This print-out should have 5 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering.

001 10.0 points

Find a power series representation for the function

$$f(z) = \frac{1}{z-4}.$$

1.
$$f(z) = -\sum_{n=0}^{\infty} 4^n z^n$$

2.
$$f(z) = \sum_{n=0}^{\infty} (-1)^{n-1} 4^{n+1} z^n$$

3.
$$f(z) = \sum_{n=0}^{\infty} \frac{1}{4^{n+1}} z^n$$

4.
$$f(z) = -\sum_{n=0}^{\infty} \frac{1}{4^{n+1}} z^n$$

5.
$$f(z) = \sum_{n=0}^{\infty} (-1)^n 4^n z^n$$

002 10.0 points

Find a power series representation for the function

$$f(x) = \frac{1}{6+x}.$$

1.
$$f(x) = \sum_{n=0}^{\infty} (-1)^n 6 x^n$$

2.
$$f(x) = \sum_{n=0}^{\infty} \frac{1}{6^{n+1}} x^n$$

3.
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{6^{n+1}} x^n$$

4.
$$f(x) = \sum_{n=0}^{\infty} 6^{n+1} x^n$$

5.
$$f(x) = \sum_{n=0}^{\infty} (-1)^n 6^{n+1} x^n$$

003 10.0 points

Find a power series representation for the function

$$f(x) = \frac{1}{6 - x^3}.$$

1.
$$f(x) = -\sum_{n=0}^{\infty} \frac{x^n}{6^{n+1}}$$

2.
$$f(x) = \sum_{n=0}^{\infty} \frac{x^{3n}}{6^{n+1}}$$

3.
$$f(x) = \sum_{n=0}^{\infty} \frac{x^{3n}}{6^{3n}}$$

4.
$$f(x) = \sum_{n=0}^{\infty} 6^n x^{3n}$$

5.
$$f(x) = -\sum_{n=0}^{\infty} 6^n x^{3n}$$

6.
$$f(x) = -\sum_{n=0}^{\infty} \frac{x^{3n}}{6^{3n}}$$

004 10.0 points

Find a power series representation for

$$\frac{4+3x}{1+x}.$$

Hint: separate then use the series for $\frac{1}{1+x}$.

1.
$$\frac{4+3x}{1+x} = 4 + \sum_{k=0}^{\infty} (-1)^k x^k$$

2.
$$\frac{4+3x}{1+x} = \sum_{k=1}^{\infty} (-1)^k x^k$$

3.
$$\frac{4+3x}{1+x} = 7 \sum_{k=1}^{\infty} x^k$$

4.
$$\frac{4+3x}{1+x} = 4+7\sum_{k=1}^{\infty} x^k$$

5.
$$\frac{4+3x}{1+x} = 4+7\sum_{k=0}^{\infty} x^k$$

6.
$$\frac{4+3x}{1+x} = 4 + \sum_{k=1}^{\infty} (-1)^k x^k$$

005 10.0 points

Evaluate the integral

$$f(t) = \int_0^t \frac{s}{1-s^4} ds$$
.

as a power series.

1.
$$f(t) = \sum_{n=0}^{\infty} \frac{(-1)^n t^{4n+2}}{4n+2}$$

2.
$$f(t) = \sum_{n=0}^{\infty} \frac{t^{4n+2}}{4n+2}$$

3.
$$f(t) = \sum_{n=0}^{\infty} \frac{(-1)^n t^{4n}}{4n}$$

4.
$$f(t) = \sum_{n=0}^{\infty} \frac{t^{4n}}{4n}$$

5.
$$f(t) = \sum_{n=4}^{\infty} \frac{t^{4n}}{4n+2}$$