Vorlesung Statistik für Informatiker Prof. Dr. Reimar Hofmann Hochschule Karlsruhe – Technik und Wirtschaft

Aufgabenblatt 4 zur Statistik-Vorlesung

Basisaufgaben Normalverteilung

Aufgabe 4.1 (Normalverteilung Basisoperationen)

Bei den folgenden Teilaufgaben (a) bis (h) sind jeweils zwei Dinge anzugeben:

- die formale Bezeichnung für die gesuchte Größe (Beispiel: P(L > 5)
- das Ergebnis mit Rechenweg.

Die (verschleißbedingte) Lebensdauer *L* eines Bauteiltyps sei *normalverteilt* mit Erwartungswert 10 Jahre und Standardabweichung 2 Jahre. Wie wahrscheinlich ist es, dass ein Bauteil ...

- a) höchstens 14 Jahre hält?
- b) mindestens 9 Jahre hält?
- c) mehr als 10 Jahre hält?
- d) zwischen 9 und 10 Jahre hält?
- e) Wie wahrscheinlich ist es, dass ein Bauteil, das 9 Jahre lang funktioniert hat, noch mindestens ein weiteres Jahr funktioniert?

[Zum Vergleich: Die Wahrscheinlichkeit, dass ein Bauteil, das 14 Jahre lang funktioniert hat, noch mindestens ein weiteres Jahr funktioniert, beträgt 27.3%]

- f) Nach welcher Zeit sind im langfristigen Mittel 90% der Bauteile kaputt?
- g) Welche Zeit überstehen mindestens 90% der Bauteile ohne Defekt?
- h) Bestimmen Sie den Median der Lebensdauer.

Aufgabe 4.2

Im Folgenden soll untersucht werden, wie starke Streuung um den Erwartungswert bei einer normalverteilten Zufallsvariable mit welcher Wahrscheinlichkeit auftritt:

Sei X eine normalverteilte Zufallsvariable mit Erwartungswert μ und Standardabweichung σ .

- a) In welchem Intervall muss X liegen, damit die Betragsungleichung $|X \mu| < \sigma$ erfüllt wird?
- b) Bestimmen Sie P($|X-\mu| < \sigma$). Tipp: Das Ergebnis hängt nicht von den konkreten Werten von μ und σ ab
- c) Bestimmen Sie P($|X \mu| < 2\sigma$).
- d) Bestimmen Sie P($|X \mu| < 2.5\sigma$).

Aufgabe 4.3

Beim Verpacken von Kartoffeln in Netze schwankt das tatsächliche Gewicht X eines Netzes zufallsabhängig - und unabhängig von Netz zu Netz. Es sei X normalverteilt mit Erwartungswert $\mu = 1000$ g und Standardabweichung $\sigma = 90$ g.

- a) Berechnen Sie die Wahrscheinlichkeit dafür, dass ein Netz ...
 - i) weniger als 950 g
 - ii) genau 950 g
 - iii) zwischen 950 g und 1150 g wiegt.
- b) Welches Gewicht wird von 90 % der Netze nicht überschritten?
- c) Wir prüfen zwei zufällig und unabhängig voneinander herausgegriffene Netze N1 und N2.
 - i) Wie wahrscheinlich ist es, dass N1 und N2 beide mehr als 950 g wiegen?
 - ii) Wie wahrscheinlich ist es, dass beide weniger als 950 g wiegen?
 - iii) Wie wahrscheinlich ist es, dass N1 oder N2 weniger als 950 g wiegt?
- d) Netze, die unter 950 g wiegen, werden von der Qualitätskontrolle aussortiert und gelangen nicht in den Handel. Wie wahrscheinlich ist es, dass ein im Handel erworbenes Netz zwischen 950 g und 1150 g wiegt?
- e) Wie wahrscheinlich ist es, dass ein Netz, das mindestens 750g wiegt, zwischen 750 und 950 g wiegt?
 - Wie hätte das Ergebnis im Vergleich zu (d) ausfallen müssen, wenn X eine gedächtnislose Verteilung besitzen würde?

