for one instant a knowledge of the positions and the velocities of all the masses composing the universe at any particular moment, an intelligence vast enough to submit these data to analysis would embrace in the same formula the motions of the greatest bodies in the Universe and those of the lightest atoms, for such an intelligence nothing would be uncertain and the future as well as the past, would be present to its eyes. Of course no human intelligence is anywhere near so vast, but Laplace's proud hope became a basic time?

The present state of the universe then, is the consequence of its

gressively bigger and bigger, their structure getting more and more suitable for grazing

Figure 14.1 A fossil stag (Megaloceros also known as Irish elk) with enormous antlers which some authors imagined to be humful to the animal (After Cuenot redrawn)

The evolution of the human family (Chapter 13) shows a progressive development of the brain with corresponding changes in the bones which house this noble organ, and in the body which is pre-

modern finalists To him, the important principle which brings forth evolution was "aristogenesis," an urge towards greater "perfection," assumed to be inherent in hife

Orthogenesis To most biologists the speculations of the finalists and other behavers in autogenesis seem frankly puzzling. Neverthe less, the validity of a scientific theory, however startling it may seem is tested by its ability to account for facts which are incompatible with other theories. The alleged basis of autogenetic theories is the apparent directedness of evolutionary changes, reveiled especially by the fossil evidence. Consider the succession of the shell forms in the snall shown in Figure 12.1. In each successive geological stratum the shells become more and more angular, as though the evolution of these snalls were directed by some force straight towards attainment of the greatest possible angularity. For such apparently directed trends of evolutionary changes Eimer (1897) introduced the word "orthogenesis".

One of the most famous examples of orthogenesis is the development of gigantic antiers in the males of the Irish elk. Megaloceros (Figure 141) Starting with late Tertiary times (Phocene) the an cestors of Megaloceros were getting progressively larger in size, and, as they were getting larger, the antiers in the males were getting more and more enormous, until during the Ice Age the antiers reached seem and absurd dimensions, and finally these animals died out paleontologists surmised that such huge antiers must have been msurrous to their carners, and concluded that Megaloceros died out because its antiers got too big for it to curry. In other words, the evolutionary trend towards large antlers developed such a momentum that it could not stop, even when it got to be harmful and led to extinction Simpson's fitting comment about this surmise is "I can only feel awe for any one who knows that structures were disadvantageous in animals that were very abundant for tens of thousands of years and more "

The evolutionary history of the horse tribe, considered briefly in Chapter 12, has often been alleged to represent another clear instance of orthogenesis, and has been cited as such in many books on biology and evolution. Indeed starting with the little Echippus, the horse were getting larger and larger, the modern thoroughbred horse (Chapter 9) being a veritable giant compared to Echippus. Furthermore beginning with the Condylarths and the Echippus the ancestors of the horse were losing toe after toe, until the modern horses have just a single toe left on each foot to stand on. The teeth became pro-

ticularly living on open grassy plains which were becoming widespread on earth during the Tertiary geological period

Of course the evolutionary changes did go in the same directions and often for prolonged periods of time in many groups of organisms Moreover, the same or parallel evolutionary trends are often observed in different organisms. Perhaps the most widespread and best known trend concerns gradual but stendy increase in body size. This growth has occurred in quite different animals, miking them grow larger and larger as time went on. The most ancient mammals (living during the Mesozoic times, see Chapter 12) were only as big as modern mice or, at most rats Larger quadrupeds appeared during the Tertury The known history of the elephants begins in late Eocene times with animals about as big as a hog. As early as the Oligocene forms appeared that were as large as a bull. During Miocene and Phocene came elephants as large or larger than the modern ones, and the grants like the woolly mammoths had during the Ice Age and died out perhaps with the active assistance of man who must have regarded them as excellent sources of meat. The increase of the body size in horses has already been discussed, as well as the body size progression among the primates, which may have been our own ancestors (Chapter 13) The primitive reptiles of the Pennsylvanian and Permian ages were only as big as some big lizards, yet they appear to be the ancestors of the most gigantic land animals ever produced. which lived during the Jurassic and Cretaceous periods (see Chapter Evolutionary size increases have been observed also in some invertebrate animals, particularly in mollusks

There is, however, no iron clad Inv that would make evolution produce ever larger animals. For one thing, many animals have remained as small is their ancestors, and some even became smaller. For another, the prevalence of the tendency towards bigness is quite understandable since larger individuals are usually also stronger, better able to resist some enemies and escape from others. In addition, a more massive body is advantageous in cold climates (see page 355). No wonder, then, that natural selection by and large favors bigger animals over smaller ones. The selection becomes, according to Simpson orthoselection which operates generally in the same direction. Orthoselection brings about the appearance of orthogenesis. The basic difference is here that orthoselection lasts only as long as the environmental opportunity which favors it, orthogenesis has usually meant a change independent of, or even contrary to such opportunity. Orthoselection is simply selection long continued.

sided over by its function. This is an orthogenesis of sorts. But does it follow that the Australopithecane, or the tarsiers, or any other human ancestors or relatives were men in disguise, who needed millions of years to slough off their animal masks? There is nothing to necessitate such a view. Not all primates, nor all anthropoids, evolved in the direction of man, and there is no reason to think that they will do so in the future.

Orthoselection The above examples of orthogenetic trends are not exceptional Tossil histories of many groups of organisms may be interpreted as showing trends of one kind or another. Many paleon tologists and some biologists believed that a theory of evolution of the type outlined in the foregoing chapters of this book could not explain the apparent prevalence of orthogenetic trends. If so, we would have to turn to one of the theories with names ending in-genesis mentioned above. The German paleontologist Schindevolf (main works in 1936 and 1950) has been particularly emphatic in expounding the view that an explanation on autogenetic or finalistic lines is necessary. Simpson (1944, 1953) and Rensch (1947) have performed a great service to science by demonstrating that there is actually nothing in the known fossil record to contradict the modern biological theory of evolution.

In speculating about the evolutionary trends disclosed by the fossils, we must be on guard in order that, seeing the obvious, we do not miss the significant Simpson, having analyzed the fossil evidence of horse evolution in greater detail than any one else, has concluded that the orthogenetic interpretation can here be sustained only by disregarding important facts As shown in Chapter 12 there were not one but many evolutionary lines of horses, and not all of them by any means were getting bigger all the time, or getting rid of toes, or developing teeth fit for grazing True enough, these things happened in some lines of descent, including the one which give rise to the horses which are now alive The horses which were largest and strongest, which could run fastest, and which were able to utilize the most abundant food supplies by grazing on grass, survived, while those animals which did not develop these characteristics died out. On the whole the fossil evidence lends no support to the idea that there was, or is a built-in propensity to develop in any particular evolutionary direction It is quite consistent with the view that the evolutionary changes took place owing to natural selection of genotypes which were most suited to exploit certain environmental opportunities, par

mevitable death. The fossil record shows group after group of organisms which appear, become diversified and abundant, and then decline to extinction. An analogy is tempting. Are youth, senescence, and death the destiny of species, genera, and orders, as they are of individuals? Some believers in autogenesis orthogenesis thought so But analogies are a precurious method of scientific cognition. Growth and senescence of individuals are brought about by physiological causes and presumably do not involve changes in the genes, evolution is genetic change. The two things cannot be equated histily

Let us see what is meant by evolutionary youth and senility of a group of organisms The reptiles were born in Pennsylvanian times as an offshoot from the amphibians, and the "infant reptile," called Seymouria, was so amphibian-like that, according to Romer, "the aca demic question has been rused as to whether Seymouria was an amphibian which was almost a reptile or, on the other hand, a reptile which had just ceased to be an imphibian' Very soon (geologically speaking), namely during the Permian, there were present representatives of several (six) orders into which the class of reptiles is divided Several more orders appeared during the Triassic, including the small ancestors of the future giant 'ruling reptiles This, then, is the youth of the reptiles The Age of Reptiles, when they were most numerous and diversified, and when the gigantic forms were living, occurred during the late Triassic, Jurassic, and Cretaceous 'maturity" But, remarkably enough, no new orders of reptiles anpeared when as a class they were dominant. The "senility' came with a crash in the late Cretaceous and in early Tertiary, when all but four previously inconspicuous orders (turtles, crocodiles, lizards and snakes, and the order of the New Zealand tuatara, or Sphenodon) died out These four orders are still hanging on, but the class of reptiles as a whole is 'senile'

Mummals have a similar story. They appeared as an offshoot of the reptiles when the latter were "young. The infancy of the minimuls was a prolonged one, extending through the whole Age of Reptiles, their vigorous youth came in the early Tertiary (Paleocene and Eocene), coincidentally with or immediately after the dying-out of the ruling reptiles. Most living orders of mammals, and some of the extinct ones appeared at that time, inaugurating the Age of Mammals (see Chapter 12). The greatest blooming of the class of mammals, when they were most diverse and included some spectacularly large or peculiar forms, came in late Tertiary (Miocene and Phiocene). A "senility" may have begun during the Ice Age and the Recent, when

Allometric Growth A human infant has a relatively much bigger head and smaller legs and arms than an adult person. This amounts to saying that as our bodies grow, the different organs and parts do not grow in the same proportion. The head grows less than the extremities, so that an adult is not just like a baby magnified, nor is a baby a diminutive adult. Such difference in relative growth rates of body parts is known as allometry or allometric growth. Allometry occurs in many kinds of animals and also in plants. Allometry on be observed also when adult bodies of different species or races are compared. Larger species and races often show predictably different body proportions, as illustrated in Figure 13.6 for the skulls of the larger and smaller breeds of does.

