Ex-07-Feature-Selection

, AIM

To Perform the various feature selection techniques on a dataset and save the data to a file.

Explanation

Feature selection is to find the best set of features that allows one to build useful models. Selecting the best features helps the model to perform well.

ALGORITHM

STEP 1

Read the given Data

STEP 2

Clean the Data Set using Data Cleaning Process

STEP 3

Apply Feature selection techniques to all the features of the data set

STEP 4

Save the data to the file

CODE

```
Developed by:SAI SONICA CH
Reg no:212219040130

from sklearn.datasets import load_boston
boston_data=load_boston()
import pandas as pd
boston = pd.DataFrame(boston_data.data, columns=boston_data.feature_names)
boston['MEDV'] = boston_data.target
dummies = pd.get_dummies(boston.RAD)
boston = boston.drop(columns='RAD').merge(dummies,left_index=True,right_index=True)
X = boston.drop(columns='MEDV')
y = boston.MEDV
```

```
boston.head(10)
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import KFold
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import cross_val_predict
from sklearn.linear_model import LinearRegression
from math import sqrt
cv = KFold(n_splits=10, random_state=None, shuffle=False)
classifier_pipeline = make_pipeline(StandardScaler(),
KNeighborsRegressor(n_neighbors=10))
y_pred = cross_val_predict(classifier_pipeline, X, y, cv=cv)
print("RMSE: " + str(round(sqrt(mean_squared_error(y,y_pred)),2)))
print("R_squared: " + str(round(r2_score(y,y_pred),2)))
boston.var()
X = X.drop(columns = ['NOX', 'CHAS'])
y_pred = cross_val_predict(classifier_pipeline, X, y, cv=cv)
print("RMSE: " + str(round(sqrt(mean_squared_error(y,y_pred)),2)))
print("R_squared: " + str(round(r2_score(y,y_pred),2)))
# Filter Features by Correlation
import seaborn as sn
import matplotlib.pyplot as plt
fig_dims = (12, 8)
fig, ax = plt.subplots(figsize=fig_dims)
sn.heatmap(boston.corr(), ax=ax)
plt.show()
abs(boston.corr()["MEDV"])
abs(boston.corr()["MEDV"][abs(boston.corr()["MEDV"])>0.5].drop('MEDV')).index.tolist()
vals = [0.1,0.2,0.3,0.4,0.5,0.6,0.7]
for val in vals:
    features = abs(boston.corr()["MEDV"][abs(boston.corr()
["MEDV"])>val].drop('MEDV')).index.tolist()
    X = boston.drop(columns='MEDV')
    X=X[features]
    print(features)
    y_pred = cross_val_predict(classifier_pipeline, X, y, cv=cv)
    print("RMSE: " + str(round(sqrt(mean_squared_error(y,y_pred)),2)))
    print("R_squared: " + str(round(r2_score(y,y_pred),2)))
# Feature Selection Using a Wrapper
boston = pd.DataFrame(boston_data.data, columns=boston_data.feature_names)
boston['MEDV'] = boston_data.target
boston['RAD'] = boston['RAD'].astype('category')
```

```
dummies = pd.get_dummies(boston.RAD)
boston = boston.drop(columns='RAD').merge(dummies,left_index=True,right_index=True)
X = boston.drop(columns='MEDV')
y = boston.MEDV
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
sfs1 = SFS(classifier_pipeline,
           k_features=1,
           forward=False,
           scoring='neg_mean_squared_error',
           cv=cv)
X = boston.drop(columns='MEDV')
sfs1.fit(X,y)
sfs1.subsets
X = boston.drop(columns='MEDV')[['CRIM','RM','PTRATIO','LSTAT']]
y = boston['MEDV']
y_pred = cross_val_predict(classifier_pipeline, X, y, cv=cv)
print("RMSE: " + str(round(sqrt(mean_squared_error(y,y_pred)),3)))
print("R_squared: " + str(round(r2_score(y,y_pred),3)))
boston[['CRIM','RM','PTRATIO','LSTAT','MEDV']].corr()
boston['RM*LSTAT']=boston['RM']*boston['LSTAT']
X = boston.drop(columns='MEDV')[['CRIM','RM','PTRATIO','LSTAT']]
y = boston['MEDV']
y_pred = cross_val_predict(classifier_pipeline, X, y, cv=cv)
print("RMSE: " + str(round(sqrt(mean_squared_error(y,y_pred)),3)))
print("R_squared: " + str(round(r2_score(y,y_pred),3)))
sn.pairplot(boston[['CRIM','RM','PTRATIO','LSTAT','MEDV']])
boston = boston.drop(boston[boston['MEDV']==boston['MEDV'].max()].index.tolist())
X = boston.drop(columns='MEDV')[['CRIM','RM','PTRATIO','LSTAT','RM*LSTAT']]
y = boston['MEDV']
y_pred = cross_val_predict(classifier_pipeline, X, y, cv=cv)
print("RMSE: " + str(round(sqrt(mean_squared_error(y,y_pred)),3)))
print("R_squared: " + str(round(r2_score(y,y_pred),3)))
boston['LSTAT_2']=boston['LSTAT']**2
X = boston.drop(columns='MEDV')[['CRIM','RM','PTRATIO','LSTAT']]
y_pred = cross_val_predict(classifier_pipeline, X, y, cv=cv)
print("RMSE: " + str(round(sqrt(mean_squared_error(y,y_pred)),3)))
print("R_squared: " + str(round(r2_score(y,y_pred),3)))
```

