200

وع

امتحان شهادة بكالوريا التعليم الثانوي دورة جوان 2008

الشعبة : العلـــوم التجريبيـــة

المدة: 03 ساعات ونصف

احتبار في مادة : العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول: (20 نقطة)

التمرين الأول: (04 نقاط)

__ ننمذج التحول الكيميائي المحدود لحمض الإيثانويك (حمض الخل) مع الماء بتفاعل كيميائي معادلته: $CH_3COOH_{(\alpha q)} + H_2O_{(l)} = CH_3COO^-_{(\alpha q)} + H_3O^+$

1- اعط تعريفا للحمض وفق نظرية برونشتد.

2- اكتب الثنائيتين (أساس/حمض) الداخلتين في التفاعل الحاصل.

3- اكتب عبارة ثابت التوازن (K) الموافق للتفاعل الكيميائي السابق.

المولى محلولا مائيا لحمض الإيثانويك حجمه V=100 وتركيزه المولى المولى

ياً ما $^{-3}$ ساوي 3,7 وقيمة الـ $^{-3}$ له في الدرجة $^{-3}$ تساوي 3,7.

1- استنتج التركيز المولي النهائي لشوارد الهيدرونيوم في محلول حمض الإيثانويك.

 X_{max} و التقدم التفاعل ، ثم احسب كلا من التقدم النهائي X_{f} و التقدم الأعظمي X_{max}

 $au_{
m c}$ - احسب قيمة النسبة النهائية $(au_{
m f})$ لتقدم التفاعل. ماذا تستنتج

4- احسب: أ- التركيز المولي النهائي لكل من (CH_3COO^-) و (CH_3COO^-) .

ب- قيمة pk_a للثنائية (CH_3COOH/CH_3COO^-) ، واستنتج النوع الكيميائي المتغلب في المحلول الحمضي. برر إجابتك.

التمرين الثاني: (04 نقاط)

تقذف عينة من نظير الكلور Cl 17 المستقر (غير المشع) بالنيترونات. تلتقط النواة 35 Cl نيترونات

لتتحول إلى نواة مشعة ${}^{A}_{Z}X$ توجد ضمن قائمة الأنوية المدونة في الجدول أدناه :

النواة	³⁸ Cl	³⁹ Cl	³¹ ₁₄ Si	¹⁸ ₉ F	¹³ ₇ N
$t_{\frac{1}{2}}(s)$ زمن نصف العمر	2240	3300	9430	6740	594

سمحت متابعة النشاط الإشعاعي لعينة من ${}^{A}_{Z}X$ برسم المنحنى

-1- الموضح بالشكل الموضح الموضح الم

. t=0 عدد الانوية المشعة الموجودة في العينة في اللحظة $N_{\rm o}$. N(t) عدد الانوية المشعة الموجودة في العينة في اللحظة N(t)

اعرف زمن نصف العمر $t_{1/2}$).

0 4 7 .

ب/ عين قيمة زمن نصف العمر للنواة X^{A} بيانياً.

 λ . $(t_{1/2})$ بثابت التفكك λ .

 $^{A}_{Z}X$ أحسب قيمة λ ثابت التفكك المنواة

 $^{
m A}_{
m Z} X$ النتائج المتحصل عليها و القائمة الموجودة في الجدول عين النواة $^{
m A}_{
m Z} X$?

 $^{A}_{Z}$ النواة $^{35}_{17}$ النواة $^{35}_{17}$ النواة $^{35}_{17}$ النواة $^{4}_{Z}$

5_ أحسب بالإلكترون فولط وبالميغا الكترون فولط:

أ/ طاقة الربط للنواة X أ. ب/ طاقة الربط لكل نوية.

المعطيات:

$1 \text{ u}=1,66.10^{-27} \text{Kg}$	وحدة الكتل الذرية
$m_p=1,00728(u)$	كتلة البرتون
$m_n=1,00866(u)$	كتلة النيترون
$m_x=37,96011(u)$	$\frac{A}{Z}X$ كتلة نواة
$C = 3x10^{+8} \text{m/s}$	سرعة الضوء في الفراغ
$1 eV = 1,6 \times 10^{-19} $ <i>Joule</i>	1 الكترون ـ فولط

التمرين الثالث: (04) نقاط)

في مقابلة لكرة القدم، خرجت الكرة إلى التماس. ولإعادتها إلى الميدان، يقوم أحد اللاعبين برميها من خط التماس بكلتا يديه لتمريرها فوق رأسه.

لدراسة حركة الكرة، نهمل تأثير الهواء وننمذج الكرة بنقطة مادية.

في اللحظة (t=0) تغادر الكرة يدي اللاعب في نقطة A تقع على ارتفاع $h_0=2m$ من سطح الأرض بسرعة ($\overline{V_0}$) يصنع حاملها مع الأفق وإلى الأعلى زاوية $\alpha = 25°$ (الشكل-2).

 $h_1 = 1,80$ m تمر الكرَة فوق رأس الخصم، الذي طول قامته

والواقف على بُعد 12m من اللاعب الذي يرمي الكرة.

: 4. الكرة في المعلم $(O, \overrightarrow{i}, \overrightarrow{j})$ هي المعلم الكرة في الكرة

$$y = \left(-\frac{g}{2 V_0^2 \cos^2 \alpha}\right) x^2 + x \cdot \tan \alpha + y_0$$

 $(O, \overrightarrow{i}, \overrightarrow{j})$ مسار الكرة في المعلم المذكور (الشكل-3).

