STAT253/317 Winter 2017 Lecture 25

Yibi Huang

- Maximum of a Brownian Motion with drift < 0
- More Applications of Wald's Identities

Maximum of a Brownian Motion with drift < 0

Let $\{B(t), t \geq 0\}$ be a Brownian Motion with drift coefficient $\mu < 0$ and variance parameter σ^2 . Consider the maximum of the process

$$W = \max_{0 \le t < \infty} B(t)$$

Then W has the exponential distribution with rate $2|\mu|/\sigma^2$,

$$P(W \ge w) = e^{-\frac{2|\mu|}{\sigma^2}w}, \quad w \ge 0.$$

Proof. Using the formula for $P(B(T_{-a,b}) = b)$ we derived in the previous lecture, since $\mu < 0$, $\exp(2\mu a/\sigma^2) \to 0$, we have

$$\lim_{a\to\infty}\mathrm{P}(B(T_{-a,b})=b)=\lim_{a\to\infty}\frac{\mathrm{e}^{2\mu a/\sigma^2}-1}{\mathrm{e}^{2\mu a/\sigma^2}-\mathrm{e}^{-2\mu b/\sigma^2}}=\mathrm{e}^{2\mu b/\sigma^2}$$

The left-hand side becomes the probabilities that the process ever reaches b, that is, the probabilities that the maximum of the process ever exceeds b. Thus for w = b, we have

$$P(W \ge w) = \exp(2\mu w/\sigma^2) = \exp(-2|\mu|w/\sigma^2).$$
Lecture 25 - 2

Hitting Times of Brownian Motion with Drift

Consider a Brownian motion process $\{B(t), t \geq 0\}$ with drift coefficient $\mu > 0$ and variance parameter σ^2 and consider the hitting time to the value a > 0

$$T_a = \min\{t : B(t) = a\}.$$

- ► Reflection principle doesn't apply to Brownian motion with drift.
- ► Alternative tool: Wald's identities
- ▶ T_a is a stopping time: $\{T_a \le t\} = \{\max_{0 \le s \le t} B(s) \ge a\}$ depends on $\{B(s), 0 \le s \le t\}$ only.
- ▶ T_a is finite, but <u>unbounded</u>, can't apply Wald's identities directly. Try the truncated stopping time $T_a \wedge n = \min(T_a, n)$
- ► First Wald's identity $\Rightarrow \mathbb{E}[B(T_a \land n)] = \mu \mathbb{E}[T_a \land n]$
- ► However, $|B(T \land n)|$ is not uniformly bounded. We cannot use the Dominated convergence theorem to show that

$$a = \mathbb{E}[B(T_a)] = \lim_{n \to \infty} \mathbb{E}[B(T_a \land n)] = \lim_{n \to \infty} \mu \mathbb{E}[T_a \land n] = \mu \mathbb{E}[T_a]$$
Lecture 25 - 3

▶ Though the First Wald's identity doesn't help, the Third identity will. For $\theta > 0$, we have

$$\mathbb{E}[\mathsf{e}^{ heta B({T_\mathsf{a}} \wedge n) - (heta \mu + rac{ heta^2 \sigma^2}{2})({T_\mathsf{a}} \wedge n)}] = 1$$

▶ Since $\mu > 0$, $P(T_a < \infty) = 1$, $(T_a \land n) \to T$ as $n \to \infty$

$$B(T_a \wedge n) \to B(T_a) = a$$
 as $n \to \infty$

▶ Since
$$B(T_a \land n) \le a$$
 for all n , and that $\theta > 0$, $\mu > 0$, we have

$$e^{ heta B(T_a \wedge n) - (heta \mu + rac{ heta^2 \sigma^2}{2})(T_a \wedge n)} \leq e^{ heta B(T_a \wedge n)} \leq e^{ heta a}$$

