ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE fakulta stavební – obor geodézie a kartografie katedra vyšší geodézie

název předn	Výuka v terénu z vyšší geodézie									
úloha TRG	název úlohy		ace a trilaterace na velké	vzdálenost	i					
školní rok	semestr	semestr skupina zpracoval datum klasif								
2010/11	2	1a	Dočkalová Z., Dolista J., Dvořáková Z., Junová R., Schwarzová M.	24. 6. 2011						

Triangulace a trilaterace na velké vzdálenosti

Zadání:

V rámci této úlohy budou metodami klasické geodézie (triangulace, trilaterace, astronomické určování azimutu) určeny souřadnice čtveřice bodů v systému JTSK v okolí Starého Města pod Sněžníkem.

Orientace sítě bude definována měřenými azimuty na bodech sítě. Vzhledem k obtížnosti určení zeměpisných souřadnic bodů sítě astronomickými metodami budou souřadnice jednoho bodu v systému JTSK převzaty z úlohy GNSS.

Dalším výstupem úlohy bude součtová konstanta gyroteodolitu.

Vypracování:

1 Měření

Datum: 30.5.2011

Povětrnostní podmínky: jasno, mírný vítr

Pomůcky (pro každé stanovisko): 1x totální stanice Leica TC1700

ruční GPS odrazné hranoly

válec 3x stativ

psychrometr, barometr

olovnice

Měření bylo provedeno současně na čtyřech bodech sítě. Na každém z bodů byly měřeny vodorovné úhly, šikmé délky a určen azimut jedné ze stran měřením na Slunce. Měření vodorovných úhlů a astronomické měření bylo provedeno z excentrického stanoviska, proto byla na každém bodě zaměřena centrační osnova a to ve dvou skupinách. Jelikož měření v rámci sítě byla prováděna na excentricky postavené cíle, byl zaměřen v rámci centrační osnovy rovněž tento cíl. Současně byly změřeny délky excentricit mezi excentrickým stanoviskem a centrem a mezi excentrickým stanoviskem a excentrickým cílem. Délky excentricit byly měřeny elektronickým dálkoměrem a to buď na minihranol nebo na hranol umístěný na centru.

Na každém stanovisku byly měřeny tři vodorovné úhly mezi ostatními body sítě. Každý z úhlů byl měřen ve třech laboratorních jednotkách. Na bodě 1003 byl jako jedno z ramen úhlů přidán bod 1005 Tábor neboť strana 1003-1005 byla následně usměrňována gyroteodolitem.

Délky byly naší skupinou měřeny rovněž z excentrického stanoviska na centricky umístěné hranoly. Při měření byla ke každé délce registrována suchá a mokrá teplota a tlak a to na obou koncích. Dále byla zaznamenávána výška cíle. Takto měřené délky však nebylo možno do výpočtu použít a proto byly převzaty délky od skupiny č.2, která je měřila přímo z centrického stanoviska na centrický cíl.

Astronomické měření na Slunce bylo provedeno každým členem skupiny a to ve dvou jednotkách. Měření bylo provedeno buď dle předpisu ČÚZK nebo modifikovaným způsobem uvedeným v zadání úlohy. Na většině stanovisek byla usměrněna jedna zvolená strana sítě všemi měřiči, pouze na bodě 1001 byly usměrněny strany dvě (každým měřičem jiná).

2 Zpracování měření

2.1 Centrační osnova

Každou z měřických čet bylo nejprve zpracováno měření centrační osnovy. Byly tedy vypočteny průměry ze dvou skupin, měřené délky byly opraveny o součtovou konstantu podle použitého hranolu a v případě šikmých délek byly tyto redukovány na vodorovnou. Takto předzpracovaná data byla poskytnuta ostatním měřickým četám ve výměnném formátu definovaným zadáním.

V centrační osnově na bodě 1003 byla zjištěna chyba, jejíž příčinu se však nepodařilo zjistit. Z tohoto důvodu byla veškerá měření na bodě 1003 převzata od skupiny č.2.

2.2 Azimuty

Nejprve byl vypočten průměr z měření na levý a pravý okraj Slunce a také průměr z časů těchto měření. Výpočtem průměru byl vodorovný směr vztažen ke středu Slunce. Díky tomu mohla být dále použita rektascenze a deklinace uváděná v astronomických tabulkách. Následně byl jako rozdíl dvou směrů vypočten vodorovný úhel ω mezi bodem sítě a středem Slunce.

Pokud bylo měřeno postupem dle ČÚZK, tedy levý okraj v I.poloze, pravý okraj v II.poloze, byla výpočtem průměru vyloučena kolimační a úklonná chyba. Pokud bylo měřeno postupem dle zadání, byly tyto chyby vyloučeny až následným průměrováním azimutu (resp. směrníku) v rámci jednotky.

