Formula book

Specialist Mathematics 2025

Mensuration				
circumference of a circle	$C = 2\pi r$	area of a circle	$A = \pi r^2$	
area of a parallelogram	A = bh	area of a trapezium	$A = \frac{1}{2}(a+b)h$	
area of a triangle	$A = \frac{1}{2}bh$	total surface area of a cone	$S = \pi r s + \pi r^2$	
total surface area of a cylinder	$S = 2\pi rh + 2\pi r^2$	surface area of a sphere	$S = 4\pi r^2$	
volume of a cone	$V = \frac{1}{3}\pi r^2 h$	volume of a cylinder	$V = \pi r^2 h$	
volume of a prism	V = Ah	volume of a pyramid	$V = \frac{1}{3}Ah$	
volume of a sphere	$V = \frac{4}{3}\pi r^3$			

Graph equations			
quadratic	$y = a(x-h)^2 + k$	$y = a(x - x_1)(x - x_2)$	
cubic	$y = a(x-h)^3 + k$	$y = a(x-x_1)(x-x_2)(x-x_3)$	
circle	$(x-h)^2 + (y-k)^2 = r^2$		
square root	$y = a\sqrt{x - h} + k$		
reciprocal	$y = \frac{a}{(x-h)} + k$		
exponential	$y = r^{(x-h)} + k \text{ (where } r > 0)$		
logarithmic	$y = \log_a(x - h) + k \text{ (where } a > 1)$		
trigonometric	$y = a\sin(b(x-h)) + k$	$y = a\cos(b(x-h)) + k$	

Logarithms		
exponents and logarithms	$a^x = b \Leftrightarrow x = \log_a(b)$	
	$\log_a(x) + \log_a(y) = \log_a(xy)$	$\log_a(x^n) = n\log_a(x)$
logarithmic laws and definitions	$\log_a(x) - \log_a(y) = \log_a\left(\frac{x}{y}\right)$	$\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$
	$\log_a(1) = 0$	$\log_a(a) = 1$

Calculus			
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		$\int_{a}^{b} f(x)dx \approx \text{limit of sums } \sum_{i} f(x_{i}) \delta x_{i}$ $\int_{a}^{b} f(x)dx = F(b) - F(a)$	
$\frac{d}{dx}(f(x)+g(x)) = \frac{d}{dx}f(x) + \frac{d}{dx}g(x)$		$\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$ $\int k f(x)dx = k \int f(x)dx$	
$\frac{d}{dx}x^n = nx^{n-1}$		$\int x^n dx = \frac{x^{n+1}}{n+1} + c \text{ for } n \neq -1$	
$\frac{d}{dx}e^x = e^x$	$\frac{d}{dx}e^{f(x)} = f'(x)e^{f(x)}$	$\int e^x dx = e^x + c$	
$\frac{d}{dx}\ln(x) = \frac{1}{x}$	$\frac{d}{dx}\ln(f(x)) = \frac{f'(x)}{f(x)}$	$\int \frac{1}{x} dx = \ln(x) + c \text{ for } x > 0$	
$\frac{d}{dx}\sin(x) = \cos(x)$	$\frac{d}{dx}\sin(f(x)) = f'(x)\cos(f(x))$	$\int \sin(x) dx = -\cos(x) + c$	
$\frac{d}{dx}\cos(x) = -\sin(x)$	$\frac{d}{dx}\cos(f(x)) = -f'(x)\sin(f(x))$	$\int \cos(x) dx = \sin(x) + c$	
chain rule	If $y = f(u)$ and $u = g(x)$ then $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$		
product rule	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$		
quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$		
trapezoidal rule	$\int_{a}^{b} f(x)dx \approx \frac{w}{2} \Big[f(x_0) + 2(f(x_1) + f(x_2) + f(x_3) + \dots f(x_{n-1})) + f(x_n) \Big]$ where $w = \frac{b-a}{n}$		

Trigonometry	
cosine rule	$c^2 = a^2 + b^2 - 2ab\cos(C)$
sine rule	$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$
area of a triangle	$area = \frac{1}{2}bc\sin(A)$
Pythagorean identity	$\sin^2(A) + \cos^2(A) = 1$

