- 1. Sigui $f: E \longrightarrow E$ una aplicació lineal satisfent $f^2 = f$.
 - (a) Demostreu que, si f és invertible, aleshores $f = \mathrm{id}_E$. Com que f és invertible, existeix una aplicació $g: E \longrightarrow E$ tal que $f \circ g = g \circ f = \mathrm{id}_E$. Llavors tenim que:

$$id_E = f \circ g$$
 Per definició de la inversa.
 $= f^2 \circ g$ Per definició.
 $= f \circ (f \circ g)$ Per la propietat associativa
 $= f \circ id_E$ Per definició de la inversa.
 $= f$

(b) Demostreu que $E = \text{Ker } f \oplus \text{Imf } f$.

Sigui $v \in E$. Aquest vector v el podem escriure de la següent forma: v = f(v) + (v - f(v)). Veiem clarament que el primer terme de la dreta de l'expressió (f(v)) pertany a la imatge de f. Hem de veure que l'altre terme (v - f(v)) pertany al nucli. Definim u = v - f(v) i vegem que $u \in \text{Ker } f$.

$$u = v - f(v)$$

$$f(u) = f(v - f(v))$$

$$f(u) = f(v) - f^{2}(v)$$

$$f(u) = f(v) - f(v)$$

$$f(u) = 0$$

I, per tant, $u=v-f(v)\in \mathrm{Ker}\ f$. Així, hem vist que $E=\mathrm{Ker}\ f+\mathrm{Imf}\ f$. Hem de veure ara que la suma és directa, és a dir, $\mathrm{Ker}\ f\cap \mathrm{Imf}\ f=0$. Ho farem agafant un vector de la intersecció i veient que és el vector zero. Sigui $\omega\in \mathrm{Ker}\ f\cap \mathrm{Imf}\ f$. En particular com que $\omega\in \mathrm{Ker}\ f$ tenim que $f(\omega)=0$. A més, com que $\omega\in \mathrm{Im}\ f,\ \exists\,v\mid f(v)=\omega$. Ara bé,

$$f(v) = \omega$$

$$f^{2}(v) = f(\omega)$$

$$f^{2}(v) = 0$$

$$f(v) = 0$$

I, per tant, comparant la primera i la última equació obtenim $\omega=0$ com volíem. Finalment, $E=\operatorname{Ker} f\oplus\operatorname{Im} f.$

(c) Demostreu que, si E és de dimensió finita, aleshores existeix una base \mathcal{B} de E tal que

$$[f]_{\mathcal{B}} = \begin{pmatrix} I_k & 0\\ 0 & 0 \end{pmatrix}$$

on $k = \dim(\operatorname{Im} f)$.

Sigui $\mathcal{B}, \mathcal{B}'$ dues bases de E i siguin $[f]_{\mathcal{B}}, [f]_{\mathcal{B}'}$ les matrius associades a l'aplicació d'aquestes bases. Sabem que rang $[f]_{\mathcal{B}} = \operatorname{rang} [f]_{\mathcal{B}'} = \dim(\operatorname{Im} f)$. A més, pel teorema de la PAQ-reducció existeixen matrius invertibles P, Q tals que $P[f]_{\mathcal{B}'}Q = \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}$. Si definim P com la matriu canvi de base de \mathcal{B}' a \mathcal{B} , és a dir, $P = [\operatorname{id}]_{\mathcal{B}',\mathcal{B}}$ i Q com la matriu canvi de base de \mathcal{B} a \mathcal{B}' , és

a dir, $Q = [\mathrm{id}]_{\mathcal{B},\mathcal{B}'}$ tenim que $P[f]_{\mathcal{B}'}Q = [f]_{\mathcal{B}} = \begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}$. Per tant, hem trobat una base \mathcal{B} tal que a partir d'un base qualsevol \mathcal{B}' i fent els canvis de base corresponents obtenim que la matriu associada a f en la base \mathcal{B} és $\begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}$.

- 2. (a) Doneu, per a tot $n \geq 2$, un exemple d'aplicació $f_n : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ que satisfaci $f_n^2 = f_n$, amb $f_n \neq \mathrm{id}_{\mathbb{R}^n}, 0_{\mathbb{R}^n}$.
 - Per a $n \geq 2$ considerem l'aplicació $f_n : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ definida per $f_n(v_1, \dots, v_n) = (\frac{v_1 + \dots + v_n}{n}, \dots, \frac{v_1 + \dots + v_n}{n})$.
 - (b) Podeu trobar per cada $2 \le k \le n$ una aplicació $f_{k,n} : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ diferent de la identitat tal que $f_{k,n}^k = f_{k,n}$ amb k la potència mínima? (És a dir, tal que $f_{k,n}^l \ne f_{k,n}$ per a tot l < k? Agafem una $f_{k,n}$ tal que vagi permutant k-1 components d'un vector de \mathbb{R}^n , és a dir, definim la funció $f_{k,n}$ de la següent manera:

$$f_{k,n}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

 $(\alpha_1, \dots, \alpha_n) \longmapsto (\alpha_{k-1}, \alpha_1, \dots, \alpha_{k-2}, \alpha_k, \dots, \alpha_n)$

Veiem clarament que per n=2, obtindríem la identitat i, per tant, la funció $f_{k,n}$ només és vàlida per n>2. Per n=2 podem agafar la funció definida a l'apartat anterior, $f_2:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ definida per $f_2(x,y)=(\frac{x+y}{2},\frac{x+y}{2})$. Per l'únic valor possible de $k,\ k=2$, aquesta funció verifica que $f_2^2=f_2$.