CSE331 Automata and Computability MIDTERM EXAM SPRING 2025 TOTAL MARKS: 50 DURATION: 90 MINUTES

There are a total of five problems. You have to solve all the problems.

Problem 1 (CO1): DFA and Regular Languages (15 points)

Let $\Sigma = \{a, b\}$. Consider the following languages over Σ .

 $L_1 = \{w : \text{length of } w \text{ is three more than multiple of four} \}$ $L_2 = \{w : \text{every even position letter in } w \text{ is the same as the first letter of } w \}$ $L_3 = \{w : \text{every } 2k + 1 \text{ position in } w \text{ is a, where } k \geq 0 \}$ $L_4 = \{w : \text{every } 2k + 1 \text{ position in } w \text{ is b, where } k \geq 0 \}$

- (a) Give the state diagram for a DFA that recognizes L1. (3 points)
- (b) Give the state diagram for a DFA that recognizes L₂. (3 points)
- (c) Give the state diagram for a DFA that recognizes L₃. (3 points)
- (d) If you were to use the "cross product" construction to obtain a DFA for the language L₂ ∩ (L₃ ∪ L₄), how many states would it have? (1 point)
- (e) Find all four-letter strings in L₂ ∩ (L₃ ∪ L₄). (1 point)
- (f) **Give** the state diagram for a DFA that recognizes $L_2 \cap (L_3 \cup L_4)$ using only four states. (2 points)
- (g) Find a four-letter string in L

 3 ∘ L4. [Recall: L

 denotes the complement of the language L i.e., L

 point)
- (h) Is $\overline{L_3} \circ L_4 = \overline{L_3}$? Give justification for your answer. (1 point)

CSE331 Automata and Computability

MIDTERM EXAM TOTAL MARKS: 50 DURATION: 90 MINUTES

There are a total of five problems. You have to solve the first four. Problem 5 is optional.

Problem 1 (CO1): DFA and Regular Languages (15 points)

m times

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ . Note that we define 0^m to be the string $000...000.1^n$ is defined analogously.

 $L_1 = \{w : w \text{ does not contain 01 as a substring}\}$

$$L_2 = \{0^m : m \text{ is even}\}\$$

 $L_3 = \{1^n : n \ge 0\}\$
 $L_4 = L_2 \circ L_3$

- (a) Give the state diagram for a DFA that recognizes L1. (4 points)
- (b) Give the state diagram for a DFA that recognizes L2. (4 points)
- (c) Find all the four and five-letter strings in L_4 . (1 point)
- (d) Give the state diagram for a DFA that recognizes L₄. (2 points)
- (e) If you were to use the "cross product" construction shown in class to obtain a DFA for the language L₁ ∩ L₄, how many states would it have? (1 point)
- (f) Find all five-letter strings in $L_1 \cap L_4$. (1 point)
- (g) Give the state diagram for a DFA that recognizes $L_1 \cap L_4$ using only five states. (2 points)

CSE331 Automata and Computability MIDTERM EXAM SPRING 2025 TOTAL MARKS: 50 DURATION: 90 MINUTES

There are a total of five problems. You have to solve all the problems.

Problem 1 (CO1): DFA and Regular Languages (15 points)

Let $\Sigma = \{a, b\}$. Consider the following languages over Σ .

 $L_1 = \{w : \text{length of } w \text{ is three more than multiple of four} \}$ $L_2 = \{w : \text{every even position letter in } w \text{ is the same as the first letter of } w \}$ $L_3 = \{w : \text{every } 2k + 1 \text{ position in } w \text{ is a, where } k \ge 0 \}$ $L_4 = \{w : \text{every } 2k + 1 \text{ position in } w \text{ is b, where } k \ge 0 \}$

