13

Vector Functions

13.1

Vector Functions and Space Curves

If we place the initial point of a vector \mathbf{a} at the origin of a rectangular coordinate system, then the terminal point of \mathbf{a} has coordinates of the form (a_1, a_2) or (a_1, a_2, a_3) , depending on whether our coordinate system is two- or three-dimensional.

These coordinates are called the **components** of **a** and we write

$$\mathbf{a} = \langle a_1, a_2 \rangle$$
 or $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$

We use the notation $\langle a_1, a_2 \rangle$ for the ordered pair that refers to a vector so as not to confuse it with the ordered pair (a_1, a_2) that refers to a point in the plane.

For instance, the vectors shown here are all equivalent to the vector $\overrightarrow{OP} = \langle 3, 2 \rangle$ whose terminal point is P(3, 2).

If
$$\mathbf{a} = \langle a_1, a_2 \rangle$$
 and $\mathbf{b} = \langle b_1, b_2 \rangle$, then
$$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle \qquad \mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$$
$$c\mathbf{a} = \langle ca_1, ca_2 \rangle$$

Similarly, for three-dimensional vectors,

$$\langle a_1, a_2, a_3 \rangle + \langle b_1, b_2, b_3 \rangle = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$$

 $\langle a_1, a_2, a_3 \rangle - \langle b_1, b_2, b_3 \rangle = \langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$
 $c \langle a_1, a_2, a_3 \rangle = \langle ca_1, ca_2, ca_3 \rangle$

We denote by V_2 the set of all two-dimensional vectors and by V_3 the set of all three dimensional vectors with the above operations.

Three vectors in V_3 play a special role. Let

$$\mathbf{i} = \langle 1, 0, 0 \rangle$$
 $\mathbf{j} = \langle 0, 1, 0 \rangle$ $\mathbf{k} = \langle 0, 0, 1 \rangle$

Then **i**, **j**, and **k** are vectors that have length 1 and point in the directions of the positive x-, y-, and z-axes. Similarly, in two dimensions we define $\mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{j} = \langle 0, 1 \rangle$.

If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, then we can write

$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle = \langle a_1, 0, 0 \rangle + \langle 0, a_2, 0 \rangle + \langle 0, 0, a_3 \rangle$$

$$= a_1 \langle 1, 0, 0 \rangle + a_2 \langle 0, 1, 0 \rangle + a_3 \langle 0, 0, 1 \rangle$$

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$

Thus any vector in V_3 can be expressed in terms of the standard basis vectors \mathbf{i} , \mathbf{j} , and \mathbf{k} . For instance,

$$\langle 1, -2, 6 \rangle = i - 2j + 6k$$

Similarly, in two dimensions, we can write

$$\mathbf{a} = \langle a_1, a_2 \rangle = a_1 \mathbf{i} + a_2 \mathbf{j}$$

Geometric interpretation:

Standard basis vectors in V_2 and V_3

(a)
$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j}$$

k

Length (magnitude)

By using the distance formula to compute the length of a segment *OP*, we obtain the following formulae.

The length of the two-dimensional vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}$$

The length of the three-dimensional vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

A **unit vector** is a vector whose length is 1. For instance, **i**, **j**, and **k** are all unit vectors. In general, if $\mathbf{a} \neq \mathbf{0}$, then the unit vector that has the same direction as **a** is

$$\mathbf{u} = \frac{1}{|\mathbf{a}|} \mathbf{a} = \frac{\mathbf{a}}{|\mathbf{a}|}$$

In general, a function is a rule that assigns to each element in the domain an element in the range.

A **vector-valued function**, or **vector function**, is simply a function whose domain is a set of real numbers and whose range is a set of vectors.

We are most interested in vector functions **r** whose values are three-dimensional vectors.

This means that for every number t in the domain of \mathbf{r} there is a unique vector in V_3 denoted by $\mathbf{r}(t)$.

If f(t), g(t), and h(t) are the components of the vector $\mathbf{r}(t)$, then f, g, and h are real-valued functions called the **component functions** of \mathbf{r} and we can write

$$\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$$

We use the letter *t* to denote the independent variable because it represents time in most applications of vector functions.

If $\mathbf{r}(t) = \langle t^3, \ln(3-t), \sqrt{t} \rangle$, then find the component functions and the domain.

The **limit** of a vector function **r** is defined by taking the limits of its component functions as follows.

1 If
$$\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$$
, then

$$\lim_{t \to a} \mathbf{r}(t) = \left\langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \right\rangle$$

provided the limits of the component functions exist.

Limits of vector functions obey the same rules as limits of real-valued functions.

Find $\lim_{t\to 0} \mathbf{r}(t)$ where

$$\mathbf{r}(t) = (1+t^3)\mathbf{i} + te^{-t}\mathbf{j} + \frac{\sin t}{t}\mathbf{k}$$

A vector function **r** is **continuous** at **a** if

$$\lim_{t\to a}\mathbf{r}(t)=\mathbf{r}(a)$$

In view of Definition 1, we see that **r** is continuous at *a* if and only if its component functions *f*, *g*, and *h* are continuous at *a*.

