

Gowin USB 2.0 Host Controller IP

用户指南

IPUG1174-1.0.1,2024-04-19

版权所有 © 2024 广东高云半导体科技股份有限公司

GO₩IN高云、₩、Gowin、GowinSynthesis、云源以及高云均为广东高云半导体科技股份有限公司注册商标,本手册中提到的其他任何商标,其所有权利属其拥有者所有。未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止反言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

日期	版本	说明			
2023/11/16	1.0	初始版本。			
2024/04/19	1.0.1	更新表 2-2 资源占用。			

目录

	录	I
图	图目录	ii
表	長目录	iii
1	关于本手册	1
	1.1 手册内容	1
	1.2 相关文档	1
	1.3 术语、缩略语	2
	1.4 技术支持与反馈	2
2	!简介	3
	2.1 概述	3
	2.2 特性	4
	2.3 资源占用	4
3	功能描述	5
	,	
	3.1 USB 2.0 Host Controller 结构	
		5
	3.1 USB 2.0 Host Controller 结构	5 5
	3.1 USB 2.0 Host Controller 结构	5 5
	3.1 USB 2.0 Host Controller 结构	5 6
	3.1 USB 2.0 Host Controller 结构	567
	3.1 USB 2.0 Host Controller 结构	5677
4	3.1 USB 2.0 Host Controller 结构	5677
4	3.1 USB 2.0 Host Controller 结构	56777
4	3.1 USB 2.0 Host Controller 结构	56777

图目录

图 3-1 USB 2.0 Host Controller 功能框图	5
图 4-1 Host Controller 读寄存器时序图	9
图 4-2 Host Controller 写寄存器时序图	10
图 4-3 Host Controller DMA 读时序图	10
图 4-4 Host Controller DMA 写时序图	11
图 5-1 IP Core Generator 选项	12
图 5-2 USB 2.0 Host Controller IP 核	13
图 5-3 USB 2.0 Host Controller 配置界面	13

IPUG1174-1.0.1 ii

iii

表目录

表 1-1 术语、缩略语	2
表 2-1 Gowin USB 2.0 Host Controller IP 概述	3
表 2-2 资源占用	4
表 3-1 USB 2.0 Host Controller 内部寄存器分布	6
表 3-2 MEMADDR Register	7
表 3-3 DMACONFIG Register	7
表 4-1 信号定义	8
表 4-2 Timing Characteristics	11

IPUG1174-1.0.1

1 关于本手册 1.1 手册内容

1.1 手册内容

Gowin USB 2.0 Host Controller IP 用户指南主要内容包括功能简介、信号定义、功能描述、界面配置,旨在帮助用户快速了解 Gowin USB 2.0 Host Controller IP 的产品特性、特点及使用方法。本手册中的软件界面截图参考的是 1.9.9 Beta-6 版本,因软件版本升级,部分信息可能会略有差异,具体以用户软件版本的信息为准。

1.2 相关文档

通过登录高云半导体网站 <u>www.gowinsemi.com</u> 可以下载、查看以下相关文档。

- DS100, GW1N 系列 FPGA 产品数据手册
- DS117, GW1NR 系列 FPGA 产品数据手册
- DS891, GW1NRF 系列蓝牙 FPGA 产品数据手册
- DS821, GW1NS 系列 FPGA 产生数据手册
- DS871, GW1NSE 系列安全 FPGA 产品数据手册
- DS881, GW1NSER 系列安全 FPGA 产品数据手册
- DS861, GW1NSR 系列 FPGA 产品数据手册
- DS102, GW2A 系列 FPGA 产品数据手册
- DS226, GW2AR 系列 FPGA 产品数据手册
- DS971, GW2AN-18X &9X 器件数据手册
- DS976, GW2AN-55 器件数据手册
- DS981, GW5AT 系列 FPGA 产品数据手册
- DS1103, GW5A 系列 FPGA 产品数据手册

IPUG1174-1.0.1 1(13)

