University of Rajshahi

Department of Computer Science and Engineering

B. Sc. (Engg) Part-II Even Semester Examination 2020

Course: MATH 2241 (Linear Algebra)

Full Marks: 52.5

Duration: 3 (Three) Hours

Answer 06 (Six) questions taking any 03 (Three) from each section

Section-A

- 3 1. a) Define a vector in \mathbb{R}^n . What do you mean by linear combination of vectors in \mathbb{R}^n ? 3
 - b) Consider the system of linear equations

$$x - 2y = 2$$
$$2x - 4y = -2$$

Draw row picture and column picture, and explain the solution of the system of the linear equations based on the pictures.

- c) Find a unit vector u in the direction of v = (3, 4). Find a unit vector w that is perpendicular 2.75 to u. How many possibilities for w?
- Define a vector space. Let H be the set of all vectors of the form (a-3b,b-a,a,b), 3.75 where a and b are arbitrary scalars. Show that H is a subspace of \mathbb{R}^4 . 3
 - Define Null space. Find a spanning set for the null space of the matrix

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}.$$

- Let $A = \begin{bmatrix} 2 & 4 & -2 & 1 \\ -2 & -5 & 7 & 3 \\ 3 & 7 & -8 & 6 \end{bmatrix}$ and u = (3, -2, -1, 0). Determine if u is in Nul A. Could u be in Col A?
- 3. a) What do you mean by linearly dependent and linearly independent set of vectors? Define 2 basis for a vector subspace H.
 - Consider figure 3(a) and let $H = \text{Span}\{u, v, w\}$ and w =u + v.

Show that $Span\{u, v, w\} = Span\{u, v\}$. Then find a basis for the subspace H.

Figure - 3(a)

- c) Let $u=(2,1), v=(-1,1), x=(4,5), \text{ and } \mathcal{B}=\{u,v\}.$ Find the coordinate vector $[x]_{\mathcal{B}}$ of 2 x relative to \mathcal{B} .
- d) Let $v_1 = (1, -2, 2)$ and $v_2 = (-3, 7, -8)$. Is $\{v_1, v_2\}$ a basis for \mathbb{R}^2 ?

2

3.75

1

- 4. a) Consider the bases $\{e_1 = (1,0), e_2 = (0,1)\}$ and $\{f_1 = (1,3), f_2 = (2,5)\}$ of \mathbb{R}^2 . 2.25 + 3(i) Find the transition matrix P from $\{e_i\}$ to $\{f_i\}$.
 - (ii) Show that $[T]_f = P^{-1}[T]_e P$ for the linear operator T on \mathbb{R}^2 defined by
 - T(x,y)=(2y,3x-y).b) Let T be the linear operator on \mathbb{R}^2 defined by T(x,y)=(4x-2y,2x+y). 3.5 Verify that $[T]_f[v]_f = [T(v)]_f$ for any vector $v \in \mathbb{R}^2$.

Section-B

5. a) Consider figure 5(a). Is v an eigenvector of the matrix A?

3.75

4

3

1

- b) Show that 7 is an eigenvalue of matrix $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$, and find the corresponding eigenvectors.
- c) Prove that the set $\{v_1, v_2, \dots, v_r\}$ is linearly independent where eigenvectors that correspond to distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_r$ of an $n \times n$ matrix A.
- Define $\emph{similarity}$ of two matrices. Prove that two $n \times n$ $\emph{similar}$ matrices A and B have the same characteristic polynomial and hence the same eigenvalues.
 - 3.75 b) Let $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$. Find a formula for A^k , given that $A = PDP^{-1}$, where $P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$ and $D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$.
 - c) Suppose A is a 2×2 matrix. One eigenvalue of A is $\lambda_1 = 0.8 = 0.6i$ and its corresponding 2 eigenvector $v_1 = (-2 - 4i, 5)$. Find another eigenvalue and its corresponding eigenvector.
- Define inner product of two vectors and length of a vector.
 - b) Let W be the subspace of \mathbb{R}^2 spanned by $x = \left(\frac{2}{3}, 1\right)$. Find a unit vector z that is a basis for W. c) The set $S = \{u_1, u_2, u_3\}$ is an orthogonal basis for \mathbb{R}^3 , where $u_1 = (3, 1, 1), \begin{cases} \frac{1}{2} & 0 \\ 0 & 0 \end{cases}$ and 2 3
 - $u_3 = \left(-\frac{1}{2}, -2, \frac{7}{2}\right)$. Express the vector y = (6, 1, -8) as a linear combination of the vectors in S. book-358
 - d) Let $u_1 = (2, 5, -1)$, $u_2 = (-2, 1, 1)$, and y = (1, 2, 3). Observe that $\{u_1, u_2\}$ is an orthogonal basis for $W = \text{Span } \{u_1, u_2\}$. Write y as the sum of a vector in W and a vector orthogonal to W.
- Define an inner product space. State and prove Cauchy Schwartz inequality in an inner product 4.5 8. space.
 - Use Gram-Schmidt orthogonalization process to transform the basis 4.25 $\{v_1 = (1, 1, 1), v_2 = (0, 1, 1), v_3 = (0, 0, 1)\}$ of \mathbb{R}^3 into an orthonormal basis $\{u_i\}$.