

Régression linéaire

Hypothèses a priori

Variance des

Inverse généralisé

Methodes iterative

MODÉLISATION ET INVERSION EN GÉOPHYSIQUE 5 - Inversion linéaire

Bernard Giroux

(bernard.giroux@ete.inrs.ca)

Institut national de la recherche scientifique Centre Eau Terre Environnement

> Version 1.0.5 Hiver 2019

Régression linéaire

Aperçu

Distan

Moindres-carrés

Existence de la soluti

Hypothèses a prio

Variance de paramètres

Inverse généralisée

ŭ.

Régression linéaire

Aperçu

- La façon la plus courante de résoudre un problème d'inversion linéaire est basée sur la mesure de la distance entre les données observées dobs et les données prédites dpre:
- Cette distance est fonction de l'erreur de prédiction, définie pour une i^e observation par

$$e_i = d_i^{\text{obs}} - d_i^{\text{pre}}. (1)$$

- La méthode des moindres-carrés est l'approche la plus fréquente pour estimer les paramètres du modèle mest;
 - On cherche dans ce cas les paramètres qui donneront l'erreur E la plus faible, où

$$E = \sum_{i=0}^{N-1} e_i^2 = \mathbf{e}^T \mathbf{e}.$$
 (2)

• L'erreur *E* est la *distance euclidienne* au carré du vecteur **e**.

Aperçu

Aperçu

Distance

Evictoreo do la colu

Existence de la solu

Variance des

Inverse généralisée

miretoe generanoe

• L'exemple suivant montre l'ajustement de points par une droite, obtenu par moindres-carrés.

Distance

- La distance euclidienne est une mesure parmi d'autres;
 - On peut par exemple considérer la somme des valeurs absolues. • On utilise *norme* pour désigner une mesure de distance;
 - La norme d'un vecteur est notée ||e||
 - On dénombre :

norme
$$L_1: \|\mathbf{e}\|_1 = \left[\sum_i |e_i|^1\right]$$
 (3)

norme
$$L_2: \|\mathbf{e}\|_2 = \left[\sum_i |e_i|^2\right]^{1/2}$$
 (4)

norme
$$L_n$$
: $\|\mathbf{e}\|_n = \left[\sum_i |e_i|^n\right]^{1/n}$ (5)

• Lorsque $n \to \infty$, seule la valeur la plus élevée a un poids non nul, i.e.

norme
$$L_{\infty}$$
: $\|\mathbf{e}\|_{\infty} = \max_{i} |e_{i}|$ (6)

Aporeu

Distance

Moindres-carrés

Existence de la solut

Variance des

Inverse généralisée

IIIverse generansi

Régression linéaire Aperçu

Distance Moindres-carrés

Existence de la solut

Hypothèses a pr

paramètre

Inverse généralisée

Mathedan itansii

- Le choix d'une norme dépend principalement de l'importance donnée aux données aberrantes;
- Une norme plus élevée donne un poids plus élevé aux erreur de prédiction e_i plus élevées.
- La norme *L*₂ implique que les données sont distribuées selon une loi normale;
 - Une distribution normale est assez peu étalée.

Régression linéaire

Distance

Moindres-carrés

Existence de la soluti

Variance des

Inverse généralisée

niverse generanse

 Si les données contiennent quelques points aberrants, la distribution sera plus étalée et les résultats peuvent être complètement erronés.

Moindres-carrés pour une droite

Moindres-carrés

• Une droite est définie par une ordonnée à l'origine (m_0) et par une pente (m_1) , i.e.

$$d_i = m_0 + m_1 z_i. (7)$$

- Il y a donc deux paramètres du modèle, *M*=2.
- Typiquement, on dispose de beaucoup plus que deux points, i.e. N > M.
- À moins que les points ne s'alignent parfaitement, on ne peut trouver une droite qui passe par tout les points;
- On a affaire à un problème *surdéterminé*, il n'y a pas de solution pour laquelle $\mathbf{e} = 0$.

Moindres-carrés pour une droite

d'approximation est défini par

• On cherche alors une solution approximative, où le niveau

 $=2Nm_0+2m_1\sum_{i=0}^{N-1}z_i-2\sum_{i=0}^{N-1}d_i=0$

 $=2m_0\sum_{i=0}^{N-1}z_i+2m_1\sum_{i=0}^{N-1}z_i^2-2\sum_{i=0}^{N-1}z_id_i=0.$

 $\frac{\partial E}{\partial m_1} = \frac{\partial}{\partial m_1} \sum_{i=0}^{N-1} (d_i - m_0 - m_1 z_i)^2$

 $E = \mathbf{e}^T \mathbf{e} = \sum_{i=0}^{N-1} (d_i - m_0 - m_1 z_i)^2.$

(8)

(9)

(10)

(11)

(12)

Moindres-carrés

 $\frac{\partial E}{\partial m_0} = \frac{\partial}{\partial m_0} \sum_{i=0}^{N-1} (d_i - m_0 - m_1 z_i)^2$

en égalant les dérivées de *E* à zéro et en solutionnant :

• On cherche donc le minimum de $E(m_0, m_1)$, qui est obtenu

Régression linéaire Aperçu Distance

Moindres-carrés

Existence de la solu

Variance d

Inverse généralisé

---- 8-----

- On peut généraliser les moindres-carrés à n'importe quel système linéaire;
- L'erreur vaut alors

$$E = \mathbf{e}^{T} \mathbf{e} = (\mathbf{d} - \mathbf{G}\mathbf{m})^{T} (\mathbf{d} - \mathbf{G}\mathbf{m}) =$$

$$\sum_{i=0}^{N-1} \left[d_{i} - \sum_{j=0}^{M-1} G_{ij} m_{j} \right] \left[d_{i} - \sum_{k=0}^{M-1} G_{ik} m_{k} \right]$$
(13)

• En multipliant les termes et changeant l'ordre des sommations, on trouve

$$E = \underbrace{\sum_{j=0}^{M-1} \sum_{k=0}^{M-1} m_j m_k \sum_{i=0}^{N-1} G_{ij} G_{ik}}_{T_1} - 2 \underbrace{\sum_{j=0}^{M-1} m_j \sum_{i=0}^{N-1} G_{ij} d_i}_{T_2} + \underbrace{\sum_{i=0}^{N-1} d_i d_i}_{T_3}$$
(14)

Regression lineaire Aperçu Distance

Moindres-carrés Existence de la solu

vpothèses a prie

Variance d paramètre

Inverse généralisée

- Les dérivées sont maintenant calculées
- Pour le 1^e terme, on a

$$\frac{\partial T_1}{\partial m_q} = \sum_{j=0}^{M-1} \sum_{k=0}^{M-1} \left[\delta_{jq} m_k + m_j \delta_{kq} \right] \sum_{i=0}^{M-1} G_{ij} G_{ik}$$
 (15)

$$=2\sum_{k=0}^{M-1}m_k\sum_{i=0}^{N-1}G_{iq}G_{ik}$$
 (16)

où

$$\delta_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases} \tag{17}$$

provient du fait que $\partial m_i/\partial m_j$ vaut 1 si i=j et 0 si $i\neq j$.

