Explainability-Accuracy

Tradeoff

What is Machine Learning Ensembles?

Leaderboard

2.0 tes	ts th	e abilit
ns, but	also	abstai

SQuAD2.0 tests the ability of a system to not only answer reading comprehension questions, but also abstain when presented with a question that cannot be answered					
based on the provide	d paragraph.				
Rank	Model	EM	F1		
	Human Performance	86.831	89.452		
	Stanford University				
	(Delmunkan C. Ila at al. 140)				

XLNet + DAAF + Verifier (ensemble)

PINGAN Omni-Sinitic

ALBERT (single model)

Google Research & TTIC https://arxiv.org/abs/1909.11942

UPM (ensemble)

Anonymous

XLNet + SG-Net Verifier (ensemble)

Shanghai Jiao Tong University & CloudWalk

https://arxiv.org/abs/1908.05147

Jul 26, 2019

3

Aug 04, 2019

90.902

89.731

88.592

88.107

88.231

88.174

92.215

90.859

90.713

90.702

Machine Learning Ensembles

 Techniques that generate a group of base learner which when combined have higher accuracy

Strong v.s. Weak learner

 Stable (kNN) v.s. Unstable (decision trees, neural networks) machine learning algorithms.

Why Ensemble?

- Reduce Bias
- Reduce Variance
- Prediction Error:
 - = Bias ^2
 - + Variance
 - + Irreducible Error

Bias-Variance

 Bias: the difference between the average prediction of our model and the correct value which we are trying to predict

Variance: the variability of model prediction for a given data point or a value

which tells us spread of our data

Reduce Bias

 Assume a test set of 10 samples and k (assume k is odd) independent binary classifiers, where each classifier has p accuracy.

Combining these k classifiers, using majority voting

The final Acc. will be the prob that majority of classifiers are correct.

$$\sum_{i=0}^{int(rac{k}{2})}inom{k}{i}p^{k-i}(1-p)^i$$

What is the probability that k choose *i classifiers* whose predictions are **wrong** and the rest *k-i models*' outputs are **correct**.

Reduce Bias

$$\sum_{i=0}^{\lfloor rac{k}{2}
floor} inom{k}{i} p^{k-i} (1-p)^i$$

If p = 0.7, then we have

k	Ensemble Accuracy		
1	0.7		
3	0.784		
5	0.83692		
11	0.92177520904		
101	0.999987057446		

Reduce Bias

$$\sum_{i=0}^{\lfloor rac{k}{2}
floor} inom{k}{i} p^{k-i} (1-p)^i$$

Fix # of classifiers to be 11

Reduce Variance

Suppose we have n independent models: M1, M2, Mn with the same variance σ ^2. The ensemble M* constructed from these models using averaging will have the variance as follows:

$$egin{aligned} Var(M^*) &= Var(rac{1}{n}\sum_i M_i) \ &= rac{1}{n^2}Var(\sum_i M_i) \ &= rac{1}{n^2}*n*Var(M_i) \ &= rac{Var(M_i)}{n} \end{aligned}$$

Machine Learning Ensembles

Common Ensemble Techniques

Ensemble Learning

- Bagging: reduce the variance in a model
 - Random Forest
- Boosting: reduce the bias in a model
 - Ada-Boost, XGBoost, Gradient Boosted Decision Trees
- Stacking: increase the prediction accuracy of a model
 - Mlxtend library
- Cascading: the class of models is very very accurate
 - Bias toward precision from recall
 - Suitable for the cases you can not afford to make a mistake

Bagging

Bagging

- A.k.a Bootstrap aggregation
- Train m classifier from m bootstrap replica
- Combine outputs by voting
- Decreases error by decreasing the variance
- Random Forest (Randomly select features)
- ExtraTrees (Randomized top-down split)

3.2.4.3.1. sklearn.ensemble.RandomForestClassifier

class sklearn.ensemble.RandomForestClassifier(n_estimators=100, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='auto' max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None [source]

Majority Voting

- **Equal**: the difference between the average
- Weighted: best model get more weight in a vote

