

Number Theory

Ashish Nanda

Ashish.Nanda@uts.edu.au

41900- Fundamentals of Security

Number Theory and Cryptography

Number theory is the basic of a lot of public-key crypto.

- Diffie-Hellman is "secure" because the discrete log problem is "hard"
- RSA is "secure" because integer factorisation is "hard".

Key concept:

Find a number theoretic problem that's incredibly difficult to solve if you don't have a key piece of information.

For example:

- ullet Multiplying two large primes p,q is easy. Splitting a number $n\ =\ pq$ into its factors is hard.
- Raising a number g to the power a is easy. Finding a given only g^a is hard.

Let's start with: Divisors

Say a non-zero number **b** divides **a** for some remainder **m**

• That is: **a = mb** where **a b** and **m** are all integers

If **b** divides **a** with no remainder, it is represented using '|'

- That is: **b | a**
- Example: All of **1,2,3,4,6,8,12,24** divide **24**
- Example: 13 | 182 -5 | 30 17 | 289 -3 | 33 17 | 0

Properties of Divisibility

- If a | 1, then $a = \pm 1$.
- If $\mathbf{a} \mid \mathbf{b}$ and $\mathbf{b} \mid \mathbf{a}$, then $\mathbf{a} = \pm \mathbf{b}$.
- Any **b** ≠ **0** divides **0**.
- If a | b and b | c, then a | c
 - Example: 11 | 66 and 66 | 198 so 11 | 198
- If **b** | **g** and **b** | **h**, then **b** | (mg + nh)
 - Example: for arbitrary integers **b** = **7** , **g** = **14** , **h** = **63** , **m** = **3** , **n** = **2**
 - 7 | 14 and 7 | 63 hence 7 | (42+126) = 7 | 168

Greatest Common Divisor (GCD)

GCD (a, b) of a and b is the largest integer that divides both a and b

• Example: GCD(60, 24) = 12GCD(0, 0) = 0

If two numbers have no common factors (except 1) they can be defined as relatively prime

• Example: **GCD(8, 15) = 1** hence **8** & **15** are relatively prime

Example GCD(1970,1066)

1970 = 1 X 1066 + 904	GCD(1066, 904)
1066 = 1 x 904 + 162	gcd(904, 162)
904 = 5 x 162 + 94	gcd(162, 94)
162 = 1 x 94 + 68	gcd(94, 68)
94 = 1 x 68 + 26	gcd(68, 26)
68 = 2 x 26 + 16	gcd(26, 16)
26 = 1 x 16 + 10	gcd(16, 10)
16 = 1 x 10 + 6	gcd(10, 6)
10 = 1 x 6 + 4	gcd(6, 4)
6 = 1 x 4 + 2	gcd(4, 2)
4 = 2 x 2 + 0	gcd(2, 0)

Euclidean Algorithm

An efficient way to find the GCD(a, b) is using the theorem that:

GCD(a, b) = GCD(b, a mod b)

Euclidean Algorithm used to compute GCD(a, b) is:

Euclid(a, b)

If (b=0) then return a;

Else return **Euclid(b, a mod b)**;

Modular Arithmetic

A modulo operator can be defined as **a mod n** to give the remainder **b**

- a is our divided
- **n** is called the modulus
- **b** is called a **residue** of **a mod n**

The same can represented as: $\mathbf{a} = \mathbf{qn} + \mathbf{b}$

- We usually chose the smallest positive remainder as residue
 - 0 <= b <= n-1
- The process is known as modulo reduction
 - -12 mod 7 = -5 mod 7 = 2

a & **b** are congruent if: **a mod n = b mod n**

• when divided by **n**, **a** & **b** have same remainder

so 100 is congruent to 34 for the operation mod 11

Modular Arithmetic Operations

```
(a + b) mod n = [(a mod n) + (b mod n)] mod n
(a - b) mod n = [(a mod n) - (b mod n)] mod n
(a x b) mod n = [(a mod n) x (b mod n)] mod n
```

Examples:

```
[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2; (11 + 15) mod 8 = 26 mod 8 = 2 [(11 mod 8) - (15 mod 8)] mod 8 = -4 mod 8 = 4; (11 - 15) mod 8 = -4 mod 8 = 4 [(11 mod 8) x (15 mod 8)] mod 8 = 21 mod 8 = 5; (11 x 15) mod 8 = 165 mod 8 = 5
```

