

UNIVERSITÀ DEGLI STUDI DI PADOVA

Image representation and coding

Stefano Ghidoni

Agenda

IAS-LAB

Digital image coding

Spatial resolution

Gray level resolution

Image formation

Sampling and quantization

IAS-LAB

Sampling:

$$f(m,n) \triangleq f(m\Delta x, n\Delta y)$$

- $-\Delta x$ and Δy sampling period along x and y axis
- Quantization:

$$f_d(m,n) = Q[f(m,n)]$$

Sampling and quantization

Digital gray level images

Image coordinate system(s)

IAS-LAB

FIGURE 2.18

Coordinate convention used in this book to represent digital images.

Caveats

- Vertical axis usually pointing down
- (x, y) vs (r, c)
- Starting index: 0 vs 1

	Origin	(x,y)	X Axis	Y Axis
Computer Vision (this course)	(0,0)	(c,r)	0	V
Gonzalez- Woods	(0,0)	(r,c)	V	0
Matlab	(1,1)	(r,c)	V	0
Image processing libraries (C++, Java, OpenCV)	(0,0)	(c,r)	0	V
Gimp (and most photo-editing softwares)	(0,0)	(c,r)	0	V

Digital color image

IAS-LAB

$$n_2$$

$$x[n_1, n_2] = \begin{bmatrix} r[n_1, n_2] \\ g[n_1, n_2] \\ b[n_1, n_2] \end{bmatrix}$$

 n_1

Digital color image

IAS-LAB

 $r[n_1,n_2]$

Digital color video

IAS-LAB

 n_1

Spatial & gray-level resolution

- Spatial resolution influences the smallest detectable detail in the image
 - # of pixels per unit distance

Spatial & gray-level resolution

- Spatial resolution influences the smallest detectable detail in the image
- Gray-level/intensity resolution smallest detectable change in gray level
 - # of bits per pixel

Spatial & gray-level resolution

- Spatial resolution smallest detectable detail in the image
- Gray-level resolution smallest detectable change in gray level
- Contrast difference between highest and lowest gray level in the image

Spatial resolution – example

IAS-LAB

256

512

Spatial resolution – example

Gray-level resolution – example

UNIVERSITÀ DEGLI STUDI DI PADOVA

Image representation and coding

Stefano Ghidoni

