

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF MATHEMATICS

21MAB301T - PROBABILITY AND STATISTICS

UNIT 2- TUTORIAL SHEET 3

s.no	Problems	Answers
1	If X is normal distribution with mean 16 and standard	(i) 0.1587
	deviation 3. Find (i) $P(X \ge 19)$ (ii) $P(10 < X < 25)$	(ii) 0.9759
2	Let X denote the number of grams of hydrocarbons	0.64
	emitted by an automobile per mile. Assuming X is normal	
	with $\mu = 1$, $\sigma = 0.25$. Find the probability that a randomly	
	selected automobile will emit between 0.9 and 1.54 gram	
	of hydrocarbon per mile.	
3	If a random variable X follows normal distribution with	0.3816
	mean 28 and variance 625 then find $P(32 < X < 68)$	
4	The life of a certain kind of electronic device has a mean	0.0228
	of 300 hours and standard deviation of 25 hours.	
	Assuming that the life hours of the devices follow normal	
	distribution. Find the probability that any one of these	
	devices will have a life time more than 350 hours	0.0220
5	If X is normally distributed and the mean of X is 12 and	0.0228
	S.D is 4. Find the probability $P(X \ge 20)$	0.2005
6	If X is normal random variable with mean $\mu = 3$, $\sigma^2 = 16$ find $p(X < 1)$	0.3085
7	The weights in pounds of parcels arriving at a package	0.7357
	delivery company's warehouse can be modelled by an	
	N(5,16) normal variable X. What is the probability that a	
	randomly selected parcel weighs between 1 and 10	
	pounds?	
8	If x is uniformly distributed over $(0,10)$ find $P(X < 4)$	2/5
9	Let X be a uniformly distributed random variable in the	2
	interval (-a, a) then determine a	
10	Let X be a uniformly distributed random variable ova (0,1)	$\frac{1}{(a^t-1)}$
	determine the moment generating function	$\frac{1}{t}(e^t-1)$