# SpinDec

Generated by Doxygen 1.6.1

Thu Jun 25 19:25:50 2015

# **Contents**

| 1 | Clas | s Index  |             |             |          |         |        |   |      |      |  |      |       |  | 1  |
|---|------|----------|-------------|-------------|----------|---------|--------|---|------|------|--|------|-------|--|----|
|   | 1.1  | Class H  | ierarchy .  |             |          |         |        |   | <br> | <br> |  | <br> |       |  | 1  |
| 2 | Clas | ss Index |             |             |          |         |        |   |      |      |  |      |       |  | 3  |
|   | 2.1  | Class L  | ist         |             |          |         |        |   | <br> | <br> |  | <br> |       |  | 3  |
| 3 | File | Index    |             |             |          |         |        |   |      |      |  |      |       |  | 5  |
|   | 3.1  | File Lis | t           |             |          |         |        |   | <br> | <br> |  | <br> | <br>• |  | 5  |
| 4 | Clas | s Docum  | entation    |             |          |         |        |   |      |      |  |      |       |  | 7  |
|   | 4.1  | SpinDe   | c::Adiabat  | ticLabel C  | Class Re | ference |        |   | <br> | <br> |  | <br> |       |  | 7  |
|   |      | 4.1.1    | Detailed I  | Description | on       |         |        |   | <br> | <br> |  | <br> |       |  | 7  |
|   | 4.2  | SpinDe   | c::BoostEi  | igen Class  | s Refere | nce .   |        |   | <br> | <br> |  | <br> |       |  | 9  |
|   |      | 4.2.1    | Detailed I  | Description | n        |         |        |   | <br> | <br> |  | <br> |       |  | 9  |
|   |      | 4.2.2    | Member I    | Function 1  | Docume   | ntation |        |   | <br> | <br> |  | <br> |       |  | 9  |
|   |      |          | 4.2.2.1     | cosAngle    | Betwee   | n       |        |   | <br> | <br> |  | <br> |       |  | 9  |
|   |      |          | 4.2.2.2     | maxAbs      | Coeff .  |         |        |   | <br> | <br> |  | <br> |       |  | 10 |
|   |      |          | 4.2.2.3     | partialTra  | ace      |         |        |   | <br> | <br> |  | <br> |       |  | 10 |
|   |      |          | 4.2.2.4     | spectral    | Decompo  | osition |        |   | <br> | <br> |  | <br> |       |  | 10 |
|   |      |          | 4.2.2.5     | tensorPro   | oduct .  |         |        |   | <br> | <br> |  | <br> |       |  | 10 |
|   |      |          | 4.2.2.6     | tensorPro   | oduct .  |         |        |   | <br> | <br> |  | <br> |       |  | 10 |
|   |      |          | 4.2.2.7     | unitaryS    | pectralD | ecomp   | ositic | n | <br> | <br> |  | <br> |       |  | 10 |
|   | 4.3  | SpinDe   | c::CCE Cl   | lass Refer  | ence     |         |        |   | <br> | <br> |  | <br> |       |  | 11 |
|   |      | 4.3.1    | Detailed I  | Descriptio  | n        |         |        |   | <br> | <br> |  | <br> |       |  | 11 |
|   |      | 4.3.2    | Member I    | Function 1  | Docume   | ntation |        |   | <br> | <br> |  | <br> |       |  | 12 |
|   |      |          | 4.3.2.1     | calculate   |          |         |        |   | <br> | <br> |  | <br> |       |  | 12 |
|   | 4.4  | SpinDe   | c::Cluster  | Class Ref   | ference  |         |        |   | <br> | <br> |  | <br> |       |  | 13 |
|   |      | -        | Detailed I  |             |          |         |        |   |      |      |  |      |       |  | 13 |
|   | 4.5  |          | c::Clusterl | •           |          |         |        |   |      |      |  |      |       |  | 14 |

ii CONTENTS

|      | 4.5.1  | Detailed Description                       | 15 |
|------|--------|--------------------------------------------|----|
| 4.6  | SpinDe | ec::ClusterDatabaseEntry Class Reference   | 16 |
|      | 4.6.1  | Detailed Description                       | 16 |
| 4.7  | SpinDe | ec::Constants Class Reference              | 17 |
|      | 4.7.1  | Detailed Description                       | 17 |
|      | 4.7.2  | Member Data Documentation                  | 17 |
|      |        | 4.7.2.1 kElectronGyromagneticRatio         | 17 |
|      |        | 4.7.2.2 kPi                                | 17 |
|      |        | 4.7.2.3 kPlanck                            | 17 |
|      |        | 4.7.2.4 kReducedPlanck                     | 17 |
| 4.8  | SpinDe | ec::CPMG Class Reference                   | 18 |
|      | 4.8.1  | Detailed Description                       | 18 |
| 4.9  | SpinDe | ec::CPMGDephasing Class Reference          | 19 |
|      | 4.9.1  | Detailed Description                       | 19 |
| 4.10 | SpinDe | ec::CrystalBasis Class Reference           | 20 |
|      | 4.10.1 | Detailed Description                       | 20 |
| 4.11 | SpinDe | ec::CrystalStructure Class Reference       | 21 |
|      | 4.11.1 | Detailed Description                       | 22 |
|      | 4.11.2 | Member Function Documentation              | 22 |
|      |        | 4.11.2.1 fill_site_vectors                 | 22 |
| 4.12 | SpinDe | ec::CSDProblem Class Reference             | 23 |
|      | 4.12.1 | Detailed Description                       | 23 |
|      | 4.12.2 | Member Data Documentation                  | 24 |
|      |        | 4.12.2.1 system_bath_edges                 | 24 |
| 4.13 | SpinDe | ec::DensityOperator Class Reference        | 25 |
|      | 4.13.1 | Detailed Description                       | 25 |
| 4.14 | SpinDe | ec::DiamondCubic Class Reference           | 26 |
|      | 4.14.1 | Detailed Description                       | 26 |
|      | 4.14.2 | Member Function Documentation              | 26 |
|      |        | 4.14.2.1 int_range_centred_cube            | 26 |
| 4.15 | SpinDe | ec::Dipolar Class Reference                | 27 |
|      | 4.15.1 | Detailed Description                       | 27 |
| 4.16 | SpinDe | ec::Eigenspectrum Class Reference          | 29 |
|      | 4.16.1 | Detailed Description                       | 29 |
| 4.17 | SpinDe | ec::ElectronSpinParameters Class Reference | 30 |
|      | 4.17.1 | Detailed Description                       | 30 |

CONTENTS

| 4.18 | SpinDec::Errors Class Reference                 | 31 |
|------|-------------------------------------------------|----|
|      | 4.18.1 Detailed Description                     | 31 |
| 4.19 | SpinDec::EvolutionOperator Class Reference      | 32 |
|      | 4.19.1 Detailed Description                     | 32 |
|      | 4.19.2 Constructor & Destructor Documentation   | 32 |
|      | 4.19.2.1 EvolutionOperator                      | 32 |
|      | 4.19.3 Member Data Documentation                | 33 |
|      | 4.19.3.1 eigenvalues                            | 33 |
|      | 4.19.3.2 eigenvectors                           | 33 |
| 4.20 | SpinDec::FileProperties Class Reference         | 34 |
|      | 4.20.1 Detailed Description                     | 34 |
| 4.21 | SpinDec::FreeEvolution Class Reference          | 35 |
|      | 4.21.1 Detailed Description                     | 35 |
| 4.22 | SpinDec::HermitianEigenspectrum Class Reference | 36 |
|      | 4.22.1 Detailed Description                     | 36 |
|      | 4.22.2 Member Function Documentation            | 36 |
|      | 4.22.2.1 spectralDecomposition                  | 36 |
| 4.23 | SpinDec::Hyperfine Class Reference              | 37 |
|      | 4.23.1 Detailed Description                     | 37 |
| 4.24 | SpinDec::HyperfineParameters Class Reference    | 39 |
|      | 4.24.1 Detailed Description                     | 39 |
| 4.25 | SpinDec::IdentityOperator Class Reference       | 40 |
|      | 4.25.1 Detailed Description                     | 40 |
| 4.26 | SpinDec::IdentityPulse Class Reference          | 41 |
|      | 4.26.1 Detailed Description                     | 41 |
| 4.27 | SpinDec::LatticeVectors Class Reference         | 42 |
|      | 4.27.1 Detailed Description                     | 42 |
| 4.28 | SpinDec::MatrixRepresentation Class Reference   | 43 |
|      | 4.28.1 Detailed Description                     | 43 |
| 4.29 | SpinDec::PiPulse Class Reference                | 44 |
|      | 4.29.1 Detailed Description                     | 44 |
|      | 4.29.2 Constructor & Destructor Documentation   | 44 |
|      | 4.29.2.1 PiPulse                                | 44 |
| 4.30 | SpinDec::Pulse Class Reference                  | 45 |
|      | 4.30.1 Detailed Description                     | 45 |
| 4.31 | SpinDec::PulseExperiment Class Reference        | 46 |

iv CONTENTS

|      | 4.31.1 | Detailed Description                          | 46 |
|------|--------|-----------------------------------------------|----|
| 4.32 | SpinDe | ec::PulseSequence Class Reference             | 47 |
|      | 4.32.1 | Detailed Description                          | 47 |
| 4.33 | SpinDe | ec::PulseSequenceBase Class Reference         | 48 |
|      | 4.33.1 | Detailed Description                          | 48 |
| 4.34 | SpinDe | ec::RandomNumberGenerator Class Reference     | 49 |
|      | 4.34.1 | Detailed Description                          | 49 |
|      | 4.34.2 | Member Function Documentation                 | 49 |
|      |        | 4.34.2.1 uniform_c_rand                       | 49 |
| 4.35 | SpinDe | ec::ReducedProblem Class Reference            | 50 |
|      | 4.35.1 | Detailed Description                          | 50 |
| 4.36 | SpinDe | ec::Sign Class Reference                      | 51 |
|      | 4.36.1 | Detailed Description                          | 51 |
| 4.37 | SpinDe | ec::SimpleCubicLatticeVectors Class Reference | 52 |
|      | 4.37.1 | Detailed Description                          | 52 |
| 4.38 | SpinDe | ec::SpinBasis Class Reference                 | 53 |
|      | 4.38.1 | Detailed Description                          | 54 |
|      | 4.38.2 | Member Function Documentation                 | 54 |
|      |        | 4.38.2.1 operator+                            | 54 |
|      |        | 4.38.2.2 operator^                            | 54 |
| 4.39 | SpinDe | ec::SpinBath Class Reference                  | 55 |
|      | 4.39.1 | Detailed Description                          | 55 |
|      | 4.39.2 | Member Function Documentation                 | 56 |
|      |        | 4.39.2.1 get_bath_state                       | 56 |
|      | 4.39.3 | Member Data Documentation                     | 56 |
|      |        | 4.39.3.1 intrabath_edges                      | 56 |
|      |        | 4.39.3.2 spin_system_base                     | 56 |
| 4.40 | SpinDe | ec::SpinDonor Class Reference                 | 57 |
|      | 4.40.1 | Detailed Description                          | 59 |
|      | 4.40.2 | Constructor & Destructor Documentation        | 60 |
|      |        | 4.40.2.1 SpinDonor                            | 60 |
|      | 4.40.3 | Member Function Documentation                 | 60 |
|      |        | 4.40.3.1 build_basis                          | 60 |
|      |        | 4.40.3.2 build_basis                          | 60 |
|      |        | 4.40.3.3 build_basis                          | 60 |
|      |        | 4.40.3.4 build_truncated_basis                | 60 |
|      |        |                                               |    |

CONTENTS

|      |        | 4.40.3.5 calc_adiabatic_level_labels      | 61 |
|------|--------|-------------------------------------------|----|
|      |        | 4.40.3.6 energy                           | 61 |
|      |        | 4.40.3.7 orthogonal_adiabatic_level_label | 61 |
|      |        | 4.40.3.8 orthogonal_level_label           | 61 |
|      |        | 4.40.3.9 polarization                     | 61 |
|      |        | 4.40.3.10 polarization                    | 61 |
|      |        | 4.40.3.11 set_transition                  | 61 |
|      | 4.40.4 | Member Data Documentation                 | 62 |
|      |        | 4.40.4.1 adiabatic_level_labels           | 62 |
|      |        | 4.40.4.2 complete_basis                   | 62 |
|      |        | 4.40.4.3 orthogonal_level_labels          | 62 |
|      |        | 4.40.4.4 sorted_level_labels              | 62 |
|      |        | 4.40.4.5 transition_level_labels          | 62 |
| 4.41 | SpinDe | ec::SpinDown Class Reference              | 63 |
|      | 4.41.1 | Detailed Description                      | 63 |
|      | 4.41.2 | Member Function Documentation             | 63 |
|      |        | 4.41.2.1 init                             | 63 |
| 4.42 | SpinDe | ec::SpinHalf Class Reference              | 64 |
|      | 4.42.1 | Detailed Description                      | 64 |
| 4.43 | SpinDe | ec::SpinHalfParameters Class Reference    | 65 |
|      | 4.43.1 | Detailed Description                      | 65 |
| 4.44 | SpinDe | ec::SpinHalfStates Class Reference        | 66 |
|      | 4.44.1 | Detailed Description                      | 66 |
|      | 4.44.2 | Member Function Documentation             | 66 |
|      |        | 4.44.2.1 init                             | 66 |
| 4.45 | SpinDe | ec::SpinHamiltonian Class Reference       | 67 |
|      | 4.45.1 | Detailed Description                      | 68 |
|      | 4.45.2 | Member Function Documentation             | 68 |
|      |        | 4.45.2.1 fill_zeeman                      | 68 |
| 4.46 | SpinDe | ec::SpinInteraction Class Reference       | 69 |
|      | 4.46.1 | Detailed Description                      | 69 |
|      | 4.46.2 | Member Function Documentation             | 70 |
|      |        | 4.46.2.1 fill_ising_flipflop              | 70 |
| 4.47 | SpinDe | ec::SpinInteractionEdge Class Reference   | 71 |
|      | 4.47.1 | Detailed Description                      | 71 |
| 4.48 | SpinDe | ec::SpinInteractionGraph Class Reference  | 72 |

Vi

|      | 4.48.1 | Detailed Description                      | 73 |
|------|--------|-------------------------------------------|----|
|      | 4.48.2 | Member Function Documentation             | 73 |
|      |        | 4.48.2.1 add_vertex                       | 73 |
|      |        | 4.48.2.2 add_vertex                       | 73 |
|      |        | 4.48.2.3 join                             | 73 |
|      |        | 4.48.2.4 join                             | 73 |
|      |        | 4.48.2.5 join_in_place                    | 73 |
|      |        | 4.48.2.6 join_in_place                    | 74 |
| 4.49 | SpinDe | ec::SpinInteractionVertex Class Reference | 75 |
|      | 4.49.1 | Detailed Description                      | 75 |
| 4.50 | SpinDe | ec::SpinOperator Class Reference          | 76 |
|      | 4.50.1 | Detailed Description                      | 77 |
| 4.51 | SpinDe | ec::SpinParameters Class Reference        | 78 |
|      | 4.51.1 | Detailed Description                      | 78 |
| 4.52 | SpinDe | ec::SpinParametersVector Class Reference  | 80 |
|      | 4.52.1 | Detailed Description                      | 80 |
| 4.53 | SpinDe | ec::SpinState Class Reference             | 81 |
|      | 4.53.1 | Detailed Description                      | 82 |
| 4.54 | SpinDe | ec::SpinSystem Class Reference            | 83 |
|      | 4.54.1 | Detailed Description                      | 83 |
| 4.55 | SpinDe | ec::SpinSystemBase Class Reference        | 84 |
|      | 4.55.1 | Detailed Description                      | 85 |
|      | 4.55.2 | Member Function Documentation             | 85 |
|      |        | 4.55.2.1 print                            | 85 |
|      |        | 4.55.2.2 set_state                        | 85 |
| 4.56 | SpinDe | ec::SpinUp Class Reference                | 86 |
|      | 4.56.1 | Detailed Description                      | 86 |
|      | 4.56.2 | Member Function Documentation             | 86 |
|      |        | 4.56.2.1 init                             | 86 |
| 4.57 | SpinDe | ec::StringOptions Class Reference         | 87 |
|      | 4.57.1 | Detailed Description                      | 87 |
| 4.58 | SpinDe | ec::TimeArray Class Reference             | 88 |
|      | 4.58.1 | Detailed Description                      | 89 |
|      | 4.58.2 | Member Function Documentation             | 89 |
|      |        | 4.58.2.1 logarithmic_time                 | 89 |
| 4.59 | SpinDe | ec::TimeEvolution Class Reference         | 90 |
|      |        |                                           |    |

| CONTENTS |      |                                                                 |    |  |  |  |
|----------|------|-----------------------------------------------------------------|----|--|--|--|
|          |      | 4.59.1 Detailed Description                                     | 91 |  |  |  |
|          | 4.60 | SpinDec::TwoStateSuperposition Class Reference                  | 92 |  |  |  |
|          |      | 4.60.1 Detailed Description                                     | 92 |  |  |  |
|          | 4.61 | SpinDec::UniformMagneticField Class Reference                   | 93 |  |  |  |
|          |      | 4.61.1 Detailed Description                                     | 93 |  |  |  |
| 5        | File | Documentation                                                   | 95 |  |  |  |
|          | 5.1  | /home/sbalian/spindec/include/SpinDec/typedefs.h File Reference | 95 |  |  |  |
|          |      | 5.1.1 Detailed Description                                      | 96 |  |  |  |

