IIC3253

Teoría de Grupos

Grupos

Un grupo es un par (G,*), donde G es un conjunto y $*: G \times G \to G$ es una operación que satisface:

Neutro. Existe $e \in G$ tal que para todo $a \in G$

$$e * a = a * e = a$$

Inversos. Para todo $a \in G$ existe $a^{-1} \in G$ tal que

$$a * a^{-1} = a^{-1} * a = e$$

Asociatividad. Para todos $a,b,c\in G$ se tiene

$$(a*b)*c = a*(b*c)$$

$$(\mathbb{Z},+)$$
?

¿Neutro? El 0 🔽

¿Inversos? Dado $a \in \mathbb{Z}$, -a también está en \mathbb{Z} \checkmark

¿Asociatividad? Viene de la suma 🔽

 (\mathbb{Q},\cdot) ?

¿Neutro? El 1 🔽

¿Inversos? Dado $q\in\mathbb{Q}$, 1/q también está en \mathbb{Q} 😲

¿Asociatividad? Viene de la multiplicación 🔽

$$(\mathbb{Q}\setminus\{0\},\cdot)$$
?

¿Neutro? El 1 ✓

¿Inversos? Dado $q\in\mathbb{Q}\setminus\{0\}$, 1/q también está en $\mathbb{Q}\setminus\{0\}$ 🗸

¿Asociatividad? Viene de la multiplicación 🔽

$$(N, +)$$
?

¿Neutro? El 0 ✓

¿Inversos? Dado $a \in \mathbb{N}$, -a no está en \mathbb{N}

$$(\mathbb{Z},\cdot)$$
?

¿Neutro? El 1 ✓

¿Inversos? Dado $a \in \mathbb{Z}$ con $a \neq 1$, 1/a no está en \mathbb{Z}

$$(\{0, 1, 2, 3\}, + \text{mod } 4)$$
?

¿Neutro? El 0 🗸

¿Inversos? Dado $a\in\{0,1,2,3\}$, $(4-a)\mod 4$ está en $\{0,1,2,3\}$ y tenemos que $(a+(4-a)\mod 4)\mod 4=a\mod 4$

¿Asociatividad?

 $((a+b) \mod 4 + c) \mod 4 = (a+(b+c) \mod 4) \mod 4$

$$(\{1, 3, 7, 9\}, \cdot \text{mod } 10)$$
?

¿Multiplicación $\mod 10: \{1,3,7,9\} \rightarrow \{1,3,7,9\}$?

¿Neutro? El 1 🗸

¿Inversos? Son todos los primos relativos con el 10 🔽

¿Asociatividad?

 $((a \cdot b) \mod 10 \cdot c) \mod 10 = (a \cdot (b \cdot c) \mod 10) \mod 10$

Dado $n \in \mathbb{N}$, todas las permutaciones

$$\pi:\{1,\ldots,n\} o\{1,\ldots,n\}$$

¿Cuál es la operación?

Las permutaciones son funciones, podemos usar composición (°)

Siendo A_n el conjunto de todas las permutaciones de $\{1,\ldots,N\}$, Demuestre que $S_n=(A_n,\circ)$ es un grupo

Algunas preguntas

```
¿Es la operación * siempre conmutativa?
```

¿Puede haber una segunda identidad?

¿Puede un elemento tener dos inversos?

¿Puede un elemento tener un inverso por la izquierda y otro inverso por la derecha?

Sea $n \in \mathbb{N}$

¿Qué operación nos da un grupo para $\{0,1,\ldots,n-1\}$?

$$a+b \mod n$$

¿Inversos? Dado
$$a\in\{0,\ldots,n\}$$
, $(n-a)\mod 4$ está en $\{0,\ldots,n\}$ y tenemos que $(a+(n-a)\mod n)\mod n=a\mod n$

 $(\mathbb{Z}_n, + \mod n)$ grupo aditivo de los enteros en módulo n.

¿Y si tratamos con la multiplicación?

¡Hay elementos que no tienen inverso!

El 0 y todo
$$a \in \{1, \dots, n-1\}$$
 tales que $\mathrm{GCD}(a,n) > 1$

¿Y si los sacamos?

¿Multiplicación
$$\mod 10: \{1,3,7,9\} \rightarrow \{1,3,7,9\}$$
?

¿Inversos? Gracias Euclides!

Grupo multiplicativo de los enteros módulo n

$$\mathbb{Z}_{10}^*$$
 $\{1, 3, 7, 9\}$

$$\mathbb{Z}_{11}^* \\ \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

 $m{\mathbb{Z}}_{m{p}}^{m{st}}$ para p primo sus elementos son $\{1,\ldots,n-1\}$

\mathbb{Z}_n^* y sus subgrupos

Un subgrupo de (G,*) es un conjunto $H\subseteq G$ tal que (H,*) también es un grupo.

