Setting the Stage: Complementary Priors and Variational Bounds

Yee Whye Teh^{Gatsby Unit, UCL} Geoffrey E. Hinton^{Toronto} Simon Osindero^{Toronto}

December 6, 2007 Deep Learning Workshop NIPS

Deep Belief Networks

- Say we have a layered directed graphical model.
- ► Can we do efficient inference in this model?
- Just from the structure of the graphical model: no.

Deep Belief Networks

- Say we have a layered directed graphical model.
- Can we do efficient inference in this model?
- Just from the structure of the graphical model: no.
- But perhaps there are settings of the conditional probabilities in the model allowing for efficient inference...

▶ A **Markov chain** is a sequence of variables $X_1, X_2,...$ with the Markov property

$$p(X_t|X_1,...,X_{t-1}) = p(X_t|X_{t-1})$$

A Markov chain is **stationary** if the transition probabilities do not depend on time

$$p(X_t = x' | X_{t-1} = x) = T(x \to x')$$

 $T(x \rightarrow x')$ is called the **transition matrix**.

▶ If a Markov chain is **ergodic** it has a unique equilibrium distribution

$$p_t(X_t = x) o p_{\infty}(X = x)$$
 as $t o \infty$

Most Markov chains used in practice satisfy detailed balance

$$p_{\infty}(X)T(X \to X') = p_{\infty}(X')T(X' \to X)$$

e.g. Gibbs, Metropolis-Hastings, slice sampling...

Most Markov chains used in practice satisfy detailed balance

$$p_{\infty}(X)T(X \to X') = p_{\infty}(X')T(X' \to X)$$

e.g. Gibbs, Metropolis-Hastings, slice sampling...

Most Markov chains used in practice satisfy detailed balance

$$p_{\infty}(X)T(X \to X') = p_{\infty}(X')T(X' \to X)$$

e.g. Gibbs, Metropolis-Hastings, slice sampling...

Most Markov chains used in practice satisfy detailed balance

$$p_{\infty}(X)T(X \to X') = p_{\infty}(X')T(X' \to X)$$

e.g. Gibbs, Metropolis-Hastings, slice sampling...

Most Markov chains used in practice satisfy detailed balance

$$p_{\infty}(X)T(X \to X') = p_{\infty}(X')T(X' \to X)$$

e.g. Gibbs, Metropolis-Hastings, slice sampling...

Such Markov chains are reversible

▶ This is the basic idea of **complementary priors**.

- Say we have a layered directed graphical model.
- ► Can we do efficient inference in this model?

- Say we have a layered directed graphical model.
- Can we do efficient inference in this model?
- Consider the following conditional probabilities:

$$p(X_L) = p_{\infty}(X_L)$$

 $p(X_i|X_{i+1}) = T(X_{i+1} \rightarrow X_i)$ for $i = 1 \dots L$

Note: X_i is a vector of variables in layer i.

- This is just the Markov chain unrolled.
- Detailed balance and the time reversal of the Markov chain comes to our rescue!

We can reverse the arcs in the model:

$$p(X_1...,X_L) = p_{\infty}(X_L) \prod_{i=L-1}^1 T(X_{i+1} \to X_i)$$

We can reverse the arcs in the model:

$$p(X_1...,X_L) = p_{\infty}(X_L) \prod_{i=L-1}^{1} T(X_{i+1} \to X_i)$$
$$= p_{\infty}(X_1) \prod_{i=2}^{L} T(X_i \to X_{i+1})$$

- Now inference is trivial!
- To obtain a sample from the posterior given observations we just run the Markov chain upwards.
- The complementary prior is simply the equilibrium distribution of the Markov chain.

Boltzmann Machines

A Boltzmann machine is a pairwise Markov random field with binary variables

$$p_{BM}(x_1 \dots x_n) = \frac{1}{Z} e^{\sum_{ij} W_{ij} x_i x_j + \sum_i b_i x_i}$$

▶ It is an exponential family with natural parameters $\{W_{ij}, b_i\}$, and sufficient statistics $\{E[x_ix_j], E[x_i]\}$ for all i, j.

Boltzmann Machines

$$p_{BM}(x_1 \dots x_n) = \frac{1}{Z} e^{\sum_{ij} W_{ij} x_i x_j + \sum_i b_i x_i}$$

▶ Gibbs sampling in a Boltzmann machine:

$$p(x_{i} = 1 | x_{\neg i}) = \sigma\left(\sum_{j} W_{ij} x_{j} + b_{i}\right)$$

$$\sigma(y) = \frac{1}{1 + \exp(-y)}$$

Restricted Boltzmann Machines

$$p_{RBM}(x_{1:n}, y_{1:m}) = \frac{1}{Z} e^{\sum_{ij} W_{ij} x_i y_j + \sum_i b_i x_i + \sum_j c_j y_j}$$

- A Restricted Boltzmann machine (RBM) is simply a Boltzmann machine with a bipartite structure.
- In an RBM we can do blocked Gibbs sampling, alternating between the layers.

$$p(x_1 = 1|y_1) = \sigma(Wy_1 + b)$$

$$p(y_1 = 1|x_1) = \sigma(W^{\top}x_1 + c)$$

Sigmoid Belief Networks

We use blocked Gibbs in an RBM as our Markov chain to define a directed graphical model, and use the RBM for the top layer of variables¹,

$$p(X_{L1}...X_{Ln}) = p_{RBM}(x_{L1}...X_{Ln})$$

$$p(y_{k:} = 1 | x_{k+1:}) = \sigma(W^{T}x_{k+1:} + c)$$

$$p(x_{k:} = 1 | y_{k:}) = \sigma(Wy_{k:} + b)$$

► This is a sigmoid belief network with tied parameters.

