Mid-term solutions

ECE 271A

Electrical and Computer Engineering University of California San Diego

Nuno Vasconcelos Fall 2018

1. a) The log-likelihood is

$$l(\theta) = \sum_{i} \log h(x_i) + \nu(\theta) \sum_{i} T(x_i) - nA(\theta).$$

Setting its derivative to zero, we have

$$\frac{\partial \nu}{\partial \theta} \sum_{i} T(x_i) = n \frac{\partial A}{\partial \theta},$$

and

$$\frac{1}{n} \sum_{i} T(x_i) = \frac{\partial A}{\partial \theta} \frac{1}{\frac{\partial \nu}{\partial \theta}}.$$

For this solution to be a maximum we need that

$$\frac{\partial^2 l}{\partial \theta^2} = \frac{\partial^2 \nu}{\partial \theta^2} \sum_i T(x_i) - n \frac{\partial^2 A}{\partial \theta^2} \le 0$$

i.e. the additional constraint that

$$\frac{\partial^2 A}{\partial \theta^2} \ge \frac{\partial^2 \nu}{\partial \theta^2} \frac{1}{n} \sum_i T(x_i)$$

Plugging in the value of $\frac{1}{n}\sum_{i}T(x_{i})$ at the critical point leads to the condition

$$\frac{\partial^2 A}{\partial \theta^2} \ge \frac{\partial^2 \nu}{\partial \theta^2} \frac{\partial A}{\partial \theta} \frac{1}{\frac{\partial \nu}{\partial \theta}}.$$

For the Gaussian, $\theta = \mu$, T(x) = x and the derivatives are

$$\frac{\partial A}{\partial \mu} = \mu$$

$$\frac{\partial^2 A}{\partial \mu^2} = 1$$

$$\frac{\partial \nu}{\partial \mu} = 1$$

$$\frac{\partial^2 \nu}{\partial \mu^2} = 0.$$

The ML estimate is

$$\mu = \frac{1}{n} \sum_{i} x_i$$

and the condition is

$$1 \ge 0$$

which always holds. Hence, we have a maximum. For the binomial, $\theta = p$, T(x) = x and the derivatives are

$$\begin{split} \frac{\partial A}{\partial p} &= \frac{\partial}{\partial p} (-n \log(1-p)) = \frac{n}{1-p} \\ \frac{\partial^2 A}{\partial p^2} &= \frac{n}{(1-p)^2} \\ \frac{\partial \nu}{\partial p} &= \frac{\partial}{\partial p} (\log p - \log(1-p)) = \frac{1}{p} + \frac{1}{1-p} = \frac{1}{p(1-p)} \\ \frac{\partial^2 \nu}{\partial p^2} &= -\frac{1-2p}{p^2(1-p)^2} \end{split}$$

The ML estimate is

$$np = \frac{1}{n} \sum_{i} x_{i}$$

$$p = \frac{1}{n^{2}} \sum_{i} x_{i}$$

and the condition

$$\frac{\partial^2 A}{\partial p^2} \geq \frac{\partial^2 \nu}{\partial p^2} \frac{\partial A}{\partial p} \frac{1}{\frac{\partial \nu}{\partial p}}$$

$$\frac{n}{(1-p)^2} \geq -\frac{1-2p}{p^2(1-p)^2} \frac{n}{1-p} p (1-p)$$

$$1 \geq -\frac{1-2p}{p}$$

$$p \geq 2p-1$$

$$1 \geq p$$

always holds. Hence, we have a maximum.

b) According to bayes decision rule, the optimal decision function, under the "0/1" loss is "pick i=0" if

$$\begin{array}{cccc} P_{Y|X}(0|\mathcal{D}) & > & P_{Y|X}(1|\mathcal{D}) \\ P_{X|Y}(\mathcal{D}|0)P_{Y}(0) & > & P_{X|Y}(\mathcal{D}|1)P_{Y}(1) \\ P_{X|Y}(x_{1},\ldots,x_{n}|0)P_{Y}(0) & > & P_{X|Y}(x_{1},\ldots,x_{n}|1)P_{Y}(1) \end{array}$$

