

Winning Space Race with Data Science

Osama Qadeer 24/09/2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Data Collection via API, Web Scraping
- Exploratory Data Analysis (EDA) with Data Visualization
- EDA with SQL
- Interactive Map with Folium
- Dashboards with Plotly Dash
- Predictive Analysis

Summary of all results

- Exploratory Data Analysis results
- Interactive maps and dashboard
- Predictive results

Introduction

Project background and context

• The objective of this project is to forecast the likelihood of a successful landing for the Falcon 9 first stage rocket. SpaceX has stated on their website that the launch cost for a Falcon 9 rocket is \$62 million, significantly lower than the prices charged by other providers, which can exceed \$165 million per launch. This cost differential can be attributed to SpaceX's innovative ability to recycle and reuse the first stage of their rockets. By accurately predicting whether the first stage will successfully land, we can effectively estimate the overall cost of a rocket launch. Such insights are valuable for any company aiming to enter the competitive rocket launch market and challenge SpaceX's cost-effective approach.

Problems you want to find answers

- What are the main characteristics of a successful or failed landing?
- What are the effects of each relationship of the rocket variables on the success or failure of a landing?
- What are the conditions which will allow SpaceX to achieve the best landing success rate?

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX REST API
 - Web Scrapping from Wikipedia
- · Perform data wrangling
 - Dropping unnecessary columns
 - One Hot Encoding for classification models
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- Datasets are collected from Rest SpaceX API and webscrapping Wikipedia
 - The information obtained by the API are rocket, launches, payload information.
 - The Space X REST API URL is api.spacexdata.com/v4/

- The information obtained by the webscrapping of Wikipedia are launches, landing, payload information.
 - URL is https://en.wikipedia.org/w/index.php?title=List_of_Falcon_9_and_Falcon_Heavy_launches&oldid=1027686922

Data Collection - SpaceX API

Data Collection - Scraping

1. Getting Response from HTML

response = requests.get(static_url)

2. Create BeautifulSoup Object

soup = BeautifulSoup(response.text, "html5lib")

3. Find all tables

```
html_tables = soup.findAll('table')
```

4. Get column names

```
for th in first_launch_table.find_all('th'):
    name = extract_column_from_header(th)
    if name is not None and len(name) > 0 :
        column_names.append(name)
```

5. Create dictionary

```
launch_dict= dict.fromkeys(column_names)
# Remove an irrelvant column
del launch dict['Date and time ( )']
# Let's initial the launch_dict with each value to be an empty list
launch_dict['Flight No.'] = []
launch_dict['Launch site'] = []
launch dict['Payload'] = []
>launch_dict['Payload mass'] = []
launch_dict['Orbit'] = []
launch dict['Customer'] = []
launch_dict['Launch outcome'] = []
# Added some new columns
launch_dict['Version Booster']=[]
launch_dict['Booster landing']=[]
launch dict['Date']=[]
launch_dict['Time']=[]
```

6. Add data to keys

```
extracted_row = 0
#Extract each table
for table_number,table in enumerate(soup.find_all
    # get table row
    for rows in table.find_all("tr"):
        #check to see if first table heading is a.
        if rows.th:
            if rows.th.string:
                flight_number=rows.th.string.stri
                flag=flight_number.isdigit()
```

See notebook for the rest of code

7. Create dataframe from dictionary

df=pd.DataFrame(launch_dict)

8. Export to file

df.to_csv('spacex_web_scraped.csv', index=False)

Data Wrangling

- In the dataset, there are several cases where the booster did not land successully.
 - True Ocean, True RTLS, True ASDS means the mission has been successful.
 - False Ocean, False RTLS, False ASDS means the mission was a failure.
- We need to transform string variables into categorical variables where 1 means the mission has been successful and 0 means the mission was a failure.
- 1. Calculate launches number for each site

df['LaunchSite'].value_counts() CCAFS SLC 40 55 KSC LC 39A 22 VAFB SLC 4E 13 Name: LaunchSite, dtype: int64

2. Calculate the number and occurence of each orbit

```
df['Orbit'].value_counts()

GTO 27
ISS 21
VLEO 14
PO 9
LEO 7
SSO 5
MEO 3
SO 1
ES-L1 1
HEO 1
```

