Lecture 12: FE Modeling – 2D and 3D Trusses

APL705 Finite Element Method

Example Problem

- Consider a planar 4-bar truss as shown below. Given that E=29.5x10⁶ psi, A_e=1in² for all elements.
- 1. Determine the element stiffness matrix.
 - 2. Assemble the structural stiffness matrix K
 - 3. Solve for the displacement
 - 4. Recover the stresses in each element
 - 5. Calculate the reaction forces

2D Truss Problem

- Nodal coordinates table
- Element Connectivity

Element	1	2
1	1	2
2	3	2
3	1	3
4	4	3

Node	Х	У
1	0	0
2	40	0
3	40	30
4	0	30

Direction cosines

Element	l _e	1	m
1	40	1	0
2	30	0	-1
3	50	0.8	0.6
4	40	1	0

2D Truss Problem

$$\mathbf{k}^{1} = \frac{29.5 \times 10^{6}}{40} \begin{bmatrix} 1 & 2 & 3 & 4 & \leftarrow & Global dof \\ 1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 5 & 6 & 3 & 4 & \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 5 & 6 & 3 & 4 & \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 5 & 6 & 3 & 4 & \\ 6 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ -64 & -48 & -64 & -48 & -36 \\ -64 & -48 & -64 & -48 & -36 & -48 & -36 \end{bmatrix} \begin{bmatrix} 1 & 2 & 5 & 6 & \\ 48 & .36 & -48 & -36 & -38 & -36 \\ -64 & -48 & -64 & -48 & -36 & -48 & -36 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 8 \\ -48 & -36 & -48 & -36 & -48 & -36 & -48 & -36 \end{bmatrix} \begin{bmatrix} 7 & 8 & 5 & 6 & \\ 1 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 5 \\ -1 & 0 & 0 & 0 & 0 & 6 \end{bmatrix}$$

2D Truss Problem-Assembled K

	1	2	3	4	5	6	7	8	
$\mathbf{K} = \frac{29.5 \times 10^6}{600}$	22.68	5.76	-15.0	0	-7.68	-5.76	0	0	1
	5.76	4.32	0	0	-5.76	-4.32	0	0	2
	-15.0	0	15.0	0	0	0	0	0	3
	0	0	0	20.0	0	-20.0	0	0	4
	-7.68	-5.76	0	0	22.68	5.76	-15.0	0	5
	-5.76	-4.32	0	-20.0	5.76	24.32	0	0	6
	0	0	0	0	-15.0	0	15.0	0	7
	L 0	0	0	0	0	0	0	0]	8

Truss Problem (contd.)

- We will now apply the BCs using the elimination approach.
- The rows and columns corresponding to dof 1,2,4,7 and 8
 which belong to the supports as shown will be removed from
 the system equation

$$\frac{29.5 \times 10^6}{600} \begin{bmatrix} 15 & 0 & 0 \\ 0 & 22.68 & 5.76 \\ 0 & 5.76 & 24.32 \end{bmatrix} \begin{Bmatrix} Q_3 \\ Q_5 \\ Q_6 \end{Bmatrix} = \begin{Bmatrix} 20\,000 \\ 0 \\ -25\,000 \end{Bmatrix}$$

$$\begin{cases}
Q_3 \\
Q_5 \\
Q_6
\end{cases} = \begin{cases}
27.12 \times 10^{-3} \\
5.65 \times 10^{-3} \\
-22.25 \times 10^{-3}
\end{cases} in.$$

3D Trusses

Three dimensional truss is a general form of truss and 2D truss is a special case of it. For considering these orientations, we define local and global coordinates as in the case of 2D truss. A 3-D truss element is shown here in both local and global coordinates.

3D Truss Element

Displacement in local coordinates

$$q' = [q_1, q_2]^T$$

 The element displacement vector in global coordinates is

$$q = [q_1, q_2, q_3, q_4, q_5, q_6]^T$$

 Using this definitions we express the equations of displacements in a matrix form as follows

$$q' = Lq$$
 where $L = \begin{bmatrix} l & m & n & 0 & 0 & 0 \\ 0 & 0 & 0 & l & m & n \end{bmatrix}$

Truss Element Stiffness Matrix

 As we know the truss element is an one-dimensional element when viewed from local coordinate system. Therefore from our discussion of 1D elements, we write the element stiffness matrix as

$$k^e = \frac{E_e A_e}{l_e} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

 $U_e = \frac{1}{2} q^{\mathsf{T}} k^{\mathsf{T}} q^{\mathsf{T}}$ substituting for q'=Lq, we get $U_e = \frac{1}{2} q^{\mathsf{T}} k^{\mathsf{T}} L^T k^{\mathsf{T}} L l q^{\mathsf{T}}$

$$U_e = \frac{1}{2}q^{T}[L^TkL]q^T$$

Truss Element Stiffness Matrix

The strain energy in global coordinates is

$$U_e = \frac{1}{2} q^T k q$$

Comparing the two equations we have $k = L^T k' L$

$$k = L^T k' L$$

Substituting for L and k, we have

$$k = \frac{E_e A_e}{l_e} \begin{bmatrix} l^2 & lm & \ln & -l^2 & -lm & -\ln \\ lm & m^2 & mn & -lm & -m^2 & -mn \\ lm & mn & n^2 & -\ln & -mn & -n^2 \\ -l^2 & -lm & -\ln & l^2 & lm & \ln \\ -lm & -m^2 & -mn & lm & m^2 & mn \\ -\ln & -mn & -n^2 & \ln & mn & n^2 \end{bmatrix}$$

Calculation of Direction cosines

 The direction cosines can be calculated from the element geometry

$$l = \frac{x_2 - x_1}{l_e}$$

$$m = \frac{y_2 - y_1}{l_e}$$

$$n = \frac{z_2 - z_1}{l_e}$$

$$l_e = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Calculation of Element Stresses

• Since truss element is a two-force member, we have in local coordinates a' - a'.

$$\sigma = E_e \varepsilon = E_e \frac{q'_2 - q'_1}{l_e}$$

$$=\frac{E_e}{l_e} \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} q'_1 \\ q'_2 \end{bmatrix}$$

Substituting q'=Lq

$$\sigma = \frac{E_e}{l_e} \begin{bmatrix} -1 & 1 \end{bmatrix} Lq$$

Now substituting for L