#### xebia project:-

Problem Statement:-

HELP International have been able to raise around \$ 10 million. Now the CEO of the NGO needs to decide how to use this money strategically and effectively. So, CEO has to make decision to choose the countries that are in the direst need of aid. Hence, your Job as a Data scientist is to categorise the countries using some socio-economic and health factors that determine the overall development of the country. Then you need to suggest the countries which the CEO needs to focus on the most. Find the data here.

#### Objective:-

To categorise the countries using socio-economic and health factors that determine the overall development of the country.

#### validating libraries

```
import warnings
 In [1]:
         warnings.filterwarnings('ignore')
In [146...
         import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          from datetime import datetime, timedelta
In [147...
         pd.options.display.float_format='{:.4f}'.format
          plt.rcParams['figure.figsize'] = [8,8]
          pd.set_option('display.max_columns', 500)
          pd.set_option('display.max_colwidth', -1)
          sns.set(style='darkgrid')
          import matplotlib.ticker as plticker
          %matplotlib inline
In [148...
         from sklearn.preprocessing import StandardScaler
          from sklearn.decomposition import PCA
          from sklearn.decomposition import IncrementalPCA
          from sklearn.neighbors import NearestNeighbors
          from random import sample
          from numpy.random import uniform
          from math import isnan
         from sklearn.metrics import silhouette_score
In [149...
          from sklearn.cluster import KMeans
          from scipy.cluster.hierarchy import linkage
          from scipy.cluster.hierarchy import dendrogram
          from scipy.cluster.hierarchy import cut_tree
```

#### reading the data-

```
In [150...
            df1.head()
                                                                                            life_expec total_fer
                                    child_mort exports
                                                         health
                                                                 imports
                                                                          income
                                                                                  inflation
Out[150]:
                           country
                                                                                                                  gdpp
             0
                        Afghanistan
                                       90.2000
                                                10.0000
                                                         7.5800
                                                                 44.9000
                                                                             1610
                                                                                     9.4400
                                                                                               56.2000
                                                                                                          5.8200
                                                                                                                   553
             1
                            Albania
                                                28.0000
                                                         6.5500
                                                                 48.6000
                                                                             9930
                                                                                    4.4900
                                                                                               76.3000
                                                                                                          1.6500
                                                                                                                  4090
                                       16.6000
             2
                            Algeria
                                                38.4000
                                                         4.1700
                                                                 31.4000
                                                                                   16.1000
                                                                                               76.5000
                                                                                                          2.8900
                                                                                                                  4460
                                       27.3000
                                                                            12900
             3
                                                         2.8500
                                                                 42.9000
                                                                                                          6.1600
                            Angola
                                      119.0000
                                                62.3000
                                                                             5900
                                                                                   22,4000
                                                                                               60.1000
                                                                                                                  3530
               Antigua and Barbuda
                                                                                                                 12200
                                       10.3000 45.5000
                                                         6.0300
                                                                 58.9000
                                                                           19100
                                                                                    1.4400
                                                                                               76.8000
                                                                                                          2.1300
            data_dict = pd.read_csv('data-dictionary.csv')
In [151...
            data_dict.head(10)
                     Column
Out[151]:
                                                                                                             Description
                       Name
             0
                      country
                                                                                                      Name of the country
             1
                    child_mort
                                                                     Death of children under 5 years of age per 1000 live births
             2
                                                   Exports of goods and services per capita. Given as %age of the GDP per capita
                      exports
             3
                       health
                                                              Total health spending per capita. Given as %age of GDP per capita
             4
                      imports
                                                   Imports of goods and services per capita. Given as %age of the GDP per capita
             5
                      Income
                                                                                                    Net income per person
             6
                      Inflation
                                                                   The measurement of the annual growth rate of the Total GDP
                               The average number of years a new born child would live if the current mortality patterns are to remain
             7
                    life_expec
                                                                                                               the same
                                 The number of children that would be born to each woman if the current age-fertility rates remain the
             8
                      total fer
             9
                                                  The GDP per capita. Calculated as the Total GDP divided by the total population.
                        gdpp
In [152...
            df1.shape
             (167, 10)
Out[152]:
In [153...
            df1.info()
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 167 entries, 0 to 166
            Data columns (total 10 columns):
             #
                  Column
                                 Non-Null Count
                                                     Dtype
             0
                  country
                                 167 non-null
                                                      object
                  child_mort 167 non-null
                                                     float64
             1
             2
                                 167 non-null
                                                     float64
                  exports
             3
                  health
                                 167 non-null
                                                     float64
             4
                  imports
                                 167 non-null
                                                     float64
             5
                                                      int64
                  income
                                 167 non-null
                                 167 non-null
                                                     float64
             6
                  inflation
                                167 non-null
             7
                  life_expec
                                                     float64
             8
                                 167 non-null
                                                     float64
                  total_fer
                                 167 non-null
                                                      int64
                  gdpp
            dtypes: float64(7), int64(2), object(1)
            memory usage: 13.2+ KB
```

df1= pd.read\_csv('Country-data.csv')

| Out[154]: |       | child_mort | exports  | health   | imports  | income      | inflation | life_expec | total_fer | gdpp        |
|-----------|-------|------------|----------|----------|----------|-------------|-----------|------------|-----------|-------------|
|           | count | 167.0000   | 167.0000 | 167.0000 | 167.0000 | 167.0000    | 167.0000  | 167.0000   | 167.0000  | 167.0000    |
|           | mean  | 38.2701    | 41.1090  | 6.8157   | 46.8902  | 17144.6886  | 7.7818    | 70.5557    | 2.9480    | 12964.1557  |
|           | std   | 40.3289    | 27.4120  | 2.7468   | 24.2096  | 19278.0677  | 10.5707   | 8.8932     | 1.5138    | 18328.7048  |
|           | min   | 2.6000     | 0.1090   | 1.8100   | 0.0659   | 609.0000    | -4.2100   | 32.1000    | 1.1500    | 231.0000    |
|           | 25%   | 8.2500     | 23.8000  | 4.9200   | 30.2000  | 3355.0000   | 1.8100    | 65.3000    | 1.7950    | 1330.0000   |
|           | 50%   | 19.3000    | 35.0000  | 6.3200   | 43.3000  | 9960.0000   | 5.3900    | 73.1000    | 2.4100    | 4660.0000   |
|           | 75%   | 62.1000    | 51.3500  | 8.6000   | 58.7500  | 22800.0000  | 10.7500   | 76.8000    | 3.8800    | 14050.0000  |
|           | max   | 208.0000   | 200.0000 | 17.9000  | 174.0000 | 125000.0000 | 104.0000  | 82.8000    | 7.4900    | 105000.0000 |

#### 2.cleaning the data

In [154... df1.describe()

#### checking missing values

```
In [155...
         print('Total missing values in the data')
         print('-'*50)
         print(df1.isnull().sum())
         Total missing values in the data
         country
         child_mort
                      0
         exports
         health
         imports
         income
         inflation
         life_expec
                      0
         total_fer
                      0
         gdpp
         dtype: int64
```

#### converting columns to actual values

| Out[157]: |   | country                | child_mort | exports   | health   | imports   | income | inflation | life_expec | total_fer | gdpp  |
|-----------|---|------------------------|------------|-----------|----------|-----------|--------|-----------|------------|-----------|-------|
|           | 0 | Afghanistan            | 90.2000    | 55.3000   | 41.9174  | 248.2970  | 1610   | 9.4400    | 56.2000    | 5.8200    | 553   |
|           | 1 | Albania                | 16.6000    | 1145.2000 | 267.8950 | 1987.7400 | 9930   | 4.4900    | 76.3000    | 1.6500    | 4090  |
|           | 2 | Algeria                | 27.3000    | 1712.6400 | 185.9820 | 1400.4400 | 12900  | 16.1000   | 76.5000    | 2.8900    | 4460  |
|           | 3 | Angola                 | 119.0000   | 2199.1900 | 100.6050 | 1514.3700 | 5900   | 22.4000   | 60.1000    | 6.1600    | 3530  |
|           | 4 | Antigua and<br>Barbuda | 10.3000    | 5551.0000 | 735.6600 | 7185.8000 | 19100  | 1.4400    | 76.8000    | 2.1300    | 12200 |

#### data visualisation

#### heat map



## income vs Child Mortality

```
In [159... plt.figure(figsize=(14, 6))

Loading [MathJax]/extensions/Safe.js , 2, 1)
```

```
sns.scatterplot(x='income',y='child_mort', data=df1)
plt.title('Income vs Child mortality',fontweight="bold", size=20)

plt.subplot(1, 2, 2)
sns.scatterplot(x='income',y='child_mort',hue='total_fer', data=df1, palette='gist_rainb'
plt.title('Income vs Child mortality & total Fertility',fontweight="bold", size=20)
plt.subplots_adjust(right=1.2)
plt.show()
```





From the plots above We can see that low income people have high child mortality, which means death of children under age 5 is more, where there is a low income Where the income is more we can see there is no mortality In the second plot we can see that, high fertility rate for a woman and low income have high child mortality

#### pairplot

```
In [160... sns.pairplot(df1, vars=["child_mort", 'total_fer','gdpp','life_expec','income', 'imports
    plt.show()
```



# country VS child mortality

```
In [161... Country= df1.groupby('country').child_mort.sum().sort_values(ascending=False)
    Country=pd.DataFrame(Country)
    Country1=Country.head()
    Country2=Country.tail()
    display(Country1.head())
    print('*'*50)
    display(Country2.tail())
```

|                 |            | child_mort |
|-----------------|------------|------------|
|                 | country    |            |
|                 | Haiti      | 208.0000   |
| Sie             | rra Leone  | 160.0000   |
|                 | Chad       | 150.0000   |
| Central African | Republic   | 149.0000   |
|                 | Mali       | 137.0000   |
| *****           | *****      | *****      |
|                 | child_mort |            |
| country         |            |            |
| Finland         | 3.0000     |            |
| Sweden          | 3.0000     |            |
| Singapore       | 2.8000     |            |
| Luxembourg      | 2.8000     |            |
|                 |            |            |

