Tecnología Electrónica Ingeniería en Electrónica

Universidad Tecnológica Nacional Facultad Regional Córdoba

- Principales Características
 - Inducción Magnética B
 - Intensidad de Campo Magnético H
 - Permeabilidad µ
 - Susceptibilidad Magnética Xm
 - Histéresis

Inducción Magnética B

- Cantidad de Líneas de Fuerza que atraviesan una superficie de 1cm2.
- La superficie es perpendicular al Flujo Magnético φ
- $\mathbf{B} = \mathbf{\mu} * \mathbf{H}$ (en el medio magnético)
- Unidad del SI → Tesla
- $B_0 = H$ (en el vacío)

- Intensidad de Campo Magnético H
 - Es el producto que genera una Corriente Eléctrica que atraviesa un devanado.

$$H = \frac{N * I}{l} \left\lceil \frac{A}{m} \right\rceil$$

$$I = Corriente$$

 $l = Longitud$

- N → Numero de espiras
- I → Corriente Eléctrica
- I → Longitud del circuito magnético
- · Oersted Unidad de Intensidad de Campo Magnético

$$1\frac{A}{m} = 0.01257 \text{ Oersted} \qquad 79,57 \frac{A}{m} = 1 \text{ Oersted}$$

Permeabilidad µ

$$\circ \mu = \mu_0 * \mu_r$$

- $\mu_0 \rightarrow$ permeabilidad del vacío
- \circ $\mu_r \rightarrow$ permeabilidad relativa con respecto al vacío
- $\mu_r = 1 \rightarrow vacío$

- Susceptibilidad Magnética del Medio X_m
 - Debido a los dipolos magnéticos de los átomos, aparecen momentos magnéticos inducidos.
 - El momento magnético total se denomina.
 - Magnetización M.
 - En un sólido se puede escribir
 - $B = \mu_0 * H + \mu_0 * M$
 - Con M proporcional a H
 - $M = X_m * H$
 - Entonces
 - $\mu = \mu_0 * (1 + X_m)$

Según el Valor X_m los materiales se clasifican como:

Diamagnéticos

- X_m es negativa y pequeña comparada con 1
 - $\mu < \mu_0$

A magnéticos

- $X_m = 0$
 - $\mu = \mu_0 = 1$

Paramagnéticos

- X_m es positiva y apenas mayor que 1
 - $\mu > \mu_0$

Ferromagnéticos

- X_m es positiva y mucho mayor que 1
 - $\mu >>> \mu_0$

Diamagnéticos	Permeabilidad Relativa µ _r
Bismuto	0.99983
Plata	0.99998
Plomo	0.999983
Cobre	0.999991
Agua	0.999991

Paramagnéticos	Permeabilidad Relativa µ _r
Aire	1.000004
Aluminio	1.00002

A magnético	Permeabilidad Relativa µ _r	
Vacío	1.0000	

Ferromagnéticos	Permeabilidad Relativa µ _r
Polvo de Permalloy	130
Cobalto	250
Níquel	600
Ferroxcube 3	1500
Acero Dulce	2000
Hierro con Impurezas	5000
Hierro silicio	7000
Permalloy 78	100.000
Hierro purificado	200.000
Superpermalloy	1.000.000

Principales Características

Lazo de Histéresis

Inducción Magnética B vs

Intensidad de campo H

Puntos Principales

- Suponemos núcleo ferromagnético al que aplicamos un H→ Surge B.
 - Tramo Oa → Tramo Recto debido a la alta permeabilidad (constante).
 - Tramo ab → Codo de Saturación
 - Tramo bc → Material Saturado
 - Como condición de diseño y para aprovechar al máximo el material (mínima sección) se busca trabajar cerca del punto a

Puntos Principales

- Al retirar el campo aplicado, el material conserva lo que se denomina Magnetismo Remanente
 - →Tramo OD

Puntos Principales

- Todos los materiales ferromagnéticos presentan un cierto grado de magnetismo remanente,
- Si invierto H se llega al punto E
 - → El magnetismo Remanente se anula.
 - f.m.m = tramo **EO**.
 - Ste valor se denomina fuerza coercitiva.
 - Si se anula la excitación, el material queda desimantado

Si la H invertida sigue aumentado se verifica el proceso de aumento de B hasta que se satura el material.

Si disminuyo la excitación llego hasta el punto G donde tengo la Magnetización Remanente, similar al tramo OD, pero de sentido opuesto.

B o M Si disminuyo H hasta que llego I, consigo desmagnetizar el material. H=N·i/L

 Si el ciclo de H continua variando puedo llegar al punto c de saturación.

