第一章气体的pVT关系

教学基本要求

- 掌握理想气体状态方程
- 掌握理想气体的宏观定义及微观模型,掌握分压、分体积概念及计算。
- 理解真实气体与理想气体的偏差、临界现象。
- 理解范德华状态方程、对应状态原理和压缩因子图, 了解对比状态方程及其它真实气体方程。

第一章气体的pVT关系

- § 1.1 理想气体状态方程
- § 1.2 理想气体混合物
- § 1.3 气体的液化及临界参数
- § 1.4 真实气体状态方程
- § 1.5 对应状态原理及普遍化压缩因子图

物质的聚集状态

联系p、V、T之间关系的方程称为状态方程

对于由纯物质组成的均相流体

n 确定: f(p, V, T) = 0

n不确定: f(p, V, T, n) = 0

物理化学中主要讨论气体的状态方程

§ 1.1 理想气体状态方程

1. 理想气体状态方程 实验发现

低压气体定律:

(1) 玻义尔定律(R. Boyle, 1662):

$$pV = 常数 \qquad (n, T - 定)$$

(2) 盖.吕萨克定律(J. Gay-Lussac, 1808):

$$V/T = 常数 \qquad (n, p - 定)$$

(3) 阿伏加德罗定律 (A. Avogadro, 1811)

$$V/n = 常数$$
 $(T, p - 定)$

理想气体状态方程

以上三式结合 型 理想气体状态方程

$$pV = nRT$$

单位:
$$p$$
—Pa V —m³
 T —K n —mol
 R —J·mol⁻¹·K⁻¹

R = 8.314472 J·mol⁻¹·K⁻¹ R — 摩尔气体常数

理想气体定义:

服从pV=nRT的气体为理想气体 或服从理想气体模型的气体为理想气体

理想气体状态方程

理想气体状态方程也可表示为:

$$pV_{m}=RT$$

$$pV=(m/M)RT$$

以此可相互计算 p, V, T, n, m, M, ρ (= m/V)

例:用管道输送天然气,当输送压力为200 kPa,温度为 25℃时,管 道内天然气的密度为多少?假设天然气可看作是纯甲烷。

解: $M_{\text{甲烷}} = 16.04 \times 10^{-3} \text{ kg} \cdot \text{mol}^{-1}$

$$\rho = \frac{m}{V} = \frac{pM}{RT}$$

$$= \frac{200 \times 10^{3} \times 16.04 \times 10^{-3}}{8.315 \times (25 + 273.15)} kg \cdot m^{-3}$$

$$= 1.294 kg \cdot m^{-3}$$

2. 理想气体模型

(1) 分子间力

吸引力 分子相距较远时,有范德华引力; 排斥力 分子相距较近时,电子云及核产生排斥作用。

$$E_{$$
吸引 $} \propto -1/r^6$

$$E_{$$
排斥 $\propto 1/r^n$

Lennard-Jones理论: n = 12

$$E_{\&} = E_{\&g} + E_{\#f} = -\frac{A}{r^6} + \frac{B}{r^{12}}$$

式中: A-吸引常数; B-排斥常数

- (2) 理想气体模型
 - a) 分子间无相互作用力; b) 分子本身不占体积低压气体 $(p\to 0)$ ≈ 理想气体

3. 摩尔气体常数 R

R是通过实验测定确定出来的

例: 测300 K时, N_2 、He、 CH_4 $pV_{m\sim}p$ 关系,作图 $p\rightarrow 0$ 时: $pV_m=2494.35 \text{ J·mol}^{-1}$

$$R = pV_m/T = 8.314 \text{ J} \cdot \text{mol} \cdot \text{K}^{-1}$$

在压力趋于0的极限条件下,各种气体的行为均服从 $pV_m=RT$ 的定量关系,

所以: R 是一个对各种气体都适用的常数

§ 1.2 理想气体混合物

- 1. 混合物的组成
 - (1) 摩尔分数 x 或 y x_B (或 y_B) $= n_B / \sum_A n_A$ (量纲为1) 显然 $\sum x_B = 1$, $\sum y_B = 1$

