TEST 1 FORMULA SHEET EC401 (SPRING 2020)

DT Unit Step (Switch)

DT Unit Impulse (Atom):

$$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & otherwise \end{cases}$$

$$\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & otherwise \end{cases}$$

Discrete-Time Impulse decomposition of a Signal: $x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$

Even Signal:
$$x[n] = x[-n]$$

Odd Signal:
$$x[n] = -x[-n]$$

Even
$$\{x[n]\}=\frac{x[n]+x[-n]}{2}$$

$$\mathbf{Odd}\{x[n]\} = \frac{x[n] - x[-n]}{2}$$

Basic Signal Operations:

Shift:
$$y[n] = x[n - n_0]$$

Shift:
$$y[n] = x[n - n_0]$$
 Flip: $y[n] = x[-n]$

Compress: $y[n] = x[Mn]$ Expand: $y[n] = \begin{cases} x\left[\frac{n}{M}\right] & \text{if } n > M \\ 0 & \text{otherwise} \end{cases}$

Multi-Signal Operations:

Linear Combination:
$$y[n] = \alpha_1 x_1[n] + \alpha_2 x_2[n]$$

Product: v[n] = g[n]h[n]

Bounded Signal: A signal x[n] is bounded if and only if $|x[n]| \le B$ for some finite (positive) number *B*.

Linear System:

Suppose $S:x_1[n] \to y_1[n]$ and $S:x_2[n] \to y_2[n]$. The system S is linear if and only if $S:\alpha_1x_1[n] + \alpha_2x_2[n] \rightarrow \alpha_1y_1[n] + \alpha_2y_2[n]$ for all possible $x_1[n], x_2[n], \alpha_1$, and α_2 .

Time-Invariant System:

Suppose S: $x_1[n] \rightarrow y_1[n]$. The system S is time-invariant if and only if S: $x_1[n - n_0] \rightarrow y[n - n_0]$ for all possible $x_1[n]$ and n_0 .

Causal System:

A system S is causal *if and only if* the output at any given time is dependent only upon the input at the same time and/or past times.

Stable System:

A system S is stable *if and only* if bounded inputs always result in bounded outputs.

LTI System: $S:x[n] \to y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$ where $S:\delta[n] \to h[n]$