PART V

REPRESENTATIONS

We are interested in representing an abstract C*-algebra as operators on Hilbert space. The important part is the GNS construction, that allows us to construct a representation of an abstract C*-algebra using a state acting on it. The tools in this part will be very important in quantum field theory.

1 | Representations of C*-algebras

A *-homomorphism between two C*-algebras \mathcal{A} and \mathcal{B} is a mapping

$$\pi: A \to \pi(A),$$

such that $\pi(\alpha A + \beta B) = \alpha \pi(A) + \beta \pi(B)$, $\pi(AB) = \pi(A)\pi(B)$ and $\pi(A^*) = (\pi(A))^*$. It's an algebra homomorphism which also preserves the *-operation.

Given a *-homomorphism $\pi: \mathcal{A} \to \mathcal{B}$, we have, $1 = \pi(AA^{-1}) = \pi(A)\pi(A^{-1})$ so, π maps invertible elements to invertible elements, and $\pi(A^{-1}) = \pi(A)^{-1}$. Hence we have,

$$\sigma(\pi(A)) \subset \sigma(A)$$
.

This immediately tells us that, for self-adjoint operators, $\|\pi(A)\| = \rho(\pi(A)) \le \rho(A) = \|A\|$. Since A^*A is self-adjoint, we have,

$$\|\pi(A)\|^2 = \|\pi(A^*)\pi(A)\| = \|\pi(A^*A)\| \le \|A^*A\| = \|A\|^2.$$

A representation (\mathcal{H}, π) of a unital C*-algebra \mathcal{A} is a *-homomorphism,

$$\pi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$$

which is unital, i.e., $\pi(1) = 1$ for some Hilbert space \mathcal{H} . Two representation (\mathcal{H}_1, π_1) and (\mathcal{H}_2, π_2) of an algebra \mathcal{A} are said to be equivalent if there exists a unitary operation $U : \mathcal{H}_1 \to \mathcal{H}_2$ such that

$$\pi_1(A) = U\pi_2(A)U^*,$$

for all $A \in \mathcal{A}$.

If the π is an isomorphism between \mathcal{A} and $\pi(\mathcal{A})$ it's called a faithful representation. Suppose we have a faithful representation of \mathcal{A} then by injectivity we have, $\ker \pi = \{0\}$. There exists π^{-1} from range of π into \mathcal{A} .

$$||A|| = ||\pi^{-1}(\pi(A))|| \le ||\pi(A)|| \le ||A||.$$

So whenever π is a faithful representation, then for every $A \in \mathcal{A}$,

$$||A|| = ||\pi(A)||.$$

If (\mathcal{H}, π) is a representation of \mathcal{A} , a subspace \mathcal{H}_1 of \mathcal{H} is said to be invariant under π if $\pi(A)\mathcal{H}_1 \subseteq \mathcal{H}_1$ for all $A \in \mathcal{A}$. If \mathcal{H}_1 is closed and $P_{\mathcal{H}_1}$ is the orthogonal projection with range \mathcal{H}_1 then the invariance implies,

$$P_{\mathcal{H}_1}\pi(A)P_{\mathcal{H}_1} = \pi(A)P_{\mathcal{H}_1}.$$

for all $A \in \mathcal{A}$. Hence,

$$\pi(A)P_{\mathcal{H}_1} = (P_{\mathcal{H}_1}\pi(A^*)P_{\mathcal{H}_1})^*$$

= $(\pi(A^*)P_{\mathcal{H}_1})^*$
= $P_{\mathcal{H}_1}\pi(A)$.

for all $A \in \mathcal{A}$. Hence \mathcal{H}_1 is invariant under π if and only if, $\pi(A)P_{\mathcal{H}_1} = P_{\mathcal{H}_1}\pi(A)$ for all $A \in \mathcal{A}$. If we define π_1 by,

$$\pi_1(A) = P_{\mathcal{H}_1} \pi(A) P_{\mathcal{H}_1},$$

then (\mathcal{H}_1, π_1) is a representation of \mathcal{A} . It's called a subrepresentation of (\mathcal{H}, π) . This procedure of going to subrepresentation gives a decomposition of π . If \mathcal{H}_1 is invariant under π then so is \mathcal{H}_1^{\perp} . Setting $\mathcal{H}_2 = \mathcal{H}_1^{\perp}$ one can define a second subrepresentation. Now the original Hilbert space \mathcal{H} can be written as a direct sum, $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ and each operator $\pi(A)$ then decomposes as a direct sum $\pi(A) = \pi_1(A) \oplus \pi_2(A)$. So the representation can be written as $(\mathcal{H}, \pi) = (\mathcal{H}_1, \pi_1) \oplus (\mathcal{H}_2, \pi_2)$.

