Schrödinger operators with a $(a\partial_{\nu}\delta_{\gamma}+b\delta_{\gamma})$ -like potentials

Yuriy Golovaty

Abstract Each chapter should be preceded by an abstract (10-15 lines long) that summarizes the content. The abstract will appear *online* at www.SpringerLink.com and be available with unrestricted access.

1 Introduction

2 Statement of Problem and Main Results

Let us consider the family of operators

$$H_{\varepsilon} = -\Delta + W(x) + V_{\varepsilon}(x). \tag{1}$$

Suppose that the unperturbed operator $H_0 = -\Delta + W$ is self-adjoint in $L^2(\mathbb{R}^2)$ with a domain dom H_0 . In addition, we suppose that $W \in L^{\infty}_{loc}(\mathbb{R}^2)$ and dom $H_0 \subset W^1_2(\mathbb{R}^2)$.

Let γ be a closed C^3 -curve without self-intersection points. We will denote by ω_{ε} the ε -neighborhood of γ , i.e., the union of all open balls with radius ε and center on γ . Suppose that potentials V_{ε} have compact supports that lie in ω_{ε} and the supports shrink to curve γ as $\varepsilon \to 0$. For this reason, dom $H_{\varepsilon} = \text{dom } H_0$.

To specify the dependence of V_{ε} on small parameter ε we introduce curvilinear coordinates coordinates in ω_{ε} . Let S be the circle of the same length as the length of γ . We will parameterize γ by points of the circle. Let $\alpha \colon S \to \mathbb{R}^2$ be the unit-speed C^3 -parametrization of γ with the natural parameter $s \in S$. Also $\nu = (-\dot{\alpha}_2, \dot{\alpha}_1)$ is the unit normal on γ , because $\dot{\alpha}_1^2 + \dot{\alpha}_2^2 = 1$. We define

Yuriy Golovaty

Ivan Franko National University of Lviv, 1, Universytetska str., Lviv, 79000, Ukraine e-mail: yuriy.golovaty@lnu.edu.ua

the local coordinates (s, n) in ω_{ε} by

$$x = \alpha(s) + n\nu(s), \qquad (s, n) \in Q_{\varepsilon} = S \times (-\varepsilon, \varepsilon).$$
 (2)

The coordinate n is the signed distance from a point x to γ . Therefore ω_{ε} is diffeomorphic to cylinder Q_{ε} for ε small enough. There is no loss of generality in assuming the diffeomorphism exists for $\varepsilon \in (0,1)$.

We suppose that the localized potentials have the following structure

$$V_{\varepsilon}(\alpha(s) + n\nu(s)) = \varepsilon^{-2} V(\varepsilon^{-1}n) + \varepsilon^{-1} U(s, \varepsilon^{-1}n), \qquad (3)$$

where V and U are measurable bounded functions such that

$$\operatorname{supp} V \subset (-1,1), \quad \operatorname{supp} U \subset Q_1 \text{ and } \partial_s U \in L_2(\mathbb{R}^2). \tag{4}$$

The key assumption is that V does not depend on s.

The family of potentials V_{ε} generally diverges in the space of distributions $\mathcal{D}(\mathbb{R}^2)$. As we will show later in Propositin 1, the potentials converge only if V is a zero mean function, namely

$$V_{\varepsilon}(x) \to a\partial_{\nu}\delta_{\gamma} + b\delta_{\gamma}$$
 as $\varepsilon \to 0$,

where δ_{γ} is Dirac's delta function supported on γ , i.e., $\langle \delta_{\gamma}, \varphi \rangle = \int_{\gamma} \varphi \, d\gamma$, and a, b are some functions on γ . Therefore we shall suppose throughout that

$$\int_{\mathbb{R}} V(t) \, dt = 0. \tag{5}$$

We now introduce some notation. The plane is divided into two domains by close curve γ . We suppose that $\mathbb{R}^2 \setminus \gamma = \Omega_{in} \cup \Omega_{out}$, where domain Ω_{out} is unbounded. Let us introduce the subspace $\mathcal{V} \subset L_2(\mathbb{R}^2)$ as follows. We say that v belongs to \mathcal{V} if $v|_{\Omega_-} \in W_2^2(\Omega_{in})$ and there exist a function h belonging to dom H_0 such that v = h in Ω_{out} . Of course, $v|_{\Omega_{out}} \in W_{2,loc}^2(\Omega_{out})$.

Let \mathcal{V}_0 be the subspaces of $L_2(\Omega_{out})$ obtained by the restriction of all elements of \mathcal{V} to Ω_{out} . We introduce two operators

Fig. 1 Curvilinear coordinates in the ε -neighbourhood of γ .

$$\mathcal{D}_1 = -\Delta + W, \qquad \operatorname{dom} \mathcal{D}_1 = \{ v \in \mathcal{V}_0 \colon v = 0 \text{ on } \gamma \},$$

$$\mathcal{D}_2 = -\Delta + W, \qquad \operatorname{dom} \mathcal{D}_2 = \{ v \in W_2^2(\Omega_{in}) \colon v = 0 \text{ on } \gamma \}.$$

We also denote by $\gamma_t = \{x \in \mathbb{R}^2 : x = \alpha(s) + t\nu(s), s \in S\}$ the closed curve that is obtained from γ by flowing for "time" t along the normal vector field. Then the boundary of ω_{ε} consists of two curves $\gamma_{-\varepsilon}$ and γ_{ε} . For each $v \in \mathcal{V}$ there exist two one-side traces on γ , namely

$$v_{-} = \lim_{\varepsilon \to 0} v|_{\gamma_{-\varepsilon}}, \qquad v_{+} = \lim_{\varepsilon \to 0} v|_{\gamma_{\varepsilon}}.$$

We say that the Schrödinger operator $-\frac{d^2}{dt^2} + V$ in $L_2(\mathbb{R})$ possesses a zero-energy resonance if there exists a non trivial solution h of the equation -h'' + Vh = 0 that is bounded on the whole line. We call h the half-bound state of V. In this case, we will also simply say that potential V has a half-bound state h. Such a solution h is unique up to a scalar factor and has nonzero limits

$$h(-\infty) = \lim_{t \to -\infty} h(t), \qquad h(+\infty) = \lim_{t \to +\infty} h(t)$$

at both the infinities. We set

$$\theta = \frac{h(+\infty)}{h(-\infty)}. (6)$$

Our main result reads as follows.

Theorem 1. Let $W \in L^{\infty}_{loc}(\mathbb{R}^2)$ and dom $H_0 \subset W^1_2(\mathbb{R}^2)$. Assume that potentials V and U are measurable bounded functions and assumption (4) and (5) holds. Then the family of operators

$$H_{\varepsilon} = -\Delta + W + V_{\varepsilon}$$

where the perturbation V_{ε} is given by (3), converges as $\varepsilon \to 0$ in the strong resolvent sense.

If potential V possesses a zero-energy resonance with a half-bound state h, then operators H_{ε} converge to operator \mathcal{H} defined by $\mathcal{H}v = -\Delta v + Wv$ on functions $v \in \mathcal{V}$ obeying the interface conditions

$$u_{+} - \theta u_{-} = 0, \quad \theta \partial_{\nu} u_{+} - \partial_{\nu} u_{-} = \left(\frac{1}{2}(\theta^{2} - 1)\varkappa + \mu\right) u_{-}$$
 (7)

on curve γ . Here θ is given by (6), \varkappa is the signed curvature of γ , and

$$\mu = \frac{1}{h^2(-\infty)} \int_{-1}^1 U(\cdot, t) h^2(t) dt.$$
 (8)

If potential V has no zero-energy resonance, then operators H_{ε} converge to the direct sum $\mathcal{D}_1 \oplus \mathcal{D}_2$ of two unperturbed operators $-\Delta + W$ in Ω_{in} and Ω_{out} respectively with the Dirichlet boundary conditions on interface γ .