本书中 气体混合物的摩尔分数一般用 y 表示 液体混合物的摩尔分数一般用 x 表示

- (2) 质量分数 $w_{
 m B}$ $w_{
 m B} \stackrel{
 m def}{=} m_{
 m B} / \sum_{
 m A} m_{
 m A}$ (量纲为1) 显然 $\Sigma w_{
 m B} = 1$
- (3) 体积分数 $\varphi_{\rm B}$

$$\varphi_{\rm B} \stackrel{\text{def}}{=} x_{\rm B} V_{\rm m,B}^* / \sum_{\rm A} x_{\rm A} V_{\rm m,A}^* = V_{\rm B}^* / \sum_{\rm A} V_{\rm A}^* \quad (量纲为1)$$

显然 $\Sigma \varphi_{\mathrm{B}} = 1$ $(V_{\mathrm{m,B}}^*)$ 为混合前纯物质的摩尔体积)

2. 理想气体状态方程对理想气体混合物的应用

- 从化学原理可以推测
- 既然理想气体分子间没有相互作用,分子本身又不占体积,所以理想气体的 pVT 性质与气体的种类无关。
- 如果一种理想气体的部分分子被另一种理想气体 分子置换,形成的混合理想气体,其pVT 性质不 会改变,只是理想气体状态方程中的 n 此时为总 的物质的量。

2. 理想气体状态方程对理想气体混合物的应用 平均摩尔质量

所以有
$$pV = nRT = \left(\sum_{B} n_{B}\right)RT$$
及 $pV = \frac{m}{\overline{M}_{mix}}RT$

式中: m — 混合物的总质量

 M_{mix} — 混合物的平均摩尔质量

平均摩尔质量定义为:
$$\overline{M}_{\text{mix}} \stackrel{\text{def}}{=} \frac{\sum m_{\text{B}}}{\sum n_{\text{B}}} = \frac{m}{n}$$

根据 $m_{\rm B} = n_{\rm B} \cdot M_{\rm B}$ 又有:

$$\overline{M}_{\text{mix}} = \sum_{\text{B}} y_{\text{B}} M_{\text{B}}$$

即混合物的平均摩尔质量等于 混合物中各物质的摩尔质量与 其摩尔分数的乘积之和。

3. 道尔顿定律

混合气体(包括理想的和非理想的)的分压定义:

$$p_{\rm B} = y_{\rm B} p$$

式中:
$$p_{\mathrm{B}}$$
 — B气体的分压, p — 混合气体的总压 $\colon \Sigma y_{\mathrm{B}} = 1$, $\colon p = \Sigma p_{\mathrm{B}}$

混合理想气体:

$$p = n \frac{RT}{V} = \sum_{B} n_{B} \frac{RT}{V} = \sum_{B} \left(\frac{n_{B}RT}{V} \right) = \sum_{B} p_{B}$$

$$p_{B} = \frac{n_{B}RT}{V}$$

$$p_{B} = \frac{n_{B}RT}{V}$$

即理想混合气体的总压等于各组分单独存在于混合气体的T、V时产生的压力总和。——道尔顿分压定律

例: 计算物质的量

今有300K,104.365 kPa的湿烃类混合气体(含水蒸气的烃类混合气体),其中水蒸气的分压为3.167 kPa。现欲得到除去水蒸气的1 kmol干烃类混合气体,试求:

- (1) 应从湿烃混合气中除去水蒸气的物质的量;
- (2) 所需湿烃类混合气体的初始体积。

例: 计算物质的量

今有300K,104.365 kPa的湿烃类混合气体(含水蒸气的烃类混合气体),其中水蒸气的分压为3.167 kPa。现欲得到除去水蒸气的1 kmol干烃类混合气体,试求:

- (1) 应从湿烃混合气中除去水蒸气的物质的量;
- (2) 所需湿烃类混合气体的初始体积。
- 解: (1)设湿烃类混合气体中烃类混合气(A)和水蒸气(B)的分压分别为 p_{A} 和 p_{B} ,物质的量分别为 n_{A} 和 n_{B} ,有:

$$p_{
m B}=3.167~{
m kPa}, \qquad p_{
m A}=p-p_{
m B}=101.198~{
m kPa}$$
 由公式, $p_{
m B}=y_{
m B}p=rac{n_{
m B}}{\sum n_{
m B}}p$ 可得: $rac{n_{
m B}}{n_{
m A}}=rac{p_{
m B}}{p_{
m A}}$ 所以 $n_{
m B}=rac{p_{
m B}}{p_{
m A}}n_{
m A}=rac{3.167}{101.198} imes1000~{
m mol}=31.30~{
m mol}$

(2) 所求湿烃类混合气体的初始体积 V

$$V = \frac{nRT}{p} = \frac{n_{A}RT}{p_{A}} = \left(\frac{n_{B}RT}{p_{B}}\right) = \frac{31.30 \times 8.315 \times 300}{3.167 \times 10^{3}} \text{m}^{3} = 24.65 \text{ m}^{3}$$

4. 阿马格定律

理想气体混合物的总体积V为各组分分体积 $V_{\rm R}$ *之和:

$$V=\sum {V_{
m B}}^*$$

可有:
$$V_{\mathrm{B}}^* = \frac{n_{\mathrm{B}}RT}{p}$$

即:理想气体混合物的总体积V等于各组分B在相同温度T及总压p条件下占有的分体积 V_{B} *之和。——阿马格定律

定律组合形式

阿马加定律表明理想气体混合物的体积具有加和性,在 相同温度、压力下,混合后的总体积等于混合前各组分的体 积之和。

二定律结合可有:

$$y_{\rm B} = \frac{n_{\rm B}}{n} = \frac{p_{\rm B}}{p} = \frac{V_{\rm B}^*}{V}$$

道尔顿定律和阿马格定律严格讲只适用于理想气体混合物,不过对于低压下的真实气体混合物也可近似适用。压力较高时,分子间的相互作用不可忽略,且混合前后气体的体积大多会发生变化,同时混合气体中分子间的相互作用不同于同种分子,情况会更复杂,这时道尔顿定律和阿马加定律均不再适用,需引入偏摩尔量的概念,有关内容将在第四章中详细介绍。

§ 1.3 气体的液化及临界参数

1. 液体的饱和蒸气压

理想气体不能液化(因分子间没有相互作用力) 实际气体: 在一定 *T* 时,气一液可共存达到平衡

图1.3.1 气一液平衡示意图

气液平衡时:

气体称为<u>饱和蒸气</u>; 液体称为<u>饱和液体</u>; 压力称为饱和蒸气压。

饱和蒸气压是温度的函数

表1.3.1 水、乙醇和苯在不同温度下的饱和蒸气压

H ₂ O		乙醇		苯	
<i>t</i> / °C	<i>p</i> */ kPa	<i>t</i> / °C	<i>p</i> */ kPa	t / °C	<i>p</i> */ kPa
20	2.338	20	5.671	20	9.9712
40	7.376	40	17.395	40	24.411
60	19.916	60	46.008	60	51.993
80	47.343	78.4	101.325	80.1	101.325
100	101.325	100	222.48	100	181.44
120	198.54	120	422.35	120	308.11

饱和蒸气压=外压时的温度称为沸点

饱和蒸气压=101.325kPa时的温度称为正常沸点

相对湿度

在T一定时:

如 $p_{\rm B} < p_{\rm B}^*$, ${\bf B}$ 液体蒸发为气体至 $p_{\rm B} = p_{\rm B}^*$ $p_{\rm B} > p_{\rm B}^*$, ${\bf B}$ 气体凝结为液体至 $p_{\rm B} = p_{\rm B}^*$ (此变化规律不受其它气体存在的影响)

相对湿度的概念: 相对湿度 = $\frac{空气中 p_{H_2O}}{p_{H_2O}^*} \times 100\%$

2. 临界参数

临界状态

由表1.3.1可知: p*=f(T), $T \uparrow$, $p*\uparrow$

当 $T^{\uparrow} = T_c$ 时,液相消失,加压不再可使气体液化。

临界温度 T_c : 使气体能够液化所允许的最高温度

- :: 临界温度以上不再有液体存在,
- $\therefore p^*=f(T)$ 曲线终止于临界温度;

