iC-MB100

BISS INTERFACE MASTER

Rev A1.8, Page 1/17

FEATURES

Bi-directional *BiSS* communication with up to 8 sensors Supports SSI protocol for uni-directional data transmission Synchronous sensor data acquisition with cyclic transfer at data rates of up to 10 Mbit/s

Command and slave register operations during cyclic data transfers

Automatic compensation of line delays, measurement and conversion times

Data lengths of up to 64 bits for sensor data, independently scalable for each slave

Data verification by CRC polynomials of up to 8 bits, adjustable per slave and data area

Separate memory banks enable free controller access during BiSS sensor data transfers

Parallel controller interface with an 8, 16 or 32 bit data/address bus services Intel and Motorola devices with separate 8 bit adress bus or combined data and adress bus

Serial controller communication by SPITM-compatible mode

APPLICATIONS

Bi-directional communication in multi-sensor systems Linear and rotary encoders Motor-feedback systems

Copyright © 2012 iC-Haus http://www.ichaus.com

Rev A1.8, Page 2/17

DESCRIPTION

iC-MB100 representates a group of similar *BiSS* master devices based on the same structures and functionalities as are iC-MB101, iC-MB105, ...

iC-MB100 allows microcontroller communication of the Intel 8051 family or Motorola 68HC11 with *BiSS* or SSI devices. An additional SPI interface mode also enables serial communication.

Up to eight *BiSS* devices can be attached to the actuator/sensor side of the device. These are connected to clock lines MA1 to MA8 and data return line SL1 to SL8 using RS422 transceivers. In noise-free environments the *BiSS* devices can also be connected directly.

A maximum of eight *BiSS* slaves is supported, each with their own independently scalable data sections encompassing:

1. Sensor data from 0 to 64 bits (for measurement data, alarms and warnings)

Register data with 128 bytes per slave ID (e.g. for device parameters)

For single cycle data iC-MB100 provides dual RAM memory banks for each slave, enabling flexible access to the microcontroller while new sensor data is being read in. A 64 byte buffer memory supports register transfers.

Sensor data acquisition is started by a microcontroller command or via pin GETSENS. Alternatively, iC-MB100 can also read in new sensor data automatically; the cycle time in this instance can be set as required.

The end of sensor data acquisition and read-in is signalled at pin EOT by a *high* level; if errors occur during transmission pin NER signals a *low*. Errors in communication can be verified by the microcontroller via a status register; a system error message can also be shown in this register, if bi-directional message pin NER is kept *low* externally.

INTERFACE

No.

PIN FUNCTIONS

Name	Function
NWR_E	Write Input, low active (Intel)
	Enable Input, high active (Mo-
	torola)
NRD_RNW	Read Input, low active (Intel)
	Read/Not-Write Select Input
	(Motorola)
NCS	Chip Select Input, low active
ADR0_ALE	Address Bus or
	Address Latch Enable Input or
	SPI Clock Input
ADR <i>i</i>	Address Bus
DB0	Data Bus (bidirectional) or
	SPI Serial Data Input
DB1	Data Bus (bidirectional) or
	SPI Serial Data Output
DB <i>i</i>	Data Bus (bidirectional)
DBIN	Data Bus Input

PIN FUNCTIONS

No.	Name	Function
	DBOUT	Data Bus Output
	INT_NMOT	Mode Select
		(Intel = 1, Motorola = 0)
	CFGDB	Data Bus Width Select Input
	CFGADR	Address Bus Select Input
	CFGSPI	Serial/Parallel Mode Select Input
		(serial SPI = 1, parallel = 0)
	EOT	End-Of-Transmission Output
	GETSENS	Sensor Data Request Input
	NER	Error Message Input/Output,
		low active
	MA <i>i</i>	BiSS Clock Line Output
	SL <i>i</i>	BiSS Data Line Input
	NRES	Reset Input, low active
	CLK	External Clock Input
	CLKOUT	Clock Output

Rev A1.8, Page 3/17

FILE LIST

biss.vhd includes packege biss_synth for synthesis and biss_sim for simulation

lpm pack.vhd used in biss lpm

mb_vcomponents.vhd component declaration of mb*
mbz101.vhd Control Communication
mb1.vhd State machine for master

mbz201.vhd CRC calculation for single cycle data mb2.vhd State machine for Single cycle data

mb3.vhd Interface MA and SL

 $\begin{array}{lll} \text{mbz402.vhd} & \text{SPI interface} \\ \text{mbz401.vhd} & \text{μC interface logic} \\ \text{mb4.vhd} & \text{μC interface} \\ \text{mb5.vhd} & \text{Oscillator} \end{array}$

mb6.vhd Power supply reset

mb7.vhd Config RAM

mb8.vhd Config Single cycle data mb9.vhd RAM for Singe cycle data mba.vhd RAM for RegisterData

mbb.vhd Channel select
mbc.vhd Interface divers
mb0.vhd configurable topcell

mb101.vhd application specific topcell

The following files includes description for RAMs. Only one of them should be used, depending on FPGA device and manufacturer.

