

UNIVERSIDAD POLITÉCNICA DE MADRID E.U.I.T. Industrial

Titulación: Grado en Ingeniería Electrónica y Automática

Área: Ingeniería de Sistemas y Automática Departamento de Electrónica Automática e Informática Industrial Escuela Universitaria de Ingeniería Técnica Industrial

Robótica

Tema 4. Modelo Cinemático Directo

FECHA:

Profesor: M. Hernando & C. García

Resumen

Se pretende obtener la descripción matemática de la localización espacial del robot conociendo las posiciones articulares del mismo.

Para ello se empleará una metodología cerrada conocida como Método de Denavit-Hartenberg.

FECHA:

Profesor: M. Hernando & C. García

Objetivos

- 1. Conocer los métodos matemáticos para la obtención del modelo cinemático directo de un robot seria.
- 2. Adquirir destreza en la obtención de dicho modelo.

FECHA:

Profesor: M. Hernando & C. García

Contenido

- 4.1. Justificación
- 4.2. El problema cinemático directo
 - 4.2.1 Método Geométrico
 - 4.2.2 Matrices de Transformación homogénea
- 4.3. Método de Denavit Hartenberg (DH)
 - 4.3. 1 Ejemplos

Bibliografía recomendada:

- [1] Robótica: Control, Visión, Detección e Inteligencia. Fu, Gonzales y Lee. Mc-Grow Hill.
- [2] Fundamentos de Robótica. Barrientos, Peñín, Balaguer, Aracil.
- [3] Robótica: Manipuladores y Robots Móviles. A. Olleros. Ed. Macombo

FECHA:

Profesor: M. Hernando & C. García

4.1. Justificación

En este tema se aplicarán las herramientas matemáticas anteriores al área de la robótica. Tenemos dos objetivos:

Objetivo 1

Obtener un modelo geométrico de la estructura que permita relacionar los grados de libertad (las variables/coordenadas generalizadas) con las coordenadas cartesianas de todos y cada uno de los puntos que constituyen el robot.

Cinemática directa

Solución única para la mayor parte de los robots seriales

Objetivo 2

Posicionar al robot. Esto es dadas las posiciones cartesianas como valores de entrada hallar los valores de las coordenadas generalizadas.

Cinemática inversa

Puede haber 0, 1, 2...o infinitas soluciones.

FECHA:

Profesor: M. Hernando & C. García

4.1. Justificación

Definición

La **cinemática** del robot estudia el movimiento del mismo con respecto a un sistema de referencia.

La cinemática se interesa por la descripción analítica del movimiento espacial del robot como una función del tiempo, y en particular por las relaciones entre la posición y orientación del extremo final del robot y los valores que toman sus coordenadas articulares.

FECHA:

Profesor: M. Hernando & C. García

Contenido

- 4.1. Justificación
- 4.2. El problema cinemático directo
 - 4.2.1 Método Geométrico
 - 4.2.2 Matrices de Transformación homogénea
- 4.3. Método de Denavit Hartenberg (DH)
 - 4.3. 1 Ejemplos

Bibliografía recomendada:

- [1] Robótica: Control, Visión, Detección e Inteligencia. Fu, Gonzales y Lee. Mc-Grow Hill.
- [2] Fundamentos de Robótica. Barrientos, Peñín, Balaguer, Aracil.
- [3] Robótica: Manipuladores y Robots Móviles. A. Olleros. Ed. Macombo

FECHA:

Profesor: M. Hernando & C. García

4.2. El Problema Cinemático Directo

La cinemática directa consiste en obtener la posición en el espacio de la estructura a partir de los valores de las coordenadas generalizadas (q).

Éstas están asociadas a las articulaciones y definen sus "propiedades" de movimiento, por lo que para las articulaciones de revolución la variable generalizada será un ángulo, y para las prismáticas un desp

FECHA:

Profesor: M. Hernando & C. García

4.2. El Problema Cinemático Directo

4.2.1 Método Geométrico

Obtenemos la posición y orientación del extremo del robot apoyándonos en las relaciones geométricas:

- No es un método sistemático.
- Es usado cuando tenemos pocos grados de libertad.

