Deep Learning. Глубокие нейронные сети

Урок 3

Егор Конягин

МФТИ & АО "ЦОСиВТ"

Содержание

- 1. Однослойные нейронные сети. Повторение
- 2. Размерности данных. Согласованные размерности
- 3. Глубокие нейронные сети (Deep neural networks)
- 4. Summary

Повторение

Однослойные нейронные сети.

Однослойные нейронные сети. Повторение

Рис. 1: Модель нейронной сети с одним скрытым слоем. Источник: Stanford University

Однослойные нейронные сети. Forward propagation

Уравнения forward propagation имеют следующий вид:

$$z^{[1]} = W^{[1]} \cdot x + b^{[1]} \tag{1}$$

$$a^{[1]} = \sigma^{[1]}(z^{[1]}) \tag{2}$$

$$z^{[2]} = W^{[2]} \cdot a^{[1]} + b^{[2]} \tag{3}$$

$$a^{[2]} = \sigma^{[2]}(z^{[2]}) \tag{4}$$

$$J = -\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \log \left(a^{[2](i)} \right) + (1 - y^{(i)}) \log \left(1 - a^{[2](i)} \right) \right) \tag{5}$$

Однослойные нейронны сети. Backward propagation

Back prop в выбранной архитектуре описывается следующими уравнениями:

$$dz^{[2]} = a^{[2]} - y; \quad dw^{[2]} = \frac{\partial J}{\partial z^{[2]}} \cdot \frac{\partial z^{[2]}}{\partial w^{[2]}} = \frac{1}{m} \cdot dz^{[2]} \cdot a^{[1]T}$$
 (6)

$$db_{j}^{[2]} = \frac{1}{m} \sum_{i=1}^{m} dz_{j}^{[2](i)}, j = \{1\}$$
 (7)

$$dz^{[1]} = \frac{\partial J}{\partial a^{[1]}} * \frac{\partial a^{[1]}}{\partial z^{[1]}} = w^{[2]T} \cdot dz^{[2]} * \frac{\partial a^{[1]}}{\partial z^{[1]}}$$
(8)

$$dw^{[1]} = \frac{\partial J}{\partial a^{[1]}} \cdot \frac{\partial a^{[1]}}{\partial w^{[1]}} = \frac{1}{m} \cdot dz^{[1]} \cdot x^{\mathsf{T}} \tag{9}$$

$$db_{j}^{[1]} = \frac{1}{m} \sum_{i=1}^{m} dz_{j}^{[1](i)}, j = \{1, 2, 3, 4\}$$
 (10)

Однослойные нейронные сети. Первые результаты

Как и предполагалось, нейронная сеть успешно справилась с классификацией точек линейно неразделимого датасета.

Рис. 2: Результат классификации нейросети

Размерности данных.

Согласованные размерности

Согласованные размерности

Необходимость согласования размерностей данных на каждых слоях продиктована правилами линейной алгебры (а именно перемножения матриц). Еще раз рассмотрим, как должны выглядеть размерности данных:

$$Dim(x) = (n_{features}, n_{items}),$$
 (11)

где $n_{features}$ - кол-во признаков у объекта , n_{items} - кол-во объектов в выборке.

$$Dim(W^{[L]}) = (n_L, n_{L-1}),$$
 (12)

где $n_{\rm L}, n_{\rm L_1}$ - кол-во нейронов в L и L-1 - ом слое соответственно.

$$Dim(b^{[L]}) = (n_L, 1).$$
 (13)

Глубокие нейронные сети (Deep

neural networks)

Глубокие нейронные сети: терминология

Терминолония: как уже говорилось, принятая терминология делит все нейронные сети на два типа:

- · Shallow neural networks 1 скрытый слой;
- · Deep neural networks 2 и более скрытых слоёв.

Замечание! Те нейросети, которые мы на данный момент рассматривали и рассматриваем, называются полносвязанными нейросетями (Fully-connected neural networks). На последующих занятиях мы рассмотрим также свёрточные и рекуррентные нейронные сети.

Глубокие нейронные сети: постановка задачи

Обучение глубоких нейронных сетей состоит из тех же этапов, что и нейросетей с одним скрытым слоем:

- 1. Инициализация весов;
- 2. Начало цикла
 - 2.1 Шаг forward propagation;
 - 2.2 Шаг backward propagation;
 - 2.3 Обновление весов;
- 3. Завершение обучения.