Remark 1. If potential V is identically zero, then $V_{\varepsilon} = \varepsilon^{-1} U(s, \varepsilon^{-1} n)$ and so obviously $V_{\varepsilon} \to \mu_0 \delta_{\gamma}$, as $\varepsilon \to 0$, in the space of distributions. Here

$$\mu_0(s) = \int_{-1}^1 U(s, t) dt. \tag{9}$$

Potential V=0 possesses a zero-energy resonance with constant functions as half-bound states. Hence parameter θ equals 1 and interface conditions (7) become $u_+ - u_- = 0$, $\partial_{\nu} u_+ - \partial_{\nu} u_- - \mu_0 u_- = 0$. These conditions are exactly the same as that obtained in [1].

3 Preliminaries

Returning now to curvilinear coordinates (s, n) given by (2), we see that the couple of vectors $\tau = (\dot{\alpha}_1, \dot{\alpha}_2)$, $\nu = (-\dot{\alpha}_2, \dot{\alpha}_1)$ gives a Frenet frame for γ . The Jacobian of transformation $x = \alpha(s) + n\nu(s)$ has the form

$$J(s,n) = \begin{vmatrix} \dot{\alpha}_1(s) - n\ddot{\alpha}_2(s) & -\dot{\alpha}_2(s) \\ \dot{\alpha}_2(s) + n\ddot{\alpha}_1(s) & \dot{\alpha}_1(s) \end{vmatrix}$$
$$= \dot{\alpha}_1^2(s) + \dot{\alpha}_2^2(s) - n(\dot{\alpha}_1(s)\ddot{\alpha}_2(s) - \dot{\alpha}_2(s)\ddot{\alpha}_1(s)) = 1 - n\varkappa(s).$$

Here $\varkappa = \det(\dot{\alpha}, \ddot{\alpha})$ is the signed curvature of γ . Note that \varkappa is a continuous function of the arc-length parameter s and the sign of $\varkappa(s)$ is defined uniquely up to the re-parametrization $s \mapsto -s$. We see that J is positive for sufficiently small ε , because curvature \varkappa is bounded on γ . Namely, the curvilinear coordinates (s, n) can be defined correctly on all domains ω_{ε} with $\varepsilon \leqslant \varepsilon_*$, where $\varepsilon_* = \min_{\gamma} |\varkappa|^{-1}$. However, the above we have accepted that $\varepsilon_* = 1$, since this involves no loss of generality. We also have

$$\int_{\omega_{\varepsilon}} f(x_1, x_2) \, dx_1 dx_2 = \int_{Q_{\varepsilon}} f(s, n) (1 - n \varkappa(s)) \, ds \, dn \tag{10}$$

for all integrable functions f

Next, metric tensor $g=(g_{ij})$ of ω_{ε} in the orthogonal coordinates (s,n) has the form

 $g = \begin{pmatrix} J^2 & 0 \\ 0 & 1 \end{pmatrix}.$

In fact, we have $g_{11}=|x_s|^2=|\dot{\alpha}+n\dot{\nu}|^2=|(1-n\varkappa)\dot{\alpha}|^2=J^2$, by the Frenet-Serret formula $\dot{\nu}=-\varkappa\dot{\alpha}$, and $g_{22}=|x_n|^2=|\nu|^2=1$. In particular, the gradient in the local coordinates becomes

$$\nabla \varphi = \frac{1}{\sqrt{g_{11}}} \, \partial_s \varphi \, \tau + \frac{1}{\sqrt{g_{22}}} \, \partial_n \varphi \, \nu = \frac{1}{J} \, \partial_s \varphi \, \tau + \partial_n \varphi \, \nu$$

and therefore we have

$$\nabla \varphi \cdot \nabla \psi = J^{-2} \partial_s \varphi \, \partial_s \psi + \partial_n \varphi \, \partial_n \psi. \tag{11}$$

The Laplace-Beltrami operator in ω_{ε} has also the explicit form

$$\Delta \varphi = J^{-1} \left(\partial_s (J^{-1} \partial_s \varphi) + \partial_n (J \partial_n \varphi) \right) \tag{12}$$

as is easy to check.

Proposition 1. If $\int_{\mathbb{R}} V dt = 0$, then

$$V_{\varepsilon} \to \beta \partial_{\nu} \delta_{\gamma} + (\beta \varkappa + \mu_0) \delta_{\gamma}, \quad as \ \varepsilon \to 0,$$

in the space of distributions $\mathcal{D}(\mathbb{R}^2)$, where $\beta = -\int_{\mathbb{R}} tV(t) dt$ and μ_0 is given by (9).

Proof. It is evident that potentials $\varepsilon^{-1} U(s, \varepsilon^{-1} n)$ converge to $\mu_0 \delta_{\gamma}$ in $\mathcal{D}(\mathbb{R}^2)$. We will prove that sequence $g_{\varepsilon} = \varepsilon^{-2} V(\varepsilon^{-1} n)$ converges to $\beta(\partial_{\nu} \delta_{\gamma} + \varkappa \delta_{\gamma})$ as $\varepsilon \to 0$, provided V is a zero-mean function. In fact, for all $\varphi \in C_0^{\infty}(\mathbb{R}^2)$ we have

$$\begin{split} \langle g_{\varepsilon}, \varphi \rangle &= \int_{\omega_{\varepsilon}} g_{\varepsilon}(x) \varphi(x) \, dx = \frac{1}{\varepsilon^2} \int_{Q_{\varepsilon}} V\left(\frac{n}{\varepsilon}\right) \varphi(s,n) (1 - n \varkappa(s)) \, ds \, dn \\ &= \frac{1}{\varepsilon} \int_{Q_1} V(t) \varphi(s,\varepsilon t) (1 - \varepsilon t \varkappa(s)) \, ds \, dt \\ &= \frac{1}{\varepsilon} \int_{-1}^1 V(t) \, dt \int_S \varphi(s,0) \, ds \\ &+ \int_{-1}^1 t V(t) \, dt \int_S \left(\partial_n \varphi(s,0) - \varkappa(s) \varphi(s,0)\right) ds + O(\varepsilon), \end{split}$$

as $\varepsilon \to 0$. The sequence $\langle g_{\varepsilon}, \varphi \rangle$ has a finite limit for all $\varphi \in C_0^{\infty}(\mathbb{R}^2)$ if and only if $\int_{\mathbb{R}} V dt = 0$. In this case, we have

$$\langle g_{\varepsilon}, \varphi \rangle \to \beta \int_{\gamma} (\partial_{\nu} \delta_{\gamma} + \varkappa \delta_{\gamma}) \varphi \, d\gamma,$$

which completes the proof.

Interface conditions (7) contain the parameters which depend on the particular parametrization chosen for curve γ . More precisely, parameters θ , \varkappa and μ change along with the change of the Frenet frame.

Proposition 2. Operator \mathcal{H} in Theorem 1 does not depend upon the choice of the Frenet frame for curve γ .

Proof. Every smooth curve in the plane admits two possible orientations of arc-length parameter and consequently two possible Frenet frames. Let us change the Frenet frame $\{\tau,\nu\}$, previously introduced in Sec. 2, to the frame $\{-\tau,-\nu\}$ and prove that interface conditions (7) will remain the same. This change leads to the following transformations:

$$h(\pm \infty) \mapsto h(\mp \infty), \quad u_{\pm} \mapsto u_{\mp}, \quad \partial_{\nu} u_{\pm} \mapsto -\partial_{\nu} u_{\mp},$$

 $\theta \mapsto \theta^{-1}, \quad \varkappa \mapsto -\varkappa, \quad \mu \mapsto \theta^{-2} \mu.$

The first condition $u_+ - \theta u_- = 0$ in (7) transforms into $u_- - \theta^{-1}u_+ = 0$ and therefore remains unchanged. As for the second condition, we have

$$-\theta^{-1}\partial_{\nu}u_{-} + \partial_{\nu}u_{+} - \left(-\frac{1}{2}(\theta^{-2} - 1)\varkappa + \theta^{-2}\mu\right)u_{+} = 0.$$

Multiplying the equality by θ yields

$$\theta \partial_{\nu} u_{+} - \partial_{\nu} u_{-} - \left(\frac{1}{2}(\theta^{2} - 1)\varkappa + \mu\right)\theta^{-1} u_{+} = 0,$$

since $-\theta(\theta^{-2}-1) = \theta^{-1}(\theta^2-1)$. It remains to insert u_- in place of $\theta^{-1}u_+$, in view of the first interface condition.

In the sequel, the normal vector field ν will be outward to domain Ω_{in} , that is to say, the local coordinate n will increase in the direction from Ω_{in} to Ω_{out} . At the end of the section, we record some technical assertion, which will be often used below. Throughout the paper, $W_2^l(\Omega)$ stands for the Sobolev space of functions defined on a set Ω .

Proposition 3. Suppose that $v \in W_2^1(\Omega_{out})$ and $w \in W_2^1(\Omega_{in})$. Then

$$||v(\cdot,\varepsilon) - v(\cdot,0)||_{L_2(\gamma)} \leqslant c_1 \varepsilon^{1/2} ||v||_{W_2^1(\Omega_{out})}, \tag{13}$$

$$\|w(\cdot, -\varepsilon) - w(\cdot, 0)\|_{L_2(\gamma)} \le c_2 \varepsilon^{1/2} \|w\|_{W_2^1(\Omega_{in})},$$
 (14)

where the constants c_k do not depend on ε .

Proof. First we assume that v is a smooth function in Ω_{out} . Then

$$v(s,\varepsilon) - v(s,0) = \int_0^\varepsilon \partial_t v(s,t) dt,$$

and for all $\psi \in L_2(\gamma)$ we have

$$\int_{S} (v(s,\varepsilon) - v(s,0))\psi(s) ds = \int_{S} \int_{0}^{\varepsilon} \partial_{t}v(s,t)\psi(s) dt ds.$$

Therefore

$$\left| \int_{S} \left(v(s,\varepsilon) - v(s,0) \right) \psi(s) \, ds \right| \leqslant \int_{S} \int_{0}^{\varepsilon} \left| \partial_{t} v(s,t) \right| \left| \psi(s) \right| \, dt \, ds$$

$$\leqslant \left(\int_{0}^{\varepsilon} \int_{S} \left| \psi(s) \right|^{2} \, ds \, dt \right)^{1/2} \left(\int_{S} \int_{0}^{\varepsilon} \left| \partial_{t} v \right|^{2} \, dt \, ds \right)^{1/2}$$

$$\leqslant c \varepsilon^{1/2} \|\psi\|_{L_{2}(\gamma)} \left(\int_{\Omega_{cont}} \left| \nabla v \right|^{2} \, dx \right)^{1/2} \leqslant c_{1} \varepsilon^{1/2} \|v\|_{W_{2}^{1}(\Omega_{out})} \|\psi\|_{L_{2}(\gamma)}.$$

Hence (13) holds for all smooth functions v and then by continuity for all $v \in W_2^1(\Omega_{out})$. Similar arguments apply to the proof of (14).

4 Finding Limit Operator

It is hardly possible to guess interface conditions (7) that arise in the so-called solvable model. In this section we will show how these conditions can be found by direct calculations, constructing the formal asymptotics of function

$$u_{\varepsilon} = (H_{\varepsilon} - \zeta)^{-1} f. \tag{15}$$

This function is a L_2 -solution of equation

$$-\Delta u_{\varepsilon} + (W + V_{\varepsilon} - \zeta)u_{\varepsilon} = f \quad \text{in } \mathbb{R}^2, \tag{16}$$

for given $f \in L_2(\mathbb{R}^2)$ and $\zeta \in \mathbb{C} \setminus \mathbb{R}$. We look for asymptotics of u_{ε} , as $\varepsilon \to 0$, in the form

$$u_{\varepsilon}(x) \sim \begin{cases} u(x) + \cdots & \text{in } \mathbb{R}^2 \setminus \omega_{\varepsilon}, \\ v_0\left(s, \frac{n}{\varepsilon}\right) + \varepsilon v_1\left(s, \frac{n}{\varepsilon}\right) + \cdots & \text{in } \omega_{\varepsilon}. \end{cases}$$
(17)

Recall that the boundary of ω_{ε} consists of curves $\gamma_{-\varepsilon}$ and γ_{ε} . To match two different approximations, we hereafter assume that

$$[u_{\varepsilon}]_{\gamma \pm \varepsilon} = 0, \qquad [\partial_{\nu} u_{\varepsilon}]_{\gamma \pm \varepsilon} = 0,$$
 (18)

where $[\cdot]_{\gamma_{\pm\varepsilon}}$ is a jump across $\gamma_{\pm\varepsilon}$. Since function u_{ε} solves (16) and the potentials V_{ε} shrink to γ , the leading term u must be a solution of the equation

$$-\Delta u + (W - \zeta)u = f$$
 in $\mathbb{R}^2 \setminus \gamma$,

subject to appropriate interface conditions on γ .

To find these conditions, we consider equation (16) in the curvilinear coordinates (s,t), where $t=n/\varepsilon$. Then the Laplacian can be written as

$$\Delta = \frac{1}{1 - \varepsilon t \varkappa} \left(\varepsilon^{-2} \partial_t (1 - \varepsilon t \varkappa) \partial_t + \partial_s \left(\frac{1}{1 - \varepsilon t \varkappa} \partial_s \right) \right), \tag{19}$$

by (12). From this we readily deduce the asymptotic representation

$$\Delta = \varepsilon^{-2} \partial_t^2 - \varepsilon^{-1} \varkappa \partial_t - t \varkappa^2 \partial_t + \partial_s^2 + \varepsilon P_{\varepsilon},$$

where P_{ε} is a partial differential operator on the second order with respect to s and the first one with respect to t. Substituting (17) into (16) for $x \in \omega_{\varepsilon}$ in particular yields

$$-\partial_t^2 v_0 + V(t)v_0 = 0, \qquad -\partial_t^2 v_1 + V(t)v_1 = -\varkappa(s)\partial_t v_0 - U(s,t)v_0 \tag{20}$$

in cylinder $Q_1 = S \times (-1, 1)$. From (18) we see that necessarily

$$\partial_t v_0(s, -1) = 0, \qquad \partial_t v_0(s, 1) = 0,
\partial_t v_1(s, -1) = \partial_\nu u_-(s), \qquad \partial_t v_1(s, 1) = \partial_\nu u_+(s),
u_-(s) = v_0(s, -1), \qquad u_+(s) = v_0(s, 1),$$
(21)

Combining (20) and the last equalities, we conclude that v_0 and v_1 solve boundary value problems

$$\begin{cases}
-\partial_t^2 v_0 + V(t)v_0 = 0 & \text{in } Q_1, \\
\partial_t v_0(s, -1) = 0, & \partial_t v_0(s, 1) = 0, \quad s \in S;
\end{cases}$$

$$\begin{cases}
-\partial_t^2 v_1 + V(t)v_1 = -\varkappa(s)\partial_t v_0 - U(s, t)v_0 & \text{in } Q_1, \\
\partial_t v_1(s, -1) = \partial_\nu u_-(s), & \partial_t v_1(s, 1) = \partial_\nu u_+(s), \quad s \in S
\end{cases}$$
(22)

$$\begin{cases}
-\partial_t^2 v_1 + V(t)v_1 = -\varkappa(s)\partial_t v_0 - U(s,t)v_0 & \text{in } Q_1, \\
\partial_t v_1(s,-1) = \partial_\nu u_-(s), & \partial_t v_1(s,1) = \partial_\nu u_+(s), & s \in S
\end{cases}$$
(23)

respectively.

So we obtain two boundary value problems for the "non-elliptic" partial differential operator. In fact, let ℓ be the length of S and then the length of γ . Then both problems (22) and (23) can write out as boundary value problem in rectangle $\Pi = (0, \ell) \times (-1, 1)$

$$\begin{cases} -\partial_t^2 v + V(t)v = g(s,t), & (s,t) \in \Pi, \\ \partial_t v(s,-1) = a_-(s), & \partial_t v(s,1) = a_+(s), & s \in S, \\ v(0,t) = v(\ell,t), & \partial_s v(0,t) = \partial_s v(\ell,t), & t \in (-1,1) \end{cases}$$

with the Neumann boundary conditions with respect to t and the periodicity conditions with respect to s. Of course, the problem can also be regarded as a boundary value problem for ordinary differential equations on (-1,1), which depends on parameter $s \in (0, \ell)$. In any case, the lack of ellipticity leads to a loss of smoothness of solutions with respect to s, and this will have an considerable influence on the proof of Theorem 1.

Case of zero-energy resonance

Assume that operator $-\frac{d^2}{dt^2} + V$ has a zero energy resonance with half-bound state h. Since the support of V lies in interval (-1,1), the half-bound state h is constant outside this interval as a solution of equation h'' = 0 which

is bounded at infinity. Therefore the restriction of h to (-1,1) is a nonzero solution of the Neumann boundary value problem

$$-h'' + V(t)h = 0$$
 $t \in (-1,1)$, $h'(-1) = 0$, $h'(1) = 0$. (24)

Hereafter, we fix h by additional condition h(-1) = 1. In view of (6), we have $h(1) = \theta$, since $h(\pm \infty) = h(\pm 1)$.

In this case, (22) admits infinite-dimensional space of solutions

$$\mathcal{N} = \{ a(s)h(t) \colon a \in L^2(S) \}.$$

Therefore $v_0(s,t)=a_0(s)h(t)$ for some L^2 -function a_0 on S. From (21) we deduce that

$$u_{-} = a_0, \qquad u_{+} = \theta a_0.$$

Hence $v_0(s,t) = u_-(s)h(t)$ and in particular

$$u_{+} = \theta u_{-}. \tag{25}$$

Next, problem (23) is in general unsolvable, since $\mathcal{N} \neq \{0\}$. To find solvability conditions, we rewrite equation in (23) as

$$-\partial_t^2 v_1 + V(t)v_1 = -(\varkappa(s)h'(t) + U(s,t)h(t))u_-(s), \tag{26}$$

multiply by an arbitrary element ψ of \mathcal{N} and then integrate over Q_1 :

$$\int_{Q_1} \left(-\partial_t^2 v_1 + V v_1 \right) ah \, dt \, ds = -\int_{Q_1} (\varkappa h' + U h) u_- \psi \, dt \, ds. \tag{27}$$

Because $\psi = a(s)h(t)$ and h is a solution of (24), integrating by parts twice in view of the boundary conditions for v_1 yields

$$\int_{S} \left(\int_{-1}^{1} \left(-\partial_{t}^{2} v_{1} + V v_{1} \right) h \, dt \right) a \, ds$$

$$= -\int_{S} \left(\partial_{t} v_{1} h - v_{1} h' \right) \Big|_{-1}^{1} a \, ds - \int_{S} \left(\int_{-1}^{1} v_{1} \left(-h'' + V h \right) \, dt \right) a \, ds$$

$$= -\int_{S} \left(\theta \partial_{\nu} u_{+} - \partial_{\nu} u_{-} \right) a \, ds.$$

Recall that h(-1) = 1 and $h(1) = \theta$. Returning then to (27) we see that

$$\int_{S} (\theta \partial_{\nu} u_{+} - \partial_{\nu} u_{-}) a \, ds = \int_{S} \left(\int_{-1}^{1} \left(\varkappa h h' + U h^{2} \right) \, dt \right) u_{-} a \, ds \tag{28}$$

We also have

$$\int_{-1}^{1} hh' \, dt = \frac{1}{2}(\theta^2 - 1),$$

since $hh' = \frac{1}{2}(h^2)'$. Therefore (28) becomes

$$\int_{S} \left(\theta \partial_{\nu} u_{+} - \partial_{\nu} u_{-} - \left(\frac{1}{2} (\theta^{2} - 1) \varkappa + \mu \right) u_{-} \right) a \, ds = 0,$$

where μ is given by (8). The last identity holds for all $a \in L^2(S)$ and hence the expression in the brackets vanishes on γ . We obtain the condition

$$\theta \partial_{\nu} u_{+} - \partial_{\nu} u_{-} = \left(\frac{1}{2}(\theta^{2} - 1)\varkappa + \mu\right)u_{-},$$

which is necessary for the solvability of (23). In view of the Fredholm alternative, this condition is also a sufficient one. At the same time, it is a jump condition at the interface for the normal derivative of u.

Therefore the leading term of asymptotics (17) is a solution of problem

$$-\Delta u + (W - \zeta)u = f \qquad \text{in } \mathbb{R}^2 \setminus \gamma, \tag{29}$$

$$u_{+} - \theta u_{-} = 0 \qquad \text{on } \gamma, \tag{30}$$

$$\theta \partial_{\nu} u_{+} - \partial_{\nu} u_{-} = \left(\frac{1}{2}(\theta^{2} - 1)\varkappa + \mu\right) u_{-} \quad \text{on } \gamma.$$
 (31)

The problem admits a unique solution $u = (\mathcal{H} - \zeta)^{-1}f$ belonging to space \mathcal{V} . Now we can calculated the trace u_- on γ and define $v_0(s,t) = u_-(s)h(t)$. Since condition (31) holds, problem (23) is solvable and possesses a linear manifold of solutions. It will be convenient for us to fix v_1 such that $v_1(s,-1) = 0$ for all $s \in S$. We set

$$v_1(s,t) = \partial_{\nu} u_{-}(s) h_1(t) - u_{-}(s) h_2(s,t), \tag{32}$$

where h_1 and h_2 be solutions of the Cauchy problems

$$-h_1'' + V(t)h_1 = 0, \quad t \in (-1, 1), \quad h_1(-1) = 0, \quad h_1'(-1) = 1;$$

$$\begin{cases} -h_2'' + V(t)h_2 = \varkappa(s)h'(t) + U(s, t)h(t), & t \in (-1, 1), \\ h_2(s, -1) = 0, & \partial_t h_2(s, -1) = 0, \quad s \in S \end{cases}$$
(33)

respectively. We see at once that v_1 of the form (32) solves equation (26) and satisfies boundary conditions $v_1(s, -1) = 0$ and $\partial_t v_1(s, -1) = \partial_\nu u_-(s)$. Now we show that the condition $\partial_t v_1(s, 1) = \partial_\nu u_+(s)$ also holds.

Recall that half-bound state h was fixed by h(-1) = 1. Then the Lagrange identity $(h_1h' - h'_1h)|_{-1}^1 = 0$ implies $h'_1(1) = \theta^{-1}$. Next, multiplying the equation in (33) by h and integrating by parts twice yield

$$(h'h_2 - h \partial_t h_2)\Big|_{-1}^1 = \varkappa(s) \int_{-1}^1 hh' dt + \int_{-1}^1 U(s,t)h^2(t) dt,$$

i.e.,
$$\theta \partial_t h_2(s,1) = -\frac{1}{2}(\theta^2 - 1)\varkappa(s) - \mu(s)$$
. Therefore

$$\partial_t v_1(s,1) = \partial_\nu u_-(s) h_1'(1) - u_-(s) \partial_t h_2(s,1)$$

$$= \theta^{-1} \left(\partial_{\nu} u_{-}(s) + \left(\frac{1}{2} (\theta^{2} - 1) \varkappa(s) + \mu(s) \right) u_{-}(s) \right) = \partial_{\nu} u_{+}(s)$$

by (31).

Non-resonant case

Now suppose that problem (24) admits the trivial solution only, i.e., $\mathcal{N} = \{0\}$. Then $v_0 = 0$ and therefore $u_- = 0$ and $u_+ = 0$ on γ , by (21). We thus get

$$-\Delta u + (W - \zeta)u = f$$
 in $\mathbb{R}^2 \setminus \gamma$, $u|_{\gamma} = 0$

for the leading term of asymptotics (17). The problem admits a unique solution $u \in \mathcal{V}$. Of course, $u = (\mathcal{D}_1 \oplus \mathcal{D}_2 - \zeta)^{-1} f$. In this case, problem (23) becomes

$$\begin{cases}
-\partial_t^2 v_1 + V(t)v_1 = 0 & \text{in } Q_1, \\
\partial_t v_1(s, -1) = \partial_\nu u_-, & \partial_t v_1(s, 1) = \partial_\nu u_+,
\end{cases}$$
(34)

and it is also uniquely solvable.

5 Proof of Theorem 1

We will provide a proof for the most interesting case when potential V has a zero-energy resonance. The non-resonant case, which is much easier, follows similarly. We must prove that

$$(H_{\varepsilon} - \zeta)^{-1} f \to (\mathcal{H} - \zeta)^{-1} f, \quad \text{as } \varepsilon \to 0,$$
 (35)

for all $f \in L_2(\mathbb{R}^2)$ and some $\zeta \in \mathbb{C} \setminus \mathbb{R}$. But the resolvents of H_{ε} are uniformly bounded on ε , namely,

$$\|(H_{\varepsilon}-\zeta)^{-1}\| \leqslant |\operatorname{Im}\zeta|^{-1}.$$

It will thus be sufficient to prove that (35) holds for $f \in \mathcal{F}$, where \mathcal{F} is some dense subset of $L_2(\mathbb{R}^2)$. We suppose that $\mathcal{F} = C_0^{\infty}(\mathbb{R}^2 \setminus \gamma)$.

Hereafter, letters c_j denote various positive numbers independent of ε , whose values might be different in different proofs.

5.1 Approximation in $W^1_2(\mathbb{R}^2)$

Given $f \in \mathcal{F}$ and $\zeta \in \mathbb{C}$, $\operatorname{Im} \zeta \neq 0$, we must compare $u_{\varepsilon} = (H_{\varepsilon} - \zeta)^{-1}f$ and $u = (\mathcal{H} - \zeta)^{-1}f$ in $L_2(\mathbb{R})$, and show that the difference $u_{\varepsilon} - u$ is infinitely small in $L_2(\mathbb{R})$ -norm, as $\varepsilon \to 0$. The basic idea of the proof is to construct a suitable approximation to u_{ε} in $W_2^1(\mathbb{R}^2)$. The formal asymptotics

(17) constructed above will be used as a starting point in the construction of this approximation. We recall that the Sobolev space $W_2^1(\mathbb{R}^2)$ contains the domains of H_0 and H_{ε} .

We note that $v_0 \in W_2^1(Q_1)$. This inclusion follows from the explicit form $v_0(s,t) = u_-(s)h(t)$, where u_- belongs to $W_2^{3/2}(S)$ (as a trace of $u \in W_2^2(\Omega_{in})$ on curve γ) and $h \in W_2^2(-1,1) \subset C^1(-1,1)$. In view of representation formula (32), function v_1 does not belongs to $W_2^1(Q_1)$, since $\partial_{\nu}u_- \in W_2^{1/2}(S)$ in general. However the term u_-h_2 in (32) is an element of $W_2^1(Q_1)$, because $h_2 = h_2(s,t)$ possesses the additional smoothness with respect to s owing to the making more smoothness assumptions upon the curve γ and potential U. Recall that $\varkappa \in C^1(S)$ and $\partial_s U \in L_2(\mathbb{R}^2)$.

We now regularize the trace $\partial_{\nu}u_{-}$. Let $\{\beta_{\varepsilon}^{-}\}_{\varepsilon>0}$ be a sequence in $W_{2}^{1}(\gamma)$ such that $\beta_{\varepsilon}^{-} \to \partial_{\nu}u_{-}$ in $W_{2}^{-1/2}(\gamma)$. The sequence can be chosen in such a way that

$$\|\beta_{\varepsilon}^{-} - \partial_{\nu} u_{-}\|_{W_{2}^{-1/2}(\gamma)} \leqslant c_{1} \varepsilon^{1/2} \qquad \|\beta_{\varepsilon}^{-}\|_{W_{2}^{1}(\gamma)} \leqslant c_{2} \varepsilon^{-1/2}, \tag{36}$$

since $|\langle \beta_{\varepsilon}^- - \partial_{\nu} u_-, \beta_{\varepsilon}^- \rangle| \leq \|\beta_{\varepsilon}^- - \partial_{\nu} u_-\|_{W_2^{-1/2}(\gamma)} \|\beta_{\varepsilon}^-\|_{W_2^1(\gamma)}$ Then the function

$$v_1^{\varepsilon}(s,t) = \beta_{\varepsilon}^{-}(s)h_1(t) - u_{-}(s)h_2(s,t)$$

$$\tag{37}$$

belongs to $W_2^1(Q_1)$ and solves the problem

$$\begin{cases} -\partial_t^2 v_1^{\varepsilon} + V(t) v_1^{\varepsilon} = -\varkappa(s) u_{-}(s) h'(t) - U(s,t) h(t) & \text{in } Q_1, \\ \partial_t v_1^{\varepsilon}(s,-1) = \beta_{\varepsilon}^{-}(s), & \partial_t v_1^{\varepsilon}(s,1) = \beta_{\varepsilon}^{+}(s), & s \in S, \end{cases}$$
(38)

where $\beta_{\varepsilon}^{+} = \theta^{-1} \left(\frac{1}{2} (\theta^2 - 1) \varkappa u_{-} - \beta_{\varepsilon}^{-} \right)$. Thus

$$\|\beta_{\varepsilon}^{+} - \partial_{\nu} u_{+}\|_{W_{2}^{-1/2}(\gamma)} \leqslant c_{1} \varepsilon^{1/2}, \tag{39}$$

as $\varepsilon \to 0$, by solvability condition (31). We also have the bounds

$$||v_1^{\varepsilon}||_{L_2(Q_1)} + ||\partial_t v_1^{\varepsilon}||_{L_2(Q_1)} \leqslant C_1, \qquad ||\partial_s v_1^{\varepsilon}||_{L_2(Q_1)} \leqslant C_2 \varepsilon^{-1/2}. \tag{40}$$

We introduce the function

$$y_{\varepsilon}(x) = \begin{cases} u(x) & \text{in } \mathbb{R}^2 \setminus \omega_{\varepsilon}, \\ v_0\left(s, \frac{n}{\varepsilon}\right) + \varepsilon v_1^{\varepsilon}\left(s, \frac{n}{\varepsilon}\right) & \text{in } \omega_{\varepsilon}. \end{cases}$$
(41)

It is still not smooth enough and does not belong to $W_2^1(\mathbb{R}^2)$, because it has in general jump discontinuities on curves $\gamma_{-\varepsilon}$ and γ_{ε} . We will show that both the jumps

$$[u_{\varepsilon}]_{\gamma} = v_0(s, -1) - u(s, -\varepsilon) = u_{-}(s) - u(s, -\varepsilon),$$

$$\begin{aligned} [y_{\varepsilon}]_{\gamma_{\varepsilon}} &= u(s,\varepsilon) - v_0(s,1) - \varepsilon v_1^{\varepsilon}(s,1) \\ &= u(s,\varepsilon) - \theta u_{-}(s) - \varepsilon v_1^{\varepsilon}(s,1) \\ &= u(s,\varepsilon) - u_{+}(s) - \varepsilon v_1^{\varepsilon}(s,1) \end{aligned}$$

are small as $\varepsilon \to 0$. Recall that $v_1^{\varepsilon}(s,-1) = 0$. Let us denote by Ω_{ε} the set $\mathbb{R}^2 \setminus \omega_{\varepsilon}$.

Lemma 1. There exists a function $\rho_{\varepsilon}: \mathbb{R}^2 \to \mathbb{C}$ such that $y_{\varepsilon} + \rho_{\varepsilon}$ belongs to $W_2^1(\mathbb{R}^2)$. Moreover for the restriction of ρ_{ε} to Ω_{ε} we have the estimate

$$\|\rho_{\varepsilon}\|_{W_2^1(\Omega_{\varepsilon})} \leqslant c\varepsilon^{1/2}.$$
 (42)

Proof. Let $Z_{in}:W_2^{1/2}(\gamma)\to W_2^1(\Omega_{in})$ and $Z_{out}:W_2^{1/2}(\gamma)\to W_2^1(\Omega_{out})$ be continuous extension operators such that supp $Z_{in}\,g\subset\Omega_{in}\cap\omega_{1/2}$ and supp $Z_{out} g \subset \Omega_{out} \cap \omega_{1/2}$ for all $g \in W_2^{1/2}(\gamma)$. The jumps $g_{\varepsilon}^{\pm} := [y_{\varepsilon}]_{\gamma \pm \varepsilon}$ can be regarded as functions on γ . Obviously, $g_{\varepsilon}^{\pm} \in W_2^{1/2}(\gamma)$. We set $z_{\varepsilon}^- = -Z_{in} g_{\varepsilon}^-$, $z_{\varepsilon}^+ = -Z_{out} g_{\varepsilon}^+$ and introduce function

$$\rho_{\varepsilon}(s,n) = \begin{cases}
z_{\varepsilon}^{+}(s,n-\varepsilon) & \text{for } s \in S, \ n \in (\varepsilon,\varepsilon+1/2), \\
z_{\varepsilon}^{-}(s,n+\varepsilon) & \text{for } s \in S, \ n \in (-\varepsilon-1/2,-\varepsilon), \\
0, & \text{otherwise}
\end{cases}$$
(43)

in \mathbb{R}^2 for $\varepsilon < 1/2$. The function has a compact support and, in particular, it vanishes in ω_{ε} . Next, by construction ρ_{ε} has the jump discontinuities

$$[\rho_{\varepsilon}]_{\gamma+\varepsilon} = z_{\varepsilon}^{\pm}(s,0) = -[y_{\varepsilon}]_{\gamma+\varepsilon}.$$

Since both the functions y_{ε} and ρ_{ε} belong to $W_2^1(\mathbb{R}^2 \setminus (\gamma_{-\varepsilon} \cup \gamma_{\varepsilon}))$ and

$$[y_{\varepsilon} + \rho_{\varepsilon}]_{\gamma \pm \varepsilon} = 0,$$

we have $y_{\varepsilon} + \rho_{\varepsilon} \in W_2^1(\mathbb{R}^2)$. Furthermore,

$$\begin{split} \|\rho_{\varepsilon}\|_{W_{2}^{1}(\Omega_{\varepsilon})} & \leq c_{1}(\|z_{\varepsilon}^{-}\|_{W_{2}^{1}(\Omega_{in})} + \|z_{\varepsilon}^{+}\|_{W_{2}^{1}(\Omega_{out})}) \\ & = c_{1}(\|Z_{in}\,g_{\varepsilon}^{-}\|_{W_{2}^{1}(\Omega_{in})} + \|Z_{out}\,g_{\varepsilon}^{+}\|_{W_{2}^{1}(\Omega_{out})}) \\ & \leq c_{2}(\|g_{\varepsilon}^{-}\|_{W_{2}^{1/2}(\gamma)} + \|g_{\varepsilon}^{+}\|_{W_{2}^{1/2}(\gamma)}) \\ & \leq c_{3}(\|u(\cdot, -\varepsilon) - u_{-}\|_{W_{2}^{1/2}(\gamma)} + \|u(\cdot, \varepsilon) - u_{+}\|_{W_{2}^{1/2}(\gamma)}) \\ & + \varepsilon\|v_{1}^{\varepsilon}(\cdot, 1)\|_{W_{2}^{1/2}(\gamma)} \leq c_{4}\varepsilon^{1/2}, \end{split}$$

by Proposition 3 and (40). In fact, the restrictions u to domains Ω_{in} and Ω_{out} belong to $W_2^2(\Omega_{in})$ and $W_2^2(\Omega_{out})$ respectively. Applying Proposition 3 to u and $\partial_s u$ yields

$$||u(\cdot,\pm\varepsilon)-u(\cdot,\pm0)||_{L_2(\gamma)}+||\partial_s u(\cdot,\pm\varepsilon)-\partial_s u(\cdot,\pm0)||_{L_2(\gamma)}\leqslant c\varepsilon^{1/2}.$$

Consequently, $\|u(\cdot, \pm \varepsilon) - u_{\pm}\|_{W_2^{1/2}(\gamma)} \leq \|u(\cdot, \pm \varepsilon) - u_{\pm}\|_{W_2^{1}(\gamma)} \leq c\varepsilon^{1/2}$. Finally, this follows from (37) that

$$||v_1^{\varepsilon}(\,\cdot\,,1)||_{W_2^{1/2}(\gamma)}\leqslant c_1(||\beta_{\varepsilon}^-||_{W_2^{1/2}(\gamma)}+||u_-||_{W_2^{1/2}(\gamma)})\leqslant c_2,$$

since
$$\beta_{\varepsilon}^- \to \partial_{\nu} u_-$$
 in $W_2^{1/2}(\gamma)$.

Hence, the desired approximation to u_{ε} in the Sobolev space $W_2^1(\mathbb{R}^2)$ has the form

$$Y_{\varepsilon}(x) = \begin{cases} u(x) + \rho_{\varepsilon}(x) & \text{in } \mathbb{R}^2 \setminus \omega_{\varepsilon}, \\ v_0\left(s, \frac{n}{\varepsilon}\right) + \varepsilon v_1^{\varepsilon}\left(s, \frac{n}{\varepsilon}\right) & \text{in } \omega_{\varepsilon}, \end{cases}$$
(44)

where ρ_{ε} is given by (43).

5.2 Estimate of Remainder

Let us fix $f \in C_0^{\infty}(\mathbb{R}^2 \setminus \gamma)$. First of all, we note that

$$\int_{\mathbb{R}^2} f\varphi \, dx = \int_{\Omega_{\varepsilon}} f\varphi \, dx \tag{45}$$

for ε small enough. We also record some other identities that will be needed below. Multiplying equation (29) by $\varphi \in W_2^1(\mathbb{R}^2)$ and integrating by parts over Ω_{ε} yield

$$\int_{\Omega_{\varepsilon}} \left(\nabla u \nabla \varphi + (W - \zeta) u \varphi \right) dx - \int_{\Omega_{\varepsilon}} f \varphi dx
= - \int_{S} \left(\partial_{\nu} u(s, \varepsilon) \varphi(s, \varepsilon) - \partial_{\nu} u(s, -\varepsilon) \varphi(s, -\varepsilon) \right) ds.$$
(46)

In the same manner we can obtain from (22) and (38) that

$$\int_{Q_{1}} \left(\partial_{t} v_{0} \, \partial_{t} \psi + V v_{0} \psi \right) J_{\varepsilon} \, dt ds = \varepsilon \int_{Q_{1}} \varkappa \, \partial_{t} v_{0} \, \psi \, dt ds; \tag{47}$$

$$\int_{Q_{1}} \left(\partial_{t} v_{1}^{\varepsilon} \, \partial_{t} \psi + V v_{1}^{\varepsilon} \psi + U v_{0} \psi \right) J_{\varepsilon} \, dt \, ds$$

$$= - \int_{Q_{1}} \varkappa \, \partial_{t} v_{0} \psi J_{\varepsilon} \, dt \, ds + \varepsilon \int_{Q_{1}} \varkappa \, \partial_{t} v_{1}^{\varepsilon} \, \psi \, dt \, ds$$

$$+ \int_{S} \left(\beta_{\varepsilon}^{+}(s) \psi(s, 1) J(s, \varepsilon) - \beta_{\varepsilon}^{-}(s) \psi(s, -1) J(s, -\varepsilon) \right) ds$$

for all $\psi \in W_2^1(Q_1)$. For instance, let us multiply the equation in (22) by $\psi(s,t)J_{\varepsilon}(s,t)$, where $J_{\varepsilon}(s,t)=1-\varepsilon \varkappa t$, and integrate over Q_1 . Then in view of boundary conditions for v_0 we deduce

$$0 = \int_{Q_1} \left(-\partial_t^2 v_0 + V v_0 \right) \psi J_{\varepsilon} \, dt ds = -\int_{S} \left(\partial_t v_0 \, \psi J_{\varepsilon} \right) \Big|_{-1}^1 \, ds$$
$$+ \int_{Q_1} \partial_t v_0 \, \partial_t (\psi J_{\varepsilon}) \, dt ds + \int_{Q_1} V v_0 \psi J_{\varepsilon} \, dt ds$$
$$= \int_{Q_1} \left(\partial_t v_0 \, \partial_t \psi + V v_0 \psi \right) J_{\varepsilon} \, dt ds - \varepsilon \int_{Q_1} \varkappa \, \partial_t v_0 \, \psi \, dt ds,$$

which establishes (47). Let us note here, for future use,

$$\int_{\omega_{\varepsilon}} g(x) dx = \varepsilon \int_{Q_1} g(s, \varepsilon t) J_{\varepsilon}(s, t) ds dt, \tag{49}$$

$$|\nabla v(x_{\varepsilon})|^{2} = \varepsilon^{-2} |\partial_{t} v(s,t)|^{2} + J_{\varepsilon}^{-2}(s,t) |\partial_{s} v(s,t)|^{2},$$
(50)

where $v(x_{\varepsilon})$ stands for $v(s, \frac{n}{\varepsilon})$, cf. (10) and (11).

