PATENT ABSTRACTS OF JAPAN

(11) Publication number:

11-220762

(43) Date of publication of application: 10.08.1999

(51)Int.Cl.

H04Q 7/16 H040 7/36

(21) Application number: 10-019687

(71) Applicant: NTT MOBIL COMMUN NETWORK

INC

(22) Date of filing:

30.01.1998

(72) Inventor: MIZUKI TAKANORI **OHASHI SETSUYA**

> YAMAO YASUSHI ITOU SHIYOUGO

(54) RADIO CALL ENCODING CONTROLLER

(57) Abstract:

PROBLEM TO BE SOLVED: To improve reception characteristics by performing encoding control to determine a logical channel that contains a calling signal so that an equivalent transmission speed is reduced, in accordance with a calling signal traffic without interrupting encoding of the calling signal traffic, while fixing a combination of the transmission speed of a frame and a modulation system. SOLUTION: A frame for containing calling data is allocated from a frame number in the calling data by a frame allocation processing part 2 and a combination of a transmission speed of a frame and a modulation system are read from a frame information memory 4 by a shape order of priority decision part 3. Then, the order of priority for a shape to be encoded is determined from this combination of the transmission speed of the frame and the modulation system, a phase to be encoded is determined from an empty word state in the phase in accordance with this order of priority, encoding is applied to a calling signal with this phase and the signal is transferred to a base station from a transmission part 9.

LEGAL STATUS

[Date of request for examination]

01.02.2001

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3305644

[Date of registration]

10052002

[Number of appeal against examiner's decision of rejection]

'Searching PAJ

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-220762

(43)公開日 平成11年(1999)8月10日

(51) Int.Cl.⁶

識別記号

FΙ

H 0 4 B 7/26

103K

104A

H04Q 7/16

7/36

審査請求 未請求 請求項の数1 OL (全 9 頁)

(21)出願番号

(22)出願日

特願平10-19687

平成10年(1998) 1月30日

(71) 出願人 392026693

エヌ・ティ・ティ移動通信網株式会社

東京都港区虎ノ門二丁目10番1号

17

(72)発明者 水木 貴教

東京都港区虎ノ門二丁目10番1号 エヌ・

ティ・ティ移動通信網株式会社内

(72)発明者 大橋 節也

東京都港区虎ノ門二丁目10番1号 エヌ・

ティ・ティ移動通信網株式会社内

(72)発明者 山尾 泰

東京都港区虎ノ門二丁目10番1号 エヌ・

ティ・ティ移動通信網株式会社内

(74)代理人 弁理士 三好 秀和 (外3名)

最終頁に続く

(54) 【発明の名称】 無線呼出符号化制御装置

(57)【要約】

【課題】 フレームの伝送速度と変調方式の組み合わせを固定したまま、呼出信号の符号化処理を中止することなく、呼出信号トラヒックに応じて、できる限り伝送速度が等価的に低くなるように呼出信号を収容する論理チャネルを決定する符号化制御を行い、受信特性を改善し得る無線呼出符号化制御装置を提供する。

【解決手段】 フレーム割当処理部2で呼出データの中のフレーム番号から呼出データを収容するフレームを割り当て、フェーズ優先順位決定部3でフレームの伝送速度と変調方式の組み合わせをフレーム情報メモリ4から読み出し、該フレームの伝送速度と変調方式の組み合わせから符号化するフェーズの優先順位を決定し、この優先順位に従ってフェーズ内の空きワード状態から符号化可能なフェーズを決定し、該フェーズで呼出信号に符号化し、送信部9から基地局に転送する。

