# **Markov Decision Processes**

Chen-Yu Wei

# **Sequence of Actions**



To win the game, the learner has to take a sequence of actions  $a_1 \rightarrow a_2 \rightarrow \cdots \rightarrow a_H$ . The effect of a particular action may not be revealed instantaneously.

- Some effect may be revealed instantaneously
- Some may be revealed later

# **Sequence of Actions**



(a summary of the current status in a multi-stage game)

# Interaction Protocol (Episodic Setting)

### For **episode** t = 1, 2, ..., T:

$$h \leftarrow 1$$

Environment generates initial state  $s_{t,1}$ 

While episode *t* has not ended:

Learner chooses an action  $a_{t,h}$ 

Learner observes instantaneous reward  $r_{t,h}$  with  $\mathbb{E}[r_{t,h}] = R(s_{t,h}, a_{t,h})$ 

Environment generates next state  $s_{t,h+1} \sim P(\cdot \mid s_{t,h}, a_{t,h})$ 

$$h \leftarrow h + 1$$

Goal: maximize

$$\sum_{t=1}^{\infty} \sum_{h=1}^{\infty} R(s_{t,h}, a_{t,h})$$

### **Markov assumption:**

 $r_{t,h}$  and  $s_{t,h+1}$  are conditionally independent of  $(s_{t,1}, a_{t,1}, ..., s_{t,h-1}, a_{t,h-1})$  given  $s_{t,h}$ 

It: longth of episode t

## From Observations to States



Stacking recent observations

Recurrent neural network

Hidden Markov model

# Regret (Episodic Setting)

$$z^*: S \rightarrow A$$

Regret = 
$$\max_{\pi^{\star}} \mathbb{E}^{\pi^{\star}} \left[ \sum_{t=1}^{T} \sum_{h=1}^{\tilde{\tau}_{t}} R(\tilde{s}_{t,h}, \pi^{\star}(\tilde{s}_{t,h})) \right] - \sum_{t=1}^{T} \sum_{h=1}^{\tilde{\tau}_{t}} R(s_{t,h}, a_{t,h})$$
Benchmark
$$\sum_{t=1}^{T} R(x_{t}, x_{t}) - \sum_{t=1}^{T} R(x_{t}, x_{t})$$

# **Example: Racing**

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward



# **Example: Racing**

| S | a     | s' | P(s' s,a) | R(s,a) |
|---|-------|----|-----------|--------|
|   | Slow  |    | 1.0       | +1     |
|   | Fast  |    | 0.5       | +2     |
|   | Fast  |    | 0.5       | +2     |
|   | Slow  |    | 0.5       | +1     |
|   | Slow  |    | 0.5       | +1     |
|   | Fast  |    | 1.0       | -10    |
|   | (end) |    | 1.0       | 0      |



### **Formulations**

- Interaction Protocol
  - Fixed-Horizon
  - Variable-Horizon (Goal-Oriented)
  - Infinite-Horizon
- Performance Metric
  - Total Reward
  - Average Reward
  - Discounted Reward
- Policy
  - Markov policy
  - Stationary policy

Horizon = Length of an episode

# Interaction Protocols (1/3): Fixed-Horizon

Horizon length is a fixed number *H* 

```
h \leftarrow 1
```

Observe initial state  $s_1 \sim \rho$ 

### While $h \leq H$ :

Choose action  $a_h$ 

Observe reward  $r_h$  with  $\mathbb{E}[r_h] = R(s_h, a_h)$ 

Observe next state  $s_{h+1} \sim P(\cdot | s_h, a_h)$ 

Examples: games with a fixed number of time

# Interaction Protocols (2/3): Goal-Oriented

The learner interacts with the environment until reaching **terminal states**  $\mathcal{T} \subset \mathcal{S}$ 

```
h \leftarrow 1
Observe initial state s_1 \sim \rho
While s_h \notin \mathcal{T}:
Choose action a_h
Observe reward r_h with \mathbb{E}[r_h] = R(s_h, a_h)
Observe next state s_{h+1} \sim P(\cdot | s_h, a_h)
h \leftarrow h + 1
```

**Examples:** video games, robotics tasks, personalized recommendations, etc.

# Interaction Protocols (3/3): Infinite-Horizon

The learner continuously interacts with the environment

```
h \leftarrow 1
Observe initial state s_1 \sim \rho
Loop forever:
Choose action a_h
Observe reward r_h with \mathbb{E}[r_h] = R(s_h, a_h)
Observe next state s_{h+1} \sim P(\cdot | s_h, a_h)
h \leftarrow h + 1
```

