Kozmologija

Kozmologija je veda o vesolju, ki združuje fiziko zelo majhnega in fiziko zelo velikega. Sprašuje se vprašanja kot:

- · sestava vesolja?
- struktura?
- izvor?
- razvoj?
- končna usoda?

Kompernikanski princip

Nimamo posebnega položaja v vesolju.

Primer: Hubblov zakon

$$\vec{v}_B = H\vec{r}_B \ \vec{v}_C = H\vec{r}_C \ \vec{v}_{BC} = \vec{v}_B - \vec{v}_C = H(\vec{r}_B - \vec{r}_C) = H\vec{r}_{BC}$$

Kaj vemo o vesolju?

- Snov
- Sevanje (CMB prevladuje)
- Uniformno vesolje
- Vesolje se siri

Snov v vesolju

- Barionska snov (barioni so delci sestavljeni iz kvarkov)
 - o Snov katere masa je v glavnem sestavljena iz barionov (nevtralni atomi, plazma ipd.)
- Temna snov:
 - o Barionska (1/6 snovi)
 - Nebarionska (5/6 snovi)

Primer: Koliko je jeder vodika za vsako jedro helija?

Vemo da je masni delež približno 75% H in 25% He:

$$\frac{M_H}{M_{tot}} \cdot \frac{M_{tot}}{M_{He}} = \frac{n_H m_H}{n_{He} m_{He}} = \frac{75}{25} = 3$$

$$3 = \frac{n_H}{n_{He}} = 3 \cdot \frac{m_{He}}{m_H} = 3 \cdot \frac{4m_H}{m_H} = 12$$

Torej je 12 atomov vodika, za vsak atom helija.

Sevanje

Prevladuje cosmic microwave background.

Uniformno vesolje

Kot smo videli je vesolje na velikih skalah $\sim 200 Mpc$ homogeno (ρ , p, T je vse na taki skali homogeno).

Velja **kozmološki princip**, ki pravi, da je vesolje na dovolj velikih skalah **homogeno** (to je povsod enako) in **izotropno** (to je neodvisno od smeri gledanja). Homogenost ne predpostavlja izotropnosti. Ce zahtevamo homogenost v vsaki točki, dobimo izotropnost.

Vesolje se siri

Rdeči premik spektrov se lahko razlagamo na dva načina. Lahko je to posledica Dopplerjevega premika ali pa sirjenja prostora. Danes vemo, da gre za sirjenje prostora. Za z < 0.2 velja **Hubblov zakon**, za večje rdeče premike pa ta linearna zveza ne velja več in potrebujemo model vesolja.

$$z \propto d$$
 $z = H_0 \frac{d}{c}$ $1 + z = \frac{\lambda_{obs}}{\lambda_{em}}$

Iz opazovanja supernov tipa Ia na visokih premikih smo ugotovili, da se meritve skladajo z modelom kjer imamo **temno energijo**. Odstopanje od prej znanega nam pokaze, da se **vesolje siri pospešeno**.

Olbersov paradoks

Najenostavnejše kozmološko opazovanje je: **nočno nebo je temno**. Ce bi sklepali, da živimo v neskončnem večnem in nespremenljivem vesolju, bi pomenilo, da bi prej ko slej z pogledom prišli na ploskev zvezde. To bi pomenilo da bi imeli svetlo nočno nebo.

To lahko ilustriramo z računom, kjer je j_* svetlobni tok neke zvezde:

$$j_{op} = j_* \frac{4\pi R_*^2}{4\pi d^2} = j_* \frac{d\Omega}{\pi}; \qquad d\Omega = \frac{\pi R_*^2}{d^2}$$

$$j_{tot} = \int j_* \frac{d\Omega}{\pi} = j_* \frac{4\pi}{\pi} = 4j_*$$

Tako vidimo, da če bi bilo vesolje večno in neskončno bi bilo nočno nebo svetlo kot površina zvezde. Paradoks nam sicer ne pove ali je vesolje končno v prostoru in neskončno v času oz. ali je obratno ali pa celo oboje.

Predpostavke paradoksa:

- Prostor opisuje evklidska geometrija
- Vesolje (zvezde in galaksije) je statično
- Vesolje je neskončno v prostoru
- Vesolje obstaja od vedno

Prah nam ne resi težav, ker bi se v takem morju sevanja segrel in sam seval. Torej je nekaj teh predpostav zgrešenih.

