Dummit & Foote Ch. 3.5: Transpositions and the Alternating Group

Scott Donaldson

Dec. 2023

1. (12/6/23)

In Exercises 1 and 2 of Section 1.3 you were asked to find the cycle decompositions of some permutations. Write each of these permutations as a product of transpositions. Determine which of these is an even permutation and which is an odd permutation.

In Exercise 1,

$$\sigma = (1,3,5)(2,4) = (1,3)(1,5)(2,4), \text{ odd.}$$

$$\tau = (1,5)(2,3), \text{ even.}$$

$$\sigma^2 = (1,5,3) = (1,3)(1,5), \text{ even.}$$

$$\sigma\tau = (2,5,3,4) = (2,4)(2,3)(2,5), \text{ odd.}$$

$$\tau^2\sigma = (1,3,5)(2,4) = (1,5)(1,3)(2,4), \text{ odd.}$$

In Exercise 2,

```
\begin{split} \sigma &= (1,13,5,10)(3,15,8)(4,14,11,7,12,9) \\ &= (1,10)(1,5)(1,13)(3,8)(3,15)(4,9)(4,12)(4,7)(4,11)(4,14), \text{ even.} \\ \tau &= (1,14)(2,9,15,13,4)(3,10)(5,12,7)(8,11) \\ &= (1,14)(2,4)(2,13)(2,15)(2,9)(3,10)(5,7)(5,12)(8,11), \text{ odd.} \\ \sigma^2 &= (1,5)(3,8,15)(4,11,12)(7,9,4)(10,13) \\ &= (1,15)(3,15)(3,8)(4,12)(4,11)(7,4)(7,9)(10,13), \text{ even.} \\ \sigma\tau &= (1,11,3)(2,4)(5,9,8,7,10,15)(13,14) \\ &= (1,3)(1,11)(2,4)(5,15)(5,10)(5,7)(5,8)(5,9)(13,14), \text{ odd.} \\ \tau\sigma &= (1,4)(2,9)(3,13,12,15,11,5)(8,10,14) \\ &= (1,4)(2,9)(3,5)(3,11)(3,15)(3,12)(3,13)(8,14)(8,10), \text{ odd.} \\ \tau^2\sigma &= (1,2,15,8,3,4,14,11,12,13,7,5,10) \\ &= (1,10)(1,5)(1,7)(1,13)(1,12)(1,11)(1,14)(1,4)(1,3)(1,8)(1,15)(1,2), \\ \text{ even.} \end{split}
```

2. (12/6/23)

Prove that σ^2 is an even permutation for every permutation σ .

Proof. We take as given the homomorphism $\epsilon: S_n \to \{\pm 1\}$ defined in this chapter, which determines the sign of every permutation $\sigma \in S_n$.

If σ is an even permutation, then $\epsilon(\sigma) = 1$. It follows that:

$$\epsilon(\sigma^2) = \epsilon(\sigma)\epsilon(\sigma) = 1 \cdot 1 = 1,$$

and so σ^2 is an even permutation.

If σ is an odd permutation, then $\epsilon(\sigma) = -1$. It follows that:

$$\epsilon(\sigma^2) = \epsilon(\sigma)\epsilon(\sigma) = -1 \cdot -1 = 1,$$

and so σ^2 is an even permutation.

Since for every $\sigma \in S_n$, σ is either an even or an odd permutation, this proves that σ^2 is an even permutation for every permutation σ .

3. (12/6/23)

Prove that S_n is generated by $\{(i, i+1) \mid 1 \le i \le n-1\}$.

Proof. Since any element of S_n may be written as a product of transpositions, it suffices to show that the set $\{(i, i+1) \mid 1 \leq i \leq n-1\}$ can generate any transposition. Writing an arbitrary transposition in S_n as (i, i+a), we will prove this by strong induction on a (where $1 \leq a \leq n-i$).

