PLC programozás 2.

V. Sorrendvezérlés

VI. Festo PLC

VII. Unitronics PLC

VIII. Siemens PLC

5.1. Sorrend vezérlés

Sorrend vezérlés

Folyamat követő vezérlés Valamilyen esemény(ek) megtörténte indít egy másik esemény(eke)t Jellemzői:

- a teljes munkafolyamatot egyértelmű lépésekre bontjuk
- minden lépéshez tartozik egy flag!
- egyszerre mindig egy flag értéke 1-es! → ez mutatja meg, hogy melyik lépésnél járunk
- lépés átmeneteknél a következő lépéshez tartozó flag 1-es, a jelenlegihez tartozó 0 értékű lesz !
- a kimeneteket a flag-ek vezérlik
- pazarlóan bánik a flag-ekkel, más módszert használva kevesebb flag-el (és rövidebb programmal) is meg lehetne oldani általában ! DE → sokkal átláthatóbb így

5.2. Sorrend vezérlés

1. mintafeladat

Két pneumatikus munkahengert (MH1, MH2) kell a következőképpen működtetni: (kettős működésű munkahengerek, monostabil 5/2-es útváltókkal vezérelve)

"START" nyomógomb (záró) lenyomására az MH1 munkahenger menjen ki, majd vissza, majd → ezt ismételje meg, de ekkor már MH2 munkahengerrel egyszerre! "STOP"-ra (bontó) minden alaphelyzetbe!

A munkahengerek mozgása

5.3. Sorrend vezérlés

1. mintafeladat, megoldás (Festo)

A munkahengerek mozgása

Csak a 0. lépés flag-jét állítjuk 1-be, a többit 0-ba!!

Kezdeti beállítások:

5.4. Sorrend vezérlés

1. mintafeladat, megoldás folytatása

Állapot átmenetek ------

Kimenetek vezérlése

5.5. Sorrend vezérlés

2. mintafeladat

Két pneumatikus munkahengert (MH1, MH2) kell a következőképpen működtetni: (kettős működésű munkahengerek, monostabil 5/2-es útváltókkal vezérelve)

"START" nyomógomb (záró) lenyomására az MH1 munkahenger menjen ki, majd vissza, ezután MH2 munkahenger ki, majd vissza, és újra MH1 ki, és vissza. "STOP"-ra (záró) minden alaphelyzetbe!

A munkahengerek mozgása

5.6. Sorrend vezérlés

2. mintafeladat, megoldás (Unitronics)

Kezdeti beállítások:

5.7. Sorrend vezérlés

2. mintafeladat, megoldás folytatása

Állapot átmenetek

5.8. Sorrend vezérlés

2. mintafeladat, megoldás folytatása

Kimenetek vezérlése

6.1. FESTO FEC PLC

Jellemzők

- FESTO FEC FC34 és FC20 → kompakt PLC-k (több altípus is van ezeken kívül)
- AMD AM186 (80186) processor (20MHz)
- FC34 → 512 kByte RAM + 512 kByte flashROM
- FC20 → 256 kByte RAM + 256 kByte flashROM
- digitális bemenet: 12 db \rightarrow I0.0 I0.1 I0.7 + I1.0 I1.1 I1.2 I1.3 de több a használható cím \rightarrow IW0 IW255 (16 bites bemeneti szavak)
- digitális kimenet: 8 db
 - FC34 → O0.0 O0.1 (Relés) és O0.2 O0.7 (Tranzisztoros)
 - FC20 → O0.0 ... O0.7 Relés
 - de több a használható cím → OW0 OW255 (16 bites kimeneti szavak)
- Timer: 256 db időzítő → T0 T1 T255 impulzus időzítők! (időalap 10ms) de létradiagramban lehetnek TON és TOFF időzítők is! → TON1, TON2, ... vagy TOFF1, TOFF2, ...
- **Flag:** → 10000db 16 bites flag (FW0, FW1, FW2,FW9999), de ezek használhatók bitenként is → F0.0 F0.1 ... F0.15 F1.0 F1.1 ... F1.15 ... F9999.0 F9999.15
- Counter: 256 db számláló → C0 C1 C255
- Regiszter: 256 db → R0 R1 R255
- FI → inicializációs flag
 - (csak a legelső program ciklusban 1-es, utána mindig 0 ! → kezdeti beállításokhoz)