Časy měření byly určeny pomocí ručního přístroje GPS. S ním byly buď synchronizovány ruční stopky, na kterých pak byly odečítány okamžiky měření, nebo měřic odečítal přímo v celé sekundy přístroje GPS. Takto určené okamžiky měření byly v čase UTC+2hod. (tedy SELČ). Pro interpolaci v astronomických tabulkách bylo nutné převést tento čas na terestrický a pro další výpočty pak na čas sluneční. K tomu bylo nutné vyhledat v Bulletinu A služby IERS tzv. number of leap seconds, tedy rozdíl mezi časem UTC a TAI, a DUT1, tedy rozdíl mezi UT1 a UTC:

$$n = 34.0 \ s$$

$$DUT1 = -0.27647 \ s$$

Pro interpolaci rektascenze a deklinace Slunce pro okamžik měření byl použit Besselův interpolační polynom.

Pro další výpočty bylo nutné zjistit také astronomické souřadnice místa pozorování. Ty byly s dostatečnou přesností určeny z přibližných souřadnic bodů sítě v S-JTSK transformací v programu Matkart. Současně byla určena i hodnota meridiánové konvergence.

Následně byl určen hodinový úhel a z nautického trojúhelníka pak azimut a zenitová vzdálenost Slunce v okamžiku pozorování. Z těchto hodnot byla určena hodnota denní aberace o kterou byl azimut opraven. Přičtením vodorovného úhlu ω byl pak získán astronomický azimut příslušné strany sítě. Pro získání směrníku této strany byla odečtena hodnota meridiánové konvergence a přičtena směrová korekce 10''.

Na zavěr byl spočten průměr ze všech jednotek náležících jedné straně. Takto získané směrníky jsou však stále excentrické, problém centrace bude popsán v další kapitole.

2.3 Délky

Jelikož od skupiny č.2 byly převzaty délky měřené centricky, bylo třeba délky opravit pouze o fyzikální a matematickou redukci. Fyzikální redukce byla vypočtena pro průměrnou hodnotu teploty, tlaku a vlhkosti mezi stanoviskem a cílem. Výpočty byly provedeny podle návodu v zadání.

V rámci matematické redukce byla nejprve provedena oprava o refrakci. Použit byl refrakční koeficient k=0.13.

Redukce z nadmořské výšky a ze zobrazení byla provedena v jednom kroku postupem navrženým prof. Mervartem a ing. Lukešem. Postup spočívá ve stanovení poměru mezi přímou prostorovou délkou a délkou v rovině Křovákova zobrazení, který platí jak pro délky měřené, tak pro délky určené z přibližných souřadnic. Vynásobením měřené délky poměrem stanoveným z přibližných souřadnic tedy dostaneme redukovanou délku do roviny Křovákova zobrazení.

Pro stanovení poměru byly použity jako přibližné souřadnice elipsoidické souřadnice B, L, H_{el} určené v rámci úlohy GNSS. Nejprve byly k elipsoidickým výškám bodů přičteny výšky přístroje, resp. cíle. Transformací elipsoidických souřadnic byly získány pravoúhlé souřadnice v systému ETRS-89, z nichž byla Pythagorovou větou spočtena délka přímé prostorové spojnice obou bodů. Délka v rovině Křovákova zobrazení byla spočtena ze souřadnic určených transformací ETRS-89 \rightarrow S-JTSK danou metodikou ČÚZK. Pravoúhlé souřadnice ETRS-89 byly Helmertovou transformací převedeny na Besselův elipsoid, následně byly pravoúhlé souřadnice převedeny na elipsoidické. Dále bylo aplikováno modifikované Křovákovo zobrazení včetně bikubické dotransformace. Takto byly získány souřadnice S-JTSK/05, které byly dále převedeny na souřadnice S-JTSK pomocí oprav interpolovaných z tabulky.

2.4 Centrace úhlů (směrníků)

Centrace byla provedena iteračním postupem. Zvlášť byla určována centrační změna pro každé z ramen měřeného úhlu.

