made-yulinwang (/github/YulinWangFAU/made-yulinwang/tree/main) / project (/github/YulinWangFAU/made-yulinwang/tree/main/project)

Analysis Report: Socioeconomic Factors and Healthcare Burden during COVID-19 in the Americas

1. Introduction

In recent years, the COVID-19 pandemic has highlighted significant disparities in healthcare systems and socioeconomic development across the Americas. Variations in factors such as GDP per capita and healthcare expenditure have led to differing outcomes, including mortality rates, ICU occupancy, and overall healthcare resilience. While wealthier nations generally demonstrated better pandemic management, economically disadvantaged countries faced heightened healthcare burdens and resource constraints.

This project seeks to understand how these socioeconomic factors influenced COVID-19 outcomes in the Americas by addressing two key questions:

- 1. What are the patterns in the correlation between socioeconomic factors and COVID-19 outcomes in the Americas?
- 2. How can these insights guide future policy decisions to improve healthcare resilience?

2. Used Data

The ETL pipeline produces a structured SQLite database containing two tables: covid_data and socioeconomic_data. The tabular data can be retrieved through SQL execution that selects all rows from the respective tables.

2.1 Table covid_data:

```
In [57]: import pandas as pd
import sqlite3
import os
print(os.getcwd())
os.chdir('/Users/wangyulin/MADE/made-yulinwang')
db_path = './data/database.sqlite'
conn = sqlite3.connect(db_path)
cursor = conn.cursor()

df_covid = pd.read_sql_query("SELECT * FROM covid_deaths", conn)
df_covid.head()
```

/Users/wangyulin/MADE/made-yulinwang

Out [57]:

	Country/Region	Date	Deaths	Country	Country Code	GDP per Capita	Healthcare Expenditure Per Capita	Urbanizati Ra
0	Argentina	2020-01-22 00:00:00.000000	0	Argentina	ARG	8500.837939	10.347015	4162677
1	Argentina	2020-01-23 00:00:00.000000	0	Argentina	ARG	8500.837939	10.347015	4162677 ⁻
2	Argentina	2020-01-24 00:00:00.000000	0	Argentina	ARG	8500.837939	10.347015	4162677 ⁻
3	Argentina	2020-01-25 00:00:00.000000	0	Argentina	ARG	8500.837939	10.347015	4162677 ⁻
4	Argentina	2020-01-26 00:00:00.000000	0	Argentina	ARG	8500.837939	10.347015	4162677

Through data transformation, the covid_deaths table comprises several thousand entries with the following columns:

- Columns:
 - Country/Region: Name of the country or region.
 - Date: Date of the observation.
 - Deaths: Cumulative number of deaths reported for COVID-19.
 - GDP per Capita: Average income per person in USD.
 - Healthcare Expenditure Per Capita: Annual healthcare spending per person.
 - Urbanization Rate: Percentage of people living in urban areas.
 - Population Density: Number of people per square kilometer.

Several columns in this table may contain missing values, particularly socioeconomic indicators such as Healthcare Expenditure Per Capita. Imputing these values can introduce bias, so caution is necessary when interpreting results. Nevertheless, the table provides critical data for understanding the correlation between mortality and socioeconomic factors.

2.2 Table world_bank_data:

In [58]: import pandas as pd

world_bank_data = pd.read_sql_query("SELECT * FROM world_bank_data", conn) world_bank_data.head()

Out [58]:

:	Country	Country Code	GDP per Capita	Healthcare Expenditure Per Capita	Urbanization Rate	Population Density
() Argentina	ARG	8500.837939	10.347015	41626771.0	16.513367
	l Belize	BLZ	5185.158070	5.309744	179871.0	17.133363
:	2 Bolivia	BOL	3068.812555	8.022581	8285943.0	10.907689
;	Brazil	BRA	6923.699912	10.182350	181687255.0	24.964985
4	l Barbados	BRB	17028.413783	7.372766	87864.0	655.111628

> The world_bank_data table contains aggregated socioeconomic indicators for each country, with the following structure:

- · Columns:
 - Country: Name of the country.
 - Country Code: ISO code of the country.
 - GDP per Capita: Average income per person in USD.
 - Healthcare Expenditure Per Capita: Annual healthcare spending per capita.
 - Urbanization Rate: Percentage of the population residing in urban areas.
 - Population Density: Number of people per square kilometer.

While most data in this table is complete, some countries lack data for specific indicators. These gaps may require imputation or exclusion, depending on the research context.

