THEORY OF INFERENCE

July 23, 2020

Overview

2 Rules of Inference

Let A and B be two statement formula. We say that "B logically follows from A" or "B is a valid conclusion of the premise A" iff $A \to B$ is a Tautology i.e., $A \Longrightarrow B$

To demonstrate that a particular formula is valid consequence of a given set of premises, we use the follow rules of inference.

 $Rule\ P$: A premise may be introduced at any point in the derivation

Rule T: A formula S may be introduced in a derivation if S is

tautologically implied by any one or more of the preceding

formulas in the derivation

Question: Demonstrate that r is a valid inference from the premises

$$p
ightarrow q, \ q
ightarrow r$$
 and p

Solution:

$$p o q$$
 (Rule P)
 p (Rule P)
 q (Rule T, $p \land (p \to q) \implies q$)
 $q \to r$ (Rule P)
 r (Rule T, $q \land (q \to r) \implies r$)

Question: RVS follows logically from the premises $C \wedge D$, $C \vee D \rightarrow \neg H$, $\neg H \rightarrow (A \wedge \neg B)$, $(A \wedge \neg B) \rightarrow (R \vee S)$. **Solution**:

$$C \lor D \to \neg H$$
 (Rule P)
 $\neg H \to A \land \neg B$ (Rule P)
 $C \lor D \to A \land \neg B$ (Rule T)
 $A \land \neg B \to R \lor S$ (Rule P)
 $C \lor D \to R \lor S$ (Rule T)
 $C \lor D$ (Rule P)
 $R \lor S$ (Rule T)

Question: Show that $S \vee r$ is tautologically implied by $(p \vee q) \wedge (p \rightarrow r) \wedge (q \rightarrow s)$

Solution:

$$p \lor q$$
 (Rule P)
 $\neg p \to q$ (Rule T i.e., $p \to q \Leftrightarrow \neg p \lor q$)
 $q \to S$ (Rule P)
 $\neg p \to S$ (Rule T)
 $\neg S \to p$ (Rule T, $p \to q \Leftrightarrow \neg q \to \neg p$)
 $p \to r$ (Rule P)
 $\neg S \to r$ (Rule T)
 $S \lor r$ (Rule T, $p \to q \Leftrightarrow \neg (\neg p \lor q)$)

Exercise Q1: $R \land (p \lor q)$ is a valid conclusion from the premises $p \lor q$, $q \to r$, $p \to M$ and $\neg M$.

Exercise Q2: If A works hard, then either B or C will enjoy themselves. If B enjoys himself, then A will not work hard. If D enjoys himself, then C will not, therefore prove that if A works hard, D will not enjoy himself.

Solution hint:

A: A works hard

B: B will enjoy himself

C : C will enjoy himself

D : D will enjoy himself

To prove $A \to \neg D$ follows from $A \to B \lor C$, $B \to \neg A$ and $D \to \neg C$