临界温度 T_c 时的饱和蒸气压称为临界压力

临界压力 p_c : 在临界温度下使气体液化所需的最低压力临界摩尔体积 $V_{m,c}$: 在 T_c 、 p_c 下物质的摩尔体积

 $T_{\rm c}$ 、 $p_{\rm c}$ 、 $V_{\rm c}$ 统称为物质的临界参数

3. 真实气体的 $p-V_m$ 图及气体的液化

图1.3.2 真实气体p- V_m 等温线示意图

1) T < Tc

图1.3.2 真实气体p- V_m 等温线示意图

气相线 $g_1g'_1: p \uparrow, V_m \downarrow$ 气一液平衡线 $g_1l_1:$ 加压, p^* 不变, $g \rightarrow l$, $V_m \downarrow \downarrow$

 \mathbf{g}_1 : 饱和蒸气摩尔体积 $V_{\mathrm{m}}(\mathbf{g})$

 l_1 : 饱和液体摩尔体积 $V_m(1)$

g₁l₁线上,气液共存

若 n=n(g)+n(l)=1 mol

则 $V_{\mathrm{m}} = n(\mathrm{g}) V_{\mathrm{m}}(\mathrm{g}) + n(\mathrm{l}) V_{\mathrm{m}}(\mathrm{l})$

液相线 l_1l_1 : $p^{\uparrow\uparrow}$, V_m \ 很少,反映出液体的不可压缩性

2) T=Tc

图1.3.2 真实气体p-V_m等温线示意图

T \uparrow , l-g线缩短,说明 $V_{\mathrm{m}}(g)$ 与 $V_{\mathrm{m}}(l)$ 之差减小

 $T=T_c$ 时,l-g线变为拐点C

C: 临界点

 $T_{\rm c}$ — 临界温度

 $p_{\rm c}$ — 临界压力

 $V_{\mathrm{m,c}}$ — 临界体积

临界点处气、液两相摩尔体积及其它性质完全相同, 气态、液态无法区分,此时:

$$\left(rac{\partial p}{\partial V_{
m m}}
ight)_{T_{
m c}} = 0 \qquad \left(rac{\partial^2 p}{\partial V_{
m m}^2}
ight)_{T_{
m c}} = 0$$

3) T > Tc

图1.3.2 真实气体p- V_m 等温线示意图

无论加多大压力,气态不再变为 液体,等温线为一光滑曲线

lcg虚线内:气一液两相共存区

lcg虚线外:单相区

左下方:液相区

右下方: 气相区

中 间:气、液态连续

§ 1.4 真实气体状态方程

1. 真实气体的 pV_m-p 图及波义尔温度

在T一定时,不同气体的 pV_m 一p曲线有三种类型.

而同一种气体在不同温度的 pV_m 一p曲线亦有 三种类型.

波义尔温度

$$T>T_{
m B}:p\!\uparrow$$
 , $p\,V_m\,\uparrow$

 $T=T_{\rm B}:p\uparrow,pV_{\rm m}$ 开始不变,然后增加

 $T < T_{\rm B}: p \uparrow, p V_{\rm m}$ 先下降,然后增加

 $T_{\rm B}$: 波义尔温度,定义为:

$$\left[\lim_{p o 0}\!\left[rac{\partial(p\,V_{_{\mathrm{m}}})}{\partial p}
ight]_{T_{\mathrm{B}}}=0$$

图1.4.1 气体在不同温度下的 pV_{m} -p 图

每种气体有自己的波义尔温度;

 $T_{\rm B}$ 一般为 $T_{\rm c}$ 的2 ~ 2.5倍;

 $T = T_{\rm B}$ 时,气体在几百 kPa 的压力范围内符合理想 气体状态方程

真实气体pVT关系的计算

真实气体pVT关系计算一般方法:

- (1) 引入压缩因子Z,修正理想气体状态方程
- (2) 引入 p、 V 修正项,修正理想气体状态方程
- (3) 使用经验公式,如维里方程,计算压缩因子Z 共同特点是:

p → 0时, 所有状态方程趋于理想气体状态方程

(1) 范德华气体模型

理想气体状态方程 $pV_{\rm m}=RT$ 的实质为: $(分子间无相互作用力的气体的压力)\times(1{\rm mol}气体分子的自由活动空间)=RT$ 实际气体:

1) 分子间有相互作用力

内部分子 靠近器壁的分子 : 靠近器壁的分子受到内部的引力

分子间相互作用减弱了分子对器壁的碰撞,所以:

$$p_{\mathrm{理}}$$
= p + p_{p} = p + a / V_{m}^{-2}

2) 由于分子本身占有体积

 \therefore 1 mol 真实气体的自由空间=($V_{\rm m}-b$)

b: 1 mol 分子自身所占体积

将修正后的压力和体积项引入理想气体状态方程:

$$\left(p + \frac{a}{V_{\text{m}}^{2}}\right)(V_{\text{m}} - b) = RT$$
 — 范德华方程

式中: a,b — 范德华常数,见附表

 $p \to 0$, $V_m \to \infty$, 范德华方程 \Rightarrow 理想气体状态方程

(2) 范德华常数与临界常数的关系

在临界点时有:

$$\left(rac{\partial p}{\partial V_{
m m}}
ight)_{T_{
m c}} = {f 0} \quad , \quad \left(rac{\partial^2 p}{\partial V_{
m m}^2}
ight)_{T_{
m c}} = {f 0}$$

将 T_c 温度时的 p- V_m 关系以范德华方程表示:

$$p = rac{R \, T_{
m c}}{V_{
m m} - b} - rac{a}{V_{
m m}^2}$$

对其进行一阶、二阶求导,有:

$$\left(rac{\partial p}{\partial V_{_{\mathrm{m}}}}
ight)_{_{T_{_{\mathrm{c}}}}} = rac{-R\,T_{_{\mathrm{c}}}}{\left(V_{_{\mathrm{m}}}-b
ight)^{^{2}}} + rac{2a}{V_{_{\mathrm{m}}}^{^{3}}} = 0 \quad \left(rac{\partial^{^{2}}p}{\partial V_{_{\mathrm{m}}}^{^{2}}}
ight)_{_{T}} = rac{2R\,T_{_{\mathrm{c}}}}{\left(V_{_{\mathrm{m}}}-b
ight)^{^{3}}} - rac{6a}{V_{_{\mathrm{m}}}^{^{4}}} = 0$$

(2) 范德华常数与临界常数的关系

在临界点时:

$$\left(rac{\partial p}{\partial V_{_{
m m}}}
ight)_{T_{_{
m c}}} = rac{-R\,T_{_{
m c}}}{\left(V_{_{
m m}}-b
ight)^2} + rac{2a}{V_{_{
m m}}^3} = 0\left(rac{\partial^2 p}{\partial V_{_{
m m}}^2}
ight)_{T_{
m c}} = rac{2R\,T_{_{
m c}}}{\left(V_{_{
m m}}-b
ight)^3} - rac{6a}{V_{_{
m m}}^4} = 0$$

上二式联立求解,可得:

$$V_{\rm m,c} = 3b$$
, $T_{\rm c} = \frac{8a}{27Rb}$, $p_{\rm c} = \frac{a}{27b^2}$

一般以 $T_{\rm c}$ 、 $p_{\rm c}$ 求算 a 、b

$$a = rac{27R^2T_{
m c}^2}{64p_{
m c}} \quad , \quad b = rac{RT_{
m c}}{8p_{
m c}}$$

(3) 范德华方程的应用

临界温度以上: 范德华方程与实验p- V_m 等温线符合较好

临界温度以下:气一液共存区,范德华方程计算出现

一极大值,一极小值;

T \uparrow ,极大值、极小值逐渐靠拢;

 $T \rightarrow T_c$,极大值、极小值合并成拐点C;