# **Chapter 1**

# **Class Index**

# 1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

| SpinDec::AdiabaticLabel            |
|------------------------------------|
| SpinDec::BoostEigen                |
| SpinDec::CCE                       |
| SpinDec::Cluster                   |
| SpinDec::ClusterDatabase           |
| SpinDec::ClusterDatabaseEntry      |
| SpinDec::Constants                 |
| SpinDec::CrystalBasis              |
| SpinDec::CrystalStructure          |
| SpinDec::DiamondCubic              |
| SpinDec::CSDProblem                |
| SpinDec::Eigenspectrum             |
| SpinDec::HermitianEigenspectrum    |
| SpinDec::Errors                    |
| SpinDec::FileProperties            |
| SpinDec::HyperfineParameters       |
| SpinDec::LatticeVectors            |
| SpinDec::SimpleCubicLatticeVectors |
| SpinDec::MatrixRepresentation      |
| SpinDec::SpinOperator              |
| SpinDec::DensityOperator           |
| SpinDec::EvolutionOperator         |
| SpinDec::IdentityOperator          |
| SpinDec::SpinHamiltonian           |
| SpinDec::SpinState                 |
| SpinDec::SpinHalfStates            |
| SpinDec::SpinDown                  |
| SpinDec::SpinUp                    |
| SpinDec::TwoStateSuperposition     |
| SpinDec::Pulse                     |
| SpinDec::FreeEvolution             |
| SpinDec::IdentityPulse             |

2 Class Index

| SpinDec::PiPulse                | 44 |
|---------------------------------|----|
| SpinDec::PulseExperiment        | 46 |
| SpinDec::CPMGDephasing          | 19 |
| SpinDec::PulseSequenceBase      | 48 |
| SpinDec::CPMG                   | 18 |
|                                 | 47 |
| 1                               | 49 |
| SpinDec::ReducedProblem         | 50 |
|                                 | 51 |
| 1 1                             | 53 |
| 1 1                             | 55 |
| SpinDec::SpinInteraction        | 69 |
| SpinDec::Dipolar                | 27 |
| SpinDec::Hyperfine              | 37 |
| SpinDec::SpinInteractionEdge    | 71 |
| SpinDec::SpinInteractionGraph   | 72 |
| SpinDec::SpinInteractionVertex  | 75 |
|                                 | 78 |
|                                 | 65 |
| SpinDec::ElectronSpinParameters | 30 |
| SpinDec::SpinParametersVector   | 80 |
|                                 | 84 |
| SpinDec::SpinHalf               | 64 |
|                                 | 83 |
|                                 | 57 |
|                                 | 87 |
|                                 | 88 |
|                                 | 90 |
|                                 | 93 |

# **Chapter 2**

# **Class Index**

# 2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

| SpinDec::AdiabaticLabel (Adiabatic eigenstates of a spin donor)                            | 7  |
|--------------------------------------------------------------------------------------------|----|
| SpinDec::BoostEigen (Static methods to extend Eigen functionality )                        | 9  |
| SpinDec::CCE (Solves for a CSD problem using the CCE)                                      | 11 |
| SpinDec::Cluster (Contains labels for a cluster of spins )                                 | 13 |
| SpinDec::ClusterDatabase (Stores clusters and associated complex time evolutions )         | 14 |
| SpinDec::ClusterDatabaseEntry (Entry for ClusterDatabase )                                 | 16 |
| SpinDec::Constants (Mathematical and physical constants )                                  | 17 |
| SpinDec::CPMG (Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence )                           | 18 |
| SpinDec::CPMGDephasing (CPMG pulse sequence )                                              | 19 |
| SpinDec::CrystalBasis (Basis vectors for crystal structures in 3D)                         | 20 |
| SpinDec::CrystalStructure $(i\mathbf{a}_1+j\mathbf{a}_2+k\mathbf{a}_3+\sum_n\mathbf{b}_n)$ | 21 |
|                                                                                            | 23 |
| SpinDec::DensityOperator                                                                   | 25 |
| SpinDec::DiamondCubic (Diamond cubic crystal structure )                                   | 26 |
| SpinDec::Dipolar (Secular dipolar interaction strength between a pair of spins )           | 27 |
| SpinDec::Eigenspectrum (Holds the eigenvectors and eigenvalues of a matrix )               | 29 |
| SpinDec::ElectronSpinParameters (Parameters for an electron spin )                         | 30 |
|                                                                                            | 31 |
| SpinDec::EvolutionOperator (Free evolution operator )                                      | 32 |
| SpinDec::FileProperties (Static methods for ASCII file properties )                        | 34 |
| SpinDec::FreeEvolution ((Pulse)-free evolution )                                           | 35 |
| SpinDec::HermitianEigenspectrum (Diagonalizes a Hermitian matrix )                         | 36 |
| SpinDec::Hyperfine (Calculates the electron-nuclear hyperfine interaction in a lattice )   | 37 |
| SpinDec::HyperfineParameters                                                               | 39 |
| SpinDec::IdentityOperator (Identity )                                                      | 40 |
| SpinDec::IdentityPulse (Identity pulse (no duration) )                                     | 41 |
| 1                                                                                          | 42 |
| SpinDec::MatrixRepresentation                                                              | 43 |
| SpinDec::PiPulse ( $\pi$ -pulse or refocusing pulse)                                       | 44 |
| SpinDec::Pulse (Pulses in a pulse sequence )                                               | 45 |
| SpinDec::PulseExperiment (Abstract base class for a pulse sequence experiment )            | 46 |
|                                                                                            | 47 |
| SpinDec::PulseSequenceBase (Abstract base class for pulse sequences)                       | 48 |

4 Class Index

| SpinDec::RandomNumberGenerator (Static methods for generating random numbers)                  | 49 |
|------------------------------------------------------------------------------------------------|----|
| SpinDec::ReducedProblem (SpinSystemBase and an order )                                         | 50 |
| SpinDec::Sign (± )                                                                             | 51 |
| SpinDec::SimpleCubicLatticeVectors (Simple cubic lattice vectors )                             | 52 |
| SpinDec::SpinBasis (Holds magnetic quantum numbers for (in general) multiple spins )           | 53 |
| SpinDec::SpinBath (Spin bath (single spin species))                                            | 55 |
| SpinDec::SpinDonor (Special spin system: mixed electron-nuclear spin donors )                  | 57 |
| SpinDec::SpinDown (Spin down state )                                                           | 63 |
| SpinDec::SpinHalf (A spin-1/2 spin system)                                                     | 64 |
| SpinDec::SpinHalfParameters (Spin-1/2 spin parameters )                                        | 65 |
| SpinDec::SpinHalfStates (Spin-1/2 spin states )                                                | 66 |
| SpinDec::SpinHamiltonian (Effective spin Hamiltonian built from a spin interaction graph )     | 67 |
| SpinDec::SpinInteraction (Abstract base class for interaction between a pair of spins )        | 69 |
| SpinDec::SpinInteractionEdge (Edge for a spin interaction graph )                              | 71 |
| SpinDec::SpinInteractionGraph (Spin interaction graph from which spin Hamiltonians are built ) | 72 |
| SpinDec::SpinInteractionVertex (Vertex for a spin interaction graph)                           | 75 |
| SpinDec::SpinOperator (Quantum spin operator in the Zeeman basis )                             | 76 |
| SpinDec::SpinParameters (Contains basic parameters associated with a spin )                    | 78 |
| SpinDec::SpinParametersVector (Multiple SpinParameters container )                             | 80 |
| SpinDec::SpinState (Quantum spin state in the Zeeman basis )                                   | 81 |
| SpinDec::SpinSystem (Diagonalizable concrete spin system )                                     | 83 |
| SpinDec::SpinSystemBase (Abstract base class for spin systems)                                 | 84 |
| SpinDec::SpinUp (Spin up state )                                                               | 86 |
| SpinDec::StringOptions (String flags composed of A-Z, a-z, each character representing a flag) | 87 |
| SpinDec::TimeArray (Time array in microseconds )                                               | 88 |
| SpinDec::TimeEvolution (Time evolution of a complex variable )                                 | 90 |
| SpinDec::TwoStateSuperposition (2-level superposition state )                                  | 92 |
| SpinDec::UniformMagneticField (Uniform magnetic field parallel to some direction in Cartesian  |    |
| coordinates )                                                                                  | 93 |

# **Chapter 3**

# **File Index**

# 3.1 File List

Here is a list of all documented files with brief descriptions:

| /home/sbalian/spindec/include/SpinDec/AdiabaticLabel.h         |
|----------------------------------------------------------------|
| /home/sbalian/spindec/include/SpinDec/base.h                   |
| /home/sbalian/spindec/include/SpinDec/BoostEigen.h             |
| /home/sbalian/spindec/include/SpinDec/CCE.h                    |
| /home/sbalian/spindec/include/SpinDec/Cluster.h                |
| /home/sbalian/spindec/include/SpinDec/ClusterDatabase.h        |
| /home/sbalian/spindec/include/SpinDec/ClusterDatabaseEntry.h   |
| /home/sbalian/spindec/include/SpinDec/Constants.h              |
| /home/sbalian/spindec/include/SpinDec/CPMG.h?                  |
| /home/sbalian/spindec/include/SpinDec/CPMGDephasing.h          |
| /home/sbalian/spindec/include/SpinDec/CrystalBasis.h??         |
| /home/sbalian/spindec/include/SpinDec/CrystalStructure.h       |
| /home/sbalian/spindec/include/SpinDec/CSDProblem.h             |
| /home/sbalian/spindec/include/SpinDec/DensityOperator.h        |
| /home/sbalian/spindec/include/SpinDec/DiamondCubic.h           |
| /home/sbalian/spindec/include/SpinDec/Dipolar.h                |
| /home/sbalian/spindec/include/SpinDec/Eigenspectrum.h          |
| /home/sbalian/spindec/include/SpinDec/ElectronSpinParameters.h |
| /home/sbalian/spindec/include/SpinDec/Errors.h                 |
| /home/sbalian/spindec/include/SpinDec/EvolutionOperator.h      |
| /home/sbalian/spindec/include/SpinDec/FileProperties.h         |
| /home/sbalian/spindec/include/SpinDec/FreeEvolution.h          |
| /home/sbalian/spindec/include/SpinDec/HermitianEigenspectrum.h |
| /home/sbalian/spindec/include/SpinDec/Hyperfine.h              |
| /home/sbalian/spindec/include/SpinDec/HyperfineParameters.h    |
| /home/sbalian/spindec/include/SpinDec/IdentityOperator.h       |
| /home/sbalian/spindec/include/SpinDec/IdentityPulse.h??        |
| /home/sbalian/spindec/include/SpinDec/LatticeVectors.h?        |
| /home/sbalian/spindec/include/SpinDec/MatrixRepresentation.h   |
| /home/sbalian/spindec/include/SpinDec/PiPulse.h                |
| /home/sbalian/spindec/include/SpinDec/ <b>Pulse.h</b> ??       |
| /home/sbalian/spindec/include/SpinDec/PulseExperiment.h        |
| /home/sbalian/spindec/include/SpinDec/PulseSequence.h ??       |

6 File Index

| /home/sbalian/spindec/include/SpinDec/PulseSequenceBase.h                 |
|---------------------------------------------------------------------------|
| /home/sbalian/spindec/include/SpinDec/RandomNumberGenerator.h ??          |
| /home/sbalian/spindec/include/SpinDec/ReducedProblem.h                    |
| /home/sbalian/spindec/include/SpinDec/Sign.h                              |
| /home/sbalian/spindec/include/SpinDec/SimpleCubicLatticeVectors.h ??      |
| /home/sbalian/spindec/include/SpinDec/SpinBasis.h                         |
| /home/sbalian/spindec/include/SpinDec/SpinBath.h??                        |
| /home/sbalian/spindec/include/SpinDec/SpinDonor.h??                       |
| /home/sbalian/spindec/include/SpinDec/SpinDown.h                          |
| /home/sbalian/spindec/include/SpinDec/SpinHalf.h                          |
| /home/sbalian/spindec/include/SpinDec/SpinHalfParameters.h                |
| /home/sbalian/spindec/include/SpinDec/SpinHalfStates.h                    |
| /home/sbalian/spindec/include/SpinDec/SpinHamiltonian.h                   |
| /home/sbalian/spindec/include/SpinDec/SpinInteraction.h                   |
| /home/sbalian/spindec/include/SpinDec/SpinInteractionEdge.h ??            |
| /home/sbalian/spindec/include/SpinDec/SpinInteractionGraph.h ??           |
| /home/sbalian/spindec/include/SpinDec/SpinInteractionVertex.h ??          |
| /home/sbalian/spindec/include/SpinDec/SpinOperator.h                      |
| /home/sbalian/spindec/include/SpinDec/SpinParameters.h??                  |
| /home/sbalian/spindec/include/SpinDec/SpinParametersVector.h ??           |
| /home/sbalian/spindec/include/SpinDec/SpinState.h                         |
| /home/sbalian/spindec/include/SpinDec/SpinSystem.h                        |
| /home/sbalian/spindec/include/SpinDec/SpinSystemBase.h??                  |
| /home/sbalian/spindec/include/SpinDec/SpinUp.h                            |
| /home/sbalian/spindec/include/SpinDec/StringOptions.h                     |
| /home/sbalian/spindec/include/SpinDec/TimeArray.h                         |
| /home/sbalian/spindec/include/SpinDec/TimeEvolution.h                     |
| /home/sbalian/spindec/include/SpinDec/TwoStateSuperposition.h ??          |
| /home/sbalian/spindec/include/SpinDec/typedefs.h (Typedefs and "usings" ) |
| /home/sbalian/spindec/include/SpinDec/UniformMagneticField.h ??           |

# **Chapter 4**

# **Class Documentation**

# 4.1 SpinDec::AdiabaticLabel Class Reference

Adiabatic eigenstates of a spin donor.

#include <AdiabaticLabel.h>

## **Public Member Functions**

- AdiabaticLabel (const Sign &sign, const int quantum\_number)
- const Sign & get\_sign () const
- int get\_quantum\_number () const

#### **Private Attributes**

• Sign sign\_

Plus or minus.

• int quantum\_number\_

```
m=S+I.
```

## **Friends**

• std::ostream & operator<< (std::ostream &os, AdiabaticLabel const &label)

\*Print.\*

# **4.1.1** Detailed Description

Adiabatic eigenstates of a spin donor. For a spin donor, the adiabatic energy eigenstates are labeled as follows:

 $|\pm,m\rangle$ , where m=S+I is an integer, S and I are the electron and nuclear spin quantum numbers.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/AdiabaticLabel.h

# 4.2 SpinDec::BoostEigen Class Reference

Static methods to extend Eigen functionality.

#include <BoostEigen.h>

#### **Static Public Member Functions**

- static double cosAngleBetween (const ThreeVector &a, const ThreeVector &b) Cosine of angle between real vectors.
- static double maxAbsCoeff (const ThreeVector &a)

  Maximum absolute coefficient.
- static Complex Vector exp (const Complex Vector &a)

  Element-wise exponentiation for complex vectors.
- static ComplexMatrix tensorProduct (const ComplexMatrix &A, const ComplexMatrix &B)

  Tensor product for complex matrices.
- static Complex Vector tensorProduct (const Complex Vector &a, const Complex Vector &b)

  Tensor product for complex vectors.
- static ComplexMatrix partialTrace (const ComplexMatrix &AB, const unsigned int dimension\_B) Partial trace for complex matrices.
- static ComplexMatrix spectralDecomposition (const ComplexMatrix & eigenvectors, const ComplexVector & eigenvalues)

Spectral decomposition of a complex matrix.

• static ComplexMatrix unitarySpectralDecomposition (const ComplexMatrix &eigenvectors, const ComplexVector &eigenvalues)

Spectral decomposition of a unitary matrix.

• static bool is Within Distance (const Three Vector &r, const double distance)  $Is |\mathbf{r}| < d$ ?

### 4.2.1 Detailed Description

Static methods to extend Eigen functionality. Note that the naming convention complies with that of Eigen, and is different from the rest of SpinDec. Eigen is for linear algebra and can be obtained for free: http://eigen.tuxfamily.org/.

#### **4.2.2** Member Function Documentation

4.2.2.1 static double SpinDec::BoostEigen::cosAngleBetween (const ThreeVector & a, const ThreeVector & b) [static]

Cosine of angle between real vectors.  $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$ .

