Розширення мови SIPL вказівниками Чудаков Семен, ШІ-1

1 Загальний опис розширення

У цій роботі описане розширення мови SIPL, що додає до неї вказівники. Вказівником у цьому розширенні є змінна, що має ім'я у якості свого значення. Також у розширенні додане поняття складної змінної, що дозволяє ефективно конструювати складні вхідні стани для програм розширення. Для роботи із вказівниками та складними змінними у мову додані операції складного та обчислювального присвоєння. Наведене нижче розширення є обмеженим через те, що не дозволяє створювати нові вказівники у вхідному стані тв використовувати значення змінної, на яку вказує вказівник в арифметичних та булевих виразах.

2 Синтаксис розширення

2.1 БНФ

Ліва частина правила	Права частина правила	Ім'я правила
<програма> ::=	begin <oператор> end </oператор>	NP1
	<змінна> := <вираз>	NS2
	<складна_змінна> &= <вираз>	NS3
	<змінна> ^ = <вираз>	NS4
<оператор> ::=	<складна_змінна> ^ = <вираз>	NS5
	<ператор>; <ператор>	NS6
	if <умова> then <опер.> else <опер.>	NS7
	while <умова> do <оператор>	NS8

	begin <oператор> end </oператор>	NS9
	skip	NS10
	<число>	NA1
Zpunoo> ''-	<змінна>	NA2
<вираз> ::=	<вираз> + <вираз>	NA3
	<вираз> — <вираз>	NA4
	<вираз> * <вираз>	NA5
	(<вираз>)	NA6
	<складна_змінна>⇒	NA7
	<вираз> = <вираз>	NB1
<yмова> ::=</yмова>	<вираз> > <вираз>	NB2
	<вираз> <> <вираз>	NB3
	<yмова> V <yмова> </yмова></yмова>	NB4
	¬ <умова>	NB5
	(<ymoba>)</ymoba>	NB6
<поло> ::=	-1 0 1	NN
<ім'я> ::=	p1 null	NNA
<змінна> ::=	M N	NV
<складна_змінна> ::=	<змінна>.<змінна>	NCV

2.2 Метазмінні

Метазмінна	Синтаксична категорія	Нова мета- змінна
<програма>	Prog	Р
<оператор>	Stm	S
<вираз>	Aexp	a
<умова>	Bexp	b
<опомер <	Num	n
<ім'я>	Name	na
<змінна>	Var	X
<складна_змінна>	CNum	cx

2.3 БНФ в термінах метазмінних

Ліва частина правила	Права частина правила	Ім'я правила
<p> ::=</p>	begin S end	P1
	x := a	S1
	cx &= a	S1
	$\mathbf{x} = \mathbf{a}$	S2
S ::=	$egin{array}{ll} \mathbf{x} \hat{\ } = \mathbf{a} \mid & \\ \mathbf{c} \mathbf{x} \hat{\ } = \mathbf{a} \mid & \\ \end{array}$	S3
	S1; S2	S4
	if b then S1 else S2	S5

	while b do S	S6
	begin S end	S7
	skip	S8
	n	A1
a ::=	x	A2
a—	a1 + a2	A3
	a1 - a2	A4
	a1 * a2	A5
	(a)	A6
	$cx\Rightarrow$	A8
	a1 = a2	B1
b ::=	a1 > a2	B2
	a1 <> a2	В3
	b1 ∨ b2	B4
	¬ b	B5
	(b)	В6
n ::=	-1 0 1	NN
na ::=	p1 null	NNA
x ::=	M N	NV
cx ::=	X.X	NCV

3 Композиційна семантика розширення

3.1 Дані

- 1. $Int = \{\ldots, -1, 0, 1, 2, \ldots\};$
- 2. $Name = \{..., p1, null, ...\};$
- 3. $Bool = \{true, false\}$
- 4. $Var = \{..., M, N, ...\}$
- 5. $CVar = \bigcup_{i=-\infty}^{\infty} \{\dots, M.i, N.i, \dots\}$
- 6. $State = Var \cup CVar \rightarrow Int \cup Name$

