Set of all 2x2 non - singular matrices with real entries under matrix multiplication

(a) Doesn't form a group (b) forms an abelian group

(c) Forms a finite group (d) forms an infinite non-abelian group

A

B

C

D

Subgroup of the group of real numbers under addition (R,+) is

(a) (Z,+)
(b) (Z⁺,+)
(c) (Q,•)
(d) (R,-)

A

B

C

() D

In the cyclic group G={1,-1,i,-i} under multiplication it's generators are

- a) $\{1,i\}$
- b) {1,-i}
- c) $\{-1,i\}$
- d) {i,-i}

- D

In a permutation group S_a , if $p = \begin{pmatrix} a & b & c \\ b & c & a \end{pmatrix}$, then inverse of p is

In a permutation group if $P_1 = \begin{pmatrix} a & b \\ a & b \end{pmatrix} P_2 = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$ then $P_2 * P_1 = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$

- a) P_1
- P_2
- c) $P_{\scriptscriptstyle 1}^{^{-1}}$
- P_2^{-1}
- B
- \bigcirc 0

If {G,*} is a finite cyclic group of order n with "a " as generator element, thenis also a generator iff the GCD of (m,n)=1 where m < n.

- a) am
- b) an
- c) am+n
- d) b-1

- D

1. The inverse of the element "a" in group (G,*) with binary operation a*b=a+b+2

- a) a

- (b) a^{-1} (c) -2 (d) -(a+4)

*	
The ord	ler of the element –i in the group {1, -1,i,-i} under multiplication is
a)	
b) c)	
d)	
A	
В	
O c	
O D	
*	
A cyclic	group is
а	Subgroup
b	a) Abelian group
C	permutation group
d	d) Dihedral group
О А	
В	
<u>С</u>	
O D	

In a group, (G, *) for any $a, b \in G$, $(a*b)^{-1} =$

- d) b *a

*

If *is the binary operation on the set R of real numbers defined by a *b = a+b+2ab, then the identity element is

- a) 0
- b) 1
- c) 1+2a
- d) 2a

- D

*	
The kernel of a homomorphism f from a group (G,*) to another group (G', Δ) is a	
O A	
○ c	
O D	
* If a and b are any two elements of a group G such that $(a*b)^2 = a^2 * b^2$, then G is a a) Cyclic group b) Abelian Group c) Permutation Group d) Dihedral Group	
○ A	
B	
○ c	
O D	

*
. The identity element of a group is the only element whose order is
a) 1
b) 2
c) n
d) m + n
A
ОВ
○ c
O D
*
* The multiplicative group $\{1, \omega, \omega^2\}$ where ω is a cube root of unity is a
The multiplicative group $\{1, \omega, \omega^2\}$ where ω is a cube root of unity is a
The multiplicative group $\{1,\omega,\omega^2\}$ where ω is a cube root of unity is a a)Ring
The multiplicative group $\{1, \omega, \omega^2\}$ where ω is a cube root of unity is a a)Ring b) Non-abelian group
The multiplicative group $\{1, \omega, \omega^2\}$ where ω is a cube root of unity is a a)Ring b) Non-abelian group c) Cyclic group d) Monoid
The multiplicative group $\{1, \omega, \omega^2\}$ where ω is a cube root of unity is a a)Ring b) Non-abelian group c) Cyclic group
The multiplicative group $\{1, \omega, \omega^2\}$ where ω is a cube root of unity is a a)Ring b) Non-abelian group c) Cyclic group d) Monoid
The multiplicative group {1, ω, ω²} where ω is a cube root of unity is a a)Ring b) Non-abelian group c) Cyclic group d) Monoid A B

*	
A commutative ring with unity and without zero divisors is called an	
a) Integral domain	
b) zero divisor	
c) Ring homomorphism	
d) Field	
A	
ОВ	
○ c	
O D	
*	
Every finite integral domain is a	
a) cyclic group	
b) Non-commutative Ring	
c)Non abelian group	
d) Field	
○ A	
○ B	
○ c	
D	

