Relatório T1 Simulação de Sistemas de Controle PUCRS

Autores:

Gabriel Eduardo Decian, Daniela Schardong

3 de novembro de 2025

Sumário

1	Intro	dução		2
2	Mod	elo no	Simulink	2
3	Scrip	t com	base do Módulo Simulink	3
4	Resu 4.1	Gráfico 4.1.1 4.1.2 4.1.3 4.1.4	e Análise os com base em Ti $T_i = \infty \text{ (Controlador P)}$ $T_i = 10 \text{ s (Ação integral fraca)}$ $T_i = 1 \text{ s (Ação integral moderada)}$ $T_i = 0.1 \text{ s (Ação integral muito forte)}$ os com base em K_p $K_p = 0.5 \text{ (Ganho proporcional baixo)}$ $K_p = 1 \text{ (Ganho proporcional moderado)}$ $K_p = 2 \text{ (Ganho proporcional elevado)}$ $K_p = 10 \text{ (Ganho proporcional muito elevado)}$ Análise comparativa dos gráficos por K_p	8 8 8 9 10 11 11 12 13 14 15
Li	sta	de S	cripts	
	1	Script	MATLAB para simulação do sistema PI no Simulink	3
Li	sta	de F	iguras	
1:	1 2 3 4 5 6 7 8 9	Respos Respos Respos Respos Respos Respos Respos	o criado no Simulink baseado no modelo encontrado no enunciado sta ao degrau unitário para $T_i=\infty$ (Controlador P)	2 8 9 10 11 12 13 14 15
Li	sta	de E	quações	
1 2 3	Funç	ão de tr	ransferência do controlador PI	2 2 3

1 Introdução

Este trabalho apresenta a análise do comportamento de um sistema de controle PI (Proporcional-Integral) sem ação derivativa através de simulações computacionais no ambiente MATLAB/Simulink. O estudo tem como objetivo investigar os efeitos dos parâmetros do controlador PI na resposta ao degrau unitário de um sistema de segunda ordem.

O controlador PI é amplamente utilizado em aplicações industriais devido à sua capacidade de eliminar o erro de regime permanente através da ação integral, mantendo uma resposta dinâmica adequada através da ação proporcional. A análise paramétrica dos ganhos K_p (proporcional) e T_i (tempo integral) é fundamental para compreender o comportamento do sistema em malha fechada e estabelecer critérios de projeto adequados.

A função de transferência do controlador PI é dada por:

$$C(s) = K_p \left(1 + \frac{1}{T_i s} \right) = K_p + \frac{K_i}{s} \tag{1}$$

onde $K_i = K_p/T_i$ é o ganho integral.

O sistema em análise consiste em uma planta de segunda ordem com função de transferência:

$$G(s) = \frac{100}{s^2 + 6s + 100} \tag{2}$$

Este relatório investiga sistematicamente o comportamento do sistema em malha fechada para diferentes combinações dos parâmetros $K_p \in \{0.5,1,2,10\}$ e $T_i \in \{\infty,10,1,0.1\}$ segundos, analisando aspectos como estabilidade, tempo de resposta, overshoot e erro de regime permanente.

2 Modelo no Simulink

Para realizar as simulações e análises propostas neste trabalho, foi desenvolvido um modelo no ambiente Simulink que representa o sistema de controle PI em malha fechada. O modelo implementa a estrutura clássica de controle por realimentação unitária negativa, permitindo a variação sistemática dos parâmetros do controlador durante as simulações.

A Figura 1 apresenta a estrutura completa do modelo desenvolvido no Simulink.

Figura 1: Modelo criado no Simulink baseado no modelo encontrado no enunciado

O modelo é composto pelos seguintes elementos principais:

- **Step:** Gerador de sinal degrau unitário que serve como referência para o sistema;
- Sum: Somador que calcula o erro entre a referência e a saída realimentada;
- Gain (Kp): Bloco que implementa o ganho proporcional do controlador;
- Integrator (1/s): Integrador que implementa a ação integral;

- Gain1 (1/Ti): Ganho que define o tempo integral do controlador;
- Transfer Function: Função de transferência da planta $G(s)=\frac{100}{s^2+6s+100};$
- To Workspace: Bloco que armazena os dados de simulação no workspace do MATLAB.

A configuração permite a modificação automática dos parâmetros K_p e T_i através de scripts MATLAB, facilitando a análise paramétrica sistemática do comportamento do sistema. O caso especial $T_i = \infty$ (controlador puramente proporcional) é implementado configurando-se o ganho do bloco Gain1 para um valor próximo de zero (ε) , conforme recomendado no enunciado.