3.2 Операції

- 1. Параметрична функція-константа арифметичного типу $\overline{n}(st) = n$.
- 2. Параметрична функція-константа іменного типу $\overline{name}(st) = name$.
- 3. Операція іменування $\Rightarrow x: Int \cup Name \rightarrow State$
- 4. Операція розіменування $x \Rightarrow State \rightarrow Int \cup Name$
- 5. Операція складного розіменування $x1.x2 \Rightarrow^* (st) = x2 \Rightarrow (x1 \Rightarrow (st)) \ CVar \times State \to Int \cup Name$
- 6. Бінарна операція накладки $\nabla: State^2 \to State$
- 7. Параметрична бінарна операція накладки $\nabla^V: Var \times State \times State \rightarrow State$

3.3 Алгебри

- 1. Алгебра цілих чисел: A_Int = <Int; add, sub, mult>
- 2. Алгебра булевих значень: $A_Bool = <Bool; or, neg>$
- 3. Багатоосновна алгебра мови SIPL: A_Int_Bool_Name_State = <Int, Bool, Name, State; add, sub, mult, or, neg, eq, gr, \Rightarrow x, x \Rightarrow , \overline{n} , id, ∇ , \overline{name} , neq, \Rightarrow *, ∇^V >

3.4 Функції

- 1. Бінарні операції над іменами:
 - $FNNAB = Name^2 \rightarrow Bool$ бінарні функції порівняння.
- 2. Функції над станами змінних:
 - \bullet $FA = State \rightarrow Int$ номінативні арифметичні функції;
 - $FN = State \rightarrow Name$ номінативні іменні функції;
 - $FB = State \rightarrow Bool$ номінативні предикати;
 - $FS = State \rightarrow State$ біномінативні функції-перетворювачі. (трансформатори) станів
- 3. п-арні операції над базовими типами, окрім імен:
 - $FNA = Int^n \rightarrow Int$ n-арні арифметичні функції (операції);
 - $FNB = Bool^n \rightarrow Bool$ n-арні булеві функції (операції);
 - $FNAB = Int^n \rightarrow Bool$ n-арні функції (операції) порівняння.

3.5 Композиції

- 1. Композиції, які пов'язані з номінативними функціями та предикатами:
 - $S^n: FNA \times FA^n \to FA$ суперпозиція номінативних арифметичних функцій у n-арну арифметичну функцію;
 - $S^n: FNAB \times FA^n \to FB$ суперпозиція номінативних арифметичних функцій у n-арну булеву функцію
 - $S^n: FNB \times FB^n \to FB$ суперпозиція номінативних предикатів у п-арну булеву функцію
- 2. Композиції, які пов'язані з біномінативними функціями:
 - $AS^x:FA \to FS$ присвоювання для змінних, який задається формулою:

$$AS^{x}(fa)(st) = st\nabla[x \mapsto fa(st)]$$

• $AS^{x1.x2}:FA o FS$ – складне присвоювання:

$$AS^{x1.x2}(fa)(st) = st\nabla^{x1.x2}fa(st)$$

• $^{\hat{}}AS^x:FN\to FS$ – обчислювальне присвоєння для простих змінних:

$$\hat{A}S^x(fn)(st) = st\nabla[x \to fn(st) => (st)]$$

• $^{\hat{}}AS^{x1.x2}:FN \to FS$ – обчислювальне присвоєння для складних змінних:

$$^{\hat{}}AS^{x1.x2}(fn)(st) = st\nabla^{x1.x2}(fn(st) => (st))$$

ullet $VAL^{x1.x2}:FA o FA$ — взяття значення для складних змінних

$$VAL^{x1.x2}$$
 $(st) = x1.x2 \Rightarrow^* (st) = x2 \Rightarrow (x1 \Rightarrow (st))$

• $FS^2 \to FS$ – оператор послідовного виконання, який задається формулою:

$$(fs_1 \circ fs_2)(st) = fs_2(fs_1(st))$$

• $IF:FB imes FS^2 o FS$ – умовний оператор, який задається формулою:

$$IF(fb,fs_1,fs_2)(st) = egin{cases} fs_1(st), & \text{якщо } fb(st) = true \\ fs_2(st), & \text{якщо } fb(st) = false \end{cases}$$

• $WH: FB \times FS \to FS$ – оператор циклу, який задається індуктивно:

$$WH(fb, fs)(st) = st_n,$$

де
$$st_0 = st$$
, $st_1 = fs(st_0)$, ..., $st_n = fs(st_{n-1})$, причому $fb(st_0) = true$, ... $fb(st_{n-1}) = true$, $fb(st_n) = false$.

