Groupes opérant : rappels

 (G, \cdot) est un groupe multiplicatif et on note 1 (ou 1_G si nécessaire) l'élément neutre. E est un ensemble non vide et S(E) est le groupe des permutations de E.

1.1 Définitions et exemples

Définition 1.1 On dit que G opère (à gauche) sur E si on a une application :

$$\begin{array}{ccc} G \times E & \to & E \\ (g, x) & \mapsto & g \cdot x \end{array}$$

telle que :

$$\left\{ \begin{array}{l} \forall x \in E, \ 1 \cdot x = x \\ \forall \, (g,g',x) \in G^2 \times E, \ g \cdot (g' \cdot x) = (gg') \cdot x \end{array} \right.$$

Une telle application est aussi appelée action (à gauche) de G sur E.

Remarque 1.1 On peut définir de manière analogue l'action à droite d'un groupe sur un ensemble non vide comme une application :

$$\begin{array}{ccc} G \times E & \to & E \\ (g,x) & \mapsto & x \cdot g \end{array}$$

telle que :

$$\begin{cases} \forall x \in E, \ x \cdot 1 = x \\ \forall (g, g', x) \in G^2 \times E, \ (x \cdot g) \cdot g' = x \cdot (gg') \end{cases}$$

Pour tout $g \in G$, l'application :

$$\varphi\left(g\right): \begin{array}{ccc} E & \to & E \\ x & \mapsto & g \cdot x \end{array}$$

est alors une bijection de E sur E, c'est-à-dire que $\varphi(g) \in \mathcal{S}(E)$. En effet, de $1 \cdot x = x$ pour tout $x \in E$, on déduit que $\varphi(1) = Id_E$ et avec $g \cdot (g^{-1} \cdot x) = (gg^{-1}) \cdot x = 1 \cdot x = x$ et $g^{-1} \cdot (g \cdot x) = x$ on déduit que $\varphi(g) \circ \varphi(g^{-1}) = \varphi(g^{-1}) \circ \varphi(g) = Id_E$, ce qui signifie que $\varphi(g)$ est bijective d'inverse $\varphi(g^{-1})$.

De plus avec $g \cdot (g' \cdot x) = (gg') \cdot x$, pour tous g, g', x, on déduit que $\varphi(gg') = \varphi(g) \circ \varphi(g')$, c'est-à-dire que l'application φ est un morphisme de groupes de (G, \cdot) dans $(\mathcal{S}(E), \circ)$.

Le noyau de ce morphisme φ est le noyau de l'action à gauche de G sur E.

Réciproquement un tel morphisme φ définit une action à gauche de G sur E avec :

$$q \cdot x = \varphi(q)(x)$$

Exemple 1.1 G agit sur lui même par translation à gauche :

$$(g,h) \in G \times G \mapsto g \cdot h = gh$$

Exemple 1.2 Un groupe G agit sur lui même par conjugaison :

$$(q,h) \in G \times G \mapsto q \cdot h = qhq^{-1}$$

le morphisme de groupes correspondant de (G,\cdot) dans $(S(G),\circ)$ est noté :

$$Ad(g): G \to G$$

$$h \mapsto qhq^{-1}$$

L'image de Ad est le groupe Int(G) des automorphismes intérieurs de G.

Exercice 1.1 Montrer que Int(G) est isomorphe au groupe quotient G/Z(G), où Z(G) est le centre de G.

Solution 1.1 Le noyau du morphisme de groupes $Ad: G \to \mathcal{S}(G)$ est formé des $g \in G$ tels que $Ad(g) = Id_G$, c'est-à-dire des $g \in G$ tels que $ghg^{-1} = h$ pour tout $h \in G$, ce qui équivaut à gh = hg pour tout $h \in G$. Le noyau de Ad est donc le centre Z(G) de G. Comme Im(Ad) = Int(G), on en déduit que $G/Z(G) = G/\ker(Ad)$ est isomorphe à Im(Ad) = Int(G).

Exemple 1.3 Un groupe G agit sur tout sous-groupe distingué H par conjugaison :

$$(g,h) \in G \times H \mapsto g \cdot h = ghg^{-1} \in H$$

Exemple 1.4 Le groupe S(E) agit naturellement sur E par :

$$(\sigma, x) \in \mathcal{S}(E) \times E \mapsto \sigma \cdot x = \sigma(x) \in E$$

1.2 Orbites et stabilisateurs

Définition 1.2 Soit G un groupe opérant sur un ensemble non vide E. Pour tout $x \in E$, le sous-ensemble de E:

$$G \cdot x = \{ q \cdot x \mid q \in G \}$$

est appelé orbite de x sous l'action de G.

On vérifie facilement que la relation $x \sim y$ si, et seulement si, il existe $g \in G$ tel que $y = g \cdot x$ est une relation d'équivalence sur E ($x = 1 \cdot x$ donne la réflexivité, $y = g \cdot x$ équivalent à $x = g^{-1} \cdot y$ donne la symétrie et $y = g \cdot x$, $z = h \cdot y$ qui entraîne $z = (hg) \cdot x$ donne la transitivité) et la classe de $x \in E$ pour cette relation est l'orbite de x. Il en résulte que les orbites forment une partition de E.

