1. Siguin

$$F_1 = \langle (1, -1, 1, -1), (2, -2, 1, 1), (-3, 3, 0, 1), (0, 0, 5, 6) \rangle$$
$$F_2 = \langle (1, 2, 3, 4), (-1, 4, 2, 3) \rangle$$

subespais vectorials de \mathbb{Q}^4 .

(a) Calculeu la dimensió i una base dels subespais vectorials F_1 , F_2 , $F_1 \cap F_2$ i $F_1 + F_2$. Posem els vectors de F_1 en una matriu i calculem el rang d'aquesta matriu:

$$\begin{pmatrix} 1 & -1 & 1 & -1 \\ 2 & -2 & 1 & 1 \\ -3 & 3 & 0 & 1 \\ 0 & 0 & 5 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & 5 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 21 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & -1 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Procedim de manera anàloga per F_2 :

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ -1 & 4 & 2 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 6 & 5 & 7 \end{pmatrix}$$

Observant les files del les dues matrius esglaonades podem concloure que $\dim(F_1) = 3$ i $\dim(F_2) = 2$. Una base de F_1 és $B_{F_1} = ((1, -1, 1, -1), (0, 0, -1, 3), (0, 0, 0, 7))$ i una base de F_2 és $B_{F_2} = ((1, 2, 3, 4), (0, 6, 5, 7))$.

Pel que fa a la intersecció i la suma dels dos subespais, comencem posant a una matriu els vectors de les bases B_{F_1} i B_{F_2} amb la matriu identitat al costat.

$$\begin{pmatrix} 1 & -1 & 1 & -1 & | & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 3 & | & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 7 & | & 0 & 0 & 1 & 0 & 0 \\ 1 & 2 & 3 & 4 & | & 0 & 0 & 0 & 1 & 0 \\ 0 & 6 & 5 & 7 & | & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & -1 & | & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 3 & | & 0 & 1 & 0 & 0 \\ 0 & 3 & 2 & 5 & | & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 3 & | & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 7 & | & 0 & 0 & 1 & 0 & 0 \\ 0 & 3 & 2 & 5 & | & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -3 & | & 2 & 0 & 0 & -2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 & -1 & | & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 3 & | & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 3 & | & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 7 & | & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 7 & | & 0 & 0 & 1 & 0 & 0 \\ 0 & 3 & 2 & 5 & | & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 2 & 1 & 0 & -2 & 1 \end{pmatrix}$$

Per tant, una base de $F_1 + F_2$ és $B_{F_1+F_2} = ((1, -1, 1, -1), (0, 3, 2, 5), (0, 0, -1, 3), (0, 0, 0, 7))$ i, per tant, dim $(F_1 + F_2) = 4$. Pel que fa a la intersecció ens fixem en la fila de 0's de la matriu principal i mirem els coeficients de la matriu invertible en aquesta fila. Per la intersecció, sigui $\mathbf{v} \in F_1 \cap F_2$. Aleshores, $\mathbf{v} \in F_1$ i $\mathbf{v} \in F_2$. Per tant podem escriure el vector \mathbf{v} com a combinació lineal dels vectors de B_{F_1} i B_{F_2} :

$$\mathbf{v} = a(1, -1, 1, -1) + b(0, 0, -1, 3) + c(0, 0, 0, 7)$$

$$\mathbf{v} = d(1, 2, 3, 4) + e(0, 6, 5, 7)$$

Igualant les dues expressions tenim que:

$$a(1,-1,1,-1) + b(0,0,-1,3) + c(0,0,0,7) + (-d)(1,2,3,4) + (-e)(0,6,5,7) = 0$$

Si ens fixem bé, els termes a, b, c, -d, -e són exactament els coeficients de la matriu invertible en la fila de 0's de la matriu principal. Per tant, substituint tenim que a = 2, b = 1, c = 0, d = 2, e = 1.

Substituint aquests valors a una de les expressions anteriors de \mathbf{v} tenim que: $\mathbf{v} = (2, -2, 1, 1)$ i, per tant, aquest vector forma una base de $F_1 \cap F_2$: $B_{F_1 \cap F_2} = ((2, -2, 1, 1))$. Per la fórmula de Graßmann tenim que $\dim(F_1 \cap F_2) = \dim(F_1) + \dim(F_2) - \dim(F_1 + F_2) = 3 + 2 - 4 = 1$ i ens quadre amb el nombre de vectors de $B_{F_1 \cap F_2}$.

