

PCT/FR2004/001800

REC'D	15 OCT 2004
WIPO	PCT

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 09 JUIL. 2004

Pour le Directeur général de l'Institut
national de la propriété industrielle
Le Chef du Département des brevets

A handwritten signature in black ink, appearing to read 'Martine Planche', is enclosed in a thick oval line.

Martine PLANCHE

DOCUMENT DE PRIORITÉ

PRÉSENTÉ OU TRANSMIS
CONFORMÉMENT À LA
RÈGLE 17.1.a) OU b)

BEST AVAILABLE COPY

INSTITUT
NATIONAL DE
LA PROPRIÉTÉ
INDUSTRIELLE
26 bis, rue de Saint Pétersbourg
75800 Paris Cedex 08
Téléphone : 01 53 04 53 04 Télécopie : 01 42 94 86 54

INPI dépôt

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

N° 11354*01

REQUÊTE EN DÉLIVRANCE 1/2

Cet imprimé est à remplir lisiblement à l'encre noire

DB 540 W /260899

REMISE DES PIÈCES		Réserve à l'INPI
DATE	8 JUIL 2003	
LIEU	75 INPI PARIS	
N° D'ENREGISTREMENT	0308350	
NATIONAL ATTRIBUÉ PAR L'INPI		
DATE DE DÉPÔT ATTRIBUÉE PAR L'INPI	- 8 JUIL 2003	
Vos références pour ce dossier (facultatif) IFB 03 BP CNR GFAT		

NOM ET ADRESSE DU DEMANDEUR OU DU MANDATAIRE
À QUI LA CORRESPONDANCE DOIT ÊTRE ADRESSÉE

GROSSET-FOURNIER & DEMACHY
54, rue Saint-Lazare
F-75009 Paris

Confirmation d'un dépôt par télécopie N° attribué par l'INPI à la télécopie

2 NATURE DE LA DEMANDE		Cochez l'une des 4 cases suivantes		
Demande de brevet		<input checked="" type="checkbox"/>		
Demande de certificat d'utilité		<input type="checkbox"/>		
Demande divisionnaire		<input type="checkbox"/>		
Demande de brevet initiale ou demande de certificat d'utilité initiale		N°	Date	/ /
		N°	Date	/ /
Transformation d'une demande de brevet européen Demande de brevet initiale		<input type="checkbox"/>	Date / /	
		N°		

3 TITRE DE L'INVENTION (200 caractères ou espaces maximum)

GLUTAMINE:FRUCTOSE-6-PHOSPHATE AMIDOTRANSFERASE (GFAT) COMPRENANT UNE ETIQUETTE DE PURIFICATION INTERNE, ET SON UTILISATION POUR LE CRIBLAGE DE COMPOSÉS

4 DÉCLARATION DE PRIORITÉ OU REQUÊTE DU BÉNÉFICE DE LA DATE DE DÉPÔT D'UNE DEMANDE ANTÉRIEURE FRANÇAISE		Pays ou organisation Date / / N° Pays ou organisation Date / / N° Pays ou organisation Date / / N° <input type="checkbox"/> S'il y a d'autres priorités, cochez la case et utilisez l'imprimé « Suite »
5 DEMANDEUR		<input type="checkbox"/> S'il y a d'autres demandeurs, cochez la case et utilisez l'imprimé « Suite »
Nom ou dénomination sociale		CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Prénoms		
Forme juridique		
N° SIREN		
Code APE-NAF		
Adresse	Rue	3, rue Michel-Ange
	Code postal et ville	
Pays		F-75794 PARIS CEDEX 16
Nationalité		FRANCE
N° de téléphone (facultatif)		FRANCAISE
N° de télécopie (facultatif)		
Adresse électronique (facultatif)		

**BREVET D'INVENTION
CERTIFICAT D'UTILITÉ**

REQUÊTE EN DÉLIVRANCE 2/2

Réervé à l'INPI

REMISE DES PIÈCES	
DATE	8 JUIL 2003
LIEU	75 INPI PARIS
N° D'ENREGISTREMENT	0308350
NATIONAL ATTRIBUÉ PAR L'INPI	

DB 540 W /260899

Vos références pour ce dossier : (facultatif)		IFB 03 BP CNR GFAT
6 MANDATAIRE		
Nom		DEMACHY
Prénom		Charles
Cabinet ou Société		GROSSET-FOURNIER & DEMACHY
N °de pouvoir permanent et/ou de lien contractuel		
Adresse	Rue	54, rue Saint-Lazare
	Code postal et ville	75009 PARIS
N° de téléphone (facultatif)		
01.42.81.09.58		
N° de télécopie (facultatif)		
01.42.81.08.71		
Adresse électronique (facultatif)		
7 INVENTEUR (S)		
Les inventeurs sont les demandeurs		
<input type="checkbox"/> Oui <input checked="" type="checkbox"/> Non Dans ce cas fournir une désignation d'inventeur(s) séparée		
8 RAPPORT DE RECHERCHE		
Etablissement immédiat ou établissement différé		
<input type="checkbox"/> <input type="checkbox"/>		
Paiement échelonné de la redevance		
Paiement en deux versements, uniquement pour les personnes physiques <input checked="" type="checkbox"/> Oui <input type="checkbox"/> Non		
9 RÉDUCTION DU TAUX DES REDEVANCES		
Uniquement pour les personnes physiques <input type="checkbox"/> Requise pour la première fois pour cette invention (joindre un avis de non-imposition) <input type="checkbox"/> Requise antérieurement à ce dépôt (joindre une copie de la décision d'admission pour cette invention ou indiquer sa référence):		
Si vous avez utilisé l'imprimé «Suite», indiquez le nombre de pages jointes		
10 SIGNATURE DU DEMANDEUR OU DU MANDATAIRE (Nom et qualité du signataire)		Charles DEMACHY Mandataire 422.5/PP.170
		VISA DE LA PRÉFECTURE OU DE L'INPI

**GLUTAMINE:FRUCTOSE-6-PHOSPHATE AMIDOTRANSFERASE (GFAT)
COMPRENANT UNE ETIQUETTE DE PURIFICATION INTERNE, ET SON
UTILISATION POUR LE CRIBLAGE DE COMPOSÉS**

5 La présente invention concerne une glutamine:fructose-6-phosphate amidotransférase modifiée, purifiable rapidement et en quantités suffisantes pour le criblage de composés modifiant son activité.

10 Les glutamine:fructose-6-phosphate amidotransférases (GFAT), EC 2.6.1.16, également appelées glucosamine-6-phosphate synthases ou 2-déoxy-glucose-6-phosphate cétol isomérasées, sont impliquées dans la voie de biosynthèse des hexosamines. La GFAT catalyse la première étape, limitante, de cette voie de biosynthèse selon la réaction :

15 L-Glutamine + fructose-6-phosphate → L-Glutamate + glucosamine-6-phosphate par transfert de l'azote amidique de la L-Glutamine sur la fonction cétone du fructose-6-phosphate. Les GFAT contrôlent donc le flux de glucose dans la voie des hexosamines, via le fructose-6-phosphate, et par conséquent la formation des hexosamines produites.

20 Une forme bactérienne recombinante de la GFAT, la glucosamine-6-phosphate synthase *d'Escherichia coli*, a été purifiée à homogénéité et étudiée de façon exhaustive. Les propriétés et le mécanisme enzymatique du transfert de l'amide ont notamment été largement décrits (pour revue Teplyakov *et al.*, *Nat. Prod. Rep.* (2002) 19:60). En particulier, cette enzyme, dont la structure cristalline a été résolue (Teplyakov *et al.*, *J. Mol. Biol.* (2001) 313:1093), est formée de deux domaines, l'un ayant une activité hydrolase (glutaminase) et l'autre une activité isomérase.

25 Par ailleurs, des GFAT d'eucaryotes ont été caractérisées, dont notamment celle de foie de rat (Huynh *et al.*, *Arch. Biochem. Biophys.* (2000) 379:307) et celle de la levure *Candida albicans* (Milewsky *et al.*, *J. Biol. Chem.* (1999) 274:4000).

30 Chez l'homme, des études préliminaires ont montré la présence d'une activité GFAT dans le foie (Ghosh *et al.*, *J. Biol. Chem.* (1960) 235:1265). Plusieurs GFAT sont désormais connues. GFAT1, la forme principale, GFAT2, qui est exprimée préférentiellement dans le système nerveux central, et GFAT1Alt, une isoforme de GFAT1, exprimée essentiellement dans les muscles striés. Les séquences peptidiques de GFAT1 et GFAT2 possèdent 75% d'identités de séquences entre elles, et celles de GFAT1 et GFAT1Alt sont identiques excepté pour une insertion de 18 acides aminés dans la séquence de GFAT1Alt. Les séquences de GFAT sont donc très conservées chez

l'homme, mais également entre les espèces, puisque les séquences peptidiques de la GFAT1 humaine et de la GFAT d'*E. coli* ou de la GFAT1 de souris présentent respectivement 35% et 99% d'identités.

Le gène de la GFAT1 humaine a été cloné en 1992 (McKnight *et al.*, *J. Biol. Chem.* (1992) 267:25208). Il code une protéine de 77 kDa formée de deux domaines distincts (Teplyakov *et al.*, *Nat. Prod. Rep.* (2002) 19:60).

L'augmentation de la production de l'UDP-NAc-GlcNH₂, le produit final de la voie de biosynthèse des hexosamines, et son accumulation dans les tissus ont récemment été impliquées dans le développement de la résistance à l'insuline (Marshall *et al.*, *FASEB J.* (1991) 5:3031, Yki-Jarvinen *et al.*, *Diabetes* (1996) 45:302, Thompson *et al.*, *J. Biol. Chem.* (1997) 272: 7759, Hawkins *et al.*, *J. Clin. Invest.* (1997) 99:2173, Robinson *et al.*, *Diabetes* (1993) 42:1333, Daniels *et al.*, *J. Clin. Invest.* (1995) 96:1235, Baron *et al.*, *J. Clin. Invest.* (1995) 96:2792).

Ainsi, il a été montré qu'une augmentation du niveau cellulaire d'UDP-NAc-GlcNH₂ par une modeste surexpression de GFAT1, ou un apport de glucosamine exogène, peut induire une résistance à l'insuline à la fois *in vivo* et dans des adipocytes en culture (Robinson *et al.*, *Diabetes* (1993) 42:1333, Daniels *et al.*, *J. Clin. Invest.* (1995) 96:1235, Baron *et al.*, *J. Clin. Invest.* (1995) 96:2792, Hebert *et al.*, *J. Clin. Invest.* (1996) 98:930).

En effet, l'insuline active sa voie de transduction en se fixant à son récepteur, ce qui induit la translocation des transporteurs de glucose, tels que le récepteur-GLUT4, stockés dans la cellule, vers la membrane, et augmente l'afflux de glucose. Le glucose entre ainsi dans la voie de la glycolyse et est converti en glucose-6-phosphate puis en fructose-6-phosphate. Lorsque l'afflux de glucose est excessif, le fructose-6-phosphate entre dans la voie de biosynthèse des hexosamines et est converti en glucosamine-6-phosphate par la GFAT. Plusieurs observations indiquent que les métabolites de la glucosamine-6-phosphate empêchent la translocation des récepteurs au glucose vers la membrane cellulaire, diminuant ainsi l'afflux du glucose cellulaire (Marshall *et al.*, *FASEB J.* (1991) 5:3031, Giacarri *et al.*, *Diabetologia* (1995) 38:518, Marshall *et al.*, *J. Biol. Chem.* (1991) 266:4706, Paterson *et al.*, *Endocrinology* (1995) 136:2809).

Le mécanisme par lequel les métabolites de la glucosamine-6-phosphate exercent leurs effets physiologiques n'est pas clair. Une hypothèse a cependant été proposée : une concentration cytosolique élevée d'UDP-NAc-GlcNH₂ entraînerait l'hyperglycosylation des sites de phosphorylation Ser ou Thr, conduisant de la sorte à

l'arrêt de la voie de signalisation de l'insuline (Comer *et al.*, *J. Biol. Chem.* (2000) 275:29179).

L'activité GFAT est donc considérée comme étant l'une des causes des hauts niveaux de glucose sanguin ; par ailleurs elle est connue pour être élevée chez les patients atteints de diabète sucré non-insulino dépendant ou diabète de type II (Yki-Jarvinen *et al.*, *Diabetes* (1996) 45:302).

L'obtention d'inhibiteurs de la GFAT permettrait d'abaisser la glycémie en particulier chez les individus atteints de pathologies liées à une hyperglycémie, telles que le diabète de type II, l'acidose et/ou la cétose diabétique, par exemple.

Des inhibiteurs de la GFAT de plante ou de champignon pourraient également permettre d'obtenir respectivement des fongicides et des herbicides.

Toutefois, malgré l'obtention de formes recombinantes de GFAT, l'instabilité des préparations enzymatiques obtenues, leur faible quantité, et leur niveau de purification insuffisant, n'ont pas permis d'obtenir des inhibiteurs efficaces de GFAT.

Un objet de l'invention est donc de fournir une GFAT modifiée dont l'activité est stable et pouvant être obtenue en grande quantité, avec un haut niveau de pureté et d'activité.

La présente invention concerne une protéine enzymatiquement active comprenant :

- une séquence de GFAT et au moins une séquence d'une étiquette de purification, la séquence de l'étiquette de purification étant insérée entre deux acide aminés consécutifs de la séquence de GFAT, ou
- une séquence dérivant de la séquence précédente par suppression, insertion ou mutation d'au moins un acide aminé, sous réserve que ladite protéine présente une activité enzymatique, ou
- une séquence présentant au moins 35 %, notamment au moins 90 %, d'identité de séquence et/ou au moins 44 %, notamment au moins 95 %, de similarité de séquence avec l'une des séquences précédentes, sous réserve que ladite protéine présente une activité enzymatique.

On désigne par GFAT une enzyme de la classe E.C. 2.6.1.16 catalysant la réaction suivante :

L-Glutamine + fructose-6-phosphate → L-Glutamate + glucosamine-6-phosphate notamment dans les conditions expérimentales telles qu'elles sont décrites dans l'exemple qui suit ou dans Broschat *et al.*, *J. Biol. Chem.* (2002) 277:14764.

GFAT est désignée sous le nom de glutamine:fructose-6-phosphate amidotransférase, ou également glucosamine-6-phosphate synthase ou 2-déoxy-glucose-6-phosphate cétol isomérase.

On désigne par « protéine enzymatiquement active » une protéine ayant une action catalytique.

Avantageusement, la protéine enzymatiquement active possède une activité GFAT.

On désigne par « étiquette de purification » une séquence peptidique susceptible de se lier spécifiquement à un ligand donné. Avantageusement la liaison dudit ligand à l'étiquette de purification permet de former un complexe entre la protéine portant l'étiquette de purification et ledit ligand, ledit complexe pouvant être spécifiquement isolé.

Avantageusement les étiquettes de purification selon l'invention ne sont pas placées en bout de chaîne peptidique, à l'extrémité N-terminale ou C-terminale, mais à l'intérieur de la chaîne peptidique.

On désigne par « identité de séquence » le pourcentage d'acides aminés identiques entre deux séquences alignées, notamment à l'aide d'algorithmes tels que celui défini par Altschul *et al.*, *Nucleic Acids Res.* (1997) 25:3389, par exemple.

On désigne par « similarité de séquence » le pourcentage d'acides aminés similaires, c'est-à-dire d'acides aminés dont les chaînes latérales possèdent des propriétés physico-chimiques proches, entre deux séquence alignées, notamment à l'aide d'algorithmes tels que celui défini par Altschul *et al.*, *Nucleic Acids Res.* (1997) 25:3389, par exemple.

La présente invention concerne en particulier une protéine telle que définie ci-dessus, dans laquelle la séquence de GFAT correspond à une séquence de GFAT de bactérie ou d'eucaryote, notamment de plante, de champignon ou d'animal, en particulier d'insecte ou de mammifère, plus particulièrement d'homme.

L'invention concerne plus particulièrement une protéine telle que définie ci-dessus, dans laquelle la séquence de l'étiquette de purification est insérée entre deux acides aminés consécutifs de la séquence de GFAT, lesdits acides aminés étant compris dans :

- une partie de la séquence de la GFAT correspondant à la séquence s'étendant entre le feuillet $\beta 2$ et le feuillet $\beta 3$ de la GFAT d'*Escherichia coli*, ou

- une partie de la séquence de la GFAT correspondant à la séquence s'étendant entre le feuillet β 13 et le feuillet β 14 de la GFAT d'*Escherichia coli*, ou
- une partie de la séquence de la GFAT correspondant à la séquence s'étendant entre le feuillet β 15 et l'hélice α 6 de la GFAT d'*Escherichia coli*.

La structure de la GFAT d'*Escherichia coli* est décrite en particulier par Teplyakov *et al.*, *J. Mol. Biol.* (2001) 313:1093 (protéine entière), par Isupov *et al.*, *Structure* (1996) 4:801 (domaine glutaminase) et par Teplyakov *et al.*, *Structure* (1998) 6:1047 (domaine isomérase). La structure de la protéine complète est notamment consultable à l'aide du fichier de coordonnées atomiques 1JXA déposé auprès de la *Protein Data Bank* (<http://www.pdb.org>).

La séquence peptidique de la GFAT d'*E. coli* est définie par SEQ ID NO : 13.

La séquence s'étendant entre le feuillet β 2 et le feuillet β 3 correspond à la séquence s'étendant approximativement entre les acides aminés 30 à 80 de la GFAT d'*E. coli*, situés dans le domaine glutaminase.

La séquence s'étendant entre le feuillet β 13 et le feuillet β 14 correspond à la séquence s'étendant approximativement entre les acides aminés 220 à 230 de la GFAT d'*E. coli*, situés dans le domaine glutaminase.

La séquence s'étendant entre le feuillet β 15 et l'hélice α 6 correspond à la séquence s'étendant approximativement entre les acides aminés 235 à 250 de la GFAT d'*E. coli*, situés dans le domaine isomérase.

L'identification des parties de séquences d'une GFAT correspondant à des structures secondaires de la GFAT d'*E. coli* peut être obtenue en alignant la séquence de ladite GFAT avec celle de la GFAT d'*E. coli*, notamment à l'aide d'un algorithme tel que celui défini par Altschul *et al.*, *Nucleic Acids Res.* (1997) 25:3389, par exemple.

L'invention concerne notamment une protéine ci-dessus, dans laquelle la séquence de GFAT correspond à :

- SEQ ID NO : 2, correspondant à la séquence de la GFAT1 humaine,
- SEQ ID NO : 4, correspondant à la séquence de la GFAT2 humaine,
- SEQ ID NO : 6, correspondant à la séquence de la GFAT1Alt humaine.

La séquence de la GFAT1 humaine est notamment décrite dans McKnight *et al.*, *J. Biol. Chem.* (1992) 267:25208, et correspond à la séquence nucléotidique SEQ ID NO : 1.

La séquence de la GFAT2 humaine est notamment décrite dans Oki *et al.*, *Genomics* (1999) 57:227, et correspond à la séquence nucléotidique SEQ ID NO : 3.

La séquence de la GFAT1Alt humaine est notamment décrite dans DeHaven *et al.*, *Diabetes* (2001) 50:2419, et correspond à la séquence nucléotidique SEQ ID NO : 5.

L'invention concerne en particulier une protéine ci-dessus, dans laquelle la séquence de l'étiquette de purification est insérée entre deux acides aminés consécutifs, lesdits acides aminés étant compris entre les acides aminés :

- 43 à 47, 298 à 306, et/ou 342 à 347 de SEQ ID NO : 2,
- 42 à 45, 299 à 307, et/ou 343 à 348 de SEQ ID NO : 4
- 43 à 47, 316 à 324, et/ou 360 à 365 de SEQ ID NO : 6

Les acides aminés 43 à 47 de SEQ ID NO : 2, 42 à 45 de SEQ ID NO : 4 et 43 à 47 de SEQ ID NO : 6 correspondent à la partie de la séquence de la GFAT d'*E. coli* s'étendant entre le feuillet β 2 et le feuillet β 3.

