IMPORT REQUIRED PACKAGES(LIBRARIES)

```
In [1]: # !pip install pandas
        import pandas as pd
        # !pip install numpy
        import numpy as np
        # !pip install seaborn
        import seaborn as sns
        # !pip install matplotlib
        import matplotlib.pyplot as plt
        import warnings
        warnings.filterwarnings("ignore")
        # !pip install ipywidgets
        import ipywidgets as widgets
        from matplotlib.cm import get_cmap
```

IMPORT DATASET

Import dataset from google drive and assigned the dataset as "df" ---- It will take few minutes based on internet because its file size is large.

```
In [2]: URL = 'https://drive.google.com/file/d/1haTtjbR90YnbAGls8QVdREmHNmx1a5mQ/view?usp=sharing'
        path = 'https://drive.google.com/uc?export=download&id='+URL.split('/')[-2]
```

```
In [3]: | %%time
        print('*' * 127)
        print('WIND TURBINE GENERATOR PARAMETER DATASET')
        Master = pd.read csv(path,low memory = False, encoding = 'cp1252', parse dates=['Date'], skipinitialspace=True)
        print('*' * 127)
```

WIND TURBINE GENERATOR PARAMETER DATASET

***** Wall time: 15.5 s

In [4]: |df = Master

EXPLORATORY DATA ANALYSIS

CONFIRM THE DATA TRANSFER FROM GOOGLE DRIVE TO NOTEBOOK

```
In [5]: print('First Five Records of the Dataset')
        df.head() # As default shows the top 5 Rows.
```

First Five Records of the Dataset

Out[5]:

_	Date	Avg_Active_Power	Avg_Ambient_Temp	Avg_Generator_Speed	Avg_Nacelle_Pos	Avg_Pitch_Angle	Avg_Rotor_Speed	Avg_Wind_Speed	Bea
	0 2016- 08-01	1487.3	25.1	1654.9	138.0	0.03	15.5	9.3	
	2016- 08-01	1647.6	25.1	1677.8	138.0	-0.31	15.7	9.3	
	2016- 08-01	1506.4	25.2	1661.4	138.0	-0.48	15.6	9.0	
	3 2016- 08-01	1240.9	25.1	1601.4	138.0	-0.56	15.0	8.3	
	2016- 08-01	1202.4	25.1	1607.1	138.0	-0.73	15.1	8.5	

5 rows × 21 columns

localhost:8888/notebooks/Documents/PGA-Imarticus/CApStone Project/ML/2. EDA %26 Visualization.ipynb

```
In [6]: print('Last Five Records of the Dataset')
df.tail() # As default shows the Last 5 Rows.
```

Last Five Records of the Dataset

Out[6]:

	Date	Avg_Active_Power	Avg_Ambient_Temp	Avg_Generator_Speed	Avg_Nacelle_Pos	Avg_Pitch_Angle	Avg_Rotor_Speed	Avg_Wind_Speed
245194	2021- 04-30	205.1	32.2	1051.2	1.0	1.24	9.9	4.7
245195	2021- 04-30	208.4	32.1	1063.5	1.0	1.33	10.0	4.7
245196	2021- 04-30	228.0	31.8	1074.9	355.7	1.32	10.1	5.2
245197	2021- 04-30	355.1	31.7	1106.6	354.0	0.17	10.4	5.7
245198	2021- 04-30	374.3	31.6	1119.2	0.0	0.12	10.5	5.9
5 rows ×	21 col	umns						

Check for the Shape

```
In [7]: print("The Data Frame having the Rows of '{}' and Columns of '{}'".format (df.shape[0],df.shape[1]))
```

The Data Frame having the Rows of '245199' and Columns of '21'

Check for the Detailed Information of the Dataset

```
In [8]: print('Total_Columns: ', len(df.columns),'\n')
print(df.columns,'\n')
print('Shape :',df.shape)
```

```
Total_Columns: 21
```

Shape: (245199, 21)

In [10]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 245199 entries, 0 to 245198
Data columns (total 21 columns):
```

