Sesión 4: COMPLETACIÓN Y MÉTRICAS DE VALIDACIÓN DE SERIES DE TIEMPO

R aplicado a la hidrología

Gutierrez Lope Leonardo Flavio

Hidroinformática

5 de marzo de 2021

Contenido

1 Métodos de completación de datos faltantes de precipitación

Aplicaciones de la validación de datos

Contenido

1 Métodos de completación de datos faltantes de precipitación

2 Aplicaciones de la validación de datos

Método Cutoff

Figura 1: Algoritmo Cutoff (Feng et al, 2014)

Figura 2: Completación de datos faltantes de precipitacion

Contenido

Métodos de completación de datos faltantes de precipitación

Aplicaciones de la validación de datos

Métricas de validación

Tabla 1: Parámetros estadísticos para la evaluación del error

Parámetro	Ecuación
estadístico	
Raíz del Error Cuadrático Medio	$RMSE = \sqrt{rac{1}{N}\sum_{i=1}^{N}(X_P - X_V)^2}$
Coeficiente de Correlación de Pearson	$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_{P} - X_{V})^{2}} $ $r = \frac{\sum_{i=1}^{N} (X_{P} - \overline{X_{P}})(X_{V} - \overline{X_{V}})}{\sqrt{\sum_{i=1}^{N} (X_{P} - \overline{X_{P}})^{2}} \sqrt{\sum_{i=1}^{N} (X_{V} - \overline{X_{V}})^{2}}} $
Coeficiente de Determinación	,
Bias	$\mathit{Bias} = rac{\sum_{i=1}^{N}(X_P - X_V)}{(N)}$
Error Medio Absoluto	$Bias = rac{\sum_{i=1}^{N}(X_P - X_V)}{(N)}$ $MAE = rac{\sum_{i=1}^{N}(X_P - X_V)}{(N)}$ $MAPE = rac{1}{N}rac{\sum_{i=1}^{N}(X_V - X_P)}{(X_V)} imes 100$ AQUAGRUM
Error Porcentual Absoluto Medio	$MAPE = rac{1}{N} rac{\sum_{i=1}^{N} (X_V - X_P)}{(X_V)} imes 1$ AQUAGRUM
	←□ → ←□ → ← = → ← = → へ