2.6000

Iceland

## countries with high & low child mortality

```
In [162... plt.figure(figsize=(20, 6))
   plt.subplot(1,2,1)
   sns.barplot(Country1.index, Country1.child_mort, palette='husl')
   plt.title('Countries having high child mortality ',fontweight="bold", size=20)
   plt.subplot(1,2,2)
   sns.barplot(Country2.index, Country2.child_mort, palette='cool')
   plt.title('Countries having low Child Mortality',fontweight="bold", size=20)
   plt.show()
```





#### country VS income

| display(In     | come2)    |                 |      |        |      |
|----------------|-----------|-----------------|------|--------|------|
|                | income    |                 |      |        |      |
| country        |           |                 |      |        |      |
| Qatar          | 125000    |                 |      |        |      |
| uxembourg      | 91700     |                 |      |        |      |
| Brunei         | 80600     |                 |      |        |      |
| Kuwait         | 75200     |                 |      | ****** |      |
| Singapore      | 72100     |                 |      |        |      |
| *****          | *****     | * * * * * * * * | **** | ****   | **** |
|                |           | income          |      |        |      |
|                | country   | у               |      |        |      |
| Central Africa | n Republi | c 888           |      |        |      |
|                | Nige      | r 814           |      |        |      |
|                | Burund    | li 764          |      |        |      |
|                | Liberia   | <b>a</b> 700    |      |        |      |
| Congo          | Dem. Rep  | . 609           |      |        |      |

print('\*'\* 50)

#### countries with high and low income

plt.figure(figsize=(20, 6)) plt.subplot(1,2,1) sns.barplot(Income1.index, Income1.income, palette='cool') plt.title('Countries with high Income',fontweight="bold", size=20) plt.subplot(1,2,2) sns.barplot(Income2.index, Income2.income, palette='magma') plt.title('Countries with low Income',fontweight="bold", size=20) plt.show()

#### country VS GDP

```
In [164...
          GDP= df1.groupby('country').gdpp.sum().sort_values(ascending=False)
          GDP=pd.DataFrame(GDP)
          GDP1=GDP.head()
          GDP2=GDP.tail()
          display(GDP1)
          print('*'* 50)
          display(GDP2)
                        gdpp
              country
          Luxembourg
                      105000
              Norway
                       87800
           Switzerland
                       74600
                       70300
                Qatar
                       58000
             Denmark
```

Loading [MathJax]/extensions/Safe.js

```
country

Sierra Leone 399

Niger 348

Congo, Dem. Rep. 334

Liberia 327

Burundi 231
```

#### countries with high and low GDP

```
In [165... plt.figure(figsize=(20, 6))
   plt.subplot(1,2,1)
   sns.barplot(GDP1.index, GDP1.gdpp, palette='rocket')
   plt.title('Countries with high GDP',fontweight="bold", size=20)
   plt.subplot(1,2,2)
   sns.barplot(GDP2.index, GDP2.gdpp, palette='rocket_r')
   plt.title('Countries with low GDP',fontweight="bold", size=20)
   plt.show()
```





#### counties VS import

```
In [166... plt.figure(figsize=(8, 6))
    Imports=df1.groupby('country').imports.sum().sort_values(ascending=False)
    Imports= pd.DataFrame(Imports)
    Imports1=Imports.head()
    sns.barplot(Imports1.index,Imports1.imports, palette='twilight')
    plt.title('Countries with high imports of goods and services',fontweight="bold", size=20    plt.show()
    display(Imports1)
    Imports2=Imports.tail(2)
    display(Imports2)
```

#### Countries with high imports of goods and services



#### imports

| country     |             |
|-------------|-------------|
| Luxembourg  | 149100.0000 |
| Singapore   | 81084.0000  |
| Ireland     | 42125.5000  |
| Switzerland | 39761.8000  |
| Belgium     | 33166.8000  |

#### imports

| country |         |
|---------|---------|
| Burundi | 90.5520 |
| Myanmar | 0.6511  |

#### life EXPECTANCY of countries

```
In [167... Life_Ex= df1.sort_values(by=['life_expec'], ascending=True)
Life_Ex.head(100)
```

| Out[167]: |    | country | child_mort | exports  | health   | imports   | income | inflation | life_expec | total_fer | gdpp |
|-----------|----|---------|------------|----------|----------|-----------|--------|-----------|------------|-----------|------|
|           | 66 | Haiti   | 208.0000   | 101.2860 | 45.7442  | 428.3140  | 1500   | 5.4500    | 32.1000    | 3.3300    | 662  |
|           | 87 | Lesotho | 99.7000    | 460.9800 | 129.8700 | 1181.7000 | 2380   | 4.1500    | 46.5000    | 3.3000    | 1170 |

Central 31 African 149.0000 52.6280 17.7508 118.1900 888 2.0100 47.5000 5.2100 446 Republic 83.1000 540.2000 85.9940 451.1400 3280 14.0000 52.0000 1460 166 Zambia 5.4000 94 Malawi 90.5000 104.6520 30.2481 160.1910 1030 12.1000 53.1000 5.3100 459 1198.4000 1009.1200 22 Brazil 19.8000 1321.6000 14500 8.4100 74.2000 1.8000 11200 Sri 140 11.2000 550.7600 82.6140 753.0800 8560 22.8000 74.4000 2.2000 2810 Lanka Hungary 6.0000 10715.8000 960.2300 10021.5000 22300 2.3300 74.5000 1.2500 13100 67 71 19.3000 74.5000 Iran 1593.3200 365.6800 1266.8200 17400 15.9000 1.7600 6530 74.5000 7.9000 21100 7.2700 2.1500 9070 Malaysia 7881.8300 398.1730 6439.7000

100 rows × 10 columns

#### **EXPORTS** of different countries

Exports=df1.sort\_values(by=['exports'], ascending= False) In [168... display(Exports[0:8])

|     | country     | child_mort | exports     | health    | imports     | income | inflation | life_expec | total_fer | gdr   |
|-----|-------------|------------|-------------|-----------|-------------|--------|-----------|------------|-----------|-------|
| 91  | Luxembourg  | 2.8000     | 183750.0000 | 8158.5000 | 149100.0000 | 91700  | 3.6200    | 81.3000    | 1.6300    | 10500 |
| 133 | Singapore   | 2.8000     | 93200.0000  | 1845.3600 | 81084.0000  | 72100  | -0.0460   | 82.7000    | 1.1500    | 4660  |
| 73  | Ireland     | 4.2000     | 50161.0000  | 4475.5300 | 42125.5000  | 45700  | -3.2200   | 80.4000    | 2.0500    | 4870  |
| 145 | Switzerland | 4.5000     | 47744.0000  | 8579.0000 | 39761.8000  | 55500  | 0.3170    | 82.2000    | 1.5200    | 7460  |
| 123 | Qatar       | 9.0000     | 43796.9000  | 1272.4300 | 16731.4000  | 125000 | 6.9800    | 79.5000    | 2.0700    | 7030  |
| 110 | Netherlands | 4.5000     | 36216.0000  | 5985.7000 | 31990.8000  | 45500  | 0.8480    | 80.7000    | 1.7900    | 5030  |
| 114 | Norway      | 3.2000     | 34856.6000  | 8323.4400 | 25023.0000  | 62300  | 5.9500    | 81.0000    | 1.9500    | 8780  |
| 15  | Belgium     | 4.5000     | 33921.6000  | 4750.8000 | 33166.8000  | 41100  | 1.8800    | 80.0000    | 1.8600    | 444(  |

Export=df1.sort\_values(by=['exports'], ascending= True) In [169... display(Export[0:8])

|     | country                     | child_mort | exports | health  | imports  | income | inflation | life_expec | total_fer | gdpp |
|-----|-----------------------------|------------|---------|---------|----------|--------|-----------|------------|-----------|------|
| 107 | Myanmar                     | 64.4000    | 1.0769  | 19.4636 | 0.6511   | 3720   | 7.0400    | 66.8000    | 2.4100    | 988  |
| 26  | Burundi                     | 93.6000    | 20.6052 | 26.7960 | 90.5520  | 764    | 12.3000   | 57.7000    | 6.2600    | 231  |
| 50  | Eritrea                     | 55.2000    | 23.0878 | 12.8212 | 112.3060 | 1420   | 11.6000   | 61.7000    | 4.6100    | 482  |
| 31  | Central African<br>Republic | 149.0000   | 52.6280 | 17.7508 | 118.1900 | 888    | 2.0100    | 47.5000    | 5.2100    | 446  |
| 0   | Afghanistan                 | 90.2000    | 55.3000 | 41.9174 | 248.2970 | 1610   | 9.4400    | 56.2000    | 5.8200    | 553  |
| 109 | Nepal                       | 47.0000    | 56.7136 | 31.0800 | 215.4880 | 1990   | 15.1000   | 68.3000    | 2.6100    | 592  |
| 88  | Liberia                     | 89.3000    | 62.4570 | 38.5860 | 302.8020 | 700    | 5.4700    | 60.8000    | 5.0200    | 327  |
| 132 | Sierra Leone                | 160.0000   | 67.0320 | 52.2690 | 137.6550 | 1220   | 17.2000   | 55.0000    | 5.2000    | 399  |

