LAB 7 - Exercise: Addressing the Networks

Learning Objectives

Upon completion of this lab, you will be able to:

- Determine the number of subnets needed.
- Determine the number of hosts needed.
- Design an appropriate classless addressing scheme using basic subnetting
- Design an appropriate classless addressing scheme using VLSM technique

Scenario

Figure 1 shows the topology diagram with classfull IP addressing schemes. Implement a scalable network to provide the IP addressing by using address block **193.128.56.0/24**. The subnetwork has the following addressing requirements:

- The LAN 1 32 workstations.
- The LAN 2 16 workstations.
- The LAN 3 5 workstations.

Note:

Remember that the interfaces of network devices are also need IP addresses and must be included in the addressing requirements.

e.q.: requirement no of addresses for LAN I = 35 addresses

32 + 2 + 1 (Workstation add.s + Network add. + Broadcast add. + Gateway add.)

Figure 1 Topology Diagram

Design an IP Addressing Scheme.

Based on scenario above, determine all available IP addresses using basic subnetting technique in Table1 while Variable Length Subnet Masking (VLSM) technique in Table 2.

TIPS: Basic subnetting has the same number of addresses for every subnetwork created.

Basic Subnetting

Addressing requirements

Highest number of hosts →

LAN A = 32 (PC) + 1 (Net Add) + 1 (Broadcast Add) + 1 (Gateway) = $35 \rightarrow 64$

Given

Address range **193.128.56.0 – 193.128.56.255**

SM = **/24** = **255.255.255.0**

Lets m = bit required for host

No. of addresses = $2^m = 64$, m = 6

11000001	10000000	00111000	00000000	1st block1 for LAN A
11000001	10000000	00111000	00111111	0 → 63 (64 addresses)
11111111	11111111	11111111	11000000	SM=255.255.255.192 =/26
11000001	10000000	00111000	01000000	2 nd block1 for LAN B
11000001	10000000	00111000	01111111	64 → 127 (64 addresses)
11111111	11111111	11111111	11000000	SM=255.255.255.192 =/26
11000001	10000000	00111000	10000000	3 rd block1 for LAN C
11000001	10000000	00111000	10111111	128 → 191 (64 addresses)
11111111	11111111	11111111	11000000	SM=255.255.255.192 =/26
11000001	10000000	00111000	11000000	4 th block1 - FREE
11000001	10000000	00111000	11111111	192 → 255 (64 addresses)
11111111	11111111	11111111	11000000	SM=255.255.255.192 =/26

BITS 2343 – Computer Networks

LAB 7 – Exercise: Subnetting

Fill in the following table with the subnet information.

Table 1: IP Addressing scheme by basic subnetting technique

Subnetwork Number	Network Address	First Usable Host Address	Last Usable Host Address	Broadcast Address	SubnetMask
LAN A	193.128.56.0	193.128.56.1	193.128.56.62	193.128.56.63	/26
LAN B	193.128.56.64	193.128.56.65	193.128.56.126	193.128.56.127	/26
LAN C	193.128.56.128	193.128.56.129	193.128.56.190	193.128.56.191	/26

Examine the Network Requirements.

Examine the network requirements and answer the questions below. Keep in mind that IP addresses will be needed for each of the LAN interfaces.

- 1. How many subnetworks are required? **3**
- 2. Which subnet own the highest number of IP addresses? All same, 64
- 3. What is the total number of IP addresses allocated for all LANs? 64+64+64=192
- 4. How many IP addresses successfully saved for future needs? **256-192 = 62**

VLSM

Addressing requirements

LAN A = 32 (PC) + 1 (Net Add) + 1 (Broadcast Add) + 1 (Gateway) = $35 \rightarrow 64$

LAN B = 16 (PC) + 1 (Net Add) + 1 (Broadcast Add) + 1 (Gateway) = $19 \rightarrow 32$

