Analysis I

Sebastian Baader

Herbstsemester 2020

Über dieses Dokument

Diese Vorlesungsnotizen werden in Echtzeit während der Vorlesung mitgeschrieben und werden deshalb viele Fehler enthalten. Ihr dürft mir diese und andere Verbesserungsvorschläge gerne zukommen lassen, am liebsten via GitHub auf dem Repository

https://github.com/raw-bacon/ana1-notes,

oder via E-Mail an levi.ryffel@math.unibe.ch.

Inhaltsverzeichnis

I	Konstruktion der Reellen Zahlen	3
1	Historische Motivation	3
2	Mengen im Vergleich	5
3	Gruppen und Körper	9
II	Folgen und Reihen	11
III	Stetige Funktionen	12
IV	Differenzierbare Funktionen	13
\mathbf{V}	Differentialrechnung	14
VI	Riemann Integral	15
VII	Funktionenfolgen	16

Kapitel I

Konstruktion der Reellen Zahlen

1 Historische Motivation

In der Antike war Mathematik praktisch synonym mit Geometrie. Der Zahlenbegriff war direkt an das Konzept der $L\ddot{a}nge$ gekoppelt.

Definition (Euklid, 300 vor Christus). Zwei Längen a, b > 0 heissen kommensurabel, falls eine Länge L > 0 existiert, so wie zwei natürliche Zahlen $m, n \in \mathbb{N}$, so dass a = mL und b = nL.

Hier ist

$$\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$$

die Menge der Natürlichen Zahlen.

Satz (Euklid). Die Seite und Diagonale eines ebenen Quadrats sind nicht kommensurabel.

Beweis. Dieser Beweis ist geometrisch, nach Euklid. Wir nehmen an, es gäbe L>0 und $m,n\in\mathbb{N}$ mit x=mL und d=nL. Wir zeigen, dass das zu einem Widerspruch führt. Wir stellen fest, dass die Längen $x_1=d-x$ und $d_1=2x-d$ ebenfalls die Seite und Diagonale eines Quadrats bilden, siehe Abbildung I.1.

Abbildung I.1: Euklids Konstruktoin

Weiterhin gilt, dass sowohl x_1 als auch d_1 , ganze Vielfache von L sind:

$$x_1 = d - x = (n - m)L$$

 $d_1 = 2x - d = (2m - n)L$

Nach Pythagoras gilt $d^2 = 2x^2$, und somit $d \le 3/2 \cdot x$, da $(3/2)^2 > 2$. Daraus folgt, dass

 $x_1 = d - x \le \frac{1}{2} \cdot x.$

Iteriere dieses Verfahren und erhalte eine Serie von Quadraten mit Seiten x_2, x_3, \ldots und Diagonalen d_2, d_3, \ldots Es gilt:

$$x_k \le \frac{1}{2^k} \cdot x.$$

Ausserdem ist jedes x_k (und d_k) ein ganzes Vielfaches von L. Wähle nun k so gross, dass

 $x_k \le \frac{1}{2^k} x < L.$

Dies impliziert, dass x_k = 0, was unmöglich ist. Deshalb können x und d nicht kommensurabel sein.

Wir haben diese Aussage mit einem sogenannten *Widerspruchsbeweis* bewiesen. Hierfür haben wir eine Annahme getroffen, und diese zu einem Widerspruch geführt. Dies zeigt, dass unsere Annahme falsch war.

