Revenue maximisation by intelligent couponing

Thomas Friedrich, Lukas Schmauch

Friedrich-Schiller-Universität Jena

20. Januar 2020

Übersicht

1 Aufgabenstellung und Datensatz

2 Klassifikation und Evaluation

Ausgangssituation

- Data Mining Cup 2010
- Ziel: Gewinnmaximierung anhand der Ermittlung der Wiederkäufer

		Vorhergesagt	
		kein Wiederkäufer(0)	Wiederkäufer(1)
Tatsächlich	kein Wiederkäufer(0)	1.5	0
	$Wiederk \ddot{a} ufer(1)$	-5	0

Der Datensatz

- 64854 Einträge
- 50:50 Train/ Test
- 38 Merkmale
- 20 numerisch
- 18 kategorisch

Konfusionsmatrix Naiver Run (Decision Tree)

• erzielter Umsatz: 8552.00 €

• Umsatzsteigerung: 0.04093 %

Accuracy: 81.00 %

Konfusionsmatrix nach Oversampling (Decision Tree)

erzielter Umsatz: 11520.00 €

Umsatzsteigerung: 25.79 %

Accuracy: 75.23 %

Backward Feature Elimination

7/9

Zusammenfassung der Ergebnisse

Klassifikator	Umsatz	Steigerung
Ohne Optimierung	8548.50 €	-
Decision Tree Naiv	8552.00 €	0.0004 %
Decision Tree Oversampling	11667.50 €	36.4859 %
Random Forest Oversampling	11709.50 €	36.9772 %
Optimaler Klassifikator	39388.50 €	-

Quelle: Aufgabenstellung und Datensatz

Data Mining Cup 2010

https://www.data-mining-cup.com/reviews/dmc-2010/