SYSTEMES OPTIQUES

(01) Dioptre Plan & Lame à Faces Parallèles

R.DAHMANI 2025

Objectifs: Pourquoi?

- 1. Comment se forme une image a travers un SO?
- 2. Comment peut-on avoir une image claire?
- 3. Pourquoi certaines images formées sont floues.?

Donc, on a besoin d'<u>une</u> o<u>ptique</u> pour "reassembler" dans une image ces rayons qui ont été diffus

 Chaque point d'un objet diffuse la lumière incidente en une onde sphérique

 A peine éloignés de leur source, les rayons on "<u>délocalisé</u>" les détails et la position de l'objet

- Pour "relocaliser" ces détails, il est nécessaire de réunir, reconcentrer ("focaliser") tous les rayons venant d'un point objet en un autre point dans l'espace ("image")
- · Ceci est ce que va faire un système optique d'imagerie

Définitions
 C'est quoi un système optique?
 Quelles sont les caractéristiques d'un système optique?
 Quels sont les différents types de SO?

Un système optique :

Est un ensemble de milieux transparents séparés par des surface planes ou sphériques: dioptres, miroirs, Lunettes, télescopes, appareils photos.....

Système optique centré

Système optique centré: les surfaces de séparation entre les différents milieux sont des surfaces de révolution autour d'un même axe:

Axe du système optique ou

axe optique.

Système optique centré

- Système dioptrique : Système optique ne comprenant que des dioptres.
- Système catadioptrique : Système optique comprenant des dioptres et des miroirs.
- Système catoptrique : Système ne comprenant que des miroirs.

Le Télescope Système catadioptrique

Images: Monde réel et monde virtuel - vrai ou faux?

Formation des images à travers un système optique.

Un point A a pour image A'

Si tous les rayons lumineux issus de A convergent vers A'.

- Les rayons réels sont ceux qui sont réellement suivis par la lumière
- Les rayons virtuels sont le prolongement de rayons réels.

- A est un objet ponctuel situé sur l'axe optique. A' est son image.

On dit que A et A' sont **conjugués**

- AB est un objet étendu situé sur l'axe optique. A'B' est son image.

- Objet réel : objet appartenant à l'espace objet
- Objet virtuel : objet appartenant à l'espace image
- Image réelle : image appartenant à l'espace image
- Image virtuelle : image appartenant à l'espace objet

Stigmatisme et stigmatisme approché

STIGMATISME ET ASTIGMATISME

Contexte : un système optique ne donne pas d'image nette sauf dans certaines conditions ; les conditions de Gauss.

Images hors conditions de Gauss:

- Floues.
- Déformées.
- Distordues.

Condition de Gauss:

- Les rayons lumineux doivent être peu inclinés par rapport à l'axe optique.
- Les rayons lumineux doivent être peu écartés de l'axe optique.
- On dit que les rayons sont paraxiaux.

Dans la pratique : on limite les rayons lumineux avec un diaphragme.

Stigmatisme rigoureux et approché

Système optique (S)

Stigmatisme rigoureux : Le système S est rigoureusement stigmatique pour un couple de points A et A' si tous les rayons issus de A passent <u>exactement</u> par A' après avoir traversé S.

Stigmatisme approché : Le système S présente un stigmatisme approché pour un couple de points A et A' si tous les rayons issus de A passent <u>au voisinage</u> de A' après avoir traversé S.

Le Dioptre plan

OBJECTIFS

L'objectif de cette partie est de :

- Comprendre comment un dioptre plan donne d'un objet réel placé devant lui une image virtuelle
- 2. Utiliser les lois de la réfraction pour tracer le rayon ou le faisceau réfracté correspondant à un rayon ou à un faisceau lumineux incident sur un dioptre plan.

Une convention pour les systèmes dioptriques

Sens (+) =sens de propagation de la lumière.

Sens (+) pour les angles : sens trigonométrique

A est l'objet ponctuel, A' l'image de A à travers le dioptres, S et C les points caractéristiques du dioptre.

On définit :

$$p = \overline{AS}$$

$$q = \overline{SA}'$$

$$R = \overline{SC}$$

Sens de propagation de la lumière

Pour comprendre la logique de cette convention, les paramètres ayant le même sens que celui de la

Sens de propagation de la lumière

Objet réel p>0

Image virtuelle q<0

Objet virtuel q<0

Image réelle ` p>0

Dioptre plan: Stigmatisme approché

Un **dioptre plan** est la surface plane qui sépare deux milieux

transparents, homogènes et isotropes, d'indices différents.

La nature nous offre, en nombre infini de **dioptres plans**.

L'image d'un point à travers un dioptre PLAN _ Observateur

$$tgi_1 = \frac{HI}{HA_1}$$

Donc:
$$HA_1 tgi_1 = HA_2 tgi_2$$

$$tgi_2 = \frac{HI}{HA_2}$$

Si l'angle i est petit : $tgi_1 = \sin i_1$ et $tgi_2 = \sin i_2$

donc $HA_1 \sin i_1 = HA_2 \sin i_2$ or $n_1 \sin i_1 = n_2 \sin i_2$

done:
$$\frac{n_1}{HA_1} = \frac{n_2}{HA_2}$$

$$HA_2 = \frac{n_2}{n_1} HA_1$$

Le poisson voit l'oiseau plus loin que la distance réelle, et l'oiseau voit le poisson plus près que la distance réelle.

