LECTURE 10

From this lecture on, we turn to the geometric side of the localization theory. The main player will be (algebraic) D-modules on the flag variety G/B. In this lecture, we introduce the basics of D-modules. There are many good references for this theory. For example, [HTT] is a thorough textbook, while [B] is a short notes.

1. Recollection: Sheaf of Differential Operators

Recall the following definitions in algebraic geometry.

Definition 1.1. Let A be a k-algebra and M be an A-module. A k-derivation of A into M is a k-linear map $D: A \to M$ satisfying the **Lebniz rule**

$$D(f \cdot g) = f \cdot D(g) + g \cdot D(f).$$

Let $Der_k(A, M)$ be the set of such k-derivations. This is naturally an A-module.

Proposition-Definition 1.2. The functor A-mod, $M \mapsto \text{Der}_k(A, M)$ is represented by an A-module $\Omega^1_{A/k}$, i.e.,

$$\operatorname{\mathsf{Hom}}_A(\Omega^1_{A/k},M)\simeq\operatorname{\mathsf{Der}}_k(A,M).$$

We call $\Omega^1_{A/k}$ the **module of (Kähler) differentials** of A over k. In particular, the identity map on $\Omega^1_{A/k}$ corresponds to a k-derivative $d: A \to \Omega^1_{A/k}$, which we call the **universal** k-derivative of A.

Construction 1.3. For any homomorphism $f: A \to B$ and $M \in B$ -mod, there is an obvious A-linear map

$$\operatorname{Der}_k(B,M) \to \operatorname{Der}_k(A,M),$$

where in the RHS we view M as an A-module by restricting along f. The two sides are represented by $\Omega^1_{B/k}$ and $B \otimes_A \Omega^1_{A/k}$ respectively. It follows that there is a B-linear map

$$B \underset{A}{\otimes} \Omega^1_{A/k} \to \Omega^1_{B/k}$$
.

Lemma 1.4. If $f: A \to B$ is a localization map, then $B \otimes_A \Omega^1_{A/k} \to \Omega^1_{B/k}$ is an isomorphism.

Construction 1.5. Let X be a k-scheme. The above lemma implies

$$\Omega^1_{X/k}(U) \coloneqq \Omega^1_{\mathcal{O}_X(U)/k}$$

defines a quasi-coherent \mathcal{O}_X -module $\Omega^1_{X/k}$. We call it the **sheaf of (Kähler) differentials**, or the **cotangent sheaf**, of X over k.

Lemma 1.6. If X is a smooth k-scheme of dimension n, then $\Omega^1_{X/k}$ is locally free of rank n.

Construction 1.7. Let X be a smooth k-scheme. The above lemme implies $\Omega^1_{X/k}$ is a vector bundle and in particular dualizable. We define the **tangent sheaf** \mathcal{T}_X of X over k to be the dual vector bundle. By definition, we have

$$\mathcal{T}_X(U) \simeq \operatorname{Der}_k(\mathcal{O}_X(U), \mathcal{O}_X(U)).$$

Date: Apr 29, 2024.

2 LECTURE 10

Remark 1.8. The **tangent space** $T_{X,x}$ introduced in [Section 3, Lecture 3] can be identified with the stalk of \mathcal{T}_X at x.

Definition 1.9. Let X be a k-scheme. The **tangent sheaf** \mathcal{T}_X is the quasi-coherent sheaf on X

References

- [B] Bernstein, Joseph. Algebraic theory of D-modules, 1984, abailable at https://gauss.math.yale.edu/~il282/Bernstein_D_mod.pdf.
- [G] Gaitsgory, Dennis. Course Notes for Geometric Representation Theory, 2005, available at https://people.mpim-bonn.mpg.de/gaitsgde/267y/cat0.pdf.
- [H] Humphreys, James E. Representations of Semisimple Lie Algebras in the BGG Category O. Vol. 94. American Mathematical Soc., 2008.
- [HTT] Hotta, Ryoshi, and Toshiyuki Tanisaki. D-modules, perverse sheaves, and representation theory. Vol. 236. Springer Science & Business Media, 2007.