Statistics			
binomial theorem	$(x+y)^{n} = x^{n} + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{r}x^{n-r}y^{r} + \dots + y^{n}$		
binomial probability	$P(X=r) = \binom{n}{r} p^r (1-$	$p)^{n-r}$	
	mean	$E(X) = \mu = \sum p_i x_i$	
discrete random variable <i>X</i>	variance	$Var(X) = \sum p_i (x_i - \mu)^2$	
	standard deviation	$\sqrt{Var(X)}$	
continuous random	mean	$E(X) = \mu = \int_{-\infty}^{\infty} x p(x) dx$	
variable X	variance	$Var(X) = \sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 p(x) dx$	
Bernoulli distribution	mean	p	
Demodili distribution	variance	p(1-p)	
binomial distribution	mean	пр	
Sinormal distribution	variance	np(1-p)	
	mean	p	
sample proportion	standard deviation	$\sqrt{\frac{p(1-p)}{n}}$	
approximate confidence interval for <i>p</i>	$\left(\hat{p}-z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}},\hat{p}+z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$		
approximate margin of error	$z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$		
complementary probability	$P(\overline{A}) = 1 - P(A)$		
general addition rule for probability	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$		
probability of independent events	$P(A \cap B) = P(A)P(B)$		
conditional probability	$P(A \cap B) = P(A \mid B)P(B)$		

Additional Calculus for Specialist Mathematics				
$\frac{d}{dx}\ln(x) = \frac{1}{x}$		$\int \frac{1}{x} dx = \ln x + c \text{ for } x \neq 0$		
$\frac{d}{dx}\ln(f(x)) = \frac{f'(x)}{f(x)}$		$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c \text{ for } f(x) \neq 0$		
$\frac{d}{dx}\tan(x) = \sec^2(x)$		$\int \sec^2(x)dx = \tan(x) + c$		
$\frac{d}{dx}\sin^{-1}\left(\frac{x}{a}\right) = \frac{1}{\sqrt{a^2 - x^2}}$		$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c$		
$\frac{d}{dx}\cos^{-1}\left(\frac{x}{a}\right) = \frac{-1}{\sqrt{a^2 - x}}$	<u></u>	$\int \frac{-1}{\sqrt{a^2 - x^2}} dx = \cos^{-1} \left(\frac{x}{a}\right) + c$		
$\frac{d}{dx}\tan^{-1}\left(\frac{x}{a}\right) = \frac{a}{a^2 + x^2}$		$\int \frac{a}{a^2 + x^2} dx = \tan^{-1} \left(\frac{x}{a}\right) + c$		
integration by parts	$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$			
volume of a solid	about the <i>x</i> -axis		$V = \pi \int_{a}^{b} \left[f(x) \right]^{2} dx$	
of revolution	about the <i>y</i> -axis		$V = \pi \int_{a}^{b} \left[f(y) \right]^{2} dy$	
Simpson's rule	$\int_{a}^{b} f(x) dx \approx \frac{w}{3} \Big[f(x_0) + 4 \Big[f(x_1) + f(x_3) + \dots \Big] + 2 \Big[f(x_2) + f(x_4) + \dots \Big] + f(x_n) \Big]$ where $w = \frac{b - a}{n}$			
simple harmonic	If $\frac{d^2x}{dt^2} = -\omega^2 x$ then $x = A\sin(\omega t + \alpha)$ or $x = A\cos(\omega t + \beta)$			
motion	$v^2 = \omega^2 \left(A^2 - x^2 \right)$	$T = \frac{2\pi}{\omega}$	$f = \frac{1}{T}$	
acceleration	$a = \frac{dv}{dt} = \frac{d^2x}{dt^2} = v\frac{dv}{dx} = \frac{d}{dx}$	$\left(\frac{1}{2}v^2\right)$		

Additional Trigonometry for Specialist Mathematics		
Pythagorean identities	$\sin^2(A) + \cos^2(A) = 1$ $\tan^2(A) + 1 = \sec^2(A)$ $\cot^2(A) + 1 = \csc^2(A)$	
angle sum and difference identities	$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$ $\sin(A-B) = \sin(A)\cos(B) - \cos(A)\sin(B)$ $\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$ $\cos(A-B) = \cos(A)\cos(B) + \sin(A)\sin(B)$	
double-angle identities	$\sin(2A) = 2\sin(A)\cos(A)$ $\cos(2A) = \cos^2(A) - \sin^2(A)$ $= 1 - 2\sin^2(A)$ $= 2\cos^2(A) - 1$	
product identities	$\sin(A)\sin(B) = \frac{1}{2}(\cos(A-B) - \cos(A+B))$ $\cos(A)\cos(B) = \frac{1}{2}(\cos(A-B) + \cos(A+B))$ $\sin(A)\cos(B) = \frac{1}{2}(\sin(A+B) + \sin(A-B))$ $\cos(A)\sin(B) = \frac{1}{2}(\sin(A+B) - \sin(A-B))$	

Graph equations for Specialist Mathematics			
sphere	$(x-h)^{2} + (y-k)^{2} + (z-l)^{2} = r^{2}$		
circle	$(x-h)^2 + (y-k)^2 = r^2$		
ellipse	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$		
hyperbola	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$	