### 4.2.2.2 static double SpinDec::BoostEigen::maxAbsCoeff (const ThreeVector & a) [static]

Maximum absolute coefficient. Maximum of  $[|a_1|, |a_2|, |a_3|]$  for real vector  $\mathbf{a} = (a_1, a_2, a_3)$ .

# 4.2.2.3 static ComplexMatrix SpinDec::BoostEigen::partialTrace (const ComplexMatrix & AB, const unsigned int dimension\_B) [static]

Partial trace for complex matrices. Given  $C = A \otimes B$ , and the dimension of B, this method outputs  $Tr_B A$ .

# 4.2.2.4 static ComplexMatrix SpinDec::BoostEigen::spectralDecomposition (const ComplexMatrix & eigenvectors, const ComplexVector & eigenvalues) [static]

Spectral decomposition of a complex matrix. This is  $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}$ , where  $\mathbf{D}$  is the diagonal of eigenvalues of  $\mathbf{A}$  and  $\mathbf{V}$  is the columnwise eigenvector matrix.

# 4.2.2.5 static ComplexVector SpinDec::BoostEigen::tensorProduct (const ComplexVector & a, const ComplexVector & b) [static]

Tensor product for complex vectors. Evaluates  $\mathbf{c} = \mathbf{a} \otimes \mathbf{b}$ . For example, for 2-vectors, this is

$$\mathbf{c} = \begin{pmatrix} a_1b_1\\a_1b_2\\a_2b_1\\a_2b_2 \end{pmatrix}$$

# 4.2.2.6 static ComplexMatrix SpinDec::BoostEigen::tensorProduct (const ComplexMatrix & A, const ComplexMatrix & B) [static]

Tensor product for complex matrices. Evaluates  $C = A \otimes B$ . For example, for  $2 \times 2$  matrices, this is

$$\mathbf{C} = \left( \begin{array}{cc} A_{11}\mathbf{B} & A_{12}\mathbf{B} \\ A_{21}\mathbf{B} & A_{22}\mathbf{B} \end{array} \right)$$

# 4.2.2.7 static ComplexMatrix SpinDec::BoostEigen::unitarySpectralDecomposition (const ComplexMatrix & eigenvectors, const ComplexVector & eigenvalues) [static]

Spectral decomposition of a unitary matrix. For a unitary matrix,  $\mathbf{A}^{-1} = \mathbf{V}^\dagger$ 

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/BoostEigen.h

# 4.3 SpinDec::CCE Class Reference

Solves for a CSD problem using the CCE.

#include <CCE.h>

### **Public Member Functions**

- CCE (const UInt max\_truncation\_order, const auto\_ptr< PulseExperiment > &pulse\_experiment, const ClusterDatabase &cluster\_database, const bool include\_one\_clusters)
- UInt get\_max\_truncation\_order () const
- void calculate (const UInt order)

Calculate the CCE.

- void calculate (const UInt order, const bool no\_divisions)
- void calculate ()

Calls CCE::calculate(const UInt order,false).

• TimeEvolution evolution (const UInt order) const

Get the time evolution (has to be calculated with above method first).

• const ClusterDatabase & get\_database () const

#### **Private Member Functions**

- void check\_order (const UInt order) const
- TimeEvolution reducible\_correlation (const Cluster &cluster)
- TimeEvolution true\_correlation (const Cluster &cluster)

#### **Private Attributes**

- vector< TimeEvolution > product\_correlations\_by\_order\_
- UInt max\_truncation\_order\_

Maximum CCE truncation order.

- bool include\_one\_clusters\_
- auto\_ptr< PulseExperiment > pulse\_experiment\_
- ClusterDatabase cluster\_database\_

### 4.3.1 Detailed Description

Solves for a CSD problem using the CCE. The cluster correlation expansion (CCE) is used to solve for a central spin decoherence (CSD) problem. Relevant references are:

- Phys. Rev. B 74, 035322 (2006),
- Phys. Rev. B 78, 085315 (2008),
- Phys. Rev. B 78, 129901(E) (2008),
- Phys. Rev. B 79, 115320 (2009),
- Phys. Rev. B 86, 035452 (2012).

# **4.3.2** Member Function Documentation

# 4.3.2.1 void SpinDec::CCE::calculate (const UInt order)

Calculate the CCE. Input CCE truncation order to calculate. This input cannot exceed CCE::max\_truncation\_order\_.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/CCE.h

# 4.4 SpinDec::Cluster Class Reference

Contains labels for a cluster of spins.

```
#include <Cluster.h>
```

### **Public Member Functions**

- Cluster (const UIntArray &labels)
- void **add** (const UInt label)
- bool **operator**== (const Cluster &rhs) const
- UInt num\_spins () const

Number of labels.

- UInt get\_label (const UInt index) const
- const UIntArray & get\_labels () const
- vector< Cluster > subsets () const

Get all subsets (exludes the empty set).

vector< Cluster > proper\_subsets () const
 Get proper subsets (excludes the empty set).

#### **Private Member Functions**

- vector< UIntArray > subsets (const UIntArray &v, const UInt size) const
- vector< UIntArray > subsets (const UIntArray &v) const

## **Private Attributes**

• UIntArray labels\_

#### **Friends**

• std::ostream & operator<< (std::ostream &os, Cluster const &cluster)

Print.

### 4.4.1 Detailed Description

Contains labels for a cluster of spins. Labels are always sorted in increasing order.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/Cluster.h

# 4.5 SpinDec::ClusterDatabase Class Reference

Stores clusters and associated complex time evolutions.

```
#include <ClusterDatabase.h>
```

#### **Public Member Functions**

ClusterDatabase (const SpinBath &spin\_bath, const UInt max\_order, const double cluster\_cutoff, const string &build\_method)

Build method is "global" or "local".

- const ClusterDatabaseEntry & get\_entry (const UInt order, const UInt index) const
- const Cluster & get\_cluster (const UInt order, const UInt index) const
- void set\_time\_evolution (const Cluster &cluster, const TimeEvolution &time\_evolution)
- bool is\_solved (const Cluster &cluster) const
- UInt get\_max\_order () const
- UInt num\_clusters (const UInt order) const
- const TimeEvolution & get\_time\_evolution (const Cluster &cluster) const
- void print () const

### **Private Member Functions**

• void build\_pairs ()

Build 2-clusters.

• void build\_ones ()

Build 1-clusters.

• void build\_with\_local\_cutoff()

Higher order clusters with local cutoff.

• void build\_with\_global\_cutoff ()

Higher order clusters with global cutoff.

- UInt **get\_index** (const **Cluster** &cluster) const
- void add\_unsolved\_entry (const Cluster &cluster)

Add cluster if it does not exist.

- bool is order built (const UInt order) const
- bool cluster\_exists (const Cluster &cluster) const

## **Private Attributes**

• UInt max\_order\_

Maximum build order.

- SpinBath spin\_bath\_
- database\_map database\_

Cluster size (order), vector of database entries. All unique clusters.

• double cluster\_cutoff\_ In Å.

# 4.5.1 Detailed Description

Stores clusters and associated complex time evolutions. For use with SpinDec::CCE (cluster correlation expansion). Has two build methods, one with a local cluster cutoff where the maximum separation between any pair of spins in any cluster is cluster\_cutoff. The other (global) method builds pairs with cluster\_cutoff maximum separation, then adds spins which are at a maximum of cluster\_cutoff from any of the two spins to form 3-clusters, and so on for 4-clusters etc.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/ClusterDatabase.h

# 4.6 SpinDec::ClusterDatabaseEntry Class Reference

Entry for ClusterDatabase.

#include <ClusterDatabaseEntry.h>

### **Public Member Functions**

• ClusterDatabaseEntry (const Cluster &cluster)

```
is\_solved\_ = false.
```

- const Cluster & get\_cluster () const
- bool is\_solved () const
- const TimeEvolution & get\_time\_evolution () const
- void **set\_time\_evolution** (const **TimeEvolution** &time\_evolution)

## **Private Attributes**

- Cluster cluster\_
- TimeEvolution time\_evolution\_
- bool is\_solved\_

# 4.6.1 Detailed Description

Entry for ClusterDatabase.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/ClusterDatabaseEntry.h

# 4.7 SpinDec::Constants Class Reference

Mathematical and physical constants.

```
#include <Constants.h>
```

#### **Static Public Attributes**

- static const double kPi

  Pi.
- static const double kReducedPlanck Reduced Planck constant (J s).
- static const double kPlanck

  Plank constant (J s).
- static const double kElectronGyromagneticRatio

  Electronic gyromagnetic ratio (M rad s<sup>-1</sup> T<sup>-1</sup>).

# 4.7.1 Detailed Description

Mathematical and physical constants.

### 4.7.2 Member Data Documentation

### 4.7.2.1 const double SpinDec::Constants::kElectronGyromagneticRatio [static]

Electronic gyromagnetic ratio (M rad  $s^{-1} T^{-1}$ ). From CODATA 22/10/2013.

### 4.7.2.2 const double SpinDec::Constants::kPi [static]

Pi. From Wikipedia 06/12/2012.

# 4.7.2.3 const double SpinDec::Constants::kPlanck [static]

Plank constant (J s). From CODATA 06/12/2012.

## 4.7.2.4 const double SpinDec::Constants::kReducedPlanck [static]

Reduced Planck constant (J s). From CODATA 06/12/2012.

The documentation for this class was generated from the following file:

 $\bullet \ \ /home/sbalian/spindec/include/SpinDec/Constants.h$ 

# 4.8 SpinDec::CPMG Class Reference

Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence.

#include <CPMG.h>Inheritance diagram for SpinDec::CPMG::



#### **Public Member Functions**

- CPMG (const UInt order, const EvolutionOperator &evolution\_operator, const Pulse &pi\_pulse)
- void **set\_time** (const double time\_value)
- virtual auto\_ptr< PulseSequenceBase > clone () const

### **Private Attributes**

- UInt order\_
- EvolutionOperator evolution\_operator\_
- vector< bool > is\_unitary\_

# 4.8.1 Detailed Description

Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence.

- Order N = 0 (FID): evolve for duration t.
- N=1 (Hahn): evolve for t/2,  $\pi$ -pulse, evolve for t/2.
- N > 1: [evolve for t/(2N),  $\pi$ -pulse, evolve for t/(2N)]<sup>N</sup>.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/CPMG.h

# 4.9 SpinDec::CPMGDephasing Class Reference

**CPMG** pulse sequence.

#include <CPMGDephasing.h>Inheritance diagram for SpinDec::CPMGDephasing::



#### **Public Member Functions**

- **CPMGDephasing** (const **CSDProblem** &csd\_problem, const **TimeArray** &time\_array, const UInt cpmg\_order, const CDouble &c0, const UInt level\_label0, const CDouble &c1, const UInt level\_label1)
- virtual TimeEvolution time\_evolution (const UIntArray bath\_indices)
- virtual auto\_ptr< PulseExperiment > clone () const

### **Private Attributes**

- UInt cpmg\_order\_
- TwoStateSuperposition initial\_system\_state\_
- PiPulse system\_pi\_pulse\_
- vector< pair< UInt, Pulse >> pulses\_

# 4.9.1 Detailed Description

CPMG pulse sequence.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/CPMGDephasing.h

# 4.10 SpinDec::CrystalBasis Class Reference

Basis vectors for crystal structures in 3D.

#include <CrystalBasis.h>

### **Public Member Functions**

- void **add\_basis\_vector** (const ThreeVector &basis\_vector)
- const std::vector< ThreeVector > & get\_basis\_vectors () const
- const ThreeVector & **get\_basis\_vector** (const UInt index) const
- UInt num\_basis\_vectors () const

### **Protected Attributes**

• std::vector< ThreeVector > basis\_vectors\_

# 4.10.1 Detailed Description

Basis vectors for crystal structures in 3D. Length units are Å. They are in the basis of lattice vectors  $(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$ , NOT (x, y, z)!

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/CrystalBasis.h

# 4.11 SpinDec::CrystalStructure Class Reference

$$i\mathbf{a}_1 + j\mathbf{a}_2 + k\mathbf{a}_3 + \sum_n \mathbf{b}_n$$
.

#include <CrystalStructure.h>Inheritance diagram for SpinDec::CrystalStructure::



### **Public Member Functions**

• CrystalStructure (const LatticeVectors &lattice\_vectors, const CrystalBasis &basis, const int min\_i, const int max\_i, const int min\_j, const int max\_j, const int min\_k, const int max\_k, const double min\_x, const double max\_x, const double min\_y, const double max\_y, const double min\_z, const double max\_z, const double fractional\_abundance)

Calls fill\_site\_vectors.

• CrystalStructure (const string &file\_name)

Reads from file. Three columns: x, y, z.

- CrystalStructure (const vector < ThreeVector > &site\_vectors)
- const std::vector< Three Vector > & get\_site\_vectors () const
- const ThreeVector & **get\_site\_vector** (const UInt index) const
- UInt num\_site\_vectors () const
- double max\_site\_vector\_length () const
- double max\_abs\_component () const

```
\max[\max(|x_1|, |y_1|, |z_1|), \dots, \max(|x_n|, |y_n|, |z_n|)], \text{ for } n \text{ site vectors.}
```

- double average\_site\_vector\_separation () const
- void write\_site\_vectors (const string &file\_name) const

### **Protected Member Functions**

• void fill\_site\_vectors (const LatticeVectors &lattice\_vectors, const CrystalBasis &basis, const int min\_i, const int max\_i, const int min\_j, const int max\_j, const int min\_k, const int max\_k, const double min\_x, const double max\_x, const double min\_y, const double max\_y, const double min\_z, const double max\_z, const double fractional\_abundance)

Fills site vectors.

- void **add\_site\_vector** (const ThreeVector &site\_vector)
- void **scale\_site\_vectors** (const double scale\_factor)
- std::vector< ThreeVector > cartesian\_basis\_vectors (const LatticeVectors &lattice\_vectors, const CrystalBasis &basis) const

Get the basis vectors in Cartesian coordinates.

### **Protected Attributes**

• std::vector< ThreeVector > site\_vectors\_

#### **Private Member Functions**

• void **read\_site\_vectors** (const string &file\_name)

#### **Friends**

• std::ostream & operator << (std::ostream &os, CrystalStructure const &crystal\_structure) Print with cout (x, y, z).

### 4.11.1 Detailed Description

 $i\mathbf{a}_1 + j\mathbf{a}_2 + k\mathbf{a}_3 + \sum_n \mathbf{b}_n$ . The above = crystal structure, where  $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$  are linearly independent lattice vectors, the  $\mathbf{b}_n$  are n basis vectors and i, j, k are integers.

The length units are Å. Using Cartesian coordinates.

## **4.11.2** Member Function Documentation

4.11.2.1 void SpinDec::CrystalStructure::fill\_site\_vectors (const LatticeVectors & lattice\_vectors, const CrystalBasis & basis, const int min\_i, const int max\_i, const int min\_j, const int max\_j, const int min\_k, const int max\_k, const double min\_x, const double max\_x, const double min\_y, const double max\_y, const double min\_z, const double max\_z, const double fractional\_abundance) [protected]

Fills site vectors. Here, the integer arguments are the i,j,k. The double arguments define the spatial ranges for all the x,y,z components for shaping the final crystal structure. The fractional abundance (converted to parts per million) is the fraction of site vectors added using a uniform distribution (using cstdlib rand(); see RandomNumberGenerator.h). If the fractional abundance is 1.0, then all site vectors are included.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/CrystalStructure.h

# **4.12** SpinDec::CSDProblem Class Reference

Central spin decoherence problem.

#include <CSDProblem.h>

### **Public Member Functions**

- **CSDProblem** (const **CSDProblem** &csd\_problem)
- CSDProblem & operator= (const CSDProblem &csd\_problem)
- CSDProblem (const auto\_ptr< SpinSystemBase > &central\_spin\_system\_base, const SpinBath &spin\_bath, const vector< SpinInteractionEdge > &system\_bath\_edges, const UniformMagnetic-Field &field)
- CSDProblem (const auto\_ptr< SpinSystemBase > &central\_spin\_system\_base, const SpinBath &spin bath, const SpinInteractionEdge &system bath edge, const UniformMagneticField &field)
- void set\_central\_spin\_state (const SpinState &spin\_state) const
- SpinSystem get\_reduced\_problem (const UIntArray bath\_indices)
- const SpinBath & get\_spin\_bath () const
- auto\_ptr< SpinSystemBase > get\_central\_spin\_system () const

#### **Private Member Functions**

- void init (const auto\_ptr< SpinSystemBase > &central\_spin\_system\_base, const SpinBath &spin\_bath, const vector< SpinInteractionEdge > &system\_bath\_edges, const UniformMagneticField &field)
- vector< SpinInteractionEdge > make\_system\_bath\_edges (const UInt order, const SpinInteractionEdge &edge) const
- vector< SpinInteractionEdge > make\_system\_bath\_edges (const UInt order) const
- SpinSystem construct\_reduced\_problem (const UInt order) const
- UIntArray get\_bath\_vertex\_labels (const UInt order) const

### **Private Attributes**

- auto\_ptr< SpinSystemBase > central\_spin\_system\_
- SpinBath spin\_bath\_
- UniformMagneticField field\_
- vector< SpinInteractionEdge > system\_bath\_edges\_
- vector< pair< UInt, SpinSystem >> reduced\_problems\_

## 4.12.1 Detailed Description

Central spin decoherence problem. Currently supports a single spin bath.

