Notes on Number Theory

November 6, 2023

Contents

1	Log	gic	2
2	Bin	omial Theorem	3
	2.1	Proof of Binomial Theorem	3
3	Mo	dular Arithmetic	5
	3.1	Divisibility	5
		3.1.1 Properties of Divisibility of Integers	5
		3.1.2 Division Algorithm	5
	3.2	Congruences	7
		3.2.1 Modular Arithmetic	
			8
	3.3	Primes and Greates Common Divisors	9
			10
4	Abs	stract Algebra	11
		Preliminaries	11
			11

1 Logic

Original Statement	P o Q
Contrapositive	$\neg Q \rightarrow \neg P$
Converse	$Q \to P$
Inverse	$\neg P \rightarrow \neg Q$

Table 1: The contrapositive is equivalent to the original statement; the Converse to the inverse.

2 Binomial Theorem

2.1 Proof of Binomial Theorem

The following was taken from an exercise in chapter 1 of Complex Variables and Applications from Brown and Churchill.

Use mathematical induction to verify the binomial formula. More precisely, note that the formula is true when n = 1. Then, then assuming it is valid when n = m where m denotes any positive integer, show that it must hold when n = m + 1.

Suggestion: when n = m + 1, write

$$(z_1 + z_2)^{m+1} = (z_1 + z_2)(z_1 + z_2)^m = (z_1 + z_2) \sum_{k=0}^m {m \choose k} z_1^k z_2^{m-k}$$
$$= \sum_{k=0}^m {m \choose k} z_1^k z_2^{m+1-k} + \sum_{k=0}^m {m \choose k} z_1^{k+1} z_2^{m-k}$$

Reaplee k by k-1 in the last sum. To see how this would work take this example,

$$\sum_{k=0}^{n-1} ar^k = \sum_{k=1}^n ar^{k-1}$$

So

$$\sum_{k=0}^{m} {m \choose k} z_1^{k+1} z_2^{m-k} = \sum_{k=1}^{m+1} {m \choose k-1} z_1^k z_2^{m-(k-1)}$$

$$= \sum_{k=1}^{m+1} {m \choose k-1} z_1^k z_2^{m+1-k}$$

$$= \sum_{k=1}^{m} {m \choose k-1} z_1^k z_2^{m+1-k} + z_1^{m+1}$$

Note that in the last operation we explicitly did the very last summation to reduce the summation back from k to m.

Then we can take the sum we didn't shift as

$$\sum_{k=0}^{m} \binom{m}{k} z_1^k z_2^{m+1-k} = z_2^{m+1} + \sum_{k=1}^{m} \binom{m}{k} z_1^k z_2^{m+1-k}$$

Putting these back together we get

$$(z_1 + z_2)^{m+1} = z_2^{m+1} + \sum_{k=1}^{m} \left[\binom{m}{k} + \binom{m}{k-1} \right] z_1^k z_2^{m+1-k} + z_1^{m+1}$$

One more thing to note, is that the binomial coefficients met the following recurrence relation

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

Note that

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

and

$$\binom{n}{k-1} = \frac{n!}{(k-1)!(n-k+1)!} = \frac{n!}{(k-1)!(n-k+1)(n-k)!}$$

So

$$\binom{n}{k} + \binom{n}{k-1} = n! \left[\frac{1}{k(k-1)!(n-k)!} + \frac{1}{(k-1)!(n-k+1)(n-k)!} \right]$$

$$= n! \left[\frac{n-k+1}{k(k-1)!(n-k+1)(n-k)!} + \frac{k}{k(k-1)!(n-k+1)(n-k)!} \right]$$

$$= n! \left[\frac{n-k+1+k}{k(k-1)!(n-k+1)(n-k)!} \right]$$

$$= n! \left[\frac{(n+1)n!}{k(k-1)!(n-k+1)(n-k)!} \right]$$

$$= \frac{(n+1)!}{k!(n-k+1)!}$$

$$= \binom{n+1}{k}$$

Using this result, we can rewrite our previous sum as

$$(z_1 + z_2)^{m+1} = z_2^{m+1} + \sum_{k=1}^m \left[\binom{m}{k} + \binom{m}{k-1} \right] z_1^k z_2^{m+1-k} + z_1^{m+1}$$
$$= z_1^{m+1} + z_2^{m+1} + \sum_{k=1}^m \binom{m+1}{k} z_1^k z_2^{m+1-k}$$

