cdf $F_X(x) = P_X((-\infty, x]) = P(c \in C : X(x) \le x)$ Given $F_X(x) = \int_{-\infty}^x f_x(t) dt$, f_x is called the **pdf**. **CDF Trans**formation Technique given X and some transformation of X, say Y=g(X), we can often obtain the CDF of Y from the CDF of X, and then differentiate to get pdf of Y. CDF Tech. for One-to-one Correspondences $Y = g(X) \Rightarrow f_Y(y) =$ $f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$, for $y \in S_y$ mean $\mu = E(X)$, variance $\sigma^2 =$ $E[(X-\mu)^2] = E[X^2] - E[X]^2$. standard deviation $= \sqrt{\sigma^2} = \sigma$. nth raw moment $E(X^n)$ central moment moment around the mean (to better describe shape of distribution). First moment = mean, second central moment = variance, third central scaled moment = skewness, fourth central scaled moment = kurtosis. moment generating function/mgf $M(t) = E(e^{tX})$ (defined over -h < t < h, assuming that $E(e^{tX})$ exists for -h < t < h). $M_X(t) = E(e^{tX}) = 1 + tE(X) + \frac{t^2 E(X^2)}{2!} + \frac{t^3 E(X^3)}{3!} + \dots$, therefore to obtain the i'th raw moment we must merely differentiate i times dt and set t=0. Inequalities: Theorem 1.10.1: given $X,m \in \mathbb{N}, k \in \mathbb{N} \land k < m$, If $E[X^m]$ exists, then $E[X^k]$ exists. Markov's Inequality: Let u(X) be a nonnegative function. If E[u(X)] exists, then for every c>0, $P[u(X)\geq c]\leq \frac{E[u(X)]}{c}$ Chebyshev's Inequality: Assume σ^2 exists. Then, for every $k > 0, P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$. Convex concave-up (like $y = x^2$), strictly convex excludes function like y = x Jensen's Inequality: ϕ convex on open interval I, X's support is contained in I, $E[X] \text{ exists} \Rightarrow \phi[E(X)] \leq E[\phi(X)]$

three techniques – change-of-variable, cdf, mgf transformation. **Theorem 2.3.1** Let (X_1, X_2) be a random vector with finite σ^2 for X_2 . Then (a) $E[E(X_2|X_1)] = E(X_2)$, and (b) $Var[E(X_2|X_1)] \leq Var(X_2)$.

Covariance $cov(X,Y) = E[(X - \mu_1)(Y - \mu_2)] = E(XY) - \mu_1\mu_2$. Correlation Coeff. $\rho = \frac{cov(X,Y)}{\sigma_1\sigma_2}$ $E(XY) = \mu_1\mu_2 + cov(X,Y)$. $-1 \le \rho \le 1$

 X_1, X_2 independent $\Leftrightarrow f(x_1, x_2) = f_1(x_1)f_2(x_2) \Leftrightarrow f(x_1, x_2) = g(x_1)h(x_2)$ (where h, g are nonnegative functions) $\Leftrightarrow F(x_1, x_2) = F_1(x_1)F_2(x_2)\forall (x_1, x_2) \in \mathbb{R}^2$. Independence $\Rightarrow E[u(X_1)v(X_2)] = E[u(X_1)]E[v(X_2)]$. Variance-covariance matrix.

Linear Combinations of R.V.: Let $T = \sum_{i=1}^{n} a_i X_i$. Thm 2.8.1 $E[|X_i|] < \infty \Longrightarrow E(T) = \sum_{i=1}^{n} a_i E(X_i)$. Thm 2.8.2 Let $W = \sum_{i=1}^{m} b_i Y_i$. $E[|X_i^2|] < \infty$, $E[|Y_i^2|] < \infty$ $\forall i \Longrightarrow Cov(T, W) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_i b_j Cov(X_i, Y_j)$. Cor 2.8.1 Provided $E[X_i^2] < \infty$, $fori = 1, \ldots, n$, $Var(T) = \sum_{i=1}^{n} a_i^2 Var(X_i) + 2 \sum_{i < j} Cov(X_i, X_j)$. Cor 2.8.2 X_1, \ldots, X_n iid, with finite $\sigma^2 \Longrightarrow Var(T) = \sum_{i=1}^{n} a_i^2 Var(X_i)$. $\overline{X} = n^{-1} \sum_{i=1}^{n} X_i \Longrightarrow E(\overline{X}) = \mu$ and $Var(\overline{X}) = \frac{\sigma^2}{n}$. Sample Variance $S^2 = (n-1)^{-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 \Longrightarrow E(S^2) = \sigma^2$.