Régression linéaire Aperçu Distance Moindres-carrés

Existence de la solu

pothèses *a pri*

paramètre

Inverse généralisée

Méthodes itérat

• Pour le 2^e terme, on a

$$-2\frac{\partial T_2}{\partial m_q} = -2\sum_{j=0}^{M-1} \delta_{jq} \sum_{i=0}^{N-1} G_{ij} d_i = -2\sum_{i=0}^{N-1} G_{iq} d_i$$
 (18)

- Le 3^e terme ne contient pas de m, alors $\frac{\partial T_3}{\partial m_a} = 0$.
- En combinant les 3 termes, on trouve

$$\frac{\partial E}{\partial m_q} = 0 = 2 \sum_{k=0}^{M-1} m_k \sum_{i=0}^{N-1} G_{iq} G_{ik} - 2 \sum_{i=0}^{N-1} G_{iq} d_i$$
 (19)

• Sous forme matricielle, cela donne

$$\mathbf{G}^T \mathbf{G} \mathbf{m} - \mathbf{G}^T \mathbf{d} = 0. \tag{20}$$

Moindres-carrés

- Dans l'équation (20), $\mathbf{G}^T\mathbf{G}$ est une matrice carrée de taille $M \times M$ qui multiplie un vecteur **m** de M éléments;
 - $\mathbf{G}^T \mathbf{d}$ est aussi un vecteur de M éléments ;
 - En supposant que $[\mathbf{G}^T\mathbf{G}]^{-1}$ existe, l'estimateur des paramètres du modèle est

$$\mathbf{m}^{\text{est}} = \left[\mathbf{G}^T \mathbf{G}\right]^{-1} \mathbf{G}^T \mathbf{d}$$
 (21)

Régression linéaire Aperçu Distance

Moindres-carrés Existence de la solut

Hypothèses a prio

Variance de

Inverse généralisé

Ü

```
    Les commandes suivantes permettent de générer un
ensemble de points plus ou moins alignés le long d'une
droite :
```

```
N = 30
zmin = 0
zmax = 10
z = np.sort(zmin + zmax*np.random.rand(N, 1), axis=0)
a = 2.0
b = 1.0
m = np.asarrav([a, b])
sd = 0.5
dobs = m[0] + m[1] * z + sd*np.random.randn(N, 1)
plt.plot(z, dobs, 'o')
plt.xlabel('z', fontsize=16)
plt.ylabel('d', fontsize=16)
plt.show()
```


A----

Aperçu

Moindres-carrés

Existence de la solution

Hypothèses a prior

Variance de paramètres

Inverse généralisée

Moderate areas

Aperçu

Moindres-carrés

Variance de

Inverse généralisé

- Étapes à suivre :
 - Construire la matrice **G**;
 - Calculer $\mathbf{A} = \mathbf{G}_{x}^{T}\mathbf{G}$;
 - Calculer $\mathbf{b} = \mathbf{G}^T \mathbf{d}_{\text{obs}}$;
 - Calculer l'inverse de A;
 - Calculer $\mathbf{m}_{\text{est}} = \mathbf{A}^{-1}\mathbf{b}$.
- Visualisez le résultat avec

```
dpre = G.dot(mest)

plt.plot(z, dobs, 'o')
plt.plot(z, dpre, '-', linewidth=4)
plt.xlabel('z', fontsize=16)
plt.ylabel('d', fontsize=16)
plt.show()
```


egression lineaire

Aperçu

Moindres-carrés

Existence de la solutio

Hypothèses a prior

paramètres

Inverse généralisée

Existence de la solution moindres-carrés

Régression linéaire Aperçu Distance Moindres-carrés

Existence de la solution

Variance de paramètres

Inverse généralisée

Méthodes itérativ

- La solution des moindres-carrés a été retenue parce qu'il n'y a pas de solution exacte à notre problème;
- C'est la méthode qui nous donne la "meilleure" solution, au sens où la norme L_2 est minimisée;
- En utilisant $\mathbf{m}^{\text{est}} = \left[\mathbf{G}^T \mathbf{G}\right]^{-1} \mathbf{G}^T \mathbf{d}$, on assume qu'il n'y a qu'une seule "meilleure" solution;
- La méthode échoue s'il existe plusieurs solutions qui donne la même erreur *E*.

Ajustement d'une droite avec un seul point :

- Une infinité de droites passe par le point;
- Pour chaque droite, E = 0.

Existence de la solution moindres-carrés

Régression linéaire Aperçu Distance

Existence de la solution

Hypotheses a prio

Variance d paramètres

Inverse généralisée

- On peut classer les problèmes inverses en fonction de l'information contenue dans le système Gm = d
- Le problème est indéterminé (underdetermined) lorsque le nombre de paramètres M est supérieur au nombre de données indépendantes N, M > N;
 - La matrice $[\mathbf{G}^T\mathbf{G}]^{-1}$ est singulière (non inversible).

- Lorsque M < N, le problème est surdéterminé (*overdetermined*);
 - Les moindres-carrés sont appropriés.

Régression linéaire

Hypothèses a priori

indéterminé

Problème partiellemen

indéterminé

Égalité

Variance de

paramètres

Inverse généralisé

Méthodes itératives

Hypothèses a priori

Hypothèses a priori

égression linéaire

Hypothèses a priori

indéterminé
Problème partielleme
indéterminé
Pondération

Égalité Variance des

Inverse généralise

Méthodes itérativ

- Lorsqu'un problème est indéterminé, il existe une infinité de solutions et il faut ajouter une information au système pour arriver à une solution satisfaisante:
- Cette information est nommée information a priori;
 - Par exemple, pour ajuster une droite avec un seul point, on peut assumer que la droite doit passer à l'origine.
 - Un autre exemple est de supposer que les paramètres doivent être à l'intérieur d'une plage de valeurs donnée, e.g. des densités entre 1000 et 3500 kg/m³.
- Le choix d'une hypothèse *a priori* n'est pas toujours évident et dépend clairement de l'application.

