Report No: CCISE170711602

FCC REPORT

(Bluetooth)

Applicant: PAUL ESCOBAR DUQUE (NEW INVENTS)

Address of Applicant: Pasaje OE-5E N58-09 y Mariano Godoy

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: K3

Trade mark: Ciro

FCC ID: 2AFM5K3

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 03 Jul., 2017

Date of Test: 03 Jul., to 06 Jul., 2017

Date of report issued: 07 Jul., 2017

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	07 Jul., 2017	Original

Tested by: Zora Lee Date: 07 Jul., 2017

Test Engineer

Reviewed by: Date: 07 Jul., 2017

Project Engineer

3 Contents

		F	Page
1	С	OVER PAGE	1
2	٧	/ERSION	2
3	С	CONTENTS	3
	_	EST SUMMARY	
4	I	EST SUMMARY	4
5	G	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE	7
	5.4	Measurement Uncertainty	7
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	T	EST RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement	9
	6.2	CONDUCTED EMISSIONS	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	20dB Occupy Bandwidth	
	6.5	CARRIER FREQUENCIES SEPARATION.	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME	
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9	BAND EDGE	
		.9.1 Conducted Emission Method	
	_	.9.2 Radiated Emission Method	
	6.10	Spurious Emission	
	•	.10.2 Radiated Emission Method	
_			
7	Т	EST SETUP PHOTO	62
8	Е	UT CONSTRUCTIONAL DETAILS	63

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Spurious Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Report No: CCISE170711602

5 General Information

5.1 Client Information

Applicant:	PAUL ESCOBAR DUQUE (NEW INVENTS)
Address of Applicant:	Pasaje OE-5E N58-09 y Mariano Godoy
Manufacturer/ Factory	Candy High-Tech (H.K) Limited
Address of Manufacturer/ Factory:	Room 4007, 4 Floor, East block 3,Laobing building , 3012 Xingye Road , Xixiang ,Baoan district ,Shenzhen

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	Ciro
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	0.8 dBi
Power supply:	Rechargeable Li-ion Battery DC 3.7 V-600 mAh
AC adapter:	Model: K3 Input: AC100-240V 50/60Hz 0.15 A Output: DC 5.0V, 0.05A

Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz	
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz	
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz	
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz	
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz	
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz	
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz	
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz	
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz	
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz	
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz	
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz	
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz	
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz	
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz	
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz	
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz	
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz	
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz	
19	2421MHz	39	2441MHz	59	2461MHz			
Remark: Cl	nannel 0, 39 &7	8 selected fo	or GFSK, π/4-D	QPSK and 8	BDPSK.			

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark	GFSK (1 Mbps) is the worst case mode.

Report No: CCISE170711602

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

■ IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Website: http://www.ccis-cb.com

Tel: +86-755-23118282 Fax:+86-755-23116366 Email: info@ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE170711602

5.7 Test Instruments list

Radia	Radiated Emission:									
Item	Test Equipment	Manufacturer	Manufacturer Model No.		Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017				
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018				
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018				
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018				
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018				
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018				
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018				
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018				
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018				
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018				
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				
12	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018				
13	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018				

Cond	Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017					
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018					
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018					
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018					
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A					

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 0.8 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 1	5.207				
Test Method:	ANSI C63.4:2014					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz Sweep time=auto				
Limit:	Frequency range	Limit (dBuV)			
LIIIII.	(MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the log	arithm of the frequency.				
Test setup:	Reference	Plane				
	AUX Equipment Remark E.U.T Remark E.U.T EMI Receiver Remark E.U.T Equipment Under Test LISN. Line Impedence Stabilization Network Test table height=0.8m					
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Bluetooth (Continuous transmitting) mode					
Test results:	Pass					

Measurement Data:

Line:

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition : smart phone EUT : K3 Model

