Работа 2.1.6

Эффект Джоуля-Томсона

Малиновский Владимир

galqiwi@galqiwi.ru

Цель работы: 1) определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку приразных начальных значениях давления и температуры 2) вычисление по результатам опытов коэффициентов Ван-дер-Ваальса a и b.

В работе используются: трубка с пористой перегородкой, труба Дьюара, термостат, термометры, дифференциальная термопара, микровольтметр, балластный баллон, манометр.

Описание работы

В этой работе наблюдается эффект джоуля-томсона при прохождении углекислого газа через пористую перегородку. Эффект представляет из себя изменение температуры газа на выходе из перегородки в связи с его неидеальностью. При малых перепадах давления можно считать, что энтальпия одного моля проходящего газа сохраняется, поскольку скорости на входе и выходе отличаются не сильно:

$$\Delta M = \frac{\mu}{2}v^2,$$

при том, что ΔM – вклад скорости частиц в энтальпию. При диаметре трубки в 3 мм и скорочти потока порядка $10\,\mathrm{мn/c}$, скорость получается порядка $\approx 1.4\,\mathrm{m/c}$. Это меняет разность температур не сильнее, чем на:

$$\Delta T = \frac{\Delta M}{C_p} = \frac{\mu}{2C_p} v^2 \approx 0.5 \,\text{mK},$$

что много меньше разности температур в эксперименте ($\approx 1 {
m K}$).

Если записать равенство энтальпий на границах перегоордки и применить уравнение газа Ван-дер-Ваальса, можно получить связь между разницей давлений и температур:

$$\mu_{\rm M-T} = \frac{\Delta T}{\Delta P} = \frac{(2a/RT) - b}{C_p}.$$

Схема установки представлена на рис. 1:

Рис. 1. Схема установки для изучения эффекта Джоуля-Томсона

- 1. трубка с пористой перегоордкой (2)
- 2. пористая перегородка
- 3. труба Дьюара
- 4. кольцо
- 5. змеевик
- 6. балластный баллон
- 7. вольтметр
- 8. верхний спай термопары
- 9. нижний спай термопары
- 10. пробка из пенопласта

Результаты и обработка

В этом эксперименте проведены серии по 5 точек зависимости V – напряжения на термопаре от P – давления на выходе из баллона при 5 различных температурах. Для каждой серии по методу наименьших квадратов была рассчитана величина $\mu_{\mathsf{д-T}} = \frac{\Delta V}{\Delta P} / \frac{\Delta V}{\Delta T}$.

р, бар	$V, \mu B$	T, K
4.00 ± 0.05	137.0 ± 0.5	20.640 ± 0.005
3.50 ± 0.05	119.0 ± 0.5	20.640 ± 0.005
3.00 ± 0.05	98.0 ± 0.5	20.830 ± 0.005
2.50 ± 0.05	75.0 ± 0.5	20.790 ± 0.005
2.00 ± 0.05	57.0 ± 0.5	20.850 ± 0.005

р, бар	$V, \mu B$	T, K
4.00 ± 0.05	131.0 ± 0.5	29.340 ± 0.005
3.50 ± 0.05	112.0 ± 0.5	29.570 ± 0.005
3.00 ± 0.05	92.0 ± 0.5	29.710 ± 0.005
2.50 ± 0.05	73.0 ± 0.5	29.680 ± 0.005
2.00 ± 0.05	52.0 ± 0.5	29.680 ± 0.005

p, бар	$V, \mu B$	T, K
4.00 ± 0.05	130.0 ± 0.5	40.060 ± 0.005
3.50 ± 0.05	105.0 ± 0.5	40.070 ± 0.005
3.00 ± 0.05	86.0 ± 0.5	40.050 ± 0.005
2.50 ± 0.05	69.0 ± 0.5	40.040 ± 0.005
2.00 ± 0.05	50.0 ± 0.5	40.020 ± 0.005

p, бар	$V, \mu B$	T, K
4.00 ± 0.05	115.0 ± 0.5	50.000 ± 0.005
3.50 ± 0.05	101.0 ± 0.5	50.010 ± 0.005
3.00 ± 0.05	81.0 ± 0.5	50.030 ± 0.005
2.50 ± 0.05	66.0 ± 0.5	50.040 ± 0.005
2.00 ± 0.05	53.0 ± 0.5	50.030 ± 0.005