Allometry is a reasonable explanation of some otherwise very puzzling evolutionary changes Consider again the Irish stag Megalogeros (Figure 141) This extinct form had not only much larger antlers than its ancestors and relatives, but it was a larger animal. The evolution of the anecstors of Megaloceros brought about an increase in body size as well as in antler size. Now among deer and their rela tives, as the body grows larger, the antiers increase in size even faster If natural selection for any reason favored larger and more powerful bodies, the antiers would be expected to overtake the body in the rates of increase. This prize example of orthogenesis (see above) is most likely an instance of orthoselection. Seeing the monstrous antlers of Megaloceros we wonder why selection should ever have created such an unwieldy structure. But it is as certain as such things can be that natural selection does not bring into being antlers separate from heads, or heads separate from the shoulders, etc. It is an individuals body as a whole that lives, grows, reproduces, and dies. And natural selection is opportunistic. So long as bigger stags transmitted their genes to the following generations more efficiently than smaller stags, the selection favored increasing size. Assuming that the huge antiers were a burden to the animals (and this is an assumption which may easily be wrong), a genotype which would have produced a bigger body with relatively smaller antiers would have had an advantage There is, however, no warrant to believe that any combination of relative sizes of body parts will always be ready when circumstances This belief would imply a miraculous prescience of the future on the part of the genotype (see page 107), and genes are, after all, things of this imperfect world

Evolutionary Youth and Senescence The way of all flesh is from birth childhood, evuberance of youth, vigor of maturity, sensity to

Fossil remains of reptiles very much like Sphenodon occur in Trassic and Jurassic rocks in different parts of the world. Then they disappear from the record for at least 130 million years (Cretaceous to Recent, Table 12 1). A population of Sphenodon is nevertheless living on an isle off New Zeiland quite oblivious that it should have long ago felt internal impulses' towards extinction. However, it is hardly an accident that the hiving Sphenodon is preserved in a locality so far out of the way. The animal life of New Zeiland is limited in variety and lacks representatives of many kinds of creatures which are common elsewhere. The competition of these creatures would probably make short shrift of the Sphenodon. On a larger scale, the marsupals are now restricted chiefly to Australia, where the placental mammals were few until man came (Chapter 12). The marsupals, with the notable exception of the opossum, have died out outside Australia, presumably because they were no match for the placentals. Every species is enabled by its body structure to occupy and exploit

certain ecological, or adaptive, niches in the economy of nature (page 311) Extinction occurs either because the ecological niche disappears, or because it is wrested away by competitors. The ecological niche of a parasite is its host if the host species dies out, so does the parasite, provided that it cannot victimize alternative hosts. The more narrowly specialized is an organism for life in only certain environments, the greater the risk of extinction Evolutionary sensity may be a con sequence of specialized adaptation to only a restricted ecological niche A narrow specialist may live quite happily so long as his evclusive abilities find an assured outlet. The Teddy bear like marsupral koala (Phascolarctos, Figure 128) deigns to eat nothing but the young foliage of only a few species of encalypts Nevertheless this slow and defenseless animal was quite common in parts of Australia until white men started to use it for target practice Compare this with the dietary versatility, aggressiveness and watchfulness of such in animal as the gray rat Koala is now kept in existence only by conservationist laws, whereas the rat is far from rare despite determined campuigns of extermination

It may seem surprising that evolution controlled by natural selection leads so often to overspecialization and consequent extinction. But this is only a consequence of the fact repeatedly emphasized above that natural selection is opportunistic and, like any natural process other than the human mind, lacks foresight. Selection perpetuates what is advantageous here and now, and fails to perpetuate what may be beneficial in the future unless it is also immediately useful.

there appeared a curious mammal called man. This upstart has succeeded, however, in making the present time the Age of Man

The cureers of the classes of reptiles and of mammals have nothing in them that would compel us to assume that evolutionary "youth" comes inescriptly after "infancy," or "senility after "muturity." De spite the fossil records being incomplete and in many ways brilling we may entertain a working hypothesis that the evolutionary events for which this record stands were brought about by natural selection in response to environmental opportunity. Mammals langered inconspicuously for many millions of years while the reptiles were dominant, but underwent an exuberant adaptive radiation as soon as the dominant reptiles died out. Was this just a concrdence? Is it not more likely that the decline of reptiles opened up biological opportunities which were quickly seized upon by mammals (and by birds)? Again, while most orders of reptiles died out, that of the lizards and snakes suffered no eclipse and is doing meely even now. They have a place in the sun which is not much eneroached upon by the mammals.

The birth of a new group of organisms usually means that an evolutionary "invention" has been made which permits life to exploit novel environments, or to exploit old environments in novel ways. Thus amphibirus were the first vertebrates to live on land, reputies become free from dependence on water as an abode of the early developmental stages (tadpoles), mammals and birds evolved regulation of the body temperature that makes them less dependent than the reptiles are on the vagaries of weather, besides mammals in vented superior ways of taking care of their young, while birds became able to exploit the food resources of the air (Chapter 12). Clerily intural selection would be expected to perpetuate such useful inventions. It would also be expected to encourage the adaptive radiation of the evolutionary "youth period (Figure 6.1).

Causes of Extinction Extinction is a frequent finite to many evolutionary histories. The causes which brought about the extinction
of many groups of organisms are quite obscure, which is not really
surprising since even if the fossil record were much more complete
than it is we would often be unable to usualize all the manifold and
complex interrelations of the inhabitants of the remote past. But
the supposition that extinction occurs "obeying certain internal im
pulses concealed in the constitution of the organism (Berg) is barren
as a working hypothesis. A diligent study of the interrelations of now
hving organisms however throws some light on cruses of extinction

What actually happened was that eyes were gradually formed and perfected among man's close and remote ancestors. These ancestors had eyes for at least 400 million years (the appearance of the vertebrates in the fossil record). Reptiles have eyes, and so do amphibians and fishes, and even the lowly lancelet (Amphioxus) has pigment cells which make it able to perceive light. Many of man's ancestors had eyes which were simpler in structure and less perfect in function than our own, yet the eyes were always useful to their possessors. Natural selection had ample opportunity to press onward toward high degrees of perfection of the eyes.

The most misleading implication of the watch analogy and of similar arguments is that the eye was formed by summation of independent mutations, each responsible for a certain part of the organthe lens, or the ross or the cones of the retina, or the muscles which move the eve. etc If this were the true nature of genes and mutations, the eye could not function until the last part of the eye mechanism had been installed in its proper place. An auto mobile motor does not work until every component part is put where it belongs But genes and mutations do not work that way, and this makes the difference Genes determine not body parts but develop mental processes The genes make a fertilized egg develop by stages in a body which has, among other parts eyes of a certain kind Evo lution of the eve then is not like the building of a unit motor, it is rather more comparable to the gradual development of internal com bustion engines from the first hesitant model to the present powerful and efficient makes

Preadaptation Another dialectical tangle in which some evolution ists have ensured themselves concerns the origin of genetic changes which prove to be adaptive. As we have seen, mutations may be described metaphorically as "mistakes in the processes of the self synthesis of genes. These mistakes' occur regardless of the need of the origination of maintain or to improve its adaptive for the origination of the need of the origination of the origination of the need of the origination of the origination of the need of the origination of the need of the origination of the

take up again the case of the unwieldy antlers of the stag Megaloceros Provided that larger stags produced more surviving progeny than smaller ones, there must have been an "orthoselection" for size in crease. It is, then, conceivable that because of some environmental changes the cumbersome antlers may have become injurious, if the riversal of the size trend could not be accomplished quickly, the ammul died out

Origin of Complex Adaptations A difficulty, fully realized by Darwin which any rational theory of adaptation has to face is the formation of complex origins and physiological functions. Consider the human eye with its many wonderfully coordinated parts, each part necessary for the origin to be fully serviceable. Or consider the processes of pregnancy and childbirth. Here is a series of hormones, each with a separate function, and yet acting in an ordered sequence like different instruments in a symphony orchestra, even a slight disturbance may make the process of reproduction end in fultre.

Can such dehected, engineered systems possibly arise through nat ural selection acting on the genetic variability supplied by mutition? A mutition is, essentially a "mistake" in the process of gene reproduction, and most such "mistakes" are detrumental to the organism (Chapter 4). Yet these "mistakes" must be woven by natural selection into such patterns as give rise to useful organs and functions. Let us keep in mind that selection has no foresight and cannot build organs useful only in the future. An organ must be continuously useful or else selection will neither advance its construction nor even maintain it. To some biologists this requirement seemed too great. "We might just as well expect that if the wheels screws and other component parts of the mechanism of a watch were to be put into a vessel, we could, by a simple process of shaking, get them to combine in such a mainter as to become a watch that would function as such" (Berg.). Theories of autogenesis have been urged on this basis.

The objection that theories of evolution by natural selection relytoo much on "blind chance" has been made repeatedly since Darwin's day. Mutations are accidents of gene reproduction gene recombination yields by chance various genotypes, selection improves the chance that some genotypes will leave more offspring than carriers of other genotypes. Can these chances add up to building a complex organ such as an eye? The "watch analogy," however, contains a subtle fallacy. It tacitly assumes that the human eye arose in all its present perfection all at once by a lucky throw of genetic date. Such a supposition would, indeed, stretch our credibility to the breaking point.

Evolution has brought about a tremendous increase in the range of environments in which life is possible, in the diversity of living creatures, and in the total mass of living matter. We do not know what the primordril life was like, but it is certain that it could exist only in some very restricted range of environments. The fossil record of the early Paleozoic consists of only water-dwelling creatures, while land was apparently lifeless. At present life extends almost every where on the earth's surface, including such apparently inhospitable places (from the hum in standpoint) as deserts high mountains, and subpolar regions. Some forms of life seem so grotesque in appearance (Figure 14.2), or live in such strange places that we naively wonder why such creatures ever appeared. This is another instance of the opportunism of evolution whatever can perpetuate itself in any accessible environment does so. The appearance and spread of a new species constitute progress whereas extinction is regression. Although evolution has been in this sense, progressive on the whole the living matter (biosphere) is still, on a planetary scale, merely a thin film at the boundary of the earth's crust (lithosphere) and its griseous envelope (atmosphere).

Another kind of progress is the increasing complexity of organization of living beings. Simplest plant viruses consist apparently of a single chemical substance—nucleoprotein. Bacteriophages and, even more so, bacteria and unicellular organisms are immensely more complex since their bodies are structured systems involving numerous chemicals. Then follow multicellular organisms, these again range in complexity from such relatively 'simple things as Pandorina (Figure 1.2), which are merely colonies of semi independent cells, to very complex systems of cells, such as the higher animals and man. In this respect, too, evolution has been on the whole progressive, although not always so. For example, parisitic organisms, such as Sacculina (Figure 10.6), are often much simpler in structure than their free-living relatives. There even exists a view that the viruses may be degenerate descendants of more complex bacteria like organisms.