Problème purement

Problème purement indéterminé

- Une hypothèse *a priori* fréquente est que le modèle **m** doit être "simple";
 - se justifie si on considère que les données seules sont insuffisantes.
 - Une mesure de simplicité est la longueur euclidienne de **m** :

$$L = \mathbf{m}^T \mathbf{m} = \sum m_i^2. \tag{22}$$

- Le problème devient celui de minimiser L sous la contrainte que $\mathbf{e} = \mathbf{d} - \mathbf{G}\mathbf{m} = 0$.
- La méthode des multiplicateurs de Lagrange permet de trouver la solution.

 La fonction à minimiser est $\Phi(\mathbf{m}) = L + \sum_{i=0}^{N-1} \lambda_i e_i = \sum_{i=0}^{M-1} m_i^2 + \sum_{i=0}^{N-1} \lambda_i \left[d_i - \sum_{j=0}^{M-1} G_{ij} m_j \right]$

où λ_i sont les multiplicateurs de Lagrange.

Problème purement indéterminé

0

Problème purement

Problème partielleme indéterminé Pondération

Variance des paramètres

Inverse générali

wichiodes herative

• Le minimum est obtenu en dérivant par rapport à *m*

$$\frac{\partial \Phi}{\partial m_q} = \sum_{i=0}^{M-1} 2 \frac{\partial m_i}{\partial m_q} m_i - \sum_{i=0}^{N-1} \lambda_i \sum_{j=0}^{M-1} G_{ij} \frac{\partial m_j}{\partial m_q} = 2m_q - \sum_{i=0}^{N-1} \lambda_i G_{iq}$$
(24)

En égalant (24) à zéro, on obtient, sous forme matricielle

$$2\mathbf{m} = \mathbf{G}^T \boldsymbol{\lambda} \tag{25}$$

• En insérant dans $\mathbf{d} = \mathbf{Gm}$, on trouve

$$\lambda = 2 \left[\mathbf{G} \mathbf{G}^T \right]^{-1} \mathbf{d} \tag{26}$$

qui nous permet de finalement trouver, l'estimateur de longueur minimum

$$\mathbf{m}^{\text{est}} = \mathbf{G}^T \left[\mathbf{G} \mathbf{G}^T \right]^{-1} \mathbf{d}$$
 (27)

Exercice - Prob. purement indéterminé

égression linéaire

Hypothèses a priori Problème purement

indéterminé Problème partiellem

indéterminé

Pondération

Égalité

Variance de paramètres

Inverse généralis

Méthodes itérativ

• Trouvez les paramètres du modèle de la figure suivante, pour h = 2 et $\mathbf{d}^{\text{obs}} = [0.5, 0.46]$.

Problème partiellement indéterminé

Regression lineaire

Hypothèses a pr Problème purement indéterminé

Problème partiellement indéterminé

Pondérati Égalité

Variance de paramètres

Inverse généralis

Méthodes itérativ

- En pratique, les problèmes inverses ne sont jamais complètement surdéterminés ou purement indéterminés.
 - Une cellule du modèle peut être traversée par plusieurs rais alors qu'une autre n'est traversée par aucun rai (A);
 - Si tout les segments de rais sont de la même longueur (B), seulement la lenteur moyenne peut être déterminée.

Problème partiellement indéterminé

Regression lineair

Problème purement indéterminé

Problème partiellement indéterminé

Pondération Égalité

paramètres

Inverse génér

Méthodes itérativ

• Si le problème n'est pas trop indéterminé, on peut minimiser une combinaison de l'erreur de prédiction et de la longueur du modèle (indépendamment des paramètres individuels) :

$$\Phi(\mathbf{m}) = E + \varepsilon^2 L = \mathbf{e}^T \mathbf{e} + \varepsilon^2 \mathbf{m}^T \mathbf{m}, \tag{28}$$

où le poids ε^2 détermine l'importance relative de L par rapport à E.

- Si ε est très élevé, l'emphase est mise sur la partie indéterminée
 - se fait au détriment de E → le modèle estimé sera loin du modèle vrai.
- Si ε est très faible, l'information *a priori* n'est pas propagée et la partie indéterminée le reste.
- En général, on cherche ε par essai-erreur.

Problème partiellement indéterminé

gression imeai

Problème purement indéterminé

Problème partiellement indéterminé

Pondératio

Variance de

parametres

IIIverse generansi

Méthodes itérative

• En minimisant $\Phi(\mathbf{m})$ par rapport aux paramètres du modèle, on trouve

$$\left[\mathbf{G}^T\mathbf{G} + \varepsilon^2 \mathbf{I}\right] \mathbf{m}^{\text{est}} = \mathbf{G}^T \mathbf{d}$$
 (29)

que l'on récrit

$$\mathbf{m}^{\text{est}} = \left[\mathbf{G}^T \mathbf{G} + \varepsilon^2 \mathbf{I} \right]^{-1} \mathbf{G}^T \mathbf{d}$$
 (30)

- m^{est} est nommé solution des moindres-carrés amortis (damped least squares).
- La solution est stabilisée par l'amortissement, et on dit que le problème est *régularisé*.
 - On retrouve le terme *régularisation de Tikhonov* pour décrire ce type d'utilisation d'information *a priori*.

Régression linéaire

Hypothèses a p
Problème pureme

Problème partiellement indéterminé

Pondération Égalité

Variance o

T ------

Máthadas itásati

- Examinons un exemple de problème partiellement indéterminé.
- Le modèle comporte 16 paramètres;
- La taille h vaut 2;
- 16 mesures ont été effectuées.

