NYU CS Bridge to Tandon Course: Homework #6

Winter 2022

Jae Butler Jiyoon Jung

Problem 5

Use the definition of θ in order to show the following:

(a)
$$5n^3 + 2n^2 + 3n = \theta(n^3)$$

0f(n) = we will show that $5n^3 + 2n^2 + 3n = 0(n^3)$

Proof. $5n^3 + 2n^2 + 3n = 0(n^3)$ Let c = 10 and $n_0 = 1$, then for any $n \ge n_0$.

Since $5n^3 + 2n^2 + 3n \le 5n^3 + 2n^3 + 3n^3$.

$$5n^3 + 2n^2 + 3n \le 5n^3 + 2n^3 + 3n^3$$
$$= 10n^3$$

$$c = 10$$

Proof. $5n^3 + 2n^2 + 3n = \Omega(n^3)$ Let c = 5 and $n_0 = 1$, then for any $n \ge n_0$.

Since $5n^3 \le 5n^3 + 2n^2 + 3n$.

$$5n^3 \le = 5n^3 + 2n^2 + 3n$$

$$5n^3 =$$

$$cn^3 =$$

Since $5n^3 + 2n^2 + 3n = 0(n^3)$ and $5n^3 + 2n^2 + 3n = \Omega(n^3)$ we can conclude $5n^3 + 2n^2 + 3n = \theta(n^3)$.

(b)
$$\sqrt{7n^2 + 2n - 8} = \theta(n)$$

Proof.
$$\sqrt{7n^2 + 2n - 8} = 0(n)$$
 Let $c = 3$ and $n_0 = 1$, then for any $n \ge n_0$.
Since $\sqrt{7n^2 + 2n - 8} \le \sqrt{7n^2 + 2n^2}$.

$$\sqrt{7n^2 + 2n - 8} \le \sqrt{7n^2 + 2n^2}$$
$$= \sqrt{9n^2}$$
$$c = 3n$$

Proof.
$$\sqrt{7n^2 + 2n - 8} = \Omega(n)$$
 Let $c = 2$ and $n_0 = 1$, then for any $n \ge n_0$.

Since
$$\sqrt{7n^2} \le \sqrt{7n^2 + 2n}$$
.

$$\sqrt{7n^2} \le \sqrt{7n^2 + 2n}$$

$$\sqrt{7} * \sqrt{n^2} =$$

$$\lfloor 2.6 \rfloor * n =$$

$$2n =$$

Since
$$\sqrt{7n^2 + 2n - 8} = 0(n)$$
 and $\sqrt{7n^2 + 2n - 8} = \Omega(n)$ we can conclude $\sqrt{7n^2 + 2n - 8} = \theta(n)$.