# **4.12.2** Member Data Documentation

# 4.12.2.1 vector<SpinInteractionEdge> SpinDec::CSDProblem::system\_bath\_edges\_ [private]

Edges should comply as in the join methods for SpinInteractionGraph, with the first graph being the central spin graph and the second being the graph for a single bath system.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/CSDProblem.h

# 4.13 SpinDec::DensityOperator Class Reference

#include <DensityOperator.h>Inheritance diagram for SpinDec::DensityOperator::



### **Public Member Functions**

- DensityOperator (const SpinState &state, const SpinState &state0, const SpinState &state1) State is the combined (tensor product) qubit-other system state.
- DensityOperator reduced () const Return the qubit reduced density matrix.
- CDouble off\_diagonal\_reduced () const
   Off-diagonal of reduced density matrix.

#### **Private Member Functions**

• **DensityOperator** (const ComplexMatrix &matrix, const SpinBasis &basis, const SpinState &state0, const SpinState &state1)

## **Private Attributes**

- SpinState state0\_
- SpinState state1\_

## 4.13.1 Detailed Description

In general, composite density operator for spins in the Zeeman basis.  $\rho_{\text{qubit}} \otimes \rho_{\text{other}}$ , qubit states  $|0\rangle$  and  $|1\rangle$ .

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/DensityOperator.h

# 4.14 SpinDec::DiamondCubic Class Reference

Diamond cubic crystal structure.

#include <DiamondCubic.h>Inheritance diagram for SpinDec::DiamondCubic::



#### **Public Member Functions**

- DiamondCubic (const double lattice\_constant, const double side\_length)

  Cubic lattice constant and side length of superlattice cube in Å.
- **DiamondCubic** (const double lattice\_constant, const double side\_length, const double fractional\_abundance)
- void make\_sphere (const double radius)
- void **make\_shell** (const double min\_radius, const double max\_radius)

#### **Private Member Functions**

- SimpleCubicLatticeVectors construct\_lattice\_vectors (const double lattice\_constant) const Set up and return the lattice vectors.
- CrystalBasis construct\_basis\_vectors () const Set up and return the basis vectors.
- int int\_range\_centred\_cube (const double side\_length, const double lattice\_constant) const

## **4.14.1** Detailed Description

Diamond cubic crystal structure. This is implemented as a simple cubic lattice with 8 basis vectors. Source: http://en.wikipedia.org/wiki/Diamond\_cubic.

### 4.14.2 Member Function Documentation

4.14.2.1 int SpinDec::DiamondCubic::int\_range\_centred\_cube (const double *side\_length*, const double *lattice\_constant*) const [private]

Get integer range (for constructing crystal structure) in a centred cube given the side length.

The documentation for this class was generated from the following file:

/home/sbalian/spindec/include/SpinDec/DiamondCubic.h

# 4.15 SpinDec::Dipolar Class Reference

Secular dipolar interaction strength between a pair of spins.

#include <Dipolar.h>Inheritance diagram for SpinDec::Dipolar::



#### **Public Member Functions**

• Dipolar ()

If you wish to calculate.

• Dipolar (const double strength)

If you don't wish to calculate.

- virtual void calculate (const SpinParameters &spin\_parameters1, const SpinParameters &spin\_parameters2, const ThreeVector &position1, const ThreeVector &position2, const UniformMagneticField &field)
- virtual void **fill** (ComplexMatrix \*hamiltonian, const SpinParametersVector &spin\_parameters\_vector, const SpinBasis &basis, const UInt spin\_label1, const UInt spin\_label2) const
- virtual auto\_ptr< SpinInteraction > clone () const
- virtual string get\_type () const

## 4.15.1 Detailed Description

Secular dipolar interaction strength between a pair of spins. For two spins,  $\hat{\mathbf{S}}_1$ ,  $\hat{\mathbf{S}}_2$ ,

$$\hat{H}_D = D\hat{S}_1^z \hat{S}_2^z - \frac{D}{4} [\hat{S}_1^+ \hat{S}_2^- + \hat{S}_1^- \hat{S}_2^+]$$

This class calculates

$$D = \frac{D_0 \gamma_1 \gamma_2 (1 - 3\cos^2[\theta])}{(10^{-10}r)^3}$$

and fills the Hamiltonian matrix elements for the Hamiltonian  $\hat{H}_D$  above. The energy units are M rad s<sup>-1</sup>. The parameters are:

- $\gamma_1, \gamma_2$  [M rad s<sup>-1</sup>T<sup>-1</sup>]: gyromagnetic ratios of the two interacting spins.
- $\theta$  [rad]: angle between the magnetic field direction and the vector parallel to the line connecting the two spins.
- r [Å]: distance between the two spins.
- $D_0 = 10^6 (\mu_0/(4\pi))\hbar$  [M rad s<sup>-1</sup> m<sup>3</sup>].
- $\hbar$  [J s]: reduced Plank constant.

•  $\mu_0/(4\pi)=10^{-7}~{
m NA}^{-2}$  ( $\mu_0$  is the vacuum permeability).

From: arXiv:cond-mat/0211567 (Phys. Rev. B 68, 115322 (2003)).

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/Dipolar.h

# 4.16 SpinDec::Eigenspectrum Class Reference

Holds the eigenvectors and eigenvalues of a matrix.

#include <Eigenspectrum.h>Inheritance diagram for SpinDec::Eigenspectrum::



#### **Public Member Functions**

- Eigenspectrum (const ComplexMatrix &matrix)
- const Complex Vector & get\_eigenvalues () const
- const ComplexMatrix & get\_eigenvectors () const
- CDouble **get\_eigenvalue** (const UInt index) const
- ComplexVector **get\_eigenvector** (const UInt index) const
- virtual ComplexMatrix spectralDecomposition () const

Note the Eigen naming convention here.

• void set\_spectrum (const ComplexMatrix & eigenvectors, const Complex Vector & eigenvalues)

NOTE: use with care.

## **Protected Member Functions**

• virtual void diagonalize (const ComplexMatrix &matrix)

# **Protected Attributes**

- ComplexMatrix eigenvectors\_
- Complex Vector eigenvalues\_

# 4.16.1 Detailed Description

Holds the eigenvectors and eigenvalues of a matrix. Note: eigenvectors stored columnwise. General complex diagonalizer: ComplexEigenSolver in Eigen.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/Eigenspectrum.h

# 4.17 SpinDec::ElectronSpinParameters Class Reference

Parameters for an electron spin.

 $\label{lem:linear_spin} \mbox{\sc \#include} < \mbox{\sc ElectronSpinParameters.h} > \mbox{\sc Inheritance} \qquad \mbox{\sc diagram} \qquad \mbox{\sc for} \qquad \mbox{\sc Spin-Dec::ElectronSpinParameters::}$ 



# **Public Member Functions**

• ElectronSpinParameters ()

Free electron gyromagnetic ratio.

• ElectronSpinParameters (const double gyromagnetic\_ratio)

# 4.17.1 Detailed Description

Parameters for an electron spin. Gyromagnetic ratio of the free electron by default.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/ElectronSpinParameters.h

# 4.18 SpinDec::Errors Class Reference

Error and warning handling.

#include <Errors.h>

## **Static Public Member Functions**

- static void quit ()
- static void quit (const string &message)
- static void warning (const string &message)

# 4.18.1 Detailed Description

Error and warning handling.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/Errors.h

# 4.19 SpinDec::EvolutionOperator Class Reference

Free evolution operator.

#include <EvolutionOperator.h>Inheritance diagram for SpinDec::EvolutionOperator::



#### **Public Member Functions**

- EvolutionOperator (const SpinBasis &basis, const ComplexMatrix &eigenvectors, const RealVector &eigenvalues, const double time)
- void set\_time (const double time) *Updates matrix.*
- double get\_time () const

#### **Private Member Functions**

• void set\_matrix ()

#### **Private Attributes**

- double time\_
- ComplexMatrix eigenvectors\_
- RealVector eigenvalues\_

## 4.19.1 Detailed Description

Free evolution operator.

#### 4.19.2 Constructor & Destructor Documentation

4.19.2.1 SpinDec::EvolutionOperator::EvolutionOperator (const SpinBasis & basis, const ComplexMatrix & eigenvectors, const RealVector & eigenvalues, const double time)

Unitary operator

$$\hat{U} = \sum_{n} (|E_n\rangle \exp[-iE_n t] \langle E_n|)$$

- $E_n$ : eigenvalues (real).
- $|E_n\rangle$ : eigenvectors.

• t: time (real double) in microseconds (energies in M rad s<sup>-1</sup>).

For time independent Hamiltonians.

#### 4.19.3 Member Data Documentation

# 4.19.3.1 RealVector SpinDec::EvolutionOperator::eigenvalues\_ [private]

Not for the resulting opertor! These are used to construct the operator, for example from a Hamiltonian.

#### 4.19.3.2 ComplexMatrix SpinDec::EvolutionOperator::eigenvectors\_ [private]

Not for the resulting opertor! These are used to construct the operator, for example from a Hamiltonian. The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/EvolutionOperator.h

# 4.20 SpinDec::FileProperties Class Reference

Static methods for ASCII file properties.

#include <FileProperties.h>

## **Static Public Member Functions**

- static bool **exists** (const string file\_name)
- static UInt num\_lines (const string file\_name)

NOTE: empty lines not counted.

# 4.20.1 Detailed Description

Static methods for ASCII file properties.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/FileProperties.h

# 4.21 SpinDec::FreeEvolution Class Reference

(Pulse)-free evolution.

#include <FreeEvolution.h>Inheritance diagram for SpinDec::FreeEvolution::



## **Public Member Functions**

• FreeEvolution (const EvolutionOperator &evolution\_operator)

"Pulse" duration taken from evolution operator.

# 4.21.1 Detailed Description

(Pulse)-free evolution.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/FreeEvolution.h

# 4.22 SpinDec::HermitianEigenspectrum Class Reference

Diagonalizes a Hermitian matrix.

#include <HermitianEigenspectrum.h>Inheritance diagram for SpinDec::HermitianEigenspectrum::



#### **Public Member Functions**

- HermitianEigenspectrum (const ComplexMatrix &matrix)
- virtual ComplexMatrix spectralDecomposition () const

#### **Private Member Functions**

- void diagonalize\_eigen (const ComplexMatrix &matrix)

  Diagonalizer.
- virtual void diagonalize (const ComplexMatrix &matrix)

# 4.22.1 Detailed Description

Diagonalizes a Hermitian matrix. Eigenvectors are orthonormal, eigenvalues are always real.

#### **4.22.2** Member Function Documentation

# 4.22.2.1 virtual ComplexMatrix SpinDec::HermitianEigenspectrum::spectralDecomposition () const [virtual]

Since eigenvectors orthonormal,  $V^{-1} = V^{\dagger}$ , use faster (unitary) decomposition.

Reimplemented from SpinDec::Eigenspectrum.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/HermitianEigenspectrum.h

# 4.23 SpinDec::Hyperfine Class Reference

Calculates the electron-nuclear hyperfine interaction in a lattice.

#include <Hyperfine.h>Inheritance diagram for SpinDec::Hyperfine::



#### **Public Member Functions**

- Hyperfine (const HyperfineParameters &parameters)

  If you wish to calculate.
- Hyperfine (const double strength)

  If you don't wish to calculate.
- virtual void **calculate** (const SpinParameters &electron\_parameters, const SpinParameters &nuclear\_parameters, const ThreeVector &electron\_position, const ThreeVector &nuclear\_position, const UniformMagneticField &field)
- virtual void **fill** (ComplexMatrix \*hamiltonian, const SpinParametersVector &spin\_parameters\_vector, const SpinBasis &basis, const UInt spin\_label1, const UInt spin\_label2) const
- virtual auto\_ptr< SpinInteraction > clone () const
- virtual string get\_type () const

#### **Private Member Functions**

- double **envelope\_function** (const UInt index, const ThreeVector &separation) const
- double n parameter () const
- double n\_times\_a () const
- double **n\_times\_b** () const
- double **scaled\_probability\_density** (const ThreeVector &separation) const

## **Private Attributes**

• HyperfineParameters parameters\_

#### 4.23.1 Detailed Description

Calculates the electron-nuclear hyperfine interaction in a lattice. The Hamiltonian is

$$\hat{H}_{A} = A\hat{S}^{z}\hat{I}^{z} + \frac{A}{2}\left[\hat{S}^{+}\hat{I}^{-} + \hat{S}^{-}\hat{I}^{+}\right]$$

This class calculates A for the above Hamiltonian,  $\hat{H}_A$ , where  $\hat{\mathbf{S}}$  and  $\hat{\mathbf{I}}$  are the electronic and nuclear spin operators. Also fills the Hamiltonian matrix elements for  $\hat{H}_A$ . Uses the Kohn-Luttinger electronic wavefunction. Energy units are M rad s<sup>-1</sup>.

$$A = pq - D(R)\theta(|R| - na)$$

The first term pq is the isotropic Fermi contact part.

$$p = \frac{16}{9} \pi \hbar \gamma_e \gamma_n \eta$$

where

- $\hbar$ : reduced Planck constant [J s].
- $\gamma_e$ : electron gyromagnetic ratio [M rad s<sup>-1</sup>T<sup>-1</sup>].
- $\gamma_n$ : nuclear gyromagnetic ratio [M rad s<sup>-1</sup>T<sup>-1</sup>].
- $\eta$ : charge density.

$$q = (10^{30})|F_1(R)\cos(k_0x) + F_3(R)\cos(k_0y) + F_5(R)\cos(k_0z)|^2$$

where

- R: vector between nucleus and electron ((x, y, z)) components) [Å].
- $k_0 = 0.85 \times 2\pi a_0 \, [\mathring{A}^{-1}]$
- $F_{1,2}(R) = \exp[-\sqrt{x^2/(nb)^2 + (y^2 + z^2)/(na)^2}]/\sqrt{\pi(na)^2 nb}$
- $F_{3,4}(R): xyz \rightarrow yzx$ .
- $F_{5,6}(R): xyz \rightarrow zxy$ .
- $n = \sqrt{0.029/E_i}$ ,  $E_i$ : electron ionization energy [eV].
- a and b are lattice parameters [Å].

The second term  $[-D(R)\theta(|R|-na)]$  is the dipolar part which requires the direction of the magnetic field and where  $\theta$  here is the Heaviside step function. See Dipolar.h for D(R), the dipolar interaction (units M rad s<sup>-1</sup>).

From: arXiv:cond-mat/0211567 (Phys. Rev. B 68, 115322 (2003)).

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/Hyperfine.h

# 4.24 SpinDec::HyperfineParameters Class Reference

#include <HyperfineParameters.h>

## **Public Member Functions**

- **HyperfineParameters** (const double lattice\_constant, const double lattice\_parameter\_a, const double lattice\_parameter\_b, const double electron\_ionization\_energy, const double charge\_density, const bool ising\_only, bool fermi\_contact\_only\_)
- double get\_lattice\_constant () const
- double **get\_lattice\_parameter\_a** () const
- double **get\_lattice\_parameter\_b** () const
- double get\_electron\_ionization\_energy () const
- double get\_charge\_density () const
- bool is\_ising\_only () const
- bool is\_fermi\_contact\_only () const

#### **Private Attributes**

- double lattice\_constant\_
   Lattice constant in Å.
- double lattice\_parameter\_a\_

Lattice parameter in Å.

• double lattice\_parameter\_b\_

Lattice parameter in Å.

• double electron\_ionization\_energy\_

Donor electron ionization energy in eV.

• double charge\_density\_

Charge density (dimensionless).

• bool ising\_only\_

Ignore flip-flop part of interaction.

• bool fermi\_contact\_only\_

ignore dipolar part of hyperfine interaction.

## 4.24.1 Detailed Description

Parameters to cacluate the hyperfine interaction between an electron spin and a nuclear spin in a lattice.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/HyperfineParameters.h

# 4.25 SpinDec::IdentityOperator Class Reference

## Identity.

#include <IdentityOperator.h>Inheritance diagram for SpinDec::IdentityOperator::



## **Public Member Functions**

• IdentityOperator (const SpinBasis &basis)

# **4.25.1** Detailed Description

Identity.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/IdentityOperator.h

# 4.26 SpinDec::IdentityPulse Class Reference

Identity pulse (no duration).

#include <IdentityPulse.h>Inheritance diagram for SpinDec::IdentityPulse::



## **Public Member Functions**

• IdentityPulse (const SpinBasis &basis)

# 4.26.1 Detailed Description

Identity pulse (no duration).

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/IdentityPulse.h

# 4.27 SpinDec::LatticeVectors Class Reference

Lattice vectors for 3D crystal structures.

