

Artificial Intelligence for developers

8 weekend per diventare Machine Learning Specialist

Natural Language Processing

Maurizio Atzori Università degli Studi di Cagliari atzori@unica.it

February 9-10, 2024

Outline of the course

- Intro on AI, ML and NLP
- Text Processing
- Words and Corpora
- Lexical similarity
- Language Modeling
- Text Classification
- Semantic similarity
- Knowledge Graphs
- Intro to Large Language Models

Minimum Edit Distance

How similar are two strings?

- Spell correction
 - The user typed "graffe" Which is closest?
 - graf
 - graft
 - grail
 - giraffe

- Computational Biology
 - Align two sequences of nucleotides

```
AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC
```

Resulting alignment:

```
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
```

 Also for Machine Translation, Information Extraction, Speech Recognition

Edit Distance

- The minimum edit distance between two strings
- •Is the minimum number of editing operations
 - Insertion
 - Deletion
 - Substitution
- Needed to transform one into the other

Minimum Edit Distance

•Two strings and their alignment:

Minimum Edit Distance

- If each operation has cost of 1
 - Distance between these is 5
- If substitutions cost 2 (Levenshtein)
 - Distance between them is 8

Alignment in Computational Biology

Given a sequence of bases

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

•An alignment:

```
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
```

•Given two sequences, align each letter to a letter or gap

Other uses of Edit Distance in NLP

Evaluating Machine Translation and speech recognition

```
R Spokesman confirms senior government adviser was appointed

H Spokesman said the senior adviser was appointed

S I D
```

- Named Entity Extraction and Entity Coreference
 - IBM Inc. announced today
 - IBM profits
 - Stanford Professor Jennifer Eberhardt announced yesterday
 - for Professor Eberhardt...

How to find the Min Edit Distance?

- Searching for a path (sequence of edits) from the start string to the final string:
 - Initial state: the word we're transforming
 - Operators: insert, delete, substitute
 - Goal state: the word we're trying to get to
 - Path cost: what we want to minimize: the number

Minimum Edit as Search

- •But the space of all edit sequences is huge!
 - We can't afford to navigate naïvely
 - Lots of distinct paths wind up at the same state.
 - We don't have to keep track of all of them
 - Just the shortest path to each of those revisted states.

Defining Min Edit Distance

- For two strings
 - ∘ X of length *n*
 - ∘ Y of length *m*
- •We define D(*i,j*)
 - the edit distance between X[1...i] and Y[1...j]
 - i.e., the first *i* characters of X and the first *j* characters of Y
 - $_{\circ}$ The edit distance between X and Y is thus D(n,m)

Minimum Edit Distance

Computing the Minimum Edit Distance

Dynamic Programming for Minimum Edit Distance

- •Dynamic programming: A tabular computation of D(n,m)
- •Solving problems by combining solutions to subproblems.
- •Bottom-up
 - We compute D(i,j) for small i,j
 - And compute larger D(i,j) based on previously computed smaller values
 - i.e., compute D(i,j) for all i (0 < i < n) and j (0 < j < m)

Defining Min Edit Distance (Levenshtein)

Initialization

$$D(i,0) = i$$

 $D(0,j) = j$

Recurrence Relation:

```
For each i = 1...M

For each j = 1...N

D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases}
D(i-1,j-1) + \begin{cases} 2; & \text{if } X(i) \neq Y(j) \\ 0; & \text{if } X(i) = Y(j) \end{cases}
```

Termination:

```
D(N,M) is distance
```


Minimum Edit Distance

The Edit Distance Table

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

The Edit Distance Table

N	9																
0	8																
Ι	7	D(i	1) – mi	D(i-1,j) +	1											
Т	6		$D(i,j) = \min \begin{cases} D(i,j-1) + 1 \\ D(i-1,j-1) + \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_2(i) \end{cases}$														
N	5		$0; \text{ if } S_1(i) = S_2(j)$														
Е	4		,				1.	, -									
Т	3																
N	2																
Ι	1																
#	0	1	2	3	4	5	6	7	8	9							
	#	Е	Χ	Е	С	U	Т	I	0	N							

Edit Distance

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$$

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

The Edit Distance Table

N	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
I	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Т	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
I	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	Ι	0	N

Computing the Minimum Edit Distance

Backtrace for Computing Alignment

Computing alignments

- Edit distance isn't sufficient
 - We often need to align each character of the two strings to each other
- We do this by keeping a "backtrace"
- •Every time we enter a cell, remember where we came from
- When we reach the end,
 - Trace back the path from the upper right corner to read off the alignment

Edit Distance

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$$

N	9									
0	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	Е	Χ	Е	С	U	Т	I	0	N