Standardnormalverteilung $\Phi_{0;1}(z)$

z \ *	0	1	2	3	4	5	6	7	8	9
0,0*	0,50000	0,50399	0,50798	0,51197	0,51595	0,51994	0,52392	0,52790	0,53188	0,53586
0,1*	0,53983	0,54380	0,54776	0,55172	0,55567	0,55962	0,56356	0,56749	0,57142	0,57535
0,2*	0,57926	0,58317	0,58706	0,59095	0,59483	0,59871	0,60257	0,60642	0,61026	0,61409
0,3*	0,61791	0,62172	0,62552	0,62930	0,63307	0,63683	0,64058	0,64431	0,64803	0,65173
0,4*	0,65542	0,65910	0,66276	0,66640	0,67003	0,67364	0,67724	0,68082	0,68439	0,68793
0,5*	0,69146	0,69497	0,69847	0,70194	0,70540	0,70884	0,71226	0,71566	0,71904	0,72240
0,6*	0,72575	0,72907	0,73237	0,73565	0,73891	0,74215	0,74537	0,74857	0,75175	0,75490
0,7*	0,75804	0,76115	0,76424	0,76730	0,77035	0,77337	0,77637	0,77935	0,78230	0,78524
0,8*	0,78814	0,79103	0,79389	0,79673	0,79955	0,80234	0,80511	0,80785	0,81057	0,81327
0,9*	0,81594	0,81859	0,82121	0,82381	0,82639	0,82894	0,83147	0,83398	0,83646	0,83891
1,0*	0,84134	0,84375	0,84614	0,84849	0,85083	0,85314	0,85543	0,85769	0,85993	0,86214
1,1*	0,86433	0,86650	0,86864	0,87076	0,87286	0,87493	0,87698	0,87900	0,88100	0,88298
1,2*	0,88493	0,88686	0,88877	0,89065	0,89251	0,89435	0,89617	0,89796	0,89973	0,90147
1,3*	0,90320	0,90490	0,90658	0,90824	0,90988	0,91149	0,91309	0,91466	0,91621	0,91774
1,4*	0,91924	0,92073	0,92220	0,92364	0,92507	0,92647	0,92785	0,92922	0,93056	0,93189
1,5*	0,93319	0,93448	0,93574	0,93699	0,93822	0,93943	0,94062	0,94179	0,94295	0,94408
1,6*	0,94520	0,94630	0,94738	0,94845	0,94950	0,95053	0,95154	0,95254	0,95352	0,95449
1,7*	0,95543	0,95637	0,95728	0,95818	0,95907	0,95994	0,96080	0,96164	0,96246	0,96327
1,8*	0,96407	0,96485	0,96562	0,96638	0,96712	0,96784	0,96856	0,96926	0,96995	0,97062
1,9*	0,97128	0,97193	0,97257	0,97320	0,97381	0,97441	0,97500	0,97558	0,97615	0,97670
2,0*	0,97725	0,97778	0,97831	0,97882	0,97932	0,97982	0,98030	0,98077	0,98124	0,98169
2,1*	0,98214	0,98257	0,98300	0,98341	0,98382	0,98422	0,98461	0,98500	0,98537	0,98574
2,2*	0,98610	0,98645	0,98679	0,98713	0,98745	0,98778	0,98809	0,98840	0,98870	0,98899
2,3*	0,98928	0,98956	0,98983	0,99010	0,99036	0,99061	0,99086	0,99111	0,99134	0,99158
2,4*	0,99180	0,99202	0,99224	0,99245	0,99266	0,99286	0,99305	0,99324	0,99343	0,99361
2,5*	0,99379	0,99396	0,99413	0,99430	0,99446	0,99461	0,99477	0,99492	0,99506	0,99520
2,6*	0,99534	0,99547	0,99560	0,99573	0,99585	0,99598	0,99609	0,99621	0,99632	0,99643
2,7*	0,99653	0,99664	0,99674	0,99683	0,99693	0,99702	0,99711	0,99720	0,99728	0,99736
2,8*	0,99744	0,99752	0,99760	0,99767	0,99774	0,99781	0,99788	0,99795	0,99801	0,99807

Anmerkung: Negative Werte werden aus Gründen der Symmetrie nicht angegeben, weil $\Phi(-z) = 1 - \Phi(z)$ ist. Das Sternchen * ist ein Platzhalter für die zweite Nachkommastelle, die in der jeweiligen Spaltenüberschrift angegeben ist.