¿Qué subgrupos tiene $\mathbb{Z}_{10}^* = (\{1,3,7,9\}, \mod 10)$?

$$(\{1\}, \mod 10)$$

$$(\{1,3,7,9\}, \mod 10)$$

$$(\{1,9\}, \mod 10)$$

¿Qué subgrupos tiene \mathbb{Z}_{12}^* ?

$$\{1, 5, 7, 11\}$$

$$(\{1\}, \mod 10)$$

$$(\{1, 5, 7, 11\}, \cdot \mod 12)$$

$$(\{1,5\}, \mod 12)$$

$$(\{1,7\}, \mod 12) \mathbf{V}$$

$$(\{1,11\}, \cdot \mod 12) \checkmark$$

$$\mathbb{Z}_5^* = (\{1,2,3,4\}, \mod 5)$$

$$(\{1\}, \mod 5)$$

$$(\{1,2,3,4\}, \mod 5)$$

$$(\{1,4\}, \mod 5)$$

$$\mathbb{Z}_7^* = (\{1, 2, 3, 4, 5, 6\}, \cdot \mod 7)$$

$$(\{1\}, \cdot \mod 7) \checkmark$$

$$(\{1, 2, 3, 4, 5, 6\}, \cdot \mod 7) \checkmark$$

$$(\{1, 2, 4\}, \cdot \mod 7) \checkmark$$

$$(\{1, 6\}, \cdot \mod 7) \checkmark$$

$$\mathbb{Z}_{11}^* = (\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, \cdot \mod 11)$$

$$(\{1\}, \cdot \mod 11) \checkmark$$

$$(\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, \cdot \mod 11) \checkmark$$

$$(\{1, 5, 3, 4, 9\}, \cdot \mod 11) \checkmark$$

$$(\{1, 10\}, \cdot \mod 11) \checkmark$$

Cantidad de elementos de G = orden del grupo

\mathbb{Z}_{11}^*	$\{1, 5, 3, 4, 9\}$ $\{1, 10\}$	Grupo de orden 10 Subgrupos de orden 2 y 5
\mathbb{Z}_7^*	$\{1,2,4\}$ $\{1,6\}$	Grupo de orden 6 Subgrupos de orden 2 y 3
\mathbb{Z}_5^*	$\{1,4\}$	Grupo de orden 4 Subgrupo de orden 2
77/*		Grupo de orden 16

Subgrupos de orden 2, 4 y 8

417

COSA

¿Podremos demostrar que el tamaño de un subgrupo siempre divide al tamaño del grupo?

Abusaremos de la notación llamando G a un grupo si (G,*) es un grupo y * es una operación arbitraria

Sea G un grupo y H un subgrupo de G

Dado
$$g_0 \in G \setminus H$$

¿Cuántos elementos tiene $g_0H=\{g_0*h|h\in H\}$?

Dado
$$g_0 \in G \setminus H$$

¿Cuántos elementos tiene $g_0H=\{g_0*h|h\in H\}$?

A lo más tiene |H| elementos distintos

Si
$$g_0 * h_1 = g_0 * h_2$$
 entonces $h_1 = h_2$.

Tenemos que $|g_0H|=|H|$

¿Puede $g_0H \cap H$ ser no vacío?

$$g_0 h_1 = h_2 \Rightarrow g_0 = h_2 h_1^{-1}$$

Pero como H es subgrupo, $h_2h_1^{-1} \in H \; \Rightarrow \Leftarrow$

Si $G=H\cup g_0H$ entonces |G|=2|H|.De lo contrario sea $g_1\in G\setminus (H\cup g_0H)$

¿Cuántos elementos tiene $g_1H=\{g_1*h|h\in H\}$?

¿Puede $g_1H \cap H$ ser no vacío?

¿Puede $g_0H \cap g_1H$ ser no vacío?

$$g_0h_1=g_1h_2\Rightarrow g_0h_1h_2^{-1}=g_1$$

Pero como H es subgrupo, $h_1h_2^{-1}\in H$. Luego $g_1\in g_0H\Rightarrow \Leftarrow$

Si $G=H\cup g_0H\cup g_1H$ entonces |G|=3|H|. De lo contrario sea $g_2\in G\setminus (H\cup g_0H\cup g_1H)$

Teorema de Lagrange

Si H es un subgrupo de G entonces |H| divide a |G|

Subgrupos generados

Sea G un grupo y $a \in G$. Usando notación multiplicativa, definiremos

$$a^n = \underbrace{a * \cdots * a}_{n \text{ veces}}$$

Si tomamos la secuencia $\{1,a,a^2,a^3,\ldots\}$ eventualmente un elemento se tiene que repetir. Sea $a^j=a^{j+k}$ la primera repetición

Tenemos entonces que $a^j = a^j * a^k$ y por lo tanto a^k es el neutro

Subgrupos generados

Tenemos entonces que $a^j=a^j\cdot a^k$ y por lo tanto a^k es el neutro Implica que j=0.

Definamos $\langle a \rangle = \{a^j | 0 \leq j < k \}$

¿Qué podemos decir de $\langle a \rangle$?

¡Es un subgrupo de tamaño k!

Implica que $|\langle a \rangle| = k$ divide a |G|

\mathbb{Z}_p^* con p un número primo

Sea $a \in \mathbb{Z}_p^*$ y supongamos $|\langle a
angle| = k$

 \mathbb{Z}_p^* tiene exactamente p-1 elementos

Luego k divide a p-1

Existe α tal que $\alpha \cdot k = p-1$

$$a^{p-1} = a^{\alpha \cdot k} = (a^k)^{\alpha} = 1^{\alpha} = 1$$

\mathbb{Z}_n^* con $n\in\mathbb{N}$

Sea $a \in \mathbb{Z}_n^*$ y supongamos $|\langle a
angle| = k$

 \mathbb{Z}_n^* tiene exactamente $\phi(n)$ elementos

Luego k divide a $\phi(n)$

Existe α tal que $\alpha \cdot k = \phi(n)$

$$a^{\phi(n)}=a^{lpha\cdot k}=(a^k)^lpha=1^lpha=1$$

Dado un grupo G, si existe $a \in G$ tal que $\langle a \rangle = G$, decimos que G es un grupo *cíclico*

No demostraremos que...

 \mathbb{Z}_P^* es siempre cíclico

¿Quién genera a \mathbb{Z}_7^* ?