Now the magic is in seeing that the 2 stragglers are the "endpoint" terms of a binomial expansion: think how $(x+y)^2 = x^2 + 2xy + y^2$, the first and last term are raised to the *n*-th power of the binomial expansion and have a coefficient of 1 (and this pattern is seen in all such expansions). This means we can start the sum at k=0 by including z_1^{m+1} and end the sum at m+1 by addinf the z_2^{m+1} term, thus

$$(z_1 + z_2)^{m+1} = \sum_{k=0}^{m+1} {m+1 \choose k} z_1^k z_2^{m+1-k}$$

3 Modular Arithmetic

3.1 Divisibility

Rosen's "Discrete Mathematics and its Applications"'s chapter 4 along with Gallian's "Contemporary Abstract Algebra" chapter 0 make great references for this material.

An $a \neq 0 \in \mathbb{Z}$ is called a **divisor** of a $b \in \mathbb{Z}$ if there is a $c \in \mathbb{Z}$, such that b = ac. We write a|b, "a divides b". We also commonly say that "b is a multiple of a".

Note that this working definition means that a|b is an integer. So for example, $3 \not | 7$ since $7/3 \notin \mathbb{Z}$ but 3|12 since $12/3 \in \mathbb{Z}$.

If n and d are positive integers, how many positive integers not exceeding n are divisible by d?

In order to be divisible by d, an integer must be of the form dk, for some integer k > 0. So the integers divisible by d and not greater than n are the integers with k such that $0 \le dk < n$ or 0 < k < n/d. Thus, the number of integers divisible by d, not exceeding n, is $\lfloor n/d \rfloor$.

3.1.1 Properties of Divisibility of Integers

- 1. If a|b and a|c, then a|(b+c) and a|(b-c).
- 2. If a|b, then a|bc for all $c \in \mathbb{Z}$.
- 3. If a|b and b|c, then a|c (transitivity).

To prove the first statement, use the fact that a|b means that b=as, a|c means that c=at, and b+c=a(s+t). Hence a|(b+c). (Closure under addition of integers.) Since the integers form a ring, b-c=a(s-t), where $s-t \in \mathbb{Z}$.

To prove the second statement, use the fact that a|b means b=as, so $b \times c = as \times c$. (Closure under multiplication of integers.)

To prove the last statement, use b = as, c = bt. Then c = bt = ast and hence a|c.

Corollary: If $a.b, c \in \mathbb{Z}$, where $a \neq 0$, and a|b and a|c, then a|mb + nc whenever $m, n \in \mathbb{Z}$.

Use if a|b and a|c, then a|(b+c) and if a|b, then a|bc, for $c \in \mathbb{Z}$, to prove it.

3.1.2 Division Algorithm

• If a = bq + r where $0 \le r < b$ and b > 0

- $q = a \operatorname{div} b = |a/b|$ (quotient)
- $r = a \pmod{b} = a bq$ (remainder)

For example, when 101 is divided by 11, 11|101

$$101 = 11 \cdot 9 + 2$$

When -11 is divided by 3, 3|-11

$$-11 = 3 \cdot -4 + 1$$

Note how we are multiplying $3 \cdot -4$. This is so that our remainder, r, mets the criteria of $0 \le r < b$.

In Gallian's "Contemporary Abstract Algebra", the division algorithm is stated as follows: let a and b be integers with b > 0. Then there exists unique integers q and r with the property that a = bq + r and $0 \le r < b$.

The proof begins with the existence portion of the theorem where it considers a set $S = \{a - bk : k \in \mathbb{Z}, a - bk \ge 0\}$.

If $0 \in S$, then b divides a (b|a), and so q = a/b and r = 0.

