Avaliação 1

Resolução numérica de equações

Paulo Ricardo Seganfredo Campana

15 de março de 2023

Funções de resolução numérica

As seguintes funções são implementações dos métodos da bissecção e Newton-Raphson que solucionam equações da forma f(x) = h com uma certa margem de erro. O método da bissecção exige um intervalo [a,b] e irá encontrar uma solução dentro do intervalo, enquanto o método de Newton-Raphson requer apenas um chute inicial porém a solução pode não ser a mais próxima do chute.

```
bissecção <- function(f, h, a, b, erro = 1e-8) {</pre>
    while(TRUE) {
         m < - (a + b) / 2
         fm < -f(m) - h
         fa \leftarrow f(a) - h
         if(abs(fm) <= erro) return(m)</pre>
         if(fm * fa > 0) a <- m
         else b <- m
    }
}
newton <- function(f, h, x, erro = 1e-8) {</pre>
    while(TRUE) {
         fx \leftarrow f(x) - h
         if(abs(fx) <= erro) return(x)</pre>
         dfx \leftarrow (f(x + erro) - f(x)) / erro
         x = x - fx / dfx
    }
}
```

Usarei sempre um erro absoluto de 10^{-8} embora as questões dessa avaliação peçam erros muito maiores, isso se deve a facilidade de obter um resultado com tal prescisão usando programação.

Para calcular a derivada no ponto x no método de Newton-Raphson, usei a seguinte aproximação baseada na definição de derivada: porém tomando h como um valor muito pequeno, igual ao erro absoluto.

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Função de geração de gráfico

Cria o gráfico de uma função f(x) e a reta h constante no intervalo [a,b], será usada para rapidamente visualizar um intervalo onde se encontra uma raíz e também para verificar se o resultado numérico coincide com uma interseção da curva e da reta.

Questão 1.

Aplicação na Física

A velocidade de ascensão de um foguete em vôo vertical próximo à superfície terrestre pode ser aproximada pela seguinte expressão na qual u é a velocidade de exaustão relativa ao foguete, M_0 a massa do foguete ao ser lançado, c a taxa de consume de combustível g a aceleração gravitacional e t o tempo medido a partir do lançamento:

$$v = u \ln \left(\frac{M_0}{M_0 - ct} \right) + gt \tag{1}$$

Considerando os valores:

$$u = 200m/s$$

$$M_0 = 1600Kg$$

$$g = 9.8m/s^2$$

$$c = 27Kg/s$$

Determinar o instante em que v = 100m/s. Empregar o método da bissecção ou da falsa posição para determinar uma raiz aproximada para a equação, com intervalo inicial [6, 8]. Explicite o erro relativo associado a cada iteração.

```
q1_geral <- function(t, u, M0, c, g) {
    ln <- log(M0 / (M0 - c*t))
    u * ln + g*t
}

q1_aplicada <- function(t) {
    q1_geral(t, u = 200, M0 = 1600, c = 27, g = 9.8)
}</pre>
```

```
plot_fun(f = q1_aplicada, h = 100, a = -60, b = 60)
```



```
bissecção(f = q1_aplicada, h = 100, a = 6, b = 8)
#> [1] 7.458738
```

Portanto, será no segundo t=7.459s que um foguete atingirá velocidade de v=100m/s a partir da Equação 1. Consulte a Tabela 1 para visualizar o erro absoluto em cada etapa

Questão 2.

Aplicação na Física

Um cabo telefônico suspenso entre dois postes tem um peso de α quilogramas-força por metro linear. Considerando que a tensão T na metade do cabo é obtida a partir resolução da seguinte equação na qual S é o comprimento do cabo e L é a distância entre os postes:

$$\frac{2T}{\alpha}\sinh\left(\frac{\alpha L}{2T}\right) = S\tag{2}$$

A partir das seguintes condições:

$$S = 32m$$

$$L = 30m$$

$$\alpha = 0.10Kgf$$

Utilizar o método da bissecção para determinar a tensão T. Considerar o intervalo inicial [2, 3]. Obs: Utilizar método de Newton ou da Secante.

Como o enunciado da questão deixou ambíguo qual método usar, optei pelo método de Newton.

```
q2_geral <- function(t, alpha, L) {
    sinh <- sinh(alpha * L / (2 * t))
    2 * t / alpha * sinh
}

q2_aplicada <- function(t) {
    q2_geral(t, alpha = 0.1, L = 30)
}</pre>
```

```
plot_fun(f = q2_aplicada, h = 32, a = 1, b = 10)
```



```
newton(f = q2_aplicada, h = 32, x = 2)
#> [1] 2.395068
```

Consequentemente, a tensão Tdo cabo para dados valores de α, L e Sé de T=2.395 segundo a Equação 2.

Questão 5.

