BANK LOAN CASE STUDY

MIRRA. G

PROJECT DESCRIPTION:

The project focuses on analysing a bank loan application dataset to identify and handle missing data effectively using Microsoft Excel. The process includes identifying columns with high percentages of missing values, dropping irrelevant columns, and replacing missing values with appropriate substitutes. The aim is to ensure data accuracy for subsequent analysis. The project also involves exploring relationships between various factors and loan default rates through correlation analysis and data visualization. This comprehensive data cleaning and analysis approach enhances the reliability and insights derived from the dataset.

TECH STACK USED: Microsoft Excel

A) *Identify Missing Data and Deal with it Appropriately*: As a data analyst, you come across missing data in the loan application dataset. It is essential to handle missing data effectively to ensure the accuracy of the analysis.

Task: Identify the missing data in the dataset and decide on an appropriate method to deal with it using Excel built-in functions and features.

Application dataset:

• We begin by identifying the number of null/blank values in each column and if the percentage of null/blank values if more than 50, we drop the column. The following columns are dropped on this criterion:

• We then identify the columns that would be unrelated to the analysis we are about to perform. Based on this, the following columns are dropped:

column_name	count of null	percentage of null	rounded percentage	
FLAG_MOBIL	0	0	0	rounded percentage
FLAG_EMP_PHONE	0	0	0	Tourided percentage
FLAG_WORK_PHONE	0	0	0	
FLAG_CONT_MOBILE	0	0	0	
FLAG_PHONE	0	0	0	FLAG_DOCUMENT
FLAG_EMAIL	0	0	0	
CNT_FAM_MEMBERS	1	0.00200004	0	FLAG_DOCUMENT
REGION_RATING_CLIENT	0	0	0	
REGION_RATING_CLIENT_W_CITY	0	0	0	FLAG_DOCUMENT
EXT_SOURCE_3	9944	19.88839777	20	FLAG DOCUMENT
YEARS_BEGINEXPLUATATION_AVG	24394	48.78897578	49	_
YEARS_BEGINEXPLUATATION_MODE	24394	48.78897578	49	FLAG_DOCUMENT
YEARS_BEGINEXPLUATATION_MEDI	24394	48.78897578	49	ELAG DOCUMENT
TOTALAREA_MODE	24148	48.29696594	48	FLAG_DOCUMENT
EMERGENCYSTATE_MODE	23698	47.39694794	47	FLAG DOCUMENT 8
DAYS_LAST_PHONE_CHANGE	1	0.00200004	0	
FLAG_DOCUMENT_2	0	0	0	FLAG_DOCUMENT_6
FLAG_DOCUMENT_3	0	0	0	FLAG DOCUMENT 4
FLAG_DOCUMENT_4	0	0	0	
FLAG_DOCUMENT_5	0	0	0	FLAG_DOCUMENT_2
FLAG_DOCUMENT_6	0	0	0	EMERGENCYSTATE
FLAG_DOCUMENT_7	0	0	0	EMERGENCYSTATE
FLAG_DOCUMENT_8	0	0	0	YEARS BEGINEXPL
FLAG_DOCUMENT_9	0	0	0	_
FLAG_DOCUMENT_10	0	0	0	YEARS_BEGINEXPL
FLAG_DOCUMENT_11	0	0	0	REGION RATING C
FLAG_DOCUMENT_12	0	0	0	NEGION_NATING_C
FLAG_DOCUMENT_13	0	0	0	CNT_FAM_MEMBE
FLAG_DOCUMENT_14	0	0	0	
FLAG_DOCUMENT_15	0	0	0	FLAG_PHONE
FLAG_DOCUMENT_16	0	0	0	FLAG_WORK_PHONE
FLAG_DOCUMENT_17	0	0	0	
FLAG_DOCUMENT_18	0	0	0	FLAG_MOBIL
FLAG_DOCUMENT_19	0	0	0	
FLAG_DOCUMENT_20	0	0	0	0 20 40 60
FLAG_DOCUMENT_21	0	0	0	

• We then replace the blank rows of the 'OCCUPATION_TYPE' column with the value 'Laborers' as that is the most occurring value in the column.

