第一章 质点的运动

姓名: _____ 学号: ____ 序号: ____

学院: 班级: 成绩:

一、单项选择题(本大题共6,	小题,每题只有一	个正确答案,答对一题得		
3分, 共18分)				
1. 某质点的运动方程为 $x = 5t^2 - 2t^2$	2t+3 (SI), 则该质	5点的运动是 ()		
A. 变加速直线运动	B. 曲线运动	р		
C. 匀加速直线运动	D. 匀速直线	送 运动		
2. 一质点做圆周运动时,有()			
A. 切向加速度, 法向加速度均远				
B. 切向加速度可能不变, 法向力	加速度一定改变			
C. 切向加速度可能不变, 法向力	加速度不变			
D. 切向加速度改变, 法向加速原	度不变			
3. 质量为 m 的物体自空中落下	, 它除受重力外,	还受到一个与速度二次方		
成正比的阻力的作用,比例系数为 $k(k)$ 为常量),该下落物体的终极速度(即最				
后物体做匀速运动时的速度)将是()				
A. $\sqrt{\frac{mg}{k}}$ B. $\frac{g}{2k}$	C. gk	D. \sqrt{gk}		
4. 一段路面水平的公路,转弯处	处轨道半径为 R ,图	举托车轮胎与路面间摩擦因		
数为μ,要使摩托车不至于发生侧向]打滑,摩托车在该	该处的行驶速率 ()		
A. 不得小于 $\sqrt{\mu gR}$	B. 必须等于	$=\sqrt{\mu gR}$		
C. 不得大于 $\sqrt{\mu gR}$	D. 应由汽车	E 的质量决定		
第1页(共4页)				

5. 地球绕太阳做椭圆运动(太阳在椭圆的一个焦点上),则地球运动过程
()
A. 地球的动量不守恒, 动能守恒 B. 地球的动量守恒, 动能不守恒
C. 地球的角动量守恒, 动能不守恒 D. 地球的角动量不守恒, 动能守恒
6. 如右图所示,一圆锥摆在水平面内做圆周运动,则()
A. 摆球的动量、摆球与地球组成系统的机械能都守恒
B. 摆球的动量、摆球与地球组成系统的机械能都不守恒 θ
C. 摆球的动量、摆球与地球组成系统的机械能守恒 2
D. 摆球的动量守恒,摆球与地球组成系统的机械能不守恒
二、判断题(本大题共6小题,每题1分,共6分,答√表示说法正确,
答×表示说法不正确,本题只需指出正确与错误,不需要修改)
7. 运动具有独立性,一个物体所做的曲线运动可以分解为几个直线运动。
(
8. 切向加速度只改变质点的运动方向, 法向加速度只改变质点的速度大小。
()
9. 地球表面的重力加速度随着维度的升高而增大, 随着高度的增加而减小。
()
10. 弹性力做正功时弹性势能增大,反之减小。 ()
11. 质点间的内力对质点系的动量和动能的改变都没有贡献。 ()
12. 保守内力可以实现质点系动能和势能的相互转化, 但不会改变其机械能。
()
三、填空题 (本大题共6小题, 每空2分, 共26分)
13. 一质点做平面运动,已知其运动方程为 $\vec{r} = at\vec{i} + (bt^2 + c)\vec{j}$,其中 $a \setminus b$ 、
c 为常量,则该质点运动的轨迹方程为。
14. 如右图所示, 半径为 R 的竖立圆筒形转笼, 绕中心轴 00′ D
转动,物块 A 紧靠在圆筒的内壁上,物块与圆筒间的动摩擦因数为 A^{\square}
μ , 要使物块 A 不下落,圆筒的角速度 ω 至少为。
15. 有两个彼此相距很远的天体 A 和 B , A 的质量是 B 的质量的 $3/4$, A 的半
径是 B 的半径的 $1/2$,则天体 A 表面的重力加速度是天体 B 表面的重力加速度的

16. 如右图所示,加速度 a 至少等于_____时,物体 m 对斜面的正压力为零,此时绳子的张力 $T=_$ _

	17. 一单摆从水平	位置处开始摆动,	不计空气阻力,	在摆动	过程中, θ =
时,	摆线的张力最大,	最大张力为	; θ =	时,	摆线的张力最小
最小	、张力为;	任意时刻, 摆线	的张力为		o

四、计算题(本大题共5小题, 每题8分, 共40分)

19. 质点沿 x 轴方向运动,加速度 $a = 4t + 3 \text{ (m} \cdot \text{s}^{-1})$,当 t = 3s 时, $v = 2\text{m} \cdot \text{s}^{-1}$,x = 3m,试求 t 时刻质点的速度和位矢。

20. 如右图所示,灯距地面高度为L,有一身高为h的人,在灯下以匀速率v沿水平直线行走,试求他的头顶在地上的影子沿地面运动的速度。

21. 如右图所示,升降机内有两个质量分别为 m_1 、 m_2 的物体,用细绳连接并跨过滑轮,绳子不可伸长,滑轮质量及摩擦力均忽略不计。

当升降机以a加速上升时,试求 m_1 和 m_2 相对于升降机的加速度。

22. 如右图所示,一总长为l的链条,放在水平桌面上,其中一段下垂,长度为a,假设开始时链条静止,求:

- (1) 桌面光滑时,链条离开桌边时的速度;
- (2) 桌面的摩擦因数为μ时,链条离开桌边时的速度。

23. 如右图所示,质量分别是 m_1 和 m_2 的两个小球,用两根长为 l 的轻绳悬挂起来,现将 m_1 拉到水平位置,然后放手任其下落,并与 m_2 发生完全弹性碰撞,求 m_1 和 m_2 各弹多高。

五、证明题(本大题共1小题、每题10分、共10分)

- 24. 一质量为 m 的质点在空气中做竖直下落运动,受与速度成正比的阻力 kv (k 为常量) 作用, t=0 时质点的速度为 v_0 , 证明:
 - (1) t 时刻质点的速度为 $v = v_0 e^{-\frac{k}{m}t}$;
 - (2) 停止运动前下落的距离为 $y = -\frac{m}{k}v_0$ 。

第二章 刚体的运动

	姓名:	学号:	序号:_	
	学院:	班级:	成绩: _	
_	-、单项选择题 (本大	题共6小题,每	题只有一个正确	1答案,答对一题得
3分,	共18分)			
1.	. 某刚体的运动方程为	$\theta = t^2 - 3t + 1 (SI)$,则该刚体的运	动是 ()
A	变速率定轴转动	В.	匀速率定轴转动	л
C	. 不能确定	D.	匀变速率定轴车	专动
2.	. 如右图所示, A、B	为两个相同的绕着	靠轻绳的定 ∠ ∠∠	uuu uuuu
滑轮。	A 滑轮挂一质量为 M	I 的物体, B 滑轮	受拉力 F , $A($	В (1)
而且 8	F=Mg, 设A、B 两滑	轮的角加速度分	别为 α, 和	
$\alpha_{\rm B}$, \overline{A}	下计滑轮轴的摩擦,则	飞轮的角加速度将	¥ ()	$M \qquad \qquad \bigvee F$
A	a. $\alpha_A < \alpha_B$ B. $\alpha_A < \alpha_B$	$\alpha_{\rm A} = \alpha_{\rm B}$ C.	$\alpha_{\rm A} > \alpha_{\rm B}$	D. 无法确定
3.	. 关于力矩,下列说法	正确的是())	
A	若两个作用力对轴的	的合力矩为零,则"	它们的合力一定	为零
В	. 若两个作用力平行于	- 刚体的固定转轴,	则它们对轴的	合力矩一定为零
C	. 若两个作用力的合力	力为零,则它们对等	油的合力矩一定	为零
D	. 一对作用力和反作用	月力对同一转轴的	力矩之和不一定	为零
4.	. 关于刚体对定轴的转	动惯量,下列说法	去正确的是 ()
A	只取决于转轴的位置	量,与刚体的质量	和质量的空间分	布无关
В	. 取决于刚体的质量和	n质量的空间分布。	与转轴的位置	无关

C. 只取决于刚体的质量,与质量的空间分布和转轴的位置无关
D. 取决于刚体的质量、质量的空间分布和转轴的位置
5. 一个芭蕾舞演员绕通过自身的竖直轴转动, 开始时两臂伸开, 转动惯量
为 J_0 ,角速度为 ω_0 ,然后她将两臂收回,使其转动惯量减少为 $J_0/2$,这时她转
动的角速度变为 ()
A. $\omega_0/3$ B. $\omega_0/2$ C. $2\omega_0$ D. $3\omega_0$
6. 对于由两个质点组成的质点系,若它们之间只有引力作用,且两质点所
受外力的矢量和为零,则此质点系 ()
A. 动量守恒, 但机械能和角动量与否守恒不能确定
B. 动量、机械能及对一轴的角动量都守恒
C. 动量和角动量守恒, 但机械能是否守恒不能确定
D. 动量、机械能守恒, 但角动量是否守恒不能确定
二、判断题(本大题共6小题,每题1分,共6分,答√表示说法正确,
答×表示说法不正确,本题只需指出正确与错误,不需要修改)
7. 刚体做定轴转动时,刚体上所有质元的角速度和角加速度都相等。
()
8. 平行于转轴方向的作用力产生的力矩为零。 ()
9. 内力矩不会改变刚体的角动量。 ()
10. 转动惯量是刚体转动惯性的量度,其越大,改变其转动状态越困难。
()
11. 外力矩做功只引起刚体转动动能的改变,对刚体势能没有影响。()
12. 质点和刚体的碰撞过程,内力远远大于外力,系统的动量保持不变。
()
三、填空题 (本大题共7小题,每空2分,共26分)
13. 半径为 $R=2.0$ m 的飞轮做匀变速转动,初角速度 $\omega_0=5$ rad \cdot s $^{-1}$,角加
速度 α =-3 rad·s ⁻² ,则 t =3s 时它的角速度为,而此时边缘上
一点的线速度为。
14. 一汽车发动机转子的转速在 10s 内由 1.0×10 ³ r・min ⁻¹ 均匀地增加到
3.0×10 ³ r・min ⁻¹ ,则该发动机的角加速度为;在此时间内,
第2页(共4页)

