Solution: $T(n) = 3T(n/2) + n^2$ a = 3, b = 2 $n^{\log_2 a} = n^{\log_2 3}$ $Comparing n^{\log_2 3} \text{ and } n^2$ $n^{\log_2 3} < n^2 \quad (\text{ tax 3})$ $according to moster Theorem <math>T(n) = Q(n^2)$ a = 4, b = 2

Solution: $T(n) = 4T(n/2) + n^2$ a = 4, b = 2 $n \log_2 a = n^2 = f(n) \quad (cose 2)$ $according to master theorem <math>T(n) = O(n^2 \log n)$

Q3) Solution:- $T(n) = T(n/2) + 2^n$ $\alpha = 1, b = 2$ $n^{\log 2^i} = n^0 = 1$ $(2^n) \quad (cos 3)$ $\therefore According matter theorem <math>T(n) = O(2^n)$

() 4 > So lution! - T(n) = 2n + (n/2) + n2 ... Master's theorem is not application as a is function on.

0.5) Solution: T(n) = 16T(n/4) + n a = 16, b = 4, f(n) = n $n\log_{\theta} = n\log_{\theta} 6 = n^{2}$ $n^{2} > F(n)$ (case 1) $T(n) = O(n^{2})$

O(6) Solution: $T(n) = 2T(n/2) + n\log n$. a=2, b=2, $f(n) = n\log n$. $n\log \beta = n\log 2 = n$ Now f(n) > n.'. According to masters $T(n) = O(n\log n)$. Solution: $T(n) = 2T(n/2) + n/\log n$ $a = 2, b = 2, f(n) = \frac{n}{\log n}$ $n^{\log n} = n^{\log n/2} = n$ n > f(n) According to masters theorem <math>T(n) = Q(n)

18 / Solution: $T(n) = 2T(n_4) + n^{0.51}$ $a = 2, b = 4, f(n) = n^{0.51}$ $n^{\log_1 a} = n^{\log_2 a} = n^{0.5}$ $n^{0.5} < f(n)$

.. According to masters Theorem T(n) = O(n0-5)

(99) Solution: T(n) = 0.5 T(n/2) +1/4

... Master's Not applicable as a<1.

(910) Solution: $T(n) = 16T(n_4) + n!$ a = 16, b = 4, t(n) = n! $n \log_{10} = n \log_{10} = n^2$ $n^2 < n!$ According to matter <math>T(n) = 0

.. According to masters , T(n) = O(n!)

Olly Solution: T(n) = 4t (n/4) + logn a = 4, b = 2, f(n) = logn $n log a = n log 24 = n^2$ $n^2 \gamma f(n)$.'. According to master 3 $T(n) = O(n^2)$

0127 Solution: T(n) = Sqrt(n) F [mh] + logn

-: Masters Not applicable as a is not Constant here.

913/Solution: $T(n) = 3T(\frac{1}{2}) + n$ a = 3, b = 2 , t(n) = n $n^{\log_2 a} = n^{\log_2 3} = n^{1.58}$ $n^{1.58} > f(n)$ $According to master's theorem, <math>T(n) = O(n\log_3)$

314 Solution: $T(n) = 3T(n/3) + \sqrt{n}$ $a=3,b=3, t(n) = \sqrt{n}$ $n\log_{1}a = n\log_{1} = n$ $n>\sqrt{n}$

- . According to master's theorem, Th) = O(n).

(815) Solution:- T(n) = 4T(n/2) + cna=4, b=2, f(n) = c*n $n\log a = n\log e^4 = n^2$ $n^2 > c*n$

. According to master's theorem, T(n) = O(n2)

Q16 Solution: $T(n) = 3T(n/4) + n\log n$ a=3, b=4, $f(n) = n\log n$ $n\log_b a = n\log_4 3 = n^{0.79}$ $n^{0.79} < n\log n$

:. According to matter's theorem Tin1 = 0 (nlogn)

 g_{17} Solution: T(n) = 3T(n/3) + n/2 a=3, b=3, f(n) = n/2 $n\log_8 = n\log_3 = n$ O(n) = O(n/2)

:. According to master's theorem. $T(n) = O(n \log n).$

918) Solution: $T(n) = 6T(n/3) + n^2 \log n$ a = 6, b = 3, $f(n) = n^2 \log n$ $n \log \beta = n \log_3 6 = n^{1.63}$ $n^{1.63} < n^2 \log n$

. . According to master's theorem T(n) = O(n2legn)

919 > Solution:- $T(n) = 4T(n/2) + n\log n$ a = 4, b = 4, $f(n) = n/\log n$ $n\log 6^2 = n\log 2^4 = n^2$ $n^2 > n/\log n$.

. . According to master's theorem.

(320) Solution: T(n) = 64T(n/8) - n2 logn Master's theorem is not applicable as turn is not increasing function.

(8217 Solution: $T(n) = 7(n/3) + n^2$ $\alpha = 7, b = 3, tin = n^2$ $n\log_{1}\alpha = n\log_{3}7 = n^{1.7}$ $n^{1.7} < n^2$ $\therefore According to marter's, <math>T(n) = O(n^2)$

O22> Solution: T(n) = T(m/2) + ri(2-cosn)

Master's theorem isn't applicable since regularity Condition is iolated in Cax 3.