



# 模型評估





### 混淆矩陣



>混淆矩陣 (Confusion Matrix) 也稱為**錯誤矩陣**,是一種特殊的表格, 可將學習演算法的效率視覺呈現。

|  |           | 實際 YES                               | 實際 NO                               |  |  |  |
|--|-----------|--------------------------------------|-------------------------------------|--|--|--|
|  | 預測<br>YES | True Positive (TP)                   | False Positive (FP)<br>Type I Error |  |  |  |
|  | 預測<br>NO  | False Negative (FN)<br>Type II Error | True Negative (TN)                  |  |  |  |



## Accuracy



>Accuracy (準確率) Accuracy = (TP + TN) / Total

>當TP案例數量很少時(資料不平均),此指標會造成誤導。

|           | 實際YES                                | 實際NO False Positive (FP) Type I Error |  |  |  |
|-----------|--------------------------------------|---------------------------------------|--|--|--|
| 預測<br>YES | True Positive (TP)                   |                                       |  |  |  |
| 預測<br>NO  | False Negative (FN)<br>Type II Error | True Negative (TN)                    |  |  |  |



#### Precision



> Precision (精確率) Precision = TP / (TP + FP)

>預測正向的案例,有多少是正確預測?

|           | 實際YES                                | 實際NO                             |  |  |  |  |
|-----------|--------------------------------------|----------------------------------|--|--|--|--|
| 預測<br>YES | True Positive (TP)                   | False Positive (FP) Type I Error |  |  |  |  |
| 預測<br>NO  | False Negative (FN)<br>Type II Error | True Negative (TN)               |  |  |  |  |





> Recall ( 召回率 ) ,就是Sensitivity ( 靈敏度 ) Recall = TP / (TP + FN)

>實際正向的案例,有多少被正確預測?

|           | 實際YES                                | 實際NO False Positive (FP) Type I Error |  |  |  |  |
|-----------|--------------------------------------|---------------------------------------|--|--|--|--|
| 預測<br>YES | True Positive (TP)                   |                                       |  |  |  |  |
| 預測<br>NO  | False Negative (FN)<br>Type II Error | True Negative (TN)                    |  |  |  |  |



# Specificity



> Specificity (特異度)
Specificity = TN / (FP + TN)

>實際負向的案例,有多少被正確預測?

|           | 實際YES                                | 實際NO                             |  |  |  |  |
|-----------|--------------------------------------|----------------------------------|--|--|--|--|
| 預測<br>YES | True Positive (TP)                   | False Positive (FP) Type I Error |  |  |  |  |
| 預測<br>NO  | False Negative (FN)<br>Type II Error | True Negative (TN)               |  |  |  |  |



#### F-measure



>F1 score

> F-measure

$$F_{\beta} = (1 + \beta^2) \times \text{precision} \times \text{recall} / (\beta^2 \times \text{precision} + \text{recall})$$

> Precision和Recall的統合指標, F1 score將兩者視為同等重要



### TPR & FPR



>TPR (True Positive Rate 真陽率),即Sensitivity TPR = TP / (TP + FN)

> FPR (False Positive Rate 假陽率)

FPR = FP / (FP + TN)

| <i>&gt;</i> |           | 實際YES                                | 實際NO                             |  |  |  |  |
|-------------|-----------|--------------------------------------|----------------------------------|--|--|--|--|
| . ////      | 預測<br>YES | True Positive (TP)                   | False Positive (FP) Type I Error |  |  |  |  |
|             | 預測<br>NO  | False Negative (FN)<br>Type II Error | True Negative (TN)               |  |  |  |  |





➤ ROC (受試者操作特徵曲線 Receiver Operating Characteristic curve ) ROC是由點(TPR,FPR)組成的曲線,表示不同模型的真陽性率對假陽性率的函數關係。







- > AUC (Area Under the Curve) = ROC的面積
- >AUC(面積)愈大愈好 AUC值越大,當前的分類演算法愈有可能將正樣本 排在負樣本前面,即能夠更好的分類。





### Confusion Matrix實作



>使用Pandas套件中的cross table



## Confusion Matrix實作



| Predict<br>label | 0   | 1    | 2    | 3   | 4   | 5   | 6   | 7    | 8   | 9   |
|------------------|-----|------|------|-----|-----|-----|-----|------|-----|-----|
| 0                | 973 | 0    | 1    | 2   | 0   | 0   | 1   | 1    | 2   | 0   |
| 1                | 0   | 1121 | 2    | 0   | 0   | 2   | 3   | 0    | 7   | 0   |
| 2                | 2   | 1    | 1012 | 2   | 1   | 0   | 2   | 9    | 3   | 0   |
| 3                | 1   | 0    | 7    | 977 | 0   | 15  | 0   | 6    | 4   | 0   |
| 4                | 2   | 1    | 2    | 0   | 953 | 0   | 5   | 5    | 2   | 12  |
| 5                | 3   | 0    | 0    | 2   | 1   | 873 | 6   | 3    | 3   | 1   |
| 6                | 6   | 3    | 0    | 0   | 3   | 12  | 934 | 0    | 0   | 0   |
| 7                | 1   | 5    | 8    | 2   | 0   | 0   | 0   | 1009 | 0   | 3   |
| 8                | 4   | 0    | 3    | 11  | 3   | 11  | 2   | 6    | 930 | 4   |
| 9                | 4   | 4    | 1    | 11  | 6   | 13  | 2   | 10   | 1   | 957 |