 Se obtiene la característica magnética completa del material.

 Con excitación sinusoidal, ejemplo transformadores, se recorre el ciclo completo.

Curva Histéresis - Ejemplo

- Bm → Saturación
- ▶ Br → Magnetismo Remanente

- ► Hm → Inducción para Saturación
- ▶ Hc→ Fuerza Coercitiva

Curva Histéresis - Ejemplo

- Bm → Saturación
- ▶ Br → Magnetismo Remanente

- ► Hm→ Inducción para Saturación
- ▶ Hc→ Fuerza Coercitiva

Materiales de Ejemplo

Material	Características	μO	Pérdidas mW/cm3 60Hz	Pérdidas mW/cm3 50KHz	Aplicación
2	Baja permeabilidad Bajo flujo en AC	10	19	28	Choque Inductor frec≥50KHz
8	Baja Pérdida Buena Linealidad con Corriente de Bias Alta Alta frecuencia Alto Costo	35	45	48	DC Choque frec≥50KHz

Fuente: micrometals - Iron Powder Cores

Datos Varios

- Codificación:
- ▶ T30/6:
 - T: Toroide
 - Diámetro exterior: 30 décimas de pulgadas
 - 6: mezcla de materiales.
 - Color: indica rango de frecuencia

Mezcla	1er. Color	2do. Color	Frecuencia
0	Marron	Gris	50 - 300 Mhz
1	Azul	Gris	0,5 - 50 Mhz
2	Rojo	Gris	1 - 30 Mhz
3	Gris	Gris	0,03 - 1 Mhz
6	Amarillo	Gris	2 - 50 Mhz
7	Blanco	Gris	1 - 20 Mhz
10	Negro	Gris	10 -100 Mhz
12	Verde	Blanco	20 -200 Mhz
15	Rojo	Blanco	0,1- 3 Mhz
17	Azul	Amarillo	20 - 200 Mhz
22	Verde	Naranja	20 - 200 Mhz

Materiales Magnéticos DUROS

- Se caracterizan por una alta fuerza coercitiva Hc y una alta inducción magnética remanente Br.
- Estos materiales cuando se imantan, son difíciles de desimantar.
- Se utilizan para fabricar imanes artificiales.

Materiales Magnéticos BLANDOS

- Se imantan y desimantan fácilmente
- Presentan curvas de histéresis de apariencia estrecha
- Bajos valores de fuerza coercitiva (Hc) y alta saturación
- Tienen permeabilidades magnéticas altas
- Se usan en núcleos para transformadores, motores, generadores.

Perdidas por HISTERESIS

- ► El proceso de magnetización y desmagnetización descrito anteriormente provoca calentamientos → disipación de energía.
- Magnitud de Pérdidas → área encerrada por el contorno del ciclo de histéresis

Perdidas por HISTERESIS

Para el cálculo de la pérdida se utiliza la fórmula:

$$Ph=Kh:f:Bmax^n$$

- Ph → Pérdidas [W/m²]
- f → frecuencia de la señal de excitación
- Kh → Constante que depende del material
 - 0.001 → Acero al silicio
 - 0.03 → Acero fundido duro
- ▶ Bmax → Inducción máxima
- n = 1.6
 - ∘ B < 1T
- \rightarrow n > 2
 - ∘ B > 1T

Perdidas por FOUCAULT

 Las pérdidas de Foucault se deben a las corrientes inducidas sobre el material ferromagnético como consecuencia de estar sometido a un campo magnético variable con el tiempo.

- Núcleo ferromagnético.
 - Corrientes inducidas.
 - **8** Campo magnético.

$$Pf = K_f \cdot f^2 \cdot B_{max}^2$$

- *Kf* es una constante proporcionada por el fabricante
- fes la frecuencia a la que trabajará el circuito magnético
- *Bmax* la inducción máxima que se puede presentar.

Pérdidas Totales

Perdidas Totales

Determino Bpk, según el modo de trabajo.

$$B_{pk} = \frac{E_{rms} 10^8}{4.44 \text{ A N f}}$$

B_{pk}	Peak AC flux density (gauss)
E' _{rms}	RMS AC voltage (volts)
A	Cross-sectional area (cm ²)
Ν	Number of turns
f	frequency (hortz)

Perdidas Totales

Determino Bpk, según el modo de trabajo.

$$B_{pk} = \frac{E_{pk} t 10^8}{2 A N} = \frac{L \Delta I 10^8}{2 A N}$$

Where: B_{pk} Peak AC flux density (gauss)

Peak voltage across coil during "t" (volts)

Time of applied voltage (seconds)

Inductance (Henries)

 ΔI Peak to peak ripple current (amps)

Cross-sectional area (cm²)

Number of turns

Magnetoestricción

- Es la propiedad de los materiales magnéticos, o ferromagnéticos que hace que estos cambien de forma al encontrarse en presencia de un campo magnético.
- Un ejemplo son: las vibraciones en forma de sonido son causadas por la frecuencia de las fluctuaciones del campo, en motores y trasformadores.
- Para generar electricidad se utiliza la magnetoestricción inversa.
- Se emplea el fenómeno en sensores.

