APA Modulo 1 Esercizi 1

Elena Zucca

4 aprile 2020

Notazioni asintotiche

• usando la definizione dimostrare che:

se
$$f(n) = \Theta(g(n))$$
 allora anche $g(n) = \Theta(f(n))$

- soluzione: $f(n) = \Theta(g(n))$ significa che $\exists c_1, c_2 > 0, n_0 \ge 0$ tali che $c_1g(n) \le f(n) \le c_2g(n)$ per ogni $n \ge n_0$
- dobbiamo trovare delle costanti tali che

$$?f(n) \le g(n) \le ?f(n)$$
 per ogni $n \ge n_0$

come possiamo sceglierle?

•
$$\frac{1}{c_2}f(n) \leq g(n) \leq \frac{1}{c_1}f(n)$$
 per ogni $n \geq n_0$

Notazioni asintotiche

• assumendo f, g (asintoticamente) non negative, dimostrare che $\max(f(n), g(n)) = \Theta(f(n) + g(n))$

- dobbiamo provare che $\exists c_1, c_2 > 0, n_0 \ge 0$ tali che $c_1(f(n) + g(n)) \le \max(f(n), g(n)) \le c_2(f(n) + g(n))$ per ogni $n \ge n_0$
- come possiamo sceglierle?
- ullet $c_2=1$ il massimo è sicuramente minore o uguale della somma
- $c_1 = \frac{1}{2}$ il massimo è sicuramente maggiore o uguale della media

Elena Zucca 4 aprile 2020 3 / 13

Notazioni asintotiche

- è vero che $min(f(n), g(n)) = \Theta(f(n) + g(n))$?
- no, controesempio?
- n+1 non è $\Theta(\min(n,1)) = \Theta(1)$

Relazioni di ricorrenza

• si risolva la seguente relazione di ricorrenza:

$$T(n) = 4T(n/2) + n^2 \log n$$

• conviene assumere $n = 2^k$, quindi $\log n = k$ e $n^2 = (2^k)^2 = 4^k$ sostituendo successivamente si ha:

$$T(2^{k}) = 4T(2^{k-1}) + 4^{k}k = 4(4T(2^{k-2}) + 4^{k-1}(k-1)) + 4^{k}k = 4^{2}T(2^{k-2}) + 4^{k}(k-1) + 4^{k}k = \dots = 4^{k}T(2^{k-k}) + 4^{k} + \dots + 4^{k}(k-1) + 4^{k}k = 4^{k}(1+\dots+k) = 4^{k}\frac{k(k+1)}{2}$$

Relazioni di ricorrenza

• ora proviamo $T(2^k) = 4^k \frac{k(k+1)}{2}$ per induzione aritmetica su k:

Base
$$T(2^0) = 0$$

Passo induttivo $T(2^k) = 4\frac{T(2^{k-1})}{2} + 4^k k =$ (per ipotesi induttiva) $4(4^{k-1}\frac{k(k-1)}{2}) + 4^k k =$ $4^k\frac{k(k-1)}{2} + 4^k k =$ $4^k\frac{k(k-1)+2k}{2} = 4^k\frac{k(k+1)}{2}$

• quindi $T(n) = n^2 \frac{\log n(\log n + 1)}{2} = \Theta(n^2 \log^2 n)$.

Design e analisi di algoritmi imperativi

- grafo orientato con n nodi (no cappi) rappresentato con matrice di adiacenza M
- (solo in questo esercizio) pozzo = nodo che ha un arco entrante da ciascun altro nodo, quindi n-1 archi entranti, e nessun arco uscente
- descrivere un algoritmo che determina se esiste un nodo "pozzo"
- giustificarne la correttezza con opportuna invariante
- l'algoritmo deve essere O(n), giustificarlo in particolare esaminare solamente O(n) elementi della matrice

Osservazione di partenza

- ogni volta che si esamina una casella M[i,j] della matrice cosa possiamo concludere?
- se l'arco esiste i non è un pozzo
- se l'arco non esiste j non è un pozzo
- quindi esaminando n-1 caselle (O(n)) riusciamo a scartare come possibili pozzi tutti i nodi meno uno
- a questo punto basta controllare questo ultimo nodo, ossia controllare la sua riga e la sua colonna (O(n))
- NB: può esserci più di un pozzo?

Algoritmo in versione molto astratta e semplice

Correttezza

- invariante?
- tutti i nodi non in candidati non sono pozzi

```
candidati = 1..n //candidati = 1..n while (|candidati| > 1)  
//INV: \forall n \notin candidati. n non pozzo \land |candidati| \ge 1 scegli a caso i,j \in candidati if M(i,j) elimina i da candidati else elimina j da candidati //Post: \forall n \notin candidati. n non pozzo \land |candidati| = 1 controlla che l'unico nodo k \in candidati sia un pozzo
```

È immediato vedere che:

- l'invariante vale all'inizio
- si preserva a ogni iterazione
- garantisce la postcondizione
- il ciclo termina perché a ogni passo la cardinalità di candidati decresce di uno
- il numero di elementi esaminati e la complessità temporale dell'algoritmo sono O(n)
- ullet il ciclo while viene eseguito n-1 volte esaminando ogni volta un elemento
- il controllo finale esamina una riga e una colonna
- assumiamo a costo costante le operazioni sull'insieme

Esercizio da fare

Dare una versione più "concreta" dell'algoritmo in cui si parte prendendo come "candidato" il primo nodo e di volta in volta si cerca se c'e' un arco dal candidato a un nodo successivo. Se l'arco c'è il successivo diventa il nuovo candidato. In questa versione, l'invariante è che tutti i nodi prima del candidato corrente e tra il candidato corrente e il successivo non sono pozzi.

Algoritmi su grafi

Si consideri la visita DFS imperativa: si disegnino due grafi (connessi) con nodi A,B,C,D,E,F,G,H tali che:

 nel primo, ogni nodo entri nella pila una volta sola e l'albero DFS abbia altezza minima

 nel secondo, il nodo H entri nella pila il maggior numero di volte possibile e l'albero DFS abbia altezza massima

