STATISTIKA INFERENSIAL LANJUT

PERTEMUAN 12

Konsep Dasar Pemodelan Runtun Waktu

Proses Stokastik

- □ Dalam analisis runtun waktu (time series), langkah pertama yang dilakukan adalah menentukan model matematika yang sesuai untuk data yang dimiliki.
- ☐ Biasanya kita menganggap setiap hasil observasi masa depan yang tidak diketahui sebagai realisasi dari suatu peubah acak (variable random) tertentu.
- \square Dengan demikian, misalkan X_t adalah suatu variable random maka x_t merupakan realisasi dari variable random tersebut.

Definisi :

Suatu **Proses Stokastik** adalah keluarga variable random $\{X_t, t \in T\}$ yang didefinisikan pada ruang probabilitas (Ω, \mathcal{F}, P) .

Definisi :

Fungsi $\{X(\omega), \omega \in \Omega\}$ pada T disebut sebagai **realisasi atau lintasan sampel** dari proses $\{X_t, t \in T\}$.

Pada Analisis Runtun Waktu, himpunan indeks T merupakan himpunan waktu dan $T \subseteq \mathbb{R}$. Istilah runtun waktu biasanya mengacu pada data dan realisasi dari proses.

Contoh

Misalkan A dan θ adalah variable random dengan $A \geq 0$ dan θ berdistribusi secara seragam pada $[0,2\pi]$. Suatu proses stokastik $\{X(t),t\in\mathbb{R}\}$ dapat didefinisikan untuk $v\geq 0$ dan $r\geq 0$ oleh persamaan

$$X(t) = r^{-1}A\cos(vt + \theta)$$

Sebagai salah satu realisasi dari persamaan tersebut adalah

$$X(t) = 2\cos(0.5t + 0.2\pi)$$

Misal akan dibangkitkan 200 amatan dari realisasi tersebut dengan Rstudio

```
> t<- 1:200
> x<- 2*cos(0.5*t + 0.2*pi)</pre>
```

> plot.ts(x)

Proses Stasioner

Definisi :

Misalkan $\{X_t\}$ adalah suatu deret waktu dengan $E(X_t^2) < \infty$.

- 1. Fungsi mean deret $\{X_t\}$ adalah $\mu_X(t) = E(X_t)$.
- 2. Fungsi Kovariansi $\{X_t\}$ adalah

$$\gamma_X(r,s) = cov(X_r, X_s) = E[(X_r - \mu_X(r))(X_s - \mu_X(s))]$$

Untuk semua $r, s \in \mathbb{Z}$.

• Definisi:

Suatu runtun waktu $\{X_t, t = 0, \pm 1, \pm 2, \cdots\}$ dikatakan Stasioner Kuat (Strictly Stationary) jika distribusi bersama (X_1, X_2, \cdots, X_n) dan $(X_{1+h}, X_{2+h}, \cdots, X_{n+h})$ adalah sama untuk setiap bilangan bulat h dan n > 0.

Definisi :

Suatu runtun waktu $\{X_t\}$ dikatakan Stationer Lemah (Weakly Stationary)/ Stationer kovarians/ stationer tingkat dua jika

- 1. $E(X_t^2) < \infty$
- 2. $E(X_t) = konstanta$
- 3. $\gamma_X(t+h,t)$, behas dari t untuk setiap $h \in T$.

• Secara umum, suatu runtun waktu $\{X_t\}$ dikatakan stasioner jika deret tersebut memenuhi sifat-sifat statistika seperti deret waktu bergeser (*time-shifted*) $\{X_{t+h}, t=0,\pm 1,\pm 2,\cdots,\pm n\}$ untuk setiap bilangan bulat h.

• Akibat :

Berdasarkan kondisi (3) pada definisi stationer lemah, **fungsi autokovariansi** untuk proses $\{X_t\}$ pada beda waktu (lag) h didefinisikan sbb

$$\gamma_X(h) = \gamma_X(h, 0) = \gamma_X(t + h, t)$$

• Definisi:

Misalkan $\{X_t\}$ adalah deret waktu stasioner.

