The University of Manchester

Computer Graphics and Image Processing

Lecture B4 Region Processing (2)

MANCHESTER

 n bands of input data
 - Within and beyond visible spectrum

 3 bands of output data
 - An input band
 - Combine sets of input
 - Ratio of input bands

 Calibration with ground truth suggests what mappings are useful

The Universite Mancheste

First Derivative, Gradient Edge Detection

- If an edge is a discontinuity
- Can detect it by differencing
- Convolve with appropriate templates
 - Suggestions?

MANCHESTER

The University of Manchester

Delta X and Delta Y

- Subtract horizontally adjacent pixels Δx
- Subtract vertically adjacent pixels Δy
- Can these be combined to give the correct edge strength?

The University

Roberts Cross Edge Detector

-1	0
0	1

0	-1
1	0

- Simplest edge detector
- Awkward localisation
 - On the joint between the four pixels
- Noise sensitive
 - If one pixel is corrupted, the edge strength is equally corrupted

MANCHESTER 1824

The University

Prewitt/Sobel Edge Detector

-1	-1	-1
0	0	0
1	1	1

-1	0	1
-1	0	1
-1	0	1

The University of Mancheste

Location and Noise

- Location estimate is at the centre pixel
- More robust against noise
 - Averaging of pixels either side of edge location
 - Noise magnitude reduced by $\sqrt{3}$ or $\sqrt{4}$

MANCHESTER

The University of Manchester

Edge Detection

Combine horizontal and vertical edge estimates

$$Mag = \sqrt{h^2 + v^2}$$

$$\vartheta = \tan^{-1} \frac{v}{h}$$

The University of Manchester

Problems

- Images are noise corrupted
 - Edges are noise corrupted
 - problems with detection and localisation
 - Can be improved by smoothing
- Scale
 - What is "local"?
 - Can be investigated by size of smoothing template

MANCHESTER

The University of Manchester

Canny/Deriche Edge Detector

- Require
 - edges to be detected
 - accurate localisation
 - single response to an edge
- Solution
 - Convolve image with Difference of Gaussian (DoG)
 - Template?

The Universion Mancheston

Second Derivative Operators Zero Crossing

- Models HVS
- Can locate edge to subpixel accuracy
- Convolve image with Laplacian of Gaussian (LoG)
 - Template?
- Edge location at crossing of zero axis

MANCHESTER REXAMPLE Results Example Results

Parameter Choices • Width of Gaussian controlled by σ • Large σ - More smoothing before edge detection - Small scale edges are blurred out • What is a good value for σ?

The University of Manchester

Template matching

- Technique to measure similarities hence find things
- Define a template
 - a model of the object to be recognised
- Define a measure of similarity
 - between template and similar sized image region

The University of Mancheste

Aside:

How to measure similarity and why use convolution

Measure <u>dis</u>similarity between image f[i,j] and template g[i,j]

Place template on image and compare corresponding intensities

Need a measure of dissimilarity

$$\max_{[i,j]\in R} |f-g| \qquad \sum_{[i,j]\in R} |f-g| \qquad \sum_{[i,j]\in R} (f-g)^2$$

Last is best....

...easiest to manipulate

MANCHESTER 1824

The University

Expanding

$$\sum_{[i,j]\in R} (f-g)^2 = \sum_{[i,j]\in R} f^2 + \sum_{[i,j]\in R} g^2 - 2 \sum_{[i,j]\in R} fg$$

If f and g fixed (is this reasonable?)

- $\Sigma \mathit{fg}$ a good measure of mismatch

 Σ fg a good measure of match

Compute match between template and image with cross-correlation

$$M[i,j] = \sum_{k=-m}^{k=m} \sum_{l=-n}^{l=n} g[k,l] f[i+k,j+l]$$

Compare this to expression for convolution

The University

g is constant, f varies and so influences M Normalisation

$$C[i,j] = \frac{\sum_{k=-m}^{k=m} \sum_{l=-n}^{l=n} g[k,l] f[i+k,j+l]}{\sqrt{\left(\sum_{k=-m}^{k=m} \sum_{l=-n}^{l=n} f^{2}[i+k,j+l]\right)}}$$

 ${\cal C}$ is maximum where f and g are same. Limitations

- number of templates required
- rotation and size changes
- partial views

Summary • Sections 3.3, 2.4, 5.5, 7.2

