Problem 1: Done in assignment4_handout.jl.

Problem 2: Done in assignment4_handout.jl.

Problem 3:

a) Provide the top 5 and bottom 5 vertices in the graph according to PageRank.

```
edges = load directed graph()
tol = 1e-6
v = page rank(edges, tol)
top indices = sortperm(v, rev=true)[1:5]
println("Top 5 Vertices According to PageRank")
for i in top indices
    println("Vertex $(i) has PageRank $(v[i])")
end
bot indices = sortperm(v)[1:5]
println("Bottom 5 Vertices According to PageRank")
for i in bot indices
    println("Vertex $(i) has PageRank $(v[i])")
end
Top 5 Vertices According to PageRank
Vertex 5807 has PageRank 0.004833702077926967
Vertex 3650 has PageRank 0.004769747272235577
          has PageRank 0.0040423793705081056
Vertex 13
Vertex 2411 has PageRank 0.003799802906569877
Vertex 2205 has PageRank 0.0031187003180348266
Bottom 5 Vertices According to PageRank
Vertex 2
           has PageRank 3.6572739853054447e-5
Vertex 3
           has PageRank 3.6572739853054447e-5
Vertex 5 has PageRank 3.6572739853054447e-5
Vertex 7
          has PageRank 3.6572739853054447e-5
Vertex 9 has PageRank 3.6572739853054447e-5
```

Cameron Beneteau (400274092) beneteac@mcmaster.ca

MECHTRON 3X03 Assignment 4 Due: Wednesday Dec 6, 2023

b) Provide an explanation for why the incoming degree and the PageRank of each user are not perfectly correlated.

In the context of network analysis, the incoming degree (indegree) of a vertex is defined by the number of direct connections it receives from other vertices, showing how often it is referenced by others. Conversely, the outgoing degree (outdegree) of a vertex shows the count of its connections directed towards other nodes, representing how often it refers to other vertices within the network. PageRank is a more complex algorithm that considers not only the quantity of incoming links, but also their quality. PageRank operates on the idea that a link from a highly ranked page is more influential than one from a lower-ranked page. This process is iterative and the initial PageRank values are recalculated over several passes until the values converge to a stable state. As a result, a page with a high number of incoming links (high indegree) may not necessarily have a high PageRank if those links come from less reputable or lower-ranked vertices. Conversely, a page with fewer incoming links (low indegree) can have a high PageRank if those links are from highly ranked and quality vertices. Discrepancies arise because PageRank reflects the probability distribution of a random surfer's location after many steps, which is influenced by both the link structure and the rank of the linking pages. Therefore, although there is a connection between indegree and PageRank, they don't always align perfectly. This is because PageRank delves deeper, considering not just how many links point to a page, but also the ranking and quality of those linking pages, all within the broader context of the network's link structure.