

Veebiteenuste ja hajussüsteemide arendus

Loeng 6: Veebiteenuste standardid

Pelle Jakovits jakovits@ut.ee

March 2025

Sisukord

- Veebiteenuste standardid
 - Web Services Description Language (WSDL)
 - UDDI, WSIL
 - OpenAPI

Veebiteenused

 Tarkvara, mis pakub juurdepääsu Internetiressurssidele kasutades standardseid veebiprotokolle (HTTP, HTTPS)

"Loosely coupled, standard-based reusable software components that semantically encapsulate discrete functionality and are distributed and programmatically accessible over standard Internet protocols" [Sleeper, 2001]

- Google Translate Teksti saatmine tõlkimiseks
- Shrinkpictures.com Piltide saatmine nende väiksemaks tegemiseks
- Reddit –
 Sõnumite saatmine selleks, et neid foorumisse postitada

Veebiteenuste standarid

- Veebiteenustes on suhtlus üles ehitatud standarditele tavalistele veebi standarditele (nt XML, WSDL, HTTP).
- Veebiteenuste standarid määravad kuidas:
 - Kirjeldada veebiteenuseid, ressursse ja operatsioone
 - Avaldada, otsida ja avastada veebiteenuseid
- Standardite eesmärk on tagada, et neid jälgides ehitatud veebiteenused:
 - on võimelised koostööd tegema,
 - on platvormist sõltumatud
 - on skaleeritavad
 - lihtsustavad süsteemide integreerimist
- Võimaldavad teenusekeskset arhitektuuri (Service Oriented Architecture)

Omadused

- Taaskasutatavus (Reusability) Süsteemi pakutav teenus on implementeeritud üks kord ja seda kasutatakse korduvalt
- Koostalitlusvõime (Interoperability) Veebiteenust peabs aama kasutada sõltumatult programmeerimiskeelest või platvormist
- Integratsioon veebiteenused võimaldavad lihtsamat suhtlust erinevate organisatsioonide süsteemide vahel
- Komponeeritavus (Composability) teenuseid saab ühendada kokku suuremateks teenusteks, mida ükski neist iseseisvalt pakkuda ei saaks

Omadused

- Leitavus (Discoverability) veebiteenused saab "tõhusalt" otsida ja leida
- Abstraheeritus (Abstraction) veebiteenuste sisemina loogika on peidetud teenuse tarbijate eest. Avaldatakse vaid see info, mis on vajalik teenuse tarbimiseks
- Autonoomsus (Autonomy) veebiteenus omab täielikku kontrolli oma sisemise loogika üle
- Lahtiselt ühendatud (Loosely coupled) Iga teenus eksisteerib iseseisvalt teistest sõltumatult
- Staatuseta (Statelessness) teenused käsitlevad iga päringut iseseisvana, sõltumatult eelnevast suhtlusest, mis on selle jaoks väga oluline skaleeritavate teenuste pakkumine

WSDL ja UDDI

- WSDL Web Services
 Description Language
 - Standard veebiteenuste,
 ressursside ja operatsioonide
 kirjeldamiseks
- UDDI Universal Description,
 Discovery and Integration
 - XML-põhine standard veebiteenuste Publish kirjeldamiseks, avaldamiseks ja avastamiseks
- WSIL Web Services Inspection
 Language
 - XML-põhine spetsifikatsioon, mis defineerib, kuidas otse teenuse pakkujalt küsida veebiteenuste kirjeldusi

https://www.ibm.com/docs/en/rsm/7.5.0?topic=overview-web-services-standards

WSDL

- XML-formaadis kirjeldus veebiteenuste kohta
- Kirjeldab porte (viise teenuseni jõudmiseks) ja teenuseid endid
 - Mis operatsioone teenus pakub?
 - Missugused on parameetrid ja tagastusväärtused?
 - Mismoodi andmeid esitatakse?
 - Mis aadressil ja protokolliga ligi pääseb?
- Mõnevõrra analoogne IDL-iga
- Ligipääsuks SOAP või tavaline HTTP

WSDL sisu elemendid

- Types: Andmetüübid
 - Sageli kasutatakse XML Schema tüüpe nagu SOAP-iski
- Messages: Andmetüüpidest ehitatakse lihtsad teate tüübid
- Port types: Pordi tüüp kirjeldab operatsiooni nime ja seob sellega sisend-väljundi teatetüübid
- Binding: Seosed määravad andmevahetuseks näiteks SOAPi, HTTP, MIME tüübi
- Port: pordid panevad seosed vastavusse konkreetse URL-iga
- Service: Teenus kirjeldab teenuse nime ja lõpp punkti

