第6章

ファイバー束

6.1 層と Čech コホモロジー

位相空間 X を 1 つとって固定する. X の位相 \mathcal{O}_X の上には圏の構造が入る:

- $\mathrm{Ob}(\mathbb{O}_X) \coloneqq \mathscr{O}_X$
- $\forall U, V \in \mathrm{Ob}(\mathbb{O}_X)$ に対して、射を

$$\operatorname{Hom}_{\mathbb{O}_X} (U,\,V) \coloneqq \begin{cases} \{ \texttt{包含写像} \,\, U \hookrightarrow V \}, & U \subset V \\ \emptyset, & U \not\subset V \end{cases}$$

と定義する. ただし, $U \subset V$ のとき $\operatorname{Hom}_{\mathbb{O}_X} (U, V)$ は一点集合である.

6.1.1 前層と層

定義 6.1: 前層

 \mathcal{C} を圏とする. 位相空間 X 上の, \mathcal{C} に値をとる**前層** (presheaf) とは, 関手

$$P \colon \mathbb{O}_X^{\mathrm{op}} \longrightarrow \mathcal{C}$$

のことを言う.

i.e. X の開集合 $U, V, W \in \mathrm{Ob}(\mathbb{O}_X)$ であって $W \subset V \subset U$ を充たすものに対して

- 圏 C における対象 $P(U) \in Ob(C)$
- 圏 \mathcal{C} における射 $P(V \hookrightarrow U) \in \operatorname{Hom}_{\mathcal{C}}(P(U), P(V))$ (これを制限写像と呼ぶ)

を対応させ,

- $P(U \stackrel{\mathrm{id}_U}{\hookrightarrow} U) = \mathrm{id}_{P(U)}$
- $P(W \hookrightarrow V \hookrightarrow U) = P(W \hookrightarrow V) \circ P(V \hookrightarrow U)$

を充たすようなもの^aのこと.

 $^aW \hookrightarrow V \hookrightarrow U$ は開集合の包含写像の合成のことなので, $W \hookrightarrow U$ と書いても良い.

 C^{∞} 多様体 M に対して関手 C^{∞} : $\mathbb{O}_{M}^{\mathrm{op}} \longrightarrow \mathbf{Sets}$ を

- $C^{\infty}(U) := \{ f : U \longrightarrow \mathbb{R} \mid C^{\infty} \not \boxtimes \}$
- $C^{\infty}(V \hookrightarrow U) : C^{\infty}(U) \longrightarrow C^{\infty}(V), f \longmapsto f|_{V}$

と定義すると C^{∞} は前層になる.

より一般に、ファイバー束 $E \xrightarrow{\pi} B$ の底空間 B に対して関手 $\Gamma \colon \mathbb{O}_B^{\mathrm{op}} \longrightarrow \mathbf{Sets}$ を

- $\Gamma(V \hookrightarrow U) : \Gamma(U) \longrightarrow \Gamma(V), \ s \longmapsto s|_V$

と定義すると Γ は前層になる.

位相空間 X 上の,圏 \mathcal{C} に値をとる前層の圏 $PSh(X,\mathcal{C})$ とは,3 つ組

- $Ob(PSh(X, C)) := \{$ 前層 $P: \mathbb{O}_X \longrightarrow C \}$
- $\operatorname{Hom}_{\operatorname{PSh}(X,\mathcal{C})}(P,Q)\coloneqq \left\{$ 自然変換 $\tau\colon P\longrightarrow Q\right\}$
- 自然変換の合成

のことである. 射の方はわかりにくいかもしれないが、要は任意の前層 $P,Q:\mathbb{O}_X\longrightarrow \mathcal{C}$ に対する集合族

$$\tau := \left\{ \tau_U \in \operatorname{Hom}_{\mathcal{C}} \left(P(U), \, Q(U) \right) \right\}_{U \in \operatorname{Ob}(\mathbb{O}_{\mathbf{X}}^{\operatorname{op}})}$$

であって、X の任意の開集合 U, V s.t. $U \subset V$ に対して定まる図式

$$P(U) \xrightarrow{P(V \hookrightarrow U)} P(V)$$

$$\downarrow^{\tau_U} \qquad \qquad \downarrow^{\tau_V}$$

$$Q(U) \xrightarrow{Q(V \hookrightarrow U)} Q(V)$$

が可換になるようなもののことである. 証明はしないが、次の命題が成り立つことが知られている:

命題 6.1:

X を位相空間とする. 圏 A がアーベル圏ならば、前層の圏 PSh(X, A) もアーベル圏である.