biss_lpm.vhd use for Altera ACEX1 biss altera.vhd use for Altera CYCLONE

biss xilinx.vhd use for Xilinx

biss_ProASIC3E.vhd use for Actel ProASIC3E

biss_structure.vhd use for the rest

Example TCL-scripts for project setup and compilation.

mb101.quartus.tcl for use with Altera Quartus mb101.ise.tcl for use with Xilinx Ise

Rev A1.8, Page 4/17

CONFIGURATION

Generics page 4

BusWidth: Data bus width
Slaves: Slave count
Channels: Channel count

AddressBus: Adress bus configuration
UseLatch: Latch configuration
UseTristate: Bus tristate configuration

NumRegs: Register count
UseSPI: Use serial interface
UseARes: RAM configuration

BankCount: Bank count

RamWidth RAM data bus width UseFpgaRam FPGA RAM selector

ClkdivSensLen: Clock counter sensor data frequency ClkdivAgsLen: Clock counter automatic sensor data

request

ClkdivRegLen: Clock counter register data frequency BusyCountLen: Clock counter supervising process

time

UseReg245: Enable test register 245

Revision: Revision
Version: Device identifier

GENERICS

BusWidth, RamWidth	
8, 8	Data bus width 8 Bit (DB7DB0)
16, 16	Data bus width 16 Bit (DB15DB0)
16, 8	CFGDB = 0: Data bus width 16 Bit CFGDB = 1: Data bus width 8 Bit
32, 32	Data bus width 32 Bit (DB31DB0)
32, 16	CFGDB = 0: Data bus width 32 Bit CFGDB = 1: Data bus width 16 Bit
32, 8	CFGDB = 0: Data bus width 32 Bit CFGDB = 1 und DB16 = 0: Data bus width 16 Bit CFGDB = 1 und DB16 = 1: Data bus width 8 Bit

BusWidth, RamWidth		
8, 8		Data bus width 8 Bit
16, 16		Data bus width 16 Bit
16, 8	CFGDB = 0	Data bus width 16 Bit
16, 8	CFGDB = 1	Data bus width 8 Bit
32, 32		Data bus width 32 Bit
32, 16	CFGDB = 0	Data bus width 32 Bit
32, 16	CFGDB = 1	Data bus width 16 Bit
32, 8	CFGDB = 0	Data bus width 32 Bit
32, 8	CFGDB = 1 und DB16 = 0	Data bus width 16 Bit
32, 8	CFGDB = 1 und DB16 = 1	Data bus width 8 Bit

Slaves	
1	Slave count 64 Bit single cycle data RAM for sensor resp. actuator data (Adr. 0x000x7F) and 16 Bit configuration RAM (Adr. 0xC00xDF)

Channels	
1 8	BiSS channel count

AddressBus	
0	Use address latch No address ports available
1	Address latch and address ports enabled CFGADR = 0: Use address ports CFGADR = 1: Use address latch
2	Use address ports No address latch available

UseLatch	
0	Use synchronous RAMs (flip-flops)
1	Use asynchronous RAMs (latches)

UseTristate	
0	Separate read/write data bus
1	Single bidirectional data bus

Rev A1.8, Page 5/17

NumRegs	
1 64	Byte count for register communication

UseSPI	
0	Do not use SPI interface
1	Use SPI interface (requires RamWidth = 8)

UseARes	
0	Use RAMs without asynchronous reset
1	Use RAMs with asynchronous reset

BankCount	
1	Use one bank for single cycle data
2	Use two banks for single cycle data

UseFpgaRam					
0	No RAM				
1	Use single-port RAM				
2 Use dual-port RAM					

ClkdivSensLen				
0	No clock counter for sensor data frequency			
1	Factor: 2 ¹ 2 ^{ClkdivSensLen+1}			
4				
5	Factor: (1 or 10) * 2 ¹ 2 ⁵			

ClkdivAgsLen				
0	No clock counter for a fixed cycle time at automatic data request			
1	Factor: 20 * 2 ¹ 2 ^{ClkdivAgsLen}			
/				
8	Factor: (20 or 625) * 2 ¹ 2 ⁷			

ClkdivRegLen				
0	No clock counter for register data frequency			
1	Factor: 2 ¹ 2 ^{ClkdivRegLen+1}			
7				

BusyCountLen				
0	No counter for register data process time supervision			
1 12	Counter length: 2 ^{BusyCountLen}			

UseReg245	
0	No test register at addresse 245
1	Test register at addresse 245 enabled

