Systèmes et fonctions électroniques Devoir Maison 1

BELLA Jean-Paul PIPEREAU Yohan

11 Novembre 2016

Partie Théorique

Question 1 : Ecrire la forme développer de $s_1(t)$.

La forme développée du signal $s_1(t)$ en sortie du modulateur est

$$\begin{split} s_1(t) &= [C + Db(t)]a(t) \\ &= Acos(w_p t)[C + DBcos(x_m t)] \\ &= AC[cos(w_p t) + \frac{m}{2}(cos(w_p t - w_m t) + cos(w_p t + w_m t)] \end{split}$$

Soit
$$\left[s_1(t) = AC[cos(w_p t) + \frac{m}{2}(cos(w_p t - w_m t) + cos(w_p t + w_m t))\right]$$
 avec $\left[m = \frac{DB}{C}\right]$.

Question 2 : Donner l'expression de $s_2(t)$.

La forme développée de $s_2(t)$ en sortie du multiplieur est :

$$s_2(t) = s_1(t)a(t)$$

$$= A^2(\frac{1 + \cos(2w_p(t))}{2})(C + DB\cos(w_m(t)))$$

$$= \frac{A^2C}{2}(1 + m\cos(w_m t) + \cos(2w_p t + \frac{m}{2}(\cos(2w_p t - w_m t) + \cos(2w_p t + w_m t))$$

Soit
$$s_2(t) = \frac{A^2C}{2}(1 + m\cos(w_m t) + \cos(2w_p t + \frac{m}{2}(\cos(2w_p t - w_m t) + \cos(2w_p t + w_m t)))$$
.

Question 3 : Comment choisir la pulsation de coupure du filtre passe-bas w_c pour restituer fidelement le message? :

 w_c est la pulsation de coupure du filtre passe bas prenant en entrée $s_2(t)$ et donnant en sortie le message qui était $a(t)=A\cos(w_pt)$. Or, $w_m\leq 2w_p-w_m\leq 2w_p\leq 2w_p+w_m$ où $w_m\leq w_p$. Ainsi $w_c=w_m$

Simulation Labview

Figure 1 – Vue générale du programme Labview

Nous avons mal compris l'énoncé et nous avons créé trois générateur au lieu de deux. Mais, le générateur inutile n'a aucune incidence dans le programme.

Question 4:

FIGURE 2 – Test du vi avec A = 2; B = 0,5; C = 1; D = 0.5; $f_p = 50kHz$; $f_m = 1kHz$

Lors du test du vi avec les valeurs de la question 4, on a m=0.25. Le signal $s_1(t)$ suit un signal sinusoïdal sous forme d'enveloppe (produit de sinusoïde). Le signal avant filtrage est une sinusoïde de fréquence f_m .

La forme de l'onde émise est une sinusoïde d'harmonique égale à f_m , après modulation on observe une augmentation de l'amplitude et on constate également que la valeur moyenne a été décalée.

Le décalage de la valeur moyenne peut s'expliquer par le fait que le filtre passe-bas conserve la valeur moyenne et que celle-ci a donc subi les modifications liées au multiplexage et démultiplexage. Le spectre possède un pic à 5000 Hz (et quelques pics autour) indiquant la présence de l'harmonique du signal du message que l'on retrouve après démodulation.

Question 5:

FIGURE 3 – Test du vi avec A = 2; B = 0,5; C = 1; D = 3; $f_p = 50kHz$; $f_m = 1kHz$

Lors du test du vi avec les valeurs de la question 5, on a m=1.5.

L'harmonique reste la même.

La forme de l'onde émise est une sinusoïde d'harmonique égale à f_m , après modulation on observe une augmentation de l'amplitude et on constate également que la valeur moyenne a été décalée. L'explication a déjà fournie précédemment.

Question 6:

FIGURE 4 – Test du vi avec A = 2 ; B = 0,5 ; C = 1 ; D = 2 ; $f_p = 50kHz$; $f_m = 1kHz$

Lors du test du vi avec les valeurs de la question 6, on a m=1.

La forme de l'onde émise est une sinusoïde d'harmonique égale à f_m , après modulation on observe une augmentation de l'amplitude et on constate également que la valeur moyenne a été décalée. L'explication a déjà été fournie précédemment.

Question 7 : Que deviennent les formes d'onde pour un message de forme carré, d'amplitude B=0,25V les autres valeurs restant inchangées?

FIGURE 5 – Test du vi avec des ondes carrées d'amplitudes B=0.25V

Lors de l'émission d'un message crénau, on obtient après modulation une onde sinusoïdale de fréquence égale à celle de l'harmonique du signal d'entrée. On peut expliquer ce phénomène par le filtrage des fréquences supérieures à w_c par le filtre passe bas. Ce qui conserve uniquement l'harmonique du signal et filtre les hautes fréquences responsables de la forme du signal.