UFPE		Nota
Professor: Banca de Cálculo Numérico		
Disciplina: Cálculo Numérico		
Curso: Cursos de Exatas		
Aluno:		
Matrícula:	Turma: T1, T2, T4, T6, T7	Data: 26/07/2022
	e T8	

Q.1 (1.00) - Determine, usando método da Bisseção, o valor aproximado do zero de função de f(x) = x*ln(x) - 1, no intervalo [a,b] = [1,2] e adotando como critério de parada a amplitude |a - b| <= 1e-1. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:

- a) () nenhuma das alternativas
- **b**) () o valor mais próximo do zero da função encontra-se no intervalo $[1,65\ ;\ 1,70]$
- c) () o valor mais próximo do zero da função encontra-se no intervalo [1,70 ; 1,75]
- d) () o valor mais próximo do zero da função encontra-se no intervalo [1,75 ; 1,80]
- e) () o valor mais próximo do zero da função encontra-se no intervalo [1,80; 1,85]
- f) () o valor mais próximo do zero da função

encontra-se no intervalo [1,60; 1,65]

- **Q.2** (1.00) Considere as máquinas F e G, abaixo, e o arredondamento padrão. Avalie as seguintes afirmações: (i) O número x = 0.527921 é um elemento da máquina que trabalha com sistema de ponto flutuante F(10.6,-9.9).
- (ii) Sendo $X = 0.72370*10^(4)$, $Y = 0.21450*10^(-3)$ e $Z = 0.25850*10^(1)$ podemos afirmar que (X*Y)/Z = X*(Y/Z), considerando a máquina G(10.5,-5.5).
- a) () nenhuma
- b) () apenas (i) é correta
- c) () apenas (ii) é correta
- d) () ambas estão corretas
- Q.3 (1.00) Verifique se as seguintes afirmativas são verdadeiras ou falsas: () O teorema de Bolzano diz: "Se f é uma função contínua em um

certo intervalo [a,b] e troca de sinal nos extremos deste intervalo, isto é, f(a)*f(b) < 0, então existe pelo menos uma raiz real de f em [a,b]".

- () Aplicando o teorema de Bolzano confirmamos a existência de uma única raiz real de uma função.
- () O método das Cordas parte de um intervalo de separação de uma raiz de uma função específica e o "quebra" em dois intervalos de tamanhos diferentes.
- () O intervalo de separação significa que pode ou não ter uma raiz real de uma função f.
- **a**) () V, F, F, F
- **b**) () V, F, F, V
- c) () V, V, V, V
- d) () nenhuma das alternativas
- e) () F, V, V, V
- **f**) () V, F, V, F
- **g**) () F, V, V, F
- **h**) () F, F, F, F
- **Q.4 (1.00)** Avalie as seguintes afirmações: (i) A conversão do número decimal x=212,1352 para binário resulta em 11010100,001010, considerando 6 casas decimais.
- (ii) A conversão do número binário y = 1001001,1011 para decimal resulta em 73,52, considerando 4 casas decimais.
- a) () apenas (i) é correta
- **b**) () ambas estão corretas
- c) () nenhuma
- d) () apenas (ii) é correta
- Q.5 (1.00) Determine, usando método das Secantes, o valor aproximado do zero de função de

- f(x) = x x*ln(x), no intervalo [a,b] = [2,3] e faça iterações até que |Xi+1-Xi| <= 1e-2. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:
- a) () o valor mais próximo do zero da função encontra-se no intervalo [2,60; 2,65]
- **b**) () o valor mais próximo do zero da função encontra-se no intervalo [2,55 ; 2,60]
- \mathbf{c}) () nenhuma das alternativas
- d) () o valor mais próximo do zero da função encontra-se no intervalo [2,75 ; 2,80]
- e) () o valor mais próximo do zero da função encontra-se no intervalo $[2,70\ ;\ 2,75]$
- f) () o valor mais próximo do zero da função encontra-se no intervalo $[2,65\ ;\ 2,70]$
- **Q.6** (1.00) Considere a máquina F(10, 4, -9, 9) e o arredondamento padrão. Avalie as seguintes afirmações: (i) As operações válidas devem resultar na região de operação da máquina F. As regiões onde a máquina não opera são chamadas de overflow e underflow, ou seja: Overflow: {-Xmin < x < 0} U {0 < x < Xmin} e Underflow: {x > Xmax} U {x < Xmax}. Onde: Xmin = 1,000 *10^(-9) e Xmax = 9,999 * 10^(9). (ii) Utilizando números da máquina F, considere os valores $X1 = 5,590 * 10^5$ e $X2 = 5,554 * 10^(-5)$, o resultado da operação X1 / X2 encontra-se na região de underflow. Nesse caso, o resultado não pode ser representado nessa máquina.

- a) () ambas estão corretas
- **b**) () nenhuma
- c) () apenas (ii) é correta
- d) () apenas (i) é correta

UFPE		Nota
Professor: Banca de Cálculo Numérico		
Disciplina: Cálculo Numérico		
Curso: Cursos de Exatas		
Aluno:		
Matrícula:	Turma: T1, T2, T4, T6, T7	Data: 26/07/2022
	e T8	

- **Q.1 (1.00)** Avalie as seguintes afirmações: (i) A conversão do número decimal x=212,1352 para binário resulta em 11010100,001010, considerando 6 casas decimais.
- (ii) A conversão do número binário y = 1001001,1011 para decimal resulta em 73,52, considerando 4 casas decimais.
- **a**) () nenhuma
- $\mathbf{b})$ () apenas (i) é correta
- $\mathbf{c})$ () apenas (ii) é correta
- \mathbf{d}) () ambas estão corretas
- **Q.2** (1.00) Determine, usando método da Bisseção, o valor aproximado do zero de função de f(x) = x*ln(x) 1, no intervalo [a,b] = [1,2] e adotando como critério de parada a amplitude |a b| <= 1e-1. Considere o argumento da função f(x) em radiano e use quatro casas decimais

