

Al-in-the-loop for healthcare

Sriraam Natarajan
Professor of CS,
UT Dallas

Who we are!

Current Students (PhD)

Siwen Yan, Athresh Karanam, Saurabh Mathur, Dr. Michael Skinner, Nikilesh Prabhakar, Ranveer Singh, Sahil Sidheekh, Pranuti Tenali

Alumni (PhD)

Harsha Kokel, Navdeep Kaur, Nandini Ramanan, Srijita Das, Devendra Singh Dhami, Mayukh Das, Phillip Odom, Shuo Yang, Tushar Khot, Yuqiao Chen, Brian Ricks

Key Collaborators

Kristian Kersting, Vibhav Gogate, Rishabh Iyer, Jude Shavlik, Gautam Kunapuli, David Page, Dan Roth, Jana Doppa, Ron Parr, Balaraman Ravindran, Prasad Tadepalli, Predrag Radivojac, David Poole, Kay Connelly, Clinical collaborators

Funding agencies

DARPA (Minerva, CwC, DEFT & Machine Reading), NSF (EAGER & SCH), AFRL, ARO (SIG, YIP, STIR), AFOSR (SBIR), NIH (R01), Indiana (Precision Medicine), XEROX PARC, Amazon, Intel, TURVO and Verisk Inc.

What we do!

Human Allied Al

Can we build AI systems that can seamlessly interact with, learn from, collaborate with and potentially teach the human expert?

Human Allied AI? Or AI-in-the-loop?

Fern et al. IJCAI 07; Natarajan et al. ILP08, ILP09; Natarajan et al. KAIS 11; Fern et al. JAIR 14; Kunapuli et al. ICDM 13; Odom et al. AAAI 15, AAMAS 16, ECML 16, ILP 16, AIME 15; Yang et al. ICDM 14, ECML 13; Macleod et al. CHASE 16; Natarajan et al. IJCAI 18; Das et al. AAAI 19, HMCL WS 17, AAMAS 18; KBS 18, MLJ (Under Review); Ramanan et al. BIBM 17, KR 18; Dhami et al. AIME 17, Smart Health 18, AI for Good 19; Kaur et al. ILP 17,19, IJAR 20; Hayes et al. KCAP 17; Kokel AAAI 20;

Problem 1: Cardiovascular health

CARDIA EXAM COMPONENTS—ALL YEARS

Schedule of components in the core study, substudies, and ancillary studies by CARDIA exam

