

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年6 月24 日 (24.06.2004)

PCT

(10) 国際公開番号 WO 2004/052871 A1

- (51) 国際特許分類⁷: C07D 265/36, 413/12, A61K 31/538, A61P 7/02, 9/00, 9/10
- (21) 国際出願番号:

PCT/JP2003/015631

(22) 国際出願日:

2003年12月5日(05.12.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2002-355544 2002年12月6日(06.12.2002) JP

(71) 出願人(米国を除く全ての指定国について): 東レ株式 会社(TORAY INDUSTRIES, INC.) [JP/JP]; 〒103-8666 東京都中央区日本橋室町 2 丁目 2 番 1 号 Tokyo (JP).

- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 大野 道博 (OHNO,Michihiro) [JP/JP]; 〒245-0061 神奈川県 横浜市 戸塚区汲沢 3-3-11 Kanagawa (JP). 林 亮司 (HAYASHI,Ryoji) [JP/JP]; 〒251-0033 神奈川県藤沢市 片瀬山3-13-9 Kanagawa (JP). 磯ヶ谷 昌文(ISOGAYA,Masafumi) [JP/JP]; 〒245-0016 神奈川県横浜市 泉区和泉町3989-7 Kanagawa (JP). 上田 寛(UEDA,Hiroshi) [JP/JP]; 〒248-0031 神奈川県鎌倉市鎌倉山3-20-1 Kanagawa (JP).
- (74) 代理人: 平木 祐輔, 外(HIRAKI,Yusuke et al.); 〒 105-0001 東京都港区 虎ノ門一丁目17番1号 虎ノ門5 森ビル 3階 Tokyo (JP).

[続葉有]

- (54) Title: BENZOMORPHOLINE DERIVATIVES
- (54) 発明の名称: ペンゾモルホリン誘導体

(57) Abstract: Benzomorpholine derivatives typified by compounds represented by the following general formula (VIII), pharmaceutically acceptable salts thereof and platelet aggregation inhibitors comprising the same. Because of having a potent effect of inhibiting platelet aggregation, these compounds are efficacious in treating and preventing diseases to which thrombi relate. (VIII)

A... PLATELET AGGREGATION INHIBITORY RATIO (%)
B... TIME (MIN) LAPSED AFTER ADMINISTRATION

- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッ

パ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(57) 要約:

本発明は、一般式 (VIII)

で代表されるベンゾモルホリン誘導体又はその薬学的に許容される塩、及びそれらからなる血小板凝集抑制剤に関する。本発明の化合物は強力な血小板凝集抑制 作用を有しており、血栓が関与する疾病の治療及び予防に有効である。

明細書

ベンゾモルホリン誘導体

5 技術分野

本発明は、強力な血小板凝集抑制作用を有するベンゾモルホリン誘導体、及びそれらを有効成分とする医薬に関するものである。

背景技術

20

10 血管が傷つき出血が起こった場合、血管の傷口をふさぐように血液の凝固が起こり、やがて止血する。止血は生命が存続するために必要な機能であり、血液の凝固は重要な生体防御反応のひとつである。血液の凝固はまず血小板の凝集を介して起こるが、血管の内部に形成される血液の凝固、いわゆる血栓は、それが過剰となると血液の循環を阻害し、心筋梗塞、脳梗塞、その他多くの血栓性疾患を発症させる。この血栓性疾患はガンと並び、現代の死因の主要なものであり、その予防と治療が強く求められている。血栓性疾患の治療と予防のためには、血栓の形成、すなわち血小板の凝集を強力に抑制する医薬が必要である。

これまでに血小板の凝集を抑制するための様々な化合物が開発されており、特にアスピリンやチエノピリジン誘導体(チクロピジン、クロピドグレル)等が知られている。しかしながら、アスピリンの血小板凝集抑制作用は弱く、不十分であり、胃炎、消化性潰瘍などの副作用も懸念される。

また、チエノピリジン誘導体であるチクロピジンについては、血小板減少性紫 斑病や肝障害などの副作用が知られている。そのため、より安全で、有効な新規 血小板凝集抑制剤の開発が現在も求められている。

25 本発明者らは、血小板凝集を強力に抑制する新規な化合物を創出すべく種々検 討した結果、アミド構造からなる側鎖を有するベンゾモルホリン誘導体が、強力 な血小板凝集抑制作用を有することを見出した。

特許文献1には、血小板凝集抑制作用を有するベンゾモルホリン誘導体が既に 開示されている。しかしながら、その血小板凝集抑制作用は弱く、また、当該文 献には、本発明の化合物の特徴であるアミド構造を有する化合物は具体的には記載されていない。

特許文献1

国際公開第00/07992号パンフレット

5 また、特許文献 2 には、ベンゾモルホリン環を含むアザビシクロ化合物が開示されている。しかしながら、特許文献 2 には本発明で開示されるベンゾモルホリン誘導体はいっさい開示されていない。更に特許文献 2 の化合物は V C A M ー 1 と V L A 4 の結合を阻害する化合物であり、抗血小板作用に関しては全く記載されていない。

10 特許文献 2

国際公開第00/39103号パンフレット

発明の開示

本発明は、血小板凝集抑制作用を有する新規な化合物を提供することを課題と 15 するものである。

すなわち本発明は、以下の発明を包含する。

(A) 式(I)

(式中、

20 Aは炭素数 $2 \sim 4$ のアルキレン、炭素数 $2 \sim 4$ のアルケニレン又は炭素数 $2 \sim 4$ のアルキニレンであり、

R1は

(1)無置換、又は以下に示す群から独立に選ばれる1つもしくは複数の置換基 によって置換されたアリール又はヘテロアリール

- a) 炭素数 $1 \sim 5$ のアルキル、b) 炭素数 $1 \sim 5$ のアルコキシ、c) 炭素数 $3 \sim 8$ のシクロアルキル、d) 炭素数 $1 \sim 5$ のハロアルキル、e) フェニル、f) フェノキシ、g) ヒドロキシル、h) 炭素数 $1 \sim 5$ のヒドロキシアルキル、i) 炭素数 $1 \sim 5$ のハロアルキルオキシ、j) メルカプト、k) 炭素数 $1 \sim 5$ のアルキルチオ、l) 炭素数 $1 \sim 5$ のハロアルキルチオ、m) ハロゲン、n) シアノ、o) ニトロ、p) アミノ、q) 炭素数 $1 \sim 5$ のアルキルアミノ、r) 炭素数 $2 \sim 1$ 0 のジアルキルアミノ、s) アシル、t) カルボキシル、u) 炭素数 $2 \sim 6$ のアルキルオキシカルボニル、v) メシル、w) トリフルオロメタンスルホニル、及び x) トシルスは
- 10 (2)無置換、又は以下に示す群から独立に選ばれる1つもしくは複数の置換基によって置換された炭素数 $1\sim5$ のアルキル、炭素数 $3\sim8$ のシクロアルキル、炭素数 $2\sim1$ 0のアルケニル、炭素数 $4\sim1$ 0のシクロアルケニル又は炭素数 $2\sim1$ 0のアルキニル
- a) フェニル、b) ヒドロキシル、c) 炭素数 $1 \sim 5$ のアルキル、d) 炭素数 $3 \sim 8$ のシクロアルキル、e) 炭素数 $1 \sim 5$ のハロアルキル、及び f) ハロゲン であり、

R²は無置換、又は以下に示す群から独立に選ばれる1つもしくは複数の置換基によって置換されたアリール又はヘテロアリール

- a) 炭素数 1~5のアルキル、b) 炭素数 1~5のアルコキシ、c) 炭素数 3~8 20 のシクロアルキル、d) 炭素数 1~5のハロアルキル、e) フェニル、f) フェノキ シ、g) ヒドロキシル、h) 炭素数 1~5のヒドロキシアルキル、i) 炭素数 1~5 のハロアルキルオキシ、j) メルカプト、k) 炭素数 1~5のアルキルチオ、l) 炭 素数 1~5のハロアルキルチオ、m) ハロゲン、n) シアノ、o) ニトロ、p) アミノ、 q) 炭素数 1~5のアルキルアミノ、r) 炭素数 2~10のジアルキルアミノ、s)
- 25 アシル、t) カルボキシル、u) 炭素数 $2 \sim 6$ のアルキルオキシカルボニル、v) メシル、w) トリフルオロメタンスルホニル、及び x) トシルであり、

 R^3 は水素、ハロゲン、炭素数 $1\sim 5$ のアルキル又は炭素数 $1\sim 5$ のアルコキシであり、 R^4 は $-X-(CH_2)$ $n-COOR^5$ であり、Xは-O-、-S-又は-C

 H_2 -であり、 R^5 は水素又は炭素数 $1\sim 5$ のアルキルであり、n は $1\sim 3$ の整数である。)

で示されるベンゾモルホリン誘導体又はその薬学的に許容される塩。

(B) 一般式 (II)

5

25

(式中、A、 R^1 、 R^2 、 R^3 及び R^4 は前記式(I)における定義に同じ)で示される前記(A)に記載のベンゾモルホリン誘導体又はその薬学的に許容される塩。

- (C) Aがエチレンである前記 (A) 又は (B) 記載のベンゾモルホリン誘導体 10 又はその薬学的に許容される塩。
 - (D) R¹が無置換、又は1つもしくは複数の置換基によって置換されたアリール又はヘテロアリールである前記(A)~(C)のいずれかに記載のベンゾモルホリン誘導体又はその薬学的に許容される塩(ここで、置換基は前記(A)の定義に同じ)。
- 15 (E) R¹が無置換、又は1つもしくは複数の置換基によって置換されたフェニル、フリル、チエニル又はピリジルである前記(D) に記載のベンゾモルホリン誘導体又はその薬学的に許容される塩(ここで、置換基は前記(A)の定義に同じ)。
- (F) R¹が無置換、又は以下に示す群から独立に選ばれる1つもしくは複数の 20 置換基によって置換されたフェニル、フリル、チエニル又はピリジルである前記 (E) に記載のベンゾモルホリン誘導体又はその薬学的に許容される塩。
 - a) 炭素数 $1 \sim 5$ のアルキル、b) 炭素数 $1 \sim 5$ のアルコキシ、c) 炭素数 $1 \sim 5$ のハロアルキル、d) ヒドロキシル、e) 炭素数 $1 \sim 5$ のハロアルキルオキシ、f) 炭素数 $1 \sim 5$ のアルキルチオ、g) 炭素数 $1 \sim 5$ のハロアルキルチオ、h) ハロゲン、i) シアノ、j) 炭素数 $2 \sim 1$ 0 のジアルキルアミノ、k) アセチル、l) 炭素数

10

25

 $2 \sim 6$ のアルキルオキシカルボニル、 \mathbf{n}) メシル、 \mathbf{n}) トリフルオロメタンスルホニル、及び \mathbf{o}) トシル

- (G) R¹が無置換、又は以下に示す群から独立に選ばれる1つもしくは複数の 置換基によって置換されたフェニル、フリル、チエニル又はピリジルである前記
- (F) に記載のベンゾモルホリン誘導体又はその薬学的に許容される塩。
- a) 炭素数 $1 \sim 5$ のアルキル、b) 炭素数 $1 \sim 5$ のアルコキシ、c) 炭素数 $1 \sim 5$ のハロアルキル、d) ヒドロキシル、h) ハロゲン、及び i) シアノ、
- (H) R^2 が無置換、又は1つもしくは複数の置換基によって置換されたフェニル又はピリジルである前記 (A) \sim (G) に記載のベンゾモルホリン誘導体又はその薬学的に許容される塩(ここで、置換基は前記 (A) の定義に同じ)。
- (I) R²が無置換、又は以下に示す群から独立に選ばれる1つもしくは複数の 置換基によって置換されたフェニル又はピリジルである前記(H)に記載のベン ゾモルホリン誘導体又はその薬学的に許容される塩。
- a) 炭素数 1 ~ 5 のアルキル、b) 炭素数 1 ~ 5 のアルコキシ、c) 炭素数 1 ~ 5 のハロアルキル、d) ヒドロキシル、e) 炭素数 1 ~ 5 のハロアルキルオキシ、f) 炭素数 1 ~ 5 のアルキルチオ、g) 炭素数 1 ~ 5 のハロアルキルチオ、h) ハロゲン、i) シアノ、j) アミノ、k) 炭素数 2 ~ 1 0 のジアルキルアミノ、l) アシル、m) 炭素数 2 ~ 6 のアルキルオキシカルボニル、n) メシル、o) トリフルオロメタンスルホニル、及び p) トシル
- 20 (J) R²が無置換、又は以下に示す群から独立に選ばれる1つもしくは複数の 置換基によって置換されたフェニル又はピリジルである前記(I) に記載のベン ゾモルホリン誘導体又はその薬学的に許容される塩。
 - a) 炭素数 $1 \sim 5$ のアルキル、b) 炭素数 $1 \sim 5$ のアルコキシ、c) 炭素数 $1 \sim 5$ のハロアルキル、d) 炭素数 $1 \sim 5$ のハロアルキルオキシ、e) 炭素数 $1 \sim 5$ のアルキルチオ、f) ハロゲン、及び g) 炭素数 $2 \sim 1$ 0 のジアルキルアミノ
 - (K) Xが-O-である前記(A)~(J)のいずれかに記載のベンゾモルホリン誘導体又はその薬学的に許容される塩。
 - (L)前記(A)~(K)のいずれかに記載のペンゾモルホリン誘導体を有効成分として含有する医薬。

20

25

- (M) 前記(A)~(K)のいずれかに記載のベンゾモルホリン誘導体を有効成分として含有する血小板凝集抑制又は予防薬。
- (N)血栓症又は血栓に付随する疾患の治療又は予防に用いられる前記 (M) に記載の血小板凝集抑制又は予防薬。
- 5 (O)血栓症が冠動脈、脳動脈、末梢動脈又は末梢静脈における血栓症である前 記(N)に記載の血小板凝集抑制又は予防薬。
 - (P)血栓に付随する疾患が心筋梗塞、不安定狭心症、脳梗塞、一過性脳虚血発 作又は慢性動脈閉塞症である前記(N)に記載の血小板凝集抑制又は予防薬。

本明細書で使用する次の用語は、特に断りがない限り、下記の定義の通りであ 10 る。

「ベンゾモルホリン」は、特に断りがない限り、モルホリン環が2位と3位でベンゼン環と縮合した、水素化縮合ヘテロ環を意味する。

「アルキレン」は、特に断りがない限り、炭素原子及び水素原子からなる二価 の直鎖又は分岐状の飽和炭化水素基を意味する。例えば、エチレン、トリメチレ ン、プロピレン、テトラメチレン、エチルエチレンなどが挙げられ、これらは限 定的なものではない。

「アルケニレン」は、特に断りがない限り、炭素原子及び水素原子からなり、少なくとも1個の二重結合を有し、かつ二価の直鎖又は分岐状の不飽和炭化水素基を意味する。アルケニレン基は、非対称性の炭素により生じるシス又はトランス((E)又は(2))異性体の基を含む。アルケニレン基の例としては、エテニレン、1-プロペニレン、2-プロペニレン、2-ブテニレンなどが挙げられ、これらは限定的なものではない。

「アルキニレン」は、特に断りがない限り、炭素原子及び水素原子からなり、 少なくとも1個の三重結合を有し、かつ二価の直鎖又は分岐状の不飽和炭化水素 基を意味する。アルキニレン基の例としては、エチニレン、1-プロピニレン、 2-プロピニレンなどが挙げられ、これらは限定的なものではない。

「アリール」は、少なくとも1個の環が芳香族である1個以上の環を有する一価の芳香族炭化水素基を意味する。アリール基の例としては、フェニル、ナフチル、ピフェニリル、インダニル、アントリル、フェナントリルなどが挙げられ、

15

20

25

これらは限定的なものではない。

「ヘテロアリール」は、環内に1個、2個又は3個のヘテロ原子(窒素、酸素、 、硫黄から選択)を組み込んだ1個以上の環を有する一価の芳香族基を意味する

- 。ヘテロアリール基の例としては、イミダゾリル、オキサゾリル、ピラジニル、
- 5 チエニル、フリル、ピリジル、キノリル、ベンゾフリル、インドリル、ピロリル、ピラニルなどが挙げられ、これらは限定的なものではない。

「アルキル」は、特に断りがない限り、炭素原子及び水素原子からなる、一価の直鎖又は分岐状の飽和炭化水素基を意味する。例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、secープチル、tertーブチル、ペンチルなどが挙げられ、これらは限定的なものではない。

「アルケニル」は、特に断りがない限り、炭素原子及び水素原子からなり、少なくとも1個の二重結合を有し、かつ一価の直鎖又は分岐状の不飽和炭化水素基を意味する。アルケニル基は、非対称性の炭素により生じるシス又はトランス ((E)又は(Z))異性体の基を含む。アルケニル基の例としては、エテニル、1-プロペニル、アリル、1-ブテニル、2-ブテニル、2-ペンテニル、1, 3-ブタンジエニルなどが挙げられ、これらは限定的なものではない。

「アルキニル」は、特に断りがない限り、炭素原子及び水素原子からなり、少なくとも1個の三重結合を有し、かつ一価の直鎖又は分岐状の不飽和炭化水素基を意味する。アルキニル基の例としては、エチニル、1-プロピニル、プロパルギル(2-プロピニル)、3-ブチニルなどが挙げられ、これらは限定的なものではない。

「アルコキシ」は、一〇R基を意味し、このRは、ここで定義されているアルキルである。アルコキシ基の例としては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、プトキシ、 t ーブトキシなどが挙げられ、これらは限定的なものではない。

「シクロアルキル」は、特に断りがない限り、炭素原子及び水素原子からなり、少なくとも1個以上の環を有する一価飽和炭化水素環基を意味する。シクロアルキル基の例としては、シクロプロピル、シクロプチル、シクロペンチル、シクロヘキシル、シクロヘプチルが挙げられる。

15

20

25

「シクロアルケニル」は、特に断りがない限り、炭素原子及び水素原子からなり、少なくとも1個の二重結合を有し、1個以上の環を含む一価不飽和炭化水素 環基を意味する。シクロアルケニル基の例としては、シクロペンテニル、シクロヘキセニル、シクロヘプテニルが挙げられる。

「ハロアルキル」は、ここで定義されている1個以上のハロゲン原子で任意の位置に置換された、ここで定義されているアルキル基を意味する。ハロアルキル基の例としては、トリフルオロメチル、2,2,2ートリフルオロエチル、2,2,2ートリクロロエチルなどが挙げられ、これらは限定的なものではない。

「ヒドロキシアルキル」は、1個以上のヒドロキシル基で任意の位置に置換された、ここで定義されているアルキル基を意味する。ヒドロキシアルキル基の例としては、ヒドロキシメチル、2-ヒドロキシエチル、2-ヒドロキシプロピル、3-ヒドロキシプロピルなどが挙げられ、これらは限定的なものではない。

「ハロアルキルオキシ」は、ここで定義されている1個以上のハロゲン原子で任意の位置に置換された、ここで定義されているアルコキシ基を意味する。ハロアルキルオキシ基の例としては、フルオロメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、2, 2, 2-トリフルオロエトキシなどが挙げられ、これらは限定的なものではない。

