E2 210 (Jan.-Apr. 2025)

Homework Assignment 2

Submission deadline: Monday, Feb. 10, 11:59pm

- 1. Fidelity is a distance measure between two density matrices, defined as $F(\rho, \sigma) := \operatorname{tr} \sqrt{\rho^{\frac{1}{2}} \sigma \rho^{\frac{1}{2}}}$.
 - (a) Let $F(|\psi\rangle, \rho)$ denote the fidelity between the density matrix, $|\psi\rangle\langle\psi|$, of a pure state $|\psi\rangle$ and an arbitrary density ρ . Show that $F(|\psi\rangle, \rho) = \sqrt{\langle\psi|\rho|\psi\rangle}$. [Hint: Note that $(|\psi\rangle\langle\psi|)^2 = |\psi\rangle\langle\psi|$.]
 - (b) If ρ and σ commute (i.e., $\rho\sigma = \sigma\rho$), then show that $F(\rho, \sigma) = \sum_i \sqrt{\lambda_i \mu_i}$, where the λ_i 's and μ_i 's are the eigenvalues of ρ and σ , respectively.

[*Hint*: Since ρ and σ commute, they are simultaneously diagonalizable, i.e., they are diagonalizable in the same ON basis.]

- 2. Quantum noise and fidelity.
 - (a) Consider the depolarizing noise channel:

$$\mathcal{E}(\rho) = (1 - p)\rho + \frac{p}{3} \left(X\rho X + Y\rho Y + Z\rho Z \right).$$

Show that if a qubit in state $|\psi\rangle$ passes through the depolarizing noise channel, then the fidelity between $|\psi\rangle$ and $\sigma:=\mathcal{E}(|\psi\rangle\langle\psi|)$ is $F(|\psi\rangle,\sigma)=\sqrt{1-2p/3}$.

(b) Consider the amplitude damping channel with parameter γ :

$$\mathcal{E}_{AD}(\rho) = E_0 \rho E_0^{\dagger} + E_1 \rho E_1^{\dagger},$$

where $E_0 = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{bmatrix}$ and $E_1 = \begin{bmatrix} 0 & \sqrt{\gamma} \\ 0 & 0 \end{bmatrix}$. Let $\sigma := \mathcal{E}_{AD}(|\psi\rangle\langle\psi|)$ be the density matrix of a qubit $|\psi\rangle$ after it passes through the amplitude damping channel. Show that

$$F(|\psi\rangle, \sigma) \ge \sqrt{1-\gamma}$$

with equality if and only if $|\psi\rangle = |1\rangle$.

3. The S gate is a single-qubit gate that applies a $\pi/2$ phase shift to the $|1\rangle$ state while leaving $|0\rangle$ unaffected: $S|0\rangle = |0\rangle$ and $S|1\rangle = i|1\rangle$. Consider the 2-qubit quantum code $\mathcal{Q} = \operatorname{span}(|++\rangle, |--\rangle)$. Can this code recover from a single $\pi/2$ phase shift error? In other words, is there a recovery operation that allows any quantum state $|\varphi\rangle \in \mathcal{Q}$ to be recovered from any error in the set $\mathcal{E} = \{I \otimes I, S \otimes I, I \otimes S\}$?