1

NCERT Math 11.9.2 Q8

EE23BTECH11009 - AROSHISH PRADHAN*

Question: An input voltage in the form of a square wave of frequency $1 \, kHz$ is given to a circuit, which results in the output shown schematically below. Which one of the following options is the CORRECT representation of the circuit?

Fig. 1

α		
· ·	เมรมกา	ı

Symbol	Value	Description
$V_{in}(t)$		Input Voltage
$\mathcal{V}_{in}(f)$		Fourier Transform of $V_{in}(t)$
$V_{out}(t)$		Output Voltage
$V_{out}(f)$		Fourier Transform of $V_{out}(t)$
f	1000Hz	Input Wave Frequency
T	$\frac{1}{f} = 10^{-3}s$	Input Wave Time Period
R	(a) $0.5k\Omega$	Resistance
ı A	(b) $5k\Omega$	
C	(a) $0.1 \mu F$	- Capacitance
	(b) 1μ <i>F</i>	
τ	RC	Time Constant
Z	$R + \frac{1}{sC}$	Impedance
H(f)	$\frac{V_{out}}{V_{in}}$	General Transfer Function
$H_R(f)$	$\frac{V_{R,out}}{V_{in}}$	Transfer Function for Resistor
$H_C(f)$	$\frac{V_{C,out}}{V_{in}}$	Transfer Function for Capacitor

TABLE I: Given Parameters

Input waveform is a square wave (Fig. 2), so we take its Fourier Transform as shown in Fig. 4

$$V_{in}(t) = 2\left(2\left[\frac{\left(t - \frac{T}{4}\right)}{T}\right] - \left[\frac{2\left(t - \frac{T}{4}\right)}{T}\right]\right) + 1 \quad (1)$$

Fourier Series Coefficient:

$$c_k = \frac{1}{T} \int_T V_{in}(t) e^{-jk2\pi ft} dt \tag{2}$$

As square wave is even, $\sin(k2\pi ft)$ terms become zero. Cosine coefficients are:

$$a_n = \frac{2}{T} \int_T V_{in}(t) \cos\left(\frac{2\pi nt}{T}\right) \tag{3}$$

$$= \frac{4}{n\pi} \sin\left(\frac{n\pi}{2}\right) \cos\left(n\pi\right) \tag{4}$$

Fourier Series of $V_{in}(t)$, visualized in Fig. 2:

$$V_{in}(t) = \sum_{n=1}^{\infty} a_n \cos\left(\frac{2\pi nt}{T}\right)$$
 (5)

Fig. 2: Input Square Waveform $(V_{in}(t))$

Taking Fourier Transform of $V_{in}(t)$, plotted in Fig. 4:

$$V_{in}(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \mathcal{V}_{in}(f)$$
 (6)

Fig. 3: Series RC Circuit in s-domain

$$s = j2\pi f \tag{7}$$

$$\implies Z = R + \frac{1}{sC} \tag{8}$$

$$= R + \frac{1}{sC} \tag{9}$$

$$= R + \frac{1}{j2\pi fC}$$

$$H(f) = \frac{V_{out}}{V_{in}}$$
(9)

Across R,

$$H_R(f) = \frac{R}{R + \frac{1}{i2\pi fC}} \tag{11}$$

$$\implies \mathcal{V}_{out}(f) = H_R(f)\mathcal{V}_{in}(f)$$
 (12)

Fig. 4: $V_{in}(f)$ (Fourier Transform of $V_{in}(t)$)

Across C,

$$H_C(f) = \frac{\frac{1}{j2\pi fC}}{R + \frac{1}{j2\pi fC}}$$
 (13)

$$\implies \mathcal{V}_{out}(f) = H_C(f)\mathcal{V}_{in}(f)$$
 (14)

$$\mathcal{V}_{out}(f) \stackrel{\mathcal{F}}{\longleftrightarrow} V_{out}(t)$$
 (15)

 $\mathcal{V}_{in}(f)$ was input into all four circuits and Inverse Fourier Transform was taken of the response. All responses are plotted below:

Fig. 5: Opt A: Fourier Transform of $V_{out}(t)$

As Fig. 6 resembles question Fig. 1, option (a) is the correct answer.

Fig. 6: Opt A: Response

Fig. 7: Opt B: Fourier Transform of $V_{out}(t)$

Fig. 8: Opt B: Response

Fig. 9: Opt C: Fourier Transform of $V_{out}(t)$

Fig. 10: Opt C: Response

Fig. 11: Opt D: Fourier Transform of $V_{out}(t)$

Fig. 12: Opt D: Response