**Examples:** network management, inventory management

### **Formulations**

- Interaction Protocol
  - Fixed-Horizon
  - Variable-Horizon (Goal-Oriented)
  - Infinite-Horizon
- Performance Metric
  - Total Reward
  - Average Reward
  - Discounted Reward
- Policy
  - Markov policy
  - Stationary policy

### **Performance Metric**

**Total Reward** (for episodic setting): 
$$\sum_{h=1}^{\infty} r_h$$
 ( $\tau$ : the step where the episode ends)

$$\sum_{h=1}^{\tau} r_h$$

Average Reward (for infinite-horizon setting):

$$\lim_{H\to\infty}\frac{1}{H}\sum_{h=1}^H r_h$$

**Discounted Total Reward** (for episodic or infinite-horizon):  $\sum_{h=0}^{\infty} \gamma^{h-1} r_h$ 

$$\sum_{h=1}^{\tau} \gamma^{h-1} r_h$$

 $\tau$ : the step where the episode ends, or  $\infty$  in the infinite-horizon case

 $\gamma \in [0,1)$ : discount factor

### Interaction Protocols vs. Performance Metrics



### **Discounted Total Reward?**

Focusing more on the **recent** reward

There is a potential mismatch between our ultimate goal and what we optimized.

### **Formulations**

- Interaction Protocol
  - Fixed-Horizon
  - Variable-Horizon (Goal-Oriented)
  - Infinite-Horizon
- Performance Metric
  - Total Reward
  - Average Reward
  - Discounted Reward
- Policy
  - Markov policy
  - Stationary policy

# Policy for MDPs

### Markov Policy

$$a_h \sim \pi_h(\cdot \mid s_h)$$

$$a_h = \pi_h(s_h) \quad \longleftarrow$$

For **fixed-horizon** setting, there exists an optimal policy in this class

### **Stationary Policy**

$$a_h \sim \pi(\cdot \mid s_h)$$
 $a_h = \pi(s_h)$ 

 $a_h = \pi(s_h)$  For infinite-horizon/goal-oriented settings, there exists an optimal policy in this class

# A stationary policy specifies $\pi(\operatorname{Slow} | \operatorname{Cool})$ $\pi(\operatorname{Fast} | \operatorname{Cool})$ $\pi(\operatorname{Slow} | \operatorname{Warm})$ $\pi(\operatorname{Fast} | \operatorname{Warm})$

```
A Markov policy specifies \pi_h(\operatorname{Slow} | \operatorname{Cool}) \pi_h(\operatorname{Fast} | \operatorname{Cool}) \pi_h(\operatorname{Slow} | \operatorname{Warm}) \pi_h(\operatorname{Fast} | \operatorname{Warm}) \forall h
```



# **Value Iteration**

(Fixed-Horizon)

### **Two Tasks**

**Policy Evaluation:** Calculate the expected total reward of a given policy

What is the expected total reward for the policy  $\pi(\text{cool}) = \text{fast}$ ,  $\pi(\text{warm}) = \text{slow}$ ?

Policy Optimization: Find the best policy

What is the policy that achieves the highest policy expected total reward?



# Value Iteration for Policy Evaluation



State transition: P(s'|s,a)

Reward: R(s, a)

$$Q_h^{\pi}(s,a) = \mathbb{E}^{\pi} \left[ \sum_{k=h}^{H} R(s_k, a_k) \mid (s_h, a_h) = (s, a) \right]$$

$$V_h^{\pi}(s) = \mathbb{E}^{\pi} \left[ \sum_{k=h}^{H} R(s_k, a_k) \middle| s_h = s \right]$$

### **Backward induction:**

$$V_{H+1}^{\pi}(s) = 0 \qquad \forall s$$

For  $h = H, \dots 1$ : for all s, a

$$Q_h^{\pi}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s')$$

Expected total reward from step h + 1

$$V_h^{\pi}(s) = \sum_{a} \pi_h(a|s) Q_h^{\pi}(s,a)$$

# **Bellman Equation**

$$Q_h^{\pi}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s')$$

$$V_h^{\pi}(s) = \sum_a \pi_h(a|s) Q_h^{\pi}(s,a)$$

or

$$Q_h^{\pi}(s,a) = R(s,a) + \sum_{s',a'} P(s'|s,a) \, \pi_{h+1}(a'|s') Q_{h+1}^{\pi}(s',a')$$

or 
$$V_h^{\pi}(s) = \sum_{a} \pi_h(a|s) \left( R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\pi}(s') \right)$$

