Daisy Diff compare report.

Click on the changed parts for a detailed description. Use the left and right arrow keys to walk through the modifications.

Functional Package for Secure Shell (SSH)

This page is best viewed with JavaScript enabled!

Version: 1.0 2020-01-05

National Information Assurance Partnership

Revision History

Version Date Comment

1.0 2021-01-05 DRAFT: First publication as a Functional Package

Contents

1Introduction1.1Overview1.2Terms1.2.1Common Criteria Terms1.2.2Technical Terms1.3Compliant Targets of
Evaluation2Conformance Claims3Security Functional Requirements3.1Auditable Events for Mandatory
SFRs3.2Cryptographic Support (FCS)Appendix A - Optional RequirementsA.1Strictly Optional Requirements A.2Objective
Requirements A.3Implementation-based Requirements Appendix B - Selection-based Requirements B.1 Auditable Events
for Selection-based Requirements B.2Cryptographic Support (FCS)Appendix C - ReferencesAppendix D - Acronyms

1 Introduction

1.1 Overview

Secure Shell (SSH) is a protocol for secure remote login and other secure network services over an untrusted network. SSH software can act as a client, server, or both.

This *Functional Package for Secure Shell* defines functional requirements for the implementation of the <u>SSH</u> protocol. The requirements are intended to improve the security of products by enabling their evaluation.

1.2 Terms

The following sections list Common Criteria and technology terms used in this document.

1.2.1 Common Criteria Terms

Assurance Grounds for confidence that a <u>TOE</u> meets the SFRs [CC].

Base Protection Profile (Base-PP)

Protection Profile used as a basis to build a PP-Configuration.

Common Criteria Common Criteria for Information Technology Security Evaluation (International Standard ISO/IEC

(<u>CC</u>) 15408).

Common Criteria Within the context of the Common Criteria Evaluation and Validation Scheme (CCEVS), an IT security Testing evaluation facility, accredited by the National Voluntary Laboratory Accreditation Program (NVLAP) and

Laboratory approved by the NIAP Validation Body to conduct Common Criteria-based evaluations.

Common Evaluation Methodology (CEM)

Methodology Common Evaluation Methodology for Information Technology Security Evaluation.

Distributed TOE

Environment

(OE)

Operational

Hardware and software that are outside the TOE boundary that support the TOE functionality and

A TOE composed of multiple components operating as a logical whole.

security policy.

Protection Profile (PP)

An implementation-independent set of security requirements for a category of products.

Protection Profile

Configuration A comprehensive set of security requirements for a product type that consists of at least one Base-PP

(<u>PP-</u> and at least one <u>PP-Module</u>.

Configuration)
Protection Profile

Module (PPModule (PPmore Base Protection Profiles.

An implementation-independent statement of security needs for a TOE type complementary to one or more Base Protection Profiles.

Module)
Security
Assurance

Requirement (SAR)
Security

A requirement to assure the security of the <u>TOE</u>.

Functional Requirement (SFR)

A requirement for security enforcement by the <u>TOE</u>.

Security Target

(ST) A set of implementation-dependent security requirements for a specific product.

TOE Security Functionality

The security functionality of the product under evaluation.

(TSF)
TOF Summary

TOE Summary Specification

A description of how a TOE satisfies the SFRs in an ST.

(TSS)

Target of Evaluation (TOE)

The product under evaluation.

1.2.2 Technical Terms

Secure Shell Cryptographic network protocol for initiating text-based shell sessions on remote

(SSH) systems.

1.3 Compliant Targets of Evaluation

The Target of Evaluation (<u>TOE</u>) in this Functional Package is a product which acts as an <u>SSH</u> client, <u>SSH</u> server, or both. This FP describes the extended security functionality of <u>SSH</u> in terms of <u>[CC]</u>.

The contents of this Functional Package must be appropriately combined with a <u>PP</u> or <u>PP-Module</u>. When a <u>PP</u> or <u>PP-Module</u> instantiates this Package, the Package must include selection-based requirements in accordance with the selections or assignments indicated in the <u>PP</u> or <u>PP-Module</u>.

The <u>PP</u> or <u>PP-Module</u> that instantiates this Package must typically include the following components in order to satisfy dependencies of this Package. It is the responsibility of the <u>PP</u> or <u>PP-Module</u> author who instantiates this Package to ensure that dependence on these components is satisfied, either by the <u>TOE</u> or by assumptions about its Operational Environment.

An <u>ST</u> must identify the applicable version of the <u>PP</u> or <u>PP-Module</u> and this Package in its conformance claims.

Component	Explanation
FCS_CKM.1	To support key generation for <u>SSH</u> , the <u>PP</u> or <u>PP-Module</u> must include FCS_CKM.1 and specify the corresponding algorithm.
FCS_CKM.2	To support key establishment for <u>SSH</u> , the <u>PP</u> or <u>PP-Module</u> must include FCS_CKM.2 and specify the corresponding algorithm.
FCS_COP.1	To support the cryptography needed for <u>SSH</u> communications, the <u>PP</u> or <u>PP-Module</u> must include FCS_COP.1 (iterating as needed) to specify AES with corresponding key sizes and modes, digital signature generation and verification function (at least one of RSA or ECDSA), a cryptographic hash function, and a keyed-hash message authentication function. In particular, the <u>PP</u> or <u>PP-Module</u> must support AES-CTR as defined in NIST SP 800-38A with key sizes of both 128 and 256 bits.
FCS_RBG_EXT.1	To support random bit generation needed for <u>SSH</u> key generation, the <u>PP</u> or <u>PP-Module</u> must include a requirement that specifies the <u>TOE</u> 's ability to invoke or provide random bit generation services, commonly identified as FCS_RBG_EXT.1.
FIA_X509_EXT.1	To support establishment of <u>SSH</u> communications using a public key algorithm that includes X.509, the <u>PP</u> or <u>PP-Module</u> must include FIA_X509_EXT.1. Note however that support for X.509 is selectable and not mandatory.
FIA_X509_EXT.2	To support establishment of <u>SSH</u> communications using a public key algorithm that includes X.509, the <u>PP</u> or <u>PP-Module</u> must include FIA_X509_EXT.2. Note however that support for X.509 is selectable and not mandatory.
FPT_STM.1	To support establishment of <u>SSH</u> communications using a public key algorithm that includes X.509, the <u>PP</u> or <u>PP-Module</u> must include FPT_STM.1 or some other requirement that ensures reliable system time. Note however that support for time-based rekey thresholds is selectable and not mandatory.