1. Fungsi Autokovariansi pada lag h adalah

$$\gamma_X(h) = cov(X_{t+h}, X_t) = E[(X_{t+h} - \mu_X(t+h))(X_t - \mu_X(t))]$$

2. Fungsi Autokorelasi pada lag h adalah

$$\rho_X(h) = cor(X_{t+h}, X_t) = \frac{\gamma_X(h)}{\gamma_X(0)}$$

Contoh

Diberikan model deret waktu tanpa pengaruh trend dan musiman dengan amatanamatan variable random yang saling bebas dan berdistribusi identic (*independent* and indentically distributed (IID)) dengan mean 0. Barisan variable random X_1, X_2, \cdots yang memiliki sifat ini disebut IID noise. Jika deret $\{X_t\}$ adalah IID noise dan $E(X_t^2) = \sigma^2 < \infty$ maka $E(X_t) = 0$ untuk semua t. Selanjutnya,

$$\gamma_X(t+h,t) = cov(X_{t+h}, X_t) = E[(X_{t+h} - \mu(X_{t+h}))(X_t - \mu(X_t))]$$
$$= E[(X_{t+h} - 0)(X_t - 0)] = E(X_{t+h}X_t)$$

- Untuk h = 0 maka didapat $\gamma_X(t, t) = E(X_t X_t) = E(X_t^2) = \sigma^2$
- Untuk h = -1 maka didapat $\gamma_X(t 1, t) = E[X_{t-1}X_t] = E(X_{t-1})E(X_t) = 0$
- Untuk h = 1 maka didapat $\gamma_X(t+1,t) = E[X_{t+1}X_t] = E(X_{t+1})E(X_t) = 0$

Dengan demikian, nilai $\gamma_X(t+h,t)=0$ apabila $|h|\neq 0$, maka

$$\gamma_X(t+h,t) = \begin{cases} \sigma^2, jika \ h = 0 \\ 0, jika \ h \neq 0 \end{cases}$$

Yang tidak bergantung pada t. Jadi, IID noise adalah stasioner dan dinotasikan dengan $\{X_t\}\sim IID(0,\sigma^2)$.