Zeitgenössische Umformulierung

Seien a, b > 0 zwei kommensurable Längen. Das heisst, es existieren L > 0 und $m, n \in \mathbb{N}$ mit a = mL, b = nL. Dann gilt:

$$\frac{a}{b} = \frac{mL}{nL} = \frac{m}{n},$$

das heisst das Verhältnis a/b ist eine $rationale\ Zahl$. Zurück zum Quadrat mit Seite x und Diagonale d. Nach Pythagoras gilt $d^2=2x^2$. Falls x=mL und d=nL gilt, dann also

$$2 = \frac{d^2}{x^2} = \left(\frac{d}{x}\right)^2 = \left(\frac{n}{m}\right)^2,$$

und somit

$$2m^2 = n^2.$$

Die linke Seite dieser Gleichung ist durch 2 teilbar. Dies impliziert, dass n^2 , und somit auch n, durch 2 teilbar ist. Schreibe nun n=2k. Schreibe n=2k mit $k\in\mathbb{N}$. Setze ein und erhalte $2m^2=\left(2k\right)^2=4k^2$, beziehungsweise

$$m^2 = 2k^2.$$

Die rechte Seite ist durch 2 teilbar, also auch m. Wir schliessen, dass sowohl n als auch m durch 2 teilbar sind. Schreibe noch $m=2\ell$ mit $\ell\in\mathbb{N}$. Es gilt also

$$2 = \left(\frac{n}{m}\right)^2 = \left(\frac{k}{\ell}\right)^2.$$

In anderen Worten sind Zähler und Nenner beide gerade. Iteriere dieses Verfahren k mal, bis $n/2^k<1$, Dann entsteht ein Widerspruch.

Korollar. Die Gleichung $z^2 = 2$ hat keine rationale Lösung, das heisst, keine Lösung der Form z = p/q mit $p, q \in \mathbb{N}$ und q > 0.

Das Ziel für den Rest dieses Kapitels ist es, eine Zahlenmenge $\mathbb R$ (die Menge der reellen Zahlen) zu konstruieren, in welcher die Gleichung z^2 = 2 eine Lösung hat

Übung. Die Gleichung $z = \sqrt{2}x + \sqrt{3}y$ hat keine ganze Lösungen ausser (0,0,0).

2 Mengen im Vergleich

Wir haben bereits einige Mengen erwähnt, nämlich die natürlichen Zahlen

$$\mathbb{N} = \{0, 1, 2, 3, \dots\},\$$

die Menge der ganzen Zahlen,

$$\mathbb{Z} = \{0, 1, -1, 2, -2, \dots\},\$$

und die Menge der rationalen Zahlen

$$\mathbb{Q} = \{ p/q \mid p, q \in \mathbb{Z}, q > 0 \}.$$

Wir wollen eine weitere Menge, die Menge $\mathbb R$ der reellen Zahlen einführen. Es gelten dann die Inklusionen

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$
.

Wichtige Grundbegriffe

Definition. Seien A, B zwei Mengen. Eine Abbildung $f: A \to B$ heisst

- (i) injektiv, falls für alle $a_2, a_1 \in A$ mit $a_2 \neq a_1$ gilt, dass $f(a_1) \neq f(a_2)$,
- (ii) surjektiv, falls für alle $b \in B$ ein Element $a \in A$ existiert mit f(a) = b,
- (iii) bijektiv, falls f sowohl injektiv als auch surjektiv ist.

Beispiel.

- (i) Seien $A = B = \{0, 1\}$. Es gibt 4 Abbildungen $f : A \rightarrow B$:
 - (a) $0 \mapsto 0$ und $1 \mapsto 0$,
 - (b) $0 \mapsto 1 \text{ und } 1 \mapsto 1$,
 - (c) $0 \mapsto 0$ und $1 \mapsto 1$,
 - (d) $0 \mapsto 1$ und $1 \mapsto 0$.

Abbildungen (a) und (b) sind weder injektiv noch surjektiv. Abbildungen (c) und (d) sind beide bijektiv.

