Невозвратный картезианский водолаз

6HT*y*0err. 1920

Команда: Лицей БНТУ-1

Докладчик: Наркевич Григорий

Простой картезианский водолаз помещается в длинную вертикальную трубку, заполненную водой. Увеличение давления в трубе заставляет картезианского водолаза уходить ко дну. Когда водолаз достигает определенной глубины, он никогда не возвращается на поверхность, даже если давление возвращается к первоначальному значению. Исследуйте это явление и его зависимость от соответствующих параметров.

Качественное описание

Демонстрация эффекта, причина по которой, после погружения на определенную глубину, водолаз не всплывает.

Теоретическая часть

Определение критической глубины погружения и критического объема воздуха в пробирке.

Экспериментальная часть

Параметры: объем воздуха в пробирке, давление в трубке, плотность жидкости, масса пробирки.

Выводы

Влияющие и не влияющие параметры, причины, по которым водолаз в определенный момент перестает всплывать.

Качественное описание

Я оси.1920

Условие плавания на поверхности жидкости Условие плавания в жидкости Условие потопления

Водолаз погружается и всплывает

 $h_{\text{погруж.}} < h_{\text{кр.}}$

 $h_{
m \kappa p.}$

Mg – СИЛО ТЯЖЕСТИ

 $P_{\!\scriptscriptstyle
m I\hspace{-.1em}I}$ - добавочное давление

 $F_{\rm a}$ - сила Архимеда

 $h_{
m norpym.}$ - глубина погружения водолаза

 $h_{ ext{ iny KD.}}$ - критическая глубина погружения

Водолаз погружается и не всплывает

 $h_{\text{погруж.}} > h_{\text{кр.}}$

 $h_{
m \kappa p.}$

Mg — СИЛО ТЯЖЕСТИ

 $P_{\!\scriptscriptstyle
m I\hspace{-.1em}I}$ - добавочное давление

 $F_{\rm a}$ - сила Архимеда

 $h_{
m norpym.}$ - глубина погружения водолаза

 $h_{
m kp.}$ - критическая глубина погружения

Теоретическая часть

 $F_{\rm H} = \sigma l = 2\pi R \sigma = 2.7 * 10^{-3} {
m H}$ $\sigma \approx 73 * 10^{-3} {
m H/m}, R = 6.0 * 10^{-3} {
m H/m}$ $F_{\rm a} = \rho g (V_{\rm B2} + V_{\rm CT}) = 153 * 10^{-3} {
m H}$ $\frac{F_{\rm H}}{F_{\rm a}} * 100\% \approx 1.7\%$

 $F_c = \eta \tau \Delta S = 1,002 * 10^{-4}$

 η – ДИНАМИЧЕСКАЯ ВЯЗКОСТЬ

 $au = rac{dv}{dz}$ - градиент скорости

 ΔS – площадь соприкосновения с телом

$$\eta = 0.1 \Pi a^* c$$
 $\Delta S \sim 0.6 * 10^{-2}$ $\tau = 0.167 \text{ m/c}$

$$\frac{F_{\rm c}}{F_{\rm a}}$$
 *100% $\approx 0,06\%$

Закон Бойля- Мариотта:

$$P_0 V_0 = (P_0 + P_{\mu} + pgh_2)V_{B2}$$
 (1) $\Rightarrow V_{B2} = \frac{P_0 V_0}{P_0 + P_{\mu} + pgh_2}$ (2)

Критическая глубина погружения:

$$m_0 g = \rho g(V_{\text{B2}} + V_{\text{CT}})$$
 (3) $\Rightarrow V_{\text{B2}} = \frac{m_0 - \rho V_{\text{CT}}}{\rho}$ (4)

$$V_{\rm B2} = V_{\rm B2} \Rightarrow \frac{m_0 - \rho V_{\rm CT}}{\rho} = \frac{P_0 V_0}{P_0 + P_{\rm A} + pgh_2}$$

 $V_{ t B2}$ - воздух в пробирке, плавающей в жидкости $m_0 \overset{
ightarrow}{g}^{\psi}$ $P_{\hspace{-0.5mm} extsf{L}}$ - добавочное давление

$$\frac{m_0 - pV_{\text{CT}}}{p} = \frac{P_0 V_0}{P_0 + P_{\text{A}} + pgh_2} \implies h_2 = \frac{\frac{pP_0 V_0}{(m_0 - pV_{\text{CT}})} - (P_0 + P_{\text{A}})}{pg}$$

$$h_2 = l_1 + l_2$$

$$l_1 = h_2 - l_2 = \frac{\frac{pP_0V_0}{(m_0 - pV_{CT})} - (P_0 + P_{JL})}{pg} - \frac{m_0 - pV_{CT}}{pS}$$

 $V_{{ t B2}}$ - воздух в пробирке, плавающей в жидкости $P_{{ t I\! I}}$ - добавочное давление

Экспериментальная часть

Герметичная крышка

Фиксатор Манометр

Трубка, в которой тонет водолаз Нагнетатель давления

Пенопластовая подставка

Нагнетатель давления Манометр

Герметичная крышка для трубки

Крышка

Пробирка (водолаз)

Устройство для опускания водолаза в трубку

Пробирки, которые мы использовали

Объем пробирок:

- 1. 14 MA.
- 2. 12 MA.
- 3. 11 MA.
- 4. 10 MA.
- 5.-9 MA
- 6.-4 MA.

