Test of: Mimosa Networks A5 Wireless Access Point

To: FCC 47 CFR Part 90, Subpart Y; IC RSS-111

Test Report Serial No.: MIMO05-U9a Rev A

Test of Mimosa Networks A5 Wireless Access Point

To FCC 47 CFR Part 90, Subpart Y; IC RSS-111

Test Report Serial No.: MIMO05-U9a Rev A

This report supersedes NONE

Manufacturer: Mimosa Networks

469 El Camino Real, Suite 100

Santa Clara, CA 95050

USA

Product Function: Wireless Access Point

Copy No: pdf Issue Date: 4th November 2015

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.

575 Boulder Court Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304

Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 3 of 102

This page has been left intentionally blank

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 4 of 102

TABLE OF CONTENTS

AC	CREDITATION, LISTINGS & RECOGNITION	ວ
	TESTING ACCREDITATION	5
	RECOGNITION	
	PRODUCT CERTIFICATION	7
1.	TEST RESULT CERTIFICATE	9
2.	REFERENCES AND MEASUREMENT UNCERTAINTY	10
	2.1. Normative References	10
	2.2. Test and Uncertainty Procedures	11
3.	PRODUCT DETAILS AND TEST CONFIGURATIONS	12
	3.1. Technical Details	
	3.2. Scope of Test Program	
	3.3. Equipment Model(s) and Serial Number(s)	
	3.4. Antenna Details	
	3.5. Cabling and I/O Ports	
	3.6. Test Configurations	
	3.7. Equipment Modifications	
	3.8. Deviations from the Test Standard	
	·	
4.	TEST SUMMARY	
5.	TEST EQUIPMENT CONFIGURATION(S)	17
	5.1. Conducted Test Set-Up	17
	5.2. Radiated Emission Test Set-Up	
	5.3. ac Wireline Emission Test Set-up	21
6.	TEST RESULTS	22
	6.1. Device Characteristics	22
	6.1.1. Occupied Bandwidth and Emission Mask	22
	6.1.2. Output Power	38
	6.1.3. Peak Power Spectral Density (PPSD)	
	6.1.4. Frequency Stability; Temperature Variations, and Voltage Variations	
	6.1.5. Spurious Emissions at Antenna Terminals - Transmitter	
	6.1.6. Radiated Spurious Emissions	
	6.1.7. Digital Emissions (0.03 – 1 GHz)	
	6.1.9. ac Wireline Emissions	
	U. 1.3. AC VVII CIII IC LITIIOSIUTIS	ээ

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 5 of 102

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org/scopepdf/2381-01.pdf

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 6 of 102

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	SA Federal Communications Commission (FCC)		-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

^{**}APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A – Not Applicable

Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

^{**}EU MRA – European Union Mutual Recognition Agreement.

^{**}NB - Notified Body

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 7 of 102

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org/scopepdf/2381-02.pdf

<u>United States of America – Telecommunication Certification Body</u> (TCB)

TCB Identifier - US0159

Industry Canada – Certification Body

CAB Identifier - US0159

Europe – Notified Body

Notified Body Identifier - 2280

Japan – Recognized Certification Body (RCB)

RCB Identifier - 210

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 8 of 102

DOCUMENT HISTORY

	Document History					
Revision	Date	Comments				
Draft	24 th August 2015					
Draft #2	1 st November 2015					
Rev A	4 th November 2015	Initial Release				

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 9 of 102

1. TEST RESULT CERTIFICATE

Manufacturer: Mimosa Networks Tested By: MiCOM Labs, Inc.

469 El Camino Real, Suite 100 575 Boulder Court

Santa Clara, CA 95050 Pleasanton California 94566

USA USA

EUT: A5 Telephone: +1 925 462 0304

Model: Wireless Access Point Fax: +1 925 462 0306

S/N's: Prototype

Test Date(s): 15th to 21st October 2015 Website: www.micomlabs.com

STANDARD(S)

TEST RESULTS

FCC 47 CFR Part 90, Subpart Y; IC RSS-111

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

ACCREDITED
TESTING CERT #2381.01

Graeme Grieve

Quality Manager MiCOM Labs,

Gordon Hurst

President & CEO MiCOM Labs, Inc.

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 10 of 102

2. REFERENCES AND MEASUREMENT UNCERTAINTY

2.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
(i)	FCC 47 CFR Part 90	2015	Code of Federal Regulations
(ii)	RSS-111 Issue 5	Sept 2014	Broadband Public Safety Equipment Operating in the Band 4940-4990 MHz
(iii)	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(iv)	CISPR 22/ EN 55022	2008 / 2010	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(v)	M 3003	Nov. 2012 Edition 3	Expression of Uncertainty and Confidence in Measurements
(vi)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(vii)	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(viii)	A2LA	June 2015	Reference to A2LA Accreditation Status – A2LA Advertising Policy

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 11 of 102

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 12 of 102

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Purpose:	Test of Mimosa Networks model A5 to FCC Part 90
·	Subpart Y and IC RSSS-111 regulations
Applicant:	Mimosa Networks
	469 El Camino Real, Suite 100
	Santa Clara, CA 95050, USA
Manufacturer:	As applicant
Laboratory performing the tests:	MiCOM Labs, Inc.
	575 Boulder Court
	Pleasanton, California 94566 USA
Test report reference number:	MIMO05-U9a Rev A
Date EUT received:	15 th June 2015
Standard(s) applied:	FCC 47 CFR Part 90 Subpart Y and IC RSS-111
Dates of test (from - to):	15th to 21st October 2015
No of Units Tested:	One
Type of Equipment:	4 antenna port - 5 GHz Wireless Access Point
Manufacturers Trade Name:	Wireless Access Point
Model(s):	A5
Location for use:	Indoor and Outdoor
Declared Frequency Range(s):	4,940 – 4,990 MHz
EUT Modes of Operation:	20 MHz
Primary function of equipment:	Wireless Access Point
Secondary function of equipment:	None Provided
Declared Nominal Average	+20.0 dBm
Output Power:	
Transmit/Receive Operation:	Time Division Duplex
System Beam Forming:	A5 has no beam-forming capability
Rated Input Voltage and Current:	POE (POE adaptor sold with unit) 55 Vdc
Operating Temperature Range:	Declared Range -40°C to 55°C
ITU Emission Designator:	20 MHz 17M8W7W
Equipment Dimensions:	5 dBi: Height 321 mm x Length 142 mm
	8 dBi: Height 643 mm x Length 142 mm
Weight:	5 dBi: 4 lbs
	8 dBi: 8 lbs
Hardware Rev.:	Rev I
Software Rev.:	2.0.0

