Notification about the transfer of the semiconductor business

The semiconductor business of Panasonic Corporation was transferred on September 1, 2020 to Nuvoton Technology Corporation (hereinafter referred to as "Nuvoton"). Accordingly, Panasonic Semiconductor Solutions Co., Ltd. became under the umbrella of the Nuvoton Group, with the new name of Nuvoton Technology Corporation Japan (hereinafter referred to as "NTCJ").

In accordance with this transfer, semiconductor products will be handled as NTCJ-made products after September 1, 2020. However, such products will be continuously sold through Panasonic Corporation.

Publisher of this Document is NTCJ.

If you would find description "Panasonic" or "Panasonic semiconductor solutions", please replace it with NTCJ.

Except below description page
 "Request for your special attention and precautions in using the technical information and semiconductors described in this book"

Nuvoton Technology Corporation Japan

An	plica	ation	Note
, ,P	pnoc	atiOii	14010

AN41908A				
Total Pages	Page			
70	1			

Part No.	AN41908A	
Package Code No.	*QFN044-P-0606D	

Semiconductor Business Group Industrial Devices Company Panasonic Corporation

Established by	Applied by	Checked by	Prepared by
			A.Chigira

Revision 0.06	
2012-09-06	

AN41908A				
Total Pages	Page			
70	2			

Contents

■ Serial Interface	3
■ VD Signal Internal Processing	13
■ Micro Step Motor Driver	14
■ Reset / Protection Circuit	36
■ Iris Control	38
■ Iris Control Hall Sensor	62
■ LED Driver	69
■ Technical Data	70

AN41908A				
Total Pages Page				
70	3			

Serial Interface

Serial Interface

■ Timing Chart

Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.

Note 1) CS default value of each cycle (Write / Read mode) starts from Low-level.

Note 2) It is necessary to input the system clock OSCIN at write mode.

AN41908A				
Total Pages Page				
70	4			

Serial Interface

■Electrical Characteristics (Reference values for design) at AVDD5, MVCCx = 4.8 V, DVDD, AVDD3 = 3.1 V Notes) $T_a = 25$ °C±2°C unless otherwise specified.

The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, we will respond in good faith to user concerns.

B No.	Parameter	Symbol	Conditions	Reference values			11.7
				Min	Тур	Max	Unit
S1	Serial clock	Sclock	_	1	_	5	MHz
S2	SCLK low time	T1	_	100	_	_	ns
S3	SCLK high time	T2	_	100	_	_	ns
S4	CS setup time	Т3	_	60	_	_	ns
S5	CS hold time	T4	_	60	_	_	ns
S6	CS disable low time	T5	_	100	_	_	ns
S7	SIN setup time	Т6	_	50	_	_	ns
S8	SIN hold time	T7	_	50	_	_	ns
S 9	SOUT delay time	Т8	_	_	_	60	ns
S10	SOUT hold time	Т9	_	60	_	_	ns
S11	SOUT enable-Hiz time	T10	_		_	60	ns
S12	SOUT Hiz-enable time	T11	_	_	_	60	ns
S13	SOUT Cload	Tsc	_	_	_	40	pF

Revision 0.06	
2012-09-06	

AN41908A					
Total Pages	Page				
70	5				

■ Register Map

Serial Interface

	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
00H								•			IRS_TO	GT[9:0]			•	
01H				DGAIN[6:0	l		J	ASOU	ND_LPF_F	C[2:0]	AS_FLT OFF	DEC _AVE		LPF_FC D[1:0]		LPF_FC [[1:0]
02H	PID_POLE[3:0] PID_ZERO[3:0]					IRIS_ROUND[3:0] IRIS_CALC_NR[3:0]					.[210]					
03H	DT_ADJ_IRIS[1:0] PWM_IRIS[2:0] PWM			M_LPF_FC	[2:0] PWM_FLT LMT ARW[3:0]											
04H	HALL_OFFSET_DAC[7:0]						HALL_BIAS_DAC[7:0]									
05H				AAF_FC		HALL_C	GAIN[3:0]				PID_INV	TGT_FLT OFF		TGT_LP	F_FC[3:0]	
06H											STAR					
07H	PIEN									WIDTI	H1[11:0]					
08H											STAR	Γ2[9:0]				
09H	P2EN												WIDT	H2[5:0]		
0AH						DUTY _TEST		,	,		TGT_IN_	TEST[9:0]				
0BH	•	PID_CI	LIP[3:0]		ADC _TEST	PDWNB	MODESEL _FZ	MODESEL _IRIS	TESTEN1			ASWMO	DDE[1:0]			
0CH											IRSAD[9:0]	(Read Only)			
0DH																
0EH	AVE_SPEED[4:0]				TGT_UPDATE[7:0]											
0FH						Reserved					Rese	erved				
10H																
20H		PWMR	ES[1:0]		PW	VMMODE[4	4:0]			_		DT1	[7:0]			
21H									TESTEN2					FZTEST[4:0)]	
22H					PHMOD	OAB[5:0]			DT2A[7:0]							
23H				PPW	3[7:0]				PPWA[7:0]							
24H			MICRO	OAB[1:0]	LEDB	ENDISAB	BRAKE AB	CCWCW AB				PSUM	AB[7:0]			
25H								INTCTA	AB[15:0]							
26H																
27H	PHMODCD[5:0]					DT2B[7:0]										
28H				PPWI	D[7:0]				PPWC[7:0]							
29H	MICROCD[1:0] LEDA ENDISCD BRAKE CCWCW CD CD				PSUMCD[7:0]											
2AH	INTCTC					CD[15:0]										
2BH																
2CH														Reserved	Reserved	Reserved

	Application Note
 Serial Interface	

AN41908A					
Total Pages	Page				
70	6				

■ Register List

Address	Register name / Bit wide	Function	Page
00h	IRS_TGT[9:0]	Iris target	40
01h	OVER_LPF_FC_1ST[1:0]	ADC feedback filter (1) cut-off frequency	41
	OVER_LPF_FC_2ND[1:0]	ADC feedback filter (2) cut-off frequency	41
	DEC_AVE	Moving average of Iris target	42
	AS_FLT_OFF	Filter before PID controller enable / disable	42
	ASOUND_LPF_FC[2:0]	Filter cut-off frequency before PID controller	43
	DGAIN[6:0]	PID controller digital gain	43
02h	IRIS_CALC_NR[3:0]	PID controller integral error cumulative prevention level	45
	IRIS_ROUND[3:0]	PID controller differential error cumulative prevention level	45
	PID_ZERO[3:0]	PID controller zero point	46
	PID_POLE[3:0]	PID controller pole	46
03h	ARW[3:0]	Number of bits in PID controller integrator	49
	LMT_ENB	PID controller integral stop	49
	PWM_FLT_OFF	LPF after PID controller enable / disable	50
	PWM_LPF_FC[2:0]	LPF cut-off frequency after PID controller	50
	PWM_IRIS[2:0]	PWM frequency of Iris block output	51
	DT_ADJ_IRIS[1:0]	Dead time correction of Iris block output	51
04h	HALL_BIAS_DAC[7:0]	Drive current value for hall element	63
	HALL_OFFSET_DAC[7:0]	Offset adjustment for hall element output amplifier	63
05h	TGT_LPF_FC[3:0]	Iris target value LPF cut-off frequency	52
	TGT_FLT_OFF	Iris target value LPF function enable / disable	52
	PID_INV	PID controller polarity	53
	HALL_GAIN[3:0]	Hall element output amplifier gain	64
	AAF_FC	Cut-off frequency of hall element output amplifier	64
06h	START1[9:0]	Pulse 1 start time	54
07h	WIDTH1[11:0]	Pulse 1 width	54
	P1EN	Pulse 1 output enable	54
08h	START2[9:0]	Pulse 2 start time	56
09h	WIDTH2[5:0]	Pulse 2 width	56
	P2EN	Pulse 2 output enable	56

		AN41908A		
	Application Note	Total Pages	Page	
Serial Interface	, -	70	7	

■ Register List (continued)

Address	Register name / Bit wide	Function	Page
0Ah	TGT_IN_TEST[9:0]	Iris output duty direct specified value	58
	DUTY_TEST	Iris output duty direct specification enable	59
0Bh	ASWMODE[1:0]	ADTESTIN pin connection selection	65
	TESTEN1	Test mode enable 1	31
	MODESEL_IRIS	VD_IS polarity selection	13
	MODESEL_FZ	VD_FZ polarity selection	13
	PDWNB	Power down of Iris block	65
	ADC_TEST	ADC read value updated timing	65
	PID_CLIP[3:0]	Iris output PWM maximum duty	67
0Ch	IRSAD[9:0]	ADC output for Iris (read only)	68
0Eh	TGT_UPDATE[7:0]	IRS_TGT (iris target) update delay time	60
UEN	AVE_SPEED[4:0]	Iris target moving average speed	61

Revision 0.06	
2012-09-06	

	Application Note	
Serial Interface		ľ

AN41908A		
Total Pages	Page	
70	8	

■ Register List (continued)

Address	Register name / Bit wide	Function	Page
20h	DT1[7:0]	Start point wait time	18
	PWMMODE[4:0]	Micro step output PWM frequency	20
	PWMRES[1:0]	Micro step output PWM resolution	20
21h	FZTEST[4:0]	PLS1/2 pin output signal selection	29
	TESTEN2	Test mode enable 2	31
22h	DT2A[7:0]	α motor start point excitation wait time	19
	PHMODAB[5:0]	α motor phase correction	21
23h	PPWA[7:0]	Driver A peak pulse width	22
	PPWB[7:0]	Driver B peak pulse width	22
24h	PSUMAB[7:0]	α motor step count number	23
	CCWCWAB	α motor rotation direction	24
	BRAKEAB	α motor brake	25
	ENDISAB	α motor enable/disable control	26
	LEDB	LED B output control	69
	MICROAB[1:0]	α motor sine wave division number	27
25h	INTCTAB[15:0]	α motor step cycle	28
27h	DT2B[7:0]	β motor start point excitation wait time	19
	PHMODCD[5:0]	β motor phase correction	21
28h	PPWC[7:0]	Driver C peak pulse width	22
	PPWD[7:0]	Driver D peak pulse width	22
29h	PSUMCD[7:0]	β motor step count number	23
	CCWCWCD	β motor rotation direction	24
	BRAKECD	β motor brake	25
	ENDISCD	β motor enable/disable control	26
	LEDA	LED A output control	69
	MICROCD[1:0]	β motor sine wave division number	27
2Ah	INTCTCD[15:0]	β motor step cycle	28

Revision 0.06	
2012-09-06	
1 2012 00 00	

■ Serial Interface Specifications

Data transfer starts at the rising edge of CS, and stops at the falling edge of CS.

