Problem 1. Use the definition of **definite integral** to express the integrals as limits.

(a)
$$\int_{1}^{2} 2x \, dx$$
(b)
$$\int_{0}^{1} \frac{x}{x+1} \, dx$$
(c)
$$\int_{1}^{2} \sqrt{x} \, dx$$
(d)
$$\int_{1}^{\pi/2} (1+\cos x) \, dx$$

Problem 2. Sketch the region whose signed area is represented by the following definite integral, and evaluate the integral using an appropriate formula from geometry.

(a)
$$\int_0^3 x \, dx$$

(b) $\int_0^2 \left(1 - \frac{1}{2}x\right) dx$
(c) $\int_0^5 2 \, dx$
(d) $\int_{-1}^2 |2x - 3| \, dx$

Problem 3. Use the properties of definite integrals and appropriate formulas from geometry to evaluate the following integrals.

(a)
$$\int_{-1}^{3} (4 - 5x) dx$$

(b)
$$\int_{-2}^{2} (1 - 3|x|) dx$$

(c)
$$\int_{0}^{1} (x + 2\sqrt{1 - x^2}) dx$$

(d)
$$\int_{-3}^{0} (2 + \sqrt{9 - x^2}) dx$$

Problem 4. Find $\int_{-1}^{2} (f(x) + 2g(x)) dx$ if $\int_{-1}^{2} f(x) dx = 5$ and $\int_{-1}^{2} g(x) dx = -3$.

Problem 5. Find $\int_{1}^{4} (3f(x) - g(x)) dx$ if $\int_{1}^{4} f(x) dx = 2$ and $\int_{1}^{4} g(x) dx = 10$.

Problem 6. Evaluate the following limits by expressing them as a definite integral over the interval [a, b], and applying appropriate formulas from geometry.

(a)
$$\lim_{n \to \infty} \sum_{k=1}^{n} (3x_k^* + 1)\Delta x$$
; $a = 0, b = 1$.

(b)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{4 - (x_k^*)^2} \, \Delta x; \, a = -2, b = 2.$$