(19)日本国特許庁 (JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

特許第3361479号 (P3361479)

(45)発行日 平成15年1月7日(2003.1.7)

(24)登録日 平成14年10月18日(2002.10.18)

(51) Int.Cl. ⁷		識別記号	F I		
H01T	13/20		H01T	13/20	В
					E
B 2 3 K	26/00	3 1 0	B 2 3 K	26/00	3 1 0 N
H01T	21/02		H01T	21/02	
				3 -	請収項の数8(全 13 頁)

(21)出願番号 特顯平11-140751 (73)特許権者 000004547 日本特殊陶業株式会社 (22)出篇日 平成11年5月20日(1999.5.20) 愛知県名古屋市瑞穂区高辻町14番18号 (72)発明者 松谷 渉 (65)公開番号 特開2001-15245(P2001-15245A) 愛知県名古屋市瑞穂区高辻町14番18号 (43)公開日 平成13年1月19日(2001.1.19) 日本特殊陶業株式会社内 審查請求日 平成11年6月28日(1999.6.28) (74)代理人 100095751 (31)優先権主張番号 **特願平11-124131** 弁理士 菅原 正倫 (32)優先日 平成11年4月30日(1999.4.30) (33)優先権主張国 日本(JP) 審查官 仁木 浩

最終頁に続く

(54) 【発明の名称】 スパークプラグの製造方法

1

(57)【特許請求の範囲】

【請求項1】 中心電極と、その中心電極の先端面に自身の側面が対向するように配置された接地電極とを備え、火花放電ギャップに対応する位置においてそれら中心電極と接地電極との少なくとも中心電極側に、貴金属チップを溶接することにより放電面を有する貴金属発火部を形成したスパークプラグの製造方法であって、前記中心電極又は前記中心電極と前記接地電極との、少なくともチップ被固着面形成部位をNi又はFeを主成分とする耐熱合金にて構成し、そのチップ被固着面に対し貴る属チップを重ね合わせて重ね合せ組立体を作り、その重ね合せ組立体に対し、前記貴金属チップと前記チップ被固着面に沿って形成することにより、該貴金属チップを前記チップ被固着面に固着するとともに、前記貴金

2

属チップの前記チップ被固着面への重ね合せ方向において平面視したときの外周最大寸法dmaxが2.0mm未満であり、かつ前記貴金属チップの厚さ方向において前記放電面に到達しない全周レーザー溶接部を形成するために、レーザー溶接の光源として1パルス当りのエネルギーが1.5~6J、パルス長が1~10ミリ秒、パルス発生周波数が2~20パルス/秒のパルス状レーザー光源を使用し、

前記貴金属チップの前記チップ被固着面への重ね合せ方向における、前記全周レーザー溶接部の最小幅 l minと最大幅 l maxとの比 l min/l maxが 0.7以上となるようにすることを特徴とするスパークプラグの製造方法。 【請求項2】 前記全周レーザー溶接部の前記外周最大寸法 d maxが 0.4 mm以上である請求項 1 記載のスパークプラグの製造方法。

【請求項3】 チップ被固着面形成部位を形成する前記 耐熱合金として、800℃における熱伝導率が30W/ m·K以下のものが使用される請求項1又は2に記載の スパークプラグの製造方法。

【請求項4】 前記貴金属チップは円板状に形成され、 該貴金属チップと前記中心電極又は前記接地電極との重 ね合せ組立体を、前記レーザー光源に対しチップ中心軸 線周りにおいて相対的に回転させながら、チップ外周面 に向けてパルス状レーザー光を照射する請求項1ないし 3のいずれか1項に記載のスパークプラグの製造方法。 【請求項5】 前記全周レーザー溶接部の前記外周最大 寸法をdomax(単位:mm)として、前記重ね合せ組立 体と前記レーザー光源との相対回転速度が10rpm以 上であり、かつ前記重ね合せ組立体の回転速度が5π (2/d max) 1/2 (単位:ラジアン/秒) 未満であ る請求項4記載のスパークプラグの製造方法。

【請求項6】 レーザー光スポット内に前記チップ被固 着面と前記チップ外周面との交差縁が入り、かつ前記チ ップ被固着面に対する照射角度θが0~60°の範囲と なるように前記重ね合せ組立体にパルス状レーザー光を 20 照射する請求項1ないし5のいずれか1項に記載のスパ ークプラグの製造方法。

【請求項7】 前記チップ被固着面にチップ外形形状に 対応した位置決め用凹部を形成し、その位置決め用凹部 内に前記貴金属チップを嵌め込んで前記重ね合せ組立体 を作り、その凹部の開口周縁とチップ外周面との交差縁 に向けて前記パルス状レーザー光を照射する請求項6記 載のスパークプラグの製造方法。

【請求項8】 前記貴金属チップとして、Pt又はIr のいずれかを主成分とするものが使用される請求項1な 30 いし7のいずれか1項に記載のスパークプラグの製造方 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はスパークプラグの製 造方法及びスパークプラグに関する。

[0002]

【従来の技術】内燃機関の点火用に使用されるスパーク プラグにおいては、近年、耐火花消耗性向上のために、 電極の先端にPtやIr等を主体とする貴金属チップを 溶接して貴金属発火部を形成したタイプのものが使用さ れている。例えば中心電極の先端面に貴金属チップを接 合する場合、その製造方法として、円板状の貴金属チッ プを中心電極先端に重ね合わせ、中心電極を回転させな がら重ね合せ面の外周に沿ってレーザー光を照射するこ とにより、全周レーザー溶接部を形成する方法が提案さ れている(例えば、特開平6-45050号、特開平1 0-112374号の各公報)。