- (a) Give the state diagram for a DFA that recognizes L₁. (3 points)
- (b) Give the state diagram for a DFA that recognizes L₂. (3 points)
- (c) Give the state diagram for a DFA that recognizes L₃. (3 points)
- (d) If you were to use the "cross product" construction to obtain a DFA for the language L₂ ∩ (L₃ ∪ L₄), how many states would it have? (1 point)
- (e) Find all four-letter strings in L₂ ∩ (L₃ ∪ L₄). (1 point)
- (f) Give the state diagram for a DFA that recognizes $L_2 \cap (L_3 \cup L_4)$ using only four states. (2 points)
- (g) Find a four-letter string in $\overline{L_3} \circ L_4$. [Recall: \overline{L} denotes the complement of the language L i.e., $\overline{L} = \Sigma^* L$] (1 point)
- (h) Is $\overline{L_3} \circ L_4 = \overline{L_3}$? Give justification for your answer. (1 point)

Problem 1 (CO1): DFA and Regular Languages (15 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

$$L_1 = \{w \text{ starts with 10}\}$$
 $L_2 = \{w \text{ doesn't contain 11}\}$
 $L_3 = \{w \text{ doesn't contain 00}\}$
 $L_4 = \{w = 10\}$
 $L_5 = L_2 \cap L_3$

Now solve the following problems.

- (a) Give the state diagram for a DFA that recognizes L₁. (3 points)
- (b) Give the state diagram for a DFA that recognizes L₂. (3 points)
- (c) If you were to use the "cross product" construction shown in class to obtain a DFA for the language L₅, how many states would it have? (1 point)
- (d) Find all four-letter strings in L_5 . (1 point)
- (e) Give the state diagram for a DFA that recognizes L₅ using only four states. (2 points)
- (f) Find one six-letter string in L_4^* . (1 point)
- (g) Give the state diagram for a DFA that recognizes L₄*. (2 points)
- (h) Is L_4^* and $L_1 \cap L_5$ same? **Give** justification for your answer. (2 points)

Spring 23 set 2

Problem 1 (CO1): DFA and Regular Languages (10 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

$$L_1=\{w:w=\mathtt{1}^m\mathtt{0}^n, \text{ where } m,n\geq 0\}$$

$$L_2=\{w: \text{1 does not appear at any even position in } w\}$$

$$L_3 = L_1 \cap L_2$$

- (a) Give the state diagram for a DFA that recognizes L₁. (3 points)
- (b) Give the state diagram for a DFA that recognizes L₂. (3 points)
- (c) If you were to use the "cross product" construction shown in class to obtain a DFA for the language L₃, how many states would it have? (1 point)
- (d) Find all four-letter strings in L₃. (1 point)
- (e) Give the state diagram for a DFA that recognizes L3 using only three states. (2 points)

Problem 2: Constructing a DFA (10 points)

Consider the following language.

 $L = \{w \in \{0, 1\}^* : w = 0^m 1^n \text{ where } m \text{ and } n \text{ are either both even or both odd}\}$

- (a) Write down the strings w ∈ L such that the length of w is six. (2 points)
- (b) Consider the following pair of languages.

$$L_1 = \{w \in \{0, 1\}^* : w = 0^m 1^n \text{ where } m \text{ and } n \text{ are both even}\},\$$

$$L_2 = \{w \in \{0, 1\}^* : w = 0^m 1^n \text{ where } m \text{ and } n \text{ are both odd}\}.$$

Notice that $L = L_1 \cup L_2$. So, one way of designing a DFA for L would be to construct DFA for L_1 and L_2 and combine them using the "cross-product" construction shown in class.

Construct a DFA for L_1 . (5 points)

- (c) If you were to construct a DFA for L using the method described in (b), how many states would it have? Your answer should only be a number. (1 point)
- (d) However, there is a DFA for L using at most seven states. Find that DFA. (2 points)

Spring 24 set1

Problem 1 (CO1): DFA and Regular Languages (15 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

 $L_1 = \{w \text{ starts with 01}\}\$

 $L_2 = \{w \text{ doesn't contain 00}\}\$

 $L_3 = \{w \text{ doesn't contain 11}\}$

$$L_4 = \{w = 01\}$$

Now solve the following problems.

