

# 지수함수

| 01 | 지수함수의 뜻과 그래프  | 093  |
|----|---------------|------|
|    | 예제            |      |
| 02 | 지수방정식과 지수부등식  | 122  |
|    | 예제            |      |
| 기본 | 다지기           | 140  |
| 신려 | <b>LIXI21</b> | 1/.2 |

#### 지수함수의 그래프의 평행이동과 대칭이동

## <sup>예제</sup> 0 1

#### 다음 지수함수의 그래프를 그리고, 치역을 구하여라.

(1) 
$$y=2^{x-2}-3$$

(2) 
$$y = 3^{-x+1}$$

#### 접근 방법

함수  $y=a^x$ 의 그래프를 기준으로 주어진 함수의 그래프를 생각해야 합니다. 즉, 평행이동이나 대칭이동을 이용하여 지수함수의 그래프를 그려 봅시다.



## 상세 풀이

(1) 함수  $y=2^{x-2}-3$ 의 그래프는 함수  $y=2^x$ 의 그래프를 x축의 방향으로 2 만큼, y축의 방향으로 -3만큼 평행이동한 것이므로 오른쪽 그림과 같습니다. 이때, 치역은  $\{y\,|y>-3$ 인 실수}입니다.



(2) 함수  $y=3^{-x+1}=3^{-(x-1)}=\left(\frac{1}{3}\right)^{x-1}$ 의 그래프는 함수  $y=\left(\frac{1}{3}\right)^{x}$ 의 그래프 를 x축의 방향으로 1만큼 평행이동한 것이므로 오른쪽 그림과 같습니다. 이때 치역은  $\{y|y>0$ 인 실수}입니다.



정답 ⇒ 풀이 참조

#### 보충 설명

지수함수의 그래프를 그릴 때. 점근선을 먼저 그리는 것이 좀 더 편리합니다.

**수자** 바꾸기

#### 01-1 다음 지수함수의 그래프를 그리고, 치역을 구하여라.

(1)  $y=2^{x+3}+1$ 

(2)  $y = 4^{-x-2} - 2$ 

(3)  $y = -2^{x+2} - 1$ 

(4)  $y = -\left(\frac{1}{3}\right)^{x-1} + 2$ 

표형 바꾸기

◆ 보충 설명

#### 01-2 다음 물음에 답하여라.

- (1) 함수  $y=3^{2x}$ 의 그래프를 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동하 였더니 함수  $y=27\times3^{2x}-12$ 의 그래프와 겹쳐졌다. mn의 값을 구하여라.
- (2) 함수  $y=2^x$ 의 그래프를 x축의 방향으로 m만큼 y축의 방향으로 n만큼 평행이동한 그래프가 두 점 (-1, 1), (0, 5)를 지날 때,  $m^2 + n^2$ 의 값을 구하여라.

개념 넓히기 ★★☆

◆ 보충 설명

01-3 오른쪽 그림과 같이 함수  $y=2^x$ 의 그래프 위의 점 A(0,1)을 지나고 x축에 평행한 직선이 함수  $u=2^{x-2}$ 의 그래프와 만나는 점을 B, 점 B를 지나고 y축에 평행한 직선이 함수  $y=2^x$ 의 그래프와 만나는 점을 C. 점 C를 지나고 x축에 평 행한 직선이 함수  $y=2^{x-2}$ 의 그래프와 만나는 점을 D라고 하자. 두 함수  $y=2^x$ ,  $y=2^{x-2}$ 의 그래프와 두 선분 AB, CD로 둘러싸인 부분의 넓이를 구하여라.



**01-1** p.537 참조

**01-2** (1) 18 (2) 18

**01-3** 6

#### 절댓값 기호를 포함한 지수함수의 그래프

## <sup>예제</sup> 02

함수  $y=2^x$ 의 그래프를 이용하여 다음 함수의 그래프를 그려라.

$$(1) y = 2^{|x|}$$

(2) 
$$y = 2^{-|x|}$$

#### 접근 방법

절댓값 기호 안의 식의 값이 0보다 크거나 같은 경우와 0보다 작은 경우로 나누어, 각 범위별로 그래프를 그려줍니다.

또는 두 함수 y=f(x), y=-f(x)의 그래프는 x축에 대하여 대칭이고, 두 함수 y=f(x), y=f(-x)의 그래프는 y축에 대하여 대칭임을 이용하여 다음과 같이 풀 수도 있습니다.

Bible

절댓값 기호를 포함한 함수의 그래프는 절댓값 기호 안의 식의 값이 0이되는 x의 값을 경계로 범위를 나누어 그래프를 그린다.

#### 상세 풀이

$$(1)y = 2^{|x|} = \begin{cases} 2^{x} & (x \ge 0) \\ 2^{-x} & (x < 0) \end{cases}$$

따라서 함수  $y=2^{|x|}$ 의 그래프는 오른쪽 그림과 같습니다.





따라서 함수  $y=2^{-|x|}$ 의 그래프는 오른쪽 그림과 같습니다.



정답 ⇒ 풀이 참조

#### 보충 설명

수학 (하)에서 배운 것처럼 함수 y=f(|x|)의 그래프는 다음과 같은 방법으로 그릴 수 있습니다.

- ① 절댓값 기호를 없앤 함수 y=f(x)의 그래프를 그립니다.
- ② 절댓값 기호가 없는 식을 0으로 하는, 즉 직선 x=0 (y축)을 기준으로 x $\geq$ 0인 부분을 대칭이동합니다.

따라서 위의 예제 (1)에서 함수  $y=2^{|x|}$ 의 그래프는  $x\ge 0$ 인 부분에 그린 함수  $y=2^x$ 의 그래프를 직선 x=0 (y축)에 대하여 대칭이동하면 됩니다.



♦ 보충 설명

02-1 함수  $y=3^x$ 의 그래프를 이용하여 다음 함수의 그래프를 그려라.

(1)  $y = 3^{|x|}$ 

(2)  $y = 3^{-|x|}$ 

(3)  $y = |3^x - 1|$ 

 $(4) y = \left| \left( \frac{1}{3} \right)^{x+1} - 3 \right|$ 

◆ 보충 설명

02-2 오른쪽 그림과 같이 함수  $y = \left| \left( \frac{1}{2} \right)^{x-a} - b \right|$ 의 그래프가 직선 y=3을 점근선으로 하고 점 (3, 1)을 지난다. 상수 a, b에 대하여 a+b의 값을 구하여라.



