Probabilités et variables aléatoires

Probabilités - Cours

I Vocabulaire et notations ensemblistes

I. 1 Modes de générations des ensembles

Définition :

Lorsqu'on définit un ensemble en extension, on écrit la liste complète de ses éléments entre deux accolades. L'ordre et les répétitions ne sont pas pris en compte.

Exemple:

La notation $\{1; 2; 3\}$ désigne le même ensemble que la notation $\{1; 3; 2\}$ ou encore de la notation $\{1; 2; 2; 3\}$.

Définition:

Soit E un ensemble. Lorsqu'on définit un sous-ensemble F de E en compréhension, on donne une proposition P(x) qui caractérise les éléments de F. L'ensemble des éléments de E qui vérifient P(x) est noté $\{x \in E/P(x)\}$.

Remarque : On peut aussi utiliser les notations $\{x \in E | P(x)\}$ et $\{x \in E; P(x)\}$. **Exemples :**

- Soit $E = \{1; 2; 3; 4; 5\}$. La notation $\{x \in E/x \text{ est impair}\}$ désigne l'ensemble $\{1; 3; 5\}$.
- On définit en compréhension l'intervalle [2, 5] par $\{x \in \mathbb{R}/2 \le x \le 5\}$.
- En compréhension, l'ensemble des multiples de 3 se note $\{n \in \mathbb{Z}/\exists k \in \mathbb{N}, n = 3k\}$.

I. 2 Couples et produits cartésiens

Définition:

Soient x et y deux objets (nombres, points...). On définit un nouveau type d'objet, que l'on note (x, y) et que l'on appelle le couple (x, y).

Remarque : Deux couples (x, y) et (a, b) sont égaux si x = a et y = b. Attention à ne pas confondre le couple (1, 2) avec l'ensemble $\{1; 2\}$ qui lui, est égal à l'ensemble $\{2; 1\}$.

Définition:

Soient E et F deux ensembles. On appelle produit cartésien de E et F l'ensemble des couples (x,y) avec $x \in E$ et $y \in F$. On le note $E \times F$.

Remarques:

- $-E \times E = E^2, E \times E \times E = E^3...$
- La notion de produit cartésien peut aussi s'étendre à plus de deux ensembles. Par exemple, si E, F et G sont trois ensembles, le produit cartésien $E \times F \times G$ est l'ensemble des triplets (x, y, z) avec $x \in E, y \in F$ et $z \in G$.

Exemples:

— Soient $E = \{1; 2\}$ et $F = \{7; 8; 9\}$. On a alors $E \times F = \{(1, 7); (1, 8); (1, 9); (2, 7); (2, 8); (2, 9)\}$. — Soit $E = \{1; 2\}$. On a alors $E^3 = \{(1, 1, 1); (1, 1, 2); (1, 2, 1); (2, 1, 1); (1, 2, 2); (2, 1, 2); (2, 2, 1); (2, 2, 2)\}$

I. 3 Inclusion

Définition:

Pour deux ensembles A et B, on dit que A est inclus dans B (ou que A est un sous-ensemble de B) lorsque tous les éléments appartenant à A appartiennent aussi à B. On le note $A \subset B$.

Exemple:

I. 4 Intersection et réunion

Définition:

Soit Ω un ensemble et A, B deux sous-ensembles de Ω .

- On appelle l'intersection de A et B l'ensemble des éléments de Ω qui appartiennent à la fois à A et à B. On la note $A \cup B$.
- On appelle la réunion (ou l'union) de A et B l'ensemble des éléments de Ω qui appartiennent à au moins l'un des deux ensembles A et B. On la note $A \cap B$.

Exemple:

--] -
$$\infty$$
; 3] \cap]2; + ∞ [=]2; 3]
-- [1; 3] \cup]2; + ∞ [= [1; + ∞ [

I. 5 Complémentaire

Définition:

Soit Ω un ensemble et A un sous-ensemble de Ω . On appelle complémentaire de A dans Ω l'ensemble des éléments de Ω qui n'appartiennent pas à A. On le note \bar{A} .