<u>الت</u>

Ķ

11

1

أر

باستغلال المنحنى البياني أجب عما يلي:

أ/ على أي ارتفاع (h_2) من رأس الخصّم تمر الكرة؟

ب/ ما قيمة السرعة الابتدائية $(\overline{v_0})$ التي أعطيت للكرة لحظة مغادرتها يدي اللاعب ؟

جـ/ حدد الموضع M للكرة في اللحظة (t=1,17s). وما هي قيمة سرعتها عند ئد؟

د/احسب الزمن الذي تستغرقه الكرة من لحظة انطلاقها إلى عاية ارتطامها (اصطدامها) بالأرض.

 $\tan \alpha = 0,4663$! $\cos \alpha = 0,9063$! $\sin \alpha = 0,4226$! $g=10m/s^2$:

التمرين الرابع: (04 نقاط)

قصد شحن مكثفة مفرغة، سعتها (C)، نربطها على التسلسل مع العناصر الكهربائية التالية:

مولد كهربائي ذو توتر ثابت $_{
m E=3V}$ مقاومته الداخلية مهملة.

دناقل أومي مقاومته $\Omega^{4}\Omega$ =R.

- قاطعة K .

لإظهار التطور الزمني للتوتر الكهربائي $u_c(t)$ بين طرفي المكثفة. نصلها براسم اهتزاز مهبطى ذي ذاكرة. الشكل-4.

نغلق القاطعة K في اللحظة t=0 فنشاهد على $u_c(t)$ شاشة راسم الاهتزاز المهبطي المنحنى (الممثل في الشكل- 5.

1- ماهي شدة التيار الكهربائي المار في الدارة بعد مدة $\Delta t = 15s$ من غلقها 2.

2- أعط العبارة الحرفية لثابت الزمن τ ، وبين أن له نفس وحدة قياس الزمن.

3- عين بيانيا قيمة τ واستنتج السعة ($^{\rm C}$) للمكثفة.

t=0 المنطة (في اللحظة t=0):

i(t) اكتب عبارة شدة التيار الكهربائي q(t) المار في الدارة بدلالة q(t) شحنة المكثفة.

q(t) بين لبوسي المكثفة بدلالة الشحنة $u_c(t)$ بين بين لبوسي المكثفة بدلالة الشحنة

. $u_c + RC \frac{du_c}{dt} = E$: بين أن المعادلة التفاضلية التي تعبر عن $u_c(t)$ تعطى بالعبارة التفاضلية التي تعبر عن

A بيعطى حل المعادلة التفاضلية السابقة بالعبارة $u_c(t) = E(1-e^{-t/A})$ استنتج العبارة الحرفية للثابت $u_c(t) = E(1-e^{-t/A})$. وما هو مدلوله الفيزيائي؟

التمرين التجريبي: (04 نقاط)

ندرس تفكك الماء الأوكسجيني (H_2O_2) ، عند درجة حرارة ثابتة $\theta=12^{\circ}$ وفي وجود وسيط مناسب. ننمذج التحول الكيميائي الحاصل بتفاعل كيميائي معادلته : $2H_2O_{2(aq)}=2H_2O_{(l)}+O_{2(g)}$

i all til

صفحة 3 من 8

(نعتبر أن حجم المحلول يبقى ثابتا خلال مدة التحول، وأن الحجم المولي للغاز في شروط التجربة، $V_M=24~L/mol$).

نأخذ في اللحظة t=0 حجما $V_s=500 {\rm mL}$ من الماء الأوكسجيني تركيزه المولي الابتدائي الخذ في اللحظة $[H_2O_2]_0=8,0$. $[H_2O_2]_0=8,0$. $[H_2O_2]_0=8,0$

نجمع ثنائي الأوكسجين المتشكل ونقيس حجمه (V_{O_2}) تحت ضغط ثابت كل أربع دقائق ، ونسجل النتائج كما في الجدول التالي:

in)	0	4	8	12	16	20	24	28	32	36	40
(mL)	0	60	114	162	204	234	253	276	288	294	300
$[O_2]$ mol/L											

1- أنشئ جدولا لتقدم التفاعل الكيميائي الحاصل.

2- اكتب عبارة التركيز المولي $[H_2O_2]$ للماء الأوكسجيني في اللحظة t بدلالة : V_O ، V_M ، V_S ، $[H_2O_2]_0$

3- أ/ أكمل الجدول السابق.

ب/ ارسم المنحنى البياني f(t) = f(t) باستعمال سلم رسم مناسب.

ج/ أعط عبارة السرعة الحجمية للتفاعل الكيميائي.

د/ احسب سرعة التفاعل الكيميائي في اللحظتين $t_1 = 16 min$ و $t_2 = 24 min$. واستنتج كيف تتغير سرعة التفاعل مع الزمن.

هـ/ عين زمن نصف التفاعل $t_{1/2}$ بيانيا.

4- إذا أجريت التجربة السابقة في الدرجة 0°35° ، ارسم كيفيا شكل منحنى تغير $[H_2O_2]$ بدلا الزمن على البيان السابق مع التبرير.

يَسْتَوْ حِبُ استعمال الأنديوم 192 أو السيزيوم 137 في الطب، وضعُهما في أنابيب بلاستيكية قبل أن توضع على ورم المريض قصد العلاج.