Problème partiellement indéterminé

```
    Définition du modèle et des points de mesure.
```

```
mtrue = np.array([1.0, 1.1, 1.2, 1.4,
                  1.2, 1.3, 1.4, 1.5,
                  1.6, 1.6, 1.5, 1.8,
                  1.8, 1.9, 2.0, 2.11)
Tx = h*np.array([[0.0, 0.5], [0.0, 1.5],
                 [0.0, 2.5], [0.0, 3.5],
                  [0.5, 0.0], [1.5, 0.0],
                  [2.5, 0.0], [3.5, 0.0],
                  [0.0, 3.0], [0.0, 2.0],
                 [0.0, 1.0], [0.0, 0.0],
                  [1.0, 0.0], [2.0, 0.0],
                  [3.0, 0.0], [0.0, 4.0]]
Rx = h*np.array([[4.0, 0.5], [4.0, 1.5],
                 [4.0, 2.5], [4.0, 3.5],
                  [0.5, 4.0], [1.5, 4.0],
                  [2.5, 4.0], [3.5, 4.0],
                  [1.0, 4.0], [2.0, 4.0],
                  [3.0, 4.0], [4.0, 4.0],
                  [4.0, 3.0], [4.0, 2.0],
                  [4.0, 1.0], [4.0, 0.0]]
```


Régression linéain

Problème puremer indéterminé

Problème partiellement indéterminé

Pondération Égalité

Variance des paramètres

Inverse général

Méthodes itérative

Construction de la matrice G.

```
G = np.zeros((16, nx*nz))
G[0, ::41 = h]
G[1, 1::4] = h
G[2, 2::4] = h
G[3, 3::4] = h
G[4, :4] = h
G[5, 4:81 = h]
G[6. 8:12] = h
G[7, 12:16] = h
G[8, 3] = np.sgrt(2*h*h)
G[9, 2:8:5] = np.sgrt(2*h*h)
G[10, 1:12:5] = np.sgrt(2*h*h)
G[11, ::5] = np.sqrt(2*h*h)
G[12, 4::5] = np.sgrt(2*h*h)
G[13, 8::5] = np.sqrt(2*h*h)
G[14, 12] = np.sqrt(2*h*h)
G[15, 3:13:3] = np.sqrt(2*h*h)
```


égression linéaire

Hypothèses a prid Problème purement indéterminé

Problème partiellement indéterminé

Ponderatio Égalité

paramètres

Inverse généralis

Méthodes itératives

- Générez les données et ajoutez un bruit gaussien avec $\sigma^2 = 0.05$
- Comparez la solution des moindres-carrés ordinaires avec les moindres-carrés amortis pour

•
$$\varepsilon = 10$$

•
$$\varepsilon = 1$$

•
$$\varepsilon = 0.1$$

•
$$\varepsilon = 0.001$$

•
$$\varepsilon = 10^{-15}$$

Régression linéaire

Problème purement indéterminé Problème partiellement indéterminé

Pondération Égalité

paramètres

inverse generalise

- Dans plusieurs cas, la longueur $L = \mathbf{m}^T \mathbf{m}$ n'est pas une mesure appropriée de la simplicité du modèle;
- Par exemple, si on cherche à évaluer les fluctuations par rapport à une moyenne connue
 - il est préférable de minimiser la distance par rapport à cette moyenne (m), i.e.

$$L = (\mathbf{m} - \langle \mathbf{m} \rangle)^{T} (\mathbf{m} - \langle \mathbf{m} \rangle)$$
(31)

- Dans d'autres cas, on sait que le modèle est continu et varie lentement spatialement
 - on peut alors minimiser
 - l'inclinaison (steepness) : dérivée première de m
 - la rugosité (roughness) : dérivée seconde de m

ression linéair

Problème purement indéterminé Problème partielleme: indéterminé

Pondération

Variance de paramètres

Turrana a salari

Méthodes itérat

• L'inclinaison ou la rugosité peuvent être calculées à partir d'une matrice D telle que (pour l'inclinaison)

$$\mathbf{Dm} = \frac{1}{\Delta x} \begin{bmatrix} -1 & 1 & & & \\ & -1 & 1 & & \\ & & \ddots & \ddots & \\ & & & -1 & 1 \end{bmatrix} \begin{bmatrix} m_0 \\ m_1 \\ \vdots \\ m_{M-1} \end{bmatrix}$$
(32)

- Pour la rugosité, les lignes contiennent $(\Delta x)^{-2}[\cdots 1 -2 1 \cdots]$
- Le terme à minimiser est alors

$$L = (\mathbf{Dm})^{T}(\mathbf{Dm}) = \mathbf{m}^{T}\mathbf{D}^{T}\mathbf{Dm} = \mathbf{m}^{T}\mathbf{W}_{m}\mathbf{m}$$
 (33)

• La matrice W_m donne un poids différent aux paramètres du modèle.

gression linéain

Hypothèses a prio

indéterminé
Problème partiellemen

Pondération

Égalité

paramètres

Inverse généralis

Méthodes itérative

Pondération

La mesure de la simplicité du modèle peut être généralisée à

$$L = (\mathbf{m} - \langle \mathbf{m} \rangle)^T \mathbf{W}_{\mathbf{m}} (\mathbf{m} - \langle \mathbf{m} \rangle)$$
 (34)

- D'une façon similaire, il est possible de pondérer certains terme de l'erreur de prédiction;
- utile lorsque certaines mesures sont plus précises que d'autres.
- L'erreur de prédiction généralisée s'écrit alors

$$E = \mathbf{e}^T \mathbf{W}_{\mathbf{e}} \mathbf{e}. \tag{35}$$

- W_e est généralement une matrice diagonale;
 - Par exemple, pour 5 mesures où on sait que la 3^e est deux fois plus précise, on aura

$$\mathbf{W}_{e} = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 2 & & \\ & & & 1 & \\ & & & & 1 \end{bmatrix}$$
 (36)

Types d'information *a priori* – Pondération

nèses a pri

ne purement niné ne partiellemen niné

Pondération Égalité

paramètres
Inverse généralis

Méthodes itérati

• La solution des moindres-carrés pondérés, i.e. lorsque $E = \mathbf{e}^T \mathbf{W}_e \mathbf{e}$, vaut

$$\mathbf{m}^{\text{est}} = \left(\mathbf{G}^T \mathbf{W}_{\text{e}} \mathbf{G}\right)^{-1} \mathbf{G}^T \mathbf{W}_{\text{e}} \mathbf{d}. \tag{37}$$

• Lorsque le système est partiellement indéterminé, l'amortissement est inclus et la solution est

$$\mathbf{m}^{\text{est}} = \left(\mathbf{G}^{T} \mathbf{W}_{\text{e}} \mathbf{G} + \varepsilon^{2} \mathbf{W}_{\text{m}}\right)^{-1} \left(\mathbf{G}^{T} \mathbf{W}_{\text{e}} \mathbf{d} + \varepsilon^{2} \mathbf{W}_{\text{m}} \langle \mathbf{m} \rangle\right)$$
(3)

• Pour résoudre ce système, on peut le simplifier en posant

$$\mathbf{F} = \begin{bmatrix} \mathbf{W}_{e}^{1/2} \mathbf{G} \\ \varepsilon \mathbf{D} \end{bmatrix} \qquad \text{et} \qquad \mathbf{f} = \begin{bmatrix} \mathbf{W}_{e}^{1/2} \mathbf{d} \\ \varepsilon \mathbf{D} \langle \mathbf{m} \rangle \end{bmatrix}$$
(39)

• Il suffit alors de résoudre $Fm^{est} = f$ par la méthode des moindres-carrés ordinaire : $m^{est} = (F^TF)^{-1}F^Tf$.