Taking the log on both sides, and using the independence assumption,

$$\log \frac{P_{X|Y}(x_1, \dots, x_n | 0)}{P_{X|Y}(x_1, \dots, x_n | 1)} + \log \frac{P_Y(0)}{P_Y(1)} > 0$$

$$[\nu(\theta_0) - \nu(\theta_1)] \sum_i T(x_i) - n[A(\theta_0) - A(\theta_1)] + \log \frac{\pi_0}{\pi_1} > 0$$

$$s_n > \frac{1}{[\nu(\theta_0) - \nu(\theta_1)]} \left([A(\theta_0) - A(\theta_1)] + \frac{1}{n} \log \frac{\pi_1}{\pi_0} \right),$$

where we have assumed that $\nu(\theta_0) \ge \nu(\theta_1)$. Therefore, the threshold is, $T = \frac{1}{[\nu(\theta_0) - \nu(\theta_1)]} \left([A(\theta_0) - A(\theta_1)] + \frac{1}{n} \log \frac{\pi_1}{\pi_0} \right)$.

2.a) The log-likelihood function is

$$\mathcal{L}(\theta) = \log(\theta) \sum_{i} x_i + \log(1 - \theta) \sum_{i} (1 - x_i)$$

and has zero derivative, with respect to θ , when

$$\frac{1}{\theta} \sum_{i} x_{i} = \frac{1}{1 - \theta} \sum_{i} (1 - x_{i})$$
$$\sum_{i} x_{i} - \theta \sum_{i} x_{i} = n\theta - \theta \sum_{i} x_{i}$$

from which

$$\theta_{ML} = \frac{1}{n} \sum_{i} x_i. \tag{1}$$

Also we check the second order derivative.

$$\frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta^2} = -\frac{1}{\theta^2} \sum_i x_i - \frac{1}{(1-\theta)^2} \sum_i (1-x_i) \le 0,$$

from which we have a maximum at θ_{ML} .

b) Solving the transformation for γ , we have

$$\begin{array}{rcl} (1-\theta)e^{\gamma} & = & \theta \\ \theta(1+e^{\gamma}) & = & e^{\gamma} \\ \theta & = & \frac{e^{\gamma}}{1+e^{\gamma}} = \frac{1}{1+e^{-\gamma}}. \end{array}$$

It follows that

$$P_X(x;\gamma) = \left(\frac{e^{\gamma}}{1+e^{\gamma}}\right)^x \left(\frac{1}{1+e^{\gamma}}\right)^{1-x}$$
$$= \frac{1}{1+e^{\gamma}}e^{\gamma x}.$$

c) The log-likelihood function is

$$\mathcal{L}(\gamma) = -n\log(1+e^{\gamma}) + \gamma \sum_{i} x_{i}$$

and has zero derivative, with respect to γ , when

$$\sum_{i} x_{i} = n \frac{e^{\gamma}}{1 + e^{\gamma}}$$

$$\frac{e^{\gamma}}{1 + e^{\gamma}} = \frac{1}{n} \sum_{i} x_{i} = \theta_{ML}$$

from which

$$\gamma_{ML} = \log \left(\frac{\theta_{ML}}{1 - \theta_{ML}} \right). \tag{2}$$

Also we check the second order derivative.

$$\frac{\partial^2 \mathcal{L}(\gamma)}{\partial \gamma^2} = -n \frac{e^{\gamma}}{\left(1 + e^{\gamma}\right)^2} \le 0,$$

from which we have a maximum at γ_{ML} .

