DIGITAL IMAGE PROCESSING

Image Enhancement in Spatial Domain: Session 3

Dr. Mrinmoy Ghorai

Indian Institute of Information Technology Sri City, Andhra Pradesh

Today's Lecture

- Image Enhancement in Spatial Domain
 - Local Histogram Processing
 - Using Histogram Statistics for Image Enhancement

Image Enhancement in Spatial Doma Local Histogram Processing

- Define a neighborhood and move its center from pixel to pixel
- At each location, the histogram of the points in the neighborhood is computed. Either histogram equalization or histogram specification transformation function is obtained
- Map the intensity of the pixel centered in the neighborhood
- Move to the next location and repeat the procedure

Local Histogram Processing

Image Enhancement in Spatial Doma Histogram Statistics for Image Enhancement

Average Intensity

Variance

Histogram Statistics for Image Enhancement

Histogram Statistics for Image Enhancement

Image Enhancement in Spatial Doma Spatial Filtering

- The process of linear filtering is called convolution.
- The filter masks are sometimes called convolution masks or convolution kernel.

Image Enhancement in Spatial Doma Smoothing Spatial Filters

- Smoothing filters are used for blurring and for noise reduction.
- Blurring is used in removal of small details and bridging of small gaps in lines or curves.
- Smoothing spatial filters include linear filters and nonlinear filters.
- These filters sometimes are called averaging filters.
- They are also referred to a *lowpass filters* in frequency domain.

Smoothing Linear Spatial Filters

Two Smoothing Averaging Filter Masks

average

weighted average

Two Smoothing Averaging Filter Masks

Example: Gross Representation of Objects

Image Enhancement in Spatial Doma Order-Statistic (Nonlinear) Filters

- Nonlinear
- Based on ordering (ranking) the pixels contained in the filter mask
- Replacing the value of the center pixel with the value determined by the ranking result
- E.g., median filter, max filter, min filter

Example: Use of Median Filtering for Noise Reduction

Image Enhancement in Spatial Doma Sharpening Spatial Filters

- Foundation
- Laplacian Operator
- Unsharp Masking and Highboost Filtering
- Using First-Order Derivatives for Nonlinear Image
 Sharpening The Gradient

Sharpening Spatial Filters: Foundation

The first-order derivative of a one-dimensional function f(x) is the difference

The second-order derivative of f(x) as the difference

Sharpening Spatial Filters: Laplacian Operator

Sharpening Spatial Filters: Laplacian Operator

Image sharpening in the way of using the Laplacian:

Image Enhancement in Spatial Doma Unsharp Masking and Highboost Filtering

Unsharp masking

Sharpen images consists of subtracting an unsharp (smoothed) version of an image from the original image e.g., printing and publishing industry

□ Steps

- Blur the original image
- II. Subtract the blurred image from the original
- III. Add the mask to the original

Unsharp Masking and Highboost Filtering

Unsharp Masking and Highboost Filtering

Unsharp Masking and Highboost Filtering: Example

Image Sharpening based on First-Order Derivatives

Gradient Image

Image Sharpening based on First-Order Derivatives

Z_1	Z_2	Z_3
Z ₄	Z_5	Z_6
Z ₇	Z ₈	Z_9

Example

Combining
Spatial
Enhancement
Methods

Goal:

Enhance the image by sharpening it and by bringing out more of the skeletal detail

Example

Combining
Spatial
Enhancement
Methods

Goal:

Enhance the image by sharpening it and by bringing out more of the skeletal detail

Next Class

☐ Image Enhancement in Frequency Domain

Thank you: Question?