Clúster y Computación Grid

Arquitecturas de Computador Distribuidas

Dept. Arquitectura de Computadores Universidad de Málaga

Curso 2016/2017

Definición de clúster de computación

- Un clúster es una tipo de arquitectura paralela distribuida que consiste de un conjunto de computadores independientes interconectados operando de forma conjunta como un único recurso computacional
 - Consta de nodos de computación, red de interconexión y sistema de almacenamiento
 - Uso de un cluster:
 - » Computación de alta prestaciones
 - Nodos de computación muy potentes unidos a través de una red de interconexión de alta velocidad: cluster para computación paralela
 - » Alta productividad
 - Incrementa el número de operaciones (procesos, transacciones, ...) ejecutadas por unidad de tiempo: clúster de base de datos, granja de servidores, ...
 - » Alta disponibilidad (gracias a la redundancia de componentes)
 - En caso de fallo, el clúster puede ser todavía operacional: Failover clúster

Evolución

Cluster of Workstations

Two Xeon processors per node (22 cores per processor)

Clúster con componentes modernos enracables

Arquitecturas Paralelas

Arquitecturas de memoria compartida

- Arquitectura de memoria compartida
 - Todos los procesadores del sistema pueden acceder <u>directamente</u> a todas las posiciones de memoria
 - Es decir, el espacio de memoria física es único y global

- Mecanismo de Comunicación
 - Implícito, como resultado de instrucciones de acceso a memoria (load/store)
 - La comunicación está integrada en el sistema de memoria

Arquitecturas de memoria compartida

- Symmetric Multiprocessor (SMP or UMA)
 - La latencia y ancho de banda a cualquier posición de memoria es a misma para todos los procesadores.
- Scalable Multiprocessor (NUMA y ccNUMA)
 - La latencia y ancho de banda depende de la zona de memoria a la que esté accediendo el procesador

Multiprocesadores UMA

- UMA: Uniform Memory Access
- Características
 - Los procesadores y módulos de memoria se conectan entre sí compartiendo la red de interconexión
 - Cuando la red es un bus común, se llaman multiprocesadores SMP (Symmetric MultiProcessor)
 - La red limita el ancho de banda de las comunicaciones, aunque el uso de caches privadas reducen el problema
 - Las caches privadas introducen el problema de la coherencia cache
 - El coste es reducido pero su escalabilidad es media o baja

UMA: AMD Opteron

UMA: Quad AMD Opteron Workstation

Multiprocesadores NUMA

- Los multiprocesadores UMA son poco escalables
 - La latencia de acceso a memoria es alta
 - Todo el tráfico debido a los fallos cache atraviesan la red
- Multiprocesadores escalables
 - Distribuyendo físicamente la memoria entre los procesadores permite que muchos fallos cache se resuelvan sin pasar por la red
 - Se llaman multiprocesadores NUMA (Non Uniform Memory Access) o ccNUMA (Cache Coherent NUMA)
 - El inconveniente es que la latencia de acceso a memoria es variable, y se requiere un distribución adecuada de los datos en las memorias locales
 - Las caches privadas introducen el problema de la coherencia cache, que puede evitarse (NUMA) o resolverse (ccNUMA)
 - El coste es alto y su escalabilidad es media (debido al tráfico extra en la red debido a la coherencia cache) o alta (si no hay coherencia hardware)

Problema de coherencia cache

- El uso de caches incrementa el rendimiento al reducir el acceso a la memoria principal del computador paralelo
- En el caso de arquitecturas de memoria compartida, todos los procesadores comparten el mismo espacio de direccionamiento.
 - Es posible que más de un procesador tenga en cache la misma dirección al mismo tiempo
- Si un procesador actualiza el contenido de esa dirección sin informar a los otros procesadores, se produce una inconsistencia de la memoria y la ejecución de una aplicación puede fallar