c) The log-likelihood function with respect to γ is

$$\mathcal{L}(\gamma) = \sum_{i} \log P_X(x_i; \gamma)$$

and has zero derivative when

$$\sum_{i} \frac{1}{P_X(x_i; \gamma)} \frac{d}{d\gamma} P_X(x_i; \gamma) = 0.$$

 γ_{ML} is the solution of this equation. The log-likelihood function with respect to θ is

$$\mathcal{L}(\theta) = \sum_{i} \log P_X(x_i; f(\theta))$$

and has zero derivative when

$$0 = \sum_{i} \frac{1}{P_X(x_i; f(\theta))} \frac{d}{d\gamma} P_X(x_i; \gamma) \Big|_{\gamma = f(\theta)} \frac{d}{d\theta} f(\theta)$$
$$0 = \frac{d}{d\theta} f(\theta) \left[\sum_{i} \frac{1}{P_X(x_i; \gamma)} \frac{d}{d\gamma} P_X(x_i; \gamma) \right]_{\gamma = f(\theta)}.$$

Since $f(\theta)$ is an invertible transformation, this holds if and only if

$$0 = \left[\sum_{i} \frac{1}{P_X(x_i; \gamma)} \frac{d}{d\gamma} P_X(x_i; \gamma) \right]_{\gamma = f(\theta)}$$

i.e. if and only if $f(\theta) = \gamma_{ML}$. Hence,

$$\gamma_{ML} = f(\theta_{ML}).$$

3. a) According to bayes decision rule, the optimal decision function, under the "0/1" loss is "pick 1 over 2" if

$$\begin{array}{rcl} P_{Y|X}(1|x) &>& P_{Y|X}(2|x) \\ P_{X|Y}(x|1)P_{Y}(1) &>& P_{X|Y}(x|2)P_{Y}(2) \\ P_{X|Y}(x|1) &>& P_{X|Y}(x|2) \text{ (as the priors are equal)} \end{array}$$

Taking Log on both sides,

$$\log P_{X|Y}(x|1) - \log P_{X|Y}(x|2) > 0$$

$$(x - \mu_2)^T \Sigma^{-1}(x - \mu_2) - (x - \mu_1)^T \Sigma^{-1}(x - \mu_1) > 0$$

$$2(\mu_2 - \mu_2)^T \Sigma^{-1} x - (\mu_1 - \mu_2)^T \Sigma^{-1}(\mu_1 - \mu_2) > 0$$

$$\Rightarrow (\mu_1 - \mu_2)^T \Sigma^{-1} \left(x - \frac{1}{2}(\mu_1 + \mu_2) \right) > 0$$

So the decision boundary can be expressed as a hyperplane, $w^{T}(x - x_0) = 0$, where w is the normal and x_0 is a point in the hyperplane, with

$$w = \Sigma^{-1}(\mu_1 - \mu_2) \tag{3}$$

$$x_0 = \frac{1}{2}(\mu_1 + \mu_2) \tag{4}$$

b) In this case

$$\hat{w} = \Sigma^{-1}(\hat{\mu}_1 - \hat{\mu}_2)$$

 $\hat{x}_0 = \frac{1}{2}(\hat{\mu}_1 + \hat{\mu}_2)$

and

$$E_{X_1,...,X_{2n}}[\hat{w}] = \Sigma^{-1}(E_{X_1,...,X_{2n}}[\hat{\mu}_1] - E_{X_1,...,X_{2n}}[\hat{\mu}_2])$$

$$E_{X_1,...,X_{2n}}[\hat{x}_0] = \frac{1}{2}(E_{X_1,...,X_{2n}}[\hat{\mu}_1] + E_{X_1,...,X_{2n}}[\hat{\mu}_2]).$$

Hence, \hat{w} and \hat{x}_0 are both unbiased if and only if

$$\begin{cases} \Sigma^{-1}(E_{X_1,\dots,X_{2n}}[\hat{\mu}_1] - E_{X_1,\dots,X_{2n}}[\hat{\mu}_2]) = \Sigma^{-1}(\mu_1 - \mu_2) \\ \frac{1}{2}(E_{X_1,\dots,X_{2n}}[\hat{\mu}_1] + E_{X_1,\dots,X_{2n}}[\hat{\mu}_2]) = \frac{1}{2}(\mu_1 + \mu_2) \end{cases}$$

or

$$\begin{cases} E_{X_1,\dots,X_{2n}}[\hat{\mu}_1] - E_{X_1,\dots,X_{2n}}[\hat{\mu}_2] = \mu_1 - \mu_2 \\ E_{X_1,\dots,X_{2n}}[\hat{\mu}_1] = \mu_1 + \mu_2 - E_{X_1,\dots,X_{2n}}[\hat{\mu}_2] \end{cases}$$

or

$$\left\{ \begin{array}{l} E_{X_1,...,X_{2n}}[\hat{\mu}_2] = \mu_2 \\ E_{X_1,...,X_{2n}}[\hat{\mu}_1] = \mu_1 \end{array} \right.$$