Misal akan dibangkitkan 200 amatan dari realisasi IID(0,1) dengan Rstudio

```
iid<- rnorm(200,0,1)
> iid
      -2.19704710 -0.41786009 0.74788947 -1.10897344 -0.47394725 -0.04082961
      -0.76701308
                  0.21453802 -2.38892908
                                           0.15895372
                                                       0.79928226
                                                                    0.02917587 -1.10074854
      -0.39253900
                   0.26686590 -0.65833860
                                           0.22658343
                                                       1.17730894
      -0.78028480
                  1.41349208 -0.94306432
                                           0.55280470 -0.84237137
                                                                    0.39583384
                                                                                0.40655265
 [29]
       0.59163877 -0.58437730 -0.37630118 -2.14370284
                                                       0.46536406
                                                                   0.05372331 -0.30273634
                   0.75915722 0.11063006 -0.16226328
                                                       0.78417225 -0.68451072 -0.55289964
      -0.19163654
       0.55079699
                   0.43422971 -1.62481479
                                           0.32022489 -0.86857804 -0.24698205 -1.62834006
       1.42989596 -2.01258418
                               0.63170160 -0.46126326 -1.25489074
                                                                   1.00358832 -0.75979427
       0.23197342 -1.66841473 -0.67222941
                                           0.49268999 -0.87470092
                                                                   1.17741753 -0.69278720
      -0.18028267
                   0.71922266
                               0.71402414 -0.16057188 -1.34893391 1.48664659 -1.59965374
      -0.12133140
                   0.19204603 -0.21231127
                                           0.12238738 -0.14354966 1.66403331 -0.28806958
 [78]
       0.86016018 -0.93397546
                               2.17292899
                                          -0.63949981 -0.50618895 0.27320804 -1.06592474
                                                                   0.84090299
       0.32965116
                   0.84232020 -1.06220751 -0.11766319
                                                       0.23876004
                                                                                0.81629601
 [85]
       1.16770700
                                                                   0.25226985
                               1.64385693
                                           0.04864869
                                                       1.08108463
 [92]
                   0.91993147
      -0.67345121 -0.03112495 -0.70408250 -1.43689825 -1.79378190 -0.16160825
                               1.00294558 -2.30224556
[113]
                   1.02351352 -0.72392775 -0.07121749 -0.11825243 -0.54583730 -1.31174591
[120]
                               1.65523612 -0.69729973
                                                       1.76582378
[127]
                              -0.22316040
                                           0.34397431 -0.04469920
                               0.37009298 -1.06082241 -0.80561219
      -1.71099324 -0.67014946 -0.33475294 -0.18211320
                                                       1.17118541
                                                                                0.34700906
      -0.79730833
                   0.32970195
                               0.84086544
                                           0.34169920
                                                       0.05517539 -0.27438047
                                                                                0.55656712
[155]
      -1.74960449
                  1.36211689 -1.50833739 -1.09523176 -0.12451750 -0.09048216
                                                                                0.24360086
[162]
       0.42278311 -0.10562349
                               0.45812127
                                           0.17783001 -0.15638071 -0.12501482
[169]
       0.40892683
                   0.15914553 -0.69251751 -0.59557101
                                                       0.87936744 -1.00209858 -3.30757727
[176]
      -0.35243747 -0.47255045
                               0.61400612 -0.03984024
                                                      -0.90917417 -0.05198067
[183]
                   1.19914134
                               0.06669461 -0.38418945 -0.54093870
                                                                    1.17254282
[190]
                   0.42516023
                               0.04261107
                                           0.16268389 1.23789581 -0.53441630 -0.01070987
[197]
       0.27935357
                  0.31108621 -0.89061976
                                          1.53211792
> plot.ts(iid)
```


Contoh

Diberikan Langkah acak (random walk) $\{S_t, t=0,1,2,\cdots\}$ dimulai dari 0, diperoleh dengan menjumlahkan secara kumulatif variable random IID. Dengan demikian, suatu Langkah acak dengan nilai mean 0 diperoleh dengan mendefinisikan $S_0=0$ dan $S_t=X_1+X_2+\cdots+X_t$ untuk $t=1,2,3,\cdots$ dengan $\{X_t\}$ IID noise. Jika $\{S_t\}$ adalah Langkah acak dan $\{X_t\}$ IID noise maka

$$E(S_t) = E(X_1 + X_2 + \dots + X_t)$$

= $E(X_1) + E(X_2) + \dots + E(X_t)$

$$= 0 + 0 + \cdots 0 = 0$$

$$E(S_t^2) = E((X_1 + X_2 + \dots + X_t)^2)$$

$$= E(X_1^2 + X_2^2 + \dots + X_t^2 + X_1X_2 + \dots + X_{t-1}X_t)$$

$$= E(X_1^2) + E(X_2^2) + \dots + E(X_t^2) + E(X_1X_2) + \dots + E(X_{t-1}X_t)$$
Karena $\{X_t\}$ IID noise maka $E(X_{t-1}X_t) = 0$ sehingga
$$E(S_t^2) = E((X_1 + X_2 + \dots + X_t)^2)$$

$$= E(X_1^2) + E(X_2^2) + \dots + E(X_t^2) + E(X_1X_2) + \dots + E(X_{t-1}X_t)$$

$$= E(X_1^2) + E(X_2^2) + \dots + E(X_t^2) + 0 + \dots + 0$$

$$= E(X_1^2) + E(X_2^2) + \dots + E(X_t^2)$$

$$= \sigma^2 + \sigma^2 + \dots + \sigma^2 = t\sigma^2$$

Dengan demikian, $E(S_t^2)=t\sigma^2<\infty$ untuk setiap t. Selanjutnya akan ditentukan fungsi autokovariansi sampelnya