Orbit, dtype: int64

3. Calculate number and occurrence of mission outcome per orbit type

landing outcomes = df['Outcome'].value counts()

```
True ASDS 41
None None 19
True RTLS 14
False ASDS 6
True Ocean 5
None ASDS 2
False Ocean 2
False RTLS 1
Name: Outcome, dtype: int64
```

4. Create landing outcome label from Outcome column

```
landing_class = []
for key,value in df["Outcome"].items():
    if value in bad_outcomes:
        landing_class.append(0)
    else:
        landing_class.append(1)
df['Class']=landing_class
```

5. Export to file

```
df.to_csv("dataset_part_2.csv", index=False)
```

EDA with Data Visualization

- Scatter Graphs
 - Flight Number vs. Payload Mass
 - Flight Number vs. Launch Site
 - Payload vs. Launch Site
 - Orbit vs. Flight Number
 - Payload vs. Orbit Type
 - Orbit vs. Payload Mass

Scatter plots show relationship between variables. This relationship is called the correlation

- Bar Graph
 - Success rate vs. Orbit

Bar graphs show the relationship between numeric and categoric variables.

- Line Graph
 - Success rate vs. Year

Line graphs show data variables and their trends. Line graphs can help to show global behavior and make prediction for unseen data.

EDA with SQL

- We performed SQL queries to gather and understand data from dataset:
 - Displaying the names of the unique lauunch sites in the space mission.
 - Display 5 records where launch sites begin with the string 'CCA'
 - Display the total payload mass carried by boosters launched by NASA (CRS).
 - Display average payload mass carried by booster version F9 v1.1.
 - List the date when the first successful landing outcome in ground pad was achieved.
 - List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000.
 - List the total number of successful and failure mission outcomes.
 - List the names of the booster versions which have carried the maximum payload mass.
 - List the records which will display the month names, faiilure landing_ouutcomes in drone ship, booster versions, launch site for the months in year 2015.
 - Rank the count of successful landiing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

Build an Interactive Map with Folium

- Folium map object is a map centered on NASA Johnson Space Center at Houson, Texas
 - Red circle at NASA Johnson Space Center's coordinate with label showing its name (folium.Circle, folium.map.Marker).
 - Red circles at each launch site coordinates with label showing launch site name (*folium.Circle, folium.map.Marker, folium.features.Divlcon*).
 - The grouping of points in a cluster to display multiple and different information for the same coordinates (folium.plugins.MarkerCluster).
 - Markers to show successful and unsuccessful landings. Green for successful landing and Red for unsuccessful landing. (folium.map.Marker, folium.lcon).
 - Markers to show distance between launch site to key locations (railway, highway, coastway, city) and plot a line between them. (folium.map.Marker, folium.PolyLine, folium.features.Divlcon)
- These objects are created in order to understand better the problem and the data. We can show easily all launch sites, their surroundings and the number of successful and unsuccessful landings.

Build a Dashboard with Plotly Dash

- Dashboard has dropdown, pie chart, rangeslider and scatter plot components
 - Dropdown allows a user to choose the launch site or all launch sites (dash_core_components.Dropdown).
 - Pie chart shows the total success and the total failure for the launch site chosen with the dropdown component (plotly.express.pie).
 - Rangeslider allows a user to select a payload mass in a fixed range (dash_core_components.RangeSlider).
 - Scatter chart shows the relationship between two variables, in particular Success vs Payload Mass (plotly.express.scatter).

Predictive Analysis (Classification)

Data preparation

- Load dataset
- Normalize data
- Split data into training and test sets.
- Model preparation
 - Selection of machine learning algorithms
 - Set parameters for each algorithm to GridSearchCV
 - Training GridSearchModel models with training dataset

Model evaluation

- Get best hyperparameters for each type of model
- Compute accuracy for each model with test dataset
- Plot Confusion Matrix
- Model comparison
 - Comparison of models according to their accuracy
 - The model with the best accuracy will be chosen (see Notebook for result)

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

We observe that, for each site, the success rate is increasing.

Payload vs. Launch Site

Depending on the launch site, a heavier payload may be a consideration for a successful landing. On the other hand, a too heavy payload can make a landing fail.

Success Rate vs. Orbit Type

With this plot, we can see success rate for different orbit types. We note that ES-L1, GEO, HEO, SSO have the best success rate.

