Estimation Principles for Structural Models

Janos Gabler

June 30, 2019

Outline

- 1 Introduction
- 2 Basic Ideas
- 3 Numerical Optimization
- 4 Monte Carlo Results
- **5** Some Theory
- **6** Estimagic

Introduction

Introduction

- Structural models are used for ex-ante policy evaluation
- They are tailored to one policy question
- Their parameters have to be estimated
- We fully abstracted from the estimation problem
- This time we fully abstract from complex models
 - Only estimate means and linear models

Goals for this lecture

- Explain the core estimation principles on toy models
 - Maximum Likelihood
 - Method of Simulated Moments
- Make you aware of typical numerical problems
- Introduce you to numerical optimization
- Explain why it is important to separate models from estimators

Basic Ideas

Parametric Models

- A model is called parametric if all functions and distributions are specified up to a finite set of parameters
- Given a parameter vector and a parametric model:
 - A dataset can be simulated
 - Will be used for Method of Simulated Moments
 - The probability of observing a certain data point can be calculated
 - Will be used for Maximum Likelihood Estimation

Examples for Parametric and Non-Parametric Models

Example	Assumptions
$y_i = m(x_i, u_i)$	Smoothness of m, iid sampling
$y_i = m(x_i) + u_i$	+ additivity of errors
$y_i = m(x_i'\beta) + u_i$	+ single linear index
$y_i = x_i \beta + u_i$	+ m is the identity function
$u_i \sim \mathcal{N}(\mu, \sigma^2)$	+ distributional assumption

Example 1: Mean of a Normal Distribution

- Dataset: iid sample of variable y_i
- ▶ Model: $y_i \sim \mathcal{N}(\mu, \sigma^2)$
- ▶ Parameters to estimate: μ , σ

Maximum Likelihood

Example 1

The model implies:

$$f(y_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\left(-\frac{1}{2\sigma^2}(y_i - \mu)^2\right)}$$
 (1)

- ▶ f is the probability density function (pdf) of y_i
- ▶ Interpretation: y_i varies, μ and σ are fixed
- Density of whole sample is just product of individual densities

Graphical Intuition

Basic Idea of Maximum Likelihood

$$f(y_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\left(-\frac{1}{2\sigma^2}(y_i - \mu)^2\right)} = \phi(y_i, \mu, \sigma) = I_i(\mu, sigma)$$
 (2)

- I is the likelihood contribution of individual i
- ▶ Interpretation: y_i is fixed, μ and σ vary
- Likelihood of whole sample is just product of individual likelihoods
- Use the parameters that maximize the likelihood of the sample as estimates

Notebook

Look at likelihood_example_1.ipynb

Some Insights from the Example

- Use log-likelihood to avoid numerical problems
- Likelihood estimates can be counter-intuitive
- Larger sample -> more curved likelihood -> more precision
 - Standard errors will depend on curvature of likelihood
- Mean is estimated quite precisely, even in small samples

A Note on Terminology

- Parameters are constants, not random variables
- Maximum likelihood estimates are not "the most likely parameters"
- They a the parameter values that make the observed sample most likely!

Method of Simulated Moments

Basic Idea

- Remember: If we have a fully parametric model and a parameter vector, we can simulate a dataset generated by the model with that parameter vector
- For the true parameter vector, simulated and observed sample should be similar
- MSM: Take the parameter vector that produces the dataset which is most similar to the empirical data as estimate

What Does Similar Mean?

- Depends on the model
- Typically: Key moments are similar
- Selection of key moments depends on model
- Requires weighting matrix

Example 1: Which moments

- Key moments: unconditional mean and variance
- Looks like chicken-or-egg problem
- Only an artifact of very simple example

Example 1: Objective function

- empirical sample: $Y = y_1, y_2, \dots, y_n$
- parameter vector: $\theta = (\mu, \sigma)^T$
- ▶ simulated sample, given θ : $\hat{Y}^{\theta} = \hat{y}_{1}^{\theta}, \hat{y}_{2}^{\theta}, \dots, \hat{y}_{n}^{\theta}$
- empirical moments: $m^{emp} = (mean(Y), var(Y))^T$
- ▶ simulated moments: $m(\theta) = (mean(\hat{Y}^{\theta}), var(\hat{Y}^{\theta}))^T$
- ▶ Objective: $C(\theta) = (m(\theta) m^{emp})^T W(m(\theta) m^{emp})$
- \triangleright θ^{MSM} minimizes this function

Notebook

Look at $msm_example_1.ipynb$

Some Insights from the Example

- Precision is now limited by two factors:
 - Sample variation
 - Simulation noise
- Likelihood needs the same assumption and will always be more efficient!
- Sampling scheme is important
 - We can make the criterion smooth
 - But can't get rid of sampling noise!