- (a) Give the state diagram for a DFA that recognizes L1. (3 points)
- (b) Give the state diagram for a DFA that recognizes L₂. (3 points)
- (c) If you were to use the "cross product" construction shown in class to obtain a DFA for the language L₂ ∩ L₃, how many states would it have? (1 point)
- (d) Find all four-letter strings in L₂ ∩ L₃. (1 point)
- (e) Give the state diagram for a DFA that recognizes L₂ ∩ L₃ using only four states. (2 points)
- (f) Find one six-letter string in L₄*. (1 point)
- (g) Give the state diagram for a DFA that recognizes L₄*. (2 points)
- (h) Is L_4^* and $L_1 \cap L_2 \cap L_3$ same? **Give** justification for your answer. (2 points)

Spring 24 set2

Problem 1 (CO1): DFA and Regular Languages (10 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

$$L_1 = \{w : w = 1^m 0^n, \text{ where } m, n \ge 0\}$$

 $L_2 = \{w : 1 \text{ does not appear at any even position in } w\}$

$$L_3 = L_1 \cap L_2$$

Now solve the following problems.

- (a) Give the state diagram for a DFA that recognizes L₁. (3 points)
- (b) Give the state diagram for a DFA that recognizes L₂. (3 points)
- (c) If you were to use the "cross product" construction shown in class to obtain a DFA for the language L₃, how many states would it have? (1 point)
- (d) Find all four-letter strings in L3. (1 point)
- (e) Give the state diagram for a DFA that recognizes L₃ using only three states. (2 points)

Fall 24 Set B

Problem 1 (CO1): DFA and Regular Languages (15 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

 $L_1 = \{w : \text{length of } w \text{ is exactly three}\}$

 $L_2 = \{w : \text{ every even position in } w \text{ is } 1\}$

 $L_3 = \{w : 10 \text{ appears even number of times in } w \text{ as a substring}\}$

$$L_4 = L_1 \cap L_2 \cap L_3$$

$$L_5 = \{w : 1^m 0^n, \text{ where } m, n \ge 0\}$$

- (a) Give the state diagram for a DFA that recognizes L1. (3 points)
- (b) Give the state diagram for a DFA that recognizes L₂. (3 points)
- (c) Give the state diagram for a DFA that recognizes L₃. (3 points)
- (d) If you were to use the "cross product" construction shown in class to obtain a DFA for the language L₄, how many states would it have? (1 point)
- (e) Find all the strings in L₄. (1 point)
- (f) Give the state diagram for a DFA that recognizes L4 using only five states. (2 points)
- (g) Is L₄ is a subset of L₅? Give justification for your answer. (2 points)

Fall 24 Set A

Problem 1 (CO1): DFA and Regular Languages (15 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

 $L_1 = \{w : \text{length of } w \text{ is exactly three}\}$

 $L_2 = \{w : \text{ every even position in } w \text{ is } 0\}$

 $L_3 = \{w : 01 \text{ appears even number of times in } w \text{ as a substring}\}$

$$L_4 = L_1 \cap L_2 \cap L_3$$

$$L_5 = \{w : 0^m 1^n, \text{ where } m, n \ge 0\}$$

Now solve the following problems.

- (a) Give the state diagram for a DFA that recognizes L₁. (3 points)
- (b) Give the state diagram for a DFA that recognizes L2. (3 points)
- (c) Give the state diagram for a DFA that recognizes L_3 . (3 points)
- (d) If you were to use the "cross product" construction shown in class to obtain a DFA for the language L₄, how many states would it have? (1 point)
- (e) Find all the strings in L4. (1 point)
- (f) Give the state diagram for a DFA that recognizes L4 using only five states. (2 points)
- (g) Is L₄ is a subset of L₅? Give justification for your answer. (2 points)

Fall 23 Set K

DFA Set A

Problem 1 (CO1): DFA and Regular Languages (15 points)

We define the last two digits of your Student ID to be AB [e.g: If your Student ID is 2102895, then A = 9, B = 5] Given, $\Sigma = \{A, B, \#\}$. Consider the following languages over Σ .

$$L_1 = \{w : w \text{ starts with A}\}\$$

$$L_2 = \{w : w \text{ contains AB# as a substring}\}$$

$$L_3 = L_1 \circ L_2$$

Now solve the following problems. For questions (a)-(f), you must use your specific Σ to answer.