MinEdit with Backtrace

n	9	↓ 8	∠←↓ 9	<u>√</u> 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓ 9	∠8	
0	8	↓ 7	∠ ←↓8	∠←↓ 9	<u> </u>	<u> </u>	↓ 10	↓9	/ 8	← 9	
i	7	↓ 6	∠←↓ 7	∠ ←↓8	∠ ←↓9	∠ ←↓ 10	↓9	/ 8	← 9	← 10	
t	6	↓ 5	∠ ←↓6	∠←↓ 7	∠ ←↓8	∠ ←↓9	/8	← 9	← 10	← ↓ 11	
n	5	↓ 4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	∠ ←↓ 8	<u>/</u> ←↓9	∠ ←↓ 10	∠ ←↓ 11	∠ ↓ 10	
e	4	∠3	← 4	∠ ← 5	← 6	← 7	<i>←</i> ↓ 8	∠ ←↓9	∠ ←↓ 10	↓9	
t	3	∠←↓4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	∠ ←↓8	∠ 7	<i>←</i> ↓ 8	∠ ←↓9	↓8	
n	2	∠ ←↓ 3	∠ ←↓4	∠ ←↓ 5	∠←↓ 6	∠←↓ 7	<u> </u>	↓ 7	∠ ←↓ 8	∠7	
i	1	∠ ←↓ 2	∠ ←↓ 3	∠ ←↓ 4	∠←↓ 5	∠←↓ 6	∠←↓ 7	∠ 6	← 7	← 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	O	n	

Adding Backtrace to Minimum Edit Distance

Base conditions:

$$D(i,0) = i$$

$$D(0,j) = j$$

Termination:

D(i,0) = i D(0,j) = j D(N,M) is distance

Recurrence Relation:

For each
$$i = 1...M$$

For each $j = 1...N$

$$D(i-1,j) + 1 ext{ deletion}$$

$$D(i,j-1) + 1 ext{ insertion}$$

$$D(i-1,j-1) + 2 ext{ if } X(i) \neq Y(j) ext{ substitution}$$

$$0 ext{ if } X(i) = Y(j)$$

$$\text{ptr}(i,j) = \begin{cases} D(i-1,j) + 1 & \text{insertion} \\ D(i-1,j-1) + 2 & \text{if } X(i) \neq Y(j) \end{cases}$$

$$\text{DOWN} \text{ deletion}$$

$$DIAG ext{ substitution}$$

The Distance Matrix

Every non-decreasing path

from (0,0) to (M, N)

corresponds to an alignment of the two sequences

An optimal alignment is composed of optimal subalignments

Result of Backtrace

•Two strings and their **alignment**:

Performance

•Time:

O(nm)

•Space:

O(nm)

Backtrace

O(n+m)

Backtrace for Computing Alignment

Weighted Minimum Edit Distance

Weighted Edit Distance

- •Why would we add weights to the computation?
 - Spell Correction: some letters are more likely to be mistyped than others
 - Biology: certain kinds of deletions or insertions are more likely than others

Confusion matrix for spelling errors

					S	ab[2	X, Y] =	Sub	stitı	ıtio					ect) i	for	Y (orr	ect)						
X												Y	(co	rrect)	}											
	a	b	С	d	е	f	g	h	_ i	j	k	1	m	n	0	p	q	r	S	t	u	V	w	х	У	Z
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	0
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
С	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
С	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
0	91	1	1	3		0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
P	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
s	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
X.	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
у	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
z	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0

Weighted Min Edit Distance

•Initialization:

```
D(0,0) = 0
                               1 < i \leq N
D(i,0) = D(i-1,0) + del[x(i)];
                               1 < j \leq M
D(0,j) = D(0,j-1) + ins[y(j)];
```

Recurrence Relation:

```
D(i,j) = \min \begin{cases} D(i-1,j) + del[x(i)] \\ D(i,j-1) + ins[y(j)] \\ D(i-1,j-1) + sub[x(i),y(j)] \end{cases}
•Termination:
```

D(N,M) is distance

Where did the name, dynamic programming, come from?

...The 1950s were not good years for mathematical research. [the] Secretary of Defense ...had a pathological fear and hatred of the word, research...

I decided therefore to use the word, "programming".

I wanted to get across the idea that this was dynamic, this was multistage... I thought, let's ... take a word that has an absolutely precise meaning, namely **dynamic**... it's impossible to use the word, **dynamic**, in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible.

Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to."

Richard Bellman, "Eye of the Hurricane: an autobiography" 1984.

Weighted Minimum Edit Distance

Applications to Computational Biology

Sequence Alignment

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Why sequence alignment?

- Comparing genes or regions from different species
 - to find important regions
 - determine function
 - uncover evolutionary forces
- Assembling fragments to sequence DNA
- Compare individuals to looking for mutations

Alignments in two fields

- In Natural Language Processing
 - We generally talk about distance (minimized)
 - And weights
- In Computational Biology
 - We generally talk about similarity (maximized)
 - And scores

The Needleman-Wunsch Matrix

(Note that the origin is at the upper left.)

A variant of the basic algorithm:

•Maybe it is OK to have an unlimited # of gaps in the beginning and end:

```
-----CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC
GCGAGTTCATCTATCAC--GACCGC--GGTCG------
```

If so, we don't want to penalize gaps at the ends

Different types of overlaps

Applications to Computational Biology