2 Conformance Claims

Conformance Statement

An ST must claim exact conformance to this Package, as defined in the CC and CEM addenda for Exact Conformance, Selection-Based SFRs, and Optional SFRs (dated May 2017).

CC Conformance Claims

This Package is conformant to Parts 2 (extended) and 3 (conformant) of Common Criteria Version 3.1, Revision 5.

This Package does not claim conformance to any Protection Profile.

Package Claim

This Package does not claim conformance to any packages.

3 Security Functional Requirements

This chapter describes the security requirements which have to be fulfilled by the product under evaluation. Those requirements comprise functional components from Part 2 of [CC]. The following conventions are used for the completion of operations:

- **Refinement** operation (denoted by **bold text** or strikethrough text): is used to add details to a requirement (including replacing an assignment with a more restrictive selection) or to remove part of the requirement that is made irrelevant through the completion of another operation, and thus further restricts a requirement.
- Selection (denoted by italicized text): is used to select one or more options provided by the CC in stating a requirement.
- Assignment operation (denoted by italicized text): is used to assign a specific value to an unspecified parameter, such as the length of a password. Showing the value in square brackets indicates assignment.
- **Iteration** operation: is indicated by appending the <u>SFR</u> name with a slash and unique identifier suggesting the purpose of the operation, e.g. "/EXAMPLE1."

3.1 Auditable Events for Mandatory SFRs

The auditable events specified in this Package are included in a Security Target if the incorporating <u>PP</u> or <u>PP-Module</u> supports audit event reporting through FAU_GEN.1 and all other criteria in the incorporating <u>PP</u> or <u>PP-Module</u> are met.

Table 1: Auditable Events for Mandatory SFRs

Requirement	Auditable Events	Additional Audit Record Contents
FCS_SSH_EXT.1	No events specified	

3.2 Cryptographic Support (FCS)

FCS SSH EXT.1 SSH Protocol

FCS SSH EXT.1.1

The <u>TOE</u> shall implement the <u>SSH</u> protocol that complies with RFCs 4251, 4252, 4253, 4254 and **§election**: 5647, 5656, 6187, 6668, 8332, no other RFCs] as a **[selection**: client, server].

Application Note:

The <u>ST</u> author selects which of the additional RFCs to which conformance is being claimed. An <u>SSH</u> product can implement additional RFCs, but only those listed in the selection can be claimed as conformant under <u>CC</u>. The RFC selections for this requirement need to be consistent with selections in later elements of this Functional Package (e.g., cryptographic algorithms permitted).

RFC 4253 indicates that certain cryptographic algorithms are "REQUIRED." This means that from the Internet Engineering Task Force's (IETF's) perspective the implementation must include support, not that the algorithms must be enabled for use. For the purposes of this SFR's evaluation activity and this Functional Package overall, it is not necessary to ensure that algorithms listed as "REQUIRED" by the RFC but not listed in later elements of this Functional Package are actually implemented.

RFC 5647 must be selected when AEAD_AES_128_GCM or AEAD_AES_256_GCM is selected as an encryption algorithm in FCS_SSHC_EXT.1.3 or FCS_SSHS_EXT.1.3 and as a MAC algorithm in FCS_SSHC_EXT.1.5 or FCS_SSHS_EXT.1.5.

RFC 5656 must be selected when ecdsa-sha2-nistp256 or ecdsa-sha2-nistp384 is selected as a public key algorithm in FCS_SSHS_EXT.1.4, or when ecdh-sha2-nistp256, ecdh-sha2-nistp384, or ecdh-sha2-nistp521 is selected as a key exchange algorithm in FCS_SSHS_EXT.1.6.

RFC 6187 must be selected when x509v3-ecdsa-sha2-nistp256 or x509v3-ecdsa-sha2-nistp384 is selected as a public key algorithm in FCS_SSHC_EXT.1.4 or FCS_SSHS_EXT.1.4.

RFC 6668 must be selected when hmac-sha2-256 or hmac-sha2-512 is selected as a MAC algorithm in FCS_SSHC_EXT.1.5 or FCS_SSHS_EXT.1.5.

RFC 8332 must be selected when rsa-sha2-256 or rsa-sha2-512 is selected as a public key algorithm in FCS SSHC EXT.1.4 or FCS SSHS EXT.1.4.

If "client" is selected, then the ST must include FCS SSHC EXT.1.

If "server" is selected, then the ST must include FCS SSHS EXT.1.

Evaluation Activity

<u>TSS</u>

The evaluator shall ensure that the selections indicated in the <u>ST</u> are consistent with selections in the dependent components.

