Cryptography Assignment 2

Dr. Charlie Obimbo Due: February 11th, 2025

Name: Tyler Janvrin

To be done in LATEX

Assignment is out of 10

1 One-Time Pad

Recall that in class we demonstrated how using the One-time pad was secure. In effect we showed how, in an effort to try and decrypt the cipher-text:

"ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS"

One cryptanalyst came up with the decryption: "MR MUSTARD WITH THE CANDLESTICK IN THE HALL"; while another: "MISS SCARLET WITH THE KNIFE IN THE LIBRARY.

1. Demonstrate how, using the character as the atomic operand, given the cipher-text:

JACAOYOABLCYOUPOYTBN

One may get:

(a) COMMANDER IN CHIEF

[1 mark]

The first step is to calculate values for the ciphertext and plaintext.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
J	A	С	A	О	Y	О	A	В	L	С	Y	О	U	P	О	Y	T	В	N
9	0	2	0	14	24	14	0	1	11	2	24	14	20	15	14	24	19	1	13
C	О	M	M	A	N	D	Е	R	I	N	С	Н	I	Е	F				
2	14	12	12	0	13	3	4	17	8	13	2	7	8	4	5				

Since the one-time pad operates on the text like so: PLAINTEXT + PAD = CIPHER-TEXT, we can find the desired plaintext by subtracting the plaintext from the ciphertext: PAD = CIPHERTEXT - PLAINTEXT.

I did the computations in Excel and copied them over to this document. The final result for the pad that gives this ciphertext is is: HMQOOLLWKDPWHMLJ

I ignored spaces, which I'm pretty sure is correct. If I hadn't, I would have gotten a slightly different result.

9	0	2	0	14	24	14	0	1	11	2	24	14	20	15	14		
M	I	N	U	S													
2	14	12	12	0	13	3	4	17	8	13	2	7	8	4	5		
Е	Q	U	A	L	S												
7	-14	-10	-12	14	11	11	#	-16	3	-11	22	7	12	11	9		
M	О	D	2	5													
7	12	16	14	14	11	11	#	10	3	15	22	7	12	11	9		
Н	M	Q	О	О	L	L	W	K	D	P	W	Н	M	L	J		

(b) THE SERGEANT AT ARMS

[1 mark]

The process for this one is exactly the same:

J	Α	С	A	О	Y	О	Α	В	L	С	Y	О	U	P	О	Y
9	0	2	0	14	24	14	0	1	11	2	24	14	20	15	14	24
T	Н	Е	S	Е	R	G	Е	Α	N	T	A	T	A	R	M	S
19	7	4	18	4	17	6	4	0	13	19	0	19	0	17	12	18
9	0	2	0	14	24	14	0	1	11	2	24	14	20	15	14	24
M	I	N	U	S												
19	7	4	18	4	17	6	4	0	13	19	0	19	0	17	12	18
Е	Q	U	A	L	S											
##	-7	-2	-18	10	7	8	#	1	-2	-17	24	-5	20	-2	2	6
M	О	D	2	5												
16	19	24	8	10	7	8	#	1	24	9	24	21	20	24	2	6
Q	T	Y	I	K	Н	I	W	В	Y	J	Y	V	U	Y	С	G

The final result for the pad that will produce JACAOYOABLCYOUPOYTBN from THE SERGEANT AT ARMS is QTYIKHIWBYJYVUYCG

2. Joseph sends Aisha a message using a One-time pad. He also sends David another message using the same key. You were able to get both messages, as:

```
0809 0302 0607 1A17 1A08 1C07 141D and [2 marks]
0005 1311 1911 1907 0D09 1B08 130B
```

If the atomic operand is the bit, decrypt both messages and find the potential key.

Consider that one of the phrases may be from the following list:

GORGEOUS SUSAN	SHE ADORES JOHN
NICOTINE IS BAD	MARIJUANAS LEGAL
JUSTINE TRUDEAU	FLOYD MAYWEATHER
ANGELINA JOLIE	EMBEZZLED FUNDS
NANETTE WORKMAN	ELIZABETH MAY
GRANT US PEACE	WE'RE AWESOME

When you're using a binary pad, you're using XOR. You go PLAINTEXT xor PAD = CRYPTEXT. XOR inverts the bits in the pad based on the bits in the plaintext, so if you have the message, you can go PLAINTEXT xor CRYPTEXT = PAD to derive the pad.

Since there were only 12 possibilites for the plaintext, I just brute-forced it, using:

https://www.dcode.fr/xor-cipher to do the xor calculations.

I computed all twelve possible values for the pad for each of the plaintexts (24 total), and then using each possible pad against each plaintext until I encountered a message that made sense (if the message hadn't made sense, it wouldn't have been possible to find the correct pad).

