Линейная алгебра

2024 — 2025

Содержание

	Лекция 5.12.2024	2
	1.1 Ранг матрицы	3
2	Лекция 12.12.2024	E
	2.1 Миноры	ϵ

1 Лекция 5.12.2024

Задача 1.1. Пусть F - поле, $v_1, \ldots v_m \in F^n$, которые являются линейно независимыми. Дополнить до базиса F^n .

Решение.

- 1. В матрицу $A \in Mat_{n \times (m+n)}(F)$ по столбцам запишем векторы $v_1, \dots v_m, e_1, \dots, e_n$
- 2. Элементарными строк приводим A к ступенчатому виду A'
- 3. В качестве базиса F^n возьмем те векторы из набора $v_1, \dots v_m, e_1, \dots, e_n$, номера которых совпадают с номерами столбцов, с лидерами строк (среди них будут $v_1, \dots v_m$)

Пример.

1.
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ 4 \\ 5 \\ 6 \end{pmatrix}$

$$A = \begin{pmatrix} 1 & 2 & 1 & 0 & 0 & 0 \\ 2 & 4 & 0 & 1 & 0 & 0 \\ 3 & 5 & 0 & 0 & 1 & 0 \\ 4 & 6 & 0 & 0 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & -1 & -3 & 0 & 1 & 0 \\ 0 & 0 & -2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 & 1 \end{pmatrix}$$

2. Берем первые 4 столбца (с лидерами строк) - v_1, v_2, e_1, e_2

Решение.

- 1. Рассмотрим более эффективный способ
- 2. В матрицу A запишем v_1, \ldots, v_m
- 3. Элементарными преобразованиями столбцов приведем к транспонированному ступенчатому виду (A')

$$\begin{pmatrix} * & 0 & 0 & \dots \\ * & * & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

- 4. Дополнить набор столбцов A' до базиса F^n теми векторами стандартного базиса, номера которых не являются номерами ведущих элементов столбцов
- 5. Эти векторы дополняют и v_1,\dots,v_m до базиса

Пример.

1.
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 2 \\ 4 \\ 5 \\ 6 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 5 \\ 4 & 6 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 \\ 2 & 0 \\ 3 & -1 \\ 4 & -2 \end{pmatrix}$$

2. Нет ведущего элемента в 2 и 4 строках, а значит этими векторами и надо дополнить нашу систему: v_1, v_2, e_2, e_4

Замечание. Дополнение до базиса не единственное. Вместо любого дополняющего набора можно взять любые векторы из его линейной оболочки

2

1.1 Ранг матрицы

Определение 1. Ранг набора

Пусть V - векторное подпространство над F и $v_1,\ldots,v_m\in V$.

Рангом набора векторов называется $\dim \langle v_1, \dots, v_m \rangle$

Ранг сохраняется приэлементарных преобразованиях

Определение 2. Ранг матрицы

Пусть $A \in Mat_{m \times n}(F)$

Рангом матрицы A называется ранг ее системы строк (как векторов в F^n).

Обозначается rkA

Свойства.

1.
$$rkA = rkA^T$$

2.
$$0 \leqslant rkA \leqslant \min\{m, n\}$$

3.
$$rkA = 0 \Leftrightarrow A = 0$$

4. Ранг матрицы сохраняется при элементарных преобразованиях как строк, так и столбцов

5. Ранг A равен количеству ненулевых строк в ступенчатом виде

Лемма 1.1. Пусть $A \in Mat_{m \times n}(F)$

$$rkA = 1 \Leftrightarrow A = b \cdot c^T$$

где $b \in Mat_{m \times 1}(F), \ c \in Mat_{n \times 1}, \ b \neq 0, \ c \neq 0$

$$\begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \cdot \begin{pmatrix} c_1 & \dots & c_n \end{pmatrix} = \begin{pmatrix} b_1 \cdot c_1 & \dots & b_1 \cdot c_n \\ \vdots & \ddots & \vdots \\ b_m \cdot c_1 & \dots & b_m \cdot c_n \end{pmatrix} = \begin{pmatrix} b_1 \cdot c^T \\ \vdots \\ b_m \cdot c^T \end{pmatrix} = \begin{pmatrix} c_1 \cdot b & \dots & c_n \cdot b \end{pmatrix}$$

Доказательство.

1. Пусть b - ненулевой столбец $A, \ \forall j=1,\ldots n \ \exists \lambda_j \in F: \ A^{(j)}=\lambda_j \cdot b$

2. Тогда можно взять
$$c = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$
 и $A = b \cdot c^T$

3. Из разложение по столбцам обратный факт очевиден. (Берем $c \neq 0$, получаем ненулевой столбец . . .)

