PATENT ABSTRACTS OF JAPAN

[1] - (1)

(11)Publication number:

07-325253

(43) Date of publication of application: 12.12.1995

(51)Int.CI.

G02B 15/16

(21)Application number: 06-119852

(71)Applicant: RICOH CO LTD

(22)Date of filing:

01.06.1994

(72)Inventor: KANOSHIMA YUUICHIROU

(54) ZOOM LENS

(57)Abstract:

PURPOSE: To provide a novel zoom lens which is composed of three elements in two groups, is small in the number of constituting lens elements and is realized with compact and with which a wide variable power region, brightness and high performance are easily realizable.

CONSTITUTION: The first group is constituted by disposing, successively from an object side, a first lens 1 having a positive refracting power, a diaphragm S and a second lens 3 having a positive refracting power and has a positive refracting power. The second group is composed of a third lens 5 having a negative refracting power. The zoom lens composed of the three elements in two groups executes zooming from a short focal length side to a long focal length side by moving both of the first group and the second group to the object side while narrowing the spacing therebetween. The first lens 1 is a meniscus lens of which the convex face is directed to the object side, the second lens 3 is a meniscus lens of which the convex side is directed to the image side and the third lens 5 is a biconcave lens. The second lens 3 is a distributed refractive index lens of which the refractive index changes in a direction orthogonal with the optical axis.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(2)

【酵水頂1】物体回から依回へ向かった風水、斑1、斑 2 肆を配してなり、

第1 辞は、物体回かの題次、 吊の囲炉力や掛り斑 1 アン **メ、校り、正の配折力を持つ第2レンズを配して構成さ** れて肝の屈だ力を辞む

第2時は、魚の屈折力を持つ第3レンズにより構成さ

第1群と第2群とが団陽を狭めながら共に物体回へ移動 **することにより、 섪焦点距離包から吸焦点距離回へメー** ミングを行う2時3枚構成であり、

上記祭1 アンズは、 も体回に凸面を向けたメニスカスフ

上記祭2レンズは、彼包に凸面を向けたメニスカスワン

上記第2レンズが、光軸値交方向に屈折率が変化する屈 阡母分布型ワンズかめのことか特徴とすのメームワン **上靔祭3 フンメ兵、庭回フンメかもり、**

第1レンズの焦点距離を 1、短焦点端における全系の 【請求版2】 請求項1 記載のメームアンズにおいた、

1. 2 < f_1/f_y < 1. 6 合成焦点距離をf_#とするとき、これらが条件

な適屁することを辞徴とするメームワンメ。

【静状因3】物体図から像図へ向かった脳炎、斑1, 斑 既1 時は、物体倒から風吹、 正の屈折力を持つ第1アン 2 肆を配してなり、

メ、校り、 圧の屈が力を称り第2 アンメを配した権政さ 第2群は、魚の風折力を持つ類3レンズにより構成さ れて正の屈扩力を存む、

第1 群と第2 辞とが国院を狭めながら共に物体側へ移動 **ナることにより、 色焦点阻器包から収焦点阻器包へメー** 上的終1アンメは、も谷宮に心旧か向けたメニメガメフ ミングを行う 2 辟 3 枚構成であり、

上記祭2 レンズは、像飯に凸뛤を向けたメニスカスワン

上記祭3レンズは、像包に凸面か向けたメースかスレン メたあり、 上記算3フンズが、光軸直交方向に屈折率が変化する屈 斤母分布型ワンズであることを特徴とするメームワン

第1レンズの焦点距離を「」、 短焦点端における全系の 合成焦点距離をf₁とするとき、これらが条件 $1 < f_1/f_1 < 1.2$

【聖长屋4】 壁长屋3 町敷のメーオフンメにおこた、

を徴足することを咎敬とするメームレンズ。 [発明の詳細な説明]

9 幹細には2 群3 枚構成のメームレンズに関する。この 「商業上の利用分野」この発明は「メームレンズ」、よ 路町のメームフンズは、フンメツャッタカメラ用のメー ムレンズとして利用できる。

[0002]

柘敷されるメームフンメもコンパクト化が状められてい ズ枚数を少なくすることであるが、性能を維持しつつ構 [従来の技術] メームレンズを搭載した レンメシャッタ る。フンメのコンパクト化に最も有効なのは、構成フン カメラが多くなり、カメラのコンパクト化と相俟って、 成レンズ枚数を減少させることは必ずしも容易ではな

