Lineare Algebra 2 Hausaufgabenblatt Nr. 12

Jun Wei Tan*

 $Julius\hbox{-}Maximilians\hbox{-}Universit\"at \ \ W\"urzburg$

(Dated: January 22, 2024)

Problem 1. Betrachten Sie die komplexen 3×3 -Matrizen

$$A_{1} = \begin{pmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix}, A_{2} = \begin{pmatrix} 1 & 3 & -i \\ 0 & 3 & 4 \\ 0 & 0 & 2 \end{pmatrix}, A_{3} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & 2 \\ 0 & 2 & 1 \end{pmatrix}.$$

Welche der Matrzen sind positiv, welche sogar positiv definit?

Proof. Wir berechnen das Spektrum von A_1 . Es gilt für das charakteristiches Polynom

$$P(\lambda) = \det(A_1 - \lambda I) = -\lambda^3 + 12\lambda^2 - 36\lambda.$$

Die Nullstellen bzw. Eigenwerte sind $\lambda = 0$ und $\lambda = 6$. Dann ist A_1 positiv. Weil $\lambda = 0$ ein Eigenwert ist, ist $\det(A_1) = 0$ und A_1 ist nicht invertierbar.

 A_2 ist nicht positiv, weil $A_2 \neq A_2^*$.

Wir berechnen noch einmal das Spektrum von A_3 . Es gilt für das charakteristische Polynom.

$$P_3(\lambda) = \det(A - \lambda I) = -x^3 + 8x^2 - 13x + 2.$$

Die Nullstellen sind x=2 und $x=3\pm 2\sqrt{2}$, also A_3 ist positiv. Da 0 kein Nullstelle ist, ist $\det(A_3)\neq 0$ und A_3 ist invertierbar, also A ist positiv definit.

Problem 2. Betrachten Sie den unitären Vektorraum \mathbb{C}^n mit dem Standardskalarprodukt.

(a) Sei $A \in M_n(\mathbb{C})$ selbstadjungiert und $A = U^{-1}DU$, wobei U eine invertierbare Matrix und D eine Diagonalmatrix sind. Sei $P_i = U^{-1}M_iU$ mit Diagonalmatrix M_i , sodass

$$(M_i)_{kk} = \begin{cases} 1 & D_{kk} = \lambda_i \\ 0 & \text{sonst.} \end{cases}$$

gilt. Zeigen Sie, dass P_i eine Orthogonalprojektion auf den Eigenraum von λ_i ist.

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

(b) Bestimmen Sie den Positivteil $(A_i)_+$, den Negativteil $(A_i)_-$ und den Absolutbetrag $|A_i|$ für i=1,2 der folgenden Matrizen

$$A_{1} = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}, A_{2} = \begin{pmatrix} 0 & 3 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2i \\ 0 & 0 & 2i & 0 \end{pmatrix}.$$

Problem 3. Beweisen oder widerlegen Sie:

- (a) Eine obere Dreiecksmatrix ist nie orthogonal.
- (b) Sei V ein unitärer Vektorraum. Ein Endomorphismus A ist genau dann normal, wenn $||Av|| = ||A^*v||$ für alle $v \in V$ gilt.
- *Proof.* (a) Falsch. Die Identität diag(1, 1, ..., 1) ist eine obere Dreiecksmatrix und jedoch orthogonal.

Problem 4. Sei V ein endlich-dimensionaler euklidischer oder unitärer Vektorraum. Sei weiter $\operatorname{End}_{sa}(V) \subset \operatorname{End}(V)$ die Teilmenge der selbstadjungierten Endomorphismen auf V. Für $A, B \in \operatorname{End}_{sa}(V)$ definieren wir $A \leq B$, falls B - A ein positiver Endomorphismus ist.

- (a) Zeigen Sie, dass $\operatorname{End}_{sa}(V)$ ein reeller Unterraum von $\operatorname{End}(V)$ ist.
- (b) Zeigen Sie, dass für $\lambda, \mu \geq 0$ und $A, B, C, D \in \text{End}_{sa}(V)$ mit $A \leq B$ und $C \leq D$ folgt, dass

$$\lambda A + \mu C < \lambda B + \mu D$$

gilt.

(c) Zeigen Sie, dass füR alle $A \leq B$

$$CAC^* \le CBC^*$$

für alle $C \in \text{End}(V)$ gilt.

(d) Zeigen Sie, dass für $A \ge 0$ und $\lambda > 0$ der Endomorphismus $A + \lambda$ invertierbar ist.

(e) Betrachten Sie $V=\mathbb{C}^2$ mit Standardskalarprodukt und

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}.$$

Zeigen Sie, dass $0 \le A \le B$ gilt. Zeigen Sie, dass $A^2 \le B^2$ nicht gilt.