

#### LINEAR PREDICTORS

## Why

Here's a simple idea. If the set of postcepts is a vector space, use a predictor that is a linear transformation.<sup>1</sup>

#### **Definition**

A linear predictor is a predictor which is linear in the precepts.

# Example

Suppose that the set of precepts is  $\mathbb{R}^d$ , for some  $d \in \mathbb{N}$ .

### **Squared Loss**

We have a dataset of pairs  $(x^1, y^1), \ldots, (x^n, y^n)$ , and we want to select the predictor f to minimize. We want to find f linear to minimize  $\sum_i \ell(f(x^i), y^i)$  For every linear function f there exists vector  $\theta$ . We want to find f linear to minimize  $\sum_i \ell(\theta^\top, y^i)$ 

<sup>&</sup>lt;sup>1</sup>Future editions will expand on this why.