. γ وإشعاعات β^- واسيزيوم مشعة، تصدر جسيمات β^- واسعاعات δ^-

أ- ما المقصود بالعبارة: (تصدر جسيمات β وإشعاعات γ). ما سبب إصدار النواة لإشعاعات γ ? ب- اكتب معادلة التفاعل المنمذج للتحول النووي الذي يحدث للنواة "الأب" مستنتجا رمز النواة "الأبن" معادلة التفاعل المنمذج للتحول النووي الذي يحدث للنواة "الأب" معادلة التفاعل المنمذج للتحول النووي الذي يحدث الأبن" معادلة التفاعل المنافقية المنافقية التفاعل المنافقية التفاعل المنافقية التفاعل المنافقية التفاعل المنافقية المنافقية المنافقية المنافقية المنافقية المنافقية المنافقية المنافقية المنافقية التفاعل المنافقية المنافقية المنافقية المنافقية النواقية المنافقية الم

t=0 عند اللحظة $m=1,0 \times 10^{-6} g$ كتابها و $m=1,0 \times 10^{-6} g$ عند اللحظة t=0

احسب:

أ- عدد الأنوية N_0 الموجودة في العينة.

ب- قيمة النشاط الإشعاعي لهذه العينة.

3- تُستعمل هذه العينة بعد ستة (06) أشهر من تحضير ها:

أ- ما مقدار النشاط الإشعاعي للعينة حينئذ؟

ب- ما هي النسبة المئوية لأنوية السيزيوم المتفككة ؟

4- نعتبر نشاط هذه العينة معدوما عندما يصبح مساويا لـ 1% من قيمته الابتدائية.

- احسب بدلالة ثابت الزمن au المدة الزمنية اللازمة لانعدام النشاط الإشعاعي للعينة، وهل يمكن تعميم هذه النتيجة على أي نواة مشعة ؟

يعطى:

 $N_A = 6,023 \times 10^{23} \, mol^{-1}$: ثابت أفو غادرو

 $\tau = 43,3 ans$: 137 C_S النب الزمن للسيزيوم

 $M_{(^{137}Cs)} = 137g.mol^{-1}: 137$ الكتلة المولية الذرية للسيزيوم

التمرين الثانى: (04 نقاط).

هذا النص مأخوذ من مذكرات العالم هويغنز سنة 1690: « ... في البداية كنت أظن أن قوة الاحتكاك في مائع (غاز أو سائل) تتناسب طردا مع السرعة، ولكن التجارب التي حققتها في باريس، بينت لي أن قوة الاحتكاك ،يمكن أيضا أن تتناسب طردا مع مربع السرعة. وهذا يعني أنه إذا تحرك متحرك بسرعة ضعف ما كانت لها...»

1- يُشير النص إلى فرضيتي هويغنز حول قوة الاحتكاك في الموانع، يُعبَّر عنهما رياضياتيا بالعلاقتين: $f = k \ v$ (1)

$$f = k' v^2$$
(2)

حيث: f قيمة قوة الاحتكاك v سرعة مركز عطالة المتحرك k k ثابتان موجبان. أرفق بكل علاقة التعبير المناسب ـ من النص ـ عن كل فرضية.

2- للتأكد من صحة الفرضيتين، تم تسجيل حركة بالونة تسقط في الهواء. سمح التسجيل بالحصول على سحابة من النقاط تمثل تطور سرعة مركز عطالة البالونة، في لحظات زمنية معينة (الشكل-1).

ىل

 $\frac{min}{o_{\gamma}}$ (mI

 $I_2O_2]r$

.

بدلا**ل**

v (m.s") 2,5 2,0 1,5 1,0 0.5 0,0 0,2 0,4 0,6 0,8 1 1,2 1,4 الشكل-1

أ/ بتطبيق القانون الثاني لنيوتن، واعتماد الفرضية المعبر عنها بالعلاقة (f = k.v) اكتب المعادلة التفاضلية لحركة سقوط البالونة بدلالة:

- الكتلة الحجمية للهواء. (ρ_0)
- (p) الكتلة الحجمية للبالونة.
 - (m) كتلة البالونة.
- (g) تسارع الجاذبية الأرضية.
 - (لا) ثابت التناسب.

ب/ بين أن المعادلة التفاضلية للحركة يمكن كتابتها على الشكل: $A = \frac{dv}{dt} + Bv = A$ ثابتان.

ج/ اعتمادا على البيان الشكل-1. ناقش تطور السرعة (v) واستنتج قيمتها الحدية (v_{lim}). ماذا يمكن القول عن حركة مركز عطالة البالونة خلال هذا التطور؟

A و A و A د احسب قیمتی

Bو وقق قيمتي A وفق المنحنى الممثل بالخط السابق المنحنى الممثل بالخط v=f(t)المستمر في الشكل-1). ناقش صحة الفرضية الأولى.

$$\rho = 4.1 \, kg.m^{-3}$$
 , $\rho_0 = 1.3 \, kg.m^{-3}$, $g = 9.81 \, m.s^{-2}$

التمرين الثالث: (04 نقاط)

تحتوى الدارة الكهربائية المبينة في الشكل-2 على:

- E = 12V مولد توتره الكهربائى ثابت -
 - $R = 10 \Omega$ د ناقل أومي مقاومته
 - وشيعة ذاتيتها Lومقاومتها r.
 - قاطعة X.

1- نستعمل راسم اهتزاز مهبطى ذي ذاكرة، لإظهار التوترين الكهربائيين (u_{BA}) و (u_{CB}) . بين على مخطط الدارة الكهر بائية ، كيف يتم ربط الدارة الكهر بائية بمدخلى هذا الجهاز.