Test Mode: BI mode
Power Rating: AC 120/60Hz
Environment: Temp: 23 'C Huni:56% Atmos:101KPa
Test Engineer: Zora

Remark

Freq			Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∜	<u>dB</u>	₫B	dBu₹	dBu∜	<u>dB</u>	
0.190	42.86	-0.53	10.76	53.09	64.02	-10.93	QP
0.194	29.52	-0.52	10.76	39.76	53.84	-14.08	Average
0.318	37.82	-0.51	10.74	48.05	59.75	-11.70	QP
0.318	27.95	-0.51	10.74	38.18	49.75	-11.57	Average
0.369	34.34	-0.50	10.73	44.57	58.52	-13.95	QP
0.377	22.29	-0.50	10.72	32.51	48.34	-15.83	Average
0.447	21.41	-0.50	10.74	31.65	46.93	-15.28	Average
0.510	33.25	-0.49	10.76	43.52	56.00	-12.48	QP
0.510	21.26	-0.49	10.76	31.53	46.00	-14.47	Average
0.694	17.51	-0.48	10.77	27.80	46.00	-18.20	Average
0.697	31.77	-0.48	10.77	42.06	56.00	-13.94	QP
0.876	30.30	-0.49	10.83	40.64	56.00	-15.36	QP
	MHz 0. 190 0. 194 0. 318 0. 318 0. 369 0. 377 0. 447 0. 510 0. 550 0. 694 0. 697	MHz dBuV 0.190 42.86 0.194 29.52 0.318 37.82 0.318 27.95 0.369 34.34 0.377 22.29 0.447 21.41 0.510 33.25 0.510 21.26 0.694 17.51 0.697 31.77	MHz dBuV dB 0.190 42.86 -0.53 0.194 29.52 -0.52 0.318 37.82 -0.51 0.318 27.95 -0.51 0.369 34.34 -0.50 0.377 22.29 -0.50 0.447 21.41 -0.50 0.510 33.25 -0.49 0.510 21.26 -0.49 0.694 17.51 -0.48 0.697 31.77 -0.48	MHz dBuV dB dB 0.190 42.86 -0.53 10.76 0.194 29.52 -0.52 10.76 0.318 37.82 -0.51 10.74 0.318 27.95 -0.51 10.74 0.369 34.34 -0.50 10.73 0.377 22.29 -0.50 10.72 0.447 21.41 -0.50 10.74 0.510 33.25 -0.49 10.76 0.510 21.26 -0.49 10.76 0.694 17.51 -0.48 10.77 0.697 31.77 -0.48 10.77	MHz dBuV dB dB dBuV 0.190 42.86 -0.53 10.76 53.09 0.194 29.52 -0.52 10.76 39.76 0.318 37.82 -0.51 10.74 48.05 0.318 27.95 -0.51 10.74 38.18 0.369 34.34 -0.50 10.73 44.57 0.377 22.29 -0.50 10.72 32.51 0.447 21.41 -0.50 10.74 31.65 0.510 33.25 -0.49 10.76 31.53 0.694 17.51 -0.48 10.77 27.80 0.697 31.77 -0.48 10.77 42.06	MHz dBuV dB dB dBuV dBuV 0.190 42.86 -0.53 10.76 53.09 64.02 0.194 29.52 -0.52 10.76 39.76 53.84 0.318 37.82 -0.51 10.74 48.05 59.75 0.318 27.95 -0.51 10.74 38.18 49.75 0.369 34.34 -0.50 10.73 44.57 58.52 0.377 22.29 -0.50 10.72 32.51 48.34 0.447 21.41 -0.50 10.74 31.65 46.93 0.510 33.25 -0.49 10.76 31.53 46.00 0.502 21.26 -0.49 10.76 31.53 46.00 0.694 17.51 -0.48 10.77 27.80 46.00 0.697 31.77 -0.48 10.77 42.06 56.00	MHz dBuV dB dB dBuV dBuV dB 0.190 42.86 -0.53 10.76 53.09 64.02 -10.93 0.194 29.52 -0.52 10.76 39.76 53.84 -14.08 0.318 37.82 -0.51 10.74 48.05 59.75 -11.70 0.318 27.95 -0.51 10.74 38.18 49.75 -11.57 0.369 34.34 -0.50 10.73 44.57 58.52 -13.95 0.377 22.29 -0.50 10.72 32.51 48.34 -15.83 0.447 21.41 -0.50 10.74 31.65 46.93 -15.28 0.510 33.25 -0.49 10.76 31.53 46.00 -12.48 0.510 21.26 -0.49 10.76 31.53 46.00 -14.47 0.694 17.51 -0.48 10.77 27.80 46.00 -18.20 0.697 31.77 -