Revision	
0	First release
1 255	Increment by one with each revision

Version				
64	Device identifier MB100			
65 127	MB101MB163			

iC-MB100

BISS INTERFACE MASTER

Rev A1.8, Page 6/17

PROGRAMMING

Register Layo	out, Overview Page 7	Channel Conf SLAVELOC: BISSMODx:	Figuration
Sensor and A	ctuator Data Page 9	SELSSIx:	BiSS or SSI mode selector
SCDATAx:	Single-cycle data (sensor resp. actuator data, 64 Bit per slave, 2 banks)	ACTnSENS:	Sensor or actuator data selector (list)
			ation Seite 10
Register Data	ı Page 9	EOT:	Data transmission completed
RDATAx:	Register data (64 Byte)	REGEND: nREGERR:	Register data transmission completed Error in register data transmission
Slave Configu	ıration Page 14	nSCDERR: nWDERR:	Error in single cycle data-transmission
SCDLENx:	Single cycle data length	nERR:	Watch dog error Error
ENSCDx:	Enable single cycle data	SVALIDx:	Single cycle data valid
GRAYSx:	Enable gray/binary conversion for	REGBYTES:	Number of valid register data transmit-
	single-cycle data		ted in case of error
SCRCPOLYx:	Polynomial for single cycle data CRC	CDS:	CDS of selected channel
INVCRCSx:	check	CDMTO:	Control data timeout met
INVERCSX.	Inversion of single cycle data CRC	In atmostice D	Dana 40
Register Com	munication Configuration Page 14		egister Page 10
register con	midinoation comigaration rage 14		
DEC ADD.	_	INSTR:	Instruction
REGADR:	Register address	AGS:	AutoGetSens
WNR:	Register address Read/write selector	AGS: INIT:	AutoGetSens Initialise
WNR: REGNUM:	Register address Read/write selector Register data count	AGS: INIT: SWBANK:	AutoGetSens Initialise Switch RAM banks
WNR:	Register address Read/write selector	AGS: INIT: SWBANK: HOLDBANK:	AutoGetSens Initialise Switch RAM banks Inhibit RAM bank switching
WNR: REGNUM: CHSEL:	Register address Read/write selector Register data count Channel selector	AGS: INIT: SWBANK:	AutoGetSens Initialise Switch RAM banks Inhibit RAM bank switching Data transmission interrupt
WNR: REGNUM: CHSEL: SLAVEID:	Register address Read/write selector Register data count Channel selector Slave selector	AGS: INIT: SWBANK: HOLDBANK: BREAK:	AutoGetSens Initialise Switch RAM banks Inhibit RAM bank switching Data transmission interrupt Master line control (selected channel)
WNR: REGNUM: CHSEL: SLAVEID: REGVERS: CTS:	Register address Read/write selector Register data count Channel selector Slave selector BiSS model A/B or C selector Register transmission or instruction selector	AGS: INIT: SWBANK: HOLDBANK: BREAK: MAFS:	AutoGetSens Initialise Switch RAM banks Inhibit RAM bank switching Data transmission interrupt
WNR: REGNUM: CHSEL: SLAVEID: REGVERS: CTS: HOLDCDM:	Register address Read/write selector Register data count Channel selector Slave selector BiSS model A/B or C selector Register transmission or instruction selector Hold CDM (control data master)	AGS: INIT: SWBANK: HOLDBANK: BREAK: MAFS: MAVS:	AutoGetSens Initialise Switch RAM banks Inhibit RAM bank switching Data transmission interrupt Master line control (selected channel) Master line control (deselected channel) Master line control (deselected channel)
WNR: REGNUM: CHSEL: SLAVEID: REGVERS: CTS: HOLDCDM: EN_MO:	Register address Read/write selector Register data count Channel selector Slave selector BiSS model A/B or C selector Register transmission or instruction selector Hold CDM (control data master) Enable MO output	AGS: INIT: SWBANK: HOLDBANK: BREAK: MAFS: MAVS:	AutoGetSens Initialise Switch RAM banks Inhibit RAM bank switching Data transmission interrupt Master line control (selected channel) Master line control (deselected channel) Master line control (deselected channel) Master line control (deselected channel)
WNR: REGNUM: CHSEL: SLAVEID: REGVERS: CTS: HOLDCDM:	Register address Read/write selector Register data count Channel selector Slave selector BiSS model A/B or C selector Register transmission or instruction selector Hold CDM (control data master)	AGS: INIT: SWBANK: HOLDBANK: BREAK: MAFS: MAFS: MAFO:	AutoGetSens Initialise Switch RAM banks Inhibit RAM bank switching Data transmission interrupt Master line control (selected channel) Master line control (deselected channel) Master line control (deselected channel)
WNR: REGNUM: CHSEL: SLAVEID: REGVERS: CTS: HOLDCDM: EN_MO: MO_BUSY:	Register address Read/write selector Register data count Channel selector Slave selector BiSS model A/B or C selector Register transmission or instruction selector Hold CDM (control data master) Enable MO output	AGS: INIT: SWBANK: HOLDBANK: BREAK: MAFS: MAVS: MAFO: MAVO:	AutoGetSens Initialise Switch RAM banks Inhibit RAM bank switching Data transmission interrupt Master line control (selected channel) Master line control (deselected channel) Master line control (deselected channel) Master line control (deselected channel)
WNR: REGNUM: CHSEL: SLAVEID: REGVERS: CTS: HOLDCDM: EN_MO: MO_BUSY: Master Config FREQ:	Register address Read/write selector Register data count Channel selector Slave selector BiSS model A/B or C selector Register transmission or instruction selector Hold CDM (control data master) Enable MO output Parametrized processing delay guration Seite 12 Frequency division	AGS: INIT: SWBANK: HOLDBANK: BREAK: MAFS: MAVS: MAFO: MAVO: Status Inform SLx:	AutoGetSens Initialise Switch RAM banks Inhibit RAM bank switching Data transmission interrupt Master line control (selected channel) Master line control (selected channel) Master line control (deselected channel) Master line control (deselected channel) Master line control (deselected channel) Master line control (deselected channel) Ation 2 Page 15 Current SL-line level
WNR: REGNUM: CHSEL: SLAVEID: REGVERS: CTS: HOLDCDM: EN_MO: MO_BUSY: Master Config FREQ: FRGAGS:	Register address Read/write selector Register data count Channel selector Slave selector BiSS model A/B or C selector Register transmission or instruction selector Hold CDM (control data master) Enable MO output Parametrized processing delay guration	AGS: INIT: SWBANK: HOLDBANK: BREAK: MAFS: MAVS: MAFO: MAVO: Status Inform SLx: CDSx:	AutoGetSens Initialise Switch RAM banks Inhibit RAM bank switching Data transmission interrupt Master line control (selected channel) Master line control (deselected channel) Master line control (deselected channel) Ation 2
WNR: REGNUM: CHSEL: SLAVEID: REGVERS: CTS: HOLDCDM: EN_MO: MO_BUSY: Master Config FREQ: FRGAGS: REVISION:	Register address Read/write selector Register data count Channel selector Slave selector BiSS model A/B or C selector Register transmission or instruction selector Hold CDM (control data master) Enable MO output Parametrized processing delay guration Seite 12 Frequency division AutoGetSens Frequency division Revision	AGS: INIT: SWBANK: HOLDBANK: BREAK: MAFS: MAFO: MAVO: Status Inform SLx: CDSx: SWBANK-	AutoGetSens Initialise Switch RAM banks Inhibit RAM bank switching Data transmission interrupt Master line control (selected channel) Master line control (deselected channel) Master line control (deselected channel) Ation 2
WNR: REGNUM: CHSEL: SLAVEID: REGVERS: CTS: HOLDCDM: EN_MO: MO_BUSY: Master Config FREQ: FRGAGS:	Register address Read/write selector Register data count Channel selector Slave selector BiSS model A/B or C selector Register transmission or instruction selector Hold CDM (control data master) Enable MO output Parametrized processing delay guration	AGS: INIT: SWBANK: HOLDBANK: BREAK: MAFS: MAVS: MAFO: MAVO: Status Inform SLx: CDSx:	AutoGetSens Initialise Switch RAM banks Inhibit RAM bank switching Data transmission interrupt Master line control (selected channel) Master line control (deselected channel) Master line control (deselected channel) Ation 2