One unit of data is 24 bits. (24 bits of the following format are called a data set in this book.)

Address and data are serially input from SIN pin in synchronization with the data clock SCK at CS = 1.

Data is retrieved at the rising edge of SCK.

Moreover, data is output from SOUT pin at data readout. (Data is output at the rising edge of SCK.)

SOUT outputs Hi-Z at CS = 0, and outputs "0" except data readout at CS = 1.

The control circuit of serial interface is reset at CS = 0.

■ Data Format

0	1	2	3	4	5	6	7
A0	A1	A2	A3	A4	A5	C0	C1
8	9	10	11	12	13	14	15
D0	D1	D2	D3	D4	D5	D6	D7
16	17	18	19	20	21	22	23
D8	D9	D10	D11	D12	D13	D14	D15

C0: Register write / read selection 0: write mode, 1: read mode

C1: Unused

A5 to A0 : Address of register D15 to D0 : Data written in register

When C0 bit is "0", the write mode is selected. The address and data are retrieved from SIN in synchronization with the rising edge of data clock SCLK, and the data is stored in internal register in synchronization with the rising edge of CS.

SOUT outputs "0" in the write mode.

When the data which is 23 or less bits per 1 processing is received in the write mode, the received data becomes invalid

The data of 25 or more bits is regarded as the continuous write mode, and the write operation is performed whenever the data of 24 bits is received. When the last data set is less than 24 bits in the continuous write mode, it becomes invalid. (The previous data set is valid.)

Even if noise occurs on SCK signal in the continuous write mode and the shifted data is received, pay attention to continue receiving or updating the shifted data.

When C0 bit is "1", the read mode is selected. The address is retrieved from SIN in synchronization with the rising edge of SCK, and then the register value of the address specified is output as LSB first from SOUT, in synchronization with the rising edge of SCK.

When C0 bit is "1", the values of D15 to D0 of SIN do not be cared.

■ Formatting

All the SIF functions containing a data register are formatted at RSTB = 0.

Revision 0.06	
2012-09-06	

		AN41908A	
	Application Note	Total Pages	Page
Serial Interface		70	10

■ Register Setup Timing

Revision 0.06	
2012-09-06	

AN41908A		
Total Pages	Page	
70	11	

■ Register Setup Timing (continued)

Serial Interface

Address	Register Name	Setup Timing
00h	IRS_TGT[9:0]	VD_IS+Adjusted value
01h	OVER_LPF_FC_1ST[1:0]	VD_IS
	OVER_LPF_FC_2ND[1:0]	VD_IS
	DEC_AVE	VD_IS
	AS_FLT_OFF	VD_IS
	AS_LPF_FC[2:0]	VD_IS
	DGAIN[6:0]	VD_IS
02h	IRIS_CALC_NR[3:0]	VD_IS
	IRIS_ROUND[3:0]	VD_IS
	PID_ZERO[3:0]	VD_IS
	PID_POLE[3:0]	VD_IS
03h	ARW[3:0]	VD_IS
	LMT_ENB	VD_IS
	PWM_FLT_OFF	VD_IS
	PWM_LPF_FC[2:0]	VD_IS
	PWM_IRIS[2:0]	VD_IS
	DT_ADJ_IRIS[1:0]	VD_IS
04h	HALL_BIAS_DAC[7:0]	VD_IS
	HALL_OFFSET _DAC[7:0]	VD_IS
05h	TGT_LPF_FC[3:0]	VD_IS
	TGT_FLT_OFF	VD_IS
	PID_INV	VD_IS
	HALL_GAIN[3:0]	VD_IS
	AAF_FC	VD_IS
06h	START1[9:0]	VD_IS
07h	WIDTH1[11:0]	VD_IS
	P1EN	VD_IS
08h	START2[9:0]	VD_IS
09h	WIDTH2[5:0]	VD_IS
	P2EN	VD_IS
0Ah	TGT_IN_TEST[9:0]	CS
	DUTY_TEST	CS
0Bh	ASWMODE[1:0]	CS
	TESTEN1	CS
	MODESEL_IRIS	CS

Address	Register Name	Setup Timing
0Bh	MODESEL_FZ	CS
	PDWNB	CS
	ADC_TEST	CS
	PID_CLIP[3:0]	VD_IS
0Ch	IRSAD[9:0]	Read Only
0Eh	TGT_UPDATE[7:0]	CS
	AVE_SPEED[4:0]	VD_IS
20h	DT1[7:0]	VD_FZ
	PWMMODE[4:0]	DT1
	PWMRES[1:0]	DT1
21h	FZTEST[4:0]	CS
	TESTEN2	CS
22h	DT2A[7:0]	DT1
	PHMODAB[5:0]	DT2A
23h	PPWA[7:0]	DT1
	PPWB[7:0]	DT1
24h	PSUMAB[7:0]	DT2A
	CCWCWAB	DT2A
	BRAKEAB	DT2A
	ENDISAB	DT1 or DT2A
	LEDB	CS
	MICROAB[1:0]	DT2A
25h	INTCTAB[15:0]	DT2A
27h	DT2B[7:0]	DT1
	PHMODCD[5:0]	DT2B
28h	PPWC[7:0]	DT1
	PPWD[7:0]	DT1
29h	PSUMCD[7:0]	DT2B
	CCWCWCD	DT2B
	BRAKECD	DT2B
	ENDISCD	DT1 or DT2B
	LEDA	CS
	MICROCD[1:0]	DT2B
2Ah	INTCTCD[15:0]	DT2B

Revision 0.06 2012-09-06 20 1: reflected at DT1 1 0: reflected at DT2x

		AN41908A	
	Application Note	Total Pages	Page
Serial Interface	, -	70	12

■ Register Setup Timing (continued)

In principle, the setup of registers for micro step should be performed during the interval of start point wait (Refer to the figure in page 10). The data which is written at timing except the interval of start point wait can be also received. However, if the write operation continues after the reflecting timing such as the end of start point excitation wait, the setup reflection timing may not be performed at the intended timing (Refer to the following figure). For example, if the data 1 to 4 which is updated at the end of start point excitation wait are written as the following figure, data 1 and 2 is updated at the timing a, and data 3 and 4 is updated at the timing b. Even if the data is written continuously like this, the update timing may be shifted to 1 VD.

Due to the above reason, the setup of registers should be performed during the interval of start point wait in order to reflect the updated content certainly.

	A P (AN41	908A
	Application Note	Total Pages	Page
VD Signal Internal Processing		70	13

VD signal internal processing

■ Specifications

In this LSI, reflection timing and rotation timing of a stepping motor are based on the rising edge of VD_IS and VD_FZ respectively. The polarities of VD_IS and VD_FZ which are used for the internal processing can be set by the following setup.

■ Register detail description

- MODESEL_IRIS (VD_IS polarity selection)
- MODESEL_FZ (VD_FZ polarity selection)

	Address 0Bh			Initial Value			0								
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
				М	DDESEI	_IRIS	MODE	SEL_FZ	Z						

MODESEL_IRIS and MODESEL_FZ respectively set the polarities of VD_IS and VD_FZ signals which is input to this IC.

When setting to "0", the polarity is based on the rising edge of VD_xx inputted.

When setting to "1", the polarity is based on the falling edge of VD_xx inputted.

MODESEL_xx selects the polarity of VD_xx inputted. Therefore, depending on the selection timing of MODESEL_xx, the timing which is not related to the edge (*a) of VD_xx which is input as the following figure may be regarded as an edge.

Setup value	VD polarity					
0	Non-inverting					
1	Inverting					

Based on the rising edge of VD_xx internal processing

Micro Stepping Motor Driver

■ Block Diagram

- •This block is a stepping motor driver for focus and zoom, and the following setup can be performed by serial control. (The following description is for α motor: driver A/B. β motor: driver C/D is the same function as α motor.)
- •Main setup parameters
 - 1) Phase correction : The phase difference between a driver A and a driver B is on the basis of 90 degree, and can be adjusted from -22.5 degree to +21.8 degree. • • PHMODAB[5:0]
- 2) Amplitude correction: It is possible to set the load current of driver A/B independently. ••• PPWA[7:0], PPWB[7:0]
- 3) PWM frequency: PWM driver chopping frequency is set. • PWMMODE[4:0] , PWMRES[1:0]
- 4) Quasi-sine wave: Number of divisions can be set to 64, 128 and 256. ••• MICROAB[1:0]
- 5) Stepping cycle: Motor rotation speed is set. The rotation speed is constant regardless of number of divisions of quasi-sine wave.

· · · INTCTAB[15:0]

■ Electrical Characteristics at AVDD5, MVCCx = 4.8 V, DVDD, AVDD3 = 3.1 V

Notes) $T_a = 25^{\circ}C\pm 2^{\circ}C$ unless otherwise specified.

No.	Parameter	Symbol	Conditions		Unit						
INO.	Faiametei	Symbol	on Conditions		Тур	Max	Offic				
Motor	Motor driver 1 (Focus, Zoom)										
1	H bridge ON-resistance	R _{onFZ}	IM = 100 mA	_	_	2.5	Ω				
2	H bridge leak current	I _{leakFZ}	_	_	_	0.8	μA				

■ Setup Timing for Each Setup

Setup timing and number of times are shown as follows.