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Trace: 5

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Site Condition

EUT smart phone

Model K3 Test Mode : BT mode Power Rating : AC 120/60Hz

Temp: 23 °C Huni:56% Atmos:101KPa Environment :

Test Engineer: Zora

Remark

	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	₫B	dBu∜	dBu∜	<u>dB</u>	
1	0.162	40.28	-0.37	10.77	50.68	65.34	-14.66	QP
2	0.190	42.69	-0.35	10.76	53.10	64.02	-10.92	QP
3	0.190	30.54	-0.35	10.76	40.95	54.02	-13.07	Average
1 2 3 4 5 6 7 8 9	0.253	23.80	-0.33	10.75	34.22	51.64	-17.42	Average
5	0.313	35.53	-0.32	10.74	45.95	59.88	-13.93	QP
6	0.318	25.49	-0.32	10.74	35.91	49.75	-13.84	Average
7	0.373	32.15	-0.32	10.73	42.56	58.43	-15.87	QP
8	0.505	31.39	-0.30	10.76	41.85	56.00	-14.15	QP
9	0.505	19.96	-0.30	10.76	30.42	46.00	-15.58	Average
10	0.634	17.34	-0.30	10.77	27.81	46.00	-18.19	Average
11	0.697	17.44	-0.30	10.77	27.91	46.00	-18.09	Average
12	0.701	29.94	-0.30	10.77	40.41	56.00	-15.59	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)		
Limit:	125 mW(21 dBm)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

GFSK mode					
Test channel					
Lowest	-6.62	30.00	Pass		
Middle	-3.78	30.00	Pass		
Highest	-1.99	30.00	Pass		
_	π/4-DQPSK	mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	-5.35	21.00	Pass		
Middle	-2.48	21.00	Pass		
Highest -1.23		21.00	Pass		
	8DPSK mo	ode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result		
Lowest	Lowest -4.89		Pass		
Middle	-2.02	21.00	Pass		
Highest	-0.99	21.00	Pass		

Test plot as follows:

Date: 6.JUL.2017 11:27:10

Lowest channel

Date: 6.JUL.2017 11:27:54

Middle channel

Date: 6.JUL.2017 11:29:10

Highest channel

Date: 6.JUL.2017 11:38:29

Lowest channel

Date: 6.JUL.2017 11:36:24

Middle channel

Date: 6.JUL.2017 11:35:31

Highest channel

Date: 6.JUL.2017 11:39:44

Lowest channel

Date: 6.JUL.2017 11:40:19

Middle channel

Date: 6.JUL.2017 11:41:05

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak		
Limit:	NA		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	20dB Occupy Bandwidth (kHz)			
rest channel	GFSK	π/4-DQPSK	8DPSK	
Lowest	960	1308	1252	
Middle	952	1304	1252	
Highest	956	1284	1252	

Test plot as follows:

Date: 6.JUL.2017 14:50:08

Lowest channel

Date: 6.JUL.2017 15:28:32

Middle channel

Date: 6.JUL.2017 14:51:18

Highest channel

Date: 6.JUL.2017 14:53:56

Lowest channel

Date: 6.JUL.2017 15:45:04

Middle channel

Date: 6.JUL.2017 14:55:25

Highest channel

Date: 6.JUL.2017 14:58:07

Lowest channel

Date: 6.JUL.2017 15:47:23

Middle channel

Date: 6.JUL.2017 14:56:52

Highest channel

6.5 Carrier Frequencies Separation

	<u>-</u>		
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak		
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)		
Test setup:	O.025MHz or 2/3 of the 20dB bandwidth (whichever is greater) Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

GFSK mode					
Test channel	Test channel Carrier Frequencies Separation (kHz)		Result		
Lowest	1004	960	Pass		
Middle	1004	952	Pass		
Highest	1004	956	Pass		
	π/4-DQPSK mo	de			
Test channel	Test channel Carrier Frequencies Separation (kHz)		Result		
Lowest	1004	872.00	Pass		
Middle	1004	872.00	Pass		
Highest	Highest 1004		Pass		
	8DPSK mode				
Test channel	Test channel Carrier Frequencies Separation (kHz)		Result		
Lowest	Lowest 1004		Pass		
Middle	1004	834.67	Pass		
Highest 1004		834.67	Pass		

Note: According to section 6.4

Mada	20dB bandwidth (kHz)	Limit (kHz) (Carrier Frequencies Separation)	
Mode	(worse case)		
π/4-DQPSK	1308	872.00	
8DPSK	1252	834.67	

Test plot as follows:

Date: 6.JUL.2017 15:30:37

Lowest channel

Date: 6.JUL.2017 15:32:13

Middle channel

Date: 6.JUL.2017 15:33:50

Highest channel

Date: 6.JUL.2017 15:37:53

Lowest channel

Date: 6.JUL.2017 15:40:22

Middle channel

Date: 6.JUL.2017 15:43:26

Highest channel

Date: 6.JUL.2017 15:50:44

Lowest channel

Date: 6.JUL.2017 16:32:20

Middle channel

Date: 6.JUL.2017 16:34:08

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and DA00-705		
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak		
Limit:	15 channels		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

Date: 6.JUL.2017 16:58:11

Date: 6.JUL.2017 17:01:57

Date: 6.JUL.2017 17:12:16

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and KDB DA00-705		
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak		
Limit:	0.4 Second		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data (Worse case):

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.13440		
GFSK	DH3	0.26976	0.4	Pass
	DH5	0.31487		
	2-DH1	0.13284		
π/4-DQPSK	2-DH3	0.26880	0.4	Pass
	2-DH5	0.31232		
	3-DH1	0.13371		
8DPSK	3-DH3	0.26976	0.4	Pass
	3-DH5	0.31317		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.420*(1600/ (2*79))*31.6=134.40ms DH3 time slot=1.686*(1600/ (4*79))*31.6=269.76ms DH5 time slot=2.952*(1600/ (6*79))*31.6=314.87ms

2-DH1 time slot=0.414*(1600/(2*79))*31.6=132.84ms

2-DH3 time slot=1.680*(1600/ (4*79))*31.6=268.80ms

2-DH5 time slot=2.928*(1600/ (6*79))*31.6=312.32ms

3-DH1 time slot=0.418*(1600/ (2*79))*31.6=133.71ms

3-DH3 time slot=1.686*(1600/ (4*79))*31.6=269.76ms

3-DH5 time slot=2.936*(1600/ (6*79))*31.6=313.17ms

Test plot as follows:

Date: 6.JUL.2017 16:55:32

DH1

Date: 6.JUL.2017 16:54:45

DH3

Date: 6.JUL.2017 16:53:33

DH5

Date: 6.JUL.2017 16:38:34

2-DH1

Date: 6.JUL.2017 16:47:54

2-DH3

Date: 6.JUL.2017 16:50:19

2-DH5

Date: 6.JUL.2017 16:36:57

*

3-DH1

Date: 6.JUL.2017 16:49:00

3-DH3

Date: 6.JUL.2017 16:51:25

3-DH5

Report No: CCISE170711602

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and DA00-705
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass

Test plot as follows:

GFSK

Lowest Channel

No-hopping mode

Hopping mode

Highest Channel

Date: 6.JUL.2017 14:34:49

Date: 6.JUL.2017 14:37:31

No-hopping mode

Hopping mode

π/4-DQPSK

Lowest Channel

Date: 6.JUL.2017 14:22:17

Date: 6.JUL.2017 14:24:42

No-hopping mode

Hopping mode

Highest Channel

Date: 6.JUL.2017 14:30:04

Date: 6.JUL.2017 14:33:01

No-hopping mode

Hopping mode

8DPSK

Lowest Channel

Date: 6.JUL.2017 11:56:29

Date: 6.JUL.2017 12:01:42

No-hopping mode

Hopping mode

Highest Channel

Date: 6.JUL.2017 11:46:26

Date: 6.JUL.2017 11:55:07

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205						
Test Method:	ANSI C63.10: 2013								
Test Frequency Range:	2.3GHz to 2.50	GHz							
Test site:	Measurement	Distance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
·	AL 4011	Peak	1MHz	3MHz	Peak Value				
	Above 1GHz	RMS	1MHz	3MHz	Average Value				
Limit:	Frequen		nit (dBuV/m @:		Remark				
			54.00		Average Value				
	Above 10	SHZ -	74.00		Peak Value				
		(Turntable)	Ground Reference Plane	n Antenna To	ower				
Test Procedure:	ground at a determine the second at a determine the second antenna, who tower. 3. The antennating ground to de horizontal at measureme 4. For each surand then the and the rotal maximum resumments. The test-recond Specified Bases 6. If the emission limit specified EUT would a 10dB marginist.	a meter camber of the position	er. The table wante highest radials away from the ted on the top of the ted on the top of the ted on the EUT was set to Peak Maximum Hold EUT in peak me could be stoppetherwise the entitle of the ted from the ted	as rotated 36 ation. interference of a variable-leter to four most the field stantenna are as arranged as from 1 meters to 360 d Detect Fundamental Detect Fundament	e-receiving height antenna seters above the crength. Both e set to make the to its worst case ter to 4 meters egrees to find the etion and dB lower than the beak values of the did not have ak, quasi-peak or				
Test Instruments:	Refer to sectio								
Test mode:	Non-hopping m								
Test results:	Passed								
Pomork:	-								

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

GFSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : smart phone

Model : K3

Test mode : DH1-L mode

Power Rating: AC120V/60Hz
Environment: Temp:25.5°C Huni:55% 101KPa
Test Engineer: Zora
REMARK:

			Antenna Factor						
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000				700 100 70 000	48.08 37.53			

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : smart phone : K3 Model

Test mode : DH1-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5 C

Huni:55% 101KPa

Test Engineer: Zora REMARK :

טומווני			Antenna Factor						Pomork
	rreq	rever	ractor	LUSS	ractor	rever	Line	TIMIT	Kemark
-	MHz	dBu₹	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000					48.55 37.49			

Test channel: Highest

Horizontal:

Site Condition EUT : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL

: smart phone

Model : K3

Test mode : DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: Zora

Huni:55% 101KPa

REMARK

	Freq		Antenna Factor						
	MHz	dBu∜	dB/m	d <u>B</u>	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : smart phone Model

Test mode : DH1-H mode

Power Rating: AC120V/60Hz
Environment: Temp:25.5°C Huni:55% 101KPa
Test Engineer: Zora
REMARK:

			Antenna Factor						
-		dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBu√/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT smart phone Model

Test mode : 2DH1-L mode Power Rating : AC120V/60Hz

Environment: Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora REMARK :