Additional Statistics for Specialist Mathematics				
inclusion-exclusion	$ A \cup B = A + B - A \cap B $			
principle	$ A \cup B \cup C = A + B + $	$C - A \cap B - A \cap C - B \cap C + A \cap B \cap C $		
permutation	$^{n}P_{r} = \frac{n!}{(n-r)!} = n \times (n-1)$	${}^{n}P_{r} = \frac{n!}{(n-r)!} = n \times (n-1) \times (n-2) \times \dots \times (n-r+1)$		
combination	${}^{n}C_{r} = {n \choose r} = \frac{n!}{r!(n-r)!}$	${}^{n}C_{r} = {n \choose r} = \frac{n!}{r!(n-r)!}$		
probability density function of the exponential distribution	$f(t) = \lambda e^{-\lambda t}$ for $t \ge 0$, $\lambda > 0$			
exponential random variable	mean	$\frac{1}{\lambda}$		
	standard deviation	$\frac{1}{\lambda}$		
	mean	μ		
sample means	standard deviation	$\frac{\sigma}{\sqrt{n}}$		
approximate margin of error	$E = z \frac{s}{\sqrt{n}}$			
approximate confidence interval for μ	$\left(\overline{x} - z \frac{s}{\sqrt{n}}, \ \overline{x} + z \frac{s}{\sqrt{n}}\right)$			

Real and complex numbers			
complex number forms	$z = a + bi = r(\cos(\theta) + i\sin(\theta)) = r\operatorname{cis}(\theta)$		
modulus	$ z = r = \sqrt{a^2 + b^2}$		
argument	$\operatorname{Arg}(z) = \theta,$ $\tan(\theta) = \frac{b}{a}, -\pi < \theta \le \pi, \ a \ne 0$	$arg(z) = Arg(z) + 2\pi n, \ n \in \mathbb{Z}$	
product	$z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2)$		
quotient	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2)$		
De Moivre's theorem	$z^n = r^n \mathrm{cis}(n\theta)$		

Matrices			
commutative law for addition	A + B = B + A		
additive identity	$A + \theta = A$		
additive inverse	A + (-A) = 0		
multiplicative identity	AI = A = IA		
multiplicative inverse	$AA^{-1} = I = A^{-1}A$		
left distributive law	A(B+C)=AB+AC		
right distributive law	(B+C)A=BA+CA		
determinant	If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $\det(A) = ad - bc$		
multiplicative inverse matrix	$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}, \det(A) = \frac{1}{2}$	≠ 0	
	dilation of factor <i>a</i> parallel to the <i>x</i> -axis and factor <i>b</i> parallel to the <i>y</i> -axis	$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$	
linear transformations			
	reflection in the line $y = x \tan(\theta)$ $\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$		

Vectors		
magnitude	$\left \boldsymbol{a} \right = \left \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \right = \sqrt{a_1^2 + a_2^2}$	$ a = \begin{vmatrix} a_1 \\ a_2 \\ a_3 \end{vmatrix} = \sqrt{a_1^2 + a_2^2 + a_3^2}$
direction	$\tan(\theta) = \frac{y}{x}, \ x \neq 0$	
unit vector	$\hat{n} = \frac{n}{ n }$	
scalar (dot) product	$a \cdot b = a b \cos(\theta)$	
	$\boldsymbol{a} \cdot \boldsymbol{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = a_1 b_1 + a_2 b_2$	$\boldsymbol{a} \cdot \boldsymbol{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3$
vector equation of a line	r = a + t d	
parametric equations of a line	$x = a_1 + t d_1$ $y = a_2 + t d_2$ $z = a_3 + t d_3$	
Cartesian equation of a line	$\frac{x - a_1}{d_1} = \frac{y - a_2}{d_2} = \frac{z - a_3}{d_3}$	
	$a \times b = a b \sin(\theta)\hat{n}$	
vector (cross) product	$\boldsymbol{a} \times \boldsymbol{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$	
scalar projection	$a \text{ on } b = a \cos(\theta) = a \cdot \hat{b}$	
vector projection	$a \text{ on } b = a \cos(\theta)\hat{b} = (a \cdot \hat{b})\hat{b} = (\frac{a \cdot b}{b \cdot b})b$	
vector equation of a plane	$r \cdot n = a \cdot n$	
Cartesian equation of a plane	ax + by + cz + d = 0	

Physical constant		
magnitude of mean acceleration due to gravity on Earth	$g = 9.8 \text{ ms}^{-2}$	

THIS PAGE IS INTENTIONALLY BLANK

THIS PAGE IS INTENTIONALLY BLANK

