MAT 228B Notes

Sam Fleischer

January 30, 2016

1 Last Time

We were analyzing stability, and wrote $u^{n+1} = Bu^n + b^n$. We know this is stable if $||B^n|| \le C_T$ where C_T is independent of Δt . Last time we showed (for certain examples) $||B|| \le 1$. Then $||B^n|| \le 1$.

2 What if the Solution is Supposed to Grow in Time?

It would be silly to get a numerical scheme which doesn't allow growth.. we need to cautiously allow some growth. If there is a constant $\alpha \geq 0$ independent of Δt (for Δt small enough) such that $||B|| \leq 1 + \alpha \Delta t$, then the scheme is Lax-Richtmyer Stable.

Show this is true? Suppose $||B|| \le 1 + \alpha \Delta t$. We want to show $||B||^n \le C_T$. $||B^n|| \le ||B||^n \le (1 + \alpha \Delta t)^n \le e^{\alpha \Delta t n} = e^{\alpha T}$. α is like the exponential growth rate we are going to allow for the problem.

Consider $u_t = u_{xx} + Ku$. Spatial diffusion and exponential growth (if K > 0). Consider Forward Euler Stability in $\|\cdot\|_{\infty}$. Forward Euler is

$$u^{n+1} = \underbrace{(I + \Delta t L + K \Delta t I)}_{B} u^{n}$$

We get $\|B\|_{\infty} = \left|\frac{\Delta t}{\Delta x^2}\right| + \left\|1 - \frac{2\Delta t}{\Delta x^2} + k\Delta x\right\| + \left|\frac{\Delta t}{\Delta x^2}\right| \le 2\frac{\Delta t}{\Delta x^2}\left|1 - \frac{2\Delta t}{\Delta x^2}\right| + |K|\Delta t$. So, we require $1 - \frac{2\Delta t}{\Delta x^2} \ge 0$, whege $\frac{\Delta t\Delta x^2}{2}$. So, $\|B\|_{\infty} \le 1 + |k|\Delta t$. With the restriction, this method is stable.

2.1 If K < 0, We Expect the Physical Solution to Decay

We want $||B||_{\infty} \leq 1$. Try Δt such that $1 - \frac{2\Delta t}{\Delta x^2} + k\Delta t \geq 0$, i.e.

$$\Delta t \le \frac{\Delta x^2}{2 - K \Delta x^2}$$

So,

$$||B||_{\infty} = 1 + K\Delta t$$

Want $0 \le 1 + K\Delta t \le 1$, i.e. $-1 \le K\Delta t \le 0$, i.e. $\Delta t \le -\frac{1}{K}$.

3 Variable Coefficient Diffusion

In the conservative form, $u_t = (a(x)u_x)_x$. In multi-D,

$$u_t = -\nabla \cdot J$$
 where $J = -a(x)\nabla u$

We'll generally want to discretize the conservative form.

3.1 Discretize the Conservative Form

We discretize space (1D, equally spaced). We have x_j (points) and $x_{j-1/2}$ edges. To approximate the flux J,

$$J = -a(x)u_x$$
 where $J_{j-1/2} = -\left(a(x_{j-1/2})\left(\frac{u_j - u_{j-1}}{\Delta x}\right)\right)$

So, for $u_t = -J_x$, (in semi-discrete form) we have

$$\frac{\mathrm{d}}{\mathrm{d}t}u(x_j) = -(\frac{J_{j+1/2} - J_{j-1/2}}{\Delta x})$$

So,

$$\begin{split} \left[(a(x)u_x)_x \right]_j &= - \bigg(\frac{J_{j+1/2} - J_{j-1/2}}{\Delta x} \bigg) = \frac{a_{j+1/2} \bigg(\frac{u_{j+1} - u_j}{\Delta x} \bigg) - a_{j-1/2} \bigg(\frac{u_j - u_{j-1}}{\Delta x} \bigg)}{\Delta x} \\ &= \frac{a_{j-1/2} u_{j-1} - \left(a_{j-1/2} + a_{j+1/2} \right) u_j + a_{j+1/2} u_{j+1}}{\Delta x^2} \end{split}$$

and note that if a is constant it reduces to what we had before.

3.2 Stability of Forward Euler in $\|\cdot\|_{\infty}$

Using a "constant coefficient way of thinking," Bob would guess $\Delta t \leq \frac{\Delta x^2}{2 \max(a(x))}$.. Forward Euler for this problem is

$$u^{n+1} = \underbrace{(I + \Delta t A)}_{B} u^{n}$$

$$||B||_{\infty} = \max_{j} \left(\left| \frac{a_{j-1/2} \Delta t}{\Delta x^{2}} \right| + \left| 1 - \frac{\Delta t \left(a_{j-1/2} + a_{j+1/2} \right)}{\Delta x^{2}} \right| + \left| \frac{a_{j+1/2} \Delta t}{\Delta x^{2}} \right| \right)$$

So we pick Δt so that $1 - \frac{\Delta t \left(a_{j-1/2} + a_{j+1/2}\right)}{\Delta x^2} \ge 0$ for all j, which is equivalent to

$$\Delta t \le \frac{\Delta x^2}{a_{j-1/2} + a_{j+1/2}} \quad \text{for all } j$$

and stuff cancels and we get $||B||_{\infty} \leq 1$.