1 关于本手册 1.3 术语、缩略语

- DS1104, GW5AST 系列 FPGA 产品数据手册
- SUG100, Gowin 云源软件用户指南

1.3 术语、缩略语

表 1-1 中列出了本手册中出现的相关术语、缩略语及相关释义。

表 1-1 术语、缩略语

术语、缩略语	全称	含义
DMA	Direct Memory Access	直接内存访问
IP	Intellectual Property	知识产权
PHY	Port Physical Layer	端口物理层
R/W	Read/Write	读/写
R/WC	Read/Write Clear	读/写清除
RO	Read Only	只读
TD	Transmission Descriptor	传输描述符
ULPI	UTMI+ Low Pin Interface	UTMI 低引脚数接口
USB	Universal Serial Bus	通用串行总线

1.4 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: www.gowinsemi.com

E-mail: support@gowinsemi.com

Tel: 86 755 8262 0391

IPUG1174-1.0.1 2(13)

2 简介 2.1 概述

26分

2.1 概述

通用串行总线(Universal Serial Bus),通常称为 USB,是一种外部总线,用于规范电脑和外部设备的连接与通讯。

Gowin USB 2.0 Host Controller IP 基于 EHCI 协议,支持 SRAM 接口,可以与任意支持 SRAM 接口的微处理器相连,支持 ULPI 接口,可以与任意支持 ULPI 接口的 USB 2.0 收发器相连。内部包含 24K RAM 空间,以存放传输描述符以及数据。

表 2-1 Gowin USB 2.0 Host Controller IP 概述

· -				
Gowin USB 2.0 Host Controller IP				
逻辑资源 请参见表2-2				
交付文件				
设计文件	Verilog (encrypted)			
参考设计	Verilog			
测试平台 Verilog				
测试设计流程				
综合软件	GowinSynthesis [®]			
应用软件	Gowin® Software (V1.9.9Beta-5及以上)			

注!

可登录高云半导体网站查看芯片支持信息。

IPUG1174-1.0.1 3(13)

2.2 特性

2.2 特性

Gowin USB 2.0 Host Controller IP 特性包括:

● 支持高速传输模式(480Mbps)、全速传输模式(12Mbps)与低速传输模式(1.5Mbps)

- 支持设备插拔检测、复位、高速握手、挂起与唤醒
- 支持控制传输、批量传输、同步传输、以及中断传输
- 支持拆分控制传输、拆分批量传输、拆分同步传输以及拆分中断传输
- 支持 USB 收发器宏单元接口(ULPI)
- 支持 SRAM 接口以及直接内存访问(DMA)操作

2.3 资源占用

通过 Verilog 语言实现 Gowin USB 2.0 Host Controller IP。因使用器件的密度、速度和等级不同,其资源利用情况可能不同。以高云 GW2A-18 为例,Gowin USB 2.0 Host Controller IP 资源利用情况如表 2-2 所示。

表 2-2 资源占用

器件系列	速度等级	器件名称	资源利用	备注
	LUT	6981		
		REG	3115	
GW2A-18	C7/I6	ALU	1253	-
		SSRAM	277	
		BSRAM	16	

IPUG1174-1.0.1 4(13)

3功能描述

3.1 USB 2.0 Host Controller 结构

USB 2.0 Host Controller 位于微处理器与下游 USB 设备之间。USB Host Controller 串联微处理器与下游 USB 设备,接收来自微处理器的命令,实现 微处理器及 USB 设备端之间的数据交互。图 3-1 为 USB 2.0 主机控制器功能框图。

图 3-1 USB 2.0 Host Controller 功能框图

3.2 寄存器定义

本节主要介绍 USB 2.0 Host Controller 内部寄存器分布。主机控制器内部寄存器分为三类,分别是 Capability 寄存器, Operational 寄存器以及 DMA 寄存器。

IPUG1174-1.0.1 5(13)