Under our assumptions about potential W the function $u_{\varepsilon} = (H_{\varepsilon} - \zeta)^{-1} f$ belongs to $W_2^1(\mathbb{R}^2)$ and therefore satisfies the integral identity

$$\int_{\mathbb{R}^2} \left(\nabla u_{\varepsilon} \nabla \varphi + (W + V_{\varepsilon} - \zeta) u_{\varepsilon} \varphi \right) dx = \int_{\mathbb{R}^2} f \varphi \, dx, \qquad \varphi \in W_2^1(\mathbb{R}^2). \quad (51)$$

To show that Y_{ε} is an adequate approximation to u_{ε} , introduce the functional

$$F_{\varepsilon}(\varphi) = \int_{\mathbb{R}^2} \left(\nabla Y_{\varepsilon} \nabla \varphi + (W + V_{\varepsilon} - \zeta) Y_{\varepsilon} \varphi \right) \, dx - \int_{\mathbb{R}^2} f \varphi \, dx, \tag{52}$$

defined for functions φ belonging to $W_2^1(\mathbb{R}^2)$ and prove that its norm is infinitely small as $\varepsilon \to 0$.

Lemma 2. The functional F_{ε} satisfies the estimate

$$|F_{\varepsilon}(\varphi)| \leqslant c\varepsilon^{1/2} \|\varphi\|_{W_2^1(\mathbb{R}^2)}$$

for all $\varphi \in W_2^1(\mathbb{R}^2)$.

Proof. Let us rewrite F_{ε} into a more detailed form

$$\begin{split} F_{\varepsilon}(\varphi) &= \int_{\omega_{\varepsilon}} \left(\nabla (v_0 + \varepsilon v_1^{\varepsilon}) \nabla \varphi + (W + V_{\varepsilon} - \zeta)(v_0 + \varepsilon v_1^{\varepsilon}) \varphi \right) dx \\ &+ \int_{\Omega_{\varepsilon}} \left(\nabla (u + \rho_{\varepsilon}) \nabla \varphi + (W - \zeta)(u + \rho_{\varepsilon}) \varphi \right) dx - \int_{\mathbb{R}^2} f \varphi \, dx. \end{split}$$

With notation $\varphi_{\varepsilon}(s,t) = \varphi(s,\varepsilon t)$, we have

$$F_{\varepsilon}(\varphi) = \varepsilon^{-1} \int_{Q_1} \left(\partial_t v_0 \, \partial_t \varphi_{\varepsilon} + V v_0 \varphi_{\varepsilon} \right) J_{\varepsilon} \, dt \, ds$$
$$+ \int_{Q_1} \left(\partial_t v_1^{\varepsilon} \, \partial_t \varphi_{\varepsilon} + V v_1^{\varepsilon} \varphi_{\varepsilon} + U v_0 \psi_{\varepsilon} \right) J_{\varepsilon} \, dt \, ds$$

$$+ \int_{\Omega_{\varepsilon}} \left(\nabla u \nabla \varphi + (W - \zeta) u \varphi \right) dx - \int_{\Omega_{\varepsilon}} f \varphi \, dx$$

$$+ \int_{\Omega_{\varepsilon}} \left(\nabla \rho_{\varepsilon} \nabla \varphi + (W - \zeta) \rho_{\varepsilon} \varphi \right) dx$$

$$+ \varepsilon \int_{Q_{1}} \partial_{s} v_{0} \, \partial_{s} \varphi_{\varepsilon} \, J_{\varepsilon} \, dt \, ds + \varepsilon^{2} \int_{Q_{1}} \partial_{s} v_{1}^{\varepsilon} \, \partial_{s} \varphi_{\varepsilon} \, J_{\varepsilon} \, dt \, ds$$

$$+ \varepsilon \int_{Q_{1}} (W - \zeta) (v_{0} + \varepsilon v_{1}^{\varepsilon}) \varphi_{\varepsilon} \, J_{\varepsilon} \, dt \, ds,$$

by (45), (49) and (50). Let us replace the first and second integrals by the right-hand sides of (47) and (48) with $\psi_{\varepsilon}(s,t) = \varphi(s,\varepsilon t)$ respectively, and the difference between the third and fourth ones by the right-hand side of (46). The other terms in the last formula are small as $\varepsilon \to 0$, because Lemma 1 and estimates (40) provide the bounds

$$\begin{split} \left| \int_{\Omega_{\varepsilon}} \left(\nabla \rho_{\varepsilon} \nabla \varphi + (W - \zeta) \rho_{\varepsilon} \varphi \right) dx \right| &\leq c_{1} \varepsilon^{1/2} \|\varphi\|_{W_{2}^{1}(\mathbb{R}^{2})}, \\ \left| \int_{Q_{1}} \partial_{s} v_{0} \, \partial_{s} \varphi_{\varepsilon} \, J_{\varepsilon} \, dt \, ds \right| &\leq c_{2} \|\varphi\|_{W_{2}^{1}(\mathbb{R}^{2})}, \\ \left| \int_{Q_{1}} \partial_{s} v_{1}^{\varepsilon} \, \partial_{s} \varphi_{\varepsilon} \, J_{\varepsilon} \, dt \right| &\leq c_{3} \varepsilon^{-1/2} \|\varphi\|_{W_{2}^{1}(\mathbb{R}^{2})}, \\ \left| \int_{Q_{1}} (W - \zeta) (v_{0} + \varepsilon v_{1}^{\varepsilon}) \varphi_{\varepsilon} \, J_{\varepsilon} \, dt \, ds \right| &\leq c_{4} \|\varphi\|_{W_{2}^{1}(\mathbb{R}^{2})}. \end{split}$$

Therefore

$$F_{\varepsilon}(\varphi) = \int_{Q_{1}} \varkappa \, \partial_{t} v_{0} \, \varphi_{\varepsilon} \, dt ds - \int_{Q_{1}} \varkappa \, \partial_{t} v_{0} \varphi_{\varepsilon} J_{\varepsilon} \, dt \, ds + \varepsilon \int_{Q_{1}} \varkappa \, \partial_{t} v_{1}^{\varepsilon} \, \varphi_{\varepsilon} \, dt \, ds$$

$$+ \int_{S} \left(\beta_{\varepsilon}^{+}(s) \varphi(s, \varepsilon) J(s, \varepsilon) - \beta_{\varepsilon}^{-}(s) \varphi(s, -\varepsilon) J(s, -\varepsilon) \right) ds$$

$$- \int_{S} (\partial_{\nu} u(s, \varepsilon) \varphi(s, \varepsilon) - \partial_{\nu} u(s, -\varepsilon) \varphi(s, -\varepsilon)) \, ds + r_{\varepsilon}(\varphi),$$

where $|r_{\varepsilon}(\varphi)| \leq c\varepsilon^{1/2} \|\varphi\|_{W_2^1(\mathbb{R}^2)}$. Next, F_{ε} in turn rearranges to become

$$F_{\varepsilon}(\varphi) = \int_{S} \left(\beta_{\varepsilon}^{+}(s) - \partial_{\nu}u(s,\varepsilon)\right) \varphi(s,\varepsilon) \, ds$$

$$- \int_{S} \left(\beta_{\varepsilon}^{-}(s) - \partial_{\nu}u(s,-\varepsilon)\right) \varphi(s,-\varepsilon) \, ds$$

$$+ \varepsilon \int_{Q_{1}} \varkappa \left(t\partial_{t}v_{0} + \partial_{t}v_{1}^{\varepsilon}\right) \varphi_{\varepsilon} \, dt \, ds$$

$$- \varepsilon \int_{S} \varkappa(s) \left(\beta_{\varepsilon}^{+}(s)\varphi(s,\varepsilon) - \beta_{\varepsilon}^{-}(s)\varphi(s,-\varepsilon)\right) \, ds + r_{\varepsilon}(\varphi).$$

