

HCAI5TML01 – Mathematics of Learning. Week – 2: Lecture – 01

A Refresher on the Mathematics Behind Machine Learning. Fundamental Theory of Linear Algebra.

Siman Giri

1. Fundamental Theorem of Linear Algebra. {FTLA}

CENTER FOR AI.

1.1 What is FTLA?

• The **Fundamental Theorem of Linear Algebra (FTLA)** summarizes the relationships between the four fundamental subspaces associated with a matrix.

1.2 Fundamental Subspace and Machine Learning.

- We are solving the **linear regression problem**, **defined**:
 - Ax = y
 - where:
 - $A \in \mathbb{R}^{m \times n}$ is your design matrix (inputs/features),
 - $\mathbf{x} \in \mathbb{R}^{\mathbf{n}}$ is the parameter vector (model weights),
 - $y \in \mathbb{R}^m$ is the target output.
- Evaluate Existence and Uniqueness of Solutions:
 - If **design matrix A** is full rank matrix.
 - If **design matrix A** is rank deficient matrix.
- Remember:
 - The Four Fundamental subspaces of A:
 - Column Space $C(A) \subseteq \mathbb{R}^m$:
 - All vectors y for which Ax = y has at least one solution.
 - Null Space $\mathcal{N}(A) \subseteq \mathbb{R}^n$:
 - All vectors x such that Ax = 0:
 - Row Space $C(A^T) \subseteq \mathbb{R}^n$:
 - The span of the rows of A.
 - Left Null Space $\mathcal{N}(\mathbf{A}^T) \subseteq \mathbb{R}^m$:
 - All vectors z such that $\mathbf{A}^{\mathsf{T}}\mathbf{z} = \mathbf{0}$.

1.2.1 Existence of the Solution.

- When does the linear system Ax = y have at **least one solution**?
 - Fundamental Condition:
 - $y \in C(A)$
 - y must lie within the column space of A for any solution to exist.
 - Then what does $y \notin C(A)$ mean?
 - y lies outside the subspace spanned by A.
 - In this case, the system is inconsistent there is **no exact solution**.
 - What does this mean?
 - We can still **approximate a solution** that is:
 - Find $\hat{\mathbf{x}}$ such that:
 - $\mathbf{A}\mathbf{x} \approx \mathbf{y}$
 - This is called the **least squares solution**:
 - $\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x}} ||\mathbf{A}\mathbf{x} \mathbf{y}||^2$
 - It gives the closest point $\hat{\mathbf{y}} = \mathbf{A} \cdot \hat{\mathbf{x}} \in \mathbf{C}(\mathbf{A})$ to \mathbf{y} .
 - Reminder:
 - This is not a solution to $\mathbf{A}\mathbf{x} = \mathbf{y}$, It is a solution to $\min_{\mathbf{x}} ||A\mathbf{x} \mathbf{y}||$.

1.2.2 Uniqueness of Solution.

- When is the solution to Ax = y unique (if it exists)?
 - Fundamental Condition:
 - There exist a unique solution if **Null space has trivial solution** i.e.
 - $\mathcal{N}(A) = \{0\}$
 - Why?
 - Proof by Contradiction:
 - If $\mathbf{x_0}$ is one solution to $\mathbf{A}\mathbf{x} = \mathbf{y}$, there exist a vector $\mathbf{z} \neq \{\mathbf{0}\} \in \mathcal{N}(\mathbf{A})$:
 - $A(x_0 + z) = Ax_0 + Az = y + 0 = y$
 - so, any vector of the form $\mathbf{x}_{new} = \mathbf{x_0} + \mathbf{z}$ is also a valid solution!
 - Thus, you have infinitely many solutions.

1.2.3 If $A \in \mathbb{R}^{m \times n}$ is Full Rank.

- 1. If A is square and full rank (invertible):
 - There exists a unique solution $x = A^{-1}y$.
 - The system $\mathbf{A}\mathbf{x} = \mathbf{y}$ can be solved exactly.
 - No null space exists except the zero vector, no infinite solutions.
- 2. If A is full column rank but rectangular (tall matrix, m > n):
 - The columns of A are linearly independent.
 - The system might be overdetermined i.e. more equations than unknowns.
 - Usually, no exact solution x exists that satisfies Ax = y.
 - Instead, you can find a unique least square solution *minimizing* $||Ax y||_2$ such that:
 - $\mathbf{x} = (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{y}$
 - Because (A^TA) is invertible due to full column rank, the least squares solution is unique.