- (a) If $\Sigma = \{A, B, \#\}$, then **define** Σ according to your Student ID. (1 point)
- (b) Give the state diagram for a DFA that recognizes L₁. (3 points)
- (c) Give the state diagram for a DFA that recognizes L2. (3 points)
- (d) Find all the four-letter strings in L₁ ∩ L₂. (2 points)
- (e) If you were to use the "cross product" construction shown in class to obtain a DFA for the language L₁ ∩ L₂, how many states would it have? (1 point)
- (f) Prove L3 is a regular language by giving the state diagram for a DFA or an NFA that recognizes L3. (2 points)

Now, let $\Sigma = \{0,1\}$. Consider the following diagram of the NFA to answer the questions (g)-(h) defined for Σ .

- (g) Choose the language recognized by this NFA? (1 point)
 - (i) {w: w has a length equal to or more than three.}
 - (ii) $\{w : w = (010)^n, n \ge 0\}$
 - (iii) {w: w contains 010 as a subsequence}
 - (iv) {w : w contains 010 as a substring}
- (h) Select the paths that accepts 010110 in the given NFA? There can be more than one path that accepts the string. (2 points)
 - (i) $a \rightarrow b \rightarrow b \rightarrow b \rightarrow b \rightarrow c \rightarrow d$
 - (ii) $a \rightarrow b \rightarrow c \rightarrow d \rightarrow d \rightarrow d \rightarrow d$
 - (iii) $a \to b \to b \to b \to b \to b$
 - (iv) $a \rightarrow a \rightarrow b \rightarrow b \rightarrow c \rightarrow c \rightarrow d$
 - (v) $a \rightarrow a \rightarrow a \rightarrow b \rightarrow c \rightarrow c \rightarrow d$

Problem 1 (CO1): DFA and Regular Languages (10 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

 $L_1 = \{w : w \text{ starts with either 01 or 10}\}$

 $L_2 = \{w : w \text{ does not start with } 11\}$

 $L_3 = \{w : \text{the length of } w \text{ is at least two}\}$

Now solve the following problems.

- (a) Give the state diagram for a DFA that recognizes L₁. (3 points)
- (b) Give the state diagram for a DFA that recognizes L₂. (3 points)
- (c) Give the state diagram for a DFA that recognizes L_3 . (2 points)
- (d) Give the state diagram for a DFA that recognizes L

 1 ∩ L

 2 ∩ L

 3 using only four states. Here L

 denotes the complement of the language L i.e., L

 E

 2 − L. (2 points)

Fall 22 Set 1

Problem 1 (CO1): DFA and Regular Languages (10 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

 $L_1 = \{w : \text{the length of } w \text{ is at most three}\}$

 $L_2 = \{w : w \text{ starts and ends with different letters}\}$

 $L_3 = \{w : \text{the length of } w \text{ is at least two}\}$

Now solve the following problems.

- (a) Give the state diagram for a DFA that recognizes L₁. (2 points)
- (b) Give the state diagram for a DFA that recognizes L₂. (3 points)
- (c) Give the state diagram for a DFA that recognizes L_3 . (2 points)
- (d) Find a shortest string in $\overline{L_1} \cap L_3$. Here \overline{L} denotes the complement of the language L i.e., $\overline{L} = \Sigma^* L$. (1 point)
- (e) If you were to use the "cross product" construction shown in class to obtain a DFA for the language $L_2 \cap L_3$, how many states would it have? (1 point)
- (f) How many states does the smallest DFA for $L_2 \cap L_3$ have? (1 point)

Summer 22

Problem 1: Finite Automata and the Regular Operations (10 points)

Let $\Sigma = \{0, 1, \#\}$. Consider the following two languages.

 $L_1 = \{w \in \Sigma^* : w \text{ does not contain # and the number of 0s in } w \text{ is not a multiple of 3} \}$

 $L_2 = \{w \in \Sigma^* : \text{the substring between any two successive occurrences of #s in } w \text{ is in } L_1\}$

Now solve the following problems.

- (a) Write down a string w ∈ L₂ such that the length of w is ten. (1 point)
- (b) Give the state diagram for a DFA that recognizes L₁. (4 points)
- (c) Give the state diagram for a DFA that recognizes L₂. (3 points)
- (d) If you use the "cross product" construction shown in class to obtain a DFA for L₁ ∩ L₂, how many states will it have? (1 point)
- (e) Give an upper bound on the number of states in the smallest DFA that recognizes L₁ ∩ L₂. (1 point)

Summer 23

Problem 1 (CO1): DFA and Regular Languages (15 points)

m times

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ . Note that we define 0^m to be the string 000...000. 1^n is defined analogously.