Given a family of representations $(\mathcal{H}_{\alpha}, \pi_{\alpha})_{\alpha \in I}$ of \mathcal{A} the direct sum of representations \mathcal{H}_{α} is defined as follows,

$$\mathcal{H} = \bigoplus_{\alpha \in I} \mathcal{H}_{\alpha},$$

consisting of vectors of the form $\varphi = \{\varphi_{\alpha}\}_{{\alpha} \in I}$ such that $\lim_F [\sum_{{\alpha} \in F} \|\varphi_{\alpha}\|^2] < \infty$ where F is a finite subset of I. The purpose of this definition is so that norm is definable nicely. This Hilbert space together with the representation map,

$$\pi = \bigoplus_{\alpha \in I} \pi_{\alpha},$$

is called direct sum of representations $\{(\mathcal{H}_{\alpha}, \pi_{\alpha})\}_{\alpha \in I}$, denoted by, $\sum_{\alpha \in I}^{\oplus} \{(\mathcal{H}_{\alpha}, \pi_{\alpha})\}$. The operators $\pi(A)$ on \mathcal{H} are bounded because $\|\pi_{\alpha}(A)\| \leq \|A\|$ for each $\alpha \in I$.

A representation is trivial if $\pi(A) = 0$ for every $A \in \mathcal{A}$. These are uninteresting representations. A representation can however have a trivial part.

$$\mathcal{D} = \{ \varphi \in \mathcal{H} \mid \pi(A)\varphi = 0 \, \forall A \in \mathcal{A} \}.$$

It follows that $\pi_{\mathcal{D}} = P_{\mathcal{D}}\pi P_{\mathcal{D}} = 0$ where $P_{\mathcal{D}}$ is the projection onto the subspace \mathcal{D} . A representation (\mathcal{H}, π) is non degenerate if $\mathcal{D} = \{0\}$.

A vector $|\Omega\rangle$ in a Hilbert space \mathcal{H} is called cyclic for \mathcal{A} if $\{A|\Omega\rangle\}_{A\in\mathcal{A}}$ is dense in \mathcal{H} . A cyclic representation of \mathcal{A} is a triple $(\mathcal{H}, \pi, |\Omega\rangle)$ where (\mathcal{H}, π) is a representation of \mathcal{A} and $|\Omega\rangle$ is a cyclic for $\pi(\mathcal{A})$.

Let (\mathcal{H}, π) be a nondegenerate representation of \mathcal{A} . Take a maximal family of nonzero vectors $|\{\Omega_{\alpha}\rangle\}_{\alpha\in I}$ in \mathcal{H} such that,

$$\langle \pi(A)\Omega_{\alpha}|\pi(B)\Omega_{\beta}\rangle = 0,$$

for all $A, B \in \mathcal{A}$ and $\alpha \neq \beta$. Define, $\mathcal{H}_{\alpha} = \overline{\{\pi(A)|\Omega_{\alpha}\rangle\}_{A\in\mathcal{A}}}$. This is an invariant subspace of \mathcal{H} . Define $\pi_{\alpha} = P_{\mathcal{H}_{\alpha}}\pi P_{\mathcal{H}_{\alpha}}$ where $P_{\mathcal{H}_{\alpha}}$ is projection onto \mathcal{H}_{α} . Then by construction each \mathcal{H}_{α} are mutually orthogonal and hence the representation (\mathcal{H}, π) is of the form,

$$\mathcal{H} = \bigoplus_{\alpha \in I} \{ (\mathcal{H}_{\alpha}, \pi_{\alpha}) \}$$

So every nondegenerate representation can be written as a direct sum of a family of cyclic subrepresentations. If no invariant subspaces the representation (\mathcal{H}, π) of \mathcal{A} is called irreducible. If \mathcal{A} be a self-adjoint algebra of operators on Hilbert space \mathcal{H} ,

1.1 | Positive Linear Functionals and States

Denote the dual space of \mathcal{A} i.e., the set of all continuous linear functionals over \mathcal{A} by $\mathcal{A}^{\#}$. The norm of a functional f over \mathcal{A} is defined by, $||f|| = \sup_{||A||=1} \{|f(A)|\}$. A linear functional ω over the algebra \mathcal{A} is called positive if,

$$\omega(A^*A) > 0$$

for all $A \in \mathcal{A}$. A positive linear functional over \mathcal{A} with $\|\omega\| = 1$ is called a state. The state is called faithful if $\omega(A^*A) = 0$ implies A = 0.

