

SECOND SEMESTER, 2015-2016

COURSE HANDOUT (PART-II)

Date: 14/01/2016

In addition to Part-I (General Handout for all courses appended to the time table), this portion gives further specific details regarding the course.

Course Code: ME F342, MF F342

Name of the Course: Computer Aided Design

Instructor-In-Charge: Amol Marathe

Tutorial Instructors: Jitendra Rathod, Sandeep Dhar, Murali Palla & Amol Marathe

I. Textbook

- 1. Thomas W. Sederberg, "Computer Aided Geometric Design", Course Notes.
- 2. Slides by IC

II. References

- 1. Mortenson, M.E., 'Mathematics for Computer Graphics Applications'', Industrial Press Inc, Second Edition, 1999.
- 2. Hughes T. J. R., "The finite element method: Linear, static and dynamic analyses", Prentice-Hall-New Jersey, 1987.

III. Course Contents

1 Computer Aided Geometric Design:	Topic	nber of Source	Topic
1.1 Properties of blending functions – Affine invariance, Convex hull property, Linear independence, Symmetry, End point interpolation, Be'zier curves - subdivision, convex hull marching, intersection, B- TB1: Ch	property, Linear independence, Symmetry, End point interpolation, Be'zier curves - subdivision, convex hull marching, intersection, B- Spline curves - knot vector, polar form, Bohm's algorithm, de Boor algorithm, basis functions 1.2 Algebraic geometry for CAGD – Implicitization, inversion, parametrization 1.3 Differential geometry of curves and surfaces – Curvature, torsion,	2,5,6,7,10,15,1 6 and SLIDES	ties of blending functions – Affine invariance, Convex hull inear independence, Symmetry, End point interpolation, ves - subdivision, convex hull marching, intersection, Bres - knot vector, polar form, Bohm's algorithm, de Boor basis functions aic geometry for CAGD – Implicitization, inversion, ation

curvatures, Gauss map & Gauss curvature, Gauss-Bonnet theorem		
curvatures, Gauss map & Gauss curvature, Gauss-Bonnet meorem		
2. Solid modeling:		
2.1 Topological transformations and topological invariants –		
dimension, orientability, Euler charac., polygonal representation for		
sphere and disk with and without punctures, Klein's bottle etc.,		
Euler's formula for solids		
Edici 3 formula for Solids	10 = 3+4+3	SLIDES by IC
2.2 Wireframe mmodeling, set-theoretic and regularized Boolean		,
operation in CSG, hands-on OpenSCAD s/w, CSG tree, upward &		
downward propagation algorithm, Boundary rep – Winged edge data		
structure & Euler operators		
2.2 Introduction to OpenSCAD (http://www.opensed.com/)		
2.3 Introduction to OpenSCAD (http://www.openscad.org/)		
3. Geometric transformations:		
Rigid body transformations- translation, rotation – axis-angle formula,	7	SLIDES by IC
Euler angles, reflection, isometry, similarity, dilation, shear, glide	•	
reflection, affine and projective transformations		
3. Finite Element Method		
Strong and weak forms of a BVP, Essential and natural BCs, methods	6	DD2 61 1
of weighted residual, Bubnov-Galerkin method, Assembly of global	8	RB2: Ch 1
stiffness matrix, Euler-Bernoulli beam problem		
Janness matrix, Laier Bernoulli Beam problem		
Total	42	

IV. Evaluation Scheme and Schedule

Component	%Weightage	Date	Туре	Remarks
Midsem Examination	25	17/3 2:00 -3:30 PM	Partially closed book	
Assignments	10	-	-	

_				
Tutorials	15	08/02, 22/02, 22/03, 19/04/2016	Closed book	
Project	20		Open book	
Endsem Examination	30	16/5 FN	Partially closed book	

V. Chamber Consultation Hour: Will be announced in the class.

VI. Notices concerning the course: Nalanda

VII. Make-up Policy: Make up for any component of evaluation will be permitted only in genuinely serious cases only after production of necessary medical certificates and/or with prior permission.

Instructor-In-Charge

ME/F F342