Multiprocesadores y coherencia

- Arquitecturas sin coherencia cache hardware
 - La memoria está distribuida físicamente entre los procesadores (NUMA)
 - Sólo los accesos a los módulos de memoria locales son cacheados
 - Ejemplos: IBM RP3, BBN Butterfly, Cray T3D/T3E, Cray T90, NEC SX-5
- Arquitecturas con coherencia cache hardware
 - Multiprocesadores con acceso uniforme a memoria (UMA)
 - » Coherencia cache snoopy (bus, crossbar)
 - » Bus común: Multiprocesador Simétrico (SMP)
 - Multiprocesadores con memoria distribuida (ccNUMA)
 - » Coherencia cache basada en directorios
 - Ejemplos: Cray T3E, HP Superdome y muchas configuraciones multisocket (Intel Xeon, AMD Opteron)

NUMA: Cray T3E

- Sucesor del Cray T3D, e introducido en 1996
 - Hasta 2048 600MHz procesadores Alpha 21164, a 600 MHz
 - Red toro 3D
 - Cada nodo tiene 256MB-2GB de memoria local DRAM
 - Instrucciones Load/Store sólo permiten acceso a la memoria física local
 - Sólo los accesos a memoria local pasan por la cache
 - Los accesos directos a memoria remota (get, put) pasan por los E-Registers

ccNUMA: HP 9000/Integrity Superdome

MT = Mega transfers

• Introducido en 2000

- Hasta 128 procesadores Itanium2 y 2TB de memoria
- Red multietapa basada en routers crossbar
- Coherencia cache hardware
- Actualizado en 2010: Superdome 2

NUMA: Intel Xeon

• Latencias en configuraciones multisocket

QPI link: enlace entre sockets

Pl	J	0	1	2	3
	0	136	194	198	201
	1	194	135	194	196
	2	201	194	135	200
	3	202	197	198	135

CPU 0 1 2 3

0 72 291 323 294

1 296 72 293 315

2 319 296 71 296

3 290 325 300 71

Accesos a memoria más uniformes

Más claramente NUMA: accesos locales muy rápidos.

Arquitecturas de memoria distribuida

- Arquitectura de memoria privada, o pase de mensajes
 - Los procesadores del sistema pueden acceder <u>directamente</u> sólo a las posiciones de memoria locales
 - Es decir, cada procesador tiene su propio espacio de memoria física privado

- Mecanismo de Comunicación
 - Operaciones SO explícitas (mensajes send / receive)
 - La comunicación está integrada en el sistema de E/S (interfaces de red)
- Dos tipos:
 - MPP (Massively Parallel Processing)
 - Clúster

Redes de interconexión

Hipercubes

Mesh 2D

Toroid 2D

Redes de interconexión

MPP: Sunway TaihuLight

- Rendimiento: 93 petaflops (Linpack bechmark)
- 40960 procesadores RISC de diseño específico
 - Cada uno con 256 cores de procesamiento y cuatro para manejo del sistema
- Interconexión jerárquica: nodos de computación, placa de computación, supernodos y armario

Cluster: Tianhe

Compute node

Compute Node

■ Neo-Heterogeneous Compute Node

- Similar ISA, different ALU
- ◆ 2 Intel Ivy Bridge CPU + 3 Intel Xeon Phi
- ◆ 16 Registered ECC DDR3 DIMMs, 64GB
- ◆ 3 PCI-E 3.0 with 16 lanes
- ◆ PDP Comm. Port
- **♦ Dual Gigabit LAN**
- Peak Perf.: 3.432Tflops

Cluster: Tianhe 2

Red de interconexión TH-Express 2

Interconnection network

■ TH Express-2 interconnection network

- ◆ Fat-tree topology using 13 576-port top level switches
- ◆Opto-electronic hybrid transport tech.
- Proprietary network protocol
- ◆ NRC +NIC

B 務 料 學 技 木 大 學
National University of Defense Technology

Rendimiento: 34 petaflops (Linpack benchmark)

Computadores más potentes

- TOP500: https://www.top500.org/
 - Lista de noviembre de 2016