## countries with high EXPORT

```
In [170... plt.figure(figsize=(8, 5))
    df1.groupby('country').exports.sum().sort_values(ascending=False).head().plot.bar(color=
    plt.ylabel('Exports')
    plt.title('Countries with more Exports',fontweight="bold", size=20)
    plt.show()
```



#### countries and its HEALTH condition

```
Health=df1.sort_values(by=['health'], ascending= True)
In [171...
            Health[0:8]
                        country child_mort
                                                       health
                                                               imports income inflation life_expec total_fer
Out[171]:
                                             exports
                                                                                                              gdpp
             50
                          Eritrea
                                    55.2000
                                             23.0878
                                                      12.8212 112.3060
                                                                           1420
                                                                                 11.6000
                                                                                            61.7000
                                                                                                      4.6100
                                                                                                                482
             93
                                            103.2500 15.5701 177.5900
                                                                           1390
                                                                                  8.7900
                                                                                            60.8000
                                                                                                      4.6000
                     Madagascar
                                    62.2000
                                                                                                                413
                   Central African
             31
                                   149.0000
                                             52.6280 17.7508 118.1900
                                                                            888
                                                                                  2.0100
                                                                                            47.5000
                                                                                                      5.2100
                                                                                                                446
                        Republic
                                             77.2560 17.9568 170.8680
                                                                            814
                                                                                  2.5500
                                                                                            58.8000
                                                                                                      7.4900
            112
                          Niger
                                   123.0000
                                                                                                                348
            107
                                    64.4000
                                              1.0769 19.4636
                                                                 0.6511
                                                                           3720
                                                                                  7.0400
                                                                                            66.8000
                                                                                                      2.4100
                                                                                                                988
                       Myanmar
            106
                    Mozambique
                                   101.0000 131.9850 21.8299
                                                               193.5780
                                                                            918
                                                                                  7.6400
                                                                                            54.5000
                                                                                                      5.5600
                                                                                                                419
            116
                        Pakistan
                                    92.1000
                                            140.4000 22.8800
                                                               201.7600
                                                                           4280
                                                                                 10.9000
                                                                                            65.3000
                                                                                                      3.8500
                                                                                                               1040
                    Congo, Dem.
             37
                                   116.0000 137.2740 26.4194 165.6640
                                                                            609
                                                                                 20.8000
                                                                                            57.5000
                                                                                                      6.5400
                                                                                                                334
                           Rep.
            Health1=df1.sort_values(by=['health'], ascending= False)
In [172...
            Health1[0:8]
                     country child_mort
                                                         health
                                                                     imports income inflation life_expec total_fer
Out[172]:
                                             exports
                                                                                                                     gc
                      United
                                  7.3000
                                                      8663,6000
                                                                   7647,2000
                                                                               49400
            159
                                           6001.6000
                                                                                        1.2200
                                                                                                 78.7000
                                                                                                            1.9300
                                                                                                                    484
                       States
                                                      8579.0000
                                                                  39761.8000
                                                                               55500
                                                                                        0.3170
                                                                                                 82.2000
                                                                                                            1.5200
                                                                                                                    746
            145
                  Switzerland
                                  4.5000
                                          47744.0000
            114
                     Norway
                                  3.2000
                                          34856.6000
                                                     8323.4400
                                                                  25023.0000
                                                                               62300
                                                                                        5.9500
                                                                                                 81.0000
                                                                                                            1.9500
                                                                                                                    878
                                  2.8000
                                         183750.0000 8158.5000
                                                                 149100.0000
                                                                               91700
                                                                                        3.6200
                                                                                                 81.3000
                                                                                                            1.6300
                                                                                                                   1050
             91
                 Luxembourg
             44
                    Denmark
                                  4.1000
                                          29290.0000
                                                      6612.0000
                                                                  25288.0000
                                                                               44000
                                                                                        3.2200
                                                                                                 79.5000
                                                                                                            1.8700
                                                                                                                    580
            110
                  Netherlands
                                  4.5000
                                          36216.0000
                                                      5985.7000
                                                                  31990.8000
                                                                               45500
                                                                                        0.8480
                                                                                                 80.7000
                                                                                                            1.7900
                                                                                                                    503
             29
                     Canada
                                  5.6000
                                          13793.4000
                                                      5356.2000
                                                                  14694.0000
                                                                               40700
                                                                                        2.8700
                                                                                                 81.3000
                                                                                                            1.6300
                                                                                                                    474
                                                                               43200
                                                                                        0.8730
                                                                                                 80.5000
              8
                      Austria
                                  4.3000
                                          24059.7000 5159.0000
                                                                  22418.2000
                                                                                                            1.4400
                                                                                                                    469
In [173...
            plt.figure(figsize=(15, 6))
            He=df1.groupby('country').health.sum().sort_values(ascending= False)
            plt.subplot(1,2,1)
            He1=He.head(10).plot.bar(color='mediumorchid', hatch=".")
            plt.title('Countries with high total health spending',fontweight="bold", size=20)
            plt.xticks(rotation = 45, fontweight="bold")
```

plt.title('Countries with low total health spending',fontweight="bold", size=20)

plt.subplot(1,2,2)

plt.show()

He2=He.tail(10).plot.bar(color= 'skyblue', hatch='.')

plt.xticks(rotation = 45, fontweight="bold")

# Countries with high total health spending 8000 6000

#### Countries with low total health spending



# total FERTILITY of a country

country

In [174... Fertility=df1.sort\_values(by=['total\_fer'], ascending= True).head(8)
Fertility

Out[174]:

4000

2000

| :   | country                   | child_mort | exports    | health    | imports    | income | inflation | life_expec | total_fer | gdpp  |
|-----|---------------------------|------------|------------|-----------|------------|--------|-----------|------------|-----------|-------|
| 133 | Singapore                 | 2.8000     | 93200.0000 | 1845.3600 | 81084.0000 | 72100  | -0.0460   | 82.7000    | 1.1500    | 46600 |
| 138 | South Korea               | 4.1000     | 10917.4000 | 1531.5300 | 10210.2000 | 30400  | 3.1600    | 80.1000    | 1.2300    | 22100 |
| 67  | Hungary                   | 6.0000     | 10715.8000 | 960.2300  | 10021.5000 | 22300  | 2.3300    | 74.5000    | 1.2500    | 13100 |
| 102 | Moldova                   | 17.2000    | 638.9600   | 190.7100  | 1279.5500  | 3910   | 11.1000   | 69.7000    | 1.2700    | 1630  |
| 20  | Bosnia and<br>Herzegovina | 6.9000     | 1369.1700  | 511.7100  | 2364.9300  | 9720   | 1.4000    | 76.8000    | 1.3100    | 4610  |
| 98  | Malta                     | 6.8000     | 32283.0000 | 1825.1500 | 32494.0000 | 28300  | 3.8300    | 80.3000    | 1.3600    | 21100 |
| 85  | Latvia                    | 7.8000     | 6068.1000  | 754.8400  | 6226.3000  | 18300  | -0.8120   | 73.1000    | 1.3600    | 11300 |
| 139 | Spain                     | 3.8000     | 7828.5000  | 2928.7800 | 8227.6000  | 32500  | 0.1600    | 81.9000    | 1.3700    | 30700 |

In [175... Fertility1=df1.sort\_values(by=['total\_fer'], ascending=False).head(8)
Fertility1

| Out[175]: |     | country             | child_mort | exports   | health   | imports   | income | inflation | life_expec | total_fer | gdpp |
|-----------|-----|---------------------|------------|-----------|----------|-----------|--------|-----------|------------|-----------|------|
|           | 112 | Niger               | 123.0000   | 77.2560   | 17.9568  | 170.8680  | 814    | 2.5500    | 58.8000    | 7.4900    | 348  |
|           | 32  | Chad                | 150.0000   | 330.0960  | 40.6341  | 390.1950  | 1930   | 6.3900    | 56.5000    | 6.5900    | 897  |
|           | 97  | Mali                | 137.0000   | 161.4240  | 35.2584  | 248.5080  | 1870   | 4.3700    | 59.5000    | 6.5500    | 708  |
|           | 37  | Congo,<br>Dem. Rep. | 116.0000   | 137.2740  | 26.4194  | 165.6640  | 609    | 20.8000   | 57.5000    | 6.5400    | 334  |
|           | 26  | Burundi             | 93.6000    | 20.6052   | 26.7960  | 90.5520   | 764    | 12.3000   | 57.7000    | 6.2600    | 231  |
|           | 149 | Timor-Leste         | 62.6000    | 79.2000   | 328.3200 | 1000.8000 | 1850   | 26.5000   | 71.1000    | 6.2300    | 3600 |
|           | 3   | Angola              | 119.0000   | 2199.1900 | 100.6050 | 1514.3700 | 5900   | 22.4000   | 60.1000    | 6.1600    | 3530 |
|           | 155 | Uganda              | 81.0000    | 101.7450  | 53.6095  | 170.1700  | 1540   | 10.6000   | 56.8000    | 6.1500    | 595  |

```
In [176... df1.total_fer.max()
Out[176]: 7.49
In [177... df1.life_expec.max()
Out[177]: 82.8
```