Exemple 1.5 Pour l'action de S(E) sur E il y a une seule orbite. En effet, pour tout $x \in E$, on a:

$$S(E) \cdot x = \{ \sigma(x) \mid \sigma \in S(E) \} = E$$

(tout $y \in E$ s'écrit $y = \tau(x)$, où τ est la transposition $\tau = (x, y)$ si $y \neq x$, $\tau = Id$ si y = x).

Orbites et stabilisateurs 3

Exemple 1.6 Pour l'action de G sur lui même par conjugaison, les orbites sont appelées classes de conjugaison :

$$\forall h \in G, \ G \cdot h = \left\{ ghg^{-1} \mid g \in G \right\}$$

Le groupe G est commutatif si, et seulement si, $G \cdot h = \{h\}$ pour tout $h \in G$.

Exemple 1.7 Si H est un sous-groupe de G, il agit par translation à droite sur G:

$$(h,g) \in H \times G \mapsto h \cdot g = gh^{-1}$$

 $(1 \cdot g = g1 = g \text{ et } h_1 \cdot (h_2 \cdot g) = (gh_2^{-1}) h_1^{-1} = g(h_1h_2)^{-1} = (h_1h_2) \cdot g) \text{ et pour tout } g \in G \text{ l'orbite de } g \text{ est la classe à gauche modulo } H :$

$$H \cdot g = \{h \cdot g \mid h \in H\} = \{gh^{-1} \mid h \in H\}$$

= $\{gk \mid k \in H\} = gH$

L'ensemble de ces orbites est l'ensemble quotient G/H des classes à gauche modulo H. En utilisant les translations à gauche sur G:

$$(h, q) \in H \times G \mapsto h \cdot q = hq$$

les orbites sont les classes à droite modulo H:

$$H \cdot g = \{ hg \mid h \in H \} = Hg$$

Exemple 1.8 Soit E un ensemble non vide. Pour $\sigma \in \mathcal{S}(E)$, le groupe des permutations de E, on fait agir le groupe cyclique $H = \langle \sigma \rangle$ sur E par :

$$(\sigma^r, x) \in H \times E \mapsto \sigma^r \cdot x = \sigma^r(x)$$

et l'orbite de $x \in E$ pour cette action est l'ensemble :

$$H \cdot x = \{ \gamma \cdot x \mid \gamma \in H \} = \{ \sigma^r(x) \mid r \in \mathbb{Z} \}$$

On dit $H \cdot x$ est l'orbite de la permutation σ . On note, dans ce contexte, $Orb_{\sigma}(x)$ une telle orbite.

Un **cycle** est une permutation $\sigma \in \mathcal{S}(E)$ pour laquelle il n'existe qu'une seule orbite non réduite à un point.

En utilisant le fait que les σ -orbites forment une partition de E et que chaque σ -orbite non réduite à un point permet de définir un cycle, on déduit que toute permutation $\sigma \in \mathcal{S}(E) \setminus \{Id_E\}$ se décompose en produit de cycles de supports deux à deux disjoints (théorème ??).

Exercice 1.2 Soit $\sigma = (x_1, x_2, \dots, x_r)$ un cycle de longueur paire. Montrer que σ^2 n'est pas un cycle.

Solution 1.2 Soit r=2p la longueur de σ avec $p\geq 1$. Pour $p=1,\ \sigma^2=Id_E$ n'est pas un cycle et pour $p\geq 2$, on a :

$$Orb_{\sigma^2}(x_1) = \{x_1, x_3, \dots, x_{2p-1}\} \text{ et } Orb_{\sigma^2}(x_2) = \{x_2, x_4, \dots, x_{2p}\}$$

et σ^2 n'est pas un cycle.

Définition 1.3 On dit que l'action de G sur E est transitive [resp. simplement transitive] si :

$$\forall (x,y) \in E^2, \ \exists g \in G \mid y = g \cdot x$$

$$resp. \ \forall (x,y) \in E^2, \ \exists ! g \in G \mid y = g \cdot x$$

Dans le cas d'une action transitive ou simplement transitive, il y a une seule orbite.

Définition 1.4 On dit que l'action de G sur E est fidèle si le morphisme de groupes :

$$\varphi: g \in G \mapsto (\varphi(g): x \mapsto g \cdot x) \in \mathcal{S}(E)$$

est injectif, ce qui signifie que :

$$(g \in G \ et \ \forall x \in E, \ g \cdot x = x) \Leftrightarrow (g = 1)$$

Une action fidèle permet d'identifier G à un sous-groupe de $\mathcal{S}(E)$.

Théorème 1.1 (Cayley) L'action de G sur lui même par translation à gauche est fidèle et G est isomorphe à un sous-groupe de S(G).

Démonstration. Pour $g \in G$, on a $g \cdot h = gh = h$ pour tout $h \in G$ si, et seulement si, g = 1, donc φ est injectif.

Exercice 1.3 On considère, pour $n \geq 1$, l'action de $\mathcal{O}_n(\mathbb{R})$ sur \mathbb{R}^n définie par :

$$\forall (A, x) \in \mathcal{O}_n(\mathbb{R}) \times \mathbb{R}^n, \ A \cdot x = A(x)$$

Montrer que les orbites sont les sphères de centre 0.