3 功能描述 **3.3 Capability** 寄存器

表 3-1 USB 2.0 Host Controller 内部寄存器分布

Address	Size(byte)	Mnemonic	Description			
Capability Registers						
00h	1	CAPLENGTH	Capability Register Length			
01h	1	Reserved	N/A			
02h	2	HCIVERSION	Interface Version Number			
04h	4	HCSPARAMS	Structural Parameters			
08h	4	HCCPARAMS	Capability Parameters			
Operational Regist	ters					
0Ch	4	USBCMD	USB Command			
10h	4	USBSTS	USB Status			
14h	4	USBINTR	USB Interrupt Enable			
18h	4	FRINDEX	USB Frame Index			
1Ch	4	CTRLDSSEGMENT	4G Segment Selector			
20h	4	PERIODICLISTBASE	Frame List Base Address			
24h	4	ASYNCLISTADDR	Next Asynchronous List Address			
1Ch-3Fh		Reserved	N/A			
4Ch	4	CONFIGFLAG	Configured Flag Register			
50h	4	PORTSC	Port Status/Control			
DMA Registers						
54h	4	MEMADDR	DMA initial address			
58h	4	DMACONFIG	DMA configuration			

3.3 Capability 寄存器

Capability 寄存器中各字段定义可参考 <u>Enhanced Host Controller</u> <u>Interface Specification for Universal Serial Bus</u>协议第 2.2 节。

IPUG1174-1.0.1 6(13)

3 功能描述 3.4 Operational 寄存器

3.4 Operational 寄存器

Operational 寄存器中各字段定义请参考 <u>Enhanced Host Controller</u> <u>Interface Specification for Universal Serial Bus</u> 协议第 2.3 节。

3.5 DMA 寄存器

3.5.1 MEMADDR (DMA Start Address)

Address: 54h

Size: 32 bits

此寄存器用于存放每次 DMA 读/写的起始地址。

表 3-2 MEMADDR Register

比特	类型	默认值	描述
31:16	RO	16'b0	Reserved
15:0	R/W	16'b0	DMA读/写起始地址;内部24K RAM寻址范围为0x0000至0x5FFF

3.5.2 DMACONFIG (DMA Configuration)

Address: 58h

Size: 32 bits

此寄存器用于存放每次 DMA 读/写命令。

表 3-3 DMACONFIG Register

比特	类型	默认值	描述
31:18	RO	14'b0	Reserved
17	R/W	1'b0	DMA读/写
			0: DMA写
			1: DMA读
16	R/W	1'b0	DMA请求
			0: 不请求发起DMA
			1: 请求发起DMA
15:0	R/W	15'b0	DMA读/写数据长度;
			预设每次DMA读/写数据长度,最大值
			为24K

IPUG1174-1.0.1 7(13)

__4.1 信号定义___

4信号描述

4.1 信号定义

Gowin USB 2.0 Host Controller IP 信号定义如表 4-1 所示。

表 4-1 信号定义

序号	信号名称	方向	位宽	描述	
系统接口					
1	clk_i	1	1	时钟信号	
2	rst_n_i	1	1	复位信号, 低电平有效	
Host 0	Controller SDRAM接口				
3	cs_n_i	1	1	片选信号,低电平有效	
4	rd_n_i	1	1	读使能信号,低电平有效	
5	wr_n_i	1	1	写使能信号,低电平有效	
6	addr_i	1	8	地址总线	
7	dack_i	I	1	DMA响应信号,低电平表示用户响 应DMA请求	
8	dreq_o	0	1	DMA请求信号,高电平表示主机控 制器请求发起DMA	
9	dat_io	Ю	8	数据总线,当rd_n_i为高电平时,呈 高阻态	
10	hardware_interrupt_o	0	1	主机控制器中断信号,高电平表示主 机控制器产生中断	
Host 0	Host Controller PHY接口[1]				
11	phy_clk_o	0	1	ULPI PHY输入时钟	
12	phy_rst_o	0	1	ULPI PHY复位信号	
13	ulpi_dir_i	1	1	ULPI DIR信号	

IPUG1174-1.0.1 8(13)

序号	信号名称	方向	位宽	描述
14	ulpi_data_io	Ю	8	ULPI DATA信号
15	ulpi_nxt_i	I	1	ULPI NXT信号
16	ulpi_stp_o	0	1	ULPI STP信号

注!

[1]此接口用于连接外部 ULPI PHY。

4.2 USB 2.0 Host Controller SDRAM 接口时序

当用户需要读寄存器时,把 cs_n_i 置 0,把 $addr_i$ 置为寄存器地址,控制 rd_n_i 产生一次负脉冲。读数据会在 rd_n_i 下降沿的 Toe 后输出在 dat_i o上。

当用户需要写寄存器时,把 cs_n_i 置 0,把 addr_i 置为寄存器地址,把写数据输入到 dat_io 上,控制 wr_n_i 产生一次负脉冲。写数据会在 wr_n_i 上升沿的 Tadhw 后写入到目的寄存器。

注!

