"... Máma, la libertad siempre la llevarás
Dentro del corazón
Te pueden corromper, te puedes olvidar
Pero ella siempre está..."
Charly García

Segunda Semana Guía 5- Curso 1. Descomposición en Valores Singulares **D.V.S.**

Seguimos trabajando en \mathbb{C}^n o \mathbb{R}^n con el respectivo producto interno canónico.

Consideremos $A \in \mathbb{C}^{m \times n}$.

Vamos a demostrar que para toda matriz $A \in \mathbb{C}^{m \times n}$ se puede encontrar una factorización relacionada con sus subespacios fundamentales ($\operatorname{Col}(A)$, $\operatorname{Fil}(A)$, $\operatorname{Nul}(A)$ y $\operatorname{Nul}(A^T)$).

Resultados previos:

• $A^*A = \bar{A}^TA \in \mathbb{C}^{n \times n}$ es una matriz hermítica, semidefinida positiva.

Es hermítica porque :
$$(A^*A)^* = \overline{(\bar{A}^TA)}^T = \bar{A}^T \overline{\bar{A}^T}^T = \bar{A}^T A \checkmark$$

Es semidefinida positiva porque:

$$\forall x \in \mathbb{C}^n \ 0 < ||Ax||^2 = (\overline{Ax})^T (Ax) = \bar{x}^T \bar{A}^T Ax = \bar{x}^T (\bar{A}^T A)x.$$

Por lo tanto $(\bar{A}^T A)$ es una matriz hermítica que cumple con la definición de **matriz semidefinida positiva** en $\mathbb{C}^{n\times n}$ $\bar{x}^T (\bar{A}^T A) x \geq 0$.

- Recordemos que $\forall A \in \mathbb{C}^{m \times n}$, $\text{Nul}(\bar{A}^T A) = \text{Nul}(A)$ y $\text{rg}(\bar{A}^T A) = \text{rg}(A)$.
- Toda matriz hermítica cumple que:
 - a. Todos sus autovalores son reales.
 - b. Si v_1 y v_2 son autovectores de A, asociados respectivamente a los autovalores $\lambda_1 \neq \lambda_2 \Rightarrow v_1 \perp v_2$. (En críollo: A autovalores distintos, corresponden autovectores ortogonales).
 - c. Toda matriz hermítica es diagonalizable.

 $A \in \mathbb{C}^{n \times n}$ es hermítica \Leftrightarrow existe $U \in \mathbb{C}^{n \times n}$ unitaria tal que

$$A = UD\overline{U}^T$$
, $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^{n \times n}$.

Esto es equivalente a decir que A es hermítica \Leftrightarrow existe una base **ortonormal** de \mathbb{C}^n formada por autovectores de A.

Ya dijimos que la matrices simétricas en $\mathbb{R}^{n\times n}$ son un subconjunto de las matrices hermíticas. En $\mathbb{R}^{n\times n}$ este teorema puede expresarse:

 $A \in \mathbb{R}^{n \times n}$ es simétrica \Leftrightarrow existe $P \in \mathbb{R}^{n \times n}$ ortogonal tal que

$$A = PDP^T, \ D = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^{n \times n}.$$

Esto es equivalente a decir que A es simétrica \Leftrightarrow existe una base **ortonormal** de \mathbb{R}^n formada por autovectores de A.

Como $(\bar{A}^T A)$ es una matriz semidefinida positiva \Rightarrow además de ser diagonalizable (por ser hermítica), todos sus autovalores son no negativos (por ser semidefinida positiva). En o que sigue, vamos a ordenar los autovalores de $\bar{A}^T A$ de mayor a menor: $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n \geq 0$.

Si $\operatorname{rg}(\bar{A}^T A) = k \Rightarrow \lambda_{k+1} = \cdots = \lambda_n = 0$ y los primeros autovalores son estrictamente positivos.

Definición1

Valor singular: Si $A \in \mathbb{C}^{m \times n}$, se dice que σ es un valor singular de A si $\sigma = \sqrt{\lambda}$, con λ autovalor de $\overline{A}^T A$.

Por las observaciones anteriores, si $\operatorname{rg}(A)=k$, podemos ordenar los valores singulares de A de mayor a menor: $\sigma_1 \geq \ldots \sigma_k > 0$ y $\sigma_{k+1} = \cdots = \sigma_n = 0$.

OBSERVACIONES

Siempre consideramos $A \in \mathbb{C}^{m \times n}$ y $\operatorname{rg}(A) = k, \ 1 \le k \le n$.