Rev A1.8, Page 7/17

REGISTER LAYOUT, OVERVIEW

OVERV	'IEW								
Addr	Bit 7								
Sensor	r and Actuator Data								
0x00	SCDATA1(7:0)								
0x01 0x07		SCDATA1(63:8)							
0x08 0x3F			S	CDATA2(63:0) .	. SCDATA8(63:	0)			
0x40 0x7F				Rese	erved				
Registe	r Data								
0x80				RDATA	A1(7:0)				
0x81 0xBF				RDATA2(7:0) .	. RDATA64(7:0)				
Slave C	onfiguration								
0xC0	GRAYS1	ENSCD1			SCDLE	EN1(5:0)			
0xC1	INVCRCS1			Ş	SCRCPOLY1(7:	1)			
0xC4 0xDF	CFGSLAVE2(15:0) CFGSLAVE8(15:0)								
Registe	r Communica	tion Configura	ation						
0xE0				Rese	rviert				
0xE1				Rese	erviert				
0xE2	WNR				REGADR(6:0)				
0xE3	Reserved	Reserved			REGN	UM(5:0)			
0xE4				CHSE	EL(8:1)				
0xE5	CTS	REGVERS		SLAVEID(2:0)		Reserved	EnMO	HOLDCDM	
Master	Configuration	1							
0xE6		FREQR(2:0)				FREQ(4:0)			
0xE7				Rese	erved				
0xE8				FREQA	GS(7:0)				
0xE9				MO_BL	JSY(7:0)				
0xEA	REVISION(7:0)								
0xEB				VERSI	ON(7:0)				
Channe	I Configuration	on							
0xEC				SLAVEL	OC(8:1)				
0xED	SELSSI4	BISSMOD4	SELSSI3	BISSMOD3	SELSSI2	BISSMOD2	SELSSI1	BISSMOD1	
0xEE	SELSSI8	BISSMOD8	SELSSI7	BISSMOD7	SELSSI6	BISSMOD6	SELSSI5	BISSMOD5	
0xEF	ACTnSENS(8:1)								

Rev A1.8, Page 8/17

OVERV	IEW								
Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Status I	Status Information								
0xF0	nERR	nWDERR	'1'	nSCDERR	nREGERR	REGEND	'1'	EOT	
0xF1	SVALID4	'0'	SVALID3	'0'	SVALID2	'0'	SVALID1	'0'	
0xF2	SVALID8	'0'	SVALID7	'0'	SVALID6	'0'	SVALID5	'0'	
0xF3	CDMTO	CDS			REGBY	TES(5:0)			
Instruct	ion Register								
0xF4	BREAK	HOLDBANK	SWBANK	INIT		INSTR(2:0)		AGS	
0xF5	MAVO	MAFO	MAVS	MAFS	Reserved	Reserved	Reserved	Reserved	
0xF6				Rese	erved				
0xF7				Rese	erved				
Status I	nformation 2								
0xF8	CDS4	SL4	CDS3	SL3	CDS2	SL2	CDS1	SL1	
0xF9	CDS8	SL8	CDS7	SL7	CDS6	SL6	CDS5	SL5	
0xFA				Rese	erved				
0xFB	Reserved					SWBANK- FAILS			
Reserve	ed								
0xFC 0xFF				Rese	erved				

Table 1: Register layout

Reserved registers

Reserved registers need to be written with 0x00 and may result undefined values due to GENERIC settings.

