Instrumental Variables

Justin S. Eloriaga ECON 521

Big Picture

- Goal: Estimate the causal effect of receiving a push notification on in-app purchases.
- Challenge: "Push delivered" is endogenous (delivery correlates with user income/tech), so naive regressions are biased.
- Solution: Use Instrumental Variables (IV) with assignment to push as the instrument for delivery.
- We compare OLS vs. 2SLS, explain LATE, check instrument strength, and illustrate weak-IV pitfalls via simulation.

Setup and Intuition (in Words)

- Variables:
 - push_assigned: randomized assignment to get a push.
 - push_delivered: whether the push actually reached the user.
 - in_app_purchase: outcome (USD spent).
 - income (unobserved): affects both delivery (device/OS/network) and purchases.
- Problem: push_delivered is more likely among higher-income users; income also raises spending

 upward bias if we regress spending on delivery directly.
- Instrument idea: push_assigned changes the chance of delivery but, by design, is independent of income and affects spending only through delivery.

Identification Assumptions (IV)

- Relevance: $Cov(Z, D) \neq 0$ (assignment affects delivery).
- Exclusion: Z (assignment) affects purchases only via D (delivery), not directly.
- **Independence:** *Z* is as-good-as random w.r.t. unobservables (e.g., income).
- Monotonicity (for LATE): No defiers (nobody who would get delivered if not assigned but not get delivered if assigned).

Data & Preprocessing

- Data: app_engagement_push.csv (from Causal Inference for the Brave and True materials).
- Purchases scaled to whole USD (e.g., divide by 10 and round).
- Quick descriptive stats (in the notebook) confirm sensible ranges for delivery, assignment, and spending.

Naive OLS and Why It's Biased

- ullet OLS spec (notebook): in_app_purchase \sim push_assigned + push_delivered.
- Empirical pattern: the coefficient on push_delivered is about \$2-\$3 (e.g., \sim \$2.76 in the run shown).
- Interpretation: Biased upward because delivery is more likely for users with better devices/income, who also spend more.
- Takeaway: OLS conflates the causal effect of delivery with selection on unobservables.

2SLS Structure (What the Notebook Does)

• Stage 1: Predict delivery from assignment

$$D_i = \pi_0 + \pi_1 Z_i + v_i$$
, $Z = push_assigned$, $D = push_delivered$.

• Stage 2: Regress purchases on *predicted* delivery

$$Y_i = \alpha + \beta \widehat{D}_i + u_i, \quad Y = \text{in_app_purchase}.$$

- Compact formula: $\beta_{IV} = \frac{\text{Cov}(Z, Y)}{\text{Cov}(Z, D)}$ (Wald/IV estimator).
- In the notebook this is done via pyfixest IV syntax.

2SLS Results and Interpretation

- The 2SLS estimate is *much smaller* than OLS (about \$0.30 vs. \$2-\$3).
- This aligns with the bias story: OLS overstated the effect by mixing in income/device advantages.
- What 2SLS estimates: LATE. It's the effect for compliers: users whose delivery status is changed by assignment.
- In this context, compliers are plausibly users on the margin of delivery (e.g., with devices/settings where assignment matters); they may skew wealthier than nevertakers, which can shape the LATE.

First-Stage Strength (Notebook Diagnostics)

- The notebook reports very large first-stage F-statistics in the real data (traditional $\approx 12,846$, robust $\approx 12,557$), indicating a **very strong** instrument in that run.
- ullet Rule of thumb: first-stage F > 10 suggests weak-IV concerns are limited (formal Stock-Yogo tests are preferable when available).
- The robust F also accounts for heteroskedasticity/serial correlation in errors.

Why LATE (Conceptual Slide)

- Compliance types under monotonicity:
 - Always-takers: delivered regardless of assignment.
 - Never-takers: never delivered regardless of assignment.
 - Compliers: delivered if assigned, not delivered otherwise.
- 2SLS identifies $E[Y(1) Y(0) \mid \text{complier}]$.
- Policy relevance: LATE targets the group whose behavior changes when assignment changes (e.g., users reachable specifically because they were assigned a push).

Weak-IV Simulation (What the Notebook Shows)

- Synthetic design: $D = \beta Z + U$, Y = D + U, true effect = 1, n = 100.
- Weak instrument: set $\beta = 0.1$ so Z barely moves D.
- Result: the sampling distribution of the IV estimator is heavy-tailed and far from normal.
- \bullet Size distortion: using a normal approximation yields a rejection frequency $\approx 23\%$ at nominal 5%—dramatically over-rejecting.
- Lesson: with weak instruments, 2SLS can be unreliable; use stronger instruments or weak-IV robust methods (e.g., Anderson-Rubin, LIML, conditional likelihood ratio).

Practical Checklist (Reflecting the Notebook)

- Causal story: Make a clear DAG in words; defend exclusion.
- **First stage:** Report $\widehat{\pi}_1$ and F-stats (traditional and robust).
- 2SLS reporting: Show $\widehat{\beta}_{2SLS}$, Cls, and interpret as LATE.
- **Sensitivity:** Consider heteroskedasticity-robust SEs; explore robustness to controls (if allowed by design).
- Weak-IV guardrails: Watch F-stats; if low, pivot to weak-IV robust inference or better instruments.

Key Takeaways

- OLS overstated the causal effect of delivery on spending due to selection on unobservables.
- IV using randomized assignment corrects this and targets the causal effect for compliers (LATE), yielding a much smaller and more credible estimate.
- Instrument strength matters: strong in the real data run; the simulation warns how weak IVs break standard inference.

Appendix: Notation & Formulas

• Wald/IV:
$$\beta_{\text{IV}} = \frac{\text{Cov}(Z, Y)}{\text{Cov}(Z, D)}$$
.

• Two-Stage Least Squares:

Stage 1:
$$D_i = \pi_0 + \pi_1 Z_i + v_i$$
, Stage 2: $Y_i = \alpha + \beta \widehat{D}_i + u_i$.

 LATE (Imbens–Angrist): effect for compliers under independence, exclusion, and monotonicity.

Appendix: What Each Notebook Block Does

- Imports/Config: numpy, pandas, matplotlib, networkx, pyfixest; highres plotting.
- Causal story (text): Explains why delivery is endogenous (income/tech).
- Data load: Read app_engagement_push.csv; scale purchases to USD.
- **OLS run:** Demonstrates upward-biased coefficient on push_delivered.
- **2SLS run:** push_delivered instrumented by push_assigned; presents first-stage and second-stage results.
- **Diagnostics:** Traditional and robust first-stage F statistics.
- Weak-IV sim: Sets small β so Z weakly predicts D; shows size distortion.

Sources

- Matheus Facure, Causal Inference for the Brave and True (Non-Compliance & LATE module) dataset & example framing.
- Classic weak-IV references: Staiger & Stock (1997); Stock & Yogo (2005).