UNIVERSITATEA NAȚIONALĂ DE ȘTIINȚĂ ȘI TEHNOLOGIE POLITEHNICA BUCUREȘTI FACULTATEA TRANSPORTURI

Departamentul
Telecomenzi și Electronică în Transporturi

PROIECT MICROCONTROLERE

Coordonator științific

Student

Conf. Dr. Ing. Angel Ciprian Victor-Emanuel Grigorescu Cormoș

> București 2024

UNIVERSITATEA NAȚIONALĂ DE ȘTIINȚĂ ȘI TEHNOLOGIE POLITEHNICA BUCUREȘTI FACULTATEA TRANSPORTURI

Departamentul Telecomenzi și Electronică în Transporturi

Sistem de monitorizare a unei camere cu detectare de lumină și mișcare

Coordonator științific

Student

Conf. Dr. Ing. Angel Ciprian Cormos Victor-Emanuel Grigorescu

București 2024

Cuprins

CAPI	FOLUL 1	1. INTRODUCERE	.1
1.1	SCURT	Ă INTRODUCERE DESPRE SISTEMUL DE DETECȚIE A LUMINII ȘI MIȘCĂRII	. 1
1.2	Istorio	CUL SENZORULUI PIR	.2
1.3	Istorio	CUL SENZORULUI LDR	.2
1.4	APLICA	AȚII PRACTICE ALE SISTEMELOR DE DETACTARE A LUMINII ȘI MIȘCĂRII	.3
1.5	SCOPUI	L PROIECTULUI	.4
1.6	Micro	CONTROLERUL ATMEGA32	.5
1.7	Noțiui	NI GENERALE	.6
1.8	DESCR	IERE COMERCIALĂ	.7
1.9	PRIN CI	E SE DISTINGE SISTEMUL PREZENTAT FAȚA DE ALTE SISTEME DE PE PIAȚĂ?	.8
	1.9.1	Precizie	8
		Eficiență energetică.	
		Fiabilitate	
		Flexibilitate	
		Raport calitate- preţ	
CAPI	TOLUL 2	2. PROIECTARE HARDWARE	10
2.1	DESCR	IEREA SISTEMULUI	10
2.2	SCHEM	A BLOC	10
	2.2.1	Componentele blocului	10
2.3	DESCR	IEREA BLOCURILOR	10
	2.3.1	Alimentare	10
	2.3.2	Senzor PIR	11
	2.3.3	Microcontrolere Atmega328P	12
	2.3.4	Senzor LDR	12
2.4	SCHEM	A ELECTRICĂ REALIZATĂ ÎN KIC AD	13
	2.4.1	Componente utilizate în schemă	14
2.5	CABLA	J IMPRIMAT	14
CAPI	TOLUL 3	3. PROIECTARE SOFTWARE	17

BIBLIC	OGRAFIE		21
CAPIT	OLUL 4.	CONCLUZII	21
3.3	CODUL SU	URSĂ PENTRU MICROCONTROLERUL SLAVE	19
3.2	CODUL SU	URSĂ PENTRU MICROCONTROLERUL MASTER	18
3.1	ORGANIGI	RAMA CODULUI	17

Capitolul 1. Introducere

Într-o lume din ce în ce mai digitalizată, tehnologia joacă un rol esențial în optimizarea resurselor, creșterea confortului și sporirea siguranței. Sistemele de detectare a luminii și mișcării sunt un exemplu perfect al modului în care inovația tehnologică poate transforma activitățile zilnice, oferind soluții eficiente și accesibile pentru probleme obișnuite.

Detectarea luminii și a mișcării are aplicații în diverse domenii, de la gestionarea consumului de energie electrică în locuințe și clădiri comerciale, până la sisteme complexe de securitate. De exemplu, prin utilizarea senzorilor de lumină (LDR), sistemele de iluminat pot fi automatizate pentru a se adapta la nivelurile de luminozitate ambientală, reducând astfel consumul de energie. La fel, senzorii PIR sunt capabili să detecteze prezența oamenilor sau a animalelor, declanșând acțiuni automate, cum ar fi aprinderea luminilor sau activarea sistemelor de alarmă.

În ultimii ani, avansurile în Internet of Things (IoT) și în automatizarea locuințelor au integrat din ce în ce mai mult acești senzori în dispozitivele inteligente. Astfel, sistemele de detectare a luminii și mișcării nu mai sunt doar soluții izolate, ci fac parte din ecosisteme complexe, care contribuie la un stil de viață mai sigur, mai confortabil și mai sustenabil.

1.1 Scurtă introducere despre sistemul de detecție a luminii și mișcării

Sistemele de detectare a luminii și mișcării reprezintă o inovație importantă în domeniul tehnologiei, având un impact semnificativ asupra diverselor aspecte ale vieții moderne. Aceste sisteme sunt utilizate pe scară largă în automatizarea locuințelor, securitatea clădirilor, gestionarea energiei și în numeroase aplicații industriale.

Detectarea mișcării a devenit populară încă din anii 1970, odată cu dezvoltarea senzorilor cu infraroșu pasivi (PIR), care au permis monitorizarea eficientă a mișcării umane fără a necesita tehnologii complicate sau costisitoare. La rândul său, detectarea luminii, prin utilizarea senzorilor de tip fotorezistență (LDR) sau fotodiode, a fost integrată încă din primele sisteme de control automat al iluminatului, apărute în anii 1960, când economisirea energiei a devenit o preocupare tot mai mare.

Astăzi, aceste tehnologii sunt omniprezente și sunt implementate într-o gamă variată de aplicații. În casele inteligente, de exemplu, detectoarele de mișcare aprind luminile automat atunci când cineva intră într-o cameră sau activează sisteme de alarmă. În mediul industrial, ele sunt utilizate pentru a optimiza procesele de producție și a preveni riscurile de securitate. De asemenea, în domeniul transporturilor, astfel de sisteme sunt folosite pentru iluminatul automat al străzilor și pentru detectarea prezenței vehiculelor sau a pietonilor.