FECHA:

Profesor: M. Hernando & C. García

4.2. El Problema Cinemático Directo

4.2.2 Matrices de Transformación homogénea

- A cada eslabón se le asocia un sistema de referencia solidario.
- Es posible representar las traslaciones y rotaciones relativas entre los distintos eslabones.
- La matriz ⁱ⁻¹**A**_i representa la posición y orientación relativa entre los sistemas asociados a dos eslabones consecutivos del robot.
- Representación total o parcial de la cadena cinemática del robot:

$${}^{0}\mathbf{A}_{3} = {}^{0}\mathbf{A}_{1} {}^{1}\mathbf{A}_{2} {}^{2}\mathbf{A}_{3}$$

$$\mathbf{T} = {}^{0}\mathbf{A}_{6} = {}^{0}\mathbf{A}_{1} {}^{1}\mathbf{A}_{2} {}^{2}\mathbf{A}_{3} {}^{3}\mathbf{A}_{4} {}^{4}\mathbf{A}_{5} {}^{5}\mathbf{A}_{6}$$

 Existen métodos sistemáticos para situar los sistemas de coordenadas asociados a cada eslabón y obtener la cadena cinemática del robot. Método de **Denavit-Hartenberg** (D-H)

FECHA:

Profesor: M. Hernando & C. García

Contenido

- 4.1. Justificación
- 4.2. El problema cinemático directo
 - 4.2.1 Método Geométrico
 - 4.2.2 Matrices de Transformación homogénea
- 4.3. Método de Denavit Hartenberg (DH)
 - 4.3. 1 Ejemplos

Bibliografía recomendada:

- [1] Robótica: Control, Visión, Detección e Inteligencia. Fu, Gonzales y Lee. Mc-Grow Hill.
- [2] Fundamentos de Robótica. Barrientos, Peñín, Balaguer, Aracil.
- [3] Robótica: Manipuladores y Robots Móviles. A. Olleros. Ed. Macombo

FECHA:

Profesor: M. Hernando & C. García

4.3. Método de Denavit - Hartenberg

- Permite el paso de un eslabón al siguiente mediante 4 transformaciones básicas, que dependen exclusivamente de las características constructivas del robot.
- Las transformaciones básicas que relacionan el sistema de referencia del elemento *i* con el sistema del elemento son:
- 1. Rotación θ_i alrededor del eje z_{i-1}
- 2. Traslación d_i a lo largo del eje z_{i-1}
- 3. Traslación a_i a lo largo del eje x_i
- 4. Rotación α_i alrededor del eje x_i

$$^{i-1}\mathbf{A}_i = \mathbf{T}(z, \theta_i)\mathbf{T}(0, 0, d_i)\mathbf{T}(a_i, 0, 0)\mathbf{T}(x, \alpha_i)$$

$$^{i-1}\mathbf{A}_{i} = \begin{bmatrix} c\theta_{i} & -c\alpha_{i}s\theta_{i} & s\alpha_{i}s\theta_{i} & a_{i}c\theta_{i} \\ s\theta_{i} & c\alpha_{i}c\theta_{i} & -s\alpha_{i}c\theta_{i} & a_{i}s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

FECHA:

