Reading: 6.4, 6.8

Last time:

- Integer Knapsack
- Interval Pricing
- "finding a first decision"

Today:

• Shortest Paths.

Suggested Approach

- I. identify subproblem in english
 - $OPT(i) = "optimal schedule of <math>\{i, ..., n\}$ (sorted by start time)"
- II. specify subproblem recurrence

$$OPT(i) = max(OPT(i + 1), v_i + OPT(next(i)))$$

III. identify base case

$$OPT(n+1) = 0$$

IV. write iterative DP.

(see last thurs)

Finding Optimal Schedule

"traverse memoization table to find schedule"

Algorithm: schedule

```
\begin{aligned} i &= 1 \\ \text{while } i &< n \\ &\quad \text{if memo}[i+1] < v_i + \text{memo}[\text{next}(i)] \\ &\quad \text{schedule } i; \ i \leftarrow \text{next}(i). \\ &\quad \text{else} \\ &\quad i \leftarrow i+1. \\ &\quad \text{endif} \end{aligned}
```

Shortest Paths with Nega- Dijkstra's Path: d(s-a-t) = 3tive Weights

"e.g., currency exchange: nodes are currencies, path weights are exchange rates, minimize product of path weights."

Note: to minimize product of path weights, can minimize sum of logs of path weights.

Example: r_1r_2 $2^{\log_2 r_1 + \log_2 r_2}$

Note: if $r \leq 1$ then $\log r$ is negative.

Recall: Dijkstra's Algorithm

- 1. initialize known distance from s as ∞ , except d(s) = 0
- 2. take closest unknown vertex v
 - (a) declare v known.
 - (b) update known distances to neighbors of v if closer via v.
- 3. repeat (2) until t known.

Example:

Shortest Path: d(s-a-t) = 3.

Negative Edge Weights

Example 1: (Dijksta Fails)

Shortest Path: d(s-a-b-t) = 2.

Example 2: (may not exist)

Negative cycle \Rightarrow no shortest path.

First try:

- find most negative edge "-c"
- \bullet add c to all edges.
- run Dijkstra

Example: (apply to Example 1)

Shortest Paths: s-a-t or s-b-t, not shortest in original problem.

Second Try: Dynamic programming

subproblem:

OPT(v)

- = shortest path from v to t.
- $= \min_{u \in N(v)} \left[\underbrace{c(v, u)}_{\text{weight}} + \text{OPT}(u) \right].$

Example:

Subproblems have cyclic dependencies!

Imposing measure of progress

"parameterize subproblems to keep track of progress"

Lemma: if G has no negative cycles, then minimum cost path is **simple** (i.e., does not repeat nodes); therefore, it has at most n-1 edges.

Proof: (contradiction)

- let *P* be the min-length path with fewest number of edges.
- suppose (for contradiction) that *P* is not simple.
 - $\Rightarrow P$ repeats a vertex v.
- no negative cycle \Rightarrow path from v to v nonnegative.
 - \Rightarrow can "splice out" cycle and not increase length.
 - \Rightarrow new path has fewer edges than p.

 $\rightarrow \leftarrow$

Idea: if simple path goes $s \sim v \rightarrow u \sim t$ then u-t path has one fewer edge than v-t path.

Part I: identify subproblem in english

OPT(v, k)

= "length of shortest path from v to t with at most k edges."

Part II: write recurrence

OPT(v, k)

 $= \min_{u \in N(v)} \left[c(v, u) + \mathrm{OPT}(u, k - 1) \right]$

Part III: base case

- for all k: OPT(t, k) = 0.
- for all $v \neq t$: $OPT(v, 0) = \infty$.

Part IV: iterative DP

Algorithm: Bellman-Ford

1. initialize

for all k: memo[t, k] = 0.

for all $v \neq t$: memo $[v, 0] = \infty$.

2. for k = 1 up to n - 1,

for all v

 $\operatorname{memo}[v, k] = \min_{u \in N(v)} \operatorname{OPT}(u, k - 1).$

3. return memo[s, n-1].

Example:

	0	1	2	3
s	∞	∞	3	2
a	∞	2	1	1
b	∞	-2	-2	-2
t	0	0	0	0

Correctness

lemma + induction.

Runtime

$$T(n,m) = (\text{"size of table"})^n \times (\text{"cost per entry"})^n$$

= $O(n^3)$

(better accounting: $T(n,m) = O(n^2 + nm) = O(nm)$)