Table of Contents

ARIMA NASDAQ	. 1
Stima modelli ARIMA	. 1
3) Analisi dei residui	. 5
ARIMA(1,1,0)	. 6
ARIMA(0,1,1)	. 6
ARIMA(0,1,1)	. 7
ARIMA(1,1,1)	. 8
ARIMA(2,1,0)	, 9
ARIMA(0,1,2)	10
ARIMA(2,1,1)	11
ARIMA(1,1,2)	12
ARIMA(2,1,2)	13
ARIMA(2,1,0) 3-4	14
ARIMA(0,1,2) 3-4	15
ARIMA(2,1,2)	16
3) TABELLE	17
ARIMA(1,1,0)	17
ARIMA(0,1,1)	18
ARIMA(0,1,1)	19
ARIMA(1,1,1)	19
ARIMA(2,1,0)	20
ARIMA(0,1,2)	21
ARIMA(2,1,1)	21
ARIMA(1,1,2)	22
ARIMA(2,1,2)	23
ARIMA(4,1,0)	23
ARIMA(0,1,4)	24
ARIMA(4,1,4)	25

ARIMA NASDAQ

```
load('NDX.mat');
y = NDX;
T = length(y);
t = (1:T);
ly = log(y);
K = (0:20)';
```

Stima modelli ARIMA

```
% ARIMA(1,1,1)
Mdl = arima(1,1,1);
EstMdl11 = estimate(Mdl,ly);
res11 = infer(EstMdl11,ly);
% ARIMA(2,1,0)
Mdl = arima(2,1,0);
EstMdl20 = estimate(Mdl,ly);
res20 = infer(EstMdl20,ly);
% ARIMA(0,1,2)
Mdl = arima(0,1,2);
EstMdl02 = estimate(Mdl,ly);
res02 = infer(EstMdl02,ly);
% ARIMA(2,1,1)
Mdl = arima(2,1,1);
EstMdl21 = estimate(Mdl,ly);
res21 = infer(EstMdl21,ly);
% ARIMA(1,1,2)
Mdl = arima(1,1,2);
EstMdl12 = estimate(Mdl,ly);
res12 = infer(EstMdl12,ly);
% ARIMA(2,1,2)
Mdl = arima(2,1,2);
EstMdl22 = estimate(Mdl,ly);
res22 = infer(EstMdl22,ly);
% ARIMA(2,1,0), 3-4
Mdl = arima('ArLags',[3 4],'D',1,'MaLags',[]);
EstMdl340 = estimate(Mdl,ly);
res340 = infer(EstMdl340,ly);
% ARIMA(0,1,2), 3-4
Mdl = arima('ArLags',[],'D',1,'MaLags',[3 4]);
EstMdl034 = estimate(Mdl,ly);
res034 = infer(EstMdl034,ly);
% ARIMA(2,1,2), 3-4
Mdl = arima('ArLags',[3 4],'D',1,'MaLags',[3 4]);
EstMdl3434 = estimate(Mdl,ly);
res3434 = infer(EstMdl3434,ly);
    ARIMA(1,1,0) Model:
```

Conditional Probability Distribution: Gaussian

		Standard	t
Parameter	Value	Error	Statistic
Constant	0.000555734	0.000271965	2.04341
AR{ 1}	0.0228532	0.0206712	1.10556
Variance	8.97064e-05	2.48051e-06	36.1645

ARIMA(0,1,1) Model:

Conditional Probability Distribution: Gaussian

Standard t

Parameter	Value	Error	Statistic
Constant	0.000567465	0.0002787	2.03611
$ extit{MA} \set{1}$	0.0236948	0.0206558	1.14713
Variance	8.94659e-05	2.46873e-06	36.2396

ARIMA(1,1,1) *Model:*

Conditional Probability Distribution: Gaussian

		Standard	t
Parameter	Value	Error	Statistic
Constant	0.000608959	0.000559077	1.08922
<i>AR</i> { 1 }	-0.0725011	0.970821	-0.0746802
$MA\{\ 1\ \}$	0.0962038	0.970265	0.0991521
Variance	8.94876e-05	2.48987e-06	35.9406

