Welcome to Physics 1

Classical Mechanics & Thermal Physics

Lecturer: 김 경 태 (Particle Physics)

연구실: 24동 202호 helloktk@snu.ac.kr 010-8700-3378

Physics 1 1

교재

Principles of Physics

Tenth Edition

한글판 / 영문판 둘 다 가능

❖ 범위: 2장부터 20장까지

❖ 내용: 역학, 유체역학, 파동, 열역학

❖ 진도: 강의계획서에 따라 진행됨

❖ 강의 계획서:phya.snu.ac.kr

- ❖ etl.snu.ac.kr에 강의노트를 올리므로 강의 전에 교재와 강의노트를 읽은 후 강의에 참석하기 바랍니다.
- ❖ 1 장은 간단히 언급만 하므로 자습하여 숙지하기 바랍니다.

Physics 1 3

성적평가

출석	과제	중간 1	중간 2	기말
(-5)%	25%	25%	25%	25%
If (결석 < 12) (-결석*5/45); else (-5);		모든 시험에는 기본적인 공식이 제 공됨		공식이 제

- 상대평가
- 과제 6회(600점) 시뮬레이션 과제 3회(30x1=30점) : 과제횟수는 물리학과의 정책에 따라 변할 수 있음.
- 과제 제출 횟수는 3회 이상이어야 함
- 모든 시험에서 답안지가 반드시 제출되어야 함.
- ✓ 제출 시간을 넘긴 과제는 받지 않는 것을 원칙으로 합니다.
- ✓ 완전하게 과제를 하는 것보다는 약속된 시간을 지키는 것이 중요함.
- ✓ 병결, 경조사 등의 사유로 결석 시 사전/사후에 사유서를 제출하여 공결처리를 받기 바랍니다 (과의 공식행사는 과대표를 통해서 제출).

강의자료 및 공지사항

- ❖ 강의자료: etl.snu.ac.kr에 pdf-자료를 upload할 예정이므로 교재와 강의자료를 사전에 예습하기 바랍니다.
- ❖ phya.snu.ac.kr의 학사과정 게시판에 전체적인 공지사항이 게시될 것이므로 학습에 참고하기 바랍니다.
- ❖ 대략적인 성적기준 (**상대평가**): 수강반의 평균점수에 따라 약간의 변동이 있을 수 있으나
 - ✓ A:>= 85점 (수강반의 평균에 따라 변동이 됨)
 - ✓ B : 평균근처 (B+는 median=50% 이상)
 - ✔ C : 평균보다 2*sigma 아래
 - ✓ D: 부진한 경우
 - ✓ F: 그 이하 점수(<30), 시험 1회 이상 미응시 학생, 출석 ½선 미달, 시험에서 부정행위 적발 시.

Physics 1 5

계산기

- ① 물리는 계산을 할 수 있어야 합니다. 과제와 시험에서는 다양한 계산을 경험하게 될 것입니다.
- ② 15000원 선 (고가의 계산기는 분실의 위험이 있음. 스마트폰의 계산기는 시험시간에 사용이 제한됨)
- ③ 저렴하지만 거의 수퍼컴퓨터급의 계산이 가능함.
- ④ 가계에서 쓰는 계산기는 구매하지 말 것 (sin(29°)를 계산할 수 있는 학생은 제외)

지정 좌석제

- 1. 출석점검을 위해서 한 학기 동안 지정 좌석제를 실시합니다
- 2. 강의 첫 주는 자유롭게 좌석을 선택해서 앉을 수 있습니다.
- 3. 되도록이면 가운데 좌석에 앉기 바랍니다. 가장자리 좌석은 조교가 출석 체크할 때 빼먹고 할 가능성이 높습니다.
- 4. 출석반영: 5%에서 결석횟수만큼 차감반영합니다
- 5. 결석횟수가 출석일수의 절반을 넘기면 안됩니다.