1.2.3 If $A \in \mathbb{R}^{m \times n}$ is Full Rank.

- 3. If A is full row rank but wide matrix (wide matrix, m < n):
 - Rows are linearly independent.
 - The system is undetermined i.e. more unknowns than equations.
 - Infinite solutions may exist because null space is non trivial.
 - Solution x satisfy Ax = y, but there are infinitely many.
 - Often, one picks the **minimum norm solution** using the **pseudoinverse**:

•
$$x = A^T(AA^T)^{-1}y$$
.

1.2.3.1 Summary Table.

Matrix Shape	Full Rank Condition	Solution Type	Notes
Square n × n	rank = n	Unique exact solution: $x = A^{-1}y$	A is invertible.
Tall $m \times n, m > n$	rank = n	Unique least square solution	Overdetermined system
wide $m \times n$, $m < n$	rank = m	Infinité solutions; minimum norm solution via pseudoinverse	Undetermined System

1.2.4 If $A \in \mathbb{R}^{m \times n}$ is Rank Deficient.

- Rank deficient means:
 - rank(A) < min(m, n)
 - i.e. Some columns of A are linearly dependent (redundant or perfectly correlated features)
- Then:
 - $\mathcal{N}(A)$ contains non zero vectors.
 - So, if a solution exists (i.e. if $y \in C(A)$),
 - there are infinitely many solution (because you can add any vector from the null space.)
 - If $y \notin C(A)$, then no solution exists.
- Then what do we do when A is rank deficient?

1.2.5 What do we do when A is rank deficient?

1. Remove or Combine redundant features:

- Perform **feature selection** or **dimensionality reduction** (e.g., PCA) to remove dependencies between columns.
- After reducing feature space to full rank, the unique solution can be found as usual.

2. Regularization:

- To avoid instability and deal with rank, deficiency regularization methods are used:
- For Example, Ridge Regression (L2 regularization):

•
$$\hat{\mathbf{x}} = (\mathbf{A}^{\mathrm{T}}\mathbf{A} + \lambda \mathbf{I})^{-1}\mathbf{A}^{\mathrm{T}}\mathbf{y}, \lambda > \mathbf{0}$$

- Adding λI makes $A^TA + \lambda I$ invertible even if A^TA is singular.
- This shrinks coefficients and selects a unique, stable solution.

1.2.5.1 What do we do when A is rank deficient?

- 3. Find a solution despite infinite possibilities:
 - Since infinite solutions exist (due to null space vectors):
 - Pick the minimum norm solution,
 - which is the **solution** x with the smallest Euclidean norm $||x||_2$.
 - This solution can be found using the *Moore-Penrose pseudoinverse* A^+ :
 - $\hat{\mathbf{x}} = \mathbf{A}^{+}\mathbf{y}$.

1.3 What is the Moore-Penrose Pseudoinverse?

- The Moore-Penrose pseudoinverse of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a matrix:
 - $A^+ \in \mathbb{R}^{n \times m}$ that generalizes the inverse of A and satisfies following four specific conditions.
- It provides unique, best possible solution to linear system, even when A is not square or not full rank.
- Moore Penrose Conditions:
 - Reflexivity $AA^+A = A$
 - It means that:
 - If we apply the pseudoinverse A⁺ to A
 - And then apply A again,
 - You return to the original matrix, represents the generalized inverse because:
 - It acts like a true inverse when A is invertible: $A^+ = A$.
 - It gives best approximate solutions when A is not invertible.
 - Reflexivity dual: $A^+AA^+ = A^+$
 - Symmetry: $(AA^+)^T = AA^+$
 - Symmetry dual: $(A^+A)^T = A^+A$

1.3.1 Computing Pseudoinverse A⁺.

Case	A ⁺
A is invertible	$A^+ = A^{-1}$
A full column rank	$\mathbf{A}^{+} = \left(\mathbf{A}^{\mathrm{T}}\mathbf{A}\right)^{-1}\mathbf{A}^{\mathrm{T}}$
A full row rank	$\mathbf{A}^+ = \mathbf{A}^{\mathrm{T}} \big(\mathbf{A} \mathbf{A}^{\mathrm{T}} \big)^{-1}$

- Directly computing $(A^TA)^{-1}A^T$ can be numerically *unstable or impossible if* A^TA is **singular or ill-conditioned**.
- This is one of the reason why we need to understand **Techniques of Matrix Decomposition.**

