Principles of Computer Architecture

CSE 240AFall 2024

Hadi Esmaeilzadeh

hadi@ucsd.edu

University of California, San Diego

Pipelining (some general principles)

- Requires separable jobs/stages
- Requires separate resources
- Achieves parallelism without replication
- Pipeline efficiency (keeping the pipeline full) critical to performance

Notice only supports beqz

Instruction Fetch (IF)

- IR <- M[PC]
- NPC <- PC + 4

Instruction Decode/register read (ID)

- A <- Reg[IR6..10]
- B <- Reg[IR11..15]
- Imm <- sign_extend(I

(Branch)

ADDI R7, R2, #35

5 Steps of a MIPS Instruction

Visualizing Pipelining

Pipeline Stages

Instead of forcing every instruction to go through all 5 stages, could we let them finish early if done early? For example, an R-type instruction can finish in 4 cycles, can we just let it finish early?

Selection	Yes/No	Reason (Choose BEST answer)	
А	Yes	Decreasing R-type to 4 cycles improves instruction throughput	
В	Yes	Decreasing R-type to 4 cycles improves instruction latency	
C	No	Decreasing R-type to 4 cycles causes hazards	
D	No	Decreasing R-type to 4 cycles causes hazards and doesn't impact throughput	
E	No	Decreasing R-type to 4 cycles causes hazards and doesn't impact latency	

Mixed Instructions in the Pipeline

The Pipelined MIPS Datapath

- addi R5, R1, #35
- add R6, R2, R1
- lw R8, 10000(R3)

addi R5, R1, #35

add R6, R2, R1

lw R8, 10000(R3)

Inst 4

Inst 5

Instruction Latencies and Throughput

Which of the statements below is true about a pipelined processor?

Selection	Statement
А	Individual instruction latency remains essentially unchanged from single-cycle (excluding overheads); Instruction throughput increases
В	Individual instruction latency remains essentially unchanged from multi-cycle (excluding overheads); Instruction throughput decreases
C	Individual instruction latency improves by a factor of 5 over single-cycle (excluding overheads); Instruction throughput increases
D	Individual instruction latency improves by a factor of 5 over multi-cycle (excluding overheads); Instruction throughput decreases
E	None of the above

Single Cycle vs. Multi-cycle

e de la companya de l	ersek troda se petan in nettesin die sersek troda se peta nebarite direka nu in nettesin die sersek troda se petan in nettesin die sersek troda se	СРІ	CT
Single Cycle			
Multi-cycle			
Pipeline			

Pipeline Performace

- ET = IC * CPI * CT
 - single-cycle processor
 - multiple-cycle processor
 - pipelined processor
- complexity has a cost
 - e.g., latch overhead
 - uneven stage latencies
- Can't always keep the pipeline full
 - why not?

When Things Go Wrong --Pipeline Hazards

- Limits to pipelining: **Hazards** prevent next instruction from executing during its designated clock cycle
 - *Structural hazards*: HW cannot support this combination of instructions
 - Data hazards: Instruction depends on result of prior instruction still in the pipeline
 - *Control hazards*: Pipelining of branches & other instructions that change the PC
- Common solution is to stall the pipeline until the hazard is resolved, inserting one or more "bubbles" in the pipeline

Key Points

Pipeline improves throughput rather than latency

Pipelining gets parallelism without replication

$$ET = IC * CPI * CT$$