CSE 203: Data Structures and Algorithms-I

Divide-and-Conquer Technique Arrays: Merge Sort, Quick Sort

Dr. Md. Abul Kashem Mia, Professor, CSE Dept and Pro-Vice Chancellor, UIU

Divide-and-Conquer Technique

- Divide-and-Conquer is a general algorithm design paradigm:
 - Divide the problem into a number of subproblems that are smaller instances of the same problem
 - Conquer the subproblems by solving them recursively
 - Combine the solutions to the subproblems into the solution for the original problem
- The base case for the recursion are subproblems of constant size
- Analysis can be done using recurrence equations

Merge Sort and Quick Sort

Two well-known sorting algorithms adopt this divide-and-conquer strategy

- Merge sort
 - Divide step is trivial just split the list into two equal parts
 - Work is carried out in the conquer step by merging two sorted lists
- Quick sort
 - Work is carried out in the divide step using a pivot element
 - Conquer step is trivial

Merge Sort: Running Time

The recurrence for the worst-case running time T(n) is

$$T(n) \le \begin{cases} O(1) & \text{if } n = 1\\ \underbrace{T(\lceil n/2 \rceil)}_{\text{solve left half}} + \underbrace{T(\lfloor n/2 \rfloor)}_{\text{dividing}} + \underbrace{O(1)}_{\text{dividing}} + \underbrace{O(n)}_{\text{merging}} & \text{otherwise} \end{cases}$$

equivalently

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \underbrace{2T(n/2)}_{\text{sorting both halves}} + \underbrace{O(n)}_{\text{dividing + merging}} & \text{otherwise} \end{cases}$$

Merge Sort: Running Time

The recurrence for the worst-case running time T(n) is

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ 2T(n/2) + O(n) & \text{if } n > 1 \end{cases}$$

equivalently

$$T(n) = \begin{cases} b & \text{if } n = 1\\ 2T(n/2) + bn & \text{if } n > 1 \end{cases}$$

By solving the recurrence, we get

$$T(n) = O(n \log n)$$
 which best case and worst case

Dr. Md. Abul Kashem Mia, Professor, CSE Dept and Pro-Vice Chancellor, UIU

Quick Sort: Algorithm

- Another divide-and-conquer algorithm
 - The array A[p..r] is *partitioned* into two non-empty subarrays A[p..q] and A[q+1..r]

- Invariant: All elements in A[p..q] are less than all elements in A[q+1..r]
- The subarrays are recursively sorted by calls to quicksort
- Unlike merge sort, no combining step: two subarrays form an already-sorted array

Quick Sort: Algorithm (Partition)

- Clearly, all the actions take place in the **partition()** function
 - Rearranges the subarrays in place
 - End result:
 - Two subarrays
 - ◆ All values in first subarray ≤ all values in the second
 - Returns the index of the "pivot" element separating the two subarrays

Dr. Md. Abul Kashem Mia, Professor, CSE Dept and Pro-Vice Chancellor, UIU

Quick Sort: Analysis

- What will be the worst case for the algorithm?
 - Partition is always unbalanced
- What will be the best case for the algorithm?
 - Partition is perfectly balanced
- Which is more likely?
 - The partition is almost balanced ...
- Will any particular input elicit the worst case?
 - Yes: Already-sorted input

Quick Sort: Worst-case Running Time

The recurrence for the worst-case running time T(n) is [Partition is always unbalanced]

$$T(n) \le \begin{cases} O(1) & \text{if } n = 1 \\ \underbrace{T(1)}_{\text{solve for single element solve for n-l element dividing merging}} + \underbrace{O(n)}_{\text{dividing merging}} + \underbrace{O(n)}_{\text{element dividing merging}} + \underbrace{O(n)}_{\text{otherwise}} + \underbrace{O(n)}_{\text{o$$

equivalently

$$T(n) = \begin{cases} O(1) & \text{if } n = 1\\ \frac{T(n-1)}{\text{sorting both halves}} + \frac{O(n)}{\text{dividing + merging}} & \text{otherwise} \end{cases}$$

Dr. Md. Abul Kashem Mia, Professor, CSE Dept and Pro-Vice Chancellor, UIU

Quick Sort: Best-case Running Time

The recurrence for the best-case running time T(n) is [Partition is always balanced]

$$T(n) \le \begin{cases} O(1) & \text{if } n = 1\\ \underbrace{T(\lceil n/2 \rceil)}_{\text{solve left half}} + \underbrace{T(\lfloor n/2 \rfloor)}_{\text{solve right half}} + \underbrace{O(n)}_{\text{dividing}} + \underbrace{O}_{\text{merging}} & \text{otherwise} \end{cases}$$

equivalently

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ 2T(n/2) + O(n) & \text{otherwise} \end{cases}$$
sorting both halves dividing + merging

Quick Sort: Running Time

• In the worst case:

$$T(n) = \begin{cases} b & \text{if } n = 1 \\ T(n-1) + bn & \text{if } n > 1 \end{cases}$$

By solving the recurrence, we get $T(n) = O(n^2)$

• In the best case:

$$T(n) = \begin{cases} b & \text{if } n = 1\\ 2T(n/2) + bn & \text{if } n > 1 \end{cases}$$

By solving the recurrence, we get

$$T(n) = O(n \log n)$$

Dr. Md. Abul Kashem Mia, Professor, CSE Dept and Pro-Vice Chancellor, UIU

Quick Sort: Analysis

- The real liability of quicksort is that it runs in $O(n^2)$ on already-sorted input
- Two solutions:
 - Randomize the input array, OR
 - Pick a random pivot element
- *How will these solve the problem?*
 - By ensuring that no particular input can be chosen to make quick-sort run in $O(n^2)$ time
 - Assuming random input, average-case running time is much closer to $O(n \log n)$ than $O(n^2)$