#### countries with high and low FERTILITY

```
In [178... plt.figure(figsize=(20, 6))
Fe=df1.groupby('country').total_fer.sum().sort_values(ascending= False)
plt.subplot(1,2,1)
Fe1=Fe.head(6).plot.bar(color='mediumseagreen',hatch="/")
plt.title('Countries with high total Fertility',fontweight="bold", size=20)
plt.xticks(rotation = 45,fontweight="bold")
plt.subplot(1,2,2)
Fe2=Fe.tail(6).plot.bar(color= 'orchid',hatch='.')
plt.title('Countries with low total Fertility',fontweight="bold", size=20)
plt.xticks(rotation = 45,fontweight="bold")
plt.show()
```







```
In=df1.sort_values(by=['inflation'], ascending=False).head(8)
In [179...
                    country child_mort
                                            exports
                                                       health
                                                                  imports income
                                                                                    inflation life_expec
                                                                                                         total_fer
                                                                                                                   gdpp
Out[179]:
             113
                     Nigeria
                               130.0000
                                           589.4900
                                                     118.1310
                                                                 405.4200
                                                                             5150
                                                                                    104.0000
                                                                                                60.5000
                                                                                                           5.8400
                                                                                                                    2330
             163
                  Venezuela
                                17.1000
                                          3847.5000
                                                     662.8500
                                                                2376.0000
                                                                            16500
                                                                                     45.9000
                                                                                                75.4000
                                                                                                           2.4700 13500
             103
                   Mongolia
                                26.1000
                                          1237.5500
                                                    144.1600
                                                                1502.5500
                                                                             7710
                                                                                     39.2000
                                                                                                66.2000
                                                                                                           2.6400
                                                                                                                    2650
                      Timor-
             149
                                62.6000
                                                     328.3200
                                                                             1850
                                                                                     26.5000
                                                                                                71.1000
                                                                                                                    3600
                                            79.2000
                                                                1000.8000
                                                                                                           6.2300
                      Leste
                  Equatorial
              49
                               111.0000 14671.8000
                                                     766.0800
                                                               10071.9000
                                                                            33700
                                                                                     24.9000
                                                                                                60.9000
                                                                                                           5.2100 17100
                     Guinea
                                56.3000
             165
                     Yemen
                                           393.0000
                                                      67.8580
                                                                 450.6400
                                                                             4480
                                                                                     23.6000
                                                                                                67.5000
                                                                                                           4.6700
                                                                                                                    1310
                                                                                                                    2810
             140
                   Sri Lanka
                                11.2000
                                           550.7600
                                                      82.6140
                                                                 753.0800
                                                                             8560
                                                                                     22.8000
                                                                                                74.4000
                                                                                                           2.2000
                                                                              5900
               3
                     Angola
                               119.0000
                                          2199.1900 100.6050
                                                                1514.3700
                                                                                     22.4000
                                                                                                60.1000
                                                                                                           6.1600
                                                                                                                    3530
            In=df1.sort_values(by=['inflation'], ascending=True).head(8)
In [180...
            In
```

Out[180]:

|     | country           | child_mort | exports    | health    | imports    | income | inflation | life_expec | total_fer | gdpp  |
|-----|-------------------|------------|------------|-----------|------------|--------|-----------|------------|-----------|-------|
| 131 | Seychelles        | 14.4000    | 10130.4000 | 367.2000  | 11664.0000 | 20400  | -4.2100   | 73.4000    | 2.1700    | 10800 |
| 73  | Ireland           | 4.2000     | 50161.0000 | 4475.5300 | 42125.5000 | 45700  | -3.2200   | 80.4000    | 2.0500    | 48700 |
| 77  | Japan             | 3.2000     | 6675.0000  | 4223.0500 | 6052.0000  | 35800  | -1.9000   | 82.8000    | 1.3900    | 44500 |
| 43  | Czech<br>Republic | 3.4000     | 13068.0000 | 1560.2400 | 12454.2000 | 28300  | -1.4300   | 77.5000    | 1.5100    | 19800 |
| 135 | Slovenia          | 3.2000     | 15046.2000 | 2201.9400 | 14718.6000 | 28700  | -0.9870   | 79.5000    | 1.5700    | 23400 |
| 85  | Latvia            | 7.8000     | 6068.1000  | 754.8400  | 6226.3000  | 18300  | -0.8120   | 73.1000    | 1.3600    | 11300 |
| 10  | Bahamas           | 13.8000    | 9800.0000  | 2209.2000 | 12236.0000 | 22900  | -0.3930   | 73.8000    | 1.8600    | 28000 |
| 133 | Singapore         | 2.8000     | 93200.0000 | 1845.3600 | 81084.0000 | 72100  | -0.0460   | 82.7000    | 1.1500    | 46600 |

#### **DISPLOT**

```
In [181... plt.figure(figsize = (20,16))
feature = df1.columns[1:]
for i in enumerate(feature):
    plt.subplot(3,3, i[0]+1)
    sns.distplot(df1[i[1]], color='crimson')
    plt.subplots_adjust(right=1.1)
    plt.subplots_adjust(top=1.1)
```



it is basicall used for unvarient set of observation and visualize it through histogram

only one observation.hence we choose one particular column of dataset

#### checking OUTLIERS

```
In [182... plt.figure(figsize = (20,14))
  feature = df1.columns[1:]
  for i in enumerate(feature):
     plt.subplot(3,3, i[0]+1)
     sns.boxplot(df1[i[1]],palette='winter')
```



In [183... #There are outliers in the data. we need to treat with The process of clustering that is #outliers treatment df1.describe()

Out[183]:

|       | child_mort | exports     | health    | imports     | income      | inflation | life_expec | total_fer | gd        |
|-------|------------|-------------|-----------|-------------|-------------|-----------|------------|-----------|-----------|
| count | 167.0000   | 167.0000    | 167.0000  | 167.0000    | 167.0000    | 167.0000  | 167.0000   | 167.0000  | 167.00    |
| mean  | 38.2701    | 7420.6188   | 1056.7332 | 6588.3521   | 17144.6886  | 7.7818    | 70.5557    | 2.9480    | 12964.15  |
| std   | 40.3289    | 17973.8858  | 1801.4089 | 14710.8104  | 19278.0677  | 10.5707   | 8.8932     | 1.5138    | 18328.70  |
| min   | 2.6000     | 1.0769      | 12.8212   | 0.6511      | 609.0000    | -4.2100   | 32.1000    | 1.1500    | 231.00    |
| 25%   | 8.2500     | 447.1400    | 78.5355   | 640.2150    | 3355.0000   | 1.8100    | 65.3000    | 1.7950    | 1330.00   |
| 50%   | 19.3000    | 1777.4400   | 321.8860  | 2045.5800   | 9960.0000   | 5.3900    | 73.1000    | 2.4100    | 4660.00   |
| 75%   | 62.1000    | 7278.0000   | 976.9400  | 7719.6000   | 22800.0000  | 10.7500   | 76.8000    | 3.8800    | 14050.00  |
| max   | 208.0000   | 183750.0000 | 8663.6000 | 149100.0000 | 125000.0000 | 104.0000  | 82.8000    | 7.4900    | 105000.00 |

## Capping

```
df1['imports'][df1['imports']>= q2] = q2
df1['health'][df1['health']>= q3] = q3
df1['income'][df1['income']>= q4] = q4
df1['inflation'][df1['inflation']>= q5] = q5
df1['life_expec'][df1['life_expec']>= q6] = q6
df1['total_fer'][df1['total_fer']>= q7] = q7
df1['gdpp'][df1['gdpp']>= q8] = q8
```

#### outliers after treatment

| in [185   | df1.de | scribe()   |             |           |            |            |           |            |           |            |
|-----------|--------|------------|-------------|-----------|------------|------------|-----------|------------|-----------|------------|
| out[185]: |        | child_mort | exports     | health    | imports    | income     | inflation | life_expec | total_fer | gdpp       |
|           | count  | 167.0000   | 167.0000    | 167.0000  | 167.0000   | 167.0000   | 167.0000  | 167.0000   | 167.0000  | 167.0000   |
|           | mean   | 38.2701    | 7420.6188   | 1054.2066 | 5873.1352  | 16857.5509 | 7.3810    | 70.5511    | 2.9423    | 12756.8263 |
|           | std    | 40.3289    | 17973.8858  | 1790.8453 | 9422.7009  | 17957.0129 | 7.7932    | 8.8870     | 1.4983    | 17430.2089 |
|           | min    | 2.6000     | 1.0769      | 12.8212   | 0.6511     | 609.0000   | -4.2100   | 32.1000    | 1.1500    | 231.0000   |
|           | 25%    | 8.2500     | 447.1400    | 78.5355   | 640.2150   | 3355.0000  | 1.8100    | 65.3000    | 1.7950    | 1330.0000  |
|           | 50%    | 19.3000    | 1777.4400   | 321.8860  | 2045.5800  | 9960.0000  | 5.3900    | 73.1000    | 2.4100    | 4660.0000  |
|           | 75%    | 62.1000    | 7278.0000   | 976.9400  | 7719.6000  | 22800.0000 | 10.7500   | 76.8000    | 3.8800    | 14050.0000 |
|           | max    | 208.0000   | 183750.0000 | 8410.3304 | 55371.3900 | 84374.0000 | 41.4780   | 82.3700    | 6.5636    | 79088.0000 |

