Metody Obliczeniowe w Nauce i Technice Laboratorium 7 Singular Value Decomposition

28 kwietnia 2021

Przydatne funkcje

- Matlab: svd, plot3, scatter3, imread, imshow, rgb2gray
- Python NumPy: linalg.svd, Python SciPy: misc.imread

Literatura

- Marix Analysis and Applied Linear Algebra, Carl D. Mayer, SIAM, 2000.
 - Singular Value Decomposition: rozdział 5.12

Zadanie 1 Przekształcenie sfery w elipsoidę

1. Korzystając z równania parametrycznego narysuj sferę jednostkową w 3D

$$\mathbf{v} = \begin{bmatrix} \cos(s)\sin(t) \\ \sin(s)\sin(t) \\ \cos(t) \end{bmatrix}$$
$$s \in [0, 2\pi], \ t \in [0, \pi]$$

- 2. Wygeneruj 3 różne macierze $\mathbf{A_1}, \mathbf{A_2}, \mathbf{A_3}, \ (\mathbf{A_i} \in \mathbb{R}^{3 \times 3})$, za ich pomocą dokonaj przekształcenia sfery w elipsoidę (mnożenie przez macierz), a następnie przedstaw wizualizację uzyskanego wyniku w 3D.
- 3. Dokonaj rozkładu według wartości osobliwych (SVD) każdej macierzy $\mathbf{A_i}$. Na wykresie elipsoidy odpowiadającej przekształceniu $\mathbf{A_i}$ dodaj wizualizację jej półosi wyznaczonych za pomocą SVD.
- 4. Wygeneruj taką macierz $\mathbf{A_i}$, aby stosunek jej największej i najmniejszej wartości osobliwej był większy od 100. Narysuj odpowiadającą jej elipsoidę.

5. Dla wybranej macierzy $\mathbf{A_i}$ przedstaw wizualizacje $\mathbf{SV_i}^T$, $\mathbf{S}\boldsymbol{\Sigma_i}\mathbf{V_i}^T$ oraz $\mathbf{SU_i}\boldsymbol{\Sigma_i}\mathbf{V_i}^T$, gdzie

$$\mathbf{A_i} = \mathbf{U_i} \mathbf{\Sigma_i} \mathbf{V_i}^T,$$

a **S** oznacza sferę z punktu 1 ($\mathbf{S} \in \mathbb{R}^{n \times 3}$).

Zadanie 2 Kompresja obrazu

- 1. Przygotuj przykładowe zdjęcie z skali szarości o rozmiarze co najmniej 512×512 pikseli (np. $Lenna\ image)$
- 2. Oblicz SVD macierzy pikseli \mathbf{I} , a następnie dokonaj przybliżenia tej macierzy za pomocą low rank approximation (k pierwszych wartości osobliwych) uzyskując kompresję obrazu wejściowego.

$$\mathbf{I}_a \simeq \sum_{i=1}^k \sigma_i \mathbf{u_i} \mathbf{v_i}^T,$$

gdzie σ_i jest i-tą wartością osobliwą macierzy \mathbf{I} , $\mathbf{u_i}$ jest lewym wektorem osobliwym, $\mathbf{v_i}$ - prawym wektorem osobliwym, a $\mathbf{u_i}\mathbf{v_i}^T$ jest iloczynem zewnętrznym (outer product) dwóch wektorów.

3. Porównaj obraz wynikowy z obrazem źródłowym dla różnych wartości k (przedstawiając różnicę pomiędzy nimi w postaci zdjęcia oraz rysując wykres zależności $||\mathbf{I} - \mathbf{I}_a||$ od k).