The base case a=1 is given, since (i,i+1) is a member of the generating set for all $i \in \{1,...,n-1\}$.

Next, suppose that for all $i \in \{1, ..., n-1\}$ and $a \in \{1, ..., n-i\}$, the transposition (i, i+a-1) can be obtained from the generating set. So we have the transpositions (i+a-1, i+a) (in the generating set) and (i, i+a-1) (from the inductive hypothesis). Then:

$$(i+a-1,i+a)(i,i+a-1)(i+a-1,i+a) = (i,i+a),$$

so we can obtain the transposition (i, i + a). This concludes the proof that the set $\{(i, i + 1) \mid 1 \leq i \leq n - 1\}$ can generate any transposition, and therefore generates all of S_n .

4. (12/7/23)

Show that $S_n = \langle (1, 2), (1, 2, 3, ..., n) \rangle$ for all $n \geq 2$.

Proof. Note that:

$$(1, 2, 3, ..., n)(1, 2)(1, 2, 3, ..., n)^{-1}$$

= $(1, 2, 3, ..., n)(1, 2)(1, n, n - 1, ..., 2)$
= $(2, 3)$,

and in general,

$$(1, 2, 3, ..., n)(i, i + 1)(1, 2, 3, ..., n)^{-1}$$

= $(1, 2, 3, ..., n)(i, i + 1)(1, n, n - 1, ..., 2)$
= $(i + 1, i + 2)$

for $1 \le i \le n-1$ (if i=n-1, then the resulting transposition is equal to (1,n)). This shows that every transposition of adjacent integers can be obtained from $\langle (1,2), (1,2,3,...,n) \rangle$, and from the results of Exercise 3, it therefore generates all of S_n .

5. (12/7/23)

Show that if p is prime, $S_p = \langle \sigma, \tau \rangle$ where σ is any transposition and τ is any p-cycle.

Proof. Let $\tau = (a_1, a_2, ..., a_p)$ and $\sigma = (a_i, a_{i+k})$, where $1 \le i < p$ and $i < k \le p - i$. Note that:

$$\tau \sigma \tau^{-1} = (a_1, a_2, ..., a_p)(a_i, a_{i+k})$$

$$(a_1, a_p, a_{p-1}, ..., a_2)$$

$$= (a_{i+1}, a_{i+k+1}), \text{ and so:}$$

$$(\tau^2)\sigma(\tau^2)^{-1} = \tau(\tau \sigma \tau^{-1})\tau^{-1} = (a_1, a_2, ..., a_p)(a_{i+1}, a_{i+k+1})$$

$$(a_1, a_p, a_{p-1}, ..., a_2)$$

$$= (a_{i+2}, a_{i+k+2}), \text{ and in general:}$$

$$(\tau^n)\sigma(\tau^n)^{-1} = \tau((\tau^{n-1})\sigma(\tau^{n-1})^{-1})\tau^{-1} = (a_1, a_2, ..., a_p)(a_{i+n-1}, a_{i+k+n-1})$$

$$(a_1, a_p, a_{p-1}, ..., a_2)$$

$$= (a_{i+n}, a_{i+k+n}),$$

where all subscripts are taken mod p if they are greater than p. Next, we define a set:

$$\Sigma = \{ (\tau^n) \sigma(\tau^n)^{-1} \mid 0 \le n
= \{ (a_i, a_{i+k}) \ \| 1 \le j \le p \}.$$

Clearly Σ is generated by σ and τ . We claim that Σ generates any transposition of the form (a_j, a_{j+nk}) , where $1 \leq j \leq p, n \geq 1$. We will show this by strong induction on n.

The base case n=1 is given by the construction of Σ , since it contains all transpositions of the form (a_i, a_{i+k}) .