- 15. 有两个彼此用链条相连的轮子 A 和 B, A 的半径是 B 的半径的 1/2, 则 A 的角速度是 B 的角速度的
- 16. 在 OXY 平面内的三个质点,质量分别为 $m_1 = 2 \log_x m_2 = 3 \log_x n_3 = 5 \log_x n_3 = 5 \log_x n_3 = 5 \log_x n_3 = 5 \log_x n_3 = 2 \log_x$

- 19. 一个质量为m、速度为 v_0 小球和一个质量为M、长度为L 细杆的一端发生弹性碰撞,碰撞后细杆的角速度是

四、计算题(本大题共5小题, 每题8分, 共40分)

- 20. 刚体做定轴转动,角加速度 $\alpha=3t^2+2t+1({\rm rad\cdot s^{-1}})$,当 $t=1{\rm s}$ 时, $\omega_1=0.5{\rm rad\cdot s^{-1}}$, $\theta_1=\frac{\pi}{2}$,试求:
 - (1) t = 10s 时质点的角速度;
 - (2) 经过t时间转过的圈数。
- 21. 如右图所示,滑轮的半径为 R、质量为 M, m_1 与桌面的动摩擦因数为 μ ,求绳的张力和 m_2 下落 h 时的速率(设绳子与滑轮间无相对滑动)。

22. 在绕盘心自由旋转的水平圆盘边上,站着一质量为m的人,圆盘的半径为R、质量为M、角速度为 ω_0 ,如果该人由盘边走到盘心,试求此时圆盘的角速度 ω_0 。

23. 如右图所示,弹簧的劲度系数为k,滑轮的质量为M、半径为R,物体的质量为m,试求当物体下落的高度为h时其速率和滑轮的角速度分别为多少,假设开始时物体静止而弹簧无伸长。

24. 如右图所示,一根长为 L、质量为 M 的均匀细杆可绕通过其一端 O 的水平轴自由摆动,当杆静止时被一质量为 m 的钉子在离 O 点 l 处击中后,钉子埋在杆中随杆的最大偏转角度是 α ,试求:

- (1) 棒开始运动时的角速度;
- (2) 钉子碰撞前的初速度 v 。

五、证明题 (本大题共1小题, 每题10分, 共10分)

25. 一转动惯量为 J 的圆盘在流体中做定轴转动,受到与角速度二次方成正比的阻力矩 $k\omega^2$ (k 为常量)作用,t=0时刚体的角速度为 ω_0 ,证明:刚体停止转动时转过的圈数为 $N=\frac{J}{2\pi k}(1-\ln\omega_0)$ 。

第三章 机械振动及机械波

姓名: _____ 学号: ____ 序号: ____

学院: ______ 班级: _____ 成绩: _____

3分,共18分)

一、单项选择题(本大题共6小题,每题只有一个正确答案,答对一题得

1. 一弹簧振子系	统,振子的质量为 m	,弹簧的劲度系数。	为 k ,该振子做振幅	
为 A 的简谐振动, 当	振子通过平衡位置且	向选定的正方向运动	动时开始计时, 其简	
谐运动方程为()			
A. $x = A\cos\left(\sqrt{\frac{k}{m}}\right)$	$t + \frac{\pi}{2}$	B. $x = A\cos\left(\sqrt{\frac{k}{m}}t\right)$	$-\frac{\pi}{2}$	
C. $x = A\cos\left(\sqrt{\frac{m}{k}}\right)$	$t+\frac{\pi}{2}$	D. $x = A\cos\left(\sqrt{\frac{m}{k}}t\right)$	$-\frac{\pi}{2}$	
2. 把单摆从平衡	位置拉开,使摆线与	医直方向成一微小	角度 θ_{m} , 然后由静	
止放手任其自由振动,	,从第一次通过平衡	位置时开始计时,着	吉用余弦函数表示其	
振动方程,则该单摆的	的初相位为()			
Α. π	B. $\frac{\pi}{2}$	C. 0	D. $-\frac{\pi}{2}$	
3. 一个简谐振动	的振幅为 A ,周期为	T,则()		
A. 振幅为 2A 时,	,周期为 2 <i>T</i>	B. 振幅为 2A 时,	周期为 T	
C. 振幅为 A/2 时	, 周期为 2T	D. 振幅为 A/2 时,	周期为 T/2	
4. 频率为 200Hz f	的机械波,波速为36	0 m·s⁻¹, 则同一测	皮线上相位差为 π/2	
的两点相距为()			
A. 0.24m	B. 0.48m	C. 0.45m	D. 0.12m	
第1页(共4页)				