Solution 1.3 Pour $x \in \mathbb{R}^n$, on a :

$$\mathcal{O}_n(\mathbb{R}) \cdot x = \{ A(x) \mid A \in \mathcal{O}_n(\mathbb{R}) \}$$

Pour tout $y \in \mathcal{O}_n(\mathbb{R}) \cdot x$, il existe $A \in \mathcal{O}_n(\mathbb{R})$ telle que y = A(x) et ||y|| = ||A(x)|| = ||x||, donc $\mathcal{O}_n(\mathbb{R}) \cdot x \subset S(0, ||x||)$.

Réciproquement si $y \in S(0, ||x||)$ avec $x \neq 0$, on a $y \neq 0$ et on peut construire deux bases orthonormées $\mathcal{B} = (e_i)_{1 \leq i \leq n}$ et $\mathcal{B}' = (e_i')_{1 \leq i \leq n}$ de \mathbb{R}^n telles que $e_1 = \frac{1}{||x||}x$ et $e_1' = \frac{1}{||y||}y$. La matrice de base de \mathcal{B} à \mathcal{B}' est alors orthogonale et $y = ||y|| e_1' = ||x|| A(e_1) = A(x)$, donc $y \in \mathcal{O}_n(\mathbb{R}) \cdot x$. On a donc $\mathcal{O}_n(\mathbb{R}) \cdot x = S(0, ||x||)$ pour $x \neq 0$. Pour x = 0, on a $\mathcal{O}_n(\mathbb{R}) \cdot x = \{0\} = S(0, ||x||)$.

Exercice 1.4 Soient n, m deux entiers naturels non nuls et \mathbb{K} un corps commutatif. On fait agir le groupe produit $G = GL_n(\mathbb{K}) \times GL_m(\mathbb{K})$ sur l'ensemble $E = \mathcal{M}_{n,m}(\mathbb{K})$ des matrices à n lignes et m colonnes par :

$$\forall (P,Q) \in G, \ \forall A \in E, \ (P,Q) \cdot A = PAQ^{-1}$$

Montrer que les orbites correspondantes sont les ensembles :

$$\mathcal{O}_r = \{ A \in E \mid \operatorname{rg}(A) = r \}$$

où r est compris entre 0 et $\min(n, m)$.

Orbites et stabilisateurs 5

Solution 1.4 On rappelle qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est de rang r si et seulement si elle est équivalente à $A_r = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.

Rappelons une démonstration de ce résultat.

Pour r = 0, on a $A = 0 = A_0$. Pour $r \ge 1$, en désignant par $u \in \mathcal{L}(\mathbb{K}^n)$ l'endomorphisme de matrice A dans la base canonique de \mathbb{K}^n , H un supplémentaire de ker (u) dans \mathbb{K}^n , $\mathcal{B}_1 = (e_i)_{1 \le i \le r}$ une base de H et \mathcal{B}_2 une base de ker (u), le système $u(\mathcal{B}_1) = (u(e_1))_{1 \le i \le r}$ qui est libre dans \mathbb{K}^n

(si $\sum_{k=1}^{r} \lambda_k u(e_k) = 0$, alors $\sum_{k=1}^{r} \lambda_k e_k \in H \cap \ker(u) = \{0\}$ et tous les λ_k sont nuls) se complète en une base $\mathcal{B} = \{u(e_1), \dots, u(e_r), f_{r+1}, \dots, f_n\}$ de \mathbb{K}^n et la matrice de u dans les bases $\mathcal{B}_1 \cup \mathcal{B}_2$ et \mathcal{B} a alors la forme indiquée. La réciproque est évidente.

Il en résulte que :

$$\mathcal{O}_r = \{ A \in E \mid rg(A) = r \}$$

= $\{ A \in E \mid \exists (P, Q) \in G \mid A = PI_rQ^{-1} \} = G \cdot I_r$

et:

$$E = \bigcup_{r=0}^{\min(n,m)} \mathcal{O}_r = \bigcup_{r=0}^{\min(n,m)} G \cdot I_r$$

ce qui nous donne toutes les orbites.

Définition 1.5 Soit G un groupe opérant sur un ensemble non vide E. Pour tout $x \in X$, le sous-ensemble de G:

$$G_x = \{ g \in G \mid g \cdot x = x \}$$

est le stabilisateur de x sous l'action de G.

On vérifie facilement que ces stabilisateurs G_x sont des sous-groupes de G (en général non distingués).

Exemple 1.9 Soit un ensemble E non réduit à un point. En faisant agir sur E son groupe de permutations $G = \mathcal{S}(E)$, par $\sigma \cdot x = \sigma(x)$, le stabilisateur de $x \in E$ est isomorphe à $\mathcal{S}(E \setminus \{x\})$. À $\sigma \in G_x$, on associe la restriction σ' de σ à $E \setminus \{x\}$, ce qui définit un isomorphisme de G_x sur $\mathcal{S}(E \setminus \{x\})$.