Rev A1.8, Page 9/17

SENSOR AND ACTUATOR DATA

Adr	Content
0x00	SCDATA 1(7:0)
0x01	SCDATA 1(15:8)
0x02	SCDATA 1(23:16)
0x03	SCDATA 1(31:24)
0x04	SCDATA 1(39:32)
0x05	SCDATA 1(47:40)
0x06	SCDATA 1(55:48)
0x07	SCDATA 1(63:56)
0x080x0F	SCDATA 2(63:0)
0x100x17	SCDATA 3(63:0)
0x180x1F	SCDATA 4(63:0)
0x200x27	SCDATA 5(63:0)
0x280x2F	SCDATA 6(63:0)
0x300x37	SCDATA 7(63:0)
0x380x3F	SCDATA 8(63:0)

Table 2: Adress mapping of actuator/sensor data

REGISTER DATA

Adr	Content
0x800xBF	RDATA: Register data (64 bytes, bidirectional)

Table 3: Adress mapping register data

GENERIC configuration for register data

With the IP GENERICs the size of the register data can be configured (NumRegs):

- Minimum 1 byte register data
- Maximum 64 byte register data

Not defined register data addresses may not be programmed/written into and may result not defined return values when read.

Rev A1.8, Page 10/17

STATUS INFORMATION 1

EOT	Addr. 0xF0; bit 0	R - 1
0	Data transmission active	
1	Data transmission finished	

REGEND	Addr. 0xF0; bit 2	R - 0
0	No valid register-data available	
1	Register-data transmission completed	

nREGERR	Addr. 0xF0; bit 3	R - 1
0	Error in last register data transmission	
1	No error in last register data transmission	

nSCDERR	Addr. 0xF0; bit 4	R - 1
0	Error in last single cycle data transmission	
1	No error in last single cycle data transmiss	sion

nWDERR	Addr. 0xF0; b	oit 6	R - 1
0	Watchdog error		
1	No watchdog error		

nERR	Addr. 0xF0;	bit 7	R - 1
0	Error		
1	No error		

SVALID1	Addr. 0xF1; bit 1	R - 1
SVALID2	Addr. 0xF1; bit 3	R - 1
SVALID3	Addr. 0xF1; bit 5	R - 1
SVALID4	Addr. 0xF1; bit 7	R - 1
SVALID5	Addr. 0xF2; bit 1	R - 1
SVALID6	Addr. 0xF2; bit 3	R - 1
SVALID7	Addr. 0xF2; bit 5	R - 1
SVALID8	Addr. 0xF2; bit 7	R - 1
0	Single cycle data invalid	
1	Single cycle data valid	

CDS	Addr. 0xF3; bit 6	R - 1
0	CDS of the CHSEL selected channel = 0	
1	CDS of the CHSEL selected channel = 1	

CDMTO	Addr. 0xF3; bit 6	R - 1
0	Control data timeout not served	
1	Controldata timeout served	

INSTRUCTION REGISTER

Data transmission can be started by programming the instruction register, automatically with constant cycle time or with the external pin GETSENS. The CDM bit (end of cycle low or high) is generated by the following table or generated automatically within a running register communication.

INSTR	Addr. 0xF4; bit 3:1 R/W - 000
010	CDM=0
001	CDM=1
011	CDM=not(REG)
000, 101	CDM=1 Condition: CDMTIMEOUT=1
100	Register communication Condition: CDMTIMEOUT=1 Use to start one single cycle data cycle incl. register communication
110	Register communication Condition: CDMTIMEOUT=1
111	Register communication (reduced protocoll) Condition: CDMTIMEOUT=1

With AGS=0 the master starts the data transmission after finishing writing the instruction register (rising edge of NWR). A watchdog error will be generated if the SL line is low, TIMEOUTSENS has not exceeded.

The error can be inhibited by setting FREQAGS to AGSMIN.

AGS	Addr. 0xF4; bit 0	R/W - 0
0	No automatic data transmission	
1	Start of data transmission after TIMEO Condition: FREQAGS=AGSMIN	UTSENS
1	Start of data transmission triggered by Condition: FREQAGS=AGSINFINITE	pin
1	Start of data transmission after timeout	t

INIT	Addr. 0xF4; bit 4	R/W - 0
0	No changes on the data channel	
1	Initialize data channel	

BREAK = 1 aborts the active data transmission. Additionally all status information will be reset.