Since the setups for address 27h to 2Ah are the same as those of 22h to 25h, the descriptions for address 27h to 2Ah are omitted. If each setup is set once, the setup is reflected at every VD pulses. Therefore, when the same setup is performed at two or more VD pulses, it is unnecessary to write at every VD pulse.

DT1[7:0] (Start point wait, Address 20h)

Update timing is set. After hard reset release (Pin 39 RSTB : Low \rightarrow High), this setup should be performed before starting to excite and drive a motor.

Since this setup is updated by the start of VD, it is unnecessary to write during the start point wait.

PWMMODE[4:0], PWMRES[1:0] (Micro step output PWM frequency setup, Address 20h)

Micro step output PWM frequency is set. After hard reset release (Pin 39 RSTB: Low to High), this setup should be performed before starting to excite and drive a motor (DT1 ends).

DT2A[7:0] (Start point excitation wait, Address 22h)

Updated timing is set. After hard reset release (Pin 39 RSTB : Low \rightarrow High), this setup should be performed before starting to excite and drive a motor (DT1 ends).

PHMODAB[5:0] (Phase correction, Address 22h)

The correlation phase difference between coil A and B is corrected, and the driving noise is reduced. Since the amount of suitable phase correction depends on the rotation direction or rotation speed, the change of this setup should be performed simultaneously with the changes of the rotations direction (CCWCWAB) or rotation speed (INTCTAB), or it should be performed when a motor does not rotate.

PPWA[7:0], PPWB[7:0] (Peak pulse width, Address 23h)

PWM maximum duty is set. This setup should be performed before starting to excite and drive a motor (DT1 ends).

PSUMAB[7:0] (Step count number, Address 24h)

The amount of motor rotations in 1 VD interval is set.

Every time VD pulse is input, the motor keeps rotating depending on the amount of rotations. Therefore, set to "0" in order to stop rotation of the motor.

When the amount of rotations which exceeds 1 VD interval is set, the amount of rotations of a part which exceeds 1 VD interval is cancelled.

■ Setup Timing of Each Setup (continued)

CCWCWAB (Rotation direction, Address 24h)

Rotation direction is set. This setup should be performed just before switching the rotation direction.

BRAKEAB (Brake setup, Address 24h)

A current is set to 0 by braking. Since it becomes impossible to get the excitation position of a motor by braking, this setup should not be preformed except for the case of stopping immediately.

ENDISAB (Motor enable/disable setup, Address 24h)

Enable of a motor is set. Since a motor pin is Hi-Z when it is set to "Disable", do not set to "Disable" while a motor keeps rotating.

LEDA (LED setup, Address 24h)

LED ON/OFF is set. The setup is performed at the falling edge of CS.

(It is understood that it is not related to driving a motor. It is possible to turn ON/OFF independently.)

MICROAB[1:0] (Number of sine wave divisions, Address 24h)

Number of sine wave divisions is set. Even if this setup is changed, the amount of rotations and rotation speed do not vary. If only the control which the number of divisions varies depending on the rotation speed is not performed, the problem dose not occur if it is set once after hard reset release (Pin 39 RSTB : Low \rightarrow High).

INTCTAB[15:0] (Pulse cycle, Address 25h)

Pulse cycle is set. Rotation speed is determined by this setup.

Revision 0.06	
2012-09-06	

■ How to adjust register setting for micro stepping motor driver

In order to control lens, it is required to set motor rotation speed and amount of rotation per VD. Register settings relating to speed and amount of rotation are:

INTCTxx[15:0]: set time of each step (that is, the rotation speed)

PSUMxx[7:0]: amount of rotation per VD period

When driving the motor continuously for several VD period, it is best to match rotation time (per VD) to VD period. Below is a method to calculate INTCTxx[15:0] and PSUMxx[7:0] for smooth motor rotation.

1) Calculate INTCTxx[15:0] from desired rotation speed.

 $INTCTxx[15:0] \times 768 = OSCIN$ frequency / rotation frequency

2) Calculate PSUMxx[7:0] from INTCTxx[15:0]. Round off if the result of PSUMxx[7:0] is not integer. When the below equation is satisfied, the rotation time is equal to VD period, and smooth rotation is realized.

 $INTCTxx[15:0] \times PSUMxx[7:0] \times 24 = OSCIN$ frequency / VD frequency

3) If PSUMxx[7:0] is rounded off, recalculate INTCTxx[15:0] from the equation in 2).

Example) OSCIN frequency = 27 MHz, VD frequency = 60 Hz

Calculate PSUMxx[7:0] and INTCTxx[15:0] to rotate motor at 800 pps (1-2 phase).

800 pps = 100 Hz, so from equation in 1),

 $INTCTxx[15:0] = 27 \text{ MHz} / (100 \text{ Hz} \times 768) = 352$

Next, calculate PSUMxx[7:0] from equation in 2):

 $PSUMxx[7:0] = 1/(60 \text{ Hz}) \times 27 \text{ MHz} / (352 \times 24) = 53$

Since PSUMxx[7:0] is rounded off, recalculate INTCTxx[15:0] from equation in 2):

 $INTCTxx[15:0] = 1/(60 \text{ Hz}) \times 27 \text{ MHz} / (53 \times 24) = 354$

Refer to pages 23 and 28 for detail of PSUMxx[7:0] and INTCTxx[15:0].

If the value of left-hand side in 2) is smaller than right-hand side, the rotation time will be shorter than VD period and will cause discontinuous rotation. If left-hand side is smaller, the rotation time that exceeds 1 VD will be cancelled.

■ Detail descriptions of register

• DT1[7:0] (Start point wait time)

,	Address			20h		Ini	tial Val	ue		0Ah					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
											DT1	[7:0]			

DT1[7:0] sets the delay time (start point wait time) until the data written in the serial data communication sends to the output.

It becomes possible to excite a motor after a start point wait switches "1" to "0". The start point wait starts to count after the rising edge of video sync signal (VD_FZ).

Since start point wait time is the trigger required for data acquisition, be sure to set to other than "0". When the value of register is "0", the data cannot be updated.

Refer to page 10 for the relationship of VD_FZ and start point wait time.

DT1	Start point wait
0	Prohibition
1	303.4 μs
255	77.4 ms
n	n × 8192/27 MHz

- Detail descriptions of register (continued)
- ullet DT2A[7:0] (Start point excitation wait $\,\alpha$ motor)

,	Address			22h		Ini	tial Val	ue		03h					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
											DT2A	A[7:0]			

• DT2B[7:0] (Start point excitation wait β motor)

A	Addres	s	27h			Ini	tial Val	ue 03h							
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
											DT2F	3[7:0]			

DT2A[7:0] and DT2B[7:0] set the delay time (start point excitation wait) until α motor and β motor start rotation. Motor rotation starts after start point excitation wait switches "1" to "0". The start point excitation wait starts to count after the falling edge of start point wait.

Since the falling edge is the trigger pulse which is required for data acquisition, be sure to input the data of other than "0". When the value of register is "0", the data cannot be updated.

Refer to page 10 for the relationship of VD_FZ and start point excitation wait time.

Setup value	Start point excitation wait
0	Prohibition
1	303.4 μs
255	77.4 ms
n	n × 8192/27 MHz

- Detail descriptions of register (continued)
- PWMMODE[4:0] (Micro step output PWM frequency)

/	Addres	s	20h			Initial Value				1Ch					
D15	D14	D13	D12	D12 D11 D10		D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
			PWMMODE			E[4:0]									

• PWMRES[1:0] (Micro step output PWM frequency resolution)

-	Addres	S		20h		Ini	Initial Value			1					
D15	D14	D13	D12	D12 D11 D10		D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	PWMRES														

PWMMODE[4:0] sets the frequency division value of system clock, OSCIN, which is used as the standard of PWM signal for micro step output. PWMMODE[4:0] can set in the range from 1 to 31. PWM frequency at PWMMODE = 0 is the same as that at PWMMODE = 1.

PWMRES[1:0] sets the resolution of frequency division value set by PWMMODE[4:0].

PWM frequency is calculated by the following formula.

PWM frequency = OSCIN frequency / ((PWMMODE
$$\times 2^3$$
) $\times 2^{PWMRES}$)

Refer to page 32 for the specific PWM frequency set by PWMMODE[4:0] and PWMRES[1:0] at OSCIN = 27 MHz..

Revision 0.06	
2012-09-06	

- Detail descriptions of register (continued)
- PHMODAB[5:0] (Phase correction α motor)

l A	Addres	S	22h			Initial Value				0					
D15	D14	D13	D12 D11 D10		D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
			P	HMOD)AB[5:0	0]									

• PHMODCD[5:0] (Phase correction β motor)

<i>A</i>	Addres	s	27h			Ini	tial Val	lue	0						
D15	D14	D13	D12 D11 D10		D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
			PHMODCD[5:												

Current phase differences of α motor and β motor shifts from 90 degree by PHMODAB[5:0] and PHMODCD[5:0] respectively. Setup resolution is 0.7 degree, and data is set in two's complement.

PHMODAB	Amount of phase correction
000000	±0 degree
000001	+0.70 degree
011111	+21.80 degree
100000	-22.50 degree
111111	-0.70 degree
Resolution	360 degree /512 = 0.70 degree

Stepping motor is configured so that phase difference between coils becomes 90 degree. However, the phase difference may shift from 90 degree due to the variation of a motor.

Therefore, even if phase difference in current waveform is exactly 90 degree, driving noise may occur due to the occurrence of rotation torque ripple.

This setup is for reducing the torque ripple which is occurred by the variation of a motor.

Revision 0.06	
2012-09-06	

- Detail descriptions of register (continued)
- PPWA[7:0] (Driver A peak pulse width)
- PPWB[7:0] (Driver B peak pulse width)

l A	Addres	s	23h			Initial Val		ue		0,0					
D15	D14	D13	D12 D11 D10		D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
	PPWB[7:0]									PPW	A [7:0]				

- PPWC[7:0] (Driver C peak pulse width)
- PPWD[7:0] (Driver D peak pulse width)

,	Addres	s	28h			Ini	tial Val	ue 0,0							
D15	D14	D13	D12 D11 D10		D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
	PPWD[7:0]										PPW	C[7:0]			

PPWA[7:0] to PPWD[7:0] set the maximum duty of PWM at the position which the currents in driver A to D are peak value respectively. The maximum duty is calculated by the following formula.

