

FIRST SEMESTER 2024 - 2025

Course Handout Part II

Date: 23.07.2024

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MATH F211

Course Title : MATHEMATICS - III

Instructor-in-charge : Santanu Koley

Instructors : K Bhargav Kumar, TSL Radhika, Jagan Mohan J, Kishore Kumar, PK

Sahoo, G Murali Mohan Reddy, Santanu Koley, Kailash Chand Swami, Shubham Atmaram Narawade, Santanu Kumar Dash, Ameya Kolhatkar, Lokesh Kumar Duchaniya, Bhawna, Subhendu Paul, Mayuri Verma, Sai Swagat Mishra, Priyanka Vishwakarma, Debasmita Mohanty, Dheeraj Singh

Rana, Debismita Nayak.

1. Scopes and Objective of the Course:

This course reviews and continues with differential equations to introduce classical methods for solving higher order ordinary differential equations, partial differential equations, and boundary value problems. It also introduces an elegant way to solve some differential equations occurring in mathematical physics. Further, this course presents the Fourier series and Laplace transform technique that finds applications in various branches of engineering and sciences. It also emphasizes the role of orthogonal polynomials in dealing with Sturm - Liouville problems.

2. Text Books:

1. Simmons, G. F., Differential Equations with Applications and Historical Notes, TMH Edition 2003, 12th Reprint 2008.

Reference Books:

- 1. Shepley L. Ross: Differential Equations, John Wiley & Sons Inc., 2018.
- 2. Braun, M.: Differential Equations and Their Applications, Springer Verlag, 1982.
- 3. Kreider, D. L. & Others: An Introduction to Linear Analysis, Addison Wesley Limited, 1966.

3. Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Chapter in the Text Book
1	To study methods for solving first-order differential equations	Introduction to first-order equations	1-7
2-4		First-order equations	8-10
5		Reduction of order	11
6-7		Second order equations	14,15
8	To learn about second and higher-	Use of a known solution	16
9-12	order differential equations and various methods for solving them	Various methods to solve differential equations	17-19,22,23

13-14	To understand the method of solving system of differential equations	Systems of equations	54-56
	To study qualitative properties of solutions of differential equations	Sturm separation theorem and Sturm comparison theorem (Self - Study)	24, 25
15-18	To study an elegant method to solve higher order differential	Series solutions	26-30
19-20	equations	Hypergeometric equation	31
21-23	To learn about some special functions of mathematical physics	Legendre polynomials	44,45
24		Chebyshev polynomials	Appendix D
		Hermite polynomials (Self - Study)	Appendix B
25-27		Bessel functions	46,47
28-31	To study Laplace transform technique for solving differential and integral equations	Laplace transforms	48-53
32-33	To learn trigonometric series expansion of discontinuous functions	Fourier series	33-36
34-37	To learn methods to solve boundary value problems	Eigenvalues and eigenfunctions, Sturm - Liouville problems	40, 43
38-42	To learn methods to solve linear partial differential equations	One-dimensional wave equation, One-dimensional heat equation, Laplace's equation	40, 41, 42

4. Evaluation Scheme:

Evaluation	Duration	Weightage	Date & Time	Nature of				
Component				Component				
Assignment 1	-	10%	To be announced	Open book				
Mid Semester	90 Minutes	35%		Closed book				
Assignment 2	-	10%	To be announced	Open book				
Compre	180 Minutes	45%		Closed book				

^{*} The total marks of all the components taken together will be 200.

- **5. Chamber Consultation Hour:** To be announced by the individual instructor.
- **6. Notices:** All notices regarding this course will be displayed on CMS.
- **7. Make-up Policy:** Make-up for any component will be given only for very genuine cases and it also depends upon the feasibility. Prior permission has to be obtained from Instructor-in-charge.
- 8. Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE MATH F211

