# Introduction to Algorithms 6.046J/18.401J



Lecture 4
Prof. Piotr Indyk



#### **Today**

- Randomized algorithms: algorithms that flip coins
  - Matrix product checker: is AB=C?
  - Quicksort:
    - Example of divide and conquer
    - Fast and practical sorting algorithm
    - Other applications on Wednesday



#### Randomized Algorithms

- Algorithms that make random decisions
- That is:
  - Can generate a random number x from some range {1...R}
  - Make decisions based on the value of x
- Why would it make sense?



#### Two cups, one coin



- If you always choose a fixed cup, the adversary will put the coin in the other one, so the expected payoff = \$0
- If you choose a random cup, the expected payoff = \$0.5



#### Randomized Algorithms

- Two basic types:
  - Typically fast (but sometimes slow):Las Vegas
  - Typically correct (but sometimes output garbage): Monte Carlo
- The probabilities are defined by the random numbers of the algorithm! (not by random choices of the problem instance)



#### **Matrix Product**

- Compute  $C=A\times B$ 
  - Simple algorithm:  $O(n^3)$  time
  - Multiply two 2×2 matrices using 7 mult.
     →O(n<sup>2.81...</sup>) time [Strassen'69]
  - Multiply two  $70 \times 70$  matrices using 143640 multiplications →  $O(n^{2.795...})$  time [Pan'78]
  - **—** ...
  - O( $n^{2.376...}$ ) [Coppersmith-Winograd]



#### **Matrix Product Checker**

- Given: n×n matrices A,B,C
- Goal: is  $A \times B = C$ ?
- We will see an  $O(n^2)$  algorithm that:
  - If answer=YES, then Pr[output=YES]=1
  - If answer=NO, then  $Pr[output=YES] \le \frac{1}{2}$



#### The algorithm

- Algorithm:
  - Choose a random binary vector x[1...n], such that  $Pr[x_i=1]=\frac{1}{2}$ , i=1...n
  - Check if ABx=Cx
- Does it run in  $O(n^2)$  time?
  - -YES, because ABx = A(Bx)



#### Correctness

- Let D=AB, need to check if D=C
- What if D=C?
  - Then Dx=Cx, so the output is YES
- What if  $D\neq C$ ?
  - − Presumably there exists x such thatDx≠Cx
  - We need to show there are many such x



### **D≠C**





#### **Vector product**

- Consider vectors d\neq c (say, d\_i\neq c\_i)
- Choose a random binary x
- We have dx=cx iff (d-c)x=0
- Pr[(d-c)x=0]=?



#### Analysis, ctd.

- If  $x_i=0$ , then  $(c-d)x=S_1$
- If  $x_i=1$ , then  $(c-d)x=S_2\neq S_1$
- So,  $\ge 1$  of the choices gives  $(c-d)x \ne 0$

$$\rightarrow \Pr[\operatorname{cx}=\operatorname{dx}] \leq \frac{1}{2}$$



#### **Matrix Product Checker**

- Is  $A \times B = C$ ?
- We have an algorithm that:
  - If answer=YES, then Pr[output=YES]=1
  - If answer=NO, then  $Pr[output=YES] \le \frac{1}{2}$
- What if we want to reduce  $\frac{1}{2}$  to  $\frac{1}{4}$ ?
  - Run the algorithm twice, using independent random numbers
  - Output YES only if both runs say YES
- Analysis:
  - If answer=YES, then Pr[output<sub>1</sub>=YES, output<sub>2</sub>=YES]=1
  - If answer=NO, then
    Pr[output=YES] = Pr[output<sub>1</sub>=YES, output<sub>2</sub>=YES]
  - = Pr[output<sub>1</sub>=YES]\*Pr[output<sub>2</sub>=YES]

 $\leq \frac{1}{4}$ 



### Quicksort

- Proposed by C.A.R. Hoare in 1962.
- Divide-and-conquer algorithm.
- Sorts "in place" (like insertion sort, but not like merge sort).
- Very practical (with tuning).
- Can be viewed as a randomized Las Vegas algorithm



#### Divide and conquer

Quicksort an *n*-element array:

1. Divide: Partition the array into two subarrays around a pivot x such that elements in lower subarray  $\le x \le$  elements in upper subarray.



- 2. Conquer: Recursively sort the two subarrays.
- 3. Combine: Trivial.