【0003】ところで、近年では、内燃機関の高性能化

性向上のために、スパークプラグの発火部を2. 0 mm 以下に細径化し、さらにこれを燃焼室内部に突き出させ るタイプのエンジンも多く使用されるようになってきて いる。このような苛酷な実機使用環境において貴金属チ ップの剥離耐久性等を向上するために、IrやPtを主 成分とする貴金属チップを、Ni基あるいはFe基の耐

熱合金で構成された電極に溶接接合して、貴金属発火部

4

[0004]

を形成することが行われている。

【発明が解決しようとする課題】上記のようなスパーク プラグにおける貴金属チップの溶接は、YAGレーザー 等によるパルス状レーザー光を用いて行われることが多 いが、そのレーザー溶接条件におけるパルス発生周波数 は従来0. 5パルス/秒以下と低い値に設定されてい た。しかしながら、この方式によると、例えば直径0. 7mm程度の貴金属チップを溶接するのに延べ15秒近 くかかり、レーザー溶接装置1台当りの生産性が極めて 悪い問題があった。

【0005】上記のような生産性低下の問題を解決する には、レーザー光のパルス発生周波数を増やすことが有 効であるが、本発明者が検討したところ、次のような問 題が生ずることがわかった。すなわち、レーザー光のパ ルス発生周波数を単純に増加させる形で生産性向上を図 ろうとすると、電極材料として使用されるNi基あるい はFe基の耐熱合金は熱伝導率が低いため溶接時の熱引 きが悪く、特に先端細径の電極の場合は、電極による熱 引きがレーザー光1パルス毎の入熱に迫い付かなくなる 場合がある。その結果、図13に示すように、周方向の 溶接部10の後半側ほど温度上昇が激しくなり、後半側 の溶接部10gが前半側の溶接部10pよりも溶接部深 さが大きくなったり、あるいは溶接部幅1が広くなった りするなど、溶接部の不均一化を招きやすい問題があ る。また、溶接部10は貴金属チップ材料と電極材料と の合金により形成されることから、貴金属チップ単体と 比較すると耐火花消耗性に劣る。従って、その溶接部1 0の深さや幅が極端に大きくなると、貴金属チップの溶 接により形成された発火部31の耐久性が著しく低下す ることにつながる。また、溶接部10の幅1が広くなっ た領域では、極端な場合は溶接部10が放電面31aに 露出してしまうこともある。また、たとえ露出していな くとも、発火部31が少し消耗しただけで溶接部10の 露出が同様に発生する。一般に貴金属発火部を形成した スパークプラグは、発火部の長寿命化(例えば10~1 6万km走行に相当するもの)を目的とするものである が、上記のような問題が発生すると露出した溶接部にて 消耗が進行し、比較的短時間で火花放電ギャップが拡大 して着火ミス等の不具合を生ずることがある。

【0006】本発明の課題は、貴金属チップを電極に溶 接する工程の能率を大幅に向上することができ、しかも により燃焼室内の温度も高くなる傾向にあり、また着火 50 均一な溶接部を得ることができるスパークプラグの製造

方法と、従来の方法では実現不能な発火部耐久性を具備 したスパークプラグとを提供することにある。

【0007】本発明は、中心電極と、その中心電極の先 端面に自身の側面が対向するように配置された接地電極 とを備え、火花放電ギャップに対応する位置においてそ れら中心電極と接地電極との少なくとも中心電極側に、 貴金属チップを溶接することにより放電面を有する貴金 属発火部を形成したスパークプラグの製造方法に関し、 上記の課題を解決するために、中心電極及び/又は接地 電極の、少なくともチップ被固着面形成部位をNi又は Feを主成分とする耐熱合金にて構成し、そのチップ被 固着面に対し貴金属チップを重ね合わせて重ね合せ組立 体を作り、その重ね合せ組立体に対し、貴金属チップと チップ被固着面形成部位とにまたがる全周レーザー溶接 部をチップ外周面に沿って形成することにより、該貴金 属チップをチップ被固着面に固着するとともに、貴金属 チップの放電面側において平面視したときの外周最大寸 法dmaxが2. 0mm未満であり、かつ貴金属チップの 厚さ方向において放電面に到達しない全周レーザー溶接 部を形成するために、レーザー溶接の光源として1パル ス当りのエネルギーが1. 5~6 J、パルス長が1~1 0ミリ秒、パルス発生周波数が2~20パルス/秒のパ ルス状レーザー光源を使用し、前記貴金属チップの前記 チップ被固着面への重ね合せ方向における、前記全周レ ーザー溶接部の最小幅 1 minと最大幅 1 maxとの比 1 min <u>/ 1 maxが 0. 7以上となるようにする</u>ことを特徴とす る。

