Lecture 3

Decrease and Conquer algorithms
Text sections 4.1, 4.3, 4.4

Aside: Programs/algorithms as "black boxes"

Example: program to output "37"

Input: anything (or nothing!)

• Output: 37

```
Algorithm GiveMe37()
return 37
END
```

```
public class GiveMe37 {
   public static void main(String[] args) {
      System.out.println(37);
   }
}
```

Previous program as a black box*

^{*} Well, a green box in this case.

Q: How many edges in a complete graph?

Relationship between K_n and K_{n+1}

- Add one vertex
- Connect it to (all) n other vertices (add n edges)

Constructing K₃ from K₂

- 1. Add one vertex
- 2. Connect it to (all)(2) other vertices

Constructing K₆ from K₅

- Add one vertex
- Connect it to (all)(5) other vertices

Q: How many edges in a complete graph K_n ?

- A: If only we knew the answer for K_{n-1} ...
- ... then we could get the answer for K_n

How many edges in K_n ?

Recursive definition (algorithm):

```
ALGORITHM num_edges(int n)
// n is the number of vertices in a complete graph
// Return the number of edges in the graph
if n = 1
    return 0
else
    return (n-1) + num_edges(n-1)
endif
END
```

• num_edges(K_{37}) = 36 + num_edges(K_{36})

Decrease and conquer

- Reduce problem instance to smaller instance of the same problem and solve smaller instance
 - I.e. Solve a smaller problem
- Extend solution of smaller instance to obtain solution to original instance
 - Extend, augment, enhance, adapt, adjust, ...
 - Sometimes this part is trivial
- Can be implemented:
 - Top-down (recursive)
 - Bottom-up (iterative)

Example: top-down (recursive)

Factorial (5)=?

Inside the box

Example: bottom-up (iterative)

Factorial (5) = ?

Three types of Decrease and Conquer

- Decrease by a constant (usually by 1)
 - Insertion sort
 - Generating permutations
 - Generating subsets
- Decrease by a constant factor (usually by half)
 - Binary search
 - Exponentiation by squaring
 - Fake coin problem
- Variable-size decrease
 - Euclid's algorithm

Decrease by a constant amount

Decrease by a constant (often 1)

Inside the box of "decrease by constant amount"

Example of "decrease by 1"

Permutations of N objects

<u>N=1</u>	<u>N=2</u>	<u>N=3</u>	<u>N=4</u>
Α	AB	ABC	ABCD BACD CABD DABC
	BA	ACB	ABDC BADC CADB DACB
		BAC	ACBD BCAD CBAD DBAC
		BCA	ACDB BCDA CBDA DBCA
		CAB	ADBC BDAC CDAB DCAB
		CBA	ADCB BDCA CDBA DCBA

N=4, hide the Ds

ABC. BAC. CAB. .ABC
AB.C BA.C CA.B .ACB
ACB. BCA. CBA. .BAC
AC.B BC.A CB.A .BCA
A.BC B.AC C.AB .CAB
A.CB B.CA C.BA .CBA

- Example: To find all permutations of 3 objects
 A, B, C
 - First find all permutations of 2 objects, say B and C:

BC and CB

• Then insert the remaining object, A, into *all possible positions* in each of the permutations of B and C:

ABC BAC BCA and ACB CAB CBA

- To find all permutations of n objects:
 - 1. Find all permutations of n-1 of those objects
 - Insert the remaining object into all possible positions of each permutation of n-1 objects

• Example: find all permutations of A, B, C


```
 \begin{array}{l} \text{generatePerms} \ (a_1,\ a_2,\ \dots,\ a_n) \\ \\ \text{if } n>1 \\ \\ \text{smallerPerms} = \text{generatePerms} \ (a_1,\ a_2,\ \dots,\ a_{n-1}) \\ \\ \text{initialize allPerms to } \{\} \\ \\ \text{for each p in smallerPerms} \\ \\ \text{insert } a_n \text{ before } a_1 \text{ and add to allPerms} \\ \\ \text{for } i \leftarrow 1 \text{ to } n-1 \\ \\ \text{insert } a_n \text{ after } a_i \text{ and add to allPerms} \\ \\ \text{return allPerms} \\ \end{array}
```