Physics 17

Written Homework Guideline

- 1. 숙제 제출
- 숙제는 강좌 게시판이나 수업 시간을 통해 공지
- 숙제 제출 장소: <u>56동 1층 출입구(경비실 옆) 숙제 제출함</u>
- 9시 정각에 숙제를 수거하며 이후에 제출된 것은 채점되지 않음. (제출 시간의 엄수 요구는 학생들의 질서 있는 문제풀이를 유도하기 위한 목적이다.) (제출일 아침 이전에 미리 제출할 것을 권장함.)
- 잘못 된 방식으로 제출 된 숙제는 마감 시한 여부에 상관없이 인정되지 않음. (<u>조교 및 담당 교수에게 직접 제출하는 것은 인정하지 않음.</u>) (반환함에 제출된 숙제는 인정하지 않음.)
- 숙제 성적은 각 강좌 게시판을 통해 확인
- 채점된 숙제는 56동 출입구에 비치된 숙제 반환함(제출함 반대편-엘리베이터 쪽)에서 돌려받을 수 있음 (찾아 가지 않은 숙제는 공지 된 시간에 폐기함)
- 숙제 채점에 대한 정정시간은 채점조교가 숙제 성적을 게시할 때 공지
- 2. 부정행위 (copy)
- 한 문제라도 표절 발견 시 해당 학생 모두, 해당 숙제점수 0점 처리
- 2회 이상 표절 적발 시 해당 학기 숙제점수 0점 처리
- 제출시간에 숙제 제출함 주변(56동 복도 및 주변 교정)에서의 답안지 작성, 풀이 베끼기, 보여주기, 가르쳐 주기 등의 행위가 담당 교수와 조교에게 적발 되는 경우, 관련자 모두가 부정행위로 간주됨.
- 제출시간에는 매우 혼잡하므로 숙제 제출 후 주변에서 서성거리는 것을 삼갈 것.
- 3. 의문점 해결
- 조교의 office hour를 적극 활용
- 숙제, 시험 및 그 이외의 물리에 관련된 여러 문제에 대한 도움을 받을 수 있음
- 각 강좌 홈페이지의 게시판이나 조교의 e-mail을 이용

물리학은 세상의 근원에 대한 지적 호기심의 활동이다

- 세상은 무엇으로 만들어졌을까?
 - ❖ 세상만물을 구성하는 최소단위?
 - ❖ 최소단위 사이에 작용하는 기본힘의 종류와 특성?
 - ❖ 어떤 과정을 거쳐서 지구, 은하, 우주와 같은 거시세계가 형성이 되는가?

Physics 1 9

어떻게 하면 물리를 잘 할 수 있을까요?

- 교재를 읽어본 후에 강의를 듣고 예제와 연습문제를 틈나는 대로 풀어보기 바랍니다.
 - ❖ 연습문제는 난이도가 높은 문제도 있으므로 다 풀지 못한다고 실망하지 마세요.
- 교재의 Question은 물리 개념을 제대로 이해하였는가를 계산없이 확인할 수 있는 주옥 같은 문제들이므로 꼭 도전해 보기 바랍니다.
- Office hour를 이용해서 조교나 담당교수에게 의문점을 끊임없이 물어보는 자세를 가져야 한다
- 주변의 동료들에게 물어보는 것을 부끄러워하지 않는 자세가 중요하다.
 - ❖ 그러나 친구의 hw을 그대로 베껴서 내지 말 것.