Modular Arithmetic Properties

Property	Expression			
Commutative laws	$(w+x) mod n = (x+w) mod n$ $(w \times x) mod n = (x \times w) mod n$			
Associative laws	$[(w \times x) \times y] mod n = [w \times (x \times y)] mod n$ $[(w \times x) \times y] mod n = [w \times (x \times y)] mod n$			
Distributive laws	$[w \times (x + y)] mod n = [(w \times x) + (w \times y)] mod n$			
Identities	$(w + 0) mod n = w mod n$ $(w \times 1) mod n = w mod n$			
Additive inverse (-w)	inverse (-w) For each $\mathbf{w} \in \mathbf{Z_n}$, there exist a \mathbf{z} such that $\mathbf{w} + \mathbf{z} = 0 \ \mathbf{mod} \ \mathbf{n}$			

Modulo 8 Addition Example

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Modulo 8 Multiplication

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Integers modulo $n: \mathbb{Z}_n$

Fix a number $n \in \mathbb{Z}$, and do arithmetic modulo n: keep only the remainder after dividing by n.

Some examples of modulus division:

- 6 (mod 12) = 0
- $-4 \pmod{12} = 8$
- 55 (mod 12) = 7

This system of numbers is called $\mathbf{Z}_{\mathbf{n}}$.

(The example above is \mathbb{Z}_{12}).

It is finite: each number is uniquely represented as one of

•
$$Z_n = \{0, 1, 2, 3, ..., n-1\}$$

The multiplicative group of \mathbf{Z}_n^{\times}

A multiplicative group $\mathbf{Z}_{\mathbf{n}}^{\times}$ can be defined as:

- $\mathbf{Z}_{n}^{\times} = \{ \mathbf{a} \in \mathbf{Z}_{n} \mid gcd(\mathbf{a}, \mathbf{n}) = \mathbf{1} \}$
- \mathbf{Z}_n^{\times} is all elements $\mathbf{a} \in \mathbf{Z}_n$ such that the $\gcd(\mathbf{a},\mathbf{n})=\mathbf{1}$

For Example:

$$\begin{split} Z_{21} &= \begin{bmatrix} \textbf{0}, 1, 2, \textbf{3}, 4, 5, \textbf{6}, \textbf{7}, 8, \textbf{9}, 10, 11, \textbf{12}, 13, \textbf{14}, \textbf{15}, 16, 17, \textbf{18}, 19, 20 \end{bmatrix} \\ Z_{21}^{\times} &= \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20 \} \end{split}$$

This removes **0** and any elements that share a divisor with **21**.

- Addition and subtraction can no longer be done in \mathbf{Z}_n^{\times} .
- Multiplication and division work: every number has an inverse!.
- The size of $\mathbf{Z}_{\mathbf{n}}^{\times}$ is $\phi(\mathbf{n})$, the number of positive integers less than \mathbf{n} coprime to \mathbf{n} .

Properties of Z_n[×]

Group Size: The size of the group \mathbf{Z}_n^{\times} is denoted $\boldsymbol{\varphi}(n)$, called Euler's phi function or Euler's totient function.

- If \mathbf{p} , \mathbf{q} are distinct primes, then $\mathbf{\phi}(\mathbf{p}\mathbf{q}) = \mathbf{\phi}(\mathbf{p})\mathbf{\phi}(\mathbf{q}) = (\mathbf{p} \mathbf{1})(\mathbf{q} \mathbf{1})$
- For any $x \in \mathbb{Z}_n^{\times}$, $x^{\phi(n)} = 1$.

Generator: There is sometimes an element $\mathbf{g} \in \mathbf{Z}_{\mathbf{n}}^{\times}$ which "hits all of $\mathbf{Z}_{\mathbf{n}}^{\times}$ ",

- i.e. $\{x^0, x^1, x^2, \dots, x^{n-1}\} = Z_n^{\times}$.
- This is always the case if n is prime.

Inverses: Every element $a \in \mathbb{Z}_n^{\times}$ has an inverse: $b \in \mathbb{Z}_n^{\times}$ such that ab = 1.

- Since $a^{\phi(n)} = 1$, this makes $a^{\phi(n)-1}$ the inverse of $a: a^{\phi(n)-1}a = 1$.
- Inverses are usually found using Bézout's identity, rather than computing $\phi(n)$.

Generated Sequences in Z_n[×]

If all elements in \mathbf{Z}_n^{\times} can be obtained via \mathbf{g} using: $\mathbf{g}^{\mathbf{x}} \bmod \mathbf{n}$

Where $x \in \mathbf{Z}$ (i.e. any integer)

Then we state that:

$$g$$
 is a generator for Z_n^\times
$$Z_n^\times = [g^0, g^1, g2 \ , g3 \ , \cdots , g^{\varphi(n)-1}]$$

The length of the maximum sequence for \mathbf{Z}_n^{\times} is given by $\boldsymbol{\varphi}(n)$.

