TU Wien, Winter 2019

104.272 Discrete Mathematics, Group 1 (Professor Gittenberger) 11. Exercise, Due 15 January, 2020

111. Prove that for each prime n, we have $(n-1)! \equiv -1$. Further show that this only holds when n is prime.

Proof. Let $r^2 \equiv 1$. From the division algorithm, $r = \alpha p + c'$. With $0 \le c' < p$. Since c' = 0 would imply that $r^2 \equiv 0$, then $c' \ge 1$. Therefore $r = \alpha p + 1 + c$. Therefore $r^2 = \alpha^2 p^2 + 2\alpha p(1+c) + 1 + 2c + c^2 = \beta p + c(2+c) + 1$. Since $r^2 = \gamma p + 1$, and c < p with p prime, then $p \mid 2 + c$ or $p \mid c$. Therefore $c \equiv p - 2$ or c = 0. This implies that $r \equiv p - 1$ or $r \equiv 1$. Therefore in \mathbb{Z}_p all elements that are not 1 or p - 1 are not self-inverse. This implies that $(n - 1)! = \prod_{z \in \mathbb{Z}_1^*} z = 1 \cdot (p - 1) = -1$, since all other elements cancel out with their respective inverses.

Now assume that $(n-1)! \equiv -1$. Since $((n-1)!)^2 = 1$, this implies that all $z \in \mathbb{Z}_n$ such that $z \neq 0$ have a product inverse. Therefore n must be prime. \square

112. Prove that every finite integral domain is a field

Hint: One only has to show that if R is a finite integral domain, then every non-zero element of R is invertible. One starts as follows: let $a \in R$, $a \neq 0$, and $f: R \to R$ be the function defined by f(x) = ax. First prove that f is injective, than notice that f is a function from a finite set to itself.

Proof. We take the hint and let f as defined previously. Notice that f is a group morphism with respect to the product. Notice that since R is an integral domain, then $\ker f = 0$. Therefore f is injective. Since R is finite, then f is bijective. Therefore there exists an element c such that ac = 1. This completes the proof that R is a field.

113. Let \mathbb{K} be a field whose characteristic equals a prime number p. Prove the so-called *freshman's dream*:

$$(a+b)^p = a^p + b^p$$
 for all $a, b \in \mathbb{K}$.

Does this statement generalises for more than two summands?

Proof. Recall from the binomial theorem that:

$$(a+b)^p = \sum_{i=0}^p \binom{p}{i} a^{p-i} b^i$$
, also notice that $p \mid \binom{p}{i}$ for all $0 < i < p$. Since \mathbb{K} is

of characteristic p it follows that $\binom{p}{i} = 0$ for all 0 < i < p.

Notice that it works for any ammount of summands, that is $\left(\sum_{i=1}^n a_i\right)^p = \sum_{i=1}^n a_i^p$. The proof is induction over the number of summands.

114. Prove that for each odd prime p, there is a field with p^2 elements.

Hint: One has to show that there is an irreducible quadratic polynomial over \mathbb{Z}_p , for example of the form $x^2 - a$. To that end, one could show that there exists $a \in \mathbb{Z}_p$ which is not the square of another element in \mathbb{Z}_p .

Proof. Consider the function $f: \mathbb{Z}_p \to \mathbb{Z}_p$, $x \mapsto x^2$. Since we are considering p > 2, then f is not injective since $1^2 = 1 = (p-1)^2$. Since \mathbb{Z}_p is also finite, then f is not surjective. Therefore, there must exist $a \in \mathbb{Z}_p$ without a square root in \mathbb{Z}_p . This implies that $x^2 - a$ is irreducible in $\mathbb{Z}_p[x]$. Notice that $\mathbb{Z}_p[x]/x^2 - a$ is a Galois field with p^2 elements.

- 115. Consider the field $\mathbb{Z}_2[x]/m(x) = \mathbb{F}_{256}$ where $m(x) = x^8 + x^4 + x^3 + x + 1$. Hence the residue classes modulo m(x) are $\overline{b(x)} = \overline{b_7 x^7 + b_6 x^6 + \dots b_1 x + b_0}$ and can be identified with the byte $b_7 b_6 \dots b_1 b_0$.
 - (a) Compute the sum and the product of the two bytes 10010101 and 11001100 in \mathbb{F}_{256} .