개념 넓히기 ★★☆

**02-3** 함수  $f(x) = \left(\frac{1}{2}\right)^{x-5} - 64$ 에 대하여 함수 y = |f(x)|의 그래프와 직선 y = k가 제1사분 면에서 만나도록 하는 자연수 k의 개수를 구하여라.

(단, 좌표축은 어느 사분면에도 속하지 않는다.)

## 예저

03

#### 다음 물음에 답하여라.

- (1) 함수  $f(x)=2^x+2^{-x}$ 에 대하여 f(a)=5일 때, f(-2a)의 값을 구하여라.
- (2) 함수  $g(x)=2^{-x}$ 에 대하여 g(2a)g(b)=4, g(a-b)=2일 때,  $2^{3a}+2^{3b}$ 의 값을 구하여라.

### 접근 방법

지수법칙을 이용하여 주어진 문제의 조건을 정리해 봅니다.

Bible 함수  $f(x)=a^x(a>0, a\neq 1)$ 과 임의의 두 실수 x, y에 대하여

(1) 
$$f(x+y)=f(x)f(y)$$

$$(2) f(x-y) = \frac{f(x)}{f(y)}$$

(3) 
$$f(px) = \{f(x)\}^p$$
 (단, p는 실수)

#### 상세 풀이

 $(1)f(a) = 2^a + 2^{-a} = 5$ 이므로

$$f(-2a) = 2^{-2a} + 2^{2a} = (2^a + 2^{-a})^2 - 2 = 5^2 - 2 = 23$$

 $(2)g(2a)g(b)=2^{-2a}\times 2^{-b}=2^{-2a-b}=4$ 이므로

$$-2a-b=2$$
 .....  $\bigcirc$ 

$$g(a-b)=2^{-a+b}=2$$
이므로

$$-a+b=1$$
 .....

①, ①을 연립하여 풀면

$$a = -1, b = 0$$

$$\therefore 2^{3a} + 2^{3b} = 2^{-3} + 2^{0} = \frac{1}{8} + 1 = \frac{9}{8}$$

정답  $\Rightarrow$  (1) 23 (2)  $\frac{9}{8}$ 

#### 보충 설명

지수함수의 함숫값을 구할 때에도 지수법칙은 자주 이용됩니다.

즉, a>0, b>0이고, m, n이 실수일 때

$$(1) a^m \times a^n = a^{m+n}$$

$$(2) a^m \div a^n = a^{m-n}$$

(3) 
$$(a^m)^n = a^{mn}$$

$$(4) (ab)^n = a^n b^n$$

#### 03-1 다음 물음에 답하여라.

- (1) 함수  $f(x) = \frac{1}{2}(3^x 3^{-x})$ 에 대하여 f(p) = 2일 때, f(3p)의 값을 구하여라.
- (2) 함수  $g(x)=3^{-x}$ 에 대하여 g(2a)g(a)g(2b)=27, g(a-b)=3일 때.  $3^{2a}+3^{2b}$ 의 값을 구하여라.

표현 바꾸기

03-2 지수함수  $f(x)=a^x(a>0, a\neq 1)$ 에 대한 설명 중 〈보기〉에서 옳은 것만을 있는 대로 고른

 $\neg. \ f(-x) = \frac{1}{f(x)} \qquad \quad \bot. \ f(x) = \sqrt{f(2x)} \qquad \quad \Box. \ f(x^3) = \{f(x)\}^3$ 

 $\bigcirc$ 

② L

③ 7. ∟

4 L. C

(5) 7, L, E

개념 넓히기 ★★☆

03-3 두 함수  $f(x)=2^x+2^{-x}$ ,  $g(x)=2^x-2^{-x}$ 에 대하여 f(x)f(y)=14, g(x)g(y)=10일 때, f(x+y)의 값을 구하여라.

**8 03-1** (1) 38 (2)  $\frac{10}{9}$  **03-2** (3)

**03-3** 12

## 예제

04

오른쪽 그림과 같이 함수  $y=2^x$ 의 그래프 위의 두점  $A(a, 2^a)$ ,  $B(a+1, 2^{a+1})$ 에서 x축에 내린 수선의 발을 각각 C, D, y축에 내린 수선의 발을 각각 E, F라고 하자. 사각형 ACDB와 사각형 ABFE의 넓이의 비가 2:5일 때, 양수 a의 값을 구하여라.



#### 접근 방법

일반적으로 x축에 평행한 직선 위의 두 점  $P(x_1, y_1)$ ,  $Q(x_2, y_1)$  사이의 거리는

$$\overline{PQ} = \sqrt{(x_2 - x_1)^2 + (y_1 - y_1)^2} = |x_2 - x_1|$$

입니다. 즉, x좌표의 차가 두 점 사이의 거리가 됩니다. 마찬가지로 y축에 평행한 직선 위의 두 점  $R(x_1,y_1)$ ,  $S(x_1,y_2)$  사이의 거리는 y좌표의 차, 즉

$$\overline{RS} = |y_2 - y_1|$$

입니다.

Bible x축 (또는 y축)에 평행한 선분의 길이는 x좌표 (또는 y좌표)의 차를 이용한다.

#### 상세 풀이

$$\Box ACDB = \frac{1}{2} \times (2^{a} + 2^{a+1}) \times 1 = \frac{2^{a} + 2^{a+1}}{2} = 2^{a} \times \frac{1+2}{2} = 3 \times 2^{a-1}$$

$$\Box ABFE = \frac{1}{2} \times (a+a+1) \times (2^{a+1} - 2^{a}) = \frac{2a+1}{2} \times 2^{a} = (2a+1)2^{a-1}$$

이때. □ACDB: □ABFE=2:5이므로

$$3 \times 2^{a-1}$$
:  $(2a+1)2^{a-1}=2$ : 5

$$3: (2a+1)=2: 5, 4a+2=15$$
  $\therefore a=\frac{13}{4}$ 

정답  $\Rightarrow \frac{13}{4}$ 

#### 보충 설명

오른쪽 그림과 같이 윗변의 길이가 a, 아랫변의 길이가 b, 높이가 h인 사다리꼴의 넓이 S는

$$S = \frac{a+b}{2}h$$



04-1 오른쪽 그림과 같이 함수  $y=3^x$ 의 그래프 위의 두 점  $A(a, 3^a)$ ,  $B(a+1, 3^{a+1})$ 에서 x축에 내린 수선의 발을 각각  $\mathbf{C},\ \mathbf{D},\ y$ 축에 내린 수선의 발을 각각  $\mathbf{E},\ \mathbf{F}$ 라고 하자. 사각형

ACDB와 사각형 ABFE의 넓이의 비가 4:5일 때, 양수 a

의 값을 구하여라.