Prin combinarea detectării luminii și mișcării, aceste sisteme oferă soluții eficiente și adaptabile, contribuind la crearea unui mediu mai sigur și mai sustenabil. Dezvoltarea constantă a senzorilor și a microcontrolerelor a permis miniaturizarea și reducerea costurilor, ceea ce le

face accesibile pentru utilizări variate, de la proiecte educaționale la implementări comerciale complexe.

1.2 Istoricul senzorului PIR

Senzorii de mișcare pe bază de radiații infraroșii pasive (PIR) au fost dezvoltați ca parte a unei revoluții mai mari în domeniul detectării termice.

Origini în infraroșu: Tehnologia infraroșu a fost studiată încă din secolul al XIX-lea, când fizicianul Sir William Herschel a descoperit radiația infraroșie în 1800. Totuși, primele aplicații practice ale radiațiilor infraroșii au apărut abia în secolul al XX-lea, în special în domeniul militar, pentru detectarea țintelor pe timp de noapte.

Progrese în detectarea mișcării: În anii 1950-1960, cercetătorii au început să dezvolte dispozitive capabile să detecteze schimbările de radiație termică pentru a identifica mișcarea. Primele aplicații comerciale ale senzorilor PIR au apărut în anii 1970, odată cu creșterea interesului pentru sistemele de securitate.

Miniaturizarea și accesibilitatea: În anii 1980-1990, odată cu dezvoltarea materialelor sensibile la infraroșu și a circuitelor integrate, senzorii PIR au devenit mai mici, mai ieftini și mai eficienți. Astfel, au fost adoptați pe scară largă în locuințele inteligente și în iluminatul automat.

Astăzi, senzorii PIR sunt folosiți pe scară largă datorită fiabilității, consumului redus de energie și capacității lor de a detecta mișcarea fără a emite radiații.

1.3 Istoricul senzorului LDR

Senzorii de lumină (LDR) au o istorie mai lungă, fiind una dintre primele tehnologii dezvoltate pentru măsurarea luminii.

Descoperirea fotoconductivității: Conceptul de fotoconductivitate – schimbarea proprietăților unui material sub influența luminii – a fost descoperit în 1873 de Willoughby Smith, în timpul lucrărilor asupra cablurilor telegrafice. Acesta a observat că sulful de cadmiu își modifica conductivitatea în funcție de lumină, deschizând drumul pentru senzorii de lumină.

Primele utilizări: Începând cu anii 1920, fotorezistențele bazate pe materiale semiconductoare au fost utilizate în aplicații industriale, cum ar fi controlul automat al iluminatului și măsurarea intensității luminoase.

Automatizarea iluminatului: În anii 1960-1970, odată cu creșterea preocupărilor pentru economisirea energiei, senzorii LDR au început să fie folosiți pe scară largă în iluminatul public automat și în dispozitivele electronice.

Utilizări moderne: Odată cu avansurile tehnologice din anii 1990 și 2000, LDR-urile au fost integrate în dispozitive precum camerele foto, telefoanele mobile și sistemele de automatizare a locuințelor.

Deși senzorii LDR sunt simpli și ieftini, în aplicații mai avansate au fost înlocuiți treptat de senzori de lumină digitali, care oferă o precizie mai mare. Totuși, LDR-urile rămân populare pentru proiecte educaționale și aplicații de bază.

1.4 Aplicații practice ale sistemelor de detactare a luminii și mișcării

Sistemele de detectare a luminii și mișcării au o gamă variată de aplicații, atât în viața de zi cu zi, cât și în industrii specializate. Iată câteva exemple:

1. Aplicații pentru detactarea luminii (LDR)

Iluminat public automat:

Senzorii LDR sunt folosiți pentru a controla luminile stradale, astfel încât acestea să se aprindă automat pe timp de noapte și să se stingă în zori. Această tehnologie reduce consumul de energie și necesitatea intervenției umane.

Controlul luminozității în dispozitive electronice:

Telefoanele mobile, televizoarele și alte dispozitive electronice folosesc senzori de lumină pentru a ajusta automat nivelul luminozității ecranului în funcție de mediul înconjurător, oferind astfel un consum redus de energie și un confort vizual sporit.

Agricultură inteligentă:

LDR-urile sunt utilizate în agricultură pentru a monitoriza intensitatea luminoasă, ajutând fermierii să controleze serele sau să optimizeze condițiile de creștere a plantelor.

Economie de energie în locuinte:

În sistemele de automatizare a locuințelor, senzorii LDR ajută la ajustarea intensității luminilor în functie de lumina naturală, contribuind la reducerea facturilor de energie electrică.

2. Aplicații pentru detactarea mișcării (PIR)

Sisteme de securitate:

Senzorii PIR sunt folosiți pentru detectarea intrușilor în sistemele de alarmă. Acestea declanșează sunete de avertizare sau notificări atunci când este detectată mișcare în zone restricționate.

Iluminat activat de miscare:

În clădiri de birouri, parcări sau locuințe, luminile pot fi activate automat atunci când senzorul detectează mișcare, prevenind risipa de energie în absența oamenilor.

Automatizarea clădirilor:

În birouri moderne și spații comerciale, senzorii PIR sunt integrați în sisteme de HVAC (încălzire, ventilație și aer condiționat) pentru a regla funcționarea acestora în funcție de prezența oamenilor, economisind energie.

Aplicații în sănătate:

Senzorii PIR sunt folosiți în îngrijirea pacienților sau a persoanelor în vârstă pentru a monitoriza mișcările și a detecta eventualele situații periculoase, cum ar fi căderile.

Automatizarea locuințelor inteligente:

În casele inteligente, senzorii PIR pot fi utilizați pentru a activa diverse funcții, cum ar fi deschiderea automată a ușilor, pornirea aparatelor electrocasnice sau ajustarea luminozității în camere.

Aceste aplicații evidențiază impactul pozitiv al acestor tehnologii în viața de zi cu zi și modul în care ele contribuie la eficiență, siguranță și confort.

1.5 Scopul proiectului

Scopul principal al acestui proiect este de a crea un sistem eficient și accesibil care să detecteze atât variațiile de lumină dintr-un mediu, cât și prezența sau mișcarea persoanelor sau obiectelor. Acest sistem își propune să ofere soluții practice pentru automatizarea locuințelor, creșterea siguranței și optimizarea consumului de energie.