1

【特許請求の範囲】

【請求項1】 必要な数の呼出信号を符号化して収容した論理チャネルを多重化して1フレームとし、複数のフレームを時分割多重した時系列デジタル信号を変調信号として所定の伝送速度およびN値変調方式により搬送波を変調して送信する無線呼出方式に用いる無線呼出符号化制御装置であって、フレーム単位で多重化された複数の論理チャネルのうち呼出信号の送信に使用する論理チャネルを、呼出信号トラヒックが少ない場合に変調された信号の状態数がNよりも小さくなるような優先順位を設けて決定する手段を有することを特徴とする無線呼出符号化制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、無線呼出システムの符号化制御を行う無線呼出符号化制御装置に関し、更に詳しくは、必要な数の呼出信号を符号化して収容した論理チャネルを多重化して1フレームとし、複数のフレームを時分割多重した時系列デジタル信号を変調信号として所定の伝送速度およびN値変調方式により搬送波を変調して送信する無線呼出方式に用いる無線呼出符号化制御装置に関する。

[0002]

【従来の技術】高速無線呼出方式として、例えばFLE X-TD方式(ARIB標準規格:RCRSTD-43 A)がある。当該方式の伝送速度と変調方式の組み合わせは1600bps/2値FSK変調、3200bps/2値FSK変調、3200bps/4値FSK変調、6400bps/4値FSK変調の4モードがある。これらは図6に示すようにフレーム毎に設定することができ、同期信号部分に挿入されたフレーム情報に設定情報が含まれる。受信機は当該フレーム情報により示された伝送速度と変調方式の組み合わせに従って後続のビット列を受信し、復調・復号することができる。

【0003】各フレームは上記モードに従って、1600bps の速度を持つ論理チャネルがそれぞれ1,2または4チャネル合わせて多重されている。当該標準規格では前記論理チャネルを「フェーズ」と呼んでおり、図6に示すように、1600bps/2値FSKではAフェーズのみが、3200bps/2値FSKおよび3200bps/4値FSKではAフェーズとCフェーズが、6400bps/4値FSKではA,B,C,Dの4フェーズが呼出信号情報の送信に使用できる。

【0004】フェーズの多重化方法を3200bps/2値 FSKおよび6400bps/4値FSKについて図7に示す。同図(a)は3200bps/2値FSKの場合である。AフェーズとCフェーズから各1ビットずつ、合計2ビットの情報を単位として多重化を行う。同図に示したように、AフェーズとCフェーズの情報ビットを交互に配置して2値の変調シンボルを発生する。変調シンボ 50

ル速度は符号速度に等しい3200bps である。フェーズと変調信号状態の関係は、周波数偏位+ΔFが符号' 1'、周波数偏位-ΔFが符号'0'を表す。

【0005】次に、6400 bps/4 値FSKの場合は図7 (b) に示すように、A, B, C, Dの4 フェーズから各1 ビットずつ、合計4 ビットの情報を単位として多重化を行う。図示したように、まずAフェーズとBフェーズの情報ビットで4値の変調シンボルを発生し、CフェーズとDフェーズの情報ビットで次の4 値の変調シンボルを発生する。変調シンボル速度は符号速度の半分の3200 bps である。フェーズと変調信号状態の関係は、周波数偏位+ Δ Fが符号'10'、周波数偏位+ $(1/3)\Delta$ Fが符号'11'、周波数偏位- $(1/3)\Delta$ Fが符号'11'、周波数偏位- Δ Fが符号'0'を表す。

【0006】図7(a)と(b)を比べると、変調シンボル速度は両者で等しいが、変調信号の隣接する信号間の距離(周波数偏位の差)は(a)のほうが大きい。従って伝送速度の低い(a)が熱雑音等の影響に対して誤りが発生しにくく、受信特性が良好である。

【0007】上記の方式では、伝送速度が高いほど多重化チャネル数が増えるので、より多くの呼出トラヒックを収容でき、加入者容量が大となる。この一方で受信機は上述のように、伝送速度が低い程、受信特性がよくなる。このように加入者容量と受信特性は相反する要求条件であり、妥協策としては、サービス提供地域毎の呼出トラヒックの最大値を収容できる必要最低の伝送速度を選択することが一般的である。