Les acides aminés 298 à 306 de SEQ ID NO : 2, 299 à 307 de SEQ ID NO : 4 et 325 à 330 de SEQ ID NO : 6 correspondent à la partie de la séquence de la GFAT d'*E. coli* s'étendant entre le feuillet β 13 et le feuillet β 14.

Les acides aminés 342 à 347 de SEQ ID NO : 2, 343 à 348 de SEQ ID NO : 4 et 360 à 365 de SEQ ID NO : 6 correspondent à la partie de la séquence de la GFAT d'*E. coli* s'étendant entre le feuillet β 15 et l'hélice α 6.

L'invention concerne plus particulièrement une protéine ci-dessus, dans laquelle la séquence de l'étiquette de purification est insérée entre les acides aminés :

- 299 et 300 de SEQ ID NO : 2,
- 300 et 301 de SEQ ID NO : 4,
- 317 et 318 de SEQ ID NO : 6.

L'invention concerne notamment une protéine ci-dessus, dans laquelle l'étiquette de purification correspond à une séquence d'environ 2 à environ 10 acides aminés, notamment d'environ 4 à environ 8 acides aminés.

Des étiquettes de purification préférées selon l'invention concernent notamment des étiquettes dites FLAG (Sigma-Aldrich, France). Ces étiquettes se lient spécifiquement à un paratope donné, ledit paratope pouvant appartenir à un anticorps ou à un fragment d'anticorps par exemple. Un exemple particulier d'étiquette FLAG est constitué par la séquence peptidique Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys (SEQ ID NO : 18) par exemple.

D'autres étiquettes préférées selon l'invention sont des étiquettes formées de plusieurs histidines. Ces étiquettes peuvent former des complexes avec des cations métalliques divalents tels que Ni²⁺ ou Co²⁺ par exemple.

L'invention concerne en particulier une protéine telle que définie ci-dessus, dans laquelle l'étiquette de purification est une hexa-histidine.

On désigne par hexa-histidine la séquence His-His-His-His-His-His (SEQ ID NO : 19).

5 L'invention concerne plus particulièrement une protéine telle que définie ci-dessus correspondant aux séquences :

- SEQ ID NO : 8, correspondant à la séquence SEQ ID NO : 2 dans laquelle une hexa-histidine est insérée entre les acides aminés 299 et 300,
- SEQ ID NO : 10, correspondant à la séquence SEQ ID NO : 4 dans laquelle une hexa-histidine est insérée entre les acides aminés 300 et 301, et
- SEQ ID NO : 12, correspondant à la séquence SEQ ID NO : 6 dans laquelle une hexa-histidine est insérée entre les acides aminés 317 et 318.

La présente invention concerne également un acide nucléique comprenant ou étant constitué d'une séquence codant pour une protéine telle que définie ci-dessus.

15 L'invention concerne plus particulièrement un acide nucléique comprenant ou étant constitué de la séquence nucléotidique :

- SEQ ID NO : 7 codant pour la protéine SEQ ID NO : 8, ou
- SEQ ID NO : 9 codant pour la protéine SEQ ID NO : 10, ou
- SEQ ID NO : 11 codant pour la protéine SEQ ID NO : 12,

20 ou de son complémentaire, ou étant dérivé de ladite séquence par mutation, insertion ou délétion d'au moins un nucléotide, sous réserve que ladite séquence nucléotidique code pour une protéine enzymatiquement active.

Selon un autre mode de réalisation, la présente invention concerne également un vecteur eucaryote ou procaryote comprenant un acide nucléique tel que défini ci-dessus.

25 Ces vecteurs permettent notamment de synthétiser les protéines selon l'invention dans un organisme eucaryote ou procaryote.

Avantageusement l'invention concerne un vecteur d'expression de type baculovirus permettant la synthèse des protéines selon l'invention dans des cellules d'insecte.

30 La présente invention concerne également un procédé de purification d'une protéine telle que définie ci-dessus, à partir d'une solution comprenant ladite protéine, comprenant une étape de mise en présence de ladite solution avec un composé se liant spécifiquement à l'étiquette de purification de ladite protéine et une étape de séparation

du complexe formé par la liaison de ladite protéine audit composé des autres constituants de la solution.

Le composé peut être fixé sur un support solide de sorte que le complexe formé entre ludit composé et ladite protéine peut être récupéré par centrifugation ou filtration.
5 Optionnellement ludit composé fixé sur son support peut être disposé dans une colonne à travers laquelle ladite solution est éluée.

Avantageusement, le procédé ci-dessus peut également comprendre une étape de dissociation du complexe formé par la liaison de ladite protéine audit composé afin de récupérer la protéine purifiée.

10 L'invention concerne plus particulièrement un procédé de purification tel que défini ci-dessus, comprenant une étape de mise en présence d'une solution comprenant une protéine telle que définie ci-dessus avec un composé comprenant un cation métallique divalent tel que Ni^{2+} ou Co^{2+} , notamment Ni^{2+} , et une étape de séparation du complexe formé par la liaison de la protéine audit composé des autres constituants de la solution.
15

Avantageusement, le procédé ci-dessus peut également comprendre une étape de dissociation du complexe formé par la liaison de ladite protéine audit composé comprenant un cation métallique divalent, notamment à l'aide d'imidazole, afin de récupérer la protéine purifiée.

20 Selon un autre mode de réalisation la présente invention concerne un procédé de conservation d'une protéine telle que définie ci-dessus sous une forme enzymatiquement active, notamment à -80°C ou à 4°C , comprenant l'ajonction de ladite protéine à une solution comprenant :

- 25 - d'environ 1 mM à environ 10 mM de fructose 6-phosphate, notamment environ 1 mM,
- d'environ 1 mM à environ 5 mM de Tris(2-carboxyethyl)phosphine, notamment environ 1 mM,
- d'environ 5 % à environ 20 % de glycérol, notamment environ 10%.

Le fructose-6-phosphate est un substrat de ladite protéine.

30 Le Tris(2-carboxyethyl)phosphine est un composé réducteur permettant avantageusement de maintenir les propriétés de résines portant des ions Ni^{2+} ou Co^{2+} .

Avantageusement le glycérol est un agent cryoprotectant.

A ce titre la présente invention concerne également une composition comprenant une protéine GFAT active, le cas échéant liée à une étiquette de purification, telle

5

qu'une protéine telle que définie ci-dessus, ladite protéine étant susceptible de pouvoir être conservée sous une forme enzymatiquement active, durant au moins 8 jours à une température de 2°C à 10°C, notamment environ 4°C, et durant au moins 12 mois à une température de -100°C à -20°C, notamment environ -80°C, ladite protéine étant en association avec :

10

- environ 1 mM à environ 10 mM de fructose 6-phosphate, notamment environ 1 mM,
- environ 1 mM à environ 5 mM de Tris(2-carboxyethyl)phosphine, notamment environ 1 mM,
- environ 5 % à environ 20 % de glycérol, notamment environ 10%.

La présente invention concerne également l'utilisation d'une protéine telle que définie ci-dessus, pour le criblage de composés modifiant l'activité de ladite protéine, en particulier pour le criblage d'inhibiteur de ladite protéine.

15

L'activité des protéines selon l'invention peut être en particulier mesurée à l'aide des méthodes suivantes :

20

- la méthode radiométrique décrite par Broschat *et al.*, *Analytical Biochem.* (2002) 305:10-15,
- la méthode dite au Nitro Bleu Tétrazolium décrite par Nakata *et al.*, *J. Antibio.* (2001) 54:737-743.
- la méthode Morgan-Elson décrite par Ghosh *et al.*, *Method. Enzymol.* (1960) 5:414 et détaillée dans l'exemple qui suit.
- la méthode APAD décrite par Badet *et al.*, *Biochemistry* (1987) 26:1940 et détaillée dans l'exemple qui suit.

25

Avantageusement ces méthodes peuvent être utilisées pour le criblage, notamment à haut débit, de composés modifiant l'activité des protéines selon l'invention.

30

L'invention concerne en particulier l'utilisation telle que définie ci-dessus, pour le criblage de composés utiles dans le cadre du traitement ou de la prévention du diabète, notamment du diabète de type II, de l'obésité, de l'acidose, de la cétose, de l'arthrite, des cancers, ou de l'ostéoporose.

DESCRIPTION DE LA FIGURE 1

La Figure 1 représente le plasmide pFastBac-gfat-His6 de poids moléculaire 6,89 kb. La cassette « Ampr » représente un gène de résistance à l'ampicilline, la cassette « ori » représente une origine de réPLICATION bactérienne, la cassette « Gmr » représente un gène de résistance à la gentamicine, la cassette « Polh Pr » représente le promoteur de la polyhédrine, la cassette gfat-his6 représente le gène gfat1 modifié par l'insertion d'une séquence codant pour une étiquette hexahistidine. Les sites de restriction *Xba*I en position 4,11 kb, et *Eco*RI en positions 4,56 kb et 6,60 kb sont également représentés.

EXEMPLE 1

1. Synthèse et clonage du gène *gfat1-His6*

Le fragment *EcoRI* d'un ADNc correspondant au gène *gfat1* humain a été cloné dans le site *EcoR I* du vecteur pCRII (Invitrogen) pour former le plasmide pCRII-gfat1. La séquence nucléotidique d'une étiquette de purification interne composée de 6 résidus histidine a été introduite en position 898 de la séquence du gène *gfat1* cloné dans pCRII par PCR avec la *Platinum pfx polymerase* (Roche) et la paire d'amorces appropriées :

- Start Aat II-His6 :

10 5' TGGACGTCTTCTATCCATCGAATTAAACGAACTGCAGGACATCACC
ATCACCATCACGATCACCCCGGACG 3' (SEQ ID NO : 14)

- End Hinc II :

15 5' CAAAGTTGACTCTCCTCTCATTGTGTTCACGACAGACTCTGGC 3'
(SEQ ID NO : 15)

selon le protocole suivant : 94°C, 2min puis 30 cycles (94°C 45 sec, 55°C 1 min, 72°C 5 min) suivis d'une polymérisation de 5 min à 72°C et retour à 4°C.

Après digestion par *AatII* et *HincII* puis purification sur gel d'agarose Seaplaque 1,5% (Tebu), l'amplicon (170 bp) a été inséré au niveau des sites de restriction correspondants dans la construction pCRII-gfat1. L'insert de 170 pb a été introduit par ligation dans la construction avec un rapport 3:1 à 16°C pendant la nuit en présence de T4 DNA ligase (Nebs). Le mélange de ligation (20 µl) ainsi obtenu a permis de transformer une souche d'*E. coli* JM109. Ensuite, le fragment *XbaI-HindIII* du plasmide recombinant pCRII-gfat1-His6 a été cloné dans le plasmide donneur pFastBac1 (Life Technologies Ltd). Le plasmide pFastBac-gfat-His6 ainsi généré (Figure 1) a été vérifié par digestions multiples: *SmaI*, *AccI/DraI*, *PstE/XbaI*, et par séquençage. En vue d'améliorer la construction, la séquence en amont du codon de démarrage a été mutée sur deux positions par PCR, avec la paire d'amorces suivante, afin d'enlever deux phases de lecture ouvertes en amont du gène *gfat1*:

30 - Start *XbaI*

5' AATCTAGATTGCTCGAGCGGCCAGTGTGATTGATATC 3'
(SEQ ID NO : 16)

- End AfeI

5' ATTTTATCAGAGCGCTGGGGTGGCTATTGACAGG 3' (SEQ ID NO :

17)

selon le protocole : 94°C 2 min, puis 30 cycles (94°C 15 sec, 55°C 30 sec, 68°C 1 min)

5 suivis d'une polymérisation de 1 min à 68°C et retour à 4°C.

Le fragment de PCR obtenu, contenant les deux mutations, a été purifié sur gel SeaPlaque (Tebu) à 0,7% puis digéré par *Xba*I et *Afe*I pour remplacer son homologue dans pFastBac-gfat-His6 afin de donner le plasmide donneur pFastBac-gfat-His6-2orf servant à la transposition dans les cellules DH10Bac (Life Technologies Ltd). La construction a été vérifiée par digestions *Sma*I, *Xba*I/*Pst*II, *Xba*I/*Hind*III, et par séquençage.

10 Un bacmide recombinant a été isolé après transposition dans les cellules DH10Bac et utilisé pour transfacter des cellules d'insecte Sf9 en présence de Lipofectin (Life Technologies Ltd). Les baculovirus obtenus ont été amplifiés dans les cellules Sf9 et le titre viral a été mesuré à 5.10^7 pfu/ml.

2. Production de la protéine GFAT1-His6

Des cellules d'insectes Sf9 ont été cultivées à 28°C en présence de milieu SF900II (Life Technologies Ltd) en fioles de 5 L sous agitation à 100 rpm. Les cellules à une densité de 2.10^9 cellules /L ont été infectées par le baculovirus recombinant obtenu ci-dessus avec une multiplicité d'infection de 2 (pfu/cellule), puis cultivées durant 72 h.

25 Les cellules et le surnageant ont été séparés par centrifugation (2500 g, 10 min à 4°C). Les culots cellulaires ont été lavés en présence de tampon Tris-HCl 20 mM, pH 7, centrifugés (4000 g, 45 min à 4°C) et congelés à -80°C.

3. Purification de la protéine GFAT1-His6

Le culot cellulaire (20 g) a été repris dans 50 ml de tampon de lyse (NaPO₄ 50 mM pH 7,5, NaCl 300 mM, imidazole 10 mM, fructose-6-phosphate (fructose-6P) 1 mM, TCEP (Tris(2-carboxyethyl)phosphine) 1 mM, PMSF 1 mM (fluorure de phénylmethylsulfonyl), 10% glycérol et 1 tablette de cocktail d'inhibiteurs de protéases sans EDTA (Roche Applied Sciences) et soumis à un broyage au DynoMill à 4500 trs/min (4 cycles de 30 sec) en présence de 40 g de microbilles de 0,2 mm de diamètre. L'ensemble a été refroidi par circulation d'éthylène glycol/eau réglé à -15°C. L'extrait brut obtenu (100 ml, 445 mg de protéines totales) a été centrifugé à 4°C pendant 20 min

à 12000 tpm. Le surnageant a été soumis à une ultracentrifugation à 4°C (350000 tpm, 1h). Le surnageant ainsi obtenu a été mélangé à 5 ml de matrice 50% Ni-NTA (Qiagen) pendant 2 h à 4°C. Le mélange a été coulé dans une colonne vide puis rincé avec 40 ml de tampon de lavage (NaPO₄ 50 mM pH 7,5, NaCl 300 mM, imidazole 40 mM, fructose-6P 1 mM, TCEP 1 mM, PMSF 1 mM et 1 tablette de cocktail d'inhibiteurs de protéases sans EDTA (Roche Applied Sciences). L'élution a été réalisée par paliers successifs à 125 et 500 mM imidazole dans le même tampon que précédemment. 12 mg de GFAT1-His6 fonctionnelle (dosage protéique selon la méthode de Bradford ont ainsi été obtenus.

4. Conservation de l'enzyme GFAT1-His6

L'enzyme a alors été stockée en fractions de 100 µl en présence de 1 mM fructose-6P, 1mM TCEP et 10% glycérol à -80°C. La stabilité de l'enzyme est de plusieurs mois à -80°C et supérieure à 8 jours à 4°C.

5. Dosage de l'activité de l'enzyme GATA1

Différents tests de dosage de l'activité enzymatique de la GFAT1-His6 ont été utilisés. Ces tests peuvent également être utilisés afin de cribler des composés modifiant, et notamment inhibant, l'activité de la GFAT1-His6. Il est possible de les adapter aisément à un criblage à haut débit.

Dosage de Morgan-Elson.

Dans ce cas l'activité enzymatique est suivie par un test colorimétrique dont le principe est le suivant : la D-glucosamine-6P libérée par l'enzyme est N-acétylée par l'anhydride acétique en milieu alcalin (Ghosh *et al.*, *Method. Enzymol.* (1962) 5:414), puis La solution est traitée par le réactif d'Ehrlich (para-diméthyl-amino-benzaldéhyde, PDAB) en milieu acide concentré ; le composé rose formé absorbe à 585 nm

La réaction enzymatique se déroule pendant 30 min à 37°C en présence de :

- 0,2 ml de fructose-6P à 100 mM
 - 0,25 ml de L-Glutamine à 60 mM
 - 0,25 ml de tampon KPO₄ à 150 mM pH 7
 - 0,1 ml d'EDTA (éthylène diamine tétra-acétate) à 25 mM, pH 7
 - jusqu'à 200 µl d'échantillon (à compléter avec H₂O si nécessaire)

La réaction est stoppée par immersion 4 minutes dans un bain d'eau à 100°C puis centrifugée. 0,8 ml du surnageant sont prélevés pour le dosage de la glucosamine-6P suivant le protocole suivant :

- addition de 0,1 ml de NaHCO₃ saturé,
- addition de 0,1 ml d'une solution d'anhydride acétique à 5 % dans l'eau préparée extemporanément,
- agitation et incubation 5 min à température ambiante,
- incubation 5 min dans un bain à 100°C,
- addition de 0,2 ml de borate de potassium 0,8 M pH 9,1 (à ajuster avec KOH 10 N).
- agitation et incubation 7 min dans un bain à 100°C.
- addition de 3 ml de réactif d'Ehrlich dilué 10 fois dans l'acide acétique, préparé extemporanément, sur la solution refroidie dans la glace,
- incubation 20 min à 37°C.

L'activité de la GFAT a été déterminée comparativement à une courbe étalon établie en utilisant la D-glucosamine comme standard dans une gamme de concentration de 0 à 200 nmoles. L'activité spécifique de la GFAT1-His6 obtenue a été ainsi mesurée à 1,7 U/mg. Ce qui est supérieur à la valeur de 0,4 U/mg obtenue par Broschat *et al.*, *J. Biol. Chem.* (2002) 277:14764, pour la purification d'une GFAT1 humaine recombinante. Ceci traduit une activité supérieure de la GFAT1-His6 et/ou une pureté plus importante de la préparation enzymatique selon l'invention.

Les paramètres cinétiques de la GFAT1-His6 ont été caractérisés vis-à-vis de la glutamine ($K_m^{Gln} = 0,2 \text{ mM}$) et du fructose-6P (F6P) ($K_m^{F6P} = 0,006 \text{ mM}$) par un dosage spectrophotométrique couplé à la glutamate déshydrogénase selon le test APAD. Ce qui est conforme aux valeurs citées dans l'art antérieur ($K_m^{Gln} = 0,26 \text{ mM}$ et $K_m^{F6P} = 0,007 \text{ mM}$ pour Broschat *et al.*, *J. Biol. Chem.* (2002) 277:14764).

Dosage APAD

Il s'agit d'un dosage spectrophotométrique dans l'ultraviolet de l'activité GFAT. Il est basé sur la détermination, en continu, de la quantité de L-glutamate formé à l'aide de la GFAT et d'un analogue du NAD (nicotinamide adénine dinucléotide), l'APAD (3-acetylpyridine adenine dinucleotide), selon la réaction suivante (catalysée par la glutamate déshydrogénase (GDH)) :

La mesure s'effectue à 365 nm, à 37°C. Dans ces conditions une unité d'absorbance correspond à 0,11 µmole d'APADH formé.