「アルキルチオ」は、-SR基を意味し、このRは、ここで定義されているアルキルである。アルキルチオ基の例としては、メチルチオ、エチルチオなどが挙げられ、これらは限定的なものではない。

「ハロアルキルチオ」は、ここで定義されている1個以上のハロゲン原子で任意の位置に置換された、ここで定義されているアルキルチオ基を意味する。ハロアルキルチオ基の例としては、フルオロメチルチオ、ジフルオロメチルチオ、トリフルオロメチルチオ、2,2,2-トリフルオロエチルチオなどが挙げられ、これらは限定的なものではない。

「ハロゲン」は、フルオロ、クロロ、ブロモ、ヨードを意味する。

「アルキルアミノ」は、ここで定義されているアルキル基1個で置換されたアミノ基を意味する。アルキルアミノ基の例としては、メチルアミノ、エチルアミノ、プロピルアミノ、イソプロピルアミノなどが挙げられ、これらは限定的なも

のではない。

5

10

15

25

「ジアルキルアミノ」は、独立する2個のここで定義されているアルキル基で 置換されたアミノ基を意味する。ジアルキルアミノ基の例としては、ジメチルア ミノ、ジエチルアミノ、エチルメチルアミノなどが挙げられ、これらは限定的な ものではない。

「アシル」は、炭素数 1~6の脂肪族アシル基及び芳香族アシル基を意味する。炭素数 1~6の脂肪族アシル基の例としては、ホルミル、アセチル、プロピオニル、プチリル、イソブチリル、イソブチリル、バレリル、イソバレリル、ピバロイルなどが挙げられ、芳香族アシル基の例としては、ベンゾイル、ナフトイルなどが挙げられる。

「アルキルオキシカルボニル」は、-COOR基を意味し、このRは、ここで定義されているアルキルである。アルキルオキシカルボニル基の例としては、メトキシカルボニル、エトキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、 t - ブトキシカルボニルなどが挙げられ、これらは限定的なものではない。

「薬学的に許容される」は、通常安全で毒性がなく、生物学的にも、その他の 点でも問題なく、かつ動物薬及びヒトの医薬として許容しうる製剤の調製に有用 であることを意味する。

「薬学的に許容される塩」とは、薬学的に許容され、かつ親化合物の望ましい 20 薬理活性を有する塩を意味する。そのような塩としては、例えば、次のものが挙 げられる。

塩酸、硫酸、硝酸、リン酸などの無機酸で生成される酸付加塩、又は、酢酸、プロピオン酸、グリコール酸、酪酸、マロン酸、コハク酸、マレイン酸、フマル酸、酒石酸、クエン酸、安息香酸、桂皮酸、マンデル酸、メタンスルホン酸、ラウリル硫酸、グルタミン酸、ヒドロキシナフトエ酸、サリチル酸、ステアリン酸、ムコン酸などの有機酸で生成される酸付加塩。

親化合物中に存在する酸性プロトンが、アルカリ金属イオン、アルカリ土類金属イオン又はアンモニウム陽イオンなどで置換されて生成される塩基付加塩。もちろん、その他の金属、例えばアルミニウム、亜鉛又は鉄の陽イオン型も本発明

に含まれる。

又は親化合物中に存在する酸性プロトンが、有機塩基と配位結合することによって生成される塩基付加塩。

塩基付加塩の生成に用いられる無機塩基としては、水酸化リチウム、水酸化ナ 5 トリウム、水酸化カリウム、水酸化カルシウム、水酸化アルミニウム、炭酸ナト リウムなどが挙げられる。

塩基付加塩の生成に用いられる有機塩基としては、第1級、第2級又は第3級 アミンであり、適当なアミンの例は、メチルアミン、ジメチルアミン、トリエチ ルアミン、エチルアミン、ジブチルアミン、トリイソプロピルアミン、N-メチ ルヘキシルアミン、デシルアミン、ドデシルアミン、アリルアミン、クロチルア 10 ミン、シクロペンチルアミン、ジシクロヘキシルアミン、ベンジルアミン、ジベ ンジルアミン、 α - フェニルエチルアミン、 β - フェニルエチルアミン、エチレ ンジアミン、ジエチレントリアミン、又は18個までの炭素原子を含有する第1 級、第2級又は第3級アミンである、脂肪族、脂環式及び複素環式アミン類、例 えば1-メチルピペリジン、4-エチルモルホリン、1-イソプロピルピロリジ 15 ン、2-メチルピロリジン、1,4-ジメチルピペラジン、2-メチルピペリジ ン等、更に水溶性又は親水性基を含有するアミン類、例えばモノー、ジー又はト リエタノールアミン、エチルジエチルアミン、N-プチルエタノールアミン、2ーアミノー1ーブタノール、2ーアミノー2ーエチルー1,3ープロパンジオー ル、トリス(ヒドロキシメチル)アミノメタン、N-フェニルエタノールアミン 20 、N-フェニルジエタノールアミン、ガラクトサミン、メグルミン(N-メチル グルカミン)、N-メチルグルコサミン、エフェドリン、フェニレフリン、エピ ネフリン、プロカイン等、更には塩基性アミノ酸、具体的にはリジン、アルギニ ン等である。

25 本発明の一般式(I)又は一般式(II)で示されるベンゾモルホリン誘導体において、Aについて、炭素数2~4のアルキレンとしては、例えばエチレン、トリメチレン、プロピレン、テトラメチレン、エチルエチレンが挙げられる。炭素数2~4のアルケニレンとしては、例えばエテニレン、1-プロペニレン、2-プロペニレン、2-プロペニレン、2-プロペニレン、2-プロペニレン、2-プロペニレン、2-プロペニレン、2-プラニレンが挙げられる。炭素数2~4のアルキニレンと

10

15

20

25

しては、例えばエチニレン、1-プロピニレン、2-プロピニレンが挙げられる。 これらの中で、エチレン、トリメチレン、テトラメチレンが好ましく、エチレン、 トリメチレンが更に好ましく、エチレンが特に好ましい。

R¹について、アリールとしては、例えばフェニル、ナフチル、ビフェニリル 、インダニルが挙げられる。ヘテロアリールとしては、例えばイミダゾリル、オ キサゾリル、ピラジニル、チエニル、フリル、ピリジル、キノリル、ベンゾフリ ル、インドリル、ピロリル、ピラニルが挙げられる。炭素数1~5のアルキルと しては、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル 、sec-ブチル、tert-ブチル、ペンチルが挙げられる。炭素数3~8の シクロアルキルとしては、例えばシクロプロピル、シクロブチル、シクロペンチ ル、シクロヘキシル、シクロヘプチルが挙げられる。炭素数2~10のアルケニ ルとしては、例えばエテニル、1,3-ブタンジエニル、アリルが挙げられる。 炭素数 $4\sim10$ のシクロアルケニルとしては、例えば1-シクロペンテニル、1-シクロヘキセニル、シクロヘキシリデンメチルが挙げられる。炭素数2~10 のアルキニルとしては、例えばエチニル、プロパルギル、3-ブチニルが挙げら れる。これらの中で、フェニル、フリル、チエニル、ピリジル、シクロプロピル 、エテニル、エチニル、1-シクロペンテニル、1-シクロヘキセニル、シクロ ヘキシリデンメチルが好ましく、フェニル、フリル、チエニル、ピリジル、エテ ニル、1-シクロペンテニル、1-シクロヘキセニル、シクロヘキシリデンメチ ルが更に好ましく、フェニル、フリル、チエニル、ピリジル、エテニル、1-シ クロヘキセニルが特に好ましい。

 R^1 がアリール又はヘテロアリールである場合の置換基について、炭素数 $1 \sim 5$ のアルキルとしては、例えばメチル、イソプロピルが挙げられる。炭素数 $1 \sim 5$ のアルコキシとしては、例えばメトキシ、エトキシ、イソプロポキシが挙げられる。炭素数 $3 \sim 8$ のシクロアルキルとしては、例えばシクロプロピル、シクロペンチル、シクロヘキシル、シクロヘプチルが挙げられる。炭素数 $1 \sim 5$ のハロアルキルとしては、例えばトリフルオロメチル、 2 , 2 , 2 - トリフルオロエチルが挙げられる。炭素数 $1 \sim 5$ のヒドロキシアルキルとしては、例えばヒドロキシメチル、 2 - ヒドロキシエチルが挙げられる。炭素数 $1 \sim 5$ のハロアルキルオ

10

15

20

25

キシとしては、例えばトリフルオロメトキシ、2,2,2-トリフルオロエトキ シが挙げられる。炭素数 $1\sim5$ のアルキルチオとしては、例えばメチルチオ、エ チルチオが挙げられる。炭素数 $1 \sim 5$ のハロアルキルチオとしては、例えばトリ フルオロメチルチオ、2,2,2ートリフルオロエチルチオが挙げられる。ハロ ゲンとしては、フルオロ、クロロ、ブロモ、ヨードが挙げられる。炭素数 $1\sim5$ のアルキルアミノとしては、例えばメチルアミノ、エチルアミノ、イソプロピル アミノが挙げられる。炭素数2~10のジアルキルアミノとしては、例えばジメ チルアミノ、ジエチルアミノ、エチルメチルアミノが挙げられる。アシルのうち、 炭素数1~6の脂肪族アシル基としては、例えばホルミル、アセチル、プロピオ ニル、プチリル、イソブチリル、イソブチリル、バレリル、イソバレリル、ピバ ロイルが挙げられ、芳香族アシル基としては、例えばベンゾイル、ナフトイルが 挙げられる。炭素数2~6のアルキルオキシカルポニルとしては、例えばメトキ シカルボニル、エトキシカルボニル、ブトキシカルボニル、tーブトキシカルボ ニルが挙げられる。更に他の置換基として、フェニル、フェノキシ、ヒドロキシ ル、メルカプト、シアノ、ニトロ、アミノ、カルボキシル、メシル(メタンスル ホニル)、トリフルオロメタンスルホニル、トシルが挙げられる。これらの中で、 同じ、又は異なる1個~3個のメチル、メトキシ、トリフルオロメチル、ヒドロ キシル、トリフルオロメトキシ、メチルチオ、トリフルオロメチルチオ、フルオ ロ、クロロ、プロモ、シアノ、ジメチルアミノ、アセチル、メトキシカルボニル、 メシル、トリフルオロメタンスルホニルが好ましく、同じ、又は異なる1個~3 個のメチル、メトキシ、トリフルオロメチル、ヒドロキシル、フルオロ、クロロ、 プロモ、シアノがより好ましく、同じ、又は異なる1個~3個のトリフルオロメ チル、フルオロ、クロロが特に好ましい。

 R^1 が炭素数 $1 \sim 5$ のアルキル、炭素数 $3 \sim 8$ のシクロアルキル、炭素数 $2 \sim 1$ 0 のアルケニル、炭素数 $4 \sim 1$ 0 のシクロアルケニル又は炭素数 $2 \sim 1$ 0 のアルキニルである場合の置換基について、炭素数 $1 \sim 5$ のアルキルとしては、例えばメチル、エチルが挙げられる。炭素数 $3 \sim 8$ のシクロアルキルとしては、例えばシクロプロピル、シクロプチル、シクロペンチル、シクロヘキシルが挙げられる。炭素数 $1 \sim 5$ のハロアルキルとしては、例えばトリフルオロメチル、 2, 2, 2

2ートリフルオロエチルが挙げられる。ハロゲンとしては、例えばフルオロ、クロロ、プロモが挙げられる。更に他の置換基として、フェニル、ヒドロキシルが挙げられる。これらの中で、同じ、又は異なる1個~3個のフェニル、ヒドロキシル、メチル、シクロヘキシル、トリフルオロメチル、フルオロ、クロロが好ましく、同じ、又は異なる1個~3個のメチル、シクロヘキシル、トリフルオロメチル、フルオロ、クロロがより好ましく、同じ、又は異なる1個~3個のメチル、トリフルオロメチル、フルオロ、クロロが特に好ましい。

 R^2 について、アリールとしては、例えばフェニル、ナフチル、ビフェニリル、インダニルが挙げられる。ヘテロアリールとしては、例えばイミダゾリル、オキ サゾリル、ピラジニル、チエニル、フリル、ピリジル、キノリル、ベンゾフリル、インドリル、ピロリル、ピラニルが挙げられる。これらの中で、フェニル、ナフチル、イミダゾリル、チエニル、フリル、ピリジル、インドリルが好ましく、フェニル、チエニル、フリル、ピリジルがより好ましく、フェニル、ピリジルが特に好ましい。 R^2 がアリール又はヘテロアリールである場合の置換基については、

- R¹がアリール又はヘテロアリールである場合の置換基と同様であるが、これらの中で同じ、又は異なる1個~3個のメチル、メトキシ、トリフルオロメチル、ヒドロキシル、トリフルオロメトキシ、メチルチオ、トリフルオロメチルチオ、フルオロ、クロロ、ブロモ、ヨード、シアノ、アミノ、ジメチルアミノ、アセチル、メトキシカルボニル、メシル、トリフルオロメタンスルホニルが好ましく、
- 20 同じ、又は異なる1個~3個のメチル、メトキシ、トリフルオロメチル、トリフルオロメトキシ、メチルチオ、フルオロ、クロロ、ブロモ、ヨード、ジメチルアミノがより好ましく、同じ、又は異なる1個~3個のメチル、メトキシ、トリフルオロメチル、トリフルオロメトキシ、メチルチオ、フルオロ、クロロ、ブロモが特に好ましい。
- R^3 について、水素、ハロゲンとしては、フルオロ、クロロ、ブロモ、ヨードが挙げられる。炭素数 $1 \sim 5$ のアルキルとしては、例えばメチル、エチル、イソプロピルが挙げられる。炭素数 $1 \sim 5$ のアルコキシとしては、例えばメトキシ、エトキシ、イソプロポキシが挙げられる。これらの中で、水素、同じ又は異なる1 個 ~ 3 個のフルオロ、クロロ、プロモ、メチル、イソプロピル、メトキシ、イ

20

ソプロポキシが好ましく、水素、同じ又は異なる1個 ~ 3 個のフルオロ、クロロ、メチル、メトキシがより好ましく、同じ又は異なる1個 ~ 3 個のフルオロ、メチルが特に好ましい。

 R^4 について、Xとしては、-O-、 $-CH_2-$ が好ましく、-O-が特に好ましい。 R^5 としては、水素、又は炭素数 $1\sim 5$ のアルキル、例えばメチル、エチル、プロピル、プチル、 t e r t - プチルが挙げられる。これらの中で、水素、メチル、エチル、プチルが好ましく、水素、メチルがより好ましく、水素が特に好ましい。nとしては、1又は2が好ましく、1が特に好ましい。

薬学的に許容される塩としては、ナトリウム塩、カリウム塩、カルシウム塩、
メチルアミン塩、ジメチルアミン塩、トリエチルアミン塩、α-フェニルエチル
アミン塩、β-フェニルエチルアミン塩、エチレンジアミン塩、モノエタノール
アミン塩、ジエタノールアミン塩、トリエタノールアミン塩、メグルミン塩であ
り、ナトリウム塩、カリウム塩、カルシウム塩、メチルアミン塩、ジメチルアミン塩、トリエチルアミン塩、β-フェニルエチル
アミン塩、ジエタノールアミン塩、メグルミン塩が好ましく、ナトリウム塩、カリウム塩、ジエタノールアミン塩、メグルミン塩が特に好ましい。

本発明のベンゾモルホリン誘導体のうち、分子内に不斉炭素を有する場合には各種の光学異性体が存在し、更に少なくとも2個の不斉炭素を有する場合には各種のジアステレオマーが存在する。本発明はそれらの光学異性体、及びジアステレオマーをも包含する。また、本発明はシスートランス異性体をも包含する。

本発明の一般式(I) 又は一般式(II) で示されるベンゾモルホリン誘導体の具体例を表 1 ~ 7 に示すが、これらは本発明を限定するものではない。

R6					
	R7	R6	R7	R6	R7
4-F	Н	3-F	Н	2-F	Н
4-Cl	Н	3-CI	Н	2-CI	H
4-Br	H	3-Br	Н	2-Br	H
4-I	Н	3-1	Н	2-I	H
4-Me	Н	3-Me	Н	2-Me	H
4-Et	_H	3-Et	Н	2-Et	H
4-n-Pr	Н	3-n-Pr	Н	2-n-Pr	H
4−iPr	Н	3-iPr	Н	2-iPr	H
4-t-Bu	Н	3-t-Bu	Н	2-t-Bu	H
4-CF3	H	3-CF3	Н	2-CF3	H
4-CN	Н	3-CN	Н	2-CN	H
4-NO2	Н	3-NO2	Н	2-NO2	H
4−OMe	Н	3-OMe	Н	2-OMe	H
4-OH	Н	3-OH	Н	2-OH	H
_4−SMe	H	3−SMe	Н	2-SMe	H
4-SH	Н	3-SH	Н	2-SH	H
4-Ph	H	3-Ph	Н	2-Ph	Н
4-0Ph	H	3-OPh	Н	2-OPh	H
4-OCF3	Н	3-0CF3	Н	2-OCF3	H
4-SCF3	Н	3-SCF3	Н	2-SCF3	Н
4-NMe2	Н	3-NMe2	Н	2-NMe2	Н
4-Acetyl	Н	3-Acetyl	Н	2-Acetyl	Н
4-Piv	H	3-Piv	Н	2-Piv	H
4-Bz	Н	3-Bz	Н	2-Bz	Н
4-Ms	Н	3-Ms	Н	2-Ms	H
4-Ts	H	3−Ts	Н	2-Ts	Н
4-Tf	H	3-Tf	Н	2-Tf	Н
4-COOH	H	3-COOH	Н	2-COOH	H
4-COOMe	H	3-COOMe	Н	2-COOMe	Н
4-NMe2	H	3-NMe2	Н	2-NMe2	Н

表2

- 衣2						
R6	R7	R	6 R7	TT	R6	R7
Н	4-F	Н	3-F	11	H	2-F
H	4-CI	Н		\top	Н	2-CI
H	4-Br	Н		11	Н	2~Br
H	4-I	Н	3−I	71	Н	2-I
Н	4-Me	Н	3-Me	11	H	2-Me
H	4-Et	Н	3-Et	71	Н	2-Et
Н	4-n-Pr	Н	3-n-Pr		Н	2-n-Pr
H_	4-iPr	_ H	3−iPr	11	Н	2-iPr
H	4−t−Bu	H	3-t-Bu	11	Н	2-t-Bu
H	4-CF3	Н	3-CF3	\top	Н	2-CF3
H	4-CN	Н	3-CN	\top	Н	2-CN
H	4-NO2	Н	3-NO2	\top	Н	2-NO2
H	4−OMe	Н	3-OMe		H	2-OMe
H	4-OH	Н	3-OH	T	Н	2-OH
H	4−SMe	Н	3-SMe	\sqcap	Н	2-SMe
H	4-SH	Н	3-SH		Н	2-SH
Н	4−Ph	Н	3-Ph	\sqcap	Н	2-Ph
H	4-0Ph	Н	3-OPh	\sqcap	Н	2-OPh
H	4-OCF3	Н	3-OCF3	\sqcap	Н	2-OCF3
H	4~SCF3	H	3-SCF3	TT	Н	2-SCF3
H	4-NMe2	H	3-NMe2	\sqcap	Н	2-NMe2
H	4-Acetyl	Н	3-Acetyl	Π	Н	2-Acetyl
H	4-Piv	Н	3-Piv		Н	2-Piv
H	4-Bz	Н	3-Bz		Н	2-Bz
Н	4-Ms	Н	3−Ms		Н	2-Ms
Н	4−Ts	Н	3−Ts	П	Н	2-Ts
H	4-Tf	Н	3-Tf	П	Н	2-Tf
H	4-COOH	Н	3-COOH		Н	2-COOH
H	4-COOMe	Н	3-COOMe		Н	2-COOMe
H	4-NMe2	H	3-NMe2		Н	2-NMe2