(ii) Seien $A = B = \mathbb{N}$. Betrachte die Abbildung

$$f: \mathbb{N} \to \mathbb{N}$$
$$n \mapsto 2n.$$

Diese Abbildung ist injektiv, aber nicht surjektiv. Die Abbildung

$$g: \mathbb{N} \to \mathbb{N}$$

$$n \mapsto \frac{2n-1+\left(-1\right)^n}{4},$$

also die Abbildung die durch 2 dividiert und dann abrundet, ist nicht injektiv, aber surjektiv. Um zu sehen, dass $g(n) = \lfloor n/2 \rfloor$, betrachte zwei Fälle:

- (a) n = 2k ist gerade. Dann ist g(n) = (4k + 1 1)/4 = k.
- (b) n = 2k + 1 ist ungerade. Dann ist g(n) = (4k + 2 1 1)/4 = k.

Bemerkung.

(1) Bijektive Abbildungen $f: A \to B$ haben eine eindeutige Umkehrabbildung $f^{-1}: B \to A$. Die Konstruktion dafür ist wie folgt. Sei $b \in B$. Da f surjektiv ist, existiert $a \in A$ mit f(a) = b. Da f injektiv ist, ist dieses a eindeutig. Setze $f^{-1}(b) = a$. Es gilt dann

$$f^{-1}(f(a)) = a$$

für alle $a \in A$, und ebenso

$$f(f^{-1}(b))$$

für alle $b \in B$. Wir schreiben häufig

$$f^{-1} \circ f = \mathrm{Id}_A,$$

 $f \circ f^{-1} = \mathrm{Id}_B,$

in Worten, " f^{-1} verknüpft mit f ist die Identitätsabbildung auf A" und ähnlich, "f verknüpft mit f^{-1} ist die Identitätsabbildung auf B"

(2) Für endliche Mengen A und B gilt: Es existiert eine bijektive Abbildung $f:A\to B$, genau dann, wenn A und B gleich viele Elemente haben.

Definition. Eine Menge A heisst

- (i) unendlich, falls eine injektive, nicht surjektive Abbildung $f:A\to A$ existiert,
- (ii) abzählbar, falls eine bijektive Abbildung $f: \mathbb{N} \to A$ existiert.

Beispiel. Sei $A = \mathbb{N}$. Die Abbildung f aus Beispiel 2 (ii) ist injektiv, aber nicht surjektiv. Also ist \mathbb{N} eine unendliche Menge.

Beispiel. Sei M eine Menge, welche \mathbb{N} als Teilmenge enthält (zum Beispiel $M = \mathbb{Q}$). Dann ist M unendlich. Betrachte dazu die Abbildung

$$f: M \to M$$

$$x \mapsto \begin{cases} x+1 & \text{falls } x \in \mathbb{N} \subset M, \\ x & \text{falls } x \in M \smallsetminus \mathbb{N} \end{cases}$$

Folgende Proposition zeigt in einem gewissen Sinn, dass es gleich viele Brüche wie natürliche Zahlen gibt. Dies ist unser erstes potentiell überraschendes Resultat.

Proposition 1. Die Menge \mathbb{Q} der rationalen Zahlen ist abzählbar.

Beweis. Wir konstruieren eine Bijektion $\varphi: \mathbb{N} \to \mathbb{Q}$. Für $k \in \mathbb{N}$ mit $k \geq 1$ definiere

$$A_k = \{p/q \mid p, q \in \mathbb{Z}, q \ge 1, p/q \text{ ist gekürzt}, |p| + |q| = k\}.$$

Alle solchen $A_k \subset \mathbb{Q}$ sind endlich und

$$\mathbb{Q} = \bigcup_{k \ge 1} A_k$$

ist die disjunkte Vereinigung dieser Mengen. Wir haben

$$A_1 = \{0/1\}, A_2 = \{\pm 1/1\}, A_3 = \{\pm 1/2, \pm 2/1\}, \dots$$

Sei $a_k = |A_k|$ die Anzahl Elemente von A_k . Definiere Teilmengen $B_k \subset \mathbb{N}$ mit $|B_k| = a_k$. Dazu setze $B_1 = \{0\}$, und für $k \ge 2$ setze

$$B_k = \{a_1 + \dots + a_{k-1}, a_1 + \dots + a_{k-1} + 1, \dots, a_1 + \dots + a_{k-1} + a_k - 1\}.$$