6.2. FESTO FEC PLC

Programozás, kommunikáció

- program egység: 64 db → P0 P63
 - A 0. számú (P0) a "fő program", csak ez indul el automatikusan, a többet ebből lehet meghíni
- funkció egység: 256 db → FU0 FU255
- programozás: FST szoftver, létradiagram és utasításlistás nyelveken
- Kommunikáció: soros port, Ethernet
- üzemmód: STOP vagy RUN (kapcsolóval állítható!),
 egy LED (RUN) jelzi →
 zöld színű → fut a program (RUN)
 narancs színű → nem fut a program (STOP)
 vörös színű → nagyon nem OK valami (hiba) → célszerű PLC kikapcsolása,
 újra bekapcsolása és (helyes) program újra rátöltése

6.3. FESTO FST

FST szoftver használata

- 1. lépés: van kommunikáció a PLC-vel ?
- "Online" menü, "online display" menüpont →
 - Ha a kommunikáció rendben van → bejön egy sok-sok jelölőnégyzetet tartalmazó ablak (ez mutatja a bemeneti, kimeneti, flag,... bitek állapotait!)
 - ha nincs kommunikáció \to soros port száma jól van beállítva ? \to "Extras" menü, "Preferences" menüpont \to "Communication" fül
- 2. lépés: Project létrehozása (vagy meglévő megnyitása)
- "Project" menü, "New ..." (vagy "Open ...") menüpont →
 - rövid név! (a megjegyzésben lehet hosszabb leírást adni)
 - PLC típust (controller) átállítani → FEC Compact-ra!!

Egy projektben sok program verziónk lehet (9) → program létrehozása a következő lépés

- 3. lépés: Program létrehozása
- "Program" menü, "New …" menüpont →
 - program nyelv választás (LAD, STL)
 - program szám (number) → maradjon a 0 !! mert ez indul el automatikusan (hacsak nem több alprogramot is használunk)
 - a program verzió szám különbözzön (egy projektben lévő programoknál)!

6.4. FESTO FST

FST szoftver használata

4. lépés: program megírása

A felhasználható elemek (grafikus szimbólumok vagy utasítások) megtalálhatók:

- az "Insert" menü "STL Instruction" vagy "LDR Element" menüjében
- vagy elérhetők ikonként is a "Shortcuts" ablakban (lehet hogy beépült a menü alá, a többi ikon közé)
 ha nem látható → bekapcsolható a "View" menü "Shortcuts" menüpontjában

Létra diagram:

- új ág (rung) létrehozható egy meglévő után vagy elé
- az elemek mindig a kijelölt ágra kerülnek!

Címzéskor használhatunk tényleges címeket (absolute operand), vagy saját elnevezéseket (symbolic operand) is, de ekkor a program bekéri hozzá a tényleges címeket

5. lépés: Program lefordítása

"Project" menü, "Build project"menüpont → minden programot lefordít (vagy "Make project" menüpont → csak azt fordítja le ami megváltozott)

6. lépés: Program áttöltése a PLC-re

Legyen előtte:

- egy hibátlan fordításunk!
- leállítva a PLC (STOP üzemmód)

"Online" menü, "Download project" menüpont →

 ha a szoftver észleli, hogy más programot töltünk rá a PLC-re mint ami jelenleg van rajta → rákérdez, hogy biztosan felül akarjuk-e írni

6.5. Időzítő használata

FEC Timer

```
Festo FC34, FC20 PLC-k → 256 db timer (T0, T1, T2, ....T255), de az időalap mindegyiknél 10ms tk = n * 10ms
```

- Utasításlista esetén csak impulzus időzítők!!
- Létradiagram esetén impulzus, bekapcsolás és kikapcsolás időzítő

Minden időzítőhöz 3 regiszter tartozik:

- TPx alapérték (n) tároló
- TWx a munka változót tárolja, ebben történik a számlálás → indításkor TPx értéke átmásolódik ebbe, majd 10 ms-onként 1-el csökken !!
- Tx (vagy TONx TOFFx) állapot jelző (kimenet)

Utasításlista

- Timer beállítása (alapérték n betöltése) → LOAD Vn TO Tpx
- Timer indítása → Set Tx
 Nem szabad addig újra indítani amíg nem telik le (különben sosem telik le) !!!
 → impulzus indítás (felfutó él detektálás), flag segítségével

1. mintafeladat

Egy pneumatikus munkahengert (MH1) kell a következőképpen működtetni: (kettős működésű munkahenger, monostabil 5/2-es útváltóval vezérelve)

- "START" (I1) nyomógomb lenyomására az MH1 munkahengert (O1) toljuk ki.
- ha MH1 munkahengert teljesen kitoltuk → várakozzon 4 másodpercig →
- → majd ezután automatikusan menjen alaphelyzetbe
- oldjuk meg impulzus időzítővel, létradiagramban és utasításlistában is !