Théorème 1.2 Soit (G, \cdot) est un groupe opérant sur un ensemble E. Pour tout $x \in E$ l'application :

$$\varphi_x: G/G_x \to G \cdot x$$
$$\overline{g} = gG_x \mapsto g \cdot x$$

est bien définie et bijective. Dans le cas où G fini, on a :

$$\operatorname{card}(G \cdot x) = [G : G_x] = \frac{\operatorname{card}(G)}{\operatorname{card}(G_x)}$$

 $(donc \operatorname{card} (G \cdot x) \operatorname{divise} \operatorname{card} (G)).$

Démonstration. En remarquant que pour g,h dans G et $x \in E$, l'égalité $g \cdot x = h \cdot x$ équivaut à $(h^{-1}g) \cdot x = x$, soit à $h^{-1}g \in G_x$ ou encore à $\overline{g} = \overline{h}$ dans G/G_x , on déduit que l'application φ_x est bien définie et injective. Cette application étant clairement surjective, elle définie une bijection de G/G_x sur $G \cdot x$. Dans le cas où G fini, on a :

$$\operatorname{card}(G \cdot x) = \operatorname{card}(G/G_x) = \frac{\operatorname{card}(G)}{\operatorname{card}(G_x)}$$

Exercice 1.5 En utilisant l'action naturelle de S(E) sur E, montrer que si E est un ensemble fini à n éléments, on a alors card (S(E)) = n!

Solution 1.5 On utilise l'action de $\mathcal{S}(E)$ sur E définie par :

$$\forall (\sigma, x) \in \mathcal{S}(E) \times E, \ \sigma \cdot x = \sigma(x)$$

Cette action est transitive (il y a une seule orbite), donc $\mathcal{S}(E) \cdot x = E$ pour tout $x \in E$. Le stabilisateur de $x \in E$ est :

$$\mathcal{S}(E)_{x} = \{ \sigma \in \mathcal{S}(E) \mid \sigma(x) = x \}$$

et l'application qui associe à $\sigma \in \mathcal{S}\left(E\right)_{x}$ sa restriction à $F = E \setminus \{x\}$ réalise un isomorphisme de $\mathcal{S}\left(E\right)_{x}$ sur $\mathcal{S}\left(F\right)$. On a donc card $\left(\mathcal{S}\left(E\right)_{x}\right) = \operatorname{card}\left(\mathcal{S}\left(F\right)\right)$ et :

$$\operatorname{card}(\mathcal{S}(E)) = \operatorname{card}(\mathcal{S}(E) \cdot x) \operatorname{card}(\mathcal{S}(E)_{x})$$
$$= \operatorname{card}(E) \operatorname{card}(\mathcal{S}(F)) = n \operatorname{card}(\mathcal{S}(F))$$

On conclut alors par récurrence sur $n \geq 1$.

1.3 Équation des classes

Théorème 1.3 (équation des classes) Soit (G, \cdot) est un groupe fini opérant sur un ensemble fini E. En notant $G \cdot x_1, \dots, G \cdot x_r$ toutes les orbites deux à deux distinctes, on a:

$$\operatorname{card}(E) = \sum_{i=1}^{r} \operatorname{card}(G \cdot x_i) = \sum_{i=1}^{r} \frac{\operatorname{card}(G)}{\operatorname{card}(G_{x_i})}$$

Démonstration. Si E est fini, on a alors un nombre fini d'orbites $G \cdot x_1, \dots, G \cdot x_r$ qui forment une partition de E et :

$$\operatorname{card}(E) = \sum_{i=1}^{r} \operatorname{card}(G \cdot x_i).$$

En utilisant la bijection de G/G_x sur $G \cdot x_i$, on déduit que si G est aussi fini, on a alors :

$$\operatorname{card}(E) = \sum_{i=1}^{r} \frac{\operatorname{card}(G)}{\operatorname{card}(G_{x_i})}.$$

Si (G,\cdot) est un groupe opérant sur un ensemble E, on note alors :

$$E^G = \{ x \in E \mid G \cdot x = \{x\} \}$$

C'est l'ensemble des éléments de E dont l'orbite est réduite à un point.

En séparant dans la formule des classes les orbites réduites à un point des autres, elle s'écrit :

$$\operatorname{card}(E) = \operatorname{card}(E^G) + \sum_{\substack{i=1\\\operatorname{card}(G \cdot x_i) > 2}}^r \operatorname{card}(G \cdot x_i)$$

(la somme étant nulle si toutes les orbites sont réduites à un point).

Équation des classes 7

Définition 1.6 Si $p \ge 2$ est un nombre premier, on appelle p-groupe tout groupe de cardinal p^{α} où α est un entier naturel non nul.

Corollaire 1.1 Si $p \geq 2$ est un nombre premier et (G, \cdot) est un p-groupe opérant sur un ensemble fini E, alors :

$$\operatorname{card}(E^G) \equiv \operatorname{card}(E) \pmod{p}$$
.

