久期和凸性

你借给同学 100 元, 同学一年后还你 50 元, 两年后再还你 50 元, 请问你多久收回了你的 100 元?

麦考林久期(Macaulay duration)

以折现现金流为权重的现金回流的平均时间

麦考林久期(Macaulay duration)

3年期债券, 10%票息, YTM = 8%

À	А	В	C	D
1	yield	8%		
2				
3		CF	PV	W
4	1	10	9.26	0.0881
5	2	10	8. 57	0.0815
6	3	110	87.32	0.8304
7		Total	105.15	1.0000
8				
9			MacD =	2.74

债券利率风险

A 买了一个 10 年到期的零息债券 B 买了一个 10 年到期的票面 10% 的债券

如果市场利率上涨, 谁受的影响较大?

债券利率风险

$$P = \sum_{i=1}^{N} \frac{F \times CR}{(1+y)^{i}} + \frac{F}{(1+y)^{N}}$$

$$\frac{dP}{dy} = -\left[\sum_{i=1}^{N} \frac{i}{1+y} \frac{F \times CR}{(1+y)^{i}} + \frac{N}{1+y} \frac{F}{(1+y)^{N}}\right]$$

$$\frac{dP/P}{dy} = -\left[\sum_{i=1}^{N} \frac{i}{1+y} \left(\frac{F \times CR}{(1+y)^{i}} / P\right) + \frac{N}{1+y} \left(\frac{F}{(1+y)^{N}} / P\right)\right]$$

$$\frac{dP/P}{dy} = -\left[\sum_{i=1}^{N} \frac{i}{1+y} (w_{i}) + \frac{N}{1+y} (w)\right]$$

$$\frac{dP/P}{dy} = -\frac{MacD}{1+y} = -MD$$

$$\frac{d}{dy} \frac{1}{(1+y)^a} = -\frac{a}{1+y} \frac{1}{(1+y)^a}$$

修正久期(Modified Duration)

MD = MacD / (1+y/m)

3 年期债券,10% 票息,YTM = 8%

MacD = 2.74

MD = 2.74 / (1+8%) = 2.54

如果 YTM 下降 0.5%,则债券价格的上升幅度约为 0.5% * 2.54 = 1.27%

修正久期(Modified Duration)

修正久期(Modified Duration)

久期的影响因素

票息越高, 久期越小 (零息债券久期与票息无关)

期限越长,久期越大

YTM 越低, 久期越大

如果你预期利率下降,你买会以下哪个债券?

- A. 5 年期票面 10% 的债券
- B. 10 年期票面 10% 的债券
- C. 10 年期票面 5% 的债券

久期的缺陷

久期假设整条利率曲线发生平行移动

久期仅仅是一阶近似

$$\frac{dP}{dy} = -\left[\sum_{i=1}^{N} \frac{i}{1+y} \frac{F \times CR}{(1+y)^{i}} + \frac{N}{1+y} \frac{F}{(1+y)^{N}}\right]$$

$$\frac{d^{2}P}{dy^{2}} = \sum_{i=1}^{N} \frac{i \times (i+1)}{(1+y)^{2}} \frac{F \times CR}{(1+y)^{i}} + \frac{N \times (N+1)}{(1+y)^{2}} \frac{F}{(1+y)^{N}}$$

$$\frac{d^{2}P}{dy^{2}} \middle/ P = \sum_{i=1}^{N} \frac{i \times (i+1)}{(1+y)^{2}} (w_{i}) + \frac{N \times (N+1)}{(1+y)^{2}} (w) = Convexity$$

$$dP = \frac{dP}{dy} dy + \frac{1}{2} \frac{d^{2}P}{dy^{2}} (dy)^{2}$$

$$\frac{dP}{P} = \frac{dP/P}{dy} dy + \frac{1}{2} \left(\frac{d^{2}P}{dy^{2}} \middle/ P\right) (dy)^{2} = -MD \times dy + (1/2) \frac{1}{2} (Convexity) (dy)^{2}$$

一个债券, 久期为 4.5, 凸性为 13, 则当利率下降 1% 时, 债券价格的上升幅度为_____

一个债券, 久期为 4.5, 凸性为 13, 则当利率下降 1% 时, 债券价格的上升幅度为_____

-4.5 * 1% + (1/2) * 12 * (1%)^2

1	А	В	С	D	E
1	yield	8%			
2					
3		CF	PV	W	i*(i+1)
4	1	10	9. 26	0.0881	2
5	2	10	8. 57	0.0815	6
6	3	110	87.32	0.8304	12
7		<u>Total</u>	<u>105. 15</u>	1.0000	
8					
9			$\underline{\mathbf{MacD}} =$	2.74	
10			$\underline{MD} =$	2.54	
11			Convexity=	9.11	
12					

有效久期和有效凸性

$$ED = \frac{P^{-} - P^{+}}{2 \times P \times dy}$$

$$EC = \frac{P^{-} + P^{+} - 2P}{P \times (dy)^{2}}$$

有效久期和有效凸性

• 11	D •
77101d	Prico
v1eld	Price.
<u> </u>	

- 7. 50% 106. 50
- 8.00% 105.15
- 8. 50% 103. 83

有效久期 = _____ 有效凸性 = _____

有效久期和有效凸性

• 1 1	D •
77 1 A A	Price
v1eld	IIICE
<u> </u>	

7. 50% 106. 50

8.00% 105.15

8. 50% 103. 83

P = 105.15, P- = 106.5, P+ = 103.83, dy = 0.5% ED = 3.54, EC = 9.11

组合久期和组合凸性

$$D_p = \sum_{i=1}^k w_i D_i$$

$$C_p = \sum_{i=1}^k w_i C_i$$

债券免疫 (immunisation)

	Coupon	Maturity	Yield	Price	Duration	Convexity
Bond A	8%	4yrs	10%	93.536	3.387	13.535
Bond B	10%	10yrs	10%	100	6.231	52.833
Bond C	4%	15yrs	10%	53.883	11.786	119.376

使用 A、B 构建久期为 10 的组合, 计算权重和组合凸性 使用 A、C 构建久期为 10 的组合, 计算权重和组合凸性

债券免疫(immunisation)

	Coupon	Maturity	Yield	Price	Duration	Convexity
Bond A	8%	4yrs	10%	93.536	3.387	13.535
Bond B	10%	10yrs	10%	100	6.231	52.833
Bond C	4%	15yrs	10%	53.883	11.786	119.376

使用 A、B 构建久期为 10 的组合,计算权重和组合凸性 Wa = 43.3%, Wb = 56.7%, Convexity = 35.82

使用 A、C 构建久期为 10 的组合,计算权重和组合凸性 Wa = 80.8%, Wb = 19.2%, Convexity = 33.91

Q: 你更喜欢哪个组合?