

Introduction: GPU Architecture

Ivy Peng
Assistant Professor in Computer Science
Scalable Parallel System (ScaLab)
Department of Computer Science, KTH

Scalable Parallel System (KTH-ScaLab)

- Converged Cloud and HPC systems
 - Kubernetes
 - Architecture
 - Workflows
- Memory Systems
 - Heterogeneous memory
 - Disaggregated memory
- Heterogeneous Computing
 - GPU
 - RISC-V
 - Quantum Computing

Intended Learning Outcomes (ILO)

At the end of this course, you will be able to:

- Describe the architecture of recent AMD and Nvidia GPUs
- 2. Compile and run **CUDA** and **HIP** kernels on GPUs on a cluster
- 3. Use **profiling** tools to measure and analyze the performance of CUDA and HIP codes
- Transform and implement a serial kernel into CUDA and HIP code on GPU

Course Organization: Computer Resources

- For AMD GPU: you will be given access to the PDC Dardel Supercomputer with an allocation
 - You will learn how you connect and run jobs on supercomputers as part of this course

For Nvidia GPU: Google Colab on Google Cloud

Outline

Thursday – part 1 GPU Architecture: AMD and Nvidia

CUDA Programming

Hands-on

Thursday – part 2 CUDA Programming

Hands-on

Friday – part 3 AMD GPU

Hands-on

Friday – part 4 HIP Programming

Hands-on

Graphical Processing Unit (GPU)

GPU = <u>specialized</u> accelerator for processing images in video frame for display devices.

GPUs are used in <u>game consoles</u>, <u>embedded</u> <u>systems</u> (like systems on cars for automatic driving), <u>computers</u>, and <u>supercomputers</u>.

 Since 2012, GPUs are the main workforce for training deep-learning networks

Some important GPU vendors: **NVIDIA**, **AMD**,

Integrated GPU v.s. Dedicated GPU

- The main difference lies in the memory:
 - Integrated GPU shares the system memory with CPU
 - Dedicated GPU has its own memory
- Integrated GPU is often found in laptops, more power efficient, e.g., Intel HD or Iris Graphics.
- Dedicated GPUs are often removable and need more power, and provide higher performance
- In HPC, we focus on dedicated GPUs

GPU v.s. CPU Architecture

CPU has tens of massive cores, CPU excels at <u>irregular control</u>intensive work

- Lots of hardware for control, fewer ALUs
 GPU has thousands of small cores, GPU excels at <u>regular mathintensive</u> work
- Lots of ALUs, little hardware for control

GPU Hardware Model for Nvidia GPUs

The fundamental computing entity is

Streaming Processor (SP) or CUDA core

A Streaming Multiprocessor (SM):

- A collection of 8/32/192 CUDA Cores (depends on SM architecture)
- Has some fast cache shared memory
- Can synchronize

Nvidia A100 GPU

AMD Graphics Core Next (GNC) Architecture

AMD Graphics Core Next (GNC) Architecture

Recent Nvidia GPU Architecture

- Nvidia Volta Architecture, tensor cores, mixed precision
 - the GA100 GPU has 128 SMs, 64 FP32 CUDA Cores/SM
- Nvidia Ampere Architecture, 3rd gen NVLink
- Nvidia Hopper Architecture

Questions: how many cores in GA100?

 $2 \times 13 \times 192 = 4992!$

Questions: how many cores per node on Dardel host?

 $2 \times 64 = 128$

GPU is Throughput-oriented Architecture

- GPUs focus on executing many computation in parallel to maximizing the total throughput
 - GPUs do not target to minimize the latency of a single task

GPU Design Motivation: Process Pixels in Parallel

Data parallel

- In 1080i and 1080p videos, 1920 x 1080 pixels = 2M pixels per video frame → compute intensive
- Lots of parallelism at low clock speed → power efficient
- 2. Computation on each pixel is <u>independent</u> from computation on other pixels
 - No need for synchronization
- 3. Good <u>data-locality</u> = access to data is regular
 - No need for large caches

Mapping computation tasks to GPU hardware

- (1)Define computation tasks done by you
- (2)Schedule computational tasks on GPU cores done by CUDA runtime
 - Intuitively, higher throughput when more GPU cores are busy How?

Hardware Multithreading

- Computation can be divided into a collection of many concurrent sequential tasks that executed across many threads
 - E.g., decompose a large matrix
- Thread can be seen as virtualized scalar processor with a program counter, register file and associate processor state
- Multithreading can be implemented in software (OS) or hardware
 - E.g., hyper-threading on Intel processor
- Throughput-oriented architectures have implemented in hardware

SIMD Execution

Parallel processors employ some of form of Single-Instruction, Multiple Data (SIMD) execution to increase the throughput:

- Issuing a single instruction in a SIMD machine applies the given operation to potentially many data operands
- E.g.: a large matrix

How to improve GPU utilization?

- Increase # of CUDA cores
 - High-end GPUs have a large number of cores
- Define computation tasks with low dependency and synchronization
 - If task 0 needs to wait for task 1, adding CUDA cores won't help
- Define many tasks to oversubscribe
 - Define #tasks >> #cores

Hardware Multithreading Hides Latency

Long-latency operations of a single-thread can be hidden or covered by **ready-to-run work** from another thread, examples:

- Thread 1 cannot run because waiting data from DRAM
- Thread 2 can run because all its required operands are ready
- Switch to run thread 2 while overlapping data fetching for thread 1

Q & A