\pm	2
ᅏ	

423				_			
R6	R7	Ι	R6	R7	Ţ	R6	R7
4-Br	4-F	T	4-Br	3-F	寸	4-Br	2-F
4-Br	4-Cl	Т	4-Br	3-CI	†	4-Br	2-CI
4-Br	4-Br	Τ	4-Br	3-Br	十	4-Br	2-Br
4-Br	4-I	Γ	4-Br	3-I	+	4-Br	2-1
4-Br	4−Me	Π	4-Br	3-Me	Ť	4-Br	2-Me
4-Br	4-Et	Π	4-Br	3-Et	T	4-Br	2-Et
4-Br	4-n-Pr	Γ	4-Br	3-n-Pr	†	4-Br	2-n-Pr
4-Br	4-iPr		4-Br	3-iPr	†	4-Br	2-iPr
4-Br	4−t−Bu	Г	4-Br	3-t-Bu	†	4-Br	2-t-Bu
4-Br	4-CF3		4-Br	3-CF3	†	4-Br	2-CF3
4-Br	4-CN		4-Br	3-CN	T	4-Br	2-CN
4-Br	4-NO2		4-Br	3-NO2	T	4-Br	2-NO2
4-Br	4-OMe		4-Br	3-OMe	T	4-Br	2-OMe
4-Br	4-OH		4-Br	3-OH	T	4-Br	2-OH
4-Br	4-SMe		4-Br	3-SMe	T	4-Br	2-SMe
4~Br	4-SH		4-Br	3-SH	T	4-Br	2-SH
4-Br	4-Ph		4-Br	3-Ph	T	4-Br	2-Ph
4-Br	4-OPh		4-Br	3-OPh	T	4-Br	2-0Ph
4-Br	4-OCF3		4-Br	3-OCF3	Г	4-Br	2-OCF3
4-Br	4-SCF3		4-Br	3-SCF3	Г	4-Br	2-SCF3
4-Br	4-NMe2		4-Br	3-NMe2		4-Br	2-NMe2
4-Br	4-Acetyl	\perp	4-Br	3-Acetyl	П	4-Br	2-Acetyl
4-Br	4-Piv		4-Br	3-Piv	П	4-Br	2-Piv
<u>4-Br</u>	4-Bz	1	4−Br	3-Bz	П	4-Br	2-Bz
4-Br	4-Ms	T	4−Br	3−Ms	П	4-Br	2-Ms
4-Br	4-Ts		4-Br	3-Ts		4-Br	2-Ts
<u>4-Br</u>	4-Tf	\perp	4-Br	3−Tf	\neg	4-Br	2-Tf
4-Br	4-COOH		4-Br	3-COOH	\sqcap	4-Br	2-СООН
<u>4-Br</u>	4-COOMe	L	4-Br	3-COOMe	ヿ	4-Br	2-COOMe
4-Br	4-NMe2		4-Br	3-NMe2	7	4-Br	2-NMe2
					_		

表4			V			
R6	R7	R6	R7	Т	R6	R7
4-CF3	4-F	4-CF	3 3-F	T	4-CF3	2-F
4-CF3	4-CI	4-CF	3 3-CI		4-CF3	2-CI
4-CF3	4-Br	4-CF	3 3-Br		4-CF3	2-Br
4-CF3	4-I	4-CF	3 3-I		4-CF3	2-1
4-CF3	<u>4-Me</u>	4-CF	3 3-Me		4-CF3	2-Me
4-CF3	4-Et	4-CF			4-CF3	2-Et
4-CF3	4-n-Pr	4-CF	3 3-n-Pr	- -	4-CF3	2-n-Pr
4-CF3	4-iPr	4-CF			4-CF3	2-iPr
4-CF3	4-t-Bu_	4-CF	3 3-t-Bu		4-CF3	2-t-Bu
4-CF3	4-CF3	4-CF	3 3-CF3		4-CF3	2-CF3
4-CF3	4-CN	4-CF	3 3-CN	\top	4-CF3	2-CN
4-CF3	4-NO2	4-CF			4-CF3	2-NO2
4-CF3	4-OMe	4-CF	3 3-OMe	П	4-CF3	2-OMe
4-CF3	4-OH	4-CF		\Box	4-CF3	2-OH
4-CF3	4-SMe	4-CF	3 3~SMe	\prod	4-CF3	2-SMe
4-CF3	4-SH	4-CF		\prod	4-CF3	2-SH
4-CF3	4-Ph	4-CF3		$\Box \Box$	4-CF3	2-Ph
4-CF3	4-0Ph	4-CF3		\Box	4-CF3	2-OPh
4-CF3	4-0CF3	4-CF3			4-CF3	2-OCF3
4-CF3	4-SCF3	4-CF3		\prod	4-CF3	2-SCF3
4-CF3	4-NMe2	4-CF3			4-CF3	2-NMe2
4-CF3	4-Acetyl	4-CF3			4-CF3	2-Acetyl
4-CF3	4-Piv	4-CF3			4-CF3	2-Piv
4-CF3	4-Bz	4-CF3			4-CF3	2-Bz
4-CF3	4-Ms	4-CF3		Ш	4-CF3	2-Ms
4-CF3	4-Ts	4-CF3		\Box	4-CF3	2-Ts
4-CF3	4-Tf	4-CF3			4-CF3	2-Tf
4-CF3	4-COOH	4-CF3			4-CF3	2-COOH
4-CF3	4-COOMe	4-CF3		е	4-CF3	2-COOMe
4-CF3	4-NMe2	4-CF3	3-NMe2	\prod	4-CF3	2-NMe2

表5			_	_	
R8	R9	R8	R9	R8	R9
of O	Н	rot S	Н	CI S	Н
, o,	Н	, se Constitution of the c	Н	Se C	Н
of N	Н	, se N	н	or N	Н
,se	н	r _e eee-	н	rec V	Н
rote	н	'str	Н	rr	н
re III	Н	r _o ge	н	ST.	н
S. S	Н	of C	н	, se l	Н

表6		O	R°		
R8	R9	R8	R9	R8	R9
St. O	4-Br	, St. S	4-Br	S. CI	4-Br
re O	4-Br	se S	4-Br	est.	4-Br
, re N	4-Br	ser N	4-Br	, R. N	4-Br
or.	4-Br	rg.	4-Br	25	4-Br
r.r.	4-Br	est.	4-Br	r.c.	4-Br
recommendation of the second	4-Br	25°	4-Br	roc.	4-Br
received the second	4-Br	rock (4–Br	Z. L.	4-Br

表7					
R10	R11	R10	R11	R10	R11
ξ—Cι	₹ —⟨¬¬	₽	! —(}	CI
₹——Me	}—————————————————————————————————————	}————Me	ξ—(¯)—Ci	ξ———Me	
F ∮————————————————————————————————————		₽ ₽ ₽	₹ ————————————————————————————————————	\$	
₹ F	}—(Ş—ÇN_Cı		}—CI	₩
₹——N—CI	}	}—Cı	N.	} NOMe	├
Ş—CI		CI	\$	Me Me Me	} —⟨¯⟩
F_CI		₹ F Br	!	Me Br	!
Me Me	∮	F Me	!	EL Br	!—
₹ F	₹ —	F CF ₃		CI E-CF ₃	! —(*)

表 $1 \sim 7$ 中の略号の意味は以下のとおりである。

10

20

 $Piv: ピバロイル、<math>Bz: ベンゾイル、Ms: メシル (SO_2Me)$ 、Ts: トシル、Tf: トリフルオロメタンスルホニル (以下同様)

本発明のベンゾモルホリン誘導体は、以下の合成スキームに示す方法によって製造することができる。これらの化合物の製造に使用する出発物質と試薬は一般に入手することができるか、又はOrganic Reaction (Wiley & Sons)、Fieser and Fieser's Reagent for Organic Synthesis (Wiley & Sons)などの参考文献に記載の手順に従って、当業者に既知の方法によって合成できる。以下のスキームは、本発明のベンゾモルホリン誘導体を製造することができるいくつかの方法を単に例示するものであり、本発明の範囲はこれによって何ら制限をうけるものではない。

特に断りがない限り、ここで述べる反応は大気圧で-100℃ ~150 ℃までの温度で、より好ましくは-20℃ ~125 ℃までの温度で、特に好ましくは0℃ ~100 ℃の温度で行われる。

一般式(I)で示される本発明のベンゾモルホリン誘導体のうち、例えばAが 15 エチレン、XがO、R⁵が水素、nが1である一般式(Ia)

$$O \longrightarrow CO_2R^6$$

$$O \longrightarrow R^3$$

(式中の記号は前記と同じ意味を表す)で示されるベンゾモルホリン誘導体は、一般式(V)(式中、R⁶は炭素数1~5のアルキル基を表し、その他の記号は前記と同じ意味を表す)で示される化合物をアルカリ条件下、加水分解することにより製造することができる。アルカリ条件下でのエステル加水分解は公知であり、テトラヒドロフラン、ジオキサン、メタノール、エタノール、ジメトキシエタン又はこれらの混合溶媒等の水と混和しうる有機溶媒中、水酸化ナトリウム水溶液、水酸化カリウム水溶液等のアルカリ水溶液を用いて、-10~70℃の温度で行われる。

10

15

一般式(V) (式中の記号は前記と同じ意味を表す)で示されるベンゾモルホリン誘導体は、一般式(III) (式中の記号は前記と同じ意味を表す)で示されるアミド化合物と一般式(IV) (式中、Yはハロゲン、トシルオキシ又はメシルオキシを表し、その他の記号は前記と同じ意味を表す)で示されるベンゾモルホリン誘導体を反応させることによって製造することができる。

アミドのNーアルキル化反応は公知であり、ジメチルホルムアミド、テトラヒドロフラン、ジオキサン、アセトン、ジメトキシエタン又はこれらの混合溶媒中、一般式(III)で示されるアミド化合物を水素化ナトリウム、水素化カリウム、カリウム t- ブトキシド、リチウムジイソプロピルアミド(LDA)等の塩基で処理した後、一般式(IV)で示されるペンゾモルホリン誘導体を添加することによって、通常 $-20\sim70$ ∞ の温度で行われる。

また、一般式(IV)で示されるベンゾモルホリン誘導体、例えばYがメシルオキシであるベンゾモルホリン誘導体(IVa)は、一般式(VII)(式中の記号は前記と同じ意味を表す)で示されるベンゾモルホリン誘導体をメシル化することによって製造することができる(ここでベンゾモルホリン誘導体(IVa)中のMsはメシルを表す)。

$$O = CO_2R^6$$

$$O = CO_2R^6$$

$$O = R^3$$

$$O = N$$

〇一メシル化反応は公知であり、ジメチルホルムアミド、テトラヒドロフラン、ジオキサン、アセトン、ジメトキシエタン又はこれらの混合溶媒中、トリエチルアミン、モルホリン等の塩基存在下、一般式 (VII) で示されるベンゾモルホリン誘導体をメシルクロリド又はメタンスルホン酸無水物で処理することによって、通常 $-20\sim70$ の温度で行われる。

また、一般式(V)で示されるベンゾモルホリン誘導体は、一般式(VI) (式中の記号は前記と同じ意味を表す)で示されるベンゾモルホリン誘導体をアシル化することによっても製造することができる。

$$O \longrightarrow CO_2R^6$$

$$O \longrightarrow R^3$$

N-アシル化反応は公知であり、ジメチルホルムアミド、テトラヒドロフラン、ジオキサン、アセトン、ジメトキシエタン又はこれらの混合溶媒中、トリエチルアミン、モルホリン等の塩基存在下、一般式(VI)で示されるベンゾモルホリン誘導体を対応する酸クロリド(R¹COC1)又は酸無水物((R¹CO)₂O)で処理することによって、通常-20~70℃の温度で行われる。又は、ジメチルホルムアミド、テトラヒドロフラン、ジオキサン、ジメトキシエタン又はこれらの混合溶媒中、ジシクロヘキシルカルボジイミド(DCC)等の適当な縮合剤存在下、一般式(VI)で示されるベンゾモルホリン誘導体を対応するカルボン酸(R¹COOH)で処理することによって、通常-20~70℃の温度で行われる。

20 一般式 (VI) で示されるベンゾモルホリン誘導体は、1 級アミン (H_2N-R^2) の一般式 (IVa) (式中の記号は前記と同じ意味を表す)で示されるベンゾモルホリン誘導体によるN-アルキル化によって製造することができる。

WO 2004/052871

5

10

15

20

一般式(III)、(IV)、(VII)で示される化合物及び試薬は、それ自体公知であるか、又は当業者には自明の方法によって製造することができる。これらのうち、ベンゾモルホリン誘導体(VII)については、その製造方法が、WO00/07992に記載されている。本明細書の各反応において、反応生成物は通常の精製手段、例えば常圧下又は減圧下における蒸留、シリカゲル又はケイ酸マグネシウムを用いた高速液体クロマトグラフィー、薄層クロマトグラフィー、あるいはカラムクロマトグラフィー、又は洗浄、再結晶等の方法により精製することができる。精製は各反応ごとに行ってもよいし、いくつかの反応終了後に行ってもよい。

本発明のベンゾモルホリン誘導体は、医薬として使用することができる。例えば、強力な血小板凝集抑制作用を有するため、本発明のベンゾモルホリン誘導体、あるいは本発明のベンゾモルホリン誘導体を含む組成物は、哺乳類、特にヒトにおける、血栓に起因する種々の疾患の予防、及び治療に有効である。

より具体的には、本発明のベンゾモルホリン誘導体は、血栓症、特に冠動脈、 脳動脈、末梢動脈における血栓症あるいは血栓に付随する疾患の予防、及び治療 薬として有効である。

ここでいう血栓症とは冠動脈血栓症、肺動脈血栓症などの動脈血栓症、深部静脈血栓症などの静脈血栓症、壁在血栓症などの心臓における血栓症、あるいは体

10

15

20

25

外循環路における血栓症である。血栓に付随する疾患とは、心筋梗塞、不安定狭心症、脳梗塞、一過性脳虚血発作、急性あるいは慢性動脈閉塞症、PTCA 後の再狭窄、播種性血管内血液凝固(DIC)、脳塞栓症、肺塞栓症等である。

本発明は、薬学的に許容されるその塩、並びに1種類以上の薬学的に許容される担体、及び場合によりほかの治療用及び/又は予防用成分を含む医薬組成物を包含する。

一般に、本発明のベンゾモルホリン誘導体は、同様の用途に有用な薬剤について許容されているどのような投与方法によっても、治療上有効な量が投与される。通常は静注、動注、筋注、皮下注、経皮、経肺、経鼻、点眼、直腸又は経口投与で本発明のベンゾモルホリン誘導体が投与される。

通常の経皮、経肺、経鼻、点鼻、直腸又は経口投与の際には、 $0.1\mu g/kg/H$ 00mg/kg/Hの範囲で $1H1\sim 4$ 回にわけて投与される。点滴静注又は動注の場合には、1ng/kg/H00mg/kg/分の範囲で投与すれば好ましい結果が得られる。通常の静注、動注、筋注、皮下注の場合には、 $0.1\mu g/kg/H$ 00mg/kg/Hの範囲で $1H1\sim 4$ 回にわけて投与する。これらの投与の場合、その投与量は前記の範囲から患者の年令、性別、状態及び薬剤の投与回数等を考慮して選択される。

本発明のベンゾモルホリン誘導体には、必要に応じて薬学的に許容される添加剤を加えてもよく、澱粉、乳糖、ショ糖、Dーマンニトール、ソルビトール、微結晶セルロースのような賦形剤、この他、結合剤、崩壊剤、被覆剤、安定剤、保存剤、可溶化剤、着色剤、滑沢剤等を含む固形物の形で経口投与できる。又本発明のベンゾモルホリン誘導体は、無菌製剤の形で非経口的に投与してもよく、添加剤として塩化ナトリウム、Dーマンニトール、キシリトール又はグルコース等の等張剤、pH調節剤、溶解補助剤を含んでいてもよい。本発明のベンゾモルホリン誘導体は、化学構造上の安定性を有しているため、医薬品形態としては、薬学的に許容される投与形態であれば特に限定されるものではなく、錠剤、散剤、顆粒剤、カプセル剤、軟カプセル剤、シロップ剤等の前記経口用の製剤、各種注射剤、坐剤、軟膏、ゲル剤、エアゾール剤、懸濁剤、液剤、テープ剤及びローション剤等、幅広い剤形を選択できる。

10

15

20

25

本発明のベンゾモルホリン誘導体は、例えば他の抗血栓薬、又は他の疾患 (例えば高血圧、糖尿病、高脂血症、冠血管拡張薬など) の予防又は治療薬と組合せて用いることもできる。

他の抗血栓薬としては、例えば、チクロピジン、クロピドグレル、CS-747 などのADP受容体拮抗薬、シロスタゾール、ペントキシフィリン、ジピリダモールなどのホスホジエステラーゼ阻害薬、サルポグレラートなどの 5-HT 受容体拮抗薬、アブシキシマブ、チロフュバン、ロキシフュバンなどの GpIIb/IIIa 拮抗薬、オザグレルなどのトロンボキサン合成酵素阻害剤、フォンダペリヌックスなどのXa因子阻害薬、アルガトロバンなどのトロンビン阻害薬、エノキサパリン、レビパリンなどの低分子へパリン、t-PA、ウロキナーゼ、ストレプトキナーゼなどの血栓溶解剤、更にアスピリン、ヘパリンなどが挙げられる。

高血圧の予防又は治療薬としては、例えば、ドキサゾシン、プラゾシンなどの α プロッカー、アムロジピン、ニフェジピンなどのカルシウム拮抗薬、カプト プリル、イミダプリルなどのアンジオテンシン変換酵素阻害薬、ロサルタン、カンデサルタン、バルサルタンなどのアンジオテンシン Π 受容体拮抗薬、アテノロールなどの Π プロッカー、フロセミドなどの利尿薬などが挙げられる。

