MATH 8254 Homework V

David DeMark

2 (well, 8) April 2018

We let A be a ring, $\mathfrak{a} \triangleleft A$, $X = \operatorname{Spec} A$, $Z = \operatorname{Spec} A/\mathfrak{a}$, and $\operatorname{Bl}_Z X = \operatorname{Proj} A[\mathfrak{a}T]$.

Proposition. The scheme theoretic preimage $E_Z(Z) := Z \times_X \operatorname{Bl}_Z X$ of Z w/r/t the projection $\operatorname{Bl}_Z X \to X$ is an effective Cartier divisor.

Proof. a.)

Lemma 1.A. For any $a \in \mathfrak{a}$, $\Gamma(D_{+}(aT), \mathcal{O}_{\mathrm{Bl}_{Z}X}) = (A[\mathfrak{a}T]_{aT})_{0}$ is isomorphic to the subalgebra $A[a^{-1}\mathfrak{a}] = A \oplus a^{-1}\mathfrak{a} \oplus a^{-2}\mathfrak{a}^{2} \oplus \cdots \subset A_{a}$

Proof. We note that any element $x \in (A[\mathfrak{a}T]_{aT})_0$ can be written $x = \frac{bT^k}{(aT)^k}$ where $b \in \mathfrak{a}^k$, while any $y \in A[a^{-1}A]$ can be written $\frac{c}{a^\ell}$ where $c \in \mathfrak{a}^\ell$. We construct $\phi : (A[\mathfrak{a}T]_{aT})_0 \to A[a^{-1}A]$ by $\frac{bT^k}{(aT)^k} \mapsto \frac{b}{a^k}$ and wish to show ϕ is an isomorphism. To show that ϕ is well-defined, we suppose $\frac{bT^k}{(aT)^k} = \frac{b'T^\ell}{(aT)^\ell}$. Then, we have that for some r,

$$(aT)^r \left((aT)^\ell b T^k - (aT)^k b' T^\ell \right) = 0$$

in $A[\mathfrak{a}T]$. We view $A[\mathfrak{a}T]$ as a subalgebra of A[T]. Then, we have that

$$T^{\ell+k+r} \left(a^{r+\ell}b - a^{r+k}b' \right) = 0$$

As T is a nonzero-divisor in A[T], we have that $a^{r+\ell}b - a^{r+k}b' = 0$ in $A \subset A[T]$. Thus, in A_a , we have that $\frac{b}{a^k} = \frac{b'}{a^\ell}$, as desired, so our ϕ is indeed well-defined. Injectivity and surjectivity then come along easily: to see injectivity, we suppose $\phi(\frac{b}{(aT)^k}) = \phi(\frac{b'}{(aT)^\ell})$, i.e. $\frac{b}{a^k} = \frac{b'}{a^\ell}$. We then have that there is some r such that, in A,

$$a^r(ba^\ell - b'a^k) = 0$$

Then, in A[T], we multiply through by $T^{k+\ell+r}$ to yield

$$T^{k+\ell+r}a^r(ba^\ell-b'a^k)=(aT)^r\left((aT)^\ell bT^k-(aT)^k b'T^\ell\right)=0$$

Thus, we have that $\frac{bT^k}{(aT)^k} = \frac{b'T^\ell}{(aT)^\ell}$. Finally, surjectivity follows obviously from what we have done so far. If $x = \frac{bT}{a^k} \in A[a^{-1}\mathfrak{a}]$, then, $x = \phi(\frac{bT^k}{(aT)^k})$.

I'm only convinced that this is even true if

Prompt. Determine the Čech cohomology of the structure sheaf of X, the affine line with doubled origin with respect to the usual open affine cover \mathcal{U} consisting of two open affine subsets isomorphic to \mathbb{A}^1_k .

Computation. We name our two open affines U_0 and U_1 with each $U_i \cong \operatorname{Spec} k[x] = \mathbb{A}^1_k$. We have that $C^0(\mathcal{U}, \mathcal{O}_X) = \mathcal{O}_X(U_1) \otimes \mathcal{O}_X(U_2) = k[x] \oplus k[x]$. We also have only one nontrivial twofold intersection of the sets in our cover and thus an element of $C^1(\mathcal{U}, \mathcal{O}_X)$ is uniquely determined by its U_{01} component, that is $C^1(\mathcal{U}, \mathcal{O}_X) = \mathcal{O}_X(U_{01}) = k[x, x^{-1}]$. We now compute our only nontrivial differential d^0 on an arbitrary element $(g_0(x), g_1(x)) \in C^0(\mathcal{U}, \mathcal{O}_X)$ and have that $d^0: (g_0(x), g_1(x)) = g_1(x) - g_0(x)$ as our restriction maps are both the standard localization maps $x \mapsto x$. Thus, $H^0(\mathcal{U}, \mathcal{O}_X) = \ker d^0$, which is the diagonal subring $D(k[x] \oplus k[x]) = \{(g(x), g(x)) : g(x) \in k[x]\} \cong k[x]$. We also have that (as $C^2 = 0$) $H^1(\mathcal{U}, \mathcal{O}_X) = \operatorname{coker} d^0 = k[x, x^{-1}]/k[x]$ as an Abelian group (or module over the ring of global sections k[x]).

Prompt. Determine the Čech cohomology of the structure sheaf of \mathbb{P}^1_k with respect to the usual open affine cover \mathcal{U} consisting of two open affine subsets $D_+(x_0), D_+(x_1)$ isomorphic to \mathbb{A}^1_k .

Computation. We keep our setup from before, only changing our restriction map ρ_{01}^1 on U_1 to the map $x\mapsto x^{-1}$. We have still that $C^0(\mathcal{U},\mathcal{O}_X)=\mathcal{O}_X(U_1)\otimes\mathcal{O}_X(U_2)=k[x]\oplus k[x]$ and $C^1(\mathcal{U},\mathcal{O}_X)=\mathcal{O}_X(U_{01})=k[x,x^{-1}]$. We now compute our only nontrivial differential d^0 on an arbitrary element $(g_0(x),g_1(x))\in C^0(\mathcal{U},\mathcal{O}_X)$ and have that $d^0:(g_0(x),g_1(x))=g_1(x^{-1})-g_0(x)$, with the x^{-1} in the argument of g_1 forced by our restriction map ρ_{01}^1 . We note that if g_1 is homogenous of positive degree, then $g_1(x^{-1})$ is homogenous of negative degree, while $g_0(x)$ is of nonnegative degree. Thus, only degree 0 elements are in the kernel of d^0 , that is $\ker d^0=H^0(\mathcal{U},\mathcal{O}_X)=k$. We claim that d^0 is a surjection. Indeed, $C_1(\mathcal{U},\mathcal{O}_X)$ is the ring of Laurent polynomials in k; we let $g(x)=a_mx^m+\cdots+a_{-n}x^{-n}$ be an arbitrary element. Then, we let $g_1(x)=\sum_{k=0}^n a_{-k}x^k$ and $g_0(x)=\sum_{k=1}^m -a_kx^k$ and have that $d^0(g_0,g_1)=g$, thus showing that $H^1(\mathcal{U},\mathcal{O}_X)=0$.