

- Why settle for a confidence level of 95% when a level of 99% is achievable? Because the price paid for the higher confidence level is a wider interval.
- Since the 95% interval extends  $1.96 \cdot \sigma/\sqrt{n}$  to each side of  $\bar{x}$ , the width of the interval is  $2(1.96) \cdot \sigma/\sqrt{n} = 3.92 \cdot \sigma/\sqrt{n}$ .
- Similarly, the width of the 99% interval is  $2(2.58) \cdot \sigma / \sqrt{n} = 5.16 \cdot \sigma / \sqrt{n}$ .
- That is, we have more confidence in the 99% interval precisely because it is wider.
- The higher the desired degree of confidence, the wider the resulting interval will be.

37

#### Confidence Level, Precision, and Sample Size

- If we think of the width of the interval as specifying its precision or accuracy, then the confidence level (or reliability) of the interval is inversely related to its precision.
- A highly reliable interval estimate may be imprecise in that the endpoints of the interval may be far apart, whereas a precise interval may entail relatively low reliability.
- Thus it cannot be said unequivocally that a 99% interval is to be preferred to a 95% interval; the gain in reliability entails a loss in precision.

 An appealing strategy is to specify both the desired confidence level and interval width and then determine the necessary sample size.

39

### Example 7.4

- Extensive monitoring of a computer time-sharing system has suggested that response time to a particular editing command is normally distributed with standard deviation 25 millisec.
- A new operating system has been installed, and we wish to estimate the true average response time  $\mu$  for the new environment.
- Assuming that response times are still normally distributed with  $\sigma = 25$ , what sample size is necessary to ensure that the resulting 95% CI has a width of (at most) 10?

# Example 7.4 (cont.)

cont'

• The sample size n must satisfy

$$10 = 2 \cdot (1.96)(\frac{25}{\sqrt{n}})$$

Rearranging this equation gives

$$\sqrt{n} = 2 \cdot \frac{(1.96)(25)}{10} = 9.80$$

So

$$n = (9.80)^2 = 96.04$$

• Since *n* must be an integer, a sample size of 97 is required.

41

#### Confidence Level, Precision, and Sample Size

- $\square$  A general formula for the sample size n necessary to ensure an interval width w is obtained from equating w to  $2 \cdot z_{\alpha/2} \cdot \sigma/\sqrt{n}$  and solving for n.
- $\Box$  The sample size necessary for the CI (7.5) to have a width w is

$$n = \left(z_{\alpha/2} \cdot \frac{\sigma}{w}\right)^2$$

- $\square$  The smaller the desired width w, the larger n must be.
- □ In addition, n is an increasing function of  $\sigma$  (more population variability necessitates a larger sample size) and of the confidence level  $100(1-\alpha)$  (as  $\alpha$  decreases,  $z_{\alpha/2}$  increases).

- The half-width  $1.96 \, \sigma / \sqrt{n}$ ) of the 95% CI is sometimes called the **bound on the error of estimation** associated with a 95% confidence level.
- That is, with 95% confidence, the point estimate  $\bar{x}$  will be no farther than this from  $\mu$ .
- Before obtaining data, an investigator may wish to determine a sample size for which a particular value of the bound is achieved.

43

#### Confidence Level, Precision, and Sample Size



- For example, with  $\mu$  representing the average fuel efficiency (mpg) for all cars of a certain type, the objective of an investigation may be to estimate  $\mu$  to within 1 mpg with 95% confidence.
- More generally, if we wish to estimate  $\mu$  to within an amount B (the specified bound on the error of estimation) with  $100(1-\alpha)$  % confidence, the necessary sample size results from replacing 2/w by 1/B in the formula in the preceding box.

#### **Deriving a Confidence Interval**

45

# Deriving a Confidence Interval

- Let  $X_1, X_2, ..., X_n$  denote the sample on which the CI for a parameter  $\theta$  is to be based.
- Suppose a random variable satisfying the following two properties can be found:
- 1) The variable depends functionally on both  $X_1, ..., X_n$  and  $\theta$ .
- 2) The probability distribution of the variable does not depend on  $\theta$  or on any other unknown parameters.

#### **Deriving a Confidence Interval**

- Let  $h(X_1, X_2, ..., X_n; \theta)$  denote this random variable.
- For example, if the population distribution is normal with known  $\sigma$  and  $\theta = \mu$ , the variable

$$h(X_1, ..., X_n; \mu) = (\overline{X} - \mu)/(\sigma/\sqrt{n})$$

- satisfies both properties; it clearly depends functionally on μ, yet has the standard normal probability distribution, which does not depend on μ.
- In general, the form of the h function is usually suggested by examining the distribution of an appropriate estimator  $\hat{\theta}$

