Variable selfing rates: should they matter during adaptation?

* Institute of Evolutionary Sciences of Montpellier, University of Montpellier II, UMR 5554, Place Eugène Bataillon, 34090 Montpellier +33 (0)4 67 41 02 83 mathilde.mousset@univ-montp2.fr ** INRA, 2 place Vial,a 34060 Montpellier

M. Mousset*, O. Ronce*, J. Ronfort** & S. Glémin*

INTRODUCTION

1. Influence of selfing rate on adaptation

According to Glémin & Ronfort, 2013 (1):

- New mutation: higher probability to fix **recessive** mutation in **selfers**, and **dominant** mutations **in outcrossers**; adaptation time mostly quicker in selfers.
- <u>Fixation from standing variation</u>: adaptation **less likely in selfers** than outcrossers **under most conditions**

2. Temporal variation of selfing rates in natural populations

Noccaea caerulescens

- Colonization of soils contaminated with Zc, Cd and Pb.
- Mixed mating system, year-to-year variation

Does temporal variation of selfing rates affect

adaptation?

3. Main Question

ANALYTICAL PREDICTIONS

Selfing rate σ variation \rightarrow Inbreeding coefficient F variation \rightarrow Apparent selection coefficient s variation:

For a given sequence of F_0, F_1, \dots, F_k : $s(F_t) = F_t s + (1 - F_t) h s$

Adapted from Peischl & Kirkpatrick, 2012 (2):

Probability of fixation:
$$E[P_{fix}|F_0] = 2s(\overline{F})(1 + \frac{s(F_0) - s(\overline{F})}{1 - (1 - s(\overline{F}))\rho})$$
 with ρ correlation between F_t and F_{t+1}

- P_{fix} depends on initial selfing rate, mean selfing rate and autocorrelation
- If recessive beneficial mutation: P_{fix} increases with F_0 and increases with ϱ if $F_0 > \overline{F}$

SIMULATIONS

Inclusion of temporal variation of selfing rate in the model of Glémin & Ronfort, 2013, a

Wright-Fisher model with selfing rate variation

1 population (N)

AA AA AA

AA AA

AA AA

AA AA

AA AA

AA AA

AA AA

AA AA

a beneficial

Different patterns of variation with the same mean:

- Constant mixed mating
- Random temporal variation
- Auto-correlated temporal variation 💆 3

Aim: follow the fate of one mutation: probability of fixation and time to fixation

Probability of fixation of a single

TAKE HOME MESSAGE

- Probability of fixation: depends on initial selfing rate and mean selfing rate. Also depends of the autocorrelation for a given initial selfing rate.
 - Expectation over all possible initial selfing rates: no effect of autocorelation
- (1) Glémin & Ronfort. 2013. Adaptation and maladaptation in selfing and outcrossing species: new mutations versus standing variation. Evolution 67 (1), 225-240. and references therein (2) Peischl & Kirkpatrick.2012. Establishment of new mutations in changing environments. Genetics 191(3):895-906.