17号公報に「第1実施例」として開示されたものが知 【0003】 3枚という、極めた小おい構成ワンメ枚数 で、良好な性能を遊成したものとして、特開平2-69 む、短焦点端で5.6、長焦点端で7.6であり、短魚 られているが、メーム比が1.36と小さく、明るさ 仮包が貼い。

[0004]

事情に鑑みてなされたものであって、2 群3 枚構成と構 成レンズ枚数が少なく、コンパクトに実現でき、広い変 倍倒城、明るさ、高性能を容易に実現できる新規なズー 【発明が解決しようとする課題】この発明は上記の如き **ムレンズの協供を目的とする (糖水瓜 1~4)。**

【0005】この発明の別の目的は、全系球面収差を良 **玲に補正し、性能良好なメームレンメの趙供にある(睛**

米類2,4)

[0000]

メ」は、物体回から像回へ向かって順吹、第 1,第 2 群 を配してなり、第1群と第2群とが間隔を狭めながら共 に物体側へ移動することにより、短焦点距離側から長焦 **|瞑題を解決するための手段|| この発明の「ズームレン 点距離側へズーミングを行う。**

枚り、第2レンズを配して構成されて「正の屈折力」を 時ち、第2群は第3レンズ1枚により構成されて「負の 【0001】 第1辞は、物体回かの順次、第1ワンズ、 団折力」を持つ。従って、全体の構成は「2群3枚構 杖」である。

のメニスカスレンズ」、校り 5を介して 第1 レンズ1の に示すように第1レンズ1が「凸面を物体側に向けた正 像側に配される類2レンズ3が「像側に凸面を向けた正 **【0008】 請水項1 記載の「パームレンズ」は、図1** のメニスカスレンズ」であり、舞3レンズ5は「庖回レ ソメ」たある。

変化する屈折率分布型レンズ」である。このように、光 **袖面交方向において、光軸からの距離に従って屈折率の** 変化する屈折率分布型レンズを「ラジアル型の屈折率分 【0009】 第2レンメ3は「光軸直交方向に屈が降が **作型レンズ」と称する。**

[0010] 請求項2記載の「メームレンズ」は、上記

€ 퐳 4 盂 华 噩 4 (12) (19) 日本国格許庁 (JP)

特開平7-325253

(11)特許出數公開每号

(43)公開日 平成7年(1995)12月12日

技術表示箇所

F

广内整理番号

G02B 15/16 (51) Int.C.

審査請求 未請求 請求項の数4 〇1 (全10 頁)

(21)出職番号	伶閣平6 -119852	272900000 YINH(12)	000006747
(22) 出版日	平成6年(1994)6月1日		作为好化了二 東京都大田区中周込1丁目3番6号
		(72)発明者	做島 雄一郎 東京都大田区中區込1丁目3番6号·徐式
			会社リコー内
		(74)代理人	弁理士 樟山 亨 (外1名)

(54) [発明の名称] メームレンズ

パクトに実現でき、広い変倍領域、明るさ、高性能を容 [目的] 2群3枚構成と構成ワンズ枚数が少なく、コン 易に実現できる新規なズームレンズを提供する。

【構成】第1群は、物体側から順次、正の屈折力を持つ を配して構成されて正の屈折力を持ち、第2群は負の屈 けたメニスカスレンズ、第2レンズ3は像側に凸面を向 第1アンダ1、数08、正の屈折力を持つ第2アンダ3 折力を持つ第3レンズ5により構成され、第1群と第2 2群3枚構成であり、第1レンズ1は物体側に凸面を向 けたメニスカスワング、第3ワンズ5は両回ワンズかあ り、第2レンズ3が、光軸直交方向に屈折率が変化する り、短焦点距離倒から長魚点距離側へメーミングを行う 群とが間隔を狭めながら共に物体側へ移動することによ 田が母分布型アンズである。

韓間並の7 -395953	COTOTO IN FIRST

(4)