Magnetoestricción

- Se envía un pulso eléctrico en una guía de ondas.
- El imán que indica el nivel genera torsión sobre la guía (efecto Weidemann).
- La torsión provoca un pulso sónico que viaja en sentido opuesto.
- Con electrónica se mide el tiempo entre el pulso emitido y el pulso sónico.

- Para Campos magnéticos continuos (DC)
 - Hierro Puro.
 - Gran permeabilidad y elevada inducción de saturación.
 - Hierro Electrolítico
 - Hierro sueco
 - $\mu r \rightarrow 5500$
 - Hierro Armco
 - $\mu r \rightarrow 7000$
 - Aplicaciones
 - Altavoces
 - Relés
 - Expansiones polares de aparatos de medida

- Para Campos magnéticos alternos (AC)
 - Aleaciones de Hierro
 - Aumentar su resistividad mediante aleaciones.
 - Se usa laminado.
 - · Elevadas pérdidas por corrientes parásitas.
 - Aleaciones de hierro-silicio
 - Se adiciona hierro silicio.
 - · Laminación en frio orienta los cristales.
 - Grano orientado

 Aumenta la permeabilidad en la dirección del laminado.
 - El valor indicado de pérdidas en W/Kg es para una Inducción de 1Wb/m2 y a 50Hz.

- Para Campos magnéticos alternos (AC)
 - Aleaciones de Hierro Níquel
 - Elevada permeabilidad.
 - Bajas pérdidas por inducción para inducciones de pequeño valor.
 - Grano orientado.
 - Se usan como planchas o núcleos pulverizados
 - 75% a 80% de níquel.
 - Permalloy C y Mumetal Superpermalloy
 - Permeabilidad elevada
 - Saturación con baja f.m.m.
 - Bajas pérdidas
 - Resistividad elevada
 - Alto costo

- Para Campos magnéticos alternos (AC)
 - Aleaciones de Hierro Níquel
 - Se usan como planchas o núcleos pulverizados
 - 50% de níquel.
 - Permalloy B, Hipernik , Permenomrm 5000Z
 - Permeabilidad Elevada
 - Saturación con valores medios de f.m.m
 - Reducidas pérdidas
 - Resistividad Media
 - Costo Elevado
 - 30% de níquel.
 - Permalloy D y Rhometal

- Para Campos magnéticos alternos (AC)
 - Aleaciones de Hierro Níquel
 - Se usan como planchas o núcleos pulverizados
 - 30% de níquel.
 - Permalloy D y Rhometal
 - Permeabilidad Elevada
 - Saturación con valores bajos de f.m.m
 - Reducidas pérdidas
 - Resistividad Media
 - Costo Bajo

- Para Campos magnéticos alternos (AC)
 - Usos Aleaciones de Hierro Níquel
 - 75 80% de níquel
 - Transformadores de banda ancha
 - Piezas magnéticas para instrumentos de hierro móvil
 - 50%
 - Relés de alterna y continua para corrientes débiles.
 - 30%
 - Transformadores de alimentación
 - Motores
 - Generadores

- Para Núcleos magnéticos de polvo
 - Para uso en audiofrecuencia o RF.
 - Hierro en polvo
 - Núcleos
 - Elevada µ → 150 a 200
 - Alto valor de Q
- Ferritas
 - Sustancias no metálicas
 - Baja Conductividad → Bajas pérdidas por Foucault
 - Composición → Fe₂O₃MO
 - MO \rightarrow Cu, Mg, Ni, Fe o Zn
 - Para cortar

 Marcar como si fuese vidrio y luego aplicar fuerza.

- Para imanes permanentes
 - Deben tener una elevada tensión interna
 - Endurecimiento por temple.
 - Agregando aluminio y níquel
 - Alni Alnico \rightarrow B*H = 10.000 a 17.000
 - Alcomax Ticonal \rightarrow B*H = 50.000 (sometido a campo magnético intenso al enfriar).
- Ferritas para imanes permanentes
 - Oxido de hierro y cobalto.
 - Vectolite
 - Ferroxdure
 - Magnadur