Driver X Maximum duty = PPWx / (PWMMODE
$$\times$$
 8)

When PPWx = 0 is set, coil current becomes 0.

Refer to page 34 for the operation at the time when the duty exceeding 100% is set.

Example) When PPWA[7:0] = 200, PWMMODE[4:0] = 28 is set, maximum duty of driver A will be
$$200 / (28 \times 8) = 0.89$$

■ Detail descriptions of register (continued)

• PSUMAB[7:0] (α motor step count number)

/	Addres	s	24h		lni	tial Val	ue	ue 0							
D15	D14	D13	D12	D11	D10	D9	D9 D8		D6	D5	D4	D3	D2	D1	D0
								PSUMAB[7:				AB[7:0]]		

• PSUMCD[7:0] (β motor step count number)

A	Address 29h		Ini	tial Val	lue 0										
D15	D14	D13	D12	D11	D10	D9	D9 D8 D		D6	D5	D4	D3	D2	D1	D0
								PSUM				CD[7:0]]		

PSUMAB[7:0] and PSUMCD[7:0] set the number of step counts of α motor and β motor respectively. Since the number of setup step counts is converted to 256-step inside, the amount of rotation becomes the same regardless of the number of divisions.

To stop the rotation of a motor, set PSUMxx[7:0] = 0.

Cotting	Number of steps									
Setting value	64-step conversion	128-step conversion	256-step conversion							
0	0	0	0							
1	2	4	8							
255	510	1 020	2 040							
n	2n	4n	8n							

If maximum duty is set to other than "0" at PSUMxx[7:0] = 0, the position is held in the state of excitation. If a motor can hold the position by cogging torque without motor current, the position is held even if the maximum duty is set to 0.

Example) When PSUMAB[7:0] = 8 is set, the amount of rotation is 16 steps (64-step conversion). This is 16/64 = 1/4 of a sine wave. The amount of rotation becomes 1/4 of a sine wave also in 128 and 256-step conversion.

■ Detail descriptions of register (continued)

 \bullet CCWCWAB (α motor rotation direction)

	Þ	Addres	s	24h		Initial Value			0							
Г	D15	D14	D13	D12	D11	D10	D9	D9 D8 D7		D6	D5	D4	D3	D2	D1	D0
							CC	WCWA	В							

• CCWCWCD (β motor rotation direction)

A	Address 29h		Initial Value			0									
D15	D14	D13	D12	D11	D10	D9	D9 D8 D7		D6	D5	D4	D3	D2	D1	D0
						CC	WCWC	D							

CCWCWAB and CCWCWCD set the rotation direction of α motor and β motor respectively. Refer to page 35 for the definition of rotation direction.

Setup value	Motor rotation direction
0	Forward
1	Reverse

Revision 0.06	
2012-09-06	

■ Detail descriptions of register (continued)

• BRAKEAB (α motor brake)

/	Addres	s	24h		Initial Value			0							
D15	D14	D13	D12	D11	D10	D9	D9 D8 I		D6	D5	D4	D3	D2	D1	D0
					В	RAKEA	AВ								

• BRAKECD (β motor brake)

l A	Address 29h			Initial Value			0								
D15	D14	D13	D12	D11	D10	D9	D9 D8		D6	D5	D4	D3	D2	D1	D0
					В	RAKECD									

BRAKEAB and BRAKECD set the brake mode of α motor and β motor respectively.

Setup value	α motor brake
0	Normal operation
1	Brake mode

Both of upper-side P-ch MOSs of output H bridge turn on in brake mode. The brake mode is not used in normal operation, and is used for emergency shutdown. It is recommended to use only in abnormal state.

- Detail descriptions of register (continued)
- ENDISAB (α motor Enable/Disable)

<i>F</i>	Addres	s		24h		Ini	tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
					ENDIS	AB									

• ENDISCD (β motor Enable/Disable)

,	Addres	s		29h		Ini	tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
					ENDIS	CD									

ENDISAB and ENDISCD configure the setting for output stage control of α motor and β motor respectively. The output becomes the state of OFF (Hi-Z) at ENDISxx = 0. However, internal excitation position counter keeps counting even ENDISxx = 0. Therefore, when stopping the motor during normal operation, set PSUMxx[7:0] = 0 (not ENDISxx = 0).

Setup value	Motor output condition
0	Output OFF (Hi-Z)
1	Output ON

■ Detail descriptions of register (continued)

 \bullet MICROAB[1:0] (α motor quasi-sin wave division number)

	Addres	s		24h		lni	tial Va	lue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D6 D5 D4		D3	D2	D1	D0
		MICE	ROAB												

• MICROCD[1:0] (β motor quasi-sine wave division number)

<i>F</i>	Addres	s		29h		Ini	tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
		MICE	ROCD												

MICROAB[1:0] and MICROCD[1:0] set the number of quasi-sine wave divisions for α motor and β motor respectively. Waveform example for 64 divisions is on page 35.

MICROAB	Number of divisions
00	256
01	256
10	128
11	64

Revision 0.06	
2012-09-06	

■ Detail descriptions of register (continued)

• INTCTAB[15:0] (α motor step cycle setup)

P	Address 25h Ini		lni	tial Val	ue	0080h									
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D6 D5 D4		D3	D2	D1	D0
						I	NTCTA	AB[15:0)]						

• INTCTCD[15:0] (β motor step cycle setup)

P	Addres	s		2Ah		Ini	tial Va	lue		0080h					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
						I	NTCTO	CD[15:0)]						

INTCTAB[15:0] and INTCDCD[15:0] set the step cycle of α motor and β motor respectively. Since the step cycle is converted to 64-step inside, motor rotation speed becomes the same regardless of the number of divisions set by MICROxx[1:0].

Cotus value		Step cycle	
Setup value	64-step	128-step	256-step
0	0	0	0
1	444 ns	222 ns	111 ns
Max	29.1 ms	14.6 ms	7.3 ms
n	12n/27 MHz	6n/27 MHz	3n/27 MHz

If maximum duty is set to other than "0" at INTCTxx[15:0] = 0, the position is held in the state of excitation. If a motor can hold the position by cogging torque without motor current, the position is held even if the maximum duty is set to 0.

e. g.) If ITCTAB[15:0] = 400 is set, time of 1 step for 64-step is

 $12 \times 400 / 27 \text{ MHz} = 0.178 \text{ ms}$

Therefore, period of one sinusoidal wave cycle is 11.4 ms (87.9 Hz).

This is the same for 128-step and 256-step.

Revision 0.06	
 	
2012-09-06	

■ Detail descriptions of register (continued)

• FZTEST[4:0] (Test signal output setup)

P	Addres	s		21h		lni	tial Val	lue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
												FZ	TEST[4	l:0]	

FZTEST[4:0] makes a choice of the test signal which is output to PLS1 and PLS2 pins.

TESTEN1 (0Bh) and TESTEN2 (21h) should be set to "1" in order to enable the test signal.

Since the test signal used in our company is output, do not set other than the setups described in the following table.

Setup	Step	cycle	Description
value	PLS1	PLS2	Description
0	PLS1	PLS2	Pulse 1/2 normal function
1	Start point wait	0	"H" output during start point wait
2	Start point excitation wait A	Start point excitation wait B	"H" output during start point excitation wait
3	ENDISAB	ENDISCD	ENDISxx setting
4	CCWCWAB	CCWCWCD	CCWCWxx setting
5	Pulse output monitor A	Pulse output monitor B	During motor rotation, "H"/"L" changes at the speed of 64-step
6	PWM cycle monitor	0	PWM frequency signal for micro step
7	Pulse completion output A	Pulse completion output B	"H" output during motor rotation

Waveform for each test signal is described below.

Start point wait

	A soft of the Nister	AN41	908A
	Application Note	Total Pages	Page
Micro Stepping Motor Driver		70	30

■ Detail descriptions of register (continued)

Start point excitation wait

ENDISxx

CCWCWxx

Pulse output monitor

For 128-step and 256-step, "H"/"L" of PLS1/2 changes every 2 and 4 steps respectively.

■ Detail descriptions of register (continued)

Pulse completion output

• TESTEN1 (Test setting 1)

A	Addres	s		0Bh		Ini	tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
							Т	ESTEN	1						

• TESTEN2 (Test setting 2)

l A	Addres	s		21h		Ini	tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
							П	ESTEN	2						

By setting TESTEN1=TESTEN2=1, above PLS1(37pin) and PLS2(38pin) test signal output is available. Also, some settings can be used.

Revision 0.06	
2012-09-06	

	A soft of the Nister	AN41	908A
	Application Note	Total Pages	Page
Micro Stepping Motor Driver		70	32

■ PWM frequency setup

PWM frequency for OSCIN = 27 MHz is shown in below table.

DWAMAODE		PWMRES	
PWMMODE	0	1	2
1	3375.0	1687.5	843.8
2	1687.5	843.8	421.9
3	1125.0	562.5	281.3
4	843.8	421.9	210.9
5	675.0	337.5	168.8
6	562.5	281.3	140.6
7	482.1	241.1	120.5
8	421.9	210.9	105.5
9	375.0	187.5	93.8
10	337.5	168.8	84.4
11	306.8	153.4	76.7
12	281.3	140.6	70.3
13	259.6	129.8	64.9
14	241.1	120.5	60.3
15	225.0	112.5	56.3
16	210.9	105.5	52.7
17	198.5	99.3	49.6
18	187.5	93.8	46.9
19	177.6	88.8	44.4
20	168.8	84.4	42.2
21	160.7	80.4	40.2
22	153.4	76.7	38.4
23	146.7	73.4	36.7
24	140.6	70.3	35.2
25	135.0	67.5	33.8
26	129.8	64.9	32.5
27	125.0	62.5	31.3
28	120.5	60.3	30.1
29	116.4	58.2	29.1
30	112.5	56.3	28.1
31	108.9	54.4	27.2

(kHz)

■ PWM frequency setup and Maximum duty setup

The setups method example of PWM frequency and maximum duty are shown as follows.

