HOME PATENTWEB TRADEMARKWEB WHAT'S NEW PRODUCTS&SERVICES ABOUT MICROPATENT

Search











MicroPatent's Patent Index Database: Record 1 of 2 [Individual Record of JP63108428A]

Porder This Patent Family Member(s)

JP63108428A 19880513 FullText

Title: (ENG) ROUTINE DOCUMENT FORMING SYSTEM

**Abstract:** (ENG)

PURPOSE: To form lots of routine documents including a merge data quickly by synthesizing and outputting a routine document data and a merge data on a bit map memory and outputting, and clearing the merge data after the end to synthesize the next merge data.

CONSTITUTION: A routine document data is registered on a floppy disk 20 and the merge data are written on a hard disk 19 or an optical disk 21 for each RAM 3. A CPU 2 reads a routine data from the disk 20 based on an indexed data of the RAM 3 and expanded in a bit map memory 17. Then the merge data is read from the disk 19 or 21 and sent to the memory 17. The memory 17 expands the merge data in the indicated area. The data is sent to a printer 18, where the data is printed out. Then only the data in the merge area is cleared and the next merge data is read from the disk 19 or 21 and expanded in the cleared area and printed out by the printer. The processing above is repeated for a prescribed number of times.

Application Number: JP 25436986 A
Application (Filing) Date: 19861025
Priority Data: JP 25436986 19861025 A X;

Inventor(s): NAKAMURA YUMIKO; MURAYAMA NOBORU

Assignee/Applicant/Grantee: RICOH KK

Original IPC (1-7): G06F00312; B41J00530; G06F01520; G06K01500 Legal Status: There is no Legal Status information available for this patent

Q











Sparrh

lict

iret

Pres

las

Copyright © 2002, MicroPatent, LLC. The contents of this page are the property of MicroPatent LLC including without limitation all text, html, asp, javascript and xml. All rights herein are reserved to the owner and this page cannot be reproduced without the express permission of the owner.

(19) Japanese Patent Office (JP)

# (12) OFFICIAL GAZETTE FOR KOKAI UNEXAMINED PATENTS (A)

(11) Patent Application Disclosure Number: S63-108423

(43) Publication Date:

May 13, 1988

| (51) International Classification 4 | Identification Symbol | JPO File Number |  |  |
|-------------------------------------|-----------------------|-----------------|--|--|
| G 06 F 3/12                         |                       | B-7208-5B       |  |  |
| B 41 J 5/30                         |                       | A-7810-2C       |  |  |
| G 06 F 3/12                         |                       | V-7208-5B       |  |  |
| 15/20                               | 301                   | P-7218-5B       |  |  |
| G 06 K 15/00                        |                       | 7200-5B         |  |  |

Number of Inventions: 1

Request for Examination: Not yet requested

(Total of 4 pages in the original Japanese)

(54) Title of the Invention: Standard format document preparation method

(21) Application Number: S61-254369

(22) Application Date:

October 25, 1986

Section 30(1) of the Patent Law applied. Disclosed in "Ricoh Technical Report No. 15 Special Issue on Pattern Recognition and Natural Language Processing" published by the Technical Headquarters of Ricoh Co., Ltd. on April 25, 1986.

(72) Inventor:

Yumiko Nakamura

Ricoh Co., Ltd.

1-3-6 Naka-magome, Ota-ku, Tokyo

(72) Inventor:

Noboru Murayama

Ricoh Co., Ltd.

1-3-6 Naka-magome, Ota-ku, Tokyo

(71) Applicant:

Ricoh Co., Ltd.

1-3-6 Naka-magome, Ota-ku, Tokyo

(74) Agent

Patent attorney Makoto Suzuki

## Specification

#### 1. Title of the invention

A standard format document preparation method

#### 2. Claims

(1) In a document preparation system comprising a bit memory map for storing print image data, a standard format document preparation method having a bit map memory for storing print image data wherein:

when preparing a standard format document, an insertion area(s) whose contents are variable is specified; and data to be stored in the insertion area along with its positional information are registered by type such as text, graphics, and images; and

when a standard format document is to be output, the standard format document portion other than the insertion area is first sent to the bit map area and only the insertion data is sent thereafter to be combined with the standard format document portion in the bit map memory and then output.