4 Правила перетворення програми на семантичний терм

 $Sem_P(begin S end) = Sem_S(S)$ Sem $S(x := a) = AS^x$ (Sem A(a)) Sem $S(x1.x2 \&= a) = AS^{x1.x2}$ (Sem A(a)) $\operatorname{Sem}_{S}(x = a) = AS^{x} (\operatorname{Sem}_{A}(a))$ Sem $S(x1.x2^{\circ} = a) = AS^{x1.x2}$ (Sem A(a)) Sem $S(S1; S2) = Sem S(S1) \circ Sem S(S2)$ Sem S(if b then S1 else S2) = IF(Sem B(b), Sem S(S1), Sem S(S2)) Sem S(while b do S) = WH(Sem B(b), Sem S(S)) Sem S(begin S end) = Sem S(S)Sem S(skip) = idSem $A(n) = \overline{n}$ Sem A(name) = \overline{name} $Sem_A(x) = x \Rightarrow$ Sem $A(x1.x2\Rightarrow) = VAL^{x1.x2}$ $\operatorname{Sem} A(a + b) = S^2 \text{ (add, Sem} A(a), Sem} A(b))$ $Sem_A(a - b) = S^2 (sub, Sem_A(a), Sem_A(b))$

Sem
$$B(a = b) = S^2$$
 (eq. Sem $A(a)$, Sem $A(b)$)

 $\operatorname{Sem} A((a)) = \operatorname{Sem} A(a)$

 $\operatorname{Sem}_A(a * b) = S^2 \text{ (mult, Sem}_A(a), \operatorname{Sem}_A(b))$

$$Sem_B(a <> b) = S^2 \text{ (neq, Sem_A(a), Sem_B(b))}$$

$$Sem_B(a > b) = S^2 \text{ (gr, Sem_A(a), Sem_B(b))}$$

$$Sem_B(a \lor b) = S^2 \text{ (or, Sem_B(a), Sem_B(b))}$$

$$Sem_B(\neg a) = S^1 \text{ (neg, Sem_B(a))}$$

$$Sem_B((b)) = Sem_B(b)$$

5 Операційна семантика розширення

Назва правила	Правило операційної семантики	
Правила для програми та операторів		
PR	$\frac{\langle S, st \rangle \rightarrow st'}{\langle begin \ S \ end, \ st \rangle \rightarrow st'}$	
AS	$ \frac{\langle a, st \rangle \to n}{\langle x := a, st \rangle \to st \nabla[x \to n]} $	
AS&	$ \frac{\langle a, st \rangle \to n}{\langle x1.x2\& = a, st \rangle \to st\nabla^{x1.x2}n} $	
AS^x	$\begin{vmatrix} \langle a, st \rangle \rightarrow n & \langle n, st \rangle \rightarrow m \\ \langle x \hat{} = a, st \rangle \rightarrow st \nabla [x \rightarrow m] \end{vmatrix}$	
$^{}AS^{x1.x2}$		
SEQ	$\frac{\langle S_1, st \rangle \rightarrow st_1}{\langle S_1; S_2, st \rangle \rightarrow st_2}$	
IFtrue	$ \frac{\langle b, st_1 \rangle \rightarrow true}{\langle if \ b \ then \ S_1 \ else \ S_2, \ st_1 \rangle \rightarrow st_2} $	
IFfalse	$\frac{\langle b, st_1 \rangle \rightarrow false}{\langle if \ b \ then \ S_1 \ else \ S_2, \ st_1 \rangle \rightarrow st_2}$	
WHfalse	$\frac{\langle b, st \rangle \rightarrow false}{\langle while \ b \ do \ S, \ st \rangle \rightarrow st}$	
WHtrue		

BEG	$ \frac{\langle S, st_1 \rangle \rightarrow st_2}{\langle begin \ S \ end, \ st_1 \rangle \rightarrow st_2} $	
skip	$ < skip, \ st> \rightarrow st$	
Правила для програми та операторів		
Num	$\langle n, st \rangle \rightarrow n$	
Name	$ $ < $name, st > \rightarrow name$	
Var	$\langle x, st \rangle \rightarrow st(x)$	
$Val^{x1.x2}$	$\langle x1.x2, st \rangle \rightarrow x1.x2 \Rightarrow^* (st)$	
A+		
A-		
A*		
A()		
	Правила для програми та операторів	
B=		
B>		
B<>		
BV		
В¬		
B()	$ \begin{array}{c c} < b, & st > \to r \\ < (b), & st > \to r \end{array} $	

