

Halterungen für Glasfassaden

Aufgabennummer: B-C1_24			
Technologieeinsatz:		möglich □	erforderlich ⊠
Ein Betrieb erzeugt Halterungen für Glasfassaden. Die monatlichen Produktionskosten für die Herstellung der Halterungen bis zu einer Grenze von $x = 5000$ Stück können durch folgende Funktion K beschrieben werden:			
$K(x) = 0,00001 \cdot x^3 - 0,025 \cdot x^2 + 24 \cdot x + 3500$			
	tückzahl mit 0 ≤ x ≤ 5000 Produktionskosten in € für x 9	Stück	
a)	Der Betrieb möchte die Prod duktionskosten pro Stück be	•	Stück möglichst gering halten. Die Pro- stückkosten.
	 Stellen Sie die Stückkoster Bestimmen Sie den lokaler Zeigen Sie mithilfe der Diffe ein lokales Minimum hande 	n Extremwert der St erenzialrechnung, d	tückkostenfunktion \overline{K} . ass es sich bei diesem Extremum um
b)	Die Halterungen werden zu e	einem Preis von € 2	0 pro Stück verkauft.
	Stellen Sie die GewinnfunkErmitteln Sie den Gewinnb		
c)	Die Produktionskosten für ein	ı anderes Produkt w	verden mit der Funktion K_1 beschrieben:
	$K_1(x) = 0,00001 \cdot x^3 - 0,055$	$x^2 + 24 \cdot x + 3500$	mit $0 \le x \le 1000$
	x Stückzahl $K_1(x)$ Produktionskosten in	n € für <i>x</i> Stück	
	Zeichnen Sie den GraphenArgumentieren Sie, warum	· ·	Kostenfunktion nicht in Frage kommt.
d)	an, wenn er bei einer Zufallss	stichprobe von 50 S ichkeit für eine fehle	Ber Stückzahl. Er nimmt die Lieferung Stück höchstens eine fehlerhafte Halte- erhafte Halterung in der gesamten Liefe-

– Berechnen Sie die Wahrscheinlichkeit für die Annahme der Lieferung.

- Begründen Sie die Verwendung der von Ihnen gewählten Wahrscheinlichkeitsverteilung.

e) Die Masse m der Halterung in Gramm ist annähernd normalverteilt. Die nachstehende Grafik stellt die Dichtefunktion g dar.

– Lesen Sie die Parameter μ und σ aus der gegebenen Grafik ab.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Möglicher Lösungsweg

a) Kostenfunktion: $K(x) = 0.00001 \cdot x^3 - 0.025 \cdot x^2 + 24 \cdot x + 3500$

Stückkostenfunktion:
$$\overline{K}(x) = \frac{K(x)}{x} = 0,00001 \cdot x^2 - 0,025 \cdot x + 24 + \frac{3500}{x}$$

Ableitung:
$$\overline{K}'(x) = 0,00002 \cdot x - 0,025 - \frac{3500}{x^2}$$

$$\overline{K}'(x) = 0 \text{ ergibt } x \approx 1 \text{ 346,519.}$$

Stückkosten: K(1 347) ≈ € 11,067

2. Ableitung:
$$\overline{K}''(x) = 0,00002 + \frac{7000}{x^3}$$
 und damit $\overline{K}''(1346,519) \approx 0,000023$

Die Stückkosten sind bei einer Produktionsmenge von 1 347 Stück am geringsten. Die 2. Ableitung der Stückkosten ist positiv, daher liegt ein Minimum vor.

b) Gewinnfunktion: $G(x) = 20 \cdot x - K(x) = -0,00001 \cdot x^3 + 0,025 \cdot x^2 - 4 \cdot x - 3500, x \ge 0$

$$G(x) = 0$$
 ergibt $x \approx 536,1$ und $x \approx 2253,6$.

Das ergibt einen Gewinnbereich von 537 Stück bis 2253 Stück.

c)

Die Funktion kommt als Kostenfunktion nicht in Frage, weil ab etwa 600 Stück die Kosten negativ wären.

- d) Unter der Annahme einer Binomialverteilung ist P(X ≤ 1) = 0,7357...
 Die Wahrscheinlichkeit beträgt rund 73,6 %.
 Gleichwertige Lösungen mit entsprechender Begründung werden anerkannt.
 - Es gibt genau zwei Möglichkeiten für den Ausgang des Zufallsexperiments: Eine Halterung ist entweder fehlerfrei oder fehlerhaft.
 - Die Ereignisse sind voneinander unabhängig: Zufallsstichprobe.
 - Die Wahrscheinlichkeit p bleibt konstant: p = 2 %.
- e) abgelesene Werte: μ = 300 g, σ = 10 g Ablesetoleranz für σ : [7; 13]

Klassifikation

□ Teil A ⊠ Teil B

Wesentlicher Bereich der Inhaltsdimension:

- a) 4 Analysis
- b) 3 Funktionale Zusammenhänge
- c) 3 Funktionale Zusammenhänge
- d) 5 Stochastik
- e) 5 Stochastik

Nebeninhaltsdimension:

- a) 3 Funktionale Zusammenhänge
- b) 2 Algebra und Geometrie
- c) -
- d) —
- e) -

Wesentlicher Bereich der Handlungsdimension:

- a) B Operieren und Technologieeinsatz
- b) A Modellieren und Transferieren
- c) B Operieren und Technologieeinsatz
- d) B Operieren und Technologieeinsatz
- e) C Interpretieren und Dokumentieren

Nebenhandlungsdimension:

- a) A Modellieren und Transferieren, D Argumentieren und Kommunizieren
- b) B Operieren und Technologieeinsatz, D Argumentieren und Kommunizieren
- c) D Argumentieren und Kommunizieren
- d) D Argumentieren und Kommunizieren
- e) —

Schwierigkeitsgrad:

Punkteanzahl:

- a) mittel
- b) leicht
- c) leicht
- d) mittel
- e) leicht

a) 3

- b) 3
- c) 2
- d) 2
- e) 1

Thema: Wirtschaft

Quellen: -