Fuente: Libro Lenguajes Formales y Teoría de Autómatas Giró, Vazquez, Meloni, Constable

Autómatas con Pila asociados a una GIC Analizadores Sintácticos

Dada una gramática independiente del contexto definida como $G = (\Sigma_T, \Sigma_N, S, P)$ el autómata con pila no determinista de un *Analizar Sintáctico Descendente* (ASD) se define como:

$$AP = (\Sigma_T, \Sigma_T \cup \Sigma_N \cup \{\#\}, \{p, q, r\}, p, \#, \{r\}, f)$$

El grafo del AP correspondiente a un *Analizar Sintáctico Descendente* es un Top - Down Parser que puede representarse:

Analizador Sintáctico Descendente para GIC.

Además, el Analizar Sintáctico Ascendente (ASA) se define como:

$$AP = (\Sigma_T, \Sigma_T \cup \Sigma_N \cup \{\#\}, \{p, q\}, p, \#, \{q\}, f)$$

El grafo del AP correspondiente a un *Analizar Sintáctico Ascendente* es un Bottom – Up Parser que puede representarse:

 $\lambda, \alpha / A$ (para toda regla $A:=\alpha$) $a, b / ba \text{ (para todo símbolo } a \in \Sigma_T)$ $\lambda, \#S / \#$ q

Analizador Sintáctico Ascendente para GIC.

Fuente: Libro Lenguajes Formales y Teoría de Autómatas Giró, Vazquez, Meloni, Constable

Ejercicios propuestos de Analizadores Sintácticos

Ejercicio 8

Dada la siguiente gramática formal:

$$G_1 = ({a, b, c}, {S, M, N}, S, P_1) con$$

 $P_1 = {S:=cMc, M:=aMa | bNb | c, N:=a | b | c}$

Se pide:

a) Construir un Analizador Sintáctico Descendente (grafo) y verificar el funcionamiento del mismo con la palabra $\alpha = cabcbac$. Usar un árbol de descripciones instantáneas y la tabla operativa.

Solución:

a) Construcción el ASD (AP):

Como 1er paso se carga el axioma de la gramática en la Pila:

Luego se cargan las reglas de producción una por una de acuerdo al formato del ASD en el estado q:

$$P_1 = \{S := cMc, M := aMa \mid bNb \mid c, N := a \mid b \mid c\}$$

Comenzamos por las reglas que se derivan sólo en terminales, que en el AP sirven para desapilar símbolos de la Pila (a, a / λ (para todo símbolo $a \in \Sigma_T$):

Fuente: Libro Lenguajes Formales y Teoría de Autómatas Giró, Vazquez, Meloni, Constable

A continuación cargamos las demás reglas tal como se indica en la AP del ASD: (λ , A / α (para toda regla A:= α)):

Por último creamos el estado de aceptación:

 $ASD = (\{a,b,c\}, \{S, M, N, a, b, c, \#\}, \{p, q, r\}, p, \#, \{r\}, f)$

 Verificación del funcionamiento del mismo con la palabra α = cabcbac. Usar un árbol de descripciones instantáneas y la tabla operativa.

Árbol de descripciones instantáneas para la cadena α = *cabcbac*, como es una APND se presentan todas las ramas del árbol.

Nota: La carga en la pila cuando es más de un símbolo y en este caso la parte derecha de las reglas, ingresan de manera refleja, por ejemplo, si la regla es X:= 0YZ en la pila se representa #ZY0

Fuente: Libro Lenguajes Formales y Teoría de Autómatas Giró, Vazquez, Meloni, Constable

Tabla Operativa para la cadena α = *cabcbac*

Se aconseja realizar la derivación de la cadena:

$$S \rightarrow cMc \rightarrow caMac \rightarrow cabNbac \rightarrow cabcbac$$

Nota: La carga en la pila cuando es más de un símbolo y en este caso la parte derecha de las reglas, ingresan de manera refleja, por ejemplo, si la regla es X:= 0YZ en la pila se representa #ZY0

Fuente: Libro Lenguajes Formales y Teoría de Autómatas Giró, Vazquez, Meloni, Constable

