上海交通大学试卷(<u>A</u>卷)

(2014 至 2015 学年 第 一 学期)

3	班级号	学号				姓名 _	
	课程名称					成绩 _	
	单项选择题(每格 1.!	5分 共24分)					
	在双向循环链表中,在		占前插	λ一个指针 α	所指向的	新结点,	其修改指针的操作
1.	是。备注:					W/1-H////	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	走。 奋往: A. p->prev = q; q					a:	•
	B. p->prev = q; p	->ncxt = p, p > p ->prev->next = 0	ı; q->r	next = p; q->	>prev =	p->pre	v;
	C. q->prev = p->						
	D. $q \rightarrow next = p$; q						q;
2.	当图中各条边的权值	时,广度位	优先搜氮	索算法可用来解	7决单源 最	复短路径 问	可题。
	A. 不一定相等	B. 均互不相等	C.	均相等	D.	对权值无	特别要求
3.	若以一个大小为6的						和3,当依次执行:
	两次出队、两次入队						
	A. 5, 1	B. 2, 5	C.	2, 0	D.	4, 0	
		> /a// a//db	₩/A/	1 - 6/A/ ² 1 Tul	a/N/旦		άξι
4.	如果某函数 <i>f(N)</i> 是 6) = r(N), ⋈ Θ (N²(log₂N			_ nj•
	A. Ω ($N^{2.618}$) C. Θ ($N(log_2N)^2$)			$O(N^2 \log_2 N)$			
	C. 0 (N(10921N))		J.	0 (11 109211)			
5.	以下时间复杂度,	不是 <i>O (Nlo</i>	g₂N)。				
	A. 快速排序的最坏			堆排序的平均	情况		
	C. 归并排序的最坏	情况	D.	归并排序的最	好情况		
6.	Dijkstra 算法不适用]于寻找以下	_ 种图	的最短路径。		. —	
	A. 所有边权重均为	1的有向图	В.	边的权重均为	正数的有	有向图 5分左中	75T
	C. 边的权重均为正	数的无向图	D.	辺的权里可能	尼出现贝罗	以的有问的	3 1
7	在最大化堆中,不正	确的是					
7.	A. 任何节点的数值		В	兄弟节点之间	且有确定	的大小的	关系
	A. 任何 F 点的数值不超	过其任何一个祖先					
8.	某二叉树有 N 个节	古点,高度为 h,在	其中插	i入一个新的 节	古点,高	度发生改	(变的节点个数最多
	为。			÷			
		B. <i>O (N)</i>	C.	O (h)	D.	O (hlo	g ₂ N)
		ж	16 百 \$	第 1 页			

我承诺,我将严格	题号			=	И		^	N. N.
遵守考试纪律。	得分	·						
承诺人:	批阅人(流水阅) 卷教师签名处)							
9. 由两个栈共享一个	点是空间的好处是							
A. 减少存取时间,C. 减少存取时间,	,降低下溢发生的	乳率	B. 节省	î存储空间 î存储空间	司,降低. 司,降低	上溢发生 下溢发生	的机率 的机率	
10. 对于线性表(7, 34 数,则散列地址为				放列存储I) = K%9	9作为散列函
A. 1	B. 2		C. 3		D	. 4		
11. 设一组初始记录关 结束后前 4 条记录	·键字序列为(50, 4 R关键字为		20, 15,	70, 60,	45),则	以增量 c	I = 4 的 ⁻	一趟希尔排序
A. 40, 50, 20,				40, 60				
C. 15, 20, 40,	45		D. 45	, 40, 15	, 20			
12. 一组纪录的关键字		13, 25,	27, 71)	,为排成	非递减序	列利用均	推排序的	方法建立的初
始堆为	。 , 25, 27, 71)		B. (7:	1. 66. 4	3, 33, 2	27, 25)		
•	, 25, 27, 33)		-	1, 43, 6				
13. 下列说法错误的人	Ē。							
	Dijkstra 算法中i	边的权值	不可以为	负				
B. Dijkstra 算法	ŧ允许图中有回路 □边的权值不可以为	. 任						
	· 位的权值不可以为 家算法可用于判断有		是否存在	回路				
14. 某二叉树的前序边	偏历序列和后序遍	万序列正	好相反,	则该二叉	Z树一定	是	的二	叉树。
A . 空或只有一个			B. 叶	子结点数	至多为1	L		
C. 任一结点无力			D. 任	一结点无	右儿子			
15. 若已知一个栈的。	入栈序列是 1, 2,	3, n	. 其输出	序列为	o1, p2,	p3,	pn,若 p	1 = n, 则 p
为:。 A. i	B. n-i		C. n-	i+1		D. 不确	定	
16. 表达式 a*(b+c))-d 的前缀表达式是	ł	°					
A. abcdd+-	B*a+bo	:d	C. al	oc*+d-		D+*	abcd	

