Логика высказываний

Опр Высказывание — утверждение, о котором можно сказать, что оно истинно или ложно.

Пример:

"Сейчас пасмурная погода"

Сложные высказывания соединены словами-связками: "и", 'шли", "только если", "если ..., то", "тогда и только тогда"

Пример:

"Сейчас пасмурная погода и вышел гулять в парк"

"Маше можно сладкое ИЛИ у Маши есть синий мяч"

бинарность связок высказываний!

 $\frac{1}{(x,y)} = \frac{1}{x^2 + y^2}$

Опр Арность операций (или функций) — число аргументов данной операции (функции)

Опр Операнд — аргумент операции

Основные логические операции.

<u>Опр</u> Конъюнкция — операция логического обозначается

<u>Опр</u> Дизъюнкция — операция логического "или", обозначается ∨

Пример:

"Сейчас пасмурная погода И я вышел гулять в парк"

"Маше можно сладкое ИЛИ у Маши есть синий мяч"

Запись через операции математической логики:

Унарные операции:

Опр Отрицание — операция логического "не", отрицание некоторого высказывания, инверсия, обозначается (-

Также к унарным операциям относятся:

Таблицы истинности

Используются для демонстрирации при каких условиях достигается истина или ложь

а	b	$a \wedge b$
0	0	0
0	1	0_
1	0	0
1	1)	1

if (22)

0001001

Пример:

c = ''Мальчик любит теннис'' 🗷 🗸

Высказывание: "Мальчик любит футбол и не верно, что он любит гольф или теннис"

F= a

			_		
а	b	с	$b \lor c$	$\neg(b \lor c)$	$a \wedge \neg (b \vee c))$
0	0	0	0	_1	- 0
0	0	1	1	0	Ó
0	1	0	1	0	0
0	1	1	1	0	0
1	0	0	0	1	1
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	, 0	0
			$\overline{}$		

Булева алгебра. Аксиомы.

Теория множеств + логика высказываний

Опр Булева алгебра — множество В, в которое входят элементы 0 и 1, на котором заданы бинарные операции конънкции и дизъюнкции, и унарная операция отрицания и выполняются следующие аксиомы (законы) для всех a, b, c из B:

Закон коммутативности

$$aNb = bNa$$

$$aVb = bVa$$

Закон ассоциативности

$$av(bvc) = (avb)vc$$

 $a\Lambda(b\Lambda c) = (a\Lambda b)\Lambda c$

Закон дистрибутивности

Закон тождества

$$\alpha \wedge 1 = \underline{\alpha}$$

$$\alpha \vee 0 = \alpha$$

Закон дополнения

$$\alpha \vee \overline{\alpha} = \emptyset$$

$$\alpha \wedge \overline{a} = \emptyset$$

 \bigcirc

Опр Булево множество — множество В, состоящее только из элементов 0 и 1

В данном курсе будет рассмотрена булева алгебра на булевом множестве элементов, потому заявленные ранее операции "преобразуются" и обладают следующими свойствами:

$$0 \rightarrow 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 1$
 $0 \cdot 1 = 0$
 $1 \cdot 0 = 0$
 $1 \cdot 1 = 1$

$$\frac{\overline{0}}{\overline{1}} = 1$$

$$\overline{1} = 0$$

Свойства операций булевой алгебры

Th Закон единственности дополнения

Дополнение произвольного элемента х единственным образом определяется его свойствами:

$$X+X=1$$
, $X-X=0$, $X+X+1$

Proof:

$$\overline{X} = \overline{X} \cdot 1 - 8 \text{ Tomge of Ga}$$

$$= \overline{X} (X + X^*) - u_{X} y_{1}b + h$$

$$= \overline{X} \cdot X + \overline{X} \cdot X^* - n_{X} y_{1}b + h$$

$$= 0 + \overline{X} \cdot X^* - n_{X} y_{1}b + h$$

$$= 0 + \overline{X} \cdot X^* - n_{X} y_{1}b + h$$

$$= \overline{X} \cdot X^*$$

$$x^* = x^* \cdot 1 - 3$$
. tongectba

$$= x^* (x + \overline{x}) - 3$$
. goroum
$$= x^* x + x^* \cdot \overline{x} - \text{froguetynd}$$

