leiatorio da Exp.	Propagação de Ondas Mecânicas P & S Turno:		
lúmero:	Nome:		_
Número:	Nome:		
Número:	Nome:		_
Tue le elle e	o na na na tária a na ali-an ANTEC d	~ - d - l -l-	+ 4
l Trabalho	o preparatório a realizar ANTES d	a sessão de Lab	orato-
rio:			
1. Descreva p	or palavras suas quais os objectivos do Trabalho	que irá realizar.	
0.1 Faulações			
Escreva no seguir	nte quadro todas as equações necessárias para ca	alcular as grandezas bei	n com as
Escreva no seguir	nte quadro todas as equações necessárias para ca	alcular as grandezas bei	m com as
Escreva no seguir	nte quadro todas as equações necessárias para ca	alcular as grandezas ber	m com as
Escreva no seguir	nte quadro todas as equações necessárias para ca	alcular as grandezas ber	m com as
Escreva no seguir	nte quadro todas as equações necessárias para ca	alcular as grandezas bei	m com as
Escreva no seguir	nte quadro todas as equações necessárias para ca	alcular as grandezas bei	m com as
Escreva no seguir	nte quadro todas as equações necessárias para ca	alcular as grandezas bei	m com as
Escreva no seguir	nte quadro todas as equações necessárias para ca	alcular as grandezas bei	m com as
Escreva no seguir	nte quadro todas as equações necessárias para ca	alcular as grandezas bei	m com as
Escreva no seguir	nte quadro todas as equações necessárias para ca	alcular as grandezas ber	m com as
Escreva no seguir	nte quadro todas as equações necessárias para ca	alcular as grandezas bei	m com as
Escreva no seguir	nte quadro todas as equações necessárias para ca	alcular as grandezas bei	m com as
1.0.1 Equações Escreva no seguir suas incertezas.	nte quadro todas as equações necessárias para ca	alcular as grandezas bei	m com as
Escreva no seguir	nte quadro todas as equações necessárias para ca	alcular as grandezas bei	m com as

2 Relatório

2.1 Montagem Experimental

Desenhe um diagrama da experiência, bem como um esboço das imagem que observa no osciloscópio. Inclua uma lista com a Legenda de Instrumentos.

2.2 Calibração das Sondas P & S com cilindros de latão

Preencha as tabelas indicando apenas os algarismos significativos.

Incerteza na medida do comprimento da amostra, $e_L =$ ____ mm

L (mm)						
Tempo (ms) ±	士	±	土	±	±

Represente graficamente o Tempo de propagação vs Comprimento e por Regressão Linear obtenha o melhor ajuste a uma recta.

Declive: m= ____ s/m, Ordenada na origem: $\Delta T_0=$ ____ ms (Este último valor pode constituir uma estimativa do erro sistemático da medida de intervalo de tempo.)

2.3 Velocidade de propagação em meios isótropos

Nota: Terá que verificar as contas com auxílio da calculadora, para um dos ensaios e na presença do docente.

Dimensões e densidades:

Amostra #	Material	L_x [m]	L_y [m]	L_z [m]	$Vol [m^3]$	Massa [kg]	$\rho [kg/m^3]$
1		土	土	土	土	土	土
2		±	±	±	土	土	土

Tempos e velocidades:

Amostra #	t_x [ms]	t_y [ms]	v_x [m/s]	v_y [m/s]	\overline{v} [m/s]
1 - Onda P	土	土	土	土	±
1 - Onda S	土	土	±	土	±
2 - Onda P	±	±	土	土	±
2 - Onda S	土	土	土	土	土

2.3.1 Cálculos de constantes elásticas

Amostra #	v_L [m/s]	μ [GPa]	$v_T [\text{m/s}]$	K [GPa]	v_L/v_T	σ
1	土	土	土	土	土	土
2	土	±	土	土	土	土

Incerteza relativa de $\mu =$ _____ %

2.4 Velocidade de propagação em meio anisótropo

Dimensões e densidades

Amostra #	Material	L_x [m]	L_y [m]	L_z [m]	$Vol [m^3]$	Massa [kg]	$\rho [kg/m^3]$
3		土	士	±	土	土	土

Tempos e velocidades:

Amostra #	t_x [ms]	t_y [ms]	v_x [m/s]	v_y [m/s]	$v_{max} - v_{min} [\text{m/s}]$
3 - Onda P	土	土	土	土	土
3 - Onda S	±	±	土	土	士

2.4.1 Cálculos de constantes elásticas

Amostra #	v_{L_x} [m/s]	μ_x [GPa]	v_{T_x} [m/s]	K_x [GPa]	c.a.
3	士	±	±	土	土

Incerteza relativa de $K_x =$ _____ %

2.5	Análise.	Conclusões e	Comentários

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·
	·	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·