1. Como \overline{A}^TA es una matriz hermítica, existe una BON de \mathbb{C}^n formada por autovectores de \overline{A}^TA

Como ya dijimos, $\operatorname{rg}(A) = \operatorname{rg}(\overline{A}^T A) = k \Rightarrow \overline{A}^T A$ tiene exactamente k autovalores estrictamente positivos y los demás son todos nulos.

Por lo tanto, existe un BON de \mathbb{C}^n formada por autovectores de $\overline{A}^T A$, $B = \{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}$ asociados respectivamente a los autovalores $\lambda_1 \geq \dots \lambda_k > 0$ y $\lambda_{k+1} = \dots = \lambda_n = 0$.

2. Considerando la base B, para cada v_i se cumple:

$$||Av_i||^2 = \overline{Av_i}^T (Av_i) = \bar{v_i}^T \bar{A}^T A \ v_i = \bar{v_i}^T (\bar{A}^T A) \ v_i = \bar{v_i}^T \lambda_i \ v_i = \lambda_i \bar{v_i}^T \ v_i = \lambda_i ||v_i||^2 = \lambda_i.$$

Entonces: $||Av_i|| = \sqrt{\lambda_i} = \sigma_i$.

Los valores singulares de A nos dicen cu'anto cambia la longitud de los autovectores al ser multiplicados por la matriz A.

3. Considerando la base base B del item 1, $\{Av_1, \dots Av_k\}$ es una base ortogonal de Col(A).

Primero veamos que el conjunto $\{Av_1, \dots Av_k\}$ es un conjunto ortogonal:

$$\langle Av_i, Av_j \rangle = \overline{(Av_j)}^T (Av_i) = \overline{v_j}^T \overline{A}^T Av_i = \overline{v_j}^T (\overline{A}^T A)v_i = \overline{v_j}^T \lambda_i v_i = \lambda_i \overline{v_j}^T v_i.$$

$$\langle Av_i, Av_j \rangle = \begin{cases} 0 & \text{si } i \neq j. \\ \lambda_i & \text{si } i = j. \end{cases}$$

Entonces, $Av_i \perp Av_j$ y como $\langle Av_i, Av_i \rangle = ||Av_i||^2 = \lambda_i > 0$, ninguno de estos vectores es nulo, por lo cual el conjunto $\{Av_1, \ldots, Av_k\}$ es un conjunto linealmente independiente formado por k vectores de $\text{Col}(A) \Rightarrow \{Av_1, \ldots, Av_k\}$ es una base ortogonal de Col(A).

Entonces, el conjunto $\{\frac{Av_1}{\sigma_1}, \dots, \frac{Av_k}{\sigma_k}\}$ es una BON de Col(A).

4. En B, el conjunto $\{v_{k+1}, \ldots, v_n\}$ es una BON de Nul(A) y como $(\text{Nul}(A))^{\perp} = \text{Fil}(A)$ $\Rightarrow \{v_1, \ldots, v_k\}$ es una BON de Fil(A).

Entonces, $\forall A \in \mathbb{C}^{m \times n}$ con $\operatorname{rg}(A) = k$, al construir la base ortonormal de \mathbb{C}^n ,

$$B = \{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}$$
, formada por autovectores de $\overline{A}^T A$ asociados a $\lambda_1 \ge \dots \ge \lambda_k > 0, \lambda_{k+1} = \dots = \lambda_n$.

Hemos encontrado bases ortonormales de 3 de los 4 espacios fundamentales de la matriz A:

$$\{v_1,\ldots,v_k\}$$
 BON de Fil(A) en \mathbb{C}^n .

$$\{v_{k+1},\ldots,v_n\}$$
 BON de Nul(A) en \mathbb{C}^n .

$$\{v_1, \dots, v_k\}$$
 BON de Fil (A) en \mathbb{C}^n .
 $\{v_{k+1}, \dots, v_n\}$ BON de Nul (A) en \mathbb{C}^n .
 $\{\frac{Av_1}{\sigma_1}, \dots, \frac{Av_k}{\sigma_k}\}$ BON de Col (A) en \mathbb{C}^m .