#### **CLUSTERING** of data

```
In [186...
         from sklearn.neighbors import NearestNeighbors
          from random import sample
          from numpy.random import uniform
          import numpy as np
          from math import isnan
          def hopkins(X):
              d = X.shape[1]
              n = len(X)
              m = int(0.1 * n)
              nbrs = NearestNeighbors(n_neighbors=1).fit(X.values)
              rand_X = sample(range(0, n, 1), m)
              ujd = []
              wjd = []
              for j in range(0, m):
                  u_dist, = nbrs.kneighbors(uniform(np.amin(X,axis=0),np.amax(X,axis=0),d).resha
                  ujd.append(u_dist[0][1])
                  w_{dist}, = nbrs.kneighbors(X.iloc[rand_X[j]].values.reshape(1, -1), 2, return_d
                  wjd.append(w_dist[0][1])
              H = sum(ujd) / (sum(ujd) + sum(wjd))
              if isnan(H):
                  print(ujd, wjd)
                  H = 0
              return H
```

| ]: |    | country                   | child_mort | exports    | health    | imports    | income     | inflation | life_expec | total_fer |      |
|----|----|---------------------------|------------|------------|-----------|------------|------------|-----------|------------|-----------|------|
|    | 0  | Afghanistan               | 90.2000    | 55.3000    | 41.9174   | 248.2970   | 1610.0000  | 9.4400    | 56.2000    | 5.8200    | 55   |
|    | 1  | Albania                   | 16.6000    | 1145.2000  | 267.8950  | 1987.7400  | 9930.0000  | 4.4900    | 76.3000    | 1.6500    | 409  |
|    | 2  | Algeria                   | 27.3000    | 1712.6400  | 185.9820  | 1400.4400  | 12900.0000 | 16.1000   | 76.5000    | 2.8900    | 446  |
|    | 3  | Angola                    | 119.0000   | 2199.1900  | 100.6050  | 1514.3700  | 5900.0000  | 22.4000   | 60.1000    | 6.1600    | 353  |
|    | 4  | Antigua<br>and<br>Barbuda | 10.3000    | 5551.0000  | 735.6600  | 7185.8000  | 19100.0000 | 1.4400    | 76.8000    | 2.1300    | 1220 |
|    |    |                           |            |            |           |            |            |           |            |           |      |
|    | 95 | Malaysia                  | 7.9000     | 7881.8300  | 398.1730  | 6439.7000  | 21100.0000 | 7.2700    | 74.5000    | 2.1500    | 907  |
|    | 96 | Maldives                  | 13.2000    | 5509.6000  | 449.4300  | 4643.4000  | 10500.0000 | 2.8800    | 77.9000    | 2.2300    | 710  |
|    | 97 | Mali                      | 137.0000   | 161.4240   | 35.2584   | 248.5080   | 1870.0000  | 4.3700    | 59.5000    | 6.5500    | 70   |
|    | 98 | Malta                     | 6.8000     | 32283.0000 | 1825.1500 | 32494.0000 | 28300.0000 | 3.8300    | 80.3000    | 1.3600    | 2110 |
|    | 99 | Mauritania                | 97.4000    | 608.4000   | 52.9200   | 734.4000   | 3320.0000  | 18.9000   | 68.2000    | 4.9800    | 120  |

100 rows × 10 columns

```
In [188...
          hopkins(df1.drop('country', axis = 1))
          0.9139792624010575
```

Out[188]:

Out[187]

#### **SCALING**

```
In [189...
         from sklearn.preprocessing import StandardScaler
          scaler = StandardScaler()
          data1 = scaler.fit_transform(df1.drop('country', axis = 1))
          data1
          array([[ 1.29153238, -0.4110113 , -0.56695778, ..., -1.61970522,
Out[189]:
                   1.92639646, -0.70225949],
                  [-0.5389489 , -0.35019096, -0.4403934 , ..., 0.64883094,
                   -0.86505432, -0.49872564],
                  [-0.27283273, -0.31852577, -0.48627082, ..., 0.67140344,
                   -0.03498262, -0.47743428],
                  [-0.37231541, -0.36146329, -0.54024972, ..., 0.28767096,
                   -0.66423052, -0.65869853],
                  [ 0.44841668, -0.39216643, -0.55242911, \ldots, -0.34435902, 
                   1.15657191, -0.65869853],
                  [ 1.11495062, -0.38395214, -0.54227159, ..., -2.09372771,
                    1.64524315, -0.6500669 ]])
         data1 = pd.DataFrame(data1, columns = df1.columns[1:])
In [190...
          data1.head()
```

| Out[190]: |   | child_mort | exports | health  | imports | income  | inflation | life_expec | total_fer | gdpp    |
|-----------|---|------------|---------|---------|---------|---------|-----------|------------|-----------|---------|
|           | 0 | 1.2915     | -0.4110 | -0.5670 | -0.5987 | -0.8517 | 0.2650    | -1.6197    | 1.9264    | -0.7023 |
|           | 1 | -0.5389    | -0.3502 | -0.4404 | -0.4136 | -0.3869 | -0.3721   | 0.6488     | -0.8651   | -0.4987 |
|           | 2 | -0.2728    | -0.3185 | -0.4863 | -0.4761 | -0.2211 | 1.1222    | 0.6714     | -0.0350   | -0.4774 |
|           | 3 | 2.0078     | -0.2914 | -0.5341 | -0.4640 | -0.6120 | 1.9330    | -1.1795    | 2.1540    | -0.5310 |
|           | 4 | -0.6956    | -0.1043 | -0.1784 | 0.1397  | 0.1253  | -0.7646   | 0.7053     | -0.5437   | -0.0320 |

# K-Mean Clustering

#### Silhouette score

```
In [191... from sklearn.metrics import silhouette_score
    ss = []
    for k in range(2, 11):
        kmean = KMeans(n_clusters = k).fit(data1)
        ss.append([k, silhouette_score(data1, kmean.labels_)])
    temp = pd.DataFrame(ss)
    plt.plot(temp[0], temp[1])

plt.show()
```



#### Elbow curve



K=3

# Final Kmean Clustering

```
In [193... kmean = KMeans(n_clusters = 3, random_state = 50)
kmean.fit(data1)

Out[193]: KMeans(n_clusters=3, random_state=50)

In [194... df1_kmean = df1.copy()

In [195... label = pd.DataFrame(kmean.labels_, columns= ['label'])
label.head()
```

```
Out[195]: label

0 2

1 1

2 1

3 2

4 1
```

```
In [196... df1_kmean = pd.concat([df1_kmean, label], axis =1)
    df1_kmean.head(100)
```

Out[196]:

| :  | country                   | child_mort | exports    | health    | imports    | income     | inflation | life_expec | total_fer |      |
|----|---------------------------|------------|------------|-----------|------------|------------|-----------|------------|-----------|------|
| 0  | Afghanistan               | 90.2000    | 55.3000    | 41.9174   | 248.2970   | 1610.0000  | 9.4400    | 56.2000    | 5.8200    | 55   |
| 1  | Albania                   | 16.6000    | 1145.2000  | 267.8950  | 1987.7400  | 9930.0000  | 4.4900    | 76.3000    | 1.6500    | 409  |
| 2  | Algeria                   | 27.3000    | 1712.6400  | 185.9820  | 1400.4400  | 12900.0000 | 16.1000   | 76.5000    | 2.8900    | 446  |
| 3  | Angola                    | 119.0000   | 2199.1900  | 100.6050  | 1514.3700  | 5900.0000  | 22.4000   | 60.1000    | 6.1600    | 353  |
| 4  | Antigua<br>and<br>Barbuda | 10.3000    | 5551.0000  | 735.6600  | 7185.8000  | 19100.0000 | 1.4400    | 76.8000    | 2.1300    | 1220 |
|    |                           |            |            |           |            |            |           |            |           |      |
| 95 | Malaysia                  | 7.9000     | 7881.8300  | 398.1730  | 6439.7000  | 21100.0000 | 7.2700    | 74.5000    | 2.1500    | 907  |
| 96 | Maldives                  | 13.2000    | 5509.6000  | 449.4300  | 4643.4000  | 10500.0000 | 2.8800    | 77.9000    | 2.2300    | 710  |
| 97 | Mali                      | 137.0000   | 161.4240   | 35.2584   | 248.5080   | 1870.0000  | 4.3700    | 59.5000    | 6.5500    | 70   |
| 98 | Malta                     | 6.8000     | 32283.0000 | 1825.1500 | 32494.0000 | 28300.0000 | 3.8300    | 80.3000    | 1.3600    | 2110 |
| 99 | Mauritania                | 97.4000    | 608.4000   | 52.9200   | 734.4000   | 3320.0000  | 18.9000   | 68.2000    | 4.9800    | 120  |

100 rows × 11 columns

```
In [197... df1_kmean.label.value_counts()
```

Out[197]:

1 89
 2 48

0 30

Name: label, dtype: int64

#### Plot the cluster

```
In [198... plt.figure(figsize = (10,6))
    sns.scatterplot(x = 'child_mort', y = 'income', hue = 'label', data = df1_kmean, palette
    plt.title('Child mortality vs income clusters', fontweight="bold", size=20)
    plt.show()
```

#### Child mortality vs income clusters



```
plt.figure(figsize = (10,6))
sns.scatterplot(x = 'income', y = 'gdpp', hue = 'label', data = df1_kmean, palette = 'gi
plt.title('Income vs GDP clusters', fontweight="bold", size=20)
plt.show()
```





plt.title('Child mortality vs GDP clusters',fontweight="bold", size=20 )
plt.show()



## cluster profiling

```
In [201...
           df1=df1_kmean.drop('country', axis = 1).groupby('label').mean()
                  child mort
                                           health
                                                                income inflation life_expec total_fer
Out[201]:
                                exports
                                                     imports
                                                                                                         gdpp
            label
               0
                     4.9700
                            29827.5633 4175.8450
                                                  20941.7193
                                                             47178.2667
                                                                          2.8398
                                                                                   80.4847
                                                                                             1.7967
                                                                                                    45552.5333
               1
                    20.7270
                              3395.7461
                                         508.6035
                                                   3515.3328 13626.8539
                                                                          7.1710
                                                                                   73.3034
                                                                                             2.2336
                                                                                                     7552.4944
               2
                    91.6104
                              879.0635
                                                                                             4.9722
                                                                                                     1909.2083
                                         114.8218
                                                    827.0288
                                                              3897.3542
                                                                        10.6086
                                                                                   59.2396
           df1_kmean.drop('country', axis = 1).groupby('label').mean().plot.bar(figsize=(15,6))
In [202...
           plt.ylim([0,40000])
           plt.title("Clusters vs all variables", fontweight="bold", size=20)
           plt.show()
```





