Exp_assignment2

Generated by Doxygen 1.8.13

Contents

1	Hiera 1.1	archical Index Class Hierarchy			
2	Clas 2.1	s Index 3 Class List			
3	File 3.1	Index 5 File List			
4 Class Documentation					
	4.1	robot_to_ball.image_feature Class Reference			
		4.1.1 Detailed Description			
		4.1.2 Constructor & Destructor Documentation			
		4.1.2.1init()			
		4.1.3 Member Function Documentation			
		4.1.3.1 callback()			
	4.2	state_machine.image_feature Class Reference			
		4.2.1 Detailed Description			
		4.2.2 Constructor & Destructor Documentation			
		4.2.2.1init()			
		4.2.3 Member Function Documentation			
		4.2.3.1 callback()			
	4.3	state_machine.Normal Class Reference			
		4.3.1 Detailed Description			
		4.3.2 Member Data Documentation			
		4.3.2.1 command			
	4.4	state_machine.Play Class Reference			
		4.4.1 Detailed Description			
		4.4.2 Member Data Documentation			
		4.4.2.1 angle_pub			
	4.5	state_machine.Sleep Class Reference			
		4.5.1 Detailed Description			
5	File	Documentation 17			
	5.1	/home/sara/catkin_ws/src/exp_assignment2/scripts/go_to_point_ball.py File Reference			
		5.1.1 Detailed Description			
	5.2	/home/sara/catkin_ws/src/exp_assignment2/scripts/go_to_point_robot.py File Reference			
		5.2.1 Detailed Description			
	5.3	/home/sara/catkin_ws/src/exp_assignment2/scripts/move_ball_around.py File Reference			
		5.3.1 Detailed Description			
	5.4	/home/sara/catkin_ws/src/exp_assignment2/scripts/state_machine.py File Reference			
		5.4.1 Detailed Description			
		5.4.2 Function Documentation			
		5.4.2.1 Normal clbk()			
		5.4.3 Variable Documentation			
		5.4.3.1 image pub			

•	00117717
	CONTENTS
	CONTENTS

Index 23

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

robot_to_ball.image_feature	7
state_machine.image_feature	9
State	
state_machine.Normal	11
state_machine.Play	13
state machine.Sleep	14

2 Hierarchical Index

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

robot_to_ball.image_feature
state_machine.image_feature
Istance called in play state to track the ball
state_machine.Normal
Normal state definition
state_machine.Play
Play state definition
state_machine.Sleep
Sleep State definition

4 Class Index

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

/home/sara/catkin_ws/src/exp_assignment2/scripts/go_to_point_ball.py	
This node is actionlib server that permits to move the ball	17
/home/sara/catkin_ws/src/exp_assignment2/scripts/go_to_point_robot.py	
This node is actionlib server that permits to move the robot	18
/home/sara/catkin_ws/src/exp_assignment2/scripts/human_commands.py	??
/home/sara/catkin_ws/src/exp_assignment2/scripts/move_ball_around.py	
This node permits to the ball to move around, wait for a while and disappear	19
/home/sara/catkin_ws/src/exp_assignment2/scripts/ robot_to_ball.py	??
/home/sara/catkin_ws/src/exp_assignment2/scripts/state_machine.py	
This node implements a state machine which permits to move around and to search for a ball,	
go to sleep, and play with the ball when the last one is found	20

6 File Index

Chapter 4

Class Documentation

4.1 robot_to_ball.image_feature Class Reference

Public Member Functions

- def init (self)
- · def callback (self, ros_data)

Public Attributes

- · image pub
- · vel pub
- subscriber

4.1.1 Detailed Description

Definition at line 27 of file robot_to_ball.py.

4.1.2 Constructor & Destructor Documentation

Definition at line 29 of file robot_to_ball.py.

