1 SEPARABILITY 1

1 Separability

Definition 1 (Separable). Let K be a field.

- (i) An irreducible polynomial $f \in K[t]$ is separable over K if it has no multiple roots, meaning that $f = \lambda(t \alpha_1)(t \alpha_2) \cdots (t \alpha_d)$, where $\alpha_1, \ldots, \alpha_d \in \overline{K}$ are distinct.
- (ii) A non-zero polynomial $f \in K[t]$ is <u>separable over K</u> if its irreducible factors in K[t] are separable over K.
- (iii) When L: K is a field extension, we say that $\alpha \in L$ is <u>separable over K</u> when α is algebraic over K and μ_{α}^{K} is separable.
- (iv) An algebraic extension L:K is a separable extension if every $\alpha \in L$ is separable over K.
- **Lemma 1.** Suppose that L: M: K is a tower of algebraic field extensions. Assume that $K \subseteq M \subseteq L \subseteq \overline{K}$, and suppose that $f \in K[t] \setminus K$ satisfies the property that f is separable over K. If $g \in M[t] \setminus M$ has the property that $g \mid f$, then g is separable over M. Thus, if $\alpha \in L$ is separable over K then α is separable over M, and if L: K is separable then so is L: M.
- **Lemma 2.** 1. If L:M is an algebraic field extension, $\alpha \in L$ and $\sigma:M \to \overline{M}$ is a homomorphism, then $\sigma(\mu_{\alpha}^{M})$ is separable over $\sigma(M) \Longleftrightarrow \mu_{\alpha}^{M}$ is separable over M.
 - 2. If L: K is a splitting field extension for $f \in K[t]$ and f is separable over K, then L: K is separable.
- **Theorem 1.1.** Let L: K be a finite extension with $K \subseteq L \subseteq \overline{K}$, whence $L = K(\alpha_1, \ldots, \alpha_n)$ for some $\alpha_1, \ldots, \alpha_n \in L$. Put $K_0 = K$, and for $1 \le i \le n$, set $K_i = K_{i-1}(\alpha_i)$. Finally, let $\sigma_0: K \to \overline{K}$ be the inclusion map.
 - (i) If α_i is separable over K_{i-1} for $1 \leq i \leq n$, then there are [L:K] ways to extend σ_0 to a homomorphism $\tau: L \to \overline{K}$.
 - (ii) If α_i is not separable over K_{i-1} for some i with $1 \le i \le n$, then there are fewer than [L:K] ways to extend σ_0 to a homomorphism $\tau: L \to \overline{K}$.
- **Theorem 1.2.** Let L: K be a finite extension with $L = K(\alpha_1, \ldots, \alpha_n)$. Set $K_0 = K$, and for $1 \le i \le n$, inductively define K_i by putting $K_i = K_{i-1}(\alpha_i)$. Then the following are equivalent:
 - (i) the element α_i is separable over K_{i-1} for $1 \leq i \leq n$;
 - (ii) the element α_i is separable over K for $1 \leq i \leq n$;
- (iii) the extension L: K is separable.
- **Corollary 1.** Suppose that L: K is a finite extension. If L: K is a separable extension, then the number of K-homomorphism $\sigma: L \to \overline{K}$ is [L:K], and otherwise the number is smaller than [L:K].
- **Corollary 2.** Suppose that $f \in K[t] \setminus K$ and that L : K is a splitting field extension for f. Then L : K is a separable extension $\iff f$ is separable over K. More generally, suppose that L : K is a splitting field extension for $S \subseteq K[t] \setminus K$. Then L : K is a separable extension \iff each $f \in S$ is separable over K.