OUPUT

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	TAX	PTRATIO	•••	MEDV	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	24.0
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	296.0	15.3		24.0	1	0	0	0	0	0	0	0	0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	242.0	17.8		21.6	0	1	0	0	0	0	0	0	0
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	242.0	17.8		34.7	0	1	0	0	0	0	0	0	0
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	222.0	18.7		33.4	0	0	1	0	0	0	0	0	0
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	222.0	18.7		36.2	0	0	1	0	0	0	0	0	0
5	0.02985	0.0	2.18	0.0	0.458	6.430	58.7	6.0622	222.0	18.7		28.7	0	0	1	0	0	0	0	0	0
6	0.08829	12.5	7.87	0.0	0.524	6.012	66.6	5.5605	311.0	15.2		22.9	0	0	0	0	1	0	0	0	0
7	0.14455	12.5	7.87	0.0	0.524	6.172	96.1	5.9505	311.0	15.2		27.1	0	0	0	0	1	0	0	0	0
8	0.21124	12.5	7.87	0.0	0.524	5.631	100.0	6.0821	311.0	15.2		16.5	0	0	0	0	1	0	0	0	0
9	0.17004	12.5	7.87	0.0	0.524	6.004	85.9	6.5921	311.0	15.2		18.9	0	0	0	0	1	0	0	0	0

10 rows × 22 columns

RMSE: 6.51

CRIM	73.986578
ZN	543.936814
INDUS	47.064442
CHAS	0.064513
NOX	0.013428
RM	0.493671
AGE	792.358399
DIS	4.434015
TAX	28404.759488
PTRATIO	4.686989
В	8334.752263
LSTAT	50.994760
MEDV	84.586724
1.0	0.038039
2.0	0.045271
3.0	0.069597
4.0	0.170469
5.0	0.175968
6.0	0.048840
7.0	0.032532
8.0	0.045271
24.0	0.193198
dtype:	float64
	ZN INDUS CHAS NOX RM AGE DIS TAX PTRATIO B LSTAT MEDV 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

RMSE: 6.28


```
CRIM
           0.388305
ZN
           0.360445
INDUS
          0.483725
CHAS
           0.175260
NOX
           0.427321
RM
           0.695360
AGE
           0.376955
DIS
           0.249929
TAX
           0.468536
PTRATIO
          0.507787
В
           0.333461
LSTAT
         0.737663
MEDV
           1.000000
1.0
           0.040453
2.0
           0.104444
3.0
           0.167352
4.0
           0.065711
5.0
           0.187356
6.0
           0.039411
7.0
           0.092802
8.0
           0.190053
24.0
           0.396297
Name: MEDV, dtype: float64
['RM', 'PTRATIO', 'LSTAT']
```

```
['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'TAX', 'PTRATIO', 'B', 'LSTAT', 2.0, 3.0, 5.0, 8.0, 24.0]
RMSE: 6.47
R_squared: 0.5
['CRIM', 'ZN', 'INDUS', 'NOX', 'RM', 'AGE', 'DIS', 'TAX', 'PTRATIO', 'B', 'LSTAT', 24.0]
RMSE: 5.27
R_squared: 0.67
['CRIM', 'ZN', 'INDUS', 'NOX', 'RM', 'AGE', 'TAX', 'PTRATIO', 'B', 'LSTAT', 24.0]
RMSE: 5.42
R_squared: 0.65
['INDUS', 'NOX', 'RM', 'TAX', 'PTRATIO', 'LSTAT']
RMSE: 4.89
R_squared: 0.72
['RM', 'PTRATIO', 'LSTAT']
RMSE: 4.73
R_squared: 0.74
['RM', 'LSTAT']
RMSE: 4.8
R_squared: 0.73
['LSTAT']
RMSE: 5.7
R_squared: 0.61
```

```
'cv_scores': array([ -20.02093922, -20.02723725, -17.22919608, -57.94924706,
       -30.63476667, -50.08086275, -15.757356 , -110.244478 ,
                      -16.222326 ]),
       -21.41984 ,
'avg_score': -35.95862490196079,
'feature_names': ('CRIM',
'ZN',
'INDUS',
'RM',
'TAX'
'PTRATIO',
'Β',
'LSTAT',
1.0,
2.0,
3.0.
4.0,
```

RMSE: 4.458

	CRIM	RM	PTRATIO	LSTAT	MEDV
CRIM	1.000000	-0.219247	0.289946	0.455621	-0.388305
RM	-0.219247	1.000000	-0.355501	-0.613808	0.695360
PTRATIO	0.289946	-0.355501	1.000000	0.374044	-0.507787
LSTAT	0.455621	-0.613808	0.374044	1.000000	-0.737663
MEDV	-0.388305	0.695360	-0.507787	-0.737663	1.000000

RMSE: 4.458

RMSE: 3.509 R_squared: 0.801 RMSE: 3.548

R_squared: 0.796

' RESULT

The various feature selection techniques has been performed on a dataset and saved the data to a file.