P98:

22. 用原子吸收光谱法测定水样中的铜,选 324.8nm 谱线为分析线,采用标准加入法,铜标准溶液浓 度为 1.00µg*mL⁻¹, 各取 10.0mL 水样分别加入不同体积的标准溶液后, 稀释至 25.0mL, 测定其吸光度 列入下表,求水样中的铜浓度。

编号	1	2	3	4	5
水样体积/mL	10.0	10.0	10.0	10.0	10.0
加入标液体积/mL	0.00	1.00	2.00	3.00	4.00
吸光度	0.141	0.220	0.301	0.376	0.457

解: 将加标量与对应的吸光度值列表如下:

加标量 / μg	0	1.00	2.00	3.00	4.00
吸光度 A	0.141	0.220	0.301	0.370	0.457

通过一元线性回归得到线性方程为:

 $A=0.0788m+0.1414 (\gamma=0.9999)$

得到测定样品中铜含量为 1.794 µg

所以水中铜浓度为:

 $\frac{1.794 \mu g}{10.0 mL} = 0.179 \ \mu g/mL$

25. 用火焰原子吸收法测定自来水中的镁含量。镁标准溶液浓度为 10.0 μg·mL⁻¹, 用 10% SrCl₂ 溶液 作干扰抑制剂,标准系列和试液的取液体积如下表所示。用 50 mL 容量瓶定容,然后用纯水喷雾调零,分 别测定表中各溶液吸光度,并将测定结果列入表内。

编号	1	2	3	4	5	6	7
V标/mL	0.00	1.00	2.00	4.00	8.00	0.00	1.50
V _{fl} /mL						3.00	1.00
V _{Sr} /mL	3.00	3.00	3,00	3,00	3.00	3.00	3.00
A	0.011	0.115	0.220	0.428	0.844	0.589	0.352

(1) 求自来水中的镁浓度; (2) 评价测定方法的准确度。

解: 将标样质量与对应的吸光度值列表如下:

标样质量 / μg	0	10.0	20.0	40.0	80.0
吸光度 A	0.011	0.115	0.220	0.428	0.844

通过一元线性回归得到线性方程为:

 $A=0.01041m+0.01122 (\gamma=1)$

得到 6[#]、7[#]样品中镁含量为 55.50 μg、32.74 μg

自来水中镁的浓度为:

 $55.50 \mu g 3.0 m L = 18.5 \mu g/m L$

所以加标回收率为:

加标回收率 P=测得量加标量×100%=32.74-55.5031.50×10.0×100%=94.92% 由于加标回收率接近95%,故该分析方法可能有较高的准确度。

28. 二组分的色谱图如下所示,记录仪走纸速度为 $1 \text{cm} \cdot \text{min}^{-1}$,(1)求二组分色谱峰的 r_{21} 和 R。(2)如果 GC 柱长为 1.0 m,求该柱对组分 1 的有效塔板高度。

解:组分1的半峰宽为:

$$\frac{1.6}{\frac{1\times10}{60}} = 9.6 \text{ (s)}$$

组分 2 的半峰宽为:

$$\frac{1.8}{\frac{1\times10}{60}}$$
 = 10.8 (s)

两组分的相对保留值为:

$$\gamma_{2;1} = \frac{t'_{R;2}}{t'_{R;1}} = \frac{145 - 10.8}{76 - 9.6} = \frac{134.2}{66.4} = 2.02$$

两组分的分离度为:

$$R_s = \frac{145 - 76}{10.8 + 9.6} = \frac{69}{20.4} = 3.38$$

該柱对组分1的有效塔板数为:

$$n = 5.54 \times (\frac{134.2}{10.8})^2 = 855.4$$

該柱对组分1的有效塔板高度为:

$$H = \frac{L}{n} = \frac{1000 mm}{855.4} = 1.17 mm$$

31. 将化合物 a 与正二十四烷和正二十五烷混匀后进样作 GC 分析,测得 a 、n-C₂₄ H₅₀ 、n-C₂₅ H₅₂ 的调整保留时间分别为:10. 20min、9. 81min、11. 56min,计算化合物 a 的保留指数。