8 Class Documentation

4.1.3 Member Function Documentation

4.1.3.1 callback()

Definition at line 43 of file robot_to_ball.py.

```
43
       {\tt def} callback(self, ros_data):
44
            "Callback function of subscribed topic.
           Here images get converted and features detected'''
45
46
           if VERBOSE:
               print ('received image of type: "%s"' % ros_data.format)
49
50
           np_arr = np.fromstring(ros_data.data, np.uint8)
           image_np = cv2.imdecode(np_arr, cv2.IMREAD_COLOR) # OpenCV >= 3.0:
51
52
53
           greenLower = (50, 50, 20)
           greenUpper = (70, 255, 255)
55
56
          blurred = cv2.GaussianBlur(image_np, (11, 11), 0)
           hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
57
           mask = cv2.inRange(hsv, greenLower, greenUpper)
58
           mask = cv2.erode(mask, None, iterations=2)
59
           mask = cv2.dilate(mask, None, iterations=2)
           #cv2.imshow('mask', mask)
62
           cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
                                    cv2.CHAIN_APPROX_SIMPLE)
63
           cnts = imutils.grab_contours(cnts)
64
65
           center = None
           # only proceed if at least one contour was found
           if len(cnts) > 0:
68
               # find the largest contour in the mask, then use
69
               \ensuremath{\text{\#}} it to compute the minimum enclosing circle and
70
               # centroid
               c = max(cnts, key=cv2.contourArea)
               ((x, y), radius) = cv2.minEnclosingCircle(c)
72
73
               M = cv2.moments(c)
74
               center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
7.5
76
               # only proceed if the radius meets a minimum size
77
               if radius > 10:
78
                    # draw the circle and centroid on the frame,
79
                    # then update the list of tracked points
                   cv2.circle(image_np, (int(x), int(y)), int(radius), (0, 255, 255), 2)
80
81
                   cv2.circle(image_np, center, 5, (0, 0, 255), -1)
82
83
                   vel = Twist()
                   vel.angular.z = 0.002*(center[0]-400)
                   vel.linear.x = -0.01*(radius-100)
                   self.vel_pub.publish(vel)
86
87
88
           else:
               vel = Twist()
89
90
               vel.angular.z = 0.5
               self.vel_pub.publish(vel)
91
93
           # update the points queue
94
           # pts.appendleft(center)
           cv2.imshow('window', image_np)
95
96
           cv2.waitKey(2)
98
           # self.subscriber.unregister()
99
100
```

The documentation for this class was generated from the following file:

/home/sara/catkin_ws/src/exp_assignment2/scripts/robot_to_ball.py

4.2 state_machine.image_feature Class Reference

Istance called in play state to track the ball.

Public Member Functions

- · def callback (self, ros_data)

callback to subscribe to camera1 when the state is Play: when the ball is found, a parameter (camera_rotate) becomes 1 and the robot starts to rotate the head, otherwise, a parameter becomes 0 and the robot search around for a bit time.

Public Attributes

- image_pub publisher
- vel_pub
- · subscriber

subscriber

4.2.1 Detailed Description

Istance called in play state to track the ball.

Definition at line 166 of file state_machine.py.

4.2.2 Constructor & Destructor Documentation

Definition at line 168 of file state_machine.py.

```
def __init__(self):
    '''Initialize ros publisher, ros subscriber'''
168
169
171
172
            self.image_pub = rospy.Publisher("/output/image_raw/compressed",
173
                                                CompressedImage, queue_size=1)
174
            self.vel_pub = rospy.Publisher("/robot/cmd_vel",
176
                                              Twist, queue_size=1)
177
178
179
            self.subscriber = rospy.Subscriber("/robot/cameral/image_raw/compressed",
180
181
                                                  CompressedImage, self.callback, queue_size=1)
```

10 Class Documentation

4.2.3 Member Function Documentation

4.2.3.1 callback()

callback to subscribe to camera1 when the state is Play: when the ball is found, a parameter (camera_rotate) becomes 1 and the robot starts to rotate the head, otherwise, a parameter becomes 0 and the robot search around for a bit time.

