- Topology: $\mathcal{T} \subseteq \mathcal{P}(X)$ s.t.
 - $-\varnothing,X\in\mathcal{T};$
 - closed under arbitrary union and finite intersection.
- Co-finite topology: set of complements of finite subsets.
- Basis:
 - $\forall x \in X, \exists B \in \mathcal{B} \text{ s.t. } x \in B \iff X \subseteq \bigcup_{B \in \mathcal{B}} B.$
 - $\forall x \in X \text{ and } B_1, B_2 \in \mathcal{B} \text{ with } x \in B_1 \cap B_2, \exists B \in \mathcal{B} \text{ s.t. } x \in B \subseteq B_1 \cap B_2.$
- Topology generated by basis: set of all unions of sets in \mathcal{B} .
- $\mathcal{T}_1 \subseteq \mathcal{T}_2 \iff \mathcal{T}_2$ is finer.
- Topology generated by $\mathcal B$ is the coarsest topology containing $\mathcal B$.
- $\mathcal{T}_1 \subseteq \mathcal{T}_2 \iff \forall B \in \mathcal{B}_1 \text{ and } \forall x \in B, \exists B_x \in \mathcal{B}_2 \text{ s.t.}$ $x \in B_x \subseteq B.$
- sub-basis: $\bigcup_{S \in \mathcal{S}} S = X$ and every basis is a sub-basis.
- All finite intersections of sets in a sub-basis is a basis.
- Metric: positive, definite, symmetric, \triangle -inequality.
- **Pseudo-metric**: d(x,x) = 0 but can be not definite.
- $\bullet~$ Quasi-metric: can be not symmetric.
- Norm: positive, definite, \triangle -inequality, $\|\lambda x\| = \|\lambda\| \|x\|$.
- Distance between sets: smallest pointwise distance.
- Diameter of set: greatest pointwise distance.
- Metrisable topology: induced with open balls.
- L^p -metric: generates the standard topology on \mathbb{R} .

$$\max \|y_i - x_i\| \le \left[\sum_{i=1}^n \|y_i - x_i\|^p \right]^{\frac{1}{p}} \le n^{\frac{1}{p}} \max \|y_i - x_i\|.$$

• Metrics are equivalent iff $c_1 d \leq d' \leq c_2 d$.

- Subspace topology: $\{U \cap X : U \text{ is open}\}$. Basis is analogous.
- Open sets in open subspace is open in superspace.
- Subspace metric: restriction to subspace. Induces subspace topology with respect to metrisable topology.
- If $Y \subseteq X$, then A is closed in $Y \iff \exists G \text{ closed in } X$ s.t. $A = G \cap Y$.
- Closed sets in closed subspace is closed in superspace.
- Interior \mathring{A} : union of all open subsets of A.
- Closure \overline{A} : intersection of all closed supersets of A. Smallest closed superset of A.
- Boundary $\partial A = \overline{A} \setminus \mathring{A}$.
- Limit point: $(A \setminus \{x\}) \cap U \neq \emptyset$ for any open U.
- $x \in \overline{A} \iff \forall$ open neighbourhood U of $x, U \cap A \neq \varnothing$;
- $\overline{A} = A \cup A'$, i.e., closure is the set plus all its limit point.
- Limit may not be a limit point.
- Continuity: U open $\Longrightarrow f^{-1}(U)$ open, equivalent to $f^{-1}(S)$ is open $\forall S$ in sub-basis.
- TFAE:
 - 1. f is continuous;
 - 2. for all $A \subseteq X$, $f(\overline{A}) \subseteq \overline{f(A)}$;
 - 3. for any closed set $B \subseteq Y$, $f^{-1}(B)$ is closed in X;
 - 4. $\forall x \in X$ and any open $V \subseteq Y$ with $f(x) \in V$, there is an open set $U \subseteq X$ s.t. $x \in U$ and $f(U) \subseteq V$.
- Pasting lemma: if $X = A \cup B$ for closed A, B and f(x) = g(x) for all $x \in A \cap B$, then

$$h(x) = \begin{cases} f(x) & \text{if } x \in A \\ g(x) & \text{if } x \in B \end{cases}$$

is continuous if $f: A \to Y$ and $g: B \to Y$ are.

- Pull-back topology: $\{f^{-1}(U): U \text{ is open}\}\$ is the coarsest topology ensuring continuous f.
- Uniform continuity: $\forall \epsilon > 0$, there exists some $\delta > 0$ s.t. $d_X(x,y) < \delta \implies d_Y(f(x),f(y)) < \epsilon$.

