

1.1 Caractéristiques générales

Définition 1.1: Schéma TN

Schéma de liaison à la terre dans lequel :

Neutre: relié à la terre;

Masses: reliées au neutre du transformateur HT/BT.

Dans le SLT TN, le point neutre du transformateur HT/BT (point commun) est relié à la terre via la prise de terre du neutre. Cette liaison présente une certaine résistance, la résistance de la prise de terre du neutre R_B . Sa mise en œuvre est à charge du fournisseur d'électricité et sa résistance globale doit être inférieure ou égale à $15\Omega^{\rm NF:C13-100-2015}$.

Les masses sont quant à elles reliées au point neutre du transformateur $\mathrm{HT/BT}$ (point commun), cela peut être réalisé via trois déclinaisons du SLT TN :

Tab. 1.1 – Déclinaisons du SLT TN

Caractéristiques	Avantages	Inconvénients
Confondus (TN-C)		
 conducteurs neutre et PE confondus; PE et neutre vert/jaune nommé conducteur Protection Équipotentielle Neutre (PEN). 	– économie d'un câble.	 utilisation de canalisations fixes et rigides; interdiction de pose: locaux à risques d'incendies; alimentation d'équipements de traitement de l'information (présence de courant harmonique dans le neutre).
Séparés (TN-S)		
 conducteurs neutre et PE séparés ; PE et neutre vert/jaune séparés (PE+N). 	 usage de conducteurs souples autorisés; séparation et protection du neutre possibles dans les lo- caux pollués. 	- solution plus coûteuse que le schéma TN-C.
Mixte (TN-C-S)		
 combinaison des SLT TN-C et TN-S dans une même installation; usage du SLT TN-C formellement interdit en aval du SLT TN-S. 	- combinaison des avantages des deux SLT TN.	

Ce SLT présente les caractéristiques principales suivantes :

- utilisation uniquement dans les installations électriques alimentées par un transformateur HT/BT (ou MT/BT ou BT/BT);
- requiert l'installation de prises de terre uniformément réparties dans l'installation ;
- requiert la vérification des déclenchements sur le premier défaut d'isolement, obtenue lors de l'étude par des calculs de dimensionnement et, lors de la mise en service par des mesures de test ;
- ne requiert pas de DDR dans l'absolu ;
- requiert un installateur qualifié pour toute installation, modification ou encore extension ;
- pouvant endommager de manière plus significative les bobinages et appareillages lors d'un défaut d'isolement, par rapport au SLT TT ;
- danger plus élevé dans les locaux à risque d'incendie du fait de courants de défaut plus importants.

1.2 Schémas de principe

Fig. 1.1 – Installation Terre-Neutre Confondus

Fig. 1.2 – Installation Terre-Neutre Séparés

Fig. 1.3 – Installation Terre-Neutre Confondus-Séparés

En cas de défaut d'isolement sur les masses métalliques, le courant de défaut I_d dispose maintenant d'un chemin, via le conducteur PEN, pour revenir au poste de transformateur HT/BT. Cela forme la boucle de défaut qui s'apparente à un court-circuit.

Fig. 1.4 – Boucle de défaut du courant I_d sur L1

Pour calculer le courant de défaut I_d , il existe trois méthode, mais ne sera détaillé dans ce chapitre que la première (plus de précisions sur les deux autres méthode ?? page ??) :

- Méthode conventionnelle ;
- Méthode des impédances ;
- Méthode de composition.

1.3 Méthode de dimensionnement conventionnelle des protections et des sections de conducteurs

Contrairement au SLT TT, il ne faut pas tenir compte de la résistance de défaut R_d qui prend en compte la nature du défaut d'isolement (franc ou non-franc) et la résistance de la carcasse métallique car il s'agit d'un court-circuit et elle sera donc très faible.

 I_d s'apparente donc à un courant de court-circuit et son calcul est basé sur l'hypothèse que la tension de défaut reste supérieur à 80% ou plus de la tension nominale simple. Cette valeur est issue d'une estimation de la chute de tension due à l'ensemble des impédances en amont de la protection du circuit en défaut. Elle est utilisée, avec l'impédance de la boucle de circuit, pour calculer ce courant de court-circuit.