## 3. Detailed description of the invention

(Technical field)

The present invention relates to a standard format document preparation method for word processors using a personal computer and the like.

## (Conventional art)

Use of a personal computer as a word processor has become an everyday event, and editors that can handle graphics and images in addition to text have been announced. However, none of such editors can rapidly prepare a large number of standard format documents that are different from each other only in terms of an image (photograph) and a part of the text (name), such as identification documents with photos. An example of a method for preparing standard format documents using conventional word processors is insertion printing. Since this method, after editing, sends not only the insertion data but all the data to the print buffer memory (bit map memory), printing becomes time consuming when image data and the like are contained in areas other than the insertion area.

## (Object)

The object of the present invention is to provide a method for word processors using personal computers and the like to rapidly prepare and output a large number of standard format documents containing an insertion area(s).

(Configuration)

The present invention is a standard format document preparation method having a bit map memory for storing print image data wherein, to prepare standard format documents, insertion area(s) with contents that are variable and data to be stored in the insertion area along with its positional information are stored by type such as text, graphics, and images. When a standard format document is to be output, the standard format document portion other than the insertion area is first sent to the bit map area and only the insertion data are sent thereafter to be combined with the standard format document portion in the bit map area to be combined which is then output. After completion of outputting, only the insertion area in the bit map memory is cleared and the next insertion data is sent for combining. This process is repeated thereafter.

One embodiment of the present invention is described below with reference to drawings.

In Fig. 1, boot ROM 1 stores the initial setup program for the CPU 2, and the system is booted up by executing the said program. CPU 2 is a processor that controls the entire system. RAM 3 stores programs and data. VRAM 4 is a video RAM for the display devise (CRT) 8. TRAM 5 is a text RAM for the CRT. CG 6 is a character generation ROM that patternizes the character codes of text RAM 5. CTRC 7 is a display control that controls the display of CRT 8. 9 through 14 are interface circuitry; respectively they are connected to a keyboard (KB) 15, image input scanner (SC) 16, bit map memory (BM) 17, hard disc (HDD) 19, floppy disc (FDD) 20, and optical disc (ODD) 21. The bit map memory (BM) is a memory part that holds data to be output to printer (LP) 18 in the form of a print image. Said bit map memory 17 has an internal processor that is capable of editing and image processing according to instructions from CPU 2. Optical disc (ODD) 21 is a large capacity external file and is usually used to store and search the edited results. 22 is a bus line connecting parts of the system to each other.

First, an overview of the general editing process using this system is described.

Character data input from the keyboard 15 is sent to text RAM 5 and turned into character patterns using the character generation ROM 6 under the control of CRTC 7, and displayed on CRT 8. The image data read by the scanner 16 is sent to VRAM 4 and similarly displayed on CRT 8 under control of CRTC 7. CRT 8 controlled by CRTC 7 can display data from text RAM 5 and data from VRAM 4 separately or simultaneously together as a logical sum, for example. Stored at the end of each line in text RAM 5 is a line control command (LCC) which indicates the size, line feed amount, etc. of the character data of the line when printed. However, the character size and line space on CRT 8 are constant.

Each time editing is done, the data in text RAM 5 is patternized in the character generation ROM 6 and sent to the bit map memory 17. At this time, the line control command in text RAM 5 is also converted to instruction(s) for bit map memory and sent to bit map memory 17. The bit map memory 17 interprets the LCC and controls the size and position of the character(s) and expands the received character pattern data. Image data from VRAM 4 may be sent to the bit map memory 17 at times. Logical

operations such as "logical sum," "exclusive logical sum," and "logical multiplication" may be carried out at the bit map memory 17 as necessary on the already expanded data. When the editing is completed, the data in the bit map memory 17 is output to printer 18 according to instructions from CPU 2 and stored in HDD 19 and FDD 20.

Fig. 2(a) shows the file format (standard format document) used for storage in HDD 19 and FDD 20. To explain, the stored file comprises a header part, text code part and page directory part, the details of which are described below.

