OKAN UA	
NB/X Sarah	(
	-

Cep telefonunuzu gözetmene teslim ediniz. Deposit your cell phones to an invigilator.

7 Kasım 2018 [16:00-17:10]

MAT215, Birinci Arasınavı

Sayfa 1/4

Adi:						Soru	Puan	Puaniniz
Soyadi:						1	20	
Öğrenci No:						2	25	
BÖLÜM:						3	25	
ÖĞR. ÜYESİ:	☐ Neil Course	☐ Vasfi Eldem	☐ M.Tuba (Gülpınar	✓ Hasan Özekes	4	30	
İMZA:						Toplam	100	

- Sınav süresi 70 dakika.
- Sınavda kopya çeken, kopya veren, kopya çekme girişiminde bulunan öğrenci, o sınavdan sıfır (0) not almış sayılır ve hakkında "Yükseköğretim Kurumları "Öğrenci Disiplin Yönetmeliği" 'nin ilgili hükümleri uyarınca "Disiplin Soruşturması" açılır.
- Cevaplarınızı, aksi istenmedikçe, tam olarak (örneğin, $\frac{\pi}{3}$ veya $5\sqrt{3})$ yazınız.
- Hesap makinesi ve cep telefonunuzu kürsüye bırakınız.
- Bir sorudan tam puan alabilmek için, işlemlerinizi açıklamak zorundasınız.
 Bir cevapta "gidiş yolu" belirtilmemişse,

sonucunuz doğru bile olsa, ya çok az puan verilecek ya da hiç puan verilmeyecek.

- Cevabınızı kutu içine alınız.
- Kapak sayfasını MAVİ tükenmez kalem ile doldurunuz.
- Yukarıdaki tabloya hiçbir şey yazmayınız.
- 1. 20 puan $h \neq 0$ olmak üzere aşağıdaki denklem sisteminin (a) çözümünün olmaması, (b) tek çözümünün olması, (c) sonsuz çözümünün olması için h ve k sayıları ne olmalıdır?

$$hx_1 + kx_3 = 2 hx_1 + hx_2 + 4x_3 = 4 hx_2 + 2x_3 = h$$

Solution:

$$\begin{bmatrix} h & 0 & k & 2 \\ h & h & 4 & 4 \\ 0 & h & 2 & h \end{bmatrix} \sim \begin{bmatrix} h & 0 & k & 2 \\ 0 & h & 4-k & 2 \\ 0 & h & 2 & h \end{bmatrix} \sim \begin{bmatrix} h & 0 & k & 2 \\ 0 & h & 4-k & 2 \\ 0 & 0 & k-2 & h-2 \end{bmatrix}$$

Eğer $h \neq 2$ ve k=2, denklem sisteminin çözümü yoktur. $\begin{bmatrix} h & 0 & 2 & 2 \\ 0 & h & 2 & 2 \\ 0 & 0 & 0 & h-2 \end{bmatrix}$

Eğer $k \neq 2$, denklem sisteminin tek çözümü vardır. $\begin{bmatrix} h & 0 & k & 2 \\ 0 & h & 4-k & 2 \\ 0 & 0 & k-2 & h-2 \end{bmatrix}$

Eğer h=2 ve k=2, denklem sisteminin sonsuz çözümü vardır. $\begin{bmatrix} 2 & 0 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

2. (a) 10 puan $H = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + y + z = 1 \right\}$ olsun. H'nin \mathbb{R}^3 ' ün bir alt uzayı olup olmadığını belirleyiniz.

Solution: c bir sabit ve $u = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in H$ olsun.

$$\mathbf{u} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in H \Rightarrow x + y + z = 1$$

$$c\mathbf{u} = c \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} cx \\ cy \\ cz \end{bmatrix} \Rightarrow cx + cy + cz = c(x + y + z) = c \Rightarrow c\mathbf{u} \notin H$$

H, \mathbb{R}^3 'ün bir alt uzayı değildir.

(b) 15 puan Aşağıda verilen determinantı kofaktör açılımı kullanarak hesaplayınız.

$$\begin{vmatrix} 4 & 0 & -6 & 4 & -6 \\ 0 & 0 & 3 & 0 & 0 \\ 8 & 3 & -7 & 5 & -7 \\ 0 & 0 & 5 & 2 & -2 \\ 0 & 0 & 9 & -1 & 4 \end{vmatrix}$$

Solution:

$$\begin{vmatrix} 4 & 0 & -6 & 4 & -6 \\ 0 & 0 & 3 & 0 & 0 \\ 8 & 3 & -7 & 5 & -7 \\ 0 & 0 & 5 & 2 & -2 \\ 0 & 0 & 9 & -1 & 4 \end{vmatrix} = 3(-1)^{2+3} \begin{vmatrix} 4 & 0 & 4 & -6 \\ 8 & 3 & 5 & -7 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & -1 & 4 \end{vmatrix}$$
$$= (-3) \left[3(-1)^{2+2} \begin{vmatrix} 4 & 4 & -6 \\ 0 & 2 & -2 \\ 0 & -1 & 4 \end{vmatrix} \right]$$
$$= (-9) \left[4(-1)^{1+1} \begin{vmatrix} 2 & -2 \\ -1 & 4 \end{vmatrix} \right]$$

aralarındaki bağıntıyı bulunuz

(a) 15 puan $A = \begin{bmatrix} 1 & 4 & -2 & -2 & 0 \\ -3 & -6 & 8 & 5 & 0 \\ 2 & 2 & -6 & 1 & 2 \end{bmatrix}$ matrisinin sütunları lineer bağımlı bir küme oluşturur mu? Eğer cevap evet ise,

Solution:

$$A = \begin{bmatrix} 1 & 4 & -2 & 0 & 1 \\ 1 & 4 & -2 & -2 & 0 \\ -3 & -6 & 8 & 5 & 0 \\ 2 & 2 & -6 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & -2 & 0 & 1 \\ 0 & 0 & 0 & -2 & -1 \\ 0 & 6 & 2 & 5 & 3 \\ 0 & -6 & -2 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & -2 & 0 & 1 \\ 0 & 0 & 0 & -2 & -1 \\ 0 & 6 & 2 & 5 & 3 \\ 0 & 0 & 0 & 6 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & -2 & 0 & 1 \\ 0 & 6 & 2 & 5 & 3 \\ 0 & 0 & 0 & 6 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & -2 & 0 & 1 \\ 0 & 6 & 2 & 5 & 3 \\ 0 & 0 & 0 & -2 & -1 \\ 0 & 0 & 0 & 6 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & -2 & 0 & 1 \\ 0 & 6 & 2 & 5 & 3 \\ 0 & 0 & 0 & -2 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$2c_4 + c_5 = 0 \Rightarrow c_4 = -\frac{1}{2}c_5$$

$$c_1 + 4c_2 - 2c_3 + c_5 = 0 \Rightarrow c_1 = -4c_2 + 2c_3 - c_5 \Rightarrow c_1 = \frac{10}{3}c_3 - \frac{2}{3}c_5$$

A matrisinin sütunları lineer bağımlı bir küme oluşturur. $c_3=3$ ve $c_5=12$ alırsak $c_1=2,\,c_2=-2$ ve $c_4=-6$ bulunur. Dolayısyla aralarındaki bağıntı aşağıdaki gibidir.

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 & \mathbf{a}_5 \end{bmatrix}$$
$$2\mathbf{a}_1 - 2\mathbf{a}_2 + 3\mathbf{a}_3 - 6\mathbf{a}_4 + 12\mathbf{a}_5 = 0$$

(b) 10 puan A =1 1 4 olmak üzere $\det(2A^3)$ değerini hesaplayınız.

Solution:

$$\begin{vmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \\ 1 & 3 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & -5 \end{vmatrix} = -5$$
$$\det(2A^3) = 2^3(\det A)^3 = 8(-5)^3 = -1000$$

Cep telefonunuzu gözetmene teslim ediniz. Deposit your cell phones to an invigilator.

7 Kasım 2018 [16:00-17:10]

MAT215, Birinci Arasınavı

Saufa 4/4

4. (a) 15 puan $A = \begin{bmatrix} 3 & 0 & 0 \\ -1 & 1 & 1 \\ -3 & 5 & 1 \end{bmatrix}$ matrisinin tersini bulunuz.

Solution:

$$\begin{bmatrix} 3 & 0 & 0 & | & 1 & 0 & 0 \\ -1 & 1 & 1 & | & 0 & 1 & 0 \\ -3 & 5 & 1 & | & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & \frac{1}{3} & 0 & 0 \\ -1 & 1 & 1 & | & 0 & 1 & 0 \\ -3 & 5 & 1 & | & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & \frac{1}{3} & 0 & 0 \\ 0 & 1 & 1 & | & \frac{1}{3} & 1 & 0 \\ 0 & 5 & 1 & | & 1 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & | & \frac{1}{3} & 0 & 0 \\ 0 & 1 & 1 & | & \frac{1}{3} & 1 & 0 \\ 0 & 0 & -4 & | & -\frac{2}{3} & -5 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & \frac{1}{3} & 0 & 0 \\ 0 & 1 & 1 & | & \frac{1}{6} & \frac{5}{4} & -\frac{1}{4} \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & \frac{1}{3} & 0 & 0 \\ 0 & 1 & 0 & | & \frac{1}{6} & -\frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 1 & | & \frac{1}{6} & \frac{5}{4} & -\frac{1}{4} \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} \frac{1}{3} & 0 & 0 & 0 \\ \frac{1}{6} & -\frac{1}{4} & \frac{1}{4} \\ \frac{1}{6} & \frac{5}{4} & -\frac{1}{4} \end{bmatrix}$$

(b) 15 puan $A = \begin{bmatrix} 2 & -2 & 1 & -1 \\ 1 & 4 & 2 & 2 \\ 0 & -1 & 2 & 0 \\ 1 & 3 & 2 & 2 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -1 \\ 3 \\ 0 \\ 2 \end{bmatrix}$ ve det A = 10 olmak üzere $A\mathbf{x} = \mathbf{b}$ denklem sistemi için x_3 değişkeninin değerini Cramer Kuralı'nı kullanarak bulunuz.

Solution:

$$x_{3} = \frac{\det A_{3}}{\det A} = \frac{\begin{vmatrix} 2 & -2 & -1 & -1 \\ 1 & 4 & 3 & 2 \\ 0 & -1 & 0 & 0 \\ 1 & 3 & 2 & 2 \end{vmatrix}}{10} = \frac{(-1)(-1)^{3+2} \begin{vmatrix} 2 & -1 & -1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{vmatrix}}{10} = \frac{\begin{vmatrix} 2 & -1 & -1 \\ 0 & 1 & 0 \\ 1 & 2 & 2 \end{vmatrix}}{10} = \frac{\begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix}}{10} = \frac{5}{10} = 0.5$$