If ω_1 and ω_2 are two states then clearly,

$$\omega = \lambda \omega_1 + (1 - \lambda)\omega_2,$$

is also a state for all $\lambda \in [0,1]$. The set of states is a convex subset of $\mathcal{A}^{\#}$.

1.2 | GELFAND-NAIMARK-SEGAL CONSTRUCTION

If ω is a positive linear functional over \mathcal{A} then we can define a sesquilinear form, $\varrho(B,A) = \omega(B^*A)$. i.e, $\varrho(\mu A, \lambda B) = \overline{\mu} \lambda \varrho(A,B)$, and $\varrho(A,B) = \overline{\varrho(B,A)}$. Since ω a positive linear functional we have,

$$\rho(\lambda A - B, \lambda A - B) > 0.$$

On expanding it, we obtain,

$$|\lambda|^2 \varrho(A,A) - \overline{\lambda}\varrho(A,B) - \lambda\varrho(B,A) + \varrho(B,B) \ge 0$$

By letting $\lambda = \varrho(A,B)/\varrho(A,A)$ we obtain, $0 \le [|\varrho(A,B)|^2/\varrho(A,A)^2]\varrho(A,A) - 2[|\varrho(A,B)|^2/\varrho(A,A)] + \varrho(B,B)$. This gives us,

$$|\varrho(A,B)|^2 \le B_\omega(A,A)B_\omega(B,B).$$

If ω is a positive linear functional then it satisfies the Cauchy-Schwarz inequality,

$$|\omega(A^*B)|^2 \leq \omega(A^*A)\omega(B^*B).$$

If ω_1 and ω_2 are two positive linear functionals we write $\omega_1 \geq \omega_2$ if $\omega_1 - \omega_2$ is positive. This gives an order on positive linear functionals. If ω_1 and ω_2 are two states over \mathcal{A} and $0 < \lambda < 1$ then $\omega = \lambda \omega_1 + (1 - \lambda)\omega_2$ is also a state such that $\omega \geq \lambda \omega_1$ and $\omega \geq (1 - \lambda)\omega_2$. The set of all states is a convex subset of $\mathcal{A}^{\#}$ and we will denote it by $S(\mathcal{A})$. The extreme points of this convex set are called pure states. They are such that $\omega > \lambda \omega_1$ iff $\omega_1 = \omega$.

Given a closed two-sided ideal $\mathcal{J} \subseteq \mathcal{A}$, the quotient algebra is defined by,

$$\mathcal{A}_{\mathcal{J}} = \mathcal{A}/\mathcal{J} = \{ [A] = A + J \mid J \in \mathcal{J} \}$$

with the norm, $||[A]|| = \inf_{J \in \mathcal{J}} \{||A + J||\}$ the algebra $\mathcal{A}_{\mathcal{J}}$ is a C^* -algebra.

The Gelfand-Naimark-Segal theorem constructs for a given C^* -algebra \mathcal{A} and a state ω a representation of the algebra of observables \mathcal{A} on the set of bounded operators $\mathcal{B}(\mathcal{H})$ for some \mathcal{H} .

THEOREM 1.1. (GELFAND-NAIMARK-SEGAL) Let ω be a state on a unital C^* -algebra \mathcal{A} then there exists a cyclic representation $(\mathcal{H}_{\omega}, \pi_{\omega}, |\Omega\rangle)$ of unit norm such that

$$\omega(A) = \langle \Omega | \pi_{\omega}(A) \Omega \rangle$$

for all $A \in \mathcal{A}$. The representation is unique in the sense that if $(\mathcal{H}, \pi, |\Omega_{\varphi}\rangle)$ is a cyclic representation such that, $\varphi(A) = \langle \Omega_{\varphi} | \pi(A) \Omega_{\varphi} \rangle$ then there exists a unique unitary operator $U : \mathcal{H} \to \mathcal{H}_{\omega}$, such that,

$$\pi_{\omega}(A) = U\pi(A)U^*$$

and $U|\Omega_{\varphi}\rangle = |\Omega_{\omega}\rangle$.

