

DEC 05, 2023

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.bp2l6xy4zlqe/v1

Protocol Citation: Fernando Lazaro 2023. CMV Resistance testing (UL54 and UL97). **protocols.io**

https://dx.doi.org/10.17504/protocols.io.bp2l6xy4zlqe/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Nov 30, 2023

Last Modified: Dec 05,

2023

CMV Resistance testing (UL54 and UL97)

Fernando Lazaro¹

¹Servicio de Microbiología. Hospital Universitario La Paz

Fernando Lazaro

DISCLAIMER

DISCLAIMER – FOR INFORMATIONAL PURPOSES ONLY; USE AT YOUR OWN RISK

The protocol content here is for informational purposes only and does not constitute legal, medical, clinical, or safety advice, or otherwise; content added to protocols.io is not peer reviewed and may not have undergone a formal approval of any kind. Information presented in this protocol should not substitute for independent professional judgment, advice, diagnosis, or treatment. Any action you take or refrain from taking using or relying upon the information presented here is strictly at your own risk. You agree that neither the Company nor any of the authors, contributors, administrators, or anyone else associated with protocols.io, can be held responsible for your use of the information contained in or linked to this protocol or any of our Sites/Apps and Services.

ABSTRACT

This protocol is a procedure for the study of antiviral resistance in Cytomegalovirus by NGS techniques.

The primers have been designed using https://primalscheme.com/ with the intention of covering the most relevant regions of the UL54 and UL97 genes.

BEFORE START INSTRUCTIONS

Take into account that the quality of the results is greatly affected by the time from sample extraction to DNA amplification.

The protocol may fail if the protocol is performed from refrigerated samples or DNA.

PROTOCOL integer ID:

91624

Keywords: CMV, antiviral, resistance, Citomegalovirus

Funders

Acknowledgement:

IdiPAZ

Prepare Reagents

- 1 Q
- Q5® High-Fidelity DNA Polymerase (New England)
 - Agarose gel 1%
 - Ethanol 70%
 - Mag-Bind® TotalPure NGS (omega)
 - Elution Buffer

Set up primer pools (UL97 and UL54)

2 UL97 Primers

UL97_4_LE	TGCGCGCGGAAAGT	UL97_4_RI	CGGCATAACAGATCT
FT	CAG	GHT	TGTGGC
UL97_5_LE	CTCTGCGAGCTCTC	UL97_5_RI	AGCAGACAGCAGCCC
FT	TATCTCCT	GHT	GT
UL97_6_LE	TGGCGAGCAACAGC	UL97_6_RI	GCGCGCATGATCTCG
FT	AGC	GHT	CT
UL97_7_LE	TGCCACTTTGACAT	UL97_7_RI	TCCGACATGCAATAA
FT	TACACCCA	GHT	CGCCG
UL97_8_LE	TTTCCGACCCATGC	UL97_8_RI	ATGCTCGCCCAGGAG
FT	CGCT	GHT	ACAG
UL97_9_LE	CATGGGTACGGAGG	UL97_9_RI	GGCCAACAGACGCTC
FT	CGTTG	GHT	CA

UL97 Primers

UL54 Primers

UL54_1_LE	TGCAAAAACTTGTCC	UL54_1_RI	ATTCTGTAACCACCG
FT	TTGCGC	GHT	GCGTG
UL54_2_LE	GTAGTTGCACACGGC	UL54_2_RI	CGTCAATCTAACCTG
FT	CGAC	GHT	CCGCA
UL54_3_LE	CGTAAAAGACCCGAT	UL54_3_RI	TCTCGCTGCTCTTTG
FT	CCCCG	GHT	AGGATC
UL54_4_LE	CTTCATCGAGTGAGA	UL54_4_RI	AGGCTTTGGTGGCGC
FT	GGCGC	GHT	GT
UL54_5_LE	GCTTGACGGGCTCCA	UL54_5_RI	GGCGCGGTTCATCAA
FT	CAAAA	GHT	AGACA
UL54_6_LE	TCCCGCGTTCCCACT	UL54_6_RI	CAACAAGTGGGTTTC
FT	ACATA	GHT	GCAGC
UL54_7_LE	ATACGGCGCACAGG	UL54_7_RI	GTGTTTGAGCCCGAG
FT	GTCTT	GHT	GTGG
UL54_8_LE	AGTAGCAGAGGTTGT	UL54_8_RI	GGTTCTGTGGCGGCT
FT	GAGCCA	GHT	ATGTT
UL54_9_LE	AAACGCCGTCCTGAC	UL54_9_RI	CTTGCAATCTGCGCC
FT	TCGA	GHT (V2)	GTC
UL54_10_L	GGATCTGCTGTCCGT	UL54_10_	ATATTGCGGGTTCGG
EFT	CAAAGA	RIGHT	TGGTT
UL54_11_L	TGTTGAGCTTATAGT	UL54_11_	CGGCCTTTGTGACCG
EFT	TGGGCGA	RIGHT	GTTAC
UL54_12_L	CCTTATACAGGTACT	UL54_12_	GTGCTACGAGACGGG
EFT	CGAGGCG	RIGHT	AGGA
UL54_13_L	AAGTGCAGCCCCGA	UL54_13_	GGATCACCACGTTCG
EFT	CCAT	RIGHT	GCTG
UL54_14_L	CCTCGATATCACAAG	UL54_14_	GGCGAACTAGTGCCC
EFT	TCGACGC	RIGHT	GAAC

