Discrete Systems (Part I) - Theory

Assume a domain Ω and on which we formulate a weak formulation of the diffusion-vecation equation $\int_{\Omega} c \, u \, \phi \, + \, a \, \nabla u \, \nabla \phi \, = \int_{\Omega} f \, \phi \,$

where f is an external force $f: \Omega \to \mathbb{R}$, $u \in V$ is the verposse we wish to find, we have a, coo $\in V$ as chosen constants and ϕ as the test function $\forall \phi \in V$. For this point we assume boundary conditions $|\partial \Omega|$ as u=0. Therefore $V=\{u \in H_0^4 | u=0 \text{ on } \partial \Omega \}$.

Byagull sinite element discretization we have a discrete function space Vn given by a leaguingian busis & 9:3 =0, where Np is the number of points. We want to find a discrete solution $u_n = \sum_{i=0}^{Npri} V_i \cdot l_i$ such that

Si=0 V: Jacfili + arlivej = Jaftj + j gree DOF (2)

1. Leurma of Lax-Milgram

We assume that the domain a can be divided into a mesh to of triongles Ti and the Dividelet boundary condition. We define $V_h = \frac{1}{2} v e V_0: \phi|_{T_i}$ is linear $\forall T_i \in V_n$, ϕ is continous on Ω_3^3 We need to find a unique discrete solution $u_n e V_n$ for eq. (2), such that

 $A(u_h, \phi) = L(\phi) \forall n \in V_h$

We chose a basis for V_n : $f_j \in V_n$ such that $\Phi_j(x_i) = \begin{cases} 1 & i=j \\ 0 & i\neq j \end{cases}$ $j = 1, 2, ..., N_{p-1}$

where xi are the vertices of the triangles.

For the unique solution we solve the system

 $u_n(x) = \sum_{j=1}^{n} u_j P_j(x)$ where $u_j - u_n(x_j)$.

We can write in waterix form:

AU = L where $A_{ji} = A(\ell_i, \ell_j)$ and $L_j = L(\phi_j)$.

Where A is a bounded, coexive bilinear form and L calibrar bounded from. Fllowing Lax-Hilgrims Lemma, the problem has a unique solution or bounded

2. Approximation of the integral

The approximation property can be characterized by Golestein-Orthogornality. We search for the approximation to use un e Vn c V, where Vn is a finite dimensional subset of V. In the Galestin method we search for the best approximation und with vespect to the bilenor from A = A(u,v) as defined previously.

The Galerlin-Orthogoverality states that $A(u-u_n, v_n) = 0$

which implies ortogorality of the error with respect to A. The proof is given as:

 $A(u_n, v_n) = A(u_n, v_n) - A(u_n, v_n) = L(v_n) - L(v_n) = 0$

Is derive step by step the approximation: $\int_{\Omega} f(x,y) \cdot f_{j}(x,y) dxdy \approx$

- = $\sum_{\tau \in \mathcal{T}_{u}} f(x,y) \cdot \phi_{D(y,\tau)}^{T}(x,y) dxdy =$
- $= \sum_{\tau \in T_{\tau}} \int_{T} f(x,y) \cdot \hat{\phi}_{\rho(j,\tau)} \left(F_{\tau}^{-1}(x,y) \right) dxdy =$
- = [det (DF,) |] + (F(2.91). \$\phi_{n(j)}(\hat{x},\hat{y}) dedg =
- $-\sum_{\text{Tet}} |\det(DF_{\tau})| \sum_{\hat{x},\hat{y},\hat{x}} \hat{y} \cdot f(F_{\tau}(\hat{x},\hat{y})) \cdot \hat{\phi}_{D(\hat{y},\tau)}(\hat{x},\hat{y}) \qquad \forall j \in DOF$

3. Optimal Approximation

The approximation above is exact when the function of is linear on domain Ω , such that the selected test function of (xiy) which is a Lagrangian hat function with values $\tilde{\omega}$ of evaluate to due exact function.