BREAK	Addr. 0xF4; bit 9	R/W - 0
0	No change	
1	Abort data transmission nSCDERR, nREGER nWDERR = 1 REGEND = 0	

Rev A1.8, Page 11/17

HOLDBANK	Addr. 0xF4; bit 6	R/W - 0
0	No Bank switching lock permitted	
1	Bank switching lock permitted	

SWBANK	Addr. 0xF4; bit 5	R/W - 0
0	RAM banks are not switched	
1	RAM banke are switched	

MAFS	Addr. 0xF5; bit 4	R/W
0	Controlling selected(CHSEL) MA clock line MA signal	: using
1	Controlling selected(CHSEL) MA clock line MAVS level	: using

MAVS	Addr. 0xF5; bit 5	R/W
0	Low definition of selected(CHSEL) MA clock lines	
1	High definition of selected(CHSEL) MA	clock lines

MAFO	Addr. 0xF5; bit 6	R/W
0	Controlling unselected(CHSEL) MA clock li using MA signal	ne:
1	Controlling unselected(CHSEL) MA clock li using MAVS level	ne:

MAVO	Addr. 0xF5; bit 7	R/W
0	Low definition of unselected(CHSEL) MA clo	ock lines
1	High definition of unselected(CHSEL) MA clock lines	

Rev A1.8, Page 12/17

CONFIGURATION MASTER

FREQ	Addr. 0xE6; bit 4:0	R/W
0x00 0x0F	f _{CLK} / (2 * (FREQ(3:0)+1))	
0x10	not permissable	
0x11 0x1F	f _{CLK} / (20 * (FREQ(3:0)+1))	

Table 4: Sensor data frequency

FREQAGS	Addr. 0xE8; bit 7:0	R/W
0x00 0x7B	f _{CLK} / (20 * (FREQAGS(6:0)+1))	
0x7C	AGSMIN	
0x7D 0x7F	AGSINFINITE	
0x80 0xFF	f _{CLK} / (625 * (FREQAGS(6:0)+1))	

Table 6: AutoGetSens frequency

MO_BUSY	Addr. 0xE9; bit 7:0	R/W
0x00	no start bit delay	
0x01 0xFF	Start bit delay (count of MA clocks)	

Table 7: Start bit delay

FREQR	Addr. 0xE6; bit 7:5	R/W
0	FreqSens / 2	
1	FreqSens / 4	
2	FreqSens / 8	
3	FreqSens / 16	
4	FreqSens / 32	
5	FreqSens / 64	
6	FreqSens / 128	
7	FreqSens / 256	

Table 5: Register data frequency

REVISION	Addr. 0xEA;	bit 7:0	R
0x00	First revision		
0x01 0xFF	Revision number		

Table 8: Redesign ID

VERSION	Addr. 0xEB;	bit 7:0	F	γ
0x40 0x4F	MB100 MB163			
0x83	iC-MB3 TSSOP24			

Table 9: Device ID

Rev A1.8, Page 13/17

CONFIGURATION CHANNEL

SLAVELOC	Addr. 0xEC; bit 7	:0 R/W	
	0	1	
Bit 0	not permissable	Slaves 1 on channel 1	
Bit 1	Slave 2 on channel 1	Slaves 2 on channel 2	
Bit 2	Slave 3 on the same channel as slave 2	slave 3 on the next channel	
Bit 3	Slave 4 on the same channel as slave 3	slave 4 on the next channel	
Bit 4	Slave 5 on the same channel as slave 4	slave 5 on the next channel	
Bit 5	Slave 6 on the same channel as slave 5	slave 6 on the next channel	
Bit 6	Slave 7 on the same channel as slave 6	slave 7 on the next channel	
Bit 7	Slave 8 on the same channel as slave 7	slave 8 on the next channel	

BISSMOD1	Addr. 0xED; bit 0	R/W
BISSMOD2	Addr. 0xED; bit 2	R/W
BISSMOD3	Addr. 0xED; bit 4	R/W
BISSMOD4	Addr. 0xED; bit 6	R/W
BISSMOD5	Addr. 0xEE; bit 0	R/W
BISSMOD6	Addr. 0xEE; bit 2	R/W
BISSMOD7	Addr. 0xEE; bit 4	R/W
BISSMOD8	Addr. 0xEE; bit 6	R/W
0	BiSS model A/B on channel 1 8	
1	BiSS model C on channel 1 8	

051 0014	Add 0.FD	1:1.4.0	DAM
SELSSI1	Addr. 0xED;	DIT 1:0	R/W
SELSSI2	Addr. 0xED;	bit 3:2	R/W
SELSSI3	Addr. 0xED;	bit 5:4	R/W
SELSSI4	Addr. 0xED;	bit 7:6	R/W
SELSSI5	Addr. 0xEE;	bit 1:0	R/W
SELSSI6	Addr. 0xEE;	bit 3:2	R/W
SELSSI7	Addr. 0xEE;	bit 5:4	R/W
SELSSI8	Addr. 0xEE;	bit 7:6	R/W
0	BiSS on channel 1.	8	
1	SSI on channel 1	8	

