Devoir Sur Table n°1 – Durée : 3h

L'utilisation de la calculatrice, des feuilles/notes de cours ou d'exercices est interdite.

La présentation, la rédaction, la clarté et la précision des raisonnements entreront dans l'appréciation de la copie.

Les résultats non encadrés/soulignés/surlignés ne seront pas pris en compte.

Exercices 1 : Calculs de sommes et de produits

Dans tout cet exercice, $n \in \mathbb{N}^*$ est un entier fixé.

- 1. Calculer les sommes et produits suivants. On donnera les résultats sous la forme la plus factorisée possible, avec éventuellement des factorielles.

 - (a) $\sum_{k=0}^{n} (2-k)$ (b) $\sum_{i=1}^{n} 3i(i-1)$ (c) $\sum_{j=1}^{n} 2^{2j-1}$ (d) $\prod_{k=n}^{2n} \frac{1}{k}$ (e) $\sum_{1 \leqslant i < j \leqslant n} \frac{i}{j}$

- 2. (a) En remarquant que $j = \sum_{i=1}^{J} 1$, ré-écrire la somme $S = \sum_{i=1}^{n} j 2^{j}$ comme une somme double.

En déduire l'expression $S = (n-1)2^{n+1} + 2$.

(b) Définir en Python une fonction qui prend en entrée un entier n et renvoie la valeur de S.

Exercice 2 : Etude d'une famille de fonctions

Pour tous $a, b, c, d \in \mathbb{R}$ avec $a \neq 0$ et $c \neq 0$, on considère la fonction notée $f_{a,b,c,d}$ définie sur $\mathbb{R} \setminus \left\{ -\frac{d}{c} \right\}$ par :

$$\forall x \in \mathbb{R} \setminus \left\{ -\frac{d}{c} \right\}, \quad f_{a,b,c,d}(x) = \frac{ax+b}{cx+d}.$$

1. Etude d'un exemple. Dans cette question, on choisit a = 1, b = 2, c = -1, d = 3.

On considère donc la fonction $f_{1,2,-1,3}$ définie par : $\forall x \in \mathbb{R} \setminus \{3\}$, $f_{1,2,-1,3}(x) = \frac{x+2}{-x+3}$

- (a) Justifier que l'on peut choisir $\mathbb{R} \setminus \{-1\}$ comme ensemble d'arrivée de $f_{1,2,-1,3}$.
- (b) Montrer alors que l'application $f_{1,2,-1,3}: \mathbb{R} \setminus \{3\} \to \mathbb{R} \setminus \{-1\}$ est une bijection et déterminer sa réciproque $(f_{1,2,-1,3})^{-1}$.

On revient à présent au cas général où $a, b, c, d \in \mathbb{R}$ sont des réels quelconques avec $a \neq 0$ et $c \neq 0$.

- 2. Montrer que si ad = bc, la fonction $f_{a,b,c,d}$ est constante égale à $\overset{a}{-}$
- 3. Démontrer l'équivalence suivante : $f_{a,b,c,d}$ est injective $\iff ad \neq bc$.
- 4. On se place maintenant dans le cas où $ad \neq bc$.
 - (a) Justifier que l'on peut choisir $\mathbb{R} \setminus \{\frac{a}{c}\}$ comme ensemble d'arrivée de $f_{a,b,c,d}$.
 - (b) Montrer alors que l'application $f_{a,b,c,d}: \mathbb{R}\setminus\left\{-\frac{d}{c}\right\} \to \mathbb{R}\setminus\left\{\frac{a}{c}\right\}$ est une bijection et déterminer sa réciproque $(f_{a,b,c,d})^{-1}$. Quelle application reconnait-on?

Exercice 3 : Suites récurrentes de type " $u_{n+1} = au_n + b_n$ ".

Pour commencer, on considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0=1$ et $\forall n\in\mathbb{N}, u_{n+1}=2u_n+\frac{1}{2^n}$

- 1. (a) Montrer par récurrence que pour tout $n \in \mathbb{N}$, $u_n = \frac{5 \times 2^n}{3} \frac{2}{3 \times 2^n}$.
 - (b) Proposer alors une fonction Python, que l'on appellera suite, qui prend en entrée un indice n et qui renvoie la valeur du réel u_n correspondant.
- 2. Dans cette question, on se propose de retrouver l'expression de u_n d'une autre façon. On définit, pour tout $n \in \mathbb{N}, v_n = \frac{u_n}{2^n}$.
 - (a) Montrer que pour tout $n \in \mathbb{N}$, $v_{n+1} = v_n + \frac{1}{2^{2n+1}}$.
 - (b) Pour tout $n \in \mathbb{N}^*$, calculer la somme $\sum_{k=0}^{n-1} (v_{k+1} v_k)$ de deux façons différentes. En déduire l'expression de v_n en fonction de n.
 - (c) Retrouver finalement, pour tout $n \in \mathbb{N}^*$, l'expression de u_n déterminée en 1.(a).

On cherche maintenant à adapter la méthode exploitée dans la question 2 à une cadre plus général.

Dans la suite de l'exercice, $a \in \mathbb{R}^*$ est un réel non-nul fixé, $(b_n)_{n \in \mathbb{N}}$ est une suite de réels quelconques. La nouvelle suite $(u_n)_{n \in \mathbb{N}}$ satisfait la relation générale : $\forall n \in \mathbb{N}, u_{n+1} = au_n + b_n$, avec $u_0 \in \mathbb{R}$ quelconque.

- 3. (a) On définit : $\forall n \in \mathbb{N}, \ w_n = \frac{u_n}{a^n}$. Pour tout $n \in \mathbb{N}$, exprimer w_{n+1} en fonction de w_n , b_n et a^{n+1} .
 - (b) En raisonnant comme dans la question 2, établir : $\forall n \in \mathbb{N}^*, \ u_n = u_0 \times a^n + \sum_{k=0}^{n-1} b_k a^{n-(k+1)}$. Que dire de cette formule si n = 0?
- 4. Application: On considère ici la suite définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{3} 2$. En appliquant la formule établie en 3.(b), montrer que pour tout $n \in \mathbb{N}, \ u_n = \frac{4}{3^n} - 3$.

*** Fin du sujet ***