```
Column
                                       Non-Null Count Dtype
0
    Date
                                       245199 non-null datetime64[ns]
                                       236405 non-null float64
    Avg_Active_Power
   Avg_Ambient_Temp
                                       236405 non-null float64
                                       236405 non-null float64
   Avg_Generator_Speed
    Avg_Nacelle_Pos
                                       236395 non-null float64
    Avg_Pitch_Angle
                                       236405 non-null float64
    Avg_Rotor_Speed
                                       236405 non-null float64
 7
    Avg_Wind_Speed
                                       236405 non-null float64
    Bearing_DE_Temp
 8
                                       236405 non-null float64
 9
    Bearing_NDE_Temp
                                       236404 non-null float64
                                       236405 non-null float64
10 Gearbox_bearing_Temp
 11 Gearbox_oil_Temp
                                       236405 non-null float64
 12 Generator_wind_Temp_1
                                       236402 non-null float64
 13 Generator wind Temp 2
                                       236402 non-null float64
                                       236402 non-null float64
 14 Generator_wind_Temp_3
                                       236402 non-null float64
 15 Generators sliprings Temp
 16 Hidraulic_group_pressure
                                       236405 non-null float64
                                       236405 non-null float64
 17 Nacelle_Misalignment_Avg_Wind_Dir
 18 Trafo_1_wind_Temp
                                       236402 non-null float64
                                       236401 non-null float64
 19 Trafo_2_wind_Temp
                                       236401 non-null float64
 20 Trafo_3_wind_Temp
dtypes: datetime64[ns](1), float64(20)
memory usage: 39.3 MB
```

CHANGE THE DATA TYPE

```
In [11]: | df['Date'] = pd.to_datetime(df['Date'], errors='coerce')
          Displays memory consumed by each column
In [12]: |print(df.memory_usage(),'\n')
         print('Dataset uses {0} MB'.format(df.memory_usage().sum()/1024**2))
         Index
                                                  128
         Date
                                              1961592
         Avg_Active_Power
                                              1961592
         Avg_Ambient_Temp
                                              1961592
         Avg_Generator_Speed
                                              1961592
         Avg_Nacelle_Pos
                                              1961592
         Avg_Pitch_Angle
                                              1961592
         Avg_Rotor_Speed
                                              1961592
         Avg_Wind_Speed
                                              1961592
         Bearing_DE_Temp
                                              1961592
         Bearing_NDE_Temp
                                              1961592
         Gearbox_bearing_Temp
                                              1961592
         Gearbox_oil_Temp
                                              1961592
         Generator_wind_Temp_1
                                              1961592
         Generator_wind_Temp_2
                                              1961592
         Generator_wind_Temp_3
                                              1961592
         Generators_sliprings_Temp
                                              1961592
         Hidraulic_group_pressure
                                              1961592
         Nacelle_Misalignment_Avg_Wind_Dir
                                              1961592
         Trafo_1_wind_Temp
                                              1961592
         Trafo_2_wind_Temp
                                              1961592
         Trafo_3_wind_Temp
                                              1961592
         dtype: int64
         Dataset uses 39.285240173339844 MB
In [13]: | df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 245199 entries, 0 to 245198
         Data columns (total 21 columns):
             Column
                                                 Non-Null Count Dtype
             -----
         ---
                                                 -----
          0
              Date
                                                 245199 non-null datetime64[ns]
                                                 236405 non-null float64
          1
              Avg_Active_Power
          2
              Avg_Ambient_Temp
                                                 236405 non-null float64
              Avg_Generator_Speed
                                                 236405 non-null float64
          3
          4
              Avg_Nacelle_Pos
                                                 236395 non-null float64
                                                 236405 non-null float64
          5
              Avg_Pitch_Angle
```

Avg_Rotor_Speed 236405 non-null float64 6 7 Avg_Wind_Speed 236405 non-null float64 8 Bearing_DE_Temp 236405 non-null float64 236404 non-null float64 9 Bearing_NDE_Temp 236405 non-null float64 10 Gearbox_bearing_Temp 11 Gearbox_oil_Temp 236405 non-null float64 12 Generator_wind_Temp_1 236402 non-null float64 236402 non-null float64 13 Generator_wind_Temp_2 236402 non-null float64 14 Generator_wind_Temp_3 236402 non-null float64 15 Generators_sliprings_Temp 16 Hidraulic_group_pressure 236405 non-null float64 17 Nacelle_Misalignment_Avg_Wind_Dir 236405 non-null float64 18 Trafo_1_wind_Temp 236402 non-null float64 19 Trafo_2_wind_Temp 236401 non-null float64 20 Trafo_3_wind_Temp 236401 non-null float64 dtypes: datetime64[ns](1), float64(20) memory usage: 39.3 MB

CHECK FOR NULL VALUES

```
In [14]: | df.isnull().sum()
Out[14]: Date
                                                   0
                                                8794
          Avg_Active_Power
         Avg_Ambient_Temp
                                                8794
         Avg_Generator_Speed
                                                8794
         Avg_Nacelle_Pos
                                                8804
         Avg_Pitch_Angle
                                                8794
                                                8794
         Avg_Rotor_Speed
         Avg_Wind_Speed
                                                8794
         Bearing_DE_Temp
                                                8794
         Bearing_NDE_Temp
                                                8795
         Gearbox_bearing_Temp
                                                8794
         Gearbox_oil_Temp
                                                8794
         Generator_wind_Temp_1
                                                8797
                                                8797
         Generator_wind_Temp_2
         Generator_wind_Temp_3
                                                8797
                                                8797
         Generators_sliprings_Temp
         Hidraulic_group_pressure
                                                8794
         Nacelle_Misalignment_Avg_Wind_Dir
                                                8794
                                                8797
         Trafo_1_wind_Temp
                                                8798
         Trafo_2_wind_Temp
         Trafo_3_wind_Temp
                                                8798
         dtype: int64
```

NULL VALUE COUNTS PLOT BEFORE TREATMENT

```
In [15]: name = "Dark2"
    cmap = get_cmap(name)
    colors = cmap.colors
    x = df.columns
    y = df.isnull().sum()
    plt.bar(x,y,color = colors, align = 'center')
    plt.xticks(rotation=90)
    plt.title('Barplot_Null Value_Count', fontsize = 15)
    plt.subplots_adjust(left=0.4, bottom=0.1, right=2.3, top=1.3)
    for i in range(len(x)):
        pos = y[i]
        string = '{:}'.format(pos)
        plt.text(i,pos,string,ha='left',color='black',rotation = 'vertical', va = 'top')
```


NULL VALUE TREATMENT

Every parameter of the Wind Turbine is a Numerical Variable. So, to avoid any Outliers effect on variables. I am doing Null values treatment with its Median.

NULL VALUE COUNTS PLOT AFTER TREATMENT

```
In [17]:
    name = "Dark2"
    cmap = get_cmap(name)
    colors = cmap.colors
    x = df.columns
    y = df.isnull().sum()
    plt.bar(x,y,color = colors, align = 'center')
    plt.xticks(rotation=90)
    plt.title('Barplot_Null Value_Count', fontsize = 15)
    plt.subplots_adjust(left=0.4, bottom=0.1, right=2.3, top=1.3)
    for i in range(len(x)):
        pos = y[i]
        string = '{:}'.format(pos)
        plt.text(i,pos,string,ha='left',color='black',rotation = 'vertical', va = 'top')
```


Statistical Information :

In [18]: df.describe()

Out[18]:

	Avg_Active_Power	Avg_Ambient_Temp	Avg_Generator_Speed	Avg_Nacelle_Pos	Avg_Pitch_Angle	Avg_Rotor_Speed	Avg_Wind_Speed	Bearir
count	245199.000000	245199.000000	245199.00000	245199.000000	245199.000000	245199.000000	245199.000000	24
mean	499.378702	27.357988	1090.59523	160.795747	9.678610	10.239833	5.853972	
std	551.593183	4.459187	439.39702	97.220176	23.826089	4.121497	2.518097	
min	-17.300000	-14.300000	-18.10000	0.000000	-1.010000	0.000000	0.100000	
25%	84.600000	25.200000	1049.90000	83.000000	0.000000	9.800000	4.100000	
50%	305.900000	27.200000	1081.70000	165.400000	0.710000	10.200000	5.600000	
75%	707.950000	29.600000	1392.60000	203.000000	2.840000	13.100000	7.300000	
max	2019.900000	38.700000	1689.70000	360.000000	87.100000	15.900000	24.700000	

CHECK FOR OUTLIER VALUES USING BOX PLOTS

```
In [19]: plt.subplot(8,2,1)
         sns.boxplot(df.iloc[:,1], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,1].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,1].skew(),2)), fontsize = 10)
         plt.subplot(8,2,2)
         sns.boxplot(df.iloc[:,2], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,2].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,2].skew(),2)), fontsize = 10)
         plt.subplot(8,2,3)
         sns.boxplot(df.iloc[:,3], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,3].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,3].skew(),2)), fontsize = 10)
         plt.subplot(8,2,4)
         sns.boxplot(df.iloc[:,4], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,4].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,4].skew(),2)), fontsize = 10)
         plt.subplot(8,2,5)
         sns.boxplot(df.iloc[:,5], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,5].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,5].skew(),2)), fontsize = 10)
         plt.subplot(8,2,6)
         sns.boxplot(df.iloc[:,6], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,6].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,6].skew(),2)), fontsize = 10)
         plt.subplot(8,2,7)
         sns.boxplot(df.iloc[:,7], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,7].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,7].skew(),2)), fontsize = 10)
         plt.subplot(8,2,8)
         sns.boxplot(df.iloc[:,8], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,8].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,8].skew(),2)), fontsize = 10)
         plt.subplot(8,2,9)
         sns.boxplot(df.iloc[:,9], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,9].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,9].skew(),2)), fontsize = 10)
         plt.subplot(8,2,10)
         sns.boxplot(df.iloc[:,10], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,10].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,10].skew(),2)), fontsize = 10)
         plt.subplots_adjust(left=0.45, bottom=0, right=2.5, top=4.9)
```



```
In [20]: plt.subplot(8,2,1)
         sns.boxplot(df.iloc[:,11], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,11].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,11].skew(),2)), fontsize = 10)
         plt.subplot(8,2,2)
         sns.boxplot(df.iloc[:,12], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,12].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,12].skew(),2)), fontsize = 10)
         plt.subplot(8,2,3)
         sns.boxplot(df.iloc[:,13], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,13].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,13].skew(),2)), fontsize = 10)
         plt.subplot(8,2,4)
         sns.boxplot(df.iloc[:,14], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,14].name +'_(Found Outliers)_Skew_' + str(round(df.iloc[:,14].skew(),2)), fontsize = 10
         plt.subplot(8,2,5)
         sns.boxplot(df.iloc[:,15], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,15].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,15].skew(),2)), fontsize = 10)
         plt.subplot(8,2,6)
         sns.boxplot(df.iloc[:,16], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,16].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,16].skew(),2)), fontsize = 10)
         plt.subplot(8,2,7)
         sns.boxplot(df.iloc[:,17], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,17].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,17].skew(),2)), fontsize = 10)
         plt.subplot(8,2,8)
         sns.boxplot(df.iloc[:,18], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,18].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,18].skew(),2)), fontsize = 10)
         plt.subplot(8,2,9)
         sns.boxplot(df.iloc[:,19], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,19].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,19].skew(),2)), fontsize = 10)
         plt.subplot(8,2,10)
         sns.boxplot(df.iloc[:,20], color = 'green')
         plt.xlabel("")
         plt.title('Boxplot_ '+ df.iloc[:,20].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,20].skew(),2)), fontsize = 10)
         plt.subplots_adjust(left=0.45, bottom=0, right=2.5, top=4.9)
```


From above box plots i found that the data is almost not having the outliers except one variable that is Generat or Winding Temperature-3. So, we need Outliers Treatment as using Quantiles.

Check for the Quartile Ranges

```
In [21]: print('Lower Limit - 5% :', df.iloc[:,14].quantile(0.05), '\n Upper Limit - 95% :', df.iloc[:,14].quantile(0.95))
         Lower Limit - 5% : 51.8
          Upper Limit - 95% : 105.3
          Replace the Outliers with its Quartile ranges
In [22]: |df.iloc[:,14] = np.where(df.iloc[:,14] < df.iloc[:,14].quantile(0.05), df.iloc[:,14].quantile(0.05), df.iloc[:,14].
         df.iloc[:,14].describe()
Out[22]: count
                  245199.000000
         mean
                      71.662278
         std
                      14.424620
         min
                      51.800000
         25%
                      63.400000
         50%
                      68.800000
         75%
                      75.500000
                     140.400000
         max
         Name: Generator_wind_Temp_3, dtype: float64
```

Box Plot and Histogram plot for re-checking the Outliers

```
In [23]: plt.subplot(1,2,1)
    sns.boxplot(df.iloc[:,14], color = 'green')
    plt.xlabel(df.iloc[:,14].name, fontsize = 10)
    plt.title('Boxplot_ '+ df.iloc[:,14].name +'_(No Outliers)_Skew_' + str(round(df.iloc[:,14].skew(),2)), fontsize = 10)
    plt.subplot(1,2,2)
    plt.hist(df.iloc[:,14], color = 'orange')
    plt.xlabel(df.iloc[:,14].name, fontsize = 10)
    plt.title('Histogram_ '+ df.iloc[:,14].name, fontsize = 10)
    plt.subplots_adjust(left=0.4, bottom=0.1, right=2.2, top=1.2)
```



```
In [24]: df.to_csv('Cleaned_df.csv')
```

VISUALIZATION

POWER CURVE - Average Wind Speed Vs Average Actvie Power

```
In [26]: Scatter_Plot(df.iloc[:,7],df.iloc[:,1], 8, 'green')
```


Average Generator Speed Vs Average Actvie Power

```
In [27]: Scatter_Plot(df.iloc[:,3],df.iloc[:,1], 8, 'green')
```


Average Generator Speed Vs Average Wind Speed

In [28]: Scatter_Plot(df.iloc[:,7],df.iloc[:,3], 8, 'green')

Average Pitch Angle Vs Average Generator Speed

In [29]: Scatter_Plot(df.iloc[:,5],df.iloc[:,3], 8, 'green')

Average Pitch Angle Vs Average Wind Speed

In [30]: Scatter_Plot(df.iloc[:,7],df.iloc[:,5], 8, 'green')

Average Wind Speed Vs Average Rotor Speed

In [31]: Scatter_Plot(df.iloc[:,7],df.iloc[:,6], 8, 'green')

All Temperature Parameters Vs Active Power

```
In [32]: # line 1 points
         x1 = df.iloc[:,1]
         y1 = df.iloc[:,8]
         z1 = np.polyfit(x1, y1, 1)
         p1 = np.poly1d(z1)
         plt.plot(x1,p1(x1),"r-.", label = df.iloc[:,8].name.upper())
         # line 2 points
         x2 = df.iloc[:,1]
         y2 = df.iloc[:,9]
         z2 = np.polyfit(x2, y2, 1)
         p2 = np.poly1d(z2)
         plt.plot(x2,p2(x2),"b-.",label = df.iloc[:,9].name.upper())
         # line 3 points
         x3 = df.iloc[:,1]
         y3 = df.iloc[:,2]
         z3 = np.polyfit(x3, y3, 1)
         p3 = np.poly1d(z3)
         plt.plot(x3,p3(x3),"g--", label = df.iloc[:,2].name.upper())
         # line 4 points
         x4 = df.iloc[:,1]
         y4 = df.iloc[:,10]
         z4 = np.polyfit(x4, y4, 1)
         p4 = np.poly1d(z4)
         plt.plot(x4,p4(x4),"c--",label = df.iloc[:,10].name.upper())
         # line 5 points
         x5 = df.iloc[:,1]
         y5 = df.iloc[:,11]
         z5 = np.polyfit(x5, y5, 1)
         p5 = np.poly1d(z5)
         plt.plot(x5,p5(x5),"m--", label = df.iloc[:,11].name.upper())
         # line 6 points
         x6 = df.iloc[:,1]
         y6 = df.iloc[:,12]
         z6 = np.polyfit(x6, y6, 1)
         p6 = np.poly1d(z6)
         plt.plot(x6,p6(x6),"r_",label = df.iloc[:,12].name.upper())
         # line 7 points
         x7 = df.iloc[:,1]
         y7 = df.iloc[:,13]
         z7 = np.polyfit(x7, y7, 1)
         p7 = np.poly1d(z7)
         plt.plot(x7,p7(x7),"y_",label = df.iloc[:,13].name.upper())
         # line 8 points
         x8 = df.iloc[:,1]
         y8 = df.iloc[:,14]
         z8 = np.polyfit(x8, y8, 1)
         p8 = np.poly1d(z8)
         plt.plot(x8,p8(x8),"b_",label = df.iloc[:,14].name.upper())
         # line 9 points
         x9 = df.iloc[:,1]
         z9 = np.polyfit(x9, y9, 1)
         p9 = np.poly1d(z9)
         plt.plot(x9,p9(x9),"g:",label = df.iloc[:,15].name.upper())
         # line 10 points
         x10 = df.iloc[:,1]
         y10 = df.iloc[:,18]
         z10 = np.polyfit(x10, y10, 1)
         p10 = np.polv1d(z10)
         plt.plot(x10,p10(x10),"r:",label = df.iloc[:,18].name.upper())
         # line 11 points
         x11 = df.iloc[:,1]
         y11 = df.iloc[:,19]
         z11 = np.polyfit(x11, y11, 1)
         p11 = np.poly1d(z11)
         plt.plot(x11,p11(x11),"y:",label = df.iloc[:,19].name.upper())
```

```
# line 12 points
x12 = df.iloc[:,1]
y12 = df.iloc[:,20]
z12 = np.polyfit(x12, y12, 1)
p12 = np.poly1d(z12)
plt.plot(x12,p12(x12),"b:",label = df.iloc[:,20].name.upper())
# Set the y & x axis label of the current axis.
plt.ylabel('Wind Turbine all Temperatures', fontsize = 15)
plt.xlabel('Average Active Power', fontsize = 15)
# Set a title of the current axes.
plt.title('Temperatures with respect to Active Power', fontsize = 20)
# show a legend on the plot
plt.legend()
# Display a figure.
plt.subplots_adjust(left=0.5, bottom=0, right=2.4, top=1.5)
plt.show()
```


ACTIVE POWER TREND DURING A TIME PERIOD

```
In [33]:    pf1 = df[['Date','Avg_Active_Power']]
    pf1 = pf1.set_index('Date')
    y1 = pf1['Avg_Active_Power'].resample('D').mean()
    y1 = y1.fillna(y1.mean())
    plt.figure(figsize=(15,6))
    plt.plot(y1)
    plt.title('Time Variant Plot for Avg_Active Power')
    plt.xlabel("Time in Days")
    plt.ylabel("Avg_Active_Power")
    plt.show()
```


WIND SPEED TREND OVER A TIME PERIOD

```
In [34]: pf2 = df[['Date','Avg_Wind_Speed']]
    pf2 = pf2.set_index('Date')
    y2 = pf2['Avg_Wind_Speed'].resample('D').mean()
    y2 = y2.fillna(y2.mean())
    plt.figure(figsize=(15,6))
    plt.plot(y2)
    plt.title('Time Variant Plot for Avg_Wind_Speed')
    plt.xlabel("Time in Days")
    plt.ylabel("Avg_Wind_Speed")
    plt.show()
```


WIND ROSE PLOTS

In [35]: pf3 = df[['Avg_Wind_Speed', 'Avg_Nacelle_Pos','Nacelle_Misalignment_Avg_Wind_Dir', 'Avg_Active_Power']]
pf3

Out[35]:

	Avg_Wind_Speed	Avg_Nacelle_Pos	Nacelle_Misalignment_Avg_Wind_Dir	Avg_Active_Power
0	9.3	138.0	357.0	1487.3
1	9.3	138.0	356.9	1647.6
2	9.0	138.0	356.5	1506.4
3	8.3	138.0	356.5	1240.9
4	8.5	138.0	356.2	1202.4
245194	4.7	1.0	0.6	205.1
245195	4.7	1.0	3.9	208.4
245196	5.2	355.7	355.1	228.0
245197	5.7	354.0	3.8	355.1
245198	5.9	0.0	2.6	374.3

245199 rows × 4 columns

```
In [36]: pf3['Direction'] = np.where((pf3['Avg_Nacelle_Pos']>337.5) & (pf3['Avg_Nacelle_Pos']<=22.5), "ON", "ON")

pf3['Direction'] = np.where((pf3['Avg_Nacelle_Pos']>22.5) & (pf3['Avg_Nacelle_Pos']<=67.5), "1NE", pf3['Direction'])

pf3['Direction'] = np.where((pf3['Avg_Nacelle_Pos']>67.5) & (pf3['Avg_Nacelle_Pos']<=112.5), "2E", pf3['Direction'])

pf3['Direction'] = np.where((pf3['Avg_Nacelle_Pos']>112.5) & (pf3['Avg_Nacelle_Pos']<=157.7), "3SE", pf3['Direction'])

pf3['Direction'] = np.where((pf3['Avg_Nacelle_Pos']>157.7) & (pf3['Avg_Nacelle_Pos']<=202.5), "4S", pf3['Direction'])

pf3['Direction'] = np.where((pf3['Avg_Nacelle_Pos']>202.5) & (pf3['Avg_Nacelle_Pos']<=247.5), "5SW", pf3['Direction'])

pf3['Direction'] = np.where((pf3['Avg_Nacelle_Pos']>247.5) & (pf3['Avg_Nacelle_Pos']<=292.5), "6W", pf3['Direction'])

pf3['Direction'] = np.where((pf3['Avg_Nacelle_Pos']>292.5) & (pf3['Avg_Nacelle_Pos']<=337.5), "7NW", pf3['Direction'])</pre>
```

156.757856

198.279020

```
In [37]: pf4 = pf3.groupby('Direction').mean()
pf4
```

Out[37]:

	Avg_Wind_Speed	Avg_Nacelle_Pos	Nacelle_Misalignment_Avg_Wind_Dir	Avg_Active_Power
Direction				
0N	5.329365	152.206170	165.683403	302.621934
1NE	4.756077	44.900122	163.068175	255.076733
2E	4.908596	88.145161	164.629859	291.300842
3SE	6.365296	140.367936	150.401662	653.891086
48	7.220002	176.387014	161.040035	798.247221
5SW	5.285135	219.814881	187.714309	439.715250
6W	3.880825	268.179053	169.902159	156.240819

319.378438

NACELLE POSITION AS PER WIND DIRECTION

4.361006

7NW

WIND ROSE PLOT ON NACELLE POSITION AS PER DIRECTION

AVERAGE WIND DIRECTION

WIND ROSE PLOT ON AVERAGE WIND DIRECTION

AVERAGE NACELLE MISALIGNMENT WITH RESPECT TO WIND DIRECTION

AVERAGE NACELLE MISALIGNMENT WITH RESPECT TO WIND DIRECTION

CORRELATION PLOT

```
In [41]: sns.heatmap(df.corr(), annot = True)
plt.subplots_adjust(left=0.8, bottom=0, right=2.8, top=1.8)
plt.show()
```


Thank You....