• We replace the blanks in 'AMT_ANNUITY' with the median of the column as there are outliers present.

median of AMT ANNUITY

• We replace the blanks in 'AMT_GOODS_PRICE' using the median of the column as it contains outliers.

24700.5

median of AMT_GOODS_PRICE 450000

Previous application dataset:

- We drop the following columns as they are not relevant to our analysis: WEEKDAY_APPR_PROCESS_START, HOUR_APPR_PROCESS_START, FLAG_LAST_APPL_PER_CONTRACT, NFLAG_LAST_APPL_IN_DAY
- We drop the columns following columns as they have more than 50% of null values.

columns	count of nu	percentage of nu	rounded percenta
AMT_DOWN_PAYMENT	25198	50.39700794	50
RATE_DOWN_PAYMENT	25198	50.39700794	50
RATE_INTEREST_PRIMARY	49834	99.6699934	100
RATE_INTEREST_PRIVILEGED	49834	99.6699934	100

• We replace the blanks in the 'AMT_ANNUITY' column with the median of the column.

median of AMT_ANNUITY	10879.92
-----------------------	----------

• We replace the blanks in the 'NAME_TYPE_SUIT' with the most occurring value in the column 'Unaccompanied'.

Row Labels 🔻	Count of NAME_TYPE_SUITE	
Children	993	
Family	6581	
Group of people	76	
Other_A	262	
Other_B	551	
Spouse, partner	2098	
Unaccompanied	15195	
(blank)		
	NAME_TYPE_SUIT	
20000		
15000		
10000		
5000		- Takal
0		■ Total
Children Family	A theolie Other A Other Britier Durteel	ed Walk
G	26. Ny.	

B) *Identify Outliers in the Dataset:* Outliers can significantly impact the analysis and distort the results. You need to identify outliers in the loan application dataset.

Task: Detect and identify outliers in the dataset using Excel statistical functions and features, focusing on numerical variables.

Application data:

• We replace the outlier that is greater than 250000 in the 'AMT_ANNUITY' column with the median value of the column.

 We do not remove/modify the outliers in the columns 'AMT_INCOME_TOTAL' and 'AMT_CREDIT' as they vary from person to person.

• We can see that the 'DAYS_BIRTH' column is well distributed and doesn't have any outliers.

• There exists one outlier in the column 'DAYS_EMPLOYED' which we replace with the median of the column.

Previous application data:

• We replace the outliers greater than 200000 in the 'AMT_ANNUITY' column with the median

C) Analyze Data Imbalance: Data imbalance can affect the accuracy of the analysis, especially for binary classification problems. Understanding the data distribution is crucial for building reliable models.

Task: Determine if there is data imbalance in the loan application dataset and calculate the ratio of data imbalance using Excel functions.

Application data:

• We can see that most of them had paid instalments on time whereas few had difficulties using the pivot table we built.

• We can observe that there is a higher number of cash loans than revolving loans among clients.

• From the below pivot table we can see that the majority are realty owners.

• Most applicants have business entities or are self-employed.

D) Perform Univariate, Segmented Univariate, and Bivariate Analysis: To gain insights into the driving factors of loan default, it is important to conduct various analyses on consumer and loan attributes.

Task: Perform univariate analysis to understand the distribution of individual variables, segmented univariate analysis to compare variable distributions for different scenarios, and bivariate analysis to explore relationships between variables and the target variable using Excel functions and features.

Univariate analysis:

• We can see that the percentage of loan defaulters is around 8% and non-defaulters is almost 92%.

• We can see that the most of the clients are labourers followed by sales staff and core staff.

• Majority of the clients are women constituting about 65% whereas the remaining 35% are men.