5. 如右图所示,有一平面简谐波沿 x 轴负方向传播					
原点 O 的简谐运动方程为 $y = A\cos(\omega t + \varphi_0)$,则 B 点的	的简谐运 $\frac{u}{x}$ \xrightarrow{B}				
动方程为()					
A. $y = A\cos\left[\omega\left(t - \frac{x}{u}\right) + \varphi_0\right]$ B. $y = A\cos\left[\alpha\right]$	$\omega\left(t+\frac{x}{u}\right)+\varphi_0$				
C. $y = A\cos\left[\omega\left(t - \frac{x}{u}\right)\right]$ D. $y = A\cos\left[\omega\left(t - \frac{x}{u}\right)\right]$	$\omega\left(t+\frac{x}{u}\right)\bigg]$				
6. 当一平面简谐波在弹性介质中传播时,下列说法	正确的是()				
A. 介质质元的振动动能和弹性势能都做周期性变化	1,但两者的相位不相同				
B. 介质质元的振动动能增大时, 其弹性势能减小,	总机械能守恒				
C. 介质质元在其平衡位置处动能和弹性势能都最大					
D. 介质质元的振动动能和弹性势能的相位在任一时	付刻都相同, 但两者的数				
值不相等					
二、判断题(本大题共6小题,每题1分,共62	分,答√表示说法正确,				
答×表示说法不正确,本题只需指出正确与错误,不需要	要修改)				
7. 简谐振动是一种理想化的振动,客观上不存在。	()				
8. 单摆的振动周期和振幅无关, 只与摆长和当地的	重力加速度有关。				
	()				
9. 旋转矢量所做的运动就是简谐振动。	()				
10. 机械波的传播过程伴随着弹性质元、振动相位和	和能量的传播。 ()				
11. 声波是机械纵波,可以在固体、液体和气体中包	传播。 ()				
12. 同一机械波在不同弹性介质中的传播速度和波长	长各不相同。 ()				
三、填空题 (本大题共6小题, 每空2分, 共26分	>)				
13. 一质点做简谐振动,其运动方程 $x = 0.02\cos(\pi)$	$t + \frac{3\pi}{4}$) (SI), 则该振动				
的振幅为,周期为,初	相位为。				
14. 一弹簧振子在水平方向振动, 其振幅为 0. 4m, 角	南频率为ω= $4\pi \text{ rad} \cdot \text{s}^{-1}$,				
振子从-0.2m 处释放,开始向平衡位置处振动,该振子	的初相位为				
。简谐振动方程为。					
第2页(共4页)					

15. 一系统做简谐运动,振幅为 A ,周期为 T ,初相位为 $-\frac{\pi}{2}$,若以余弦函
数表示,则在 $0 \le t \le T/4$ 范围内,当 $t =$ 时,系统的动能和势
能相等。
16. 产生机械波的两个条件: (1); (2);
0
17. $A \setminus B$ 是简谐波波线上两点。已知 A 点相位比 B 点相位落后 π , $A \setminus B$ 两
点相距 1.5m, 波源的频率为 50Hz, 则该波的波长为, 波速为
o
18. 若两个相干波源 S_1 和 S_2 的频率均为 ν ,初相位分别为 φ_1 和 φ_2 ,它们距媒
质中 P 点的距离分别为 r_1 和 r_2 ,在 P 点引起的分振动振幅分别是 A_1 和 A_2 ,则 P
点的两个分振动的简谐运动方程分别为 y_1 (t) =, y_2 (t) =
。(设波速为u)
四、计算题 (本大题共 5 小题, 每题 8 分, 共 40 分)
四、计算题 (本大题共 5 小题, 每题 8 分, 共 40 分) 19. 一质量为 $m=0.4$ kg 的物体,在弹性回复力作用下沿 Ox 轴运动,弹簧的
19. 一质量为 $m=0.4$ kg 的物体,在弹性回复力作用下沿 Ox 轴运动,弹簧的
19. 一质量为 $m=0.4$ kg 的物体,在弹性回复力作用下沿 Ox 轴运动,弹簧的 劲度系数 $k=10$ N/m,试求:
19. 一质量为 $m=0.4$ kg 的物体,在弹性回复力作用下沿 Ox 轴运动,弹簧的 劲度系数 $k=10$ N/m,试求:
 19. 一质量为 m=0.4 kg 的物体,在弹性回复力作用下沿 Ox 轴运动,弹簧的 劲度系数 k=10 N/m, 试求: (1) 振动的角频率和周期; (2) 如果振幅 A=0.02 m,在 t=0 时物体位于 0.01cm 处,并沿 Ox 轴负方向
 19. 一质量为 m=0.4 kg 的物体,在弹性回复力作用下沿 Ox 轴运动,弹簧的 劲度系数 k=10 N/m, 试求: (1) 振动的角频率和周期; (2) 如果振幅 A=0.02 m,在 t=0 时物体位于 0.01cm 处,并沿 Ox 轴负方向
 19. 一质量为 m=0.4 kg 的物体,在弹性回复力作用下沿 Ox 轴运动,弹簧的 劲度系数 k=10 N/m, 试求: (1) 振动的角频率和周期; (2) 如果振幅 A=0.02 m,在 t=0 时物体位于 0.01cm 处,并沿 Ox 轴负方向

(1) 弹簧振子的振动能量;

反。试求:

(2) 此振子的简谐振动方程。

- 21. 一物体沿x 轴做简谐振动,振幅为 30 cm,周期为 5 s。当 t=0 时位移为 15 cm,且向x 轴正方向运动。试求:
 - (1) 简谐运动方程:
 - (2) 物体沿x 轴负方向运动到x=-15 cm 处所需要的最短时间。
- 22. 两个同方向、同频率的简谐振动,方程分别为 $x_1=0.04\cos(10t+\pi/4)$ (SI) 和 $x_2=0.03\cos(10t+3\pi/4)$ (SI)。试求:
 - (1) 合振动的振幅及初相位:
- (2) 若另一个振动 $x_3 = 0.05\cos(10t + \varphi)$,问 φ 为何值时,三个振动的合振动振幅最大。
- 23. 如右图所示,一平面简谐波沿 x 轴的正方向传播,波速大小为 u,若 B 点处质点的简谐运动方程为 $y_B = A\cos(\omega t + \frac{u}{B})$ O ϕ),试求:
 - (1) 0点处质点的简谐运动方程;
 - (2) 以 0 点为波源, 该波的波动方程。
 - 五、证明题 (本大题共1小题, 每题10分, 共10分)
 - 24. 试证明: 弹簧振子系统的机械能守恒。

第四章 狭义相对论

姓名: _____ 学号: ____ 序号: ____

学院: 班级: 成绩:

一、单项选择题 (本大题共6小题, 每题只有一个正确答案, 答对一题	得				
3分, 共18分)					
1. 按照相对论时空观, 在某惯性系中同时、异地发生的两个事件, 在另	外				
的惯性系 ()					
A. 可能仍然为同时, 但不可能同地 B. 可能同时, 也可能同地					
C. 不可能同时,可能同地 D. 不可能同时,也不可能同地					
2. 两个事件分别由两个观察者 $S \setminus S'$ 观察, $S \setminus S'$ 彼此相对做匀速运动,	观				
察者 S 测得两事件相隔 $3s$,两事件发生地点相距 $10m$,观察者 S' 测得两事件相	隔				
5s, S'测得两事件发生地的距离最接近于 () m					
A. 0 B. 2 C. 10 D. 10 ⁹					
3. 某种介质静止时的寿命为 $10^{-8}\mathrm{s}$,质量为 $10^{-25}\mathrm{g}$ 。如它在实验室中的速	度				
为 2×10 ⁸ m·s ⁻¹ ,则它的一生中能飞行() m					
A. 10^{-3} B. 2 C. $\sqrt{5}$ D. $6/\sqrt{5}$					
4. 一刚性直尺固定在 K' 系中,它与 X' 轴正向夹角 $\alpha'=45^\circ$,在相对 K' 系	以				
速度 u 沿 X' 轴做匀速直线运动的 K 系中,测得该尺与 X 轴正向夹角为 ()					
A. $\alpha > 45^{\circ}$ B. $\alpha < 45^{\circ}$ C. $\alpha = 45^{\circ}$ D. $\alpha = 60^{\circ}$					
D. 若 u 沿 X' 轴正向,则 $\alpha > 45^{\circ}$;若 u 沿 X' 轴反向,则 $\alpha < 45^{\circ}$					
5. 电子的动能为 0. 25MeV,则它增加的质量约为静止质量的()					
A. 0.1 倍 B. 0.2 倍 C. 0.5 倍 D. 0.9 倍					
第1页(共4页)					

	$6.E_k$ 是粒子的动能, p 是它的动量	,那么粒子的静能 m_0c^2 等于	())
	A. $(p^2c^2 - E_k^2)/2E_k$	B. $(p^2c^2 - E_k)/2E_k$		
	C. $(p^2c^2 + E_k^2)/2E_k$	D. $(pc - E_k)^2 / 2E_k$		
	二、判断题(本大题共6小题,每		示说法.	正确,
答×	表示说法不正确,本题只需指出正	确与错误,不需要修改)		
	7. 经典物理中,时间和空间与物体	的运动无关,都是绝对的。	()
	8. 通过伽利略变换式可以得出,两	个惯性系中牛顿定律的形式	是相同的	勺。
			()
	9. 通过洛伦兹变换式可以得出物体	的固有长度最短。	()
	10. 通过洛伦兹变换式可以得出在。	S 系中同时发生的两个事件,	在相对	∮ <i>S</i> 系
做气	速运动的 S' 系中也是同时的。		()
	11. 洛伦兹变换式给出的是两个惯例	性系之间的时空变换关系。	()
	12. 按照狭义相对论的观点,物体的	的静止质量最大。	()
	三、填空题(本大题共7小题,每	空 2 分, 共 26 分)		
	13. 陈述狭义相对论的两条基本原理	里:		
	(1)			0
	(2)			0
	14. 两个惯性系 S 和 S' ,相对速率	为 0.6c, 在 S 系中观测, -	一事件发	生在
t = 2	$\times 10^{-4}$ s, $x = 5 \times 10^{3}$ m 处,则在 S' 系	中观测,该事件发生在 t':	=	s,
x' =	m 处。			
	15. 两火箭 A、B 沿同一直线相向	运动,测得两者相对地球的	的速度分	别是
$v_A =$	$0.9c$, v_B = $0.8c$, 则两者互测的相	对运动速度为。		
	16. 一观察者测得运动的米尺长 0. 5	5m, 米尺接近观察者的速度	为	
	o			
	17. 一棒的静止长度为 l_0 ,质量为 n	n_0 , 当棒以速率 $v = 0.95c$ 沿	棒的方向	[运动
时,	它的线密度为,当它以同	样速率沿与棒垂直方向运动。	时,它的	均线密
度为	·o			
	18. α 粒子在加速器中被加速, 当加	加速到其质量为静止质量的	5 倍时,	则它
的速	率为,动量为	,动能为		_ 0

