Kugel

Mathematics Formular

Code

Two Dimensional

Erste Stufe

$$x = r * cos(\theta)$$

 $y = r * sin(\theta)$

http://mathworld.wolfram.com/PolarCoordinates.html

Cartesian Coordinates

- $x = r * cos \theta$
- $y = r * \sin \theta$
- θ : degree ofRandom(θ)
- r:radius

- vector<ofVec2f> point2D;
- point2dSetting();
 - float <u>theta</u> = ofRandom(0, TWO_PI);
 - float _radius = 100;
 - float _x = cos(_theta) / _radius;
 - float _y = sin(_theta) * _radius;
 - ofVec2f _point2D_temp = ofVec2f(_x, _y);
 - point2D.push_back(_point2D_temp);

oder

- float _rad = ofRandom(0, TWO_PI);
- float _radius = 100;
- point2D.push_back(ofVec2f(cos(_rad) * _radius, sin(_rad) * _radius)));

Erste Stufe

3 Dimensional

Zweite Stufe

SphericalCoordinates

http://mathworld.wolfram.com/SphericalCoordinates.html

Cartesian Coordinates

- $x = r * cos \theta * sin \Phi$
- $y = r * sin \theta * sin \Phi$
- $z = r * cos \Phi$

- vector<ofVec2f> point3D;
- point3DSetting();
 - float <u>theta</u> = ofRandom(0, TWO_PI);
 - float _pi = ofRandom(0, PI);
 - float **_radius** = 200;
 - float _x = cos(_theta) * sin(_pi) * _radius;
 - float _y = sin(_theta) * sin(_pi) * _radius;
 - float _z = sin(_pi) * _radius;
 - ofVec3f _point3D_temp = ofVec3f(_x, _y, _z);
 - point3D.push_back(_point3D_temp);

Zweite Stufe