Types d'information *a priori* – Exercice 1

on imea

lème purement erminé lème partielleme

Problème partiellem indéterminé Pondération

Egalité Variance de

Inverse général

Méthodes itéra

```
    Le problème est de retrouver une fonction sinus à partir de
points aléatoirement distribués.

M = 101
```

```
Dz = 1.0
z = Dz*np.arange(M)
zmax = z.max()
mtrue = np.sin(3*np.pi*z/zmax)
```

• Les observations sont :

 Pour simplifier, on attribue un poids égal à chaque observation, i.e. W_e est une matrice identité.

Types d'information *a priori* – Exercice 1

Régression linéair

Problème purement indéterminé Problème partielleme

indéterminé Pondération

Egante

parametres

mverse generanse

- Nous avons M=101 et N=11, le système est indéterminé;
 - On sait qu'une fonction sinus est lisse, on peut minimiser la rugosité.
- **G** contient simplement des 1 aux indices des points de mesure.

```
i = np.arange(N)
j = ind
s = np.ones(i.shape)
G = sp.coo_matrix((s, (i, j)), shape=(N, M))
```

- La matrice de rugosité **D** (de taille $M \times M$) contient les termes $(\Delta x)^{-2}[\dots 1-21\dots]$ centrés sur le paramètre où la dérivée est évaluée.
 - Aux extrémités, on utilise une dérivée première.
- Construisez **D** et résolvez pour trois valeurs de ε , soit 1.0, 0.01, 100.0.

• Il arrive parfois qu'on connaisse la valeur du modèle en un point donné;

sache qu'une certaine fonction des paramètres est égale à une constante.

Égalité

• On peut exprimer ces contraintes sous la forme Hm = h, par exemple:

• la moyenne des paramètres est égale à h_0 :

$$\mathbf{Hm} = \frac{1}{M} [11 \dots 1] \begin{vmatrix} m_0 \\ m_1 \\ \vdots \\ m_{M-1} \end{vmatrix} = [h_0] = \mathbf{h}$$
 (40)

• Une valeur donnée m_k est connue :

$$\mathbf{Hm} = \begin{bmatrix} 0 \dots 010 \dots 0 \end{bmatrix} \begin{bmatrix} m_0 \\ \vdots \\ m_k \\ \vdots \end{bmatrix} = [h_k] = \mathbf{h}$$
 (41)

egression linear

Hypothèses a pri Problème puremen indéterminé

Problème partiellem indéterminé Pondération

Égalité Variance de

paramètres

Inverse générali

Male Leader

- La méthode des multiplicateurs de Lagrange permet de trouver la solution.
- On minimise E avec la contrainte que $\mathbf{Hm} \mathbf{h} = 0$ en formant la fonction suivante :

$$\Phi(m) = \sum_{i=0}^{N-1} \left[\sum_{j=0}^{M-1} G_{ij} m_j - d_i \right]^2 + 2 \sum_{i=0}^{p-1} \lambda_i \left[\sum_{j=0}^{M-1} H_{ij} m_j - h_i \right]$$
(42)

où p est le nombre de contraintes.

Les dérivées par rapport aux paramètres,

$$\frac{\partial \Phi(m)}{\partial m_q} = 2 \sum_{i=0}^{M-1} m_i \sum_{j=0}^{N-1} G_{jq} G_{ji} - 2 \sum_{i=0}^{N-1} G_{iq} d_i + 2 \sum_{i=0}^{p-1} \lambda_i H_{iq},$$
(43)

sont égalées à zéro pour trouver le minimum.

gression linéair

Hypothèses a prior Problème purement

> roblème partielleme déterminé

Égalité

paramètres

Inverse génér

1001 1 00

Sous forme matricielle, le système d'équation est

$$\underbrace{\begin{bmatrix} \mathbf{G}^T \mathbf{G} & \mathbf{H}^T \\ \mathbf{H} & 0 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} \mathbf{m} \\ \boldsymbol{\lambda} \end{bmatrix}}_{\mathbf{x}} = \underbrace{\begin{bmatrix} \mathbf{G}^T \mathbf{d} \\ \mathbf{h} \end{bmatrix}}_{\mathbf{b}} \tag{44}$$

 Ce système est habituellement résolu avec un solveur itératif.

Regression intean

Problème puremen indéterminé

Problème partielleme indéterminé Pondération

Égalité

. . . .

- La résolution avec les multiplicateurs de Lagrange se prête mal à la situation où on souhaite appliquer une pondération au modèle;
 - on pourrait par exemple vouloir lisser le modèle en plus d'imposer une contrainte d'égalité.
- Une approche par moindres-carrés amortis est possible, il suffit d'ajouter les termes appropriés :

$$\mathbf{F} = \begin{bmatrix} \mathbf{W}_{e}^{1/2} \mathbf{G} \\ \varepsilon \mathbf{D} \\ \gamma \mathbf{H} \end{bmatrix} \qquad \text{et} \qquad \mathbf{f} = \begin{bmatrix} \mathbf{W}_{e}^{1/2} \mathbf{d} \\ \varepsilon \mathbf{D} \langle \mathbf{m} \rangle \\ \gamma \mathbf{h} \end{bmatrix} \tag{45}$$

où γ permet d'ajuster la pondération de la contrainte d'égalité.

