Escuela Rafael Díaz Serdán Química 3 ° de Secundaria (2022-2023)

Examen de la Unidad 2

Prof.: Julio César Melchor Pinto

echa:		_ Califica	ciones:				
Aprendizajes a evaluar:	Pregunta	Puntos	Obtenidos				
		1	10				
Deduce información acerca de la estructura atómica a partir de datos experimentales sobre propiedades atómicas periódicas.		2	20				
		3	10				
Representa y diferencia mediante esquemas, modelos y simbología química, elementos y compuestos, así como átomos y moléculas.		4	10				
	5	10					
Explica y predice propiedades físicas de los materiales con base en modelos submicroscópicos sobre la estructura de átomos, moléculas		6	10				
o iones, y sus interacciones electr	· ·	8	10				
o iones, y das inveracerens erecei	o iones, y sus interacciones electrostaticas.		20				
		Total	100				
) [10 puntos] Relaciona la especie qu	uímica con la cantidad de protones	y electrones	de valen	cia.			
A. Ión oxígeno (O^-)	1a 20 protones y 2	2 electrones de	e valencia.				
B. Nitrógeno (N)	1b 9 protones y 8	1b 9 protones y 8 electrones de valencia.					
C. Silicio (Si)	15 protones y	15 protones y 5 electrones de valencia.					
D. Calcio (Ca)	1d 8 protones y 7	1d 8 protones y 7 electrones de valencia.					
E. Ión Fluor (F ⁻)	1e 34 protones y 6 electrones de valencia.						
F. Oxígeno (O)	1f) 14 protones y 4	1f) 14 protones y 4 electrones de valencia.					
G. Neón (Ne)	1g) 7 protones y 5	(1g) 7 protones y 5 electrones de valencia.					
H. Ión Litio (Li ⁺)	(1h) 3 protones y 2	electrones de	valencia.				
I. Fósforo (P)	(1i) 8 protones y 6						

___ 10 protones y 8 electrones de valencia.

J. Selenio (Se)

2 Contesta a las siguientes p	preguntas, argumentando ampliamente tu respuesta.
(2a) [10 puntos] Explica ba presentes en un átomo	ajo qué condiciones el número atómico permite deducir el número de electrones.
núcleo. Si un átomo pu	os generales, el radio de un átomo es aproximadamente 10,000 veces mayor que su adiera amplificarse de manera que el radio de su núcleo midiera 2 mm (lo que mide l sería el radio del átomo en metros?
3 [10 puntos] Relaciona cad	a elemento con las características que le corresponden.
(3a) Radón	A. Elemento metaloide del grupo III, subgrupo A de la tabla periódica.
(3b) Helio	B. Elemento metálico con $Z=31$.
	${\bf C}.\;$ Elemento metaloide, ubicado en el tercer período de la tabla periódica.
3c Galio 3d Yodo	${\bf D}.$ Elemento conocido como gas noble y se encuentra en el período 1 de la tabla periódica.
3e Bismuto	E. Elemento con 22 protones y 22 electrones.
	F. Elemento de la familia de los Halógenos con 74 neutrones.
	G. Elemento de la familia de metales alcalino-terreos con 138 neutrones.
(3g) Silicio	H. Elemento no metálico con $Z = 83$.
(3h) Oro	I. Gas inerte (gas noble) que se encuentra en el período 6 de la tabla
3i Titanio	periódica.
(3j) Boro	J. Metal brillante utilizado en joyería.

[10 puntos] Relaciona la especie química con la cantidad de **protones** y **electrones de valencia**.

A. Ión de Nitrógeno (N³⁻)

B. Ión de Berilio (Be⁻)

C. Ión de Flúor (F⁻)

D. Ión de Hierro (Fe^{3+})

E. Ión de Potasio (K⁺)

- 4a _____ 9 protones y 8 electrones de valencia.
- 4b _____ 15 protones y 5 electrones de valencia.
- 4 protones y 3 electrones de valencia.
- 4d) _____ 16 protones y 4 electrones de valencia.
- 4e 7 protones y 8 electrones de valencia.

 ${\bf F.}$ Ión de Aluminio (Al $^{3+})$

G. Ión de Yodo (I^{-1})

 \mathbf{H} . Ión de Azúfre (S^{2+})

I. Litio (Li)

J. Fósforo (P)

- 4f) _____ 53 protones y 8 electrones de valencia.
- 4g) _____ 13 protones y 8 electrones de valencia.
- 4h _____ 19 protones y 8 electrones de valencia.
- 4i) _____ 26 protones y 2 electrones de valencia.
- 4j _____ 3 protones y 1 electrón de valencia.