S型曲线两端有过饱和蒸气和过热液体的含义。

图1.3.2 真实气体p- V_m 等温线示意图

范德华方程的解

用范德华方程计算,在已知T,p,求 V_{m} 时,需解一元三次方程

 $T > T_{\rm c}$ 时, $V_{\rm m}$ 有一个实根,两个虚根,虚根无意义;

 $T = T_c$ 时, \int 如 $p = p_c$: V_m 有三个相等的实根; \int 如 $p \neq p_c$: 有一个实根,二个虚根, 实根为 V_m ;

 $T < T_c$ 时,如 $p = p^*$:有三个实根,最大值为 $V_{
m m}(g)$ 最小值为 $V_{
m m}(l)$ 如 $p < p^*$:或解得三个实根,最大值为 $V_{
m m}$ 或解得一个实根,二个虚根,实根为 $V_{
m m}$

许多气体在几个Mpa的中压范围内符合范德华方程

例: 求摩尔体积

若甲烷在203 K、2533.1 kPa条件下服从范德华方程, 试求其摩尔体积。

解: 范德华方程可写为:

$$V_{
m m}^3$$
 $-(b + RT/p) V_{
m m}^2 + (a/p) V_{
m m} - ab/p = 0$
甲烷: $a = 2.283 imes 10^{-1} \
m Pa \cdot m^6 \cdot mol^{-2},$ $b = 0.4728 imes 10^{-4} \
m m^3 \cdot mol^{-1}$ $T_{
m c} = 190.53 \
m K$

因 $T > T_c$,解三次方程应得一个实根,二个虚根将 以上数据代入范德华方程:

$$V_{
m m}^{-3}$$
 - 7.09 ×10⁻⁴ $V_{
m m}^{-2}$ + 9.013 ×10⁻⁸ $V_{
m m}$ - 3.856 ×10⁻¹² = 0 解得: $V_{
m m}$ =5.606 10⁻⁴ m³·mol⁻¹

3. 维里方程

Virial: 拉丁文"力"的意思

Kammerling-Onnes于二十世纪初提出的经验式

$$pV_{m} = RT \left(1 + \frac{B}{V_{m}} + \frac{C}{V_{m}^{2}} + \frac{D}{V_{m}^{3}} + \cdots \right)$$

或 $pV_{m} = RT \left(1 + B'p + C'p^{2} + D'p^{3} + \cdots \right)$

式中: B, C, D… 分别为第二、第三、第四…维里 B', C', D' ··· 系数

当
$$p \to 0$$
 时, $V_{\rm m} \to \infty$

维里方程 ⇒ 理想气体状态方程

维里系数

维里方程后来用统计的方法得到了证明,成为具 有一定理论意义的方程。

第二维里系数: 反映了二分子间的相互作用对

气体pVT关系的影响

第三维里系数: 反映了三分子间的相互作用对

气体pVT关系的影响

4. 其它重要方程举例

(1) R-K (Redlich-Kwong)方程

$$\left\{ p + \frac{a}{T^{1/2}V_{\rm m}(V_{\rm m} + b)} \right\} (V_{\rm m} - b) = RT$$

式中: a, b 为常数, 但不同于范德华方程中的常数

适用于烃类等非极性气体,且适用的T、p 范围较宽,但对极性气体精度较差。

4. 其它重要方程举例

(2) B-W-R (Benedict-webb-Rubin)方程

$$p = \frac{RT}{V_{\rm m}} + \left(B_0 RT - A_0 - \frac{C_0}{T}\right) \frac{1}{V_{\rm m}^2} + \left(bRT - \alpha\right) \frac{1}{V_{\rm m}^2} + a\alpha \frac{1}{V_{\rm m}^6} + \frac{c}{T^2 V_{\rm m}^3} \left(1 + \frac{\gamma}{V_{\rm m}^2}\right) e^{-\gamma/V_{\rm m}^3}$$

式中: A_{0} , B_{0} , C_{0} , α , γ , a, b, c 均为常数为 8 参数方程, 较适用于碳氢化合物气体的计算。

(3) 贝塞罗(Berthelot)方程

$$\left(p + \frac{a}{TV_{\rm m}^2}\right)(V_{\rm m} - b) = RT$$

在范德华方程的基础上,考虑了温度的影响

§ 1.5 对应状态原理及普适化压缩因子图

1. 压缩因子

引入压缩因子来修正理想气体状态方程,描述实际气体的 pVT 性质:

$$p\,V = ZnRT$$
 $p\,V_{
m m} = ZRT$

: 压缩因子的定义为:

或

$$Z = \frac{pV}{nRT} = \frac{pV_{\rm m}}{RT}$$

Z的量纲为1

压缩因子的物理意义

Z的大小反映了真实气体对理想气体的偏差程度

$$Z = \frac{V_{\rm m}(真实)}{V_{\rm m}(理想)}$$

理想气体 Z=1

真实气体 Z<1: 比理想气体易压缩 Z>1: 比理想气体难压缩

维里方程实质是将压缩因子表示成 $V_{\rm m}$ 或 p的级数关 系。

$$Z \leftarrow \begin{cases}$$
 查压缩因子图,或由维里方程等公式计算; 由 pVT 数据拟合得到 $Z \sim p$ 关系.

临界参数

临界点时的 Z_c : $Z_c = \frac{p_c V_{m,c}}{RT_c}$

多数物质的 $Z_{c.}$ 0.26 ~ 0.29

而用临界参数与范德华常数的关系计算得:

$$Z_c = 3/8 = 0.375$$

区别说明范德华方程只是一个近似的模型,与真实情况有一定的差别。

以上结果表明气体的临界压缩因子Z_c大体上是一个与气体性质无关的常数,这说明各种气体在临界状态下的性质具有一定的普遍规律,这为以后在工程计算中建立一些普遍化的pVT经验关系奠定了一定的基础。

2. 对应状态原理

定义:
$$p_{\rm r} = \frac{p}{p_{\rm c}} \qquad V_{\rm r} = \frac{V_{\rm m}}{V_{\rm m,c}} \qquad T_{\rm r} = \frac{T}{T_{\rm c}}$$

 $p_{\rm r}$ 一对比压力

 $V_{
m r}$ 一对比体积 对比参数,量纲为1

 T_r 对比温度

对比参数反映了气体所处状态偏离临界点的倍

对应状态原理:

当不同气体有两个对比参数相等时,第三个对 比参数也将(大致)相等。

具有相同对比参数的气体称为处于相同的对应状态。

3. 普遍化压缩因子图

将对比参数引入压缩因子,有:

$$Z = \frac{pV_{\rm m}}{\rm RT} = \frac{p_{\rm c}V_{\rm m,c}}{RT_{\rm c}} \cdot \frac{p_{\rm r}V_{\rm r}}{T_{\rm r}} = Z_{\rm c} \frac{p_{\rm r}V_{\rm r}}{T_{\rm r}}$$

- $:: Z_c$ 近似为常数($Z_c \approx 0.27 \sim 0.29$)
- \therefore 当 p_r , V_r , T_r 相同时,Z大致相同,

$$Z=f\left(\left. T_{r}\right. ,\;p_{r}\left.
ight)$$

——适用于所有真实气体

用图来表示此关系 ⇒ 普遍化压缩因子图

双参数普遍化压缩因子图

任何 T_r , $p_r \rightarrow 0$, $Z \rightarrow 1$ (理想气体); T_r 较小时, $p_r \uparrow$, $Z \not \leftarrow \downarrow$, 后 \uparrow ,

反映出气体低压易压缩,高压难压缩

 T_r 较大时, $Z \approx 1$

压缩因子图的应用

(2) 已知T、 $V_{
m m}$,求Z和 $p_{
m r}$

需在压缩因子图上作辅助线

$$Z = \frac{pV_{\rm m}}{RT} = \frac{p_{\rm c}V_{\rm m}}{RT} \cdot p_{\rm r}$$

式中 $p_{\rm c}V_{\rm m}/RT$ 为常数, $Z\sim p_{\rm r}$ 为直线关系,该直线与所求 $T_{\rm r}$ 线交点对应的Z 和 $p_{\rm r}$. 为所求值

