

Instituto Tecnológico de Santo Domingo Área de Ciencias Básicas y Ambientales

ALUMNO: Jesús Alberto Beato Pimentel ID: 2023-1283

02

MOMENTO DE INERCIA DE UNA RUEDA

Objetivo: El propósito de este experimento es hallar el momento de inercia de una rueda y su dependencia con sus parámetros.

2.- Introducción.

Teóricamente el momento de inercia de una masa puntual está dado por $I = MR^2$, donde M es la masa y R la distancia de la masa al eje de rotación.

En el caso de una rueda de masa M y radio externo R_1 y radio interno R_2 el cálculo teórico demuestra que es:

$$I = \frac{1}{2}M(R_1^2 + R_2^2).$$

Para encontrar experimentalmente la inercia rotacional I, se aplica sobre el objeto un torque conocido y se mide la aceleración angular que este produce, ya que $\tau = I \cdot \alpha$ donde α es la aceleración angular y τ es el momento de una fuerza o torque ocasionado por el peso que cuelga de una cuerda enrollada y que es la que hará que las masa gire de movimiento rotacional (ver fig. 1).

El torque puede ser expresado como $\tau = T \cdot R_I$ donde T es la tensión del hilo y R_I es el radio de la rueda donde se encuentra enrollado el hilo.

Debido que medir la aceleración angular α de la rueda donde se encuentra enrollado el hilo es más difícil que medir la aceleración con la que se mueve la pesa P, haremos uso de la relación entre ambas aceleraciones a saber:

$$a = \alpha \cdot R_1$$

por lo tanto, podremos escribir

$$\tau = \mathbf{I} \cdot \alpha = \mathbf{I} \cdot a / R_1 = T \cdot R_1$$

entonces tenemos que

$$I = T \cdot \frac{R_1^2}{a} \qquad (1)$$

Para determinar la tensión es suficiente determinar la aceleración con la que baja la pesa (ver figura 1) mediante un análisis de diagrama del cuerpo aislado sobre la pesa: $P-T=m\cdot a$, por lo tanto la tensión viene dada por

$$T = P - m \cdot a = m (g - a) \qquad (2)$$

(Asumamos $g = 980 \text{ cm/s}^2$)

2.- Equipo a utilizar

Simulación: https://www.thephysicsaviary.com/Physics/Programs/Labs/UnwindingCableLab/

3.- Procedimiento.

En la figura 2 se muestra la pantalla que presenta el simulador en el que se puede modificar los diferentes parámetros de interés.

Primera Parte:

Determinar si se cumple la relación (1) entre la tensión y la aceleración manteniendo constante los

parámetros de la rueda a fin de que su momento de inercia no deba cambiar.

Fijemos por ejemplo R_1 =110 mm, R_2 = 70 mm. y su masa M=300 g.

Aplicar diferentes masas m para producir diferentes torques y medir el tiempo en que tarda la masa m en bajar una distancia de 0.40 m. El tiempo se mide observando la curva que produce el sensor de posición visible debajo de la pantalla en una gráfica de posición en función de tiempo con una precisión de 0.005s.

m (g)	50	100	150	200	250	300
Tiempo	0.651	0.501	0.442	0.410	0.385	0.373

Determinado el tiempo que tarda cada pesa en llegar a recorrer la altura *de 0.40m* establecida, pasemos a calcular la aceleración con la que estas bajan, usando la ecuación:

$$H = \frac{1}{2} a \cdot t^2.$$

Completar la tabla usando las ecuaciones (2)

$a \left(\frac{cm}{s^2}\right)$	188.767842	318.7238298	409.49203	475.9072	531.4061	575.00593
T (dinas)	237369.648	198382.8511	171152.39	151227.84	134578	121498.22

Graficar la tensión en función de la aceleración y del ajuste de la recta por mínimos cuadrados determinar el valor del momento de inercia de la rueda.

$$I = T \cdot \frac{R_1^2}{a}$$

$$T = \frac{I}{R_1^2} * a$$

$$\frac{I}{R_1^2} = 300g$$

$$I = R_1^2 * 300g$$

$$I = (11 \text{cm})^2 * 300g$$

$$I = 36,300 \text{gcm}^2$$

$$I = _{\bf 36,300} g \cdot cm^2$$

Calculemos ahora el valor del momento de inercia mediante la fórmula teórica:

$$I = \frac{1}{2}M(R_1^2 + R_2^2).$$

II

VIRTUAL

$$I = \frac{1}{2} 300g (121cm^2 + 49cm^2)$$

I=25,500g*cm²

$$I_{\text{teórico}} = _{\underline{}} 25,500_{\underline{}} g \cdot cm^2$$

Determinar la diferencia en % entre ambos valores:

$$\Delta I$$
 (%) = ___41%____

Segunda Parte:

Pasemos ahora a determinar la dependencia del momento de inercia *I* de su masa.

Para esto repetiremos el experimento para determinar el momento de inercia para varios valores de su masa M usando siempre una misma masa de m=100 g para crear la tensión que pone a rotar la rueda.