$$= 0 + x^* \cdot \overline{x} - \text{no gat, th.}$$

$$= x^* \cdot \overline{x}$$

 $\overline{X} = X^{\times}$ 7. $T = X^{\times}$

<u>Th</u> Закон идемпотентности

$$\mathcal{A} + \alpha = \alpha$$

$$\mathcal{A} \cdot \alpha = \alpha$$

Proof:

$$0+\alpha=0$$

$$0+\alpha=(\alpha+0)$$

$$a + a = (a + a) \cdot 1 - n \quad j \cdot \text{Totalge Caba}$$

$$= (a + a) \cdot (a + a) - j \quad \text{for sum}$$

$$= a + (a \cdot \overline{a}) - n \quad \text{full plud}.$$

<u>Тh</u> Свойство констант

$$\Delta + 1 = 1$$

Proof:

$$a+1=(a+1)\cdot 1-pay$$

$$=(\alpha+1)(\alpha+\bar{\alpha})$$
 - for α

$$= \alpha + (1.\overline{\alpha}) - suapu \delta$$

$$= \Omega + \bar{\Omega} - 10$$
 Ayeal.

$$=1-gonoM.$$

Th Закон инволюции

$$\overline{\Omega} = 0$$

Proof:
$$\alpha^* = \overline{\alpha}$$

$$\frac{\overline{a}}{a} + \overline{a} = \emptyset$$

Теоремы поглощения и склеивания

Th Теорема поглощения

$$X+(x-y)=X$$

 $X \cdot (X+y)=X$

Proof:

$$\begin{array}{l}
x + (x \cdot y) = (x \cdot 1) + (x \cdot y) - 3 & \text{to myearba} \\
= x \cdot (1 + y) - 5 & \text{construct} \\
= x \cdot 1 - 6 \cdot 6 & \text{wondown} \\
= x - 3 \cdot \text{PHyectba}.
\end{array}$$

CKMP CDHP.

Th Теорема склеивания

$$(x+y) \cdot (x+y) = x$$

Proof:

$$X \cdot y + x \cdot \overline{y} = x(y + \overline{y}) - sucrprod$$

= $x \cdot 1 - gonosem$
= $x \cdot 1$

Законы де Моргана

$$\frac{1}{(x+y)} = \overline{x} \cdot \overline{y} \qquad \overline{x} \cdot \overline{y} = \overline{x} + \overline{y}$$

$$\overline{X \cdot y} = \overline{X} + \overline{y}$$

Proof:
$$(X + Y) = X, X$$

Pyto pon-ba: 1)
$$(x+y)+(\overline{x}.\overline{y})=1$$

2)
$$(x+g) \cdot (\overline{x} \cdot \overline{g}) = 0$$

3) no z-equation possible
$$x+y=0$$
 $\overline{x}\cdot\overline{y}=b$

Don. bo :
$$\int (x+y) + \overline{x} \cdot \overline{y} = (x+y+\overline{x})(x+y+\overline{y}) - yncorpin \delta$$
.

$$= (x+\overline{x}+y)(x+y+\overline{y}) - yncorpin \delta$$
.

2)
$$(x+y) \cdot (\overline{x} \cdot \overline{y}) = (\overline{x}.\overline{y}) \cdot (x+y) - po \text{ toung}$$

$$= (\overline{x}.\overline{y} \cdot x) + (\overline{x}.\overline{y}.\overline{y}) - sucrpno$$

$$= (\overline{x}.\underline{x}.\overline{y}) + (\overline{x}.\overline{y}.\underline{y}) - no nuy + (\overline{y}.\overline{y}) + (\overline{y}.\overline{y}) - no nuy + (\overline{y}.\overline{y}) + (\overline{y}.\overline{y})$$

3) J. Park UB promether:
$$(x+y) + \overline{x} \cdot \overline{y} = 1$$
, $(x+y) \cdot (\overline{x} \cdot \overline{y}) = 0$
 $(x+y) + (x+y) = 1$, $(x+y)(\overline{x}+y) = 0$

$$\sqrt{3}$$
, equacit formum $\sqrt{3}$, equacit $\sqrt{3}$. $\sqrt{2}$. $\sqrt{3}$. $\sqrt{2}$. $\sqrt{3}$.