

- 1 one inch + \hfill
- 3 \oddsidemargin = 13pt
- 5 \headheight = 14pt
- 7 textheight = 699pt
- 9 \marginparsep = 0pt
- 11 \footskip = 19pt
 \hoffset = 0pt
 \paperwidth = 597pt
- 2 one inch + \voffset
- 4 \setminus topmargin = -38pt
- 6 \headsep = 22pt
- $8 \setminus \text{textwidth} = 426\text{pt}$
- 10 \marginparwidth = Opt
 \marginparpush = 7pt (not shown)
 \voffset = Opt
 \paperheight = 845pt

- 1 one inch + \hoffset
- 3 \evensidemargin = 14pt
- 5 \headheight = 14pt
- 7 \textheight = 699pt
- 9 \marginparsep = Opt
- 11 \footskip = 19pt
 \hoffset = 0pt
 - \paperwidth = 597pt
- 2 one inch + \voffset
- 4 \land topmargin = -38pt
- 6 \headsep = 22pt
- 8 textwidth = 426pt
- 10 \marginparwidth = 0pt

\marginparpush = 7pt (not shown)

 $\voffset = 0pt$

 $\parbox{paperheight} = 845pt$

CHAPTER 1. INTRODUCTION

1.1 Motivation of the Project

CHAPTER 2. MODELING MAGNETIC INDUCTION SYSTEM

CHAPTER 3. ARCHITECTURE AND DESIGN OF THE WPT SYSTEM

CHAPTER 4. EXPERIMENTAL RESULTS

10 Experimental Results

CONCLUSIONS

12 Experimental Results

BIBLIOGRAPHY

14 BIBLIOGRAPHY

CHAPTER 5. INDUCTANCE CHARACTERIZATION

- **5.1 Inductance Estimation Table**
- 5.2 Equivalent coil impedance

CHAPTER 6. MODEL EQUATIONS

6.1 Secondary capacitor in series

6.2 Secondary capacitor in parallel

The same steps as above are followed for obtaining the impedances Z_2 and Z_R when the secondary capacitor is placed in parallel:

CHAPTER 7. COILS EXPERIMENTAL RESULTS

- 7.1 Inductance and Resistance
- 7.2 Quality Factor

CHAPTER 8. CIRCUIT SCHEMATICS

8.1 Voltage Regulator