Midterm 3 Content

Textbook Section	Concept
6.1	Inner Product, Length, Orthogonality
6.2	Orthogonal Sets
6.3	Orthogonal Projections
6.4	Gram-Schmidt
4.4	Coordinate Systems
4.5	Dimensions of Vector Spaces
5.1	Eigenvectors and Eigenvalues
5.2	Characteristic Polynomials
5.3	Diagonalization

Bases for Polynomials

Let P_3 be the set of polynomials of degree 3 or less. Explain which of the following are bases for this set.

a)
$$\{ (1+x), (x^2-x-1), x^3 \}$$

b)
$$\{3, (5+x^3)\}$$

c)
$$\{x^2 + 9x + 3, 5x, 6x^3, 12x + 3x^2, 20\}$$

d)
$$\{6x, 5x, 20x^2, 30x^3\}$$

e) {
$$29, x^2 + 1, x - 4, 20x^3$$
 }

Coordinate Systems

Find the coordinates of $\begin{bmatrix} -2\\1\\2\\-20 \end{bmatrix}$ in the basis given by the previous question.

Eigenvectors and Eigenvalues

Let A be given by the matrix

$$A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 1 & 1 \end{bmatrix}$$

a) What is the characteristic polynomial of A?

Def. (Basis). A subset $\beta \subseteq H$ is a basis for H if the following hold:

1. β is linearly independent (has no redundant information)

2. $\operatorname{span}(\beta) = H$ (has sufficient information)

Thm. (Basis Theorem). Suppose V is a p dimensional vector space.

1. A linearly independent set of p vectors is a basis.

2. A spanning set of p vectors is a basis.

b) What are the eigenvalues and eigenvectors of A?

c) Is this matrix diagonalizable?

Orthogonality

Consider the following statements.

1. Suppose $\vec{u},\ \vec{v},\ \vec{w}\in\mathbb{R}^n$ are vectors. If \vec{u} and \vec{v} are orthogonal, then \vec{u} and \vec{w} are orthogonal.

2. For any $\vec{v} \in \mathbb{R}^n$ and any $c \in \mathbb{R}$, we have $||c \cdot \vec{v}|| = c \cdot ||\vec{v}||$

3. Consider $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 4 & 1 & -3 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 10 \\ -7 \\ 1 \end{bmatrix}$. Then, \vec{v} is orthogonal to any vector in the column space of A.

Which of the following is true?

a) All of these are false.

b) Statement 1 is true, and 2 and 3 are false.

c) Statement 2 is true, and 1 and 3 are false.

d) Statement 3 is true, and 1 and 2 are false.

e) Statements 1 and 2 are true, and 3 is false.

f) All of these are true.

Gram Schmidt

Let $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \\ 2 & 2 \end{bmatrix}$. Find an orthonormal basis for $\operatorname{Col}(A)$.

Orthogonal Projections

Let W be the subspace of \mathbb{R}^4 spanned by the orthogonal set

$$ec{v}_1 = egin{bmatrix} 1 \\ -1 \\ 2 \\ 0, \end{bmatrix} \quad , \quad ec{v}_2 = egin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

- a) Find a basis for W^{\perp} , the orthogonal complement of W.
- b) Let $\vec{y} = \begin{bmatrix} 3 \\ 0 \\ 5 \\ 2 \end{bmatrix}$. Find $\hat{y} = \operatorname{proj}_W \vec{y}$, the projection of \vec{y} onto W.
- c) Find a vector $\vec{z} \in W^{\perp}$ such that $\vec{y} = \hat{y} + \vec{z}$.

Fundamental Subspaces

Consider the matrix $A = \begin{bmatrix} 2 & 2 & 4 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$

- a) What is the RREF of A?
- b) What is a basis for the columnspace of A?
- c) What is a basis for the nullspace of A?

True/False Questions

(5.1) T/F: A matrix A is invertible if and only if 0 is an eigenvalue of A.

- (6.1) T/F: If $||u||^2 + ||v||^2 = ||u+v||^2$, then u and v are orthogonal.
- (6.2) T/F: Every linearly independent set is orthogonal.
- (6.2) T/F: Every orthogonal set is linearly independent.
- (4.4) T/F: A nonzero vector is linearly dependent.
- $(4.5)~{\rm T/F} \colon A$ vector space is infinite dimensional if it is spanned by a set of infinitely many vectors.

Good luck on the test!