Pro každé rameno byla zvolena místní soustava souřadnic, jejíž počátek ležel na centrickém stanovisku (T1) a kladná osa +x směřovala do centrického cíle (T2). Vzhledem k velké vzdálenosti mezi oběma body mohla být v první iteraci spojnice excentrického stanoviska (S1) s excentrickým cílem (C2) považována za totožnou s osou x a tedy její směrník $\sigma_{S1,C2}=0$. Přičtením příslušného úhlu měřeného v rámci centrační osnovy lze určit směrník mezi excentrickým stanoviskem (S1) a centrickým stanoviskem (T1). Jeho obrácením o 200 gon lze pak při známé hodnotě excentricity určit rajonem souřadnice excentrického stanoviska (S1) v místní soustavě. Opětovným přičtením příslušného úhlu měřeného v centrační osnově lze určit směrník mezi excentrickým stanoviskem (S1) a excentrickým cílem (C1) na témže bodě. Souřadnice excentrického cíle (C1) se při známé excentricitě opět určí rajonem. Obdobný postup byl aplikován na bodě 2 a byly tak určeny souřadnice S2, C2. Ze souřadnic v místní soustavě mohl být nově spočten směrník $\sigma_{S1,C2}$, který byl již různý od 0. Následně byl celý postup opakován a to do té doby, dokud změna směrníku nebyla menší než 0,00001 gon. Centrační změna δ^1 směru ramene je pak rovna přímo hodnotě směrníku $\sigma_{S1,C2}$.

Pro centraci úhlu měřeného v laboratorní jednotce pak platí:

$$\omega = \omega' + \delta_l^1 - \delta_p^1$$

kde ω' je měřený úhel

 δ_l^1 je centrační změna levého ramene δ_p^1 je centrační změna pravého ramene

Pro centraci směrníku platí:

$$\sigma = \sigma' - \delta^1$$

Oprava měřených směrů na spojnici v rovině Křovákova zobrazení

Hodnota opravy δ^2 byla spočtena z přibližných souřadnic bodů sítě podle vzorců uvedených v zadání.

Stejně jako pro centrační změnu platí i pro převod úhlu:

$$\omega = \omega' + \delta_l^2 - \delta_p^2$$

kde ω' je měřený úhel

 δ_l^2 je oprava levého ramene δ_p^2 je oprava pravého ramene

Shodně platí pro opravu směrníku:

$$\sigma = \sigma' - \delta^2$$

3 Vyrovnání sítě

3.1 Stanovení vah

3.1.1 Délky

Směrodatná odchylka všech měřených délek byla považována za stejnou a stanovena byla výběrovou směrodatnou odchylkou.

Délka mezi každými dvěma body byla měřena celkem čtyřikrát, jednou dopoledne, jednou odpoledne a to vždy protisměrně. Pro každou délku jsou tedy tři nadbytečná měření a je možné spočítat opravy od průměru a následně výběrovou směrodatnou odchylku. Vzhledem k malému počtu měření je stanovena výběrová směrodatná odchylka pro všechny délky společně. Jsou měřeny délky celkem čtyř stran, počet nadbytečných měření je tedy 12.

$$\sigma_d = \sqrt{\frac{\sum v \cdot v}{n'}}$$

3.1.2 Směrníky

Směrodatná odchylka směrníků určených astronomicky byla opět považována za stejnou a byla stanovena výběrovou směrodatnou odchylkou.

Vzhledem k různým postupům měření mohla být výběrová směrodatná odchylka stanovena až pro směrník určený v jedné jednotce. Každý z měřičů zaměřil dvě tyto jednotky, jedna z nich je tedy nadbytečná. Pro dvojici jednotek, měřených jedním měřičem, byly vypočteny opravy od průměru. Výběrová směrodatná odchylka byla následně stanovena opět pro všechny jednotky společně. Celkem měřilo v síti jedenáct měřičů a mělo by tedy být k dispozici 11 nadbytečných jednotek, které lze použít k výpočtu výběrové směrodatné odchylky. Na bodě 1001 musela být však jedna jednotka vyloučena. K dispozici je tedy pouze 10 nadbytečných.

$$\sigma_{\sigma} = \sqrt{\frac{\sum v \cdot v}{n'}}$$

Takto určená směrodatná odchylka charakterizuje průměr ze dvou jednotek. Na většině bodů však byla třemi měřiči usměrněna stejná strana a lze tedy vypočítat průměr z šesti jednotek. Jeho směrodatná odchylka je pak podle zákona hromadění středních chyb $\sqrt{3}$ krát menší.

Na bodě 1001 byl každý ze směrníků měřen pouze ve dvou laboratorních jednotkách. U směrníku 1001-1003 se však jedno z měření ukázalo jako odlehlé. Jelikož ale bylo na bodě měřeno dle metodiky CÚZK, mohla být vyloučena pouze polovina laboratorní jednotky a zbylá tři měření (1,5 laboratorní jednotky) mohla být dále použita. Bylo však nutné dle zákona hromadění středních chyb stanovit směrodatnou odchylku takto určeného směrníku.

