```
In [1]: import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   import numpy as np

In [7]: file_path = "src/cars.csv"
   data = pd.read_csv(file_path)
```

Описание набора данных

- Источник
- Набор данных состоит из 1 файла cars.csv.
- Данный набор содержит информацию о подержанных и новых автомобилях, выставленных на продажу в США. Данные были собраны с аукционного сайта AUCTION EXPORT.com и включают сведения о 28 автомобильных брендах. Для каждого автомобиля в наборе представлено 12 характеристик, таких как цена, пробег, год выпуска и техническое состояние. Набор позволяет анализировать рынок автомобилей, сравнивать стоимость марок и моделей, а также изучать зависимость цены от параметров вроде пробега или региона продажи.
- Price Integer The sale price of the vehicle in the ad
- Years Integer The vehicle registration year
- Brand String The brand of car
- Model String model of the vehicle
- Color String Color of the vehicle
- State/City String The location in which the car is being available for purchase
- **Mileage** Float miles traveled by vehicle
- **Vin** String The vehicle identification number is a collection of 17 characters (digits and capital letters)
- **Title Status** String This feature included binary classification, which are clean title vehicles and salvage insurance
- **Lot** Integer A lot number is an identification number assigned to a particular quantity or lot of material from a single manufacturer. For cars, a lot number is combined with a serial number to form the Vehicle Identification Number.
- Condition String Time

```
In [8]: data.info()
```

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 2499 entries, 0 to 2498 Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype					
0	Unnamed: 0	2499 non-null	int64					
1	price	2499 non-null	int64					
2	brand	2499 non-null	object					
3	model	2499 non-null	object					
4	year	2499 non-null	int64					
5	title_status	2499 non-null	object					
6	mileage	2499 non-null	float64					
7	color	2499 non-null	object					
8	vin	2499 non-null	object					
9	lot	2499 non-null	int64					
10	state	2499 non-null	object					
11	country	2499 non-null	object					
12	condition	2499 non-null	object					
<pre>dtypes: float64(1), int64(4), object(8)</pre>								
memory usage: 253.9+ KB								

memory usage: 253.9+ KB

In [9]: data.describe()

Out[9]: **Unnamed: 0** price year mileage lot count 2499.000000 2499.000000 2499.000000 2.499000e+03 2.499000e+03 mean 1249.000000 18767.671469 2016.714286 5.229869e+04 1.676914e+08 std 721.543484 12116.094936 3.442656 5.970552e+04 2.038772e+05 min 0.000000 0.000000 1973.000000 0.000000e+00 1.593488e+08 25% 624.500000 10200.000000 2016.000000 2.146650e+04 1.676253e+08 50% 1249.000000 16900.000000 2018.000000 3.536500e+04 1.677451e+08 **75%** 1873.500000 25555.500000 2019.000000 6.347250e+04 1.677798e+08 2498.000000 84900.000000 2020.000000 1.017936e+06 1.678055e+08 max

```
In [12]:
         #трансформация данных
         data=data.drop("model",axis=1)
         data['country'] = data['country'].astype(str)
         data= data.drop("vin",axis=1)
         data= data.drop("lot",axis=1)
         data=data.drop("country",axis=1)
         data['title_status'] = data['title_status'].astype(str)
         data['condition'] = data['condition'].astype(str)
         data['color'] = data['color'].astype(str)
```

In [13]: data.info()

```
<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 2499 entries, 0 to 2498
       Data columns (total 9 columns):
        # Column
                       Non-Null Count Dtype
       ---
                       _____
        0 Unnamed: 0 2499 non-null int64
        1 price
                     2499 non-null int64
        2 brand
                      2499 non-null object
                      2499 non-null int64
        3 year
        4
          title_status 2499 non-null object
        5 mileage
                     2499 non-null float64
        6 color
                      2499 non-null object
        7
           state
                      2499 non-null object
           condition 2499 non-null object
       dtypes: float64(1), int64(3), object(5)
       memory usage: 175.8+ KB
In [15]: data['status_b'] = data['title_status'].apply(lambda x: 1 if x == 'clean vehicle
In [16]: data.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 2499 entries, 0 to 2498
       Data columns (total 10 columns):
                      Non-Null Count Dtype
        # Column
        0 Unnamed: 0 2499 non-null int64
        1 price
                      2499 non-null int64
                      2499 non-null object
        2
          brand
        3
          year
                      2499 non-null int64
        4 title status 2499 non-null object
                      2499 non-null float64
        5 mileage
        6
          color
                       2499 non-null object
        7
           state
                      2499 non-null object
          condition
                      2499 non-null object
                     2499 non-null int64
           status b
       dtypes: float64(1), int64(4), object(5)
       memory usage: 195.4+ KB
```

ЗАДАНИЕ 1

Задача №3. Для набора данных проведите кодирование одного (произвольного) категориального признака с использованием метода "weight of evidence (WoE) encoding".

```
In [21]: woe_table = data.groupby('brand')['status_b'].agg(['count', 'sum'])
    woe_table.columns = ['total', 'good'] # 'sum' = κοπυνεσπβο Good (1)
    woe_table['bad'] = woe_table['total'] - woe_table['good'] # κοπυνεσπβο Bad (0)

    total_good = woe_table['good'].sum()
    total_bad = woe_table['bad'].sum()

    woe_table['woe'] = np.log(
        (woe_table['good'] / total_good) / (woe_table['bad'] / total_bad)
)

    data['brand_woe'] = data['brand'].map(woe_table['woe'])
```