Furthermore, it is not just a love of complexity which makes evolution produce ever more intricately organized living bodies. Although there is no strict relationship between the two things, more complex organization by and large gives a greater autonomy of the organism from the environment. As pointed out especially by Schmilhausen (1949), evolution his tended to improve the homeostatic adjustments, so that the processes of life can go on despite environmental viriations. The transition from the "cold blooded" reptiles to the "warm blooded".

on it (cf Chapter 12, page 290), some genetic changes altered the teeth of Tertury horses in ways to make the latter "prendapted" to grazing instead of browsing (page 305). Mans erect posture made his hands "prendapted" towards performance of delicate manual operations (Chapter 13).

The difficulty is chiefly a verbal one. When some ancient anthropoids made the first tentative attempts to walk erect not even the shrewdest evolutionist could have predicted that the fore paws of these anthropoids would some day handle surgical instruments used for delicate operations. When these anthropoids were increasing their brains in response to the need for more cunning in escaping enemies it was quite impredictable that the brains of their remote descendants would eventually develop the ideas of Plato or of Darvin. In other words, we must have the benefit of hindsight to decide whether a given change was preadaptive for anything "Preadaptation" is a meaningless notion if it is made different from "adaptation".

Progress in Evolution We have seen in Chapter 10 that according to Aristotle all living beings range in a single series from the least perfect to the most perfect. Lamarck thought that this single ladder of perfection reflected evolution, and this unfortunate mistake was largely responsible for the rejection of Lamarck's whole theory. The belief in progress, however, was too dear to the nineteenth century mentality, and Darwin's theory was promptly interpreted to mean that "no good thing was ever lost and that no lost thing was any longer any good" (Barzun). Indeed, natural selection generally does maintuin or improve the adaptedness of a living species to its environment

The situation, however, is complex. In the first place, there is no single line of evolution but very many different lines. Furthermore, every kind of organism occupies its own adaptive niche to which it is fitted by its body structure and by its mode of life. The mighty lion may be the king of beists, but it cannot fly through the in like a bird, nor live in water like a fish, nor subsist on simple organic compounds like bacteria nor utilize the sunlight as a source of energy like green plants. By and large, every species is superior to all others in its own adaptive niche for if another species were superior it would drive the first out. But it is indiculous to conclude on this basis that there has been no progress in evolution, and that man is not a more perfect organism than a worm or an amoeba. There are several possible criteria of progress and perfection, and we must make it clear which one is being used.

ably certain that this probability is, in general, improved in the higher, compared to the lower, organisms

Although progress is not necessarily the same thing as success, it is a fact that those groups of organisms which on other grounds may be considered most progressive are likely to become also abundant, diversified, and 'dominant'. The succession of the ages of amphibrians, reptiles, mammals, and man attested by the fossil record (Chapter 12) is a case in point. This succession corresponds to what is regarded as progressive evolution among vertebrate animals. A similar reward for evolutionary progress was the accession to dominance of the 'higher flowering plants at the end of the Mesozoic era. On the other hand, a failure to progress does not always result in the organism's becoming rare and extinct. Among the living fossils, shown in Figure 12.3 at least the horseshoe crab (Limulus) and the opossum, and probably also Lingula, are common and prosperous species, apparently in full possession of their respective adaptive niches.

Man, the Pinnacle of Evolution One of the cheapest ways to gratify our ego is to consider ourselves superior to others. For this reason, the opinion that man stands on the topiniost rung of the ladder of progress must be carefully scrutinized. It happens, however, that by all sensible criteria of progress man is superior to other creatures.

Mere growth in numbers may not be an unmitigated blessing, as man is finding to his discomfiture in the overpopulated countries of southern and eastern Asia, but mankind has increased manyfold since the invention of agriculture, and has occupied most of the habitable surface of the globe (Chapter 13). The case is less clear in complexity of the organization of the body since there is no way to measure this complexity precisely. We can say, however, that the vertebrates in general and among them the mammals, possess re markably elaborate organic systems. Man belongs to the class of mammals. There can be not the slightest doubt that man is now the dominant species, with the development of biological technology all other species will exist only on man's sufferance.

The conclusive evidence of man's superior position is that he, and he alone, has evolved the genotype which enables him to develop and maintain culture. As pointed out in Chapter 13, the trusmission of the cultural inheritance is superimposed on biological heredity, but the former is a vastly more efficient process than the latter. Biological heredity is handed down only from parents to children, culture can be trusmitted to ambody. Acquisition and transmission of culture have conferred upon man as a species an unprecedented degree of

mammals constituted progress So did the development of sense or gains in animals which permit the organism to receive more varied and more exact information about the state of the environment, and

Figure 14.2 Some Brazilian representatives of the family Membracidae (homopterous insects) having weard outgrowths on their bodies. The function, if any of these outgrowths is unknown (From Costa Lima)

to react accordingly The development of the nerve system in general, and particularly of the brain as a coordinating organ has been most efficient in increasing the ability of hie to hold on and to widen its control of the environment. An interesting definition of evolutionary fitness and progress suggested by Thoday (1953) is probability of leaving descendants after a given long period of time." It is reason-

made culture and freedom of choice possible But from then on, human evolution has become in part a new and unprecedented kind of evolution—evolution of culture and of freedom. This certainly does not mean that the biological evolution of man has come to a halt, as some writers like to suppose. The two kinds of evolution, biological and cultural, are combined in a new and unique process which is human evolution.

Human behavior is conditioned by education in a wide sense of this word, which is the sum of a person's experiences. The conditioning occurs from infancy on—coming from parents, playmates, neighbors, teachers, companions, friends, enemies, and also from books, news papers, and all other means of communication. Of course the outcome of the conditioning depends upon the person conditioned. Education is useless without a brain to absorb it, and an educable brain presupposes a human genetic endowment. The biological uniqueness of the human genotype lies in the fact that it permits a greater degree of educability than the genes of any other biological species.

Equality of Men The problem of the equality of men is a topic of discussion which often generates more heat than light. Evolutionary biology should help at least to state the problem correctly. Equality and inequality of men are religious, ethical, and legal, not biologically and mequality of men are religious, ethical, and legal, not biologically concepts. Men may be equal before God and before the law without being biologically alike. Indeed men are not biologically alike, no two men, identical twins excepted, have the same genotype. To some people this fact is emotionally repugnant, a repugnance which can be due only to misunderstranding of the meaning of heredity. Heredity of mental, emotional, and personality development is mostly conditioning not destiny. Excepting genetically controlled mental diseases normal human genotypes permit a great latitude of intellectual and emotional developments.

Whether the genetic endowment makes some people superior and others inferior is another story. This question has no meaning unless the basis of the value judgment is made explicit. Superior or inferior for what? Most people will agree that a congental idiot who is incapable of performing ordinary work and unable to take care of himself is not a useful member of any society. But is a football player superior or inferior to a chess player? How could we compare the values of a scientist and an artist? Of a thinker and a man of action? Of a farmer and an industrial worker? Clearly, mankind needs all of these and many other kinds of people. And, fortunately, most human individuals can be trained to perform competently many of

fitness in the sense of Thoday's definition (see above). Unless man kind chooses to destroy itself by atomic explosions or similar means it is more likely to endure than any other creature. Mans biological pinnicle is a solitary eminence, no other species can aspire to dispute it.

Biology gives no warrant for the belief that man was preformed in the primordral life, or that the evolution of life as a whole had as its purpose the production of min. Evolution does not strive to accomplish any particular purpose or to reach any specific goal except the preservation of life itself. Evolution did not happen according to a predetermined plun. Neverthicless, when man contemplates the whole perspective of the evolution of the Cosmos, he can see that the origin of mankind was one of the outstanding events in the listory of creation by evolution. This event is represented symbolically in Michelangelos beautiful fresco reproduced as the frontispiece of this book.

Considered biologically, man arise because of the action of the very same forces which bring about the evolution of all other organisms. Natural selection responded to the challenge of environmental opportunity, and compounded an adaptively highly successful genotype from genetic elements contributed ultimately by mutation. In a sense the origin of man was a lucky accident. Evolution is not repeatable because slight differences either in the environment or in the genetic materials might have resulted in something different from min. But in another sense man was not recidental. Natural selection is in Tishers words, "a mechanism for generating an exceedingly high degree of improbability. In other words, selection creates gene combinations which would be almost infinitely unlikely without at Laplace was right, but only in part. Perhaps a "wast intelligence" could discern in primordral matter the distant coming of man, but this intelligence had to be divine, not human.

Genetically Determined Educibility. It has been pointed out in Chapter 13 that man, like other biological species, became genetically differentiated into races. This differentiation occurred in response to the differences in the physical environments of the different countries which man inhabits. But as time went on, man's physical environments became more uniform or more easily controllable. The reverse was time of cultural environments. Here the diversity is steadily increasing. Man is inseparable from his culture and cultural environments can be dealt with only by learning to choose among many possible courses of action the one appropriate under the circumstances. Biological evolution has produced the genetic endowment which has

urable life in society, wrong actions are socially disruptive. Natural selection has encouraged the spread in human populations of those moral qualities which were useful for the preservation of the life of individual members of society, and hence for the maintenance of society as a whole. Thomas H Hurdey (1825–1895) entertained, for a time, ideas like Spencer's, however, in his celebrated lecture given in 1893 he pointed out quite clearly the weaknesses of these ideas According to him, "Cosmic evolution may teach us how the good ind the evil tendencies of man may have come about, but in itself, it is incompetent to furnish any better reason why what we call good is preferable to what we call evil than we had before. And further "The practice of that which is ethically best—what we call goodness or virtue—involves a course of conduct which in all respects, is opposed to that which leads to success in the cosmic struggle for evistence."

Julyn Huxley, a grandson of T H Huxley is the most active modern exponent of evolutionary ethics. Although philosophers and theo logians usually believe that the validity of an ethical code must rest on divine sanction, J Huxley proposes "a morality of evolutionary direction." Although not a believer in orthogenesis, J Huxley thinks that he can discern a direction in biological and in human evolution, and that this direction consists basically of three factors—increase in control over the environment, increase in independence of the environment, and the capacity to continue further evolution in the same progressive direction." If so, then anything which permits or promotes open development is right, anything which restricts or frustrates development is wrong.