If we assume $0 \notin S$ ($b \nmid a$), then we will also need to investigate whether S is empty or not. But we can quickly come up with a cases to see that $S \neq \emptyset$ if we assume $0 \notin S$:

- 1. a > 0: if k = 0, $a bk = a \ge 0$.
- 2. a < 0: if k = 2a, then $a bk = a b(2a) \ge 0$.
- 3. a=0: here technically we could have some k<0 so that $a-bk=-b(-|k|)\geq 0$. However, in the context of $\lfloor a/b \rfloor$, which is the operation we want to evaluate, this gives us a very trivial case $\lfloor a/b \rfloor = 0$ and it reduce our initial problem to r=bk (except we still haven't introduced r), which is our initial definition of divisibility.

Going through all the possible cases leads us to believe that $S \not D$ so we can apply the **well ordering principle** which states that every non-empty set of positive integers contains a smallest members. We will call this smallest member of S r = a - bq (a = bp + r). This construction of r also tells us that $0 \le r$, so now we need to prove that r < b and the uniqueness of r and q (we just proved their existence).

To prove that b < r, let's try a proof by contradiction. Assume $r \ge b$, we already know that $a-bq \in S$ is supposed to be the smallest positive integer of our set, so let's look at the next one which is $a-b(q+1)=a-bq-b=r-b\ge 0$ (we used our assumption of $r\ge b$ in the last step). However, a-b(q+1)< a-bq, wich leads us to a contradiction, so we need r < b to have a consistent convention. Let's finally move to proving the uniqueness of q and r.

Let's do another proof by contradition. Let's say we have a = bq + r, where $0 \le r < b$ and a = bq' + r', where $0 \le r' < b$. For convenience, suppose $r' \ge r$. Then bq + r = bq' + r' and b(q - q') = r' - r. The last expression meands that b divides r' - r (b|r' - r), then r' - r = bu for some $u \in \mathbb{Z}$. Also, since $r' \ge r$, then $0 \le r' - r < r \le r' < b$. To reach the conclusion we need to look back: if r' - r were a non-zero positive integer, then it would mean that q - q' is also a non-zero integer, so that $bq \ne bq'$, and thus either r or r' would not be the smallest member of S. But if r' - r = 0, then we achieve consistency all around.

3.2 Congruences

If a and b are congruent modulo m $(a, b \in \mathbb{Z}, m > 0)$, $a \equiv b \pmod{m}$, if m divides a - b (written another way, m|a - b).

The above does not yet tell is much, there is another theorem we need: let $a, b, m \in \mathbb{Z}$ and $m \ge 0$. Then $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$ (if the remainders are equal!).

Another way of seeing it is that a and b have the same remainder when divided by m, goes as follows: If m divides a-b, then a-b=mc for some $c \in \mathbb{Z}$. If both a and b have the same remainders when divided by m, then r=a-mq and r=b-mp. In turn a-b=(mq-r)-(mp-r)=mq-mp=m(q-p)=mc (we have consistency once again).

The above also means that

$$a \equiv b \pmod{m} \leftrightarrow a \mod m = b \mod m \leftrightarrow a = b + mc$$

The thing to keep in mind is that congruences are binary relations: is $17 \equiv 5 \pmod{6}$? yes, because $6|17-5 \pmod{17R5}$. Does 6|17-6? No, so $17 \not\equiv 6 \pmod{6}$ (17 $\not R6$). Whereas the other two equivalences give us ways to compute and further understand the relation.

3.2.1 Modular Arithmetic

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

$$a + c \equiv b + d \pmod{m} \tag{3.1}$$

and

$$ac \equiv bd \pmod{m}$$
 (3.2)

To prove these, you can use something like the following reasoning: a-b=mp and c-d=mq. Adding these two, we get a+c-(b+d)=m(p+q). For the second one, since c=d+mq

$$ac = (b + mp)(d + mq) = bd + bmq + dmp + mmpq = bd + mc$$

Corollary detailing more forms of addition and multiplication

$$(a+b) \bmod m = [(a \bmod m) + (b \bmod m)] \bmod m \tag{3.3}$$

To show this, $a = mk + r = mk + (a \mod m)$ hence $a \equiv (a \mod m) \pmod m$ (a and a mod m are congruent). Similarly, $b \equiv (b \mod m) \pmod m$ (b and b mod m are congruent) So $a + b \equiv [(a \mod m) + (b \mod m)] \pmod m$.

Because $a \equiv b \pmod{m}$ implies $a \mod m = b \mod m$, the above can be written as $(a+b) \mod a = [(a \mod m) + (b \mod m)] \pmod{m}$.

$$ab \bmod m = [(a \bmod m)(b \bmod m)] \bmod m \tag{3.4}$$

Following a similar logic as in the above proof, we can obtain the former equation by using $ab \equiv [(a \mod m)(b \mod m)] \mod m$.

3.2.2 Arithmetic Module m

The reason for the above complexities is because it just so happens that it is useful and informational to define arithmetic operations on the set of non-negative integers less than m because they form a **commutative ring** which we denote as \mathbb{Z}_m .

For example, addition in \mathbb{Z}_m , looks like

$$a+b=(a+b) \bmod m$$

And in the previous subsection we saw an algorithm to crank out the result. Similarly, multiplication in \mathbb{Z}_m , looks like,

$$ab = (ab) \bmod m$$

Note: the reason we mentioned that \mathbb{Z}_m is a commutative ring is to help you remember that multiplicative inverses don't always exist in \mathbb{Z}_m .

Also, note that these definitions of additiona and multiplication are equivalent to $a+b\equiv c+d\pmod m$ and $ac\equiv dc\pmod m$. For example, the multiplicative inverse can be written as $ab\equiv ab\mod m=1$ or $ab\equiv 1\pmod m$ and the additive inverse can be written as $a+b\equiv (a+b)\mod =0$ or as $a+b\equiv 0\pmod m$.

It is worth expanding on why we have a ring and why the multiplicative inverse may sometimes not exist in a ring based on modular arithmetic.

We are essentially looking for a number b such that when a given a is multiplied by it, the result will be one, $ab = ab \mod m = 1$ or $ab \equiv 1 \pmod m$.

First, let's see a case where it does not exist, 2 mod 6:

- $2 \cdot 0 = 0 \mod 6 = 0$
- $2 \cdot 1 = 2 \mod 6 = 2$

- $2 \cdot 2 = 4 \mod 6 = 4$
- $2 \cdot 3 = 6 \mod 6 = 0$
- $2 \cdot 4 = 8 \mod 6 = 2$
- $2 \cdot 5 = 10 \mod 6 = 4$
- $2 \cdot 6 = 12 \mod 6 = 0$

and so on. Maybe this gives you a rough idea of what the issue maybe. Let's look at our general formula $ab \mod = 1$ once again. We know that this formula implies that ab = mk + 1 or ab - mk = 1. This last expression tells us that in order to get a multiplicative inverse we need to be able to add to Products of integers in such a way as to end up with a sum of one (hard to do that when you are dealing with 2 even numbers such as 2 and 6).

3.3 Primes and Greates Common Divisors

Theorem if n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n} .

The proof is by contradiction: if n is composite, then n=ab. The negation of one prime divisior less than or equal to \sqrt{n} means that all divisors are greater than \sqrt{n} , which means $n=ab>\sqrt{n}^2=n$, leading to a contradition.

The prime number theorem the ratio fo the number of primes not exceeding x and $x/\ln(x)$ approaches 1 as x grows without bound.

The theorem was first proved by Jacques Hadamard and Charles-Jean-Gustave-Nicholas de la Valle-Poussin in 1986 using the theory of complex variables.

The odds of randonly selecting a positive integer less than n that is prime is approximately $(n/\ln(n))/n = 1/\ln(n)$.

The greatest common divisor let $a,b\in\mathbb{Z}$, not both zero. The largest integer d such that d|a and d|b is called the greatest common divisior or a and b

On the otherhand, the **least common multiple** is the smallest positive integer that is divisible by a and b (a|lcm and b|lcm).