Povprečna prosta pot v vesolju (Kako daleč gledamo, da srečamo zvezdo)

Recimo da je izsev galaksije $L_{*,g}$ in da je gostota $n_{gal}=10^{-2}Mpc^{-3}$. Ce privzamemo, da je v vsaki taki galaksij $N_*=10^{10}$ je povprečna gostota zvezd v vesolju:

$$n_* \sim n_{gal} N_* \sim 10^{-60} m^{-3}$$

Povprečna prosta pot je torej:

$$l = \frac{1}{\sigma n_*}; \ \sigma = \pi R_{\odot}^2 \Rightarrow l = 10^{26} ly$$

Ker je nočno nebo temno, mora veljati, da je velikost vesolja:

$$l \ll 10^{26}$$

drugače bi povsod v povprečju zadeli na zvezdo in ne bi bilo teme. Oz. druga možna rešitev je, da je starost vesolja:

$$t_0 = \frac{l}{c} \ll 10^{16} let$$

Particle horizon = omejeno območje, ki ga lahko opazujemo, zaradi končne hitrosti svetlobe.

Iz Olbersovega paradoksa sledi, da je vesolje ali končno v času ali končno v prostoru ali oboje.

Modeli vesolja

Kozmološki model: enačbe in parametri (dobljeni iz meritev), ki opisujejo vesolje

Matematičen opis prostorčasa na velikih skalah

Leta 1916 Einstein opise Splošno teorijo relativnosti:

- Sestavine vesolja: prostorčas ter snov in sevanje
- Geometrijske lastnosti prostorčasa (npr. ukrivljenost) določata porazdelitvi energije in gibalne količini (ki sta povezani s porazdelitvijo snovi in sevanja)

Porazdelitev energije na velikih skalah ob kombinaciji z splošno teorijo relativnosti nam da matematičen opis prostorčasa na velikih skalah.

Geometrijski opis prostorčasa

Razdaljo med dogodki v ravnem štirirazsežnem prostoru zapišemo kot:

$$ds^2 = dx^2 + dy^2 + dz^2 - c^2 dt^2$$

Relativistični modeli vesolja

Einsteinova enačba polja

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

kjer je G teznor povezan z metriko (ukrivljenost prostorcasa) in T tenzor, ki opisuje porazdelitev energije in gibalne količine. Leta 1917 Einstein vključi dodaten člen za opis kozmologije, ki sluzi kot protiutež gravitaciji. To je Λ kozmološka konstanta in člen $\Lambda g_{\mu\nu}$ predstavlja **temno energijo**.

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} - \Lambda g_{\mu\nu}$$

Einsteinov model

- Kozmološki princip
- Λ za **nespremenljivo, statično vesolje** (ne opisuje vesolja, ki se siri)
- p=0
- Kozmološka konstanta uravnovesi gravitacijo $\Lambda = 4\pi G\rho/c^2$
- Končno vesolje $V \propto \Lambda^{-3/2}$
- **Neomejeno** (ukrivljen prostor, ki nima roba, vendar se znajdemo vnovič na začetni točki)

Model se ne sklada z opazovanji, ki kažejo, da vesolje ni statično. (» Λ je bila moja največja zmota« -Einstein)

Parameter ukrivljenosti k

- k = 0 ravnina: Trikotnik ima notranje kote 180°
- k > 0 krogla: Trikotnik ima notranje kote $> 180^{\circ}$
- k < 0 sedlo: Trikotnik ima notranje kote $< 180^{\circ}$

de Sitterjev model

- Kozmološki princip (homogeno in izotropno)
- Nestatično
- V povprečju sta ρ in p nicelna
- Geometrija vesolja je popolnoma odvisna od Λ
- Neskončna širitev vesolja
- Eksponentno sirjenje

$$a(t) \propto e^{Ht}$$
; $H = \sqrt{\Lambda c^2/3}$

Opis širitve vesolja

Definiramo r kot **sogibajoče koordinata** (vezana na »mrežo«) in a(t) **skalirni faktor**. Fizična oddaljenost je:

$$(ds)^2 = a(t)^2[(dx)^2 + (dy)^2 + (dz)^2] = a(t)^2(dr)^2$$

Skalirni faktor nam pove za koliko krat se je vesolje razširilo med t_1 in t_2 . Sogibajoče koordinate ostanejo enake. To vse velja, ko smo v ravnem prostoru k=0. (Na slikici je skalirni faktor R(t))

Friedmann-Robertson-Walkerjeva metrika

Generalizacija ukrivljenega prostorčasa. Vsebuje k in a. Zapisana v sferičnih sogibajočih koordinatah r, θ, ϕ .

$$ds^{2} = c^{2}dt^{2} - dl^{2} = c^{2}dt^{2} - a^{2} \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta \, d\phi^{2} \right]$$

Universe with positive curvature. Diverging line converge at great distances. Triangle angles add to more than 180°

Universe with *negative* curvature. Lines diverge at ever increasing angles Triangle angles add to less than 180°.

Universe with no curvature. Lines diverge at constant angle. Triangle angles add to 180°.