Cauchy-Schwartz Inequality If X, Y have finite variances $E|XY| \leq \sqrt{(E(X^2)E(Y^2))}$

Simple Linear Regression $y=u_y+\rho\frac{\sigma_y}{\sigma_x}(x-\mu_x)$. Conditional Normal variance $=\sigma_2^2(1-\rho^2)$ random sample, point estimator, estimate Let $T=T(X_1,\ldots,X_n)$ be a statistic. T is an unbiased estimator of θ if $E(T)=\theta$. likelihood function $L(\theta)=L(\theta;x_1,x_2,\ldots,x_n)=\prod_{i=1}^n f(x_i;\theta)$ mle $\hat{\theta}=\operatorname{Argmax} L(\theta)$. Confidence Interval Given random sample, $0<\alpha<1$, two statistics L and U. We say that the interval (L,U) is a $(1-\alpha)100\%$ confidence interval for θ if $1-\alpha=P_{\theta}[\theta\in(L,U)]$. confidence coefficient. pth quantile of X is $\xi_p=F^{-1}(p)$. order statistic With X_1,X_2,\ldots,X_n as random sample, $Y_1< Y_2<\ldots< Y_n$ are the corresponding order statistics. sample quantile Y_k , where k is greatest integer $\leq [p(n+1)]$. Distribu-