47

#### **Deriving a Confidence Interval**

• For any  $\alpha$  between 0 and 1, constants a and b can be found to satisfy

$$P(a < h(X_1, ..., X_n; \theta) < b) = 1 - \alpha....(7.6)$$

- Because of the second property, a and b do not depend on  $\theta$ .
- In the normal example,  $a = -z_{\alpha/2}$  and  $b = z_{\alpha/2}$ .
- Now suppose that the inequalities in (7.6) can be manipulated to isolate  $\theta$ , giving the equivalent probability statement

$$P(l(X_1, X_2, ..., X_n) < \theta < u(X_1, X_2, ..., X_n)) = 1 - \alpha$$

# **Deriving** a Confidence Interval

- Then  $l(X_1, X_2, ..., X_n)$  and  $u(X_1, X_2, ..., X_n)$  are the lower and upper **confidence limits**, respectively, for a  $100(1 \alpha)\%$  CI.
- In the normal example, we saw that

$$l(X_1, X_2, ..., X_n) = \overline{X} - z_{\alpha/2} \cdot \sigma / \sqrt{n}$$
 and

$$u(X_1, X_2, ..., X_n) = \bar{X} + z_{\alpha/2} \cdot \sigma/\sqrt{n}.$$

49

# **End of Section 7.1**



7.2 Large-Sample Confidence
Intervals for a Population Mean
and Proportion

Copyright © Cengage Learning. All rights reserved.

Large-Sample Confidence Intervals for a Population Mean and Proportion

- Earlier we have come across the CI for  $\mu$  which assumed that the population distribution is normal with the value of  $\sigma$  known.
- We now present a large-sample CI whose validity does not require these assumptions.
- After showing how the argument leading to this interval generalizes to yield other large-sample intervals, we focus on an interval for a population proportion *p*.

61

#### A Large-Sample Interval for $\mu$

### A Large-Sample Interval for $\mu$

- Let  $X_1, X_2, ..., X_n$  be a random sample from a population having a mean  $\mu$  and standard deviation  $\sigma$ .
- Provided that n is large, the Central Limit Theorem (CLT) implies that  $\bar{X}$  has approximately a normal distribution whatever the nature of the population distribution.
- It then follows that

$$Z = (\bar{X} - \mu)/(\sigma/\sqrt{n})$$

has approximately a standard normal distribution, so that

$$P\left(-z_{\alpha/2} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}\right) \approx 1 - \alpha$$

63

#### A Large-Sample Interval for $\mu$

- We have known that an argument parallel yields  $\bar{x} \pm z_{\alpha/2} \cdot \sigma/\sqrt{n}$  as a large-sample CI for  $\mu$  with a confidence level of approximately 100(1 )%.
- That is, when *n* is large, the CI for μ given previously remains valid whatever the population distribution, provided that the qualifier "approximately" is inserted in front of the confidence level.
- A practical difficulty with this development is that computation of the CI requires the value of  $\sigma$ , which will rarely be known.
- Consider the standardized variable

$$(\bar{X} - \mu)/(S/\sqrt{n}),$$

in which the sample standard deviation S has replaced  $\sigma$ .

# A Large-Sample Interval for $\mu$

#### **Proposition**

If n is sufficiently large, the standardized variable

$$Z = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$

has approximately a standard normal distribution.

This implies that

$$\overline{x} \pm z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$$
 (7.8)

is a large-sample confidence interval for  $\mu$  with confidence level approximately 100(1 - 2)%.

This formula is valid regardless of the shape of the population distribution.

66

# A Large-Sample Interval for $\mu^{\bar{x} \pm z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}}$

In words, the CI (7.8) is

point estimate of  $\mu \pm (z \text{ critical value})$  (estimated standard error of the mean).

Generally speaking, n > 40 will be sufficient to justify the use of this interval.

# Example 6

- Haven't you always wanted to own a Porsche?
- The author thought maybe he could afford a Boxster, the cheapest model.
- So he went to www.cars.com on Nov. 18, 2009, and found a total of 1113 such cars listed.
- Asking prices ranged from \$3499 to \$130,000 (the latter price was one of only two exceeding \$70,000).
- The prices depressed him, so he focused instead on odometer readings (miles).

69

# Example 6

cont'd

Here are reported readings for a sample of 50 of these Boxsters:

| 2948   | 2996   | 7197  | 8338  | 8500  | 8759  | 12710 | 12925 |
|--------|--------|-------|-------|-------|-------|-------|-------|
| 15767  | 20000  | 23247 | 24863 | 26000 | 26210 | 30552 | 30600 |
| 35700  | 36466  | 40316 | 40596 | 41021 | 41234 | 43000 | 44607 |
| 45000  | 45027  | 45442 | 46963 | 47978 | 49518 | 52000 | 53334 |
| 54208  | 56062  | 57000 | 57365 | 60020 | 60265 | 60803 | 62851 |
| 64404  | 72140  | 74594 | 79308 | 79500 | 80000 | 80000 | 84000 |
| 113000 | 118634 |       |       |       |       |       |       |

# Example 6

cont'd

A boxplot of the data (Figure 7.5) shows that, except for the two outliers at the upper end, the distribution of values is reasonably symmetric (in fact, a normal probability plot exhibits a reasonably linear pattern, though the points corresponding to the two smallest and two largest observations are somewhat removed from a line fit through the remaining points).



