Website: https://chenjin.netlify.app/
Github: https://github.com/lxasqjc
Email: chen.jin@ucl.ac.uk

PERSONAL PROFILE

Jin has seven years' multidisciplinary research experience in deep learning and computer vision across computer science, medical-image and geo-image sectors. His recent research focuses on developing either data-efficient or computation-efficient machine learning methods, and applied on a set of budgeted large-scale computer vision tasks, e.g. segmentation, classification, super-resolution and 3D-reconstruction. He is also interested in designing self-supervised algorithms that allow disentangled representation learning from multiple modalities, scales and tasks at minimal supervision. He has an ultimate goal of building Artificial General Intelligence.

PROFESSIONAL HISTORY

Research Associate, University College London, London, UK

Mar.2019 -Present

- Develop deep learning methods and published 7 top AI Conference and Journal articles (includes under-review).
- Hosted <u>MedICSS 2021 Summer School</u> project and taught one-week deep learning course for segmentation (theory and coding), and lead a team of 7 researchers achieved top 3 among the 14 final project presentations.
- Supervise/co-supervised **1 PhD** and **4 MSc students** on **deep learning projects** (1 distinction and 3 under review).
- Oral talk at top conference (MICCAI), IPMI 2021 guest Lecture and various seminars (e.g. CMIC open day).
- Chaired research group meetings (of size 20+ researchers) for a period of over 1.5 yrs.

Research Associate, Heriot-Watt University, Edinburgh, UK

Nov.2017 -Nov.2018

• Built **3D** images statistical **modelling** protocol for simulation mineral, deployed in Python, Matlab, and Tcl.

Intern Student, Canadian Natural Resources International (UK) Limited

Aug.2013 -Dec.2014

• Performed **numerical simulation** analysis and **presented** to development team helped on decisions worth millions.

RESEARCH PROJECTS

Ultra-high resolution image analysis

- Developed a **learnable downsampler** for **efficient segmentation** at a limited budget, improved accuracy of up to **10%** and **saved computation** of up to **90% over SoTA**, and **accepted by ICLR 2022** as the **leading author**.
- Developed a joint "learnable data loader" optimise the patch magnification-resolution trade-off at each location for segmenting large images, achieved SoTA, published at MICCAI/extensive preprint as the leading author.
- Co-authored an attention-based semi-supervised method and submitted to MIDL as the third author.

Disentangling human error from inter-reader variability

• Co-authored <u>MICCAI/NeurIPS 2020 publication</u> contributed on problem formulation and STAPLE baseline; Medical histology image analysis

- Co-supervised one **PhD student** performing research on **deep multiple instance learning** for large histological image **classification** and **submitted** as the **second author**.
- Co-supervised **two MSc projects** (**3 months** each) performing **segmentation** and **detection** on histology images.
- Applied **3D reconstruction** method for tumour cells and image analysis in immunofluorescence images.

Image super-resolution

- Developed a deep recurrent multiscale pyramid network for image super-resolution task.
- Proposed and independently supervised 2 MSc projects (3 months each) on super-resolution with CNN and GAN based methods.

Weak supervised deep neural model for segmentation

• Developed a **weak supervised** iterative convolutional net (based on ad-hoc filter banks, AdaBoost and auto-context) that auto-improves segmented connectivity of thin linear pattern, **presented** (2016)/ **poster** (2018) at conferences.

Multiscale image analysis and reconstruction workflow (PhD Thesis, 2017)

- Developed a multi-scale/moda image analysis, fusion and reconstruction protocol for digital rock analysis.
- Calibrate CT and SEM images, integrate multiscale data and guide 3D pore-grain image reconstruction via multiple-point statistics method (conditional to neighbouring "patch").

Website: https://chenjin.netlify.app/ Github: https://github.com/lxasqjc Email: chen.jin@ucl.ac.uk

Developed an automated patch-based rock pattern classification procedure based on random forest.

