

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta029

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar, Specializarea: specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică-informatică and profil\ Militar, Specializarea\ matematică and profil\ Militar and profil\ Militar\ matematică and profil\ matematică and profil\ Militar\ matematică and profil\ Militar\ matematică and profil\ m$

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul numărului complex i.
- (4p) b) Să se determine numărul real m astfel încât centrul de greutate al triunghiului cu vârfurile A(2m,5), B(m-2,7) și C(-1,m) să se afle pe axa Ox.
- (4p) c) Să se determine coordonatele punctelor de intersecție dintre cercul de ecuație $x^2 + y^2 = 13$ și dreapta 3y + 2x = 0.
- (4p) d) Să se arate că punctele L(-1,2), M(-2,3) și N(-3,4) sunt coliniare.
- (2p) e) Să se calculeze distanța dintre punctele A(-3,3) și B(-1,1).
- (2p) f) Să se determine partea reală a numărului complex $\frac{2-i}{3i+4}$.

SUBIECTUL II (30p)

1.

- (3p) | a) Să se calculeze suma 1+5+9+....+41.
- (3p) b) Să se calculeze probabilitatea ca un element din mulțimea {12,13,14,...,30} să fie divizibil cu 7.
- (3p) c) Să se determine numărul de funcții bijective care se pot defini pe mulțimea {2,4,6}, cu valori în mulțimea {2,4,6}.
- (3p) d) Să se rezolve ecuația $C_n^2 = 45$, $n \in \mathbb{N}$, $n \ge 2$.
- (3p) e) Să se calculeze restul împărțirii polinomului $X^3 + 3X 5$ la polinomul X + 1.
 - 2. Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = \frac{x^2}{x^2 + 1}$.
- (3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f'(x)dx$.
- (3p) c) Să se determine ecuația asimptotei spre ∞ la graficul funcției f.
- (3p) d) Să se calculeze $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}.$
- (3p) e) Să se calculeze $\int_{0}^{1} f(x)dx$.

1

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

SUBIECTUL III (20p)

Pentru orice număr natural nenul n, se consideră mulțimea de numere raționale $H_n = \left\{\frac{k}{n!} \middle| k \in \mathbf{Z}\right\}$.

- (4p) a) Să se arate că dacă $x, y \in H_n$, atunci $x + y \in H_n$.
- (4p) b) Să se verifice că dacă $x \in H_n$, atunci $-x \in H_n$.
- (4p) c) Să se arate că dacă n < p, $n, p \in \mathbb{N}^*$ atunci $H_n \subset H_p$.
- (2p) d) Să se arate că pentru orice număr rațional r, există $n \in \mathbb{N}^*$, astfel încât $r \in H_n$.
- (2p) e) Să se arate că dacă (G,+) este un subgrup al grupului $(\mathbf{Q},+)$ și $\frac{1}{n!} \in G$, $n \in \mathbf{N}^*$, atunci $H_n \subset G$.
- (2p) f) Să se arate că dacă $A \subset \mathbb{N}^*$ este o submulțime infinită și (H,+) este un subgrup al grupului $(\mathbb{Q},+)$ cu proprietatea că $\frac{1}{n!} \in H$, $\forall n \in A$, atunci $H = \mathbb{Q}$.
- (2p) **g**) Să se demonstreze că, dacă $G_1,...,G_{2007}$ sunt subgrupuri ale grupului $(\mathbf{Q},+)$ și $\mathbf{Q} = G_1 \cup ... \cup G_{2007}$, atunci există $i \in \{1,...,2007\}$ astfel încât $G_i = \mathbf{Q}$.

SUBIECTUL IV (20p)

Se consideră numerele reale $a_1, a_2, ..., a_n$ și funcțiile $f, F : \mathbf{R} \to \mathbf{R}$,

 $f(x) = a_1 \sin x + a_2 \sin 2x + ... + a_n \sin nx \text{ si } F(x) = -a_1 \cos x - \frac{a_2}{2} \cos 2x - ... - \frac{a_n}{n} \cos nx,$ unde $n \in \mathbb{N}$, $n \ge 2$. Notăm cu $S(p,q) = \int_0^{2\pi} \sin px \sin qx \, dx, \ \forall \ p,q \in \mathbb{N}^*.$

- (4p) a) Să se arate că funcția F este o primitivă a funcției f pe \mathbf{R} .
- (4p) | b) Să se verifice că $F(x+2k\pi) = F(x)$, $\forall k \in \mathbb{Z}$, $\forall x \in \mathbb{R}$.
- (4p) c) Utilizând rezultatul : "Dacă o funcție $g: \mathbf{R} \to \mathbf{R}$ este periodică și monotonă, atunci funcția g este constantă ", să se arate că dacă $f(x) \ge 0$, $\forall x \in \mathbf{R}$, atunci funcția F este constantă .
- (2p) d) Utilizând formula: $2\sin a \sin b = \cos(a-b) \cos(a+b)$, $\forall a,b \in \mathbf{R}$, să se arate că S(p,q) = 0, dacă $p \neq q$, $p,q \in \mathbf{N}^*$.
- (2p) e) Să se arate că $S(p, p) = \pi$, $\forall p \in \mathbb{N}^*$.
- (2p) f) Să se demonstreze că dacă $f(x) \ge 0$, $\forall x \in \mathbb{R}$, atunci $a_1 = a_2 = \dots = a_n = 0$.
- (2p) g) Să se arate că dacă $\int_{0}^{2\pi} f^{2}(x)dx = 0$, atunci $a_{1} = a_{2} = ... = a_{n} = 0$.