3.e

Hastighed og acceleration

Vektorfunktioner som stedfunktioner

Da vi introducerede vektorfunktioner bemærkede vi, at vektorfunktioner kan udgøre stedfunktioner for partikler i planen. Præcist som i kender det fra fysik, så er hastigheden af et objekt givet som den afledede af stedfunktionen.

Definition 1.1 (Hastighed). Lad $\overrightarrow{r}: \mathbb{R} \to \mathbb{R}^2$ være en stedfunktion for en partikel givet ved

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix},$$

hvor koordinatfunktionerne x og y begge er differentiable. Så er hastigheden af partiklen til tiden t givet ved

$$\vec{v}(t) = \vec{r}'(t) = \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix}.$$

Eksempel 1.2. Vi betragter en partikel, hvis position er beskrevet ved vektorfunktionen \vec{r} givet ved

$$\vec{r}(t) = \begin{pmatrix} t^2 - 2t \\ \frac{1}{5}t^5 + 3t^3 \end{pmatrix}.$$

Hastighedsfunktionen for denne vektorfunktion er så givet ved

$$\vec{v}(t) = \vec{r}'(t) = \begin{pmatrix} 2t - 2 \\ t^4 + 9t^2 \end{pmatrix}.$$

Skal vi bestemme hastigheden til tidspunktet t=2, så indsættes 2 i hastighedsfunktionen.

$$\vec{v}(2) = \begin{pmatrix} 2 \cdot 2 - 2 \\ 2^4 + 9 \cdot 2^2 \end{pmatrix} = \begin{pmatrix} 2 \\ 52 \end{pmatrix}.$$

I x-aksens retning er hastigheden derfor 2 og i y-aksens retning er hastigheden 52.

Som I også ved fra jeres fysikundervisning, så beskriver den afledede af en hastighedsfunktion accelerationen af partiklen.

Definition 1.3 (Acceleration). Lad $\vec{r}: \mathbb{R} \to \mathbb{R}^2$ være en stedfunktion til en partikel givet ved

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix},$$

hvor koordinatfunktionerne x og y begge er to gange differentiable funktioner. Så er accelerationen af partiklen til tiden t givet ved

$$\vec{a}(t) = \vec{v}'(t) = \vec{r}''(t) = \begin{pmatrix} x''(t) \\ y''(t) \end{pmatrix}.$$

Eksempel 1.4. Vi betragter igen vektorfunktionen \vec{r} fra Eksempel 1.2 givet ved

$$\vec{r}(t) = \begin{pmatrix} t^2 - 2t \\ \frac{1}{5}t^5 + 3t^3 \end{pmatrix}.$$

For at bestemme accelerationen for partiklen bestemmer vi \vec{r}'' :

$$\vec{a}(t) = \vec{r}''(t) = \begin{pmatrix} 2\\4t^3 + 18t \end{pmatrix}.$$

Accelerationen af partiklen til tidspunktet t=2 er derfor

$$\vec{a}(2) = \begin{pmatrix} 2\\ 4 \cdot 2^3 + 18 \cdot 2 \end{pmatrix} = \begin{pmatrix} 2\\ 68 \end{pmatrix}.$$

Opgave 1

Bestem hastigheds- og accelerationsvektorfunktionerne \vec{v} og \vec{a} for følgende vektorfunktioner.

1)
$$\vec{r}(t) = \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$$
 2) $\vec{r}(t) = \begin{pmatrix} t^4 \\ t^2 \end{pmatrix}$
3) $\vec{r}(t) = \begin{pmatrix} t^3 - t^2 \\ t^5 - 15t^3 \end{pmatrix}$ 4) $\vec{r}(t) = \begin{pmatrix} t^3 + t^2 + t + 1 \\ t^6 - 10t^3 \end{pmatrix}$

Opgave 2

17. januar 2023

i) En partikels stedfunktion er givet ved

$$\vec{r}(t) = \begin{pmatrix} e^{2t} \\ t^3 - 3t \end{pmatrix}.$$

Bestem hastighedsvektoren til tidspunktet t = 0 og accelerationsvektoren til tidspunktet t = 1.

ii) En partikels stedfunktion er givet ved

$$\vec{r}(t) = \begin{pmatrix} \sin(2t) \\ \cos(4t) \end{pmatrix}.$$

Bestem hastighedsvektoren til tidspunktet $t=\pi$ og accelerationsvektoren til tidspunktet $t=\pi/2$.

Opgave 3

i) En partikels stedfunktion er givet ved

$$\vec{r}(t) = \begin{pmatrix} \frac{1}{3}t^3 + \frac{1}{2}t^2 + t + 2\\ 3t^2 + 2t + 1 \end{pmatrix}.$$

Bestem t, så hastighedsvektoren for partiklen er givet ved

$$\binom{13}{20}$$

ii) En partikels stedfunktion er givet ved

$$\overrightarrow{r}(t) = \begin{pmatrix} t^4 - 4t^2 \\ 2t^2 - 2t \end{pmatrix}.$$

Bestem de værdier for t, så accelerationen for partiklen er givet ved

$$\binom{56}{4}$$

Opgave 4

i) En partikels stedfunktion er givet ved

$$\overrightarrow{r}(t) = \begin{pmatrix} t^2 - 8t \\ \frac{1}{3}t^3 - 4t \end{pmatrix}.$$

Bestem de værdier for t, så hastighedsvektoren er lodret, og bestem de værdier for t, så hastighedsvektoren er vandret.