Probabilité conjointe

Probabilités conjointes : probabilité d'une assignation de toutes la variables

→ P(Inconnu=vrai, MotSensible=vrai, Pourriel=vrai) = 0.108 (10.8%)

◆ P(Inconnu=faux, MotSensible=faux, Pourriel=vrai) = 0.008 (0.8%)

Inconnu	MotSensible	Pourriel	Probabilité
vrai	vrai	vrai	0.108
vrai	vrai	faux	0.016
vrai	faux	vrai	0.012
vrai	faux	faux	0.064
faux	vrai	vrai	0.072
faux	vrai	faux	0.144
faux	faux	vrai	0.008
faux	faux	faux	0.576

Probabilité marginale

- Probabilités marginales : probabilité sur un sous-ensemble des variables
 - P(Inconnu=vrai, Pourriel=vrai)
 - = P(Inconnu=vrai, MotSensible=vrai, Pourriel=vrai) + P(Inconnu=vrai, MotSensible=faux, Pourriel=vrai)
 - = $\Sigma_{x \in \{vrai. faux\}} P(Inconnu=vrai, MotSensible=x, Pourriel=vrai) = 0.108 + 0.012 =$ **0.12**

Inconnu	MotSensible	Pourriel	Probabilité
vrai	vrai	vrai	0.108
vrai	vrai	faux	0.016
vrai	faux	vrai	0.012
vrai	faux	faux	0.064
faux	vrai	vrai	0.072
faux	vrai	faux	0.144
faux	faux	vrai	0.008
faux	faux	faux	0.576

Probabilité marginale

- Probabilités marginales : probabilité sur un sous-ensemble des variables
 - ◆ P(Pourriel=vrai)
 - $= \sum_{x \in \{vrai, faux\}} \sum_{y \in \{vrai, faux\}} P(Inconnu=y, MotSensible=x, Pourriel=vrai)$
 - = 0.108 + 0.012 + 0.072 + 0.008 =**0.2**

Inconnu	MotSensible	Pourriel	Probabilité
vrai	vrai	vrai	0.108
vrai	vrai	faux	0.016
vrai	faux	vrai	0.012
vrai	faux	faux	0.064
faux	vrai	vrai	0.072
faux	vrai	faux	0.144
faux	faux	vrai	0.008
faux	faux	faux	0.576

Probabilité d'une disjonction

- Probabilités de disjonction (« ou ») d'événements :
 - ◆ P(Pourriel=vrai ou Inconnu=faux)
 - = P(Pourriel=vrai) + P(Inconnu=faux) P(Pourriel=vrai, Inconnu=faux)
 - = 1 P(Pourriel = faux, Inconnu = vrai) = 1 0.016 0.064 = 0.92

Inconnu	MotSensible	Pourriel	Probabilité
vrai	vrai	vrai	0.108
vrai	vrai	faux	0.016
vrai	faux	vrai	0.012
vrai	faux	faux	0.064
faux	vrai	vrai	0.072
faux	vrai	faux	0.144
faux	faux	vrai	0.008
faux	faux	faux	0.576

Probabilité d'une disjonction

- Probabilités de disjonction (« ou ») d'événements :
 - ♦ formule générale : P(A ou B) = P(A) + P(B) P(A et B)

Inconnu	MotSensible	Pourriel	Probabilité
vrai	vrai	vrai	0.108
vrai	vrai	faux	0.016
vrai	faux	vrai	0.012
vrai	faux	faux	0.064
faux	vrai	vrai	0.072
faux	vrai	faux	0.144
faux	faux	vrai	0.008
faux	faux	faux	0.576

Probabilité d'un événement en général

- On peut calculer la probabilité d'événements arbitrairement complexes
 - il suffit d'additionner les probabilités des éléments élémentaires associés
 - P((Pourriel=vrai, Inconnu=faux) ou (MotSensible=faux, Pourriel=faux)) = 0.064 + 0.072 + 0.008 + 0.576 = 0.72

Inconnu	MotSensible	Pourriel	Probabilité
vrai	vrai	vrai	0.108
vrai	vrai	faux	0.016
vrai	faux	vrai	0.012
vrai	faux	faux	0.064
faux	vrai	vrai	0.072
faux	vrai	faux	0.144
faux	faux	vrai	0.008
faux	faux	faux	0.576

Probabilité conditionnelle

Probabilités conditionnelles :

vrai seulement si P(Inconnu=vrai) ≠ 0

◆ P(Pourriel=faux | Inconnu=vrai)

= P(Pourriel=faux, Inconnu=vrai) / P(Inconnu=vrai)

$$= (0.016 + 0.064) / (0.016 + 0.064 + 0.108 + 0.012) = 0.4$$

Inconnu	MotSensible	Pourriel	Probabilité
vrai	vrai	vrai	0.108
vrai	vrai	faux	0.016
vrai	faux	vrai	0.012
vrai	faux	faux	0.064
faux	vrai	vrai	0.072

En mots: « sachant que *Inconnu=vrai*, quelle est la probabilité que *Pourriel=faux* »

faux	faux	vrai	0.008
faux	faux	faux	0.576

Probabilité conditionnelle

Probabilités conditionnelles :

♦ formule générale : P(A|B) = P(A,B) / P(B) ($P(B) \neq 0$)

Inconnu	MotSensible	Pourriel	Probabilité
vrai	vrai	vrai	0.108
vrai	vrai	faux	0.016
vrai	faux	vrai	0.012
vrai	faux	faux	0.064
faux	vrai	vrai	0.072
faux	vrai	faux	0.144
faux	faux	vrai	0.008
faux	faux	faux	0.576

Autres types de variables aléatoires

- On va se concentrer sur des variables aléatoires Booléennes ou binaires
 - ◆ le domaine, c.-à-d. l'ensemble des valeurs possibles de la variable, était toujours {vrai,faux}
- On pourrait avoir d'autres types de variables, avec des domaines différents :
 - **Discrètes** : le domaine est énumérable
 - » Météo ∈ {soleil, pluie, nuageux, neige}
 - » lorsqu'on marginalise, on doit sommer sur toutes les valeurs : $P(Temp\'erature=x) = \Sigma_{y \in \{soleil, pluie, nuageux, neige\}} P(Temp\'erature=x, M\'et\'eo=y)$
 - Continues : le domaine est continu (par exemple, l'ensemble des réels)
 - » exemple : PositionX = 4.2
 - » le calcul des probabilités marginales nécessite des intégrales