Prin integrarea senzorului LDR (pentru lumină) și a senzorului PIR (pentru mișcare), proiectul vizează:

Cresterea eficientei energetice:

Sistemul contribuie la reducerea risipei de energie prin activarea iluminatului doar atunci când este necesar, în funcție de nivelul de lumină ambientală și de prezența oamenilor. Acest lucru este deosebit de util în locuințe, birouri sau spații comerciale, unde luminile sunt adesea lăsate aprinse inutil.

Automatizarea locuintelor:

În contextul creșterii popularității caselor inteligente, proiectul facilitează integrarea unui sistem care poate îmbunătăți confortul și funcționalitatea zilnică. Detectarea automată a mișcării și a luminii permite utilizatorilor să economisească timp și să se bucure de o experiență modernă de locuire.

Îmbunătățirea siguranței:

Sistemul poate fi utilizat pentru securitate, detectând mișcări neautorizate în anumite zone sau activând alarme și notificări în cazul unei prezențe neașteptate.

Reducerea interventiei umane:

Automatizarea proceselor, cum ar fi aprinderea și stingerea luminilor, elimină necesitatea intervenției manuale. Astfel, proiectul oferă o soluție practică pentru utilizatorii care doresc un sistem ușor de utilizat și adaptabil la diverse scenarii.

Explorarea și înțelegerea tehnologiilor moderne:

Proiectul are și un scop educațional, oferind o oportunitate excelentă pentru aprofundarea cunoștințelor despre senzorii PIR și LDR, microcontrolere și aplicațiile lor. Este ideal pentru studenți sau pasionați care doresc să înțeleagă mai bine principiile automatizării și ale interacțiunii dintre hardware și software.

Adaptabilitate și extindere:

Sistemul este conceput astfel încât să poată fi extins cu uşurință, integrând alte senzori sau componente, cum ar fi alarme, camere de supraveghere sau conexiuni la rețele inteligente.

Relevanța proiectului

Acest proiect se aliniază tendințelor actuale de sustenabilitate și automatizare, adresând nevoile unei lumi moderne preocupate de reducerea consumului de energie și de sporirea confortului în viața de zi cu zi. Prin intermediul acestui sistem, se evidențiază importanța combinării tehnologiilor simple și accesibile pentru a crea soluții inovatoare și eficiente.

1.6 Microcontrolerul Atmega32

AVR este o familie de microcontrolere dezvoltată din 1996 de către Atmel, achiziționată de Microchip Technology în 2016. Acestea sunt microcontrolere RISC cu un singur cip pe 8 biți cu arhitectură Harvard modificată. AVR a fost una dintre primele familii de microcontrolere care a folosit memoria flash pe cip pentru stocarea programelor, spre deosebire de ROM, EPROM sau EEPROM programabile unice folosite de alte microcontrolere la acea vreme.

Microcontrolerele AVR sunt folosite în multe aplicații ca sisteme incorporate. Sunt comun utilizate pentru educație si hobby-uri, acestea fiind incluse in plăcile de dezvoltare Arduino

Atmega32 AVR 8-bit este un circuit integrat de înaltă performanță ce se bazează pe un microcontroler de tip RISC, combinând 32KB ISP flash o memorie cu capacitatea de a citi în timp ce scrie, 1KB de memorie EEPROM, 2KB de SRAM, 23 de linii E/S de uz genral, 32

înregistrări procese genreale, 3 cronometre flexibile, programator de tip UART, interfață seriala, SPI port serial.

Acest microcontroler funcționeaza cu tensiuni cuprinse între 4,5 și 5,5 volți

Figura 1. Atmega328P

1.7 Noțiuni generale

Senzorii folosiți pentru realizarea sistemului de monitorizare sunt: senzorul analogic LDR și senzorul digital PIR.

Senzorul LDR este o componentă pasivă care scade rezistența în urma creșterii luminozitatii. Un fotorezistor poate fi utilizat în circuitele detectoare sensibile la lumină și în circuitele de comutare activate la lumină și la întuneric care acționeaza ca rezistență semiconductoare. În întuneric, un fotorezistor poate avea o rezistență de până la cațiva megaohmi, în timp ce la lumină poate avea o rezistență de până la câteva sute de ohmi.

Senzorul PIR este un dispozitiv de recunoaștere a mișcărilor de corpuri în vecinătatea lui. Detectoarele de miscare sunt o componentă vitală a sistemelor de securitate atât pentru locuințe cât si pentru companii.

Senzorul infraroșu pasiv este cel mai utilizat senzor în detectoare de mișcare. Se adaptează optimal la detecția mișcărilor ce provoacă schimbări în poziționarea unghiulară față de el a corpurilor, atunci când ele se află în raza de acțiune a senzorului.

Senzorul cu infraroșu pasiv, reacționează la schimbarea temperaturii cauzată de schimbarea fluxului radiant de la oameni, animale și vehicule aflate în vecinătatea senzorului.

Figura 2. Fotorezistență (senzor LDR)

Figura 3. Senzor PIR

1.8 Descriere comercială

Sistemul de monitorizare îmbina tehnologii de detecție a luminii si mișcării pentru a crea un produs pe care oricine trebuie să-l dețină pentru securitatea caselor. Sistemul utilizează două microcontrolere Atmega32 care comunică serial, asigurând flexibilitate în utilizare

Sistemul folosește urmatoarele componente:

- Două microcontrolere Atmega328P
- Comunicare serială UART
- Senzor analogic LDR (light dependent resistor)
- Senzor digital PIR

Beneficiile pe care utilizatorii le vor avea în urma deținerii acestui sistem de monitorizare sunt:

- **Securitate îmbunatațită**: Detecteaza mișcarea și declansează alarmele pentru prevenție.
- **Eficiență energetică**: Controloează iluminatul în funcție de condițiile de lumină, reducând consumul de energie.
- **Design modular**: Sistemul poate fi extins.

