International Islamic University Chittagong (IIUC) Department of Electronic and Telecommunication Engineering

Final Examination

Program: B.sc (Engg.) Course Code: Math-1107 Total Marks: 50

Semester: Autumn 2022 Course Title: Differential & Integral Calculus

Time: 2 Hours 30 Minutes

(i) Answer all the questions. The figures in the right-hand margin indicate full marks. (ii) Course Learning Outcomes (CLOs) and Bloom's Levels are mentioned in additional Columns.

Course Learning Outcomes (CLOs) of the Questions

CLO1 For complex Engineering problems, it is essential to get Knowledge of the limit, continuity, and differentiability, power series, Rolle's Theorem, Mean value theorem, Taylor, and Mclaurin's series. Also the need concept of the partial derivatives, and Integration.

CLO2 By using the above mentioned foundational mathematical information; One can implement it to solve the mathematical problems, which is expressing engineering principles.

	Bloom's Lev	els of the Qu	estions			
Letter Symbols Meaning	R Remember	U Understand	Ap Apply	An Analyze	E Evaluate	C Create
		Part A				

		Answer <u>Two</u> of the following Questions			
Q1	a)	Define critical point and saddle point of a function with example.		R, U	5
		Is the function $f(x)=2x^2-16x+10$ having maximum or minimum value?			
	b) Solve Analyse the function $f(x,y)=2x^2+3y^2+20x-42y+50$ and find the critical		CLO2	An	5
		points and classify them as minima, maxima, or saddle points	CLO2	R, U	
Q2	22 a) If $u = 3x^3 + 4x^2y^2 - 2z^2 + 20$, then evaluate the followings: $\frac{\partial^2 u}{\partial x^2}$, $\frac{\partial^2 u}{\partial y^2}$, $\frac{\partial^2 u}{\partial z^2}$.5
•	b) Define homogeneous function with examples. Apply Euler's theorem and show that, $u(x,y)=4x^3+5x^2y+6y^3$ is equation of 3^{rd} degree.		CLO2	Ap	5
		OR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Q2 a) If $\tan^{-1} \left(\frac{x^3 + y^3}{x + y} \right)$ then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$		CLO2	U	5	
	b)	If $v = (x^2 + y^2 + z^2)^{-\frac{1}{2}}$ then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = -v$	CLO2	U	5
		Part B			
		Answer Three of the following Questions			
Q3	a)	1 01 11 11		R, U	5
	i) $\int ln(x) dx$ ii) $\int tan^{-1}x dx$				
	b) What is the difference between definite and indefinite integral?		CLO2	R, U	5
		Solve the following definite Integral: $\int_{2}^{3} e^{x^{2}+3x-2} (2x+3) dx$			
Q4			CLO2	R, E	5
		integral: $\int_{0}^{3} \int_{0}^{6} (xy) dxdy$			
	b)	Apply the integral formula for calculate the circumference of the circle, x^2 +	CLO2	Ap	5
0.5	-	$y^2 = 4^2$ about the y-axis. Analysis the volume generated by the areas bounded by the curve $x = y^3$	CLO2	An	5
Q5	Analysis the volume generated by the areas bounded by the curve $x = y$ from $x = 0$ to $x = 3$ about the x-axis.				
•	b)	Evaluate the triple integral, $I = \int_1^3 \int_0^3 \int_0^4 (2xyz dz dy dx$	CLO2	E	5
		OR			
Q5 a)		Define Gamma function. Apply the gamma function of the following:	CLO2	Ap	5
		$\int_0^\infty x^3 e^{-\sqrt{x}} dx$	GI OS	-	+-
	b)	Create the value of the following: $\int_0^{\pi/2} sin^3\theta \cos^3\theta d\theta$	CLO2	C	5