N°	Q	Cadena a leer	Pila	Observaciones
1	р	cabcbac	#	Cadena por leer y pila vacía
2	q	cabcbac	#S	carga del axioma en la Pila
3	q	<mark>c</mark> abcbac	#cM <mark>c</mark>	Desapila S y en su lugar se apila la parte derecha de su regla de producción: S:=cMc
4	q	abcbac	#cM	En la parte superior de la Pila se encuentra c y en la cadena también, se desapila c
5	q	<mark>a</mark> bcbac	#caM <mark>a</mark>	Se desapila M y en su lugar se apila la parte derecha de la regla que permite seguir trabajando, en este caso M:= aMa
6	q	bcbac	#caM	En la parte superior de la Pila se encuentra a y en la cadena también, se desapila a
7	q	<mark>b</mark> cbac	#cabN <mark>b</mark>	Se desapila M y en su lugar se apila la parte derecha de la regla que permite seguir trabajando, en este caso M:= bNb
8	q	cbac	#cabN	En la parte superior de la Pila se encuentra b y en la cadena también, se desapila b
9	q	<mark>c</mark> bac	#cab <mark>c</mark>	Se desapila N y en su lugar se apila la parte derecha de la regla que permite seguir trabajando, en este caso N:= c
10	q	<mark>b</mark> ac	#ca <mark>b</mark>	En la parte superior de la Pila se encuentra c y en la cadena también, se desapila c
11	q	<mark>a</mark> c	#c <mark>a</mark>	En la parte superior de la Pila se encuentra b y en la cadena también, se desapila b
12	q	C	# <mark>c</mark>	En la parte superior de la Pila se encuentra a y en la cadena también, se desapila a
13	q	λ	#	En la parte superior de la Pila se encuentra c y en la cadena también, se desapila c
14	r	λ	#	Sin símbolos en la cadena y la pila vacía, finaliza el AP

- b) Construir un analizador sintáctico ascendente (grafo) y verificar el funcionamiento del mismo con la palabra α=cabcbac. Usar un árbol de descripciones instantáneas y la tabla operativa.
- Construcción el ASA (AP):

Como 1er paso se cargan en el estado inicial todas las reglas de la forma a, b / ba (para todo símbolo $a \in \Sigma_T$) de la gramática, en la Pila:

Universidad Tecnológica Nacional Facultad Regional Córdoba Ing. en Sistemas de Información

Cátedra de Sintaxis y Semántica de los Lenguajes

Fuente: Libro Lenguajes Formales y Teoría de Autómatas Giró, Vazquez, Meloni, Constable

Como 2do paso se agregan en el estado inicial todas las reglas de la forma λ , α / A para toda regla A:= α de la gramática, en la Pila:

Por último creamos el estado de aceptación:

 $ASA = ({a,b,c}, {S, M, N, a, b, c, \#}, {p, q}, p, \#, {q}, f)$

• Verificación del funcionamiento del mismo con la palabra $\alpha = cabcbac$. Usar un árbol de descripciones instantáneas y la tabla operativa.

Árbol de descripciones instantáneas para la cadena $\alpha = cabcbac$, como es una APND se deberían presentar todas las ramas del árbol pero por razones de espacio se construirá parcialmente (ramas indicadas en el árbol con * y **).

Fuente: Libro Lenguajes Formales y Teoría de Autómatas Giró, Vazquez, Meloni, Constable

Tabla Operativa para la cadena α = cabcbac

Se aconseja realizar la derivación de la cadena por derecha:

 $\textbf{S} \rightarrow \textbf{cMc} \rightarrow \textbf{caMac} \rightarrow \textbf{cabNbac} \rightarrow \textbf{cabcbac}$

Nota: Debemos pensar que en este caso se trata de hacer el trabajo en sentido inverso (las reducciones)

Fuente: Libro Lenguajes Formales y Teoría de Autómatas Giró, Vazquez, Meloni, Constable

