Lecture 3.3

Tip-Dating Analysis

David Duchêne

Time-structured Sequence Data

Heterochronous data

- Biological samples with different ages
 - RNA/DNA from rapidly evolving pathogens
 - Ancient DNA
- Fossils
 - Morphological characters

2

Rapidly evolving pathogens

- Can perform tip-dating on measurably evolving populations
 - · Substantial genetic change during the sampling window
 - · High rate (pathogens) or wide window (ancient DNA)
- Sampling window represents large fraction of the tree height

Date-randomisation test

- · Test for temporal signal in the sampling times
- Date-randomisation test
 - 1. Estimate rate from original data set
 - 2. Estimate rate from replicate data sets in which the sampling times have been randomly reassigned to the sequences
 - 3. Compare rate estimates from original and replicate data sets

9

Date-randomisation test

- Test is misleading if many sequences are clustered into a few sampling times
- Randomisation should be done by randomly reassigning dates among clusters rather than among individual sequences

The Performance of the Date-Randomization Test in Phylogenetic Analyses of Time-Structured Virus Data

Sebastián Duchêne,* ¹ David Duchêne, ² Edward C. Holmes, ^{1,3} and Simon Y.W. Ho¹

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2016, 7, 80–89

11

The effect of genetic structure on molecular dating and tests for temporal signal

Gemma G. R. Murray^{1*}, Fang Wang¹, Ewan M. Harrison², Gavin K. Paterson^{2,3}, Alison E. Mather^{2,4}, Simon R. Harris⁴, Mark A. Holmes², Andrew Rambaut⁵ and John J. Welch¹

Date-randomisation test

10

Calibration priors

Point calibration

• Ignores uncertainty due to preservational biases, isotopic dating errors, *etc*.

Ho & Duchêne (2014) Mol Ecol 12

Calibration priors

Uniform calibration

- Layer-dated samples
- Uninformative sampling records

Ho & Duchêne (2014) Mol Ecol 13

Calibration priors

 In practice, accounting for uncertainty in sampling times does not have much impact on estimates of rates and dates

Calibration priors

Empirical radiocarbon sampler

· Models uncertainty in radiocarbon dating

Molak et al. (2015) Mol Ecol Resour 14

Estimating sample ages

- · Some sequences have unknown sampling times
- Normally treated as nuisance parameters

A Bayesian Phylogenetic Method to Estimate Unknown Sequence Ages

Beth Shapiro,*,¹ Simon Y. W. Ho,² Alexei J. Drummond,³ Marc A. Suchard,⁴ Oliver G. Pybus,⁵ and Andrew Rambaut^{6,7}

Total-Evidence Dating

Total-evidence dating

- Avoids the need to construct priors for ages of internal nodes
- Can include fossil taxa with uncertain phylogenetic position
- Can provide sufficient calibration without the need to include maximum age constraints

Total-evidence dating

- Combined morphological and molecular data set
- Fossil taxa included
 - · Phylogenetic placement estimated using morphological data
 - Age acts as a calibration by constraining the age of parent node
- Birth-death tree prior

18

Total-evidence dating

19

Morphological character evolution

• Morphological characters as discrete states

Mk model

- Correction for ascertainment bias: Mkv model
 - Morphological characters usually chosen for variability
- Can apply gamma-distributed rates across characters

21

Useful references

- Measurably evolving pathogens in the genomic era Biek et al. (2015) Trends Ecol Evol, 30: 306–313.
- Inferences from tip-calibrated phylogenies: a review and practical guide

Rieux & Balloux (2016) Mol Ecol, 25: 1911-1924.

- Estimating evolutionary rates using time-structured data: a general comparison of phylogenetic methods

 Duchene et al. (2016) Bioinformatics, 32: 3375–3379.
- Dating tips for divergence-time estimation
 O'Reilly et al. (2015) Trends Genet, 31: 637–650.

Outstanding questions

- 1. How adequate is the Mk model of morphological evolution?
- 2. What is the best method for modelling the relationship between molecular and morphological rate?
- 3. Are the induced time priors consistent with the fossil record?
- 4. Are morphological data better treated as categorical or continuous characters?

O'Reilly et al. (2015) Trends Genet 22

23