Generating subsets

Example of "decrease by 1"

Subsets of {a,b,c,d}

```
In "lexicographic" order:
     {},
     {a}, {b}, {c}, {d},
     {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d},
     {a,b,c}, {a,b,d}, {a,c,d}, {b,c,d},
     {a,b,c,d}
                                                                    All the
Let's rearrange them a little:
                                                                     sets
     {}, {a}, {b}, {c}, {a,b}, {a,c}, {b,c},
                                                      {a,b,c}
                                                                  without d
     {d}, {a,d}, {b,d}, {c,d}, {a,b,d}, {a,c,d}, {b,c,d}, {a,b,c,d}
                                                                   All the
                                                                     sets
                                                                   with d
```

Generating subsets: IDEA

To find all subsets of a set with N items:

- 1. Find all subsets of a set with N-1 of the items
- Copy/clone the subsets
- 3. Insert the last item into all the copies

Subsets of $A = \{a,b,c,d,e,...,z\}$

Find subsets of $A - \{z\}$ (smaller problem!)

```
{} {a}
{b} {c}
{a,b} {a,c}
{a,d} {a,e}
... {a,b,c}
{a,b,d} ...
{c,d,e} ...
{a,b,c,d}
... {...} ...
```

2 Duplicate the result, and add z to every set in the copy

```
{} {a}
{b} {c}
{a,b} {a,c}
{a,d} {a,e}
... {a,b,c}
{a,b,d} ...
{c,d,e} ...
{a,b,c,d}
... {...} ...
```

```
{z} {a,z}

{b,z} {c,z}

{a,b,z} {a,c,z}

{a,d,z} {a,e,z}

... {a,b,c,z}

{a,b,d,z} ...

{c,d,e,z} ...

{a,b,c,d,z}

... {...,z} ...

{...,z}
```

Generating subsets

Example: find all subsets of {A, B, C}

Generating subsets

```
\begin{split} &\text{generateSubsets } (a_1,\ a_2,\ \dots,\ a_n) \\ &\text{if } n>0 \\ &\text{subsets = generateSubsets } (a_1,\ a_2,\ \dots,\ a_{n-1}) \\ &\text{for each subset s in subsets} \\ &\text{clone s to s'} \\ &\text{insert } a_n \text{ to s'} \\ &\text{add s' to subsets} \end{split}
```

Insertion sort

Example of "decrease by 1"

Then "sort" would just be "shift over some items and drop A[n-1] into place".

Sort algorithm idea:

- 1. Sort items A[0] through A[n-2]
 - This is a big step ... think of it as a subroutine
- 2. Find the spot where last item A[n-1] goes
- 3. Shift items over and drop in A[n-1]

Insertion sort

- Insertion sort (A[0..n-1])
 - 1. Sort A[0..n-2]
 - 2. Insert A[n-1] in its proper place among the sorted A[0..n-2]

Insertion sort (recursive)

Insertion sort (iterative)

```
    InsertionSort(A[0..n-1])
    for i ← 1 to n-1 do
    v ← A[i]
    j ← i-1
    while j≥0 and A[j]>v do
    A[j+1] ← A[j]
    j ← j-1
    A[j+1] ← v
```


Insertion sort and Selection sort: Similarities

- "Sorted" and "unsorted" piles
- Each main iteration does two things:
 - Choose item from "unsorted"
 - Place item in "sorted"
- Number of main iterations is O(n)
- O(n²) overall (worst case)

Insertion sort and Selection sort: Differences

- Selection sort: each main iteration
 - "Choose from unsorted part" is O(n) (linear search)
 - "Place into sorted part" is O(1) (it goes at the end)
- Insertion sort: each main iteration
 - "Choose from unsorted part" is O(1) (choose first item)
 - "Place into sorted part" is O(n) (shift the other items)

