Assignment - HPC1

- * Title le Problem Statement: a) Implement Parallel Reduction using min, max, sum le average operation b) vorite a cut programu that given an N-element vector, find the maximum, minimum element, as well as anothmetic mean, and standard deviation.
- * OBJECTIVES: 1) To understand parallel reduction operations 11) To understand vector operations.
- * OUTCOMES: Understood the parallel reduction operations as well as vector operations
- * SOFTWARE & HARDWARE REQUIREMENTS: OPENMP (ctt library), 9tt,
 Google collab, CUDA, Any CPU i3 or higher processor, 800 RAM, ITB HDD.
- * THEORY:
 - a) EVDA (compute Unified Device Architecture) is a parallel computing platform & application programming intentace model created by NVIDIA. processing unit for general purpose processing. · languages C, Ctt, fortran can be used with CNDA. . It also supports programming frameworks.
 - 6) MIN-MAX Operations: i's MAX method: returns the larger element of a.b. compone function can be omitted. Syntax: max (object-type a, object-type b, compare ()).

 ii) Min method: Returns smaller element of a,b. Same rule applies
 for companison as well as max function

	iii) Arithmetic mean: It is calculated as sum of all elements divided by
2 1 1 1	total us. a) elimints. Also referred as 'assurage.
	iv) standard Deviation to: is a measure used I to quartify the amount
17. 12.	of variation of a set of data values.
	Parallel Robbuction:
	· Reduction operations are those which reduce a suigle collection
	of values to a single value. It can be associative & commutative.
	· Some of them are: Addition, mutiplication, bituelse AND, OR, XOR, etc.
	· Computation complexity itself whily to be oligin)
	· Below is an example of surd of an array using parallel reduction.
	13 27 15 4 1 33 12 24 16
	Ø ← J & _ J & _ J
	[40] [29] [35] [30]
	169 1 165 1
	134
	csum
*	CONCLUSION:
	I have studied parallel reduction using min, max, any, sun;
	and CUDA perogram that given an N Jelement array finds max,
	min, mean, standard deviation parallely and serially.
	Both arrang executed successfully and have expected brillie.