	Year/Exam¹								Year/Exam¹								
	1985	1987	1990	1992	1995	2000	2005	2010	-	1985	1987	1990	1992	1995	2000	2005	2010
	0	2	5	7	10	15	20	25		0	2	5	7	10	15	20	25
CORE STUDY																20	
BLOOD PRESSURE									Weight	X	X	X	X	X	X	X	X
Resting	X	X	X	X	X	X	X	X	S kinfolds	X	X	X	X	X	-	-	-
S tanding	-	X	-	-	-	-	-	-	Chest Circumference	-	X	X	-	-	-	-	-
Reactivity	-	X	-	-	-	-	-	-	Waist Circumference	X	X	X	X	X	X	X	X
CHEMIS TRIES									Hip Circumference	X	X	X	X	X	-	-	X
Genetic									Thigh Circumference	-	-	-	X	-	-	-	-
DNA Storage	-	-	X	-	X	X	X	X	Elbow Breadth	X	X	-	-	-	-	-	-
Stored Cells for Cell Immortalization	-	_	-	-	-	X	-	-	S houlder Breadth	-	X	-	-	-	-	-	-
Plasma									Sitting Height	-	X	-	-	-	-	-	-
Lipids	X	X	X	X	X	X	X	X	Toenails	_	X	_	_	_	_	-	-
Lipoproteins	X	X	X	X	X	X	X	-	Eve Color	_	_	X	_	_	_	-	_
Apoproteins	X	X	-	-	-	-	-	-	Skin Reflectance	-	_	_	X	_	-	-	-
CBC	X	-	-	-	-	-	-	-	MEDICAL HISTORY								
Lp(a)	-	-	X	-	-	-	-	-	Medical History	X	X	X	X	X	X	X	X
Fibrinogen	_	-	X	-	_	-	X	-	Illicit Drug Use	X	X	X	X	X	X	X	X
ApoE Phenotype	_	_	_	X	_	-	_	-	Death Certificate	_	X	X	X	X	X	X	X
S tored Plasma	-	X	X	X	X	X	X	X	Mortal Events	_	-	-	X	X	X	X	X
C-Reactive Protein	-	_	-	X	_	X	X	X	S afety Questionnaire	_	X	_	_	_	_	_	_
Interleukin-6	-	_	-	_	_	-	X	-	Interim Hospitalization	_	X	X	X	X	X	X	X
Serum									Chest Pain/Palpitations	_	_	X	-	X	-	_	-
Cotinine	X	-	-	-		-	-	-	History of Lung Problems	X	X	-	_	X	X	X	_
SMAC 12	X	_	-	_	_	-	-	-	Oral Contraceptive History	_	_	_	_	X	_	_	_
Fasting Insulin	X	_	-	X	X	X	X	X	Women's Reproductive Health	_	_	_	_	_	X	X	X
Fasting Glucose	X	-	-	X	X	X	X	X	S leep Habits	-	_	_	-	_	X	X	_
Oral Glucose Tolerance Test	_	-	-	-	X	-	X	X	Tobacco	X	X	X	X	X	X	X	X
S tored Serum	X	X	X	X	X	X	X	X	Alcohol	X	X	X	X	X	X	X	X
GGT	X	-	-	-	X	-	-	-	Weight History	X	X	_	_	_	_	_	X
S erum Creatinine	X	-	-	-	X	X	X	X	Sociodemographics	X	X	X	X	X	X	X	X
Uric Acid	X	-	-	-	X	X	-	-	FAMILY HISTORY QUESTIONNAIRE								
Urine									Family History	X	_	X	_	Х	_	_	x
Urinary Creatinine	_	_	_	_	X	X	X	X	PHYSICAL ACTIVITY/FITNESS								
Albuminuria	_	_	_	_	X	X	X	X	7-Day Physical Activity	X	_	_	_	_	_	_	_
ANTHROPOMETRY									Physical Activity Questionnaire	X	X	x	x	X	x	x	x
Height	х	Х	X	Х	Х	X	X	X	Graded Exercise Test	X	-		X	-			
									Baecke Questionnaire			X	-	X	_	_	_
l year of study indicates when original data collection occurred; assay or coding may occur later							Household Chores	_	_	-	x	X	_	_	_		

Different data sets – CARDIA, Jackson heart study, Registry data from multiple hospitals

Problem 2 – Modeling Adverse Pregnancy Outcomes

Problem 3: EHRs

Articl

Predicting Cardiac Arrest in Children with Heart Disease: A Novel Machine Learning Algorithm

Priscilla Yu 1,*, Michael Skinner 2,3, Ivie Esangbedo 4, Javier J. Lasa 1,5, Xilong Li 6, Sriraam Natarajan 2 and Lakshmi Raman 100

An Anytime Querying Algorithm for Predicting Cardiac Arrest in Children: Work-in-Progress

Michael A. Skinner^{1,2(⋈)}, Priscilla Yu², Lakshmi Raman², and Sriraam Natarajan¹

University of Texas at Dallas, Dallas, TX 75080, USA
 University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
 mas140130@utdallas.edu

Machine Learning for Personalized Medicine: Predicting Primary Myocardial Infarction from Electronic Health Records

> Jeremy C. Weiss, Sriraam Natarajan, Peggy L. Peissig, Catherine A. McCarty, David Page

Modeling Heart Procedures from EHRs: An Application of Exponential Families

Shuo Yang*, Fabian Hadiji[†], Kristian Kersting[‡], Shaun Grannis[§] and Sriraam Natarajan[¶]
*School of Informatics, Computing and Engineering
Indiana University, Bloomington, USA
Email: shuoyang@indiana.edu

Identifying Adverse Drug Events by Relational Learning

David Page

University of Wisconsin-Madison

Vítor Santos Costa CRACS-INESC TEC and FCUP Sriraam Natarajan Wake Forest University

Aubrey Barnard University of Wisconsin–Madison Peggy Peissig
Marshfield Clinic Research Foundation

Michael Caldwell Marshfield Clinic

Challenges to HAAI

Different types and formats of data

Different scales of data

Different **frequencies** of data streams

Noise in measurements/sensors/data

Changes in acquired knowledge

Uncertain side-effects of actions

Partial observability of the world

Long-term effects of decision-making

Biggest challenge!