#### **Clusters of Child mortality**



From cluster profiling in K- means clustering we can see that:

- 1. Cluster 0 is having the High income, High GDP and very Low child mortality
- 2. Cluster 2 is having very Low income, very Low GDP but High child mortality
- 3. Cluster 1 is having low income, GDP and less child mortality
- 4. We saw in cluster profiling that cluster 2 is having low income, low GDP and High Child Mortality
- 5. So we can say that countries under cluster 2 are in need of aid. Lets see the countries

```
In [206...
            Kmean=df1_kmean[df1_kmean['label'] == 2]
            Kmean.head()
                              child_mort
                                                        health
                                                                               income inflation
                                                                                                  life_expec total_fer
Out[206]:
                     country
                                             exports
                                                                  imports
                                                                                                                            gdı
                 Afghanistan
                                 90.2000
                                             55.3000
                                                       41.9174
                                                                 248.2970
                                                                             1610.0000
                                                                                          9.4400
                                                                                                    56.2000
                                                                                                               5.8200
                                                                                                                         553.00
              3
                      Angola
                                119.0000
                                          2199.1900
                                                      100.6050
                                                                1514.3700
                                                                             5900.0000
                                                                                         22.4000
                                                                                                     60.1000
                                                                                                               6.1600
                                                                                                                        3530.00
             17
                       Benin
                                111.0000
                                            180.4040
                                                       31.0780
                                                                 281.9760
                                                                             1820.0000
                                                                                          0.8850
                                                                                                     61.8000
                                                                                                               5.3600
                                                                                                                         758.00
             21
                   Botswana
                                 52.5000
                                          2768.6000
                                                      527.0500
                                                                3257.5500
                                                                            13300.0000
                                                                                          8.9200
                                                                                                    57.1000
                                                                                                               2.8800
                                                                                                                        6350.00
                     Burkina
             25
                                116.0000
                                           110.4000
                                                       38.7550
                                                                 170.2000
                                                                             1430.0000
                                                                                          6.8100
                                                                                                    57.9000
                                                                                                               5.8700
                                                                                                                         575.00
                        Faso
```

#### Countries that we have to focus more on:

```
In [207... K=Kmean[['country']]
K= K.reset_index(drop=True)
K
```

|    | country                  |
|----|--------------------------|
| 0  | Afghanistan              |
| 1  | Angola                   |
| 2  | Benin                    |
| 3  | Botswana                 |
| 4  | Burkina Faso             |
| 5  | Burundi                  |
| 6  | Cameroon                 |
| 7  | Central African Republic |
| 8  | Chad                     |
| 9  | Comoros                  |
| 10 | Congo, Dem. Rep.         |
| 11 | Congo, Rep.              |
| 12 | Cote d'Ivoire            |
| 13 | Equatorial Guinea        |
| 14 | Eritrea                  |
| 15 | Gabon                    |
| 16 | Gambia                   |
| 17 | Ghana                    |
| 18 | Guinea                   |
| 19 | Guinea-Bissau            |
| 20 | Haiti                    |
| 21 | Iraq                     |
| 22 | Kenya                    |
| 23 | Kiribati                 |
| 24 | Lao                      |
| 25 | Lesotho                  |
| 26 | Liberia                  |
| 27 | Madagascar               |
| 28 | Malawi                   |
| 29 | Mali                     |
| 30 | Mauritania               |
| 31 | Mozambique               |
| 32 | Namibia                  |
| 33 | Niger                    |
| 34 | Nigeria                  |
| 35 | Pakistan                 |
| 36 | Rwanda                   |
| 37 | Senegal                  |
| 38 | Sierra Leone             |

Out[207]:

|    | country         |
|----|-----------------|
| 39 | Solomon Islands |
| 40 | South Africa    |
| 41 | Sudan           |
| 42 | Tanzania        |
| 43 | Timor-Leste     |
| 44 | Togo            |
| 45 | Uganda          |
| 46 | Yemen           |
| 47 | Zambia          |

# CLUSTERING that is based on the high child mortality, low income and GDP

```
final=df1_kmean[df1_kmean['label'] == 2].sort_values(by = ['child_mort', 'income', 'gdpp'
In [208...
            final.head(10)
                   country child_mort
                                                       health
                                                                 imports
                                                                                     inflation life_expec_total_fer
Out[208]:
                                           exports
                                                                            income
                                                                                                                          gdpp
              66
                      Haiti
                              208.0000
                                          101.2860
                                                     45.7442
                                                                428.3140
                                                                          1500.0000
                                                                                       5.4500
                                                                                                  32.1000
                                                                                                             3.3300
                                                                                                                      662.0000
                     Sierra
             132
                              160.0000
                                           67.0320
                                                     52.2690
                                                                137.6550
                                                                          1220,0000
                                                                                      17.2000
                                                                                                  55.0000
                                                                                                             5.2000
                                                                                                                      399,0000
                     Leone
              32
                      Chad
                                          330.0960
                                                     40.6341
                                                                          1930.0000
                                                                                       6.3900
                                                                                                                      897.0000
                              150.0000
                                                                390.1950
                                                                                                  56.5000
                                                                                                             6.5636
                    Central
              31
                    African
                              149.0000
                                           52.6280
                                                     17.7508
                                                                118.1900
                                                                           888.0000
                                                                                       2.0100
                                                                                                  47.5000
                                                                                                             5.2100
                                                                                                                      446.0000
                   Republic
              97
                       Mali
                              137.0000
                                          161.4240
                                                     35.2584
                                                                248.5080
                                                                          1870.0000
                                                                                       4.3700
                                                                                                  59.5000
                                                                                                             6.5500
                                                                                                                      708.0000
                    Nigeria
                                                                405.4200
                                                                                      41.4780
             113
                              130.0000
                                          589.4900
                                                    118.1310
                                                                          5150.0000
                                                                                                  60.5000
                                                                                                             5.8400
                                                                                                                     2330.0000
             112
                      Niger
                              123.0000
                                           77.2560
                                                     17.9568
                                                                170.8680
                                                                           814.0000
                                                                                       2.5500
                                                                                                  58.8000
                                                                                                             6.5636
                                                                                                                      348.0000
               3
                    Angola
                              119.0000
                                         2199.1900
                                                    100.6050
                                                              1514.3700
                                                                          5900.0000
                                                                                      22.4000
                                                                                                  60.1000
                                                                                                             6.1600
                                                                                                                     3530.0000
                    Congo,
              37
                      Dem.
                              116.0000
                                          137.2740
                                                     26.4194
                                                                165.6640
                                                                           609.0000
                                                                                      20.8000
                                                                                                  57.5000
                                                                                                             6.5400
                                                                                                                      334.0000
                      Rep.
                    Burkina
              25
                              116.0000
                                          110.4000
                                                     38.7550
                                                                170.2000 1430.0000
                                                                                       6.8100
                                                                                                  57.9000
                                                                                                             5.8700
                                                                                                                      575.0000
                      Faso
```

```
In [209... print("Top 10 countries which are in direst need of aid" )
    f=final[['country']].head(10)
    df1_r = f.reset_index(drop=True)
    df1_r
```

Top 10 countries which are in direst need of aid

|   | country                  |
|---|--------------------------|
| 0 | Haiti                    |
| 1 | Sierra Leone             |
| 2 | Chad                     |
| 3 | Central African Republic |
| 4 | Mali                     |
| 5 | Nigeria                  |
| 6 | Niger                    |
| 7 | Angola                   |
| 8 | Congo, Dem. Rep.         |
| 9 | Burkina Faso             |

Out[209]:

In [212...

Loading [MathJax]/extensions/Safe.js

plt.figure(figsize = (20,8))

dendrogram(mergings)

#### HIRARCHICAL CLUSTERING

```
In [210...
           data1.head()
Out[210]:
               child_mort exports
                                   health imports income inflation life_expec total_fer
                                                                                         gdpp
                   1.2915 -0.4110 -0.5670
                                           -0.5987
                                                   -0.8517
                                                            0.2650
                                                                      -1.6197
                                                                                1.9264 -0.7023
            1
                  -0.5389 -0.3502 -0.4404
                                                   -0.3869
                                                                       0.6488
                                          -0.4136
                                                            -0.3721
                                                                               -0.8651 -0.4987
            2
                  -0.2728
                          -0.3185 -0.4863
                                           -0.4761
                                                   -0.2211
                                                                       0.6714
                                                                               -0.0350 -0.4774
                                                            1.1222
            3
                   2.0078 -0.2914 -0.5341
                                           -0.4640 -0.6120
                                                            1.9330
                                                                      -1.1795
                                                                                2.1540 -0.5310
            4
                  -0.6956 -0.1043 -0.1784 0.1397
                                                   0.1253
                                                            -0.7646
                                                                       0.7053
                                                                               -0.5437 -0.0320
In [211...
           plt.figure(figsize = (20,8))
           mergings = linkage(data1, method="single", metric='euclidean')
           dendrogram(mergings)
           plt.show()
           5
           4
           3
           2
```

mergings = linkage(data1, method="complete", metric='euclidean')



Now we got the clear dendrogram and its easier to analyse the clusters. Lets consider a threshold value of 10. Draw the horizontal line at that height. It cuts 3 vertical lines, all of which represent a cluster. So we have 3 clusters now