Глубокие нейронные сети: инициализация весов

Как уже ранее говорилось, крайне нежелательно осуществлять инициализацию весов нулями. Рассмотрим на примере сигмоидной функции активации, в чем может быть опасность:

Рис. 3: График сигмоидной функции и ее производной

Глубокие нейронные сети: инициализация весов - II

Рис. 4: Модель произвольной глубокой нейронной сети

Глубокие нейронные сети: инициализация весов - III

Рассмотрим forward и back prop в последних слоях данной нейросети с учетом того, что веса инициализированы нулями (w=0,b=0):

$$a^{[L]} = \sigma(w_1^{[L]} \cdot a_1^{[L-1]} + w_2^{[L]} \cdot a_2^{[L-1]})$$
(14)

$$\frac{\partial a^{[L]}}{\partial z^{[L]}} = \sigma'(w_1^{[L]} \cdot a_1^{[L-1]} + w_2^{[L]} \cdot a_2^{[L-1]}) = \sigma'(0)$$
(15)

$$\frac{\partial a^{[L]}}{\partial w_1^{[L]}} = \frac{\partial a^{[L]}}{\partial z^{[L]}} \cdot a_1^{[L-1]} \tag{16}$$

$$\frac{\partial a^{[L]}}{\partial w_2^{[L]}} = \frac{\partial a^{[L]}}{\partial z^{[L]}} \cdot a_2^{[L-1]} \tag{17}$$

Глубокие нейронные сети: инициализация весов - IV

Положим, что black box - это некий набор функций $f_1(x_1 \cdots x_n) \cdots f_m(x_1 \cdots x_n)$.

Тогда:

$$a_1^{[L-1]} = \sigma(w_1^{[L-1][1]} \cdot f_1(x_1 \cdots x_n) + \cdots w_1^{[L-1][m]} \cdot f_m(x_1 \cdots x_n))$$
 (18)

$$a_2^{[L-1]} = \sigma(w_2^{[L-1][1]} \cdot f_1(x_1 \cdots x_n) + \cdots w_2^{[L-1][m]} \cdot f_m(x_1 \cdots x_n))$$
 (19)

На примере данных уравнений видно, что градиенты

$$\frac{\partial a_1^{[L-1]}}{\partial w_1^{[L-1]}} = \frac{\partial a_2^{[L-1]}}{\partial w_2^{[L-1]}}.$$
 (20)

Таким образом, получается, что все нейроны в одном слое будут идентичны. Это значит, что нелинейные зависимости ими не смогут быть найдены.

Глубокие нейронные сети: инициализация весов - V

Таким образом, имеет смысл инициализировать веса случайными значениями (например из нормального стандартного распределения).

Глубокие нейронные сети: выбор архитектуры

Рис. 5: Архитектура рассматриваемой нейросети. Источник: Stanford University

Глубокие нейронные сети: forward propagation

Данная нейронная сеть описывается следующими уравнениями:

$$Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$$
 (21)

$$A^{[0]} = X \tag{22}$$

$$A^{[l]} = \sigma(Z^{[l]}) = \sigma(W^{[l]}A^{[l-1]} + b^{[l]}), \tag{23}$$

где σ - это ReLU для первых L-1 слоев, а для L-ого слоя σ - это сигмоида.

Глубокие нейронные сети: backward propagation

Функция потерь остаётся той же самой - бинарная кросс-энтропия:

$$J = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \log \left(a^{[L](i)} \right) + (1 - y^{(i)}) \log \left(1 - a^{[L](i)} \right)). \tag{24}$$

Мы сначала рассчитываем $dW^{[l]}, db^{[l]}, da^{[l-1]}$ в предположении, что $dz^{[l]}$ уже известен.

$$dW^{[l]} = \frac{\partial \mathcal{L}}{\partial w^{[l]}} = \frac{1}{m} dz^{[l]} a^{[l-1]T}$$
 (25)

$$db^{[l]} = \frac{\partial \mathcal{L}}{\partial b^{[l]}} = \frac{1}{m} \sum_{i=1}^{m} dz^{[l](i)}$$
 (26)

$$da^{[l-1]} = \frac{\partial \mathcal{L}}{\partial a^{[l-1]}} = w^{[l]T} dz^{[l]}$$
 (27)

$$dz^{[l]} = da^{[l]} * \sigma'(z^{[l]})$$
 (28)

Глубокие нейронные сети: схема проведения расчетов

Рис. 6: Модель проведения forward и backward propagation. Источник: Stanford University

Глубокие нейронные сети. Заключение

После подсчета градиентов происходит обновление параметров, которое ничем не отличается от случая однослойной нейросети.

Summary

Summary

Мы сегодня поговорили о следующих вещах:

- вспомнили об однослойных нейросетях;
- поговорили об опасности инициализации весов нулями;
- подробно рассмотрели глубокие нейронные сети.