L'image est **stigmatique seulement** proche de la normale (i petit), à cause de l'approximation tangente=sinus

Dioptre plan: Image d'un objet & Grandissement

l'objet A₁B₁ est réel parallèle à la surface du dioptre .

l'objet A₁B₁ est réel et perpendiculaire à la surface du dioptre .

Lame à faces parallèles

Lame à faces parallèles

Lame à faces parallèles

Soit 3 milieux d'indice n_1 , n_2 et n_3 séparés par deux dioptres plans distant de e.

$$d = e \cdot \sin i_1 \left(1 - \frac{n_1}{n_2} \right)$$

$$AA'=e\left(1-\frac{n_1}{n_2}\right)$$

Exemple:

Calculer d et AA' pour une lame plongée dans l'air

Donc

n₁ = 1 et n₂ = n

(verre quelconque)

Au point I on a: $n_1 \sin i = n_2 \sin r$

Donc: $r = arc \sin (n_1/n_2 \sin i)$

Au point I on a: $n_2 \sin r = n_1 \sin i'$

Donc: i = i'

La distance d est déterminée par les relations dans le triangle IJK, rectangle en K :

$$d = JK = IJ \sin(i - r)$$

Par ailleurs, dans le triangle IJH rectangle en H, nous avons :

$$IJ = \frac{IH}{\cos r} = \frac{e}{\cos r}$$

On peut donc écrire :

$$d = e \, \frac{\sin(i-r)}{\cos r}$$

$$d = e \, \frac{\sin(i-r)}{\cos r}$$

Il faut éliminer r dans cette expression :

$$\cos r = \sqrt{1 - \sin^2 r} = \frac{\sqrt{n_2^2 - n_1^2 \sin^2 i}}{n_2}$$

 $d = e \frac{\sin i \cos r - \sin r \cos i}{\cos r}$

Nous obtenons finalement:

$$d(i) = e \left(\sin i - \frac{n_1 \sin i}{\sqrt{n_2^2 - n_1^2 \sin^2 i}} \cos i \right) = e \sin i \frac{\sqrt{n_2^2 - n_1^2 \sin^2 i} - n_1 \cos i}{\sqrt{n_2^2 - n_1^2 \sin^2 i}}$$

Pour des rayons proches de la normale, $\sin i \to i$, $\sin^2 i \to 0$ et $\cos i = \sqrt{1 - \sin^2 i} \to 1$.

Déplacement latéral pour $i \to 0$ $d \approx ei \left(1 - \frac{1}{n}\right)$

$$d \approx ei\left(1-\frac{1}{n}\right)$$

Pour des rayons proches de la normale, $\sin i \to i$, $\sin^2 i \to 0$ et $\cos i = \sqrt{1 - \sin^2 i} \to 1$.

$$d \approx e^{i} \sin i \left(1 - \frac{1}{n}\right)$$
 Déplacement latéral pour $i \to 0$ $d \approx e^{i} \left(1 - \frac{1}{n}\right)$

$$d \approx ei\left(1-\frac{1}{n}\right)$$

L'image d'un point A est un point A'. La distance AA' vaut $=\frac{d}{\sin i} \approx e \left(1 - \frac{1}{n}\right)$.

$$=\frac{d}{\sin i} \approx e \left(1 - \frac{1}{n}\right)$$

Déplacement apparent

$$AA' \approx e \left(1 - \frac{1}{n}\right)$$

n > 1, un objet paraît plus proche qu'il n'est en réalité.

Calcul de aa' (méthode 2)

$$\overline{A_2H} = \overline{A_1H} \frac{n_2}{n_1} \quad (1)$$

$$\overline{A'_1K} = \overline{A_2K} \frac{n_1}{n_2} \quad (2)$$

A partir (1) et (2), on détermine pour la lame, la position relative de l'image finale et virtuelle A'1 par rapport au point objet réel A1.

On a:

$$\overline{A'_1K} = (\overline{A_2H} + \overline{HK}) \frac{n_1}{n_2} = (\overline{A_1H} \frac{n_2}{n_1} + \overline{HK}) \frac{n_1}{n_2} = \overline{A_1H} + \overline{HK} \frac{n_1}{n_2} = \overline{A_1K} + \overline{KH} \left(1 - \frac{n_1}{n_2}\right)$$

$$\overline{\mathbf{A}_1 \mathbf{A'}_1} = \overline{\mathbf{HK}} \left(1 - \frac{\mathbf{n}_1}{\mathbf{n}_2} \right)$$

Donc:

$$\overline{A_1 A'_1} = e \left(1 - \frac{n_1}{n_2} \right)$$

Merci