3.1.3 Úhly

Směrodatná odchylka úhlů byla určena samostatným vyrovnáním. Vyrovnání bylo provedeno pouze úhlově přičemž rozměr a orientace byly síti dány fixováním dvou bodů na souřadnice GNSS pomocí pseudoměření. Pseudoměření byly nastaveny vysoké váhy a tedy v rámci vyrovnání jim nebyly přiřazeny žádné opravy. Aposteriorní směrodatná odchylka vyrovnání, která je z oprav počítána, pak charakterizuje prakticky pouze úhlová měření. Jelikož byla apriorní směrodatná odchylka měřeného úhlu zvolena 1, je aposteriorní směrodatná odchylka úhlu rovna přímo aposteriorní směrodatné odchylce vyrovnání. Takto určená směrodatná odchylka úhlu byla dále použita jako apriorní hodnota pro společné vyrovnání úhlů, směrníků a délek.

Důvodem, proč tento postup nebyl použit i pro délky a směrníky namísto výběrové směrodatné odchylky, byl malý počet měření.

3.2 Vlastní vyrovnání

Vlastní vyrovnání bylo provedeno skriptem v programu Octave neboť program GNU Gama neumí pracovat se směrníkem z astronomických měření. Použito bylo vyrovnání zprostředkujících metodou nejmenších čtverců. Váhy jednotlivých měření byly přiřazovány na základě jejich směrodatných odchylek. V rámci vyrovnání byla síť fixována na souřadnice bodu 1003 převzaté z měření GNSS. To bylo provedeno pomocí pseudoměření, kterému byly přiřazeny vysoké váhy (tedy velmi malé směrodatné odchylky fixovaným souřadnicím). V průběhu vyrovnání byla kontrolována linearizace dvojím výpočtem oprav. Pokud rozdíl oprav přesáhl hodnotu 10^{-7} , byl výpočet opakován přičemž výsledky předchozího vyrovnání byly považovány za nové přibližné souřadnice.

4 Určení konstanty gyroteodolitu

V rámci sítě byla strana 1005-1003 usměrněna pomocí gyroteodolitu. Měření bylo provedeno na excentrickém stanovisku bodu 1005 a cíleno bylo na excentrický cíl bodu 1003. Zároveň byla zaměřena centrační osnova. Z měření byl vypočten směrník 1005ex-1003ex. K výpočtu byla použita konstanta gyroteodolitu $\Delta' = 90^{\circ}27'42''$. Vypočtený směrník byl následně nacentrován stejným postupem jako směrníky určené astronomicky.

Směrník strany 1005-1003 určený gyroteodolitem je $\sigma=282,94965$ gon. Směrník této strany byl rovněž vypočten ze souřadnic určených GNSS: $\sigma=282,67079$ gon. Rozdíl mezi oběma směrníky $\Delta\sigma=-0,27885$ gon je způsoben použitou konstantou gyroteodolitu, která není přesně známa. Použitou hodnotu je tedy nutné opravit. Nově určená konstanta gyroteodolitu je:

$$\Delta = \Delta' + \Delta\sigma = 90^{\circ}12'38''$$

Závěr:

Souřadnice bodů trigonometrické sítě byly určeny jak z terestrických měření, tak metodou GNSS. Postup zpracování měření GNSS je předmětem samostatné technické zprávy. Výsledky z obou metod a jejich porovnání je shrnuto v následující tabulce.

	Porovnání výsledků z terestrických a GNSS měření									
	terestrické měření			GNS	porovnání					
	X	Υ	$\sigma_{_{P}}$	X	Υ	$\sigma_{_{P}}$	ΔΧ	ΔΥ	Δр	
	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	
1001	1055371,311	565726,353	0,085	1055371,362	565726,405	0,007	-0,052	-0,052	0,073	
1002	1058508,995	560712,336	0,058	1058509,030	560712,299	0,006	-0,035	0,037	0,051	
1003	1055295,530	560932,573	0,000	1055295,530	560932,573	0,007	0,000	0,000	0,000	
1004	1053012,188	559774,296	0,049	1053012,158	559774,331	0,004	0,030	-0,035	0,046	

Z porovnání směrodatných polohových odchylek na jednotlivých bodech vyplývá, že metoda GNSS dosahuje lepších výsledků.

Dále bylo zkoumáno vzájemné stočení obou sítí a změna jejich měřítka. Stočení bylo určeno z porovnání směrníků jednotlivých stran, změna měřítka pak porovnáním jejich délek.

