```
name: <unnamed>
          log: /Users/cristiangudino/Desktop/MacroeconomicsII/Tarea2/Data/Consum
   > o.smcl
     log type: smcl
    opened on: 22 Mar 2022, 16:35:50
 1 .
 2 . /*
   > A) Obtener datos del PIB, Consumo, Gasto de Gobierno, Inversión y Exportacio
  > nes Netas de manera trimestral de 1980 a 2019.
  > La base contiene los datos trimestrales para el consumo privado, gasto guber
  > namental, inversión, exportaciones e importaciones, así como el producto in
  > terno bruto de los años 1993 a 2019, puesto que la página del INEGI no cuent
  > a, en todos los componentes, los datos de 1980.
  > */
 3.
 4 . import delimited "cuentas nacionales.csv"
   (encoding automatically selected: ISO-8859-2)
   (8 vars, 107 obs)
 5.
 6 . /*
  > B) Gráficar cada uno de los componentes que son siempre positivas - cifras r
  > eales vs ln - y comparar.
  > */
 8 . gen periodo2 = _n // Creamos una variable numérica para ordernar las fechas
 9 . generate time = tq(1993q1) + periodo2 - 1 // Creamos nuestra nueva variable
   > de tiempo, la cual empieza desde el primer trimestre de 1993
10 . drop periodo2
11 . format time %tq // Establecemos el nuevo formato de nuestra variable tempora
   > 1 AAAA/trimestre
```

```
12 . order time, after(periodo) // Cambiamos la posición de la nueva variable tim
  > e
13 .
14 . tsset time, quarterly // Declaramos la variable temporal como una serie de t
  > iempo
   Time variable: time, 1993q1 to 2019q3
          Delta: 1 quarter
15 .
16 . graph twoway (line y time, legend(label(1 "PIB"))) (line c time, legend(labe
  > 1(2 "Consumo"))) (line g time, legend(label(3 "Gasto de Gobierno"))) (line i
  > time, legend(label(4 "Inversión"))), ///
  > xtitle("Año/Trimestre", size(small)) ytitle("Cifras Reales (Millones mxn)",
  > size(small)) ///
   > xlabel(132(8)238 , valuelabel angle(vertical) labsize(small)) ///
  > ylabel(0(2000000)2.00e+07 , valuelabel angle(horizontal) labsize(small)) //
  > graphregion(fcolor(white)) bgcolor(white) ///
  > legend(size(small) col(2)) ///
  > caption("Fuente: Elaboración propia con datos del INEGI", size(vsmall) span)
18 . graph export "$graphs/CifrasReales_Trimestral.pdf", as(pdf) replace
   file
       /Users/cristiangudino/Desktop/MacroeconomicsII/Tarea2/Graphs/CifrasReale
       > s Trimestral.pdf saved as PDF format
19 .
20 . *Generamos de manera individual la variable ln var = ln(var), la cual nos da
  > la tasa de crecimiento para cada variable en cada trimestre
21 .
22 . gen lny = ln(y)
23 . gen lnc = ln(c)
```

```
24 . gen lng = ln(g)
25 . gen lni = ln(i)
26 .
27 . graph twoway (line lny time, legend(label(1 "PIB"))) (line lnc time, legend(
   > label(2 "Consumo"))) (line lng time, legend(label(3 "Gasto de Gobierno"))) (
  > line lni time, legend(label(4 "Inversión"))), ///
  > xtitle("Año/Trimestre", size(small)) ytitle("(ln)", size(small)) ///
  > xlabel(132(8)238 , valuelabel angle(vertical) labsize(small)) ///
  > ylabel(14(1)17 , valuelabel angle(horizontal) labsize(small)) ///
  > graphregion(fcolor(white)) bgcolor(white) ///
  > legend(size(small) col(2)) ///
  > caption("Fuente: Elaboración propia con datos del INEGI", size(vsmall) span)
29 . graph export "$graphs/Cifrasln Trimestral.pdf", as(pdf) replace
  file
       /Users/cristiangudino/Desktop/MacroeconomicsII/Tarea2/Graphs/Cifrasln_Tr
       > imestral.pdf saved as PDF format
30 .
31 . /*
  > C)Graficar las tasas de crecimientos de las cuatro variables anteriores.
  > Tasa de crecimiento = (var_t - var_t-1)/var_t-1
  > */
33 . *Para crear una variable con lag utilizamos el comando lag. De manera análog
  > a, creamos de manera individual cada variable lag de y, c, i, g.
35 . gen lagy = y[n - 1]
   (1 missing value generated)
36 . replace lagy = 0 if lagy == . // Reemplazamos missing value de la primera ob
   > servación para evitar errores de cálculo.
   (1 real change made)
```

```
37 • gen lagc = c[n - 1]
   (1 missing value generated)
38 . replace lagc = 0 if lagc == .
   (1 real change made)
39 • gen lagg = g[n - 1]
   (1 missing value generated)
40 . replace lagg = 0 if lagg == .
   (1 real change made)
41 . gen lagi = i[_n - 1]
   (1 missing value generated)
42 . replace lagi = 0 if lagi == .
  (1 real change made)
43 .
44 . *Para crear las variables de tasas de crecimiento de cada una de las variabl
  > es:
45 .
46 . gen ty = (y/lagy) - 1
   (1 missing value generated)
47 . replace ty = 0 if ty == . // Reemplazamos missing values por un cero para te