$$\begin{split} & \gamma_X(t+h,t) = cov(S_{t+h},S_t) \\ & = cov(X_1 + X_2 + \dots + X_{t+h},S_t) \\ & = cov(X_1 + X_2 + \dots + X_t + X_{t+1} + \dots + X_{t+h},S_t) \\ & = cov(S_t + X_{t+1} + X_{t+2} + \dots + X_{t+h},S_t) \\ & = E[\left(S_t + X_{t+1} + X_{t+2} + \dots + X_{t+h} - \mu(S_t + X_{t+1} + X_{t+2} + \dots + X_{t+h})\right)\left(S_t - \mu(S_t)\right)] \\ & = E[\left(S_t + X_{t+1} + X_{t+2} + \dots + X_{t+h} - 0\right)\left(S_t - 0\right)] \\ & = E[S_t^2 + S_t X_{t+1} + S_t X_{t+2} + \dots + S_t X_{t+h}] \\ & = E(S_t^2) + E(S_t X_{t+1}) + E(S_t X_{t+2}) + \dots + E(S_t X_{t+h}) \\ & = E(S_t^2) + E(S_t)E(X_{t+1}) + E(S_t)E(X_{t+2}) + \dots + E(S_t)E(X_{t+h}) \\ & = E(S_t^2) + 0 + 0 + \dots + 0 \\ & = t\sigma^2 \end{split}$$

Karena $\gamma_X(t+h,t)$ masih bergantung pada variable t maka $\{S_t\}$ tidak stasioner.

Misal akan dibangkitkan 200 amatan dari realisasi dari $\{S_t\}$ dengan Rstudio

```
> x<- rnorm(200,0,1)
> x<- cumsum(x)
> plot.ts(x)
>
> acf(x, type="covariance")
> acf(x)
```


Contoh 3.2.4. Misalkan suatu deret waktu didefinisikan oleh

$$X_t = \varepsilon_t + \theta \varepsilon_{t-1}, \quad t = 0, \pm 1, \pm 2, \dots \tag{3.21}$$

dengan $\{\varepsilon_t\} \sim WN(0, \sigma^2)$ dan θ adalah konstanta bilangan real. Berdasarkan Persamaan (3.21) dapat dihitung

$$E(X_t) = E(\varepsilon_t + \theta \varepsilon_{t-1})$$

$$= E(\varepsilon_t) + \theta E(\varepsilon_{t-1})$$

$$= 0.$$
(3.22)

Selanjutnya

$$var(X_t) = var(\varepsilon_t + \theta \varepsilon_{t-1})$$

$$= var(\varepsilon_t) + \theta^2 var(\varepsilon_{t-1}) + 2cov(\varepsilon_t, \theta \varepsilon_{t-1})$$

$$= \sigma^2 + \theta^2 \sigma^2 + 0$$

$$= \sigma^2 (1 + \theta^2). \tag{3.23}$$

Berdasarkan Persamaan (3.23) diperoleh $E(X_t^2) = \sigma^2(1 + \theta^2) < \infty$. Kemudian kita dapat menghitung fungsi autokovarians X_t , yakni

$$\gamma_X(t+h,t) = \mathrm{E}[(X_{t+h} - \mu(X_{t+h}))(X_t - \mu(X_t))]$$

$$= \mathrm{E}[(X_{t+h} - 0)(X_t - 0)]$$

$$= \mathrm{E}[(X_{t+h} X_t)]$$

$$= \mathrm{E}[(\varepsilon_{t+h} + \theta \varepsilon_{t+h-1})(\varepsilon_t + \theta \varepsilon_{t-1})]$$
(3.24)