2. Getting Started with Matrix Decompositions.

{Eigen Value Problem aka eigen – value Decompositions.}

2.1 Eigen Vector and Eigen Value.

- An eigenvector of a square matrix **A** is a non-zero vector **v** that, when multiplied by **A**, results in a scalar multiple of itself.
 - In other words, it is a vector that does not change direction when the linear transformation represented by A is applied to it.
 - Instead, it only gets scaled by a certain factor, called the **eigenvalue**.
- Mathematically, for any **Matrix vector** pair if following holds:
 - $Av = \lambda v$
 - then the **vector** v is called eigen vector and the **scaling factor** λ is called eigen value.
- Key points about eigen vectors:
 - Non-zero: Eigenvectors are always non-zero vectors, i. e. $\mathbf{v} \neq \mathbf{0}$.
 - Scaling: The transformation A simply scales the eigenvector by the eigenvalue λ ;
 - it does not change the **vector's direction**.
 - **Multiple eigenvectors**: For each eigenvalue, there can be infinitely many eigenvectors, all scalar multiples of each other. They form a subspace (called the eigenspace) corresponding to that eigenvalue.

2.1.1 Identify the Eigen Vector.

- Consider a matrix
 - $A = \begin{bmatrix} 2 & 2 \\ -4 & 8 \end{bmatrix}$ and
 - vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$; $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
- Which are Eigen vectors?
 - For $v \rightarrow we$ check if v is an eigenvector by calculating Av:

• Av =
$$\begin{bmatrix} 2 & 2 \\ -4 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Rightarrow 4v$$
.

- So, **v** is an **eigen vector** with **eigenvalue** $\lambda = 4$.
- What about w?

2.1.1 Identify the Eigen Vector.

- Consider a matrix
 - $A = \begin{bmatrix} 2 & 2 \\ -4 & 8 \end{bmatrix}$ and
 - vectors $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$; $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
- Which are Eigen vectors?
 - For $w \rightarrow we$ check if w is an eigenvector by calculating Aw:

• Aw =
$$\begin{bmatrix} 2 & 2 \\ -4 & 8 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix} \neq \lambda w$$
.

- So, w is not an eigen vector there does not exist a
 - scalar λ under which $Aw = \lambda w$ holds true.

2.2 Eigen Value Problem.

- The **eigenvalue problem** is a fundamental concept in linear algebra and plays a critical role in various fields such as machine learning, physics, and computer science.
- It involves **finding scalar values** (called **eigenvalues**) and corresponding **non-zero vectors** (called **eigenvectors**) for a given **square matrix**.
 - Mathematically, Given a square matrix A, the eigenvalue problem is to find scalars λ and eigenvector v that satisfy the following equation.
 - $Av = \lambda v$.

2.3 Steps to solve the Eigenvalue Problem.

- Write the characteristic equation:
 - To find the eigenvalues, we rewrite the equation as:
 - $(A \lambda I)v = 0$ {called characteristic equation}
 - Where:
 - I is the identity matrix of the same size as A,
 - $\lambda \rightarrow$ eigen values.
 - $\mathbf{v} \rightarrow \mathbf{eigen} \ \mathbf{vector}$.
 - Cautions: the matrix $A \lambda I$ must be singular i.e. $det(A \lambda I) = 0$.
- Compute the characteristic polynomial:
 - Solve
 - $det(A \lambda I) = 0$,
 - which gives a **polynomial equation in** λ which is called characteristic polynomial.
- Solve the characteristic polynomial:
 - Solve the polynomial equation to find the eigenvalues λ_1 , λ_2 , ... λ_n .
- Find the eigen vectors:
 - For each eigen value λ_i ,
 - substitute it back into the equation $(A \lambda I)v = 0$ and solve for the eigenvector v.

2.3.1 Example Problem.

Eigenvalues of Matrix A

Consider a matrix A:

$$A = \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$$

The characteristic equation is:

$$\det(A - \lambda I) = \det\begin{pmatrix} 4 - \lambda & 2\\ 1 & 3 - \lambda \end{pmatrix} = 0$$

Expanding the determinant:

$$(4 - \lambda)(3 - \lambda) - 2 \times 1 = 0$$

Simplifying:

$$\lambda^2 - 7\lambda + 10 = 0$$

Solving this quadratic equation:

$$\lambda_1 = 5, \quad \lambda_2 = 2$$

2.3.1 Example Problem.

Eigenvectors of Matrix A

Next, we find the eigenvectors:

For $\lambda_1 = 5$, solve (A - 5I)v = 0:

$$(A - 5I) = \begin{pmatrix} -1 & 2\\ 1 & -2 \end{pmatrix}$$

Solving the system:

$$\begin{pmatrix} -1 & 2 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0$$

This gives the eigenvector:

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

For $\lambda_2 = 2$, solve (A - 2I)v = 0:

$$(A - 2I) = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$$

Solving the system:

$$\begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 0$$

This gives the eigenvector:

$$v_2 = \begin{pmatrix} -1\\2 \end{pmatrix}$$

Conclusion: For the matrix A, the eigenvalues are $\lambda_1 = 5$ and $\lambda_2 = 2$, with corresponding eigenvectors $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

and
$$v_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$
.