   > ner consistencia en las gráficas
   (1 real change made)
48 . gen tc = (c/lagc) - 1
   (1 missing value generated)
49 . replace tc = 0 if tc == .
   (1 real change made)
50 . gen tg = (g/lagg) - 1
   (1 missing value generated)
```

```
51 . replace tg = 0 if tg == .
   (1 real change made)
52 \cdot \text{gen ti} = (i/lagi) - 1
   (1 missing value generated)
53 . replace ti = 0 if ti == .
   (1 real change made)
54 .
55 . *Gráfica para el PIB
57 . graph twoway (line ty time, legend(label(1 "PIB"))), //
   > title("Tasa de Crecimiento PIB", size(small) justification(center)) ///
  > xtitle("Año/Trimestre", size(small)) ytitle("Tasa de Crecimiento", size(small)
  > 1)) ///
  > xlabel(132(8)238 , valuelabel angle(vertical) labsize(small)) ///
  > ylabel(-0.06(0.02)0.05 , valuelabel angle(horizontal) labsize(small)) ///
  > graphregion(fcolor(white)) bgcolor(white) ///
  > legend(size(small) col(1)) ///
  > name(g1, replace) nodraw
58 .
59 . *Gráfica para el Consumo
61 . graph twoway (line tc time, legend(label(2 "Consumo"))), ///
  > title("Tasa de Crecimiento Consumo", size(small) justification(center)) ///
  > xtitle("Año/Trimestre", size(small)) ytitle("Tasa de Crecimiento", size(smal
  > 1)) ///
  > xlabel(132(8)238 , valuelabel angle(vertical) labsize(small)) ///
  > ylabel(-0.07(0.02)0.04 , valuelabel angle(horizontal) labsize(small)) ///
  > graphregion(fcolor(white)) bgcolor(white) ///
  > legend(size(small) col(1)) ///
  > name(g2, replace) nodraw
62 .
63 .
```

```
64 . graph combine g1 g2, name(combine1, replace) cols(1) ///
   > graphregion(fcolor(white)) ///
  > note("Fuente: Elaboración propia con datos del INEGI", size(tiny) span)
65 .
66 . graph export "$graphs/TasasCrecimientol Trimestral.pdf", as(pdf) replace
  file
       /Users/cristiangudino/Desktop/MacroeconomicsII/Tarea2/Graphs/TasasCrecim
       > ientol Trimestral.pdf saved as PDF format
67 .
68 . *Gráfica para el Gasto de Gobierno
69 .
70 . graph twoway (line tg time, legend(label(3 "Gasto de Gobierno"))), ///
   > title("Tasa de Crecimiento Gasto de Gobierno", size(small) justification(cen
  > ter)) ///
  > xtitle("Año/Trimestre", size(small)) ytitle("Tasa de Crecimiento", size(small))
  > 1)) ///
  > xlabel(132(8)238 , valuelabel angle(vertical) labsize(small)) ///
  > ylabel(-0.03(0.01)0.03 , valuelabel angle(horizontal) labsize(small)) ///
  > graphregion(fcolor(white)) bgcolor(white) ///
  > legend(size(small) col(1)) ///
  > name(g3, replace) nodraw
71 .
72 . *Gráfica para la Inversión
74 . graph twoway (line ti time, legend(label(4 "Inversión"))), ///
  > title("Tasa de Crecimiento Inversión", size(small) justification(center)) //
  > xtitle("Año/Trimestre", size(small)) ytitle("Tasa de Crecimiento", size(small))
  > 1)) ///
  > xlabel(132(8)238 , valuelabel angle(vertical) labsize(small)) ///
  > ylabel(-0.3(0.05)0.1, valuelabel angle(horizontal) labsize(small)) ///
  > graphregion(fcolor(white)) bgcolor(white) ///
  > legend(size(small) col(1)) ///
  > name(g4, replace) nodraw
```

```
75 .
76 .
77 . graph combine g3 g4, name(combine2, replace) cols(1) ///
  > graphregion(fcolor(white)) ///
  > note("Fuente: Elaboración propia con datos del INEGI", size(tiny) span)
78 .
79 . graph export "$graphs/TasasCrecimiento2_Trimestral.pdf", as(pdf) replace
  file
       /Users/cristiangudino/Desktop/MacroeconomicsII/Tarea2/Graphs/TasasCrecim
       > iento2_Trimestral.pdf saved as PDF format
80 .
81 . /*
  > D) Considerando sólo Consumo y PIB, gráficar los puntos (\deltaC, \deltaY)
  > */
82 .
83 . graph twoway scatter to ty, msymbol(Dh) ///
  > title("Gráfica de dispersión PIB vs Consumo", size(small) justification(cent
  > er)) ///
  > xtitle("Tasa de crecimiento PIB", size(small)) ytitle("Tasa de crecimiento C
  > onsumo", size(small)) ///
  > graphregion(fcolor(white)) bgcolor(white) ///
  > caption("Fuente: Elaboración propia con datos del INEGI", size(small) span)
84 .
85 . graph export "$graphs/Dispersión PIBvsConsumo.pdf", as(pdf) replace
  file
       /Users/cristiangudino/Desktop/MacroeconomicsII/Tarea2/Graphs/Dispersión
       > PIBvsConsumo.pdf saved as PDF format
86 .
87 . /*
  > E) Calcular la volatilidad de las dos series de tasas de crecimiento.
  > Sabemos que cuando hablamos de volatilidad solemos referirnos a la desviació
  > n estándar, tomada con signo positivo. Por definición, la desviación estánda
  > r de una variable no es mas que la raíz cuadrada de su varianza.
  > */
```