6 Аксіоматична семантика розширення

Правило виведення	Позначення правила
$\{P[x \mapsto a]\} \ x := a \ \{P\}$	AS
${P[x1.x2 \mapsto a]} \ x1.x2 \ \& = a \ \{P\}$	AS&
$\{P[x \mapsto v, v = a(st)]\} \ x \hat{\ } = a \ \{P\}$	$^{}AS^x$
${P[x1.x2 \mapsto v, v = a(st)]} x1.x2 = a {P}$	$^{}AS^{x1.x2}$
$\{P\}$ $skip$ $\{P\}$	skip
$\frac{\{P\}\ S_1\ \{Q\}, \{Q\}\ S_2\ \{R\}}{\{P\}\ S_1; S_2\ \{R\}}$	S
$\frac{\{b \land P\} \ S_1 \ \{Q\}, \ \{\neg b \land P\} \ S_2 \ \{Q\}}{\{P\} \ \textit{if} \ b \ \textit{then} \ S_1 \ \textit{else} \ S_2 \ \{Q\}}$	IF
$\frac{\{b \land P\} \ S \ \{P\}}{\{P\} \ \textbf{\textit{while}} \ b \ \textbf{\textit{do}} \ S\{\neg b \land P\}}$	WH
$\frac{\{P'\}\ S\ \{Q'\}}{\{P\}\ S\ \{Q\}},$ якщо $P\Rightarrow P'$ та $Q'\Rightarrow Q$	С
$\frac{\{P\}\ S\ \{Q\}}{\{P\}\ \boldsymbol{begin}\ S\ \boldsymbol{end}\ \{Q\}}$	BE

7 Текст програми

Алгоритм 1: Програма LIST_MAX

```
1 begin
 \mathbf{2} \; \mathrm{M} := \mathrm{L.1} \Rightarrow;
 3 while L.2\Rightarrow <> null do
         begin
         L^{\hat{}} = L.2 \Rightarrow;
 5
         R := L.1 \Rightarrow;
 6
         if R > M then
 7
            M := R
 8
         else
 9
           skip
10
         end
11
12 end
```

Введемо наступні позначення. Один рядок з програми позначатимемо L<номер рядка>. Кілька послідовних рядків будемо позначати L<номер першого рядка>_<номер останнього рядка>.

8 Тестування програми в композиційній семантиці

8.1 Побудова семантичного терму

```
Sem_P(LIST_MAX)
= Sem_P(begin L2;L3_11 end)
= Sem_S(L2;L3_11)
= Sem_S(L2) \circ Sem_S(L3_11)
Sem_S(L2) = Sem_S(M := L.1 \Rightarrow) = AS^M (Sem_S(L.1 \Rightarrow)) = AS^M (VAL^{L.1})
Sem_S(L3_11)
= Sem_S(while L.2 \Rightarrow <> null do L4_11)
= WH(Sem_B(L.2 \Rightarrow <> null), Sem_S(begin L5_10 end))
```

```
= WH(S^2 \text{ (neq, Sem } A(L.2\Rightarrow), Sem A(null)), Sem S(L5; L6; L7 10))
    Sem A(L.2\Rightarrow) = Sem A(VAL^{L.2})
    \operatorname{Sem}_{A}(\operatorname{null}) = \overline{null}
    Sem S(L5; L6; L7 10)
= \text{Sem } S(L5) \circ \text{Sem } S(L6) \circ \text{Sem } S(L7 10)
    Sem S(L5) = AS^L (Sem A(L.2 \Rightarrow) \Rightarrow) = AS^L (VAL^{L.2} \Rightarrow)
    Sem S(L6) = AS^R (L.1 \Rightarrow) = AS^R (VAL^{L.1})
    Sem S(L7 10)
= IF(Sem B(R > M), Sem S(M := R), Sem S(skip))
= IF(S^2 \text{ (gr, R} \Rightarrow, M \Rightarrow), AS^M \text{ (R} \Rightarrow), id)
    Sem P(LIST-MAX) =
AS^M (L.1\Rightarrow) \circ
WH(
S^2 (neg, VAL^{L.2}, \overline{null}),
^{\land} AS^L (VAL^{L.2} \Rightarrow) \circ AS^R (VAL^{L.1}) \circ
IF(S^2 (gr, R \Rightarrow, M \Rightarrow), AS^M (R \Rightarrow), id)
```