Guidance

There are no guidance evaluation activities for this component.

Appendix A - Optional Requirements

As indicated in the introduction to this Package, the baseline requirements (those that must be performed by the <u>TOE</u>) are contained in the body of this Package. This appendix contains three other types of optional requirements that may be included in the <u>ST</u>, but are not required in order to conform to this Package. However, applied modules, packages and/or use cases may refine specific requirements as mandatory.

The first type (A.1 Strictly Optional Requirements) are strictly optional requirements that are independent of the TOE implementing any function. If the TOE fulfills any of these requirements or supports a certain functionality, the vendor is encouraged to included the SFRs in the ST, but are not required in order to conform to this Package.

The second type (<u>A.2 Objective Requirements</u>) are objective requirements that describe security functionality not yet widely available in commercial technology. The requirements are not currently mandated in the body of this Package, but will be included in the baseline requirements in future versions of this Package. Adoption by vendors is encouraged and expected as soon as possible.

The third type (<u>A.3 Implementation-based Requirements</u>) are dependent on the <u>TOE</u> implementing a particular function. If the <u>TOE</u> fulfills any of these requirements, the vendor must either add the related<u>SFR</u> or disable the functionality for the evaluated configuration.

A.1 Strictly Optional Requirements

This Package does not define any Strictly Optional requirements.

A.2 Objective Requirements

This Package does not define any Objective requirements.

A.3 Implementation-based Requirements

This Package does not define any Implementation-based requirements.

Appendix B - Selection-based Requirements

As indicated in the introduction to this Package, the baseline requirements (those that must be performed by the TOE or its underlying platform) are contained in the body of this Package. There are additional requirements based on selections in the body of the Package: if certain selections are made, then additional requirements below must be included.

B.1 Auditable Events for Selection-based Requirements

The auditable events in the table below are included in a Security Target if both the associated requirement is included and the incorporating PP or PP Module supports audit event reporting through FAU_GEN.1 and any other criteria in the incorporating PP or PP Module are met.

Table 2: Auditable Events for Selection-based Requirements RequirementAuditable EventsAdditional Audit Record Contents

FCS_SSHC_EXT.1

[selection: Failure to establish a session, Nonc]Reason for failure.

Non-TOE endpoint of attempted connection (IP Address).

FCS_SSHC_EXT.1[selection: Establishment of a session, Nonc]Non-TOE endpoint of connection (IP Address).

FCS SSHC EXT.1[selection: Termination of a session, Nonc]Non-TOE endpoint of connection (IP Address).

FCS SSHS EXT.1[selection: Failure to establish a session, Nonc]Reason for failure.

Non-TOE endpoint of attempted connection (IP Address).

FCS SSHS EXT.1[selection: Establishment of a session, Nonc]Non-TOE endpoint of connection (IP Address).

FCS SSHS EXT.1[selection: Termination of a session, Nonc]Non-TOE endpoint of connection (IP Address).

B.2 Cryptographic Support (FCS)

FCS SSHC EXT.1 SSH Protocol - Client

The inclusion of this This is a selection-based component. Its inclusion depends upon a selection in from FCS SSH EXT.1.1.

FCS SSHC EXT.1.1

The <u>SSH</u> client shall ensure that the <u>SSH</u> protocol implementation supports the following authentication methods as described in RFC 4252: public key-based and [**selection**: *password-based*, *no other method*]. Evaluation Activity

TSS

The evaluator shall check to ensure that the <u>TSS</u> contains a description of the public key algorithms that are acceptable for use for authentication and that this list conforms to <u>FCS_SSHC_EXT.1.4</u>. The evaluator shall also ensure that password-based authentication methods, if supported, are described.

If the <u>SSH</u> client supports password-based authentication, the evaluator shall examine the guidance to determine that it includes instructions on how to configure whether the <u>TSF</u> uses password-based or public key-based authentication. Tests

- **Test 1:** The evaluator shall, for each public key algorithm supported, show that the <u>TOE</u> supports the use of that public key algorithm to authenticate a user connection to an <u>SSH</u> server. Any configuration activities required to support this test shall be performed according to instructions in the guidance documentation.
- **Test 2:** [conditional]: <u>TOE</u> supports password-based authentication] Using the guidance documentation, the evaluator shall configure the <u>TOE</u> to perform password-based authentication to an <u>SSH</u> server, and demonstrate that a user can be successfully authenticated by the <u>TOE</u> to an <u>SSH</u> server using a password as an authenticator.

FCS SSHC EXT.1.2

The <u>SSH</u> client shall ensure that, as described in RFC 4253, packets greater than **assignment**: number of bytes] bytes in an <u>SSH</u> transport connection are dropped.

Application Note: RFC 4253 provides for the acceptance of "large packets" with the caveat that the packets should be of "reasonable length" or dropped. The assignment should be filled in by the \underline{ST} author with the maximum packet size accepted, thus defining "reasonable length" for the \underline{TOE} .

Evaluation Activity

TSS

The evaluator shall check that the <u>TSS</u> describes how "large packets" in terms of RFC 4253 are detected and handled. Guidance

There are no guidance evaluation activities for this element.

Tests

The evaluator shall perform the following test:

• **Test 1:** The evaluator shall demonstrate that if the <u>TOE</u> receives a packet larger than that specified in this element, the packet is dropped.

