

ACQUISITION ET VISUALISATION D'IMAGES COULEUR DE HAUTE DYNAMIQUE

ENCADRE PAR:BIGUE Laurent

Présentation finale :

BAYA Haytam CHIKHI Yasmine

SOMMAIRE

REMISE EN CONTEXTE 02 METHODOLOGIE ET GESTION DE PROJET 03 CACHIER DES CHARGES 04 DEVELOPPEMENT 05 **OPTIMISATIONS** 06 RESULTAT 07 CONCLUSION

REMISE EN CONTEXTE

HDR (High Dynamic Range) : Technologie permettant de capturer une large plage dynamique de luminosité.

Première Partie : Développement d'un système d'acquisition et de visualisation en temps réel d'images HDR au format **RGB24**.

Deuxième Partie : Intégration du format Bayer24 au système, caractérisé par des spécifications plus contraignantes.

METHODOLOGIE: CYCLE EN V

GESTION DE PROJET: GANTT

Acquisition et visualisation d'images couleur de haute dynamique

				sept24	ı		oct24	oct24			nov24				déc24					janv25		
				23	30	7	14	21	28	4	11	18	25	2	9	16	23	30	6	13		
Etapes:	AVANCEMENT	DÉBUT	FIN																			
Phase 1 : Traitement des Images RGB																						
Rédaction des spécifications	100%	18/9/24	25/9/24																			
Conception de l'architecture	100%	25/9/24	5/10/24																			
Développement des modules	100%	5/10/24	6/10/24																			
Réalisation des tests	100%	6/10/24	21/10/24																			
Intégration des composants	100%	21/10/24	25/10/24																			
Phase 2 : Traitement des Images Bayer																						
Rédaction des spécifications	100%	25/10/24	4/11/24																			
Conception de l'architecture	100%	4/11/24	14/11/24																			
Développement des modules	100%	14/11/24	13/1/25																			
Réalisation des tests	100%	30/11/24	22/1/25																			
Intégration des composants	100%	2/12/24	31/1/25																			

SPECIFICATIONS (CAHIER DES CHARGES)

Contraintes matérielles et calcul de la performance cible du flux temps réel.

DEVELOPPEMENT

ACQUISITION

Acquisition et Reconstruction de l'Image

- ▶ 1 Acquisition (Bayer24) : Le capteur capture une image brute en mosaïque (1 seule couleur par pixel).
- ▶ 2 Séparation des canaux : Extraction des matrices R, G, B.
- ▶ 3 Dématriçage (Convolution) : Interpolation des couleurs pour reconstruire l'image.
- ▶ 4 Image finale (RGB24) : Pixels complets avec R, G, B.

Impact du coût en temps (0.01 s) sur le FPS (6.9 FPS):

- Coût ajouté ≈ 0.01 s par image.
- FPS cible: 6.9 FPS.
- FPS cible après ajout : 6.45 FPS.

AFFICHAGE RGB -->[0, 1] Y -->[0, 1]

► Formule utilisée :

$$I_{
m sortie} = I_{
m entr\'ee}^{rac{1}{\gamma}}$$

- ▶ Objectif:
 - ▶ Éclaircir les zones sombres et compresser les hautes lumières.

▶ Préserver les détails visuels tout en rendant les images compatibles avec les écrans RGB8.

 RGB_8

 $\gamma({
m RGB_8})$

AFFICHAGE RGB8 -> CLAHE

Détails plus visibles après CLAHE.

- \bullet $\mathrm{CDF}(I)$: Fonction de distribution cumulative (CDF) de l'intensité I
- \bullet L : Nombre total de niveaux de gris (souvent 256 pour une image 8 bits)

Impact du coût en temps (0.008 s) sur le FPS (6.45 FPS):

- Coût ajouté ≈ 0.008 s par image.
- FPS cible : 6.45 FPS.
- FPS cible après ajout : 6.13 FPS.

OPTIMISATIONS: COMPRESSION ET ENREGISTREMENT TEMPS REEL

Thread principal

Thread encodage

LIBÉRATION DE LA FILE D'ATTENTE

- -Acquisition/Reconstruction
- Gamma
- CLAHE

Flux temps réel

- Compression sans perte avec FFV1

ÉCRITURE DE LA VIDÉO 30% de gain en mémoire

OPTIMISATIONS: APPLICATION DE LA LUT AVEC PYTHON VS CODE COMPILÉ

Conclusion:

- Avec Python (0.08s), la baisse de FPS est marquée (4.11 FPS).
- Avec Compilation en Code Machine (0.03s), on conserve une meilleure fluidité (5.18 FPS).

Impact de la résolution sur l'efficacité des optimisations

Code compilé : 5,15 FPS

Python: 10 FPSCode compilé: 20 FPS

RESULTAT: INTERFACE LOGICIEL

CONCLUSION

Points Forts:

- Compatibilité : Fonctionne avec tout appareil GenICam via des fonctions génériques.
- Modularité : Optimisations facilement intégrables.
- Adaptabilité : Gestion dynamique des résolutions sans perte de stabilité.
- Accessibilité : Fonctionne sans GPU ni matériel spécifique.

Perspectives:

- Optimisation du FPS : Mieux séparer la logique du programme de la charge machine.
- IA au lieu de CLAHE : Éviter l'amplification du bruit.

MERCI!

Calcul de la CDF

La fonction de distribution cumulative (CDF) d'un niveau de gris I se définit par :

$$CDF(I) = \frac{1}{M \times N} \sum_{k=0}^{I} h(k),$$

où:

- h(k) est l'histogramme, c'est-à-dire le nombre de pixels dont la valeur d'intensité est k.
- $M \times N$ est le nombre total de pixels de l'image (largeur \times hauteur).

La CDF est donc une fonction qui, pour chaque niveau de gris I, renvoie la proportion cumulative de pixels ayant une intensité inférieure ou égale à I.

Noyaux de Convolution pour le Dématriçage

Noyaux Utilisés

$$R/B$$
 (kernel_r_b):

$$\begin{bmatrix} \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix}$$

$$\begin{bmatrix} 0 & \frac{1}{4} & 0 \\ \frac{1}{4} & 1 & \frac{1}{4} \\ 0 & \frac{1}{4} & 0 \end{bmatrix}$$

Pourquoi ces valeurs?

L'interpolation bilinéaire privilégie les voisins directs $(\frac{1}{2})$ par rapport aux diagonales $(\frac{1}{4})$, assurant une reconstruction rapide et fluide.