







Team
Members:

- Aayush Shangani
- Darsh Shetty
- Pavan Antala
- Sheroz Shaikh

DS595: Natural Language Processing



# **Team Contribution**





# **Aayush**

ML + TF IDF + BERT

## Darsh

ML + Word2VEC + DL BERT FINE TUNE

### Pavan

ML POS + DL BERT FINE TUNE LORA + RNN

# **Sheroz**

DL LSTM GRU BI-LSTM





# Motivation





# **Assuming:**

We are working for the multinational company similar to Deloitte, Mckinsey etc.



Client









Pizza

NLP Engineer/Data Scientist





# **Dataset Overview**

We are working for the multinational company similar to Deloitte, Mckinsey etc.









Users

Ranking

**Business** 

Reviews







**User-Checkins** 





# Problem Domain





## How data filtered:



Big Data Set







# What we finalized:









**Little Caesars** 



















# Line Plot of day\_name by state









# **Features**

# **ML Models**

# **DL Models**

TF-IDF



Logistic-Regression



**SVM** 



**BERT** 



Part of Speech



Naïve Bayes



KNN



RNN



Word2Vec



**Decision Tree** 



Random Forest



**LSTM** 



GRU

Bi-LSTM

















# **DL Models**

**BERT** 



**RNN** 















| ML Model            | ∨ Feature ∨        | Accuracy | Precision ~ | Recall ~ | F1-Score ~ |
|---------------------|--------------------|----------|-------------|----------|------------|
| Logistic Regression | TF-IDF             | 85.51    | 82.69       | 96.99    | 89.27      |
| Naive Bayes         | Part of Speech Tag | 85.51    | 84.46       | 93.98    | 88.97      |
| Support Vector      | TF-IDF             | 85.05    | 82.17       | 96.99    | 88.97      |
| Support Vector      | Part of Speech Tag | 84.58    | 85.71       | 90.23    | 87.91      |
| K-Nearest Neighbors | TF-IDF             | 82.71    | 82.88       | 90.98    | 86.74      |
| Random Forest       | TF-IDF             | 80.84    | 78.75       | 94.74    | 86.01      |
| Logistic Regression | Part of Speech Tag | 81.78    | 85.07       | 85.17    | 85.39      |
| Random Forest       | Part of Speech Tag | 78.97    | 76.50       | 95.49    | 84.95      |
| Naive Bayes         | TF-IDF             | 78.04    | 74.16       | 99.25    | 84.89      |
| Decision Tree       | Word2Vec           | 76.34    | 85.51       | 83.91    | 84.70      |
| Random Forest       | Word2Vec           | 73.36    | 74.68       | 86.47    | 80.14      |
| K-Nearest Neighbors | Part of Speech Tag | 64.95    | 64.22       | 98.50    | 77.74      |
| Support Vector      | Word2Vec           | 62.15    | 62.15       | 100.00   | 76.66      |
| Decision Tree       | Part of Speech Tag | 71.03    | 78.86       | 72.93    | 75.78      |
| Decision Tree       | TF-IDF             | 69.16    | 74.81       | 75.94    | 75.37      |
| Logistic Regression | Word2Vec           | 61.68    | 63.63       | 94.93    | 74.38      |
| K-Nearest Neighbors | Word2Vec           | 64.02    | 67.50       | 81.20    | 73.72      |
| Naive Bayes         | Word2Vec           | 57.48    | 75.00       | 47.37    | 58.06      |













| DL Model | Feature             | ✓ Accuracy ✓ | Precision ~ | Recall ~ | F1-Score ~ |
|----------|---------------------|--------------|-------------|----------|------------|
| BERT     | Lora                | 88.32        | 90.91       | 90.23    | 90.57      |
| Bi-LSTM  | Attention Mechanism | 83.64        | 87.69       | 85.71    | 86.69      |
| RNN      | -                   | 82.71        | 88.10       | 83.46    | 85.71      |
| BERT     | Fine Tune           | 83.64        | 95.37       | 77.44    | 85.48      |
| BERT     | w/o Fine Tune       | 82.06        | 90.33       | 79.36    | 84.49      |
| LSTM     | -                   | 83.18        | 89.09       | 80.33    | 84.48      |
| GRU      | -                   | 74.77        | 78.33       | 77.05    | 77.69      |











### $\overline{\mathsf{v}}$ ML + DL Model $\overline{\phantom{a}}$ v Precision $\overline{\phantom{a}}$ Feature Accuracy Recall F1-Score BERT 88.32 90.91 90.23 90.57 Lora TF-IDF 82.69 96.99 Logistic Regression 85.51 89.27 Part of Speech Tag 85.51 84.46 93.98 88.97 Naive Bayes 85.05 96.99 82.17 88.97 Support Vector TF-IDF Part of Speech Tag 84.58 85.71 90.23 87.91 Support Vector K-Nearest Neighbors TF-IDF 82.71 90.98 82.88 86.74 Bi-LSTM 83.64 87.69 85.71 86.69 Attention Mechanism 80.84 94.74 Random Forest TF-IDF 78.75 86.01 RNN 82.71 88.10 83.46 85.71 77.44 BERT Fine Tune 83.64 95.37 85.48 Logistic Regression Part of Speech Tag 81.78 85.07 85.17 85.39 Random Forest Part of Speech Tag 78.97 76.50 95.49 84.95 TF-IDF 78.04 74.16 99.25 Naive Bayes 84.89 Decision Tree Word2Vec 76.34 85.51 83.91 84.70 BERT w/o Fine Tune 82.06 90.33 79.36 84.49 LSTM 83.18 89.09 80.33 84.48 Word2Vec Random Forest 73.36 74.68 86.47 80.14 K-Nearest Neighbors Part of Speech Tag 64.95 64.22 98.50 77.74 GRU 74.77 78.33 77.05 77.69 62.15 Support Vector Word2Vec 62.15 100.00 76.66 Part of Speech Tag 71.03 78.86 72.93 75.78 Decision Tree 74.81 75.94 Decision Tree TF-IDF 69.16 75.37 Logistic Regression Word2Vec 61.68 63.63 94.93 74.38 K-Nearest Neighbors 64.02 67.50 81.20 Word2Vec 73.72 Word2Vec 47.37 Naive Bayes 57.48 75.00 58.06







# Conclusion





- A combined model that incorporates an attention mechanism could yield improved results.
- A model that merges attention mechanisms with NLP techniques may surpass other approaches in performance.