Es gilt dann

$$B_1 = \{0\}, B_2 = \{1, 2\}, B_3 = \{3, 4, 5, 6\}, \dots$$

Wähle eine Bijektion $\varphi_k: B_k \to A_k$ für alle $k \ge 1$. Definiere nun

$$\varphi: \mathbb{N} \to \mathbb{Q}$$

$$n \mapsto \varphi_k(n) \text{ falls } n \in B_k.$$

Die Abbildung φ ist eine Bijektion, da \mathbb{N} die disjunkte Vereinigung der B_k und \mathbb{Q} die disjunkte Vereinigung der A_k ist.

Dieser Beweis zeigt allgemeiner, dass jede Menge, die eine abzählbare Vereinigung endlicher Mengen ist, selber abzählbar ist. Man könnte diese Aussage zum Beispiel für Aufgabe 5 auf Serie 1 verwenden.

Frage. Ist jede unendliche Menge abzählbar?

Georg Cantor hat ca. 1870 als erste Person die Antwort "nein" auf diese Frage festgehalten. Wir konstruieren nun nach seiner Idee eine Menge, die nicht abzählbar ist. Dazu betrachten wir die *Potenzmenge* P(M) einer Menge M, definiert als die "Menge aller Teilmengen von M". Ein wenig formaler,

$$P(M) = \{A \mid A \subset M\}.$$

Beispiel. Sei $M = \{0, 1\}$. Dann ist

$$P(M) = \{\emptyset, \{0\}, \{1\}\{0, 1\}\}.$$

Hier bedeutet \emptyset die *leere Menge*.

Bemerkung. Falls die Menge M selbst n Elemente hat, dann hat ihre Potenzmenge 2^n Elemente. Um das zu beweisen bilden wir jede Teilmenge A von M auf die Funktion

$$\begin{split} f_A: M \to \{0,1\} \\ x \mapsto \begin{cases} 0, & \text{falls } x \notin A, \\ 1, & \text{falls } x \in A, \end{cases} \end{split}$$

ab. Diese Abbildung $A \mapsto f_A$ ist eine Bijektion zwischen P(M) und der Menge von Funktionen $f: M \to \{0,1\}$, und es gibt 2^n solche Funktionen.

Proposition 2 (Cantor). Sei M eine beliebige Menge. Dann existiert keine surjektive Abbildung $\varphi: M \to P(M)$. Insbesondere existiert keine Bijektion $\varphi: M \to P(M)$.

Korollar. Die Potenzmenge $P(\mathbb{N})$ ist nicht abzählbar.

Beweis der Proposition. Wir führen einen klassischen Widerspruchsbeweis. Wir nehmen an, es gäbe doch eine solche Surjektion $\varphi: M \to P(M)$. Betrachte nun die Teilmenge A von M aller x, die nicht in $\varphi(x)$ enthalten sind. In Symbolen,

$$A = \{x \in M \mid x \notin \varphi(x)\}.$$

Die Forderung $x \notin \varphi(x)$ macht Sinn, da $\varphi(x)$ selbst eine Teilmenge von M ist. Da φ surjektiv ist, muss ein $a \in M$ existieren mit $\varphi(a) = A$. Wir fragen nun, ob $a \in A$ ist oder nicht. Wäre $a \in A$, so müsste nach Definition von A gelten, dass $a \notin \varphi(a)$. Aber das widerspricht der Definition von $\varphi(a) = A$. Wäre jedoch $a \notin A$, dann wäre die Bedingung $a \notin \varphi(a)$ erfüllt, also $a \in A$. Aber da $A = \varphi(a)$, widerspricht auch dies der Definition von A. Somit führen beide Möglichkeiten zu einem Widerspruch. Dies bedeutet, dass unsere ursprüngliche Annahme, dass eine Surjektion $\varphi: M \to P(M)$ existiert, verworfen werden muss: Es kann keine solche Abbildung geben.