層を定義する.大雑把に言うと、層とは<mark>前層</mark>であって、部分開被覆による貼り合わせを記述できるようなものである.

定義 6.2: 層

圏 $\mathcal C$ においていつでも積が存在するとする。 前層 $F\in \mathrm{Ob}(\mathrm{PSh}(X,\mathcal C))$ が**層** (sheaf) であるとは,位相空間 X の任意の開集合 $U\in \mathrm{Ob}(\mathbb O_X)$ の任意の開被覆 $\left\{U_i\right\}_{i\in I}$ をとったときに以下が成り立つことを言う:

Cにおける射^a

$$\prod_{i \in I} F(U_i) \xrightarrow{p_i} F(U_i) \xrightarrow{F(U_i \cap U_j \hookrightarrow U_i)} F(U_i \cap U_j), \quad \forall i \in I$$

が引き起こす唯一のb射を

$$\pi_1 : \prod_{i \in I} F(U_i) \longrightarrow \prod_{i, j \in I} F(U_i \cap U_j),$$

Cにおける射

$$\prod_{i \in I} F(U_i) \xrightarrow{p_j} F(U_j) \xrightarrow{F(U_i \cap U_j \hookrightarrow U_i)} F(U_i \cap U_j), \quad \forall j \in I$$

が引き起こす唯一の射を

$$\pi_2 : \prod_{i \in I} F(U_i) \longrightarrow \prod_{i, j \in I} F(U_i \cap U_j),$$

Cにおける射

$$F(U_i \hookrightarrow U) : F(U) \longrightarrow F(U_i), \quad \forall i \in I$$

が引き起こす唯一の射を

$$\iota \colon F(U) \longrightarrow \prod_{i \in I} F(U_i)$$

とおいたとき, $\mathcal C$ における射 $\pi_1,\,\pi_2\colon\prod_{i\in I}F(U_i)\longrightarrow\prod_{i,\,j\in I}F(U_i\cap U_j)$ のイコライザが $\iota\colon F(U)\longrightarrow\prod_{i\in I}F(U_i)$ と一致する.

 $[^]ap_i$ は積の標準的射影

 $[^]b$ 積の普遍性を使った

ややこしいようだが、 $C = \mathbf{Sets}$ の場合は同型

$$F(U) \xrightarrow{\cong} \left\{ \left. \left(x_i \right)_i \in \prod_{i \in I} F(U_i) \right. \left| \right. \left. \left. \left| \right. \left. F(U_i \cap U_j \hookrightarrow U_i)(x_i) = F(U_i \cap U_j \hookrightarrow U_j)(x_j) \right. \right. \right\} \right.$$

が ι によって誘導されることと同値である.

℃ がアーベル圏のときは、図式

$$0 \longrightarrow F(U) \xrightarrow{\iota} \prod_{i \in I} F(U_i) \xrightarrow{\pi_1 - \pi_2} \prod_{i, j \in I} F(U_i \cap U_j)$$

が完全列になることと同値である.

6.1.2 Čech コホモロジー

6.2 ファイバー束

6.2.1 位相群の作用

位相空間 X の**同相群** (homeomorphism group) Homeo(X) とは

- $\$ \$\ \$\ \text{Homeo}(X) \cong \{ f: X \leftarrow X \cong \bar{\text{plane}} \text{**plane} \}**
- 単位元を恒等写像 id_X
- 群演算を連続写像の合成
- 逆元を逆写像

として定義される群のことを言う.

G を**位相群**とする. i.e. G は位相空間であり、かつ群であって写像

- \not $\exists \vec{\pi} : G \longrightarrow G, g \longmapsto g^{-1}$

が連続写像であるようなものである.

定義 6.3: 位相群の作用

• 位相群 G が位相空間 X へ作用しているとは、群準同型 $\psi: G \longrightarrow \operatorname{Homeo}(X)$ が存在して写像

$$\Theta \colon G \times X \longrightarrow X, \ (g, x) \longmapsto \psi(g)(x)$$

が連続写像となることを言う. 写像 Θ のことを G の X への左作用 (left action) と呼び, $g \cdot x \coloneqq \Theta(g,x)$ と略記する.

• 点 $x \in X$ の軌道 (orbit) とは、集合

$$G \cdot x \coloneqq \{ g \cdot x \in X \mid g \in G \}$$

のこと.

• 同値関係

$$\sim := \{ (x, y) \in X \times X \mid y \in G \cdot x \}$$

による商集合を**軌道空間** (orbit space) と呼び X/G と書く.

