Notas de Álgebra Moderna IV. Una introducción a la teoría de categorías.

Cristo Daniel Alvarado

27 de febrero de 2024

Índice general

1.	Clases y conjuntos	2
	1.1. Axiomas de Von-Newmann-Gödel	2
2.	Categorias	5
	2.1. Conceptos Fundamentales	5
	2.2. Objetos especiales y Morfismos en una Categoría	6

Capítulo 1

Clases y conjuntos

1.1. Axiomas de Von-Newmann-Gödel

Antes de decantarnos totalmente a nuestro estudio de las categorías, primero nos enfocaremos en estudiar a los objetos que se van a usar (las clases).

Aceptamos la existencia de *objetos primitivos*, las cuales son clases y conjuntos, dotadas de dos relaciones primitivas, la pertenencia \in e igualdad =. Denotamos a los objetos primitivos por letras en mayúsculas.

Definición 1.1.1 (Axiomas de NBG)

Se tienen los siguientes axiomas:

- A1. Todo conjunto es una clase.
- A2. Si $x \in A$, $\forall x \in B$ y $x \in B$, $\forall x \in A$, entonces A = B.
- A3. Si $A \in B$ donde B es una clase, entonces A es un conjunto.
- A4. Si P(x) es una propiedad definida sobre el parámetro x que se recorre sobre conjuntos, entonces existe una clase [x|P(x)] tal que para cada conjunto y.

$$y \in [x|P(x)] \iff P(y)$$

- A5. Si X, Y son conjuntos, entonces [X, Y] es un conjunto y se denota por $\{X, Y\}$ (ver ejemplo 1.1.3).
- A6. Si X es un conjunto, entonces $\{X\}$, $\{X, \{X\}\}$,... son conjuntos.
- A7. Existe un conjunto inductivo.
- A8. Sea A conjunto, entonces existe un conjunto denotado por $\mathcal{P}(A)$ tal que $B \in \mathcal{P}(A)$ si y sólo si $B \subseteq A$.
- A9. Si $f: A \to B$ donde A es un conjunto, entonces f(A) es un conjunto.

Ejemplo 1.1.1

Construimos al **conjunto vacío** \emptyset como $\emptyset = [x | x \neq x]$ (usando a A4).

Ejemplo 1.1.2

Set = [x|x = x] (usando a A4).

Ejemplo 1.1.3

Si X y Y son conjuntos, entonces

$$[X, Y] = [Z | Z = X \text{ o } Z = Y]$$

(construida por el A4).

Ejemplo 1.1.4

Si X es un conjunto, entonces $X \cup \{X\}$ es un conjunto y se denomina el **sucesor de** X.

Definición 1.1.2

Sea A una clase. Se define

$$\bigcup A = \bigcup_{X \in A} X = [x \big| \exists X \in A \text{ tal que } x \in X]$$

Si A es un conjunto, $\bigcup A$ es un conjunto.

Definición 1.1.3

Un conjunto A se denomina **inductivo** si

- I. $\emptyset \in A$.
- II. $X \in A \Rightarrow X \cup \{X\} \in A$.

Proposición 1.1.1

 \emptyset es un conjunto.

Demostración:

Sea A un conjunto inductivo (el cual existe por A7), entonces $\emptyset \in A$, luego por A3, \emptyset es un conjunto.

Definición 1.1.4

Se dice que B es subclase de A, si $x \in A$ para todo $x \in B$, y se denota por $B \subseteq A$.

Proposición 1.1.2

Si $B \subseteq A$ y A es conjunto, entonces B es conjunto.

Demostración:

Como $B \subseteq A$, entonces $B \in \mathcal{P}(A)$, luego B por A3, B es conjunto.

Esta proposición es necesaria pues no sabemos si las subclases de conjuntos son conjuntos.

Definición 1.1.5

Si x, y son conjuntos, se define:

$$(x,y) = \{\{x\}, \{x,y\}\}$$

Si A y B son clases, se define

$$A \times B = [(x, y) | x \in A \ y \ y \in B]$$

Ejercicio 1.1.1

Si $A \vee B$ son conjuntos, entonces $A \times B$ es conjunto.