 $L_1 = \{w : w \text{ does not contain 01 as a substring}\}$

$$L_2 = \{0^m : m \text{ is even}\}$$

$$L_3 = \{1^n : n \ge 0\}$$

$$L_4 = L_2 \circ L_3$$

- (a) Give the state diagram for a DFA that recognizes L₁. (4 points)
- (b) Give the state diagram for a DFA that recognizes L2. (4 points)
- (c) Find all the four and five-letter strings in L4. (1 point)
- (d) Give the state diagram for a DFA that recognizes L4. (2 points)
- (e) If you were to use the "cross product" construction shown in class to obtain a DFA for the language L₁ ∩ L₄, how many states would it have? (1 point)
- (f) **Find** all five-letter strings in $L_1 \cap L_4$. (1 point)
- (g) Give the state diagram for a DFA that recognizes $L_1 \cap L_4$ using only five states. (2 points)

Automata and Computability

DURATION: 90 MINUTES

Problem 4 (CO1): Regular Expressions (10 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

 $L_1 = \{w : \text{length of } w \text{ is exactly } 4\}$ $L_2 = \{w : \text{the third last digit of } w \text{ is } 0\}$ $L_3 = \{w : w \text{ contains at most two } 11\}$

$$L_4 = \overline{L_1^* \cap L_2}$$

Now solve the following problems.

- (a) Give a regular expression for the language L₁. (1 point)
- (b) Give a regular expression for the language L₁*. (1 point)
- (c) Give a regular expression for the language $\overline{L_1^*}$. [Recall: \overline{L} denotes the complement of the language L i.e., $\overline{L} = \Sigma^* L$] (2 points)
- (d) Give a regular expression for the language L2. (2 points)
- (e) Give a regular expression for the language \(\overline{L}_3\). (2 points)
- (f) Give a regular expression for the language L4. (2 points)

Summe 23Set 2

Problem 2 (CO1): Regular Expressions (15 points)

Let $\Sigma = \{a, b\}$. Give regular expressions generating each of the following languages over Σ .

- (a) $\{w : \text{the first and last letters of } w \text{ are a and b respectively} \}$ (3 points)
- (b) $\{w : \text{the length of } w \text{ is odd}\}$ (3 points)
- (c) {w: every a in w is followed by an even number of bs} (3 points)
- (d) {w: w does not contain ab} (3 points)
- (e) {w: ab appears in w exactly once} (3 points) (Hint: If w = xaby, what can you say about x and y?)

Problem 2 (CO1): Regular Expressions (15 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

 $L_1 = \{w \text{ contains exactly two 1}\}$

 $L_2 = \{ w \text{ doesn't start with 0} \}$

 $L_3 = \{\text{every third position in } w \text{ is } 1\}$

 $L_4 = \{\text{every 1 in } w \text{ is followed by at least two 0}\}$

$$L_5 = L_3 \cap L_4$$

Now solve the following problems.

- (a) Give a regular expression for the language L₁. (3 points)
- (b) Give a regular expression for the language L₂. (3 points)
- (c) Give a regular expression for the language L3. (3 points)
- (d) Write a five-letter string that belongs to L₅. (1 point)
- (e) Give a regular expression for the language L₅. (2 points)
- (f) Give a regular expression for the language \overline{L}_4 . Here \overline{L} denotes the complement of the language L i.e., $\overline{L} = \Sigma^* L$. (3 points)

Spring 23 Set 2

Problem 2 (CO1): Regular Expressions (10 points)

Consider the following languages over $\Sigma = \{0, 1\}$.