PROOF

Given a state ω on \mathcal{A} one considers the set in \mathcal{A} defined by,

$$\mathcal{J}_{\omega} = \{ A \mid \omega(A^*A) = 0 \}.$$

By Cauchy-Schwarz inequality whenever $A \in \mathcal{J}_{\omega}$ for any $B \in \mathcal{A}$ we have

$$|\omega((BA)^*BA)|^2 = |\omega(C^*A)|^2 \le \omega(C^*C)\omega(A^*A) = 0,$$

where $C = B^*BA$. So, $BA \in \mathcal{J}_{\omega}$. So \mathcal{J}_{ω} is an ideal. Factorizing \mathcal{A} by \mathcal{J}_{ω} an inner product is introduced on the quotient space $\mathcal{A}_{\mathcal{J}_{\omega}}$ defined by,

$$\langle [A]|[B]\rangle := \omega(A^*B).$$

where [A] and [B] denote the equivalence classes determined by A and B respectively. The new vector space is completed by adding all the Cauchy sequences and we denote the Hilbert space by \mathcal{H}_{ω} . On this Hilbert space we have the representation of the algebra \mathcal{A} ,

$$\pi_{\omega}: \mathcal{A} \to \mathcal{B}(\mathcal{H}_{\omega}),$$

defined by,

$$\pi_{\omega}(A)[B] \equiv [AB].$$

Let $[I] = |\Omega_{\omega}\rangle$. The expectation of any observable can then be written as,

$$\omega(A) = \langle \Omega_{\omega} | A \Omega_{\omega} \rangle.$$

A state on the algebra can be represented as a vector in some Hilbert space. A vector $\varphi \in \mathcal{H}$ is said to be cyclic for \mathcal{A} if the closure of $\mathcal{A}\varphi$ is same as \mathcal{H} . A vector φ is separating for \mathcal{A} if $A\varphi = 0$ implies A = 0 for all $A \in \mathcal{A}$. The vector $|\Omega_{\omega}\rangle$ is cyclic for \mathcal{A} .

For every state ω on an algebra \mathcal{A} there exists a cyclic representation $(\mathcal{H}_{\omega}, \pi_{\omega}, |\Omega_{\omega}\rangle)$.

$$\omega(A) = \langle \Omega_{\omega} | \pi_{\omega}(A) \Omega_{\omega} \rangle, \quad \forall A \in \mathcal{A}.$$

If there is another cyclic representation $(\mathcal{H}, \pi, |\Omega\rangle)$ then define a map, $U\pi(A)|\Omega\rangle = \pi_{\omega}(A)|\Omega_{\omega}\rangle$. This is an isometry with an inverse, hence it extends to a unitary map.

The representation is faithful if the state if faithful. That's probably where the name faithful state comes from.

THEOREM 1.2. Let $A \in \mathcal{A}$ be a self-adjoint element. Then there exists a cyclic representation $(\mathcal{H}, \pi, |\Omega_{\varphi}\rangle)$ of \mathcal{A} such that

$$\|\pi(A)\| = \|A\|$$

PROOF

The norm of a self-adjoint operator is the same as it's spectral radius,

$$||A|| = \rho(A) = \sup_{\lambda \in \sigma(A)} \{|\lambda|\}$$

Let λ be this maxima, using this we can define a functional on the algebra generated by A and identity. Defined by,

$$\varphi_0: \alpha A + \beta 1 \mapsto \alpha \lambda + \beta$$

It also maps $\varphi_0(1) = 1$. So the linear functional is also a state. Now by Hahn-Banach theorem this can be extended to a state φ on \mathcal{A} with $\varphi(1) = \varphi_0(1) = 1 = ||\varphi||$. The GNS representation for this state satisfy,

$$||A|| = |\varphi_0(A)| = |\varphi(A)| = |\langle \Omega_{\varphi} | \pi_{\varphi}(A) \Omega_{\varphi} \rangle \le ||\pi_{\varphi}(A)||.$$

Now, to each element A_i , we have a representation such that $\|\pi_i(A_i)\| = A_i$. Using these representations we can form a direct sum representation. Let $\{A_i\}_{i\in I}$ be a dense set in \mathcal{A} , For each $i\in I$ we have a representation $(\mathcal{H}_i,\pi_i)_{i\in I}$ such that $\|\pi_i(A_i)\| = \|A_i\|$ because $\|\pi_i(A_i^*A_i)\| = \|A_i^*A_i\|$ and C* identity. Thus the direct sum will be such that,

$$\|\pi(A)\| = \|A\|$$

for all $A \in \mathcal{A}$. If \mathcal{A} is separable, I can be assumed to be countable set, and hence we can assume the representation (\mathcal{H}, π) to be separable representation.

REFERENCES

[1] V S SUNDER, Functional Analysis: Spectral Theory, Birkhauser Advanced Texts, 1991