5

L'essai comprend :

- 100 µl APAD 3 mM (2 mg/ml)
- 25 µl KCl 2M
- 100 µl de tampon KPO₄ 1 M pH 7,2
- 100 µl de Fructose-6P 100 mM (30,41 mg/ml)
- 100 µl de L-Glutamine 60 mM purifiée (8,77 mg/ml)
- H₂O qsp 1 ml (en tenant compte des volumes à rajouter ci-après)
- 50 µl GDH
- échantillon à doser : 0,5 µg

10

15

Il est également possible d'utiliser d'autres procédés de dosage, tels que le dosage radiométrique décrit par Broschat *et al.*, *Analytical Biochem.* (2002) 305:10-15 ou le dosage dit Nitro Bleu Tétrazolium décrit par Nakata *et al.*, *J. Antibio.* (2001) 54:737-743.

REVENDICATIONS

1. Protéine enzymatiquement active comprenant :

- une séquence de GFAT et au moins une séquence d'une étiquette de purification, la séquence de l'étiquette de purification étant insérée entre deux acide aminés consécutifs de la séquence de GFAT, ou
- une séquence dérivant de la séquence précédente par suppression, insertion ou mutation d'au moins un acide aminé, sous réserve que ladite protéine présente une activité enzymatique, ou
- une séquence présentant au moins 35 % d'identité de séquence et/ou au moins 44 % de similarité de séquence avec l'une des séquences précédentes, sous réserve que ladite protéine présente une activité enzymatique.

2. Protéine selon la revendication 1, dans laquelle la séquence de GFAT correspond à une séquence de GFAT de bactérie ou d'eucaryote, notamment de plante, de champignon ou d'animal, en particulier d'insecte ou de mammifère, plus particulièrement d'homme.

3. Protéine selon la revendication 1 ou 2, dans laquelle la séquence de l'étiquette de purification est insérée entre deux acides aminés consécutifs de la séquence de GFAT, lesdits acides aminés étant compris dans :

- une partie de la séquence de la GFAT correspondant à la séquence s'étendant entre le feuillet $\beta 2$ et le feuillet $\beta 3$ de la GFAT d'*Escherichia coli*, ou
- une partie de la séquence de la GFAT correspondant à la séquence s'étendant entre le feuillet $\beta 13$ et le feuillet $\beta 14$ de la GFAT d'*Escherichia coli*, ou
- une partie de la séquence de la GFAT correspondant à la séquence s'étendant entre le feuillet $\beta 15$ et l'hélice $\alpha 6$ de la GFAT d'*Escherichia coli*.

4. Protéine selon l'une des revendications 1 à 3, dans laquelle la séquence de GFAT correspond à :

- SEQ ID NO : 2, correspondant à la séquence de la GFAT1 humaine,
- SEQ ID NO : 4, correspondant à la séquence de la GFAT2 humaine,
- SEQ ID NO : 6, correspondant à la séquence de la GFAT1Alt humaine.

REVENDICATIONS

1. Protéine correspondant à une glutamine:fructose-6-phosphate amidotransférase (GFAT) modifiée enzymatiquement active d'origine humaine, ladite GFAT étant modifiée de telle sorte qu'elle comprend au moins une séquence d'une étiquette de purification correspondant à une séquence peptidique d'environ 2 à environ 10 acides aminés, notamment d'environ 4 à environ 8 acides aminés, susceptible de se lier spécifiquement à un ligand donné, ce qui permet la formation d'un complexe entre la GFAT portant l'étiquette de purification et ledit ligand, ledit complexe pouvant être spécifiquement isolé, la séquence de l'étiquette de purification étant insérée entre deux acide aminés consécutifs de la séquence de GFAT, ces deux acides aminés étant compris entre les acides aminés :

- 43 à 47, 298 à 306, et/ou 342 à 347 de SEQ ID NO : 2 de la GFAT1 humaine,
- 42 à 45, 299 à 307, et/ou 343 à 348 de SEQ ID NO : 4 de la GFAT2 humaine,
- 43 à 47, 316 à 324, et/ou 360 à 365 de SEQ ID NO : 6 de la GFAT1Alt humaine.

2. Protéine selon la revendication 1, dans laquelle la séquence de l'étiquette de purification est insérée entre les acides aminés :

- 299 et 300 de SEQ ID NO : 2.
- 300 et 301 de SEQ ID NO : 4
- 317 et 318 de SEQ ID NO : 6

3. Protéine selon la revendication 1 ou 2, dans laquelle l'étiquette de purification est une hexa-histidine.

25

4. Protéine selon l'une des revendications 1 à 3 correspondant aux séquences :

- SEQ ID NO : 8, correspondant à la séquence SEQ ID NO : 2 dans laquelle une hexa-histidine est insérée entre les acides aminés 299 et 300,
- SEQ ID NO : 10, correspondant à la séquence SEQ ID NO : 4 dans laquelle une hexa-histidine est insérée entre les acides aminés 300 et 301, et
- SEQ ID NO : 12, correspondant à la séquence SEQ ID NO : 6 dans laquelle une hexa-histidine est insérée entre les acides aminés 317 et 318.

5. Protéine selon l'une des revendications 1 à 4, dans laquelle la séquence de l'étiquette de purification est insérée entre deux acides aminés consécutifs, lesdits acides aminés étant compris entre les acides aminés :

- 43 à 47, 298 à 306, et/ou 342 à 347 de SEQ ID NO : 2
- 5 - 42 à 45, 299 à 307, et/ou 343 à 348 de SEQ ID NO : 4
- 43 à 47, 316 à 324, et/ou 360 à 365 de SEQ ID NO : 6

6. Protéine selon la revendication 5, dans laquelle la séquence de l'étiquette de purification est insérée entre les acides aminés :

- 10 - 299 et 300 de SEQ ID NO : 2.
- 300 et 301 de SEQ ID NO : 4
- 317 et 318 de SEQ ID NO : 6

15 7. Protéine selon l'une des revendications 1 à 6, dans laquelle l'étiquette de purification correspond à une séquence d'environ 2 à environ 10 acides aminés, notamment d'environ 4 à environ 8 acides aminés.

20 8. Protéine selon l'une des revendications 1 à 7, dans laquelle l'étiquette de purification est une hexa-histidine.

25 9. Protéine selon les revendications 6 et 8 correspondant aux séquences :

- SEQ ID NO : 8, correspondant à la séquence SEQ ID NO : 2 dans laquelle une hexa-histidine est insérée entre les acides aminés 299 et 300,
- SEQ ID NO : 10, correspondant à la séquence SEQ ID NO : 4 dans laquelle une hexa-histidine est insérée entre les acides aminés 300 et 301, et
- SEQ ID NO : 12, correspondant à la séquence SEQ ID NO : 6 dans laquelle une hexa-histidine est insérée entre les acides aminés 317 et 318.

30 10. Acide nucléique comprenant ou étant constitué d'une séquence codant pour une protéine selon l'une des revendications 1 à 9.

11. Acide nucléique comprenant ou étant constitué de la séquence nucléotidique :

- SEQ ID NO : 7 codant pour la protéine SEQ ID NO : 8, ou
- SEQ ID NO : 9 codant pour la protéine SEQ ID NO : 10, ou

5. Acide nucléique comprenant ou étant constitué d'une séquence codant pour une protéine selon l'une des revendications 1 à 3.

6. Acide nucléique comprenant ou étant constitué de la séquence nucléotidique :

- 5 - SEQ ID NO : 7 codant pour la protéine SEQ ID NO : 8, ou
 - SEQ ID NO : 9 codant pour la protéine SEQ ID NO : 10, ou
 - SEQ ID NO : 11 codant pour la protéine SEQ ID NO : 12,

10 ou de son complémentaire, ou étant dérivé de ladite séquence par mutation, insertion ou délétion d'au moins un nucléotide, sous réserve que ladite séquence nucléotidique code pour une protéine enzymatiquement active.

7. Vecteur eucaryote ou procaryote comprenant un acide nucléique selon la revendication 5 ou 6.

15 8. Procédé de purification d'une protéine selon l'une des revendications 1 à 3, à partir d'une solution comprenant ladite protéine, comprenant une étape de mise en présence de ladite solution avec un composé se liant spécifiquement à l'étiquette de purification de ladite protéine et une étape de séparation du complexe formé par la liaison de ladite protéine audit composé des autres constituants de la solution.

20 9. Procédé de purification selon la revendication 10, comprenant une étape de mise en présence d'une solution comprenant une protéine selon la revendication 3 avec un composé comprenant un cation métallique divalent tel que Ni^{2+} ou Co^{2+} , notamment Ni^{2+} , et une étape de séparation du complexe formé par la liaison de la protéine audit composé des autres constituants de la solution.

25 10. Procédé de conservation d'une protéine selon l'une des revendications 1 à 3 sous une forme enzymatiquement active, notamment à -80°C ou à 4°C , comprenant l'adjonction de ladite protéine à une solution comprenant :

- 30 - d'environ 1 mM à environ 10 mM de fructose 6-phosphate, notamment environ 1 mM,
 - d'environ 1 mM à environ 5 mM de Tris(2-carboxyethyl)phosphine, notamment environ 1 mM,
 - d'environ 5 % à environ 20 % de glycérol, notamment environ 10%.

- SEQ ID NO : 11 codant pour la protéine SEQ ID NO : 12, ou de son complémentaire, ou étant dérivé de ladite séquence par mutation, insertion ou délétion d'au moins un nucléotide, sous réserve que ladite séquence nucléotidique code pour une protéine enzymatiquement active.

5

12. Vecteur eucaryote ou procaryote comprenant un acide nucléique selon la revendication 10 ou 11.

10

13. Procédé de purification d'une protéine selon l'une des revendications 1 à 9, à partir d'une solution comprenant ladite protéine, comprenant une étape de mise en présence de ladite solution avec un composé se liant spécifiquement à l'étiquette de purification de ladite protéine et une étape de séparation du complexe formé par la liaison de ladite protéine audit composé des autres constituants de la solution.

15

14. Procédé de purification selon la revendication 13, comprenant une étape de mise en présence d'une solution comprenant une protéine selon la revendication 9 avec un composé comprenant un cation métallique divalent tel que Ni^{2+} ou Co^{2+} , notamment Ni^{2+} , et une étape de séparation du complexe formé par la liaison de la protéine audit composé des autres constituants de la solution.

20

15. Procédé de conservation d'une protéine selon l'une des revendications 1 à 9 sous une forme enzymatiquement active, notamment à -80°C ou à 4°C , comprenant l'ajonction de ladite protéine à une solution comprenant :

25

- d'environ 1 mM à environ 10 mM de fructose 6-phosphate, notamment environ 1 mM,
- d'environ 1 mM à environ 5 mM de Tris(2-carboxyethyl)phosphine, notamment environ 1 mM,
- d'environ 5 % à environ 20 % de glycérol, notamment environ 10%.

30

16. Composition comprenant une protéine GFAT active, le cas échéant liée à une étiquette de purification, telle qu'une protéine selon l'une des revendications 1 à 9, ladite protéine étant susceptible de pouvoir être conservée sous une forme enzymatiquement active, durant au moins 8 jours à une température de 2°C à 10°C , notamment environ

11. Composition comprenant une protéine GFAT active liée à une étiquette de purification selon l'une des revendication 1 à 3, ladite protéine étant susceptible de pouvoir être conservée sous une forme enzymatiquement active, durant au moins 8 jours à une température de 2°C à 10°C, notamment environ 4°C, et durant au moins 12 mois à une température de -100°C à -20°C, notamment environ -80°C, ladite protéine étant en association avec :

- 5 - environ 1 mM à environ 10 mM de fructose 6-phosphate, notamment environ 1 mM,
10 - environ 1 mM à environ 5 mM de Tris(2-carboxyethyl)phosphine, notamment environ 1 mM,
 - environ 5 % à environ 20 % de glycérol, notamment environ 10%.

12. Utilisation d'une protéine selon l'une des revendications 1 à 3, pour le criblage de composés modifiant l'activité de ladite protéine, en particulier pour le criblage d'inhibiteur de ladite protéine.

15

13. Utilisation selon la revendication 12, pour le criblage de composés utiles dans le cadre du traitement ou de la prévention du diabète, notamment du diabète de type II, de l'obésité, de l'acidose, de la cétose, de l'arthrite, des cancers, ou de l'ostéoporose.

4°C, et durant au moins 12 mois à une température de -100°C à -20°C, notamment environ -80°C, ladite protéine étant en association avec :

- environ 1 mM à environ 10 mM de fructose 6-phosphate, notamment environ 1 mM,
- environ 1 mM à environ 5 mM de Tris(2-carboxyethyl)phosphine, notamment environ 1 mM,
- environ 5 % à environ 20 % de glycérol, notamment environ 10%.

5

10

15

17. Utilisation d'une protéine selon l'une des revendications 1 à 9, pour le criblage de composés modifiant l'activité de ladite protéine, en particulier pour le criblage d'inhibiteur de ladite protéine.

18. Utilisation selon la revendication 17, pour le criblage de composés utiles dans le cadre du traitement ou de la prévention du diabète, notamment du diabète de type II, de l'obésité, de l'acidose, de la cétose, de l'arthrite, des cancers, ou de l'ostéoporose.

5

10

15

Figure 1

LISTE DE SEQUENCES

<110> CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

<120> GLUTAMINE:FRUCTOSE-6-PHOSPHATE AMIDOTRANSFERASE (GFAT) COMPRENNANT UNE ETIQUETTE DE PURIFICATION INTERNE, ET SON UTILISATION POUR LE CRIBLAGE DE COMPOSES

<130> IFB 03 BP CNR GFAT

<160> 19

<170> PatentIn version 3.1

```
<210> 1
<211> 2046
<212> ADN
<213> Homo sapiens
```

<220>
<221> CDS
<222> (1)..(2046)
<223>

```
<220>
<221> misc_feature
<222> (170)..(170)
<223> t ou c
```

<400> 1
 atg tgt ggt ata ttt gct tac tta aac tac cat gtt cct cga acg aga
 Met Cys Gly Ile Phe Ala Tyr Leu Asn Tyr His Val Pro Arg Thr Arg
 1 5 10 15
 cga gaa atc ctg gag acc cta atc aaa ggc ctt cag aga ctg gag tac
 Arg Glu Ile Leu Glu Thr Leu Ile Lys Gly Leu Gln Arg Leu Glu Tyr
 20 25 30
 aga gga tat gat tct gct ggt gtg gga ttt gat gga ggc aat gat aaa
 Arg Gly Tyr Asp Ser Ala Gly Val Gly Phe Asp Gly Gly Asn Asp Lys
 35 40 45
 gat tgg gaa gcc aat gcc tgc aaa anc cag ctt att aag aag aaa gga
 Asp Trp Glu Ala Asn Ala Cys Lys Xaa Gln Leu Ile Lys Lys Lys Gly
 50 55 60
 aaa gtt aag gca ctg gat gaa gaa gtt cac aag caa caa gat atg gat {
 Lys Val Lys Ala Leu Asp Glu Glu Val His Lys Gln Gln Asp Met Asp
 65 70 75 80
 ttg gat ata gaa ttt gat gta cac ctt gga ata gct cat acc cgt tgg
 Leu Asp Ile Glu Phe Asp Val His Leu Gly Ile Ala His Thr Arg Trp
 85 90 95
 gca aca cat gga gaa ccc agt cct gtc aat agc cac ccc cag cgc tct
 Ala Thr His Gly Glu Pro Ser Pro Val Asn Ser His Pro Gln Arg Ser
 100 105 110
 gat aaa aat aat gaa ttt atc gtt att cac aat gga atc atc acc aac
 Asp Lys Asn Asn Glu Phe Ile Val Ile His Asn Gly Ile Ile Thr Asn
 115 120 125
 tac aaa gac ttg aaa aag ttt ttg gaa agc aaa ggc tat gac ttc gaa
 Tyr Lys Asp Leu Lys Lys Phe Leu Glu Ser Lys Gly Tyr Asp Phe Glu
 130 135 140

tct gaa aca gac aca gag aca att gcc aag ctc gtt aag tat atg tat Ser Glu Thr Asp Thr Glu Thr Ile Ala Lys Leu Val Lys Tyr Met Tyr 145 150 155 160	480
gac aat cgg gaa agtcaa gat acc agc ttt act acc ttg gtg gag aga Asp Asn Arg Glu Ser Gln Asp Thr Ser Phe Thr Thr Leu Val Glu Arg 165 170 175	528
gtt atc caa caa ttg gaa ggt gct ttt gca ctt gtg ttt aaa agt gtt Val Ile Gln Gln Leu Glu Gly Ala Phe Ala Leu Val Phe Lys Ser Val 180 185 190	576
cat ttt ccc ggg caa gca gtt ggc aca agg cga ggt agc cct ctg ttg His Phe Pro Gly Gln Ala Val Gly Thr Arg Arg Gly Ser Pro Leu Leu 195 200 205	624
att ggt gta cgg agt gaa cat aaa ctt tct act gat cac att cct ata Ile Gly Val Arg Ser Glu His Lys Leu Ser Thr Asp His Ile Pro Ile 210 215 220	672
ctc tac aga aca ggc aaa gac aag aaa gga agc tgc aat ctc tct cgt Leu Tyr Arg Thr Gly Lys Asp Lys Lys Gly Ser Cys Asn Leu Ser Arg 225 230 235 240	720
gtg gac agc aca acc tgc ctt ttc ccg gtg gaa gaa aaa gca gtg gag Val Asp Ser Thr Thr Cys Leu Phe Pro Val Glu Glu Lys Ala Val Glu 245 250 255	768
tat tac ttt gct tct gat gca agt gct gtc ata gaa cac acc aat cgc Tyr Tyr Phe Ala Ser Asp Ala Ser Ala Val Ile Glu His Thr Asn Arg 260 265 270	816
gtc atc ttt ctg gaa gat gat gat gtt gca gca gta gtg gat gga cgt Val Ile Phe Leu Glu Asp Asp Val Ala Ala Val Val Asp Gly Arg 275 280 285	864
ctt tct atc cat cga att aaa cga act gca gga gat cac ccc gga cga Leu Ser Ile His Arg Ile Lys Arg Thr Ala Gly Asp His Pro Gly Arg 290 295 300	912
gct gtg caa aca ctc cag atg gaa ctc cag cag atc atg aag ggc aac Ala Val Gln Thr Leu Gln Met Glu Leu Gln Gln Ile Met Lys Gly Asn 305 310 315 320	960
tcc agt tca ttt atg cag aag gaa ata ttt gag cag cca gag tct gtc Phe Ser Ser Phe Met Gln Lys Glu Ile Phe Glu Gln Pro Glu Ser Val 325 330 335	1008
gtg aac aca atg aga gga aga gtc aac ttt gat gac tat act gtg aat Val Asn Thr Met Arg Gly Arg Val Asn Phe Asp Asp Tyr Thr Val Asn 340 345 350	1056
ttg ggt ggt ttg aag gat cac ata aag gag atc cag aga tgc cgg cgt Leu Gly Leu Lys Asp His Ile Lys Glu Ile Gln Arg Cys Arg Arg 355 360 365	1104
ttg att ctt att gct tgt gga aca agt tac cat gct ggt gta gca aca Leu Ile Leu Ile Ala Cys Gly Thr Ser Tyr His Ala Gly Val Ala Thr 370 375 380	1152
cgt caa gtt ctt gag gag ctg act gag ttg cct gtg atg gtg gaa cta Arg Gln Val Leu Glu Glu Leu Thr Glu Leu Pro Val Met Val Glu Leu 385 390 395 400	1200
gca agt gac ttc ctg gac aga aac acq cca gtc ttt cga gat gat gtt	1248