3-نغلق القاطعة K في اللحظة t=0 يمثل الشكل 2 المنحنى: $u_{BA} = f(t)$ المشاهد على شاشة راسم الاهتزاز المهبطى.

عندما تصبح الدارة في حالة النظام الدائم أوجد قيمة: أ/ التوتر الكهربائي (u_{BA}) .

 (u_{CB}) التوتر الكهربائي

ج/ الشدة العظمى للتيار المار في الدارة.

3- بالاعتماد على البيان الشكل-3. استنتج:

أ/ قيمة (au) ثابت الزمن المميز للدارة.

ب/ مقاومة وذاتية الوشيعة. 4- أحسب الطاقة الأعظمية المخزنة في الوشيعة.

L.r u_{CB} الشكل-2

2

يحتوي الحليب على حمض اللاكتيك (حمض اللبن) الذي تزداد كميته عندما لا تُحترم شروط الحفظ، ويكون الحليب غير صالح للاستهلاك إذا زاد تركيز حمض اللاكتيك فيه عن $-2.4 \times 10^{-2} \, mcl.L^{-1}$. الصيغة الكيميائية لحمض اللاكتيك هي $(CH_3 - CHOH - COOH)$ ونرمز لها اختصار ا(HA). اثناء حصة الأعمال المخبرية، طلب الأستاذ من تلميذين تحقيق معايرة عينة من حليب قصد معرفة مدى صلاحيته.

التجربة الأولى: أخذ التلميذ الأول حجما $V_A = 20mL$ من الحليب وعايره بمحلول هيدروكسيد الصوديوم (محلول الصود) تركيزه المولي $C_B = 5.0 \times 10^{-2} \, mol.L^{-1}$ تغير ات $D_B = 10$ المزيج بو السطة $D_B = 10$ متر، فتحصل على المنحنى الممثل في الشكل $D_B = 10$

التجربة الثانية : أخذ التلميذ الثاني حجما $V_A = 20mL$ من الحليب ومدده بالماء المقطر إلى أن أصبح حجمه 200mL ثم عاير المحلول الناتج بمحلول الصود السابق مستعملا كاشفا ملونا مناسبا، فلاحظ أن لون

. $V_{\scriptscriptstyle B}=12,9m$ الكاشف يتغير عند إضافة حجم من الصود قدره

- 1- أكتب معادلة التفاعل المنمذج لعملية المعايرة.
 - 2- ضع رسما تخطيطيا للتجربة الأولى.
- 3- لماذا أضاف التلميذ الماء في التجربة الثانية ؟ هل يؤثر ذلك على نقطة التكافؤ؟
- 4- عين التركيز المولي لحمض اللاكتيك في الحليب المعاير في كل تجربة. ماذا تستنتج عن مدى صلاحية الحليب المعاير للاستهلاك؟
 - 5- برأيك، أي تجربة أكثر دقة؟

التمرين التجريبي: (04 نقاط)

في حصة للأعمال المخبرية، أراد فوج من التلاميذ دراسة التحول الكيمياني الذي يحدث للجملة (مغنزيوم صلب، محلول حمض كلور الماء). فوضع أحد التلاميذ شريطا من المغنزيوم $Mg_{(s)}$ كتلته m=36mg في دورق، ثم أضاف إليه محلولا لحمض كلور الماء بزيادة، حجمه 30m سدّ الدورق بعد أن أوصله بتجهيز يسمح بحجز الغاز المنطلق وقياس حجمه من لحظة لأخرى.

- 1- مثل مخططا للتجربة، مع شرح الطريقة التي تسمح للتلاميذ بحجز الغاز المنطلق ،وقياس حجمه والكشف عنه.
 - و المسلف على . 2 أكتب معادلة التفاعل الكيميائي المنمذج للتحول الكيميائي التام الحادث في الدورق علما أن الثنائيتين المشاركتين هما: $(Mg^{2+}_{(aq)}/Mg_{(s)})$ ، $(H^{+}_{(aq)}/H_{2(g)})$
 - 3- يمثل الجدول الآتي نتائج القياسات التي حصل عليها الفوج:

t(min)	0	2	4	6	8	10	12	14	16	18
$V(H_2)(mL)$	0	12,0	19,2	25,2	28,8	32,4	34,8	36,0	37,2	
x(mol)										37,2

- أ مثل جدو Y لتقدم التفاعل، ثم استنتج قيم تقدم التفاعل x في الأزمنة المبينة في الجدول:
 - ب- املاً الجدول ثم مثل البيان x = f(t) بسلم مناسب.
 - جـ عين سرعة التفاعل في اللحظة 0 = 1.
- pH = 1 ، استنتج التركيز المولي الابتدائي لمحلول حمض كلور الماء المستعمل.
 - $V_M = 24.0 \ L.mol^{-1}$: الحجم المولي للغاز في شروط التجربة:
 - $M_{\rm Mg} = 24~g.mol^{-1}$ الكتلة المولية الـذرية للمغنزيوم