【0008】従来の符号化制御装置の符号化制御方法例 を図8で説明する。従来の符号化制御装置では受け付け た呼出データに特にフェーズの指定がない場合、フレー ム内でのフェーズ割当、すなわち多重化されたフェーズ 内でどのフェーズを使用して呼出信号を収容するかは、 呼出信号トラヒックとは無関係に全てのフェーズをフェ ーズ割当部 5 でランダムに割り当て、符号化している。 例えばフレーム情報メモリ4により当該フレームが64 0 0 bps/4値FSKのモードに設定された場合、図9に 示すように、1フレームの同期信号の直後から、4フェ ーズ全てに呼出信号を符号化して収容する。このため図 のように呼出トラヒックが少ない場合には、呼出信号情 報は同図のハッチング部分に含まれ、変調波の状態は図 7 (b) で示した4値のいずれかとなる。またフレーム の後半部分には呼出信号情報の収容されない空きワード が配置される。すなわち、送信時間のうち、情報を伝達 するのに寄与している時間は一部であり、送信された電 力の多くが無駄になっていた。このように、従来の符号 化制御方法では、呼出トラヒックの多少にかかわらず、 呼出トラヒックの最大値を収容できる全てのフェーズを 用いて送信するので、変調波の状態は予め設定された伝 送速度と変調方式の組み合わせに従うことになり、良好

な受信特性は期待できなかった。

【0009】なお、呼出トラヒックは時間変動があるの で、トラヒックが多い時間とそれ以外の時間で前記伝送 速度と変調方式の組み合わせを変更することも可能であ るが、変更する場合、符号化装置は同期信号内の情報を 変更する必要があるため、基本フレーム構成を変更しな ければならず、その間、符号化装置は呼出信号の符号化 を一時中断しなければならなかった。

[0010]

【発明が解決しようとする課題】上述したように、伝送 速度を高速化すると加入者容量を大きくできるが、受信 機の受信特性が悪化するという問題点があり、従来の符 号化方法では、呼出トラヒックの時間変動によらず、最 大トラヒックに合わせて選択した伝送速度に依存した受 信特性しか実現できない。

【0011】また、瞬間的に呼出信号トラヒックが増大 した場合、伝送速度と変調方式の組み合わせをトラヒッ ク量に応じて変更すると、トラヒックが増大しているに も関わらず、符号化処理が継続できないため、受付がで きないというサービス上の問題点だけでなく、フレーム 上に時間的に空きが生じるため、却って収容可能なトラ ヒックが減少するという問題点があった。

【0012】本発明は、上記に鑑みてなされたもので、 その目的とするところは、フレームの伝送速度と変調方 式の組み合わせを固定したまま、呼出信号の符号化処理 を中止することなく、呼出信号トラヒックに応じて、で きる限り伝送速度が等価的に低くなるように呼出信号を 収容する論理チャネルを決定する符号化制御を行い、受 信特性を改善し得る無線呼出符号化制御装置を提供する ことにある。

[0013]

【課題を解決するための手段】上記目的を達成するた め、請求項1記載の本発明は、必要な数の呼出信号を符 号化して収容した論理チャネルを多重化して1フレーム とし、複数のフレームを時分割多重した時系列デジタル 信号を変調信号として所定の伝送速度およびN値変調方 式により搬送波を変調して送信する無線呼出方式に用いい る無線呼出符号化制御装置であって、フレーム単位で多 重化された複数の論理チャネルのうち呼出信号の送信に 使用する論理チャネルを、呼出信号トラヒックが少ない 40 場合に変調された信号の状態数がNよりも小さくなるよ うな優先順位を設けて決定する手段を有することを要旨 とする。

【0014】請求項1記載の本発明にあっては、呼出信 号トラヒックが少ない場合に変調された信号の状態数が Nよりも小さくなるような優先順位を設けて、呼出信号 の送信に使用する論理チャネルを決定するため、呼出信 号のトラヒック量が最大となるような時間以外は受信機 の受信特性を改善することができる。