Friendmann-Robertson-Walkerjevi modeli vesolja

- $\Lambda = 0, k = +1$ imamo **veliki stisk (big crunch)** oz. zaprti model vesolja
- $\Lambda = 0, k = -1$ imamo odprti model vesolja $a \propto t$
- $\Lambda = 0, k = 0$ imamo **kritičen model vesolja** (Einstein-de Sittrov model) $a \propto t^{2/3}$

Glavni parametri modelov vesolja

Hubblova konstanta

$$z = H_0 \frac{d}{c}$$

Zanimivo (in neodgovorjeno) vprašanje je zakaj z dvema neodvisnima eksperimentoma izmerimo različni vrednosti H_0 , ki nista posledici merskih napak:

$$H_0 = (72 \pm 8) \frac{km/s}{Mpc} (HST \text{ key project})$$

$$H_0 = (67.3 \pm 1.2) \frac{km/s}{Mpc} (Planck)$$

Poglejmo oddajo fotona. l_{AB} se spremeni med t_{em} in t_{obs} za faktor:

$$\frac{a(t_{obs})}{a(t_{em})} \rightarrow \lambda_{obs} = \lambda_{em} \frac{a(t_{obs})}{a(t_{em})}$$

Za kozmološki rdeči premik vemo:

$$z = \frac{\lambda_{obs} - \lambda_{em}}{\lambda_{em}} = \frac{a(t_{obs})}{a(t_{em})} - 1$$

$$\Delta t = \frac{d}{c}$$

$$z = \frac{a(t + \Delta t)}{a(t)} - 1; \ a(t + \Delta t) \approx a(t) + \Delta a(t)$$

$$\Rightarrow z = \frac{a(t) + \Delta a(t)}{a(t)} - 1 = 1 + \frac{\Delta a(t)}{a(t)} - 1$$

Tako dobimo:

$$z = \frac{\Delta a(t)}{a(t)}; \quad \Delta a(t) = \Delta t \cdot \dot{a}(t)$$
$$z = \frac{\Delta t \, \dot{a}(t)}{a(t)} = \frac{c}{c} \Delta t \, \frac{\dot{a}(t)}{a(t)} = \frac{d}{c} \frac{\dot{a}(t)}{a(t)} = \frac{d}{c} H(t)$$

Tako smo našli časovno odvisnost za Hubblovo »konstantno«:

$$H(t) = \frac{\dot{a}(t)}{a(t)}$$

Parameter pojemka q

Se uporablja npr. za opis pospešenega sirjenja vesolja:

$$q(t) = -\frac{a(t)}{[\dot{a}(t)]^2}\ddot{a}(t)$$

Z njim lahko formuliramo **Hubblov zakon za** z > 0. **2**:

$$d = \frac{cz}{H_0} \left[1 + \frac{1}{2} (1 - q_0)z \right]$$

Izpeljava FRW metrike in lastna fizična trenutna razdalja

2D krogla:

$$x^{2} + y^{2} + z^{2} = a^{2}$$
 $xdx + ydx + zdz = 0$

Razdalja je torej:

$$dl^{2} = dx^{2} + dy^{2} + dz^{2} = dx^{2} + dy^{2} + \frac{(xdx + ydy)^{2}}{a^{2} - x^{2} - y^{2}}$$

Ce uvedemo sferne koordinate ra = dr = 0

$$dl^2 = a^2 d\theta^2 + a^2 \sin^2 \theta \, d\phi^2$$

3D krogla:

$$x^2 + y^2 + z^2 + w^2 = a^2$$

Razdaljo na podoben način kot prej izrazimo:

$$dl^{2} = dx^{2} + dy^{2} + dz^{2} + \frac{(xdx + ydy + zdz)^{2}}{a^{2} - x^{2} - v^{2} - z^{2}}$$

Sedaj uvedemo sferične koordinate ($r'^2 = x^2 + y^2 + z^2$):

$$\begin{split} dl^2 &= dr'^2 + r'^2 d\theta^2 + r'^2 \sin^2\theta \, d\phi^2 + \frac{r'^2 dr'^2}{a^2 - r'^2} = \frac{a^2 dr'^2}{a^2 - r'^2} + r'^2 d\theta^2 + r'^2 \sin^2\theta \, d\phi^2 \\ &= a^2 \left[\frac{dr'^2}{a^2 - r'^2} + \frac{r'^2 d\theta^2}{a^2} + \frac{r'^2 \sin^2\theta \, d\phi^2}{a^2} \right] \end{split}$$

Sedaj uvedemo r = r'/a in dr = dr'/a in upostevamo da nas zanima razdalja do dogodka:

$$ds^2 = c^2 dt^2 - dl^2$$

$$ds^{2} = c^{2}dt^{2} - a^{2} \left[\frac{dt^{2}}{1 - kr^{2}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta \,d\phi^{2} \right]$$

kjer je *l* lastna (fizična) trenutno razdalja.