FCS SSHC EXT.1.3

The <u>SSH</u> client shall ensure that the <u>SSH</u> transport implementation uses the following encryption algorithms and rejects all other encryption algorithms: aes128-ctr, aes256-ctr, [selection: aes128-cbc, aes256-cbc, AEAD_AES_128_GCM, AEAD_AES_256_GCM, aes128@openssh.com, aes256@openssh.com, no other algorithms]. Application Note:

RFC 5647 specifies the use of the AEAD_AES_128_GCM and AEAD_AES_256_GCM algorithms in <u>SSH</u>. As described in RFC 5647, AEAD_AES_128_GCM and AEAD_AES_256_GCM can only be chosen as encryption algorithms when the same algorithm is being used as the MAC algorithm.

If AES-GCM is selected, there should be corresponding FCS_COP entries in the ST.

RFC 5647 applies only to the RFC-compliant implementation of GCM. A <u>TOE</u> that implements only the "@openssh.com" variant of GCM should not select 5647-compliant algorithms in <u>FCS_SSHC_EXT.1.1</u>. aes*-gcm@openssh.com is specified in Section 1.6 of the OpenSSH Protocol Specification (https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL?rev=1.31).

Evaluation Activity

TSS

The evaluator shall check the description of the implementation of this protocol in the <u>TSS</u> to ensure that it specifies the supported encryption algorithms and any optional characteristics. The evaluator shall also check the <u>TSS</u> to ensure that the encryption algorithms specified are identical to those listed for this element.

The evaluator shall check the guidance documentation to ensure that it contains instructions on configuring the <u>TOE</u> so that <u>SSH</u> conforms to the description in the <u>TSS</u> (for instance, the set of algorithms advertised by the <u>TOE</u> may have to be restricted to meet the requirements).

Tests

The evaluator shall perform the following tests:

- **Test 1:** The evaluator shall establish an <u>SSH</u> connection using each of the encryption algorithms specified by the requirement. It is sufficient to observe (on the wire) the successful negotiation of the algorithm to satisfy the intent of this test.
- **Test 2:** The evaluator shall configure an <u>SSH</u> server to only allow the 3des-cbc encryption algorithm and no other encryption algorithms. The evaluator shall attempt to establish an <u>SSH</u> connection from the <u>TOE</u> to the <u>SSH</u> server and observe that the connection is rejected.

FCS SSHC EXT.1.4

The <u>SSH</u> client shall ensure that the <u>SSH</u> transport implementation uses [selection: ssh-rsa, rsa-sha2-256, rsa-sha2-512, ecdsa-sha2-nistp256] and [selection: ecdsa-sha2-nistp384, x509v3-ecdsa-sha2-nistp256, x509v3-ecdsa-sha2-nistp384, no other public key algorithms] as its public key algorithm(s) and rejects all other public key algorithms. Application Note:

Implementations that select only ssh-rsa will not achieve the 112-bit security strength in the digital signature generation for SSH authentication as is recommended in NIST SP 800-131A. Future versions of this document may remove ssh-rsa as a selection. If "x509v3-ecdsa-sha2-nistp256" or "x509v3-ecdsa-sha2-nistp384" are selected, then the list of trusted certification authorities must be selected in FCS_SSHC_EXT.1.8. RFC 8332 specifies the use of rsa-sha2-256 or rsa-sha2-512 in SSH.

The SFRs for cryptographic key generation and certificate validation are inherited from the <u>PP</u> or <u>PP-Module</u> that includes this Package.

Evaluation Activity

TSS

The evaluator shall check the description of the implementation of this protocol in the <u>TSS</u> to ensure that it specifies the supported public key algorithms and any optional characteristics. The evaluator shall also check the <u>TSS</u> to ensure that the encryption algorithms specified are identical to those listed for this element.

Guidance

The evaluator shall check the guidance documentation to ensure that it contains instructions on configuring the <u>TOE</u> so that <u>SSH</u> conforms to the description in the <u>TSS</u> (for instance, the set of algorithms advertised by the <u>TOE</u> may have to be restricted to meet the requirements).

Tests

The evaluator shall perform the following tests:

- Test 1: The evaluator shall establish a <u>SSH</u> connection using each of the public key algorithms specified by the
 requirement to authenticate an <u>SSH</u> server to the <u>TOE</u>. It is sufficient to observe (on the wire) the successful
 negotiation of the algorithm to satisfy the intent of the test.
- Test 2: The evaluator shall configure an <u>SSH</u> server to only allow the ssh-dsa public key algorithm and no other public
 key algorithms. The evaluator shall attempt to establish an <u>SSH</u> connection from the <u>TOE</u> to the <u>SSH</u> server and
 observe that the connection is rejected.

FCS SSHC EXT.1.5

The <u>SSH</u> client shall ensure that the <u>SSH</u> transport implementation uses [selection: hmac-sha1, hmac-sha1-96, hmac-sha2-256, hmac-sha2-512] and [selection: AEAD_AES_128_GCM, AEAD_AES_256_GCM, implicit, no other MAC algorithms] as its data integrity MAC algorithm(s) and rejects all other MAC algorithm(s). Application Note:

RFC 5647 specifies the use of the AEAD_AES_128_GCM and AEAD_AES_256_GCM algorithms in <u>SSH</u>. As described in RFC 5647, AEAD_AES_128_GCM and AEAD_AES_256_GCM can only be chosen as MAC algorithms when the same algorithm is being used as the encryption algorithm. RFC 6668 specifies the use of the sha2 algorithms in <u>SSH</u>.

The SFRs for cryptographic operations, encryption, and hashing are inherited from the \underline{PP} or $\underline{PP\text{-Module}}$ that includes this Package.