(Our) 3 Steps to HAAI

Learn "only" from data

Effective

Efficient

Generalizable

Personalized

Explainable

. . .

Ignores human knowledge

Allow "richer" human inputs

More than a "mere labeler"

Take advice and guidance

Allows for robust learning

Close the "loop"

Knows what it knows

Asks what it does **not** know

Student-teacher interaction

Teach the human!

Personal first foray – Adverse Drug Events Cox-2 Timeline

Rules for Cox2ib(A):-	Pos	Neg	p-value
diagnoses(A,790.29, Abnormal_Glucose_Test, Other_Abn_Glucose).	333	137	6.80E-20

diagnoses(A,V06.1, Diphtheria-Tetanus-Pertussis,Comb(Dtp)(Dtap)). 211 82 2.88E-14

diagnoses(A,V58.72, Aftercare Following Surgery Nervous Syst, Nec). 222 106 1.40E-10

diagnoses(A,V54.89, Other_Orthopedic _Aftercare).

diagnoses(A,959.11, Other Injury Of Chest Wall).

diagnoses(A,790.21, Impaired Fasting Glucose).

diagnoses(A,410, Myocardial Infarction).

diagnoses(A,V58.76, Aftcare_Foll_Surg_Of_Genitourinary Sys).

diagnoses(A,V58.75, Aftcar Foll Surg Of Teeth, Oral Cav, Dig Sys).

diagnoses(A,959.19, Other Injury Of Other Sites Of Trunk).

403 189 8.59E-19

287 129 6.58E-15

212 89 9.86E-13

195 81 5.17E-12

236 115 9.88E-11

212 100 2.13E-10

182 80 2.62E-10

Outline

- Cardiovascular health
- Adverse Pregnancy Outcomes
- Learning from EHRs

Functional Gradient Boosting

Learn multiple weak models rather than a single complex model

What can be learned?

Natarajan et al (2010, 2011, 2012,2013) Khot et al (2011, 2013), Yang et al (2016), Hadiji et al (2015), Yang et al (2017)

Learning multiple models

Natarajan et al (2010, 2011, 2012,2013) Khot et al (2011, 2013), Yang et al (2016), Ramanan et al 2018, 2020, Kaur et al. 2018,2020, Dhami et al, 2021, Das et al 2018

Relational Dependency network

Markov Logic network Relational Logistic Regression

Relational CTBN

Relational RBM

Imitation
Learning/Relational Policies

Transfer Learning

Learning with Hidden data

Several **Real** Applications

Cardiovascular study

EHR

Alzheimer's

RTS Games

Handwriting Recognition

Image Segmentation/ Classification

Information Extraction

Recommendation System

Weiss et al. (2012,2013). Natarajan et al. (2013,2012, 2014, 2015), Shivram et al. (2014), Picado et al. (2014) Soni et al. (2016), Viswanathan et al. (2016), Odom et al. (2014,2015a, 2015b), Yang et al. (KBS 2017)

Atherosclerosis is the cause of the majority of Acute Myocardial Infarctions (heart attacks)

Circulation; 92(8), 2157-62, 1995 JACC; 43, 842-7, 2004

Results – AUC-ROC

Sample Learned Tree

Year wise Growth of the Trees

Beyond year 7 there is no improvement in the predictive performance

Learning From Only Socioeconomic Data

Temporal Model – Socioeconomic Data

Physical Training Monitoring

- Goal: Predict and track a set of exercises
- Accelerometer data from 9 subjects
- Exercises consists of different types of walks (10 meter, 2 meter walks), different tugging exercises based (TUG 1, TUG 2, TUG 3) and sit to stand exercises (5STS, 5STS practice)

