ÖVEGES JÓZSEF Fizikaverseny

2023. március 13 Megyei szakasz

VIII. osztály

JAVÍTÓKULCS

Tudod-e? (Kovács Zoltán)

a) Miben áll a diffúzió jelensége?	keveredés
b) Milyen anyagoknál megy végbe a leggyorsabban a diffúzió?	gáz
c) A részecskék milyen jellegű mozgását igazolja a Brown-féle mozgás?	kaotikus
d) Melyik a hőmérő legfontosabb része?	hőérzékelő
e) Melyik az összefüggés a Celsius- és a Kelvin-skála között?	$t(^{\circ}C) = T(K) - 273,15$
f) Milyen formában terjed a hő fémekben?	vezetés
g) Mikor van két test hőegyensúlyban?	$T_1 = T_2$
h) A hőerőgép által végzett munka értéke:	$L = Q_1 - Q_2 $
i) A hőerőgép hatásfoka a valóságban:	$\eta = L/Q_1 < 1$
j) A hőkapacitás képlete:	$C = Q/\Delta t$
k) A hármaspont értéke:	273,16K
1) A fűtőérték mértékegysége:	J/kg
m) Milyen állapotváltozás a deszublimálás?	kristályosodás

Összesen: 2,6 pont

Magyarázd meg!

I. A hűtőgép a hálózatból felvett energia egy részével hőt von el a belsejéből, amit a környezetének ad át. A felvett energia többi része hő formájában szintén a környezetbe kerül. Összességében a szoba melegedni fog. (*FIRKA* 1. 1991. Néda Zoltán) Összesen: **0,2 pont**

II. A kezünknél hidegebb fém elvezeti a hőt a kezünkről, a fa nem, mert hőszigetelő. Ha a testek a kezünkkel azonos hőmérsékletűek, őket ugyanolyan hőmérsékletűnek érezzük. (*FIRKA* 2. 2009/2010. F. 435.) Összesen: **0,2 pont**

III. Egyes anyagok folyadék állapotból megszilárdulva a térfogatukat csökkentik, mások növelik. A viasz csökken. A viasz fagyása térfogatcsökkenéssel, míg a víz megfagyása térfogatnövekedéssel jár. (*FIRKA* 3-4. 1992. F.G. 20. Kovács Zoltán) Összesen: **0,2 pont**

1. Feladat (Kovács Zoltán)

		Pont
a)	Mert a vízmolekulák a hőmozgás révén ütköznek az üveg falával, az azon lévő lekvár	0,2
	részecskéivel, és lemálasztják őket, majd összekeverednek velük.	
b)	A forró víz részecskéi gyorsabban mozognak, az edény falával nagyobb termikus	0,2
	sebességgel ütköznek, a lemálasztási és elkeveredési folyamat felgyorsul.	

Összesen: 0,4 pont

2. Feladat (Darvay, Kovács, Lázár, Tellmann – *Fizika példatár. Mechanika*)

	Pont
$Q = m \cdot c \cdot \Delta t$	0,1
$Q = Q_1 + Q_2 + Q_3$	0,1
$m=m_1+m_2+m_3$	0,1
$Q_1 = m_1 \cdot c_1 \cdot \Delta t, \ Q_2 = m_2 \cdot c_2 \cdot \Delta t, \ Q_3 = m_3 \cdot c_3 \cdot \Delta t$	0,1
$(m_1 + m_2 + m_3) \cdot c \cdot \Delta t = (m_1c_1 + m_2c_2 + m_3c_3) \cdot \Delta t$	0,1
$c = \frac{m_1c_1 + m_2c_2 + m_3c_3}{m_1c_1 + m_2c_2 + m_3c_3}$	0,1
$c = \frac{m_1 + m_1 + m_1}{m_1 + m_2}$	

Összesen: 0,6 pont

3. Feladat (*FIRKA* 3-4. 1992 F.G. 25.)

	Pont
A kétszer nagyobb tömegű henger kétszer több hőt ad át a viasznak, ameddig ismét	0,2
vissza nem fagy.	
A viaszba süllyedés egy bizonyos hőmérsékletig megy végbe záros határidőn belül, ezért	0,2
mindkét henger hőmérsékletváltozása azonos.	
Mivel a hengerek tömegeinek aránya 2, az általuk leadott hőmennyiségek aránya is 2. A	0,2
hengerek által leadott hőmennyiségek a tömegeikkel arányosak, vagyis: $Q_1 = 2 \cdot Q_2$	
$m_1 \cdot c \cdot \Delta t = 2 \cdot m_2 \cdot c \cdot \Delta t$, vagyis $m_1 = 2 \cdot m_2$	0,1
$m_1 = 2 \cdot m_2$, $\rho V_1 = 2\rho V_2$, $h_1 S = 2h_2 \cdot S$, $azaz h_1 = 2 \cdot h_2$.	0,2
A kétszer nagyobb tömegű henger magassága kétszerese a kisebbikének.	
A meglágyított viaszok térfogatának aránya: $V_{1v} = 2V_{2v}$.	0,1
vagyis $h_{1v} \cdot S = 2 \cdot h_{2v} \cdot S$, azaz $h_{1v} = 2h_{2v}$	0,1
A nagyobb tömegű henger kétszer annyi viaszt tud meglágyítani, mint a kisebb.	0,1