The <u>ST</u> author selects "implicit" if and only if aes*-gcm@openssh.com is selected as an encryption algorithm. When aes*-gcm@openssh.com is negotiated as the encryption algorithm, the MAC algorithm field is ignored and GCM is implicitly used as the MAC. "implicit" is not an <u>SSH</u> algorithm identifier and will not be seen on the wire; however, the negotiated MAC might be decoded as "implicit".

Evaluation Activity

TSS

The evaluator shall check the <u>TSS</u> to ensure that it lists the supported data integrity algorithms and that this list corresponds to the list in this element.

Guidance

The evaluator shall check the guidance documentation to ensure that it includes instructions to the administrator on how to ensure that only the allowed data integrity algorithms are used in <u>SSH</u> connections with the <u>TOE</u> (specifically, that the "none" MAC algorithm is not allowed).

Tests
The evaluator shall perform the following tests:

• **Test 1:** The evaluator shall establish a <u>SSH</u> connection using each of the integrity algorithms specified by the requirement. It is sufficient to observe (on the wire) the successful negotiation of the algorithm to satisfy the intent of

this test.

- **Test 2:** The evaluator shall configure an <u>SSH</u> server to only allow the "none" MAC algorithm. The evaluator shall attempt to connect from the <u>TOE</u> to the <u>SSH</u> server and observe that the attempt fails.
- **Test 3:** The evaluator shall configure an <u>SSH</u> server to only allow the hmac-md5 MAC algorithm. The evaluator shall attempt to connect from the <u>TOE</u> to the <u>SSH</u> server and observe that the attempt fails. To ensure the proposed MAC algorithm is used, the evaluator shall ensure a non-aes*- gcm@openssh.com encryption algorithm is negotiated while performing this test.

FCS SSHC EXT.1.6

The <u>SSH</u> client shall ensure that [selection: diffie-hellman-group14-sha1, ecdh-sha2-nistp256] and [selection: ecdh-sha2-nistp384, ecdh-sha2-nistp521, no other methods] are the only allowed key exchange methods used for the <u>SSH</u> protocol. <u>Evaluation Activity</u>

TSS

The evaluator shall check the <u>TSS</u> to ensure that it lists the supported key exchange algorithms and that this list corresponds to the list in this element.

Guidance

The evaluator shall check the guidance documentation to ensure that it includes instructions to the administrator on how to ensure that only the allowed key exchange algorithms are used in <u>SSH</u> connections with the <u>TOE</u>.

Tests

The evaluator shall perform the following test:

• **Test 1:** The evaluator shall configure an <u>SSH</u> server to permit all allowed key exchange methods. The evaluator shall then attempt to connect from the <u>TOE</u> to the <u>SSH</u> server using each allowed key exchange method and observe that each attempt succeeds.

FCS SSHC EXT.1.7

The <u>SSH</u> client shall ensure that the <u>SSH</u> connection be rekeyed after [selection: no more than 2²⁸ packets have been transmitted, no more than 1 gigabyte of data has been transmitted no more than 1 hour] using that key. Evaluation Activity

TSS

There are no **TSS** evaluation activities for this element.

Guidance

There are no guidance evaluation activities for this element.

Tests

The evaluator shall perform the following test for each rekeying method claimed in the ST:

The evaluator shall perform the following test:

• **Test 1:** The evaluator will configure the <u>TOE</u> to create a log entry when a rekey occurs. The evaluator will connect to the <u>TOE</u> with an <u>SSH</u> client and cause a rekey to occur according to the selection(s) in the <u>ST</u>, and subsequently the evaluator uses available methods and tools to verify that rekeying occurs. This could be done, e.g., by checking that a corresponding audit event has been generated by the <u>TOE</u>, if the <u>TOE</u> supports auditing of rekey events.

FCS SSHC EXT.1.8

The <u>SSH</u> client shall ensure that the <u>SSH</u> client authenticates the identity of the <u>SSH</u> server using a local database associating each host name with its corresponding public key or [**selection**: a list of trusted certification authorities, no other methods] as described in RFC 4251 section 4.1.

Application Note: The selection for "a list of trusted certification authorities" can only be chosen if "x509v3-ecdsa-sha2-nistp256" or "x509v3-ecdsa-sha2-nistp384" are selected in FCS_SSHC_EXT.1.4.

Evaluation Activity

TSS

There are no **TSS** evaluation activities for this element.

Guidance

There are no guidance evaluation activities for this element.

Tests

The evaluator shall perform the following tests:

- **Test 1:** The evaluator shall delete all entries in the <u>TOE</u>'s list of recognized <u>SSH</u> server host keys and, if selected, all entries in the <u>TOE</u>'s list of trusted certification authorities. The evaluator shall then initiate a connection from the <u>TOE</u> to an <u>SSH</u> server. The evaluator shall ensure that the <u>TOE</u> either rejects the connection or displays the <u>SSH</u> server's public key (either the key bytes themselves or a hash of the key using any allowed hash algorithm) and prompts the user to accept or deny the key before continuing the connection.
- **Test 2:** The evaluator shall add an entry associating a host name with a public key into the <u>TOE</u>'s local database. The evaluator shall then replace, on the corresponding <u>SSH</u> server, the server's host key with a different host key. The evaluator shall initiate a connection from the <u>TOE</u> to the <u>SSH</u> server using password-based authentication, shall ensure that the <u>TOE</u> rejects the connection, and shall ensure that the password was not transmitted to the <u>SSH</u> server (for example, by instrumenting the <u>SSH</u> server with a debugging capability to output received passwords).