Р	Porovnání orientace a rozměru sítě z terestrických a GNSS měření							
	směrník [gon]			délka [m]				
	terestrické	GNSS	rozdíl	terestrické	GNSS	rozdíl	poměr	
1001 - 1002	335,5973	335,5967	0,0007	5914,849	5914,915	-0,067	0,99998875	
1001 - 1003	298,9937	298,9930	0,0007	4794,379	4794,432	-0,053	0,99998902	
1001 - 1004	275,9765	275,9759	0,0007	6402,535	6402,581	-0,046	0,99999283	
1002 - 1003	195,6437	195,6430	0,0007	3221,004	3221,041	-0,037	0,99998837	
1002 - 1004	210,7604	210,7594	0,0009	5576,272	5576,324	-0,052	0,99999066	
1003 - 1004	229,8860	229,8849	0,0011	2560,323	2560,335	-0,011	0,99999566	

Z porovnání vyplývá, že obě sítě jsou vůči sobě stočeny přibližně o 0,0007 gon. Z porovnání rozměru je zřejmé, že síť určená terestricky je menší, přičemž měřítkový koeficient je přibližně $-10~\mathrm{mm/km}$.

V Praze 20.06.2011

Zuzana Dočkalová Jan Dolista Zuzana Dvořáková Radka Junová Maria Schwarzová

Seznam příloh:

- 1. Náčrt sítě
- 2. Schéma centračních osnov na bodech sítě
- 3. Zápisníky
- 4. Předzpracovaná data ve výměnném formátu
- 5. Určení azimutů jednotlivých stran
- 6. Redukce délek
- 7. Redukce úhlů a směrníků
- 8. Výběrové směrodatné odchylky délek a směrníků
- 9. Protokol o úhlovém vyrovnání
- 10. Vstupní data pro celkové vyrovnání
- 11. Protokol o celkovém vyrovnání

Poznámka: Veškeré výpočty byly provedeny v programu Octave. Výstupy byly vygenerovány do tabulek a protokolů, které jsou výše uvedenými přílohami. Zdrojové kódy přílohou nejsou a v případě potřeby budou poskytnuty v digitální podobě.

Příloha 2 - Schéma centračních osnov na bodech sítě

Příloha 4 - Předz
pracovaná data ve výměnném formátu $\,$

Příloha 5 - Určení azimutů jednotlivých stran

čas	rekta-	deklinace	hodinový	azimut	teplota	tlak	aberace	úhel	azimut	směrník
	scenze		úhel	Slunce					strany	strany
utc	α	δ	t	a	t	р	δα	ω	Α	σ
[hod]	[hod]	[°]	[hod]	[gon]	[°C]	[mBar]	[gon]	[gon]	[gon]	[gon]
	Strana 1001 – 1003									
14,85958	4,47692	21,77692	28,02772	91,0380	22	931	-1,09E-5	201,2848	292,3228	298,9290
14,88722	4,47700	21,77709	28,05536	91,4205	22	931	-1,04E-5	200,9019	292,3224	298,9286
15,00694	4,47734	21,77783	28,17507	93,0603	22	931	-8,30E-6	199,2462	292,3065	298,9126
15,02958	4,47741	21,77797	28,19770	93,3674	22	931	-7,91E-6	198,9424	292,3098	298,9159
				Strana	a 1001 –	1002				
15,09778	4,47760	21,77839	28,26589	94,2870	22	931	-6,77E-6	234,6121	328,8991	335,5052
15,11764	4,47766	21,77852	28,28575	94,5533	22	931	-6,44E-6	234,7593	329,3126	335,9188
15,16389	4,47779	21,77880	28,33200	95,1710	22	931	-5,68E-6	233,7286	328,8996	335,5057
15,18458	4,47785	21,77893	28,35269	95,4462	22	931	-5,35E-6	233,4502	328,8964	335,5026
				Strana	a 1002 –	1004				
14,85303	4,47691	21,77688	28,02612	91,0341	22,5	936	-1,09E-5	113,3210	204,3551	210,8989
14,87745	4,47697	21,77703	28,05053	91,3719	22,5	936	-1,05E-5	112,9861	204,3580	210,9018
14,98224	4,47727	21,77768	28,15532	92,8091	22,5	936	-8,62E-6	111,5447	204,3537	210,8976
15,01721	4,47737	21,77790	28,19028	93,2840	22,5	936	-8,02E-6	111,0665	204,3505	210,8943
15,14287	4,47773	21,77867	28,31593	94,9732	22,5	936	-5,93E-6	109,3831	204,3563	210,9001
15,17148	4,47781	21,77885	28,34454	95,3542	22,5	936	-5,46E-6	109,0029	204,3571	210,9009
15,24812	4,47803	21,77932	28,42117	96,3683	22,5	936	-4,24E-6	107,9886	204,3569	210,9007
15,27995	4,47812	21,77952	28,45299	96,7868	22,5	936	-3,74E-6	107,5667	204,3535	210,8973
14,62532	4,47626	21,77548	27,79843	87,8223	22,5	936	-1,52E-5	116,5343	204,3565	210,9003
14,66242	4,47636	21,77571	27,83552	88,3533	22,5	936	-1,45E-5	116,0008	204,3541	210,8979
14,73090	4,47656	21,77613	27,90400	89,3254	22,5	936	-1,31E-5	115,0320	204,3574	210,9012
14,75999	4,47664	21,77631	27,93309	89,7353	22,5	936	-1,26E-5	114,6202	204,3555	210,8993

