Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

2926

Summary of Cotton Fiber and Processing Test Results

CROP of 7 198

U.S. DEPARTMENT OF AGRICULTURE Agricultural Marketing Service Cotton Division June 1985

CONTENTS

	Page
Introduction	1
Sampling Procedures	1
Map: Distribution of Production Areas	2
Laboratory Procedures	3
Discussion of Test Results	5
Description of Tables	8
Description of Statistics Used in Analysis	76
Interpreting Statistical Data	79
Basis for Interpretation of Test Results	80
TABLES	
Summaries: Table 1 - Area and U.S. Summary. Table 2 - State Summary. Table 3 - Grade and Staple Summary. Table 4 - Variety Summary.	12 14 20 22
Test Measurements: Table 5 - Results for Short Staple Cottons Table 6 - Results for Medium Staple Cottons Table 7 - Results for Long Staple Cottons Table 8 - Results for Extra Long Staple Cottons, American Pima	26 36 58 60
Means and Standard Deviations: Table 9 - Means & Standard Deviations for All Test Results.	62
Simple Correlations: Table 10 - Results for Short Staple Cottons Table 11 - Results for Medium Staple Cottons	65 68
Statistical Data for Regression Equations: Table 12 - Data for Short Staple Cottons Table 13 - Data for Medium Staple Cottons	70 74
Machine Settings: Table 14 - Standard Machine Settings and Specifications for Processing Specified Staple Length Groupings	96

SUMMARY OF COTTON FIBER AND PROCESSING TEST RESULTS CROP OF 1984

INTRODUCTION

This report contains information on the fiber properties and spinning performance of cotton from major commercial production areas of the United States. Similar reports have been published annually since 1946.* These reports summarize and add supplemental information to the data published in biweekly reports which were titled "Cotton Fiber and Processing Test Results, Crop of 1984" and numbered 1 through 14.

The results of fiber and spinning tests made in connection with these annual surveys provide data for studies of the relationships between fiber properties, processing performance and product quality. The data is used to measure the effectiveness of the standards to be sure that they continue to reflect differences in utility. The biweekly reports enable merchants and manufacturers to use the results to locate sources of cotton to meet their specific requirements. Farmers and breeders may also use the data as a source of quality information regarding the various varieties of cottons produced under commercial growing conditions.

SAMPLING PROCEDURES

The procedure for selecting samples for the 1984 survey was designed to provide test lots representing all major varieties in each of the territories served by Cotton Division Marketing Services Offices (MSO's). Variety selections were based on the predominant varieties planted in each MSO territory as reported by the Cotton Division in "Cotton Varieties Planted, 1984 Crop." A production area was selected to represent the leading variety and one to represent each of the other varieties with an expected production of 10,000 bales or more in each MSO territory. Additional areas were selected for those varieties with a production of over 200,000 bales. One additional production area was selected for each 200,000 bales or portion thereof in excess of the first 200,000 bales. Production areas with at least 70 percent of one variety were designated as that variety with no attempt made to maintain the purity of the variety except by selection of representative production areas. However, in some cases where there was an unusual interest in a particular variety and a low percentage was planted in the area, the MSO selected lots representing 100 percent of the variety. The locations of the 98 production areas selected for the 1984 survey are shown in Figure 1.

^{*}Copies of past summary reports may be obtained from the Testing Section, Cotton Division, AMS, USDA, P.O. Box 67, Clemson, SC 29631, until supplies are exhausted.

Figure 1. Location of production areas selected for the 1984 survey.

Two test lots were collected from each production area during the harvest season. Lots were selected to represent the predominant grade and staple being classed at the time of collection. For the most part, these areas produce the specified qualities in quantities large enough to enable buyers to obtain lots of even-running grade and staple. Obviously, other qualities of cotton are available in each area as a result of normal seasonal, soil, harvesting and other variations. Most production areas also produce cotton of varieties other than those included in these tests.

Each spinning lot used in this study was made up of 20 to 30 samples of the same grade and staple length from bales classed for growers under the Smith-Doxey Act. These even-running lots of samples were then tested at the Cotton Division's Fiber and Spinning Laboratory located in Clemson, South Carolina. While this method of collecting samples does not provide data for all qualities in the crop, it does provide average test results for those qualities in largest supply during the collection period.

LABORATORY PROCEDURES

Fiber and spinning tests were performed under standardized procedures at the Cotton Division's Fiber and Spinning Laboratory in Clemson, S.C. Most of the fiber tests were performed in the standard atmospheric conditions of 65 percent relative humidity and temperature of 70 degrees Fahrenheit. Standard test procedures as outlined by the American Society for Testing and Materials (ASTM) were used in making tests. Tests not covered by ASTM were performed using commonly accepted procedures as recommended by the instrument manufacturer. Five subsamples were taken at random from each spinning lot to provide representative specimens for the fiber tests.

Yarn processing or spinning tests were performed by a technique developed in the Cotton Division laboratories for processing small lots of cotton on standard-type textile machines. The samples in each lot were thoroughly composited by hand-mixing before being fed to the first process picker. This hand-mixing is similar to the machine-mixing normally obtained in cotton textile opening equipment. Observations were made at each process to measure processing behavior and the yarns produced were tested to measure product quality.

On the basis of average past performance, cottons were grouped according to the expected staple length for the specified variety. All cottons of the specified variety were spun in the same manner, regardless of difference in staple length. This was done so that direct comparisons of different lots of cotton within a specified variety could be made. These samples were carded at specified production rates and spun into numbers that reflect the manufacturing values of the varieties tested. In general, the rate of carding and yarn numbers from the 1984 crop are as follows:

- Group 1 Short staple cottons, carded at 12-1/2 pounds per hour and spun into carded 8s and 22s yarns with a twist multiplier of 4.40 plus a carded yarn spinning potential test for all lots.

 This includes varieties which normally produce staple lengths 31/32 inch and shorter.
- Group 2 Medium staple cottons, carded at 9-1/2 pounds per hour and spun into carded 22s and 50s yarn with a twist multiplier of 4.00 plus a carded yarn spinning potential test for all lots. This group includes varieties which normally produce cottons from 1 inch through 1-3/32 inches staple length.
- Group 3 Long staple cottons, carded at 6-1/2 pounds per hour and spun into both carded and combed 22s and 50s yarns with a twist multiplier of 3.80 plus a carded yarn spinning potential test for all lots. This group includes upland varieties which normally produce cottons from 1-1/8 inches through 1-1/4 inches in staple length.
- Group 4 Extra long staple cottons, carded at 4-1/2 pounds per hour and spun into combed 50s and 80s yarns with a twist multiplier of 3.60. This group includes all American Pima and American upland extra long staple varieties which are usually 1-5/16 inches or longer in staple length.

DISCUSSION OF TEST RESULTS

U.S. Average - Upland Cotton

One hundred and ninety-eight spinning lots of short, medium and long staple cottons were tested from the 1984 cotton crop compared to 154 from the 1983 crop. Fiber test results showed the 1984-crop upland cottons to be longer, finer, and less mature than those tested the year before. HVI fiber strength was higher while Stelometer 1/8 in. gage strength was about the same as a year ago. Both Shirley Analyzer non-lint content and picker and card waste were unchanged from levels of a year earlier. Sugar content was 0.08 percentage points higher. Yarns spun from these 198 spinning lots had the same average skein strength as a year earlier. Yarn appearance grades were slightly higher as was the average spinning potential number. The number of neps per 1000 yards was higher in yarns produced from 1984 upland cottons.

Group 1 - Short Staple Cottons

A total of 35 short staple samples were tested this season compared to 27 last year. These short staple cottons were slightly longer with a lower average mike. FMT fineness and FMT maturity ratio were lower than last season. HVI 1/8-inch gage fiber strength was higher while Stelometer strength remained the same. Sugar tests on the 35 samples averaged higher this season. Non-lint content and machine waste were both higher. Yarn skein strength was higher while yarn appearance grades were lower. The average spinning potential number of these short staple samples was higher than the average number for 1983-crop samples.

Group 2 - Medium Staple Cottons

One hundred and sixty-one medium staple spinning lots were tested from the 1984 cotton crop compared to 123 a year earlier. These medium staple lots were longer, finer, and less mature than their counterparts from the previous season. Both HVI fiber strength and sugar content were higher. Non-lint content and machine waste were at about the same level as a year ago. Yarn skein strength for the 161 medium staple samples averaged 106 pounds, the same as a year ago. Yarn appearance grades averaged slightly higher than last season's, while there was an increase in the number of yarn neps.

The <u>Southeastern</u> production area include the states of North Carolina, South Carolina, Georgia, Alabama, and this year, Florida. A total of 22 lots were tested from the 1984 crop, an increase of 6 lots over the 1983 total. Fiber tests showed these medium staple cottons were longer and slightly stronger compared to the previous year. Fibers were finer and had a lower maturity ratio than in 1983. Sugar content was higher. Non-lint content averaged 2.9 percent compared to 3.0 percent a year ago. Yarns spun from these medium staple cottons were stronger with higher average appearance grades than in the previous season. The spinning potenial yarn number for this season was 63, an increase of 7 over last season.

Tennessee, Missouri, Arkansas, Lousiana, and Mississippi make up the <u>South Central</u> area. A total of 62 medium staple spinning lots were received this year from the South Central area compared to 48 from the 1983 crop. Fiber length increased, while the average micronaire declined. Both FMT fineness and maturity ratio averaged lower than in the previous year. Stelometer 1/8 in. gage strength indicated these samples were weaker. Picker and card waste was higher while the yarn skein strength of these medium staple cottons was lower. Yarn appearance grades were lower this season and the average nep count was higher. The average spinning potential number was 53 compared to last year's average of 59.

The <u>Southwestern</u> production area is made up of Oklahoma, Kansas and all of Texas except the far western counties served by the El Paso Marketing Services Office. A total of 31 medium staple lots were tested from the 1984 cotton crop compared to 28 from the 1983 crop. Fiber tests showed the 1984-crop cottons to be slightly shorter but stronger than in the previous season. The fibers had a lower average mike reading and a higher sugar content than a year ago. Shirley Analyzer non-lint content remained the same, while picker and card waste was lower. Yarns spun from these 31 medium staple cottons had an average skein strength of 98 pounds, unchanged from last season. Yarn appearance grades were higher, and yarn neps were lower.

The states of Arizona, California, New Mexico and the far western counties of Texas are included in the Western area. Forty-six spinning lots were tested this season compared to 31 a year ago. These medium staple cottons were longer with the same average micronaire reading. Fiber strength was higher. Sugar tests showed the sugar content to be higher this season. Shirley Analyzer non-lint content was lower. Yarn skein strength averaged higher compared to a year earlier, while appearance grades were also higher. The average number of neps from these Western area cottons increased this season. The average spinning potential was higher.

Group 3 - Long Staple Cottons

Only two samples of long staple cottons were tested this season, and they were both from the Western area. This compared with four lots tested one year ago. Fiber tests showed these two lots to be longer, finer, and stronger than a year earlier. Picker and card waste was lower while yarn skein strength was higher than a year earlier. The average number of yarn neps was lower. The spinning potential was higher.

Group 4 - Extra Long Staple Cottons

One dozen spinning lots were tested this season compared to eleven lots from the 1983 cotton crop. These extra long staple samples were slightly shorter with the same average mike. The maturity ratio was slightly higher, while fiber strength was lower. Non-lint content was 3.1 percent compared to 3.4 percent a year ago. Picker and card waste remained the same as in the previous season. Yarns spun from these American Pima cottons had slightly higher skein strength and appearance grades.

DESCRIPTION OF TABLES

Most of the tables are in two parts located on facing pages. The first page shows fiber measurements and the next, primarily yarn measurements. Using Table 5 as an example, the first spinning lot is from Aquilla, Texas. The fiber measurements are on page 26. The yarn measurements for that same lot are on the following page.

TABLE 1

Shown in Table 1 (page 12) are averages for fiber and processing test results from selected gin points for the 1983 and 1984 cotton crops. These data are grouped by staple and area.

TABLE 2

Table 2 shows the fiber and carded yarn properties by area, staple and state for the 1983 and 1984 crops. The "coarse" and "fine" headings in this table refer to different size yarns according to the staple group.

TABLE 3

Beginning on page 20, Table 3 shows 1984 crop data by staple group, area, grade and staple. For statistical purposes, only grade and staple combinations with three or more lots are reported.

TABLE 4

Table 4 gives fiber and yarn test results by variety from selected gin points. As indicated in the section on sampling procedures, the production areas selected must have at least 70 percent of one particular variety in order to be selected. In some cases a production area will be a 100 percent or "pure" variety gin. Test data for the pure varieties are presented in Table 4 to provide as meaningful information as possible for specific varieties.

TABLES 5 THROUGH 8

These tables show test results on individual spinning lots from each production area. Results on short, medium, long and extra long staple groups are given in Tables 5, 6, 7 and 8, respectively. Spinning results on short staple cottons spun on an open-end spinning frame are shown in Table 5a.

TABLE 9

Table 9 gives the means and standard deviations for all test results by staple group. Data not reported in this summary is indicated by either a blank space or a dash (-) in place of the data. For instance, on page 64 of Table 9 there is no combed yarn data under short or medium staple groups. This summary does not report combed yarn data for these staple groups.

TABLES 10, 10A AND 11

These tables show the results of simple correlation analyses for fiber and processing tests. An explanation of simple correlations is contained in the section on "Description of Statistics Used in Analysis," page 76. To look up a particular correlation, find one of the variables in question in the heading and then read down the left margin until the second variable is located. The simple correlation coefficient is given at the intersection (i.e., the column and row intersection).

TABLES 12, 12A AND 13

A complete explanation of the multiple regression technique is given in the section, "Description of Statistics Used in Analysis," page 76.

Regression equations for estimating spinning performance and yarn quality (dependent variables) from fiber test measurements (independent variables) are shown in Tables 12, 12A and 13. A set of regression statistics were calculated for four groups or combinations of independent variables. These statistics were calculated for each of our eleven dependent variable.

The four groups of independent variables are:

- (1) Grade, Staple and Mike.
- (2) Grade, UHM Length, M/UHM Uniformity, Micronaire, and HVI 1/8-Inch Gage Strength.
- (3) Grayness (Rd), Yellowness (+b), Trash Grade, UHM Length, M/UHM Uniformity, Micronaire, and HVI 1/8-Inch Gage Strength.
- (4) Grayness (Rd), Yellowness (+b), Non-lint Content, UHM Length, M/UHM Uniformity, Micronaire, Stelometer 1/8-Inch Gage Strength, Stelometer Elongation, FMT Fineness, FMT Maturity, and Sugar Content.

The statistics needed to predict the total picker and card waste for medium staple cotton from HVI measurements for length, uniformity, strength and mike plus the classer's grade are on page 74. This page shows the regression statistics for both the combination of grade, staple and mike and the combination of grade plus HVI measurements. The statistics for the second combination (grade plus HVI measurements) are on the botton half of the page. Find the column under dependent variables called "Picker and Card Waste" (first column).

The statistics are:

R-Square	0.39
Constant (a)	+17.91
b's for: Grade. UHM Length. M/UHM Uniformity. Micronaire. HVI 1/8" Gage Strength.	-0.07 -4.37 +0.01 -0.11
Standard Error of Estimate	0.96

These statistics give a regression equation of:

```
Total
Picker & Card
Waste

+17.91 - 0.07(Grade) - 4.37(UHM Length)
+ 0.01(M/UHM Uniformity) - 0.11(Micronaire)
- 0.01(HVI 1/8" Gage Strength)
```

The standard error of the estimate is 0.96 with an R^2 of 0.39. The R^2 indicates that 39 percent of the variation in picker and card waste can be explained by grade and the HVI measurements for length, uniformity, strength and micronaire.

TABLE 14

This table gives the standard machine settings and laboratory atmospheric conditions for each phase of yarn processing used in these tests. The data is grouped by staple lengths.

TABLE 1.--COTTON, AVERAGE RESULTS OF CLASSIFICATION, FIBER, AND PROCESSING TESTS FROM SELECTED GIN POINTS IN THE UNITED STATES, CROPS OF 1983 AND 1984.

TS	 	SPY	NO.		42	94		56	63	59	53	50	52	65	69		58	59
RESULTS	YARN		NO.		120	122		148	123	66	131	112	108	150	188		121	142
G TESTS	YARN	APPEAR. 22s	INDEX		101	26		66	105	105	102	16	104	66	103		101	103
PROCESSING			LBS.		95	76		102	109	106	26	98	98	117	121		106	106
	PICKER	% CARD	PCT.		7.1	9.7		9.9	6.3	6.7	6.9	7.6	7.4	0.9	5.7		2.9	9.9
1	<u>~</u>		PCT.		0.18	0.29		0.19	0.32	0.25	0.23	0.22	0.37	0.24	0.34		0.23	0.30
	S.A.	NON-	CT		3.7	4.4		3.0	5.9	2.9	3.1	3.9	3.9	2.4	2.3		3.0	3.0
		1 *	G/TEX		21.7	21.7		23.4	23.5	23.6	22.0	22.3	22.9	25.4	26.1		23.7	23.6
	FI STR	HVI	ă		23.1	24.1		25.4	25.9	25.4	25.4	23.9	24.9	27.2	28.9		25.5	26.4
TS	EY FINE- TURITY		RATI		0.923	0.765		0.981	0.887	0.970	0.866	0.901	0.807	0.948	0.960		0.950	0.884
TEST RESULT	IIC-SHIRLEY FINE NESS MATURITY	FIN.	MTEX		157.5	153.1		180.7	170.7	181.2	171.3	169.6	156.4	174.1	169.2		176.7	167.7
FIBER TE	R0-	NAIRE -	RDG.		04	33		45	41	77	41	41	35	43	43		43	04
8 8		M/UHM UNIF.	PCT.		62	62		81	80	81	80	80	62	81	81		80	80
0 0 0 0	FIBER LENGTH	HVI UHM	z Z		0.95	96.0		1.08	1.10	1.09	1.12	1.03	1.02	1.11	1.14		1.08	1.10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	121	STAPLE		Q.	31.2	31.3	JND	34.9	35.5	35.0	35.7	33.8	32.8	35.7	36.0		34.9	35.2
	CLASSIFICAT		INDEX	AMERICAN UPLAND	84	98	AMERICAN UPLAND	91	92	93	87	85	90	95	66		91	92
	OF OF LOTS		NO.	MERICA	27	35	AMERIC	16	22	48	62	28	31	31	94		123	161
	AREA AND CROP YEAR		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T STAPLE -	1983	1984	MEDIUM STAPLE -	SOUTHEAST 1983	1984	SOUTH CENTRAL 1983	1984	SOUTHWEST 1983	1984	WEST 1983	1984	U. S. AVERAGE MEDIUM STAPLE	1983	1984

STELOMETER 1/8-INCH GAGE FIBER STRENGTH RESULTS WERE ADJUSTED TO THE PRESSLEY LEVEL BY THE USE OF CALIBRATION COTTONS.

TABLE 1. -- CONTINUED

						-	TEST RESULTS				i			PROCESSING	G TESTS	RESULTS	1.5
AREA AND CROP YEAR	NO. 0F LOTS	CLASSIF	ICATION STAPLE	<u>~</u>	LENGTHI M/UHMINAIRE UNIF.		IC-SHIRLEY FIN NESS MATURITY	IIC-SHIRLEY FINE- NESS MATURITY FIN. : MAT.		*.	!	1 &	ICKERI CARDI ASTE	SKEIN STR.		YARN NEPS	SPY
	NO.	INDEX	NO. INDEX 32ND IN.		PCT.	RDG.	MTEX	RATIO	G/TEX	G/TEX PCT.	PCT.	PCT.	PCT.	LBS.	INDEX	NO.	NO.
LONG STAPLE - /	AMER I CA	- AMERICAN UPLAND	Q														
WEST 1983	2	06	38.0	1.19	83	41	167.0	0.937	29.0	29.5	5.0	0.27	8.7	145	100	179	66
1984	2	46	37.5	1.17	82	36	139.7	0.895	27.2	26.9	2.4	0.34	7.5	136	100	80	76
U. S. AVERAGE LONG STAPLE 1983	4	06	35.8	1.12	81	39	161.2	0.925	26.5	25.8	4.1	0.23	8.2	121	86	126	74
1984	2	76	37.5	1.17	82	36	139.7	0.895	27.2	26.9	2.4	0.34	7.5	136	100	80	76
U.S. UPLAND AVERAGE	ERAGE	06	34.3	1.06	80	43	172.9	0.945	25.1	23.4	3.2	0.22	8,9	104	101	121	56
1984	198	91	34.6	1.08	80	39	164.9	0.863	26.0	23.3	3.2	0.30	8.9	104	102	138	57
EXTRA LONG STAPLE - AMERICAN PIMA	TAPLE - A	MERICAN		FIBROGRAPH 2.5% 50/2 SPAN UNI	GRAPH 50/2.5 UNIF									OMBED Y	COMBED YARN DATA		COMBER WASTE (PCT.)
1983	Ξ	41	0.94	1.33	48	41	147.4	0.963	1	34.8	3.4	0.18	7.4	99	118	89	14.0
1984	12	ħ	46.0	1.32	47	41	153.2	0.972	ı	34.1	3.1	0.22	7.4	29	122	88	15.5

STELOMETER 1/8-INCH GAGE FIBER STRENGTH RESULTS WERE ADJUSTED TO THE PRESSLEY LEVEL BY THE USE OF CALIBRATION COTTONS.

TABLE 2.--COTTON: AVERAGE RESULTS OF CLASSIFICATION, FIBER TESTS, AND CARDED YARN PROCESSING TESTS BY AREA, STAPLE AND STATE FOR AMERICAN UPLAND SAMPLES FROM SELECTED GIN POINTS, CROPS OF 1983 AND 1984.

STAPLE GROUP,	NO NO L	CLASSI	LASSIFICATION	F - F	BER NGTH		FINENESS	IIC-SHIRLEY FINENESS/MATURITY	1/8" STREN		STEL.		OLOR O AW STO	 	
CROP YEAR	OTS	GRADE	STAPLE	MHN I	M/UHM UNIF.	NAIRE	FIN.	MAT.	H H	STEL.	GATION	Rd	q+	COLOR	NTE
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	NO.	INDEX	32ND IN.		PCT.	RDG.	MTE	RATIO	G/TEX	G/TEX	PCT.	PCT.	UNITS	NO.	PCT.
SOUTHEAST															
MEDIUM STAPLE															
1983 1984	98	92	34.5 35.5	1.07	82 80	†† 8†	191.4 178.7	1.012	25.7 26.4	23.2 24.0	6.5	75.3	8.6	31-3	0.20
FLORIDA 1983* 1984	10	†16 -	35.0	1.09	80	43	159.9	0.983	25.2	23.1	0.9	75.8	8.4	31-4	0.35
GEORGIA 1983 1984	99	90	35.2 35.2	1.08	80	45 45	181.3	0.980	25.8	23.7	5.4	73.1 74.4	8.7	41-3 41-3	0.17
NORTH CAROLINA 1983 1984	00	94 87	35.5 36.0	1.11	81	38	159.2	0.923	24.5	23.5	6.2	73.5	9.0	41-3 51-3	0.18
SOUTH CAROLINA 1983 1984	7 7	85 84	35.0 35.8	1.07	80	42 38	168.4 159.0	0.950	24.0 26.4	23.0 23.4	5.7	70.8	8.5	42-1 41-3	0.26
SOUTH CENTRAL															
MEDIUM STAPLE															
ARKANSAS 1983 1984	18	92 85	35.1 36.1	1.10	81	45 41	180.7	0.978	25.7	23.8	5.6	75.2	7.8 7.8	31-4 41-4	0.27
LOUISIANA 1983 1984	98	95	35.2 35.8	1.10	81 80	2† 77	195.2	0.947	25.2 25.6	23.8	5.9	77.5	8.1	31-1 41-3	0.26
*NO COMPARABLE DATA	TA.														

1	SPY					55	- 09	55	68	52			59	58 56	
	1 1 1	FINE	. 0N			569 867	176	589 749	491	754			471 1004	521 985	
	1 0	COARS	NO.			124 120	149	164 97	133	187			94 124	94 119	
	1	FINE	INDEX			73	70	68 80	70	60			78	68	
	l	COARSE	INDEX			100	100	100	95	100			104 102	102	
1 4	ATION	FINE	PCT.			4.3	5.0	4.1	4.3	4.1			4.4 4.7	4.4	
YARN	I		PCT.			5.7	. 8	5.6	6.9	5.6			5.8	5.8	
	1		VG. NO.			1913 2066	2040	1964 2058	2112 2264	1884 2088			2126 1830	2056 1915	
	STRENGTH	INE :B	BS.			333	35.	34 35	37 40	32 36			38	36 33	
		COARSE	LBS.			100	107	102	109	99			108 95	106	
	& CARD	1	PCT.			6.2	6.7	6.8	5.9	7.5			6.9	6.3	
ANALYZER		. WASTE				2.8	3.2	3.0	2.6 4.2	4.3 4.3			3.0	2.9	
SHIRLEY ANALYZER		WASTE	PCT			2.0	1.9	2.0	1.7	3.1			2.2	2.1	
	0F 0 F		0			9 8	1 0	99	0.0	4 2			18	9 8	
AREA,	STATE GROUP, STATE AND	CKUP YEAR		SOUTHEAST	MEDIUM STAPLE	ALABAMA 1983 1984	FLORIDA 1983* 1984	GEORGIA 1983 1984	NORTH CAROLINA 1983 1984	SOUTH CAROLINA 1983 1984	SOUTH CENTRAL	MEDIUM STAPLE	ARKANSAS 1983 1984	LOUISTANA 1983 1984	*NO COMPARABLE DATA

TABLE 2. -- CONTINUED

TABLE 2. -- CONTINUED

AREA, STAPLE GROUP,	NO	CLASSI	ATION	FIB	ER CTH		1	IIC-SHIRLEY FINENESS/MATURITY	1		STEL.				
	LOTS	GRADE	STAPLE	Ι – Σ	M N N	5 ~		MAT.		STEL	0	Rd	q+	OR E	NTE
U 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. ON	INDEX	32ND IN.		PCT.	RDG.	MTEX	 	G/TEX	G/TEX	PCT.	PCT.	UNITS	NO.	PCT.
SOUTH CENTRAL															
MEDIUM STAPLE															
MISSISSIPPI 1983 1984	18	92	35.2 35.6	1.09	81	42	173.6	0.963	25.5	23.7	6.2	75.6	88	31-2 41-4	0.21
MISSOURI 1983* 1984	10	- 86	36.2	1.12	- 08	77	179.8	0.902	26.4	23.0	0.9	6.69	8.7	41-4	0.19
TENNESSEE 1983 1984	\0 \&	93	34.2 35.0	1.05	81	47	191.6	0.992	24.5	22.8	5.3	75.2	9.0	31-4	0.29
SOUTHWEST															
SHORT STAPLE															
CENTRAL TEXAS 1983 1984	† †	87 96	31.0	0.94	79	45 42	164.8 174.8	0.970	21.5	20.3	5.6	71.1	9.8	42-1 21-4	0.19
KANSAS 1983* 1984	1 0	- 89	33.5	1.04	- 22	- 88	136.2	0.689	24.0	21.1	5.9	61.7	12.0	54-1	0.33
NORTHWEST TEXAS 1983 1984	19	84	31.2	0.95	79	40 32	158.1 149.0	0.906	23.6	22.1 22.0	6.5	70.9 74.7	9.8	42-1 31-4	0.18
OKLAHOMA 1983 1984	4 4	82	31.3	0.95	79	38	147.0 165.9	0.961	22.5	21.5	5.4	68.5	9.6	42-2 42-1	0.18
SOUTH TEXAS 1983* 1984	1 (2)	100	32.0	1.00	78	35.	147.6	0.858	22.1	21.4	6.3	79.1	9.5	11-4	0.48
*NO COMPARABLE DATA	ITA.														

TABLE 2. -- CONTINUED

	SPY		NO.			63 53	- 57	47 49			42 45	38 1	42 47	42 45	94	
i		i W	NO.			574 986	919	423 850			104 79	944	125 104	110	77	
	1 0	OARSE	0 0			117	108	63 104			17	56	25	25	23	
	1		INDEX			73	73	75			105	65	98	110	110	
	APPEARANCE	COARSE : FINE	INDEX			104	105	112 104			105	- 80	105 104	110	105	
PROPER	1	1				4.6 4.7	4.6	3.8			5.9	5.9	6.4 7.0	6.1	6.3	
YARN	ELONG	COARSE	PCT.			6.0	6.1	5.2			6.9	9.9	7.2	6.9	7.1	
	HL	:BR, FACTOR COARSE : FINE	AVG. NO.			2108 1813	1945	1764 1775			2107 2263	2007	2209 2272	2137 2154	2154	
	STRENGTH	F N E	LBS.			37	33.1	29			96	85	93	91	- 81	
		Щ	LBS.			108	102	95			281 303	- 268	297 305	285	290	
. —-	- R CARD	WAS I	PCT.			6.6	6.9	6.9			6.9	1.01	6.9	8.1	7.2	
ANALYZER	- CON - EN -	. WASTE	PCT.			3.2	3.2	3.1			3.5	9.9	3.6	4.4	2.9	
SHIRLEY	NON-LINI CONTENT	WASTE	PCT			2.0	2.1	8.6			2.2	4.2	2.2	2.8	1.8	
	. OF		NO.			18	1 9	98			<i>ন</i> ন	١ ٥	19	44	1 0	
AREA,	STAPLE GROUP, STATE AND			SOUTH CENTRAL	MEDIUM STAPLE	MISSISSIPPI 1983 1984	MISSOURI 1983* 1984	TENNESSEE 1983 1984	SOUTHWEST	SHORT STAPLE	CENTRAL TEXAS 1983 1984	KANSAS 1983* 1984	NORTHWEST TEXAS 1983 1984	OKLAHOMA 1983 1984	SOUTH TEXAS 1983* 1984	*NO COMPARABLE DATA

0.28

0.19

 $0.27 \\ 0.35$

0.27

7.9

74.3

25 <u>۰</u>۰۰

29.5 26.9

29.0 27.2

 $0.937 \\ 0.895$

167.0 139.7

4136

83

38.0

90

 $\alpha \alpha$

0.18

0.14

PCT.

TABLE 2. -- CONTINUED

+b : CODE | CONTENT $\frac{31-2}{31-3}$ 42-1 41-3 31-1 31-3 31-1 NO. COLOR OF RAW STOCK 9.5 8.6 8.9 UNITS **→** ∞ 2 9 8 80.00 œ. œ. ω ω 68.3 74.0 74.47 77.0 76.5 69.9 77.8 PCT. Rd STEL. | 1/8" | ELON-| GATION| PCT. 5.3 6.9 5.9 6.0 6.0 6.0 5.8 5.8 21.5 22.4 23.7 21.5 22.4 22.4 23.6 24.4 26.3 27.0 G/TEX 1/8" GAGE STRENGTH 23.5 25.2 26.4 24.0 24.6 22.8 23.6 25.4 27.6 28.0 29.5 HVI G/TEX | IIC-SHIRLEY |FINENESS/MATURITY MAT. 0.953 0.846 0.872 $0.945 \\ 0.882$ 0.977 $0.934 \\ 0.949$ RATIO 138.0 154.4 180.7 MTEX 195.3 173.8 146.3 146.8 190.2 161.3 170.9 164.0 FIN. MICRO-RDG. 45 36 42 34 45 9[†] : M/UHM 81 78 80 79 808 818 F1BER LENGTH HVI UHM 1.10 1.02 0.99 1.12 1.04 z Z CLASSIFICATION STAPLE 32ND IN 32.5 $\frac{34.0}{33.0}$ 35.6 35.8 35.7 33.3 0.6 36. GRADE INDEX 96 94 80 80 88 96 95 NO. OF LOTS . NO. 21 77 8 2 13 5 == NORTHWEST TEXAS 1983 CENTRAL TEXAS 1983 1984 AREA, STAPLE GROUP, STATE AND CROP YEAR MEDIUM STAPLE SOUTH TEXAS 1983 1984 CALIFORNIA 1983 1984 NEW MEXICO 1983 1984 LONG STAPLE OKLAHOMA 1983 1984 AR I ZONA 1983 1984 SOUTHWEST

247

179 80

807

88

5.4

53

5.0

3.8

 $\alpha \alpha$

SPY . 0 56 53 50 53 52 71 556 1008 587 325 612 589 1004 497 834 | COARSE : FINE | COARSE : FINE NO. 150 89 85 118 165 101 NO. INDEX 75 99 72 70 79 69 I APPEARANCE 105 INDEX 92 100 102 100 98 YARN PROPERTIES |COARSE : FINE : BR. FACTOR|COARSE : FINE 4.4 ELONGATION 4.1 4.7 4.3 4.5 4.9 PCT. 5.7 6.0 5.9 6.0 6.1 2 8 66. AVG. NO. 1866 1953 1907 1773 1757 1855 1763 1970 2056 2493 STRENGTH 32 32 34 45 32 30 LBS. 102 108 98 100 96 124 128 93 | SHIRLEY ANALYZER| | NON-LINT CONTENT|PICKER|-|------|& CARD| |VISIBLE : TOTAL | WASTE |-| WASTE : WASTE | PCT. 6.4 8.3 7.1 6.3 5.8 5.6 5 80.80 PCT. 2.2 2.5 2.3 4.7 3.6 4.4 3.0 2.7 1.3 3.4 1.3 NO. OF LOTS . N 77 95 10 == 13 2130 AREA, STAPLE GROUP, STATE AND CROP YEAR NORTHWEST TEXAS 1983 CENTRAL TEXAS 1983 1984 MEDIUM STAPLE SOUTH TEXAS 1983 1984 CAL1FORNIA 1983 1984 NEW MEXICO 1983 1984 LONG STAPLE OKLAHOMA 1983 1984 SOUTHWEST AR I ZONA 1983 1984

TABLE 2, -- CONTINUED

TABLE 3.--COTTON: AVERAGE RESULTS OF FIBER AND CARDED YARN PROCESSING TESTS BY STAPLE GROUP, AREA, GRADE AND STAPLE FOR AMERICAN UPLAND SAMPLES FROM SELECTED GIN POINTS, CROP OF 1984.

	NTE	PCT.		0.19	0.24		0.35		0.35	0.23	0.17	0.19 0.20 0.20		0.45	0.34	0.34		0.24 0.35 0.39	0.33
	188	NO.		31-4 32-2	41-3		31-4 31-2		21-2	31-4 31-4	41-4	51-3 51-3		21-3	31-4	31-4		21-2	21-4
OL AW	i +	UNITS		9.0	8.9		8.4		8.7	8.8	8.6	8.9.4 8.5.5		9.2	8.6	0.6		888 788	8.9
1 1 1	Rd	PCT.		74.4 72.2	73.5		75.5		78.1	74.1 76.2	71.4	69.1 68.3 67.7		9.62	74.7	74.8		79.3 79.6 79.0	78.3
STEL.	GATION	PCT.		7.5	7.1		6.1		0.9	5.7	9.9	666		6.1	5.9	6.2		5.00 8.00	5.8
GAGE	TEL.	ı O		21.3	21.7		23.9 24.0		22.4	23.7	21.0	21.2 21.4 22.3		21.9	22.0	21.4		24.6 26.4 27.3	24.6
1/8" GAGE STRENGTH	H H	G/TEX		24.5	24.3		25.7 26.2		26.0	26.7 26.5	24.5	25.0 25.1 25.6		23.3	24.6	24.1		27.0 29.3 29.8	27.4
IIC-SHIRLEY INENESS/MATURITY	MAT.	RATIO		0.767	0.771		0.908		0.919	0.914	0.871	0.841 0.839 0.910		0.868	0.888	0.761		1.029 0.936 0.966	0.979
FINENESS		MTEX		152.2	155.0		163.0	,	179.5	182.5	178.9	168.8 167.7 162.3		153.4	169.0	140.1		184.0 166.3 162.2	174.4
	2 ~	RDG.		33 37	34		42 42		43	64 44	745	33 45		35	04	31		49 43 43	94
1 I	UHM IF.	PCT		79 79	42		80		80	81	80	79 79 80	14	62	80	78		81 82	81
0 0 0	HV I			0.91	0.95		1.10		1.09	1.12	1.08	1.10		1.01	1.06	0.94		1.09	1.14
ON O		NO.		ω	5		9 7		5	3 8	2	14 15 3		က	77	က		6 4 8	9
		32ND 1N.		.30 31	31		35 36		35	36	35	35 36 37		32	34	31		35 36 37	36
GROUP	STAP	CODE	!	. 42	52	щі	41	'RAL	31	41	42	52		31	41	52		31	41
STAPLE	GRADE AN	NAME	SHORT STAPLE	SLM LT SP	LM LT SP	MEDIUM STAPLE SOUTHEAST	SLM	SOUTH CENTRAL	Σ	SLM	SLM LT SP	LM LT SP	SOUTHWEST	Σ	SLM	LM LT SP	WEST	Σ	SLM

47

49 53 55

50

64

45

52 71 78 62

147

99

64

45 45

SPY

TABLE 3. -- CONTINUED

. 0N

976 1131 1115 886 1000 817 1012 849 620 1073 683 1226 867 725 119 84 NO. COARSE : FINE :BR. FACTOR|COARSE : FINE |COARSE : FINE |COARSE : FINE NEPS 136 128 177 187 246 29 21 197 145 165 151 130 93 70 93 133 87 . 9 INDEX 96 98 65 67 70 77 75 70 70 67 71 73 67 | APPEARANCE 106 INDEX 108 105 105 102 99 104 102 99 107 105 97 YARN PROPERTIES PCT. 6.9 6.8 5.0 4.4 4.8 4.6 4.7 4.5 4.4 3.8 4.4 4.8 4.2 4.9 5.1 ELONGATION PCT. 6.6 5.9 6.0 0.9 5.2 6.4 6.4 0.9 7.6 7.6 6.4 6.2 AVG. NO. 1970 2419 2716 2253 2094 2125 2056 2002 1712 1697 1788 1827 2165 1874 1576 1791 1731 STRENGTH LBS. 36 30 38 93 95 35 29 29 30 31 28 333 43 49 24 LBS. 295 109 96 11 301 107 88 105 123 135 100 90 96 93 6.2 6.47 7.7 6.1 6.46 6.2 7.4 7.6 8.6 PCT. PCT. 2.9 2.2 3.6 3.9 2000 2.9 3.4 2.7 ω ä PCT. 2.0 1.9 1.2 1.8 1.4 2.4 3.4 0.1.1 1.7 2.7 NO. OF LOTS 9 14 15 242 9 80. CODE 32ND 35 35 36 30 35 35 36 35 34 31 GRADE AND STAPLE STAPLE GROUP, 52 41 31 42 42 52 41 52 31 41 41 31 SOUTH CENTRAL MEDIUM STAPLE SHORT STAPLE SLM LT SP SLM LT SP SP LM LT SP SP SOUTHEAST SOUTHWEST SOUTHWEST LM LT LM LT NAME SLM SLM Σ Σ

TABLE 4.--COTTON: AVERAGE OF CLASSIFICATION, FIBER TESTS, AND YARN PROCESSING TESTS BY STAPLE GROUP, VARIETY AND STATE FOR SAMPLES FROM SELECTED 100 PERCENT ONE-VARIETY GIN POINTS, CROP OF 1984.

STAPLE GROUP,	0 2 0	CLASSI	CLASSIFICATION		BER NGTH		FINENESS	IIC-SHIRLEY FINENESS/MATURITY	1/8" STREN	GAGE	STEL.		COLOR OF RAW STOCK	0 0 0	
	LOTS	GRADE		HVI	M/UHMI UNIF.	NAIRE	F N.	MAT.	•• •• 	TEL		Rd	q+	<u>~</u>	CONTENT
	NO.	INDEX	32ND IN.	 . Z –	PCT.	RDG.	MTEX	RATIO	G/TEX	G/TEX	PCT.	PCT.	UNITS	NO.	PCT.
MEDIUM STAPLE															
ACALA SJ-2 CALIFORNIA	14	100	36.1	1.15	81	41	165.5	0.914	29.6	26.8	5.9	78.9	9.0	21-2	0.36
ACALA SJ-5 CALI FORNIA	2	100	37.0	1.15	81	43	160.8	0.958	29.5	26.9	5.5	77.8	8.7	31-1	0.35
ACALA SJC-1 CALIFORNIA	9	100	36.2	1.15	82	04	153.6	0.962	30.9	27.9	0.9	79.8	8	21=1	0.37
COKER 315 SOUTH CAROLINA	2	83	35.5	1.13	80	37	158.8	0.787	26.6	23.4	4.9	74.2	8.7	31-4	0.33
DELTAPINE NSL MISSISSIPPI	2	80	35.5	1.13	18	040	168.1	0.843	25.0	21.5	7.4	70.3	8.8	41-4	0.20
DELTAPINE 120 ARIZONA	2	100	35.0	1.06	18	64	186.7	0.999	26.2	24.5	4.9	79.9	8.4	21-2	0.26
DELTAPINE 150 MISSISSIPPI	2	92	35.5	1.13	80	42	173.3	0.871	24.3	21.9	7.5	73.5	8.5	41-3	0.30
DELTAPINE 41 ARKANSAS MISSISSIPPI	0.0	80 85	36.0 36.0	1.12	78 78	34 34	154.1	0.790	23.8	21.4	6.2	68.8	8.9	42-2 41-3	0.23
DELTAPINE 61 ARKANSAS	2	80	36.0	1.15	80	40	170.7	0.843	25.8	21.9	5.8	4.07	8.0	41-4	0.24
DELTAPINE 90 ALABAMA	2	92	35.0	1.09	80	43	171.5	0.907	27.2	24.6	6.5	72.5	8.3	41-3	0.29
DES 422 MISSISSIPPI	7	80	35.5	1.15	80	38	159.8	0.820	24.4	21.2	6.3	67.3	8.4	51-3	0.19

011000 0104T0	2	SHIRLEY	SHIRLEY ANALYZER					YARN	YARN PROPERTIES	IES				
VARIETY,	OF OF			& CARD		STRENGTH		¦	ELONGATION	APPEARANCE		NEPS	S	SPY
		WASTE	. WASTE		COARSE :	FINE	:BR. FACTOR COARSE	COARSE	!	I .	FINE	COARSE:	FINE	
	0	PCT.	PCT.	PCT.	LBS.	LBS.	AVG. NO.	PCT.	PCT.	INDEX	INDEX	NO.	NO.	NO.
MEDIUM STAPLE														
ACALA SJ-2 CALIFORNIA	14	1.1	2.0	5.5	126	45	2500	4.9	5.0	101	1.7	194	812	14
ACALA SJ-5 CALIFORNIA	N	1.1	2.0	5.4	133	47	2620	6.2	5.1	100	75	215	795	75
ACALA SJC-1 CALIFORNIA	9	1.3	5.6	5.5	138	51	2787	9.9	5.5	76	72	212	652	98
COKER 315 SOUTH CAROLINA	α	3.7	4.8	7.3	106	36	2054	6.7	5.0	105	65	212	1030	65
DELTAPINE NSL MISSISSIPPI	α	2.1	3.5	6.5	96	31	1826	6.7	4.9	100	99	143	1028	57
DELTAPINE 120 ARIZONA	8	6.0	1.9	6.2	103	32	1928	5.8	4.8	100	65	139	1036	64
DELTAPINE 150 MISSISSIPPI	~	1.0	2.1	5.7	98	31	1853	9.9	5.0	115	75	107	289	56
DELTAPINE 41 ARKANSAS MISSISSIPPI	NN	1.6	3.5	6.3	90	29 32	1703 1906	5.8	4.9	95 95	69	146 108	1571	52 56
DELTAPINE 61 ARKANSAS	α	2.5	3.7	7.9	93	31	1793	6.1	4.8	95	09	155	1122	51
DELTAPINE 90 ALABAMA	~	1.4	2.4	5.7	112	37	2139	6.3	4.9	110	75	85	777	179
DES 422 MISSISSIPPI	2	5.6	4.4	4.8	93	30	1761	6.3	4.7	100	09	314	1172	53

TABLE 4. -- CONTINUED

TABLE 4. -- CONTINUED

	⋖ш	PCT.		0.24	0.42	0.39	0.20 0.20 0.18	0.32 0.25 0.32		0.34
	COLOR	NO.		31-3	21-1	31-4	41-3 51-3 41-4	31-4 41-3 41-3 41-1		31-2
OLO AW	9	UNITS		0.6	8.5	8.6	888	8888 6670		7.9
1	!	PCT.		77.3	80.0	75.8	71.6 67.0 70.7	75.9 73.0 74.2 75.5		77.5
STEL.	GATION	PCT.		6.5	5.8	6.9	6.5	5.7		6.5
lш	STEL.	G/TEX		22.9	27.9	23.9	22.1 21.3 21.9	22.4 21.7 21.9 22.8		26.9
1/8" STRE	8	G/TĒX		26.0	30.1	25.8	24.9 26.3 25.3	23.6 24.8 25.3 24.8		27.2
EY URIT	AT.	RATIO		0.735	1.006	0.744	0.850 0.774 0.884	0.927 0.919 0.904 0.904		0.895
1	MTEX		137.1	159.6	141.7	173.0 159.0 183.4	174.0 182.3 180.0 180.4		139.7
	NAIRE	۵ ا		59	44	31	40 36 43	44 44 43 43		36
FIBER	M/UHM	PCT.		78	83	80	- 80 87 80 80	80 80 81		82
1	HAN WHO	.		0.93	1.17	1.02	1.15	1.06 1.11 1.13		1.17
1		32ND IN.		30.0	37.0	33.0	36.5 36.0 35.0	34.0 35.0 35.0		37.5
CLASSI	GRADE	INDEX		89	100	85	88 80 89	97 92 98		η6
NO.	LOTS	NO.		-	2	~	000	こなない		α
STAPLE GROUP,			MEDIUM STAPLE	DUNN 120 NORTHWEST TEXAS	GC-510 CALIFORNIA	PAYMASTER 404 NORTHWEST TEXAS	STONEVILLE 506 ARKANSAS MISSISSIPPI TENNESSEE	STONEVILLE 825 CENTRAL TEXAS LOUISIANA MISSISSIPPI SOUTH TEXAS	LONG STAPLE	ACALA 1517-75 NEW MEXICO

521 53 SPY 52 83 94 NO. 583 1077 1061 1089 761 526 786 885 COARSE : FINE . 0 N NEPS 131 135 194 92 70 367 139 86 108 59 80 . 0 N INDEX | COARSE : FINE 20 9 75 45 65 80 80 20 15 APPEARANCE INDEX 115 95 110 100 100 100 100 98 YARN PROPERTIES COARSE : FINE : BR. FACTOR COARSE : FINE 5.0 4.9 5.5 5.2 4.8 ELONGATION PCT. 9.9 6.8 6.7 8.9 6.3 6.1 5.5.5 5.9.5 8.1.8 AVG. NO. 1958 1743 1768 1839 1972 1884 1772 1757 2853 1953 STRENGTH LBS. 33 53 29 29 31 34 48 32 LBS. 93 94 97 102 136 103 140 103 99 92 92 6.3 8.0 6.0 7.3 6.4 6.1 6.8 6.6 7.5 7.5 5.2 PCT. 4.9 2.4 2.4 2.8 4.3 3232 3.1 PCT. 1.0 3.3 1.4 1.7 1.6 2.8 1.5 NO. OF LOTS NO. α \sim α 200 これれて DUNN 120 NORTHWEST TEXAS PAYMASTER 404 NORTHWEST TEXAS STONEVILLE 825 CENTRAL TEXAS LOUISIANA MISSISSIPPI SOUTH TEXAS STAPLE GROUP, VARIETY, AND STATE STONEVILLE 506 ARKANSAS MISSISSIPPI TENNESSEE ACALA 1517-75 NEW MEXICO CALIFORNIA MEDIUM STAPLE LONG STAPLE GC-510

TABLE 4. -- CONTINUED

TABLE 5.--COTTON: AMERICAN UPLAND SHORT STAPLE: QUALITY CHARACTERISTICS BY PRODUCTION AREA AND CLASSIFACATION, CROP OF 1984.

	GAR TEN	PCT.		0.38	0.50		0.35		0.34	0.43	0.39	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		NO.		21-4 21-3	31-3 22-2		43-4 54-1		31-4 41-3	31-2 31-3	21-2	
COLOR OF RAW STOCK	q+	UNITS		9.9	9.7		11.6		88 0.5	4.8	8.6	
	Rd	PCT.		77.5	75.0		63.5		75.0	76.0	78.2	
STEL. 1/8"	- ELON- GATION	PCT.		6.3	6.0		5.7		6.9	7.2	8.8	
	STEL.	G/TEX		21.5	22.6		21.2		21.8 24.4	24.2 23.3	23.5	
1/8" STRE	H	G/TEX		19.4	21.8		24.4		24.0 27.8	25.2	26.6	
IRLEY MATURITY	MAT.	RATIO		PERCENT 0.854 0.936	PERCENT 0.945 0.953		PERCENT 0.673 0.705		PERCENT 0.612 0.588	PERCENT 0.705 0.644	PERCENT 0.703 0.717	
1 1	FIN.	MTEX		90 148.2 168.1	95 187.6 195.1		70 138.5 133.8		130.9 132.2	80 145.0 127.6	70 145.7 146.0	
	ICKO- AIRE	RDG.		36 40	9 [†]		26 29		25 25	31 26	31	
STH	M/UHM UNIF.	PCT.		6 <u>7</u>	71 80 80		9 <u>7</u>		79	77 77	62	
FIBER	MHO			GP 3774 0.93 0.93	LANKART LX-571 0.97 0.97		CASCOT C-13 1.04 1.03		PAYMASTER 792 1.00 1.00	TAMCOT SP-21 0.99 0.94	GSA-71 1.03 1.02	*REDUCED FROM 44 BECAUSE OF BARK. *REDUCED FROM 52 BECAUSE OF BARK. *AVERAGING RULE USED. #REDUCED FROM 42 BECAUSE OF BARK.
EA		32ND IN		30	£ £		33		333	32	 	4 BECA 2 BECA USED. 2 BECA
ON ARE	SIFICA	5 6 0	10	41 40	32		54 54*	(AS	* * * * * * * * * * * * * * * * * * *	51	ER 41 52#	FROM 4 FROM 5: RULE FROM 44
PRODUCTION AREA	AND CLAS GRADE	NONAME-CODE	SOUTHWEST GENTRAL TEXAS	AQUILLA 1 SLM 2 SLM PLUS	MALONE 1 M LT SP 2 M LT SP	KANSAS	STERLING 1 LM TG 2 LM TG	NORTHWEST TEXAS	BOVINA 1 SGO LT SP 6 2 SGO LT SP 6	BULA 1 LM 2 LM LT SP	COTTON CENTER 1 SLM 4 2 LM LT SP 5	*REDUCED FROM 44 BECAUSE **REDUCED FROM 52 BECAUSE ***AVERAGING RULE USED. #REDUCED FROM 42 BECAUSE

TABLE 5. -- CONTINUED

	SPY		NO.			42 45	45		33		43 51	54 51	58 52
		22s	NO.			101	26		315 577		158	159	75
			NO.			26	17		51		28	18 30	14
		s : 22s	INDEX			100	100		09		90	100	100
S	<	88	INDEX			110	100		80		100	100	100
PROPERTIES		22s	PCT.			6.0	0.9		6.0		7.5	7.0	7.7
YARN PF	1	 	PCT.			7.0	7.1		6.3		8.8	8.0.5	9.0
		. FACTOR	VG.			2264 2230	2265 2291		2102 1912		2410 2464	2423 2353	2446 2396
	STRENGTH	22s : BR				PERCENT 96 94	PERCENT 95 97		PERCENT 90 80		PERCENT 102 104	PERCENT 101 99	PERCENT 102 100
	1					302 299	305 306		278 258		322 330	328 316	331 324
	& CARD	WASIE -				7.4	6.1		10.0		10.7	8.8	5.7
ALYZER		WASTE	PCT.			3.8	2.3 1.5		6.9		92 8.2 8.4	6.8 4.8	3.0
SHIRLEY ANALYZER	٠ إ د	ب	PCT.			GP 3774 2.6 2.2	ANKART LX-571		CASCOT C-13 4.1 4.3		PAYMASTER 792 6.1 6.7	TAMCOT SP-21 5.2 3.5	GSA-71 1.7 2.3
		PLE	32ND IN.			30 0	31		34		333	32	333
AREA	CATIO	STAPLE	32ND			41	322		54 54*	S	62** 62**	51 52#	41 52#
PRODUCTION AREA	AND CLASSIFICATION		NONAME-CODE	SOUTHWEST	CENTRAL TEXAS	AQUILLA 1 SLM 2 SLM PLUS	MALONE 1 M LT SP 2 M LT SP	KANSAS	STERLING 1 LM TG 2 LM TG	NORTHWEST TEXAS	BOVINA 1 SGO LT SP 62** 2 SGO LT SP 62**	BULA 1 LM 2 LM LT SP	COTTON CENTER 1 SLM 2 LM LT SP 52#

REDUCED FROM 44 BECAUSE OF BARK. *REDUCED FROM 52 BECAUSE OF BARK. ***AVERAGING RULE USED. #REDUCED FROM 42 BECAUSE OF BARK.

TABLE 5. -- CONTINUED

	SUGAR CONTENT 	PCT.			0.24	0.37	0.22	0.16	0.16	0.18	0.18
	COLOR	NO.			41-3	31-3	42-1 41-3	42-1 42-1	41-3 31-4	41-3 31-3	41-3 31-3
COLOR OF RAW STOCK	q+	UNITS			4.8	88	9.9	9.6	9.1	9.5	9.5
	Rd	PCT.			73.0	76.7	71.0	71.7	72.7	74.2 74.0	74.2
STEL.	GATION	PCT.			7.8	6.9	6.3	7.2	6.7	7.7	7.7
1/8" GAGE STRENGTH	STEL.	G/TEX			22.4	23.3	20.2	20.5	22.0 20.4	20.8 21.4	20.8 21.4
1/8" STRE	 ->+	G/TEX			25.2	27.0	23.2	24.6	25.4 23.6	24.2	24.2 26.2
IIC-SHIRLEY FINENESS/MATURITY	MAT.	RATIO			PERCENT 0.673) PERCENT 0.723 0.711) PERCENT 0.876 0.863) PERCENT 0.798 0.805) PERCENT 0.836 0.822	PERCENT 0.820 0.780) PERCENT 0.820 0.780
FINENESS/		MTEX			122.8	85 150.7 150.5	80 162.7 174.9	85 171.4 183.5	85 174.6 170.3	97 171.2 156.3	75 171.2 156.3
	MAIRE NAIRE	RDG.			25	31	38 41	40 41	35 38	36 35	36 35
ER GTH	M/UHM UNIF.	PCT.			77	79	78	80	71 79 78	79 80	79 80
FIBER	HA CHAN				TAMCOT SP-21 0.96	GSA-71 0.98 0.95	GP 3774 0.92 0.98	LANKART 57 0.92 0.87	LANKART LX-571 0.97 0.89	LANKART 611 0.90 0.92	TAMCOT SP-21 0.90 0.92
EA	CALION : STAPLE	32ND IN.			31	32	31	30	31	30	30
ION ARI	SIFICA	0 0		XAS	51#	41 52	P 42 52**	52## 52##	SP 42 SP 42	SP 42 SP 42	P 42
PRODUCTION AREA	AND CLASS: FICATION GRADE : STAPLE	NONAME-CODE	SOUTHWEST	NORTHWEST TEXAS	LAMESA 2 LM	LEVELLAND 1 SLM 2 LM LT SP	MILES 1 SLM LT SP 42 2 LM LT SP 52**	NEWCASTLE 1 LM LT SP 2 LM LT SP	STAMFORD 1 SLM LT S 2 SLM LT S	STAMFORD 1 SLM LT S 2 SLM LT S	STANTON 1 SLM LT SP 42 2 SLM LT SP 42

REDUCED FROM 41 BECAUSE OF BARK. *REDUCED FROM 42 BECAUSE OF BARK.

TABLE 5. -- CONTINUED

	SPY		NO.			52	52 50	40	41 34	46	43	42 53	
l I	 	22s	NO.			114	115	70	54 123	81	150	117	
1	Z 	88	NO.			30	20	17	21	15	31	19	
	AANCE	22s	INDEX			06	100	100	90	110	100	90	
1	APPEARANCE	**	INDEX			100	100	120	110	110	110	100	
YARN PROPERTIES	AT I ON	: 22s	PCT.			7.0	7.2	6.5	5.9	6.5	9.9	7.0	
YARN PI	ELONGATION	88	PCT.			7.8	8.0	7.0	7.2	7.5	7.2	7.5	
		22s :BR. FACTOR	AVG. NO.			2234	2362 2300	2076 2255	2131 1936	2233 2150	2159 2150	2335 2236	
	STRENGTH	22s : BF				PERCENT 94	PERCENT 98 96	PERCENT 88 97	PERCENT 89 80	PERCENT 95 90	PERCENT 89 90	PERCENT 101 96	
						75	85	80	85	85	97	75	
		8	LBS.			300	321	277	288 264	297	295	306 295	
	& CARD	MAG I	PCT.			7.7	6.5	6.7 7.4	7.5	6.0	6.9	6.3	
ALYZER		WASTE	PCT.			1 4.5	4.4	4.0	5.2	571 3.0 2.1	3.5	3.1 4.7	
SHIRLEY ANALYZER	NON- NON- C	WASTE	PCT.			TAMCOT SP-21	GSA-71 2.7 2.4	GP 3774 2.9 1.3	LANKART 57 3.4 2.4	LANKART LX-571 1.8 1.4	LANKART 611 1.8 1.7	TAMCOT SP-21 1.4 2.0	
	z	PLE	ž			31	32	31	30	31 30	30	30	
N AREA	FICATIO	: STAPLE	E 32ND		XAS	51*	41 52	P 42 52**	52**	SP 42 SP 42	SP 42 SP 42	SP 42 SP 42	
PRODUCTION AREA	AND CLASSIFICATION	GRADE	NONAME-CODE 32ND IN.	SOUTHWEST	NORTHWEST TEXAS	LAMESA 2 LM	LEVELLAND 1 SLM 2 LM LT SP	MILES 1 SLM LT SP 42 2 LM LT SP 52**	NEWCASTLE 1 LM LT SP 2 LM LT SP	STAMFORD 1 SLM LT SI 2 SLM LT SI	STAMFORD 1 SLM LT S 2 SLM LT S	STANTON 1 SLM LT SI 2 SLM LT SI	

**REDUCED FROM 41 BECAUSE OF BARK. **REDUCED FROM 42 BECAUSE OF BARK.

TABLE 5. -- CONTINUED

	CONTENT	PCT.			0.38	0.34		0.19	0.21		0.41	
	COLOR	NO.			31-1	31-3 31-4		32-2 43-2	42-1 42-1		11-4 21-3	
COLOR OF RAW STOCK	q+	UNITS			4.8	80 80 80 80		10.0	9.1		9.6	
) P	PCT.			78.0 75.5	77.2		72.8	70.2		79.3	
STEL. 1/8" 1/8"		PCT.			6.6	6.6		9.9	7.1 7.4		9.9	
1/8" GAGE STRENGTH	EL.	G/TEX			22.0 23.7	20.4		21.0	21.0		21.1	
1/8" STREN		G/TEX			25.8	23.2		22.6	24.8 22.6		22.2	
RLEY	MAT.	RATIO			PERCENT 0.633 0.685	PERCENT 0.751 0.584		PERCENT 0.811 0.802	PERCENT 0.798 0.837		PERCENT 0.873 0.843	
IIC-SHIRLEY FINENESS/MATURITY	F	MTEX			90 128.6 134.5	80 152.9 131.7		80 170.6 170.8	90 166.4 155.8		70 147.5 147.6	
	NAIRE	RDG.			25 28	33 26		38 40	36 37		36 34	
FIBER	: M/UHM : UNIF.	PCT.			78 78	79		80 79	79		77	
	HVI				QUAPAW 0.98 0.96	GSA-71 0.94 1.00		LANKART 57 0.95 0.98	LANKART 611 0.96 0.94		CASCOT C-13 0.99 1.01	
A NO	STAPLE	32ND IN.			33	33		31	31		32	
N ARE	- 1] 		S.	41 51#	41 52**		42 43	52* 52*		31	
PRODUCTION AREA	GRADE	NONAME-CODE	SOUTHWEST	NORTHWEST TEXAS	SUDAN 1 SLM 2 LM	TULIA 1 SLM 2 LM LT SP	OKLAHOMA	BRAY 1 SLM LT SP 42 2 SLM SP 43	TEMPLE 1 LM LT SP 2 LM LT SP	SOUTH TEXAS	CORPUS CHRISTI 1 M 3 2 M 3	

AVERAGING RULE USED. *REDUCED FROM 42 BECAUSE OF BARK.

TABLE 5. -- CONTINUED

	SPY		NO.			50	45 52		48 39	47		45 49	
	1 !	22s	NO.			95	75		101	151		80	
	NEPS	88 ::	NO.			718	10 24		16 24	19		32 13	
	APPEARANCE	22s	INDEX			100	100		100	100		110	
S	APPEA	1	INDEX			100	110		100	900		110	
YARN PROPERTIES	ELONGATION	1	PCT.			6.8	7.0		6.5	6.0		5.9	
YARN	ELONG		PCT.			8.8	4.8		7.4	6.8		6.7	
		BR. FACTOR	AVG. NO.			2390 2260	2221 2339		2218 2038	2168 2191		2044 2263	
	STRENGTH	22s : BR	LBS. A			PERCENT 102 96	PERCENT 95 97		PERCENT 94 86	PERCENT 92 93		PERCENT 84 97	
		0	LBS.			317 301	294 318		296 273	289 292		70 280 299	
	& CARD		PCT.			6.1	6.7		8.4	7.5		6.1	
		. WASTE	PCT.			5.1	3.9		3.1	5.5		3.1	
SHIRLEY ANALYZER	NON-LIN-CO	WASTE	PCT.			QUAPAW 2.4 3.3	GSA-71 2.3 3.6		LANKART 57 1.7 2.3	LANKART 611 3.3 3.1		CASCOT C-13 1.6 1.9	
1	Z	PLE	Z			33	33		31	31.		32	
N AREA	FICATIO	: STAPLE	E 32ND IN.		XAS	41 51*	41 52**		3P 42	52**		1ST1 31 31	
PRODUCTION AREA	AND CLASSIFICATION	GRADE	NONAME-CODE 3	SOUTHWEST	NORTHWEST TEXAS	SUDAN 1 SLM 2 LM	TULIA 1 SLM 2 LM LT SP	OKLAHOMA	BRAY 1 SLM LT SP 42 2 SLM SP 43	TEMPLE 1 LM LT SP 2 LM LT SP	SOUTH TEXAS	CORPUS CHRISTI	

**AVERAGING RULE USED. **REDUCED FROM 42 BECAUSE OF BARK.

OPEN-END YARN	NEPS 1 1000 Y	88	NO.			110	120 120		100 **		100	110 90	
TEST RESULTS - CARDED		88	PCT.			90 PERCENT 7.0 7.4	95 PERCENT 6.9 7.0		70 PERCENT 7.0 ***		85 PERCENT 8.2 7.8	80 PERCENT 8.0 8.0	TN3OB50
PROCESSING	TRENGTH	K FA	.00			2000 1984	1888 1904		1840		2128 2200	2120	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	YARN	E = = = = = = = = = = = = = = = = = = =	32ND LBS.			GP 3774 250 30 248	LANKART LX-571 31 236 31 238		CASCOT C-13 34 230 33		PAYMASTER 792 33 266 33 275	32 TAMCOT SP-21 32 265 31 254	7
		CODE	0 0 0 0 0 0 0			41 40	322		54 54*	(AS	**** **** 9	# 51 52##	ç
	AND CLASSIFI	NAME	8 0 0 0 0 0 0 0 0 0 0 0	SOUTHWEST	CENTRAL TEXAS	AQUILLA SLM SLM PLUS	MALONE M LT SP M LT SP	KANSAS	STERLING LM TG LM TG	NORTHWEST TEXAS	BOVINA SGO LT SP SGO LT SP	BULA LM LM LT SP	CITATO MOTTO
8 8 8		l ••				- 2	r 2		r 2		- c	- 2	

**REDUCED FROM 44 BECAUSE OF BARK.
***INSUFFICIENT COTTON FOR OPEN-END SPINNING TESTS.
***REDUCED FROM 52 BECAUSE OF BARK.
#AVERAGING RULE USED.
##REDUCED FROM 42 BECAUSE OF BARK.

TABLE 5A. -- CONTINUED

	av MOTFOLIOOdd	 				PROCESSING	TEST RESULTS		CARDED OPEN-END YARN	
	A A	AT I ON	lon		YARN SKE	SKEIN STRENGTH		NOIL	APPEARANCE INDEX	NEPS PER 1000 YARDS
NO.		CODE			88	: BREAK FACTOR	0R 8s		88	88
	 				LBS.	NO.	PCT.		NO.	NO.
	SOUTHWEST									
	NORTHWEST TEXAS	18								
8	LAMESA LM	51#	31	TAMCOT SP-21 255	3P-21 255	2040	75 PERCENT 8.2		100	īυ
5 - 2	LEVELLAND SLM LM LT SP	41 52	32 31	GSA-71	261 256	2088 2048	85 PERCENT 7.8 8.4		110	16
2 -	MILES SLM LT SP LM LT SP	42 52**	31	GP 3774	238 244	1904 1952	80 PERCENT 7.3 7.6		110	00
2 -	NEWCASTLE LM LT SP LM LT SP	52** 52**	30 29	LANKART	57 228 205	1824 1640	85 PERCENT 7.3 6.7		120 110	3 6
2	STAMFORD SLM LT SP SLM LT SP	45	31 130	LANKART LX-571 246 235	LX-571 246 235	1968 1880	85 PERCENT 6.5 6.7		110	4 11
1	STAMFORD SLM LT SP SLM LT SP	45	30	LANKART 611 2 2	611 236 236	1888 1888	97 PERCENT		100	7 7
2 -	STANTON SLM LT SP SLM LT SP	42	30 30	TAMCOT SP-21 26 26	3P-21 261 246	2088 1968	75 PERCENT 7.5 8.5		100	5-

*REDUCED FROM 41 BECAUSE OF BARK. **REDUCED FROM 42 BECAUSE OF BARK.

TABLE 5A. -- CONTINUED

9 6 6 9 9						PROCESSING	TEST RESULTS	- CARDED	OPEN-END YARN	0 0 0 0 0 0 0 0 0 0
	AND CL	ATION			YARN SKE	YARN SKEIN STRENGTH	ELONGATION		APPEARANCE INDEX	NEPS PER 1000 YARDS
···	NAME	: CODE :	1	0 0 0	88	: BREAK FACTOR	OR 8s		 	
1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0	0 0 8 0 0	32ND		LBS.	NO.	PCT.	0 0 0 0 0 0 0 0	NO.	NO.
	SOUTHWEST									
	NORTHWEST TEXAS	AS								
2 -1	SUDAN SLM LM	41 51*	QUAPAW 33 31	AM	268 261	2144 2088	90 PERCENT 7.5		110	0 0
2 -	TULIA SLM LM LT SP	41	31 33	71	248 256	1984 2048	80 PERCENT 7.9 8.2		110 90	
	OKLAHOMA									
- 2	BRAY SLM LT SP SLM SP	42 43	31 31	LANKART 57	7 226 221	1808 1768	80 PERCENT 7.0 7.0		110	00
1 2	TEMPLE LM LT SP LM LT SP	52** 52**	31 31	LANKART 611 22 23	11 226 235	1808 1880	90 PERCENT 7.4		110	2
	SOUTH TEXAS									
1 2	CORPUS CHRISTI M M	11 31	32 32 32	CASCOT C-13 230 259	13 230 259	1840 2072	70 PERCENT 7.0 7.1		110	− ∞

**AVERAGING RULE USED. **REDUCED FROM 42 BECAUSE OF BARK.

QUALITY CHARACTERISTICS BY PRODUCTION AREA AND CLASSIFICATION, CROP OF 1984. TABLE 6.--COTTON, AMERICAN UPLAND MEDIUM STAPLE:

	UGAR NTEN	PCT.			0.42	0.38	0.32	0.37		0.36		0.35	0.42	0.28
	OR E	NO.			21-2	41-1 41-4	21-4 21-2	21-1		31-3 41-3		41-4 41-4	21-2 41-4	41-3 31-4
LOR	9+	UNITS			8.8	8.8	8.8	8.5		8.7		7.9	8.6	8.5
1	Rd	PCT.			79.2	75.0	77.5	79.7		77.5		72.0 72.0	79.0	73.7
STEL. 1/8"	_=_	PCT.			6.0	9.9	5.5	6.5		6.5 5.4		6.1	4.9	5.7
GAGE GTH	STEL	G/TEX			22.1	25.7 23.4	23.8	23.5		24.3 21.9		23.3	23.3	23.7
1/8" STREP		G/TEX			25.4 25.8	27.4 27.0	25.6 26.4	26.8		25.8 24.6		26.8 24.6	23.6	26.4 24.8
RLEY	MAT.	RATIO			PERCENT 0.928 0.862	PERCENT 0.865 0.948	PERCENT 0.931 0.924	PERCENT 0.978 0.932		PERCENT 0.954 1.012		PERCENT 0.803 0.779	PERCENT 0.974 0.904	PERCENT 0.891 0.909
IIC-SH FINENESS/	=	MTEX			95 190.9 181.4	161.4 181.5	93 179.3 170.7	88 184.6 179.7		95 165.6 154.1		90 168.1 161.9	80 194.5 179.8	90 168.4 162.7
	MICKO- NAIRE	RDG.			45 41	38 47	42	9 [†]		43 42		36 35	51 44	4 4 4 4
ER	M/UHM : UNIF.	PCT.			825 82 80	79 80	79 79	82		80		80 79	825 82 81	80
1	HAN HAN				STONEV!LLE 8: 1.12 1.09	DELTAPINE 90 1.10 1.08	DELTAPINE 41 1.11 1.03	DELTAPINE 61 1.19 1.18		DELTAPINE 41 1.08 1.09		COKER 315 1.07 1.05	STONEVILLE 8: 1.08 1.11	MCNA!R 220 1.08 1.08
REA		32ND 1N			36 36	35 35	35	36 36		35		35 35	35 35	35 35
PRODUCTION AREA	— ı	I I			LUS 40 41	RY 41 T SP 42	LUS 40	31		41 41		51	1 LLE 31 41	4 4 1 1
PROD	- 1	NONAME-CODE	SOUTHEAST	ALABAMA	MADISON 1 SLM PLUS 2 SLM	MONTGOMERY 1 SLM 2 SLM LT SP	OPELIKA 1 SLM PLUS 2 M	TYLER 1 M 2 SLM	FLORIDA	JAY 1 SLM 2 SLM	GEORGIA	ELBERTON 1 LM 2 LM	HAWKINSVILLE 1 M 2 SLM	METTER 1 SLM 2 SLM

PRODUCTION AREA SHIRLEY ANALYZER		SPY			NO.
SHIRLEY ANALYZER	1 1	Sc		50s	1
SHIRLEY ANALYZER NON-LINT CONTENT PICKER		NEI		22s	No.
SHIRLEY ANALYZER NON-LINT CONTENT PICKER		RANCE		50s	1
SHIRLEY ANALYZER NON-LINT CONTENT PICKER		APPEA		22s :	INDEX
SHIRLEY ANALYZER NON-LINT CONTENT PICKER	ROPERTIE	ATION		50s	I
SHIRLEY ANALYZER NON-LINT CONTENT PICKER	YARN P	ELONG	1	22s :	PCT.
SHIRLEY ANALYZER NON-LINT CONTENT PICKER		_	-	ACTOR	NO.
SHIRLEY ANALYZER NON-LINT CONTENT PICKER		H		BR. F/	AVG.
SHIRLEY ANALYZER NON-LINT CONTENT PICKER		STRENGI		: sog	LBS.
PRODUCTION AREA SHIRLEY ANALYZER AND CLASSIFICATION NON-LINT CONTENT PICKER NON-LINT CONTENT PICKER S. CARD GRADE : STAPLE WASTE WASTE NONAME-CODE 32ND IN. PCT. PCT.			1	22s :	LBS.
AND CLASSIFICATION SHIRLEY ANALYZER SHIRLEY ANALYZER NON-LINT CONTENT NON-LINT CONTENT STADE WASTE WASTE WASTE WASTE PCT.	P I CKER	& CARD	WASTE	_	PCT.
AND CLASSIFICATION VISIBLE GRADE STAPLE WASTE STAPLE WASTE STAPLE WASTE STAPLE WASTE STAPLE WASTE STAPLE WASTE WAS			: TOTAL	: WASTE	PCT.
AND CLASSIFICATION GRADE STAPLE STAPLE OONAME-CODE 32ND IN.	SHI		VISIBLE	WASTE	PCT.
AND CLASSIFICATI GRADE GRADE STANDO - NAME-CODE				APLE	D IN.
AND CLASSIF	AREA	ICATI		: ST	32N
1 1 1		AND CLASSIF		GRADE	VONAME-CODE

TABLE 6. -- CONTINUED

	SPY		NO.			59	70 57	55	71		59		69	54 62	63
		1 1	NO.			894 948	710 843	1263 905	764		904 1038		579 741	931	797
			NO.			209	105	168	135		170		92	121	111
			INDEX			09	80	70	80 90		70		90 20	70	70
S		22s	l ×			100	110	100	120		100		110	100	100
YARN PROPERTIES			ı			4.8	5.1	4.0 4.4	5.0		4.9		4.8	4.1 4.4	4.7
YARN P		22s	PCT.			9.9	6.9	0.9	6.9		6.7		6.5	65.8	6.0
		BR. FACTOR	AVG. NO.			1969 1936	2262 2016	1955 1908	2196 2287		2016 2063		2240 2019	1908 2030	2035 2113
	STRENGTH	1 1	BS.			5 PERCENT 33 33	0 PERCENT 39 34	3 PERCENT 32 31	8 PERCENT 39 40		5 PERCENT 34 35		O PERCENT 39 35	O PERCENT 31 35	0 PERCENT 33 37
		22	LBS.			95 104 101	117 106	9 105 103	88 111 117		95 106 108		90 115 104	103 105	90 110 108
PICKER	& CARD		PCT.			7.8	5.6	5.4	5.0		6.7		7.0	5.1	5.4
VALYZER		WASTE	PCT.			825 1.4 2.2	90 2.2 2.6	41 2.1 1.4	61 1.1 2.5		41 2.7 3.6		3.9	825 2.4 2.4	2.9
SHIRLEY ANALYZER	VISIBIE	WASTE	PCT.			STONEVILLE 825 0.9 1.4 1.4 2.2	DELTAPINE 9	DELTAPINE 1 1.2 0.6	DELTAPINE (0.7		DELTAPINE 1.9		COKER 315 3.2 2.5	STONEVILLE 1.4 1.7	MCNAIR 220 1.9 1.7
		APLE	32ND IN.			36 36	35 35	35 35	36 36		35 35		35 35	35 35	36 35
I AREA	ICATI	STAPLE	i			41	41	40 31	31		41		51	31	41
PRODUCTION AREA	AND CLASSIFICATION	GRADE	NONAME-CODE 32ND IN	SOUTHEAST	ALABAMA	MADISON 1 SLM PLUS 2 SLM	MONTGOMERY 1 SLM 2 SLM LT SP	OPELIKA 1 SLM PLUS 2 M	TYLER 1 M 2 SLM	FLORIDA	JAY 1 SLM 2 SLM	GEORGIA	ELBERTON 1 LM 2 LM	HAWKINSVILLE 1 M 2 SLM	METTER 1 SLM 2 SLM

TABLE 6. -- CONTINUED

PRODUCTION AREA	EA		F I BER LENGTH		IIC-SHIRLEY FINENESS/MATURITY	1	1/8" STREN	1/8" GAGE STRENGTH	STEL. 1/8"		COLOR OF RAW STOCK		
GRADE : 3	STAPLE	AH H	HH	Z Z		MAT.	HVI	STEL.		Rd	q+	COLOR	ONTEN
NONAME-CODE 32ND IN	32ND 1N		PCT.	RDG.	MTEX	RAT10	G/TEX		PCT.	PCT.	UNITS	NO.	PCT.
NORTH CAROLINA													
ERTFORD 1 SLM 4-1 2 LM LT SP 52	36	MCNAIR 235 1.14 1.11	81	39 35	75 171.6 162.7	DERCENT 0.885 0.783	26.2 26.4	22.9 24.1	6.3	74.2	8.0	41-1	0.42
SOUTH CAROLINA													
1 KEN 1 SLM 41 2 SGO LT SP 62*	35 36	COKER 315 1.14 1.12	92	38 35	100 154.2 163.4) PERCENT 0.804 0.770	26.8	24.2	6.0	76.8	8.7	31-3 41-4	0.40
:LIO 1 LM PLUS 50 2 LM LT SP 52**	36 36	MCNAIR 235 1.11 1.08	80	36	90 161.1 157.1) PERCENT 0.860 0.819	26.2	22.9 23.8	6.2	74.5 73.0	& & 	41-3 41-3	0.25
SOUTH CENTRAL													
ALTHEIMER 1 LM LT SP 52 2 LM LT SP 52	36 36	DELTAPINE 61 1.15 1.15	1 79 80	37	100 159.4 181.9) PERCENT 0.832 0.853	25.2 26.4	22.2	6.0	71.5	8.4	41-4	0.32
DUMAS 1 SLM LT SP 42 2 SLM LT SP 42	37 36	STONEVILLE 506 1.17 1.12	306 81 79	43 37	100 182.3 163.7) PERCENT 0.877 0.822	25.4 24.4	21.7 22.4	6.3	69.0	8.6	41-4 41-3	0.21
UGHES 1 LM LT SP 52 2 LM LT SP 52	36 36	DELTAPINE 41 1.15 1.09	77	35	100 148.9 159.3	0.800 0.780	24.8 22.8	21.9	6.0	68.0	9.3	42-2 41-4	0.21
*REDUCED FROM 52 **REDUCED FROM 42		BECAUSE OF BARK. BECAUSE OF GRASS.											

TABLE 6. -- CONTINUED

	SPY		NO.			75		64	65			49	60 54	53	
		508				623 582		1223 836	731 683			1412 831	787 765	1693 1449	
	NE	22s	NO.			114		288 136	136 86			154 156	109	150 142	
	RANCE	50s	INDEX			900		09	80			09	80	09	
S	-	. 22s	INDEX			100		100	100			100	120	9001	
YARN PROPERTIE	ATION	50s				5.0		5.2	4.5			4.5	4.2	4.4	
YARN P	ELO	22s	PCT.			6.8		6.5	6.8			5.5	6.5	5.8	
		FACTOR	NO.			2240 2287		2077 2030	2157 2088			1726 1859	1900	1726 1679	
	GTH	:BR				PERCENT 39 40		PERCENT 36 35	PERCENT 37 36			PERCENT 29 33	PERCENT 32 32	PERCENT 29 28	
						75		100	06			100	100	100	
		22				115		107	112			91 94	100 97	91	
	& CARD	MAO E	PCT.			6.9		6.7	0.9			7.6	5.9	6.9	
ALYZER	ON LEN L	WASTE	PCT.			3.8		4.0	3.4			61 3.4 4.0	506	41 3.8 3.1	
SHIRLEY ANALYZER	NON-LINI CONIENI	WASTE	PCT.			MCNAIR 235 2.4 3.5		COKER 315 2.8 4.6	MCNAIR 235 2.4 2.1			DELTAPINE 6 2.4 2.6	STONEVILLE 1.4 1.4	DELTAPINE 4 1.5 1.6	1 C
		APLE	32ND IN.			36 36		35 36	36			36 36	37 38	36 36	
PRODUCTION AREA	AND CLASSI	GRADE	ODE	SOUTHEAST	NORTH CAROLINA	HERTFORD 1 SLM 2 LM LT SP 52	SOUTH CAROLINA	AIKEN 1 SLM 41 2 SGO LT SP 62*	CLIO 1 LM PLUS 50 2 LM LT SP 52**	SOUTH CENTRAL	ARKANSAS	ALTHEIMER 1 LM LT SP 52 2 LM LT SP 52	DUMAS 1 SLM LT SP 42 2 SLM LT SP 42	HUGHES 1 LM LT SP 52 2 LM LT SP 52	

*REDUCED FROM 52 BECAUSE OF BARK. **REDUCED FROM 42 BECAUSE OF GRASS.

TABLE 6. -- CONTINUED

	NTE	PCT.			0.22	0.09	0.33	0.22	0.21	0.20		0.36	0.34	0.28
	. J &	NO.			31-1	42-2 41-3	31-1	31-3 41-3	31-3	41-4 41-4		31-1	31-1	31-2 51-4
OA	+	UNITS			88.1	9.0	8.2	9.0	8.6	88		88.0	8.5	8.3
8 8 8 8	I ~	PCT.			77.5	69.2	77.7	77.0	76.3	69.3		78.0	77.8	75.5
STEL. 1/8"		PCT.			5.9	6.0	6.0	4.9	5.5	6.0		5.9	5.9	5.4
	STEL	G/TEX			25.6	20.9	23.5	23.2	23.8	21.0		24.6	22.5	23.0
1/8" GAGE STRENGTH	H	G/TEX			28.6	23.4	27.2	26.8	27.0	24.8		27.4	26.2	24.6 24.4
IC-SHIRLEY FINENESS/MATURITY	MAT.	RATIO			78 PERCENT 0.943 0.874	85 PERCENT 0.867 0.839	5 PERCENT 0.842 0.852	82 PERCENT 0.928 0.902	5 PERCENT 0.920 0.911	70 PERCENT 0.879 0.862		95 PERCENT 0.892 0.861	0 PERCENT 0.930 0.860	0 PERCENT 0.975 0.912
FINENESS	F . N .	MTEX			179.5	177.1 167.5	7 166.3 170.7	195.4 181.9	9 188.0 181.1	174.1 175.9		168.3	100 176.2 169.8	197.7 185.3
	AIRE	RDG.			45 41	45 40	38 42	48 42	††† 9††	42 39		41 40	43 39	48 45
	U/M : I/H	IN. IN. PCT.			DELTAPINE 41 1.19 82 1.15 79	DELTAPINE 55 1.13 78 1.09 79	DELTAPINE NSL 1.16 80 1.15 81	STONEVILLE 506 1.08 81 1.10 80	STONEVILLE 825 1.13 81 1.10 79	STONEVILLE 825 1.10 79 1.11 78		DELTAPINE 41 1.19 81 1.11 79	STONEVILLE 825 1.12 80 1.09 80	STONEVILLE 825 1.13 81 1.11 80
REA	STAPLE:	32ND IN			38	36	37	35	37	35		37	35	35
PRODUCTION AREA	AND CLASSIFIC GRADE:	NONAME-CODE	SOUTH CENTRAL	ARKANSAS	LEPANTO 41 1 SLM 41 2 LM LT SP 52	MCGEHEE 1 LM LT SP 52 2 LM LT SP 52	PORTLAND 1 SLM 41 2 LM LT SP 52	RECTOR 31 1 M 31 2 LM 51	TYRONZA 1 SLM 41 2 LM LT SP 52	WATSON 1 LM LT SP 52 2 LM LT SP 52	LOUISIANA	BONITA 1 SLM PLUS 40 2 LM LT SP 52	LAKE PROVIDENCE 1 M 31 2 SLM LT SP 42	SICILY ISLAND 1 SLM PLUS 40 2 LM LT SP 52

\sim
ш
\supset
NUEI
-
-
-
CON
\sim
0
- 1
- 1
9
_
ليا
ABL
⋖

	SPY		NO.			72	50	58	54 46	63 38	64		64 58	49	56	
	 	: 50s	NO.			355 1204	1147	908	839	913 1036	1173		468 867	1020	747	
	N	S	NO.			114	119	155	140 74	142	187		103	203	127	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	0	INDEX			80	70	70	80 70	70	09		70	09	70	
S	1 1	1	INDEX			110	110	100	110	100	90		100	100	100	
YARN PROPERTIE			PCT.			5.0	4.0 4.9	5.0	4.7	5.0	4.9		4.5	4.1	4.0	
YARN		228	PCT.			5.9	5.9	6.7	5.83	6.0	5.5		6.5	5.7	5.9	TO 50s.
		. FACTOR	VG. NO.			2406 1784	1715	2077	2033 1726	2077	1668		2196	1803 1773	1864 1632	ADJUSTED
	STRENGTH		LBS. A			PERCENT 43 30	PERCENT 29 29*	PERCENT 36 31	PERCENT 36 29*	PERCENT 36 26*	PERCENT 28* 27*		PERCENT 39 32	PERCENT 29 30	PERCENT 31 27	STRENGTH
		••				78	85	75	82	95	70		95	100	100	
		228				121 94	90	107	103	107	88		111	98	99	SPUN AND
	& CARD	WASIE	PCT.			6.8	6.9	6.5	5.4	6.8	6.8		5.4	6.5	6.4	44s YARN
NALYZER		. WASTE	PCT.			41 3.2 3.1	55 1.8 3.0	NSL 3.0 2.8	506 2.4 3.6	825 3.4 2.9	825 3.4 2.9		41 2.5 2.8	825 2.2 3.1	. 825 2.9 3.8	50s YARN.
SHIRLEY ANALYZER	NON-IC-N-	WASTE	PCT.			DELTAPINE 2.4 2.0	DELTAPINE 1.3 1.4	DELTAPINE NSL 1.9 1.8	STONEVILLE 1.5 1.7	STONEVILLE 2.3 1.7	STONEVILLE		DELTAPINE 1.5 1.7	STONEVILLE 1.2 1.4	STONEVILLE 1.9 2.2	SPIN
		PLE	Z –			38 37	36 35	37 37	35 35	37 35	35 35		37 36	35 35	35 35	нісн то
AREA	CATIO	STA:	32ND			41 52	52	41 52	31	41	52		40 52	1CE 31 42	40 52	T00
PRODUCTION AREA	AND CLASSI	GRADE	NONAME-CODE	SOUTH CENTRAL	ARKANSAS	LEPANTO 1 SLM 2 LM LT SP	MCGEHEE 1 LM LT SP 2 LM LT SP	PORTLAND 1 SLM 2 LM LT SP	RECTOR 1 M 2 LM	TYRONZA 1 SLM 2 LM LT SP	WATSON 1 LM LT SP 2 LM LT SP	LOUISIANA	BONITA 1 SLM PLUS 2 LM LT SP	LAKE PROVIDENCE 1 M 31 2 SLM LT SP 42	SICILY ISLAND 1 SLM PLUS 2 LM LT SP	*END BREAKAGE TOO

TABLE 6. -- CONTINUED

	UGA NTE	PCT.			0.38		0.17	0.42	0.50	0.27	0.49	0.20	0.35
	OLOR ODE	NO.			31-1		41-4 41-4	11-2 51-4	21-1 51-4	41-3 51-3	21-1 41-3	42-1 41-4	31-1
	q+	UNITS			88		8.5	8.8	8.47.9	8.8	8.6	9.4	8.8
1	Rd	PCT.			78.5		0.69	81.0	80.5	74.5	79.7	71.0	78.0
STEL.	GATION	PCT.			5.5		6.5	8.0	6.3	5.3	5.7	7.4	6.1
GAGE IGTH	STEL.	G/TEX			23.9		21.7	22.2	22.7	22.4	21.6	21.1	21.7
	H F I	G/TEX			27.6		25.4	25.0	25.0	25.4	26.0	26.2	25.0 25.4
IRLEY	MAT.	RATIO			PERCENT 0.938 0.918		PERCENT 0.851 0.857	PERCENT 0.931 0.811	PERCENT 0.893 1.003	PERCENT 0.915 0.885	PERCENT 0.937 0.879	PERCENT 0.814 0.871	PERCENT 0.915 0.860
IIC-S FINENESS		MTEX			95 173.9 173.5		75 168.6 161.3	181.4 165.1	80 169.0 150.2	181.5 182.3	100 179.0 177.1	100 168.2 167.9	180.7 179.1
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MICKO- NAIRE	RDG.			39 43		40 36	45 39	41 42	45 44	42 41	0† 00†	45 40
0	M/UHM UNIF.	PCT.			79		80	81	78	81 79	5 79 80	80	3 80 79
	HV I	 			DELTAPINE 41 1.14 1.16		MCNAIR 235 1.12 1.08	DELTAPINE 150 1.15 1.11	DELTAPINE 55 1.12 1.15	STONEVILLE 825 1.15 1.11	STONEVILLE 825 1.13 1.11	DELTAPINE NSL 1.11 1.14	STONEVILLE 213 1.08 1.09
EA	LE	32ND IN.			37 36		35 35	36 35	36 37	37 8	35	36 35	355
ON AF	- F CA				40		52 52	21 52	31	41	3141	52 52	31
PRODUCTION AREA	AND CLASSIFICATION	-NAME-CODE	NTRAL	A	EPH PLUS T SP	PPI	T SP	TSP	T SP	LLE T SP	QO	N SP	T SP
PRO	0	NONAME-CODE	SOUTH CENTRAL	LOUISIANA	ST. JOSEPH 1 SLM PLUS 2 LM LT SP	MISSISSIPPI	ASHLAND 1 LM LT 2 LM LT	ARCOLA 1 SM 2 LM LT SP	CARY 1 M 2 LM LT	GREENVILLE 1 SLM 2 LM LT SP	GREENWOOD 1 M 2 SLM	GUNNISON 1 LM LT 2 LM LT	LEARNED 1 M 2 LM LT SP

TABLE 6. -- CONTINUED

	SPY		NO.			63 59		50	52	55	55 46	53	60 54	9 1 1 1	
	S	i .	NO.			1027 1272		873 751	489 885	959 1125	1216 1124	1065 951	870 1185	972	
		228 :	NO.			121		97	94 120	94 122	198 208	212 158	162 123	189 128	
	1	50s	INDEX			70		70	80	70	70	09	09	09	
S	APPEARANCE	22s :	i			100		110	120	100	100	110	100	100	
PROPERTIES	ATION	50s	PCT.			4.8		4.2	5.2	4.5	4.1 4.0	4.9	5.3	4.2	
iz	ELONGATION	22s :	PCT.			5.9		6.2	6.7	4.9	6.0	6.1	6.8	5.5	TO 50s.
		. FACTOR	AVG. NO.			2160 1994		1748 1693	2074 1632	1999 1867	1853 1668	1958 1878	1889 1762	1648 1715	ADJUSTED
	VGTH	50s :BR				PERCENT 38 34		PERCENT 29 29*	PERCENT 35 27	PERCENT 32 32	PERCENT 31 28*	PERCENT 33 32	PERCENT 32 30	PERCENT 25* 29*	STRFNGTH
	S					95		75	100	80	100	100	100	88	
		22s	LBS.			110 104		93	109	109	98	103 98	99	93	SPUN AND
	% CARD		PCT.			5.9		7.6	4.8**	6.0 14.8	8.8	6.5	7.0	7.8	445 YARN
ALYZER	CONTENT		PCT.			2.6		3.8	150 1.2 2.9	55 2.5 3.9	825 3.6 3.2	825 2.2 2.3	ISL 3.5 3.5	213 2.1 3.0	OS YARN
SHIRLEY ANALYZER	O LUITION ON THE COLOR		PCT.			DELTAPINE 41 1.7 1.6		MCNAIR 235 2.4 3.4	DELTAPINE 1 0.7 1.3	DELTAPINE 5 1.6 2.6	STONEVILLE 825 2.4 3.6 1.6 3.2	STONEVILLE 825 1.2 1.2 2.1	DELTAPINE NSL 2.2 1.9	STONEVILLE 213 1.1 2.1 1.8 3.0	*FND BREAKAGE TOO HIGH TO SPIN 50s YARN
		PLE	Z			37 36		35 35	36 35	36 37	37	35	36	35	HIG
AREA	ICATIO	: STAPLE	32ND IN			40 52		52	21 52	31 52	41 52	31	52 52	31	SF TOC
NOI	SSIFI		SODE	rral.		PH -US SP	-	SP	SP	SP	SP	0	SP	SP	FAKAC
PRODUCTION AREA	AND CLASSIFICATION	GRADE	NONAME-CODE	SOUTH CENTRAL	LOUISIANA	ST. JOSEPH 1 SLM PLUS 2 LM LT SP	MISSISSIPPI	ASHLAND 1 LM LT 2 LM LT	ARCOLA 1 SM 2 LM LT	CARY 1 M 2 LM LT	GREENVILLE 1 SLM 2 LM LT SP	GREENWOOD 1 M 2 SLM	GUNNISON 1 LM LT 2 LM LT	LEARNED 1 M 2 LM LT	#FND BRE

*END BREAKAGE TOO HIGH TO SPIN 50s YARN. 44s YARN SPUN AND STRENGTH ADJUSTED TO 50s. **COTTON STUCK TO PROCESSING ROLLS.

TABLE 6. -- CONTINUED

	SUGAR		PCT.			0.18	0.37	0.31	0.20		0.22	0.20	0.24	
	COLOR	CODE	NO.			51-3 51-3	21-4 41-4	41-4	52-2 51-3		31-4 52-1	41-4 41-4	31-4 52-1	
COLOR OF		q+	UNITS			8.0	9.0	8.6	8.4 8.4		9.4	8.0 8.0	& & & &	
		Rd	CT.			66.2	78.0	69.0	65.5		73.0	69.8	74.0 65.3	
STEL.	ELON-		·			6.5	5.8	6.1	6.4		6.2	5.7	5.5	
1/8" GAGE		STEL.	G/TEX			21.5	23.2	20.3	21.3		23.7	23.6 22.7	24.3 23.1	
1/8" STRF						25.8	25.8	24.0	24.2		26.8	26.8 24.6	27.4	
IRLEY MATURITYI		. MAT.	RATIO			PERCENT 0.762 0.785	PERCENT 0.887 0.714	PERCENT 0.795 0.723	PERCENT 0.817 0.822		PERCENT 0.906 0.908	PERCENT 0.877 0.889	PERCENT 0.927 0.905	
I IC-SHIRLEY FINENESS/MATURITY						161.4 156.6	75 166.1 145.3	100 146.6 126.0	164.9 154.6		78 186.2 187.3	80 169.5 170.1	80 188.0 177.5	
	MICRO-		RDG.			35 35	338 338	38 29	388		45 45	46 41	45 43	
FIBER	MH0/W :	UNIF.	PCT.			06 77	80	78 78	80 79		06 81 80	25 81 79	81	
FIBER		MHM				STONEVILLE 506 1.13 1.13	DELTAPINE 41 1.06 1.07	DELTAPINE 41 1.11 1.10	DES 422 1.16 1.13		STONEVILLE 506 1.13 1,09	STONEVILLE 825 1.16 1.12	DELTAPINE 41 1.12 1.09	
EA	ICATION	STAPLE	32ND IN			36 36	35	36 36	36		36 36	37	36 36	
ION AR	SIFICA	••				52 52	31	LE 52 , 42	52 52		41	51	41	
PRODUCTION AREA	AND CLASSIFICATION	GRADE : STAPLE	NONAME-CODE	SOUTH CENTRAL	MISSISSIPPI	LELAND 1 LM LT SP 2 LM LT SP	NEW ALBANY 1 M 2 LM LT SP	ROBINSONVILLE 1 LM LT SP 52 2 SLM LT SP 42	TUNICA 1 LM LT SP 2 LM LT SP	MISSOURI	KENNETT 1 SLM 2 LM LT SP	MATTHEWS 1 LM 2 LM	NEW MADRID 1 SLM 2 LM LT SP	

TABLE 6. -- CONTINUED

		SPY		NO.			51	52	55	54 51		62 52	59	64 51	
1		S	508	NO.			1026 794	1104 973	1339	1191		647 1009	953 1144	821 940	
		I	22s :	NO.			103	239	139	159 469		164 70	143 72	114	
		¦ —-		I NDEX			70	09	09	09		800	09	70	
	(0	APPEARANCE	22s : 50s	INDEX			90	110	90	100		120	100	100	
	YARN PROPERTIES			PCT.			4.7	4.3	4.7	4.6		5.0	4.5	4.8	
	YARN P	ELONGATION	''	PCT.			6.0	6.0	6.0	6.3		5.8	5.5	5.8	C L
			BR. FACTOR!	AVG. NO.			1806 1737	1930 1704	1795 2016	1784 1737		2215 1687	2052 1773	2088 1853	, i
		STRENGTH	50s :B				PERCENT 30 29*	PERCENT 31 29*	PERCENT 30 34	PERCENT 30 29		PERCENT 38 27	PERCENT 35 30	PERCENT 36 31	i i
			22s :	LBS.			100 96 92	75 105 89	100 95 106	100 94 92		78 115 92	107 93	108 98	
	- 0377010	& CARD					7.3	5.4 7.4	6.3	8.6		6.5	7.5	6.2	
	JALYZER		WASTE	PCT.			506 4.3 4.2	2.1 4.0	3.0 2.0	4.9 3.9		506 2.8 2.9	825 3.6 3.3	41 2.7 3.7	
	SHIRLEY ANALYZER	NON-CIN-	WASTE				STONEVILLE 506 2.3 4.3 2.2 4.2	DELTAPINE 41 1.1 2.4	DELTAPINE 41 1.5 1.2	DES 422 3.0 2.2		STONEVILLE 1.9 2.1	STONEVILLE 825 2.4 3	DELTAPINE 1 1.8 2.5	1 2 4 6
	< .		STAPLE				386	35 35	36 36	36 135		3,98	37 38	36	
	ARE	- I CAT		35	1.		52	31	-E 52 , 42	52		41	51	41	ŀ
	PRODUCTION AREA	AND CLASSIFICATION	GRADE : STAPLE	NONAME-CODE	SOUTH CENTRAL	MISSISSIPPI	LELAND 1 LM LT SP 2 LM LT SP	NEW ALBANY 1 M 2 LM LT SP	ROBINSONVILLE 1 LM LT SP 52 2 SLM LT SP 42	TUNICA 1 LM LT SP 2 LM LT SP	MISSOURI	KENNETT 1 SLM 2 LM LT SP	MATTHEWS 1 LM 2 LM	NEW MADRID 1 SLM 2 LM LT SP	
						_									

*END BREAKAGE TOO HIGH TO SPIN 50s YARN. 44s YARN SPUN AND STRENGTH ADJUSTED TO 50s.

TABLE 6. -- CONTINUED

		PCT.			0.23	0.21	0.19	0.18			0.44	0.38
	COLOR	NO.			31-4 41-3	42-2 31-4	41-4 41-4	41-4 41-3			21-2	21-2 41-3
COLOR OF RAW STOCK	9 +	UNITS			8.8	9.0	9.0	8.8			9.5	88.6
	Rd	PCT.			75.3	69.5	70.5	70.0			80.0	78.7
STEL.	GAT ION	PCT.			5.6	6.8	6.1	7.9			6.3	5.4
	: 1	G/TEX			23.9	21.8	21.8	20.3			26.1	23.7
					27.2 25.4	26.4	25.6	24.8 23.2			25.6	23.0 24.2
<u>_</u>	MAT.	RATIO) PERCENT 0.943 0.873	PERCENT 0.709 0.663) PERCENT 0.856 0.912) PERCENT 0.874 0.855) PERCENT 0.975 1.002) PERCENT 0.938 0.915
		MTEX			95 178.6 182.0	95 155.4 136.2	100 182.3 184.5	80 192.3 165.4			90 167.5 179.9	100 178.3 169.6
	NAIRE	RDG.			0†1 9†1	32 27	42 43	43 42			†† ††	45 39
FIBER LENGTH	M/UHM UNIF.	PCT.			25 81 81	25 79 76	08 80	,L 80 80			81	25 80 79
FIEN					STONEVILLE 825 1.11 1.06	STONEVILLE 825 1.09 1.04	STONEVILLE 506 1.09 1.10	DELTAPINE NSL 1.07 1.03			DELTAPINE 61 1.14 1.15	STONEVILLE 825 1.07 1.04
EA	STAPLE	32ND IN.			36 35	35 34	35 35	35 35			34 35	34 34
ION AR		ODE			41	52 P 42	P 42	P 42		(0	31	31 41
PRODUCTION AREA	GRADE : STAPL	NONAME-CODE 32ND IN	SOUTH CENTRAL	TENNESSEE	BELLS 1 SLM 2 LM LT SP	ELORA 1 LM LT SP 52 2 SLM LT SP 42	MASON 1 SLM LT SP 42 2 SLM LT SP 42	SOMERVILLE 1 SLM LT SP 42 2 SLM LT SP 42	SOUTHWEST	CENTRAL TEXAS	BATESVILLE 1 M 2 M	NAVASOTA 1 M 2 SLM

TABLE 6. -- CONTINUED

	SPY		NO.			59	48 50	47	42			67 56	49	
	 	50	NO.			847 748	1235 1144	659	737 914			1007 872	1201 953	
	Z 	228	NO.			143 91	209	102	81			114	151	
	1	: 50s	INDEX			80	09	80	70			70	70	
S	<	22s	INDEX			100	90	110	100			100	100	
YARN PROPERTIES	ELONGATION	ı	PCT.			4.8	4.4	4.4	5.0			4.7	0.4 0.4	
1	ELONGA					5.8	6.8	6.3	6.4			6.3	20.00 20.00	(1
		:BR. FACTOR	AVG. NO.			2041 1795	1806 1770	1715 1798	1632 1643			2229 2099	1729 1756	6
	STRENGTH	50s : BF	LBS.			PERCENT 35 30	PERCENT 30 29	PERCENT 29* 31	PERCENT 27* 27			PERCENT 39 36	PERCENT 30 28	
		22s :				95 106 95	96 95	100 90 93	87 88			90 114 109	100 89 96	
	& CARD	3-00%	PCT.			6.5	7.1	6.2	5.8			5.9	5.4	
VALYZER		. WASTE	PCT.			825 3.1 3.7	825 3.9 3.5	506 3.1 3.0	4SL 2.8 1.9			61 2.2 2.1	825 1.9 2.7	
SHIRLEY ANALYZER	NON-L-N-		PCT.			STONEVILLE 825 2.2 3.1 2.5 3.7	STONEVILLE 2.4 1.8	STONEVILLE 506 1.7 3.1 1.6 3.0	DELTAPINE NSL 1.3 1.0			DELTAPINE (1.5 0.9	STONEVILLE 825 1.1 1.6 2	
	NOI	: STAPLE	32ND IN.			35	35	35	35			34 35	34 34	
ARE	ICAT	S	8	1 .		41	52 42	42	45		10	31	31	j
PRODUCTION AREA	AND CLASSIFICATION	GRADE	NONAME-CODE	SOUTH CENTRAL	TENNESSEE	BELLS 1 SLM 2 LM LT SP	ELORA 1 LM LT SP 2 SLM LT SP	MASON 1 SLM LT SP 2 SLM LT SP	SOMERVILLE 1 SLM LT SP 1 2 SLM LT SP 1	SOUTHWEST	CENTRAL TEXAS	BATESVILLE 1 M 2 M	NAVASOTA 1 M 2 SLM	

*END BREAKAGE TOO HIGH TO SPIN 50s YARN, 44s YARN SPUN AND STRENGTH ADJUSTED TO 50s.

TAB! TABLE 6. -- CONTINUED

0 0 0 0		SUGAR	PCT	•			0.37			0.48	0.29	0.24	0.33	ς.	0.43)
	×	: COLOR	CODE				31-2	21-2	31-4	31-1	7 .	31-3	21-4 21-4	7-17	31-1	
1	COLOR OF RAW STOCK		UNITS				4.8	2.0	9.0	77.80		. 60 	0. 1.0	0	10.0	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 0	PCT.				76.0	77.8	1.4.1	76.8	•		77.3		73.5	
	STEL.	-I ELON- GATION	PCT.				6.3			6.8	· · · · ·		6.8)	6.5 6.5	
		STEI	G/TEX				27.4	23.7	4.07	23.4			20.9	•	21.6	
	\$ 8		G/TEX				30.2	24.6		24.6 27.0	26.0	25.0	23.6		23.6 26.0	
	FINENESS/MATURITY	MAT.	RAT10				PERCENT 0.547 0.673)	PERCENT 0.770 0.717	PERCENT* 0.735	PERCENT 0.651 0.605	PERCENT 0.652 0.684		PERCENT 0.834 0.678	
	FINENESS/	FIN.	MTEX				88 203.4 140.9	75 161.8 147.6		100 146.1 137.2	137.1	75 155.8 135.8	70 123.9 124.9		85 150.1 144.5	
	MICRO-	NAIRE	RDG.				29	37		32 29	29	30 27	25 25	**	35 27	
3ER	LENGTH	M/UHM UNIF.	PCT.				80 79	5 79 80		4 80 79	78	3 77 77	9 <u>7</u> 9 <u>7</u>		78	
114	7	HAN I					DUNN 119 1.12 1.12	PAYMASTER 145 0.97 0.98	C - C - C - C - C - C - C - C - C - C -	PAYMASIER 404 1.01 1.02	DUNN 120 0.93	PAYMASTER 303 1.00 0.98	CASCOT L-7 0.92 0.94		TAMCOT CAMD-E 0.94 1.02	Trere 1 re
EA	T I ON	STAPLE	32ND IN.				36 36	31 32	40	33 33	30 DU	33 32	31 31		33	TEN ENP
PRODUCTION AREA	AND CLASSIFICATION					EXAS	51	3P 42		52	P 42	52**	P 42 52**		52 ***	NT SFIF
PRODUCTION AREA	AND CLA	GRADE	NONAME-CODE	SOUTHWEST		NORTHWEST TEXAS	AMHERST 1 LM 2 LM	CEE VEE 1 SLM LT SP 42 2 LM LT SP 52	FSTACADO	1 LM PLUS 2 LM LT SP	LAMESA 1 SLM LT SP	LORENZO 1 LM LT SP 2 LM LT SP	PLAINS 1 SLM LT SP 42 2 LM LT SP 52**	OKLAHOMA	CLINTON 1 LM LT SP 2 LM SP	*100 PFRCFNT SFI FOTEN FOR TESTS 1 120
i !	1		~	301	TE	8	ш	2		••		ωı	<u> </u>	0		

*100 PERCENT SELECTED FOR TESTS, LESS THAN 100 PERCENT IN THE AREA. **REDUCED FROM 42 BECAUSE OF BARK. ***REDUCED FROM 43 BECAUSE OF BARK.

TABLE 6. -- CONTINUED

	SPY		NO.			69	51	55	52	51	42 41		46 48	
		50s	NO.			828 630	730	833 936	526	757	893		730	
		22s :	NO.			135	119 154	109	70	83 105	143 80		82 117	
		50s l	INDEX			80	70	09	70	09	09		70	
S	I I	228 :	INDEX			100	100	100	100	100	06		100	
YARN PROPERTIES	AT10N	50s	PCT.			5.5	4.7	5.0	5.0	5.0	5.0		4.4	
YARN P	I I	228 :	PCT.			6.8	6.3	6.9	6.8	8.8	6.8		5.7	
		FACTOR	AVG. NO.			2348 2395	1994 2124	2005	1958	1679	1712 1665		1759 1842	
	STRENGTH	50s :BR.				88 PERCENT 42 43	75 PERCENT 34 37	O PERCENT 34 32	0 PERCENT* 33	75 PERCENT 28 29	70 PERCENT 28***		85 PERCENT 29 31***	
		228	LBS.			118 120	7 104 109	105 105 100	103	7 89 96	92 90		8 94 97	
	& CARD		PCT.			8.5	8.08	7.5	6.3	7.7	8.0		9.2	
VALYZER		WASTE	PCT.			5.0	145 3.8 5.5	404 4.7 5.0	3.1	303 4.3 5.8	4.4		5.5 4.9	
SHIRLEY ANALYZER	NON-L-N-	WASTE : WASTE	PCT.			DUNN 119 4.2 4.1	PAYMASTER 145 2.2 3.2 5	PAYMASTER 404 3.2 3.4	DUNN 120	PAYMASTER 303 2.4 3.2	CASCOT L-7 2.0 2.0		TAMCOT CAMD-E 4.2 5 3.1 4	
	z	PLE	Z –			36	31	<u>ო</u> ო	30	33	31		33	
AREA	CATIO	ADE : STAPL	32ND		£O.	51	52	50	42	52** 52**	42 52##		52 53#	
10N	SIFIC		ODE		TEXA	3181	SP 1		SP 1		SP I			
PRODUCTION AREA	AND CLASSIFICATION		NONAME-CODE 32ND IN.	SOUTHWEST	NORTHWEST TEXAS	AMHERST 1 LM 2 LM	CEE VEE 1 SLM LT SP 42 2 LM LT SP 52	ESTACADO 1 LM PLUS 2 LM LT SP	LAMESA 1 SLM LT SP 42	LORENZO 1 LM LT SP 2 LM LT SP	PLAINS 1 SLM LT SP 42 2 LM LT SP 52**	ОКГАНОМА	CLINTON 1 LM LT SP 2 LM SP	

*100 PERCENT SELECTED FOR TESTS, LESS THAN 100 PERCENT IN THE AREA. **REDUCED FROM 42 BECAUSE OF BARK. ***END BREAKAGE TOO HIGH TO SPIN 50s YARN. 44s YARN SPUN AND STRENGTH ADJUSTED TO 50s. #REDUCED FROM 43 BECAUSE OF BARK.

TABLE 6. -- CONTINUED

	SUGA	PCT.			0.46	0.30		0.48	0.55	0.26	0.33	0.37	
	COLO	NO.			31-3 31-4	31-3 41-3		11-4 21-1	21-2	41-3	21-1	21-4 41-3	
COLOR OF RAW STOCK	q+	UNITS			88.8	9.8		9.6	8.8	8.1	9.1	9.3	
	Rd	PCT.			77.0	76.5		80.0	78.7	73.0 78.0	79.5	77.0	
STEL.		PCT.			5.8	5.5		6.6	6.2	5.5	5.7	5.9	
1/8" GAGE STRENGTH	1	G/TEX			23.2	21.9		22.1	24.2	22.3	22.0	20.9	
1/8" STRE	H	G/TEX			26.2 24.6	23.0		23.2	24.2	25.0 24.6	24.6 22.8	23.0	
IRLEY MATURITY		RATIO			PERCENT 0.869 0.869	PERCENT 0.821 0.764		PERCENT 0.859 0.865	PERCENT 0.901 0.843	PERCENT 0.931 0.876	PERCENT 0.880 0.871	PERCENT 0.896 0.899	
IIC-SHIRLEY FINENESS/MATURITY	FIN.	MTEX			80 168.5 167.0	70 150.8 145.2		80 153.9 157.2	75 158.2 154.1	100 184.5 176.2	85 149.2 149.0	90 159.6 170.7	
	RO-	RDG.			0†1 0†1	32 33		34 36	36 34	44 41	34 34	37 41	
	M/UHM UNIF.	PCT.			13 80 79	5 79 79		79 79	80 79	25 81 81	Н 78 79	80	
FIBER	HVI				STONEVILLE 213 1.06 1.04	LANKART PR-75 0.93 0.95		GP 3774 1.01 1.01	TAMCOT SP-37 1.01 1.02	STONEVILLE 825 1.14 1.13	TAMCOT SP-37H 1.01 1.03	DELTAPINE 41 0.99 1.08	
EA	TION STAPLE	32ND IN			34 34	30		32	32	35	32	33 34	
ION ARI	SIFICA	ODE			414	P 42 52		31	40 41	51	31	E 41	
PRODUCTION AREA	AND CLASSIFICATION GRADE : STAPLE	NONAME-CODE 32ND IN	SOUTHWEST	ОКГАНОМА	ELDORADO 1 SLM 2 SLM	SWEETWATER 1 SLM LT SP 2 LM LT SP	SOUTH TEXAS	EDROY 1 M 2 M	GREGORY 1 SLM PLUS 2 SLM	MISSION 1 LM 2 LM PLUS	ОDЕМ 1 М 2 М	RAYMONDVILLE 1 M 2 SLM	

*AVERAGING RULE USED.

TABLE 6.--CONTINUED

PRODUCTION AREA	SHIRLEY ANALYZER	D CKFR				YARN PR	YARN PROPERTIES					
11111111111111111111111111111111111111	100000000000000000000000000000000000000			STRENGTH		1	NOIL	APPEAR	ANCE	I Z I		SPY
WA	• • • [!	1		. FACTOR!	228 :	50s	228 :	508	22s :	508	
PC		PCT.	LBS.		VG. NO.		PCT.	ı	INDEX	ON	0 0	NO.
TONEV	STONEVILLE 213 3.7 2.7 4.5	8 8 4.0 5.0	97 85	80 PERCENT 30 25**	1817	5.9	4.8	90 100	09	234 68	1490 1316	49
LANKART 2.7 3.9	(ART PR-75 2.7 4.0 3.9 5.3	7.6	95	70 PERCENT 30 29**	1795	5.85	4.8	110	70	51	710	444
GP 3774 1.8 1.4	774 1.8 2.7 1.4 2.7	7.0	87 87	80 PERCENT 21 28	1482 1701	5.9	3.3	110	80	79	582 621	48 47
TAMCOT 2.1	SP-	7.8	99	75 PERCENT 23	1576 1864	5.3	3.7	100	02	162 128	762 756	48 53
TONE 2	STONEVILLE 825 2.6 3.7 2.9 4.1	7.1)1 701	100 PERCENT 32 36	1867 2077	5.7	0.4	120	90 20	80 104	652 870	54
AMCC 1	TAMCOT SP-37H 1.0 2.2 1.2 2.6	6.0	86	85 PERCENT 24 31	1546 1886	5.3	3.8	110	70	563	657 558	46
ELT/	DELTAPINE 41 1.1 2.1 1.4 2.6	6.5	91	90 PERCENT 24 35	1601 2030	5.5	5.3	120 120	70	75	129 533	50

**AVERAGING RULE USED. **END BREAKAGE TOO HIGH TO SPIN 50s YARN. 44s YARN SPUN AND STRENGTH ADJUSTED TO 50s.

TABLE 6. -- CONTINUED

	GA TE	PCT.			0.33	0.31	0.25	0.25	0.40	0.21	0.31	0.30		0.33
0 0 0	- OC	NO.			21-2	21-1	21-1	31-1	21-2	21-1	21-3 21-4	21-2		21-3
OLOR AW ST	+	UNITS			8.7	8.6	9.0	8.3	8.4 8.4	8.8	9.2	8.7		9.5
0 0 0 0 0	Rd	PCT.			79.0	80.0	79.0	78.0 81.7	78.7	79.2	78.2	78.7		79.0
STEL.		PCT.			6.2	5.6	5.9	4.9 6.4	6.1	5.5	5.7	6.6		5.7
	STEL	G/TEX			24.2 25.1	23.6	24.2 25.3	24.6 24.3	23.9 24.2	26.2	24.7 24.1	24.3 23.8		27.0
1/8" GAGE STRENGTH	H H	G/TEX			28.6 28.4	27.4 26.4	29.4 28.0	25.6	26.6	29.4	26.6	28.2		29.6
LEY TUR	MAT.	RATIO			90 PERCENT 0.935 0.931	85 PERCENT 1.004 0.963	86 PERCENT 1.020 0.982	0.974	90 PERCENT 0.934 0.907	70 PERCENT 1.163 0.998	91 PERCENT 1.015 1.100	96 PERCENT 0.910 0.809		0.949 0.936
FINENES	F N N N N N N N N N N N N N N N N N N N	MTEX			173.7	192.4 188.6	186.6 188.2	197.6 175.7	173.3	180.3 191.8	178.0 170.0	173.3 152.4		169.1 171.2
	5 <u>~</u>	RDG.			43 42	64 64	6†1 6†1	52 46	75 77 77	54 50	6†1 14	42 34		42 43
R TH	M/UHM UNIF.	PCT.			80	80 79	80	81	80 79	81	5 81 81	97		18
					DELTAPINE 90 1.15 1.17	DELTAPINE 61 1.15 1.15	DELTAPINE 90 1.09 1.13	DELTAPINE 120 1.05 1.06	DELTAPINE 41 1.15 1.15	DELTAPINE 70 1.11 1.12	STONEVILLE 506 1.12 1.12	DELTAPINE 90 1.12 1.08		ACALA SJ-2 1.14 1.13
REA	STAPLE	32ND IN			36	36 36	35 36	35 35	36 36	35 36	36 36	36 36		36 36
RODUCTION AREA	31-1-00	8			31	31	31	31	41	31 41	41	31		31
PRODUCTION AREA	∢	NONAME-CODE	WEST	ARIZONA	AGUILA 1 M 2 M	AVONDALE 1 M 2 M	BUCKEYE 1 M 2 M	BUCKEYE 1 M 2 M	ELOY 1 SLM 2 SLM	GILA BEND 1 M 2 SLM	GILA BEND 1 SLM 2 SLM	SAFFORD 1 M 2 M	CALIFORNIA	BAKERSFIELD 1 SM 2 M

TABLE 6.--CONTINUED

	SPY		NO.			59	50	60	46 52	54 60	528	53	55		77
			NO.			943 726	1619 1403	784	966 1106	1411	1020	573 962	1007		690
	I W	I S	NO.			85	206	106 236	160	186	105	114	136		132 148
	NCE	50s	INDEX			80	09	70	09	09	70	80	09		80
S	1	22s	INDEX			110	100	120	100	100	110	110	110		100
YARN PROPERTIES	ATION	50s	PCT.			4.8	4.4	4.4	4.3	4.8	3.9	4.8 4.1	4.8		5.5
	i	22s	PCT.			6.2	6.0	5.9	5.4	6.5	5.5	6.1	6.5		6.7
	 	. FACT	AVG. NO.			2190 2276	1861 1773	2226 2204	1908 1947	2041	2071 2218	2254 1933	2110 1806		2588 2533
	TREN		LBS. A			PERCENT 37 40	PERCENT 30 30	PERCENT 38 38	PERCENT 31 33	PERCENT 35 36	PERCENT 34 39	PERCENT 40 32	PERCENT 36 30		PERCENT 45 45
	I	1	LBS.			90 115 116	85 101 93	86 116 114	103 102	90 106 107	70 111 113	91 114 103	96 110 96		133 128
		WASIE -	PCT.			5.3	6.0	5.6	6.2	7.0	5.9	5.7	6.7		5.7
ALYZER	ONIENI	- 3	PCT.			0 2.0 2.1	1 2.7 2.1	0 1.3 2.3	120 1.8 1.9	1 3.0 2.7	70 2.0 2.8	506 3.4 3.1	0 2.3 2.4		1.5
SHIRLEY ANALYZER	NON-LINIC	VISIBLE: WASTE:	PCT.			DELTAPINE 90 0.9 0.8	DELTAPINE 61 1.2 1.0	DELTAPINE 90 0.9 0.9	DELTAPINE 1 1.0 0.8	DELTAPINE 41 2.0 1.6	DELTAPINE 7 1.3 1.4	STONEVILLE 506 2.1 3.4 1.8	DELTAPINE 90 0.8 1.0		ACALA SJ-2 0.8 0.8
		STAPLE	32ND IN.			36 36	36 36	35 36	35 35	36 36	35 36	36	36 36		36
AREA	CATI		1			31	31	31	31	41 41	31 41	41 41	31		31
PRODUCTION AREA	AND CLASSI	GRADE	NONAME-CODE	WEST	ARIZONA	AGUILA 1 M 2 M	AVONDALE 1 M 2 M	BUCKEYE 1 M 2 M	BUCKEYE 1 M 2 M	ELOY 1 SLM 2 SLM	GILA BEND 1 M 2 SLM	GILA BEND 1 SLM 2 SLM	SAFFORD 1 M 2 M	CALIFORNIA	BAKERSFIELD 1 SM 2 M

TABLE 6. -- CONTINUED

	SUGA	PCT.			0.34	0.24	0.37	0.30	0.37	0.36	0.36	0.37	0.34
	00 00	NO.			21-3	21-2	11-4 11-2	21-1	21-1	21-1	21-2	21-3	21-2
LOR	q+	UNITS			9.2	8.3	9.5	9.0	8.6	8.5	& & & &	9.0	9.8
i	 	PCT.			78.7	79.0	79.5	79.5	79.7	80.3	79.2	79.0	78.5
STEL. 1/8"		PCT.			5.5	5.4	5.9	5.4	5.7	6.3	6.2	6.4	5.7
1/8" GAGE STRENGTH	ı	G/TEX			27.6	24.5	26.8	27.1	29.0	27.2	27.6	26.6	27.7
1/8" STRE	H >H	G/TEX			29.4	25.0	29.4 30.4	30.2	31.6	30.4 31.2	29.6	29.4	31.0
IRLEY	MAT	RATIO			PERCENT 0.984 1.032	PERCENT 0.998 0.994	PERCENT 0.952 0.856	PERCENT 0.951 0.980	PERCENT* 0.957 0.996	PERCENT* 0.884 0.966	PERCENT 0.857 0.921	PERCENT 0.832 0.875	PERCENT 0.841 0.938
 IIC-SH FINENESS/					95 177.8 186.0	98 178.5 185.5	169.5 156.2	171.7 166.0	149.8 158.1	138.2 157.5	159.7 169.8	170.1 159.4	100 156.0 167.4
	A L R	RDG.			††† **********************************	8th 14th	43 36	44 45	40 41	35 41	38 40	41 39	37 42
R TH	M/UHM UNIF.	PCT.			82	80	80	81	82	81	81	82	80
FIBER	HVH				DELTAPINE 90 1.19 1.12	DELTAPINE 61 1.12 1.12	ACALA SJ-2 1.09 1.13	ACALA SJ-2 1.13 1.13	ACALA SJC-1 1.14 1.16	ACALA SJC-1 1.13 1.19	ACALA SJ-2 1.19 1.17	ACALA SJ-2 1.16 1.14	ACALA SJ-2 1.15 1.15
REA	STAPLE	32ND IN			36 36	35	36	36	36 36	36 36	36	37	36
ON A		1			31	31	31	31	31	31	31	31	31
PRODUCTION AREA	AND CLASS	NONAME-CODE	WEST	CALIFORNIA	BLYTHE 1 M 2 M	BRAWLEY 1 M 2 M	COALINGA 1 M 2 M	CORCORAN 1 SM 2 M	DOS PALOS 1 M 2 M	FIREBAUGH 1 M 2 M	FIVE POINTS 1 M 2 M	KERMAN 1 M 2 M	RIVERDALE 1 M 2 M

*100 PERCENT SELECTED FOR TESTS, LESS THAN 100 PERCENT IN THE AREA.

TABLE 6. -- CONTINUED

	SPY		NO.			75	448	58	66	833	88	92	75	79	
		50	NO.			897	1908 1573	1033	947	679 571	863	1052	804 708	906 906	
	N I	2s	NO.			121	356 218	251 192	225	294 107	273	206 155	197	263 190	
	1	50s	INDEX			90 70	09	70	80	80 70	70	70	70	70	
1	APPE	22s	İ			110	100	110	100	100	90	90	100	100	
YARN PROPERTIES	NOI	508	PCT.			44.5	3.7	7.7 7.7	4.8 5.4	4.8	5.4	5.1	4.8 5.4	5.0	
YARN P		22s	PCT.			6.2	5.0	5.7	6.0	6.2	7.1	6.8	6.6	6.7 6.7	
			AVG. NO.			2450 2262	1828 1842	2229 2370	2395 2572	2873 2724	2768 2876	2580 2489	2594 2500	2464 2450	
	STRENGTH	50s :BR	LBS. A			PERCENT 43 39	PERCENT 30 31	PERCENT 39 42	PERCENT 43 47	PERCENT# 52 50	PERCENT* 50 53	PERCENT 46 45	PERCENT 47 45	PERCENT 44 43	THE AREA.
						95 1125 117	98 97	100 114 120	120 127	100 143 134	138 141	130 124	129 125	124 125	Z
ļ		53				7 -	0101	11	1 1	13	15	7.7		1 1	PERCENT
	% CARD	WASIE	PCT.			5.7	6.6	6.2	5.9	5.5	5.7	5.2	5.4	6.2	THAN 100
ANALYZER	ONIENI	WASTE	PCT.			90 2.1 1.7	61 2.3 2.4	2.6	1.6	4.5	2.8	3.4	2.5	2.1	LESS
SHIRLEY AN	NON-LINI CONIENI	ი —	PCT.			DELTAPINE 9 1.1 0.9	DELTAPINE 6 1.2 1.0	ACALA SJ-2 1.4 1.0	ACALA SJ-2 0.9 1.1	ACALA SJC-1 1.2 1.2	ACALA SJC-1 1.5 1.3	ACALA SJ-2 1.4 1.1	ACALA SJ-2 1.3 0.9	ACALA SJ-2 1.3 1.6	FOR TESTS, ESSING ROLL
		STAPLE	D N.			36	35	36	36	36	36	36	37	36	ECTED PROC
AREA	FICATI	! ! ··	32ND			31	31	31	31	31	31	31	31	31	NT SEL
PRODUCTION AREA	Q	GRADE	NONAME-CODE	WEST	CALIFORNIA	BLYTHE 1 M 2 M	BRAWLEY 1 M 2 M	COALINGA 1 M 2 M	CORCORAN 1 SM 2 M	DOS PALOS 1 M 2 M	FIREBAUGH 1 M 2 M	FIVE POINTS 1 M 2 M	KERMAN 1 M 2 M	RIVERDALE 1 M 2 M	*100 PERCENT SELECTED FOR TESTS, **COTTON STUCK TO PROCESSING ROLLS

TABLE 6. -- CONTINUED

	00_	PCT.			0.35	0.36	0.38	0.42	0.31
	COLOR	NO.			21-1	31-3	21-2	21-3	31-2
COLOR OF RAW STOCK	q+	UNITS			8.3	8.8	9.0	9.3	0.6
	Rd	PCT.			80.5	77.0	78.5	78.3	78.3 76.3
STEL.	GATION	PCT.			5.6	5.5	5.5	6.0	5.3
GAGE	STEL.	G/TEX			28.1	26.8	27.7	27.0	28.6 25.4
1/8" GAGE STRENGTH	HVI	G/TEX			31.6	30.4	28.4	30.6	30.0 28.4
IC-SHIRLEY FINENESS/MATURITY	MAT.	RATIO) PERCENT* 0.980 1.032) PERCENT* 0.933 0.983	9 PERCENT 0.977 0.997) PERCENT* 0.979 0.989) PERCENT 0.986 0.922
FINENESS,	N.	MTEX			159.4 159.8	165.1 156.5	98 151.6 160.6	100 158.3 159.9	100 165.9 164.6
!	NAIRE	RDG.			42 45	43 43	41 45	43 42	42 41
GTH	M/UHM UNIF.	PCT.			8833	81	81	82	81
FIBER LENGTH	HVI				GC-510 1.18 1.15	ACALA SJ-5 1.14 1.15	ACALA SJ-5 1.13 1.15	ACALA SJC-1 1.13 1.13	ACALA SJ-2 1.17 1.16
EA	STAPLE	32ND IN.			37 37	37 37	36 37	36 37	36 36
PRODUCTION AREA		0 8 9			31	31	31	31	31
PRODUC	-	NONAME-CODE	WEST	CALIFORNIA	TULARE 1 M 2 M	VISALIA 1 M 2 M	VISALIA 1 M 2 M	WASCO 1 M 2 M	WASCO 1 M 2 SLM

*100 PERCENT SELECTED FOR TESTS, LESS THAN 100 PERCENT IN THE AREA.

TABLE 6. -- CONTINUED

	SPY		NO.			85 80	70	83	81	89	
	S	508	NO.			796	864 726	712 643	597	678 554	
	NEPS	** 	NO.			363 370	176 254	244 271	205	168	
	RANCE	50s	INDEX			80 70	80 70	80	70	70	
1	APPEARANCE		INDEX	*		100	100	001	100	100	
YARN PROPERTIES	TION	50s	PCT.			5.3	5.3	8.4	5.5	4.9	
YARN PR	ELONGATION					6.6	6.1	6.8	6.9	6.7	
		1	AVG. NO.			2832 2873	2566 2674	2768 2862	2724 2757	2765 2464	
	STRENGTH	50s : BF				PERCENT# 53 52	PERCENT# 45 48	PERCENT 50 52	PERCENT* 50 .50	PERCENT 49 44	
						100	100	98	100	100	
		22s	LBS.			137	131	138	134	140 124	
PICKER 1-	& CARD		PCT.			5.7	5.9	5.4	5.5 .23	5.3	
ALYZER		. WASTE	PCT.			2.0	1.9	1.9	2.2	2.3	
SHIRLEY ANALYZER		WASTE	PCT.			GC-510 1.2 0.7	ACALA SJ-5 1.1 1.0	ACALA SJ-5 1.3 0.9	ACALA SJC-1 1.1 1.2	ACALA SJ-2 0.8 1.4	
	Z I	PLE	Z			37	37	36	36	36	
AREA	ICATION	STAPLE	32ND IN			31	311	311	311	31	
PRODUCTION AREA	AND CLASSIFICATION	GRADE	0	WEST	CALIFORNIA	TULARE 1 M 2 M	VISALIA 1 M 2 M	VISALIA 1 M 2 M	WASCO 1 M 2 M	WASCO 1 M 2 SLM	

*100 PERCENT SELECTED FOR TESTS, LESS THAN 100 PERCENT IN THE AREA. **COTTON STUCK TO PROCESSING ROLLS.

TABLE 7.--COTTON, AMERICAN UPLAND LONG STAPLE: QUALITY CHARACTERISTICS BY PRODUCTION AREA AND CLASSIFICATION, CROP OF 1984.

	CONTENT	PCT.		0.32
	: color content	0 N		31-2
COLOR OF RAW STOCK	q+	UNITS		7.9
0 2	Rd	PCT.		76.0
STEL. 1/8"	GATION	PCT.		6.5
1/8" GAGE STRENGTH		G/TEX		27.1 6.4 26.6 6.5
1/8" GAGE STRENGTH	HVI	1		28.8 25.6
IRLEY MATURITY	MAT. HVI STEL.			100 PERCENT 136.6 0.870 142.8 0.920
IIC-SHIRLEY FINENESS/MATURITY	FIN. MAT.	MTEX		100 136.6 142.8
		RDG.		38 38
ER GTH	HVI : M/UHM UHM : UNIF.	PCT.		5 82 82
FIBER	HVI : M/UHM UHM : UNIF.	IN. PCT. RDG.		ACALA 1517-75 1.18 1.16
EA	CLASSIFICATION	1		38 37
ION AR		ODE		411
PRODUCTION AREA FIBER IIC-SHIRLEY 1/8" GAGE STEL. COLOR OF LENGTH 1/8" RAW STOCK	GRADE : STAPLE	NONAME-CODE 32ND IN.	WEST	NEW MEXICO COLUMBUS 1 SLM 2 SLM

	200	2 7 7		NO
	OGUN	METO.) s	NO. NO.
	APPEARANCE		: 50s	PCT. INDEX INDEX
ES	i	į	22s	CT. INDEX
YARN PROPERTIES	I NO		50s	PCT.
-	FLONGAT		22s :	PCT.
			FACTOR	NO.
	IGTH	1	:BR.	LBS. AVG. NO.
	STRENGTH		: 50s	LBS.
			22s : 50s :	LBS.
	COMBER	WASTE		PCT.
ANALYZER		: TOTAL	: WASTE	PCT
SHIRLEY		TOTAL : TOTAL	GRADE : STAPLE WASTE : WASTE	PCT.
REA	LION		STAPLE	2ND IN.
PRODUCTION AREA	SIFICA			ODE 32
PRODUCT	AND CLASSIFICATION		GRADE	NONAME-CODE 32ND IN.

TABLE 7. -- CONTINUED

		96
		573 181 592 147
		85 20 75 19
		70 110 70 110
		100 130 130
		50.00 50.00
		6.5 6.5 7.7
		2773 3072 2594 3025
		100 PERCEN 48 56 47 55
		143 152 129 150
		1 38 ACALA 1517-75 7.7 143 10 1 37 1.3 2.3 7.3 129 1 37 1.3 2.3 7.3 129
		2.5
		CALA 1517 1.7 1.3
		38 37
		41
WEST	NEW MEXICO	COLUMBUS 1 SLM 2 SLM

*COMBED YARN DATA.

SUGAR CONTENT PCT. 0.21 0.28 0.24 0.24 0.26 0.19 TABLE 8. --COTTON, AMERICAN PIMA EXTRA LONG STAPLE: QUALITY CHARACTERISTICS BY PRODUCTION AREA AND CLASSIFACATION, CROP OF 1984. COLOR CODE NO. 1 1 1 1 1 1 1 1 1 1 1.1 COLOR OF RAW STOCK UNITS 11.6 12.0 12.2 11.5 12.8 12.2 **q**+ PCT. 65.5 68.8 66.5 69.0 65.0 62.7 65.2 64.5 66.5 65.3 66.5 Rd 1/8" : ELON-: GATION PCT. 7.2 7.7 7.6 7.4 7.4 STELOMETER 1/8" GAGE FIBER STRENGTH G/TEX 34 34 36 32 33 33 100 PERCENT 0.942 0.922 100 PERCENT 1.003 1.011 100 PERCENT 1.009 1.002 100 PERCENT 0.951 0.977 99 PERCENT 0.991 0.947 100 PERCENT 0.935 0.969 | IIC-SHIRLEY | FINENESS/MATURITY MAT. RATIO 142.0 156.5 152.4 153.6 155.9 156.9 149.1 146.6 161.1 163.0 MTEX FIN. MICRO-NAIRE RDG. 45 1 1 1 1 1 39 0 1 1 1 1 45 41 50/2.5 | UNIF. PCT. 47 49 47 2^t 47 47 7 7 7 7 FIBROGRAPH PIMA S-6 1.34 1.30 PIMA S-6 1.37 1.34 PIMA S-6 1.31 1.33 PIMA S-6 1.30 1.30 PIMA S-6 1.33 1.28 PIMA S-6 1.30 1.29 2.5% SPAN : STAPLE 32ND IN. 94 9† 146 9[†] GRADE : STAPL 94 94 46 46 AND CLASSIFICATION PRODUCTION AREA CASA GRANDE 4 4 MESQUITE 4 5 NEW MEXICO WEST TEXAS SAFFORD 4 4 EL PASO 4 5 FABENS 4 5 WENDEN **ARIZONA** CODE WEST 9 7 **←** ⊘ - N **~** ⊘ 7 7

1 10

TABLE 8. -- CONTINUED

1	1	1											
		80s	NO.			389 352	368	129 337		393 273		391 313	322
1	NEPS	508	NO.			93	53	112		ћ <u>/</u> 0ћ		114	114
	APPEARANCE	808	INDEX			110	120	110		110		120	110
S	APPEA	508	INDEX			120	130	120		120		130	120 120
YARN PROPERTIES	ELONGATION	1 🕸	PCT.			5.0	5.5	5.3		5.0		4.8 4.9	5.0 4.0
YARN P			PCT.			5.7	5.3	6.0		5.7		5.5	6.0
	H	FACTOR	AVG. NO			CENT 3270 3295	CENT 3025 3115	CENT 3270 3295		CENT 2985 3075		(CENT 3140 2945	CENT 2960 3025
	STRENGTH	8	- Θ			100 PERCENT 38 38	100 PERCENT 35 36	100 PERCENT 38 38		100 PERCENT 34 2 3 35		99 PERCENT 36 3	100 PERCENT 34 35 35
			LBS.			70	65	70		65		68	64
	COMBER		PCT.			16.1	15.2	16.2		15.1		15.0	14.3
	& CARD		PCT.			8.1	6.9	5.9		6.9		7.2	6.8
VALYZER		WASTE	PCT.			3.9	2.6	2.9		3.0		3.0	2.7
SHIRLEY ANALYZER	MONTE IN T	WASTE	PCT.			PIMA S-6 2.4 1.5	PIMA S-6 1.5 3.2	PIMA S-6 1.9 1.6		PIMA S-6 1.8 1.6		PIMA S-6 1.2 1.4	PIMA S-6 1.2
			32ND IN.			99	9† 46	46 46		46 46		97 46	46 46
PRODUCTION AREA	AND CLASSIFICATION				ONA	CASA GRANDE	SAFFORD 4 4	WENDEN 4 4	NEW MEXICO	MESQUITE 4 5	WEST TEXAS	EL PASO 4 5	FABENS 4 5
PRODUCTION	VD CLA	GRADE	! .	— 1	ARIZONA	CA	SA 4 4	¥ **	NEW	A C	WEST	EL 5	A 4 C
	AND		NON	WEST		2 -1	7	2 -		2 -		2 -1	7 - 2

TABLE 9. --COTTON: MEANS AND STANDARD DEVIATIONS OF TEST MEASUREMENTS PERFORMED ON 210 SAMPLES COLLECTED FROM SELECTED GIN POINTS, CROP OF 1984.

	35 STAPLE	SHORT SAMPLES	1	161 MEDIUM STAPLE SAMPLES	PLE	LONG	12 EXT STAPLE	12 EXTRA LONG STAPLE SAMPLES
TEST ITEM	MEAN	STANDARD DEVIATION	MEAN	STANDARD	MEAN	STANDARD DEVIATION	MEAN	: STANDARD : DEVIATION
FIBER PROPERTIES:								
CLASSIFICATION: GRADE32ND IN. STAPLE32ND IN.	86.0	8.7	91.6	4.8	94.0 37.5	0.0	46.0	0.0
FIBER LENGTH: UPPER HALF MEAN IN. MEAN/UHM UNIF PCT. 2.5% SPAN IN. 50/2.5 UNIF PCT.	0.962	0.041	1.102	0.058	1.170	0.014	- 1.316 47.1	- 0.026 1.0
MICRONAIRE RDG.	33.5	6.1	40.4	ري. د.	36.0	2.8	40.5	1.5
IIC-SHIRLEY FINENESS/MATURITY: FINENESS MTEX MATURITY RATIO	153.07	19.24 0.100	167.74 0.884	15.05 0.094	139.70	4.38 0.035	153.21	5.96 0.032
FIBER STRENGTH: HVI 1/8 " GAGE G/TEX STELOMETER 1/8" GAGE - G/TEX STEL. ELONGATION PGT.	24.1 21.7 6.87	2.0 1.3 0.61	26.4 23.6 6.13	0.00 0.00 0.00 0.00	27.2 26.9 6.45	2.3 0.4 0.07	34.1 7.26	1.4 0.49
SHIRLEY ANALYZER: VISIBLE WASTE PCT. TOTAL WASTE PCT.	2.70 4.36	1.31	1.76	0.80	1.50	0.28 0.14	3.13	0.56
COLOR OF RAW STOCK GRAYNESS (Rd) PCT. YELLOWNESS (+b) UNITS	73.83	4.18 0.88	75.22	4.45	77.50	2.12	65.87	1.76
SUGAR CONTENT PCT.	0.288	0.107	0.298	660.0	0.340	0.028	0.222	0.031

	l I	!			STAP	ONG	1 1 1	<
TEM TEM	ME		MEAN	STANDARD : DEVIATION	MEAN	STANDARD : DEVIATION	MEAN	: STANDARD : DEVIATION
MANUFACTURING WASTE: PICKER AND CARD PCT. COMBER WASTE PCT.	7.57	1.53	6.57	1.22	7.50	0.28 0.14	7.38	1.14
CARDED YARN DATA:								
YARN SKEIN STRENGTH: 8	299.7 94.3 2235.6	18.1 6.0 135.5	105.6 34.8 2030.9	14.6 7.0 332.9	136.0 47.5 2683.5	9.9 0.7 126.6		
YARN ELONGATION: 8s (74 TEX) PCT. 22s (27 TEX) PCT. 50s (12 TEX) PCT.	7.63	0.077	6.21	- 0.45 0.45	6.60	0.14		
YARN APPEARANCE: 8s (74 TEX) INDEX 22s (27 TEX) INDEX 50s (12 TEX) INDEX	103.1	9.6	102.9	8.3 7.9	100.07	0.0		
YARN NEPS: 8s (74 TEX) NO. 22s (27 TEX) NO. 50s (12 TEX) NO.	22.5	92.9	141.9 889.6	69.2	80.0 582.5	7.1		
SPINNING POTENTIAL NO.	46.2	5.6	58.6	11.5	0.46	2.8		

TABLE 9. -- CONTINUED

TABLE 9. -- CONTINUED

		1	STA	161 MEDIUM STAPLE SAMPLES	2 LONG STAPLE SAMPL	2 LONG STAPLE SAMPLES	12 EX	12 EXTRA LONG STAPLE SAMPLES
TEM TEM	MEAN	STANDARD DEVIATION	MEAN	I & >	MEAN	STANDA DEVIAT	MEAN	ANDARD VIATION
	0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1	8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1 1 1 1 1 1	0 0 0 1 1 1 1 1 1 1 1		10
CARDED YARN SPUN ON AN OPEN-END FRAME	RAME :							
YARN SKEIN STRENGTH: 8s (74 TEX) LBS. BREAK FACTOR NO.	246.1 1968.5	16.1						
YARN ELONGATION: 8s (74 TEX) PCT.	7.50	0.53						
YARN APPEARANCE: 8s (74 TEX) INDEX	106.5	7.7						
YARN NEPS: 8s (74 TEX) NO.	2.8	3.4						
COMBED YARN DATA:								
YARN SKEIN STRENGTH: 22s (27 TEX) LBS. 50s (12 TEX) LBS. 80s (7.4 TEX) LBS. AVERAGE BREAK FACTOR NO.					151.0 55.5 3048.5	1.4 0.7	67.3 35.8 3116.7	2.6 135.2
YARN ELONGATION: 22s (27 TEX) PCT. 50s (12 TEX) PCT. 80s (7.4 TEX) PCT.		4			6.65	0.07	5.72 5.04	0.23 0.21
YARN APPEARANCE: 22s (27 TEX) INDEX 50s (12 TEX) INDEX 80s (7.4 TEX) INDEX					130.0	0.0	<u>-</u> 121.7 112.5	4:58
YARN NEPS: 22s (27 TEX) NO. 50s (12 TEX) NO. 80s (7.4 TEX) NO.					19.5	0.7 24.0	87.8 318.6	24.9 75.0

TABLE 10. -- COTTON: SIMPLE CORRELATION ANALYSIS FOR FIBER AND PROCESSING TEST RESULTS FROM 35 SHORT STAPLE SAMPLES COLLECTED FROM SELECTED GIN POINTS, CROP OF 1984.

	CONTE		+.29	+.56	26	33	01 +.53 44	+.45	+1.00	+.22	+.18	74. + 44. + 74. +	+.29	+.05	08	+,38
COLOR OF RAW STOCK	q+		25	+.24	+.24	+.21	35	72	07	+.01	+.29	63	65	21	+.51	55
COLOR O	Rd		+.67	13	05	10	+.08	+1.00	+.45	28	34	+.65	+.56	+.46	49	+.56
STEL. 1/8"	GATION		- 17	26	24	17	+.53 +.23 +1.00	+.14	44	+.06	10	+.27 +.17 +.23	+.45	+.08	14	+,34
1/8" GAGE STRENGTH	STEL	(r's)	03	+.50	54	50	+.62 +1.00 +.23	+.38	+.53	+.34	+.08	+.81 +.76 +.80	+.64	23	27	+.70
	H A	FFICIENTS	29	+.38	55	40	+1.00 +.62 +.53	+.08	01	+.26	08	+.51	+.62	30	15	+.50
IIC-SHIRLEY FINENESS/MATURITY	MAT.	COE	+.56	36	+.92	+.83	62	+.04	12	61	28	43 41 43	62	+.57	12	32
I I C = SI	FIN.	CORREL	+.31	+.65	+.94	+1.00	40	10	33	48	29	1.35	49	+.52+	22	30
	NAIRE	SIMPLE	+.40	42	+1.00	+.94	55 54 24	05	26	52	29	42 44 44	58	+.55	19	37
ER IGTH	M/U UNI		+.33	33	+.61	+.65	+	+.27	24	26	27	+.20	+.03	+.49	61	+.08
FIBE	HVI		24	+1.00	42	.38	+.50	13	+.56	+.35	+.28	+++	+.25	55	+.02+.34	+,33
CLASSIFICATION	STAPL		32	+.91	56	49	+.41 +.47 19	+.20	+.56	+.50	+.39	+.37 +.34 +.36	+.36	51	+.07	+,34
CLASSIF	GRADE		+1.00	24	04.4	+.31	29 03 17	+.67	+.29	69	57	+++	+.00	+.59	32	+.19
FO LI	EM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CLASSIFICATION: GRADE INDEX STAPLE 32ND IN.	FIBER LENGTH: UPPER HALF MEAN IN. MEAN/UHM UNIF, PCT.	MICRONAIRE RDG.	IIC-SHIRLEY: FINENESS MTEX MATURITY RATIO	FIBER STRENGTH: HVI 1/8" GAGE G/TEX STEL. 1/8" GAGE G/TEX STEL. ELONGATION PCT.	COLOR OF RAW STOCK: GRAYNESS (Rd) PCT. YELLOWNESS (+b) UNITS	SUGAR CONTENT PCT.	SHIRLEY ANALYZER: VISIBLE WASTE PCT. TOTAL WASTE PCT.	PICKER AND CARD WASTE PCT.	YARN STRENGTH: 8s (74 TEX) LBS. 22s (27 TEX) LBS. ANG. BREAK FACTOR NO.	8s (74 TEX) PCT. 22s (27 TEX) PCT.	8s (74 TEX) INDEX	8s (74 TEX) NO. 22s (27 TEX) NO.	SPINNING POTENTIAL NO.

+.56

+.38

+.00

+.82 +.79 +.82 +.76

+.25

-.44

+1.00

+.50 +.70 +.34

+.19 +.34

SPY NO.

TABLE 10. -- CONTINUED

+.33

-,37

-.30

22s +.34 -.31 -.00 -.07 -.20 -.73 +.65 +.44 +.48 -.39 -.37 -.38 -.33 -.26 -.60 +.68 -.32 -.39 -.02 +.52 NEPS -. 19 -.32 +.07 -.22 +1.00 -. 44 +.02 -.15 -.27 -.14 -.49 -.08 +.11 +.26 -.49 -.53 -.52 -.36 -.37 88 22s **-**.27 +.59 +.54 +.54 -.17 +.65 +.05 -.52 44.-+.22 +.19 +.21 APPEARANCE +.04 +.74 -.62 +.25 +.59 -.55 +.55 +.52+ -.30 -.23 +.08 +.46 -.16 -.30 -.40 +.02 -.07 +1.00 -.37 -.06 88 YARN PROPERTIES SIMPLE CORRELATION COEFFICIENTS (r's) 22s +.24 -.56 +.60 +.63 +.38 +.46 -.65 +.23 +.28 +.86 -.13 -.01 -.33 +.68 ELONGATION +.00 +.36 -.58 -.49 +.62 +.64 +.45 +.56 +.18 +.80 +.75 +.79 +.25 +.29 -.07 +1.00 +.86 +.07 -.36 88 22s :BR. FACTOR +.98 +.98 +1.00 +.11 +,33 -.44 -. 37 -. 43 +.49 +.80 +.23 +.63 +.22 +.79 -.52 +.02 +.21 4.47 +.82 STRENGTH +.11 -.38 -.41 +.45 +.76 +.17 +.93 +1.00 +.98 +.32+.16 -. 44 +.59 4.44 +.20 +.03 +.75 **-**.03 +.19 -.53 +1.00 +.93 +.98 -.35 +.80 -.49 +.11 +.32 -.42 +.65 +,48 +.24 +.00 +.02 +.82 +.51 +.81 +.27 88 0 PICKER & CARD WASTE -.57 +.39 +.28 -.29 -.29 -.08 +.08 -.10 -.34 +.29 +.18 +.72 +.64 +1.00 +.00 +.03 +.02 -.30 +.26 -.07 0 SHIRLEY ANALYZER NON-LINT CONTENT VISIBLE : TOTAL WASTE : WASTE -.76 +.47 -.56 49.4 +.21 +.16 +.31 +.30 +.23 +.15 **-**.36 +.01 +.09 +.94 +1.00 +.14 +.11 +.13 -.52 -.03 -.62 ī -.69 +.50 +.35 -.52 -.48 -.61 +.26 +.34 +.06 -.28 +.01 +1.00 +.94 +.24 +.20 +.22 +.18 -.40 +.00 +.22 +.11+.44 8s (74 TEX) ----- LBS.
22s (27 TEX) ----- LBS.
AVG. BREAK FACTOR -- NO.
YARN ELONGATION:
22s (74 TEX) ----- PCT.
YARN APPEARANCE: 32ND IN. · MTEX RATIO N ---- IN. FIBER STRENGTH:
HVI 1/8" GAGE ---- G/TEX
STEL, 1/8" GAGE -- G/TEX
STEL. ELONGATION -- PCT. PCT. GRAYNESS (Rd) ---- PCT. YELLOWNESS (+b) -- UNITS 8s (74 TEX) ---- INDEX 22s (27 TEX) ---- INDEX YARN NEPS: PCT. PCT. --- RDG. 88 SHIRLEY ANALYZER: VISIBLE WASTE ----TOTAL WASTE -----SUGAR CONTENT -----COLOR OF RAW STOCK: SPINNING POTENTIAL FIBER LENGTH: UPPER HALF MEAN MEAN/UHM UNIF. -MICRONAIRE -----8s (7th TEX) 22s (27 TEX) TEST I TEM CLASSIFICATION YARN STRENGTH PICKER AND CARD WASTE GRADE -STAPLE

TABLE 10A.--COTTON: SIMPLE CORRELATION ANALYSIS FOR FIBER AND PROCESSING TEST RESULTS ON CARDED YARNS SPUN ON AN OPEN-END FRAME FROM 34 SHORT STAPLE SAMPLES COLLECTED FROM SELECTED GIN POINTS, CROP OF 1984.

			YARN PROPERTIES	ES	
I LESI			ELONGATION	-	NEPS
	88	BR.	88		88
	1		SIMPLE CORRELATION COEFFICIENTS (r'	s) -	
GRADE INDEX STAPLE 32ND IN.	+.01	+.01	29 +.24	+.46	+.05
FIBER LENGTH: UPPER HALF MEAN IN. MEAN/UHM UNIF PCT.	+.48	+.48	+.14	11	14
MICRONAIRE RDG.	69	69	62	+.63	00
FINENESS MTEX MATURITY RATIO	58	68	+9·-	+.60	+.06
FIBER STRENGTH: HVI 1/8" GAGE G/TEX STEL. 1/8" GAGE G/TEX STEL. ELONGATION PCT.	+ + . 56	+.56 +.80 +.13	+.52 +.44 +.56		+.27 +.16 +.18
COLOR OF RAW STOCK: GRAYNESS (Rd) PCT. YELLOWNESS (+b) UNITS	+.59	+.59	+.32	07	01
SUGAR CONTENT PCT.	+.56	+.56	+.14	+.05	02
SHIRLEY ANALYZER: VISIBLE WASTE PCT. TOTAL WASTE PCT.	+.36	+.36	+.35	17	+.02
PICKER AND CARD WASTE PCT.	+.17	+.17	+.16	19	19
YARN STRENGTH: 8s (74 TEX) LBS. AVG. BREAK FACTOR NO.	+1.00	+1.00	+.59	. 333	+.05
TANN ELCUNCALION: S (74 TEX) S (74 TEX)	+.59	+.59	+1.00	63	05
YAKN APPEARANCE: YAKN APPEARANCE: YAKN APPEARANCE:	33	33	63	+1.00	+.16
8s (74 TEX) NO.	+.05	+.05	05	+.16	+1.00

TABLE 11.--COTTON: SIMPLE CORRELATION ANALYSIS FOR FIBER AND PROCESSING TEST RESULTS FROM 161 MEDIUM STAPLE SAMPLES COLLECTED FROM SELECTED GIN POINTS, CROP OF 1984.

	CONTE		+.57	09	12	+.09	+.17	+.67	+1.00	09	17	+.38	+.25	+.02	+.21	+.30
OF FOCK	+		+.17	27	14	18	+.17 +.19 +.08	+.23	+.26	07	<u>-</u>	+.14 +.09 +.12	+.03	+.12	+.04	+.04
193	Rd		+.86	+.04	+.17	00	+.42	+1.00	+.67	74	45	+.54+.46+.50	+.12	+.06	+.26	+.39
STEL.	GATION		30	23	37	23	24 29 +1.00	17	07	+.18	+.09	1.25	+.32	+.08	25	23
1/8" GAGE STRENGTH	STEL		+.61	+.40	+.22	+.38	+.84 +1.00 29	+.61	+.39	27	77.	+.91 +.88 +.90	+.30	04	+.39	+.82
	<u>-</u> }	FICIENTS	+.43	4.49	+.21	+.04	+1.00 +.84 24	+.42	+.17	21	34	+++	+.28	09 +.19	+.40	+.75
IIC-SHIRLEY ENESS/MATURITY	MAT.	ELATION COEF	+.61	+.47	+.87	+.53	+.30 +.38 46	+.37	+.09	57	40	+.37 +.33 +.35	30	+.23	+.20	+.31
N	Z	E CORRELA	+.21	+.41	+.79	+1.00	+.04	00	21	24	21	06	36	+.24	05	90
	NAIRE	SIMPLI	+.43	+.53	+1.00	+.79	+.21 +.22 37	+.17	12	47	37	+.21 +.19 +.20	33	+.25	+.13	+.16
R TH	M/UH UNIF		+.48	+.57	+.63	+.47	+.49	+.31	+.15	27	39	+.62	+.07	+.20	+.28	+.63
FIBE	HVI		+.23	+1.00	+,53	+.41	+.49	+.04	09	30	35	+.47	+.11 +.14	+.03	+.32	+.56
ICATI	STAPLE		+.16	+.89	+.52	+.41	+.49	05	18	28	31	+.43	+.12	00 +.16	+.26	+.50
CLASSIF	GRADE		+1.00	+.23	+.43	+.21	+.43	+.86	+.57	49	59	+.57	+.02	+.14	+.28	+.43
	LEW TEM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CLASSIFICATION: GRADE INDEX STAPLE 32ND IN.	FIBER LENGTH: UPPER HALF MEAN IN. MEAN/UHM UNIF PCT.	MICRONAIRE RDG.	IIC-SHIRLEY: FINENESS MTEX MATURITY RATIO	FIBER STRENGTH: HVI 1/8" GAGE G/TEX STEL. 1/8" GAGE G/TEX STEL. ELONGATION PCT.	COLOR OF RAW STOCK: GRAYNESS (Rd) PCT. YELLOWNESS (+b) UNITS	SUGAR CONTENT PCT.	SHIRLEY ANALYZER: VISIBLE WASTE PCT. TOTAL WASTE PCT.	PICKER AND CARD WASTE PCT.	YARN STRENGTH: 22s (27 TEX) LBS. 50s (12 TEX) LBS. AVG. BREAK FACTOR NO.	YAKN ELONGALION: 22s (27 TEX) PCT. 50s (12 TEX) PCT.	YAKN APPEARANCE: 22s (27 TEX) INDEX 50s (12 TEX) INDEX	YARN NEPS: 22s (27 TEX) NO. 50s (12 TEX) NO.	SPINNING POTENTIAL NO.

MASTE MAST		SHIRLEY	SHIRLEY ANALYZER!					YARN	النا ا				! ! !	
MASKER WASKER WASKER MASKER M	I ESI I TEM	NON-	CONTEN		 	STRE		ELONG	1		!	NEP		SPY
NOTE Color		WASTE	: WASTE		22s	2	3R. FACTOR	22s	I		1	22s	508	0
NUMERX 64		1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			. F	ELATION CO	FFICIEN	1 W		1 1			
PCT303735 +.47 +.52 +.62 +.07 +.01 +.11 +.10 +.03 +.33 +.62 +.62 +.07 +.07 +.01 +.20 +.33 +.20 +.33 +.22 +.22 +.22 +.22 +.22 +.22 +.22				59	らす	77	57	10	0.	+.14	2 -	+.28	14 + . 14	+.43
MTEX -:-24 -:-35 -:-37 +:-21 +:-19 +:-20 -:-33 -:-27 +:-25 +:-2 MATTO -:-57 -:-63 -:-40 +:-21 -:-06 -:-05 -:-06 -:-36 -:-29 +:-24 +:-25 MATTO -:-57 -:-63 -:-40 +:-37 +:-25 -:-05 -:-06 -:-36 -:-29 +:-24 +:-25 MATTO -:-57 -:-63 -:-40 +:-37 +:-25 -:-05 -:-06 -:-36 -:-29 +:-24 +:-25 MATTO -:-57 -:-63 -:-40 +:-31 -:-44 +:-05 -:-05 +:-35 -:-25 +:-2	IN	30	38		4	20	50	1	+.14	0 0	2 - 6	+.32	+.16 24	+.56
FORT24342106 +.0505063625 +.24 +.2 ANTIO576340 +.37 +.33 +.05063625 +.23 +.2 Sylex212434 +.82 +.82 +.83 +.28 +.3909 +.1 Sylex21240925252525 +.3209 +.1 DNITS444745 +.09252525 +.32 +.3009 +.1 DNITS07444745 +.54 +.46 +.50 +.12 +.1010 +.06 +.1 PCT091517 +.38 +.31 +.35 +.25 +.11 +.02 +.0 PCT. +.00 +.91 +.67272325 +.15 +.11192 DRT. +.01 +.10 +.91 +.67272325 +.15 +.11192 DRT. +.0346 +1.0048464809 +.43 +.41 +.101400 +.38 +.1010 DRT. +.15 +.1111 +.11 +.11 +.11 +.10 +.10 +.10 +.10 +	1 1 1 1 1	47	5			Τ.	2	. 3	2	.5	N	+.13	+. 12	+.16
PCT2434 +.82 +.82 +.83 +.28 +.3909 +.39 PCT44 +.91 +.91 +.82 +.88 +.990 +.30 +.3004 +.20 PCT444745 +.2525 +.25 +.32 +.20 +.0806 PCT444745 +.54 +.46 +.50 +.12 +.0300 +.12 +.06 PCT091517 +.38 +.31 +.35 +.25 +.13 +.00 +.12 +.00 PCT. +.09 +.91 +.67272325 +.15 +.1014 +.00 PCT. +.91 +1.00 +.91 +.67272325 +.15 +.1014 +.00 PCT. +.91 +1.00 +.91 +.67272325 +.15 +.1014 +.00 PCT. +.67 +.66 +1.0048 +.98 +.99 +.45 +.11 +.11251 PCT. +.15 +.1103 +.43 +.45 +1.00 +.98 +1.45 +1.00 +.98 +1.00 +.45 +1.00 +.98 +1.00 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.44 +1.00 +		24		21	30	30	30	33	2.0	+.24	\sim	05	+.12	06
PCT444745 +.54 +.46 +.50 +.12 +.10 +.06 +.12 +. PCT091517 +.38 +.31 +.35 +.25 +.11 +.02 +. PCT. +1.00 +.91 +.67272328 +.15 +.11 +.1125 PCT. +.57 +.66 +1.004846480311 +.1119 PCT. +.57 +.67 +.66 +1.00 +.98 +.99 +.43 +.41 +.11 +.1125 LBS273348 +1.00 +.98 +1.99 +.45 +.45 +.4702 +. LBS273348 +1.00 +.98 +1.00 +.98 +.45 +1.00 +.4501 +. NOET. +.15 +.1103 +.43 +.45 +1.00 +.45 +1.00 +.4501 +. NOET. +.15 +.1111 +.41 +.41 +.47 +.45 +1.00 +.45 +1.00 +.4501 +. NOET142519 +.000202 +.03 +.13 +.45 +1.00 +.05 +1.47 +1. NOEX081711 +.41 +.41 +.41 +.41 +.41 +.00 +.05 +.41 +.05 +1.05 +1.41 +.00 +.00 +.00 +.00 +.00 +.00 +.00 +.0	RENGTH: 8" GAGE G/TEX 1/8" GAGE G/TEX ELONGATION PCT.	21	24 31 +.24	- 34	+.82 +.91	+.82	8000	+.28	~ ~ ~ ~ ~	09 +.00+	- 20	+.40	18	+.75 +.82 23
PCT091517 +.38 +.31 +.35 +.25 +.15 +.10 +.02 +. PCT. +1.00 +.91 +.67272325 +.15 +.11 +.1125 PCT. +.51 +1.00 +.6633272325 +.15 +.11 +.1125 PCT. +.57 +.66 +1.0048 +1.08 +1.98 +1.99 +1.43 +1.41 +.00 +.2523232846 +1.99 +1.00 +1.99 +1.45 +1.45 +1.4501 +.15 +1.1103 +1.41 +1.47 +1.00 +1.45 +1.00 +1.45 +1.00 +1.45 +1.00 +1.45 +1.00 +1.45 +1.00 +1.00 +1.45 +1.10 +1.00 +1.45 +1.10 +1.00 +1.10 +1.	RAW STOCK: SS (Rd) PCT. NESS (+b) UNITS	44	47	45	10 =	+.46	10 =	-0	+.10	+.06	+.11	+.26	1.18	+.39
PCT. +1.00 +.91 +.67272325 +.15 +.1014 PCT. +.67 +.66 +1.00484646480311 +.1119 LBS232348 +1.00 +.98 +.99 +.43 +.41 +.00 +.4502 +.45253148 +1.00 +.99 +1.00 +.45 +1.00 +.4501 +.4501 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.45 +1.00 +.152701 +.40 +.41 +.40 +.40 +.40 +.40 +.15 +1.00 +.10 +.10 +.41 +.40 +.40 +.40 +.40 +.40 +.40 +.40 +.40	TOd PCT	09	15	17	.3	.3				0.	0	+.21	21	+.30
PCT. +.67 +.66 +1.0048464648031119 LBS273348 +1.00 +.98 +.99 +.43 +.45 +.4702 +. LBS232846 +.99 +1.00 +.99 +.45 +.4502 +. NO253148 +.99 +1.00 +.99 +1.00 +.45 +.4501 +. PCT. +.15 +.1103 +.43 +.45 +1.00 +.45 +1.00 +.5810 +. INDEX142519 +.0002011016 +1.00 +.15 +1.00 +. NO171116 +.40 +.41 +.40 +.06 +.15 +1.05 +.47 +1. NO212845 +.93 +.94 +.94 +.94 +.48 +.42 +.01 +.	PCT	+1.00	+.91	+.67	3.6	9.9	200		+.10	.2	0.	17	03	21
LBS273348 +1.00 +.98 +.99 +.43 +.41 +.00 +.99 +.45 +.4502 +.99 +.45 +.4502 +.99 +.45 +.4502 +.99 +.45 +.4501 +.99 +.100 +.99 +.45 +.4501 +.99 +.100 +.4501 +.99 +.100 +.4501 +.100	PCT	9.		+1.00		η.	7.	0.	۲.	Γ.		16	+.14	45
PCT. +.15 +.1103 +.443 +.445 +.45 +.100 +.5810 +.58 1.0016 +.100 1.00	LBS LBS	23	33 28 31	8h. 	+1.00 +.98 +.99	+.98 +1.00 +.99	+ .99	オオオ	サナナ	+.00	mmm	+ . 40	35	+.94
		+.15	++	03	##	7.7.	77	00	20	Ξ.	1	+.06	26	+.48
NO171116 +.40 +.41 +.40 +.06 +.1527 NO03 +.05 +.14353434263531 IAL NO212845 +.93 +.94 +.94 +.48 +.42 +.01 +.			25	19		.30	30	·-·	.0	+ +	40	27 24	31	+.01
NO212845 +.94 +.94 +.94 +.48 +.42 +.01 +.		17	+.05	16	4.8	4.8	+.40	00	.3	5.60	2.7	+1.00	+.29	+.37
		21	28	45	6.			+.48				+.37	35	+1.00

TABLE 11. -- CONTINUED

MULTIPLE REGRESSION ANALYSIS FOR SELECTED FIBER TEST MEASUREMENTS WITH PROCESSING TESTS, 35 SHORT STAPLE SAMPLES COLLECTED FROM SELECTED GIN POINTS, CROP OF 1984. TABLE 12. -- COTTON:

(0 0 0 6 8	1 1 1	1 1 1 1 1 1	Q	ENDENT	ARIABLE		5 6 8 8 8	0 0 0 0 0	0 0 5 0	
COMBINATIONS OF	PICKER		STRENGT	8 2 2 3 8 8 8 8	ELONG		APPEA	<u>ا</u> ا	NE I	PS	
VAKIA	& CAKU WASTE	80	: 22 s	BR. FACTOR	8		1 1 1 2 1 3 1 1	: 22s	80	. 22s	POTENTIAL
	0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0					0 1 1 1 1 1 1 1 1 1		1 1 1	l I))
GRADE, STAPLE AND MIKE:											
R-SQUARE	0.38	0.31	0.31	0.32	0,40	0.43	0.51	0.62	0.11	0.38	0.31
CONSTANT (a)	+3.93	+158.91	+59.16	+1286.38	+6.18	+90.6+	+109.47	+7.12	+95.54	+126.83	-1.99
REGRESSION COEFFICIENTS (b's) FOR:											
GRADE STAPLE MICRONAIRE	-0.09 +0.34 +0.17	+0.75 +3.79 -12.66	+0.24 +0.95 -4.64	+5.67 +25.57 -101.63	+0.03	+0.01	+0.46 -1.90 +4.01	+0.76 +0.22 +5.42	-0.41 -0.96 -2.37	-5.55 +15.19 -1.12	+0.27 +1.17 -3.61
STANDARD ERROR OF ESTIMATE	1.26	15.66	5.20	116.84	0.62	0.52	7.08	6.91	11.68	76.80	4.82
* * * * * * * * *											
GRADE, UHM LENGTH, M/UHM UNIFORMITY, MICRONAIRE, AND HVI 1/8" GAGE STRENGTH:											
R-SQUARE	0.48	0.64	09.0	0.64	0.67	09.0	0.59	0.70	0.50	0.54	0.51
CONSTANT (a)	+4.39	-677.20	-219.37	-5121.87	-21.06	-9.99	+40.77	-214.73	+726.13	+2832.6	+154.55
REGRESSION COEFFICIENTS (b's) FOR:											
GRADE	-0.10 +8.72 +0.19 -0.78	+0.62 +100.31 +11.03 -22.31 +1.46	+0.20 +34.40 +3.62 -7.94 +0.21	+4.73 +779.60 +83.95 -176.57 +8.18	+0.02 +0.44 +0.34 -1.00	+0.01 -0.70 +0.23 -0.85 +0.08	+0.45 -82.24 +1.03 +3.50 +0.43	+0.74 -1.21 +2.78 +3.79 +0.79	-0.32 -38.08 -8.10 +4.42	-5.40 +472.03 -31.39 +8.29	+0.26 +30.61 +1.83 -4.38 +0.82
STANDARD ERROR OF ESTIMATE	1.19	11.76	4.09	87.90	0.48	0.45	6.71	6.32	60.6	68.07	4.21

								-	71-			
			POTENTIAL	99.0	-79.64	+ + 0 . 3 . 3 . 4 . 4 . 8 . 5 . 4 . 4 . 4 . 3 . 5 . 4 . 4 . 4 . 5 . 5 . 5 . 6 . 6 . 6 . 6 . 6 . 6 . 6	3.64			0.71	-94.30	+ 10.17 + 38.07 + 438.07 + 60.74 + 60.73 + 61.10 + 61.
		PS	- 328	0.76	+950.72	+ 4 1 . 62 + 4 1 . 62 + 7 0 + 7 0 . 46 - 2 . 7 6 - 69 . 87	50.78			0.80	+766.00	-15.88 +2.85 -397.04 +2.85 -118.42 +0.39 +17.83 +286.30
 		N N N N N N N N N N N N N N N N N N N	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.58	+546.61	-0.43 +4.76 -0.43 -80.84 -5.70 -2.05	8.60			09.0	+527.17	+3.79 -91.21 -91.21 -91.21 -4.02 +4.28 +4.28 +13.88 +39.50
		ANCE	: 22s	0.79	-71.63	+1.28 -2.36 -1.34 +30.85 +0.30 +11.44	5.47			0.87	-160.45	+2.33 +1.17 +8.1.60 +8.1.79 -0.86 +0.14 +0.28 +0.28 +74.68
	S	APPE	88	0.65	-16.67	+1.49 +3.47 +0.29 -98.53 +0.46 +6.00	6.42			0.73	-89.58	++2.81 -+6.30 -+6.30 -16.31 -11.64 ++
	ARIABL	ATION	: 22s	0.73	-5.80	+0.06 +0.07 +0.17 +0.10 +0.10 +0.55	0.39			0.77	-0.68	0.001
	PENDEN	ELON	88	0.80	-14.64	+ + + + 0 . 0 . 0 . 1 . 1 . 9 . 0 . 1 . 9 . 1	0.39			0.83	-9.00	0.05 1.00.12 1.00.13 1.00.02 1.00.03 1.00.0
	DE		BR.	0.79	-3811.65	+13.41 -19.10 -8.66 +1089.05 +56.49 -108.45	89.69			0.88	-3178.81	+13.80 +3.87.40 +43.81 +43.81 +43.81 +413.92 +51.38 +51.38 -159.99
		61	22s	0.72	-160.88	+0.50 -0.95 +4.0.56 +2.51 +2.51 +0.12	3.54			08.0	-139.13	+10.04 +12.20 +1
			88	08.0	-510.50	+1.98 +1.98 +1.39.63 +7.22 +1.18	8.96			0.91	-412.10	+ + 0. 42 + + 0. 42 + 4 - 0. 42 + 4 - 0. 73 + 6. 75 - 1. 12 - 1. 12 - 35. 09 - 5. 80
		PICKER	WASTE	0.42	-5.39	-0.05 +0.11 +0.69 +6.73 +0.25 -1.20	1.31			0.58	-12.70	1.21
TABLE 12 CONTINUED	O ONO I PANT GROOD	INDEPENDENT	VAKIABLES	R-SQUARE	CONSTANT (a)	REGRESSION COEFFICIENTS (b's) FOR: GRAYNESS (Rd) YELLOWNESS (+b) TRASH GRADE UHM LENGTH M/UHM UNIFORMITY MICRONAIRE HVI 1/8" GAGE STRENGTH	STANDARD ERROR OF ESTIMATE	* * * * * * * * * * *	GRAYNESS (Rd), YELLOWNESS (+b), NON-LINT CONTENT, UHM LENGTH, M/UHM UNIFORMITY, MICRONAIRE, STEL. 1/8" GAGE STRENGTH, STEL. ELONGATION, FMT FINE- NESS, FMT MATURITY, AND SUGAR:	R-SQUARE	CONSTANT (a)	REGRESSION COEFFICIENTS (b's) FOR: GRAYNESS (Rd) YELLOWNESS (+b) NON-LINT CONTENT UHM LENGTH M/UHM UNIFORMITY MICRONAIRE STEL. 1/8" GAGE STRENGTH STEL. ELONGATION FMT FINENESS FMT MATURITY SUGAR STANDARD ERROR OF ESTIMATE

MULTIPLE REGRESSION ANALYSIS FOR SELECTED FIBER TEST MEASUREMENTS WITH PROCESSING TESTS ON CARDED YARNS SPUN ON AN OPEN-END FRAME FROM 34 SHORT STAPLE SAMPLES COLLECTED FROM SELECTED GIN POINTS, CROP OF 1984. TABLE 12A. -- COTTON:

COMBINATIONS OF		HLUNG	DEPENDENT VARIABLE	LES 	
VARIABLES	88	BR. FACTOR	8 S		88
GRADE: STAPLE AND MIKE:		0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0			
	09.0	09.0	0.41	0.49	0.03
CONSTANT (a)	+150.83	+1206.61	+12.02	+5.77	+21.52
REGRESSION COEFFICIENTS (b's) FOR:					
GRADE	+0.64 +3.20 -18.06	+5.16 +25.59 -144.44	-0.00 -0.07 -0.58	+0.25 +1.63 +8.30	+0.02
STANDARD ERROR OF ESTIMATE	10.66	85.29	0.43	5.80	3,46
* * * * * * *					
GRADE, UHM LENGTH, M/UHM UNIFORMITY, MICRONAIRE, AND HVI 1/8" GAGE STRENGTH:					
	69.0	0.69	0.49	0.53	0.19
CONSTANT (a)	-184.61	-1476.85	+0.38	-160.03	+24.89
REGRESSION COEFFICIENTS (b's) FOR:					
GRADE	+0.68 +81.27 +4.22 -21.03 +1.36	+5.45 +650.16 +33.73 -168.24 +10.89	-0.00 -2.36 +0.13 -0.61	+0.24 +35.00 +2.57 +4.60 -0.22	+0.05 -23.46 -0.36 +1.09 +0.85
STANDARD ERROR OF ESTIMATE	9.70	77.61	0.41	5.75	3.29

-0.14 -0.48 -1.64 -20.79 -0.19 +0.83 -0.53 -0.86 -0.72 -41.31 -1.51 +0.60 +1.16 +0.11 0.27 3.22 0.23 -13.67 +19.54 +33.24 3.60 NEPS 88 APPEARANCE -0.16 +1.63 -4.24 +24.60 +3.58 +2.66 +0.21 -0.58 +0.92 +4.23 +4.23 -0.08 -0.72 +0.06 +29.98 0.62 5.40 0.58 -199.746.12 DEPENDENT VARIABLES **ELONGATION** +0.04 +0.04 +0.11 +0.08 +0.08 +0.05 +0.02 +0.02 +0.04 +0.05 +0.08 +1.00 +1.00 +1.00 0.55 0.68 0.36 +1.10 0.40 BR. FACTOR -27.87 -5.02 +850.89 +15.20 -97.80 +8.24 +11.95 -28.96 +7.52 +420.86 +15.09 +38.66 -28.73 +0.28 0.82 -741.08 62.34 0.87 57.85 -114.03STRENGTH +1.86 -3.48 +106.36 +1.90 -12.22 +1.03 +1.49 +52.62 +1.89 +1.80 7.23 -92.640.87 -86.018 8 REGRESSION
COEFFICIENTS (b's) FOR:
GRAYNESS (Rd)
YELLOWNESS (+b)
NON-LINT CONTENT
UHM LENGTH
M/UHM UNIFORMITY
MICRONAIRE
STEL. 1/8" GAGE STRENGTH
STEL. ELONGATION
FMT FINENESS
FMT MATURITY GRAYNESS (Rd), YELLOWNESS (+b), NON-LINT CONTENT, UHM LENGTH, M/UHM UNIFORMITY, MICRONAIRE, STEL. 1/8" GAGE STRENGTH, STEL. ELONGATION, FMT FINE-NESS, FMT MATURITY, AND SUGAR: GRAYNESS (Rd), YELLOWNESS (+b) TRASH GRADE, UHM LENGTH, M/UHM UNIFORMITY, MICRONAIRE, AND HVI 1/8" GAGE STRENGTH: REGRESSION
COEFFICIENTS (b's) FOR:
GRAYNESS (Rd)
YELLOWNESS (+b)
TRASH GRADE R-SQUARE STANDARD ERROR OF ESTIMATE * * * * * * * * * * * STANDARD ERROR OF ESTIMATE COMBINATIONS OF INDEPENDENT VARIABLES CONSTANT (a) CONSTANT (a) SUGAR R-SQUARE

FABLE 12A. -- CONTINUED

MULTIPLE REGRESSION ANALYSIS FOR SELECTED FIBER TEST MEASUREMENTS WITH PROCESSING TESTS, 161 MEDIUM STAPLE SAMPLES COLLECTED FROM SELECTED GIN POINTS, CROP OF 1984. TABLE 13. -- COTTON:

		0 0 0 0 0 0 0 0	8 8 8	Q	EPENDENT V	ARIA			0 0 1 1 3 0		
COMBINATIONS OF INDEPENDENT	PICKER	0	TRENGT		ELONG	0	APPEA	1		PS	
	& CARD WASTE	228	508	:BR. FACTOR	228	508	22s	: 50s		: 50s	SPINNING
			i								1 1 1
GRADE, STAPLE AND MIKE:											
R-SQUARE	0.39	0.50	0.45	0.48	0.27	0.22	0.09	0.08	0.14	0.07	94.0
CONSTANT (a)	+19.79	-127.44	-79.26	-3383.33	+2.81	+1.06	+114.48	+39.80	-475.53	+661.04	-134.95
REGRESSION COEFFICIENTS (b's) FOR:											
GRADESTAPLE	-0.08 -0.16 -0.09	+1.08 +4.77 -8.40	+0.44 +2.56 -4.07	+22.86 +116.51 -194.11	+0.01	+0.01+0.14	+0.03	+0.12 +0.25 +2.59	+2.38 +13.40 -18.09	-7.15 +15.37 +84.57	+0.67 +4.61 -7.49
STANDARD ERROR OF ESTIMATE	96.0	10.41	5.21	242.48	0.39	0.42	7.98	7.66	64.81	257.03	8.56
* * * * * * * * *											
GRADE, UHM LENGTH, M/UHM UNIFORMITY, MICRONAIRE, AND HV! 1/8" GAGE STRENGTH:											
R-SQUARE	0.39	0.81	0.79	0.81	0.32	0.31	0.12	0.14	0.20	0.28	0.75
CONSTANT (a)	+17.91	-345.32	-190.49	-8560.87	-1.99	+1.16	+17.09	-88.86	-593.28	+8112.8	-367.04
REGRESSION COEFFICIENTS (b's) FOR:											
GRADE	-0.07 -4.37 +0.01 -0.11	+0.46 +22.64 +4.00 -8.04 +3.68	+0.13 +19.23 +2.02 -4.08	+8.24 +729.92 +94.51 -190.41 +85.21	+0.00 +1.82 +0.09 -0.57	-0.00 +1.21 +0.02 -0.38 +0.09	+0.08 -12.91 +1.31 +2.64 -0.86	+0.03 -7.54 +1.99 +0.87 +0.10	+1.31 +256.20 +2.62 -16.39 +7.17	-0.81 +1837.3 -116.86 +156.20 -17.65	+0.22 +60.10 +4.03 -9.25 +2.09
STANDARD ERROR OF ESTIMATE	96.0	6.51	3.24	149.17	0.38	0,40	7.90	7.47	62.89	227.89	5.83

				DEF	PENDENT	ARIABLE				i i		
COMBINALIONS OF INDEPENDENT	1	1 1 1	ENGT		ELONG	NOIL	APPEA	ANCE	N	PS		
VAKIABLES	& CAKU WASTE	22s	: 50s	BR. FACTOR	22s :	50s	22s	: 50s	22s	50s	POTENTIAL	
RAYNESS (Rd), YELLOWNESS (RASH GRADE, UHM LENGTH, M/NIFORMITY, MICRONAIRE, AND VI 1/8" GAGE STRENGTH:												
R-SQUARE	0.39	0.80	0.79	0.80	0.34	0.31	0.16	0.17	0.20	0.28	0.75	
CONSTANT (a)	+22,34	-379.33	-199.70	-9165.07	-2.98	+2.52	-41.77	-125.30	-683.70	+8576.4	-380.41	
REGRESSION COEFFICIENTS (b's) FOR: GRAYNESS (Rd) YELLOWNESS (+b) TRASH GRADE UHM LENGTH M/UHM UNIFORMITY MICRONAIRE HVI 1/8" GAGE STRENGTH	10.07 10.07 14.053 10.07 10.008	+0.71 +0.09 -0.58 +27.03 +4.19 -6.86	+0.25 +0.20 +0.04 +21.23 +2.03 -3.68	+14.15 -4.03 -4.03 +8.28.16 +96.95 -167.39	+ + + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+ + 0.00 + 0.01 + 0.03 + 0.02 + 0.02	+0.21 +4.08 +2.13 +7.22 +1.17 +4.09	+0.12 +2.03 +2.85 +3.81 +1.82 +2.64	+272.76 +272.76 +3.30 -15.55	-1.45 -26.29 -30.81 +1770.2 -115.61 +134.78	+0.23 -0.22 -0.23 +60.78 +4.13 -8.63	
STANDARD ERROR OF ESTIMATE	0.98	99.9	3.24	150.40	0.37	0,40	7.75	7.37	63.13	228.84	5.91	
* * * * * * * * * * *												_
GRAYNESS (Rd), YELLOWNESS (+b), NON-LINT CONTENT, UHM LENGTH, M/UHM UNIFORMITY, MICRONAIRE, STEL. 1/8" GAGE STRENGTH, STEL. ELONGATION, FMT FINE- NESS, FMT MATURITY, AND SUGAR:												75-
R-SQUARE	0.54	0.87	0.85	0.86	0.45	0.32	0.19	0.17	0.27	0.30	0.82	
CONSTANT (a)	+16.08	-191.07	-121.20	-5131.71	+0.67	+1.74	-22.78	-41.53	-601.92	+7788.6	-237.87	
REGRESSION COEFICIENTS (b's) FOR: GRAYNESS (Rd) YELLOWNESS (+b) NON-LINT CONTENT UHM LENGTH M/UHM UNIFORMITY MICROMAIRE STEL. 1/8" GAGE STRENGTH STEL. 1/8" GAGE STRENGTH STEL. ELONGATION FMT FINENESS FMT MATURITY	10.03 10.03 10.03 10.05 10.05 10.02 10.02 10.02 10.03	+ + + + + + + + + + + + + + + + + + +	+ 10.05 + 10.05 + 17.559 + 10.05 + 10.05 - 10.06 - 10.09	+5.56 +1109.32 +1109.32 +57.71 +57.71 +105.55 -12.40 -157.91 +96.63	10000 10000	+ + + + + + + + + + + + + + + + + + +	-0.14 +1.73 +1.73 +1.54 +1.59 +2.59 +11.07 +4.38		+2.92 +8.97 +8.86 +42.13 +21.13 +50.03 +1.08 -25.44 -25.44 +1.08	+8.69 -13.33 +51.96 +1861.96 -117.33 +250.62 -46.23 -18.56 -18.1 -253.05	mm0000000	
STANDARD ERROR OF ESTIMATE	0.86	5.55	2.83	127.67	0.35	0,40	7.73	7.47	61.19	229.13	5.07	

DESCRIPTION OF STATISTICS USED IN ANALYSIS

Some of the statistical concepts used in this study may be unfamiliar to many who will find the information in this report useful. Results reported in this study include the means, standard deviations, simple correlations, regression equations and coefficients of determination (R-squares). Formulas for each of these results may be found in any good textbook on statistical correlation. However, for those not familiar with these concepts, the following common language explanation is given for each item as it is used in this report:

- A. MEAN VALUE is the simple arithmetical average of each measured property for the spinning lots included in the study.
- B. STANDARD DEVIATION is a measure of dispersion around the mean value expressed in the same terms as the variable. For a normal distribution, approximately 68 percent of the values will be within plus or minus one standard deviation of the mean; 95 percent within plus or minus two standard deviations; and nearly all values will be within plus or minus three standard deviations.

Example: (From Table 9, page 62) The mean or average HVI upper half mean length for the short staple cottons is 0.962 inch. The standard deviation is 0.041 inch. This indicates that 68 percent of the lots tested in the short staple group should have a fiber length between 0.921 and 1.003 inch. The fiber length of 95 percent of the lots tested fall between 0.880 and 1.044 inches and nearly all would be between 0.839 and 1.085 inches.

C. SIMPLE CORRELATION COEFFICIENT (r) is a measure of the linear relationship between two variables, i.e., how one variable is associated with the other. A correlation coefficient of 0 indicates no relationship, and 1.0 indicates a perfect relationship. A plus sign before the correlation coefficient indicates that the value of both variables change in the same direction, whereas a minus sign indicates that they change in opposite directions.

Example: (From Table 11, page 69, line 1) The simple correlation coefficient of the grade index with picker and card waste is -.59. This indicates that grade and picker and card waste are inversely related, i.e., as one goes up or down, the other goes in the opposite direction.

D. REGRESSION EQUATION or prediction equation is used to estimate changes in the dependent variable which will result from changes in the independent variable or variables. It is written:

$$Y = a + b_1 X_1 + b_2 X_2 + ... + b_n X_n$$

where Y is the dependent variable and the X's are the independent variables.

The constant "a" indicates the starting point or height of the regression line when it is to be plotted on a graph or used in calculating changes in the dependent variable. The regression coefficient "b" indicates the directional change in the dependent variable that is associated with changes in the independent variable. The spread or scatter of the data around the regression line is measured by the standard error. The standard error has the same relationship to the regression line as the standard deviation has to the mean value (see paragraph B, above).

Example: (From Table 13, page 74) Using 22s yarn strength as the dependent variable and grade plus HVI measurement as the independent variables, the constant, regression coefficients and standard error for the regression equation are:

Constant (a)	345.32
Regression Coefficients (b): Grade. UHM Length. M/UHM Uniformity. Micronaire. HVI 1/8" Gage Strength.	+22.64 +4.00 -8.04
Standard Error	+/-6.51

With regression coefficients (b's) of +0.46 for grade, +22.64 for HVI length, +4.00 for HVI uniformity, -8.04 for mike and +3.68 for HVI 1/8-inch gage strength, the following average conditions should exist:

- (1) With any unit changes (1.0 in grade), yarn strength should change 0.46 pounds in the same direction.
- (2) With any unit changes (0.01 in length), yarn strength should change 0.23 pounds in the same direction.
- (3) With a 1.0 unit increase in uniformity, yarn strength should increase 4.0 pounds.
- (4) If the mike increases 0.1 unit, the yarn strength should decrease 0.8 pounds.
- (5) With a 1.0 unit increase in fiber strength, yarn skein strength should increase 3.7 pounds.

D. REGRESSION EQUATION (continued)

Expressing the equation algebraically:

```
Yarn strength = -345.32 + 0.46(grade index) + 22.64(HVI length)
22s (lbs) + 4.00(HVI uniformity) - 8.04(micronaire)
+ 3.68(HVI 1/8-inch gage strength)
```

To predict the yarn strength from a bale of cotton with a grade of Middling (100 grade index), a length of 1.05 inches, a uniformity of 80, a micronaire of 4.0 and a strength of 25 grams per tex, set up and solve the equation as follows:

Yarn strength (lbs) =
$$-345.32 + 0.46(100) + 22.64(1.05) + 4.00(80) - 8.04(4.0) + 3.68(25)$$

Yarn strength (lbs) = 104.29

The standard error can be used to establish a lower and upper limit about the predicted value. In this example, the standard error of 6.51 indicates that yarn strength from a bale of cotton with these fiber properties should be 104.29 +/- 6.51 pounds or between 98 and 111 pounds 68 percent of the time.

Regression equations are given in the tables for simple and multiple relationships. Equations for simple relationships may be calculated by using the formula:

Estimating an equation with more than one independent variable is more complex. Most statistical textbooks describe the method for estimating multivariate equations.

E. R-SQUARE (R^2) when multiplied by 100 will give the coefficient of determination. The resulting percentage is the amount of the variation in the dependent variable explained by the independent variable(s). In the above example, R^2 = .81; therefore, 81% of the variation in yarn strength is explained by grade, UHM length, M/UHM uniformity, micronaire and HVI 1/8-inch gage strength. The remaining variation in yarn strength (19%) is unexplained by the five independent variables in this equation.

E. R-SQUARE (continued)

For simple regressions (equations containing one independent variable) the coefficient of determination can be obtained easily by squaring the simple correlation coefficient (r) and multiplying by 100.

The multiple correlation coefficient (R) can be obtained by taking the square root of R-square. This coefficient is a measure of the linear relationship between one dependent variable and one or more independent variables. It has no plus or minus sign because one independent variable may contribute positively, and another negatively, in explaining the variation in the dependent variable. The multiple R may fall between 0 and 1.0, with 0 indicating no relationship and 1.0 a perfect relationship.

INTERPRETING STATISTICAL DATA

In referring to the data presented in the tables of this report, it is well to keep in mind several factors which influence the results and could lead to erroneous conclusions.

Results obtained from regression analysis are significantly influenced by the specific variables included in an equation and by their number. This is mainly due to interrelationships of fiber properties. As interrelated properties (independent variables) are added to an equation, the specific contribution of a given property may decrease sharply while at the same time the overall correlation will increase. For example, a correlation of staple length with yarn strength usually shows a good relationship, with a large amount of the variation in yarn strength explainable by differences in staple length. But as other measures are taken into consideration, particularly fiber strength at 1/8-inch gage, the importance of staple length in explaining the total variation in yarn strength decreases rather sharply; even though the total variation explained is increased. This situation occurs because fiber strength is more closely related to yarn strength than is staple length. Yet when fiber strength is not included in the equation, some of the effects of strength are evidenced through the interrelation of strength and staple length. Perhaps the most important fact to keep in mind is that interpretations are no better than the principles used in the analysis. To estimate the importance of a specific variable, all of the available data should be studied using the appropriate statistical techniques.

BASIS FOR INTERPRETATION OF TEST RESULTS

The following explanation of the data published in Tables 1 through 8 of this report may be helpful in the interpretation of test results.

Classification

Classification was made in accordance with the official Cotton Standards for grade and staple length. These results are presented under the usual terms for the individual lots, but the grade values were converted to an index for averaging in the summary tables.

Grade index, as reported in the summary tables, is designed to reflect differences in market value and provides a method for averaging the grade for a number of individual lots. Middling grade is used as the basis of 100, and higher or lower index numbers reflect higher or lower average market values, respectively. Index values for the various grades of upland cotton are shown below.

					GRADE IN	NDEX		
GRADE		~ 7		Light		m: 1	Light	~
Name	Code	Plus (0)	White (1)	(2)	Spotted (3)	(4)	Gray (6)	Gray (7)
Good Middling	(1)		105	103	101		99	93
Strict Middling	(2)		104	102	99	91	98	91
Middling	(3)	102	100	97	93	82	92	84
Strict Low Middling	(4)	97	94	89	83	75	85	75
Low Middling	(5)	90	85	80	75	68		
Strict Good Ordinary	(6)	81	76	71	66			
Good Ordinary	(7)	73	70					
Below Grade	(8)		60					

The GRADE of cotton is obtained by evaluating color, leaf and prepparation in relation to the official standards. Grade provides an indication of fiber color and the waste content of a sample of cotton. Experience has shown the average relationship between picker and card waste and various grades of upland cotton to be approximately as given in the tabulation shown in the subsequent section on manufacturing waste. In comparing these average grade figures with the picker and card waste data, it should be understood that variations from the averages for individual samples are attributable to the nature of the extraneous material present in the cotton, the characteristics of the fiber, and whether the grade designation was low because of poor color.

STAPLE LENGTH is the length of a typical portion of the fibers in the samples as determined by the classer or a High Volume Instrument line in comparison with offical standards. Uniformity of fiber length, as well as other fiber properties influences to to some extent the classer's selection of the typical portion of the fibers on which the staple length designation is based. In general, there is a fairly close relationship between the staple length as designated by the classer and the fineness and strength of the yarn that can be manufactured from the cotton. These relationships, however, are also influenced by other fiber properties, the measurement of which will be discussed in the paragraphs which follow.

Fiber Tests

FIBER LENGTH and length uniformity data were obtained from a Motion Control High Volume Instrument system for short, medium and long staple American upland samples and by the Digital Fibrograph method for the extra long American Pima and upland samples.

The Fiber Length Analyzer on the Motion Control HVI measures the length and length uniformity of a specimen of cotton pneumatically. A prepared specimen is mechanically lowered into an orifice in the Fiber Length Analyzer, where air is pulled around the sample. The specimen is slowly removed from the orifice, causing a change in air pressure. The analyzer determines the upper half mean length and the mean length of the sample by analyzing this change in air pressure.

The upper half mean length is the average length of the longest one-half of the fibers by weight. Upper half mean length is an indicator of yarn strength and spinning efficiency. These length values are closely related to the classer's staple.

Length uniformity is a measure of the degree of uniformity of fibers in a sample. It is expressed as an index of the mean/upper half mean length ratio. Fiber uniformity is related to spinning efficiency, yarn uniformity and yarn strength.

The terms listed below may be helpful in interpreting the results:

Upper Half M	lean Length	M/UHM Uni	formity Index
Below 0.97 0.97 - 1.10 1.11 - 1.28 Above 1.28	Short Medium Long Extra Long	Below 77 77 - 79 80 - 82 83 - 85 Above 85	Very Low Low Average High Very High

Briefly, the Digital Fibrograph method consists of placing representative specimens of cotton at random on a comb or combs, parallelizing the beards of cotton extending from one side of the combs, and scanning these beards photoelectrically on the instrument at three length intervals beginning at 0.15 inch from the teeth of the combs and ending near the outer fringe.

The Digital Fibrograph 2.5 percent span length values reported indicate the length which will be spanned by 2.5 percent of the fibers when they are parallel and randomly distributed. It is also the length where the amount of fibers indicated by the instrument is 2.5 percent of the amount at the starting point of 0.15 inch.

The Digital Fibrograph 50/2.5 uniformity ratio values reported indicate the relative uniformity of fiber length in the samples. They represent the ratios between the 50 percent span length and 2.5 percent span length, expressed as percentages.

The following adjective descriptions will serve to classify cottons from the standpoint of 2.5% span length and fiber length uniformity.

2.5 Percent S	pan Length	50/2.5 Unif	formity Ratio
Below 0.97 0.97 - 1.09 1.10 - 1.28 Above 1.28	Short Medium Long Extra Long	Below 40 40 - 42 43 - 45 46 - 48 Above 48	Very Low Low Average High Very High

FIBER FINENESS AND MATURITY (reference ASTM D 3818). Fiber fineness or linear density and maturity affect mill processing performance and the quality of the end products. Linear density determines the number of fibers per cross-section for a prescribed yarn number, thereby affecting drafting characteristics, yarn strength, and yarn evenness. Maturity affects processing because immature fibers break easily during processing, have a tendency to form neps, and have a tendency to become entangled around particles of trash and leaf. This makes cleaning more difficult and increases the amount of fiber removed with foreign matter. It adversely affects yarn and fabric appearance, which may appear differently after dyeing.

Several instruments, including the Fibronaire, Micronaire, IIC-Shirley Fineness/Maturity Tester, and Port-Ar, may be used for these tests. This survey reports results from fineness and maturity tests from two of these instruments, the Fibronaire and and IIC-Shirley Fineness/Maturity Tester.

Fiber fineness and maturity in combination were determined by the micronaire test. This is an instrument test which measures the resistance of a plug of cotton to air flow. From 47 to 52 grains of cotton are placed in the instrument specimen holder and compressed to a fixed volume. Air at a known pressure is forced through the specimen and the amount of flow is indicated by a direct reading scale. Readings obtained are relative measures of either the weight per unit length or the cross-sectional size of the fibers. Because the instrument measures may differ from the actual weight per inch, depending upon the fiber characteristics of the sample, the results are reported in terms of "micronaire reading" instead of micrograms per inch. These readings, which are in international use, are taken from the curvilinear scale adopted in 1950. The micronaire reading is now a part of the official standards for upland cotton along with grade and staple length.

The IIC-Shirley Fineness/Maturity Tester (FMT) operates on the dual compression principle.* The instrument registers pressure drop across the specimen under two defined conditions of airflow and sample density. Use of the readings in the following empirically established equations permits the estimation of maturity and fineness.

Maturity ratio =
$$0.247(P_L)^{0.125}(P_H/P_L)^2$$

Fineness, (millitex) =
$$(6000/P_L)(P_H/P_L)^{1.75}$$

where P_L = pressure drop at lower sample density and higher flow rate

^{*}THE MEANING AND ASSESSEMENT OF COTTON FIBRE FINENESS by H. H. Ramey, Jr., for the Technical Research Division, International Institute for Cotton, 1982, p. 16.

U.S. upland cotton with a maturity ratio falling into the following ranges can be described as:

Maturity Rat:	io Ranges	Maturity Description U.S. Upland Cotton
0.95 - 0.85 - 0.80 -	0.80	Very mature Above average Mature Below average Immature Uncommon

Data Source: THE ORIGIN AND ASSESSMENT OF COTTON FIBRE MATURITY by
E. Lord for the Technical Research Division, International Institute for Cotton, 1975, p. 10.

FIBER STRENGTH is an important factor in determining yarn strength. Cottons with good fiber strength usually give less trouble in the manufacturing process than the weak-fibered cottons. Tests for fiber strengths are made with a 1/8-inch spacer between the clamp jaws (1/8-inch gage) using the Stelometer and the Motion Control High Volume Instrument (HVI). The Stelometer also provides a measure of fiber elongation. Comparative tests have shown that the results of the 1/8-inch gage tests are more highly correlated with yarn strength than are the results of zero gage tests.

The results of Stelometer 1/8-inch gage tests are reported in terms of grams per tex in accordance with the recommendations of the American Society for Testing and Materials (ASTM) and the International Standards Organization (ISO). A tex unit is equal to the weight in grams of 1,000 meters of the material. There is a correlation between the 1/8-inch gage strength test results and the fiber length. Short staple cottons tend to have lower average strength values than long staple cottons.

Results for 1/8-inch gage tests are calculated by the use of formulas 1 or 2, depending on the instrument used. Stelometer results are adjusted to Pressley level by use of calibration cottons.

1. Pressley instrument-grams per tex (g/tex) =

breaking load (lb) x 6.80 bundle weight (mg)

2. Stelometer instrument-grams per tex (g/tex) =

breaking load (kg) x 15 bundle weight (mg) The following terms may be applied to fiber strength:

Descriptive Designation	1/8-Inch Gage Strength (Grams per Tex)
Very Weak	17 and Below
Weak	18 - 21
Average	22 - 25
Strong	26 - 29
Very Strong	30 and Above

FIBER ELONGATION results were obtained in connection with the 1/8-inch gage fiber strength tests by using the Stelometer instrument. The following adjective ratings will assist in the interpretation of the fiber elongation results reported:

Descriptive Designation	Fiber Elongation (Percent)
Very Low	Below 5.0
Low	5.0 - 5.8
Average	5.9 - 6.7
High	6.8 - 7.6
Very High	Above 7.6

COLOR MEASUREMENTS were made on samples of raw cotton from each lot by using the Nickerson-Hunter Cotton Colorimeter. The basic color values reported are in terms of grayness (Rd) and yellowness (+b) scales designed especially for cotton. GRAYNESS indicates how light or dark the cotton sample is, and YELLOWNESS indicates how much yellow color is in the sample. A three-digit color code is used in place of the single codes for grayness and yellowness used in the past. The color code subdivides each grade into quadrants to denote relative color differences within a grade for a more precise color measurement.

The relationship of these color codes to grayness (Rd) and yellowness (+b) values and to the color of the Universal Grade Standards for upland cotton is shown in Figure 2, page 86.

A color diagram for American Pima cotton is shown in Figure 3, page 87.

NON-LINT CONTENT for the various lots was determined by the use of the Shirley Analyzer which separates the lint from the foreign matter. The total non-lint values reported include both visible and invisible loss. These results are distinguished from total picker and card waste in that practically no fiber is included, whereas textile mill wastes include appreciable amounts of fiber. Tests performed in previous years show the following average relationship of Shirley Analyzer non-lint to grade:

American Upland Grade	Code	Average Non-lint Content (Percent)
Strict Middling Middling Strict Low Middling Low Middling Strict Good Ordinary Good Ordinary	(21) (31) (41) (51) (61) (71)	1.9 2.3 3.1 4.3 5.5 7.8

The following scale has been developed to represent the average non-lint content for grades of American Pima cotton:

American Pima Grade	Average Non-lint Content (Percent)
2	2.8
3	2.9
4	3.4
5	3.9
6	4.7
7	5.8
8	7.7
9	9.1
3 4 5 6 7 8	2.9 3.4 3.9 4.7 5.8 7.7

Differences between results obtained for individual lots and the average percentages shown for the grades may be due to one or more of the following reasons:

- (1) Grade is a combination of color, leaf and preparation; any one of which may be the limiting factor.
- (2) There is a combination of trash allowable within each specific grade.
- (3) These data are based on weight and do not take into consideration the nature of the trash, which may be as important as weight in determining the final grade.

SUGAR CONTENT (Potassium Ferricyanide Testing Method) determines the sugar content as based on a quantitative analysis of reducing substances (sugars) on cotton fibers. High sugar content in cotton can be caused by fiber immaturity, insect secretions, or excessive amounts of natural sugars in mature cotton. Cottons with sugar contents higher than 0.3 percent may cause textile processing problems.

Yarn Processing Tests

Small-scale spinning tests were performed to provide indications of the processing behavior of the various cottons. The percentage of picker and card waste is related to mill turnout. Low percentages of waste indicate high mill turnout. Yarn strength, yarn appearance, and the number of neps in the yarns as measured in these tests are related to similar quality measurements of the mill product. The spinning potential test provides a measure of spinning end breakage and is directly related to the spinning behavior in the mill. High spinning potential yarn (SPY) numbers indicate low end breakage or good spinning in the mill.

MANUFACTURING WASTE reported for a sample of cotton is important because excessive waste increases the cost of cotton products. The percentage of waste extracted by the picking and carding processes in performing a spinning test provides a measure of manufacturing waste. There is an average relationship between this waste and grade as discussed in the previous section on the grade of cotton. The rate at which the cotton is carded, however, affects the picker and card waste values because the more thorough carding action obtained when the carding rate is decreased extracts a larger quantity of waste. The longer staple cottons are generally carded at a lower rate than the shorter cottons in order to obtain acceptable yarn quality. Tests performed in recent years show the following average relationship of picker and card waste to grade:

American Upland Grade	Code	Average Picker and Card Waste (Percent)
Strict Middling Middling Strict Low Middling Low Middling Strict Good Ordinary Good Ordinary	(21) (31) (41) (51) (61) (71)	5.9 6.1 6.7 7.5 8.4 10.0
American Pima Grade		Average Picker and Card Waste (Percent)
2 3 4 5 6 7 8		7.3 7.4 7.7 8.0 8.4 9.1 10.2

The percentage of waste removed by the comber is reported in addition to the picker and card waste for cottons processed into combed yarn. The shorter staple cottons are processed through the comber with a closer setting than for the longer staple cottons because smaller comber waste percentages are usually extracted from this cotton in commercial practice.

YARN STRENGTH is perhaps the most important and reliable test of yarn quality. Yarn strength not only determines the range of the usefulness of a given cotton, but is also an indication of spinning and weaving performance. The yarn strength test is performed on 120 yard skeins (80 turns on a 1.5 yard reel). Results reported are based on the average of 25 skeins for each yarn number. Yarn strength is reported in terms of skein strength, since studies have shown that such strength values are more closely related to fabric strength as well as to fiber properties than single strand yarn strength. Skein strength data for the two numbers spun are reported for each lot. Length, strength and fineness influence yarn strength more than other fiber properties.

The following descriptive terms may be of help in determining the relative level of yarn strength in this report:

Kind of Yarn, Staple Length Group and Description	Yarn Skein in Pounds Specified Ya	for the
Carded Yarns: Short Staple Group: Low Average High	8s 266 - 286 287 - 307 308 - 328	83 - 91 92 - 100 101 - 109
Medium Staple Group: Low Average High	85 - 99 100 - 114 115 - 129	50s 26 - 32 33 - 39 40 - 46
Long Staple Group: Low Average High	$ \begin{array}{r} 22s \\ 89 - 103 \\ 104 - 118 \\ 119 - 133 \end{array} $	50s 25 - 33 34 - 42 43 - 51
Combed Yarn: Long Staple Group: Low Average High	22s 113 - 125 126 - 138 139 - 151	50s 37 - 43 44 - 50 51 - 57
Extra Long Staple Group: Low Average High	50s 62 - 64 65 - 67 68 - 70	80s 31 - 33 34 - 36 37 - 39

YARN ELONGATION results were obtained in connection with yarn skein strength tests. Elongation in the yarn is highly correlated with fiber elongation. Yarns with high elongation give less end breakage in weaving than yarns with low elongation.

The following descriptive terms may be of some help in determining the relative levels of yarn elongation:

Kind of Yarn, Staple Length Group and Description	Yarn Elongation in Percent for the Specified Yarn Numbers
Carded Yarns: Short Staple Group: Low Average High	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Medium Staple Group: Low Average High	22s 5.2 - 5.8 5.9 - 6.5 6.6 - 7.2 50s 3.8 - 4.4 5.9 - 5.1 5.2 - 5.8
Long Staple Group: Low Average High	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Combed Yarn: Long Staple Group: Low Average High	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Extra Long Staple Group: Low Average High	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

YARN APPEARANCE refers to the relative evenness, smoothness, and freedom from foreign material of the yarn as evaluated by visual comparison of the yarn with the latest standards adopted by the American Society for Testing and Materials (ASTM). Since appearance is very important in many types of cotton products, high yarn appearance grades are desirable. The following descriptive terms may be of help in determining the relative levels of yarn appearance in this report.

Kind of Yarn, Staple Length Group and Description	Yarn Appeara for th Specified Yan	ne
Carded Yarns: Short Staple Group: Low Average High	8s 101 - 111 112 - 122 123 - 133	22s 91 - 103 104 - 116 117 - 129
Medium Staple Group:	22s	50s
Low	73 - 86	55 - 63
Average	87 - 101	64 - 72
High	102 - 116	73 - 81
Long Staple Group:	22s	50s
Low	84 - 98	57 - 69
Average	99 - 113	70 - 82
High	114 - 128	83 - 95
Combed Yarn: Long Staple Group: Low Average High	22s 112 - 120 121 - 129 130 - 138	50s 88 - 100 101 - 113 114 - 126
Extra Long Staple Group:	50s	80s
Low	108 - 116	96 - 106
Average	117 - 125	107 - 117
High	126 - 134	118 - 128

Yarn Appearance Grades

Grade	Index
A	130
B+	120
В	110
C+	100
C	90
D+	80
D	70
Below D	60

YARN NEPS are reported for the two yarn numbers spun for each lot of cotton. These results were obtained on a Uster Tester II, Model B. This is an electronic instrument which detects and counts neps in yarn. The yarn is drawn through a set of condenser plates, approximately 0.315 in. in length. These plates create an electrical field which counts the neps when the yarn oversteps or understeps present limiting values. Yarn nep tests are made at a constant speed of 100 yards per minute for two and one-half minutes, for a total of 250 yards tested per observation. Four observations are made for each test. This gives a total of 1,000 yards of yarn tested for each spinning lot. Insufficient data has been collected to develop descriptive terms for determining relative levels of yarn neps.

SPINNING POTENTIAL YARN NUMBER indicates the finest yarn number that can be spun from a cotton sample without any end breakage when using specific processing procedures. In performing these tests, new travelers, draft gears, and twist gears are installed for the selected yarn number and it is spun for a 15-minute trial period. The yarn number selected is considered acceptable if there is an end breakage involving 5 to 15 of the 96 spindles employed during the trial run. If end breakages occur on less than 5 or more than 15 of the 96 spindles during the trial period, a different yarn number is selected to be spun for another 15-minute trial period until the acceptable end breakage rate is obtained. The acceptable trial period is also used for a warm-up period which is followed by a onehour test period. The spinning potential yarn number is calculated from the deviation of the actual yarn number spun from the desired yarn number and the number of spindles with end breakage during the one-hour test run.

The following descriptive terms may be of help in determining the relative level of spinning potential yarn numbers in this report:

Spinning Potential Yarn Number (SPY No.)

Short Staple Group	Medium Staple Group	Long Staple Group
34 - 42	38 - 50	44 - 58
43 - 51	51 - 63	59 - 73
52 - 60	64 - 76	74 - 88
	Group 34 - 42 43 - 51	Group Group 34 - 42 38 - 50 43 - 51 51 - 63

TABLE 14. -- COTTON: STANDARD MACHINE SETTINGS AND SPECIFICATIONS FOR PROCESSING SPECIFIED STAPLE LENGTH GROUPINGS.

			LEL	19	1 1 1
	TACCEDS	SHORT	MEDIUM	LONG	EXTRA LONG
PICK St. St.	ugh a produce Ounces Per Yar	75 600 600 114 114 114 114	50 50 50 14 14 50 70	75 600 600 114 114 114	75 60 11 Kirschner 1,000
Grids to Beater, Top		5/16 5/16 11/16	5/16 5/16 11/16	5/16 11/16	3/8 9/16 11/16
Standard Atmospheric Conditions: Temperature Relative Humidity. Picker Lab Fed Sliver Delivered Sliver Delivered Cylinder Speed Cylinder Speed Cylinder, Hollingsworth Metallic Cylinder, Hollingsworth Metallic Cylinder, Hollingsworth Metallic Flats, Fillet Settings: Fed Plate to Licker-In, Top Mote Knife to Licker-In, Bottom Licker-In Screen to Cylinder Licker-In Cylinder. Top Front Plate to Cylinder, Top Front Plate to Cylinder, Bottom Front Plate to Cylinder, Bottom Cylinder Screen, Back. Cylinder Screen, Genter Cylinder Screen, Genter Cylinder Screen, Front	itions: Degrees F. Percent Ounces Per Yard Grains Per Yard Grains Per Yard Crains Per Yard F.p.m. Inches Per Minute Inches Per Minute Inches Top Inches	75 60 11 11 11 2-1/2 2-1/2 4.35 4.35 4.35 6.010 6.010 6.010 6.022 6.022 6.022 6.022 6.022 6.022 6.022 6.034 6.022 6.034 6.022 6.034 6.022 6.034 6.022 6.034 6.022 6.034 6.034 6.034 6.034 6.032 6.034 6.035 6.034 6.035 6.035 6.035 6.036 6.037	75 60 60 14 165 165 165 435 435 100 0010 0010 0010 0010 0010 0010 0022 0022 0022 0022 0022 0034 0022 0022	75 60 14 14 150 165 165 165 130 0.010 0.010 0.010 0.022 0.022 0.022 0.022 0.022 0.034 0.022 0.034	75 60 60 11 40 165 165 165 435 435 130 0017 0010 0022 0022 0022 0022 0022 002
Crusher Rolls Pressure	- 0	281	281	281	281

TABLE 14. -- CONTINUED.

			PLE L	ENGTH GROUP	
1	00 H H H H H H H H H H H H H H H H H H	SHORT	MEDIUM	LONG	EXTRA LONG
m	SLIVER LAPER (Combed Only) Standard Atmospheric Conditions: Temperature		11111	600 600 808 46	75 60 42 808 46
÷	Standard Atmospheric Conditions: Standard Atmospheric Conditions: Temperature		1111111	75 808 808 50 22 22 33 16 to 1	75 60 808 40 22 22 40 40 7
r,	DRAWING FRAME (Four Over Five) Standard Atmospheric Conditions: Temperature	75 60 50 55 55 60 36 10/16	75 60 50 53 53 36 10/16	75 60 60 53 53 36 10/16	75 60 60 40 42 44 36 2-3/4 12/16
•	s: S: Degr	75 60 60 1.30 1025 2-1/4 1-3/8	75 60 55 1.80 1025 2-1/4	75 60 55 1.80 1025 2-1/4	75 60 44 4.25 1025 2-1/4 1-11/16 to 1-7/8

TABLE 14. -- CONTINUED

NOUS INDICATE OF THE PROPERTY
Degrees F. 75 75 75 75 75 75 75 75 75 75 75 75 75
1.30 4.4
88 & 228
2-1/16
h/6-1
200
- r.p.m. 45,000

* Additional yarn is spun on a 96-spindle wide gage frame at 9,000 r.p.m. spindle speed to determine the spinning potential yarn number or the finest yarn number that can be spun without end breakage.

All standard yarn numbers are spun on narrow gage frames with spindle speeds of 9,000 r.p.m. except for 8s, which are spun on a wide gage frame with spindle speed of 5,500 r.p.m. *

*** Barber Coleman Spin-Flex Open-End Frame.

