A MacLaurin Series is an infinite Taylor polynomial, centered at x = 0.

- 1. Consider the function $f(x) = \cos(x)$.
 - (a) Find $p_4(x)$, the degree 4 Taylor polynomial for f at x = 0.

$$f(x) = \cos(x)$$

$$f(0) =$$

$$f'(x) =$$

$$f'(0) =$$

$$f''(x) =$$

$$f''(0) =$$

$$f^{(3)}(x) =$$

$$f^{(3)}(0) =$$

$$f^{(4)}(x) =$$

$$f^{(4)}(0) =$$

- (b) Without further calculations, make a prediction for the formula for $p_6(x)$.
- (c) Check your answer by creating a graph on Desmos which includes f, p_4 and p_6 . Sketch that graph here, labelling each end of each function.

(d) Estimate $\cos(-1)$) using n_4 and n_6	What is the value of cos	(-1) to 6 decimal places?

(e) The Taylor Series for f is the infinite Taylor polynomial. Write the Taylor Series for $f(x) = \cos(x)$ (with a $+ \dots$), and then express your answer as a single infinite sum (using a Σ).