```
In [12]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
   from pandas.plotting import scatter_matrix

   from sklearn import datasets
   from sklearn.model_selection import train_test_split

  import datetime
   from dateutil.parser import parse

%matplotlib inline
```

BayWheel Station Optimization

Niva Alina Ran

This project looks at the BayWheel bikesharing dataset (source: https://www.lyft.com/bikes/bay-wheels/system-data(https://www.lyft.com/bikes/bay-wheels/system-data(). I use the per-station usage data to construct a predictive model, which for a given geo-coordinate in San Francisco, predicts the expected monthly demand. I then use this predictive model to optimize for the placement of bike stations with the objectibve of minimized total expected walking distances, weighted by demand density.

Out[13]:

	duration_sec	start_time	end_time	start_station_id	start_station_name	start_station_
0	62337	2019-10-31 16:25:01.5970	2019-11-01 09:43:59.0290	148	Horton St at 40th St	37
1	72610	2019-10-31 13:04:11.1950	2019-11-01 09:14:21.8050	376	Illinois St at 20th St	37

Exploratory Data Analysis

```
In [16]: | ### Visualize bike usage by starting station
         from folium import plugins
         import folium as folium
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         m = folium.Map([37.7756925, -122.4204695], zoom_start=13)
         # convert to (n, 2) nd-array format for heatmap
         station_data = df_stat[['start_station_latitude', 'start_station_longi
         tude', 'start trip count']].values
         ## Convert startig trip count to quantiles for visualization
         d = station data[:,2]
         grange = np.arange(0,100,1.25)
         quantiles = np.percentile(d, grange)
         station_data[:,2] = np.searchsorted(quantiles, d)/len(qrange)
         # plot heatmap
         m.add child(plugins.HeatMap(station data, max zoom = 13, max val=1, ra
         dius = 8, blur=2)
Out[16]:
                                 San Franco
                  Olympus
           Mount
```

Learning a bike demand distribution map using K-nearest neighbors

(http://www.openstreetmap.org/copyright).

Leaflet (https://leafletjs.com) | Data by @ OpenStreetMap (http://openstreetmap.org), under ODbL

```
In [17]: from sklearn.neighbors import KNeighborsRegressor
         station_data = df_stat[['start_station_latitude', 'start_station_longi
         tude', 'start_trip_count']].values
         X = \text{station data}[:,[0, 1]]
         y = station_data[:,2]
         neigh = KNeighborsRegressor(n neighbors=4, weights = 'distance')
         neigh.fit(X, y)
Out[17]: KNeighborsRegressor(algorithm='auto', leaf size=30, metric='minkowsk
         i',
                             metric params=None, n jobs=None, n neighbors=4,
         p=2,
                             weights='distance')
In [18]: ## Define grid coordinate range
         coor 11 = np.array([37.748566, -122.477034]) #lower left coordinate
         coor ur = np.array([37.801819, -122.389905]) #upper right coordiante
         grid size = 30 #number of points on each side of the grid
         grid lat, grid long = np.mgrid[coor ll[0]:coor ur[0]:(coor ur[0]-coor
         11[0])/grid size, coor 11[1]:coor ur[1]:(coor ur[1]-coor 11[1])/grid s
         ize]
         grid lat = np.ndarray.flatten(grid lat)
         grid long = np.ndarray.flatten(grid long)
         # Predicting Demand
         X = np.stack((grid_lat, grid_long), axis= -1)
         y pred = np.transpose(neigh.predict(X))
         grid_data = np.stack((grid_lat, grid_long, y_pred), axis=-1)
         ## Convert startig trip count to quantiles for visualization
         d = grid data[:,2]
         qrange = np.arange(0,100,1.25)
         quantiles = np.percentile(d, grange)
         grid_data[:,2] = np.searchsorted(quantiles, d)/len(qrange)
         # Visualization with map
         cor ref start = (coor ll+coor ur)/2
         m = folium.Map(cor ref start, zoom start=13)
         # plot heatmap
         m.add child(plugins.HeatMap(grid data, max zoom = 13, max val=1, radiu
         s = 5, blur=1)
```