## (A) Header part

Information such as the document name, document creation date, number of pages, and write-start addresses of various data is contained.

## (B) Text code part

Since the overflowed characters of text will run over into the next page, character strings are not saved by the page but saved as a whole document.

## (C) Page directory part (page Dir)

A page directory contains page allocation information and comprises an image directory, a graphic directory and ruled line vector.

For images and graphics, information such as specified file names, positions, and magnification specified at the time of integration is written, but the content itself of the part file (raster data and individual graphic vectors) is not written. Therefore, for outputting and layout displaying, both this directory information and the part file are referred to.

By using this method, file sizes become very small because the need to hold large image raster data for each document is obviated. Fig. 2(b) shows the layout.

Print out processing of a standard format document containing an insertion area(s) is described below.

Data for a standard format document part is registered in the format shown in Fig. 2(a) as an integration file in FDD 20, for example. Data for the insertion area such as image data and graphic data is written on HDD 19 or ODD 21, for example. To print out an identification card, for example, the facial photographs of all individuals are written on ODD 21.

The keyboard 15 is then used to set up the type of the insertion data (for example, personal names or facial photographs) and the insertion area which are then written to RAM 3 for printing. Based on the index (reference) data in RAM 3, CPU 2 reads standard format data from FDD 20 and expands print image data other than the insertion area and stores it in the bit map memory 17. After this, the insertion data such as image data and graphic data is read from HDD 19 or ODD 21 and sent to the bit map

memory 17. In the bit map memory 17, the said insertion data is expanded into the specified insertion area. If the insertion data is set in text RAM 5 as character data, the insertion data is turned into character patterns at the character generation ROM 6 and sent to the bit map memory 17, and the said character pattern data is expanded into the insertion area in the bit map memory 17. The standard format data and insertion data expanded in the bit map memory 17 are printed out by the line printer 18. In the bit map memory 17, only the data corresponding to the insertion area is then cleared and the standard format data portions other than that are left as they are. When the next insertion data is read from HDD 19, ODD 21 or the like, the insertion data is expanded in the area (insertion area) that was cleared as described above and printed out by the line printer 18. After this, only the insertion area in the bit map memory 17 is cleared and the next insertion data is read from HDD 19, ODD 21 or the like and written to the said insertion area. Subsequently, the same processing is repeated a prescribed

The sequence of actions described above is controlled by CPU 2 based on the program written in the program storage area in RAM 3.

Fig. 3 shows the states of the bit map memory 17 during the processing described above. 101 and 102 indicate the insertion areas. Fig. 3(a) represents a state where the standard format data not in the insertion areas 101 and 102 is expanded. Fig. 3(b) shows how the insertion data is expanded in the insertion areas 101 and 102 and combined with the standard format data not in the insertion area for printing out. Fig. 3(c) shows that, after printing out, the data in the insertion areas 101 and 102 are cleared and [the bit map memory 17] is returned to the state in Fig. 3(a). After this, the state shown in Fig. 3(b) and the state shown in Fig. 3(c) repeat a prescribed number of times.

## (Effects)

number of times.

As the foregoing shows, the present invention obviates the need to re-send data other than the data for the insertion area and therefore shortens the data transfer time from the host computer (CPU) and the data expansion time in the bit map memory. Particularly when image/graphic data exists outside of the insertion area and/or a large number of standard format documents are to be prepared, significant time saving is expected.

## 4. Brief description of the drawings

Fig. 1 is a block diagram of one embodiment of a system according to the present invention. Fig. 2 is a diagram showing a file format of a standard format document and an example of its layout. Fig. 3 is a diagram illustrating the preparation process for a standard format document containing insertion areas.