Results

- Two approaches
 - Edge impulse online ML platform
 - Bi-LSTM with dropout
- Superior performance with Bi-LSTM

Task	Train Accuracy	Test Accuracy
Physical Training Classification	92.57	82.67

	precision	recall	f1-score	support
10 meter walk	0.91	0.93	0.92	491
2 minutes walk	0.89	0.87	0.88	146
5STS	0.80	0.82	0.81	165
5STS Practice	0.81	0.76	0.79	29
Other	0.95	1.00	0.97	39
TUG 1	0.72	0.62	0.67	136
TUG 2	0.62	0.72	0.67	127
TUG 3	0.72	0.62	0.67	148
accuracy			0.82	1281
macro avg	0.80	0.79	0.80	1281
weighted avg	0.82	0.82	0.82	1281

Try it yourself

https://starling.utdallas.edu/software/boostsrl/

Tutorial

https://starling.utdallas.edu/software/boostsrl/wiki/

As with the standard gradient-boosting approach, our approach turns the model-learning problem to learning a sequence of regression models. The key difference to the standard approaches is that we learn relational regression models (i.e. regression models that operate on relational data). We assume the data to be in predicate-logic format and the output are essentially first-order regression trees where the inner nodes contain conjunctions of logical predicates.

Getting Started

Prerequisites:

Java (tested with openjdk 1.8.0 144)

Installation:

- Download stable jar file.
- Download stable source with git.
 git clone -b master https://github.com/boost-starai/BoostSRL.git
- Nightly builds with git.
 git clone -h development https://github.com/hoost-stanai/BoostSBL.git

Basic Usage

```
[hayesall@hawk Datasets]$ ls -R Cora/
Cora/:
cora_bk.txt test train

Cora/test:
test_bk.txt test_facts.txt test_neg.txt test_pos.txt

Cora/train:
train_bk.txt train_facts.txt train_neg.txt train_pos.txt
[hayesall@hawk Datasets]$ || |
```

BoostSRL assumes that data are contained in files with data structured in predicate-logic format.

Positive Examples:

```
father(harrypotter, jamespotter).
father(ginnyweasley, arthurweasley).
father(ronweasley, arthurweasley).
...
```

Outline

- Cardiovascular health
- Adverse Pregnancy Outcomes
- Learning from EHRs

Can we do more than learn just from data?

Types of Advice

Preference Knowledge

Powerful framework that can incorporate different kinds of advice

Types of Advice

Privileged Information

Odom & Natarajan, Frontiers '18

Training Phase

Deployment/ Test

Boosting with Qualitative Constraints

Can we leverage qualitative domain knowledge when boosting – e.g., monotonic influence for regions where data is noisy¹/absent²?

First unified gradient boosting with qualitative constraints for classification and regression

Easily extendable to relational domains.

E.g., Monotonicity constraint

$$\mathbb{E}_{\psi}[\mathbf{n}_{\mathbf{L}}] < \mathbb{E}_{\psi}[\mathbf{n}_{\mathbf{R}}] + \varepsilon \qquad \Big\} \quad [\zeta_{\mathbf{n}}]$$

Boosting with Qualitative Constraints

Objective

Results

Kokel et al. AAAI 2020

Frameworks (considered) for Advice

- Probabilistic Graphical Models
 - Causal Models, Structure Learning
- Relational Probabilistic Models
 - Boosting, Lifted Inference
- Approximate counting
 - Faster inference

- Reinforcement Learning
 - RL, Relational RL
- Inverse Reinforcement Learning
 - KBIRL, Relational IRL
- Imitation Learning
- Probabilistic Planning
 - Preference Elicitation, Hierarchical Task Decomposition

The nuMoM2b study

- 10,038 nulliparous women from 8 centers around the US
- 4% of the women had **Gestational diabetes**
- Risk factors include
 - Age,
 - Race,
 - Body Mass Index,
 - Polycystic ovary syndrome,
 - Family <u>History</u> of diabetes,
 - Tobacco consumption,
 - Physical Activity (in <u>METs</u>) and,
 - Polygenic Risk Score

David M Haas, Corette B Parker, et al. "A description of the methods of the nulliparous pregnancy outcomes study: monitoring mothers-to-be (numom2b). American journal of obstetrics and gynecology, 2015.