р, бар	$V, \mu B$	T, K
4.00 ± 0.05	105.0 ± 0.5	60.000 ± 0.005
3.50 ± 0.05	91.0 ± 0.5	60.000 ± 0.005
3.00 ± 0.05	78.0 ± 0.5	60.000 ± 0.005
2.50 ± 0.05	58.0 ± 0.5	60.020 ± 0.005
2.00 ± 0.05	48.0 ± 0.5	60.010 ± 0.005

Из МНК можно найти dV/dT для каждой из температур. Приборная погрешность (для получения полной, суммируются квадраты со статистической погрешностью и берется корень) для dV/dT считается, как

$$\sigma(dV/dT) = (dV/dT) \left(\frac{\sigma_V}{< V >} + \frac{\sigma_T}{< T >} \right).$$

Величины dV/dT для температур в цельсиях близких к кратным десяти брались как среднее арифметическое этой величины на граничных участках. Погрешность считалась, как половина соответствующих модулей разности.

Величина μ рассчитывалась как отношение dV/dP к dV/dT с соответствующей погрешностью.

T, K	dV/dP , μ В/бар	dV/dT , $\mu B/K$	μ = dT/dP, K/бар	$1000\mathrm{K}/T$
293.90 ± 0.05	40.80 ± 0.89	40.25 ± 0.45	1.01 ± 0.03	3.4025 ± 0.0005
302.75 ± 0.07	39.40 ± 0.53	41.15 ± 0.45	0.96 ± 0.02	3.3031 ± 0.0007
313.20 ± 0.01	39.20 ± 1.35	42.05 ± 0.45	0.93 ± 0.04	3.1929 ± 0.0001
323.17 ± 0.01	31.80 ± 1.06	42.90 ± 0.40	0.74 ± 0.03	3.0943 ± 0.0001
333.16 ± 0.01	29.40 ± 1.21	43.70 ± 0.40	0.67 ± 0.03	3.0016 ± 0.0001

Из МНК следует, что

$$\mu = -(1.96 \pm 0.02) \frac{\text{K}}{\text{fap}} + (0.88 \pm 0.12) \frac{\text{K}}{\text{fap}} \cdot \frac{1000 \text{K}}{T}$$

Если учитывать погрешность линейного члена аналогично рассмотренной на странице раньше, а приборную погрешность постоянной добавки как среднее арифметическое σ_{μ} , то получатся коэффициенты

$$\mu = -(1.96 \pm 0.07) \frac{\text{K}}{\text{Gap}} + (0.88 \pm 0.15) \frac{\text{K}}{\text{Gap}} \cdot \frac{1000 \text{K}}{T}$$

Найдем a, b.

$$a = \frac{C_p R}{2} \left(880 \pm 120\right) \frac{\mathrm{K}^2}{\mathrm{бар}} = 2 R^2 \left(880 \pm 120\right) \frac{\mathrm{K}^2}{\mathrm{бар}} = \left(1.2 \pm 0.2\right) \mathrm{H} \, \mathrm{M}^4 / \mathrm{моль}^2, \, a_{\mathrm{табл}} = 0.36 \, \mathrm{H} \, \mathrm{M}^4 / \mathrm{моль}^2$$

$$b = C_p \left(1.96 \pm 0.07\right) \frac{\mathrm{K}}{\mathrm{бар}} = \left(650 \pm 20\right) \mathrm{cm}^3 / \mathrm{моль}, \, b_{\mathrm{табл}} = 43 \mathrm{cm}^3 / \mathrm{моль}$$

Вывод

Наша модель плохо описывает поведение системы, поскольку финальные коэффициенты не сошлись с табличными. Не смотря на это, они отличались от них меньше, чем в 20 раз, что не так плохо. Мы измерили изменение температуры углекислого газа при протекании через перегородку при различных давлениях и температурах и вычеслили значения коэффициентов Ван-дер-Ваальса, хоть и не точно.