101 UCPOL

Ala Ser Asp Phe Leu Asp Arg Asn Thr Pro Val Phe Arg Asp Asp Val			
405	410	415	
tgc ttt ttc ctt agtcaa tca ggt gag aca gca gat act ttg atg ggt			
Cys Phe Phe Leu Ser Gln Ser Gly Glu Thr Ala Asp Thr Leu Met Gly			1296
420	425	430	
ctt cgt tac tgt aag gag aga gga gct tta act gtg ggg atc aca aac			
Leu Arg Tyr Cys Lys Glu Arg Gly Ala Leu Thr Val Gly Ile Thr Asn			1344
435	440	445	
aca gtt ggc agt tcc ata tca cgg gag aca gat tgt gga gtt cat att			
Thr Val Gly Ser Ser Ile Ser Arg Glu Thr Asp Cys Gly Val His Ile			1392
450	455	460	
aat gct ggt cct gag att ggt gtg gcc agt aca aag gct tat acc agc			
Asn Ala Gly Pro Glu Ile Gly Val Ala Ser Thr Lys Ala Tyr Thr Ser			1440
465	470	475	480
cag ttt gta tcc ctt gtg atg ttt gcc ctt atg atg tgt gat gat cgg			
Gln Phe Val Ser Leu Val Met Phe Ala Leu Met Met Cys Asp Asp Arg			1488
485	490	495	
atc tcc atg caa gaa aga cgc aaa gag atc atg ctt gga ttg aaa cgg			
Ile Ser Met Gln Glu Arg Arg Lys Glu Ile Met Leu Gly Leu Lys Arg			1536
500	505	510	
ctg cct gat ttg att aag gaa gta ctg agc atg gat gac gaa att cag			
Leu Pro Asp Leu Ile Lys Glu Val Leu Ser Met Asp Asp Glu Ile Gln			1584
515	520	525	
aaa cta gca aca gaa ctt tat cat cag aag tca gtt ctg ata atg gga			
Lys Leu Ala Thr Glu Leu Tyr His Gln Lys Ser Val Leu Ile Met Gly			1632
530	535	540	
cga ggc tat cat tat gct act tgt ctt gaa ggg gca ctg aaa atc aaa			
Arg Gly Tyr His Tyr Ala Thr Cys Leu Glu Gly Ala Leu Lys Ile Lys			1680
545	550	555	560
gaa att act tat atg cac tct gaa ggc atc ctt gct ggt gaa ttg aaa			
Glu Ile Thr Tyr Met His Ser Glu Gly Ile Leu Ala Gly Glu Leu Lys			1728
565	570	575	
cat ggc cct ctg gct ttg gtg gat aaa ttg atg cct gtg atc atg atc			
His Gly Pro Leu Ala Leu Val Asp Lys Leu Met Pro Val Ile Met Ile			1776
580	585	590	
atc atg aga gat cac act tat gcc aag tgt cag aat gct ctt cag caa			
Ile Met Arg Asp His Thr Tyr Ala Lys Cys Gln Asn Ala Leu Gln Gln			1824
595	600	605	
gtg gtt gct cgg cag ggg cgg cct gtg gta att tgt gat aag gag gat			
Val Val Ala Arg Gln Gly Arg Pro Val Val Ile Cys Asp Lys Glu Asp			1872
610	615	620	
act gag acc att aag aac aca aaa aga acg atc aag gtg ccc cac tca			
Thr Glu Thr Ile Lys Asn Thr Lys Arg Thr Ile Lys Val Pro His Ser			1920
625	630	635	640
gtg gac tgc ttg cag ggc att ctc agc gtg atc cct tta cag ttg ctg			
Val Asp Cys Leu Gln Gly Ile Leu Ser Val Ile Pro Leu Gln Leu Leu			1968
645	650	655	
gct ttc cac ctt gct gtg ctg aga ggc tat gat gtt gat ttc cca cgg			
Ala Phe His Leu Ala Val Leu Arg Gly Tyr Asp Val Asp Phe Pro Arg			2016
660	665	670	

aat ctt gcc aaa tct gtg act gta gag tga
Asn Leu Ala Lys Ser Val Thr Val Glu
675 680

2046

<210> 2
<211> 681
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<222> (57)..(57)
<223> Le 'Xaa' en position 57 représente Thr ou Ile.

<400> 2

Met Cys Gly Ile Phe Ala Tyr Leu Asn Tyr His Val Pro Arg Thr Arg
1 5 10 15

Arg Glu Ile Leu Glu Thr Leu Ile Lys Gly Leu Gln Arg Leu Glu Tyr
20 25 30

Arg Gly Tyr Asp Ser Ala Gly Val Gly Phe Asp Gly Gly Asn Asp Lys
35 40 45

Asp Trp Glu Ala Asn Ala Cys Lys Xaa Gln Leu Ile Lys Lys Lys Gly
50 55 60

Lys Val Lys Ala Leu Asp Glu Glu Val His Lys Gln Gln Asp Met Asp
65 70 75 80

Leu Asp Ile Glu Phe Asp Val His Leu Gly Ile Ala His Thr Arg Trp
85 90 95

Ala Thr His Gly Glu Pro Ser Pro Val Asn Ser His Pro Gln Arg Ser
100 105 110

Asp Lys Asn Asn Glu Phe Ile Val Ile His Asn Gly Ile Ile Thr Asn
115 120 125

Tyr Lys Asp Leu Lys Lys Phe Leu Glu Ser Lys Gly Tyr Asp Phe Glu
130 135 140

Ser Glu Thr Asp Thr Glu Thr Ile Ala Lys Leu Val Lys Tyr Met Tyr
145 150 155 160

Asp Asn Arg Glu Ser Gln Asp Thr Ser Phe Thr Thr Leu Val Glu Arg
165 170 175

Val Ile Gln Gln Leu Glu Gly Ala Phe Ala Leu Val Phe Lys Ser Val
180 185 190

His Phe Pro Gly Gln Ala Val Gly Thr Arg Arg Gly Ser Pro Leu Leu
195 200 205

Ile Gly Val Arg Ser Glu His Lys Leu Ser Thr Asp His Ile Pro Ile
210 215 220

Leu Tyr Arg Thr Gly Lys Asp Lys Lys Gly Ser Cys Asn Leu Ser Arg
225 230 235 240

Val Asp Ser Thr Thr Cys Leu Phe Pro Val Glu Glu Lys Ala Val Glu
245 250 255

Tyr Tyr Phe Ala Ser Asp Ala Ser Ala Val Ile Glu His Thr Asn Arg
260 265 270

Val Ile Phe Leu Glu Asp Asp Asp Val Ala Ala Val Val Asp Gly Arg
275 280 285

Leu Ser Ile His Arg Ile Lys Arg Thr Ala Gly Asp His Pro Gly Arg
290 295 300

Ala Val Gln Thr Leu Gln Met Glu Leu Gln Gln Ile Met Lys Gly Asn
305 310 315 320

Phe Ser Ser Phe Met Gln Lys Glu Ile Phe Glu Gln Pro Glu Ser Val
325 330 335

Val Asn Thr Met Arg Gly Arg Val Asn Phe Asp Asp Tyr Thr Val Asn
340 345 350

Leu Gly Gly Leu Lys Asp His Ile Lys Glu Ile Gln Arg Cys Arg Arg
355 360 365

Leu Ile Leu Ile Ala Cys Gly Thr Ser Tyr His Ala Gly Val Ala Thr
370 375 380

Arg Gln Val Leu Glu Glu Leu Thr Glu Leu Pro Val Met Val Glu Leu
385 390 395 400

Ala Ser Asp Phe Leu Asp Arg Asn Thr Pro Val Phe Arg Asp Asp Val
405 410 415

Cys Phe Phe Leu Ser Gln Ser Gly Glu Thr Ala Asp Thr Leu Met Gly
420 425 430

Leu Arg Tyr Cys Lys Glu Arg Gly Ala Leu Thr Val Gly Ile Thr Asn
435 440 445

Thr Val Gly Ser Ser Ile Ser Arg Glu Thr Asp Cys Gly Val His Ile
450 455 460

Asn Ala Gly Pro Glu Ile Gly Val Ala Ser Thr Lys Ala Tyr Thr Ser
465 470 475 480

Gln Phe Val Ser Leu Val Met Phe Ala Leu Met Met Cys Asp Asp Arg
485 490 495

Ile Ser Met Gln Glu Arg Arg Lys Glu Ile Met Leu Gly Leu Lys Arg
500 505 510

Leu Pro Asp Leu Ile Lys Glu Val Leu Ser Met Asp Asp Glu Ile Gln
515 520 525

Lys Leu Ala Thr Glu Leu Tyr His Gln Lys Ser Val Leu Ile Met Gly
530 535 540

Arg Gly Tyr His Tyr Ala Thr Cys Leu Glu Gly Ala Leu Lys Ile Lys
545 550 555 560

Glu Ile Thr Tyr Met His Ser Glu Gly Ile Leu Ala Gly Glu Leu Lys
565 570 575

His Gly Pro Leu Ala Leu Val Asp Lys Leu Met Pro Val Ile Met Ile
580 585 590

Ile Met Arg Asp His Thr Tyr Ala Lys Cys Gln Asn Ala Leu Gln Gln
595 600 605

Val Val Ala Arg Gln Gly Arg Pro Val Val Ile Cys Asp Lys Glu Asp
610 615 620

Thr Glu Thr Ile Lys Asn Thr Lys Arg Thr Ile Lys Val Pro His Ser
625 630 635 640

Val Asp Cys Leu Gln Gly Ile Leu Ser Val Ile Pro Leu Gln Leu Leu
645 650 655

Ala Phe His Leu Ala Val Leu Arg Gly Tyr Asp Val Asp Phe Pro Arg
660 665 670

Asn Leu Ala Lys Ser Val Thr Val Glu
675 680

<210> 3
<211> 2049
<212> ADN
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(2049)

<223>

<400> 3
atg tgc gga atc ttt gcc tac atg aac tac aga gtc ccc cgg acg agg 48
Met Cys Gly Ile Phe Ala Tyr Met Asn Tyr Arg Val Pro Arg Thr Arg
1 5 10 15

aag gag atc ttc gaa acc ctc atc aag ggc ctg cag cgg ctg gag tac 96
Lys Glu Ile Phe Glu Thr Leu Ile Lys Gly Leu Gln Arg Leu Glu Tyr
20 25 30

aga ggc tac gac tcg gca ggt gtg gcg atc gat ggg aat aat cac gaa 144
Arg Gly Tyr Asp Ser Ala Gly Val Ala Ile Asp Gly Asn Asn His Glu
35 40 45

gtc aaa gaa aga cac att cag ctg gtc aag aaa agg ggg aaa gtc aag 192
Val Lys Glu Arg His Ile Gln Leu Val Lys Lys Arg Gly Lys Val Lys
50 55 60

gct ctc gat gaa gaa ctt tac aaa caa gac agc atg gac tta aaa gtg 240
Ala Leu Asp Glu Glu Leu Tyr Lys Gln Asp Ser Met Asp Leu Lys Val
65 70 75 80

gag ttt gag aca cac ttc ggc att gcc cac acg cgc tgg gcc acc cac 288
Glu Phe Glu Thr His Phe Gly Ile Ala His Thr Arg Trp Ala Thr His
85 90 95

ggg gtc ccc agt gct gtc aac agc cac cct cag cgc tca gac aaa ggc 336
Gly Val Pro Ser Ala Val Asn Ser His Pro Gln Arg Ser Asp Lys Gly
100 105 110

aac gaa ttt gtt gtc atc cac aat ggg atc atc aca aat tac aaa gat 384
Asn Glu Phe Val Val Ile His Asn Gly Ile Ile Thr Asn Tyr Lys Asp
115 120 125

ctg agg aaa ttt ctg gaa agc aaa ggc tac gag ttt gag tca gaa aca 432
Leu Arg Lys Phe Leu Glu Ser Lys Gly Tyr Glu Phe Glu Ser Glu Thr
130 135 140

gat aca gag acc atc gcc aag ctg att aaa tat gtg ttc gac aac aga 480
Asp Thr Glu Thr Ile Ala Lys Leu Ile Lys Tyr Val Phe Asp Asn Arg
145 150 155 160

gaa act gag gac att acg ttt tca acg ttg gtc gag aga gtc att cag 528
Glu Thr Glu Asp Ile Thr Phe Ser Thr Leu Val Glu Arg Val Ile Gln
165 170 175

cag ttg gaa ggt gca ttc gcg ctg gtt ttc aag agt gtc cac tac cca 576
Gln Leu Glu Gly Ala Phe Ala Leu Val Phe Lys Ser Val His Tyr Pro
180 185 190

gga gaa gcc gtt gcc aca cgg aga ggc agc ccc ctg ctc atc gga gtc 624
Gly Glu Ala Val Ala Thr Arg Arg Gly Ser Pro Leu Leu Ile Gly Val
195 200 205

cgg agc aaa tac aag ctc tcc aca gaa cag atc cct atc tta tac agg 672
Arg Ser Lys Tyr Lys Leu Ser Thr Glu Gln Ile Pro Ile Leu Tyr Arg
210 215 220

acg tgc act ctg gag aat gtg aag aat atc tgt aag aca cgg atg aag 720
Thr Cys Thr Leu Glu Asn Val Lys Asn Ile Cys Lys Thr Arg Met Lys
225 230 235 240

agg ctg gac agc tcc gcc tgc ctg cat gct gtg ggc gac aag gcc gtg 768
Arg Leu Asp Ser Ser Ala Cys Leu His Ala Val Gly Asp Lys Ala Val
245 250 255

1000

gaa ttc ttc ttt gct tct gat gca agc gct atc ata gag cac acc aac Glu Phe Phe Phe Ala Ser Asp Ala Ser Ala Ile Ile Glu His Thr Asn 260 265 270	816
cgg gtc atc ttc ctg gag gac gat gac atc gcc gca gtg gct gat ggg Arg Val Ile Phe Leu Glu Asp Asp Asp Ile Ala Ala Val Ala Asp Gly 275 280 285	864
aaa ctc tcc att tac cgg gtc aag cgc tcg gcc agt gat gac cca tct Lys Leu Ser Ile His Arg Val Lys Arg Ser Ala Ser Asp Asp Pro Ser 290 295 300	912
cga gcc atc cag acc ttg cag atg gaa ctg cag caa atc atg aaa ggt Arg Ala Ile Gln Thr Ile Gln Met Glu Leu Gln Gln Ile Met Lys Gly 305 310 315 320	960
aac ttc agt gcg ttt atg cag aag gag atc ttc gaa cag cca gaa tca Asn Phe Ser Ala Phe Met Gln Lys Glu Ile Phe Glu Gln Pro Glu Ser 325 330 335	1008
gtt ttc aat act atg aga ggt cgg gtg aat ttt gaa acc aac aca gtg Val Phe Asn Thr Met Arg Gly Arg Val Asn Phe Glu Thr Asn Thr Val 340 345 350	1056
ctc ctg ggt ggc ttg aag gac cac ttg aag gag att cga cga tgc cga Leu Leu Gly Gly Leu Lys Asp His Leu Lys Glu Ile Arg Arg Cys Arg 355 360 365	1104
cgg ctc atc gtg att ggc tgt gga acc agc tac cac gct gcc gtg gct Arg Leu Ile Val Ile Gly Cys Gly Thr Ser Tyr His Ala Ala Val Ala 370 375 380	1152
acg cgg caa gtt ttg gag gaa ctg act gag ctt cct gtg atg gtt gaa Thr Arg Gln Val Leu Glu Glu Leu Thr Glu Leu Pro Val Met Val Glu 385 390 395 400	1200
ctt gct agt gat ttt ctg gac agg aac aca cct gtg ttc agg gat gac Leu Ala Ser Asp Phe Leu Asp Arg Asn Thr Pro Val Phe Arg Asp Asp 405 410 415	1248
gtt tgc ttt ttc atc agc cag tca ggc gag acc gcg gac acc ctc ctg Val Cys Phe Phe Ile Ser Gln Ser Gly Glu Thr Ala Asp Thr Leu Leu 420 425 430	1296
gcg ctg cgc tac tgt aag gac cgc ggc gct ctc acc gtg ggc gtc acc Ala Leu Arg Tyr Cys Lys Asp Arg Gly Ala Leu Thr Val Gly Val Thr 435 440 445	1344
aac acc gtg ggc agc tcc atc tct cgc gag acc gac tgc ggc gtc cac Asn Thr Val Gly Ser Ser Ile Ser Arg Glu Thr Asp Cys Gly Val His 450 455 460	1392
atc aac gca ggg ccg gag gtc ggc gtg gcc agc acc aag gct tat acc Ile Asn Ala Gly Pro Glu Val Gly Val Ala Ser Thr Lys Ala Tyr Thr 465 470 475 480	1440
agt cag ttc atc tct ctg gtg atg ttt ggt ttg atg atg tct gaa gac Ser Gln Phe Ile Ser Leu Val Met Phe Gly Leu Met Met Ser Glu Asp 485 490 495	1488
cga att tca cta caa aac agg agg caa gag atc atc cgt ggc ttg aga Arg Ile Ser Leu Gln Asn Arg Arg Gln Glu Ile Ile Arg Gly Leu Arg 500 505 510	1536
tct tta cct gag ctg atc aag gaa gtg ctg tct ctg gag gag aag atc	1584

1er dépôt

Ser Leu Pro Glu Leu Ile Lys Glu Val Leu Ser Leu Glu Glu Lys Ile			
515	520	525	
cac gac ttg gcc ctg gag ctc tac acg cag aga tcg ctg ctg gtg atg			1632
His Asp Leu Ala Leu Glu Leu Tyr Thr Gln Arg Ser Leu Leu Val Met			
530	535	540	
ggg cgg ggc tac aac tat gcc acc tgc ctg gaa gga gcc ctg aaa att			1680
Gly Arg Gly Tyr Asn Tyr Ala Thr Cys Leu Glu Gly Ala Leu Lys Ile			
545	550	555	560
aaa gag ata acc tac atg cac tca gaa ggc atc ctg gct ggg gag ctg			1728
Lys Glu Ile Thr Tyr Met His Ser Glu Gly Ile Leu Ala Gly Glu Leu			
565	570	575	
aag cac ggg ccc ctg gca ctg att gac aag cag atg ccc gtc atc atg			1776
Lys His Gly Pro Leu Ala Leu Ile Asp Lys Gln Met Pro Val Ile Met			
580	585	590	
gtc att atg aag gat cct tgc ttc gcc aaa tgc cag aac gcc ctg cag			1824
Val Ile Met Lys Asp Pro Cys Phe Ala Lys Cys Gln Asn Ala Leu Gln			
595	600	605	
caa gtc acg gcc cgc cag ggt cgc ccc att ata ctg tgc tcc aag gac			1872
Gln Val Thr Ala Arg Gln Gly Arg Pro Ile Ile Leu Cys Ser Lys Asp			
610	615	620	
gat act gaa agt tcc aag ttt gcg tat aag aca atc gag ctg ccc cac			1920
Asp Thr Glu Ser Ser Lys Phe Ala Tyr Lys Thr Ile Glu Leu Pro His			
625	630	635	640
act gtg gac tgc ctc cag ggc atc ctg agc gtg att ccg ctg cag ctg			1968
Thr Val Asp Cys Leu Gln Gly Ile Leu Ser Val Ile Pro Leu Gln Leu			
645	650	655	
ctg tcc ttc cac ctg gct gtt ctc cga gga tat gac gtt gac ttc ccc			2016
Leu Ser Phe His Leu Ala Val Leu Arg Gly Tyr Asp Val Asp Phe Pro			
660	665	670	
aga aat ctg gcc aag tct gta act gtg gaa tga			2049
Arg Asn Leu Ala Lys Ser Val Thr Val Glu			
675	680		
<210> 4			
<211> 682			
<212> PRT			
<213> Homo sapiens			{
<400> 4			
Met Cys Gly Ile Phe Ala Tyr Met Asn Tyr Arg Val Pro Arg Thr Arg			
1	5	10	15
Lys Glu Ile Phe Glu Thr Leu Ile Lys Gly Leu Gln Arg Leu Glu Tyr			
20	25	30	
Arg Gly Tyr Asp Ser Ala Gly Val Ala Ile Asp Gly Asn Asn His Glu			
35	40	45	
Val Lys Glu Arg His Ile Gln Leu Val Lys Lys Arg Gly Lys Val Lys			
50	55	60	