čas	rekta-	deklinace	hodinový	azimut	teplota	tlak	aberace	úhel	azimut	směrníl	< strany
	scenze		úhel	Slunce					strany		•
utc	α	δ	t	a	t	р	δα	ω	Α	(J
[hod]	[hod]	[°]	[hod]	[gon]	[°C]	[mBar]	[gon]	[gon]	[gon]	[go	on]
					Strana 10	03 – 100)4				
13,98708	4,54256	21,91669	27,15735	78,1759	21,5	920	-2,93E-5	145,2854	223,4612	230,0113	230,0182
14,02431	4,54266	21,91691	27,19457	78,7771	21,5	920	-2,84E-5	144,6979	223,4749	230,0250	230,0102
14,07222	4,54280	21,91720	27,24248	79,5440	21,5	920	-2,72E-5	143,9116	223,4556	230,0057	220 0110
14,17014	4,54308	21,91778	27,34039	81,0876	21,5	920	-2,49E-5	142,3787	223,4663	230,0163	230,0110
14,24653	4,54329	21,91823	27,41677	82,2707	21,5	920	-2,31E-5	141,1900	223,4607	230,0108	230,0174
14,27194	4,54336	21,91838	27,44218	82,6605	21,5	920	-2,25E-5	140,8135	223,4740	230,0241	230,0174
14,31972	4,54350	21,91866	27,48995	83,3880	21,5	920	-2,15E-5	140,0752	223,4632	230,0132	230,0147
14,34097	4,54356	21,91879	27,51120	83,7094	21,5	920	-2,10E-5	139,7566	223,4660	230,0161	230,0147
14,43403	4,54382	21,91934	27,60425	85,1022	21,5	920	-1,90E-5	138,3594	223,4616	230,0117	230,0149
14,45625	4,54389	21,91947	27,62647	85,4314	21,5	920	-1,85E-5	138,0367	223,4681	230,0181	,
14,50139	4,54402	21,91974	27,67160	86,0960	21,5	920	-1,76E-5	137,3704	223,4663	230,0164	230,0167
14,52431	4,54408	21,91987	27,69452	86,4314	21,5	920	, -	137,0356	223,4669	230,0170	230,0107
					Strana 10						
14,33889	4,47545	21,77371	,	83,5667	21	921,3		339,9344	423,5010	430,0401	/20 N271
14,45556	4,47578	21,77443	27,62903	85,3107	21	921,3	-1,86E-5	338,1843	423,4949	430,0340	430,0371
14,63194	4,47628	21,77552	,	87,8805	21	921,3	-1,51E-5	335,6169	423,4974	430,0365	130 0360
14,73194	4,47656	21,77614	27,90539	89,3045	21	921,3	-1,32E-5	334,1937	423,4982	430,0373	430,0303
14,85347	4,47691	21,77689	28,02691	91,0059	21	921,3	-1,09E-5	332,4919	423,4978	430,0369	430,0387
14,93750	4,47714	21,77740	28,11093	92,1647	21	921,3	-9,42E-6	331,3367	423,5014	430,0405	430,0307
15,03750	4,47743	21,77802	28,21092	93,5265	21	921,3	-7,71E-6	329,9703	423,4968	430,0359	430,0350
15,10139	4,47761	21,77842	28,27480	94,3873	21	921,3	-6,64E-6	329,1078	423,4951	430,0342	430,0330
15,15625	4,47777	21,77875	,	95,1209	21	921,3	-5,74E-6	328,3865	423,5074	430,0465	430,0394
15,20764	4,47791	21,77907	,	95,8037	21	921,3	-4,91E-6	327,6896	423,4933	430,0324	· ·
15,27153	4,47809	21,77947	28,44492	96,6469	21	921,3	-3,90E-6	326,8529	423,4998	430,0389	430,0374
15,33472	4,47827	21,77986	28,50811	97,4751	21	921,3	-2,92E-6	326,0218	423,4969	430,0360	430,0374