Ce facteur est calculé par l'estimation de la chute de tension due à l'ensemble des impédances en amont de cette origine. Dans une majorité des types de pose, les réactances inductive interne et entres les conducteurs sont négligées, ce qui revient à ne considérer que les résistances des conducteurs dans les calculs d'intensité de court-circuit. Cette approximation est considérée comme valable pour les sections de câble jusqu'à 120mm^2 . Au-dessus de cette section, la résistance R des conducteurs est augmentée selon le tableau ci-dessous :

Tab. 1.2 – Section des conducteurs (schéma TN / méthode conventionnelle)

Section des conducteurs	Ajustement de la résistance en Ω
$S = 150 \text{mm}^2$	R + 15%
$S = 185 \text{mm}^2$ $S = 240 \text{mm}^2$	$\begin{array}{ccc} R & + & 20\% \\ R & + & 25\% \end{array}$

Formule 1.1: Courant de défaut I_d en schéma TN selon la méthode conventionnelle

$$I_d = \frac{0.8 \times U_0}{R_{PE} + R_{ph}}$$

$$I_d = \frac{0.8 \times U_0}{Z_c}$$

Avec

Grandeur dans l'ISQ	Unité SI de mesure	Description
U_0 : tension	volt (V)	Tension nominale simple
0,8 : facteur	(/)	facteur d'approximation de la tension de
		défaut U_d
R_{PE} : résistance	ohm (Ω)	Résistance du conducteur de phase traversé par un courant de défaut I_d
R_{ph} : résistance	ohm (Ω)	Résistance du conducteur PE traversé par un courant de défaut I_d
Z_c : impédance	ohm (Ω)	Impédance de boucle du circuit en défaut (selon la méthode conventionnelle)

Le courant de défaut I_d fera alors apparaı̂tre une tension de défaut U_d entre la masse métallique et la terre :

Formule 1.2: Tension de défaut U_d en schéma TN selon la méthode conventionnelle

$$U_d = R_{PE} \times I_d$$
 Avec : Grandeur dans l'ISQ Unité SI de mesure Description
$$R_{PE} : \text{ résistance} \qquad \text{ohm } (\Omega) \qquad \text{Résistance du conducteur PE traversé par un courant de défaut } I_d : \text{ intensité} \qquad \text{ampère } (A) \qquad \text{Courant de défaut d'isolement}$$

La tension de défaut U_d dans le cas d'un défaut d'isolement en régime TN est *élevée* et donc dangereuse si elle est supportée trop longtemps. La norme NF C15-100 a défini des temps de coupure maximum à respecter :

TAB. 1.3 – Temps de coupure maximal des disjoncteurs en schéma TN

Réseaux usuels	Temps de coupure maximal en ms		
Teoseaux asaeis	$U_L = 50 \mathrm{V}$	$U_L = 25 \mathrm{V}$	
127V/230V	800	350	
230V/400V	400	200	
400V/690V	200	50	
690V/1000V	100	20	

Formule 1.3: Seuil de réglage du disjoncteur \mathcal{I}_m en schéma TN

 $I_m > I_d$

Avec:

Grandeur dans l'ISQ	Unité SI de mesure	Description
I_m : intensité	ampère (A)	Intensité de seuil de déclenchement de la protection magnétique du disjoncteur

On peut calculer la longueur maximale d'un circuit d'une installation en schéma TN par la formule suivante:

Formule 1.4: Longueur maximale d'un circuit L_{max}

$$L_{max} = \frac{0.8 \times U_0 \times S_{ph}}{\rho \times (1+m) \times I_m}$$
$$m = \frac{S_{ph}}{S_{PE}}$$