• PWM frequency setup

PWM frequency is calculated by the following formula with PWMMODE[4:0] and PWMRES[1:0] as shown in page 20 of this book.

PWM frequency = OSC frequency / ((PWMMODE
$$\times 2^3$$
) $\times 2^{PWMRES}$)

PWM frequency corresponding to the each setup value of PWMMODE and PWMRES is shown in page 28 of this book. Note that there may be two kinds of combination of the setup value corresponding to PWM frequency. For example, there are two kinds of setup to realize that PWM frequency is 56.3 kHz.

$$PWMMODE = 30$$
, $PWMRES = 1$
 $PWMMODE = 15$, $PWMRES = 2$

In such a case, PWMMODE should be set so that it is a larger value as described hereinbelow.

Maximum duty setup

PWM output maximum duty is calculated by the following formula as shown in page 22 of this book.

$$Maximum\ duty = PPWx\ /\ (PWMMODE\times 8)$$

For example, when PWM frequency is set as follows,

PWMMODE = 30 , PWMRES = 1
$$\rightarrow$$
 PWM frequency = 56.3 kHz maximum duty becomes the following value by setting to PPWx = 200. 200 / (30 × 8) = 0.83

Since resolution of sine wave amplitude is determined by PPW setup, PWMMODE should be also set to as large a value as possible so that PPW becomes as large as possible.

Revision 0.06	
 	
2012-09-06	

■ Peak duty setup which exceeds 100%

PWM maximum duty at peak position of micro step current is determined by PWMMODE[4:0] and PPWx[7:0].

$$Maximum \ duty = PPWx \ / \ (PWMMODE \times 8)$$

Maximum duty may exceed 100% depending on the setup values of PWMMODE and PPWx.

Since the duty does not certainly exceed 100% at PWM operation in this case, the peak point of sine wave (current waveform) becomes flat as follows.

Example 1) When PWMMODE =
$$10$$
, PPWx = 96 ,

Maximum duty =
$$96 / (10 \times 8) = 120\%$$

The target current waveform is indicated as the following full line.

Example 2) When PWMMODE = 5, PPWx = 255,

Maximum duty =
$$255 / (5 \times 8) = 638\%$$

The target current waveform becomes close to 2-phase drive.

AN41908A	
Total Pages	Page
70	35

Micro Stepping Motor Driver

Micro step drive (64-step)

(1) Forward rotation

The direction of current which flows into OUTx2 pin from OUTx1 pin is defined as positive direction.

		AN41908A		
	Application Note	Total Pages	Page	
Reset / Protection Circuit		70	36	

Reset / Protection circuit

■ Block Diagram / Specifications

Stop direction (Enable \rightarrow Disable) is shown as above. The specifications are shown as follows.

	COMMON	HALL_AMP	FZ output	Iris output	LED
RSTB pin	Disable	Logic reset → Disable	Logic reset → Output OFF		OFF
Thermal shutdown (TSD)	×	×	Output OFF		
Under-voltage lock-out (UVLO)	×			OFF	

Note 1 ×: Don't care

Note 2 The protection circuit is for maintaining safety against abnormal operation. Therefore, the protection circuit should not work during normal operation.

Especially for the thermal protection circuit, if the area of safe operation or the absolute maximum rating is momentarily exceeded due to output pin to V_{CC} short (Power supply fault), or output pin to GND short (Ground fault), the LSI might be damaged before the thermal protection circuit could operate.

Revision 0.06	
2012-09-06	

AN41908A					
Total Pages Page					
70	37				

Reset / Protection Circuit

■Electrical Characteristics (Reference values for design) at AVDD5, MVCCx = 4.8 V, DVDD, AVDD3 = 3.1 V Notes) $T_a = 25$ °C±2°C unless otherwise specified.

The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, we will respond in good faith to user concerns.

NI-	Parameter	Symbol	Conditions	Reference values			l limit	
No.				Min	Тур	Max	Unit	
Therma	Thermal shutdown							
1	Thermal shutdown circuit Operating temperature	Ttsd	_	_	150	_	°C	
2	Thermal shutdown circuit Hysteresis width	DTtsd	_	_	40	_	°C	
Power	supply voltage monitor circuit							
3	3.3 V Reset operation	Vrston	_	_	2.27	_	V	
4	3.3 V Reset hysteresis width	Vrsthys	_	_	0.2	_	V	
5	MVCCx Reset operation	V _{rstFZon}	_	_	2.2	_	V	
6	MVCCx Reset hysteresis width	V _{rstFZhys}	_	_	0.2	_	V	
7	VDD5 Reset operation	V _{rstISon}	_		2.2	_	V	
8	VDD5 Reset hysteresis width	V _{rstIShys}	_	_	0.2	_	V	
Digital i	Digital input							
9	High-level input threshold voltage	V _{in(H)}	_		1.36	_	V	
10	Low-level input threshold voltage	V _{in(L)}	_		1.02	_	V	
11	Input hysteresis width	Vhysin	_	_	0.34	_	V	
12	Input pull-down resistance	R _{pullret}	_	_	100	_	kΩ	

	A 1' (' N1 (AN41908A		
	Application Note	Total Pages	Page	
Iris Control	· ·	70	38	

Iris control

■ Features

- PWM drive → Low power consumption
- Each filter can be set by serial input. → Low noise drive
- Build-in passive parts around a gain amplifier → Reduction of external parts
- Built-in 8-bit DAC for adjusting hall offset
- Built-in current DAC for adjusting hall bias

■ Block Diagram

AN41908A					
Total Pages Page					
70	39				

Iris Control

■Electrical Characteristics at AVDD5, MVCCx = 4.8 V, DVDD, AVDD3 = 3.1 V

Notes) $T_a = 25^{\circ}C\pm 2^{\circ}C$ unless otherwise specified.

Na	Darameter	Currente ed	Conditions		Unit				
No.	Parameter	Symbol	Symbol Conditions —		Тур	Max	Offic		
Motor driver (Iris)									
1	H bridge ON resistance	R _{onIR}	IM = 50 mA	_	_	5	Ω		
2	H bridge leak current	I _{leakIR}	_	_	_	0.8	mA		
OPAMP3 (Hall Sensor Amp. for output amplification)									
3	Input voltage range	V _{IN}	_	½ AVDD3 -0.5	½ AVDD3	½ AVDD3 + 0.5	V		
4	Input offset voltage	V _{OF}	_	- 15	_	15	mV		
5	Output voltage Low-level	V _{OL}	ILOAD = -100 mA	0	0.1	0.2	V		
6	Output voltage High-level	V _{OH}	ILOAD = 100 mA	AVDD3 - 0.2	AVDD3 - 0.1	AVDD3	V		
7	Gain	V _{OG}	Setup value of gain : 0h	20.8	21.9	23	V/V		
ОРА	MP4 (Hall Sensor Amp. for	eliminatir	ng common-mode voltage)	•					
8	Input voltage range	V _{IN}	_	½AVDD3 - 0.1	½ AVDD3	½AVDD3 + 0.1	V		
9	Input offset voltage	V _{OF}	_	- 10	_	10	mV		
10	Output voltage Low-level	V _{OL}	ILOAD = – 10 mA	0	0.1	0.2	V		
11	Output voltage High-level	V _{OH}	ILOAD = 3 mA	AVDD3 - 0.5	AVDD3 - 0.2	AVDD3	V		
Refe	rence voltage output block								
12	Output voltage 1	VREF	ILOAD = 0 A, CVREF = 100 pF	½ AVDD3 - 0.1	½ AVDD3	½ AVDD3 + 0.1	V		
13	Output voltage 2	VREFL	ILOAD = $\pm 100 \text{ mA}$, CVREF = 100 pF	VREF - 0.1	VREF	VREF + 0.1	V		
Hall bias control block (SENS pin output)									
14	Minimum output current	IBL	REF = $10 \text{ k}\Omega$, SENS = 0.7 V Setup value : 00 h	_	0	0.1	mA		
15	Output current precision 1	IB40H	REF = $10 \text{ k}\Omega$, SENS = 0.7 V Setup value : 40 h	0.91	1.02	1.13	mA		
16	Output current precision 2	IBBFH	REF = $10 \text{ k}\Omega$, SENS = 0.7 V Setup value : BE h	2.69	3.02	3.35	mA		

		AN41908A		
	Application Note	Total Pages	Page	
Iris Control	· ·	70	40	

■ Detail descriptions of register

• IRSTGT[9:0] (Iris desired value)

Address		00h		Initial Value			0								
D15	D14	D13	D12	D11	D10	D9 D8		D7	D6	D5	D4	D3	D2	D1	D0
						IRSTGT[9:0]									

IRSTGT[9:0] sets the desired value of ADC input for using in Iris control block.

Setup value	AD input desired value
0	AVDD3 × 0/1023
1	AVDD3 × 1/1023
1023	AVDD3 × 1023/1023
n	AVDD3 \times n/1023

	A 1' (' N1 (AN41	908A
	Application Note	Total Pages	Page
Iris Control		70	41

- Detail descriptions of register (continued)
- OVER_LPF_FC_1ST[1:0] (ADC feedback filter (1) cut-off frequency)

Address		01h			Initial Value				0						
D15	D14	D13	D12	D11	D10	D9	D9 D8 D7		D6	D5	D4	D3	D2	D1	D0
												70	ER_LP	F_FC_1	ST[1:0]

LPF(1) cut-off frequency in AD feedback block is set.

Lower cut-off frequency is more effective to remove noise from ADC.

Basically, use $OVER_LPF_FC_1ST[1:0] = 0$.

Setup value	Cut-off frequency
0	2 600 Hz
1	3 600 Hz
2	5 200 Hz
3	8 000 Hz

• OVER_LPF_FC_2ND[1:0] (ADC feedback filter (2) cut-off frequency)

Address		01h			Initial Value				0						
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
										OVE	R_LPF_	FC_2NI	D[1:0]		

LPF(2) cut-off frequency in AD feedback block is set.

