ABRAR ZAHIN

Personal Summary

I have five years of application-driven research experience in developing machine learning algorithms for networked systems. I am skilled in clustering, classification, fault detection, and the structure recovery of such systems, using various deep learning algorithms and probabilistic modeling. I am also well-versed in (statistically) analyzing existing algorithms to enhance their performance with theoretical guarantees. I am eager to continue utilizing and developing different data mining algorithms to solve real-world industry problems.

Technical Skills

Languages: Python, R, C, C++, MATLAB, SQL, Assembly

Data Analytics Package: TensorFlow, Keras, Scikit-learn, Numpy

Research Expertise: Recommender Systems, Large Language Models (LLM), Graph Machine Learning, Image Processing, Generative AI, Reinforcement Learning with Human Feedback, Statistical Modeling, Multi-armed Bandits, and Deep Learning

Education

Arizona State University (ASU): PhD in Electrical Engineering | CGPA: 3.81/4.00 Utah State University (USU): MSc in Electrical Engineering | CGPA: 3.79/4.00

Jan 2020 – Current Aug 2017 – Dec 2019

Notable Research Projects

Robust Model Selection of Gaussian Graphical Models $\mid ASU$

- Developed a new algorithm for probabilistic graphical models, transcending the conventional limits. Our algorithm extends beyond the recovery of tree structures under the presence of noise
- Implemented our algorithm on both simulated graphs and real-world networks
- <u>Outcome</u>: Abrar Zahin, Rajasekhar Anguluri, Oliver Kosut, Lalitha Sankar, Gautam Dasarathy, "Robust Model Selection of Gaussian Graphical Models" Submitted to Journal of Machine Learning Research (JMLR)

Rapid Change Localization in Gaussian Graphical Models | ASU

- Developed a novel algorithm for rapid change localization in a probabilistic graphical models
- Computationally efficient and performs change localization with provably low latency
- Localize changes at least 20% faster than the traditional algorithms
- Abrar Zahin, Wezhi Li, Gautam Dasarathy, "Rapid Change Localization in Dynamic Graphical Models". IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024

Computationally Efficient Active Learning of Gaussian Graphical Models $\mid ASU$

- Developed a novel computationally efficient algorithm for probabilistic graphical models
- Offers a significant computational boost: exponential reduction in runtime complexity from the existing methods
- Abrar Zahin, Gautam Dasarathy "Computationally Efficient Active Learning of Gaussian Graphical Models" Submitted to Asilomar Conference on Signals, Systems, and Computers, 2024

Semi-supervised Learning of Fall Down Action | USU

- Developed a semi-supervised classifier with Variational Autoencoder (VAE) and Convolutional Neural Network (CNN).
- Our classifier is at least 5% more accurate in classifying different fall down actions from a real-world data set.
- Abrar Zahin, Le Thanh Tan, and Rose Qingyang Hu, "Sensor-based human activity recognition for smart healthcare: A semi-supervised machine learning", in international conference on artificial intelligence for communications and networks, pp. 450-472. Springer, Cham, 2019.

Efficient Smart Health Monitoring of Large-scale Networks $\mid \mathit{USU}$

- Developed a novel algorithm for smart healthcare monitoring, primarily using Convolutional Autoencoder and CNN
- Our algorithm is at least 27% faster than the current state-of-the-art framework.
- Abrar Zahin, Le Thanh Tan, and Rose Qingyang Hu, "A Machine Learning Based Framework for the Smart Healthcare System", 2021 in Intermountain Engineering, Technology and Computing (IETC)

Notable Projects from Coursework

- Implemented Recurrent Neural Network (RNN) and Long Short Term Memory (LSTM) for Electric Vehicle charging demand prediction
- Implemented \mathbf{CNN} for Human Action Recognition and Handwritten Digit Recognition
- Implemented VAE and Denoising Convolutional Autonencoder for reconstructing and denoising images, respectively.
- Implemented Generative Adversarial Networks for reconstructing images
- Implemented Support Vector Machine for image classification
- Created Named Entity Recognition, Email Spam Detection, and Text Summarization tool with pre-trained LLM
- Implemented Q-learning for Monte-Carlo Blackjack Problem
- Implemented the tabular Q-learning algorithm for three standard control problems: mountain car, cart pole, and acrobat
- A technical report exploring the computational statistical tradeoffs in structure learning of graphical models
- A technical report on the information-theoretic approach towards understanding the utility-privacy tradeoffs in databases