Билеты по математическому анализу для коллоквиума 14 ноября. Часть I

Шишминцев Дмитрий Владимирович

9 ноября 2022 г.

Содержание

1	Множества и операции над ними	3
2	Отображения и функции	3
3	Эквивалентность, счетность, мощность континума	3
4	Теорема Кантора-Бернштейна и сравнение мощности множеств	3
5	Множество вещественных чисел и его аксиоматика	4
6	Ограниченность множества и его точные грани	4
7	Метод математической индукции	4
8	Бином Ньютона	4
9	Числовая последовательность и ее ограниченность	4
10	Бесконечно большие и бесконечно малые последовательности и их связь	5
11	Сходимость и расходимость последовательностей	5
12	Свойства сходящихся последовательностей	5
13	Монотонные последовательности и их свойства связанные с пределами	5
14	Число Д. Непера (число е)	5
15	Подпоследовательности и их свойства, предельные точки	5
16	Верхний и нижний пределы последовательности	6
17	Два определения предела функции	6
18	Односторонние пределы функции в точке	6
19	Модификации условия Коши сходимости функции	6
20	Символы Ландау	6
2 1	Эквивалентность функций	7
22	Определение непрерывности функции в точке	7
23	Точки разрыва функции и их классификация	7

24 Непрерывность монотонной функции	7
25 Локальные свойства непрерывных функций	8
26 Глобальные свойства непрерывных функций	8
27 Равномерная непрерывность функции	8

1 Множества и операции над ними

(Условно) Множество - совокупность некоторых объектов определенных по одному признаку.

 $a \in A$ - элемент а принадлежит множеству A

 $a \notin A$ - элемент а не принадлежит множеству A

 $A \subset B$ - множество A является подмножеством B

Равенство множества Множества равны если каждый элемент множества A является элементом множества B и наоборот

$$A = B \Leftrightarrow \begin{cases} x \in A \Rightarrow x \in B \\ x \in B \Rightarrow x \in A \end{cases}$$

Операции над множествами:

- Пересечение множеств: $A \cup B = \{x | x \in A \text{ и } x \in B\}$ коммутативно и ассоциативно
- Объединение множеств: $A\cap B=\{x|x\in A$ или $x\in B\}$ коммутативно и ассоциативно
- Разность множеств: $A \setminus B = \{x | x \in A \bowtie x \notin B\}$
- Симметричная разность: $A \triangle B = (A \backslash B) \cap (B \backslash A)$
- Декартово произведение множеств: $A \times B = \{(a;b) | a \in A, b \in B\}$

2 Отображения и функции

Отображение (функция) - правило по которому $\forall x \in A \exists ! y \in B$

Варианты функциональных отображений $F: X \to Y$

- Функция F сюръективна, если $\forall y \in Y \exists x \in X : y = F(x)$ каждый элемент множества Y является прообразом хотя бы одного элемента множества X
- Функция F инъективна, если $\forall x \in X \exists y \in Y : y = F(x)$ разные элементы множества X переводятся в разные элементы множества Y
- Функция F биективна, если она сюръективна и инъективна одновременна

3 Эквивалентность, счетность, мощность континума

Мощность множества: |A| - число элементов входящих в множество A

Эквивалентность множеств: множества эквивалентны $(A \sim B)$ если |A| = |B|

Счетность множество: бесконечное множество, элементы которого можно пронумеровать натуральными числами

Мощность континуума: мощность множества всех вещественных чисел

4 Теорема Кантора-Бернштейна и сравнение мощности множеств

Теорема Кантора-Бернштейна

- 1. Если $A \sim B'$ (где $B' \subset B$) и $B \sim A'$ (где $A' \subset A$) $\to A \sim B$
- 2. Если $A \subset B \subset C$, причем $A \sim C$, то $A \sim B$

СРАВНЕНИЕ МОЩНОСТЕЙ МНОЖЕСТВ: Если множества A и B неэквивалентны, но $\exists B' \subset B: B' \sim A$ и $\nexists A' \subset A: A' \sim B$, то будем считать, что |A| < |B|