#include <LatticeVectors.h>Inheritance diagram for SpinDec::LatticeVectors::



#### **Public Member Functions**

- LatticeVectors (const ThreeVector &a1, const ThreeVector &a2, const ThreeVector &a3)
- const ThreeVector & get a1 () const
- const ThreeVector & get\_a2 () const
- const ThreeVector & get\_a3 () const

#### **Protected Member Functions**

- bool linearly\_independent () const
- void set\_lattice\_vectors (const ThreeVector &a1, const ThreeVector &a2, const ThreeVector &a3)

#### **Protected Attributes**

- ThreeVector a1\_
- ThreeVector **a2**
- ThreeVector a3\_

# 4.27.1 Detailed Description

Lattice vectors for 3D crystal structures. Length units: Å. In Cartesian coordinates. Vectors must be linearly independent.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/LatticeVectors.h

# 4.28 SpinDec::MatrixRepresentation Class Reference

#include <MatrixRepresentation.h>Inheritance diagram for SpinDec::MatrixRepresentation::

|                                                     |                           | SpinDec::MatrixRepresentation |              |             |                 |                 |
|-----------------------------------------------------|---------------------------|-------------------------------|--------------|-------------|-----------------|-----------------|
| r                                                   |                           |                               |              |             |                 |                 |
| SpinDec::Sp                                         | inOperator                |                               |              | SpinDec::   | SpinState       |                 |
|                                                     |                           |                               | г            | ,           |                 |                 |
| SpinDec::DensityOperator SpinDec::EvolutionOperator | SpinDec::IdentityOperator | SpinDec::SpinHamiltonian      | SpinDec::Spi | nHalfStates | SpinDec::TwoSta | teSuperposition |
|                                                     |                           | г                             | 1            |             |                 |                 |
|                                                     |                           | SpinDec::S                    | pinDown      | SpinDec     | ::SpinUp        |                 |

## **Public Member Functions**

- UInt get\_dimension () const
- const SpinBasis & get\_basis () const
- bool is\_basis\_equal (const auto\_ptr< MatrixRepresentation > &to\_check) const
- virtual void set\_zero ()=0

Set all elements to zero.

• virtual auto\_ptr< MatrixRepresentation > clone () const =0

## **Protected Member Functions**

- MatrixRepresentation (const SpinBasis &basis)
- virtual void quit\_if\_dimension\_mismatch () const =0
- void quit\_if\_basis\_mismatch (const auto\_ptr< MatrixRepresentation > &to\_check) const

#### **Protected Attributes**

- UInt dimension\_ Dimension of Hilbert space.
- SpinBasis basis\_

#### **4.28.1** Detailed Description

Abstract base class for spin states and operators in the matrix representation. Has a SpinBasis (Zeeman basis) and a dimension.

The documentation for this class was generated from the following file:

 $\bullet \ / home/sbalian/spindec/include/SpinDec/MatrixRepresentation.h$ 

# 4.29 SpinDec::PiPulse Class Reference

 $\pi$ -pulse or refocusing pulse.

#include <PiPulse.h>Inheritance diagram for SpinDec::PiPulse::



#### **Public Member Functions**

- PiPulse (const SpinState &state0, const SpinState &state1)
   Instantaneous.
- PiPulse (const SpinState &state0, const SpinState &state1, const vector < SpinState > &states2\_plus)

# 4.29.1 Detailed Description

 $\pi$ -pulse or refocusing pulse.  $|0\rangle\langle 1|+|1\rangle\langle 0|$ .

## 4.29.2 Constructor & Destructor Documentation

4.29.2.1 SpinDec::PiPulse::PiPulse (const SpinState & state0, const SpinState & state1, const vector < SpinState > & states2\_plus)

Third parameter: these just add  $|n\rangle \langle n|$  for  $n=2,3,\ldots$ 

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/PiPulse.h

# 4.30 SpinDec::Pulse Class Reference

Pulses in a pulse sequence.

#include <Pulse.h>Inheritance diagram for SpinDec::Pulse::



#### **Public Member Functions**

- Pulse (const double duration, const SpinOperator &pulse\_operator)
- const SpinOperator & get\_pulse\_operator () const
- double get\_duration () const
- Pulse operator\* (const Pulse &pulse) const
- Pulse operator (const Pulse &pulse) const

## **Protected Attributes**

- double duration
- SpinOperator pulse\_operator\_

## 4.30.1 Detailed Description

Pulses in a pulse sequence. Includes the no-pulse free evolution.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/Pulse.h

# 4.31 SpinDec::PulseExperiment Class Reference

Abstract base class for a pulse sequence experiment.

#include <PulseExperiment.h>Inheritance diagram for SpinDec::PulseExperiment::



#### **Public Member Functions**

- PulseExperiment (const CSDProblem &csd\_problem, const TimeArray &time\_array)
- virtual TimeEvolution time\_evolution (const UIntArray bath\_indices)=0
- virtual auto\_ptr< PulseExperiment > clone () const =0
- const TimeArray & get\_time\_array () const
- const CSDProblem & get\_csd\_problem () const

## **Protected Attributes**

- CSDProblem csd problem
- TimeArray time\_array\_

## **4.31.1** Detailed Description

Abstract base class for a pulse sequence experiment.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/PulseExperiment.h

# 4.32 SpinDec::PulseSequence Class Reference

Concrete general pulse sequence.

#include <PulseSequence.h>Inheritance diagram for SpinDec::PulseSequence::



## **Public Member Functions**

- void clear ()
- void add\_pulse (const Pulse &pulse)
- virtual auto\_ptr< PulseSequenceBase > clone () const

# 4.32.1 Detailed Description

Concrete general pulse sequence.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/PulseSequence.h

# 4.33 SpinDec::PulseSequenceBase Class Reference

Abstract base class for pulse sequences.

#include <PulseSequenceBase.h>Inheritance diagram for SpinDec::PulseSequenceBase::



#### **Public Member Functions**

- SpinState final\_state (const SpinState &initial\_state) const
- double **get\_duration** () const
- UInt num\_pulses () const
- virtual auto\_ptr< PulseSequenceBase > clone () const =0

#### **Protected Attributes**

- vector< Pulse > pulses\_
- double duration

# 4.33.1 Detailed Description

Abstract base class for pulse sequences.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/PulseSequenceBase.h

# 4.34 SpinDec::RandomNumberGenerator Class Reference

Static methods for generating random numbers.

#include <RandomNumberGenerator.h>

#### **Static Public Member Functions**

- static int uniform\_c\_rand (const int min, const int max)
- static void seed\_uniform\_c\_rand (const int seed)

*If seed is negative, calls clock\_seed\_uniform\_c\_rand().* 

• static void clock\_seed\_uniform\_c\_rand ()

Seed with current time.

• static double **normal\_c\_rand** (const double mean, const double stdev)

# 4.34.1 Detailed Description

Static methods for generating random numbers.

#### 4.34.2 Member Function Documentation

# 4.34.2.1 static int SpinDec::RandomNumberGenerator::uniform\_c\_rand (const int *min*, const int *max*) [static]

Random integer  $\min \le i \le \max$  from a uniform distribution using cstdlib rand().

The documentation for this class was generated from the following file:

 $\bullet \ / home/sbalian/spindec/include/SpinDec/RandomNumberGenerator.h$ 

# 4.35 SpinDec::ReducedProblem Class Reference

SpinSystemBase and an order.

#include <ReducedProblem.h>

#### **Public Member Functions**

- **ReducedProblem** (const UInt order, const auto\_ptr< SpinSystemBase > &spin\_system\_base)
- ReducedProblem (const ReducedProblem &rhs)
- ReducedProblem & operator= (const ReducedProblem &rhs)
- UInt get\_order () const
- auto\_ptr< SpinSystemBase > get\_spin\_system () const

## **Private Attributes**

- UInt order\_
- auto\_ptr< SpinSystemBase > spin\_system\_base\_

# 4.35.1 Detailed Description

SpinSystemBase and an order.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/ReducedProblem.h

# 4.36 SpinDec::Sign Class Reference

```
±. #include <Sign.h>
```

#### **Public Member Functions**

- int as\_int () const
- bool isPlus () const
- bool isMinus () const
- bool operator== (const Sign &rhs) const

#### **Static Public Attributes**

- static const Sign Plus
- static const Sign Minus

#### **Private Member Functions**

• Sign (const int value)

## **Private Attributes**

• int value\_

## **Friends**

• std::ostream & operator<< (std::ostream &os, Sign const &sign)

Print with cout.

# 4.36.1 Detailed Description

 $\pm$ .

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/Sign.h

# 4.37 SpinDec::SimpleCubicLatticeVectors Class Reference

Simple cubic lattice vectors.

 $\label{lem:line_loss} \begin{tabular}{ll} $\#$ include $<$SimpleCubicLatticeVectors.h>$Inheritance$ & diagram & for & Spin-Dec::SimpleCubicLatticeVectors:: \\ \end{tabular}$ 



#### **Public Member Functions**

• SimpleCubicLatticeVectors (const double lattice\_constant)

Lattice constant a<sub>0</sub> in Å.

# 4.37.1 Detailed Description

Simple cubic lattice vectors.  $|\mathbf{a}_1| = |\mathbf{a}_2| = |\mathbf{a}_3| = a_0$  and  $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$  mutually orthogonal (parallel to x, y, z respectively in Cartesian coordinates).

Source: http://en.wikipedia.org/wiki/Cubic\_crystal\_system.

The documentation for this class was generated from the following file:

 $\bullet \ / home/sbalian/spindec/include/SpinDec/SimpleCubicLatticeVectors.h$ 

# 4.38 SpinDec::SpinBasis Class Reference

Holds magnetic quantum numbers for (in general) multiple spins.

#include <SpinBasis.h>

#### **Public Member Functions**

- SpinBasis (const SpinParametersVector &spin\_parameters\_vector)

  Automatically build using spin multiplicities.
- SpinBasis (const SpinParameters &spin\_parameters)

  Automatically build using spin multiplicity.
- SpinBasis (const Eigen::ArrayXXd &basis\_as\_array)
   Custom build.
- const Eigen::ArrayXXd & get\_basis\_as\_array () const
- UInt num\_basis\_states () const
- UInt num spins () const
- double **get\_element** (const UInt index, const UInt slot) const
- SpinBasis operator+ (const SpinBasis &to\_append) const
- SpinBasis operator (const SpinBasis &to\_combine) const
- bool operator== (const SpinBasis to\_compare) const Check if bases are identical.
- bool is\_equal (const SpinBasis &basis) const

#### **Private Member Functions**

- Eigen::ArrayXXd build (const SpinParametersVector &spin\_parameters\_vector)

  Automatically build using spin multiplicities.
- Eigen::ArrayXXd build (const SpinParameters &spin\_parameters)

  Build using multiplicity.

#### **Private Attributes**

• Eigen::ArrayXXd basis\_as\_array\_

#### **Friends**

• std::ostream & operator<< (std::ostream &os, SpinBasis const &basis)

Print with cout.

# 4.38.1 Detailed Description

Holds magnetic quantum numbers for (in general) multiple spins. Implements the Zeeman basis and includes build methods.

Columns: spins. Rows: magnetic quantum numbers.

For example, for two electrons, this is

$$\begin{array}{ccc} 0.5 & 0.5 \\ 0.5 & -0.5 \\ -0.5 & 0.5 \\ -0.5 & 0.5 \end{array}$$

For example, the first row corresponds to  $|m_{S1} = 0.5, m_{S2} = 0.5\rangle$ .

# 4.38.2 Member Function Documentation

#### 4.38.2.1 SpinBasis SpinDec::SpinBasis::operator+ (const SpinBasis & to\_append) const

For example,

$$basis1 = \begin{array}{c} 0.5 \\ -0.5 \end{array}$$

and

$$basis2 = \begin{array}{c} 4.5 \\ -4.5 \end{array}$$

basis1 + basis2 gives

$$\begin{array}{ccc} 0.5 & 4.5 \\ -0.5 & -4.5 \end{array}$$

# 4.38.2.2 SpinBasis SpinDec::SpinBasis::operator^ (const SpinBasis & to\_combine) const

Like tensor product. For example,

$$basis1 = \begin{array}{c} 4.5 \\ -4.5 \end{array}$$

and

$$basis2 = \begin{array}{c} 0.5 \\ -0.5 \end{array}$$

basis1^(basis2) is

$$\begin{array}{ccc} 4.5 & 0.5 \\ 4.5 & -0.5 \\ -4.5 & 0.5 \\ -4.5 & -0.5 \end{array}$$

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/SpinBasis.h

# 4.39 SpinDec::SpinBath Class Reference

Spin bath (single spin species).
#include <SpinBath.h>

#### **Public Member Functions**

- **SpinBath** (const CrystalStructure &crystal\_structure, const auto\_ptr< SpinSystemBase > &spin\_system\_base, const vector< SpinInteractionEdge > &intrabath\_edges)
- **SpinBath** (const CrystalStructure &crystal\_structure, const auto\_ptr< SpinSystemBase > &spin\_system\_base, const SpinInteractionEdge &intrabath\_edge)
- SpinBath (const SpinBath &spin\_bath)
- SpinBath & operator= (const SpinBath & spin\_bath)
- const SpinState & get\_bath\_state (const UInt index) const

Gets the state of the spin system.

- UInt num\_bath\_states () const
- SpinState get\_bath\_product\_state (const UIntArray &indices) const

Tensor product state for multiple populated sites.

- const CrystalStructure & get\_crystal\_structure () const
- const vector< SpinInteractionEdge > & get\_intrabath\_edges () const
- auto\_ptr< SpinSystemBase > get\_spin\_system () const
- SpinInteractionGraph reduced\_problem\_graph (const UInt order) const
- ThreeVector **get\_position** (const UInt vertex\_label, const UInt bath\_index) const
- void **set\_bath\_state** (const UInt index, const UInt level)

#### **Private Member Functions**

- void **init** (const CrystalStructure &crystal\_structure, const auto\_ptr< SpinSystemBase > &spin\_-system\_base, const vector< SpinInteractionEdge > &intrabath\_edges)
- vector< SpinInteractionEdge > make\_intrabath\_edges (const UInt order, const SpinInteractionEdge &intrabath\_edge) const
- $\bullet \ \ vector < {\color{red} SpinInteractionEdge} > {\color{red} make\_intrabath\_edges} \ (const\ UInt\ order)\ const$

#### **Private Attributes**

- vector < SpinState > bath\_states\_
- CrystalStructure crystal structure
- auto\_ptr< SpinSystemBase > spin\_system\_base\_
- vector< SpinInteractionEdge > intrabath\_edges\_

## 4.39.1 Detailed Description

Spin bath (single spin species). For the central spin decoherence problem in a crystal. Infinite temperature, so that all states are equally likely.

#### 4.39.2 Member Function Documentation

#### 4.39.2.1 const SpinState& SpinDec::SpinBath::get\_bath\_state (const UInt index) const

Gets the state of the spin system. Index is for populated sites in the crystal structure. Infinite temperature ensemble ...

## 4.39.3 Member Data Documentation

## 4.39.3.1 vector<SpinInteractionEdge> SpinDec::SpinBath::intrabath\_edges\_ [private]

Take the graph of the spin system and consider joining the graph to itself. For example, if the vertices of the original graph were 0, 1, 2, the new graph will have vertices 0, 1, 2 (originals), 3, 4, 5 (copies). Use these new labels for the intrabath edges. This is like the joining methods in SpinInteractionGraph.

#### 4.39.3.2 auto\_ptr<SpinSystemBase> SpinDec::SpinBath::spin\_system\_base\_ [private]

This spin system is placed at every occupied site in the crystal structure. The positions of each of the spins in the spin systems are added to the site vector.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/SpinBath.h

# 4.40 SpinDec::SpinDonor Class Reference

Special spin system: mixed electron-nuclear spin donors.

#include <SpinDonor.h>Inheritance diagram for SpinDec::SpinDonor::



#### **Public Member Functions**

- SpinDonor (const double field\_strength, const double nuclear\_quantum\_number, const double electron\_gyromagnetic\_ratio, const double nuclear\_gyromagnetic\_ratio, const double hyperfine\_strength, const unsigned int lower\_level\_label, const unsigned int upper\_level\_label, const Three-Vector &electron\_position, const Three-Vector &nuclear\_position, const bool complete\_basis)
- const ElectronSpinParameters & get\_electron\_parameters () const
- const SpinParameters & get\_nuclear\_parameters () const
- const Hyperfine & get\_hyperfine () const
- int max\_quantum\_number () const

I + S, I is nuclear spin quantum number.

• virtual UInt dimension () const

This is the Hamiltonian dimension.

• UInt total\_multiplicity () const

The complete spin basis dimension. This is (2S+1)(2I+1).

• virtual SpinState eigenstate (const UInt level\_label)

Levels 0,1,2, ... dimension(Hamiltonian)-1 (some levels may be excluded!).

• virtual double energy (const UInt level\_label)

Energy eigenvalue in M rad  $s^{-1}$ .