【0008】電極のチップ被固着面形成部位をFeある いはNiを主成分とする耐熱合金で構成しつつ、外周最 大寸法d maxが 2. 0 mm未満の小径の全周レーザー溶 接部を形成する場合において、本発明者らが鋭意検討し た結果、均一性の高い溶接部を能率よく形成するために は、パルス発生周波数を特有の範囲に設定することが重 要であり、かつ、従来あまり着目されていなかったレー ザー光の1パルス当りのエネルギーとパルス長に関する 条件を特定の値に設定することが重要であることが判明 した。そして、その条件設定を前提として、ある特有の パルス周波数範囲に限り、従来の方法よりも高い周波数 を採用しても、前記した溶接部の不均一化等の問題を防 止しうることを見い出し、本発明を完成するに至ったの 40 である。すなわち、レーザー溶接の光源として、1パル ス当りのエネルギーが1.5~6J、パルス長が1~1 0 ミリ秒のレーザー光を使用し、かつ従来の方法と比較 してはるかに大きいパルス発生周波数である2~20パ ルス/秒を採用することで、均一性の高い全周溶接部を 極めて能率よく形成することができるようになる。

【0009】なお、本明細書において全周レーザー溶接部の外周最大寸法dmaxは、図2(b)に示すように、中心電極(3)の中心軸線と直交する平面上に投影したときの、放電面(31a)の幾何学的重心位置をGと

し、そのGから全周レーザー溶接部外縁最遠点までの距離をrmax として、dmax=2rmaxにて定義する。

6

【0010】パルス長が1ミリ秒未満となるか、又は1パルス当りのエネルギーが1.5J未満となった場合は、1パルス当りの入熱量が小さく、溶融部の形成が不十分となる。さらに、1パルス当りのエネルギーが1.5J未満となり、かつパルス長も1ミリ秒未満になった場合は、1パルス当りの入熱量が小さくなり過ぎ、例えばNi基あるいはFe基耐熱合金で電極が構成されている場合、電極の熱引きの影響により該電極がほとんど溶融せず、溶接部を形成することが困難となる。

【0011】一方、1パルス当りのエネルギーが6Jを超えるか、又はパルス長が10ミリ秒を超える場合には、Ni基あるいはFe基の耐熱合金で形成された電極の熱引きが小さいために、レーザー光による入熱が蓄積しやすくなり、溶接部深さや溶接部幅の不均一を招いたり、電極が溶融して変形したりするおそれがある。さらに、1パルス当りのエネルギーが6Jを超え、かつパルス長が10ミリ秒を超えた場合は、溶融される金属が蒸発や飛散を起こしやすくなるため、電極にくばみや穴等の欠陥が発生しやすくなるおそれがある。

【0012】また、パルス発生周波数が2パルス/秒未満になると、溶接部形成の能率向上が望めなくなり、20パルス/秒を超えるとレーザー光による入熱が蓄積しやすくなり、上記と同様の問題を招く。なお、1パルス当りのエネルギーは、より望ましくは2~5 Jとするのがよく、パルス長はより望ましくは1.5~6 ミリ秒とするのがよく、さらにパルス発生周波数はより望ましくは2~12パルス/秒とするのがよい。なお、本明細書における1パルス当りのエネルギーは、例えばレーザー溶接を行う前に予め、レーザー光源から発射されたレーザー光をカロリメータあるいはパワーメータ等のエネルギー検出器で受けることにより、単位時間(例えば1秒間)当りのエネルギーを計測し、そのエネルギーを1秒間当りのパルス数で除することにより算出した値を用いる。

【0013】上記の方法を採用することにより、Fe基あるいはNi基の耐熱合金を使用しつつ、外周最大寸法はmaxが2.0mm未満の小径の全周レーザー溶接部を形成する場合において、従来の方法では困難であった、以下のような均一なレーザー溶接部、具体的には、貴金属チップのチップ被固着面への重ね合せ方向における、全周レーザー溶接部の最小幅1minと最大幅1maxとの比1min/1maxが0.7以上となるようなレーザー溶接部の形成が可能となる。

【0014】また、本発明のスパークプラグは、中心電極と、その中心電極の先端面に自身の側面が対向するように配置された接地電極とを備え、火花放電ギャップに対応する位置においてそれら中心電極と接地電極との少なくとも中心電極側に、貴金属チップを溶接することに

50

より貴金属発火部が形成されており、中心電極及び/又は接地電極の、少なくともチップ被固着面形成部位がNi又はFeを主成分とする耐熱合金にて構成され、そのチップ被固着面に重ね合わされた貴金属チップと該チップ被固着面形成部位とにまたがる形で全周レーザー溶接部がチップ外周面に沿って形成されており、かつ、その全周レーザー溶接部は、貴金属チップの放電面側において平面視したときのその外周最大寸法dmaxが2.0mm未満であって、貴金属チップの厚さ方向において放電面に到達せず、かつ貴金属チップのチップ被固着面への10重ね合せ方向における最小幅1minと最大幅1maxとの比1min/1maxが0.7以上であることを特徴とする。

【0015】1 min/1 maxを0.7以上とできることは、貴金属発火部の放電面から全周レーザー溶接部の、放電面に対して近い側の縁までの距離の、周方向のばらつきを相応の値に小さく抑制できることを意味する。その結果、例えばレーザー溶接部が広幅となった位置において、貴金属発火部が少し消耗しただけで溶接部の放電面への露出が発生し、スパークプラグの耐久性が低下するといった不具合も、効果的に防止される。なお、本発20明の製造方法によれば、溶接条件を適切に設定することで、1 min/1 maxのさらに望ましい値として、0.9以上を実現することも可能となる。