Decrease by a constant factor

Decrease by a constant factor

 Make the problem smaller by some constant factor

 Often the constant factor is two, i.e, we divide the problem in half

 Discard one or more of the parts

Inside the box of "decrease by constant factor"

Example of "decrease by factor of 2" i.e. solve a problem of size n/2

• Example: binary search, key =7

• Binary Search works by dividing the sorted array (i.e. the *solution space*) in half each time, and searching in the half where the target should exist

• In other words, we eliminate half the input on each iteration!

 It makes efficiency gains by ignoring the part of the solution space that we know cannot contain a feasible solution

```
binarySearch(a[], k, s, e)

if e < s
    return not found

m ← floor((s+e)/2)

if k > a[m]
    return binarySearch(a[], k, m+1, e)

else if k < a[m]
    return binarySearch(a[], k, s, m-1)

else
    return m</pre>
```

binarySearch(a[], k, s, e)

• Example: Binary search, k=90

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	6	7	9	9	13	17	22	25	41	43	47	61	62	64	78	81	88	90	91	92	93

binarySearch(a[], k, s, e)

• Example: Binary search, k=90

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	6	7	9	9	13	17	22	25	41	43	47	61	62	64	78	81	88	90	91	92	93

Call trace:

- 1. binarySearch(a, 90, 0, 20)
- 1.1 binarySearch(a, 90, 11, 20)
- 1.1.1 binarySearch(a, 90, 16, 20)
- 1.1.1.1 binarySearch(a, 90, 16,17)
- 1.1.1.1.1 binarySearch(a, 90, 17, 17)

 **target found, returns

Binary search efficiency

- Time efficiency
 - Worst-case efficiency...
 - $C(n) = log_2(n) + 1$
 - So binary search is O(log n)
 - This is VERY fast: e.g., C(1000000) = 20
- Optimal for searching a sorted array
- Limitations: must be a sorted array

Binary search (recursive)

Example: Trace the values of s,e,m as the algorithm runs with different keys (k)

index	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	6	7	9	9	13	17	22	25	41	43	47	61	62	64	78	81	88	90	91	92	93

- Trace for k=81 (s=0, e=20 initially)
 - iteration 1: s,e,m = 11,20,10
 - iteration 2: s,e,m = -,-,15 ** target found
- Trace for k=22
 - iteration 1: s,e,m = 0,9,10
 - iteration 2: s,e,m = 5,9,4
 - iteration 3: s,e,m = 5,6,7
 - iteration 4: s,e,m = 6,6,5
 - iteration 5: s,e,m = -,-,6 ** target found
- Note: largest number of iterations is 6, when the target is not found in the array being searched (generally it will be log₂n +1)

Binary search (iterative)

```
binarySearch(a[], s, e, k)
while s ≤ e
    m ← floor((s+e)/2)
    if k > a[m]
        s ← m+1
    else if k < a[m]
        e ← m-1
    else
        return m
return not found</pre>
```

Exponentiation by squaring

Example of "decrease by factor of 2"

i.e. solve problem of size n/2

Exponentiation by squaring

- Compute aⁿ where n is a nonnegative integer
- Brute-force algorithm requires n-1 multiplications

We can do much better!

