Feature Scaling: Standardization & Normalization

Benefits

Tunes Features (e.g, in distance-based algorithms)

Age	Smoking Level	is Lung Cancer?
20	0	0
30	3	1
50	4	1

Avoiding Different Scales

	Class label	Alcohol	Malic acid
0	1	14.23	1.71
1	1	13.20	1.78
2	1	13.16	2.36
3	1	14.37	1.95
4	1	13.24	2.59

the features **Alcohol** (percent/volume) and **Malic acid** (g/L) are measured on different scales, so that **Feature Scaling** is necessary important prior to any comparison or combination of these data.

Ref: https://sebastianraschka.com/Articles/2014_about_feature_scaling.html

Good metrics (e.g, Silhouette for Clustering)

$$a(i) = rac{1}{|C_i|-1} \sum_{j \in C_i, i
eq j} d(i,j)$$

$$b(i) = \min_{k
eq i} rac{1}{|C_k|} \sum_{j \in C_k} d(i,j)$$

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$
 \sim (-1,1)

Convergence of Gradient Descent and Related Methods

logistic regression, SVMs, perceptrons, neural networks etc. if you are using gradient descent/ascent-based optimization, otherwise some weights will update much faster than others.

Ref: Coursera Deep Learning Course 2 Week 1 notes

Standardization

Gauss.. again!

Normal Distribution

$$N(\mu,\sigma^2)$$

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(\mu - x)^2}{2\sigma^2}}$$

Standard Normal Distribution

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$$

Getting Z-Score

Ref: https://ecstep.com/wp-content/uploads/2016/10/standard-normal-distribution-6.png

A Standardization Example

- Height of a pupil = 1.4m
- Mean for pupils = 1.2m
- STD for pupils = 0.4

->
$$z$$
-score = $(1.4-1.2) / 0.4 = 0.5$,

i.e. the pupil is **half** a **standard deviation** from the **mean**.

Normalization

Normalization Formula

$$v' = rac{v - min_F}{max_F - min_F}$$

Normalization vs Standardization

- They both equals the weights (scale of magnitude) of features!
- Normalization is affected by outliers for its denominator!
- Standardization does not change the shape of the data.
- If Distance-based: Standardization (e.g, K-means, KNN, regressions, SVM, NN)
- **If Not Distance-based: Normalization** (e.g, Decision trees, Fisher LDA and Naive Bayes).

Normalization vs Standardization

- When in doubt, just standardize the data, it shouldn't hurt!
- Gaussian scaling will be helpful if your data are roughly normally distributed.

End of Presentation

Presented by Berk Sudan