

Datawhale paper

Double Graph Based Reasoning for Document-level Relation Extraction (EMNLP 2020)

报告人: 陈海顺

时间: 2020.11.21

文本中蕴含着大量的事实知识

无结构化 > 结构化

从**文本**中**自动化的抽取** 事实知识具有重大意义

三元组 表示实体间关系 (西安电子科技大学,位于,西安)

许多事实知识隐藏在更复杂的上下文中,比如段落和文档当中。

A Case

Elias Brown

[1] <u>Elias Brown</u> (<u>May 9, 1793</u>– <u>July 7, 1857</u>) was a **U.S.** Representative from <u>Maryland</u>. [2] Born near <u>Baltimore</u>, <u>Maryland</u>, <u>Brown</u> attended the common schools. ... [7] He died near <u>Baltimore</u>, <u>Maryland</u>, and is interred in a private cemetery near <u>Eldersburg</u>, <u>Maryland</u>.

Subject: Maryland

Object: U.S.

relation: country

Subject: Baltimore; Eldersburg

Object: Maryland

relation: located in the administrative territorial entity

Subject: Baltimore; Eldersburg

Object: *U.S.* relation: country

[1] 埃利亚斯-布朗 (1793.5.9-1857.7.7)曾是一名来自马里兰州的美国代表。[2] 布朗出生于马里兰州的巴尔的摩市,就读于一所普通学校……[5]....[6]……[7] 他于马里兰州的巴尔的摩市逝世,安葬在马里兰州的埃尔德斯堡附近的私人墓地中。

Background

Dataset	# Doc.	# Word	# Sent.	# Ent.	# Rel.	# Inst.	# Fact
SemEval-2010 Task 8	-	205k	10,717	21,434	9	8,853	8,383
ACE 2003-2004	-	297k	12,783	46,108	24	16,771	16,536
TACRED	-	1,823k	53,791	152,527	41	21,773	5,976
FewRel	-	1,397k	56,109	72,124	100	70,000	55,803
BC5CDR	1,500	282k	11,089	29,271	1	3,116	2,434
DocRED (Human-annotated)	5,053	1,002k	40,276	132,375	96	63,427	56,354
DocRED (Distantly Supervised)	101,873	21,368k	828,115	2,558,350	96	1,508,320	881,298

Baseline

Given a document : $\mathcal{D} = \{w_i\}_{i=1}^n$

Word feature:

$$\{h_i\}_{i=1}^n = encoding\{embedding_{word_i}\}_{i=1}^n$$

Named entity mention representation :

$$e_i = rac{1}{K} \sum_{i=1}^K m_k \ m_k = rac{1}{t-s+1} \sum_{j=t}^s h_j$$

Prediction:

$$egin{aligned} ilde{e}_i &= [e_i; E(d_{ij})], ilde{e}_j = [e_j; E(d_{ji})] \ P(r \mid e_i, e_j) &= \operatorname{sigmoid}ig(ilde{e}_i^T W_r ilde{e}_j + b_rig) \end{aligned}$$

Model	Dev				Test				
	Ign F1	Ign AUC	F1	AUC	Ign F1	Ign AUC	F1	AUC	
Supervised Setting									
CNN	37.99	31.47	43.45	39.41	36.44	30.44	42.33	38.98	
LSTM	44.41	39.78	50.66	49.48	43.60	39.02	50.12	49.31	
BiLSTM	45.12	40.93	50.95	50.27	44.73	40.40	51.06	50.43	
Context-Aware	44.84	40.42	51.10	50.20	43.93	39.30	50.64	49.70	
Weakly Supervised Setting									
CNN	26.35	14.18	42.75	38.01	25.40	13.46	42.02	36.86	
LSTM	30.86	15.62	49.91	42.78	29.75	14.97	49.91	42.78	
BiLSTM	32.05	16.50	51.72	44.42	29.96	15.50	49.82	42.90	
Context-Aware	32.43	15.86	51.39	43.02	30.27	15.11	50.14	41.52	

Table 4: Performance of different RE models on DocRED (%).

M-4-4		RE]	RE+Sur)
Method	P	R	F1	P	R	F1
Model	55.6	52.6	54.1	46.4	43.1	44.7
Human	89.7	86.3	88.0	71.2	75.8	73.4

Table 5: Human performance (%).

Model

Encoding Module


```
[1] Elias Brown ... was a U.S. Representative from Maryland. [2] Born near Baltimore, Maryland, ... [7] He died near Baltimore, Maryland, and is interred in a private cemetery near Eldersburg, Maryland.
```


$$x_i = [E_w(w_i); E_t(t_i); E_c(c_i)]$$
 $[g_1, g_2, \dots, g_n] = Encoder([x_1, x_2, \dots, x_n])$ (2)

[Word embedding; Entity type embedding; Coreference embedding]

Mention-level Graph Aggregation Module

[1] Elias Brown ... was a U.S. Representative from Maryland. [2] Born near Baltimore, Maryland, ...

[7] He died near Baltimore, Maryland, and is interred in a private cemetery near Eldersburg, Maryland.