Lower cut-off frequency is more effective to remove noise from ADC.

Basically, use OVER_LPF_FC_2ND[1:0] = 0.

Setup value	Cut-off frequency
0	2 600 Hz
1	3 600 Hz
2	5 200 Hz
3	8 000 Hz

	A 1' (' N. (AN41	908A
	Application Note	Total Pages	Page
Iris Control		70	42

• DEC_AVE (Moving average of iris target)

Address		01h		Initial Value				0							
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5 D4		D3	D2	D1	D0
										DEC_AV		Е			

Moving average of target value for Iris is set.

Iris target changes more smoothly with larger moving average.

Basically, use $DEC_AVE = 0$.

Setup value	Moving average
0	8
1	4

• AS_FLT_OFF (Filter before PID controller enable / disable)

,	Address		01h		Initial Value			0						
D15	D14	D13	D12	D12 D11 D10		D9	D8	D7	D6 D5 D4		D3	D2	D1	D0
								AS_FLT_OFF						

Whether filtering-function before PID controller is enabled or disabled is set.

When the function is enabled, LPF is inserted to the controller.

LPF removes noise that reaches PID controller, so basically set AS_FLT_OFF = 0.

If phase margin in closed-loop frequency characteristic is not enough, iris may have a ringing when iris target changes. In that case, setting $AS_FLT_OFF = 1$ will improve phase margin and may prevent ringing.

Setup value	Filter before PID
0	Enable
1	Disable

	A 1' (' N1 (AN41908A				
	Application Note	Total Pages	Page			
Iris Control		70	43			

• ASOUND_LPF_FC[2:0] (Filter cut-off frequency before PID controller)

1	Addres	s		01h		lni	tial Val	ue	0						
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
							ASOUND_LPF_FC[2:0]								

Filter cut-off frequency before PID controller is set.

Lower cut-off frequency is more effective to remove noise to PID controller.

Basically, use ASOUND_LPF_FC[2:0] = 0.

If phase margin in closed-loop frequency characteristic is not enough, iris may have a ringing when iris target changes. In that case, setting higher cut-off frequency will improve phase margin and may prevent ringing.

Setup value	Cut-off frequency
0	900 Hz
1	1 300 Hz
2	1 600 Hz
3	2 000 Hz
4	2 600 Hz
5	3 200 Hz
6	4 000 Hz
7	禁止

• DGAIN[6:0] (PID controller digital gain)

Address		01h			Initial Value			0							
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
DGAIN[6:0]															

Digital gain of PID controller is set. The setup gain is defined as the gain between AD input at 35 Hz and motor input under the conditions of PID zero point = 35 Hz , pole = 900 Hz , PWM frequency = 31.25 kHz. Refer to the next page for the details of setup value.

Setup value	Gain
00h	0
01h ~ 7Fh	$\{0.125 \times \{2^{(MSB 3 bit - 3'd3)}\} \times [16 + LSB 4 bit]\} + 3 dB$

	A 1' (' N1 (AN41908A				
	Application Note	Total Pages	Page			
Iris Control	• •	70	44			

■ Register bit epexegesis (Gain table)

	DGAIN[6:4]															
DGAIN[3:0]	000	000		001			011	011		100		101		110		
	Gain	dB	Gain	dB	Gain	dB	Gain	dB	Gain	dB	Gain	dB	Gain	dB	Gain	dB
0h	0	-	0.5	- 3.0	1	3.0	2	9.0	4	15.0	8	21.1	16	27.1	32	33.1
1h	0.265625	- 8.5	0.53125	- 2.5	1.0625	3.5	2.125	9.5	4.25	15.6	8.5	21.6	17	27.6	34	33.6
2h	0.28125	- 8.0	0.5625	- 2.0	1.125	4.0	2.25	10.0	4.5	16.1	9	22.1	18	28.1	36	34.1
3h	0.296875	- 7.5	0.59375	- 1.5	1.1875	4.5	2.375	10.5	4.75	16.5	9.5	22.6	19	28.6	38	34.6
4h	0.3125	- 7.1	0.625	- 1.1	1.25	4.9	2.5	11.0	5	17.0	10	23.0	20	29.0	40	35.0
5h	0.328125	- 6.7	0.65625	- 0.7	1.3125	5.4	2.625	11.4	5.25	17.4	10.5	23.4	21	29.4	42	35.5
6h	0.34375	- 6.3	0.6875	- 0.3	1.375	5.8	2.75	11.8	5.5	17.8	11	23.8	22	29.8	44	35.9
7h	0.359375	- 5.9	0.71875	0.1	1.4375	6.2	2.875	12.2	5.75	18.2	11.5	24.2	23	30.2	46	36.3
8h	0.375	- 5.5	0.75	0.5	1.5	6.5	3	12.5	6	18.6	12	24.6	24	30.6	48	36.6
9h	0.390625	- 5.2	0.78125	0.9	1.5625	6.9	3.125	12.9	6.25	18.9	12.5	24.9	25	31.0	50	37.0
Ah	0.40625	- 4.8	0.8125	1.2	1.625	7.2	3.25	13.2	6.5	19.3	13	25.3	26	31.3	52	37.3
Bh	0.421875	- 4.5	0.84375	1.5	1.6875	7.5	3.375	13.6	6.75	19.6	13.5	25.6	27	31.6	54	37.6
Ch	0.4375	- 4.2	0.875	1.8	1.75	7.9	3.5	13.9	7	19.9	14	25.9	28	31.9	56	38.0
Dh	0.453125	- 3.9	0.90625	2.1	1.8125	8.2	3.625	14.2	7.25	20.2	14.5	26.2	29	32.2	58	38.3
Eh	0.46875	- 3.6	0.9375	2.4	1.875	8.5	3.75	14.5	7.5	20.5	15	26.5	30	32.5	60	38.6
Fh	0.484375	- 3.3	0.96875	2.7	1.9375	8.7	3.875	14.8	7.75	20.8	15.5	26.8	31	32.8	62	38.8

Example) Gain for DGAIN[6:0] is 13.2 dB.

	A 1' (' N1 (AN41908A				
	Application Note	Total Pages	Page			
Iris Control		70	45			

- Detail descriptions of register (continued)
- IRIS_CALC_NR[3:0] (PID controller integral error cumulative prevention level)

-	Addres	S		02h		Ini	tial Val	lue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
												IRIS_CALC_NR[3		3:0]	

Error accumulation prevention level of PID controller integrator is set. When the function is enabled, error accumulation generated by integration in the PID controller can be decreased. However, the integral function may fall. Basically use $IRIS_CALC_NR[3:0] = 0$.

Setup value	Error accumulation prevention level
0	Disable
1 to 14	± 1/2 ⁽¹⁵⁻ⁿ⁾ LSB
15	± 1 LSB

• IRIS_ROUND[3:0] (PID controller differential error cumulative prevention level)

	Address	S		02h		Ini	tial Val	ue	0						
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
								IRIS_ROUND[3:0]							

Noise respondence prevention level of PID controller differentiator is set. When the function is enabled, the amplitude of noise generated by differentiation in the PID controller can be decreased. However, the differential function may fall.

Setup value	Error accumulation prevention level			
0	Disable			
1 to 14	± 1/2 ⁽¹⁵⁻ⁿ⁾ LSB			
15	± 1 LSB			

Figure on right shows the basic concept of above function.

When maximum value is set, input signal smaller than ± 1 LSB is ignored.

Revision 0.06	
2012-09-06	

	A P (AN41	908A
	Application Note	Total Pages	Page
Iris Control		70	46

- Detail descriptions of register (continued)
- PID_ZERO[3:0] (PID controller zero point)

<i>A</i>	Address 02h			Initial Value			0								
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
				F	PID_ZERO[3:0]										

Zero point of PID controller is set.

• PID_POLE[3:0] (PID controller pole)

,	Addres	s		02h		Ini	tial Val	lue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
PID_POLE[3:0]															

Pole of PID controller is set.

Setup value	Zero point		
0	10 Hz / 10 Hz		
1	15 Hz / 15 Hz		
2	20 Hz / 20 Hz		
3	25 Hz / 25 Hz		
4	30 Hz / 30 Hz		
5	35 Hz / 30 Hz		
6	35 Hz / 35 Hz		
7	40 Hz / 35 Hz		
8	40 Hz / 40 Hz		
9	45 Hz / 45 Hz		
10	50 Hz / 50 Hz		
11	55 Hz / 55 Hz		
12	60 Hz / 60 Hz		
13	65 Hz / 65 Hz		
14	70 Hz / 70 Hz		
15	75 Hz / 75 Hz		

Setup value	Pole
0	710 Hz
1	790 Hz
2	870 Hz
3	950 Hz
4	1 040 Hz
5	1 120 Hz
6	1 200 Hz
7	1 280 Hz
8	1 370 Hz
9	1 450 Hz
10	1 530 Hz
11	1 620 Hz
12	1 700 Hz
13	1 790 Hz
14	1 870 Hz
15	1 960 Hz

Revision 0.06	
2012-09-06	

	A 1' 4' N. 4	AN41908A			
	Application Note	Total Pages	Page		
Iris Control		70	47		

• ARW[3:0]

A	Addres	s		03h		Initial Value		ue	0						
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
													ARW	7[3:0]	

Number of bits in PID integrator is set. It affects the recovery time from saturation in the PID integrator.

Setup value	Number of bits in integrator
0 to 3	12-bit
4 to 14	(15 – setup value)-bit
15	1-bit

• LMT_ENB

<i>F</i>	Addres	s		03h		Initial Value		ue	0						
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
										L	MT_EN	В			

Integral stop function in PID output is enabled / disabled. It affects the recovery time from saturation in the PID output.

Setup value	Integral stop function
0	Disable
1	Enable

	A 1' 4' N1 4	AN41	908A
	Application Note	Total Pages	Page
Iris Control		70	48

The characteristic of PID controller, and the effect of changing PID_ZERO[3:0] and PID_POLE[3:0] is shown below (Bode diagram).