88 .89 . sum ty lny tc lnc, det // Nos permite conocer las estadísticas descriptivasde las series de tasas de crecimiento para el PIB y Consumo.

		ty		
	Percentiles	Smallest		
1%	0511819	057467		
5%	0086521	0511819		
10%	0047247	0489362	0bs	107
25%	.0023479	0163142	Sum of wgt.	107
50%	.007173		Mean	.0058408
		Largest	Std. dev.	.0129532
75%	.0110009	.024794		
90%	.0187807	.0268949	Variance	.0001678
95%	.021032	.0301897	Skewness	-2.425971
99%	.0301897	.0329895	Kurtosis	12.80468
		lny		
	Percentiles	Smallest		
1%	16.11019	16.09144		
5%	16.13749	16.11019		
10%	16.16875	16.12471	Obs	107
25%	16.3315	16.12736	Sum of wgt.	107
50%	16.46391		Mean	16.4532
		Largest	Std. dev.	.1820096
75%	16.6014	16.73429		
90%	16.70868	16.73507	Variance	.0331275
95%	16.73291	16.73888	Skewness	2072651
99%	16.73888	16.73903	Kurtosis	2.088753
		tc		
	Percentiles	Smallest		
1%	0417713	0676228		
5%	0084455	0417713		
10%	0041356	0376581	0bs	107
25%	.0009909	0191957	Sum of wgt.	107
50%	.0073259		Mean	.0066699
		Largest	Std. dev.	.0132373
75%	.0144091	.0266107		
90%	.0212909	.0272164	Variance	.0001752
95%	.0232557	.0274495	Skewness	-2.298736
99%	.0274495	.0307256	Kurtosis	13.06687

lnc

	Percentiles	Smallest		
1%	15.64588	15.64		
5%	15.65939	15.64588		
10%	15.67707	15.64887	0bs	107
25%	15.88361	15.64888	Sum of wgt.	107
50%	16.08896		Mean	16.03817
		Largest	Std. dev.	.2093602
75%	16.19234	16.3379		
90%	16.30427	16.34161	Variance	.0438317
95%	16.33733	16.34177	Skewness	4879601
99%	16.34177	16.34783	Kurtosis	2.132631

