(7)

INTRODUCTION TO MRI

- ATOMS WITH AN ODD NUMBER OF NUCLEOUS ('H, 31P, 13C, 23Na) POSSESS A NUCLEAR SPIN ANGULAR MOMENTUM. YOU CAN THINK OF THE NUCLEUS OF SUCH ATDMS AS A SPINNING CHARLED SPAPERE THAT GIVES RISE TO A SMALL MAGNETIC MOMENT.

- IN THE ABSENCE OF A MAGNETIC FIELD THESE SPINS ARE RANDOMLY ORIENTED AND THE NET MAGNETIC MOMENT A ACROSS A MACROSCOPIC COLLECTION OF SPINS AUDROUSES TO ZERO.

NET MAGNETIC MOMENT IN = 0

HOWEVER, WHEN AN EXTERNAL MAGNETIC FIELD & IS APPLIED, THE SPINS ALIGN IN THE PIRECTION OF THE FIELD (PARALLEL OR ANTIPARALLEZ). MORE ALIGN PARALLEZ, GIVING A NET MAGNETIZATION A!

COLLECTION OF SPINS

- THIS PHENOMENON IS CALLED MAGNETIC POLARIZATION . THE DEBLEE OF POLARITATION (MAGNITUDE OF A FOR A COLLECTION OF SPINS) INCREASES WITH THE STRENGTH OF APPLIED FIELD B.
- THIS STATE WHOLE SPINS ARE ALLGARD PARALLEL OR ANTIPARTUEL TO THE FIELD OCCURS AT THERMAL EQUILIBRIUM WHEN IT IS ALIENED WITH FIELD & AND NOT CHANGING WI TIME.

- 50 WHAT HAPPENS IF WE COULD KNOCK OUR MAGNETIZATION VELTOR MOOT OF ITS EQUILIBRIUM STATE??

ANSWER: THE BEHAVIOR OF THE MAGNETIZATION VECTOR A IS GONDRINED BY THE BLOCK EQUATION:

$$\frac{d\vec{M}}{dt} = \vec{M} \times \vec{R} - \frac{M_{\chi} \hat{i} + M_{y} \hat{j}}{T_{z}} - \frac{(M_{z} - M_{o}) \hat{k}}{T_{1}}$$

FOCUS ON THIS FOR

A MOMENT. IF WE CAN "TIP" A AWAY FROM THE DIRECTION OF B, WHAT HAPPENC?!

LET'S IGNORE THESE FOR NOW. THESE TWO TERMS ARE WHAT CAUSES A TO RELAX BACK TO THERMAL EDUILIBRIUM OVER TIME. WE'LL DISCUSS IN GREAT DETAIL LATER.

THERMAL FROULLIBRIUM, MXXB = 0!

50 dM = 0 = 7 NO CHANGE!

(EQUILIBRIUM....)

THE PAGE! did IS IN THAT DIRECTION.

M BEGINS TO PRECESS AROUND THE DIRECTION OF \vec{R} AT A FREQUENCY $\omega = \delta \vec{B}$ "LARMOR FREQUENCY $f = \frac{\delta}{2\pi} \vec{B}$ FREQUENCY

- THIS IS THE "RESONANCE" IN MAGNETIC RESONANCE IMAGING! - & IS THE GYROMAGNETIL RATIO, AND IS DIFFERENT FOR DIFFERENT NUCLE!

SOME KEY TAKE AWAYS:

- TAN APPLIED MAGNETIC FIELD & INDUCES A NET MAGNETIC
 POLARIZATION OF (IN THE DIRECTION OF & AT EQUILIBRIUM) ACROSS A
 MACROSCOPIC COLLECTION OF SPINS.
- IF M IS NOT ALIGNED WITH B, THE FIRST TERM IN THE BLOCK EQUATION REQUIRES PRECESSION OF M ABOUT THE DIRECTION OF B AT THE LARMOR FREQUENCY &B.
- VOLY IMPORTANT: NOTICE THAT THE FREQUENCY OF