Next, suppose that Σ can generate any transposition of the form (a_j, a_{j+mk}) , where $1 \leq m < n$. Then:

$$\underbrace{(a_j, a_{j+(n-1)k})}_{m=n-1} \underbrace{(a_{j+(n-1)k}, a_{j+nk})}_{m=1} \underbrace{(a_j, a_{j+(n-1)k})}_{m=n-1} = (a_j, a_{j+nk}),$$

which shows that we can generate any transposition of the form (a_j, a_{j+nk}) .

Now since p is prime, for any transposition (a_j, a_{j+q}) , we can write q = nk mod p for some $n \ge 1$. Therefore Σ can generate any transposition in S_p , and it therefore generates all of S_p .

6. (12/7/23)

Show that $\langle (1,3), (1,2,3,4) \rangle$ is a proper subgroup of S_4 . What is the isomorphism type of this subgroup?

Proof. First, we will define a map $\varphi: D_8 \to \langle (1,3), (1,2,3,4) \rangle$ and show that it is an isomorphism. Since the order of D_8 is strictly less than S_4 , we will conclude that $\langle (1,3), (1,2,3,4) \rangle$ is a proper subgroup of S_4 .

Define φ such that $\varphi(s)=(1,3)$ and $\varphi(r)=(1,2,3,4)$. We will first show that φ is a homomorphism. The orders of s and r hold under φ , since $s^2=1$ and $(1,3)^2=(1)$, and $r^4=1$ and $(1,2,3,4)^4=(1)$. Also, the relation in D_8 that $sr=r^{-1}s$ holds under φ :

$$\varphi(s)\varphi(r) = (1,3)(1,2,3,4) = (1,2)(3,4) = (1,4,3,2)(1,3) = \varphi(r)^{-1}\varphi(s).$$

Since φ is defined on the generators of D_8 to the generators (1,3) and (1,2,3,4), φ is surjective.

We next show that $\langle (1,3), (1,2,3,4) \rangle$ contains 8 elements. The cyclic group generated by (1,2,3,4) contains 4 elements. Its left and right cosets with (1,3) are equal to each other, so there are therefore no other elements that can be generated. Since $|\langle (1,3), (1,2,3,4) \rangle| = |D_8|$ and there exists a surjective homomorphism between them, φ is necessarily an isomorphism, so $\langle (1,3), (1,2,3,4) \rangle \cong D_8$. We conclude that it is a proper subgroup of S_4 .

8. (12/8/23)

Prove the lattice of subgroups of A_4 given in this text is correct.

Proof. The alternating group A_4 has order $|S_4|/2 = 12$. By Lagrange's Theorem, its proper subgroups must have order 2, 3, 4, or 6.

It contains no subgroups generated by a single transposition, e.g. $\langle (1,2) \rangle$, since these contain odd permutations. The other subgroups generated by an element of order 2 are all shown above.

The lattice also contains all subgroups generated by a single 3-cycle, e.g. $\langle (1,2,3) \rangle$. There might be a proper subgroup of order 6 containing one of these. However, as we will show in Exercises 14 and 15, the join of $\langle (1,2,3) \rangle$ with another 3-cycle or with a pair of disjoint transpositions produces all of A_4 . Since there are no other permutations in A_4 , this implies that there is no proper subgroup containing the cyclic group generated by a 3-cycle.

Finally, the join of two order 2 subgroups produces $\langle (1,2)(3,4), (1,3)(2,4) \rangle$. Since this subgroup is of index 3 in A_4 , there are no other subgroups of A_4 , and thus the lattice displayed above is correct and complete.

9. (12/8/23)

Prove that the (unique) subgroup of order 4 in A_4 is normal and is isomorphic to V_4 .

Proof. From above, the subgroup $\langle (1,2)(3,4), (1,3)(2,4) \rangle$ is the only subgroup of order 4 in A_4 . Its generators are both elements of order 2. Since the cyclic group Z_4 contains only one element of order 2, it is not isomorphic to Z_4 . There are only two groups of order 4 up to isomorphism, and therefore it is isomorphic to V_4 .