^{90 .}

^{91 .} outreg2 using summary, tex replace sum(detail) keep(ty lny tc lnc) eqkeep(N > mean sd Var min max)

		time		
	Percentiles	Smallest		
1%	133	132		
5%	137	133		
10%	142	134	Obs	107
25%	158	135	Sum of wgt.	107
50%	185		Mean	185
		Largest	Std. dev.	31.03224
75%	212	235		
90%	228	236	Variance	963
95%	233	237	Skewness	0
99%	237	238	Kurtosis	1.79979
		Y		
	Percentiles	Smallest		
1%	9921230	9736936		
5%	1.02e+07	9921230		
10%	1.05e+07	1.01e+07	0bs	107
25%	1.24e+07	1.01e+07	Sum of wgt.	107
50%	1.41e+07		Mean	1.42e+07
		Largest	Std. dev.	2536090
75%	1.62e+07	1.85e+07		
90%	1.81e+07	1.85e+07	Variance	6.43e+12
95%	1.85e+07	1.86e+07	Skewness	.0724381
99%	1.86e+07	1.86e+07	Kurtosis	2.019853

С

	Percentiles	Smallest		
1%	6236193	6199652		
5%	6320988	6236193		
10%	6433793	6254854	Obs	107
25%	7909782	6254902	Sum of wgt.	107
50%	9712863		Mean	9427023
		Largest	Std. dev.	1872353
75%	1.08e+07	1.25e+07		
90%	1.20e+07	1.25e+07	Variance	3.51e+12
95%	1.25e+07	1.25e+07	Skewness	1987582
99%	1.25e+07	1.26e+07	Kurtosis	2.019953
		G		
	Percentiles	Smallest		
1%	1407266	1400313		
5%	1429084	1407266		
10%	1443169	1408021	Obs	107
25%	1597582	1424324	Sum of wgt.	107
50%	1671367		Mean	1757091
		Largest	Std. dev.	246718.1
75%	1973902	2185154		
90%	2139748	2200914	Variance	6.09e+10
95%	2177641	2210584	Skewness	.3783536
99%	2210584	2223988	Kurtosis	1.861798
		I		
	Percentiles	Smallest		
1%	1496103	1476316		
5%	1812231	1496103		
10%	2083076	1644163	0bs	107
25%	2436776	1680733	Sum of wgt.	107
50%	3001446		Mean	2916968
		Largest	Std. dev.	629726.7
75%	3537532	3798115		·
90%	3725305	3806069	Variance	3.97e+11
95%	3768913	3810515	Skewness	2472079
99%	3810515	3858489	Kurtosis	2.026301

		Smallest	Percentiles	
		1430233	1469001	1%
		1469001	1588012	5%
107	Obs	1494371	1994754	10%
107	Sum of wgt.	1557092	2810673	25%
3941652	Mean		3650612	50%
1526689	Std. dev.	Largest		
		6799603	5049161	75%
2.33e+12	Variance	6805347	6265124	90%
.3456035	Skewness	6993221	6781811	95%
2.165391	Kurtosis	7023756	6993221	99%
		М		
		Smallest	Percentiles	
		1492723	1495226	1%
		1495226	1599863	5%
107	Obs	1539877	1785727	10%
107	Sum of wgt.	1571378	2966039	25%
4118542	Mean		4123027	50%
1569515	Std. dev.	Largest		
		6896833	5282134	75%
2.46e+12	Variance	6919612	6383769	90%
.0186492	Skewness	6971336	6858034	95%
2.093324	Kurtosis	7007410	6971336	99%
		XN		
		Smallest	Percentiles	
		-917493.9	-695011.1	1%
		-695011.1	-581640.1	5%
107	0bs	-661020.8	-473308.5	10%
107	Sum of wgt.	-617498.1	-349733.2	25%
-176890.1	Mean		-210338.2	50%
266810.5	Std. dev.	Largest		
		434951	-23162.61	75%
7.12e+10	Variance	471814.6	126922.9	90%
.3950151	Skewness	474389.5	383708.6	95%
3.410699	Kurtosis	477950.7	474389.5	99%