Démonstration. Dans le cas d'un p-groupe de cardinal p^{α} avec $\alpha \geq 1$, pour toute orbite $G \cdot x_i$ non réduite à un point (s'il en existe), on a :

$$\operatorname{card}(G \cdot x_i) = \operatorname{card}\left(\frac{G}{G_{x_i}}\right) = \frac{\operatorname{card}(G)}{\operatorname{card}(G_{x_i})} \ge 2$$

donc card $(G_{x_i}) = p^{\beta_i}$ avec $0 \le \beta_i < \alpha$ et card $(G \cdot x_i) = p^{\alpha - \beta_i}$ avec $1 \le \alpha - \beta_i \le \alpha$. Il en résulte que :

$$\operatorname{card}(E) = \operatorname{card}(E^G) + \sum_{\substack{i=1\\\operatorname{card}(G\cdot x_i)\geq 2}}^r \operatorname{card}(G\cdot x_i) \equiv \operatorname{card}(E^G) \pmod{p}$$

Corollaire 1.2 Soit G un groupe fini que l'on fait opérer sur lui même par conjugaison $(g \cdot h = ghg^{-1}, pour(g, h) \in G \times G)$. En notant $G \cdot h_1, \dots, G \cdot h_r$ toutes les orbites deux à deux distinctes, on a:

$$\operatorname{card}(G) = \operatorname{card}(Z(G)) + \sum_{\substack{i=1\\\operatorname{card}(G \cdot h_i) \ge 2}}^{r} \operatorname{card}(G \cdot h_i)$$
$$= \operatorname{card}(Z(G)) + \sum_{\substack{i=1\\\operatorname{card}(G \cdot h_i) \ge 2}}^{r} \frac{\operatorname{card}(G)}{\operatorname{card}(G_{h_i})}.$$

Démonstration. Une orbite $G \cdot h$ est réduite à $\{h\}$ si et seulement si $ghg^{-1} = h$ pour tout $g \in G$, ce qui revient à dire que gh = hg, ou encore que $h \in Z(G)$. On a donc $Z(G) = G^G$ et le résultat annoncé.

Théorème 1.4 Pour tout nombre premier p, le centre d'un p-groupe n'est pas réduit à {1}.

Démonstration. Soit G un p-groupe à p^{α} éléments.

On a, avec les notations des corollaires qui précèdent :

$$\operatorname{card}(Z(G)) = \operatorname{card}(G^G) \equiv \operatorname{card}(G) \pmod{p}$$

et comme card $(Z(G)) \ge 1$, il en résulte que card $(Z(G)) \ge p$ et Z(G) est non trivial.

Théorème 1.5 Tout groupe d'ordre p^2 avec p premier est commutatif.

Démonstration. Soit G d'ordre p^2 . On sait que Z(G) est non trivial, il est donc de cardinal p ou p^2 et il s'agit de montrer qu'il est de cardinal p^2 .

Si Z(G) est de cardinal p, il est alors cyclique, soit $Z(G) = \langle g \rangle$.

Un élément h de $G \setminus Z(G)$ ne pouvant être d'ordre p^2 (sinon $G = \langle h \rangle$ et G serait commutatif ce qui contredit l'hypothèse $G \neq Z(G)$), il est d'ordre p et $Z(G) \cap \langle h \rangle = \{1\}$ (exercice ??)

En utilisant l'application :

$$\varphi: \{0, 1, \cdots, p-1\}^2 \to G$$

$$(i, j) \mapsto g^i h^j$$

nous déduisons que tout élément de G s'écrit de manière unique $g^i h^j$. Pour ce faire il suffit de montrer que φ est injective. Si $g^i h^j = g^{i'} h^{j'}$, alors $g^{i-i'} = h^{j'-j} \in Z(G) \cap \langle h \rangle = \{1\}$ et $g^{i-i'} = h^{j'-j} = 1$ ce qui entraı̂ne que p divise i - i' et j - j' et comme |i - i'| < p, |j - j'| < p, on a nécessairement i = i', j = j'. Avec les cardinaux il en résulte que φ est une bijection.

Si k, k' sont dans G, il s'écrivent $k = g^i h^j$ et $k' = g^{i'} h^{j'}$ et comme g commute à tout G, on en déduit que k et k' commutent. Le groupe G serait alors commutatif ce qui est contraire à l'hypothèse $G \neq Z(G)$.

En définitive Z(G) ne peut être de cardinal p, il est donc de cardinal p^2 et G est commutatif.

Remarque 1.2 Si G d'ordre p^2 a un élément d'ordre p^2 , il est alors cyclique isomorphe à $\frac{\mathbb{Z}}{p^2\mathbb{Z}}$.

Dans le cas où tous ses éléments sont d'ordre p, il est isomorphe à $\left(\frac{\mathbb{Z}}{p\mathbb{Z}}\right)^2$.

1.4 Le théorème de Cauchy

Soient G un groupe fini de cardinal $n \geq 2, p \geq 2$ un nombre premier et :

$$E = \{(g_1, \dots, g_p) \in G^p \mid g_1 \dots g_p = 1\}$$

Lemme 1.1 Avec ces notations, on a:

$$\operatorname{card}(E) = n^{p-1}.$$

Démonstration. L'application $(g_1, \dots, g_{p-1}) \mapsto (g_1, \dots, g_{p-1}, (g_1 \dots g_{p-1})^{-1})$ réalise une bijection de G^{p-1} sur E (de l'égalité $g_1 \dots g_p = 1$, on déduit que la connaissance des g_i pour $1 \le i \le p-1$ détermine g_p de manière unique). On a donc :

$$\operatorname{card}\left(E\right) =n^{p-1}.$$

On désigne par $H=\langle\sigma\rangle$ le sous-groupe de \mathcal{S}_p engendré par le p-cycle $\sigma=(1,2,\cdots,p)$ et on fait agir H sur E par :

$$\left(\sigma^{k},\left(g_{1},\cdots,g_{p}\right)\right)\mapsto\left(g_{\sigma^{k}\left(1\right)},\cdots,g_{\sigma^{k}\left(p\right)}\right)$$