ثمة	العلا	عناصر الإجابة	محاور الموضوع
المجموع	مجزاة		
4	0.25 0.25 0.25×2 0.25×2 0.25x2	التعرین الأول (4.0) نقطة) التعرین الأول (4.0) نقطة) التعرین الأول (1.0 نقطة) التعرین الأول (1.0 نقطة) التعرین الأول (1.0 نقطة) التعرف هو فرد كیمیائي قادر علی تحریر بروتون أو أكثر $(H_3O^+/H_2O) \cdot (CH_2COOH/CH_3COO^-) - 2$ $K = \frac{[H_3O^+]_f[CH_3COO^-]_f}{[CH_3COOH]_f} - 3$ $K = \frac{[H_3O^+]_f[CH_3COO^-]_f}{[CH_3COOH]_f} - 3$ $K = \frac{[H_3O^+]_f[CH_3COO^-]_f}{[CH_3COOH]_f} - 3$ $K = \frac{[H_3O^+]_f[CH_3COO^-]_f}{[CH_3COO^-]_f[CH_3COO^-]_f} - 3$ $K = \frac{[H_3O^+]_f[CH_3COO^-]_f}{[CH_3COO^-]_f[CH_3COO^-]_f]}$ $K = [H_3O^+]_f[CH_3COO^-]_f[CH_3COO^$	
	0.25	$[CH_3COOH]$ و $pKa=4.8$ و $pK=3,7$ أنجد: $pK=3,7$ و $pH=3,7$ الصفة الغالبة هي الصفة الحمضية.	
4	0.25 0.25x3 0.25x2 0.25 0.25	تمرین الثانی (4.0 نقطة) الم نصف العمر هو الزمن اللازم لتفکك نصف عدد الأنویة الأبتدائیة. الم زمن نصف العمر هو الزمن اللازم لتفکك نصف عدد الأنویة الأبتدائیة. $t_{1/2} \approx 2.2 \times 10^3 s$ $t_{1/2} \in \left[2.2 \times 10^3; 2.3 \times 10^3 \right] s$ $t_{1/2} = N_0 e^{-\lambda t_{1/2}}$ $t_{1/2} = N_0 e^{-\lambda t_{1/2}}$ $\lambda(t) = N_0 e^{-\lambda t_{1/2}}$	2

الشعبة/العلوم التجريبية	مادة: العلوم الفيزيائية	اختيار	تابع الاحابة
~·~~	عادن المعوم سيريات	بحسبارا	

نمة	T. 11		
		ختبار مادة : العلوم الفيزيائية الشعبة/العلوم التجريبيه عناصر الإجابة	محاور الموضوع
المجموع	مجزاة		
	0.25x2	35 07 01 38 00	
		${}_{17}^{35}Cl + 3_{0}^{1}n \rightarrow {}_{17}^{38}Cl - 4$	
		/_	
	0.25x2	$E_{I} = \left(\left[Zm_{p} + (A - Z) m_{n} \right] - m_{\frac{1}{2}X} \right) C^{2}$	
	0.25x2	$E_1 = 320,92 \times 10^6 eV \approx 321 MeV$	
	0.25x2		
	0.20112	$\frac{E_I}{A} = 8,44 \times 10^6 eV = 8,44 MeV$ /	
		A	
		التمرين الثالث (4.0 نقطة)	
		<u> </u>	
		(O,i,j) ببيان معادلة المسار في المعلم: (O,i,j)	
	0.25	$a_x = 0$	
1	0.25	$a_y = -g$ مركبتا التسارع على المحورين:	
		مركبت السرعة على المحورين. مركبتا السرعة على المحورين:	
	0.25.2		
	0.25x2	$v_x = v_0 \cos \alpha$	
		$v_y = v0\sin\alpha - gt$	
	0.25x2	$x = v_0 \cos \alpha t$, $y = -\frac{1}{2}gt^2 + v0 \sin \alpha t + y_0$	
	0.25	-	
		بحذف الزمن من المعادلتين نحصل على معادلة المسار المطلوبة.	
,	0.25x2	2-1ريقف الخصم في نقطة فاصلتها $12m$ ترتيبها من البيان $3m$.	
4	0.25x2	$y = h_1 + h_2 \Rightarrow h_2 = y - h_1 \Rightarrow h_1 = 3, 0 - 1, 8 = 1, 2m$	
ŀ		$v_0 = 13,7 m/s$ (x,y): معادلة المسار بقيم (x,y) :	
	0.25x2	$y_{M} = 2,0m$ ن البيان $x_{M} = 14,5m$ ، $x_{M} = V_{0} \cos \alpha t$: M خاصلة	
	.0.25	$v_M^2 - v_0^2 = 2g(h - h_0) \Rightarrow v_M = v_0 = 13.7 m/s$ سرعة الكرة:	
		لأن $M \cdot A$ تقعان على مستوي أفقي واحد. $(h-h_0)=0$	
	*	ر/ زمن وصول الكرية إلى الأرض:	
	0.25x2	$t = \frac{x}{V_0 \times \cos \alpha}$; $x = 18m$; $V_0 = 13,7m/s \Rightarrow t = 1,45s$	
		$V_0 \times \cos \alpha$, $V_0 = 13, 7m + 3 = 2, 13, 433$	
	0.25x3	التمرين الرابع (4.0 نقطة)	
		ا- بعد 15s من غلق الدارة (الدارة في حالة نظام دائم): $\Delta t = 15s$	
	Ì	$E = Ri + u_c$; $u_c = E - Ri$ $u_c = E \implies Ri = 0 \implies i = 0$	
	0.25x3	$\tau = RC = \frac{[V]}{[I]} \cdot \frac{[I][T]}{[V]} = [T] \tau = RC -2$	
4	0.2383	L J E I	
	0.25x2	ه البيان: $2,4s$ و الستعمال طريقة $0,63$ أو تقاطع المماس $q=uc$	
		مع الخط المقارب):	
	0.25	$\tau = RC \Rightarrow C = \frac{\tau}{P} = \frac{2.4}{10^4} = 240 \mu f$	
		$\frac{1 - RC}{R} = \frac{10^4}{10^4} = 240 \mu\text{J}$	