- 19. 设有两个静止质量均为 m_0 的粒子,以大小相等的速度 v_0 相向运动并发生碰撞,合成为一个粒子,则该复合粒子的静止质量 M_0 = ______,运动速度 v = _____。
 - 四、计算题(本大题共5小题、每题8分、共40分)
- 20. π^+ 介子是一种不稳定粒子,其平均寿命为 2. $6 \times 10^{-8} \, \mathrm{s}$ (在它自身参考系中测得)。试求:
- (1) 如果此粒子相对于实验室以 0.8c 的速度运动,那么实验室坐标系中测得 π^+ 介子的寿命为多长:
 - (2) π⁺介子在衰变前运动了多长距离。

- 21. 一原子核以 0.5c 的速度离开一观察者。原子核在它运动方向上向前发射一电子,该电子相对于核有 0.8c 的速度;此原子核又向后发射一光子指向观察者。对静止观察者来讲,
 - (1) 电子具有多大的速度:
 - (2) 光子具有多大的速度。

22. 某人测得一根静止棒长度为 l、质量为 m,于是求得棒的线密度为 $\rho = \frac{m}{l}$ 。假定棒以速度 v 沿棒长方向运动,此人再测运动棒的线密度应为多少? 若棒在垂直于长度方向上运动,它的线密度又为多少?

23. 静止质量为 m_0 、带电荷量为 q 的粒子, 其初速度为零, 在均匀电场 E 中加速, 则经过时间 t 后它所获得的速度是多少? 如果不考虑相对论效应, 它的速度又是多少? 这两个速度间有什么关系?

24. 在什么速度下粒子的动量是非相对论动量的两倍? 在什么速度下的动能等于它的静止能量。

- 五、综合题 (本大题共1小题, 每题10分, 共10分)
- 25. 在北京正负电子对撞机中,电子可以被加速到动能为 $E_k=2.8\times10^9\mathrm{eV}$ 。
- (1) 这种电子的速率和光速相差多少?
- (2) 这种电子的动量有多大?
- (3) 这种电子在周长为 240m 的储存环内绕行时, 它受到的向心力有多大?

第五章 气体动理论

姓名: _____ 学号: ____ 序号: _____

	学院:	班级:			
	一、单项选择题(本	大题共6小题,	每题只有一	个正确答案,	答对一题得
3 分	-, 共18分)				
	1. 若理想气体的体积	$\exists \lambda V, 压强为 p,$	温度为 T, -	一个分子的质	量为 m, k 为
玻尔	K兹曼常数, R 为摩尔·	气体常量,则该理	理想气体的分	子数密度为()
	A. $\frac{pV}{kT}$ B.	$\frac{pV}{m}$	C. $\frac{p}{kT}$	D. $\frac{pV}{mT}$	
	2. 体积恒定的容器储	有理想气体, 若	〒把气体的温	度提高为原来	的2倍,则
()				
	A. 分子的平均动能和	口气体的压强都不	变		
	B. 分子的平均动能和	1气体的压强都提	高为原来的	2 倍	
	C. 分子的平均动能摄	是高为原来的4倍	f, 气体的压引	虽提高为原来的	的 2 倍
	D. 分子的平均动能摄	是高为原来的2倍	f, 气体的压引	虽提高为原来的	的 4 倍
	3. 某热力学系统经历	万一个过程, 向夕	外界放出 500	J 的热量,同	时内能减少
700	J, 则 ()				
	A. 系统对外界做功 2	00J	B. 系统对外	卜界做功 1200J	
	C. 外界对系统做功 2	00J	D. 外界对系	系统做功 1200J	
	4. 容器中装有一定量	的某种气体, 在	E忽略重力场	影响的条件下	, 处于平衡
态的	り是 ()				
	A. 容器内各部分压强	日相等			
	B. 容器内各部分温度	E相等			

第1页(共4页)

C. 容器内各部分压强相等, 且各部分容	密度也相同	
D. 无法判断		
5. 在标准状态下,任何理想气体在 1m	³中含有的分子数都等于()	
A. 6. 02×10^{23}	B. 6.02×10^{21}	
C. 2. 69×10^{25}	D. 2. 69×10^{23}	
6. 大小不同的两容器分别装有氮气和	水蒸气,温度相同,则下列各量中相	
同的量是 ()		
A. 气体分子的平均动能	B. 气体的压强	
C. 气体分子的平均平动动能	D. 气体的密度	
二、判断题 (本大题共6小题, 每题	1分, 共6分, 答√表示说法正确,	,
答×表示说法不正确,本题只需指出正确与	j错误,不需要修改)	
7. 一定量的理想气体,等体加热时,气	气体分子平均速率随温度的升高而增大	• 0
	()	
8. 1mol 刚性双原子分子理想气体,当温	度为 T 时,其内能为 $\frac{3}{2}RT$ 。 ()	
9. 一年四季大气压强一般差别不大,但	旦是相对而言冬天空气的密度比较大。	
	()	
10. 系统处于平衡状态时, 系统和外界	没有能量交换,内部也没有化学变化	
等任何形式的能量转换,系统的宏观性质不	下随时间变化。 ()	
11. 物体的温度越高,则热量越多。	()	
12. 物体的温度越高,则内能越大。	()	
三、填空题 (本大题共6小题,每空2	2分, 共26分)	
13. 在平衡态下,已知理想气体分子的	麦克斯韦速率分布函数为 $f(v)$,分子	•
质量为 m ,分子总数为 N ,最概然速率为 v	。, 试说明下列各式的物理意义:	
$(1) \int_{v_p}^{\infty} Nf(v) \mathrm{d}v 表示$;	
$(2) \int_0^\infty \frac{1}{2} m v^2 f(v) \mathrm{d}v 表示$	o	
14. 在室温 (27℃) 下, 1mol 氢气和 1	mol 氧气的内能之比是,	,
1g 氧气和 1g 氢气的内能之比是		

	15. 理想气体的内能是_		_的单值函数,	$\frac{i}{2}kT$ 表示	_,
$\frac{m}{M}$	<u>i</u> RT表示	_			

- 16. 氢气在 27℃时,每立方厘米的分子数为 2.4 × 10¹² ,则氢气分子的平均平动动能为______,作用在容器壁上的压强为_____。
- 17. 下面给出的理想气体状态方程的几种微分形式,指出它们表示的是什么过程。
 - (1) pdV = (m/M) RdT表示 过程;
 - (2) Vdp = (m/M) RdT 表示______过程;
- 18. 各自处于平衡态的两种理想气体,温度相同,分子质量分别为 m_1 、 m_2 ,已知两种气体分子的速率分布曲线如图所示,则这两种气体质量大的是_____

四、计算题 (本大题共5小题, 每题8分, 共40分)

- 19. 室温下,1 mol 氧气的平动动能和转动动能各为多少?将 1 g 氢气从 $10 \text{ } \circ \circ$ 加热到 $30 \circ \circ \circ$,氢气的内能增加多少?
- 20. 一容器储有一定量的氧气,其压强为 1atm,温度为 27℃,已知氧气的摩尔质量 $M = 32 \times 10^{-3} \text{kg} \cdot \text{mol}^{-1}$,氧分子的质量 $m = 5.3 \times 10^{-26} \text{kg}$,氧分子的有效直径 $d = 3.56 \times 10^{-10} \text{m}$,试求:
 - (1) 单位体积的分子数;
 - (2) 分子的平均速率;
 - (3) 分子的平均碰撞频率:
 - (4) 分子的平均自由程:
 - (5) 分子的平均平动动能。

- 21. 一瓶氢气和氧气的温度相同, 若氢分子的平均平动动能为 $6.21 \times 10^{-21} J$, 试求:
 - (1) 氧分子的平均动能;
 - (2) 氧气的温度。

- 22. 体积为 $2.0 \times 10^{-3} \,\mathrm{m}^3$ 的双原子理想气体分子,其内能为 $6.75 \times 10^2 \,\mathrm{J}$ 。
- (1) 求气体的压强;
- (2) 若分子总数为 5.4 × 10²² 个,求分子的平均平动动能和气体的温度。

23. 计算在27℃ 时, 二氧化碳分子的最概然速率、方均根速率和平均速率。

- 五、证明题 (本大题共1小题, 每题10分, 共10分)
- 24. 利用麦克斯韦速率分布公式 $f(v) dv = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-\frac{mv^2}{2kT}} v^2 dv f(v)$ 证明:该分

布的方均根速率为
$$\sqrt{v^2} = \sqrt{\frac{3kT}{m}}$$
 。 (积分公式 $\int_0^\infty \exp(-\alpha x^2) \cdot x^4 \mathrm{d}x = \frac{3}{8} \sqrt{\pi} \alpha^{-\frac{5}{2}}$)

第六章 热力学基础

姓名: _____ 学号: _____ 序号: _____

学院:	班级:	成绩:		
一、单项选择	题 (本大题共6小题,	每题只有一个正	确答案,答》	对一题得
3分,共18分)				
1. 热力学第一	定律表明()			
A. 系统对外所	f做功小于吸收的热量	B. 系统内能的 ¹	曾量小于吸收的	的热量
C. 热机的效率	小于1	D. 第一类永动标	几不可能实现	
2. 根据热力学	第二定律,下列说法正	E确的是()		
A. 热量能从高	5温物体传到低温物体,	但不能从低温物	体传到高温物	/ 体
B. 功可以全部	3变为热,但热不能全部	邻变为功		
C. 气体能够自	由膨胀,但不能自由压	玉缩		
D. 有规则运动	的能量能够变为无规则	则运动的能量, 但	日无规则运动 i	的能量不
能变为有规则运动	的能量			
3. 对于室温下	的双原子分子理想气	体,在等压膨胀情	青况下,系统 为	对外做功
和从外界吸收的热	量之比等于 ()			
A. 1/3	B. 1/4	C. 2/5	D. 2/7	
4. 系统由初态	I 经历不同过程达到约	咚态Ⅱ,则在各个	过程中,()
A. 做功不同,	内能变化不同, 吸收热	热量不同		
B. 做功不同,	内能变化相同, 吸收热	热量不同		
C. 做功相同,	内能变化不同, 吸收热	热量不同		
D. 无法判断				
	第1页(共4页)		

5. 一定量的理想气体, 初状态温度为	T, 体积为 V , 其先后经历下面三个准
静态过程回到初态:(1)绝热膨胀到体积	!为 $2V$; (2) 等体变化使温度恢复为 T ;
(3) 等温压缩到原来体积 V, 则整个循环	过程中()
A. 气体向外放热	B. 气体对外做正功
C. 气体内能增加	D. 气体内能减少
6. 有两个相同的容器,容积不变,-	一个盛有氦气,另一个盛有氢气(均可
看成刚性分子),它们的压强和温度都相等	等,现将 5J 的热量传给氢气,如果使氦
气也升高同样的温度,则应向氦气传递的	热量是()
A. 6J B. 5J	C. 3J D. 2J
二、判断题(本大题共6小题,每是	题 1 分,共 6 分,答√表示说法正确,
答×表示说法不正确,本题只需指出正确	与错误,不需要修改)
7. 热力学系统经绝热过程,系统的煽	6将保持不变。 ()
8. 两种理想气体的温度相同,摩尔数	(也相同,则它们的内能相同。 ()
9. 如果只用绝热方法使系统从初态到	变到终态, 对于联结这两态的不同绝热
过程,所做的功不同。	()
10. 一个不受外界影响的"孤立系统	",其内部发生的过程,总是由概率小
的状态向概率大的状态进行。	()
11. 由 p 、 V 、 T 描写的理想气体,在	等容、等压、等温的过程中能独立改变
的状态参量数目是1个。	()
12. 理想气体在等容过程中,其分子	平均自由能与温度无关。
三、填空题 (本大题共 5 小题, 每空	2分, 共26分)
13. 一气缸内储有 10mol 的单原子理	想气体分子, 在压缩过程中, 外力做功
209J, 气体温度升高 1K, 则气体内能的均	曾量为,吸收的热量为
14. 一卡诺制冷机低温热源的温度为	300K,高温热源温度为450K。每次循
环从低温热源吸热 400J,则该制冷机的制	冷系数为,每一次循环中外
界必须做功。	

15. 热力学第二定律的开尔文表述
,热力学第二定律的克劳修斯表述为
0
16. 一定量的气体从同一初态 A 出发,分别经历等压、等温、绝热三种之
程,体积由 V_1 膨胀到 V_2 ,则在上述三种过程中,过程对外做功最多
过程对外做功最少,过程内能增加,过程内能
减少。
17. 要使一热力学系统的内能变化,可以通过
两种方式;理想气体的状态发生变化时,内能的改变量只决定于。
四、计算题 (本大题共 4 小题, 每题 10 分, 共 40 分)
18. 已知范德瓦耳斯气体状态方程为 $(p + \frac{a}{V_m^2})(V_m - b) = RT$,其内能为
$U_{\text{m}} = cT - \frac{a}{V_{\text{m}}^2} + d$, 其中 a 、 b 、 c 、 d 均为常数,试求:
(1) 该气体从 V_1 等温膨胀到 V_2 时所做的功;
(2) 该气体在定体下升高 ΔT 温度所吸收的热量。

- 19. 1mol 的氢气,在压强 1atm、温度 20℃时,其体积为 V₀,今使其经历以下两种过程达到同一状态。
- (1) 先保持体积不变加热,使其温度升高到 80℃,然后令其做等温膨胀,体积变为原来的 2 倍;
- (2) 先使其等温膨胀至原来体积的 2 倍,然后保持体积不变,加热到 80%。 试分别计算上述过程中气体吸收的热量、气体对外所做的功和气体内能的增量,并作出 p-V 图。

20.1mol 的单原子理想气体自 *A* 点起始,沿顺时针方向完成一个循环,如右图所示,求此循环效率。

21. 如右图所示,设有氮气 14g,作 abca的循环过程 (ca 为等温线)。试求:

- (2) 在各过程中传递的热量;
- (3) 循环效率。

五、证明题 (本大题共1小题, 每题10分, 共10分)

22. 证明:工作在高温热源 T_1 与低温热源 T_2 之间的可逆卡诺热机的效率为 $y=1-\frac{T_2}{T_1}$ 。