Tutorial answer sheet – Vectors

Peter Rowlett

1. (a) scalar;

(b) scalar;

(c) scalar;

(d) vector;

(e) vector;

(f) scalar;

(g) vector.

 $2. \begin{bmatrix} 6.10N \\ 11.48N \end{bmatrix}$

3. (a) $\sqrt{58}$;

(b) 17;

(c) 3;

(d) $\sqrt{13}$;

(e) $\sqrt{13}$;

(f) $\sqrt{13}$.

4. -6.

5. -50.

6. 39° .

7. $\frac{17}{\sqrt{26}} = 3.334$.

8. 4, 63.4°.

 $9. \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix}$

 $10. \begin{bmatrix} -4\\59\\26 \end{bmatrix}$

11. (a) $\mathbf{a} \cdot \mathbf{b} = 27$, $\mathbf{b} \cdot \mathbf{a} = 27$, $\mathbf{a} \cdot \mathbf{a} = 29$, $\mathbf{b} \cdot \mathbf{b} = 13$, $\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 35 \\ -40 \\ -10 \end{bmatrix}$, and $\mathbf{b} \times \mathbf{a} = \begin{bmatrix} -35 \\ 40 \\ 10 \end{bmatrix}$;

(b)
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} = \mathbf{a} \cdot \mathbf{a} = \mathbf{b} \cdot \mathbf{b} = \mathbf{a} \times \mathbf{b} = \begin{bmatrix} -59 \\ -10 \\ 22 \end{bmatrix}$$
, and $\mathbf{b} \times \mathbf{a} = \begin{bmatrix} 59 \\ 10 \\ -22 \end{bmatrix}$;