#### clusters

```
In [213...
           cluster_labels = cut_tree(mergings, n_clusters=3).reshape(-1, )
           cluster_labels
           array([0, 0, 0,
                                                      1,
                                                         Θ,
                                                            Θ,
                              0, 0, 0,
                                        0, 1,
                                               1,
                                                  Θ,
                                                                Θ,
                                                                       1,
                                                                             Θ,
Out[213]:
                              0, 0,
                                    Θ,
                                            1,
                                               Θ,
                                                  Θ,
                                                      Θ,
                                                         Θ,
                                                             Θ,
                                                                Θ,
                                                                   Θ,
                                                                       Θ,
                                                                              Θ,
                                                                                 Θ,
                                        Θ,
                                                                          Θ,
                                               Θ,
                                                        Θ,
                                                            Θ,
                                       0, 0,
                                                     1,
                                                                                Θ,
                             0, 0, 0,
                                                  1,
                                                               0, 1,
                                                                       Θ,
                                                                          1, 0,
                             0, 0, 0, 0, 1,
                                               1, 1, 0, 1, 0, 0, 0, 0,
                                                                          1, 0, 0, 0,
                   0, 0, 0,
                             2, 0, 0,
                                        0, 0,
                                               0, 0, 1, 0, 0, 0, 0,
                                                                       Θ,
                                                                          0, 0, 0, 0,
                                                                                        Θ,
                                               Θ,
                             0, 1,
                                    Θ,
                                       0, 0,
                                                  Θ,
                                                     Θ,
                                                         0, 1, 1, 0,
                                                                       Θ,
                                                                          Θ,
                                                                             0, 0,
                   0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                   0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0])
In [214...
           data1['cluster_labels'] = cluster_labels
           data1.head()
                                  health imports income inflation life_expec total_fer
Out[214]:
              child_mort exports
                                                                                      gdpp
                                                                                            cluster_labels
            0
                  1.2915
                         -0.4110
                                 -0.5670
                                         -0.5987
                                                 -0.8517
                                                           0.2650
                                                                     -1.6197
                                                                              1.9264
                                                                                    -0.7023
                                                                                                       0
                         -0.3502
            1
                 -0.5389
                                 -0.4404
                                                 -0.3869
                                                                     0.6488
                                                                                                       0
                                         -0.4136
                                                          -0.3721
                                                                             -0.8651
                                                                                    -0.4987
            2
                 -0.2728
                         -0.3185
                                 -0.4863
                                          -0.4761
                                                 -0.2211
                                                           1.1222
                                                                     0.6714
                                                                             -0.0350
                                                                                    -0.4774
                                                                                                       0
                  2.0078
                         -0.2914 -0.5341
                                                           1.9330
                                                                     -1.1795
                                          -0.4640
                                                 -0.6120
                                                                              2.1540
                                                                                    -0.5310
                                                                                                       0
            4
                 -0.6956
                         -0.1043 -0.1784
                                          0.1397
                                                  0.1253
                                                          -0.7646
                                                                     0.7053
                                                                             -0.5437 -0.0320
                                                                                                       0
In [215...
           data1.cluster_labels.value_counts()
                 131
           0
Out[215]:
           1
                 35
                 1
           Name: cluster_labels, dtype: int64
           fig, axes = plt.subplots(1,3, figsize=(20,6))
In [216...
           plt.subplot(1,3,1)
           sns.scatterplot(x='child_mort', y='income', hue='cluster_labels',data=data1, palette='Se
```

Loading [MathJax]/extensions/Safe.js usters of Child mortality and income')

```
plt.subplot(1,3,2)
sns.scatterplot(x='child_mort', y='gdpp', hue='cluster_labels', data=data1, palette='Set1
plt.title('Clusters of child mortality and GDP')
plt.subplot(1,3,3)
sns.scatterplot(x='gdpp', y='income', hue='cluster_labels', data=data1, palette='gist_rain
plt.title('Clusters of income and GDP')
plt.show()

Clusters of Child mortality and income

cluster of Child mortality and income

cluster of Child mortality and income

cluster of child mortality and GDP

duster_labels

clusters of Child mortality and GDP

duster_labels

cluster of Child mortality and GDP

duster_labels

cluster of Child mortality and GDP

duster_labels

cluster of Child mortality and GDP

duster_labels

cluster_labels

cluster_labels

duster_labels

cluster_labels

cluster_labels

duster_labels

cluster_labels

duster_labels

cluster_labels

duster_labels

cluster_labels

cluster_labels
```

#### plots

```
In [217... plt.figure(figsize = (10,6))
    sns.barplot(x='cluster_labels', y='child_mort', data=data1,palette='rocket')
    plt.title('Cluster labels vs child mortality',fontweight="bold", size=20)
    plt.show()
```



```
In [218... plt.figure(figsize = (10,6))

Loading [MathJax]/extensions/Safe.js | cluster_labels', y='income', data=data1, palette='coolwarm')
```

```
plt.title('Cluster labels vs Income', fontweight="bold", size=20)
plt.show()
```

#### Cluster labels vs Income



```
In [219... plt.figure(figsize = (10,6))
    sns.barplot(x='cluster_labels', y='gdpp', data=data1, palette='magma')
    plt.title('Cluster labels vs GDP', fontweight="bold", size=20)

plt.show()
```

#### Cluster labels vs GDP



| In [220   | dat | a1[data1[  | 'cluste | r_label | .s'] == | 0].head | l()       |            |           |         |                |
|-----------|-----|------------|---------|---------|---------|---------|-----------|------------|-----------|---------|----------------|
| out[220]: |     | child_mort | exports | health  | imports | income  | inflation | life_expec | total_fer | gdpp    | cluster_labels |
|           | 0   | 1 2915     | -0 4110 | -0 5670 | -0 5987 | -0.8517 | 0.2650    | -1.6197    | 1.9264    | -0.7023 | 0              |

| 0 | 1.2915  | -0.4110 | -0.5670 | -0.5987 | -0.8517 | 0.2650  | -1.6197 | 1.9264  | -0.7023 | 0 |
|---|---------|---------|---------|---------|---------|---------|---------|---------|---------|---|
| 1 | -0.5389 | -0.3502 | -0.4404 | -0.4136 | -0.3869 | -0.3721 | 0.6488  | -0.8651 | -0.4987 | 0 |
| 2 | -0.2728 | -0.3185 | -0.4863 | -0.4761 | -0.2211 | 1.1222  | 0.6714  | -0.0350 | -0.4774 | 0 |
| 3 | 2.0078  | -0.2914 | -0.5341 | -0.4640 | -0.6120 | 1.9330  | -1.1795 | 2.1540  | -0.5310 | 0 |
| 4 | -0.6956 | -0.1043 | -0.1784 | 0.1397  | 0.1253  | -0.7646 | 0.7053  | -0.5437 | -0.0320 | 0 |

| ıt[221]: |     | child_mort | exports | health  | imports | income  | inflation | life_expec | total_fer | gdpp    | cluster_labels |
|----------|-----|------------|---------|---------|---------|---------|-----------|------------|-----------|---------|----------------|
|          | 66  | 4.2213     | -0.4084 | -0.5648 | -0.5796 | -0.8578 | -0.2485   | -4.3397    | 0.2596    | -0.6960 | 0              |
|          | 132 | 3.0275     | -0.4104 | -0.5612 | -0.6105 | -0.8735 | 1.2637    | -1.7551    | 1.5114    | -0.7111 | 0              |
|          | 32  | 2.7788     | -0.3957 | -0.5677 | -0.5836 | -0.8338 | -0.1275   | -1.5858    | 2.4242    | -0.6825 | 0              |
| 1        | 31  | 2.7539     | -0.4112 | -0.5805 | -0.6126 | -0.8920 | -0.6913   | -2.6016    | 1.5181    | -0.7084 | 0              |
|          | 97  | 2.4555     | -0.4051 | -0.5707 | -0.5987 | -0.8371 | -0.3875   | -1.2473    | 2.4151    | -0.6933 | 0              |
|          | 113 | 2.2814     | -0.3812 | -0.5243 | -0.5820 | -0.6539 | 4.3884    | -1.1344    | 1.9398    | -0.6000 | 0              |
|          | 112 | 2.1073     | -0.4098 | -0.5804 | -0.6070 | -0.8961 | -0.6218   | -1.3263    | 2.4242    | -0.7141 | 0              |
|          | 3   | 2.0078     | -0.2914 | -0.5341 | -0.4640 | -0.6120 | 1.9330    | -1.1795    | 2.1540    | -0.5310 | 0              |
|          | 37  | 1.9332     | -0.4064 | -0.5756 | -0.6075 | -0.9076 | 1.7271    | -1.4730    | 2.4084    | -0.7149 | 0              |
|          | 25  | 1.9332     | -0.4079 | -0.5687 | -0.6071 | -0.8617 | -0.0735   | -1.4278    | 1.9599    | -0.7010 | 0              |
|          |     |            |         |         |         |         |           |            |           |         |                |

## final Analysis



choosing the countries based on socio-economic and health factors

| n [225   | Kmean. | describe(  | )          |          |            |            |           |            |           |            |    |
|----------|--------|------------|------------|----------|------------|------------|-----------|------------|-----------|------------|----|
| ut[225]: |        | child_mort | exports    | health   | imports    | income     | inflation | life_expec | total_fer | gdpp       |    |
|          | count  | 48.0000    | 48.0000    | 48.0000  | 48.0000    | 48.0000    | 48.0000   | 48.0000    | 48.0000   | 48.0000    | 48 |
|          | mean   | 91.6104    | 879.0635   | 114.8218 | 827.0288   | 3897.3542  | 10.6086   | 59.2396    | 4.9722    | 1909.2083  | 2  |
|          | std    | 34.3199    | 2252.4740  | 165.5183 | 1540.9819  | 5590.1686  | 8.5112    | 6.3849     | 0.9956    | 2925.9110  | О  |
|          | min    | 28.1000    | 20.6052    | 12.8212  | 90.5520    | 609.0000   | 0.8850    | 32.1000    | 2.5900    | 231.0000   | 2  |
|          | 25%    | 63.6750    | 102.8738   | 34.0059  | 193.3195   | 1390.0000  | 4.0800    | 56.7250    | 4.4750    | 551.5000   | 2  |
|          | 50%    | 89.7500    | 196.2600   | 51.6135  | 339.3060   | 1860.0000  | 8.8550    | 59.8000    | 5.0550    | 932.0000   | 2  |
|          | 75%    | 111.0000   | 552.5225   | 95.3033  | 801.0000   | 3522.5000  | 16.6000   | 62.8250    | 5.5975    | 1465.0000  | 2  |
|          | max    | 208.0000   | 14671.8000 | 766.0800 | 10071.9000 | 33700.0000 | 41.4780   | 71.1000    | 6.5636    | 17100.0000 | 2  |