(b) Amplieu la base de $F_1 \cap F_2$ que heu trobat a una base de F_1 i a una base de F_2 . Com que el vector de la base de $F_1 \cap F_2$ és un vector contingut en la base de F_1 , l'ampliació de la base de $F_1 \cap F_2$ a una nova base de F_1 és exactament la base B_{F_1} que hem trobat anteriorment. Per ampliar la base de $F_1 \cap F_2$ a una base de F_2 cal crear una matriu amb els vectors de B_{F_2} i $B_{F_1 \cap F_2}$ i estudiar la dependència lineal d'aquests.

$$\begin{pmatrix} 2 & -2 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 0 & 6 & 5 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -2 & 1 & 1 \\ -2 & -4 & -6 & -8 \\ 0 & 6 & 5 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -2 & 1 & 1 \\ 0 & -6 & -5 & -7 \\ 0 & 6 & 5 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -2 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 6 & 5 & 7 \end{pmatrix}$$

Per tant, una base de F_2 ampliada a partir de la base de $F_1 \cap F_2$ és: $B'_{F_2} = ((2, -2, 1, 1), (0, 6, 5, 7)).$

(c) Trobeu un sistema d'equacions lineal homogeni tal que F_1 sigui el conjunt de les solucions d'aquest sistema.

Per tal de crear aquest sistema lineal homogeni, creem el sistema d'equacions que consisteix en posar els vectors de F_1 com a columnes d'una matriu i afegir el vector (x, y, z, t) com una columna de la matriu ampliada. Esglaonant la matriu fins obtenir una fila de zeros (l'obtindrem sigui com sigui ja que dim $(F_1) = 3$) tenim que:

$$\begin{pmatrix} 1 & 2 & -3 & 0 & x \\ -1 & -2 & 3 & 0 & y \\ 1 & 1 & 0 & 5 & z \\ -1 & 1 & 1 & 6 & t \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -3 & 0 & x \\ 0 & 0 & 0 & 0 & x+y \\ 0 & -1 & 3 & 5 & z-x \\ 0 & 3 & -2 & 6 & x+t \end{pmatrix}$$

Per tant, observant l'element de la matriu ampliada de la fila de zeros de la matriu principal, veiem que x + y = 0 és el sistema lineal homogeni que té com a solucions el subespai F_1 .

- 2. En aquest exercici estudiem \mathbb{R} com a \mathbb{Q} -espai vectorial.
 - (a) Siguin m_1, \ldots, m_k enters lliures de quadrats (si un primer p divideix a m_i aleshores p^2 no el divideix) i coprimers dos a dos (els primers que divideixen m_i no divideixen m_j , $\forall i, j$). Demostreu per inducció que el conjunt $\{\sqrt{m_1}, \ldots, \sqrt{m_k}\}$ és un conjunts d'elements \mathbb{Q} -linealment independents.