Untuk h = 0, Persamaan (3.24) menjadi

$$\gamma_X(t+h,t) = \mathbb{E}[(\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_t + \theta \varepsilon_{t-1})]
= \mathbb{E}[(\varepsilon_t^2 + 2\theta \varepsilon_t \varepsilon_{t-1} + \theta^2 \varepsilon_{t-1}^2)]
= \mathbb{E}(\varepsilon_t^2) + 2\theta \mathbb{E}(\varepsilon_t) \mathbb{E}(\varepsilon_{t-1}) + \theta^2 \mathbb{E}(\varepsilon_{t-1}^2)
= \sigma^2 + \theta^2 \sigma^2
= \sigma^2 (1 + \theta^2).$$
(3.25)

Selanjutnya untuk h = 1, Persamaan (3.24) menjadi

$$\gamma_X(t+1,t) = \mathrm{E}[(\varepsilon_{t+1} + \theta \varepsilon_t)(\varepsilon_t + \theta \varepsilon_{t-1})]
= \mathrm{E}[(\varepsilon_{t+1}\varepsilon_t + \theta \varepsilon_{t+1}\varepsilon_{t-1} + \theta \varepsilon_t\varepsilon_t + \theta^2 \varepsilon_t\varepsilon_{t-1})]
= \mathrm{E}(\varepsilon_{t+1}) \, \mathrm{E}(\varepsilon_t) + \theta \, \mathrm{E}(\varepsilon_{t+1}) \, \mathrm{E}(\varepsilon_{t-1}) + \theta \, \mathrm{E}(\varepsilon_t^2) + \theta^2 \, \mathrm{E}(\varepsilon_t) \, \mathrm{E}(\varepsilon_{t-1})
= 0 + 0 + \theta \sigma^2 + 0
= \theta \sigma^2.$$
(3.26)

Selanjutnya untuk h = -1, Persamaan (3.24) menjadi

$$\gamma_X(t-1,t) = \mathrm{E}[(\varepsilon_{t-1} + \theta \varepsilon_{t-2})(\varepsilon_t + \theta \varepsilon_{t-1})]
= \mathrm{E}[(\varepsilon_{t-1}\varepsilon_t + \theta \varepsilon_{t-1}\varepsilon_{t-1} + \theta \varepsilon_{t-2}\varepsilon_t + \theta^2 \varepsilon_{t-2}\varepsilon_{t-1})]
= \mathrm{E}(\varepsilon_{t-1}) \, \mathrm{E}(\varepsilon_t) + \theta \, \mathrm{E}(\varepsilon_{t-1}^2) + \theta \, \mathrm{E}(\varepsilon_{t-2}) \, \mathrm{E}(\varepsilon_t) + \theta^2 \, \mathrm{E}(\varepsilon_{t-2}) \, \mathrm{E}(\varepsilon_{t-1})
= 0 + \theta \sigma^2 + 0 + 0
= \theta \sigma^2.$$
(3.27)

Selanjutnya dapat dihitung untuk |h| > 1 nilai $\gamma_X(t + h, t) = 0$. (Coba Anda periksa untuk $h = \pm 2$ dan $h = \pm 3$). Dengan demikian fungsi autokovariansnya adalah

$$\gamma_X(t+h,t) = \begin{cases} \sigma^2(1+\theta^2), & \text{jika } h = 0; \\ \sigma^2\theta, & \text{jika } h = \pm 1; \\ 0, & \text{jika } |h| > 1. \end{cases}$$
(3.28)

Dengan demikian deret waktu X_t adalah stasioner. Kemudian, fungsi autokorelasi $\{X_t\}$ dapat dihitung untuk masing-masing h. Mengingat $\gamma_X(0) = \gamma_X(0,0) = \gamma_X(t+0,t) = \sigma^2(1+\theta^2)$, maka untuk h=0

$$\rho_X(0) = \frac{\gamma_X(0)}{\gamma_X(0)} = 1. \tag{3.29}$$

Untuk h = 1, $\gamma_X(1) = \gamma_X(t+1,t) = \theta \sigma^2$ sehingga

$$\rho_X(1) = \frac{\theta \sigma^2}{\sigma^2 (1 + \theta^2)}$$

$$= \frac{\theta}{(1 + \theta^2)}.$$
(3.30)

