

Chemical Engineering 4H03

PCA Model Fitting Statistics

Jake Nease McMaster University

Portions of this work are copyright of ConnectMV

Objectives for this Class

- Where we came from...
 - Computing components P from NIPALS and EVs
 - Discussion of errors and model residuals
- Now: How do I know if I have enough components?
 - PCA suffers from the same issue as regression: overfitting
 - What are the different types of "errors" of a PCA model?
- How will we do this?
 - 1. Introduce testing/training sets for PCA models
 - 2. Introduce modeling statistic: PRESS
 - 3. Introduce modeling statistic: Q²
 - 4. Introduce modeling statistic: Hotelling's T²

Using a Model on New Data

That's the Goal, Isn't it?

Why Use PCA on NEW Data?

- Several advantages:
 - Can use modeling statistics to identify outliers (bad data)
 - Can use PCA model for process monitoring
 - Monitor new scores
 - Monitor SPE values of model predictions
 - Allows use of advanced monitoring statistics
 - Can continue to train model over time
 - Improves model accuracy
 - Can be used to check model validity
 - Important application of training and testing data sets!
- The question is... How?

Predicting New Points

- Recall we could predict \hat{X} to help us identify R^2 : $\hat{X} = TP^T$
- Can continue to do this on new data x_{new} : $\widehat{x}_{new} = t_{new} P^T$

Review: Using a PCA Model

• Consider some new point x_{new} and its relation to the PCA model

$$egin{aligned} oldsymbol{t}_{new}^T = \ oldsymbol{e}_{new}^T = \end{aligned}$$

$$\widehat{\mathbf{x}}_{new}^T = SPE_{new} =$$

Predicting New Points

- Pretty intuitive, really:
 - 1. Preprocess data:
 - 2. Project onto model for scores:
 - 3. Use scores to compute prediction:
 - 4. Compute residuals:
 - 5. Calculate SPE of point:

$$x_{new,raw} \rightarrow x_{new}$$

$$\boldsymbol{t}_{new} = \boldsymbol{x}_{new}^T P$$

$$\widehat{\boldsymbol{x}}_{new} = \boldsymbol{t}_{new}^T P^T$$

$$e_{new}^T = x_{new} - \widehat{x}_{new}$$

$$SPE_{new} = \boldsymbol{e}_{new}^T \ \boldsymbol{e}_{new}$$

Data Cross-Validation

The Cross-Product of Good Modeling

Pitfall of PCA

- Much like any regression method, PCA suffers from overfitting leading to model bias
- Overfitting is the process of adding complexity to a model when that complexity is not supported by the variance in the data
 - In PCA, this means fitting too many components
 - Akin to fitting only "measurement noise"

Our Strategy

- We desire a PCA model that fits appropriately
 - PCA will continue fitting components with diminishing returns on variance explained (see plot)
- What does "appropriately" mean?
 - We need to know how the model will be used in the future to know if we are overfitting
- How can we "simulate" future data?
 - You'd best believe it... Training and Testing data sets

Pareto plot (scree plot) of R2 per component

Figure courtesy of ConnectMV

4H03 PCA 04

- MISTAKE: Common to see "fit to a certain value of R²"
 - This IS ALWAYS POSSIBLE and almost NEVER GOOD
 - Must try to avoid this using clever techniques
 - You can have an $R^2 = 0.90$ be a **terrible model**
 - You can have an $R^2 = 0.90$ be a **terrific model**
- Cross-Validation: The act of comparing the predictive performance of a model on a subset of data not known ahead of time to the predictive performance of the model using its own training data
 - Objective: Residuals are "small enough" so that any additional model complexity does not convey additional information

General Strategy:

- 1. Keep a testing data set aside
- 2. Fit a component to training data
- 3. Project testing data onto model
- 4. Compute sum-of-squared residuals of testing data
 - This is known as the **PRESS** prediction error sum-of-squares
- 5. Determine if R_{TE}^2 and R_{TR}^2 are both improving
 - R_{TE}^2 in a PCA model is known as Q^2 (so compare R^2 to Q^2)
- 6. Repeat from (2)

Questions

- What should happen to PRESS as A increases?
- What if we do not have enough data for two sets?

Cross-Validation Calculations

- $\hat{X} = TP^T$
- $X=\widehat{X}+E_A$ Recall that we have fit **A** components...
- $\mathcal{V}(X) = \mathcal{V}(E_A) + \mathcal{V}(\widehat{X})$

- Recall for training data: $R^2 = 1 \frac{v(E_A)}{v(X)}$
- DEFINE for testing data: $Q^2 = 1 \frac{v(E_A \text{ predicted})}{v(X)}$
- $\mathcal{V}(E_A \text{ predicted})$ is known as the **PRESS**

- Step 1: Split the rows into G groups (3 in this example)
 - Typically **G** is 7 in software packages
 - Can be random or ordered (random in this example)
 - Note that this can depend on time relevance!

