11 класс. Задача 1

Рассматривается многочлен

$$a^2x^4 + 2abx^3 + (2ac + b^2)x^2 + 2bcx + c^2$$
,

в котором коэффициент c и сумма a+b+c — нечетные целые числа. Могут ли корни такого многочлена быть целыми числами?

Решение

Путем несложных преобразований (например, выделяя полный квадрат) многочлен приводится к виду

$$(ax^2 + bx + c)^2.$$

Таким образом, задача сведена к аналогичной для корней квадратного трехчлена.

Пусть x_1 и x_2 — его целые корни уравнения. Тогда $c=ax_1x_2$, и оно нечетное. Отсюда следует, что каждое из чисел a, x_1 и x_2 - нечетное. Тогда поскольку сумма двух нечетных чисел a+c - четная, а сумма a+b+c нечетная, то число b — тоже нечетное. Но с другой стороны, число b должно быть четным, так как $b=-a(x_1+x_2)$, а сумма двух нечетных чисел x_1+x_2 — четная. Противоречие.

Ответ. Не могут.

11 класс. Задача 2

Точка A лежит внутри острого угла. Через эту точку проведена прямая, отсекающая от угла треугольник наименьшей площади. Выясните, в каком отношении точка A делит отрезок этой прямой, заключенный внутри угла?

Решение

Пусть BOC – заданный острый угол, A – заданная точка внутри него.

Проведем $AD \parallel CO, AE \parallel BO.$ Через т. A проведем $BC \parallel DE.$ Все треугольники ODE, DBA, AED и EAC равны, откуда AB = AC.

Покажем, что BC отсекает треугольник наименьшей площади. Для этого проведем другую произвольную прямую KM (точки K и M лежат на сторонах заданного угла). Построим также $CN \parallel BK$.

Треугольники ABK и ACN равны по стороне и двум углам. Следовательно, площадь $\triangle ACM$ меньше, чем площадь $\triangle ACN$, откуда получается, что площадь $\triangle OBC$ меньше, чем площадь $\triangle OKM$, что и требовалось.

Таким образом, BC отсекает треугольник наименьшей площади, и, как показано выше, она делится точкой A пополам.

Ответ. Точка A делит отрезок пополам.

11 класс. Задача 3

Функция $F(x) = x^2 + px + q$ имеет ровно один вещественный корень, а функция F(F(F(x))) — ровно три вещественных корня. Найдите все эти корни.

Решение

Ясно, что F(x) имеет вид $F(x) = (x - a)^2$, поэтому

$$F(F(F(x))) = (((x-a)^2 - a)^2 - a)^2 = 0.$$

Получаем, что $((x-a)^2-a)^2=a>0$ (строгое неравенство a>0 следует из того, что при a=0 уравнение F(F(F(x)))=0 имеет не три, а всего один корень), откуда $(x-a)^2=a\pm\sqrt{a}$.

Поскольку у этих двух квадратных уравнений должно быть три корня, у одного из уравнений должен быть один корень, а у другого два. У уравнения $(x-a)^2=a+\sqrt{a}$ не может быть всего один корень, так как $a+\sqrt{a}>0$, поскольку a>0. Значит, один корень имеет уравнение $(x-a)^2=a-\sqrt{a}$, то есть $a-\sqrt{a}=0$, что даёт два варианта: a=0 или a=1. Поскольку a>0, остаётся только a=1.

Теперь, решив уравнения $(x-a)^2=a\pm\sqrt{a}$ при a=1, легко найдём все три корня уравнения F(F(F(x)))=0: это $x_1=1,\ x_{2,3}=1\pm\sqrt{2}$.

Ответ. $x_1 = 1, x_{2.3} = 1 \pm \sqrt{2}.$

11 класс. Задача 4

Зная, что $2021=43\cdot 47$, решите в целых числах уравнение с двумя неизвестными

$$40(x+y) + xy = 421.$$

Решение

Переменные входяи в ур-е симметрично, поэтому если есть решение (x,y), то (y,x) тоже явл. решением.

