- 13 -

Claims:

A method of coding digital data for transmission according to a trellis coding system having a predetermined number of (N) states and a predetermined number of (M) state transitions from each state, wherein the data is arranged in a series of frames, a state is associated with each frame to determine a coding strategy for the frame, and a look-ahead depth (D) representing a number of data frames is selected, characterised by the step of:

assigning an initial state for a first frame of the series of data frames, and assigning states for the subsequent data frames in the series of data frames up to the look-ahead depth according to a predetermined valid trellis path, the method further including:

sequentially fetching subsequent data frames in the series and determining respective states therefor based on a path metric for state transitions computed over the number of frames represented by the look-ahead depth; and

coding the data frames for transmission according to the coding strategies corresponding to the states assigned or determined for the frames, wherein the series of data frames are coded for a shaped spectrum upon transmission thereof.

- 2. A method as claimed in claim 1, wherein fetched data frames are buffered over said look-ahead depth from a current frame X_i to a look-ahead depth frame X_{i+D} .
- 3. A method as claimed in claim 2, wherein node information for nodes representing possible state transitions at the look-ahead depth are stored in a node memory in an ordered array, and wherein the coding strategy for the current data frame Xi is determined on the basis of a node selected at the look-ahead depth according to said path metric.
- A method as claimed in claim 3, wherein the node information in said node memory is replaced for each new data frame in the series.
- A method as claimed in claim 3, wherein the coding strategy for the current data frame 30 Xi is determined according to a state transition from the state associated with said current frame which is determined by a comparison of the position of the node selected at the look-ahead

10

5

15

20

::

25

a buffer memory coupled to the data source for buffering data frames in the series of data frames by the selected look-ahead depth (D);

a metric computation and trellis extension engine coupled to sequentially receive said data frames from the data source and determine node information in a plurality of nodes for each said frame representing possible states, state transitions from a preceding frame and path metrics for the state transitions;

a current state storage coupled to the metric computation and trellis extension engine for storing the state of a current frame in the series of data frames;

a node memory coupled to the metric computation and trellis extension engine for storing said node information for nodes of a frame succeeding the current frame by the lookahead depth;

a coding scheme memory for storing a correlation between state transitions and respective coding schemes; and

a processing circuit coupled to the coding scheme memory and metric computation and trellis extension engine for applying a selected coding scheme to a data frame to generate spectrally shaped coded data;

wherein said metric computation and trellis extension engine determines the selected coding scheme for the current frame according to the state stored in the current state storage and a node for the frame succeeding the current frame by the look-ahead depth which is selected on the basis of the path metric for the node, characterised by:

the metric computation and trellis extension engine assigning an initial state for a first frame of the series of data frames, and assigning states for the subsequent data frames in the series of data frames up to the look-ahead depth according to a predetermined valid trellis path.

5

10

15

20

25

::

30

- An encoder as claimed in claim 6 wherein, for the first frames within the look-ahead 7. depth of the series of data frames, states and state transitions are assigned according to a predetermined valid trellis path.
- An encoder as claimed in claim 6 or 7, wherein for each said data frame received by the metric computation and trellis extension engine the node information in the node memory is replaced with new node information representing the received data frame and the possible state transitions from the preceding data frame.
- 10 An encoder as claimed in claim 8, wherein the node information for the nodes is stored in linear array in said node memory, and wherein the coding scheme for the current frame is determined according to the position of the selected node within the node memory linear array.