ع -

العلامة		محاور الموضوع عناصر الإجابة
المجموع	مجزاة	
	0.25x2	$u_c = \frac{q}{C} / - \frac{1}{2} \qquad i = \frac{dq}{dt} / - 4$
	0.25x3	$u_c + R \frac{dq}{dt} = E$ $u_c + RC \frac{du_c}{dt} = E$ /
	0.25x2	(20/ 3:25 1/3: 2: 1.1 : 511 : 11 : 11 : 1 : 1 . 1 . 1 . 1 . 1 . 1
		التمرين التجريبي (4.0 نقطة) 1 - جدول التقدم:
	0.25	$2H_2O_2$ (aq) $= 2H_2O_{(1)} + O_2$ (g)
		انتقا
		$x_{\rm f}$ $x_{$
	0.25x3	
	U.23X.	$x=n_{O_2} = \frac{V_{O_2}}{V_M}$ $(n(H_2O_2) = [H_2O_2]_0 V_s - 2x$
		$[H_2O_2] = [H_2O_2]_0 - \frac{2V_{0_{\bullet}}}{V_{U}V_{c}}$
		$V_{M}V_{S}$ المحدول:
		t(min) 0 4 8 12 16 20 24 28 32 36 40
	0.:	$\begin{bmatrix} H_2O_2 \\ (10^{-2} \text{ mol/l}) \end{bmatrix} 8,0 7,0 6,1 5,3 4,6 4,1 3,7 3,4 3,2 3,1 3,1$
	0	$[H_2O_2] = f(t)$ البيان:
		$\int [H_2O_2] \left(10^{-2} mol / L_1\right)$
		6
		4-
		27 (mm) (mm)
		0 10 20 30 40 7
	0.2	$\frac{1}{dx}$
	0.2	القاعلي $V \wedge d_i$ کيت $V \wedge d_i$
	0.2	$v_{vol} = \frac{1}{2} v_{vol} (H_2 O_2)$ لدينا $v = v_{vol} V \iff v = \frac{dx}{dt}$ د/سرعة التفاعل $v_{vol} = v_{vol} = v_$
	1	
		ومنه $v = \frac{1}{2} v_{vol} (H_2 O_2)$ ومنه $v_{vol} (H_2 O_2) = \frac{1}{2} v_{vol} (H_2 O_2)$ ومنه ومنه ومنه ومنه

صفحة 3 من 4

لامة	الع	ختبار مادة : العلوم الفيزيانية الشعبة/العلوم النجريبية عناصر الإدبة	محاور الموضوع
مجزاة المجموع		مستعس ۾ جب	محاور الموصلوح
		2	· · · · · · · · · · · · · · · · · · ·
	0.25x2	v_1 =0.36.10 ⁻³ mol/ min t_1 =16min عند v_2 =2,66.10 ⁻⁴ mol/ min t_2 =24min عند	
	0.25	-علا المساعة التفاعل تتناقص مع الزمن لنقصان تراكيز المتفاعلات نلاحظ أن سرعة التفاعل تتناقص مع الزمن لنقصان تراكيز المتفاعلات.	
	0.25	هـ/ زمن نصف التفاعل هو الزمن الذي يصبح فيه التقدم (x)	
		مساویا لنصف قیمته العظمی أي $x_{12} = \frac{x_{\text{max}}}{2}$ لأن التحول تام	
4		4	
		$\left[H_2O_2\right]_{1/2} = \frac{\left[H_2O_2\right]_0}{2} = 0,04 mol l$ نقرأ من البيان الزمن المقابل	
	# 	$t_{1/2} \approx 21 \mathrm{min}$ ومنه	
	0.25	θ =35°C في الدرجة $\left[H_2O_2\right]=f(t)$ المنحنى: $\left[H_2O_2\right]=0$	
		سرعة التفاعل تزداد بارتفاع درجة الحرارة في نفس لحظة القياس.	
44,7		θ'>θ. $θ'>0$. $θ'>0$.	
		ا المنحنى 1 يمثل $[H_2O_2] = f(t)$ في خرجة الحرارة 12°C - المنحنى 1 يمثل المراء = 12°C - 12	
		المنحنى 2 يمثل $[H_2O_2] = f(t)$ المنحنى 2 يمثل $[H_2O_2] = f(t)$	
	0.25	↑[H ₂ O ₂]	
	0.25		
		U	
		· ·	
	İ		
	-		
	1		
		17	
	1		

