

THE UNIVERSITY OF THE WEST INDIES ST. AUGUSTINE

EXAMINATIONS OF DECEMBER 2018

Code and Name of Course: COMP 3605 - Introduction to Data Analytics

Paper: 1

Date and Time:

Duration: 2 hours

INSTRUCTIONS TO CANDIDATES: This paper has 3 pages and 4 questions

The use of non-programmable scientific calculators is allowed.

Answer ALL Questions

PLEASE TURN TO THE NEXT PAGE

Total Mark = 50

Question 1

You are given a training data set D shown in the table below for a binary classification problem. The class label attribute buvs computer has two different values $\{yes, no\}$.

The Class-Labeled Training Data Set D

TID	age	income	student	credit_rating	Class: buys_computer	
1	youth	high	no	fair	no	
2	youth	high	no	excellent	no	
3	middle aged	high	no	fair	yes	
4	senior	medium	no	fair	yes	
5	senior	low	yes	fair	yes	
6	senior	low	yes	excellent	no	
7	middle_aged	low	yes	excellent	yes	
8	youth	medium	no	fair	no	
9	youth	low	yes	fair	yes	
10	senior	medium	yes	fair	yes	
11	youth	medium	yes	excellent	yes	
12	middle aged	medium	no	excellent	yes	
13	middle aged	high	yes	fair	yes	
14	senior	medium	no	excellent	no	

a. Compute the information gain for the attribute age.

[4 marks]

b. Compute the gain ratio for the attribute *income* using Gain(income) = 0.029.

[3 marks]

c. Compute the Gini index for the attribute *income* and the splitting subset {low, medium}.

[3 marks]

[Total mark: 10]

Ouestion 2

a. Write the nested loop algorithm for the $DB(r, \pi)$ -outlier detection.

[5 marks]

b. Suppose that a city's average temperature values in July in the last 14 years are, in value-ascending order, 20.0°C, 24.0°C, 28.1°C, 28.2°C, 28.3°C, 28.4°C, 28.5°C, 29.1°C, 29.2°C, 29.3°C, 29.4°C, 29.5°C, 29.6°C, and 29.7°C. Let's assume that the average temperature values follow a normal distribution $\mathcal{N}(\mu, \sigma^2)$.

Use the maximum likelihood method to detect an outlier from the given univariate data set.

[4 marks]

c. Describe how to use Mahalanobis distance to detect outliers in a multivariate data set.

[6 marks]

[Total mark: 15]

PLEASE TURN TO THE NEXT PAGE

© The University of the West Indies

Course Code COMP 3605

2018/2019 Sem. 1

Question 3

A transactional data set D is given below, where |D| = 9, min sup = 2 (i.e., 2/9 = 0.22 = 22%).

Transactional data set D

Transactional data set L						
List of item_IDs						
11, 12, 15						
I2, I4						
I2, I3						
I1, I2, I4						
I1, I3						
12, 13						
I1, I3						
11, 12, 13, 15						
I1, I2, I3						

Find frequent itemsets in D using the Apriori algorithm.

[Total mark: 15]

Question 4

Consider the linearly separable data set D in a two-dimensional space, as shown below, which contains eight training instances x_i , class labels $y_i \in \{-1, 1\}$, and Lagrange multipliers λ_i for i = 1, 2, ..., 8.

Instances	x_1	<i>x</i> ₂	уi	λi
X 1	0.3858	0.4687	1	65.5261
X 2	0.4871	0.611	−1	65.5261
X 3	0.9218	0.4103	-1	0
X 4	0.7382	0.8936	-1	0
X 5	0.1763	0.0579	1	0
X 6	0.4057	0.3529	1	0
X 7	0.9355	0.8132	-1	0
X 8	0.2146	0.0099	1	0

 ${\bf a}.$ Specify support vectors from the given data set D.

[2 marks] [6 marks]

b. Determine a decision boundary of a linear SVM (support vector machine).
c. Describe how to use the trained linear SVM to classify a test instance z.

[2 marks]

[Total mark: 10]

End of Question Paper