Total No. of Questions—8]

[Total No. of Printed Pages—2

Seat	I
No.	9

[5352]-568

S.E. (Computer Engineering) (II Sem.) EXAMINATION, 2018 ADVANCED DATA STRUCTURES (2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

N.B. :— (i) Answer to the questions (Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8).

- (ii) Assume suitable data, if necessary.
- (iii) Draw neat labelled diagram wherever necessary.
- (iv) Figures to the right indicate full marks.

Q. 1

a. Write an algorithm to delete node from BST.

[6]

b. Write an algorithm for Preorder traversal of binary tree and give suitable example.

[6]

OR

Q. 2

a. Draw any directed graph with minimum 6 nodes and represent graph using adjacency matrix, adjacency list, adjacency multilist and inverse adjacency list.

b. Consider the graph represented by following adjacency matrix –

	1	2	3	4	×5	6
1	0	3	1	6	0	0
2	3	0	5	0	3	0
3	1	5	0	5	6	4
4	6	0	5	0	0	2
5	0	3	6	0	0	6
6	0	0	2	2	6	0

And find minimum spanning tree of this graph using Prim's algorithm

[6]

Q. 3

a. Construct hash table of size 10 using linear probing without replacement strategy for collision resolution. The hash function is h(x) = x % 10. Consider slot per bucket is 1.

31, 3, 4, 21, 61, 6, 71, 8, 9, 25

[6]

b. Explain about a skip list with an example. Give applications of skip list

[6]

OR S	
 Q. 4 a. Construct the AVL tree for the following data by inserting each of the following data ite 	m one
at a time 10, 20, 15, 12, 25, 30, 14, 22, 35, 40	[6]
 i. Static and dynamic tree tables with suitable example. ii. Dynamic programming with principle of optimality. 	[3] [3]
Q.5	
a. Write an algorithm to arrange numbers in ascending order using heapsort. Arrange the following numbers in ascending order using heapsort: $48, 0, -1, 82, 10, 2, 100$	[7]
	r. 1
b. Construct B+ tree of order 3 for the following data: 1,42,28,21,31,10,17,7,31,25,20,18	[7]
OR OR	
Q. 6	
a. Build the min-heap for the following data: 25, 12,27,30,5,10,17,29,40,35	
After creation of min-heap perform one delete operation on it and show the final min-heap	[8]
b. Write short note on: i. Red-black tree ii. K-dimensional tree	[6]
0.7	
a. Explain Linked organization of a fileb. Define sequential file organization. Explain advantages of indexing over sequential file.	[6] [6]
Q. 8	
a. Define sequential file organization. Write pseudo code for insertion of records in sequen file	tial [6]
b. Explain any two types of indices.	[6] [6]
Q. 8 a. Define sequential file organization. Write pseudo code for insertion of records in sequen file b. Explain any two types of indices.	
Se. 16. 1	
[5352]-568 2	
[5352]-568 2	