Összesen: 1,2 pont

4. Feladat (*FIRKA* 3. 1997/1998. 4.)

			Pont
a)	A folyamatdiagram	Q_3 Q_2 Q_3 Q_2 Q_3 Q_1	0,3
	$Q_{\text{hasznos}} = Q_1 + Q_2 + Q_3$		0,1
	$Q_{\text{hasznos}} = m_{\text{jég}} c_{\text{jég}} (0 - t_0) + m_{\text{jég}} \cdot \lambda_{\text{jég}} + m_{\text{jég}} \cdot c_{\text{víz}} (100 - 0)$		0,3
	$Q_1 = m_{\text{jég}}c_{\text{jég}}(0 - t_0) = 0.5 \cdot 2090 \cdot 12 = 12540 \text{ J} = 12.54 \text{ kJ felmelegíti a jeget.}$		0,2
	$Q_2 = m_{\text{jég}} \cdot \lambda_{\text{jég}} = 0.5 \cdot 330\ 000 = 165\ 000\ \text{J} = 165\ \text{kJ megolvasztja a jeget.}$		0,2
	$Q_3 = m_{\text{jég}} c_{\text{víz}} (100 - 0) = 0.5.4180.100 = 209\ 000\ J = 209\ \text{kJ fel}$	melegíti a jégből	0,2
	keletkezett vizet a víz forráspontjáig.		
	$Q_{\text{hasznos}} = Q_1 + Q_2 + Q_3 = 386,54 \text{ kJ}.$		0,1
b)	$\eta = Q_{\text{hasznos}}/Q_{\text{befektetett}} = 2/3$		0,2
	$Q_{\text{befektetett}} = Q_{\text{hasznos}}/\eta = 386,54/(2/3) = 579,81 \text{ kJ}$		0,2
	Q befektetett = m tüzelő \cdot q		0,1
	$m_{ m tüzelő} = Q_{ m befektetett}/q = 597,81/30\ 000 = 0,019\ { m kg}$		0,2

c)	Az <i>M</i> tömegű víz 0°C-ra lehűlésekor leadott <i>Q</i> hő:	0,3
()	$Q = M \cdot c_{\text{viz}} \cdot 50 = 6.4180 \cdot 50 = 1284 \text{ kJ}$, több, mint $Q_1 + Q_2 = 177,54 \text{ kJ}$, tehát az	
	egyensúlyi hőmérséklet 0°C fölött lesz.	
	T(°C)	0,3
	$50 \longrightarrow O_{\rm M}$	0,5
	$g_{\rm M}$	
	$\theta \mid$	
	Q_2	
	idő	
	-12 2	0.1
	A kalorimetrikus egyenlet: $Q_{\text{fel}} = Q_{\text{le}}$	0,1
	$Q_{\text{fel}} = Q_1 + Q_2 + Q_{\text{m}}$, ahol Q_{m} a jégből lett víznek az egyensúlyi hőmérsékletig történő	0,1
	felmelegedéshez szükséges hő	
	$Q_{\text{fel}} = 12,54 + 165 + m_{\text{jég}} c_{\text{víz}} (\theta - 0)$	0,1
	$Q_{\text{le}} = M \cdot c_{\text{víz}} \cdot (t - \theta)$	0,1
	$Q_{ m fel} = Q_{ m le}$	0,1
	$12,54 + 165 + m_{\text{jég}} c_{\text{víz}} (\theta - 0) = M \cdot c_{\text{víz}} \cdot (t - \theta)$	0,1
	$177,54 + 0,5 \cdot 4,18 (\theta - 0) = 6 \cdot 4,18 \cdot (50 - \theta)$	0,1
	$177,54 + 2,09 \ \theta = 25,08 \cdot 50 - 25,08 \cdot \theta$	0,1
	$27,17 \cdot \theta = 1076,46$, ahonnan az egyensúlyi hőmérséklet: $\theta = 39,62$ °C	0,1

Összese: 3,6 pont

Hivatalból: (1 pont)