1er dépôt

Ala Leu Asp Glu Glu Leu Tyr Lys Gln Asp Ser Met Asp Leu Lys Val
65 70 75 80

Glu Phe Glu Thr His Phe Gly Ile Ala His Thr Arg Trp Ala Thr His
85 90 95

Gly Val Pro Ser Ala Val Asn Ser His Pro Gln Arg Ser Asp Lys Gly
100 105 110

Asn Glu Phe Val Val Ile His Asn Gly Ile Ile Thr Asn Tyr Lys Asp
115 120 125

Leu Arg Lys Phe Leu Glu Ser Lys Gly Tyr Glu Phe Glu Ser Glu Thr
130 135 140

Asp Thr Glu Thr Ile Ala Lys Leu Ile Lys Tyr Val Phe Asp Asn Arg
145 150 155 160

Glu Thr Glu Asp Ile Thr Phe Ser Thr Leu Val Glu Arg Val Ile Gln
165 170 175

Gln Leu Glu Gly Ala Phe Ala Leu Val Phe Lys Ser Val His Tyr Pro
180 185 190

Gly Glu Ala Val Ala Thr Arg Arg Gly Ser Pro Leu Leu Ile Gly Val
195 200 205

Arg Ser Lys Tyr Lys Leu Ser Thr Glu Gln Ile Pro Ile Leu Tyr Arg
210 215 220

Thr Cys Thr Leu Glu Asn Val Lys Asn Ile Cys Lys Thr Arg Met Lys
225 230 235 240

Arg Leu Asp Ser Ser Ala Cys Leu His Ala Val Gly Asp Lys Ala Val
245 250 255

Glu Phe Phe Phe Ala Ser Asp Ala Ser Ala Ile Ile Glu His Thr Asn
260 265 270

Arg Val Ile Phe Leu Glu Asp Asp Asp Ile Ala Ala Val Ala Asp Gly
275 280 285

Lys Leu Ser Ile His Arg Val Lys Arg Ser Ala Ser Asp Asp Pro Ser
290 295 300

Arg Ala Ile Gln Thr Leu Gln Met Glu Leu Gln Gln Ile Met Lys Gly
305 310 315 320

Asn Phe Ser Ala Phe Met Gln Lys Glu Ile Phe Glu Gln Pro Glu Ser

1er dépôt

325

330

335

Val Phe Asn Thr Met Arg Gly Arg Val Asn Phe Glu Thr Asn Thr Val
340 345 350

Leu Leu Gly Gly Leu Lys Asp His Leu Lys Glu Ile Arg Arg Cys Arg
355 360 365

Arg Leu Ile Val Ile Gly Cys Gly Thr Ser Tyr His Ala Ala Val Ala
370 375 380

Thr Arg Gln Val Leu Glu Glu Leu Thr Glu Leu Pro Val Met Val Glu
385 390 395 400

Leu Ala Ser Asp Phe Leu Asp Arg Asn Thr Pro Val Phe Arg Asp Asp
405 410 415

Val Cys Phe Phe Ile Ser Gln Ser Gly Glu Thr Ala Asp Thr Leu Leu
420 425 430

Ala Leu Arg Tyr Cys Lys Asp Arg Gly Ala Leu Thr Val Gly Val Thr
435 440 445

Asn Thr Val Gly Ser Ser Ile Ser Arg Glu Thr Asp Cys Gly Val His
450 455 460

Ile Asn Ala Gly Pro Glu Val Gly Val Ala Ser Thr Lys Ala Tyr Thr
465 470 475 480

Ser Gln Phe Ile Ser Leu Val Met Phe Gly Leu Met Met Ser Glu Asp
485 490 495

Arg Ile Ser Leu Gln Asn Arg Arg Gln Glu Ile Ile Arg Gly Leu Arg
500 505 510

Ser Leu Pro Glu Leu Ile Lys Glu Val Leu Ser Leu Glu Glu Lys Ile
515 520 525

His Asp Leu Ala Leu Glu Leu Tyr Thr Gln Arg Ser Leu Leu Val Met
530 535 540

Gly Arg Gly Tyr Asn Tyr Ala Thr Cys Leu Glu Gly Ala Leu Lys Ile
545 550 555 560

Lys Glu Ile Thr Tyr Met His Ser Glu Gly Ile Leu Ala Gly Glu Leu
565 570 575

Lys His Gly Pro Leu Ala Leu Ile Asp Lys Gln Met Pro Val Ile Met
580 585 590

Val Ile Met Lys Asp Pro Cys Phe Ala Lys Cys Gln Asn Ala Leu Gln
595 600 605

Gln Val Thr Ala Arg Gln Gly Arg Pro Ile Ile Leu Cys Ser Lys Asp
610 615 620

Asp Thr Glu Ser Ser Lys Phe Ala Tyr Lys Thr Ile Glu Leu Pro His
625 630 635 640

Thr Val Asp Cys Leu Gln Gly Ile Leu Ser Val Ile Pro Leu Gln Leu
645 650 655

Leu Ser Phe His Leu Ala Val Leu Arg Gly Tyr Asp Val Asp Phe Pro
660 665 670

Arg Asn Leu Ala Lys Ser Val Thr Val Glu
675 680

<210> 5
<211> 2100
<212> ADN
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(2100)
<223>

<220>
<221> misc_feature
<222> (170)..(170)
<223> t ou c

<400> 5
atg tgt ggt ata ttt gct tac tta aac tac cat gtt cct cga acg aga
Met Cys Gly Ile Phe Ala Tyr Leu Asn Tyr His Val Pro Arg Thr Arg
1 5 10 15
48

cga gaa atc ctg gag acc cta atc aaa ggc ctt cag aga ctg gag tac
Arg Glu Ile Leu Glu Thr Leu Ile Lys Gly Leu Gln Arg Leu Glu Tyr
20 25 30
96

aga gga tat gat tct gct ggt gtg gga ttt gat gga ggc aat gat aaa
Arg Gly Tyr Asp Ser Ala Gly Val Gly Phe Asp Gly Gly Asn Asp Lys
35 40 45
144

gat tgg gaa gcc aat gcc tgc aaa anc cag ctt att aag aag aaa gga
Asp Trp Glu Ala Asn Ala Cys Lys Xaa Gln Leu Ile Lys Lys Gly
50 55 60
192

aaa gtt aag gca ctg gat gaa gaa gtt cac aag caa caa gat atg gat
Lys Val Lys Ala Leu Asp Glu Glu Val His Lys Gln Gln Asp Met Asp
65 70 75 80
240

ttg gat ata gaa ttt gat gta cac ctt gga ata gct cat acc cgt tgg
Leu Asp Ile Glu Phe Asp Val His Leu Gly Ile Ala His Thr Arg Trp
85 90 95
288

gca aca cat gga gaa ccc agt cct gtc aat agc cac ccc cag cgc tct Ala Thr His Gly Glu Pro Ser Pro Val Asn Ser His Pro Gln Arg Ser 100 105 110	336
gat aaa aat aat gaa ttt atc gtt att cac aat gga atc atc acc aac Asp Lys Asn Asn Glu Phe Ile Val Ile His Asn Gly Ile Ile Thr Asn 115 120 125	384
tac aaa gac ttg aaa aag ttt ttg gaa agc aaa ggc tat gac ttc gaa Tyr Lys Asp Leu Lys Phe Leu Glu Ser Lys Gly Tyr Asp Phe Glu 130 135 140	432
tct gaa aca gac aca gag aca att gcc aag ctc gtt aag tat atg tat Ser Glu Thr Asp Thr Glu Thr Ile Ala Lys Leu Val Lys Tyr Met Tyr 145 150 155 160	480
gac aat cgg gaa agt caa gat acc agc ttt act acc ttg gtg gag aga Asp Asn Arg Glu Ser Gln Asp Thr Ser Phe Thr Thr Leu Val Glu Arg 165 170 175	528
gtt atc caa caa ttg gaa ggt gct ttt gca ctt gtg ttt aaa agt gtt Val Ile Gln Gln Leu Glu Gly Ala Phe Ala Leu Val Phe Lys Ser Val 180 185 190	576
cat ttt ccc ggg caa gca gtt ggc aca agg cga ggt agc cct ctg ttg His Phe Pro Gly Gln Ala Val Gly Thr Arg Arg Gly Ser Pro Leu Leu 195 200 205	624
att ggt gta cgg agt gaa cat aaa ctt tct act gat cac att cct ata Ile Gly Val Arg Ser Glu His Lys Leu Ser Thr Asp His Ile Pro Ile 210 215 220	672
ctc tac aga aca gct agg act cag att gga tca aaa ttc aca cgg tgg Leu Tyr Arg Thr Ala Arg Thr Gln Ile Gly Ser Lys Phe Thr Arg Trp 225 230 235 240	720
gga tca cag gga gaa aga ggc aaa gac aag aaa gga agc tgc aat ctc Gly Ser Gln Gly Glu Arg Gly Lys Asp Lys Lys Gly Ser Cys Asn Leu 245 250 255	768
tct cgt gtg gac agc aca acc tgc ctt ttc ccg gtg gaa gaa aaa gca Ser Arg Val Asp Ser Thr Thr Cys Leu Phe Pro Val Glu Glu Lys Ala 260 265 270	816
gtg gag tat tac ttt gct tct gat gca agt gct gtc ata gaa cac acc Val Glu Tyr Tyr Phe Ala Ser Asp Ala Ser Ala Val Ile Glu His Thr 275 280 285	864
aat cgc gtc atc ttt ctg gaa gat gat gat gtt gca gca gta gtg gat Asn Arg Val Ile Phe Leu Glu Asp Asp Asp Val Ala Ala Val Val Asp 290 295 300	912
gga cgt ctt tct atc cat cga att aaa cga act gca gga gat cac ccc Gly Arg Leu Ser Ile His Arg Ile Lys Arg Thr Ala Gly Asp His Pro 305 310 315 320	960
gga cga gct gtg caa aca ctc cag atg gaa ctc cag cag atc atg aag Gly Arg Ala Val Gln Thr Leu Gln Met Glu Leu Gln Gln Ile Met Lys 325 330 335	1008
ggc aac ttc agt tca ttt atg cag aag gaa ata ttt gag cag cca gag Gly Asn Phe Ser Ser Phe Met Gln Lys Glu Ile Phe Glu Gln Pro Glu 340 345 350	1056
tct gtc gtg aac aca atg aga gga aga gtc aac ttt gat gac tat act Ser Val Val Asn Thr Met Arg Gly Arg Val Asn Phe Asp Asp Tyr Thr	1104

355

360

365

gtg aat ttg ggt ttg aag gat cac ata aag gag atc cag aga tgc
 Val Asn Leu Gly Gly Leu Lys Asp His Ile Lys Glu Ile Gln Arg Cys 1152
 370 375 380

cgg cgt ttg att ctt att gct tgt gga aca agt tac cat gct ggt gta
 Arg Arg Leu Ile Leu Ile Ala Cys Gly Thr Ser Tyr His Ala Gly Val 1200
 385 390 395 400

gca aca cgt caa gtt ctt gag gag ctg act gag ttg cct gtg atg gtg
 Ala Thr Arg Gln Val Leu Glu Leu Thr Glu Leu Pro Val Met Val 1248
 405 410 415

gaa cta gca agt gac ttc ctg gac aga aac aca cca gtc ttt cga gat
 Glu Leu Ala Ser Asp Phe Leu Asp Arg Asn Thr Pro Val Phe Arg Asp 1296
 420 425 430

gat gtt tgc ttt ttc ctt agt caa tca ggt gag aca gca gat act ttg
 Asp Val Cys Phe Phe Leu Ser Gln Ser Gly Glu Thr Ala Asp Thr Leu 1344
 435 440 445

atg ggt ctt cgt tac tgt aag gag aga gga gct tta act gtg ggg atc
 Met Gly Leu Arg Tyr Cys Lys Glu Arg Gly Ala Leu Thr Val Gly Ile 1392
 450 455 460

aca aac aca gtt ggc agt tcc ata tca cgg gag aca gat tgt gga gtt
 Thr Asn Thr Val Gly Ser Ser Ile Ser Arg Glu Thr Asp Cys Gly Val 1440
 465 470 475 480

cat att aat gct ggt cct gag att ggt gtg gcc agt aca aag gct tat
 His Ile Asn Ala Gly Pro Glu Ile Gly Val Ala Ser Thr Lys Ala Tyr 1488
 485 490 495

acc agc cag ttt gta tcc ctt gtg atg ttt gcc ctt atg atg tgt gat
 Thr Ser Gln Phe Val Ser Leu Val Met Phe Ala Leu Met Met Cys Asp 1536
 500 505 510

gat cgg atc tcc atg caa gaa aga cgc aaa gag atc atg ctt gga ttg
 Asp Arg Ile Ser Met Gln Glu Arg Arg Lys Glu Ile Met Leu Gly Leu 1584
 515 520 525

aaa cgg ctg cct gat ttg att aag gaa gta ctg agc atg gat gac gaa
 Lys Arg Leu Pro Asp Leu Ile Lys Glu Val Leu Ser Met Asp Asp Glu 1632
 530 535 540

att cag aaa cta gca aca gaa ctt tat cat cag aag tca gtt ctg ata
 Ile Gln Lys Leu Ala Thr Glu Leu Tyr His Gln Lys Ser Val Leu Ile 1680
 545 550 555 560

atg gga cga ggc tat cat tat gct act tgt ctt gaa ggg gca ctg aaa
 Met Gly Arg Gly Tyr His Tyr Ala Thr Cys Leu Glu Gly Ala Leu Lys 1728
 565 570 575

atc aaa gaa att act tat atg cac tct gaa ggc atc ctt gct ggt gaa
 Ile Lys Glu Ile Thr Tyr Met His Ser Glu Gly Ile Leu Ala Gly Glu 1776
 580 585 590

ttg aaa cat ggc cct ctg gct ttg gtt gat aaa ttg atg cct gtg atc
 Leu Lys His Gly Pro Leu Ala Leu Val Asp Lys Leu Met Pro Val Ile 1824
 595 600 605

atg atc atc atc aga gat cac act tat gcc aag tgt cag aat gct ctt
 Met Ile Ile Met Arg Asp His Thr Tyr Ala Lys Cys Gln Asn Ala Leu 1872
 610 615 620

1er dépôt

cag caa gtg gtt gct cgg cag ggg cgg cct gtg gta att tgt gat aag Gln Gln Val Val Ala Arg Gln Gly Arg Pro Val Val Ile Cys Asp Lys 625 630 635 640	1920
---	------

gag gat act gag acc att aag aac aca aaa aga acg atc aag gtg ccc Glu Asp Thr Glu Thr Ile Lys Asn Thr Lys Arg Thr Ile Lys Val Pro 645 650 655	1968
---	------

cac tca gtg gac tgc ttg cag ggc att ctc agc gtg atc cct tta cag His Ser Val Asp Cys Leu Gln Gly Ile Leu Ser Val Ile Pro Leu Gln 660 665 670	2016
---	------

ttg ctg gct ttc cac ctt gct gtg ctg aga ggc tat gat gtt gat ttc Leu Leu Ala Phe His Leu Ala Val Leu Arg Gly Tyr Asp Val Asp Phe 675 680 685	2064
---	------

cca cgg aat ctt gcc aaa tct gtg act gta gag tga Pro Arg Asn Leu Ala Lys Ser Val Thr Val Glu 690 695	2100
---	------

<210> 6
<211> 699
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<222> (57)..(57)
<223> Le 'Xaa' en position 57 représente Thr ou Ile.

<400> 6

Met Cys Gly Ile Phe Ala Tyr Leu Asn Tyr His Val Pro Arg Thr Arg
1 5 10 15

Arg Glu Ile Leu Glu Thr Leu Ile Lys Gly Leu Gln Arg Leu Glu Tyr
20 25 30

Arg Gly Tyr Asp Ser Ala Gly Val Gly Phe Asp Gly Gly Asn Asp Lys
35 40 45

Asp Trp Glu Ala Asn Ala Cys Lys Xaa Gln Leu Ile Lys Lys Lys Gly
50 55 60 {

Lys Val Lys Ala Leu Asp Glu Glu Val His Lys Gln Gln Asp Met Asp
65 70 75 80

Leu Asp Ile Glu Phe Asp Val His Leu Gly Ile Ala His Thr Arg Trp
85 90 95

Ala Thr His Gly Glu Pro Ser Pro Val Asn Ser His Pro Gln Arg Ser
100 105 110

Asp Lys Asn Asn Glu Phe Ile Val Ile His Asn Gly Ile Ile Thr Asn
115 120 125

Tyr Lys Asp Leu Lys Phe Leu Glu Ser Lys Gly Tyr Asp Phe Glu

1er dépôt

130 135 140

Ser Glu Thr Asp Thr Glu Thr Ile Ala Lys Leu Val Lys Tyr Met Tyr
145 150 155 160

Asp Asn Arg Glu Ser Gln Asp Thr Ser Phe Thr Thr Leu Val Glu Arg
165 170 175

Val Ile Gln Gln Leu Glu Gly Ala Phe Ala Leu Val Phe Lys Ser Val
180 185 190

His Phe Pro Gly Gln Ala Val Gly Thr Arg Arg Gly Ser Pro Leu Leu
195 200 205

Ile Gly Val Arg Ser Glu His Lys Leu Ser Thr Asp His Ile Pro Ile
210 215 220

Leu Tyr Arg Thr Ala Arg Thr Gln Ile Gly Ser Lys Phe Thr Arg Trp
225 230 235 240

Gly Ser Gln Gly Glu Arg Gly Lys Asp Lys Lys Gly Ser Cys Asn Leu
245 250 255

Ser Arg Val Asp Ser Thr Thr Cys Leu Phe Pro Val Glu Glu Lys Ala
260 265 270

Val Glu Tyr Tyr Phe Ala Ser Asp Ala Ser Ala Val Ile Glu His Thr
275 280 285

Asn Arg Val Ile Phe Leu Glu Asp Asp Asp Val Ala Ala Val Val Asp
290 295 300

Gly Arg Leu Ser Ile His Arg Ile Lys Arg Thr Ala Gly Asp His Pro
305 310 315 320

Gly Arg Ala Val Gln Thr Leu Gln Met Glu Leu Gln Gln Ile Met Lys
325 330 335

Gly Asn Phe Ser Ser Phe Met Gln Lys Glu Ile Phe Glu Gln Pro Glu
340 345 350

Ser Val Val Asn Thr Met Arg Gly Arg Val Asn Phe Asp Asp Tyr Thr
355 360 365

Val Asn Leu Gly Gly Leu Lys Asp His Ile Lys Glu Ile Gln Arg Cys
370 375 380

Arg Arg Leu Ile Leu Ile Ala Cys Gly Thr Ser Tyr His Ala Gly Val
385 390 395 400

Ala Thr Arg Gln Val Leu Glu Glu Leu Thr Glu Leu Pro Val Met Val
405 410 415

Glu Leu Ala Ser Asp Phe Leu Asp Arg Asn Thr Pro Val Phe Arg Asp
420 425 430

Asp Val Cys Phe Phe Leu Ser Gln Ser Gly Glu Thr Ala Asp Thr Leu
435 440 445

Met Gly Leu Arg Tyr Cys Lys Glu Arg Gly Ala Leu Thr Val Gly Ile
450 455 460

Thr Asn Thr Val Gly Ser Ser Ile Ser Arg Glu Thr Asp Cys Gly Val
465 470 475 480

His Ile Asn Ala Gly Pro Glu Ile Gly Val Ala Ser Thr Lys Ala Tyr
485 490 495

Thr Ser Gln Phe Val Ser Leu Val Met Phe Ala Leu Met Met Cys Asp
500 505 510

Asp Arg Ile Ser Met Gln Glu Arg Arg Lys Glu Ile Met Leu Gly Leu
515 520 525

Lys Arg Leu Pro Asp Leu Ile Lys Glu Val Leu Ser Met Asp Asp Glu
530 535 540

Ile Gln Lys Leu Ala Thr Glu Leu Tyr His Gln Lys Ser Val Leu Ile
545 550 555 560

Met Gly Arg Gly Tyr His Tyr Ala Thr Cys Leu Glu Gly Ala Leu Lys
565 570 575

Ile Lys Glu Ile Thr Tyr Met His Ser Glu Gly Ile Leu Ala Gly Glu
580 585 590

Leu Lys His Gly Pro Leu Ala Leu Val Asp Lys Leu Met Pro Val Ile
595 600 605

Met Ile Ile Met Arg Asp His Thr Tyr Ala Lys Cys Gln Asn Ala Leu
610 615 620

Gln Gln Val Val Ala Arg Gln Gly Arg Pro Val Val Ile Cys Asp Lys
625 630 635 640

Glu Asp Thr Glu Thr Ile Lys Asn Thr Lys Arg Thr Ile Lys Val Pro
645 650 655

His Ser Val Asp Cys Leu Gln Gly Ile Leu Ser Val Ile Pro Leu Gln

1er dépôt

660

665

670

Leu Leu Ala Phe His Leu Ala Val Leu Arg Gly Tyr Asp Val Asp Phe
675 .680 .685

Pro Arg Asn Leu Ala Lys Ser Val Thr Val Glu
690 695

<210> 7
<211> 2064
<212> ADN
<213> Séquence artificielle

<220>
<223> GFAT1 modifiée par une étiquette de purification interne

<220>
<221> CDS
<222> (1)..(2064)
<223>

```
<220>
<221> misc_feature
<222> (170)..(170)
<223> t ou c
```