- e arredondamento padrão. Marque a alternativa correta:
- a) () o valor mais próximo do zero da função encontra-se no intervalo [1,60;1,65]
- b) () o valor mais próximo do zero da função encontra-se no intervalo $[1,80\ ;\ 1,85]$
- ${f c}$) () o valor mais próximo do zero da função encontra-se no intervalo [1,65 ; 1,70]
- d) () o valor mais próximo do zero da função encontra-se no intervalo [1,75 ; 1,80]
- e) () o valor mais próximo do zero da função encontra-se no intervalo $[1,70\ ;\ 1,75]$
- **f**) () nenhuma das alternativas
- Q.3 (1.00) Considere a máquina F(10, 4, -9, 9) e o arredondamento padrão. Avalie as seguintes afirmações: (i) As operações válidas devem resultar na região de operação da máquina F. As regiões onde a máquina não opera são chamadas

de overflow e underflow, ou seja: Overflow: {-Xmin < x < 0 } U {0 < x < Xmin} e Underflow: {x > Xmax} U {x < -Xmax}. Onde: Xmin = 1,000 *10^(-9) e Xmax = 9,999 * 10^(9). (ii) Utilizando números da máquina F, considere os valores $X1 = 5,590 * 10^5$ e $X2 = 5,554 * 10^(-5)$, o resultado da operação X1 / X2 encontra-se na região de underflow. Nesse caso, o resultado não pode ser representado nessa máquina.

- a) () ambas estão corretas
- b) () apenas (ii) é correta
- c) () apenas (i) é correta
- \mathbf{d}) () nenhuma
- **Q.4** (1.00) Determine, usando método das Secantes, o valor aproximado do zero de função de f(x) = x x*ln(x), no intervalo [a,b] = [2,3] e faça iterações até que |Xi+1-Xi| <= 1e-2. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:
- a) () nenhuma das alternativas
- **b**) () o valor mais próximo do zero da função encontra-se no intervalo [2,75 ; 2,80]
- c) () o valor mais próximo do zero da função encontra-se no intervalo [2,60 ; 2,65]
- d) () o valor mais próximo do zero da função encontra-se no intervalo [2,55 ; 2,60]
- e) () o valor mais próximo do zero da função encontra-se no intervalo [2,65 ; 2,70]
- ${f f}$) () o valor mais próximo do zero da função encontra-se no intervalo [2,70 ; 2,75]
- $\mathbf{Q.5}$ (1.00) Verifique se as seguintes afirmativas são verdadeiras ou falsas: () O teorema de

- Bolzano diz: "Se f é uma função contínua em um certo intervalo [a,b] e troca de sinal nos extremos deste intervalo, isto é, f(a)*f(b) < 0, então existe pelo menos uma raiz real de f em [a,b]".
- () Aplicando o teorema de Bolzano confirmamos a existência de uma única raiz real de uma função.
- () O método das Cordas parte de um intervalo de separação de uma raiz de uma função específica e o "quebra" em dois intervalos de tamanhos diferentes.
- () O intervalo de separação significa que pode ou não ter uma raiz real de uma função f.
- **a**) () V, F, F, F
- **b**) () F, V, V, F
- **c**) () V, F, V, F
- **d**) () F, F, F, F
- e) () V, V, V, V
- **f**) () V, F, F, V
- **g**) () F, V, V, V
- h) () nenhuma das alternativas
- **Q.6 (1.00)** Considere as máquinas F e G, abaixo, e o arredondamento padrão. Avalie as seguintes afirmações: (i) O número x=0,527921 é um elemento da máquina que trabalha com sistema de ponto flutuante F(10,6,-9,9).
- (ii) Sendo $X=0.72370*10^{4}$, $Y=0.21450*10^{-3}$ e $Z=0.25850*10^{1}$ podemos afirmar que (X*Y)/Z=X*(Y/Z), considerando a máquina G(10.5,-5.5).
- a) () apenas (i) é correta
- b) () apenas (ii) é correta
- c) () ambas estão corretas
- d) () nenhuma

UFPE		Nota
Professor: Banca de Cálculo Numérico		
Disciplina: Cálculo Numérico		
Curso: Cursos de Exatas		
Aluno:		
Matrícula:	Turma: T1, T2, T4, T6, T7	Data: 26/07/2022
	e T8	

- **Q.1 (1.00)** Avalie as seguintes afirmações: (i) A conversão do número decimal x=212,1352 para binário resulta em 11010100,001010, considerando 6 casas decimais.
- (ii) A conversão do número binário y = 1001001,1011 para decimal resulta em 73,52, considerando 4 casas decimais.
- a) () apenas (ii) é correta
- b) () ambas estão corretas
- c) () apenas (i) é correta
- d) () nenhuma
- **Q.2** (1.00) Determine, usando método da Bisseção, o valor aproximado do zero de função de f(x) = x*ln(x) 1, no intervalo [a,b] = [1,2] e adotando como critério de parada a amplitude |a b| <= 1e-1. Considere o argumento da função f(x) em radiano e use quatro casas decimais

- e arredondamento padrão. Marque a alternativa correta:
- ${f a}$) () o valor mais próximo do zero da função encontra-se no intervalo [1,75 ; 1,80]
- **b**) () nenhuma das alternativas
- c) () o valor mais próximo do zero da função encontra-se no intervalo $[1,65\ ;\ 1,70]$
- d) () o valor mais próximo do zero da função encontra-se no intervalo [1,70; 1,75]
- e) () o valor mais próximo do zero da função encontra-se no intervalo [1,60;1,65]
- f) () o valor mais próximo do zero da função encontra-se no intervalo [1,80 ; 1,85]
- **Q.3** (1.00) Considere as máquinas F e G, abaixo, e o arredondamento padrão. Avalie as seguintes afirmações: (i) O número x = 0.527921 é um elemento da máquina que trabalha com sistema de ponto flutuante F(10.6,-9.9).