Demostrarem una cosa més forta que el que ens demanen. Demostrarem que el conjunt L_{k+1} = $\{1,\sqrt{m_1},\ldots,\sqrt{m_{k+1}},\ldots,\sqrt{m_1m_2},\ldots,\sqrt{m_1\cdots m_{n+1}}\}$ és $\mathbb Q$ -linealment independent. En concret el conjunt L_{k+1} és el conjunt generat per 1, per les arrels dels primers k nombres donats lliures de quadrats i coprimers dos a dos i també per tots els possibles productes d'aquestes arrels entre elles combinades entre si (en total, L_k té exactament 2^k elements). Per veure-ho demostrem primer que L_k és un extensió del cos sobre el cos dels racionals, és a dir, que podem expressar qualsevol element $x \in L_k$ com $x = \alpha_1 + \alpha_2 \sqrt{m_1} + \cdots + \alpha_{2^k} \sqrt{m_1 \cdots m_k}$. Per demostrar-ho, hem de veure que L_k és tancat per producte i per inversos. Agafem dos elements $a, b \in L_k$. Hem de veure que $ab \in L_k$. Sabem que a serà de la forma $a = \sqrt{p_1 \cdots p_r}$ i b serà de la forma $b = \sqrt{q_1 \cdots q_s}$. El seu producte serà de la forma $ab = \sqrt{p_1 \cdots p_r} \sqrt{q_1 \cdots q_s}$. Ara, sigui M el producte de tots els p_i tals que $p_i = q_j$ per alguns i, j. Aleshores, $ab = M\sqrt{p_1 \cdots p_{i-1} p_{i+1} \cdots p_r} \sqrt{q_1 \cdots q_{j-1} q_{j+1} \cdots q_s}$ que clarament pertany a L_k . Ara hem de veure que donat un $c \in L_k \ \exists \ d \mid cd = 1 \ i \ d = c^{-1}$. Sabem que c és de la forma $c = \sqrt{n_1 \cdots n_t}$ i d ha de ser de la forma $d = \frac{1}{\sqrt{n_1 \cdots n_t}} = \frac{\sqrt{n_1 \cdots n_t}}{n_1 \cdots n_t} = \frac{1}{\sqrt{n_1 \cdots n_t}}$ $\frac{1}{n_1\cdots n_t}\sqrt{n_1\cdots n_t}\in L_k$. Per tant, hem demostrat que L_k és un cos. De la mateixa manera es demostra que tots els L_i amb $1 \le i \le k$ són cossos extensions del del cos \mathbb{Q} . De la definició de cos podem expressar qualsevol $x \in L_i$ com $x = a + b\sqrt{m_i}$ amb $a, b \in L_{i-1}$, és a dir, una base B_{L_i} sobre L_{i-1} és $B_{L_i} = (1, \sqrt{m_i})$, que té dimensió 2. De forma similar una base una base B_{L_i} sobre

 L_{i-2} és $B_{L_i}=(1,\sqrt{m_i},\sqrt{m_{i-1}},\sqrt{m_{i-1}m_i})$. En particular podrem expressar una base de L_k sobre \mathbb{Q} com $B_{L_k}=(1,\sqrt{m_1},\ldots,\sqrt{m_{n+1}},\ldots,\sqrt{m_1m_2},\ldots,\sqrt{m_1\cdots m_{n+1}})$ que tindrà 2^k elements. Amb aquesta informació introductòria, demostrarem per inducció sobre k que el conjunt $L_{k+1}=\{1,\sqrt{m_1},\ldots,\sqrt{m_{k+1}},\ldots,\sqrt{m_1m_2},\ldots,\sqrt{m_1\cdots m_{n+1}}\}$ és linealment independent. Demostrem primer el cas k=1:

Sigui $B_{L_1}=(1,\sqrt{m_1})$ una base de L_1 sobre $\mathbb Q$. Hem de demostrar que la base és $\mathbb Q$ -linealment independent. Suposem que no. Per tant aquesta base tindrà dimensió 1, és a dir, generarà el mateix espai que $\mathbb Q$, per tant, $\sqrt{m_1}\in\mathbb Q$. És a dir, podem expressar $\sqrt{m_1}$ com $\sqrt{m_1}=\frac{x}{y}$ sent $x,y\in\mathbb Z^*$ i coprimers entre si. Això és impossible ja que sabem que m_1 és lliure de quadrats. Vegem-ho. Expressant m_1 com a producte de primers tenim que $m_1=r_1\cdots r_l$ i retocant l'expressió anterior, tenim que:

$$\frac{x}{y} = \sqrt{m_1}$$

$$\frac{x^2}{y^2} = m_1$$

$$x^2 = (r_1 \cdots r_l)y^2$$

Si $x = (r_1 \cdots r_l)z$, tenim que:

$$x^{2} = (r_{1} \cdots r_{l})y^{2}$$
$$z^{2}(r_{1} \cdots r_{l})^{2} = (r_{1} \cdots r_{l})y^{2}$$
$$z^{2}(r_{1} \cdots r_{l}) = y^{2}$$

Llavors $(r_1 \cdots r_l)$ divideix y^2 , i en particular divideix y. Però havíem dit que x i y eren coprimers, per tant, contradicció i L_1 és \mathbb{Q} -linealment independent.