G_D: DGAIN[6:0] F_Z: PID_ZERO[3:0] F_P: PID_POLE[3:0]

Revision 0.06	
2012-09-06	

AN41908A							
Total Pages	Page						
70	49						

■ Detail descriptions of register (continued)

When DGAIN[6:0] is increased, phase margin around 10 to 300 Hz becomes smaller.

Above is a conceptual diagram

When ZERO[3:0] is increased, phase margin around 10 to 300 Hz becomes smaller.

To ensure phase margin by adjusting ZERO[3:0], usage of FRA (Frequency Response Analyzer) is required.

Above is a conceptual diagram

	A 1' (' N1 (AN41	908A
	Application Note	Total Pages	Page
Iris Control		70	50

• PWM_FLT_OFF

A	Addres	s		03h		Initial Value		0							
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
									PW	M_FLT	_OFF				

Whether filtering function after PID controller is enabled or disabled is set. When the function is enabled, LPF is inserted to the controller.

LPF removes noise coming out from PID controller, so basically set PWM_FLT_OFF = 0.

If phase margin in closed-loop frequency characteristic is not enough, iris may have a ringing when iris target changes. In that case, setting PWM_FLT_OFF = 1 will improve phase margin and may prevent ringing.

Setup value	Filter after PID
0	Enable
1	Disable

• PWM_LPF_FC[2:0]

	Addres	s		03h		Ini	tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
							PWM_	_LPF_F	C[2:0]						

Cut-off frequency after PID controller is set.

Lower cut-off frequency is more effective to remove noise to PID controller.

Basically, use $PWM_LPF_FC[2:0] = 0$.

If phase margin in closed-loop frequency characteristic is not enough, iris may have a ringing when iris target changes. In that case, setting higher cut-off frequency will improve phase margin and may prevent ringing.

Setup value	Cut-off frequency (Hz)
0	900
1	1 300
2	1 600
3	2 000
4	2 600
5	3 200
6	4 000
7	Prohibition

	A 1' (' N1 (AN41	908A
	Application Note	Total Pages	Page
Iris Control	• •	70	51

• PWM_IRIS[2:0]

<i>F</i>	Addres	s		03h	3h Ini		tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
				PWN	PWM_IRIS[2:0]										

PWM frequency of Iris block is set.

Setup value	PWM frequency (kHz)					
0	26					
1	31.25					
2	62.5					
3	93.75					
4	125					
5	150					
6	187.5					
7	210					

• DT_ADJ_IRIS[1:0]

<i>-</i>	Addres	s		03h		Ini	Initial Value		0						
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
		DT_Al	DJ_IRIS	[1:0]											

Dead time correction amount of Iris block is set.

Setup value	Dead time correction amount
0	Standard correction
1	Standard correction – 1
2	Standard correction – 2
3	No correction

Application Note Application Note AN41908A Total Pages Page 70 52

■ Detail descriptions of register (continued)

• TGT_LPF_FC[1:0]

<i>A</i>	Addres	s		05h		Ini	tial Val	ue	0						
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
												TC	T_LPF	F_FC[3	:0]

Cut-off frequency of input filter of instruction value for Iris is set.

Lower cut-off frequency makes iris target to change more smoothly, and cuts down acoustic noise.

Especially when cut-off frequency is lower than VD frequency, almost no step change appears. But iris target change may slightly delay.

Setup value	Cut-off frequency
0	325 Hz
1	650 Hz
2	1 300 Hz
3	2 600 Hz
4	40 Hz
5	50 Hz
6	63 Hz

Setup value	Cut-off frequency
7	80 Hz
8	100 Hz
9	125 Hz
10	160 Hz
11	200 Hz
12	250 Hz
-	-

• TGT_FLT_OFF

A	Address		05h			Initial Value			0						
D15	D14	D13	D12 D11 D10		D9	D8	D7	D6 D5 D4		D3	D2	D1	D0		
										TC	T_FLT	OFF			

Whether filtering-function of instruction value for Iris is enabled or disabled is set.

When the function is enabled, LPF is inserted to between instruction value input and deviation calculator.

Setup value	Iris target filter
0	Enable
1	Disable

	A 1' (' N1 (AN41908A				
	Application Note	Total Pages	Page			
Iris Control		70	53			

• PID_INV

Address		05h			Initial Value			0							
D15	D14	D13	D12 D11 D10		D9	D8	D7	D6 D5 D4		D4	D3	D2	D1	D0	
										PID_INV					

PID control polarity is inverted.

Setup value	PID control polarity
0	Non-inverting
1	Inverting

	A 1' (' N. (AN41	908A
	Application Note	Total Pages	Page
Iris Control		70	54

• START1[7:0] (Pulse 1 start position)

Address		06h			Initial Value			0							
D15	D14	D13	D12	D11	D10	D9 D8 D7		D6	D5	D4	D3	D2	D1	D0	
						START1[9:0]									

• WIDTH1[9:0] (Pulse 1 width)

Address		07h			Initial Value			0							
D15	D14	D13	D12	D11 D10		D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
					WIDTH1[11:0]										

• P1EN (Pulse 1 output)

Address		07h			Initial Value			0							
D15	D14	D13	D12 D11 D10		D9	D8	D7	D6 D5 D4		D4	D3	D2	D1	D0	
P1EN															

Refer to the next page for the details of function.

	A 1' 4' N. 4	AN41	908A
	Application Note	Total Pages	Page
Iris Control		70	55

START1[7:0], WIDTH1[9:0], and P1EN set the pulse output (pulse 1) for strobe.

START1[7:0] sets the start time of pulse 1. The count of start time starts from the rising edge of video sync signal (VD_IS), and continues until the setup time.

WIDTH1[9:0] sets the width of pulse 1. The count of pulse width starts in synchronization with the end of count of start time, and continues until the setup time.

P1EN controls the output of pulse 1.

When any of START1[7:0], WIDTH1[9:0], and P1EN is "0", pulse 1 is not output.

START1	Start time
0	0
1	20.1 μs
n	$n \times (68/3.375) \mu s$
1023	20.56 ms

WIDTH1	Pulse width
0	0
1	1.19 μs
n	$n \times (4/3.375) \mu s$
4095	4.87 ms

	A 1' (' N1 (AN41	908A
	Application Note	Total Pages	Page
Iris Control		70	56

• START2[8:0] (Pulse 2 start position)

	Addres	s		08h		Initial Value		0							
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
										STAR	Γ2[9:0]				

• WIDTH2[5:0] (Pulse 2 width)

-	Addres	s		09h		Initial Value		0							
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
												WIDTI	H2[5:0]		

• P2EN (Pulse 2 output)

A	Addres	s		09h		Ini	tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
P2EN															

Refer to the next page for the details of functions.

	Application Note	AN41908A		
	Application Note	Total Pages	Page	
Iris Control		70	57	

START2[8:0], WIDTH2[5:0], and P2EN set the pulse output (pulse 2) for Iris full-close.

START2[8:0] sets the start time of pulse 2. The count of start time starts from the rising edge of video sync signal (VD_IS), and continues until the setup time.

WIDTH2[5:0] sets the width of pulse 2. The setup is performed at the number of times of rising after the end of count of start time. After the specified number of times of rising edge of VD_IS is counted, the output of pulse 2 ends at the falling edge of VD_IS.

P2EN controls the output of pulse 2.

When any of START2[8:0], WIDTH2[5:0], and P2EN is "0", pulse 2 is output. Moreover, the setup value is not updated under the count of START2 or WIDTH2.

The above pulse width is under the condition of WIDTH2[5:0] = 4

START2	Start time
0	0
1	20.1 μs
n	n × (68/3.375) μs
1023	20.56 ms

WIDTH2	Pulse width
0	0
1	VD_IS 1 count
63	VD_IS 63 count
n	VD_IS n count

Revision 0.06	
2012-09-06	

	Application Note	AN41908A				
		Total Pages	Page			
Iris Control		70	58			

• TGT_IN_TEST[9:0] (Iris output duty direct specified value)

	Address	S		0Ah		Initial Value		lue	ne 0						
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
						TGT_IN_TEST[9:0]									

Drive duty of Iris output block can be directly controlled. DUTY_TEST should be set to "1" in order to enable this function.

TGT_IN_TEST[9] sets the rotation direction of Iris output block. TGT_IN_TEST[8:0] sets the drive duty of Iris output block.

• Method for calculating drive duty

Drive duty depends on the setup value of PWM_IRIS[2:0].

a is calculated by a = { $TGT_IN_TEST[8:1]$, 2'b00, $TGT_IN_TEST[0]$ } (binary 10-bit).

b corresponding to PWM_IRIS[2:0] is selected from the following table.

The drive duty is given by calculating a/b. When a/b > 1, the drive duty is 100%.

Example) When $TGT_IN_TEST[8:0] = 80h$, $PWM_IRIS[2:0] = 2$,

$$a = \{ 40h, 2'b00, 1'b0 \} = 200h$$

$$a/b = 200h / 862 = 0.59$$

TGT_IN_TEST[9]	Drive direction
0	Current direction OUTE2 → OUTE1
1	Current direction OUTE1 → OUTE2

TGT_IN_TEST[8:0]	Drive duty
000h	0%
1FFh	100%
n	a/b

PWM_IRIS[2:0]	b
0	2 046
1	1 726
2	862
3	574
4	430
5	350
6	286
7	254

Revision 0.06	
2012-09-06	

	Application Note	AN41908A				
		Total Pages	Page			
Iris Control		70	59			

- Detail descriptions of register (continued)
- DUTY_TEST (Iris output duty direct specification enable)

P	Addres	s		0Ah		lni	tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
				DU	JTY_TE	EST									

Whether duty direct control function in Iris output block is enabled or disabled is set.

When DUTY_TEST = 1 is set, PWM output will drive with the duty specified by TGT_IN_TEST[9:0].