ACTNSENS	1 Addr. 0xEF;	bit 0	R/W
ACTNSENS	2 Addr. 0xEF;	bit 1	R/W
ACTNSENS	3 Addr. 0xEF;	bit 2	R/W
ACTNSENS	4 Addr. 0xEF;	bit 3	R/W
ACTNSENS	5 Addr. 0xEF;	bit 4	R/W
ACTNSENS	6 Addr. 0xEF;	bit 5	R/W
ACTNSENS	7 Addr. 0xEF;	bit 6	R/W
ACTNSENS	8 Addr. 0xEF;	bit 7	R/W
0	Sensor data slave 1	8	
1	Actuator data slave	1 8	

Rev A1.8, Page 14/17

CONFIGURATION SLAVE

Single cycle data configuration

ENSCD1	Addr. 0xC0; bit 6	R/W
ENSCD2	Addr. 0xC4; bit 6	R/W
ENSCD3	Addr. 0xC8; bit 6	R/W
ENSCD4	Addr. 0xCC; bit 6	R/W
ENSCD5	Addr. 0xD0; bit 6	R/W
ENSCD6	Addr. 0xD4; bit 6	R/W
ENSCD7	Addr. 0xD8; bit 6	R/W
ENSCD8	Addr. 0xDC; bit 6	R/W
0	Singlecycledaten not available	
1	Singlecycledaten available	

SCDLEN1	Addr. 0xC0; bit 5:0	R/W
SCDLEN2	Addr. 0xC4; bit 5:0	R/W
SCDLEN3	Addr. 0xC8; bit 5:0	R/W
SCDLEN4	Addr. 0xCC; bit 5:0	R/W
SCDLEN5	Addr. 0xD0; bit 5:0	R/W
SCDLEN6	Addr. 0xD4; bit 5:0	R/W
SCDLEN7	Addr. 0xD8; bit 5:0	R/W
SCDLEN8	Addr. 0xDC; bit 5:0	R/W
0x00 0x3F	Single cycle data length = SCDLENx(5:0)+1	

The length of data minus 1 needs to be set, e.g. for 64 data bits you need to enter 63.

GRAYS1	Addr. 0xC0; bit 7	R/W
GRAYS2	Addr. 0xC4; bit 7	R/W
GRAYS3	Addr. 0xC8; bit 7	R/W
GRAYS4	Addr. 0xCC; bit 7	R/W
GRAYS5	Addr. 0xD0; bit 7	R/W
GRAYS6	Addr. 0xD4; bit 7	R/W
GRAYS7	Addr. 0xD8; bit 7	R/W
GRAYS8	Addr. 0xDC; bit 7	R/W
0	Single cycle data binary	
1	Single cycle data gray	

SCRCPOLY	1 Addr. 0xC1; bit 6:0	R/W
SCRCPOLY	2 Addr. 0xC5; bit 6:0	R/W
SCRCPOLY	3 Addr. 0xC9; bit 6:0	R/W
SCRCPOLY	4 Addr. 0xCD; bit 6:0	R/W
SCRCPOLY	5 Addr. 0xD1; bit 6:0	R/W
SCRCPOLY	6 Addr. 0xD5; bit 6:0	R/W
SCRCPOLY	7 Addr. 0xD9; bit 6:0	R/W
SCRCPOLY8 Addr. 0xDD; bit 6:0		R/W
0x00	CRC for single cycle data not present	
0x01 0x7F	CRC polynome for single cycle data = SCRCPOLYx(6:0) = CRC polynome(7:1)	
	Range of CRC polynomes = 0x01, 0x03, 0x05, 0x07, 0x090xFF (only odd polynomes possible)	

To disable CRC verification on Single Cycle Data transfer, set SCRCPOLYx to 0x00 and extend the SCD length by the expected count of CRC bits. As the least significant bit of the CRC polynomes is always 1, there is no need to store this in the polynome register. With this a maximum polynome length if 8 bit is possible. If the maximum 8 bit polynome length is not required, the used polynome (without the lsb bit) is stored right aligned and leading bits are filled with 0.

Example: the CRC polynome $0x43 = 100\ 0011b$ is stored as $0010\ 0001b$.

INVCRCS1	Addr. 0xC1;	bit 7	R/W
INVCRCS2	Addr. 0xC5;	bit 7	R/W
INVCRCS3	Addr. 0xC9;	bit 7	R/W
INVCRCS4	Addr. 0xCD;	bit 7	R/W
INVCRCS5	Addr. 0xD1;	bit 7	R/W
INVCRCS6	Addr. 0xD5;	bit 7	R/W
INVCRCS7	Addr. 0xD9;	bit 7	R/W
INVCRCS8	Addr. 0xDD;	bit 7	R/W
0	CRC for single cycle	data not inverted	
1	CRC for single cycle	data inverted	

CONFIGURATION REGISTER COMMUNICATION

REGADR	Addr. 0xE2; bit 6:0	R/W
0x00 0x7F	First register adress to access	

REGNUM	Addr. 0xE3; bit 5:0	R/W
0x00	Register count = 1	
0x01 0x3F	Register count = REGNUM(5:0)+1	

WNR (WriteNotRe	Addr. 0xE2;	bit 7	R/W
0	Read register data		
1	Write register data		