¹Because of the bipartite structure of the RBM the layers alternate between the x's and y's, but the unrolling and complementary prior argument still holds.

Sigmoid Belief Networks

We use blocked Gibbs in an RBM as our Markov chain to define a directed graphical model, and use the RBM for the top layer of variables¹,

$$p(X_{L1}...X_{Ln}) = p_{RBM}(x_{L1}...X_{Ln})$$

$$p(y_{k:} = 1 | x_{k+1:}) = \sigma(W^{T}x_{k+1:} + c)$$

$$p(x_{k:} = 1 | y_{k:}) = \sigma(Wy_{k:} + b)$$

- This is a sigmoid belief network with tied parameters.
- ► Inference just involves reversing all the arcs.

¹Because of the bipartite structure of the RBM the layers alternate between the x's and y's, but the unrolling and complementary prior argument still holds.

- Say we trained a RBM on a dataset $\{x^{(1)}, \dots, x^{(D)}\}$, obtaining a set of weights W_{train} (also includes the biases).
- ▶ The variational lower bound is exact when q(y|x) = p(y|x):

$$\log p(x)$$
= $E_{\log q(y|x)} [\log p(x, y) - \log q(y|x)]$

- Say we trained a RBM on a dataset $\{x^{(1)}, \dots, x^{(D)}\}$, obtaining a set of weights W_{train} (also includes the biases).
- ▶ The variational lower bound is exact when q(y|x) = p(y|x):

$$\begin{aligned} &\log p(x) \\ = & E_{\log q(y|x)} \left[\log p(x,y) - \log q(y|x) \right] \\ = & E_{\log q(y|x)} \left[\log p(y) + \log p(x|y) - \log q(y|x) \right] \end{aligned}$$

- Say we trained a RBM on a dataset $\{x^{(1)}, \dots, x^{(D)}\}$, obtaining a set of weights W_{train} (also includes the biases).
- ▶ The variational lower bound is exact when q(y|x) = p(y|x):

$$\begin{aligned} &\log p(x) \\ = & E_{\log q(y|x)} \left[\log p(x,y) - \log q(y|x) \right] \\ = & E_{\log q(y|x)} \left[\log p(y) + \log p(x|y) - \log q(y|x) \right] \\ = & E_{\log q(y|x)} \left[\log p_{RBM}(y) + \log T(y \to x) - \log q(y|x) \right] \end{aligned}$$

- Say we trained a RBM on a dataset $\{x^{(1)}, \dots, x^{(D)}\}$, obtaining a set of weights W_{train} (also includes the biases).
- ▶ The variational lower bound is exact when q(y|x) = p(y|x):

$$\begin{aligned} &\log p(x) \\ = & E_{\log q(y|x)} \left[\log p(x,y) - \log q(y|x) \right] \\ = & E_{\log q(y|x)} \left[\log p(y) + \log p(x|y) - \log q(y|x) \right] \\ = & E_{\log q(y|x)} \left[\log p_{RBM}(y) + \log T(y \to x) - \log q(y|x) \right] \end{aligned}$$

▶ This is the RBM unrolled once.

$$\log p(x) = E_{\log q(y|x)} \left[\log p_{RBM}(y) + \log T(y \to x) - \log q(y|x) \right]$$

Note at this point both

$$ho_{RBM}(y) =
ho_{RBM}(y|W_{train})$$
 $T(y o x) = T(y o x|W_{train})$

are parametrized by the same W_{train} and the variational bound is tight.

$$\log p(x) = E_{\log q(y|x)} \left[\log p_{RBM}(y) + \log T(y \to x) - \log q(y|x) \right]$$

Note at this point both

$$p_{RBM}(y) = p_{RBM}(y|W_{train})$$
 $T(y o x) = T(y o x|W_{train})$

are parametrized by the same W_{train} and the variational bound is tight.

If we now continue to optimize only p_{RBM}(y|W), we will increase this lower bound on the log likelihood.

$$\log p(x) = E_{\log q(y|x)} \left[\log p_{RBM}(y) + \log T(y \to x) - \log q(y|x) \right]$$

Note at this point both

$$ho_{RBM}(y) =
ho_{RBM}(y|W_{train})$$
 $T(y o x) = T(y o x|W_{train})$

are parametrized by the same W_{train} and the variational bound is tight.

- If we now continue to optimize only p_{RBM}(y|W), we will increase this lower bound on the log likelihood.
- Note: the "training set" used to train p_{RBM}(y|W) can be drawn from q(y|x^(d)) with x^(d) a training data point.

At stage k learn an RBM, producing a variational posterior

$$q_k(x_{k+1}|x_k)$$
$$p_k(x_k|x_{k+1})$$

- q_k used to "represent" training data points up the stages.
- ▶ p_k used to "model" data at the previous stage given higher level representations.
- Each stage of this process increases a variational lower bound on the log likelihood.

At stage k learn an RBM, producing a variational posterior

$$q_k(x_{k+1}|x_k)$$
$$p_k(x_k|x_{k+1})$$

- q_k used to "represent" training data points up the stages.
- p_k used to "model" data at the previous stage given higher level representations.
- Each stage of this process increases a variational lower bound on the log likelihood.

At stage k learn an RBM, producing a variational posterior

$$q_k(x_{k+1}|x_k)$$
$$p_k(x_k|x_{k+1})$$

- q_k used to "represent" training data points up the stages.
- p_k used to "model" data at the previous stage given higher level representations.
- Each stage of this process increases a variational lower bound on the log likelihood.

Thank You

Thank you!

Thank You

Thank you! Thank you, Geoff!

Thank You

Thank you! Thank you, Geoff! Happy Birthday, Geoff!