RM-ANOVA for coevolution with a seed bank phenotypic evolution

Load organized data

Adjusting variable types for lme

In the lme models used below the fixed effects need to be specified as factors. In this experiment these are: seed.bank and time. However for the auto correlation specification time needs to be specified as an integer.

```
d <-
    d%>%
    rename(Time = t.host) %>%
    # for the lme model all fixed effects need to be factors
    mutate(time.fct=as.factor(Time))%>%
    mutate(pop=as.factor(pop))%>%
    mutate(seed.bank=as.factor(seed.bank))%>%
    #ajust factor order for seed bank
    mutate(seed.bank = fct_rev(seed.bank))
```

Select response variable to be analyzed

```
var.response <- "pop_resistance"

d <- d %>%
  mutate(response=pop_resistance ) %>%
  mutate(flask = pasteO(trt,"-", line))
```

Here we analyze $\mathbf{pop}\mathbf{_resistance}$.

Test data for homogeneity of variances

This is an assumption of ANOVA tests.

Based on : https://www.datanovia.com/en/lessons/homogeneity-of-variance-test-in-r/ Using "Levene's test" that according to website is the most commonly used test for this purpose. This test has a null hypothesis of equal variance. So getting P>0.05 suggests homogenic variance.

```
# Levene's test with multiple independent variables
car::leveneTest(response ~ pop*seed.bank*line, data = d)

## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 8    2.45 0.0389 *
## 27
```

The data does not fulfill the assumption of equal variance across test groups.

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Log transform the data

##

Making it percent so that values remain positive

Test transformed data for homogeneity of variances

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The data still does not fulfill the assumption of equal variance across test groups.

Box-Cox transformation

powerTransform uses the maximum likelihood-like approach of Box and Cox (1964) to select a transformation of a univariate or multivariate response for normality, linearity and/or constant variance.

```
(help page for car::powerTransform)
```

```
# Multivariate transformation to normality within levels of treatments
bx.cx <- powerTransform(response ~ pop*seed.bank*line, d)
summary(bx.cx)</pre>
```

```
## bcPower Transformation to Normality
      Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd
## Y1
         8.6886
                       8.69
                                   4.509
                                              12.8681
##
## Likelihood ratio test that transformation parameter is equal to 0
   (log transformation)
##
                              LRT df
                                           pval
## LR test, lambda = (0) 64.09321 1 1.2212e-15
##
## Likelihood ratio test that no transformation is needed
                              LRT df
                                           pval
## LR test, lambda = (1) 40.55038 1 1.9161e-10
```

Tranformation is required, but not a simple log transformation

Plot the profile log-likelihood for Box-Cox transformations.

Transform using Box-Cox λ (rounded).

Test transformed data for homogeneity of variances

```
# Levene's test with multiple independent variables
car::leveneTest(bxcx.response ~ pop*seed.bank*line, data = d)

## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 8 1.5376 0.1908
## 27
```

The data now fulfills the assumption of equal variance across test groups. $\# \mathrm{RM}\text{-}\mathrm{ANOVA}$

vs. Spores in "with-seed-bank" populations

```
cur.model <- d%>%
    # compare veg and spore in with-seed-bank
filter(seed.bank == "with-seed-bank") %>%
lme(bxcx.response ~ pop * time.fct ,
    random = ~1|flask ,
    correlation=corARMA(form = ~ 1 | flask, p = 1, q = 1),
```

```
data = .)
anova(cur.model)
```

Distribution of model residuals

Is the model any good?

```
p1 <-
  #qqplot by seed bank
  qqnorm(cur.model,~ resid(., type = "p")|pop, abline = c(0, 1))
p2 <-
  # standardized residuals versus fitted values by seed.bank
plot(cur.model, resid(., type = "p") ~ fitted(.) | pop, abline = 0)
p3 <-
broom.mixed::augment(cur.model)%>%
  ggplot(aes(Time,.resid)) +
  geom_hline(yintercept = 0)+
  geom_line(aes(color=line))+
  facet_wrap(~pop)+
  theme_cowplot()+panel_border()
p4 <-
broom.mixed::augment(cur.model)%>%
  ggplot(aes(line,.resid)) +
  geom_hline(yintercept = 0)+
  geom_boxplot(aes(fill=line),alpha=.5, position = position_dodge(width = .9))+
  geom_point(aes(color=line), position = position_dodge(width = .9), shape=21)+
  facet_wrap(~pop)+
  theme_cowplot()+panel_border()
plot_grid(p1,p2,p3,p4, nrow = 2, labels = 'auto')
```


Seed-bank effect on veg populations

```
cur.model <- d%>%
    # compare veg and spore in with-seed-bank
filter(pop == "VEG") %>%
lme(response ~ seed.bank * time.fct ,
    random = ~1|flask ,
    correlation=corARMA(form = ~ 1 | flask, p=1, q=1),
    data = .)
anova(cur.model)
```

```
##
                      numDF denDF F-value p-value
## (Intercept)
                               12 56972.94 <.0001
                          1
## seed.bank
                          1
                                      1.10 0.3544
## time.fct
                          3
                               12
                                      0.59 0.6356
                          3
                                      0.57 0.6471
## seed.bank:time.fct
                               12
```

Distribution of model residuals

Is the model any good?

```
p1 <-
  #qqplot by seed bank
  qqnorm(cur.model,~ resid(., type = "p")|seed.bank, abline = c(0, 1))
p2 <-
  # standardized residuals versus fitted values by seed.bank
plot(cur.model, resid(., type = "p") ~ fitted(.) | seed.bank, abline = 0)
p3 <-
broom.mixed::augment(cur.model)%>%
  ggplot(aes(Time,.resid)) +
  geom_hline(yintercept = 0)+
  geom_line(aes(color=line))+
  facet_wrap(~seed.bank)+
  theme_cowplot()+panel_border()
p4 <-
broom.mixed::augment(cur.model)%>%
  ggplot(aes(pop,.resid)) +
  geom_hline(yintercept = 0)+
  geom_boxplot(aes(fill=line),alpha=.5, position = position_dodge(width = .9))+
  geom_point(aes(color=line), position = position_dodge(width = .9), shape=21)+
  facet_wrap(~seed.bank)+
  theme_cowplot()+panel_border()
plot_grid(p1,p2,p3,p4, nrow = 2, labels = 'auto')
```


ok