- **Z1**. 12-bitni AD pretvornik ima referentni napon 5,00 V. Odredite kvantizacijski korak, kvantizacijsku pogrešku (mV) te omjer signala i šuma tog ADP-a za sinusni napon pune skale.
- **Z2**. Trokutasti napon frekvencije 1 kHz, amplitude ±1 V digitalizira se 8-bitnim AD pretvornikom sa S&H krugom. Kolika je najniža frekvencija uzorkovanja signala da se spriječi *aliasing* osnovnog harmonika?

Odredite brzinu porasta (*slew rate*) ulaznog signala. Koliko je najdulje vrijeme otvora S&H sklopa (aperturno vrijeme) uz koje neće doći do amplitude pogreške veće od $\pm 0,5$ LSB? Raspon ulaznog napona ADP-a iznosi ± 1 V.

Z3. Na analogno-digitalni pretvornik s dvostrukim pilastim naponom priključen je ulazni napon 1,5 V. Millerov integrator je izveden otpornikom od 1 M Ω i kondenzatorom od 100 nF. Referentni napon je 2,5 V. Frekvencija oscilatora je 51,282 kHz, brojilo može izbrojiti najviše 20000 impulsa.

Odredite napon na koji se nabije kondenzator u integratoru, te ukupni broj impulsa koje brojilo izbroji za vrijeme ciklusa pretvorbe.

Kolika je najveća apsolutna pogreška pretvorbe, ako je na ulazni signal superponirana smetnja iz gradske mreže amplitude 10 mV?

Z4. ADP-om s pretvorbom napona u frekvenciju mjeri se napon 2,5 V. ADP koristi Millerov integrator s vremenskom konstantom 220 μ s i ulaznim otporom od 10 $k\Omega$. Napon komparacije je -3 V. Kondenzator u integratoru se izbija tranzistorskom sklopkom zanemarivog otpora u vođenju.

Nacrtajte blok shemu ADP i označite pojedine zadane veličine. Izračunajte trajanje nabijanja kondenzatora u Millerovom integratoru. Koliko impulsa izbroji brojilo tijekom jednog mjernog ciklusa koji traje 250 ms?

Z5. Skicirati prijenos mjernog signala strujnom petljom 4-20 mA. Odrediti relativnu pogrešku prijenosa signala u odnosu na puni mjerni raspon, ako je u petlji superponirana serijska naponska smetnja 7,5 V. Izlazni otpor strujnog izvora 500 k Ω , duljina kabela 25 m, otpor kabela 0,085 Ω /m, naponsko područje prijamnika 24 V.