§3. Непротиворечивость, полнота и разрешимость исчисления логики высказываний

Пусть p – некоторая формула, содержащая в своей записи предметные символы $x_1, x_2, ..., x_n$. Пусть задана некоторая интерпретация предметных символов. Рассмотрим формулы $q_1, q_2, ..., q_n$, определённые следующим правилом:

 $q_i = \left\{ egin{aligned} x_i \text{, если } x_i \text{ интерпретируется как 1} \ (\neg x_i) \text{, если } x_i \text{ интерпретируется как 0}. \end{aligned}
ight.$

Определим формулу p' по правилу:

 $p' = \begin{cases} p,$ если при данной интерпретации предметних символов p принимает значение $1 \in \{(\neg p),$ если при данной интерпретации предметних символов p принимает значение 0.

Лемма 1. { $q_1, q_2, ..., q_n$ } $\vdash p'$.

Доказательство по числу связок в записи формулы p. Пусть в p имеется k связок.

Б.И. k = 0. Тогда $p = x_i$.

Если x_i интерпретировано как 1, то $p' = p = x_i = q_i$. Поэтому $q_i \vdash p'$ по определению.

Если x_i интерпретировано как 0, то $p' = (\neg p) = (\neg x_i) = q_i$. Поэтому $q_i \vdash p'$ по определению.

Ш.И. Если для формул, содержащих меньше чем k связок, считаем утверждение доказанным. Рассматриваем последнюю связку в формуле p.

1) $p = (\neg s)$ и запись s содержит k-1 связок. Зафиксируем некоторую интерпретацию предметных переменных. Тогда $\{q_1, q_2, ..., q_n\} \vdash s'$ по предположению индукции.

Если в заданной интерпретации s имеет значение 1, то s' = s, p имеет значение 0, так что $p' = (\neg p) = \neg(\neg s)$. Формальная теорема $s \to \neg (\neg s)$ показывает, что $s' \vdash p'$. Это означает, что $\{q_1, q_2, ..., q_n\} \vdash p'$.

Если в заданной интерпретации s имеет значение 0, то $s' = (\neg s)$, а p имеет значение 1, так что $p' = p = (\neg s) = s'$. Значит, $\{q_1, q_2, ..., q_n\} \vdash p'$.

2) $p = s \to t$. Формулы s и t содержат менее k связок. Зафиксируем некоторую интерпретацию предметных переменных. Тогда $\{q_1, q_2, ..., q_n\} \vdash s'$ и $\{q_1, q_2, ..., q_n\} \vdash t'$ по предположению индукции.

Если в заданной интерпретации s и t имеют значение 1, то s'=s, t'=t и p имеет значение 1, так что p'=p. Из $\{q_1, q_2, ..., q_n\} \vdash t'$ следует, что $\{q_1, q_2, ..., q_n\} \cup \{s'\} \vdash t'$. По теореме дедукции имеем $\{q_1, q_2, ..., q_n\} \vdash s' \rightarrow t' = s \rightarrow t = p = p'$.

Если в заданной интерпретации s имеет значение 1, а t – значение 0, то s' = s, $t' = (\neg t)$ и p имеет значение 0, так что $p' = (\neg p)$. Нам достаточно $\{s', t'\} \vdash p'$. Для этого хорошо бы иметь формальную теорему $s' \to (t' \to p')$. Это, конечно, не теорема, но давайте подставим выражения для p, s и t. Получится $s \to ((\neg t) \to (\neg (s \to t)))$. Теорема дедукции говорит, что нам достаточно $s \vdash ((\neg t) \to (\neg (s \to t)))$. Благодаря теореме $((s \to t) \to t) \to ((\neg t) \to (\neg (s \to t)))$ (и откуда она только взялась?) и теореме дедукции достаточно $s \vdash ((s \to t) \to t)$, значит, достаточно $\{s, (s \to t)\} \vdash t$, а это очевидно.