题号

五

六

四

总分

总<u>16</u>页第<u>2</u>页

- 二、程序填充题 (每格 1.5 分, 共 24 分)
- 1. 已知二叉查找树采用二叉链表存储。下面程序的功能为: 删除结点值是x的结点,请在下列空格中填写适当语句。要求删除该结点后,此树仍然是一棵二叉排序树,并且高度没有增长(注:可不考虑被删除的结点是根的情况)。下面代码首先查找结点值为x的结点。查找成功后,若该结点无左子树,则可直接将其右子树的根结点接到其父亲结点上;若该结点有左子树,则将其左子树中按中序遍历的最后一个结点代替该结点,从而不增加树的高度。

```
template <typename Type>
 struct BinaryNode {Type data; BinaryNode *left; BinaryNode *right; ... };
 template <typename Type>
 struct BinarySearchTree {BinaryNode <Type> *root; ... };
 template <typename Type>
 void Delete(BinarySearchTree <Type> bst, Type x) {
    BinaryNode <Type> *f, *q, *s, *p = bst.root;
    while (p && p->data != x)
       if ( ______ ) {f = p; p = p->left;}
        else \{f = p; p = p - > right;\}
    if (p == NULL) {cout << "值为 X 的结点不存在\n "; exit(0);}
    if {!p->left} {
       if (f->left == p) _____
       else f->right = p->right;
    }
   else {
                                              //被删结点有左子树
       q = p; s = p->left:
       while ( ______ ) {q = s; s = s->right;}
       p->data = s->data;
       if ( ______ ) p->left = s->left;
       else q->right = s->left:
   }
}
```

2. 如下为二分查找的非递归算法,试将其填写完整。

```
Template <class ElemType, class keyType>
int Binsch(ElemType A[], int n, KeyType K) {
   int low = 0, high = n-1;
   while (low <= high) {
      int mid =
      if (K == A[mid].key) return mid;
                                  //查找成功,返回元素的下标
      else
      if (K < [mid].key) _____
                                    __; //在左子表上继续查找
      else _____;
                                       //在右子表上继续查找
   }
   return -1;
                                       //查找失败,返回-1
}
```

总_16_页第_3_页

```
3. 下面程序段的功能实现数据 x 进栈, 要求在下划线处填上正确的语句。
   struct sqstack {int s[100]; int top; sqstack() {top = ____;}};
   void push(sqstack &stack, int x) {
      if ( ______ ) cout << "overflow";
      else {_____;
   }
4. 以下程序的功能是将单链表除头节点之外的其余节点逆序连接,请填空。
  template <typename E> class List {public: E element; Link *next; ...}
   template <typename E> class LList {
   private:
     Link <E>* head; ...
  public: ...
     void reverse() {
        Link <E> *p, *q;
        p = head -> next;
        if ( ______ ) return;
        head -> next = NULL;
        while ( ______ ) {
           q = p;
           p = p \rightarrow next;
           q -> next = head -> next;
           head -> next = _____;
        }
     }
  }
```

- 三、简答题(每题8分,共24分)
- 1. 按照字母从小到大的顺序(从 A 开始),写出该有向图的深度优先搜索和广度优先搜索序列结果,并分别画出所得到的生成树/森林。

