Weekly Report

February 5, 2018

$1 \quad 2018.1.31$

1.1 Random sketch deformation

 $\textbf{Figure 1:} \ \ \text{before deformation} \\$

Figure 2: after deformation (with a fixed jittering range (0.1,0.3))

Figure 3: after deformation(adjust jittering range according to sample width and height)

1.2 Stroke removal

Design a proper weight. When number of strokes in a sketch is fewer, the strokes are tend to be preserved.

Figure 4: before deletion

Figure 5: after deletion (remove 40% strokes)

1.3 Data augmentation experiments

Data augmentation:

- 1. random deformation 3 times(range(0.1,0.3))
- 2. stroke removal 3 times(0.2,0.4,0.6)

micro PointNet P1	micro PointNet P2	PointNet P3	testing acc
shared $mlp(8,16,64)$	shared $mlp(32,32,128)$	shared $mlp(64,128,1024)$	71.7%

Table 1: Trials.

P1 input	P1 output	P2 input	P2 output
512x30x3	512x2	256x100x(3+2)	256x32

Table 2: Trials.

Data augmentation:

- 1. random deformation 3 times(range(0.1,0.3))
- 2. stroke removal 3 times(0.2)

micro PointNet P1	micro PointNet P2	PointNet P3	testing acc
shared $mlp(8,16,64)$	shared $mlp(32,32,128)$	shared $mlp(64,128,1024)$	73.5%

Table 3: Trials.

1.4 TO DO:

P1 input	P1 output	P2 input	P2 output	change
512x30x3	512x2	256x100x(3+2)	256x29	current
512x30x2	512x2	256x100x(2+2)	256x29	remove stroke order
512x20x3	512x2	256x100x(3+2)	256x29	reduce group 1 size
512x10x3	512x2	256x100x(3+2)	256x29	reduce group 1 size
256x30x3	256x2	128x50x(3+2)	128x29	reduce group1 sampling frequence
128x30x3	128x2	64x25x(3+2)	64x29	reduce group1 sampling frequence
512x30x3	512x2	-	-	reduce group2

Table 4: To do.

- 1. Run TU-Berlin dataset(sampling sketches with space)
- 2. Reaugment data.
- 3. Sample sketch into (512,256,128).

$2 \quad 2018.2.1$

所有训练只进行一次,没有进行数据增强。使用的网络参数如下

micro PointNet P1	micro PointNet P2	PointNet P3
$\frac{1}{\text{shared mlp}(8,16,64)}$	shared $mlp(32,32,128)$	shared $mlp(64,128,1024)$

Table 5: Arc.

改变group scheme,内容如下

P1 input	P1 output	P2 input	P2 output	acc
512x30x3	512x2	256x100x(3+2)	256x29	69.3%
512x30x2	512x2	256x100x(2+2)	256x29	-
512x20x3	512x2	256x100x(3+2)	256x29	69.6%
512x10x3	512x2	256x100x(3+2)	256x29	69.2%
256x30x3	256x2	128x100x(3+2)	128x29	70.6%
128x30x3	128x2	64x100x(3+2)	64x29	69.55%
64x30x3	128x2	16x100x(3+2)	64x29	59%
512x30x3	512x2	-	_	-

Table 6: Trials.

3 2018.2.2

依然沿用2.1的网络结构,该边group方案

P1 input	P1 output	P2 input	P2 output	acc
128x30x3	128x2	64x64x(3+2)	64x29	69.8%
128x30x3	128x2	32x64x(2+2)	64x29	67%
128x16x3	128x2	64x64x(3+2)	64x29	69.2%
128x16x3	128x2	64x32x(3+2)	64x29	69.5%

Table 7: Trials.

改变网络结构,并使用之前最好的group scheme。

P1 input	P1 output	P2 input	P2 output
256x30x3	256x2	$128 \times 100 \times (3+2)$	128x29

Table 8: Group scheme.

P1	P2	P3	acc
8,16,64	32,32,128	64,128,1024	70.6%
8,16,64	32,32,128	64,64,512	67%
8,16,64	32,32,128	64,256,2048	69.5%

Table 9: Arc.

4 2018.2.3-2018.2.4

单层group结构的准确率

P1 input	P1 output	P2 input	P2 output	acc
128x16x3	128x2	-	-	67%

Table 10: Trials.

- 1. 所有数据重新采样和group完成
- 2. 目前group方案为256x18, 128x64,网络结构为mlp(8,16,64),mlp(32,32,128),mlp(64,128,1024)效果最好,所以后面实验按照这套方案做下去
- 3. 利用空间点密度信息的数据刚刚做完

1.,	•, ,•	
split	iteration	acc
1	1	70.8%
1	2	73.8%
1	3	73.3%
2	1	x%
2	2	x%
2	3	x%
3	1	x%
3	2	x%
3	3	x%

Table 11: Trials.

4.1 TO DO

- 1. 把Table 11 中的未完成实验跑完
- 2. 把根据空间点密度采样的数据跑完
- 3. 把没加stroke order信息的数据跑完
- 4. 把Sketch采样成512, 256, 128点的数据跑完