CS 234 Winter 2019 Assignment 1

Due: January 23 at 11:59 pm

For submission instructions please refer to website

1 Optimal Policy for Simple MDP [20 pts]

Consider the simple n-state MDP shown in Figure 1. Starting from state s_1 , the agent can move to the right (a_0) or left (a_1) from any state s_i . Actions are deterministic and always succeed (e.g. going left from state s_2 goes to state s_1 , and going left from state s_1 transitions to itself). Rewards are given upon taking an action from the state. Taking any action from the goal state G earns a reward of r = +1 and the agent stays in state G. Otherwise, each move has zero reward (r = 0). Assume a discount factor $\gamma < 1$.

Figure 1: *n*-state MDP

(a) The optimal action from any state s_i is taking a_0 (right) until the agent reaches the goal state G. Find the optimal value function for all states s_i and the goal state G. [5 pts]

$$V(s_1) = R(s_1, a_0) + \gamma V(s_2)$$

$$V(s_2) = R(s_2, a_0) + \gamma V(s_3)$$
.....
$$V(s_{n-1}) = R(s_{n-1}, a_0) + \gamma V(G)$$

$$V(G) = 1 + \gamma V(G)$$

so we can get:

$$V(G) = \frac{1}{1 - \gamma}$$

$$V(s_{n-1}) = \frac{\gamma}{1 - \gamma}$$

$$V(s_{n-2}) = \frac{\gamma^2}{1 - \gamma}$$
.....
$$V(s_1) = \frac{\gamma^{n-1}}{1 - \gamma}$$

(b) Does the optimal policy depend on the value of the discount factor γ ? Explain your answer. [5 pts]

Consider the policy in state s_1 :

$$Q(s_1, a_0) = \gamma V(s_2) = \frac{\gamma^{n-1}}{1 - \gamma}$$

$$Q(s_1, a_1) = \gamma V(s_1) = \frac{\gamma^n}{1 - \gamma} < Q(s_1, a_0)$$

if $\gamma > 0$, then $Q(s_1, a_0) > Q(s_1, a_1)$, the optimal action is a_0 , as in other states. The more a_1 the policy takes, the more discounted value it get.

if $\gamma < 0$, then the value of each state may be greater or less than zero. So the optimal policy depends.

if $\gamma = 0$, every action value in each state presents the same, indicating that the policy is unrelated with the state transition. There may be several optimal policy.

(c) Consider adding a constant c to all rewards (i.e. taking any action from states s_i has reward c and any action from the goal state G has reward c. Find the new optimal value function for all states c and the goal state c. Does adding a constant reward c change the optimal policy? Explain your answer. [5 pts]

$$V(G) = \frac{1+c}{1-\gamma}$$

$$V(s_{n-1}) = \frac{c+\gamma}{1-\gamma}$$

$$V(s_{n-2}) = \frac{c+\gamma^2}{1-\gamma}$$
.....
$$V(s_1) = \frac{c+\gamma^{n-1}}{1-\gamma} = \frac{\gamma^{n-1}}{1-\gamma} + \frac{c}{1-\gamma}$$

All the values is shifted by $\frac{c}{1-\gamma}$, so the optimal policy is unchanged.

(d) After adding a constant c to all rewards now consider scaling all the rewards by a constant a (i.e. $r_{new} = a(c + r_{old})$). Find the new optimal value function for all states s_i and the goal state G. Does that change the optimal policy? Explain your answer, If yes, give an example of a and c that changes the optimal policy. [5 pts]

$$V(G) = a \frac{1+c}{1-\gamma}$$

$$V(s_{n-1}) = a \frac{c+\gamma}{1-\gamma}$$

$$V(s_{n-2}) = a \frac{c+\gamma^2}{1-\gamma}$$
.....
$$V(s_1) = a \frac{c+\gamma^{n-1}}{1-\gamma} = a \frac{\gamma^{n-1}}{1-\gamma} + a \frac{c}{1-\gamma}$$

if a > 0, then the optimal policy is unchanges.

if a = 0, then any policy is optimal.

if a < 0, then the value increases as the action a_1 is taken, converging to $\frac{ac}{1-\gamma}$, which is greater than V(G). So any policy which never reaches terminal state is the optimal policy.