- Step 2.1: Fit PCA model
 - Use $\mathbf{X}_{(-1)}$ for fitting
 - Use $\mathbf{X}_{(1)}$ for testing
- Compute $E_{(1)} = X_{(1)} \hat{X}_{(1)}$

		K
2	2	Tuoinina
4	3	Training
5	2	Data
6	3	
9	2	\ /
10	3	$\mathbf{X}_{(1)}$
11	2	^ (-1)
12	3	

1/

1	1
3	1
7	1
8	1

Testing Data

- Step 2.2: Fit PCA model
 - Use $\mathbf{X}_{(-2)}$ for fitting
 - Use $\mathbf{X}_{(2)}$ for testing
- Compute $E_{(2)} = X_{(2)} \hat{X}_{(2)}$

1	1
3	1
4	3
6	3
7	1
8	1
10	3
12	3

2	2
5	2
9	2
11	2

Training

Data

 $X_{(-2)}$

Testing Data

- Step 2.3: Fit PCA model
 - Use $\mathbf{X}_{(-3)}$ for fitting
 - Use $\mathbf{X}_{(3)}$ for testing
- Compute $E_{(3)} = X_{(3)} \hat{X}_{(3)}$

- Step 2.G: Fit PCA model
 - Use X_(-G) for fitting
 - Use X_(G) for testing
- Compute $E_{(G)} = X_{(G)} \hat{X}_{(G)}$

Juuuust pretend I have a nice "Gth" group separated out here...

Q² Calculations and Interpretation

Step 3.1: Calculate PRESS

$$- PRESS = ssq(E(1)) + ssq(E(2)) + \dots + ssq(E(G))$$

• Step 3.2: Calculate Q²

$$-Q^{2} = 1 - \frac{\nu(\text{predeicted } E_{A})}{\nu(X)} \Rightarrow Q^{2} = 1 - \frac{\text{PRESS}}{\nu(X)}$$

- Interpretations of Q²
 - Interpreted the same way as R² (higher the better, 1 is best)
 - You should find that $Q^2 \le R^2$ (unless you are very lucky)
 - If $Q^2 \approx R^2$ for an ath component, the component is **useful**
 - If Q² is very small, likely fitting noise
 - Q² for an ath components CAN be negative (why?)
 - Q²_k can be calculated for specific variable k

Cross Validation Summary

- Is there an "autofit" rule?
 - No. BUT there are some heuristics:
 - Keep component if model's Q² increases by 1%
 - Keep component if any variable's Q²_k increases by 5%
- How many components should I use?
 - Depends. Can use cross validation to help guide you
 - Still an open topic in research
 - Does it mean anything? Does it help you solve your objective? If so, keep the component
 - Always fit a few extra components when using software
 - QUESTION: Can you ignore excess components once fit?

Hotelling's T²

T Time

T² In a Nutshell

- After fitting components to X we get our scores in T
- T_n^2 is the summary of all A components in row n

$$T_n^2 = \sum_{a=1}^A \left(rac{t_{n,a}}{s_a}
ight)^2$$
 so this would be T_1^2

T² Geometrically

- Represents the **distance** from model center to where a point x_n is projected on the model plane
 - NOT to be confused with distance OFF the plane, AKA SPE

T² Properties

$$T_n^2 = \sum_{a=1}^A \left(\frac{t_{n,a}}{s_a}\right)^2$$

- Recall $s_1 > s_2 > s_3$ (remember Eigenvalues Decomp?)
 - DISCUSSION: What does this mean WRT where the "distance" components come from when deviating from origin?
 - $-T_n^2 > 0$
- Can be plotted as a time series
 - Will flag any point that is "on model plane" but is an extreme case (AKA extremely oily or extremely hard)
 - Useful if rows in data have a meaning
 - Samples taken over time
 - Performance of a plant or piece of equipment during maintenance
- T^2 follows an F-Distribution
 - Allows for confidence intervals (e.g. 95%) to be made
 - Up to you to explore in an assignment

T² Properties

$$T_n^2 = \sum_{a=1}^A \left(\frac{t_{n,a}}{s_a}\right)^2$$

• In general, for A components and N observations, the α confidence limit:

$$T_{A,\alpha}^2 = \frac{(N-1)(N+1)A}{N(N-A)} F_{\alpha}(A, N-A)$$

F distribution with numerator A and denominator (N-A), with tail length α

- Special
 - Demo in MATLABnote: Can calculate $F_{\alpha}(\cdot)$ using finv in MATLAB or Python

T² for Spectral Data

$$T_n^2 = \sum_{a=1}^A \left(\frac{t_{n,a}}{s_a}\right)^2$$

So now we can see tablets that were "strange"

Final Remarks

- PCA models should not be over-fit
 - We have a good tool to use now: PRESS $\rightarrow Q^2$
- SPE is good at flagging observations off model plane
 - Shows a data point is not conforming to known correlation
 - ALSO useful for identifying outliers in training data set
- Hotelling's T² is an indication of distance *on* model plane
 - Useful for identifying data that "follow rules" but are extreme cases
 - VERY useful for identifying outliers in training phase (why?)
- Next up
 - Extension of PCA to predicting outcomes via PLS
 - And finally, on to machine learning!

