Propositional Logic

Methods & Tools for Software Engineering (MTSE) Fall 2018

Alireza Sharifi

References

Chpater 1 of Logic for Computer Scientists
 http://www.springerlink.com/content/978-0-8176-4762-9/

Modern Birkhäuser Classics

Logic for
Computer Scientists

Uwe Schöning

What is Logic

According to Merriam-Webster dictionary logic is: **a** (1): a science that deals with the principles and criteria of validity of <u>inference</u> and demonstration

d: the arrangement of circuit elements (as in a computer) needed for computation; *also*: the circuits themselves

What is Formal Logic

Formal Logic consists of

- syntax what is a legal sentence in the logic
- semantics what is the meaning of a sentence in the logic
- proof theory formal (syntactic) procedure to construct valid/true sentences

Formal logic provides

- a language to precisely express knowledge, requirements, facts
- a formal way to reason about consequences of given facts rigorously

Where is Formal Logic used in SE?

Programming Languages

- conditional statements
- meaning (semantics) of programs

Requirements and Specification

- rigorous definition of what is to be constructed
- e.g., if we used formal logic for assignments, there would be no questions on what is required, what is optional, and no questions

Computer Hardware

- computers are build out of simple logical gates
- most computer hardware can be specified and understood in propositional logic

Testing and Verification

rigorously validate that software satisfies its specifications

Algorithms and Optimization

 many complex problems can be reduced to logic and solved effectively using automated decision procedures

Propositional Logic (or Boolean Logic)

Explores simple grammatical connections such as *and*, *or*, and *not* between simplest "atomic sentences"

A = "Paris is the capital of France"

B = "mice chase elephants"

The subject of propositional logic is to declare formally the truth of complex structures from the truth of individual atomic components

A and B

A or B

if A then B

Syntax and Semantics

AND

Syntax

- MW: the way in which linguistic elements (such as words) are put together to form constituents (such as phrases or clauses)
- Determines and restricts how things are written

Semantics

- MW: the study of meanings
- Determines how syntax is interpreted to give meaning

Syntax of Propositional Logic

An atomic formula has a form A_i , where i = 1, 2, 3 ...

Formulas are defined inductively as follows:

- All atomic formulas are formulas
- For every formula F, ¬F (called not F) is a formula
- For all formulas F and G, F ∧ G (called and) and F ∨ G (called or) are formulas

Abbreviations

- use A, B, C, ... instead of A₁, A₂, ...
- use $F_1 \rightarrow F_2$ instead of $\neg F_1 \lor F_2$ (implication)
- use $F_1 \leftrightarrow F_2$ instead of $(F_1 \to F_2) \land (F_2 \to F_1)$ (iff)

Syntax of Propositional Logic (PL)

```
truth\_symbol ::= T(true) \mid \bot(false)
      variable ::= p, q, r, \dots
          atom ::= truth_symbol | variable
         literal ::= atom | \neg atom |
       formula ::= literal |
                      ¬formula |
                      formula \land formula \mid
                      formula \( \text{formula} \)
                      formula \rightarrow formula
                      formula \leftrightarrow formula
```


Example

$$F = \neg((A_5 \land A_6) \lor \neg A_3)$$

Sub-formulas are

$$F, ((A_5 \land A_6) \lor \neg A_3),$$

$$A_5 \land A_6, \neg A_3,$$

$$A_5, A_6, A_3$$

Semantics of propositional logic

Truth values: {0, 1}

D is any subset of the atomic formulas An assignment **A** is a map $\mathbf{D} \rightarrow \{0, 1\}$

 $\mathbf{E} \supseteq \mathbf{D}$ set of formulas built from \mathbf{D} An extended assignment \mathbf{A}' : $\mathbf{E} \to \{0, 1\}$ is defined on the next slide

Semantics of propositional logic

For an atomic formula A_i in **D**: $A'(A_i) = A(A_i)$

$$A'((F \land G))$$
 = 1 if $A'(F)$ = 1 and $A'(G)$ = 1 = 0 otherwise

$$A'((F \lor G))$$
 = 1 if $A'(F)$ = 1 or $A'(G)$ = 1
= 0 otherwise

$$\mathbf{A'}(\neg F)$$
 = 1 if $\mathbf{A'}(F) = 0$
= 0 otherwise

Example

$$F = \neg (A \land B) \lor C$$

$$\mathcal{A}(A) = 1$$

$$\mathcal{A}(B) = 1$$

$$\mathcal{A}(C) = 0$$

Truth Tables for Basic Operators

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}((F \wedge G))$
0	0	0
0	1	0
1	0	0
1	1	1