Next, it is normal in A_4 . We consider the conjugate of its generators by (without loss of generality) the permutation (1, 2, 3):

$$(1,2,3)(1,2)(3,4)(1,3,2) = (1,4)(2,3)$$
, and $(1,2,3)(1,3)(2,4)(1,3,2) = (1,2)(3,4)$,

both of which lie in $\langle (1,2)(3,4), (1,3)(2,4) \rangle$. Thus $\langle (1,2)(3,4), (1,3)(2,4) \rangle$ is normal in A_4 .

10. (12/8/23)

Find a composition series for A_4 . Deduce that A_4 is solvable.

Solution.

$$1 \le \langle (1,2)(3,4) \rangle \le \langle (1,2)(3,4), (1,3)(2,4) \rangle \le A_4$$

is a composition series for A_4 . The lower two quotient groups are isomorphic to Z_2 , a simple group, and $|A_4:\langle (1,2)(3,4),(1,3)(2,4)\rangle|=3$, which implies that the last quotient group is isomorphic to Z_3 , also simple. Since these quotient groups are also abelian, this implies that A_4 is solvable.

11. (12/12/23)

Prove that S_4 has no subgroup isomorphic to Q_8 .

Proof. Suppose that $A \leq S_4$ and that $\varphi : Q_8 \to A$ is an isomorphism. In Q_8 , |i| = 4, so φ must assign i to a permutation whose cycle decomposition is a 4-cycle. Without loss of generality, suppose that $\varphi(i) = (1, 2, 3, 4)$.

Because φ is injective, we cannot have $\varphi(j) = (1, 2, 3, 4)$. Also, $(1, 4, 3, 2) = (1, 2, 3, 4)^{-1}$, and since $j \neq -i$, we cannot have $\varphi(j) = (1, 4, 3, 2)$, so $\varphi(j)$ must equal some other 4-cycle in S_4 . The remaining options are:

$$\varphi(j) = (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), \text{ or } (1, 4, 2, 3).$$

Note that, in Q_8 , $i^2 = j^2 = -1$. Under φ , we have $\varphi(i)^2 = (1,3)(2,4)$. However, for none of the remaining 4-cycles we might assign j to do we have $\varphi(j)^2 = (1,3)(2,4)$. Thus there is no element to which we can assign j and have φ be an isomorphism. Therefore there S_4 has no subgroup isomorphic to Q_8 .

12. (12/12/23)

Prove that A_n contains a subgroup isomorphic to S_{n-2} for each $n \geq 3$.

Proof. We define a map $\varphi: S_{n-2} \to A_n$ by:

$$\varphi(\sigma) = \begin{cases} \sigma & \text{if } \sigma \text{ is even} \\ \sigma \cdot (n-1,n) & \text{if } \sigma \text{ is odd} \end{cases}.$$

Now noting that $\frac{1}{2}n(n-1) > 1$ for all $n \leq 3$, we conclude that:

$$\frac{1}{2}n(n-1) > 1$$

$$\frac{1}{2}n(n-1)(n-2) \cdot \dots \cdot 2 \cdot 1 > (n-2) \cdot \dots \cdot 2 \cdot 1$$

$$\frac{1}{2}(n!) > (n-2)!$$

$$|A_n| > S_{n-2}.$$

Since the order of A_n is strictly greater than that of S_{n-2} , φ cannot be surjective. It is trivial to show that it is injective, and so if φ is a homomorphism, then its image is a proper subgroup of A_n isomorphic to S_{n-2} .