There is a close connection between continuous vector functions and space curves.

Suppose that f, g, and h are continuous real-valued functions on an interval I.

Then the set C of all points (x, y, z) in space, where

$$x = f(t)$$

$$x = f(t)$$
 $y = g(t)$ $z = h(t)$

$$z = h(t)$$

and t varies throughout the interval I, is called a **space** curve.

The equations in 2 are called **parametric equations of** C and t is called a parameter.

We can think of C as being traced out by a moving particle whose position at time t is (f(t), g(t), h(t)).

If we now consider the vector function $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$, then $\mathbf{r}(t)$ is the position vector of the point P(f(t), g(t), h(t)) on C.

Thus any continuous vector function \mathbf{r} defines a space curve C that is traced out by the tip of the moving vector $\mathbf{r}(t)$, as shown in Figure 1.

Figure 1

C is traced out by the tip of a moving position vector $\mathbf{r}(t)$.

Describe the curve defined by the vector function

$$\mathbf{r}(t) = \langle 1 + t, 2 + 2t, -1 + 6t \rangle$$

Sketch the curve whose vector equation is

$$\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}$$

The curve is called a **helix**.

Find a vector function that represents the curve of intersection of the cylinder $x^2 + y^2 = 1$ and the plane y + z = 2.

13.2

Derivatives and Integrals of Vector Functions

The **derivative** r' of a vector function r is defined in much the same way as for real valued functions:

$$\frac{d\mathbf{r}}{dt} = \mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$

if this limit exists. The geometric significance of this definition is shown in Figure 1.

Figure 1

If the points P and Q have position vectors $\mathbf{r}(t)$ and $\mathbf{r}(t+h)$, then \overrightarrow{PQ} represents the vector $\mathbf{r}(t+h) - \mathbf{r}(t)$, which can therefore be regarded as a secant vector.

If h > 0, the scalar multiple $(1/h)(\mathbf{r}(t+h)-\mathbf{r}(t))$ has the same direction as $\mathbf{r}(t+h)-\mathbf{r}(t)$. As $h\to 0$, it appears that this vector approaches a vector that lies on the tangent line.

For this reason, the vector $\mathbf{r}'(t)$ is called the **tangent vector** to the curve defined by \mathbf{r} at the point P, provided that $\mathbf{r}'(t)$ exists and $\mathbf{r}'(t) \neq \mathbf{0}$. The **tangent line** to C at P is defined to be the line through P parallel to the tangent vector $\mathbf{r}'(t)$.

We will also have occasions to consider the **unit tangent vector**, which is

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$$

The following theorem gives us a convenient method for computing the derivative of a vector function **r**: just differentiate each component of **r**.

Theorem If $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where f, g, and h are differentiable functions, then

$$\mathbf{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k}$$

Examples 1 and 2

Example 1.

- (a) Find the derivative of $\mathbf{r}(t) = (1 + t^3)\mathbf{i} + te^{-t}\mathbf{j} + \sin 2t\mathbf{k}$.
- (b) Find the unit tangent vector at the point where t = 0.

Example 2.

Find the parametric equation for the tangent line to the helix with parametric equations

$$x = 2\cos t$$
 $y = \sin t$ $z = t$

at the point $\left(0,1,\frac{\pi}{2}\right)$.

Just as for real-valued functions, the **second derivative** of a vector function \mathbf{r} is the derivative of \mathbf{r}' , that is, $\mathbf{r}'' = (\mathbf{r}')'$.

For instance, the second derivative of the function,

$$\mathbf{r}(t) = \langle 2 \cos t, \sin t, t \rangle$$
, is

$$\mathbf{r}''(t) = \langle -2 \cos t, -\sin t, 0 \rangle$$

Differentiation Rules

Differentiation Rules

The next theorem shows that the differentiation formulas for real-valued functions have their counterparts for vector-valued functions.

Theorem Suppose \mathbf{u} and \mathbf{v} are differentiable vector functions, c is a scalar, and f is a real-valued function. Then

1.
$$\frac{d}{dt} [\mathbf{u}(t) + \mathbf{v}(t)] = \mathbf{u}'(t) + \mathbf{v}'(t)$$

$$2. \ \frac{d}{dt} [c\mathbf{u}(t)] = c\mathbf{u}'(t)$$

3.
$$\frac{d}{dt} [f(t)\mathbf{u}(t)] = f'(t)\mathbf{u}(t) + f(t)\mathbf{u}'(t)$$

4.
$$\frac{d}{dt} [\mathbf{u}(t) \cdot \mathbf{v}(t)] = \mathbf{u}'(t) \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \mathbf{v}'(t)$$

5.
$$\frac{d}{dt}[\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$$

6.
$$\frac{d}{dt} \left[\mathbf{u}(f(t)) \right] = f'(t) \mathbf{u}'(f(t))$$
 (Chain Rule)

Show that if $|\mathbf{r}(t)| = c$ (a constant), then $\mathbf{r}'(t)$ is orthogonal to $\mathbf{r}(t)$ for all t.