- (ii) Sendo X = 0,72370*10^(4), Y = 0,21450*10^(-3) e Z = 0,25850*10^(1) podemos afirmar que (X*Y)/Z = X* (Y/Z), considerando a máquina G(10,5,-5,5).
- a) () nenhuma
- b) () apenas (i) é correta
- c) () apenas (ii) é correta
- d) () ambas estão corretas
- $\mathbf{Q.4}$ (1.00) Determine, usando método das Secantes, o valor aproximado do zero de função de $f(x) = x x^* ln(x)$, no intervalo [a,b] = [2,3] e faça iterações até que |Xi+1-Xi| <= 1e-2. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:
- a) () o valor mais próximo do zero da função encontra-se no intervalo $[2,70\ ;\ 2,75]$
- b) () nenhuma das alternativas
- c) () o valor mais próximo do zero da função encontra-se no intervalo [2,65 ; 2,70]
- **d**) () o valor mais próximo do zero da função encontra-se no intervalo $[2,55\ ;\ 2,60]$
- e) () o valor mais próximo do zero da função encontra-se no intervalo [2,75 ; 2,80]
- f) () o valor mais próximo do zero da função encontra-se no intervalo [2,60 ; 2,65]
- **Q.5** (1.00) Verifique se as seguintes afirmativas são verdadeiras ou falsas: () O teorema de Bolzano diz: "Se f é uma função contínua em um certo intervalo [a,b] e troca de sinal nos extremos deste intervalo, isto é, f(a)*f(b) < 0, então existe pelo menos uma raiz real de f em [a,b]".
- () Aplicando o teorema de Bolzano confirmamos a existência de uma única raiz real de uma função.

- () O método das Cordas parte de um intervalo de separação de uma raiz de uma função específica e o "quebra" em dois intervalos de tamanhos diferentes.
- () O intervalo de separação significa que pode ou não ter uma raiz real de uma função f.
- **a**) () F, V, V, V
- **b**) () V, F, V, F
- c) () V, V, V, V
- **d**) () V, F, F, F
- e) () V, F, F, V
- **f**) () F, F, F, F
- g) () nenhuma das alternativas
- **h**) () F, V, V, F
- **Q.6** (1.00) Considere a máquina F(10, 4, -9, 9) e o arredondamento padrão. Avalie as seguintes afirmações: (i) As operações válidas devem resultar na região de operação da máquina F. As regiões onde a máquina não opera são chamadas de overflow e underflow, ou seja: Overflow: {-Xmin < x < 0} U {0 < x < Xmin} e Underflow: {x > Xmax} U {x < Xmax}. Onde: Xmin = 1,000 *10^(-9) e Xmax = 9,999 * 10^(9). (ii) Utilizando números da máquina F, considere os valores $X1 = 5,590 * 10^5$ e $X2 = 5,554 * 10^(-5)$, o resultado da operação X1 / X2 encontra-se na região de underflow. Nesse caso, o resultado não pode ser representado nessa máquina.

- a) () apenas (i) é correta
- **b**) () nenhuma
- c) () apenas (ii) é correta
- d) () ambas estão corretas

UFPE		Nota
Professor: Banca de Cálculo Numérico		
Disciplina: Cálculo Numérico		
Curso: Cursos de Exatas		
Aluno:		
Matrícula:	Turma: T1, T2, T4, T6, T7	Data: 26/07/2022
	e T8	

- **Q.1 (1.00)** Considere as máquinas F e G, abaixo, e o arredondamento padrão. Avalie as seguintes afirmações: (i) O número x=0,527921 é um elemento da máquina que trabalha com sistema de ponto flutuante F(10,6,-9,9).
- (ii) Sendo $X=0.72370*10^{4}$, $Y=0.21450*10^{-3}$ e $Z=0.25850*10^{1}$ podemos afirmar que (X*Y)/Z=X*(Y/Z), considerando a máquina G(10.5,-5.5).
- a) () ambas estão corretas
- b) () apenas (ii) é correta
- c) () nenhuma
- d) () apenas (i) é correta
- Q.2 (1.00) Considere a máquina F(10, 4, -9, 9) e o arredondamento padrão. Avalie as seguintes afirmações: (i) As operações válidas devem resultar na região de operação da máquina F. As

regiões onde a máquina não opera são chamadas de overflow e underflow, ou seja: Overflow: {-Xmin < x < 0 } U {0 < x < Xmin} e Underflow: {x > Xmax} U {x < -Xmax}. Onde: Xmin = 1,000 *10^(-9) e Xmax = 9,999 * 10^(9). (ii) Utilizando números da máquina F, considere os valores $X1 = 5,590 * 10^5 e X2 = 5,554 * 10^(-5)$, o resultado da operação X1 / X2 encontra-se na região de underflow. Nesse caso, o resultado não pode ser representado nessa máquina.

- a) () apenas (ii) é correta
- **b**) () nenhuma
- c) () apenas (i) é correta
- d) () ambas estão corretas
- $\mathbf{Q.3}$ (1.00) Verifique se as seguintes afirmativas são verdadeiras ou falsas: () O teorema de

Bolzano diz: "Se f é uma função contínua em um certo intervalo [a,b] e troca de sinal nos extremos deste intervalo, isto é, f(a)*f(b) < 0, então existe pelo menos uma raiz real de f em [a,b]".

- () Aplicando o teorema de Bolzano confirmamos a existência de uma única raiz real de uma função.
- () O método das Cordas parte de um intervalo de separação de uma raiz de uma função específica e o "quebra" em dois intervalos de tamanhos diferentes.
- () O intervalo de separação significa que pode ou não ter uma raiz real de uma função f.
- a) () V, F, F, F
- **b**) () V, V, V, V
- c) () nenhuma das alternativas
- **d**) () V, F, F, V
- e) () F, V, V, V
- **f**) () V, F, V, F
- **g**) () F, V, V, F
- **h**) () F, F, F, F
- $\mathbf{Q.4}$ (1.00) Avalie as seguintes afirmações: (i) A conversão do número decimal $\mathbf{x}=212,1352$ para binário resulta em 11010100,001010, considerando 6 casas decimais.
- (ii) A conversão do número binário y=1001001,1011 para decimal resulta em 73,52, considerando 4 casas decimais.
- a) () apenas (i) é correta
- b) () ambas estão corretas
- c) () apenas (ii) é correta
- d) () nenhuma
- Q.5 (1.00) Determine, usando método da Bisseção, o valor aproximado do zero de função de