解: 该化合物的保留整数为:

$$\begin{split} I_X &= 100 \bigg(\frac{lgt'_{RX-} lgt'_{RZ}}{lgt'_{RZ+1X-} lgt'_{RZ-}} + Z \bigg) = 100 \bigg(\frac{lg10.2 - lg9.81}{lg11.56 - lg9.81} + 24 \bigg) \\ &= 100 \bigg(\frac{1.0086 - 0.9916}{1.0630 - 0.9916} + 24 \bigg) = 2424 \end{split}$$

35. 用内标标准曲线法测定氯苯中的微量杂质苯时,以甲苯为内标物,先用纯物质配制内标标准溶液,进行气相色谱分析,所得数据见下表。

编号	::5.Tr:::	2	3	4
$m_{/\!\!\!/} g$	0.0056	0.0104	0.0134	0.0197
$m_{\PsiX}/{ m g}$	0.0455	0.0460	0.0407	0.0413
h * / h = *	0.234	0.423	0.608	0.861

在分析未知试样时,称取氯苯试样 5.121g,加入内标物 0.0422g,混匀后进样,从所得色谱图上量取各色谱峰的峰高,并求得峰高比为: $h_*/h_{\rm FF}=0.343$ 。求试样中各杂质的百分含量。

解:将标样/内标质量之比与对应的标样/内标峰高之比值列表如下:

m _* / m _{#*}	0.1231	0.2261	0.3292	0.4770
h */ h #*	0.234	0.422	0.608	0.861

通过一元线性回归得到线性方程为:

 $h=1.7718m+0.01945 (\gamma=0.9999)$

得到样品中 m */ m ** 为 0.1826

得到样品中苯含量为 7.706 mg

自来水中镁的百分含量为:

7.706 mg /5.121g×100=0.150%

P222

13. 利用 HPLC 内标法测定生物碱样品中黄连碱和小檗碱的含量,称取内标物、黄连碱和小檗碱对照品各 0. 2500g 配制成混合溶液,测得峰面积分别为 450. $0 \text{mV} \cdot \text{min}^{-1}$, 430. $0 \text{mV} \cdot \text{min}^{-1}$ 和 512. $5 \text{mV} \cdot \text{min}^{-1}$ 。称取 0. 3000g 内标物和 0. 5120g 样品,同时制成混合溶液后,在相同的色谱条件下,测得内标物、黄连碱和小檗碱的峰面积分别为 520. $0 \text{mV} \cdot \text{min}^{-1}$, 462. $5 \text{mV} \cdot \text{min}^{-1}$ 和 567. $5 \text{mV} \cdot \text{min}^{-1}$, 计算样品中黄连碱和小檗碱的质量分数。

解: 内标法定量时, 样品/内标质量之比与对应的样品/内标峰面积之比, 因此有如下关系式:

$$\frac{\mathbf{A}_{\mathbb{R}, \text{ fill}}}{\mathbf{A}_{\mathbb{R}}} = \frac{\mathbf{A}_{\mathbb{R}, \text{ fill}}}{\mathbf{A}_{\mathbb{R}}} = \frac{\mathbf{A}_{\mathbb{R}, \text{ fill}}}{\mathbf{M}_{\mathbb{R}, \text{ fill}}}$$

$$\frac{\frac{\mathbf{A}_{d_{i}, \text{ } \ell S}}{\mathbf{A}_{|\hat{\mathbf{B}}|}}}{\mathbf{m}_{d_{i}, \text{ } \ell S}} = \frac{\frac{\mathbf{A}_{d_{i}, \text{ } \ell \ell S}}{\mathbf{A}_{|\hat{\mathbf{B}}|}}}{\mathbf{m}_{d_{i}, \text{ } \ell S}}$$

得到

$$\frac{\frac{430}{450}}{1} = \frac{\frac{462.5}{520.0}}{\frac{m_{\pi, \text{ ff}}}{0.30}}$$

$$\frac{512.5}{450} = \frac{567.5}{\frac{520.0}{4.9}}$$

 $m_{\pm}=0.2792(g)$

m 小=0.2875(g)

所以, 黄连碱的百分含量为: 0.2792/(0.2792+0.2875) ×100%=49.27% 小壁碱的百分含量为: 0.2875/(0.2792+0.2875) ×100%=50.73% (药品质量小了)