[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面を用いて説明する。図1に示す本発明の一例たるスパークプラグ100は、筒状の主体金具1、先端部21が突出するようにその主体金具1の内側に嵌め込まれた絶縁体2、先端に形成された貴金属発火部(以下、単に発火部ともいう)31を突出させた状態で絶縁体2の内側に設けられた中心電極3、及び主体金具1に一端が溶接等により結合されるとともに他端側が側方に曲げ返されて、その側面が中心電極3の先端部と対向するように配置された接地電極4等を備えている。また、接地電極4には上記発火部31に対向する貴金属発火部(以下、単に発火部ともいう)32が形成されており、それら発火部31と、対向する発火部32との間の隙間が火花放電ギャップgとされている。

【0017】なお本明細書でいう「発火部」とは、接合された貴金属チップのうち、溶接による組成変動の影響 40を受けていない部分(例えば、溶接により接地電極ないし中心電極の材料と合金化した部分を除く残余の部分)を指すものとする。

【0018】絶縁体2は、例えばアルミナあるいは窒化アルミニウム等のセラミック焼結体により構成され、その内部には自身の軸方向に沿って中心電極3を嵌め込むための孔部6を有している。また、主体金具1は、低炭素鋼等の金属により円筒状に形成されており、スパークプラグ100のハウジングを構成するとともに、その外周面には、プラグ100を図示しないエンジンブロック 50

に取り付けるためのねじ部7が形成されている。

【0019】なお、発火部31及び対向する発火部32 のいずれか一方を省略する構成としてもよい。この場合 には、発火部31と、発火部を有さない接地電極4の側 面との間、又は対向する発火部32と、発火部を有さな い中心電極3の先端面との間で火花放電ギャップgが形 成されることとなる。

【0020】中心電極3及び接地電極4のチップ被固着面形成部位、この実施例では少なくともその表層部がNi又はFeを主成分とする耐熱合金にて構成されている(なお、本明細書において「主成分」とは、最も重量含有率の高い成分を意味し、必ずしも「50重量%以上を占める成分」を意味するものではない)。Ni又はFeを主成分とする耐熱合金としては、次のようものが使用可能である。

②N i 基耐熱合金: 本明細書では、N i を40~85重 量%含有し、残部の主体が、Cr、Co、Mo、W、N b、A1、Ti及びFeの1種又は2種以上からなる耐 熱合金を総称する。具体的には、次のようなものが使用 できる(いずれも商品名;なお、合金組成については、 文献(改訂3版金属データブック(丸善):p138) に記載されているので、詳細な説明は行わない):ASTR OLOY, CABOT 214, D-979, HASTELLOY C22, HASTELLOY C 276, HASTELLOY G30, HASTELLOY S, HASTELLOY X, HAYN ES 230, INCONEL 587, INCONEL 597, INCONEL 600, INC ONEL 601, INCONEL 617, INCONEL 625, INCONEL 706, I NCONEL 718, INCONEL X750, KSN, M-252, NIMONIC 75, NIMONIC 80A, NIMONIC 90, NIMONIC 105, NIMONIC 11 5. NIMONIC 263. NIMONIC 942. NIMONIC PE11. NIMONIC PE16, NIMONIC PK33, PYROMET 860, RENE 41, RENE 9 5, SSS 113MA, UDIMET 400, UDIMET 500, UDIMET 520, UDIMET 630, UDIMET 700, UDIMET 710, UDIMET 720, UN ITEP AF2-1 DA6, WASPALOY,

【0021】③Fe基耐熱合金:本明細書では、Feを20~60重量%含有し、残部の主体が、Cr、Co、Mo、W、Nb、Al、Ti及びNiの1種又は2種以上からなる耐熱合金を総称する。具体的には、次のようなものが使用できる(いずれも商品名;なお、合金組成については、文献(改訂3版金属データブック(丸善)、p138)に記載されているので、詳細な説明は行わない);A-286、ALLOY 901、DISCALOY、HAYNES 556、INCOLOY 800、INCOLOY 801、INCOLOY 802、INCOLOY 807、INCOLOY 825、INCOLOY 903、INCOLOY 907、INCOLOY 909、N-155、PYROMET CTX-1、PYROMET CTX-3、S-590、V-57、PYROMET CTX-1、16-25-6、17-14CuMo、19-9DL、20-Cb3。

【0022】一方、上記発火部31及び対向する発火部32は、Ir又はPtのいずれかを主成分とする貴金属を主体に構成されている。これらの貴金属の使用により、中心電極の温度が上昇しやすい環境下においても、

たす場合がある。

発火部の耐消耗性を良好なものとすることができる。ま た、上記のような耐熱合金に対する溶接性も良好であ る。例えばPtをベースにした貴金属を使用する場合に は、Pt単体の他、Pt-Ni合金(例えばPt-1~ 30重量%Ni合金)、Pt-Ir合金、Pt-Ir-Ni合金等をを好適に使用できる。また、Irを主成分 とするものとしては、Ir-Pt合金、Ir-Rh合金

等を使用できる。

【0023】なお、Ir系の貴金属材料を使用する場合 には、元素周期律表の3A族(いわゆる希土類元素)及 10 び4A族(Ti、Zr、Hf)に属する金属元素の酸化 物(複合酸化物を含む)を0.1~15重量%の範囲内 で含有させることができる。これにより、Ir成分の酸 化・揮発を効果的に抑制でき、ひいては発火部の耐火花 消耗性を向上させることができる。上記酸化物としては Y2O3が好適に使用されるが、このほかにもLa2O 3、ThO2、ZrO2等を好ましく使用することがで きる。この場合、金属成分はIr合金のほか、Ir単体 を使用してもよい。