• **不動点集合** (fixed set) とは, 集合

$$X^G := \left\{ \left. x \in X \mid \forall g \in G, \ g \cdot x = x \right. \right\}$$

のこと.

- 群の作用は $\forall x \in X, \forall g \in G \setminus \{1_G\}, g \cdot x \neq x$ を充たすとき自由 (free) と呼ばれる. 軌道空間
- 群の作用は群準同型 $\psi: G \longrightarrow \operatorname{Homeo}(X)$ が単射のとき**効果的** (effective) と呼ばれる a .

定義 6.3 において、 $\operatorname{Homeo}(X)$ に位相(コンパクト開位相など)を入れる場合がある.この場合は $G \longrightarrow \operatorname{Homeo}(X)$ が連続であることを定義とする.

6.2.2 ファイバー束

定義 6.4: ファイバー束

位相群 G は位相空間 F に効果的に作用しているとする. F をファイバー, G を**構造群** (structure group) に持つファイバー東 (fiber bundle) とは,

- 位相空間 E, B, F
- 連続な全射 $\pi: E \longrightarrow B$
- 同相写像^aの集合

$$LT(B) := \{ \varphi : U \times F \longrightarrow \pi^{-1}(U) \mid U \in Ob(\mathbb{O}_B) \}.$$

 $\mathrm{LT}(B)$ の元 $\varphi\colon U\times F\longrightarrow \pi^{-1}(U)$ のことを U 上の局所自明化と呼ぶ.

- 位相群 G
- の6つ組であって以下を充たすもののこと:
 - (1) LT(B) の任意の元 $\varphi: U \times F \longrightarrow \pi^{-1}(U)$ に対して図式 6.1 が可換になる.
 - (2) B の各点 $x \in B$ は、その上に局所自明化が存在するような開近傍 $x \in U \subset B$ を持つ.
 - (3) U 上の任意の局所自明化 $\varphi\colon U\times F\longrightarrow \pi^{-1}(U)$ および B の開集合 $V\subset U$ に対して、制限 $\varphi|_{V\times F}$ は V 上の局所自明化になる.
 - (4) U 上の任意の局所自明化 φ , φ' : $U \times F \longrightarrow \pi^{-1}(U)$ に対し,**変換関数** (transition function) と呼ばれる連続写像 $\theta_{\varphi,\varphi'}$: $U \longrightarrow G$ が存在して

$$\varphi'(u, f) = \varphi(u, \theta_{\varphi, \varphi'}(u) \cdot f) \quad \forall u \in U, \forall f \in F$$

 $[^]a$ 従ってこのとき $\operatorname{Ker} \psi = \{1_G\}$ である. i.e. 自明な作用 $(g,\,x) \longmapsto x$ は $1_G \cdot x$ のみである.

が成り立つ.

(5) LT(B) は条件 (1)-(4) を充たす連続写像の集合として最大のものである.

このようなファイバー束を $F \hookrightarrow E \xrightarrow{\pi} B$ で表す.

 a 部分空間 $\pi^{-1}(U) \subset E$ には E からの相対位相が入っているものとする.

図 6.1: 局所自明性. $proj_1$ は第 1 成分への射影である.

命題 6.2: ファイバー束の復元

- 位相空間 B, F
- 位相群 G の F への作用
- 族 $\mathcal{T}\coloneqq \big\{(U_\lambda,\,\theta_\lambda)\big\}_{\lambda\in\Lambda}$. ただし U_α は B の開集合で、 $\theta_\alpha\colon U_\alpha\longrightarrow G$ は連続写像である.

が与えられ,以下の条件を充たしているとする:

(1)

$$B = \bigcup_{\lambda \in \Lambda} U_{\lambda}$$

(2)

$$(U_{\alpha}, \theta_{\alpha}) \in \mathcal{T}$$
 かつ $W \subset U_{\alpha} \implies (W, \theta_{\alpha}|_{W}) \in \mathcal{T}$

(3)

$$(U, \theta_{\alpha}), (U, \theta_{\beta}) \in \mathcal{T} \implies (U, \theta_{\alpha} \cdot \theta_{\beta}) \in \mathcal{T}$$

ただし、 $\forall u \in U$ に対して $(\theta_{\alpha} \cdot \theta_{\beta})(u) := \theta_{\alpha}(u)\theta_{\beta}(u) \in G$ と略記した.

(4) T は条件 (1)-(3) を充たすもののうち最大の集合である.

