

CS 719

Topics in Mathematical Foundations of Formal Verifications

Notes By: Aryaman Maithani

Spring 2020-21

Lecture 1 (11-01-2021) 11 January 2021 09:34 Recap of Regular Languages Pifferent formalisms surprisingly describe the same class of lang-regular languages. Regular expressions, DFA, NFA, MSO logic Notation and Sety (for the rest of course) tix a finite alphabet \geq . A (finite) word over \(\xi \) is a finite sequence \(\alpha \alpha \alpha \cdot \alpha \). of elements of E. u, v, w. ... are used for words. $w = a_1 a_1 \dots a_n$ where each $a_i \in \Sigma$. The empty sequence corresponds to the unique word of length O and is denoted by E, the empty word. $\Xi^* = \text{the set of all finite words over } \Xi. (c \in \Xi^*)$ $\Xi^+ = \Xi^* \setminus \{ \mathcal{E} \} = \text{the set of all non-empty words over } \Xi.$

CONCATENATION of words.

defined in the usual manner.

→ The operation on E* is associative.

That is, ∀u, v, ω ∈ E*: (u·v)·ω = u·(v·ω).

→ E acts as an identity for .

(Her)

estample of a monoid

₩ € €*: f. w = w.f = w. Another example of monoid: (N, +) $N = \{0, 1, ...\}$ in this course (Later re'll look a finite monoido) $l \colon \mathcal{E}^* \to \mathbb{N}$ u -> length of u = L(u) Note $l(u \cdot \omega) = l(u) + l(\omega)$ $l(\varepsilon) = l(0)$ Thus, I is a monoid morphism. Defr. A language L is simply a subset of 5x. Given languages L, L2 C E*, we define $L_1 \cdot L_2 = \{ \omega_1 \cdot \omega_2 \mid \omega_1 \in L_1, \omega_2 \in L_2 \}.$ KEGULAR EXPRESSIONS r = φ | ε | α | r, + r, | r, -r, | r* r ~> L(r) language associated to r L(t) is defined by structural induction on . $\cdot \quad L(\phi) = \beta$ $L(\varepsilon) = \{\varepsilon\}$ $L(a) = \{a\} \qquad (a \in \xi)$ $L(r_1+r_2) = L(r_1) \cup L(r_2)$. $L(r_1, r_2) = L(r_1) \cdot L(r_2)$ (RMS defined earlier)

= } { } U L(r) U L(r). L(r) U L(r). L(r). L(r). U... $= \bigcup_{i=0}^{\infty} L^{i} \qquad \left(L^{\circ} = \{ \epsilon^{i} \}, L' = L(r), L^{i+1} = L^{i} \cdot L \right)$ [Example (ab)* = {Es ab, abab, ...} Defⁿ A language $L \subseteq \Xi^*$ is said to be regular if there exists a regular expression r such that l(r) = l. Thm. Regular languages are closed under union, intersection, complementation, concatenation. As per our def using regular expressions, union & concatenation) Some of the above is easier to prove urder diff. formalisms.

One first shows that two diff. formalisms are actually same. Dete (Extended reg. esipressions) $\Upsilon = \emptyset | E | a | r_1 + r_2 | r_1 \cap r_2 | \neg r | r_1 \cdot r_2 | r *$ Here we can add, in view of th^m,

who changing the class of languages Q: What subclass of language will we get if we restrict ourselves to a subset of the operators?

Pet?	(Star-	- free	reg.	expression	9	Exclud	e th	*	operad	or.	
	Q.	Which	regula	or lav	nguages	adr	nit a	a star	free	representat	ion?
			J		0 0				`	•	·
	(Non?) Exam	ple :	(=	(ab)*	¢					
				Com	we re	write	this	without	* ?		
	100										