lny

		Smallest	Percentiles	
		16.09144	16.11019	1%
		16.11019	16.13749	5%
107	Obs	16.12471	16.16875	10%
107	Sum of wgt.	16.12736	16.3315	25%
16.4532	Mean		16.46391	50%
.1820096	Std. dev.	Largest	10.10091	300
.1020090	bea. dev.	16.73429	16.6014	75%
.0331275	Variance	16.73507	16.70868	90%
2072651	Skewness	16.73888	16.73291	95%
2.088753	Kurtosis	16.73903	16.73888	99%
		lnc		
		Smallest	Percentiles	
		15.64	15.64588	1%
		15.64588	15.65939	5%
107	0bs	15.64887	15.67707	10%
107	Sum of wgt.	15.64888	15.88361	25%
	bum or wyer	1310100	10100001	250
16.03817	Mean		16.08896	50%
.2093602	Std. dev.	Largest		
		16.3379	16.19234	75%
.0438317	Variance	16.34161	16.30427	90%
4879601	Skewness	16.34177	16.33733	95%
2.132631	Kurtosis	16.34783	16.34177	99%
		lng		
		Smallest	Percentiles	
		14.15221	14.15716	1%
		14.15716	14.17254	5%
107	0bs	14.1577	14.18235	10%
107	Sum of wgt.	14.16921	14.284	25%
14.36958	Mean		14.32915	50%
.1385563	Std. dev.	Largest		
		14.5972	14.49552	75%
.0191978	Variance	14.60438	14.5762	90%
.2252013	Skewness	14.60877	14.59375	95%
1.810657	Kurtosis	14.61481	14.60877	99%

		Smallest	Percentiles	
		14.20506	14.21837	1%
		14.21837	14.41007	5%
107	Obs	14.31274	14.54936	10%
107	Sum of wgt.	14.33474	14.70619	25%
14.86076	Mean		14.9146	50%
.2320226	Std. dev.	Targogt	14.9140	30%
.2320226	sta. dev.	Largest 15.15002	15 07904	750
0520245	*****		15.07894	75%
.0538345	Variance	15.15211	15.13066	90%
6633977	Skewness	15.15327	15.1423	95%
2.862151	Kurtosis	15.16579	15.15327	99%
		lagy		
		Smallest	Percentiles	
		0	9736936	1%
		9736936	1.01e+07	5%
107	Obs	9921230	1.04e+07	10%
107	Sum of wgt.	1.01e+07	1.23e+07	25%
1.40e+07	Mean		1.41e+07	50%
2850187	Std. dev.	Largost	1.416+07	30%
2030107	sta. dev.	Largest 1.85e+07	1.62e+07	75%
8.12e+12	Variance	1.85e+07	1.80e+07	90%
	Skewness	1.85e+07	1.85e+07	
973907				95%
6.832495	Kurtosis	1.86e+07	1.85e+07	99%
		lagc		
		Smallest	Percentiles	
		0	6199652	1%
		6199652	6292018	5%
107	Obs	6236193	6422592	10%
107	Sum of wgt.	6254854	7768645	25%
9309428	Mean		9694504	50%
2058199	Std. dev.	Largest		
		1.25e+07	1.07e+07	75%
4.24e+12	Variance	1.25e+07	1.19e+07	90%
4.24e+12 9221332	Variance Skewness	1.25e+07 1.25e+07	1.19e+07 1.24e+07	90% 95%

lagg

		Smallest	Percentiles	
		0	1400313	1%
		1400313	1425190	5%
107	Obs	1407266	1439914	10%
107	Sum of wgt.	1408021	1586975	25%
1736922	Mean		1666509	50%
296763.7	Std. dev.	Largest		
		2185154	1968737	75%
8.81e+10	Variance	2200914	2131969	90%
-1.568167	Skewness	2210584	2177641	95%
12.10459	Kurtosis	2223988	2210584	99%
		lagi		
		Smallest	Percentiles	
		0	1476316	1%
		1476316	1717361	5%
107	Obs	1496103	2075338	10%
107	Sum of wgt.	1644163	2435757	25%
2883907	Mean		2936393	50%
687088.2	Std. dev.	Targogt	2930393	JU 70
007000.2	sta. dev.	Largest 3798115	3530510	75%
4.72e+11	Variance	3806069	3725305	90%
7774117	Skewness	3810515	3768913	95%
4.352551	Kurtosis	3858489	3810515	99%
4.332331	Nul COSIS	3030409	3010313	<i>J</i>
		ty		
		Smallest	Percentiles	
		057467	0511819	1%
		0511819	0086521	5%
107	Obs	0489362	0047247	10%
107	Sum of wgt.	0163142	.0023479	25%
.0058408	Mean		.007173	50%
.0129532	Std. dev.	Largest		
		.024794	.0110009	75%
		0060040	0105005	0.00
.0001678	Variance	.0268949	.0187807	90%
.0001678 -2.425971	Variance Skewness	.0268949	.0187807	90% 95%