糖尿病予防又は治療薬としては、例えば、ピオグリタゾン、トログリタゾン、ロシグリタゾンなどのインスリン抵抗性改善薬、トルブタミド、クロルプロパミド、トラザミド、アセトヘザミド、グリクロピラミド、グリベンクラミド、グリクラジド、グリメピリド、レパグリニド、ナテグリニドなどのインスリン分泌促進薬、メトホルミン、ブホルミンなどのピグアナイド剤、インスリン、アカーボース、ボグリボース、ミグリトール、エミグリテートなどの α - グルコシダーゼ阻害薬、SR-58611-A、SB-226552、AZ40140 などの β_3 アドレナリン受容体作動薬、エロゴセット、プラムリンチド、レプチン、BAY-27-9955 などが挙げられる。

高脂血症の予防又は治療薬としては、例えば、メバロチン、アトロバスタチンなどの HMG-CoA 還元酵素阻害薬、コレスチラミンなどの陰イオン交換樹脂、ペザフィブラートなどのフィブラート系薬剤、ニセリトロールなどのニコチン酸誘導体、又はプロブコールなどが挙げられる。

冠血管拡張薬としては、例えば、ニトログリセリンなどの硝酸薬が挙げられる。

図面の簡単な説明

図1は、本発明のベンゾモルホリン誘導体の経口投与後の結果を示す図である。

5

25

本明細書は、本願の優先権の基礎である特願2002-355544の明細書及び/又は図面に記載された内容を包含する。

発明を実施するための最良の形態

10 以下、参考例及び実施例を挙げて本発明を具体的に説明する。

(参考例1) メシル化反応:

Methyl 4-(2-hydroxyethyl)-3,4-dihydro-2H-1,4-benzoxazine-8-yloxyacetate (15.7 g、58.7mmol) 及びトリエチルアミン (29.5ml、

211.7mmol) の塩化メチレン (360ml) 溶液に、0℃でメシルクロリド (4.6 ml、

15 58.3mmol)を加え、1時間撹拌した。反応液を 5%クエン酸水溶液にあけ、続いて酢酸エチルで抽出した。有機層を水、飽和食塩水で洗った後、MgSO₄上で乾燥後、濃縮してメシル体(17.8g、51.5mmol)を得た。このメシル体は精製の必要なく、そのまま次の反応に使用した。

(実施例1)縮合反応 (General Procedure):

20 NaH (15mmol) に benzanilide (15mmol) の DMF (30ml) 溶液を加え、室温で30 分撹拌した。

続いて、参考例1で得られた Methyl 4-(2-mesyloxyethyl)-3, 4-dihydro-2H-1, 4-benzoxazine-8-yloxyacetate (12mmol) の DMF (15ml) 溶液を加え、80℃で5時間撹拌した。溶媒を減圧下留去し、残渣を5%クエン酸にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗った後、MgSO₄上で乾燥後、濃縮した。残渣をカラムクロマトグラフィー(シリカゲル 、溶出液; AcOEt /n-hexane=1:1)と再結晶 (AcOEt/n-hexane) にて精製して目的物のメチルエステル体を得た。

続いて、メチルエステル体のエタノール(10ml)、THF(30ml)溶液に、2.0 N水酸化ナトリウム水溶液(1.2eq)を加え、室温で1時間撹拌した。溶媒を減圧下留去し、残渣を 1N-HCl 水溶液にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗った後、 $MgSO_4$ 上で乾燥後、濃縮した。残渣を AcOEt/n-hexane より再結晶して目的物を得た。

同様の反応、操作で、種々の誘導体を合成した。原料、生成物を表8~16に 、スペクトルデータを表17~25に示す。 表8

表8					
実施例	アミド (原料)	生成物	実施例	アミド (原料)	生成物
1-1	O NH	CO₂H NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	1-2	CN H CO	CO ₂ H ON ON ON N
実施例	アミド (原料)	生成物	実施例	アミド(原料)	生成物
1-3	→ H	CO ₂ H	1-4	N COCF3	CO ₂ H OCF ₃
実施例	アミド(原料)	生成物	実施例	アミド (原料)	生成物
1-5	O N	CO ₂ H	1-6	PIN N	CO ₂ H
実施例	アミド(原料)	生成物	実施例	アミド (原料)	生成物
1-7	N N N	CO ₂ H	1-8		CO₂H N N N F

表9

2X 3	77 10 (FE (MI)	T		T	
実施例	アミド(原料)	生成物	実施例	アミド (原料)	生成物
1-9	O P CF3	CO ₂ H CF ₃	1-10		CO ₂ H
実施例	アミド (原料)	生成物	実施例	アミド (原料)	生成物
1-11	F ₃ CO	CO ₂ H	1-12	O N H CF3	СО ₂ Н 0 0 0 F ₃ C
実施例	アミド (原料)	生成物	実施例	アミド (原料)	生成物
1-13	O NH Br	CO ₂ H O N O Br	1-14	S H C cı	CO ₂ H
実施例	アミド(原料)	生成物	実施例	アミド(原料)	生成物
1-15	OH N	CO ₂ H	1-16	N Me	CO ₂ H Me

表10

実施例	マミド (医原)	11.04	1		
关/厄切	アミド (原料)	生成物	実施例	アミド (原料)	生成物
1-17	Me H	CO ₂ H ON N Me	1–18	Me N	CO ₂ H
実施例	アミド (原料)	生成物	実施例	アミド(原料)	生成物
1-19	cr J.M.	CO ₂ H	1-20	cı Ph	CO ₂ H
実施例.	アミド (原料)	生成物	実施例	アミド(原料)	生成物
1-21	NC N	CO ₂ H	1-22	O ₂ N	CO ₂ H NO ₂
実施例	アミド (原料)	生成物	実施例	アミド (原料)	生成物
1-23	Me ₂ N	CO ₂ H · NMe ₂	1-24	C N COOH	CO ₂ H COOH

表11

表11		T	<u> </u>		
実施例	アミド (原料)	生成物	実施例	アミド (原料)	生成物
1-25	O P OH	CO ₂ H O N O O O O	1-26	CI ON N	CO ₂ H
実施例	アミド(原料)	生成物	実施例	アミド (原料)	生成物
1-27	NN NM e₂	CO ₂ H NMe ₂	1-28	Me N Me	CO ₂ H Me Me
実施例	アミド (原料)	生成物	実施例	アミド (原料)	生成物
1-29	CI N N Me	CO ₂ H Me	1-30	CI H	CO ₂ H O N N CI
実施例	アミド (原料)	生成物	実施例	アミド(原料)	生成物
1-31	OMe	CO ₂ H ONO ONO ONO	1-32	OCF3	CO ₂ H OCF ₃

表12

表 1 2	77 2 16 (FT-104)	T	<u> </u>	1	
実施例	アミド(原料)	生成物	実施例	アミド (原料)	生成物
1-33	N ScF₃	SCF ₃	1-34	N ScF ₃	CO ₂ H ON SCF ₃
実施例	アミド (原料)	生成物	実施例	アミド (原料)	生成物
1-35	О № Он	CO ₂ H OH	1-36	. P CI	CO ₂ H
実施例	アミド (原料)	生成物	実施例	アミド (原料)	生成物
1-37	N SO₂Me	CO ₂ H SO ₂ Me	1-38	N CF₃	CF ₃ CI
実施例	アミド (原料)	生成物	実施例	アミド(原料)	生成物
1-39	C I I T-Bu	CO ₂ H	1-40	. SMe	CO₂H ON ON SMe

表13				•	
実施例	アミド (原料)	生成物	実施例	アミド (原料)	生成物
1-41	N Me	CO ₂ H Me	1-42	CF ₉	CO ₂ H CF ₃
実施例	アミド(原料)	生成物	実施例	アミド (原料)	生成物
1-43	S N S SMO	CO₂H SMe	1-44	Ph .	CO ₂ H Ph
実施例	アミド (原料)	生成物	実施例	アミド (原料)	生成物
1-45	O N Me	CO ₂ H Me	1-46	P CF3	CO ₂ H F ₃ C
実施例	アミド(原料)	生成物	実施例	アミド (原料)	生成物
1-47		CO ₂ H	1-48	S P CI	CO ₂ H

表14

実施例	アミド (原料)	4. 4.4.	1		T
	7 7 1 ()5,747)	生成物	実施例	アミド (原料)	生成物
1-49	NH CI	CO ₂ H CI CI CI	1–50	O N SMe	CO ₂ H MeS
実施例	アミド (原料)	生成物	実施例	アミド (原料)	生成物
1-51	O N Ph	CO ₂ H O N N N	1-52	N AC	CO ₂ H Ac
実施例	アミド (原料)	生成物	実施例	アミド (原料)	生成物
1-53	O N CN	CO ₂ H NC N	1-54	N So ₂ CF ₃	SO ₂ CF ₃
実施例.	アミド(原料)	生成物	実施例	アミド (原料)	生成物
1–55	N COOMe	CO ₂ H	1-56	COOMe	CO ₂ H COOMe

表15

実施例	アミド (原料)	生成物	実施例	アミド (原料)	11 -11-44
1-57	Р соон	CO ₂ H O N O COOH	1-58	Соон	生成物 CO ₂ H COOH
実施例	アミド (原料)	生成物	実施例	アミド (原料)	生成物
1–59	O T O OME	CO ₂ H OMe	1-60	O N O O O O O O O O O O O O O O O O O O	CO₂H O N N O
実施例	アミド (原料)	生成物	実施例	アミド (原料)	生成物
1-61	N Ac	CO ₂ H Ac	1-62		CO ₂ H
実施例	アミド (原料)	生成物	実施例	アミド(原料)	生成物
1-63	CI F CI	CO ₂ H F CI	1-64	Br F	CO ₂ H O N N F Br

表16

実施例	アミド (原料)	生成物	実施例	アミド (原料)	生成物
1-65	O Me Br	CO ₂ H Me Br	1-66	Ne Me	CO ₂ H Me Me Me
実施例	アミド (原料)	生成物	実施例	アミド (原料)	生成物
1-67	· CHAF	CO₂H O N N N Me	1-68	A CI	CI Br
実施例	アミド(原料)	生成物	実施例	アミド(原料)	生成物
1-69	N OMe	CO ₂ H N OMe	1-70	O F F	CO ₂ H

実施例 1-1	実施例 1-2
'H NMR (ppm) (300 MHz, DMSO-d6)	'H NMR (ppm) (300 MHz, CD3OD)
3.25(t, J= 4.0 Hz, 2H), 3.52(t, J= 7.0 Hz, 2H), 3.95~	$3.31\sim3.42$ (m, 2H), 3.60 (dd, $J=7.0, 7.0$ Hz, 2H), 4.08 (dd)
4.05(m, 4H), 4.52(s, 2H), 6.17(dd, J=1.0, 8.0 Hz, 1H), 6.39(dd, J=1.0, 8.0 Hz, 1H), 6.60(t, J=8.0 Hz, 1H), 6.70	$11.7 = 7.0, 7.0 \text{ Hz}, 2H$, $4.18 \sim 4.26 \text{ (m. 2H)}, 6.33 \text{ (d. } I = 8.1)$
~7.30(m, 10H), 12.86(bs, 1H)	Hz, 1H), $6.42\sim6.53$ (m, 1H), 6.74 (dd, $J=8.1$, 8.1 Hz, 1H), $6.83\sim7.00$ (m, 2H), $7.11\sim7.29$ (m, 7H), $7.40\sim7.55$ (m,
	1H), 8.29~8.40(m, 1H),
	:
) (C) (D)	
MS (EI) 432 (M+)	MS (EI) 467 (M+).
実施例 1–3	実施例 1-4
'H NMR (ppm) (300 MHz, CDCl3)	'H NMR (ppm) (300 MHz, CDCl3)
1.03(d, $J = 6.8$ Hz, 6H), 2.45(q, $J = 6.8$ Hz, 1H), 3.29(t, $J = 4.4$ Hz, 2H), 3.49(t, $J = 7.1$, 2H), 3.84(t, $J = 7.1$ Hz, 2H),	7.32 \sim 7.23(5H, m), 7.09 \sim 6.95(4H, m), 6.75(1H, t, $J=$
4.19(t, J = 4.4 Hz, 2H), 4.61(s, 2H), 6.32(dd, J = 1.1, 8.2)	8.1Hz), 6.50(1H, d, J= 8.1Hz), 6.34(1H, dd, J= 8.1, 1.2Hz), 4.64(2H, s), 4.22(2H, t, J= 4.4Hz), 4.10(2H, t, J=
Hz, 1H), 6.49 (dd, $J = 1.1$, 8.2 Hz, 1H), 6.73 (t, $J = 8.2$ Hz, 1H), $7.11 \sim 7.15$ (m, 2H), $7.35 \sim 7.47$ (m, 3H)	6.9Hz), 3.65(2H, t, $J = 6.9$ Hz), 3.38(2H, t, $J = 4.4$ Hz)
,	
·	
MS (EI) 398 (M+)	MS (EI) 516 (M+)
実施例 1-5	実施例 1-6
'H NMR (ppm) (300 MHz, D2O)	
3.18~3.30(m, 2H), 3.50~3.62(m, 2H), 3.96~4.15(m	H NMR (ppm) (300 MHz, CDCl3) 3.34(brs, 2H), 3.65(t, J= 6.8 Hz, 2H), 4.12(t, J= 6.8 Hz,
$4H$), 4.44 (s, $2H$), $6.27 \sim 6.36$ (m, $2H$), $6.44 \sim 6.48$ (m, $1H$)	(1) 2H), 4.18(brs, 2H), 4.61(s, 2H), 6.33(d, $J = 8.5$ Hz, 1H).
6.77~6.85(m, 2H), 7.11~7.15(m, 1H), 7.28~7.41(m, 8H), 7.45~7.54(m, 1H)	$ 6.55(d, J = 8.5 Hz, 1H), 6.76(d, J = 8.5 Hz, 1H), 6.98 \sim $
,	7.02(m, 2H), 7.16~7.24(m, 3H), 7.32~7.43(m, 7H), 7.48 ~7.54(m, 2H)
i	
MS (FAB) 445 (M+)	MS (EI) 508 (M+)
実施例 1-7	実施例 1-8
'H NMR (ppm) (300 MHz, D2O)	'H NMR (ppm) (300 MHz, DMSO-d6)
3.23(t, J= 4.5 Hz, 1H), 3.37(m, 2H), 3.47(t, J= 6.0 Hz,	7.30~7.17(5H, m), 7.15-7.03(4H, m), 6.63(1H, t. J=
1H), $3.71(t, J = 6.0 \text{ Hz}, 1\text{H})$, $3.95(t, J = 4.4 \text{ Hz}, 1\text{H})$, $4.21(m, 2\text{H})$, $4.42(s, 1\text{H})$, $4.45(s, 1\text{H})$, $6.29(t, J = 8.0 \text{ Hz}$,	$8.1Hz$), $6.47 \sim 6.37(1H, m)$, $6.18(1H, dd, J = 8.1, 0.9Hz)$.
1H), $6.50(d, J = 8.0 \text{ Hz}, 0.5\text{H}), 6.56(d, J = 8.0 \text{ Hz}, 0.5\text{H})$	4.55(2H, s), 4.07 \sim 3.93(4H, m), 3.54(2H, t, J = 6.6Hz), 3.25(2H, t, J = 4.1Hz)
$6.77 \sim 6.90 \text{ (m, 3H)}, 7.16 \text{ (m, 1H)}, 7.26 \text{ (t, } J = 8.0 \text{ Hz, 1H)}$	
7.31(m, 1H), 7.51(m, 1H), 7.59(m, 0.5H), 7.71(m, 0.5H), 7.86~7.97(m, 1H), 8.28(d, J = 5.2 Hz, 0.5H), 8.55(d, J =	
5.2 Hz, 0.5H)	
	·
MS (FAB) 455 (M+)	MS (EI) 450 (M+)
· · · · · · · · · · · · · · · · · · ·	

2X 1 V	
実施例 1-9	実施例 1-10
'H NMR (ppm) (300 MHz, DMSO-d6)	'H NMR (ppm) (300 MHz, CDCl3)
7.60(2H, d, J = 8.1Hz), 7.34 \sim 7.20(7H, m), 6.63(1H, t, J = 8.1Hz), 6.41(1H, d, J = 8.1Hz), 6.19(1H, dd, J = 8.1, 0.9Hz), 4.55(2H, s), 4.10 \sim 4.02(2H, m), 4.02 \sim 3.95(2H, m), 3.55(2H, t, J = 6.6Hz), 3.24(2H, t, J = 4.4Hz)	3.33(brs, 2H), 3.63(t, $J = 6.9$ Hz, 2H), 4.09(t, $J = 6.9$ Hz, 2H), 4.17(brs, 2H), 4.61(s, 2H), 6.33(dd, $J = 1.1$, 8.2 Hz, 1H), 6.52(dd, $J = 1.1$, 8.2 Hz, 1H), 6.75(t, $J = 8.2$ Hz, 1H), 6.84(t, $J = 8.8$ Hz, 1H), 6.94(m, 2H), 7.17 \sim 7.32(m, 5H)
MS (EI) 500 (M+)	MS· (EI) 450 (M+)
実施例 1-11	実施例 1–12
"H NMR (ppm) (300 MHz, CDCl3) 3.33(brs, 2H), 3.63(t, J=6.9 Hz, 2H), 4.10(t, J=6.9 Hz, 2H), 4.18(brs, 2H), 4.62(s, 2H), 6.34(dd, J=1.1, 8.2 Hz, 1H), 6.52(dd, J=1.1, 8.2 Hz, 1H), 6.75(t, J=8.2 Hz, 1H), 6.92~7.01(m, 4H), 7.18~7.34(m, 5H)	"H NMR (ppm) (300 MHz, CDCl3) 3.40(t, J = 4.4 Hz, 2H), 3.63(brs, 2H), 4.14(brs, 2H), 4.25(t, J = 4.4 Hz, 2H), 4.63(s, 2H), 6.35(dd, J = 1.1, 8.2 Hz, 1H), 6.48(dd, J = 1.1, 8.2 Hz, 1H), 6.74(t, J = 8.2 Hz, 1H), 7.03~7.07(m, 3H), 7.11~7.23(m, 3H), 7.26~ 7.34(m, 2H), 7.56(m, 1H)
MS (EI) 516 (M+) 実施例 1-13	MS (EI) 500 (M+ ·) 実施例 1-14
'H NMR (ppm) (300 MHz, DMSO-d6)	'H NMR (ppm) (300 MHz, DMSO-d6)
7.45 \sim 7.37(2H, m), 7.33 \sim 7.20(5H, m), 7.02(2H, d, J = 9.0Hz), 6.63(1H, t, J = 8.4Hz), 6.42(1H, d, J = 8.4Hz), 6.18(1H, dd, J = 8.4, 0.9Hz), 4.55(2H, s), 4.07 \sim 3.94(4H, m), 3.53(2H, t, J = 6.6Hz), 3.24(2H, t, J = 4.1Hz)	7.33~7.21(7H, m), 7.08(2H, d, J= 8.4Hz), 6.63(1H, t, J= 8.4Hz), 6.42(1H, d, J= 8.4Hz), 6.18(1H, dd, J= 8.4, 1.2Hz), 4.55(2H, s), 4.05~3.95(4H, m), 3.53(2H, t, J= 6.6Hz), 3.24(2H, t, J= 4.4Hz)
MS (EI) 510 (M+)	MS (EI) 466 (M+)
実施例 1-15	実施例 1-16
'H NMR (ppm)' (300 MHz, CDC13)	'H NMR (ppm) (300 MHz, DMSO-d6)
3.36(t, J = 4.4 Hz, 2H), 3.63(t, J = 6.9 Hz, 2H), 4.09(t, J = 6.9 Hz, 2H), 4.20(t, J = 4.4 Hz, 2H), 4.63(s, 2H), 6.31 \sim 6.47(m, 3H), 6.62(dd, J = 1.6, 8.2 Hz, 1H), 6.73(t, J = 8.2 Hz, 1H), 6.94(dd, J = 1.6, 8.2 Hz, 1H), 7.05(m, 2H), 7.17(m, 1H), 7.26 \sim 7.35(m, 3H), 10.90(brs, 1H)	7.29 \sim 7.15(5H, m), 7.04(2H, d, J = 8.1Hz), 6.96(2H, d, J = 8.1Hz), 6.62(1H, t, J = 8.4Hz), 6.41(1H, d, J = 8.4Hz), 6.18(1H, dd, J = 8.4, 1.2Hz), 4.55(2H, s), 4.04(2H, t, J = 4.1Hz), 3.96(2H, t, J = 6.9Hz), 3.52(1H, t, J = 6.9Hz), 3.26(2H, t, J = 4.1Hz), 2.21(3H, s)
MS (EI) 448 (M+)	MS (EI) · 446 (M+)
	MS (E1) · 446 (M+)