Profesor: M. Hernando & C. García

4.3. Método de Denavit - Hartenberg

- 1) Numerar los eslabones comenzando con 1 (primer eslabón móvil de la cadena) y acabando con n (último eslabón móvil). Se numerará como eslabón 0 a la base fija del robot.
- 2) Numerar cada articulación comenzando por 1 (la correspondiente al primer grado de libertad) y acabando en *n*.
- 3) Localizar el eje de cada articulación. Si ésta es rotativa, el eje será su propio eje de giro. Si es prismática, será el eje a lo largo del cual se produce el desplazamiento.
- 4) Para *i* de 0 a *n-1* situar el eje z_i sobre el eje de la articulación *i+1*.
- 5) Situar el origen del sistema de la base {**S**₀} en cualquier punto del eje z₀. Los ejes x₀ e y₀ se situarán de modo que formen un sistema dextrógiro con z₀.
- 6) Para *i* de 1 a *n*-1, situar el sistema {**S**_i} (solidario al eslabón *i*) en la intersección del eje z_i con la línea normal común a z_{i-1} y z_i. Si ambos ejes se cortasen se situaría {**S**_i} en el punto de corte. Si fuesen paralelos {**S**_i} se situaría en la articulación *i*+1.

FECHA:

Profesor: M. Hernando & C. García

4.3. Método de Denavit - Hartenberg

- 7) Para i de 1 a n-1, situar x_i en la línea normal común a z_{i-1} y z_i .
- 8) Para i de 1 a n-1, situar y_i de modo que forme un sistema dextrógiro con x_i y z_i .
- 9) Situar el sistema $\{S_n\}$ en el extremo del robot de modo que z_n coincida con la dirección de z_{n-1} y x_n sea normal a z_{n-1} y z_n .
- 10) Obtener θ_i como el ángulo que hay que girar en torno a z_{i-1} para que x_{i-1} y x_i queden paralelos.
- 11) Obtener d_i como la distancia, medida a lo largo de z_{i-1} , que habría que desplazar $\{S_{i-1}\}$ para que x_i y x_{i-1} quedasen alineados.
- 12) Obtener a_i como la distancia medida a lo largo de x_i , que ahora coincidiría con x_{i-1} , que habría que desplazar el nuevo $\{S_{i-1}\}$ para que su origen coincidiese con $\{S_i\}$.
- 13) Obtener α_i como el ángulo que habría que girar en torno a x_i , que ahora coincidiría con x_{i-1} , para que el nuevo $\{S_{i-1}\}$ coincidiese totalmente con $\{S_i\}$.

FECHA:

Profesor: M. Hernando & C. García

4.3. Método de Denavit - Hartenberg

14) Obtener las matrices de transformación i-1 A_i.

15) Obtener la matriz de transformación que relaciona el sistema de la base con el del extremo del robot:

$$T = {}^{0}A_{1}{}^{1}A_{2} \dots {}^{n-1}A_{n}$$

16) La matriz **T** define la orientación (submatriz de rotación) y posición (submatriz de traslación) del extremo referidas a la base en función de las *n* coordenadas articulares.

FECHA:

Profesor: M. Hernando & C. García

Contenido

- 4.1. Justificación
- 4.2. El problema cinemático directo
 - 4.2.1 Método Geométrico
 - 4.2.2 Matrices de Transformación homogénea
- 4.3. Método de Denvit Hartenberg (DH)
 - 4.3. 1 Ejemplos

Bibliografía recomendada:

- [1] Robótica: Control, Visión, Detección e Inteligencia. Fu, Gonzales y Lee. Mc-Grow Hill.
- [2] Fundamentos de Robótica. Barrientos, Peñín, Balaguer, Aracil.
- [3] Robótica: Manipuladores y Robots Móviles. A. Olleros. Ed. Macombo

FECHA:

Profesor: M. Hernando & C. García

DH-1) Numerar los eslabones comenzando con 1 (primer eslabón móvil de la cadena) y acabando con n (último eslabón móvil). Se numerará como eslabón 0 a la base fija del robot.

FECHA:

Profesor: M. Hernando & C. García

DH-2) Numerar cada articulación comenzando por 1 (la correspondiente al primer grado de libertad) y acabando en *n*.

FECHA:

Profesor: M. Hernando & C. García

DH-3) Localizar el eje de cada articulación. Si ésta es rotativa, el eje será su propio eje de giro. Si es prismática, será el eje a lo largo del cual se produce el desplazamiento

FECHA:

Profesor: M. Hernando & C. García

Profesor: M. Hernando & C. García

DH-5) Situar el origen del sistema de la base $\{S_0\}$ en cualquier punto del eje z_0 . Los ejes x_0 e y_0 se situarán de modo que formen un sistema dextrógiro con z_0 .