		Smallest	Percentiles	
		0676228	0417713	1%
		0417713	0084455	5%
107	Obs	0376581	0041356	10%
107	Sum of wgt.	0191957	.0009909	25%
.0066699	Mean		.0073259	50%
.0132373	Std. dev.	Largest		
		.0266107	.0144091	75%
.0001752	Variance	.0272164	.0212909	90%
-2.298736	Skewness	.0274495	.0232557	95%
13.06687	Kurtosis	.0307256	.0274495	99%
		tg		
		Smallest	Percentiles	
		0241522	0234416	1%
		0234416	0105454	5%
107	Obs	0140405	0073267	10%
107	Sum of wgt.	0112177	0025345	25%
.0040964	Mean		.0049655	50%
.0096597	Std. dev.	Largest		
		.0224005	.0106028	75%
.0000933	Variance	.0252503	.0164704	90%
1015951	Skewness	.0252948	.0197741	95%
3.331158	Kurtosis	.0285284	.0252948	99%
		ti		
		Smallest	Percentiles	
		3062722	1216234	1%
		1216234	0358184	5%
107	Obs	0983066	0296323	10%
107	Sum of wgt.	0413404	0041361	25%
.0060469	Mean		.0100457	50%
.0432836	Std. dev.	Largest		
		.0685532	.0246845	75%
.0018735	Variance	.0695556	.0416238	90%
-3.714286	Skewness	.0755281	.0573986	95%
27.41139	Kurtosis	.098964	.0755281	99%

Following variable is string, not included: periodo

```
summary.tex
    dir : seeout
 92 .
 93 . *Dados los resultados anteriores, podemos ver que el consumo tiene una mayor
   > varianza, por lo que su sd será mayor respecto el PIB, de este modo podemos
   > concluir que el componente del consumo tiene mayor volatilidad.
 94 .
 95 . /*
   > F) Estimar los siguientes cuatro modelos lineales reportando los resultados
   > de la regresión:
   > 1.- C t = a 1 + b 1 * Y t + e 1
   > 2.- \delta C_t = a_2 + b_2 * \delta Y_t + e_2
   > 3.- \delta C_t = a_3 + b_3 * \delta Y_t-1 + e_3
   > 4.- ln(C_t) = a_4 + b_4 * ln(Y_t) + e_3
   > */
 96 .
 97 . *Dado que para el modelo 3 tenemos un lag Y_t-1 como var independiente, ento
   > nces debemos crear una nueva variable de crecimiento en el producto.
 99 • gen lagy2 = y[_n - 2]
    (2 missing values generated)
100 . replace lagy2 = 0 if lagy2 == \cdot
    (2 real changes made)
101 . order lagy2, after(lagy)
102 .
103 . gen ty2 = (lagy/lagy2) - 1
    (2 missing values generated)
```

```
104 . replace ty2 = 0 if ty2 == .
    (2 real changes made)
```

105 .

106 . label variable c "Consumo"

107 . label variable y "PIB"

108 . label variable ty "\Delta PIB_t"

109 . label variable ty2 "\Delta PIB_t-1"

110 . label variable lnc "ln(C)"

111 . label variable lny "ln(PIB)"

112 .

113 . *Modelo 1

114 .

115 . reg c y, robust // Regresión líneal simple: consumo como variable dependient
> e y PIB como variable independiente

Linear regression	Number of obs	=	107
	F(1, 105)	=	7558.53
	Prob > F	=	0.0000
	R-squared	=	0.9789
	Root MSE	=	2.7e+0

> 5

С	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
y	.7304619	.0084019	86.94	0.000	.7138024	.7471213
_cons	-951851.6	126345.9	-7.53		-1202372	-701331

116 .

