

f(x) = f(x) = f(x)	
$f(x) = ln(y \cdot ln(y - x))$	
y-x>0 1 y ln (y-x)>0	
7 > X y > 0 1 ln(y-x) > 0 V y < 0 1 h /2 -x) < 0	1
7 > x y > 0 1 ln(y-x) > 0 V y < 0 1 h ly -x) < 0	1 / / / / / / / / / / / / / / / / / / /
	1 1
$2\sqrt{2}$ > 2°	1 1
2-x=01	1 1
7 > 0 1 7 > ×11 V 7 < 0 1 7 < 1+x	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1/(vy) = arosin (+x) + arosin (1-y)	
flxy = arosin (+ arosin (1-y)	
	1 1
-1 < 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$-2 \leq -\gamma \leq 0$	1 1
2 = 0 = 0 = 1 = 0	1 1 1 6 1 1
1 x = -y2	1 1 1 1
77	J
megapita it vide Lo	
1 SQUARE =	1 1
12.21 E.	

ten (x-y) $(x^2 + xy + y^2) = 7$ $= \lim_{(X,y) \to (4,4)} \frac{(x^2 + y^2) \cdot (x^2 + y^2)}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + xy + y^2}{(x^2 + y^2) \cdot (x + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + xy + y^2}{(x^2 + y^2) \cdot (x + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + xy + y^2}{(x^2 + y^2) \cdot (x + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + xy + y^2}{(x^2 + y^2) \cdot (x + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + xy + y^2}{(x^2 + y^2) \cdot (x + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + xy + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + xy + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + xy + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2) \cdot (x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2)} = \lim_{(X,y) \to (4,4)} \frac{x^2 + y^2}{(x^2 + y^2)} = \lim_{($ $= \frac{0}{0} - \lim_{x \to 0} \frac{3 \cdot (x^2 + y^2)}{\sqrt{x^2 + y^2 + 4}} = \frac{\sqrt{x^2 + y^2 + 4}}{\sqrt{x^2 + y^2 + 4}} + \frac{3 \cdot (x^2 + y^2)}{\sqrt{x^2 + y^2 + 4}} = \frac{3 \cdot (x^2 + y^2)}{\sqrt{x^2 + y^2}} = \frac{3 \cdot (x^2 +$ Pri: 3. (x2+y2)
lim
(x,y/7(6,0) 7x2+2+4 (3x2+13y2). (1x2+y2+4+2)_hm 3.67x2+y2+4+2 (x,y) >(0,0) (x-ry) 7(0,0) x2+ m2 4-14 lim x+y
(x,y)+(6,0) isné - nema rbode [0,0] lim 2x+3 x= (x, y) -x(21) = 1 1 SQUARE =

17