$\mathcal{A}(F)$	$A(\neg F)$		
0	1		
1	0		

$\mathcal{A}(F)$	$\mathcal{A}(G)$	$\mathcal{A}((F \vee G))$
0	0	0
0	1	1
1	0	1
1	1	1

$$F = \neg (A \land B) \lor C$$

$$\mathcal{A}(A) = 1$$

$$\mathcal{A}(B) = 1$$

$$\mathcal{A}(C) = 0$$

Propositional Logic: Semantics

An assignment A is *suitable* for a formula F if A assigns a truth value to every atomic proposition of F

An assignment A is a *model* for F, written A⊧ F, iff

- A is suitable for F
- A(F) = 1, i.e., F *holds* under A

A formula F is *satisfiable* iff F has a model, otherwise F is *unsatisfiable* (or contradictory)

A formula F is *valid* (or a tautology), written \models F, iff every suitable assignment for F is a model for F

Determining Satisfiability via a Truth Table

F is satisfiable iff there is at least one entry with 1 in the output

A formula F with n atomic sub-formulas has 2ⁿ suitable assignments Build a truth table enumerating all assignments

	A_1	A_2	• • •	A_{n-1}	A_n	F
\mathcal{A}_1 :	0	0		0	0	$\mathcal{A}_1(F)$
\mathcal{A}_2 :	0	0		0	1	$egin{array}{c} {\cal A}_1(F) \ {\cal A}_2(F) \end{array}$
÷			٠.			:
\mathcal{A}_{2^n} :	1	1		1	1	$\mathcal{A}_{2^n}(F)$

An example

$$F = (\neg A \to (A \to B))$$

A	B	$\neg A$	$(A \to B)$	F
0	0	1	1	1
0	1	1	1	1
1	0	0	0	1
1	1	0	1	1

Validity and Unsatisfiability

Theorem:

A formula F is valid if and only if ¬F is unsatifsiable

Proof:

F is valid \Leftrightarrow every suitable assignment for F is a model for F

⇔ every suitable assignment for ¬ F is not a model for ¬ F

⇔ ¬ F does not have a model

⇔ ¬ F is unsatisfiable

Exercise 10

Prove or give a counterexample

(a) If (F -> G) is valid and F is valid, then G is valid

(b) If (F->G) is sat and F is sat, then G is sat

(c) If (F->G) is valid and F is sat, then G is sat

Semantic Equivalence

Two formulas F and G are (semantically) equivalent, written $F \equiv G$, iff for every assignment A that is suitable for both F and G, A(F) = A(G)

For example, $(F \land G)$ is equivalent to $(G \land F)$

Formulas with different atomic propositions can be equivalent

- e.g., all tautologies are equivalent to True
- e.g., all unsatisfiable formulas are equivalent to False

Substitution Theorem

Theorem: Let F and G be equivalent formulas. Let H be a formula in which F occurs as a sub-formula. Let H' be a formula obtained from H by replacing every occurrence of F by G. Then, H and H' are equivalent.

Proof:

(Let's talk about proof by induction first...)

Mathematical Induction

To proof that a property P(n) holds for all natural numbers n

- 1. Show that P(0) is true
- 2. Show that P(k+1) is true for some natural number k, using an Inductive Hypothesis that P(k) is true

Example: Mathematical Induction

Show by induction that P(n) is true

$$0 + \dots + n = \frac{n(n+1)}{2}$$

Base Case: P(0) is
$$0 = \frac{0(0+1)}{2}$$

IH: Assume P(k), show P(k+1)

$$0 + \dots + k + (k+1)$$

$$= \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k(k+1)+2(k+1)}{2}$$

$$= \frac{(k+1)((k+1)+1)}{2}$$

Induction on the formula structure

The definition of a syntax of a formula is an *inductive* definition

 first, define atomic formulas; second, define more complex formulas from simple ones

The definition of the semantics of a formula is also inductive

 first, determine value of atomic propositions; second, define values of more complex formulas

The same principle works for proving properties of formulas

- To show that every formula F satisfies some property S:
- (base case) show that S holds for atomic formulae
- (induction step) assume S holds for an arbitrary fixed formulas F and G.
 Show that S holds for (F ∧ G), (F ∨ G), and (¬ F)

Substitution Theorem

Theorem: Let F and G be equivalent formulas. Let H be a formula in which F occurs as a sub-formula. Let H' be a formula obtained from H by replacing every occurrence of F by G. Then, H and H' are equivalent.

