Reference No.: WTD13S0604589E Page 1 of 27

FCC TEST REPORT

FCC ID	: 2AAV8D

Applicant : SHENZHEN QIAOHUA INDUSTRIES LIMITED

Address : Qiaohua Industrial Zone, Luo Tian Forestry Center, Song Gang Town, Bao

An District, Shenzhen, China

Manufacturer : The same as above
Address : The same as above

Equipment Under Test (EUT):

Product Name : Wireless Doorbell(Transmitter)

Model No. : D

Rules : FCC CFR47 Part 15 Subpart C: 2010

 Date of Test
 : Jun 21~25, 2013

 Date of Issue
 : July 22, 2013

Test Result : PASS*

Remark:

* The sample described above has been tested to be in compliance with the requirements of ANSI C63.4:2003. The test results have been reviewed and comply with the rules listed above and found to meet their essential requirements.

PERPARED BY:

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West of Baima Road., Songgang Street, Bao'an District, Shenzhen, China

Tel: +86-755-83551033 Fax: +86-755-83552400

Compiled by:	Approved by:
Maibeu. 2hang	Tabelo shoul

Philo Zhong / Manager

Maikou Zhang / Project Engineer

Reference No.: WTD13S0604589E Page 2 of 27

2 Test Summary

Test Items	Test Requirement	Result
Conducted Emissions	15.207	N/A
	15.205(a)	
Radiated Spurious Emissions	15.209	PASS
	15.231(b)	
Periodic Operation	15.231(a)	PASS
20dB Bandwidth	15.231(c)	PASS
Antenna Requirement	15.203	PASS

3 Contents

	00/5	-D DAGE	Page
1		ER PAGE	
2	TEST	SUMMARY	2
3	CONT	TENTS	3
4	GENE	ERAL INFORMATION	4
	4.1 4.2 4.3 4.4 4.5 4.5.1 4.5.2	GENERAL DESCRIPTION OF E.U.T. DETAILS OF E.U.T. TEST FACILITY TEST LOCATION. GENERAL CONDITION Environmental condition of test site Test Mode	
5	EQUII	PMENT USED DURING TEST	6
	5.1 5.2 5.3	EQUIPMENTS LIST	6
6	CONL	DUCTED EMISSION TEST	7
7	RADI	ATION EMISSION TEST	8
	7.1 7.2 7.3 7.4 7.5 7.6	EUT OPERATION: TEST SETUP SPECTRUM ANALYZER SETUP TEST PROCEDURE CORRECTED AMPLITUDE & MARGIN CALCULATION SUMMARY OF TEST RESULTS	9 11 11
8	PERIO	ODIC OPERATION	16
9	20DB	BANDWIDTH	19
	9.1 9.2	Test Procedure	
10	ANTE	NNA REQUIREMENT	20
11	РНОТ	TOGRAPHS OF TESTING	21
	11.1	RADIATION EMISSION TEST VIEW	21
12	РНОТ	OGRAPHS - CONSTRUCTIONAL DETAILS	23
	12.1	EUT - APPEARANCE VIEW	23

Reference No.: WTD13S0604589E Page 4 of 27

4 General Information

4.1 General Description of E.U.T.

Product Name	: Wireless Doorbell(Transmitter)
Model No.	: D
Type of Modulation	: FSK
Note	: N/A
Frequency Range	: 433.92 MHz (transmitter)
Oscillator	: 433.92MHz
Antenna installation	: PCB Printed Antenna

4.2 Details of E.U.T.

Technical Data	: DC 12V Powered by Battery
Adapter manufacturer	: N/A
M/N	: N/A

4.3 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A

Waltek Services (Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A, July 12, 2012.

FCC – Registration No.: 880581

Waltek Services (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

4.4 Test Location

All Emissions testswere performed at:-

Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105, China.

4.5 General condition

Ambient Condition: $\underline{25.5}$ $^{\circ}$ $^{\circ}$ $\underline{58}$ $^{\circ}$ %RH

Reference No.: WTD13S0604589E Page 5 of 27

4.5.1 Environmental condition of test site

For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.

The follow condition is not applicable

Test Voltage	Input voltage
Rated voltage-15%	#####
normal	#####
Rated voltage+15%	#####

The follow condition is applicable.

Test voltage	Test Voltage
Rated voltage	New Battery DC 12V

4.5.2 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

- <u> </u>			
Test mode	Lower channel	Middle channel	Upper channel
Transmitting	MHz	433.92MHz	MHz
Receiving	MHz	MHz	MHz

Reference No.: WTD13S0604589E Page 6 of 27

5 Equipment Used during Test

5.1 Equipments List

3m Se	3m Semi-anechoic Chamber for Radiation Emissions					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer	Agilent	E7405A	MY45114943	Aug. 13,2012	Aug. 12,2013
2.	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Aug. 13,2012	Aug. 12,2013
3.	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr. 20,2013	Apr. 19,2014
4.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr. 20,2013	Apr. 19,2014
5.	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	399	Aug. 13,2012	Aug. 12,2013
6.	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr.07,2013	Apr.06,2014
7.	Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-148	Aug. 13,2012	Aug. 12,2013
8.	Cable	Тор	EWO2014-7	-	Apr. 20,2013	Apr. 19,2014
9.	Cable	Тор	TYPE16(13M)	-	Aug. 13,2012	Aug. 12,2013

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	$\pm 1 \times 10^{-6}$
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB
Radiated Spurious	(30M~1000MHz)
Emissions test	± 4.74 dB
	(1000M~25000MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTD13S0604589E Page 7 of 27

6 Conducted Emission Test

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.4:2003 Frequency Range: 150kHz to 30MHz

Class B

Limit: $66-56 \text{ dB}_{\mu}\text{V}$ between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth) Quasi-Peak & Average

if maximised peak within 6dB of Average Limit

Test Result: N/A

Remark: This device powered by battery, this test is not applicable.

Reference No.: WTD13S0604589E Page 8 of 27

7 Radiation Emission Test

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.4:2003

Measurement Distance: 3m
Test Result: PASS

15.209 The spurious radiated emissions limit:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 -0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

15.231 (b) Limit: The field strength of emissions

	Fundamental Frequency	Field Strength of Fundamental	Field Strength of Spurious Emissions	
(MHz) 40.66-40.70		(microvolts/meter) 2,250	(microvolts/meter) 225	
	70-130	1,250	125	
	130-174	1,250 to 3,750**	125 to 375**	
	174-260	3,750	375	
	260-470	3,750 to 12,500**	375 to 1,250**	
	Above 470	12,500	1,250	

^{**} linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

- (1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.
- (2) Intentional radiators operating under the provisions of this Section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in Section 15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of Section 15.205 shall be demonstrated using the measurement instrumentation specified in that section.

Reference No.: WTD13S0604589E Page 9 of 27

(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength.

(4) Where F is the frequency in MHz,The formulas for calculating the maximum permitted fundamental field strengths are as follows:

Sample calculation of limit @ 433.92MHz

41.6667 (433.92)- 7083.3333=10996.681uV/m

20log(10996.681)=80.82 dBuV/m(AV) limit @ 433.92MHz

7.1 EUT Operation:

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Atmospheric Pressure: 1010 mbar

Operation Mode:

The EUT was tested in working mode. The test data were shown as follow.

7.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4: 2003.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

Reference No.: WTD13S0604589E Page 11 of 27

7.3 Spectrum Analyzer Setup

According to FCC Part15 Rules, the system was tested from 9KHz to 5GHz.

Below 30MHz

Sweep Speed	.Auto
IF Bandwidth	.10KHz
Video Bandwidth	.10KHz
Resolution Bandwidth	.10KHz

30MHz ~ 1GHz

Sweep Speed	Auto
IF Bandwidth	
Video Bandwidth	100KHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	100KHz

Above 1GHz

Sweep Speed	.Auto
IF Bandwidth	.120 KHz
Video Bandwidth	.3MHz
Quasi-Peak Adapter Bandwidth	.120 KHz
Quasi-Peak Adapter Mode	.Normal
Resolution Bandwidth	.1MHz

7.4 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X, Y, Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand). After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

7.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows: Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain the "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Reference No.: WTD13S0604589E Page 12 of 27

7.6 Summary of Test Results

Test Frequency: Below 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 1000MHz

Antenna polarization: Vertical

Remark: the marker 3&4 is the fundamental

Antenna polarization: Horizontal

Reference No.:

Remark: the marker 4&5 is the fundamental

Test Frequency: 1GHz ~ 5GHz

AV = Peak +20Log₁₀(duty cycle) =PK+(-18) [refer to section 8 for more detail]