- double polarization (const UInt level\_label) const
- const SpinInteractionVertex & electron\_vertex () const
- const SpinInteractionVertex & nuclear\_vertex () const
- const UIntArray **get\_orthogonal\_level\_labels** () const
- SpinState get\_lower\_level ()
- SpinState get\_upper\_level ()
- vector< SpinState > get\_orthogonal\_levels ()
- virtual PiPulse pi\_pulse (const UInt level\_label1, const UInt level\_label2)

 $\pi$ -pulse (refocusing pulse).

• virtual auto\_ptr< SpinSystemBase > clone () const

#### **Private Member Functions**

- void sort\_level\_labels ()
  - Sets and sorts sorted\_level\_labels\_ in increasing energy.
- UInt level\_label\_index (const UInt level\_label) const

  Given level label, returns the index in sorted\_level\_labels\_.
- virtual void check\_level\_label (const UInt level\_label) const
- void calc\_adiabatic\_level\_labels ()
- double delta () const

Ratio of gyromagnetic ratios  $\delta = -\gamma_n/\gamma_e$ .

• double omega () const

 $\omega = \gamma_e B \ [M \ rad \ s^{-1}],$  where B is the Zeeman field strength.

• double scaled omega () const

 $\omega' = \omega/A$ , where A is the electron-nuclear hyperfine strength in M rad s<sup>-1</sup>.

• double D (const int quantum\_number) const

$$D = m + \omega'(1 + \delta).$$

• double O (const int quantum\_number) const

$$O = \sqrt{I(I+1) + 1/4 - m^2}$$
.

• double R (const int quantum\_number) const

$$R = \sqrt{D^2 + O^2}.$$

- double energy (const AdiabaticLabel &adiabatic\_level\_label) const
- UInt adiabatic\_label\_to\_int\_label (const AdiabaticLabel &adiabatic\_level\_label) const
   Convert |±, m⟩ levels to 0, 1, 2, ..., dim(donor) 1.
- AdiabaticLabel int\_label\_to\_adiabatic\_label (const UInt level\_label) const Other way to adiabatic\_label\_to\_int\_label.
- AdiabaticLabel orthogonal\_adiabatic\_level\_label (AdiabaticLabel adiabatic\_level\_label) const
   Given |±, m⟩, returns |∓, m⟩.
- double cos\_theta (const int quantum\_number) const  $\cos \theta = D/R$ .
- double sin\_theta (const int quantum\_number) const  $\sin \theta = O/R$ .
- double a (const int quantum\_number) const
  - $[1/\sqrt{2}]\sqrt{1+\cos\theta}.$
- double b (const int quantum\_number) const

$$[1/\sqrt{2}]\sqrt{1-\cos\theta}$$
.

- double polarization (const AdiabaticLabel &adiabatic\_level\_label) const Expectation value of the electron z-component of spin.
- SpinBasis build\_basis (const AdiabaticLabel &adiabatic\_level\_label) const
- SpinBasis build\_basis (const std::vector< AdiabaticLabel > &adiabatic\_level\_labels) const
- SpinBasis build\_basis (const UIntArray &level\_labels) const
- SpinBasis build\_truncated\_basis () const
- void set\_transition (const UInt lower\_level\_label, const UInt upper\_level\_label)
- void **set\_orthogonal\_level\_labels** (const UInt lower\_level\_label, const UInt upper\_level\_label)
- UIntArray **get\_orthogonal\_level\_labels** (const UInt lower\_level\_label, const UInt upper\_level\_label) const
- UInt orthogonal\_level\_label (const UInt level\_label) const
   Given |±, m⟩, returns |∓, m⟩.
- void init (const double field\_strength, const double nuclear\_quantum\_number, const double electron\_gyromagnetic\_ratio, const double nuclear\_gyromagnetic\_ratio, const double hyperfine\_strength, const unsigned int lower\_level\_label, const unsigned int upper\_level\_label, const Three-Vector &electron\_position, const Three-Vector &nuclear\_position, const bool complete\_basis)

See constructors.

#### **Private Attributes**

• bool complete\_basis\_

Use full Zeeman basis.

• ElectronSpinParameters electron\_parameters\_

For the spin interaction graph.

• SpinParameters nuclear\_parameters\_

For the spin interaction graph.

• Hyperfine hyperfine\_

For the spin interaction graph.

• UInt transition\_level\_labels\_[2]

Upper and lower transition energy levels.

- UIntArray orthogonal\_level\_labels\_
- UIntArray sorted level labels
- std::vector< AdiabaticLabel > adiabatic\_level\_labels\_

## 4.40.1 Detailed Description

Special spin system: mixed electron-nuclear spin donors. Electron coupled to a nucleus via a preset hyperfine interaction. Analytical methods include energy levels, eigenstates and polarization obtained from Phys. Rev. Lett. 105, 067602 (2010).

Energy levels are (adiabatic states) labeled as follows, with adiabatic level labels:

 $|\pm,m\rangle$ ,

with integer quantum number  $m = -|I + S|, \ldots, I + S$ , separated by 1. S and I are the electron and nuclear spin quantum numbers respectively.

Alternatively, energy levels are labeled according to increasing energy:  $0, 1, \ldots, (2S+1)(2I+1) - 1$ .

#### 4.40.2 Constructor & Destructor Documentation

4.40.2.1 SpinDec::SpinDonor::SpinDonor (const double field\_strength, const double nuclear\_quantum\_number, const double electron\_gyromagnetic\_ratio, const double nuclear\_gyromagnetic\_ratio, const double hyperfine\_strength, const unsigned int lower\_level\_label, const unsigned int upper\_level\_label, const ThreeVector & electron\_position, const ThreeVector & nuclear\_position, const bool complete\_basis)

Field strength in Tesla (T), gyromagnetic ratios in M rad  $s^{-1}T^{-1}$ , hyperfine strength in M rad  $s^{-1}$ , and positions in Å.

#### 4.40.3 Member Function Documentation

# 4.40.3.1 SpinBasis SpinDec::SpinDonor::build\_basis (const UIntArray & level\_labels) const [private]

Same as build\_basis(const std::vector<AdiabaticLabel>&) but with integer labels for energy levels as the arguments.

# 4.40.3.2 SpinBasis SpinDec::SpinDonor::build\_basis (const std::vector< AdiabaticLabel > & adiabatic\_level\_labels) const [private]

Like build\_basis(const AdiabaticLabel&), but for multiple levels (non-zero coefficient basis states).

# 4.40.3.3 SpinBasis SpinDec::SpinDonor::build\_basis (const AdiabaticLabel & adiabatic level label) const [private]

Gives the (at most two) Zeeman basis states:  $|m_S=\pm 1/2,m_I=m\mp 1/2\rangle$  and  $|m_S=\mp 1/2,m_I=m\pm 1/2\rangle$  where  $m_S=\pm 1/2$  and  $m_I=-I,\ldots,+I$  in integer steps, for the energy state:

$$|\pm, m\rangle = a_m |m_S = \pm 1/2, m_I = m \mp 1/2\rangle \pm b_m |m_S = \mp 1/2, m_I = m \pm 1/2\rangle$$
.

- For  $m=-M, |-,-M\rangle=|-1/2,-I\rangle$  (only one Zeeman state)  $(M=\max(m))$ .
- For  $m=+M, |+,+M\rangle = |+1/2,+I\rangle$  (only one Zeeman state).

States  $|+,-M\rangle$  and  $|-,M\rangle$  don't exist. For all the other  $|\pm,m\rangle$ , there are two basis states.

#### 4.40.3.4 SpinBasis SpinDec::SpinDonor::build truncated basis () const [private]

This calls build\_basis(const UIntArray&) const for UIntArray containing the upper and lower levels only. Output basis has the Zeeman basis states in which the upper and lower levels as well as the levels orthogonal to these (if they exist) can be completely represented. This is a complete basis for interactions of the donor via the z-component of the electron spin only.

#### 4.40.3.5 void SpinDec::SpinDonor::calc\_adiabatic\_level\_labels() [private]

Calculates and sets all the adiabatic level labels and adiabatic\_level\_labels\_.

# 4.40.3.6 double SpinDec::SpinDonor::energy (const AdiabaticLabel & adiabatic\_level\_label) const [private]

$$E = \frac{A}{2} \left( -\frac{1}{2} \left[ 1 + 4\omega' m \delta \right] \pm R(m) \right)$$

for level  $|\pm, m\rangle$  and A is the hyperfine strength. Units are M rad s<sup>-1</sup>.

# 4.40.3.7 AdiabaticLabel SpinDec::SpinDonor::orthogonal\_adiabatic\_level\_label (AdiabaticLabel adiabatic\_level\_label) const [private]

Given  $|\pm, m\rangle$ , returns  $|\mp, m\rangle$ . If  $|\mp, m\rangle$  does not exist (m = |M|), returns the input.

# 4.40.3.8 UInt SpinDec::SpinDonor::orthogonal\_level\_label (const UInt level\_label) const [private]

Given  $|\pm, m\rangle$ , returns  $|\mp, m\rangle$ . If  $|\mp, m\rangle$  does not exist (m = |M|), returns the input.

This method takes and outputs integer energy level inputs  $0, 1, \ldots, donor(dim) - 1$ .

#### 4.40.3.9 double SpinDec::SpinDonor::polarization (const UInt level\_label) const

See polarization(const AdiabaticLabel& label) const. This takes an integer energy level label. Gives expectation value of the electron z-component of spin (for field along z) for input level.

# 4.40.3.10 double SpinDec::SpinDonor::polarization (const AdiabaticLabel & adiabatic\_level\_label) const [private]

Expectation value of the electron z-component of spin. For field along z, for level  $\pm$ , m.

This is

$$\langle \pm, m | \hat{S}^z | \pm, m \rangle = \pm \frac{1}{2} \left[ a^2(m) - b^2(m) \right].$$

# 4.40.3.11 void SpinDec::SpinDonor::set\_transition (const UInt lower\_level\_label, const UInt upper\_level\_label) [private]

Also sets orthogonal levels if they exist.

#### 4.40.4 Member Data Documentation

# 4.40.4.1 std::vector<AdiabaticLabel> SpinDec::SpinDonor::adiabatic\_level\_labels\_ [private]

In order of increasing energy, these are:

$$|-, M-1\rangle, |-, M-2\rangle, \dots, |-, -M\rangle, |-, -M+1\rangle, \dots |+, +M\rangle,$$

where M = I + S.

#### 4.40.4.2 bool SpinDec::SpinDonor::complete\_basis\_ [private]

Use full Zeeman basis. Computationally intensive for CCE - 20D for Si:Bi.). Otherwise, the truncated basis is used, which consists of the subspaces for the two levels involved in the transition.

#### 4.40.4.3 UIntArray SpinDec::SpinDonor::orthogonal\_level\_labels\_ [private]

If the donor interacts via the electron z-component spin operator (with the field along z), Hamiltonian matrix elements involving the orthogonal levels must be included in the Hilbert space for completeness. Orthogonal levels are  $|\pm,m\rangle \leftrightarrow |\mp,m\rangle$  (if they exist). These orthogonal levels are included so that all the relevant Zeeman basis states are included. Elements are:

- · Orthogonal lower energy level.
- Orthogonal upper energy level.

At most of size 2.

#### 4.40.4.4 UIntArray SpinDec::SpinDonor::sorted\_level\_labels\_ [private]

These are the upper, lower and orthogonal levels for a non-complete basis and all the energy levels for the complete basis, sorted in order of increasing energy.

## 4.40.4.5 UInt SpinDec::SpinDonor::transition\_level\_labels\_[2] [private]

Upper and lower transition energy levels. Labeled  $0, 1, 2, \dots, (2S+1)(2I+1)-1$ . Elements are:

- Lower energy level label for a transition.
- Upper energy level label for a transition.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/SpinDonor.h

## 4.41 SpinDec::SpinDown Class Reference

Spin down state.

#include <SpinDown.h>Inheritance diagram for SpinDec::SpinDown::



## **Public Member Functions**

• SpinDown (const SpinHalfParameters &spin\_half\_parameters)

## **Private Member Functions**

• virtual void init (const double gyromagnetic\_ratio)

## 4.41.1 Detailed Description

Spin down state. For a positive (or zero) gyromagnetic ratio (and positive spin quantum number) this is (0,1) in the (0.5,-0.5) basis. See also SpinUp.

#### 4.41.2 Member Function Documentation

## 4.41.2.1 virtual void SpinDec::SpinDown::init (const double gyromagnetic\_ratio) [private, virtual]

Depending on sign of gyromagnetic\_ratio, spin up or spin down. See derived classes SpinUp and Spin-Down.

Implements SpinDec::SpinHalfStates.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/SpinDown.h

## 4.42 SpinDec::SpinHalf Class Reference

A spin-1/2 spin system.

#include <SpinHalf.h>Inheritance diagram for SpinDec::SpinHalf::



#### **Public Member Functions**

- **SpinHalf** (const double gyromagnetic\_ratio, const double field\_strength, const ThreeVector &position)
- virtual UInt dimension () const Hamiltonian dimension.
- virtual auto\_ptr< SpinSystemBase > clone () const

#### **Private Member Functions**

- virtual void solve\_once ()

  Calculate and set energies and eigenstates.
- virtual void check\_level\_label (const UInt level\_label) const

## **Private Attributes**

• double gyromagnetic\_ratio\_

## 4.42.1 Detailed Description

A spin-1/2 spin system.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/SpinHalf.h

## 4.43 SpinDec::SpinHalfParameters Class Reference

Spin-1/2 spin parameters.

 $\verb§\#include < SpinHalfParameters.h > Inheritance diagram for SpinDec::SpinHalfParameters::$ 



## **Public Member Functions**

• SpinHalfParameters (const double gyromagnetic\_ratio)

## 4.43.1 Detailed Description

Spin-1/2 spin parameters.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/SpinHalfParameters.h

## 4.44 SpinDec::SpinHalfStates Class Reference

Spin-1/2 spin states.

#include <SpinHalfStates.h>Inheritance diagram for SpinDec::SpinHalfStates::



## **Protected Member Functions**

- SpinHalfStates ()

  Basis is (0.5,-0.5).
- virtual void init (const double gyromagnetic\_ratio)=0
- virtual void **set\_state\_vector** (const Complex Vector & state\_vector)
- virtual void **set\_element** (const UInt index, const CDouble & element)
- virtual void set\_element (const UInt index, const double element)

Stored as complex.

## 4.44.1 Detailed Description

Spin-1/2 spin states.

## 4.44.2 Member Function Documentation

## 4.44.2.1 virtual void SpinDec::SpinHalfStates::init (const double gyromagnetic\_ratio) [protected, pure virtual]

Depending on sign of gyromagnetic\_ratio, spin up or spin down. See derived classes SpinUp and Spin-Down.

Implemented in SpinDec::SpinDown, and SpinDec::SpinUp.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/SpinHalfStates.h

## 4.45 SpinDec::SpinHamiltonian Class Reference

Effective spin Hamiltonian built from a spin interaction graph.

#include <SpinHamiltonian.h>Inheritance diagram for SpinDec::SpinHamiltonian::



#### **Public Member Functions**

- SpinHamiltonian (const SpinInteractionGraph & graph, const UniformMagneticField & field)
- UniformMagneticField get\_field () const
- const SpinInteractionGraph & get\_graph () const
- void **update\_positions** (const UIntArray &vertex\_labels, const vector< ThreeVector > &positions)

#### **Private Member Functions**

- void fill\_zeeman ()
   Fill diagonal elements with γBm.
- void fill\_interactions ()

  Fill elements for all spin interactions.
- void init\_terms ()

  Sets to zero.

- void sum\_zeeman\_terms ()
- void sum\_interaction\_terms ()
- void **fill\_zeeman** (const UInt vertex\_label)
- void **fill\_interaction** (const UInt edge\_index)

## **Private Attributes**

- UniformMagneticField field\_
- SpinInteractionGraph graph\_
- vector< ComplexMatrix > zeeman\_terms\_

For each vertex, there is a Zeeman Hamiltonian. Store these.

- vector< ComplexMatrix > interaction\_terms\_ For each edge, there is an interaction Hamiltonian. Store these.
- ComplexMatrix zeeman\_hamiltonian\_

Summed Zeeman Hamiltonian.

• ComplexMatrix interaction\_hamiltonian\_

Summed interaction Hamiltonian.

## 4.45.1 Detailed Description

Effective spin Hamiltonian built from a spin interaction graph. Can diagonalize and get unitary time evolution matrix. No time dependence in Hamiltonian. Units:  $M \text{ rad s}^{-1}$ .

## **4.45.2** Member Function Documentation

## 4.45.2.1 void SpinDec::SpinHamiltonian::fill\_zeeman() [private]

Fill diagonal elements with  $\gamma Bm$ . B-field strength is for all spins in the graph.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/SpinHamiltonian.h

## 4.46 SpinDec::SpinInteraction Class Reference

Abstract base class for interaction between a pair of spins.