<400> 7
atg tgt ggt ata ttt gct tac tta aac tac cat gtt cct cga acg aga
Met Cys Gly Ile Phe Ala Tyr Leu Asn Tyr His Val Pro Arg Thr Arg
1 5 10 15

48

cga gaa atc ctg gag acc cta atc aaa ggc ctt cag aga ctg gag tac
 Arg Glu Ile Leu Glu Thr Leu Ile Lys Gly Leu Gln Arg Leu Glu Tyr
 20 25 30

95

```

aga gga tat gat tct gct ggt gtg gga ttt gat gga ggc aat gat aac
Arg Gly Tyr Asp Ser Ala Gly Val Gly Phe Asp Gly Asn Asp Lys
      35          40          45

```

144

```

gat tgg gaa gcc aat gcc tgc aaa anc cag ctt att aag aag aaa gga
Asp Trp Glu Ala Asn Ala Cys Lys Xaa Gln Leu Ile Lys Lys Lys Gly
      50          55          60

```

192

aaa gtt aag gca ctg gat gaa gaa gtt cac aag caa caa gat atg' gat
 Lys Val Lys Ala Leu Asp Glu Glu Val His Lys Gln Gln Asp Met Asp
 65 70 75 80

240

ttg gat ata gaa ttt gat gta cac ctt gga ata gct cat acc cgt tgg
 Leu Asp Ile Glu Phe Asp Val His Leu Gly Ile Ala His Thr Arg Trp
 85 90 95

288

```

gca aca cat gga gaa ccc agt cct gtc aat agc cac ccc cag cgc tct
Ala Thr His Gly Glu Pro Ser Pro Val Asn Ser His Pro Gln Arg Ser
          100           105           110

```

336

gat aaa aat aat gaa ttt atc gtt att cac aat gga atc atc acc aac
Asp Lys Asn Asn Glu Phe Ile Val Ile His Asn Gly Ile Ile Thr Asn
115 120 125

384

tac aaa gac ttg aaa aag ttt ttg gaa agc aaa ggc tat gac ttc gaa
 Tyr Lys Asp Leu Lys Phe Leu Glu Ser Lys Gly Tyr Asp Phe Glu
 130 135 140

432

1er dépôt

tct gaa aca gac aca gag aca att gcc aag ctc gtt aag tat atg tat Ser Glu Thr Asp Thr Glu Thr Ile Ala Lys Leu Val Lys Tyr Met Tyr 145 150 155 160	480
gac aat cgg gaa agt caa gat acc agc ttt act acc ttg gtg gag aga Asp Asn Arg Glu Ser Gln Asp Thr Ser Phe Thr Thr Leu Val Glu Arg 165 170 175	528
gtt atc caa caa ttg gaa ggt gct ttt gca ctt gtg ttt aaa agt gtt Val Ile Gln Gln Leu Glu Gly Ala Phe Ala Leu Val Phe Lys Ser Val 180 185 190	576
cat ttt ccc ggg caa gca gtt ggc aca agg cga ggt agc cct ctg ttg His Phe Pro Gly Gln Ala Val Gly Thr Arg Arg Gly Ser Pro Leu Leu 195 200 205	624
att ggt gta cgg agt gaa cat aaa ctt tct act gat cac att cct ata Ile Gly Val Arg Ser Glu His Lys Leu Ser Thr Asp His Ile Pro Ile 210 215 220	672
ctc tac aga aca ggc aaa gac aag aaa gga agc tgc aat ctc tct cgt Leu Tyr Arg Thr Gly Lys Asp Lys Gly Ser Cys Asn Leu Ser Arg 225 230 235 240	720
gtg gac agc aca acc tgc ctt ttc ccg gtg gaa gaa aaa gca gtg gag Val Asp Ser Thr Cys Leu Phe Pro Val Glu Glu Lys Ala Val Glu 245 250 255	768
tat tac ttt gct tct gat gca agt gct gtc ata gaa cac acc aat cgc Tyr Tyr Phe Ala Ser Asp Ala Ser Ala Val Ile Glu His Thr Asn Arg 260 265 270	816
gtc atc ttt ctg gaa gat gat gat gtt gca gca gta gtg gat gga cgt Val Ile Phe Leu Glu Asp Asp Val Ala Val Val Asp Gly Arg 275 280 285	864
ctt tct atc cat cga att aaa cga act gca gga cat cac cat cac cat Leu Ser Ile His Arg Ile Lys Arg Thr Ala Gly His His His His His 290 295 300	912
cac gat cac ccc gga cga gct gtg caa aca ctc cag atg gaa ctc cag His Asp His Pro Gly Arg Ala Val Gln Thr Leu Gln Met Glu Leu Gln 305 310 315 320	960
cag atc atg aag ggc aac ttc agt tca ttt atg cag aag gaa ata ttt Gln Ile Met Lys Gly Asn Phe Ser Ser Phe Met Gln Lys Glu Ile Phe 325 330 335	1008
gag cag cca gag tct gtc gtg aac aca atg aga gga aga gtc aac ttt Glu Gln Pro Glu Ser Val Val Asn Thr Met Arg Gly Arg Val Asn Phe 340 345 350	1056
gat gac tat act gtg aat ttg ggt ggt ttg aag gat cac ata aag gag Asp Asp Tyr Thr Val Asn Leu Gly Gly Leu Lys Asp His Ile Lys Glu 355 360 365	1104
atc cag aga tgc cgg cgt ttg att ctt att gct tgt gga aca agt tac Ile Gln Arg Cys Arg Arg Leu Ile Leu Ile Ala Cys Gly Thr Ser Tyr 370 375 380	1152
cat gct ggt gta gca aca cgt caa gtt ctt gag gag ctg act gag ttg His Ala Gly Val Ala Thr Arg Gln Val Leu Glu Glu Leu Thr Glu Leu 385 390 395 400	1200
cct gtg atg gtg gaa cta gca agt gac ttc ctg gac aga aac aca cca	1248

101

Pro Val Met Val Glu Leu Ala Ser Asp Phe Leu Asp Arg Asn Thr Pro		
405	410	415
gtc ttt cga gat gat gtt tgc ttt ttc ctt agt caa tca ggt gag aca		
Val Phe Arg Asp Asp Val Cys Phe Phe Leu Ser Gln Ser Gly Glu Thr		
420	425	430
gca gat act ttg atg ggt ctt cgt tac tgt aag gag aga gga gct tta		
Ala Asp Thr Leu Met Gly Leu Arg Tyr Cys Lys Glu Arg Gly Ala Leu		
435	440	445
act gtg ggg atc aca aac aca gtt ggc agt tcc ata tca cgg gag aca		
Thr Val Gly Ile Thr Asn Thr Val Gly Ser Ser Ile Ser Arg Glu Thr		
450	455	460
gat tgt gga gtt cat att aat gct ggt cct gag att ggt gtg gcc agt		
Asp Cys Gly Val His Ile Asn Ala Gly Pro Glu Ile Gly Val Ala Ser		
465	470	475
480		
aca aag gct tat acc agc cag ttt gta tcc ctt gtg atg ttt gcc ctt		
Thr Lys Ala Tyr Thr Ser Gln Phe Val Ser Leu Val Met Phe Ala Leu		
485	490	495
atg atg tgt gat gat cgg atc tcc atg caa gaa aga cgc aaa gag atc		
Met Met Cys Asp Asp Arg Ile Ser Met Gln Glu Arg Arg Lys Glu Ile		
500	505	510
atg ctt gga ttg aaa cgg ctg cct gat ttg att aag gaa gta ctg agc		
Met Leu Gly Leu Lys Arg Leu Pro Asp Leu Ile Lys Glu Val Leu Ser		
515	520	525
atg gat gac gaa att cag aaa cta gca aca gaa ctt tat cat cag aag		
Met Asp Asp Glu Ile Gln Lys Leu Ala Thr Glu Leu Tyr His Gln Lys		
530	535	540
tca gtt ctg ata atg gga cga ggc tat cat tat gct act tgt ctt gaa		
Ser Val Leu Ile Met Gly Arg Gly Tyr His Tyr Ala Thr Cys Leu Glu		
545	550	555
560		
ggg gca ctg aaa atc aaa gaa att act tat atg cac tct gaa ggc atc		
Gly Ala Leu Lys Ile Lys Glu Ile Thr Tyr Met His Ser Glu Gly Ile		
565	570	575
ctt gct ggt gaa ttg aaa cat ggc cct ctg gct ttg gtg gat aaa ttg		
Leu Ala Gly Glu Leu Lys His Gly Pro Leu Ala Leu Val Asp Lys Leu		
580	585	590
atg cct gtg atc atc atc atg aga gat cac act tat gcc aag tgt		
Met Pro Val Ile Met Ile Ile Met Arg Asp His Thr Tyr Ala Lys Cys		
595	600	605
cag aat gct ctt cag caa gtg gtt gct cgg cag ggg cgg cct gtg gta		
Gln Asn Ala Leu Gln Gln Val Val Ala Arg Gln Gly Arg Pro Val Val		
610	615	620
1872		
att tgt gat aag gag gat act gag acc att aag aac aca aaa aga acg		
Ile Cys Asp Lys Glu Asp Thr Glu Thr Ile Lys Asn Thr Lys Arg Thr		
625	630	635
640		
atc aag gtg ccc cac tca gtg gac tgc ttg cag ggc att ctc agc gtg		
Ile Lys Val Pro His Ser Val Asp Cys Leu Gln Gly Ile Leu Ser Val		
645	650	655
1968		
atc cct tta cag ttg ctg gct ttc cac ctt gct gtg ctg aga ggc tat		
Ile Pro Leu Gln Leu Leu Ala Phe His Leu Ala Val Leu Arg Gly Tyr		
660	665	670
2016		

2064

gat gtt gat ttc cca cg aat ctt gcc aaa tct gtg act gta gag tga
 - Asp Val Asp Phe Pro Arg Asn Leu Ala Lys Ser Val Thr Val Glu
 675 680 685

<210> 8
 <211> 687
 <212> PRT
 <213> Séquence artificielle

<220>
 <221> misc_feature
 <222> (57)..(57)
 <223> Le 'Xaa' en position 57 représente Thr ou Ile.
 <220>
 <223> GFAT1 modifiée par une étiquette de purification interne
 <400> 8

Met Cys Gly Ile Phe Ala Tyr Leu Asn Tyr His Val Pro Arg Thr Arg
 1 5 10 15

Arg Glu Ile Leu Glu Thr Leu Ile Lys Gly Leu Gln Arg Leu Glu Tyr
 20 25 30

Arg Gly Tyr Asp Ser Ala Gly Val Gly Phe Asp Gly Gly Asn Asp Lys
 35 40 45

Asp Trp Glu Ala Asn Ala Cys Lys Xaa Gln Leu Ile Lys Lys Lys Gly
 50 55 60

Lys Val Lys Ala Leu Asp Glu Glu Val His Lys Gln Gln Asp Met Asp
 65 70 75 80

Leu Asp Ile Glu Phe Asp Val His Leu Gly Ile Ala His Thr Arg Trp
 85 90 95

Ala Thr His Gly Glu Pro Ser Pro Val Asn Ser His Pro Gln Arg Ser
 100 105 110

Asp Lys Asn Asn Glu Phe Ile Val Ile His Asn Gly Ile Ile Thr Asn
 115 120 125

Tyr Lys Asp Leu Lys Lys Phe Leu Glu Ser Lys Gly Tyr Asp Phe Glu
 130 135 140

Ser Glu Thr Asp Thr Glu Thr Ile Ala Lys Leu Val Lys Tyr Met Tyr
 145 150 155 160

Asp Asn Arg Glu Ser Gln Asp Thr Ser Phe Thr Thr Leu Val Glu Arg
 165 170 175

Val Ile Gln Gln Leu Glu Gly Ala Phe Ala Leu Val Phe Lys Ser Val

180

185

190

His Phe Pro Gly Gln Ala Val Gly Thr Arg Arg Gly Ser Pro Leu Leu
195 200 205

Ile Gly Val Arg Ser Glu His Lys Leu Ser Thr Asp His Ile Pro Ile
210 215 220

Leu Tyr Arg Thr Gly Lys Asp Lys Lys Gly Ser Cys Asn Leu Ser Arg
225 230 235 240

Val Asp Ser Thr Thr Cys Leu Phe Pro Val Glu Glu Lys Ala Val Glu
245 250 255

Tyr Tyr Phe Ala Ser Asp Ala Ser Ala Val Ile Glu His Thr Asn Arg
260 265 270

Val Ile Phe Leu Glu Asp Asp Asp Val Ala Ala Val Val Asp Gly Arg
275 280 285

Leu Ser Ile His Arg Ile Lys Arg Thr Ala Gly His His His His His
290 295 300

His Asp His Pro Gly Arg Ala Val Gln Thr Leu Gln Met Glu Leu Gln
305 310 315 320

Gln Ile Met Lys Gly Asn Phe Ser Ser Phe Met Gln Lys Glu Ile Phe
325 330 335

Glu Gln Pro Glu Ser Val Val Asn Thr Met Arg Gly Arg Val Asn Phe
340 345 350

Asp Asp Tyr Thr Val Asn Leu Gly Gly Leu Lys Asp His Ile Lys Glu
355 360 365

Ile Gln Arg Cys Arg Arg Leu Ile Leu Ile Ala Cys Gly Thr Ser Tyr
370 375 380

His Ala Gly Val Ala Thr Arg Gln Val Leu Glu Glu Leu Thr Glu Leu
385 390 395 400

Pro Val Met Val Glu Leu Ala Ser Asp Phe Leu Asp Arg Asn Thr Pro
405 410 415

Val Phe Arg Asp Asp Val Cys Phe Phe Leu Ser Gln Ser Gly Glu Thr
420 425 430

Ala Asp Thr Leu Met Gly Leu Arg Tyr Cys Lys Glu Arg Gly Ala Leu
435 440 445

Thr Val Gly Ile Thr Asn Thr Val Gly Ser Ser Ile Ser Arg Glu Thr
 450 455 460

Asp Cys Gly Val His Ile Asn Ala Gly Pro Glu Ile Gly Val Ala Ser
 465 470 475 480

Thr Lys Ala Tyr Thr Ser Gln Phe Val Ser Leu Val Met Phe Ala Leu
 485 490 495

Met Met Cys Asp Asp Arg Ile Ser Met Gln Glu Arg Arg Lys Glu Ile
 500 505 510

Met Leu Gly Leu Lys Arg Leu Pro Asp Leu Ile Lys Glu Val Leu Ser
 515 520 525

Met Asp Asp Glu Ile Gln Lys Leu Ala Thr Glu Leu Tyr His Gln Lys
 530 535 540

Ser Val Leu Ile Met Gly Arg Gly Tyr His Tyr Ala Thr Cys Leu Glu
 545 550 555 560

Gly Ala Leu Lys Ile Lys Glu Ile Thr Tyr Met His Ser Glu Gly Ile
 565 570 575

Leu Ala Gly Glu Leu Lys His Gly Pro Leu Ala Leu Val Asp Lys Leu
 580 585 590

Met Pro Val Ile Met Ile Ile Met Arg Asp His Thr Tyr Ala Lys Cys
 595 600 605

Gln Asn Ala Leu Gln Gln Val Val Ala Arg Gln Gly Arg Pro Val Val
 610 615 620

Ile Cys Asp Lys Glu Asp Thr Glu Thr Ile Lys Asn Thr Lys Arg Thr
 625 630 635 640

Ile Lys Val Pro His Ser Val Asp Cys Leu Gln Gly Ile Leu Ser Val
 645 650 655

Ile Pro Leu Gln Leu Leu Ala Phe His Leu Ala Val Leu Arg Gly Tyr
 660 665 670

Asp Val Asp Phe Pro Arg Asn Leu Ala Lys Ser Val Thr Val Glu
 675 680 685

<210> 9
<211> 2067
<212> ADN
<213> Séquence artificielle

181 **usepuru**

<220>
<223> GFAT2 modifiée par une étiquette de purification interne

<220>
<221> CDS
<222> (1)..(2067)
<223>

<400> 9
 atg tgc gga atc ttt gcc tac atg aac tac aga gtc ccc cg_g acg agg
 Met Cys Gly Ile Phe Ala Tyr Met Asn Tyr Arg Val Pro Arg Thr Arg
 1 5 10 15
 aag gag atc ttc gaa acc ctc atc aag ggc ctg cag cg_g ctg gag tac
 Lys Glu Ile Phe Glu Thr Leu Ile Lys Gly Leu Gln Arg Leu Glu Tyr
 20 25 30
 aga ggc tac gac tcg gca ggt gtg gcg atc gat ggg aat aat cac gaa
 Arg Gly Tyr Asp Ser Ala Gly Val Ala Ile Asp Gly Asn Asn His Glu
 35 40 45
 gtc aaa gaa aga cac att cag ctg gtc aag aaa agg ggg aaa gtc aag
 Val Lys Glu Arg His Ile Gln Leu Val Lys Lys Arg Gly Lys Val Lys
 50 55 60
 gct ctc gat gaa gaa ctt tac aaa caa gac agc atg gac tta aaa gtg
 Ala Leu Asp Glu Glu Leu Tyr Lys Gln Asp Ser Met Asp Leu Lys Val
 65 70 75 80
 gag ttt gag aca cac ttc ggc att gcc cac acg cgc tgg gcc acc cac
 Glu Phe Glu Thr His Phe Gly Ile Ala His Thr Arg Trp Ala Thr His
 85 90 95
 ggg gtc ccc agt gct gtc aac agc cac cct cag cgc tca gac aaa ggc
 Gly Val Pro Ser Ala Val Asn Ser His Pro Gln Arg Ser Asp Lys Gly
 100 105 110
 aac gaa ttt gtt gtc atc cac aat ggg atc atc aca aat tac aaa gat
 Asn Glu Phe Val Val Ile His Asn Gly Ile Ile Thr Asn Tyr Lys Asp
 115 120 125
 ctg agg aaa ttt ctg gaa agc aaa ggc tac gag ttt gag tca gaa aca
 Leu Arg Lys Phe Leu Glu Ser Lys Gly Tyr Glu Phe Glu Ser Glu Thr
 130 135 140
 gat aca gag acc atc gcc aag ctg att aaa tat gtg ttc gac aac aga
 Asp Thr Glu Thr Ile Ala Lys Leu Ile Lys Tyr Val Phe Asp Asn Arg
 145 150 155 160
 gaa act gag gac att acg ttt tca acg ttg gtc gag aga gtc att cag
 Glu Thr Glu Asp Ile Thr Phe Ser Thr Leu Val Glu Arg Val Ile Gln
 165 170 175
 cag ttg gaa ggt gca ttc gc_g ctg gtt ttc aag agt gtc cac tac cca
 Gln Leu Glu Gly Ala Phe Ala Leu Val Phe Lys Ser Val His Tyr Pro
 180 185 190
 gga gaa gcc gtt gcc aca cg_g aga ggc agc ccc ctg ctc atc gga gtc
 Gly Glu Ala Val Ala Thr Arg Arg Gly Ser Pro Leu Leu Ile Gly Val
 195 200 205
 cgg agc aaa tac aag ctc tcc aca gaa cag atc cct atc tta tac agg
 Arg Ser Lys Tyr Lys Leu Ser Thr Glu Gln Ile Pro Ile Leu Tyr Arg
 210 215 220
 acg tgc act ctg gag aat gtg aag aat atc tgt aag aca cgg atg aag
 225 230 235