Antenna polarization: Vertical

Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1304.000	-18	29.1	60.82	-31.72	AV	
1736.000	-18	15.01	60.82	-45.81	AV	
2604.000	-18	15.02	60.82	-45.80	AV	
2940,000	-18	13.73	54.00	-40.27	AV	
				-		
	·					
	(MHz) 1304.000 1736.000	(MHz) (dB) 1304.000 -18 1736.000 -18 2604.000 -18 2940.000 -18 3464.000 -18	(MHz) (dB) (dBuV/m) 1304.000 -18 29.1 1736.000 -18 15.01 2604.000 -18 15.02 2940.000 -18 13.73 3464.000 -18 12.73	(MHz) (dB) (dBuV/m) (dBuV/m) 1304.000 -18 29.1 60.82 1736.000 -18 15.01 60.82 2604.000 -18 15.02 60.82 2940.000 -18 13.73 54.00 3464.000 -18 12.73 60.82	(MHz) (dB) (dBuV/m) (dBuV/m) (dB) 1304.000 -18 29.1 60.82 -31.72 1736.000 -18 15.01 60.82 -45.81 2604.000 -18 15.02 60.82 -45.80 2940.000 -18 13.73 54.00 -40.27 3464.000 -18 12.73 60.82 -48.09	(MHz) (dB) (dBuV/m) (dBuV/m) (dB) Detector 1304.000 -18 29.1 60.82 -31.72 AV 1736.000 -18 15.01 60.82 -45.81 AV 2604.000 -18 15.02 60.82 -45.80 AV 2940.000 -18 13.73 54.00 -40.27 AV 3464.000 -18 12.73 60.82 -48.09 AV

No.	Freq. (MHz)	Duty Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Remark
1	1304.000	-18	22.00	60.82	-38.82	AV	
2	1736.000	-18	17.18	60.82	-43.64	AV	
3	2164.000	-18	13.32	60.82	-47.50	AV	
4	2604.000	-18	17.54	60.82	-43.28	AV	
5	4036.000	-18	13.93	54.00	-40.07	AV	
6	4672.000	-18	16.08	54.00	-37.92	AV	

Reference No.: WTD13S0604589E Page 16 of 27

8 Periodic Operation

The duty cycle was determined by the following equation:

To calculate the actual field intensity, The duty cycle correction factor in decibel is needed for later use and can be obtained from following conversion

Duty Cycle(%)=

Total On interval in a complete pulse train/ Length of a complete pulse train * %

Duty Cycle Correction Factor(dB)=20 * Log₁₀(Duty Cycle(%))

Pulse Train	Number of Pulse	T(ms)	Total Time(ms)
Long Pulse	7	1.068	7.476
Short Pulse	11	0.384	4.224

Total On interval in a complete pulse train(ms)	11.7
Length of a complete pulse train(ms)	50
Duty Cycle(%)	11.7
Duty Cycle Correction Factor(dB)	-18

Reference No.: WTD13S0604589E Page 17 of 27

Refer to the duty cycle plot (as below), This device meets the FCC requirement.

Length of a complete pulse train:

Remark:FCC part15.35(c) required that a complete pulse train is more than 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

Date: 21.JUN.2013 23:07:59

Date: 22.JUN.2013 00:33:07

Date: 22.JUN.2013 00:32:46

Refer to the plot (as below), We find a manually operated transmitter shall employ a switch that will automatically deactivate the transmitteri immediately, within not more than 5 seconds of being released.

Date: 22.JUN.2013 00:29:34

Reference No.: WTD13S0604589E Page 19 of 27

9 20dB Bandwidth

Test Requirement: FCC Part15 C

Test Method: FCC Part15 Paragraph 15.231(c)

Limit The bandwidth of the emission shall be no wider than 0.25% of the

center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission

shall be no wider than 0.5% of the center frequency.

9.1 Test Procedure

1. The transmitter output (antenna port) was connected to the spectrum analyzer.EUT and its simulators are placed on a table, let EUT working in test mode, then test it.

2. The bandwidth of the fundamental frequency was measure by spectrum analyser with 100KHz RBW and 100KHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power 20dB.

9.2 Test Result

Frequency (MHz)	Bandwidth Emission (KHz)	Limit (KHz)	Result
433.92	427.100	1084.8	Pass

Limit=Center Frequency*0.25%

Test Plot

Date: 22.JUN.2013 00:34:17

10 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna to the intentional radiator shall be considered sufficient to comply with the provisions of this section. This product use a permanent PCB printed antenna, fulfill the requirement of this section

Reference No.: WTD13S0604589E Page 21 of 27

11 Photographs of Testing

11.1 Radiation Emission Test View

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

Reference No.: WTD13S0604589E Page 22 of 27

Reference No.: WTD13S0604589E Page 23 of 27

12 Photographs - Constructional Details

12.1 EUT - Appearance View

Reference No.: WTD13S0604589E Page 24 of 27

Reference No.: WTD13S0604589E Page 25 of 27

Reference No.: WTD13S0604589E Page 26 of 27

12.2 EUT-Internal View

=End of test report==