Name	Hatim Sawai
UID no.	2021300108

Experiment 2	
AIM:	The aim of this experiment is to study mathematical operation Correlation and measure degree of similarity between two signals.
OBJECTIVE:	 Write a function to find Correlation Operation Calculate correlation of a DT signals and verify the results using mathematical formula
PROBLEM DEFINITION:	 Find auto correlation of input signal and find the significance of value of output signal at n=0. Let y[n] = x[n] O x[n] Classify the resultant signal Even / Odd). Calculate the energy of the signal. Q. What is the significance of value of y[0]. Find auto correlation of delayed input signal. Let p[n]= x[n-1] O x[n-1]. Compare the resultant signal p[n] with y[n]. Give your conclusion. Find cross correlation of input signal and delayed input signal q[n] = x[n] 0 x[n-1].
	Compare the resultant signal q[n] with p[n] and y[n]

	<u>, </u>
	Give your conclusion.
	4. Find cross correlation of input signal and scaled input signal.
	Let $s[n] = x[n]$ O a $x[n-2]$ where "a" is any constant.
	Compare the resultant signals.
	Give your conclusion.
RESULT:	1. To find $y[n] = x[n] \circ x[n]$
	PS C:\Users\shabb\OneDrive\Desktop\Hatim\FOSIP-Practicals> python
	correlation.py" Enter the input sequence x(n): 5 6 7 8
	Auto-correlation of $y[n]$: [40. 83. 128. 174. 128. 83. 40.] Significance of $y[0]$: Even Energy of the signal: 80022.0
	Let y[n] = {40, 83, 128, 174, 128, 83, 40} By comparing y[n] with y[-n] we get, Now y[n] = y[-n]
	2. To find $p[n] = x[n-1]$ o $x[n-1]$
	Auto-correlation of $p[n]$: [0. 40. 83. 128. 174. 128. 83. 40. 0.] Conclusion: $p[n]$ is not equal to $y[n]$
	Let $p[n] = \{0, 40, 83, 128, 174, 128, 83, 40, 0\}$
	By comparing y[n] with p[n] we get,
	Here, $p[n] = y[n]$
	Signals with some delay also have the same correlation

3. To find q[n] = x[n] o x[n-1]

Cross-correlation of q[n]: [40. 83. 128. 174. 128. 83. 40. 0. 0.] Conclusion: q[n] is not equal to p[n] or y[n]

Let $p[n] = \{40, 83, 128, 174, 128, 83, 40, 0, 0\}$

By comparing y[n] with p[n] we get,

$$p[n] = y[n+1]$$

4. To find s[n] = x[n] o (a * x[n-2])

```
Cross-correlation of s[n]: [ 40. 83. 128. 174. 128. 83. 40. 0. 0. 0. 0.]

Conclusion: s[n] is not equal to y[n]

PS C:\Users\shabb\OneDrive\Desktop\Hatim\FOSIP-Practicals>
```

Let $p[n] = \{40, 83, 128, 174, 128, 83, 40, 0, 0, 0, 0\}$

Here,
$$p[n] = 2*y[n + 2]$$

CONCLUSION:

- 1. Autocorrelation signal is an even function, meaning it is symmetric around the vertical axis (y[n] = y[-n]).
- 2. When input signals are delayed, the autocorrelation of the delayed input signal remains the same as the autocorrelation of the original signal.
- 3. The cross-correlation of an input signal with a delayed version of itself is equivalent to the advanced autocorrelation of the input signal.