Submission details

Submit you home assignments at https://www.gradescope.com with coursecode: NXE75N.

Deadline HA1: 13 December 2022, 23:59 Deadline HA2: 18 December 2022, 23:59

You have one honey-day. The honey-day allows you to postpone one of the two deadlines by 24 hours.

1 HA

- 1. Some questions about σ -algebras.
 - (a) You observe the result of 10 independent coin tosses. How many elements the σ -algebra of your information contains?
 - (b) Prove that a finite σ -algebra can contain only 2^k elements.
 - (c) Is union of two σ -algebras always a σ -algebra? Prove your statement.
 - (d) Is intersection of two σ -algebras always a σ -algebra? Prove your statement.
- 2. Prove the following statement or provide a counter-example. For any two σ -algebras \mathcal{F} and \mathcal{H} and a random variable Y

$$E(E(Y|\mathcal{F})|\mathcal{H}) = E(Y|\mathcal{F} \cap \mathcal{H})$$

- 3. I throw a fair die until the first six appears. Let's denote the total number of throws by X and the number of odd integers thrown by Y.
 - (a) Find $\mathbb{P}(Y = y|X)$, $\mathbb{E}(Y|X)$, $\mathbb{V}(Y|X)$;
 - (b) Find E(X|Y).
- 4. I throw 100 coins. Let's denote by X the number of coins that show «heads». I throw these X coins once again, leaving other coins as they are. Let's denote by Y the number of coins that show «heads» now.

Find
$$\mathbb{P}(Y = y|X)$$
, $\mathbb{E}(Y|X)$, $\mathbb{Var}(Y|X)$, $\mathbb{E}(Y)$, $\mathbb{Var}(Y)$.

5. Random variables X and Y have joint normal distribution with zero means and covariance matrix

$$\begin{pmatrix} 4 & -1 \\ -1 & 9 \end{pmatrix}.$$

- (a) Find E(Y|X), Var(Y|X), E(XY|X) and Var(XY|X).
- (b) Using standard normal cumulative distribution function find $\mathbb{P}(YX > 2021|X)$.
- 6. The random variables $Z_1, Z_2, ...$ are independent and identically distributed with $\mathbb{P}(Z_n = 1) = p$ and $\mathbb{P}(Z_n = -1) = 1 p$. Consider the cumulative sum process, $S_n = Z_1 + ... + Z_n$ with $S_0 = 0$.
 - (a) For which value of p the process 2^{S_n} will be a martingale?
 - (b) Let p=0.3. If possible find the constants α and β such that $Y_n=S_n^2+\alpha S_n+\beta n$ is a martingale.

2 HAHA

- 1. The processes (X_t) and (Y_t) are independent Wiener processes with respect to filtration (\mathcal{F}_t) . The process $Z_t = aX_t + bY_t$ is also a Wiener process.
 - (a) For which values of constants a and b is it possible?
 - (b) Find correlation $Corr(Z_t, X_t)$.
 - (c) Find $E(Z_3|X_2)$ and $Var(Z_3|X_2)$.
 - (d) Find $E(Z_3|\mathcal{F}_2)$ and $Var(Z_3|\mathcal{F}_2)$.
- 2. The process $C_t = W_t^3 + aW_t^2 + bW_t + c + d \cdot t \cdot W_t$ is a martingale.
 - (a) For which values of constants a, b, c and d is it possible?
 - (b) Find covariance $Cov(C_t, \int W_u^2 dW_u)$.
- 3. Consider the framework of Black and Scholes model: S_t is the share price. Derive the current price of two European type assets, X_0 and Y_0 .

Future payoffs are given by:

- (a) $X_T = (S_T K)^3$ where T and K are fixed in the contract.
- (b) $Y_T = S_T^{-2}$ where T is fixed in the contract.
- 4. Let $Y_t = W_t + 4t$. The moment τ is the first moment when Wiener process hits 10.
 - (a) Let α be a constant. Find the function f(t) such that $M_t = f(t) \exp(\alpha Y_t)$ is a martingale.
 - (b) Using Doob's theorem find $\mathsf{E}(\exp(-s\tau))$ for arbitrary constant s.
- 5. Solve the stochatic differential equation

$$dY_t = -Y_t dt + dW_t, \ Y_0 = 1$$

If you are have no clues you may try a substitution $Z_t = f(t)Y_t$. Do not forget that the final answer may contain integrals that can't be calculated explicitly. It's ok.

6. Solve the stochatic differential equation

$$dY_t = Y_t dt + (t^3 + 4Y_t) dW_t, \ Y_0 = 1$$

If you are have no clues you may try to represent the process as $Y_t = A_t B_t$, where A_t is the solution of the equation $dA_t = A_t dt + 4A_t dW_t$.