표형 바꾸기

04-2 오른쪽 그림과 같이 직선 y=k (k>1)가 y축과 만나는 점을 B, 점 A(0, 1)을 지나는 두 함수  $y=2^x$ ,  $y=a^x$ 의 그래프와 만나는 점을 각각 C. D라고 하자. 삼각형 ACB와 삼각형 ADC의 넓이의 비가 2:1일 때, 상수 a의 값은?

(단. 1<a<2)



(1)  $\sqrt[4]{2}$ 

 $2\sqrt[3]{2}$ 

(3) √3

 $(4)\sqrt[3]{4}$ 

(5) √8

개념 넓히기 ★☆☆

오른쪽 그림과 같이 두 곡선  $y=2^{x}-1$ ,  $y=2^{-x}+\frac{a}{9}$ 의 교점 04-3 을 A라고 하자. 점 B의 좌표가 (4, 0)일 때, 삼각형 AOB의 넓이가 16이 되도록 하는 양수 a의 값을 구하여라.

(단, O는 원점이다.)



**64-1**  $\frac{3}{4}$ 

**04-2** ④

**04-3** 71

#### 지수함수의 그래프를 이용한 대소 관계

## <sup>예제</sup> 05

다음 세 수의 대소를 비교하여라.

(1)  $3^{0.5}$ ,  $\sqrt[4]{27}$ ,  $\sqrt[3]{9}$ 

(2)  $\sqrt{0.5}$ ,  $\sqrt[3]{0.25}$ ,  $\sqrt[5]{0.125}$ 

#### 접근 방법

지수함수  $y=a^x$   $(a>0, a\neq 1)$ 은 a>1일 때 x의 값이 증가하면 y의 값도 증가하고, 0<a<1일 때 x의 값이 증가하면 y의 값은 감소합니다.

따라서 거듭제곱근을 믿어 같은 거듭제곱 꼴로 나타낸 후 지수함수의 성질을 이용하여 대소를 비교합니다.

Bible 
$$a>1$$
일 때,  $x_1 < x_2 \iff a^{x_1} < a^{x_2}$   $0 < a < 1$ 일 때,  $x_1 < x_2 \iff a^{x_1} > a^{x_2}$ 

#### 상세 풀이

(1) 밑이 3인 거듭제곱 꼴로 나타내면

$$3^{0.5} = 3^{\frac{1}{2}}, \sqrt[4]{27} = \sqrt[4]{3^3} = 3^{\frac{3}{4}}, \sqrt[3]{9} = \sqrt[3]{3^2} = 3^{\frac{2}{3}}$$

이때, 함수  $y=3^x$ 은 x의 값이 증가하면 y의 값도 증가하고,  $\frac{1}{2}<\frac{2}{3}<\frac{3}{4}$ 이므로

$$3^{\frac{1}{2}} < 3^{\frac{2}{3}} < 3^{\frac{3}{4}}$$
  $\therefore 3^{0.5} < \sqrt[3]{9} < \sqrt[4]{27}$ 

(2) 밑이 0.5인 거듭제곱 꼴로 나타내면

$$\sqrt{0.5} = 0.5^{\frac{1}{2}}, \sqrt[3]{0.25} = \sqrt[3]{0.5^2} = 0.5^{\frac{2}{3}}, \sqrt[5]{0.125} = \sqrt[5]{0.5^3} = 0.5^{\frac{3}{5}}$$

이때, 함수  $y=0.5^x$ 은 x의 값이 증가하면 y의 값은 감소하고,  $\frac{1}{2}<\frac{3}{5}<\frac{2}{3}$ 이므로

$$0.5^{\frac{2}{3}} < 0.5^{\frac{3}{5}} < 0.5^{\frac{1}{2}}$$
  $\therefore \sqrt[3]{0.25} < \sqrt[5]{0.125} < \sqrt{0.5}$ 

정답  $\Rightarrow$  (1)  $3^{0.5} < \sqrt[3]{9} < \sqrt[4]{27}$  (2)  $\sqrt[3]{0.25} < \sqrt[5]{0.125} < \sqrt{0.5}$ 

#### 보충 설명

지수의 대소 비교는 거듭제곱근의 대소 비교와 마찬가지로 밑을 통일하거나 똑같이 거듭제곱하는 방법, 지수를 통일하는 방법, 두 지수의 비를 조사하는 방법 등 여러 가지 방법이 있습니다.

따라서 주어진 수의 형태에 따라 어떤 방법을 써야 하는지 다양하게 접근해 봅니다.

**수자** 바꾸기

#### 05-1 다음 세 수의 대소를 비교하여라.

(1)  $2^{0.5}$ ,  $\sqrt[5]{4}$ ,  $0.5^{-\frac{3}{4}}$ 

(2)  $\left(\frac{1}{2}\right)^{\frac{1}{3}}$ ,  $\left(\frac{1}{3}\right)^{\frac{1}{4}}$ ,  $\left(\frac{1}{5}\right)^{\frac{1}{6}}$ 

 $(3) 2^{444}, 3^{333}, 5^{222}$ 

 $(4) \sqrt[3]{0.2}, \sqrt[4]{0.04}, \sqrt[15]{0.008}$ 

표현 바꾸기

#### 05-2 다음 중 부등식 $a^m < a^n < b^n < b^m$ 을 만족시키는 두 양수 a, b와 두 자연수 m, n에 대하 여 옳은 것은?

- ① a < 1 < b, m > n ② a < 1 < b, m < n
- ③ a < b < 1, m < n

- $\textcircled{4} \ 1 < a < b, \ m > n$   $\textcircled{5} \ 1 < a < b, \ m < n$