FCS_SSHS_EXT.1 SSH Protocol - Server

The inclusion of this This is a selection-based component. Its inclusion depends upon a selection in from FCS SSH EXT.1.1.

FCS SSHS EXT.1.1

The <u>SSH</u> server shall ensure that the <u>SSH</u> protocol implementation supports the following authentication methods as described in RFC 4252: public key-based and [**selection**: password-based, no other method].

Evaluation Activity

TSS

The evaluator shall check to ensure that the <u>TSS</u> contains a description of the public key algorithms that are acceptable for use for authentication and that this list conforms to <u>FCS_SSHS_EXT.1.4</u>. The evaluator shall also ensure that password-based authentication methods, if supported, are described.

If the <u>SSH</u> server supports password-based authentication, the evaluator shall examine the guidance to determine that it includes instructions on how to configure whether the <u>TSF</u> uses password-based or public key-based authentication. Tests

The evaluator shall perform the following tests:

- **Test 1:** The evaluator shall, for each public key algorithm supported, show that the <u>TOE</u> supports the use of that public key algorithm to authenticate a user connection from an <u>SSH</u> client. Any configuration activities required to support this test shall be performed according to instructions in the guidance documentation.
- **Test 2:** The evaluator shall choose one public key algorithm supported by the <u>TOE</u>. The evaluator shall generate a new key pair for that algorithm without configuring the <u>TOE</u> to recognize the public key for authentication. The evaluator shall use an <u>SSH</u> client to attempt to connect to the <u>TOE</u> with the new key pair and demonstrate that authentication fails.
- **Test 3:** [conditional]: <u>TOE</u> supports password-based authentication] Using the guidance documentation, the evaluator shall configure the <u>TOE</u> to perform password-based authentication on a client and demonstrate that a user can be successfully authenticated by the <u>TOE</u> using a password as an authenticator.
- **Test 4:** [conditional]: <u>TOE</u> supports password-based authentication] The evaluator shall use an <u>SSH</u> client to enter an incorrect password to attempt to authenticate to the <u>TOE</u> and demonstrate that the authentication fails.

FCS SSHS EXT.1.2

The <u>SSH</u> server shall ensure that, as described in RFC 4253, packets greater than **assignment**: number of bytes] bytes in an <u>SSH</u> transport connection are dropped.

Application Note: RFC 4253 provides for the acceptance of "large packets" with the caveat that the packets should be of "reasonable length" or dropped. The assignment should be filled in by the <u>ST</u> author with the maximum packet size accepted, thus defining "reasonable length" for the <u>TOE</u>.

Evaluation Activity
TSS

The evaluator shall check that the <u>TSS</u> describes how "large packets" in terms of RFC 4253 are detected and handled. Guidance

There are no guidance evaluation activities for this element.

Tests

The evaluator shall perform the following test:

• **Test 1:** The evaluator shall demonstrate that if the <u>TOE</u> receives a packet larger than that specified in this element, the packet is dropped.

FCS SSHS EXT.1.3

The <u>SSH</u> server shall ensure that the <u>SSH</u> transport implementation uses the following encryption algorithms and rejects all other encryption algorithms: aes128-ctr, aes256-ctr, [**selection**: aes128-cbc, aes256-cbc, AEAD_AES_128_GCM, AEAD_AES_256_GCM, aes128-gcm@openssh.com, aes256-gcm@openssh.com, no other algorithms]. Application Note:

RFC 5647 specifies the use of the AEAD_AES_128_GCM and AEAD_AES_256_GCM algorithms in <u>SSH</u>. As described in RFC 5647, AEAD_AES_128_GCM and AEAD_AES_256_GCM can only be chosen as encryption algorithms when the same algorithm is being used as the MAC algorithm.

RFC 5647 applies only to the RFC compliant implementation of GCM. A <u>TOE</u> that implements only the "@openssh.com" variant of GCM should not select 5647-compliant algorithms in <u>FCS_SSHS_EXT.1.1</u>. aes*-gcm@openssh.com is specified in Section 1.6 of the OpenSSH Protocol Specification (https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL?rev=1.31).

Evaluation Activity

TSS

The evaluator shall check the description of the implementation of this protocol in the <u>TSS</u> to ensure that it specifies the supported encryption algorithms and any optional characteristics. The evaluator shall also check the <u>TSS</u> to ensure that the encryption algorithms specified are identical to those listed for this element.

Guidance

The evaluator shall check the guidance documentation to ensure that it contains instructions on configuring the <u>TOE</u> so that <u>SSH</u> conforms to the description in the <u>TSS</u> (for instance, the set of algorithms advertised by the <u>TOE</u> may have to be restricted to meet the requirements).

Tests

The evaluator shall perform the following tests:

• **Test 1:** The evaluator shall initiate an <u>SSH</u> connection using each of the encryption algorithms specified by the requirement. It is sufficient to observe (on the wire) the successful negotiation of the algorithm to satisfy the intent of this test.

• **Test 2:** The evaluator shall configure an <u>SSH</u> client to only propose the 3des-cbc encryption algorithm and no other encryption algorithms. The evaluator shall attempt to establish an <u>SSH</u> connection from this client to the <u>TOE</u> server and observe that the connection is rejected.

FCS SSHS EXT.1.4

The <u>SSH</u> server shall ensure that the <u>SSH</u> transport implementation uses [selection: ssh-rsa, rsa-sha2-256, rsa-sha2-512, ecdsa-sha2-nistp256] and [selection: ecdsa-sha2-nistp384, x509v3-ecdsa-sha2-nistp256, x509v3-ecdsa-sha2-nistp384, no other public key algorithms] as its public key algorithm(s) and rejects all other public key algorithms. Application Note:

Implementations that select only ssh-rsa will not achieve the 112-bit security strength in the digital signature generation for <u>SSH</u> authentication as is recommended in NIST SP 800-131A. Future versions of this document may remove ssh-rsa as a selection. RFC 8332 specifies the use of rsa-sha2-256 or rsa-sha2-512 in <u>SSH</u>.

The SFRs for cryptographic key generation and certificate validation are inherited from the <u>PP</u> or <u>PP-Module</u> that includes this Package.

Evaluation Activity

TSS

The evaluator shall check the description of the implementation of this protocol in the <u>TSS</u> to ensure that it specifies the supported public key algorithms and any optional characteristics. The evaluator shall also check the <u>TSS</u> to ensure that the encryption algorithms specified are identical to those listed for this element.

The evaluator shall check the guidance documentation to ensure that it contains instructions on configuring the <u>TOE</u> so that <u>SSH</u> conforms to the description in the <u>TSS</u> (for instance, the set of algorithms advertised by the <u>TOE</u> may have to be restricted to meet the requirements).

Tests

The evaluator shall perform the following tests:

- **Test 1:** Using an appropriately configured client, the evaluator shall establish an <u>SSH</u> connection using each of the public key algorithms specified by the requirement to authenticate to the <u>TOE</u>. It is sufficient to observe (on the wire) the successful negotiation of the algorithm to satisfy the intent of this test.
- **Test 2:** The evaluator shall configure an <u>SSH</u> client to propose only the ssh-dsa public key algorithm and no other public key algorithms. Using this client, the evaluator shall attempt to establish an <u>SSH</u> connection to the <u>TOE</u> and observe that the connection is rejected.

FCS SSHS EXT.1.5

The <u>SSH</u> server shall ensure that the <u>SSH</u> transport implementation uses [**selection**: hmac-sha1, hmac-sha1-96, hmac-sha2-256, hmac-sha2-512] and [**selection**: AEAD_AES_128_GCM, AEAD_AES_256_GCM, implicit, no other MAC algorithms] as its MAC algorithm(s) and rejects all other MAC algorithm(s). Application Note:

RFC 5647 specifies the use of the AEAD_AES_128_GCM and AEAD_AES_256_GCM algorithms in <u>SSH</u>. As described in RFC 5647, AEAD_AES_128_GCM and AEAD_AES_256_GCM can only be chosen as MAC algorithms when the same algorithm is being used as the encryption algorithm. RFC 6668 specifies the use of the sha2 algorithms in <u>SSH</u>.

The SFRs for cryptographic operations, encryption and hashing, are inherited from the <u>PP</u> or <u>PP-Module</u> that includes this Package.

The <u>ST</u> author selects "implicit" if and only if aes*-gcm@openssh.com is selected as an encryption algorithm. When aes*-gcm@openssh.com is negotiated as the encryption algorithm, the MAC algorithm field is ignored and GCM is implicitly used as the MAC. "implicit" is not an <u>SSH</u> algorithm identifier and will not be seen on the wire; however, the negotiated MAC might be decoded as "implicit".

Evaluation Activity

TSS

The evaluator shall check the <u>TSS</u> to ensure that it lists the supported data integrity algorithms and that this list corresponds to the list in this element.

Guidance

The evaluator shall check the guidance documentation to ensure that it includes instructions to the administrator on how to ensure that only the allowed data integrity algorithms are used in <u>SSH</u> connections with the <u>TOE</u> (specifically, that the "none" and "hmac-md5" MAC algorithms are not allowed).

The evaluator shall perform the following tests:

- **Test 1:** Using an appropriately configured client, the evaluator shall establish a <u>SSH</u> connection with the <u>TOE</u> using each of the integrity algorithms specified by the requirement. It is sufficient to observe (on the wire) the successful negotiation of the algorithm to satisfy the intent of the test.
- **Test 2:** The evaluator shall configure an <u>SSH</u> client to only propose the "none" MAC algorithm. Using this client, the evaluator shall attempt to connect to the <u>TOE</u> and observe that the attempt fails.
- **Test 3:** The evaluator shall configure an <u>SSH</u> client to only propose the hmac-md5 MAC algorithm. Using this client, the evaluator shall attempt to connect to the <u>TOE</u> and observe that the attempt fails. To ensure the proposed MAC algorithm is used, the evaluator shall ensure a non-aes*- gcm@openssh.com encryption algorithm is negotiated while

performing this test.

FCS SSHS EXT.1.6

The <u>SSH</u> server shall ensure that [**selection**: diffie-hellman-group14-sha1, ecdh-sha2-nistp256] and [**selection**: ecdh-sha2-nistp384, ecdh-sha2-nistp521, no other methods] are the only allowed key exchange methods used for the <u>SSH</u> protocol. <u>Evaluation Activity</u>

TSS

The evaluator shall check the <u>TSS</u> to ensure that it lists the supported key exchange algorithms and that this list corresponds to the list in this element.

Guidance

The evaluator shall check the guidance documentation to ensure that it includes instructions to the administrator on how to ensure that only the allowed key exchange algorithms are used in <u>SSH</u> connections to the <u>TOE</u>.

Tests

The evaluator shall perform the following tests:

- **Test 1:** For each of the allowed key exchange methods, the evaluator shall configure an <u>SSH</u> client to propose only that method and then attempt to connect to the <u>TOE</u>. The evaluator shall confirm that each attempt succeeds.
- **Test 2:** The evaluator shall configure an <u>SSH</u> client to only allow the diffie-hellman-group1-sha1 key exchange. The evaluator shall attempt to use this <u>SSH</u> client to connect to the <u>TOE</u> and confirm that this attempt fails.

