WHAT IS CLAIMED IS:

1. A compound having the formula:

wherein

R¹ and R^{1'} are members independently selected from H, substituted or unsubstituted alkyl and substituted or unsubstituted heteroalkyl moieties;

X and X¹ are independently selected from O, NH or S;

- s and t are independently selected from the integers from 0 to 3, with the proviso that at least one of s and t is at least 1;
- R² is a member selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl and substituted or unsubstituted heterocycloalkyl;
- R³ is a member selected from substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted or unsubstituted or unsubstituted aryl and substituted or unsubstituted heteroaryl,
- wherein at least one of R² and R³ is substituted with a member selected from a reactive group, a moiety comprising a reactive group and a component of a conjugate, and
- R² and R³, together with the nitrogen to which they are bound are optionally joined to form a ring which is substituted with a member selected from a reactive group, a moiety comprising a reactive group and a component of a conjugate,

with the proviso that, when R² is H, R³ is a cyclic structure substituted with a 24 25 member selected from a reactive group, a moiety comprising a reactive 26 group and a component of a conjugate.

- The compound according to claim 1, wherein X and X¹ are O; R¹ 2. and R1 are H; and R2 and R3 are members independently selected from substituted or unsubstituted alkyl, with the proviso that at least one of R² and R³ are substituted with a member selected from a reactive group, a moiety substituted with a reactive group and a bond to a component of a conjugate.
- The compound according to claim 1, wherein X and X¹ are O; R¹ and R¹ are H; and R² and R³, together with the nitrogen to which they are bonded 2 3 are joined to form a ring substituted with a member selected from a reactive group, a moiety substituted with a reactive group and a bond to a component of a conjugate.
 - The compound according to claim 1, wherein X and X¹ are O; R¹ and R1 are H; R2 is H and R3 is a cyclic structure substituted with a member selected from a reactive group, a moiety substituted with a reactive group and a bond to a component of a conjugate.
 - The compound according to claim 1, wherein s is 1; and t is 2. 5.
 - The compound according to claim 1, having the formula: 6.

$$(HO_3S)_s \times C - C - N \cap R^5$$

$$R^7 \times R^6$$

$$(SO_3H)_t$$

3 wherein

1

2

3

4 5

1

4

1

2

3 4

1

1

2

4

5 6

R⁴, R⁵, R⁶ and R⁷ are members independently selected from hydrogen, halogen, substituted or unsubstituted C₁-C₁₈ alkyl, substituted or unsubstituted C₁-C₁₈ alkoxy, substituted or unsubstituted C₁-C₁₈ alkylthio, substituted or unsubstituted

- aryl, substituted or unsubstituted heteroaryl, sulfo, nitro, carboxyl, substituted or
- 8 unsubstituted C₁-C₁₈ carbamoyl, amino, a reactive group and hydroxyl; and
- 9 n is 1 or 2.
- 7. The compound according to claim 6, wherein at least one of R⁴, R⁵, R⁶ and R⁷ is a carboxyl moiety or an active ester thereof.
 - 8. The compound according to claim 1, having the formula:

$$(HO_3S)_s \times \begin{array}{c} R^4 \\ R^1 \times 1 \\ R^7 \times \\ R^7$$

wherein

- R⁴, R⁵, R⁶ and R⁷ are members independently selected from hydrogen, halogen, substituted or unsubstituted C₁-C₁₈ alkyl, substituted or unsubstituted C₁-C₁₈ alkoxy, substituted or unsubstituted C₁-C₁₈ alkylthio, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, nitro, cyano, a reactive group and a bond to a component of a conjugate.
- 9. The compound according to claim 1, wherein said reactive group is a member selected from an acrylamide, an activated ester of a carboxylic acid, an acyl azide, an acyl nitrile, an aldehyde, an alkyl halide, an anhydride, an aniline, an aryl halide, an azide, an aziridine, a boronate, a carboxylic acid, a diazoalkane, a haloacetamide, a halotriazine, a hydrazine a hydrazide, an imido ester, an isocyanate, an isothiocyanate, a maleimide, a phosphoramidite, a reactive platinum complex, a sulfonyl halide, a thiol group, and a photoactivatable group.
 - 10. The compound according to claim 1, having the formula:

$$R^{1} O R^{2}$$
 $X - C - C - N R^{3}$
 $R^{1'} O R^{2}$
 $R^{1'} O R^{2}$
 $R^{3} O R^{2}$
 $R^{3} O R^{2}$
 $R^{3} O R^{2}$

2

1

11. A fluorescent labeled conjugate comprising:

2 a component which is a member selected from an amino acid, a peptide, a protein, a

