Composition et fonctionnement d'un ordinateur

Introduction:

Architecture de von Neumann aujourd'hui:

Plan

- Les unités de stockage : Mémoire
- Le processeur
- Les unités d'entrées/sorties
- Les unités d'interconnexion (bus)

Mémoire

Mémoire

La mémoire permet de :

- Stoker des données
- Stoker des programmes
- Stocker l'informations pendant l'exécution des programmes

Stokage de l'information :

- Bit : le bit vaut 0 ou 1
- Octet : L'octet se compose de 8 bits

Caractéristique de la mémoire

- Capacité : Nombre total de bits que contient la mémoire.
- Temps d'accès : temps s'écoulant entre le lancement d'une opération de lecture/écriture et son accomplissement.
- Temps de cycle : temps minimale entre deux accès (lecture/écriture) successifs.

Capacité de la mémoire

Préfixes décimaux du système international d'unités

- 1 kilo octet (Ko) = 10³ octets
- 1 méga octet (Mo) = 10⁶ octets
- 1 giga octet (Go) = 10^9 octets
- 1 téra octet (To)= 10¹² octets

Préfixes binaires

- 1 kilo binaire octet (Kio)= 2¹⁰ octets
- 1 méga binaire octet (Mio)= 2²⁰ octets
- 1 giga binaire octet (Gio)= 2³⁰ octets
- 1 téra binaire octet (Tio)= 2⁴⁰ octets

Mémoire

- RAM: (Random Access Mémory Mémoire à Accès Aléatoire - Mémoire vive) Elle a pour rôle de stocker le programme à exécuter ainsi que les données résultats.
- ROM: (Read Only Mémory Mémoire en lecture seule - Mémoire morte). Cette dernière sert à conserver du code et des paramètres système nécessaire au fonctionnement de l'ordinateur.
- Mémoire de masse : Disque dur, clé USB, etc.

Classification des mémoires

Les mémoires sont classées selon plusieurs critères :

- Le mode de fonctionnement
- La technologie utilisée
- Le temps d'accès

•

Classification selon le mode de fonctionnement

- Mémoire volatile : (RAM, ...)
 mémoire où les informations sont
 perdues lors de la mise hors tension
 de l'appareil.
- Mémoire non volatile : (ROM, disque dur, ...) mémoire où les informations sont conservées même après la mise hors tension de l'appareil.

Classification selon la technologie utilisée

 Mémoire à semi-conducteur : (RAM, ROM, PROM,.....) : très rapide mais de taille réduit

 Mémoire magnétique : (disque dur, disquette,...): moins rapide mais stock un volume d'informations très grand

• Mémoire optique : (DVD, CDROM,..)

Mémoire centrale (RAM)

La mémoire centrale (MC) représente l'espace de travail de l'ordinateur : Les programme a exécuter sont d'abord chargé en RAM

Mémoire centrale (RAM)

Mémoire centrale (RAM)

- La mémoire centrale peut être vu comme un vecteur de mots ou octets.
- Un mot mémoire stocke une information sur k bits.
- Un mot mémoire contient plusieurs cellules mémoire.
- Une cellule mémoire stock 1 seul bit .
- Chaque mot possède sa propre adresse.
- Une adresse est un numéro unique qui permet d'accéder à un mot mémoire.
- Les adresses sont séquentielles (consécutives).
- La taille de l'adresse (le nombre de bits) dépend de la capacité de la mémoire.
- Pour la communication avec les autres organes de l'ordinateur, la mémoire centrale utilise les bus (bus d'adresses et bus de données).

Structure physique d'une mémoire centrale

Structure physique d'une mémoire centrale

- <u>Le bus d'adresse</u> : Il véhicule l'adresse du mot mémoire à lire ou à écrire (modifier) dans la mémoire.
- <u>Le bus de données</u> : Il véhicule l'information lue à partir de la mémoire ou l'information à écrire dans la mémoire.
- MAR (Memory Address Register) : Le registre d'adresse mémoire stocke l'adresse du mot à lire ou à écrire.
- MDR (Memory Data Register): Le registre d'information mémoire stock l'information lu à partir de la mémoire ou l'information à écrire dans la mémoire.
- Décodeur : Il permet de sélectionner un mot mémoire.
- R/W : commande de lecture/écriture , cette commande permet de lire ou d'écrire dans la mémoire (si R/W=1 alors lecture sinon écriture)
- <u>CS (Chip Select)</u>: C'est une commande en logique négative qui permet de sélectionner/activer un boîtier (CS=0 le boîtier est sélectionné, CS=1 le boîtier n'est pas sélectionné)⁶

Structure physique d'une mémoire centrale

- <u>Le bus d'adresse</u> : Sa largeur indique le nombre maximal de mots mémoires
 - Exemple : bus de taille n entraine au plus 2ⁿ mots mémoire
- Le bus de données : Sa largeur indique le nombre maximal de bits d'un mot mémoire
 Exemple : bus de taille k implique un mot mémoire de taille k bits
- <u>La capacité</u> d'une mémoire = le nombre de mots * la taille du mot

Soit une mémoire de Capacité 512 octets contenant 512 mots

- La capacité de la mémoire?
- Le nombre de mots ?
- La taille du mots ?
- La taille du bus d'adresse?
- La taille du bus de donnée ?

