Exploiting Multiple Symmetry-Broken SCF Solutions to Describe Ground and Excited States of Transition-Metal Complexes

Bang C. Huynh¹ Alex J. W. Thom¹

¹Department of Chemistry, University of Cambridge, United Kingdom

Figure 1. Energy and symmetry of low-lying UHF solutions and NOCI wavefunctions constructed from them in octahedral $[VF_6]^{3-}$. S_{M_S} : symmetry-conserved UHF set S with \hat{S}_z eigenvalue M_S . S_{M_S} : spatial or spin symmetry-broken UHF set S with \hat{S}_z eigenvalue M_S . $\Gamma[A \oplus B \oplus C]$: a specific NOCI set of symmetry Γ constructed from all of A, B, and C. $\Gamma[A, B, C]$: multiple NOCI sets of symmetry Γ constructed from all non-trivial combinations of A, B, and C.

Introduction

Transition-metal complexes are strongly correlated as they have many low-energy electronic states that exhibit high degrees of degeneracy. Figure 2 gives such states for octahedral d^2 as an example.

Figure 2. All electronic terms of a true d^2 system in an octahedral field.

The non-linear HF equations for these complexes therefore admit multiple low-lying solutions that are degenerate or nearly degenerate.

We have located these solutions using SCF metadynamics and investigated their symmetry properties in a model octahedral d^2 system, $[VF_6]^{3-}$ (Figure 1).

Symmetry Breaking in HF

Degenerate eigenfunctions of the spinless Hamiltonian *must* transform as a single irreducible representation (irrep) of the underlying point group \mathcal{B} , the spin rotation group $\mathrm{SU}(2)$, or the time reversal group \mathcal{T} .

HF wavefunctions do not have to obey this due to their approximate nature. Thus, consider a set of degenerate HF solutions $S = \{^w \Psi \mid w = 1, 2, ...\}$ and a particular group \mathcal{G} :

- if S spans a single irrep in \mathcal{G} , then S is symmetry-conserved in \mathcal{G} ;
- if S spans multiple irreps in \mathcal{G} , then S is symmetry-broken in \mathcal{G} .

HF solutions break symmetry to become lower in energy and possibly recover some electron correlation. Restoring symmetry of symmetry-broken HF solutions allows us to form physically meaningful wavefunctions while incorporating said correlation.

Restoring Symmetry: Non-Orthogonal CI (NOCI)

For a complete symmetry-broken set $S = \{^w \Psi \mid w = 1, 2, \ldots\}$, solving the generalised eigenvalue equation

 $m{H}m{A} = m{S}m{A}m{E}$ where $(m{H})_{wx} = \langle {}^w\Psi|\hat{\mathscr{H}}|{}^x\Psi
angle$ and $(m{S})_{wx} = \langle {}^w\Psi|{}^x\Psi
angle$

gives coefficients A_{wm} such that the NOCI wavefunctions

$$^{m}\Phi = \sum {^{w}\Psi}A_{wm}$$

conserve symmetry and can be used to approximate corresponding electronic terms.

UHF vs. NOCI: Jahn-Teller Distortion

Consider the $T_{1g} \otimes e_g$ Jahn-Teller distortion in octaheral $[VF_6]^{3-}$. Figure 3 shows that:

- the UHF A_1 and A'_1 solutions fail to exhibit the expected energy minima;
- the ${}^3T_{1g}[A_1 \oplus A_1']$ **NOCI wavefunctions** do **show the expected stabilisation** and give the **correct degeneracy splitting** upon symmetry descent.

Figure 3. State energy in the $T_{1g} \otimes e_g$ Jahn-Teller distortion of octahedral $[VF_6]^{3-}$. Dashed curves: symmetry-broken UHF A_1 or A_1' solutions. Solid curves: ${}^3T_{1g}[A_1 \oplus A_1']$ NOCI wavefunctions.

Solution Topology: Euclidean Realisation of State Distances

By realising the distance matrices between symmetry-broken HF solutions to give **polytopes** showing their **arrangements in Euclidean space** (Figure 4), we hope to gain insight into the nature of their symmetry breaking.

Figure 4. Three-dimensional projections of polytopes of A_1 and A_1' solutions along the $e_g u$ distortion.

In a Nutshell

- There exist many low-lying HF solutions in transition-metal complexes.
- Some solutions break symmetry, spin or spatial or both.
- NOCI can restore symmetry to give proper physical behaviours, e.g., vibronic coupling.
- There are clear patterns in symmetry breaking that need further understanding.

References

- 1. Thom, A. J. W. & Head-Gordon, M. *Physical Review Letters* **101,** 193001 (November 2008).
- 2. Thom, A. J. W. & Head-Gordon, M. *The Journal of Chemical Physics* **131**, 124113 (September 2009).
- 3. Huynh, B. C. & Thom, A. J. W. (Manuscript in preparation).