CSC 212: Data Structures and Abstractions 01: Introduction

Prof. Marco Alvarez

Department of Computer Science and Statistics University of Rhode Island

Spring 2025

CSC 212

"learn how to model and solve complex problems with computers"

Course description

- Introduction to fundamental data structures and their algorithms
 - ✓ arrays, lists, stacks, queues, trees, hash tables, graphs (most popular topics for job interview questions)
 - √ survey of classic algorithms for sorting and searching
- · Basic principles of analysis of algorithms
 - √ improve your foundation of CS theory
- · Writing code that runs efficiently
 - √ choosing good algorithms and data structures
- Assumes solid foundation in programming fundamentals:
 - ✓ pointers, classes/objects, recursion

Course organization

Course information

- Lectures
 - √TR 9:30 10:45a
- · Labs
 - √ W 8 9:45a
 - ✓ W 10 11:45a
 - ✓ W 12 1:45p
 - ✓ W 2 3:45p
- · Course Website
 - https://homepage.cs.uri.edu/~malvarez/teaching/csc-212/

Recommended textbooks

Support tools

Academic discussion, polls, quizzes.

Assignment submission and grading.

Virtual meetings and office hours.

10

Grading (subject to change)

- · Lab/Lecture/Ed Participation
 - ✓ extra points
- · Assignments (35%)
 - √ ~6-8 homework assignments
 - programming
 - problem sets
- Exams (65%)
 - ✓ midterm 1
 - ✓ midterm 2
 - √ 1 final exam

All exams are based on lecture materials and assignments

Coursework

- Homework assignments
 - ✓ individual work, however discussions and collaboration are allowed
 - you must write your own code and solutions
 - √ late submissions NOT accepted
 - ample time given to complete (6-9 days)
 - start early and use office hours for guidance and feedback
- Exams
 - √ in-person and open-book (printed materials only)
 - √ no electronic devices allowed
 - mix of multiple-choice, and short-answer questions designed to test understanding

What is expected from you?

- Attend lectures/labs
 - ✓ students are expected to attend all lectures and labs
 - regular attendance is linked to higher grades and better comprehension of course material
- Participate and think critically
 - ✓ ask questions (lectures, labs, office hours, Ed, ...)
- Start working on assignments early
 - ✓ avoid merely copying/pasting answers generated by LLMs
- Laptops and cellphones are **NOT permitted** unless being used for taking notes

Resources

Academic integrity

- Assignments
 - each student/team must submit their own <u>unique</u> solutions, sharing/copying solutions from peers is <u>prohibited</u>
- → AI and LLMs
 - AI tools (e.g., ChatGPT, Gemini, Claude, GitHub Copilot) can be used to enhance learning through brainstorming, concept exploration, and strategy development
 - students must critically evaluate and fully understand any AI-generated content used in their work
 - all AI-assisted work must be cited in submissions
 - AI tools are designed to support students' learning, NOT to replace independent problem-solving and critical thinking

. .

Need a refresher on C++ programming?

- Pick a textbook (learn syntax)
- · Solve Challenges

LeetCode

Warming up

- · Adjacent elements sum
 - √ find the maximum sum of any pair of adjacent elements in an array of integers

 1
 3
 5
 3
 2
 5
 6
 7
 9
 2
 13
 1

4