#include <SpinInteraction.h>Inheritance diagram for SpinDec::SpinInteraction::



#### **Public Member Functions**

- virtual void **calculate** (const SpinParameters &spin\_parameters1, const SpinParameters &spin\_parameters2, const ThreeVector &position1, const ThreeVector &position2, const UniformMagneticField &field)=0
- double get\_strength () const
- bool strength\_preset () const
- virtual void **fill** (ComplexMatrix \*hamiltonian, const SpinParametersVector &spins, const SpinBasis &basis, const UInt spin\_label1, const UInt spin\_label2) const =0
- virtual auto\_ptr< SpinInteraction > clone () const =0
- virtual string **get\_type** () const =0

#### **Protected Member Functions**

• SpinInteraction ()

If you wish to calculate.

• SpinInteraction (const double strength)

If you don't wish to calculate.

- void fill\_ising\_flipflop (ComplexMatrix \*hamiltonian, const SpinParametersVector &spin\_parameters\_vector, const SpinBasis &basis, const UInt spin\_label1, const UInt spin\_label2, const bool ising\_only, const CDouble &flipflop\_form) const
- void warn\_if\_preset\_then\_calculated () const

## **Protected Attributes**

• double strength\_

 $M \ rad \ s^{-1}$  (calculated or set).

• bool strength\_preset\_

Set to true, this indicates that the strength was set in the constructor.

## 4.46.1 Detailed Description

Abstract base class for interaction between a pair of spins.

## 4.46.2 Member Function Documentation

4.46.2.1 void SpinDec::SpinInteraction::fill\_ising\_flipflop (ComplexMatrix \* hamiltonian, const SpinParametersVector & spin\_parameters\_vector, const SpinBasis & basis, const UInt spin\_label1, const UInt spin\_label2, const bool ising\_only, const CDouble & flipflop\_form) const [protected]

Fill

$$J\hat{S}_{1}^{z}\hat{S}_{2}^{z} + FJ(\hat{S}_{1}^{+}\hat{S}_{2}^{-} + \hat{S}_{1}^{-}\hat{S}_{2}^{+}),$$

where S is the strength, F is a factor depending on the type of interaction, the first term is known as "Ising" and the second term as "Flip-Flop".

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/SpinInteraction.h

## 4.47 SpinDec::SpinInteractionEdge Class Reference

Edge for a spin interaction graph.

#include <SpinInteractionEdge.h>

## **Public Member Functions**

- SpinInteractionEdge (const SpinInteractionEdge &other)
- **SpinInteractionEdge** (const UInt label1, const UInt label2, const auto\_ptr< **SpinInteraction** > &interaction)
- UInt get\_label1 () const
- UInt get\_label2 () const
- auto\_ptr< SpinInteraction > get\_interaction () const
- SpinInteractionEdge & operator= (const SpinInteractionEdge &other)

## **Private Attributes**

- pair< UInt, UInt > labels\_
- auto\_ptr< SpinInteraction > interaction\_

## 4.47.1 Detailed Description

Edge for a spin interaction graph. Contains a pair of vertex labels and a spin interaction.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/SpinInteractionEdge.h

## 4.48 SpinDec::SpinInteractionGraph Class Reference

Spin interaction graph from which spin Hamiltonians are built.

#include <SpinInteractionGraph.h>

#### **Public Member Functions**

- void set basis (const SpinBasis &basis)
- void add\_vertex (const SpinParameters &spin\_parameters, const ThreeVector &position)
- void add\_vertex (const SpinParameters &spin\_parameters, const SpinBasis &basis, const ThreeVector &position)
- void add\_vertex\_appending\_basis (const SpinParameters &spin\_parameters, const ThreeVector &position)

This vertex add method appends the new basis to basis\_.

void add\_vertex\_appending\_basis (const SpinParameters &spin\_parameters, const SpinBasis &basis, const ThreeVector &position)

This vertex add method appends the new basis to basis\_.

- void add\_edge (unsigned int label1, unsigned int label2, const auto\_ptr< SpinInteraction > &interaction)
- void add\_edges (const vector < SpinInteractionEdge > &edges)
- unsigned int **num\_vertices** () const
- unsigned int num\_edges () const
- void clear ()
- const SpinBasis & get basis () const
- const SpinParameters & get\_spin\_parameters (const unsigned int label) const
- const ThreeVector & **get\_position** (const unsigned int label) const
- auto\_ptr< SpinInteraction > get\_interaction (const unsigned int index) const
- void **set\_interaction** (const unsigned int index, const auto\_ptr< **SpinInteraction** > &interaction)
- SpinParametersVector spin\_parameters\_vector () const
- const SpinInteractionVertex & get\_vertex (const unsigned int label) const
- const SpinInteractionEdge & get\_edge (const unsigned int index) const
- void join\_in\_place (const SpinInteractionGraph &to\_join)
- void join\_in\_place (const SpinInteractionGraph &to\_join, const std::vector < SpinInteractionEdge > &edges)
- SpinInteractionGraph join (const SpinInteractionGraph &to\_join) const
- SpinInteractionGraph join (const SpinInteractionGraph &to\_join, const std::vector< SpinInteractionEdge > &edges) const
- void **set position** (const UInt label, const ThreeVector &position)
- const SpinInteractionVertex & get\_vertex1 (const UInt index) const
- const SpinInteractionVertex & get\_vertex2 (const UInt index) const
- void **set\_positions** (const UIntArray &vertex\_labels, const vector< ThreeVector > &positions)

## **Private Member Functions**

- void quit\_if\_vertex\_label\_out\_of\_bounds (const unsigned int label) const
- void quit\_if\_edge\_index\_out\_of\_bounds (const unsigned int index) const
- void **set\_vertex** (const unsigned int label, const **SpinInteractionVertex** &vertex)
- void **set\_edge** (const unsigned int index, const **SpinInteractionEdge** &edge)

## **Private Attributes**

- vector < SpinInteractionVertex > vertices\_
   Vertices.
- vector < SpinInteractionEdge > edges\_ Edges.
- SpinBasis basis\_

## 4.48.1 Detailed Description

Spin interaction graph from which spin Hamiltonians are built.

#### 4.48.2 Member Function Documentation

4.48.2.1 void SpinDec::SpinInteractionGraph::add\_vertex (const SpinParameters & spin\_parameters, const SpinBasis & basis, const ThreeVector & position)

This vertex add method combines the new basis to basis\_ (like tensor product).

## 4.48.2.2 void SpinDec::SpinInteractionGraph::add\_vertex (const SpinParameters & spin\_parameters, const ThreeVector & position)

This vertex add method combines the new basis to basis\_ (like tensor product). Basis built from spin parameters.

# 4.48.2.3 SpinInteractionGraph SpinDec::SpinInteractionGraph::join (const SpinInteractionGraph & to\_join, const std::vector< SpinInteractionEdge > & edges) const

Like join\_in\_place(const SpinInteractionGraph &, const std::vector<SpinInteractionEdge> &) but the original graph remains unchanged and output is a new graph.

## 4.48.2.4 SpinInteractionGraph SpinDec::SpinInteractionGraph::join (const SpinInteractionGraph & $to\_join$ ) const

Like join\_in\_place(const SpinInteractionGraph &) but the original graph remains unchanged and output is a new graph.

## 4.48.2.5 void SpinDec::SpinInteractionGraph::join\_in\_place (const SpinInteractionGraph & to\_join, const std::vector < SpinInteractionEdge > & edges)

Same as join\_in\_place(const SpinInteractionGraph &), but with edges connecting the two graphs. Edges should be valid for the graph after joining!

## 4.48.2.6 void SpinDec::SpinInteractionGraph::join\_in\_place (const SpinInteractionGraph & to\_join)

Adds input graph to current graph, preserving all vertices and edges. Vertex labels of given graph  $0, 1, 2, \ldots$  become  $n, n+1, n+2, \ldots$ , where n is the number of vertices of the original graph. There are no edges connecting the two graphs. Uses the add\_vertex method (combining bases).

The documentation for this class was generated from the following file:

 $\bullet \ / home/sbalian/spindec/include/SpinDec/SpinInteractionGraph.h$ 

## 4.49 SpinDec::SpinInteractionVertex Class Reference

Vertex for a spin interaction graph.

#include <SpinInteractionVertex.h>

## **Public Member Functions**

• SpinInteractionVertex (const UInt label, const SpinParameters &spin\_parameters, const ThreeVector &position)

Zeeman basis built from spin parameters.

- SpinInteractionVertex (const UInt label, const SpinParameters &spin\_parameters, const SpinBasis &basis, const ThreeVector &position)
- UInt get\_label () const
- const SpinParameters & get\_spin\_parameters () const
- const SpinBasis & get\_basis () const
- const ThreeVector & get\_position () const
- void **set\_position** (const ThreeVector &position)

## **Private Attributes**

- UInt label
- SpinParameters spin\_parameters\_
- SpinBasis basis\_
- ThreeVector **position**\_

## 4.49.1 Detailed Description

Vertex for a spin interaction graph. Contains a label, spin parameters, a spin basis and a position in real space.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/SpinInteractionVertex.h

## 4.50 SpinDec::SpinOperator Class Reference

Quantum spin operator in the Zeeman basis.

#include <SpinOperator.h>Inheritance diagram for SpinDec::SpinOperator::



#### **Public Member Functions**

- SpinOperator (const ComplexMatrix &matrix, const SpinBasis &basis)
- SpinOperator (const SpinBasis &basis)

Zero matrix.

- const ComplexMatrix & get\_matrix () const
- void **set\_matrix** (const ComplexMatrix &matrix)
- const CDouble & get\_element (const UInt i, const UInt j) const
- void **set\_element** (const UInt i, const UInt j, const CDouble & element)
- void set\_element (const UInt i, const UInt j, const double element)

  Stored as complex.
- void add\_to\_element (const UInt i, const UInt j, const CDouble &to\_add)
- SpinOperator operator<sup>∧</sup> (const SpinOperator &rhs) const

Operators: tensor product \(^\), Bases: combine \(^\) (like tensor product).

- SpinState operator\* (const SpinState & operand) const
- SpinOperator operator+ (const SpinOperator &rhs) const
- SpinOperator operator- (const SpinOperator &rhs) const
- virtual void set zero ()

Set all elements to zero.

• virtual auto\_ptr< MatrixRepresentation > clone () const

#### **Protected Member Functions**

• virtual void quit\_if\_dimension\_mismatch () const

## **Protected Attributes**

• ComplexMatrix matrix\_

#### **Friends**

• std::ostream & operator<< (std::ostream &os, SpinOperator const &spin\_operator)

Print with cout.

## 4.50.1 Detailed Description

Quantum spin operator in the Zeeman basis.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/SpinOperator.h

## 4.51 SpinDec::SpinParameters Class Reference

Contains basic parameters associated with a spin.

#include <SpinParameters.h>Inheritance diagram for SpinDec::SpinParameters::



## **Public Member Functions**

- SpinParameters (const double quantum\_number, const double gyromagnetic\_ratio)
- double get\_quantum\_number () const
- double get\_gyromagnetic\_ratio () const
- UInt get\_multiplicity () const

## **Protected Member Functions**

• UInt multiplicity (const double quantum\_number) const

## **Protected Attributes**

- double quantum\_number\_
- double gyromagnetic\_ratio\_
- UInt multiplicity\_

## **Friends**

• std::ostream & operator<< (std::ostream &os, SpinParameters const &spin\_parameters)

Print with cout.

## 4.51.1 Detailed Description

Contains basic parameters associated with a spin.

- ullet Quantum number S.
- Gyromagnetic ratio  $\gamma$  [M rad s<sup>-1</sup> T<sup>-1</sup>].
- Spin multiplicity 2S + 1.

 $\gamma = \omega/B$  where  $\omega$  is the Larmor frequency in M rad s<sup>-1</sup> and B is the magnetic field in Tesla (T).

The documentation for this class was generated from the following file:

| • /home/sbalian/spindec/include/SpinDec/SpinParameters.h |  |
|----------------------------------------------------------|--|
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |
|                                                          |  |

## 4.52 SpinDec::SpinParametersVector Class Reference

Multiple SpinParameters container.

```
#include <SpinParametersVector.h>
```

## **Public Member Functions**

• SpinParametersVector (const SpinParameters &spin\_parameters)

First element set.

• SpinParameters & operator[] (const UInt index)

Get and set like std::vector.

• const SpinParameters & operator[] (const UInt index) const

Get and set like std::vector.

• void push\_back (const SpinParameters &spin\_parameters)

Add element.

• UInt size () const

Number of SpinParameter objects.

• void clear ()

Clear the std::vector data member.

• UInt multiplicity () const

 $Total\ spin\ multiplicity = product\ of\ individual\ multiplicities.$ 

## **Private Attributes**

• std::vector< SpinParameters > spin\_parameters\_vector\_

## 4.52.1 Detailed Description

Multiple SpinParameters container.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/SpinParametersVector.h

## 4.53 SpinDec::SpinState Class Reference

Quantum spin state in the Zeeman basis.

#include <SpinState.h>Inheritance diagram for SpinDec::SpinState::



#### **Public Member Functions**

- SpinState (const Complex Vector &state\_vector, const SpinBasis &basis)
- SpinState (const SpinBasis &basis)

Zero state vector.

- const Complex Vector & **get\_state\_vector** () const
- virtual void **set\_state\_vector** (const ComplexVector &state\_vector)
- const CDouble & get\_element (const UInt index) const
- virtual void **set\_element** (const UInt index, const CDouble & element)
- virtual void set\_element (const UInt index, const double element) Stored as complex.
- SpinState operator<sup>^</sup> (const SpinState &rhs) const
   States: tensor product <sup>^</sup>, Bases: combine <sup>^</sup> (like tensor product).
- CDouble operator\* (const SpinState &rhs) const Inner product.
- SpinOperator operator% (const SpinState &rhs) const

   Outer product.
- SpinState operator+ (const SpinState &rhs) const
- SpinState operator- (const SpinState &rhs) const
- SpinState operator\* (const CDouble &c) const
- void time\_evolve (const ComplexMatrix &unitary\_evolution\_matrix)

 $Multiplies\ state\_vector\_\ with\ unitary\_evolution\_matrix.$ 

- virtual void set\_zero ()
  - Set all elements to zero.
- void normalize ()
- SpinState normalized () const
- virtual auto\_ptr< MatrixRepresentation > clone () const

## **Protected Member Functions**

• virtual void quit\_if\_dimension\_mismatch () const

## **Protected Attributes**

• Complex Vector state\_vector\_

## **4.53.1 Detailed Description**

Quantum spin state in the Zeeman basis.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/SpinState.h

## 4.54 SpinDec::SpinSystem Class Reference

Diagonalizable concrete spin system.

#include <SpinSystem.h>Inheritance diagram for SpinDec::SpinSystem::



## **Public Member Functions**

- SpinSystem (const SpinHamiltonian &hamiltonian)
- virtual UInt dimension () const

Hamiltonian dimension.

• virtual auto\_ptr< SpinSystemBase > clone () const

## **Protected Member Functions**

- virtual void solve\_once ()

  Calculate and set energies and eigenstates.
- virtual void check\_level\_label (const UInt level\_label) const

## **Protected Attributes**

• HermitianEigenspectrum eigenspectrum\_

## 4.54.1 Detailed Description

Diagonalizable concrete spin system.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/SpinSystem.h

## 4.55 SpinDec::SpinSystemBase Class Reference

Abstract base class for spin systems.

#include <SpinSystemBase.h>Inheritance diagram for SpinDec::SpinSystemBase::



#### **Public Member Functions**

- SpinSystemBase (const SpinHamiltonian &hamiltonian)
- const SpinHamiltonian & get\_hamiltonian () const
- virtual SpinState eigenstate (const UInt level\_label)

Levels 0,1,2, ... dimension(Hamiltonian)-1 (some levels may be excluded!).

- virtual double energy (const UInt level\_label)
  - Energy eigenvalue in M rad  $s^{-1}$ .
- void **set\_state** (const **SpinState** &state)
- void set\_state (const UInt level\_label)

Sets state to the level\_label'th eigenstate.

- void set\_state (const CDouble &c0, const UInt level\_label0, const CDouble &c1, const UInt level\_label1)
- const SpinState & get\_state () const
- EvolutionOperator evolution\_operator (const double time)
- virtual UInt dimension () const =0

Hamiltonian dimension.

- const ComplexMatrix & get\_eigenvector\_matrix ()
- const RealVector & get\_eigenvalue\_vector ()
- virtual PiPulse pi\_pulse (const UInt level\_label1, const UInt level\_label2)

 $\pi$ -pulse (refocusing pulse).

- void print (const char option)
- virtual auto\_ptr< SpinSystemBase > clone () const =0
- void **update\_positions** (const UIntArray &vertex\_labels, const vector< ThreeVector > &positions)

## **Protected Member Functions**

- virtual void solve\_once ()=0

  Calculate and set energies and eigenstates.
- virtual void **check level label** (const UInt level label) const =0

## **Protected Attributes**

- SpinHamiltonian hamiltonian\_
- RealVector energies\_
- ComplexMatrix eigenstates\_
- SpinState state\_
- bool is\_solved\_

So as not to solve for eigenvectors and eigenvalues more than once.