Qualitative influences + Context-specific/conditional independencies

Fig. 5. Noisy-OR model used for the GDM dataset. Both QIs and causal independence knowledge are incorporated in this model. This representation shows that *PRS*, *Hist*, *PCOS*, *HiBP*, *Age and BMI* have a positive monotonic influence on GDM whereas *METs* have a negative monotonic influence. Additionally, all the risk factors are causally independent in this model.

Fig. 6. The AUC-ROC scores for the Noisy OR model (NOR) as compared to the Gradient Boosted Trees model (GBT) with PRS (left) and without PRS (center). The AUC-ROC scores for the Noisy OR model (NOR) in the presence of PRS and Qualitative Influences (right). The bars show the mean score over 10 boostrap samples and the error bars show the standard deviation.

Knowledge-intensive learning is better!!!!

	Edge cou	ınt	Parameter	count	MSE on queries		
Data set	LearnCNet	KICN	LearnCNet	KICN	LearnCNet	KICN	
ppd	113.8	114.1	205.7	198.8	0.2043	0.1963	
adni	121.9	57.8	343.3	246.4	0.1825	0.1636	
numom2b-a	179.4	108.6	422.2	366.3	0.0397	0.0383	
numom2b-b	416.5	220.9	1,069.9	905.7	0.0515	0.0445	

More concise and accurate models!

Reverse -- Can we learn these "advice"?

Sum-product networks

Hoifun Poon and Pedro Domingos, "Sum-product networks: A new deep architecture", Proceedings of the Twenty-Seventh international conference on Uncertainty in artificial intelligence. 2011

Explaining an SPN in terms of its CSIs

Given:

 \mathcal{M} , a sum-product network that models P(GDM, X)

To Do:

Extract \mathcal{T} , a CSI-tree that explains \mathcal{M}

Explaining SPNs using CSI-trees

Karanam, Bhagirath Athresh, Saurabh Mathur, Predrag Radivojac, David M. Haas, Kristian Kersting, and Sriraam Natarajan. "Explaining Deep Tractable Probabilistic Models: The sum-product network case." PGM 2022.

\mathcal{EXSPN} produces accurate and interpretable approximations

Table 1: Summary statistics for the CSI rules extracted from SPNs by \mathcal{EXSPN} and the association rules by Apriori algorithm. NP - # Product Nodes, NR - # Rules, MA - Mean Antecedent length, MC - the Mean Consequent length, and CR - Compression Ratio.

	SPN	All CSIs			I	Reduc	ed C	SIs	Association Rules		
Dataset	NP	NR	MΑ	МС	\overline{NR}	MA	$^{ m MC}$	CR	NR	МΑ	$^{ m MC}$
Synthetic	7	- 7	2.29	2.57	3	1.33	2.67	2.33	12	1.25	1.25
Mushroom	39	39	5.90	8.54	14	4.79	7.93	2.79	10,704	2.87	2.43
Plants	342	342	9.60	9.61	23	6.22	7.09	14.87	1,043	1.72	1.40
NLTCS	74	74	9.84	3.32	19	6.32	4.05	3.89	165	1.96	1.28
MSNBC	8	8	4.12	5.75	8	4.12	5.75	1.00	16	2.38	1.00
Abalone	194	194	11.31	7.00	4	4.25	2.00	48.50	730	2.15	1.71
Adult	263	263	14.49	4.02	19	7.37	2.74	13.84	917	2.24	1.72
Wine	236	236	12.45	6.76	5	3.60	2.60	47.20	337	1.99	1.56
Car	18	18	5.22	2.50	14	5.21	2.64	1.29	19	1.58	1.00
Yeast	181	181	16.20	3.26	10	7.90	2.30	18.10	50	1.52	1.52
Earthquake	2	2	1.00	5.00	2	1.00	5.00	1.00	8	1.00	1.00
Cancer	2	2	1.00	5.00	2	1.00	5.00	1.00	18	1.79	1.05
Asia	10	10	3.70	3.50	3	2.67	4.00	3.34	456	2.20	1.84
nuMoM2b	104	104	10.60	2.33	31	6.55	2.19	3.35	21	1.29	1.14

BMI is independent of Age, Race, Education in the cohort without GDM

Allows for targeted interventions!