Types d'information *a priori* – Exercice 2

Régression linéair

Problème purement indéterminé

Problème partiellem indéterminé

Égalité

paramètres

Inverse généralise

- Problème : ajuster une droite devant passer par un point connu (z', d').
- Les paramètres du modèle sont l'ordonnée à l'origine m_0 et la pente m_1 ;
 - et la contrainte est que $d' = m_0 + m_1 z'$.
- Les données sont :

```
N = 30
zmin = 0
zmax = 10
z = np.sort(zmin + zmax*np.random.rand(N, 1), axis=0)

# d = a + b*z + bruit
a = 2.0
b = 1.0
sd = 0.5
dobs = a + b * z + sd*np.random.randn(N, 1)

# contraintes, z' & d'
zp = 8
dp = 6
```


Régression linéaire

Hypothèses a prior

Variance des paramètres

erse généralise

inverse generans

Méthodes itératives

Variance des paramètres

Régression linéaire

Hypothèses a priori

Variance des
paramètres

- Les données contiennent invariablement un bruit qui va entraîner une erreur dans l'estimation des paramètres du modèle
- Comment le bruit dans les données se propage-t-il dans les paramètres?
- On peut
 - $\bullet \;\;$ généraliser les estimateurs linéaires vus précédemment à une forme $m^{\text{est}} = Md + v$
 - ullet M et v sont respectivement une matrice et un vecteur, indépendants de ullet
 - $\bullet \;\;$ quantifier le bruit dans les données par la matrice de covariance $[\text{cov}\;d]$
- On peut alors montrer que

$$[\operatorname{cov} \mathbf{m}] = \mathbf{M}[\operatorname{cov} \mathbf{d}]\mathbf{M}^{T} \tag{46}$$

Hypothèses a prior
Variance des

paramètres
Inverse général:

Méthodes itérat

- On assume souvent que les données sont non corrélées et qu'elles ont une la même variance σ_d^2 ;
 - La covariance des paramètres pour les moindres-carrés vaut alors

$$[\operatorname{cov} \mathbf{m}] = \left[\left(\mathbf{G}^T \mathbf{G} \right)^{-1} \right] \sigma_d^2 \mathbf{I} \left[\left(\mathbf{G}^T \mathbf{G} \right)^{-1} \right]^T = \sigma_d^2 \left(\mathbf{G}^T \mathbf{G} \right)^{-1}$$
(47)

• Pour l'estimateur de longueur minimum nous avons

$$[\operatorname{cov} \mathbf{m}] = \left[\mathbf{G}^{T} \left(\mathbf{G} \mathbf{G}^{T} \right)^{-1} \right] \sigma_{d}^{2} \mathbf{I} \left[\mathbf{G}^{T} \left(\mathbf{G} \mathbf{G}^{T} \right)^{-1} \right]^{T}$$
$$= \sigma_{d}^{2} \mathbf{G}^{T} \left(\mathbf{G} \mathbf{G}^{T} \right)^{-2} \mathbf{G}$$
(48)

Régression linéaire Hypothèses *a priori* Variance des

Méthodes itérative

paramètres

- Un problème se pose pour estimer σ_d^2 ;
 - On peut se baser sur la résolution des appareils de mesures, e.g. un gravimètre précis à \pm 5 μ Gal, on parle alors de *variance a priori*;
 - On peut aussi se baser sur la distribution des erreurs de prédiction **e** obtenues après inversion (*a posteriori*), avec

$$\sigma_d^2 \approx \frac{1}{N - M} \sum_{i=0}^{N-1} e_i^2.$$
 (49)

- La variance *a posteriori* tend cependant à être surestimée en raison des imprécisions du modèle.
- Le constat final demeure néanmoins : les paramètres du modèles sont corrélés et de variance inégale.
- L'opérateur **G** joue un rôle central dans la propagation des erreurs.

Régression linéaire

Hypothèses a priori

Variance des
paramètres

- Exemple de l'influence de **G** sur la variance des paramètres :
 - la variance des données est la même pour tout les points;
 - l'étalement des coordonnées en z dicte la variance des paramètres (courbes bleues = 1σ).

ression linéaire

Hypothèses a prior

Variance des paramètres

Inverse généralisée

Résolution

Méthodes itératives

Inverse généralisée

regression intente

Hypothèses a prio

Variance de

Inverse généralisée

Méthodes itérativ

- La décomposition en valeurs singulières (SVD) permet d'étudier et de résoudre les problèmes indéterminés et mal conditionnés;
- Pour une matrice **G** de taille $N \times M$, la SVD est

$$\mathbf{G} = \mathbf{U}\mathbf{S}\mathbf{V}^T \tag{50}$$

οù

- U est une matrice $N \times N$ orthogonale où les colonnes forment les vecteurs de base de l'espace des données;
- V est une matrice $M \times M$ orthogonale où les colonnes forment les vecteurs de base de l'espace des paramètres;
- S est une matrice N × M diagonale contenant les valeurs singulières de G.

Régression linéaire

ypothèses *a pr*

variance de paramètres

Inverse généralisée

Méthodes itérative

- Les valeurs singulières sont habituellement classées en ordre décroissant sur la diagonale de **S**;
- Certaines valeurs singulières peuvent être égales à zéro, ce qui fait qu'on peut partitionner S selon

$$\mathbf{S} = \begin{bmatrix} \mathbf{S}_p & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \tag{51}$$

où *p* est le nombre de valeurs non nulles.

- Similairement, U et V peuvent être partitionnées par colonnes, selon [U_p U₀] et [V_p V₀], pour ne garder que les colonnes non multipliées par la partie nulle de S;
 - On a alors la forme compacte

$$\mathbf{G} = \mathbf{U}_p \mathbf{S}_p \mathbf{V}_p^T \tag{52}$$

Regression inteatre

pothèses *a prio*

paramètres

Inverse généralisée Résolution

- Les colonnes de U_p sont dans l'espace colonne de R(G) et sont linéairement indépendantes.
- Comme il y a *p* vecteurs dans la base, le rang de **G** est *p*.
- On peut montrer que $N(\mathbf{G}^T) + R(\mathbf{G}) = R^n$, et que les N p colonnes de \mathbf{U}_0 forment la base du noyau de \mathbf{G}^T .
- On nomme $N(\mathbf{G}^T)$ le noyau des données.
- ullet Similairement, on nomme $N(\mathbf{G})$ le noyau du modèle.

Regression inteane

Hypothèses a prid

variance de paramètres

Inverse généralisée Résolution

Méthodes itérative

• La SVD peut être utilisée pour calculer l'inverse généralisée de **G**, aussi appelée pseudo-inverse de Moore-Penrose :

$$\mathbf{G}^{\dagger} = \mathbf{V}_{p} \mathbf{S}_{p}^{-1} \mathbf{U}_{p}^{T} \tag{53}$$

• La solution est alors

$$\mathbf{m}_{\dagger} = \mathbf{G}^{\dagger} \mathbf{d} \tag{54}$$

- Une propriété intéressante de (54) est que **G**[†] existe toujours, et donc qu'une solution existe toujours.
 - Les valeurs singulières nulles "correspondent" aux colonnes de G linéairement dépendantes, la SVD "filtre" pour ne garder que les colonnes indépendantes.