FECHA:

Profesor: M. Hernando & C. García

DH-6) Para i de 1 a n-1, situar el sistema $\{S_i\}$ (solidario al eslabón i) en la intersección del eje z_i con la línea normal común a z_{i-1} y z_i . Si ambos ejes se cortasen se situaría $\{S_i\}$ en el punto de corte. Si fuesen paralelos $\{S_i\}$ se situaría en la articulación i+1.

FECHA:

Profesor: M. Hernando & C. García

DH-7) Para *i* de 1 a *n-1*, situar x_i en la línea normal común a z_{i-1} y z_{i-1}

FECHA:

Profesor: M. Hernando & C. García

DH-8) Para i de 1 a n-1, situar y_i de modo que forme un sistema dextrógiro con x_i y z_i .

FECHA:

Profesor: M. Hernando & C. García

DH-9) Situar el sistema $\{S_n\}$ en el extremo del robot de modo que z_n coincida con la dirección de z_{n-1} y x_n sea normal a z_{n-1} y z_n .

FECHA:

FECHA:

Profesor: M. Hernando & C. García

DH-11) Obtener d_i como la distancia, medida a lo largo de z_{i-1} , que habría que desplazar $\{S_{i-1}\}$ para que x_i y x_{i-1} quedasen alineados.

DH-12) Obtener a_i como la distancia monta con x_{i-1} , que habría que desplazar el norma $\{S_i\}$.

ASIGNATURA: Robótica
TEMA: Modelo Cinemático

FECHA:

Profesor: M. Hernando & C. García

DH-12) Obtener a_i como la distancia medida a lo largo de x_i , que ahora coincidiría con x_{i-1} , que habría que desplazar el nuevo $\{S_{i-1}\}$ para que su origen coincidiese con

FECHA:

Profesor: M. Hernando & C. García

DH-13) Obtener α_i como el ángulo que habría que girar en torno a x_i , que ahora coincidiría con x_{i-1} , para que el nuevo $\{S_{i-1}\}$ coincidiese totalmente con $\{S_i\}$.

FECHA:

Profesor: M. Hernando & C. García

DH-14) Obtener las matrices de transformación i-1A_i.

$$^{i-1}A_{i} = \begin{bmatrix} C\theta_{i} & -C\alpha_{i}S\theta_{i} & S\alpha_{i}S\theta_{i} & a_{i}C\theta_{i} \\ S\theta_{i} & C\alpha_{i}C\theta_{i} & -S\alpha_{i}C\theta_{i} & a_{i}S\theta_{i} \\ 0 & S\alpha_{i} & C\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Artic.	θ	d	a	α
1	q_1	l_1	0	0
2	90	d_2	0	90
3	0	d_3	0	0
4	q_4	l_4	0	0

$${}^{0}A_{1} = \begin{bmatrix} Cq_{1} & -Sq_{1} & 0 & 0 \\ Sq_{1} & Cq_{1} & 0 & 0 \\ 0 & 0 & 1 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}A_{2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{3}A_{4} = \begin{bmatrix} Cq_{4} & -Sq_{4} & 0 & 0 \\ Sq_{4} & Cq_{4} & 0 & 0 \\ 0 & 0 & 1 & l_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

FECHA:

Profesor: M. Hernando & C. García

DH-15) Obtener la matriz de transformación que relaciona el sistema de la base con el del extremo del robot: $T = {}^{0}A_{1}{}^{1}A_{2} \dots {}^{n-1}A_{n}$

$$^{i-1}A_i = \begin{bmatrix} C\theta_i & -C\alpha_i S\theta_i & S\alpha_i S\theta_i & a_i C\theta_i \\ S\theta_i & C\alpha_i C\theta_i & -S\alpha_i C\theta_i & a_i S\theta_i \\ 0 & S\alpha_i & C\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Artic.	θ	d	а	α
1	q_1	l_1	0	0
2	90	d_2	0	90
3	0	d_3	0	0
4	q_4	l_4	0	0

$${}^{0}A_{1} = \begin{bmatrix} Cq_{1} & -Sq_{1} & 0 & 0 \\ Sq_{1} & Cq_{1} & 0 & 0 \\ 0 & 0 & 1 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}A_{2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}A_{1} = \begin{bmatrix} Cq_{1} & -Sq_{1} & 0 & 0 \\ Sq_{1} & Cq_{1} & 0 & 0 \\ 0 & 0 & 1 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}^{1}A_{2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}^{2}A_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{3}A_{4} = \begin{bmatrix} Cq_{4} & -Sq_{4} & 0 & 0 \\ Sq_{4} & Cq_{4} & 0 & 0 \\ 0 & 0 & 1 & l_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T = {}^{0}A_{1}{}^{1}A_{2}{}^{2}A_{3}{}^{3}A_{4}$$

$$T = \begin{bmatrix} -Sq_1Cq_4 & Sq_1Sq_4 & Cq_1 & Cq_1(d_3+l_4) \\ Cq_1Cq_4 & Cq_1Sq_4 & Sq_1 & Sq_1(d_3+l_4) \\ Sq_4 & Cq_4 & 1 & d_2+l_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

FECHA:

Profesor: M. Hernando & C. García

DH-1) Numerar los eslabones comenzando con 1 (primer eslabón móvil de la cadena) y acabando con n (último eslabón móvil). Se numerará como eslabón 0 a la base fija del robot.

DH-2) Numerar cada articulación comenzando por 1 (la correspondiente al primer grado de libertad) y acabando en *n*.

DH-3) Localizar el eje de cada articulación. Si ésta es rotativa, el eje será su propio eje de giro. Si es prismática, será el eje a lo largo del cual se produce el desplazamiento

FECHA:

Profesor: M. Hernando & C. García

DH-4) Para i de 0 a n-1 situar el eje z_i sobre el eje de la articulación i+1.

DH-5) Situar el origen del sistema de la base $\{S_0\}$ en cualquier punto del eje z_0 . Los ejes x_0 e y_0 se situarán de modo que formen un sistema dextrógiro con z_0 .

DH-6) Para i de 1 a n-1, situar el sistema $\{S_i\}$ (solidario al eslabón i) en la intersección del eje z_i con la línea normal común a z_{i-1} y z_i . Si ambos ejes se cortasen se situaría $\{S_i\}$ en el punto de corte. Si fuesen paralelos $\{S_i\}$ se situaría en la articulación i+1.

FECHA:

Profesor: M. Hernando & C. García

DH-7) Para i de 1 a n-1, situar x_i en la línea normal común a z_{i-1} y z_i .

DH-8) Para i de 1 a n-1, situar y_i de modo que forme un sistema dextrógiro con x_i y z_i .

DH-9) Situar el sistema $\{S_n\}$ en el extremo del robot de modo que z_n coincida con la dirección de z_{n-1} y x_n sea normal a z_{n-1} y z_n .

FECHA:

Profesor: M. Hernando & C. García

DH-10) Obtener θ_i como el ángulo que hay que girar en torno a z_{i-1} para que x_{i-1} y x_i queden paralelos.

DH-11) Obtener d_i como la distancia, medida a lo largo de z_{i-1} , que habría que desplazar $\{S_{i-1}\}$ para que x_i y x_{i-1} quedasen alineados.

DH-12) Obtener a_i como la distancia medida a lo largo de x_i , que ahora coincidiría con x_{i-1} , que habría que desplazar el nuevo $\{S_{i-1}\}$ para que su origen coincidiese con $\{S_i\}$.

DH-13) Obtener α_i como el ángulo que habría que girar en torno a x_i , que ahora coincidiría cor x_{i-1} , para que el nuevo $\{S_{i-1}\}$ coincidiese totalmente con $\{S_i\}$.