FCS SSHS EXT.1.7

The <u>SSH</u> server shall ensure that the <u>SSH</u> connection be rekeyed after [**selection**: no more than 2^{28} packets have been transmitted, no more than 1 gigabyte of data has been transmitted no more than 1 hour] using that key. Evaluation Activity

TSS

There are no <u>TSS</u> evaluation activities for this element.

Guidance

If the <u>TOE</u> has the ability to generate a log when an <u>SSH</u> rekey occurs, the evaluator shall examine the operational guidance to verify that it describes any configuration that is needed for this to be performed.

Tests

The evaluator shall perform the following test for each rekeying method claimed in the ST:

The evaluator shall perform the following test:

• **Test 1:** The evaluator will configure the <u>TOE</u> to create a log entry when a rekey occurs. The evaluator will connect to the <u>TOE</u> with an <u>SSH</u> client and cause a rekey to occur according to the selection(s) in the <u>ST</u>, and subsequently the evaluator uses available methods and tools to verify that rekeying occurs. This could be done, e.g., by checking that a corresponding audit event has been generated by the <u>TOE</u>, if the <u>TOE</u> supports auditing of rekey events.

Appendix A - Optional Requirements

As indicated in the introduction to this Package, the baseline requirements (those that must be performed by the <u>TOE</u>) are contained in the body of this Package. This appendix contains three other types of optional requirements that may be included in the <u>ST</u>, but are not required in order to conform to this Package. However, applied modules, packages and/or use cases may refine specific requirements as mandatory.

The first type (<u>A.1 Strictly Optional Requirements</u>) are strictly optional requirements that are independent of the <u>TOE</u> implementing any function. If the <u>TOE</u> fulfills any of these requirements or supports a certain functionality, the vendor is encouraged to included the SFRs in the ST, but are not required in order to conform to this Package.

The second type (<u>A.2 Objective Requirements</u>) are objective requirements that describe security functionality not yet widely available in commercial technology. The requirements are not currently mandated in the body of this Package, but will be included in the baseline requirements in future versions of this Package. Adoption by vendors is encouraged and expected as soon as possible.

The third type (<u>A.3 Implementation-based Requirements</u>) are dependent on the <u>TOE</u> implementing a particular function. If the <u>TOE</u> fulfills any of these requirements, the vendor must either add the related<u>SFR</u> or disable the functionality for the evaluated configuration.

A.1 Strictly Optional Requirements

This Package does not define any Strictly Optional requirements.

A.2 Objective Requirements

This Package does not define any Objective requirements.

A.3 Implementation-based Requirements

This Package does not define any Implementation-based requirements.

Appendix B - Selection-based Requirements

As indicated in the introduction to this Package, the baseline requirements (those that must be performed by the <u>TOE</u> or its underlying platform) are contained in the body of this Package. There are additional requirements based on selections in the body of the Package: if certain selections are made, then additional requirements below must be included.

B.1 Auditable Events for Selection-based Requirements

The auditable events in the table below are included in a Security Target if both the associated requirement is included and the incorporating PP or PP-Module supports audit event reporting through FAU_GEN.1 and any other criteria in the incorporating PP or PP-Module are met.

Table 2: Auditable Events for Selection-based Requirements

Requirement	Auditable Events	Additional Audit Record Contents
FCS_SSHC_EXT.1	Sealaction: Failure to establish a session	Reason for failure. Non-TOE endpoint of attempted connection (IP Address).
FCS_SSHC_EXT.1	[selection: Establishment of a session, None]	Non-TOE endpoint of connection (IP Address).
FCS_SSHC_EXT.1	[selection: Termination of a session, None]	Non-TOE endpoint of connection (IP Address).
	Sealaction: Failure to establish a session	Reason for failure. Non-TOE endpoint of attempted connection (IP Address).
FCS_SSHS_EXT.1	[selection: Establishment of a session, None]	Non-TOE endpoint of connection (IP Address).
FCS_SSHS_EXT.1	[selection: Termination of a session, None]	Non-TOE endpoint of connection (IP Address).

Appendix C - References

[CC]

Identifier Title

Common Criteria for Information Technology Security Evaluation -

• Part 1: Introduction and General Model, CCMB-2017-04-001, Version 3.1, Revision 5, April 2017.

Part 2: Security Functional Components, CCMB-2017-04-002, Version 3.1, Revision 5, April 2017.

Part 3: Security Assurance Components, CCMB-2017-04-003, Version 3.1, Revision 5, April 2017.

[GPOSPP] Protection Profile for General Purpose Operating Systems

[MDMPP] Protection Profile for Mobile Device Management

[AppPP] Protection Profile for Application Software
[VirtPP] Protection Profile for Virtualization

Appendix D - Acronyms

Acronym	Meaning
Base-PP	Base Protection Profile
<u>CC</u>	Common Criteria
<u>CEM</u>	Common Evaluation Methodology
<u>OE</u>	Operational Environment
<u>PP</u>	Protection Profile
PP-Configuration	Protection Profile Configuration

PP-ModuleProtection Profile ModuleSARSecurity Assurance Requirement

SFR Security Functional Requirement
SSH Secure Shell
ST Security Target
TOE Target of Evaluation

TOETarget of EvaluationTSFTOE Security FunctionalityTSSTOE Summary Specification