Hence, both $\hat{\mu}_i$ have to be unbiased.

c) In this case, we only need

$$\Sigma^{-1}(E_{X_1,\dots,X_{2n}}[\hat{\mu}_1] - E_{X_1,\dots,X_{2n}}[\hat{\mu}_2]) = \Sigma^{-1}(\mu_1 - \mu_2).$$

Since Σ is invertible, this is equivalent to

$$E_{X_1,...,X_{2n}}[\hat{\mu}_1] - E_{X_1,...,X_{2n}}[\hat{\mu}_2] = \mu_1 - \mu_2.$$

The $\hat{\mu}_i$ do not have to be unbiased, since \hat{w} will be unbiased as long the bias is a common constant, i.e.

$$E_{X_1,...,X_{2n}}[\hat{\mu}_1] = \mu_1 + \alpha$$

 $E_{X_1,...,X_{2n}}[\hat{\mu}_2] = \mu_2 + \alpha$

where α is some non-zero vector.

d) In this case, we need

$$\mathbf{\Phi} \mathbf{\Lambda} \mathbf{\Phi}^T (E_{X_1, \dots, X_{2n}} [\hat{\mu}_1] - E_{X_1, \dots, X_{2n}} [\hat{\mu}_2]) = \mathbf{\Phi} \mathbf{\Lambda} \mathbf{\Phi}^T (\mu_1 - \mu_2).$$

or, using the fact that Φ is invertible,

$$\mathbf{\Lambda}\mathbf{\Phi}^{T}(E_{X_{1},...,X_{2n}}[\hat{\mu}_{1}] - E_{X_{1},...,X_{2n}}[\hat{\mu}_{2}]) = \mathbf{\Lambda}\mathbf{\Phi}^{T}(\mu_{1} - \mu_{2}).$$

Let $\mathbf{a} = \mathbf{\Phi}^T(E_{X_1,...,X_{2n}}[\hat{\mu}_1] - E_{X_1,...,X_{2n}}[\hat{\mu}_2])$, $\mathbf{b} = \mathbf{\Phi}^T(\mu_1 - \mu_2)$. Since the rows of $\mathbf{\Phi}^T$ are the eigenvectors of $\mathbf{\Sigma}^{-1}$, \mathbf{a} and \mathbf{b} are the vectors of coefficients of the projections of $(E_{X_1,...,X_{2n}}[\hat{\mu}_1] - E_{X_1,...,X_{2n}}[\hat{\mu}_2])$ and $(\mu_1 - \mu_2)$ into the eigenvector basis. Furthermore, because the last n - k eigenvalues are zero, the same holds for the last n - k entries of $\mathbf{A}\mathbf{a}$ and $\mathbf{A}\mathbf{b}$. This implies that the estimate of \mathbf{w} will be unbiased independently of the values of the last n - k entries of \mathbf{a} and \mathbf{b} . It follows that the only requirement for an unbiased \mathbf{w} is that the projections of the mean estimates into the subspace of eigenvectors of non-zero eigenvalue be unbiased up to some common vector,

$$E_{X_1,\dots,X_{2n}}[\mathbf{\Psi}\hat{\mu}_1] = \mathbf{\Psi}\mu_1 + \alpha$$

$$E_{X_1,\dots,X_{2n}}[\mathbf{\Psi}\hat{\mu}_2] = \mathbf{\Psi}\mu_2 + \alpha$$

where α is some non-zero vector and Ψ a $k \times d$ matrix whose rows are the eigenvectors of Σ^{-1} of non-zero eigenvalue.