ما این تمرین را به کمک برنامه SPSS حل میکنیم:

بعد از وارد کردن دادهها در نرمافزار به استفاده از مسیر زیر تحلیل عاملی را اجرا میکنیم:

Analyze > Dimension Reduction > Factor

اكنون پنجره زير را مشاهده ميكنيم:

تنظیمات هر پنجره در زیر آمده است:

اکنون به تحلیل خروجیها میپردازیم:

اولین خروجی ما Correlation Matrix است

Correlation Matrix

		Kind	Intelligent	Нарру	Likeable	Just
Correlation	Kind	1.000	.296	.881	.995	.545
	Intelligent	.296	1.000	022	.326	.837
	Нарру	.881	022	1.000	.867	.130
	Likeable	.995	.326	.867	1.000	.544
	Just	.545	.837	.130	.544	1.000

با نگاه کردن به ماتریس فوق میتوان یک دسته بندی انجام دهیم به گونهای که متغیرهایی که ضریب همبستگی بالایی باهم دارند را یک عامل در نظر میگیریم ، پس عامل اول ما میشود Kind و Happy و Likeable و عامل دوم ما شما متغیرهای Intelligent و Just

پس حدس ما این است که از ۵ متغیر به ۲ متغیر میرسیم .

بخش دوم خروجی: کل واریانس توصیف شده

Total Variance Explained

Initial Eigenvalues		Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings				
Componen		% of	Cumulative		% of	Cumulative		% of	Cumulative
t	Total	Variance	%	Total	Variance	%	Total	Variance	%
1	3.263	65.265	65.265	3.263	65.265	65.265	2.811	56.220	56.220
2	1.538	30.766	96.031	1.538	30.766	96.031	1.991	39.812	96.031
3	.168	3.357	99.388						
4	.031	.612	100.000						
5	-2.614E-	-5.229E-15	100.000						
	16								

Extraction Method: Principal Component Analysis.

در ستون ما مقادیر ویژه را مشاهده میکنیم .

مقدار ویژه بزرگ به چه معنی است؟ یک قاعده کلی این است که مولفههایی را انتخاب کنید که مقدار ویژه آنها حداقل ۱ باشد. استفاده از این قانون ساده در جدول بالا به اولین سوال تحقیق ما پاسخ میدهد: به نظر می رسد ۵ متغیر ما ۲ عامل اساسی را اندازه گیری کرده و دو متغیر پنهان تولید میکنند.

در ستون بعدی ما میزان سهم بیان واریانس توسط هر عامل را میبینم که عامل اول ۶۵.۲٪ و عامل دوم ۳۰.۷٪ و عامل سوم ۳۰.۳٪ از واریانس کل را نشان میدهند.

پس یعنی ما ۲ عامل اول را نگه میداریم که این نتیجه را همان اول به کمک ماتریس قابل مشاهده بود.

در جدول زیر سهم هر متغیر را در عامل ها میبینیم:

Rotated Component Matrix^a

	Component				
	1	2			
Нарру	.975				
Kind	.951				
Likeable	.941	.317			
Intelligent		.959			
Just		.933			

Extraction Method: Principal

Component Analysis.

Rotation Method: Varimax with

Kaiser Normalization.

a. Rotation converged in 3 iterations.

بخش سوم خروجی: رسم نمودار

میبینیم که ۲ مولفه اول دارای مقادیر ویژه بیش از ۱ هستند. ما این حعوامل موثر> را در مدلسازی و تشکیل مدلهای آماری به کار میبریم.

از مولفه ۲ به بعد شیب کاهش پیدا میکنم که این موضوع نیز به معنای کافی بودن دو عامل اول است.