2 Running Time of Value Iteration [20 pts]

In this problem we construct an example to bound the number of steps it will take to find the optimal policy using value iteration. Consider the infinite MDP with discount factor $\gamma < 1$ illustrated in Figure 2. It consists of 3 states, and rewards are given upon taking an action from the state. From state s_0 , action a_1 has zero immediate reward and causes a deterministic transition to state s_1 where there is reward +1 for every time step afterwards (regardless of action). From state s_0 , action a_2 causes a deterministic transition to state s_2 with immediate reward of $\gamma^2/(1-\gamma)$ but state s_2 has zero reward for every time step afterwards (regardless of action).

Figure 2: infinite 3-state MDP

(a) What is the total discounted return $(\sum_{t=0}^{\infty} \gamma^t r_t)$ of taking action a_1 from state s_0 at time step

t = 0? [5 pts]

$$G(s_0) = \sum_{t=1}^{\infty} \gamma^t r_t = \lim_{t \to \infty} \frac{\gamma - \gamma^t}{1 - \gamma} = \frac{\gamma}{1 - \gamma}$$

(b) What is the total discounted return $(\sum_{t=0}^{\infty} \gamma^t r_t)$ of taking action a_2 from state s_0 at time step t=0? What is the optimal action? [5 pts]

$$G(s_0) = \sum_{t=1}^{\infty} \gamma^t r_t = \frac{\gamma^2}{1-\gamma} + 0 + \dots = \frac{\gamma^2}{1-\gamma}$$

so the optimal action is a_1 .

(c) Assume we initialize value of each state to zero, (i.e. at iteration n = 0, $\forall s : V_{n=0}(s) = 0$). Show that value iteration continues to choose the sub-optimal action until iteration n^* where,

$$n^* \ge \frac{\log(1-\gamma)}{\log \gamma} \ge \frac{1}{2}\log(\frac{1}{1-\gamma})\frac{1}{1-\gamma}$$

Thus, value iteration has a running time that grows faster than $1/(1-\gamma)$. (You just need to show the first inequality) [10 pts]

On each iteration, $V(s_0) = \frac{\gamma^2}{1-\gamma}$, but $V(s_1)$ increases by γ^t . After n steps, $V(s_1) = \frac{\gamma - \gamma^{n+1}}{1-\gamma}$. To let the policy choose a_1 , what we only need is

$$\frac{\gamma - \gamma^{n+1}}{1 - \gamma} \ge \frac{\gamma^2}{1 - \gamma}$$
$$1 - \gamma^n \ge \gamma$$
$$n \le \frac{\log(1 - \gamma)}{\log(\gamma)}$$
????

3 Approximating the Optimal Value Function [35 pts]

Consider a finite MDP $M = \langle S, A, T, R, \gamma \rangle$, where S is the state space, A action space, T transition probabilities, R reward function and γ the discount factor. Define Q^* to be the optimal state-action value $Q^*(s, a) = Q_{\pi^*}(s, a)$ where π^* is the optimal policy. Assume we have an estimate \tilde{Q} of Q^* , and \tilde{Q} is bounded by l_{∞} norm as follows:

$$||\tilde{Q} - Q^*||_{\infty} \le \varepsilon$$

Where $||x||_{\infty} = max_{s,a}|x(s,a)|$.

Assume that we are following the greedy policy with respect to \tilde{Q} , $\pi(s) = argmax_{a \in \mathcal{A}} \tilde{Q}(s, a)$. We want to show that the following holds:

$$V_{\pi}(s) \ge V^*(s) - \frac{2\varepsilon}{1-\gamma}$$

Where $V_{\pi}(s)$ is the value function of the greedy policy π and $V^*(s) = \max_{a \in A} Q^*(s, a)$ is the optimal value function. This shows that if we compute an approximately optimal state-action value function and then extract the greedy policy for that approximate state-action value function, the resulting policy still does well in the real MDP.

(a) Let π^* be the optimal policy, V^* the optimal value function and as defined above $\pi(s) = argmax_{a \in A}\tilde{Q}(s, a)$. Show the following bound holds for all states $s \in S$. [10 pts]

$$V^*(s) - Q^*(s, \pi(s)) < 2\varepsilon$$

$$V^{*}(s) - Q^{*}(s, \pi(s)) = V^{*}(s) - \tilde{Q}(s, \pi(s)) + \tilde{Q}(s, \pi(s)) - Q^{*}(s, \pi(s))$$

$$= \max_{a \in A} Q^{*}(s, a) - \tilde{Q}(s, \pi(s)) + \tilde{Q}(s, \pi(s)) - Q^{*}(s, \pi(s))$$

$$= Q^{*}(s, \pi^{*}(s)) - \tilde{Q}(s, \pi(s)) + \tilde{Q}(s, \pi(s)) - Q^{*}(s, \pi(s))$$

$$\leq Q^{*}(s, \pi^{*}(s)) - \tilde{Q}(s, \pi(s)) + \varepsilon$$

$$\leq Q^{*}(s, \pi^{*}(s)) - \tilde{Q}(s, \pi^{*}(s)) + \varepsilon$$

$$\leq 2\varepsilon$$

(b) Using the results of part 1, prove that $V_{\pi}(s) \geq V^*(s) - \frac{2\varepsilon}{1-\gamma}$. [10 pts]

$$V_{\pi}(s) = \tilde{Q}(s, \pi(s))$$

$$\geq Q^{*}(s, \pi(s))$$

$$\geq V^{*}(s) - 2\varepsilon$$

$$\geq V^{*}(s) - \frac{2\varepsilon}{1 - \gamma}$$

Now we show that this bound is tight. Consider the 2-state MDP illustrated in figure 3. State s_1 has two actions, "stay" self transition with reward 0 and "go" that goes to state s_2 with reward 2ε . State s_2 transitions to itself with reward 2ε for every time step afterwards.

Figure 3: 2-state MDP

(c) Compute the optimal value function $V^*(s)$ for each state and the optimal state-action value function $Q^*(s, a)$ for state s_1 and each action. [5 pts]

$$V^*(s_1) = 2\varepsilon + \sum_{i=1}^{\infty} 2\varepsilon \gamma^i = \frac{2\varepsilon}{1 - \gamma}$$

$$V^*(s_2) = V^*(s_1) = \frac{2\varepsilon}{1 - \gamma}$$

$$Q^*(s_1, stay) = \tilde{Q}(s_1, stay) = 0 + \gamma V_{\pi}(s_1) = \frac{2\varepsilon \gamma}{1 - \gamma}$$

$$Q^*(s_1, go) = \tilde{Q}(s_1, go) = 2\varepsilon + \gamma V_{\pi}(s_2) = \frac{2\varepsilon}{1 - \gamma}$$

(d) Show that there exists an approximate state-action value function \tilde{Q} with ε error (measured with l_{∞} norm), such that $V_{\pi}(s_1) - V^*(s_1) = -\frac{2\varepsilon}{1-\gamma}$, where $\pi(s) = argmax_{a \in A}\tilde{Q}(s,a)$. (You may need to define a consistent tie break rule) [10 pts]

(c) shows that
$$V^*(s_1) = \frac{2\varepsilon}{1-\gamma}$$
. Let the $\pi(s_1) = stay$, then $V_{\pi}(s_1) = 0$, such that $V_{\pi}(s_1) - V^*(s_1) = -\frac{2\varepsilon}{1-\gamma}$.

$$\tilde{Q}(s_1, stay) = Q^*(s_1, stay) + \varepsilon$$
$$\tilde{Q}(s_1, go) = Q^*(s_1, go) - \varepsilon$$

4 Frozen Lake MDP [25 pts]

Now you will implement value iteration and policy iteration for the Frozen Lake environment from OpenAI Gym. We have provided custom versions of this environment in the starter code.

- (a) (coding) Read through vi_and_pi.py and implement policy_evaluation, policy_improvement and policy_iteration. The stopping tolerance (defined as $\max_s |V_{old}(s) V_{new}(s)|$) is tol = 10^{-3} . Use $\gamma = 0.9$. Return the optimal value function and the optimal policy. [10pts]
- (b) (coding) Implement value_iteration in vi_and_pi.py. The stopping tolerance is tol = 10^{-3} . Use $\gamma = 0.9$. Return the optimal value function and the optimal policy. [10 pts]
- (c) (written) Run both methods on the Deterministic-4x4-FrozenLake-v0 and Stochastic-4x4-FrozenLake-v0 environments. In the second environment, the dynamics of the world are stochastic. How does stochasticity affect the number of iterations required, and the resulting policy? [5 pts]

The number of iterations increase for both the deterministic and the stochastic environment.