*	
The	inverse operation of encoding is
	a)Group code
	b) Hamming code
	c)) Decoding
	d) Input message
0	A
0	В
O	C
\bigcirc	D
*	
The i	number of 1's in the binary string is called
	a) Distance
	b) Group code
	c)weight
	d) Parity digit
0	A
0	В
•	C
0	D

d) Four errors

(D

77/12/2022, 17	TOWN DOOR TO WATTERN THE OTO
*	
	e can correct a set of atmost 'K' errors iff the minimum distance between any two code words is
	a) 2k-1
	b) <u>k+</u> 1
	c) <u>k</u>
	<u>d</u>) 2k + 1
(A	
ОВ	
O C	
D	
*	
The nu	mber of errors can be corrected between the encoded words 000 and 111 is
a) T	hree errors
b) T	wo errors
c) Z	ero or one error

If x = 10110, y = 11110, then H(x,y) =<u>a)</u>2 b) 1 c) 3 d) 4 D * .The device which transforms the encoded message into their original form is..... a) encoder b) Decoder

- c) Hamming Code
- d) coding theory

*	
.If (B^n, \bigoplus) is where \bigoplus is addition modulo 2	
a) Field	
b) Cyclic group	
c) Abelian group	
d) Ring homomorphism.	
○ A	
ОВ	
O D	

5. Find the code words for e(111), e(110) generated by the parity check matrix:

```
0
0
```

when the encoding function is e: $B^3 \rightarrow B^6$,

- a) 000000,001010
- b) 000110,100110
- c) 110000,110100
- d) 111001,110010

· · · · · · · · · · · · · · · · · · ·	
A graph in which loops (A) weighted graph (B) simple graph (C) multigraph (D) pseudograph	s and parallel edges are allowed is called a
<u></u> А	
ОВ	
С	
O D	
TOWARD ASSESSMENT DATE OF THE PARTY OF THE P	statement for a graph is correct? graph crosses the vertex any number of times. s without edges.

- (C) An edge in a graph is incident on more than two vertices.
- (D) Total degree of the vertices is odd.

Let G be a simple connected graph such that every vertex in G has degree 4. If number of edges (|E|) = 16, then the number of vertices

- (|V|)=(A) 4
- (B) 8
- (C) 9
- (D) 16
- B
- D

How many edges are there in a complete bipartite graph $K_{5.7}$?

- (A) 35
- (B) 12
- (C) 42
- (D) 49
- A

- D

*	
A graph is called a (A) Cyclic graph (B) Regular graph (C) Tree (D) Not graph	if it is connected and has no circuits.
<u></u> А	
ОВ	
o c	
O D	
*	
A circuit of G is a circ	cuit which includes every edge of G exactly

once? (A) Euler (B) Hamiltonian (C) Planar (D) Isomorphic

Chromatic number of a circuit of length 9 (C_9) is

- (A) 9
- (B) 5
- (C) 2
- (D) 3
- A
- B
- O C

*

Which of the following statement is false?

- (A) Total degree of a tree with n vertices is 2n-2
- (B) There is no circuit in a tree
- (C) There exists a tree with 8 vertices and 8 edges
- (D) A tree with e edges has e + 1 vertices
- A
- B
- C
- O D

The maximum number of edges in a simple disconnected graph with nvertices and k components is

- (A) $\frac{(n+k)(n+k+1)}{2}$ (B) $\frac{(n+k)(n-k+1)}{2}$ (C) $\frac{(n-k)(n-k+1)}{2}$ (D) $\frac{(n-k)(n+k+1)}{2}$

- D

Which of the following completely bipartite graph is a complete graph?

- (A) $K_{7.5}$
- (B) $K_{1,1}$
- (C) $K_{n,n}$
- (D) $K_{m,n}$

- D

Which of the following is true for the graph A and graph B of 10 and 11 vertices respectively?

- (A) Both graphs A and B contain a Hamiltonian circuit
- (B) Neither graph A nor B contains a Hamiltonian circuit
- (C) Graph A contains a Hamiltonian circuit
- (D) Graph B contains a Hamiltonian circuit
- A
- B
- O
- D

Which of the following is true for the following graph G with 6 vertices?

- (A) G is Hamiltonian but not Eulerian
- (B) G is both Eulerian and Hamiltonian
- (C) G is neither Eulerian and Hamiltonian
- (D) G is Eulerian but not Hamiltonian
- A
- () E
- \bigcirc
- O D

A vertex which is adjacent to exactly one vertex is called

- (A) Isolated Vertex
- (B) Pendant Vertex
- (C) Incident Vertex
- (D) Simple Vertex
- A
- E
- \bigcirc

*

Every complete graph is

- (A) Completely bipartite
- (B) Tree
- (C) Regular
- (D) Bipartite
- A
- B
- O
- () D

The number of edges of a complete graph K_{10} is

- (A) 10
- (B) 25
- (C) 20
- (D) 45
- A
- () E
- \bigcirc C

Find the total minimum weight for the following weighted graph using Kruskal's Algorithm

- (A) 18
- (B) 15
- (C) 12
- (D) 20
- () E
- O C

The sum of the indegree vertices for the following directed graph is

- (A) 8
- (C) 10
- (D) 11

The adjacency matrix corresponding to a complete graph of 4 vertices (K_4) is

$$\text{(A)} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \text{(B)} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \text{(C)} \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \text{(D)} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

- () A
- () E
- \bigcirc D

*

What is the chromatic number of the complete bipartite graph $K_{m,n}$?

- (A) 2
- (B) 3
- (C) 6
- (D) 5
- B
- O C

*
A row with all 0 (zero) entries in the incidence matrix corresponds to
(A) pendant vertex (B) an isolated vertex (C) a vertex of degree 2 (D) a vertex of degree 3
○ A
B
○ c
O D
*
* If there is a unique path between every pair of vertices then the graph
If there is a unique path between every pair of vertices then the graph is
If there is a unique path between every pair of vertices then the graph
If there is a unique path between every pair of vertices then the graph is (A) Connected circuitless graph (B) Disconnected graph (C) Connected Cyclic graph
If there is a unique path between every pair of vertices then the graph is (A) Connected circuitless graph (B) Disconnected graph
If there is a unique path between every pair of vertices then the graph is (A) Connected circuitless graph (B) Disconnected graph (C) Connected Cyclic graph
If there is a unique path between every pair of vertices then the graph is (A) Connected circuitless graph (B) Disconnected graph (C) Connected Cyclic graph (D) Complete graph
If there is a unique path between every pair of vertices then the graph is (A) Connected circuitless graph (B) Disconnected graph (C) Connected Cyclic graph (D) Complete graph

Length of the path of a graph is the

- (A) Number of vertices in the graph
- (B) Number of edges in the path
- (C) Number of vertices in the path
- (D) Number of edges in the graph
- (E
- \bigcirc

If the origin and terminal vertex of the path are same then the path is called

- (A) Euler path
- (B) Tree
- (C) Circuit
- (D) Hamiltonian path
- A
- () E
- O
- \bigcirc D

*

Which of the following graph is 4-Chromatic?

- (A) Complete bipartite graph of 3,3 vertices $(K_{3,3})$
- (B) Complete graph of 5 vertices (K_5)
- (C) Complete graph of 4 vertices (K_4)
- (D) Complete bipartite graph of 4,4 vertices $(K_{4,4})$
- A
- B
- C
- O D

What is the chromatic number of the following graph with 7 vertices?

- (A) 3
- (B) 4
- (C) 1
- (D) 2
- (A
- B
- O C
- () D

This form was created inside of SRM Institute of Science and Technology.

Google Forms