Если в заданной интерпретации s имеет значение 0, то $s' = (\neg s)$, а p имеет значение 1, так что p' = p. Постараемся получить $s' \vdash p' = p = s \to t$. По теореме дедукции нам достаточно $\{s', s\} \vdash t$, т.е. $\{(\neg s), s\} \vdash t$. Пишем формальную теорему: $\neg s \to ((\neg t) \to (\neg s))$. Согласно MP имеем $\{(\neg s), s\} \vdash ((\neg t) \to (\neg s))$. По MP имеем $\{(\neg s), s\} \vdash (\neg (\neg s) \to \neg (\neg t))$. Но $s \vdash (\neg (\neg s), \tau$ так что $\{(\neg s), s\} \vdash \neg (\neg t)$). Поскольку $\neg (\neg t) \to t$ — формальная теорема, $\{(\neg s), s\} \vdash t$.

3) $p = s \wedge t$. Формулы s и t содержат менее k связок. Зафиксируем некоторую интерпретацию предметных переменных. Тогда $\{q_1, q_2, ..., q_n\} \vdash s'$ и $\{q_1, q_2, ..., q_n\} \vdash t'$ по предположению индукции.

Если в заданной интерпретации s и t имеют значение 1, то s' = s, t' = t и p имеет значение 1, так что p' = p. Вот формальная теорема $(s \to s) \to ((s \to t) \to (s \to s \land t))$. По MP получаем формальную теорему $(s \to t) \to (s \to s \land t)$. Значит, $(s \to t) \vdash (s \to s \land t)$. Значит, $\{s, (s \to t)\} \vdash s \land t$. Поскольку $\{s, t\} \vdash (s \to t)$, имеем $\{s, t\} \vdash s \land t$, т.е. $\{s', t'\} \vdash p'$.

Если в заданной интерпретации s имеет значение 0, то $s' = (\neg s)$ и p имеет значение 0, так что $p' = (\neg p)$. Из формальных теорем $s \land t \to s$ и $(s \land t \to s) \to (\neg s \to \neg (s \land t))$ следует $s' \to p'$, что означает $s' \vdash p'$.

Аналогично, если t имеет значение 0.

4) $p = s \lor t$. Формулы s и t содержат менее k связок. Зафиксируем некоторую интерпретацию предметных переменных. Тогда $\{q_1, q_2, ..., q_n\} \vdash s'$ и $\{q_1, q_2, ..., q_n\} \vdash t'$ по предположению индукции.

Если в заданной интерпретации s и t имеют значение 0, то $s' = (\neg s)$, $t' = (\neg t)$ и p имеет значение 0, так что $p' = (\neg p)$. Запишем формальные теоремы $s \to s \lor t$, $t \to s \lor t$ и $(s \to s) \to ((t \to s) \to (s \lor t \to s))$. По MP получаем $((t \to s) \to (s \lor t \to s))$. Далее, $\{ (\neg s), (\neg t) \} \vdash (\neg s) \to (\neg t) \vdash (t \to s) \vdash (s \lor t \to s) \vdash (\neg s) \to \neg (s \lor t)$.

Если в заданной интерпретации s имеет значение 1, то s' = s и p имеет значение 1, так что p' = p. Применяем теорему $s \to s \lor t$, которая означает, что $\{s'\} \vdash p'$.

5) $p = s \leftrightarrow t$. Провести самостоятельно.

Лемма 2. Формула $\neg (x_1 \land (\neg x_1)) - \phi$ ормальная теорема.

Доказательство. Запишем формальную теорему:

$$x_1 \rightarrow ((x_2 \rightarrow x_2) \rightarrow x_1)$$

Воспользуемся аксиомой из V:

$$((x_2 \rightarrow x_2) \rightarrow x_1) \rightarrow ((\neg x_1) \rightarrow \neg (x_2 \rightarrow x_2))$$

Вспомним утверждение 4 а) из классной работы: $(p \to q) \to ((q \to r) \to (p \to r))$. Пусть $p = x_1, q = ((x_2 \to x_2) \to x_1), r = ((\neg x_1) \to \neg (x_2 \to x_2))$.

По MP имеем $x_1 \rightarrow ((\neg x_1) \rightarrow \neg (x_2 \rightarrow x_2))$

Вспомним утверждение 4 в) из классной работы: $(p \to (q \to r)) \to (p \land q \to r)$. Пусть $p = x_1, q = (\neg x_1), r = \neg (x_2 \to x_2)$.

