SEQUENCE LISTING

<110>	Gillies, Stephen D. Lo, Kin-Ming													
<120>	Immunocytokine Sequences and Uses Thereof													
<130>	LEX-023													
<150> <151>	US 60/433,945 2002-12-17													
<160>	6													
<170>	Pate	PatentIn version 3.1												
<210> <211> <212> <213>	1 113 PRT Artificial Sequence													
<220> <223> Humanized Immunoglobulin light chain variable region														
<400> 1														
Asp Vai	l Val	Met	Thr 5	Gln	Thr	Pro	Leu	Ser 10	Leu	Pro	Val	Thr	Pro 15	Gly
Glu Pro	o Ala	Ser 20	Ile	Ser	Cys	Arg	Ser 25	Ser	Gln	Ser	Leu	Val 30	His	Arg
Asn Gly	y Asn 35	Thr	Tyr	Leu	His	Trp 40	Tyr	Leu	Gln	Lys	Pro 45	Gly	Gln	Ser
Pro Lys	s Leu	Leu	Ile	His	Lys 55	Val	Ser	Asn	Arg	Phe 60	Ser	Gly	Val	Pro
Asp Are	g Phe	Ser	Gly	Ser 70		Ser	_		Asp 75	Phe	Thr	Leu	Lys	Ile 80
Ser Ar	g Val	Glu	Ala 85	Glu	Asp	Leu	Gly	Val 90	Tyr	Phe	Cys	Ser	Gln 95	Ser
Thr His	s Val	Pro 100	Pro	Leu	Thr	Phe	Gly 105	Ala	Gly	Thr	Lys	Leu 110	Glu	Leu
Lys														
<210> <211>														

```
<212> PRT
<213> Artificial Sequence
<220>
<223>
      Humanized Immunoglobulin heavy chain variable region
<400> 2
Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Glu Lys Pro Gly Ala
Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Ser Ser Phe Thr Gly Tyr
Asn Met Asn Trp Val Arg Gln Asn Ile Gly Lys Ser Leu Glu Trp Ile
Gly Ala Ile Asp Pro Tyr Tyr Gly Gly Thr Ser Tyr Asn Gln Lys Phe
Lys Gly Arg Ala Thr Leu Thr Val Asp Lys Ser Thr Ser Thr Ala Tyr
Met His Leu Lys Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
                                   90
Val Ser Gly Met Glu Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser
           100
Ser
<210>
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Linker sequence
<400> 3
Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
<210> 4
<211> 10531
<212> DNA
<213> Artificial Sequence
```