6.6. Időzítő használata

1. mintafeladat, megoldás

- "START" (I1) nyomógomb lenyomására az MH1 munkahengert (O1) toljuk ki.
- ha MH1 munkahengert teljesen kitoltuk \rightarrow várakozzon 4 másodpercig \rightarrow
 - → majd ezután automatikusan menjen alaphelyzetbe
- $-4s/10ms = 400 \rightarrow n=400$

Megoldás impulzus időzítővel


```
STL
IF BENT1 AND START
    THEN SET MH1 ki
          RESET F1.1
          LOAD V400 TO TP2
IF KINT1 AND N F1.1
    THEN SET T2
          SET F1.1
IF KINT1 AND N T2
    THEN RESET MH1 ki
```

6.7. Számláló használata

Counter

Festo FC34, FC20 PLC-k → 256 db counter (számláló) (C0, C1, C2,C255),

Minden számlálóhoz 3 regiszter tartozik:

- CPx végérték (számlálási érték) tároló
- CWx a munka változót tárolja, ebben történik a számlálás
- Cx állapot jelző (kimenet) → 1-be állítva indítjuk a számlálást → amíg számol értéke 1 marad, ha a számlálás vége akkor 0 értékű lesz

Utasításlista

- Counter beállítása (végérték betöltése) → LOAD Vn TO Cpx
- Counter indítása → Set Cx
- Léptetés → INC CWx (INC Cx) vagy DEC CWx (DEC Cx)
 Nem szabad addig újra indítani amíg nem telik le !!
 - → impulzus indítás (felfutó él detektálás), flag segítségével

6.8. Számláló használata

2. mintafeladat

Egy pneumatikus munkahengert (MH1) kell a következőképpen működtetni:

- "START" (I1) nyomógomb lenyomására az MH1 munkahenger (O1) 4-szer egymás után menjen ki, majd vissza alaphelyzetbe (oldjuk meg létradiagramban és utasításlistában is!)

Megoldható nem csak számlálóval, hanem sorrend vezérléssel (számláló nélkül) is!

6.9. Számláló használata

2. mintafeladat, megoldás?

Az utolsó ág/feltétel problémás → sokáig igaz lesz, sok program cikluson keresztül !! (mert egy programciklus néhány ms alatt végrehajtódik), ehhez képest a munkahenger túl lassú, mire a "KINT1" végálláskapcsoló nem fog már jelezni addig a INC C1 már több százszor végrehajtódik → nem azt fogjuk számolni, hogy hányszor ért ki a munkahenger !!

Felfutó él figyelés kell!!

Ez a létradiagramos megoldás így FESTO PLC esetén mégis jól működik, mert itt a létradiagramba beépítve él figyelés van !! De más PLC esetén nem biztos hogy jó lenne így !

6.10. Számláló használata

2. mintafeladat, megoldás

Egy flag felhasználásával egy kiérkezéskor csak egyszer engedjük léptetni a számláló (a flag-et egyből átállítjuk)


```
IF BENT1 AND START AND N C1
   THEN SET C1
        LOAD V4 TO CP1
IF BENT1 AND C1
   THEN SET MH1 ki
         SET F2.2
IF KINT1 AND F2.2
   THEN RESET MH1_ki
        INC C1
        RESET F2.2
```

7.1. Unitronics Samba PLC

Jellemzők

Unitronics Samba SM43-J-T20 típusú PLC →

- kompakt, I/O portok nem bővíthetőek (csak CANbus-on keresztül !)
- tápfeszültség 24V DC (20.4V 28.8V)
- 4,3"-os színes TFT, LCD display, (480x272 pixels)
- érintő képernyő, analóg rezisztív
- USB programozó port
- tranzisztoros kimenetek
- bemeneteknél, kimeneteknél nincs galvanikus leválasztás!
- összesen 12db bemenet, 8db kimenet, néhány esetén állítható a típusa (jumper)
- digitális bemenet: 12 db → I0 I1 I2 I11 (source mód: 0-5V → logikai 0, 17-28.8V → logikai 1)
- analóg bemenet: 2db (az l10-es és l11-es digitális bemenet állítható át analógra) állítható az analóg bemenetek típusa is:

```
0 – 10V DC (10 bites) 0 – 20mA (max. 6V! 10 bites) 4 – 20mA (max. 6V! 204-1023 digitális érték)
```

gyors bemenet: 3db, 32 bites felbontás
 maximális frekvencia: impulzusszámlálóként 30 kHz, inkrementális számlálóként 20 kHz
 (számlálónként 1 vagy 2 digitális bemenet)

