

## Tabelas Bidimensionais

## Unidade I Parte 3



Análise de Dados Categorizados



## Estatística Qui-quadrado de Pearson

A hipótese nula do modelo genético corresponde a  $\pi_1 = 0,25, \pi_2 = 0,5$  e  $\pi_3 = 0,25$  onde  $\pi_i$  é a probabilidade de ocorrência de cada genótipo.

Assim,

$$H_0$$
)  $\pi_1 = 0.25, \pi_2 = 0.5, \pi_3 = 0.25$ 

Se  $\mathbf{H_0}$  é verdadeira , se espera observar cerca de 1/4 de plantas do genétipo A, ou seja, a freqüência esperada do genétipo A é dada por:

$$\mu_1 = n\pi_1 = 90 \times 0,25 = 22,5$$

Analogamente pode-se calcular as freqüências esperadas do genótipo B e do genótipo C.

A idéia é comparar as freqüências amostrais das células com as esperadas para decidir se os dados contradizem  $\mathbf{H}_0$ . Quanto maior as diferenças , mais forte a evidência contra  $\mathbf{H}_0$ .



Análise de Dados Categorizados

Maria Teresa Leão Costa

28



## Estatística Qui-quadrado de Pearson

#### EXEMPLO:

A linhagem produzida pelo cruzamento de entre dois tipos de planta pode ter qualquer um de três genótipos designados por A, B e C. Um modelo teórico de herança genética sugere que a linhagem dos tipos A, B e C deve estar na razão de 1 : 2 : 1. Para verificação experimental, 90 plantas foram geradas pelo cruzamento dos dois tipo de plantas. Sua classificações genéticas estão registradas na tabela a sequir.

| Genótipo | Nº de Plantas |
|----------|---------------|
| A        | 18            |
| В        | 44            |
| C        | 28            |
| Total    | 90            |

Estes dados confirmam ou contradizem o modelo genético ?



Análise de Dados Categorizados

Maria Teresa Leão Costa





# Estatística Qui-quadrado de Pearson

Deseja-se testar a hipótese nula ( $H_0$ ) que as probabilidades das células de uma tabela de contingência são iguais a certos valores fixados  $\pi_{ij}$ .

Para uma amostra de tamanho **n** com freqüências das células  $\{n_{ij}\}$ , os valores  $\{u_{ij} = n\pi_{ij}\}$ 

são chamados **frequências esperadas** e représentam os valores das expectâncias  $\left\{ E(n_{ij}) \right\}$  quando  $H_0$  é verdadeira.

A idéia é comparar as frequências amostrais das células com as esperadas para decidir se os dados contradizem  $\mathbf{H_0}$ . Quanto maior as diferenças  $\left\{\mathbf{n_{ij}} - \mathbf{\mu_{ij}}\right\}$  mais forte a evidência contra  $\mathbf{H_0}$ .

A estatística Qui-quadrado de Pearson para testar H<sub>0</sub> é:

$$\chi^2 = \sum \frac{(n_{ij} - \mu_{ij})^2}{\mu_{ii}}$$

tem distribuição qui-quadrado para amostras "grandes" ( $\{\mu_{ii} \geq 5\}$ ).



Análise de Dados Categorizados

25



## Testes Qui-quadrado

- Teste de Comparação de Proporções
  - → Teste Qui-quadrado de Homogeneidade

Em tabelas 2x2, por exemplo:

$$H_0 )\pi_{11} = \pi_{21} \quad e \quad \pi_{12} = \pi_{22} \quad \Leftrightarrow H_0 )\pi_{11} = \pi_{21}$$

Se **H**<sub>0</sub> é verdadeira :

$$\hat{\mu}_{ij} = n_{i+} \cdot p_{+j} = n_{i+} \cdot \left(\frac{n_{+j}}{n}\right) = \frac{n_{i+} \cdot n_{+j}}{n}$$

Teste Qui-quadrado de Independência

$$H_0)\pi_{ij}=\pi_{i+}\pi_{+j}$$

Se **H**<sub>0</sub> é verdadeira :

$$\hat{\mu}_{ij} = n \cdot p_{ij} = n \cdot p_{i+} \cdot p_{+j} = n \cdot \frac{n_{i+}}{n} \cdot \frac{n_{+j}}{n} = \frac{n_{i+} \cdot n_{+j}}{n}$$



Análise de Dados Categorizados



Deseja-se testar se sexo (gênero) e identificação partidária são associados ou não. As hipóteses do teste são então:

- **H**<sub>n</sub>) Identificação partidária e gênero não estão associados (Independência);
- H<sub>1</sub>) Identificação partidária e gênero estão associados.



# Teste Qui-quadrado de Independência

Deseja-se estudar se existe associação entre gênero e identificação partidária.