 $L_1 = \{w : w \text{ does not contain } 00\}$

 $L_2 = \{w : \text{every 0 in } w \text{ is preceded by at least one 1}\}$

 $L_3 = \{w : \text{the number of times 0 appears in } w \text{ is even}\}$

- (a) Give a regular expression for the language L₁. (2 points)
- (b) Your friend claims that $L_1 = L_2$. Prove him wrong by writing down a five-letter string in $L_1 \setminus L_2$. Recall that $L_1 \setminus L_2$ contains all strings that are in L_1 but not in L_2 . (2 points)
- (c) Give a regular expression for the language L₁ \ L₂. (2 points)
- (d) Give a regular expression for the language L₃. (2 points)
- (e) Give a regular expression for the language L₂ \ L₃. (2 points)

(h) Is L_4^* and $L_1 \cap L_2 \cap L_3$ same? Give justification for your answer. (2 points)

Problem 2 (CO1): Regular Expressions (15 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

 $L_1 = \{ w \text{ contains exactly two 1} \}$

 $L_2 = \{w \text{ doesn't start with 0}\}\$

 $L_3 = \{\text{every third position in } w \text{ is 1}\}$

 $L_4 = \{ \text{every 1 in } w \text{ is followed by at least two 0} \}$

$$L_5 = L_3 \cap L_4$$

Now solve the following problems.

- (a) Give a regular expression for the language L₁. (3 points)
- (b) Give a regular expression for the language L2. (3 points)
- (c) Give a regular expression for the language L3. (3 points)
- (d) Write a five-letter string that belongs to L₅. (1 point)
- (e) Give a regular expression for the language L₅. (2 points)
- (f) Give a regular expression for the language \overline{L}_4 . Here \overline{L} denotes the complement of the language L i.e., $\overline{L} = \Sigma^* L$. (3 points)

Spring 22

Problem 1: Regular Expressions (10 points)

Write down regular expressions for each of the following languages. Assume that $\Sigma = \{0, 1\}$.

- (a) The language containing strings where 0s and 1s alternate. (3 points)
- (b) The language containing strings in which the number of 1s is divisible by 4. (3 points)
- (c) The language containing strings in which the number of 0s between every pair of consecutive 1s is even. (4 points)

Fall 24 set 1

H

Problem 3 (CO1): Regular Expressions (15 points)

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

 $L_1 = \{w \text{ does not contain consecutive 1}\}$

DURATION: 75 MINUTES

$$L_2 = \{w \text{ starts with 0}\}\$$

 $L_3 = \{w \text{ starts and ends with the same character}\}$

$$L_4 = L_2 \setminus L_3$$

Now solve the following problems.

- (a) Give a regular expression for the language L₁. (3 points)
- (b) Give a regular expression for the language $\overline{L_2}$. [Recall: $\overline{L_2}$ denotes the complement of the language L_2 i.e., $\overline{L_2} = \Sigma^* L_2$] (3 points)
- (c) Give a regular expression for the language L3. (3 points)
- (d) Write four four-letter strings in L4. (2 point)
- (e) Give a regular expression for the language L₄. [Recall: L₂ \ L₃ contains all strings that are in L₂ but not in L₃] (2 points)
- (f) Give a regular expression for the language $\overline{L_4}$. (2 points)

Fall 22 set 2

Problem 2 (CO1): Regular Expressions (10 points)

Let $\Sigma = \{0, 1\}$. Consider the following pair of languages over Σ .

$$L_1 = \{w : w \text{ contains } 11 \text{ as a substring}\}$$

$$L_2 = \{w : w \text{ contains 10 as a substring}\}$$

- (a) Write down a regular expression for the language L₁. (2 points)
- (b) Write down a regular expression for the language L₂. (2 points)
- (c) Your friend wants a regular expression for the language \(\overline{L}_1 \cap L_2\) where \(\overline{L}\) denotes the complement of the language \(L\) i.e., \(\overline{L} = \Sigmu^* L\). He wants your help. You tell him to make use of the fact \(\overline{L}_1 \cap L_2 = \overline{L}_1 \cup \overline{L}_2\).
 - Write down a regular expression for the language L

 1. (2 points)
 - (ii) Write down a regular expression for the language \(\overline{L}_2\). (2 points)
 - (iii) Using the fact above, write down a regular expression for the language $\overline{L_1 \cap L_2}$. (2 points)

CSE331

TOTAL MARKS: 50 Automata and Computability **DURATION: 85 MINUTES**

Problem 2 (CO1): Regular Expressions (15 points)

Let $\Sigma = \{0, 1\}$. Give regular expressions for each of the languages (a)-(f) over Σ .