Proof.

$$\begin{array}{r} 10010101 \\ + 11001100 \\ \hline 01011001 \end{array}$$

Notice that multiplying by a fixed element is a linear transformation, therefore it can be defined through the image of the basis as a matrix product. Also notice that $x^8 = x^4 + x^3 + x + 1$ since in \mathbb{Z}_2 each element is its own additive inverse. Taking this into consideration, we can consider the product by 10010101 as multiplying the following matrix M with a vertical vector

Which yields 00101000

(b) Compute the multiplicative inverse y^{-1} for y = 10010101 in \mathbb{F}_{256} .

Proof. We solve the equation $M \cdot y^{-1} = 00000001$ through the diagonalization method.

Which yields the following equation $M'y^{-1} = 00000110$ where M' is the following matrix :

Therefore $y^{-1} = 10001010$

116. Let a (n, k)-linear code $C \subseteq \mathbb{F}_q^n$ be given by its generator matrix G. Let H be the generator matrix of the dual code. Show that $GH^T = 0_{k \times (n-k)}$.

Remark: The check matrix can be defined either to be the generator matrix of the dual code $C^* = \{x \in \mathbb{F}_q^n : x \cdot c = 0 \text{ for all } c \in C\}$ or to be a matrix that satisfies $GH^T = 0$. This exercise shows, that those two definitions are equivalent.

Proof. Notice that H is of dimension $(n-k) \times n$ and G is of dimension $k \times n$. Therefore GH^T is of dimension $k \times (n-k)$ Consider $(GH^T)_{i,j} = \sum_{k=1}^n G_{i,k} H_{j,k} =$

$$G_i \cdot H_j = 0$$
. Since $G_i \in C$ and $H_j \in C^*$.

117. Compute the dual code C^* of a linear code $C \subseteq \mathbb{F}_2^8$ that is represented by

Proof. Recall that if a code is systematic, given by a generating matrix $G = [I_k \mid P]$ then the dual code has generating matrix $H = [-P^T \mid I_k]$.

Notice that P is given by

$$\left(\begin{array}{ccccc}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right)$$

Since in the code is binary, then -P = P, therefore $-P^T$ is given by the following matrix

$$\left(\begin{array}{ccccc}
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right)$$

Therefore H is given by

$$H = \left(\begin{array}{cccccccc} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{array}\right)$$

118. Consider a linear code $C \subseteq \mathbb{F}_2^5$ with generator matrix

$$\left(\begin{array}{ccccc}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)$$

Proof. First we will make the generator matrix systematic through diagonalization.

$$G' = \left(\begin{array}{ccccc} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{array}\right)$$

This yields the following matrix H as a check matrix

$$H = \left(\begin{array}{rrrr} 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \end{array}\right)$$

Notice that the code $C = \{00000, 10011, 01001, 11010, 00101, 10110, 01100, 11111\}$

$$H^T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Notice that the minimum distance of this code is 2. Therefore up to 1 errors can be detected and 1 can be corrected.

The correcting scheme can be given as follows:

If $S(v) \in \{01, 10\}$ then simply $\bar{v} = v + S(v)$.

If
$$S(v) = \{11\}$$
, then $C' = \{00011, 10000, 01010, 00110, 10101, 01111, 11100\}$

Since the distances can be at most 1, then the corrected code should be $\{00011 \mapsto 10011, 10000 \mapsto 00000, 01010 \mapsto \text{error}, 00110 \mapsto 10110, 10101 \mapsto \text{error}, 01111 \mapsto 11111, 11100 \mapsto 01100\}$

119. Let $p(x) = x^3 + 2$ be a generating polynomial of a cyclic (9,6)-linear code over \mathbb{F}_3 . Determine a generating matrix such that the code is a systematic code, i.e. encoding is done by appending one or more letters at the end of the original words.

Proof. The generator matrix is given by:

Operating the matrix above through elementary operations yields the following systematic generator matrix:

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 \end{pmatrix}$$

120. Let $(s_n)_{n\geq 0}$ be a homogeneous linear recurring sequence of order k over a finite field \mathbb{F}_q

$$s_{n+k} = a_0 s_n + a_1 s_{n+1} + \ldots + a_{k-1} s_{n+k-1},$$

where $a_0, a_1, \ldots, a_{k-1} \in \mathbb{F}_q$ are fixed and $s_0, s_1, \ldots, s_{k-1}$ are given. Show that $(s_n)_{n\geq 0}$ has to be a periodic sequence. *Hint: use linear feedback shift registers*.

Proof. Notice that this sequence is generated by a linear shift register with k different registers, each of which has q different possible states. Notice that there are at most q^k different possible states for the linear shift register. This implies that the state of the registers should repeat in q^k different states or less. Therefore the sequence generated is periodic.