Aplicação na Engenharia Mecânica

Em um automóvel, de massa m, com constante da mola k e amortecimento c, sabe-se que o deslocamento vertical x_0 do centro de gravidade do carro é dado por:

$$x(t) = x_0(t) e^{-nt} \left(\cos(pt) + \frac{n}{p} \sin(pt) \right)$$

$$p = \sqrt{\frac{k}{m} - \frac{c^2}{4m^2}}, \quad n = \frac{c}{2m}$$
(3)

Com os seguintes valores:

$$m = 1.2 \times 10^{6} g$$

$$k = 1.25 \times 10^{9} g/s^{2}$$

$$c = 1.4 \times 10^{7} g/s$$

Calcular os três primeiros instantes em que o centro de gravidade passa por sua posição de equilíbrio, isto é, x=0

Calculando $x_0(t)$ que presumo ser a condição inicial da função x no instante t=0:

$$x_0(t) = x(0) = e^0 \left(\cos(0) + \frac{n}{p} \sin(0) \right) = 1$$

$$x(t) = e^{-nt} \left(\cos(pt) + \frac{n}{p} \sin(pt) \right)$$

```
q5_geral <- function(t, m, k, c) {
    n <- c / (2 * m)
    p <- sqrt(k / m - n^2)
    exp(-n * t) * (cos(p * t) + n / p * sin(p * t))
}

q5_aplicado <- function(t) {
    q5_geral(t, m = 1.2e6, k = 1.25e9, c = 1.4e7)
}</pre>
```

```
plot_fun(q5_aplicado, h = 0, a = 0, b = 1)
```


Devido a necessidade de encontrar em específico as três primeiras soluções, optei por usar o método da bissecção para garantir que a solução se encontra no intervalo.

```
c(
   bissecção(q5_aplicado, h = 0, a = 0.0, b = 0.1),
   bissecção(q5_aplicado, h = 0, a = 0.1, b = 0.2),
   bissecção(q5_aplicado, h = 0, a = 0.2, b = 0.3)
)
#> [1] 0.05520953 0.15417813 0.25314673
```

Com esses resultados, os três primeiros instantes em que o centro de gravidade passa pela origem de acordo com a Equação 3 são dados por $t=\{0.055,\ 0.154,\ 0.253\}$

Questão 6.

Aplicação na Engenharia Ambiental

Na engenharia ambiental, a equação abaixo pode ser usada para calcular o nível de oxigênio em um rio, após a chegada de uma descarga de esgoto.

$$C = 10 - 15 \left(e^{-0.1x} - e^{-0.5x} \right) \tag{4}$$

Em que x é a distância rio abaixo. Determine em que ponto, após a descarga de esgoto, o nível de oxigênio terá caído para 4.

```
q6 <- function(x) {
    10 - 15 * (exp(-0.1 * x) - exp(-0.5 * x))
}</pre>
```

```
plot_fun(f = q6, h = 4, a = 0, b = 30)
```



```
c(
    newton(q6, h = 4, x = 0),
    newton(q6, h = 4, x = 10)
)
#> [1] 1.579965 8.870979
```

Ou seja, pelo modelo da Equação 4, o nível de oxigênio terá caido para 4 a uma distância de 1.58m rio abaixo, atingirá um ponto de mínimo, e passará por 4 de novo 8.87m rio abaixo.

Tabela 1: Método da bissecção para questão 1.

a	b	m	f(a)	f(b)	f(m)	erro
6.000000	8.000000	7.000000	80.15007	107.4052	93.74099	-6.2590087
7.000000	8.000000	7.500000	93.74099	107.4052	100.56374	0.5637406
7.000000	7.500000	7.250000	93.74099	100.5637	97.15006	-2.8499446
7.250000	7.500000	7.375000	97.15006	100.5637	98.85632	-1.1436824
7.375000	7.500000	7.437500	98.85632	100.5637	99.70988	-0.2901164
7.437500	7.500000	7.468750	99.70988	100.5637	100.13678	0.1367757
7.437500	7.468750	7.453125	99.70988	100.1368	99.92332	-0.0766794
7.453125	7.468750	7.460938	99.92332	100.1368	100.03005	0.0300459
7.453125	7.460938	7.457031	99.92332	100.0300	99.97668	-0.0233173
7.457031	7.460938	7.458984	99.97668	100.0300	100.00336	0.0033641
7.457031	7.458984	7.458008	99.97668	100.0034	99.99002	-0.0099766
7.458008	7.458984	7.458496	99.99002	100.0034	99.99669	-0.0033063
7.458496	7.458984	7.458740	99.99669	100.0034	100.00003	0.0000289
7.458496	7.458740	7.458618	99.99669	100.0000	99.99836	-0.0016387
7.458618	7.458740	7.458679	99.99836	100.0000	99.99920	-0.0008049
7.458679	7.458740	7.458710	99.99920	100.0000	99.99961	-0.0003880
7.458710	7.458740	7.458725	99.99961	100.0000	99.99982	-0.0001795
7.458725	7.458740	7.458733	99.99982	100.0000	99.99992	-0.0000753
7.458733	7.458740	7.458736	99.99992	100.0000	99.99998	-0.0000232
7.458736	7.458740	7.458738	99.99998	100.0000	100.00000	0.0000029
7.458736	7.458738	7.458737	99.99998	100.0000	99.99999	-0.0000101
7.458737	7.458738	7.458738	99.99999	100.0000	100.00000	-0.0000036
7.458738	7.458738	7.458738	100.00000	100.0000	100.00000	-0.0000004
7.458738	7.458738	7.458738	100.00000	100.0000	100.00000	0.0000013
7.458738	7.458738	7.458738	100.00000	100.0000	100.00000	0.0000004
7.458738	7.458738	7.458738	100.00000	100.0000	100.00000	0.0000000
7.458738	7.458738	7.458738	100.00000	100.0000	100.00000	-0.0000002
7.458738	7.458738	7.458738	100.00000	100.0000	100.00000	-0.0000001
7.458738	7.458738	7.458738	100.00000	100.0000	100.00000	0.0000000
7.458738	7.458738	7.458738	100.00000	100.0000	100.00000	0.0000000