

همطراحی سختافزار نرمافزار

جلسه بیستونهم: سایر محدودیتهای طراحی

ارائهدهنده: آتنا عبدى

a_abdi@kntu.ac.ir

مباحث این جلسه

- محدودیتها و چالشهای طراحی
 - مسئله کارایی و هزینه را دیدیم
- اهمیت مسئله دمای تراشه و توان مصرفی در طراحی

چالشهای طراحی پردازندهها

- کارایی و هزینه از مهمترین محدودیتهای طراحی هستند
 - پیشرفت تکنولوژی و پیچیده شدن کاربردها و نیاز کاربران
 - قانون مور و افزایش تعداد ترانزیستورها و کارایی تراشهها
- مهم ترین مانع محقق شدن روند پیشبینی شده در قانون مور
 - دمای تراشه و توان مصرفی (Thermal/Power Wall)

چالشهای طراحی پردازندهها

مسئله توان مصرفی و دمای تراشه

- توان مصرفی ایستا:
- ناشی از جریان نشستی
- افزایش اهمیت با پیشرفت تکنولوژی و کاهش سایز ترانزیستورها
 - توان مصرفی پویا:
 - ناشی از شارژ و دشارژ خازنها و سوئیچینگ

مسئله توان مصرفی و دمای تراشه

- $\mathbf{T} \propto \mathbf{P}$ وابستگی دما و توان مصرفی ایستا
- افزایش دما در سیکلهای کاری و کاهش آن در بازههای بیکاری
 - تنظیم بیشینه دمای سیستم

مسئله توان مصرفی و دمای تراشه

- پیچیدگی بیشتر مسئله با پیشرفت تکنولوژی و در بستر سیستمهای چندهستهای
 - تاثیر دمای هستههای همسایه و افزایش بیشتر دما (Heat Transfer)
 - اثرگذاری بیشتر دما بر توان مصرفی

راهکارهای مدیریت دمای تراشه و توان مصرفی

• استفاده از مکانیزمهای خنک کننده در سطوح مختلف و مدیریت دما در طراحی

- مدیریت دما در سطح سیستم
- مقیاس فرکانس کاری، انتقال وظایف پردازشی، مدیریت اجرا

راهکارهای مدیریت دمای تراشه و توان مصرفی

- تاثیر متقابل راهکارهای مدیریت کارایی و دمای تراشه بر یکدیگر
 - دیدیم که نگاشتهای مختلف بر زمان اجرا و هزینه تاثیرگذار است
 - همچنین نگاشت وظایف ایجاد نقاط داغ روی تراشه را باعث میشوند
 - لزوم درنظر داشتن این محدودیتها بهصورت همزمان

راهکارهای مدیریت دمای تراشه و توان مصرفی

- مدیریت توان مصرفی در سطوح مختلف تجرید
 - موثرتر بودن روشهای سطح سیستمی

بهینهسازی توأم پارامترهای اساسی طراحی

- رابطه متقابل و ناهمسو بین پارامترهای موردنظر در طراحی
 - توان مصرفی، دمای تراشه و کارایی
- درنظر داشتن همه پارامترها در کنار یکدیگر با درنظر داشتن چندین سطح عملیاتی در سیستم

Select a power plan Power plans can help you maximize your computer's performance or conserve energy. Make a plan active by selecting it, or choose a plan and customize it by changing its power settings. Tell me more about power plans	
Preferred plans	
Balanced Change plan settings	Energy savings: ••• Performance: •••
C Power saver Change plan settings	Energy savings: ••••• Performance: ••
C High performance Change plan settings	Energy savings: •• Performance: •••••

• روشهای مدیریت پویای دما

Source: Windows 7 power management

روشهای مدیریت پویای دما

- راهکارهای سطح سیستم برقراری مصالحه بین معیارهای طراحی
 - مقیاس سرعت اجرا (Speed Scaling)
 - تنظیم سرعت اجرا براساس دما
 - افزایش تدریجی سرعت با هدف برقراری مصالحه
 - تحلیل همزمان دما، توان مصرفی و کارایی

روشهای مدیریت پویای دما

- راهکارهای سطح سیستم برقراری مصالحه بین معیارهای طراحی
 - مدیریت در حین زمانبندی (Stop and Go)
 - تنظیم زمانهای اجرایی و بیکاری
 - خنک شدن سیستم در زمانهای بیکاری

روشهای مدیریت پویای دما

- راهکارهای سطح سیستم برقراری مصالحه بین معیارهای طراحی
 - نگاشت مجدد وظایف و پخش کردن نقاط داغ
- مهاجرت دادن وظایف از یک پردازنده به دیگری با هدف مدیریت بارکاری و نقاط داغ تراشه

بهینهسازی چند هدفی

- درنظر داشتن الزامات زمانی و کارایی در تمامی روشهای پیشین
 - مسئله بهینهسازی چندهدفی
 - استخراج مجموعه جواب

مباحثی که این جلسه آموختیم

- چالشهای اساسی طراحی سیستمهای پردازشی مدرن
 - اهمیت توان مصرفی و دمای تراشه
 - تاثیر متقابل چالشهای طراحی
 - روشهای مدیریت دما و توان مصرفی در سطح سیستم
 - بهینهسازی چندهدفی

[Main Source: https://lectures.tik.ee.ethz.ch/hscd/slides/11_ThermalAwareDesign.pdf