- (a) $\{w: w \text{ contains 11 or 101 as a substring.}\}$ (2 points)
- (b) {w : w contains exactly four 1s.} (2 points)
- (c) {w : The length of w is two more than multiple of five.} (2 points)
- (d) {w: w consists of any combination of 01 and 110.} (2 points)
- (e) {w: w doesn't end with 01} (2 points)
- (f) {w : Number of 01 substring is more than number of 10 substrings in w} (2 points)
- (g) You write a regular expression 0(0+1)*1*0*0. Your friends write another regular expression 01*0*(0+1)*0. Are they the same? Write Yes or No only. (1 point)
- (h) You write a regular expression (1+01)*. Your friends write another regular expression 1*(011*)*. Are they the same? Give justification for your answer. (2 points)

RE Set B

Problem 2 (CO1): Regular Expressions (15 points)

Let $\Sigma = \{0, 1\}$. Give regular expressions for each of the languages (a)-(f) over Σ .

- (a) {w : w starts with 00 or 010.} (2 points)
- (b) {w : w contains at least three 1s.} (2 points)
- (c) {w: The length of w is three more than multiple of five.} (2 points)
- (d) {w : w consists of any combination of 10 and 001.} (2 points)
- (e) {w: w doesn't end with 11} (2 points)
- (f) $\{w : \text{Number of 01 substring is less than number of 10 substrings in } w\}$ (2 points)
- (g) You write a regular expression 11*(0+1)*0*1. Your friends write another regular expression 10*1*(0+1)*1. Are they the same? Write Yes or No only. (1 point)
- (h) You write a regular expression (0+10)*. Your friends write another regular expression 0*(100*)*. Are they the same? Give justification for your answer. (2 points)

Problem 2: Regular Expressions (10 points)

Mike and Willy recently learned how to write regular expressions. Mike wrote the regular expression 10^*1^* for a language L_1 on the board and Willy wrote the regular expression 1^*01^* for another language L_2 below that.

- (a) Write down a string that is present in the language L₁ but not in the language L₂. (2 points)
- (b) Write down a string that is not present in the language L₁ but present in the language L₂. (2 points)
- (c) Write down a string that is neither present in the language L₁ nor in the language L₂. (2 points)
- (d) Mike and Willy asked their friend Dustin to write a regular expression for the language L₁ ∩ L₂. Dustin came up with 1*0*1*. Is Dustin's regular expression correct? If you think it's not correct, then write down a correct regular expression for L₁ ∩ L₂. (4 points)

Summer 23 Set 1

Problem 2 (CO1): Regular Expressions (15 points)

Let $\Sigma = \{0, 1\}$. Give regular expressions generating each of the following languages over Σ .

- (a) {w: w starts with a 1 and ends in a 0} (3 points)
- (b) $\{w : \text{the length of } w \text{ is even}\}$ (3 points)
- (c) {w: every 1 in w is followed by an even number of 0s} (3 points)
- (d) $\{w: w \text{ does not contain 10}\}$ (3 points)
- (e) $\{w : 10 \text{ appears in } w \text{ exactly once}\}$ (3 points)

(Hint: If w = x10y, what can you say about x and y?)

NFA

Problem 5 (CO2): Subset Construction Method (5 points)

Consider the following NFA:

Now answer the following questions. [Note: You do not need to convert the given NFA into its equivalent DFA to answer the questions.]

- (a) If you convert the given NFA into an equivalent DFA using the subset construction method, what is the maximum number of states that the DFA can have? (1 point)
- (b) what is the maximum number of accepting states that the equivalent DFA can have? (1 point)
- (c) Write the ε-closure of state q₁ in the given NFA. (1 point)
- (d) Write the subset of states of the given NFA that will be the starting state in its equivalent DFA. (1 point)
- (e) What is $\delta(\{q_1,q_3\},b)$ in the given NFA? [Recall: $\delta(\{q\},a)$ is the set of states in which the NFA transitions when it is in state q and receives input a.] (1 point)