

UNIVERSIDADE ESTÁCIO DE SÁ POLO ALCANTARA - SÃO GONÇALO/RJ

TECNOLOGIA EM DESENVOLVIMENTO FULL STACK RPG0026- TIRANDO PROVEITO DA NUVEM

RELATÓRIO DA MISSÃO PRÁTICA

1 INTRODUÇÃO

Nesta missão prática, o objetivo foi aplicar conhecimentos sobre desenvolvimento de bancos de dados utilizando o Azure SQL. A prática envolveu desde a configuração do ambiente no Azure até a implementação e validação de um banco de dados com tabelas relacionadas. Este relatório detalha as etapas seguidas, os métodos utilizados e os resultados alcançados durante o processo.

OBJETIVOS

- Configurar e provisionar um banco de dados no Azure SQL.
- Projetar e implementar um banco de dados relacional utilizando T-SQL.
- Realizar operações CRUD (Create, Read, Update, Delete) para manipulação de dados.

CONFIGURAÇÃO DO AMBIENTE AZURE

.1 Criação da Conta no Azure

Foi necessário criar uma conta no Azure para acessar os recursos de nuvem. A configuração da conta seguiu os passos básicos de cadastro na plataforma.

.2 Configuração do Azure SQL Database

Uma instância do Azure SQL Database foi provisionada com as seguintes características:

∉ Nome do Banco de Dados: LogiMoveDB

∉ Servidor: logimove-server

∉ Região: Brasil

✓ Nível de Preço: Configurado inicialmente no nível Básico, adequado para práticas e testes.

Imagem 1: Banco de dados no Azure Data Studio

DESIGN DO BANCO DE DADOS

1.2 Estrutura do Banco de Dados

O banco de dados foi projetado para incluir as seguintes tabelas principais:

- ∉ Drivers (Motoristas): Tabela para armazenar informações de motoristas, como nome, CNH, endereço e contato.
- ∉ Orders (Pedidos): Tabela para armazenar informações de pedidos, incluindo cliente, motorista, detalhes do pedido, data de entrega e status.

1.3 Diagrama de Entidade-Relacionamento (ER)

Foi desenvolvido um diagrama ER para visualizar e planejar as relações entre as tabelas:

- ∉ Drivers (1:N) Orders: Um motorista pode estar associado a vários pedidos.

Imagem 2: Modelagem do banco

IMPLEMENTAÇÃO DO BANCO DE DADOS

1.2 Criação das Tabelas

As tabelas foram criadas utilizando T-SQL com a seguinte estrutura:

Código 1: Tabela de Motoristas (Drivers)

```
CREATE TABLE Drivers (
    DriverID INT PRIMARY KEY,
    Nome VARCHAR(100) NOT NULL,
    CNH VARCHAR(20) NOT NULL,
    Endereço VARCHAR(200),
    Contato VARCHAR(50)
);
```

Código 2: Tabela de Clientes (Clients)

```
CREATE TABLE Clients (
    ClientID INT PRIMARY KEY,
    Nome VARCHAR(100) NOT NULL,
    Empresa VARCHAR(100),
    Endereço VARCHAR(200),
    Contato VARCHAR(50)
);
```

Código 3: Tabela de Pedidos (Orders)

```
CREATE TABLE Orders (
    OrderID INT PRIMARY KEY,
    ClientID INT NOT NULL,
    DriverID INT NOT NULL,
    DetalhesPedido TEXT,
    DataEntrega DATE,
    Status VARCHAR(50),
    FOREIGN KEY (ClientID) REFERENCES Clients(ClientID),
    FOREIGN KEY (DriverID) REFERENCES Drivers(DriverID)
);
```

INSERÇÃO E GESTÃO DE DADOS

1.3 Inserção de Dados de Teste

Foram inseridos dados de teste nas tabelas para simular cenários práticos.

Código 4: Exemplo de Inserção de Dados

```
INSERT INTO Drivers (Nome, CNH, Endereço, Contato) VALUES
('João Silva', '123456789', 'Rua A, 100', 'joao@example.com');
```

EXECUÇÃO E VALIDAÇÃO DE CONSULTAS

1.4 Consultas T-SQL

Consultas SQL foram executadas para validar o funcionamento das tabelas e dos relacionamentos criados:

Código 5: Consulta de Pedidos por Cliente

```
SELECT Orders.OrderID, Clients.Nome AS Cliente, Drivers.Nome AS Motorista, Orders.Status
FROM Orders
JOIN Clients ON Orders.ClientID = Clients.ClientID
JOIN Drivers ON Orders.DriverID = Drivers.DriverID;
```

Código 6: Atualização do Status de Pedido

```
UPDATE Orders
SET Status = 'Entregue'
WHERE OrderID = 1;
```

Código 7: Exclusão de Pedido

```
DELETE FROM Orders
WHERE OrderID = 2;
```

OPERAÇÕES CRUD

As operações CRUD (Create, Read, Update, Delete) foram executadas com sucesso para garantir que o banco de dados está funcionando corretamente. Essas operações permitiram a manipulação dos dados inseridos, confirmando a integridade e a funcionalidade do banco de dados.

CONCLUSÃO

A missão prática foi concluída com sucesso. O banco de dados no Azure SQL foi configurado, implementado e validado de acordo com os objetivos propostos. As operações CRUD foram testadas e funcionaram conforme esperado, demonstrando a eficiência e a confiabilidade do banco de dados.

1.5 Próximos Passos

- ∉ Explorar a integração do banco de dados com aplicações web ou móveis.
- ∉ Realizar testes de desempenho e otimização para cenários de alta carga.
- ∉ Ampliar o banco de dados para incluir funcionalidades adicionais, como relatórios e análises.