[10 puntos] Relaciona el compuesto iónico.	el catión y anión que forman	clasificació realizar es	on de los s te ejercic	siguientes el	lementos. cada eler	o, período y Después de nento en la			
A. Bromuro de Litio	5a Ca ²⁺ O ²⁻	tasia perie	raica que	se maestra	abajo.				
B. Óxido de Magnesio	5b Ba ²⁺ O ²⁻		Grupo	Subgrupo	Período	Tipo de elemento			
C. Yoduro de Potasio	$\frac{\text{5c}}{}$ Fe ²⁺ O ²⁻	Oro							
D. Bromuro de Potasio	(5d) K+I-	Plata							
E. Óxido de Hierro	5e) Li ⁺ F ⁻	Bario							
F. Cloruro de Potasio	(5f) K+Cl-	Talio							
G. Óxido de Calcio		Potasio							
H. Fluoruro de Litio	5g Na ⁺ Br ⁻	Niquel							
I. Óxido de Bario	(5h) Li ⁺ Br ⁻	Paladio							
J. Bromuro de Sodio	5i K ⁺ Br ⁻	Yodo							
	$_{\rm 5j}$ Mg ²⁺ O ²⁻	Argón							
		Samario							
Ta Los electrones de v pre en el último niv □ Verdadero □	(7f) En una fórmula química, los coeficientes indican el número de moléculas o unidades fórmula; así como también el número de moles presentes de la sustancia.								
7b Los metales son m	naleables, dúctiles y buenos	□ Verdadero □ Falso							
	or y la electricidad.	(7 - F)	-44		1144	:			
\Box Verdadero \Box	\square Verdadero \square Falso			(7g) El neutrón es una partícula subatómica que se encuentra girando alrededor del núcleo atómico.					
(7c) La fórmula H ₂ O e	agua está constituida por dos átomos de oxígeno y uno de hidrógeno.			\square Verdadero \square Falso					
geno y uno de hidr				7h La masa de un neutrón es similar a la del protón.					
- verdadero	T anso	□ Ve	rdadero	\square Falso					
número 4 indica qu	la Taurina, $4C_2H_7NO_3S$, el e hay 4 átomos de carbono. Falso	tones	mero de i y neutro: rdadero	masa repres nes.	enta la sı	ıma de pro-			
	resan el número de átomos resentes en una molécula o	deterr	nina el g	al de electr rupo al que		ın átomo lo e.			

8 [20 puntos] Completa la siguiente tabla determinando para cada especie, el número de protones, neutrones, electrones, número de masa y número atómico.

	Símbolo	Protones	Neutrones	Electrones	Masa atómica
Plutonio					
Ión positivo de Estaño					
Niobio					
Uranio					
Ión positivo de Plata					
Tecnesio					
Circonio					
Cobalto					
Curio					
Torio					

Tabla 1: Tabla Periódica de los Elementos.