الموضوع الثاني

دمة	العا	عناصر الإجابة	محاور الموضوع
المجموع	مجزاة		
		التمرين الأول: (04 نقاط)	
	Ì	-1 ألم إصدار الإشعاع $-eta$ يعني تحول نيترون إلى بروتون داخل -1	1
		النواة المشعة وفق المعادلة:	
	0.5	${}_{0}^{1}n \rightarrow {}_{1}^{1}p + {}_{-1}^{0}e \ (\beta^{-})$	
	2.5	إصدار الإشعاع (٪) يعني أن النواة "الابن" الناتجة تكون مثارة	
	0.5	وعند عودتها إلى حالتها الأساسية تصدر إشعاعا كهرومغناطيسيا (γ)	
	0.5	ب/ معادلة التفاعل المنمذج للتحول النووي : مناحة التفاعل المنمذج للتحول النووي : مناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة ا	
		$^{137}_{55}Cs \rightarrow ^{137}_{56}Ba + \beta^- + \gamma$ $m \rightarrow 50$	
4	0.25	$N_0 = \frac{m_0}{M} N_A$: عدد الأنوية -2	,
	0.25	$N_0 = \frac{1 \times 10^{-6}}{137} \times 6,02 \times 10^{23} = 4,4.10^{15}$	
		$A_0=\lambda N_0$: $A_0=\lambda N_0$ النشاط الإشعاعي $A_0=\lambda N_0$	
	0.25		
		$\lambda = 7.3 \times 10^{-10} s^{-1} \iff \lambda = \frac{1}{\tau} : \text{Light}$	
	0.25	$A_0 = \lambda N_0 \approx 3.2 \times 10^6 Bq$ [i.e., where $A_0 = \lambda N_0 \approx 3.2 \times 10^6 Bq$]	
	0.5	2^{-1} أ حساب A بعد سنة أشهر :تقبل من أجل 180 يوما أو 183 يوما 2^{-1}	3
	0.5	$A = A_0 e^{-\lambda t} = A_0 e^{-\frac{t}{\tau}} \approx 3,16 \times 10^6 Bq$	
		$N = \frac{A}{2} = 4,34.10^{15} \iff A = \lambda N$ ——————————————————————————————————	
	0.5	λ $N' = N_0 - N : A$ عدد الأنوية المتفككة	
		·	
		$\frac{N'}{N_0} = \frac{N_0 - N}{N_0} \simeq 0,011 \simeq 1,1\%$: النسبة المئوية	
	0.05	-أ/ لحظة انعدام النشاط:	4
	0.25	$A = 1\%A_0 \Rightarrow \frac{1}{100} = e^{-\frac{t}{\tau}} \Rightarrow$	
		$t = \tau \ln 100$ \Rightarrow $t \simeq 5\tau$ إذن	
	0.25	- هذه النتيجة عامة لأي نواة مشعة. 18	اب

<u> </u>			تبار مادة : العلوم الفيزيائيةالشعبة : علوم تجريبيه	تابع الإحابة اخ
4	i	العلام	عناصر الإجابة	محاور الموضوع
	المجموع	مجزاة		محاور العوسري
		0.25 0.25	التمرين الثاني : (04 نقاط) v نقاط) v نقاط) v نقوة الاحتكاك تتناسب طردا مع السرعة v	
		0.25 0.25	نعتبره غالیلیا. بتطبیق القانون الثانی لنیوتن : $\sum \overrightarrow{F} = m \overrightarrow{a_G} \Rightarrow \overrightarrow{P} + \overrightarrow{f} + \overrightarrow{\Pi} = m \overrightarrow{a_G}$ $P - f - \Pi = m a_G : z'z$	
		0.25	$\Pi = ho_0 \ g \ V , m = ho \ V (فرضية أولى) f = k v لدينا V حجم البالونة .$	
	4	0.25	$m\frac{dv}{dt} = mg - kv - \rho_0 gV$ إذن $\frac{dv}{dt} = g - \frac{k}{m}v - \frac{\rho_0}{\rho}g$ أي	
		0.25		
		0.25	$\frac{dv}{dt} + \frac{k}{m}v - g\left(1 - \frac{\rho_0}{\rho}\right) = 0$: بالتالي	
		0.25	$\frac{dv}{dt} + Bv = A$: برا المعادلة تفاضلية من الشكل	
Management (1998) - State (1998) - S		0.25	حيث: A و B : $B = \frac{k}{m} \qquad , \qquad A = g\left(1 - \frac{\rho_0}{\rho}\right)$ جــ/ تطور السرعة : تتزايد السرعة تدريجيا إلى أن تثبت عند قيمة حدية $v_{\rm lim}$.	
		0.25	تتم الحركة في طورين: في الطور الأول تكون الحركة ذات سرعة متزايدة . في الطور الثاني: تكون الحركة ذات سرعة ثابتة . $\frac{1}{2}$	
		0.25	$A=g\left(1-\frac{\rho_0}{\rho}\right)=6,7SI$	
The second transfer of the		0.25	$\frac{dv}{dt} = 0 \implies B = \frac{A}{v_{\text{lim}}} = \frac{6.7}{2.5} \approx 2.7 \text{ SI} \qquad v = v_{\text{lim}} \text{depth}$	
			19	

t(s)

العلامة

المجموع

4

و الا حالية الحليا ماده ، العلو م الغلز لبالله السعلية ، علو م تحر بلية	مانة اختبار مادة : العلوم الفيزيائية إلشعبة : علوم تجريب	ابع الأح
---	---	----------