<220>

<223> Vector containing humanized Immunoglobulin light and heavy chain and IL-2

<400> gtcgacattg attattgact agttattaat agtaatcaat tacggggtca ttagttcata 60 geccatatat ggagtteege gttacataac ttacggtaaa tggeeegeet ggetgaeege 120 ccaacgaccc ccgcccattg acgtcaataa tgacgtatgt tcccatagta acgccaatag 180 ggactttcca ttgacgtcaa tgggtggagt atttacggta aactgcccac ttggcagtac 240 atcaagtgta tcatatgcca agtacgcccc ctattgacgt caatgacggt aaatggcccg 300 cctggcatta tgcccagtac atgaccttat gggactttcc tacttggcag tacatctacg 360 tattagtcat cgctattacc atggtgatgc ggttttggca gtacatcaat gggcgtggat 420 agcggtttga ctcacgggga tttccaagtc tccaccccat tgacgtcaat gggagtttgt 480 tttggcacca aaatcaacgg gactttccaa aatgtcgtaa caactccgcc ccattgacgc 540 aaatgggcgg taggcgtgta cggtgggagg tctatataag cagagctctc tggctaacta 600 cagaacccac tgcttaactg gcttatcgaa attaatacga ctcactatag ggagaccctc 660 tagaatgaag ttgcctgtta ggctgttggt gctgatgttc tggattcctg gtgaggagag 720 agggaagtga gggaggagaa tggacaggga gcaggagcac tgaatcccat tgctcattcc 780 atgtatctgg catgggtgag aagatgggtc ttatcctcca gcatggggcc tctggggtga 840 atacttgtta gagggaggtt ccagatggga acatgtgcta taatgaagat tatgaaatgg 900 atgcctggga tggtctaagt aatgccttag aagtgactag acacttgcaa ttcacttttt 960 ttggtaagaa gagattttta ggctataaaa aaatgttatg taaaaataaa cgatcacagt 1020 tgaaataaaa aaaaaatata aggatgttca tgaattttgt gtataactat gtatttctct 1080 ctcattgttt cagcttcctt aagcgacgtg gtgatgaccc agacccccct gtccctgccc 1140 gtgacccccg gcgagcccgc ctccatctcc tgcagatcta gtcagagtct tgtacaccgt 1200 aatggaaaca cctatttaca ttggtacctg cagaagccag gccagtctcc aaagctcctg 1260 attcacaaag tttccaaccg attttctggg gtcccagaca ggttcagtgg cagtggatca 1320 1380 gggacagatt tcacactcaa gatcagcaga gtggaggctg aggatctggg agtttatttc 1440 tgttctcaaa gtacacatgt tcctccgctc acgttcggtg ctgggaccaa gctggagctg aaacgtatta gtgtgtcagg gtttcacaag agggactaaa gacatgtcag ctatgtgtga 1500 1560 ctaatggtaa tgtcactaag ctgcgggatc ccgcaattct aaactctgag ggggtcggat gacgtggcca ttctttgcct aaagcattga gtttactgca aggtcagaaa agcatgcaaa 1620 gccctcagaa tggctgcaaa gagctccaac aaaacaattt agaactttat taaggaatag 1680

ggggaagcta ggaagaaact caaaacatca agattttaaa tacgcttctt ggtctccttg 1740 ctataattat ctgggataag catgctgttt tctgtctgtc cctaacatgc cctgtgatta 1800 teegeaaaca acacacecaa gggeagaact ttgttaetta aacaceatee tgtttgette 1860 1920 tttcctcagg aactgtggct gcaccatctg tcttcatctt cccgccatct gatgagcagt tgaaatetgg aactgeetet gttgtgtgee tgetgaataa ettetateee agagaggeea 1980 aagtacagtg gaaggtggat aacgccctcc aatcgggtaa ctcccaggag agtgtcacag 2040 agcaggacag caaggacagc acctacagcc tcagcagcac cctgacgctg agcaaagcag 2100 2160 actacgagaa acacaaagtc tacgcctgcg aagtcaccca tcagggcctg agctcgcccg 2220 tcacaaagag cttcaacagg ggagagtgtt agagggagaa gtgcccccac ctgctcctca 2280 gttccagcct gaccccctcc catcctttgg cctctgaccc tttttccaca ggggacctac 2340 ccctattgcg gtcctccagc tcatctttca cctcacccc ctcctcctcc ttggctttaa ttatgctaat gttggaggag aatgaataaa taaagtgaat ctttgcacct gtggtttctc 2400 totttootoa atttaataat tattatotgt tgtttaccaa ctactcaatt totottataa 2460 gggactaaat atgtagtcat cctaaggcgc ataaccattt ataaaaatca tccttcattc 2520 2580 tattttaccc tatcatcctc tgcaagacag tecteectea aacceacaag cettetgtee tcacagtccc ctgggccatg gtaggagaga cttgcttcct tgttttcccc tcctcagcaa 2640 gccctcatag tcctttttaa gggtgacagg tcttacggtc atatatcctt tgattcaatt 2700 ccctgggaat caaccaaggc aaatttttca aaagaagaaa cctgctataa agagaatcat 2760 2820 tcattgcaac atgatataaa ataacaacac aataaaagca attaaataaa caaacaatag ggaaatgttt aagttcatca tggtacttag acttaatgga atgtcatgcc ttatttacat 2880 ttttaaacag gtactgaggg actcctgtct gccaagggcc gtattgagta ctttccacaa 2940 cctaatttaa tccacactat actgtgagat taaaaacatt cattaaaatg ttgcaaaggt 3000 tctataaagc tgagagacaa atatattcta taactcagca atcccacttc tagggtcgat 3060 cgacgttgac attgattatt gactagttat taatagtaat caattacggg gtcattagtt 3120 catageceat atatggagtt eegegttaca taaettaegg taaatggeee geetggetga 3180 ccgcccaacg acccccgccc attgacgtca ataatgacgt atgttcccat agtaacgcca 3240 atagggactt tccattgacg tcaatgggtg gagtatttac ggtaaactgc ccacttggca 3300 3360 gtacatcaag tgtatcatat gccaagtacg ccccctattg acgtcaatga cggtaaatgg ecegeetgge attatgeeca gtacatgace ttatgggaet ttectaettg geagtacate 3420 tacgtattag tcatcgctat taccatggtg atgcggtttt ggcagtacat caatgggcgt 3480

