

NCERT solutions for class 9 maths chapter 8 quadrilaterals Ex 8.2

1Q. ABCD is a quadrilateral in which P, Q, R and S are the mid-points of sides AB, BC, CD and DA respectively (See figure). AC is a diagonal. Show that:

(i) SR || AC and SR =
$$\frac{1}{2}$$
 AC

- (ii) PQ = SR
- (iii) PQRS is a parallelogram.

Ans. In \triangle ABC, P is the mid-point of AB and Q is the mid-point of BC.

Then PQ || AC and PQ =
$$\frac{1}{2}$$
 AC

(i) In \triangle ACD, R is the mid-point of CD and S is the mid-point of AD.

Then SR || AC and SR = $\frac{1}{2}$ AC

(ii) Since PQ =
$$\frac{1}{2}$$
 AC and SR = $\frac{1}{2}$ AC

Therefore, PQ = SR

(iii) Since PQ | AC and SR | AC

Therefore, PQ | SR [two lines parallel to given line are parallel to each other]

Now PQ = SR and PQ \parallel SR

Therefore, PQRS is a parallelogram.

Q2. ABCD is a rhombus and P, Q, R, S are midpoints of AB, BC, CD and DA respectively. Prove that quadrilateral PQRS is a rectangle.

Ans. Given: P, Q, R and S are the mid-points of respective sides AB, BC, CD and DA of rhombus. PQ, QR, RS and SP are joined.

To prove: PQRS is a rectangle.

Construction: Join A and C.

Proof: In \triangle ABC, P is the mid-point of AB and Q is the mid-point of BC.

$$\therefore$$
 PQ || AC and PQ = $\frac{1}{2}$ AC(i)

In \triangle ADC, R is the mid-point of CD and S is the mid-point of AD.

$$\therefore$$
 SR || AC and SR = $\frac{1}{2}$ AC(ii)

From eq. (i) and (ii), PQ | SR and PQ = SR

: PQRS is a parallelogram.

Now ABCD is a rhombus. [Given]

$$AB = BC$$

$$\Rightarrow \frac{1}{2} AB = \frac{1}{2} BC \Rightarrow PB = BQ$$

 \therefore \angle 1 = \angle 2 [Angles opposite to equal sides are equal]

Now in triangles APS and CQR, we have,

AP = CQ [P and Q are the mid-points of AB and BC and AB = BC]

Similarly, AS = CR and PS = QR [Opposite sides of a parallelogram]

$$\triangle \Delta APS \cong \Delta CQR [By SSS congreuancy]$$

$$\Rightarrow \angle 3 = \angle 4$$
 [By C.P.C.T.]

Now we have $\angle 1 + \angle SPQ + \angle 3 = 180^{\circ}$

And
$$\angle$$
 2 + \angle PQR + \angle 4 = 180° [Linear pairs]

$$\therefore \angle 1 + \angle SPQ + \angle 3 = \angle 2 + \angle PQR + \angle 4$$

Since \angle 1 = \angle 2 and \angle 3 = \angle 4 [Proved above]

$$\therefore$$
 \angle SPQ = \angle PQR(iii)

Now PQRS is a parallelogram [Proved above]

$$\therefore$$
 \angle SPQ + \angle PQR = 180° (iv) [Interior angles]

Using eq. (iii) and (iv),

$$\angle$$
 SPQ + \angle SPQ = $180^{\circ} \Rightarrow 2\angle$ SPQ = 180°
 $\Rightarrow \angle$ SPQ = 90°

Hence PQRS is a rectangle.

Q3. ABCD is a rectangle and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.

Ans. Given: A rectangle ABCD in which P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. PQ, QR, RS and SP are joined.

To prove: PQRS is a rhombus.

Construction: Join AC.

Proof: In \triangle ABC, P and Q are the mid-points of sides AB, BC respectively.

$$\therefore$$
 PQ || AC and PQ = $\frac{1}{2}$ AC(i)

In \triangle ADC, R and S are the mid-points of sides CD, AD respectively.

$$\therefore$$
 SR || AC and SR = $\frac{1}{2}$ AC(ii)

From eq. (i) and (ii), PQ \parallel SR and PQ = SR(iii)

PQRS is a parallelogram.

Now ABCD is a rectangle. [Given]

$$AD = BC$$

$$\Rightarrow \frac{1}{2} AD = \frac{1}{2} BC \Rightarrow AS = BQ \dots (iv)$$

In triangles APS and BPQ,

AP = BP [P is the mid-point of AB]

$$\angle$$
 PAS = \angle PBQ [Each 90°]

And AS = BQ [From eq. (iv)]

$$\triangle \Delta$$
 APS $\cong \Delta$ BPQ [By SAS congruency]

$$\Rightarrow$$
 PS = PQ [By C.P.C.T.](v)

From eq. (iii) and (v), we get that PQRS is a parallelogram.

$$\Rightarrow$$
 PS = PQ

⇒ Two adjacent sides are equal.