Proof: by induction on formula structure (base case) if H is atomic, then F = H, H' = G, and $F \equiv G$ (inductive step)

(case 1)
$$H = \neg H_1$$

(case 2)
$$H = H_1 \wedge H_2$$

(case 3)
$$H = H_1 \vee H_2$$

Useful Equivalences (1/2)

Useful Equivalences (2/2)

```
\neg(F \land G) \equiv (\neg F \lor \neg G)

\neg(F \lor G) \equiv (\neg F \land \neg G)

(deMorgan's Laws)

(F \lor G) \equiv F, \text{ if } F \text{ is a tautology}

(
F \land G
) 
\equiv G, \text{ if } F \text{ is a tautology}

(Tautology Laws)

(F \lor G) \equiv G, \text{ if } F \text{ is unsatisfiable}

(
F \land G
) 
\equiv F, \text{ if } F \text{ is unsatisfiable}

(Unsatisfiability Laws)
```


Exercise 18: Children and Doctors

Formalize and show that the two statements are equivalent

- If the child has temperature or has a bad cough and we reach the doctor, then we call him
- If the child has temperature, then we call the doctor, provided we reach him, and, if we reach the doctor then we call him, if the child has a bad cough

Example: Secret to long life

"What is the secret of your long life?" a centenarian was asked.

"I strictly follow my diet: If I don't drink beer for dinner, then I always have fish. Any time I have both beer and fish for dinner, then I do without ice cream. If I have ice cream or don't have beer, then I never eat fish."

The questioner found this answer rather confusing. Can you simplify it?

Normal Forms: CNF and DNF

A *literal* is either an atomic proposition v or its negation ~v A *clause* is a disjunction of literals

A formula is in *Conjunctive Normal Form* (CNF) if it is a conjunction of disjunctions of literals (i.e., a conjunction of clauses):

$$\bigwedge_{i=1}^{n} (\bigvee_{j=1}^{m_i} L_{i,j})$$

A formula is in *Disjunctive Normal Form* (DNF) if it is a disjuction of conjunctions of literals

$$\bigvee_{i=1}^{n} (\bigwedge_{j=1}^{m_i} L_{i,j})$$

Normal Form Theorem

Theorem: For every formula F, there is an equivalent formula F_1 in CNF and F_2 in DNF

Proof: (by induction on the structure of the formula F)

Converting a formula to CNF

Given a formula F

Substitute in F every occurrence of a sub-formula of the form

```
\neg\neg G by G

\neg(G \land H) by (\neg G \lor \neg H)

\neg(G \lor H) by (\neg G \land \neg H)

This is called Negation Normal Form (NNF)
```

Substitute in F each occurrence of a sub-formula of the form

```
(F \lor (G \land H)) by ((F \lor G) \land (F \lor H))
((F \land G) \lor H) by ((F \lor H) \land (G \lor H))
```

The resulting formula F is in CNF

• the result in CNF might be exponentially bigger than original formula F

From Truth Table to CNF and DNF

$$(\neg A \land \neg B \land \neg C) \lor (A \land \neg B \land \neg C) \lor (A \land \neg B \land C)$$

$$(A \lor B \lor \neg C) \land \\ (A \lor \neg B \lor C) \land \\ (A \lor \neg B \lor \neg C) \land \\ (\neg A \lor \neg B \lor C) \land \\ (\neg A \lor \neg B \lor \neg C)$$

A	B	C	$\mid F \mid$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0
		!	

2-CNF Fragment

A formula F is in 2-CNF iff

- F is in CNF
- every clause of F has at most 2 literals

Theorem: There is a polynomial algorithm for deciding whether a 2-CNF formula F is satisfiable

Horn Fragment

A formula F is in Horn fragment iff

- F is in CNF
- in every clause, at most one literal is positive

$$(A \vee \neg B) \wedge (\neg C \vee \neg A \vee D) \wedge (\neg A \vee \neg B) \wedge D \wedge \neg E$$

Note that each clause can be written as an implication

$$(B \to A) \land (A \land C \to D) \land (A \land B \to 0) \land (1 \to D) \land (E \to 0)$$

Theorem: There is a polynomial time algorithm for deciding satisfiability of a Horn formula F

Horn Satisfiability

Input: a Horn formula F

Output: UNSAT or SAT + satisfying assignment for F

Step 1: Mark every occurrence of an atomic formula *A* in F if there is an occurrence of sub-formula of the form *A* in F

Step 2: pick a formula G in F of the form A1 \wedge ... \wedge An -> B such that all of A₁, ..., A_n are already marked

- if B = 0, return UNSAT
- otherwise, mark B and go back to Step 2

Step 3: Construct an suitable assignment S such that S(Ai) = 1 iff Ai is marked. Return SAT with a satisfying assignment S.