### 15.97 12.53 ### 12.15 15.97 12.53 ### 14.9598	0: $6, 4$ 7. 9 9. 2 22. 15 15. 97 12. 53 1. 49598 1. 51251 1. 49598 1. 51251 1. 49598 1. 51251 1. 6. 3199E-5 0. 3193E-5 0. 3193E-5 0. 3193E-5 1. 0. 9772E-9 0. 8821E-9 1. 0. 9772E-9 0. 8821E-9 1. 0. 9772E-9 1. 0. 9772E-9 1. 0. 59. 0mm, F/No=6. $4 \sim 9$. 2 1. 0. 59. 0mm, F/No=6. $4 \sim 9$. 2 20. 527 0. 30 18. 076 5. 72 2 n ₂ (r) 18. 076 5. 72 2 n ₂ (r) 19. 29 $\pi \chi$ 28. 109 6. 12 3 1. 497 81. 23. 810 5. 0. 8890E-5 1. 0. 9390E-5 1. 0. 2375E-8 1. 0. 2376E-8 1. 0. 3839E-8 1. 0. 2875E-8 1. 0. 59. 0mm, F/No=6. $4 \sim 9$. 2 1. 1. 497349 81. 28. 127 $\pi \chi$ 28. 127 $\pi \chi$ 39. 20. 10. 00 3 n ₃ (r) 41. 0 59. 0	•											σ	,				9															2			4			•			
### 15.97	$\frac{4}{4}$ ($\frac{4}{4}$) $\frac{4}{4}$ $\frac{7}{4}$ $\frac{9}{4}$ $\frac{9}{4}$ $\frac{2}{4}$ $\frac{7}{4}$ $\frac{9}{4}$ $\frac{2}{4}$ $\frac{4}{4}$ $\frac{1}{4}$ $\frac{2}{4}$ $\frac{1}{4}$ $\frac{2}{4}$,	_	-				8 1.	•													٠	8 1.			4 1.			•			
### 15.97 ### 16.4	$\frac{4}{4}$ $\frac{4}{4}$ $\frac{7}{4}$ $\frac{9}{4}$ $\frac{7}{4}$ $\frac{9}{4}$ $\frac{9}{4}$ $\frac{7}{4}$ $\frac{9}{4}$ 9	9.2		5	5125	1343	3193E-	5815E-	8821E-	26] 奥施例:	√9.	, d	59897			n ₂ (r)	ı	. 49			6	6	-	#	5 0 6 3	9759E-	8890E-	3982E-	2875E-	に 日本 「 カ フ	.4~9.	n j	. 49734			. 87287) E			9.	
N 0 : 6.4 4 4 4 4 4 4 4 4 4	### ### ### ### ### ### ### ##			_	· .:	0 -	0	0	0	00]	(1		•			87							٦.		-	 	0.	o.	0 2	0	11		-	, ,	_						0	·
No :: 6.4	$\frac{\pi}{4}$ π					i Ei	<u> </u>	Ξ-	EI I		(1,		- 0	(n)	, -	~	可簽	-					1 3			П	E I	E)	L L		nm, F/		0	က	ω,	0		0				
2	2			_	1.495	0.541	3 1 9	0.669	977	Ω.	~59.0		. œ	527	(校り)	076	8				ij	6.4		[4	5.04	0. 173	939	0.234	383		~59.		740			801	_	6.5	υ Ω		-:	
		F / N o :	, 1				 Z		 Z	\	4 1.		ç	20.	8	- 18	7	7 .	7	可發車		0	. s p	_			 2 Z	•	\ Z	<u>\</u>	= 4 1.	_	-	7		1.5	ı	- ·	i	可変量		