# Value Iteration for Policy Optimization



State transition: P(s'|s,a)

Reward: R(s, a)

$$Q_h^{\star}(s,a) = \max_{\pi} \mathbb{E}^{\pi} \left[ \sum_{k=h}^{H} R(s_k, a_k) \middle| (s_h, a_h) = (s, a) \right]$$

$$V_h^{\star}(s) = \max_{\pi} \mathbb{E}^{\pi} \left[ \sum_{k=h}^{H} R(s_k, a_k) \mid s_h = s \right]$$

### **Backward induction:**

$$V_{H+1}^{\star}(s) = 0 \quad \forall s$$

For  $h = H, \dots 1$ : for all s, a

$$Q_h^{\star}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) V_{h+1}^{\star}(s')$$

Expected total reward from step h + 1

$$V_h^{\star}(s) = \max_{a} Q_h^{\star}(s, a)$$
  $\pi_h^{\star}(s) = \underset{a}{\operatorname{argmax}} Q_h^{\star}(s, a)$ 

# **Bellman Optimality Equation** $\pi_h^*(s) = \operatorname{argmax} Q_h^*(s, a)$

$$\pi_h^{\star}(s) = \underset{a}{\operatorname{argmax}} \ Q_h^{\star}(s, a)$$

$$Q_h^{\star}(s, a) = R(s, a) + \sum_{s'} P(s'|s, a) V_{h+1}^{\star}(s')$$

$$V_h^{\star}(s) = \max_{a} Q_h^{\star}(s, a)$$

$$Q_h^{\star}(s,a) = R(s,a) + \sum_{s'} P(s'|s,a) \left( \max_{a'} Q_{h+1}^{\star}(s',a') \right)$$

or 
$$V_h^*(s) = \max_a \left( R(s, a) + \sum_{s'} P(s'|s, a) V_{h+1}^*(s') \right)$$

# **Value Iteration**

(Infinite-Horizon)

# Value Iteration for Policy Evaluation



weight 1  $\gamma$   $\gamma^2$ 

State transition: P(s'|s,a)

Reward: R(s,a)

$$Q_i^{\pi}(s,a) = \mathbb{E}^{\pi} \left[ \sum_{h=1}^i \gamma^{h-1} R(s_h, a_h) \, \middle| \, (s_0, a_0) = (s, a) \right]$$

$$V_i^{\pi}(s) = \mathbb{E}^{\pi} \left[ \sum_{h=1}^i \gamma^{h-1} R(s_h, a_h) \middle| s_0 = s \right]$$

$$Q^{\pi}(s,a) = Q^{\pi}_{\infty}(s,a) \qquad V^{\pi}(s) = V^{\pi}_{\infty}(s)$$

$$V_0^{\pi}(s) = 0 \quad \forall s$$

For i = 1, 2, 3, ... for all s, a

$$Q_i^{\pi}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_{i-1}^{\pi}(s')$$

$$V_i^{\pi}(s) = \sum_{a} \pi(a|s) Q_i^{\pi}(s,a)$$

# **Exercise**

| S | a     | s' | P(s' s,a) | R(s,a) |
|---|-------|----|-----------|--------|
|   | Slow  |    | 1.0       | +1     |
|   | Fast  |    | 0.5       | +2     |
|   | Fast  |    | 0.5       | +2     |
|   | Slow  |    | 0.5       | +1     |
|   | Slow  |    | 0.5       | +1     |
|   | Fast  |    | 1.0       | -10    |
|   | (end) |    | 1.0       | 0      |



Assume  $\gamma = 0.9$   $\pi(\text{cool}) = \text{fast}$ ,  $\pi(\text{warm}) = \text{slow}$ 

# **Bellman Equation**

$$Q^{\pi}(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) V^{\pi}(s')$$

$$V^{\pi}(s) = \sum_{a} \pi(a|s)Q^{\pi}(s,a)$$

or

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s',a'} P(s'|s,a) \, \pi(a'|s') Q^{\pi}(s',a')$$

or 
$$V^{\pi}(s) = \sum_{a} \pi(a|s) \left( R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^{\pi}(s') \right)$$