Exercise 21

Apply Horn satisfiability algorithm on a formula

$$(\neg A \lor \neg B \lor \neg D)$$

$$\neg E$$

$$(\neg C \lor A)$$

$$C$$

$$B$$

$$(\neg G \lor D)$$

$$G$$

3-CNF Fragment

A formula F is in 3-CNF iff

- F is in CNF
- every clause of F has at most 3 literals

Theorem: Deciding whether a 3-CNF formula F is satisfiable is at least as hard as deciding satisfiability of an arbitrary CNF formula G

Proof: by effective *reduction* from CNF to 3-CNF

Let G be an arbitrary CNF formula. Replaced every clause of the form

$$(\ell_0 \vee \cdots \vee \ell_n)$$

with 3-literal clauses

$$(\ell_0 \vee b_0) \wedge (\neg b_0 \vee \ell_1 \vee b_1) \wedge \cdots \wedge (\neg b_{n-1} \vee \ell_n)$$

where {b_i}are fresh atomic propositions not appearing in F

Graph k-Coloring

Given a graph G = (V, E), and a natural number k > 0 is it possible to assign colors to vertices of G such that no two adjacent vertices have the same color.

Formally:

- does there exists a function f : V → [0..k) such that
- for every edge (u, v) in E, f(u) != f(v)

Graph coloring for k > 2 is NP-complete

Problem: Encode k-coloring of G into CNF

 construct CNF C such that C is SAT iff G is kcolorable

k-coloring as CNF

Let a Boolean variable $f_{v,i}$ denote that vertex v has color i

if f_{v,i} is true if and only if f(v) = i

Every vertex has at least one color

$$\bigvee_{0 \le i < k} f_{v,i} \qquad (v \in V)$$

No vertex is assigned two colors

$$\bigwedge_{0 \le i < j < k} (\neg f_{v,i} \lor \neg f_{v,j}) \qquad (v \in V)$$

No two adjacent vertices have the same color

$$\bigwedge_{0 \le i \le k} (\neg f_{v,i} \lor \neg f_{u,i}) \qquad ((v,u) \in E)$$

Vertex Cover

Given a graph G=(V,E). A vertex cover of G is a subset C of vertices in V such that every edge in E is incident to at least one vertex in C

see a4_encoding.pdf for details of reduction to CNF-SAT

Compactness Theorem

Theorem:

A (possibly infinite) set M of propositional formulas is satisfiable iff every finite subset of M is satisfiable.

Given two clauses (C, p) and (D, !p) that contain a literal p of different polarity, create a new clause by taking the union of literals in C and D

Resolution Lemma

Lemma:

Let F be a CNF formula. Let R be a resolvent of two clauses X and Y in F. Then, $F \cup \{R\}$ is equivalent to F

Resolution Theorem

Let F be a set of clauses

$$Res(F) = F \cup \{R \mid R \text{ is a resolvent of two clauses in } F\}$$

$$Res^{0}(F) = F$$

$$Res^{n+1}(F) = Res(Res^{n}(F)), \text{ for } n \geq 0$$

$$Res^{*}(F) = \bigcup Res^{n}(F)$$

n > 0

Theorem: A CNF F is UNSAT iff Res*(F) contains an empty clause

Exercise from LCS

For the following set of clauses determine Resⁿ for n=0, 1, 2

$$A \lor \neg B \lor C$$

$$B \lor C$$

$$\neg A \lor C$$

$$B \lor \neg C$$

$$\neg C$$

Proof of the Resolution Theorem

(Soundness) By Resolution Lemma, F is equivalent to Resⁱ(F) for any i. Let n be such that Resⁿ⁺¹(F) contains an empty clause, but Resⁿ(F) does not. Then Resⁿ(F) must contain to unit clauses L and ¬L. Hence, it is UNSAT.

(Completeness) By induction on the number of different atomic propositions in F.

Base case is trivial: F contains an empty clause.

IH: Assume F has atomic propositions A1, ... A_{n+1}

Let F_0 be the result of replacing A_{n+1} by 0

Let F_1 be the result of replacing A_{n+1} by 1

Apply IH to F_0 and F_1 . Restore replaced literals. Combine the two resolutions.