Flight Number vs. Orbit Type

We notice that the success rate increases with the number of flights for the LEO orbit. For some orbits like GTO, there is no relation between the success rate and the number of flights. But we can suppose that the high success rate of some orbits like SSO or HEO is due to the knowledge learned during former launches for other orbits.

Payload vs. Orbit Type

The weight of the payloads can have a great influence on the success rate of the launches in certain orbits. For example, heavier payloads improve the success rate for the LEO orbit. Another finding is that decreasing the payload weight for a GTO orbit improves the success of a launch.

Launch Success Yearly Trend

Since 2013, we can see an increase in the Space X Rocket success rate.

All Launch Site Names

SQL Query

SELECT DISTINCT "LAUNCH_SITE" FROM SPACEXTBL

Explanation

The use of DISTINCT in the query allows to remove duplicate LAUNCH_SITE.

Result

Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

Launch Site Names Begin with 'CCA'

SQL Query

SELECT * FROM SPACEXTBL WHERE "LAUNCH_SITE" LIKE '%CCA%' LIMIT 5

Explanation

The WHERE clause followed by LIKE clause filters launch sites that contain the substring CCA. LIMIT 5 shows 5 records from filtering.

Result

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer
04- 06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX
08- 12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO
22- 05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)
08- 10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)
01- 03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)

Total Payload Mass

SQL Query

SELECT SUM("PAYLOAD_MASS__KG_") FROM SPACEXTBL WHERE "CUSTOMER" = 'NASA (CRS)'

Result

SUM("PAYLOAD_MASS__KG_") 45596

Explanation

This query returns the sum of all payload masses where the customer is NASA (CRS).

Average Payload Mass by F9 v1.1

SQL Query

SELECT AVG("PAYLOAD_MASS__KG_") FROM SPACEXTBL WHERE "BOOSTER_VERSION" LIKE '%F9 v1.1%'

Result

AVG("PAYLOAD_MASS__KG_")
2534.66666666666665

Explanation

This query returns the average of all payload masses where the booster version contains the substring F9 v1.1.

First Successful Ground Landing Date

SQL Query

Result

SELECT MIN("DATE") FROM SPACEXTBL WHERE "Landing _Outcome" LIKE '%Success%'

MIN("DATE")

Explanation

With this query, we select the oldest successful landing.

The WHERE clause filters dataset in order to keep only records where landing was successful. With the MIN function, we select the record with the oldest date.

01-05-2017

Successful Drone Ship Landing with Payload between 4000 and 6000

SQL Query Result

```
%sql SELECT "BOOSTER_VERSION" FROM SPACEXTBL WHERE "LANDING _OUTCOME" = 'Success (drone ship)' \
AND "PAYLOAD_MASS__KG_" > 4000 AND "PAYLOAD_MASS__KG_" < 6000;</pre>
```

Booster_Version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

Explanation

This query returns the booster version where landing was successful and payload mass is between 4000 and 6000 kg. The WHERE and AND clauses filter the dataset.

Total Number of Successful and Failure Mission Outcomes

SQL Query

%sql SELECT (SELECT COUNT("MISSION_OUTCOME") FROM SPACEXTBL WHERE "MISSION_OUTCOME" LIKE '%Success%') AS SUCCESS, \
(SELECT COUNT("MISSION_OUTCOME") FROM SPACEXTBL WHERE "MISSION_OUTCOME" LIKE '%Failure%') AS FAILURE

Result

SUCCESS FAILURE

Explanation

With the first SELECT, we show the subqueries that return results. The first subquery counts the successful mission. The second subquery counts the unsuccessful mission. The WHERE clause followed by LIKE clause filters mission outcome. The COUNT function counts records filtered.

Boosters Carried Maximum Payload

SQL Query

```
%sql SELECT DISTINCT "BOOSTER_VERSION" FROM SPACEXTBL \
WHERE "PAYLOAD_MASS__KG_" = (SELECT max("PAYLOAD_MASS__KG_") FROM SPACEXTBL)
```

Explanation

We used a subquery to filter data by returning only the heaviest payload mass with MAX function. The main query uses subquery results and returns unique booster version (SELECT DISTINCT) with the heaviest payload mass.