このとき, ファイバー東 $F \hookrightarrow E \xrightarrow{\pi} B$ であって, 構造群を G, 変換関数を θ_{α} とするものが存在する.

<u>証明</u> $\forall \lambda \in \Lambda$ に対して, $U_{\lambda} \subset B$ には底空間 B からの相対位相を入れ, $U_{\lambda} \times F$ にはそれと F の位相との積位相を入れることで, 直和位相空間

$$\mathcal{E} \coloneqq \coprod_{\lambda \in \Lambda} U_{\lambda} \times F$$

を作ることができる*1. \mathcal{E} の任意の元は $(\lambda, b, f) \in \Lambda \times U_{\lambda} \times F$ と書かれる.

 $^{^{*1}~\}mathcal{E}$ はいわば,「貼り合わせる前の互いにバラバラな素材(局所自明束 $U_{lpha} imes F$)」である.証明の以降の部分では,これらの「素材」

さて、 \mathcal{E} 上の二項関係 \sim を以下のように定める:

$$\sim := \left\{ \left((\alpha, b, f), (\beta, c, h) \right) \in \mathcal{E} \times \mathcal{E} \; \middle| \; b = c \; \, \text{for } \; \exists (U_{\lambda}, \theta_{\lambda}) \in \mathcal{T} \text{ s.t. } U_{\lambda} \subset U_{\alpha} \cap U_{\beta}, \\ f = \theta_{\lambda}(c) \cdot h} \right\} \tag{6.2.1}$$

反射律 $\forall \lambda \in \Lambda$ に対して定数写像 $1_{\lambda} : U_{\lambda} \longrightarrow G$, $u \longmapsto 1_{G}$ は連続である. 従って条件 (4) より $(U_{\lambda}, 1_{\lambda}) \in \mathcal{T}$ が言えるので、 $\forall (\alpha, b, f) \in \mathcal{E}$ に対して $f = 1_{G} \cdot f = 1_{\alpha}(b) \cdot f$. i.e. $(\alpha, b, f) \sim (\alpha, b, f)$.

対称律 位相群の定義より、 $\forall (U_{\lambda}, \theta_{\lambda}) \in \mathcal{T}$ に対して $\theta_{\lambda}^{\text{inv}} : U_{\lambda} \longrightarrow G$, $u \longmapsto \theta_{\lambda}(u)^{-1}$ は連続写像であり、 もし $(U_{\lambda}, \theta_{\lambda}^{\text{inv}}) \in \mathcal{T}$ ならば条件 (2), (3) を充たす.よって条件 (4) より実際に $(U_{\lambda}, \theta_{\lambda}^{\text{inv}}) \in \mathcal{T}$ で あり、

$$\begin{array}{lll} (\alpha,\,b,\,f)\sim(\beta,\,c,\,h) &\Longrightarrow & b=c \ \ \text{final} \ \exists (U_\lambda,\,\theta_\lambda)\in\mathcal{T},\,U_\lambda=U_\alpha\cap U_\beta,\,\,f=\theta_\lambda(c)\cdot h\\ &\Longrightarrow & b=c \ \ \text{final} \ \ (U_\lambda,\,\theta_\lambda^{\mathrm{inv}})\in\mathcal{T},\,\,\theta_\lambda^{\mathrm{inv}}(c)\cdot f=\left(\theta_\lambda^{\mathrm{inv}}(c)\theta_\lambda(c)\right)\cdot h\\ &\Longleftrightarrow & c=b \ \ \text{final} \ \ (U_\lambda,\,\theta_\lambda^{\mathrm{inv}})\in\mathcal{T},\,\,h=\theta_\lambda^{\mathrm{inv}}(b)\cdot f\\ &\longleftrightarrow & (\beta,\,c,\,h)\sim(\alpha,\,b,\,f). \end{array}$$

推移律 条件(2),(3) より

$$(\alpha, b, f) \sim (\beta, c, h), \ (\beta, c, h) \sim (\gamma, d, k)$$

$$\implies b = c \text{ fig. } c = d$$

$$\text{fig. } \exists (U_{\lambda}, \theta_{\lambda}), \ (U_{\mu}, \theta_{\mu}) \in \mathcal{T}, \ U_{\lambda} = U_{\alpha} \cap U_{\beta}, \ U_{\mu} = U_{\beta} \cap U_{\gamma}, \ f = \theta_{\lambda}(c) \cdot h, \ h = \theta_{\mu}(d) \cdot k$$

$$\implies b = d \text{ fig. } (U_{\alpha} \cap U_{\beta} \cap U_{\gamma}, \ \theta_{\beta} \cdot \theta_{\gamma}) \in \mathcal{T}, \ f = (\theta_{\beta} \cdot \theta_{\gamma})(d) \cdot k$$

$$\iff (\alpha, b, f) \sim (\beta, d, k).$$

従って \sim は同値関係である. $E:=\mathcal{E}/\sim$ とおき,商写像を $\mathcal{E} \twoheadrightarrow E$, $(\alpha,b,f) \longmapsto [(\alpha,b,f)]$ と書くことにする.集合 E には商位相を入れる.