Příloha 6 - Redukce délek

				Fyzikáln	í redukce						
délka	D _{měř}	t, suchá	t ₁ mokrá	t ₂ suchá	t ₂ mokrá	p ₁	p ₂	h₁	h ₂	ΔD	D'
	[m]	[°C]	[°C]	[°C]	[°C]	[torr]	[torr]	[%]	[%]		[m]
1001 - 1003	4795,855	19,4	16,4	24,2	19,5	694,0	701,0	74	66	25,012722	4795,975
1001 - 1003	4795,843	21,2	16,5	24,3	19,3	694,0	701,0	64	66	26,077862	4795,968
1001 - 1002	5916,797	19,5	16,0	23,0	18,5	694,0	705,0	70	65	23,945612	5916,939
1001 - 1002	5916,790	21,9	16,8	24,3	19,0	694,0	705,0	64	66	25,656701	5916,942
1002 - 1001	5916,799	21,0	17,5	17,5	14,5	705,0	694,0	71	72	22,004976	5916,929
1002 - 1001	5916,787	24,0	18,5	20,0	17,0	705,0	694,0	70	74	24,360988	5916,931
1002 - 1003	3221,358	23,0	18,5	24,2	19,5	705,0	701,5	65	70	24,609902	3221,437
1002 - 1003	3221,354	24,3	19,0	24,3	19,2	705,0	701,1	65	65	25,403319	3221,436
1002 - 1004	5580,719	21,0	17,5	19,0	16,0	705,0	687,0	71	74	23,877898	5580,852
1002 - 1004	5580,707	24,0	18,5	21,5	16,0	705,0	687,0	70	65	26,490244	5580,855
1003 - 1002	3221,349	20,0	16,0	20,5	17,0	701,5	705,0	66	70	21,695515	3221,419
1003 - 1002	3221,342	24,2	18,0	24,5	19,0	701,2	705,0	62	69	25,402558	3221,424
1003 - 1001	4795,834	20,0	16,0	17,5	14,5	701,5	694,0	66	72	22,333821	4795,941
1003 - 1001	4795,817	24,2	18,0	21,2	16,5	701,2	694,0	62	63	26,126434	4795,942
1004 - 1002	5580,681	19,0	16,0	22,0	17,5	687,0	705,0	78	74	24,130730	5580,816
1004 - 1002	5580,673	21,0	16,0	24,0	18,5	686,0	705,0	70	68	26,381534	5580,820

		Maten	natická	redukce	!		
délka	D'	d'	h _T	h _c	d _{xyz0}	d _{JTSK0}	d _{JTSK}
	[m]	[m]	[m]	[m]	[m]	[m]	[m]
1001 - 1003	4795,975	4795,975	1,638	1,497	4795,981	4794,400	4794,393
1001 - 1003	4795,968	4795,968	1,638	1,498	4795,981	4794,400	4794,387
1001 - 1002	5916,939	5916,939	1,638	1,510	5916,965	5914,883	5914,857
1001 - 1002	5916,942	5916,942	1,638	1,510	5916,965	5914,883	5914,860
1002 - 1001	5916,929	5916,929	1,535	1,610	5916,964	5914,883	5914,849
1002 - 1001	5916,931	5916,931	1,535	1,610	5916,964	5914,883	5914,850
1002 - 1003	3221,437	3221,437	1,535	1,497	3221,447	3221,038	3221,029
1002 - 1003	3221,436	3221,436	1,535	1,500	3221,447	3221,038	3221,027
1002 - 1004	5580,852	5580,852	1,535	1,480	5580,887	5576,313	5576,278
1002 - 1004	5580,855	5580,855	1,535	1,480	5580,887	5576,313	5576,281
1003 - 1002	3221,419	3221,419	1,533	1,510	3221,448	3221,038	3221,010
1003 - 1002	3221,424	3221,424	1,535	1,510	3221,448	3221,038	3221,015
1003 - 1001	4795,941	4795,941	1,533	1,610	4795,980	4794,400	4794,361
1003 - 1001	4795,942	4795,942	1,535	1,610	4795,980	4794,400	4794,362
1004 - 1002	5580,816	5580,816	1,509	1,510	5580,889	5576,313	5576,240
1004 - 1002	5580,820	5580,820	1,509	1,510	5580,889	5576,313	5576,244