Definition at line 184 of file state_machine.py.

```
def callback(self, ros_data):
184
185
             global count
186
              global camera_rotate
187
              count = rospy.get_param('count')
188
             while count == 360:
189
190
                  time.sleep(1)
191
192
193
194
195
             if VERBOSE:
                  print ('received image of type: "%s"' % ros_data.format)
196
197
198
199
             np_arr = np.fromstring(ros_data.data, np.uint8)
200
              image_np = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
201
             greenLower = (50, 50, 20)
greenUpper = (70, 255, 255)
202
203
204
205
             blurred = cv2.GaussianBlur(image_np, (11, 11), 0)
206
             hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
             mask = cv2.inRange(hsv, greenLower, greenUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
207
208
209
210
211
             cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
212
                                          cv2.CHAIN_APPROX_SIMPLE)
213
             cnts = imutils.grab_contours(cnts)
214
             center = None
215
216
             if len(cnts) > 0:
217
                   # find the largest contour in the mask, then use
219
                   \ensuremath{\text{\#}} it to compute the minimum enclosing circle and
220
                  # centroid
221
222
224
225
                  c = max(cnts, key=cv2.contourArea)
226
                  ((x, y), radius) = cv2.minEnclosingCircle(c)
                  M = cv2.moments(c)
227
228
                  center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
229
230
                   # only proceed if the radius meets a minimum size
231
                  if radius > 10:
232
                       \mbox{\#} draw the circle and centroid on the frame, \mbox{\#} then update the list of tracked points
233
234
                       cv2.circle(image_np, (int(x), int(y)), int(radius), (0, 255, 255), 2)
235
236
237
                       cv2.circle(image_np, center, 5, (0, 0, 255), -1)
238
                       vel = Twist()
239
240
                       vel.angular.z = 0.002*(center[0]-400)
241
                       vel.linear.x = -0.01*(radius-100)
```

```
self.vel_pub.publish(vel)
244
                      if (vel.linear.x < 0.01) & (vel.angular.z < 0.01):</pre>
245
                          vel.angular.z = 0
vel.linear.x = 0
246
2.47
248
249
                          self.vel_pub.publish(vel)
250
                          rospy.set_param('camera_rotate', 1)
251
252
253
254
            else:
255
256
                 vel = Twist()
                 vel.angular.z = 0.5
257
258
                 self.vel_pub.publish(vel)
259
                 count = count + 1
260
261
                 rospy.set_param('count', count)
262
263
                 if rospy.get_param('count') == 259:
264
265
                     vel.angular.z = 0.0
self.vel_pub.publish(vel)
266
267
268
                      self.subscriber.unregister()
269
270
271
272
273
275
            cv2.imshow('window', image_np)
276
             cv2.waitKey(2)
277
278
279
```

The documentation for this class was generated from the following file:

/home/sara/catkin_ws/src/exp_assignment2/scripts/state_machine.py

4.3 state_machine.Normal Class Reference

Normal state definition.

Inheritance diagram for state machine. Normal:

12 Class Documentation

Collaboration diagram for state_machine.Normal:

Public Member Functions

- def __init__ (self)
 inizialization
- def execute (self, userdata)
 execution

Public Attributes

· command

2 outcomes defined

4.3.1 Detailed Description

Normal state definition.

Definition at line 282 of file state_machine.py.

4.3.2 Member Data Documentation

4.3.2.1 command

state_machine.Normal.command

2 outcomes defined

switch in sleep state

command is sleep

read command (choice random between move random or go to sleep)

command is searchball

Definition at line 288 of file state_machine.py.

The documentation for this class was generated from the following file:

/home/sara/catkin_ws/src/exp_assignment2/scripts/state_machine.py

4.4 state_machine.Play Class Reference

Play state definition.

Inheritance diagram for state_machine.Play:

Collaboration diagram for state_machine.Play:

Public Member Functions

- def __init__ (self)
 initialization
- def execute (self, userdata)

 Execution.

Public Attributes

• angle_pub

1 outcome defined : Normal

14 Class Documentation

4.4.1 Detailed Description

Play state definition.

Definition at line 359 of file state_machine.py.

4.4.2 Member Data Documentation

4.4.2.1 angle_pub

state_machine.Play.angle_pub

1 outcome defined : Normal

publisher for move the head

Definition at line 365 of file state_machine.py.

The documentation for this class was generated from the following file:

/home/sara/catkin_ws/src/exp_assignment2/scripts/state_machine.py

4.5 state_machine.Sleep Class Reference

Sleep State definition.

Inheritance diagram for state machine. Sleep:

Collaboration diagram for state_machine.Sleep:

Public Member Functions

- def __init__ (self)

 Initialization.
- def execute (self, userdata)

 Execution.

4.5.1 Detailed Description

Sleep State definition.

Definition at line 340 of file state_machine.py.

The documentation for this class was generated from the following file:

• /home/sara/catkin_ws/src/exp_assignment2/scripts/state_machine.py

16 Class Documentation

Chapter 5

File Documentation

5.1 /home/sara/catkin_ws/src/exp_assignment2/scripts/go_to_point_ball.py File Reference

This node is actionlib server that permits to move the ball.

