

Optimizing Breeding Programs

COST-BENEFIT

Armidale Animal Breeding Summer Course 2014

Cost - Benefit

Cost-Benefit industry wide

Cost dG

50k Nuc ewes 20M Comm

3 tier benefit

Cost-Benefit Stud

500 Nuc ewes10k Comm

2 tier benefit

Outline

- Economic value of genetic improvement
 - Value difference between two rams
 - Value of selecting better rams
 - Rams sold to Commercial
 - Rams used in Stud
 - Value of genetic improvement whole flock

Two Commercial Rams

ASBV PWWT

Ram 1: Kevin +10 kg

Ram 2: Tony +15 kg

Nr Progeny: 100

Value of 1 kg PWWT \$4

Difference in progeny 2.5 kg

Difference in value: 5*\$4 * 100 * 0.5

as commercial rams

Selection

Nr of

Expression

Difference

Progeny

per progeny

= \$1000.-

Two Commercial Rams

\$Index

Ram 1: Kevin +190

Ram 2: Tony +180

Nr Progeny: 100

Difference in progeny \$5

Difference in value: \$10 * 100 * 0.5

as commercial rams Selection Nr of Expression

Difference Progeny

= \$500.-

per progeny

Selecting Better Rams

\$\frac{\\$\\$\lndex}{\}\] Average of 100 rams sold: With Genomics +182

No Genomics +180

Nr Progeny: 100 per ram

Difference in progeny \$1.0

Difference in value: \$2 * 100 * 0.5

as commercial rams

Selection

Nr of

Expression

Difference

Progeny

per progeny

= \$100.- * 100 rams = \$10,000.

So principles are

Value of a superior ram

= Selection Difference * Nr.Progeny * expressions per progeny

We look at all expressions in commercial progeny

To evaluate benefit we need to predict

• the extra Selection Difference we can get this will depend a lot on extra accuracy

the number of expressions

How about selection of stud rams?

Value of a superior ram

= Selection Difference * Nr.Progeny * expression per progeny

Progeny in commercial, so for a stud ram these are actually grand progeny, great grand progeny, etc

males to males	females to males
males to females	females to females

Donors of genes

		Sir	es of N	lucleus				Dams of N	lucleus								
P m	atri	х	1	2	3	4	5	1	2	3	4	5	6	7	8	9	10
		1	0	0.5	0	0	0	0	0.166667	0.166667	0.166667	0	0	0	0	0	0
		2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
S		4	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
genes		5	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
ge		1	0	0.5	0	0	0	0	0.166667	0.166667	0.166667	0	0	0	0	0	0
of		2	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
		3	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
15		4	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Recipients		5	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
<u>.</u>		6	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
<u>S</u>		7	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
26		8	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
		9	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	Sal	10	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Donors of genes