Figure 7.5

71

### Example 6

cont'd

Summary quantities include

```
n = 50, \bar{x} = 45,679.4, \tilde{x} = 45,013.5, s = 26,641.675.
```

- The mean and median are reasonably close (if the two largest values were each reduced by 30,000, the mean would fall to 44,479.4, while the median would be unaffected).
- The boxplot and the magnitudes of *s* relative to the mean and median both indicate a substantial amount of variability.

# Example 6

cont'o

• A confidence level of about 95% requires  $z_{0.025} = 1.96$ , and the interval is

$$45,679.4 \pm (1.96) \left( \frac{26,641.675}{\sqrt{50}} \right) = 45,679.4 \pm 7384.7$$
$$= (38,294.7, 53,064.1)$$

- That is, 38,294.7 < 2 < 53,064.1 with 95% confidence.
- This interval is rather wide because a sample size of 50, even though large by our rule of thumb, is not large enough to overcome the substantial variability in the sample.
- We do not have a very precise estimate of the population mean odometer reading.

74

# A General Large-Sample Confidence Interval

#### A General Large-Sample Confidence Interval

The large-sample intervals  $\bar{x} \pm z_{\alpha/2} \cdot \sigma/\sqrt{n}$  and  $\bar{x} \pm z_{\alpha/2} \cdot S/\sqrt{n}$  are special cases of a general large-sample CI for a parameter  $\theta$ .

Suppose that  $\hat{\theta}$  is an estimator satisfying the following properties:

- (1) It has approximately a normal distribution;
- (2) it is (at least approximately) unbiased; and
- (3) an expression for  $\sigma_{\hat{\theta}}$ , the standard deviation of  $\hat{\theta}$ , is available.

77

#### A General Large-Sample Confidence Interval

- For example, in the case  $\theta = \mu$ ,  $\hat{\mu} = \overline{X}$  is an unbiased estimator whose distribution is approximately normal when n is large and  $\sigma_{\bar{\mu}} = \sigma_{\bar{X}} = \sigma/\sqrt{n}$ .
- Standardizing  $\hat{\theta}$  yields the rv  $Z = (\hat{\theta} \theta) / \sigma_{\hat{\theta}}$ , which has approximately a standard normal distribution.
- This justifies the probability statement

$$P\left(-z_{\alpha/2} < \frac{\hat{\theta} - \theta}{\sigma_{\hat{\theta}}} < z_{\alpha/2}\right) \approx 1 - \alpha$$
 (7.9)

- Suppose first that  $\sigma_{\hat{\theta}}$  does not involve any unknown parameters (e.g., known  $\sigma$  in the case  $\theta = \mu$ ).
- Then replacing each < in (7.9) by = results in  $\theta = \hat{\theta} \pm z_{\alpha/2} \cdot \sigma_{\hat{\theta}}$ , so the lower and upper confidence limits are  $\hat{\theta} z_{\alpha/2} \cdot \sigma_{\hat{\theta}}$  and  $\hat{\theta} + z_{\alpha/2} \cdot \sigma_{\hat{\theta}}$ , respectively.

#### A General Large-Sample Confidence Interval

- Now suppose that  $\sigma_{\widehat{\theta}}$  does not involve  $\theta$  but does involve at least one other unknown parameter.
- Let  $S_{\widehat{\theta}}$  be the estimate of  $\sigma_{\widehat{\theta}}$  obtained by using estimates in place of the unknown parameters (e.g.,  $S/\sqrt{n}$  estimates  $\sigma/\sqrt{n}$ ).
- Under general conditions (essentially that  $S_{\widehat{\theta}}$  be close to  $\sigma_{\widehat{\theta}}$  for most samples), a valid CI is  $\hat{\theta} \pm z_{\alpha/2} \cdot S_{\widehat{\theta}}$ .
- The large-sample interval  $\bar{x} \pm z_{\alpha/2} \cdot s/\sqrt{n}$  is an example.

79

#### A General Large-Sample Confidence Interval

- Finally, suppose that  $\sigma_{\widehat{\theta}}$  does involve the unknown  $\theta$ .
- This is the case, for example, when  $\theta = p$ , a population proportion.
- Then  $(\hat{\theta} \theta) / \sigma_{\hat{\theta}} = z_{\alpha/2}$  can be difficult to solve.
- An approximate solution can often be obtained by replacing  $\theta$  in  $\sigma_{\hat{\theta}}$  by its estimate  $\hat{\theta}$ .
- This results in an estimated standard deviation  $S_{\widehat{\theta}}$ , and the corresponding interval is again  $\widehat{\theta} \pm z_{\alpha/2} \cdot S_{\widehat{\theta}}$ .
- In words, this CI is a
- point estimate of  $\theta \pm (z \text{ critical value})$  (estimated standard error of the estimator)