Лемма 1.2. Пусть V - векторное пространство над F.

$$u_1, \ldots, u_n \in V$$

$$v_1, \ldots, v_m \in V$$

$$\dim \langle u_1, \dots, u_n, v_1, \dots, v_m \rangle \leq \dim \langle u_1, \dots, u_n \rangle + \dim \langle v_1, \dots, v_m \rangle$$

Доказательство.

1. Пусть u_{j_1}, \dots, u_{j_s} - базис векторной оболочки $< u_1, \dots, u_n >$

2. v_{k_1}, \ldots, v_{k_n} - базис векторной оболочки $< v_1, \ldots, v_m >$

3.
$$r = \dim \langle u_1, \dots, u_n \rangle$$
, $s = \dim \langle v_1, \dots, v_m \rangle$

4.
$$\langle u_1, \dots, v_m \rangle = \langle u_{i_1}, \dots, v_{k_n} \rangle$$

5. dim
$$< \cdots > \leqslant r + s$$

Лемма 1.3. Пусть $A, B \in Mat_{m \times n}(F)$

Свойства.

1.
$$rk(A+B) \leq rkA + rkB$$

2.
$$rk(A-B) \geqslant rkA - rkB$$

Доказательство. 1

1.
$$A = (a_1, \ldots, a_n), B = (b_1, \ldots, b_n)$$

2.
$$A + B = (a_1 + b_1, \dots, a_n + b_n)$$

3.
$$\langle a_1 + b_1, \dots, a_n + b_n \rangle \leq \langle a_1, \dots, b_n \rangle$$

4.
$$rk(A+B) \leq rkA + rkB$$

Доказательство. 2

$$rkA = rk((A - B) + B) \leqslant rk(A - B) + rkB$$

Замечание. Эти неравенства достигаются (например при B=0)

Лемма 1.4. Пусть $A \in Mat_{m \times n}(F), \ r = rkA$

Свойства.

1.
$$A = B_1 + \cdots + B_s$$
, $rkB_i = 1 \ \forall i \Rightarrow s \geqslant r$

2.
$$\exists B_1, \dots, B_r, \ rkB_i = 1 : \ A = B_1 + \dots + B_r$$

Доказательство. 1

$$r = rk(B_1 + \dots + B_s) \leqslant rkB_1 + \dots + rkB_s = s$$

Доказательство. 2

1.
$$A = (a_1, \ldots, a_r)$$

2. Пусть
$$a_1, \ldots, a_r$$
 - базис $< a_1, \ldots, a_r$

3.
$$\forall 1 \leq k \leq n-r: \ a_{r+k} = \lambda_{k1} \cdot a_1 + \dots + \lambda_{kr} \cdot a_r$$

4. тогда можно взять
$$B_i=a_i\cdot(0\dots01\;(i$$
 - ое место) $0\dots0\lambda_{1i}\dots\lambda_{n-ri})$

5. Первые r - элементов - нули с 1 посередине

Доказательство. Алгоритм

- 1. Найти максимальную линейно-независимую системы столбцов $A^{(i_1)}, \dots, A^{(i_r)}$
- 2. В матрице A (т. е. найти базис пространства столбцов)

- 3. Линейно выразить остальные столбцы через этот базис
- 4. В j ый столбец матрицы B_k записатт ту компоненту разложения столбца $A^{(j)}$ по базису $A^{(i_1)},\dots,A^{(i_r)}$, которая пропорциональна $A^{(i_k)}$ (другими словами B_k это столбец $B_k=A^{(i_k)}\cdot b_k^T$)

Пример.

1.
$$A = \begin{pmatrix} 1 & 1 & 0 & 2 \\ 3 & -3 & 2 & 0 \\ 2 & -1 & 1 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 1/3 & 1 \\ 0 & 1 & -1/3 & 1 \end{pmatrix}$$

2. $A^{(1)}, A^{(2)}$ - базис

$$A^{(3)} = \frac{1}{3} \cdot A^{(1)} - \frac{1}{3} \cdot A^{(2)}$$

$$A^{(4)} = 1 \cdot A^{(1)} + 1 \cdot A^{(2)}$$

3. Пишем разложение:

$$B_1 = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1/3 & 1 \end{pmatrix}$$

$$B_2 = \begin{pmatrix} 1 \\ -3 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & -1/3 & 1 \end{pmatrix}$$

2 Лекция 12.12.2024

2.1 Миноры

Определение 3.

