© 5. Hamedi-Hagii, 2011		Sai	1 Jose State	Jiiiveisity
* Right-hand and Left-hand Zero:		MZ	WPI	WP2
LH	(Worst) C.S	RHZ	LHP	LHP
$n+3=0 \implies n=-3 \xrightarrow{-3} 0$	C.6		LHP	LHP
Vout(jw) Avo(1±jwz)	(Best) C.D	LHZ	LHP	LHP
$\frac{\text{Vin}(jw)}{(1+j\frac{w}{wp_1})(1+j\frac{w}{wp_2})}$		J	inherentl	y stable
$W_{P_1} \ll (W_Z, W_{P_2}) \qquad W_{P_2} ? W_Z$	1 vin 1		Im j	J2 <u>245</u>
*Assume: Wp1 (Wp2 (Wz Ava	-3 _{dB} = tvg ₂ :			Re
$\sim \sim $	dB	1P>160		
$\longrightarrow W = W_{P1} \Rightarrow \frac{V_{out}}{V_{in}} = \frac{Avo(1+j0)}{(1+j)(1+j0)}$	4 Vout- 4 Ving	Wp1,	wp21	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$\frac{1}{\text{Wp}_1}$ (W(Wp ₂ $\Rightarrow \frac{\text{Vout}}{\text{vii}} = \frac{\text{Avo}(1+i\theta)}{\text{Avo}} = -i\frac{\text{Avo}}{\text{Vout}}$	1.WP1 -450	free	luency !	
$j\frac{\omega}{\omega_{P1}}(1+j0)$	J -90° -135°		a	120°
$\longrightarrow W = Wp_2 \Rightarrow \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{Av_{\text{o}}(1+j_{\text{o}})}{2W_{\text{o}}(1+j_{\text{o}})}$	-180°	AP	V	
Jwp1 (1+1)	ı		listance fro	om 180°
${\text{Wp}_2(\text{W}(\text{Wz}))} = \frac{\text{Vout}}{\text{Vin}} = \frac{\text{Avo}(1+j0)}{\text{jw}} = -$	Avo. Wp1.Wp2			
WP1 UWP2	W ²	11	11_	1.0' -
(negative feedback stable amplifier)	(positive fredbo		1	itier)
Vin A Vout	Vin	A >-	Vout	
	> feedback			
<u> </u>	,	- B-		
a L.F	D H.F nnn		Any	
	J H.F M -	74 1	i ∤ {	

Example:
$$\frac{V_{out}}{V_{in}} = \frac{Av_{o}(1-jw_{2})}{(1+jw_{p_{1}})(1+jw_{p_{2}})} \Rightarrow \chi v_{out} - \chi v_{in} = -45^{\circ} - (45^{\circ} + 45^{\circ})$$

$$= -135^{\circ}$$

$$\frac{V_{out}}{V_{in}} = \frac{Av_{o}(1+jw_{2})}{(1+jw_{p_{1}})(1+jw_{p_{2}})} \Rightarrow \chi v_{out} - \chi v_{in} = 45^{\circ} - (45^{\circ} + 45^{\circ}) = -45^{\circ}$$

* How to choose the value of Wz in a Common Drain amplifier:

$$\frac{\text{Vout}(j\omega)}{\text{Vin}(j\omega)} = \frac{\text{Avo}(1+j\frac{\omega}{wz})}{(1+j\frac{\omega}{wp_1})(1+j\frac{\omega}{wp_2})}$$

$$\text{Wp_1} \left(\frac{\omega}{wp_2}\right) \left(\frac{\omega}{wp_2}\right)$$

 $Wp_1 \left(\left(Wz = Wp_2 \right) \right)$

Wp1 (Wz (Wp2