개념 넓히기 ★★☆

#### 05-3 다음 물음에 답하여라.

- (1) 세 양수 a, b, c에 대하여 등식  $2^{5a}=3^{3b}=5^{2c}$ 이 성립할 때, a, b, c의 대소를 비 교하여라
- (2) 세 양수 x, y, z에 대하여 등식  $2^x = 3^y = 5^z$ 이 성립할 때, 2x, 3y, 5z의 대소를 비교하여라.

$$\textbf{05-1} \quad \text{(1)} \ \sqrt[5]{4} < 2^{0.5} < 0.5^{-\frac{3}{4}} \quad \text{(2)} \left(\frac{1}{3}\right)^{\frac{1}{4}} < \left(\frac{1}{5}\right)^{\frac{1}{6}} < \left(\frac{1}{2}\right)^{\frac{1}{3}} \quad \text{(3)} \ 2^{444} < 5^{222} < 3^{333} \quad \text{(4)} \ \sqrt[4]{0.04} < \sqrt[3]{0.2} < \sqrt[15]{0.008}$$

05-2 ①

**05-3** (1) a < b < c (2) 3y < 2x < 5z

#### 지수함수의 최대, 최소

<sup>ММ</sup> 06

#### 주어진 범위에서 다음 함수의 최댓값과 최솟값을 각각 구하여라.

$$(1) y = 2^{2x-4} + 5 (2 \le x \le 4)$$

$$(2) y = 2^x \times 3^{-x+1} (-1 \le x \le 1)$$

#### 접근 방법

지수법칙을 이용하여 주어진 함수를  $y=a^{x-b}+a$  꼴로 변형한 후 그래프를 그려 봅니다.

Bible

지수함수  $y=a^x$ 은

a>1일 때, x의 값이 증가하면 y의 값도 증가한다.

0 < a < 1일 때, x의 값이 증가하면 y의 값은 감소한다.

#### 상세 풀이

 $(1)y=2^{2x-4}+5=2^{2(x-2)}+5=4^{x-2}+5$ 

밑이 4이고 4>1이므로 증가하는 함수이고, 그래프는 오른쪽 그림과 같습니다. 따라서  $2 \le x \le 4$ 에서 주어진 함수는

x=4일 때 최대이고, 최댓값은  $4^{4-2}+5=16+5=21$ 

x=2일 때 최소이고. 최솟값은  $4^{2-2}+5=1+5=6$ 



$$(2) y = 2^{x} \times 3^{-x+1} = 2^{x} \times 3^{-x} \times 3^{1} = 2^{x} \times \left(\frac{1}{3}\right)^{x} \times 3 = 3\left(\frac{2}{3}\right)^{x}$$

밑이  $\frac{2}{3}$ 이고  $0 < \frac{2}{3} < 1$ 이므로 감소하는 함수이고, 그래프는 오른쪽 그림과 같습니다.

따라서  $-1 \le x \le 1$ 에서 주어진 함수는

x=-1일 때 최대이고, 최댓값은  $3 \times \left(\frac{2}{3}\right)^{-1} = 3 \times \frac{3}{2} = \frac{9}{2}$ 

x=1일 때 최소이고, 최솟값은  $3 \times \left(\frac{2}{3}\right)^1 = 2$ 



정답  $\Rightarrow$  (1) 최댓값 : 21, 최솟값 : 6 (2) 최댓값 :  $\frac{9}{2}$ , 최솟값 : 2

#### 보충 설명

최대. 최소 문제는 그래프만 그릴 수 있으면 바로 확인할 수 있습니다.

그런데 사실 위와 같은 몇몇 함수는 굳이 그리지 않더라도 답을 쉽게 알 수 있습니다. 지수함수와 로그함수, 무리함수 등은 계속 증가하거나 계속 감소하므로 주어진 범위의 양 끝에 있는 값을 대입해서 큰 값을 최댓값, 작은 값을 최솟값으로 구하면 됩니다

06-1 주어진 범위에서 다음 함수의 최댓값과 최솟값을 각각 구하여라.

$$(1) y = 3^{3-2x} (0 \le x \le 2)$$

(2) 
$$y = \left(\frac{1}{2}\right)^{-x^2+2x+1} \left(-1 \le x \le 2\right)$$

표현 바꾸기

♦ 보충 설명

06-2  $-1 \le x \le 4$ 에서 정의된 함수  $f(x) = x^2 - 6x - 1$ 에 대하여  $g(x) = 2^{f(x)}$ 이라고 하면, 함수 g(x)는 x=a일 때 최댓값 b를 가진다. 상수 a, b에 대하여 a+b의 값을 구하여라.

개념 넓히기 ★★☆

06-3 두 함수  $f(x)=a^x$ ,  $g(x)=x^2+2x+3$ 에 대하여 함수  $y=(f\circ g)(x)$ 가 최솟값 4를 가질 때,  $(g \circ f)(1)$ 의 값은? (단, a > 1)

①7

(2) **9** 

③ 11

④ 13

⑤ 15

정답 **06-1** (1) 최댓값 : 27, 최솟값 :  $\frac{1}{3}$  (2) 최댓값 : 4, 최솟값 :  $\frac{1}{4}$ 

**06-2** 63

**06-3** ③

## <sup>예제</sup> 07

 $1 \le x \le 4$ 일 때, 함수  $y = 4^x - 2^{x+4} + 30$ 의 최댓값과 최솟값을 각각 구하여라.

#### 접근 방법

 $4^x = (2^2)^x = (2^x)^2$ 이므로  $2^x$ 을 t로 치환하여 t에 대한 이차함수의 최댓값과 최솟값을 구합니다. 이때, 변수 t의 값의 범위에 주의합니다.

Bible  $a^x$  꼴이 반복되는 함수의 최대, 최소  $\Rightarrow a^x$ 을 t로 치환한다.

#### 상세 풀이

지수법칙을 이용하여 주어진 식을 변형하면

$$y=4^{x}-2^{x+4}+30=(2^{2})^{x}-2^{4}\times 2^{x}+30=(2^{x})^{2}-16\times 2^{x}+30$$

 $2^x = t$ 로 놓으면  $1 \le x \le 4$ 에서

$$2^1 \le 2^x \le 2^4$$
  $\therefore 2 \le t \le 16$ 

이때, 주어진 함수는

$$y=t^2-16t+30=(t-8)^2-34$$

따라서  $2 \le t \le 16$ 에서 함수  $y = (t-8)^2 - 34$ 는

t=16일 때 최대이고, 최댓값은  $(16-8)^2-34=30$ 

t=8일 때 최소이고, 최솟값은  $(8-8)^2-34=-34$ 



정답 ⇒ 최댓값:30, 최솟값:-34

#### 보충 설명

제한된 범위  $a \le x \le \beta$ 에서 이차함수  $f(x) = a(x-p)^2 + q$  (a>0)의 최대, 최소는 축 x=p가 주어진 범위에 포함되는지 여부에 따라 나누어 생각할 수 있습니다.