Пусть $A \in Mat_{m \times n}(F)$.

Подматрицей в А называется матрица, которая стоит на пересечении некоторых строк и некоторых столбцов

Определение 4.

Пусть $A \in Mat_{m \times n}(F)$.

Минором $M^{j_1,\dots,j_k}_{i_1,\dots,i_k}$ порядка k называется определитель подматрицы на пересечении строк i_1,\dots,i_k , столбцов j_1,\dots,j_k Алгебраическим дополнением (без знака) это частный случай минора $A_{ij}=(-1)^{(i+j)}M^j_i$

Теорема 2.1.

Ранг матрицы равен наибольшему порядку ненулевого минора

Замечание. В матрице $m \times n$ количество миноров порядка k равно $C_m^k \cdot C_n^k$

Определение 5.

Пусть $A \in Mat_{m \times n}(F)$ и M -минор в ней.

Mинор M' называется окаймляющим к M если M получается из M' вычеркиванием одной строки и одного столбца

Теорема 2.2. Метод окаймляющих миноров

Пусть в A есть ненулевой минор порядка k. Тогда в A есть ненулевой минор порядка k+1 в том, и только в том случае, когда среди окаймляющих M миноров найдется ненулевой

Замечание. На k-ом шаге достаточно перебрать $(m-k)\cdot (n-k)$ миноров

Задача 2.1.

Найти rkA, где

$$A = \begin{pmatrix} 1 & \lambda & -1 & 2 \\ 2 & -1 & \lambda & 5 \\ 1 & 10 & -6 & 1 \end{pmatrix}$$

$$M_{23}^{12} = \begin{vmatrix} 2 & -1 \\ 1 & 10 \end{vmatrix} \neq 0 \Rightarrow rkA \geqslant 2$$

Тогда:

$$rkA = 2 \Leftrightarrow M_{123}^{123} = M_{123}^{124} = 0$$

Задача 2.2.

Пусть $U=< u_1,\dots,u_l>\subseteq F^n$. Требуется найти ОСЛУ $Ax=0,\quad A\in Mat_{m\times n}(F)$, множеством решений которой является U

Обозначим $d=dim U, \;\; u_i=egin{pmatrix} b_{i1} \ \vdots \ b_{in} \end{pmatrix}$

Лемма 2.3. Алгоритм

1. $Av_i=0$. Посмотрим на эти уравнения как на ОСЛУ с коэффицентами - координатами v_i и неизвестными - ячейками в матрице A: $a_{k1}b_{l1}+\dots+a_{kn}b_{ln}=0$

6

- 2. Записать векторы u_1,\ldots,u_l в матрицу B по строкам
- 3. Для ОСЛУ By=0 найти ФСР v_1,\ldots,v_{n-d}
- 4. В качестве A можно взять матрицу, в которой v_1, \dots, v_{n-d} записаны по строкам

- 5. Докажем, что полученная матрица является искомой:
 - (a) $W = \{x | Ax = 0\}$ Так как $Au_l = 0 \forall l = 1, ..., k$
 - (b) $U \subseteq W$
 - (c) Никакие другие векторы не подходят. Так как dimW = n rkA = n (n d) = d (Одно подпространство содержится в другом и их размерности совпадают)

Задача 2.3.

Найти ОСЛУ, задающее подпространство:

$$<(1,1,0,2),(3,-3,2,0),(2,-1,1,1)>$$

Решение.

1. Находим общее решение:

$$B = \begin{pmatrix} 1 & 1 & 0 & 2 \\ 3 & -3 & 2 & 0 \\ 2 & -1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1/3 & 1 \\ 0 & 1 & -1/3 & 1 \end{pmatrix}$$

2. Находим ФСР:

$$\left\{ \begin{pmatrix} -1/3\\1/3\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\-1\\0\\1 \end{pmatrix} \right\}$$

3. Записываем в матрицу по строкам:

$$A = \begin{pmatrix} -1/3 & 1/3 & 1 & 0 \\ -1 & -1 & 0 & 1 \end{pmatrix}$$

Зафиксируем векторное пространство V над полем F

Пусть $e = (e_1, \dots, e_m)$ - некоторый набор векторов из V и $e' = (e'_1, \dots, e'_k)$ - это набор векторов из < e >

$$\exists c_{ij} \in F$$

 $\exists c_{ij} \in F$ $e'_j = \sum_{i=1}^m c_{ij}e_i$ В матричном виде:

$$e'=eC$$
, где

 $C = (c_{ij}) \in Mat_{m \times k}(F)$ (то есть в C столбцы записаны выражения векторов e'_i)

Лемма 2.4.

