

СДО Росдистант ➤ Текущий курс ➤ Сопротивление материалов 2 ➤ Контрольные мероприятия ➤ Итоговый тест

Тест начат	5/07/2022, 13:14
Состояние	Завершено
Завершен	5/07/2022, 13:17
Прошло времени	3 мин.
Баллы	2,0/16,0
Оценка	5,0 из 40,0 (13%)

Вопрос 1 Нет ответа Балл: 1,0

Амплитуда цикла напряжений определяется выражением

$$(\sigma_{\text{max}} + \sigma_{\text{min}})/2$$

$$(\sigma_{\text{max}} - \sigma_{\text{min}})/2$$

$$(\sigma_{\min} - \sigma_{\max})/2$$

$$(\sigma_{\min} - \sigma_{\max})$$

Вопрос 2 Неверно Баллов: 0,0 из 1,0

Для определения вертикального перемещения в сечении B нагруженной балки

единичная эпюра изгибающих моментов $\,M_{\!_{1}}\,$ должна иметь следующий вид

Выберите один ответ:

X

Неверно

Баллов: 0,0 из 1,0

Характеристика цикла напряжений, отмеченная на рис. цифрой 2, называется

σ, МПа

Выберите один ответ:

- верхнее напряжение
- положительное напряжение
- о максимальное напряжение
- о амплитуда цикла
- о среднее значение напряжения
- минимальное напряжение

X

При прямом поперечном изгибе касательное напряжение т в произвольной точке поперечного сечения определяется по следующей формуле

- $\tau(y) = \frac{Q_y}{A} \cdot y^2$
- $\tau(y) = \frac{Q_y \cdot S_x^{omc}(y)}{I_x \cdot b(y)}$
- $\tau(y) = \frac{Q_y}{S_x} \cdot y$ $\tau(y) = \frac{M_x}{I_x} \cdot y$

Вопрос **5**

Неверно

Баллов: 0,0 из 1,0

Для центрально сжатого стержня, изготовленного из материала с допускаемым напряжением на сжатие 160 МПа, допускаемая сила равна ... кH.

λ	φ
120	0,45
130	0,40
140	0,36
150	0,32
160	0,29
170	0,26
180	0,23
190	0,21
200	0,19

Выберите один ответ:

- 0 81,2
- 0 140,5
- 182,4
- 0 293,1

×

Если поперечное сечение конструкции испытывает внецентренное растяжение, то функция распределения нормальных напряжений по сечению имеет следующий вид

$$\sigma(y) = \frac{M_x}{I_x} \cdot y$$

$$\sigma(y) = \frac{N}{A} + \frac{M_x}{I_x} \cdot y$$

$$\sigma(x,y) = \frac{M_x}{I_x} \cdot y + \frac{M_y}{I_y} \cdot x$$

$$\sigma(x,y) = \frac{N}{A} + \frac{M_x}{I_x} \cdot y + \frac{M_y}{I_y} \cdot x$$

Вопрос 7 Неверно Баллов: 0,0 из 1,0

Эпюра абсолютных углов закручивания заданного вала имеет следующий вид

Выберите один ответ:

×

Формула Ясинского определения критического напряжения имеет следующий вид

Выберите один ответ:

- $\sigma_{\rm kp} = \frac{\pi^2}{\lambda^2} E$
- $\sigma_{\rm Kp} = \frac{\pi^2}{(\mu l)^2} EA$
- $\sigma_{\rm Kp} = \frac{\pi^2}{\lambda^2} EJ$

Вопрос 9

Неверно

Баллов: 0,0 из 1,0

Для сечения, показанного на схеме, значение осевого момента сопротивления W_{ν} равно ... см .

- 0 81,0
- 54,0
- 132,7
- O 27,0

Случай ударного взаимодействия, представленный на рисунке,

называется ... ударом.

Выберите один ответ:

- продольным
- о поперечным
- о скручивающим
- внецентренным

Вопрос 11 Нет ответа Балл: 1,0

Динамические напряжения при вынужденных колебаниях вычисляются по следующей формуле

Вопрос 12

Верно

Баллов: 1,0 из 1,0

Для сечения, показанного на схеме, значение осевого момента сопротивления W_χ равно ... см .

- 110,1
- 0 134,2
- 98,3
- 0 156,7

Формула Эйлера определения критической силы имеет следующий вид

- $F_{\rm kp} = a b\lambda^2$
- $F_{\rm Kp} = (a b\lambda)A$
- $F_{\rm Kp} = (a b\lambda)J$
- $F_{\rm kp} = \frac{\pi^2}{(\mu l)^2} E$
- $F_{\text{Kp}} = \frac{\pi}{\lambda} EA$ $F_{\text{Kp}} = \frac{\pi^2}{(\mu l)^2} EJ$

На консольную балку жесткостью c = 2 кH/см падает груз массой 100 кг (g = 10 м/с 2).

Высота падения груза, при которой конец консольной балки при ударе коснется неподвижной плоскости, равна

- 36 см
- 30 см
- О 6 см
- 42 см

Для центрально сжатого стержня, изготовленного из материала с характеристиками:

$$E = 2 \cdot 10^5$$
 ΜΠα,

$$\lambda_0 = 60, \, \lambda_{np} = 100,$$

$$a$$
 = 320 МПа, b = 1,27 МПа, –

критическая сила равна ... кН.

Выберите один ответ:

- 0 88,3
- 318,3
- 0 482,2
- 784,5

X

При расчете на устойчивость центрально сжатого стержня представленного сечения следует использовать момент инерции относительно оси

Выберите один ответ:

- \bigcirc χ - χ
- y-y
- 11-1.
- \circ v-v

×