Decision Tree Classifier wim Example

**		~		-
outlook	temp	humidity	windy	play
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
overcast	hot	high	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	cool	normal	FALSE	yes
rainy	cool	normal	TRUE	no
overcast	cool	normal	TRUE	yes
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	mild	normal	TRUE	yes
overcast	mild	high	TRUE	yes
overcast	hot	normal	FALSE	yes
rainy	mild	high	TRUE	no

ID3 Approach

Entropy is defined as the measure of randomness in the information being proceeded. It is given by the formula

We consider that node as the root node of a Decision tree which has the highest Information Gain.

outlook humidity windy temp **FALSE** sunny high. FALSE high FALSE normal . cool FALSE normal cool TRUE normal overcast cool TRUE high sunny mild FALSE normal FALSE cool sunny normal FALSE rainy sunny high normal **FALSE**

Calculations: -

Torgot voriable Play LUA 9 Nex 8 5 Nos.

Entropy (Play) = $-\frac{9}{14} \log_2 \left(\frac{9}{12}\right) - \frac{5}{12} \log_2 \left(\frac{5}{12}\right)$ = $-\frac{9}{14} \left[\frac{\log_2 \left(\frac{9}{12}\right)}{\log_2 2} - \frac{5}{14} \left[\frac{\log_2 \left(\frac{5}{12}\right)}{\log_2 2}\right]\right]$ = $-0.64 \left[\frac{-0.19}{0.300} - 0.35 \left[\frac{-0.44}{0.3000}\right]\right]$ = 0.4016 + 0.51 ≈ 0.94

		_		
outlook	temp	humidity	windy	play
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
overcast	hot	high.	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	cool	normal	FALSE	yes
rainy	cool	normal	TRUE	no
overcast	cool	normal	TRUE	yes
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	mild	normal	TRUE	yes
overcast	mild	high	TRUE	yes
overcast	hot	normal	FALSE	yes
rainy	mild	high	TRUE	no

Values (outlook) = 20 my, overcost, sainy

play = [ay, EHo]

Playsumny = [2y, 3 Mo]

Play overcost = [ay, 0 Mo]

Play rainy = [3y, 2 Mo]

.. IG (Play, outlook) = Entropy (play) -

Overcast hot normal FALSE yes
rainy mild high TRUE no

Ve [cumy, overcact, rainy]

S

Entropy (Play cumhy) = -2 log (2) - 7 log (2)

= 10.72 + 0.44

= 10.96

Entropy (Play overcact)

- 4 Entropy (Play overcact)

- 5 Entropy (Play overcact)

- 6 Entropy (Play overcact)

- 7 Entropy (Play rainy)

		~	~		
outlook	temp	humidity	windy	play	
sunny	hot	high	FALSE	no	
sunny	hot	high	TRUE	no	
overcast	hot	high	FALSE	yes	
rainy	mild	high	FALSE	yes	
rainy	cool	normal	FALSE	yes	
rainy	cool	normal	TRUE	no	
overcast	cool	normal	TRUE	yes	
sunny	mild	high	FALSE	no	
sunny	cool	normal	FALSE	yes	
rainy	mild	normal	FALSE	yes	
sunny	mild	normal	TRUE	yes	
overcast	mild	high	TRUE	yes	
overcast	hot	normal	FALSE	yes	
rainy	mild	high	TRUE	no	

E(Pluy, ainy) = - = log 2 (2) - = log (2) = 0.04 + 0.(2) = + 0.96
. Information Gain (Play, outlook) = 0.94 - C (2x0.96)
رک د. ۵

		-		-
outlook	temp	humidity	windy	play
sunny	hot	high	FALSE	no
sunny	hot	high	TRUE	no
overcast	hot	high	FALSE	yes
rainy	mild	high	FALSE	yes
rainy	cool	normal	FALSE	yes
rainy	cool	normal	TRUE	no
overcast	cool	normal	TRUE	yes
sunny	mild	high	FALSE	no
sunny	cool	normal	FALSE	yes
rainy	mild	normal	FALSE	yes
sunny	mild	normal	TRUE	yes
overcast	mild	high	TRUE	yes
overcast	hot	normal	FALSE	yes
rainy	mild	high	TRUE	no

Similarly

10 sunny

J.G (Play, Temp) = 0.029

IG (Play, Humidity) = 0.152

normal

UE[True | false] Entropy SV

= 0.048

Since outlook feature has he highest I.G., we choose it as root node.

.: our decision tree enrushy books as below

	A	В		C	D	E	F
1	outlook .T	temp	۳	humidit *	windy -	play -	
2	sunny	hot		high	FALSE	no	
3	sunny	hot		high	TRUE	no	
9	sunny	mild		high	FALSE	no	
10	sunny	cool		normal	FALSE	yes	
12	sunny	mild		normal	TRUE	yes	
16							
17							

Moxt we consider this table on the left

Now we calculate the new I.GE.

Similarly IG(sunny, Humidity) = 0.971

IG (sunny, Windy) = 0.02

Hunce we choose tumidity as a node under sunny.

Similarly we can find nodes under rainy times corrently our D.T books like one below.