<u> </u>	
実施例 1−17	実施例 1-18
'H NMR (ppm) (300 MHz, CDCl3) 2.25(s, 3H), 3.33(brs, 2H), 3.63(t, J = 6.9 Hz, 2H), 4.08(t, J = 6.9 Hz, 2H), 4.16(brs, 2H), 4.60(s, 2H), 6.32(dd, J = 1.1, 8.2 Hz, 1H), 6.53(brd, J = 8.2 Hz, 1H), 6.74(t, J = 8.2 Hz, 1H), 6.93~6.97(m, 4H), 7.14~7.25(m, 5H)	'H NMR (ppm) (300 MHz, CDCl3) 2.22(s, 3H), 3.36(t, J = 4.4 Hz, 2H), 3.64(t, J = 6.9 Hz, 2H), 4.10(t, J = 6.9 Hz, 2H), 4.19(t; J = 4.4 Hz, 2H), 4.62(s, 2H), 6.34(dd, J = 1.1, 8.2 Hz, 1H), 6.54(brd, J = 8.2 Hz, 1H), 6.75(t, J = 8.2 Hz, 1H), 6.91~7.07(m, 5H), 7.12~7.24(m, 4H)
MS (EI) 446 ·(M+) 実施例 1-19	MS (EI) 446 (M+) 実施例 1-20
'H NMR (ppm) (300 MHz, CDCl3) 3.34(t, J = 4.4 Hz, 2H), 3.63(t, J = 7.0 Hz, 2H), 4.10(t, J = 7.0 Hz, 2H), 4.19(t, J = 4.4 Hz, 2H), 4.62(s, 2H), 6.35(dd, J = 1.1, 8.2 Hz, 1H), 6.52(brd, J = 8.2 Hz, 1H), 6.76(t, J = 8.2 Hz, 1H), 6.95(m, 2H), 7.07(d, J = 5.3 Hz, 2H), 7.19 \sim 7.25(m, 4H), 7.33(m, 1H)	'H NMR (ppm) (300 MHz, CDCl3) 3.33(t, J = 4.4 Hz, 2H), 3.63(t, J = 6.9 Hz, 2H), 4.09(t, J = 6.9 Hz, 2H), 4.18(t, J = 4.4 Hz, 2H), 4.62(s, 2H), 6.23(dd, J = 1.1, 8.2 Hz, 1H), 6.52(dd, J = 1.1, 8.2 Hz, 1H), 6.75(t, J = 8.2 Hz, 1H), 6.94(m, 2H), 7.11 \sim 7.25(m, 7H)
MS (EI) 466 (M+) 実施例 1-21 'H NMR (ppm) (300 MHz, CDCl3)	MS (EI) 466 (M+) 実施例 1-22
3.33(t, $J = 4.4$ Hz, 2H), 3.64(t, $J = 7.1$ Hz, 2H), 4.12(t, $J = 7.1$ Hz, 2H), 4.18(t, $J = 4.4$ Hz, 2H), 4.62(s, 2H), 6.34(d, $J = 8.2$ Hz, 1H), 6.51(d, $J = 8.2$ Hz, 1H), 6.75(t, $J = 8.2$ Hz, 1H), 6.93(m, 2H), 7.22(m, 3H), 7.35(d, $J = 8.4$ Hz, 2H), 7.46(d, $J = 8.4$ Hz, 2H)	'H NMR (ppm) (300 MHz, CDCl3) 3.35(t, J=4.1 Hz, 2H), 3.66(t, J=6.9 Hz, 2H), 4.14(t, J=6.9 Hz, 2H), 4.19(t, J=4.1 Hz, 2H), 4.63(s, 2H), 6.35(brd, J=8.2 Hz, 1H), 6.52(brd, J=8.2 Hz, 1H), 6.76(t, J=8.2 Hz, 1H), 6.94(m, 2H), 7.22(m, 3H), 7.42(d, J=8.8 Hz, 2H), 8.02(d, J=8.8 Hz, 2H)
MS (EI) 457 (M+). 実施例 1-23	MS (EI) 477 (M+) 実施例 1-24
'H NMR (ppm) (300 MHz, DMSO-d6) 2.85(s, 6H), 3.24(t, J= 4.1 Hz, 2H), 3.49(t, J= 7.4 Hz, 2H), 3.94(t, J= 7.4 Hz, 2H), 4.01(m, 2H), 4.53(s, 2H), 6.16(dd, J= 1.1, 8.2 Hz, 1H), 6.39(dd, J= 1.1, 8.2 Hz, 1H), 6.44(d, J= 9.1 Hz, 1H), 6.58(t, J= 8.2 Hz, 1H), 7.03 ~7.19(m, 5H), 7.25(t, J= 7.5 Hz, 2H)	'H NMR (ppm) (300 MHz, DMSO-d6) 7.79~7.72(2H, m), 7.34~7.18(5H, m), 7.18~7.10(2H, m), 6.63(1H, t, J= 8.4Hz), 6.42(1H, d, J= 8.4Hz), 6.18(1H, dd, J= 8.4, 1.2Hz), 4.54(2H, s), 4.10~3.96(4H, m), 3.55(2H, t, J= 6.8Hz), 3.24(2H, t, J= 4.4Hz)
MS (EI) 475 (M+)	MS (EI) 476 (M+) ·

実施例 1-25	実施例 1-26
'H NMR (ppm) (300 MHz, DMSO-d6)	'H NMR (ppm) (200 MJ- cp c)
10.12(1H, s), $7.97 \sim 7.90(2H, m)$, $7.70 \sim 7.57(2H, m)$, $7.61 \sim 7.47(3H, m)$, $6.96 \sim 6.60(2H, m)$, $6.66(1H, t, J = 8.3Hz)$, $6.47(1H, dd, J = 8.3, 1.2Hz)$, $6.20(1H, dd, J = 8.3, 1.2Hz)$, $4.55(2H, s)$, $4.17 \sim 4.10(4H, m)$, $3.66(2H, t, J = 5.7Hz)$, $3.47(2H, t, J = 4.2Hz)$	3.41(t, $J = 4.1$ Hz, 2H), 3.64(t, $J = 7.1$ Hz, 2H), 4.12(t, $J = 7.1$ Hz
MS (EI) 448 (M+)	MS (EI) 501 (M+)
実施例 1-27	実施例 1-28
'H NMR (ppm) (300 MHz, DMSO-d6)	'H NMR (ppm) (300 MHz, DMSO-d6)
7.27~7.15(5H, m), 6.89(2H, d, J = 9.0Hz), 6.62(1H, t, J = 8.1Hz), 6.53(2H, d, J = 9.0Hz), 6.18(1H, d, J = 8.1Hz), 4.55(2H, s), 4.08(2H, t, J = 3.6Hz), 3.90(2H, t, J = 6.6Hz), 3.51(2H, t, J = 6.6Hz), 3.35~3.25(2H, m), 2.83(6H, s)	7.13(2H, d, J = 8.4Hz), 7.04(2H, d, J = 8.4Hz), 7.01(2H, d, J = 8.4Hz), 6.95(2H, d, J = 8.4Hz), 6.61(1 H, t, J = 8.1Hz), 6.41(1H, d, J = 8.1Hz), 6.18(1H, dd, J = 8.1, 0.9Hz), 4.54(2H, s), 4.06~4.00(2H, m), 3.94 (2H, t, J = 6.6Hz), 3.50(2H, t, J = 6.6Hz), 3.26(2H, t, J = 4.2Hz), 2.22(3H, s), 2.21(3H, s)
MS (EI) 475 (M+)	MS (EI) 460 (M+)
実施例 1-29	実施例 1-30
'H NMR (ppm) (300 MHz, DMSO-d6) 7.32 \sim 7.22(4H, m), 7.06(2H, d, J = 8.1Hz), 6.98(2H, d, J = 8.1Hz), 6.62(1H, t, J = 8.4Hz), 6.45 \sim 6.37(1H, m), 6.22 \sim 6.15(1H, m), 4.55(2H, s), 4.06 \sim 4.01(2H, m), 3.96(2H, t, J = 7.1Hz), 3.51(2H, t, J = 7.1Hz), 3.30 \sim 3.23(2H, m), 2.23(3H, s)	'H NMR (ppm) (300 MHz, DMSO-d6) 7.36~7.28(2H, m), 7.22(1H, t, J=7.7Hz), 7.17~7.10(1H, m), 7.07(2H, d, J=8.1Hz), 7.01(2H, d, J=8.1Hz), 6.62(1H, t, J=8.1Hz), 6.45~6.37(1H, m), 6.22~6.15(1H, m), 4.55(2H, s), 4.08~4.02(2H, m), 3.95(2H, t, J=6.6Hz), 3.51(2H, t, J=6.6Hz), 3.28~3.23(2H, m), 2.23(3H, s)
MS (EI) 480 (M+)	MS (EI) 480 (M+)
実施例 1-31	実施例 1-32
'H NMR (ppm) (300 MHz, CDCl3 ')	'H NMR (ppm) (300 MHz, CDCl3)
$3.36\sim3.38(2H, m)$, $3.62(2H, t, J=7.1Hz)$, $3.74(3H, s)$, $4.05(2H, t, J=7.1Hz)$, $4.21(2H, t, J=4.1Hz)$, $4.63(2H, s)$, $6.29\sim6.33(1H, m)$, $6.51\sim6.53(3H, m)$, $6.87(2H, d, J=8.7Hz)$, $7.14\sim7.28(5H, m)$	3.36(t; $J = 4.4$ Hz, 2H), 3.67(t, $J = 6.7$ Hz, 2H), 4.12(t, $J = 6.7$ Hz, 2H), 4.18(t, $J = 4.4$ Hz, 2H), 4.63(s, 2H), 6.35(dd, $J = 1.2$, 8.1 Hz, 1H), 6.53(d, $J = 7.4$ Hz, 1H), 6.73~ 6.80(m; 2H), 6.85~6.90(m, 1H), 6.98~7.04(m, 1H), 7.16~7.23(m, 3H), 7.24~7.32(m, 3H)
MS (EI) 462 (M+)	MS (EI) 516 (M+)

	•
実施例 1-33	実施例 1-34
'H NMR (ppm) (300 MHz, CDCl3)	'H NMR (ppm) (300 MHz, CDCl3)
3.35(t, <i>J</i> = 4.4 Hz, 2H), 3.68(t, <i>J</i> = 6.7 Hz, 2H), 4.08~ 4.19(m, 4H), 4.63(s, 2H), 6.34(dd, <i>J</i> = 1.2, 8.1 Hz, 1H),	3.36(t, $J = 4.4$ Hz, 2H), 3.66(t, $J = 6.7$ Hz, 2H), 4.10~ 4.20(m, 4H), 4.63(s, 2H), 6.34(dd, $J = 1.1$, 8.0 Hz, 1H),
6.51(d, J=7.4 Hz, 1H), 6.76(t, J=8.4 Hz, 1H), 6.99	6.49(d, $J = 7.4$ Hz, 1H), 6.75(t, $J = 8.2$ Hz, 1H), 6.97(d, $J = 7.4$ Hz, 1H), 6.97(d, $J = 8.2$ Hz
7.04(m, 1H), 7.15 \sim 7.30(m, 7H), 7.43(d, J = 7.7Hz, 1H)	8.5Hz, 2H),7.15~7.24(m, 2H), 7.24~7.33(m, 3H)
·	7.47(d, $J = 8.2$ Hz, 2H)
MS (EI) 532 (M+)	MS (EI) 532 (M+)
実施例 1-35	実施例 1-36
'H NMR (ppm) (300 MHz, DMSO-d6)	'H NMR (ppm) (300 MHz, CDCl3)
$3.25-3.36$ (m, 2H), $3.46-3.54$ (m, 2H), $3.89-3.98$ (m, 2H), $4.03\sim4.10$ (m, 2H), 4.54 (s, 2H), 6.18 (d, $J=7.1$ Hz, 1H),	3.36(t, J = 3.7 Hz, 2H), 3.65(t, J = 6.6 Hz, 2H), 4.10(t, J = 1.10)
6.40(d, J = 8.0 Hz, 1H), 6.46-6.65(m, 4H), 7.01(t, J = 8.1)	6.6 Hz, 2H), 4.20(t, $J = 3.7$ Hz, 2H), 4.64(s, 2H), 6.35(d, $J = 8.0$ Hz, 1H), 6.54(d, $J = 8.5$ Hz, 1H), 6.73 \sim 6.81(m, 2H),
Hz, 1H), 7.19-7.32(m, 5H), 9.46-9.62(m, 1H)	6.98(s, 1H), 7.05~7.17(m, 2H), 7.17~7.24(m, 2H), 7.24 ~7.33(m, 3H)
·	-7.55uii, 5ri/
MS (EI) 448 (M+)	MS (EI) 466 (M+)
実施例 1-37	実施例 1-38
'H NMR (ppm) (300 MHz, CDCl3)	'H NMR (ppm) (300 MHz, CDCl3)
2.68(s, 3H),3.36(t, $J = 4.1$ Hz, 2H), 3.72(t, $J = 6.3$ Hz, 2H), 4.11 \sim 4.21(m, 4H), 4.65(s, 2H), 6.34(dd, $J = 1.1$, 8.2 Hz,	3.37(t, J = 4.4 Hz, 2H), 3.67(t, J = 6.7 Hz, 2H), 4.11(t, J = 1.11) 3.37(t, J = 4.4 Hz, 2H), 4.11(t, J = 1.11) 3.37(t, J = 4.4 Hz, 2H), 4.11(t, J = 1.11) 3.37(t, J = 4.4 Hz, 2H), 4.11(t, J = 1.11) 3.37(t, J = 4.4 Hz, 2H), 4.11(t, J = 1.11) 3.37(t, J = 4.4 Hz, 2H), 4.11(t, J = 1.11) 3.37(t, J = 4.4 Hz, 2H), 4.11(t, J = 1.11) 3.37(t, J = 4.4 Hz, 2H), 4.11(t, J = 1.11) 3.37(t, J = 4.4 Hz, 2H), 4.11(t, J = 1.11) 3.37(t, J = 4.4 Hz, 2H), 4.11(t, J = 1.11) 3.37(t, J = 4.4 Hz, 2H), 4.11(t, J = 1.11) 3.37(t, J = 4.4 Hz, 2H), 4.11(t, J = 1.11) 3.37(t, J = 4.4 Hz, 2H), 4.11(t, J = 1.11) 3.37(t, J = 4.4 Hz, 2H), 4.11(t, J = 1.11) 3.37(t, J = 4.4 Hz, 2H), 4.11(t, J = 1.11) 3.37(t, J = 4.4 Hz, 2H), 4.11(t, J = 4.4
1H), 6.53 (d, $J = 8.5$ Hz, 1H), 6.77 (t, $J = 8.4$ Hz, 1H), 7.16	6.7 Hz, 2H), 4.21(t, J = 4.4 Hz, 2H), 4.64(s, 2H), 6.36(dd, J = 1.2, 8.1 Hz, 1H), 6.50(d, J = 8.2Hz, 1H), 6.77(t, J = 8.2
\sim 7.27(m, 6H), 7.37(t, J = 1.8 Hz, 1H), 7.42(t, J = 8.0 Hz, 1H), 7.68(d, J = 7.7 Hz, 1H)	Hz, 1H), 6.97(dd, J = 2.3, 8.7 Hz, 1H), 7.21~7.34(m, 7H)
223, 1.00(2, 5 1.1 112, 111)	
·	
	·
MS (EI) 510 (M+)	MS (EI) 534 (M+)
奥施例 1-39	実施例 1-40
'H. NMR (ppm) (300 MHz, CDCl3)	'H NMR (ppm) (300 MHz, CDCl3)
1.25(s, 9H), 3.39(t, J = 4.5 Hz, 2H), 3.64(t, J = 6.9 Hz,	2.43(s, 3H), 3.37~3.40(m, 2H), 3.64(t, J= 7.1 Hz, 2H).
2H), 4.09(t, J= 7.0 Hz, 2H), 4.21(t, J= 4.4 Hz, 2H), 4.63(s, 2H), 6.34(dd, J= 1.2, 8.1 Hz, 1H), 6.52(d, J= 8.5	4.08(t, J= 7.0 Hz, 2H), 4.64(s, 2H), 6.35(dd, J= 1.4, 8.2 Hz, 1H), 6.54(d, J= 8.0 Hz, 1H), 6.76(dd, J= 8.4, 8.4 Hz,
Hz, 1H), $6.74(dd, J = 8.2, 8.2 Hz, 1H)$, $6.87(d, J = 8.8 Hz)$	1H), 6.86(d, J = 8.8 Hz, 2H), 7.06(d, J = 8.5 Hz, 2H), 7.15
2H), 7.13~7.30(m, 7H)	~7.30(m, 5H)
MS (EI) 488 (M+)	MS (BI) 470 (asi
(24) -200 (141 /	MS (EI) 478 (M+)