Functions

```
    def go_to_point_ball.clbk_odom (msg)
    Define callback.
```

• def go_to_point_ball.change_state (state)

```
• def go_to_point_ball.go_straight_ahead (des_pos)
```

define function to go straight

def go_to_point_ball.done ()

define function to stop when the goal is reached

• def go_to_point_ball.planning (goal)

define planning funcion

def go_to_point_ball.main ()

Main function.

Variables

```
    go_to_point_ball.position_ = Point()
    ball state variables
```

- go_to_point_ball.pose_ = Pose()
- int go_to_point_ball.yaw_ = 0
- int go_to_point_ball.state_ = 0

machine state

go_to_point_ball.desired_position_ = Point()

int go_to_point_ball.yaw_precision_ = math.pi / 9 parameters

- int go_to_point_ball.yaw_precision_2_ = math.pi / 90
- float go_to_point_ball.dist_precision_ = 0.1

18 File Documentation

```
• float go_to_point_ball.kp_a = 3.0
```

- float go_to_point_ball.kp_d = 0.5
- float go_to_point_ball.ub_a = 0.6
- float go_to_point_ball.lb_a = -0.5
- float go_to_point_ball.ub_d = 2.0
- float go_to_point_ball.z_back = 0.25
- go_to_point_ball.pub = None

publisher

- go_to_point_ball.pubz = None
- go_to_point_ball.act_s = None

action_server

5.1.1 Detailed Description

This node is actionlib server that permits to move the ball.

5.2 /home/sara/catkin_ws/src/exp_assignment2/scripts/go_to_point_robot.py File Reference

This node is actionlib server that permits to move the robot.

Functions

• def go_to_point_robot.clbk_odom (msg)

Callback function.

- def go_to_point_robot.change_state (state)
- def go_to_point_robot.normalize_angle (angle)

function to compute the norm

- def go_to_point_robot.fix_yaw (des_pos)
- def go_to_point_robot.go_straight_ahead (des_pos)

function to go straight

• def go_to_point_robot.done ()

function to stop the robot when the goal is achieved

• def go_to_point_robot.planning (goal)

define planning funcion

• def go_to_point_robot.main ()

Main function.

Variables

```
    go_to_point_robot.position_ = Point()

     robot state variables
go_to_point_robot.pose_ = Pose()
• int go_to_point_robot.yaw_ = 0
int go_to_point_robot.state_ = 0
     machine state

    go_to_point_robot.desired_position_ = Point()

    go_to_point_robot.z

• int go_to_point_robot.yaw_precision_ = math.pi / 9
• int go_to_point_robot.yaw_precision_2_ = math.pi / 90
• float go_to_point_robot.dist_precision_ = 0.1
• float go_to_point_robot.kp_a = -3.0

 float go to point robot.kp d = 0.2

• float go_to_point_robot.ub_a = 0.6
• float go_to_point_robot.lb_a = -0.5
• float go_to_point_robot.ub_d = 0.6
• float go_to_point_robot.z_back = 0.25
• go_to_point_robot.pub = None
     publisher
• go_to_point_robot.pubz = None
• go_to_point_robot.act_s = None
     action_server
```

5.2.1 Detailed Description

This node is actionlib server that permits to move the robot.

5.3 /home/sara/catkin_ws/src/exp_assignment2/scripts/move_ball_around.py File Reference

This node permits to the ball to move around, wait for a while and disappear.

Functions

```
    def move_ball_around.move_ball (target)
        client of actionlib server for moving the ball
    def move_ball_around.main ()
        Main function.
```

5.3.1 Detailed Description

This node permits to the ball to move around, wait for a while and disappear.

20 File Documentation

5.4 /home/sara/catkin_ws/src/exp_assignment2/scripts/state_machine.py File Reference

This node implements a state machine which permits to move around and to search for a ball, go to sleep, and play with the ball when the last one is found.

Classes

· class state_machine.image_feature

Istance called in play state to track the ball.

· class state machine.Normal

Normal state definition.

· class state machine.Sleep

Sleep State definition.

class state_machine.Play

Play state definition.

Functions

· def state_machine.user_action ()

User Action function.

def state_machine.move_dog (target)

client of actionlib server for moving the dog robot

def state_machine.Normal_clbk (ros_data)

Callback for Normal State for subscribe to a Camera1: it checks if the ball is on the arena, if it is, a parameter (DetectedBall) becomes 1 and the robot goes to play, otherwise the parameter becomes 0 and the robot moves randomly.