ARIMA(2,1,0) Model:

Conditional Probability Distribution: Gaussian

		Standard	t
Parameter	Value	Error	Statistic
Constant	0.000564781	0.000277986	2.03169
AR{ 1}	0.0232409	0.0206247	1.12685
AR{ 2 }	-0.0159139	0.0226923	-0.701288
Variance	8.94676e-05	2.50031e-06	35.7826

ARIMA(0,1,2) Model:

Conditional Probability Distribution: Gaussian

Parameter	Value	Standard Error	t Statistic
Constant	0.0005685	0.000284483	1.99836
$MA\{1\}$	0.0213777	0.0206444	1.03552
$MA{2}$	-0.0143683	0.0227804	-0.630729
Variance	8.9473e-05	2.49896e-06	35.8041

ARIMA(2,1,1) Model:

Conditional Probability Distribution: Gaussian

Parameter	Value	Standard Error	t Statistic
Constant AR{1} AR{2} MA{1} Variance	0.000158659	0.000115054	1.37899
	0.793469	0.125466	6.32418
	-0.0655226	0.0218715	-2.9958
	-0.775071	0.125727	-6.1647
	8.89974e-05	2.53921e-06	35.0493

ARIMA(1,1,2) Model:

Conditional Probability Distribution: Gaussian

		Standard	t
Parameter	Value	Error	Statistic
Constant	0.000148612	0.000111167	1.33684
$AR\{1\}$	0.746649	0.132966	5.61535
$MA\{1\}$	-0.732007	0.135118	-5.41753
$MA{2}$	-0.0609868	0.0226875	-2.68813
Variance	8.90161e-05	2.53561e-06	35.1064

ARIMA(2,1,2) Model:

Conditional Probability Distribution: Gaussian

		Standard	t
Parameter	Value	Error	Statistic
Constant	0.00023923	0.000126035	1.89812
$AR\{1\}$	1.31209	0.114055	11.504
$AR{2}$	-0.740851	0.0871666	-8.49925
$\mathit{MA}\set{1}$	-1.28695	0.123105	-10.4541
$ exttt{MA} \set{2}$	0.687409	0.0957948	7.17585
Variance	8.87425e-05	2.52803e-06	35.1035

ARIMA(4,1,0) Model:

Conditional Probability Distribution: Gaussian

		Standard	t
Parameter	Value	Error	Statistic
Constant	0.0006686	0.000274536	2.43538
AR{ 3 }	-0.0629839	0.0222096	-2.83589
$AR\{\ 4\ \}$	-0.0614709	0.0223005	-2.75648
Variance	8.86253e-05	2.50313e-06	35.4058

ARIMA(0,1,4) Model:

Conditional Probability Distribution: Gaussian

Parameter	Value	Standard Error	t Statistic
Constant	0.000569214	0.000245826	2.31552
$MA\{3\}$	-0.0644678	0.0226558	-2.84553
$MA\{4\}$	-0.0635488	0.0231999	-2.73918
Variance	8.88093e-05	2.50972e-06	35.3862

ARIMA(4,1,4) Model:

Conditional Probability Distribution: Gaussian

		Standard	t
Parameter	Value	Error	Statistic
Constant	0.000146416	4.48184e-05	3.26687
AR{ 3 }	0.190689	0.119548	1.59508
$AR\{\ 4\ \}$	0.579912	0.109864	5.27847
$MA{3}$	-0.2421	0.115203	-2.10151
$\mathit{MA} \Set{4}$	-0.634331	0.105668	-6.00307
Variance	8.81666e-05	2.45867e-06	35.8594

