Álgebra II. Hoja de ejercicios 1: Subanillos, homomorfismos, álgebra de grupo Universidad de El Salvador, ciclo par 2018

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2@googlegroups.com.

Ejercicio 1. Verifique que hay una cadena de subanillos

$$\mathbb{Z}[\sqrt{5}] \subset \mathbb{Z}\Big[\frac{1+\sqrt{5}}{2}\Big] \subset \mathbb{R}$$

donde

$$\mathbb{Z}[\sqrt{5}] := \left\{ a + b\sqrt{5} \mid a, b \in \mathbb{Z} \right\}, \quad \mathbb{Z}\left[\frac{1 + \sqrt{5}}{2}\right] := \left\{ a + b\frac{1 + \sqrt{5}}{2} \mid a, b \in \mathbb{Z} \right\}.$$

Ejercicio 2. Consideremos el anillo de las funciones $f: \mathbb{R} \to \mathbb{R}$ respecto a las operaciones **punto por punto**

$$(f+g)(x) := f(x) + g(x), \quad (f \cdot g)(x) := f(x) \cdot g(x).$$

Demuestre que hay una cadena de subanillos

 $\{\text{funciones constantes }\mathbb{R} \to \mathbb{R}\} \subset \{\text{funciones polinomiales }\mathbb{R} \to \mathbb{R}\}$

$$\subset \{\text{funciones continuas } \mathbb{R} \to \mathbb{R}\} \subset \{\text{funciones } \mathbb{R} \to \mathbb{R}\}.$$

Homomorfismos de anillos

Ejercicio 3. Sea R un anillo conmutativo y $M_n(R)$ el anillo de las matrices de $n \times n$ con coeficientes en R. ¿Cuáles aplicaciones de abajo son homomorfismos?

1) La proyección

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix} \mapsto x_{11}.$$

2) La traza

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix} \mapsto x_{11} + x_{22} + \cdots + x_{nn}.$$

3) El determinante $A \mapsto \det A$.

Ejercicio 4. Sea $f: R \to S$ un homomorfismo de anillos conmutativos y sea n = 1, 2, 3, ...

1) Demuestre que f induce un homomorfismo de los anillos de matrices correspondientes $f_*: M_n(R) \to M_n(S)$ dado por

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix} \mapsto \begin{pmatrix} f(x_{11}) & f(x_{12}) & \cdots & f(x_{1n}) \\ f(x_{21}) & f(x_{22}) & \cdots & f(x_{2n}) \\ \vdots & \vdots & \ddots & \vdots \\ f(x_{n1}) & f(x_{n2}) & \cdots & f(x_{nn}) \end{pmatrix}.$$

- 2) Demuestre que f induce un homomorfismo de grupos $GL_n(f): GL_n(R) \to GL_n(S)$.
- 3) Demuestre que el diagrama de homomorfismos de grupos

$$\begin{array}{ccc}
\operatorname{GL}_n(R) & \xrightarrow{\operatorname{det}} & R^{\times} \\
\operatorname{GL}_n(f) \downarrow & & \downarrow f^{\times} \\
\operatorname{GL}_n(S) & \xrightarrow{\operatorname{det}} & S^{\times}
\end{array}$$

conmuta.

(Sugerencia: use la fórmula $\det(x_{ij}) = \sum_{\sigma \in S_n} \operatorname{sgn} \sigma \cdot x_{1\sigma(1)} \cdots x_{n\sigma(n)}$.)

Ejercicio 5. Sea R un anillo conmutativo. Calcule $Z(M_n(R))$, el centro del anillo de las matrices de $n \times n$ con coeficientes en R.

(Véanse los ejercicios donde calculamos el centro del grupo lineal general $GL_n(R)$.)

Ejercicio 6.

- 1) Demuestre que un isomorfismo de anillos $R \to S$ se restringe a un isomorfismo de grupos $R^{\times} \to S^{\times}$.
- 2) Demuestre que los anillos de polinomios $\mathbb{Z}[X]$ y $\mathbb{Q}[X]$ no son isomorfos.

Ejercicio 7. *Sea* $f: R \to S$ *un homomorfismo sobreyectivo de anillos. Demuestre que* $f(Z(R)) \subseteq Z(S)$.

Álgebra de grupo

Ejercicio 8. Sea R un anillo conmutativo y G un grupo. Demuestre que

$$\epsilon \colon R[G] \twoheadrightarrow R, \quad \sum_{g \in G} a_g \, g \mapsto \sum_{g \in G} a_g$$

es un homomorfismo sobreyectivo de anillos.

Ejercicio 9. Sea R un anillo conmutativo g un grupo finito. Consideremos $t := \sum_{g \in G} 1 \cdot g \in R[G]$. Demuestre que $t^2 = |G| t$.

Ejercicio 10. En este ejercicio vamos a calcular el centro del álgebra de grupo R[G]. Consideremos

$$x = \sum_{g \in G} a_g \, g \in R[G].$$

- 1) Demuestre que $x \in Z(R[G])$ si y solamente si h x = x h para todo $h \in G$.
- 2) Deduzca que $x \in Z(R[G])$ si y solamente si $a_g = a_{hgh^{-1}}$ para cualesquiera $g, h \in G$.

Entonces, el centro de R[G] consiste en los elementos $\sum_{g \in G} a_g g$ cuyos coeficientes a_g son constantes sobre las clases de conjugación de G.