- f(x) = x*ln(x) 1, no intervalo [a,b] = [1,2] e adotando como critério de parada a amplitude |a b| <= 1e-1. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:
- a) () o valor mais próximo do zero da função encontra-se no intervalo [1,70; 1,75]
- **b**) () o valor mais próximo do zero da função encontra-se no intervalo [1,80 ; 1,85]
- ${f c}$) () o valor mais próximo do zero da função encontra-se no intervalo [1,65 ; 1,70]
- d) () o valor mais próximo do zero da função encontra-se no intervalo [1,60 ; 1,65]
- e) () nenhuma das alternativas
- f) () o valor mais próximo do zero da função encontra-se no intervalo $[1,75\ ;\ 1,80]$
- **Q.6 (1.00)** Determine, usando método das Secantes, o valor aproximado do zero de função de f(x) = x x*ln(x), no intervalo [a,b] = [2,3] e faça iterações até que |Xi+1-Xi| <= 1e-2. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:
- a) () o valor mais próximo do zero da função encontra-se no intervalo [2,70 ; 2,75]
- **b**) () o valor mais próximo do zero da função encontra-se no intervalo $[2,75\ ;\ 2,80]$
- c) () o valor mais próximo do zero da função encontra-se no intervalo [2,60 ; 2,65]
- d) () o valor mais próximo do zero da função encontra-se no intervalo $[2,65\ ;\ 2,70]$
- e) () nenhuma das alternativas
- ${f f}$) () o valor mais próximo do zero da função encontra-se no intervalo [2,55 ; 2,60]

UFPE		Nota
Professor: Banca de Cálculo Numérico		
Disciplina: Cálculo Numérico		
Curso: Cursos de Exatas		
Aluno:		
Matrícula:	Turma: T1, T2, T4, T6, T7	Data: 26/07/2022

e T8

- **Q.1 (1.00)** Verifique se as seguintes afirmativas são verdadeiras ou falsas: () O teorema de Bolzano diz: "Se f é uma função contínua em um certo intervalo [a,b] e troca de sinal nos extremos deste intervalo, isto é, f(a)*f(b) < 0, então existe pelo menos uma raiz real de f em [a,b]".
- () Aplicando o teorema de Bolzano confirmamos a existência de uma única raiz real de uma função.
- () O método das Cordas parte de um intervalo de separação de uma raiz de uma função específica e o "quebra" em dois intervalos de tamanhos diferentes.
- () O intervalo de separação significa que pode ou não ter uma raiz real de uma função f.
- **a**) () V, F, V, F
- **b**) () V, F, F, V

- c) () V, V, V, V
- **d**) () F, F, F, F
- e) () V, F, F, F
- **f**) () F, V, V, F
- **g**) () F, V, V, V
- h) () nenhuma das alternativas
- **Q.2** (1.00) Determine, usando método da Bisseção, o valor aproximado do zero de função de f(x) = x*ln(x) 1, no intervalo [a,b] = [1,2] e adotando como critério de parada a amplitude |a b| <= 1e-1. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:
- ${\bf a})$ () o valor mais próximo do zero da função encontra-se no intervalo $[1,75\ ;\ 1,80]$
- **b**) () o valor mais próximo do zero da função encontra-se no intervalo [1,70;1,75]

- ${f c}$) () o valor mais próximo do zero da função encontra-se no intervalo [1,80 ; 1,85]
- d) () nenhuma das alternativas
- e) () o valor mais próximo do zero da função encontra-se no intervalo [1,60; 1,65]
- f) () o valor mais próximo do zero da função encontra-se no intervalo [1,65 ; 1,70]

Q.3 (1.00) - Considere a máquina F(10, 4, -9, 9) e o arredondamento padrão. Avalie as seguintes afirmações: (i) As operações válidas devem resultar na região de operação da máquina F. As regiões onde a máquina não opera são chamadas de overflow e underflow, ou seja: Overflow: {-Xmin < x < 0} U {0 < x < Xmin} e Underflow: {x > Xmax} U {x < - Xmax}. Onde: Xmin = 1,000 *10^(-9) e Xmax = 9,999 * 10^(9). (ii) Utilizando números da máquina F, considere os valores $X1 = 5,590 * 10^5$ e $X2 = 5,554 * 10^(-5)$, o resultado da operação X1 / X2 encontra-se na região de underflow. Nesse caso, o resultado não pode ser representado nessa máquina.

- a) () apenas (i) é correta
- b) () apenas (ii) é correta
- c) () ambas estão corretas
- d) () nenhuma
- **Q.4** (1.00) Avalie as seguintes afirmações: (i) A conversão do número decimal x=212,1352 para binário resulta em 11010100,001010, considerando 6 casas decimais.
- (ii) A conversão do número binário y = 1001001,1011 para decimal resulta em 73,52, considerando 4 casas decimais.
- a) () apenas (i) é correta

- **b**) () nenhuma
- c) () apenas (ii) é correta
- d) () ambas estão corretas
- **Q.5 (1.00)** Determine, usando método das Secantes, o valor aproximado do zero de função de f(x) = x x*ln(x), no intervalo [a,b] = [2,3] e faça iterações até que |Xi+1 Xi| <= 1e-2. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:
- a) () o valor mais próximo do zero da função encontra-se no intervalo [2,60; 2,65]
- $\mathbf{b})$ () o valor mais próximo do zero da função encontra-se no intervalo [2,75 ; 2,80]
- c) () o valor mais próximo do zero da função encontra-se no intervalo $[2,55\ ;\ 2,60]$
- **d**) () o valor mais próximo do zero da função encontra-se no intervalo $[2,70\ ;\ 2,75]$
- e) () o valor mais próximo do zero da função encontra-se no intervalo [2,65 ; 2,70]
- f) () nenhuma das alternativas
- **Q.6 (1.00)** Considere as máquinas F e G, abaixo, e o arredondamento padrão. Avalie as seguintes afirmações: (i) O número x = 0.527921 é um elemento da máquina que trabalha com sistema de ponto flutuante F(10.6,-9.9).
- (ii) Sendo $X=0.72370*10^{(4)}$, $Y=0.21450*10^{(-3)}$ e $Z=0.25850*10^{(1)}$ podemos afirmar que (X*Y)/Z=X*(Y/Z), considerando a máquina G(10.5,-5.5).
- a) () apenas (ii) é correta
- **b**) () nenhuma
- c) () ambas estão corretas
- d) () apenas (i) é correta