- 3 polysaccharide, a nucleoside, a nucleotide, an oligonucleotide, a nucleic acid, a
- 4 hapten, a psoralen, a drug, a hormone, a lipid, a lipid assembly, a synthetic polymer,
- 5 a polymeric microparticle, a biological cell, a virus and combinations thereof
- 6 covalently bonded to a first fluorescent moiety having the formula:

$$(HO_3S)_s \times \begin{array}{c|c} & R^1 & X^1 & R^2 \\ & \parallel & \parallel & \\ & C & C & N \\ & R^1 & & \\ & & R^3 & \\ & &$$

7

8

wherein

R1 and R1 are members independently selected from H, substituted or 9 10 unsubstituted alkyl and substituted or unsubstituted heteroalkyl moieties: 11 X and X¹ are independently selected from O, NH or S; 12 s and t are independently selected from the integers from 0 to 3; 13 R² is a member selected from H, substituted or unsubstituted alkyl, substituted 14 or unsubstituted cycloalkyl, and substituted or unsubstituted 15 16 heteroalkyl, substituted or unsubstituted heterocycloalkyl; R³ is a member selected from substituted or unsubstituted alkyl, substituted or 17 18 unsubstituted cycloalkyl, substituted or unsubstituted heteroalkyl,

19	substituted or unsubstituted heterocycloalkyl, substituted or			
20	unsubstituted aryl and substituted or unsubstituted heteroaryl,			
21	wherein at least one of R ² and R ³ is substituted with a member selected from			
22	a reactive group, a moiety comprising a reactive group, and a			
23	component of a conjugate, and			
24	R ² and R ³ , together with the nitrogen to which they are bound are optionally			
25	joined to form a ring which is substituted with a member selected from			
26	a reactive group, a moiety comprising a reactive group and a			
27	component of a conjugate,			
28	with the proviso that, when R ² is H, R ³ is a cyclic structure substituted with a			
29	member selected from a reactive group, a moiety comprising a reactive			
30	group, and said component of said conjugate; and			
31	with the proviso that at least one member selected from R2 and R3 comprises			
32	at least one moiety derived from said reactive group by its reaction with			
33	a reactive moiety of said component.			
1	12. A composition comprising:			
2	(a) a first conjugate according to claim 11; and			
3	(b) a second conjugate, comprising a component covalently bonded to			
4	a second fluorophore having a structure different from said first			
5	fluorophore.			
1	13. The composition according to claim 12, wherein said second			
2	fluorophore comprises a moiety that is a member selected from a coumarin, a			
3	xanthene, a cyanine, a pyrene, a borapolyazaindacene, an oxazine, and bimane.			
1	14. The composition according to claim 13, wherein said second			
2	fluorophore comprises a fluorescein moiety.			
1	15. The composition according to claim 12, wherein said first			
2	component and said second component have different structures.			
1	16. The composition according to claim 12, wherein said first			

component and said second component have are identical structures.

T		17.	The composition according to claim 12, wherein said hist	
2	conjugate is b	ound	to a binding partner for said first component.	
1	′ .	18.	The composition according to claim 12, wherein said second	
2	conjugate is b	ound	to a binding partner for said second component.	
1		19.	A method for detecting an analyte in a sample, said method	
2	comprising:			
3	((a)	contacting said sample with a conjugate according to claim 11	
4			wherein said component is a binding partner for said analyte;	
5	((b)	incubating said conjugate with said sample for a sufficient	
6			amount of time for said analyte and said component to interact,	
7			thereby forming a fluorescent analyte; and	
8	((c)	illuminating said fluorescent analyte with an appropriate	
9			wavelength whereby the presence of said analyte is determined	
10			in said sample.	
1	2	20.	The method according to claim 19, wherein further comprising,	
2	between steps (b) and (c):			
3	((d)	separating said fluorescent analyte from said sample.	
1	2	21.	A method for the detecting a first analyte and a second analyte	
2	in a sample, said method comprising:			
3	((a)	incubating said sample with a composition according to claim	
4			12, wherein said first component is a binding partner for said	
5			first analyte and said second component is a binding partner for	
6			said second analyte, for a time sufficient for said first analyte to	
7			interact with said first conjugate and said second analyte to	
8			interact with said second conjugate, thereby forming a	
9			fluorescent first analyte and a fluorescent second analyte,	
10			respectively;	
11	((b)	illuminating said first fluorescent analyte with an appropriate	
12			wavelength whereby the presence of said first analyte is	
13			detected in said sample; and	

14	` (c)	illuminating said second fluorescent analyte with an appropriate			
15		wavelength whereby the presence of said second analyte is			
16		detected in said sample.			
1	22.	The method according to claim 21, wherein said first fluorescent			
2	analyte and said second fluorescent analyte are illuminated with said appropriate				
3	wavelength either simultaneously or sequentially.				
4	23.	A kit for the detection of an analyte in a sample, wherein said kit			
5	comprises a compound according to any one of claims 1-10.				
6	24.	A kit according to claim 23, further comprising a reaction buffer.			
7	25.	A kit according to claim 24, further comprising instructions on			
,	25.	A kit according to claim 24, further comprising matructions on			
8	the use of said kit.				
1					