(3) 特開平07-325253

【0017】 糖水項2, 4配載のメームレンズにおける 1,2は、請水項1,2記載の発明の実施例であり、実 は、以下の哲へに辞庇される。即ち、「ラジアル型」の 位置を原点として、光軸からの距離座標: r (≧0)を 条件(1), (2)は、それぞれ、開水項1,3配載の メームレンズにおいて、映画収塑を良好に補正するため の条件である。条件(1), (2)は何れも、第1群に 【0018】条件(1), (2)において、下限を超え ると、第1レンズの正のパワーが強くなりすぎて映画収 **差が楠正過剰となり、上限を超えると、第1レンズの正** 【英施例】以下、具体的な実施例を4例挙げる。 実施例 離、F/Noは明るさを表す。さらに、各奥施例におい 9」とあれば、これは「1/109」を意味し、この数字 に応じて屈折率が異なる。従って、この型の屈折率分布 **動 フンダかは、フンダ 固が分 哲す ろくき パワー の一 部を** おける第1レンズのパワーの、全系のパワーに対する比 6) は、物体側から数えて뙜;番目の面と뙜;+1番目 散定すると、光軸上における屈折率:Noo及び、屈折率 [E―数字] は「ぺき栗」を数す。即ち、例えば「E― の面の軸上面間隔、nj, vj (1~3) は、物体図から のパワーが弱くなりすぎて球面収差が補正不足となる。 て、 ri (i=1~7)は、物体回から教えて斑 i 毎目 **屈折率分布型レンズの屈折率分布:nj(r)は、光軸** 【0020】全実施例を通じ、「は全系の合成焦点距 屈折率分布に分担させることができ、「ペッツパール 施例3,4は、請求項3,4配載の発明の実施例であ 数えて第一番目のレンズの屈折率およびアッペ数を扱 【0021】 屈が率分布型 アンズにおける 屈が率分布 の面(校りの面を含む)の曲率半径、 d_{i} (i=1 ~ **分析依数:N10, N20, N30, N40を用いて、** を短焦点端において規定するものである。 がその前にある数値に掛かるのである。 和」の良好な補正が容易となる。 ^ر ہ 40. [0023] 東施例1 $f = 41.0 \sim 59.0 \text{ mm}, F/No = 6.4 \sim 9.2$ n; (r) = N₈₀ + N₁₀r + N₂₀r² + N₃₀r³ + N₄₀r⁴ n₂ (r) [0019] 1.50 0.41 0.20 12.08 替求項1 記載のメームワンズにおいて、第1ワンズ1の に示すように第1レンズ2が「凸面を物体側に向けた正 のメニスカスレンズ」、絞り Sを介して第1レンズ2の 像倒に配される第2レンズ4が「像倒に凸面を向けた正 のメニスカスレンズ」であり、第3レンズ6は「像側に 【0012】 類3レンズ6は「ラジアル型の阻折率分布 [0013] 贈水頃4記載の「メームレンズ」は、上記 散水頃3 記載のメームアンズにおいた、第1 アンメ2の 【作用】上記のように、この発明では全体を、第1, 第 フンズ, 第2 レンズにより正の屈折力を持つ第1 群を構 り「2群3枚」というコンパクトなレンズ構成としてい 内における「屈折率の分布状態」を散計により指定でき 光軸からの距離により屈折率が変化するので、光線高さ と表される。従って、屈折率:Nooおよび、屈折率分布 ď 2、 第3 アンズの3枚のフンズが構成し、 その内の第1 成し、第3レンズのみにより第2群を構成することによ **ズを「ラジアル型の屈折母分布型ワンズ」とし、レンズ** [0011] 請求項3記載の「メームレンズ」は、図2 【0015】3枚のレンズのうち、第2または第3レン 【0016】「ラジアル型の屈折率分布型レンズ」は、 る事項に加えることにより、レンズ設計の自由度を増 係数:N₁₀, N₂₀, N₃₀, N₄₀を与えて、屈折率分布: 焦点距離: f₁、短焦点端における全系の合成焦点距 【0022】なお、屈折率分布係数の表示に於いて、 焦点距離:fl、短焦点端における全系の合成焦点距 し、性能のよいメームレンズの実現が可能になる。 凸面を向けた負のメニスカスレンズ」である。 1. 2 < f_1/f_y < 1. $1 < f_1/f_y < 1.2$ 15.094 19.916 -28.1138 (数り) を満足することを特徴とする。 を満足することを特徴とする。 n_j(r)を特定する。 掛ワンが」かもる。 歸:fwが、≪年 難:fgが、条件 [0014] Ξ (2)

81.6

1.497

က

1.00

可深

-15.569 -23.180 138.060 0

59.

0

5 1.

0

4 1.

可**资量** f:

[0024]

(9)

々のものが「GRINガラスやGRINモノマー」 苺と り、その製法も、イオン交換法や電界拡散移入法、イオ ンスタッフィング缶、分子スタッフィング缶、メル・ゲ して知られると共に、今日も活発な開発が行われてお **小街、イオン茁入法等の組々の方法が知られている。** [図面の簡単な説明]

[図1] 類状倒1. 2 記載のメーd アンメのフンメ構成 [図2] 瞽状因3, 4 記銭のメーd アンメのフンド維持 を説明する図である。

を脱明する図である。

[図4] 英施例1の中間焦点距離における収差図であ [図3] 実施例1の短焦点幅における収整図である。

【図5】 実施例1の長焦点端における収差図である。 【図6】 玻施例2の短魚点端における収整図である。

[<u>8</u>]

【図7】 実施例2の中間焦点距離における収差図であ

[0031]

【図10】 実施例3の中間焦点距離における収差図であ 【図8】 実施例2の要焦点端における収整図である。 【図9】 実施例3の短魚点端における収差図である。

【図11】 東施例3の長焦点端における収差図である。

【図13】 実施例4の中間焦点距離における収差図であ 【図12】 実施例4の短無点端における収整図である。

【図14】 実施例4の長焦点端における収差図である。 【符号の説明】

紙177火 1, 2

第27ング

知37ング 5, 6 [图2]