Rev A1.8, Page 15/17

CHSEL	Addr. 0xE4; bit 7:0	R/W
0x00	With one existing channel this channel 1 is selected.	
0x01	Channel = 1	
0x02	Channel = 2	
0x04	Channel = 3	
0x08	Channel = 4	
0x10	Channel = 5	
0x20	Channel = 6	
0x40	Channel = 7	
0x80	Channel = 8	

SLAVEID	Addr. 0xE5;	bit 5:3	R/W
0b000	SlaveID=0		
0b001	SlaveID = 1		
0b010	SlaveID=2		
0b011	SlaveID=3		
0b100	SlaveID=4		
0b101	SlaveID=5		
0b110	SlaveID=6		
0b111	SlaveID=7		

REGVERS	Addr. 0xE5; bit 6	R/W
0	Register communication model A/B	
1	Register communication model C	

CTS	Addr. 0xE5; bit 7	R/W
0	Instruction	
1	Register communication	

HOLDCDM	Addr. 0xE5; bit 0	R/W
0	Clock line high at end of cycle	
1	Clock line constant at end of cycle	

EN_MO	Addr. 0xE5; bit 1	R/W
0	MO to low	
1	Parameterized processing time by master on MO signal active (length: MO_BUSY).	

MO_BUSY	Addr. 0xE9; bit 7:0	R/W
0x00 0xFF	Count of MA clocks as the parameterized processing time by master on MO signal.	
	Premise: EN_MO = 1	

STATUS INFORMATION 2

SL1 Signal level line	Addr. 0xF8;	bit 0	R - 1
SL2 Signal level line	Addr. 0xF8;	bit 2	R - 1
SL3 Signal level line	Addr. 0xF8;	bit 4	R - 1
SL4 Signal level line	Addr. 0xF8;	bit 6	R - 1
SL5 Signal level line	Addr. 0xF9;	bit 0	R - 1
SL6 Signal level line	Addr. 0xF9;	bit 2	R - 1
SL7 Signal level line	Addr. 0xF9;	bit 4	R - 1
SL8 Signal level line	Addr. 0xF9;	bit 6	R - 1
0	SL line level low		
1	SL line level high		

CDS1 Control Date Slave		F8; bit 1	R - 1
CDS2 Control Date Slave		F8; bit 3	R - 1
CDS3 Control Date Slave		F8; bit 5	R - 1
CDS4 Control Date Slave		F8; bit 7	R - 1
CDS5 Control Date Slave		F9; bit 1	R - 1
CDS6 Control Date		F9; bit 3	R - 1
CDS7 Control Date		F9; bit 5	R - 1
CDS8 Control Dat Slave		F9; bit 7	R - 1
0	CDS = 0		
1	CDS = 1		

SWBANKF Bank switch single cycl not success	hing e data	R - 1
0	Bank switching (SCD) successful	
1	Bank switching (SCD) not successful	

Rev A1.8, Page 16/17

FUNCTION DESCRIPTION BISS

BiSS Frame

BiSS uses in the point-to-point configuration a clock line (MA) from the master to the slave and a data line (SL) from the slave to the master. A device contain mave multiple slaves wherat the data input (SLI) of the last slave is set to low and the slaves are daisychained (SLO \rightarrow SLI) and the data output (SLO) of the first slave is directed to the master. A data line from the master to the slave is not present,

At the end of the cycle the master sends the CDM inverted on the MA clock line. After detecting the slaves timeout with SLO=1 the master changes the MA clock line state to the high. If the BiSS frame has not been clocked out finally, e.g. for a faster configuration phase and higher control data transmission rates, the HOLD-CDM needs to be set to "1" to keep the clock line constant until the next cycle starts.

The difference is explained by the figures 1 und 2.

Figure 1: BiSS frame in Point-to-Point configuration (EnMO = 0, HOLDCDM = 0)

BiSS C provides the additional bus configuration with the data output line (MO) from the master to the slaves. With the EnMO = 1 the master emulates a slave without sensor data at the MO line. The parameterized processing time for sensor data that is the "start bit delay" is configured by the MO_BUSY parameter. After deactivating EnMO (only permitted to update while idle state) an INIT needs to be executed.

Figure 2: BiSS frame in bus configuration (EnMO = 1, HOLDCDM = 1)

Rev A1.8, Page 17/17

2-wire / BiSS B register communication

In 2-wire / BiSS B the register communication is started by a timeing condition and a handshake at the begin-

ning of the cycle. Alternatively a selection can be done at the cycle start with the MO line. With EnMO = 1 the slave ID "0" stays unused (see figure 3.

Figure 3: 2-wire / BiSS-B register access

FUNCTION DESCRIPTION SSI

Figure 4: SSI Frame

Processing of the SL1 signals

In the SSI mode of the BiSS interface master the SL1 values are sampled with the rising edge on MA1.

Up to one MA1 period of total delay is permitted for the sensors response on SL1. This delay may be caused by in sensor processing time and transmission line delay.

iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by email

iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these materials.

The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.

iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

Copying - even as an excerpt - is only permitted with iC-Haus' approval in writing and precise reference to source.