基地班硕士□	博士□
兽医硕士专业学位□	硕博连读研究生□
工程硕士专业学位□	学术型硕士□
农业推广硕士专业学位口	专业学位硕士□
中职教师攻读硕士学位口	同等学力在职申请学位□
风景园林硕士专业学位口	高校教师攻读硕士学位□

西北农林科技大学

研究生课程考试试卷封面

(课程名称:<u>计量经济学 II</u>)

学位课□ 选修课□

研	究 生 年	级、姓 名	
研	究 生	学 号	
所	在学院	(系、所)	
学	科	(领 域)	
任	课教	师 姓名	
考	试	日 期	
考	试	成 绩	
评	卷 教 师	签 字 处	

西北农林科技大学研究生课程考试试题

(20 ----20 学年第 学期)

考核对象	博士□ 学术型硕士□ 专业学位硕士□ 硕博连读研究生□ 兽医硕士专业学位□ 中职教师□
	高校教师□ 工程硕士专业学位□ 同等学力在职申请硕士学位□ 风景园林硕士专业学位□
课程名称	考试方式
命题教师	学科(领域)负责人签字
考试时间 年	月日时至时

第一部分:鳕鱼供需案例分析计算(共3大题,共75分)得分: 分

案例背景介绍:研究者收集了纽约市 **Fulton 海鲜市场** 1991-12-02 日到 1992-05-08 日期间共 111 天的相关日度数据。研究者主要关注**鳕鱼**产品的市场价格和数量,以及其他市场相关变量,如**工作** 日(周一~周五)、气候条件、鳕鱼存货量变化情况等。具体变量及含义见下表:

表 1 鳕鱼案例的变量说明

变量	含义	备注
price	鳕鱼市场价格(美元/千克)	连续变量
quan	鳕鱼的数量(吨)	连续变量
lprice	(自然)对数化的鳕鱼市场价格	连续变量
lquan	(自然)对数化的鳕鱼数量	连续变量
mon	周一	虚拟变量:1=周一;0=其他
tue	周二	虚拟变量:1=周二;0=其他
wen	周三	虚拟变量:1=周三;0=其他
thu	周四	虚拟变量:1=周四;0=其他
stormy	暴风雨天气	虚拟变量:1=暴风雨;0=其他
cold	寒冷天气	虚拟变量:1=寒冷;0=其他
change	鳕鱼存货变化情况	虚拟变量:1=变化大;0=变化小

请根据以上案例背景和数据,分析计算并回答下面一系列问题:

1. (共计 30 分, 共 6 小题) A 同学重点考察鳕鱼价格的影响因素,并构建如下的多元回归价格模型:

$$lprice_{t} = \beta_{1} + \beta_{2}lquan_{t} + \beta_{3}mon_{t} + \beta_{4}tue_{t} + \beta_{5}wed_{t} + \beta_{6}thu_{t} + \beta_{7}stormy_{t} + \beta_{8}cold_{t} + \beta_{9}change_{t} + u_{t}$$
 (价格模型)

A 同学利用统计软件对上述**价格模型**进行 OLS 回归分析,得到如下报告摘要:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.6504	0.4408	1.48	0.14321
lquan	-0.0978	0.0501	-1.95	0.05343.
mon	-0.0830	0.1042	-0.80	0.42780
tue	-0.0836	0.1048	-0.80	0.42677
wed	-0.0732	0.1077	-0.68	0.49801
thu	0.0538	0.1008	0.53	0.59441
stormy	0.2937	0.0815	3.60	0.00049
cold	0.0861	0.0713	1.21	0.22986
change	-0.1478	0.0738	-2.00	0.04801 *
Residual standard error: 0.341 on 102 degrees of freedom Multiple R-squared: 0.261, Adjusted R-squared: 0.203 F-statistic: 4.5 on 8 and 102 DF, p-value: 0.000104				

请根据以上回归结果,回答如下问题:

(1) (5分)根据 A 同学的回归分析报告,请你写出相应的样本回归模型(要求写出理论表达式和数值表达式)。

(2) (2分) 关于变量*lquan*的回归系数,它有什么样的经济学含义(请进行简单的经济学解释)? 其符号和大小是否符合理论上的预期(请简要说明理由)?