- (i) 축 x=p가 범위  $\alpha \le x \le \beta$ 에 포함될 때
  - a>0 y  $f(\beta)$   $f(\alpha)$   $f(\alpha)$   $f(\beta)=q$   $f(\beta)=$



(ii) 축 x=b가 범위  $\alpha \le x \le \beta$ 에 포함되지 않을 때

따라서  $a^*$ 을 t로 치환하여 t에 대한 이차함수의 최대, 최소를 구할 때 반드시 t의 값의 범위에 축이 포함되는지 포함되지 않는지 확인해야 합니다.

07-1 주어진 범위에서 다음 함수의 최댓값과 최솟값을 각각 구하여라.

$$(1) y = 4^{-x} + \left(\frac{1}{2}\right)^{x-1} \left(-2 \le x \le 0\right)$$

$$(2) y = 4^{x+1} - 2^{x+3} + 1 (-1 \le x \le 2)$$

**표현** 바꾸기

07-2 다음 물음에 답하여라.

- (1) 함수  $y=4^x+4^{-x}-2^{x+2}-2^{-x+2}+2$ 의 최솟값을 구하여라.
- (2) 함수  $y=6(3^x+3^{-x})-(9^x+9^{-x})+2$ 의 최댓값을 구하여라.

개념 넓히기 ★★☆

**07-3** 함수  $f(x)=3^{a+x}+3^{a-x}+2$ 의 최솟값이 20일 때, 상수 a의 값은?

- $\bigcirc 1 2$
- ② -1

③ 0

**4** 1

(5) 2

**8달 07-1** (1) 최댓값: 24, 최솟값: 3 (2) 최댓값: 33, 최솟값: -3

**07-2** (1) - 4 (2) 13

**07-3** ⑤

#### 밑이 같은 지수방정식의 풀이

예세 0.8

#### 다음 방정식을 풀어라.

(1) 
$$2^{x^2+4} = 32^x$$

$$(2)(x-2)^{x-4}=3^{x-4}$$
(단,  $x>2$ )

#### 접근 방법

(1)과 같이 밑을 같게 할 수 있는 지수방정식은 지수법칙을 이용하여  $a^{f(x)} = a^{g(x)}$  꼴로 변형한 후

$$a^{f(x)} = a^{g(x)}(a > 0, a \neq 1) \iff f(x) = g(x)$$

임을 이용하여 풉니다.

한편, (2)와 같이 지수를 같게 할 수 있는 지수방정식은 지수법칙을 이용하여  $a^{f(x)} = b^{f(x)}$  꼴로 변형한 후

$$a^{f(x)} = b^{f(x)} (a > 0, a \neq 1, b > 0, b \neq 1) \iff a = b \neq f(x) = 0$$

임을 이용하여 풉니다.

Bible 
$$a^{f(x)} = a^{g(x)} \Rightarrow f(x) = g(x)$$

#### 상세 풀이

 $(1)32^x = (2^5)^x = 2^{5x}$ 이므로 주어진 방정식은  $2^{x^2+4} = 2^{5x}$ 

믿이 같으므로  $x^2 + 4 = 5x$ 

$$x^2-5x+4=0, (x-1)(x-4)=0$$
  $\therefore x=1 \text{ } \pm \pm x=4$ 

- (2) 다음과 같이 두 가지 경우로 나누어 풀면 됩니다.
  - (i) 지수가 x-4로 서로 같으므로 믿을 같게 하면

$$x-2=3$$
  $\therefore x=5$ 

- (ii) 지수가 0. 즉 x=4이면 주어진 방정식은  $2^0=3^0$ 이므로 등식이 성립합니다.
- (i). (ii)에서 주어진 방정식의 해는 x=4 또는 x=5

정답 
$$\Rightarrow$$
 (1)  $x=1$  또는  $x=4$  (2)  $x=4$  또는  $x=5$ 

#### 보충 설명

[개념] 날하기 08-3과 같이 밑이 문자로 주어진 경우에는 밑이 1인지 아닌지를 반드시 조사해야 합니다. 즉,  $a^{f(x)}\!=\!a^{g(x)}\;(a\!>\!0)\Rightarrow f(x)\!=\!g(x)$  또는  $a\!=\!1$ 

#### 08-1 다음 방정식을 풀어라.

- (1)  $3^{-x^2+4} = 27^x$
- (2)  $(2\sqrt{2})^{x^2} = 4^{x+1}$
- (3)  $2^{x^{2}-1}=3^{x+1}$  (단, x는 정수) (4)  $(x-1)^{x-4}=2^{x-4}$  (단, x>1)

표현 바꾸기

◆보충 설명

## **08-2** 방정식 $2^{x+3} = 49$ 의 근을 $\alpha$ 라고 할 때, 다음 중 옳은 것은?

- ①  $0 < \alpha < 1$  ②  $1 < \alpha < 2$
- ③  $2 < \alpha < 3$
- (4)  $3 < \alpha < 4$  (5)  $4 < \alpha < 5$

개념 넓히기 ★☆☆

### 08-3 다음 방정식을 풀어라.

- (1)  $x^{2x-1} = x^{x+2}$  (단, x > 0)
- (2)  $(x+1)^{x^2} = (x+1)^{2x}$  (단, x > -1)

**08-1** (1) x = -4  $\pm \pm x = 1$  (2)  $x = -\frac{2}{3}$   $\pm \pm x = 2$  (3) x = -1 (4) x = 3  $\pm \pm x = 4$ 

**08-2** ③

**08-3** (1) x=1 또는 x=3 (2) x=0 또는 x=2

#### 치환을 이용한 지수방정식의 풀이

<sup>예제</sup> 09

방정식  $4^x - 3 \times 2^{x+2} + 32 = 0$ 을 풀어라.

#### 접근 방법

 $a^x$  꼴이 반복되는 지수방정식은  $a^x$ 을 t로 치환하여 t에 대한 방정식을 풉니다. 이때, t>0임에 주의하여 해를 구합니다.