ggatagcggt	ttgactcacg	gggatttcca	agtctccacc	ccattgacgt	caatgggagt	3540
ttgttttggc	accaaaatca	acgggacttt	ccaaaatgtc	gtaacaactc	cgccccattg	3600
acgcaaatgg	gcggtaggcg	tgtacggtgg	gaggtctata	taagcagagc	tctctggcta	3660
actacagaac	ccactgctta	actggcttat	cgaaattaat	acgactcact	atagggagac	3720
ccaagctcct	cgaggctaga	atgaagttgc	ctgttaggct	gttggtgctg	atgttctgga	3780
ttcctggtga	ggagagaggg	aagtgaggga	ggagaatgga	cagggagcag	gagcactgaa	3840
tcccattgct	cattccatgt	atctggcatg	ggtgagaaga	tgggtcttat	cctccagcat	3900
ggggcctctg	gggtgaatac	ttgttagagg	gaggttccag	atgggaacat	gtgctataat	3960
gaagattatg	aaatggatgc	ctgggatggt	ctaagtaatg	ccttagaagt	gactagacac	4020
ttgcaattca	ctttttttgg	taagaagaga	tttttaggct	ataaaaaaat	gttatgtaaa	4080
aataaacgat	cacagttgaa	ataaaaaaaa	aatataagga	tgttcatgaa	ttttgtgtat	4140
aactatgtat	ttctctctca	ttgtttcagc	ttccttaagc	gaggtgcagc	tggtgcagtc	4200
cggcgccgag	gtggagaagc	ccggcgcctc	cgtgaagatc	tcctgcaagg	cctccggctc	4260
ctccttcacc	ggctacaaca	tgaactgggt	gcgccagaac	atcggcaagt	ccctggagtg	4320
gatcggcgcc	atcgacccct	actacggcgg	cacctcctac	aaccagaagt	tcaagggccg	4380
cgccaccctg	accgtggaca	agtccacctc	caccgcctac	atgcacctga	agtccctgcg	4440
ctccgaggac	accgccgtgt	actactgcgt	gtccggcatg	gagtactggg	gccagggcac	4500
ctccgtgacc	gtgtcctccg	gtaagctttt	ctggggcagg	ccaggcctga	ccttggcttt	4560
ggggcaggga	gggggctaag	gtgaggcagg	tggcgccagc	caggtgcaca	cccaatgccc	4620
atgagcccag	acactggacg	ctgaacctcg	cggacagtta	agaacccagg	ggcctctgcg	4680
ccctgggccc	agctctgtcc	cacaccgcgg	tcacatggca	ccacctctct	tgcagcctcc	4740
accaagggcc	catcggtctt	cccctggca	ccctcctcca	agagcacctc	tgggggcaca	4800
gcggccctgg	gctgcctggt	caaggactac	ttccccgaac	cggtgacggt	gtcgtggaac	4860
tcaggcgccc	tgaccagcgg	cgtgcacacc	ttcccggctg	tcctacagtc	ctcaggactc	4920
tactccctca	gcagcgtggt	gaccgtgccc	tccagcagct	tgggcaccca	gacctacatc	4980
tgcaacgtga	atcacaagcc	cagcaacacc	aaggtggaca	agagagttgg	tgagaggcca	5040
gcacagggag	ggagggtgtc	tgctggaagc	caggctcagc	gctcctgcct	ggacgcatcc	5100
cggctatgca	gtcccagtcc	agggcagcaa	ggcaggcccc	gtctgcctct	tcacccggag	5160
gcctctgccc	gccccactca	tgctcaggga	gagggtcttc	tggctttttc	cccaggctct	5220
gggcaggcac	aggctaggtg	cccctaaccc	aggccctgca	cacaaagggg	caggtgctgg	5280