Exemple:

Soit
$$\Omega = \{1, 2, 3, 4, 5, 6\}$$
 et $A = \{1, 3, 5, 6\}$. On a alors $\bar{A} = \{2, 4\}$

I. 6 Notations générales

	I	I	
Notation	Vocabulaire ensembliste	Vocabulaire probabiliste	
Ω	ensemble plein	évènement certain	
Ø	ensemble vide	évènement impossible	
ω	élément de Ω	évènement élémentaire	
A	sous-ensemble de Ω	évènement	
$\omega \in A$	ω appartient à A	ω réalise A	
$A \subset B$	A inclus dans B	A implique B	
$A \cup B$	réunion de A et B	A ou (inclusif) B	
$A \cap B$	intersection de A et B	$A ext{ et } B$	
$ar{A}$	complémentaire de A	évènement contraire de A	
$A \cap B = \emptyset$	A et B disjoints	A et B incompatibles	

II Probabilité conditionnelle et Indépendance

II. 1 Univers et évènement

Définitions:

- On appelle univers l'ensemble des issues possibles d'une expérience aléatoire. On le note souvent Ω .
- On appelle évènement un sous-ensemble de l'univers Ω , c'est à dire un ensemble d'issues.

II. 2 Probabilité d'un évènement

Définition:

Soient Ω un unviers muni d'une loi de probabilité et A un évènement non vide. On appelle probabilité de A la somme des probabilités des issues appartenant à A. On la note P(A).

Remarque: On peut également utiliser la notation P(A).

II. 3 Équiprobabilité

Définition:

Soient A et B deux évènements d'un univers Ω tels que $P(A) \neq 0$. La probabilité de B sachant que A est réalisé (ou de B sachant A) est le nombre, noté $p_A(B)$ défini par $p_A(B) = \frac{P(A \cap B)}{P(A)}$.

1. Propriété:

La probabilité $p_A(B)$ vérifie bien $0 \le p_A(B) \le 1$ et $p_A(B) + p_A(\bar{B}) = 1$.

II. 4 Probabilité de l'intersection

2. Propriété:

Si A et B sont deux évènements avec $P(A) \neq 0$ alors $P(A \cap B) = p_A(B) \times P(A)$.

Remarques:

- Si $P(B) \neq 0$ alors on a aussi $P(A \cap B) = p_B(A) \times P(B)$.
- Dans toutes les formules, les rôles de A et B peuvent être inversés.

II. 5 Représentation à l'aide d'un arbre pondéré

3. Propriétés:

- (i) La somme des probabilités inscrites sur les branches partant d'un même nœud est égale à 1.
- (ii) La probabilité d'un chemin est le produit des probabilités inscrites sur ses branches.

II. 6 Partition d'un univers

Définition:

Soit Ω un univers muni d'une loi de probabilité

- On dit que deux évènements A_1 et A_2 forment une partition de Ω si $A_1 \cap A_2 = \emptyset$ et $A_1 \cup A_2 = \Omega$.
- Plus généralement, on dit que des évènements forment une partition de Ω s'ils sont deux à deux incompatibles de leur réunion est l'univers tout entier.

II. 7 Formule des probabilités totales

1. Théorème:

Soit A_1, A_2, \ldots, A_n un système complet d'évènements de l'univers Ω . Alors la probabilité d'un évènement quelconque B est donné par :

$$P(B) = P(B \cap A_1) + P(B \cap A_2) + \dots + P(B \cap A_n)$$

= $P(A_1) \times p_{A_1}(B) + P(A_2) \times p_{A_2}(B) + \dots + P(A_n) \times p_{A_n}(B)$

4. Propriété:

La probabilité d'un évènement correspondant à plusieurs chemins est la sommes des probabilités de ces chemins.

II. 8 Indépendance de deux évènements

Définition :

On dit que deux évènements A et B sont indépendants lorsque $P(A \cap B) = P(A) \times P(B)$.

5. Propriété:

On suppose que $P(A) \neq 0$. A et B sont indépendants si et seulement si $p_A(B) = P(B)$.

6. Propriété:

Si A et B sont deux évènements indépendants, alors \bar{A} et B le sont aussi.

II. 9 Succession de deux épreuves indépendantes

Définition:

Soit n un entier naturel. On dit qu'une expérience aléatoire est la succession des n épreuves indépendante si l'univers qui lui est associé est un produit cartésien $\Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$ muni d'une loi de probabilité vérifiant que la probabilité d'une issue (x_1, x_2, \dots, x_n) est égal au produit des probabilités de ses composantes x_i .