Na pesquisa General Social Survey -1991, duas dos variáveis estudadas foram gênero e identificação partidária. Os entrevistados indicavam se eles se identificavam mais fortemente com o partido Democrático ou com o Republicano ou com o Independente. A tabela a seguir apresentada os resultados obtidos para esta variável bem como o gênero do entrevistado.

|           | Identi ficação Par ti dári a |                  |             |       |
|-----------|------------------------------|------------------|-------------|-------|
| Gênero    | De mocr átic o               | In de pen den te | Republicano | Total |
| Femin ino | 279                          | 73               | 225         | 577   |
| Masculino | 165                          | 47               | 191         | 403   |
| Total     | 444                          | 120              | 416         | 980   |

 Determinando as frequências relativas com relação ao total das colunas temos o resultado apresentado na seguinte tabela e no gráfico a seguir:

|      | Democrático | Independente | Republicano |       |
|------|-------------|--------------|-------------|-------|
| Fem  | 48,4        | 12,7         | 39,0        | 100   |
| Masc | 40,9        | 11,7         | 47,4        | 100   |
|      | 45,3        | 12,2         | 42,4        | 100,0 |



Análise de Dados Categorizados



### Frequências Esperadas

|      | Democrático | Independente | Republicano |     |
|------|-------------|--------------|-------------|-----|
| Fem  | 261,42      | 70,65        | 244,93      | 577 |
| Masc | 182,58      | 49,35        | 171,07      | 403 |
|      | 444         | 120          | 416         | 980 |

#### Cálculo Qui-quadrado

|      | Democrático | Independente | Republicano |       |
|------|-------------|--------------|-------------|-------|
| Fem  | 1,18        | 0,08         | 1,62        | 2,882 |
| Masc | 1,69        | 0,11         | 2,32        | 4,127 |
|      | 2,88        | 0,19         | 3,94        | 7,01  |





# Estatística da Razão de Verossimilhança

Uma estatística alternativa para testar  $\mathbf{H_o}$  resulta do método da razão de verossimilhança para testes de significância.

O teste determina os valores dos parâmetros que maximizam a função de verosimilhança sob a suposição que  $H_0$  é verdadeira. Ele também determina o valor que maximiza a função de verossimilhança sob a condição mais geral de que  $H_0$  pode ou não ser verdadeira.

O teste se baseia na razão das funções de verossimilhança maximizadas,

máximo da finção de verossimilhança quando parâmetros satisfazem H. máximo da finção de verossimilhança quando parâmetros são irrestritos

A razão não pode exceder 1. Se a função de verossimilhança maximizada é muito maior quando os parâmetros não são forçados a satisfazer  $H_0$ , então a razão  $\Lambda$  é bastante abaixo de 1 e existe forte evidência contra Ha





#### Frequências Esperadas

|      | Democrático | Independente | Republicano |     |
|------|-------------|--------------|-------------|-----|
| Fem  | 261,42      | 70,65        | 244,93      | 577 |
| Masc | 182,58      | 49,35        | 171,07      | 403 |
|      | 444         | 120          | 416         | 980 |

#### Cálculo G<sub>2</sub>

| -    | Democrático | Independnete | Republicano |          |
|------|-------------|--------------|-------------|----------|
| fem  | 18,16       | 2,39         | -19,10      | 1,450734 |
| masc | -16,71      | -2,29        | 21,05       | 2,050088 |
| -    | ·           |              |             | 3,500822 |

$$G_2 = 2 \times 3,500822 = 7,01644$$





# Estatística da Razão de Verossimilhança

## A estatística do teste para o Teste da Razão de Verossimilhança é igual a

 $-2\log(\Lambda)$ 

tem distribuição aproximadamente qui-quadrado com v graus de liberdade.

 $vg.l. = n^o parâmetros sob H_1 - n^o parâmetros sob H_0$ 





Este valor é não negativo e pequenos valores de A produzem grande valores de  $-2log(\Lambda)$ .





Para tabelas de contingência bidimensionais, esta estatística pode ser simplificada para a fórmula:

$$G^2 = 2\sum n_{ij} \log \left(\frac{n_{ij}}{\mu_{ij}}\right)$$



Análise de Dados Categorizados



## Resíduos

A estatística do teste e seu *p-value* simplesmente descrevem a evidência contra a hipótese

A comparação, célula por célula, da freqüência observada com a esperada ajuda a entender melhor a natureza desta evidência. Entretanto a diferença absoluta (bruta) é insuficiente.

Os resíduos úteis têm a forma

$$\frac{n_{ij} - \mu_{ij}}{\sqrt{\hat{\mu}_{ij}(1 - p_{i+})(1 - p_{+j})}}$$

e são denominados *resíduos ajustados*.

Quando  $H_0$ , cada resíduo ajustado tem para grandes amostras, distribuição N(0,1). Um resíduo ajustado que seja maior que 2 ou 3 em valor absoluto indica falta de ajustamento de H<sub>0</sub> nesta célula.

|           | Identi ficação Parti dári a |                          |                       |       |
|-----------|-----------------------------|--------------------------|-----------------------|-------|
| Sexo      | De mocrático                | In de pen den te         | Republicano           | Total |
| Feminino  | 279<br>(2,29)               | 73<br>(0,46)             | 225<br>(-2,62)        | 577   |
| Masculino | 165<br>(-2,29)              | 47 / <b>49,3</b> (-0,46) | 191 / 171,1<br>(2,62) | 403   |
| Total     | 444                         | 120                      | 416                   | 980   |



Análise de Dados Categorizados