WSDL näide

```
<?xml version="1.0" encoding="utf-8"?>
                    <definitions
                  ····name="StockOuote"
                    |----targetNamespace="http://example.com/stockquote/"
     4
                    ***** xmlns:tns="http://example.com/stockquote/"
     5
                    **** xmlns:xsd1="http://example.com/stockquote/schema/"
                   wmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
                F. ... xmlns="http://schemas.xmlsoap.org/wsdl/">
               29
30
             # · · · · < message · name = "GetLastTradePriceInput" >
             # · · · · < message · name = "GetLastTradePriceOutput" >
33
36
37
                □····<portType·name="StockQuotePortType">
             # · · · · · · · < operation · name = "GetLastTradePrice" >
38
42
                  -···</portType>
43
               $\displaystyle \displaystyle \dinto \displaystyle \displaystyle \displaystyle \display
                    45
46
                    | http://schemas.xmlsoap.org/soap/http"/>
               # · · · · · · < operation · name = "GetLastTradePrice" >
47
                  -···</binding>
53
54
               | stockOuoteService | stoc
55
56
               # · · · · · · · < port · name = "StockQuotePort" · binding = "tns: StockQuoteSoapBinding" >
59
                 +···</service>
                                                                                                                                                                                                                                                                                                                                                                10
                 l</definitions>
60
```

WSDL tüüpide definitsioon

```
<types>
   < schema
      targetNamespace="http://example.com/stockquote/schema/"
      xmlns="http://www.w3.org/2001/XMLSchema">
      <element name="TradePriceRequest">
         <complexType>
            <a11>
               <element name="tickerSymbol" type="string"/>
            </all>
         </complexType>
                                             Defineerib teenuse operatsioonide
      </element>
                                             sõnumite sisemise struktuuri (väljade
      <element name="TradePrice">
                                             tüübid)
         <complexType>
            <a11>
              <element name="price" type="float"/>
            </all>
         </complexType>
      </element>
   </schema>
```

</types>

WSDL sõnumite definitsioon

Defineerib teenuse operatsioonide sõnumite tüübid)

WSDL pordi tüüpide definitsioon

Defineerib operatsioonid, ning sisendite ja väljundite tüübid

WSDL seoste (binding) definitsioon

Defineerib, kuidas suhelda teenusega

```
<binding name="StockQuoteSoapBinding"</pre>
  type="tns:StockQuotePortType">
        <soap:binding style="document"</pre>
                   transport="http://schemas.xmlsoap.org/soap/http"/
  >
        <operation name="GetLastTradePrice">
            <soap:operation</pre>
  soapAction="http://example.com/GetLastTradePrice"/>
            <input> <soap:body use="literal"/></input>
            <output> <soap:body use="literal"/></output>
        </operation>
    </binding>
```

WSDL teenuse definitsioon

Defineerib teenuse kirje, ja selle asukoha

UDDI

- Universal Description Discovery and Integration
- Veebiteenuste register, et kliendid ja serverid üksteist automaatselt leida suudaksid
- Teenuste registreerimine ja pärimine
- Juurdepääs SOAP protokolliga
- Praktikas tundub vähe kasutuses olevat

UDDI näide: teenuse otsimine

```
<find service generic="2.0" xmlns="urn:uddi-org:api v2">
    <categoryBag>
        <keyedReference
              tModelKey="uuid:6e090afa-33e5-36eb-81b7-1ca18373f457"
              keyName="WSDL type"
              keyValue="service" />
        <keyedReference
              tModelKey="uuid:d01987d1-ab2e-3013-9be2-2a66eb99d824"
              keyName="service namespace"
              keyValue="http://example.com/stockquote/" />
        <keyedReference
              tModelKey="uuid:2ec65201-9109-3919-9bec-c9dbefcaccf6"
              keyName="service local name"
              keyValue="StockQuoteService" />
    </categoryBag>
</find service>
```

WSIL

- WSIL Web Services Inspection Language
- Alternatiiv UDDI'le
 - UDDI on tsentraliseeritud
 - WSIL on detsentraliseeritud
- Võimaldab pöörduda otse teenusepakkuja poole ja küsida tema pakutavaid teenuseid
 - Ei ole vaja teada, millisest registrist otsida
 - Saab kasutada, kui on teada, mis organisatsiooni veebiteenuseid soovime otsida