 PRECESSION IS LINEARLY PROPORTIONAL TO THE

 MAGNITUDE OF B! IF WE INCREASE OR DECREASE

 THE MAGNITUDE OF THE APPLIED FIELD, WE VARY

 THE RESONANCE (OR PRECESSIONAL) FREQUENCY OF

 M.
- THE VELTOR A WON'T PRECESS FOREVER. THE ETHER

 TWO TERMS IN THE BLOCK ERVATION SHOW HOW IT GRADUALLY

 REALIGNS WITH B (BUT IT CONTINUES TO PRECESS OR

 RESUMATE AS IT RELAXES BACK TO EDUILIBRIUM!).
- SOMETIMES WE CALL M'ITSELF A "SPIN" THAT WE ARE
 TIPPING, BUT REMEMBER THIS IS A MACROSCOPIC EFFELT
 ACROSS A COLLECTION OF SPINS.
- THIS IS A CLASSICAL TREATMENT. THE QUANTUM PICTURE
 IS BOTH MORE INTERESTING AND LESS INTUITIVE. FOR
 THE PURPOSES OF THIS CLASS, THE CLASSICAL DESCRIPTION
 15 ADEQUATE.
- NOW, YOU MIGHT BE ASKING YOURSELF HOW YOU ACTUALLY TIP A AWAY FROM B TO GET PRECESSION ...

4

EXCITATION:

- -TIPPING M AWAY FROM THE DIRECTION OF B IS CALLED "EXCITATION". WE ARE EXCITING THE RESONANT PRECESSION IN THE SPIN A.
- EXCITATION IS ACCOMPUSHED BY HITTING THE SPIN IM

 WITH AN RF FIELD TUNED TO THE LARMOR FREQUENCY.

 THIS EFFECTIVELY STARTS IM PRECESSING AND "ORAGS"

 IT AWAY FROM THE DIRECTION OF B.

SOURCE OF THE NMR SIGNAL

- · WHEN WE TURN OFF THE RF, THE SPIN CONTINUES
 TO PRECESS, PRODUCING IT'S OWN RF SIGNAL AT
 THE LARMOR FREQUENCY!
- · WE CAN DETECT THAT RF SIGNAL W/ A COIL => THIS
 IS THE NMR SIGNAL.
- · ANALOGY OF A CHAMPAGNE GLASS RESONATING
 TO SOUND.

COMPONENTS OF AN MRI MACHINE:

- OBO: BIG SUPERCOMOUCHNG MAGNET THAT PRODUCES
 OUR MAIN POLARITING FIELD
 - · VORY STRONG TO GET GOOD POLARIZATION (UP TO N3 TESLA
 IN CLINICAL SCANNERS)
 - · ALWAYS ON!
 - · VERY HOMOGENEOUS
 - · SETS THE FUNDAMENTAL LARMOR FREDVENCY OF THE SYSTEM (TOGETHER WITH Y OF THE NUCLEUS =) H
 - · BY CONVENTION, BO IS IN THE Z DIRECTION (DOWN THE BORE OF THE MAGNET) => ALSO CALLED THE LONGITUAINAL DIRECTION.

- 2 RADIOFREDUENCY FIELD B; TYPICALLY AND RE COIL
 INSECTED INSIDE THE BIG SUPERCONDUCTING BO MAGNET.
 - · RF RESONATOR TUMED TO THE LARMOR FREQUENCY
 - · PLODUCES RF FIELD THAT IS CIRCULARLY POLARIZED
 IN THE XY PLANE (PERPONDICULAR TO Z)
 - · USED IN TRANSMIT MODE TO EXCITE OR TIP SPINS.
 - (ALTHOUGH THIS COULD BE ANOTHER COIL OR ARRAY OF COILS)
- 3 LINDAR GRADIBUT FIELD GX) . ELECTROMAGNETS BUILT
- 4 LINDAR GRADIBUT FIELD GY) INSIDE THE MAIN POLARIZING
- (5) LINEAR GRADIENT FIELD GZ
- · ELECTROMAGNETS BUILT INSIDE THE MAIN POLARIZING MAGNET
-) · CAN BE TURNED ON OR
 - OF THE MAIN B FIELD

 LINEARLY IN THE X, Y, OR

 Z DIRECTION DESPECTIVELY
- ·USED TO INDUCE LINEAR
 VARIATIONS IN THE LARMOR
 FREQUENCY ACROSS THE
 BODY IN THE X, y, of Z
 DIRECTION.
- LOCALIZATION OF SPINS
 PRODUCING THE NMR SIGNAL!