tion free c.i. for ξ_p Consider order stats $Y_i < Y_j$ and event $Y_i < \xi_p < Y_j$. Then $P(Y_i < \xi_p < Y_j) = \sum_{w=i}^{j-1} \binom{n}{w} p^w (1-p)^{n-w}$. Critical region (C) a test of H_0 vs H_1 is based on a subset C of D. Within C, we reject H_0 . Type 1 error false rejection of H_0 , Type 2 false acceptance of H_0 . size = significance level $\alpha = \max_{\theta \in w_0} P_{\theta}[(X_1, \dots, X_n) \in C]$ Power function we want to maximize $P_{\theta}[(X_1, \dots, X_n) \in C]$ **p-value** observed "tail" prob. of a statistic being at least as extreme as the particular observed value when H_0 is true Bootstrap Convergence in **Probability** Let X_n be a sequence of r.v.s. We say that X_n c.i.p. to X if, for all $\epsilon > 0$, $\lim_{n \to \infty} P[|X_n - X| \ge \epsilon] = 0$ Convergence in Distribution Let $C(F_X)$ denote set of all points where F_X is continuous. We say that X_n c.i.d. to Xif $\lim_{n\to\infty} FX_n(x) = F_X(x)$, for all $x\in C(F_X)$. (X can be called asymptotic dist or limiting dist). Central Limit The**orem** X_1, \ldots, X_n from dist with μ and positive σ^2 . Then $Y_n =$ $(\sum_{i=1}^{n} X_i - n\mu) / \sqrt{n}\sigma = \sqrt{n}(\overline{X}_n - \mu) / \sigma$ converges in distribution to N(0,1). Regularity Conditions (R0) pdfs distinct, (R1) pdfs have common support for all θ , (R2) $\theta_0 \in \Omega$, (R3) $f(x;\theta)$ is twice differentiable fn of θ , (R4) $\frac{d}{d\theta^2} \int (x;\theta)$ exists **Fisher Info** $I(\theta) =$ $E\left[\left(\frac{\partial \log f(X;\theta)}{\partial \theta}\right)^{2}\right] = \operatorname{Var}\left(\frac{\partial \log f(X;\theta)}{\partial \theta}\right) \quad \text{Score fn } \frac{\partial \log f(x;\theta)}{\partial \theta} \text{ (mle } \hat{\theta} \text{ solves score=0)}. \quad E(\text{score}) = 0, \sum_{i=1}^{n} \frac{\partial \log f(X_{i};\theta)}{\partial \theta} = \frac{\partial \log L(\theta,\mathbf{X})}{\partial \theta}.$ Variance of prev fn is $nI(\theta)$ Rao-Cramer Lower Bound X_1, \ldots, X_n iid with pdf $f(x; \theta)$ for $\theta \in \Omega$. Assume (R0)-(R4) hold. Let $Y = u(X_1, ..., X_n)$ be a statistic with $E(Y) = k(\theta)$. Then $Var(Y) \geq \frac{[k'(\theta)]^2}{nI(\theta)}$. (Corollary) if $k(\theta) = \theta$, then we have $Var(Y) \geq \frac{1}{nI(\theta)}$. Efficient estimator unbiased estimator Y which obtains Rao-Cramer lower bound. Efficiency $\frac{\text{rao-cramer bound}}{\text{actual variance}}$ **Likelihood-Ratio Test** $\Lambda = \frac{L(\theta_0)}{L(\hat{\theta})} \Lambda \leq 1$, but if H_0 is true, Λ should be close to 1. For a significance level α , we have the intuitive test "Reject H_0 in favor of H_1 if $\Lambda \leq c$. MVUE Y = $u(X_1,\ldots,X_n)$ is MVUE of θ if $E(Y)=\theta$ and $Var(Y)\leq Var(any)$ other unbiased estimator of θ). **decision rule** $\delta(y)$ estimator from observed value of Y to point estimate of θ . A numerically determined point estimate of a parameter θ is a decision. **Loss Fn** \mathcal{L} : reflects diff between true value θ and point estimate $\delta(y)$ with each pair $[\theta, \delta(y)], \theta \in \Omega$, we associate a nonnegative $\mathcal{L}[\theta, \delta(y)]$. Expected val of Loss Fn is called **Risk Fn Mini**max Criterion Minimize the maximum of the risk function. min mse estimator minimizes $E\{[\theta - \delta(Y)]^2\}$ $Y_1 = u_1(X_1, \dots, X_n)$ is a sufficient statistic IFF $\frac{f(x_1;\theta)\cdots f(x_n;\theta)}{f_{Y_1}[u_1(x_1,\dots,x_n);\theta]} = H(x_1,\dots,x_n),$ where H does not depend on $\theta \in \Omega$ (partitions the sample space such that the conditional sample vec given Y_1 does not depend on θ). Neyman Factorization Y_1 is a sufficient statistic IFF \exists two nonnegative fns k_1, k_2 s.t. $f(x_1; \theta) \cdots f(x_n; \theta) =$ $k_1[u_1(x_1,\ldots,x_n);\theta]k_2(x_1,\ldots,x_n)$, where k_2 does not depend on θ . Rao-Blackwell Let Y_1 suff statistic, $Y_2 = u_2(X_1, \dots, X_n)$, not a fin of Y_1 alone, be an unbiased estimator of θ . Then $E(Y_2|y_1) = \varphi(y_1)$ defines a statistic $\varphi(Y_1)$. φ is a fn of the suff stat for θ ; it is an unbiased estimator of θ ; and its variance $\leq Var(Y_2)$. **7.3.2** If Y_1 suff statistic for θ exists and if θ also exists uniquely, then $\hat{\theta}$ is a fin of Y_1 . Complete Family Let r.v. Z have pdf/pmf $\in \{h(z;\theta):\theta\in\Omega\}$. If E[u(Z)]=0, for every $\theta\in\Omega$, requires that u(z) be zero except on a set of points that has prob. 0 f.e. h, then the fam. above is called a complete family of pdfs/pmfs. **7.4.1** Given Y_1 suff., f_{Y_1} complete. If there is a fn of Y_1 that is an unbiased estimator of θ , then this fn of Y_1 is the unique MVUE of θ . (also Y_1 is a complete sufficient statistic Ancillary Statistic contains no info about parameter