N°	Q	Cadena a leer	Pila	Observaciones
1	р	cabcbac	#	Cadena por leer y pila vacía
2	р	abcbac	#c	Se lee el símbolo c en la cadena de entrada y se carga en la Pila
3	р	bcbac	#ca	Se lee el símbolo a en la cadena de entrada y se carga en la Pila
4	р	cbac	#cab	Se lee el símbolo b en la cadena de entrada y se carga en la Pila
5	р	bac	#cab <mark>c</mark>	Se lee el símbolo c en la cadena de entrada y se carga en la Pila
6	р	bac	#cab <mark>N</mark>	Sin leer la cadena de entrada, en la parte superior de la Pila se encuentra c, se desapila (lectura destructiva), y se apila N (aplicando reducción con la regla N:=c)
7	р	ac	#ca <mark>bNb</mark>	Se lee el símbolo b en la cadena de entrada y se carga en la Pila
8	р	ac	#ca <mark>M</mark>	Sin leer la cadena de entrada, en la parte superior de la Pila se encuentra bNb se desapila (lectura destructiva), y se apila M (aplicando reducción con la regla M:=aMa)
9	р	С	#c <mark>aMa</mark>	Se lee el símbolo a en la cadena de entrada y se carga en la Pila
10	р	С	#c <mark>M</mark>	Sin leer la cadena de entrada, en la parte superior de la Pila se encuentra aMa se desapila (lectura destructiva), y se apila M
11	р	λ	# <mark>cMc</mark>	Sin leer la cadena de entrada, en la parte superior de la Pila se encuentra cMc, se desapila (lectura destructiva), y se apila S (aplicando reducción con la regla S:= cMc)
12	р	λ	# <mark>S</mark>	Sin leer la cadena de entrada, en la parte superior de la Pila se encuentra S se desapila.
13	q	λ	#	Sin símbolos a leer en la cadena la cadena de entrada y con la pila vacía, finaliza el AP

Fuente: Libro Lenguajes Formales y Teoría de Autómatas Giró, Vazquez, Meloni, Constable

Ejercicio 10

Dada la siguiente gramática formal

$$G_2 = (\{a, b\}, \{A, B, S\}, S, P_2) \text{ con}$$

 $P_2 = \{S:=bAaB, A:=bBa \mid b, B:=Ab \mid a\}$

Se pide:

 a) Construir un Analizador Sintáctico Descendente (grafo) y b) un Analizador Sintáctico Ascendente que reconozcan el lenguaje producido por la gramática. Verificar el funcionamiento del mismo con la palabra α = bbaaaa contruyendo el árbol de descripciones instantáneas y la tabla operativa.

Solución:

a) ASD

 $ASD = ({a,b}, {S, A, B, a, b, \#}, {p, q, r}, p, \#, {r}, f)$

Tabla Operativa para la cadena α = *bbaaaa*

Se aconseja realizar la derivación de la cadena:

$$S \rightarrow bAaB \rightarrow bbBaaB \rightarrow bbaaaB \rightarrow bbaaaa$$

Nota: La carga en la pila cuando es más de un símbolo y en este caso la parte derecha de las reglas, ingresan de manera refleja, por ejemplo, si la regla es X:= 0YZ en la pila se representa #ZY0

Fuente: Libro Lenguajes Formales y Teoría de Autómatas Giró, Vazquez, Meloni, Constable

N°	Q	Cadena a leer	Pila	Observaciones
1	р	bbaaaa	#	Cadena por leer y pila vacía
2	q	bbaaaa	#S	Carga del axioma en la Pila
3	q	<mark>b</mark> baaaa	#BaA <mark>b</mark>	Desapila S y se apila la parte derecha de su reglas de producción S:=bAaB
4	q	baaaa	#BaA	En la parte superior de la Pila se encuentra b y en la cadena también, se desapila b
5	q	<mark>b</mark> aaaa	#BaaB <mark>b</mark>	Se desapila A y se apila la parte derecha de la regla que permite seguir trabajando en este caso A:= bBa
6	q	aaaa	#BaaB	En la parte superior de la Pila se encuentra b y en la cadena también, se desapila b
7	q	<mark>a</mark> aaa	#Baa <mark>a</mark>	Se desapila B y se apila la parte derecha de la regla que permite seguir trabajando en este caso B:= a
8	q	<mark>a</mark> aa	#Ba <mark>a</mark>	En la parte superior de la Pila se encuentra a y en la cadena también, se desapila a
9	q	<mark>a</mark> a	#B <mark>a</mark>	En la parte superior de la Pila se encuentra a y en la cadena también, se desapila a
10	q	а	#B	En la parte superior de la Pila se encuentra a y en la cadena también, se desapila a
11	q	a	# <mark>a</mark>	Se desapila B y se apila la parte derecha de la regla que permite seguir trabajando en este caso B:= a
12	q	λ	#	En la parte superior de la Pila se encuentra a y en la cadena también, se desapila a
13	r	λ	#	Sin símbolos en la cadena y la pila vacía, finaliza el AP

Árbol de descripciones instantáneas para la cadena α = *bbaaaa*, como es una APND se presentan todas las ramas del árbol

Fuente: Libro Lenguajes Formales y Teoría de Autómatas Giró, Vazquez, Meloni, Constable

b) ASA

 $ASD = (\{a,b\}, \{S, A, B, a, b, \#\}, \{p, q\}, p, \#, \{q\}, f)$

Fuente: Libro Lenguajes Formales y Teoría de Autómatas Giró, Vazquez, Meloni, Constable

Tabla Operativa para la cadena α = *bbaaaa*

Se aconseja realizar la derivación de la cadena por derecha:

$$S \rightarrow bAaB \rightarrow bAaa \rightarrow bbBaaa \rightarrow bbaaaa$$

Nota: Debemos pensar que en este caso se trata de hacer el trabajo en sentido inverso (las reducciones)

N°	Q	Cadena a leer	Pila	Observaciones
1	р	bbaaaa	#	Cadena por leer y pila vacía
2	р	baaaa	#b	Se lee el símbolo b en la cadena de entrada y se carga en la Pila
3	р	aaaa	#bb	Se lee el símbolo b en la cadena de entrada y se carga en la Pila
4	р	aaa	#bb <mark>a</mark>	Se lee el símbolo a en la cadena de entrada y se carga en la Pila
5	р	aaa	#bb <mark>B</mark>	Sin leer la cadena de entrada, en la parte superior de la Pila se encuentra c se desapila, y se apila B
6	р	aa	#b <mark>bBa</mark>	Se lee el símbolo a en la cadena de entrada y se carga en la Pila
7	р	aa	#b <mark>A</mark>	Sin leer la cadena de entrada, en la parte superior de la Pila se encuentra bBa se desapila y se apila A
8	р	а	#bAa	Se lee el símbolo a en la cadena de entrada y se carga en la Pila
9	р		#bAa <mark>a</mark>	Se lee el símbolo a en la cadena de entrada y se carga en la Pila
10	р	λ	#bAa <mark>B</mark>	Sin leer la cadena de entrada, en la parte superior de la Pila se encuentra a se desapila y se apila B
11	р	λ	#S	Sin leer la cadena de entrada, en la parte superior de la Pila se encuentra bAaB se desapila (lectura destructiva), y se apila S
12	q	λ	#	Sin leer la cadena de entrada, en la parte superior de la Pila se encuentra S se desapila.

Árbol de descripciones instantáneas para la cadena α = *bbaaaa*, como es una APND se deberían presentar todas las ramas del árbol pero por razones de espacio se construirá parcialmente.

Universidad Tecnológica Nacional Facultad Regional Córdoba Ing. en Sistemas de Información

Cátedra de Sintaxis y Semántica de los Lenguajes

Fuente: Libro Lenguajes Formales y Teoría de Autómatas Giró, Vazquez, Meloni, Constable

,

Fuente: Libro Lenguajes Formales y Teoría de Autómatas Giró, Vazquez, Meloni, Constable

En resumen, la forma de lectura que tiene un Analizador dependiendo de su tipo, por ejemplo para la cadena α = *bbaaaa* es:

ASD

S → bbaaaa

- Crea nodo raíz
- Deriva por izquierda creando nuevos nodos hijos
- Llega a cadena de terminales

ASA

bbaaaa

- Crea nodos hojas
- Hace reducciones creando nuevos nodos padres
- Llega al axioma

Analizadores sintácticos		
Grafo	Programa reconocedor de un lenguaje	
Árbol de Descripciones Instantánea	Proceso que se ejecuta para 1 input	
Tabla Operativa	Rama reconocedora del proceso	