Name: Atharva Choudhari Roll no.:41105

Batch: P1 Class: BE1 Subject: LP-3 (BT)

Mini Project 3-BT

1. Title

• **Title:** Develop a Blockchain based application dApp (de-centralized app) for e- voting system

2. Abstract

This project presents a decentralized e-voting system built on blockchain technology, addressing issues like transparency, security, and voter anonymity in traditional voting systems. The blockchain-based decentralized application (dApp) ensures tamper-proof, immutable voting records, reducing fraud and enhancing trust in electoral processes. The system is user-friendly, enabling voters to cast their votes remotely while ensuring privacy and verifying voter eligibility. This solution demonstrates the potential of blockchain technology in transforming e-voting and other domains requiring secure, transparent systems.

3. Introduction

Voting is fundamental to democracy, but traditional systems are often vulnerable to fraud, manipulation, and inefficiency. Blockchain technology, known for its decentralized and immutable characteristics, offers a promising alternative to modernize and secure voting systems. By leveraging a blockchain-based decentralized application (dApp), we aim to develop an e-voting system that ensures transparency, security, and voter anonymity while maintaining the integrity of the election process. This project introduces a blockchain solution that eliminates the need for centralized authorities, reduces the risk of tampering, and provides trustless verification of votes.

4. Objective

The primary objective of this project is to design and implement a decentralized application (dApp) that enables secure, transparent, and anonymous electronic voting using blockchain technology. The system should ensure:

- 1. Voter authentication and eligibility verification.
- 2. Secure and anonymous vote casting.
- 3. Immutable and transparent vote recording.
- Decentralized tallying of votes.

5. Prevention of duplicate voting and manipulation.

5. Blockchain Overview and Technology Stack

5.1. Technology Stack

- **Blockchain Platform: Ethereum or Hyperledger
- Smart Contracts: Solidity (for Ethereum)
- **Discrete** Frontend: HTML5, CSS, JavaScript, React
- Dackend: Node.js, Express.js
- **Wallet Integration**: MetaMask
- **Database: IPFS for storing vote metadata, or MongoDB for non-sensitive data
- Tools: Truffle or Hardhat (for smart contract development), Ganache (for local blockchain),

Web3.js (for blockchain interactions)

6. Methodology

- ② **System Architecture**: The system will consist of voters, election organizers, and blockchain nodes. Voters will cast their votes through a web interface connected to the blockchain via smart contracts.
- © Smart Contract Development: Smart contracts will handle voter authentication, vote submission, and vote tallying. These contracts will ensure the rules of the election are enforced without requiring a trusted third party.
- User Interface: A user-friendly front-end will allow voters to register, verify their eligibility, and cast their vote. This interface will interact with the blockchain using Web3.js.
- **Blockchain Integration**: The votes will be recorded as transactions on the blockchain, ensuring immutability and transparency. Each vote is securely stored in a decentralized manner, preventing tampering or alterations.
- **Vote Tallying**: Once the election period ends, the smart contract will automatically tally the votes and declare the results. This process is decentralized, with no single entity controlling the vote tally.

7. Results and Discussion

The expected outcome of the project is a functional decentralized e-voting system that guarantees security, transparency, and anonymity. The system should demonstrate:

- Successful voter registration and verification.
- Secure submission and recording of votes.
- Transparent and auditable vote tallying.
- Demonstration of blockchain's capability to solve real-world voting challenges.

8. Conclusion

This project demonstrates the feasibility of using blockchain technology to develop secure, transparent, and anonymous e-voting systems. By leveraging decentralized smart contracts, we eliminate the need for a trusted third party and ensure that votes are tamper-proof. Blockchain-based e-voting systems have the potential to revolutionize electoral processes by enhancing trust, reducing fraud, and enabling remote voting.

9. Future Scope

- Scalability: Explore solutions to improve the scalability of the system for largerscale elections.
- Mobile Voting: Extend the platform to support mobile devices for wider accessibility.
- Cross-chain Interoperability: Investigate interoperability with other blockchain networks to enhance flexibility.
- Integration with Government Systems: Collaborate with governmental bodies to integrate blockchain-based voting into official electoral systems.
- Quantum Security: Research and implement quantum-resistant cryptographic algorithms for future-proofing the system.