

Coreference Resolution

Introduction

Manning and Clark:

Coreference Resolution is the task of identifying which mentions in a text refer to the same real world entity. A mention is a text span, usually coherent, which serves as a referent to an entity.

Improving Coreference Resolution by Learning Entity-Level Distributed Representations

Kevin Clark

Computer Science Department Stanford University kevclark@cs.stanford.edu Christopher D. Manning
Computer Science Department
Stanford University
manning@cs.stanford.edu

Beispiel

 $[Barack\ Obama]_1^1$ nominated $[Hillary\ Clinton]_2^2$ as $[[his]_3^1$ secretary of state]_4^3 on $[Monday]_5^4$. $[He]_6^1$

- Superscript: ID of an entity
- Subscript: ID of a mention

- What is the structure of the problem?
- Goal is it to predict an ID for every mention (the entity ID)
- Example:

Mention-ID	Entity-ID
1	1
2	1
3	1
4	1

This means, the first 4 mentions are all the same entity

• The amount of entities is unknown, but it resides in [1, n], with n being the amount of mentions in the text

Coreference, more formal

The task of Coreference Resolution is to provide an entity ID for every mention, this results in a **clustering** of mentions

→ The structure of Coreference Resolution is to predict a clustering among all possible clusterings

Coreference as Clustering

- How many possibilities to cluster n mentions
- Idea: Swipe iteratively through the text and keep track of all possible sub-clusterings

Coreference as Clustering

- We observe:
 - Every clustering with k clusters, creates k+1 clusters in the next step

You can now try to sum this and you will end up at the Bell number

$$B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}$$

Coreference as Clustering

• Bell number:

Amount mentions	Bell number
10	115975
20	51724158236496
30	846749014529889671069667
50	1.8572414972124 <i>E</i> +47
100	$2.3 \cdot 10^{117}$

→ The amount of clusters is growing extremely fast, scoring and ranking them is infeasible!

Coreference Resolution – Literary Phenomena

• If you are dealing with Coreference literature, you should know some literary phenomena

Phenomenon	Example
Apposition	$[Otto]_1^1$, $[her oldest son]_2^1$
Predicative	[He] ¹ ₁ was [a baker] [?] ₂
Expletive	[It] is raining
Singleton	An entity with just a single reference
Split Antecedents	[[Hansel] $_1^1$ and [Gretel] $_2^2$] $_3^3$. [They] $_4^3$
Bridging Anaphora	I met [two interesting people] yesterday. [The woman]

22.12.21 Textmining 9