Reti neurali convoluzionali per la selezione di dati nell'esperimento HERD

Candidato

Relatore

Federico Magnolfi

Prof. Paolo Frasconi

Correlatori

Dott. Nicola Mori, Dott. Stefano Martina

Università degli Studi di Firenze

Scuola di Ingegneria - Dipartimento di Ingegneria dell'Informazione Corso di Laurea triennale in Ingegneria Informatica

11 Ottobre 2018

Piano della presentazione

1 Problema della stima del flusso

- 2 Reti neurali per selezione dei dati
- 3 Risultati

Esperimento HERD

- Dal 2025, stazione spaziale cinese
- Scopo: misurare il flusso dei raggi cosmici galattici
- Grande quantità di dati
- Si vogliono selezionare in orbita i dati

Perché selezionare i dati in orbita

- Non tutti i dati possono essere trasmessi
- Non tutti i dati sono utili per la stima del flusso

Calorimetro

- Sottosistema di HERD
- Cubo di lato 60*cm*, formato da $20 \times 20 \times 20$ **cubetti**
- I cubetti misurano l'energia rilasciata da una particella
- Dal rilascio dell'energia dipende la selezione dell'evento

Bontà degli eventi

- Il rilascio di energia dipende dalle leggi della meccanica quantistica
- Un evento è utilizzabile per la stima del flusso se si può ricavare l'energia originale

Domande a cui si vuole rispondere

Domanda n° 1

Si può creare un classificatore tale da permettere un'accurata stima del flusso e una riduzione della banda utilizzata?

Domanda n° 2

Si può realizzare un classificatore che soddisfi i requisiti e sia abbastanza **veloce** da funzionare in real-time?

Dati

- Dataset forniti dall'Istituto Nazionale di Fisica Nucleare
- La selezione dei dati è diversa per i vari tipi di particelle
- Eventi di elettroni utilizzabili: 88%
- Eventi di protoni utilizzabili: 42%

Rete neurale convoluzionale (CNN)

CNN: rete neurale con convoluzioni (2D e 3D in questo studio)

Perché si provano le CNN per HERD?

I **tensori** generati dal calorimetro sono assimilabili ad **immagini** tridimensionali.

Algoritmi più semplici

Perché si testano altri algoritmi

Non si conosce la difficoltà del problema

Algoritmi testati

- perceptron: si basa su un singolo neurone artificiale
- baseline: considera solo il totale dell'energia rilasciata
- variante baseline: fa prima la radice quadrata degli elementi

Criteri di valutazione

- L'output di un classificatore è un numero reale tra 0 ed 1: serve una soglia
- Fissata una soglia, si definiscono:

$$precision = \frac{TP}{TP+FP}$$
 $recall = \frac{TP}{TP+FN}$

- Al variare della soglia, si ottiene una **curva** precision-recall
- L'area sotto la curva è un buon indicatore della qualità del classificatore

Risultati con gli elettroni

Risultati con i protoni

Risposta alla domanda n° 1

Domanda n° 1

Si può creare un classificatore tale da permettere un'accurata stima del flusso e una riduzione della banda utilizzata?

Risposta

Sì, sia per gli elettroni che per i protoni è possibile creare un classificatore della qualità desiderata.

Elettroni - Ricerca soglie binarizzazione input

Protoni - Ricerca soglie binarizzazione input

Elettroni - Risultati con dati più realistici

Protoni - Risultati con dati più realistici

Risposta alla domanda n° 2

Domanda n° 2

Si può realizzare un classificatore che soddisfi i requisiti e sia abbastanza veloce da funzionare in real-time?

Risposta

Sì, è possibile creare un classificatore di qualità e veloce: per gli elettroni si è già ottenuto, per i protoni si è molto vicini al target.

Riepilogo risultati

- Difficoltà di classificazione diversa tra elettroni e protoni
- Elettroni: baseline è già molto soddisfacente
- Protoni: CNN sembra l'unica via percorribile
- In futuro si potrebbero sfruttare informazioni provenienti da altri sottosistemi di HERD

Fine

Vi ringrazio per la vostra attenzione. Ci sono domande?

Approfondimento - Flusso

Definizione di flusso

$$\Phi = \frac{dN}{dt \, dE \, d\Omega}$$

Flusso stimato

$$\Phi(E_i) = \Phi_i = \frac{N_i}{\epsilon_i \, \Delta t \, \Delta E_i \, \Omega}$$

Approfondimento - Grafico flusso

Approfondimento - Modello neurone artificiale

Approfondimento - Esempio funzioni attivazione

Approfondimento - Convoluzione 2D

Approfondimento - Distribuzione somme per elettroni

Approfondimento - Distribuzione somme per protoni