$\frac{2}{\mathbf{H}} \frac{4.0025}{\mathbf{e}}$	$\sum_{Ne\acute{on}}^{20.180}$	$\mathop{Argon}\limits_{Argon}$	$\overset{36}{K}\overset{83.8}{\Gamma}$	$\sum_{Xenón}^{54}$	$\mathop{Radon}\limits^{86}$	0	$\sum_{\text{Luterio}}^{71}$	\overline{L}	
17 VIIA	9 18.998 Fluor	17 35.453 Cloro	$\Pr_{Bromo}^{35-79.904}$	53 126.9 Yodo	85 At	117 292 Teneso	$\sum_{\text{Yterbio}}^{70}$	102 259 Nobelio	
16 VIA	8 15.999 Oxígeno	16 32.065 S	${\overset{34}{\mathrm{S}}}^{78.96}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{Po}^{209}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	$\prod_{\text{Tulio}}^{69}$	$\overline{M}_{\text{Mendelevio}}^{258}$	
15 VA	7 14.007 Nitrógeno	$\sum_{Fósforo}^{15}$	${\overset{33}{A}}^{74.922}$ Arsénico	$\overset{51}{S}\overset{121.76}{b}$	$\overset{83}{\overset{208.98}{\text{Bismuto}}}$	${\overset{115}{\mathbf{V}}}\overset{288}{\mathbf{C}}$	$\frac{68}{\text{Erbio}}$	100 257 Frmio	
14 IVA	6 Carbono	$\overset{14}{\text{Silicio}}$	$\overset{32}{G}^{\text{72.64}}_{\mathbf{e}}$ Germanio	$\mathop{\mathrm{Sn}}_{\mathrm{Estaño}}^{\mathrm{118.71}}$	$\overset{82}{Pb}^{207.2}_{\text{Plomo}}$	114 289 Flerovio	$\overset{67}{\text{Holmio}}_{\text{Holmio}}$	99 252 Einsteinio	
13 IIIA	5 10.811 Boro	$\underset{Aluminio}{13} \overset{26.982}{\sim}$	$\overset{31}{G}\overset{69.723}{a}$	\prod_{Indo}^{49}	81 204.38 Talio	113 284 Nihonio	$\bigcup_{Disprosio}^{66}$	$\bigcup_{\text{Califomio}}^{98}$	
		12 IIB	$\overset{30}{Z}\overset{65.39}{ ext{n}}$	$\overset{48}{\text{Cd}}_{\text{dd}}$	$\overset{80}{H}\overset{200.59}{S}$	$\overset{112}{C}\overset{285}{n}$	$\prod_{\text{Terbio}}^{65-158.93}$	97 247 Bk	
		11 IB	$\overset{29}{\overset{63.546}{cut}}$	${^{47}}_{ m Plata}$	$\overset{79}{A}\overset{196.97}{\mathbf{u}}_{\mathrm{oro}}$	$\underset{\text{Roentgenio}}{Rg}$	$\overset{64}{\text{Gadolinio}}$	96 247 Curio	
		10 VIIIB	$\sum_{\text{Niquel}}^{28} \sum_{\text{58.693}}^{58.693}$	$\Pr_{\text{Paladio}}^{\textbf{46}}$	$\Pr_{Platino}^{78}$	110 281 DS	$\overset{63}{\text{Europio}}$	95 243 Am	
		9 VIIIB	$\overset{27}{\overset{58.933}{\bigcirc}}$	$\mathop{Rh}\limits^{45~102.91}_{\text{Rodio}}$	$\prod_{\text{lridio}}^{77}$	$\frac{109}{\text{NM}} \frac{268}{\text{therico}}$	$\overset{62}{S}\overset{150.36}{m}$	Putonio	
		8 VIIIB	$\overset{26}{F}\overset{55.845}{e}$	$\Pr^{44}_{101.07}$ Ruthenio	$\overset{76}{\text{Osmio}}$	108 277 Hassio	$\overset{\text{6.1}}{P}\overset{\text{145}}{m}$	93 237 Neptunio	
gía:	Negro: Naturales Gris: Sintéticos	7 VIIB	$\overset{25}{\mathbf{Mn}}\overset{54.938}{\mathbf{n}}$	$\prod_{ ext{Tecnecio}}^{43}$	$\mathop{Re}_{\text{Renio}}^{75}$	$\overset{\text{107}}{B}\overset{\text{264}}{\text{Bohrio}}$	60 144.24 Neodimio	$\bigcup_{\text{Uranio}}^{92 238.03}$	
Simbolog	Negro: N Gris: Sir	6 VIB	$\overset{24}{\overset{51.996}{\mathbf{\Gamma}}}$	${\overset{42}{\mathrm{Molybdeno}}}^{95.94}$	$\bigvee_{\text{Tungstenio}}^{74}$	106 266 S Seaborgio	$\Pr^{59-140.91}_{\mathbf{Praseodymio}}$	${ m Pa}_{ m Pa}^{91}$	
Sim	$\sum_{\mathbf{S}^{(\mathbf{mbolo})}}^{\mathbf{Z}}$	5 VB	$ \mathbf{v}_{\text{Anadio}} $	$\sum_{\text{Niobio}}^{41\ 92.906}$	$\overset{73}{ ext{Ta}}_{ ext{180.95}}$	105 262 Dubnio	$\overset{58}{\overset{140.12}{\overset{60}{\mathbf{60$	$\prod_{ ext{Torio}}^{90}$	
		4 IVB	22 47.867 Titanio	$\sum_{\mathrm{Circonio}}^{40\ \ 91.224}$	$\prod_{Hafinio}^{72} \prod_{Hafinio}^{72}$	$\frac{104}{Rf}$	$\overset{57}{L}\overset{138.91}{a}$	$\overset{89}{Ac}_{\text{Actinio}}$	
	3 IIIA	$\overset{21}{S}^{44.956}_{C}$ Escandio	$\sum_{\text{ltrio}}^{39-88.906}$	57-71 *	89-103 ** Actinido	terreos	and the second second	idos	
2 IIA	$\overset{4}{B}\overset{9.0122}{\text{Berilio}}$	${\overset{12}{\mathrm{Magnesio}}}^{24.305}$	$\overset{20}{\mathbf{Calcio}}^{40.078}$	$\overset{38}{\mathrm{ST}}\overset{87.62}{\mathrm{C}}$ Stroncio	$\overset{56}{\mathbf{Bario}}_{\mathbf{Bario}}^{137.33}$	\Pr^{88}_{226}	Metales Alcalinos Metales Alcalino-terreos Metal		Gases Inobles Lantánidos/Actínidos
1 IA 1 1.0079 Hidrógeno	3 6.941 Litio	$\sum_{\text{Sodio}}^{11} \overset{22.990}{\text{S}}$	$\sum_{Potasio}^{19}$	$\mathop{Rbbidio}\limits^{37\ 85.468}$	$\mathbf{\hat{C}}_{\mathbf{S}}$	$\Pr_{\text{Francio}}^{87}$	Metales . Metales . Metal	Metaloide No metal Halógeno	Gases in Lantánid
H	7	က	4	Ŋ	9	_			