Homework Assignment 11

Matthew Tiger

November 17, 2015

Problem 5.1. The sunspot numbers $\{X_t, t = 1, ..., 100\}$, filed as SUNSPOTS.TSM, have sample autocovariances $\hat{\gamma}(0) = 1382.2$, $\hat{\gamma}(1) = 1114.4$, $\hat{\gamma}(2) = 591.73$, and $\hat{\gamma}(3) = 96.216$. Use these values to find the Yule-Walker estimates of ϕ_1 , ϕ_2 , and σ^2 in the model

$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + Z_t, \quad \{Z_t\} \sim WN(0, \sigma^2),$$

for the mean-corrected series $Y_t = X_t - 46.93$, t = 1, ..., 100. Assuming the data really are a realization of an AR(2) process, find 95% confidence intervals for ϕ_1 and ϕ_2 .

Solution. We wish to find $\hat{\phi}_1, \hat{\phi}_2$, and $\hat{\sigma}^2$ given $\hat{\gamma}(0), \hat{\gamma}(1)$, and $\hat{\gamma}(2)$. By the Yule-Walker equations for sample autocovariances,

$$\begin{bmatrix} \hat{\gamma}(0) & \hat{\gamma}(1) \\ \hat{\gamma}(1) & \hat{\gamma}(0) \end{bmatrix} \begin{bmatrix} \hat{\phi}_1 \\ \hat{\phi}_2 \end{bmatrix} = \begin{bmatrix} \hat{\gamma}(1) \\ \hat{\gamma}(2) \end{bmatrix}.$$

Solving this system yields $\hat{\phi}_1 = 1.31755$ and $\hat{\phi}_2 = -0.634168$. Using the Yule-Walker equation $\hat{\sigma}^2 = \hat{\gamma}(0) - \hat{\phi}_1 \hat{\gamma}(1) - \hat{\phi}_2 \hat{\gamma}(2)$, we see that $\hat{\sigma}^2 = 289.2$.

Since our sample size n=100 is large, a 95% confidence interval for the parameter ϕ_j is given by

$$\hat{\phi}_j \pm \Phi_{1-\frac{\alpha}{2}} n^{-1/2} \hat{\nu}_{jj}^{1/2}$$

where $\Phi_{1-\frac{\alpha}{2}} = 1.96$ and $\hat{\nu}_{jj}$ is the *j*-the element on the diagonal of $\hat{\sigma}^2 \Gamma_2^{-1}$ for j = 1, 2. Using this formula, we see that $\nu_{jj} = 0.5979$ for j = 1, 2 and 95% confidence intervals for the model parameters are given by

$$(1.1660, 1.4961)$$
 for ϕ_1
 $(-0.7858, -0.4827)$ for ϕ_2 .