UL54_15_L EFT	CCGTACCCGTAGATG GAGGT		GGGACCTATTCGTTT TCACACCTA
UL54_16_L EFT	ACGATAGCGCGGCG ACA	UL54_16_ RIGHT	CGGCGTCAGCGTTTG CA

UL54 Primers

2.1 Pool 1 UL97 (odd primers LEFT and RIGHT)

Pool 2 UL97(even primers LEFT and RIGHT)

2.2 Pool 1 UL54 (odd primers LEFT and RIGHT)

Pool 2 UL54 (even primers LEFT and RIGHT)

Use Δ 10 μL for each primer [M] 10 micromolar (μM) except:

■ UL54_14_LEFT/RIGHT 14: 2,5 µl

■ UL54_5_LEFT/RIGHT: 5 µl

■ UL54_13_LEFT/RIGHT: 5 µl

■ UL54_15_LEFT/RIGHT: 20 µl

DNA extraction

Perform DNA extraction with your method of choice. Preferably from a **plasma sample** collected on **the same day**. Perform DNA extraction with your method of choice. Preferably from a plasma sample collected on the same day.

The quality of the results is greatly affected by the time from sample extraction to DNA amplification. The protocol may fail if the protocol is performed from frozen samples or DNA.

DNA amplification

For each pool and sample, mix the following reagents (two reactions per sample):

3

Reagent	Volume / sample (μΙ)
Primer Pool	2
Q5‱ Polymerase	0,25

Q5 Buffer	5
H20	5
dNTP	0.5
Sample DNA	12,5

PCR Mix for Pool 1 and 2

Set up the PCR with the following program

A	В	С
Cycles	Temperatu re	Time
1	98°C	30"
5	98°C	10"
	65°C	3'
	98°C	10"
30	65°C	30"
	72°C	2'
1	72°C	2'
1	4°C	∞

PCR program

Confirm amplification of aproximately 300bp fragments by 1% agarose gel.

Product cleaning with Mag-Bind TotalPure NGS (omega)

5 Add 40 uL of beads to 20 uL of amplicon. Mix.

6	Incubate the mixture for 5 minutes at room temperature.
7	Place the tube in the magnet until the solution becomes clear.
8	Gently remove the supernatant by pipette.
9	Add 180 uL of 70% ethanol. Mix without breaking the pellet.
10	Gently discard the ethanol by pipette.
11	Incubate for 2 minutes at room temperature.
12	Remove any remaining ethanol. Note: The pellet must not be allowed to dry excessively. If it does occur, the pellet will appear black and cracked.
13	Remove the tube from the magnet.
14	Add 25 uL of EB. Mix. Note: do not break the pellet, just peel it away from the wall of the tube.

- 15 Incubate for 2 minutes at room temperature.
- Place the tube back in the magnet until the solution clears.
- 17 Transfer 20 uL of the supernatant to a new tube.

NGS sequencing

18 Sequence the amplicons using the sequencer of choice according to the manufacturer's instructions.

Antiviral resistance

Generate consensus sequence from the amplicons using the bioinformatics procedure of choice.

Take into account that in cases of previous exposure to antivirals or prolonged treatment, minority variants may appear.

The website http://cmv-resistance.ucl.ac.uk/herpesdrg/ is helpful for the study of resistance mutations.