Part 2: Station Optimization using Evolutionary Strategy

```
#Define distance measure between two points
In [19]:
         def manhattan distance(a,b):
             return np.sum(np.absolute(a-b))
         def geo vec to tab(geo vec):
             n stat = int(len(geo vec)/2)
             return np.stack((geo vec[0:n stat],geo vec[n stat:2*n stat]), axis
         = -1)
         # primary data structure for SGD optimization
         class bay wheel station opt:
             def __init__(self, grid_data):
                 self.geo coords = grid data["geo coords"]
                 self.demand = grid data["demand"]
             def eval(self, stat geo list vec):
                 # for each unit of demand, let cost be the Manhattan distance
         to the nearest station
                 # station geo list is a vector [Lat..., Long...]
                 tot cost = 0
                 n stat = int(len(stat geo list vec)/2)
                 stat geo list table = np.stack((stat geo list vec[0:n stat],st
         at geo list vec[n stat:2*n stat]), axis= -1)
                 for n in range(len(self.demand)):
                     x = self.geo coords[n,]
                     dis vec = np.zeros(n stat)
                     for i in range(len(dis vec)):
                         dis vec[i] = manhattan distance(x,stat geo list table[
         i,])
                     tot cost = tot cost+np.min(dis vec)*self.demand[n]
                 return tot cost
In [20]: ## Stochastic gradient descent using Evolutionary Strategy
```

```
p = len(x init) #dimension of the solution
## Initialization
x = np.zeros([n, p])
y = np.zeros([n, p])
y_muta = np.zeros(m)
x[0,]=x_init
y[0] = funct.eval(x[0,])
for i in range(n-1):
    c sum = np.zeros(p)
    d muta = np.random.normal(0, sigma, [m,p]) #Generate mutations
    #Estimate gradient using weighted mutations
    for j in range(m):
        y muta[j] = funct.eval(x[i,]+d muta[j,])
        c_{sum} = c_{sum} + (y_{muta[j]} - y[i])*d_{muta[j,]}
    #Update solutions using estimated gradient
    x now = x[i,]-c sum*alpha/(sigma**2*m)
    x now = np.minimum(xlim u, x now)
    x now = np.maximum(xlim 1, x now)
    x[i+1,] = x \text{ now}
    y[i+1] = funct.eval(x[i+1,])
results = {
    "x vec": x,
    "y_vec": y,
    "final x": x[n-1,]
}
return results
```

```
In [21]: n station = 40
         xlim u = np.concatenate((np.ones(n station)*coor ur[0], np.ones(n stat
         ion)*coor_ur[1]))
         xlim 1 = np.concatenate((np.ones(n station)*coor 11[0], np.ones(n stat
         ion)*coor ll[1]))
         es coef = {
         "n": 60, # number of steps
         "m": 7, # nubmer of mutations
         "alpha": 0.000000009, # step size parameter
         "sigma": 0.0000000001, #search distribution variance
         "xlim u" : xlim u,
         "xlim 1" : xlim 1,
         }
         grid data = {
             "geo coords" : np.stack((grid lat, grid long), axis= -1),
             "demand" : y pred
         }
         ## Initalize optimization objective function
         bw station opt = bay wheel station opt(grid data)
         ## Set initial station placement
         geo coords = grid data["geo coords"]
         init ind=np.random.randint(len(grid data["geo coords"]), size=(n stati
         on, 2))
         x init = np.zeros([n station,2])
         for i in range(n station):
             x init[i,] = geo coords[init ind][i][0]
         x init = np.ndarray.flatten(x init, 'F')
         ## Optmize using Evolutionary Strategy
         results = es_optimize(bw station opt,x init, es coef)
```


[88	37.78531827	37.75099488	37.7668832	37.77951462	37.790552
37	37.75226656	37.78732951	37.78776516	37.77023514	37.782192
34	37.76737838	37.75535161	37.76289	37.75078079	37.755622
91	37.79170628	37.76982049	37.76230129	37.78060972	37.750509
61	37.78178489	37.76324787	37.78602499	37.7764988	37.782294
99	37.75237036	37.76189626	37.79289233	37.79656255	37.793203
51	37.79242948	37.79906376	37.77511641	37.78949406	37.759973
55	37.77350182	37.77503782	37.76753872	37.78450697	37.762785
	.22.40660552	-122.46448917	-122.45669314	-122.42500341	-122.476841
•	.22.43503693	-122.3928528	-122.4015141	-122.43461397	-122.411901
	.22.47187561	-122.42013731	-122.45290896	-122.47194407	-122.454176
	.22.40316523	-122.45444193	-122.42450457	-122.44830055	-122.416998
_	.22.45727868	-122.44516126	-122.4104032	-122.39578798	-122.442350
	.22.44389833	-122.39507443	-122.39584477	-122.39472679	-122.427889
	22.40772824	-122.41364229	-122.41029663	-122.47031309	-122.412937
	.22.4191527	-122.47401831	-122.40155882	-122.41717359	-122.475906

```
In [23]: ##### Visualization with map
         final station geos = geo vec to tab(final x)
         cor ref start = (coor ll+coor ur)/2
         m = folium.Map(cor_ref_start, zoom_start=13)
         # plot heatmap of new stations
         m.add child(plugins.HeatMap(final station geos, max zoom = 13, max val
         =1, radius = 13, blur=1))
         ## Comparison
         grid data = np.stack((grid lat, grid long, y pred), axis=-1)
         ## Convert startig trip count to quantiles for visualization
         d = grid data[:,2]
         grange = np.arange(0,100,1.25)
         quantiles = np.percentile(d, grange)
         grid data[:,2] = np.searchsorted(quantiles, d)/len(qrange)
         #m.add child(plugins.HeatMap(grid data, max zoom = 13, max val=1, radi
         us = 3, blur=1))
         m.add child(plugins.HeatMap(station data, max zoom = 13, max val=1, ra
         dius = 6, blur=2)
```

Out[23]:

In []:	
In []:	
In []:	
In []:	
In []:	