Untuk h = -1, $\gamma_X(-1) = \gamma_X(t-1,t) = \theta \sigma^2$ sehingga

$$\rho_X(-1) = \frac{\theta \sigma^2}{\sigma^2 (1 + \theta^2)}$$

$$= \frac{\theta}{(1 + \theta^2)}.$$
(3.31)

Untuk |h| > 1, nilai $\gamma_X(h) = 0$. Jadi

$$\rho_X(h) = \begin{cases} 1, & \text{jika } h = 0; \\ \frac{\theta}{(1+\theta^2)}, & \text{jika } h = \pm 1; \\ 0, & \text{jika } |h| > 1. \end{cases}$$
(3.32)

Proses pada Persamaan (3.21) disebut proses rerata bergerak (moving average) tingkat satu, dinotasikan MA(1). Berikut akan disimulasikan 200 realisasi MA(1) dengan $\theta = 0.6$ dan $\theta = -0.6$.

```
> par(mfrow=c(2,1))
> plot(arima.sim(list(order=c(0,0,1),ma=0.6), n=200), ylab="x", main="theta=0.6")
> plot(arima.sim(list(order=c(0,0,1),ma=-0.6), n=200), ylab="x", main="theta=-0.6")
```

theta=0.6

theta=-0.6

Fungsi Autokovariansi & Autokorelasi Sampel

• Definisi:

Misal x_1, x_2, \dots, x_n adalah amatan-amatan dari suatu deret waktu. Rata-rata sampel dari x_1, x_2, \dots, x_n adalah

$$\bar{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$

• Definisi:

Misal x_1, x_2, \dots, x_n adalah amatan-amatan dari suatu deret waktu.

1. Fungsi Autokovariansi sampel

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \bar{x})(x_t - \bar{x})$$

Dengan $\hat{\gamma}(-h) = \hat{\gamma}(h) \ dan \ |h| < n$.

2. Fungsi Autokorelasi sampel

$$\widehat{\rho}(h) = \frac{\widehat{\gamma}(h)}{\widehat{\gamma}(0)}$$

Dengan |h| < n.

Catatan

- 1. Untuk $h \ge 0$, fungsi autokorelasi sampel $\hat{\gamma}(h)$ hampir sama atau mendekati kovarians sampel n-h pasangan amatan $(x_1,x_{1+h}), (x_2,x_{2+h}), \ldots, (x_{n-h},x_n)$. Perbedaan muncul pada saat penggunaan pembagi n dibandingkan n-h dan pengurangan rata-rata keseluruhan (overall mean) \bar{x} dari masing-masing faktor pada penjumlahan. Penggunaan pembagi n menjamin bahwa matriks kovarians sampel $\hat{\Gamma}_n = [\hat{\gamma}(i-j)]_{i,j=1}^n$ adalah definit positif. Jumlah pada Persamaan (3.34) berjalan pada jangka terbatas karena x_{t+h} tidak tersedia untuk t+h>n (Shumway dan Stoffer, 2006).
- 2. Matriks korelasi sampel $\hat{R}_n = [\hat{\rho}(i-j)]_{i,j=1}^n$ adalah definit positif. Masing-masing elemen diagonalnya sama dengan 1, karena $\hat{\rho}(0) = 1$.
- 3. Fungsi autokovarians dan autokorelasi sampel dapat dihitung untuk sebarang kumpulan data $\{x_1, \ldots, x_n\}$ dan tidak terbatas hanya untuk amatan deret waktu stasioner. Untuk data yang mengandung tren $|\hat{\rho}(h)|$ akan menurun secara lambat seiring naiknya h, dan untuk data dengan komponen periodik deterministik $\hat{\rho}(h)$ akan menunjukkan tingkah laku serupa dengan periode yang sama.