 \bullet Si formamos la matriz $V=[v_1|\dots|v_k|v_{k+1}|\dots|v_n],\,V$ es una matriz unitaria y si calculamos AV obtenemos:

$$AV = A[v_1| \dots |v_k|v_{k+1}| \dots |v_n] = [Av_1| \dots |Av_k|Av_{k+1}| \dots |Av_n]$$
$$AV = [Av_1| \dots |Av_k|0_{\mathbb{C}^m}| \dots |0_{\mathbb{C}^m}]$$

Definición 2

Si A es una matriz en $\mathbb{C}^{m \times n}$, de $\operatorname{rg}(A)=k$, una **Descomposición en Valores singulares de A** es una factorización :

$$A = U\Sigma \overline{V}^T$$

con U y V matrices unitarias de $\mathbb{C}^{m\times m}$ y $\mathbb{C}^{n\times n}$ respectivamente y

$$\Sigma = \begin{bmatrix} D_k & 0_{k \times (n-k)} \\ \hline 0_{(m-k) \times k} & 0_{(m-k) \times (m-k)} \end{bmatrix} \in \mathbb{C}^{m \times n}, D_k = \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & 0 \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_k \end{bmatrix}, \text{ con}$$

 $\sigma_1 \ge \cdots \ge \sigma_k > 0$ los valores singulares no nulos de A.

Por todo lo que vimos está practicamente demostrado el

Teorema de Descomposición en Valores Singulares.

Si $A \in \mathbb{C}^{m \times n}$ existe una Descomposición en Valores Singulares de A (D.V.S)

Demostración:

Por lo que vimos sabemos que existe una base ortonormal de \mathbb{C}^n formada por autovectores de $\bar{A}^T A$. Si $\operatorname{rg}(A) = k \Rightarrow \bar{A}^T A$ tiene k autovalores no nulos y positivos. Formamos $B = \{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ asociados respectivamente a los autovalores $\lambda_1 \geq \ldots \lambda_k > 0$ y $\lambda_{k+1} = \cdots = \lambda_n = 0$.

 $V = [v_1|\dots|v_k|v_{k+1}\dots|v_n]$ es una matriz unitaria. Como $\{\frac{Av_1}{\sigma_1},\dots,\frac{Av_k}{\sigma_k}\}$ BON de $\operatorname{Col}(A)$, llamamos : $u_1 = \frac{Av_1}{\sigma_1},\dots u_k = \frac{Av_k}{\sigma_k}$ y agregamos los vectores necesarios para obtener una BON de $\mathbb{C}^m, B' = \{u_1,\dots,u_k,u_{k+1},\dots u_m\}$.

Entonces $\{u_{k+1}, \dots u_m\}$ es una BON de $(\operatorname{Col}(A))^{\perp} = \operatorname{Nul}(\overline{A}^T)$.

 $U = [u_1| \dots |u_k|u_{k+1}| \dots u_m]$ es una matriz unitaria. Entonces:

$$AV = A[v_1|\dots|v_k|\underbrace{v_{k+1}|\dots|v_n}_{\in \text{Nul}(A)}]$$

$$AV = \underbrace{[Av_1]_{\sigma_1 u_1} | \dots | \underbrace{Av_k}_{\sigma_k u_k} | Av_{k+1} | \dots | Av_n]}_{\sigma_k u_k}$$

$$AV = [\sigma_1 u_1 | \dots | \sigma_k u_k | 0_{\mathbb{C}^m} | \dots | 0_{\mathbb{C}^m}] \in \mathbb{C}^{m \times n}.$$

Vamos a escribir la matriz de la derecha como el producto de una matriz unitaria de $m \times m$ por otra matriz de $m \times n$, que será la que cargue con los valores singulares.

$$AV = \underbrace{[u_1|u_2|\dots|u_k|u_{k+1}|\dots|u_m]}_{U} \begin{bmatrix} \sigma_1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & \sigma_k & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix} = U\Sigma$$

$$AV = U \Sigma$$

Despejamos Arecordando que como Ves unitaria, su inversa es $V^* = \overline{V}^T$

$$AVV^* = U \Sigma V^*$$

$$A = U \; \Sigma V^* = U \; \Sigma \overline{V}^T \checkmark$$

Si $A \in \mathbb{R}^{m \times n}$, las matrices U y V son matrices ortogonales en $\mathbb{R}^{m \times m}$ y $\mathbb{R}^{n \times n}$ respectivamente.

Ejemplo:

1. Sea
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ -2 & 2 \end{bmatrix}$$
, hallar una descomposición en valores singulares de A .

Resolución:

Con sólo ver A, ya sabemos que rg(A)=2, pues tiene dos columnas linealmente independientes.