Příloha 7 - Redukce úhlů a směrníků

	Redukce měřených úhlů								
sta	levé rameno				pravé ram	eno	měřený	centrovaný	
no	bod	centr. změna	směr. korekce	bod	centr. změna	směr. korekce	úhel	úhel	
visko		[gon]	[gon]		[gon]	[gon]	[gon]	[gon]	
1001	1004	0,01695	0,00034	1002	-0,09591	0,00048	59,5083	59,62102	
1001	1004	0,01695	0,00034	1003	-0,06687	0,00035	22,9335	23,01732	
1001	1003	-0,06687	0,00035	1002	-0,09591	0,00048	36,5741	36,60300	
1002	1001	0,02318	-0,00048	1004	0,14010	-0,00015	75,2803	75,16304	
1002	1001	0,02318	-0,00048	1003	0,16583	-0,00014	60,1894	60,04641	
1002	1003	0,16583	-0,00014	1004	0,14010	-0,00015	15,0906	15,11633	
1003	1002	-0,02609	0,00014	1001	0,07124	-0,00035	103,4470	103,35016	
1003	1001	0,07124	-0,00035	1004	0,12991	0,00000	130,9516	130,89259	
1003	1002	-0,02609	0,00014	1004	0,12991	0,00000	234,3983	234,24245	
1003	1005	0,12756	-0,00010	1001	0,07124	-0,00035	16,2638	16,32037	
1004	1002	0,10625	0,00015	1001	0,05652	-0,00035	65,1649	65,21513	
1004	1003	0,15171	0,00000	1001	0,05652	-0,00035	45,9957	46,09124	
1004	1002	0,10625	0,00015	1003	0,15171	0,00000	19,1715	19,12618	

	Redukce směrníků									
směrník centr. změn		směr. korekce	měř. hodnota	centr. hodnota						
	[gon]	[gon]	[gon]	[gon]						
1005 - 1003	-0,12645	0,00010	282,8233	282,94965						
1002 - 1004	0,14010	-0,00015	210,8992	210,75925						
1001 - 1003	-0,06687	0,00035	298,9216	298,98812						
1001 - 1002	-0,09591	0,00048	335,5045	335,59992						
1003 - 1004	0,12991	0,00000	230,0155	229,88560						
1004 - 1003	0,15171	0,00000	30,0374	29,88569						

Příloha 8 - Výběrové směrodatné odchylky délek a směrníků

Výběrová :	směrodatná	odchylka dé	lky	
délka	d _{JTSK}	d _{JTSK} ø	V	
	[m]	[m]	[m]	
1001 - 1003	4794,393		-0,0176	
1001 - 1003	4794,387	4704 2750	-0,0108	
1003 - 1001	4794,361	4794,3758	0,0148	
1003 - 1001	4794,362		0,0136	
1001 - 1002	5914,857		-0,0029	
1001 - 1002	5914,860	5914,8540	-0,0060	
1002 - 1001	5914,849	5914,6540	0,0054	
1002 - 1001	5914,850		0,0035	
1002 - 1003	3221,029		-0,0086	
1002 - 1003	3221,027	3221,0200	-0,0071	
1003 - 1002	3221,010	3221,0200	0,0103	
1003 - 1002	3221,015		0,0054	
1002 - 1004	5576,278		-0,0175	
1002 - 1004	5576,281	EE76 2607	-0,0201	
1004 - 1002	5576,240	5576,2607	0,0211	
1004 - 1002	5576,244		0,0165	

 $\sigma_d=0,0255~m$

Výběrová sm	ěrodatná od	lchylka smě	rníku
směrník	σ	σø	V
	[gon]	[gon]	[gon]
1001 - 1003	298,9288	298,9216	-0,0073
1001 - 1003	298,9143	290,9210	0,0073
1002 - 1004	210,9003	210 0001	-0,0022
1002 - 1004	210,8959	210,8981	0,0022
1002 - 1004	210,9005	210,8998	-0,0007
1002 - 1004	210,8990	210,0990	0,0007
1002 - 1004	210,8991	210,8997	0,0006
1002 - 1004	210,9003	210,0997	-0,0006
1003 - 1004	230,0182	230,0146	-0,0036
1003 - 1004	230,0110	230,0140	0,0036
1003 - 1004	230,0174	230,0161	-0,0014
1003 - 1004	230,0147	230,0101	0,0014
1003 - 1004	230,0149	230,0158	0,0009
1003 - 1004	230,0167	230,0136	-0,0009
1004 - 1003	30,0371	30,0370	-0,0001
1004 - 1003	30,0369	30,0370	0,0001
1004 - 1003	30,0387	20 0260	-0,0018
1004 - 1003	30,0350	30,0369	0,0018
1004 - 1003	30,0394	30,0384	-0,0010
1004 - 1003	30,0374	30,0304	0,0010

 $\sigma_{\sigma}=0,0040~gon$

Příloha 9 - Protokol o úhlovém vyrovnání

Příloha 10 - Vstupní data pro celkové vyrovnání

Příloha 11 - Protokol o celkovém vyrovnání