WSIL näide

- WSIL dokument organisatsiooni kodulehel
- Kirjeldab ära teenused, mida see organisatsioon või süsteem pakub
- Teenuste kirjeldus üldjuhul WSDL standardi kaudu
- Võib ka viidata organisatsiooni sisese UDDI registrile

OpenAPI

- Spetsifikatsioon HTTP põhiste veebiteenuste standardseks kirjeldamiseks, väljakutsumiseks ja visualiseerimiseks
 - https://github.com/OAI/OpenAPI-Specification
- Algselt tuntud kui Swaggeri spetsifikatsioon
- Võimaldab avastada ja mõista teenuse funktsionaalsust ilma juurdepääsuta lähtekoodile või dokumentatsioonile
- Kasutuse näited:
 - Interaktiivne dokumentatsioon
 - koodi genereerimine dokumentatsiooni, klientide ja serverite jaoks
 - testjuhtumite loomise automatiseerimine
- OpenAPI > REST
 - Toetab üldiselt HTTP API'sid.
 - REST on rangem
 - Aga saab täiesti REST API'de defineerimiseks ja kirjeldamiseks kasutada

OpenAPI spetsifikatsioon

- Kasutajad loovad spetsifikatsioonis veebiteenuse malli, mis sisaldab:
 - Ressursid, nende lõpp-punktid ja kirjeldused
 - Toetatud HTTP operatsioonid
 - Lubatud sisendid ja eeldatavad väljundid
- Malli formaat on YAML või JSON dokument
- OpenAPI spetsifikatsiooni kasutatakse tihti REST API dokumentatsioonina
- OpenAPI spetsifikatsiooni saab genereerida ka veebiteenuse koodi põhjal

XML vs JSON vs YAML

XML	JSON	YAML
<servers></servers>	{ Servers: [{ name: Server1, owner: John, created: 123456, status: active }] }	Servers: - name: Server1 owner: John created: 123456 status: active

Allikas: https://developer.ibm.com/tutorials/yaml-basics-and-usage-in-kubernetes/

OpenAPI YAML spetsifikatsioon

```
openapi: "3.0.0"
 2 pinfo:
 3 | version: 1.0.0
 4 | title: Swagger Petstore
 5 | license:
 6 . . . name: MIT
 7 servers:
 8 - url: <a href="http://petstore.swagger.io/v1">http://petstore.swagger.io/v1</a>
 9 paths:
10 | /pets:
11 • · · · get:
42 post:
56 | /pets/{petId}:
57 get:
82 pcomponents:
83 schemas:
84 Pet:
97 Pets:
01 Error:
```

OpenAPI info blokk

```
title: Sample Pet Store App
description: This is a sample server for a pet store.
termsOfService: http://example.com/terms/
contact:
    name: API Support
    url: http://www.example.com/support
    email: support@example.com
license:
    name: Apache 2.0
    url: https://www.apache.org/licenses/LICENSE-2.0.html
version: 1.0.1
```

OpenAPI servers blokk

 Defineerib serverite aadressid, mille kaudu REST API on kätte saadav.

servers:

- url: https://development.gigantic-server.com/v1

description: Development server

- url: https://staging.gigantic-server.com/v1

description: Staging server

- url: https://api.gigantic-server.com/v1

description: Production server

OpenAPI paths blokk

- Kirjeldab REST API otspunktid ja toetatud REST operatsioonid
- Näide: Kõikide koduloomade nimekira küsimine üle GET päringu

```
/pets:
      - REST ots-punkt
      - REST operatioon
get:
description: Returns all pets from the system that the user has access to
responses: - API vastused
. . . . . . '200':
             - Vastuse tüübi määrab HTTP kood
  description: A list of pets.
 - Vastuse sõnumi MIME formaat
                         - Sõnumi struktuur
   schema:
 type: array
   ····items:
                                           - Elementide struktuur on viitena - selle
  sisu on kirjas schemas blokis
```

OpenAPI paths bloki näide

```
get:
description: Returns pets based on ID
summary: Find pets by ID
operationId: getPetsById
responses:
'200':
description: pet response
.....content:
. . . . . . . . . ! */*! . :
....schema:
· · · · · · · · · · type: array
····items:
parameters: - Sisendparameetrid
- name: id
           -/pets/id -lemmiklooma ID
· in: path
description: ID of pet to use
required: true - kohustuslik parameeter
schema:
type: array
items:
type: string
style: simple
```

