

1. Orthogonality

Exercise 1 Consider the following scalar product in \mathbb{R}^2 :

$$(x_1,x_2)\cdot(y_1,y_2)=x_1y_1-x_2y_1-x_1y_2+4x_2y_2$$

Find out the orthogonal projection of the vector (1,0) onto (-1,1).

Exercise 2 Compute the orthogonal projection of the vector $\vec{v} = (1,2,3)$ onto the plane

$$\mathcal{H} = (x, y, z) \in \mathbb{R}^3 | x - y + z = 0$$

Exercise 3 Find out \mathcal{U} , the linear subspace of \mathbb{R}^3 , orthogonal to the plane

$$\mathcal{H} = (x, y, z) \in \mathbb{R}^3 | x + 2y - z = 0$$

Exercise 4 Let $\mathcal{U} = \{(x, y, z, t) \in \mathbb{R}^4 | x - z = 0, x + y + z = 0\}$. Considering the standard scalar product in \mathbb{R}^4 , compute the subspace \mathcal{H} orthogonal to \mathcal{U} .

Exercise 5 Considering the following scalar product in $\mathscr{C}^0[-1,1]$:

$$f \cdot g = \int_{-1}^{1} f(x) \cdot g(x) dx$$

- a) In the linear subspace $\mathbb{R}_2[X]$, compute the Gram matrix referred to the standard basis $\mathscr{B} = \{1, x, x^2\}$.
- b) Approximate the function $f(x) = e^x$ by second degree polynomials, in the interval [-1, 1].
- c) Approximate the function $g(x) = \cos x$ by second degree polynomials, in the interval [-1,1].

Exercise 6 Exercise 7 Using the Least Squares algorithm, find the first degree polynomial model y = ax + b, that best adjust the following data $\{x_i, y_i\}_{i=1}^m$

Use the previous model to predict the quantity of y when utilizing x = 30 (*kilograms*).