Let $\sigma_1, \sigma_2 \in S_{n-2}$ and consider the different cases:

• Both even permutations. Then $\sigma_1 \sigma_2$ is even, so:

$$\varphi(\sigma_1\sigma_2) = \sigma_1\sigma_2 = \varphi(\sigma_1)\varphi(\sigma_2)$$

• Both odd permutations. Then $\sigma_1\sigma_2$ is even. Note that each $\sigma \in S_{n-2}$ is disjoint with the transposition (n-1,n), and so commutes with it in A_n . Therefore:

$$\varphi(\sigma_1)\varphi(\sigma_2) = \sigma_1 \cdot (n-1,n) \cdot \sigma_2 \cdot (n-1,n)$$

$$= \sigma_1 \sigma_2 (n-1,n)(n-1,n)$$

$$= \sigma_1 \sigma_2, \text{ and}$$

$$\varphi(\sigma_1 \sigma_2) = \sigma_1 \sigma_2.$$

• One even, one odd. Let σ_1 be an even permutation and σ_2 be odd (and their product is odd). Then:

$$\varphi(\sigma_1\sigma_2) = \sigma_1\sigma_2 \cdot (n-1,n)$$
, and $\varphi(\sigma_1)\varphi(\sigma_2) = \sigma_1\sigma_2 \cdot (n-1,n)$.

This proves that φ is a homomorphism, and since it is injective but not surjective, its image is a subgroup of A_n that is isomorphic to S_{n-2} .

13. (12/13/23)

Prove that every element of order 2 in A_n is the square of an element of order 4 in S_n . [An element of order 2 in A_n is a product of 2k commuting transpositions.]

Proof. From Chapter 1.3, Exercise 15, the order of a permutation is equal to the least common multiple of the lengths of cycles in its cycle decomposition. Therefore an element of order 2 in $A_n \leq S_n$ must have a cycle decomposition with only 2-cycles, that is, it must be the product of disjoint transpositions.

Let $\sigma \in A_n$ have order 2 with the cycle decomposition:

$$(a_1,b_1)(c_1,d_1)...(a_k,b_k)(c_k,d_k).$$

Then σ is the square of the permutation in S_n with the cycle decomposition:

$$(a_1, c_1, b_1, d_1)...(a_k, c_k, b_k, d_k).$$

Since all of these cycles are disjoint, the permutation has order 4, so every element of order 2 in A_n is the square of an element of order 4 in S_n .

14. (12/13/23)

Prove that the subgroup of A_4 generated by any element of order 2 and any element of order 3 is all of A_4 .

Proof. Without loss of generality, we consider the subgroups generated by an arbitrary element of order 3 and $(1,2)(3,4) \in A_4$. We claim that the product of (1,2)(3,4) and σ , a 3-cycle is always another 3-cycle that is not the inverse of σ :

$$(1,2)(3,4) \cdot (1,2,3) = (2,4,3)$$

$$(1,2)(3,4) \cdot (1,2,4) = (2,3,4)$$

$$(1,2)(3,4) \cdot (1,3,4) = (1,4,2)$$

$$(1,2)(3,4) \cdot (2,3,4) = (1,2,4).$$

For each of the four 3-cycles on the right-hand side of the equation, multiplying them on the left by (1,2)(3,4) produces the 3-cycle on the left-hand side of the equation.

Now the generated subgroup contains the the identity, (1,2)(3,4), and two distinct 3-cycles (as well as their inverses), for a total of 6 elements. From the table above, left-multiplying one of the inverses of the 3-cycles by (1,2)(3,4) produces yet another 3-cycle, so the subgroup contains at least 7 elements. By Lagrange's Theorem, its order must divide $|A_4| = 12$. Therefore, its order must be 12, that is, all of A_4 .

15. (12/14/23)

Prove that if x and y are distinct 3-cycles in S_4 with $x \neq y^{-1}$, then the subgroup of S_4 generated by x and y is A_4 .

Proof. Without loss of generality, let x = (1, 2, 3). Then y may be:

$$(1,2,4), (1,4,2), (1,3,4), (1,4,3), (2,3,4), \text{ or } (2,4,3).$$

For all x and y, $\langle x, y \rangle = \langle x, y^{-1} \rangle$, so (for example) if we prove that (1, 2, 3) and (1, 2, 4) generate A_4 , we conclude that (1, 2, 3) and $(1, 4, 2) = (1, 2, 4)^{-1}$ do as well.

