LÓGICA Y COMPUTABILIDAD 2º CUATRIMESTRE 2017

Práctica 7 - Sistemas deductivos, completitud y compacidad para lógica de primer orden

Ejercicio 1. Demostrar que MP preserva validez para toda clase de estructuras \mathcal{C} . Es decir que, si $\mathcal{C} \models \alpha \rightarrow \beta$ y $\mathcal{C} \models \alpha$ entonces $\mathcal{C} \models \beta$.

Ejercicio 2. Sea $\Delta = \{SQ1, \dots, SQ7\}$ el conjunto de todos los axiomas de SQ.

- a. Supongamos que agregamos a Δ una fórmula φ que no es universalmente válida. Mostrar que el sistema resultante no es correcto con respecto a la clase de todas las estructuras.
- b. Yendo al otro extremo, supongamos que eliminamos todos los axiomas, esto es, $\Delta = \emptyset$. Mostrar que el sistema resultante no es completo con respecto a la clase de todas las estructuras.
- c. Supongamos que agregamos a Δ una nueva fórmula universalmente válida φ . Explicar por qué el sistema resultante es correcto y completo con respecto a la clase de todas las estructuras.

Ejercicio 3. Se dice que una estructura de primer orden es transitiva cuando todas sus relaciones binarias son transitivas. Partiendo de la axiomatización para SQ, proponer una extensión SQ^T que caracterice la clase de estructuras transitivas.

- a. Demostrar que SQ^T es correcta con respecto a la clase de estructuras transitivas.
- b. Demostrar que SQ^T es completa con respecto a la clase de todas las estructuras.
- c. Demostrar que SQ^T es completa con respecto a la clase de estructuras transitivas.
- d. Demostrar que SQ^T no es correcta con respecto a la clase de todas las estructuras.

Ejercicio 4. Sea un lenguaje de primer orden con igualdad, un símbolo de predicado binario P y un símbolo de constante r. Sea la clase de estructuras $\mathcal{C} = \{\mathcal{M} \mid P^{\mathcal{M}} \text{ define un árbol con raíz } r \text{ sobre todos los elementos de } \mathcal{M}\}$, donde por árbol se entiende cualquier árbol dirigido donde cada nodo puede tener una cantidad arbitraria de hijos $(P(x,y)^{\mathcal{M}} \text{ afirma que } x^{\mathcal{M}} \text{ es el padre de } y^{\mathcal{M}})$. Considerar la axiomatización SQ_{Tree} , que extiende a la axiomatización SQ vista en clase de la siguiente manera:

$$\begin{array}{ll} \mathbf{SQ8} & (\forall x) \big(\neg P(x,r) \wedge \neg P(x,x) \big) \\ \mathbf{SQ9} & (\forall x) (\forall y) (\forall z) \big((P(y,x) \wedge P(z,x)) \rightarrow (y=z) \big) \\ \mathbf{SQ10} & (\forall x) \big(((\forall y) \neg P(y,x)) \rightarrow x=r \big) \end{array}$$

- a. Demostrar que los axiomas SQ8, SQ9 y SQ10 son válidos en C.
- b. Sea $\varphi = (\forall x)(\forall y)(P(x,y) \to \neg P(y,x))$. Demostrar que existe un modelo \mathcal{M} tal que todos los axiomas de SQ_{Tree} son válidos en \mathcal{M} , pero $\mathcal{M} \not\models \varphi$.
- c. Analizar si φ es válida en \mathcal{C} , y si junto con los puntos anteriores se puede afirmar que SQ_{Tree} es correcta pero no es completa con respecto a \mathcal{C} .

Ejercicio 5. Sea un lenguaje de primer orden con dos símbolos de predicado binarios P y T. Sea la clase de estructuras $\mathcal{C} = \{\mathcal{M} \mid P_{\mathcal{M}} \text{ y } T_{\mathcal{M}} \text{ son relaciones binarias, y } P_{\mathcal{M}}^+ = T_{\mathcal{M}} \}$, en donde $P_{\mathcal{M}}^+$ representa la clausura transitiva de $P_{\mathcal{M}}$ (i.e. $P_{\mathcal{M}}^+$ es la mínima relación transitiva tal que $P_{\mathcal{M}} \subseteq P_{\mathcal{M}}^+$). Considerar la axiomatización SQ^+ , que extiende la axiomatización SQ vista en clase de la siguiente manera:

$$\begin{array}{ll} \mathbf{SQ8} & (\forall x)(\forall y)\big(P(x,y) \to T(x,y)\big) \\ \mathbf{SQ9} & (\forall x)(\forall y)(\forall z)\big((T(x,y) \land P(y,z)) \to T(x,z)\big) \\ \mathbf{SQ10} & (\forall x)(\forall y)\big((T(x,y) \land \neg P(x,y)) \to (\exists z)(T(x,z) \land P(z,y))\big) \end{array}$$

- a. Demostrar que los axiomas SQ8, SQ9 y SQ10 son válidos en C.
- b. Sea $\varphi = (\forall x)(\forall y)(T(x,y) \to ((\exists z)P(x,z)))$. Mostrar que existe un modelo \mathcal{M} en donde todos los axiomas de SQ^+ son válidos, pero $\mathcal{M} \not\models \varphi$.
- c. Suponiendo que φ es válida en \mathcal{C} , demostrar que SQ^+ no es completa con respecto a \mathcal{C} .