3) Analisi dei residui

%Valutiamo la qualità del modello specificato analizzando la distribuzione dei residui della regressione.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. In hendrerit tortor quis justo elementum, quis consequat felis facilisis. Curabitur volutpat est non felis feugiat, in iaculis elit tincidunt. Sed euismod est id semper hendrerit. Aenean non leo dapibus, posuere nulla rhoncus, posuere purus. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Nunc convallis est in neque laoreet tristique. Sed tincidunt euismod egestas. Nam turpis nibh, gravida non faucibus ac, eleifend ac tortor. Morbi ultricies leo sed ante volutpat, sed vehicula enim malesuada. Nunc dui urna, iaculis vitae massa quis, facilisis rhoncus nibh. Nam feugiat efficitur velit sed laoreet. Curabitur id nunc ac neque sodales pulvinar ac vitae lectus. Aliquam eu iaculis nunc, at sagittis arcu. Phasellus tincidunt rutrum elit ac laoreet. Sed vestibulum ex id metus sodales, nec imperdiet tellus aliquet. Suspendisse facilisis augue sem, sed sodales nisl tincidunt sed. Praesent aliquam justo sit amet tellus accumsan, a imperdiet diam aliquet. Phasellus sagittis ex diam, molestie scelerisque augue cursus non. Quisque laoreet arcu et ex luctus convallis. Curabitur sit amet sapien mauris. Nam facilisis neque nec felis maximus, nec portitor lorem congue. Aliquam erat volutpat. Donec sit amet turpis posuere, blandit lectus eget, ultrices nibh.

Phasellus faucibus dolor mi, vel hendrerit erat lobortis sed. Praesent nec interdum elit. Vivamus consectetur nulla non elementum tempus. Phasellus id ipsum pulvinar, commodo sapien non, venenatis ante. In vitae lectus mattis, feugiat diam ac, cursus massa. Interdum et malesuada fames ac ante ipsum primis in faucibus. Etiam ac egestas nisl. Sed ac hendrerit ex. Nulla neque est, malesuada et vehicula ultrices, ornare sit amet lacus. Quisque ut lacus tempor orci fermentum tincidunt facilisis ut quam. Sed eleifend sed enim vel auctor. Suspendisse potenti.

Donec auctor sit amet eros eu lobortis. Suspendisse potenti. In sed diam vitae felis malesuada dictum. Fusce vehicula lacus mi, vitae ultrices tortor porta a. Donec neque ex, feugiat nec venenatis vitae, consectetur in lacus. Proin laoreet et dolor eu sagittis. Nam vitae placerat nulla. Cras laoreet turpis vel portitor luctus. Nam et tincidunt est, vitae auctor purus. Nunc scelerisque cursus erat non condimentum. Integer sed faucibus libero. Integer at volutpat elit, ut rhoncus eros. Cras dolor erat, lobortis ac felis vitae, fermentum commodo massa. Duis velit nunc, suscipit a massa id, mollis efficitur dolor. Integer semper, leo sed aliquet vulputate, lorem nibh pellentesque elit, et tincidunt ligula lectus vel tellus. Donec auctor sit amet eros eu lobortis. Suspendisse potenti. In sed diam vitae felis malesuada dictum. Fusce vehicula lacus mi, vitae ultrices tortor porta a. Donec auctor sit amet eros eu lobortis. Suspendisse potenti. In sed diam vitae felis malesuada dictum. Fusce vehicula lacus mi, vitae ultrices tortor porta a. Donec neque ex, feugiat nec venenatis vitae, consectetur in lacus. Proin laoreet et dolor eu sagittis. Nam vitae placerat nulla. Cras laoreet turpis vel porttitor luctus. Nam et tincidunt est, vitae auctor purus. Nunc scelerisque cursus erat non condimentum. Integer sed faucibus libero. Integer at volutpat elit, ut rhoncus eros. Cras dolor erat, lobortis ac felis vitae, fermentum commodo massa. Duis velit nunc, suscipit a massa id, mollis efficitur dolor. Integer semper, leo sed aliquet vulputate, lorem nibh pellentesque elit, et tincidunt ligula lectus vel

tellus. Donec auctor sit amet eros eu lobortis. Suspendisse potenti. In sed diam vitae felis malesuada dictum. Fusce vehicula lacus mi, vitae ultrices tortor porta a.