Demostración:

Definición 1.1.6

Una función de A en B es una subclase $F \subseteq A \times B$ tal que $(x, y), (x, z) \in F \Rightarrow y = z$.

Ejemplo 1.1.5

Set no es un conjunto.

Demostración:

Supóngase que Set es un conjunto. Sea

$$X = [x | x \notin x]$$

Si $x \in X$, entonces x es un conjunto (por A3) luego $x \in \text{Set}$, es decir que x es un conjunto. Por tanto, $X \subseteq \text{Set}$, esto es que X es un conjunto. Luego sucede que $X \in X$ o $X \notin X$ (por como se formó la clase X a partir de A4).

Por ende, $X \in X \iff X \notin X \#_c$. Luego Set no es un conjunto.

Ejemplo 1.1.6

Denotamos por $\mathcal{G} = [G|G \text{ es grupo}]$, y $\mathcal{S} = [S_X|X \in \text{Set}]$. Si sucediera que S fuese conjunto, tomando $f: \mathcal{S} \to \text{Set}$, $S_X \mapsto X$ es una función, luego $F(\mathcal{S}) = \text{Set}$ es un conjunto, lo cual no puede ser. Por tanto, como $\mathcal{S} \subseteq \mathcal{G}$, se sigue que \mathcal{G} es clase.

Capítulo 2

Categorias

2.1. Conceptos Fundamentales

Antes de comenzar aceptaremos como válido al siguiente axioma:

A10. Limitación de tamaño. Una clase es un conjunto si y sólo si no es biyectivo con Set.

Ahora si con la parte de categorías.

Definición 2.1.1

Una categoría \mathcal{C} consta de lo siguiente:

- 1. Una clase Obj(C) cuyos elementos son llamados **objetos**.
- 2. Para cada par $A, B \in \text{Obj}(\mathcal{C})$ existe un conjunto $\text{Hom}_{\mathcal{C}}(A, B)$ cuyos elementos llamaremos morfismos y, dado un morfismo $f \in \text{Hom}_{\mathcal{C}}(A, B)$ lo denotaremos por $f : A \to B$.
- 3. Para cada objeto $A \in \text{Obj}(\mathcal{C})$ hay un morfismo $1_A \in \text{Hom}_{\mathcal{C}}(A, A)$ llamado la **identidad** de A.
- 4. Hay una ley de composición para una terna de objetos A, B y C:

$$\operatorname{Hom}_{\mathcal{C}}(A, B) \times \operatorname{Hom}_{\mathcal{C}}(B, C) \to \operatorname{Hom}_{\mathcal{C}}(A, C)$$

 $(f, q) \mapsto q \circ f$

que satisface lo siguiente:

I) (Asociatividad). Dado $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$ y $g \in \operatorname{Hom}_{\mathcal{C}}(B, C)$ y $h \in \operatorname{Hom}_{\mathcal{C}}(C, D)$ se cumple que:

$$h \circ (g \circ f) = (h \circ g) \circ f$$

II) Dado un morfismo $f \in \text{Hom}_{\mathcal{C}}(A, B)$, se tiene que:

$$f \circ 1_A = f = 1_B \circ f$$

Definición 2.1.2

Si la clase de objetos de la categoría \mathcal{C} es un conjunto, diremos que \mathcal{C} es una categoría pequeña. Más aún, si tenemos un número finito de morfismos, diremos que \mathcal{C} es una categoría finita.

Dadas las definciones anteriores, no se nos da ejemplos concretos de lo que es una categoría, por lo cual procederemos a dar ejemplos de la misma.