Vamos a calcular la matriz V de autovectores de A^TA y los valores singulares de A. Para eso calculamos autovalores y autovectores de A^TA :

$$\begin{split} A^T A &= \begin{bmatrix} 3 & 2 & -2 \\ 2 & 3 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix} \\ P_{A^T A}(\lambda) &= \begin{vmatrix} (\lambda - 17) & -8 \\ -8 & (\lambda - 17) \end{vmatrix} = (\lambda - 17)^2 - 8^2 = 0 \Leftrightarrow |\lambda - 17| = 8 \Leftrightarrow \\ \Leftrightarrow \lambda - 17 = 8 \text{ o } \lambda - 17 = -8 \Rightarrow \lambda_1 = 25 \text{ y } \lambda_2 = 9. \end{split}$$

Buscamos sus autovectores:

Para
$$\lambda = 25$$
:

$$\begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix} \Rightarrow x_1 = x_2 \Rightarrow S_{\lambda=25} = \text{gen}\{[1 \ 1]^T\} \text{ y } S_{\lambda=9} = \text{gen}\{[-1 \ 1]^T\}$$

Construimos la matriz ortogonal $V = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$

Los valores singulares de A son $\sigma_1 = \sqrt{25} = 5$ y $\sigma_2 = \sqrt{9} = 3$ Ya podemos construir también la matriz $\Sigma \in \mathbb{R}^{3 \times 2}$.

(Recordá que las dimensiones de Σ son las mismas que las de A.)

En este caso
$$\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$$
, donde $D_2 = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$

Ahora entonces sólo nos queda construir la matriz ortogonal U.

Siguiendo con los pasos que hicimos para demostrar el teorema, sabemos que como rango de A es 2, ya tenemos dos0 nulos. (En este ejemplo no hay autovalores nulos de A^TA .)

$$u_1 = \frac{Av_1}{\sigma_1} = \frac{1}{5} \begin{bmatrix} 3 & 2\\ 2 & 3\\ -2 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{bmatrix} = \frac{1}{5} \frac{1}{\sqrt{2}} \begin{bmatrix} 5\\ 5\\ 0 \end{bmatrix} = \frac{1}{5} 5 \begin{bmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}\\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}}\\ 0 \end{bmatrix} \checkmark$$

$$u_2 = \frac{Av_2}{\sigma_2} = \frac{1}{3} \begin{bmatrix} 3 & 2\\ 2 & 3\\ -2 & 2 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{bmatrix} = \frac{1}{3\sqrt{2}} \begin{bmatrix} -1\\ 1\\ 4 \end{bmatrix} = \begin{bmatrix} \frac{-1}{3\sqrt{2}}\\ \frac{1}{3\sqrt{2}}\\ \frac{4}{3\sqrt{2}} \end{bmatrix} \checkmark$$

Para construir la matriz ortogonal U, necesitamos encontrar un vector unitario ortogonal a u_1 y u_2 .

Podemos calcular el producto vectorial : $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \times \begin{bmatrix} -1 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ -4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}.$

Ahora buscamos un versor con esta dirección, por ejemplo elegimos $u_3 = \begin{bmatrix} \frac{2}{3} \\ -\frac{2}{3} \\ \frac{1}{3} \end{bmatrix}$

Ahora entonces, ya tenemos la DVS de A:

$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ -2 & 2 \end{bmatrix} = U\Sigma V^T = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{3\sqrt{2}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} & -\frac{2}{3} \\ 0 & \frac{4}{3\sqrt{2}} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
(1)

Comentario: En la Descomposición hallada en (1), podemos encontrar una forma más compacta todavía:

$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ -2 & 2 \end{bmatrix} = \underbrace{\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{3\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} \\ 0 & \frac{4}{3\sqrt{2}} \end{bmatrix}}_{U_2} \underbrace{\begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}}_{D_2} \underbrace{\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}}_{V_2^T}. \text{ Esta es la llamada DVS reducida}$$

de A.

Definición 3

Si A es una matriz en $\mathbb{C}^{m\times n}$, de rg(A)=k, entonces la DVS de A puede escribirse de la forma:

$$A = [U_k | U_{m-k}] \begin{bmatrix} D_k & 0 \\ \hline 0 & 0 \end{bmatrix} \begin{bmatrix} \overline{V_k}^T \\ \hline \overline{V_{n-k}}^T \end{bmatrix}$$

Se llama DVS reducida de A a la factorización:

$$A = U_k D_k \overline{V_k}^T$$

- $U_k \in \mathbb{C}^{m \times k}$, matriz cuyas columnas forman una BON de Col(A).
- $D_k = diag(\sigma_1, \dots, \sigma_k)$, matriz diagonal con los valores sing. no nulos de A: $\sigma_1 \ge \dots \ge \sigma_k > 0$.
- $\bullet \ \overline{V_k}^T,$ matriz cuyas filas forman una BON de Fil(A).