Proses White Noise

Definisi 3.4.1. Suatu proses linear X_t didefinisikan sebagai suatu kombinasi linear dari variat derau putih (*white noise*) W_t , yakni

$$X_{t} = \mu + \sum_{j=-\infty}^{\infty} \psi_{j} W_{t-j}$$
 (3.36)

dengan $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$.

Fungsi autokovarians proses linear pada Persamaan (3.36) adalah

$$\gamma(h) = \sigma^2 \sum_{j=-\infty}^{\infty} \psi_{j+h} \psi_j. \tag{3.37}$$

Sifat-sifat

3.5.1 Sifat-sifat Varians

Berikut ini sifat-sifat penting varians:

- 1. $var(X) \ge 0$,
- 2. $var(a + bX) = b^2 var(X)$,
- 3. Jika X dan Y saling bebas, maka var(X + Y) = var(X) + var(Y)

3.5.2 Sifat-sifat Kovarians

Sifat-sifat penting kovarians adalah sebagai berikut:

- 1. cov(a + bX, c + dY) = bdcov(X, Y),
- 2. $\operatorname{var}(X + Y) = \operatorname{var}(X) + \operatorname{var}(Y) + 2\operatorname{cov}(X, Y)$,
- 3. cov(X + Y, Z) = cov(X, Z) + cov(Y, Z),
- 4. cov(X, X) = var(X),
- 5. cov(X, Y) = cov(Y, X),
- 6. Jika X dan Y saling bebas, cov(X, Y) = 0.

3.5.3 Sifat-sifat Korelasi

Sifat-sifat penting korelasi adalah sebagai berikut: $-1 \le cor(X, Y) \le 1$ dan

$$cor(a + bX, c + dY) = sign(bd)cor(X, Y)$$
(3.38)

dengan

$$\operatorname{sign}(bd) = \begin{cases} 1, & \text{jika } bd > 0, \\ 0, & \text{jika } bd = 0, \\ -1, & \text{jika } bd < 0. \end{cases}$$

3.5.4 Sifat-sifat Fungsi Autokovarians dan Autokorelasi

Berikut ini adalah sifat-sifat penting fungsi autokovarians:

- 1. $\gamma(t,t) = \operatorname{var}(X_t)$,
- 2. $\gamma(t,s) = \gamma(s,t)$,
- 3. $|\gamma(t,s)| \leq \sqrt{\gamma(t,t)\gamma(s,s)}$.

Untuk fungsi autokorelasi:

- 1. $\rho(t,t) = 1$,
- 2. $\rho(t, s) = \rho(s, t)$,
- 3. $|\rho(t,s)| \leq 1$.

Jika $\rho(t,s) = 0$, maka X_t dan X_s tidak berkorelasi.

Latihan

- 1. Misalkan E(X) = 4, var(X) = 3, E(Y) = 0, var(Y) = 4, dan cor(X, Y) = 0.35. Hitung:
 - a) var(X + Y)
 - b) cov(X, X + Y)
 - c) cov(X + Y, Y)
 - d) cor(X + Y, X Y)
- 2. Jika X dan Y tidak saling bebas, tetapi var(X) = var(Y). Hitunglah cov(X + Y, X Y).

- 3. Misalkan $X_t = 5 + 2t + W_t$ dengan W_t adalah deret stasioner dengan fungsi autokovarians $\gamma(k)$.
 - a) Hitunglah fungsi nilai tengah untuk $\{X_t\}$.
 - b) Fungsi autokovarians untuk $\{X_t\}$.
 - c) Apakah $\{X_t\}$ stasioner?
- 4. Misalkan peubah acak A memiliki nilai tengah 0 dan varians 1 dan θ adalah peubah acak yang berdistribusi seragam pada selang [-π, π] dan bebas dari A. Apakah model-model deret waktu berikut stasioner?
 - a) $X_t = (-1)^t A$;
 - b) $X_t = A\sin(\omega t + \theta)$;
 - c) $X_t = A\sin(2\pi t + \theta)$.