Ara suposem cert que L_k és \mathbb{Q} -linealment independent i provem que L_{k+1} també ho és. Per veure-ho, raonarem per reducció a l'absurd. En particular, si L_{k+1} és linealment dependent la base $B_{L_{k+1}}$ sobre el cos L_k no té dimensió 2, sinó que $\dim(B_{L_{k+1}})=1$, de manera que els subespais L_k i L_{k+1} tenen la mateixa dimensió i, en conseqüència, $\sqrt{m_{k+1}} \in L_k$. Aleshores podrem expressar $\sqrt{m_{k+1}}$ de las següent manera:

$$\sqrt{m_{k+1}} = \alpha + \beta \sqrt{m_k}$$

amb $\alpha, \beta \in L_{k-1}$. Retocant l'expressió, tenim que:

$$(\sqrt{m_{k+1}})^2 = (\alpha + \beta \sqrt{m_k})^2$$
$$m_{k+1} = \alpha^2 + \beta^2 m_k + 2\alpha \beta \sqrt{m_k}$$

Si $\alpha\beta \neq 0$ tindrem una expressió de $\sqrt{m_k}$ en termes de nombres racionals, és a dir, dim (L_k) = $1 \neq 2$ sobre el cos L_{k-1} , cosa que contradiu que és impossible per la H.I.. Per tant, $\alpha\beta = 0$. Si $\alpha = 0$, aleshores obtenim la següent expressió:

$$m_{k+1} = \beta^2 m_k$$

$$m_{k+1} m_k = \beta^2 m_k^2$$

$$\sqrt{m_{k+1}} m_k = \beta m_k$$

$$\beta = \frac{1}{m_k} \sqrt{m_{k+1}} m_k$$

i llavors $\beta \notin L_{k-1}$ per ser $m_{k+1}m_k$ coprimers entre si i, per tant, no ser quadrat de cap racional. Si, d'altra banda, $\beta = 0$, tenim la següent expressió:

$$m_{k+1} = \alpha^2$$
$$\alpha = \sqrt{m_{k+1}}$$

i llavors $\alpha \notin L_{k-1}$ per H.I.. Observem que el cas $\alpha = \beta = 0$ no es pot donar ja que sinó $\sqrt{m_{k+1}} = 0$, que és absurd. Per tant, hem demostrat que el conjunt L_{k+1} és \mathbb{Q} -linealment independent.

- (b) Demostreu que, per a tot $k \geq 0$, el conjunt $\{2, \sqrt{2}, \sqrt[4]{2}, \dots, \sqrt[2^k]{2}\}$ és un conjunt \mathbb{Q} -linealment independent. Per fer-ho, podeu seguir els següents passos:
 - i. Demostreu que $\forall m \geq 1$ el polinomi $x^m 2$ és irreductible a $\mathbb{Q}[x]$, és a dir, que no es pot escriure com a producte de dos polinomis a $\mathbb{Q}[x]$ de grau $\leq k$. En particular, per a qualsevol $k \geq 0$ el polinomi $x^{2^k} 2$ és irreductible. (Indicació: trobeu primer les arrels complexes de $x^m 2$, després escriviu $x^m 2 = g(x)h(x)$ i raoneu per què els termes constant de g(x) i h(x) no poden ser enters).

Sigui $S = \{x_1, \ldots, x_m\}$ el conjunt de solucions del $P(x) = x^m - 2$. Aquest polinomi el podem expressar també de la forma $x^m = z = 2 + 0i = 2$. Sabem que el mòdul de z és |z| = 2 i l'argument és igual a $\theta = \arg(z) = 2\pi(n-1) \ \forall n \in \mathbb{N}^*$. Els nombres complexos els podem expressar de la forma $z = |z|e^{\theta i}$, de manera que tindrem que $z = 2e^{2\pi(n-1)i}$. Substituint z a l'equació per x^m , tenim que: $x^m = 2e^{2\pi(n-1)i}$ i, per tant, $x = \sqrt[m]{2}e^{\frac{2\pi(n-1)i}{m}}$. Donant els primers m valors naturals a n (és a dir, $n = 1, \ldots, m$), tenim que el conjunt de solucions de l'equació principal són:

$$x_1 = \sqrt[m]{2}$$

$$x_2 = \sqrt[m]{2}e^{\frac{2\pi i}{m}}$$

$$\vdots$$

$$x_m = \sqrt[m]{2}e^{\frac{2\pi (m-1)i}{m}}$$

De manera que podem factoritzar el polinomi P(x) i expressar-lo en funció de les seves arrels:

$$P(x) = (x - \sqrt[m]{2}\lambda_1)(x - \sqrt[m]{2}\lambda_2)\cdots(x - \sqrt[m]{2}\lambda_m)$$

on $\lambda_j = e^{\frac{2\pi(j-1)i}{m}}$ per a $1 \le j \le m$. D'altra banda també podem factoritzar el polinomi com a producte de dos polinomis de grau més petit que m. Així tenim que:

$$P(x) = g(x)h(x)$$

$$x^{m} - 2 = (x - a)(b_{m-1}x^{m-1} + b_{m-2}x^{m-2} + \dots + b_{1}x + b_{0})$$

