MATA54 - Estruturas de Dados e Algoritmos II Ordenação Externa

Flávio Assis Versão gerada a partir de slides do Prof. George Lima

IC - Instituto de Computação

Salvador, outubro de 2021

Motivação: memória principal insuficiente

Aplicações

Ordenar sequências é frequentemente necessário em diversas aplicações. Com grande quantidade de dados, nem sempre pode-se carregar todos os dados em memória principal ao mesmo tempo para ordená-los.

Ordenação externa

Estratégia: carregar parte dos dados na memória principal, gerando sequências ordenadas (runs). Em seguida, intercalam-se estas sequências até haver apenas uma única sequência ordenada.

Métodos a serem estudados

- ► Intercalação balanceada de *p* caminhos
- Intercalação polifásica
- Intercalação em cascata

Ordenação por Intercalação: Idéia Geral

A sequência $\langle c_1'', c_2'', ..., c_n'' \rangle$ é uma permutação de $\langle c_1, c_2, ..., c_n \rangle$, tal que $c_1'' \leq c_2'' \leq \cdots \leq c_n''$

Ordenação por Intercalação: Idéia Básica

A sequência $\langle c_1'', c_2'', ..., c_n'' \rangle$ é uma permutação de $\langle c_1, c_2, ..., c_n \rangle$, tal que $c_1'' \leq c_2'' \leq \cdots \leq c_n''$

Ordenação de p sequências ordenadas.

Exemplo para p = 2:

Saída:

Ordenação de p sequências ordenadas.

Ordenação de p sequências ordenadas.

Exemplo para p = 2:

Continuando o processo ...

Ordenação de p sequências ordenadas.

Ordenação de p sequências ordenadas.

Ordenação de p sequências ordenadas.

Ordenação de p sequências ordenadas.

Exemplo para p = 3:

Continuando o processo ...

Saída:

Idéia básica:

2p arquivos (p de entrada e p de saída); intercalar arquivos de entrada produzindo os de saída. Se memória interna armazena m registros:

Idéia básica:

2p arquivos (p de entrada e p de saída); intercalar arquivos de entrada produzindo os de saída. Se memória interna armazena m registros:

1. Distribuir os n registros: $\lceil \frac{n}{m} \rceil$ blocos ordenados com (até) m registros em p arquivos de forma balanceada (round robin).

Idéia básica:

2p arquivos (p de entrada e p de saída); intercalar arquivos de entrada produzindo os de saída. Se memória interna armazena m registros:

- 1. Distribuir os n registros: $\lceil \frac{n}{m} \rceil$ blocos ordenados com (até) m registros em p arquivos de forma balanceada (round robin).
- 2. Enquanto os registros não estiverem em um único arquivo ordenado:
 - 2.1 intercalar os blocos ordenados que estão nos arquivos de entrada (p blocos por vez) e distribuir os blocos resultantes nos p arquivos de saída de forma balanceada
 - 2.2 tomar os arquivos de saída como de entrada

Exemplo: p = 2, m = 3, n = 25

 $18,\, 7,\, 3,\, 24,\, 15,\, 5,\, 20,\, 25,\, 16,\, 14,\, 21,\, 19,\, 1,\, 4,\, 13,\, 9,\, 22,\, 11,\, 23,\, 8,\, 17,\, 6,\, 12,\, 2,\, 10$

Exemplo: p = 2, m = 3, n = 25

 $18, \, 7, \, 3, \, 24, \, 15, \, 5, \, 20, \, 25, \, 16, \, 14, \, 21, \, 19, \, 1, \, 4, \, 13, \, 9, \, 22, \, 11, \, 23, \, 8, \, 17, \, 6, \, 12, \, 2, \, 10$

Exemplo: p = 2, m = 3, n = 25

18, 7, 3, 24, 15, 5, 20, 25, 16, 14, 21, 19, 1, 4, 13, 9, 22, 11, 23, 8, 17, 6, 12, 2, 10

Exemplo: p = 3, m = 3, n = 25

 $18,\, 7,\, 3,\, 24,\, 15,\, 5,\, 20,\, 25,\, 16,\, 14,\, 21,\, 19,\, 1,\, 4,\, 13,\, 9,\, 22,\, 11,\, 23,\, 8,\, 17,\, 6,\, 12,\, 2,\, 10$