5 Множество вещественных чисел и его аксиоматика

Вещественные числа \mathbb{R} : бесконечные десятичные дроби вида $\pm a_0, a_1 a_2 a_3....$, где выбран определенный знак: + или -, $a_0 \in \mathbb{N} \cup \{0\}$, а все десятичные символы $a_1, a_2...$ - цифры от 0 до 9, т.е. $\forall n \in \mathbb{N} \to a_n \in \{0, 1, 2, ..., 9\}$ Аксиоматика:

- 1. Линейность: если $x \neq y$, то x > y или x < y
- 2. Транзитивность: $\exists \{>,=\}b, b\{>,=\}c \to a\{>,=\}c$
- 3. Ассоциативность: $\forall a, b, c \in \mathbb{R} \to (a+b) + c = a + (b+c), a(bc) = (ab)c$
- 4. Коммутативность: $\forall a, b \in \mathbb{R} \rightarrow a + b = b + a, a \cdot b = b \cdot a$
- 5. Дистрибутивность: $\forall a, b, c \in \mathbb{R} \to (a+b) \cdot c = a \cdot c + b \cdot c$

6 Ограниченность множества и его точные грани

Непустое множество $A \subset \mathbb{R}$ называется:

- 1. Ограниченным сверху, если $\exists b \in \mathbb{R} : \forall a \in A \to a \leqslant b$
- 2. Ограниченным снизу, если $\exists d \in \mathbb{R} : \forall a \in A \to d \leqslant a$
- 3. Ограниченным, если $\exists c \in \mathbb{R} : c > 0$ и $\forall a \in A \rightarrow |a| \leqslant c$

Верхняя и нижняя грань не единственны.

Свойство точной верхней грани: Если $b = \sup A$, то $\forall \epsilon > 0 \exists a \in A : a > b - \epsilon$ Свойство точной нижней грани: Если $d = \inf A$, то $\forall \epsilon > 0 \exists a \in A : a < d + \epsilon$

7 Метод математической индукции

Математическая индукция - метод математического доказательства, который используется, чтобы доказать истинность некоторого утверждения для всех натуральных чисел. Для обоснования метода математической индукции используется свойство натуральных чисел: $\forall A \subset \mathbb{N} : A \neq \emptyset \exists a' \in A : \forall a \in A \rightarrow a' \leqslant a$

Метод математической индукции состоит из следующих шагов:

- 1. База индукции: проверяем справедливость утверждения для а
- 2. Индукционное предположение: предполагаем справедливость для произвольного элемента $a_k \in A$
- 3. Индукционный шаг: доказываем справедливость утверждения для $a_{k+1} \in A$

8 Бином Ньютона

$$(1+x)^n=\sum_{k=0}^n C_n^k x^k$$
, где $C_n^k=\binom{n}{k}=\frac{n!}{k!(n-k)!}$ - биноминальный коэффициент, $n,k\in\mathbb{N},x\in\mathbb{R}$

9 Числовая последовательность и ее ограниченность

Числовая последовательность: функция определенная на множестве $\mathbb N$ и принимающая числовые значения. $\exists x_n = f(n),$ где $f: \mathbb N \to \mathbb R,$ тогда $\{x_n\}$ - последовательность

Ограниченность последовательности: последовательность называется ограниченной с обеих сторон, если $\exists A \in \mathbb{R} : \forall n \in \mathbb{N} \to |x_n| \leqslant A$

10 Бесконечно большие и бесконечно малые последовательности и их связь

Бесконечно большая последовательность: $\forall c>0 \exists n(c) \in \mathbb{N}: \forall n>n(c) \to |x_n|>c$ Бесконечно малая последовательность: $\forall \epsilon>0 \exists n(\epsilon) \in \mathbb{N}: \forall n>n(\epsilon) \to |x_n|<\epsilon$ Связь: если $\{x_n\}$ - б.м.п. и $\forall n\in \mathbb{N}\to x_n\neq 0$, то $\{\frac{1}{x_n}\}$ - б.б.п и наоборот, если $\{x_n\}$ - б.б.п. и $\forall n\in \mathbb{N}\to x_n\neq 0$, то $\{\frac{1}{x_n}\}$ - б.м.п и наоборот,

