

ESG-Integrated Portfolio Optimization: A Probabilistic Programming Approach

Eakkarat Patt | Natdanai Sriapai | Putthita Nuphasant

CONTENT

Motivation

Methodologies

Results & Discussion

Tool propose

MOTIVATION

"To harness the power of Black-Litterman model without subjective bias, we employ a probabilistic programming approach to systematically infer the views, bridging data-driven insights with strategic portfolio optimization."

MOTIVATION

Proposed Bayesian network

Where;

 Y_t is the Return at time t

 Y_{t-1} is the lag(1) of Return

 E_{t-1} is the lag(1) of Environmental Factor

 S_{t-1} is the lag(1) of Social Factor

 G_{t-1} is the lag(1) of Government Factor

 mkt_{t-1} is the lag(1) of Market Factor

Overview of all methodologies

Black-litterman model

Where;

E[R] is the new (posterior) Combined Return Vector (N x 1 column vector)

- τ is a scalar
- Σ is the covariance matrix of excess returns (N x N matrix)
- P is a matrix that identifies the assets involved in the views (K x N matrix or 1 x N row vector in the special case of 1 view)
- Ω is a diagonal covariance matrix of error terms from the expressed views representing the uncertainty in each view (K x K matrix)
- Π is the Implied Equilibrium Return Vector (N x 1 column vector)
- Q is the View Vector (K x 1 column vector)

Views generating method

We take the expected return, which is the predicted value from the AR(1) + Exogenous model.

Become a representative for Investor's views.

$$Y_{t} = \beta_{0} Y_{t-1} + \beta_{1} X_{1,t-1} + \beta_{2} X_{2,t-1} + \dots + \beta_{n} X_{n,t-1} + \varepsilon_{t}$$
 (2)

for this project, we assume the exogenous variables are ESG factors and market risk.

AR(1) + Exogenous model that is shown in (3)

$$Y_{t} = \beta_{0}Y_{t-1} + \beta_{1}mkt_{t-1} + \beta_{2}E_{t-1} + \beta_{3}S_{t-1} + \beta_{4}G_{t-1} + \varepsilon_{t}$$
(3)

RESULTS & DISCUSSION

Posterior Distribution of beta(s)

Lagged return (β_0)

Market (β_1)

Environmental (β_2)

Social (β_3)

Governance (β_4)

RESULTS & DISCUSSION

Average Monthly Expected Returns, Volatility, and Sharpe Ratio of a portfolio

	With ESG factors	Without ESG factors
Expected Returns	0.0379	0.0163
Volatility	0.2316	0.2341
Sharpe Ratio	0.1648	0.0601

^{*}from 2022-01-01 to 2022-12-31

^{**}these are not a backtesting results

TOOL PROPOSE

streamlit webapp

Thank you for your Attention

Contact with us!

eakkarat.pat@techglobetrading.com natdanai.sri@techglobetrading.com putthita.nup@techglobetrading.com

