Chapters 3: Discrete Random Variables

Discrete Random Variables (3.1)

<u>**Definition**</u>: a random variable (R.V.) is a function that assigns (maps) the sample space, S, to a real number

Notations:

- R.V. is always capitalzed
- The values that R.V. can take on are in lower case
- For a discrete R.V, $S_X = \{x_1, x_2, ...\}$
- **Example**: consider the experiment involving 3 coin tosses in sequence
 - o Sample space
 - o R.V: X = "number of heads"

- Example of 10k experiments
 - Each outcome of sample space may be obtained from <u>MATLAB</u>: randi([0 1],1,3)
 - We can characterize randomness of the R.V. (X) with the probability measure of each possible value (x)
 - Probability Mass Function (PMF)

Probability Mass Function (3.2)

<u>Definition:</u> the probability mass function (PMF) of a discrete R.V. (X) is $P_X(x) = P[X = x]$

Example: toss coin three times in sequence

- Properties of PMF (Thm 3.1): for a random variable X and range S_X
 - o For any x, $P_X(x) \ge 0$
 - $\circ \quad \sum_{x \in S_X} P_X(x) = 1$

$$P[B] = \sum_{x \in B} P_X(x)$$

Families of Discrete Random Variables (3.3)

<u>Definition</u>: Family of R.V. refers to groups of R.V. that have PMFs with same *mathematical* form

• Bernoulli Random Variable: X is a Bernoulli (p) R.V. if the PMF of X has the form

$$P_X = \begin{cases} 1 - p, x = 0 \\ p, & x = 1 \\ 0, & \text{otherwise} \end{cases}$$

 \circ Example: coin tossed three times. X = # of heads is less than two

• **Geometric RV**: X is a *geometric (p)* random variable if the PMF of X has the form

$$P_X(x) = \begin{cases} p(1-p)^{x-1}, & x = 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}$$

Sequence of independent Bernoulli trials performed until the first observation of the outcome related to probability p.

o <u>Example:</u> Sequence of tests with pass/fail outcomes.

$$p = P[fail],$$
 $(1 - p) = P[Pass],$ $X = \# \text{ of tests until first failure}$

Binomial RV: X is a binomial (n,p) random variable if the PMF of X has the form

$$P_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

where 0 and <math>n is an integer such that $n \ge 1$

 \circ Example: Sequence of n independent Bernoulli trials is performed and x observations of one of the 2 outcomes are made

$$P[fail] = p$$
,

$$P[pass] = 1 - p,$$

$$X =$$
of failures in n tests

Pascal RV: X is a Pascal (k,p) random variable if the PMF of X has the form

$$P_X(x) = {x-1 \choose k-1} p^k (1-p)^{x-k}$$

where 0 and <math>k is an integer such that $k \ge 1$

 \circ Example: sequence of Bernoulli trials is performed until k observations of one of the outcomes.

$$p = P[fail]$$

$$(1 - p) = P[Pass]$$

$$p = P[fail], \quad (1-p) = P[Pass], \quad X = \# \text{ of tests until } k \text{ failure}$$

• **Uniform RV:** *X* is a *uniform* (*k*,*l*) random variable if the PMF of *X* has the form

$$P_X(x) = \begin{cases} \frac{1}{l-k+1} & x = k, k+1, k+2, ..., l \\ 0 & \text{otherwise} \end{cases}$$
e. $X = \#$ on side facing up

o Example: roll a fair die. X = # on side facing up

• **Poisson RV:** X is a *Poisson* (α) random variable if the PMF of X has the form

$$P_X(x) = \begin{cases} \frac{\alpha^x e^{-\alpha}}{x!} & x = 0,1,2,...\\ 0 & \text{otherwise} \end{cases}$$

 \circ Example: consider a transmitter that is transmitting at a bit rate of 10^9 bits/sec. What is the probability of x transmission errors in 1 second (or 10^9 transmissions)

$$P[bit error] = 10^{-9}$$

Cumulative Distribution Function (CDF) (3.4)

 $\underline{\textbf{Definition:}} \text{ the cumulative distribution function (CDF) of a random variable } X \text{ is}$

$$F_X(x) = P[X \le x]$$

- <u>Note:</u> CDF is another way to express the probability model of an experiment and carries the same information as PMF
 - O PMF → CDF:
 - \circ CDF \rightarrow PMF:

- Probability of RV between two points (*Thm 3.3*): for all $b \ge a$ $F_X(b) F_X(a) = P[a < X \le b]$
- Example: considering the following CDF, find the probabilities a) P[Y < 1], b) $P[Y \le 1]$, c) P[Y > 2], d) P[Y = 3]

Expected Value (3.5)

 $\underline{\text{Definition:}} \text{ the expected value of a random variable } X \text{ is a measure of "central tendency"}$

$$E[X] = \mu_X = \sum_{x \in S_X} x P_X(x)$$

• Example: consider an experiment that produces a random variable X and we perform n independent trials with observations x_i .

\circ A reasonable calculation of the expected value of X relates to frequency of a value occurring
\circ Generalizing expression and allowing trial number $n o \infty$
$\underline{E[X]}$ for a Bernoulli RV (<i>Thm 3.4</i>): for a <i>Bernoulli (p)</i> RV:
<u>=[] </u>
$\underline{E[X]}$ for a uniform RV (<i>Thm 3.4</i>): for a <i>uniform (k,l)</i> RV

•

• <u>E[X]</u> for a geometric RV (*Thm 3.5*): for a *geometric (p)* RV

- Other E[X] (*Thms 3.6, 3.7*):
 - $\circ \quad \textit{Poisson } (\alpha) \colon \operatorname{E}[X] = \alpha$
 - o Binomial (n,p): E[X] = np
 - \circ Pascal (k,p): E[X] = k/p

Functions of Random Variables (3.6, 3.7)

<u>Definition:</u> a function Y = g(X) of a random variable X is also a random variable. The *derived random variable Y* has PMF $P_Y(y)$ that is dependent on $P_X(x)$ and g(X)

• Theorem 3.9: PMF of derived random variable

$$P_Y(y) = \mu_Y = \sum_{x:g(x)=y} P_X(x)$$

• Example: consider the following PMF

• What is $P_Y(y)$ given that $Y = g(X) = X^2$?

- o What is E[Y]?
- Theorem 3.10: expected value of derived random variable

$$E[Y] = \sum_{x \in S_X} g(x) P_X(x)$$

• Note: in general, $E[g(X)] \neq g(E[X])$

One exception: g(x) = ax + b

• Theorem 3.11: expected value of linear transformation

$$E[aX + b] = aE[X] + b$$

Variance and Standard Deviation (3.8)

<u>Definition:</u> variance Var[X] is a measure of dispersion (spread) of sample values of X around the expected value E[X]

$$Var[X] = E[(X - \mu_X)^2]$$

= $E[X^2] - \mu_X^2 = E[X^2] - (E[X])^2$

Note: also known as the 2^{nd} central moment of X

<u>Definition:</u> standard derivation σ_X of a random variable X

$$\sigma_X = \sqrt{\operatorname{Var}[X]}$$

Note: standard variation have the same units as X

• Example: calculate the variance of the random variable with following PMFs

• Property of variance (*Thm 3.15*): consider Y = aX + b

$$E[Y^2] = E[a^2X^2 + b^2 + 2abX] =$$

$$\mu_x^2 = \mathrm{E}[Y]^2 =$$

$$Var[Y] =$$