# Convergence

### Value Iteration ensures

$$|Q_i^{\pi}(s,a) - Q^{\pi}(s,a)| \le \gamma^i |Q_0^{\pi}(s,a) - Q^{\pi}(s,a)|$$

$$|V_i^{\pi}(s) - V^{\pi}(s)| \le \gamma^i |V_0^{\pi}(s) - V^{\pi}(s)|$$

# Value Iteration for Policy Optimization



h = 1 h = 2 h = 3

weight

State transition: P(s'|s,a)

Reward: R(s, a)

$$Q_i^{\star}(s,a) = \max_{\pi} \mathbb{E}^{\pi} \left[ \sum_{h=1}^{i} \gamma^{h-1} R(s_h, a_h) \, \middle| \, (s_0, a_0) = (s, a) \right]$$

$$V_i^{\star}(s) = \max_{\pi} \mathbb{E}^{\pi} \left[ \sum_{h=1}^{i} \gamma^{h-1} R(s_h, a_h) \middle| s_0 = s \right]$$

$$Q^{\star}(s,a) = Q_{\infty}^{\star}(s,a) \qquad V^{\star}(s) = V_{\infty}^{\star}(s)$$

$$V_0^{\star}(s) = 0 \quad \forall s$$

For i = 1, 2, 3, ... for all s, a

$$Q_i^{\star}(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_{i-1}^{\star}(s')$$

$$V_i^{\star}(s) = \max_{a} Q_i^{\star}(s, a)$$

# **Bellman Optimality Equation** $\pi^*(s) = \operatorname{argmax} Q^*(s, a)$

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^*(s, a)$$

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V^*(s')$$
$$V^*(s) = \max_{a} Q^*(s,a)$$

or

$$Q^{*}(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q^{*}(s',a')$$

$$V^{\star}(s) = \max_{a} \left( R(s, a) + \gamma \sum_{s'} P(s'|s, a) V^{\star}(s') \right)$$

# Convergence

### Value Iteration ensures

$$\left|Q_i^{\star}(s,a) - Q^{\star}(s,a)\right| \le \gamma^i |Q_0^{\star}(s,a) - Q^{\star}(s,a)|$$

$$|V_i^*(s) - V^*(s)| \le \gamma^i |V_0^*(s) - V^*(s)|$$

## Question

We know  $Q^*(s, a) = \lim_{i \to \infty} Q_i^*(s, a)$  recovers the optimal policy by  $\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^*(s, a)$ .

But we only have  $Q_i^*(s, a)$  for finite i.

How good is the policy  $\hat{\pi}(s) = \underset{a}{\operatorname{argmax}} Q_i^{\star}(s, a)$ ?

# **Policy Iteration**

# **Policy Iteration**

### **Policy Iteration**

For 
$$i = 1, 2, ...$$

$$\forall s, \qquad \pi_i(s) \leftarrow \operatorname*{argmax}_a Q^{\pi_i}(s, a)$$

Theorem (monotonic improvement). Policy Iteration ensures

$$\forall s, a, \qquad Q^{\pi_{i+1}}(s, a) \geq Q^{\pi_i}(s, a)$$

# **Modified Policy Iteration**

 $N = 1 \Rightarrow \text{Value Iteration}$ 

 $N = \infty \Rightarrow$  Policy Iteration

For 
$$i = 1, 2, ...$$

$$Q_i(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_i(s')$$

$$\pi_{i+1}(s) = \max_{a} Q_i(s, a)$$
 —— Policy update

$$V(s) \leftarrow V_i(s)$$

Repeat for *N* times:

$$V(s) \leftarrow \sum_{a} \pi_{i+1}(a|s) \left( R(s,a) + \gamma \sum_{s'} P(s'|s,a) V(s') \right)$$

$$V_{i+1}(s) \leftarrow V(s)$$

Value update

### **Performance Difference Lemma**

For any two stationary policies  $\pi'$  and  $\pi$  in the discounted total reward setting,

$$\mathbb{E}_{s \sim \rho} \left[ V^{\pi'}(s) \right] - \mathbb{E}_{s \sim \rho} \left[ V^{\pi}(s) \right] = \sum_{s, a} d_{\rho}^{\pi'}(s) \left( \pi'(a|s) - \pi(a|s) \right) Q^{\pi}(s, a)$$

$$= \sum_{s, a} d_{\rho}^{\pi'}(s, a) \left( Q^{\pi}(s, a) - V^{\pi}(s) \right)$$