A simple way to compute these two values is by looking at the prime factorization of two numbers a and b,

$$a = p_1^{a_1} p_2^{a^2} p_3^{a_3} \dots p_n^{a_n}, \quad a = p_1^{b_1} p_2^{b^2} p_3^{b_3} \dots p_n^{b_n}$$

Then,

$$gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \dots p_n^{\min(a_n,b_n)}$$

and,

$$lcm(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \dots p_n^{\max(a_n,b_n)}$$

From here we can also see that ab = gcd(a, b) = lcm(a, b).

3.3.1 The Euclidean Algorithm

Let's look for more efficient ways to find a greatest commmon divisor. Let's say that we have an $a, b, d \in \mathbb{Z}$ and we want to find $d = \gcd(a, b)$.

So we first divide a by b

$$a = b \cdot q + r$$

Note that if we rewrite the above a tad, we get r = a - bq. By property (2), if d|b, then d|bq. Now the remainder is the difference of two integers whose divisor is d, this should make you think about propoerty (1) which says that if d|(a - bq). In other words, the d is also a divisor of the remainder r.

Note: there is a very good argument describing this in chapter 3, section 7, starting on page 160 of Data Structures with C++ using STL second edition by William Ford and William Topp.

Now, let's say that we had another common divisor, this time let's call it e. If e were a common divisor or r and b, then e would be a common divisor of a as well - propoerty (1) and a = bq + r together. This means that d = e or gcd(a,b) = gcd(r,b).

One thing to note here is that this process works great when a > b. In such a case, we keep replacing the largest of the two numbers by the remainder when dividing it by the other number. This process keeps going until we reach the operation gcd(s,0). In such a case, we are looking for an integer x, such that $0 = xt_1$ and $s = xt_2$. Since the division algorithm requires x > 0, then x = s is the largest number dividing 0 and s.

Finally, not that if a = b, then gcd(a, b) = gcd(a, a) = gcd(a, 0) = a, since the remainder of a/a is zero. And if a < b, then the remainder a%b = a, so we are back to the previous instance of gcd(a, b) = gcd(a, a) = gcd(a, 0) = a

4 Abstract Algebra

4.1 Preliminaries

4.1.1 Division Algorithm

UPC example: Correct code is $a_1a_2a_3a_4a_5$, incorrect code is $a_2a_1a_3a_4a_5$. So correct check digit is $(3a_1 + a_2 + 3a_3 + a_4 + 3a_5) \mod 10$. Incorrect check digit is $(3a_2 + a_1 + 3a_3 + a_4 + 3a_5) \mod 10$.

If $x \mod 10$ and $y \mod 10$ are equal, then $x \equiv y \pmod 10$, which implies that x - y = 10k.

Error won't be caught is $(3a_1 + a_2 + 3a_3 + a_4 + 3a_5) - (3a_2 + a_1 + 3a_3 + a_4 + 3a_5)$ is a multiple of 10. The above simplifies to $[3a_1 \mod 10 + a_1 \mod 10 + \cdots - 3a_2 \mod 10 - a_1 \mod 10 - \ldots] \mod 10$. Which can be simplified to $3a_1 \mod 10 + a_1 \mod 10 - 3a_2 \mod 10 - a_1 \mod 10$] mod 10. Or $(3a_1 + a_2 - 3a_2 - a_1) \mod 10 = 0$. Which means $(2a_1 - 2a_2) \mod 10 = 0$. No error caught if $a_1 - a_2$ is a multiple of 10/2 = 5 same as writing $|a_1 - a_2| = 5$.

GCD is a linear combination

Since S = am + bn : am + bn > 0. Well ordering axiom says there must exist a d s.t. d = as + bt. Claim is that d is also $\gcd(a,b)$ meaning that a = dq + r where $0 \le r < d$. If r = 0: then r is not in S, and we have no member in S smaller than d. If r > 0: then any linear combination that was equal to r would have r in S and because $0 \le r < d$, it would be smaller than d, leading to a contradiction.

Euclid's lemma

If p is a prime, and if p does not divide another integer a, then it means that $a \neq pu$ (no common factor). And since a prime only has 1 and itself as divisors (factors), then the only other possibility is 1. Hence p not dividing $a \geq \gcd(p,a) = 1$. if p|ab: ab = pc, for some integer c. Thus, b = abs + ptp = pcs + ptb.