· def state_machine.main ()

Main Function definition.

Variables

- bool state_machine.VERBOSE = False
- state_machine.vel = Twist()
- state_machine.angle_camera = Float64()
- state_machine.image_pub

Publisher.

• state_machine.vel_pub = rospy.Publisher("/robot/cmd_vel", Twist, queue_size=1)

5.4.1 Detailed Description

This node implements a state machine which permits to move around and to search for a ball, go to sleep, and play with the ball when the last one is found.

5.4.2 Function Documentation

5.4.2.1 Normal_clbk()

Callback for Normal State for subscribe to a Camera1: it checks if the ball is on the arena, if it is, a parameter (DetectedBall) becomes 1 and the robot goes to play, otherwise the parameter becomes 0 and the robot moves randomly.

Definition at line 97 of file state_machine.py.

```
97 def Normal_clbk(ros_data):
98
       global count2
99
100
        global DetectedBall
101
       global SearchBallSub
103
       while rospy.get_param('count2') == 360:
104
           time.sleep(1)
105
106
107
108
        np_arr = np.fromstring(ros_data.data, np.uint8)
109
        image_np = cv2.imdecode(np_arr, cv2.IMREAD_COLOR) # OpenCV >= 3.0:
110
        greenLower = (50, 50, 20)
111
        greenUpper = (70, 255, 255)
112
113
114
        blurred = cv2.GaussianBlur(image_np, (11, 11), 0)
115
        hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
116
        mask = cv2.inRange(hsv, greenLower, greenUpper)
117
        mask = cv2.erode(mask, None, iterations=2)
        mask = cv2.dilate(mask, None, iterations=2)
118
119
120
121
       cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
122
                                 cv2.CHAIN_APPROX_SIMPLE)
       cnts = imutils.grab_contours(cnts)
123
124
        center = None
125
126
127
128
129
130
       if len(cnts) > 0:
           c = max(cnts, key=cv2.contourArea)
131
            ((x, y), radius) = cv2.minEnclosingCircle(c)
132
133
           M = cv2.moments(c)
134
           center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
135
136
137
           if radius > 10:
138
139
140
                cv2.circle(image_np, (int(x), int(y)), int(radius),
141
                             (0, 255, 255), 2)
                cv2.circle(image_np, center, 5, (0, 0, 255), -1)
142
143
144
145
                rospy.set_param('DetectedBall',1)
146
147
148
       else:
149
           vel_ = Twist()
150
151
152
           vel_angular.z = 0.5
153
           vel_pub.publish(vel_)
           count2 = rospy.get_param('count2')
count2 = count2 + 1
154
155
           rospy.set_param('count2', count2)
156
157
158
159
160
        cv2.imshow('window', image_np)
161
        cv2.waitKey(2)
162
163
164
```

22 File Documentation

5.4.3 Variable Documentation

5.4.3.1 image_pub

```
state_machine.image_pub
```

Initial value:

Publisher.

Definition at line 90 of file state_machine.py.

Index

```
/home/sara/catkin_ws/src/exp_assignment2/scripts/go ←
          _to_point_ball.py, 17
/home/sara/catkin_ws/src/exp_assignment2/scripts/go ←
         _to_point_robot.py, 18
/home/sara/catkin\_ws/src/exp\_assignment2/scripts/move \hookleftarrow
          _ball_around.py, 19
/home/sara/catkin_ws/src/exp_assignment2/scripts/state ←
         _machine.py, 20
__init_
     robot to ball::image feature, 7
    state_machine::image_feature, 9
angle pub
    state machine::Play, 14
callback
     robot to ball::image feature, 8
    state_machine::image_feature, 10
command
    state_machine::Normal, 12
image_pub
    state_machine.py, 22
Normal_clbk
     state_machine.py, 20
robot_to_ball.image_feature, 7
robot_to_ball::image_feature
     __init__, 7
    callback, 8
state_machine.image_feature, 9
state_machine.Normal, 11
state_machine.Play, 13
state_machine.py
    image_pub, 22
    Normal_clbk, 20
state_machine.Sleep, 14
state_machine::Normal
    command, 12
state_machine::Play
     angle pub, 14
state_machine::image_feature
     __init___, 9
    callback, 10
```