Exemplo: p = 3, m = 3, n = 25

 $18,\, 7,\, 3,\, 24,\, 15,\, 5,\, 20,\, 25,\, 16,\, 14,\, 21,\, 19,\, 1,\, 4,\, 13,\, 9,\, 22,\, 11,\, 23,\, 8,\, 17,\, 6,\, 12,\, 2,\, 10$

Quantas passagens nos n registros (rodadas) são necessárias?

$$\left\lceil \log_p \left(\frac{n}{m} \right) \right\rceil$$

Os recursos disponíveis no sistema irão definir o valor para p. Por exemplo, o número de arquivos que podem ser mantidos abertos simultaneamente.

Uso de *heap* mínima como fila de prioridades

Fila de prioridades de tamanho *m*

- Fila de prioridades de tamanho m
- ► Inserção e remoção da fila tem complexidade O(log m)

- Fila de prioridades de tamanho m
- ► Inserção e remoção da fila tem complexidade $O(\log m)$
- ► Relevante quando *m* é grande (durante intercalação)

- Fila de prioridades de tamanho *m*
- ► Inserção e remoção da fila tem complexidade $O(\log m)$
- ▶ Relevante quando m é grande (durante intercalação)
- Relevante para:
 - formar os blocos iniciais para serem intercalados: aumento do tamanho das sequências ordenadas

- Fila de prioridades de tamanho m
- ► Inserção e remoção da fila tem complexidade O(log m)
- ▶ Relevante quando m é grande (durante intercalação)
- Relevante para:
 - formar os blocos iniciais para serem intercalados: aumento do tamanho das sequências ordenadas
 - ► intercalação de sequências ordenadas

Procedimento:

Procedimento:

m registros são lidos e armazenados na fila de prioridade

Procedimento:

- m registros são lidos e armazenados na fila de prioridade
- O menor é removido da fila e inserido ao final da sequência ordenada, dando lugar no heap ao próximo lido

Procedimento:

- m registros são lidos e armazenados na fila de prioridade
- O menor é removido da fila e inserido ao final da sequência ordenada, dando lugar no heap ao próximo lido
- Se o próximo é menor que o último removido, este próximo valor será marcado. No heap, valores marcados são considerados maiores que valores não marcados. A ordem entre valores não marcados e valores marcados é a ordem natural

Procedimento:

- m registros são lidos e armazenados na fila de prioridade
- O menor é removido da fila e inserido ao final da sequência ordenada, dando lugar no heap ao próximo lido
- Se o próximo é menor que o último removido, este próximo valor será marcado. No heap, valores marcados são considerados maiores que valores não marcados. A ordem entre valores não marcados e valores marcados é a ordem natural
- Quando todos os valores no heap estiverem marcados, eles são desmarcados e se dá início a uma nova sequência ordenada

Exemplo: m = 3, n = 25

18, 7, 3, 24, 15, 5, 20, 25, 16, 14, 21, 19, 1, 4, 13, 9, 22, 11, 23, 8, 17, 6, 12, 2, 10

Sequência 1:

Exemplo: *m*= 3,*n*= 25

 $18, 7, 3, \textcolor{red}{\textbf{24}}, 15, 5, 20, 25, 16, 14, 21, 19, 1, 4, 13, 9, 22, 11, 23, 8, 17, 6, 12, 2, 10$

Sequência 1: 3

Exemplo: *m*= 3,*n*= 25

 $18, 7, 3, 24, \textcolor{red}{\textbf{15}}, 5, 20, 25, 16, 14, 21, 19, 1, 4, 13, 9, 22, 11, 23, 8, 17, 6, 12, 2, 10$

Sequência 1: 3, 7

Exemplo: *m*= 3,*n*= 25

 $18, 7, 3, 24, 15, \textcolor{red}{5}, 20, 25, 16, 14, 21, 19, 1, 4, 13, 9, 22, 11, 23, 8, 17, 6, 12, 2, 10$

Sequência 1: 3, 7, 15

Exemplo: m = 3, n = 25

 $18, 7, 3, 24, 15, 5, \textcolor{red}{\textbf{20}}, 25, 16, 14, 21, 19, 1, 4, 13, 9, 22, 11, 23, 8, 17, 6, 12, 2, 10$