【0024】中心電極3は先端側が円錐台状のテーパ面 3 t により縮径されるとともに、その先端面3 s に上記 発火部31を構成する合金組成からなる円板状の貴金属 チップ31'(図5)を重ね合わせ、さらにその接合面 外縁部に沿ってレーザー溶接により全周レーザー溶接部 (以下、単に溶接部ともいう) 10を形成してこれを固 着することにより発火部31が形成される。また、対向 する発火部32は、発火部31に対応する位置において 接地電極4に貴金属チップ32'(図12)を位置合わ せし、その接合面外縁部に沿って同様に溶接部20を形 成してこれを固着することにより形成される。これらチ ップは、所定の組成となるように各合金成分を配合・溶 解することにより得られる溶解合金を熱間圧延により板 状に加工し、その板材を熱間打抜き加工により所定のチ ップ形状に打ち抜いて形成したものや、合金を熱間圧延 又は熱間鍛造により線状あるいはロッド状の素材に加工 した後、これを長さ方向に所定長に切断して形成したも のを使用できる。また、アトマイズ法等により球状に成 形したものも使用できる。上記チップ31'、32' は、例えば直径dcが0. 4~1. 2mm、厚さtcが 0. 5~1. 5mmのものを使用する。

【0025】上記の発火部31、32を形成するための 溶接方法は概ね同じであるので、以下、中心電極3側の 発火部31を中心に、以下に詳しく説明する。図5

(a) に示すように、中心電極3の先端面3sをチップ 被固着面として、ここに貴金属チップ31'を重ね合わ せて重ね合せ組立体70を作り、その重ね合せ組立体7 0に対し、貴金属チップ31'とチップ被固着面とにま たがる全周レーザー溶接部10をチップ外周面に沿って 形成する。このとき、レーザー溶接の光源として、1パ ルス当りのエネルギーが1.5~6J、パルス長が1~50

10ミリ秒、パルス発生周波数が2~20パルス/秒の パルス状レーザー光源(例えばYAGレーザー光源)5 0を使用する。前述の大きさのチップ31′を使用して 上記の条件にて形成される全周レーザー溶接部10は、 図2に示すように、貴金属チップ31'とチップ被固着 面との重ね合わせ方向において平面視したときの外周最 大寸法d maxが2. 0 mm未満であり、かつ貴金属チッ プ31 の厚さ方向において放電面31aに到達しない ものとされる。なお、外周最大寸法dmaxはO.4mm 以上であることが望ましい。dmaxが 0.4mm未満に なると、レーザー光を相当に絞っても均一な溶接部を形 成することが困難になり、正常な発火部形成に支障を来

10

【0026】電極素材として使用される前述の各種耐熱 合金は、800℃における熱伝導率が概ね30W/m・ K以下と小さく、レーザー溶接時に畜熱しやすい性質が ある。しかしながら、1パルス当りのエネルギーが1. 5~6 J、パルス長が1~10ミリ秒のレーザー光を使 用することにより、従来の方法と比較してはるかに大き いパルス発生周波数である2~20パルス/秒を採用し ても、均一性の高い全周溶接部10を形成できる。具体 的には、貴金属チップのチップ被固着面への重ね合せ方 向、この場合、チップ31'あるいは中心電極3の中心 軸線〇の方向における、全周レーザー溶接部10の最小 幅 l minと最大幅 l maxとの比 l min/l maxが 0. 7以上 (望ましくは0.9以上)とすることができる。

【0027】なお、図4(a)には、中心軸線Oと同軸 の円筒面(放電面31aの外径に等しい直径を有する) にレーザー溶接部10を投影したときの、その投影像の 展開図を示しており、上記のlmin及びlmaxを示してい る。また、中心軸線〇の方向において、放電面31aの 外縁TLからレーザー溶接部10の放電面31aに対し て近い側の縁までの最小距離hminは、Tしからレーザ -溶接部10の放電面31aに対して近い側の各縁の積 分中心線U Cmまでの距離を平均発火部厚さ havとし て、hmin/havが同様に0. 7以上となっていること が望ましい。これにより、例えばhminとなる位置(多 くの場合、溶接部10が最も広幅 (1 max) となる位 置)において、貴金属発火部が少し消耗しただけで溶接 部の放電面への露出が発生し、着火ミス等を生ずる不具 合が効果的に防止される。

【0028】溶接部10は、図3(a)に示すように、 溶接部10の中心軸線Oを挟んだ両側部分が半径方向に おいてつながらない場合(この場合、溶接部10はドー ナツ状の形態を呈する)は、溶接後においてチップ厚さ tcを、その軸断面から実測することが可能である。し かし、同図(b)に示すように、半径方向に両側の密接 部がつながってしまう場合(溶接部10は円板状の形態 を呈する)は、図4(a)に示すように、溶接部10の 幅方向両側縁の積分中心線UCm、LCmの中間位置に基