Einschub: Beweismethoden

Ein Beweis ist eine "Deduktion einer Aussage aus bereits bewiesenen Aussagen oder Grundaxiomen". Wichtig ist hier, dass die Deduktion logisch korrekt erfolgt. Typische Beweismethoden sind

- geometrisch, zum Beispiel mit Hilfe von Euklids Axiomen,
- mit Aussagenlogik, zum Beispiel Widerspruchsbeweise,
- kombinatorische, zum Beispiel vollständige Induktion.

Wir führen nun ein Beispiel eines Beweises durch vollständige Induktion.

Definition. Die n-te Catalanzahl C_n ist die Anzahl korrekte Klammerungen mit 2n Klammern (n linke und n rechte Klammern).

Beispiele.

• $C_1 = 1$, die einzige Korrekte Klammerung ist ().

- $C_2 = 2$, die Klammerungen ()() und (()) sind beide korrekt.
- $C_3 = 5$.

Behauptung. Die n-te Catalanzahl C_n erfüllt $C_n \ge 2^{n-1}$.

Beweis. Für die Induktionsverankerung testen wir die Aussage für n = 1: Tatsächlich ist $C_1 \geq 2^0$. Die Induktionsannahme ist nun, dass die Aussage für ein festes $n \in \mathbb{N}$ stimmt. Im Induktionsschritt leiten wir nun die Aussage für n + 1 aus der Induktionsannahme her. Hier heisst das, dass wir $C_{n+1} \geq 2^n$ aus $C_n \geq 2^{n-1}$ herleiten wollen. Sei dazu K eine korrekte n-Klammerung, das heisst eine korrekte Klammerung mit n linken und n rechten Klammern. Dann sind sowohl (K) als auch (K) korrekte (n+1)-Klammerungen. Weiter gilt, dass diese beiden Klammerungen verschieden sind: Die erste der beiden Klammerungen beginnt mit zwei geöffneten Klammern, wobei die zweite mit einer geöffneten und einer geschlossenen Klammer beginnt. Weiter gilt, dass für verschiedene korrekte n-Klammerungen K_1 und K_2 auch (K_1, K_1) , (K_2, K_2) verschieden sind (wieso?). Wir können also aus jeder korrekten n-Klammerung zwei korrekte (n+1)-Klammerungen konstruieren. Somit folgt, dass

$$C_{n+1} \ge 2C_n \ge 2 \cdot 2^{n-1} = 2^n$$
.

П

Dies zeigt die Aussage für n + 1.

In Serie 1 sehen wir, dass sogar $C_n \ge 3^n$ gilt, jedenfalls für $n \ge 17$. Um dies zu zeigen reicht es aber nicht, zu bemerken, dass neben (K) und (K) auch K(K) eine korrekte Klammerung ist. Diese könnte nämlich mit (K) übereinstimmen. Hierzu brauchen wir die Formel in folgender Bemerkung.

Bemerkung. Es gilt

$$C_n = \binom{2n}{n} - \binom{2n}{n+1} = \frac{1}{n+1} \binom{2n}{n}.$$

Die zweite Gleichheit ist eine einfache Rechnung. Wir rechtfertigen die erste Gleichheit. Der erste der Binomialkoeffizienten zählt alle n-Klammerungen (auch inkorrekte). Der zweite Binomialkoeffizient zählt die Anzahl inkorrekter Klammerungen. Man kann sich dies folgendermassen skizzenhaft überlegen. Eine inkorrekte Klammerung hat eine erste Position, wo eine rechte Klammer zuviel ist. Drehe alle Klammern hinter dieser Position um. Die Klammerung die wir so erhalten, hat n+1 rechte Klammern. Weiter kann man diesen Prozess rückgängig machen: Jede Klammerung mit n+1 rechten Klammern liefert eine inkorrekte Klammerung mit n rechten Klammern. Also sind die schlechten n-Klammerungen in Bijektion mit der Anzahl Klammerungen mit n+1 rechten (und n-1 linken) Klammern.