Acest sistem de monitorizare are cateva aplicații practice precum:

- Sisteme de securitate: Detectarea mișcărilor în încăperi
- Iluminat automat: Aprinderea luminii când senzorul detectează mișcare
- **Automatizări industriale**: Supervizarea spațiilor de munca pentru a îmbunătății iluminarea și a reduce costurile de energie.

1.9 Prin ce se distinge sistemul prezentat fața de alte sisteme de pe piață?

Sistemul prezentat bazat pe microcontrolere Atmega328P este o soluție eficientă care se remarcă față de alte sisteme asemănatoare de pe piață. Iată de ce:

1.9.1 Precizie

- Senzorii LDR şi PIR permit monitorizarea simultană a luminii şi mişcării, oferind o precizie reidicată în orice condiții.
- Arhitectura bazata pe două microcontrolere care comunica serial, permite extinderea sistemului, ceea ce îl face un sistem modular

1.9.2 Eficiență energetică

- Sistemul are costuri reduse deoarece ajustează automat lumina în funcție de lumina naturală
- Modurile de consum redus ale celor două microcontrolere aduc un beneficiu în economisirea energiei.

1.9.3 Fiabilitate

• Comunicarea UART asigură un schimb de date rapid, eliminând riscurile de a pierde semnal.

• Algoritmii pot fi modificați pentru a răspunde rapid în orice situație, cum ar fi detectarea mișcărilor neautorizate.

1.9.4 Flexibilitate

- Sistemul poate fi ușor introdus în sistemele smart home, fiind o alegere excelentă pentru utilizatori
- Este posibila adăugarea de funcționalități suplimentare, precum conectivitatea Wi-Fi sau notificările prin telefon.

1.9.5 Raport calitate- preț

 Design-ul eficient si componentele accesibile oferă performanțe premium, făcând sistemul potrivit atât pentru utilizatorii individuali, cât și pentru aplicații comerciale

În concluzie, acest sistem combină precizia, fiabilitatea și eficiența energetica. Este o alegere excelentă pentru cei care doresc securitate, control și confort asupra spațiului lor.

Capitolul 2. Proiectare hardware

2.1 Descrierea sistemului

Dispozitivul proiectat se ocupă cu detectarea de lumină și mișcare. Acest sistem este proiectat sa fie amplasat în camerele unde se dorește reducerea costurilor de energie, deoarece acesta se activează doar când detectează mișcare sau lumină.

Sistemul va avea în alcătuire un senzor analogic, o fotorezistență, care scade rezistența în urma creșterii luminozității. Acesta va emite un semnal electric corespunzător care va fi interpretat de primul microcontroler ATMega328P. Pe langă senzorul LDR, proiectul conține si un senzor PIR care va fi conectat la cel de-al doilea microcontroler.

Senzorul PIR (passive infrared sensor) este un senzor electronic care măsoară lumina infraroșie care radiază din obiectele care sunt în calea lui.

2.2 Schema bloc

2.2.1 Componentele blocului

Figura 4. Schema bloc

2.3 Descrierea blocurilor

2.3.1 Alimentare

Sistemul va avea nevoie de o tensiune de intrare de 5V. Pentru a obține o tensiune stabilă se va folosi câte un stabilizator de tensiune, LM7805, pentru pinii de alimentare ai microcontrolelor.

• Stabilizatorul de tensiune LM78xx

Pe piață se afla mai multe configurații pentru 78xx, incluzând 7805 (5V), 7806 (6V), 7808 (8V), 7809 (9V), 7810 (10V), 7812 (12V), 7815 (15V), 7818 (18V), și 7824 (24V).

Configurația 7805 este cea mai comună, deoarce sursa sa reglată de 5V oferă o tensiune convenabilă pentru majoritatea componentelor TTL.

Figura 5. LM7805

Se vor monta condesatori de $10~\mu F$ și 100~n F pentru filtrarea semnalului de intrare venit de la stabilizatorul de tensiune.

PARAMETER	TEST CON	DITIONO		μ	A7808C		UNIT
PARAMETER	TEST CON	DITIONS	TJ [†]	MIN	TYP	MAX	UNII
Output voltage	I _O = 5 mA to 1 A,	V _I = 10.5 V to 23 V,	25°C	7.7	8	8.3	V
Output voltage	$P_D \le 15 W$		0°C to 125°C	7.6		8.4	l '
Input voltage regulation	$V_I = 10.5 \text{ V to } 25 \text{ V}$		25°C		6	160	mV
Input voltage regulation	V _I = 11 V to 17 V		25°C		2	80	mv
Ripple rejection	V _I = 11.5 V to 21.5 V,	f = 120 Hz	0°C to 125°C	55	72		dB
Output valtage regulation	I _O = 5 mA to 1.5 A		25°C		12	160	mV
Output voltage regulation	I _O = 250 mA to 750 mA	25°C		4	80	mv	
Output resistance	f = 1 kHz		0°C to 125°C		0.016		Ω
Temperature coefficient of output voltage	I _O = 5 mA		0°C to 125°C		-0.8		mV/°C
Output noise voltage	f = 10 Hz to 100 kHz		25°C		52		μV
Dropout voltage	I _O = 1 A		25°C		2		V
Bias current			25°C		4.3	8	mA
Discourant shares	V _I = 10.5 V to 25 V		000 4- 40500			1	A
Bias current change	I _O = 5 mA to 1 A		0°C to 125°C			0.5	mA
Short-circuit output current		·	25°C		450		mA
Peak output current			25°C		2.2		Α

Figura 6. Foaie de catalog LM7805

2.3.2 Senzor PIR

Principiul de operare al senzorului este: Toate obiectele care au temperatură peste zero absolut emit energie în formă de radiație electromagnetică.

Un detector PIR este folosit pentru a înregistra mișcarea oamenilor, a animalelor sau a altor obiecte. Este frecvent folosit în alarme de securitate și activează automat sistemele de iluminat.

Senzorul se va conecta la un pin digital configurat de intrare (PD.2).

Figura 7. Foaie de catalog senzor PIR

2.3.3 Microcontrolere Atmega328P

• Comunicație serială

Pinul TXD (PD.1) al primului microcontroler este conectat la RXD al microcontrolerului 2 printr-o rezistență de protecție de 330Ω .

