Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 4. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie L o listă numerică și următoarea definiție de predicat PROLOG f(list, integer), având modelul de flux (i, o):

f([], -1). f([H|T],S):-H>0, $\underline{f(T,S1)}$,S1<H,!,S is H. $f([_|T],S):-\underline{f(T,S1)}$, S is S1.

Rescrieți această definiție pentru a evita apelul recursiv <u>f(T,S)</u> în ambele clauze. Nu redefiniți predicatul. Justificați răspunsul.

P	Dându oo o lietă malinia v	continând atât atausi	novici cât di naccome color	co coro lin nuocina l'ICD	coro ex construitore - listy
ß.	Dându-se o listă neliniară liniară formată doar din a element o singură dată, în 3 (B 1 (A D 5) C C (F)) 8 1:	ncei atomi nenumerici can n ordine inversă față de or	re apar de un număr pa dinea în care elementele	ar de ori în lista inițială. R apar în lista inițială. De e x	ezultatul va conține fiecare cemplu , pentru lista (F A 2
		() // = = = = =	(, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	,

C. Să se scrie un program PROLOG care generează lista permutărilor mulţimii 1..N, cu proprietatea că valoarea absolută a diferenţei între 2 valori consecutive din permutare este >=2. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru N=4 \Rightarrow [[3,1,4,2], [2,4,1,3]] (nu neapărat în această ordine)

D.	Să se substituie un element e prin altul e1 la orice nivel impar al unei liste neliniare. Nivelul superficial se consideră 1. De exemplu, pentru lista (1 d (2 d (d))), e =d și e1 =f rezultă lista (1 f (2 d (f))).