This is certurily an interesting idea, but it may be questioned whether it meets adequately the above quoted objection of T. H. Hurley against evolutionary ethics. Suppose that the evolutionary direction which our life has followed until now can be known beyond reasonable doubt. Would this necessarily mean that this direction is good and that we ought to help its continuance? Evolution has produced a mind capable of knowing that it has evolved and that it can evolve further. Can't this mind also scrutinize the wisdom of the process which gave birth to it? But such a scrutiny can be based only on criteria of wisdom derived from sources other than the evolutionary process itself. Man knows not only that he has evolved and continues to evolve, but that he is also in the process of learning how he may promote his own evolution in the direction of his choice. But what should be the basis of the choice? As G. G. Simpson rightly wrote. "It is futile to search for an absolute ethical criterion retro-

the functions that are needed in human society, although some individuals may be more successful in some functions than in others

Here one must beware of a specious argument which is the more misleading because it is so phusible. The argument runs about as follows Since we know that rices and breeds of wild and domestic animals often differ in genetically conditioned behavior, how can it be that human races are an exception? The answer is simple. The race horse and the draft horse, or the fox terner, the dachshund, and Great Dane, differ in their temperaments and these differences are. to a large extent, genetic. But these differences are there because they have been built into these breeds by the artificial selection which fashioned them to serve different needs or whims of their owners Certainly a rice horse with a temperament of a druft horse would be a fadure, just as a draft horse with a temperament of a race horse would be Now human races, no less than human individuals, suffer frequent and often drustic changes of fortune. The adaptive advantage of educability is the one constant in human evolution since the beginning of its cultural, or truly human, phase Genetic differences between rices are then secondary to those differences rooted in cultural heredity

Evolutionary Ethics Biological evolution has contrived human genotypes which make man in the words of Thomas Jefferson, "formed for society, and endowed by nature with those dispositions which fit him for society." Among these "dispositions," surely one of the most important is the ability to distinguish between right and wrong. It is man's moral sense which makes him truly human. Where does this moral sense come from? All religions claim either that ethics are based on supernatural revelation or that the ability to discriminate between good and evil has been implanted in the human soul by God On the other hand according to Chauncey Leake "The probability of survival of a relationship between individual humans or groups of humans increases with the extent to which that relationship is mutually satisfying May, then, man's ethical sense be a product of biological evolution by natural selection? Or, perhaps the religious and the evolutionary explanations are the two sides of the same com?

Flushed by the tremendous successes of natural science in their time some nineteenth century scientists felt that no problem could be insoluble in mechanistic terms. In his Principles of Ethics (1892), Herbert Spencer (1820-1903) attempted to show that ethics are part and parcel of biological evolution. Good conduct makes for pleas-

This is perhaps the most thoughtful book ever written by a believer in evolution by autogenesis

Nouv Lecomte du 1947 Human Destiny Longmans Green London (Also available in a paper bound edition of The New American Library.)

This is a popular presentation of the finalist point of view. The book contains numerous and important factual errors in its presentation of biological and geological information. A point of view related to finalism is presented also in the following atticle.

Osborn H F 1934 Aristogenesis the creative principle in the origin of species American Naturalist, Volume 68 pages 193-235

For a critique of the subgenetic and finalist theories of evolution see particularly G G Simpson's books quoted among the suggested readings in Chapter 12 Concerning the evolution of min and of man's unique abilities see the suggested readings in Chapter 13

The problem of the so-called scientific ethics is discussed particularly in the following books

Huxley T H and Huxley J 1947 Touchstone for Ethurs Harper, New York and London

Huxley J 1941 Man Stands Alone Harper New York

Huxley J 1953 Evolution in Action Hurper New York

Leake Chunces D and Romanell P 1950 Can We Agree? University of Texas Press Austin

Waddington C H 1942 Science and Ethics Allen & Unwin London

actively in what occurred before ethics themselves evolved. The best human ethical standard must be relative and particular to man and is to be sought rather in the new evolution, peculiar to man than in the old, universal to all organisms." Evolutionary ethics have not been formulated yet, and one may reasonably doubt that they can be made scientifically convincing or neitherically satisfying

Epilogue The evolution of the Cosmos has not been everlastingly uniform Some important "dates" can be discerned which mark neriods of titanic stress and crisis, leading to events of transcendental significance. The first date is, of course, the beginning of the universe itself According to the estimates which physicists and geologists are able to make, this beginning occurred some 5 billion years ago. Some 2 billion years ago life appeared there, and biological evolution was mangurated As far as anybody knows for sure this happened in the whole wide universe, only on a tiny speck of dust which is our earth Biological evolution created some millions of species of organisms, which explored various possibilities of living. Most of these species eventually became stranded in the blind alleys of opportunistic conformity to the favorable situations in the environment which proved only flecting and temporary But some organisms made evolutionary "inventions which permitted them to spread, multiply and, some of them, to become dominant Half a million to a million years ago one species made an evolutionary "discovery" of unparalleled significance, it became carable of extra-biological transmission of acquired and learned experience. This species became human and opened up a new, cultural or human, evolution. About two thousand verrs ago this species had advanced for enough to be able to receive the Sermon on the Mount The development of science at first slow and hesitant, but during the last two centuries rapidly accelerating, is enabling man gradually to acquire a better understanding of himself and of his environment on earth and in the Cosmos Julian Huxley thinks that man finds himself in the unexpected position of business manager for the cosmic process of evolution" This judgment may be a premature one, but man does struggle against the bounds of his nature, and this struggle makes his existence worth while and contains a hope of a noble future

Suggestions for Further Reading

Berg L S 1928 Nomogenesis or Evolution Determined by Law Constable London

Allison 143 219

Aberrations chromosomal 63-68, 83 in Drosophila 143-148 176 219 Abiogenesis 16 Achillea 154-157 163 Acom worm 244-246 Acquired characters 77-80 89 115 Adaptation 12 13 35 154_155 and diversity, 162, 167 and modification 75-77 and mutation 106-107 and preadantation 369 370 chemical, 244 complex 368 369 for cross fertilization 259 in bacteria 92-100 in man 5 334 335 origin by selection 14 19 91 102 109-133 158 159 290 Adaptive niche 370 Adaptive plasticity 345 Adaptive radiation 291-293 295 296 307 314 315 326 366 Adaptive value 119 120 122 123 147 148 177 Adenosine triphosphate 243-246 Adrenaline 274 275 Age of Amphibians 289-291 373 Age of Mammals 293-296 373 also Mammals Age of Reptiles 373 see also Reptiles Albertus Magnus 166 Albinism 74 76 140 248 in man 31 33 40 42 Algae 9 12 91 254-256 Allee 113 133 341 356 Alleles scc Gene alleles

Abel 274

Allum see Onion Allometric growth 346 Allopatric 137 138 160, 163 167-169 179 183-188 345 Allopolyploids 168 202, 204 208 Allotetraploids 204-206 Amadon 314 318 Amaurotic idiocs 32 107, 140 Amino acids 7, 11 18 19 83 Amoeba 12 Amphidasys 104 Amphioxus 369 Amputation effects of 78 Analogy 231 233-235 238 247, 249, 306 308 Anaphase 46-48 50 Anatomy comparative 227-232 Anaximander 3 357 Ancon sheep 81 Anderson Edgar 127 133 213 Anderson E H 98 Andrewartha 133 163 Anemia 32 219 Aneuploid 64 66 82 Animalculists 222 Anthropoid ages see Ages Anthropology, 135 137 159 346-354 see also Man Anthropomorphism 343 Antibiotics 96 98 Antibodies 89 100 246 247 Ants 269 270 341-343 Apes anthropoid 4 321 323 324 326 327 335 337 338 341 Appendix vermiform 242 Apples 125 Aquilegia 175

Blakeslee, 174, 265	Camels, 311
Blending inheritance, see Heredity	Camouflage, 105
Blood, adaptation of 13	Candolle de, 194 242
groups, 125, 130 136 138 139, 149-	Care of the young 294, 295
152 188, see also Rice and Man	Carnivores 309
theory of heredity, see Heredity	Carpocapsa, 104
transfusion of 79	
	Castes in social insects 269, 270, 343
Blue grass 64	Castration 275-276, 281
Blum 18, 21	Catcheside, 108
Boarmia, 105	Catechol 100
Bonelha, 270-271	Cats 193 248, 311
Bonnet, 224 225, 231	Cattell 90
Bonnier, 277	Cattle, domestication of, 193
Boven 46 53	hybridization of 127 174
Bowater 104	milk production in, 122
Bower birds 279 280	serology of, 247
Box theory 222	twins in, 248
Boyd, 164 355	Caullery 260, 283
Brachiopods 296	Cell theory 45
Brachycephalic 42, 153	Centers of origin of domestic species
Brain 334-337, 361 370-372 375	191-196
Brassica see Cabbage	Centromeres, 46 51, 66, 67
Braun, 108	Chaffinch 340
Breakdown hybrid 172 177-179	Chalicodoma 314
Breeds, 42, 138, 193 194 376 see also	Chance in evolution, 357-378
Dog and Horse	Change, in chromosome number, 63
Bridges 55 63 262 263 273 274	in gene frequency, 118-119
Brneie, 178	Characters as abstractions 37
Broom 326	Chemotherapy, 96-97
Brown 45	Chetvenkov 140, 141
Browsing 303-305 370	Chiasmata 50 52, 54, 55
Buchsbaum 251	Chimpanzee 7 165 246, 321 323, 326
Budgerigar 192 193	327 336
Buffalo 174 193	Chlamydomon is 258
Buffo see Toad	Chlorophyll 11
Buffon, 77	Chloroplasts, 89
Burks 90	Cholesterol 275
Burnet 92	Chondrodystrophic dwarfs, 32 85
Burrows, 283	Chromomeres 46
Burton 283	Chromosomal aberrations 63-68, 82
Butenandt 275	83 sec also Chromosomes
Buthus 282	Chromosomal races in Drosophila 148
Butler 79 113	149 152
Butschlı 46	theory of heredity 62
i	theory of sex 261-269
Cabbage hybrids with ridish 205-207	Chromosomes breakage of 66 67, 139
Culvinists 223	chemistry of 8 45 46
Camarhynchus 341	correlated with genes 53-63
Cambron life 2 289 289	discovery of, 45