geteagaeet gecaagagee atateeggga ggaeeetgee eetgaeetaa geeeaeeeea 5340 aaggccaaac tetecaetee etcagetegg acacettete teeteceaga ttecagtaac 5400 toccaatott etetetgeag ageceaaate ttgtgacaaa aeteacacat geecacegtg 5460 cccaggtaag ccagcccagg cctcgccctc cagctcaagg cgggacaggt gccctagagt 5520 5580 agectgcate cagggacagg ceceageegg gtgetgacae gtecaeetee atetetteet 5640 cagcacctga actcctgggg ggaccgtcag tcttcctctt ccccccaaaa cccaaggaca ccctcatgat ctcccggacc cctgaggtca catgcgtggt ggtggacgtg agccacgaag 5700 accetgaggt caagttcaac tggtacgtgg acggcgtgga ggtgcataat gccaagacaa 5760 agccgcggga ggagcagtac aacagcacgt accgtgtggt cagcgtcctc accgtcctgc 5820 5880 accaggactg gctgaatggc aaggagtaca agtgcaaggt ctccaacaaa gccctcccag 5940 cccccatcga gaaaaccatc tccaaagcca aaggtgggac ccgtggggtg cgagggccac atggacagag gccggctcgg cccaccctct gccctgagag tgaccgctgt accaacctct 6000 6060 gtccctacag ggcagccccg agaaccacag gtgtacaccc tgcccccatc acgggaggag atgaccaaga accaggtcag cctgacctgc ctggtcaaag gcttctatcc cagcgacatc 6120 gccgtggagt gggagagcaa tgggcagccg gagaacaact acaagaccac gcctcccgtg 6180 ctggacteeg aeggeteett etteetetat ageaagetea eegtggaeaa gageaggtgg 6240 cagcagggga acgtettete atgeteegtg atgeatgagg etetgeacaa ecaetacaeg 6300 cagaagagcc tetecetgte eeegggtaaa geeceaactt caagttetae aaagaaaaca 6360 cagctgcaac tggagcatct cctgctggat ctccagatga ttctgaatgg aattaacaac 6420 6480 tacaagaatc ccaaactcac caggatgctc acattcaagt tctacatgcc caagaaggcc 6540 acagagetea aacateteea gtgtetagag gaggaaetea aacetetgga ggaagtgeta aacctcgctc agagcaaaaa cttccactta agacctaggg acttaatcag caatatcaac 6600 gtaatagttc tggaactaaa gggatccgaa acaacattca tgtgtgaata tgctgatgag 6660 6720 acagcaacca ttgtagaatt tctgaacaga tggattacct tttgtcaaag catcatctca 6780 acactaactt gataattaag tgctcgaggg atccagacat gataagatac attgatgagt 6840 ttggacaaac cacaactaga atgcagtgaa aaaaatgctt tatttgtgaa atttgtgatg 6900 ctattgcttt atttgtaacc attagaagct gcaataaaca agttaacaac aacaattgca 6960 ttcattttat gtttcaggtt cagggggagg tgtgggaggt tttttaaaagc aagtaaaacc 7020 tctacaaatg tggtatggct gattatgatc ctgcctcgcg cgtttcggtg atgacggtga 7080 aaacctctga cacatgcagc tcccggagac ggtcacagct tgtctgtaag cggatgccgg

