Student Performance Prediction Using Deep Learning

1. Introduction and Objectives

Educational institutions continuously seek ways to support student success through early interventions. Predicting student academic performance using machine learning and deep learning models is a significant step toward proactive support. The goal of this project is to build a binary classification model that predicts whether a student will pass or fail based on various features, such as attendance rate, study hours, parental education level, and past scores.

This project has the following objectives:

- Explore and understand the dataset.
- Preprocess the data including handling categorical and numerical features.
- Build and train a deep learning model using PyTorch.
- Evaluate the model using standard classification metrics.
- Analyze feature importance using SHAP to interpret model decisions.
- Provide actionable insights based on the findings.

2. Data Exploration and Preprocessing

2.1 Dataset Overview

The dataset consists of 708 student records and 10 columns, including both categorical and numerical features:

Categorical Columns:

- Gender
- Parental_Education_Level
- Internet_Access_at_Home
- Extracurricular_Activities

Numerical Columns:

- Study_Hours_per_Week
- Attendance Rate
- Past Exam Scores

Final Exam Score

The target variable is Pass_Fail, which is binary: Pass or Fail.

2.2 Data Cleaning

- Checked for missing values: None found.
- Balanced dataset: 354 "Pass" and 354 "Fail" samples.
- Converted target variable to binary (1 = Pass, 0 = Fail).

2.3 Feature Engineering and Preprocessing

- Used OneHotEncoder for categorical variables.
- Used StandardScaler for numerical features.
- Combined into a ColumnTransformer pipeline.

Fitted the preprocessor on the training data and applied the same transformation to both train and test sets.

```
Shape: (708, 10)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 708 entries, 0 to 707
Data columns (total 10 columns):
                    Non-Null Count Dtype
# Column
0 Student_ID 708 non-null object
1 Gender 708 non-null object
2 Study_Hours_per_Week 708 non-null int64
3 Attendance_Rate 708 non-null float64
4 Past_Exam_Scores 708 non-null int64
5 Parental_Education_Level 708 non-null object
6 Internet_Access_at_Home 708 non-null object
7 Extracurricular_Activities 708 non-null object
     Extracurricular_Activities 708 non-null
8 Final_Exam_Score 708 non-null int64
                                         708 non-null object
9 Pass Fail
dtypes: float64(1), int64(3), object(6)
memory usage: 55.4+ KB
Missing values:
Student_ID
                                       0
Gender
Study_Hours_per_Week
Attendance Rate
Past Exam Scores
Parental_Education_Level
Internet_Access_at_Home
Extracurricular_Activities
Final Exam Score
                                      0
Pass Fail
                                      0
dtype: int64
Pass_Fail
Pass_Fail
Pass 354
Fail
        354
Name: count, dtype: int64
```

3. Model Architecture and Parameter Choices

We used a fully connected feed-forward neural network built with PyTorch. The architecture is as follows:

- Input Layer: Number of input features after preprocessing.
- Hidden Layer 1: 64 neurons, ReLU activation.
- **Hidden Layer 2:** 32 neurons, ReLU activation.
- Output Layer: 1 neuron, Sigmoid activation for binary classification.

4. Evaluation Results

We evaluated the model using the following metrics and this was the results on the test dataset:

Results on the test dataset:

• Accuracy: 99.3%

• **Pecision:** 99.4%

• Recall: 98.6%

• **F1 Score:** 99.0%

These results indicate that the model performs very well on the test set, with high performance across all metrics.

5. Feature Importance Analysis

To interpret which features influenced the predictions the most, we used SHAP (SHapley Additive exPlanations):

- Sampled a subset of the test set.
- Calculated SHAP values for each feature.
- Plotted SHAP summary plot.

SHAP summary plot

Findings:

- Attendance Rate and Final Exam Score were the most influential features.
- Past Exam Scores and Study Hours per Week also contributed significantly.
- Categorical features like **Parental Education** and **Internet Access** had minor but consistent influence.

6. Discussion and Conclusion

This project demonstrates that deep learning models can achieve high accuracy in binary classification tasks like student performance prediction. The model achieved:

- High predictive accuracy (99.3%)
- Balanced performance across precision, recall, and F1 score
- Good interpretability using SHAP

Key insights:

- Students with high attendance and good final exam scores are more likely to pass.
- Study behavior (study hours, past exam scores) plays an important role.
- External factors (parental education, internet access) have less impact, but should not be ignored.

Limitations and Future Work:

- The dataset is relatively small; future work should include cross-validation or testing on new datasets.
- Additional features like socioeconomic status or psychological metrics could improve predictions.
- Incorporating sequence models (e.g., RNNs) might better capture student progression over time.

This report confirms that deep learning offers a promising avenue for early student intervention through predictive analytics.