次に連続な全射 π : E woheadrightarrow B を

$$\pi([(\lambda, b, f)]) := b$$

と定義する. \sim の定義 (6.2.1) より $(\lambda,\,b,\,f)\sim(\mu,\,c,\,h)$ ならば b=c なので π は well-defined である. 次に $\forall \lambda\in\Lambda$ に対して

$$\varphi_{\lambda}: U_{\lambda} \times F \longrightarrow \pi^{-1}(U_{\lambda}), (b, f) \longmapsto [(\lambda, b, f)]$$

と定義して

$$LT(B) := \{\varphi_{\lambda}\}_{{\lambda} \in {\Lambda}}$$

とおく.

$$(\pi \circ \varphi_{\lambda})(b, f) = \pi([(\lambda, b, f)]) = b = \operatorname{proj}_{1}(b, f)$$

が成り立つ. i.e. 集合 LT(B) の任意の元は局所自明性を充たす.

を $U_{\alpha} \cap U_{\beta} \neq \emptyset$ の部分に関して「良い性質を持った接着剤 $\{\theta_{\lambda}\}$ 」を用いて「貼り合わせる」操作を、位相を気にしながら行う.

- (2) 条件-(2) より $\forall x \in B$ に対して $x \in U_{\lambda}$ となるような $\lambda \in \Lambda$ が存在する. 構成より, このとき $\varphi_{\lambda} \in \mathrm{LT}(B)$ である.
- (3) $\forall \varphi_{\lambda} \in LT(B)$ を 1 つとる. 条件-(2) より B の部分集合 W が $W \subset U_{\lambda}$ を充たすなら $(W, \theta_{\lambda}|_{W}) \in \mathcal{T}$ が成り立つ. 従って $\exists \mu \in \Lambda$, $W = U_{\mu}$ が成り立つから,制限 $\varphi_{\lambda}|_{W \times F}$ は $\varphi_{\mu} \in LT(B)$ と等しい.
- (4) $\forall \varphi_{\alpha}, \varphi_{\beta} \in LT(B)$ をとる. 同値関係 (6.2.1) の定義より $\forall (b, f) \in (U_{\alpha} \cap U_{\beta}) \times F$ に対して

$$\varphi_{\beta}(b, f) = [(\beta, b, f)] = [(\alpha, b, \theta_{\alpha}(b) \cdot f)] = \varphi_{\alpha}(b, \theta_{\alpha}(b) \cdot f)$$

が成り立つ.

(5) 条件-(4) より、LT(B) はファイバー束の定義の条件-(5) を充たす.

以上で題意のファイバー束の構成が完了した.

6.3 例

6.3.1 S^2 上のファイバー束

- 7r4バー S^1
- 底空間 S²
- 構造群 SO(2)

として、ファイバー東 $S^1 \hookrightarrow E \to S^2$ を構成しよう.

1 の原始 m 乗根を $\zeta_m \coloneqq e^{2\pi \mathrm{i}/m}$ とおく. 写像

$$\psi \colon \mathbb{Z}_m \longrightarrow \operatorname{Homeo}(S^{2n+1}), \ \zeta_m^k \longmapsto ((z_1, \cdots, z_{n+1}) \longmapsto (\zeta_m^k z_1, \cdots, \zeta_m^k z_{n+1}))$$

は群準同型になる。実際, \mathbb{Z}_m の勝手な元 ζ_m^k , ζ_m^l を取ってくると, $\forall z=(z_1,\cdots,z_{n+1})\in S^{2n+1}$ に対して

$$\left|\psi(\zeta_m^k)(z)\right| = \sum_{i=1}^{n+1} \left|\zeta_m^k z_i\right|^2 = \sum_{i=1}^{n+1} |z_i|^2 = 1$$

なので $\operatorname{Im} \psi \subset \operatorname{Homeo}(S^{2n+1})$ であり、かつ

$$\psi(1)(z) = z = \mathrm{id}_{S^{2n+1}}(z),$$

$$\psi(\zeta_m^k \zeta_m^l)(z) = \zeta_m^k \zeta_m^l z = \zeta_m^k (\zeta_m^l z) = (\psi(\zeta_m^k) \circ \psi(\zeta_m^l))(z)$$

が成り立つ. さらに写像

$$\mathbb{Z}_m \times S^{2n+1} \longrightarrow S^{2n+1}, \ (\zeta_m^k, z) \longmapsto \psi(\zeta_m^k)(z)$$

は連続写像だから、 \mathbb{Z}_m の S^{2n+1} への作用が定義された.

