C.3 Existence of Maximal Ideals Containing a Given Proper Ideal

Let A be a commutative ring with identity element. Recall that an ideal \mathfrak{A} in A is a proper ideal if $\mathfrak{A} \neq A$. The following theorem holds:

Theorem C.3. Given any proper ideal, $\mathfrak{A} \subseteq A$, there is a maximal ideal, \mathfrak{B} , containing \mathfrak{A} .

Proof. Let \mathcal{I} be the set of all proper ideals, \mathfrak{B} , in A that contain \mathfrak{A} . The set \mathcal{I} is nonempty, since $\mathfrak{A} \in \mathcal{I}$. We claim that \mathcal{I} is inductive. Consider any chain $(\mathfrak{A}_i)_{i \in I}$ of ideals \mathfrak{A}_i in A. One can easily check that $\mathfrak{B} = \bigcup_{i \in I} \mathfrak{A}_i$ is an ideal. Furthermore, \mathfrak{B} is a proper ideal, since otherwise, the identity element 1 would belong to $\mathfrak{B} = A$, and so, we would have $1 \in \mathfrak{A}_i$ for some i, which would imply $\mathfrak{A}_i = A$, a contradiction. Also, \mathfrak{B} is obviously an upper bound for all the \mathfrak{A}_i 's. By Zorn's lemma (Lemma C.1), the set \mathcal{I} has a maximal element, say \mathfrak{B} , and \mathfrak{B} is a maximal ideal containing \mathfrak{A} .