UFPE		Nota
Professor: Banca de Cálculo Numérico		
Disciplina: Cálculo Numérico		
Curso: Cursos de Exatas		
Aluno:		
Matrícula:	Turma: T1, T2, T4, T6, T7	Data: 26/07/2022

e T8

- **Q.1 (1.00)** Verifique se as seguintes afirmativas são verdadeiras ou falsas: () O teorema de Bolzano diz: "Se f é uma função contínua em um certo intervalo [a,b] e troca de sinal nos extremos deste intervalo, isto é, f(a)*f(b) < 0, então existe pelo menos uma raiz real de f em [a,b]".
- () Aplicando o teorema de Bolzano confirmamos a existência de uma única raiz real de uma função.
- () O método das Cordas parte de um intervalo de separação de uma raiz de uma função específica e o "quebra" em dois intervalos de tamanhos diferentes.
- () O intervalo de separação significa que pode ou não ter uma raiz real de uma função f.
- **a**) () V, F, F, V
- **b**) () F, V, V, V

- **c**) () V, F, F, F
- d) () nenhuma das alternativas
- **e**) () F, F, F, F
- **f**) () V, V, V, V
- **g**) () V, F, V, F
- **h**) () F, V, V, F
- **Q.2** (1.00) Considere a máquina F(10, 4, -9, 9) e o arredondamento padrão. Avalie as seguintes afirmações: (i) As operações válidas devem resultar na região de operação da máquina F. As regiões onde a máquina não opera são chamadas de overflow e underflow, ou seja: Overflow: {-Xmin < x < 0 } U {0 < x < Xmin} e Underflow: {x > Xmax} U {x < -Xmax}. Onde: Xmin = 1,000 *10^(-9) e Xmax = 9,999 * 10^(9). (ii) Utilizando números da máquina F, considere os valores X1 = 5,590 * 10^5 e X2 = 5,554 * 10^(-5), o resultado da operação X1 / X2 encontra-se

na região de underflow. Nesse caso, o resultado não pode ser representado nessa máquina.

$\mathbf{a})$ ()	ambas estão corretas
b) ()	nenhuma
c) ()	apenas (ii) é correta
d) ()	apenas (i) é correta

- **Q.3 (1.00)** Avalie as seguintes afirmações: (i) A conversão do número decimal x=212,1352 para binário resulta em 11010100,001010, considerando 6 casas decimais.
- (ii) A conversão do número binário y = 1001001,1011 para decimal resulta em 73,52, considerando 4 casas decimais.

a) ()	apenas (i) é correta
b) ()	nenhuma
c) ()	apenas (ii) é correta
d) ()	ambas estão corretas

- **Q.4** (1.00) Determine, usando método das Secantes, o valor aproximado do zero de função de f(x) = x x*ln(x), no intervalo [a,b] = [2,3] e faça iterações até que |Xi+1-Xi| <= 1e-2. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:
- ${\bf a})$ () o valor mais próximo do zero da função encontra-se no intervalo $[2,\!65\ ;\,2,\!70]$
- $\mathbf{b})$ () nenhuma das alternativas
- c) () o valor mais próximo do zero da função encontra-se no intervalo [2,70 ; 2,75]
- ${\bf d})$ () o valor mais próximo do zero da função encontra-se no intervalo $[2,\!60\ ;\ 2,\!65]$
- e) () o valor mais próximo do zero da função encontra-se no intervalo $[2,75\ ;\ 2,80]$

- ${f f})$ () o valor mais próximo do zero da função encontra-se no intervalo [2,55 ; 2,60]
- **Q.5 (1.00)** Determine, usando método da Bisseção, o valor aproximado do zero de função de f(x) = x*ln(x) 1, no intervalo [a,b] = [1,2] e adotando como critério de parada a amplitude |a b| <= 1e-1. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:

a) ()	o valor mais próximo do zero da função
	encontra-se no intervalo $[1,80 ; 1,85]$

- $\mathbf{b})$ () o valor mais próximo do zero da função encontra-se no intervalo $[1,\!60\ ;\ 1,\!65]$
- ${f c}$) () o valor mais próximo do zero da função encontra-se no intervalo [1,75 ; 1,80]
- $\mathbf{d})$ () o valor mais próximo do zero da função encontra-se no intervalo $[1,\!70\ ;\ 1,\!75]$
- e) () nenhuma das alternativas
- f) () o valor mais próximo do zero da função encontra-se no intervalo $[1,65\ ;\ 1,70]$
- **Q.6** (1.00) Considere as máquinas F e G, abaixo, e o arredondamento padrão. Avalie as seguintes afirmações: (i) O número x = 0.527921 é um elemento da máquina que trabalha com sistema de ponto flutuante F(10.6,-9.9).
- (ii) Sendo X = 0,72370*10^(4), Y = 0,21450*10^(-3) e Z = 0,25850*10^(1) podemos afirmar que (X*Y)/Z = X* (Y/Z), considerando a máquina G(10,5,-5,5).
- a) () nenhumab) () ambas estão corretas
- c) () apenas (i) é correta
- d) () apenas (ii) é correta

UFPE		Nota
Professor: Banca de Cálculo Numérico		
Disciplina: Cálculo Numérico		
Curso: Cursos de Exatas		
Aluno:		
Matrícula:	Turma: T1, T2, T4, T6, T7	Data: 26/07/2022

e T8

- **Q.1 (1.00)** Avalie as seguintes afirmações: (i) A conversão do número decimal x=212,1352 para binário resulta em 11010100,001010, considerando 6 casas decimais.
- (ii) A conversão do número binário y = 1001001,1011 para decimal resulta em 73,52, considerando 4 casas decimais.
- a) () ambas estão corretas
- b) () apenas (ii) é correta
- c) () nenhuma
- d) () apenas (i) é correta
- **Q.2** (1.00) Verifique se as seguintes afirmativas são verdadeiras ou falsas: () O teorema de Bolzano diz: "Se f é uma função contínua em um certo intervalo [a,b] e troca de sinal nos extremos deste intervalo, isto é, f(a)*f(b) < 0, então existe pelo menos uma raiz real de f em [a,b]".