定義 6.5: レンズ空間

• 2n+1 次元のレンズ空間 (lens space) とは、 \mathbb{Z}_m の S^{2n+1} への作用による軌道空間

$$L_m^{2n+1} := S^{2n+1}/\mathbb{Z}_m$$

のことを言う.

• 自然な包含 $S^{2n+1}\hookrightarrow S^{2n+3},\;(z_1,\cdots,z_{n+1})\longmapsto (z_1,\cdots,z_{n+1},0)$ によって、2n+1 次元レンズ空間の族 $\left\{L_m^{2n+1}\right\}_{n\in\mathbb{Z}_{\geq 0}}$ は有向集合 $(\mathbb{Z}_{\geq 0},\leq)$ 上の図式をなす。無限次元レンズ空間とは、この図式上の帰納極限

$$L_m^{\infty} \coloneqq \varinjlim_{n \in \mathbb{Z}_{\geq 0}} L_m^{2n+1}$$

のことを言う.

 $m\geq 1$ とし、3 次元レンズ空間 L_m^3 を考える. $(z_1,z_2)\in S^3$ の同値類を $[(z_1,z_2)]\in S^3/\mathbb{Z}_m$ と書くと、写像

$$\pi \colon L_m^3 \longrightarrow S^2 = \mathbb{C} \cup \{\infty\}, \ [(z_1, z_2)] \longmapsto \frac{z_1}{z_2}$$

は*2well-defined な全射になる.

m=0 全空間 $E=S^2\times S^1$ として、自明束

$$S^1 \hookrightarrow S^2 \times S^1 \xrightarrow{\operatorname{proj}_1} S^2$$

m=1 全空間 $E=L_1^3=S^3$ として, Hopf-fibration

$$S^1 \hookrightarrow S^3 \xrightarrow{\pi} S^2$$

m>1 Hopf 写像 $S^3\longrightarrow S^2$ は商写像 $S^3 \twoheadrightarrow L_m^3$ を使った合成

$$S^3 \to L_m^3 \xrightarrow{\pi} S^2$$

からなる.このときファイバーは $S^1/\mathbb{Z}_m \approx S^1$ となり,結果的に S^1 バンドル

$$S^1 \hookrightarrow S^3 \to S^2$$

が実現される.

6.4 主束

位相群 G は、自分自身に**左移動** (left transition) として左から作用しているとする:

$$G \longrightarrow \operatorname{Homeo}(G), \ g \longmapsto (x \longmapsto gx)$$

 $^{^{*2}}$ $S^2 = \mathbb{C} \cup \{\infty\}$ と言うのは、Riemann 球面を考えている.

定義 6.6: 主束

位相空間 B 上の**主** G 束 (principal G-bundle) とは、ファイバー束 $G \hookrightarrow P \xrightarrow{\pi} B$ であって、構造群 G がファイバー G に左移動として作用しているもののこと、

命題 6.3: 主 G 束における右作用

主 G 束 $G \hookrightarrow P \xrightarrow{\pi} B$ を与える. このとき,位相群 G は全空間 P に右から自由に作用し,その軌道 空間が B になる.

<u>証明</u> $\forall p \in P$ を 1 つとる. $p \in \pi^{-1}(U)$ を充たす任意の B の開集合 $U \subset B$ をとり,その上の任意の<mark>局所自明化</mark> $\varphi \colon U \times G \longrightarrow \pi^{-1}(U)$ をとる. φ は同相写像だから $\varphi(u,g) = p$ を充たす $u \in U, g \in G$ が存在する. 以上の準備の下で,写像 $\varphi \colon P \times G \longrightarrow P$ を

$$\phi(p, g') \coloneqq \varphi(u, gg')$$

と定義する.