ARIMA(1,1,0)

ARIMA(0,1,1)

```
autocorr(res01)
subplot(2,2,4)
parcorr(res01)
```

% correlogramma

ARIMA(0,1,1)

```
figure
subplot(2,2,1)
histogram(res11,60)
title('Istogramma residui')
subplot(2,2,2)
qqplot(res11)
subplot(2,2,3)
autocorr(res11)
subplot(2,2,4)
parcorr(res11)
```

- % istogramma dei residui
- % qqplot dei residui
- % correlogramma

ARIMA(1,1,1)

ARIMA(2,1,0)

```
figure
subplot(2,2,1)
histogram(res20,60)
title('Istogramma residui')
subplot(2,2,2)
qqplot(res20)
subplot(2,2,3)
autocorr(res20)
subplot(2,2,4)
parcorr(res20)
```

- % istogramma dei residui
- % qqplot dei residui
- % correlogramma

ARIMA(0,1,2)

```
figure
subplot(2,2,1)
histogram(res02,60)
title('Istogramma residui')
subplot(2,2,2)
qqplot(res02)
subplot(2,2,3)
autocorr(res02)
subplot(2,2,4)
parcorr(res02)
```

- % istogramma dei residui
- % qqplot dei residui
- % correlogramma

ARIMA(2,1,1)

ARIMA(1,1,2)

ARIMA(2,1,2)

ARIMA(2,1,0) 3-4

ARIMA(0,1,2) 3-4

ARIMA(2,1,2)

```
figure
subplot(2,2,1)
                                              % istogramma dei residui
histogram(res3434,60)
title('Istogramma residui')
subplot(2,2,2)
qqplot(res3434)
                                              % qqplot dei residui
subplot(2,2,3)
autocorr(res3434)
subplot(2,2,4)
parcorr(res3434)
```

% correlogramma

3) TABELLE

%Valutiamo la qualità del modello specificato analizzando la distribuzione dei residui della regressione.

ARIMA(1,1,0)

```
[h,p,Qstat,crit] = lbqtest(res10,'lags',[1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20]);
names = {'K';'H';'pvalue';'Qstat';'Crit'};
table(K(2:end),h',p',Qstat',crit','VariableNames',names) %
creazione tabella ouput
```

H	pvalue	Qstat	Crit
false	0.9904	0.00014481	3.8415
false	0.87874	0.25853	5.9915
false	0.15932	5.1765	7.8147
true	0.042294	9.8916	9.4877
false	0.070464	10.174	11.07
false	0.11725	10.18	12.592
	false false false true false	false 0.9904 false 0.87874 false 0.15932 true 0.042294 false 0.070464	false 0.9904 0.00014481 false 0.87874 0.25853 false 0.15932 5.1765 true 0.042294 9.8916 false 0.070464 10.174

7	false	0.17588	10.231	14.067
8	false	0.24893	10.235	15.507
9	false	0.30716	10.559	16.919
10	false	0.31955	11.505	18.307
11	false	0.40052	11.523	19.675
12	false	0.44063	12.063	21.026
13	false	0.505	12.278	22.362
14	false	0.58284	12.292	23.685
15	false	0.39882	15.751	24.996
16	false	0.41472	16.558	26.296
17	false	0.43047	17.357	27.587
18	false	0.49745	17.375	28.869
19	false	0.52712	17.93	30.144
20	false	0.48489	19.573	31.41

ARIMA(0,1,1)

```
[h,p,Qstat,crit] = lbqtest(res01,'lags',[1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20]);
names = {'K';'H';'pvalue';'Qstat';'Crit'};
table(K(2:end),h',p',Qstat',crit','VariableNames',names) %
creazione tabella ouput
```

K	Н	pvalue	Qstat	Crit
		- 	- <u></u> -	
1	false	0.98508	0.00034993	3.8415
2	false	0.88758	0.23852	5.9915
3	false	0.16153	5.1443	7.8147
4	true	0.043015	9.851	9.4877
5	false	0.071575	10.132	11.07
6	false	0.11891	10.139	12.592
7	false	0.17809	10.189	14.067
8	false	0.2517	10.194	15.507
9	false	0.31019	10.518	16.919
10	false	0.3225	11.464	18.307
11	false	0.40376	11.483	19.675
12	false	0.44405	12.02	21.026
13	false	0.50848	12.235	22.362
14	false	0.58631	12.249	23.685
15	false	0.40168	15.709	24.996
16	false	0.41746	16.518	26.296
17	false	0.43332	17.314	27.587
18	false	0.50037	17.332	28.869
19	false	0.53002	17.887	30.144
20	false	0.48808	19.523	31.41

ARIMA(0,1,1)

```
[h,p,Qstat,crit] = lbqtest(res11,'lags',[1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20]);
names = {'K';'H';'pvalue';'Qstat';'Crit'};
table(K(2:end),h',p',Qstat',crit','VariableNames',names) %
creazione tabella ouput
```

ans =

K	Н	pvalue	Qstat	Crit
				
1	false	0.98187	0.00051658	3.8415
2	false	0.91165	0.18501	5.9915
3	false	0.16396	5.1094	7.8147
4	true	0.043606	9.8181	9.4877
5	false	0.072359	10.103	11.07
6	false	0.12006	10.111	12.592
7	false	0.17959	10.162	14.067
8	false	0.25359	10.166	15.507
9	false	0.31236	10.489	16.919
10	false	0.32474	11.434	18.307
11	false	0.40624	11.452	19.675
12	false	0.44702	11.983	21.026
13	false	0.51133	12.2	22.362
14	false	0.58908	12.215	23.685
15	false	0.40435	15.67	24.996
16	false	0.42012	16.478	26.296
17	false	0.43611	17.272	27.587
18	false	0.50315	17.292	28.869
19	false	0.53246	17.85	30.144
20	false	0.49077	19.481	31.41

ARIMA(1,1,1)

```
[h,p,Qstat,crit] = lbqtest(res11,'lags',[1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20]);
names = {'K';'H';'pvalue';'Qstat';'Crit'};
table(K(2:end),h',p',Qstat',crit','VariableNames',names) %
creazione tabella ouput
```

K	H	pvalue	Qstat	Crit
1	false	0.98187	0.00051658	3.8415
2	false	0.91165	0.18501	5.9915
3	false	0.16396	5.1094	7.8147

4	true	0.043606	9.8181	9.4877
5	false	0.072359	10.103	11.07
6	false	0.12006	10.111	12.592
7	false	0.17959	10.162	14.067
8	false	0.25359	10.166	15.507
9	false	0.31236	10.489	16.919
10	false	0.32474	11.434	18.307
11	false	0.40624	11.452	19.675
12	false	0.44702	11.983	21.026
13	false	0.51133	12.2	22.362
14	false	0.58908	12.215	23.685
15	false	0.40435	15.67	24.996
16	false	0.42012	16.478	26.296
17	false	0.43611	17.272	27.587
18	false	0.50315	17.292	28.869
19	false	0.53246	17.85	30.144
20	false	0.49077	19.481	31.41

ARIMA(2,1,0)

```
[h,p,Qstat,crit] = lbqtest(res20,'lags',[1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20]);
names = {'K';'H';'pvalue';'Qstat';'Crit'};
table(K(2:end),h',p',Qstat',crit','VariableNames',names) %
creazione tabella ouput
```

K	Н	pvalue	Qstat	Crit
1	false	0.97013	0.0014024	3.8415
2	false	0.99906	0.001886	5.9915
3	false	0.17888	4.905	7.8147
4	true	0.046548	9.6607	9.4877
5	false	0.075643	9.9856	11.07
6	false	0.12465	10	12.592
7	false	0.18528	10.059	14.067
8	false	0.26076	10.061	15.507
9	false	0.31997	10.388	16.919
10	false	0.33387	11.31	18.307
11	false	0.41652	11.324	19.675
12	false	0.45805	11.847	21.026
13	false	0.52046	12.088	22.362
14	false	0.59819	12.101	23.685
15	false	0.41326	15.54	24.996
16	false	0.4288	16.35	26.296
17	false	0.44643	17.118	27.587
18	false	0.51304	17.147	28.869
19	false	0.53852	17.76	30.144
20	false	0.50054	19.329	31.41