gagcagacaa gcccgtcagg gcgcgtcagc gggtgttggc gggtgtcggg gcgcagccat 7140 gacccagtca cgtagcgata gcggagtgta tactggctta actatgcggc atcagagcag 7200 attgtactga gagtgcacca tatgcggtgt gaaataccgc acagatgcgt aaggagaaaa 7260 taccgcatca ggcgctcttc cgcttcctcg ctcactgact cgctgcgctc ggtcgttcgg 7320 7380 ctgcggcgag cggtatcagc tcactcaaag gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag 7440 gccgcgttgc tggcgttttt ccataggctc cgccccctg acgagcatca caaaaatcga 7500 cgctcaagtc agaggtggcg aaacccgaca ggactataaa gataccaggc gtttccccct 7560 ggaageteee tegtgegete teetgtteeg accetgeege ttaceggata eetgteegee 7620 tttctccctt cgggaagcgt ggcgctttct caatgctcac gctgtaggta tctcagttcg 7680 gtgtaggteg ttegeteeaa getgggetgt gtgcacgaac eeeeegttea geeegaeege 7740 tgcgccttat ccggtaacta tcgtcttgag tccaacccgg taagacacga cttatcgcca 7800 ctggcagcag ccactggtaa caggattagc agagcgaggt atgtaggcgg tgctacagag 7860 ttcttgaagt ggtggcctaa ctacggctac actagaagga cagtatttgg tatctgcgct 7920 7980 ctgctgaagc cagttacctt cggaaaaaga gttggtagct cttgatccgg caaacaaacc accgctggta gcggtggttt ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga 8040 tctcaagaag atcctttgat cttttctacg gggtctgacg ctcagtggaa cgaaaactca 8100 8160 cgttaaggga ttttggtcat gagattatca aaaaggatct tcacctagat ccttttaaat taaaaatgaa gttttaaatc aatctaaagt atatatgagt aaacttggtc tgacagttac 8220 8280 caatgettaa teagtgagge acetatetea gegatetgte tatttegtte atecatagtt gcctgactcc ccgtcgtgta gataactacg atacgggagg gcttaccatc tggccccagt 8340 gctgcaatga taccgcgaga cccacgctca ccggctccag atttatcagc aataaaccag 8400 8460 ccagccggaa gggccgagcg cagaagtggt cctgcaactt tatccgcctc catccagtct attaattgtt gccgggaagc tagagtaagt agttcgccag ttaatagttt gcgcaacgtt 8520 8580 gttgccattg ctgcaggcat cgtggtgtca cgctcgtcgt ttggtatggc ttcattcagc teeggtteee aacgateaag gegagttaca tgateeeca tgttgtgeaa aaaageggtt 8640 8700 ageteetteg gteeteegat egttgteaga agtaagttgg eegeagtgtt ateacteatg gttatggcag cactgcataa ttctcttact gtcatgccat ccgtaagatg cttttctgtg 8760 actggtgagt actcaaccaa gtcattctga gaatagtgta tgcggcgacc gagttgctct 8820 tgcccggcgt caacacggga taataccgcg ccacatagca gaactttaaa agtgctcatc 8880

