PUNTAJE:

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA DEPARTAMENTO DE CIENCIA DE LA COMPUTACIÓN

IIC1253 — Matemáticas Discretas — 1° Semestre 2022

Tarea 5 – Respuesta Pregunta 1

Sean $f: \mathbb{N} \to \mathbb{R}^+$ y $g: \mathbb{N} \to \mathbb{R}^+$ dos funciones cualesquiera. Demuestre o entregue un contraejemplo para las siguientes afirmaciones:

- 1. Si $f(n) \in \Theta(g(n))$ entonces $\min\{f(n), g(n)\} \in \Theta(\max\{f(n), g(n)\})$.
- 2. Si $f(n) \in O(g(n))$ entonces $f(n)^{g(n)} \in O(g(n)^{f(n)})$.

Solución:

1) Por definición tenemos que $f(n) \in \Theta(g(n))$ ssi:

$$\exists c_1, c_2 > 0. \ \exists n_0 \in \mathbb{N}. \ \forall n \geq n_0. \ c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$

Es decir, existen dos constantes que multiplican a la función g(n) que dejan a f(n) entre ellas para todo $n > n_0$, desigualdad que podemos representar como:

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

Para demostrar que $\min\{f(n), g(n)\} \in \Theta(\max\{f(n), g(n)\})$ debemos ver todas las combinaciones para todas las funciones posibles.

Si
$$\min\{f(n), g(n)\} = f(n) \longrightarrow f(n) \in \Theta(g(n))$$

Si
$$\min\{f(n), g(n)\} = g(n) \longrightarrow g(n) \in \Theta(f(n))$$

Como sabemos que la primera ya se cumple, debido a que se asume como verdadero, debemos demostrar que se cumple la segunda parte de la afirmación.

Si $g(n) \in \Theta(f(n))$, esto significa que:

$$g(n) \in \Omega(f(n)) \land g(n) \in O(f(n))$$

De la desigualdad expresada anteriormente se pueden hacer dos despejes para expresar el cumplimiento de cada pertenencia. Primero O por lo que expresamos su definición base:

$$g(n) \le c \cdot f(n)$$

Por lo que debemos llegar a una expresión así utilizando la que ya sabemos que es verdadera:

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

Viendo el lado izquierdo de la ecuación:

$$c_1 \cdot g(n) \le f(n)$$

Dividiendo por la constante:

$$g(n) \le \frac{1}{c_1} \cdot f(n)$$

Donde $\frac{1}{c_1} = c'$, por lo que nos queda la expresión:

$$g(n) \le c' \cdot f(n)$$

Por lo tanto sabemos que para todo $n \ge n_0$ $g(n) \in O(f(n))$.

Ahora para Ω necesitamos que:

$$c \cdot f(n) \le g(n)$$

Utilizando la desigualdad verdadera:

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

Viendo el lado derecho de la ecuación esta vez:

$$f(n) \le c_2 \cdot g(n)$$

Dividiendo por la constante:

$$\frac{1}{c_2} \cdot f(n) \le g(n)$$

Transformando $\frac{1}{c_2} = c'$:

$$c' \cdot f(n) \le g(n)$$

Por lo tanto sabemos que para todo $n \ge n_0$ $g(n) \in \Omega(f(n))$ y por ende $g(n) \in \Theta(f(n))$.

De esta manera queda demostrado que si $f(n) \in \Theta(g(n))$ entonces $\min\{f(n), g(n)\} \in \Theta(\max\{f(n), g(n)\})$.

2) Por definición tenemos que $f(n) \in O(g(n))$ ssi:

$$\exists c > 0. \ \exists n_0 \in \mathbb{N}. \ \forall n \geq n_0. \ f(n) \leq c \cdot g(n)$$

Buscamos un contraejemplo para la afirmación, encontrando dos funciones que satisfagan las condiciones de la definición:

$$f(x) = x$$

$$q(x) = x^2$$

Donde, con $n_0 = 0$:

$$\exists c_1 > 0. \ \forall n > n_0. \ n \leq c_1 \cdot n^2$$

Ahora reemplazando en la afirmación derivada asumiendo que se cumplirá :

$$f(n)^{g(n)} \in O(g(n)^{f(n)}) \iff \exists c_2. \ \exists n_0 \in \mathbb{N}. \ \forall n \ge n_0. \ n^{n^2} \le c_2 \cdot n^{2^n}$$

Tenemos dos funciones de igual base, por lo que analizamos el exponente, donde para que una función sea menor en ámbitos de notación asintótica debe tener un menor grado:

$$n^2 < 2n$$

Esta desigualdad nos entrega una contradicción, ya que si el exponente de la función externa al O es mayor al de la que está dentro, esta función no pertenece. Esto lo podemos confirmar al encontrar el n_0 el cual en este caso tiene el valor de 2, donde desde ahí en adelante el valor de n^2 será mayor al de 2n y por ende el grado de f(n) será mayor a g(n) para todo $n \ge 2$ definiendo inválida la afirmación.