Agunas, St Thomas, 357	Balanoglossus, 214-216		
Archaeopteryx, 110	Balbiani, 16		
Arctostaphylos, 174	Baldwin, 245, 252		
Arginine phosphate 245 246			
Aristogenesis, 360	Baltzer, 173, 271		
Aristotic 18 44, 223, 221 227, 233,	Banteng 174		
	Bark beetles 103		
253 256 357 370	Burley, 121, 166 194 196, 217		
Art, prehistorie, 6	Barnaele 239-240		
Artificial insemination, 173	Barzun 370		
Artifical new species 207	Busic plans, see Types		
Artificial selection 125 179, 191 376	Bateson 43		
see also Selection	Bats 231, 232, 292, 307		
Ascherson, 209	Bauer 46		
Ascidians 7 see also Ciona	Bayles, 274		
Asexual reproduction, 115, 123-125,	Beadle, 83 89, 249		
168, 255	Beans 113, 114, 119 194 196, 217		
Asexual species, 188 189	Beasley 207		
selection in, 126	Bedbugs, 103		
Ashley Montagu 113, 133, 327, 341,	Beer, de 252		
355	Bees 229 230 269-270 341		
Asses 169-172, 177, 182, 193 196, 197 301 305	Behavior, innate 843-345		
	learned 343-348		
Assimilation 7, 11, 19	plasticity of, 122		
Atoms 2, 4 319	sexual 279-281		
Auerbach, 87	social 341, 344		
Australian faun 1, 315, 316	Behaviorist, 162		
Australopithecus 5 326-329 333, 334	Belar 48, 50		
336 338 362	Belon 227 228		
Autogenesis 358–362 365 369	Berg 359 366 368, 378		
Autopolyploids see Polyploids	Bernal 18 21		
Autosomes 262-265	Bernard 274		
Ave aye 324	Bhaduri 280		
1	Bidder's organ 280-281		
Babcock, 47	Biochemical homology 243 246		
Baboon 246	Biochemical mutants 83 see also Muta-		
Bacci 271	tion		
Backeross 54	Biogenetic law, 235 236 238		
Bacon 16	Biological heredity, 4 5 see also		
Bacteria 14 16, 17, 371	Heredity		
adaptation of 92~100	Birch, 133 163		
gents in 33	Birds 279 280 291-293		
mutation in 83 87 92-100	adaptive types of 110		
reproduction of 23 111	migrations of 344 345		
sex in 33	songs of 340		
virulence of 99	Birdsell 164 347-350 354 355		
Bactenophages 15 33 92-95 106 371	Bisexuality 258-261		
Baer von 223 235 238	Bivalents 50, 52 59		
Balanced polymorphism see Poly-	Black death 99		
morphism	Blair 174		

Blakeslee, 174 265 Blending inheritance see Heredity Blood adaptation of, 13 groups, 125, 130 136 138 139, 149-152, 188 see also Race and Man theory of heredity, see Heredity transfusion of, 79 Blue grass, 64 Blum 18, 21 Boarmia, 105 Bonelha, 270-271 Bonnet 224 225 231 Bonnier 277 Boven 46 53 Bowater 104 Bower birds 279, 280 Box theory, 222 Boyd 164 355 Brachiopods 296 Brachy cephalic, 42 153 Brain 334-337, 361 370-372 375 Brassica, see Cabbage Braun 108 Breakdown hybrid 172 177-179 Breeds 42 138 193, 194 376 see also Dog and Horse Bridges 55 63 262 263 273, 274 Brucie 178 Broom 326 Brown, 45 Browsing 303-305 370 Buchsbaum 251 Budgerigar 192 193 Buffalo 174 193 Buffo see Toad Buffon 77 Burks 90 Burnet 92 Burrows 283 Burton 283 Butenandt 275 Buthus 282

Cabbage hybrids with radish 205-207 Cabanists 223 Camarhynchus 341 Cambran life 2 288 289

Butler 79 113

Butschli 46

Camels, 311 Camouflage, 105 Candolle de, 194, 242 Care of the young 294, 295 Carnivores, 309 Carpocapsa, 104 Castes in social insects 269, 270, 343 Castration 275-276, 281 Catcheside, 108 Catechol 100 Cats 193, 248 311 Cattell 90 Cattle, domestication of, 193 hybridization of, 127 174 milk production in, 122 serology of 247 twins in 248 Caullery, 260 283 Cell theory 45 Centers of origin of domestic species 194-196 Centromeres, 46 51, 66 67 Chaffinch, 340 Chalicodoma, 344 Chance in evolution, 357-378 Change, in chromosome number, 63 in gene frequency 118-119 Characters as abstractions 37 Chemotherapy, 96-97 Chetverskov, 140, 141 Chiasmata 50, 52 54, 55 Chimpanzee 7 165 246, 321 323, 326 327, 336 Chlamydomonas 256 Chlorophyll 11 Chloroplasts 88 Cholesterol, 275 Chondrodystrophic dwarfs 32, 85 Chromomeres 46 Chromosomal aberrations 63-68 82 83 see also Chromosomes Chromosomal races in Drosophila 148, 149 152 theory of heredity 62 theory of sex 261-269 Chromosomes breakage of 66 67, 139

chemistry of 8 45 48

discovery of 45

correlated with genes, 53-63

Chromosomes, disjunction of, 46 63 genetic maps of, 55-58, 68 in Crepis, 47 in man 59 in silivary glinds, 46 numbers of 46, 63 origin of, 70 pairing of, 52 Ciona 7, 259 Classification, and types 134 135 artificial 232, 233 natural 232-234 247 Chusen 154 155 163 Clements 75 Clines 149, 161 see also Race Clones 115, 123-125 131 136, 155 189 255 Coadaptation, 177 Coat colors in mammals, 37-40 Coceids 104 Coccy v 241, 242 Cockroach 103 229 230 Codling moth, 104 Coc. 260 261 Coelacanths 296 297 Coffee 196 207 Colbert 110 287 294 307, 318 336 Colchicine 65 Cohas 272 Colletotrichum 100 Colon bacteria 23 92-95 96 97 106 Colonial organisms 9 10 Colonies isolated 129 130 Color blindness 62 249 Coloration protective 105 Columbines 175 Competition 111-113, see also Natural selection Compley adaptations 368 369 Condylarths 298 360 Consanguinity see Inbrueding Continental drift see Drift Continuity of life 16 17 Convergent evolution 232 247 291 Coon 164 333 347-350 354 355 Cooperation 112, 113 341-344 Cope 305 Corals, 9

Corn chromosomal aberrations in, 68 chromosomes of, 49-51 54 cross pollination of, 215 double crossed, 215 218 genetic maps in 55 hybrid, 142, 214-217 inbreeding in 216, 217, 219 mutations in, 85 86 origin of, 192, 198, 208-214 primitive 210-212 relatives of, 208-210, 260 selection in, 125-126 sex in 260 varieties of, 213-217 Corpus luteum, 275 Correns 25 Cosmic evolution, 1-5 Cosmic rays, 88 Costa Lima 372 Cotton domestication of, 194 196 201 204 205 gene homology in species 248 hybridization of openes 177, 203 204 wild species 202-205 Count 164 355 Courtship 172 173, 257, 279 282 339 Creatine phosphate 245 246 Creodonts 298 Cremdula 260 Crepis chromosomes of, 47 Crew 283 Crocodiles 290 292 Cro Magnon 4 330-333 336 Cross fertilization 259 Crossing over 52 57 Crossopterveians 289 Crow, 219, 221 Crustaceans, larvae of 238-240 Crystals 8 9 11 Cuenot 359 361 Cultivated plants see Corn Cotton, and Cultural evolution see Culture Cultural heredity see Culture Culture 3-5 320 330-333 338, 339-341 344 345 354 373-378 definition of 338 rudiments in animal 340-341

da Cunha 219, 220 Curtis 93 Cuvier 135 224 225 227 233 234 Cyclops, 238-240 Cyclostomaty 236-238 Cytogenetics 45 Cytology, 45, 53 Cytoplasmic heredity, 88 89, 267 Dacque 359 Durlington, 105, 251 Dart. 5 326 328 Darwin 13 23 25, 77-79, 82 91, 108-113, 115 117, 133 165-168 181-183, 188 190 192 194 215 217 227, 233 236 242, 250 253 277 278, 285, 288 311 315 319 355 357, 358, 368, 370 Darwinian fitness, see Adaptive value Durwin's finches 311-313 Datura, 174 Dubentoma 324 Dauvilher 18 Davenport 40 DDT 102 103, 106 Deer Mice 174 Deficiency, chromosomal 65-69, 81 Delbruck 92 Deleterious mutants see Mutation Deletion see Deficiency Demerec 87 92 94 96, 98 Democracy 162 Deriugin, 245 Descartes 357 Desguin 18 Desoverbose nucleic acid 8 46 Determinants 250 see also Weismann Development individual 35-38 44 77 223, 242 250 369 Diabetes, 76 Diakinesis 52 Dice 174 Didelphis see Opossum Diffusion of genes see Hybridization Dinosaurs 291-293 Dioecious plants 257 258 Diploid chromosome set 51 Diplotene, 50 52