40

12

準線CMを設定し、その基準線CMと放電面31aの外 縁TLとの距離Hをチップ厚さ tcとして推定する。

【0029】ここで、チップ径dcは、スパークプラグ に要求される耐久性や着火性能等に応じて、0.4~ 1. 2mmの範囲にて適宜設定されるが、貴金属チップ は一般に高価なのでなるべくその使用量を削減するため に、その厚さ t c は前述の通り 0. 5~1. 5 mmと比 較的小さく設定されるのがよい。また、平均発火部厚さ havk- $0.2 \sim 1.0$ mmとするのがよい。 この理由としては、havが 0.2mm未満になると貴金 10 属発火部が少し消耗しただけで溶接部の放電面への露出 が発生し、スパークプラグの耐久性を低下させる場合が あるからである。一方、havが1. 0mmを超えると、 ギャップ拡大によりスパークプラグの寿命が到来したと きに、貴金属チップが相当量残留した状態にてスパーク プラグが交換されることとなるので、無駄が多くなるか らである。これを前提とすれば、例えば、溶接後におい てもチップ厚さtcが確認可能な場合、平均発火部厚さ havとチップ厚さtcに対する比hav/tcは、概ね0. 13~2. 0となっていることが望ましいといえる。た だし、図4(b)に示すように、貴金属チップ31'の 放電面と反対側の縁が、溶接部10よりも基端側に突出 して位置するような場合にあっては、hav/tcがO. 2~1. 0となっていても、寿命到来とは無関係に、そ の突出部分が全て無駄になってしまう問題を生ずること となる。

【0030】一方、貴金属チップの中心電極からの耐剥 離性を向上させるために、UCmとLCmとの距離を平均 溶接部幅 lavとして、該 lavを 0. 4 mm以上とするこ とが望ましい。また、同様の観点において、図4 (c) に示すように溶接部の中心軸線を挟んだ両側部分が半径 方向においてつながらない場合は、tc-havが0.2 mm以上となっていることが望ましい。他方、図4

(d) に示すように、半径方向の両側部分がつながって しまう場合には、中心電極3の軸線方向において、放電 面31aから、溶接部10と発火部31との接合面上に おいて溶接部10が最も薄肉となる位置までの寸法をt c2、同じく溶接部10と中心電極3との接合面上におい て溶接部10が最も薄肉となる位置までの寸法を t c3と して、 t c3-t c2が 0. 2 mm以上となっていることが 40 望ましい。

【0031】以下、本発明において望ましい溶接条件に ついてさらに詳しく説明する。夲実施例のように、貴金 属チップ31 が円板状に形成されている場合、図5 (b) に示すように、該貴金属チップ31と中心電極3 との重ね合せ組立体70を、レーザー光源50に対しチ ップ中心軸線〇の周りにおいて相対的に回転させなが ら、チップ外周面に向けてパルス状レーザー光LBを照 射する方法が、上記のような全周レーザー溶接部を均一

70又はレーザー光源50の一方のみを回転させるよう にしてもよいし、双方ともに (例えば互いに逆方向に) 回転させることも可能である。

【0032】この場合、その回転速度は以下のように調 整することが望ましい。まず、重ね合せ組立体70とレ ーザー光源50との相対回転速度は、レーザー光源50 を1つのみ使用する場合は、10rpm以上(望ましく は12rpm以上)とするのがよい。全周溶接を行うた めには、組立体70とレーザー光源50とを最低1周分 は相対回転させなければならないが、その相対回転速度 が10rpm未満になると、1周分の溶接時間ひいては 1個のスパークプラグを製造するためのピースタイムが 長くなり、従来方法に対して必ずしも優位性を生ずるも のとはならなくなる場合がある。

【0033】ただし、図6あるいは図7のように、チッ プ31'の周方向に所定の間隔で複数のレーザー光源を 配して溶接を行えば、溶接完了するまでの回転数をさら に滅ずることができ、ひいては上記の相対回転速度の下 限値をさらに引き下げることができる場合がある。例え ば、図6のように、略180°間隔で配置した2つのレ ーザー光源50a及び50bにより溶接を行えば、各レ ーザー光源50a及び50bが略半周分に対応する溶接 部10a, 10bを各々分担すればよい。また、図7の ように、略120°間隔で配置した3つのレーザー光源 50a~50cにより溶接を行えば、各レーザー光源5 0a~50cがそれぞれ略1/3周分に対応する溶接部 10a~10cを分担すればよい。

【0034】なお、レーザー光源を複数使用する場合 も、各々のレーザー光源が本発明のレーザー溶接条件を 満足すればよい。その理由は、以下の通りである。すな わち、複数のレーザー光源(n個:n≥2)を用いるに あっては、同時にレーザー光を照射した際のチップ3 1 における温度上昇は大きくなる。しかし、各レーザ 一光源は前述したようにチップ31'に対してほぼ(1 /n) 周分に対応する溶接部を分担すればよく、単一の レーザー光源を使用する場合と比較して(1/n)の時 間で溶接が可能となる。その結果、チップ31'に対す る入熱時間が短縮され、各溶接部の幅が粗大化する不具 合が生じにくくなる。さらに、このように複数のレーザ 一光源を用いて同時にレーザー光を照射することによ り、溶接時間の短縮を図ることができ、生産効率の向上 にも寄与できる。

【0035】一方、相対回転速度の上限値であるが、重 ね合せ組立体70を回転させる場合は、溶接時に生ずる 溶融金属の遠心力による変形や飛散を防止するために、 最大でも240rpm (秒速4回転) 程度に留めるのが よい。他方、溶接部10に付加される遠心力は、外周最 大寸法dmaxに略比例して大きくなり、回転角速度に対 してはその2乗に略比例して大きくなると考えられるの に形成する方法として合理的である。この場合、組立体 50 で、これを考慮した場合、重ね合せ組立体70の回転速