Remarque : Autrement dit, c'est lorsque deux expériences aléatoires se succèdent et que les résultats de la première n'ont aucune influence sur les résultats de la seconde.

Exemple:

On lance deux pièces à pile ou face. On suppose que la première pièce est déséquilibrée de sorte que « pile » apparait deux fois plus souvent que « face ». La deuxième pièce est supposée bien équilibrée.

Le premier lancer est modélisé par $\Omega_1 = P_1, F_1$ muni de la loi $P(P_1) = \frac{2}{3}$ et $P(F_1) = \frac{1}{2}$.

Le deuxième lancer est modélisé par $\Omega_2 = P_2, F_2$ muni de la loi $P(P_2) = \frac{1}{2}$ et $P(F_2) = \frac{1}{2}$.

La succession des deux lancers peut être alors modélisé par l'univers : $\Omega = \Omega_1 \times \Omega_2 = \{P_1, F_1\} \times \{P_2, F_2\} = \{(P_1, P_2); (P_1, P_2); (F_1, P_2); (F_1, F_2)\}$ muni de la loi suivante :

Évènement	(P_1, P_2)	(P_1, F_2)	(F_1, P_2)	(F_1, F_2)
Probabilité	$\frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$	$\frac{2}{3} \times \frac{1}{2} = \frac{1}{3}$	$\frac{1}{3} \times \frac{1}{2} = \frac{1}{6}$	$\frac{1}{3} \times \frac{1}{2} = \frac{1}{6}$

III Variable aléatoire

III. 1 Variable aléatoire discrète

Définition:

Soit $\Omega = \{\omega_1; \omega_2; \dots; \omega_k\}$ l'univers associé à une expérience aléatoire. Une variable aléatoire X sur l'univers Ω est une fonction définie sur Ω et à valeurs dans \mathbb{R} . Définir une variable aléatoire consiste à associer, à chaque issue ω_i de l'expérience aléatoire, un réel x_i . On note alors $(X = x_i)$ l'évènement formé des issues qui ont pour image x_i par X.

Définition:

Soit Ω un univers et X une variable aléatoire réelle sur Ω . Pour tout réel k :

- on note $(X \leq k)$ l'ensemble des issues dont l'image par X est inférieur ou égal à k
- on note $(X \ge k)$ l'ensemble des issues dont l'image par X est supérieur ou égal à k

III. 2 Loi de probabilité

Définition:

Soit X une variable aléatoire qui prend les valeurs $\{x_1; x_2; \ldots; x_k\}$. Donner la loi de probabilité de X, c'est donner la valeur $P(X = x_i)$, pour tout i avec $1 \le i \le k$.

Les résultats sont généralement présentés sous forme d'un tableau :

Valeurs x_i de X	x_1	x_2	 x_k
Probabilité $P(X = x_i)$	$P(X=x_1)$	$P(X=x_2)$	 $P(X=x_k)$

Remarque: La somme des probabilités $P(X = x_i)$, pour i allant de 1 à k, est égal à 1.

III. 3 Espérance, variance et écart-type

Soit X une variable aléatoire qui prend en valeurs $x_1; x_2; \ldots; x_k$ et dont la loi de probabilité est donnée par le tableau suivant :

Valeurs x_i de X	x_1	x_2	 x_k
Probabilité $P(X = x_i)$	p_1	p_2	 p_k

Définition:

L'espérance de la variable aléatoire X est le réel noté E(X) définie par : $E(X) = \sum_{i=1}^{k} x_i p_i$

Remarque : L'espérance d'une variable aléatoire représente la valeur moyenne prise par X.

Définition:

La variance de la variable aléatoire X est le réel noté V(X) définie par : $V(X) = \sum_{i=1}^{k} (x_i - E(X))^2 \times p_i$

Remarque : La variance d'une variable aléatoire X se calcule aussi avec : $V(X) = \sum_{i=1}^k p_i(x_i)^2 - E(X)^2$.

Définition:

L'écart-type $\sigma(X)$ est défini comme la racine carrée de la variance : $\sigma(X) = \sqrt{V(X)}$.