OpenAPI
operatiooni
näide sisendi ja
väljundi
definitsiooniga

```
summary: Updates a pet in the store with form data
operationId: updatePetWithForm
parameters:
- name: petId
requestBody:
content:
'application/x-www-form-urlencoded':
schema:
properties:
.......name:
····· description: Updated name of the pet
type: string
····status:
description: Updated status of the pet
••••• type: string
required:
···--status
responses:
'200':
description: Pet updated.
content:
'application/json': {}
'application/xml': {}
'405':
description: Method Not Allowed
content:
'application/json': {}
'application/xml': {}
```

OpenAPI components blokk

- Defineerib erinevad REST api meetodite sisendid, ja väljundid:
 - Schemas sõnumite (alam)objektide struktuurid
 - Responses Vastuse tüübid
 - Parameters –Operatsioonide parameetrid
 - Examples näited sõnumite või objektide struktuurist
 - RequestBodies päringu sisu struktuurid
 - Headers päise väärtused, mis on vajalikud, lubatud, või vastuse osa
 - SecuritySchemes defineerib autentimise info

```
components:
 schemas:
  GeneralError:
   type: object
   properties:
    code:
     type: integer
     format: int32
    message:
     type: string
  Category:
   type: object
   properties:
    id:
     type: integer
     format: int64
    name:
     type: string
  Tag:
  type: object
   properties:
    id:
     type: integer
     format: int64
    name:
     type: string
 responses:
  NotFound:
   description: Entity not found.
  IllegalInput:
  description: Illegal input for operation.
  GeneralError:
  description: General Error
   content:
    application/json:
                                              29
     schema:
      $ref: '#/components/schemas/GeneralError'
```


OpenAPI schema näited

```
application/json:
 schema:
   $ref: "#/components/schemas/Pet"
examples:
· · · · cat:
summary: An example of a cat
value:
name: Fluffy
petType: Cat
color: White
gender: male
breed: Persian
· · · · dog:
summary: An example of a dog with a cat's name
value:
· · · · · · · name: · Puma
petType: Dog
color: Black
gender: Female
breed: Mixed
····frog:
```

\$ref: "#/components/examples/frog-example"

OpenAPI schemas blokk

- Defineerib ära mingi objekti struktuuri, väljad, andmetüübid
- Näiteks:
 - JSON sõnumi struktuur või alamstruktuur
 - XML vastus

```
components:
schemas:
· · · · Pet:
type: object
discriminator:
•••••• propertyName: petType
properties:
· · · · · · name:
.... type: string
petType:
required:
····-name
· · · · · - · petType
```


OpenAPI SecuritySchemes blokk

- Defineerib autentimise info
 - Mis meetodid nõuavad autentimist
 - Millised autentimisviisid on kasutusel
 - Kuidas edastada autentimisinfot (nt. API_KEY, BasicAuth)
 - Kus asuvad välised autentimise teenused (nt. oAuth)

```
securitySchemes:
    api_key:
    type: apiKey
    name: api_key
    in: header
    petstore_auth:
    type: oauth2
    flows:
    implicit:
        authorizationUrl: http://example.org/api/oauth/dialog
    scopes:
    write:pets: modify pets in your account
    read:pets: read your pets
```

OpenAPI generaator

- Oskab OpenAPI spetsifikatsiooni põhjal genereerida nii kliendi kui ka serveri koodi:
 - Kliendid: 30+ keeles
 - Serverid: 15 keeles
- Loodud serverikood sisaldab:
 - Serveri kood (nt. Flask),
 - Docker fail selle üles seadmiseks konteinerina
 - Veebiliides API dokumenteerimiseks ja reaalajas testimiseks
- Kasutaja peab implementeerima ainult REST-meetodite sisu (PUT, GET, POST, DELETE) ja lisafunktsioonid (nt. DB-ühendus, autentimine, integratsioonid)

API serveri koodi genereerimine

```
Ada, C# (ASP.NET Core, NancyFx), C++ (Pistache, Restbed, Qt5 QHTTPEngine),
Erlang, F# (Giraffe), Go (net/http, Gin, Echo), Haskell (Servant, Yesod),
Java (MSF4J, Spring, Undertow, JAX-
RS: CDI, CXF, Inflector, Jersey, RestEasy, Play Framework, PKMST, Vert.x),
Kotlin (Spring Boot, Ktor, Vertx),
PHP (Laravel, Lumen, Mezzio (fka Zend Expressive), Slim, Silex, Symfony),
Python (FastAPI, Flask),
NodeJS,
Ruby (Sinatra, Rails5),
Rust (rust-server),
Scala (Akka, <u>Finch</u>, <u>Lagom</u>, <u>Play</u>, Scalatra)
```

API klientide genereerimine

ActionScript, Ada, Apex, Bash, C, C# (.net 2.0, 3.5 or later, .NET Standard 1.3 - 2.0, .NET Core 2.0, .NET 5.0. Libraries: RestSharp, HttpClient),

C++ (Arduino, cpp-restsdk, Qt5, Tizen, Unreal Engine 4),

Clojure, Crystal, Dart, Elixir, Elm, Eiffel, Erlang, Go, Groovy, Haskell

Java (Apache HttpClient, Jersey1.x, Jersey2.x, OkHttp, Retrofit1.x, Retrofit2.x, Feign, RestTemplate, RESTEasy, Vertx, Google API Client Library for Java, Restassured, Spring 5 Web Client, MicroProfile Rest Client),

k6, **Kotlin**, **Lua**, **Nim**, **Node.js/JavaScript** (ES5, ES6, AngularJS with Google Closure Compiler annotations, Flow types, Apollo GraphQL DataStore),

Objective-C, OCaml, Perl, PHP, PowerShell, Python, R, Ruby, Rust

Scala (akka, http4s, scalaz, sttp, swagger-async-httpclient), Swift

Typescript (AngularJS, Angular (2.x - 11.x), Aurelia, Axios, Fetch, Inversify, jQuery, Nestjs, Node, redux-query, Rxjs)

OpenAPI veebi dokumentatsioon

- OpenAPI spetsifikatsiooni põhjal genereeritakse API'le interaktiivne veebidokumentatsioon
- Lihtsustab API õppimist
 - Tihti sisaldab näite päringuid, kirjeldusi
 - andmetüüpide definitsioone
 - Päringu vastuse näiteid
- Saab kasutada API testimiseks sarnaselt Postman'ile

OpenAPI Generator Online 5.0.0-beta2

This is an online openapi generator server. You can find out more at https://github.com/OpenAPITools/openapi-generator.

API SERVER:

api-docs

http://api.openapi-generator.tech/

CLIENTS

Gets languages supported by the client generato

GET /api/gen/clients/{language} Returns options for a client library

POST /api/gen/clients/{language} Generates a client library

GET /api/gen/download/{fileId}

Downloads a pre-generated file

SERVERS

GET /api/gen/servers Gets languages supported by the server generator

GET /api/gen/servers/{framework} Returns options for a server framework

POST /api/gen/servers/{framework} Generates a server library

Näite API veebiliides/dokumentatsioon

Smart City timeseries data API OAS 3.1

/openapi.json

This is a Smart City timeseries data API Server based on the OpenAPI 3.0 specification.

Päringu tegemine veebiliidese kaudu

Autentimise info

HTTPBasic (http, Basic) Username: Password: Authorize Close APIKeyHeader (apiKey) Name: api_key	Available autho	rizations	×
Password: Authorize Close APIKeyHeader (apiKey)	HTTPBasic (htt	p, Basic)	
Authorize Close APIKeyHeader (apiKey)	Username:		
APIKeyHeader (apiKey)	Password:		
APIKeyHeader (apiKey)			
		Authorize Close	
Name: api_key	APIKeyHeader (apiKey)	
In: header	In: header		
Value:	Value:		

Authorize

Close

Päringu vastus

```
Responses
Curl
curl -X 'POST' \
   'https://reaalajaandmed.tartu.ee/measurement' \
   -H 'accept: application/json' \
   -H 'api_key: uUW-t6VfzSuNvV_
   -H 'Content-Type: application/json' \
    "measurements": [
     "time": "2025-02-08T05:00:16.500Z",
     "device_identity": "electricity_counter_mae_13_2",
     "measurement_type": "electricity",
     "series": [
         "series_type": "electricity-consumed",
         "unit": "kwh",
         "value": 2.632
         "series_type": "current-power",
"unit": "kw",
         "value": 0.13
Request URL
 https://reaalajaandmed.tartu.ee/measurement
Server response
Code
             Details
201
             Response body
                "message": "Added measurements to the database"
             Response headers
                content-length: 48
                content-type: application/json
date: Wed,19 Mar 2025 09:17:45 GMT
                server: nginx/1.20.1
                strict-transport-security: max-age=31536000
```

Swagger Editor (https://editor.swagger.io/)

Selle nädala praktikum

- OpenAPI spetsifikatsiooni loomine Raamatu halduse API jaoks
- REST API serveri koodi genereerimine OpenAPI genereetori abil
- Genereeritud API skeletoni implementeerimine

Järgmine loeng

- Pilvetehnoloogia
- MicroSoft Azure pilveteenused