 ϕ は well-defined U 上の別の局所自明化 $\varphi'\colon U\times G\longrightarrow \pi^{-1}(U)$ をとる. このとき変換関数 $\theta_{\varphi,\,\varphi'}\colon U\longrightarrow G$ が存在して

$$p = \varphi(u, g) = \varphi'(u, \theta_{\varphi, \varphi'}(u) \cdot g)$$

が成り立つ. 故に

$$\varphi(u, gg') = \varphi'(u, \theta_{\varphi, \varphi'}(u) \cdot (gg')) = \varphi'(u, (\theta_{\varphi, \varphi'}(u) \cdot g)g')$$

であり、 ϕ は局所自明化の取り方によらない.

 ϕ は自由 $\forall p \in \pi^{-1}(U)$ をとる. $\phi(p, g') = p$ ならば

$$\phi(p,\,g')=\varphi(u,\,gg')=p=\varphi(u,\,g1_G)$$

が成り立つが,局所自明化は全単射なので gg'=g \implies $g'=1_G$ が従う.i.e. 右作用 ϕ は自由である.

軌道空間が B G の $U \times G$ への右作用による<mark>軌道空間は $(U \times G)/G = U \times \{1_G\} = U$ となる*3から,G の P への右作用 $\phi \colon P \times G \longrightarrow P$ による軌道空間は P/G = B となる.</mark>

定理 6.1:

コンパクト Hausdorff 空間 P と,P に自由に作用しているコンパクト Lie 群 G を与える.このとき, 軌道空間への商写像

$$\pi\colon P\twoheadrightarrow P/G$$

は主G東である.

 $^{*^3 \}forall g \in G$ に対して $g = 1_G \cdot g \in 1_G \cdot G$ である.

証明

6.4.1 主束からファイバー束を構成する

位相群 G が位相空間 F, F' の両方に作用しているとする.このとき G を構造群に持つファイバー東 $F \hookrightarrow E \xrightarrow{\pi} B$ を与えると,命題 6.2 より全く同一の変換関数を持つ別のファイバー東 $F' \hookrightarrow E' \xrightarrow{\pi'} B$ を定義することができる.このような操作をファイバーの取り替えと呼ぶ.特に,ファイバーの取り替えによって,構造群 G を持つファイバー東

から主G東

を得ることができる (これを underlying principal bundle と呼ぶ).

逆に、命題 6.2 を使って与えられた主 G 束と位相群 G の位相空間 F への作用からファイバー束を得ることもできる命題 6.2 を使わない構成法もある:

命題 6.4: Borel 構成

 $G \hookrightarrow P \xrightarrow{\pi} B$ を主 G 束とし、位相群 G の位相空間 F への作用 $\Theta: G \times F \longrightarrow F$ を与える.

• 積空間 $P \times F$ 上の同値関係を次のように定義する^a:

$$\sim := \left\{ \left. \left(\, (p,\,f), \, (p \cdot g, \, g^{-1} \cdot f) \, \right) \in (P \times F) \times (P \times F) \, \, \middle| \, g \in G \, \right\} \right.$$

同値関係 \sim による商空間を $P \times_G F := (P \times F)/\sim$ とおく.

• $(p, f) \in P \times F$ の \sim による同値類を [p, f] と書く. このとき写像

$$q: P \times_G F \longrightarrow B, [p, f] \longmapsto \pi(p)$$

は well-defined である.

このとき, $F \hookrightarrow P \times_G F \xrightarrow{q} B$ は構造群 G を持ち, **変換関数が** $G \hookrightarrow P \xrightarrow{\pi} B$ と同じであるようなファイバー束になる.

証明

 $[^]aG$ は命題 6.3 の方法で P に右から自由に作用しているとする.

定理 6.2:

弧状連結(かつ半局所単連結な)空間 B 上の任意の局所係数は, 可換群 A を用いて

$$A \hookrightarrow \tilde{B} \times_{\pi_1(B)} A \xrightarrow{q} B$$

の形をとる. i.e. B の普遍被覆空間 \tilde{B} による $\hat{\mathbf{x}}_{1}(B)$ 東 $\pi_{1}(B) \hookrightarrow \tilde{B} \xrightarrow{\pi} B$ から Borel 構成によって得られる. ただし、基本群 $\pi_{1}(B)$ の可換群 A への作用は、群準同型 $\pi_{1}(B) \longrightarrow \operatorname{Aut}(A)$ によって与えられる.

6.5 構造群の収縮

G を構造群とするファイバー東 $F\hookrightarrow E\xrightarrow{\pi} B$ を,部分位相群 $H\subset G$ を構造群に持つファイバー東と見做せる場合がある.このようなとき,構造群が H に収縮した (reduced to H) という.