- (3)(5 分)A 同学的统计分析报告中:回归系数的 t 检验结果为显著(给定 $\alpha = 0.1$)的变量包括哪些?(请简要说明判断依据)?回归方程的整体显著性 F 检验结果如何?(请简要说明判断依据)?回归方程的判定系数 R^2 和调整判定系数 R^2 分别是多少?
- (4) (5分) 如果 A 同学给出一些已知条件{暴风雨;寒冷;鳕鱼存量变化小;鳕鱼的市场数量为 54.5996 吨},也即{stormy = 1; cold = 1; change = 0; quan = 54.5996}。请计算在给定条件下,Fulton 生鲜市场在星期五的鳕鱼期望价格是多少?(要求:请写出理论表达式,并计算出数值结果;对数计算请以自然数e = 2.7183为底;计算结果保留 2 位小数)。

(5) (5分)为了诊断**价格模型**是否存在多重共线性问题,A 同学利用统计软件得到了下面表 2 所示的**方差膨胀因子计算表**。

表 2 回归方程的方差膨胀因子 VIF

X	lquan	mon	tue	wed	thu	stormy	cold	change
VIF	1.305	1.592	1.723	1.697	1.594	1.302	1.212	1.106

根据表 2 的信息,请判断回归方程是否存在多重共线性问题? (请简要说明判断依据。)

(6) (小计 8 分,共 2 小问)为了诊断价格模型是否存在异方差问题,A 同学利用统计软件对上述回归方程的残差 e_t 进行绘图,得到如下时序图(见图 1):

图 1 残差 et 的时序图

同时,为定量化地考察**价格模型**是否存在异方差问题。A 同学决定进行怀特异方差诊断(White Test),对残差 e_t 构建辅助回归模型:

$$e_t^2 = +\alpha_1 + \alpha_2 lquan + \alpha_3 mon + \alpha_4 tue + \alpha_5 wed + \alpha_6 thu + \alpha_7 stormy + \alpha_8 cold + \alpha_9 change + \alpha_{10} (lquan)^2 + v_t$$

并得到辅助回归模型的分析结果为:

请根据以上分析结果,对价格模型是否存在异方差问题进行如下回答:

a) (3分) 观测残差的时序图(图1),请初步判断**价格模型**是否存在明显的异方差问题?(请简要说明理由)。

b)(5 分)利用上述怀特异方差检验的**辅助回归模型**的回归结果,对**异方差问题**进行 χ^2 显著性检验。(给定 $\alpha=0.05$ 水平下,理论查表值有 χ_0 255(9) = 16.92; χ_0 255(10) = 18.31。)(要求:写出原假设 H_0 和备择假设 H_1 ; 计算出卡方统计量 $\chi^{*2}=n\cdot R^2\sim\chi^2(f)$; 确定正确的理论查表值 $\chi_1^2_{\alpha}(f)$; 明确给出**价格模型**是否存在异方差的诊断结论。)

- 2. (共计 20 分, 共 3 小题) B 同学重点关注鳕鱼对数化价格变量lprice,的平稳性和预测问题。
- (1)(5 分)B 同学决定采用**增广迪基-富勒检验法(ADF)**分析对数化价格变量 $lprice_t$ 的**平稳性**问题。利用统计软件分析,有如下表(表 3)所示的结果:

表 3 对数化价格变量 lprice 的增广迪基-富勒检验(ADF)

项目	细节
检验方法	Augmented Dickey-Fuller Test
备择假设 H ₁	alternative hypothesis:stationary (平稳)
检验变量	lprice
迪基-富勒统计量	Dickey-Fuller =-4.76
滞后阶数	Lag order =4
概率值	p-value =0.01

请根据以上信息,判断对数化价格变量lprice_t是不是平稳时间序列? (请简要给出理由。)

(2)(5 分)为了识别对数化价格变量 $lprice_t$ 的波动模式,B 同学进一步绘制出了 $lprice_t$ 序列的自相关图(ACF,见图 2)和偏自相关图(PACF,见图 3)

请根据以上图形信息,初步判断对数化价格变量 $lprice_t$ 的时间序列过程是属于哪一种模式?(要求:指明是 AR 过程/MA 过程/ARMA 过程中的哪一种,不需要指明阶数,并给出简要理由。)

(3)(**小计 10 分,共 2 小问**)为进一步对变量 $lprice_t$ 进行准确ARMA(p,q)建模,B 同学尝试进行 ARMA(2,0)建模分析。B 同学使用统计软件,得到如下分析摘要信息结果:

同时,B同学进一步对以上*ARMA*(2,0)建模结果的残差绘图,得到回归残差的自相关图(ACF,见图 4)和偏自相关图(PACF,见图 5)

a) (6分)根据分析报告摘要信息,写出ARMA(2,0)模型的样本回归方程形式。

b) (4分)根据残差绘图结果(图4和图5),判断B同学的ARMA(2,0)建模是否合理,并给出简要理由。

3. (共计 25 分,共 5 小题) C 同学重点关注鳕鱼供需关系联立方程建模分析。
对此, C 同学构建了如下的联立方程:
$lquan_t = \alpha_0 + \alpha_1 lprice_t + \alpha_2 mon_t + \alpha_3 tue_t + \alpha_4 wen_t + \alpha_5 thu_t + u_{1,t}$ (需求方程) $lquan_t = \beta_0 + \beta_1 lprice_t + \beta_3 stormy_t + u_{2,t}$ (供给方程)
(1)(3 分)对于以上联立方程模型, 需求方程 中变量 $lprice_t$ 的参数 $lpha_1$,以及 供给方程 中变量 $lprice_t$
e_t 的参数 β_1 ,理论上这两个参数的大小和符号应该分别有什么要求?
(2) (5分)请根据 阶条件规则 ,对上述联立方程模型中 需求方程 和 供给方程 分别作出识别性问题的判断,并请说明判断依据。

(3) (5分)请将以上需求方程和供给方程分别表达成约简方程形式。(要求:不需要写出结构系

数与约简系数的关系式。**数量方程**(lquan)约简系数记为 $\pi_{1,p}$ (p=0,1,...),随机干扰项记为 $v_{1,t}$; 价

(4) (小计 6 分, 共 2 小问) C 同学直接使用普通最小二乘法(OLS)对第(3)问中的约简方程

第8页/共13页

格方程(lprice)约简系数记为 $\pi_{2,q}$ (q=0,1,...),随机干扰项记为 $v_{2,t}$ 。)

分别进行回归,并得到如下分析结果。

对数化鳕鱼数量(lquan)的约简方程 OLS 回归结果为:

对数化鳕鱼价格(lprice)的约简方程 OLS 回归结果为:

= lprice	- 0.27	-0.11mon	- 0.04 <i>tue</i>
(t)	(-3.5569)	(-1.0525)	(-0.3937)
(se) (cont.)	(0.0764) – 0.01wed	(0.1073) + $0.05thu$	(0.1045) + 0.35 stormy
(t)	(-0.1106)	(0.4753)	(4.6387)
(se)	(0.1069)	(0.1045)	(0.0747)
(fitness)	n = 111;	$R^2 = 0.1789;$	$R^2 = 0.1398$
	$F^* = 4.58;$		p = 0.0008

a) (4分)如果已知条件为{周一;暴风雨},也即{mon=1; stormy=1}。在给定条件下,根据上述约简方程结果,请计算 Fulton 生鲜市场的**鳕鱼价格** price 和**鳕鱼数量** quan分别是多少?(要求:对数计算请以自然数 e=2.7183 为底;计算结果保留 2 位小数)。

b) (2分) C 同学坚持认为:以上步骤计算得到的**鳕鱼价格***price*和**鳕鱼数量***quan*就是 Fulton 生鲜市场在周一旦天气为**暴风雨**时的**市场均衡价格**和**市场均衡数量**。你认为 C 同学的观点是否正确?请简要说明你的理由。

(5) (**小计 6 分,共 2 小问**) **C 同学**随后又采用了**两阶段最小二乘法(2SLS)** 对联立方程模型进行了回归分析,得到如下表所示的分析结果(见表 4):

表 4 两阶段最小二乘法(2SLS)回归结果

eq	vars	Estimate	Std. Error	t value	Pr(> t)
eq1	(Intercept)	8.5059	0.1662	51.1890	0.0000
eq1	lprice	-1.1194	0.4286	-2.6115	0.0103
eq1	mon	-0.0254	0.2148	-0.1183	0.9061
eq1	tue	-0.5308	0.2080	-2.5518	0.0122
eq1	wed	-0.5664	0.2128	-2.6620	0.0090
eq1	thu	0.1093	0.2088	0.5233	0.6018
eq2	(Intercept)	8.6284	0.3890	22.1826	0.0000
eq2	lprice	0.0011	1.3095	0.0008	0.9994
eq2	stormy	-0.3632	0.4649	-0.7813	0.4363

a)(2分)基于以上分析报告,请你计算出鳕鱼的需求价格弹性 η_1 和供给价格弹性 η_2 分别是多少?

