作业 1: 隐式欧拉程序

谢文进

2021年3月19日

1 隐式欧拉方法

求解如下常微分方程:

$$\begin{cases} \frac{du}{dt} = -\frac{u}{t}, 1 \le t \le 2\\ u(1) = 1 \end{cases} \tag{1}$$

1.1 精确解

将原方程化为 tdu+udt=0, 则有 d(ut)=0, 解得 ut=C(C) 为常数), 代入初始条件得 C=1,从而该方程的精确解为:

$$u = \frac{1}{t}, (1 \le t \le 2).$$

1.2 欧拉方法

代入欧拉格式得:

$$u_{i+1} = u_i + hf(t_i, u_i) = u_i + h(-\frac{u_i}{t_i})$$

1.3 隐式欧拉方法

由隐式欧拉格式得:

$$u_{i+1} = u_i + hf(t_{i+1}, u_{i+1}) = u_i + h(-\frac{u_{i+1}}{t_{i+1}})$$

移项化简可得:

$$u_{i+1} = \frac{t_{i+1}u_i}{t_{i+1} + h}$$

1 隐式欧拉方法

2

1.4 程序

根据上述推导,用 python 编写程序,代码如下:

```
# implict euler method
   import numpy as np
   import matplotlib.pyplot as plt
   # the right term of the ODE
   def f(t, u):
       f = -u/t
       return f
   # the exact solution of ODE
   def fexact(t):
       fexact = 1/t
       return fexact
14
15 N = 100
16 t_n = 2.0
   dt = (t_n - 1.0) / N
t = np.arange(1.0, t_n + dt, dt)
   u_euler = np.arange(1.0, t_n + dt, dt)
   u = np.arange(1.0, t_n + dt, dt)
   u_true = np.arange(1.0, t_n + dt, dt)
   i = 0
23
   while i < N:
       t[i+1] = t[i] + dt
       u_euler[i+1] = u_euler[i] + dt * f(t[i], u_euler[i])
       u[i+1] = (u[i] * t[i+1])/(t[i+1] + dt)
       u_true[i+1] = fexact(t[i+1])
       i = i + 1
29
   err_euler = max(abs(u_euler - u_true))
31
   err_implict_euler = max(abs(u - u_true))
   print("The error of euler method: ",err_euler)
   print("The error of implict euler method: ",err_implict_euler)
35
   # begin drawing
```

1 隐式欧拉方法 3

```
plt.title('Result')

plt.plot(t, u_euler, color='green', label='euler')

plt.plot(t, u, color='blue', label='implict euler')

plt.plot(t, u_true, color='red', label='exact')

plt.legend() # show the legend

plt.xlabel('t')

plt.ylabel('t')

plt.show()
```

1.5 结果分析

当取 h = 0.01 时,此时欧拉方法的误差为 0.02631578947368396,隐式 欧拉方法的误差为 0.023809523809523836,结果如下图所示:

当取不同 h, 得到的误差如下表所示:

表 1: 不同 h 的误差表

	Pt 10. 3.3d.	## 15.04 E.E. 1.3.1.1.
h	欧拉方法	隐式欧拉方法
$\frac{1}{2}$	0.1666666666666666666666666666666666666	0.0999999999999998
$\frac{1}{4}$	0.0714285714285714	0.0555555555555558
$\frac{1}{8}$	0.033333333333333215	0.02941176470588236
$\frac{1}{16}$	0.01612903225806467	0.015151515151515138
$\frac{1}{32}$	0.00793650793650813	0.007692307692307665
$\frac{1}{64}$	0.003937007874015519	0.003875968992248069
10^{-1}	0.02631578947368396	0.023809523809523836
10^{-2}	0.0025125628140699185	0.0024875621890547706
10^{-3}	0.0002501250625697726	0.0002498750624687629