PHYSICS Chapter 5

3th
SECONDARY

PRIMERA CONDICION DE EQUILIBRIO

¿QUÉ ESTUDIA LA ESTÁTICA?

• El equilibrio mecánico de los cuerpos y las fuerzas

¿Qué es el equilibrio mecánico?

Cuando los cuerpos no presentan ninguna forma de aceleración.

E. estático

DE

E. cinético

Primera condición de equilibrio mecánico

Un cuerpo esta en equilibrio si la suma de todas las fuerzas (fuerza resultante) es nula.

$$F_R = 0$$

En forma práctica:

$$\sum F(\to) = \sum F(\leftarrow) \quad \sum F(\uparrow) = \sum F(\downarrow)$$

$$\sum F(\uparrow) = \sum F(\downarrow)$$

Se muestra el DCL de un cuerpo de 15 kg que está en equilibrio. Determine el módulo de la fuerza F.

RESOLUCIÓN

$$F_g = m.g = 15 kg.10 m/s^2 = 150 N$$

De la primera condición de equilibrio

$$\Sigma \mathbf{F}(\uparrow) = \Sigma \mathbf{F}(\downarrow)$$

$$75N + 100N = F + F_g$$

$$175N = F + 150 N$$

$$F = 25 N$$

La barra metálica de 60 kg está en reposo. Determine el módulo de la tensión (T) si el módulo de la fuerza normal del piso sobre la barra es 350 N.

RESOLUCIÓN

$$F_g = m.g = 60 kg.10 m/s^2 = 600 N$$

De la 1ra condición de equilibrio

$$\Sigma F(\uparrow) = \Sigma F(\downarrow)$$

$$T + F_N = F_g$$
$$T + 350N = 600 N$$

$$F = 250 N$$

El sistema mostrado se encuentra en equilibrio. Determine el módulo de la tensión en la cuerda. ($g=10 \text{ m/s}^2$)

RESOLUCIÓN

$$F_g = m. g = 15 kg. 10 m/s^2 = 150 N$$

$$\Sigma F(\uparrow) = \Sigma F(\downarrow)$$

$$T + T = F_g$$

$$2T = 150 N$$

$$T = 75 N$$

Determine el módulo de la reacción del piso sobre el bloque de 16,2 kg si F=58 N. (g=10 m/s²)

RESOLUCIÓN

$$F_g = m.g = 16,2 kg.10 m/s^2 = 162 N$$

$$\Sigma F(\uparrow) = \Sigma F(\downarrow)$$

$$T + F_N = F_g$$

$$F + F_N = F_g$$

$$58N + F_N = 162N$$

$$F_N = 104 N$$

Determine la fuerza que aplica la persona sabiendo que el bloque de 50 kg se encuentra en equilibrio. Considere poleas ideales. $(g = 10 \text{ m/s}^2)$

$$\Sigma F(\uparrow) = \Sigma F(\downarrow)$$

$$T+T=500N$$

$$2T = 500N$$

$$T=250N$$

$$F = 250N$$

RESOLUCIÓN

Si el joven jala la cuerda con una fuerza de módulo 60 N, determine el módulo de la fuerza normal que el piso ejerce al bloque. Considere poleas ideales. ($g=10 \text{ m/s}^2$)

Por equilibrio mecánica

$$\Sigma F(\uparrow) = \Sigma F(\downarrow)$$

$$3x60N + FN = 250N$$

$$180N + FN = 250N$$

$$180N + FN = 250N$$

$$F_N = 70N$$

RESOLUCIÓN

En el sistema mostrado, determine la deformación del resorte de constante de rigidez 10 N/cm si el sistema está en equilibrio. (g=10 m/ s^2)

Tres amigos, Sara, Raúl y Carlos, empujan el bloque con fuerzas horizontales paralelas según las siguientes premisas:

Sara aplica una fuerza de 4 N.

Carlos aplica una fuerza de 12 N.

¿Qué módulo debe tener la fuerza que aplica Raúl tal que el bloque no se mueva?

RESOLUCIÓN