385 Diseases hereditary 32, 36 76, 83, 85 128-130 139-143, 219, see also Man Disjunction of chromosomes 46 63 Dispersal, sweepstakes, 313-317, see also Migrition Divergence, evolutionary, 167 Dobehansky, 43 65 70 90, 133, 145 163 Dog, 135, 169 192, 193 194 247, 248, 335 337 339 364 Doisy, 275 Delichocephalic 153 Domestic animals and plants 122, 127, 138 184 191-221 284 see also Barley Cats Cattle Corn Cotton Dog Horse Poultry, Rye and Wheat Dominance, 25 29 Drepanuds 314 Drift, continental 317 genetic 119 127-130 Drosophila, chiasmata in 55 chromosomal races in 148 149 152 gene homology in 247-248 genetic maps in 55, 68 gypandromorphs in 273-274 heterosis in, 219 homeosis in, 83 84 intersexes in, 261-264 268 269 277 inversions in 143-148 176 219 lethals in 140-142 linkage groups in, 55 Morgan's work with 36, 82 mutation in 36 82-86, 87, 88, 105 140-142 248 249 numbers of genes 33 54 sex linkage in, 60 63, 64 67 species number in 169 triploids in, 262-264 269 Drosophila americana 172 ananassae 47 melanogaster 47 49 51, 53 55-60 62 61 67 80 84 85 207, 248 249 261 264 273 persimilis, 170-172 176 178 179 188

polymorpha 220

Drosophila pscudoobscura, 47, 68 111 Environment, challenge of, 122, 123. 146-148 152 159 163, 170-172, 131 132 363 374 human, 345 see also Culture 176 178, 179 188, 266, 279 repleta, 47 Environmental opportunity, 363 simulans, 248 Enzymes 7, 213-246 249, 251 Echippus 298-300, 302, 303, 305 360 subobscura, 47, 279 Epidemics, 99-102 virilis 172 Epigenesis, 222, 223 235, 242 250 251 uillistoni, 47, 142 Epiloia, 85 Dryopithecus, 326 Epinephrin 274-276 Duckbill 231 293 Epling 163 Ducks 174 Equality of men 162, 375, 376 Dunahella 254 Equidae see Horse Dunbar, 318 Equilibrium genetic, 143 144 146 147 Dunn, 43 65 70, 83 108, 133 Equus, see Horse Du Nous, 359 Escherichia see Colon bacteria Duplications, 65-67, 69 208 Estrogen, 275, 276 Dwarfs 32, 85 Ethics, 376-378 Ethiopian fauna 315, 316 Earthworms 257 Ethnic groups 160 see also Man races Echinoderms 173 244-248 of Ecological isolation see Isolating mech Eucalypts 315 316 Euchlaena 208-210 Ecological niche 178 305 311, 314 Eugenics 121 140 see also Man Evening primrose see Oenothera Educability of man 374-376 see also Evolution biological 2 19 Culture chance in 357-378 Egg cells, 10 11, 45 52 continuity of 82 Eggs, numbers of 111 convergent 232 247, 291 Chringsdorf skull 332 cosmic 1-5 cultural see Culture Eimer 360 freedom in 357-378 Electron microscope 14 15 33 92, 95 human 3-5, see also Man Elephants 363 of sex 253-283 Elk Insh, 360 361 364 physiological 243-247 Embryo sacs 52 progressive 19 70 223, 293 370-Embryology, 235-238 241 see also De velopment raw materials of, 131 see also Muta-Emerson 356 Empedocles 111 357 synthetic theory of, 109 Empidae, 279 Evolutionary divergence 167 Endemic 311 313 ethics 376-378 Endocrares 274-276 344 368 inventions 130 290 302 366 378 Environment and adaptation 14 153 old age 298 290 opportunism 367 371 and heredity 11 12 13 19 23 69 rates 296-298 senescence 364-368 and mutation 80 86-89 106 trends 363-366 and sex 268-272 vouth 298, 364-366

Extinction, 289, 366-368 Eye colors in man, 31, 33

Fibre, 279, 344
Fabricius, 235
Factor of safety, 269
Falls 139

Fano 92 Faunal regions 315–317

Faunal regions 315–317 Fecundity 119

Fecundity 119 Federley, 206

Femaleness 263 267, 271

Fertilization 44, 45 52 interspecific 173

Filter flies 103

Finalism 20 358-362 369, see also Vitalism

Finches 312 313 Fisher 120 374

Fitness Darwinian see Adaptive vilue

Flax, 174 196 Fleming 46

Flint 330 Floral regions 315-317

Florkin 252

Fluctuating variability 82 see also Polygenes

Fontechevide skull, 332 Ford, 105-219

Form organic, 222-252

Fossil evidence of evolution 284-318 328-337 360-369 371

Fossil man 328-337

primates, 325 326

Fossils Cambrian see Cambrian life For 158 Fraternal turns see Twins

Freedom in evolution 357–378 Freemartin 277–278

Frequency of mutation, 84-88 see also Mutation

Frisch von 341 Frogs 178 179 184 238 258 290 Function organic 222–252

Galapagos Islands, 311-313 316 Galeopsis 207 209 Galton 25 79

Gama grass 209 210

Gametes 49, 51, 52, 254

Gamow, 21 Gam. 164, 347-350, 354, 355

Gates 43 Genumbes 79 80, 250

Gene 206 Gene alleles 33

arrangement in species 143, 206

balance, 68 correlated with chromosomes 53-63

defective 32, see also Diseases and Lethals

definition of, 25 destruction of 80

dosage of 65-67 effects on development 35-38 frequencies, 115-121

homology, 247-248 in siblings, 32-35

in siblings, 32–35 independent assortment of, 27–34–54

55 interaction of 38-42

linear arrangement of, 46 54-60 linkage of 56-58

multiple, see Polygenes number of 32, 33 54

pleiotropic, 35-37 pool 115-118 123, 125 128 137

176 177 194
segrepation and recombination of, 53
systems of 175-177

theory of, 23-43 Generation, spontaneous 16 17 20

Genetic drift see Drift
Genetic maps of chromosomes, see

Chromosomes Genotype 73-77 see also Heredity and

Gene Geographic gradients 149, 161

Geographic isolation see Allopatric Geological time 286 287 Germ plasm 74, 250 Cibbons see Apes

Cibbons see Apes Gill bars, 245 Gill pouches 235

Gorts 173 193 Godlewsky, 173

Goethe 135 225-227, 357 Golden whistler 161

Heterozygote, 27

Goldschmidt, 81 165, 266 267 Gorilla, see Apes Gossypium see Cotton Gowen 99, 100, 108, 221 Graafian follieles, 275 Cridients geographic 149, 161 Grant, 175 Grasshoppers, 50 56 229 Grazing, see Horse Gregory, 252, 318 Grew, 235 Ground plans, see Types Growth, allometric 364 Gulls, 185 186 Guthrie 93 Gynandromorphs 272-274 Gypsy moth 266 267 Hadom, 83 Haeckel, 234, 236 241 242 Haldane 85, 90 120 139 243 252 Haploid 49 50 52 270 Hardy-Weinberg law 117-120 136 Hares, 173-247 Harlan 124 Harland 204 205 221, 248 251 Harms, 281 Hartmann 270 283 Harvey 16 235 Haskins 356 Hawau fauna of 312-314 Heitz 46 Hemophilia 62 85 107 Hereditary diseases see Diseases Heredity and environment see Environment biological 4-5 see also Gene blending see Polygenes blood theory of 24, 25 35 42 117 chromosomal theory of 62 cultural see Culture cytoplasmic 88-89 evolution of 69 70 Hermaphrodites 119 257-261, 271 Hershey 95 Hertwig 45 Heterosis 142-144 148 176 215-220 balanced 218-220

mutational 218-220

Heyea, 192 Hicsey, 154-157, 163 Hippanon, 303-305 Historical record ace Fossil evidence of esolution Hofmeister, 45 Hogben 90 Holarctic fauna, 315 Holmes 3 Hologenesis, 359 Homeosis 83 84 Homeostasis, 13 14, 76, 133 293 345 Homo see Man Homology, 228-235, 238, 308 biochemical, 243-246 of genes, 247-249 serial, 227 special 227 Homosexuality, 280 281 Homozygous, 27 Homunculus, 16, 222 223 250 Hormones 274-277, 344 368 Horse breeds of, 127, 138 198-201, 360 cost colors in 37-40 176 248 domestication of 193 196-200 evolution of, 298-305 360 363, 370 fossil 303-305 309-311, 362 370 hybridization 169, 170 172 177, 182 see also Asses and Mules thoroughbred 127, 200 201, 360 Horseshoe crab 296, 297 373 Hot springs 91 Housefly 102, 103 106 Howells 135 355 Human see Man Hutchinson 204 205 221 Huxley, Julian 377 379 Huxley Thomas 377, 379 Hybrid breakdown 172 177, 179 com see Com inviability 173-174 stenlity 172-174 181 182 206 vigor, see Heterosis Hybridization in cotton 203 204 in man 332 333 in wheat 102

Hybridization intergeneric, 174 interspecific, 172, 175, 178, 179 197 206 208 introgressive see Introgression relation to selection 33 126 131 remote 173 Hydrocyanic gas, 104 Hyracotherium see Eohippus Ideas Platonic 134 225 Identical twins see Twins Idiocy, see Amaurotic idiocy Immunology, 246, 247 Inbreeding, 119 177 215, 217 218 219 258 Incense cedar 317 Independent assortment see Genes Indomalayan fauna 315 316 Indus civilization 201 Industrial melanism 104 105 Infection 13 see also Epidemics and Viruses Infusoria 89 Insecticides 102-104 341-344 Insectivores, 295 325 Insects mouth parts of 229 230 Kallmann, 281 Insemination reaction 173 Instanct 339 344 Insulin, 275 Intelligence 335 337, see also Culture Intermarriage 138 Internal secretion, 274-276 Interphase 49 Intersexes 261-269 276 277 sec also Drosophila Introgression 127 174 179 214 see also Hybridization interspecific Inventions evolutionary, see Evolution ary inventions Inversions 65-69 206 208 see also Drosophila inversions in Inviability of hybrids, see Hybrid invia Krumbiegel 193 bility Iris, 127 Insh elk 360 361 364 Irritability, 7 12 Island continent 307 Islands continental 311-313 oceanic 311-314 316

Isolates, 137 Isolating mechanisms 169 172-174, 179-180 201, see also Hybrid breakdown genetic 172 ecological 170 187, 188 ethological 171 geographic 168, 169 188 habitat, 170-174 reproductive 168-170, 172-179 181 182 184-187, 206 sexual, 171-173, 179, 278 Isotopes 12 287 Ivanovsky, 14 Ives 88

Inva Man, 328 329, 331, 335-337 Jefferson 376 Iimson weed see Ditura Johanssen, 25, 73 74 113-115 123 124 130, 250 Jones 215 260 Tordan, 168 Jugenheimer, 128

kangaroos, 293 karpechenko 205-207 kea раггот, 340 keck 154, 155 163 Keith, 332 Keller, 277 Kerr. 270 Kidneys 236-238 Kluckhohn 338 Koala 307 367 Loch 283 Koopmann 179 180 Lovalevsky, 305 Kroeber, 341 Kropotkin 113 133

Lack, 163 312 313 318, 341 Ladder of progress 224 373 Lagomorphs 247 248 Laibach 174 Lamarck 13 77 78 167 181 183