مة	العلا	عنبار مادة: العلوم القيريائية السعبة: علوم تجريبية عنوم الإجابة	محاور الموضوع
المجموع	مجزاة	عاصر پرچب	محاور الموصوع
	0.25x2	$u_{CB} = r \Rightarrow r = \frac{u_{CB}}{l_{\bullet}} = 2.0\Omega$ من العلاقة $r = \frac{u_{CB}}{l_{\bullet}} = 1.00$	
	0.25 0.25	$ au = \frac{L}{R+r}$ $\Rightarrow L = au imes (R+r) = 24 imes 10^{-3} H = 24 mH$	
i	0.25x2	$E_0 = \frac{1}{2}LI_0^2 = \frac{1}{2}24 \times 10^{-3} \times 1^2 = 12 \times 10^{-3} j$	
	0.25	تمرين الرابع : (04 نقاط) 1- معادلة التفاعل المنمذج لعملية المعايرة :	
	0.23	$HA_{(aq)} + HO_{(aq)}^{-} = A_{(aq)}^{-} + H_2O_{(l)}$	
	0.5	2-الرسم التخطيطي للتجربة · معلول هيدروكسيد الصونيوم	
		محلول الحمص مخلاط مغناطيس	
	0.25	3- أضاف التلميذ الماء من اجل تخفيف المحلول الحمضي ليتمكن من متابعة تغير لون الكاشف الملون.	
4	0.25x2	نقطة التكافؤ في عملية المعايرة لا تتعلق بالتمديد لأن كمية مادة الحمض لا تتغير بتمديد محلوله.	
	0.25x2	-4 التجربة الأولى: من البيان تكون نقطة التكافؤ: $(V_B = 12mL, pH = 8)$	
	0.25x2	: عند التكافؤ $C_{_A}V_{_A}=C_{_B}V_{_B}\Rightarrow C_{_A}=3,010^{-2}molL^{-1}$	
	0.25 0.25x2	$C'_{A}V'_{A} = C_{B}V_{B}$ عند التكافؤ : عند التكافؤ $C'_{A} = 3,2 \times 10^{-3} mol L^{-1} \Rightarrow C_{A} = 10 C'_{A} \Rightarrow C_{A} = 3,2.10^{-2} mol L^{-1}$	
-	0.25	حسب نتائج التجربتين الحليب غير صالح للاستهلاك لأن $C_{_A} > 2,4.10^{-2} mol.L^{-1}$	
	0.25x2	-5 المعايرة :الـ P^H . مترية أدق من المعايرة اللونية نظرا لصعوب تمتمييز لوني ثنائيتي الكاشف عند نقطة التكافؤ.	
		21	

علوم تجريبية	الشعبة:	الفيز يائية	مادة: العلوم	اختبار	تابع الإجابة
7.7.		* * *		<i>-</i>	

وع

المة الم	أالعلا		تابع الإجابة محاور الموضوع						
المجموع	مجزاة								
	0.25x2	رق حلول HCl	· · /	روز المربط مر شریط مر	40 نقاط) محبار مدرج خود مدرج دوس نی	التّجر بة	ن التجري مخطط	- 1	
	0.25x2	ي الدورق بالماء. وضغط ثابت) و أزرق،	، منه فی مملوء ب ر (تحت ین بلهد	وزد بصنبور و ي ثم يقطر قليل الدورق. مخبار مدرج ريجات المخبار وجود الاوكسج الغاز المنطلق	ول الحمضر حبوس في ب الأنطلاق خاز على تد وجين في من فقاعات	ق ينفذ ، مائي. بالمحا هوارالم نبود حجم ال نقرب،	بضع شر سد الدور ي حوضر خراج ال كس فوق كس فوق رأ قيمة نرق غاز	- يس في - ين - يق - يحد وللكش	
4	عود ثقاد معادلة ال مادلة تفا جدول ال	2- الا الا م							
	0.25	معادلة التفاعل الحالة الابتدائية	التقدم	$Mg_{(s)} + 2.$ $1,5.10^{-3}$	$\frac{H^+_{(\alpha q)} = Mg}{\text{CV}}$	$\frac{Y_{(\alpha q)}^{2+} + H}{0}$	0		
	0.25	الحالة الانتقالية	x	1,5.10 ⁻³ -x	CV-2x	Х	x		
		الحالة النهائية	Xf	$n_0(Mg) = \frac{m}{M}$	$CV-2x_f$ $= 1,5.10^{-5}$	$x_{\rm f}$ mol	X _f	2 2	2

	<u> </u>						جريبية	: علوم نــــــــــــــــــــــــــــــــــــ	. الشعبة	يائية	الفيز	: العلوم	فتبار مادة	تابع الإجابة اذ
مه المجموع	العلا جزاة	م	عتبار مادة : العلوم الفيزيائية الشعبة : علوم تجريبية عناصر الإجابة										محاور الموضوع	
	0.2	.5								= n _(H2) =	IVI			
		t	(min)	0	2	4	. 6	8	10	مو العق 12	ِل الد 14		ب/ – م 18	
	0.25	(1	X 0 ⁻⁴ mol)	0	5	8	10,5	5 12	13,5	14,5	15	15,5	15,5	
	0.	5	x(mol		2.5						1	البيان (x =)	f(t)	
	0.2	5		جــ/ سرعة التفاعل عند اللحظة t تمثل ميل المماس للمنحنى عند $t = 0$ عند $t = 0$ عند $t = 0$										
	0.2:	5			i				$\Rightarrow [H_3]$	$O^+\Big]_f =$	= 10 ⁻¹		/ 4	
Construction of the constr	0.2:	5	$x_f = x_{\text{max}} = 1,5.10^{-3} mol$ \Leftarrow متفاعل محد Mg $n_0 = n_{r_{(H,O^+)}} + 2x_f$ ومنه $n_{f_{(H,O^+)}} = n_0 - 2x_f$ لدينا $n_0 = 6.10^{-3} mol$ أي											
	0.2:	5												
	0.2:	5			$C_{\scriptscriptstyle 0}$	=[]	H,O-]	$\Big] = \frac{n_0}{V}$	= 2,0	$\times 10^{1-}$	mol.	$L^{\scriptscriptstyle -1}$		
												23	3	