When I decrypted 0005 1311 1911 1907 0D09 1B08 130B using the pad generated from EMBEZZLED FUNDS xor 0809 0302 0607 1A17 1A08 1C07 141D, I got the phrase MAR-VELOUS!AZIR. That's clearly not random, so I think I must have found the pad. The pad I got is: 4D44 4147 5C5D 5652 5E28 5A52 5A59 (with possibly some extra characters at the end, because the lengths aren't exactly the same).

2 Number Theory & Hill Cipher

4. Is
$$2^{82589933} - 1$$
 prime? Yes, it is. [0.5]

Why? It was discovered to be prime by GIMPS (Great Internet Mersenne Prime Search) in 2018. At that time, it was the largest known prime. Source:

```
https://www.mersenne.org/primes/press/M82589933.html [0.5]
```

5. Use Euclid's Algorithm to find gcd (422774, 1009). [No Partial Marks] (1 Mark)

```
gcd(422774, 1009)
Use Euclid's algorithm:
422774 = 419 * 1009 + 3
1009 = 336 * 3 + 1
```

Therefore, the GCD of 422774 and 1009 is 3.

6. Find the inverse of 1009 (mod 422774). [No Partial Marks] (1 Mark)

To find this, we can use the Extended Euclidean Algorithm and the results from Q5.

```
1 = 1009 - 336 * 3
1 = 1009 - 336 * (422774 - 419 * 1009)
1 = 1009 - 336 * 422774 + 336 * 419 * 1009
1 = 1009 - 336 * 422774 + 140784 * 1009
1 = 140785 * 1009 - 336 * 422774
1 = 140785 * 1009 (mod (422774))
```

Therefore, the inverse of 1009 (mod 422774) is 140785.

7. Find all solutions (between 1 & 265) to the equation $35x \equiv 15 \pmod{265}$.

```
35x = 15 \pmod{265}

7x = 3 \pmod{53}

38*7x = 38*3 \pmod{53} 38 is the multiplicative inverse of 7

266x = 114 \pmod{53}

x = 8 \pmod{53}

x = 8, 61, 114, 167, 220, \pmod{265}
```

8. (Hill-Cipher) Bob sends Alice the following code, in which the Hill-Cipher has been used, modulo 31. The key matrix used is:

$$K = \begin{bmatrix} 5 & 30 & 23 \\ 6 & 30 & 20 \\ 26 & 1 & 9 \end{bmatrix}$$
 and The Ciphertext A is:

If Bob used the following decimal encoding:

Letter	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	P
Code	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Letter	Q	R	S	Т	U	V	W	X	Y	Z	0	1	2	3	4	
Code	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	

(a) Compute the inverse of the matrix $K \pmod{31}$.

[1]

$$R1 + R3, R2 + R3$$

$$\left[\begin{array}{cc|cc|c} 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & -2 & 0 & 1 & 1 \\ 26 & 1 & 9 & 0 & 0 & 1 \end{array}\right]$$

$$R2 + 2R1$$

$$\left[\begin{array}{cc|cc|c} 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 2 & 1 & 3 \\ 26 & 1 & 9 & 0 & 0 & 1 \end{array}\right]$$

R3 + 5R@

$$\left[\begin{array}{ccc|ccc|ccc|ccc}
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 2 & 1 & 3 \\
0 & 1 & 9 & 10 & 5 & 16
\end{array}\right]$$

R3 - 9R1

$$\left[\begin{array}{cc|cc|c} 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 2 & 1 & 3 \\ 0 & 1 & 0 & 1 & 5 & 7 \end{array}\right]$$

Rearrange:

$$\left[\begin{array}{ccc|ccc|c} 1 & 0 & 0 & 2 & 1 & 3 \\ 0 & 1 & 0 & 1 & 5 & 7 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array}\right]$$

(b) Find the plaintext M. (Remember to remove the gibberish & punctuate it correctly.) [1] First, we convert the letters in the matrix to their corresponding numbers:

$$\begin{bmatrix}
19 & 27 & 7 & 8 & 2 & 14 & 25 & 5 \\
5 & 22 & 1 & 19 & 18 & 15 & 1 & 9 \\
12 & 17 & 28 & 0 & 9 & 23 & 10 & 20
\end{bmatrix}$$

Then, we multiply this matrix by the inverse of K: $\begin{bmatrix} 2 & 1 & 3 \\ 1 & 5 & 7 \\ 1 & 0 & 1 \end{bmatrix}$

Yielding:

Taking the mod of this, we get:

$$\begin{bmatrix} 17 & 3 & 6 & 4 & 18 & 19 & 19 & 17 \\ 4 & 8 & 22 & 10 & 0 & 2 & 7 & 4 \\ 0 & 13 & 4 & 8 & 11 & 6 & 4 & 25 \end{bmatrix}$$

Now, finally, we swap the letters out for the numbers:

That reads: Reading week is the rez.

9.
$$-113 \pmod{10} = 7$$
 [1]
Proof: $-113 = -12 * 10 + 7$