Lastna trenutna razdalja

$$l = \int_0^r dl = a^2 \int \frac{dr}{(1 - kr^2)^{1/2}}; dt = 0, d\theta = d\phi = 0$$

$$l = \begin{cases} a \arcsin r; & k = +1 \\ a r; & k = 0 \\ a \arcsin r; & k = -1 \end{cases}$$

Hitrost gibanje galaksije iz lastne razdalje

$$v = \frac{dl}{dt} = \frac{da}{dt} \int_0^r \frac{dr}{\sqrt{1 - kr^2}} = \frac{da}{dt} \frac{l}{a} = \frac{\frac{da}{dt}}{a(t)} l = \frac{\dot{a}}{a} l = Hl$$

Dobili smo Hubblov zakon

Izpeljava Friedmannovih enačb

Iz Newtonovega zakona, brez kozmološke konstante.

Prva enačba:

$$\frac{1}{2}m\dot{a}^{2} - \frac{GMm}{a} = E; \quad M = \frac{4}{3}\pi a^{3}\rho$$

$$\frac{1}{2}m\dot{a}^{2} - G\frac{4}{3}\frac{\pi a^{3}\rho m}{a} = E \mid \cdot \frac{2}{ma^{2}}$$

$$\frac{\dot{a}^{2}}{a^{2}} - \frac{8}{3}G\pi\rho = \frac{2E}{ma^{2}}; \quad -kc^{2} = \frac{2E}{m}$$

Tako dobimo prvo Friedmannovo enačbo (govori o lokalni ohranitvi energije):

$$H^2 = \frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho - \frac{kc^2}{a^2}$$

Druga enačba:

$$m\ddot{a} = -\frac{GMm}{a^2} = -\frac{4}{3}\pi Ga\rho m \mid :ma$$
$$\frac{\ddot{a}}{a} = -\frac{4}{3}\pi G\rho$$

V bistvu pa preko »čarovnije« dobimo se člen s tlakom. Čarovnija zato, ker ne znamo splošne relativnosti. Tako dobimo **drugo Friedmannovo enačbo**:

$$\frac{\ddot{a}}{a} = -\frac{4}{3}\pi G \frac{1}{c^2} (\rho c^2 + 3p)$$

Na podlagi teh dveh enačb vidimo, da se vesolje nujno siri ali pa krci. To zato ker vemo $\rho \neq 0$ kar pomeni $\ddot{a}/a \neq 0$. Statično vesolje lahko dobimo le z dodatkom kozmološke konstante.

Tretja enačba:

Izhajamo iz prve enačbe:

$$\dot{a}^2 = \frac{8\pi G}{3}\rho a^2 - kc^2$$

Naredimo odvod po času (gostota je tudi časovno odvisna):

$$2\dot{a}\ddot{a} = \frac{8\pi G}{3}2a\dot{a} + \frac{8\pi G}{3}a^2\dot{\rho}$$

Tu izrazimo \ddot{a} iz druge in vstavimo:

$$\dot{a} \left[-\frac{4\pi Ga}{3} (\rho c^2 + 3p) \right] = \frac{8\pi G}{3} \rho a \dot{a} + \frac{4\pi G}{3} a^2 \dot{\rho}$$

$$-\frac{\dot{a}}{c^2} (\rho c^2 + 3p) = 2\rho \dot{a} + a \dot{\rho}$$

$$-\dot{a}\rho c^2 - \dot{a}3p - 2\rho \dot{a} = a \dot{\rho}c^2$$

$$-3\dot{a}\rho c^2 - 3\dot{a}p = \dot{a}\rho c^2$$

$$-3\dot{a}(\rho c^2 + p) = a\dot{\rho}c^2$$

Tako dobimo končno tretjo Friedmannovo enačbo:

$$\dot{\rho}c^2 = -3\frac{\dot{a}}{a}(\rho c^2 + p)$$

Enačba stanja

Ta dva opisa sta natančna, ko k=0 in $\Lambda=0$.

Tlak sevanja je zanemarljiv

$$p \ll \rho c^2$$

Iz 3FE:

$$\dot{\rho}c^2 - \frac{3\dot{a}}{a}\rho c^2 \rightarrow \frac{\dot{\rho}}{\rho} = -\frac{3\dot{a}}{a} \Rightarrow \rho \propto a^{-3}$$

Tlak sevanja je dominanten

$$p = \frac{1}{3}\rho c^3$$

Spet iz 3FE:

$$\dot{\rho}c^2 = -3\frac{\dot{a}}{a}\left(\rho c^2 + \frac{1}{3}\rho c^2\right) = -3\frac{\dot{a}}{a}\left(\frac{4}{3}\rho c^2\right) \rightarrow \frac{\dot{\rho}}{\rho} = -\frac{4\dot{a}}{a} \Rightarrow \rho \propto a^{-4}$$

