Entropic Costs

class - 12 (18.9.24)

LS2103 (Autumn 2024)

Dr. Neelanjana Sengupta Associate Professor, DBS

https://www.iiserkol.ac.in/~n.sengupta/

Suppose there were 2 types of binding sites on the strand:

$$S = k_B \ln(\Omega)$$

Protein binding sites on DNA:

Entropy of composite systems:

For the composite system,
$$\Omega_{\text{(Hotal)}} \Omega_{1} \times \Omega_{2}$$

$$S = R_{B} \ln \Omega_{-} = S_{1} + S_{2}$$

Entropy is additive

Hydrophobicity: entropic cost of solvation

H₂O form tetrahedral structure

Network of hydrogen bonded molecules

Small (water unfriendly) solute

VS.

Large solute

Approximating the entropic cost

6 possible molecular orientations

Approximating the entropic cost of hydrophobic solvation

$$\Omega$$
 original = 6
 Ω reduced = 3

When one site is replaced, 3 orientations are lost.

Approximating the entropic cost of hydrophobic solvation

Water molecule orientations

△S hydrophasic

= Sredned - Soviginal

When 'n' molecules lose one H-bonding partner,

Approximating the entropic cost of hydrophobic solvation

If enthalpic (energetic) cost is insignificant,

∆Ghydrophere = - T△Shydrophere

Now 'n' is proportional to the area (A) of hydrophobic solute, ie.

What is the entropic cost of maintaining a hydrophobic surface?

Membrane bilayer formation

Protein folding (initial events)