8.2 Обчислення семантичного терму на стані

Покладемо початковий стан $st = st0 = [L \rightarrow [1 \rightarrow 5, 2 \rightarrow p1], p1 \rightarrow [1 \rightarrow 6, 2 \rightarrow null]].$ 1. $AS^M \ (VAL^{L.1} \)(st) = st \ \nabla [M \rightarrow VAL^{L.1} \ (st0)] = [M \rightarrow 5, \ L \rightarrow [1 \rightarrow 5, \ 2 \rightarrow p1], p1 \rightarrow [1 \rightarrow 6, 2 \rightarrow null]] = st1$ 2. $S^2 \ (neq, VAL^{L.2} \ , \overline{null})(st1) = neq(p1, null) = true.$ Тому виконуємо тіло циклу 3. $^AAS^L \ (VAL^{L.2} \Rightarrow)(st1) = st1 \ \nabla^L \ [M \rightarrow 5, \ L \rightarrow p1 \Rightarrow (st1), \ p1 \rightarrow [1 \rightarrow 6, \ 2 \rightarrow null]] = [M \rightarrow 5, \ L \rightarrow [1 \rightarrow 6, \ 2 \rightarrow null], \ p1 \rightarrow [1 \rightarrow 6, \ 2 \rightarrow null]] = st2$

- 4. AS^R (L.1 \Rightarrow)(st2) = st2 ∇ [R \rightarrow L.1 \Rightarrow (st2)] = [R \rightarrow 6, M \rightarrow 5, L \rightarrow [1 \rightarrow 6, 2 \rightarrow null], p1 \rightarrow [1 \rightarrow 6, 2 \rightarrow null]] = st3
- $5. S^2 (gr, R \Rightarrow, M \Rightarrow)(st2) = gr(R \Rightarrow, M \Rightarrow) = gr(\overline{6}, \overline{5}) = true.$ Тому виконуємо першу гілку ІҒ.
- 6. AS^M (R \Rightarrow)(st3) = st3 ∇ [M \rightarrow R \Rightarrow (st3)] = [R \rightarrow 6, M \rightarrow 6, L \rightarrow [1 \rightarrow 6, 2 \rightarrow null], p1 \rightarrow [1 \rightarrow 6, 2 \rightarrow null]] = st4
- 7. S^2 (neq, L.2 \Rightarrow , \overline{null})(st1) = neq(null, null) = false. Тому виконання програми завершується.

Кінцевий стан після виконання програми st4 = [R \rightarrow 6, M \rightarrow 6, L \rightarrow [1 \rightarrow 6, 2 \rightarrow null], p1 \rightarrow [1 \rightarrow 6, 2 \rightarrow null]]

9 Тестування програми в аксіоматичній семантиці

Побудуємо виведення для формули <LIST-MAX, $st>\to st',\ st=[L\to [1\to 5,2\to p1],p1\to [1\to 6,2\to null]]$

$$PR: \frac{< begin \ L2_11 \ end, st> \to st'}{SEQ: \frac{< L2_11, \ st> \to st'}{< L2, \ st> \to st_1 < L3_11, \ st_1> \to st'}}$$

Обчислюємо st_1 :

$$AS: \frac{\langle L.1 \Rightarrow, st \rangle \rightarrow 5}{\langle M := L.1 \Rightarrow, st \rangle \rightarrow st \nabla[M \rightarrow 5] = st1}$$

Маємо $st_1 = [M \to 5, L \to [1 \to 5, 2 \to p1], p1 \to [1 \to 6, 2 \to null]]$

WHr:
$$\frac{\langle L3_11, st1 \rangle \rightarrow st'}{\langle L.2 \rangle \langle null, st_1 \rangle \rightarrow r}$$

Обчислимо r:

$$B <>: \frac{< L.2 =>, \ st1> \rightarrow p1 \ \ < null, \ st1> \rightarrow null}{< L.2 => <> null, \ st1> \rightarrow true}$$

Маємо r = true:

Обчислимо s_2 :

$$BEG: \frac{< begin \ L5_10 \ end, \ st_1 > \to s_2}{< L5_10, \ st_1 > \to s_2} \\ = \frac{< L5_10, \ st_1 > \to s_2}{< L5, \ st1 > \to st_3 \ | \ < L6, \ st3 > \to st4 \ | \ < L7_10, \ st_4 > \to st_5}$$