C:\Users\Necron\Desktop\code\ml\env\Lib\site-packages\pandas\core\arraylike.py:39
9: RuntimeWarning: divide by zero encountered in log
 result = getattr(ufunc, method)(*inputs, **kwargs)

In [22]: data

U	u	τ	L	4	2	J	:

•		Unnamed:	price	brand	year	title_status	mileage	color	state	condit
	0	0	6300	toyota	2008	clean vehicle	274117.0	black	new jersey	10 c
	1	1	2899	ford	2011	clean vehicle	190552.0	silver	tennessee	6 c
	2	2	5350	dodge	2018	clean vehicle	39590.0	silver	georgia	2 d
	3	3	25000	ford	2014	clean vehicle	64146.0	blue	virginia	22 hc
	4	4	27700	chevrolet	2018	clean vehicle	6654.0	red	florida	22 hc
	•••						•••		···	
	2494	2494	7800	nissan	2019	clean vehicle	23609.0	red	california	1 d
	2495	2495	9200	nissan	2018	clean vehicle	34553.0	silver	florida	21 hc
	2496	2496	9200	nissan	2018	clean vehicle	31594.0	silver	florida	21 hc
	2497	2497	9200	nissan	2018	clean vehicle	32557.0	black	florida	2 c
	2498	2498	9200	nissan	2018	clean vehicle	31371.0	silver	florida	21 hc

2499 rows × 11 columns

ЗАДАНИЕ 2

Задача №23. Для набора данных для одного (произвольного) числового признака проведите обнаружение и удаление выбросов на основе правила трех сигм.

```
In [25]: plt.figure(figsize=(12, 5))
   plt.subplot(1, 2, 1)
   plt.boxplot(data['mileage'])
```



```
In [30]: mu = data['mileage'].mean()
    sigma = data['mileage'].std()

lower_bound = mu - 3 * sigma
    upper_bound = mu + 3 * sigma

outliers = data[(data['mileage'] < lower_bound) | (data['mileage'] > upper_bound
    print(len(outliers))
    outliers
```

28

Out[30]:

con	state	color	mileage	title_status	year	brand	price	Unnamed:	
1	new jersey	black	274117.0	clean vehicle	2008	toyota	6300	0	0
	michigan	white	261648.0	clean vehicle	2009	chevrolet	3800	182	182
21	south carolina	white	309564.0	clean vehicle	2011	ford	15700	197	197
17	texas	gray	258631.0	salvage insurance	1998	chevrolet	0	293	293
	kansas	gold	246065.0	salvage insurance	2003	ford	0	305	305
22	florida	silver	325611.0	clean vehicle	2008	chevrolet	7320	311	311
19	california	green	296860.0	salvage insurance	1996	ford	0	330	330
17	illinois	gray	236980.0	salvage insurance	2004	ford	350	340	340
	south carolina	gold	235348.0	salvage insurance	2004	gmc	0	347	347
	south carolina	black	308451.0	salvage insurance	2004	chevrolet	2725	367	367
	mississippi	brown	240740.0	salvage insurance	2006	ford	4600	387	387
17	arkansas	brown	300021.0	salvage insurance	1998	ford	25	395	395
	arizona	green	274706.0	salvage insurance	1995	chevrolet	0	410	410
17	illinois	yellow	270080.0	salvage insurance	2008	chevrolet	0	443	443
17	arkansas	gold	295780.0	salvage insurance	2001	ford	75	447	447
17	texas	silver	268040.0	salvage insurance	2006	chevrolet	0	455	455
17	texas	black	267834.0	salvage insurance	2007	chevrolet	25	466	466
17	florida	gold	902041.0	salvage insurance	2012	peterbilt	475	490	490
17	oklahoma	red	252588.0	salvage insurance	1996	ford	0	496	496
17	florida	blue	982486.0	salvage insurance	2009	peterbilt	0	516	516

	Unnamed: 0	price	brand	year	title_status	mileage	color	state	con
528	528	1025	peterbilt	2010	salvage insurance	1017936.0	color:	georgia	17
531	531	2000	chevrolet	2003	clean vehicle	507985.0	red	wisconsin	21
950	950	1300	dodge	2013	salvage insurance	239822.0	gray	michigan	
1827	1827	3200	ford	2013	clean vehicle	999999.0	silver	south carolina	21
1873	1873	8000	ford	2014	salvage insurance	231769.0	yellow	florida	16
1880	1880	8000	ford	2013	salvage insurance	250831.0	color:	new jersey	16
1974	1974	2825	ford	2014	salvage insurance	363810.0	white	montana	17
2415	2415	800	nissan	2012	salvage insurance	234792.0	black	florida	

```
In [31]: data_upd = data[(data['mileage'] >= lower_bound) & (data['mileage'] <= upper_bou
In [32]: # Βυβγαπυβαμυκ ποσπε οδραδοπκυ
plt.subplot(1, 2, 2)
plt.boxplot(data_upd['mileage'])
plt.show()</pre>
```


Дополнительное задание

Для студентов группы ИУ5-25M, ИУ5И-25M, ИУ5-25MB - для произвольной колонки данных построить парные диаграммы (pairplot).

In [33]: sns.pairplot(data)
 plt.suptitle('Матрица парных диаграмм для всех числовых признаков', y=1.02)
 plt.show()

In []: