

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки
- КАФЕДРА	Прикладная математика

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

Модель двух конкурирующих видов

Студент	удент ФН2-42Б		А.И. Токарев		
	(Группа)	(Подпись, дата)	(И.О. Фамилия)		
Руководитель курсовой работы					
			М. П. Галанин		
		(Подпись, дата)	(И.О. Фамилия)		

Содержание

Вв	дение	3
1.	Постановка задачи	4
2.	Стационарные состояния	4

Введение 3

Введение

1. Постановка задачи

Рассмотрим некоторые задачи из области динамики популяций. Пусть есть два сходных вида, конкурирующих между собой за пищу. Очевидно, что возможны следующие варианты:

- Выживает только первый вид;
- Выживает только второй вид;
- Выживают оба вида;
- Оба вида вымирают.

Каждый из этих вариантов соответствует наличию своего положения равновесия. Тем самым для описания данной системы нужна модель с четырьмя неподвижными точками — стационарными состояниями системы.

В соответствии с гипотезой В. Волтера¹ модель двух конкурирующих видов выглядит следующим образом:

$$\begin{cases}
\frac{dx_1}{dt} = a_1 x_1 - b_{12} x_1 x_2 - c_1 x_1^2, \\
\frac{dx_2}{dt} = a_2 x_2 - b_{21} x_2 x_1 - c_2 x_2^2,
\end{cases}$$
(1)

где a_1, a_2 — коэфициенты скорости роста популяции; b_{12}, b_{21} — коэфициенты межвидовой борьбы; c_1, c_2 — внутривидовой борьбы первого и второго вида соответсвенно.

В данной курсовой работе необходимо рассмотреть все варианты параметров системы и исследовать качественное поведение ее решений. Также важно уделить внимание особым точкам системы.

2. Стационарные состояния

Найдем стационарные точки. Для этого необходимо решить СЛАУ вида:

$$\begin{cases} a_1 x_1 - b_{12} x_1 x_2 - c_1 x_1^2 = 0, \\ a_2 x_2 - b_{21} x_2 x_1 - c_2 x_2^2 = 0, \end{cases}$$
 (2)

¹ В. Волтера (*um.* Vito Volterra, 1860–1940) — итальянский математик и физик.

откуда получаем 4 стационарных состояния:

- 1. $x_1 = 0$, $x_2 = 0$ вымирание обоих видов;
- 2. $x_1 = 0, \ x_2 = \frac{a_2}{c_2}$ вымирание первого вида, достижение вторым видом конечной численности $\frac{a_2}{c_2}$;
- 3. $x_1=\frac{a_1}{c_1},\ x_2=0$ противоположная ситуация, то есть достижение первым видом численности $\frac{a_1}{c_1}$ и вымирание второго вида;

4.
$$x_1 = \frac{a_1c_2 - a_2b_{12}}{c_1c_2 - b_{12}b_{21}}, \ x_2 = \frac{a_2c_1 - a_1b_{21}}{c_1c_2 - b_{12}b_{21}}$$
 — выживание обоих видов.

Особое внимание стоит уделить 4 стационарному состоянию. Решения x_1, x_2 в этой ситуации должны быть положительными. Условия положительности неподвижных решений выполняются в одном из двух случаях:

Также расположение стационарных точек можно продемонстрировать на графике. Каждое из уравнений (2) задает прямую-сепаратрису:

$$\begin{cases} x_1 = 0, \\ x_2 = \frac{a_1 + c_1 x_1}{b_{12}}, \\ x_1 = 0, \\ x_2 = \frac{a_1 + c_1 x_1}{b_{12}} \end{cases}$$
(3)

Попарные пересечения сепаратрис дают стационарные состояния. Возможные взаимные расположения прямых-сепаратрис приведены на рис. 1:

Рис. 2.1. Расположение сепаратрис системы в зависимости от параметров.

Линеаризация системы — построение приближенной линейной модели. Линеаризуем нашу систему:

$$\mathbb{J} = \begin{pmatrix} a_1 - b_{12}x_2 - 2c_1x_1 & -b_{12}x_1 \\ -b_{21}x_2 & a_2 - b_{21}x_1 - 2c_2x_2 \end{pmatrix}$$