LAN C = $\mathbf{5}$ (PC) + $\mathbf{1}$ (Net Add) + $\mathbf{1}$ (Broadcast Add) + $\mathbf{1}$ (Gateway) = $\mathbf{8} \rightarrow \mathbf{8}$

Given

Address range **193.128.56.0 – 193.128.56.255**

SM = **/24** = **255.255.255.0**

LAN A

Lets m = bit required for host

No. of addresses = $2^m = 64$, m = 6

11000001	10000000	00111000	00000000	1 st block1 for LAN A		
11000001	10000000	00111000	00111111	0 → 63 (64 addresses)		
11111111	11111111	11111111	11000000	SM=255.255.255.192 =/26		
11000001	10000000	00111000	01000000	2 nd block1 - FREE		
11000001	10000000	00111000	01111111	64 → 127 (64 addresses)		
11111111	11111111	11111111	11000000	SM=255.255.255.192 =/26		
11000001	10000000	00111000	10000000	3 rd block1 - FREE		
11000001	10000000	00111000	10111111	128 → 191 (64 addresses)		
11111111	11111111	11111111	11000000	SM=255.255.255.192 =/26		
11000001	10000000	00111000	11000000	4 th block1 - FREE		
11000001	10000000	00111000	11111111	192 → 255 (64 addresses)		
11111111	11111111	11111111	11000000	SM=255.255.255.192 =/26		

LAN B

Use 2nd block1

11000001	10000000	00111000	01000000	2 nd block1 - FREE
11000001	10000000	00111000	01111111	64 → 127 (64 addresses)
11111111	11111111	11111111	11000000	SM=255.255.255.192 =/26

No. of addresses = $2^m = 32$, m = 5

11000001	10000000	00111000	01000000	1st block2 – LAN B
11000001	10000000	00111000	01011111	64 → 95 (32 addresses)
11111111	11111111	11111111	11100000	SM=255.255.255.224 =/27

11000001	10000000	00111000	01100000	2 nd block2 - FREE
11000001	10000000	00111000	01111111	96 → 127 (32 addresses)
11111111	11111111	11111111	11100000	SM=255.255.255.224 =/27

LAN C

Use 2nd block2

11000001	10000000	00111000	01100000	2 nd block2 - FREE
11000001	10000000	00111000	01111111	96 → 127 (32 addresses)
11111111	11111111	11111111	11100000	SM=255.255.255.224 =/27

No. of addresses = $2^m = 8$, m=3

11000001	10000000	00111000	01100000	1 st block3 – LAN C
11000001	10000000	00111000	01100111	96 → 103 (8 addresses)
11111111	11111111	11111111	11111000	SM=255.255.255.248 =/29

11000001	10000000	00111000	01101000	2 nd block3 – FREE		
11000001	10000000	00111000	01101111	104 → 111 (8 addresses)		
11111111	11111111	11111111	11111000	SM=255.255.255.248 =/29		

11000001	10000000	00111000	01110000	3 rd block3 – FREE
11000001	10000000	00111000	01110111	112 \rightarrow 119 (8 addresses)
11111111	11111111	11111111	11111000	SM=255.255.255.248 =/29

11000001	10000000	00111000	01111000	4 th block3 – FREE
11000001	10000000	00111000	01111111	120 → 127 (8 addresses)
11111111	11111111	11111111	11111000	SM=255.255.255.248 =/29

BITS 2343 – Computer Networks

LAB 7 – Exercise: Subnetting

Fill in the following table with the subnet information.

Table 2: IP Addressing scheme by VLSM technique

Subnetwork Number	Network Address	First Usable Host Address	Last Usable Host Address	Broadcast Address	SubnetMask
LAN A	193.128.56.0	193.128.56.1	193.128.56.62	193.128.56.63	/26
LAN B	193.128.56.64	193.128.56.65	193.128.56.94	193.128.56.95	/27
LAN C	193.128.56.96	193.128.56.97	193.128.56.102	193.128.56.103	/29

Examine the Network Requirements.