Обчислимо s_3 :

$$^{\hat{}}AS^L: \frac{\langle L.2 = \rangle, \ st_2 > \to p1 \ | \ \langle p1, \ [1 \to 6, 2 \to null] > \to p1}{\langle L^{\hat{}} = L.2 = \rangle, \ st_2 > \to st_2 \nabla^L [1 \to 6, 2 \to null] = st3}$$

Маємо $st_3=[M \rightarrow 5, L \rightarrow [1 \rightarrow 6, 2 \rightarrow null], p1 \rightarrow [1 \rightarrow 6, 2 \rightarrow null]],$ обчислимо st_4

$$AS: \frac{\langle L.1 = \rangle, st_3 > \to 6}{\langle R := L.1 = \rangle, st_3 > \to st_3 \nabla[R \to 6] = st_4}$$

Маємо $st_4=[R \to 6, M \to 5, L \to [1 \to 6, 2 \to null], p1 \to [1 \to 6, 2 \to null]],$ обчислимо st_5

$$IFr: \frac{\langle R \rangle M, st4 \rangle \rightarrow r}{\langle L7_10, st_4 \rangle \rightarrow st5}$$

Обчислимо r:

$$B >: \frac{\langle R, st_4 \rangle \rightarrow 6 | \langle M, st_4 \rangle \rightarrow 5}{\langle R \rangle M, st_4 \rangle \rightarrow true}$$

Маємо r = true:

IFtrue:
$$\frac{\langle R \rangle M, st_4 \rangle \to true \mid \langle M := R, st_4 \rangle \to st5}{\langle L7_10, st4 \rangle \to st5}$$

Обчислимо st5:

$$AS: \frac{\langle R, st_4 \rangle \to 6}{\langle M := R, st_4 \rangle \to st_4\nabla[M \to 6] = st_5}$$

Маємо $st5=[R\to 6, M\to 6, L\to [1\to 6, 2\to null], p1\to [1\to 6, 2\to null]],$ продовжимо обчислювати st':

WHr:
$$\frac{\langle L3_11, st5 \rangle \rightarrow st'}{\langle L.2 \rangle \langle null, st_5 \rangle \rightarrow r}$$

Обчислимо r:

$$B <>: \frac{< L.2 =>, \ st5> \rightarrow null \ \ \ < null, \ st5> \rightarrow null}{< L.2 =><> null, \ st5> \rightarrow false}$$

Маємо r = false:

WH false:
$$\frac{\langle L.2 = \rangle \langle \rangle null, st_5 \rangle \rightarrow false}{\langle L4_11, st_5 \rangle \rightarrow st'}$$

Tomy $st5 = st' = [R \rightarrow 6, M \rightarrow 6, L \rightarrow [1 \rightarrow 6, 2 \rightarrow null], p1 \rightarrow [1 \rightarrow 6, 2 \rightarrow null]].$

10 Доведення часткової коректності

Введемо наступні позначення:

$$f_{1} = AS^{M} (L.1 \Rightarrow)$$

$$f_{2} = WH(f_{3}, f_{4} \circ f_{5} \circ f_{6})$$

$$f_{3} = S^{2} (neq, VAL^{L.2}, \overline{null})$$

$$f_{4} = ^{A}S^{L} (VAL^{L.2} \Rightarrow)$$

$$f_{5} = AS^{R} (VAL^{L.1})$$

$$f_{6} = IF(S^{2} (gr, R \Rightarrow, M \Rightarrow), AS^{M} (R \Rightarrow), id)$$

Нехай вхідний стан має загальний вигляд $[L \to [1 \to N_1, 2 \to p_2], ..., p_n \to [1 \to N_n, 2 \to null]]$. Зауважимо, що довжина списку L не може бути меншою за 1. Обчислимо значення семантичного терму програми на такому стані. $(f_1 \circ f_2)(st) = f_2(f_1(st)) = f_2(st\nabla[M \to N_1]) = f_2(st_1)$. Для зручності розглянемо крайній випадок, коли довжина списку L дорівнює 1. У цьому випадку $f_3(st_1) = false$ та $f_2(st_1) = st_1$. Тому $M = N_1 = max\{N_1\}$, що є максимумом значень списку L.

Теорема. Якщо $f_3(st_1) = true$ та семантичний терм f_2 визначений на стані st_1 , тоді $f_2(st_1) = [M \to D, R \to N_n, L \to [1 \to N_n, 2 \to null], ..., p_n \to [1 \to N_n, 2 \to null]$, де $D = max\{N_1, ..., N_n\}$.