## 17... Bit map memory

# 101, 102 ... Insertion areas

# Agent: Patent attorney Makoto Suzuki



FIG. 1



FIG. 2(a)



FIG. 2(b)



Fig. 3

## 19日本国特許庁(JP)

① 特許出願公開

# ⑫ 公 開 特 許 公 報 (A)

昭63 - 108428

| @Int.Ci.⁴                            | 識別記号  | 庁内整理番号                              |      | 43公開 | 昭和63年(198 | 38) 5月13日 |
|--------------------------------------|-------|-------------------------------------|------|------|-----------|-----------|
| G 06 F 3/12<br>B 41 J 5/30           |       | B-7208-5B<br>A-7810-2C<br>V-7208-5B |      |      |           |           |
| G 06 F 3/12<br>15/20<br>G 06 K 15/00 | 3 0 1 | P - 7218 - 5B<br>7208 - 5B          | 審査請求 | 未請求  | 発明の数 1    | (全4頁)     |

#### **劉発明の名称** 定型文書作成方式

②特 願 昭61-254369

. ②出 願 昭61(1986)10月25日

特許法第30条第1項適用 昭和61年4月25日 株式会社リコー技術本部発行の「RICOH TECHNICAL REPORT № 15 パターン認識・自然言語処理特集号」において発表

⑦発 明 者 中村 由美子 ⑦発 明 者 村 山 登 ①出 願 人 株式会社リコー ②代 理 人 弁理士 鈴木 誠

東京都大田区中馬込1丁目3番6号 株式会社リコー内 東京都大田区中馬込1丁目3番6号 株式会社リコー内 東京都大田区中馬込1丁目3番6号

#### 明 細 沓

#### 1. 発明の名称

定型文资作成方式

#### 2. 特許請求の範囲

## 3. 発明の詳細な説明

〔技術分野〕

本発明は、パーソナルコンピュータを利用した ワードプロセッサなどにおける定型文書作成方式 に関する。

#### (從采技術)

本発明の目的は、パーソナルコンピュータを利用したワードプロセッサなどにおいて、差込み領域を含む多数の定型文書を迅速に作成出力する方式を提供することにある。

#### 〔梅成〕

本発明は、出力用紙全面のビットマップメモリをもつ文書作成システムにおいて、定型文書をおいて、定型文書をおいた。 定型文書をおいた。 ないない かっと ない ない かっと ない ない かっと ない ない かっと ない かっと ない かっと はい ない かっと はい かっと はい

以下、本発明の一実施例について図面により説 明する。

第1図において、ブートROM1にはCPU2の初期設定プログラムが記憶され、該プログラムを実行することによりシステムの立上げが行われる。CPU2はシステム全体をコントロールする処理装置である。RAM3にはプログラムとデー

概要を説明する。

KB15より入力された文字データはTRAM
5に送られ、CRTC7の制御によりCG6を相
いて文字パターン化され、CRT8に表示される・
また、SC16で記み取られた画像データはにTC7の制御にCRTC7の制御にCRTC7の制御にCRTC7の制御にCRTC7の制御により、TRAM4のCRTのである・CRT8には、AM4により、TRAM4のである・なりのかけてである・なりのかけないはである・なの行の終わりのかけないなどを配置がある。なりのプリント時のサイズ、のでのである・
M5内のオリントはである・
なる・

編集が一段落するたびに、TRAM5のデータがCG6でパターン化され、BM17に送られる。この時、TRAM5内のLCCもBM用の命令に変換されてBM17に送られる。BM17はLCCを解釈し、文字のサイズや位置を側御して送ら

タが格納される。VRAM4はディスプレイ裝置 (CRT) 8川のビデオRAM、TRAM5はC RT用のテキストRAM、CG6はTRAM5の 文字コードをパターン化するキャラクタ発生RO M、CTRC7はCRT8の表示を制御する表示 制御部である。 9~14はインターフェイス回路 であり、それぞれキーボード (KB) 15、 画像 入力スキャナ(SC)16、ビットマップメモリ (BM) 17、ハードディスク (HDD) 19、 フロッピディスク (FDD) 20、光ディスク (ОDD) 21が接続されている。ピットマップ メモリ (BM) はプリンタ (LP) 18に出力す るデータをプリントイメージで帮發するメモリ部 で、内部にプロセッサを持ち、CPU2からの命 合に従い該BM17上で編集や画像処理が可能で ある。光ディスク (ODD) 21は大容量外部フ ァイルであり、通常、縄築結果を記憶し検索する ために用いられる。22はシステムの各部を結ぶ パスラインである.