Sequência 1: 3, 7, 15, 18

Exemplo: *m*= 3,*n*= 25

18, 7, 3, 24, 15, 5, 20, **25**, 16, 14, 21, 19, 1, 4, 13, 9, 22, 11, 23, 8, 17, 6, 12, 2, 10

Sequência 1: 3, 7, 15, 18, 20

Exemplo: m = 3, n = 25

 $18, 7, 3, 24, 15, 5, 20, 25, \textcolor{red}{\bf 16}, 14, 21, 19, 1, 4, 13, 9, 22, 11, 23, 8, 17, 6, 12, 2, 10$

Sequência 1: 3, 7, 15, 18, 20, 24

Exemplo: m = 3, n = 25

18, 7, 3, 24, 15, 5, 20, 25, 16, **14**, 21, 19, 1, 4, 13, 9, 22, 11, 23, 8, 17, 6, 12, 2, 10

Sequência 1: 3, 7, 15, 18, 20, 24, 25

Exemplo: m = 3, n = 25

18, 7, 3, 24, 15, 5, 20, 25, 16, **14**, 21, 19, 1, 4, 13, 9, 22, 11, 23, 8, 17, 6, 12, 2, 10

Sequência 1: 3, 7, 15, 18, 20, 24, 25

Exemplo: m = 3, n = 25

18, 7, 3, 24, 15, 5, 20, 25, 16, 14, **21**, 19, 1, 4, 13, 9, 22, 11, 23, 8, 17, 6, 12, 2, 10

Sequência 1: 3, 7, 15, 18, 20, 24, 25

Sequência 2: 5

Exemplo: *m*= 3,*n*= 25

 $18,\, 7,\, 3,\, 24,\, 15,\, 5,\, 20,\, 25,\, 16,\, 14,\, 21,\, 19,\, 1,\, 4,\, 13,\, 9,\, 22,\, 11,\, 23,\, 8,\, 17,\, 6,\, 12,\, 2,\, 10$

Sequência 1: 3, 7, 15, 18, 20, 24, 25 Sequência 2: 5, 14, 16, 19, 21 Sequência 3: 1, 4, 9, 11, 13, 22, 23

Sequência 4: 6, 8, 12, 17

Sequência 5: 2, 10

Intercalação Balanceada de p Caminhos: Notação

Notação:

 r_q^p : q sequências ordenadas de tamanho p

Por exemplo: r_{20}^{15} : 20 sequências ordenadas de tamanho 15

Representação da intercalação balanceada de p caminhos para o exemplo anterior:

Número de Registros Processados

Qual foi o número de registros processados durante a ordenação?

A_1	A_2	A_3	A_4	A_5	A_6
r_3^3	r_{3}^{3}	r_2^3, r_1^1	-	-	-
-	-	-	r_1^9	r_{1}^{9}	r_1^7
r_1^{25}	-	-	-	-	-

Número total: 25 + 25 = 50

Total de 2.0 vezes o tamanho do arquivo original.

O arquivo todo é processado a cada rodada do algoritmo.

Motivação

- Em princípio, quanto mais sequências ordenadas forem intercaladas a cada vez, mais rapidamente se deve chegar à ordenação de todos os dados.
- ► Havendo $\frac{q}{q}$ arquivos (no total), por que não intercalar sequências de $\frac{q}{q} 1$ arquivos a cada vez?

Motivação

- Em princípio, quanto mais sequências ordenadas forem intercaladas a cada vez, mais rapidamente se deve chegar à ordenação de todos os dados.
- ► Havendo $\frac{q}{q}$ arquivos (no total), por que não intercalar sequências de $\frac{q}{q} 1$ arquivos a cada vez?
- Idéia básica do método:
 - Arquivos de entrada são intercalados até que um deles seja completamente processado - este se torna arquivo de saída

Motivação

- Em princípio, quanto mais sequências ordenadas forem intercaladas a cada vez, mais rapidamente se deve chegar à ordenação de todos os dados.
- ► Havendo $\frac{q}{q}$ arquivos (no total), por que não intercalar sequências de $\frac{q}{q} 1$ arquivos a cada vez?
- Idéia básica do método:
 - Arquivos de entrada s\u00e3o intercalados at\u00e9 que um deles seja completamente processado - este se torna arquivo de sa\u00edda
 - Repete-se o passo anterior até que a sequência esteja toda em um único arquivo

- ▶ Mas como distribuir as sequências ordenadas nos arquivos?
- Distribuições aleatórias podem gerar a necessidade de se copiarem sequências em arquivos desnecessariamente

- Mas como distribuir as sequências ordenadas nos arquivos?
- Distribuições aleatórias podem gerar a necessidade de se copiarem sequências em arquivos desnecessariamente

Estratégia

Definir os tamanhos das sequências passo-a-passo, de forma a se eliminar cópias. Quando não houver um número exato de sequências, completa-se o número com **sequências falsas**.

- Mas como distribuir as sequências ordenadas nos arquivos?
- Distribuições aleatórias podem gerar a necessidade de se copiarem sequências em arquivos desnecessariamente

Estratégia

Definir os tamanhos das sequências passo-a-passo, de forma a se eliminar cópias. Quando não houver um número exato de sequências, completa-se o número com **sequências falsas**.

$$A_1$$
 A_2 A_3 A_4 A_5 $\#$ Seqs Ordenadas

- Mas como distribuir as sequências ordenadas nos arquivos?
- Distribuições aleatórias podem gerar a necessidade de se copiarem sequências em arquivos desnecessariamente

Estratégia

Definir os tamanhos das sequências passo-a-passo, de forma a se eliminar cópias. Quando não houver um número exato de sequências, completa-se o número com **sequências falsas**.

- Mas como distribuir as sequências ordenadas nos arquivos?
- ▶ Distribuições aleatórias podem gerar a necessidade de se copiarem sequências em arquivos desnecessariamente

Estratégia

Definir os tamanhos das sequências passo-a-passo, de forma a se eliminar cópias. Quando não houver um número exato de sequências, completa-se o número com **sequências falsas**.

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
-	-	-	-	1	1
1	1	1	1	-	4

- Mas como distribuir as sequências ordenadas nos arquivos?
- ▶ Distribuições aleatórias podem gerar a necessidade de se copiarem sequências em arquivos desnecessariamente

Estratégia

Definir os tamanhos das sequências passo-a-passo, de forma a se eliminar cópias. Quando não houver um número exato de sequências, completa-se o número com **sequências falsas**.

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
-	-	-	-	1	1
1	1	1	1	-	4
2	2	2	-	1	7

- Mas como distribuir as sequências ordenadas nos arquivos?
- Distribuições aleatórias podem gerar a necessidade de se copiarem sequências em arquivos desnecessariamente

Estratégia

Definir os tamanhos das sequências passo-a-passo, de forma a se eliminar cópias. Quando não houver um número exato de sequências, completa-se o número com **sequências falsas**.

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
-	-	-	-	1	1
1	1	1	1	-	4
2	2	2	-	1	7
-	4	4	2	3	13

- Mas como distribuir as sequências ordenadas nos arquivos?
- Distribuições aleatórias podem gerar a necessidade de se copiarem sequências em arquivos desnecessariamente

Estratégia

Definir os tamanhos das sequências passo-a-passo, de forma a se eliminar cópias. Quando não houver um número exato de sequências, completa-se o número com **sequências falsas**.

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
-	-	-	-	1	1
1	1	1	1	-	4
2	2	2	-	1	7
-	4	4	2	3	13
4	-	8	6	7	25

- Mas como distribuir as sequências ordenadas nos arquivos?
- Distribuições aleatórias podem gerar a necessidade de se copiarem sequências em arquivos desnecessariamente

Estratégia

Definir os tamanhos das sequências passo-a-passo, de forma a se eliminar cópias. Quando não houver um número exato de sequências, completa-se o número com **sequências falsas**.

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
-	-	-	-	1	1
1	1	1	1	-	4
2	2	2	-	1	7
-	4	4	2	3	13
4	-	8	6	7	25
12	8	-	14	15	49

$$A_1$$
 A_2 A_3 A_4 A_5 \mid # Seqs Ordenadas

$$r_{12}^1$$
 r_{8}^1 - r_{14}^1 r_{15}^1 49

$$A_1$$
 A_2 A_3 A_4 A_5 \mid # Seqs Ordenadas

$$r_4^1$$
 - r_8^4 r_6^1 r_7^1 | 25
 r_{12}^1 r_8^1 - r_{14}^1 r_{15}^1 | 49

$$A_1$$
 A_2 A_3 A_4 A_5 | # Seqs Ordenadas

$$A_1$$
 A_2 A_3 A_4 A_5 | # Seqs Ordenadas

A_1	A_2	A_3	A_4	$A_5 \mid \# $
r_1^{13}	r_{1}^{7}	r_{1}^{4}	r_1^{25}	- 4
r_2^{13}	r_{2}^{7}	r_{2}^{4}	-	$r_1^1 \mid 7$
-	r_{4}^{7}	4 4	r_2^1	r_3^1 13
r_4^1	-	r_{8}^{4}	r_{6}^{1}	r_7^1 25
r_{12}^{1}	r_{8}^{1}	-	r_{14}^{1}	r_{15}^1 49

Intercalação Polifásica - Exemplo

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
-	-	-	-	r_1^{49}	1
r_1^{13}	r_{1}^{7}	r_{1}^{4}	r_1^{25}	-	4
r_2^{13}	r_{2}^{7}	r_{2}^{4}	-	r_1^1	7
-	r_{4}^{7}	4 4	r_2^1	r_3^1	13
r_{4}^{1}	-	r_{8}^{4}	r_{6}^{1}	r_7^1	25
r_{12}^{1}	r_8^1	-	r_{14}^{1}	r_{15}^{1}	49

Número de Registros Processados

Qual foi o número de registros processados durante a ordenação?

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
-	-	-	-	r_1^{49}	1
r_1^{13}	r_{1}^{7}	r_{1}^{4}	r_1^{25}	-	4
r_2^{13}	r_{2}^{7}	r_{2}^{4}	-	r_1^1	7
-	r_{4}^{7}	4 4	r_2^1	r_{3}^{1}	13
r_4^1	-	r_{8}^{4}	r_6^1	r_7^1	25
r_{12}^{1}	r_8^1	-	r_{14}^{1}	r_{15}^{1}	49

Número total:
$$32 + 28 + 26 + 25 + 49 = 160$$

Aproximadamente 3.27 vezes o tamanho do arquivo original

Como seriam os passos para ordenação de **75** sequências ordenadas, originalmente todas de tamanho **1** (por exemplo), usando **6** arquivos? Qual a taxa de processamento de registros?

 A_1 A_2 A_3 A_4 A_5 A_6 # Seqs Ordenadas

A_1	A_2	A_3	A_4	A_5	A_6	# Seqs Ordenadas
-	-	-	-	-	1	1
1	1	1	1	1	-	5

A_1	A_2	A_3	A_4	A_5	A_6	# Seqs Ordenadas
-	-	-	-	-	1	1
1	1	1	1	1	-	5
-	2	2	2	2	1	9

A_1	A_2	A_3	A_4	A_5	A_6	# Seqs Ordenadas
-	-	-	-	-	1	1
1	1	1	1	1	-	5
-	2	2	2	2	1	9
2	-	4	4	4	5	19

A_1	A_2	A_3	A_4	A_5	A_6	# Seqs Ordenadas
-	-	-	-	-	1	1
1	1	1	1	1	-	5
-	2	2	2	2	1	9
2	-	4	4	4	5	19
7	5	9	9	9	-	39

Como seriam os passos para ordenação de **75** sequências ordenadas, originalmente todas de tamanho **1** (por exemplo), usando **6** arquivos? Qual a taxa de processamento de registros?

A_1	A_2	A_3	A_4	A_5	A_6	# Seqs Ordenadas
-	-	-	-	-	1	1
1	1	1	1	1	-	5
-	2	2	2	2	1	9
2	-	4	4	4	5	19
7	5	9	9	9	-	39
16	14	18	18	-	9	75
10	17	10	10		9	, ,

. . .

$$A_1$$
 A_2 A_3 A_4 A_5 A_6 \mid # Seqs Ordenadas

$$r_{16}^1$$
 r_{14}^1 r_{18}^1 r_{18}^1 - r_{9}^1 | 75

$$A_1$$
 A_2 A_3 A_4 A_5 A_6 \mid $\#$ Seqs Ordenadas

$$r_7^1$$
 r_5^1 r_9^1 r_9^1 r_9^5 - | 39
 r_{16}^1 r_{14}^1 r_{18}^1 r_{18}^1 - r_9^1 | 75

