## 1

## 2021-ME-1-13

## EE24BTECH11001 - ADITYA TRIPATHY

| 1)                                                                                                     | If $y(x)$ satisfies the differential equation $(\sin x) \frac{dy}{dx} + y \cos x = 1$ , subject to the domain $y(\frac{\pi}{2}) = \frac{\pi}{2}$ , then $y(\frac{\pi}{2})$ is                                                                                            |                    |                            |                    |  |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------|--------------------|--|
|                                                                                                        | a) 0                                                                                                                                                                                                                                                                     | b) $\frac{\pi}{6}$ | c) $\frac{\pi}{3}$         | d) $\frac{\pi}{2}$ |  |
| 2)                                                                                                     | 2) The value of $\lim_{x\to 0} \frac{1-\cos x}{x^2}$ is (2021 – $ME$ )                                                                                                                                                                                                   |                    |                            |                    |  |
|                                                                                                        | a) $\frac{1}{4}$                                                                                                                                                                                                                                                         | b) $\frac{1}{3}$   | c) $\frac{1}{2}$           | d) 1               |  |
| 3) The Dirac-Delta function $\delta(t - t_0)$ for $t, t_0 \in \mathbb{R}$ , has the following property |                                                                                                                                                                                                                                                                          |                    |                            |                    |  |
|                                                                                                        | $\int_{a}^{b} \phi(t)  \delta t - t_0  dt = \begin{cases} \phi(t_0) & a < t_0 < b \\ 0 & otherwise \end{cases} \tag{1}$                                                                                                                                                  |                    |                            |                    |  |
|                                                                                                        | The laplace transform of the Dirac-Delta function $\delta(t-a)$ for $a>0$ , $\mathcal{L}(\delta(t-a))=F(s)$ is $(2021-ME)$                                                                                                                                               |                    |                            |                    |  |
|                                                                                                        | a) 0                                                                                                                                                                                                                                                                     | b) ∞               | c) e <sup>sa</sup>         | d) $e^{-sa}$       |  |
| 4)                                                                                                     | The ordinary differential equation $\frac{dy}{dx} = -\pi y$ subject to an initial condition $y(0) = 1$ is solved numerically using the following scheme:                                                                                                                 |                    |                            |                    |  |
|                                                                                                        | $\frac{y(t_{n+1}) - y(t_n)}{h} = -\pi y(t_n) \tag{2}$                                                                                                                                                                                                                    |                    |                            |                    |  |
|                                                                                                        | where $h$ is the time step, $t_n = nh$ , and $n = 0, 1, 2 \cdots$ . This numerical scheme is stable for all value of $h$ in the interval (2021 – $ME$ )                                                                                                                  |                    |                            |                    |  |
|                                                                                                        | a) $0 < h < \frac{2}{\pi}$                                                                                                                                                                                                                                               | b) $0 < h < 1$     | c) $0 < h < \frac{\pi}{2}$ | d) for all $h > 0$ |  |
| 5)                                                                                                     | Consider a binomial random variable $X$ . If $X_1, X_2, \dots, X_n$ are independent and identically distributed samples from the distribution of $X$ with sum $Y = \sum_{i=1}^{n} X_i$ , then distribution of $Y$ as $n \to \infty$ can be approximated as $(2021 - ME)$ |                    |                            |                    |  |
|                                                                                                        | a) Exponential                                                                                                                                                                                                                                                           | b) Bernoulli       | c) Binomial                | d) Normal          |  |
| 6)                                                                                                     | 6) The loading and unloading response of a metal is shown in the figure. The elastic and plastic strains corresponding to 200MPa stress, respectively, are                                                                                                               |                    |                            |                    |  |



(2021 - ME)

- a) 0.01 and 0.01
- b) 0.02 and 0.01
- c) 0.01 and 0.02
- d) 0.02 and 0.02
- 7) In a machining operation, if a cutting tool traces the workpiece such that the directrix is perpendicular to the plane of the generatrix as shown in figure, the surface generated is



(2021 - ME)

a) plane

- b) cylindrical
- c) spherical
- d) a surface of revolution
- 8) The correct sequence of machining operations to be performed to finish a large diameter through hole is (2021 ME)
  - a) drilling, boring, reaming

b) boring, drilling, reaming

c) drilling, reaming, boring

- d) boring, reaming, drilling
- 9) In modern CNC machine tools, the backlash has been eliminated by

(2021 - ME)

a) preloaded ballscrews

b) rack and pinion

c) ratchet and pinion

- d) slider crank mechanism
- 10) Consider the surface roughness profile as shown in the figure. The center line average roughness ( $R_a$ , in  $\mu$ m)of the measured length (L) is



(2021 - ME)

a) 0

b) 1

c) 2

d) 4

- 11) In which of the following pairs of cycles, both cycles have at least one isothermal process? (2021 ME)
  - a) Diesel cycle and Otto cycle

- b) Carnot cycle and Stirling cycle
- c) Brayton cycle and Rankine cycle
- d) Bell-Coleman cycle and Vapour compression refrigeration cycle
- 12) Supeheated steam at 1500kPa, has a specific volume of  $2.75m^3/kmol$  and compressibility factor (Z) of 0.95. The temperature of steam is (in °C) (round off to the nearest integer). (2021 ME)
  - a) 522

b) 471

c) 249

- d) 198
- 13) A hot steel spherical ball is suddenly dipped into a low temperature oil bath. Which of the following dimensionless parameters are required to determine instantaneous center temperature of the ball using a Heisler chart? (2021 ME)
  - a) Biot number and Fourier number
- b) Reynolds Number and Prandtl number
- c) Biot number and Froude number
- d) Nusselt number and Grashoff number