表22	
実施例 1-41	実施例 1-42
'H NMR (ppm) (300 MHz, CDCl3) 2.19(s, 3H), 3.36 \sim 3.39(m, 2H), 3.64(t, J = 7.0 Hz, 2H), 4.09(t, J = 6.9 Hz, 2H), 4.18 \sim 4.21(m, 2H), 4.62(m, 2H), 6.34(dd, J = 1.2, 8.1 Hz, 1H), 6.54(d, J = 8.0Hz, 1H), 6.71 \sim 6.78(m, 3H), 6.95(d, J = 7.4 Hz, 1H), 7.06(dd, J = 7.8, 7.8 Hz, 1H), 7.16 \sim 7.29(m, 5H)	'H NMR (ppm) (300 MHz, CDCl3) 3.36(t, J= 4.5 Hz, 2H), 3.68(t, J= 6.9 Hz, 2H), 4.13~ 4.19(m, 4H), 4.63(s, 2H), 6.36(d, J= 8.0 Hz, 1H), 6.52(d, J= 8.5 Hz, 1H), 6.77(dd, J= 8.5, 8.5 Hz, 1H), 7.05(d, J= 8.5 Hz, 1H), 7.16~7.31(m, 7H), 7.39(d, J= 8.2 Hz, 1H)
MS (EI) 446 (M+)	MS (EI) 500 (M+)
実施例 1−43	実施例 1-44·
'H NMR (ppm) (300 MHz, CDC13)	'H NMR (ppm) (300 MHz, CDCl3.)
2.15(s, 3H), $\dot{3}$.36(t, J = 4.5 Hz, 2H), 3.68(t, J = 6.9 Hz, 2H), 4.09 \sim 4.17(m, 4H), 4.63(s, 2H), 6.34(d, J = 8.2 Hz, 1H), 6.56(d, J = 8.2 Hz, 1H), 6.67(br, 1H), 6.72(brd, 1H), 6.78(dd, J = 8.2, 8.2 Hz, 1H), 6.99(d, J = 7.4 Hz, 1H), 7.10(dd, J = 8.0, 8.0 Hz, 1H), 7.16 \sim 7.29(m, 5H)	3.37(t, $J = 4.7$ Hz, 2H), 3.71(t, $J = 6.3$ Hz, 2H), 4.15(t, $J = 4.7$ Hz, 2H), 4.18(dd, $J = 6.3$ Hz, 2H), 4.53(s, 2H), 6.30(d, $J = 8.2$ Hz, 1H), 6.57(d, $J = 8.2$ Hz, 1H), 6.75(dd, $J = 8.2$, 8.2 Hz, 1H), 6.95(d, $J = 7.4$ Hz, 1H), 7.06(br, 1H), 7.17~7.37(m, 12H)
MS (EI) 478 (M+) 実施例 1-45	MS (EI) 508 (M+) 実施例 1-46
'H NMR (ppm) (300 MHz, CDCl3)	'H NMR (ppm) (300 MHz, CDCl3)
2.17(s, 3H), 3.38 \sim 3.43(m, 2H), 3.59 \sim 3.72(m, 3H), 4.27(t, J = 4.3 Hz, 2H), 4.33(br, 1H), 4.64(s, 2H), 6.34(dd, J = 1.2, 8.1 Hz, 1H), 6.57(dd, J = 1.4, 8.2 Hz, 1H), 6.75(dd, J = 8.2, 8.2 Hz, 1H), 7.01(d, J = 7.1 Hz, 1H), 7.02 \sim 7.28(m, 8H)	3.53 \sim 3.56(m, 2H), 3.78(t, J = 5.9 Hz, 2H), 4.31 \sim 4.34(m, 2H), 4.61(t, J = 5.8 Hz, 2H), 4.65(s, 2H), 6.36(dd, J = 1.4, 8.2 Hz, 1H), 6.44(d, J = 8.2 Hz, 1H), 6.61(dd, J = 1.4, 8.5 Hz, 1H), 6.79(dd, J = 8.2, 8.2 Hz, 1H), 7.05(dd, J = 7.6, 7.6 Hz, 1H), 7.20 \sim 7.36(m, 6H), 7.62(brd, 1H)
MS (EI) 446 (M+)	MS (EI) 500 (M+)
実施例.1-47	実施例 1-48
'H NMR (ppm) (300 MHz, CDCl3)	'H NMR (ppm) (300 MHz, CDCl3)
1.18(6H, d, J = 6.8Hz), 2.82(1H, qq, J = 6.8, 6.8Hz), 3.37(2H, t, J = 4.4Hz), 3.63(2H, t, J = 7.1Hz), 4.08(2H, t, J = 7.1Hz), 4.20(2H, t, J = 4.4Hz), 4.63(2H, s), 6.32(1H, dd, J = 1.1, 8.2Hz), 6.51(1H, d, J = 8.2Hz), 6.72(1H, t, J = 8.2Hz), 6.87(2H, d, J = 8.2Hz), 7.05(2H, d, J = 8.2Hz), 7.13 \sim 7.29(5H, m)	3.31~3.82(5H, m), 4.20~4.26(3H, m), 4.63(2H, s), 6.33(1H, d, J = 8.2Hz), 6.60(1H, d, J = 8.2Hz), 6.76(1H, t, J = 8.2Hz), 6.98~7.37(9H, m)
MS (EI) 474 (M+)	MS (EI) 466 (M+)

20 2 3	
実施例 1-49	実施例 1-50
'H NMR (ppm) (300 MHz, CDC13)	'H NMR (ppm) (300 MHz, CDCl3)
3.35 \sim 3.81(5H, m), 4.17 \sim 4.24(3H, m), 4.64(2H, s), 6.34(1H, d, J = 8.2Hz), 6.60(1H, d, J = 8.2Hz), 6.77(1H, t, J = 8.2Hz), 6.93(1H, d, J = 8.2Hz), 7.09(1H, d, J = 8.2Hz), 7.16 \sim 7.38(7H, m)	2.44(s, 3H), 3.33~3.47(m, 2H), 3.63~3.72(m, 3H), 4.26(br, 3H), 4.63(s, 2H), 6.34(d, <i>J</i> = 8.5 Hz, 1H), 6.63(d, <i>J</i> = 8.5 Hz, 1H), 6.76(dd, <i>J</i> = 8.5, 8.5 Hz, 1H), 6.84(d, <i>J</i> = 8.0 Hz, 1H), 6.94(dd, <i>J</i> = 8.0, 8.0 Hz, 1H), 7.12~7.37(m, 7H)
MS (EI) 500 (M+)	MS (PI) 470 (MI)
実施例 1-51	MS (EI) 478 (M+) 実施例 1-52 .
'H NMR (ppm) (300 MHz, CDCl3)	
3.30~3.39(m, 3H), 3.49~3.58(m, 1H), 3.74~3.84(m, 1H), 4.20~4.32(m, 3H), 4.64(s, 2H), 6.33(dd, J= 1.1, 8.2 Hz, 1H), 6.58(brd,1H), 6.76(dd, J= 8.2, 8.2 Hz, 1H), 7.04~7.50(m, 14H)	'H NMR (ppm) (300 MHz, CDCl3) 2.54(s, 3H), 3.33(t, J= 4.1 Hz, 2H), 3.67(t, J= 6.7 Hz, 2H), 4.08~4.19(m, 4H), 4.64(s, 2H), 6.33(d, J= 8.2 Hz, 1H), 6.52(d, J= 8.2Hz, 1H), 6.75(t, J= 8.2 Hz, 1H), 6.99(dd, J= 8.5 Hz, 2H), 7.15~7.23(m, 2H), 7.24~7.32(m, 3H), 7.77(d, J= 8.5 Hz, 2H)
MS (EI) 508 (M+) 実施例 1-53	MS (EI) 474 (M+) 実施例 1-54
'H NMR (ppm) (300 MHz, CDCl3)	'H NMR (ppm) (300 MHz, CDCl3) · .
3.30 \sim 3.46(m, 2H), 3.50 \sim 3.65(m, 2H), 3.80 \sim 4.00(m, 2H), 4.17 \sim 4.28(m, 2H), 4.64(s, 2H), 6.34(d, J = 8.2 Hz, 1H), 6.48 \sim 6.62(m, 1H), 6.75(t, J = 8.1 Hz, 1H), 7.09(d, J = 7.7 Hz, 1H), 7.15 \sim 7.37(m, 6H), 7.46(t, J = 7.4 Hz, 1H), 7.60(d, J = 7.1 Hz, 1H)	3.31 \sim 3.37(m, 2H), 3.71(t, J = 6.0 Hz, 2H), 4.13 \sim 4.21(m, 4H), 4.64(s, 2H), 6.36(d, J = 8.2 Hz, 1H), 6.50(d, J = 8.2 Hz, 1H), 6.76(t, J = 8.2 Hz, 1H), 7.17 \sim 7.35(m, 6H), 7.46(t, J = 7.8 Hz, 1H), 7.60(s, 1H), 7.78(d, J = 7.4 Hz, 1H)
MS (EI) 457 (M+)	MS (EI) 564 (M+)
実施例 1-55	実施例 1-56
'H NMR (ppm) (300 MHz, CDCl3)	'H NMR (ppm) (300 MHz, CDCl3)
3.33~3.49(m, 2H), 3.50~3.61(m, 2H), 3.83(s, 3H), 3.73 ~3.97(m, 2H), 4.18~4.33(m, 2H), 4.64(s, 2H), 6.34(d, J= 8.0 Hz, 1H), 6.60(d, J= 8.0 Hz, 1H), 6.76(t, J= 8.4 Hz, 1H), 7.07~7.32(m, 7H), 7.44(t, J= 6.9 Hz, 1H), 7.77(d, J= 6.6Hz, 1H)	3.36(t, J = 4.4 Hz, 2H), 3.69(t, J = 6.9 Hz, 1H), 3.88(s, 3H), 4.14(t, J = 6.9 Hz, 2H), 4.20(t, J = 4.4Hz, 2H), 4.64(s, 2H), 6.34(dd, J = 1.4,8.2 Hz, 1H), 6.55(d, J = 8.5 Hz, 1H), 6.76(t, J = 8.4 Hz, 1H), 6.98(d, J = 8.0 Hz, 1H), 7.13 \sim 7.29(m, 6H), 7.73(t, J = 1.8 Hz, 1H), 7.81(dt, J = 1.4,8.0 Hz, 1H)
MS (EI) 490 (M+)	MS (EI) 490 (M+)

·表24

表 2 4	
実施例 1-57	· 実施例 1-58
'H NMR (ppm) (300 MHz, CDCl3) 3.30~3.46(m, 2H), 3.54~3.83(m, 2H), 4.17~4.41(m, 4H), 4.68(s, 2H), 6.29(d, J = 8.2 Hz, 1H), 6.55(d, J = 7.7 Hz, 1H), 6.72(t, J = 7.7 Hz, 1H), 7.06~7.38(m, 6H), 7.47(t, J = 7.1 Hz, 1H), 7.93(d, J = 8.5 Hz, 1H)	"H NMR (ppm) (300 MHz, DMSO-d6) 3.23~3.37(m, 2H), 3.46~3.57(m, 2H), 3.96~4.08(m, 4H), 4.53(s, 2H), 6.17(d, J=7.1 Hz, 1H), 6.34~6.42(m, 1H), 6.60(d, J=8.4 Hz, 1H), 7.17~7.37(m, 7H), 7.65~7.73(m, 2H)
MS (EI) 476 (M+)	
実施例 1-59	MS (EI) 476 (M+) 実施例 1-60
'H NMR (ppm) (300 MHz, CDCl3) 3.36~3.39(m, 2H), 3.56(s, 3H), 3.67(t, J = 6.8 Hz, 2H), 4.11(t, J = 6.8 Hz, 2H), 4.18~4.21(m, 2H), 4.64(s, 2H), 6.32(dd, J = 1.2, 8.1 Hz, 1H), 6.44(dd, J = 2.2, 2.2 Hz, 1H), 6.52~6.56(m, 2H), 6.68(ddd, J = 0.8, 2.5, 8.5 Hz, 1H), 6.76(dd, J = 8.2, 8.2 Hz, 1H), 7.09(dd, J = 8.1, 8.1 Hz, 1H), 7.15~7.32(m, 5H)	"H NMR (ppm) (300 MHz, CDCl3) 3.36~3.58(m, 3H), 3.67(s, 3H), 3.70~3.78(m, 1H), 3.93 ~4.00(m, 2H), 4.25(t, J = 4.4 Hz, 2H), 4.63(s, 2H), 6.32(dd, 1H), 6.55(d, J = 8.8 Hz, 1H), 6.71~6.84(m, 3H), 6.99(brd, 1H), 7.10~7.30(m, 6H)
MS (EI) 462 (M+) 実施例 1-61 'H NMR (ppm) (300 MHz, CDCl3) 2.38(s, 3H), 3.34(t, J= 4.4 Hz, 2H), 3.71(t, J= 6.5 Hz, 2H), 4.13~4.17(m, 4H), 4.64(s, 2H), 6.33(dd, J= 1.2, 8.1 Hz, 1H), 6.55(brd, 1H), 6.77(dd, J= 8.2, 8.2 Hz, 1H),	MS (EI) 462 (M+) 実施例 1-62 'H NMR (ppm) (300 MHz, CDCl3) 2.16(s, 6H), 2.24(s, 3H), 3.44(t, J = 4.4 Hz, 2H), 3.63~ 3.69(m, 2H), 3.83~3.89(m, 2H), 4.29(t, J = 4.5 Hz, 2H), 4.63(s, 2H), 6.34(dd, J = 1.3, 8.1 Hz, 1H), 6.67(dd, J = 1.5,
7.06(brd, 1H), 7.14~7.28(m, 6H), 7.52(dd, 1H), 7.69(d, J=7.7 Hz, 1H) MS (EI) 474 (M+) 実施例 1-63	8.5 Hz, 1H), 6.78(dd, J= 8.2, 8.2 Hz, 1H), 6.82(s, 2H), 7.12~7.29(m, 5H) MS (EI) 474 (M+)
	実施例 1-64
TH NMR (ppm) (300 MHz, CDCl3) 3.40(br, 2H), 3.54(br, 1H), 3.75(br, 1H), 3.98(t, $J = 7.0$ Hz, 2H), 4.25(t, $J = 4.2$ Hz, 2H), 4.64(s, 2H), 6.34(d, $J = 8.2$ Hz, 1H), 6.57(br, 1H), 6.77(dd, $J = 8.1$, 8.1 Hz, 1H), 6.91(dd, $J = 8.1$, 8.1 Hz, 1H), 6.91(dd, $J = 8.1$, 8.1 Hz, 1H), 7.05(dd, $J = 2.1$, 10.0 Hz, 1H), 7.18 \sim 7.30(m, 5H)	'H NMR (ppm) (300 MHz, CDCl3) 3.43(t, J = 4.4 Hz, 2H), 3.60~3.65(m, 2H), 3.89~3.94(m, 2H), 4.28(t, J = 4.4 Hz, 2H), 4.64(s, 2H), 6.34(d, J = 7.9 Hz, 1H), 6.59(d, J = 8.2 Hz, 1H), 6.78(dd, J = 8.3, 8.3 Hz, 1H), 7.04(brd, 2H), 7.21~7.35(m, 5H)
MS (EI) 484 (M+)	
	MS (EI) 546 (M+)

実施例 1-65	実施例 1-66		
"H NMR (ppm) (300 MHz, CDCl3) 2.15(s, 3H), 3.38~3.42(m, 2H), 3.55~3.73(m, 3H), 4.27 ~4.32(m, 3H), 4.64(s, 2H), 6.34(d, J = 8.2 Hz, 1H), 6.56(d, J = 8.8 Hz, 1H), 9.76(dd, J = 8.2, 8.2 Hz, 1H), 6.88(d, J = 8.2 Hz, 1H), 7.15~7.30(m, 7H)	H NMR (ppm) (300 MHz, CDCl3) 2.12(s, 3H), 2.26(s, 3H), 3.39~3.42(m, 2H), 3.52~ 3.72(m, 3H), 4.26~4.35(m, 3H), 4.64(s, 2H), 6.33(dd, 1.2, 8.2 Hz, 1H), 6.57(brd, 1H), 6.75(dd, J= 8.2, 8.2 Hz, 1H), 6.88~6.93(m, 3H), 7.12~7.28(m, 5H)		
MS (EI) 524 (M+) 実施例 1-67 H NMR (ppm) (300 MHz, CDCl3) 2.28(s, 3H), 3.40(br, 2H), 3.53(br, 1H), 3.75(br, 1H), 3.98(t, J= 7.0 Hz, 2H), 4.24(br, 2H), 4.63(s, 2H), 6.33(d, J= 8.2 Hz, 1H), 6.58(brd, 1H), 6.73~6.86(m, 4H), 7.15~7.31(m, 5H)	MS (EI) 460 (M+) 実施例 1-68 'H NMR (ppm) (300 MHz, CDCl3) 3.30~3.84(m, 5H), 4.17~4.28(m, 3H), 4.65(s, 2H), 6.34(d, J= 7.9 Hz, 1H), 6.60(d, J= 8.2 Hz, 1H), 6.78(dd, J= 8.2, 8.2 Hz, 1H), 6.86(d, J= 8.5 Hz, 1H), 7.16~ 7.30(m, 6H), 7.53(brd, 1H)		
MS (EI) 464 (M+) 実施例 1-69 'H NMR (ppm) (300 MHz, CDCl3) 3.38(t, J= 4.2 Hz, 2H), 3.66(t, J= 6.6 Hz, 2H), 3.86(s, 3H), 4.04(t, J= 6.9 Hz, 2H), 4.24(t, J= 4.2 Hz, 2H), 4.65(s, 2H), 6.33(dd, 1H), 6.55(br, 1H), 6.59(d, J= 9.1 Hz, 1H), 6.76(dd, J= 8.3, 8.3 Hz, 1H), 7.14~7.28(m, 6H), 7.76(br, 1H)	MS (EI) 544 (M+) 実施例 1-70 'H NMR (ppm) (300 MHz, CDCl3) 3.40(br, 2H), 3.61~3.66(m, 2H), 3.92~3.97(m, 2H), 4.25(br, 2H), 4.60(s, 2H), 6.32(d, J= 7.6 Hz, 1H), 6.58(d, J= 8.2 Hz, 1H), 6.75(dd, J= 8.3, 8.3 Hz, 1H), 6.81~ 6.86(m, 2H), 7.13~7.36(m, 6H)		
MS (EI) 463 (M+)	MS (EI) 468 (M+)		

5

(参考例2) N-アルキル化反応:

得られたN-アルキル化体の「H NMR データを以下に示す。

¹H NMR (300MHz, CDCl₃) δ 3.30~3.40 (m, 4H), 3.48 (t, J=2.9Hz, 2H),

10 3.80 (s, 3H), 4.28 (dd, J=2.0, 2.0Hz, 2H), 4.68 (s, 2H), 6.27 (dd, J=8.2, 1.2Hz, 1H), 6.43 (dd, J=8.2, 1.2Hz, 1H), 6.50 (d, J=8.9Hz, 2H), 6.73 (t, J=8.2Hz, 2H), 7.26 (d, J=8.9Hz, 2H)

(実施例2) アミド化反応:

参考例2で得られたN-アルキル化体(0.92mmol)及びトリエチルアミン

- 15 (1.8mmol)の THF(6ml)溶液に、3-フルオロベンゾイルクロリド(1.3mmol)を加え、室温で 3 時間攪拌した。反応混合物を水にあけ、続いて酢酸エチルで抽出した。有機層を水、飽和食塩水で洗った後、 $MgSO_4$ 上で乾燥後、濃縮した。残渣を AcOEt/n-hexane より再結晶して、目的物のメチルエステル体を得た。
- 20 続いて、メチルエステル体のエタノール(5m1)、THF(5m1)溶液に、2.0N 水酸化ナトリウム水溶液(3.0eq)を加え、室温で2 時間撹拌した。溶媒を減圧下留去し、残渣を 1N-HCl 水溶液にあけ、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗った後、 $MgSO_4$ 上で乾燥後、濃縮した。残渣を AcOEt/n-hexane より再結晶して目的物を得た。
- 25 同様の反応、操作で、種々の誘導体を合成した。原料、生成物を表26~29
 に、スペクトルデータを表30~33に示す。

表26

実施例	酸クロリド(原料)	生成物	実施例	酸クロリド(原料)	生成物
2-1	CI	CO ₂ H O N O N Br	2-2	OMe O CI	CO ₂ H O NeO
実施例	酸クロリド(原料)	生成物	実施例	酸クロリド(原料)	生成物
2-3	F ₃ C	CO ₂ H O N O CF ₃	2-4	O CI	CO ₂ H O N N Me
実施例	酸クロリド (原料)	生成物	実施例	酸クロリド (原料)	生成物
2-5	CI Me	CO ₂ H O N Me	2-6	F CI	CO₂H NNNN NBr
実施例	酸クロリド(原料)	生成物	実施例	酸クロリド(原料)	生成物
2-7	CI OCI	CO ₂ H O O CI Br	2-8	CI	CO ₂ H O N O CI

表27

実施例	酸クロリド (原料)	生成物	date m		
	122 - 37 (2014)	主成初	実施例	酸クロリド(原料)	生成物
2-9	F CI	CO ₂ H O N N F	2-10	MeO CI	CO ₂ H O N O O O O O O O O O O O
実施例	酸クロリド(原料)	生成物	実施例	酸クロリド(原料)	生成物
2-11	CF ₃	CO ₂ H N N CF ₃	2-12	MeO CI	CO ₂ H O N O O O O O O O O O O O
実施例	酸クロリド(原料)	生成物	実施例	酸クロリド(原料)	生成物
2-13	CF ₃	CO ₂ H O N N O CF ₃	2-14	F ₃ C CI	CO ₂ H O N O CF ₃
実施例	酸クロリド(原料)	生成物	実施例	酸クロリド (原料)	生成物
2-15	CI CI	CO ₂ H ON ON F	2-16	CIOAc	CO ₂ H O N N Br

実施例	酸クロリド(原料)	生成物	実施例	・ 酸クロリド (原料)	生成物
2-17	CF ₃ O CI	CO ₂ H O N F ₃ C Br	2-18	CI	CO ₂ H N N Br
実施例	酸クロリド (原料)	生成物	実施例	酸クロリド(原料)	生成物
2-19	CI	CO ₂ H O N N Br	2-20	Et	CO ₂ H O N Br Et
実施例	酸クロリド (原料)	生成物	実施例	酸クロリド(原料)	生成物
2-21	NC CI	CO ₂ H O N O CN	2-22	S CI	CO ₂ H O N O S CI
実施例	酸クロリド(原料)	生成物	実施例	酸クロリド(原料)	生成物
2-23 :	Br CI	CO ₂ H O N Br	2-24	NC CI	CO ₂ H O N CN

表29.

実施例	酸クロリド (原料)	生成物	実施例	酸クロリド(原料)	生成物
2-25	CI	CO ₂ H O N Br	2-26	CI.	CO ₂ H O N N N Br
実施例	酸クロリド (原料)	生成物			
2-27	CI	CO ₂ H N N Br			

表30	
実施例 2-1	実施例 2-2
"H NMR (ppm) (300 MHz, CDCl3) 3.36(t, J = 4.4 Hz, 2H), 3.62(t, J = 6.7 Hz, 2H), 4.07(t, J = 6.7 Hz, 2H), 4.22(t, J = 4.4 Hz, 2H), 4.64(s, 2H), 6.34(d, J = 8.2 Hz, 1H), 6.49(d, J = 8.5 Hz, 1H), 6.76(dd, J = 8.2, 8.2 Hz, 1H), 6.82(d, J = 8.2 Hz, 2H), 6.93 \sim 7.21(m, 4H), 7.35(d, J = 8.8 Hz, 2H)	'H NMR (ppm) (300 MHz, CDCl3) 3.37(t, J = 4.0Hz, 2H), 3.60(s, 3H), 3.62(t, J = 6.5 Hz, 2H), 4.07(t, J = 6.5 Hz, 2H), 4.23(t, J = 4.0 Hz, 2H), 4,64(s, 2H), 6.34(d, J = 8.2 Hz, 1H), 6.55(d, J = 7.3 Hz, 1H), 6.63(d, J = 8.5Hz, 1H), 6.73~6.88(m, 4H), 7.14~7.30(m, 4H)
MS (EI) 529 (M+) 実施例 2~3	MS (ESI) 541 ((M+H)+) 実施例 2-4
"H NMR (ppm) (300 MHz, CDCl3) 3.36(t, J = 4.4 Hz, 2H), 3.63(t, J = 6.9 Hz, 2H), 4.09(t, J = 6.6 Hz, 2H), 4.22(t, J = 4.2 Hz, 2H), 4.64(s, 2H), 6.35(d, 1H), 6.50(brd, 1H), 6.76(dd, J = 8.3, 8.3 Hz, 1H), 6.82(d, J = 8.8 Hz, 2H), 7.34~7.38(m, 4H), 7.47(d, J = 8.5 Hz, 2H)	"H NMR (ppm) (300 MHz, CDCl3) 2.28(s, 3H), 3.36~3.39(m, 2H), 3.62(t, J = 7.2 Hz, 2H), 4.06(t, J = 6.9 Hz, 2H), 4.22(t, J = 4.2 Hz, 2H), 4.63(s, 2H), 6.35(d, J = 8.2 Hz, 1H), 6.52(d, J = 7.9 Hz, 1H), 6.76(dd, J = 8.2, 8.2 Hz, 1H), 6.82(d, J = 8.8 Hz, 2H), 6.99(d, J = 8.5 Hz, 2H), 7.16(d, J = 7.9 Hz, 2H), 7.33(d, J = 8.5 Hz, 2H)
MS (ESI) 579 ((M+H)+) 実施例 2-5 'H NMR (ppm) (300 MHz, CDCl3) 2.31(s, 3H), 3.37(m, 2H), 3.61(m, 2H), 4.11(m, 2H), 4.22(t, J=4.2 Hz, 2H), 4.64(s, 2H), 6.34(d, J=8.5 Hz, 1H), 6.53(m, 1H), 6.75~6.82(m, 3H), 6.95(m, 2H), 7.06~ 7.12(m, 2H), 7.26(m, 2H)	MS (ESI) 525 ((M+H)+) 実施例 2-6 'H NMR (ppm) (300 MHz, CDCl3) 3.37(br, 2H), 3.63(t, J= 6.6 Hz, 2H), 4.08(brt, 2H), 4.23(t, J= 4.4 Hz, 2H), 4.64(s, 2H), 6.35(d, 1H), 6.53(d, J= 7.9 Hz, 1H), 6.75~6.87(m, 4H), 7.04(dd, J= 7.3, 7.3 Hz, 1H), 7.21~7.30(m, 4H)
MS (EI) 523 ((M-H)-) 実施例 2-7 "H NMR (ppm) (300 MHz, CDCl3) 3.39(t, J= 4.4 Hz, 2H), 3.64(t, J= 6.4 Hz, 2H), 4.10(t, J= 6.7 Hz, 2H), 4.24(t, J= 4.4 Hz, 2H), 6.36(d, 1H), 6.54(d, J= 8.5 Hz, 1H), 6.78(dd, J= 8.2, 8.2 Hz, 1H), 6.93(d, J= 8.8 Hz, 2H), 7.07~7.22(m, 4H), 7.30(d, J= 8.5 Hz, 2H)	MS (ESI) 529 ((M+H)+) 実施例 2-8 'H NMR (ppm) (300 MHz, CDCl3) 3.36(t, J= 4.7 Hz, 2H), 3.62(t, J= 6.9 Hz, 2H), 4.06(t, J= 6.9 Hz, 2H), 4.22(t, J= 4.2 Hz, 2H), 4.64(s, 2H), 6.35(d, J= 8.2 Hz, 1H), 6.50(d, J= 7.6 Hz, 1H), 6.76(t, J= 8.3 Hz, 1H), 6.81(d, J= 8.8 Hz, 2H), 7.19(d, J= 2.6 Hz, 4H),
MS (ESI) 545 ((M+H)+)	7.35(d, J = 8.8 Hz, 2H) MS (EI) 543 ((M-H)-)

次31	
実施例 2-9	実施例 2-10
'H NMR (ppm) (300 MHz, CDCl3) 3.35(t, J = 4.2 Hz, 2H), 3.61(t, J = 7.0 Hz, 2H), 4.06(t, J = 7.0 Hz, 2H), 4.22(t, J = 4.4 Hz, 2H), 4.64(s, 2H), 6.36(dd, J = 1.2, 8.2 Hz, 1H), 6.49(d, J = 7.6 Hz, 1H), 6.71 \sim 6.79(m, 4H), 6.83(d, J = 8.8 Hz, 2H), 7.39(dd, J = 1.8, 2.1 Hz, 2H)	'H NMR (ppm) (300 MHz, CDCl3) 3.37(t, J = 4.1 Hz, 2H), 3.62(t, J = 6.7 Hz, 2H), 3.77(s, 3H), 4.05(t, J = 6.7 Hz, 2H), 4.22(t, J = 4.1 Hz, 2H), 4.64(s, 2H),
MS (EI) 545 ((M-H)-) 実施例 2-11	MS (ESI) 541 ((M+H)+)
	実施例 2-12
'H NMR (ppm) (300 MHz, CDCl3) 3.37(t, $J = 4.3$ Hz, 2H), 3.64(t, $J = 6.5$ Hz, 2H), 4.09(t, $J = 6.7$ Hz, 2H), 4.23(t, $J = 4.3$ Hz, 2H), 4.64(s, 2H), 6.35(d, $J = 8.2$ Hz, 1H), 6.51(d, $J = 8.2$ Hz, 1H), 6.76(t, $J = 8.2$ Hz, 1H), 6.82(d, $J = 8.5$ Hz, 2H), 7.30 \sim 7.59(m, 6H)	"H NMR (ppm) (300 MHz, CDCl3) 3.37(t, J = 4.4 Hz, 2H), 3.63(t, J = 7.2 Hz, 2H), 3.69(s, 3H), 4.07(t, J = 6.9 Hz, 2H), 4.22(t, J = 4.4 Hz, 2H), 4.64(s, 2H), 6.35(dd, J = 1.2, 8.2 Hz, 1H), 6.52(d, J = 8.5 Hz, 1H), 6.74 ~6.85(m, 6H), 7.08(dd, J = 7.6, 7.6 Hz, 1H), 7.33(d, J = 8.8 Hz, 2H)
MS (ESI) 579 ((M+H)+) 実施例 2-13	MS (ESI) 541 ((M+H)+) 実施例 2-14
!H NMR (ppm) (300 MHz, CDCl3)	'H NMR (ppm) (300 MHz, CDCl3)
3.36(t, J = 4.4 Hz, 2H), 3.63(t, J = 7.2 Hz, 2H), 4.08(t, J = 6.9 Hz, 2H), 4.22(t, J = 4.4 Hz, 2H), 4.64(s, 2H), 6.36(d, J = 8.2 Hz, 1H), 6.50(d, J = 8.5 Hz, 1H), 6.77(dd, J = 8.2, 8.2 Hz, 1H), 6.83(d, J = 8.8 Hz, 2H), 7.13(brd, 1H), 7.25(brd, 1H), 7.31(s, 1H), 7.40(d, J = 8.5 Hz, 2H)	3.35(t, J = 4.4 Hz, 2H), 3.65(t, J = 6.9 Hz, 2H), 4.11(t, J = 6.9 Hz, 2H), 4.22(t, J = 4.2 Hz, 2H), 4.65(s, 2H), 6.33(d, J = 7.9 Hz, 1H), 6.50(d, J = 7.9 Hz, 1H), 6.75(dd, J = 8.2, 8.2 Hz, 1H), 6.82(d, J = 8.5 Hz, 2H), 7.40(d, J = 8.8 Hz, 2H), 7.68(s, 2H), 7.77(s, 1H)
MS (ESI) 597 ((M+H)+)	MS (EI) 646 (M+)
実施例 2-15·	実施例 2-16
'H NMR (ppm) (300 MHz, CDCl3)	'H NMR (ppm) (300 MHz, CDCl3)
3.36(t, J = 4.4 Hz, 2H), 3.62(t, J = 6.7 Hz, 2H), 4.06(t, J = 6.7 Hz, 2H), 4.22(t, J = 4.4 Hz, 2H), 4.64(s, 2H), 6.33(d, J = 7.0 Hz, 1H), 6.50(d, J = 7.9Hz, 1H), 6.68 \sim 6.95(m, 5H), 7.22 \sim 7.39(m, 4H)	3.38(t, $J = 4.4$ Hz, 2H), 3.61(t, $J = 7.0$ Hz, 2H), 4.06(t, $J = 7.0$ Hz, 2H), 4.23(t, $J = 4.39$ Hz, 2H), 4.64(s, 2H), 6.35(dd, $J = 1.2$, 7.9 Hz, 1H), 6.42 \sim 6.47(m, 2H), 6.63(dd, $J = 1.5$, 8.2 Hz, 1H), 6.75(t, $J = 8.2$ Hz, 1H), 6.90 \sim 6.97(m, 3H), 7.21(td, $J = 1.5$, 8.8 Hz, 1H), 7.42(d, $J = 8.8$ Hz, 2H), 10.69(s, 1H)
MS (EI) 528 (M+)	MS (EI) 525 ((M-H)-)

実施例 2-17	実施例 2-18
'H NMR (ppm) (300 MHz, CDCl3)	'H NMR (ppm) (300 MHz, CDCl3)
3.40(s, 2H), 3.40 \sim 3.60(m, 1H), 3.60 \sim 3.70(m, 1H), 3.60 \sim 3.70(m, 1H), 4.09(t, J = 6.7 Hz, 2H), 4.23(t, J = 4.3 Hz, 2H), 4.64(s, 2H), 6.35(d, J = 8.2 Hz, 1H), 6.51(d, J = 8.2 Hz, 1H), 6.76(t, J = 8.2 Hz, 1H), 6.82(d, J = 8.5 Hz, 2H), 7.30 \sim 7.59(m, 6H)	3.43(brd, 2H), 3.70(brd, 2H), 4.25(brd, 4H), 4.64(s, 2H), 6.35(brd, 1H), 6.60(brd, 1H), 6.78(brd, 3H), 7.10~8.05(m, 9H)
MS (ESI) 597 ((M+H)+)	MS (ESI) 561 ((M+H)+)
実施例 2-19	実施例 2-20
'H NMR (ppm) (300 MHz, CDCl3)	'H NMR (ppm) (300 MHz, CDCl3)
1.70(d, J = 0.88 Hz, 3H), 2.14(d, J = 1.2 Hz, 3H), 3.33(t, J = 4.4 Hz, 2H), 3.51(t, J = 7.0 Hz, 2H), 3.89(t, J = 7.0 Hz, 2H), 4.20(t, J = 4.4 Hz, 2H), 4.63(s, 2H), 5.38(bs, 1H), 6.32(d, J = 8.2 Hz, 1H), 6.44(d, J = 8.2 Hz, 1H), 6.72(t, J = 8.2 Hz, 1H), 6.96(d, J = 8.5 Hz, 2H), 7.49(d, J = 8.5 Hz, 2H)	1.72(t, J = 7.6 Hz, 3H), 2.58(q, J = 7.6 Hz, 2H), 3.37(t, J = 4.1 Hz, 2H), 3.62(t, J = 6.5 Hz, 2H), 4.06(t, J = 6.5 Hz, 2H), 4.22(t, J = 4.1 Hz, 2H), 4.63(s, 2H), 6.35(d, J = 8.0 Hz, 1H), 6.51(d, J = 8.0 Hz, 1H), 6.76(t, J = 7.9 Hz, 1H), 6.83(d, J = 8.6 Hz, 2H), 7.01(d, J = 8.0 Hz, 2H), 7.19(d, J = 8.0 Hz, 2H), 7.33(d, J = 8.6 Hz, 2H)
MS (EI) 488 (M+) 実施例 2-21	MS (ESI) 539 ((M+H)+) 実施例 2-22
'H NMR (ppm) (300 MHz, CDCl3)	4
3.36(t, J = 4.3 Hz, 2H), 3.63(t, J = 6.9 Hz, 2H), 4.08(t, J = 6.9 Hz, 2H), 4.22(t, J = 4.3 Hz, 2H), 4.64(s, 2H), 6.35(d, J = 8.0 Hz, 1H), 6.51(d, J = 8.0 Hz, 1H), 6.73 \sim 6.83(m, 3H), 7.28 \sim 7.59(m, 6H)	"H NMR (ppm) (300 MHz, CDCl3) 3.35(t, J = 4.4 Hz, 2H), 3.62(t, J = 6.7 Hz, 2H), 4.06(t, J = 6.9 Hz, 2H), 4.21(t, J = 4.2 Hz, 2H), 4.63(s, 2H), 6.35(d, J = 8.2 Hz, 1H), 6.49(d, J = 8.8 Hz, 1H), 6.72 \sim 6.79(m, 2H), 6.92(d, J = 8.5 Hz, 2H), 7.24(d, J = 5.3 Hz, 1H), 7.37(d, J = 8.5 Hz, 2H)
MS (ESI) 536 ((M+H)+)	MS (ESI) 551 ((M+H)+)
実施例 2-23	実施例 2-24
'H NMR (ppm) (300 MHz, CDCl3)	'H NMR (ppm) (300 MHz, CDCl3)
3.35(t, J = 4.1 Hz, 2H), 3.61(t, J = 6.7 Hz, 2H), 4.06(t, J = 6.7 Hz, 2H), 4.21(t, J = 4.1 Hz, 2H), 4.64(s, 2H), 6.34(d, J = 8.5 Hz, 1H), 6.49(d, J = 8.5 Hz, 1H), 6.75(dd, J = 8.2, 8.2 Hz, 1H), 6.81(d, J = 8.2 Hz, 2H), 7.13(d, J = 7.9 Hz, 2H), 7.29 \sim 7.41(m, 4H)	3.36(t, J = 4.4 Hz, 2H), 3.63(t, J = 6.4 Hz, 2H), 4.08(t, J = 6.4 Hz, 2H), 4.22(t, J = 4.4 Hz, 2H), 4.64(s, 2H), 6.35(d, J = 8.8 Hz, 1H), 6.49(d, J = 8.5 Hz, 1H), 6.75(dd, J = 8.2, 8.2 Hz, 1H), 6.80(d, J = 8.8 Hz, 2H), 7.28 \sim 7.41(m, 4H), 7.50(d, J = 8.2 Hz, 2H)
MS (EI) 588 (M+)	MS (EI) 535 (M+)