BMI is independent of Age, Education in the non-Hispanic, white cohort with GDM

Genetic and lifestyle risk factors for GDM

Polygenic Risk Score (PRS)

- Genetic predisposition to Type 2 diabetes
- Derived from the Diabetes Genetics Replication and Meta-analysis Consortium data
- Limited to subjects with European genetic ancestry

Exercise (METs)

- Measured in Metabolic equivalents of time (METs)
- Threshold of 450 from the Nurses' Health Study II

Pagel, Kymberleigh A., et al. "Association of Genetic Predisposition and Physical Activity With Risk of Gestational Diabetes in Nulliparous Women." JAMA network open (2022)

High-PRS & Low-METs synergistically influence risk of GDM

Context	Positive LR (95% CI)	Lower Higher risk of risk of GD GD
PRS: bottom 25%	0.6 (0.4-0.9)	_ _
With METs <450	0.8 (0.3-1.4)	
With METs ≥450	0.5 (0.3-0.8)	——
PRS: top 25%	1.7 (1.4-2.1)	_ _
With METs <450	2.9 (2.0-3.9)	a
With METs ≥450	1.1 (0.7-1.6)	— ■ —a
METs ≥450	0.8 (0.7-1.0)	
With PRS bottom 25%	0.5 (0.3-0.8)	— ■ — b
With PRS top 25%	1.1 (0.7-1.6)	
METs <450	1.3 (1.1-1.6)	
With PRS bottom 25%	0.8 (0.3-1.4)	b
With PRS top 25%	2.9 (2.0-3.9)	———— a
		0 1 2 3 4
		Desirius I D

Pagel, Kymberleigh A., et al. "Association of Genetic Predisposition and Physical Activity With Risk of Gestational Diabetes in Nulliparous Women." JAMA network open (2022)

Outline

- Cardiovascular health
- Adverse Pregnancy Outcomes
- Learning from EHRs

Anytime prediction of (pediatric) cardiac arrest from EHR

Skinner et al. AIME 2022

Elicitation of probabilistic logic rules from medical records

STARLINGLAB

Representative tree Target: map_increase(A,B)