Thus

$$F_{\varepsilon}(\varphi) = \int_{S} (\beta_{\varepsilon}^{+}(s) - \partial_{\nu}u(s, \varepsilon))\varphi(s, \varepsilon) ds$$
$$- \int_{S} (\beta_{\varepsilon}^{-}(s) - \partial_{\nu}u(s, -\varepsilon))\varphi(s, -\varepsilon) ds + q_{\varepsilon}(\varphi),$$

where $|q_{\varepsilon}(\varphi)| \leq c\varepsilon^{1/2} \|\varphi\|_{W_2^1(\mathbb{R}^2)}$. But then (36), (39) and Proposition 3 imply

$$\left| \int_{S} \left(\beta_{\varepsilon}^{\pm}(s) - \partial_{\nu} u(s, \pm \varepsilon) \right) \varphi(s, \pm \varepsilon) \, ds \right|$$

$$\leq \left| \int_{S} \left(\beta_{\varepsilon}^{\pm}(s) - \partial_{\nu} u_{\pm} \right) \varphi(s, \pm \varepsilon) \, ds \right| + \left| \int_{S} \left(\partial_{\nu} u(s, \pm \varepsilon) - \partial_{\nu} u_{\pm} \right) \varphi(s, \pm \varepsilon) \, ds \right|$$

$$\leq \left\| \beta_{\varepsilon}^{\pm} - \partial_{\nu} u_{\pm} \right\|_{W_{2}^{-1/2}(\gamma)} \left\| \varphi(\cdot, \pm \varepsilon) \right\|_{W_{2}^{1/2}(\gamma)}$$

$$+ \left\| \partial_{\nu} u(\cdot, \pm \varepsilon) - \partial_{\nu} u_{\pm} \right\|_{L_{2}(\gamma)} \left\| \varphi(\cdot, \pm \varepsilon) \right\|_{L_{2}(\gamma)} \leq c \varepsilon^{1/2} \left\| \varphi \right\|_{W_{2}^{1}(\mathbb{R}^{2})}.$$

Therefore $|F_{\varepsilon}(\varphi)| \leq c\varepsilon^{1/2} \|\varphi\|_{W_2^1(\mathbb{R}^2)}$ for all $\varphi \in W_2^1(\mathbb{R}^2)$, and the lemma follows.

5.3 The End of the Proof

From (51) and (52) we see

$$\int_{\mathbb{R}^2} \nabla (Y_{\varepsilon} - u_{\varepsilon}) \nabla \varphi \, dx + \int_{\mathbb{R}^2} (W + V_{\varepsilon} - \zeta) (Y_{\varepsilon} - u_{\varepsilon}) \varphi \, dx = F_{\varepsilon}(\varphi),$$

for all $\varphi \in W_2^1(\mathbb{R}^2)$. If $\varphi = \overline{Y_{\varepsilon} - u_{\varepsilon}}$, then

$$\int_{\mathbb{R}^2} |\nabla (Y_{\varepsilon} - u_{\varepsilon})|^2 dx + \int_{\mathbb{R}^2} (W + V_{\varepsilon} - \zeta) |Y_{\varepsilon} - u_{\varepsilon}|^2 dx = F_{\varepsilon} (\overline{Y_{\varepsilon} - u_{\varepsilon}}).$$

$$- \operatorname{Im} \zeta \int_{\mathbb{R}^2} |Y_{\varepsilon} - u_{\varepsilon}|^2 dx = \operatorname{Im} F_{\varepsilon} (\overline{Y_{\varepsilon} - u_{\varepsilon}}).$$

$$\int_{\mathbb{R}^2} |Y_{\varepsilon} - u_{\varepsilon}|^2 dx \leqslant |\operatorname{Im} \zeta|^{-1} |F_{\varepsilon}(\overline{Y_{\varepsilon} - u_{\varepsilon}})| \leqslant c_1 \varepsilon^{1/2} ||Y_{\varepsilon} - u_{\varepsilon}||_{W_2^1(\mathbb{R}^2)} \leqslant c_2 \varepsilon^{1/4}$$

Lemma 3. If potential V has a zero mean, then the estimate

$$\left| \varepsilon^{-2} \int_{\omega_{\varepsilon}} V(\frac{n}{\varepsilon}) |\varphi|^2 dx \right| \leqslant c \varepsilon^{-1/2} \|\varphi\|_{W_2^1(\mathbb{R}^2)}^2$$

holds for all $\varphi, \psi \in W_2^1(\mathbb{R}^2)$.

Proof.

$$\begin{split} &\varepsilon^{-2}\left|\int_{\omega_{\varepsilon}}V(\tfrac{n}{\varepsilon})\varphi\psi\,dx\right|=\varepsilon^{-1}\left|\int_{Q_{1}}V(t)\varphi(s,\varepsilon t)\psi(s,\varepsilon t)(1-\varepsilon t\varkappa(s))\,dt\,ds\right|\\ &\leqslant \varepsilon^{-1}\left|\int_{Q_{1}}V(t)\varphi(s,\varepsilon t)\psi(s,\varepsilon t)\,dt\,ds\right|+c_{1}\|\varphi\|_{W_{2}^{1}(\mathbb{R}^{2})}\|\psi\|_{W_{2}^{1}(\mathbb{R}^{2})} \end{split}$$

$$\begin{split} \left| \int_{Q_1} V(t) \varphi(s, \varepsilon t) \psi(s, \varepsilon t) \, dt \, ds \right| \\ &= \left| \int_{Q_1} V(t) \left(\varphi(s, 0) + \int_0^{\varepsilon t} \partial_t \varphi(s, \tau) \, d\tau \right) \right. \\ & \times \left(\psi(s, 0) + \int_0^{\varepsilon t} \partial_t \psi(s, \tau) \, d\tau \right) dt \, ds \right| \\ & \leqslant \left| \int_{Q_1} V(t) \varphi(s, 0) \int_0^{\varepsilon t} \partial_t \psi(s, \tau) \, d\tau \, dt \, ds \right| \\ & + \left| \int_{Q_1} V(t) \psi(s, 0) \int_0^{\varepsilon t} \partial_t \varphi(s, \tau) \, d\tau \, dt \, ds \right| \\ & + \left| \int_{Q_1} V(t) \int_0^{\varepsilon t} \partial_t \varphi(s, \tau) \, d\tau \int_0^{\varepsilon t} \partial_t \psi(s, \tau) \, d\tau \, dt \, ds \right| \end{split}$$

$$\left| \int_{Q_{1}} V(t)\varphi(s,0) \int_{0}^{\varepsilon t} \partial_{t}\psi(s,\tau) d\tau dt ds \right|$$

$$\leq c_{1} \left(\int_{Q_{1}} |\varphi(s,0)|^{2} dt ds \right)^{1/2} \left(\int_{Q_{1}} \left| \int_{0}^{\varepsilon t} \partial_{t}\psi(s,\tau) d\tau \right|^{2} dt ds \right)^{1/2}$$

$$\leq c_{1} \|\varphi\|_{W_{2}^{1}(\mathbb{R}^{2})} \left(\int_{Q_{1}} \left| \int_{0}^{\varepsilon t} d\tau \right| \left| \int_{-1}^{1} |\partial_{t}\psi|^{2} d\tau dt ds \right)^{1/2}$$

$$\leq c_{1} \varepsilon^{1/2} \|\varphi\|_{W_{2}^{1}(\mathbb{R}^{2})} \|\psi\|_{W_{2}^{1}(\mathbb{R}^{2})}$$

$$\leq c_{1} \varepsilon^{1/2} \|\varphi\|_{W_{2}^{1}(\mathbb{R}^{2})} \|\psi\|_{W_{2}^{1}(\mathbb{R}^{2})}$$

References

1. Behrndt, J., Exner, P., Holzmann, M., Lotoreichik, V. (2017). Approximation of Schrödinger operators with δ -interactions supported on hypersurfaces. Mathematische Nachrichten, 290(8-9), 1215-1248.