Consider the options for y:

- y = (1, 2, 4): Then xy = (1, 2, 3)(1, 2, 4) = (1, 3)(2, 4), so from Exercise 14, we generate all of A_4 .
- y = (2,3,4): Then xy = (1,2,3)(2,3,4) = (1,2)(3,4), so from Exercise 14, we generate all of A_4 .
- y = (1,3,4): Then xy = (1,2,3)(1,3,4) = (2,3,4), so from the above case, we generate all of A_4 .

Thus any two distinct 3-cycles in S_4 that are not each other's inverse generate A_4 .

16. (12/15/23)

Let x and y be distinct 3-cycles in S_5 with $x \neq y^{-1}$.

(a) Prove that if x and y fix a common element of $\{1, ..., 5\}$ then $\langle x, y \rangle \cong A_4$.

Proof. Without loss of generality let x = (1, 2, 3) and suppose that x and y both fix 5. The possible 3-cycles y may be either assign one element of $\{1, ..., 5\}$ to the same element or assign none of the elements to the same element. So we only need to consider y = (1, 2, 4) (both assign 1 to 2) or y = (1, 4, 2) (assign none to the same).

- y = (1, 2, 4): Then xy = (1, 2, 3)(1, 2, 4) = (1, 3)(2, 4), so from Exercise 14, they generate A_4 .
- y = (1, 4, 2): Then $x^{-1}y = (1, 3, 2)(1, 4, 2) = (1, 4)(2, 3)$, so from Exercise 14, they generate A_4 .

If x and y do not fix 5, then for whichever element they both fix, we can map them to permutations in S_4 by decrementing the elements they each permute that are greater than the fixed element (e.g. if x = (1,3,5), y = (1,3,4), then we map them to (1,2,4),(1,2,3), respectively), so that the group generated by them is indeed A_4 .

(b) Prove that if x and y do not fix a common element of $\{1,...,5\}$ then $\langle x,y\rangle=A_5$.

Proof. Without loss of generality, we need only consider the case x = (1,2,3), y = (3,4,5) (all other cases have the same structure in that their respective cycle decompositions each share exactly one element of $\{1,...,5\}$).

Since x and y are both even permutations, they can only generate even permutations. We conclude that $\langle x,y\rangle \leq A_5$, so by Lagrange's Theorem its order must divide $|A_5|=60$.

Note that:

$$\begin{aligned} xy &= (1,2,3)(3,4,5) = (1,2,3,4,5),\\ yx &= (3,4,5)(1,2,3) = (1,2,4,5,3),\\ x^{-1}y &= (1,3,2)(3,4,5) = (1,3,4,5,2), \text{ and } (1,3,4,5,2)^{-1} = (1,2,5,4,3),\\ xy^{-1} &= (1,2,3)(3,5,4) = (1,2,3,5,4),\\ xyx &= (1,2,3)(3,4,5)(1,2,3) = (1,3,2,4,5), \text{ and }\\ (1,3,2,4,5)^2 &= (1,2,5,3,4),\\ yxy &= (3,4,5)(1,2,3)(3,4,5) = (1,2,3,5,4). \end{aligned}$$

Consider the cyclic subgroup of S_5 generated by a 5-cycle. It contains 5 elements, but we ignore the identity since it is common to all. Then all

the cyclic subgroups generated by the above 5-cycles contain a total of $6 \cdot 4 = 24$ non-identity elements (we know that they are all distinct since each can only contain one permutation beginning (1, 2, ...), which is shown above).

Now (1,2,3,4,5)(1,2,3,5,4) = (1,3)(2,4), and by Exercise 14, x together with this order 2 element generates A_4 , which contains 12 elements.

So far we have seen how to produce at least 24+12=36 distinct elements. By Lagrange's Theorem, since the order of this generated group must divide 60 yet is greater than 30, it must contain 60 elements, and therefore be all of S_5 .