

## Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at <a href="http://about.jstor.org/participate-jstor/individuals/early-journal-content">http://about.jstor.org/participate-jstor/individuals/early-journal-content</a>.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

X. Investigation of an Extensive Class of Partial Differential Equations of the Second Order, in which the Equation of Laplace's Functions is included.

By G. W. Hearn, Esq., of the Royal Military College, Sandhurst. Communicated by Sir John F. W. Herschel, Bart., F.R.S., &c.

Received February 19,-Read April 2, 1846.

Theorem. If u be a function of x and y satisfying the equation

$$\frac{d^2u}{dxdy} + \alpha_n e^{\varphi} u = 0,$$

where

$$\frac{d^2\varphi}{dxdy} + ce^{\varphi} = 0,$$

then the solution will be

$$u = D^{-n}v_n$$

where

$$\mathbf{D} = e^{-\varphi} \frac{d}{dy},$$

where

$$v_n = \int e^{-\frac{\beta_n}{\Delta \beta_n} \phi} \chi y dy + \psi x,$$

 $\chi y$  and  $\psi x$  arbitrary functions of y and x,

and

$$\beta_n = \frac{\Delta \alpha_{n-1} \cdot \Delta \alpha_{n-2} \cdot \ldots}{(\Delta \alpha_{n-1} - c)(\Delta \alpha_{n-2} - c) \cdot \ldots},$$

where

$$\Delta \alpha_r = \alpha_{r+1} - \alpha_r$$

and  $\alpha_n$  is a function of *n* vanishing for n=0 and for n=-1.

I will proceed to demonstrate this curious theorem as briefly as possible.

According to the notation, we may write the given equation

$$D\frac{du}{dx} + \alpha_n u = 0.$$

Then if

$$v_n = \mathbf{D}^n u$$

we have

$$v_{n+1}=\mathbf{D}^{n+1}u=\mathbf{D}v_n$$

$$D\frac{dv_n}{dx} + \beta_n z Dv_n = D^n \left\{ D\frac{du}{dx} + \alpha_n u \right\}. \qquad (\alpha.)$$

where z is a function of x and y to be determined, also  $\beta_n$  a function of u.

Writing n+1 for n in equation ( $\alpha$ .), we ought to have

$$\mathbf{D}\frac{dv_{n+1}}{dx} + \beta_{n+1}z\mathbf{D}v_{n+1} = \mathbf{D}^{n+1}\left\{\mathbf{D}\frac{du}{dx} + \alpha_{n+1}u\right\} . . . . . . (\beta.)$$

This circumstance will serve to determine z and  $\beta_n$  as follows: we have identically

$$\mathbf{D}^{n+1} \Big\{ \mathbf{D} \frac{du}{dx} + \alpha_{n+1} u \Big\} = \mathbf{D}^{n+1} \Big\{ \mathbf{D} \frac{du}{dx} + \alpha_{n} u \Big\} + \Delta \alpha_{n} \mathbf{D}^{n+1} u$$

$$\dot{=} \mathbf{D}^{2} \frac{dv_{u}}{dx} + \beta_{n} \mathbf{D} \Big\{ z \mathbf{D} v_{n} \Big\} + \Delta \alpha_{n} \cdot \mathbf{D} v_{n} \text{ by } (\alpha)$$

$$= \mathbf{D}^{2} \frac{dv_{n}}{dx} + \beta_{n} \mathbf{D} \Big\{ z v_{n+1} \Big\} + \Delta \alpha_{n} \cdot v_{n+1}.$$
But
$$\frac{dv_{n+1}}{dx} = \frac{d}{dx} \mathbf{D} v_{n} = \frac{d}{dx} \Big( e^{-\varphi} \frac{dv_{n}}{dy} \Big)$$

$$= -\frac{d\varphi}{dx} e^{-\varphi} \frac{dv_{n}}{dy} + e^{-\varphi} \frac{d}{dy} \cdot \frac{dv_{n}}{dx}$$

$$= -\frac{d\varphi}{dx} \mathbf{D} v_{n} + \mathbf{D} \frac{dv_{n}}{dx};$$

$$\therefore \mathbf{D}^{2} \frac{dv_{n}}{dx} = \mathbf{D} \Big\{ \frac{dv_{n+1}}{dx} + \frac{d\varphi}{dx} v_{n+1} \Big\}.$$
Hence
$$\mathbf{D} \frac{dv_{n+1}}{dx} + \mathbf{D} \Big( \frac{d\varphi}{dx} v_{n+1} \Big) + \beta_{n} \mathbf{D} (z v_{n+1}) + \Delta \alpha_{n} v_{n+1}.$$