attggaaaac	gttcttcggg	gcgaaaactc	tcaaggatct	taccgctgtt	gagatccagt	8940
tcgatgtaac	ccactcgtgc	acccaactga	tcttcagcat	cttttacttt	caccagcgtt	9000
tctgggtgag	caaaaacagg	aaggcaaaat	gccgcaaaaa	agggaataag	ggcgacacgg	9060
aaatgttgaa	tactcatact	cttccttttt	caatattatt	gaagcattta	tcagggttat	9120
tgtctcatga	gcggatacat	atttgaatgt	atttagaaaa	ataaacaaat	aggggttccg	9180
cgcacatttc	cccgaaaagt	gccacctgac	gtctaagaaa	ccattattat	catgacatta	9240
acctataaaa	ataggcgtat	cacgaggccc	tttcgtcttc	aagaattccg	atccagacat	9300
gataagatac	attgatgagt	ttggacaaac	cacaactaga	atgcagtgaa	aaaaatgctt	9360
tatttgtgaa	atttgtgatg	ctattgcttt	atttgtaacc	attagaagct	gcaataaaca	9420
agttaacaac	aacaattgca	ttcattttat	gtttcaggtt	cagggggagg	tgtgggaggt	9480
tttttaaagc	aagtaaaacc	tctacaaatg	tggtatggct	gattatgatc	taaagccagc	9540
aaaagtccca	tggtcttata	aaaatgcata	gctttcggag	gggagcagag	aacttgaaag	9600
catcttcctg	ttagtctttc	ttctcgtaga	ccttaaattc	atacttgatt	cctttttcct	9660
cctggacctc	agagaggacg	cctgggtatt	ctgggagaag	tttatatttc	cccaaatcaa	9720
tttctgggaa	aaacgtgtca	ctttcaaatt	cctgcatgat	ccttgtcaca	aagagtctga	9780
ggtggcctgg	ttgattcatg	gcttcctggt	aaacagaact	gcctccgact	atccaaacca	9840
tgtctacttt	acttgccaat	tccggttgtt	caataagtct	taaggcatca	tccaaacttt	9900
tggcaagaaa	atgageteet	cgtggtggtt	ctttgagttc	tctactgaga	actatattaa	9960
ttctgtcctt	taaaggtcga	ttcttctcag	gaatggagaa	ccaggttttc	ctacccataa	10020
tcaccagatt	ctgtttacct	tccactgaag	aggttgtggt	cattctttgg	aagtacttga	10080
actcgttcct	gagcggaggc	cagggtcggt	ctccgttctt	gccaatcccc	atattttggg	10140
acacggcgac	gatgcagttc	aatggtcgaa	ccatgagggc	accaagctag	ctttttgcaa	10200
aagcctaggc	ctccaaaaaa	gcctcctcac	tacttctgga	atagctcaga	ggccgaggcg	10260
gcctcggcct	ctgcataaat	aaaaaaaatt	agtcagccat	ggggcggaga	atgggcggaa	10320
ctgggcggag	ttaggggcgg	gatgggcgga	gttaggggcg	ggactatggt	tgctgactaa	10380
ttgagatgca	tgctttgcat	acttctgcct	gctggggagc	ctggggactt	tccacacctg	10440
gttgctgact	aattgagatg	catgctttgc	atacttctgc	ctgctgggga	gcctggggac	10500
tttccacacc	ctaactgaca	cacattccac	a	·		10531

<210> 5 <211> 220 <212> PRT

<213> Artificial Sequence

<220>

<223> Humanized Immunoglobulin light chain

<400> 5

Asp Val Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Thr Pro Gly 1 5 10 15

Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Val His Arg 20 25 30

Asn Gly Asn Thr Tyr Leu His Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45

Pro Lys Leu Leu Ile His Lys Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 80

Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Phe Cys Ser Gln Ser 85 90 95

Thr His Val Pro Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu 100 105 110

Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp 115 120 125

Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn 130 135 140

Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu 145 150 155 160

Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp 165 170 175

Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr 180 185 190

Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser 195 200 205

Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys Page 9 210 215 220

<210> 6

<211> 575 <212> PRT

<213> Artificial Sequence

<220>

<223> Humanized Immunoglobulin heavy chain and IL-2

<400> 6

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Glu Lys Pro Gly Ala

Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Ser Ser Phe Thr Gly Tyr

Asn Met Asn Trp Val Arg Gln Asn Ile Gly Lys Ser Leu Glu Trp Ile

Gly Ala Ile Asp Pro Tyr Tyr Gly Gly Thr Ser Tyr Asn Gln Lys Phe

Lys Gly Arg Ala Thr Leu Thr Val Asp Lys Ser Thr Ser Thr Ala Tyr

Met His Leu Lys Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys

Val Ser Gly Met Glu Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser

Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser

Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp 135

Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr 150 155

Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr 165 170

Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln 180 185

Thr	Tyr	Ile 195	Cys	Asn	Val	Asn	His 200	Lys	Pro	Ser	Asn	Thr 205	Lys	Val	Asp
Lys	Arg 210	Val	Glu	Pro	Lys	Ser 215	Cys	Asp	Lys	Thr	His 220	Thr	Cys	Pro	Pro
Cys 225	Pro	Ala	Pro	Glu	Leu 230	Leu	Gly	Gly	Pro	Ser 235	Val	Phe	Leu	Phe	Pro 240
Pro	Lys	Pro	Lys	Asp 245	Thr	Leu	Met	Ile	Ser 250	Arg	Thr	Pro	Glu	Val 255	Thr
Cys	Val	Val	Val 260	Asp	Val	Ser	His	Glu 265	Asp	Pro	Glu	Val	Lys 270	Phe	Asn
Trp	Tyr	Val 275	Asp	Gly	Val	Glu	Val 280	His	Asn	Ala	Lys	Thr 285	Lys	Pro	Arg
Glu	Glu 290	Gln	Tyr	Asn	Ser	Thr 295	Tyr	Arg	Val	Val	Ser 300	Val	Leu	Thr	Val
Leu 305	His	Gln	Asp	Trp	Leu 310	Asn	Gly	Lys	Glu	Tyr 315	Lys	Cys	Lys	Val	Ser 320
Asn	Lys	Ala	Leu	Pro 325	Ala	Pro	Ile	Glu	Lys 330	Thr	Ile	Ser	Lys	Ala 335	Lys
Gly	Gln	Pro	Arg 340	Glu	Pro	Gln	Val	Tyr 345	Thr	Leu	Pro	Pro	Ser 350	Arg	Glu
Glu	Met	Thr 355	Lys	Asn	Gln	Val	Ser 360	Leu	Thr	Cys	Leu	Val 365	Lys	Gly	Phe
Tyr	Pro 370	Ser	Asp	Ile	Ala	Val 375	Glu	Trp	Glu	Ser	Asn 380	Gly	Gln	Pro	Glu
Asn 385	Asn	Tyr	Lys	Thr	Thr 390	Pro	Pro	Val	Leu	Asp 395	Ser	Asp	Gly	Ser	Phe 400
Phe	Leu	Tyr	Ser	Lys 405	Leu	Thr	Val	Asp	Lys 410	Ser	Arg	Trp	Gln	Gln 415	Gly
Asn	Val	Phe	Ser 420	Cys	Ser	Val	Met	His 425	Glu	Ala	Leu	His	Asn 430	His	Tyr

Thr	Gin	Lys 435	Ser	Leu	Ser	Leu	440	Pro	GTA	Ala	Pro	1hr 445	Ser	Ser	Ser
Thr	Lys 450	Lys	Thr	Gln	Leu	Gln 455	Leu	Glu	His	Leu	Leu 460	Leu	Asp	Leu	Gln
Met 465	Ile	Leu	Asn	Gly	Ile 470	Asn	Asn	Tyr	Lys	Asn 475	Pro	Lys	Leu	Thr	Arg 480
Met	Leu	Thr	Phe	Lys 485	Phe	Tyr	Met	Pro	Lys 490	Lys	Ala	Thr	Glu	Leu 495	Lys
His	Leu	Gln	Cys 500	Leu	Glu	Glu	Glu	Leu 505	Lys	Pro	Leu	Glu	Glu 510	Val	Leu
		515					520					525	Asp		
	530					535				_	540		Glu		
545					550					555			Glu		Leu 560
Asn	Arg	'l'rp	TTE	Thr 565	Phe	Cys	GIn	Ser	570	тте	Ser	Thr	Leu	Thr 575	