Pour $g = (g_1, \dots, g_p) \in E$, on a:

$$g_2 \cdots g_p g_1 = g_1^{-1} g_1 = 1$$

donc $(g_{\sigma(1)}, \dots, g_{\sigma(p)}) = (g_2, \dots, g_p, g_1) \in E$. Il en résulte que pour tout entier k compris entre 0 et p-1, $(g_{\sigma^k(1)}, \dots, g_{\sigma^k(p)}) \in E$ et l'application :

$$(\sigma^k, (g_1, \cdots, g_p)) \mapsto \sigma^k \cdot (g_1, \cdots, g_p) = (g_{\sigma^k(1)}, \cdots, g_{\sigma^k(p)})$$

est bien à valeurs dans E. Cette application définit bien une action puisque :

$$Id \cdot (g_1, \cdots, g_p) = (g_1, \cdots, g_p)$$

et

$$\sigma^{j} \cdot (\sigma^{k} \cdot (g_{1}, \dots, g_{p})) = \sigma^{j} \cdot (g_{\sigma^{k}(1)}, \dots, g_{\sigma^{k}(p)}) = (g_{\sigma^{j+k}(1)}, \dots, g_{\sigma^{k+j}(p)})$$
$$= \sigma^{j+k} \cdot (g_{1}, \dots, g_{p}) = (\sigma^{j} \circ \sigma^{k}) \cdot (g_{1}, \dots, g_{p})$$

Lemme 1.2 Avec ces notations, on a:

$$E^H = \{x \in E \mid H \cdot x = \{x\}\} \neq \emptyset$$

et card (E^H) est divisible par p si p est un diviseur premier de n.

Démonstration. En remarquant que $x=(1,\cdots,1)$ est dans E^H , on déduit que E^H est non vide.

Comme H est de cardinal p (un p-cycle est d'ordre p dans S_p), on a :

$$\operatorname{card}\left(E^{H}\right) \equiv \operatorname{card}\left(E\right) \pmod{p}$$

(corollaire 1.1) avec card $(E) = n^{p-1}$ divisible par p comme n, ce qui entraı̂ne que card (E^H) est également divisible par p.

Théorème 1.6 (Cauchy) Si G est un groupe fini, alors pour tout diviseur premier p de son ordre n, G possède un élément d'ordre p (et donc un sous-groupe d'ordre p).

Démonstration. On utilise les notations qui précèdent.

De card $(E^H) \ge 1$ et card (E^H) divisible par p, on déduit que card $(E^H) \ge p \ge 2$ et en remarquant que $x = (g_1, \dots, g_p) \in E^H$ équivaut à dire que $g_1 = \dots = g_p = g$ avec $g \in G$ tel que $g^p = 1$, on déduit qu'il existe $g \ne 1$ tel que $g^p = 1$, ce qui signifie que g est d'ordre g.

Exercice 1.6 Soit (G, \cdot) est un groupe fini opérant sur un ensemble fini E. Pour tout $g \in G$, on note:

$$Fix(g) = \{x \in E \mid g \cdot x = x\}$$

Montrer que le nombre d'orbites est :

$$r = \frac{1}{\operatorname{card}(G)} \sum_{g \in G} \operatorname{card}(\operatorname{Fix}(g))$$

(formule de Burnside).

Solution 1.6 L'idée est de calculer le cardinal de l'ensemble :

$$F = \{(g, x) \in G \times E \mid g \cdot x = x\}$$

de deux manières en utilisant les partitions :

$$F = \bigcup_{g \in G} \{ (g, x) \mid x \in \text{Fix}(g) \} = \bigcup_{x \in E} \{ (g, x) \mid g \in G_x \}$$

ce qui donne :

$$\operatorname{card}\left(F\right) = \sum_{g \in G} \operatorname{card}\left(\operatorname{Fix}\left(g\right)\right)$$

et en notant $G \cdot x_1, \cdots, G \cdot x_r$ les orbites distinctes :

$$\operatorname{card}(F) = \sum_{x \in E} \operatorname{card}(G_x) = \sum_{x \in E} \frac{\operatorname{card}(G)}{\operatorname{card}(G \cdot x)}$$

$$= \sum_{i=1}^{r} \sum_{x \in G \cdot x_i} \frac{\operatorname{card}(G)}{\operatorname{card}(G \cdot x)} = \sum_{i=1}^{r} \operatorname{card}(G) \left(\sum_{x \in G \cdot x_i} \frac{1}{\operatorname{card}(G \cdot x)}\right)$$

$$= \sum_{i=1}^{r} \operatorname{card}(G) \left(\sum_{x \in G \cdot x_i} \frac{1}{\operatorname{card}(G \cdot x_i)}\right) = \sum_{i=1}^{r} \operatorname{card}(G) = r \operatorname{card}(G)$$

du fait que $G \cdot x = G \cdot x_i$ pour $x \in G \cdot x_i$ (la relation $x \sim y$ si $y = g \cdot x$ est d'équivalence et les classes d'équivalence sont les orbites). Ce qui donne le résultat annoncé.