- f is uniformly continuous $\iff \forall \{x_i\}_i^{\infty}, \{y_i\}_i^{\infty}$ s.t. $\lim_{i \to \infty} d_X(x_i, y_i) = 0$, $\lim_{i \to \infty} d_Y(f(x_i), f(y_i)) = 0$.
- $\{f_n\}$ converges pointwisely: $\forall x, f_n(x) to f(x)$.
- $\{f_n\}$ converges uniformly: $\forall \epsilon > 0, \exists N \in \mathbb{N}^+ \text{ s.t.}$ $\forall n \geq N, \forall x \in X, d(f_n(x), f(x)) < \epsilon.$
- Limit of uniformly convergent sequence is continuous.
- Projection $\pi_{X_{\beta}} := \boldsymbol{x} \mapsto x_{\beta}, \pi_{X_{\beta}}^{-1}(U)$ is all vectors whose β -th component is in U.
- **Product** topology is generated by the sub-basis of all pre-images of all projections.
- Box topology is generated by the basis of all products of open sets.
- Box topology and product topology are equal only for finite product.
- Product topology is the coarsest topology to ensure continuous projection.
- $f(y) = (f_{\alpha}(y))_{\alpha \in \Lambda}$ is continuous iff f_{α} 's are continuous.
- Subspace topology of product topology equals product topology of subspace topologies.
- Standard topology on \mathbb{R}^n is the product topology by standard topologies on \mathbb{R}^{m_i} 's.
- Product of basis is the basis for product topology.
- $d_1(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^n d_{X_i}(x_i, y_i)$ and $d_{\infty}(\boldsymbol{x}, \boldsymbol{y}) = \max d_{X_i}(x_i, y_i)$ both induce the product topology.
- $\rho(x,y) := \frac{d(x,y)}{1+d(x,y)}$ is a metric with diam (X) < 1. ρ and d generate the same topology.
- $d(\boldsymbol{x}, \boldsymbol{y}) := \sup \left\{ \frac{\rho_i(x_i, y_i)}{i} : i \in \mathbb{Z}^+ \right\}$ is a metric inducing the infinite product topology.
- Quotient map: surjective and U is open $\iff f^{-1}(U)$ is open.
- Open map: continuous map from open set to open set.
- Surjective continuous + open or closed = quotient map.
- Quotient, open and closed maps are preserved under \circ .
- Saturated: pre-image under a surjective continuous map. $A = f^{-1}(f(A))$.

- Surjective continuous f is a quotient map iff f(A) is open (closed) in Y whenever A is saturated open (closed).
- Restriction of quotient map to a saturated set is a quotient map.
- Quotient topology: unique topology on co-domain to ensure quotient map.
- $T_1: \forall x \neq y, \exists \text{ open } U \text{ containing only } x.$
- T_2 (Hausdorff): $\forall x \neq y, \exists$ disjoint neighbourhoods.
- Co-finite topology is T_1 and T_2 if X is finite.
- $T_1 \iff \{x\}$ is closed $\forall x \in X$.
- Metric spaces are T_2 so all finite subsets are closed.
- Countable basis: countable \mathcal{B} s.t. \forall open Y containing x, $\exists B \in \mathcal{B}, B \subseteq Y$. First countable if every x has a countable basis.
- Uncountable co-finite have no countable basis.
- \exists nested countable basis $B_1 \subseteq B_2 \subseteq \cdots$.
- Limit $x \in \overline{A}$, if X is first countable, then $x \in \overline{A}$ is a limit.
- If f is continuous, then for any sequence $f(x_i) \to f(x)$. The converse is true if X is first countable.
- Closed subspace of compact space is compact.
- Subset of co-finite space is compact but closed iff it's finite.
- Compact subspace of Hausdorff space is closed.
- Continuous f maps compact set to compact set.
- Tube lemma: If Y is compact and $N \subseteq X \times Y$ is open and contains $\{x_0\} \times Y$, then $\exists W \supseteq \{x_0\}$ open s.t. $W \times Y \subseteq N$.
- Cartesian product of compact spaces is compact.
- Finite intersection property: $\mathcal{G} \subseteq \mathcal{P}(X)$ s.t. finite intersections of sets in \mathcal{G} are non-empty.
- X is compact iff for any collection of closed sets \mathcal{G} with the finite intersection property, we have $\bigcap_{G \in \mathcal{G}} G \neq \emptyset$.
- x is **isolated** \iff $\{x\}$ is open.
- If $U \neq \emptyset$ is open in a Hausdorff space and $x \in X$ is not isolated, then \exists non-empty open $V \subseteq U$ s.t. $x \notin \overline{V}$.

- Non-empty Hausdorff space is uncountable if it has no isolated point.
- Limit point compact: every infinite $Y \subseteq X$ has a limit point in X. Limit point compact \iff compact but compact \implies limit point compact.
- *U*: open cover for a metric space X. δ > 0 is a **Lebesgue** number for *U* if ∀S ⊆ X with diam (S) < δ, ∃U ∈ U s.t. S ⊆ U.
- Every open cover of sequentially compact metric space has a Lebesgue number.
- Totally bounded: $\forall \epsilon > 0, \exists$ finite cover of X by $B_{\epsilon}(x_i)$.
- Every sequentially compact metrisable topological space is totally bounded.
- If X is a metrisable topological space, TFAE:
 - 1. X is compact;
 - 2. X is limit point compact;
 - $3.\ X$ is sequentially compact.
- Let (X, d_X) and (Y, d_Y) be metric spaces and $f: X \to Y$ be continuous. If X is compact, then f is uniformly continuous.