[図3]

		f=41.	$0 \sim 59$.	$f = 41.0 \sim 59.0 \text{ mm}, F/No = 6.4 \sim 9.2$	□ o	6.4	~9. 2		
			 L	d i	-		n j	ų,	
	1	18.	308	10.00	н	1.	1.497	8 1.	9
	2	74.	74.037	1.54					
	က	8	∞ (校り)	3. 32					
	4	-64.	-64.009	10.00	2	1. 75	755	52.	က
	ß	-26.	8 2 5	可変					
	9	-13.	904	10.00	က	n ₃ (r)	(£		
	7	-560.	092					•	_
_									
	1	+							

[0.035] 図3~図5に順次、上記実施例1に関する る収差図を示す。図9は短焦点端、図10は中間焦点距 【0038】図12~図14に順次、上記英施例4に開 する収差図を示す。図12は短焦点端、図13は中間焦 【0037】図9~図11に順次、上配実施例3に関す 【0036】図6~図8に順次、上記実施例2に関する 収整図を示す。図3は短焦点端、図4は中間焦点距離、 収差図を示す。図6は短焦点端、図7は中間焦点距離、 離、図11は畏焦点端における収差図である。 図8は長魚点端における収差図である。 図5は長魚点端における収差図である。

ズの繋材となる屈折率分布型レンズ材料は、従来から種 差」、破線は「正弦条件」、非点収差の図における実線 8」はそれぞれ、d線およびg線に関するものであるこ はサジタル、破線はメリディオナルを示す。また「d, 【0039】球面収差の図における実線は「球面収 点距離、図14は長焦点端における収整図である。

	屈折癖						
	n3 (r)	: [4卷]		رو	[g執]		
	 2	1.646	6.7	-:	67483		
	 2	-0.953	9E-3	-0	9879E	. – 3	
	 Z	0.248	3E-5		2421E	1.5	
	 Z	-0.502	8 E - 8	.0	4228E	80 I	
	 Z	0. 138	0E-11	-0	1047E-	12	
条件式のパラメータの値: f ₁	∑t 1 : 酉0	$f_{y}=1.1$		[00]	32] 爽施例	例4	
۵	f = 4 1.	0~59.	0 mm. F/No=6.	0 = 6.	.6~4	83	
•					\$	2	
-			(•	 	
- 0	→ t			- -	4	0 1.0	
v		. `					
•		-	0				
4	1 -64	6000.	10.00	2	755	52.3	
ß	5 - 26	. 825	可変				
9	5 -13	. 904	10.00	3 n3	(-1)		
7	-560	092				•	
[0033]							
	可変量						
	. J	41.0	51.	0	59.0		
	F/No:	6.4	7.	6	9. 2		
	: ⁹ p	22.85	16.	9 1	13.6		
[0034]							
	屈折母						
	n3 (r)	: [4類]		8	[8線]		
	 8 	1.850	0 0	1.	88701		
	 2	-0.184	1E-2	0 -	1919E	-2	
	. 02 Z	0.513	5 E – 5	0.	5227E	- 5	
	. œ Z	-0.102	3E-7	-0.	9856E	8 1	
	 ¥ Z	0.670	1E-11	0.	5747E	-11	
条件式のパラメータの値: f ₁	/t j : 酉○	f =1. 13		とを示す。	.•		
				[0040]		これら実施例1~4とも、	も、各収整図に明ら
図~6図 [9:0 3 2]	図3~図5に順次、	上配実施例1に関する	に関する	かなように、		楚とも極めて良好	酷収登とも極めて良好に補正されて性能良

【発明の効果】以上に説明したように、この発明によれ ば新規なメームレンズを提供できる。この発明のメーム レンズは上記の如く構成されているから、2群3枚構成 というコンパクトな構成でありながら、第2もしくは第 により、良好な性能を持ち、明るく、ズーム比の大きい ズームレンズを実現できる(脐水項1~4)。また、請 3 レンズをラジアル型の屈折率分布型 レンズとすること (2)を徴足することにより球面収整を良好に補正でき 求項2, 4記載の発明は、それぞれ、条件(1), No:6.4~9.2と明るい。 0041

好であり、メーム比が略1.5と大きく、明るさもF/

【0042】なお、この発明における屈折率分布型レン

[図7]