Numerical Optimization

Why Numerical Optimization

- Typically optimum cannot be calculated in closed form
 - Derivatives are too complicated to evaluate
 - Non differentiable functions
 - First order conditions are too complicated
- Numerical optimization works in these cases but:
 - ▶ Typically no guarantee of global optimum
 - Can be slow
 - Less precise than closed form
- WLOG, from now on only talk about minimization

We Already did it

- For surface plots, we evaluated objective over whole reasonable parameter space
- Know coordinates of optimum
- This methods is called grid search or brute force
- Infeasible for high dimensional parameter vectors:
 - Grid with 100 points in each dimension
 - 50 parameters
 - \rightarrow Criterion has to be evaluated at 10¹⁰⁰ gridpoints
- Need smarter algorithms to save evaluations!

Gradient Based vs. Gradient Free

- Gradient based algorithms
 - Require differentiable objective functions
 - Use first derivative to determine direction of step
 - Use second derivative to determine length of step
 - Need much fewer function evaluations
- Gradient free algorithms
 - Work with non-smooth functions
 - Basically a trial-and-error approach

Termination Criteria

Local vs. Global Optimizers

- Local Optimizers:
 - Start from start parameters and go down-hill
 - Stop in first local minimum
- Genetic Algorithms (typically global):
 - Need bounds on parameter space
 - Sample uniformly from parameters space to get start population
 - Evolve to next generation by:
 - Killing worst parameters
 - Produce offspring of good parameters
- Pseudo global optimizers:
 - Do local optimization from random start values

Notebook

look at 1d_minimization.ipynb

Monte Carlo Results

Notebook

look at monte_carlo.ipynb

Some Theory

Closed Form Solution for Likelihood Function in Example 1

$$\begin{split} L(\mu,\sigma) &= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} e^{\left(-\frac{1}{2\sigma^2}(y_i - \mu)^2\right)} & \text{Likelihood} \\ \ell(\mu,\sigma) &= \sum_{i=1}^n -\frac{1}{2} ln(2\pi\sigma) - \frac{1}{2\sigma^2} (y_i - \mu)^2 & \text{Log-Likelihood} \\ \frac{\partial \ell}{\partial \mu} &= \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \mu) \stackrel{!}{=} 0 & \text{FOC} \\ \mu^* &= \frac{1}{n} \sum_{i=1}^n y_i \end{split}$$

Example 2: Linear Model

Dataset: iid sample of variables y_i, x_i

► Model: $y_i = x_i'\beta + u_i$, $u_i \sim \mathcal{N}(0, \sigma^2)$

▶ Parameters to estimate: β , σ

Example 2: Linear Model

- ▶ Dataset: iid sample of variables y_i, x_i
- ► Model: $y_i = x_i'\beta + u_i$, $u_i \sim \mathcal{N}(0, \sigma^2)$
- ▶ Parameters to estimate: β , σ
- You might be tempted to call this an OLS model
- Later you'll see why this is not a good idea

Likelihood Function of Linear Model

$$f(y_i \mid \beta, \sigma, x_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\left(-\frac{1}{2\sigma^2}(y_i - x_i'\beta)^2\right)}$$
$$L(\beta, \sigma) = \prod_{i=1}^n f(y_i \mid \beta, \sigma, x_i)$$

- ▶ Take logs
- Set FOCs to zero
- ▶ If you make no mistake, you will see that β^* equals the OLS estimator

The Deep Reason (simplified!)

- It can be shown that:
 - Maximum Likelihood is asymptotically efficient
 - No unbiased estimator has smaller variance than maximum likelihood (Cramér-Rao Bound)
- From Gauss Markov Theorem we know:
 - OLS estimator is Best Linear Unbiased Estimator
 - Remember: sample mean = OLS on constant
- Since OLS and Maximum Likelihood estimators are both optimal, they have to coincide

MSM of Linear Model

- ▶ Identifying assumption: u_i is uncorrelated with x_i
- $E(x_iu_i) = E(x_i(y_i x_i'\beta)) = 0$
- Gives us k moment conditions for k parameters
- ► Those are the moments used when Linear model is estimated with GMM
- Could use the simulated version of those moments to estimate Linear model with MSM
- Reminder: This is just to explain the method

Estimagic

Estimagic

- Wrap local, global and pseudo global optimizers from Pygmo, Scipy and TAO
- Standard errors for likelihood and MSM models
- Elegant interface for typical constraints
 - e.g. estimate covariance matrices, probabilities, . . .
- Interactive dashboard with live convergence plots
- If you ever do structural econometrics: use estimagic!
- But maybe wait a few months . . .

Convergence Plots