压缩因子图的应用

(3) 已知 p 、 V_{m} 求 Z 和 T_{r} 需作辅助图

因
$$p$$
、 V_{m} 已知

有:
$$Z = \frac{pV_{\rm m}}{RT} = \frac{pV_{\rm m}}{RT_{\rm c}} \cdot \frac{1}{T_{\rm r}}$$

式中 pV_m / RT 为常数

$$Z = (p V_m / R T_c) / T_r$$
 两条曲线 $Z = f (T_r) \quad (p_r \, ar{ ext{固定}})$

由两线交点可求出 Z、 T_r

例: 求气体压力

在 300K 时 40dm³ 钢 瓶 中 贮 存 的 乙 烯 压 力 为 146.9×10²kPa。欲从中提用300K、101.325kPa的 乙烯气体12m³,试用压缩因子图求解钢瓶中剩余乙烯气体的压力。

例: 求气体压力

在 300K 时 40dm³ 钢 瓶 中 贮 存 的 乙 烯 压 力 为 146.9×10²kPa。欲从中提用300K、101.325kPa的 乙烯气体12m³,试用压缩因子图求解钢瓶中剩余乙烯气体的压力。

解: 查表可知, 乙烯的临界参数为T_C=282.34K, p_C=5039kPa 乙烯的相对温度和相对压力

$$T_r = T / T_C = 300.15 / 282.34 = 1.063$$

$$p_r = p / p_C = 146.9 \times 10^2 / 54039 = 2.915$$

由压缩因子图查出: Z=0.45

$$n = \frac{pV}{ZRT} = \frac{146.9 \times 10^2 \times 10^3 \times 40 \times 10^{-3}}{0.45 \times 8.314 \times 300.15} mol = 523.3 (mol)$$

例: 求气体压力

因为提出后的气体为低压,所提用气体的物质的量,可按理想气体状态方程计算如下:

$$n_{\text{\#}} = \frac{pV}{RT} = \frac{101325 \times 12}{8.314 \times 300.15} \, mol = 487.2 \, mol$$

剩余气体的物质的量 n_1 = $n-n_{\frac{1}{2}}$ =523.3mol-487.2mol=36.1<math>mol

剩余气体的压力
$$p_1 = \frac{Z_1 n_1 RT}{V} = \frac{36.1 \times 8.314 \times 300.15 Z_1}{40 \times 10^{-3}} Pa = 2252 Z_1 k Pa$$

剩余气体的对比压力 $p_r = p_1/p_c = 2252Z_1/5039 = 0.44Z_1$

上式说明剩余气体的对比压力与压缩因子成直线关系。另一方面,T_r=1.063。要同时满足这两个条件,只有在压缩因子图上作出p_r=0.44Z1的直线,并使该直线与T_r=1.063的等温线相交,此交点相当于剩余气体的对比状态。此交点处的压缩因子为Z1=0.88所以。

剩余气体的压力 $p_1 = 2252Z_1kPa = 2252 \times 0.88kPa = 1986kPa$

第一章小结

本章重点要掌握理想气体和了解真实气体有关**pVT**性质的状态方程。范德华方程和压缩因子也是各种考试常常出现的内容。

- 理想气体是用于理论研究时的抽象气体,它假定气体分子 间没有相互作用、气体分子本身不占有体积。
- 理想气体状态方程具有最简单的形式,可以作为研究真实 气体pVT 性质的一个比较基准,压力极低下的真实气体可 近似作为理想气体处理。理想气体混合物符合道尔顿分压 定律和阿马格分体积定律。
- 真实气体由于分之间具有相互作用,分子本身占有体积, 故真实气体会发生液化,并具有临界性质,真实气体*pVT* 之间的关系往往偏离理想气体的行为。

第一章小结

- 描述真实气体pVT 关系的状态方程多是在理想气体状态方程 的基础上修正得到的,例如范德华方程、维里方程,以及引 入压缩因子来修正理想气体状态方程等。
- 在对应状态原理的基础上,人们得出了普遍化的压缩因子图, 使得在精度要求不高时的计算得以简化。
- 真实气体的状态方程在压力趋于0时一般均可还原为理想气体状态方程。