Credit card Dataset for clustering

In this notebook, I am trying Log Transformation + Kernel PCA as preprocessing for all clustering algorithms and here I have chosen number of commponents = 10 in Kernel PCA so the results of clustering was different from the approach of not selecting the components

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('CC GENERAL.csv')
```

EDA

df1=df
df1.head(10)

	CUST_ID	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PL
0	C10001	40.900749	0.818182	95.40	0.00	
1	C10002	3202.467416	0.909091	0.00	0.00	
2	C10003	2495.148862	1.000000	773.17	773.17	
3	C10004	1666.670542	0.636364	1499.00	1499.00	
4	C10005	817.714335	1.000000	16.00	16.00	
5	C10006	1809.828751	1.000000	1333.28	0.00	
6	C10007	627.260806	1.000000	7091.01	6402.63	
7	C10008	1823.652743	1.000000	436.20	0.00	
8	C10009	1014.926473	1.000000	861.49	661.49	
9	C10010	152.225975	0.545455	1281.60	1281.60	
0						
4						•

df1.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8950 entries, 0 to 8949
Data columns (total 18 columns):
```

#	Column	Non-Null Count	Dtype
0	CUST_ID	8950 non-null	object
1	BALANCE	8950 non-null	float64
2	BALANCE_FREQUENCY	8950 non-null	float64
3	PURCHASES	8950 non-null	float64
4	ONEOFF_PURCHASES	8950 non-null	float64
5	INSTALLMENTS_PURCHASES	8950 non-null	float64
6	CASH_ADVANCE	8950 non-null	float64
7	PURCHASES_FREQUENCY	8950 non-null	float64
8	ONEOFF_PURCHASES_FREQUENCY	8950 non-null	float64
9	PURCHASES_INSTALLMENTS_FREQUENCY	8950 non-null	float64
10	CASH_ADVANCE_FREQUENCY	8950 non-null	float64
11	CASH_ADVANCE_TRX	8950 non-null	int64
12	PURCHASES_TRX	8950 non-null	int64
13	CREDIT_LIMIT	8949 non-null	float64
14	PAYMENTS	8950 non-null	float64
15	MINIMUM_PAYMENTS	8637 non-null	float64
16	PRC_FULL_PAYMENT	8950 non-null	float64
17	TENURE	8950 non-null	int64
		- \	

dtypes: float64(14), int64(3), object(1)

memory usage: 1.2+ MB

```
#Drop null values and drop cust_id column
df1.dropna(inplace=True)
df1.drop('CUST_ID', axis=1, inplace=True)
```

#Check number of null values
df1.isna().sum()

BALANCE	0
BALANCE_FREQUENCY	0
PURCHASES	0
ONEOFF_PURCHASES	0
INSTALLMENTS_PURCHASES	0
CASH_ADVANCE	0
PURCHASES_FREQUENCY	0
ONEOFF_PURCHASES_FREQUENCY	0
PURCHASES_INSTALLMENTS_FREQUENCY	0
CASH_ADVANCE_FREQUENCY	0
CASH_ADVANCE_TRX	0
PURCHASES_TRX	0
CREDIT_LIMIT	0
PAYMENTS	0
MINIMUM_PAYMENTS	0
PRC_FULL_PAYMENT	0
TENURE	0
dtype: int64	

Now we'll see how each column in the dataframe is distributed.

```
plt.figure(figsize=(20,35))
for i, col in enumerate(df1.columns):
   if df1[col].dtype!='object':
      ax = plt.subplot(9, 2, i+1)
      sns.kdeplot(df1[col], ax=ax)
      plt.xlabel(col)
```


df1.describe()

	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PUR
count	8636.000000	8636.000000	8636.000000	8636.000000	8636.
mean	1601.224893	0.895035	1025.433874	604.901438	420.
std	2095.571300	0.207697	2167.107984	1684.307803	917.
min	0.000000	0.000000	0.000000	0.000000	0.
25%	148.095189	0.909091	43.367500	0.000000	0.
50%	916.855459	1.000000	375.405000	44.995000	94.
75%	2105.195853	1.000000	1145.980000	599.100000	484.
max	19043.138560	1.000000	49039.570000	40761.250000	22500.

sns.heatmap(df1.corr(), annot=True)

plt.show()

Log Transformation to deal with skewness in dataset

```
for col in df1.columns:
    df1[col] = np.log(1 + df1[col])

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(df1)
```

KERNEL PCA:

PCA is a linear method. That is it can only be applied to datasets which are linearly separable. It does an excellent job for datasets, which are linearly separable. But, if we use it to non-linear datasets, we might get a result which may not be the optimal dimensionality reduction. Kernel PCA

uses a kernel function to project dataset into a higher dimensional feature space, where it is linearly separable. It is similar to the idea of Support Vector Machines.

```
from sklearn.decomposition import KernelPCA
kpca = KernelPCA(n_components = 10, kernel = 'rbf')
Res_kpca = kpca.fit_transform(df1)
df_PCA = pd.DataFrame(Res_kpca)
df_PCA.head(10)
```

	0	1	2	3	4	5	6	7	
0	-0.316655	0.518660	0.085757	0.035720	-0.015652	-0.012605	-0.353939	0.060512	0.0
1	0.569986	0.071253	0.111611	0.004157	-0.027734	0.586436	-0.003635	0.008141	0.0
2	-0.102019	-0.177922	-0.303104	0.504025	-0.085828	0.016659	0.026615	0.083910	-0.
3	-0.044340	-0.042467	-0.205327	0.217165	-0.012058	-0.072369	0.016535	0.046219	0.0
4	-0.186224	0.187854	0.009408	-0.041324	0.023448	0.000349	0.579882	0.073158	-0.0
5	-0.181012	-0.397703	0.272450	-0.102479	0.057468	-0.007480	-0.114004	0.428021	-0.
6	-0.268727	0.331246	0.071467	-0.028587	0.016550	-0.001523	0.640642	0.048052	-0.
7	-0.270377	-0.460093	0.328936	0.082712	-0.018538	0.004373	0.030306	-0.187372	0.0
8	-0.104386	-0.175720	-0.327202	0.577536	-0.136997	0.021489	-0.010554	0.035044	-0.0
9	-0.215729	0.240570	0.031458	-0.039280	0.021769	0.000437	0.616565	0.066846	-0.
4									•

Use TSNE Algorithm for embedding (Moving from 4-dim space to 2-dim space)

/usr/local/lib/python3.7/dist-packages/sklearn/manifold/_t_sne.py:793: FutureWarning: The FutureWarning,

	0	1
0	-59.407619	66.873520
1	10.531981	-74.045578
2	-25.901361	21.385733
3	-22.532774	1.789568
4	2.054819	82.750305
8631	-8.750680	-22.030550

KMeansClustering Algorithm

```
8634 -43.100754 -27.655609
from sklearn.metrics import silhouette_score
from sklearn.cluster import KMeans
import numpy as np
range_n_cluster = list(range(2,15))
silhoutte_score = []
best cluster model = None
for n clusters in range n cluster:
   cluster_model = KMeans(n_clusters=n_clusters, random_state=42)
   cluster_labels = cluster_model.fit(df_PCA).labels_
   silhouette_avg = silhouette_score(df_PCA, cluster_labels)
   silhoutte score += [silhouette avg]
   if silhouette_avg >= np.max(silhoutte_score):
        best cluster model = cluster model
plt.plot(range_n_cluster, silhoutte_score)
plt.axvline(best_cluster_model.n_clusters, color='black')
```


AgglomerativeClustering

Choose number of clusters that give the best silhouette_score

plt.axvline(best_cluster_model.n_clusters, color='black')

```
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import silhouette_score
import numpy as np
range_n_cluster = list(range(2,15))
silhoutte_score = []
best_cluster_model = None

for n_clusters in range_n_cluster:
    cluster_model = AgglomerativeClustering(n_clusters=n_clusters, linkage='ward')
    cluster_labels = cluster_model.fit_predict(df_PCA)

    silhouette_avg = silhouette_score(df_PCA, cluster_labels)
    silhoutte_score += [silhouette_avg]

if silhouette_avg >= np.max(silhoutte_score):
    best_cluster_model = cluster_model

plt.plot(range_n_cluster, silhoutte_score)
```


- DBSCAN

- Expectation-Maximization (EM) Algorithm

```
from sklearn import preprocessing
scaler = preprocessing.StandardScaler()
scaled data = scaler.fit transform(df PCA)
xs = pd.DataFrame(scaled data, columns = df PCA.columns)
from sklearn.mixture import GaussianMixture
from sklearn.metrics import silhouette score
import numpy as np
range_n_cluster = list(range(2,15))
silhoutte_score = []
best cluster model = None
for n_clusters in range_n_cluster:
   cluster model = GaussianMixture(n components = n clusters)
   cluster_labels = cluster_model.fit_predict(xs)
   silhouette_avg = silhouette_score(xs, cluster_labels)
   silhoutte_score += [silhouette_avg]
   if silhouette_avg >= np.max(silhoutte_score):
        best_cluster_model = cluster_model
        labels = cluster_labels
plt.plot(range_n_cluster, silhoutte_score)
plt.axvline(best cluster model.n components, color='black')
```

<matplotlib.lines.Line2D at 0x7f5e697d9a50>

Isolated Random Forest