Ejercicio 6. Considerar un lenguaje de primer orden igualdad, un símbolo de función binario + y dos constantes 0 y 1. Sea P la axiomatización que extiende a SQ con:

P1
$$(\forall x) \neg (0 = x + 1)$$

P2 $(\forall x)(\forall y)x + 1 = y + 1 \rightarrow x = y$
P3 $(\forall x)(\forall y)(x + y) + 1 = x + (y + 1)$

Demostrar que P no es completa con respecto a la estructura de los naturales con la suma.

Ejercicio 7. Sea \mathcal{L} un lenguaje con igualdad.

- a. Dar un conjunto de fórmulas Γ tal que si Γ es satisfacible en un modelo \mathcal{M} entonces el dominio de \mathcal{M} sea infinito. Sugerencia: escribir una fórmula que, dado un n fijo, fuerce a que el modelo tenga al menos n elementos.
- b. Usando compacidad y el ítem anterior, demostrar que no existe ninguna fórmula φ tal que φ es satisfacible en un modelo \mathcal{M} sii el dominio de \mathcal{M} es finito.

Ejercicio 8. Sea \mathcal{L} un lenguaje con un símbolo de predicado R binario y \mathcal{M} una \mathcal{L} -estructura. Demostrar usando compacidad que no existe una fórmula $\varphi_R(x,y)$ tal que su interpretación represente que (x,y) pertenece a la clausura transitiva de la relación binaria $R^{\mathcal{M}}$.

Ejercicio 9. Sea \mathcal{L} un lenguaje con un símbolo de predicado R, y \mathcal{M} cualquier \mathcal{L} -estructura cuyo dominio represente a los nodos de un grafo no orientado, y el símbolo R pueda ser interpretado como la relación "es adyacente a" (esto es, cualquier interpretación donde la relación $R^{\mathcal{M}}$ sea irreflexiva y simétrica). Demostrar que no es posible expresar la propiedad que afirma que un grafo es conexo, es decir, que entre cualquier par de nodos hay un camino de longitud finita.

Ejercicio 10. * Una función f se dice circular cuando para todo elemento e en el dominio de f existe un natural n > 0 tal que $f^n(e) = e$, en donde f^n representa el resultado de aplicar n veces la función f en forma sucesiva. Mostrar que no es expresable en primer orden la proposición "f es una función circular".

Ejercicio 11. Un número r es llamado infinitesimal si es mayor que cero y menor que todos los reales positivos. Claramente, en el modelo estándar de los reales (notación: \mathcal{R}) no hay números infinitesimales. Sea $SQ_{\mathbb{R}}$ una axiomatización de primer orden correcta con respecto a \mathcal{R} sobre el lenguaje $S = \{0, suc, <, +, -, *, /\}$, que extiende a SQ con nuevos axiomas. Sea $SQ_{\mathbb{R}}^+$ una extensión de $SQ_{\mathbb{R}}$ en donde se agrega un nuevo símbolo de constante c y los siguientes (infinitos) axiomas:

$$\begin{array}{ll} \textbf{Positivo} & c>0\\ \textbf{Menor}_n & c<\frac{1}{suc^{(n)}(0)} & \text{para todo } n>1 \end{array}$$

- a. Demostrar que si \mathcal{M} es modelo de $SQ_{\mathbb{R}}^+$, entonces \mathcal{M} es modelo de $SQ_{\mathbb{R}}$.
- b. Demostrar que $SQ_{\mathbb{R}}^+$ es satisfacible (Sugerencia: usar compacidad).
- c. Demostrar que cualquier axiomatización correcta con respecto a \mathcal{R} admite un modelo que posee números infinitesimales.

Ejercicio 12. Vamos a llamar $\mathcal{N} = \langle \mathbb{N}; 0; suc \rangle$ a la estructura usual de los números naturales con cero y sucesor. Considerar un lenguaje de primer orden con igualdad \mathcal{L} con un símbolo de constante 0 y un símbolo unario de función suc. Sea la siguiente axiomatización SQ_N , que extiende a SQ con infinitos axiomas:

```
\begin{array}{ll} \mathbf{S1} & (\forall x)suc(x) \neq 0 \\ \mathbf{S2} & (\forall x)(\forall y)(suc(x) = suc(y) \rightarrow x = y) \\ \mathbf{S3} & (\forall y)\big(y \neq 0 \rightarrow (\exists x)(y = suc(x))\big) \\ \mathbf{S4}_n & (\forall x)(suc^{(n)}(x) \neq x) & \text{para todo } n > 1 \end{array}
```

- a. Demostrar que S1 y toda instancia de S4_n es verdadera en $\mathcal{N}.$
- b. Dado un conjunto de fórmulas de primer orden Σ , demostrar que si existe un conjunto finito de fórmulas Γ tal que $Con(\Gamma) = Con(\Sigma)$, entonces existe un conjunto finito $\Sigma_0 \subseteq \Sigma$ tal que $\Sigma_0 \models \Sigma$. Sugerencia: usar alguna de las formulaciones del teorema de compacidad.
- c. Demostrar que para cualquier subconjunto finito Γ de axiomas de SQ_N existe un modelo \mathcal{M} tal que $\mathcal{M} \models \Gamma$ pero $\mathcal{M} \not\models SQ_N$.
- d. Sabiendo que SQ_N es correcta y completa con respecto a \mathcal{N} , demostrar que ninguna axiomatización correcta y finita de primer orden es completa con respecto a \mathcal{N} . Sugerencia, aplicar el punto b al ítem anterior.

^{*}Este ejercicio puede ser entregado, de manera opcional, como se resolvería en un examen, a modo de práctica para el parcial.