## Report

The first step was to analyze the dataset provided. Having a look on a 'text' column it was evident that it needs to be cleaned from numerous signs such as '@:  $\sim$ âE' etc. as they affect the overall sentiment value of a text. Analyzing the 'sentiment' column I found out that data is imbalanced having more negative sentiments than positive ones.

| Number of Negative sentiments | Number of Positive sentiments |  |  |  |  |
|-------------------------------|-------------------------------|--|--|--|--|
| 9178                          | 2363                          |  |  |  |  |

Then I decided to find the most frequent words in positive and negative tweets. For this a wordcloud was used.



Next, I had to split the data with a standard ratio of 80% train and 20% test data. Then the data was sent to a Count Vectorizer to transform the tweet data into the vectors of frequency of occurrence of each word in a tweet. For classification I decided to test out 2 Classifiers: Decision Tree and Random Forest. For model evaluation I used a classification report of scikit-learn library which encompasses of F1-score, Accuracy, Precision and Recall.

| Random Forest                         |              |              |                      |                              | Decision Tree                         |              |              |                      |                      |
|---------------------------------------|--------------|--------------|----------------------|------------------------------|---------------------------------------|--------------|--------------|----------------------|----------------------|
| Accuracy: 0.8999566912083153          |              |              |                      | Accuracy: 0.8562148116067562 |                                       |              |              |                      |                      |
|                                       | precision    | recall       | f1-score             | support                      |                                       | precision    | recall       | f1-score             | support              |
| negative<br>positive                  | 0.96<br>0.65 | 0.92<br>0.80 | 0.94<br>0.71         | 1947<br>362                  | negative<br>positive                  | 0.92<br>0.61 | 0.91<br>0.63 | 0.91<br>0.62         | 1878<br>431          |
| accuracy<br>macro avg<br>weighted avg | 0.80<br>0.91 | 0.86<br>0.90 | 0.90<br>0.83<br>0.90 | 2309<br>2309<br>2309         | accuracy<br>macro avg<br>weighted avg | 0.76<br>0.86 | 0.77<br>0.86 | 0.86<br>0.77<br>0.86 | 2309<br>2309<br>2309 |

From the table above we can see that a Random Forest Classifier performs better than a Decision Tree in accuracy and precision scores according to the classification report.