Result

Booster_Version F9 B5 B1048.4 F9 B5 B1049.4 F9 B5 B1051.3 F9 B5 B1056.4 F9 B5 B1048.5 F9 B5 B1051.4 F9 B5 B1049.5 F9 B5 B1060.2 F9 B5 B1058.3 F9 B5 B1051.6 F9 B5 B1060.3 F9 B5 B1049.7

2015 Launch Records

SQL Query

```
%sql SELECT substr("DATE", 4, 2) AS MONTH, "BOOSTER_VERSION", "LAUNCH_SITE" FROM SPACEXTBL\
WHERE "LANDING _OUTCOME" = 'Failure (drone ship)' and substr("DATE",7,4) = '2015'
```

Explanation

This query returns month, booster version, launch site where landing was unsuccessful and landing date took place in 2015. Substr function process date in order to take month or year. Substr(DATE, 4, 2) shows month. Substr(DATE, 7, 4) shows year.

Result

MONTH	Booster_Version	Launch_Site
01	F9 v1.1 B1012	CCAFS LC-40
04	F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

SQL Query

```
%sql SELECT "LANDING _OUTCOME", COUNT("LANDING _OUTCOME") FROM SPACEXTBL\
WHERE "DATE" >= '04-06-2010' and "DATE" <= '20-03-2017' and "LANDING _OUTCOME" LIKE '%Success%'\
GROUP BY "LANDING _OUTCOME" \
ORDER BY COUNT("LANDING _OUTCOME") DESC;</pre>
```

Explanation

This query returns landing outcomes and their count where mission was successful and date is between 04/06/2010 and 20/03/2017. The GROUP BY clause groups results by landing outcome and ORDER BY COUNT DESC shows results in decreasing order.

Result

Landing _Outcome	COUNT("LANDING _OUTCOME")
Success	20
Success (drone ship)	8
Success (ground pad)	6

Folium Map - Ground stations

Folium Map - Color Labeled Markers

Green marker represents successful launches. Red marker represents unsuccessful launches. We note that KSC LC-39A has a higher launch success rate.

Folium Map - Distances between CCAFS SLC-40 and its proximities

Is CCAFS SLC-40 in close proximity to highways? Yes
Is CCAFS SLC-40 in close proximity to coastline? Yes
Do CCAFS SLC-40 keeps certain distance away from cities? No

Dashboard - Total success by Site

We see that KSC LC-39A has the best success rate of launches.

Dashboard - Total success launches for Site KSC LC-39A

We see that KSC LC-39A has achieved a 76.9% success rate while getting a 23.1% failure rate.

Dashboard - Payload mass vs Outcome for all sites with different payload mass selected

Low weighted payloads have a better success rate than the heavy weighted payloads.

Classification Accuracy

	Accuracy Train	Accuracy Test
Tree	0.876786	0.833333
Knn	0.848214	0.833333
Svm	0.848214	0.833333
Logreg	0.846429	0.833333

For accuracy test, all methods performed similar. We could get more test data to decide between them. But if we really need to choose one right now, we would take the decision tree.

Decision tree best parameters

tuned hyperparameters :(best parameters) {'criterion': 'entropy', 'max_depth': 12, 'max_features': 'sqrt', 'min_samples_leaf': 4, 'min_samples_split': 2, 'splitter': 'random'}

Confusion Matrix

As the test accuracy are all equal, the confusion matrices are also identical. The main problem of these models are false positives.

		Actual values		
		1	0	
Predicted	1	TP	FP	
values	0	FN	TN	

Conclusions

The success of a space mission can be attributed to various factors, including the launch location, the chosen orbit, and notably, the cumulative experience gained from previous launches. It is reasonable to assume that advancements in knowledge and technology have contributed to the transition from launch failures to successful missions.

- The orbits with the highest success rates include GEO (Geostationary Orbit), HEO (Highly) Elliptical Orbit), SSO (Sun-Synchronous Orbit), and ES-L1 (Earth-Sun Lagrange Point 1).
- Depending on the specific orbit, the payload mass can significantly impact the mission's success. Some orbits are better suited for lighter payloads, while others require heavier ones. However, in general, missions with lighter payloads tend to have a higher success rate than those with heavier payloads.
- While the dataset does not provide an explanation for why certain launch sites perform better than others (such as KSC LC-39A being the top-performing launch site), obtaining additional data, such as atmospheric conditions, may help shed light on this issue.
- In this dataset, the Decision Tree Algorithm has been chosen as the preferred model for analysis, even though the test accuracy among all the models used is equivalent. The Decision Tree 45 Algorithm was selected due to its superior training accuracy.