Bivariate analysis:

We build two more columns in the application data 'TOTAL_INCOME_RANGE' and 'CREDIT_RANGE' that categorizes the columns 'AMT_TOTAL_INCOME' and 'AMT_CREDIT' as High, Medium and Low.

• From the below table, we can see that most clients with medium to low income and have family status as married have payment issues.

TARGET	1					
Count of NAME_FAMILY_STATUS	Column Labels					
Row Labels	Civil marriage	Married	Separated	Single / not married	Widow	Grand Total
High	129	634	71	185	28	1047
Low	138	838	82	237	68	1363
Medium	215	923	119	307	52	1616
Grand Total	482	2395	272	729	148	4026

• Male clients with low income have difficulties in payments whereas in the medium income range, the gender of the client doesn't seem to have an impact.

TARGET	1		
Count of CODE_GENDER	Column Labels		
Row Labels	F	M	Grand Total
High	478	569	1047
Low	945	418	1363
Medium	841	775	1616
Grand Total	2264	1762	4026

• Clients with medium credit range and an education type of Secondary / Secondary special are those with maximum payment issues.

TARGET	1				
Count of NAME_EDUCATION_TYPE	Column Labels 🔻				
Row Labels	Higher education	Incomplete higher	Lower secondary	Secondary / secondary special	Grand Total
High	220	40	14	824	1098
Low	149	41	30	1030	1250
Medium	237	57	29	1355	1678
Grand Total	606	138	73	3209	4026

E) *Identify Top Correlations for Different Scenarios:* Understanding the correlation between variables and the target variable can provide insights into strong indicators of loan default.

Task: Segment the dataset based on different scenarios (e.g., clients with payment difficulties and all other cases) and identify the top correlations for each segmented data using Excel functions.

We calculate correlation coefficients, correlation matrix, and plot scatter plots between variables and the target variable.

Correlation coefficients:

COLUMN AGAINST TARGET	CORRELATION COEFFICIEN 📲
CNT_CHILDREN	0.026363931
AMT_INCOME_TOTAL	0.010893745
HOUR_APPR_PROCESS_START	-0.032036463
AMT_CREDIT	-0.032428347
DAYS_EMPLOYED	-0.040281269
AMT_GOODS_PRICE	-0.04127611
EXT_SOURCE_2	-0.158424274

Correlation Matrix:

	TARGET	CNT_CHILDREN	AMT_INCOME_TOTAL	HOUR_APPR_PROCESS_START	AMT_CREDIT	AMT_GOODS_PRICE	DAYS_EMPLOYED	EXT_SOURCE_2
TARGET	1							
CNT_CHILDREN	0.026363931	1						
AMT_INCOME_TOTAL	0.010893745	0.009588558	1					
HOUR_APPR_PROCESS_START	-0.032036463	-0.006253862	0.01846417	1				
AMT_CREDIT	-0.032428347	0.00497156	0.069315897	0.056676981	1			
AMT_GOODS_PRICE	-0.04127611	0.000232954	0.069891714	0.065891636	0.986704386	1	L	
DAYS_EMPLOYED	-0.040281269	-0.239673381	-0.031603988	-0.08796449	-0.070416099	-0.067738221	1	
EXT_SOURCE_2	-0.158424274	-0.017641055	0.019517645	0.157147521	0.138125321	0.146862491	-0.026153993	1

Graph:

LINKS TO EXCEL SHEETS:

Application data:

https://docs.google.com/spreadsheets/d/125iMJEo3NYenwISJD4wYxd2SwFnQ8Rq3/edit?usp=sharing&ouid=101623027215720977577&rtpof=true&sd=true

Previous application data:

https://docs.google.com/spreadsheets/d/1STEkGcRsrvmF6QCR9-31VTK-goaNv-PE/edit?usp=sharing&ouid=101623027215720977577&rtpof=true&sd=true

RESULT:

Hence, we have implemented all the tasks given as a part of the Bank Loan Case Study project.