**Key:** Linear-time partitioning subroutine.



#### Pseudocode for quicksort

```
Quicksort(A, p, r)

if p < r

then q \leftarrow \text{Partition}(A, p, r)

Quicksort(A, p, q-1)

Quicksort(A, p, q+1, r)
```

Initial call: QUICKSORT(A, 1, n)



### Partitioning subroutine

```
Partition(A, p, r) \triangleleft A[p ... r]
    x \leftarrow A[p] \triangleleft pivot = A[p]
    i \leftarrow p
    for j \leftarrow p + 1 to r
         do if A[j] \leq x
                   then i \leftarrow i + 1
                            exchange A[i] \leftrightarrow A[j]
    exchange A[p] \leftrightarrow A[i]
     return i
```

#### Invariant:





















































#### Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.
- What is the worst case running time of Quicksort?





### Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

$$T(n) = T(0) + T(n-1) + \Theta(n)$$

$$= \Theta(1) + T(n-1) + \Theta(n)$$

$$= T(n-1) + \Theta(n)$$

$$= \Theta(n^2) \qquad (arithmetic series)$$



$$T(n) = T(0) + T(n-1) + cn$$



$$T(n) = T(0) + T(n-1) + cn$$

T(n)



$$T(n) = T(0) + T(n-1) + cn$$

$$T(0)$$
  $T(n-1)$ 



$$T(n) = T(0) + T(n-1) + cn$$





$$T(n) = T(0) + T(n-1) + cn$$





## Worst-case recursion tree

$$T(n) = T(0) + T(n-1) + cn$$





## Worst-case recursion tree

$$T(n) = T(0) + T(n-1) + cn$$





## Nice-case analysis

If we're lucky, Partition splits the array evenly:

$$T(n) = 2T(n/2) + \Theta(n)$$
  
=  $\Theta(n \lg n)$  (same as merge sort)

What if the split is always  $\frac{1}{10}$ :  $\frac{9}{10}$ ?

$$T(n) = T\left(\frac{1}{10}n\right) + T\left(\frac{9}{10}n\right) + \Theta(n)$$



T(n)

















 $cn\log_{10}n \le T(n) \le cn\log_{10/9}n + O(n)$ 



## Randomized quicksort

- Partition around a *random* element. I.e., around A[t], where t chosen uniformly at random from {p...r}
- We will show that the *expected* time is O(n log n)



## "Paranoid" quicksort

- Will modify the algorithm to make it easier to analyze:
  - Repeat:
    - Choose the pivot to be a random element of the array
    - Perform Partition
  - Until the resulting split is "lucky", i.e., not worse than 1/10: 9/10
  - Recurse on both sub-arrays



## **Analysis**

- Let T(n) be an upper bound on the *expected* running time on any array of n elements
- Consider any input of size n
- The time needed to sort the input is bounded from the above by a sum of
  - The time needed to sort the left subarray
  - The time needed to sort the right subarray
  - The number of iterations until we get a lucky split, times cn



## **Expectations**

• By linearity of expectation:

$$T(n) \le \max T(i) + T(n-i) + E[\# partitions] \bullet cn$$

where maximum is taken over  $i \in [n/10,9n/10]$ 

- We will show that E[#partitions] is  $\leq 10/8$
- Therefore:

$$T(n) \le \max T(i) + T(n-i) + 2cn, i \in [n/10,9n/10]$$



### Final bound

- Can use the recursion tree argument:
  - Tree depth is  $\Theta(\log n)$
  - Total expected work at each level is at most
     10/8 cn
  - The total expected time is O(n log n)



## Lucky partitions

- The probability that a random pivot induces lucky partition is at least 8/10
  - (we are *not* lucky if the pivot happens to be among the smallest/largest n/10 elements)
- If we flip a coin, with heads prob. p=8/10, the expected waiting time for the first head is 1/p = 10/8



## Quicksort in practice

- Quicksort is a great general-purpose sorting algorithm.
- Quicksort is typically over twice as fast as merge sort.
- Quicksort can benefit substantially from *code tuning*.
- Quicksort behaves well even with caching and virtual memory.
- Quicksort is great!



## More intuition

Suppose we alternate lucky, unlucky, lucky, unlucky, lucky, ....

$$L(n) = 2U(n/2) + \Theta(n)$$
 lucky  
 $U(n) = L(n-1) + \Theta(n)$  unlucky

#### Solving:

$$L(n) = 2(L(n/2 - 1) + \Theta(n/2)) + \Theta(n)$$

$$= 2L(n/2 - 1) + \Theta(n)$$

$$= \Theta(n \lg n)$$
Lucky!