3. Analysis

Correlation Analysis

```
In [59]: import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         # Connect to the database
         db_path = './data/database.sqlite'
         conn = sqlite3.connect(db_path)
         # Load the covid deaths table
         df_covid = pd.read_sql_query("SELECT * FROM covid_deaths", conn)
         # Specify columns for correlation analysis
         columns to correlate = [
             "Deaths", "GDP per Capita", "Healthcare Expenditure Per Capita",
             "Urbanization Rate", "Population Density"
         # Filter the DataFrame
         df_filtered = df_covid[columns_to_correlate]
         # Compute the correlation matrix
         correlation_matrix = df_filtered.corr()
         # Display the correlation matrix
         print(correlation matrix)
         # Visualize the correlation matrix using a heatmap
         plt.figure(figsize=(10, 8))
         sns.heatmap(correlation_matrix, annot=True, fmt=".2f", cmap='coolwarm', square=True,
         plt.title('Correlation Matrix of COVID-19 and Socioeconomic Factors')
         plt.show()
```

	Deaths	GDP per Capita \
Deaths	1.000000	-0.029056
GDP per Capita	-0.029056	1.000000
Healthcare Expenditure Per Capita	0.132393	0.521776
Urbanization Rate	0.812681	0.044141
Population Density	-0.208915	-0.022534
	Healthcare	e Expenditure Per Capita
Deaths		0.132393

	neartheart Expenditure for capita
Deaths	0.132393
GDP per Capita	0.521776
Healthcare Expenditure Per Capita	1.000000
Urbanization Rate	0.225925
Population Density	-0.351180

	Urbanization Rate	Population Density
Deaths	0.812681	-0.208915
GDP per Capita	0.044141	-0.022534
Healthcare Expenditure Per Capita	0.225925	-0.351180
Urbanization Rate	1.000000	-0.241497
Population Density	-0.241497	1.000000

In [60]: import matplotlib.pyplot as plt

```
df_deaths_grouped = df_covid.groupby('Country/Region')['Deaths'].sum().reset_index()
df_deaths_sorted = df_deaths_grouped.sort_values(by='Deaths', ascending=False)

plt.figure(figsize=(12, 6))
plt.bar(df_deaths_sorted['Country/Region'][:10], df_deaths_sorted['Deaths'][:10], co
plt.title('Total COVID-19 Deaths by Country (Top 10)', fontsize=14)
plt.xlabel('Country', fontsize=12)
plt.ylabel('Total Deaths', fontsize=12)
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.show()
```


Country Argentina Bahamas Barbados Belize Bolivia Brazil Canada Chile Colombia Costa Rica Cuba Dominica Dominican Republic Ecuador El Salvador Grenada Guatemala Guyana Haiti Honduras lamaica Mexico Nicaragua Panama Paraguay Peru Saint Kitts and Nevis Saint Lucia Saint Vincent and the Grenadines Suriname Trinidad and Tobago Uruguay Venezuela

Saint Lucia

Suriname

Uruguay Venezuela

Trinidad and Tobago

Saint Vincent and the Grenadines

```
In [63]: avg_mortality = df_covid.groupby('Country/Region')['Deaths'].mean().reset_index()
    avg_mortality = avg_mortality.sort_values(by='Deaths', ascending=False)

plt.figure(figsize=(12, 8))
    sns.barplot(data=avg_mortality[:10], x='Deaths', y='Country/Region', palette='Blues_
    plt.title('Average COVID-19 Mortality by Country (Top 10)', fontsize=14)
    plt.xlabel('Average Deaths', fontsize=12)
    plt.ylabel('Country', fontsize=12)
    plt.tight_layout()
    plt.show()
```

/var/folders/41/v19dx8nx1bg3lcczrlhwcvlr0000gn/T/ipykernel_2851/2090965094.py:5: Fut ureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.1 4.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(data=avg_mortality[:10], x='Deaths', y='Country/Region', palette='Blue s_r')


```
In [64]: # Trends for selected countries with improved x-axis labels
    selected_countries = ["United States", "Brazil", "Mexico", "Canada", "Argentina"]

plt.figure(figsize=(12, 6))
    for country in selected_countries:
        data = df_covid[df_covid['Country/Region'] == country]
        sns.lineplot(data=data, x='Date', y='Deaths', label=country)

plt.title('COVID-19 Mortality Trends in Selected Countries', fontsize=14)
    plt.xlabel('Date', fontsize=12)
    plt.ylabel('Total Deaths', fontsize=12)
    plt.legend(title='Country', loc='upper left')

# Improve x-axis tick label spacing and rotation
    plt.gca().xaxis.set_major_locator(MaxNLocator(integer=False, prune='both', nbins=10)
    plt.tight_layout()
    plt.tight_layout()
    plt.show()
```