[0015]

【発明の実施の形態】以下、図面を用いて本発明の実施 の形態について説明する。

【0016】図1は、本発明の一実施形態に係る無線呼 出符号化制御装置の構成を示すブロック図である。同図 に示す無線呼出符号化制御装置において、ランダムに生 起した呼出データ10は符号化制御装置内の呼出データ 格納部1へ格納される。フレーム割当処理部2は、呼出 データ格納部1に格納された呼出データ中のフレーム番 号から当該呼出データを収容するフレームを割り当て る。フェーズ優先順位決定部3では当該フレームの伝送 速度と変調方式の組み合わせをフレーム情報メモリ4か ら読み出し、符号化するフェーズの優先順位を決定す る。フェーズ割当部5では前記優先順位にしたがって、 フェーズ内の空きワード状態を空きワード検出部 6 で検 出し、符号化可能なフェーズを決定する。符号化処理部 7においては、決定されたフェーズで呼出信号に符号化 し、送信バッファ格納部8に格納する。格納されたデー タは送信部 9 を介して各基地局へ転送される。

【0017】図2は、図1に示す実施形態における符号 化処理までの動作を示すフローチャートである。本実施 形態では、受け付けた呼出データに特にフェーズの指定 がない場合、フレーム内でのフェーズ割当は、変調され た信号の状態数ができるだけ変調方式のNより小さくな るように使用フェーズに優先順位を付ける。例として6 4 0 0 bps/4値FSKの場合、A, B, C, Dの4フェ ーズが呼出信号情報の送信に使用できるが、本実施形態 では、このうちAとCの2フェーズのみを優先して使用 するように符号化制御する。

【0018】図2に示す処理では、上述したように呼出 30 データ格納部1に格納された呼出データの中のフレーム 番号から当該呼出データを収容するフレームを割り当て (ステップS11) 、それから当該フレームの伝送速度 と変調方式の組み合わせをフレーム情報メモリ4から読 み出す(ステップS13)。そして、この読み出したフ レームの伝送速度と変調方式の組み合わせが 6 4 0 0 bp s/4値FSKか (ステップS15) 、3200bps/4値 F S K か (ステップ S 1 9) 、 3 2 0 0 bps/ 2 値 F S K か(ステップS23)、1600bps/4値FSKか(ス テップS27)をチェックする。

【0019】上述したように読み出したフレームの伝送 速度と変調方式の組み合わせが6400bps/4値FSK の場合には、AまたはCフェーズを優先とし(ステップ S 1 7) 、 3 2 0 0 bps/4 値F S K の場合には、A フェ ーズを優先とし(ステップS21)、3200bps/2値 FSKおよび1600bps/4値FSKの場合には、フェ ーズ優先順位指定無しとし (ステップS25, S2

9) 、ステップS31に進む。

【0020】ステップS31では、上述したように読み 出した優先順位に従ってフェーズ内の空きワード状態の 50 検出処理を全てのフェーズについて終了したか否かをチ

5

ェックし、終了していない場合には、フェーズ内の空き ワード状態を検出し(ステップS33)、この検出した 空きワードが呼出信号情報ワードよりも大きいか否かを チェックする(ステップS35)。空きワードが大きい 場合には、このフェーズを符号化可能なフェーズとして 決定し(ステップS41)、この決定されたフェーズ 呼出信号に符号化して(ステップS43)、それから送 信バッファ格納部8に格納し、この格納したデータを送 信部9から各基地局に転送する。

【0021】ステップS35のチェックにおいて、空きワードが呼出信号情報ワードよりも大きくない場合には、次フェーズに移行し(ステップS37)、同様な処理を繰り返す。また、上述した処理を全てのフェーズについて終了した場合には、次のフレームに移行し、同様に処理を行う(ステップS39)。