Remarque : Par analogie avec les statistiques, de la même façon que E(X) représente une moyenne, V(X) et $\sigma(X)$ sont des indicateurs de dispersion des valeurs de X autour de E(X). Plus la variance et l'écart-type sont grands, plus les valeurs sont dispersés autour de la moyenne (espérance) **Exemple :**

On calcule l'espérance de $X: E(X) = 2 \times \frac{1}{6} + 1 \times \frac{1}{6} - 1 \times \frac{2}{3} = -\frac{1}{6} \approx -0,17$. Sur un grand nombre de parties, le gain moyen par partie pour le joueur est -0,17. Donc le jeu n'est pas favorable au joueur.

On calcule la variance et l'écart-type :

$$-V(X) = \left[2 - \left(-\frac{1}{6}\right)\right]^2 \times \frac{1}{6} + \left[1 - \left(-\frac{1}{6}\right)\right]^2 \times \frac{1}{6} + \left[-1 - \left(-\frac{1}{6}\right)\right]^2 \times \frac{2}{3} = \frac{53}{36} \approx 1,47$$

$$-\sigma(X) = \sqrt{\frac{53}{36}} \approx 1,21$$

III. 4 Somme de variables aléatoires

2. Théorème (linéarité de l'espérance) :

Pour toutes variables aléatoires X et Y :

- (i) E(X + Y) = E(X) + E(Y)
- (ii) Pour tout réel a: E(aX) = aE(X)

3. Théorème:

Pour toute variable aléatoire :

- (i) $V(X) = E(X^2) (E(X))^2$ (formule de Koenig-Huygens)
- (ii) Pour tous réel $a: V(aX) = a^2V(X)$

Définition:

On dit que deux variables aléatoires X et Y sont indépendantes lorsque pour tous réels k et l, les événements (X = k) et (Y = l) sont indépendants.

4. Théorème:

Pour toutes variables aléatoires X et Y, si X et Y sont indépendantes, alors V(X+Y)=V(X)+V(Y).

IV La loi binomiale

Définitions:

- On appelle épreuve de Bernoulli tout expérience aléatoire modélisée par un univers à deux issues. On note cet univers $\Omega = \{S; E\}$.
- Si de plus, l'univers est muni d'une loi de probabilité qui à l'issue S associe la probabilité p, on parle alors d'une épreuves de Bernoulli de paramètre p.

Exemple:

On lance un dé à six faces. On note S l'issue « obtenir la face 6 » et E l'issue « ne pas obtenir la face 6 ».

On associe à S la probabilité $\frac{1}{6}$ et à E l'issue $\frac{5}{6}$. On a ainsi défini une épreuve de Bernoulli de paramètre $\frac{1}{6}$

Remarques:

- Les notations S et E font référence respectivements aux mots « succès » et « échec ».
- Dans une épreuve de Bernoulli de paramètre p, la probabilité de l'issue E est égal à 1-p.

Définition:

Soit n un entier naturel non nul et p un réel compris entre 0 et 1. On appelle « schéma de Bernoulli de paramètres n et p » la succession de n épreuves de Bernoulli de paramètre p identiques et

indépendantes.

Remarque : L'univers associé à un schéma de Bernoulli de paramètre n et p est $\Omega^n = \{S; E\}^n$. **Exemple :**

On lance trois fois un dé à six faces bien équilibré. On modélise chacun des lancers de la manière décrite dans l'exemple précédent.

On a alors défini un schéma de Bernoulli de paramètres n=3 et $p=\frac{1}{6}$.

L'univers associé est le produit cartésien $\Omega^3 = \{S; E\}^3$. Représenter la situation par un arbre peut aider à énumérer toutes les issues $\Omega^3 = \{(S, S, S); (S, S, E); (S, E, S); (S, E, E); (E, S, S); (E, E, E)\}.$

Définition:

Soit n un entier naturel non nul et p un réel compris entre 0 et 1. On considère un schéma de Bernoulli de paramètres (n,p) et on note $\Omega=S;E$. On définit une variable aléatoire X sur Ω^n en associant à chaque issue le nombre d'apparition de S. La loi de probabilité de X est appelée « loi binomiale de paramètres n et p ».

Exemple:

D'après l'exemple précédent, on définit une variable aléatoire X sur Ω^3 en associant à chaque issue le nombre d'apparitions de S (ici, le nombre d'apparitions de « pile »). La loi de probabilité de X suivante est la loi binomiale de paramètres n=3 et $p=\frac{1}{2}$.

Valeurs x_i de X	0	1	2	3
Probabilité $P(X = x_i)$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$