MODEL	PUBLIC ACCURACY SCORE
GradientBoostingMachine	0.65057
RandomForest Gini	0.75107
RandomForest Entropy	0.75222
ExtraTrees Entropy	0.75524
ExtraTrees Gini (Best)	0.75571
Voting Ensemble (Democracy)	0.75337
Voting Ensemble (3*Best vs. Rest)	0.75667

Average

- Take the average of several models' output
- Average multiple green lines -> black line (reduce overfit)

Boosting

Boosting

- Training samples are given weights (initially same weight)
- At each iteration, a new hypothesis is learned.
- Training samples are reweighted to focus the model on samples that the most recently learned classifier got wrong.
- Combine output by voting
- Gradient Boosting, Adaboost, XGBoost, LightGBM

Stacking

Stacking

 Core idea: use a pool of base classifiers, then using another classifier (stacker) to combine their prediction for the final decision

Decision Regions: Demo Case

Cascading

Cascading

 Literally, cascading means "a process whereby something, typically information or knowledge, is successively passed on"

- In ML context, we build a sequence of models. The informations are the model outputs.
- It is suitable for the scenarios that requires a very high accuracy.
 - For example, credit card fraud detection

One of Human-Centered Al Systems

- Fraud detection: binary classification
 - The accuracy of fraud case should be very high. It means that we should not miss any fraud transactions that may cause losses
 - Label 0: Normal; Label 1: Fraud

Training

- Training data denoted as DT. It contains data samples with labels 0 and 1
- Train model 1 on the whole DT. Then, we apply the model 1 on the whole DT. DT1 dataset will be the collections of all points with predicted labels of 0.
- Train model 2 on the dataset difference DT DT1. Then, apply the model 2 on the whole DT-DT1. DT2 dataset will be the collections of all points with predicted labels of 0.
- Repeat the process for model 3,

The key: the subsequent model will only train over the datasets that the previous models are not confident.

Training

From Competition to Industry

Netfilx Competition

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 ▼ leaders.

Rank	Team Name	Best Test Score	e <u>%</u> Improvement	Best Submit Time
Gran	<u>d Prize</u> - RMSE = 0.8567 - Winning 1	eam: BellKor's Pr	agmatic Chaos	
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries!	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace	0.8612	9.59	2009-07-24 17:18:43

1 The winning solution is a final combination of107 algorithms;

2 Are not fully implemented.

Some possible pitfalls

- Exponentially increasing training times and computational requirements
- Increase demand on infra. to maintain and update these models.
- Greater chance of data leakage between models or stages in the whole training.

In a nutshell

- No Free Lunch Theorem: There is no one algorithm that is always the most accurate.
- Our efforts should focus on obtaining base models which make different kinds of errors, rather than obtaining highly accurate base models
- What we need to do is to build weak learners that are at least more accurate than random guessing
- Feature Engineering !!!

Keep trying (experimenting, tuning, etc.)!

Proposal Submission

- Due on Feb 14 @23:59pm
- File should be named as proposalXX.pdf where XX is your group number.
- 3-5 pages
- It is totally acceptable that there is some inconsistency between the final demo and your initial proposal.
- Key messages in proposal should contain:
 - What kind of problem you want to solve?
 - How can the proposed problem be solved by ML techniques?
 - Why is it interesting or what is its business impact?

Open Questions

KNN's Complexity

From Notebook in Week2

Why is this improper cross-validation?

- Normally, we split the data into training and testing sets before creating the document-term matrix. But since cross_val_score does the splitting for you, we passed it the feature matrix (x dtm) rather than the raw text (x).
- However, that does not appropriately simulate the real world, in which your out-of-sample data will contain features that were not seen during model training.

What's the solution?

- We need a way to pass x (not x_dtm) to cross_val_score, and have the feature creation (via CountVectorizer) occur within each fold of cross-validation.
- We will do this by using a Pipeline.

Data Leakage

- When the data you are using to train a machine learning algorithm happens to have the information you are trying to predict.
- If any other feature whose value would not actually be available in practice at the time you's want to use the model to make a prediction, is a feature that can introduce leakage to your model.

Data leakage can cause you to create overly optimistic if not completely invalid predictive models.