Sn <sn< th=""><th>Sn<dn< th=""><th>Sn<sc< th=""><th>Sn<cm< th=""><th>Sn<cf< th=""><th>Sn</th><th>Sires of Nucleus</th></cf<></th></cm<></th></sc<></th></dn<></th></sn<>	Sn <dn< th=""><th>Sn<sc< th=""><th>Sn<cm< th=""><th>Sn<cf< th=""><th>Sn</th><th>Sires of Nucleus</th></cf<></th></cm<></th></sc<></th></dn<>	Sn <sc< th=""><th>Sn<cm< th=""><th>Sn<cf< th=""><th>Sn</th><th>Sires of Nucleus</th></cf<></th></cm<></th></sc<>	Sn <cm< th=""><th>Sn<cf< th=""><th>Sn</th><th>Sires of Nucleus</th></cf<></th></cm<>	Sn <cf< th=""><th>Sn</th><th>Sires of Nucleus</th></cf<>	Sn	Sires of Nucleus
Dn <sn< td=""><td>Dn<dn< td=""><td>Sf<sc< td=""><td>Dn<cm< td=""><td>Dn<cf< td=""><td>Dn</td><td>Dams of Nucleus</td></cf<></td></cm<></td></sc<></td></dn<></td></sn<>	Dn <dn< td=""><td>Sf<sc< td=""><td>Dn<cm< td=""><td>Dn<cf< td=""><td>Dn</td><td>Dams of Nucleus</td></cf<></td></cm<></td></sc<></td></dn<>	Sf <sc< td=""><td>Dn<cm< td=""><td>Dn<cf< td=""><td>Dn</td><td>Dams of Nucleus</td></cf<></td></cm<></td></sc<>	Dn <cm< td=""><td>Dn<cf< td=""><td>Dn</td><td>Dams of Nucleus</td></cf<></td></cm<>	Dn <cf< td=""><td>Dn</td><td>Dams of Nucleus</td></cf<>	Dn	Dams of Nucleus
Sc <sn< td=""><td>Sc<dn< td=""><td>Sc<sc< td=""><td>Sc<cm< td=""><td>Sc<cf< td=""><td>Sc</td><td>Stud born males to sire commercial</td></cf<></td></cm<></td></sc<></td></dn<></td></sn<>	Sc <dn< td=""><td>Sc<sc< td=""><td>Sc<cm< td=""><td>Sc<cf< td=""><td>Sc</td><td>Stud born males to sire commercial</td></cf<></td></cm<></td></sc<></td></dn<>	Sc <sc< td=""><td>Sc<cm< td=""><td>Sc<cf< td=""><td>Sc</td><td>Stud born males to sire commercial</td></cf<></td></cm<></td></sc<>	Sc <cm< td=""><td>Sc<cf< td=""><td>Sc</td><td>Stud born males to sire commercial</td></cf<></td></cm<>	Sc <cf< td=""><td>Sc</td><td>Stud born males to sire commercial</td></cf<>	Sc	Stud born males to sire commercial
Cm <sn< td=""><td>Cm<dn< td=""><td>Cm<sc< td=""><td>Cm<cm< td=""><td>Cm<cf< td=""><td>Cm</td><td>Commercial born males</td></cf<></td></cm<></td></sc<></td></dn<></td></sn<>	Cm <dn< td=""><td>Cm<sc< td=""><td>Cm<cm< td=""><td>Cm<cf< td=""><td>Cm</td><td>Commercial born males</td></cf<></td></cm<></td></sc<></td></dn<>	Cm <sc< td=""><td>Cm<cm< td=""><td>Cm<cf< td=""><td>Cm</td><td>Commercial born males</td></cf<></td></cm<></td></sc<>	Cm <cm< td=""><td>Cm<cf< td=""><td>Cm</td><td>Commercial born males</td></cf<></td></cm<>	Cm <cf< td=""><td>Cm</td><td>Commercial born males</td></cf<>	Cm	Commercial born males
Cf <sn< td=""><td>Cf<dn< td=""><td>Cf<sc< td=""><td>Cf<cm< td=""><td>Cf<cf< td=""><td>Cf</td><td>Commercial born females</td></cf<></td></cm<></td></sc<></td></dn<></td></sn<>	Cf <dn< td=""><td>Cf<sc< td=""><td>Cf<cm< td=""><td>Cf<cf< td=""><td>Cf</td><td>Commercial born females</td></cf<></td></cm<></td></sc<></td></dn<>	Cf <sc< td=""><td>Cf<cm< td=""><td>Cf<cf< td=""><td>Cf</td><td>Commercial born females</td></cf<></td></cm<></td></sc<>	Cf <cm< td=""><td>Cf<cf< td=""><td>Cf</td><td>Commercial born females</td></cf<></td></cm<>	Cf <cf< td=""><td>Cf</td><td>Commercial born females</td></cf<>	Cf	Commercial born females

Donors of genes

- R = a matrix defining gene transmission of some superiority (or particular allele)
- Q= a matrix describing aging
- P = matrix describing transmission of genes

$$- P=R+Q$$

$$\mathbf{m}_{\mathsf{t}} = \mathsf{P} \; \mathbf{m}_{\mathsf{t}-1} + \mathsf{R} \mathbf{n}_{\mathsf{t}-1}$$

- m vector of allele frequency in each age class
- n vector to describe inserting allele or superiority

g1	g2	g3	g4	g5	g6	g7	g8	g9	g10	g11	g12	g13	g14	g15	g16	g17	g18	g19	g20	g21	g22	g23	g24	g25
0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699	0.20445	0.196265
1	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699	0.20445
0	1	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699
0	0	1	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315
0	0	0	1	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477
0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699	0.20445	0.196265
0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699	0.20445
0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699
0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315
0	0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477
0	0	0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962
0	0	0	0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324
0	0	0	0	0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718
0	0	0	0	0	0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849
0	0	0	0	0	0	0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805
0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699	0.20445	0.196265
0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699	0.20445
0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315	0.194699
0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477	0.206315
0	0	0	0	0	0.5	0	0.333333	0.083333	0.305556	0.111111	0.273148	0.138889	0.251543	0.156636	0.236368	0.169496	0.225609	0.178498	0.21805	0.184849	0.212718	0.189324	0.208962	0.192477
0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424	0.185905	0.206188	0.190297	0.204567	0.193304	0.203333	0.195378
0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424	0.185905	0.206188	0.190297	0.204567	0.193304	0.203333
0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424	0.185905	0.206188	0.190297	0.204567	0.193304
0	0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424	0.185905	0.206188	0.190297	0.204567
0	0	0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424	0.185905	0.206188	0.190297
0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424	0.185905	0.206188	0.190297	0.204567	0.193304	0.203333	0.195378
0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424	0.185905	0.206188	0.190297	0.204567	0.193304	0.203333
0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424	0.185905	0.206188	0.190297	0.204567	0.193304
0	0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424	0.185905	0.206188	0.190297	0.204567
0	0	0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424	0.185905	0.206188	0.190297
0	0	0	0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424	0.185905	0.206188
0	0	0	0	0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424	0.185905
0	0	0	0	0	0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479	0.208424
0	0	0	0	0	0	0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072	0.179479
0	0	0	0	0	0	0	0	0	0	0	0	0.25	0	0.208333	0.083333	0.229167	0.104167	0.22338	0.138889	0.218557	0.156057	0.214989	0.170332	0.211072

Allele frequency in the limit, from on 'insertion' of superiority (or an allele) = $1/(L_m + L_f)$

Geneflow mainly useful for initial part of an action, otherwise can use Rendel and Robertson

Cumulative Discounted Expressions CDE

Value (V) in year t is worth now V.c where $c=1/(1+d)^t$

d = discount rate

c = discount factor

Expression in age class i in year t is $m(i)_t = E_{it}$

Net Present Value of Sum of expression over 25 years

$$CDE = \sum_{t=1}^{25} \sum_{i=1}^{nac} E_{it} c_t$$

(allele) frequency of one unit of superiority as expressed in commercial flock

Discount rate	CDE flock rams	CDE stud rams
0	0.99	3.93
0.05	0.78	1.96
0.08	0.68	1.37

(allele) frequency of one unit of superiority as expressed in commercial flock

Discount rate	CDE flock rams	CDE stud rams
0	0.99	3.93
0.05	0.78	1.96
0.08	0.68	1.37

Value of selecting Stud Rams and Flock Rams

Value of a superior ram

= Selection Difference * Nr.Progeny * expression per progeny

Flock Ram

CDE

Stud Ram

Flock structure

	Nr Sheep Commerc	ial Flock 12,000	0
	Comm Da	ams/sire 50	
	Comm Sire replac	em. rate 0.5	
	Comm Wean	ing rate 1	
Nrı	new rams needed for comm	flock/yr 120	
Nrli	fetime Progeny per comme	rcial sire 100	100 prog/flock ram
Pro	op. Nucl.Males sold as breed	ding ram 0.2000	0
	Nucleus wear	ning rate 1	
	Nuleus da	ams/sire 40	
	Nr Nucleus	females 1200	
	Nr. Nucleus born progeny te	ested/yr 600	
	Nr. of Nucleus sires ne	eded/yr 30	400prog/stud ram

Some real data

Commerical Flock	Nr Ch	on Commorcial Flack	24 290	
Commencar Flock	INI SHE	eep Commercial Flock	34,280	
		Comm Dams/sire	40	
	Com	nm Sire replacem. rate	0.33333	
		Comm Weaning rate	1.1	
	Nr new rams nee	ded for comm flock/yr	2 86	
	Nr lifetime Proger	ny per commercial sire		132
Stud Flock	Prop. Stud.Male:	s sold as breeding ram	40%	
		Stud weaning rate	1.28	
		Stud dams/sire	20	
	l l	Nr stud breeding ewes	1116	
		Nr. Of stud sires	56	
	Nr of fl	ock rams sold per year	2 86	
	Nr of commercial ra	ms sold per Stud male	5.12	
Nr of comm	ercial progeny receiving go	enes from a stud male		676

Value of selecting Stud Rams and Flock Rams

Value of a superior ram

Selection differential within the cohort: "The result of one round of selection"

Breeding performance					
	SD of b	reeding Objective	10.82		
	Male S	election intensity	2.06		
	Female S	election intensity	0.2		
Male	Selection accuracy v	without genomics	0.358	increase	
M	ale Selection accura	cy with genomics	0.432	21%	
	Female 9	Selection accuracy	0.358		
	Generation In	terval Stud males	1.53		
	Gneration Inte	erval stud females	2.97		
approximaley	1.90	CDE stud sires	1.90		
		CDE flock sires	0.6		
			no GS	GS	
		Sire superiority	7.979534	9.628934	
		Dam Superiority	0.774712	0.774712	increase
		Rate of gain/year	1.945	2.312	19%

Comparing geneflow with dG/year method

group	int	acc	Sup	L	dG/year
sires	2.1543	0.53	10.27622255	1.0	3.233294535
dams	0.7979	0.37	2.656955587	3.0	

		Calculations	base	ed on dG/ye	ear		calculations	s based on GF	LOW				
								sire	dam				
		dG/gen						selection	selection				
		3.23				dG/yr	superiority	10.2762	2.6570			GFI	LOW
year	disc fact	genetic mean		n benefit	cost	disc retruns		Expr_SS	Expr_DS	cum	benefit	di	sc retruns
1	1.000		\$	-	\$0			0.000	0.000	\$	-	\$	-
2	0.935	0	\$	-	\$0			0.000	0.000	\$	-	\$	-
3	0.873	0	\$	-	\$0	\$0		0.119	0.000	\$	14,694	\$	12,834
4	0.816	0	\$	-	\$0			0.174	0.048	\$	37,679	\$	30,757
5	0.763		\$	-	\$0			0.131	0.105	\$	57,158	\$	43,606
6	0.713		\$	38,800	\$0	\$27,664		0.157	0.128	\$	80,610	\$	57,474
7	0.666	\$6.47	\$	77,599	\$0	\$51,708		0.185	0.149	\$	108,155	\$	72,068
8	0.623	\$9.70	\$	116,399	\$0	\$72,487		0.196	0.165	\$	137,537	\$	85,651
9	0.582	\$12.93	\$	155,198	\$0	\$90,327		0.197	0.178	\$	167,514	\$	97,494
10	0.544	\$16.17	\$	193,998	\$0	\$105,522		0.206	0.190	\$	198,976	\$	108,230
11	0.508	\$19.40	\$	232,797	\$0	\$118,342		0.213	0.199	\$	231,559	\$	117,713
12	0.475	\$22.63	\$	271,597	\$0	\$129,034		0.217	0.206	\$	264,833	\$	125,820
13	0.444	\$25.87	\$	310,396	\$0	\$137,820		0.220	0.211	\$	298,645	\$	132,602
14	0.415	\$29.10	\$	349,196	\$0	\$144,904		0.223	0.216	\$	332,996	\$	138,182
15	0.388	\$32.33	\$	387,995	\$0	\$150,471		0.225	0.220	\$	367,735	\$	142,614
16	0.362	\$35.57	\$	426,795	\$0	\$154,690		0.227	0.222	\$	402,772	\$	145,983
17	0.339	\$38.80	\$	465,594	\$0	\$157,713		0.228	0.225	\$	438,053	\$	148,384
18	0.317	\$42.03	\$	504,394	\$0	\$159,678		0.229	0.226	\$	473,539	\$	149,910
19	0.296	\$45.27	\$	543,193	\$0	\$160,711		0.230	0.228	\$	509,179	\$	150,648
20	0.277	\$48.50	\$	581,993	\$0	\$160,926		0.231	0.229	\$	544,943	\$	150,681
21	0.258	\$51.73	\$	620,793	\$0	\$160,425		0.231	0.230	\$	580,808	\$	150,092
22	0.242	\$54.97	\$	659,592	\$0	\$159,300		0.232	0.231	\$	616,754	\$	148,954
23	0.226	\$58.20	\$	698,392	\$0	\$157,636		0.232	0.231	\$	652,763	\$	147,337
24	0.211	\$61.43	\$	737,191	\$0	\$155,508		0.232	0.232	\$	688,823	\$	145,305
25	0.197	\$64.67	\$	775,991	\$0	\$152,984		0.233	0.232	\$	724,923	\$	142,916
					NPV	\$2,607,849				NΡ\	/	\$	2,645,255

Expressed in 12,000 ewes

20 nucleus sires

i.e. 600 per sire

Value of selecting Stud Rams and Flock Rams

Value of a superior ram

= Selection Difference * Nr.Progeny * expression per progeny

Flock Ram

With Genomics

Stud Ram

400

1.35

With Genomics

+3.4

= \$ 1,836 +216

+11

Cost benefit analysis

• Extra benefit 120 * \$11 + 30* \$216 = \$7,800

• If all young stud males tested: 600

• Break even: \$13.00 per DNA test

Merino: Breakeven (\$) for testing

Proportion tested	100)%	20	%
Age at first progeny	1yo	2yo	1yo	2yo
Breakeven (\$/test)	196	83	981	415
 assumes 40% males sold as ra 	ams			

% males born sold as rams	40%		20%	
Age at first progeny	1yo	2yo	1yo	2yo
Breakeven (\$/test)	196	83	98	41

assumes 100% of males tested

Breakeven cost and proportion genotyped (no loss assumed!)

What increase in price received per ram sold do you need to cover costs?

- total cost of genotyping/total nr of rams sold
 - 444 ewes @ 0.9 weaning rate = 200 ram lambs
 - Assume \$50 genotype cost
 - Doesn't account for collection costs etc.

Total ram lambs weaned	200	200	200	200
% tested	20	100	20	100
nr tested (for use in nucleus)	40	200	40	200
Total test cost	2000	10000	2000	10000
% sold as flock rams	20	20	40	40
nr rams sold	40	40	80	80
Cost of test per ram sold	\$50	\$250	\$25	\$125

2 stage selection

How many rams to genotype?

30% genotyped, 5% selected, correlation ASBV to RBV of 0.7

30% genotyped, 5% selected with very high correlation ASBV to RBV

Very low proportion tested

0.01 ASBV, 0.90 GBV, r = 0.9

Low ASBV acc% & high GBV

ASBV0	0.20
GBV	0.50
RBV	0.52
correlation ASBV0-RBV	0.38
prop genotyped	0.3
prop selected final	0.05
Selection Differential	0.96
SelDiff 100% genotyping	1.08
SelDiff 0% genotyping	0.40
% of possible additional gain	82%

Low ASBVO acc% & high GBV

% gain compared with 100% genotyping ASBV 0.34, GBV 0.39, RBV = 0.50, r = 0.7

At high(ish) correlation between ASBV and RBV only need to genotype ~20%

% gain compared with 100% genotyping ASBV 0.10, GBV = 0.39, RBV 0.40, r = 0.25

summary

- Can calculate additional gain on a per ram basis, assuming returns in commercial progeny
- Those figures depend on
 - Additional accuracy
 - Age structure
 - Flock parameters such as weaning rate, mating rate, prop. Sold
 - Can have strategies to save costs, e.g. test top 50%
 - Sonja will show many more examples