Thr Cys Thr Leu Glu Asn Val Lys Asn Ile Cys Lys Thr Arg Met Lys
 225 230 235 240
 agg ctg gac agc tcc gcc tgc ctg cat gct gtg ggc gac aag gcc gtg 768
 Arg Leu Asp Ser Ser Ala Cys Leu His Ala Val Gly Asp Lys Ala Val
 245 250 255
 gaa ttc ttc ttt gct tct gat gca agc gct atc ata gag cac acc aac 816
 Glu Phe Phe Ala Ser Asp Ala Ser Ala Ile Ile Glu His Thr Asn
 260 265 270
 cggtt gtc atc ttc ctg gag gac gat gac atc gcc gca gtg gct gat ggg 864
 Arg Val Ile Phe Leu Glu Asp Asp Asp Ile Ala Ala Val Ala Asp Gly
 275 280 285
 aaa ctc tcc att cac cgg gtc aag cgc tcg gcc agt cat cac cat cac 912
 Lys Leu Ser Ile His Arg Val Lys Arg Ser Ala Ser His His His His
 290 295 300
 cat cac gat gac cca tct cga gcc atc cag acc ttg cag atg gaa ctg 960
 His His Asp Asp Pro Ser Arg Ala Ile Gln Thr Leu Gln Met Glu Leu
 305 310 315 320
 cag caa atc atg aaa ggt aac ttc agt gcg ttt atg cag aag gag atc 1008
 Gln Gln Ile Met Lys Gly Asn Phe Ser Ala Phe Met Gln Lys Glu Ile
 325 330 335
 ttc gaa cag cca gaa tca gtt ttc aat act atg aga ggt cgg gtg aat 1056
 Phe Glu Gln Pro Glu Ser Val Phe Asn Thr Met Arg Gly Arg Val Asn
 340 345 350
 ttt gaa acc aac aca gtg ctc ctg ggt ggc ttg aag gac cac ttg aag 1104
 Phe Glu Thr Asn Thr Val Leu Leu Gly Gly Leu Lys Asp His Leu Lys
 355 360 365
 gag att cga cga tgc cga cgg ctc atc gtg att ggc tgt gga acc agc 1152
 Glu Ile Arg Arg Cys Arg Arg Leu Ile Val Ile Gly Cys Gly Thr Ser
 370 375 380
 tac cac gct gcc gtg gct acg cgg caa gtt ttg gag gaa ctg act gag 1200
 Tyr His Ala Ala Val Ala Thr Arg Gln Val Leu Glu Glu Leu Thr Glu
 385 390 395 400
 ctt cct gtg atg gtt gaa ctt gct agt gat ttt ctg gac agg aac aca 1248
 Leu Pro Val Met Val Glu Leu Ala Ser Asp Phe Leu Asp Arg Asn Thr
 405 410 415
 cct gtg ttc agg gat gac gtt tgc ttt ttc atc agc cag tca ggc gag 1296
 Pro Val Phe Arg Asp Asp Val Cys Phe Phe Ile Ser Gln Ser Gly Glu
 420 425 430
 acc gcg gac acc ctc ctg gcg ctg cgc tac tgt aag gac cgc ggc gct 1344
 Thr Ala Asp Thr Leu Leu Ala Leu Arg Tyr Cys Lys Asp Arg Gly Ala
 435 440 445
 ctc acc gtg ggc gtc acc aac acc gtg ggc agc tcc atc tct cgc gag 1392
 Leu Thr Val Gly Val Thr Asn Thr Val Gly Ser Ser Ile Ser Arg Glu
 450 455 460
 acc gac tgc ggc gtc cac atc aac gca ggg ccg gag gtc ggc gtg gcc 1440
 Thr Asp Cys Gly Val His Ile Asn Ala Gly Pro Glu Val Gly Val Ala
 465 470 475 480
 agc acc aag gct tat acc agt cag ttc atc tct ctg gtg atg ttt ggt 1488
 Ser Thr Lys Ala Tyr Thr Ser Gln Phe Ile Ser Leu Val Met Phe Gly
 485 490 495

TER UEPOL

ttg atg atg tct gaa gac cga att tca cta caa aac agg agg caa gag Leu Met Met Ser Glu Asp Arg Ile Ser Leu Gln Asn Arg Arg Gln Glu 500 505 510	1536
atc atc cgt ggc ttg aga tct tta cct gag ctg atc aag gaa gtg ctg Ile Ile Arg Gly Leu Arg Ser Leu Pro Glu Leu Ile Lys Glu Val Leu 515 520 525	1584
tct ctg gag gag aag atc cac gac ttg gcc ctg gag ctc tac acg cag Ser Leu Glu Glu Lys Ile His Asp Leu Ala Leu Glu Leu Tyr Thr Gln 530 535 540	1632
aga tcg ctg ctg gtg atg ggg cggtt ggc tac aac tat gcc acc tgc ctg Arg Ser Leu Leu Val Met Gly Arg Gly Tyr Asn Tyr Ala Thr Cys Leu 545 550 555 560	1680
gaa gga gcc ctg aaa att aaa gag ata acc tac atg cac tca gaa ggc Glu Gly Ala Leu Lys Ile Lys Glu Ile Thr Tyr Met His Ser Glu Gly 565 570 575	1728
atc ctg gct ggg gag ctg aag cac ggg ccc ctg gca ctg att gac aag Ile Leu Ala Gly Glu Leu Lys His Gly Pro Leu Ala Leu Ile Asp Lys 580 585 590 590	1776
cag atg ccc gtc atc atg gtc att atg aag gat cct tgc ttc gcc aaa Gln Met Pro Val Ile Met Val Ile Met Lys Asp Pro Cys Phe Ala Lys 595 600 605	1824
tgc cag aac gcc ctg cag caa gtc acg gcc cgc cag ggt cgc ccc att Cys Gln Asn Ala Leu Gln Gln Val Thr Ala Arg Gln Gly Arg Pro Ile 610 615 620	1872
ata ctg tgc tcc aag gac gat act gaa agt tcc aag ttt gcg tat aag Ile Leu Cys Ser Lys Asp Asp Thr Glu Ser Ser Lys Phe Ala Tyr Lys 625 630 635 640	1920
aca atc gag ctg ccc cac act gtg gac tgc ctc cag ggc atc ctg agc Thr Ile Glu Leu Pro His Thr Val Asp Cys Leu Gln Gly Ile Leu Ser 645 650 655	1968
gtg att ccg ctg cag ctg ctg tcc ttc cac ctg gct gtt ctc cga gga Val Ile Pro Leu Gln Leu Leu Ser Phe His Leu Ala Val Leu Arg Gly 660 665 670	2016
tat gac gtt gac ttc ccc aga aat ctg gcc aag tct gta act gtg gaa Tyr Asp Val Asp Phe Pro Arg Asn Leu Ala Lys Ser Val Thr Val Glu 675 680 685	2064
tga	2067

<210> 10
<211> 688
<212> PRT
<213> Séquence artificielle

<220>
<223> GFAT2 modifiée par une étiquette de purification interne
<400> 10

Met Cys Gly Ile Phe Ala Tyr Met Asn Tyr Arg Val Pro Arg Thr Arg
1 5 10 15

Lys Glu Ile Phe Glu Thr Leu Ile Lys Gly Leu Gln Arg Leu Glu Tyr
 20 25 30

Arg Gly Tyr Asp Ser Ala Gly Val Ala Ile Asp Gly Asn Asn His Glu
 35 40 45

Val Lys Glu Arg His Ile Gln Leu Val Lys Lys Arg Gly Lys Val Lys
 50 55 60

Ala Leu Asp Glu Glu Leu Tyr Lys Gln Asp Ser Met Asp Leu Lys Val
 65 70 75 80

Glu Phe Glu Thr His Phe Gly Ile Ala His Thr Arg Trp Ala Thr His
 85 90 95

Gly Val Pro Ser Ala Val Asn Ser His Pro Gln Arg Ser Asp Lys Gly
 100 105 110

Asn Glu Phe Val Val Ile His Asn Gly Ile Ile Thr Asn Tyr Lys Asp
 115 120 125

Leu Arg Lys Phe Leu Glu Ser Lys Gly Tyr Glu Phe Glu Ser Glu Thr
 130 135 140

Asp Thr Glu Thr Ile Ala Lys Leu Ile Lys Tyr Val Phe Asp Asn Arg
 145 150 155 160

Glu Thr Glu Asp Ile Thr Phe Ser Thr Leu Val Glu Arg Val Ile Gln
 165 170 175

Gln Leu Glu Gly Ala Phe Ala Leu Val Phe Lys Ser Val His Tyr Pro
 180 185 190

Gly Glu Ala Val Ala Thr Arg Arg Gly Ser Pro Leu Leu Ile Gly Val
 195 200 205

Arg Ser Lys Tyr Lys Leu Ser Thr Glu Gln Ile Pro Ile Leu Tyr Arg
 210 215 220

Thr Cys Thr Leu Glu Asn Val Lys Asn Ile Cys Lys Thr Arg Met Lys
 225 230 235 240

Arg Leu Asp Ser Ser Ala Cys Leu His Ala Val Gly Asp Lys Ala Val
 245 250 255

Glu Phe Phe Phe Ala Ser Asp Ala Ser Ala Ile Ile Glu His Thr Asn
 260 265 270

Arg Val Ile Phe Leu Glu Asp Asp Asp Ile Ala Ala Val Ala Asp Gly
 275 280 285

Lys Leu Ser Ile His Arg Val Lys Arg Ser Ala Ser His His His His
290 295 300

His His Asp Asp Pro Ser Arg Ala Ile Gln Thr Leu Gln Met Glu Leu
305 310 315 320

Gln Gln Ile Met Lys Gly Asn Phe Ser Ala Phe Met Gln Lys Glu Ile
325 330 335

Phe Glu Gln Pro Glu Ser Val Phe Asn Thr Met Arg Gly Arg Val Asn
340 345 350

Phe Glu Thr Asn Thr Val Leu Leu Gly Gly Leu Lys Asp His Leu Lys
355 360 365

Glu Ile Arg Arg Cys Arg Arg Leu Ile Val Ile Gly Cys Gly Thr Ser
370 375 380

Tyr His Ala Ala Val Ala Thr Arg Gln Val Leu Glu Glu Leu Thr Glu
385 390 395 400

Leu Pro Val Met Val Glu Leu Ala Ser Asp Phe Leu Asp Arg Asn Thr
405 410 415

Pro Val Phe Arg Asp Asp Val Cys Phe Phe Ile Ser Gln Ser Gly Glu
420 425 430

Thr Ala Asp Thr Leu Leu Ala Leu Arg Tyr Cys Lys Asp Arg Gly Ala
435 440 445

Leu Thr Val Gly Val Thr Asn Thr Val Gly Ser Ser Ile Ser Arg Glu
450 455 460

Thr Asp Cys Gly Val His Ile Asn Ala Gly Pro Glu Val Gly Val Ala
465 470 475 480

Ser Thr Lys Ala Tyr Thr Ser Gln Phe Ile Ser Leu Val Met Phe Gly
485 490 495

Leu Met Met Ser Glu Asp Arg Ile Ser Leu Gln Asn Arg Arg Gln Glu
500 505 510

Ile Ile Arg Gly Leu Arg Ser Leu Pro Glu Leu Ile Lys Glu Val Leu
515 520 525

Ser Leu Glu Glu Lys Ile His Asp Leu Ala Leu Glu Leu Tyr Thr Gln
530 535 540

Arg Ser Leu Leu Val Met Gly Arg Gly Tyr Asn Tyr Ala Thr Cys Leu
545 550 555 560

Glu Gly Ala Leu Lys Ile Lys Glu Ile Thr Tyr Met His Ser Glu Gly
565 570 575

Ile Leu Ala Gly Glu Leu Lys His Gly Pro Leu Ala Leu Ile Asp Lys
580 585 590

Gln Met Pro Val Ile Met Val Ile Met Lys Asp Pro Cys Phe Ala Lys
595 600 605

Cys Gln Asn Ala Leu Gln Gln Val Thr Ala Arg Gln Gly Arg Pro Ile
610 615 620

Ile Leu Cys Ser Lys Asp Asp Thr Glu Ser Ser Lys Phe Ala Tyr Lys
625 630 635 640

Thr Ile Glu Leu Pro His Thr Val Asp Cys Leu Gln Gly Ile Leu Ser
645 650 655

Val Ile Pro Leu Gln Leu Leu Ser Phe His Leu Ala Val Leu Arg Gly
660 665 670

Tyr Asp Val Asp Phe Pro Arg Asn Leu Ala Lys Ser Val Thr Val Glu
675 680 685

<210> 11
<211> 2118
<212> ADN
<213> Séquence artificielle

<220>
<223> GFAT1Alt modifiée par une étiquette de purification interne
<220>
<221> CDS
<222> (1)..(2118)
<223>

{

<220>
<221> misc_feature
<222> (170)..(170)
<223> t ou c

<400> 11
atg tgt ggt ata ttt gct tac tta aac tac cat gtt cct cga acg aga 48
Met Cys Gly Ile Phe Ala Tyr Leu Asn Tyr His Val Pro Arg Thr Arg
1 5 10 15

cga gaa atc ctg gag acc cta atc aaa ggc ctt cag aga ctg gag tac 96
Arg Glu Ile Leu Glu Thr Leu Ile Lys Gly Leu Gln Arg Leu Glu Tyr
20 25 30

aga gga tat gat tct gct ggt gtg gga ttt gat gga ggc aat gat aaa 144
Arg Gly Tyr Asp Ser Ala Gly Val Gly Phe Asp Gly Gly Asn Asp Lys

35

40

45

gat tgg gaa gcc aat gcc tgc aaa anc cag ctt att aag aag aaa gga Asp Trp Glu Ala Asn Ala Cys Lys Xaa Gln Leu Ile Lys Lys Lys Gly 50 55 60	192
aaa gtt aag gca ctg gat gaa gaa gtt cac aag caa caa gat atg gat Lys Val Lys Ala Leu Asp Glu Glu Val His Lys Gln Gln Asp Met Asp 65 70 75 80	240
ttg gat ata gaa ttt gat gta cac ctt gga ata gct cat acc cgt tgg Leu Asp Ile Glu Phe Asp Val His Leu Gly Ile Ala His Thr Arg Trp 85 90 95	288
gca aca cat gga gaa ccc agt cct gtc aat agc cac ccc cag cgc tat Ala Thr His Gly Glu Pro Ser Pro Val Asn Ser His Pro Gln Arg Ser 100 105 110	336
gat aaa aat aat gaa ttt atc gtt att cac aat gga atc atc acc aac Asp Lys Asn Asn Glu Phe Ile Val Ile His Asn Gly Ile Ile Thr Asn 115 120 125	384
tac aaa gac ttg aaa aag ttt ttg gaa agc aaa ggc tat gac ttc gaa Tyr Lys Asp Leu Lys Phe Leu Glu Ser Lys Gly Tyr Asp Phe Glu 130 135 140	432
tct gaa aca gac aca gag aca att gcc aag ctc gtt aag tat atg tat Ser Glu Thr Asp Thr Glu Thr Ile Ala Lys Leu Val Lys Tyr Met Tyr 145 150 155 160	480
gac aat cgg gaa agt caa gat acc agc ttt act acc ttg gtg gag aga Asp Asn Arg Glu Ser Gln Asp Thr Ser Phe Thr Thr Leu Val Glu Arg 165 170 175	528
gtt atc caa caa ttg gaa ggt gct ttt gca ctt gtg ttt aaa agt gtt Val Ile Gln Gln Leu Glu Gly Ala Phe Ala Leu Val Phe Lys Ser Val 180 185 190	576
cat ttt ccc ggg caa gca gtt ggc aca agg cga ggt agc cct ctg ttg His Phe Pro Gly Gln Ala Val Gly Thr Arg Arg Gly Ser Pro Leu Leu 195 200 205	624
att ggt gta cgg agt gaa cat aaa ctt tct act gat cac att cct ata Ile Gly Val Arg Ser Glu His Lys Leu Ser Thr Asp His Ile Pro Ile 210 215 220	672
ctc tac aga aca gct agg act cag att gga tca aaa ttc aca cgg tgg Leu Tyr Arg Thr Ala Arg Thr Gln Ile Gly Ser Lys Phe Thr Arg Trp 225 230 235 240	720
gga tca cag gga gaa aga ggc aaa gac aag aaa gga agc tgc aat ctc Gly Ser Gln Gly Glu Arg Gly Lys Asp Lys Lys Gly Ser Cys Asn Leu 245 250 255	768
tct cgt gtg gac agc aca acc tgc ctt ttc ccg gtg gaa gaa aaa gca Ser Arg Val Asp Ser Thr Thr Cys Leu Phe Pro Val Glu Glu Lys Ala 260 265 270	816
gtg gag tat tac ttt gct tct gat gca agt gct gtc ata gaa cac acc Val Glu Tyr Tyr Phe Ala Ser Asp Ala Ser Ala Val Ile Glu His Thr 275 280 285	864
aat cgc gtc atc ttt ctg gaa gat gat gat gtt gca gca gta gtg gat Asn Arg Val Ile Phe Leu Glu Asp Asp Asp Val Ala Ala Val Val Asp 290 295 300	912

