École de technologie supérieure

Université du Québec

TP 1

Présenté à Mme. Ndeye Bineta SARR

Dans le cadre du cours SYS836 – Systèmes de communication numérique avancés

PAR

Eric LACERTE LACE23038502
Philippe LAVOIE LAVP05067203

MONTRÉAL, LE 29 JANVIER 2018

Exercice 1

1. Codes en lignes binaires

Figure 1 Générateur NRZ, L=10

Figure 2 Générateur NRZ, L=1024

2. Densité spectrale de puissance

Figure 3 densité spectrale de puissance, L=10

Figure 4 densité spectrale de puissance, L=1024

3. Filtre de réception

Exercice 2

- 1. Montrer que la distance Euclidienne
- 2. Donner la distance Euclidienne minimale (entre deux points les plus proches) pour les modulations suivantes : BPSK, QPSK, 8-PSK

3. Simulation

3.1. Modulation M-PSK

3.1.1.TEB

Figure 5 TEB pour la modulation MPSK

3.1.1. Efficacité spectrale

Figure 6 Spectre du signal 16PSK en TX, à la sortie du filtre « Raised cosinus»

Figure 7 Spectre du signal 16PSK en RX, à la sortie du filtre « Raised cosinus»

3.2. Modulation M-QAM

3.2.1.TEB

Figure 8 TEB pour la modualtion M-QAM

3.1.2. Efficacité spectrale

Figure 9 Spectre du signal 16 QAM en TX, à la sortie du filtre « Raised cosinus»

Figure 10 Spectre du signal 16 QAM en RX, à la sortie du filtre « Raised cosinus»

3.3. Modulation M-FSK 3.3.1.TEB

4. Synthèse

En ajoutant un filtre « raised cosinus », on diminue la largeur de bande utilisée. En diminuant la largeur de bande pour un même débit, on améliore notre efficacité spectrale.

Exercice 3.

- 1) Bloc code convolutif ajouté chaine de communication avec la modulation QPSK
- a) Courbe des performances BER en fonction du Eb/No avec un décodage de type soft et hard pour G= (3, [7 5]) et (6, [77 55]).

Figure 11 Code convolutif G=(3, [75]) et (6, [7755]) décodage de type hard

b) Quel est le code le plus performant?

Le code le plus performant est G=(3, [7, 5]) puisque le code G=(6, [77 55]) est un code catastrophique, i.e. un code qui génère une infinité d'erreurs.

c) Quel est le type de décision le plus efficace ?

Nous n'avons pas pu implémenter le décodage de type soft avec MATLAB.

2) Modulation QPSK avec code bloc Reed-Solomon

a) & b) Courbe des performances BER en fonction du Eb/No avec un décodage de type hard pour RS (7, 3) et RS (32, 28) ainsi que les courbes théoriques.

Figure 12 Courbe des performances BER en fonction du Eb/No avec un décodage de type hard pour RS (7, 3) et RS (32, 28) ainsi que les courbes théoriques.

Commentaire : Plus le codage est important, plus il réduit le TEB pour un même Eb.

3) Les gains obtenus par codage comparés à un système non codé :

Un TEB donné requiert moins d'énergie par bit (Eb) dans un système codé qu'un système non codé.