Module 5: Genomic Prediction with Main QTLs Fixed

Fundamentals of Genomic Prediction and Data-Drive Crop Breeding

(August 4-8, 2025)

Waseem Hussain

Senior Scientist-I International Rice Research Institute Rice Breeding Innovations Platfrom waseem.hussain@irri.org whussain2.github.io

Mahender Anumalla

Scientist-I
International Rice Research Institute
South-Asian Hub, Hyderabad
m.anumalla@irri.org

Contents

Background Information	1
Load the R Packages	1
Read the Data Sets	1
Read Genotype Data Build the G matrix	1 2
Fit QTLs as Fixed Effects	3

Background Information

In this section we will perform genomic selection but we will use **Major Effect or Know QTLs as Fixed Effects".

Treating them as fixed effect mean they will not be shrinked. And there effects will be maintained.

What is Our Goal

Fix the QTLs as fixed effect

Load the R Packages

```
> library(AGHmatrix)
> library(BGLR)
> library(lme4)
> library(ggplot2)
> library(sommer)
```

Read the Data Sets

The Data has 5 environments and has yield data. The data comes from the different locations in Bangladesh and India. BLUEs alrady extracted. We will upload the file and use it for analysis.

```
> rm(list=ls()) # remove History
> # Read the phenotypic data
> BLUEs.all<-read.csv(file="./Data/BLUES.ALL.csv")
> BLUEs.all<-subset(BLUEs.all, Environment=="ENV1")</pre>
```

Read Genotype Data

length(Ids)

This marker data as 844 genotypes with 396511 SNP Markers, and the file is saved as .rds. We will subset 252 genotypes and use it estimate the GEBVs.

```
> geno<-readRDS("./Data/GBS_datav2.rds")
> dim(geno)

[1] 844 396511
> # Match genotype with Phenotype
> Ids<-unique(BLUEs.all$Genotype)</pre>
```

```
[1] 251
```

```
> # Now subset the genotype Data based on IDs
> geno<-geno[row.names(geno)%in%Ids,]
> dim(geno)
```

[1] 251 396511

[1] 251 251

Build the G matrix

- Here we will construct the **Genomic Relationship Matrix (GRM)** using marker data. The GRM will be based on **VanRanden (2008)**.
- The steps used to create this GRM is:
 - Create a center of marker data (X matrix)
 - Create a Cross Product (XX)
 - Divide the (XX) by number of markers

$$GRM = XX^t/m$$

- More on relationship matrix can be found here Source 1, Source 2
- We will use the AGHmatrix package to build G matrix.

```
GM<- Gmatrix(SNPmatrix=geno, missingValue=NA,
                             maf=0.05, method="VanRaden")
Initial data:
   Number of Individuals: 251
   Number of Markers: 396511
Missing data check:
   Total SNPs: 396511
    O SNPs dropped due to missing data threshold of 0.5
   Total of: 396511 SNPs
MAF check:
    25572 SNPs dropped with MAF below 0.05
   Total: 370939 SNPs
Heterozigosity data check:
   No SNPs with heterozygosity, missing threshold of = 0
Summary check:
   Initial: 396511 SNPs
   Final: 370939 SNPs (25572 SNPs removed)
Completed! Time = 31.436 seconds
> dim(GM)
```

Fit QTLs as Fixed Effects

Fit a multi-kernel model using BGLR to treat some large-effect QTL as fixed effects, and remaining QTL as random effects. QTL here were previously declared, significant using a GWAS analysis. SNP positions of QTL were 1926, 829, 683, 678.

Note: For questions specific to data analysis shown here contact waseem.hussain@cgiar.org

If your experiment needs a statistician, you need a better experiment - Ernest Rutherford

For any suggestions or comments, please feel to reach at waseem.hussain@cgiar.org; and m.anumalla@cgiar.org