Hem de veure que $a, b_0 \notin \mathbb{Q}$ i, en particular, $a, b_0 \notin \mathbb{Z}$. Per demostrar-ho, ho raonarem per reducció a l'absurd. Suposem que són $a, b_0 \in \mathbb{Q}$. Aleshores compararem els termes constants de les dos factoritzacions del polinomi P(x) que hem fet anteriorment, que han de ser necessàriament iguals. Tenim llavors que:

$$P(x) = (x - a)(b_{m-1}x^{m-1} + \dots + b_0) = (x - \sqrt[m]{2}\lambda_1)(x - \sqrt[m]{2}\lambda_2)\dots(x - \sqrt[m]{2}\lambda_m)$$

i en particular:

$$-ab_0 = (-\sqrt[m]{2})^m \lambda_1 \cdots \lambda_m$$

$$-ab_0 = (-\sqrt[m]{2})^m e^0 e^{\frac{2\pi i}{m}} \cdots e^{\frac{2\pi (m-2)i}{m}} e^{\frac{2\pi (m-1)i}{m}}$$

$$-ab_0 = (-1)^m 2e^0 e^{2\pi i} \cdots e^{2\pi (m-2)i} e^{2\pi (m-1)i}$$

$$(-1)^{m-1} \frac{ab_0}{2} = e^{0+2\pi i + 2\pi \cdot 2i + \dots + 2\pi (m-2)i + 2\pi (m-1)i}$$

$$(-1)^{m-1} \frac{ab_0}{2} = e^{2\pi i (1+\dots + m-1)}$$

$$(-1)^{m-1} \frac{ab_0}{2} = e^{2\pi i (\frac{m(m-1)}{2})}$$

$$(-1)^{m-1} \frac{ab_0}{2} = e^{\pi m(m-1)i}$$

Clarament la part de l'esquerra és racional, mentre que la de la dreta és irracional, igualtat que és absurda, per tant, la afirmació inicial era falsa i $a, b_0 \notin \mathbb{Q}$. En particular $a, b_0 \notin \mathbb{Z}$. Hem demostrat que el polinomi $P(x) = x^m - 2$ és irreductible a $\mathbb{Q}[x]$. En particular, fent $m = 2^k$ per a qualsevol $k \ge 0$ tenim que el polinomi $P'(x) = x^{2^k} - 2$ és irreductible.

ii. Demostreu que una combinació lineal no trivial dels elements fins a $\sqrt[2^k]{2}$ dona lloc a un polinomi de grau dividint 2^{k-1} que té $\sqrt[2^k]{2}$ com a arrel.

Sabem que podem expressar els elements del conjunt $\{2, \sqrt{2}, \sqrt[4]{2}, \dots, \sqrt[2^k]{2}\}$ com una combinació lineal no trivial d'aquests:

$$2\mu_0 + \sqrt{2}\mu_1 + \dots + \sqrt[2^j]{2}\mu_j + \dots + \sqrt[2^k]{2}\mu_k = 0$$

amb μ_0, \dots, μ_k no tots 0. Ara bé, fent $x = \sqrt[2^k]{2}$ i substituint tots els termes irracionals dels sumands anteriors per l'expressió de x, podem escriure el següent polinomi:

$$Q(x) = \mu_1 x^{2^{k-1}} + \dots + \mu_j x^{2^{k-j}} + \dots + \mu_k x + 2\mu_0 = 0$$

que s'anul·la en $x = \sqrt[2^k]{2}$ i, per tant, $\sqrt[2^k]{2}$ és una arrel de Q(x).

iii. Deduïu una contradicció fent servir els dos apartats anteriors (recordeu la divisió de polinomis: donats polinomis a(x) i b(x), existeixen polinomis q(x) i r(x) amb grau $(r(x)) \leq \text{grau}(b(x))$ tals que a(x) = b(x)q(x) + r(x).)