<u>Practice Questions</u>			
S.No.	Questions	BLT	CO
,	Test the analyticity of the functions and find the derivative.		
1,	(i) $f(z) = e^x(\cos y + i\sin y)$ (ii) $f(z) = \frac{1}{z}$ (iii) $\log z$ (iv) $\sinh z$	К3	4
2/	Show that the function defined by $f(z) = \sqrt{ xy }$ is not regular at the origin although C-R	К3	4
	equations are satisfied there.		
3./	Show that the function $f(z)$ defined by $f(z) = \begin{cases} \frac{x^3 y^5 (x + iy)}{x^6 + y^{10}}, & z \neq 0 \\ 0 & z = 0 \end{cases}$ is not analytic at the origin even though it satisfies Cauchy-Riemann equation at the origin.	К3	4
4.	Show that the function $f(z)$ defined by $f(z) = e^{-z^{-4}}$, $(z \neq 0)$ and $f(0) = 0$ is not analytic,	К3	4
•	although Cauchy-Riemann equations are satisfied at the point. Construct an analytic function whose real part $u(x, y)$ is:		
5./	(i) $e^x(x\cos y - y\sin y)$ (ii) $e^{-x}(x\sin y - y\cos y)$ and $f(0) = i$	К3	4
/	Construct an analytic function whose imaginary part $v(x, y)$ is:		
6,	(i) $\log(x^2 + y^2) + x - 2y$ (ii) $\tan^{-1}(y/x), x \neq 0, y \neq 0$ (iii) $e^{-x}(x\cos y + y\sin y)$	К3	4
7.	Determine the analytic functions $f(z) = u + iv$ such that $u + v = e^x(\cos y - \sin y)$	К3	4
7/. 8/	If $u - v = (x - y)(x^2 + 4xy + y^2)$, then find an analytic function $f(z) = u + iv$ in terms of z.	K3	4
9./	If $u + v = \frac{2\sin 2x}{e^{2y} + e^{-2y} - 2\cos 2x}$, then find an analytic function $f(z) = u + iv$ in terms of z.	К3	4
10	Find the Bilinear transformation which maps the points $z = 1, -i, 1$ to the points $w = i, 0, -i$ respectively. Show also that transformation maps the region outside the circle $ z = 1$ into the half-plane $R(w) \ge 0$	К3	4
11.	Find the bilinear transformation which maps the points $z = 0, -1, i$ onto $w = i, 0, \infty$. Also find the image of the unit circle $ z = 1$	К3	4
12.	Find the bilinear transformation which maps the points $z = 0, 1, \infty$ onto $w = i, -1, -i$.	К3	4
13.	Obtain the invariant points of the transformation (i) $w = 2 - \frac{2}{z}$ (ii) $w = \frac{1+z}{z}$	К3	4
14.	Obtain the invariant points of the transformation (i) $w = 2 - \frac{2}{z}$ (ii) $w = \frac{1+z}{1-z}$ Obtain the fixed points of the transformation (i) $w = \frac{3z-4}{z-1}$ (ii) $w = \frac{2z-5}{z+4}$	K3	4
15.	State Cauchy Integral Theorem and hence evaluate: Evaluate $\int_C \frac{z}{(z-3)^4} dz$ where C is $ z =1$.	К3	5
16.	Evaluate $\frac{1}{2\pi i} \int_{C} \frac{z^2 + 5}{z - 3} dz$ where C is $ z = 4$.	К3	5
17.	Using Cauchy's integral formula, evaluate the following integrals: (i) $\int_C \frac{z+4}{z^2+2z+5} dz$ where C is the circle $ z+1+i =2$. (ii) $\int_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-2)(z-3)} dz$ where C is the circle $ z-2 =\frac{1}{2}$.	К3	5
18.	Evaluate: (i). $\int_{C} \frac{e^{z}}{(z^{2} + \pi^{2})^{2}} dz \text{ where C is the circle } z = 4.$ (ii) $\int_{C} \frac{z}{(z - 1)(z - 2)^{2}} dz \text{ where C is the circle } z = 4$	К3	5