Chapter 1 Measurement

과학의 제 1원리 = 측정

Physics 1 11

International System of Units (SI)

- 물리량이란? 자연현상을 객관적 및 정량적으로 기술하기 위해서 도입된 양. ✓ 물리량은 측정할 수 있어야 한다.
- <mark>물리법칙(공식)</mark> : 물리량들 사이의 관계에 대한 논리적 표현
- 측정을 위해서는 **단위의 표준화**가 필요

SI Base Units – seven				
1)	meter (m)	distance		
2)	kilogram (kg)	mass		
3)	second (s)	time		
4)	ampere (A)	electric current		
5)	kelvin (K)	temperature		
6)	mole (mol)	amount of stuff		
7)	candela (cd)	intensity of light		

Derived Unit	Measures	Derivation	Formal Def.
hertz (Hz)	frequency	/s	s ⁻¹
newton (N)	force	kg·(m/s²)	kg·m·s-2
pascal (Pa)	pressure	N/m ²	kg·m ⁻¹ ·s ⁻²
joule (J)	energy	N⋅m	kg·m ² ·s ⁻²
	or work		

prefix	Symbol	Factor
Giga	G	10 ⁹
Mega	M	106
Kilo	k	10^{3}
Centi	c	10^{-2}
Milli	m	10-3
Micro	μ	10-6
Nano	n	10^{-9}

 $5 \text{ nm} = 5 \times 10^{-9} \text{ m}$

차원(Dimension)

- <mark>차원</mark>은 단위의 추상화로 생각할 수 있다. 거리는 나타내는 단위는 미터, 인치, 마일, 해리,... 다양하지만, 모두 길이의 차원을 가진다.
- 길이의 차원은 [L], 질량의 차원은 [M], 시간의 차원은 [T]의 기호를 쓴다.
- 물리량의 SI-단위가 (m)³(kg)b(s)c이면 이 물리량의 차원은 [L]³[M]b[T]c로 주어진다.

물리량	넓이(A)	부피(V)	속력(v)	가속도(a)	에너지(E)
단위	m ²	m ³	m/s	m/s ²	$kg \cdot m^2/s^2$
차원	$[L^2]$	$[L^3]$	[L]/[T]	$[L]/[T^2]$	$[M][L^2]/[T^2]$

■ **차원해석(dimensional analysis):**물리공식의 양변은 단위계 선택방법에 관계없이 같은 차원을 가져야 한다는 사실에 기반해서 공식의 유추나 유효성을 점검하는 방법.

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$
 양변의 차원이 맞는가?
왼쪽 차원: $[x] = [L]$
오른쪽 차원: $[x_0] + [v_0][t] + [\frac{1}{2}][a][t^2]$
 $= [L] + [L/T][T] + [L/T^2][T^2]$
 $= [L] + [L]$

Physics 1 13

Dimensional Analysis

■ The period P (차원: T) of a swinging pendulum depends only on the length of the pendulum d (차원: L) and the acceleration of gravity g (차원: L/T²). Which of the following formulas for P could be correct?

(a)
$$P = 2\pi (gd)^2$$
 (b) $P = 2\pi \frac{d}{g}$ (c) $P = 2\pi \sqrt{\frac{d}{g}}$

Try with $P = Cg^a d^b$ where C = constThen find the exponents a and b.

$$P = Cg^{a}d^{b}$$

$$\to T^{1} = (1)(L/T^{2})^{a}(L)^{b} = L^{a+b}T^{-2a}$$

$$\to a = -\frac{1}{2} & b = -a = \frac{1}{2}$$

$$P = C\sqrt{\frac{L}{g}}$$

Chapter 2. 직선운동

Kinematics(운동학) : study of motion without specifying the cause of motion

물체의 직선운동을 기술하는 방법을 알아본다. 위치, 변위, 평균, 순간 속도 / 속력, 평균, 순간 가속도 등가속도 운동, 자유낙하

Physics 1 15

1차원 운동: 위치, 변위

- 운동의 기술: 물체의 위치를 시간의 함수로 표현
- 물체의 **위치**를 설정하기 위한 **좌표**계를 도입해야 한다
 - 기준점이 있어야 함 : 원점
 - +방향이 설정되어야 함(vector 임): 오른쪽 +, 왼쪽 -
 - 물체의 위치: x or y or z → 일반적으로 시간의 함수

 $t = t_i$ 에서 위치: $x(t_i) = x_i$ $t = t_f$ 에서 위치: $x(t_f) = x_f$ •변위(displacement): 위치의변화 $t_i \sim t_f$ 시간 동안 변위

 $\Delta x = \overline{x_f - x_i}$ (단위: m)

변위, 이동거리

- 이동거리(Distance) = 움직인 총 거리
- 집에서 식료품점까지 간 후에 친구 집에 갔다면?

이동거리=d(집-식료품)+d(식료품-친구집) =4.3km+(4.3km+2.1km)=10.7km

 $x_i = 2.1km, \ x_f = 0.0km$

변위는: $\Delta x = x_f - x_i = 0.0 \text{km} - 2.1 \text{km} = -2.1 \text{km}$

Physics 1 17

위치-시간 그래프

• t = 0s ~ 4s 사이의이동거리=?

● t = 0s ~ 4s 사이의 변위=?

평균속도,평균속력

•평균속도(average velocity):

주어진 시간동안 얼마나 위치가 변했는가?

$$x(t_i) = x_i \longrightarrow x(t_f) = x_f$$

$$v_{avg} = \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t}$$

(단위: m/s) 의미
$$\begin{cases} v_{avg} > 0 \rightarrow x_f > x_i \\ v_{avg} < 0 \rightarrow x_f < x_i \end{cases}$$

Vavg = 두 점을 잇는 직선의 기울기

평균속력의 기하학적 의미 =x-t 그래프에서 두 지점을 연결하는 선분의 기울기

•평균속력(average speed)

:주어진 시간동안 얼마나 움직였는가?

$$s_{avg} = \frac{\text{이동거리}}{걸린시간}$$

(단위: m/s), 항상 양수

Physics 1 19

순간속도

•(순간)속도:순간적인 위치변화

$$v(t) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx(t)}{dt}$$
 (단위: m/s)

의미
$$\begin{cases} v > 0 \rightarrow$$
 다음순간 + 방향으로 움직임 $v < 0 \rightarrow$ 다음순간 - 방향으로 움직임

●(순간)속력(*speed*) =| *v*(*t*) |

●등속도 운동: 속도=일정⇔위치변화=일정

평균속도=순간속도

평균가속도, 순간가속도

●평균가속도(average acceleration): 주어진 시간동안 얼마나 속도가 변하는가?

$$v(t_i) = v_i \longrightarrow v(t_f) = v_f$$

$$a_{avg} = \frac{v_f - v_i}{t_f - t_i} = \frac{\Delta v}{\Delta t} \quad (단 위: m/s^2)$$
의미
$$\begin{cases} a_{avg} > 0 \rightarrow v_f > v_i \\ a_{avg} < 0 \rightarrow v_f < v_i \end{cases}$$

•(순간)가속도:순간적인속도변화

$$a(t) = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv(t)}{dt} = \frac{d^2 x(t)}{dt^2} \quad (단위: m/s^2)$$

●등가속도운동:

가속도=일정⇔속도변화=일정 평균가속도=순간가속도

Physics 1 21

속도가 일정하게 변하는 운동: 등가속도 운동

등가속도: $a = \text{const} = a_{avg}$

$$v(0) = v_0$$
 : $v(t) = v_0 + at$ $\rightarrow t$ 의 1 차 함수

$$\frac{dx}{dt} = v \rightarrow \int \frac{dx}{dt} dt = \int (v_0 + at) dt$$

$$\rightarrow x(t) = v_0 t + \frac{1}{2} a t^2 + C'$$

$$x(0) = x_0 \qquad \therefore \boxed{x(t) = x_0 + v_0 t + \frac{1}{2} a t^2}$$

$$\rightarrow t \ ? \ ? \ ? \ ? \ ? \ ?$$

Physics 1 23

등가속도 운동

•
$$x - x_0 = v_0 t + \frac{1}{2} a t^2$$
 에서 $t = \frac{v - v_0}{a}$ 을 소거:

$$x - x_0 = v_0 \left(\frac{v - v_0}{a}\right) + \frac{1}{2}a \left(\frac{v - v_0}{a}\right)^2 = \frac{v^2 - v_0^2}{2a}$$
$$\therefore v^2 - v_0^2 = 2a(x - x_0)$$

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$v^2 - v_0^2 = 2a(x - x_0)$$

현재 (x_0, v_0) 가 $\xrightarrow{a \in \mathfrak{DP}}$ 미래(x, v)를 결정 (결정론적인과률) *원점, +방향이 정해져야 한다

그래프를 이용한 운동해석

일반적인 운동에서 성립한다.

•
$$a-t$$
 그래프에서 면적=속도변화
$$\frac{dv}{dt} = a(t) \xrightarrow{\text{정적분}}$$

$$v_1 - v_0 = \int_{t_0}^{t_1} a(t)dt = t_0 \sim t_1$$
 사이 면적
밑변×높이=(s)×(m/s²)=m/s \rightarrow 속도

Physics 1 25

추의 무게 때문에 수레는 일정한 가속도로 움직인다

photogate

자유낙하 가속도

- 자유낙하 (free fall): 물체에 작용하는 힘이 중력뿐일 때 물체의 운동
 - ❖ 처음 속력이 있어도, 또 비스듬히 던져도 자유낙하임.
- 지표면 근처에서 운동할 때 공기저항을 무시하면 가속도의 크기와 방향이 일정하다.
 - ❖ 대표적인 등가속도 운동의 예.
- 자유낙하 가속도:
 - ❖ 크기를 g 로 표시함
 - $g = 9.8 \text{ m/s}^2$
 - > 고도에 따라 차이가 남
 - ❖ 방향: 아래(지구중심 방향)
 - ❖ 물체의 질량이 무관 →

[위쪽을+방향: a = -g = -9.8m/s²

아래를 + 방향: $a = +g = +9.8 \text{m/s}^2$

Physics 1 27

The feather and the hammer

Apollo 15 (1971) astronaut David Scott on the moon, testing the famous Galilean theory about the way gravity works on different objects.

자유낙하: 위로 던진 물체

- 좌표잡기: 원점=처음위치, 윗쪽=+y $\Rightarrow \begin{cases} y_0 = 0, \ v_0 = +12m/s, \\ a = -g = -9.8m/s^2 \end{cases}$
- ●최고점 도달 시간?: v(최고점) = 0∴ $t = \frac{v - v_0}{a} = \frac{0 - 12 \text{m/s}}{-9.8 \text{m/s}^2} = 1.2 \text{s}$
- 높이 5m 도달시간: y=5 인 t=? $5=y_0+v_0t+\frac{1}{2}at^2=0+12t-4.9t^2$ t=0.53s, 1.9s (왜 2개인가?)

Q. 가속도가 가장 큰 위치는?

Physics 1 29

Quiz: 자유낙하

- 구하라, 한승연, 아이유가 다리 위에 있다. 구하라는 수직방향 위로 10m/s 속력으로 공을 던지고, 한승연은 10m/s 속력으로 수직 아래로 공을 던진다. 아이유는 그냥 잡고 있던 공을 놓는다.
 - ❖ 땅에 닿기 직전에 누구의 공이 제일 빠른가?
 - ❖ 누구의 공이 더 빨리 땅에 닿는가?
 - (A) 구하라 (B) 한승연 (C) 아이유 (D) 같다. (E) 정보 부족

- ✓식없이 설명할 수 있는가?
- ✓식으로 계산할 수 있는가?

Summary

둥가속도 운동 (a=일정)

$$v(t) = v_0 + at$$

$$x(t) = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$v^2(t) - v_0^2 = 2a(x(t) - x_0)$$

현재의 주어진 상태 (x_0, v_0) 을 알면 미래를(x(t), v(t))을 안다. *위치는 원점, +방향이 정해져야 한다

Physics 1 32