Proof System

$$P_1,\ldots,P_n\vdash C$$

An inference rule is a tuple (P₁, ..., P_n, C)

- where, P₁, ..., P_n, C are formulas
- P_i are called premises and C is called a conclusion
- intuitively, the rules says that the conclusion is true if the premises are

A proof system P is a collection of inference rules

A proof in a proof system P is a tree (or a DAG) such that

- nodes are labeled by formulas
- for each node n, (parents(n), n) is an inference rule in P

Propositional Resolution

$$\frac{C \vee p}{C \vee D}$$

Propositional resolution is a sound inference rule

Proposition resolution system consists of a single propositional resolution rule

Example of a resolution proof

A refutation of $\neg p \lor \neg q \lor r$, $p \lor r$, $q \lor r$, $\neg r$:

Resolution Proof Example

Show by resolution that the following CNF is UNSAT

$$\neg b \land (\neg a \lor b \lor \neg c) \land a \land (\neg a \lor c)$$

$$\frac{\neg a \lor b \lor \neg c \qquad a}{b \lor \neg c \qquad b} \qquad \frac{a \qquad \neg a \lor c}{c}$$

Entailment and Derivation

A set of formulas F entails a set of formulas G iff every model of F and is a model of G

$$F \models G$$

A formula G is derivable from a formula F by a proof system P if there exists a proof whose leaves are labeled by formulas in F and the root is labeled by G

$$F \vdash_P G$$

Soundness and Completeness

A proof system P is sound iff

$$(F \vdash_P G) \implies (F \models G)$$

A proof system P is complete iff

$$(F \models G) \implies (F \vdash_P G)$$

Propositional Resolution

Theorem: Propositional resolution is sound and complete for propositional logic

Proof: Follows from Resolution Theorem

Exercise 33

Using resolution show that

$$A \wedge B \wedge C$$

is a consequence of

$$\neg A \lor B$$

$$\neg B \lor C$$

$$A \lor \neg C$$

$$A \lor B \lor C$$

Exercise 34

Show using resolution that F is valid

$$F = (\neg B \land \neg C \land D) \lor (\neg B \land \neg D) \lor (C \land D) \lor B$$

$$\neg F = (B \lor C \lor \neg D) \land (B \lor D) \land (\neg C \lor \neg D) \land \neg B$$

Boolean Satisfiability (CNF-SAT)

Let V be a set of variables

A *literal* is either a variable v in V or its negation ~v

A *clause* is a disjunction of literals

A Boolean formula in *Conjunctive Normal Form* (CNF) is a conjunction of clauses

An *assignment* s of Boolean values to variables *satisfies* a clause c if it evaluates at least one literal in c to true

An assignment s satisfies a formula C in CNF if it satisfies every clause in C

Boolean Satisfiability Problem (CNF-SAT):

determine whether a given CNF C is satisfiable

CNF Examples

CNF₁

- ~b
- ~a || ~b || ~c
- a
- sat: s(a) = True; s(b) = False; s(c) = False

CNF₂

- ~b
- ~a || b || ~c
- a
- ~a || c
- unsat

DIMACS CNF File Format

Textual format to represent CNF-SAT problems

```
c start with comments
c
c
p cnf 5 3
1 -5 4 0
-1 5 3 4 0
-3 -4 0
```

Format details

- comments start with c
- header line: p cnf nbvar nbclauses
 - nbvar is # of variables, nbclauses is # of clauses
- each clause is a sequence of distinct numbers terminating with 0
 - positive numbers are variables, negative numbers are negations

Algorithms for SAT

SAT is NP-complete

DPLL (Davis-Putnam-Logemman-Loveland, '60)

- smart enumeration of all possible SAT assignments
- worst-case EXPTIME
- alternate between deciding and propagating variable assignments

CDCL (GRASP '96, Chaff '01)

- conflict-driven clause learning
- extends DPLL with
 - smart data structures, backjumping, clause learning, heuristics, restarts...
- scales to millions of variables
- N. Een and N. Sörensson, "An Extensible SAT-solver", in SAT 2013.

Background Reading: SAT

or finding a seating assignment at dinner consistent with various

hardware/software system functions correctly with its overall

behavior constrained by the behavior of its components and their

rules the host would like to impose. This also applies to applications in computing, for example, ensuring that a ARTICLE CONTENTS:
Introduction

Boolean Satisfiability
Theoretical hardness: SAT and

ND Completenese

Some Experience with SAT Solving

Speed-up of 2012 solver over other solvers

from M. Vardi, https://www.cs.rice.edu/~vardi/papers/highlights15.pdf

SAT - Milestones

Problems impossible 10 years ago are trivial today