ARIMA(0,1,2)

```
[h,p,Qstat,crit] = lbqtest(res02,'lags',[1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20]);
names = {'K';'H';'pvalue';'Qstat';'Crit'};
table(K(2:end),h',p',Qstat',crit','VariableNames',names) %
creazione tabella ouput
```

ans =

K	Н	pvalue	Qstat	Crit
1	false	0.97479	0.00099842	3.8415
2	false	0.99937	0.0012526	5.9915
3	false	0.17057	5.0169	7.8147
4	true	0.0447	9.7584	9.4877
5	false	0.072865	10.085	11.07
6	false	0.12057	10.098	12.592
7	false	0.17988	10.156	14.067
8	false	0.25402	10.159	15.507
9	false	0.31281	10.483	16.919
10	false	0.32678	11.406	18.307
11	false	0.40874	11.42	19.675
12	false	0.45047	11.94	21.026
13	false	0.51286	12.181	22.362
14	false	0.59057	12.196	23.685
15	false	0.40725	15.627	24.996
16	false	0.42315	16.433	26.296
17	false	0.44049	17.206	27.587
18	false	0.50697	17.235	28.869
19	false	0.53264	17.848	30.144
20	false	0.49381	19.434	31.41

ARIMA(2,1,1)

1

false

0.0023085

3.8415

0.96168

2	false	0.51161	1.3404	5.9915
3	false	0.55618	2.079	7.8147
4	false	0.49995	3.357	9.4877
5	false	0.64163	3.3799	11.07
6	false	0.74464	3.495	12.592
7	false	0.83524	3.4999	14.067
8	false	0.89652	3.5342	15.507
9	false	0.92807	3.7334	16.919
10	false	0.9032	4.8148	18.307
11	false	0.9385	4.8438	19.675
12	false	0.94763	5.2888	21.026
13	false	0.96384	5.4523	22.362
14	false	0.97845	5.4534	23.685
15	false	0.89578	8.6357	24.996
16	false	0.88916	9.5476	26.296
17	false	0.89063	10.298	27.587
18	false	0.92098	10.32	28.869
19	false	0.92793	10.876	30.144
20	false	0.90804	12.227	31.41

ARIMA(1,1,2)

```
[h,p,Qstat,crit] = lbqtest(res12,'lags',[1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20]);
names = {'K';'H';'pvalue';'Qstat';'Crit'};
table(K(2:end),h',p',Qstat',crit','VariableNames',names) %
creazione tabella ouput
```

K	Н	pvalue	Qstat	Crit
1	false	0.92913	0.0079095	3.8415
2	false	0.5343	1.2536	5.9915
3	false	0.51994	2.2615	7.8147
4	false	0.44947	3.6907	9.4877
5	false	0.5919	3.7098	11.07
6	false	0.69754	3.8458	12.592
7	false	0.79581	3.8595	14.067
8	false	0.86474	3.9146	15.507
9	false	0.90713	4.0643	16.919
10	false	0.87387	5.2499	18.307
11	false	0.91594	5.2969	19.675
12	false	0.93114	5.6845	21.026
13	false	0.95215	5.8291	22.362
14	false	0.97058	5.8305	23.685
15	false	0.88066	8.9395	24.996
16	false	0.87384	9.8599	26.296
17	false	0.87534	10.626	27.587
18	false	0.90856	10.651	28.869

```
19 false 0.91618 11.221 30.144
20 false 0.89449 12.584 31.41
```

ARIMA(2,1,2)

```
[h,p,Qstat,crit] = lbqtest(res22,'lags',[1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20]);
names = {'K';'H';'pvalue';'Qstat';'Crit'};
table(K(2:end),h',p',Qstat',crit','VariableNames',names) %
creazione tabella ouput
```

ans =

K	H	pvalue	Qstat	Crit
1	false	0.76803	0.086994	3.8415
2	false	0.94945	0.10374	5.9915
3	false	0.89462	0.6079	7.8147
4	false	0.90527	1.0297	9.4877
5	false	0.95117	1.1327	11.07
6	false	0.97925	1.1507	12.592
7	false	0.95696	2.0511	14.067
8	false	0.93041	3.062	15.507
9	false	0.84282	4.9014	16.919
10	false	0.8696	5.3091	18.307
11	false	0.9128	5.3544	19.675
12	false	0.9369	5.5534	21.026
13	false	0.9605	5.5671	22.362
14	false	0.97527	5.6158	23.685
15	false	0.88968	8.761	24.996
16	false	0.89178	9.4921	26.296
17	false	0.90465	9.9751	27.587
18	false	0.93227	9.9889	28.869
19	false	0.94146	10.432	30.144
20	false	0.9017	12.398	31.41

