Serial No.: 10/724,015

Filed: November 26, 2003

Page : 5 of 13

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1-26. (Canceled)

27. (Currently Amended) A light-emitting device, comprising:

a multi-layer stack of materials including a light-generating region and a first layer supported by the light-generating region so that, during use of the light-emitting device, light generated by the light-generating region can emerge from the light-emitting device via a surface of the first layer,

wherein the light-emitting device has an edge which is at least about one millimeter long, and the light-emitting device is designed so that an extraction efficiency of the light-emitting device is substantially independent of the length of the edge of the length of the edge; and

wherein the surface of the first layer has a dielectric function that varies spatially according to a pattern with an ideal lattice constant and a detuning parameter with a value greater than zero.

- 28. (Original) The light-emitting device of claim 27, wherein the length of the edge is at least about 1.5 millimeters.
- 29. (Original) The light-emitting device of claim 27, wherein the length of the edge is at least about two millimeters.
- 30. (Original) The light-emitting device of claim 27, wherein the length of the edge is at least about 2.5 millimeters.

Attorney's Docket No.: 16459-011001 / LD-11

Applicant: Alexei A. Erchak Serial No.: 10/724,015

Filed: November 26, 2003

Page : 6 of 13

31. (Original) The light-emitting device of claim 27, wherein the length of the edge is at least about three millimeters.

- 32. (Original) The light-emitting device of claim 27, wherein the light-emitting device includes at least one additional edge having a length of at least about one millimeter.
- 33. (Original) The light-emitting device of claim 27, wherein at least about 90% of the total amount of light generated by the light-generating region that emerges from the light-emitting device emerges from the light-emitting device via the surface of the first layer.
- 34. (Original) The light-emitting device of claim 27, wherein at least about 95% of the total amount of light generated by the light-generating region that emerges from the light-emitting device emerges from the light-emitting device via the surface of the first layer.
- 35. (Original) The light-emitting device of claim 27, wherein the multi-layer stack of materials comprises a multi-layer stack of semiconductor materials.
- 36. (Original) The light-emitting device of claim 35, wherein the first layer comprises a layer of n-doped semiconductor material, and the multi-layer stack further includes a layer of p-doped semiconductor material.
- 37. (Original) The light-emitting device of claim 36, wherein the light-generating region is between the layer of n-doped semiconductor material and the layer of p-doped semiconductor material.
- 38. (Original) The light-emitting device of claim 27, further comprising a support that supports the multi-layer stack of materials.

Serial No.: 10/724,015

Filed: November 26, 2003

Page : 7 of 13

39. (Original) The light-emitting device of claim 38, further comprising a layer of reflective material that is capable of reflecting at least about 50% of light generated by the light-generating region that impinges on the layer of reflective material, the layer of reflective material being between the support and the multi-layer stack of materials.

- 40. (Original) The light-emitting device of claim 39, wherein the first layer comprises a layer of an n-doped material, the multi-layer stack of materials further includes a layer of p-doped material, and a distance between the layer of p-doped semiconductor material and the layer of reflective material is less than a distance between the layer of n-doped semiconductor material and the layer of reflective material.
- 41. (Original) The light-emitting device of claim 40, further comprising a p-ohmic contact layer between the layer of p-doped material and the layer of reflective material.
- 42. (Original) The light-emitting device of claim 27, further including a current-spreading layer between the first layer and the light-generating region.
- 43. (Original) The light-emitting device of claim 27, wherein the multi-layer stack of materials comprise semiconductor materials.
- 44. (Original) The light-emitting device of claim 43, wherein the semiconductor materials are selected from the group consisting of III-V semiconductor materials, organic semiconductor materials and silicon.
- 45. (Currently Amended) The light-emitting device of claim 27, wherein the surface of the first layer has a dielectric function that varies spatially according to a pattern that does not extend into the light-generating region.

Serial No.: 10/724,015

Filed: November 26, 2003

Page : 8 of 13

46. (Currently Amended) The light-emitting device of claim 27, wherein the pattern that does not extend beyond the first layer.

- 47. (Currently Amended) The light-emitting device of claim 27, wherein the surface of the first layer has a dielectric function that varies spatially according to a pattern that extends beyond the first layer.
- 48. (Original) The light-emitting device of claim 27, further comprising electrical contacts configured to inject current into the light-emitting device.
- 49. (Original) The light-emitting device of claim 48, wherein the electrical contacts are configured to vertically inject electrical current into the light-emitting device.
- 50. (Original) The light-emitting device of claim 27, wherein the light-emitting device is selected from the group consisting of light-emitting diodes, lasers, optical amplifiers, and combinations thereof.
- 51. (Original) The light-emitting device of claim 27, wherein the light-emitting device comprises a light emitting diode.
- 52. (Original) The light-emitting device of claim 27, wherein the light-emitting device is selected from the group consisting of OLEDs, flat surface-emitting LEDs, HBLEDs, and combinations thereof.
- 53. (Original) The light-emitting device of claim 27, wherein the light-emitting device is in the form of a packaged light-emitting device.

Serial No.: 10/724,015

Filed: November 26, 2003

Page : 9 of 13

54. (Original) The light emitting device of claim 27, wherein the light-emitting device is in the form of a packaged die.

- 55. (Canceled)
- 56. (Currently Amended) The light emitting device of claim 27, A light-emitting device, comprising:

a multi-layer stack of materials including a light-generating region and a first layer supported by the light-generating region so that, during use of the light-emitting device, light generated by the light-generating region can emerge from the light-emitting device via a surface of the first layer;

wherein the light-emitting device has an edge which is at least about one millimeter long, and the light-emitting device is designed so that an extraction efficiency of the light-emitting device is substantially independent of the length of the edge; and

wherein the surface of the first layer has a dielectric function that varies spatially according to a pattern that is a nonperiodic pattern or a complex periodic pattern.

57-59. (Canceled)

60. (Previously Presented) The light-emitting device of claim 27, wherein the surface of the first layer has features with a size of less than about λ 5, where λ is a wavelength of light that can be generated by the light-generating region and that can emerge from the light-emitting device via the surface of the first layer.

61-62. (Canceled)

Attorney's Docket No.: 16459-011001 / LD-11 Applicant: Alexei A. Erchak

Serial No.: 10/724,015

Filed : November 26, 2003 Page : 10 of 13

63. (New) The light emitting device of claim 56, wherein the nonperiodic pattern comprises a pattern selected from the group consisting of aperiodic patterns, Robinson patterns, and Amman patterns.

64. (New) The light emitting device of claim 56, wherein the nonperiodic pattern comprises a quasicrystalline pattern.