224 225 240, 284 358 370

Lucretius, 111, 357

Lamprey, 236-238, 288 Lancelet, 369 Land bridges 303 Landauer 83 Lang, 126 Language see Culture Laplace, 358, 374 Larus, 185 186 Larvae of crustaceans, 238-240 Lascaux caves, 6 Latimeria 296 297 Lavoisier, 243 Law of independent assortment 27-29 Law of segregation, 25-27 Le Gros Clark 330-338 Lead, 287, 359 Leake 376 379 Leakey, 326 Learned behavior, see Culture Lederberg 33, 108 Lecuwenhoeck, 45, 222, 261 Leibnitz, 223 224 Lemurs 322 324, 325 Leonardo da Vinci, 44 Lep1s 239 240 Leponds 173 Lerche 254 Lerner 43 133 221 Lethals, 82, 83 86, 105 106, 139 140-142 see also Diseases and Man Li 63, 133 Libocedrus 317 Lice, 103 Life continuity of 16 17 nature of 1-22 see also Self repro duction origin of 1-22 123, 288 Lillie 277 Limnopithecus 326 Limulus 296 297 373 Lindquist 103 Linear arrangement of genes 54-60 Lingula 296-298 373 Linkage 53-58 Linnaeus 135 166, 167 181 189 232-234 320 Litopterns 309-311 Locy 251 Lorenz 356

Luria, 92-95 Lymantria 266, 267 Lysenko, 16 79, 89, 166 Macroevolution, 166 191 Macrospores, 52 Maize see Corn Malaria 143 Maleness 263 267, 271 Malpighi, 223 235 Malthus, 111 Mammals adaptive radiation of, 292 age of, 293-296 embryos of, 235-238 evolution of, 4 13 295 365 366 in Americas, 308-311 origin of 363 see also Placental mammals and Mar sunials Man educability of 374-376 erect posture of 370 evolution of 3-5 319-356 373-375 gene homology in 248 gene pool of 128 genetic drift in, 129-130 heterosis in 220 221 hormones in 275-277 inbreeding in 217 intersexes in 276, 277 Mendelian inhentance in 29-32 Mendelian populations of 137 populations of 111, 118 125, 136 138 152 153 162 177, 346-355 376 races of 135 136 159-162 165 184 188 346-355 specific unity of 333 334 see also Blood groups Chromosomes Color blindness Cro Magnon Culture Diseases Fossil evidence of evolution Lethals Mutation Neanderthal Man Negroes Peking Man and Pigmentation Mangelsdorf 209-217 Manifold effects of genes 35-37 154 Mankind see Man Manzanita 174 Maral deer 192 193

Marsh 305 Marsumals 293 306 308-310, 315 367 Martini, 124 Mason bee 344 Mather, 43 Matthew, 305 311 318 Maunertus 79 357 Mayr. 158 161 163 168 185, 318 McClung 55 McCown 332 McDougall, 78 Measles, 76 Mechanism 19 20 Meckel 235 Megaloceros 360 361 364 368 Meiosis 49-52 55 255 m cotton 203-204 in Drosophila, 57 in man 59 in species hybrids 206 208 origin of 70 Meiotic divisions 50 52 56 59 Melandrum 265 Melanism industrial 104-105 Melipona 270 Membracids 372 Memory 79 Mendel 24-29 35 43 45 82 253 Mendelian populations 134-165 177 182 184 333 as unit of selection 147 definition of 115 equilibrium in 147 human 137 see also Race Mendels laws 27-30 33 34 54 Merychippus 304 Mesohippus 301 302 Mesopithecus 336 Metabolism 12 20 Metanephros 236-238 Metaphase 46-48 50 Microevolution 90-108 165 175 191 Microspores 52 Migration 119 138 169 in birds 344 345 Milankovitch 330 Valler 18 Missiroli 102 Vitosis 46-49 70 89

Modification adaptive see Homeostasis Moewus 256 Mohr. 67, 68 Mollusks, 7, 257, 260 Mongoloids, 159, 354 Monkeys see Primates Monoecious 257 see also Hermaphrodites Monophyletic, 198 285 Monotremes 234 Montaigne, 44 Montgomery, 55 Moody, 247 Moore 144 178 179, 184 Morch 85 Morgan 36 53-55 60 71 82 273 274 Morgulis 252 Morphology, 8, 243 Mosquitoes 103 229 230 Mourant, 150 151 Mouse, 78 83 193 248 linkage groups in 54 55 Mouth parts in insect, 229-230 Movius 330 Mulattoes 40-42, see also Negroes Mules 169-172 177 178 162, 198 Muller 55 86 87 140 251 Multiple genes see Polygenes Muntzing 207-208 Musca see Housefly Mustard gas 87 Mutagens 87-89 Mutation 23 72-90 additive, 175 and adaptation 106 107 and environment 86-89 106 and gene reproduction 368 fecundity of, 36 frequency of 86-88 homeotic 83-84 homologous, 251 in pure lines 124 induction of, 87-89 longevity of, 86 rates of 87-88 reversibility of, 98 spontaneous 88 95 summation of, 369 theory of 82

Nestor 340

Mutation, useful, 102, 103 106 107 Neumayr, 286 virbility of, 36, 105-107 Neurospora, 55, 83 249 see also Bacteria Biochemical mu Neutral traits 152-154 tunts, Diseases Lethals and Man Newman, 241, 278 Mutual help, 113 Niches ecological, see Ecological niche Myths evolutionary, 111 Nictzsche 112 Nomogenesis 359 Nacf 359 Non-disjunction, 62-63 Naked genes, 69-70 Nordenskield, 251 Narcotics, 13 Norm of reaction, 74-79 81, 115, 132 Natural classification, 247, see also 156 157, 268, see also Environ-Phylogeny ment, Heredity, and Phenotype Natural selection 13 77, 109-133 Notch deficiency 67 and adaptation 19, 91 102 106-107, Nucleic acids 7, 8, 18, 46 109-133 158, 159, 363 368, 370 Nucleoproteins 8-16 18, 19 21, 46, 73, 80 371 and cooperation, 341-344 Nucleus, discovery of, 45 and culture, 339 340, 344 376-378 and ethics 376-377 Oakley 330 and extinction 367 Oats, 119, 194 196 207, 217 and isolating mechanisms 180 Odontoptera, 104 Oenothera 82 and race 153, 355 and sex genes 267 269 Oken 225 and sexual selection 277-279 Old age, evolutionary, 298 and teleology, 230 231 Onion 48 100 154 196 conservatism of, 130, 131 Ontogeny, 236 creativeness of, 115 130, 131 Oogenesis 52 57 Oparin, 18, 21 dynamic 131 Ophryotrocha 270 equilibrium with 143 Opossum 293, 295-297, 306 308 367 history of 111 112 373 ın man 122 153 359 374 Oppian, 166 opportunism of 113 864 Opportunism evolutionary, 367, 371, stabilizing 131 see also Natural selection Nauphus, 238-240 Opportunity, ecological 305 Navashin 46 Orange 125, 194 Nazı 112 Orangutan see Apes Neanderthal Man 330-336 349 Orchids 175 Nearctic fauna 315, 316 Organic evolution 19 Nectarine, 125 Origin of life 18 19 123 Needham, 245 Orthogenesis 360-366 377 Neel 31, 32 43 85 139 141 Orthoselection 362-364 Negroes, 40-42, 74, 77 81 152 159 Orton 260 162 331, 332 346 349 352 355 Osborn 90 133, 305 357 359 379 Neo Darwinism 109 Ostrich, 166 Neohipparion 301 Otter 158 Neotropic fauna 315 316 Ovists 222 Nerve system 259 372 Owen 227, 231

Oyster 111

Pachycephala 161	Pipilo 186		
Pachytene 50-52	Pithecanthropus, see Java Man		
Painter 46	Pituitary 275		
Puring of chromosomes, 52	Placenta 277 293 306		
Palearctic fruna, 315 316	Placental mammals, 306-309 367		
Paleontology 284-311, see also Fossil	Plane tree 188		
evidence of evolution	Plasmagenes, 88 89		
Paludina 256	Plasticity adaptive 345		
Pandonna 371	Platanus 188		
Pangenesis 78-80 250	Plato 184 225 227, 253 370		
Panmictic populations 115-117 119	Pleiotropism 35-37, see also Gene		
138	Plesianthropus 327		
Paracelsus 16 166	Phny, 16, 166, 232 233		
Parallelism evolutionary 306	Plunkett 21		
Paramecium 89	Plutarch 16		
Parasites 13-16 239-240 367 371	Poa 64		
Parathyroids 275	Pod corn 210-212		
Park 356	Polar body 52, 63		
Parrot 340	Pollen grun 52		
Parthenogenesis, 270	Polydactyly 32		
Pasteur 1 17	Polygamy 259		
Patterson 47 163 169 172	Polygenes 40-42 139		
Pavan 142	Polymorphism 136 138 142 143, 163		
Payloy 78	219 220 see also Heterosis		
Peas 119 195	Polyphyletic 198		
used by Mendel 23-28 33 34 36	Polyploids 64 65 82 191-221 260		
linkage groups in 55	284		
Peking Man 328	Pongidae 320 321 326 338		
Penguins 91	Ponse 281		
Penicillin 96 97	Population asexual 136		
Penrose 85 90	cage 145 146		
Peromy seus 174	experimental 145-148		
Petersen 277	genetics 118		
Pezard 275	human see Man populations of		
Phages see Bacterrophages	Mendelian 115 134-164		
Phascolaretos 307 367	seruil 125		
Phenacodus 298 299 302	Portuguese man-o-war 9		
Phenotype 73-77 see also Environ- ment Heredity and Norm of	Position effects, 68 69		
reaction	Potato 196 207		
Phenyl thio-carbamide see PTC	Poulson 63 83		
Phylogeny 233-236	Poultry 79 83 100 101, 193 194 276 Preadaptation 369-370		
Physiology 243 249 see also Biochem-	Predestination 223		
ical homology Endocrines and En	Preformation 222 223 235 242 249		
zymes	251 359 374		
Phytogeography 315-317	Pregnancy, 275 277 368		
Pig 193	Primites 320-328 335 336 341, 362		
Pigmentation in man 31 40-42 76 81	363		
354	Proconsul 326		

Progesterone, 275 276 Progressive evolution, see Evolution. progressive Promptov, 340 Pronephros 236-238 Prophase 48-48, 50-52 Prosimii, 324 325 335 Protective coloration, 105 Proteins, 7, 8 11, 14 19, 80, 125, 246 Przevalsky horse 197-199 Psyche 20 Psychoda 103