▶ By the Dominated Convergence Theorem,
$$1 = \lim_{n \to \infty} \mathbb{E} \big[e^{\theta B (T_a \wedge n) - (\theta \mu + \frac{\theta^2 \sigma^2}{2})(T_a \wedge n)} \big]$$

$$\begin{split} 1 &= \lim_{n \to \infty} \mathbb{E} \big[\mathrm{e}^{\theta B (T_{\mathsf{a}} \wedge n) - (\theta \mu + \frac{\theta^2 \sigma^2}{2})(T_{\mathsf{a}} \wedge n)} \big] \\ &= \mathbb{E} \big[\mathrm{e}^{\theta B (T_{\mathsf{a}}) - (\theta \mu + \frac{\theta^2 \sigma^2}{2})T_{\mathsf{a}}} \big] = \mathrm{e}^{\theta \mathsf{a}} \mathbb{E} \big[\mathrm{e}^{-(\theta \mu + \frac{\theta^2 \sigma^2}{2})T_{\mathsf{a}}} \big] \end{split}$$

That is, $\mathbb{E}[e^{-(\theta\mu+\frac{\theta^2\sigma^2}{2})T_a}]=e^{-\theta a}\qquad \text{for all }\theta>0$

$$\mathbb{E}[e^{-(\theta\mu + \frac{\theta^2\sigma^2}{2})T_a}] = e^{-\theta a}$$

Make a change of variable by letting $\lambda = -(\theta \mu + \frac{\theta^2 \sigma^2}{2})$. Then by solving the quadratic equation

$$\sigma^2\theta^2 + 2\mu\theta + 2\lambda = 0$$

for θ , we will get

$$\theta = \frac{-\mu \pm \sqrt{\mu^2 - 2\lambda\sigma^2}}{\sigma^2}.$$

Since $\theta > 0$, we know that

$$\theta = \frac{-\mu + \sqrt{\mu^2 - 2\lambda\sigma^2}}{\sigma^2} > 0$$
 for $\lambda \le \frac{\mu^2}{2\sigma^2}$

Hence, we can get the MGF for T_a ,

$$M(\lambda) = \mathbb{E}[e^{\lambda T_a}] = \exp\left(\frac{\mu - \sqrt{\mu^2 - 2\lambda\sigma^2}}{\sigma^2}a\right), \quad \lambda \leq \frac{\mu^2}{2\sigma^2}$$

Lecture 25 - 5

MGF for T_2 is

$$M(\lambda) = \mathbb{E}[e^{\lambda T_a}] = \exp\left(\frac{\mu - \sqrt{\mu^2 - 2\lambda\sigma^2}}{\sigma^2}a\right), \quad \lambda \leq \frac{\mu^2}{2\sigma^2}$$

The cumulant generating function

$$K(\lambda) = \log(M(\lambda)) = \frac{a}{\sigma^2} (\mu - \sqrt{\mu^2 - 2\lambda\sigma^2}), \text{ for } \lambda \leq \frac{\mu^2}{2\sigma^2}.$$

from which we can get that

$$K'(\lambda) = a(\mu^2 - 2\lambda\sigma^2)^{-1/2}, \quad K''(\lambda) = a\sigma^2(\mu^2 - 2\lambda\sigma^2)^{-3/2},$$

and that
$$\mathbb{E}[T_a] = K'(0) = \frac{a}{\mu}$$
, and $\operatorname{Var}(T_a) = K''(0) = \frac{a\sigma^2}{\mu^3}$.

It is possible to find the distribution with the MGF given above. The probability density of T_a is

$$f(t) = \frac{a}{\sigma\sqrt{2\pi t^3}} \exp\left(-\frac{(a-\mu t)^2}{2\sigma^2 t}\right), \quad t > 0$$

Corollary: For a Brownian motion process $\{B(t), t \geq 0\}$ with drift coefficient $\mu > 0$ and variance parameter σ^2 , the distribution of $\max_{0 \leq s \leq t} B(s)$ is

$$P\left(\max_{0 \le s \le t} B(s) \ge a\right) = P(T_a \le t)$$

$$= \int_0^t \frac{a}{\sigma \sqrt{2\pi u^3}} \exp\left(-\frac{(a - \mu u)^2}{2\sigma^2 u}\right) du$$

Example: $T_{-a,b}$ for SBM

For constants a, b > 0, recall in Lecture 24 we let $T = T_{-a,b}$ be the first time t the standard Brownian Motion process hits -a or b

$$T_{-a,b} = \min\{t : B(t) = -a, \text{ or } B(t) = b\}$$

and used the first and second Wald's identity to show that

$$P(B(T) = -a) = \frac{b}{a+b}, \quad P(B(T) = b) = \frac{a}{a+b}$$

and that

$$\mathbb{E}[T] = ab$$
.