11 Сходимость и расходимость последовательностей

Определение - Последовательность $\{x_n\}$ называется сходящейся (имеющей предел), если:

 $\forall \epsilon > 0 \exists n(\epsilon) \in \mathbb{N} : \forall n > n(\epsilon) \to |x_n - a| < \epsilon$

Определение - Последовательность $\{x_n\}$ называется сходящейся (имеющей предел), если:

 $\forall \epsilon > 0 \exists n(\epsilon) \in \mathbb{N} : \forall n > n(\epsilon) \to x_n \in \mathbb{U}_{\epsilon}(a)$

Последовательности не являющиеся сходящими, принято называть расходящимися.

Определение - Последовательность $\{x_n\}$ называется сходящейся (имеющей предел), если: $\exists a \in \mathbb{R} \setminus \{\pm \infty\} : a_n$ является б.м.п, где $a_n := x_n - a$

Если $\{x_n\}$ сходиться, то она имеет единственный предел.

12 Свойства сходящихся последовательностей

Утверждение: Если $\{x_n\}$ - б.м.п, тогда $x_n \xrightarrow{n \to \infty} 0$

Утверждение: Если $\{x_n\}$ сходится, то $\exists C > 0 : \forall n \in \mathbb{N} \to |x_n| < C$

Не всякая ограниченная последовательность является сходяшейся

Все члены последовательности с достаточно большими номерами положительны, если ее предел положителен и отрицательны если ее предел отрицателен

Сходящаяся последовательность ограничена

13 Монотонные последовательности и их свойства связанные с пределами

Определение: последовательность элементы которой с увеличением номера не убывают или не возрастают Последовательность $\{x_n\}$ называется возрастающей $(\{x_n\}\uparrow)$, если $\forall n\in\mathbb{N}\to x_{n+1}\geqslant x_n$. Последовательность $\{x_n\}$ называется убывающей $(\{x_n\}\downarrow)$, если $\forall n\in\mathbb{N}\to x_{n+1}\leqslant x_n$

Для того чтобы монотонная последовательность $\{x_n\}$ сходилась, необходимо и достаточно, что бы она была ограничена.

14 Число Д. Непера (число е)

 $e := \lim_{n \to \infty} (1 + \frac{1}{n})^n \approx 2{,}71828$

15 Подпоследовательности и их свойства, предельные точки

Определение: Пусть $\{x_n\}$ - некоторая последовательность и пусть $\{k_n\}$ - некоторая строго возрастающая последовательность состоящая из натуральных чисел. Тогда последовательность $y_n = k_{x_n}$ называется подпоследовательностью последовательностью последовательность $\{x_n\}$.

 $k_n \geqslant n$ всегда, ибо любая последовательность, не совпадающая со своей последовательностью, получается путем некоторого прорежения элементов последовательности.

Свойство: $\exists x_n \xrightarrow{n \to \infty} a \in \mathbb{R} \Rightarrow \forall x_{k_n} \to x_{k_n} \xrightarrow{n \to \infty} a$

Свойство: Если все подпоследовательности некоторой последовательности сходятся, то они сходятся к одному и тому же пределу а (к тому же пределу а сходится и сама последовательность) Определение: Точка

 $a \in \widehat{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ называется предельной точкой последовательности $\{x_n\}$, если $\forall \epsilon > 0$ в $U(a,\epsilon)$ содержится бесконечно много элементов этой последовательности.

Определение: Точка $a \in \mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$ называется предельной точкой последовательности $\{x_n\}$, если из этой последовательности можно выделить подпоследовательность, сходящуюся к пределу а. Каждая сходящаяся последовательность имеет только одну предельную точку, совпадающую с пределом этой последовательности

16 Верхний и нижний пределы последовательности

Определение: наибольшая предельная точка последовательности $\{x_n\}$ называется верхним пределом этой последовательности

Определение: наименьшая предельная точка последовательности $\{x_n\}$ называется нижним пределом этой последовательности

У всякой ограниченной последовательности существуют верхний и нижний предел, и, в частности, существует хотя бы одна предельная точка