PROGRAMMING:

Python, Matlab, C/C++, R, JavaScript, Batch.

TOOLS:

Pytorch, Tensorflow, Keras, Jupyter, Linux, Cloud/Cluster, ImageJ (FIJI), ParaView, Cinema4D.

EDUCATION

Ph.D. Computational Geoscience, Heriot-Watt University, Edinburgh, UK

MSc Petroleum Engineering, Heriot-Watt University, Edinburgh, UK

B.E. Oil and Gas Engineering, China University of Petroleum

March. 2013 - Nov. 2017 Aug. 2011 -Aug. 2012

September. 2007 – July. 2011

SELECTED PUBLICATIONS

1. Jin, C., Tanno, R., Mertzanidou, T., Panagiotaki, E., and Alexander, D.C., Learning to Downsample for Segmentation of Ultra-High Resolution Images. ICLR 2022 (Accepted).

- 2. Xu, M., Zhou, Y., Jin, C., Blumberg, S., Wilson, F., Oxtoby, N., Alexander, D., and Jacob, J., Learning Morphological Feature Perturbations for Semi-Supervised Segmentation. MIDL 2022 (Under Review).
- 3. Olga, F., Jin, C., Mertzanidou, T., Alexander, D.C. and Bakal, C. Deep Neighbour-Based Multiple Instance Learning for Histopathology Image Classification. Journal (Under Review).
- 4. Jin, C., Tanno, R., Xu, M., Mertzanidou, T. and Alexander, D.C., Foveation for Segmentation of Ultra-High Resolution Images. arXiv preprint 2020.
- 5. Zhang, L., Tanno, R., Xu, M., Jin, C., Jacob, J., Cicarrelli, O., Barkhof, F. and Alexander, D., Disentangling Human Error from Ground Truth in Segmentation of Medical Images. NeurIPS 2020.
- 6. Jin, C., Tanno, R., Xu, M., Mertzanidou, T. and Alexander, D.C., October. Foveation for Segmentation of Mega-Pixel Histology Images. MICCAI 2020.
- 7. Zhang, L., Tanno, R., Bronik, K., Jin, C., Nachev, P., Barkhof, F., Ciccarelli, O. and Alexander, D.C., October. Learning to Segment When Experts Disagree. MICCAI 2020.
- 8. Jin, C. and J. Ma, "Connectivity-enhancing fracture segmentation from X-ray Tomography (XRT) images of reservoir core samples by machine learning-based method", InterPore 2018.
- 9. **Jin, C.**, "Developing a hierarchical digital core analysis workflow for petro-physical characterisation of crosslaminated reservoir rocks at pore scales", **Ph.D. thesis, 2017**, Heriot-Watt University, Edinburgh, UK.
- 10. Jin, C., J. Ma, J. Buckman, P. Zhang, and G. Couples, "Registering Scanning Electron Microscopy (SEM) and X-Ray Tomography (XRT) images for pore-grain characterisation of cross-laminated siliciclastic rock samples", The Geological Society Symposium 2017.
- 11. Jin, C. and J. Ma, "Advanced fracture segmentation from X-ray tomography (XRT) images of reservoir core samples by machine learning-based centerline extraction", EAGE-SCA International Symposium 2016.
- 12. Jin, C. and J. Ma, "An automated machine-learning procedure for robust classification of SEM images of cross-laminated sandstones for digital rock analysis", Society of Core Analysis (SCA) Symposium 2014.

AWARDS

- ☆ Scholarship for Outstanding International Student from Xinjiang (Top 20 in UK) in 2016
- ☆ James-watt scholarship of Heriot-Watt University from 2014 to 2016
- ☆ SINOPEC funding to study the uncertainty of Digital Rock Analysis from 2014 to 2016
- ☆ Science & Technology Innovation Award by China University of Petroleum (East of China) in 2008 and 2009
- ☆ Scholarship for the scientific and technological innovation in 2008 and 2009