Example: calculating a³⁸

$$a^{38} \rightarrow a^{19} * a^{19}$$

$$a^{19} \rightarrow a * a^{9} * a^{9}$$

$$a^{9} \rightarrow a * a^{4} * a^{4}$$

$$a^{4} \rightarrow a^{2} * a^{2}$$

$$a^{2} \rightarrow a * a$$

Exponentiation by squaring

Compute aⁿ where n is a nonnegative integer

For even values of *n*

$$a^{n} = (a^{n/2})^{2}$$

For odd values of *n*

$$a^{n} = (a^{(n-1)/2})^{2} a$$

Exponentiation by squaring

Compute aⁿ where n is a nonnegative integer

```
power(a, n):

1.     if (n = 1)

2.     return a

3.     if (n % 2 = 0)

4.         t = power(a, n/2)

5.         return t*t

6.     else:

7.         t = power(a, (n - 1) / 2)

8.     return a * t*t
```

Efficiency of exp-by-sqr

$$a^{38} \rightarrow a^{19} * a^{19}$$

$$a^{19} \rightarrow a * a^{9} * a^{9}$$

$$a^{9} \rightarrow a * a^{4} * a^{4}$$

$$a^{4} \rightarrow a^{2} * a^{2}$$

$$a^{2} \rightarrow a * a$$

How many operations per step?

1 or 2 worst case 2

O(logn)

Example of "decrease by factor of 2"

i.e. solve problem of size n/2

(Bonus: alternate solution that is "decrease by factor of 3")

- A mischievous banker gives you n identicallooking coins, but tells you one is a fake (it is made from a lighter metal). Luckily, you have a balance scale, and can compare any two sets of coins.
- Design an efficient Decrease by a Constant Factor algorithm that finds the fake coin.

Key observation:

- Divide the pile in half
- Half on each side of balance
- Lighter half has the fake

We eliminate HALF the coins in one step

Picky details

- What if n is odd?
 - Set aside one coin, then divide and weigh
 - Lighter pile → fake coin is there
 - Equal piles → fake coin is the extra (bonus!)
- Repeat the procedure until down to only 2 (or 3) coins

 Assume that n=17. How many times will you need to use the scale? Give two answers, one for the best case and one for the worst case.

- Best case: 1 weight comparison is needed.
- Worst case: 4 weight comparisons are needed.

$$\lfloor \log_2 n \rfloor$$

```
START:

if n=1 the coin is fake
else

if n is odd

remove first coin c0 and set aside
else

divide remaining coins into two piles c1 and c2, each with \lfloor n/2 \rfloor coins weigh the two piles
if they weigh the same
c0 is the fake
else

discard the heavier pile and set n = \lfloor n/2 \rfloor
goto START
```

- This solution is O(log₂n)
 - It involves dividing the problem in half every time

- There is a better solution
 - Runs in O(log₃n)
 - Divide into 3 piles, weigh two of them
 - If different
 - Continue with the lighter pile (1/3 of the original)
 - If same
 - Continue with the unweighed pile (1/3 of the original)

Something to ponder

- The 3-pile solution is better by actual running time
- log₃(n) is less than log₂(n)
- But they are both O(logn)
- So how much "better" is the 3-pile solution?
 - What is $\log_3(100)$ vs. $\log_2(100)$?
 - How about $log_3(1000000)$ vs. $log_2(1000000)$?
- P.S. the 3-pile solution has a slightly trickier "base case"

Variable size decrease

Amount of decrease changes at each iteration

Euclid's algorithm

 Problem: Find gcd(m,n), the greatest common divisor of two nonnegative numbers

- Examples: gcd(8,6) = 2
 - Divisors of 6 are 1, 2, 3, 6
 - Divisors of 8 are 1, 2, 4, 8

Euclid's algorithm

• Example gcd(60,24) = ?

• Euclid's algorithm:

$$gcd(m,n) = gcd(n, m \mod n)$$

until the second number becomes 0

• gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

Euclid's algorithm (recursive) pseudocode

```
GCD (m, n)

1. if ((m % n) = 0)

2. return n

3. else

4. return GCD(n, m % n)
```

Euclid's algorithm (iterative) pseudocode

```
    GCD(m,n)
    while n ≠ 0 do
    r ← m mod n
    m ← n
    n ← r
    return m
```

Practice problems

• And for some *ON-TOPIC* problems (decrease-and-conquer):

- Chapter 4.1, page 137, questions 7, 10
- Chapter 4.4, page 156, question 3, 9