Grandeur dans l'ISQ	Unité SI d	e mesure	Description
I_m : intensité	ampère	(A)	Intensité de seuil de déclenchement de la protection magnétique du disjoncteur
U_0 : tension	volt	(V)	Tension nominale simple
S_{ph} : section	$millimètre^2$	(mm^2)	Section du conducteur de phase traverse par un courant de défaut I_d
S_{PE} : section	$ m millim\`etre^2$	(mm^2)	Section du conducteur PE traversé pa un courant de défaut I_d
ho : résistivité		(/)	Résistivité du conducteur (selon la température et le matériau choisi) : aluminium : $37.6 \times 10^{-3} \Omega \mathrm{mm^2m^{-1}}$ cuivre : $22.5 \times 10^{-3} \Omega \mathrm{mm^2m^{-1}}$
m: facteur		(/)	Facteur de correction à appliquer aux valeurs données dans les abaques de détermination des longueurs selon la section et l'intensité de déclenchement (?' page ??)

Pour vérifier rapidement un dimensionnement, les constructeurs de protections ont établis des abaques permettant de déterminer rapidement les longueurs maximale des conducteurs selon

l'intensité, la section des conducteurs ou en encore les réglages du seuil de courant de déclenchement du disjoncteur ou encore le type de disjoncteurs. Ces abaques sont issus des norme IEC 60947-2^{IEC:60947-2-2016} et IEC 60898^{IEC:60898-2015}, qui concernent respectivement les disjoncteurs industriels et domestiques. Ils sont détaillés dans l'annexe ?? page ??.

Exemple 1.1: Calcul du courant de défaut I_d en schéma TN selon la méthode conventionnelle

Si on considère que les conducteurs sont en cuivre, que $U_0=230\mathrm{V}$, que $L_{ph}=50\mathrm{m}$ et est équivalent à L_{PE} , que $S_{ph}=35\mathrm{mm}^2$ et est équivalent à S_{PE} , on peut déduire que le courant de défaut I_d vaut :

$$Z_c = 2 \times \rho \times \frac{L}{S}$$
 $I_d = \frac{U_0 \times 0.8}{Z_c}$ $I_d = \frac{230 \times 0.8}{Z_c}$

Exemple 1.2: Calcul de la longueur maximale des conducteurs L_{max} en schéma TN selon la méthode conventionnelle

Si on considère que les conducteurs sont en cuivre, que $U_0=230\mathrm{V}$, que $Lph=50\mathrm{m}$ et est équivalent à LPE, que $S_{ph}=35\mathrm{mm}^2$ et est équivalent à S_{PE} , on peut déduire que le courant de défaut I_d vaut :

$$Z_c = 2 \times \rho \times \frac{L}{S}$$
 $I_d = \frac{U_0 \times 0.8}{Z_c}$
= $2 \times 22.5 \times 10^{-3} \times \frac{50}{35}$ = $\frac{230 \times 0.8}{64.3e \times 10^{-3}}$
= $64.3m\Omega$ = $2816A$

Il convient de croiser cette valeur de I_d avec les valeurs du seuil de déclenchement du disjoncteur Instantané et Court-retard et leurs temps de coupures respectifs (voir tableau 1.3 page 6) pour valider le dimensionnement et le choix de la protection.

1.4 Protection avec des DDR en schéma TN

La protection des circuits à l'aide de DDR en schéma TN est formellement interdite en schéma TN-C car le conducteur PE ne peut pas être sectionné. En schéma TN-C-S, son utilisation implique forcément que les conducteurs PE et N soient séparés en amont du DDR.

Les DDR en schéma TN-S sont requis lorsque :

- l'impédance de la boucle de défaut Z_c n'est pas précisément calculable ;
- le courant de défaut est trop faible pour que la protection détecte le défaut comme s'apparentant à un court-circuit dans le temps de déconnexion requis.

Un DDR se déclenchant avec un courant de déclenchement de l'ordre que quelques ampères maximum, il convient bien à un circuit terminal d'une installation BT conséquente en schéma TN.

Temporary page!

LATEX was unable to guess the total number of pages correctly. As there was some unprocessed data that should have been added to the final page this extra page has been added to receive it.

If you rerun the document (without altering it) this surplus page will go away, because \LaTeX now knows how many pages to expect for this document.