Matematicamente, quando $T_i \to \infty$, o ganho integral é calculado como:

$$\mathsf{Gain1} = \frac{1}{T_i} = \frac{1}{\frac{1}{\varepsilon}} = \varepsilon \tag{3}$$

Onde ε representa o menor número positivo representável no MATLAB (eps), efetivamente eliminando a ação integral do controlador.

3 Script com base do Módulo Simulink

Para automatizar a variação dos parâmetros do controlador PI e a geração dos gráficos de resposta ao degrau, foi desenvolvido um script em MATLAB que interage diretamente com o modelo Simulink. O script executa as simulações para todas as combinações de K_p e T_i especificadas no enunciado, armazena os resultados e gera os gráficos conforme solicitado.

A seguir, apresenta-se o código-fonte do script utilizado:

```
% Valores especificados no enunciado
2 Kp_values = [0.5, 1, 2, 10];
 Ti_values = [Inf, 10, 1, 0.1];
 % Parametros da simulação
                % Duracao da simulacao (s)
 t_final = 20;
 step_size = 0.001;  % Passo fixo
 % Nome do modelo Simulink
nodelName = 'modeloPIsemD';
11 load_system(modelName);
 % Configuração de cores e estilos para os graficos
          colors = [0 \ 0.4470 \ 0.7410;
          0.2 0.7 0.2;
                                % Verde (Kp=2)
16
                               % Roxo (Kp=10)
          0.6 0.1 0.6];
 styles = {'-', '--', ':', '-.'}; % Estilos de linha distintos
 20
 % Configura parametros do modelo
21
 set param(modelName, ...
     'StopTime', num2str(t_final), ...
     'Solver', 'ode45', ...
     'FixedStep', num2str(step_size), ...
25
     'MaxStep', num2str(step_size), ...
26
     'SaveOutput', 'on', ...
     'SaveTime', 'on', ...
```

```
'SaveFormat', 'StructureWithTime', ...
29
      'SignalLogging', 'on', ...
30
      'SignalLoggingName', 'logsout');
31
32
33 %% Gerar 4 figuras conforme enunciado: uma para cada Ti
 for j = 1:length(Ti_values)
      Ti_val = Ti_values(j);
35
36
      % Tratamento do Ti infinito conforme enunciado
37
      if isinf(Ti_val)
38
                                     % Ti infinito
          Ti = 1/eps;
39
                                     % 1/Ti = 1/(1/eps) = eps
          Gain1_value = eps;
40
          Ti_str = 'inf';
41
          Ti_display = '\infty';
42
      else
43
          Ti = Ti_val;
                                     % 1/Ti normal
          Gain1_value = 1/Ti;
45
          Ti_str = strrep(num2str(Ti_val), '.', '_');
46
          Ti_display = num2str(Ti_val);
47
      end
48
49
      % Debug: mostrar valores configurados
      fprintf('Figura %d: Ti = %s, Gain1 = %.6f\n', j, Ti_display,
51
         Gain1_value);
52
      % Criar nova figura
53
      figure('Position', [100 + j*50, 100 + j*50, 800, 600], 'Color', '
54
         white');
      hold on;
55
56
      for i = 1:length(Kp_values)
57
          Kp = Kp_values(i);
58
59
          % Configurar os ganhos no modelo Simulink
          set_param([modelName '/Gain'], 'Gain', num2str(Kp));
                                                                            %
          set_param([modelName '/Gain1'], 'Gain', num2str(Gain1_value));
62
              % 1/Ti
63
          % Executar simulação
          sim (modelName);
65
66
          % Extrair dados da simulação
67
          t = saida.time;
68
          y = saida.signals.values;
69
70
          % Plotar curva
71
          plot(t, y, 'Color', colors(i,:), 'LineStyle', styles{i}, ...
                'LineWidth', linewidths(i), 'DisplayName', ['K_p = '
73
                   num2str(Kp)]);
      end
75
      % Formatacao do grafico
76
```

```
if isinf(Ti_val)
77
           title_str = 'Resposta ao Degrau Unitario - T_i = \infty (
78
              Controlador P)';
           filename = 'grafico Ti inf';
79
      else
           title_str = ['Resposta ao Degrau Unitario - T_i = ' num2str(
81
              Ti_val) ' s'];
           filename = ['grafico_Ti_' Ti_str];
82
      end
83
      % Configurar fundo branco e textos pretos
      set(gcf, 'Color', 'white'); % Fundo da figura branco
86
      set(gca, 'Color', 'white');  % Fundo dos eixos branco
87
88
      title(title_str, 'FontSize', 14, 'FontWeight', 'bold', 'Color', '
89
          black');
      xlabel('Tempo (s)', 'FontSize', 12, 'FontWeight', 'bold', 'Color',
90
          'black');
      ylabel('Saida y(t)', 'FontSize', 12, 'FontWeight', 'bold', 'Color',
91
           'black');
92