はじめ、本システムによる一般的な凝集処理の

れてきた文字パターンデータを展開する。BM17にはVRAM4の画像データも送られることがある。また、BM17では、既に展開されているデータと必要に応じて"論理和"や"排他論理和"、"論理秩"などの論理演算が施こされることもある。編集が終了すると、CPU2からの命令によりBM17のデータはプリンタ18に出力され、また、HDD19やFDD20に登録される。

第2図(a)はHDD19やFDD20に景録されるファイル形式(定型文書)を示したものである。即ち、登録ファイルはヘッダー部、テキストコード部、ページディレクトリ部から構成されており、その詳細は以下のとおりである。

#### (A) ヘッダー部

#### (B) テキストコード部

テキストは、あふれた文字が次のページに流 れ込むという性質があるため、文字列をページ 銀ではなく、文書単位で一括してセーブする。

## 特開昭63-108428 (3)

#### (C) ページディレクトリ部(ページDir)

ページディレクトリにはページの割りつけ情報が背かれており、イメージディレクトリ、グラフィックディレクトリと罫線ペクトルから構成されている。

イメージとグラフィックについては、統合時に 指定したファイル名と位置、倍率等の情報が登込 まれているが、部品ファイルの内容そのもの(イ メージのラスタデーフや個々のグラフィックペク トル)が掛込まれているわけではない。故に出力 やレイアウト設示のときは、このディレクトリ情 報と部品ファイルの両方を参照することになる。

この方式をとると、文存存に膨大なイメージラスタデータをもたなくてよく、ファイルの容母が非常に小さくなる。第2回(b)はレイアウトを示したもまである。

定型文書部分のデータは、統合ファイルとして 第2回 (a) の形式で例えばFDD20に登録し

データをLP18によりプリントアウトする.

その後、BM7中の差込領域に対応する部分の データのみをクリアし、それ以外の定型データ部 分はクリアしないでそのまゝ残しておく。そして 次の差込データをHDD19又はODD21など から読み出して、BM17の上記クリアした領域 (差込領域)に展開し、LP18によりプリント アウトする。その後、再びBM17中の差込何以 部分のみをクリアし、次の差込データをHDD1 9又はODD21などから読み出しては該差込何 域に書き込む。以下、同様の処理を所定回数繰り 返す。

なお、以上の一連の動作は、RAM3のプログラム格納領域に費き込まれているプログラムに基づき、CPU2によって制御される。

第3回は上記処理の際のBM17の状況を示したもので、101と102が差込領域を示している。第3回(a)は登込領域101,102以外の定型データを原開した場合であり、第3回(b)は登込領域101,102に登込データを展開し、

ておく。イメージデータ、グラフィックデータ符の登込領域のデータは例えばHDD19又はODD21に掛き込んでおく。例えば身分証明書をプリントアウトする場合、全員の餌写真をODD21に書き込んでおく。

差込領域外の定型データと合成してプリントアウトすることを示している。第3図(c)はプリントアウト後、差込領域101,102のデータをクリアして第3回(a)の状態に戻すことを示している。以後、第3図(b)と(c)の状態が所定の回数ループすることになる。

#### 〔効 果〕

以上の説明から明らかな如く、本発明によれば、 差込領域以外のデータを送り直す必要がないため、 ホストコンピュータ(CPU)からのデータ転送 時間、並びにピットマップメモリ上でのデータ展 関時間が短縮される。特に、差込領域外にイメー ジやグラフィックデータが存在する場合や、多数 の定型文書を作成する場合、非常な時間短縮が期 待される。

#### 4. 図面の簡単な説明

第1回は本発明にからわるシステムの一実施例のプロック図、第2回は定型文書のファイル形式とそのレイアウトの一例を示す図、第3回は差込領域を含む定型文書作成処理を説明する図である。

# 特開昭63-108428 (4)

代理人弁理士 鈴 木





第2 図(a)



第3図

(a) 17 (b) 17 (c) 17 (c) 17 (c) 17 (c) 101 (c)