Obdobja prevlade

Ce si sedaj pogledamo 1FE:

$$\frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho - \frac{kc^2}{a^2}$$

bomo lahko v določenem obdobju vesolja zadnji člen zanemarili in dobimo:

$$\frac{\dot{a}^2}{a^2} \propto \rho$$

Zanemarimo tlak (Obdobje prevlade snovi)

Vemo, da imamo takrat:

$$\rho \propto a^{-3}$$

Torej je sorazmernost iz poenostavljene 1FE:

$$\frac{\dot{a}^2}{a^2} \propto \frac{1}{a^3} \rightarrow \left(\frac{da}{dt}\right)^2 \propto a^{-1} \rightarrow a^{1/2} da \propto dt$$

Tako dobimo:

$$a(t) \propto t^{2/3}$$

Tlak dominanten (Obdobje prevlade sevanja)

Vemo, da imamo takrat:

$$\rho \propto a^{-4}$$

Po istem postopku kot prej dobimo:

$$a(t) \propto t^{1/2}$$

Kritična gostota ho_c (modeli $\Lambda=0$, k=0)

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho \rightarrow \rho = \frac{3H^2}{8\pi G} \equiv \rho_c$$

Kritična gostota danes:

$$\rho_c(t_0) = 1.4 \cdot 10^{11} \frac{M_{\odot}}{Mpc^3}$$

Iz opazovanj vesolja pa dobimo, da je gostota 10 krat manjša kot kritična:

$$n_{gal} = 10^{-2} Mpc^{-3} \ m_{gal} \sim 10^{12} M_{\odot} \Rightarrow \rho_{gal}(t_0) \sim 10^{10} \frac{M_{\odot}}{Mpc^3}$$

Parametri gostote

$$\Omega_x = \frac{\rho_x}{\rho_c}; \quad x = \Lambda, m, k, rad, ...$$

Ko
$$k=0, \Lambda=0 \Rightarrow \Omega_m=\frac{\rho_m}{\rho_c}=1.$$

$$k = 0$$

Imamo v obdobju snovi odvisnost $a(t) \propto t^{2/3}$ in $a(t) \propto t^{1/2}$ v obdobju sevanja. Tehnično tudi ni velikega stiska.

k = +1

$$\frac{8\pi G}{3}\rho = \frac{c^2}{a^2} \to a = \left(\frac{3c^2}{8\pi G\rho}\right)^{\frac{1}{2}}$$

Taksno vesolje ima veliki pok in veliki stisk.

k = -1

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{c^2}{a^2} \to \frac{da}{dt} = c$$

Takemu vesolju pravimo odprto vesolje (ni velikega stiska).

Kdaj pride do prehoda med prevlado sevanja in prevlado snovi?

Temperatura CMB je T = 2.73K.

$$j = \sigma T^4 = \frac{c}{4} w_{sev,0}$$

Poglejmo energijske gostote (w_v , je za nevtrino ozadje, ki je do sedaj nedetektirano):

$$w_{sev,0} = \frac{4}{c}j = \frac{4}{c}\sigma T^4 = 4.2 \cdot 10^{-14} \frac{J}{m^3}$$
$$w_{m,0} = 0.3w_{c,0}c^2 = 2.6 \cdot 10^{-10} \frac{J}{m^3}$$
$$w_{v,0} = 0.68w_{sev,0}$$

Upoštevamo sedaj skaliranje:

$$w_m c^2 = w_{m,0} c^2 \frac{a(t_0)^3}{a(t)^3}$$
 $w_{sev,0} c^2 = w_{sev,0} c^2 \frac{a(t_0)^4}{a(t)^4}$

kjer smo v w_{sev} sedaj spravili se nevtrine. Zato 1+0.68 naprej:

$$1 = \frac{w_m(t)c^2}{w_{sev}(t)c^2} \Rightarrow \frac{w_{(m,0)}^2c^2}{1.7w_{sev,0}c^2} = \frac{a(t_0)}{a(t)} = 3500$$

Upostevamo $a(t_0) = 1$ in a(t = 0) = 0. Dobili smo, da je bilo vesolje takrat 3500x manjše kot je danes.

$$a \propto t^{2/3}$$

$$\frac{a(t_0)}{a(t)} = \frac{t_0^{2/3}}{t^{2/3}} = 3500 \to t = t_0(3500)^{-\frac{3}{2}} = \frac{t_0}{200000}$$

Ocenimo starost vesolja

Privzemimo:

- k=0
- Kritična gostota je gostota danes $ho_0=
 ho_{0,c}=3H_0^2/8\pi G$
- Smo v obdobju prevlade snovi $\rho \propto a^{-3}$

