LISTA DE EXERCÍCIOS

MÓDULO: Coeficientes binomiais e aplicações

AULA 14: Binômio de Newton

- 1. Desenvolver as potências seguintes:
 - (a) $(\frac{x^3}{2} + 1)^5$; (b) $(2y + 3x)^4$;

 - (c) $(2a-3b)^3$; (d) $(\frac{1}{y}-y)^6$.
- 2. Considerando

$$(u+v)^n = \sum_{k=0}^n \binom{n}{k} u^{n-k} v^k,$$

calcule o sexto termo de cada uma das potências abaixo:

- (a) $(\frac{a}{b} + \frac{b}{a^2})^{17}$; (b) $(1 \frac{1}{b})^7$;
- (c) $(3x^2y \frac{1}{2})^9$; (d) $(2x^3 \frac{3}{2})^{12}$.
- 3. Calcular a soma dos coeficientes de todos os termos do desenvolvimento de $(x^3 \frac{1}{2x})^{11}$.
- 4. Calcular o termo independente de x nas potências seguintes:
- (a) $(x^2 + \frac{1}{x^2})^6$; (b) $(x^2 + \frac{1}{x})^9$; (c) $(x^2 + \frac{1}{x^2})^8(x^2 \frac{1}{x^2})^8$.
- 5. Prove, a partir do binômio de Newton, que para $n \geq 2$

$$(1+\frac{1}{n})^n > 2$$

- 6. Explicar porque não existe termo independente de x no desenvolvimento $(x+\frac{1}{x})^{2n+1}$.
- 7. Calcule 11¹⁴ usando o Teorema Binomial.
- 8. Mostre que

:

$$\left(\begin{array}{c} n \\ 0 \end{array}\right) + \left(\begin{array}{c} n \\ 1 \end{array}\right) + \left(\begin{array}{c} n \\ 2 \end{array}\right) + \dots + \left(\begin{array}{c} n \\ n \end{array}\right) = 2^n$$