Pinul RXD (PD.0) celui de-al doilea microcontroler este conectat la TXD al microcontrolerului 1 printr-o rezistență de protecție de 330Ω .

Ca ieșiere vor fi folosite un led și un buzzer. Led-ul este conectat la un pin digital configurat ca ieșire (PC.0) printr-o rezistență de 220 Ω . Buzzer-ul este conectat la un alt pin digital (PC.1) cu un tranzistor de comutare (BD139) pentru a amplifica semnalul.

Pentru stabilirea semnalului de tact se vor monta la pinii XTAL1 și XTAL2 ai fiecărui microcontroler câte un cristal de cuarț de 16MHz. Se vor monta condensatori de 22 nF la fiecare pin al cristalului și la masă.

2.3.4 Senzor LDR

Este conectat la un pin ADC al microcontrolerului 2 (PC2).

Rezistența de pull-down este de $10 \mathrm{k}\Omega$ pentru funcționarea corecta a divizorului de tensiune.

Figura 6. Rezistența în funcție de lumină.

2.4 Schema electrică realizată în KiCad

Figura 7. Schema electrică realizată în KiCad

2.4.1 Componente utilizate în schemă

• U1, U6: Microcontroler Atmega328-P

• U2: Regulator de tensiune LM7805

• Y1, Y2: Cristal de cuarț

• U3: Senzor PIR

• BZ1: Buzzer

• D1: Led

• Rezistențe 10k, 330, 220

• Condensatoare 10u, 100n, 22p

2.5 Cablaj imprimat

Figura 8. Schemă 3D din față a cablajului imprimat

Figura 9. Schemă 3D din spate a cablajului imprimat

Figura 9. Cablaj imprimat, vedere din față

Figura 10. Cablaj imprimat, vedere din spate

Figura 11. Cablaj imprimat realizat în KiCad

Capitolul 3. Proiectare software

3.1 Organigrama codului

Figura 12. Codul sursa

3.2 Codul sursă pentru microcontrolerul master

```
include "m32def.inc"
 jmp reset
 jmp reset
jmp reset
jmp reset
jmp reset
jmp reset
jmp reset
jmp reset
jmp reset
jmp reset
jmp reset
jmp reset
jmp reset
jmp reset
jmp reset
jmp reset
jmp reset
jmp reset
jmp reset
jmp reset
jmp reset
.org 0x00
rjmp reset master
.org 0x02
rjmp EXT INTO ISR ; ISR pentru întreruperea senzorului PIR
reset_master:
   ; Inițializare stivă
   ldi r16, high(RAMEND)
   out SPH, r16
   ldi r16, low(RAMEND)
   out SPL, r16
   ; Configurare pini
   ldi r16, 0b00000100 ; PD2 (PIR) ca intrare
   out DDRD, r16
   ldi r16, 0b00000100 ; Activează pull-up pentru PD2
   out PORTD, r16
   ldi r16, 0b00000000 ; PC2 (LDR) ca intrare analogică
   out DDRC, r16
   ; Configurare ADC pentru LDR
   ldi r16, 0b10000110 ; ADC Enable, prescaler 64
   out ADCSRA, r16
```

```
ldi r16, 0b01000010 ; Canal ADC2 (PC2)
    out ADMUX, r16
    ; Configurare întrerupere externă INTO pentru PIR
    ldi r16, 0b00000001
    out GICR, r16
    ldi r16, 0b00000010
    out MCUCR, r16
    sei ; Activare întreruperi globale
main master:
    ; Citire senzor LDR
    sbi ADCSRA, ADSC ; Start conversie
    sbis ADCSRA, ADIF ; Așteaptă sfârșitul conversiei
    rjmp main master
    in r16, ADCH; Citire valoare ADC
    cpi r16, 0x80 ; Prag pentru lumină scăzută
    brlo send led on ; Trimite comandă slave-ului să aprindă LED-ul
    rjmp send led off ; Trimite comandă să stingă LED-ul
send_led_on:
    ldi r16, 0x01
    out UDR, r16; Trimite comandă LED ON către slave
    rjmp main master
send led off:
    ldi r16, 0x00
    out UDR, r16; Trimite comandă LED OFF către slave
    rjmp main master
EXT INTO ISR:
    ; Trimite comandă pentru activarea buzzer-ului
    ldi r16, 0x02 ; Cod pentru buzzer ON
    out UDR, r16
    reti
```

3.3 Codul sursă pentru microcontrolerul slave

```
.include "m32def.inc"
jmp reset
```

```
jmp reset
.org 0x00
rjmp reset slave
reset slave:
    ; Inițializare stiva
    ldi r16, high(RAMEND)
    out SPH, r16
    ldi r16, low(RAMEND)
    out SPL, r16
    ; Configurare pini
    ldi r16, 0b00000011; PC0 (LED) și PC1 (buzzer) ca ieșire
    out DDRC, r16
    ldi r16, 0x00
    out PORTC, r16 ; Inițializare ieșiri la LOW
    ; Configurare UART pt receptie
    ldi r16, 0b10000000; RX enable
    out UCSRB, r16
    ldi r16, 0b00000110 ; Format 8-bit, 1 stop bit
    out UCSRC, r16
    ldi r16, 51; Baudrate pentru 9600 bps (F CPU = 8MHz)
    out UBRRL, r16
main slave:
    sbis UCSRA, RXC ; Așteaptă date
    rjmp main slave
    in r16, UDR ; Citire comandă
    cpi r16, 0x01 ; LED ON
    breq turn led on
    cpi r16, 0x00 ; LED OFF
    breq turn led off
    cpi r16, 0x02 ; Buzzer ON
    breq turn buzzer on
    cpi r16, 0x03; Buzzer OFF
```

```
breq turn_buzzer_off
rjmp main_slave

turn_led_on:
    sbi PORTC, PC0 ; Aprinde LED-ul
    rjmp main_slave

turn_led_off:
    cbi PORTC, PC0 ; Stinge LED-ul
    rjmp main_slave

turn_buzzer_on:
    sbi PORTC, PC1 ; Porneşte buzzer-ul
    rjmp main_slave

turn_buzzer_off:
    cbi PORTC, PC1 ; Opreşte buzzer-ul
    rjmp main_slave
```

Capitolul 4. Concluzii

Proiectul realizat reprezinta un sistem de monitorizare și alertă, construit cu două microcontrolere Atmeag328p conectate serial, care are în componența sa senzori pentru detecția miscării și luminii. Prin utilizarea senzorului PIR și a fotorezistenței (senor LDR), sistemul poate să monitorizeze eficient atât prezența umană, cât și condițiile de iluminare, oferind astfel o soluție versatilă pentru aplicații de securitate.

