Mobile robot programming using natural language

Stanislao Laura • Guido Bugmann • Theocharis Kyriacou • Ewan Klein Robotics and Autonomous Systems 38 (2002) 171-181

Owen Gallagher 2 October 2019 CS Seminar

Contents

Abstract How will naive users program robots?

Introduction Naive users + intelligent bots = user-specific learning

IBL model Instruction-Based Learning

System architecture Third...

Corpus collection and data analysis

Discussion ...

Conclusions Conclusion

Setup & specifications

Robot Environment Onboard software

Definitions

Chunking = division of tasks into subtasks (chunks)

Sequencing = chunk-primitive correspondence, update knowledge graph

Repair = handles user error, underspecification, learning

Corpus = collection of command primitives between natural language and computer language

Discourse Representation Structure (DRS) = knowledge graph

Action, Symbol = procedure, identifier

Route instructions corpus

	Count	Primitive procedures
1	308	MOVE FORWARD UNTIL [(past over across) <landmark>] [(half_way_of end_of) street] [</landmark>
		after <number><landmark> [left right]] [road_bend]</landmark></number>
2	183	TAKE THE [<number>] turn [(left right)] [(before after at) <landmark>]</landmark></number>
3	147	<pre><landmark> IS LOCATED [left right ahead] [(at next_to left_of right_of in_front_of past </landmark></pre>
		behind on opposite near) <landmark>] [(half_way_of end_of beginning_of across) street] </landmark>
		[between <landmark> and <landmark>] [on <number> turning (left right)]</number></landmark></landmark>
4	62	GO (before after to) < landmark>
5	49	GO ROUND ROUNDABOUT [left right] [(after before at) < landmark>]
6	42	TAKE THE <number> EXIT [(before after at) <landmark>]</landmark></number>
7	12	FOLLOW KNOWN ROUTE TO < landmark> UNTIL (before after at) < landmark>
8	4	TAKE ROADBEND (left right)
9	4	STATIONARY TURN [left right around] [at from <landmark>]</landmark>
10	2	CROSS ROAD
11	2	TAKE THE ROAD in_front
12	2	GO ROUND < landmark> TO [front back left_side right_side]
13	1	PARK AT <location></location>
14	1	EXIT [car_park park]

Program architecture

Fig. 4. IBL system's architecture (see text for description).

Natural language processing

Instruction-Based Learning (IBL)

Conclusions

Complexity of primitives can vary widely

Corpus vocabulary is not closed \rightarrow new command primitives need to be defined

Learning is done at the symbolic level \rightarrow requires fairly comprehensive corpus, route can be validated prior to execution

Testing results not included \rightarrow difficult to judge validity, opens the to further research