Michael A. Skinner, et al. AIME 2022

$cond_i \Leftarrow finding_1 \land finding_2 \land ... \land finding_k$

Go to now 9/4/2019	· 🗀						4 □	W	ednesday	/ 0400 - N	Vednesda	ay 2259		•						
														-				1 hr	12 hr 24	hr View All
	C12																			
1 hr: ◀	09/03 0	700 - 09/04 (05-06	06-07	07-08	08-09	09-10	10-11	11-12	12-13	13-14	9/04 0700 - 14-15	15-16	16-17	17-18	18-19	19-20	20-21	21-22	22-23	•
02		35 35	-	0. 00	00 00	30 10	10 11	11.12		10 11		10 10	10 11		10 10		20 21			
SvO2	75	69	71	75	74	67	68			65	73	74	79	81	77	78	77	83	79	SvO2
Sweep																				
Total Sweep	3.3	3.3	3.3	3.3	3.3	3.3	2.5			2.5	2.5	2.5	2.5	2.5	2.5	2+	2	1.5	1.5	Total Sweep
FiO2	0.21	0.21	0.21	0.21	0.21	0.21	0.21			0.21	0.3	0.3	0.3	0.25	0.25	0.21+	0.21	0.21		FiO2
2 Flow	3.3	3.3	3.3	3.3	3.3	3.3	2.5			2.5	2.5	2.5	2.5	2.5	2.5	2+	2	1.5	1.5	O2 Flow
CO2 Flow	0	0	0	0	0	0	0			0	0	0	0	0	0	0+	0	0	0	CO2 Flow
Flows																				
Blood Flow (RPM)	2861	2860	2861	2860	2861	2861	2860			2790	2790	2790	2790	2790	2789	2790	2790	2791	2791	Blood Flow (RP
Blood Flow (mL/min)	4980	5038	5004	4900	4990	5070	5024			4995	4634	5088	4834	4755	4801	4731	4722	4620	4552	Blood Flow (mL
Blood Flow (mL/kg/min)	38.08	39.13	38.69	37.03	38.43	39.39	37.99			39.13	35.63	39.22	37.64	36.24	36.94	36.85	35.71	35.71	34.31	Blood Flow (mL
Measured Flow	4350	4470	4420	4230	4390	4500	4340			4470	4070	4480	4300	4140	4220	4210	4080	4080	3920	Measured Flow
ECMO Cardiac Index	1.78	1.83	1.81	1.73	1.8	1.84	1.78			1.83	1.67	1.84	1.76	1.7	1.73	1.73	1.67	1.67	1.61	ECMO Cardiac
Circuit Shunt	630	568	584	670	600	570	684			525	564	608	534	615	581	521	642	540	632	Circuit Shunt
Circuit Pressures																				
Pre-oxygenator	165	152	158	172	158	154	160			156	160	149	154	157	163	166	164	167	152	Pre-oxygenator
ost-oxygenator	138	123	134	145	137	130	135			128	138	122	127	136	140	141	139	143		Post-oxygenato
Gradient	27	29	24	27	21	24	25			28	22	27	27	21	23	25	25	24	19	Gradient
/olume Sensor	-49	-53	-50	-45	-49	-57	-5			-45	-42	-52	-52	-46	-45	-40	-39	-42	-38	Volume Sensor
Heparin																				
Heparin (unit/kg/hr)	12.59	12.59	12.59	12.6+	12.6	12.59	12.59	12.59	12.59	12.59	12 Un+	12 Un	14 Un+	14 Un	14 Un	14 Un	14 Un	14 Un	14 Un	Heparin (unit/kg
Patient ACTs																				
ACT	160	160	155	160	166	160	160		143		138	143	155	149	155	155	155	160	160	ACT

Rule No.	Weight	Logic rule
1	0.112	$mapincr(A, B) \Leftarrow \neg map(A, B, 60 - 70)$
2	0.532	$mapincr(A, B) \Leftarrow map(A, B, 60 - 70) \land measured_flow(A, B, 20 - 50) \land$
		pressure_volume_sensor(A, B, > 10)
3	0.095	$mapincr(A, B) \Leftarrow map(A, B, 60 - 70) \land \neg [measured_flow(A, B, 20 - 50) \land$
		$pressure_volume_sensor(A, B, > 10)] \land measured_flow(A, B, 100 - 150)$
4	0.651	$mapincr(A, B) \Leftarrow map(A, B, 60 - 70) \land \neg [measured_flow(A, B, 20 - 50) \land]$
		$pressure_volume_sensor(A,B,>10)] \land \neg measured_flow(A,B,100-150) \land$
		measured_flow(A, B, 50 - 100) \land resp_rate(A, B, \le 15) \land
		resp_rateincr(A,B)
5	0.821	$mapincr(A, B) \Leftarrow map(A, B, 60 - 70) \land \neg [measured_flow(A, B, 20 - 50) \land]$
		$pressure_volume_sensor(A, B, > 10)] \land \neg measured_flow(A, B, 100 - 150) \land$
		measured_flow(A, B, 50 - 100) \land resp_rate(A, B, \le 15) \land
		$\neg resp_rateincr(A, B) \land heart_rate(A, B, > 130) \land$
		$[\exists C \mid B = C + 1 \land resp.ratedecr(A, C)]$
6	0.069	$mapincr(A, B) \Leftarrow map(A, B, 60 - 70) \land \neg [measured.flow(A, B, 20 - 50) \land$
		$pressure_volume_sensor(A, B, > 10)] \land \neg measured_flow(A, B, 100 - 150) \land$
		measured_flow(A, B, 50 - 100) \land resp_rate(A, B, \le 15) \land
		$\neg resp_rateincr(A, B) \land \neg [heart_rate(A, B, > 130) \land$
		$[\exists C \mid B = C + 1 \land resp.ratedecr(A, C)]]$
7	-0.074	$mapincr(A, B) \Leftarrow map(A, B, 60 - 70) \land \neg [measured_flow(A, B, 20 - 50) \land]$
		$pressure_volume_sensor(A,B,>10)] \land \neg measured_flow(A,B,100-150) \land$
		$\neg [measured_flow(A, B, 50 - 100) \land resp_rate(A, B, \leq 15)] \land$
		$resp_rate(A, B, > 40) \land heart_rate(A, B, > 130)$
8	0.072	$mapincr(A, B) \Leftarrow map(A, B, 60 - 70) \land \neg [measured_flow(A, B, 20 - 50) \land]$
		$pressure_volume_sensor(A,B,>10)] \land \neg measured_flow(A,B,100-150) \land \\$
		$\neg [measured_flow(A, B, 50 - 100) \land resp_rate(A, B, \leq 15)] \land$
		$\neg [resp_rate(A, B, > 40) \land heart_rate(A, B, > 130)] \land$
		resp_rate(A, B, 20 - 30) ∧ pressure_volume_sensor(A, B, 0 - 10)
9	0.417	$mapincr(A, B) \Leftarrow map(A, B, 60 - 70) \land \neg [measured_flow(A, B, 20 - 50) \land]$
		$pressure_volume_sensor(A,B,>10)] \land \neg measured_flow(A,B,100-150) \land$
		$\neg [measured.flow(A, B, 50 - 100) \land resp.rate(A, B, \leq 15)] \land$
		$\neg[resp_rate(A,B,>40)\land heart_rate(A,B,>130)]\land$
		\neg [resp_rate(A, B, 20 - 30) \land pressure_volume_sensor(A, B, 0 - 10)]