• bool is\_state\_set\_

## 4.55.1 Detailed Description

Abstract base class for spin systems.

#### 4.55.2 Member Function Documentation

## 4.55.2.1 void SpinDec::SpinSystemBase::print (const char option)

Print options:

- e: energies.
- E: eigenstates.
- H: Hamiltonian.

## 4.55.2.2 void SpinDec::SpinSystemBase::set\_state (const CDouble & c0, const UInt level\_label0, const CDouble & c1, const UInt level\_label1)

Sets the state to a superposition state of the eigenstates labelled  $|0\rangle$  and  $|1\rangle$ . Also normalizes the state. The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/SpinSystemBase.h

## 4.56 SpinDec::SpinUp Class Reference

Spin up state.

#include <SpinUp.h>Inheritance diagram for SpinDec::SpinUp::



## **Public Member Functions**

• SpinUp ()

Default for positive gyromagnetic ratio.

• SpinUp (const SpinHalfParameters &spin\_half\_parameters)

## **Private Member Functions**

• virtual void init (const double gyromagnetic\_ratio)

## 4.56.1 Detailed Description

Spin up state. For a positive (or zero) gyromagnetic ratio (and positive spin quantum number) this is (1,0) in the (0.5,-0.5) basis. See also SpinDown.

## 4.56.2 Member Function Documentation

## 4.56.2.1 virtual void SpinDec::SpinUp::init (const double gyromagnetic\_ratio) [private, virtual]

Depending on sign of gyromagnetic\_ratio, spin up or spin down. See derived classes SpinUp and Spin-Down

Implements SpinDec::SpinHalfStates.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/SpinUp.h

## 4.57 SpinDec::StringOptions Class Reference

String flags composed of A-Z, a-z, each character representing a flag.

#include <StringOptions.h>

## **Public Member Functions**

- StringOptions (const string &options)
- bool found\_option (const char option) const
- bool is\_empty () const

## **Private Attributes**

• string options\_

## 4.57.1 Detailed Description

String flags composed of A-Z, a-z, each character representing a flag.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/StringOptions.h

## 4.58 SpinDec::TimeArray Class Reference

Time array in microseconds.

```
#include <TimeArray.h>
```

## **Public Member Functions**

- TimeArray (const double initial\_time, const double final\_time, const UInt num\_steps)

  Calls initialize().
- TimeArray (const double single\_time)
- bool operator== (const TimeArray &time\_array) const is time\_vector == time\_vector\_? (element by element).
- void logarithmic\_time ()
- double **get\_time** (const UInt index) const
- const DoubleArray & get\_time\_vector () const
- UInt num\_steps () const dimension\_ - 1.
- UInt get\_dimension () const
- void **scale\_time** (const double scalar)

#### **Private Member Functions**

- void clear ()
   std::clear time\_vector\_ and set dimension to zero.
- void initialize (const double initial\_time, const double final\_time, const UInt num\_steps)

  Clears existing time sets new time to zeros.

## **Private Attributes**

• DoubleArray time\_vector\_

Microseconds.

UInt dimension

```
Evolution\ grid\ size\ (1D)\ (number\ of\ time\ steps\ +\ 1).
```

## **Friends**

• std::ostream & operator<< (std::ostream &os, TimeArray const &time\_array)

Print with cout.

## 4.58.1 Detailed Description

Time array in microseconds.

## **4.58.2** Member Function Documentation

## 4.58.2.1 void SpinDec::TimeArray::logarithmic\_time ()

Convert to initial\_time ... final\_time with logarithmic steps (base 10) = num\_steps.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/TimeArray.h

## 4.59 SpinDec::TimeEvolution Class Reference

Time evolution of a complex variable.

```
#include <TimeEvolution.h>
```

## **Public Member Functions**

- TimeEvolution (const TimeArray &time\_array, const CDoubleArray &evolution)
- **TimeEvolution** (const **TimeArray** &time\_array)
- const CDouble & evolution (const UInt index) const
- void set\_evolution\_zeros ()
- void set\_evolution\_ones ()
- const CDoubleArray & get\_evolution () const
- const TimeArray & get\_time\_array () const
- UInt dimension () const

Number of time steps.

• TimeEvolution operator+ (const TimeEvolution &to\_add) const

Adds evolutions element by element.

• TimeEvolution operator\* (const TimeEvolution &to\_multiply) const

Multiplies evolutions element by element.

• TimeEvolution operator/ (const TimeEvolution &to\_divide) const

Divides evolutions element by element.

- void print () const
- void **print\_real** () const
- void **print\_imag** () const
- void print\_abs () const
- void **print** (const string &file\_name) const
- void **print\_real** (const string &file\_name) const
- void **print\_imag** (const string &file\_name) const
- void **print\_abs** (const string &file\_name) const
- void **scale\_time** (const double scalar)
- void finite\_zeros ()

```
If evolution \leq 10^{-4}, set to 10^{-4}.
```

• bool has\_greater\_than\_one () const

True if at least one time step has abs(evolution) exceeding unity.

#### **Private Member Functions**

- void **print** (const char option) const
- void **print** (const string &file\_name, const char option) const

## **Private Attributes**

- TimeArray time\_array\_
  In microseconds.
- CDoubleArray evolution\_

## 4.59.1 Detailed Description

Time evolution of a complex variable. Time in microseconds.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/TimeEvolution.h

## 4.60 SpinDec::TwoStateSuperposition Class Reference

2-level superposition state.

 $\label{thm:line_problem} \mbox{\sc \#include <TwoStateSuperposition.h>Inheritance} \qquad \mbox{\sc diagram} \qquad \mbox{for} \qquad \mbox{\sc Spin-Dec::TwoStateSuperposition::}$ 



## **Public Member Functions**

- TwoStateSuperposition (const CDouble &c0, const SpinState &state0, const CDouble &c1, const SpinState &state1)
- const SpinState & get\_state0 () const
- const SpinState & get\_state1 () const
- const CDouble & get\_c0 () const
- const CDouble & get\_c1 () const

## **Private Attributes**

- SpinState state0\_
- SpinState state1\_
- CDouble c0\_
- CDouble c1\_

## 4.60.1 Detailed Description

2-level superposition state.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/TwoStateSuperposition.h

## 4.61 SpinDec::UniformMagneticField Class Reference

Uniform magnetic field parallel to some direction in Cartesian coordinates.

#include <UniformMagneticField.h>

## **Public Member Functions**

• UniformMagneticField (const double magnitude)

Null direction (0 0 0).

- UniformMagneticField (const double magnitude, const ThreeVector & direction)
- double **get\_magnitude** () const
- ThreeVector **get\_direction** () const
- void **set\_magnitude** (const double magnitude)
- void **set\_direction** (const ThreeVector &direction)

## **Private Attributes**

• double magnitude\_ *Tesla*.

ThreeVector direction\_

Normalized.

## 4.61.1 Detailed Description

Uniform magnetic field parallel to some direction in Cartesian coordinates.

The documentation for this class was generated from the following file:

• /home/sbalian/spindec/include/SpinDec/UniformMagneticField.h

## **Chapter 5**

## **File Documentation**

# 5.1 /home/sbalian/spindec/include/SpinDec/typedefs.h File Reference

```
typedefs and "usings" #include "SpinDec/config.h"
#include <Eigen/Dense>
#include <complex>
#include <vector>
#include <string>
#include <iostream>
#include <memory>
#include <utility>
#include <map>
```

## **Typedefs**

- typedef unsigned int SpinDec::UInt Unsigned int.
- typedef Eigen::Vector3d SpinDec::ThreeVector Real 3-vector.
- typedef std::complex < double > SpinDec::CDouble Complex double.
- typedef Eigen::MatrixXcd SpinDec::ComplexMatrix Matrix of complex doubles.
- typedef Eigen::VectorXcd SpinDec::ComplexVector Vector of complex doubles.
- typedef Eigen::VectorXd SpinDec::RealVector

96 File Documentation

Vector of doubles.

• typedef std::vector< double > SpinDec::DoubleArray STL vector of doubles.

• typedef std::vector < int > SpinDec::IntArray STL vector of integers.

• typedef std::vector< unsigned int > SpinDec::UIntArray STL vector of unsigned integers.

• typedef std::vector < CDouble > SpinDec::CDoubleArray STL vector of complex doubles.

## **5.1.1** Detailed Description

typedefs and "usings" Custom STL and Eigen typedefs for SpinDec. Also includes some usings, all in the SpinDec namespace.

## **Index**

| /home/sbalian/spindec/include/SpinDec/typedefs.h, 95 | SpinDec::DiamondCubic, 26 intrabath_edges_ |
|------------------------------------------------------|--------------------------------------------|
| add_vertex                                           | SpinDec::SpinBath, 56                      |
| SpinDec::SpinInteractionGraph, 73                    | join                                       |
| adiabatic_level_labels_                              | SpinDec::SpinInteractionGraph, 73          |
| SpinDec::SpinDonor, 62                               | join_in_place                              |
| SpinibecSpinibolioi, 02                              | SpinDec::SpinInteractionGraph, 73          |
| build_basis                                          | SpinDecSpininteractionGraph, 75            |
| SpinDec::SpinDonor, 60                               | kElectronGyromagneticRatio                 |
| build_truncated_basis                                | SpinDec::Constants, 17                     |
| SpinDec::SpinDonor, 60                               | kPi                                        |
| 1 ,                                                  | SpinDec::Constants, 17                     |
| calc_adiabatic_level_labels                          | kPlanck                                    |
| SpinDec::SpinDonor, 60                               | SpinDec::Constants, 17                     |
| calculate                                            | kReducedPlanck                             |
| SpinDec::CCE, 12                                     | SpinDec::Constants, 17                     |
| complete_basis_                                      |                                            |
| SpinDec::SpinDonor, 62                               | logarithmic_time                           |
| cosAngleBetween                                      | SpinDec::TimeArray, 89                     |
| SpinDec::BoostEigen, 9                               | -                                          |
|                                                      | maxAbsCoeff                                |
| eigenvalues_                                         | SpinDec::BoostEigen, 9                     |
| SpinDec::EvolutionOperator, 33                       |                                            |
| eigenvectors_                                        | operator^                                  |
| SpinDec::EvolutionOperator, 33                       | SpinDec::SpinBasis, 54                     |
| energy                                               | operator+                                  |
| SpinDec::SpinDonor, 61                               | SpinDec::SpinBasis, 54                     |
| EvolutionOperator                                    | orthogonal_adiabatic_level_label           |
| SpinDec::EvolutionOperator, 32                       | SpinDec::SpinDonor, 61                     |
|                                                      | orthogonal_level_label                     |
| fill_ising_flipflop                                  | SpinDec::SpinDonor, 61                     |
| SpinDec::SpinInteraction, 70                         | orthogonal_level_labels_                   |
| fill_site_vectors                                    | SpinDec::SpinDonor, 62                     |
| SpinDec::CrystalStructure, 22                        | .1.170                                     |
| fill_zeeman                                          | partialTrace                               |
| SpinDec::SpinHamiltonian, 68                         | SpinDec::BoostEigen, 10                    |
|                                                      | PiPulse                                    |
| get_bath_state                                       | SpinDec::PiPulse, 44                       |
| SpinDec::SpinBath, 56                                | polarization                               |
| 114                                                  | SpinDec::SpinDonor, 61                     |
| init  Spin Deau Spin Down 63                         | print                                      |
| SpinDec::SpinDown, 63                                | SpinDec::SpinSystemBase, 85                |
| SpinDec::SpinHalfStates, 66                          | sat stata                                  |
| SpinDec::SpinUp, 86                                  | set_state SpinDec: SpinSystemBase 85       |
| THE LANGE COURSE COURS                               | admidec admaysiembase 61                   |

98 INDEX

| set_transition                      | SpinDec::MatrixRepresentation, 43      |
|-------------------------------------|----------------------------------------|
| SpinDec::SpinDonor, 61              | SpinDec::PiPulse, 44                   |
| sorted_level_labels_                | PiPulse, 44                            |
| SpinDec::SpinDonor, 62              | SpinDec::Pulse, 45                     |
| spectralDecomposition               | SpinDec::PulseExperiment, 46           |
| SpinDec::BoostEigen, 10             | SpinDec::PulseSequence, 47             |
| SpinDec::HermitianEigenspectrum, 36 | SpinDec::PulseSequenceBase, 48         |
| spin_system_base_                   | SpinDec::RandomNumberGenerator, 49     |
| SpinDec::SpinBath, 56               | uniform_c_rand, 49                     |
| SpinDec::AdiabaticLabel, 7          | SpinDec::ReducedProblem, 50            |
| SpinDec::BoostEigen, 9              | SpinDec::Sign, 51                      |
| cosAngleBetween, 9                  | SpinDec::SimpleCubicLatticeVectors, 52 |
| maxAbsCoeff, 9                      | SpinDec::SpinBasis, 53                 |
| partialTrace, 10                    | operator <sup>^</sup> , 54             |
| spectralDecomposition, 10           | operator+, 54                          |
|                                     | <u>*</u>                               |
| tensorProduct, 10                   | SpinDec::SpinBath, 55                  |
| unitarySpectralDecomposition, 10    | get_bath_state, 56                     |
| SpinDec::CCE, 11                    | intrabath_edges_, 56                   |
| calculate, 12                       | spin_system_base_, 56                  |
| SpinDec::Cluster, 13                | SpinDec::SpinDonor, 57                 |
| SpinDec::ClusterDatabase, 14        | adiabatic_level_labels_, 62            |
| SpinDec::ClusterDatabaseEntry, 16   | build_basis, 60                        |
| SpinDec::Constants, 17              | build_truncated_basis, 60              |
| kElectronGyromagneticRatio, 17      | calc_adiabatic_level_labels, 60        |
| kPi, 17                             | complete_basis_, 62                    |
| kPlanck, 17                         | energy, 61                             |
| kReducedPlanck, 17                  | orthogonal_adiabatic_level_label, 61   |
| SpinDec::CPMG, 18                   | orthogonal_level_label, 61             |
| SpinDec::CPMGDephasing, 19          | orthogonal_level_labels_, 62           |
| SpinDec::CrystalBasis, 20           | polarization, 61                       |
| SpinDec::CrystalStructure, 21       | set_transition, 61                     |
| fill_site_vectors, 22               | sorted_level_labels_, 62               |
| SpinDec::CSDProblem, 23             | SpinDonor, 60                          |
| system_bath_edges_, 24              | transition_level_labels_, 62           |
| SpinDec::DensityOperator, 25        | SpinDec::SpinDown, 63                  |
| SpinDec::DiamondCubic, 26           | init, 63                               |
| int_range_centred_cube, 26          | SpinDec::SpinHalf, 64                  |
| SpinDec::Dipolar, 27                | SpinDec::SpinHalfParameters, 65        |
| SpinDec::Eigenspectrum, 29          | SpinDec::SpinHalfStates, 66            |
| SpinDec::ElectronSpinParameters, 30 | init, 66                               |
| SpinDec::Errors, 31                 | SpinDec::SpinHamiltonian, 67           |
| SpinDec::EvolutionOperator, 32      | fill_zeeman, 68                        |
| eigenvalues_, 33                    | SpinDec::SpinInteraction, 69           |
| eigenvectors_, 33                   | fill_ising_flipflop, 70                |
| EvolutionOperator, 32               | SpinDec::SpinInteractionEdge, 71       |
| SpinDec::FileProperties, 34         | SpinDec::SpinInteractionGraph, 72      |
| SpinDec::FreeEvolution, 35          | add_vertex, 73                         |
| SpinDec::HermitianEigenspectrum, 36 |                                        |
|                                     | join, 73                               |
| spectralDecomposition, 36           | join_in_place, 73                      |
| SpinDec::Hyperfine, 37              | SpinDec::SpinInteractionVertex, 75     |
| SpinDec::HyperfineParameters, 39    | SpinDec::SpinOperator, 76              |
| SpinDec::IdentityOperator, 40       | SpinDec::SpinParameters, 78            |
| SpinDec::IdentityPulse, 41          | SpinDec::SpinParametersVector, 80      |
| SpinDec::LatticeVectors, 42         | SpinDec::SpinState, 81                 |
|                                     |                                        |

INDEX 99

```
SpinDec::SpinSystem, 83
SpinDec::SpinSystemBase, 84
    print, 85
    set_state, 85
SpinDec::SpinUp, 86
    init, 86
SpinDec::StringOptions, 87
SpinDec::TimeArray, 88
    logarithmic_time, 89
SpinDec::TimeEvolution, 90
SpinDec::TwoStateSuperposition, 92
SpinDec::UniformMagneticField, 93
SpinDonor
    SpinDec::SpinDonor, 60
system_bath_edges_
    SpinDec::CSDProblem, 24
tensor Product\\
    SpinDec::BoostEigen, 10
transition_level_labels_
    SpinDec::SpinDonor, 62
uniform_c_rand
    SpinDec::RandomNumberGenerator, 49
unitarySpectralDecomposition
    SpinDec::BoostEigen, 10
```