Exponential Class Consider

$$f(x;\theta) = \begin{cases} exp[p(\theta)K(x) + H(x) + q(\theta)] & x \in S \\ 0 & \text{elsewhere} \end{cases}$$

f is \in regular exponential class if 1. S does not depend on θ , 2. $p(\theta)$ is a nontrivial continuous fn of $\theta \in \Omega$, 3. (a) if X is a continuous r.v., then each of $K'(x) \not\equiv 0$ and H(x) is a continuous fn of $x \in S$. (b) if X is a discrete r.v., then K(x) is a nontrivial fn of $x \in S$. **7.5.1** exponential random sample. Consider $Y_1 = \sum_{i=1}^n K(X_i)$. Then 1. pdf of Y_1 has form $R(y_1)exp(p(\theta)y_1 + nq(\theta)]$. 2. $E(Y_1) = -n\frac{q'(\theta)}{p'(\theta)}$ 3. $Var(Y_1) = \frac{n}{p'(\theta)^3} \{p''(\theta)q'(\theta) - q''(\theta)p'(\theta)\}$. **7.5.2** $f(x;\theta)$ pdf for exponential class. then given random sample $Y_1 = \sum_{i=1}^n K(X_i)$ is a suff stat for θ and the fam $\{f_{Y_1}(y_1;\theta) : a < \delta\}$ is complete. That is Y_1 is a complete suff stat for θ .

Uniform Any continuous or discrete random variable X whose pdf or pmf is constant on the support of X. Binomial "How many successes out *n* random trials" Negative Binomial "How many trials before n successes" Geometric "How many trials before 1 success. e.g. 'waiting time' between successes". Multi**nomial** Generalization of the Binomial distribution, where each experiment can have more than two possible outcomes. Hypergeometric distribution arises when sampling from two classes without replacement. Poisson "number of events in a given amount of time while running a poisson process" (analogous to binomial distribution but based on poisson instead of bernoulli). **Gamma** $\Gamma(\alpha, \beta)$ Waiting time between n occurrences in a poisson process. Poisson analogue of Negative Binomial distribution. **Exponential** Waiting time between a single occurrence in a poisson process. Poisson analogue of Geometric distribution. Chi-**Square** $\chi^2(r)$ Gamma distribution with $\alpha = r/2$, where $r \in \mathbb{N}$, and $\beta = 2$. r is "number of degrees of freedom". Sampling from multinomial distributions is related to χ^2 Beta Various uses.

Normal Arises extremely frequently in nature, due to the Central Limit Theorem.

Common Terms Prior probabilities, posterior probabilities, space/range of r.v. X, support of r.v. X., discrete r.v., continuous r.v.,

Symbols

	Name	Note				
C	sample space					
C^c	Complement	"Complement of C"				
D	sample space	$\operatorname{space}\{(X_1,\ldots,X_n)\}$				
E(X)	expectation	expectation of X				
M(X)	mgf	moment generating function $E(e^{tX})$.				
P(X)	pdf	probability density function of X				
	support	S often used to denote support of r.v.				
S^2		sample variance				
σ^2		population variance				
X, Y	r.v.	common letters to denote random variables.				
μ	mean	is same as expectation				
θ_0	true value	true value of parameter θ_0				
ξ_p		100pth distribution percentile				
Migcollangoug						

Miscellaneous

Geometric series: You can derive these by setting up a formula like $c^0+c^1+c^2+\ldots=S$, multiply both sides by c, subtract equations and solve for S. $\sum_{i=0}^n c^i = \frac{c^{n+1}-1}{c-1}, \quad c \neq 1, \quad \sum_{i=0}^\infty c^i = \frac{1}{1-c}, \quad \sum_{i=1}^\infty c^i = \frac{c}{1-c}, \quad |c| < 1.$ **Gamma function** $\Gamma(n) = (n-1)! \quad \int xe^x \, dx$ do it by parts, $u = e^x, v = x$. **binom. coeff.** $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$. **condit.**

 $e^{x}, v = x. \text{ binom. coeff. } (a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k}. \text{ condit.}$ $\text{prob.} \quad P(C_{2}|C_{1}) = \frac{P(C_{1} \cap C_{2})}{P(C_{1})}. \quad P(C_{1} \cap C_{2}) = P(C_{1})P(C_{2}|C_{1})$ $\text{bayes } P(A|B) = \frac{P(B|A)P(A)}{P(B)} \quad \overline{X} \text{ of } N(\theta, \sigma^{2}) \propto N(\theta, \sigma^{2}/n)$