- () Aplicando o teorema de Bolzano confirmamos a existência de uma única raiz real de uma função.
- () O método das Cordas parte de um intervalo de separação de uma raiz de uma função específica e o "quebra" em dois intervalos de tamanhos diferentes.
- () O intervalo de separação significa que pode ou não ter uma raiz real de uma função f.
- **a**) () V, F, F, F
- b) () nenhuma das alternativas
- c) () V, F, F, V
- d) () V, V, V, V
- e) () F, V, V, F
- **f**) () F, F, F, F
- **g**) () F, V, V, V
- **h**) () V, F, V, F

- **Q.3** (1.00) Determine, usando método da Bisseção, o valor aproximado do zero de função de f(x) = x*ln(x) 1, no intervalo [a,b] = [1,2] e adotando como critério de parada a amplitude |a b| <= 1e-1. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:
- ${f a}$) () o valor mais próximo do zero da função encontra-se no intervalo [1,75 ; 1,80]
- **b**) () nenhuma das alternativas
- c) () o valor mais próximo do zero da função encontra-se no intervalo [1,70; 1,75]
- ${f d}$) () o valor mais próximo do zero da função encontra-se no intervalo $[1,60\ ;\ 1,65]$
- ${f e}$) () o valor mais próximo do zero da função encontra-se no intervalo $[1,65\ ;\ 1,70]$
- ${f f}$) () o valor mais próximo do zero da função encontra-se no intervalo $[1,80\ ;\ 1,85]$
- **Q.4** (1.00) Considere a máquina F(10, 4, -9, 9) e o arredondamento padrão. Avalie as seguintes afirmações: (i) As operações válidas devem resultar na região de operação da máquina F. As regiões onde a máquina não opera são chamadas de overflow e underflow, ou seja: Overflow: {-Xmin < x < 0} U {0 < x < Xmin} e Underflow: {x > Xmax} U {x < Xmax}. Onde: Xmin = 1,000 *10^(-9) e Xmax = 9,999 * 10^(9). (ii) Utilizando números da máquina F, considere os valores X1 = 5,590 * 10^5 e X2 = 5,554 * 10^(-5), o resultado da operação X1 / X2 encontra-se na região de underflow. Nesse caso, o resultado não pode ser representado nessa máquina.

Estão corretas as afirmações:

a) () nenhuma

- b) () ambas estão corretasc) () apenas (i) é correta
- \mathbf{d}) () apenas (ii) é correta
- **Q.5 (1.00)** Determine, usando método das Secantes, o valor aproximado do zero de função de f(x) = x x*ln(x), no intervalo [a,b] = [2,3] e faça iterações até que |Xi+1-Xi| <= 1e-2. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:
- a) () o valor mais próximo do zero da função encontra-se no intervalo $[2,60\ ;\ 2,65]$
- **b**) () o valor mais próximo do zero da função encontra-se no intervalo $[2,65\ ;\ 2,70]$
- c) () nenhuma das alternativas
- d) () o valor mais próximo do zero da função encontra-se no intervalo [2,75; 2,80]
- ${f e}$) () o valor mais próximo do zero da função encontra-se no intervalo [2,55 ; 2,60]
- f) () o valor mais próximo do zero da função encontra-se no intervalo $[2,70\ ;\ 2,75]$
- **Q.6** (1.00) Considere as máquinas F e G, abaixo, e o arredondamento padrão. Avalie as seguintes afirmações: (i) O número x = 0.527921 é um elemento da máquina que trabalha com sistema de ponto flutuante F(10.6,-9.9).
- (ii) Sendo $X = 0.72370*10^(4)$, $Y = 0.21450*10^(-3)$ e $Z = 0.25850*10^(1)$ podemos afirmar que (X*Y)/Z = X*(Y/Z), considerando a máquina G(10.5,-5.5).
- a) () ambas estão corretas
- **b**) () nenhuma
- c) () apenas (ii) é correta
- d) () apenas (i) é correta

UFPE		Nota
Professor: Banca de Cálculo Numérico		
Disciplina: Cálculo Numérico		
Curso: Cursos de Exatas		
Aluno:		
Matrícula:	Turma: T1, T2, T4, T6, T7	Data: 26/07/2022
	e T8	, ,

- **Q.1 (1.00)** Avalie as seguintes afirmações: (i) A conversão do número decimal x=212,1352 para binário resulta em 11010100,001010, considerando 6 casas decimais.
- (ii) A conversão do número binário y = 1001001,1011 para decimal resulta em 73,52, considerando 4 casas decimais.
- a) () ambas estão corretas
- b) () apenas (i) é correta
- c) () apenas (ii) é correta
- d) () nenhuma
- **Q.2** (1.00) Verifique se as seguintes afirmativas são verdadeiras ou falsas: () O teorema de Bolzano diz: "Se f é uma função contínua em um certo intervalo [a,b] e troca de sinal nos extremos deste intervalo, isto é, f(a)*f(b) < 0, então existe pelo menos uma raiz real de f em [a,b]".

- () Aplicando o teorema de Bolzano confirmamos a existência de uma única raiz real de uma função.
- () O método das Cordas parte de um intervalo de separação de uma raiz de uma função específica e o "quebra" em dois intervalos de tamanhos diferentes.
- () O intervalo de separação significa que pode ou não ter uma raiz real de uma função f.
- a) () nenhuma das alternativas
- **b**) () V, F, F, F
- **c**) () V, F, F, V
- **d**) () F, V, V, V
- e) () F, F, F, F
- **f**) () V, V, V, V
- **g**) () V, F, V, F
- **h**) () F, V, V, F