Водолаз тонет и всплывает

 $h_{\text{погруж.}} < h_{\text{критич.}}$

Теория

Водолаз тонет и не всплывает

 $h_{
m погруж.} > h_{
m критич.}$

Теория

Определение критического объема воздуха в пробирке

$$V_{
m пробирки}$$
=14 мл

$$V_{\rm критич.}$$
= 6.5 мл

Условие равновесия водолаза: $mg =
ho_{\mathbb{R}} gV$

$$m_{\text{пр.}} + \rho_{\text{B}}(V_{\text{пр.}} - V_{\text{В.Кр.}}) = \rho_{\text{ж.}}(V_{\text{ст.}} + V_{\text{пр.}})$$

$$V_{\text{B.Kp.}} = V_{\text{пр.}} - \frac{\rho_{\text{ж.}}(V_{\text{CT.}} + V_{\text{пр.}}) - m_{\text{пр.}} + \rho_{\text{B}}}{\rho_{\text{B}}}$$

 $V_{
m B. kp.}$ - критический объем воздуха в пробирке

 $m_{
m пр.}$ - масса пробирки

Зависимость критического объема воздуха от объема пробирки

 $V_{
m возд.кр.}$ - критический объем воздуха в пробирке $V_{
m проб.}$ - объем воздуха в пробирке

- - экспериментальные данные
- - теоретические значения

Зависимость критической глубины погружения от массы, при $V_{\rm воздуха} = const$

 $h_{
m kp}$ — критическая глубина погружения m — масса пробирки

Зависимость критической глубины погружения от объема воздуха в пробирке

 $h_{
m Kp}$ – критическая глубина погружения $V_{
m BO3D.}$ - объем воздуха в пробирке

$$h_{ ext{\tiny KP}}{\sim}V_{ ext{\tiny BO3Д.}}$$
+ k_1

Соляной раствор

Кол-во соли для 5% концентрации $m_{
m coли} = 181~{
m r.}$

Качественное описание Экспериментальная часть

Зависимость объема воздуха в пробирке от плотности жидкости

 $V_{
m B. kp.}$ - критический объем воздуха в пробирке p - плотность жидкости

$$V_{ ext{B.Kp.}} = V_{ ext{пр.}}$$
 - $rac{
ho_{ ext{ iny K.}}(V_{ ext{CT.}} + V_{ ext{пр.}}) - m_{ ext{пр.}} +
ho_{ ext{B}}}{
ho_{ ext{B}}}$

$$V_{\scriptscriptstyle
m B.Kp.} \sim k_1 - rac{
ho_{\scriptscriptstyle
m M}}{k_2}$$

Экспериментальная часть

Лицей БНТУ-1

Зависимость критической глубины погружения от добавочного давления

 $h_{\mathrm{кр.}}$ - критическая глубина погружения P - давление в сосуде

$$h_{\mathrm{\kappa p.}} \sim \frac{k_1 - k_2 P}{k_3}$$

Выводы

Параметры, влияющие на потопление водолаза:

- о Объем воздуха в колбе
- Масса колбы
- Плотность жидкости
- о Давление в трубке

Спасибо за внимание!

Невозвратный картезианский водолаз

6HT*y*

Команда: Лицей БНТУ-1

Докладчик: Наркевич Григорий

Простой картезианский водолаз помещается в длинную вертикальную трубку, заполненную водой. Увеличение давления в трубе заставляет картезианского водолаза уходить ко дну. Когда водолаз достигает определенной глубины, он никогда не возвращается на поверхность, даже если давление возвращается к первоначальному значению. Исследуйте это явление и его зависимость от соответствующих параметров.

Дополнительные слайды

Расчет погрешностей

$$\Delta m = \Delta_{\rm M} m + \Delta_{\rm O} m = 0.15 \, {\rm \Gamma}$$
 $\Delta V_{{\rm BO3}{\rm J.}} = \Delta_{\rm H} V_{{\rm BO3}{\rm J.}} + \Delta_{\rm O} V_{{\rm BO3}{\rm J.}} = 0.95 \, {\rm M}{\rm J}$ $\Delta_{\rm H} m = 0.1 \, {\rm \Gamma}$ $\Delta_{\rm O} V_{{\rm BO3}{\rm J.}} = 0.5 \, {\rm M}{\rm J}$ $\Delta_{\rm H} V_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} V_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} V_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{\rm H} v_{{\rm BO3}{\rm J.}} = 0.45 \, {\rm M}{\rm J}$ $\Delta_{$