- 每次对寄存器的读写操作都需要以4字节作为单位。
- 时序特征可参考表 4-2。

图 4-1 和图 4-2 分别是读写寄存器时序图。

图 4-1 Host Controller 读寄存器时序图

IPUG1174-1.0.1 9(13)

当用户需要读写内部 RMA 时,需要通过 DMA 方式。若用户需要发起一次 DMA,需要先将访问起始地址写入寄存器 MEMADDR,再将 DMA 写/读命令以及数据长度写入 DMACONFIG 寄存器,并将其中 DMA enable 字段置1。等待主机控制器将 dreq_o 置 1 后,用户将 dack_i 置 0,进入 DMA 写/读模式。

在 DMA 读过程中,用户控制 rd_n_i 产生负脉冲,主机控制器将数据按照地址顺序,在每个 rd_n_i 下降沿后的 Toe 后,输出至数据总线。

在 DMA 写过程中,用户控制 wr_n_i 产生负脉冲,主机控制器将数据按照地址顺序,在每个 wr_n_i 上升沿写入内部 RAM 空间。

在 DMA 读写过程中,主机控制器计算 wr_n_i/rd_n_i 脉冲个数,当数量达到 DMACONFIG 中预设的字节长度时,主机控制器将 dreq_o 置 0,结束本次 DMA。

图 4-3 和图 4-4 分别是 DMA 读写时序图。

图 4-3 Host Controller DMA 读时序图

IPUG1174-1.0.1 10(13)

图 4-4 Host Controller DMA 写时序图

表 4-2 Timing Characteristics

参数	描述	Min	Max	单位
Tcs	cs_n_i在wr_n_i /rd_n_i 置0前的建立时间	0	-	ns
Tch	cs_n_i在wr_n_i/rd_n_i 置1后的保持时间	0	-	ns
Tadsw	addr_i和dat_io在wr_n_i 置1前的建立时间	0	-	ns
Tadhw	addr_i和dat_io在wr_n_i 置1后的保持时间	34	-	ns
Tasr	addr_i在rd_n_i置0前的 建立时间	0	-	ns
Tahr	addr_i在rd_n_i置0后的 保持时间	34	-	ns
Toe	rd_n_i置0至数据有效时间	50	-	ns
Twp	wr_n_i脉冲宽度	17	-	ns
Trp	rd_n_i脉冲宽度	68	-	ns
Tsudreqdack	dreq_o在dack_i置0前 的建立时间	0	-	ns
Tsudackrw	dack_i在rd_n_i/wr_n_i 置0前的保持时间	0	-	ns
Tcycr	DMA读周期	85	-	ns
Tcycw	DMA写周期	51	-	ns

IPUG1174-1.0.1 11(13)

5界面配置

在高云半导体云源[®]软件界面菜单栏 Tools 下,可启动 IPCore Generator 工具,完成调用并配置 USB 2.0 Host Controller。

1. 打开 IP Core Generator

建立工程后,点击左上角"Tools"选项卡,下拉单击"IP Core Generator" 选项,就可打开 IP 核产生工具,如图 5-1 所示。

图 5-1 IP Core Generator 选项

2. 打开 USB 2.0 Host Controller IP 核

选择 "Soft IP Core> Interface and Interconnect>USB 2.0 Host Controller IP",如图 5-2 所示,双击即可打开配置界面。

IPUG1174-1.0.1 12(13)

图 5-2 USB 2.0 Host Controller IP 核

3. USB 2.0 Host Controller IP 核配置界面

USB 2.0 Host Controller IP 核配置界面如图 5-3 所示。配置界面左侧是USB2.0 Host Controller IP 核的接口示意图,右侧为配置选项。

- 用户可通过修改 File Name, 配置产生文件名称;
- 可通过修改 Module Name,配置产生的顶层模块名称。

图 5-3 USB 2.0 Host Controller 配置界面

IPUG1174-1.0.1 13(13)