Bible  $a^x$  꼴이 반복되는 지수방정식  $\Rightarrow a^x$ 을 t로 치환한다.

#### 상세 풀이

주어진 방정식을 변형하면

$$(2^{2})^{x}-3\times2^{2}\times2^{x}+32=0$$
,  $(2^{x})^{2}-12\times2^{x}+32=0$ 

이때.  $2^x = t (t > 0)$ 로 놓으면  $t^2 - 12t + 32 = 0$ 

$$(t-4)(t-8)=0$$
 :  $t=4$   $\pm t=8$ 

따라서  $2^x = 4 = 2^2$  또는  $2^x = 8 = 2^3$ 이므로

x=2 또는 x=3

정답 ⇒ x=2 또는 x=3

#### 보충 설명

위의 [상세풀이]에서 방정식  $4^x-3\times 2^{x+2}+32=0$ 의 두 실근은 x=2 또는 x=3이고, 방정식  $t^2-12t+32=0$ 의 두 실근은 t=4 또는 t=8입니다. 따라서  $4^x-3\times 2^{x+2}+32=0$ 의 두 실근을  $\alpha$ ,  $\beta$ 라고 하면  $t^2-12t+32=0$ 의 두 실근은  $2^a$ ,  $2^\beta$ 이 된다는 것을 알 수 있습니다. 이때, 이차방정식의 근과 계수의 관계에 의하여  $2^a\times 2^\beta=320$ 미로  $2^{a+\beta}=2^5$ 

에서  $\alpha+\beta=5$ 가 성립합니다.

일반적으로  $a^{2x}+pa^x+q=0$ 의 두 근을 a,  $\beta$ 라고 하면  $a^x$ 을 t (t>0)로 치환한 이처방정식  $t^2+pt+q=0$ 의 두 근은  $a^a$ ,  $a^\beta$ 이 됩니다.

#### 09-1 다음 방정식을 풀어라.

(1) 
$$9^x - 10 \times 3^{x+1} + 81 = 0$$
 (2)  $4^x - 2^{x+2} - 2^5 = 0$ 

(2) 
$$4^x - 2^{x+2} - 2^5 = 0$$

(3) 
$$2^{\frac{x}{2}}(2^{\frac{x}{2}}-2)=8$$

(4) 
$$8^x - 3 \times 4^{x+1} + 2^{x+5} = 0$$

**표현** 바꾸기

#### 09-2 다음 방정식을 풀어라.

(1) 
$$2(4^x+4^{-x})-3(2^x+2^{-x})-1=0$$
 (2)  $(3+2\sqrt{2})^x+(3-2\sqrt{2})^x=6$ 

(2) 
$$(3+2\sqrt{2})^x+(3-2\sqrt{2})^x=6$$

개념 넓히기 ★★☆

#### 09-3 다음 물음에 답하여라.

(1) 방정식  $4^x - 7 \times 2^x + 12 = 0$ 의 두 근을  $\alpha$ ,  $\beta$ 라고 할 때,  $2^{2\alpha} + 2^{2\beta}$ 의 값을 구하여라.

(2) 방정식  $16^x - 12 \times 4^x + 9 = 0$ 의 두 근을  $\alpha$ ,  $\beta$ 라고 할 때,  $2^a + 2^\beta$ 의 값을 구하여라.

정답 09-1 (1) x=1 또는 x=3 (2) x=3 (3) x=4 (4) x=2 또는 x=3

**09-2** (1) x = -1  $\pm \pm x = 1$  (2) x = -1  $\pm \pm x = 1$  **09-3** (1) 25 (2)  $3\sqrt{2}$ 

<sup>예제</sup> 1 ()

다음 부등식을 풀어라.

(1) 
$$4(\sqrt{2})^x > \sqrt{128}$$

(2) 
$$\frac{1}{81} < \left(\frac{1}{3}\right)^{2x} < \frac{1}{\sqrt{3}}$$

#### 접근 방법

밑을 같게 할 수 있는 지수부등식은 지수법칙을 이용하여  $a^{f(x)} < a^{g(x)}$  꼴로 변형한 후 지수를 비교합니다. 이때, (밑)>1이면 지수의 부등호의 방향은 그대로이고, 0<(밑)<1이면 지수의 부등호의 방향은 반대로 바뀝니다.

Bible 
$$a>1$$
일 때,  $a^{f(x)} < a^{g(x)} \iff f(x) < g(x)$   $0 < a < 1$ 일 때,  $a^{f(x)} < a^{g(x)} \iff f(x) > g(x)$ 

#### 상세 풀이

(1)  $4(\sqrt{2})^x = 2^2 \times 2^{\frac{x}{2}} = 2^{2 + \frac{x}{2}}$ ,  $\sqrt{128} = \sqrt{2^7} = 2^{\frac{7}{2}}$ 이므로 주어진 부등식은

$$2^{2+\frac{x}{2}} > 2^{\frac{7}{2}}$$

이때, 밑이 2이고 2>1이므로

$$2 + \frac{x}{2} > \frac{7}{2}, \frac{x}{2} > \frac{3}{2}$$
 :  $x > 3$ 

$$\left(\frac{1}{3}\right)^4 < \left(\frac{1}{3}\right)^{2x} < \left(\frac{1}{3}\right)^{\frac{1}{2}}$$

이때, 밑이 $\frac{1}{3}$ 이고 $0 < \frac{1}{3} < 1$ 이므로

$$4 > 2x > \frac{1}{2}$$
 :  $\frac{1}{4} < x < 2$ 

정답  $\Rightarrow$  (1) x>3 (2)  $\frac{1}{4} < x < 2$ 

#### 보충 설명

지수함수  $y=a^x$   $(a>0, a\neq 1)$ 은

- (i) a>1일 때 x의 값이 증가하면 y의 값도 증가합니다.
- (ii) 0 < a < 1일 때, x의 값이 증가하면 y의 값은 감소합니다.
- 이 성질이 지수부등식에 적용되어  $a^{\mathit{f}(x)} < a^{\mathit{g}(x)}$ 에서 a > 1이면 큰 쪽의 지수가 커야 하므로 f(x) < g(x)이고,
- 0 < a < 1이면 큰 쪽의 지수가 작아야 하므로 f(x) > g(x)입니다.