Proiectul se remarcă prin fiabilitate ridicată, datorită utilizării componentelor testate și a codului. Se remarcă și simplitatea în implementare, oferind un design hardware clar și un cod software bine structurat.

Bibliografie

Atmega328: https://en.wikipedia.org/wiki/ATmega328

Senzor PIR: https://ro.wikipedia.org/wiki/Senzor_infraro%C8%99u_pasiv

Fotorezistența: https://en.wikipedia.org/wiki/Photoresistor

Stabilizator de tensiune: https://en.wikipedia.org/wiki/78xx

Rezistență de 10kΩ https://www.adelaida.ro/rezistente-putere-3w-10k.html

Rezistență de 220Ω https://ro.farnell.com/multicomp-pro/mcmf0w2ff2200a10/metal-

film-resistor-220-ohm-

500mw/dp/1126868?srsltid=AfmBOor4da8Lgr_rmFRopb3TW8gfTirKxtVB7RC94w2IBLm VMZKHDTu_ Rezistență de 330 Ω https://www.digchip.com/datasheets/parts/datasheet/1838/CFR-25JB-330R.php

Condensator 10uf https://www.farnell.com/datasheets/1558295.pdf
Condensator 100nf https://www.farnell.com/datasheets/2918259.pdf
Condensator 2upf https://www.farnell.com/datasheets/1441585.pdf

Anexa

description/ordering information

This series of fixed-voltage integrated-circuit voltage regulators is designed for a wide range of applications. These applications include on-card regulation for elimination of noise and distribution problems associated with single-point regulation. Each of these regulators can deliver up to 1.5 A of output current. The internal current-limiting and thermal-shutdown features of these regulators essentially make them immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents, and also can be used as the power-pass element in precision regulators.

ORDERING INFORMATION

TJ	V _{O(NOM)} (V)	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
		POWER-FLEX (KTE)	Reel of 2000	μA7805CKTER	μA7805C	
	5	TO-220 (KC)	Tube of 50	μA7805CKC	µА7805С	
		TO-220, short shoulder (KCS)	Tube of 20	μA7805CKCS	µА/805С	
l		POWER-FLEX (KTE)	Reel of 2000	μA7808CKTER	μA7808C	
l	8	TO-220 (KC)	Tube of 50	μA7808CKC	цА7808C	
l		TO-220, short shoulder (KCS)	Tube of 20	μA7808CKCS	μΑ/ ουο С	
l	10	POWER-FLEX (KTE)	Reel of 2000	μA7810CKTER	μA7810C	
0°C to 125°C	10	TO-220 (KC)	Tube of 50	μA7810CKC	μA7810C	
0°C to 125°C		POWER-FLEX (KTE)	Reel of 2000	μA7812CKTER	μA7812C	
l	12	TO-220 (KC)	Tube of 50	μA7812CKC	цА7812C	
l		TO-220, short shoulder (KCS)		μA7812CKCS	µА/812С	
l		POWER-FLEX (KTE)	Reel of 2000	μA7815CKTER	μA7815C	
l	15	TO-220 (KC)	Tube of 50	μA7815CKC	µА7815С	
	TO-220, short shoulder (KCS)		Tube of 20	μA7815CKCS	μΑ/σιου	
	24	POWER-FLEX (KTE)	Reel of 2000	μA7824CKTER	μA7824C	
	24	TO-220 (KC)	Tube of 50	μA7824CKC	μA7824C	

Figura 12. Foaie de catalog pentru regulator de tensiune1.

schematic

Figura 13. Foaie de catalog pentru regulator de tensiune2

Terminology

• Light Resistance :

Measured at 10 lux with standard light A (2854K-color temperature) and 2hr. preillumination at 400-600 lux prior testing.

• Dark Resistance:

Measured at 10th seconds after closing 10 lux.

• Gamma characteristic :

Under 10 lux and 100 lux and given by $\gamma = \log(R10/R100) / \log(100/10) = \log(R10/R100)$ R10, R100: resistance at 10 lux and 100 lux. The tolerance of γ is ± 0.1 .

• Pmax:

Max. power dissipation at ambient temperature of 25°C.At higher ambient temperature,the maximum power permissible may be lowered.

• Vmax:

Max. voltage in darkness that may be applied to the device continuously.

CdS 100 Relative sensitivity(%) 80 -CdSe 60 .Cd(\$.Se) 40 20 0 400 600 700 800 900 Wavelength(nm)

Sensitive surface

Lead wires

Ceramic substrate

Resin Encapsulation

Electrodes

Conducting resin

• Spectral peak:

Spectral sensitivity of photoresistors depends on the wavelength of light they are exposed to and in accordance with figure 'Spectral Response'. The tolerance of spectral peak is ± 50 nm.

Figura 14. Foaie de catalog fotorezistență

PIR Sensor (#555-28027)

General Description

The PIR (Passive Infra-Red) Sensor is a pyroelectric device that detects motion by measuring changes in the infrared levels emitted by surrounding objects. This motion can be detected by checking for a high signal on a single I/O pin.