b) (4分) 基于以上分析报告,请你帮 C 同学计算出 Fulton 生鲜市场在**周一**且天气为**暴风雨**时 (也即**{ mon=1; stormy=1 }**) 鳕鱼的**市场均衡价格**和**市场均衡数量**。(计算结果保留 2 位小数。)

第二部分:乳腺癌案例分析计算(共5小题,共25分)得分: 分

案例背景介绍:一项关于**女性乳腺癌患病**情况的控制性研究,收集了共 **178** 名女性的相关资料。研究者主要关注二分类变量**是否患乳腺癌**(*Cancer*),以及与其他相关变量的关系,具体变量及含义见下表所示(5)

表 5 女性乳腺癌案例的变量说明

变量	含义	备注
Cancer	是否患乳腺癌	虚拟变量:1=患有乳腺癌; 0=未患乳腺癌
Age	年龄(岁)	数值变量
HIGD	受教育年数(年)	数值变量
CHK	是否接受过正规检查	虚拟变量:1=接受过正规检查;0=未接受过正规检查
AGPI	生育第一胎时的年龄	数值变量
Miscar	流产次数(次)	数值变量
Births	生育子女数(个)	数值变量
Weight	体重(磅)	数值变量

对变量**是否患有乳腺癌(Cancer)**,构造如下的总体回归模型(见公式(1)):

Cancer =
$$+\beta_1$$
 + $\beta_2 Age$ + $\beta_3 HIGD$
(cont.) + $\beta_4 CHK$ + $\beta_5 AGPI$ + $\beta_6 Miscar$ (1)
(cont.) + $\beta_7 Births$ + $\beta_8 Weight$ + u

研究者对上述模型(公式(1))进行 logit 形式的极大似然估计,统计软件的分析结果如下表所示(见表 6):

表 6 Logit 回归估计结果

term	estimate	std.error	statistic	p.value
(Intercept)	-0.5273	2.3190	-0.2274	0.8201
Age	0.0058	0.0219	0.2660	0.7902
HIGD	-0.0615	0.0860	-0.7144	0.4750
СНК	-1.5960	0.5286	-3.0191	0.0025
AGPI	0.1339	0.0562	2.3844	0.0171

Miscar	0.3415	0.2395	1.4257	0.1540
Births	0.2923	0.1302	2.2455	0.0247
Weight	-0.0294	0.0100	-2.9310	0.0034

基于以上的 logit 回归分析,研究者统计乳腺癌患病预测情况,具体见表 7:

表 7 logit 回归分析预测情况统计

真实值	预测值	频次
0	0	130
1	0	28
0	1	8
1	1	12

请回答下面的一系列问题:

(1)(5 分)给定 Y_i 为二分类变量, X_i 为连续变量,如果分别构建 probit 模型和 logit 模型,并令概率 $P(Y_i=1|X)=\Phi(\beta_0+\beta_1X_i)$,且令 $Z_i=\beta_0+\beta_1X_i$ 。研究人员分别绘制下图所示的累积概率曲线(见图 6)。

图 6 probit 模型和 logit 模型下的累积概率曲线

请指出图 6 中,probit 累积概率曲线和 logit 累积概率密度曲线分别是哪一条?并请写出 logit 累积概率函数表达式。

(2)(5 分)根据 Logit 回归估计结果(见表 6),请正确写出 logit 样本回归函数。 变量用 L_i 表达,回归系数保留 4 位小数)。	(要求: logit
(3)(5 分)根据 logit 回归的预测情况统计(见表 7),请计算拟合优度指标—— $\hat{\iota}$	十数 <i>R</i> ² 值。
(要求: 写出理论计算公式; 计算结果保留 2 位小数)	

(4) (5分) 如果已经计算得到**似然比统计量** $LR^* = \chi^{2^*} = 25.97$,请对 logit 回归进行模型整体显著性卡方检验。(给定 $\alpha = 0.05$ 水平下,卡方分布的理论查表值有 $\chi_0^2_{.95}(7) = 14.07$; $\chi_0^2_{.95}(8) = 15.51$ 。)(要求:写出原假设 H_0 和备择假设 H_1 ;确定正确的理论查表值 $\chi_1^2_{-\alpha}(f)$;明确给出模型整体显著性检验结论。)

(5) (5分)根据 logit 回归结果,请计算一个**接受过正规检查**(也即CHK = 1)与一个**未接受过正规检查**(也即CHK = 0)的女性,两种情形下罹患乳腺癌的**机会比率值**是多少(假定其他条件不变)?