

IEEE 754 Standard Single Precision Format

IEEE 754 Standard

How Floating Point Numbers are Stored in Memory?

IEEE 754 Standard

- Half Precision (16 bits)
- Single Precision (32 bits)
- Double Precision (64 bits)
- Quadruple Precision (128 bits)
- Octaple Precision (256 bits)

How Floating Point Numbers are Stored in Memory?

IEEE 754 Standard

- Half Precision (16 bits)
- Single Precision (32 bits)
- Double Precision (64 bits)
- Quadruple Precision (128 bits)
- Octaple Precision (256 bits)


```
Bias = 2^{n-1} - 1
n - no of bits
8 bits
             Bias = 127
```


Actual Number	Biased Number	Biased Representation
-127	0	0000 0000
-126	1:	0000 0001
-1	126	0111 1110
0	127	0111 1111
1	128	1000 0000
127	254	1111 1110
128	255	1111 1111

Actual Number	Biased Number	Biased Representation
-127	0	0000 0000
-126	1	0000 0001
-1	126	0111 1110
0	127	0111 1111
1	128	1000 0000
127	254	1111 1110
128	255	1111 1111

Special Values

Exponent Range -126 to +127

Actual Number	Biased Number	Biased Representation
-127	0	0000 0000
-126	1	0000 0001
-1	126	0111 1110
0	127	0111 1111
1	128	1000 0000
127	254	1111 1110
128	255	1111 1111

Special Values

Exponent Range -126 to +127

Actual Number	Biased Number	Biased Representation
-127	0	0000 0000
-126	1	0000 0001
-1	126	0111 1110
0	127	0111 1111
1	128	1000 0000
127	254	1111 1110
128	255	1111 1111

Continuity

So, biased representation for is very useful

IEEE 754 uses this for floating point representation

Let's see how to get the actual number from a IEEE 754 Single Precision format

Let's say this is a 32 bit number stored in the Single Precision format

sign Exponent Mantissa/Significand

0 1000 0101 0011110000000000000000

The MSB is 0. So this is a positive number

sign Exponent Mantissa/Significand

0 1000 0101 0011110000000000000000

Actual value of the exponent

Let's say this is a 32 bit number stored in the Single Precision format

sign Exponent Mantissa/Significand

0 1000 0101 0011110000000000000000

Actual value of the exponent

1000 0101 _____ 133

(Example 1)

Let's say this is a 32 bit number stored in the Single Precision format

sign Exponent Mantissa/Significand

0 1000 0101 00111100000000000000000

Actual value of the exponent

1000 0101 _____ 133

Actual Exponent = 133 - 127 = 6

Since the number is stored using biased format, we need to subtract the bias to get the actual value

(Example 1)

Let's say this is a 32 bit number stored in the Single Precision format

sign Exponent Mantissa/Significand

Exponent: 2⁶

In this fractional part, we can remove all the zeros from the right side

Actual normalized binary number:

1.001111 x 2

1. 001111
Significand

(Example 1)

Let's say this is a 32 bit number stored in the Single Precision format

sign Exponent Mantissa/Significand

Exponent: 2⁶ Significand: 1.001111

Normalized binary number: 1.001111 x 2

Actual binary number: 1001111


```
(Example 1)
```

Let's say this is a 32 bit number stored in the Single Precision format

sign Exponent Mantissa/Significand

0 1000 0101 00111100000000000000000

Exponent: 2⁶ Significand: 1.001111

Normalized binary number: 1.001111 x 2°

Actual binary number: 1001111 (79)

Let's try to represent a number


```
(Example 3)
(12. 625)<sub>10</sub> (12)_{10} \rightarrow (1100)_2 And (.625)_{10} \rightarrow (101)_2
```



```
(Example 3)
(12. 625)<sub>10</sub> (12)_{10} \rightarrow (1100)_2 And (.625)_{10} \rightarrow (101)_2
                                           ± 1.BBB x 2 <sup>± exp</sup>
(1100.101)_{2}
                                                               Exponent
                                          Sign
                                                Fraction
(1100.101)_2 = 1.100101 \times 2^3
```


Single Precision Format (32 bit)

Largest Number $\approx 3.4 \times 10^{38}$

Smallest Number $\approx 1.1 \times 10^{-38}$

32 bit Fixed Point Representation (Signed Integer)

Largest Positive Number $\approx 2.1 \times 10^9$

Largest Number $\approx 3.4 \times 10^{38}$

Why it covers greater range?

Smallest Number $\approx 1.1 \times 10^{-38}$

Floating point allows range at the cost of precision

sign	Exponent	Mantissa/Significand
1 bit	8 bit	23 bit

IEEE 754 – Double Precision Format

IEEE 754 – Double Precision Format

Actual max. value of Exponent = 2046- 1023 = 1023 Actual min. value of Exponent = 1- 1023 = -1022

Max. value of Exponent = 2046 Min. value of Exponent = 1

IEEE 754 – Double Precision Format

Largest Positive Number $\approx 1.797 \times 10^{308}$

67

Thank you

Any Question?