Ejemplo 2.1.1

Sea X un conjunto. Denotamos por \mathcal{C}_X a una categoría formada por $\mathrm{Obj}(\mathcal{C}_X) = X$, y tendremos para cualquier par de elementos $x, y \in \mathrm{Obj}(\mathcal{C}_X)$ definimos:

$$\operatorname{Hom}_{\mathcal{C}_X}(x,y) = \begin{cases} \emptyset & \text{si} \quad x \neq y \\ 1_x & \text{si} \quad x = y \end{cases}$$

Ejemplo 2.1.2

Definimos a n por la categoría de un conjunto con n elementos, donde $n \in \mathbb{N}$.

2.2. Objetos especiales y Morfismos en una Categoría

Las nociones de monomirfismo y epimorfismo que se van a introducir son generalizaciones a categorías arbitrarias de las funciones familiares inyectiva y suprayectiva que van de **Set**.

Definición 2.2.1

Sea \mathcal{C} una categoría y $f \in \text{Hom}_{\mathcal{C}}(A, B)$.

- 1. f es llamado **monomorfismo** si para cualesquiera $g_1, g_2 \in \text{Hom}_{\mathcal{C}}(C, A)$ (siendo C un objeto de la categoría) tales que $f \circ g_1 = f \circ g_2$ tenemos que $g_1 = g_2$.
- 2. g es llamado **epimorfismo** si para cualesquiera $h_1, h_2 \in \text{Hom}_{\mathcal{C}}(B, C)$ (siendo C un objeto de la categoría) tales que $h_1 \circ f = h_2 \circ f$ tenemos que $h_1 = h_2$.
- 3. f es llamado **isomorfismo** si existe $f' \in \text{Hom}_{\mathcal{C}}(B, A)$ tal que $f \circ f' = 1_B$ y $f' \circ f = 1_A$. En este caso decimos que A y B son **objetos isomorfos**.

A pesar de que en la categoría **Set** los monomorfismos (respectivamente, epimorfismos) coinciden con funciones inyectivas (respectivamente, suprayectivas), esto no es cierto en cualquier categoría arbitraria cuyos objetos y morfismos pueden ser conjuntos y funciones, respectivamente. Esto se verá más a fondo en los siguientes ejemplos.

Ejemplo 2.2.1

En cada una de las categorías \mathbf{Set} , \mathbf{Grp} , $\mathbf{Ab}_{,R}$ \mathcal{M} los monomorfismos coinciden con los homomorfismos inyectivos, mientras que en \mathbf{Top} y \mathbf{KHaus} los monomorfismos coinciden con los mapeos continuos inyectivos. Solo se probará que los monomorfismos en la categoría \mathbf{Set} coinciden con las funciones inyectivas.

Demostración:

Sea $f \in \text{Hom}_{\mathbf{Set}}(A, B)$ es morfismo.

Suponga que f es monomorfismo, decir que $f:A\to B$ es una función que cumple el primer inciso de la definición anterior. Hay que probar que f es inyectiva. Sean $a\in A$ y $a'\in A$ elementos tales que f(a)=f(a'). Consideremos a g_1 y g_2 los morfismos tales que $g_1(x)=a$ y $g_2(x)=a'$, estos pertenecen a $\operatorname{Hom}_{\mathbf{Set}}(\{x\},A)$ (en este contexto x es un elemento de un conjunto arbitrario). Se tiene entonces que

$$f \circ g_1(x) = f(a)$$

$$= f(a')$$

$$= f \circ g_2(x)$$

por tanto, $f \circ g_1 = f \circ g_2$ (ya que coinciden en x). Por tanto, al suponer que fue monomorfismo, se sigue que $g_1 = g_2$, es decir que a = a'. Luego f es inyectiva.

Suponga ahora que f es inyectiva. Sean $g_1, g_2 \in \operatorname{Hom}_{\mathbf{C}}(C, A)$ tales que $f \circ g_1 = f \circ g_2$. Si $c \in C$, tenemos que:

$$f \circ g_1(c) = f \circ g_2(c)$$

$$f(g_1(c)) = f(g_2(c))$$

$$\Rightarrow g_1(c) = g_2(c)$$

pues f es inyectiva. Como el $c \in C$ fue arbitrario, se sigue que $g_1 = g_2$, por ende, f es monomorfismo.

