

Задача 1. Разглеждаме следните две зарчета:

Нека при хвърлянето на двата зара случайната величина ξ е сборът на точките от синия и червения зар, а η – по-малкият брой точки от двата зара. Намерете:

- а) съвместното разпределение на сл. в. ξ и η ;
- б) маргиналните разпределения на 🗧 и η;
- в) коефициента на корелация $\rho(\xi,\eta)$.

Задача 2. Нека точката M е равномерно разпределена във вътрешността на ΔOAB , където O=(0,0) , A=(1,0) и B=(0,1) . Да се намери средната стойност на лицето на ΔABM .

Задача 3. Теглото на случайно избран студент от ФМИ е нормално разпределена случайна величина Z с очакване $\mu=75$ кг и дисперсия $\sigma^2=225$ кг 2 .

- а) Каква е вероятността от 5 случайно избрани студенти да има поне двама, които са с тегло над 85 кг?
- 6) В сградата на ФМИ има асансьор, който има максимална товаримост от 375 кг. Намерете най-голямото естествено число n такова, че за $W_n = \text{сумата от теглата на } n$ случайно избрани студенти, е изпълнено $P(W_n \ge 375) \le 0.01$.

Задача 4. Нека $X_1, X_2, ..., X_n$ са независими наблюдения над случайната величина ξ с плътност (разпределение на Борел)

$$P(\xi = x) = f_{\xi}(x|\theta) = \begin{cases} \frac{(\theta x)^{x-1}}{x!} e^{-\theta x}, & x = 1, 2, 3, \dots \\ 0, & x \notin N \end{cases},$$

където $0 < \theta < 1$ е неизвестен параметър и $E\xi = \frac{1}{1-\theta}$. Намерете максимално правдоподобната оценка за математическото очакване на ξ и проверете дали е неизместена.

Задача 5. При бутилирането на бира в 10 отделни партиди са наблюдавани следните средни отклонения в проценти от обявеното на етикета количество:

-1,17 -0,46 -0,09 -0,80 0,50 0,09 -0,68 1,07 0,49 -0,18

Предполага се, че средните отклонения са нормално разпределени с очакване $\mu=0$ и дисперсия σ^2 . Може ли при ниво на съгласие $\alpha=0.05$ да се отхвърли хипотезата H_0 : $\sigma^2=1$ срещу алтернативата H_1 : $\sigma^2<17$