7.2. Unitronics Samba PLC

<u>Jellemzők</u>

- **digitális kimenet: 8db** → **O0 ... O7** pnp (source), 0,5A/kimenet (összesen max. 3A) P-MOSFET open-drain
- gyors kimenet: 7db 0,5 kHz PWM
- **Timer: 32db** → **T0, T1 ... T31** (időalap 10ms, max. 99h59m59.99s)
- Flag: → MB0 MB1 MB2 MB511 (MB Memory Bit)
- Counter: 16db 32 bites → C0, C1 ... C15

7.3. Számláló használata

Counter

16 db counter (számláló) → C0, C1, C2, C15

Minden számlálóhoz tartozik:

- Cx állapot jelző → amíg számol értéke 0 , ha a számlálás vége akkor 1 értékű lesz !!

- ??

7.4. Számláló használata

1. mintafeladat

Egy pneumatikus munkahengert (MH1) kell a következőképpen működtetni:

- "START" (18, záró) nyomógomb lenyomására az MH1 munkahenger (O0) 5-ször egymás után menjen ki, majd vissza alaphelyzetbe
- "STOP" (I9, záró) lenyomására menjen a munkahenger menjen vissza alaphelyzetbe, és álljon le a folyamat !

Azt számoljuk, hogy hányszor volt kint a munkahenger

7.5. Számláló használata

1. mintafeladat, megoldás

8.1. Siemens S7-300 PLC

<u>Jellemzők</u>

Moduláris PLC -> bemenetek kimenetek száma rugalmasan bővíthető

- digitális bemenet:

- digitális kimenet:

- Timer:

- **Flag:** →

- Counter:

8.2. Időzítő, TON

Bekapcsolás késleltetés (TON)

On-Delay Timer, (TON vagy SD) A kimenet csak az indítás után tk idő múlva lesz 1-es Létezik külön blokként S_ODT indítás kimenet S S5T#Ys ΒI indítás óta eltelt idő Leállítás **BCD** (reset) Tx De egyszerűsítve is használható → - lekérdezése mintha normál bemenet lenne (csak a címe speciális) → - beállítása → speciális kimenet (On-delay timer coil) STEP7, FB Tx STEP7, LAD indítás SD S5T#3s S5T#3s

8.3. Időzítő, TON

1. mintafeladat

Két pneumatikus munkahengert (MH1, MH2) kell a következőképpen működtetni: (kettős működésű munkahengerek, monostabil 5/2-es útváltókkal vezérelve)

- "START" (I124.0) nyomógomb lenyomására az MH1 munkahengert (Q124.1) toljuk ki
 - → várakozzon 3 másodpercig → toljuk ki az MH2 munkahengert (Q124.2) → várakozzon 4 másodpercig → majd ezután menjen alaphelyzetbe mindkét munkahenger

A hardver:

8.4. Időzítő, TON

1. mintafeladat, megoldás

8.5. Számláló

Lefelé számláló

Counter Down

- Indítás (S bemenet) után az állapot jelző kimenete (Q és **C**x is) 1-es lesz (indítás előtt 0 !!), és az aktuális értéke (CV) felveszi a beállított kezdő értéket (PV)
- léptetése (CD bemenet) él-vezérelt ! (nem kell plusz flag)
 - → minden léptető impulzusra az aktuális érték csökken 1-el
- amikor az aktuális érték 0 -esz → vége a számlálásnak → az állapot jelző kimenete (Q és Cx is) újra 0 lesz
- állapot lekérdezése \rightarrow lehet úgy mintha normál bemenet lenne (csak a címe speciális) \rightarrow \longrightarrow \longleftarrow

8.6. Számláló

2. mintafeladat

Egy pneumatikus munkahengert (MH1) kell a következőképpen működtetni:

- "START" nyomógomb lenyomása után → a munkahengert toljuk ki, majd vissza alaphelyzetbe 5-ször egymás után
- "STOP"-ra azonnal áljon le, és menjen alaphelyzetbe!!
- a "START" és "STOP" nyomógomb is záró érintkezős!