gga cgt ctt tct atc cat cgt att aaa cga act gca gga cat cac cat Gly Arg Leu Ser Ile His Arg Ile Lys Arg Thr Ala Gly His His His 305 310 315 320	960
cac cat cac gat cac ccc gga cga gct gtg caa aca ctc cag atg gaa His His His Asp His Pro Gly Arg Ala Val Gln Thr Leu Gln Met Glu 325 330 335	1008
ctc cag cag atc atg aag ggc aac ttc agt tca ttt atg cag aag gaa Leu Gln Gln Ile Met Lys Gly Asn Phe Ser Ser Phe Met Gln Lys Glu 340 345 350	1056
ata ttt gag cag cca gag tct gtc gtg aac aca atg aga gga aga gtc Ile Phe Glu Gln Pro Glu Ser Val Val Asn Thr Met Arg Gly Arg Val 355 360 365	1104
aac ttt gat gac tat act gtg aat ttg ggt ggt ttg aag gat cac ata Asn Phe Asp Asp Tyr Thr Val Asn Leu Gly Gly Leu Lys Asp His Ile 370 375 380	1152
aag gag atc cag aga tgc cgg cgt ttg att ctt att gct tgt gga aca Lys Glu Ile Gln Arg Cys Arg Arg Leu Ile Leu Ile Ala Cys Gly Thr 385 390 395 400	1200
agt tac cat gct ggt gta gca aca cgt caa gtt ctt gag gag ctg act Ser Tyr His Ala Gly Val Ala Thr Arg Gln Val Leu Glu Glu Leu Thr 405 410 415	1248
gag ttg cct gtg atg gtg gaa cta gca agt gac ttc ctg gac aga aac Glu Leu Pro Val Met Val Glu Leu Ala Ser Asp Phe Leu Asp Arg Asn 420 425 430	1296
aca cca gtc ttt cga gat gat gtt tgc ttt ttc ctt agt caa tca ggt Thr Pro Val Phe Arg Asp Asp Val Cys Phe Leu Ser Gln Ser Gly 435 440 445	1344
gag aca gca gat act ttg atg ggt ctt cgt tac tgt aag gag aga gga Glu Thr Ala Asp Thr Leu Met Gly Leu Arg Tyr Cys Lys Glu Arg Gly 450 455 460	1392
gct tta act gtg ggg atc aca aac aca gtt ggc agt tcc ata tca cgg Ala Leu Thr Val Gly Ile Thr Asn Thr Val Gly Ser Ser Ile Ser Arg 465 470 475 480	1440
gag aca gat tgt gga gtt cat att aat gct ggt cct gag att ggt gtg Glu Thr Asp Cys Gly Val His Ile Asn Ala Gly Pro Glu Ile Gly Val 485 490 495	1488
gcc agt aca aag gct tat acc agc cag ttt gta tcc ctt gtg atg ttt Ala Ser Thr Lys Ala Tyr Thr Ser Gln Phe Val Ser Leu Val Met Phe 500 505 510	1536
gcc ctt atg atg tgt gat gat cgg atc tcc atg caa gaa aga cgc aaa Ala Leu Met Met Cys Asp Asp Arg Ile Ser Met Gln Glu Arg Arg Lys 515 520 525	1584
gag atc atg ctt gga ttg aaa cgg ctg cct gat ttg att aag gaa gta Glu Ile Met Leu Gly Leu Lys Arg Leu Pro Asp Leu Ile Lys Glu Val 530 535 540	1632
ctg agc atg gat gac gaa att cag aaa cta gca aca gaa ctt tat cat Leu Ser Met Asp Asp Glu Ile Gln Lys Leu Ala Thr Glu Leu Tyr His 545 550 555 560	1680
cag aag tca gtt ctg ata atg gga cga ggc tat cat tat gct act tgt Gln Lys Ser Val Leu Ile Met Gly Arg Gly Tyr His Tyr Ala Thr Cys	1728

101 DEPOT

565	570	575	
ctt gaa ggg gca ctg aaa atc aaa gaa att act tat atg cac tct gaa Leu Glu Gly Ala Leu Lys Ile Lys Glu Ile Thr Tyr Met His Ser Glu 580	585	590	1776
ggc atc ctt gct ggt gaa ttg aaa cat ggc cct ctg gct ttg gtg gat Gly Ile Leu Ala Gly Glu Leu Lys His Gly Pro Leu Ala Leu Val Asp 595	600	605	1824
aaa ttg atg cct gtg atc atg atc atc atg aga gat cac act tat gcc Lys Leu Met Pro Val Ile Met Ile Ile Met Arg Asp His Thr Tyr Ala 610	615	620	1872
aag tgt cag aat gct ctt cag caa gtg gtt gct cgg cag ggg cgg cct Lys Cys Gln Asn Ala Leu Gln Val Val Ala Arg Gln Gly Arg Pro 625	630	635	1920
gtg gta att tgt gat aag gag gat act gag acc att aag aac aca aaa Val Val Ile Cys Asp Lys Glu Asp Thr Glu Thr Ile Lys Asn Thr Lys 645	650	655	1968
aga acg atc aag gtg ccc cac tca gtg gac tgc ttg cag ggc att ctc Arg Thr Ile Lys Val Pro His Ser Val Asp Cys Leu Gln Gly Ile Leu 660	665	670	2016
agc gtg atc cct tta cag ttg ctg gct ttc cac ctt gct gtg ctg aga Ser Val Ile Pro Leu Gln Leu Ala Phe His Leu Ala Val Leu Arg 675	680	685	2064
ggc tat gat gtt gat ttc cca cgg aat ctt gcc aaa tct gtg act gta Gly Tyr Asp Val Asp Phe Pro Arg Asn Leu Ala Lys Ser Val Thr Val 690	695	700	2112
gag tga Glu 705			2118

<210> 12
<211> 705
<212> PRT
<213> Séquence artificielle

<220>
<221> misc_feature
<222> (57)...(57)
<223> Le 'Xaa' en position 57 représente Thr ou Ile.

<220>
<223> GFAT1Alt modifiée par une étiquette de purification interne

<400> 12

Met Cys Gly Ile Phe Ala Tyr Leu Asn Tyr His Val Pro Arg Thr Arg
1 5 10 15

Arg Glu Ile Leu Glu Thr Leu Ile Lys Gly Leu Gln Arg Leu Glu Tyr
20 25 30

Arg Gly Tyr Asp Ser Ala Gly Val Gly Phe Asp Gly Gly Asn Asp Lys
35 40 45

Asp Trp Glu Ala Asn Ala Cys Lys Xaa Gln Leu Ile Lys Lys Lys Gly
50 55 60

Lys Val Lys Ala Leu Asp Glu Glu Val His Lys Gln Gln Asp Met Asp
65 70 75 80

Leu Asp Ile Glu Phe Asp Val His Leu Gly Ile Ala His Thr Arg Trp
85 90 95

Ala Thr His Gly Glu Pro Ser Pro Val Asn Ser His Pro Gln Arg Ser
100 105 110

Asp Lys Asn Asn Glu Phe Ile Val Ile His Asn Gly Ile Ile Thr Asn
115 120 125

Tyr Lys Asp Leu Lys Lys Phe Leu Glu Ser Lys Gly Tyr Asp Phe Glu
130 135 140

Ser Glu Thr Asp Thr Glu Thr Ile Ala Lys Leu Val Lys Tyr Met Tyr
145 150 155 160

Asp Asn Arg Glu Ser Gln Asp Thr Ser Phe Thr Thr Leu Val Glu Arg
165 170 175

Val Ile Gln Gln Leu Glu Gly Ala Phe Ala Leu Val Phe Lys Ser Val
180 185 190

His Phe Pro Gly Gln Ala Val Gly Thr Arg Arg Gly Ser Pro Leu Leu
195 200 205

Ile Gly Val Arg Ser Glu His Lys Leu Ser Thr Asp His Ile Pro Ile
210 215 220

Leu Tyr Arg Thr Ala Arg Thr Gln Ile Gly Ser Lys Phe Thr Arg Trp
225 230 235 240

Gly Ser Gln Gly Glu Arg Gly Lys Asp Lys Lys Gly Ser Cys Asn Leu
245 250 255

Ser Arg Val Asp Ser Thr Thr Cys Leu Phe Pro Val Glu Glu Lys Ala
260 265 270

Val Glu Tyr Tyr Phe Ala Ser Asp Ala Ser Ala Val Ile Glu His Thr
275 280 285

Asn Arg Val Ile Phe Leu Glu Asp Asp Asp Val Ala Ala Val Val Asp
290 295 300

Gly Arg Leu Ser Ile His Arg Ile Lys Arg Thr Ala Gly His His His
305 310 315 320

His His His Asp His Pro Gly Arg Ala Val Gln Thr Leu Gln Met Glu
325 330 335

Leu Gln Gln Ile Met Lys Gly Asn Phe Ser Ser Phe Met Gln Lys Glu
340 345 350

Ile Phe Glu Gln Pro Glu Ser Val Val Asn Thr Met Arg Gly Arg Val
355 360 365

Asn Phe Asp Asp Tyr Thr Val Asn Leu Gly Gly Leu Lys Asp His Ile
370 375 380

Lys Glu Ile Gln Arg Cys Arg Arg Leu Ile Leu Ile Ala Cys Gly Thr
385 390 395 400

Ser Tyr His Ala Gly Val Ala Thr Arg Gln Val Leu Glu Glu Leu Thr
405 410 415

Glu Leu Pro Val Met Val Glu Leu Ala Ser Asp Phe Leu Asp Arg Asn
420 425 430

Thr Pro Val Phe Arg Asp Asp Val Cys Phe Phe Leu Ser Gln Ser Gly
435 440 445

Glu Thr Ala Asp Thr Leu Met Gly Leu Arg Tyr Cys Lys Glu Arg Gly
450 455 460

Ala Leu Thr Val Gly Ile Thr Asn Thr Val Gly Ser Ser Ile Ser Arg
465 470 475 480

Glu Thr Asp Cys Gly Val His Ile Asn Ala Gly Pro Glu Ile Gly Val
485 490 495

Ala Ser Thr Lys Ala Tyr Thr Ser Gln Phe Val Ser Leu Val Met Phe
500 505 510

Ala Leu Met Met Cys Asp Asp Arg Ile Ser Met Gln Glu Arg Arg Lys
515 520 525

Glu Ile Met Leu Gly Leu Lys Arg Leu Pro Asp Leu Ile Lys Glu Val
530 535 540

Leu Ser Met Asp Asp Glu Ile Gln Lys Leu Ala Thr Glu Leu Tyr His
545 550 555 560

Gln Lys Ser Val Leu Ile Met Gly Arg Gly Tyr His Tyr Ala Thr Cys
565 570 575

Leu Glu Gly Ala Leu Lys Ile Lys Glu Ile Thr Tyr Met His Ser Glu
580 585 590

Gly Ile Leu Ala Gly Glu Leu Lys His Gly Pro Leu Ala Leu Val Asp
595 600 605

Lys Leu Met Pro Val Ile Met Ile Ile Met Arg Asp His Thr Tyr Ala
610 615 620

Lys Cys Gln Asn Ala Leu Gln Gln Val Val Ala Arg Gln Gly Arg Arg Pro
625 630 635 640

Val Val Ile Cys Asp Lys Glu Asp Thr Glu Thr Ile Lys Asn Thr Lys
645 650 655

Arg Thr Ile Lys Val Pro His Ser Val Asp Cys Leu Gln Gly Ile Leu
660 665 670

Ser Val Ile Pro Leu Gln Leu Leu Ala Phe His Leu Ala Val Leu Arg
675 680 685

Gly Tyr Asp Val Asp Phe Pro Arg Asn Leu Ala Lys Ser Val Thr Val
690 695 700

Glu
705

```
<210> 13
<211> 608
<212> PRT
<213> Escherichia coli
```

<400> 13

Cys Gly Ile Val Gly Ala Ile Ala Gln Arg Asp Val Ala Glu Ile Leu
 1 5 . 10 15

Leu Glu Gly Leu Arg Arg Leu Glu Tyr Arg Gly Tyr Asp Ser Ala Gly
20 25 30

Leu Ala Val Val Asp Ala Glu Gly His Met Thr Arg Leu Arg Arg Arg Leu
35 40 45

Gly Lys Val Gln Met Leu Ala Gln Ala Ala Glu Glu His Pro Leu His
50 55 60

Gly Gly Thr Gly Ile Ala His Thr Arg Trp Ala Thr His Gly Glu Pro
 65 70 75 80

Ser Glu Val Asn Ala His Pro His Val Ser Glu His Ile Val Val Val
85 90 95

His Asn Gly Ile Ile Glu Asn His Glu Pro Leu Arg Glu Glu Leu Lys
100 105 110

Ala Arg Gly Tyr Thr Phe Val Ser Glu Thr Asp Thr Glu Val Ile Ala
115 120 125

His Leu Val Asn Trp Glu Leu Lys Gln Gly Gly Thr Leu Arg Glu Ala
130 135 140

Val Leu Arg Ala Ile Pro Gln Leu Arg Gly Ala Tyr Gly Thr Val Ile
145 150 155 160

Met Asp Ser Arg His Pro Asp Thr Leu Leu Ala Ala Arg Ser Gly Ser
165 170 175

Pro Leu Val Ile Gly Leu Gly Met Gly Glu Asn Phe Ile Ala Ser Asp
180 185 190

Gln Leu Ala Leu Leu Pro Val Thr Arg Arg Phe Ile Phe Leu Glu Glu
195 200 205

Gly Asp Ile Ala Glu Ile Thr Arg Arg Ser Val Asn Ile Phe Asp Lys
210 215 220

Thr Gly Ala Glu Val Lys Arg Gln Asp Ile Glu Ser Asn Leu Gln Tyr
225 230 235 240

Asp Ala Gly Asp Lys Gly Ile Tyr Arg His Tyr Met Gln Lys Glu Ile
245 250 255

Tyr Glu Gln Pro Asn Ala Ile Lys Asn Thr Leu Thr Gly Arg Ile Ser
260 265 270

His Gly Gln Val Asp Leu Ser Glu Leu Gly Pro Asn Ala Asp Glu Leu
275 280 285

Leu Ser Lys Val Glu His Ile Gln Ile Leu Ala Cys Gly Thr Ser Tyr
290 295 300

Asn Ser Gly Met Val Ser Arg Tyr Trp Phe Glu Ser Leu Ala Gly Ile
305 310 315 320

Pro Cys Asp Val Glu Ile Ala Ser Glu Phe Arg Tyr Arg Lys Ser Ala
325 330 335

Val Arg Arg Asn Ser Leu Met Ile Thr Leu Ser Gln Ser Gly Glu Thr
340 345 350

Ala Asp Thr Leu Ala Gly Leu Arg Leu Ser Lys Glu Leu Gly Tyr Leu

355

360

365

Gly Ser Leu Ala Ile Cys Asn Val Pro Gly Ser Ser Leu Val Arg Glu
 370 375 380

Ser Asp Leu Ala Leu Met Thr Asn Ala Gly Thr Glu Ile Gly Val Ala
 385 390 395 400

Ser Thr Lys Ala Phe Thr Thr Gln Leu Thr Val Leu Leu Met Leu Val
 405 410 415

Ala Lys Leu Ser Arg Leu Lys Gly Leu Asp Ala Ser Ile Glu His Asp
 420 425 430

Ile Val His Gly Leu Gln Ala Leu Pro Ser Arg Ile Glu Gln Met Leu
 435 440 445

Ser Gln Asp Lys Arg Ile Glu Ala Leu Ala Glu Asp Phe Ser Asp Lys
 450 455 460

His His Ala Leu Phe Leu Gly Arg Gly Asp Gln Tyr Pro Ile Ala Leu
 465 470 475 480

Glu Gly Ala Leu Lys Leu Lys Glu Ile Ser Tyr Ile His Ala Glu Ala
 485 490 495

Tyr Ala Ala Gly Glu Leu Lys His Gly Pro Leu Ala Leu Ile Asp Ala
 500 505 510

Asp Met Pro Val Ile Val Val Ala Pro Asn Asn Glu Leu Leu Glu Lys
 515 520 525

Leu Lys Ser Asn Ile Glu Glu Val Arg Ala Arg Gly Gly Gln Leu Tyr
 530 535 540

Val Phe Ala Asp Gln Asp Ala Gly Phe Val Ser Ser Asp Asn Met His
 545 550 555 560

Ile Ile Glu Met Pro His Val Glu Glu Val Ile Ala Pro Ile Phe Tyr
 565 570 575

Thr Val Pro Leu Gln Leu Leu Ala Tyr His Val Ala Leu Ile Lys Gly
 580 585 590

Thr Asp Val Asp Gln Pro Arg Asn Leu Ala Lys Ser Val Thr Val Glu
 595 600 605

<210> 14
 <211> 72
 <212> ADN

<213> Séquence artificielle

<220>

<223> Amorce

<400> 14
tggacgtctt tctatccatc gaattaaacg aactgcagga catcaccatc accatcacga 60
tcaccccgga cg 72

<210> 15

<211> 44

<212> ADN

<213> Séquence artificielle

<220>

<223> Amorce

<400> 15
caaaggtagac tcttcctctc attgtgttca cgacagactc tggc 44

<210> 16

<211> 43

<212> ADN

<213> Séquence artificielle

<220>

<223> Amorce

<400> 16
aatcttagatt catgctcgag cggccgcccag tgtgatttatc 43

<210> 17

<211> 36

<212> ADN

<213> Séquence artificielle

<220>

<223> Amorce

<400> 17
atttttatca gagcgctggg ggtggctatt gacagg 36

<210> 18

<211> 8

<212> PRT

<213> Séquence artificielle

<220>

<223> Etiquette FLAG

<400> 18

Asp Thr Lys Asp Asp Asp Asp Lys
1 5

<210> 19

<211> 6

<212> PRT

<213> Séquence artificielle

<220>

<223> Etiquette hexa-histidine

<400> 19

His His His His His His
1 5

INSTITUT
NATIONAL DE
LA PROPRIÉTÉ
INDUSTRIELLE

REçUE LE 12/09/03

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle - Livre VI

N° 11235*0

DÉPARTEMENT DES BREVETS

26 bis, rue de Saint Pétersbourg
75800 Paris Cedex 08
Téléphone : 01 53 04 53 04 Télécopie : 01 42 94 86 54

DÉSIGNATION D'INVENTEUR(S) Page N° 1/1

(Si le demandeur n'est pas l'inventeur ou l'unique inventeur)

Cet imprimé est à remplir lisiblement à l'encre noire

DB 113 W /2608

Vos références pour ce dossier (facultatif)	IFB 03 BP CNR GFAT
N° D'ENREGISTREMENT NATIONAL	03/08350

TITRE DE L'INVENTION (200 caractères ou espaces maximum)

GLUTAMINE :FRUCTOSE-6-PHASPHATE AMIDOTRANSFERASE (GFAT) COMPRENNANT UNE ETIQUETTE DE PURIFICATION INTERNE, ET SON UTILISATION POUR LE CRIBLAGE DE COMPOSES

LE(S) DEMANDEUR(S) :

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
3, rue Michel-Ange
F-75794 PARIS CEDEX 16, France

DESIGNE(NT) EN TANT QU'INVENTEUR(S) : (Indiquez en haut à droite «Page N° 1/1» S'il y a plus de trois inventeurs, utilisez un formulaire identique et numérotez chaque page en indiquant le nombre total de pages).

Nom		BADET-DENISOT	
Prénoms		Marie-Ange, Juliette, Etienne	
Adresse	Rue	2, rue d'Adélaïau	
	Code postal et ville	91470	FORGES-LES BAINS
Société d'appartenance (facultatif)			
Nom		BADET	
Prénoms		Bernard, François	
Adresse	Rue	2, rue d'Adélaïau	
	Code postal et ville	91470	FORGES-LES BAINS
Société d'appartenance (facultatif)			
Nom			
Prénoms			
Adresse	Rue		
	Code postal et ville		
Société d'appartenance (facultatif)			
DATE ET SIGNATURE(S) DU (DES) DEMANDEUR(S) OU DU MANDATAIRE (Nom et qualité du signataire)		Paris, le 9 septembre 2003 Charles DEMACHY, Mandataire 422.5/PP170	

PCT/FR2004/001800

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.