По MP имеем $x_1 \wedge (\neg x_1) \rightarrow \neg (x_2 \rightarrow x_2)$

Аксиома из V и MP дают $\neg(\neg(x_2 \to x_2)) \to \neg(x_1 \land (\neg x_1))$. Другая аксиома из V даёт $(x_2 \to x_2) \to \neg(\neg(x_2 \to x_2))$. Поэтому имеем $(x_2 \to x_2) \to \neg(x_1 \land (\neg x_1))$. Но $x_2 \to x_2$ выводима, значит, выводима $\neg(x_1 \land (\neg x_1))$.

Лемма 3. Формула $(x_1 \vee (\neg x_1))$ – формальная теорема.

Доказательство. Из аксиом имеем

$$x_1 \rightarrow x_1 \vee (\neg x_1)$$

$$(x_1 \rightarrow x_1 \lor (\neg x_1)) \rightarrow (\neg (x_1 \lor (\neg x_1)) \rightarrow (\neg x_1))$$

По МР получаем

$$(\neg(x_1 \lor (\neg x_1)) \to (\neg x_1))$$

Из аксиом имеем

$$(\neg x_1) \rightarrow x_1 \lor (\neg x_1)$$

$$((\neg x_1) \rightarrow x_1 \lor (\neg x_1)) \rightarrow (\neg (x_1 \lor (\neg x_1)) \rightarrow \neg (\neg x_1))$$

По МР получаем

$$\neg (x_1 \lor (\neg x_1)) \rightarrow \neg (\neg x_1)$$

Формула $(x_1 \to \neg(\neg x_2)) \to (x_1 \to x_2)$ – формальная теорема (проверить самостоятельно с помощью теоремы дедукции)

Из этой теоремы и MP получаем $\neg (x_1 \lor (\neg x_1)) \rightarrow x_1$

Из аксиомы и МР получаем

$$(x_1 \lor (\neg x_1)) \rightarrow x_1 \land (\neg x_1)$$

Из аксиомы и МР получаем

$$\neg(x_1 \land (\neg x_1)) \rightarrow \neg(\neg(x_1 \lor (\neg x_1))$$

Мы понимаем, что тогда

$$\neg (x_1 \land (\neg x_1)) \rightarrow x_1 \lor (\neg x_1)$$

Поскольку $\neg (x_1 \land (\neg x_1))$ – формальная теорема; по MP формула $x_1 \lor (\neg x_1)$ тоже формальная теорема.

Лемма 3. Пусть p и q – некоторые формулы. Если $\Gamma \cup \{q\} \vdash p$ и $\Gamma \cup \{\neg q\} \vdash p$, то $\Gamma \vdash p$.

Доказательство. По теореме дедукции то $\Gamma \vdash q \to p$ и $\Gamma \vdash \neg q \to p$. Ввиду формальной теоремы из III имеем $\Gamma \vdash (q \lor (\neg q)) \to p$. По лемме 3 $q \lor (\neg q)$ – формальная теорема. Тем самым, $\Gamma \vdash p$.

Теорема (о полноте). Любая тавтология является формальной теоремой.

Доказательство. Пусть p — формула, являющаяся тавтологией, $x_1, x_2, ..., x_n$ — предметные символы, содержащиеся в её записи. Выберем интерпретацию с произвольными значениями предметных символов $x_1, x_2, ..., x_{n-1}$ и единичной интерпретацией символа x_n . Обозначим через Γ множество { $q_1, q_2, ..., q_{n-1}$ }. Поскольку p — тавтология, по лемме 1 $\Gamma \cup$ { x_n } $\vdash p$. Выберем ту же интерпретацию для $x_1, x_2, ..., x_{n-1}$ и нулевую для символа x_n . Опять-таки по лемме 1 $\Gamma \cup$ { $\neg x_n$ } $\vdash p$. По лемме 4 $\Gamma \vdash p$. Поскольку интерпретация была любой, то множество Γ можно урезать, удалив x_{n-1} . И т.д. В конце концов, получим $\vdash p$, т.е. p является формальной теоремой.