Tuần 4: Phương trình vi phân cấp một

Phương trình vi phân cấp một là những phương trình có dạng

trong đó x là biến số độc lập, y=y(x) là hàm số cần tìm.

VD. (Bài toán Cauchy với giá tri ban đầu)

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$

Người ta đã chứng minh được tính duy nhất nghiệm của bài toán trên nếu $f'_y(x,y)$ liên tục trên miền $D \subset \mathbb{R}^2$ đang xét.

Trong chương trình Giải tích 3, chúng ta sẽ xét các loại phương trình sau

1 Phương trìn<mark>h khuyế</mark>t

1.1 Phương trì<mark>nh khuyết</mark> y

Gồm những phương trình có dạng F(x, y') = 0

- Nếu ta giải được y' = f(x) thì $y = \int f(x) dx$
- Nếu ta giải được x=f(y') thì ta thực hiện đặt y'=t. Khi đó $\begin{cases} x=f(t)\\ y=\int tf'(t)dt \end{cases}$
- Nếu giải được $\begin{cases} x=f(t) \\ y'=g(t) \end{cases} \text{ thì } \begin{cases} x=f(t) \\ y=g(t)f'(t)dt \end{cases}$

1.2 Phương trình khuyết x

Gồm những phương trình có dạng F(y,y')=0

- Nếu ta giải được y'=f(x) thì $x=\int \frac{dy}{f(y)}$
- Nếu ta giải được y=f(y') thì ta thực hiện đặt y'=t. Khi đó $\begin{cases} y=f(t) \\ x=\int \frac{f'(t)}{t} dt \end{cases}$
- Nếu giải được $\begin{cases} y=f(t) & \text{thì } x=\frac{f'(t)}{g(t)}dt \\ y'=g(t) & \end{cases}$

2 Phương trình biến số phân ly

Gồm phương trình có dạng f(y)dy=g(x)dx hay $y'=\frac{g(x)}{f(y)}$. Giải phương trình này rất đơn giản, ta tích phân hai vế của phương trình, khi đó

$$\int f(y)dy = \int g(x)dx \text{ hay } F(y) = G(x) + C$$

3 Phương trình dạng đẳng cấp - đưa được về dạng đẳng cấp

3.1 Phương trình dạng đẳng cấp

Gồm những phương trình có dạng $y' = F\left(\frac{y}{x}\right)$. Thực hiện đặt $u = \frac{y}{x}$, khi đó ta đưa được phương trình về dạng biến số phân ly

$$\frac{dx}{x} = \frac{du}{F(u) - u}$$

3.2 Phương trình <mark>đưa được về dạng đẳng cấp</mark>

Gồm những phương trình có dạng

$$y' = F\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$$

Nếu $c_1 = c_2 = 0$ thì

$$y' = F\left(\frac{a_1\frac{x}{y} + b_1}{\frac{x}{a_2\frac{x}{y} + b_2}}\right)$$

là phương trình đẳng cấp. Ngược lại, khi có một trong hai số c_1, c_2 khác 0, ta xét hai trường hợp

• Nếu $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \neq 0$ thì ta có thể chọn α và β thỏa mãn $\begin{cases} a_1\alpha + b_1\beta + c_1 = 0 \\ a_2\alpha + b_2\beta + c_2 = 0 \end{cases}$. Khi đó với phép

đổi biến $\begin{cases} x=u+\alpha \\ y=v+\beta \end{cases}$, ta thu được phương trình mới có dạng

$$\frac{dv}{du} = F\left(\frac{a_1u + b_1v}{a_2u + b_2v}\right) = F\left(\frac{a_1\frac{u}{v} + b_1}{a_2\frac{u}{v} + b_2}\right)$$

• Nếu $\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = 0$ thì $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \lambda$. Khi đó nếu ta đặt $u = a_1x + b_1y$ thì phương trình có dạng

$$\frac{du}{dx} = F\left(\frac{u+c_1}{\lambda u + c_2}\right) = \varphi(u)$$

Đây là phương trình biến số phân ly

4 Phương trình vi phân tuyến tính

Gồm những phương trình có dạng

$$y' + p(x)y = q(x)$$

Công thức tổng quát để giải phương trình trên là

$$y(x) = \exp\left(-\int p(x)dx\right) \left(\int q(x) \exp\left(\int p(x)dx\right)dx + C\right)$$

Hơn nữa, bài toán giá tri ban đầu

$$\begin{cases} y' + p(x)y = q(x) \\ y(x_0) = y_0 \end{cases}$$

có nghiệm duy nhất được cho bởi công thức

$$y(x) = \exp\left(-\int_{x_0}^x p(x)dx\right) \left(\int_{x_0}^x q(x) \exp\left(\int_{x_0}^x p(x)dx\right) dx + C\right)$$

5 Phương trình Bernoulli

Gồm những phương trình có dang

$$y' + p(x)y = q(x)y^{\alpha}$$

với $\alpha \neq 0,1$. Để giải phương trình trên ta đặt $u=y^{1-\alpha}$. Khi đó ta đưa được về phương trình vi phân tuyến tính

$$u' + (1 - \alpha)p(x)u = (1 - \alpha)q(x)$$

6 Phương trình vi phân toàn phần

Phương trình sau

$$P(x,y)dx + Q(x,y)dy = 0 (5.1)$$

được gọi là phương trình vi phân toàn phần nếu tồn tại hàm u(x,y) sao cho

$$d(u(x,y)) = P(x,y)dx + Q(x,y)dy$$

Khi đó nghiệm của phương trình (5.1) là u(x,y) = C

Tiêu chuẩn kiểm tra PTVP toàn phần Phương trình (5.1) là PTVP toàn phần nếu và chỉ nếu P, Q cùng

các đạo hàm riêng của nó liên tục và $P_y^\prime = Q_x^\prime.$ Khi đó hàm số u(x,y) được tính bởi

$$u(x,y) = \int_{x_0}^{x} P(x,y_0)dx + \int_{y_0}^{y} Q(x,y)dy = \int_{x_0}^{x} P(x,y)dx + \int_{y_0}^{y} Q(x_0,y)dy$$

Vậy nghiệm tổng quát của phương trình (5.1) là

$$\int_{x_0}^x P(x,y_0) dx + \int_{y_0}^y Q(x,y) dy = C \quad \text{hoặc} \quad \int_{x_0}^x P(x,y) dx + \int_{y_0}^y Q(x_0,y) dy$$

Phương trình đưa được về dạng PTVP toàn phần Đối với dạng phương trình (5.1) nhưng $P'_y \neq Q'_x$, nhưng thỏa mãn một trong hai điều kiện

$$\varphi(x) = \frac{Q'_x - P'_y}{Q}$$
 (5.2) hoặc $\psi(y) = \frac{Q'_x - P'_y}{P}$ (5.3)

- Nếu thỏa mãn (5.2) thì ta nhân hai về của (5.1) với thừa số tích phân $\mu(x) = \exp\left(-\int \varphi(x)dx\right)$
- Nếu thỏa mãn (5.3) thì ta nhân hai về của (5.1) với thừa số tích phân $\mu(y) = \exp\left(\int \psi(y) dy\right)$

Khi đó ta sẽ được PTVP toàn phần

