

	S	ın	
		\	
$\pi - x$	<u> </u>		λx
/	!	+ /	!\
- 1			: 1
co	- /	+	:
\	! / -		i/
$\pi + x$	<u> </u>		$\sqrt{-x}$
		/	$-\lambda$
		/	

<i>x</i>	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

 $\sin(-x) = -\sin x$

 $\sin(\pi - x) = \sin x$

 $\sin(\pi + x) = -\sin x$

$\sin\left(\frac{\pi}{2} + x\right) = \cos x$	$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$			
$\sin\left(-\frac{\pi}{2} - x\right) = -\cos x$	$\cos\left(-\frac{\pi}{2} - x\right) = -\sin x$			
$\sin\left(-\frac{\pi}{2} + x\right) = -\cos x$	$\cos\left(-\frac{\pi}{2} + x\right) = \sin x$			
$c \tan x = \frac{\cos x}{\sin x}$	$\tan x = \frac{\sin x}{\cos x}$			
$-1 \le \sin x \le 1$	$-1 \le \cos x \le 1$			
$\cos^2 x + \sin^2 x = 1$				

 $\cos(-x) = \cos x$

 $\cos(\pi - x) = -\cos x$

 $\cos(\pi + x) = -\cos x$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$\cos 2x = 2\cos^2 x - 1$$

$$\cos 2x = 1 - 2\sin^2 x$$

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

$$\sin x = \sin a \Leftrightarrow \begin{cases} x = b + 2k\pi \\ x = -b + 2k\pi \end{cases}$$

الأستاذ: مباركي

 $\sin 2x = 2\sin x \cdot \cos x$

 $\cos^2 x = \frac{\cos 2x + 1}{2}$

تذكر جيدا: " أنك (تستطيع النجاح) في حياتك الدراسية ولو كان الناس جميعا يعتقدون أنك غير ناجح . ولكنك (لن تنجح أبدا) إذا كنت تعتقد في نفسك أنك غير ناجح".

انتظروا الجديد ...