117 . *Modelo 2

118 .

119 . reg tc ty, robust // Regresión líneal simple: tasa de crecimiento del consum
> o como variable dependiente y tasa de crecimiento del PIB como variable inde
> pendiente

Linear regression	Number of obs	=	107
	F(1, 105)	=	56.11
	Prob > F	=	0.0000
	R-squared	=	0.6511
	Root MSE	=	.00786

tc	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ty _cons	.824604 .0018535	.110081	7.49 1.58	0.000 0.117	.6063338 0004698	1.042874

120 .

121 .

122 . *Modelo 3

123 .

124 . reg tc ty2, robust // Regresión líneal simple: tasa de crecimiento del consu
> mo como variable dependiente y tasa de crecimiento del PIB con un lag como v
> ariable independiente

Linear regression	Number of obs	=	107
	F(1, 105)	=	8.66
	Prob > F	=	0.0040
	R-squared	=	0.0789
	Root MSE	=	.01276

tc	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ty2 _cons	.2867646 .0050141	.0974699	2.94 3.57	0.004 0.001	.0934998	.4800294

125 .

126 . *Modelo 4

127 .

128 . reg lnc lny, robust // Regresión líneal simple: ln deel consumo como variabl > e dependiente y ln del PIB como variable independiente

Linear regression	Number of obs	=	107
	F(1, 105)	=	6626.06
	Prob > F	=	0.0000
	R-squared	=	0.9776
	Root MSE	=	.03145

lnc	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
lny _cons	1.137339 -2.674694	.0139721		0.000	1.109635 -3.131413	1.165044 -2.217976

129 .

130 .

131 . reg c y, robust

Linear regression	Number of obs	=	107
	F(1, 105)	=	7558.53
	Prob > F	=	0.0000
	R-squared	=	0.9789
	Root MSE	=	2.7e+0

> 5

С	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
y	.7304619	.0084019	86.94	0.000	.7138024	.7471213
_cons	-951851.6	126345.9	-7.53		-1202372	-701331

132 . outreg2 using models, tex replace ctitle(Modelo 1) label $\underline{models.tex}$

dir : seeout

133 . reg tc ty, robust

Linear regression	Number of obs	=	107
	F(1, 105)	=	56.11
	Prob > F	=	0.0000
	R-squared	=	0.6511
	Root MSE	=	.00786

tc	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ty _cons	.824604 .0018535	.110081	7.49 1.58	0.000 0.117	.6063338 0004698	1.042874

134 . outreg2 using models, tex append ctitle(Modelo 2) label models.tex

<u>dir</u> : <u>seeout</u>

135 . reg tc ty2, robust

Linear regression	Number of obs	=	107
	F(1, 105)	=	8.66
	Prob > F	=	0.0040
	R-squared	=	0.0789
	Root MSE	=	.01276

tc	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
ty2 _cons	.2867646 .0050141	.0974699	2.94 3.57	0.004 0.001	.0934998	.4800294

136 . outreg2 using models, tex append ctitle(Modelo 3) label $\underline{\text{models.tex}}$

<u>dir</u>: <u>seeout</u>

137 . reg lnc lny, robust

Linear regression Number of obs = 107 F(1, 105) = 6626.06 Prob > F = 0.0000 R-squared = 0.9776Root MSE = .03145

lnc	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
lny _cons	1.137339 -2.674694		81.40 -11.61	0.000	1.109635 -3.131413	1.165044 -2.217976

138 . outreg2 using models, tex append ctitle(Modelo 4) label $\underline{models.tex}$

<u>dir</u>: <u>seeout</u>

139 .

140 . /*

> E) Explique qué se podría concluir, si fuera el caso, acerca de la HIP para

> méxico a partir de los coeficientes encontrados.

>

> Sabemos que la HIP postula que el consumo de los agentes será suavizado en f > unción de las expectativas en el ingreso. Dadas las limitaciones en los mode > los antes estimados, entonces no podemos conocer el efecto de las expectativ

> as en el ingreso sobre el nivel de consumo, por lo tanto la HIP no puede ser

> aceptada bajo estos modelos.

>

> */

141 . 142 .

143 . log close

name: <unnamed>

log: /Users/cristiangudino/Desktop/MacroeconomicsII/Tarea2/Data/Consum

> o.smcl

log type: smcl

closed on: 22 Mar 2022, 16:36:04