1.5 Groupe des isométries laissant une partie invariante

On désigne par \mathcal{E} un espace affine euclidien de dimension $n \geq 2$ et de direction E.

Pour A, B dans \mathcal{E} , on note $d(A, B) = \|\overrightarrow{AB}\|$ la distance de A à B.

On rappelle qu'une isométrie affine est une application affine $\varphi : \mathcal{E} \to \mathcal{E}$ telle que $d(\varphi(A), \varphi(B)) = d(A, B)$ pour tout couple (A, B) de points de \mathcal{E} .

Une application affine $\varphi : \mathcal{E} \to \mathcal{E}$ est une isométrie affine si, et seulement si, son application linéaire associée $\overrightarrow{\varphi} : \overrightarrow{AB} \mapsto \overrightarrow{\varphi(A)\varphi(B)}$ est une isométrie vectorielle de E.

On note $Is(\mathcal{E})$ le groupe des isométries de E, $Is^+(\mathcal{E})$ le sous-groupe des déplacements de \mathcal{E} (i. e. des isométries telles que det $(\overrightarrow{\varphi}) = 1$) et $Is^-(\mathcal{E})$ l'ensemble des antidéplacements de \mathcal{E} (i. e. des isométries telles que det $(\overrightarrow{\varphi}) = -1$).

Pour toute partie \mathcal{P} de \mathcal{E} ayant au moins 2 éléments, on note $Is(\mathcal{P})$ [resp. $Is^+(\mathcal{P})$, $Is^-(\mathcal{P})$] l'ensemble des isométries [resp. des déplacements, antidéplacements] φ de \mathcal{E} qui conservent \mathcal{P} , c'est-à-dire telles [resp. tels] que $\varphi(\mathcal{P}) = \mathcal{P}$.

Si $\varphi \in Is(\mathcal{P})$, alors sa restriction à \mathcal{P} est une permutation de \mathcal{P} .

Théorème 1.7 Si \mathcal{P} est une partie non vide de \mathcal{E} , alors :

- 1. $Is(\mathcal{P})$ est un sous-groupe de $Is(\mathcal{E})$ et $Is^+(\mathcal{P})$ est un sous-groupe distingué de $Is(\mathcal{P})$;
- 2. l'application Φ qui associe à $\varphi \in Is(\mathcal{P})$ sa restriction à \mathcal{P} est un morphisme de groupes de $Is(\mathcal{P})$ dans $\mathcal{S}(\mathcal{P})$ (donc dans \mathcal{S}_m si \mathcal{P} est de cardinal m); dans le cas où \mathcal{P} contient un repère affine de \mathcal{E} , Φ est injective et si \mathcal{P} est un repère affine, alors $Is(\mathcal{P})$ est isomorphe à un sous-groupe de \mathcal{S}_{n+1} ;
- 3. si $Is^-(\mathcal{P}) \neq \emptyset$, alors pour toute isométrie $\sigma \in Is^-(\mathcal{P})$, l'application $\rho \mapsto \sigma \circ \rho$ réalise une bijection de $Is^+(\mathcal{P})$ sur $Is^-(\mathcal{P})$; dans le cas où \mathcal{P} est fini, on a card $(Is(\mathcal{P})) = 2 \operatorname{card}(Is^+(\mathcal{P}))$;
- 4. si \mathcal{P} est fini, alors toute isométrie $\varphi \in Is(\mathcal{P})$ laisse fixe l'isobarycentre de \mathcal{P} .

Démonstration.