Iz 1FE:

$$\left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho - \frac{kc^{2}}{a^{2}} = \frac{8\pi G}{3}\frac{H_{0}^{2}}{H_{0}^{2}}\rho = H_{0}^{2}\frac{\rho}{\rho_{0,c}} = H_{0}^{2}\left(\frac{a_{0}}{a}\right)^{3} = H(t)^{2}$$

$$\frac{\dot{a}}{a} = H_{0}\left(\frac{a_{0}}{a}\right)^{\frac{3}{2}}$$

$$\frac{da}{dt} = H_{0}a_{0}^{\frac{3}{2}}a^{-1/2}$$

$$\int_0^{t_0} dt = \frac{1}{H_0 a_0^{3/2}} \int_0^{a_0} a^{1/2} da$$

$$1 \quad 2 \quad _{3/2} \quad 2$$

$$t_0 = \frac{1}{H_0 a_0^{3/2}} \frac{2}{3} a_0^{3/2} = \frac{2}{3H_0}$$

Sedaj pa privzemimo:

•
$$\rho = 0$$

•
$$k = -1$$

Iz 2FE dobimo:

$$\ddot{a} = 0 \rightarrow \dot{a} = konst = Ha = H_0 a_0$$

$$\frac{da}{dt} = H_0 a_0$$

$$\int_0^{t_0} dt = \frac{1}{H_0 a_0} \int_0^{a_0} da$$

$$t_0 = \frac{1}{H_0}$$

Tako smo pokazali, da je za $0 < \Omega_{m,0} < 1$ starost vesolja med:

$$\frac{2}{3H_0} < t_0 < \frac{1}{H_0}$$

 $Za H_0 = 70 \frac{km/s}{Mpc} \text{ je to:}$

$$9 \, Gyr < t_0 < 14 \, Gyr$$

Tako se je prehod med obdobjem prevlade sevanja v obdobje prevlade snovi zgodil okoli:

$$t \sim 65000 let$$

Friedmannove enačbe s kozmološko konstanto:

1FE:
$$\left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho - \frac{kc^{2}}{a^{2}} + \frac{\Lambda c^{2}}{3}$$

2FE: $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3c^{2}}(\rho c^{2} + 3p) + \frac{\Lambda c^{2}}{3}$
3FE: $\dot{\rho}c^{2} = -3\frac{\dot{a}}{a}(\rho c^{2} + p)$

Kako se vesolje siri po zelo dolgem času?

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{kc^2}{a^2} + \frac{\Lambda c^2}{3}; k = 0 \ \rho \propto a^{-3}$$

Ko bo a dovolj velik bo v določenem trenutku veljalo:

$$\left(\frac{\dot{a}}{a}\right)^{2} \sim \frac{\Lambda c^{2}}{3} \qquad \left(H^{2} \equiv \frac{\Lambda c^{2}}{3}\right)$$
$$\frac{\dot{a}}{a} \sim \left(\frac{\Lambda c^{2}}{3}\right)^{1/2}$$
$$\frac{da}{a} \sim \sqrt{\frac{\Lambda c^{2}}{3}} dt \to a(t) \propto \exp\left(\sqrt{\frac{\Lambda c^{2}}{3}}t\right)$$

Vesolje se po dolgem času siri eksponentno.

Rešitve za sirjenje vesolja s temno energijo

 $\Lambda = \text{konst.} > 0 \text{ in } k = 0$

Iz 1FE

$$H^{2} = \frac{8\pi G}{3} \rho + \frac{\Lambda c^{2}}{3} \mid :H_{0}^{2}$$

$$\frac{H^{2}}{H_{0}^{2}} = \frac{8\pi G}{3H_{0}^{2}} \rho + \frac{\Lambda c^{2}}{3H_{0}^{2}} \rightarrow \frac{H^{2}}{H_{0}^{2}} = \frac{\rho}{\rho_{0,c}} + \frac{\Lambda c^{2}}{3H_{0}^{2}}$$

$$\Omega(t) = \frac{\rho(t)}{\rho_{c}(t)} \quad \Omega_{0} = \frac{\rho_{0}}{\rho_{0,c}} \quad \Omega_{\Lambda,0} = \frac{\Lambda c^{2}}{3H_{0}^{2}}$$

$$\Rightarrow \frac{H^{2}}{H_{0}^{2}} = \frac{\rho_{0}}{\rho_{0,c}} \cdot \frac{\rho}{\rho_{0}} + \frac{\Lambda c^{2}}{3H_{0}^{2}} = \Omega_{0} \frac{\rho}{\rho_{0}} + \frac{\Lambda c^{2}}{3H_{0}^{2}} = \Omega_{0} \frac{\rho}{\rho_{0}} + \Omega_{\Lambda,0}$$

Ob času $t = t_0$ dobimo:

$$1 = \Omega_0 + \Omega_{\Lambda,0}$$

V primeru ravnega vesolje k=0 velja ta zveza v vsakem trenutku:

$$\Omega_m + \Omega_{\Lambda} = 1$$

kjer je Ω_m parameter gostote snovi, tako navadne kot temne.

•
$$k = +1 \rightarrow \Sigma \Omega > 1$$

•
$$k = +1 \rightarrow \sum \Omega > 1$$

• $k = -1 \rightarrow \sum \Omega < 1$

Zapis za Hubblovo konstanto:

$$H(t) = H_0 \sqrt{\Omega_m a^{-3} + \Omega_{rad} a^{-4} + \Omega_k a^{-2} + \Omega_\Lambda a^{-3(\omega+1)}}$$

kjer je ω kvintesenca in upošteva ne konstantno temno energijo. V splošnem je $\omega=1$ za kozmološko konstanto.

Najpogosteje napišemo kar samo:

$$H(t) = \frac{\dot{a}}{a} = H_0 \sqrt{\Omega_m a^{-3} + \Omega_\Lambda}; \ \Omega_\Lambda = 1 - \Omega_m$$

$$a(t) = \left(\frac{\Omega_m}{\Omega_\Lambda}\right)^{1/3} \sinh^{2/3}\left(\frac{t}{t_1}\right); t_1 = \frac{2}{3H_0\sqrt{\Omega_\Lambda}}$$

Kdaj se je vesolje začelo siriti pospešeno?

$$a(\ddot{a}=0) = \left(\frac{\Omega_m}{2\Omega_{\Lambda}}\right)^{1/3}$$

Ce je $\Omega_{\Lambda}=0.7 \rightarrow a \sim = 0.6\,$ oz. $z\sim 0.66\,$

$$a(t) = \frac{1}{1 + z(t)}; \ a(t_0) = 1 \ z(t_0) = 0 \ a(t = 0) = 0$$

Kozmološka opazovanja

- Prasevanje
- Porazdelitev galaksij in struktur na velikih skalah
- Zastopanosti elementov v zgodnjem vesolju
- SN *Ia* in pospešeno sirjenje

Spomnimo se da za kozmološki rdeči premik velja:

$$\frac{\lambda_{obs}}{\lambda_{em}} = \frac{a(t_0)}{a(t_{em})} = 1 + z$$

in da za Hubble-Lemaitrov zakon rabimo nujno oddaljenost izmeriti na dva neodvisna načina (npr. izmerimo gostoto svetlobnega toka in kotno velikost objekta).

Izsevnostna razdalja

To je razdalja dobljena iz fluksa, ki se sklada z nekim izrazom za transverse comoving distance(?):

$$j = \frac{L}{4\pi d_L^2} = \frac{L}{4\pi d^2 (1+z)^2}$$

$$d_L = d(1+z) = a r(1+z)$$

Izsevnostna razdalja upošteva efekte spremembe energije fotonov in oddaljeni fotoni prihajajo manj pogosto.

Razdalja kotnega premera (angular diameter distance)

Je razdalja dobljena iz objektove fizične velikosti in kotne velikosti

$$d_{prem} = \frac{l}{\sin \theta} \cong \frac{l}{\theta}$$

kjer je $l = r_0 a(t_0) \theta$ fizična velikost.

$$d_{prem} = \frac{r_0 a_0}{a+z} = \frac{d_L}{(1+z)^2} = \frac{d}{1+z}$$

Prasevanje

Smo v obdobju sevanja:

$$\rho \propto a^{-4} \quad \rho = \left(\frac{4}{c}\right) \sigma T^4 \Rightarrow T \propto \frac{1}{a}$$

Naj bo ν' merjena frekvenca fotona in ν oddana frekvenca:

$$v' = \frac{v}{1+z} \to dv' = \frac{dv}{1+z}$$

$$B_{\nu}(T) = \frac{2hv^{3}}{c^{2}} \frac{dv}{\exp\left(\frac{hv}{k_{B}T}\right) - 1} \qquad n_{\nu} = \frac{2v^{2}}{c^{2}} \frac{dv}{\exp\left(\frac{hv}{k_{B}T}\right) - 1}$$

$$n'_{\nu'} = \frac{n_{\nu}}{(1+z)^{3}} = \frac{2v^{2}}{c^{2}} \frac{dv}{\exp\left(\frac{hv}{k_{B}T}\right) - 1} \frac{1}{(1+z)^{3}} = \frac{2v'^{2}}{c^{2}} \frac{dv'}{\exp\left(\frac{hv'}{kT'}\right) - 1}$$

$$= \frac{2v^{2}}{c^{2}} \frac{dv}{\exp\left(\frac{hv}{kT'(1+z)}\right) - 1} \frac{1}{(1+z)^{2}} \frac{1}{1+z}$$

Tako smo dobili:

$$T = T'(1+z)$$

$$T_{CMB} = \frac{T_{rec}}{1+z_{rec}}$$

$$z_{rec} \sim 1100 \quad T_{rec} \sim 3000K \Rightarrow T_{CMB} \sim 3K$$

$$n_{CMB} \sim 400 \frac{foton}{cm^3} \qquad n_{Barion} = \frac{0.04\rho_c}{m_p} = 2 \cdot 10^{-7} \text{ cm}^{-3}$$

Anizotropija mikrovalovnega sevanja ozadja

Za fotonsko-barionski plin velja:

$$p = \frac{\rho c^2}{3} \quad c_s = \sqrt{\frac{\partial p}{\partial \rho}} = \frac{c}{\sqrt{3}}$$

kjer je c_s hitrost zvoka v takem plinu (gledali bomo Barionske akusticne oscilacije)

$$\lambda = c_s \tau = 2c_s t_{rec} = \frac{2c_s r_{rec}}{\sqrt{3}}$$

Za $k=0, \Lambda=0$ in $t_{rec}\sim 380000~let$ je:

$$\lambda = D_s = 140 \, kpc$$

@Johan Jarnestad/The Royal Swedish Academy of Sciences

- The first peak shows that the universe is geometrically flat, i.e. two parallel lines will never meet.
- The second peak shows that ordinary matter is just 5% of the matter and energy in the universe.
- The third peak shows that 26% of the universe consists of dark matter.

From these three peaks, it is possible to conclude that if 31% [5%+26%] of the universe is composed of matter, then 69% must be dark energy in order to fulfil the requirement for a flat universe.

Zanima nas prava razdalja ob casu rekombinacije $D_{\mathcal{S}}$. Smo v obdobju prevlade snovi

$$\frac{a_{rec}}{a_0} = \left(\frac{t_{rec}}{t_0}\right)^{2/3} = \frac{1}{1 + z_{rec}}$$

$$\Rightarrow D_s = \frac{2c_s t_0}{\sqrt{3}} (1 + z_{rec})^{-3/2}$$

D_s D_A

Sedaj nas zanima kot, ki ga oklepa ta razdalja:

$$ra_{0} \quad a(t) = a_{0} \left(\frac{t}{t_{0}}\right)^{2/3}$$

$$\int_{t_{rec}}^{t_{0}} \frac{cdt}{a(t)} = \int_{0}^{r} \frac{dr}{\sqrt{1 - kr^{2}}}$$

$$\Rightarrow ra_{0} = 3ct_{0} \left[1 - \left(\frac{t_{rec}}{t_{0}}\right)^{1/3}\right] = 3ct_{0} \left[1 - (1 + z_{rec})^{-1/2}\right]$$

Razdalja kotnega premera D_A je:

$$D_A = \frac{ra_0}{1 + z_{rec}}$$

Tako lahko izračunamo kot:

$$\theta = \frac{D_s}{D_A} = \frac{2}{3\sqrt{3}[(1+z_{rec})^{1/2}-1]} \approx 0.7^{\circ}$$

S tem smo dobili kotno skalo prvega vrha v Fourierevem spektru CMB.

Zgodnje vesolje

- Sirjenje, prasevanje
- Vesolje je bilo nekoč manjše in vroče
- Eksperimentalne omejitve $T < 10^{15} K t > 10^{-9} s$ v pospeševalnikih
- Opis s fizikalnimi teorijami
 - Kvantna fizika (standardna teorija delcev)
 - Splošna teorija gravitacije
 - Nimamo se kvantne gravitacije
- Teorija vsega: Planckova razdalja in čas:

$$d_{Planck} = \left(\frac{Gh}{2\pi c^3}\right)^{1/2} = 1.6 \cdot 10^{-35} m$$

$$t_{Planck} = \left(\frac{Gh}{2\pi c^5}\right)^{1/2} = 5.4 \cdot 10^{-44} s$$

Primordialna nukleosinteza

- Nastajajo atomska jedra
 - Večina gostote gre v He malo v litij, berilij in devterij
- Elementi nad berilijem ne nastanejo ker ni stabilnih jeder z A=5 ali A=8 (potrebujemo trojni alfa proces)
- Vesolje se siri

Odprta vprašanja kozmologije

- Kaj je temna snov?
- Kaj je temna energija? (Nasprotuje gravitacij, deluje kot negativni tlak)
- Problem horizonta in ravnosti?
- Nastanek struktur (od kje prvinske fluktuacije)?
- Zakaj je več materije kot antimaterija?
- Zakaj je vesolje taksno kot je?
 - Antropicno načelo: »Ker smo tu, da se o tem lahko sprašujemo!«