2. 某天,一个考古学家发现某种神秘古代语言。这种语言的文字由字母组成,且有且仅有以下十个字母: !@#\$%^&*()。经过统计,在某段由该文字书写的文献中,它们分别出现了以下次数: 13,10,45,789,8,80,33,200,28,99。画出一棵用以设计这种文字的哈夫曼编码方案的哈夫曼树。

3. 已知一个散列表如下图所示:

			35		20			33		48			59
-	0	1	2	3	4	5	6	7	8	9	10	11	12

其散列函数为 h(key) = key%13, 处理冲突的方法为双重散列法,探查序列为:

 $h_i = (h(key)+i*h1(key))%13$ i = 0, 1, ... m-1

其中, h1(key) = key%11+1。请回答下列问题:

- 1) 对表中关键字 35, 20, 33 和 48 进行查找时,所需进行的比较次数各为多少?
- 2) 该散列表在等概率查找时查找成功的平均查找长度为多少?

```
四、分析题(每题8分,共16分)
```

1. 下列程序是某种常用算法: template <class T> void A(T a[], int x, int y) { int w; if (x >= y) return; w = C(a, x, y);A(a, x, w - 1);A(a, w + 1, y);} template <class T> void B(T a[], int arraySIZE) {A(a, 0, arraySIZE - 1);} template <class T> int C(T a[], int x, int y) { T tmp = a[x];do { while (x < y && a[y] >= tmp) --y;if $(x < y) \{a[x] = a[y]; ____;\}$ while (x < y && a[x] <= tmp) ++x;if $(x < y) \{a[y] = a[x]; ____; \}$ } while (x != y); a[x] = tmp;return x; }

阅读上述程序并回答下列问题:

- 1) 若在主程序中调用函数 B, 这样实现了什么功能?
- 2) 请将 C 函数中的空白处填上适当的代码。
- 3) 该算法在最坏情况、最好情况下的时间复杂度分别是多少?

2. 已知下列程序:

```
template <typename E> class LinkList {
Public:
        E element;
        LinkList *next;
        ...
}
LinkList <E> mynote(LinkList <E> L) {
        if (L && L->next) {
            q = L; L = L->next; p = L;
}
S1:        while (p->next) p = p->next;
S2:        p->next = q; q->next = NULL;
        }
        return L;
}
```

请回答下列问题:

- 1) 说明语句 S1 的功能;
- 2) 说明语句 S2 的功能;
- 3) 设链表表示的线性表为(a1, a2, ··· an), 写出算法执行后的返回值所表示的线性表。

五、设计题(12分)

设计一算法,在一个规模为 N的无序数组中找出第 k个大的元素,要求时间复杂度为 O ($Nlog_2k$)。 首先用文字描述设计思路,然后写出伪代码。

六、附加题(10分)

给下面的以邻接表实现的有向图类增加一个成员函数,要求采用深度优先搜索算法,判断有向图中是否存在顶点 vi 到顶点 vj (i≠j) 的路径。要求以非递归方法实现。

bool path_i_j(TypeOfVer vi, TypeOfVer vj);

如果顶点 vi 和 vj 之间存在路径,则返回 true;否则返回 false。

```
template <typename TypeOfVer, typename TypeOfEdge>
class adjListGraph {
public:
   bool path_i_j(TypeOfVer vi, TypeOfVer vj);
private:
   struct edgeNode {
                                      //邻接表中存储边的结点类
                                      //终点编号
       int end;
       edgeNode *next;
       edgeNode (int e, edgeNode *nxt = NULL) {
          end = e; next = nxt;
       }
   };
   struct verNode {
       TypeOfVer ver;
                                      //顶点值
                                      //对应的边表的头指针
       edgeNode *head;
       verNode(edgeNode *h = NULL) {head = h;}
   };
                                      //顶点数量
   int Vers;
                                      //边的数量
   int Edges;
                                      //存储顶点的数组的首地址
   verNode *verList;
};
```