度は、

$V_{max} = 5\pi (2/d_{max})^{1/2} (単位:ラジアン/秒) \cdots (2)$

で定まる値Vmax未満に設定することが望ましい(ただ し、d maxの単位はmm)。

【0036】上記②式によれば、d maxが小さくなるほ どVmaxは大きく取れることになる。例えば、dmax= 2. 0mmとすればVmaxはおよそ150rpmとなる が、例えばdmax=1.5mmではVmax=173rpm であり、dmax=0. 7mmではVmax=253rpmである。例えば、組立体70とレーザー光源50との双方 10 を回転させて、所期の相対回転数を形成する場合、中心 電極側の回転速度を増やすことができれば、その分、若 干複雑にならざるを得ないレーザー光源50側の機構の 回転速度を減ずる(あるいは非回転とする)ことがで き、ひいてはレーザー光源50側の機構単純化あるいは 回転負担軽減を行うことが可能となる。

【0037】なお、②式によれば、概ねdmax < 0.7 8mmでは、Vmaxは前記した望ましい上限値である2 40 r p m よりも大きくなる。ただし、本発明者の検討 によれば、上記のような小径のチップの場合でも、1パ 20 ルス当り1. 5~6 J のエネルギーのレーザー光を用い て周方向に完全に連なる溶接部10を形成するには、1 周に対して最低でも5つ分のパルス溶接ビードを形成し なければならない。240 r p m は 秒速4回転であり、 前記したパルス発生周波数の上限値である20パルス/ 秒を用いても、1秒当りに5パルスがやっと打てる程度 である。従って、これよりも回転速度が大きくなると、 図8(a)に示すように、溶接ビード10dが周方向に 間欠形成される形となり、1回転の間に周方向に連なる パルス溶接ビードを形成完了できなくなる場合がある。 従って、式②の観点からは240rpmを超える回転速 度が可能であっても、やはり240rpm程度に回転速 度を留めておいたほうが有利であるともいえる。ただ し、2回転目以降の溶接を行うことが許される場合は、 図8(b)に示すように、溶接ビード10dの形成角度 位相をずらせることにより、周方向に連なる溶接部10 を形成することができる。

【0038】他方、レーザー光源50の側を回転させる 場合には、レーザー光線の照射位置ブレ等の発生を抑制 するために、その回転速度を90rpm以下に設定する のがよい。

【0039】なお、貴金属チップ31'の厚さ t cが上 記のように小さい場合、放電面31aにかからないよう に溶接部10を形成するために、パルス状レーザー光し Bを斜め上方から照射することが有効である。具体的に は、図5(b)及び(c)に示すように、レーザー光L Bのスポット内にチップ被固着面(この場合、中心電極

3の先端面)とチップ外周面との交差縁Qが入り、かつ チップ被固着面に対する照射角度 θ が0° \sim 60°の範 囲(例えば45°)となるように重ね合せ組立体70に パルス状レーザー光LBを照射することが望ましい。

【0040】次に、貴金属チップ31′のチップ被固着 面に対する位置決め固定を行いやすくするために、図5 (d) に示すように、チップ外形形状に対応した位置決 め用凹部3aをチップ被固着面に形成し、その位置決め 用凹部3a内に貴金属チップ31'を嵌め込んで重ね合 せ組立体70、を作ることもできる。この場合、溶接接合 を確実に行うには、その凹部3 a の開口周縁とチップ外 周面との交差縁Qに向けてパルス状レーザー光LBを照 射するのがよい。

【0041】他方、図9に示すように、中心電極3のテ ーパ面3tの先端部に、円筒状の突出部3dを形成し、 その平坦な先端面3sをチップ被固着面としてここに貴 金属チップ31'を重ね合わせ、チップ被固着面とチッ プ外周面との交差縁Qに向けてパルス状レーザー光LB を照射するようにしてもよい。図10(a)は、そのよ うにして製造したスパークプラグの発火部31近傍の拡 大斜視図であり、(b)及び(c)は、その縦断面図で ある。(b)は、溶接部10の中心軸線Oを挟んで両側 の部分がつながらない場合、(c)は両部分が半径方向 につながる場合の各状態を示している。なお、

(a) 、(b) 、(c) に示すように、突出部3 dの全体を溶融させて溶接部10中に取り込む形状とし てもよい。

【0042】また、図11は、接地電極4側の発火部3 2の形成状態を示すもので、中心電極3側と同様の全周 レーザー溶接部20が形成されている。図12 (a) に 示すように、接地電極4の火花放電ギャップg(図1) に面することが予定された側面をチップ被固着面とし て、ここに凹部4 a を形成し、その凹部4 a に貴金属チ ップ32′を嵌め込み固定する。その状態で、図5等と 同様にレーザー光源50を用いて溶接部20の形成を行 う。

【0043】なお、表1に、各種材質の貴金属チップを 使用して各種dmaxの溶接部を形成する場合の、望まし いレーザー溶接条件(1パルス当りのエネルギー、パル ス長、パルス発生周波数、レーザー光源と重ね合せ組立 体との相対回転数(ただし、レーザー光源数は1))の 例を示す。

[0044]

【表1】

30

d m a x (mm)	貴金属チップ組成(wt%)	レーザ光線エネルギー (J/バルス)	パルス長 (ミリ秒)	パルス発生周波数 (パルス/秒)	相対回転数 (rpm)
1. 1	pt-10 r, pt-20 r	2	2	12	60
0. 5	ir, ir—5Rh, ir—5Pt ir—10Rh, ir—20Rh	2	2	9	60
1. 9	r-5Pt, r-20Rh r-10Rh, r-Y ₂ O ₃	3	6	3	10