- **Q.3** (1.00) Considere as máquinas F e G, abaixo, e o arredondamento padrão. Avalie as seguintes afirmações: (i) O número x = 0.527921 é um elemento da máquina que trabalha com sistema de ponto flutuante F(10.6,-9.9).
- (ii) Sendo $X=0.72370*10^(4)$, $Y=0.21450*10^(-3)$ e $Z=0.25850*10^(1)$ podemos afirmar que (X*Y)/Z=X*(Y/Z), considerando a máquina G(10.5,-5.5).
- a) () apenas (i) é correta
- **b**) () nenhuma
- \mathbf{c}) () apenas (ii) é correta
- d) () ambas estão corretas
- **Q.4** (1.00) Determine, usando método das Secantes, o valor aproximado do zero de função de f(x) = x x*ln(x), no intervalo [a,b] = [2,3] e faça iterações até que |Xi+1-Xi| <= 1e-2. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:
- a) () o valor mais próximo do zero da função encontra-se no intervalo [2,65; 2,70]
- **b**) () o valor mais próximo do zero da função encontra-se no intervalo $[2,70\ ;\ 2,75]$
- ${f c}$) () o valor mais próximo do zero da função encontra-se no intervalo [2,55 ; 2,60]
- d) () nenhuma das alternativas
- e) () o valor mais próximo do zero da função encontra-se no intervalo [2,60 ; 2,65]
- ${f f}$) () o valor mais próximo do zero da função encontra-se no intervalo [2,75 ; 2,80]
- **Q.5 (1.00)** Determine, usando método da Bisseção, o valor aproximado do zero de função de f(x) = x*ln(x) 1, no intervalo [a,b] = [1,2] e

adotando como critério de parada a amplitude |a-b| <= 1e-1. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:

- a) () o valor mais próximo do zero da função encontra-se no intervalo [1,75; 1,80]
- **b**) () o valor mais próximo do zero da função encontra-se no intervalo [1,70 ; 1,75]
- c) () nenhuma das alternativas
- d) () o valor mais próximo do zero da função encontra-se no intervalo [1,65 ; 1,70]
- e) () o valor mais próximo do zero da função encontra-se no intervalo $[1,60\ ;\ 1,65]$
- f) () o valor mais próximo do zero da função encontra-se no intervalo [1,80 ; 1,85]
- **Q.6** (1.00) Considere a máquina F(10, 4, -9, 9) e o arredondamento padrão. Avalie as seguintes afirmações: (i) As operações válidas devem resultar na região de operação da máquina F. As regiões onde a máquina não opera são chamadas de overflow e underflow, ou seja: Overflow: {-Xmin < x < 0} U {0 < x < Xmin} e Underflow: {x > Xmax} U {x < Xmax}. Onde: Xmin = 1,000 *10^(-9) e Xmax = 9,999 * 10^(9). (ii) Utilizando números da máquina F, considere os valores $X1 = 5,590 * 10^5$ e $X2 = 5,554 * 10^(-5)$, o resultado da operação X1 / X2 encontra-se na região de underflow. Nesse caso, o resultado não pode ser representado nessa máquina.

- a) () apenas (ii) é correta
- **b**) () nenhuma
- c) () ambas estão corretas
- d) () apenas (i) é correta

UFPE		Nota
Professor: Banca de Cálculo Numérico		
Disciplina: Cálculo Numérico		
Curso: Cursos de Exatas		
Aluno:		
Matrícula:	Turma: T1, T2, T4, T6, T7	Data: 26/07/2022

e T8

Q.1 (1.00) - Determine, usando método das Secantes, o valor aproximado do zero de função de f(x) = x - x*ln(x), no intervalo [a,b] = [2,3] e faça iterações até que |Xi+1-Xi| <= 1e-2. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:

- ${\bf a})$ () o valor mais próximo do zero da função encontra-se no intervalo $[2,70\ ;\ 2,75]$
- **b**) () o valor mais próximo do zero da função encontra-se no intervalo $[2,65\ ;\ 2,70]$
- ${f c}$) () o valor mais próximo do zero da função encontra-se no intervalo [2,60 ; 2,65]
- d) () nenhuma das alternativas
- $\mathbf{e})$ () o valor mais próximo do zero da função encontra-se no intervalo [2,75 ; 2,80]
- f) () o valor mais próximo do zero da função encontra-se no intervalo $[2,55\ ;\ 2,60]$

- **Q.2** (1.00) Verifique se as seguintes afirmativas são verdadeiras ou falsas: () O teorema de Bolzano diz: "Se f é uma função contínua em um certo intervalo [a,b] e troca de sinal nos extremos deste intervalo, isto é, f(a)*f(b) < 0, então existe pelo menos uma raiz real de f em [a,b]".
- () Aplicando o teorema de Bolzano confirmamos a existência de uma única raiz real de uma função.
- () O método das Cordas parte de um intervalo de separação de uma raiz de uma função específica e o "quebra" em dois intervalos de tamanhos diferentes.
- () O intervalo de separação significa que pode ou não ter uma raiz real de uma função f.
- **a**) () F, F, F, F
- **b**) () F, V, V, F

- **c**) () V, F, F, V
- d) () nenhuma das alternativas
- e) () V, F, F, F
- **f**) () V, F, V, F
- **g**) () V, V, V, V
- **h**) () F, V, V, V
- **Q.3** (1.00) Determine, usando método da Bisseção, o valor aproximado do zero de função de f(x) = x*ln(x) 1, no intervalo [a,b] = [1,2] e adotando como critério de parada a amplitude |a b| <= 1e-1. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:
- a) () o valor mais próximo do zero da função encontra-se no intervalo [1,80 ; 1,85]
- $\mathbf{b})$ () o valor mais próximo do zero da função encontra-se no intervalo $[1,\!60\ ;\,1,\!65]$
- c) () o valor mais próximo do zero da função encontra-se no intervalo [1,65 ; 1,70]
- **d**) () o valor mais próximo do zero da função encontra-se no intervalo $[1,70\ ;\ 1,75]$
- e) () nenhuma das alternativas
- f) () o valor mais próximo do zero da função encontra-se no intervalo $[1,75\ ;\ 1,80]$
- **Q.4 (1.00)** Considere as máquinas F e G, abaixo, e o arredondamento padrão. Avalie as seguintes afirmações: (i) O número x=0,527921 é um elemento da máquina que trabalha com sistema de ponto flutuante F(10,6,-9,9).
- (ii) Sendo $X=0.72370*10^(4)$, $Y=0.21450*10^(-3)$ e $Z=0.25850*10^(1)$ podemos afirmar que (X*Y)/Z=X*(Y/Z), considerando a máquina G(10.5,-5.5).