Далее,

$$(40+x)(40+y) = 40^2 + 40(x+y) + xy = 1600 + 421 = 2021.$$

Введем переменные $a=40+x, b=40+y\in\mathbb{Z}$ и рассмотрим ур-е

$$ab = 2021 = 43 \cdot 47.$$

Если есть решение (a, b), то есть и решение (b, a).

1. Пусть один из множителей равен 1, например, a=40+x=1. Тогда b=40+y=2021, и есть решения

$$(x,y) = (-39;1981), (1981;-39).$$

2. Пусть один из множителей равен -1, например, a=40+x=-1, Тогда b=40+y=-2021, и есть решения

$$(x,y) = (-41; -2061), (-2061; -41).$$

3. Пусть нет множителей ± 1 . Тогда (a,b)=(43;47),(-43;-47),(47;43),(-47;-43), откуда получаем решения

$$(x,y) = (3;7), (-83;-87), (7;3), (-87;-83).$$

Ответ. 8 пар: (3;7), (7;3), (-39;1981), (1981;-39), (-41;-2061), (-2061;-41), (-83;-87), (-87,-83).

11 класс. Задача 5

Напряженность электрического поля в точке (x,y) описывается функцией

$$E(x,y) = \left(\frac{20}{21}\right)^{x^2 + y^2}.$$

Найдите максимальное значение напряженности в области, задаваемой неравенствами

$$|ax + y| \le b, \quad |ax - y| \ge b,$$

где a и b – фиксированные вещественные числа.

Решение

Функция $E(f) = \left(\frac{20}{21}\right)^f$ монотонно убывает при $f \in [0, \infty)$.

Рассмотрим величину $f(x,y) = x^2 + y^2$, если переменные удовлетворяют неравенствам

$$|ax + y| \le b, \qquad |ax - y| \ge b.$$

Максимум E соответствует минимуму f.

- 1. Если b < 0, то множество решений системы неравенств пусто. Функция не определена.
- 2. Если b=0, то неравенства равносильны ур-ю ax+y=0, откуда $f(x,-ax)=g(x)=(1+a^2)x^2$. Максимум E(x,y) будет достигаться в начале координат и будет равен 1.
- 3. Пусть b>0, a=0. Тогда система нер-в равносильна ур-ю |y|=b и $f(x,y)=f(x,|b|)=x^2+b^2\geq b^2$. Максимум равен $\left(\frac{20}{21}\right)^{b^2}$.
 - 4. Пусть b > 0, a > 0. Тогда получаем систему ограничений

$$-b - ax \le y \le b - ax$$
, $(y \le ax - b)$ или $y \ge ax + b$.

Она задает на плоскости область между двумя парал. прямыми y = -b - ax и y = b - ax и вне ромба с вершинами $(0; \pm b), (\pm b/a; 0)$. Ф-я f есть квадрат расстояния от нач коорд-т до точки области. Точки с одинак. расстоянием от О образуют окр. Минимум расстояния имеют точки касания сторон ромба со вписанной в ромб окр. Найдем ее радиус r.

Рассмотрим площадь ромба $S = d_1 d_2/2$. Его диагонали имеют длины $d_1 = 2b/a$, $d_2 = 2b$, $S = 2b^2/a$, сторона $-c = \sqrt{b^2 + (b/a)^2} = b\sqrt{a^2 + 1}/a$. Рассм. площадь прямоуг. треуг-ка с катетами b/a, b, составляющего четверть ромба,

$$S_{\Delta} = S/4 = b^2/(2a) = (1/2)cr = b\sqrt{a^2 + 1}/(2a).$$

Отсюда

$$r = \frac{b}{\sqrt{a^2 + 1}}, \quad f_{min} = r^2 = \frac{b^2}{a^2 + 1}.$$

- 5. Случай b>0, a<0 аналогичен предыдущему и приводит к такому же рез-ту.
 - 6. Объединяя результаты пп. 3–5, получаем короткий

Ответ. Если b < 0, то ф-я f не определена. Если $b \geq 0$, то

$$E_{max} = \left(\frac{20}{21}\right)^{\frac{b^2}{a^2+1}}.$$