Technische Universität Braunschweig

Institut für Robotik und Prozessinformatik Prof. J. Steil

Übungen für Grundlagen Maschinelles Lernen SS 2019 Blatt 2

Übungstermin: 23.04./03.05

Task 2.1 Von Likelihood zum quadratischen Fehler:

Zeige durch explizite Rechnung, dass die Minimierung des $-\log L(\omega)$ (negative log-Likelihood) auf den quadratischen Fehler führt (nehme an, der Logarithmus ist zur natürlichen Basis spezifiziert).

Zeige weiter, dass für die optimalen ω_{ML} dann für die Minimierung bzgl. β gilt:

$$\frac{1}{\beta_{ML}} = \frac{1}{N} \sum_{n=1}^{N} (y(\vec{x}_n, \omega) - t_n)^2$$
 (1)

Task 2.2 Funktionsapproximation:

Gegeben sie folgender Datensatz:

Nr	1	2	3	4	5	6	7	8	9
Х	-1	-3/4,	-1/2	-1/4	0	1/4	1/2	3/4	1
у	-1	0.1	0.6	0.5	-0.05	-0.5	-0.7	-0.2	1

der durch Addition von Rauschen zur Funktion $y=3x^3-2x$ generiert wurde. Verwende zur Approximation ein Polynom vom Grad M=3. Was erwarten Sie für die Werte der Parameter w_0 to w_3 ? Approximieren Sie die Funktion indem Sie nur die Werte 1-4 der Tabelle verwenden. Was erwarten Sie jetzt für die Parameter? Berechnen Sie die Werte für w_i . Für welche Wahl von vier Punkten erwarten Sie die beste Approximation ? Berechnen Sie die Ausgaben des Datenmodells für die anderen 5 Werte und den entsprechenden Generalisierungsfehler. (Note: Nutzen Sie für die Berechnungen ein Werkzeug wie Matlab oder octave.) Schätzen Sie schließlich die Varianz des Rauschens, mit dem die Daten generiert wurden.

Task 2.3 Lösung für lineare Modelle:

Ein lineares Datenmodell ist linear in den Parametern ω , kann aber nichtlinear in den Eingaben sein. Es hat die generelle Form

$$y(x_n, \omega) = \sum_{m=0}^{M} \omega_m \Phi_m(x_n) = \vec{\omega}^T \mathbf{\Phi}(\mathbf{x_n})$$
 (2)

$$\mathbf{\Phi}(\mathbf{x_n}) = (\Phi_0(x_n), ..., \Phi_M(x_n))^T \tag{3}$$

wobei Φ_i eine beliebige (nichtlineare) Funktion der Eingaben sein kann.

Berechnen Sie den Gradienten der Fehlerfunktion $E(\omega)$ für ein lineares Datenmodell, wobei

$$E(\vec{w}) = \sum_{n=1}^{N} \left(t_n - \vec{w}^T \mathbf{\Phi}(x_n) \right)^2 \tag{4}$$

Setzen Sie den Gradienten zu Null (Bedingung für das Minimum !) und lösen Sie die entstehende Gleichung.