Пусть $c=(e_1,\dots,e_m)$ - линейно - независимы. Тогда $\forall C,D\in Mat_{m imes k}(F)$

$$eC = eD \rightarrow C = D$$

Доказательство.

 $1.\,\,j$ - й вектор в строках eC и eD равен

$$\sum_{i=1}^{m} e_i \cdot c_{ij} = \sum_{i=1}^{m} e_i \cdot d_{ij}$$

2. Так как векторы линейно независимы, тогда они выражаются единственным образом $(c_{ij} = d_{ij})$

Пусть $e=(e_1,\ldots,e_n)$ - базис в V и $e'=(e'_1,\ldots,e'_n)$ - некоторый набор векторов. Обозначим $e=e'\cdot C$. Тогда e'является базисом $Leftrightarrow\ C$ обратима

Доказательство.

- 1. $e=e'\cdot D$. Тогда $e'=e'\cdot E=e\cdot C=e'\cdot DC$
- 2. По предыдущей задаче получаем, что DC = E

3. Докажем в обратную сторону. $e'=eC\Rightarrow e'c^{-1}=e\Rightarrow < e'>=V$ и их n штук $Rightarrow\ e'$ - базис

Определение 6.

Пусть $e=(e_1,\ldots,e_n)$ и $e'=(e'_1,\ldots,e'_n)$ - базисы V. Единственное матрицы C, для которой e'=eC называется матрицей перехода от базиса e к базису e'. Обозначение $C=C_{e\to e'}$

Замечание. При фиксированном базисе в V, все базисы в V описываются невырожденными матрицами $n \times n$

Свойства.

Пусть e,e',e'' - базисы V

- 1. $C_{e \to e''} = C_{e \to e'} \cdot C_{e' \to e''}$
- 2. $C_{e'\to e} = C_{e\to e\to e'}^{-1}$

Доказательство. 1

- 1. $e' = eC_{e \to e'}, e'' = e'C_{e' \to e''}$
- 2. $e'' = e'C_{e' \to e''} = eC_{e \to e'} \cdot C_{e' \to e''}$

Доказательство. 2

1. $e'=eC_{e \to e'} \Rightarrow e=e'C_{e \to e'}^{-1}=e'C_{e' \to e}$ по предыдущей задаче

Задача 2.5

Пусть базисы e' и e'' заданы своими координатами в некотором базисе e: e' = eC', e'' = eC'' Тогда $C_{e' \to e''} = C_{e' \to e} \cdot C_{e \to e''} = (C')^{-1} \cdot C''$

Лемма 2.5.

Пусть e,e' - базисы в V. Рассотрим вектор $v\in V$.

В первом базисе у него координаты $x_1e_1+\cdots+x_ne_n=x_1'e_1'+\cdots+x_n'e_n'$

В матричном виде:

v = ex = e'x'

Тогда:

$$ex = e'x' = eCx' \Rightarrow x = Cx'$$

Замечание. В частности, чтобы найти координаты в новом базисе, нужно обратить матрицу C (то есть решить СЛУ (C|x))

Задача 2.6.

Пусть $C \in F$. В пространству $\mathbb{R}[x]_{\leq n}$:

- 1. матрица перехода от стандартного базиса $1, x, \ldots, x^n$ к базису $1, (x-c), \ldots, (x-c)^n$
- 2. Найти координаты вектора $f(x) = a_0 + \dots a_n x^n$ в новом базисе

Решение. 1

1.
$$e'_k = (x-c)^k = \sum_{i=0}^k C_k^i x^i (-c)^{k-i} = \sum_{i=0}^k C_k^i (-c)^{k-i} e_i$$

$$C = \begin{pmatrix} 1 & -c & \dots & (-c)^k & \dots \\ 0 & 1 & \dots & k(-c)^{k-1} \\ 0 & 0 & \dots & C_k^2(-c)^{k-i} \\ 0 & 0 & \dots & \vdots \\ \vdots & \vdots & \dots & \ddots \end{pmatrix}$$

2. Базис:
$$y=\begin{pmatrix}a_0\\a_1\\\vdots\\a_n\end{pmatrix}$$
. В новом базисе: $z=\begin{pmatrix}z_0\\z_1\\\vdots\\z_n\end{pmatrix}$

3.
$$y = Cz$$
, $z = c^{-1}y$

$$f(x) = f(x - c + c) = \sum_{i=0}^{n} a_i ((x - c) + c)^i$$