Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт З виконання лабораторної роботи №5 з дисципліни "Аналогової електроніки"

Виконав:

студент групи ДК-62

Салім М. С.

Перевірив:

доц. Короткий \in B.

Хід роботи

Завдання 1. Зібрати на лабораторному стенді інвертуючий підсилювач з коефіцієнтом підсилення 10.

Рис. 1. Принципова схема інвертуючого підсилювача.

При зібранні схеми(рис. 1) використовувалися резистори з опорами R1 = 1 кОм, R2 = 10 кОм.

В такому підсилювачі інвертується фаза на 180 градусів (рис. 2), а коефіцієнт підсилення:

$$K_u = -\frac{R_2}{R_1} = \frac{10000}{1000} = 10$$

Рис. 2. Сигнали на вході та виході інвертуючого підсилювача.

Завдання 2. Зібрати на лабораторному стенді неінвертуючий підсилювач.

Рис. 3. Принципова схема неінвертуючого підсилювача.

Дане включення операційного підсилювача(рис. 3) не інвертує вхідний сигнал(рис. 4), а коефіцієнт підсилення:

$$K_u = 1 + \frac{R_2}{R_1} = 1 + \frac{10000}{1000} = 11$$

Рис. 4. Сигнали на вході та виході неінвертуючого підсилювача.

Завдання 3. Зібрати на стенді з набором операційних підсилювачів та компонентів до них тригер Шмідта.

Рис. 5. Принципова схема тригера Шмідта.

Такий тригер Шмідта є двохполярним, тобто видає як додатні так і від'ємні імпульси, також він є інвертуючим. Працює по передньому фронту.

Порогова напруга:

$$U_n = U_{out} * \frac{R_2}{R_1 + R_2} = 10 * \frac{1}{1 + 10} = 0.92$$
 (Вольт)

Рис. 6. Робота тригера Шмідта.

Завдання 4. Зібрати на стенді з набором операційних підсилювачів та компонентів до них генератор прямокутного тактового сигналу.

Рис. 7. Принципова схема генератора.

Даний генератор видає на виході прямокутні імпульси з коефіцієнтом заповнення 50% з періодом який визначається:

$$T = 2R_3C * \ln\left(1 + 2\frac{R_1}{R_2}\right) = 2 * 10^3 * 10^{-5} * \ln\left(1 + 2\frac{1}{10}\right) = 3640 \text{ (MKC)}$$

Напруга на конденсаторі коливається «пилкоподібно» з таким же періодом. Хоча зарядка та розрядка відбувається по експоненті, ми бачимо на осцилографі майже прямі лінії. Це пов'язано з тим що конденсатор не встигає до кінця заряджатисярозряджатися і ми бачимо лише лінійну область цієї залежності.

Рис. 8. Пилкоподібний імпульси.