- 1. On a $Id \in Is(\mathcal{P})$ et pour φ, ψ dans $Is(\mathcal{P})$, la composée $\varphi \circ \psi^{-1}$ est aussi dans $Is(\mathcal{P})$, donc $Is(\mathcal{P})$ est un sous-groupe de $Is(\mathcal{E})$ et $Is^+(\mathcal{P}) = Is(\mathcal{P}) \cap Is^+(\mathcal{E})$ un sous-groupe de $Is^+(\mathcal{E})$. Le groupe $Is^+(\mathcal{P})$ est distingué dans $Is(\mathcal{P})$ comme noyau du morphisme de groupes det : $\varphi \in Is(\mathcal{P}) \to \det(\overrightarrow{\varphi}) \in \{-1,1\}$ (on peut aussi dire que pour $\rho \in Is^+(\mathcal{P})$ et $\varphi \in Is(\mathcal{P})$, $\varphi^{-1} \circ \rho \circ \varphi \in Is^+(\mathcal{P})$).
- 2. Une isométrie $\varphi \in Is(\mathcal{P})$ reste injective sur \mathcal{P} et elle est surjective de \mathcal{P} sur \mathcal{P} puisque $\varphi(\mathcal{P}) = \mathcal{P}$, c'est donc une permutation de $\varphi(\mathcal{P}) = \mathcal{P}$. Il est clair que l'application $\Phi : \varphi \mapsto \varphi_{|\mathcal{P}}$ est un morphisme de groupes.
 - Si \mathcal{P} contient un repère affine $(A_i)_{0 \leq i \leq n}$ de \mathcal{E} , l'application Φ est alors injective du fait que l'égalité $\varphi_{|\mathcal{P}} = \psi_{|\mathcal{P}}$ entraı̂ne $\varphi(A_i) = \psi(A_i)$ pour tout i compris entre 0 et n et $\varphi = \psi$ puisque ces applications affines coïncident sur un repère affine. Dans le cas où $\mathcal{P} = \{A_0, \dots, A_n\}$, Φ réalise un isomorphisme de $Is(\mathcal{P})$ sur \mathcal{S}_{n+1} .
- 3. Pour $\sigma \in Is^{-}(\mathcal{P})$, l'application $\Psi : \rho \mapsto \sigma \circ \rho$ est clairement injective de $Is^{+}(\mathcal{P})$ sur $Is^{-}(\mathcal{P})$ et pour tout $\sigma' \in Is^{-}(\mathcal{P})$, $\rho = \sigma^{-1} \circ \sigma' \in Is^{+}(\mathcal{P})$ est un antécédent de σ' . L'application Ψ est donc bijective. En utilisant la partition $Is(\mathcal{P}) = Is^{+}(\mathcal{P}) \cup Is^{-}(\mathcal{P})$, on en déduit dans le cas où \mathcal{P} est fini que card $(Is(\mathcal{P})) = 2$ card $(Is^{+}(\mathcal{P}))$.
- 4. Si $\mathcal{P} = \{A_1, \dots, A_m\}$, tout application $\varphi \in Is(\mathcal{P})$ qui est affine va transformer l'isobarycentre O de \mathcal{P} en l'isobarycentre de $\varphi(\mathcal{P}) = \mathcal{P}$ et nécessairement $\varphi(O) = O$.

Remarque 1.3 On déduit du point 3. du théorème précédent que $Is(\mathcal{P}) = Is^+(\mathcal{P})$ s'il n'y a pas d'antidéplacement qui conserve \mathcal{P} et que $Is(\mathcal{P}) = Is^+(\mathcal{P}) \cup (\sigma \circ Is^-(\mathcal{P}))$ s'il existe un antidéplacement σ qui conserve \mathcal{P} .

Remarque 1.4 On déduit du point 4. du théorème précédent que dans le cas où \mathcal{P} est fini, l'étude de $Is(\mathcal{P})$ se ramène à une étude analogue dans l'espace vectoriel euclidien E. Dans le cas où \mathcal{E} est un plan affine, une isométrie distincte de l'identité laissant fixe une partie finie d'isobarycentre O est soit une rotation de centre O, soit une réflexion d'axe passant par O.

Exercice 1.7 Soit $\mathcal{P} = \{A_1, \dots, A_m\}$ une partie finie du plan euclidien avec $m \geq 2$. Montrer que card $(Is^{\pm}(\mathcal{P})) \leq m$ et card $(Is(\mathcal{P})) \leq 2m$.

Solution 1.7 Les éléments de $Is^+(\mathcal{P})$ sont des rotations de centre l'isobarycentre O de \mathcal{P} et une telle rotation est uniquement déterminée par l'image d'un point fixé $A_k \neq O$ de \mathcal{P} , ce qui donne un maximum de m possibilités. On a donc card $(Is^+(\mathcal{P})) \leq m$. Si $Is^-(\mathcal{P}) = \emptyset$, on a alors card $(Is(\mathcal{P})) = \text{card}(Is^+(\mathcal{P})) \leq m$, sinon on a card $(Is(\mathcal{P})) = 2 \text{ card}(Is^+(\mathcal{P})) \leq 2m$.

Exercice 1.8 Montrer que le groupe des isométries du plan affine euclidien qui conservent les sommets d'un vrai triangle isocèle non équilatéral est isomorphe à S_2 .

Solution 1.8 On note \mathcal{P} le plan affine euclidien et on se donne un vrai triangle isocèle non équilatéral T de sommets A_1, A_2, A_3 avec $A_1A_2 = A_1A_3$ (figure 1.1).On note Is(T) le groupe

FIGURE 1.1 -

des isométries de \mathcal{P} qui conservent $E = \{A_1, A_2, A_3\}$.

Soit $\varphi \in Is(T)$. Par conservation des barycentres, on a $\varphi(O) = O$, en désignant par O le centre de gravité du triangle (l'isobarycentre de E) et $\varphi([A_2A_3])$ est un coté du triangle de même longueur que $[A_2A_3]$, c'est donc $[A_2A_3]$ puisque le triangle est non équilatéral et isocèle en A_1 . On a donc $\varphi(\{A_2A_3\}) = \{A_2, A_3\}$ et nécessairement $\varphi(A_1) = A_1$. Si $\varphi(A_2) = A_2$, alors $\varphi = Id$ puisque ces deux applications coïncident sur le repère affine (O, A_1, A_2) . Si $\varphi(A_2) = A_3$, alors φ est la réflexion σ d'axe (OA_1) , la médiatrice de $[A_2A_3]$, puisque ces deux applications coïncident sur le repère affine (O, A_1, A_2) . On a donc $Is(T) = \{Id, \sigma\} = \mathcal{S}(\{A_2, A_3\})$ qui est isomorphe à \mathcal{S}_2 .