Setup value	Function
0	Disable (Normal operation)
1	Enable

AN41908A							
Total Pages Page							
70	60						

- Detail descriptions of register (continued)
- TGT_UPDATE[7:0] (IRS_TGT (iris target) update delay time)

,	Addres	s		0Eh		Ini	tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
										TG	T_UPI	DATE[7	7:0]		

TGT_UPDATE[7:0] adjusts the update timing of IRS_TGT[9:0].

IRS_TGT[9:0] is updated after the delay time in the below table from rising edge of VD_IS.

Update delay
0
80 μs
$n \times (270/3.375) \mu s$
20.4 ms

A	aa	lica	tion	Ν	ote
, ,	\sim				

AN41	908A									
Total Pages Page										
70	61									

- Detail descriptions of register (continued)
- AVE_SPEED[4:0] (Iris target moving average speed)

A	Address		0Eh			Initial Value			0						
D15	D14	D13	D12	D11	D10	D10 D9 D8		D7	D6	D5	D4	D3	D2	D1	D0
			AVE_SPEED[4:0]												

AVE_SPEED[4:0] sets the moving average shift time for iris target.

Setup value	Moving ave. shift time
0	2 μs
1	152 μs
n	$(n \times 512+1)/3.375 \ \mu s$
31	4.703 ms

Example)

How to set $AVE_SPEED[4:0]$ so that iris update time is exactly the same as VD period ($DEC_AVE = 0$, 8 times average):

If VD = 60 Hz, time required for 1 shift is

$$1/(60 \text{ Hz}) / 8 = 2.08 \text{ ms}$$

From the table, shift time will be 2.12 ms when AVE_SPEED[4:0] is set.

Since $DEC_AVE = 0$ (8 times average) is set, iris target change will complete in 17.0 ms.

	A L' (L' N. l	AN41	908A
	Application Note	Total Pages	Page
Iris Control Hall Sensor		70	62

Iris Control Hall Sensor

■ Block Diagram

Application Note Application Note AN41908A Total Pages Page 70 63

■ Detail descriptions of register

• HALL_BIAS_DAC[7:0]

<i>A</i>	Addres	s		04h		Ini	tial Val	ue		0			D3 D2 D1 DAC[7:0]		
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
										HAL	L_BIA	S_DAC	[7:0]		

Drive current value for hall element is set. The value depends on an external resistance of REF pin. SENS pin current is calculated by the following formula.

 $I_{SENS} = REF pin voltage / R_{REF} \times (Setup value / 8)$

Variation: $\pm 11\%$, REF pin voltage = 1.26 V (Typ.)

• HALL_OFFSET_DAC[7:0]

/	Address		04h			Ini	tial Val	ue	0						
D15	15 D14 D13 D12 D11 D10 D9 D8		D7	D6	D5	D4	D3	D2	D1	D0					
	HALL_OFFSET_DAC[7:0]														

Offset value for hall output Amp. is set.

Setup value	Amount of offset
0 to 255	AVDD3 / $256 \times (\text{Setup value} - 128)$

The methods for adjusting bias current and offset is shown as follows.

- 1. Bias current of hall element is set.
- 2. Once the amount of offset adjustment is set to zero (setup value : 80h). OP3OUT pin output (feedback to 10-bit ADC) is adjusted.
 - a) Hall gain (HALL_GAIN[3:0]) is adjusted so that OP3OUT pin output range between Iris full open and full close nears the target range. (Rough-adjustment)

Example : When the target is DVDD = 3.0~V , full open = 0.2~V, full close = 2.8~V, hall gain (HALL_GAIN[3:0]) is adjusted so OP3OUT pin output range nears 2.8~V - 0.2~V = 2.6~V.

- b) Bias current is adjusted so that the output range agrees with the target range. (Fine adjustment)
- c) Offset is adjusted so that OP3OUT pin output range agrees with the target range.

There is no problem even if either of b and c is performed previously.

Revision 0.06	
2012-09-06	

Application Note Application Note AN41908A Total Pages Page 70 64

■ Detail descriptions of register (continued)

• HALL_GAIN[3:0]

l A	Addres	s		05h		lni	Initial Valu		0						
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
				H	HALL_GAIN[3:0]										

Gain of hall output Amp. is set.

Setup value	Gain	Setup value	Gain		
0	21.9	8	58.0		
1	26.4	9	62.6		
2	31.0	10	67.1		
3	35.5	11	71.7		
4	40.1	12	76.3		
5	44.6	13	80.8		
6	49.2	14	85.4		
7	53.7	15	89.9		

• AAF_FC

,	Address		05h		Initial Value			0							
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
			AAF_F	C											

Cut-off frequency of hall output Amp. is set.

Setup value	Cut-off frequency (kHz)
0	6.85
1	20.0

(Hall amp. gain: min.)

AN41908A								
Total Pages	Page							
70	65							

■ Detail descriptions of register (continued)

• PDWNB

P	Addres	s		0Bh		Initial Value		0							
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
					PDWNI	3									

PDWNB sets disable / enable of iris control circuit.

Setup Vale	Iris control
0	Disable
1	Enable

• ASWMODE[1:0]

A	Addres	s		0Bh	0Bh Initial Value		0								
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
										A	SWMO	DE[1:0]			

ASWMODE[1:0] sets test mode for iris ADC.

Setup value	Iris ADC mode						
0	Normal mode						
1	Normal mode						
2	Iris test mode						
3	-						

By setting ASWMODE[1:0]=2, open loop frequency response of iris can be measured. Refer to next page for detail.

• ADC_TEST

A	Addres	s		0Bh		Ini	tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
			A	DC_TE	ST										

ADC_TEST is used for iris ADC functional test.

Do not set $ADC_TEST = 1$.

Setup value	Function
0	Normal operation
1	Iris ADC functional test

Revision 0.06	
2012-09-06	

AN41908A								
Total Pages	Page							
70	66							

■ Method for measuring open loop frequency response

FRA: Frequency Response Analyzer

- 1) Set ASWMODE[1:0]=2.
- 2) Connect FRA (frequency response analyzer) between OP3OUT and ADTESTIN.
- 3) Set parameters for PID controller.
- 4) Open loop frequency from ADTESTIN to OP3OUT can be measured.

Revision 0.06	
2012-09-06	

AN41908A									
Total Pages	Page								
70	67								

- Detail descriptions of register (continued)
- PID_CLIP[3:0]

	Addres	s		0Bh		lni	tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	Address D15 D14 D13 D1 PID_CLIP[3:0]]												

PID_CLIP[3:0] sets maximum duty of iris PWM driver.

Setup value	Maximum duty
0	100%
1	93.75%
n	(100 - n × 6.25)%
15	6.25%

Revision 0.06	
2012-09-06	

A	aa	lica	tion	Ν	ote
, ,	\sim				

AN41908A Total Pages Page									
Total Pages	Page								
70	68								

• IRSAD[9:0]

-	Address		0Ch			Initial Value			0						
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
						IRSAD[9:0]									

IRSAD[9:0] is a read-only register to retrieve iris ADC output.

Access this register only when VD_IS is low.

(AN41908A updates the data at VD_IS = "H". If IRSAD[9:0] is accessed during VD_IS = "H", the read data may be incorrect.)

Iris ADC output: data is fixed at the falling edge of VD_IS.

Revision 0.06	
2012-09-06	

	A 1' 4' A1 4	AN41	908A
	Application Note	Total Pages	Page
LED Driver		70	69

LED Driver

■Electrical Characteristics at AVDD5, MVCCx = 4.8 V, DVDD, AVDD3 = 3.1 V Notes) $T_a = 25$ °C±2 °C unless otherwise specified.

No.	Parameter	Symbol	Conditions		Limits		Unit
INO.	Faiailletei	Symbol	Conditions	Min	Тур	Max	Ullit
LED (Iriver						
1	Output ON resistancs	R _{onLED}	I = 20 mA, 5 V sell	_	_	15	Ω
2	H bridge leak current	I _{leakLED}	_	_	_	0.8	μΑ

■ Detail descriptions of register

LED can be controlled ON/OFF by the following registers.

• LEDA (LED A setup)

<i>A</i>	Addres	S		29h		Ini	tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
				LEDA											

• LEDB (LED B setup)

P	Addres	s		24h		Ini	tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
				LEDB											

LEDA and LEDB set the output of LED A and LED B respectively.

Setup value	LED output
0	OFF
1	ON

Revision 0.06
2012-09-06

	A sull sull sur Nilster	AN41	908A
	Application Note	Total Pages	Page
Technical Data		70	70

1. Start / Stop sequence

The Start / Stop sequence of power supply, RSTB, and OSCIN is shown as follows.

2. Input capacitance of input pin

Input capacitance of input pin is 10 pF or less.

3. Timing of OSCIN and VD signal

Since the processing which VD signal (VD_FX or VD_IS input) is synchronized with OSCIN is performed in this IC, OSCIN and VD signal do not have restrictions of input timing.

4. Power down mode

When PDWNB = 0 is set by serial, power down mode is set.

The analog circuit of Iris drive system is stopped in power down mode. (The operation of micro step driver dose not be affected.)

When only micro step driver is used, set PDWNB to "0" in order to reduce current consumption.

When using in power down mode at PDWNB = 0, the processing of pins of Iris drive system is shown as follows.

Pin	Processing
Input pin described in page 7, 8 of product standards	Connected to GND
Output pin described in page 7, 8 of product standards	Open
CREFIN (49)	Open
REF (57)	Open

Revision 0.06	
 	
2012-09-06	

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation, Nuvoton Technology Corporation Japan or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information de-scribed in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book.
 - Please consult with our sales staff in advance for information on the following applications, moreover please exchange documents separately on terms of use etc.: Special applications (such as for in-vehicle equipment, airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, medical equipment and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Unless exchanging documents on terms of use etc. in advance, it is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most upto-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
 Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. We do not guarantee quality for disassembled products or the product re-mounted after removing from the mounting board. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) When reselling products described in this book to other companies without our permission and receiving any claim of request from the resale destination, please understand that customers will bear the burden.
- (8) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.