      % Configurar eixos e grid com cores pretas
93
      set(gca, 'XColor', 'black', 'YColor', 'black', 'FontSize', 11);
      set(gca, 'GridColor', 'black', 'GridAlpha', 0.3);
95
96
      legend('Location', 'best', 'FontSize', 11, 'TextColor', 'black',
97
              'EdgeColor', 'black', 'Color', 'white');
98
      grid on;
99
      xlim([0 t_final]);
100
101
      % Linha de referencia no setpoint
102
      vline(1, 'k--', 'LineWidth', 1, 'Alpha', 0.5, 'HandleVisibility', '
103
          off');
104
      hold off;
105
106
      % Salvar grafico
107
      saveas(gcf, [filename '.png']);
108
      saveas(gcf, [filename '.fig']);
109
      fprintf('Figura %d salva: %s\n', j, filename);
112 end
113
114 %% Gerar 4 figuras adicionais conforme enunciado: uma para cada Kp
  for i = 1:length(Kp_values)
      Kp = Kp_values(i);
116
      Kp_str = strrep(num2str(Kp), '.', '_');
117
118
      % Debug: mostrar Kp configurado
119
      fprintf('Figura %d: Kp = %.1f\n', i+4, Kp);
120
      % Criar nova figura
122
```

```
figure('Position', [200 + i*50, 200 + i*50, 800, 600], 'Color', '
123
          white');
      hold on;
124
125
      for j = 1:length(Ti_values)
           Ti_val = Ti_values(j);
127
128
           % Tratamento do Ti infinito conforme enunciado
129
           if isinf(Ti_val)
130
                                          % Ti infinito
               Ti = 1/eps;
               Gain1_value = eps;
                                          % 1/Ti = 1/(1/eps) = eps
132
               Ti_display = '\infty';
133
           else
134
               Ti = Ti_val;
135
               Gain1_value = 1/Ti;
                                          % 1/Ti normal
136
               Ti_display = num2str(Ti_val);
137
           end
138
139
           % Configurar os ganhos no modelo Simulink
140
           set_param([modelName '/Gain'], 'Gain', num2str(Kp));
                                                                             %
141
           set_param([modelName '/Gain1'], 'Gain', num2str(Gain1_value));
142
              % 1/Ti
143
           % Executar simulação
144
           sim (modelName);
145
146
           % Extrair dados da simulação
           t = saida.time;
148
           y = saida.signals.values;
149
150
           % Plotar curva
           plot(t, y, 'Color', colors(j,:), 'LineStyle', styles{j}, ...
152
                'LineWidth', linewidths(j), 'DisplayName', ['T_i = '
                   Ti_display ' s']);
      end
154
       % Formatacao do grafico
156
      title_str = ['Resposta ao Degrau Unitario - K_p = ' num2str(Kp)];
157
      filename = ['grafico_Kp_' Kp_str];
158
159
       % Configurar fundo branco e textos pretos
160
       set(gcf, 'Color', 'white'); % Fundo da figura branco
161
       set(gca, 'Color', 'white');  % Fundo dos eixos branco
162
163
      title(title_str, 'FontSize', 14, 'FontWeight', 'bold', 'Color', '
          black');
      xlabel('Tempo (s)', 'FontSize', 12, 'FontWeight', 'bold', 'Color',
165
      ylabel('Saida y(t)', 'FontSize', 12, 'FontWeight', 'bold', 'Color',
166
           'black');
167
       % Configurar eixos e grid com cores pretas
168
```

```
set(gca, 'XColor', 'black', 'YColor', 'black', 'FontSize', 11);
169
      set(gca, 'GridColor', 'black', 'GridAlpha', 0.3);
170
171
      legend('Location', 'best', 'FontSize', 11, 'TextColor', 'black',
              'EdgeColor', 'black', 'Color', 'white');
      grid on;
174
      xlim([0 t_final]);
175
      % Linha de referencia no setpoint
177
      yline(1, 'k--', 'LineWidth', 1, 'Alpha', 0.5, 'HandleVisibility', '
178
          off');
179
      hold off;
180
181
      % Salvar grafico
182
      saveas(gcf, [filename '.png']);
183
      saveas(gcf, [filename '.fig']);
184
185
      fprintf('Figura %d salva: %s\n', i+4, filename);
186
  end
187
188
  % Fechar o modelo Simulink
  close_system(modelName, 0);
191
  fprintf('\n=== SIMULACAO CONCLUIDA ===\n');
192
  fprintf('8 figuras geradas conforme enunciado:\n');
  fprintf('Graficos por Ti (4 figuras):\n');
195 fprintf('- grafico_Ti_inf\n');
196 fprintf('- grafico_Ti_10\n');
197 fprintf('- grafico_Ti_1\n');
198 fprintf('- grafico_Ti_0_1\n');
199 fprintf('Graficos por Kp (4 figuras):\n');
200 fprintf('- grafico_Kp_0_5\n');
201 fprintf('- grafico_Kp_1\n');
202 fprintf('- grafico_Kp_2\n');
203 fprintf('- grafico_Kp_10\n');
```