Examine the network requirements and answer the questions below. Keep in mind that IP addresses will be needed for each of the LAN interfaces.

- 1. How many subnets are required? **3**
- 2. Which subnet own the highest number of IP addresses? **LAN A**
- 3. What is the total number of IP addresses allocated for all LANs? **64+32+8=104**
- 4. How many IP addresses successfully saved for future needs? **256-104 = 152**

Scenario 2

Implement a scalable network to provide the IP addressing by using address block **190.1.0.0/22**. Based on the scenario above, determine all available IP addresses using the Variable Length Subnet Masking (VLSM) technique.

VLSM

Addressing requirements

LAN 2 =
$$500$$
 (PC) + 1 (Net Add) + 1 (Broadcast Add) + 1 (Gateway \rightarrow Interface R1) = $503 \rightarrow 512$

LAN 1 =
$$\mathbf{5}$$
 (PC) + $\mathbf{1}$ (Net Add) + $\mathbf{1}$ (Broadcast Add) + $\mathbf{1}$ (Gateway \rightarrow Interface R2) = $\mathbf{8} \rightarrow \mathbf{8}$

R1R2 = 1 (Net Add) + 1 (Broadcast Add) + 2 (Gateway
$$\rightarrow$$
 Interface R1 & R2) = 4 \rightarrow 4

Given

Address range **193.0.1.0 – 193.0.3.255**

SM = **/22** = **255.255.252.0**

LAN 2

Lets m = bit required for host

No. of addresses = $2^m = 512$, m= 9

11000001	0000001	0000000	00000000	1 st & 2 ND block1 for LAN 2
11000001	0000001	0000001	11111111	192.1.0.0 → 192.1.1.255 (512 addresses)
11111111	11111111	11111110	00000000	SM=255.255.254.0 =/23
11000001	0000001	00000010	00000000	3 RD & 4 TH block1 - FREE
11000001	0000001	0000011	11111111	192.1.2.0 → 192.1.3.255 (512 addresses)
11111111	11111111	11111110	00000000	SM= 255.255.254.0 = /23

....

nazralazhar@utem.edu.my

LAN₁

Use 192.1.2.0 /23

Lets m = bit required for host

No. of addresses = $2^m = 8$, m = 3

11000001	0000001	00000010	00000000	192.1.2.0 → 192.1.2.7 (8 addresses) LAN1	
11000001	0000001	0000010	00000111		
11111111	11111111	11111111	11111000	SM= 255.255.255.248 = /29	

R1R2

Use 192.1.2.0 /23

Lets m = bit required for host

No. of addresses = $2^m = 4$, m = 2

11000001	0000001	00000010	00001000	192.1.2.8 → 192.1.2.11 (4 addresses) R1R2
11000001	0000001	0000010	00001011	
11111111	11111111	11111111	11111000	SM= 255.255.255.252 = /30

Subnet Number	Network Address	First Usable Host Address	Last Usable Host Address	Broadcast Address	SubnetMask
LAN 2	193.1.0.0	193.1.0.1	193.1.1.254	193.1.1.255	/23
LAN 1	193.1.2.0	193.1.2.1	193.1.2.6	193.1.2.7	/29
R1R2	193.1.2.8	193.1.2.9	193.1.2.10	193.1.2.11	/30

Examine Network Requirements.

Examine the network requirements and answer the questions below. Keep in mind that IP addresses will be needed for each of the LAN interfaces.

- 1. How many subnetworks are needed? **3**
- 2. Which subnetwork owns the lowest number of IP addresses? **Subnetwork R1R2**
- 3. What is the total number of allocated IP addresses for LANs? 512+8+4 =524
- 4. How many IP addresses successfully saved for future needs?

$$/22 \rightarrow 1024 - 524 = 500$$
 addresses