M(g)	50	100	150	200	250	300
Tiempo	0.332	0.372	0.410	0.440	0.472	0.501

Y de igual manera determinemos el momento de inercia mediante los datos y la ecuación (1):

$a \left(\frac{cm}{s^2}\right)$	725.7947452	578.10151	475.9072	413.22314	359.09221	318.72383
T (dinas)	25420.52548	40189.849	50409.28	56677.686	62090	66127.617
$I(g \cdot m^2)$	4237.9524	8411.9684	12816.36	16596.36	20922.158	25104.623

Graficar el momento de inercia I en función de la masa M y determinar la pendiente del ajuste de la recta obtenida por mínimos cuadrados:

Pendiente: _____83.766_____ cm²

¿Tiene el valor esperado? _____95.5cm²____

Tercera parte.

Verificar la dependencia del momento de inercia I de la rueda del valor de su radio exterior:

Mantendremos constante la masa m=50g para hacer girar la rueda, una masa M=400g y un radio interior $R_2=50mm$. no olvidar que la precisión del tiempo es de 0.005s

CBF 211L. Laboratorio de Física Mecánica

 Π

VIRTUAL

$R_1(cm)$	7	8	9	10	11	12	13	14	15
Tiempo promedio	0.759	0.730	0.714	0.70	0.69	0.68	0.675	0.67	0.665

Con estos datos podremos ahora determinar los valores de la aceleración y el momento de inercia:

R_{I} (cm)	7	8	9	10	11	12	13	14	15
$a \left(\frac{cm}{s^2}\right)$	138.869	150.121	156.925	163.265	168.031	173.010	175.582	178.213	180.903
	3604	9741	5153	3061	9261	3806	9904	4106	3863
T (dinas	42056.5	41493.9	41153.7	40836.7	40598.4	40349.4	40220.8	40089.3	39954.8
	3198	0129	2423	3469	037	8097	5048	2947	3069
$I(g \cdot cm^2)$	14839.6 3101	17689.6 8	21242.2 5405	25012.5	29234.9 6125	33583.6 8	38712.8 8281	44090.4 45	49694.1 3281

Para linealizar realizar la gráfica del momento de inercia I en función de \mathcal{R}_I al cuadrado.

¿El valor de la pendiente corresponde al valor esperado?

No el valor correspondiente es 200.

• Indicar la diferencia entre el valor de la pendiente y el valor calculado teóricamente en porcentaje:

%
$$e = \frac{200 - 198.53}{200} \times 100$$

% $e = 0.7\%$

¿Qué significado físico tiene el intercepto?

Se obtiene un intercepto diferente de cero.

¿Qué tipo de resultado se obtiene?

Una parábola

Tratemos de linealizar el resultado haciendo una gráfica de I en función de R².

9

¿Qué resultado se obtiene ahora?

Una línea recta que no pasa por el origen de coordenadas.

Escribir la ecuación de mejor ajuste:

$$y = 198.53x + 5109.5$$

¿Qué significado tiene la pendiente de la recta?:

M/2

Verifique si está en lo cierto:

$$\frac{M}{2} = \frac{400g}{2} = 200g$$

$$\%e \frac{200 - 198.53}{200} = 0.7\%$$

¿Qué hipótesis puede hacer sobre el significado del intercepto que resulta de la recta de ajuste?

Que en el intercepto de Y se refleja cuando x tiene valor en 0 por lo que el radio externo "R1" Nos dará 0

Compruebe su hipótesis:

$$\frac{MR_2^2}{2} = \frac{400g (5cm)}{2} = 5000 \ gcm^2$$

$$\% e = \frac{5109.5 - 5000}{5000} \times 100$$

$$= 2\%$$

Conclusión.

Este experimento tiene como objetivo determinar el momento de inercia de una rueda mediante la aplicación de un torque conocido, midiendo la aceleración angular resultante. El experimento se divide en tres partes. En la primera parte, se establece una comparación entre los valores experimentales y teóricos, obteniendo así resultados ya establecidos. La segunda parte del experimento se enfoca en la relación entre el momento de inercia y la masa de la rueda, realizando los cálculos correspondientes y obteniendo los resultados. Finalmente, la tercera parte se centra en la dependencia del momento de inercia con respecto al radio exterior, mostrando una correspondencia cercana a pesar de una pequeña discrepancia en los cálculos realizados.

CBF 211L. Laboratorio de Física Mecánica

 Π

VIRTUAL

Para llevar a cabo este experimento, fue necesario emplear las fórmulas proporcionadas en el documento, así como utilizar herramientas como el simulador incluido en el mismo y conocimientos previos. Estas herramientas nos permitieron obtener los valores propuestos en cada ejercicio.

Bibliografía.

https://www.thephysicsaviary.com/Physics/Programs/Labs/UnwindingCableLab/

https://www.altascapacidadesarca.org/wp-content/uploads/2018/12/Fisica_General_-_Fisica_Universitaria_Vol_2__ed_12Sears-Zemansky.pdf

http://www0.unsl.edu.ar/~cornette/FISICA_LQ/Francis%20Sears,%20Mark%20Zemansky.pdf

https://deymerg.files.wordpress.com/2011/07/fisica_serway-6th-ed_tomo1.pdf