Tema 5 (I) - El producto interior y la norma

- 1. Encontrar un vector unitario en la dirección del vector $\mathbf{x}=(\sqrt{5},-3,\sqrt{2})$.
- **2.** Se sabe que $\mathbf{x} \parallel \mathbf{y}$, que $\|\mathbf{x}\| = 3$ y que $\mathbf{y} = (2, -1, 1)$. Hallar \mathbf{x} .
- 3. Hallar el ángulo forman entre si los vectores \mathbf{x} e \mathbf{y} .
 - a) $\mathbf{x} = (1,0)$ e $\mathbf{y} = (1,1)$.
 - b) $\mathbf{x} = (\sqrt{3}, 1) \text{ e } \mathbf{y} = (1, \sqrt{3}).$
 - c) $\mathbf{x} = \left(\cos\frac{\pi}{6}, \sin\frac{\pi}{6}\right) \in \mathbf{y} = \left(\cos\frac{3\pi}{4}, \sin\frac{3\pi}{4}\right)$.
 - d) $\mathbf{x} = (0, 1, 0, 1)$ e $\mathbf{y} = (3, 3, 3, 3)$.
 - e) $\mathbf{x} = (1, 2, -1, 0, 1)$ e $\mathbf{y} = (2, 1, -3, 1, -1)$.
- **4.** Los vectores $\mathbf{x} = (2, -1)$ e $\mathbf{y} = (a, 2a 5)$ forman un ángulo de 60° . Hallar a.
- **5.** Hallar un vector unitario que forme un ángulo de 45° con el vector $\mathbf{x} = (2, 1)$.
- 6. Hallar el ángulo que forma la diagonal de un cubo con una de sus aristas.
- 7. Hallar el ángulo que forma la diagonal de un cubo con una de sus caras.
- 8. Probar que $\mathbf{x} \perp \mathbf{y}$ si y sólo si $\|\mathbf{x} \mathbf{y}\| = \|\mathbf{x} + \mathbf{y}\|$. Interpretar geométricamente el resultado.
- 9. Probar que $\mathbf{x} \perp \mathbf{y}$ si y sólo si $\|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$. Interpretar geométricamente el resultado.
- **10.** Los vectores $\lambda(2,-1)$ y (-3,4) son dos lados de un rombo. Hallar λ .
- 11. La desigualdad triangular establece que $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$; En qué casos $\|\mathbf{x} + \mathbf{y}\| = \|\mathbf{x}\| + \|\mathbf{y}\|$?
- 12. Probar que un paralelogramo es un rombo si y sólo si sus diagonales son perpendiculares.
- 13. Probar que $|\|\mathbf{x}\| \|\mathbf{y}\|| \le \|\mathbf{x} + \mathbf{y}\|$ ¿En qué casos se da la igualdad? Interpretar geométricamente.
- **14.** Dada la base de \mathbb{R}^3 , $\mathcal{B} = \{(1,0,-1), (2,-1,0), (0,1,-2)\}$ y los vectores, cuyas coordenadas están referidas a \mathcal{B} , $\mathbf{x} = (2,-1,3)_{\mathcal{B}}$ e $\mathbf{y} = (3,2,-1)_{\mathcal{B}}$, hallar $\mathbf{x} \cdot \mathbf{y}$.
- **15.** Los vectores $\mathbf{a} = \lambda(1, -2)$ y \mathbf{b} son los catetos de un triángulo rectángulo y el vector $\mathbf{c} = (3, 1)$ es la hipotenusa. Hallar λ y el vector \mathbf{b} .
- **16.** Dado el subespacio $H=\langle\,(1,2,-1,0),(0,-1,1,3)\,\rangle$, hallar K tal que $H\oplus K=\mathbb{R}^4$. Sugerencia: hacer $K=H^\perp$.
- 17. Hallar un vector en la dirección de la bisectriz del ángulo que forman los vectores $\mathbf{u}=(1,-2,0)\,\,\mathbf{y}$ $\mathbf{v}=(-3,0,4)$. Hallar un vector perpendicular a dicha bisectriz y comprobar que va en la dirección de la bisectriz del ángulo que forman $\mathbf{u}\,\,\mathbf{y}\,\,-\mathbf{v}$. Interpretar geométricamente el resultado obtenido.
- **18.** Dado el conjunto $A = \{(0-2,5,-1), (1-,0,0,-2)\}$, se pide:
 - a) Probar, sin hallar A^{\perp} , que $A^{\perp} = \langle (0-2,5,-1), (1-,0,0,-2) \rangle^{\perp}$.
 - b) Hallar unas ecuaciones implícitas y una base del subespacio $\langle\,(0-2,5,-1),\,(1-,0,0,-2)\,\rangle^\perp$.
- 19. Dada una matriz $A_{n \times m}$, ¿qué relación hay entre el rango(A) y la dimensión de nulo(A)?
- **20.** Una matriz $A_{3\times 4}$ es tal que filas $(A)^{\perp} = \langle (1,1,4,-1), (2,-1,0,0) \rangle$. Hallar la forma escalonada reducida de la matriz A.
- **21.** Sean H y K dos subespacios de un espacio vectorial \mathbb{R}^n .
 - a) Probar que $(H + K)^{\perp} = H^{\perp} \cap K^{\perp}$.
 - b) Usar el apartado anterior para probar que $(H \cap K)^{\perp} = H^{\perp} + K^{\perp}$.
- **22.** Sea H un subespacio de \mathbb{R}^n y sea $\mathbf{v} \in H$. Probar que $H^{\perp} \subseteq \langle \mathbf{v} \rangle^{\perp}$. Generalizar el resultado.