PTC, 30 120 130, 138 139, see also Tasters of PTC Puccinia 101 102 Pure lines 113-115 123-125, 136 189,

Pure races 117, 135, 136 347 Purking 235 Purposefulness 109

Quantitative character, 42 see also Polygenes

Rabbit 79 173 193 247 Race definition of, 152 134-162 human 42 135 136 138 159-162 165 184 188 346-355, 376 hybridization 165 in plants 154-158 major and minor, 159 number of 160 347-353 rings of 182-185 Radiation adaptive 291-293, 307, 314

Racial variation rules of, 158 159 Racism 112 315 326 366 damage 67 Radish 205-207 Radium 220 Rana see Frogs Ranunculus 75 Raphanobrassica 205-207 Raphanus 205 206 Rates evolutionary 296-298 Rats 78 367

Ray 231

Recessive 25, 29

Recombination of genes, 30, 53-55, 254, sce also Mendel s laws

Redi, 16 Reeves 210 Regeneration 8

Relative sexuality, 255, 256

Remington 272 Rensch, 158 168, 362

Replacement 289 Reproductive isolation see Isolating

mechanisms Reproductive success, 119

Reptiles, 234 291, 295, 313 363-367 age of 289-291 Resistance to antibiotics 96-99

to insecticides, 102-204 to rust fung: 33 Respiration, 243-246

Retinoblistoma 139 Reversibility of mutation, 98, 99

Rhesus 152 Ribonucleic acid, 8 15

Rice, 194 Riley 70 127

Rings of races 182 185 see also Race and Species Robinson, 326 328

Robson 283 Rodents 247, 248 311 Romanell, 379

Romanes 241 Romer, 252, 318, 365 Rosa 359

Roses 207 Rousseau, 162 Roux 45 46

Rubber tree, 192 196 Rust fung: 33 101 102

Rye 166 196 217, 259 Sacculma 239-244 271

Sunt Hilaire 210 Salivary gland chromosomes 68 Salmonella 99 100 Salticus 282 Satina 174 Scale insects 104

Schemfeld 90 Schindewolf 362

Schleiden 45	Sex, reversal, 281			
Schmalhausen, 131, 133 371	Sexual behavior, 279-281			
Schmidt, 356	dnve 275, 276			
Schull, 43	isolation see Isolating mechanisms			
Schultz, 59	populations, see Mendelian popula			
Schwann 45	tions			
	reproduction 23 35, 38 70 91, 131			
Science, purpose of, 1	182 254			
Sclaters, 315	selection 277–279			
Scolytus 103				
Scorpions, 282	species 183 184			
Sea squirt 259	Sexuality, relative 255 256			
Sea urchin 45, see also Echinoderms	Seymouria, 365			
Secale see Rye	Sheep 81 173 193 248			
Sedimentary rocks 285	Shrews 295 see also Tree shrews			
Segregation Mendelian see Mendels	Shull 215			
laws	Siblev, 186			
Selection and adaptation 109-133 158	Sibling species 188 189			
159 see also Adaptation	Sick 340			
artificial 34, 191	Sickle cell 141 143 219			
coefficient, 119 120	Silow 204, 205 221			
natural see Natural selection	Simpson 22 221 252 298 299 302			
sexual 277-279	303 305 309 310 313 317, 318			
speed of 120 131	360-363 377 379			
stabilizing 131	Smanthropus see Paking Man			
Self fertilization 123 124 126 136	Sinnott, 20 21 43 65 70			
168 218 219 257, 258	Siphonophores 10			
Self pollmation, 215 258	Swapsthecus 326			
Self reproduction 19 23 37 66 70 73	Smith 212 221 283			
79	Smudge fungi 100 154			
Self sterility 258 259	Snails 257			
Semilethal 141, 142	Social insects 270 341-344 see also			
Seminal receptacle 172	Ants Bees Termites			
Semon 79	Soma 74			
Senescence, evolutionary 364-368	Songs of birds 340			
Sense organs 372	Sonneborn 89			
Serological reactions, 246, 247	Sorsby 43			
Serotypes 89	Spallanzani 16 45			
Sevenno 242	Spassky 266			
Sex and environment 268-272	Speciation 168 184 see also Species			
as an adaptation 253	Species 165-190			
chromosomes 55-63 253 261-266	constancy of 166			
270 274 281 see also X chromo	definition of 181-184			
some Y chromosome	experimental 205-208			
determination see Sex chromosomes	incipient, 168			
evolution of 253-283	natural units 190			
hormones see Endocrines	number of 166			
in hymenopterans 269 270	sexual 183 184			
in unicellular organisms 254–256	sce also Isolating mechanisms			
linkage 60–67	Spencer 112 376			

Spermatid 50 Spermatocyte, 50, 59 Spermatogenesis, 52, 56 Spermatogonia 50 Spermatozoa 10 11, 34, 45, 52 222 Sphacrella 91 Sphenodon, 292, 293, 296 297, 365 367 Spiders 282 Spiderworths 45 Spieth, 172 Spiny integter 234, 293 Spontaneous generation 16 17, 20 Sports, 81 Stabilizing selection 131 Stadler, 86 Stakman 101 Stanley 14 15 Staphylococcus, 96, 97 Starling, 274 Stebbins G L 124 127 133 163 188 221, 318 Stebbins R 186 Steinheim skull 332 Stenobothrus 50 Stephens 204 205, 221 248 Stenlity, hybrid see Hybrid stenlity of mutants 141, 142 Stem. 43 56 57 90 Stevens 55 Stingless bees 270 Stone 47 163 169 172 Strasburger, 46 Streptomycin 96-99 106 Struggle for existence 111, 112 Stud books 200 Sturtevant 55 248 Subspecies see Race Sulfonamide 97 Sunlight effects of on man 13 14 72 74 76 77, 153 354 Superfemales 63 262 263 269 Supermales 262 263 269 Survival of the fittest 112 Sutton 53 55

Swammerdam 45 222

Sycamore 188

Swanscombe skull 332 333

Sweet peas linkage in 55

Syndrome, 36 37, 83 Synthetic theory of evolution, 109 Systematics, 181, 187, 189 190 Tandler, 277 Tarpan 38 197, 198 Tarsius, 322 324, 325, 336 362 Tasters of PTC, 30, 33 42, 120, 130, 138 139 Teeth 295 Teleology 230 Telliamed, 166 Telophase 46 48 50 Temperature regulation, 294, 295, 366 371 shocks 63 Teosinte 208-210 Termites, 341, 343 Testosterone 274-276 Tetraploids see Polyploids Thalassemia, 140 Theophrastos 166 Therapsids 295 Thoday, 372 374 Thoroughbred horse see Horse Thyroid, 275 Thyroxin 274 Time, geological 286 287 Timofeeff Ressovsky 86 Tissue cultures 9 Toads 280 290 Tobacco 196 207 Tomato 196 207 Tools origin of 338 341 Towhee 186 Tracers 12 Tradescentra 45 Training inheritance of 78 of bacteria, 96 97 Translocations 65-69 206 208 Tree shrews, 322 324 325 335 Trends evolutionary 363-366 Triploids 65 82 see also Drosophila Tripsacum 209 210 213 214 260 see also Corn Tropies man in 76 Tschermak 25

Sympatric 137, 138, 163, 166-170 184

187, 188

Tuatra, sce Sphenodon Tuberous selerosis, 85 Turtles, 292 Twins, 34, 125 136 277, 281 Types, 134–136 225, 227, 242 288 Typhoid in poultry 99–101 Typology, 134 135

Ultraviolet, biological effects of 18 72 354 Ungulates, 298

Unit characters 36 Uranium 286, 287, 359 Urey, 18 Urogenital organs 236–238 280

Use and disuse of organs 77
Useful mutations see Mutation

Uterus 275, 293

Vaccination 100 Vallois 330 Vanadium, 7 Vandel 359 Variability, 23, 138, 254 see also Mutation Rice, and Sexual reproduction Varieties 138 see also Bace Vavilos 194 195 209 Venereal discases 97 Vestigial organs, 240-243 Vetukhov, 178 Victoria Oneen 85 Violets 174 Virgil 16 Virulence 99-102 Viruses 13 73 and genes 33 69 bushy stunt 15 chemistry of 8 18 discovery of 14 evolution of, 70 mutation in 82

plants 15 primordial 19 69 371 reproduction of 16

tobacco mosaie 15 33 Vis vitilis see Vitalism

Vitalism 13 19 20 79 273 357, 359 369

| Vitamins 13 35 76 83 153

Vries de, 25 82, 83 Waddington 379

Waddington 378 Wagner, 168 Wald 252

Walker, 100 108 154

Wallace, A R 278, 311 315 Wallace, B 178 220

Wallace, E 84 85 264 Warm bloodedness, 293 see also Home-

Warm bloodedness, 293 see also Ho ostasis

Warmke 265 Washburn 335 Wasps 269 341

Watch analogy, 369

Water crowfoot, 75

Wewer 75 Wegener 317

Weidenreich, 333-335 337 355

Weier 75 Weimer 81 300 301

Weimer 81 300 301 Weinberg see Hardy-Weinberg law Weismann 45, 74 78, 102 109 250

Wenneh, 283

Westergaard 265 Whales 231 232 241, 242 247

Wheat infection with rusts 101-102 origin of 196

polyploids in 207 self fertilization, 119 217 258

thatcher variety 126

transformation of, 166 Wheeler 343

White 70 283 Willow 257

Wilson 46 55 71 103

Wisdom of the body, 13 see also Homeostasis

Witschi 258 281 Wolff, 223 235 Wood Jones 324

Woodward 126 Wright 120 127 131

\ chromosome in man 59 85 sex determination 261-274 see also Drosophila

X rays 63 66 67 87 88

Yak, 174, 193
Yarrow, 154-157
Y chromosome in mnn, 59
sex determination 261-274
sec also Drosophila
Yensts, 83
Young, 252
Youth evolutionary, 293
364-366
Yudkin, 245

Zavadovsky, 275
Zea, see Corn
Zebras 169 170 196, 197 304 305
Zebrouds, 197
Zeuner, 330
Zimmermann 228 313 318
Zirkle 22, 70, 90
Zoogography, 315–317
Zygote, 49, 51 52, 254