Introduction to ML and Classical Models

ML Instruction Team, Fall 2022

CE Department Sharif University of Technology

Machine Learning: An Overview

■ What is Machine Learning?

Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed.

- Applications of Machine Learning
 - ► This Person Does not Exist!
 - Github Copilot
 - Imagen
 - ▶ Dall-E Open AI
 - DocQuery
 - ► Zero Shot Object Detection!

Machine Learning Categories

Figure: Classical Machine Learning Paradigm, Source

Introduction ML Variations ML in Practice

Machine Learning Categories

- The three broad categories of ML are summarized in:
 - **Supervised Learning**
 - **Unsupervised Learning**
 - **Reinforcement Learning**

Figure: Categories of ML, Source

Supervised Learning

- Whats is Supervised Learning?
 - Supervised Learning is the subcategory of machine learning that focuses on learning from labeled training data, which can be divided to two main categories:
 - Classification: Predicting the discrete values such as male/female, etc.
 - Regression: Predicting the continuous values such as price, age, etc.

Figure: Classification vs Regression, Source

Unsupervised Learning

- What is Unsupervised Learning? Unsupervised Learning, in contrast to supervised learning, is concerned with unlabeled data.
 - Common tasks in unsupervised learning are:
 - Clustering
 - **Dimensionality Reduction**

Figure: Clustering vs Dimensionality Reduction

Reinforcement Learning

- Reinforcement is the process of learning from rewards while performing a series of actions.
- An agent in this context is a learning system that observes the environment, selects and performs actions, and receives rewards.
- As time goes on, it must learn how to get the most rewards using the best strategy, called a policy.

Figure: Reinforcement Learning, Source.

ML Categorization Schemes

Eager vs Lazy:

- **Eager** learners are algorithms that process training data immediately.
- ► Lazy learners, however, defer the processing step until the prediction.

Batch vs Online:

- ▶ Batch learning refers to the fact that the model is learned on the entire set of training examples.
- ▶ Online learners, in contrast, learn from one training example at the time.

Generative vs Discriminative:

- ► Generative models (classically) describe methods that model the joint distribution $\mathbb{P}(X,Y) = \mathbb{P}(Y)\mathbb{P}(X|Y) = \mathbb{P}(X)\mathbb{P}(Y|X)$ for training pairs (x_i,y_i) .
- ▶ Discriminative Discriminative models are taking a more "direct" approach, modeling $\mathbb{P}(Y|X)$ directly.

ML Categorization Schemes

- Instance-based vs Model-Based:
 - ▶ Instance-based learners learn the training examples by heart and then generalizes to new instances based on some similarity measure.
 - Here, the algorithm looks at a set of training data and tries to find a pattern that can be generalized to new data.
 - This pattern is then used to make predictions on new data.
 - ▶ Model-Based learners, on the other hand, learn from a model that is created from the training data.
 - This model can be thought of as a mathematical representation of the training data.
 - The model is then used to make predictions on new data.
- Parametric vs Non-parametric:
 - ▶ Parametric Parametric models have "fixed" number of parameters.
 - Non-parametric models are more "flexible" and do not have a pre-specfied number of parameters.

How to Solve A Machine Learning Problem

- Collect data
- Preprocess the data.
- Select a suitable model and train it.
- Evaluate the generalization error on the test dataset.
- Improve the model using various techniques.

Figure: Required steps to solve an ML problem, Source

Thank You!

Any Question?