2.4 Eigenvalue Decomposition.

- Eigenvalue Decomposition is a process where a square matrix is factorized into
 - its eigenvalues and eigenvectors.
 - Specifically, for a matrix A, if it can be decomposed into a product of three matrices:
 - $A = V\Lambda V^{-1}$
 - where:
 - **A** is the original matrix.
 - **V** is the matrix whose columns are the eigenvectors of A.
 - Λ is a diagonal matrix whose diagonal entries are the eigenvalues of A.
 - V^{-1} is the inverse of the matrix V.
- One of the application of Eigenvalue decomposition is **Principal Component Analysis** used for dimensionality reduction purposes.

3. Getting Started with Matrix Decompositions.

{Singular Value Decompositions.}

3.1 What is SVD?

- Defintion:
 - For any real matrix $A \in \mathbb{R}^{m \times n}$ there exist orthogonal matrices U, V and a diagonal matrix Σ such that:
 - $A = U\Sigma V^T$
- where:
 - $U \in \mathbb{R}^{m \times m}$: columns are left singular vectors.
 - These vectors form an **orthonormal basis** for \mathbb{R}^m (column space).
 - Orthogonal columns $\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{I}$
 - They capture the directions in which A sends the unit basis vectors after scaling.
 - $V \in \mathbb{R}^{n \times n}$: columns are right singular vectors.
 - These vectors form an **orthonormal basis** for \mathbb{R}^n (row space).
 - Orthogonal columns $V^TV = I$
 - They are eigenvectors of A^TA and describe the directions of **principal axes** in the domain.
 - $\Sigma \in \mathbb{R}^{m \times n}$: diagonal matrix of **singular values i.e.** $\sigma_1 \ge \sigma_2 \ge \cdots \ge 0$
 - Σ is a **diagonal matrix**, meaning all nonzero entries are on the diagonal.
 - The number of **non-zero singular values = rank of A.**

Orthogonal Matrices:

- An **orthogonal matrix** is a real square matrix $Q \in \mathbb{R}^{n \times n}$ whose **columns and rows** are **orthonormal vectors**, meaning:
 - Columns are orthonormal:
 - $Q^TQ = QQ^T = I$
 - (where I is the identity matrix).
 - Rows are also orthonormal:
 - $QQ^T = I$
- This implies that:
 - The **inverse of Q** is its transpose: $Q^{-1} = Q^{T}$
 - The determinant of Q is either +1 or -1:
 - $det(Q) = \pm 1$.

Orthogonal Matrices: Key Properties.

- 1. Preserves Lengths (Norm):
 - For any vector x:
 - $\|\mathbf{Q}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$
 - This makes orthogonal matrices useful in rotations and reflections.
- 2. Preserves Angles & Dot Products:
 - For any vectors **x**,**y**:
 - $(\mathbf{Q} \cdot \mathbf{x})^{\mathrm{T}} (\mathbf{Q} \cdot \mathbf{y}) = \mathbf{x}^{\mathrm{T}} \mathbf{y}$
- 3. All Eigenvalues Have Magnitude 1:
 - If λ is an eigen values of Q, then $\|\lambda\| = 1$
- 4. Product of Orthogonal Matrices is Orthogonal:
 - If Q_1 and Q_2 are orthogonal, then $Q_1 \cdot Q_2$ are also orthogonal.

3.2 What does this decomposition says:

- A maps an input vector as:
 - First **rotate** it via **V**^T i.e. change coordinates into principal directions.
 - Then scale it via Σ (stretch or shrink).
 - Then **rotate again** via **U** (to map into output space).

3.3 Computing SVD.

• Theoretical Methods using Eigen Decomposition:

Component	Computation
V(right singular vectors)	Eigenvectors of A ^T A
σ_{i} (singular values)	$\sqrt{\text{eigenvalues of A}^{\text{T}}\text{A}}$
U (left singular values)	$u_i = \frac{1}{\sigma_i} A v_i$

• Practical Approach:

- Most real-world SVDs are computed using **numerical algorithms** (like Golub–Kahan SVD algorithm), typically via libraries like:
 - U, s, VT = np.linalg.svd(A)

Thank You.