[0045]

【実施例】本発明の効果を確認するために、以下の実験を行った。まず、INCONEL 600を用い、図1に示す形状の中心電極3を作製した。ただし、図5 (a) において、基端部外径D1を2. $5\,\text{mm}$ 、先端面径D2を1. $3\,\text{mm}$ 、テーパ面3 t のテーパ角度を $4\,5^\circ$ とした。他方、合金溶解/圧延により作製した $P\,t$ $-2\,0\,\text{w}\,t$ % I r 合金板からの打抜き加工により、厚さ0. $6\sim0$. $8\,\text{mm}$ 、外径0. $4\sim1$. $5\,\text{mm}$ の各種寸法の貴金属チップを作製した。

【0046】次に、レーザー光源として、焦点でのビーム径0.4mmの固定YAGレーザー光源を用意し、レーザー出力エネルギー:1.8~3J/パルス、パルス幅2~6ミリ秒、パルス発生周波数1~23パルス/秒 30

の各種条件に設定した。そして、上記の貴金属チップを中心電極3の先端面のうちチップ被固着面として予定される面に重ね合わせ、中心電極3を回転速度60rpm 20 にて1周分だけ回転させながら、図5に示す方式 (θ = 45°) により、上記のレーザー光源を用いて溶接部10を形成した。溶接終了後、拡大鏡を用いて、形成された溶接部10の最大幅1 max と最小幅1 min2 max と最小幅1 min2 max と最小幅1 min2 max 3 min3 min3 max 3 min3 max 3 min3 min3 max 3 min3 min3 max 3 min3 mi

[0047]

【表2】

17			T					
23	×	×	×	×	×	×	×	×
122	×	×	×	×	×	×	×	×
21	×	×	×	◁	◁	◁	◁	×
20	×	◁	Q	◁	◁	4	◁	◁
19	×	◁	∇	◁	◁	4	Ø	٥
8	×	4	◁	٥	◁	٥	٥	Ø
17	×	٥	◁	◁	0	Q	0	◁
16	×	٥	۵	0	0	0	0	Ø
15	×	Ø	۵	0	0	0	0	0
14	×	0	0	0	0	0	0	0
13	×	0	0	0	0	0	0	0
910111213141516171819	×	0	0	0	0	0	0	0
11	×	0	0	0	0	0	0	0
10	×	0	0	0	0	0	0	0
6	×	0	0	0	0	0	0	00
œ	Χ.	0	0	0	0	0	0	0
7	×	0	0	0	0	0	0	0
9	×	0	0	0	0	0	0	0
വ	×	0	0	0	0	0	0	0
4	×	0	0	0	0	0	0	00
က	×	0	0	0	0	0	0	00
73	Δ	0	0	0	0	0	0	0
-	0	0	Ò	0	0	0	0	0
PPS x	0	8	9	4	2	0	8	4
dmb	2.	1.	1.	1.	1.	1.	0.	0.
10年	8	8	8	9	9	9	9	9
チップ (mn	0.	0.	0.	0.	0.	0.	0.	0.
/ス条件 (mm) (mm	. 5	. 5	. 5	. 8	∞ .	∞ .	8 .	0. 4
# # T	1	1	11	0.	о.	0.	0.	1
/久条	《沙秒》		ババス		多 、	×1×		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

【0048】このように、本発明の請求項の範囲に属する条件にて溶接を行ったものは、いずれも優又は良の評価が得られていることがわかる。

【図面の簡単な説明】

【図1】本発明のスパークプラグの一実施例を示す縦断 面図及びその要部拡大図。

【図2】図1のスパークプラグの中心電極先端部の拡大 50 斜視図及び先端面側平面図。 【図3】図2の縦断面図及びその変形例の縦断面図。

【図4】全周溶接部の展開説明図。

【図5】図1のスパークプラグの中心電極側発火部の製 造工程説明図。

【図6】図5の製造工程の変形例を示す説明図。

【図7】同じく別の変形例を示す説明図。

【図8】同じくさらに別の変形例を示す説明図。

【図9】変形例のスパークプラグの製造工程を説明する ☒.

【図10】図9の製造工程により製造されるスパークプ 10 31', 32' 貴金属チップ ラグの要部斜視図、その縦断面図及びその変形委を示す 縦断面図。

【図11】接地電極側発火部の斜視図。

【図12】その製造工程説明図。

【図2】

【図13】従来の製造方法の問題点を示す説明図。 【符号の説明】

1 主体金具

2 絶縁体

3 中心電極

3a, 4a 位置決め用凹部

4 接地電極

10, 20 全周レーザー溶接部

31, 32 貴金属発火部

31a, 32a 放電面

50 レーザー光源

70 重ね合せ組立体

g 火花放電ギャップ

(a)

【図3】

(b)

(a) (b) ·

[図6] (a) (b) LB-

(a)

【図5】

【図8】

【図13】

フロントページの続き

(56)参考文献	特開	平11-233233 (JP, A)	(58)調査した分野(Int	.Cl. ⁷ , DB名)	
	特開	平6-36856 (JP, A)	HO1T	13/20	
	特開	平6-45050 (JP, A)	B23K	26/00 310	
	特開	平7-37677 (JP, A)	HO1T	21/02	
	特開	平6-68956 (JP, A)			
	特開	平8-50983 (JP, A)			
	特開	平7-37674 (JP, A)			
	特開	平6-188062 (JP, A)			
	特開	平9-106880 (JP A)			