1 Lezione del 21-10-24

1.1 Applicazione dell'algoritmo di riduzione del gap

Applichiamo il metodo dei piani di taglio di Gomory ad alcuni problemi di ILP.

1.1.1 Zaino intero

Prendiamo il problema:

$$\begin{cases} \max 30x_1 + 36x_2 + 27x_3 + 20x_4 + 24x_5 + 22x_6 \\ 13x_1 + 16x_2 + 14x_3 + 15x_4 + 17x_5 + 14x_6 \le 57 \\ x \in \mathbb{Z}_+ \end{cases}$$

con il vettore dei rendimenti:

$$r = (2.3, 2.25, 1.93, 1.33, 1.41, 1.57)$$

Saturiamo per ottenere una soluzione x_{RC} , e quindi una valutazione superiore:

$$x_{RC} = \left(\frac{57}{13}, 0, 0, 0, 0, 0\right), \quad v_S = 131$$

e saturiamo l'intero per avere una valutazione inferiore:

$$x_I = (4, 0, 0, 0, 0, 0), \quad v_I = 120$$

Adesso applichiamo Gomory:

1. Si porta il rilassato continuo in formato duale standard:

$$\begin{cases} \max 30x_1 + 36x_2 + 27x_3 + 20x_4 + 24x_5 + 22x_6 \\ 13x_1 + 16x_2 + 14x_3 + 15x_4 + 17x_5 + 14x_6 + x_7 = 57 \\ x_i \ge 0 \end{cases}$$

2. Si individua la base ottima:

$$x_{RC} = \left(\frac{57}{13}, 0, 0, 0, 0, 0\right) \Rightarrow B = \{1\}$$

3. Si ricavano A_B , A_N , x_B , x_N e r:

$$A_B = \begin{pmatrix} 13 \end{pmatrix}, \quad A_N = \begin{pmatrix} 16 & 14 & 15 & 17 & 14 & 1 \end{pmatrix}, \quad x_B = \begin{pmatrix} \frac{57}{13} \end{pmatrix}, \quad x_N = (0, 0, 0, 0, 0)$$

e chiaramente r = 1;

4. Si ricava \tilde{A} :

$$\tilde{A} = A_B^{-1} A_N = \left(\frac{16}{13}, \frac{14}{13}, \frac{15}{13}, \frac{17}{13}, \frac{14}{13}, \frac{1}{13}\right)$$

5. Si trova il nuovo vincolo:

$$\left\{\frac{16}{13}\right\} x_2 + \left\{\frac{14}{13}\right\} x_3 + \left\{\frac{15}{13}\right\} x_4 + \left\{\frac{17}{13}\right\} x_5 + \left\{\frac{14}{13}\right\} x_6 + \left\{\frac{1}{13}\right\} x_7 \ge \left\{\frac{57}{13}\right\}$$
$$\frac{3}{13} x_2 + \frac{1}{13} x_3 + \frac{2}{13} x_4 + \frac{4}{13} x_5 + \frac{1}{13} x_6 + \frac{1}{13} x_7 \ge \frac{5}{13}$$

Che espresso sostituendo $x_7 = 57 - 13x_1 - 16x_2 - 14x_3 - 15x_4 - 17x_5 - 14x_6$ e unito a quanto già trovato dà il problema:

$$\begin{cases} \max 30x_1 + 36x_2 + 27x_3 + 20x_4 + 24x_5 + 22x_6 \\ 13x_1 + 16x_2 + 14x_3 + 15x_4 + 17x_5 + 14x_6 \le 57 \\ x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \le 4 \\ x \in \mathbb{Z}_+ \end{cases}$$

da cui $x_{RC}=\left(\frac{7}{3},\frac{5}{3},0,0,0,0\right)$, che è già più vicino all'ottimo $\bar{x}=(3,1,0,0,0,0)$.

1.1.2 Zaino booleano

Prendiamo a questo punto:

$$\begin{cases} \max 30x_1 + 36x_2 + 27x_3 + 20x_4 + 24x_5 + 22x_6 \\ 13x_1 + 16x_2 + 14x_3 + 15x_4 + 17x_5 + 15x_6 \le 57 \\ x \in \mathbb{Z}_+ \\ 0 \le x \le 1 \end{cases}$$

Attraverso la saturazione, troviamo:

$$x_{RC} = \left(1, 1, 1, 0, 0, \frac{14}{15}, 0\right), \quad v_S = 115.4$$

di valutazione superiore, e

$$x_I = (1, 1, 1, 0, 0, 0), \quad v_I = 93$$

di valutazione inferiore.

Riapplichiamo Gomory.

1. L'ottimo è noto:

$$x_{RC} = \left(1, 1, 1, 0, 0, \frac{14}{15}, 0\right)$$

2. Convertiamo in formato duale standard, ricordando i vincoli $0 \le x_i \le 1$:

$$\begin{cases} \max 30x_1 + 36x_2 + 27x_3 + 20x_4 + 24x_5 + 22x_6 \\ 13x_1 + 16x_2 + 14x_3 + 15x_4 + 17x_5 + 15x_6 + x_7 = 57 \\ x_1 + x_8 = 1 \\ x_2 + x_9 = 1 \\ x_3 + x_{10} = 1 \\ x_4 + x_{11} = 1 \\ x_5 + x_{12} = 1 \\ x_6 + x_{13} = 1 \\ x \geq 0 \end{cases}$$

Dobbiamo ricalcolare l'ottimo:

$$x'_{RC} = \left(1, 1, 1, 0, 0, \frac{14}{15}, 0, 0, 0, 0, 1, 1, \frac{1}{15}\right)$$

3. Si individua la base ottima:

$$x'_{RC} = \left(1, 1, 1, 0, 0, \frac{14}{15}, 0, 0, 0, 0, 1, 1, \frac{1}{15}\right) \Rightarrow B = \{1, 2, 3, 6, 11, 12, 13\}$$

4. Si ricavano A_B , A_N , x_B , x_N e r. Conviene prima scrivere A:

e quindi:

$$x_B = \left(1, 1, 1, \frac{14}{15}, 1, 1, \frac{1}{15}\right), \quad x_N = (0, 0, 0, 0, 0, 0)$$

$$er = 4, 7;$$

5. Si ricava \tilde{A} :

$$\tilde{A} = A_B^{-1} A_N = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & \frac{17}{15} & \frac{1}{15} & -\frac{13}{15} & -\frac{16}{15} & -\frac{14}{15} \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & -\frac{17}{15} & -\frac{1}{15} & \frac{13}{15} & \frac{16}{15} & \frac{14}{15} \end{pmatrix}$$

6. Si trovano due nuovi vincoli, notando che $N = \{4, 5, 7, 8, 9, 10\}$:

$$r = 4 \Rightarrow x_1 + 2x_2 + x_3 + x_4 + x_5 + x_6 \le 4$$
$$r = 7 \Rightarrow 13x_1 + 15x_2 + 14x_3 + 14x_4 + 15x_5 + 14x_6 \le 55$$

da qui in poi insicuro

1.1.3 Produzione

Supponiamo di avere il problema:

$$\begin{cases} \max 5x_1 + 14x_2 \\ 16x_1 + 13x_2 \ge 62 \\ 5x_1 + 15x_2 \ge 52 \\ x \in \mathbb{Z}_+^2 \end{cases}$$

con valutazioni:

$$x_{RC} = \left(\frac{26}{3}, 0\right), \quad v_S = 43$$

$$x_I = \left(8, 0\right), \quad v_I = 40$$

Si applica Gomory:

1. Convertiamo in formato duale standard:

$$\begin{cases} \max 5x_1 + 14x_2 \\ 16x_1 + 13x_2 - x_3 = 62 \\ 5x_1 + 15x_2 - x_4 = 52 \\ x \ge 0 \end{cases}$$

Dobbiamo ricalcolare l'ottimo:

$$x'_{RC} = \left(\frac{26}{3}, 0, \frac{230}{3}, 0\right)$$

2. Si individua la base ottima:

$$x'_{RC} = \left(\frac{26}{3}, 0, \frac{230}{3}, 0\right) \Rightarrow B = \{1, 3\}$$

3. Si ricavano A_B , A_N , x_B , x_N e r.

$$A_B = \begin{pmatrix} 16 & -1 \\ 5 & 0 \end{pmatrix}, \quad A_N = \begin{pmatrix} 13 & 0 \\ 15 & -1 \end{pmatrix}, \quad x_B = \begin{pmatrix} \frac{26}{3}, \frac{230}{3} \end{pmatrix}, \quad x_N = (0, 0)$$

e r = 1, 3;

4. Si ricava \tilde{A} :

$$\tilde{A}=A_{B}^{-}1A_{N}\Rightarrow)($$

5. Si trova il nuovo vincolo:

$$5x_1 + 13x_2 \ge 44$$