Today we will use the third Wald's identity to find the distribution of \mathcal{T} .

$$\mathbb{E}[e^{\theta B(T\wedge n)-\theta^2(T\wedge n)/2}]=1$$

Example: $T_{-a,b}$ for SBM (Cont'd)

- ▶ Since $P(T < \infty) = 1$, $(T \land n) \to T$ as $n \to \infty$ w/ prob. 1.
- ▶ Since $-a \le B(T \land n) \le b \Rightarrow |B(T \land n)| \le a + b$, for all n,

$$e^{\theta B(T\wedge n)-\theta^2(T\wedge n)/2} \leq e^{\theta(a+b)}.$$

▶ By the Dominated Convergence Theorem,

$$1 = \lim_{n \to \infty} \mathbb{E}[e^{\theta B(T \wedge n) - \theta^{2}(T \wedge n)/2}] = \mathbb{E}[e^{\theta B(T) - \theta^{2}T/2}]$$

$$= e^{-\theta a} \mathbb{E}[e^{-\theta^{2}T/2} | B(T) = -a] P(B(T) = -a)$$

$$+ e^{\theta b} \mathbb{E}[e^{-\theta^{2}T/2} | B(T) = b] P(B(T) = b)$$

$$= \frac{be^{-\theta a}}{a + b} \mathbb{E}[e^{-\theta^{2}T/2} | B(T) = -a] + \frac{ae^{\theta b}}{a + b} \mathbb{E}[e^{-\theta^{2}T/2} | B(T) = b]$$

Example: $T_{-a,b}$ for SBM (Cont'd)

$$a+b=be^{- heta a}\mathbb{E}[e^{- heta^2T/2}|B(T)=-a]+ae^{ heta b}\mathbb{E}[e^{- heta^2T/2}|B(T)=b].$$

This equation is valid if we change θ to $-\theta$:

$$a + b = be^{\theta a} \mathbb{E}[e^{-\theta^2 T/2} | B(T) = -a] + ae^{-\theta b} \mathbb{E}[e^{-\theta^2 T/2} | B(T) = b].$$

Now we have 2 equations with 2 unknowns $x = \mathbb{E}[e^{-\theta^2 T/2}|B(T) = -a]$ and $y = \mathbb{E}[e^{-\theta^2 T/2}|B(T) = b]$.

$$\begin{cases} be^{-\theta a}x + ae^{\theta b}y = a + b \\ be^{\theta a}x + ae^{-\theta b}y = a + b \end{cases}$$

Solving the equations we can get that

$$x = \frac{a+b}{b} \frac{e^{b\theta} - e^{-b\theta}}{e^{(a+b)\theta} - e^{-(a+b)\theta}}, \quad y = \frac{a+b}{a} \frac{e^{a\theta} - e^{-a\theta}}{e^{(a+b)\theta} - e^{-(a+b)\theta}}$$

Lecture 25 - 10

Example: $T_{-a,b}$ for SBM (Cont'd)

Thus

$$\mathbb{E}[e^{-\theta^{2}T/2}] = \mathbb{E}[e^{-\theta^{2}T/2}|B(T) = -a]P(B(T) = -a) + \mathbb{E}[e^{-\theta^{2}T/2}|B(T) = -a]P(B(T) = b)$$

$$= \frac{b}{a+b}x + \frac{a}{a+b}y = \frac{e^{b\theta} - e^{-b\theta} + e^{a\theta} - e^{-a\theta}}{e^{(a+b)\theta} - e^{-(a+b)\theta}}$$

$$= \frac{e^{-a\theta} + e^{-b\theta} - e^{-(a+b)\theta}(e^{-a\theta} + e^{-b\theta})}{1 - e^{-2(a+b)\theta}}$$

$$= \frac{e^{-a\theta} + e^{-b\theta}}{1 + e^{-(a+b)\theta}}$$

Let $\lambda=\theta^2/2$, we get that $\theta=\sqrt{2\lambda}$ and the moment generating function of T that

$$\mathbb{E}[e^{-\lambda T}] = \frac{e^{-a\sqrt{2\lambda}} + e^{-b\sqrt{2\lambda}}}{1 + e^{-(a+b)\sqrt{2\lambda}}}$$

Lecture 25 - 11