Mention-level Graph

两种节点:提及节点、文档节点

三种类型边:

Intra-Entity Edge: 连接同一实体提及;

Inter-Entity Edge: 同一句话下的不同实体提及; Document Edge: 所有的提及都连接到文档节点

GCN:

$$h_u^{(l+1)} = \sigma \left(\sum_{k \in \mathcal{K}} \sum_{v \in \mathcal{N}_k(u)} W_k^{(l)} h_v^{(l)} + b_k^{(l)} \right)$$

$$\mathbf{m}_u = [h_u^{(0)}; h_u^{(1)}; \dots; h_u^{(N)}]$$

Entity-level Graph

 $\mathbf{e}_i = \frac{1}{N} \sum \mathbf{m}_n$ **Entity representation:**

Edge representation: $\mathbf{e}_{ij} = \sigma \left(W_q[\mathbf{e}_i; \mathbf{e}_j] + b_q \right)$

 $\mathbf{p}_{h.t}^i = [\mathbf{e}_{ho}; \mathbf{e}_{ot}; \mathbf{e}_{to}; \mathbf{e}_{oh}]$ Two-hop path:

Attention mechanism

$$s_i = \sigma([\mathbf{e}_h; \mathbf{e}_t] \cdot W_l \cdot \mathbf{p}_{h,t}^i)$$

$$\alpha_i = \frac{e^{s_i}}{\sum_j e^{s_j}}$$
$$\mathbf{p}_{h,t} = \sum_j \alpha_i \mathbf{p}_{h,t}^i$$

$$\mathbf{p}_{h,t} = \sum \alpha_i \mathbf{p}_{h,i}^i$$

Classification Module

关系向量的表示:

$$I_{h,t} = [\mathbf{e}_h; \mathbf{e}_t; |\mathbf{e}_h - \mathbf{e}_t|; \mathbf{e}_h \odot \mathbf{e}_t; \mathbf{m}_{doc}; \mathbf{p}_{h,t}]$$

$$P(r|\mathbf{e}_h, \mathbf{e}_t) = sigmoid\left(W_b\sigma(W_aI_{h,t} + b_a) + b_b\right)$$
(12)

Entity-level Graph

Classifier

Model		Dev	Test			
	Ign F1	Ign AUC	F1	AUC	Ign F1	F1
CNN* (Yao et al., 2019)	41.58	36.85	43.45	39.39	40.33	42.26
LSTM* (Yao et al., 2019)	48.44	46.62	50.68	49.48	47.71	50.07
BiLSTM* (Yao et al., 2019)	48.87	47.61	50.94	50.26	48.78	51.06
Context-Aware* (Yao et al., 2019)	48.94	47.22	51.09	50.17	48.40	50.70
HIN-GloVe* (Tang et al., 2020)	51.06	-	52.95	-	51.15	53.30
GAT [‡] (Velickovic et al., 2017)	45.17	-	51.44	-	47.36	49.51
GCNN [‡] (Sahu et al., 2019)	46.22	-	51.52	-	49.59	51.62
EoG [‡] (Christopoulou et al., 2019)	45.94	-	52.15	-	49.48	51.82
AGGCN [‡] (Guo et al., 2019)	46.29	-	52.47	-	48.89	51.45
LSR-GloVe* (Nan et al., 2020)	48.82	_	55.17	_	52.15	54.18
GAIN-GloVe	53.05	52.57	55.29	55.44	52.66	55.08
BERT-RE* _{base} (Wang et al., 2019a)	-	-	54.16	-	-	53.20
RoBERTa-RE $_{base}^{\dagger}$ BERT-Two-Step $_{base}^{*}$ (Wang et al., 2019a)	53.85	48.27	56.05	51.35	53.52	55.77
BERT-Two-Stephase (Wang et al., 2019a)	-	-	54.42	-	-	53.92
HIN-BERT $_{base}^*$ (Tang et al., 2020)	54.29	-	56.31	-	53.70	55.60
CorefBERT- RE_{base}^* (Ye et al., 2020)	55.32	-	57.51	-	54.54	56.96
LSR-BERT* (Nan et al., 2020)	52.43	_	59.00	_	56.97	59.05
$GAIN-BERT_{base}$	59.14	57.76	61.22	60.96	59.00	61.24
BERT-RE* _{large} (Ye et al., 2020)	56.67	-	58.83	-	56.47	58.69
CorefBERT-RE $_{large}^*$ (Ye et al., 2020)	56.73	-	58.88	-	56.48	58.70
RoBERTa-RE* (Ye et al., 2020)	57.14	-	59.22	-	57.51	59.62
CorefRoBERTa-RE [*] _{large} (Ye et al., 2020)	57.84	-	59.93	-	57.68	59.91
$GAIN-BERT_{large}$	60.87	61.79	63.09	64.75	60.31	62.76

Experiment

Model		Dev	Test			
1110401	Ign F1	Ign AUC	F1	AUC	Ign F1	F1
GAIN-GloVe	53.05	52.57	55.29	55.44	52.66	55.08
- hMG	50.97	48.84	53.10	51.73	50.76	53.06
- Inference Module	50.84 ♦	48.68	53.02	51.58	50.32	52.66
- Document Node	50.86 ♦	48.68	53.01	52.46	50.32	52.67
GAIN-BERT _{base}	59.14	57.76	61.22	60.96	59.00	61.24
- hMG	57.12	51.54	59.17	54.61	57.31	59.56
- Inference Module	56.97	54.29	59.28	57.25	57.01	59.34
- Document Node	57.26	52.07	59.62	55.51	57.01	59.63

Table 3: Performance of GAIN with different embeddings and submodules.

Thanks!