实验五 实验过程原始数据记录

时间: 20245.25 地点: 上410 台号: 上大 实验名称: ______

1、减法器电路

① 根据理论计算,选择相关元器件并画出实验电路图(建议采用 $10k\Omega$ 以上的电阻,请思考原因)。

绘制设计电路图:

Vii of men	
Uiz 0-17/10/10/10	— o 7
Viz Dzloka DVLL-	Ĺ
>4nLP3	5

- ② 输入信号是正弦波, 其频率为 lkHz, 有效值负表 5-2, 要求两个输入信号同相位。
- ③ 接通信号源,用示波器测量输出电压的有效值,填入表 5-2 中。
- ④ 用示波器观察输入电压 u_{12} 和 u_{n} 的波形,并记录波形。**【拍照记录,检查】**

表 5-2 减法运算电路测试数据表格

有效值	有效值	测量值	测量值	有效值 U。	有效值 <i>U</i> 。	`n *
$U_{\mathfrak{il}}$	U_{i2}	U_{il}	U_{i2}	(测量)	(理论),,	误差
0.5V	1V	502mV	1.01	996mV	THE V	\$mV
0.5V	2V	503mV	1.991	2.970	2-9-74-V3V	/ 30mV

2、加法器电路

① 根据理论计算,选择相关元器件并画出实验电路图(建议采用 10kΩ 以上的电阻,请思考

绘制设计电路图:

- ② 输入信号是直流信号源 (波形选择 Arb), 幅值见表 5-3。
- ③ 接通信号源,用示波器的平均值测量输出电压,填入表 5-3 中。

表 5-3 反相加法运算电路

直流信号源 Uil/V	直流信号源 Ui2/V	<i>U</i> 。(测量) /∨	<i>U</i> 。(理论) /V	误差
1 V	0.5V	-2.8)V	-3.00 V	130mV
2V	0.5V	-4.961	-5.00V	40 mV

3、积分电路(需要测量出 u_i 和 u_i 的辐值、频率等参数) 推导出 u_o 的表达式。 $u_i(t) = \frac{u_i(t)}{v_i(t)} = \frac{u$

4、微分电路 推导出 u_o 的表达式 $u_o(t) = P_t C \frac{d \ U_i(t)}{d \ t} = -10000 (\frac{d \ U_i(t)}{d \ t})$ 用示波器观察 u_i 和 u_o 的波形,并保存波形 u_i 和 u_o 。【拍照记录,检查】