Listing 1: Script MATLAB para simulação do sistema PI no Simulink

O script realiza as seguintes etapas principais:

- Carrega o modelo Simulink e configura os parâmetros de simulação (tempo, passo, solver);
- Varre os valores de K_p e T_i conforme o enunciado, ajustando os ganhos no modelo;
- Executa as simulações e armazena as respostas no workspace;
- Gera e salva os gráficos de resposta ao degrau, agrupando-os por T_i e por K_p ;
- Facilita a análise paramétrica e a comparação dos resultados.

A utilização deste script garante reprodutibilidade, agilidade e precisão na análise dos efeitos dos parâmetros do controlador PI sobre o sistema em estudo.

4 Resultados e Análise

4.1 Gráficos com base em Ti

4.1.1 $T_i = \infty$ (Controlador P)

A Figura 2 apresenta a resposta ao degrau unitário do sistema com controlador puramente proporcional $(T_i = \infty)$, onde a ação integral é eliminada. Este caso representa o comportamento fundamental de um controlador proporcional puro para diferentes ganhos K_p .

Figura 2: Resposta ao degrau unitário para $T_i = \infty$ (Controlador P)

A análise revela que, sem ação integral, o sistema apresenta erro de regime permanente para todos os valores de K_p testados. Para $K_p=0.5$, observa-se resposta mais lenta com erro de aproximadamente 65%, enquanto $K_p=1$ resulta em erro de cerca de 50%. O aumento do ganho proporcional para $K_p=2$ reduz o erro para aproximadamente 35%, e $K_p=10$ apresenta o menor erro ($\sim 10\%$), porém com overshoot inicial significativo. Este comportamento confirma a limitação fundamental dos controladores proporcionais: a incapacidade de eliminar completamente o erro de regime permanente.

4.1.2 $T_i = 10$ s (Ação integral fraca)

A Figura 3 demonstra o comportamento do sistema com ação integral fraca ($T_i=10~{\rm s}$), onde o ganho integral é relativamente baixo, permitindo a observação da convergência gradual para o setpoint.

Figura 3: Resposta ao degrau unitário para $T_i=10\ \mathrm{s}$

Os resultados mostram que a ação integral, mesmo que fraca, é capaz de eliminar o erro de regime permanente, com todas as curvas convergindo lentamente para o valor de referência (y=1). Ganhos proporcionais maiores resultam em resposta inicial mais rápida, mantendo a estabilidade do sistema. A convergência lenta é característica da ação integral fraca, que requer tempo considerável para acumular o erro e corrigi-lo completamente.

4.1.3 $T_i = 1$ s (Ação integral moderada)

A Figura 4 ilustra o comportamento com ação integral moderada ($T_i = 1$ s), representando um compromisso equilibrado entre velocidade de resposta e estabilidade do sistema.

Figura 4: Resposta ao degrau unitário para $T_i=1$ s

Esta configuração demonstra convergência mais rápida para o setpoint em comparação com $T_i=10\,$ s. Para $K_p=0.5$, observa-se resposta suave sem overshoot significativo. Os valores $K_p=1\,$ e $K_p=2\,$ apresentam pequeno overshoot com boa convergência, enquanto $K_p=10\,$ resulta em overshoot mais pronunciado, mas ainda mantém estabilidade e convergência adequada. Este cenário representa um bom compromisso entre velocidade de resposta e estabilidade do sistema.

4.1.4 $T_i = 0.1$ s (Ação integral muito forte)

A Figura 5 revela o comportamento crítico do sistema com ação integral muito forte ($T_i=0.1$ s), onde o ganho integral elevado pode comprometer a estabilidade, especialmente para ganhos proporcionais altos.