5. Misalkan $\{W_t\}$ adalah suatu barisan peubah acak normal bebas, masing-masing dengan rerata 0 dan varians σ^2 , dan misalkan a, b, dan c adalah konstanta. Berikut ini adalah beberapa model deret waktu:

a)
$$X_t = a + bW_t + cW_{t-2}$$
;

b)
$$X_t = W_1 \cos(ct) + W_2 \sin(ct)$$
;

c)
$$X_t = W_t \cos(ct) + W_{t-1} \cos(ct)$$
;

d)
$$X_t = a + bW_0$$
;

e)
$$X_t = W_0 \cos(ct)$$
;

f)
$$X_t = W_t W_{t-1}$$
.

Tentukan mana di antara proses-proses tersebut yang stasioner! Kemudian untuk masing-masing proses stasioner hitunglah fungsi nilai fungsi autokovarians, dan fungsi autokorelasinya. 6. Misalkan $\{X_t\}$ adalah proses rerata bergerak tingkat dua yang diberikan oleh

$$X_t = \varepsilon_t + \theta \varepsilon_{t-2}$$

dengan $\{\varepsilon_t\} \sim WN(0, 1)$.

- a) Hitunglah fungsi autokovarians dan autokorelasi untuk proses ini saat $\theta = 0.8$.
- b) Lakukan seperti langkah (a) untuk $\theta = -0.8$.
- c) Hitunglah varians dari rerata sampel $(X_1 + X_2 + X_3 + X_4)/4$ pada saat $\theta = 0.8$.
- d) Lakukan simulasi model sebanyak 200 untuk kedua θ .

Misalkan suatu model deret waktu

$$X_t = \beta_1 + \beta_2 t + W_t$$

dengan β_1 dan β_2 adalah konstanta yang diketahui dan $W_t \sim WN(0, \sigma^2)$.

- a) Apakah X_t stasioner?
- b) Tunjukkan bahwa proses $U_t = X_t X_{t-1}$ adalah stasioner!

 Misalkan model langkah acak dengan dorongan δ (random walk with drift) diberikan oleh

$$X_t = \delta + X_{t-1} + W_t, \quad t = 1, 2, \dots,$$

dengan $X_0 = 0$ dan $W_t \sim WN(0, \sigma^2)$.

- a) Tunjukkan bahwa model ini dapat ditulis sebagai $X_t = \delta t + \sum_{k=1}^t W_k$.
- b) Hitunglah fungsi nilai tengah dan fungsi autokovariansnya.
- c) Tunjukkan bahwa deret ini tidak stasioner.
- 9. Misalkan $cov(X_t, X_{t-h}) = \gamma(h)$ adalah bebas dari t, namun $E(X_t) = 3t$.
 - a) Apakah $\{X_t\}$ stasioner?
 - b) Misalkan $Y_t = 7 3t + X_t$. Apakah $\{Y_t\}$ stasioner?

- 10. Misalkan $X_t = \varepsilon_t \theta(\varepsilon_{t-1})^2$. Diasumsikan derau putih berdistribusi normal.
 - a) Hitunglha fungsi autokorelasi $\{X_t\}$
 - b) Apakah $\{X_t\}$ stasioner?
- 11. Misalkan $X_1 = \theta_0 + \varepsilon_1$ dan untuk t > 1 definisikan X_t secara rekursif dengan $X_t = \theta_0 + X_{t-1} + \varepsilon_t$ dengan θ_0 adalah konstanta. Proses $\{X_t\}$ dikatakan langkah acak dengan hanyutan (random walk with drift).
 - a) Tunjukkan bahwa X_t dapat ditulis sebagai $X_t = t\theta_0 + \varepsilon_t + \varepsilon_{t-1} + \cdots + \varepsilon_1$.
 - b) Hitunglah fungsi nilai tengah X_t .
 - c) Hitunglah fungsi autokovarians untuk X_t.