Features

- Single bit output
- Small size makes it easy to conceal
- · Compatible with all Parallax microcontrollers
- 3.3V & 5V operation with <100uA current draw

Application Ideas

Module Dimensions

@ Parallax, Inc. • PIR Sensor (#555-28027) • v1.2 02/2007

Page 1 of 4

Figura 15. Foaie de catalog senzor PIR

ROYALOHM

Metal Oxide Film Fixed Resistors

Features

- · High safety standard, high purity ceramic core
- Excellent non-flame coating, non-inductive type available
 Stable performance in diverse environment,
- meet EIAJ-RC2655A requirements
- Too low or too high ohmic value can be supplied on a case to case basis

Standard: 2%, 5% 10%---E 24 series 1%---E 96 series

DodNo	Ch.l.	Power		Dim	ension (mm)		Max	Max	Dielectric	Resistance	Std
Part No.	Style	Rating at 70°C	D Max	L Max	H±3	d±0,05	PT	Working Voltage	Voltage	Withstanding Voltage	Range	Packing Qty
Nomal	Size											
MOR0W4	MOR 25	1/4W(0,25W)	2,5	7.5	28	0.54	52	250V	400V	250V	0,3Ω ~ 50ΚΩ	5,000
MOR0W2	MOR 50	1/2W(0.50W)	3.5	10.0	28	0.54	52	250V	400V	250V	$0.3\Omega \sim 50 \mathrm{K}\Omega$	1,000
MOR01W	MOR 100	1W	5.0	12.0	25	0.70	52	350V	600V	350V	0,3Ω ~ 50ΚΩ	1,000
MOR02W	MOR 200	2W	5.5	16.0	28	0.70	64	350V	600V	350V	0.3Ω ~ 50ΚΩ	1,000
MOR03W	MOR 300	3W	6.5	17.5	28	0.75	64	500V	800V	500V	5Ω ~ 100ΚΩ	500
MOR05W	MOR 500	5W	8.5	26.0	38	0.75	B/B	750V	1,000V	750V	5Ω ~ 150ΚΩ	1,000
MOR07W	MOR 700	7W	8.5	32.0	38	0.75	B/B	750V	1,000V	750V	20Ω ~ 150ΚΩ	1,600
MOR08W	MOR 800	8W	8.5	41.0	38	0.75	B/B	750V	1,000V	750V	30Ω ~ 200ΚΩ	1,600
MOR09W	MOR 900	9W	8.5	54.0	38	0.75	B/B	750V	1,000V	750V	50Ω ~ 200ΚΩ	1,800
Small Siz	ze											
MOR0S2	MOR 50-S	1/2W(0.50W)	2.5	7.5	28	0.54	52	250V	400V	250V	0.3Ω ~ 50ΚΩ	5,000
MOR01S	MOR 100-S	1W	3.5	10.0	28	0,54	52	350V	600V	350V	0,3Ω ~ 50ΚΩ	1,000
MOR02S	MOR 200-S	2W	5.0	12.0	25	0.70	52	350V	600V	350V	0,3Ω ~ 50ΚΩ	1,000
MOR03S	MOR 300-S	3W	5.5	16.0	28	0.70	64	350V	600V	350V	0.3Ω ~ 50ΚΩ	1,000
MOR04S	MOR 400-S	4W	6.5	17.5	28	0.75	64	500V	800V	500V	5Ω ~ 100ΚΩ	500
MOR05S	MOR 500-S	5W	8.0	25.0	38	0.75	B/B	500V	800V	500V	5Ω ~ 150ΚΩ	1,000
Extra Sm	na Size											
MOR05U	MOR 500-SS	5W	6.5	17.5	28	0.75	64	500V	800V	500V	5Ω ~ 100ΚΩ	500

Figura 16. Foaie de catalog rezistență de $10k\Omega$

INTRODUCTION

The CFR Series Carbon Film Resistors are manufactured by coating a homogeneous film of pure carbon on high grade ceramic rods. After a helical groove has been cut in the resistive layer, tinned connecting leads of electrolytic copper are welded to the end-caps. The resistors are coated with layers of tan color lacquer.

FEATURES

Power Rating	1/6W, 1/4W, 1/2W, 1W, 2W, 3W
Resistance Tolerance	±2%, ±5%
T.C.R.	seeTable I

DERATING CURVE

For resistors operated in ambient temperatures above 70° C, power rating must be derated in accordance with the curve below.

Rated Load (%) 70 155 **

Ambient Temperature (°C)

Unit: mm

TABLE I TEMPERATURE COEFFICIENT

STYLE	MAX. VALUE OF TEMP. COEFFICIENT PPM/°C							
	under I00K Ω	100K Ω - IM Ω	ΙΜΩ - ΙΟΜΩ					
CFR100, CFR200, CFR2WS, CFR3WS	±350	-500	-1,500					
CFR-12, CFR-25, CFR-50, CFR25S, CFR50S, CFR1WS	+350 / -500	-700	-1,500					

DIMENSIONS

STYLE		DIMENSIC	DIMENSION									
Normal	Miniature	L	øD	н	ød							
CFR-12	CFR25S	3.4±0.3	1,9±0,2	28±2.0	0.45±0.05							
CFR-25	CFR50S	6.3±0.5	2,4±0,2	28±2.0	0.55±0.05							
CFR-50	CFRIWS	9.0±0.5	3.3±0.3	26±2.0	0.55±0.05							
CFR100	CFR2WS	11.5±1.0	4.5±0.5	35±2.0	0.8±0.05							
CFR200	CFR3WS	15.5±1.0	5.0±0.5	33±2.0	0.8±0.05							

Figura 17. Foaie de catalog rezistență de 330Ω

Precision Metal Film Resistor multicomp PRO

		Special Order			
Part Number	Tolerance	Resistance Range	TCR		
MCMF12	±0.25%	51.1Ω to 200kΩ	±15 PPM/°C		
MCMF0S4	±0.5%	51.1Ω to 511kΩ	±25 PPM/°C		
MCMFF04	±0.5%	51.102 to 511kt2	±50 PPM/°C		
MCMF0W4	±0.1%	100Ω to 100kΩ	±15 PPM/°C		
MCMF0W2		100Ω to 300kΩ	±15 PPM/°C		
MCMF0S2	±0.1%	51.1Ω to 511kΩ 10Ω to 1MΩ	±25 PPM/°C ±50 PPM/°C		
MCMF01W	-	-	-		
MCMF02W		-	-		
MCMF03W	-	-	-		