Доведення. Доведемо гіпотезу індукцією за k>0, де k - це кількість ітерацій циклу f_2 . Припустимо, що після i-ї ітерації стан st_{1+i} має вигляд $st_{1+i}=[M\to P,R\to N_{1+i},L\to [1\to N_{1+i},2\to V],...,p_n\to [1\to N_n,2\to null]], де <math>P=max\{N_1,...,N_{1+i}\}$ та $V\in\{p_{1+i+1},null\}$.

База індукції.

Нехай k=1, тоді стан $st_2=f_2(st_1)=(f_4\circ f_5\circ f_6)(st_1)$ має вигляд $[M\to W,R\to N_2,L\to [1\to N_2,2\to V],...,p_n\to [1\to N_n,2\to null]]$, де $W=\max\{N_1,N_2\}$ та $V\in\{p_3,null\}$. База індукції є вірною.

Крок індукції.

Нехай після кроку i стан st_{1+i} має вигляд $[M \to P_1, R \to N_{1+i}, L \to [1 \to N_{1+i}, 2 \to V_1], ..., p_n \to [1 \to N_n, 2 \to null]]$, де $P_1 = max\{N_1, ..., N_{1+i}\}$, $V_1 \in \{p_{1+i+1}, null\}$. Тоді якщо $f_3(st_{1+i}) = false$, то виконання циклу завершується.

Інакше виконання продовжується і $st_{1+i+1} = (f_4 \circ f_5 \circ f_6)(st_{1+i}) = [M \to 16]$

 $P_2, R \to N_{1+i+1}, L \to [1 \to N_{1+i+1}, 2 \to V_2], ..., p_n \to [1 \to N_n, 2 \to null]],$ де $P_2 = max\{P_1, N_{1+i+1}\} = max\{N_1, ..., N_{1+i+1}\}$ та $V_2 \in \{p_{1+i+2}, null\}$. Крок індукції є вірним. Тому початкове припущення доведено.

Правильність наведеної теореми разом із базовим випадком, що був розглянутий на початку цього розділу, доводять, що для будь-якого початкового стану, де довжина списку L не менша за 1, з того, що програмний терм визначений на такому стані випливає, що значення M є максимумом серед значень списку. Часткову коректність доведено.

11 Доведення повної коректності

Покажемо, що на правильних вхідних даних програма $LIST_MAX$ завжди завершується. Правильні вхідні дані мають наступні характеристики.

- 1. Вхідний стан має складну змінну $L \to [1 \to N_1, 2 \to V]$, що вказує на початок списку.
- 2. Зв'язний список L сформований правильно, тобто за них можна проітеруватися до кінця.
- 3. Кінцевий вузол списку має вказівник на ім'я null.

Розглянемо 2 випадки:

- 1. Довжина списку дорівнює 1, тоді програма завершується зі значенням $M=N_1$, що є максимумом зі значень у списку.
- 2. Довжина списку більша за 1 і потрібно показати, що виконання циклу завершується. Для цього достатньо показати, що значення умови, на деякому стані st_x буде false. Розглянемо послідовність $p_1, p_2, ..., p_n$, з імен, на які вказують кожен із вузлів вхідного списку. Оскільки довжина цього списку є скінченною та на кожній ітерації значення L встановлюється на наступний вузол зі списку, то, враховуючи припущення про структуру списку L, отримуємо, що на останньому вузлі списку значення умови циклу буде рівним false.

12 Доведення еквівалентності операційної та композиційної семантик

Теорема.

Для будь-якої програми, написаної мовою $SIPL_P$ її операційна та композиційна семантика співпадають.

Доведення.

- 1. Еквівалентність для арифметичних виразів, умов та інших операції таких, як присвоєння, складне присвоєння та інших випливає із відповідності окремих правил операційної семантики правилам композиційної семантики наведеного розширення.
- 2. Доведення еквівалентності для циклю проведемо індукцією за кількістю ітерацій. Якщо тіло циклу виконується 0 разів, то у цьому випадку семантики еквіваленті, оскільки еквівалентними є семантики умов. Якщо тіло циклу виконалося k разів і семантики еквівалентні, то і на k+1 ітерації вони будуть еквівалентними, оскільки тіло циклю складається із окремих операторів для яких еквівалентність доведена у першому пункті.