Bioinformatic Evaluation of Next-Generation Sequencing Performance at Nancy Hospital

Alexis Praga

Laboratoire de génétique - CHRU de Nancy - Dr Céline Bonnet

July 8, 2021

Part 1: Manuscript

Introduction: Next-Generation Sequencing

Increased role in clinical practice:

- faster and cheaper (massively parallel)
- Uses:
 - ► Gene panel: set of targeted genes in week/months [intellectual disabilities]
 - ▶ Whole Exome Sequencing: genes not known, 1% genome
 - Whole Genome Sequencing: all genome

Introduction: Next-Generation Sequencing

Increased role in clinical practice:

- faster and cheaper (massively parallel)
- Uses:
 - ► Gene panel: set of targeted genes in week/months [intellectual disabilities]
 - ▶ Whole Exome Sequencing: genes not known, 1% genome
 - ▶ Whole Genome Sequencing: all genome

Goal of the internship: validate sequencing results

- assess performances
- evaluate errors
- quantify improvements

Introduction: issues with validation

- 1. Which reference?
 - sequencing error
 - patient mutation
- 2. Ambiguous file format for variants

Example: Variant TCCG \rightarrow CC

- 1. $\mathsf{TCCG} \to \mathsf{CCG}$ then $\mathsf{CCG} \to \mathsf{CC}$
- 2. $TCCCG \rightarrow CCG$ then $CCG \rightarrow CC$
- 3 No consensus for metrics

```
Truth = Reference/Variant1

Reference/Variant1 TP

Reference/Variant2 FP ? FN ?

Variant2/Variant1 FP ? FN ?
```

Introduction: issues with validation

- 1. Which reference?
 - sequencing error
 - patient mutation
- 2. Ambiguous file format for variants!

Example: Variant TCCG ightarrow CC

- 1. $TCCG \rightarrow CCG$ then $CCG \rightarrow CC$
- 2. TCCCG \rightarrow CCG then CCG \rightarrow CC
- 3. No consensus for metrics

```
Truth = Reference/Variant1

Reference/Variant1 TP

Reference/Variant2 FP ? FN ?

Variant2/Variant1 FP ? FN ?
```

Introduction: issues with validation

- 1. Which reference?
 - sequencing error
 - patient mutation
- 2. Ambiguous file format for variants!

Example: Variant TCCG ightarrow CC

- 1. TCCG \rightarrow CCG then CCG \rightarrow CC
- 2. TCCCG \rightarrow CCG then CCG \rightarrow CC
- 3. No consensus for metrics

Truth = $Reference/Variant1$
TP
FP?FN?
FP ? FN ?

Methods: An answer with Krusche et al. 2019

1. Reference dataset

- reference DNA on multiple technologies
- apply filters manually (Illumina) or with a trained model (GIAB)
- \Rightarrow "high-confidence" regions

2. Hap.py

- Python/C++ script by Illumina
- 2 variant comparison algorithms: custom, vcfeval

3. Defined metrics

	Truth = Reference/Variant1
Reference/Variant1	TP
Reference/Variant2	FP with allele mismatch
Variant2/Variant1	FP with genotype mismatch

Methods: summary

- 1. Sequence DNA of patient NA12878 in Nancy
- 2. Download 2 reference datasets (Illumina and GIAB)
- 3. Use hap.py to compare variants (2 algorithms) (VCF format)

Results: definition

$$\begin{array}{ccc} \text{Positive Predictive Value} &= \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}} & & (= \mathsf{precision}) \\ & & & & \\ \mathsf{Sensitivity} &= \frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FN}} & & (= \mathsf{recall}) \end{array}$$

Results: Impact of datasets, algorithm and filters

Results: False Negative

 Precision and recall are equivalent to whats expected for SNP but too low for indels

High ratio of false negative

- not due to dataset, nor algorithm
- not due to a specific chromosome
- ▶ in "difficult" regions, mostly homopolymers

Results: Clinical implications

- ► A set of genes instead of a patient
- ► Finding a gene transcript is difficult ⇒ APPRIS database

Conclusion

- Standardized benchmarking method to the sequencing pipeline of Genetics Laboratory (Nancy)
- Reproductible (user manual in manuscript)
- Excellent performance for Single Nucleotide Polymorphism, sub-par for indels
- ▶ No major cause for rather high False Negative count
- Promising performances for a group of pathologies
- Need for further testing (other DNA, other pipelines)

Part 2: Tasks

Tasks

- ▶ Bibliography (Krusche et al. 2019 . . .)
- ► Lab visit

Tasks

- ▶ Bibliography (Krusche et al. 2019 . . .)
- Lab visit
- Analysis
 - File formats (BED, VCF)
 - Installing hap.py (Ubuntu, Archlinux)
 - Running benchmark (pre-processing, statistics)
 - FN analysis
- Group of pathologies: which gene transcript?
 - MANE (20% missing): fusion of Refseq anad ENSEMBL gene set
 - APPRIS (10% missing): conservation and the characteristics of known proteins
 - comparision with BED from Illumina

Tasks

- ▶ Bibliography (Krusche et al. 2019 . . .)
- Lab visit
- Analysis
 - ► File formats (BED, VCF)
 - Installing hap.py (Ubuntu, Archlinux)
 - Running benchmark (pre-processing, statistics)
 - FN analysis
- Group of pathologies: which gene transcript ?
 - MANE (20% missing): fusion of Refseq anad ENSEMBL gene set
 - APPRIS (10% missing): conservation and the characteristics of known proteins
 - comparision with BED from Illumina
- Manuscript
- User manual for reproductibility

Appendix: further reading

P. Krusche and the Global Alliance for Genomics and Health Benchmarking Team Best Practices for Benchmarking Germline Small-Variant Calls in Human Genomes Nature Biotechnology

Appendix: contingency table

Table 1 | Contingency table describing the GA4GH definitions of TP, FP, FN, FP.AL, FP.GT, and unknown (UNK)

	Genotype	Truth				
		Ref/ ref	Ref/var1	Var1/ var2	Var1/ var1	Outside bed
Query	Ref/ref	-	FN	FN	FN	-
	Ref/var1	FP	TP	FP.GT	FP.GT	UNK
	Ref/var2	-	FP.AL	FP.GT	FP.AL	-
	Ref/var3	-	-	FP.AL	-	-
	Var1/var2	FP	FP.GT	TP	FP.GT	UNK
	Var1/var3	-	-	FP.GT	-	-
	Var2/var3	-	FP.AL	FP.GT	FP.AL	-
	Var3/var4	-	-	FP.AL	-	-
	Var1/var1	FP	FP.GT	FP.GT	TP	UNK
	Var2/var2	-	FP.AL	FP.GT	FP.AL	-
	Var3/var3	_	-	FP.AL	_	-

Table 2 | Examples of several combinations of truth and query SNV genotypes and how they are counted as TP, FP, FN, FP.GT,

and FP.AL								
REF	Truth	Query	Counted as					
A	C/C	C/C	1 TP					
A	A/A	C/C	1 FP					
Α	C/C	A/A	1FN					
Α	C/C	A/C	1 FP, 1 FN, 1 FP.GT					
Α	C/C	G/G	1 FP, 1 FN, 1 FP.AL					
Α	C/G	C/C	1 FP, 1 FN, 1 FP.GT					