Hate-Crime Early-Warning Model for NYPD

Final Report

Author: Siddhant Anand Jadhav Course: Machine Learning

1. Stakeholder

NYPD Hate-Crime Task Force and community-relations staff who decide where to focus patrols and outreach programs.

2. Problem Statement

Hate crimes are relatively rare but highly disruptive. If NYPD could see which precincts are likely to report at least one hate-crime incident next month, it could shift patrol cars, schedule school visits, or launch awareness campaigns before harm occurs.

Target variable

Hate_Crime_Occurred = $1 \Rightarrow \ge 1$ incident in Precinct-Month 0 otherwise (no incidents that month).

3. Dataset

- Source: NYC OpenData "NYPD Hate Crime Incidents" https://data.cityofnewyork.us/Public-Safety/NYPD-Hate-Crimes
- **Period covered:** January 2019 March 2024
- Original size: 3 325 rows (one row = one incident)
- **After reshaping:** 11 736 rows (every precinct-month combination, including months with zero incidents).
- Data cleaning: removed rows with missing dates; parsed timestamps; converted to Precinct-Month aggregation.

4. Feature Engineering

Feature	Why I added it	
Month (1-12)	Captures seasonal spikes (spring surge).	
Season (Spring/Summer/Fall/Winter,	Smooths month noise, easier for the	
one-hot)	model.	

Lag_1 (# incidents previous month)	Crimes often repeat in short bursts.	
Lag_2 (# incidents two months ago)	Captures longer momentum.	

(All zero-crime months are explicit so the model learns from "quiet" periods too.)

5. Models Tried & Hyper-parameters

Model	Why I chose it	Key grid	
Random Forest	Handles non-linear patterns	n_estimators[50, 100, 200];	
	& class imbalance; gives	max depth [3, 5, None]	
	feature importance.		
Logistic Regression	Transparent baseline to	c[0.1, 1, 10]	
	benchmark against.		

Data split: 80 % train / 20 % test, **stratified** by target.

6. Evaluation Metrics & Results

Why these metrics? Hate crimes are rare ⇒ Accuracy misleading. I focus on F1 (balance), Precision (false-alarm cost), Recall (missed crimes), and ROC-AUC (ranking quality).

Model	F1	Precision	Recall	ROC-AUC
Random Forest	0.32	0.55	0.23	0.60
Logistic Reg.	0.26	0.72	0.16	0.58

- Random Forest catches ~25 % of crime months while keeping false alarms manageable.
- ROC = 0.60 shows ranking skill better than random.

7. Interpretation

- Top predictive features: Lag_1, Month, and Season_Spring (matches intuition: repeat offenses and spring surge).
- **Top-5 high-risk precinct-months** (in the test split) would have alerted commanders to ~25 % of incidents one month early.
- Fairness check: Precision by borough ranges 0.48–0.60 ⇒ no borough is disproportionately over-flagged; will keep monitoring.

8. Recommendation

Deploy the Random Forest model as a **monthly dashboard**:

- 1. First day of each month: refresh data, score all precincts.
- 2. Share the **top-5 risk precincts** with precinct commanders and the Hate-Crime Task Force.
- 3. Combine with human intel to plan patrols and community events.

Given current F1 and recall, treat this as an **early-warning helper**, not a sole decision-maker.

9. Deployment Sketch

- Data ingest: Cron job pulls latest CSV via NYC OpenData API.
- Scoring: AWS Lambda loads rf model.joblib, scores, writes results to S3.
- **Dashboard:** Streamlit app (<50 lines) reads S3 results and shows top-risk precincts; auto-emails PDF to commanders.

10. Limitations & Future Work

Limitation	Planned improvement
No demographic / socioeconomic variables	Join census data to add context.
Recall still low (0.23)	Test gradient boosting (XGBoost) and time-series LSTM.
Only borough-level fairness check	Extend to race/ethnicity once demographic features added.
Static monthly threshold	Calibrate probability cut-off per precinct workload.

11. Code & Reproducibility

- Full code (clean, commented, reproducible) on GitHub
- Requires Python 3.9+ and packages listed in requirements.txt.