Curriculum Vitæ Hyundong Jin

jude0316@cau.ac.kr | github.com/Jin0316

Research Interests

Machine learning, Deep learning, Computer vision

Continual Learning, Multimodal Learning, Resource-Efficient Learning

EDUCATION

Chung-Ang University Ph.D. of Computer Science Engineering (advisor: Eunwoo Kim)	Seoul, South Korea Mar. 2022 – present
Chung-Ang University Master of Computer Science Engineering (advisor: Eunwoo Kim)	Seoul, South Korea Mar. 2020 – Feb 2022
Chung-Ang University Bachelor of Electrical and Electronics Engineering	Seoul, South Korea Mar. 2015 - Feb 2020

International Conference

- [1] **Hyundong Jin**, Gyeong-Hyeon Kim, Chanho Ahn, and Eunwoo Kim, "Growing a Brain with Sparsity-Inducing Generation for Continual Learning", In Proc. of the IEEE International Conference on Computer Vision (ICCV), Oct. 2023.
- [2] Hyundong Jin, and Eunwoo Kim, "Helpful or Harmful: Inter-Task Association in Continual Learning", In Proc. of the European Conference on Computer Vision (ECCV), Oct. 2022.

International Journal

- [1] Sujin Choi*, **Hyundong Jin***, and Eunwoo Kim, "Task-Aware Dynamic Model Optimization for Multi-Task Learning", **IEEE Access**, Dec. 2023 (* denotes for euqal contribution).
- [2] Hyundong Jin, Kimin Yoon and Eunwoo Kim, "Gating Mechanism in Deep Neural Networks for Resource-Efficient Continual Learning", IEEE Access, Jan. 2022.

Awards	
Grand Prize, Big Data Utilization Contest • by Doosan Enerbility	2023
Excellence Prize, Big Data Utilization Contest • by HD Hyundai XiteSolution	2023
Patents	
A Normal Naturals Apparatus and Normal Naturals Learning Mathed for Donforming	2022

F

A Neural Network Apparatus and Neural Network Learning Method for Performing 2023 Continuous Learning Using a Correlation Analysis Algorithm Between Tasks

• Republic of Korea. 10-2022-0101187

Project Experimences

Multi-Modal Continual Learning with Context Understanding • Funded by National Research Foundation.	2024 - present
Learning Transferable Task Knowledge and Planner for Service Robots • Funded by Samsung Research Funding & Incubation Center.	2021 - 2023
Development of AI for Self-Improving Competency-Aware Learning • Funded by IITP.	2020 - present

2020 - 2022

• Funded by National Research Foundation.

Automated Deep Learning Technology for Multi-Task Learning

INVITED TALKS

nnLab ntinual Learning session	3.09.25
orean Computer Vision Society (KCVS) ntinual Learning session	3.02.24
orean Artificial Intelligence Association (KAIA) and NAVER / NLP session	2.11.18
g Experiments	
ed Artificial Intelligence (Teaching Assistant) Chung-Ang University	2023
ne Design (Teaching Assistant) Chung-Ang University	2021
Intelligence and it's Applications Electronics and Telecommunications Research Institute (ETRI)	2020
nms (Teaching Assistant) Chung-Ang University	2020
Chung-Ang University	