命題 6.5:

位相群 G およびその位相部分群 $H \subset G$ を与える. H は G に左移動として作用し, $H \hookrightarrow Q \xrightarrow{\pi} B$ が主 H 束であるとする.

このとき、Borel 構成による $G \hookrightarrow Q \times_H G \stackrel{q}{\to} B$ は主 G 束である.

<u>証明</u>

定義 6.7: 収縮可能

- 与えられた主 G 束 $G \hookrightarrow E \xrightarrow{\pi} B$ に対して,構造群 G が部分群 $H \subset G$ に**収縮できる**とは,ある主 H 束 $H \hookrightarrow Q \xrightarrow{q} B$ が存在して可換図式 6.2 が成り立ち,かつ写像 r が G-同値になることを言う.
- (必ずしも主束でない)一般のファイバー束に対して構造群が収縮するとは, underlying principal bundle が収縮することをいう.

図 6.2: 構造群の収縮

6.6 束写像と引き戻し

定義 6.8: 束写像

構造群 G およびファイバー F を持つ 2 つのファイバー東 $F \hookrightarrow E \xrightarrow{\pi} B$, $F \hookrightarrow E' \xrightarrow{\pi'} B'$ を与える. ファイバー束の射 (morphism of fiber bundle) とは、連続写像の組 $(\tilde{f}: E \longrightarrow E', f: B \longrightarrow B')$ であって以下の条件を充たすもののこと:

- 図式 6.3 が可換になる
- $\forall b \in B$ に対し、 $b \in U$ を充たす B の任意の開集合 U と、その上の任意の局所自明化 $\phi \colon U \times F \longrightarrow \pi^{-1}(U)$ をとる。また、 $f(b) \in U'$ を充たす任意の B' の開集合 U'、および U' 上の任意の局所自明化 $\phi' \colon U' \times F \longrightarrow \pi'^{-1}(U')$ をとる。このとき、合成

$$\{b\} \times F \xrightarrow{\phi} \pi^{-1}(\{b\}) \xrightarrow{\tilde{f}} p'^{-1}(\{f(b)\}) \xrightarrow{\phi'^{-1}} \{f(b)\} \times F$$

は連続写像 $F \longmapsto F, f \longmapsto \theta_{\phi,\phi'}(b) \cdot f$ に等しい.

• 特に、写像 $U \cap f^{-1}(U') \longrightarrow G$, $b \longmapsto \theta_{\phi, \phi'}(b)$ は連続である.

図 6.3: 束写像

- ファイバー束の同型射とは、定義 6.8 の意味での束写像 (\tilde{f}, f) であって、逆向きの束写像 (\tilde{g}, g) が存在して合成が恒等射になるようなもののことを言う.
- ゲージ変換 (gauge transformation) とは、ファイバー東 $F \hookrightarrow E \xrightarrow{\pi} B$ から自分自身への東写像 (g, id_B) のことを言う. i.e. 図式 6.4 が可換になる.

図 6.4: ゲージ変換

ゲージ変換全体の集合は群をなす

定義 6.9: 引き戻し

構造群 G を持つファイバー東 $F\hookrightarrow E\xrightarrow{\pi} B$ と、連続写像 $f\colon B'\longrightarrow B$ を与える.ファイバー東 $F\hookrightarrow E\xrightarrow{\pi} B$ の引き戻し (pullback) とは、以下の 2 つ組のことを言う:

• 位相空間

$$f^*(E) := \{ (b', e) \in B' \times E \mid \pi(e) = f(b') \}$$

• 連続な全射

$$q: f^*(E) \longrightarrow B', (b', e) \longmapsto b'$$

引き戻しの定義から、図式 6.5 は可換図式になる.

図 6.5: 引き戻し

命題 6.6:

ファイバー東 $F \hookrightarrow E \xrightarrow{\pi} B$ の引き戻しは構造群 G を持つファイバー東 $F \hookrightarrow f^*(E) \xrightarrow{q} B'$ をなす. また、標準的射影 $f^*(E) \longrightarrow E$ は東写像になる.

証明

命題 6.7:

構造群 G を持つ 2 つのファイバー東 $F\hookrightarrow E'\xrightarrow{\pi'} B',\ F\hookrightarrow E\xrightarrow{\pi} B$ と、定義 6.8 の意味での東写像 (\tilde{f},f) を与える(可換図式 6.6a). このとき図式 6.6b に示す分解 $f^*\circ\beta=\tilde{f}$ が存在して $(\beta,\operatorname{id}_{B'})$ が 東写像となる.

