Standard codon table architecture

Second letter

	,	U	С	Α	G	} }
	U	UUUC } Phe UUC } Leu UUG }	UCU) UCC UCA UCG)	UAU Tyr UAC Stop UAG Stop	UGA Stop	UCAG
	С	CUU CUC Leu	CCU CCC Pro	CAU } His CAC } GIn CAG }	CGU CGC Arg	U C A G
	Α	AUU } Ile AUA } Met	ACU ACC Thr	AAU } Asn AAC } Lys AAG } Lys	AGU }Ser AGC }Arg AGA }Arg	U C A G
	G	GUU GUC GUA GUA GUG	GCU GCC GCA GCG	GAU } Asp GAC } Glu GAG } Glu	GGU GGC GGA GGG	U C A G

Neutral expectation

- A random mutation is ~3 times more likely to be non-synonymous that synonymous, depending on the variety of factors, such as codon composition, transition/transversion ratios, etc.
- We need to **estimate** the proportion of <u>random</u> mutations that are synonymous, and use it as a reference to compute **dS**.
- In early literature, these quantities were codified as synonymous and non-synonymous "sites" and/or mutational opportunity.
- As a very crude approximation (assuming that third positions ~ synonymous), each codon has 1 synonymous and 2 non-synonymous sites.