Figura 5: Resposta ao degrau unitário para $T_i=0.1~\mathrm{s}$

Os resultados evidenciam comportamento instável para $K_p=10$, caracterizado por oscilações crescentes que levam o sistema à instabilidade. A escala do gráfico (10^{12}) indica valores extremos, confirmando a perda de controle do sistema. Este fenômeno demonstra que ação integral excessiva, combinada com ganho proporcional alto, pode desestabilizar completamente o sistema de controle, tornando esta combinação de parâmetros inadequada para aplicações práticas.

4.2 Gráficos com base em K_p

4.2.1 $K_p = 0.5$ (Ganho proporcional baixo)

A Figura 6 apresenta a resposta ao degrau unitário do sistema com ganho proporcional baixo $(K_p=0.5)$, permitindo a análise do efeito de diferentes tempos integrais em um sistema com resposta naturalmente conservadora.

Figura 6: Resposta ao degrau unitário para $K_p=0.5$

Com $K_p=0.5$, o sistema apresenta comportamento estável para todos os valores de T_i testados. Para $T_i=\infty$, observa-se erro de regime permanente de aproximadamente 65% com resposta suave. O tempo integral $T_i=10$ s proporciona convergência lenta mas estável para o setpoint. Com $T_i=1$ s, obtém-se boa velocidade de convergência sem overshoot significativo, enquanto $T_i=0.1$ s resulta em oscilações amortecidas que convergem rapidamente para o valor desejado. Este ganho proporcional baixo demonstra excelente margem de estabilidade mesmo com ação integral forte.

4.2.2 $K_p = 1$ (Ganho proporcional moderado)

A Figura 7 ilustra o comportamento do sistema com ganho proporcional moderado ($K_p = 1$), representando um compromisso entre velocidade de resposta e estabilidade do sistema.

Figura 7: Resposta ao degrau unitário para $K_p=1$

O sistema com $K_p=1$ mantém estabilidade para a maioria das configurações. Para $T_i=\infty$, o erro de regime permanente reduz para aproximadamente 50%. Com $T_i=10$ s e $T_i=1$ s, o sistema apresenta convergência adequada com pequeno overshoot. Entretanto, para $T_i=0,1$ s, começam a aparecer oscilações mais pronunciadas, indicando que a combinação de ganho proporcional moderado com ação integral muito forte aproxima o sistema dos limites de estabilidade.

4.2.3 $K_p = 2$ (Ganho proporcional elevado)

A Figura 8 demonstra o comportamento crítico do sistema com ganho proporcional elevado $(K_p = 2)$, onde a combinação com ação integral forte pode levar à instabilidade.

Figura 8: Resposta ao degrau unitário para $K_p=2$

Com $K_p=2$, o sistema ainda mantém estabilidade para $T_i=\infty$, $T_i=10$ s e $T_i=1$ s, apresentando erro de regime de aproximadamente 35% no caso proporcional puro. No entanto, para $T_i=0,1$ s, o sistema torna-se claramente instável, com oscilações crescentes que atingem amplitudes de até 250 unidades. Este comportamento evidencia que ganhos proporcionais elevados requerem cuidado especial na escolha do tempo integral para manter a estabilidade do sistema.

4.2.4 $K_p = 10$ (Ganho proporcional muito elevado)

A Figura 9 revela o comportamento extremo do sistema com ganho proporcional muito elevado $(K_p = 10)$, demonstrando instabilidade severa quando combinado com ação integral forte.

Figura 9: Resposta ao degrau unitário para ${\cal K}_p=10$

O sistema com $K_p=10$ apresenta comportamento drasticamente diferente dependendo do tempo integral. Para $T_i=\infty$, mantém-se estável com erro de regime reduzido para aproximadamente 10%. Com $T_i=10$ s e $T_i=1$ s, o sistema ainda converge adequadamente, embora com overshoot mais pronunciado. Contudo, para $T_i=0.1$ s, ocorre instabilidade catastrófica com oscilações que atingem a escala de 10^{12} , tornando o sistema completamente incontrolável. Este resultado confirma a importância crítica do dimensionamento adequado dos parâmetros do controlador PI.

4.2.5 Análise comparativa dos gráficos por K_p

A análise dos gráficos agrupados por K_p revela padrões consistentes no comportamento do sistema:

- **Estabilidade decrescente:** À medida que K_p aumenta, a margem de estabilidade diminui, especialmente para T_i baixos;
- Erro de regime: O controlador puramente proporcional $(T_i = \infty)$ apresenta erro inversamente proporcional ao ganho K_p ;
- Limite crítico: A combinação $K_p=10$ e $T_i=0,1$ s representa um limite crítico de instabilidade;
- Compromisso ótimo: Os valores $K_p = 1$ ou $K_p = 2$ com $T_i = 1$ s oferecem o melhor compromisso entre performance e estabilidade.