Diagram

		Power Rating		Dimension (mm)						
Part Number	Style	at 70°C	D Max.	L Max.	d ±0.05	H ±3	PT	Packing Quantity		
			Norm	nal Size						
MCMF0W8	MF 12	1/8W (0.125W)	1.85	3.5	0.45	28	52	5,000		
MCMF0W4	MF 25	1/4W (0.25W)	2.5	6.8	0.54	28	52	5,000		
MCMF0W2	MF 50	1/2W (0.5W)	3.6	10	0.54	28	52	1,000		
MCMF01W	MF 100	1W	5	12	0.7	25	52	1,000		
MCMF02W	MF 200	2W	5.5	16	0.7	28	64	1,000		
MCMF034	MF 300	3W	6.5	17.5	0.75	28	64	500		
			Sma	II Size						
MCMF0S4	MF 25-S	1/4W (0.25W)	1.85	3.5	0.45	28	52	5,000		
MCMFF04	MF 40-SS	0.4W	1.9	3.7	0.45	28	52	5,000		
MCMF0S2	MF50-S	1/2W (0.5W)	3	9	0.54	28	52	2,000		
MCMF0M7	MF 75-S	0.75W	3.5	10	0.54	28	52	5,000		
MCMF01S	MF 100-S	1W	3.5	10	0.54	28	52	1,000		
MCMF02S	MF 200-S	2W	5	12	0.7	28	52	1,000		
MCMF03S	MF 300-S	3W	5.5	16	0.7	28	64	1,000		

Note: Dimensions : Millimetres
Extra small size types (-SS) are Non flame coating (Dark Green Colour)

Figura 18. Foaie de catalog rezistență de 220Ω

Specification Table

No.	Item						Perfo	rmance					
1	Operating Temperature Range						-40 to	+105°C					
2	Rated Working Voltage Range		10 - 100 V dc										
3	Nominal Capacitance Range						0.1 - 1	15,000 μF					
4	Capacitance Tolerance			±20% (at +20°C, 120 Hz)									
5	Leakage Current		Whichev	er is grea	ater at			C: Rate	age Curr	tance (µl			
	Dissipation Factor		Working V	oltage (\	/) 1	0	16	25	35	50	63	100	
6	(tan δ)		tan 8	Max.	0.	19	0.16	0.14	0.12	0.1	0.1	0.07	
	(120 Hz / +20°C)			Add	0.02	per 1	1,000 µ	F for mor	e than 1,	000 μF			
7	Maximum Permissible Ripple Current		Refer to standard product Frequency (Hz) W V (V dc) 0.1 - 330 470 - 3,30 ≥ 4,700 0.47 - 33 63 - 100 47 - 220 ≥ 330 ≥ 160 1 - 220		330 ,300 00 33 20	0.0	(120 H 60 85 95 75 .8	1z, +105°(120	1 K 1.3 1.15 1.1 1.55 1.4 1.3	10 1 1 1. 1. 1.	.4 .2 .65 .6 .35	100 K 1.55 1.25 1.2 1.8 1.65 1.4	
		w	orking Volta	• • •	10	T	16	25	35	50	63		
	Characteristics at				3	\perp	2	2	2	2	2	2	
8	Low Temperature (Stability at 120 Hz)	L	-40°C / +20)°C	6		4	3	3	3	3	3	
		For capacitance value > 1,000 μF, Add 0.5 per another 1,000 μF for -25°C / +25°C. Add 1 per another 1,000 μF for -40°C / +20°C.											

Figura 18. Foaie de catalog condensator de 10uF

RoHS Compliant

Specification Table

Part Number	Dielectric Strength	Working Voltage
MPCC50V104KY5U	100V DC 1-5S < 50mA	50V (DC)
MPCC100V104KY5U	200V DC 1-5S < 50mA	100V (DC)

Test Condition

ı	Frequency	Temperature	R.H.
ı	1kHz 0.1V	25°C ±2°C	65%

Diagram

Part Number	D	В	F	L	T	d
MPCC50V104KY5U	≤9	≤3	5 ±1	5 ±1	≤3	0.5 ±0.1
MPCC100V104KY5U				7 ±1		

Dimensions : Millimetres

Part Number Table

Description	Part Number		
Ceramic Disc Capacitor, 0.1µF, 10%, 50V, Through Hole	MPCC50V104KY5U		
Ceramic Disc Capacitor, 0.1µF, 10%, 100V, Through Hole	MPCC100V104KY5U		

Figura 19. Foaie de catalog condensator de 100nF

Features:

- Material : Aluminium.
- Large size snap-In.
- LPR series large size capacitors with the specially designed terminals have "self-standing" and can be directly soldered to printed circuit boards without holders.
- They are easily to fixing to printed circuit boards due to the specially designed terminals.

Specification Table

No.	Item	Performance							
1	Operating Temperature Range	-40 to +85°C				-25 to +85°C			
2	Rated Working Voltage Range	16 - 100 V dc				250 - 400 V dc			
3	Nominal Capacitance Range	470 - 68,000 μF				47 - 2,700 μF			
4	Capacitance Tolerance	±20% (at +20°C, 120 Hz)							
5	Leakage Current	I = 0.02 CV or 3,000 (μA) Max. I : Leakage Current (μA) Whichever is greater after 3 mins. C : Rated Capacitance (μF) V : Working Voltage (v)							
	(120 Hz / +20°C)	W V μF 47 - 330	16	25 - 35	50 - 63	100	250	400	
		470 - 3,300	0.25	0.2	0.2	0.2	0.15	0.2	
6		4,700 - 6,800	0.35	0.3	0.3	0.25	-	-	
		10,000 - 22,000	0.4	0.35			-	-	
		27,000 - 47,000	0.45	0.4	0.35				
		56,000 - 68,000	0.5	0.45	-	-	-	-	
		Less than the value under table							
7	Characteristics at Low Temperature (Stability at 120 Hz)	Impedance Ratio at 100 Hz Z -25°C / Z 20°C : 3 Max. Z -40°C / Z 20°C : 12 Max.							

Figura 20. Foaie de catalog condensator de 22pF