Métricas, datos y calibración inteligente

Yesid Alfonso Gutiérrez y Michael Andrés Tapias 08/09/2020

SITUACIÓN PROBLEMA

DISEÑO EXPERIMENTAL

- Se realizo el preprocesamiento de datos.
- Se calculó el error de medición dado por la distancia euclidiana entre los datos de un equipo calibrado de la AMB y un dispositivo IoT.
- Se aplico una media móvil utilizando las primeras 10 potencias de 2 y se calcula su respectivo error.
- Se aplica una regresión lineal entre las mediciones del dispositivo que esta calibrado y el dispositivo IoT. Posteriormente aplicamos el tercer inciso del diseño experimental para simular una calibración del dispositivo IoT.

$$\mathcal{D}(\mathbb{D}_i, \hat{\mathbb{D}}_{\hat{i}}) = \sqrt{\sum_{i, \hat{i}} \left(\mathbb{D}_i - \hat{\mathbb{D}}_{\hat{i}} \right)^2}$$

VENTANA MÓVIL-MEDIAS

The euclidean distance was 443.94031057753784

The euclidean distance was 150.09282385927133

REGRESIÓN LINEAL POR MÍNIMOS CUADRADOS

Sensor data - AMB data

The euclidean distance was 255.63431123194337

The euclidean distance was 30.139915493419338

COMPARATIVA DE ERRORES

CONCLUSIONES

Se logra una calibración de un equipo de sensor IoT de partículas PM2.5 utilizando una regresión lineal y dicha regresión lineal mejora cuando se utilizan las ventanas móviles.