Seudo inversa de Moore Penrose y relación con el problema de cuadrados mínimos

Definición 4

Si $A \in \mathbb{C}^{m \times n}$, con $\operatorname{rg}(A) = k$ y $A = U_k D_k \overline{V_k}^T$, la DVS reducida de A, se llama **seudo** inversa de Moore Penrose de A a la matriz $A^{\dagger} = V_k D_k^{-1} \overline{U_k}^T$.

Propiedades de la seudo inversa de Moore Penrose.

- 1. $AA^{\dagger} = U_k D_k (\overline{V_k}^T V_k) D_k^{-1} \overline{U_k}^T = U_k D_k \mathbf{I}_k D_k^{-1} \overline{U_k}^T = U_k \overline{U_k}^T = P_{\text{Col}(A)}$ (matriz de proyección sobre el subespacio col(A).)
- 2. $A^{\dagger}A = V_k D_k^{-1}(\overline{U_k}^T U_k) D_k \overline{V_k}^T = V_k \overline{V_k}^T = P_{\mathrm{Fil}(A)}$ (matriz de proyección sobre el subespacio $\mathrm{Fil}(A)$.)
- 3. Entonces, si queremos resolver el sistema AX = b por cuadrados mínimos, estamos buscando $\hat{x}/A\hat{x} = P_{\text{Col(A)}}(b)$.

Busco $\hat{x}/A\hat{x} = AA^{\dagger}b \Rightarrow$ una solución particular de esta ecuación es $x^{\dagger} = A^{\dagger}b$ y si tenemos una solución particular sabemos que **todas** las soluciones del problema de cuadrados mínimos de Ax = b pueden escribirse en la forma: $\hat{x} = x^{\dagger} + x_N$; con $x_N \in \text{Nul}(A)$.

Ahora bien
$$A^{\dagger}b = V_k D_k^{-1} \overline{U_k}^T b = \underbrace{V_k}_{BON \text{ de Fil}(A)} \underbrace{\left(D_k^{-1} \overline{U_k}^T b\right)}_{k \times 1} \in \text{Fil}(A)$$

Entonces, toda solución del problema de cuadrados mínimos puede escribirse : $\hat{x} = \underbrace{x^{\dagger}}_{\in Fil(A)} + x_N$; con $x_N \in Nul(A)$.

Como $\operatorname{Fil}(A) = (\operatorname{Nul}(A))^{\perp} \Rightarrow \operatorname{por} \operatorname{el} \operatorname{Teorema} \operatorname{de} \operatorname{Pitágoras} ||\hat{x}||^2 = ||x^{\dagger}||^2 + ||x_N||^2, \operatorname{con} x_N \in \operatorname{Nul}(A).$

 $||x^{\dagger}|| \leq ||\hat{x}|| \, \forall \, \hat{x}$ solución del problema de mínimos cuadrados.

 $x^\dagger = A^\dagger b$ es la solución de mínima norma del problema de cuadrados mínimos de Ax = b .

Ejemplos:

1. Hallar la seudo inversa de Moore Penrose de A:

$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Resolución:

Ya obtuvimos la DVS reducida de A:

$$A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \\ -2 & 2 \end{bmatrix} = \underbrace{\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{3\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} \\ 0 & \frac{4}{3\sqrt{2}} \end{bmatrix}}_{U_2} \underbrace{\begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}}_{D_2} \underbrace{\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}}_{V_2^T}$$

$$A^{\dagger} = \underbrace{\begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}}_{V_2} \underbrace{\begin{bmatrix} 1/5 & 0 \\ 0 & 1/3 \end{bmatrix}}_{D_2^{-1}} \underbrace{\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{3\sqrt{2}} & \frac{1}{3\sqrt{2}} & \frac{4}{3\sqrt{2}} \end{bmatrix}}_{U_2^T}$$

2. Dada
$$A = \begin{bmatrix} 3 & 2 & 5 \\ 2 & 3 & 5 \\ -2 & 2 & 0 \end{bmatrix}$$

- a) Hallar la solución por mínimos cuadrados de norma mínima del problema Ax = b, con $b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.
- b) Hallar **todas** las soluciones del problema de mínimops cuadrados de Ax = b, con $b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