Soit une mémoire de Capacité 512 octets contenant 512 mots

- •La capacité de la mémoire = 512 octets
- •Le nombre de mots = 512 mots = 29
- •La taille du mots = 1 octet = 8 bits
- •La taille du bus d'adresse = 9 fils
- La taille du bus de donnée = 8 fils

Lecture d'un mot mémoire

Pour lire une information en mémoire centrale il faut effectuer les opérations suivantes :

- Charger dans le registre MAR l'adresse du mot à lire.
- 2. Lancer la commande de lecture (R/W=1)
- L'information est disponible dans le registre MDR au bout d'un certain temps (temps d'accès)

Écriture d'un mot mémoire

Pour écrire une information en MC il faut effectuer les opérations suivantes :

- 1.Charger dans le MAR l'adresse du mot ou se fera l'écriture.
- 2. Placer dans le MDR l'information à écrire.
- 3.Lancer la commande d'écriture (R/ W=0) pour transférer le contenu du MDR dans la mémoire.

On veut réaliser une mémoire de capacité C, mais nous disposons uniquement de boîtiers (des circuits) de taille inférieur C'?

- Soit M une mémoire de capacité C, tel que m est le nombre de mot et k la taille d'un mot.
- Soit M' un boîtier de capacité C', tel que m' le nombre de mot et k' la taille d'un mot.
- On suppose que C > C'

Quel est le nombre de boîtiers M' nécessaire pour réaliser la mémoire M ?

 Identifier le nombre de boîtiers nécessaire

Identifier le facteur d'extension en ligne

Identifier le facteur d'extension en colonne

- Nombre de boîtiers = C / C'
- Facteur d'extension en ligne = m / m'
- Facteur d'extension en colonne = k / k'

On veut réaliser une mémoire de 1024 mot (la taille d'un mot est de 8 bits) en utilisant des boîtiers de taille 256 mots de 4 bits ?

- (1024,8) -> taille du bus d'adresses est de 10 bits (A_9-A_0) , taille du bus de données est de 8 bits (D_7-D_0)
- (256,4) -> taille du bus d'adresses est de 8 bits (A_7-A_0) , taille du bus de données est de 4 bits (D_3-D_0)
- Le nombre de boîtiers nécessaire = 8
- · Calculer les deux facteurs d'extension lignes et colonnes :
 - -Extension lignes = 1024/256 = 4
 - -Extension colonnes = 8/4 = 2

Processeur

UCT (Unité Centrale de Traitement)

UCT (Unité Centrale de Traitement)

- <u>Unité logique et arithmétique</u> : elle est chargée d'effectuer les opérations de types arithmétique et logique
- Les registres généraux : ce sont des zones mémoire à un seul mot mémoire. Ils sont utilisés pour sauvegarder des informations afin d'effectuer les traitements locaux à l'UCT
- <u>Le compteur ordinal CO</u>: c'est un registre qui contient l'adresse de l'instruction suivante à exécuter
- Registre des instructions RI : c'est un registre qui contient l'instruction, elle même, à exécuter
- <u>Unité de contrôle ou de commande</u> : elle est chargée d'ordonner toutes les opérations nécessaires pour exécuter une instruction. Exemple : c'est elle qui ordonne l'incrémentation du CO

Exécution d'une instruction par la CPU

- 1. Chargement de l'instruction à exécuter depuis la mémoire jusque dans le registre des instructions RI.
- 2. Décodage de l'instruction que l'on vient de charger.
- 3. Chargement des données, si nécessaire, dans les registre.
- 4. Exécution de l'instruction.
- 5. Stockage des résultats à leur destination respective,
- 6. Modification du compteur ordinal pour qu'il pointe sur l'instruction suivante.
- 7. Retour à l'étape 1 pour exécuter l'instruction suivante.

Entrée/Sortie

Entrée/Sortie

 Les entrées sont les données envoyées par un périphérique (disque, réseau, clavier, capteur...) à destination de l'unité centrale

 <u>Les sorties</u> sont les données émises par l'unité centrale à destination d'un périphérique (disque, écran, imprimante...)

Les périphériques d'entrées

Les périphériques de sorties

Haut-parleur

Imprimante

Vidéo projecture

Écran

Les périphériques d'entrées/sorties

Les bus

Les bus

Un bus est un dispositif destiné à assurer le transfert simultané d'informations entre les divers composants d'un ordinateur. On distingue trois catégories de Bus :

- Bus d'adresses (unidirectionnel) : il permet à l'unité de commande de transmettre les adresses à rechercher et à stocker.
- Bus de données (bi-directionnel) : sur lequel circulent les instructions ou les données à traiter ou déjà traitées en vue de leur rangement.
- Bus de contrôle (bi-directionnel): transporte les ordres et les signaux de synchronisation provenant de l'unité de commande vers les divers organes de la machine. Il véhicule aussi les divers signaux de réponse des composants.