# choosing the countries whose mean value is more than 91.61

```
df1_final_list = Kmean[Kmean['child_mort']>91]
In [226...
            df1_final_list.shape
             (21, 11)
Out[226]:
            df1_final_list.describe()
In [236...
Out[236]:
                     child_mort
                                    exports
                                               health
                                                           imports
                                                                       income
                                                                                inflation life_expec total_fer
                                                                                                                     gdpp
             count
                        21.0000
                                    21.0000
                                              21.0000
                                                           21.0000
                                                                       21.0000
                                                                                 21.0000
                                                                                            21.0000
                                                                                                      21.0000
                                                                                                                   21.0000
                                                          850.4614
                                  1010.7922
                                              83.5849
             mean
                      121.7048
                                                                     3639.1905
                                                                                 11.2144
                                                                                            56.5476
                                                                                                       5.3865
                                                                                                                 1708.1905
                                                         2143.0015
                                                                                                                             0
                std
                       27.1645
                                  3164.9888
                                             159.5347
                                                                     7039.6580
                                                                                 10.1995
                                                                                             7.4018
                                                                                                       0.9669
                                                                                                                 3607.6773
               min
                       92.1000
                                    20.6052
                                              17.7508
                                                           90.5520
                                                                      609,0000
                                                                                  0.8850
                                                                                            32.1000
                                                                                                       3.3000
                                                                                                                  231.0000
                                                                                                                             2
               25%
                      108.0000
                                   101.2860
                                              26.7960
                                                          170.8680
                                                                     1190.0000
                                                                                  4.1500
                                                                                            55.6000
                                                                                                       5.1100
                                                                                                                  446.0000
                                                                                                                             2
               50%
                      114.0000
                                   161.4240
                                              40.6341
                                                          279.9360
                                                                     1820.0000
                                                                                  6.8100
                                                                                            57.7000
                                                                                                        5.3400
                                                                                                                  708.0000
               75%
                      130.0000
                                   460.9800
                                              64.6600
                                                          428.3140
                                                                     2690.0000
                                                                                            60.1000
                                                                                                        6.1600
                                                                                                                 1200.0000
                                                                                                                             2
                                                                                 17.2000
                                                                                                                             2
               max
                      208,0000
                                 14671.8000
                                             766.0800
                                                      10071.9000
                                                                    33700.0000
                                                                                 41.4780
                                                                                            68.2000
                                                                                                        6.5636
                                                                                                               17100.0000
```

# now Mean value of income is 3639 now choose the countries less than this mean value of this.

In

0 u

| ]: |       | child_mort | exports  | health   | imports   | income    | inflation | life_expec | total_fer | gdpp      | label   |
|----|-------|------------|----------|----------|-----------|-----------|-----------|------------|-----------|-----------|---------|
|    | count | 17.0000    | 17.0000  | 17.0000  | 17.0000   | 17.0000   | 17.0000   | 17.0000    | 17.0000   | 17.0000   | 17.0000 |
|    | mean  | 123.7471   | 213.2798 | 43.9756  | 333.3082  | 1611.3529 | 7.9897    | 55.3353    | 5.4151    | 698.3529  | 2.0000  |
|    | std   | 29.1763    | 187.1063 | 26.6780  | 274.7639  | 781.5389  | 6.4973    | 7.6932     | 0.9839    | 345.5676  | 0.0000  |
|    | min   | 93.6000    | 20.6052  | 17.7508  | 90.5520   | 609.0000  | 0.8850    | 32.1000    | 3.3000    | 231.0000  | 2.0000  |
|    | 25%   | 108.0000   | 81.5030  | 26.7960  | 170.2000  | 918.0000  | 2.9700    | 55.0000    | 5.1100    | 419.0000  | 2.0000  |
|    | 50%   | 114.0000   | 137.2740 | 38.7550  | 248.5080  | 1430.0000 | 5.4500    | 57.3000    | 5.3400    | 648.0000  | 2.0000  |
|    | 75%   | 137.0000   | 290.8200 | 52.2690  | 390.1950  | 1930.0000 | 12.3000   | 58.0000    | 6.2600    | 897.0000  | 2.0000  |
|    | may   | 208 0000   | 617 3200 | 120 8700 | 1181 7000 | 3320 0000 | 20.8000   | 68 2000    | 6 5636    | 1310 0000 | 2 0000  |

# Now Mean value of GDP is 698. Lets choose the countries less than this mean value

```
df_final_list2 = df1_final_list1[df1_final_list1['gdpp']<698]</pre>
In [230...
            df_final_list2.shape
             (10, 11)
Out[230]:
            df_final_list2
In [231...
Out[231]:
                                child_mort
                                             exports
                                                       health
                                                                imports
                                                                                     inflation life_expec total_fer
                       country
                                                                            income
                                                                                                                       gdpp
              66
                          Haiti
                                  208.0000
                                            101.2860
                                                      45.7442
                                                               428.3140
                                                                         1500.0000
                                                                                      5.4500
                                                                                                 32.1000
                                                                                                            3.3300
                                                                                                                    662,0000
             132
                  Sierra Leone
                                 160.0000
                                             67.0320
                                                      52.2690
                                                                         1220,0000
                                                                                     17.2000
                                                                                                 55.0000
                                                                                                            5.2000
                                                                                                                    399,0000
                                                               137,6550
                       Central
              31
                       African
                                 149.0000
                                             52.6280 17.7508 118.1900
                                                                           888.0000
                                                                                      2.0100
                                                                                                 47.5000
                                                                                                            5.2100 446.0000
                      Republic
             112
                                 123.0000
                                             77.2560
                                                      17.9568
                                                               170.8680
                                                                           814.0000
                                                                                      2.5500
                                                                                                 58.8000
                                                                                                            6.5636
                                                                                                                   348.0000
                         Niger
                       Congo,
              37
                                 116.0000 137.2740 26.4194
                                                                           609.0000
                                                                                     20.8000
                                                                                                 57.5000
                                                               165.6640
                                                                                                            6.5400 334.0000
                    Dem. Rep.
                       Burkina
              25
                                                                                                 57.9000
                                 116.0000 110.4000
                                                     38.7550
                                                              170.2000 1430.0000
                                                                                      6.8100
                                                                                                            5.8700 575.0000
                         Faso
                       Guinea-
                                 114.0000
                                             81.5030
                                                      46.4950
                                                               192.5440
                                                                                      2.9700
                                                                                                 55.6000
              64
                                                                         1390,0000
                                                                                                            5.0500
                                                                                                                   547.0000
                        Bissau
                                                                                                 58.0000
              63
                       Guinea
                                 109.0000
                                            196.3440
                                                     31.9464
                                                               279.9360
                                                                         1190.0000
                                                                                     16.1000
                                                                                                            5.3400
                                                                                                                   648.0000
             106
                  Mozambique
                                  101.0000
                                            131.9850
                                                      21.8299
                                                               193.5780
                                                                           918.0000
                                                                                      7.6400
                                                                                                 54.5000
                                                                                                            5.5600
                                                                                                                  419.0000
              26
                       Burundi
                                   93.6000
                                             20.6052 26.7960
                                                                90.5520
                                                                           764.0000
                                                                                     12.3000
                                                                                                 57.7000
                                                                                                            6.2600 231.0000
```

# Final List of countries which are in need of the aid based on socio-economic factors

```
In [232... A_countries=df_final_list2['country']
    A_countries=A_countries.reset_index(drop=True)
    A_countries
```

Out[229]

```
Haiti
Out[232]:
          1
                Sierra Leone
          2
                Central African Republic
           3
                Niger
           4
                Congo, Dem. Rep.
          5
                Burkina Faso
                Guinea-Bissau
           6
                Guinea
          7
                Mozambique
                Burundi
          9
          Name: country, dtype: object
```

From the EDA performed we could see that Income, GDP and child Mortality are the major three variables need to be focused In K means clustering we got Cluster 2 is having very Low income, very Low GDP but High child mortality. So we concluded that countries under cluster 2 are in need of aid. In Hierarchical clustering we saw that Cluster 0 is having the High child mortality, low GDP and very Low child mortality. The clusters formed in Hierarchical clustering were not that good. So we went on to consider cluster formed in K means clustering. And got top five countries with High child mortality, Low GDP and Low income Then we looked for the countries based on socio economic factors

```
In [233... print('Top 5 Countries based on K means clustering:')
Kmean[['country']].head()

Top 5 Countries based on K means clustering:

Out[233]:

country

66 Haiti

132 Sierra Leone

32 Chad

31 Central African Republic

97 Mali
```

```
97
                             Mali
          print('Countries based on socio economic and health factors:')
In [234...
          A_countries
          Countries based on socio economic and health factors:
                Haiti
          0
Out[234]:
          1
                Sierra Leone
          2
                Central African Republic
          3
                Niger
           4
                Congo, Dem. Rep.
          5
                Burkina Faso
                Guinea-Bissau
           6
           7
                Guinea
          8
                Mozambique
                Burundi
          Name: country, dtype: object
 In [ ]:
```