

planetmath.org

Math for the people, by the people.

Hahn decomposition theorem

Canonical name HahnDecompositionTheorem

Date of creation 2013-03-22 13:26:59 Last modified on 2013-03-22 13:26:59

Owner Koro (127) Last modified by Koro (127)

Numerical id 10

Author Koro (127) Entry type Theorem Classification msc 28A12

Defines Hahn decomposition

Let μ be a signed measure in the measurable space (Ω, \mathscr{S}) . There are two measurable sets A and B such that:

- 1. $A \cup B = \Omega$ and $A \cap B = \emptyset$;
- 2. $\mu(E) \geq 0$ for each $E \in \mathscr{S}$ such that $E \subset A$;
- 3. $\mu(E) \leq 0$ for each $E \in \mathscr{S}$ such that $E \subset B$.

The pair (A, B) is called a *Hahn decomposition* for μ . This decomposition is not unique, but any other such decomposition (A', B') satisfies $\mu(A' \triangle A) = \mu(B \triangle B') = 0$ (where \triangle denotes the symmetric difference), so the two decompositions differ in a set of measure 0.