Regression lineaire

ypothèses *a pr*

Variance de paramètres

Inverse généralisée Résolution

Méthodes itérative

On peut montrer que

- Lorsque N = M = p, $\mathbf{G}^{\dagger} = \mathbf{G}^{-1}$ et la solution est unique et les paramètres s'ajustent parfaitement aux données.
- Lorsque N = p et p < M, \mathbf{G}^{\dagger} est équivalent à la solution de longueur minimum. Pour des raisons de précision numérique, on favorise en pratique l'utilisation de la SVD pour solutionner le système.
- Lorsque M = p et p < N, G^{\dagger} est équivalent à la solution des moindres-carrés.
- Lorsque p < N et p < M, \mathbf{G}^{\dagger} est équivalent à la solution de longueur minimum.

Variance des paramètres

regression intente

Hypothèses a priori

Variance de paramètres

Inverse généralisée

- On a vu que la covariance des paramètres est $[\cos \mathbf{m}] = \sigma_d^2 (\mathbf{G}^T \mathbf{G})^{-1}$
- Pour l'inverse généralisée on a

$$[\cos \mathbf{m}_{\dagger}] = \mathbf{G}^{\dagger}[\cos \mathbf{d}] \left(\mathbf{G}^{\dagger}\right)^{T}$$
 (55)

$$= \sigma_d^2 \mathbf{G}^{\dagger} \left(\mathbf{G}^{\dagger} \right)^T \tag{56}$$

$$= \sigma_d^2 \mathbf{V}_p \mathbf{S}_p^{-2} \mathbf{V}_p^T \tag{57}$$

$$=\sigma_d^2 \sum_{i=0}^{p-1} \frac{V_{:,i} V_{:,i}^T}{s_:^2}$$
 (58)

Régression linéaire

Hypothèses a pri

Variance d paramètre

Résolution

- Malheureusement, m₊ n'est pas un estimateur non biaisé de m_{vrai} (sauf si p = M)
 - Cela est dû au fait que m_{vrai} peut contenir des projections non nulles dans des vecteurs de base de V qui ne sont pas utilisés par l'inverse généralisée (portion tronquée).
- On peut quantifier ce biais avec la matrice de résolution du modèle;
 - permet de déterminer à quel point m_{\dagger} s'approche de m_{vrai} , en assumant qu'il n'y a pas d'erreur dans les données.
- Partant de \mathbf{m}_{vrai} , on a que $\mathbf{d}_{\text{vrai}} = \mathbf{G}\mathbf{m}_{\text{vrai}}$ et donc que

$$\mathbf{m}_{\dagger} = \mathbf{G}^{\dagger} \mathbf{d}_{\text{vrai}} \tag{59}$$

$$= \mathbf{G}^{\dagger} \mathbf{G} \mathbf{m}_{\text{vrai}} \tag{60}$$

$$= \mathbf{R}_{\mathbf{m}} \mathbf{m}_{\mathbf{vrai}} \tag{61}$$

Régression linéaire

ypothèses *a pi*

paramètres

Résolution

- R_m permet donc de quantifier à quel point m_+ s'approche de m_{vrai} ;
 - si R_m est une matrice identité, le modèle vrai peut être retrouvé parfaitement et la résolution est "parfaite".
- ullet En pratique, on examine la diagonale de R_m pour voir si les éléments sont proches de 1;
 - si c'est le cas, les paramètres correspondants sont bien résolus;
 - dans le cas inverse, les paramètres sont une moyenne pondérée des paramètres vrais.
- On peut aussi mener un test de résolution avec un modèle impulsionel m_i (vecteur de 0 avec un seul élément i égal à 1);
 - Le produit de \mathbf{R}_{m} avec \mathbf{m}_{i} fait ressortir la contribution des colonnes de \mathbf{R}_{m} sur le i^{e} paramètre.

Régression linéaire

Hypothèses a prio

Variance de

Inverse généralis Résolution

- Examinons la signification de la matrice de résolution avec un exemple en tomographie.
- Le modèle comporte 16 paramètres;
- La taille *h* vaut 2;
- 10 mesures ont été effectuées.

Regression inteame

Hypothèses a priori

Variance de paramètres

Résolution

Méthodes itératives

• La matrice **G** a la forme suivante :

• Le rang de la matrice est 9.

Régression linéaire

Hypothèses a pri

Variance de

Inverse généralis Résolution

- La matrice de résolution contient les éléments les plus élevés sur sa diagonale.
- La résolution est 1 seulement pour le 16^e paramètre.
- Les autres paramètres contiennent des contributions des cellules voisines.

Regression inteame

Hypothèses a priori

Variance de

Inverse généralis Résolution

Méthodes itératives

 La résolution est plus élevée aux cellules traversés par le long rai oblique.

Régression linéaire

Hypothèses a prio

Variance de paramètres

Inverse generalis Résolution

- Test impulsionnel pour $\mathbf{m}_i = [0100...0]$
- La 2^e cellule ne peut être complètement distinguée de ses voisines;
- Les cellules traversés par le long rai oblique contribuent moins.

Regression lineaire

Hypothèses a prior

Variance de

Inverse générali

Résolution

Méthodes itérative

• Malgré la résolution imparfaite, le modèle estimé est proche du modèle vrai.

Résolution des données

Regression lineaire

ypotneses *a pi*

paramètre

Résolution

Méthodes itérative

- Idéalement, on voudrait que m_{\dagger} nous permette de retrouver exactement les données observées.
- D'une façon similaire à la résolution du modèle, on peut évaluer individuellement le poids des données observées dans les données prédites par m_†.
- Soit d_{\dagger} le vecteur des données produit par m_{\dagger} , i.e.

$$\mathbf{d}_{\dagger} = \mathbf{G}\mathbf{m}_{\dagger} \tag{62}$$

• Puisque $\mathbf{m}_{\dagger} = \mathbf{G}^{\dagger} \mathbf{d}$, on a que

$$\mathbf{d}_{\dagger} = \mathbf{G}\mathbf{G}^{\dagger}\mathbf{d} \tag{63}$$

$$= \mathbf{R}_{\mathsf{d}} \mathbf{d} \tag{64}$$

Résolution des données

Regression inteam

Hypothèses a prior

paramètre

Inverse generalis Résolution

Méthodes itérative

- Si $\mathbf{R}_d = \mathbf{I}$, l'erreur de prédiction est nulle.
- À l'inverse, **R**_d donne une mesure de la capacité de l'estimateur à reproduire les données;
- Si par exemple R_d contient une ligne égale à

où 0.8 apparaît sur le *i*^e colonne, alors

$$d_i^{\text{pre}} = \sum_{j} R_d(i,j) d_j^{\text{obs}} = 0.1 d_{i-1}^{\text{obs}} + 0.8 d_i^{\text{obs}} + 0.1 d_{i+1}^{\text{obs}}$$
 (65)