03

**숫자** 바꾸기

## 10-1 다음 부등식을 풀어라.

$$(1) \left(\frac{1}{4}\right)^{x-2} < 32$$

(2) 
$$\frac{1}{25} < 5^x < 125$$

$$(3) \left(\frac{3}{2}\right)^{x^2} \le \left(\frac{2}{3}\right)^{2x-3}$$

(4) 
$$4^{x^2} < \left(\frac{1}{\sqrt{2}}\right)^{8x}$$

표현 바꾸기

## 10-2 다음 부등식을 풀어라.

(1) 
$$x^{3x-2} > x^{x+4}$$
 (단.  $x > 0$ )

(1) 
$$x^{3x-2} > x^{x+4}$$
 (단,  $x > 0$ ) (2)  $(x^2 - 2x + 1)^{x-1} < 1$  (단,  $x \ne 1$ )

개념 넓히기 ★★☆

**10-3** 0 < a < b < 1일 때, 다음 부등식을 만족시키는 정수 x의 개수를 구하여라.

$$a^6 \le a^{6-x}b^x \le b^6$$

**10-1** (1)  $x > -\frac{1}{2}$  (2) -2 < x < 3 (3)  $-3 \le x \le 1$  (4) -2 < x < 0

**10-2** (1) 0<x<1 또는 x>3 (2) x<0 또는 1<x<2 **10-3** 7

#### 치환을 이용한 지수부등식의 풀이

## 예제 · 1

#### 다음 부등식을 풀어라.

$$(1) 2 \times 4^x - 17 \times 2^x + 8 < 0$$

$$(2) 9^{x} + 3^{x-2} > 3^{x+2} + 1$$

#### 접근 방법

 $a^x$  꼴이 반복되는 지수부등식은  $a^x$ 을 t로 치환하여 t에 대한 부등식을 풉니다. 이때, t>0임에 주의하여 해를 구합니다.

Bible

 $a^x$  꼴이 반복되는 지수부등식  $\Rightarrow a^x$ 을 t로 치환한다.

#### 상세 풀이

(1) 주어진 부등식을 변형하면

$$2 \times (2^{x})^{2} - 17 \times 2^{x} + 8 < 0$$

이때. 
$$2^x = t (t > 0)$$
로 놓으면  $2t^2 - 17t + 8 < 0$ 

$$(2t-1)(t-8) < 0$$
  $\therefore \frac{1}{2} < t < 8$ 

따라서 
$$\frac{1}{2}$$
< $2^x$ < $8$ 이므로  $2^{-1}$ < $2^x$ < $2^3$ 

밑이 2이고 2>1이므로 -1 < x < 3

(2) 주어진 부등식을 변형하면

$$(3^x)^2 + \frac{1}{9} \times 3^x > 9 \times 3^x + 1$$

이때, 
$$3^x = t (t > 0)$$
로 놓으면  $t^2 + \frac{1}{9}t > 9t + 1$ 

$$9t^2 - 80t - 9 > 0$$
,  $(9t + 1)(t - 9) > 0$ 

$$\therefore t < -\frac{1}{9}$$
 또는  $t > 9$ 

그런데 t>0이므로 t>9

따라서  $3^x > 9$ 이므로  $3^x > 3^2$ 

믿이 3이고 3>1이므로 x>2

정답  $\Rightarrow$  (1) -1 < x < 3 (2) x > 2

### 보충 설명

위의 **예제**와 같이  $a^{f(x)}$ 을 t로 치환하면 대부분 t에 대한 이치부등식이 됩니다. 이치부등식을 풀어서 구한 해를 다시 x에 대한 해로 바꾸기 위해서 치환했던 식  $a^{f(x)} = t$ 를 다시 대입하면 앞에서 공부한  $a^{f(x)} < a^{g(x)}$  꼴의 지수부등식이 됩니다. 즉, 위의 문제와 같은 지수부등식을 풀려면 앞에서 나온 간단한 지수부등식부터 확실하게 풀수 있어야 합니다.

#### 11-1 다음 부등식을 풀어라.

- (1)  $9^x 4 \times 3^{x+2} + 243 < 0$  (2)  $2^{2x+1} 9 \times 2^x + 4 \le 0$ 

  - (3)  $3^{2x+1} 26 \times 3^x 9 \ge 0$
- $(4) \left(\frac{1}{4}\right)^{x} \left(\frac{1}{2}\right)^{x+1} 3 > 0$

**표현** 바꾸기

#### 11-2 다음 물음에 답하여라.

- (1) 부등식  $4a^{2x} 5a^x + 1 < 0$ 의 해가 0 < x < 2일 때, a의 값을 구하여라. (단, 0 < a < 1)
- (2) 부등식  $3a^{2x} 28a^x + 9 > 0$ 의 해가 x < -1 또는 x > 2일 때, a의 값을 구하여라.

(단, a>1)

## 개념 넓히기 ★★☆

11-3 a>0,  $a\neq1$ 일 때, 다음 부등식을 풀어라.

(1) 
$$a^{2x} - a^{x+2} - a^{x-2} + 1 < 0$$
 (2)  $a^{2x-2} - 1 < a^{x+1} - a^{x-3}$ 

$$(2) \ a^{2x-2} - 1 < a^{x+1} - a^{x-3}$$

- **85 11-1** (1) 2 < x < 3 (2)  $-1 \le x \le 2$  (3)  $x \ge 2$  (4) x < -1 **11-2** (1)  $\frac{1}{2}$  (2) 3
  - **11-3** (1) -2 < x < 2 (2) a > 1일 때 x < 3, 0 < a < 1일 때 x > 3

#### 지수방정식과 지수부등식의 응용

<sup>예제</sup> 12

x에 대한 방정식

 $4^{x}-k\times 2^{x+2}+k=0$ 

이 서로 다른 두 실근을 가질 때, 실수 k의 값의 범위를 구하여라.

#### 접근 방법

주어진 방정식에서  $2^x$ 을 t로 치환합니다. 이때,  $2^x>0$ 에서 t>0이므로 x에 대한 방정식  $4^x-k\times 2^{x+2}+k=0$ 이 서로 다른 두 실근을 가진다는 것은 t에 대한 방정식  $t^2-4kt+k=0$ 이 서로 다른 두 양의 실근을 가진다는 뜻이 됩니다.