De forma idéntica se prueba lo anterior para las categorías **Top** y **KHaus** (pues los morfismos en estas son simplemente las funciones continuas).

Ejemplo 2.2.2

Demostración:

Ejemplo 2.2.3

En cada una de las categorías **Set**, **Grp**, **Ab** y $_R\mathcal{M}$, los isomorfismos coinciden con los homomorfismos biyectivos (por los ejemplos anteriores). En **Top**, los isomorfismos son exactamente los *homeomorfismos*, esto es, biyecciones continuas cuyas inversas también son continuas.

Definición 2.2.2

Sea (G, +) un grupo abeliano. Decimos que G es un **grupo divisible** si para cualesquiera $n \in \mathbb{N}$ y $g \in G$ existe $h \in H$ tal que nh = g.

Ejemplo 2.2.4

En la categoría **Div** de grupos divisibles, el mapeo cociente $q: \mathbb{Q} \to \mathbb{Q}/\mathbb{Z}$ entre los grupos $(\mathbb{Q}, +)$ y $(\mathbb{Q}/\mathbb{Z}, +)$ no es inyectivo pero es un monomorfismo.

Solución:

Recordemos que $(\mathbb{Q}, +)$ es grupo con la operación de suma de elementos y $(\mathbb{Q}/\mathbb{Z}, +)$ es el grupo cuyos elementos están dados de la siguiente forma; si $x \in \mathbb{Q}$, entonces $[x] \in \mathbb{Q}/\mathbb{Z}$ es el conjunto formado por:

$$[x] = \{ y \in \mathbb{Q} | y - x \in \mathbb{Z} \}$$

Es claro que el mapeo cociente no es inyectivo, pues q(0) = q(1) y $0 \neq 1$. Pero sí es un monomorfismo. En efecto, sea G otro grupo divisible y sean $f.g \in \operatorname{Hom}_{\mathbf{Div}}(G,\mathbb{Q})$ tales que $q \circ f = q \circ g$ (la composición de morfismos en esta categoría coincide con la composición usual de funciones), debemos probar que f = g.

Como $q \circ f = q \circ g$ entonces, $q \circ (f - g) = [0]$ donde [0] denota al morfismo que a cada elemento de G lo envía a la clase del 0, [0]. Denotemos por h = f - g, se sigue entonces que $q \circ h = [0]$. Entonces, para cualquier $x \in G$ tenemos que q(h(x)) = [0], por tanto $h(x) \in \mathbb{Z}$.

Para probar el resultado basta con ver que h(x) = 0 para todo $x \in G$. Procederemos por contradicción. Suponga que existe $x_0 \in G$ tal que $h(x_0) \neq 0$, podemos asumir que $h(x_0) \in \mathbb{Z}^+$

(en caso de que no sea así, tomamos $-x_0 \in G$ para el cual se cumple que $h(-x_0) = -h(x_0) \in \mathbb{Z}^+$). Como estamos trabajando con grupos divisibles, para $2h(x_0) \in \mathbb{N}$ y $x_0 \in G$ existe $y_0 \in G$ tal que

$$x_0 = 2h(x_0)y_0$$

 $h(x_0) = 2h(x_0)h(y_0)$

como $h(x_0) \neq 0$, entonces $h(y_0) \neq 0$, luego lo anterior no puede suceder ya que debería suceder que $h(y_0) = \frac{1}{2}$, pero $h(y_0) \in \mathbb{Z}$. Luego tal x_0 no puede existir. Así, h(x) = 0 para todo $x \in G$, lo cual prueba el resultado. Esto prueba que, de hecho, q es un monomorfismo que no es inyectivo.

Ejemplo 2.2.5

En la categoría \mathbf{Ring}^c de los anillos conmutativos con identidad, el mapeo inclusión $i: \mathbb{Z} \to \mathbb{Q}$ no es suprayectivo, pero sí es un epimorfismo.

Solución: