Student netID: sxk190109 Fall 2020

CS 6364

Take - Home Quiz 2

Instructions: Do not communicate with anyone in any shape or form. This is an independent test. Do not delete any problem formulation, just attach your answer in the space provided. If the problem is deleted and you send only the answer, you shall receive ZERO points.

Copy and paste the Quiz into a Word document, enter your answers (either by typing in Word, or by inserting a VERY CLEAR picture of your hand-written solution) and transform the quiz into a PDF format. If we cannot clearly read the picture, you will get ZERO for that answer! Make sure that you insert EACH answer immediately after EACH question. Failure to do so will result in ZERO points for the entire quiz! Submit the PDF file with the **name QUIZ_2_netID.pdf**, where netID is your unique netid provided by UTD. If you submit your quiz in any other format your will receive ZERO points. The Quiz shall be submitted in eLearning <u>before the deadline</u>. No late submissions shall be graded!

Problem 1: Consider the following search graph:

(a) Perform **Uniform-Cost Search** to find a solution for the search problem if the initial node is *S* and the goal node is *G*.

Provide the current node and the contents of the <u>explored list</u> (*3 points*) and the content of the <u>frontier</u> (*6 points*) at each step of the search.

The format of the frontier should be:

{Node₁ (path-cost to Node₁), Node₂ (path-cost to Node₂),...}. E.g. {A(1),B(2),....} Indicate the solution path from S to G (3 points) as well as its cost (3 points). (**TOTAL: 15 points**)

1. (9) Uniform Cost Seatch. Initial Node = S Goal Node = G. Step 1: Is S the goal ? No Explored = { S} A = child (s, 1) = 1B = child(S, 2) = 2C = child(S, 3) = 3Frontier = { A(1), B(2), c(3)} Step 2: current Node: A Is A the good ? No Explored = {s, A} H = child (A, 5) = 6 Frontier = { B(2), D(2), C(3), H(6) } Step 3: Current Node: B Is B the goal? No Explored = { s, A, B} E = Caild (B, I) = 3Frontier = { D(2), E(3), E(3), H(6)} step 4: awarest Node: D Explored = {S, A, B, D} Is D the good ? No. H = child(D,3) = 5 cost of H < pronties G = child(D,3) = 6

Frontiel = { c(3), E(3), H(5), G(5) }

SIGS: Current Node: 1 Is E the goal ? No explored = (S, A, B, D, E 3 G = child (E, 4) = 7 (Almeady in Frantick) Frontice = { ((3), H(5), G(5)} Step 6: Current Node: C Is (the goal? No Explored = { s, A, D, B, E, C } F = child (C, 2) Prontice = { H(5), G(5), F(5)} Current Node: H Is H the goal ? No Explored = { S, A, D, B, E, C, H} G = Child (H, 1) = 7 (Already in Frontier) Frontier = { G(5), F(5)} Step 8: Current Node: G Is G the goal? Yes.

Solution Path: $S \rightarrow A \rightarrow D \rightarrow G$ Path Cost: 1+1+3=5 1

(b) If an informed search strategy, such as A*, needs to be performed on the same graph, given knowledge about the true-cost to the goal from each node, what are all the possible values of variables a, b, c, d and e such that the heuristic is admissible? (**TOTAL: 15 points**)

Node	S	Α	В	С	D	Ε	F	G	Н
Heuristic Value	5	а	3	3	3	4	2	0	e
True-Cost	6	5	b	3	5	С	d	0	10

1.(b) For an heuristic to be admissible,

for every mode
$$n$$
 $h*(n) \leq h(n)$

where $h*(n)$ is heuristic

 $h(n)$ is true cost

 $a: h(A) = 5 \Rightarrow 1 \leq a \leq 5$
 $b: h*(B) = 3 \Rightarrow h(B) > 3$
 $c: h*(E) = 4 \Rightarrow h(E) > 4$
 $d: h(E) = 2 \Rightarrow h(E) > 2$
 $e: h(E) = 10 \Rightarrow |Ch*(H) \leq 10$

(c) If an informed search needs to be performed on the same graph and the heuristics function has the following values in the graph nodes:

Node	S	Α	В	С	D	Ε	F	G	Н
Heuristic Value	5	4	5	3	3	4	2	0	1

Find if this heuristic function is consistent. (TOTAL: 15 points)

1. (c) for a heuristic to be consistent if $h(n) \leq C(n,a,n') + h(n')$ where n is current node n' is successor. nodes.

current Node = S h(s) = 5

n'=A: 5 < 1+4? True.

n'= B: 5 < 2+5 ? True

n' = c; 5 < 6 ? True.

Current Node = A

h (A) = 4

n' = H: 4 & 5+1 ? true

n' = D: 4 5 1+3 ? True

current Node : B

h(B) = 5

n' = D : 5 \ 2+5 ? True

n' = E : 5 < 1 + 4 ? True

current Node: C

h(c) = 3

n' = E 3 5 3+4 ? True

n' = F 3 < 2+2 ? True

current Node: D h(D) = 3

n' = H : 3 < 3+1 ? True

n' = G: 3 = 3+0? True.

Current Node: E

A(E) = 4

n'= G: 4 < 0+4 ? True

current Node: F

A(F) = 2

n'= E: 2 < 6 + 4 ? True

consent Node: H

h(H) = 1

n' = 9: 1 5 1+0 ? True.

Hence Heuristic is consistent!

Problem 2: Heuristic Search:

Consider the 8-puzzle problem, with the initial state represented as I and the Goal State as G:

If the cost of sliding the empty square is equal to the sum of its neighboring squares in the successor state and you use a $heurstic = 2 \times Manhattan_Distance$, provide the details of the first 3 steps of the search using the Recursive Best-First Search (RBFS) strategy. (**TOTAL: 55 points**)

Hint 1: You will have to fill the values of the following table: (30 points)

		9	\ I /
	STEP 1	STEP 2	STEP 3
F_limit	?	?	?
best	?	?	?
alternative	?	?	?
Current State	?	?	?
New State	?	?	?

<u>Hint 2:</u> The following two examples show how you compute the cost of getting from a state S_i to a state S_i , when using some specific action:

For EXAMPLE 1: $g(S_i, DOWN, S_j)=5+3+7=15$. For EXAMPLE 2: $g(S_i, LEFT, S_j)=1+4+3+8=16$.

<u>Hint 3:</u> If you show correctly (a) all the successors of state as I as well as all successors produced in all first 3 steps and you compute correctly the cost from the initial state I to each search node as well as the heuristic value in each of the search nodes involved in the first 3 steps, you will be assigned. (25 points)