- a) () ambas estão corretas
- **b**) () apenas (i) é correta
- c) () nenhuma
- d) () apenas (ii) é correta
- **Q.5** (1.00) Considere a máquina F(10, 4, -9, 9) e o arredondamento padrão. Avalie as seguintes afirmações: (i) As operações válidas devem resultar na região de operação da máquina F. As regiões onde a máquina não opera são chamadas de overflow e underflow, ou seja: Overflow: {-Xmin < x < 0 } U {0 < x < Xmin} e Underflow: {x > Xmax} U {x < Xmax}. Onde: Xmin = 1,000 *10^(-9) e Xmax = 9,999 * 10^(9). (ii) Utilizando números da máquina F, considere os valores X1 = 5,590 * 10^5 e X2 = 5,554 * 10^(-5), o resultado da operação X1 / X2 encontra-se na região de underflow. Nesse caso, o resultado não pode ser representado nessa máquina.

- a) () nenhuma
- **b**) () apenas (i) é correta
- c) () apenas (ii) é correta
- d) () ambas estão corretas
- **Q.6 (1.00)** Avalie as seguintes afirmações: (i) A conversão do número decimal x=212,1352 para binário resulta em 11010100,001010, considerando 6 casas decimais.
- (ii) A conversão do número binário y=1001001,1011 para decimal resulta em 73,52, considerando 4 casas decimais.
- a) () apenas (ii) é correta
- **b**) () nenhuma
- c) () apenas (i) é correta
- d) () ambas estão corretas

UFPE		Nota
Professor: Banca de Cálculo Numérico		
Disciplina: Cálculo Numérico		
Curso: Cursos de Exatas		
Aluno:		
Matrícula:	Turma: T1, T2, T4, T6, T7	Data: 26/07/2022
	e T8	

Q.1 (1.00) - Determine, usando método da Bisseção, o valor aproximado do zero de função de f(x) = x*ln(x) - 1, no intervalo [a,b] = [1,2] e adotando como critério de parada a amplitude |a-b| <= 1e-1. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:

- ${\bf a})$ () o valor mais próximo do zero da função encontra-se no intervalo $[1,\!80\ ;\,1,\!85]$
- **b**) () o valor mais próximo do zero da função encontra-se no intervalo $[1,65\ ;\ 1,70]$
- c) () nenhuma das alternativas
- **d**) () o valor mais próximo do zero da função encontra-se no intervalo [1,60 ; 1,65]
- ${f e}$) () o valor mais próximo do zero da função encontra-se no intervalo $[1,75\ ;\ 1,80]$
- f) () o valor mais próximo do zero da função

encontra-se no intervalo [1,70;1,75]

- **Q.2** (1.00) Avalie as seguintes afirmações: (i) A conversão do número decimal x=212,1352 para binário resulta em 11010100,001010, considerando 6 casas decimais.
- (ii) A conversão do número binário y = 1001001,1011 para decimal resulta em 73,52, considerando 4 casas decimais.
- $\mathbf{a})$ () apenas (i) é correta
- **b**) () nenhuma
- c) () apenas (ii) é correta
- d) () ambas estão corretas

Q.3 (1.00) - Considere a máquina F(10, 4, -9, 9) e o arredondamento padrão. Avalie as seguintes afirmações: (i) As operações válidas devem resultar na região de operação da máquina F. As regiões onde a máquina não opera são chamadas

de overflow e underflow, ou seja: Overflow: {-Xmin < x < 0 } U {0 < x < Xmin} e Underflow: {x > Xmax} U {x < -Xmax}. Onde: Xmin = 1,000 *10^(-9) e Xmax = 9,999 * 10^(9). (ii) Utilizando números da máquina F, considere os valores $X1 = 5,590 * 10^5$ e $X2 = 5,554 * 10^(-5)$, o resultado da operação X1 / X2 encontra-se na região de underflow. Nesse caso, o resultado não pode ser representado nessa máquina.

- a) () ambas estão corretas
- b) () apenas (ii) é correta
- c) () apenas (i) é correta
- d) () nenhuma
- **Q.4** (1.00) Determine, usando método das Secantes, o valor aproximado do zero de função de f(x) = x x*ln(x), no intervalo [a,b] = [2,3] e faça iterações até que |Xi+1-Xi| <= 1e-2. Considere o argumento da função f(x) em radiano e use quatro casas decimais e arredondamento padrão. Marque a alternativa correta:
- a) () o valor mais próximo do zero da função encontra-se no intervalo [2,75; 2,80]
- **b**) () nenhuma das alternativas
- c) () o valor mais próximo do zero da função encontra-se no intervalo [2,55 ; 2,60]
- d) () o valor mais próximo do zero da função encontra-se no intervalo $[2,70\ ;\ 2,75]$
- e) () o valor mais próximo do zero da função encontra-se no intervalo [2,60 ; 2,65]
- ${f f}$) () o valor mais próximo do zero da função encontra-se no intervalo [2,65 ; 2,70]
- Q.5 (1.00) Considere as máquinas F e G, abaixo, e o arredondamento padrão. Avalie as

- seguintes afirmações: (i) O número x = 0.527921 é um elemento da máquina que trabalha com sistema de ponto flutuante F(10.6,-9.9).
- (ii) Sendo $X = 0.72370*10^(4)$, $Y = 0.21450*10^(-3)$ e $Z = 0.25850*10^(1)$ podemos afirmar que (X*Y)/Z = X*(Y/Z), considerando a máquina G(10.5,-5.5).
- a) () apenas (ii) é correta
- b) () apenas (i) é correta
- c) () ambas estão corretas
- d) () nenhuma
- **Q.6** (1.00) Verifique se as seguintes afirmativas são verdadeiras ou falsas: () O teorema de Bolzano diz: "Se f é uma função contínua em um certo intervalo [a,b] e troca de sinal nos extremos deste intervalo, isto é, f(a)*f(b) < 0, então existe pelo menos uma raiz real de f em [a,b]".
- () Aplicando o teorema de Bolzano confirmamos a existência de uma única raiz real de uma função.
- () O método das Cordas parte de um intervalo de separação de uma raiz de uma função específica e o "quebra" em dois intervalos de tamanhos diferentes.
- () O intervalo de separação significa que pode ou não ter uma raiz real de uma função f.
- **a**) () V, F, F, F
- b) () nenhuma das alternativas
- **c**) () F, V, V, V
- **d**) () F, F, F, F
- e) () V, F, F, V
- **f**) () V, F, V, F
- **g**) () V, V, V, V
- **h**) () F, V, V, F