Hence, PQRS is a rhombus.

Q4. ABCD is a trapezium, in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E, parallel to AB intersecting BC at F (See figure). Show that F is the mid-point of BC.

Ans. Let diagonal BD intersect line EF at point P.

In \triangle DAB,

E is the mid-point of AD and EP \parallel AB [: EF \parallel AB (given) P is the part of EF]

 $\dot{}$ P is the mid-point of other side, BD of Δ DAB.

[A line drawn through the mid-point of one side of a triangle, parallel to another side intersects the third side at the mid-point]

Now in \triangle BCD,

P is the mid-point of BD and PF \parallel DC [: EF \parallel AB (given) and AB \parallel DC (given)]

- \therefore EF || DC and PF is a part of EF.
- \therefore F is the mid-point of other side, BC of \triangle BCD. [Converse of mid-point of theorem]

Q5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (See figure). Show that the line segments AF and EC trisect the diagonal BD.

Ans. Since E and F are the mid-points of AB and CD respectively.

: AE =
$$\frac{1}{2}$$
 AB and CF = $\frac{1}{2}$ CD....(i)

But ABCD is a parallelogram.

$$\therefore$$
 AB = CD and AB || DC

$$\Rightarrow \frac{1}{2} AB = \frac{1}{2} CD \text{ and } AB \parallel DC$$

$$\Rightarrow$$
 AE = FC and AE || FC [From eq. (i)]

: AECF is a parallelogram.

$$\Rightarrow$$
 FA \parallel CE \Rightarrow FP \parallel CQ [FP is a part of FA and CQ is a part of CE](ii)

Since the segment drawn through the mid-point of one side of a triangle and parallel to the other side bisects the third side.

In $\,^{\Delta}$ DCQ, F is the mid-point of CD and \Rightarrow FP $^{\parallel}$ CQ

P is the mid-point of DQ.

$$\Rightarrow$$
 DP = PQ(iii)

Similarly, In \triangle ABP, E is the mid-point of AB and \Rightarrow EQ \parallel AP

: Q is the mid-point of BP.

$$\Rightarrow$$
 BQ = PQ(iv)

From eq. (iii) and (iv),

$$DP = PQ = BQ \dots (v)$$

Now BD = BQ + PQ + DP = BQ + BQ + BQ = 3BQ

$$\Rightarrow$$
 BQ = $\frac{1}{3}$ BD(vi)

From eq. (v) and (vi),

$$DP = PQ = BQ = \frac{1}{3} BD$$

⇒ Points P and Q trisects BD.

So AF and CE trisects BD.

Q6. Show that the line segments joining the mid-points of opposite sides of a quadrilateral bisect each other.

Ans. Given: A quadrilateral ABCD in which EG and FH are the line-segments joining the midpoints of opposite sides of a quadrilateral.

To prove: EG and FH bisect each other.

Construction: Join AC, EF, FG, GH and HE.

Proof: In \triangle ABC, E and F are the mid-points of respective sides AB and BC.

$$\therefore$$
 EF || AC and EF $\frac{1}{2}$ AC(i)

Similarly, in \triangle ADC,

G and H are the mid-points of respective sides CD and AD.

$$\therefore$$
 HG || AC and HG $\frac{1}{2}$ AC(ii)

From eq. (i) and (ii),

EF || HG and EF = HG

.. EFGH is a parallelogram.

Since the diagonals of a parallelogram bisect each other, therefore line segments (i.e. diagonals) EG and FH (of parallelogram EFGH) bisect each other.

Q7. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D.

Ans. (i) In \triangle ABC, M is the mid-point of AB [Given]

MD || BC

: AD = DC [Converse of mid-point theorem]

Thus D is the mid-point of AC.

(ii) l∥ BC (given) consider AC as a transversal.

$$\therefore \angle 1 = \angle C$$
 [Corresponding angles]

$$\Rightarrow$$
 \angle 1 = 90° [\angle C = 90°]

Thus MD \perp AC.

(iii) In \triangle AMD and \triangle CMD,

AD = DC [proved above]

$$\angle 1 = \angle 2 = 90^{\circ}$$
 [proved above]

MD = MD [common]

 \triangle AMD \cong \triangle CMD [By SAS congruency]

Given that M is the mid-point of AB.

$$\therefore \mathbf{AM} = \frac{1}{2} \mathbf{AB} \dots (ii)$$

From eq. (i) and (ii),

$$CM = AM = \frac{1}{2} AB$$

********* FND *******