Data leakage happens:

- 1. when countvectorizer was building vocabulary, it had adopted the information from testing data. Here, it is vocabulary from testing data.
- 2. In practice, you only have training corpus to build vocabulary when you want to get BoW features or Document-term matrix

Vocabulary is only built from the training corpus.

Explainable Al

Treatment Recommendation

Demographics: age, gender, .. Medical History: Has asthma?

Symptoms: Severe Cough, Sleepy

Test Results: Peak flow: Positive

Which treatment should be given?
Options: quick relief drugs (mild),
controller drugs (strong)

Bail Decision

High-Stakes Decisions

- The above examples all belong to high-stakes decisions. The decisions have a huge impact on human well-being.
- What are those non high-stakes decisions?
 - Recommendations in E-commerces websites
 - When should I get up tomorrow?
 - 0

Black-Box Model

- If ML system is deployed in high-stakes decisions environment:
 - o Is accuracy important?
 - Can we trust the machine learning model?

XAI

 XAI: ML models are explainable that enable end users to understand, appropriately trust, and effectively manage the emerging generation for AI systems.

DARPA's report

Why Model Insights Valuable

- When ML algorithms give us their predictions:
 - Do we understand our data?

- In banking, insurance and other heavily regulated industries, model interpretability is a serious legal mandate.
- In lots of critical areas such healthcare, government, bioinformatics, etc. rationale for models' decision is necessary for trust.

What is Interpretability

- Ability to explain or present in understandable terms to our humans
- However, no clear answers in psychology to:
 - What constitutes an explanation?
 - What makes some explanations better than the others?
 - When are explanation sought?

Properties of Interpretable Models

- Transparency
 - o How exactly does the model work?
 - Details about its inner workings, parameters etc.
 - It has two dimensions: Simulatability and Decomposability

Transparency: Simulatability

- Can a person contemplate the entire model at once?
 - Need a very simple model
- A human should be able to take input data and model parameters and calculate prediction
- Simulatability: size of the model + computation required to perform inference
 - Decision trees: size of the model may grow faster than time to perform inference

Transparency: Decomposability

- Understanding each input, parameter, calculation
 - Decision trees, linear regression
- Inputs must be interpretable
 - Models with highly engineered or anonymous features are not decomposable

Linear Models First

 Prediction is the linear combinations of the features values, weighted by the model coefficients.

BT5153 A's chance = 0.2 + 0.1* GPA - 0.005 * Hours on Tiktok

Capability of linear models is limited.

Complex Models

For imagenet, they use 152 layers, which firstly achieved lower error rate compared to Humans in image recognition tasks.

Trade-off

Taxonomy of Interpretability

Intrinsic

- Interpretability achieved through constraints imposed on the complexity of the ML model
- Applied on tree-based, linear model
- Constraints: Sparsity, monotonicity, causality or physical constraints

Post hoc:

- Explanation methods that are applied after model training
- Open-source packages: LIME, SHAP, etc

Post-hoc: Visualization

- Visualize high-dimensional data with t-SNE
 - 2D visualization in which nearby data points appear close
 - It works well on neural networks' hiddens outputs

Source: yellowbricks

- Perturb input data to enhance activations of certain nodes in neural nets:
 - Helps understand which nodes correspond to what aspects of the image
 - Eg., certain nodes might correspond to Concept: flowers

Images labeled as flowers

Source:

https://towardsdatascience.com/understanding-your-convolution-network-with-visualizations-a4883441533b

Post-hoc: Example Explanations

- Reasoning with examples
- Eg., Patient A has a tumor because he is similar to these k other data points with tumors
- K neighbors can be computed by using some distance metric on learned representations.
 - Such as word2vec

Post-hoc: Local Explanations

- Hard to explain a complex model in its entirety
 - How about explaining smaller regions?

- Explains decisions of any model in a local region around a particular point
- Learns sparse linear model

Post-hoc interpretations can mislead

- Do not blindly embrace post-hoc explanations!
- Post-hoc explanations can seems plausible but be misleading
 - They do not claim to open up the black-box;
 - They only provide plausible explanations for its behavior

Source: https://github.com/csinva/csinva.github.io/blob/master/ notes/cheat sheets/interp.pdf