Résolution des données

Régression linéaire

Hypothèses a pri

paramètres

Résolution

- Examinons R_d pour l'exemple précédent
- Les valeurs sur la diagonale sont assez proches de 1, sauf pour les 8^e et 9^e données où $R_d \approx 1$
- Pour les 7 autres données, il y a une composante non nulle des autres termes;
 - les données prédites sont une moyenne pondérée des données observées

Résolution – Conclusion

Régression linéaire

ypothèses *a pr*

naramòtros

Résolution

- Il est important de rappeler que R_m et R_d ne dépendent pas des données et des modèles, mais qu'elles sont dues exclusivement à G;
- Ces matrices sont donc le reflet de
 - la physique du problème;
 - la géométrie d'acquisition des données.
- En pratique, la capacité à retrouver m_{vrai} dépend autant de la résolution que de la propagation du bruit dans les paramètres du modèle.
- ullet ${f R}_m$ et ${f R}_d$ sont des outils très pratiques pour la conception des géométries d'acquisition.

ression linéaire

Hypothèses a prior

Variance des

Inverse généralisé

Méthodes itératives

Motivation

Régression linéaire

ypothèses *a p*

Variance des paramètres

Inverse générali

Méthodes itérativ Motivation

- Pour beaucoup de problèmes inverses en 3D, le nombre de paramètre des modèles à estimer est très élevé, de plusieurs centaines de millier à quelques millions.
- Des difficultés apparaissent pour stocker les matrices en mémoire et pour solutionner les systèmes avec des méthodes directes (factorisation LU).
- Pour les cas où la matrice G est creuse, la famille des méthodes itératives offre l'avantage que le produit G^TG n'a pas à être stocké en mémoire.

Hypothèses a prior Variance des paramètres Inverse généralisée Méthodes itérative Motivation

- L'algorithme de Kaczmarz, développé dans les années 30 pour solutionner des systèmes d'équations linéaires, est particulièrement efficace lorsque **G** est creuse.
- Le point de départ est de considérer que chaque équation $\mathbf{G}_{i,:}\mathbf{m}=d_i$ est un hyperplan dans R^N .
- L'algorithme démarre avec une solution $\mathbf{m}^{(0)}$ (l'exposant désigne l'itération en cours);
- Cette solution est projetée dans l'hyperplan défini par la 1^{re} ligne de G pour obtenir m⁽¹⁾;
- Cette solution est ensuite projetée dans l'hyperplan défini par la 2^e ligne de G pour obtenir m⁽²⁾, et ainsi de suite pour toute les lignes;
- Le processus est répété jusqu'à ce qu'une convergence satisfaisante soit atteinte.

Regression inteame

Hypothèses a prior

Variance des paramètres

Motivation

Inverse généralis

 Illustration de l'algorithme de Kaczmarz pour un système à deux équations

ession intean

titeses a prio

parametres

Inverse généralis

Motivation

- On sait que le vecteur $\mathbf{G}_{i,:}^T$ est perpendiculaire à l'hyperplan défini par $\mathbf{G}_{i,:}\mathbf{m} = d_i$.
- La projection de $\mathbf{m}^{(i)}$ vers $\mathbf{m}^{(i+1)}$ est donc proportionnelle à \mathbf{G}_{i+1}^T , i.e.

$$\mathbf{m}^{(i+1)} = \mathbf{m}^{(i)} + \beta \mathbf{G}_{i+1,:}^T$$
 (66)

• On peut trouver β sachant que $\mathbf{G}_{i+1,:}\mathbf{m}^{(i+1)} = d_{i+1}$:

$$\mathbf{G}_{i+1,:} \left(\mathbf{m}^{(i)} + \beta \mathbf{G}_{i+1,:}^{T} \right) = d_{i+1}$$

$$\mathbf{G}_{i+1,:} \mathbf{m}^{(i)} - d_{i+1} = -\beta \mathbf{G}_{i+1,:} \mathbf{G}_{i+1,:}^{T}$$

$$\beta = -\frac{\mathbf{G}_{i+1,:} \mathbf{m}^{(i)} - d_{i+1}}{\mathbf{G}_{i+1,:} \mathbf{G}_{i+1}^{T}}$$

• Ce calcul est rapide car il n'implique que des produits de vecteurs.

Regression lineair

pothèses *a pri*

Variance d

Inverse généralis

Motivation

- Si le système Gm = d a une solution unique, l'algorithme de Kaczmarz converge vers cette solution;
- S'il existe plusieurs solutions, l'algorithme converge vers la solution la plus proche de $\mathbf{m}^{(0)}$;
 - si $\mathbf{m}^{(0)} = \mathbf{0}$, on obtient la solution de longueur minimum.

Hypothèses a priori

Variance des paramètres Inverse généralise Méthodes itérativ

Motivation

- L'algorithme algebraic reconstruction technique (ART) est une variante de celui de Kaczmarz spécifiquement modifié pour la reconstruction tomographique;
 - Les corrections au modèle ne sont appliquées que si un rai traverse la cellule correspondante;
 - Initialement, la correction était approximée par une moyenne pour toutes les cellules traversées, ce qui entraîne un certain lissage;
 - Subséquement, la correction a été modifié pour tenir compte de la longueur des segments de rai dans chaque cellule traversée.
- Par rapport à Kaczmarz, ART permet de réduire l'utilisation de mémoire et la proportion de multiplications par rapport aux additions (à l'époque (années 70), les multiplications étaient plus coûteuses à calculer).

Reconstruction tomographique – SIRT

Régression linéaire Hypothèses a priori Variance des paramètres Inverse généralisée Méthodes itératives

Motivation

- Un des problèmes de l'algorithme ART est qu'il tend à produire des images plus bruitées que l'algorithme de Kaczmarz.
- L'algorithme simultaneous iterative reconstruction technique (SIRT) est une variation de ART qui donne de meilleures images, au dépend du temps de calcul, légèrement plus long.
- La correction est modifiée pour tenir compte du nombre de segments de rai qui traverse les cellules.
- Un désavantage majeur des algorithmes ART et SIRT est le fait de ne pas pouvoir inclure de contraintes.
- Les algorithmes de Kaczmarz, ART et SIRT ont été supplantés par des méthodes plus efficaces pour des problèmes de grandes dimensions;
 - ils permettent néanmoins d'illustrer le concept de solveur itératif.