$$A_1$$
 A_2 A_3 A_4 A_5 A_6 $\mid \#$ Seqs Ordenadas

$$A_1$$
 A_2 A_3 A_4 A_5 A_6 \mid # Seqs Ordenadas

A_1	A_2	A_3	A_4	A_5	A_6	# Seqs Ordenadas
r_1^{33}	r_1^{17}	r_1^1	r_1^1	r_{1}^{5}	-	5
-	r_2^{17}	r_{2}^{1}	r_2^1	r_{2}^{5}	r_1^9	9
r_2^1	-	r_4^1	r_4^1	r_{4}^{5}	r_5^9	19
r_7^1	r_5^1	r_9^1	r_9^1	r_{9}^{5}	-	39
r_{16}^{1}	r_{14}^{1}	r_{18}^{1}	r_{18}^{1}	-	r_9^1	75

A_1	A_2	A_3	A_4	A_5	A_6	# Seqs Ordenadas
-	-	-	-	-	r_1^{75}	1
r_1^{33}	r_1^{17}	r_1^1	r_1^1	r_{1}^{5}	-	5
-	r_2^{17}	r_2^1	r_2^1	r_{2}^{5}	r_1^9	9
r_2^1	-	r_4^1	r_4^1	r_{4}^{5}	r_{5}^{9}	19
r_7^1	r_{5}^{1}	r_9^1	r_9^1	r_{9}^{5}	-	39
r_{16}^{1}	r_{14}^{1}	r_{18}^{1}	r_{18}^{1}	-	r_9^1	75

Como seriam os passos para ordenação de **75** sequências ordenadas, originalmente todas de tamanho **1** (por exemplo), usando **6** arquivos? Qual a taxa de processamento de registros?

A_1	A_2	A_3	A_4	A_5	A_6	# Seqs Ordenadas
-	-	-	-	-	r_1^{75}	1
r_1^{33}	r_1^{17}	r_1^1			-	
-	r_2^{17}	r_2^1	r_2^1	r_{2}^{5}	r_{1}^{9}	9
r_2^1	-	r_4^1	r_4^1	r_{4}^{5}	r_{5}^{9}	19
r_7^1	r_{5}^{1}	r_9^1	r_9^1	r_{9}^{5}	-	39
r_{16}^{1}	r_{14}^{1}	r_{18}^{1}	r_{18}^{1}	-	r_{9}^{1}	75

Número total: 45 + 45 + 34 + 33 + 75 = 232

Aproximadamente 3.09 vezes o tamanho do arquivo original

Intercalação em Cascata

- ► Estratégia alternativa de intercalação: passar por todos os registros em cada passo do algoritmo
- ► Como distribuir as sequências?

- Estratégia alternativa de intercalação: passar por todos os registros em cada passo do algoritmo
- Como distribuir as sequências?

$$A_1$$
 A_2 A_3 A_4 A_5 $\#$ Seqs Ordenadas

- Estratégia alternativa de intercalação: passar por todos os registros em cada passo do algoritmo
- Como distribuir as sequências?

- ► Estratégia alternativa de intercalação: passar por todos os registros em cada passo do algoritmo
- Como distribuir as sequências?

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
-	-	-	-	1	1
1	1	1	1	-	4

- ► Estratégia alternativa de intercalação: passar por todos os registros em cada passo do algoritmo
- Como distribuir as sequências?

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
-	-	-	-	1	1
1	1	1	1	-	4
-	1	2	3	4	10

- ► Estratégia alternativa de intercalação: passar por todos os registros em cada passo do algoritmo
- Como distribuir as sequências?

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
-	-	-	-	1	1
1	1	1	1	-	4
-	1	2	3	4	10
10	9	7	4	-	30

- ► Estratégia alternativa de intercalação: passar por todos os registros em cada passo do algoritmo
- Como distribuir as sequências?

Suponhamos que tenhamos cinco arquivos:

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
-	-	-	-	1	1
1	1	1	1	-	4
-	1	2	3	4	10
10	9	7	4	-	30
-	10	19	26	30	85
					'

. . .

- Estratégia alternativa de intercalação: passar por todos os registros em cada passo do algoritmo
- Como distribuir as sequências?

$$A_1$$
 A_2 A_3 A_4 A_5 | # Seqs Ordenadas

- Estratégia alternativa de intercalação: passar por todos os registros em cada passo do algoritmo
- Como distribuir as sequências?

- Estratégia alternativa de intercalação: passar por todos os registros em cada passo do algoritmo
- Como distribuir as sequências?

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
-	-	-	-	1	1
1	1	1	1	-	4

- Estratégia alternativa de intercalação: passar por todos os registros em cada passo do algoritmo
- Como distribuir as sequências?

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
-	-	-	-	1	1
1	1	1	1	-	4
1	-	2	4	3	10

- Estratégia alternativa de intercalação: passar por todos os registros em cada passo do algoritmo
- Como distribuir as sequências?

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
-	-	-	-	1	1
1	1	1	1	-	4
1	-	2	4	3	10
10	9	7	-	4	30

- Estratégia alternativa de intercalação: passar por todos os registros em cada passo do algoritmo
- ► Como distribuir as sequências?

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
-	-	-	-	1	1
1	1	1	1	-	4
1	-	2	4	3	10
10	9	7	-	4	30
-	10	19	26	30	85

$$A_1$$
 A_2 A_3 A_4 A_5 $\#$ Seqs Ordenadas

$$A_1$$
 A_2 A_3 A_4 A_5 $\#$ Seqs Ordenadas

$$r_{10}^4$$
 r_9^3 r_7^2 - r_4^1 | 30
- r_{10}^1 r_{19}^1 r_{26}^1 r_{30}^1 | 85

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
_r 4		_r 7	r_4^{10}	- 9	10
'1	_				10
r_{10}^{4}	r_{9}^{3}	r_{7}^{2}	-	r_4^1	30
-	r_{10}^{1}	r_{19}^{1}	r_{26}^{1}	r_{30}^{1}	85

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
r_1^{26}	r_1^{30}	r_1^{19}	r_1^{10}	-	4
r_{1}^{4}	-	r_{2}^{7}	r_4^{10}	r_{3}^{9}	10
r_{10}^{4}	r_{9}^{3}	r_{7}^{2}	-	r_4^1	30
-	r_{10}^{1}	r_{19}^{1}	r_{26}^{1}	r_{30}^{1}	85

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
-	-	-	-	r_1^{85}	1
r_1^{26}	r_1^{30}	r_1^{19}	r_1^{10}	-	4
r_{1}^{4}	-	r_{2}^{7}	r_4^{10}	r_{3}^{9}	10
r_{10}^{4}	r_{9}^{3}	r_{7}^{2}	-	r_4^1	30
-	r_{10}^{1}	r_{19}^{1}	r_{26}^{1}	r_{30}^{1}	85

Taxa de Processamento de Registros

Como seriam os passos para ordenação de **85** sequências ordenadas, originalmente todas de tamanho **1** (por exemplo), usando **5** arquivos?

A_1	A_2	A_3	A_4	A_5	# Seqs Ordenadas
-	-	-	-	r_1^{85}	1
r_1^{26}	r_1^{30}	r_1^{19}	r_1^{10}	-	4
r_{1}^{4}		_	r_4^{10}	r_{3}^{9}	10
r_{10}^{4}	r_{9}^{3}	r_{7}^{2}	-	r_4^1	30
-	r_{10}^{1}	r_{19}^{1}	r_{26}^{1}	r_{30}^{1}	85

Número total: 81 + 81 + 75 + 85 = 322

Aproximadamente 3.8 vezes o tamanho do arquivo original

Intercalação em Cascata - Exercício

Como seriam os passos para ordenação de 190 sequências ordenadas, originalmente todas de tamanho 1 (por exemplo), usando 6 arquivos? Qual a taxa de processamento de registros?

A_1	A_2	A_3	A_4	A_5	A_6	# Seqs Ordenadas
-	-	-	-	-	r_1^{190}	1
r_1^{50}	r_1^{55}	r_1^{41}	r_1^{29}	r_1^{15}	-	5
r_{1}^{5}	-	r_{2}^{9}	r_3^{12}	r_5^{15}	r_4^{14}	15
r_{15}^{5}	r_{14}^{4}	r_{12}^{3}	r_{9}^{2}	-	r_5^1	55
-	r_{15}^{1}	r_{29}^{1}	r_{41}^{1}	r_{50}^{1}	r_{55}^{1}	190

Número total: 185 + 185 + 175 + 190 = 735

Aproximadamente 3.9 vezes o tamanho do arquivo original