		U	- ()	P(B)				
name	note	pdf	μ	σ^{2}	mgf			
Discrete								
$\overline{\mathrm{Bernoulli}(p)}$	0	$p^x(1-p)^{1-x}, x = 0, 1$	p	p(1-p)	$[(1-p)+pe^t], -\infty < t < \infty$			
$\overline{\mathrm{Binomial}(p)}$	0	$\binom{n}{x}p^x(1-p)^{n-x}, x = 0, 1, 2, \dots, n$	np		$[(1-p)+pe^t]^n, -\infty < t < \infty$			
$\overline{\operatorname{Geometric}(p)}$	0	$p(1-p)^x, x = 0, 1, 2, \dots$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$	$p[1-(1-p)e^t]^{-1}, t < -\log 1 - p$			
${(N,D,n)}$	$n=1,2,\ldots,\min\{N,D\}$	$\frac{\binom{N-D}{n-x}\binom{D}{x}}{\binom{N}{n}}, x = 0, 1, \dots, n$	$n\frac{D}{N}$	$n\frac{D}{N}\frac{N-D}{N}\frac{N-n}{N-1}$	$complicated \dots$			
Neg. Binom (p,r)	0	$\binom{x+r-1}{r-1} p^r (1-p)^x, x = 0, 1, 2, \dots$	$\frac{pr}{r(1-p)}$	$\frac{1-p}{p^2}$	$p^r[1-(1-p)e^t]^{-r}, t < -\log(1-p)$			
$Poisson(\lambda)$	$\lambda > 0$	$e^{-\lambda} \frac{\lambda^x}{x!}$	λ	λ	$\exp \lambda(e^t - 1)$			
Continuous								
$\overline{\mathrm{Beta}(\alpha,\beta)}$	$\alpha > 0, \beta > 0$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}, \ 0< x<1$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}$	$1 + \sum_{i=1}^{\infty} \left(\prod_{j=0}^{k-1} \frac{\alpha+j}{\alpha+\beta+j} \right) \frac{t^i}{i!},$			
					$-\infty < t < \infty$			
Cauchy(x)		$\frac{1}{\pi} \frac{1}{x^2 + 1}, -\infty < x < \infty$	n/a	n/a	n/a			
$\chi^2(r)$	$=\Gamma(r/2,2). \ r>0,$	$\frac{1}{\Gamma(r/2)2^{r/2}}x^{(r/2)-1}e^{-x/2}, x > 0$	r	2r	$(1-2t)^{-r/2}, t < 1/2$			
Expontl. (λ)	$=\Gamma(1,1/\lambda). \ \lambda>0,$	$\lambda e^{-\lambda x}, x > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$[1 - (t/\lambda)]^{-1}, t < \lambda$			
$\Gamma(\alpha,\beta)$	$\alpha > 0, \beta > 0$	$\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-x/\beta}, x > 0$	$\alpha\beta$	$\alpha \beta^2$	$(1 - \beta t)^{-\alpha}, t < 1/\beta$			
$Laplace(\theta)$	$-\infty < \theta < \infty$	$\frac{1}{2}e^{- x-\theta }, -\infty < x < \infty$	θ	2	$e^{t\theta} \frac{1}{1-t^2}, -1 < t < 1$			
$Logistic(\theta)$	$-\infty < \theta < \infty$	$\frac{exp\{-(x-\theta)\}}{(1+exp\{-(x-\theta)\})^2}, -\infty < x < \infty$	θ	$\frac{\pi^2}{3}$	$e^{t\theta}\Gamma(1-t)\Gamma(1+t), -1 < t < 1$			
$N(\mu, \sigma^2)$	$-\infty<\mu<\infty,\sigma>0$	$\frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right), -\infty < x < \infty$	μ	σ^2	$\exp(\mu t + (1/2)\sigma^2 t^2), -\infty < t < \infty$			
t(r)	r > 0	$\frac{\Gamma[(r+1)/2]}{\sqrt{\pi r}\Gamma(r/w)} \frac{1}{(1+x^2/r)^{(r+1)/2}}, -\infty < x <$	0 if r > 1	$\frac{r}{r-2}$ if $r>2$	n/a			
		∞		(1)2	ht at			
$\underline{\mathrm{Unif}(a,b)}$	$-\infty < a < b < \infty$	$\frac{1}{b-a}$, $a < x < b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b-a)^t, -\infty < t < \infty}$			