(5) Integrali función in due voushli fiR2->1R

Teo viducion per utteryols

$$\iint_{[a,b],b[c,a]} dxdy = \iint_{a} \left(\int_{c} d(x,y) dx \right) dx = \iint_{c} \left(\int_{a}^{b} d(x,y) dx \right) dy$$

(a)
$$q(x) = \int_{C}^{d} f(x,y) dy \in \mathbb{R}$$
 | (b) $\widehat{Q}(y) = \int_{C}^{b} f(x,y) dx$ | (b) $\int_{C}^{d} \widehat{Q}(y) dy$

(a)
$$\widehat{\mathcal{C}}(y) = \int_{0}^{\infty} f(x,y) dx$$

$$\iint_{\Omega} \left(f(x,y) + g(x,y) \right) dxdy = \iint_{\Omega} f(x,y) dxdy + \iint_{\Omega} g(x,y) dxdy$$

2 Positinto e monotonia respetto all'integrande

3 MonoTonia respetto L dominio di integrazione

$$a \in \Omega$$
, $f \geq 0$ in Ω

$$a' \in \Omega$$
, $j \ge 0$ in Ω => $\iint f(xy)dxdy \le \iint f(xy)dxdy$

(a) Additivité dell'integrale respetto d'dominib di integrasion

$$\Omega_4, \Omega_2$$
, $\Omega_4 \cap \Omega_2 = \phi$, of integrable so $\Omega_4 \cup \Omega_2$

Eserc 1
$$f(x,y) = x^3 + y^3 + xy$$

. Trouse put cotrew abero.

• Of
$$(xy) = 3x^2 + y$$

Ox

Ox

(\lambda(y) = 3y^2 + X

$$\int 3x^{2} + y = 0 \qquad - > y = -9x^{2}$$

$$3y^{2} + x = 0 \qquad - > 3.9x^{4} + x = 0 = > 27x^{4} + x = 0$$

 $\times (27x^3 + 1) = 0$ x = 0 $27x^3 + 1 = 0$

 $x^{3} = -\frac{1}{27}$, $x = -\frac{1}{3}$

•
$$x = -\frac{1}{3}$$
, $y = -\frac{1}{3}$: $P_2 = (-\frac{1}{3}, -\frac{1}{3})$

$$\frac{\partial^2 f}{\partial x^2} (x_1 y_2) = 6x \qquad \frac{\partial^2 f}{\partial y^2} (x_1 y_2) = 6y \qquad \frac{\partial^2 f}{\partial x_2} (x_1 y_2) = 1$$

$$(P_1)$$
 $H_{\frac{1}{2}}(0,0) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $detH_{\frac{1}{2}}(0,0) = 0 - 1 = -1 < 0 \Longrightarrow P_2$ selle

$$\frac{1}{1} = \frac{1}{1} = \frac{1}$$

$$dot + 1y(-\frac{1}{3} \frac{1}{3}) = 4 - 1 = 3 > 0$$

$$\frac{\partial^2 f}{\partial x^2} \left(-\frac{1}{3}, \right) = -2 < 0 \Rightarrow P_2 \text{ MASSIMO (Coole)}$$

$$f(xy) = x + e^y$$
. Calclow to \overline{e} on 6 defisions in $(1,0)$

Lezione 3 Pagina

$$\frac{4+1+3}{16} \times^{2} = 1$$

$$- > 16 \times^{2} = 1 - > \times^{2} = \frac{1}{7} - > \times = \pm \sqrt{\frac{1}{7}} = \pm 2\sqrt{\frac{1}{7}}$$

•
$$x = 2\sqrt{2}$$
, $y = \sqrt{2}$, $z = \frac{3}{4}$. $z\sqrt{2} = \frac{3}{\sqrt{4}}$