Bible  $a^x$ 을 t로 치환할 때는 t>0이라는 것에 주의한다.

#### 상세 풀이

주어진 방정식을 변형하면  $(2^x)^2 - 4k \times 2^x + k = 0$ 

이때,  $2^x = t \ (t > 0)$ 로 놓으면  $t^2 - 4kt + k = 0$  .....  $\bigcirc$ 

주어진 방정식이 서로 다른 두 실근을 가지면 ①이 서로 다른 두 양의 실근을 가집니다.

(i) 이차방정식 ①의 판별식을 D라고 하면

$$\frac{D}{4} = (-2k)^2 - 1 \times k > 0, 4k^2 - k > 0$$

$$k(4k-1)>0$$
 :  $k<0$  또는  $k>\frac{1}{4}$ 

- (ii) (두 근의 합)=4k>0 : k>0
- (iii) (두 근의 곱)=k>0
- $(i)\sim(iii)$ 에서 구하는 k의 값의 범위는  $k>\frac{1}{4}$

정답  $\Rightarrow$   $k > \frac{1}{4}$ 

#### 보충 설명

수학 〈상〉 **09** 여러 가지 부등식에서 배운 것과 같이 계수가 실수인 이차방정식의 두 근이 실수이면 직접 두 근을 구하지 않고도 판별식과 근과 계수의 관계를 이용하여 두 실근의 부호를 판별할 수 있습니다.

계수가 실수인 이차방정식  $ax^2+bx+c=0$ 의 두 실근을  $\alpha$ ,  $\beta$ , 판별식을 D라고 하면

- ① 두 근이 모두 양수일 조건 :  $D \ge 0$ ,  $\alpha + \beta > 0$ ,  $\alpha \beta > 0$
- ② 두 근이 모두 음수일 조건 :  $D \ge 0$ ,  $\alpha + \beta < 0$ ,  $\alpha \beta > 0$
- ③ 두 근이 서로 다른 부호일 조건 :  $\alpha\beta$ <0

#### 12-**1** 다음 물음에 답하여라.

- (1) x에 대한 방정식  $9^{x}-2\times 3^{x}+a=0$ 이 서로 다른 두 실근을 가질 때, 실수 a의 값의 범위를 구하여라.
- (2) x에 대한 방정식  $4^x 2^{x+a} + 2^{a+1} = 0$ 이 실근을 가질 때, 실수 a의 값의 범위를 구하 여라.

표현 바꾸기 ◆ 다른 풀이

#### **12-2** 다음 물음에 답하여라.

- (1) 모든 실수 x에 대하여 부등식  $4^x-4\times 2^x+k\geq 0$ 이 항상 성립하도록 하는 실수 k의 값의 범위를 구하여라.
- (2) 모든 실수 x에 대하여 부등식  $\left(\frac{1}{4}\right)^x + \left(\frac{1}{2}\right)^{x-2} + k > 0$ 이 항상 성립하도록 하는 실수 k의 값의 범위를 구하여라.

## 개념 넓히기 ★★★

12-3 x에 대한 방정식  $4^{x}+4^{-x}-2^{1+x}-2^{1-x}+a=0$ 이 적어도 하나의 실근을 가지도록 하는 실수 a의 값의 범위를 구하여라.

#### 지수함수의 그래프와 격자점의 개수

<sup>পাস</sup> 13

좌표평면에서 두 곡선  $y=2^x$ ,  $y=4^x$ 과 직선 y=32로 둘러싸인 도형의 내부 또는 그 경계에 포함되는 정사각형 중에서 네 꼭짓점의 x좌표, y좌표가 모두 자연수이고한 변의 길이가 1인 정사각형의 개수를 구하여라.

#### 접근 방법

좌표평면 위에서 x좌표, y좌표가 모두 정수인 점을 앞으로 격자점이라고 하겠습니다!^^ 구하는 정사각형의 네 꼭짓점의 x좌표, y좌표가 모두 자연수이므로 [그림 1]과 같이 x좌표가 1, 2, 3, 4, …일 때로 나누어 생각해 봅시다.

즉, 좌표평면 위에 모눈을 그려서 지수함수  $y=2^x$ 에서 점 (1,2), 점 (2,4), 점 (3,8), 점 (4,16), 점 (5,32), 지수함수  $y=4^x$ 에서 점 (1,4), 점 (2,16), 점 (3,64)에 주목하여 정사각형의 개수를 차근차 근 세면 됩니다.

Bible 지수함수의 그래프에서 격자점의 개수는 x좌표를 기준으로 생각하자!

### 상세 풀이

(i)  $1 \le x \le 2$ 일 때 정사각형은 존재하지 않습니다.

(ii) 2≤x≤3일 때
[그림 1]과 같이 구하는 정사각형의 개수는
(2⁴-2³)×(3-2)=8

(iii)  $3 \le x \le 4$ 일 때 [그림 2]와 같이 구하는 정사각형의 개수는  $(2^5 - 2^4) \times (4 - 3) = 16$ 

(iv)  $4 \le x \le 5$ 일 때  $y = 2^x$ 에서  $2^4 \le y \le 2^5$ 이므로 [그림 2]와 같이 정사각형은 존재하지 않습니다.

(i)∼(iv)에서 구하는 정사각형의 개수는 8+16=24



정답 ⇒ 24

#### 보충 설명

격자점의 개수를 구할 때에는 x좌표, y좌표가 모두 자연수인지, 모두 정수인지 꼭 구별하도록 합니다. 또한 도형의 내부, 도형의 외부는 경계를 제외한다는 점에 주의합니다.

13-1 좌표평면에서 두 곡선  $y=3^x$ ,  $y=9^x$ 과 직선 y=81로 둘러싸인 도형의 내부 또는 그 경계에 포함되는 정사각형 중에서 네 꼭짓점의 x좌표, y좌표가 모두 자연수이고 한 변의 길이가 1인 정사각형의 개수를 구하여라.



**표현** 바꾸기

13-2 좌표평면에서 함수  $y=2^{|x|}$ 의 그래프와 직선 y=32로 둘러싸인 도형의 내부 또는 그 경계에 포함되는 정사각형 중에서 네 꼭짓점의 x좌표, y좌표가 모두 정수이고 한 변의 길이가 1인 정사각형의 개수를 구하여라.

정답 **13-1** 54 **13-2** 196