514 (M+

MS (EI)

実施例 2-25	実施例 2-26
'H NMR (ppm) (300 MHz, CDCl3)	
	'H NMR (ppm) (300 MHz, CDCl3)
1.77(s, 3H), 3.32(t, $J = 4.2$ Hz, 2H), 3.48(t, $J = 7.3$ Hz, 2H), 3.91(t, $J = 7.3$ Hz, 2H), 4.22(t, $J = 4.2$ Hz, 2H), 4.63(s, 2H), 6.36(d, $J = 9.4$ Hz, 1H), 6.42(d, $J = 8.8$ Hz, 1H), 6.75(t, $J = 8.8$ Hz, 1H), 7.08(d, $J = 8.5$ Hz, 2H), 7.52(d, $J = 8.8$ Hz, 2H)	0.60~0.77(m, 2H), 0.98~1.15(m, 2H), 1.23~1.37(m, 1H), 3.31(t, J = 4.4 Hz, 2H), 3.48(t, J = 6.7 Hz, 2H), 3.87(t, J = 6.7 Hz, 2H), 4.21(t, J = 4.4 Hz, 2H), 4.63(s, 2H), 6.33(d, J = 7.6Hz, 1H), 6.44(d, J = 8.2Hz, 1H), 6.74(dd, J = 8.5, 8.5 Hz, 1H), 7.10(d, J = 8.5 Hz, 2H), 7.55(d, J = 8.5 Hz, 2H)
MS (EI) 472 (M+)	MS (EI) 474 (M+)
実施例 2-27	[110 (D1) 414 (M4)
'H NMR (ppm) (300 MHz, CDCl3)	
1.44 \sim 1.46(m, 4H), 1.91 \sim 1.93(m, 4H), 3.33(t, J = 4.4 Hz, 2H), 3.52(t, J = 6.9 Hz, 2H), 3.91(t, J = 6.9 Hz, 2H), 4.20(t, J = 4.4 Hz, 2H), 4.63(s, 2H), 5.84(m, 1H), 6.33(d, J = 8.2 Hz, 1H), 6.48(d, J = 8.5 Hz, 1H), 6.75(t, J = 8.2 Hz, 1H), 6.91(d, J = 8.8 Hz, 2H), 7.43(d, J = 8.5 Hz, 2H)	
	·

ヒト肘正中静脈より採血した血液を 800 rpm で 10 分間遠心し、上部を多血小板血漿(PRP)として採取した。PRPを小試験管に分注し、ADP5 μ Mを添加して血小板凝集を誘発させ、その大きさを血小板凝集測定装置(ヘマトレーサー1、二光バイオサイエンス)により濁度の変化として測定した。化合物はADP添加の1分前に加え、凝集を 50 %抑制する濃度を I C $_{50}$ 値として計算した。本方法で本発明の化合物の活性を評価した結果を表 3 4 にまとめて示す。この結果、本発明のペンゾモルホリン誘導体は、特許文献 1 の実施例 2 1 に用いられている化合物に比べると強力な血小板凝集抑制作用を有することが明らかとなった。

表34

5

10

化合物実施例番号	血小板凝集抑制作用 I C50 (n M)
1-31	31
1-14	13
1-16	5. 3
1-28	5. 9
1-31	14
1-40	14
1-49	18
1-63	8. 8
2-4	27
2–27	55
特許文献*実施例21の化合物	1, 800

*W000/07992

(実施例4) サル血小板凝集抑制試験:

雄性カニクイサル($4\sim6$ kg)をモンキーチェアに保定し、30 分ほど慣れさ せた後に、カテーテル(16Fr)を用いて実施例1-1 3 の化合物を経口投与した。

採血は、薬液投与前と薬液投与後、30、60、120、180 分後に、あらかじめ採血量の 1/10 容の 3.8%クエン酸ナトリウム溶液を入れたシリンジを用いて、伏在静脈より行った。

採血した血液は、1000 rpm で 10 分間遠心し、上部を多血小板血漿 (PRP) として採取した。PRPを小試験管に分注し、ADP10 μ Mを添加して血 小板凝集を誘発させ、その大きさを血小板凝集測定装置 (ヘマトレーサー1、二 光バイオサイエンス) により濁度の変化として測定した。

5 本方法で本発明のベンゾモルホリン誘導体の経口投与後の活性を評価した結果 を図1に示す。この結果、本発明のベンゾモルホリン誘導体は、サルへの経口投 与によっても強力な血小板凝集抑制作用を有することが明らかとなった。

本明細書中で引用した全ての刊行物、特許及び特許出願をそのまま参考として 10 本明細書中にとり入れるものとする。

産業上の利用の可能性

15

本発明の化合物は強力な血小板凝集抑制作用を有しており、血栓が関与する疾病の治療及び予防薬として有効である。

請 求 の 範 囲

1. 式(I)

$$\begin{array}{cccc}
R^4 & & & \\
& & & \\
O & & & \\
& & & \\
O & & & \\
\end{array}$$

$$\begin{array}{cccc}
R^3 & & & \\
R^2 & & & \\
N & & & \\
\end{array}$$

$$\begin{array}{cccc}
R^1 & & & \\
\end{array}$$

$$\begin{array}{cccc}
\end{array}$$

5

(式中、

Aは炭素数 $2 \sim 4$ のアルキレン、炭素数 $2 \sim 4$ のアルケニレン又は炭素数 $2 \sim 4$ のアルキニレンであり、

R¹は

- 10 (1)無置換、又は以下に示す群から独立に選ばれる1つもしくは複数の置換基 によって置換されたアリール又はヘテロアリール
- a) 炭素数 1~5のアルキル、b) 炭素数 1~5のアルコキシ、c) 炭素数 3~8のシクロアルキル、d) 炭素数 1~5のハロアルキル、e) フェニル、f) フェノキシ、g) ヒドロキシル、h) 炭素数 1~5のヒドロキシアルキル、i) 炭素数 1~5のハロアルキルオキシ、j) メルカプト、k) 炭素数 1~5のアルキルチオ、l) 炭素数 1~5のハロアルキルチオ、m) ハロゲン、n) シアノ、o) ニトロ、p) アミノ、q) 炭素数 1~5のアルキルアミノ、r) 炭素数 2~10のジアルキルアミノ、s) アシル、t) カルボキシル、u) 炭素数 2~6のアルキルオキシカルボニル、v) メシル、w) トリフルオロメタンスルホニル、及び x) トシル

20 又は

(2) 無置換、又は以下に示す群から独立に選ばれる1つもしくは複数の置換基によって置換された炭素数 $1\sim5$ のアルキル、炭素数 $3\sim8$ のシクロアルキル、炭素数 $2\sim1$ 0のアルケニル、炭素数 $4\sim1$ 0のシクロアルケニル又は炭素数 $2\sim1$ 0のアルキニル

5

a) フェニル、b) ヒドロキシル、c) 炭素数 $1 \sim 5$ のアルキル、d) 炭素数 $3 \sim 8$ のシクロアルキル、e) 炭素数 $1 \sim 5$ のハロアルキル、及び f) ハロゲン であり、

R²は無置換、又は以下に示す群から独立に選ばれる1つもしくは複数の置換基によって置換されたアリール又はヘテロアリール

a) 炭素数 $1 \sim 5$ のアルキル、b) 炭素数 $1 \sim 5$ のアルコキシ、c) 炭素数 $3 \sim 8$ のシクロアルキル、d) 炭素数 $1 \sim 5$ のハロアルキル、e) フェニル、f) フェノキシ、g) ヒドロキシル、h) 炭素数 $1 \sim 5$ のヒドロキシアルキル、i) 炭素数 $1 \sim 5$ のハロアルキルオキシ、j) メルカプト、k) 炭素数 $1 \sim 5$ のアルキルチオ、l) 炭

10 素数 $1 \sim 5$ のハロアルキルチオ、m) ハロゲン、n) シアノ、o) ニトロ、p) アミノ、o0 炭素数 $1 \sim 5$ のアルキルアミノ、o7 以 炭素数 $1 \sim 5$ のアルキルアミノ、o7 以 o8 以 o9 以 o

 R^3 は水素、ハロゲン、炭素数 $1\sim 5$ のアルキル又は炭素数 $1\sim 5$ のアルコキシであり、 R^4 は $-X-(CH_2)$ $n-COOR^5$ であり、Xは-O-、-S-又は $-CH_2$ -であり、 R^5 は水素又は炭素数 $1\sim 5$ のアルキルであり、nは $1\sim 3$ の整数である。)

で示されるペンプモルホリン誘導体又はその薬学的に許容される塩。

20 2. 一般式 (II)

(式中、A、R¹、R²、R³及びR⁴は請求の範囲第1項記載の定義に同じ) で示される請求の範囲第1項記載のペンゾモルホリン誘導体又はその薬学的に許 容される塩。

25 3. Aがエチレンである請求の範囲第1項記載のベンゾモルホリン誘導体又は その薬学的に許容される塩。 15

20

25

- 4. R¹が無置換、又は1つもしくは複数の置換基によって置換されたアリール又はヘテロアリールである請求の範囲第1項記載のベンゾモルホリン誘導体又はその薬学的に許容される塩(ここで、置換基は請求の範囲第1項の定義に同じ)。
- 5 5. R¹が無置換、又は1つもしくは複数の置換基によって置換されたフェニル、フリル、チエニル又はピリジルである請求の範囲第4項記載のベンゾモルホリン誘導体又はその薬学的に許容される塩(ここで、置換基は請求の範囲第1項の定義に同じ)。
- 6. R¹が無置換、又は以下に示す群から独立に選ばれる1つもしくは複数の 10 置換基によって置換されたフェニル、フリル、チエニル又はピリジルである請求 の範囲第5項記載のベンゾモルホリン誘導体又はその薬学的に許容される塩。
 - a) 炭素数 $1 \sim 5$ のアルキル、b) 炭素数 $1 \sim 5$ のアルコキシ、c) 炭素数 $1 \sim 5$ のハロアルキル、d) ヒドロキシル、e) 炭素数 $1 \sim 5$ のハロアルキルオキシ、f) 炭素数 $1 \sim 5$ のアルキルチオ、g) 炭素数 $1 \sim 5$ のハロアルキルチオ、h) ハロゲン、i) シアノ、j) 炭素数 $2 \sim 1$ のジアルキルアミノ、k) アセチル、l) 炭素数 $2 \sim 6$ のフルキル・
- $2 \sim 6$ のアルキルオキシカルボニル、m) メシル、n) トリフルオロメタンスルホニル、及び n) の トシル
 - 7. R¹が無置換、又は以下に示す群から独立に選ばれる1つもしくは複数の 置換基によって置換されたフェニル、フリル、チエニル又はピリジルである請求 の範囲第6項記載のベンゾモルホリン誘導体又はその薬学的に許容される塩。
 - a) 炭素数 $1 \sim 5$ のアルキル、b) 炭素数 $1 \sim 5$ のアルコキシ、c) 炭素数 $1 \sim 5$ のハロアルキル、d) ヒドロキシル、h) ハロゲン、及び i) シアノ
 - 8. R²が無置換、又は1つもしくは複数の置換基によって置換されたフェニル又はピリジルである請求の範囲第1項記載のベンゾモルホリン誘導体又はその薬学的に許容される塩(ここで、置換基は請求の範囲第1項の定義に同じ)。
 - 9. R²が無置換、又は以下に示す群から独立に選ばれる1つもしくは複数の 置換基によって置換されたフェニル又はピリジルである請求の範囲第8項記載の ベンゾモルホリン誘導体又はその薬学的に許容される塩。

- a) 炭素数 $1 \sim 5$ のアルキル、b) 炭素数 $1 \sim 5$ のアルコキシ、c) 炭素数 $1 \sim 5$ のハロアルキル、d) ヒドロキシル、e) 炭素数 $1 \sim 5$ のハロアルキルオキシ、f) 炭素数 $1 \sim 5$ のアルキルチオ、g) 炭素数 $1 \sim 5$ のハロアルキルチオ、h) ハロゲン、i) シアノ、j) アミノ、k) 炭素数 $2 \sim 1$ 0 のジアルキルアミノ、l) アシル、
- 5 m) 炭素数 2 ~ 6 のアルキルオキシカルボニル、n) メシル、o) トリフルオロメタンスルホニル、及び p) トシル
 - 10. R²が無置換、又は以下に示す群から独立に選ばれる1つもしくは複数の置換基によって置換されたフェニル又はピリジルである請求の範囲第9項記載のベンゾモルホリン誘導体又はその薬学的に許容される塩。
- 10 a) 炭素数 $1 \sim 5$ のアルキル、b) 炭素数 $1 \sim 5$ のアルコキシ、c) 炭素数 $1 \sim 5$ のハロアルキル、d) 炭素数 $1 \sim 5$ のハロアルキルオキシ、e) 炭素数 $1 \sim 5$ のアルキルチオ、f) ハロゲン、及び g) 炭素数 $2 \sim 1$ 0 のジアルキルアミノ
 - 11. Xが-O-である請求の範囲第1項記載のベンゾモルホリン誘導体又はその薬学的に許容される塩。
- 15 12. 請求の範囲第1項記載のベンゾモルホリン誘導体を有効成分として含有する医薬。
 - 13. 請求の範囲第1項記載のベンゾモルホリン誘導体を有効成分として含有する血小板凝集抑制又は予防薬。
- 14. 血栓症又は血栓に付随する疾患の治療又は予防に用いられる請求の範囲 20 第13項記載の血小板凝集抑制又は予防薬。
 - 15. 血栓症が冠動脈、脳動脈、末梢動脈又は末梢静脈における血栓症である請求の範囲第14項記載の血小板凝集抑制又は予防薬。
- 16. 血栓に付随する疾患が心筋梗塞、不安定狭心症、脳梗塞、一過性脳虚血 発作又は慢性動脈閉塞症である請求の範囲第14項記載の血小板凝集抑制又は予 25 防薬。

F I G. 1

Intermedial application No.
PCT/JP03/15631

A. CLAS	SIFICATION OF SUBJECT MATTER			
Int	.Cl ⁷ C07D265/36, 413/12, A61K	31/538, A61P7/02, 9/00,	9/10	
According	According to International Patent Classification (IPC) or to both national classification and IPC			
	OS SEARCHED			
Inc.	documentation searched (classification system followers). Cl ⁷ C07D265/36, 413/12, A61K3	31/538, A61P7/02, 9/00,		
	tion searched other than minimum documentation to t			
KEGI	data base consulted during the international search (na ISTRY (STN), CAPLUS (STN), CAOLD	ime of data base and, where practicable, sea	arch terms used)	
c. docu	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a		Relevant to claim No.	
A	& CA 2198266 A & AI & AI & CN 1158129 A & BI & US 5998437 A & HI US 2001/0003747 A1 (ADIR ET 14 June, 2001 (14.06.01), & JP 2001-187787 A & EI & FR 2801885 A1 & NG & NZ 508631 A & ZZ & BR 2000005736 A & CI	P 9-77764 A U 9663181 A1 R 9606154 A K 1003436 A1 COMPAGNIE), P 1106608 A1 D 2000006128 A A 200007214 A	1-16	
Furthe	er documents are listed in the continuation of Box C.	See patent family annex.		
"A" docume conside. "E" earlier of date "L" docume cited to special 1 "O" docume means "P" docume than the Date of the are 02 Fee	categories of cited documents: ent defining the general state of the art which is not red to be of particular relevance document but published on or after the international filing ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later epriority date claimed ctual completion of the international search ebruary, 2004 (02.02.04)	"T" later document published after the interpriority date and not in conflict with the understand the principle or theory unded document of particular relevance; the considered novel or cannot be considered step when the document is taken alone document of particular relevance; the considered to involve an inventive step combined with one or more other such combination being obvious to a person document member of the same patent if Date of mailing of the international searce 17 February, 2004 (ne application but cited to erlying the invention claimed invention cannot be red to involve an inventive claimed invention cannot be when the document is documents, such skilled in the art amily	
Name and ma Japar	ailing address of the ISA/ nese Patent Office	Authorized officer		
Facsimile No.		Telephone No.		

	国際調査	国際出願番号	/JP03/15631
A. 発明のM Int. C	スポート (国際特許分類(IPC)) 1 C07D265/36,413/12,A A61P7/02,9/00,9/10	61K31/538,	
B. 調査を行			
調査を行った」	最小限資料(国際特許分類(IPC))		
Int. C	1 C07D265/36, 413/12, A A61P7/02, 9/00, 9/10	61K31/538,	
最小限資料以外	外の資料で調査を行った分野に含まれるもの		
国際調査で使用	目した電子データベース (データベースの名称.	、調査に使用した用語)	
REGIST	TRY (STN), CAPLUS (SNT),	CAOLD (STN)	
C. 関連する	ると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連する	ときは、その関連する箇所の表	関連する 請求の範囲の番号
Α	EP 1028113 A1 (TORAY INDUSTRIES,		1 - 16
	& WO 00/07992 A1 & JP 9-77764 A 8	& CA 2198266 A	
	& AU 9663181 A1 & CN 1158129 A &	BR 9606154 A & US 599	8437 A
	& HK 1003436 A1		
A	US 2001/0003747 A1 (ADIR ET COMPA	ACNIE) 2001 06 14	1-16
	& JP 2001-187787 A & EP 1106608 A		1-16
	& NO 2000006128 A & NZ 508631 A &		
	& BR 2000005736 A & CN 1308069 A		
□ C欄の続き	にも文献が列挙されている。		 こ関する別紙を参照。
* 引用文献の	シカテゴリー	の日の後に公表された	4#.tr
「A」特に関連	草のある文献ではなく、一般的技術水準を示す		ス畝 後に公表された文献であって
もの 「E」国際出願	夏日前の出願または特許であるが、国際出願日	出願と矛盾するものでの理解のために利用す	はなく、発明の原理又は理論
以後に公	\artisata	の理解のために引用す 「X」特に関連のある文献で	るもの あって、当該文献のみで発明
「L」 俊先権主 日若しく	E張に疑義を提起する文献又は他の文献の発行 は他の特別な理由を確立するために引用する	の新規性又は進歩性が	ないと考えられるもの
文献(琕	目由を付す)	・X」特に関連のある又献で 上の文献との、当業者	あって、当該文献と他の1以 にとって自明である組合せに
「O」ロ頭によ 「P」国際出廊	る開示、使用、展示等に言及する文献 負目前で、かつ優先権の主張の基礎となる出願	よって進歩性がないと 「&」同一パテントファミリ	考えられるもの
国際調査を完了	した日 02.02.2004	国際調査報告の発送日	17. 2. 2004
	名称及びあて先	特許庁審査官(権限のある職	負) 4P 9282
日本国	特許庁(I S A / J P) 便番号100-8915	中木 亜希	印 ————

【電話番号 03−3581−1101 内線 3492

東京都千代田区段が関三丁目4番3号