Resolución:

a) Buscamos la seudo inversa de Moore Penrose de A.Para eso necesitamos su DVS reducida:

$$A^{T}A = \begin{bmatrix} 3 & 2 & -2 \\ 2 & 3 & 2 \\ 5 & 5 & 0 \end{bmatrix} \begin{bmatrix} 3 & 2 & 5 \\ 2 & 3 & 5 \\ -2 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 17 & 8 & 25 \\ 8 & 17 & 25 \\ 25 & 25 & 50 \end{bmatrix}$$

Calculamos el polinomio característico:

$$P_{A^TA}(\lambda) = \begin{vmatrix} (\lambda - 17) & -8 & -25 \\ -8 & (\lambda - 17) & -25 \\ -25 & -25 & (\lambda - 50) \end{vmatrix} = \begin{vmatrix} (\lambda - 9) & (-\lambda + 9) & 0 \\ -8 & (\lambda - 17) & -25 \\ -25 & -25 & (\lambda - 50) \end{vmatrix}$$

$$P_{A^{T}A}(\lambda) = \begin{vmatrix} (\lambda - 9) & 0 & 0 \\ -8 & (\lambda - 25) & -25 \\ -25 & -50 & (\lambda - 50) \end{vmatrix} = (\lambda - 9) \begin{vmatrix} (\lambda - 25) & -25 \\ -50 & (\lambda - 50) \end{vmatrix}$$
$$P_{A^{T}A}(\lambda) = (\lambda - 9)\{(\lambda - 25)(\lambda - 50) - 25.50\}$$

$$P_{A^TA}(\lambda) = (\lambda - 9)\lambda(\lambda - 75)$$

Los autovalores de A^TA son $\lambda_1=75,\ \lambda_2=9$ y $\ \lambda_3=0.$

Calculamos los autoespacios:

$$S_{\lambda=75} = \operatorname{gen} \left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix} \right\}, \ S_{\lambda=9} = \operatorname{gen} \left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix} \right\}, \ S_{\lambda=0} = \operatorname{gen} \left\{ \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \right\}$$

Ya podemos construir V_2 y D_2 :

$$V_{2} = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & 0 \end{bmatrix}$$
$$D_{2} = \begin{bmatrix} \sqrt{75} & 0 \\ 0 & 3 \end{bmatrix}$$

Buscamos U_2 :

$$u_{1} = \frac{1}{\sqrt{75}} \begin{bmatrix} 3 & 2 & 5 \\ 2 & 3 & 5 \\ -2 & 2 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{bmatrix} = \frac{1}{\sqrt{75}} \frac{1}{\sqrt{6}} \begin{bmatrix} 3 & 2 & 5 \\ 2 & 3 & 5 \\ -2 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{225}} \begin{bmatrix} 15 \\ 15 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

$$u_{2} = \frac{1}{3} \begin{bmatrix} 3 & 2 & 5 \\ 2 & 3 & 5 \\ -2 & 2 & 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{bmatrix} = \frac{1}{3\sqrt{2}} \begin{bmatrix} 3 & 2 & 5 \\ 2 & 3 & 5 \\ -2 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = \frac{1}{3\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ -4 \end{bmatrix}.$$

$$A^{\dagger} = V_2 D_2^{-1} U_2^T = \begin{bmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{75}} & 0 \\ 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{4}{\sqrt{6}} \end{bmatrix}$$
$$x^{\dagger} = A^{\dagger} b$$

$$\mathbf{x}^{\dagger} = A^{\dagger}b = \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{75}} & 0 \\ 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{4}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{3}{5} \\ \frac{11}{15} \\ \frac{1}{15} \end{bmatrix}$$

b) Para hallar todas las soluciones del problema de mínimos cuadrados, basta con recordar que todas las soluciones pueden escribirse como:

$$\hat{x} = x^{\dagger} + x_N \text{ con } x_N \in \text{Nul}(A).$$

De la DVS reducida ya calculada, sabemoa que
$$\text{Nul}(A) = \text{gen} \left\{ \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \right\}$$

El conjunto de todas las soluciones del problema de mínimos cuadrados es:

$$\hat{x} = x^{\dagger} + x_N = \begin{bmatrix} -\frac{3}{5} \\ \frac{11}{15} \\ \frac{1}{15} \end{bmatrix} + k \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}; \ k \in \mathbb{R}.$$