```
In [1]: import pandas as pd
          import numpy as np
          from sklearn import metrics
          from sklearn.model_selection import train_test_split
          from sklearn.tree import DecisionTreeClassifier
          import matplotlib.pyplot as plt
          import warnings
          warnings.filterwarnings('ignore')
  In [4]: df pill = pd.read csv('C:/Users/Isaac/Desktop/IHD/EBAC DT/CIENCIA DE DATOS/M24 DS/drugs.csv')
         df_pill.head()
  Out[4]:
            Age Sex
                        BP Cholesterol Na_to_K Drug
             23
                       HIGH
                                      25.355 drugY
             47
                       LOW
                                HIGH
                                      13.093 drugC
             47
                  M
                       LOW
                                HIGH
                                      10.114 drugC
             28
                  F NORMAL
                                HIGH
                                       7.798 drugX
             61
                       LOW
                                HIGH
                                      18.043 drugY
In [5]: # definimos columnas para 'x' y 'y'
         feature_cols = ['Age','Sex','BP','Cholesterol','Na_to_K']
         X = df_pill[feature_cols].values
         y = df pill.Drug
In [7]: # convertimos variables categoricas en cuantitativas con 'preprocessing'
         from sklearn import preprocessing
         cod sex = preprocessing.LabelEncoder()
         cod_sex.fit(['F','M'])
         X[:,1] = cod_sex.transform(X[:,1])
         cod bp = preprocessing.LabelEncoder()
         cod_bp.fit(['HIGH','LOW','NORMAL'])
         X[:,2] = cod_bp.transform(X[:,2])
         cod_cho = preprocessing.LabelEncoder()
         cod_cho.fit(['HIGH','NORMAL'])
         X[:,3] = cod\_cho.transform(X[:,3])
```

USAMOS RANDOM FOREST

from sklearn.ensemble import RandomForestClassifier

In []: # creamos grupos de entrenamiento y prueba

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 1)

In [24]: # inicializamos el metodo

rf = RandomForestClassifier(n_estimators = 100, random_state = 1)

In [25]: # entrenamos el modelo

rf.fit(X_train, y_train)

Out[25]: RandomForestClassifier RandomForestClassifier(random_state=1)

In [26]: # realizamos predicciones

rf_pred = rf.predict(X_test)

In [27]: # estadisticas de desempeño

from sklearn.metrics import classification_report print(classification_report(y_test, rf_pred))

	precision	recall	f1-score	support
drugA	1.00	1.00	1.00	4
drugB	1.00	1.00	1.00	2
drugC	1.00	0.75	0.86	4
drugX	0.93	1.00	0.96	13
drugY	1.00	1.00	1.00	17
accuracy			0.97	40
macro avg	0.99	0.95	0.96	40
weighted avg	0.98	0.97	0.97	40

```
In [34]: # creamos una funcion para imprimir Las variables mas importantes

def plot_features_imp(df_pill, model):
    n_features = feature_cols
    plt.barh(n_features, model.feature_importances_, align = 'center', color = 'salmon')
    plt.xlabel('Importancia de las variables')
    plt.ylabel('Caracteristicas')
    plt.show()

plot_features_imp(df_pill, rf)
```


USAMOS GRADIENT BOOSTED TREE

[33]: # estaaistic	# estadisticas de desempeño							
print(classi	<pre>print(classification_report(y_test, gbt_pred))</pre>							
	precision	recall	f1-score	support				
drugA	1.00	1.00	1.00	4				
drugE	1.00	1.00	1.00	2				
drug(1.00	1.00	1.00	4				
drug>	1.00	1.00	1.00	13				
drug\	1.00	1.00	1.00	17				
accuracy	,		1.00	40				
macro avg	1.00	1.00	1.00	40				
weighted ava	1.00	1.00	1.00	40				

Con el Modelo GBT obtuvimos resultados excelentes, la Precision Global es de 1.0 y para los Score F1 en todos los medicamentos dio un valor de 1.0. Con estos resultados podemos recomedar cualquiera de los 5 medicamentos.

Probamos el modelo que mejor dio resultados con los valores indicados en la practica.

En este caso es el modelo GBT

Variable a pronosticar:

Age Sex		BP	Cholesterol	Na_to_K	Drug	
23	F	HIGH	HIGH	25.355	drugY	
47	М	LOW	HIGH	13.093	drugC	
47	М	LOW	HIGH	10.114	drugC	
28	F	NORMAL	HIGH	7.798	drugX	
61	F	LOW	HIGH	18.043	drugY	
22	22 F NORMAL49 F NORMAL41 M LOW		HIGH	8.607	drugX	
49			HIGH	16.275	drugY	
41			HIGH	11.037	drugC	