ARIMA(4,1,0)

1	false	0.54451	0.36724	3.8415
2	false	0.70114	0.71009	5.9915
3	false	0.87022	0.71267	7.8147
4	false	0.94946	0.71503	9.4877
5	false	0.95315	1.1107	11.07
6	false	0.97783	1.1806	12.592
7	false	0.98608	1.3833	14.067
8	false	0.99312	1.4746	15.507
9	false	0.99244	1.9363	16.919
10	false	0.98639	2.767	18.307
11	false	0.99346	2.767	19.675
12	false	0.99068	3.5155	21.026
13	false	0.99441	3.6458	22.362
14	false	0.99724	3.6472	23.685
15	false	0.95591	7.0618	24.996
16	false	0.95032	7.9509	26.296
17	false	0.93725	9.0945	27.587
18	false	0.95749	9.0955	28.869
19	false	0.9651	9.4569	30.144
20	false	0.92378	11.77	31.41

ARIMA(0,1,4)

```
[h,p,Qstat,crit] = lbqtest(res034,'lags',[1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20]);
names = {'K';'H';'pvalue';'Qstat';'Crit'};
table(K(2:end),h',p',Qstat',crit','VariableNames',names) %
    creazione tabella ouput
```

K	Н	pvalue	Qstat	Crit
1	false	0.55337	0.35132	3.8415
2	false	0.70408	0.70173	5.9915
3	false	0.87275	0.70195	7.8147
4	false	0.95102	0.70246	9.4877
5	false	0.95309	1.1114	11.07
6	false	0.98037	1.1262	12.592
7	false	0.99194	1.1546	14.067
8	false	0.99679	1.185	15.507
9	false	0.99595	1.642	16.919
10	false	0.991	2.4917	18.307
11	false	0.99589	2.4917	19.675
12	false	0.99377	3.2215	21.026
13	false	0.99644	3.3331	22.362
14	false	0.99832	3.3344	23.685
15	false	0.96293	6.8014	24.996
16	false	0.95791	7.677	26.296

```
17
    false 0.94478
                     8.8523
                             27.587
    false
                             28.869
18
            0.96306
                      8.8526
19
    false 0.97052
                      9.1718
                              30.144
    false
20
            0.93389
                      11.444
                              31.41
```

ARIMA(4,1,4)

```
[h,p,Qstat,crit] = lbqtest(res3434,'lags',[1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20]);
names = {'K';'H';'pvalue';'Qstat';'Crit'};
table(K(2:end),h',p',Qstat',crit','VariableNames',names) %
creazione tabella ouput
```

ans =

K	Н	pvalue	Qstat	Crit
				
1	false	0.68973	0.15937	3.8415
2	false	0.67747	0.77879	5.9915
3	false	0.74187	1.2465	7.8147
4	false	0.81839	1.5464	9.4877
5	false	0.81573	2.2352	11.07
6	false	0.89685	2.2352	12.592
7	false	0.87229	3.1344	14.067
8	false	0.88442	3.6843	15.507
9	false	0.89823	4.1933	16.919
10	false	0.82851	5.8401	18.307
11	false	0.81537	6.7959	19.675
12	false	0.86686	6.858	21.026
13	false	0.90516	6.9412	22.362
14	false	0.93282	7.0487	23.685
15	false	0.88561	8.8424	24.996
16	false	0.85498	10.218	26.296
17	false	0.82983	11.493	27.587
18	false	0.86364	11.673	28.869
19	false	0.86259	12.512	30.144
20	false	0.78291	14.886	31.41

Published with MATLAB® R2016b