3 Gruppen und Körper

Definition. Eine *Gruppe* ist eine Menge G mit einer *Verknüpfung* $\circ : G \times G \to G$, welche folgende Eigenschaften erfüllt.

(i) Es existiert ein Element $e \in G$, so dass für alle $g \in G$ gilt, dass $g \circ e = e \circ g = g$.

- (ii) Für alle $g \in G$ existiert ein $h \in G$ mit $g \circ h = h \circ g = e$.
- (iii) Für alle $a, b, c \in G$ gilt $(a \circ b) \circ c = a \circ (b \circ c)$.

Notation.

- (i) Das Element e bezeichnen wir als das neutrale Element.
- (ii) Wir schreiben häufig g^{-1} für h und nennen g^{-1} das zu g inverse Element.
- (iii) Das Gesetz $(a \circ b) \circ c = a \circ (b \circ c)$ nennt man das Assoziativgesetz.

Beispiele.

- Die Gruppe $G = \{e\}$ mit $e \circ e = e$ heisst triviale Gruppe.
- Die Menge $\{e,a\}$ mit Multiplikationstabelle

$$\begin{array}{c|ccc} & e & a \\ \hline e & e & a \\ a & a & e \end{array}$$

bildet eine Gruppe.

• Die Menge $\{e, a, b\}$ mit Multiplikationstabelle

bildet eine Gruppe. Hier kann man a als ebene Drehung um 0 mit Winkel $2\pi/3$ interpretieren. Ähnlich ist b eine Drehung mit Winkel $4\pi/3$.

- (Z, +) ist eine Gruppe.
- (\mathbb{Z},\cdot) ist keine Gruppe. Zum Beispiel hat die Zahl $2\in\mathbb{Z}$ kein inverses Element.
- $(\mathbb{Q}, +)$ ist eine Gruppe.
- (\mathbb{Q},\cdot) ist keine Gruppe. Zum Beispiel hat $0 \in \mathbb{Q}$ kein inverses Element.

Proposition 3. In jeder Gruppe G hat die Gleichung $a \circ x = c$ eine eindeutige Lösung $x \in G$. Hier sind a, c vorgegeben.

Beweis. Wir zeigen Existenz und Eindeutigkeit separat. Wir wissen nach Axiom (ii), dass $b \in G$ existiert mit $b \circ a = e$. Multiplikation mit b von links auf beiden Seiten liefert $b \circ (a \circ x) = b \circ c$. Axiom (iii) sagt, dass die linke Seite

$$(b \circ a) \circ x = e \circ x = x$$

ist. Also ist $x=b\circ c=a^{-1}\circ c$ eine Lösung. Um Eindeutigkeit zu zeigen seien $x_1,x_2\in G$ mit

$$a \circ x_1 = c = a \circ x_2$$
.

Linksmultiplikation wie oben mit b liefert

$$b \circ (a \circ x_1) = b \circ (a \circ x_2).$$

Wir erhalten

$$(b \circ a) \circ x_1 = (b \circ a) \circ x_2.$$

Sobald wir uns erinnern, dass $b \circ a = e$, schliessen wir, dass $x_1 = x_2$.

Spezialfälle.

- (1) Falls $a\circ x=a$ gilt, so ist x=e. Dies liefert Eindeutigkeit des neutralen Elements
- (2) Falls $a \circ x = e$ gilt, so ist $x = a^{-1}$. Dies liefert Eindeutigkeit des inversen Elements.

Kapitel II Folgen und Reihen

Kapitel III Stetige Funktionen

${\bf Kapitel~IV}$

Differenzierbare Funktionen

Kapitel V

Differentialrechnung

Kapitel VI Riemann Integral

Kapitel VII

Funktionenfolgen