17 Два определения предела функции

```
По Гейне: \forall \{x_n\}_{n=1}^{\infty}: (x_n \xrightarrow{n \to \infty} a \text{ и } \forall n \in \mathbb{N} \to x_n \neq a) \to f(x_n) \xrightarrow{n \to \infty} b По Коши: \forall \epsilon > 0 \exists \delta(\epsilon) > 0: \forall x: 0 < |x-a| < \delta \to |f(x)-b| < \epsilon Определения по Гейне и по Коши являются эквивалентными
```

18 Односторонние пределы функции в точке

По Коши:

Число b называется правым пределом функции f(x) в точке $a \in \mathbb{R}$, если $\forall \epsilon > 0 \exists \delta = \delta(\epsilon) > 0 : \forall x : a < x < a + \delta \rightarrow |f(x) - b| < \epsilon$

Число b называется левым пределом функции f(x) в точке $a \in \mathbb{R}$, если $\forall \epsilon > 0 \exists \delta = \delta(\epsilon) > 0 : \forall x : a - \delta < x < a \to |f(x) - b| < \epsilon$

19 Модификации условия Коши сходимости функции

Односторонние пределы по Коши:

```
\begin{split} &\lim_{x\to a+} f(x) = A \Leftrightarrow \forall \epsilon > 0 \exists \delta = \delta(\epsilon) > 0 \forall x \in (a,a+\delta) : |f(x)-A| < \epsilon \\ &\lim_{x\to a-} f(x) = A \Leftrightarrow \forall \epsilon > 0 \exists \delta = \delta(\epsilon) > 0 \forall x \in (a-\delta,a) : |f(x)-A| < \epsilon \\ &\lim_{x\to -\infty} f(x) \Leftrightarrow \forall \epsilon > 0 \exists N_\epsilon > 0 \forall x < -N_\epsilon : |f(x)-a| < \epsilon \\ &\lim_{x\to +\infty} f(x) \Leftrightarrow \forall \epsilon > 0 \exists N_\epsilon > 0 \forall x > N_\epsilon : |f(x)-a| < \epsilon \\ &\lim_{x\to \infty} f(x) = \infty = \Leftrightarrow \forall \epsilon > 0 \exists N_\epsilon > 0 \forall x, |x| > N_\epsilon : |f(x)| > \epsilon \end{split}
```

20 Символы Ландау

"О БОЛЬШОЕ": Символом "О"обозначают любую функцию f(x) = O(g(x)), ограниченную относительно функции g(x) при $x \to a \in \widehat{\mathbb{R}}$

"о малое": Функция $\alpha(x)$ является бесконечно малой функцией по сравнению с функцией $\beta(x)$ при $x \to \alpha$ то есть $\alpha(x) = o(\beta(x))$ при $x \to a$, если $\exists \mathring{\mathbb{U}}(a) : \alpha(x) = \beta(x)\varphi(x)$ при $x \to a$, где $\varphi(x) \xrightarrow{x \to a} 0$ Свойства:

1.
$$o(c \cdot f(x)) = o(f(x)), c \neq 0$$

2.
$$o(f(x)) \pm o(g(x)) = o(f(x))$$

3.
$$o(f(x)) \cdot o(g(x)) = o(f(x)g(x))$$

4.
$$o(f(x) + f(x)) = o(f(x))$$

5.
$$O(c \cdot f(x)) = O(f(x)), c \neq 0$$

```
6. O(f(x)) \cdot O(g(x)) = O(f(x)g(x))
```

- 7. O(o(f(x))) = o(f(x))
- 8. O(O(f(x))) = O(f(x))
- 9. o(O(f(x))) = o(f(x))

21 Эквивалентность функций

Определение: Пусть $f(x) \neq 0$ и $g(x) \neq 0 \forall x \in \mathbb{U}(a)$. Тогда функции считаются эквивалентными при $x \to a$, если $\lim_{x \to a} \frac{f(x)g(x)}{=}1$

Список эквивалентных функций при $x \to 0$:

- 1. $\sin x \sim x$
- 2. $1 \cos x \sim \frac{x^2}{2}$
- 3. $\operatorname{tg} x \sim x$
- 4. $\arcsin x \sim x$
- 5. $arctg \sim x$
- 6. $a^{a(x)} 1 \sim a(x) \ln a$
- 7. $ln(1+x) \sim x$
- 8. $(1+x)^a 1 \sim ax$

22 Определение непрерывности функции в точке

Формальное определение: Функция f(x) называется непрерывной в точке $a \in \mathbb{R}$, если функция f(x) имеет в точке a конечный предел равный частному значению f(a), то есть $\lim_{x\to a} f(x) = f(a)$

По Гейне: Функция f(x) называется непрерывной в точке $a \in \mathbb{R}$, если $\forall \{x_n\} : x_n \xrightarrow{n \to \infty} a$, соответствующая $\{f(x_n)\} \xrightarrow{n \to \infty} f(a)$

По Коши: Функция f(x) называется непрерывной в точке $a \in \mathbb{R}$, если $\forall \epsilon > 0 \exists \delta(\epsilon) > 0 : \forall x \in D(f) : |x-a| < \delta \to |f(x) - f(a)| < \epsilon$

23 Точки разрыва функции и их классификация

УСТРАНИМЫЙ РАЗРЫВ: точка а называется точкой устранимого разрыва функции f(x), если $\exists \lim_{x \to a} f(x)$, но либо $a \notin D(f)$, либо $f(a) \neq \lim_{x \to a} f(x)$

РАЗРЫВ ПЕРВОГО РОДА: точка а называется точкой разрыва первого рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу пределы $\lim_{x\to a^-} f(x) \neq \lim_{x\to a^+} f(x)$

РАЗРЫВ ВТОРОГО РОДА: точка а называется точкой разрыва второго рода, если в этой точке функция f(x) не имеет по крайней мере одного из односторонних пределов или если хотя бы один из них бесконечен

24 Непрерывность монотонной функции

ТЕОРЕМА: Пусть функция f(x) возрастает (или убывает) на отрезке [a,b], далее предположим $a=f(a), \beta=f(b)$. Тогда для того что бы функция f(x) являлась непрерывной на отрезке [a,b], необходимо и достаточно, что бы любое число $\gamma:\alpha<\gamma<\beta$, было значением этой функции

25 Локальные свойства непрерывных функций

К локальным свойствам те свойства функции, которые справедливы в сколь угодно малой окрестности фиксированной точки области определения функции. Эти свойства характеризуют поведение функции при стремлении аргумента к исследуемой точке.

НЕПРЕРЫВНОСТЬ ФУНКЦИЙ НАД АРИФМЕТИЧЕСКИМИ ОПЕРАЦИЯМИ: пусть на одном и том же множестве заданы функции f(x) и g(x), непрерывные в точке а. Тогда функции: $f(x) \pm g(x)$, $f(x) \cdot g(x)$, $\frac{f(x)}{g(x)}$ непрерывны в точке а

НЕПРЕРЫВНОСТЬ В СЛОЖНОЙ ФУНКЦИИ: пусть функция $\varphi(t)$ непрерывна в точке a, а функция y=f(x) непрерывна в точке $b=\varphi(a)$. Тогда функция $y=f|\varphi(t)|$ непрерывна в точке a

26 Глобальные свойства непрерывных функций

Глобальные свойства связаны со всей областью определения функции.

Теорема Больцано-Коши о промежуточном значении: $(f \in C[a,b] \land (f(a) \cdot f(b) < 0) \Rightarrow \exists c \in [a,b] (f(c) = 0)$

I теорема Вейерштрасса: Всякая непрерывная на отрезке функция ограничена и достигает на нем своей верхней и своей нижней граней.

II теорема Вейерштрасса: Функция, непрерывная на отрезке [a,b], ограничена на этом отрезке.

27 Равномерная непрерывность функции

Функция $f: E \to \mathbb{R}$ называется равномерно непрерывной на множестве $D \subset E$, если $\forall \epsilon > 0 \exists \delta > 0: \forall x_1 x_2 \in D: |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \epsilon$