【0022】図3は本実施形態による呼出信号の収容例を示し、特に従来の図9と同じ呼出信号トラヒック(call10~call20)の場合を示す。A、B、C、Dの4フェーズのうち、AとCの2フェーズのみを優先して使用するので、呼出信号情報はAとCの2フェーズのハッチ 20ング部分に含まれ、BおよびDフェーズには含まれない。

【0023】図7(b)の6400pps/4値FSKにおけるフェーズの多重化方法を参照すると、全てのフェーズをランダムに割り当てた場合、変調信号は4つの状態(周波数偏位)をとっていたのに対し、本実施形態ではAとCの2フェーズのみを使用し、残りのBとDのフェーズはオール'0'とした場合、変調信号は最も信号問距離の離れた2つの状態($+\Delta$ F, $-\Delta$ F)をとり、写価的に3200pps/2値FSK信号となる。これを図4に示す。これは図7(a)の3200pps/2值FSKにおける信号状態と等価である。従って、AとCの2フェーズのみを優先して使用することにより、呼出信号につき、受信特性を改善することが可能である。

【0024】また、フレーム中の呼出信号トラヒックが50%を超えると、図5に示すように、50%を超えたトラヒックはB, Dフェーズにも収容される。B, Dフェーズに呼出信号情報が収容された時間部分は変調信号が4つの状態(周波数偏位)をとることになり、受信特性の改善はない。しかしながら、それ以外の部分は引き続き等価的に3200bps/2値FSK信号となり、受信特性を改善することが可能である。従って、図5の場合においても本発明は有効であることがわかる。

【0025】なお、以上の説明ではFLEX-TD方式 で6400bps/4値FSKのモードでの動作例を示した が、3200 bps/4 値FSKのモードにおいても本発明を適用することで受信特性を改善することが同様に可能である。3200 bps/4 値FSKの場合、AとCの2フェーズが使用可能であるが、Aフェーズを優先して使用するように符号化制御する。呼出信号トラヒックが少ない場合、これによって変調信号は最も信号間距離の離れた2つの状態($+\Delta F$, $-\Delta F$)に縮退し、等価的に1600 bps/2 値FSK信号となることが容易に類推できる。

10 [0026]

【発明の効果】以上説明したように、本発明によれば、 伝送速度または変調方式の設定の変更を伴わないので収 容する加入者数を減らすことなく、呼出信号を符号化す る論理チャネルの優先使用順位を制御することによっ て、変調された信号の状態数ができる限り小さくなるよ うに送信することが可能となるため、呼出信号のトラヒ ック量が最大となる時間以外は受信機の受信特性を改善 できる効果がある。

【図面の簡単な説明】

【図1】本発明の一実施形態に係る無線呼出符号化制御 装置の構成を示すブロック図である。

【図2】図1に示す実施形態の作用を示すフローチャートである。

【図3】図1の実施形態における呼出信号(トラヒック量が50%以下)のフレーム収容例を示す図である。

【図4】図1の実施形態における伝送速度およびN値変調のNを低減する変調例を示す図である。

【図5】図1の実施形態における呼出信号(トラヒック量が50%以上)のフレーム収容例を示す図である。

30 【図6】FLEX-TD方式のフレームフォーマット例を示す図である。

【図7】従来の無線信号の変調例を示す図である。

【図8】従来の無線呼出符号化制御装置の構成を示すブロック図である。

【図9】従来のフレーム収容例を示す図である。

【符号の説明】

- 1 呼出データ格納部
- 2 フレーム割当処理部
- 3 フェーズ優先順位決定部
- 40 4 フレーム情報メモリ
 - 5 フェーズ割当部
 - 6 空きワード検出部
 - 7 符号化処理部
 - 8 送信バッファ格納部
 - 9 送信部

【図1】

[図3]

【図4】

【図5】

【図7】

(a) 3200bps/2PSK

(b) 6400bps/4PSK

【図9】

【図8】

フロントページの続き

(72)発明者 伊藤 正悟 東京都港区虎ノ門二丁目10番1号 エヌ・ ティ・ティ移動通信網株式会社内