Параметры пробирок

Номер пробирки	Объем, мл	Масса пробирок, г	Объем стекла, мл	Внутр. диаметр, мм	Высота пробирк и, см	Масса соли для р-ра, г
1	14	10.52	5.0	12.0	11.9	5% - 181
2	12	9.93	4.7	12.0	11.1	10% - 363
3	11	8.91	3.9	12.0	10.1	15% - 544
4	10	8.09	3.5	12.0	9.0	20%- 726
5	9	7.15	2.9	12.0	8.0	25% -908
6	4	4.52	2	7.6	8.0	26% - 1089

Дополнительные расчеты

Расчет l_2

$$m_0 g = pg(V_{CT} + Sl_2)$$

$$m_0 - pV_{CT} = pSl_2$$

$$l_2 = \frac{m_0 - pV_{CT}}{pS}$$

Расчет h_2

$$\frac{m_0 - pV_{\text{CT}}}{p} = \frac{P_0 V_0}{P_0 + P_{\text{A}} + pgh_2}$$

$$(P_0 + P_{\text{A}} + pgh_2)(m_0 - pV_{\text{CT}}) = P_0 V_0 p$$

$$P_0 + P_{\text{A}} + pgh_2 = \frac{P_0 V_0 p}{m_0 - pV_{\text{CT}}}$$

$$pgh_2 = \frac{P_0 V_0 p}{m_0 - pV_{\text{CT}}} - (P_0 + P_{\text{A}})$$

$$h_2 = \frac{pP_0 V_0}{(m_0 - pV_{\text{CT}})} - (P_0 + P_{\text{A}})$$

Величины:

 V_0 - объем воздуха в пробирке P_0 - атмосферное давление находящейся в воздушной среде $P_{\!\scriptscriptstyle
m I\hspace{-.1em}I}$ - добавочное давление p - ПЛОТНОСТЬ ЖИДКОСТИ h_2 - Расстояние от края жидкости до нижнего края пузырька воздуха $V_{\rm B2}$ - воздух в пробирке, плавающей в жидкости m_0 - масса пробирки $V_{
m cr}$ - объем стекла пробирки l_1 - критическая глубина погружения l_2 - высота пузырька воздуха в пробирке в жидкости

Закон Бойля- Мариотта:

$$P_0 V_0 = (P_0 + P_{\mu} + pgh_2)V_{B2}$$
 (1) $\Rightarrow V_{B2} = \frac{P_0 V_0}{P_0 + P_{\mu} + pgh_2}$ (2)

Критическая глубина погружения:

$$m_0 g = \rho g (V_{\text{B2}} + V_{\text{CT}}) (3) \Rightarrow V_{\text{B2}} = \frac{m_0 - \rho V_{\text{CT}}}{\rho} (4)$$

$$V_{\rm B2} = V_{\rm B2} \implies \frac{m_0 - \rho V_{\rm CT}}{\rho} = \frac{P_0 V_0}{P_0 + P_{\rm A} + pgh_2}$$

 $V_{ exttt{B2}}$ - воздух в пробирке, плавающей в жидкости $m_0 \overrightarrow{g}^{\, \downarrow}$ $P_{\!_{
m I\!\!\!/}}$ - добавочное давление

$$\frac{m_0 - pV_{\text{CT}}}{p} = \frac{P_0 V_0}{P_0 + P_{\text{A}} + pgh_2} \implies h_2 = \frac{\frac{pP_0 V_0}{(m_0 - pV_{\text{CT}})} - (P_0 + P_{\text{A}})}{pg}$$

$$h_2 = l_1 + l_2$$

$$l_1 = h_2 - l_2 = \frac{\frac{pP_0V_0}{(m_0 - pV_{CT})} - (P_0 + P_{JL})}{pg} - \frac{m_0 - pV_{CT}}{pS}$$

 $V_{{ t B2}}$ - воздух в пробирке, плавающей в жидкости $P_{{ t I\! I}}$ - добавочное давление

Определение критического объема воздуха в пробирке

$$V_{
m пробирки}$$
=14 мл

$$V_{
m Kритич.}$$
= 6.5 мл

Условие равновесия водолаза: $mg =
ho_{\mathbb{R}} gV$

$$m_{\text{пр.}} + \rho_{\text{B}}(V_{\text{пр.}} - V_{\text{В.Кр.}}) = \rho_{\text{ж.}}(V_{\text{ст.}} + V_{\text{пр.}})$$

$$V_{\text{B.Kp.}} = V_{\text{пр.}} - \frac{\rho_{\text{ж.}}(V_{\text{ст.}} + V_{\text{пр.}}) - m_{\text{пр.}} + \rho_{\text{B}}}{\rho_{\text{B}}}$$

 $V_{
m B. Kp.}$ - критический объем воздуха в пробирке

 $m_{
m np.}$ - масса пробирки

Параметры, влияющие на потопление водолаза:

- о Объем воздуха в колбе
- о Масса колбы
- о Плотность жидкости
- Давление в трубке
- о Атмосферное давление
- Форма водолаза

Теория