NLO DGLAP QCD Fit to H1 Inclusive Diffractive DIS Data

10th Workshop on Deep Inelastic Scattering (DIS)

May 2002, Krakow

Frank-Peter Schilling (DESY)

H1 Collaboration

- NLO DGLAP QCD fit
- Parton distributions including error erstimate
- ullet Gluon fraction and F_L^D
- Comparisons with diffractive final state data (HERA and TEVATRON)

DIS 2002, Krakow 1/17

Foundation

Theoretical:

Proof of semi-inclusive QCD hard scattering factorization for diffractive DIS (J. Collins):

At leading twist:

$$rac{d^2\sigma(x,Q^2,x_{I\!\!P},t)^{\gamma^*p o p'X}}{dx_{I\!\!P}\ dt} = \sum_i \int_x^{x_{I\!\!P}} d\xi \hat{\sigma}^{\gamma^*i}(x,Q^2,\xi) \,\, p_i^D(\xi,Q^2,x_{I\!\!P},t)$$

- ullet Clear theoretical framework to define diffractive parton distributions p_i^D (at fixed $x_{I\!\!P}$, t)
- Equivalent to standard DIS:
 - Determine $oldsymbol{p}_i^D$ in a DGLAP QCD fit to inclusive diffr. cross section $oldsymbol{\sigma}_r^D$
 - Test factorization by comparisons with diffractive final state data (e.g. Dijets)
- ullet Apply same NLO QCD DGLAP apparatus to Q^2 and eta or $oldsymbol{x}$ dep. as in inclusive DIS

Experimental:

• Precise H1 measurement of Q^2 , β dep. of diffractive reduced cross section

$$\sigma_r^{D(3)} = F_2^{D(3)} - rac{y^2}{1+(1-y)^2} F_L^{D(3)}$$
 ($\sigma_r^D = F_2^D$ if $F_L^D = 0$)

(see previous talk)

($\Sigma=6u$, $u=d=s=ar{u}=ar{d}=ar{s}$)

Fitting Technique

Modelling of $\sigma_r^{D(3)}$:

- Ideally determine diffractive pdf's at at fixed $x_{I\!\!P}$, but ...
- Shape of Q^2 , β dep. of σ_r^D observed to be largely independent of $x_{I\!\!P}$:

$$\sigma_r^{D(4)}(x_{I\!\!P},t,eta,m{Q}^2) = f_{I\!\!P}(x_{I\!\!P},t) * \sigma_r^{D(2)}(eta,m{Q}^2)$$

ullet $x_{I\!\!P}$ dependence conveniently parameterized as

$$f_{I\!\!P}(x_{I\!\!P}) = \int \, dt \,\, x_{I\!\!P}^{1-2lpha_{I\!\!P}(t)} e^B t$$

using $\alpha_{I\!\!P}(0)=1.173\pm0.018$ (determined from data)

• Small contribution from sub-leading exchange at large $x_{I\!\!P}>0.01$ required

PDF parameterization:

- At starting scale $Q_0^2 = 3 \text{ GeV}^2$:
 - Singlet distribution $\Sigma(oldsymbol{z}, oldsymbol{Q}_0^2)$
 - Gluon distribution $g(oldsymbol{z}, Q_0^2)$
 - Parameterization using unbiased, flexible functional form: Chebychev polynomials

$$zp_i(z,Q_0^2) = \left[\sum_{j=1}^n C_j^i P_j(2z-1)
ight]^2 e^{rac{a}{z-1}}$$

Charm treatment in massive approach (BGF)

Minimization and Error Propagation

DGLAP QCD fit performed using same framework as for inclusive QCD analysis of $F_2(x,Q^2)$ by H1

(C. Pascaud, F. Zomer, LAL)

(1) Experimental Uncertainties:

Full propagation of correlated experimental systematic uncertainties yield uncertainty information for extracted pdfs

$$\chi^2 = \sum_i rac{\left[\sigma_i^{exp} - \sigma_i^{th}(1 - \sum_j c_j \Delta_{sys,ij})
ight]^2}{\Delta_{stat,i}^2 + \Delta_{unc,i}^2} + \sum_j c_j^2$$

 $\Delta_{sys,ij}$: Effect of correlated systematic error source j on data point i c_j : Systematic parameters

- → systematic errors fitted by shifting data central values
- (2) Model uncertainties estimated from variations of:

$$ullet$$
 Strong coupling $\Lambda_{QCD}=200\pm30~{
m MeV}$

← small

ullet Charm mass $oldsymbol{m_c} = 1.5 \pm 0.1 \; \mathrm{GeV}$

← small

ullet Parameterization of $x_{I\!\!P}$ dependence $(\alpha_{I\!\!P}(0), \alpha'_{I\!\!P}, B_{I\!\!P})$

← dominant

ullet Parameterization of sub-leading high $oldsymbol{x_{I\!\!P}}$ contribution

← negligible

NLO QCD Fit to σ_r^D

$$rac{d^3\sigma^D}{dx_{I\!\!P}deta dQ^2} = rac{4\pilpha_{em}^2}{eta Q^4} \left(1-y+rac{y^2}{2}
ight)\sigma_{r}^{D(3)}(x_{I\!\!P},eta,Q^2)$$

Datasets:

- ullet H1 1997 preliminary data $6.5 \le Q^2 \le 120 \; \mathrm{GeV}^2$ (284 points)
- ullet H1 94-97 preliminary data $200 \le Q^2 \le 800 \; \mathrm{GeV}^2$ (29 points)

Phase space and Cuts:

- $x_{I\!\!P} < 0.05$ $0.01 < \beta < 0.9$
- ullet $M_X>2~{
 m GeV}
 ightarrow$ leading twist analysis, avoid high eta at low Q^2 $(\sigma_L^{H.T.}$ region)
- ullet NLO fit: full y range of measurement (y < 0.75); LO fit: y < 0.45 (F_L^D)

Free fit parameters and χ^2 :

- 3+3 parameters for singlet $\Sigma(z)$ and gluon g(z) parameterization (from systematic study)
- ullet 1 normalization of sub-leading exchange contribution at high $x_{I\!\!P}>0.01$
- $\chi^2/ndf = 308.7/306$

Comparison of NLO QCD fit with Data

 β dependence at fixed Q^2 :

 Q^2 dependence at fixed β :

DIS 2002, Krakow 6/17

Comparison of NLO QCD fit with Data: Q^2 dep.

Two example $x_{I\!\!P}$ bins

 $oldsymbol{Q}^2$ scaling violations well constrained by data

Rising except at highest β

Well reproduced by QCD fit up to $Q^2=800~{
m GeV}^2$

Sub-leading contribution at $x_{I\!\!P}=0.03$, smaller than for previous data

Comparison of NLO QCD fit with Data: β , x dep.

Example $x_{I\!\!P}$ bin at 0.003:

Rising behaviour at eta o 1, low Q^2 reflected by $\Sigma(z,Q^2)$

 $oldsymbol{eta}$ dependence independent of $oldsymbol{x_{I\!\!P}}$

high $y \leftrightarrow \mathsf{low} \; x \; \mathsf{or} \; eta \; \mathsf{at} \; \mathsf{fixed} \; x_{I\!\!P}$: Effect of F_L^D

presently no direct handle on $oldsymbol{F}_L^D$ from data

Comparison of QCD fit with high Q^2 data

Fair agreement within experimental errors

ightarrow Precision at high Q^2 to be improved

DIS 2002, Krakow 9/17

Result of NLO fit

- pdfs extending to large fractional momenta z
- ullet precise measurement of singlet distribution $\Sigma(oldsymbol{z}, oldsymbol{Q}^2)$
- ullet hard gluon distribution, flat or rising towards z o 1 (LO fit more peaked than central NLO fit)
- large uncertainty for $g(z,Q^2)$ at z>0.6 (mainly related to model)

DIS 2002, Krakow 10/17

Result of NLO fit

DIS 2002, Krakow 11/17

Leading order Fit and Comparison with previous H1 fits

- Comparisons with previous
 LO fits to 1994 data:
 - H1 Fit 2 ("flat gluon")
 - H1 Fit 3 ("peaked gluon")
- ullet Reasonable agreement of $\Sigma(z,Q^2)$ for z<0.65 (common fit range)
- Gluon normalization smaller by 20-30% at low z, 50% at high z

Agreement reasonable, taking errors of old and new fits into account

DIS 2002, Krakow 12/17

Gluon Momentum Fraction

From NLO Fit:

Integration of pdf's in measured range

- ullet Momentum fraction of colour singlet exchange carried by gluons 75% for $6.5 < Q^2 < 800~{
 m GeV}^2$
- Fully consistent with results from previous H1 data

Longitudinal Structure Fraction F_L^D

At NLO QCD, the leading twist longitudinal structure function F_L^D is predicted:

$$F_L^D \sim rac{lpha_s}{2\pi} \left[C_q^L \otimes F_2^D + C_g^L \otimes \sum_i e_i^2 ~m{z} m{g}^D(m{z},m{Q}^2)
ight]$$

ightarrow pert. F_L^D rel. large, in particular at low Q^2 , low eta (due to large $g(z,Q^2)$)

DIS 2002, Krakow 14/17

Comparison with H1 diffractive DIS final states

Use pdf's from LO fit to predict dijets / D^* cross sections in diffractive DIS as measured by H1:

Comparison based on MC model (RAPGAP) $\mu^2 = Q^2 + p_T^2 + m^2$

Diffferential distributions remain well described Normalization: pdf/NLO/scale uncertainty

Comparison with CDF diffractive Dijet cross sections

Dijet production with tagged leading anti-proton at TEVATRON:

Effective diffractive structure function \tilde{F}_{ij}^{D} :

$$ilde{F}_{jj}^D(eta) = \int dx_{I\!\!P} dt f(x_{I\!\!P},t) \; eta \left[g(eta, ilde{Q}^2) + rac{4}{9} \Sigma(eta, Q^2)
ight] \qquad (Q^2 = 75 \; GeV^2)$$

- New fit confirms serious breakdown of factorization
- β dependence similar (except highest β)
- NOTE $x_{I\!\!P}$ domain: 50% contribution from sub-leading exchange in this kinematic regime

Conclusions

- ullet Precise measurement of Q^2 and x dependence of latest H1 diffractive DIS data
- ullet Data consistent with factorizing $oldsymbol{x}_{I\!\!P}$ dependence (except highest $oldsymbol{x}_{I\!\!P}$)
- Diffractive parton distributions derived from NLO DGLAP QCD fit
- Experimental and model uncertainties of diffractive pdfs evaluated for the first time
- pdfs extending to high z and dominated by hard gluon distribution
 (75% of exchange momentum)

- Factorization tests with diffractive final state data from HERA and TEVATRON:
 - Consistent with QCD factorization in $oldsymbol{e} oldsymbol{p}$
 - Failure in pp confirmed

(more details in talk by P. Thompson tomorrow)

DIS 2002, Krakow 17/17