Hence

ought to be identical with  $\mathbf{D} \frac{dv_{n+1}}{dx} + \beta_{n+1} z \mathbf{D} v_{n+1}$ , and hence the conditions

$$\frac{d\varphi}{dx} + \beta_n z = \beta_{n+1} z$$

$$\mathbf{D} \left\{ \frac{d\varphi}{dx} + \beta_n z \right\} = -\Delta \alpha_n.$$

Eliminating z, we have

or 
$$\begin{aligned} \mathrm{D}\frac{d\varphi}{dx} &= -\frac{\Delta\alpha_n\Delta\beta_n}{\beta_{n+1}} = -c, \\ \mathrm{or} & \frac{d^2\varphi}{dxdy} + ce^{\varphi} = 0, \\ \mathrm{and} & c\beta_{n+1} = \Delta\alpha_n\{\beta_{n+1} - \beta_n\}, \\ \mathrm{or} & \beta_{n+1} = \frac{\Delta\alpha_n}{\Delta\alpha_{n-c}} \cdot \beta_n; \\ & \therefore & \beta_n = \frac{\Delta\alpha_{n-1} \cdot \Delta\alpha_{n-2} \cdot \dots}{(\Delta\alpha_{n-1} - c)(\Delta\alpha_{n-2} - c) \cdot \dots} \end{aligned}$$

by these determinations we establish the formula  $(\beta)$  as a consequence of  $(\alpha)$ , and therefore if the formula  $(\alpha)$  be true for any value of n, it will be (subject to the above conditions) true for the next superior value.

Now, when n=0,  $v_0=D^0u=u$ , and provided  $\alpha_0$  and  $\alpha_{-1}$  are each =0,  $\alpha_0$  and  $\Delta\alpha_{-1}$ will be each 0, and  $\alpha_0$  and  $\beta_0$  each =0, and the equation ( $\alpha$ .) reduces to  $D \frac{dv_0}{dx}$  =D $\frac{du}{dx}$ , and is therefore true for u=0. Under these restrictions it will therefore be true for any positive integral value of n. Now the symbol D represents  $e^{-\varphi} \frac{d}{dy}$ , and therefore if U=0,  $D^nU=0$ , so that we have

or 
$$\begin{aligned} \mathbf{D} \frac{dv_n}{dx} + \beta_n z \mathbf{D} v_n &= 0, \\ e^{-\phi} \frac{d^2 v_n}{dx dy} + \frac{\beta_n}{\Delta \beta_n} \cdot \frac{d\phi}{dx} \cdot e^{-\phi} \frac{dv_n}{dy} &= 0, \\ \\ \frac{\frac{d}{dx} \cdot \frac{dv_n}{dy}}{\frac{dv_n}{dy}} &= -\frac{\beta_n}{\Delta \beta_n} \cdot \frac{d\phi}{dx}; \end{aligned}$$

 $\therefore$  integrating with respect to x,

$$\frac{dv_n}{dy} = e^{-\frac{\beta_n}{\Delta\beta_n}} {}^{\varphi} \chi y$$

$$v_n = \int e^{-\frac{\beta_n}{\Delta\beta_n}} {}^{\varphi} \chi y dy + \psi x,$$

$$u = D^{-n} v_n = \int e^{\varphi} \int e^{\varphi} \dots v_n dy dy \dots$$

and

the integral sign repeated n times. The theorem is therefore demonstrated.

It may be easily shown that the equation of LAPLACE's coefficients is included in the class here considered.

The equation of Laplace by a proper choice of independent variables assumes the form

$$\frac{d^2u}{dxdy} + \frac{n \cdot n + 1}{4\cos^2 \frac{y - x}{2}} \cdot u = 0.$$

Hence with reference to the preceding investigation,

Hence 
$$\begin{aligned} \mathbf{D} &= \cos^2 \frac{y - x}{2} \cdot \frac{d}{dy} \text{ and } \alpha_n = \frac{n \cdot \overline{n+1}}{4}. \\ &= e^{-\varphi} = \cos^2 \frac{y - x}{2}; \\ &\therefore \qquad \frac{d\varphi}{dx} = -\tan \frac{y - x}{2} \\ &= \frac{d^2\varphi}{dx dy} + \frac{1}{2} e^{\varphi} = 0. \end{aligned}$$

Hence  $c = \frac{1}{2}$  Also  $\Delta \alpha_n = \frac{n+1}{2}$ ;  $\Delta \alpha_n - c = \frac{n}{2}$ ;

 $\beta_n = n \text{ and } \Delta \beta_n = 1.$ 

MDCCCXLVI.

Inserting these values in the final formula, we have

$$v_n = \int \cos^{2n} \frac{y-x}{2} \chi y dy + \psi x,$$

and

$$u = \int \cos^{-2} \frac{y - x}{2} \int \cos^{-2} \frac{y - x}{2} \dots v_n dy dy \dots n \text{ times,}$$

which agrees with Mr. Hargreave's solution.