- If $\mathbf{Z}_{\mathbf{p}}^*$, where \mathbf{p} is prime, then $\mathbf{\varphi}(\mathbf{p}) = \mathbf{p} \mathbf{1}$

Note: the length of the sequence is maximal for $\mathbf{Z}_{\mathbf{p}}^*$

Example: Generated Sequences in Z_n^{\times}

Is $g = 2$ a generator for \mathbb{Z}_7^* ?	Is g = 2 a generator for \mathbb{Z}_5^* ?	Is g = 4 a generator for \mathbb{Z}_5^* ?
2 ¹ = 2 mod 7 = 2	2 ¹ = 2 mod 5 = 2	$4^1 = 4 \mod 5 = 4$
2 ² = 4 mod 7 = 4	$2^2 = 4 \mod 5 = 4$	4 ² = 16 mod 5 = 1
2 ³ = 8 mod 7 = 1	$2^3 = 8 \mod 5 = 3$	4 ³ = 64 mod 5 = 4
2 ⁴ = 16 mod 7 = 2	2 ⁴ = 16 mod 5 = 1	4 ⁴ = 256 mod 5 = 1
2 ⁵ = 32 mod 7 = 4	2 ⁵ = 32 mod 5 = 2	4 ⁵ = 1024 mod 5 = 4
2 ⁶ = 64 mod 7 = 1	$2^6 = 64 \mod 5 = 4$	4 ⁶ = 4096 mod 5 = 1
2 ⁷ = 256 mod 7 = 2	2 ⁷ = 256 mod 5 = 3	4 ⁷ = 16384 mod 5 = 4
$\mathbf{Z}_7^* \; eq [extbf{1, 2, 4}] $ Nope	Z ₅ = [1, 2, 3, 4] Yes!	$Z_5^* \neq [1,4]$ Nope

Inverses in $\mathbf{Z}_{\mathbf{n}}^{\times}$

Each element $a \in \mathbb{Z}_n^{\times}$ has an inverse a^{-1} such that $a \times a^{-1} = 1 \mod n$. Each element $a \in \mathbb{Z}_n^{\times}$, except for 0, is invertible.

Simple inversion algorithm

For $\mathbf{Z}_{\mathbf{p}}^*$, where \mathbf{p} is prime:

•
$$x^{-1} = x^{\phi(n)-1} = x^{(p-1)-1} = x^{p-2} \mod p$$

For $\mathbf{Z}_{\mathbf{n}}^{\times}$, where $\mathbf{n} = \mathbf{p}\mathbf{q}$:

•
$$x^{-1} = x^{\phi(n)-1} = x^{\phi(p)\phi(q)-1} = x^{(p-1)(q-1)-1} \mod p$$

Example: inverses in Z_n^{\times}

Given p = 7, q = 3, and $n = pq = 7 \times 3 = 21$

We select $\mathbf{x} = \mathbf{11}$ out of \mathbf{Z}_{21}^* and want to invert it.

$$x^{-1} = x^{(p-1)(q-1)-1} \mod n$$

$$= x^{(6\times 2)-1} \mod 21$$

$$= 11^{11} \mod 21$$

$$= 2$$

Check that
$$x \cdot x^{-1} \mod n = 1$$

$$11 \times 2 \mod 21 = 22 \mod 21 = 1$$

What is a Group

It is a set **S** of elements or numbers that:

- may be finite or infinite
- Consist of some operation '.' so G=(S,.)

They have to Obeys CAIN:

• Closure: a,b in S, then a.b in S

• Associative: (a.b).c = a.(b.c)

• Identity **e**: **e.a** = **a.e** = **a**

• Inverse a^{-1} : $a.a^{-1} = e$

If it is also commutative, that is: **a.b** = **b.a**

Then the group forms an 'Abelian Group'

Cyclic Group

If we defined the exponentiation as repeated application of an operator

• Example: $a^3 = a.a.a$

And let identity be: $e = a^0$

A group is cyclic if every element is a power of some fixed element a

• i.e., $b = a^k$ for some a and every b in group

Here **a** is said to be a **generator** of the group.

Ring

A set of numbers with two operations (addition and multiplication) which have the following properties:

- It forms an abelian group with addition and multiplication operation
- It has closure
- It is associative
- It is distributive over addition: a(b+c) = ab + ac

If multiplication operation is commutative, it forms a **commutative ring**If multiplication operation has an identity and no zero divisors, it forms an **integral domain**

Field

It is a set of numbers with two operations which form:

- An abelian group for addition
- An abelian group for multiplication (ignoring 0)
- A ring

The relation can be stated as:

Group -> Ring -> Field