How can we make sure we are usually lucky?



# Randomized quicksort analysis

Let T(n) = the random variable for the running time of randomized quicksort on an input of size n, assuming random numbers are independent.

For k = 0, 1, ..., n-1, define the *indicator* random variable

 $X_k = \begin{cases} 1 & \text{if Partition generates a } k: n-k-1 \text{ split,} \\ 0 & \text{otherwise.} \end{cases}$ 

 $E[X_k] = \Pr\{X_k = 1\} = 1/n$ , since all splits are equally likely, assuming elements are distinct.



# **Analysis (continued)**

$$T(n) = \begin{cases} T(0) + T(n-1) + \Theta(n) & \text{if } 0 : n-1 \text{ split,} \\ T(1) + T(n-2) + \Theta(n) & \text{if } 1 : n-2 \text{ split,} \\ \vdots & & \\ T(n-1) + T(0) + \Theta(n) & \text{if } n-1 : 0 \text{ split,} \end{cases}$$

$$= \sum_{k=0}^{n-1} X_k \left( T(k) + T(n-k-1) + \Theta(n) \right).$$



$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))\right]$$

Take expectations of both sides.



$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))\right]$$
$$= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]$$

Linearity of expectation.



$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))\right]$$

$$= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]$$

$$= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)]$$

Independence of  $X_k$  from other random choices.



$$\begin{split} E[T(n)] &= E\bigg[\sum_{k=0}^{n-1} X_k \big( T(k) + T(n-k-1) + \Theta(n) \big) \bigg] \\ &= \sum_{k=0}^{n-1} E\big[ X_k \big( T(k) + T(n-k-1) + \Theta(n) \big) \big] \\ &= \sum_{k=0}^{n-1} E\big[ X_k \big] \cdot E\big[ T(k) + T(n-k-1) + \Theta(n) \big] \\ &= \frac{1}{n} \sum_{k=0}^{n-1} E\big[ T(k) \big] + \frac{1}{n} \sum_{k=0}^{n-1} E\big[ T(n-k-1) \big] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n) \end{split}$$

Linearity of expectation;  $E[X_k] = 1/n$ .



$$E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n))\right]$$

$$= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]$$

$$= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)]$$

$$= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)$$

$$= \frac{2}{n} \sum_{k=1}^{n-1} E[T(k)] + \Theta(n)$$
Summations have identical terms.



# Hairy recurrence

$$E[T(n)] = \frac{2}{n} \sum_{k=2}^{n-1} E[T(k)] + \Theta(n)$$

(The k = 0, 1 terms can be absorbed in the  $\Theta(n)$ .)

**Prove:**  $E[T(n)] \le an \lg n$  for constant a > 0.

• Choose *a* large enough so that  $an \lg n$  dominates E[T(n)] for sufficiently small  $n \ge 2$ .

Use fact: 
$$\sum_{k=2}^{n-1} k \lg k \le \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2$$
 (exercise).



$$E[T(n)] \le \frac{2}{n} \sum_{k=2}^{n-1} ak \lg k + \Theta(n)$$

Substitute inductive hypothesis.



$$E[T(n)] \le \frac{2}{n} \sum_{k=2}^{n-1} ak \lg k + \Theta(n)$$

$$\le \frac{2a}{n} \left(\frac{1}{2}n^2 \lg n - \frac{1}{8}n^2\right) + \Theta(n)$$

Use fact.



$$E[T(n)] \le \frac{2}{n} \sum_{k=2}^{n-1} ak \lg k + \Theta(n)$$

$$\le \frac{2a}{n} \left( \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \Theta(n)$$

$$= an \lg n - \left( \frac{an}{4} - \Theta(n) \right)$$

Express as desired – residual.



$$E[T(n)] \le \frac{2}{n} \sum_{k=2}^{n-1} ak \lg k + \Theta(n)$$

$$= \frac{2a}{n} \left( \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \Theta(n)$$

$$= an \lg n - \left( \frac{an}{4} - \Theta(n) \right)$$

$$\le an \lg n,$$

if a is chosen large enough so that an/4 dominates the  $\Theta(n)$ .



Assume

Running time = O(n) for n elements.



## Randomized Algorithms

- Algorithms that make decisions based on random coin flips.
- Can "fool" the adversary.
- The running time (or even correctness) is a random variable; we measure the *expected* running time.
- We assume all random choices are *independent*.
- This is *not* the average case!