EE5153: Introduction to VLSI Design

Implementation of Arithmetic in VLSI

Acknowledgement: Material primarily form textbook and lecture slides for Rabaey et. al. Digital Integrated Circuits, 2nd Edition (2002).

A Generic Digital Processor

- □ Arithmetic Unit
 - Datapath (adder, multiplier, shifter, comparator, etc)
- □ Memory
 - RAM, ROM, Buffers, Shift Registers
- □ Control
 - Finite State Machine (PLA, random logic)
 - Counters
- □ Interconnect
 - Switches
 - Bus

Bit sliced design for datapath

Adders

- □ Half Adder
- □ Full Adder
- □ Ripple Carry Adder

Full Adder

$$A + R + C$$

$$S = ? ARC + ARC + ARC + ARC$$

$$C_{out} = ? AR + RC + CA$$

Α	В	Cin	Sum	Cout
0	0	0	0	0
0	0	1		D
0	1	0	1	Q
0	1	1	0	1
1	0	0	1	0
1	0	1	0	
1	1	0	0	1
1	1	1	\	1

Direct CMOS Implementation of Full Adder

$$S = ABC_{i} + \overline{C_{out}} (A + B + C_{i})$$

$$C_{out} = AB + BC_{i} + AC_{i}$$

LE of
$$C_i = ?$$

LE of A = ?

28 Transistors!!

Ripple Carry Adder (RCA)

 $t_{adder} = (N-1)t_{carry} + t_{sum}$

Goal: Make the fastest possible carry path circuit

6

Inversion Property

$$\overline{S}(A,B,C_i) = S(\overline{A},\overline{B},\overline{C_i})$$

$$\overline{C}(A,B,C_i) = C(\overline{A},\overline{B},\overline{C_i})$$

Minimize Critical Path by Reducing Inverting Stages

Here, FA stands for full adder without the inverter in carry path

The Mirror Adder

How to size the adder to optimize the delay in the carry chain?

Mirror Adder – The stick diagram