Anytime prediction of pediatric cardiac arrest from EHR

Wu et al Journal of clinical medicine 2023

Learning of cardiovascular procedures from EHR

Discriminative Learning

	Angioplasty										
	Random Forest	Logistic Regression	IPBoost	DNBoost	$\mathrm{DB^2N}$						
AUC PR	0.824	0.751	0.868	0.905	0.887						
Precision	0.815	0.690	0.840	0.898	0.951						
Recall	0.798	0.663	0.766	0.805	0.909						
F3	0.800	0.666	0.773	0.813	0.913						
F5	0.799	0.664	0.769	0.808	0.911						

	EKG										
	Random Forest	Logistic Regression	IPBoost	DNBoost	$\mathrm{DB^2N}$						
AUC PR	0.833	0.847	0.861	0.916	0.919						
Precision	0.783	0.7	0.791	0.857	0.952						
Recall	0.756	0.76	0.750	0.833	1						
F3	0.759	0.754	0.754	0.836	0.995						
F5	0.757	0.758	0.751	0.834	0.998						

	Valve Replacement										
	Random Forest	Logistic Regression	IPBoost	DNBoost	DB ² N						
AUC PR	0.748	0.718	0.82	0.866	0.870						
Precision	0.816	0.684	0.750	0.835	0.952						
Recall	0.824	0.709	0.773	0.86	0.767						
F3	0.823	0.706	0.771	0.857	0.782						
F5	0.824	0.708	0.772	0.859	0.772						

Conclusions

- No ring to rule them all
 - Careful selection of algorithms are important
 - It is ok if the model is not deep
 - As long as the reasoning is not shallow
- Human is an ally in learning and AI system needs to efficiently use human knowledge and input
- When designing human allied systems, communication is crucial
 - Effective communication → Efficient learning

Next Steps

- Deployment: medicine, social science, traffic,
 journalism, ... and the Data Science Genome: Machines
 read and understand data science publications and
 help the user with their problem at hand
- Learning from multiple experts
- Adapt to include safety/ethical constraints
- Learning from multiple modalities of communication
- Teach the human....

Ask your questions

@Sriraam_UTD

Thanks!

Knowledge-Based Learning

Example -- Explain the models

"BMI is independent of Age and Education in the non — hispanic white cohort with GDM"

Effect of polygenic risk scores and exercise in GDM

B PRS quartiles

PRS distribution

Pagel et al., JAMA Network Open 2022