	Freq		Antenna Factor						Remark
	MHz	dBu₹	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000								
2	2390.000	1.54	25.45	4.69	0.00	37.48	54.00	-16.52	Average

Site Condition EUT

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL

: NJ
Test mode : 2DH1-L mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Zora
REMARK : : smart phone

JAM.	r :	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						Remark
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	dB	dBuV/m	dBuV/m	dB	
1	2390.000	17.07	25.45	4.69	0.00	47.21	74.00	-26.79	Peak
2	2390.000	7.31	25.45	4.69	0.00	37.45	54.00	-16.55	Average

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : smart phone Model : K3

Test mode : 2DH1-H mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C Test Engineer: Zora

Huni:55% 101KPa

REMARK

			ReadAntenna Cable Level Factor Loss I						
	MHz	MHz	dBu∜	dB/m	dB	<u>dB</u>	dB dBuV/m dBuV/m d	<u>dB</u>	
1 2	2483.500 2483.500								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition EUT

: FCC PART 15
EUT : smart phone
Model : K3
Test mode : 2DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: Zora
REMARK :

Huni:55% 101KPa

1 2

UIG									
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∜	$\overline{dB/m}$	<u>dB</u>	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
	2483.500	20.78	25.66	4.81	0.00	51.25	74.00	-22.75	Peak
	2483.500	8.03	25.66	4.81	0.00	38.50	54.00	-15.50	Average

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

: smart phone : K3 EUT : AJ

lest mode : 3DH1-L mode

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C

Test Engineer: Zora

REMARK :

Huni:55% 101KPa

			Antenna Factor						Remark	
-	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBu√/m	dBu√/m	dB		-
1 2	2390.000 2390.000									

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

: smart phone EUT

Model : K3
Test mode : 3DH1-L mode
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C

Huni:55% 101KPa

Test Engineer: Zora REMARK :

mund		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∜	$\overline{}\overline{dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	$\overline{\mathtt{dBuV/m}}$	dBuV/m	<u>dB</u>	
	2390.000 2390.000								

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL

Site Condition EUT : K3
Test mode : 3DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Zora
REMARK : : smart phone

	Freq		Antenna Factor						Remark	
_	MHz	dBu₹	dB/m	<u>d</u> B	dB	dBu√/m	dBu√/m	<u>dB</u>		
	2483.500 2483.500									

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition EUT

: NJ
Test mode : 3DH1-H mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55% 101KPa
Test Engineer: Zora
REMARK : : smart phone

	Freq		Antenna Factor						
	MHz	dBu₹	$-\overline{dB}/\overline{m}$	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and DA00-705							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 5.7 for details							
Test mode:	Non-hopping mode							
Test results:	Pass							

Test plot as follows:

Date: 6.JUL.2017 18:57:58

30MHz~25GHz

Date: 6.JUL.2017 18:59:34

30MHz~25GHz

Date: 6.JUL.2017 19:01:09

30MHz~25GHz

π/4-DQPSK

Date: 6.JUL.2017 19:02:43

30MHz~25GHz

Date: 6.JUL.2017 19:04:17

30MHz~25GHz

Date: 6.JUL.2017 19:05:51

30MHz~25GHz

Date: 6.JUL.2017 19:09:14

30MHz~25GHz

Date: 6.JUL.2017 19:10:51

30MHz~25GHz

Date: 6.JUL.2017 19:12:14

30MHz~25GHz

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission M	lethod									
Test Requirement:	FCC Part 15 C Section 15.209									
Test Method:	ANSI C63.10: 2	013								
Test Frequency Range:	9 kHz to 25 GH	Z								
Test site:	Measurement D	Measurement Distance: 3m								
Receiver setup:	Frequency Detector RBW VBW Remark									
	30MHz-1GHz	Quasi-pe	ak	120kHz	300kl	Ηz	Quasi-peak Value			
	Above 1GHz	Peak		1MHz	ЗМН	lz	Peak Value			
	Above 10112	RMS		1MHz	ЗМН	z	Average Value			
Limit:	Frequenc	у	Lim	it (dBuV/m @	93m)		Remark			
	30MHz-88N	1Hz		40.0		(Quasi-peak Value			
	88MHz-216	ИНz		43.5		(Quasi-peak Value			
	216MHz-960	MHz		46.0		(Quasi-peak Value			
	960MHz-10	SHz		54.0		(Quasi-peak Value			
	Above 1GI	H2 -		54.0			Average Value			
	7,5575 131	12		74.0			Peak Value			
	Above 1GHz 54.0 Average Val						Search Antenna Test ceiver			

1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz) Test Procedure: /1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 5.7 for details Test mode: Non-hopping mode Test results: Pass

Report No: CCISE170711602

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) VERTICAL Condition

EUT : smart phone

Model : K3 Test mode : BT mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55% 101KPa

Test Engineer: Zora REMARK :

Dummer	•								
	Freq		Antenna Factor						
	MHz	——dBu₹	— <u>d</u> B/m		<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1	30.745	53.98	11.20	0.78	29.98	35.98	40.00	-4.02	QP
2	95.762	46.82	11.40	2.01	29.55	30.68	43.50	-12.82	QP
3	104.170	46.92	12.12	1.99	29.50	31.53	43.50	-11.97	QP
4 5	121.549	51.24	10.30	2.19	29.38	34.35	43.50	-9.15	QP
	636.134	43.56	18.55	3.88	28.82	37.17	46.00	-8.83	QP
6	721.726	39.98	19.58	4.26	28.58	35.24	46.00	-10.76	QP

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) HORIZONTAL Condition

EUT : smart phone

Model : K3
Test mode : BT mode
Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55% 101KPa Test Engineer: Zora

REMARK

	Freq		Antenna Factor						Remark
_	MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	30.531	54.77	11.20	0.78	29.98	36.77	40.00	-3.23	QP
2	70.584	44.67	9.86	1.54	29.72	26.35	40.00	-13.65	QP
2	119.856	47.52	10.30	2.17	29.39	30.60	43.50	-12.90	QP
4	190.405	47.99	10.40	2.80	28.90	32.29	43.50	-11.21	QP
5	408.946	46.56	15.05	3.10	28.80	35.91	46.00	-10.09	QP
6	677.580	46.12	18.56	4.04	28.72	40.00	46.00	-6.00	QP

Above 1GHz:

Te	st channel:	1	Lowest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	43.15	35.99	6.80	41.81	44.13	74.00	-29.87	Vertical	
4804.00	43.22	35.99	6.80	41.81	44.20	74.00	-29.80	Horizontal	
Te	st channel:	•	Low	vest	Le	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	34.06	35.99	6.80	41.81	35.04	54	-18.96	Vertical	
4804.00	34.41	35.99	6.80	41.81	35.39	54	-18.61	Horizontal	

Te	st channel:		Middle		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	45.05	36.38	6.86	41.84	46.45	74.00	-27.55	Vertical	
4882.00	45.90	36.38	6.86	41.84	47.30	74.00	-26.70	Horizontal	
Te	st channel:	•	Middle		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	35.86	36.38	6.86	41.84	37.26	54.00	-16.74	Vertical	
4882.00	36.07	36.38	6.86	41.84	37.47	54.00	-16.53	Horizontal	

Te	st channel:		High	nest	Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	46.39	36.71	6.91	41.87	48.14	74.00	-25.86	Vertical	
4960.00	45.20	36.71	6.91	41.87	46.95	74.00	-27.05	Horizontal	
Te	st channel:	•	High	nest	Lev	vel:	Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	36.59	36.71	6.91	41.87	38.34	54.00	-15.66	Vertical	
4960.00	36.43	36.71	6.91	41.87	38.18	54.00	-15.82	Horizontal	

Remark.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.