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 13 of 102

3.2. Scope of Test Program

Mimosa Networks A5

The scope of the test program was to test the Mimosa Networks A5, 4 antenna port configurations in the frequency range 4,940 to 4,990 MHz for compliance against FCC 47 CFR Part 90 Subpart Y and Industry Canada RSS-111 specifications.

Mimosa Networks A5

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 14 of 102

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	(EUT/ (Including Brand Name)		Model No.	Serial No.
EUT	5 GHz Wireless Access Point	Mimosa	AP0158770	Prototype
Support	POE 55 Vdc	PhiHong	POE50U-560DG	
Support	Laptop PC	IBM	Thinkpad	None

3.4. Antenna Details

Radiated emissions testing were performed in the mode with the highest spectral density to verify compliance. Radiated emissions were performed on the highest gain of each type of antenna as identified in the table below:-

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
integral	Mimosa Networks	Not Provided	Circular Polarized	5.0	-	360	-	4900-6000
integral	Mimosa Networks	Not Provided	Circular Polarized	0.8	-	360	-	4900-6000

BF Gain - Beamforming Gain

Dir BW - Directional BeamWidth

X-Pol - Cross Polarization

3.5. Cabling and I/O Ports

Number and type of I/O ports

Port Type	Max Cable Length	# Of Ports	Screened	Conn Type	Data Type
Ethernet	100m	1	Y	RJ-45	Packet Data

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 15 of 102

3.6. Test Configurations

Matrix of test configurations

Parameter	Operational Mode	Test Conditions	Bandwidths (MHz)
Occupied BW & Emission Mask	Modulated	Ambient	20
Peak Output power	Modulated	Ambient	20
Peak Power Spectral Density	Modulated	Ambient	20
Frequency Stability	Modulated	Temperature Variations and Voltage Variations	20
Conducted Emissions	Modulated	Ambient	20
Radiated Emissions	Modulated	Ambient	20

Only worst case plots are provided for each test parameter are identified within this report. Plots not included are held on file by the test laboratory and available upon request with client permission.

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

3.9. Subcontracted Testing or Third Party Data

1. NONE

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 16 of 102

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 90, Subpart Y (except Section 5.1.4) and Industry Canada RSS-111; Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
2.1049; 90.210(m) 5.3 4.6	26 dB Occupied BW & Emission Mask	Emission mask and bandwidth measurement(s)	Conducted	Complies	6.1.1
2.1046; 90.1215 (a) 5.3 4.8	Peak Output Power	Modulated Output Power	Conducted	Complies	6.1.2
2.1046; 90.1215 (a) 4.2	Peak Power Spectral Density	Maximum Spectral Density	Conducted	Complies	6.1.3
2.1055(a)(1); 90.213 5.2 4.7	Frequency Stability	Includes temperature and voltage variations	Conducted	Complies	6.1.4
2.1051; 90.210(m) 5.4 4.9	Conducted Spurious Emissions at Antenna Port	Emissions from the antenna port 30 MHz – 40 GHz	Conducted	Complies	6.1.5
2.1053; 90.210(m) 5.3 4.9	Radiated Spurious Emissions	Spurious emissions 30 MHz – 40 GHz	Radiated	Complies	6.1.6
4.10 6	Radiated Receiver Emissions			Complies	6.1.7

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 17 of 102

5. TEST EQUIPMENT CONFIGURATION(S)

5.1. Conducted Test Set-Up

Conducted RF Emission Test Set-up(s).

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. Occupied Bandwidth and Emission Mask
- 2. Peak Output Power
- 3. Peak Power Spectral Density
- 4. Frequency Stability
- 5. Spurious Emissions at Antenna Terminals Transmitter

Conducted Test Measurement Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 18 of 102

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
193	Receiver 20 Hz to 7 GHz	Rhode & Schwarz	ESI 7	838496/007	14 Jan 2016
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	30 Oct 2015
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	27 Aug 2016
361	Desktop for RF#1, Labview Software installed	Dell	Vostro 220	WS RF#1	Not Required
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	04 Aug 2016
380	4x4 RF Switch Box	MiCOM Labs	MiTest RF Switch Box	MIC001	20 Dec 2015
390	USB Power Head 50MHz - 24GHz -60 to +20dBm	Agilent	U2002A	MY50000103	17 Oct 2016
398	Test Software	MiCOM	MiTest ATS	Version 3.0.0.16	Not Required
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
436	USB Wideband Power Sensor	Boonton	55006	8731	31 Jul 2016
437	USB Wideband Power Sensor	Boonton	55006	8759	31 Jul 2016
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	28 Nov 2015
RF#1 GPIB#1	GPIB cable to Power Supply	HP	GPIB	None	Not Required
RF#1 SMA SA #452	Precision SMA Male RG-402 Spectrun Analyzer	Fairview Microwave	Precision SMA Male RG 402 coax	None	20 Dec 2015
RF#1 SMA#1	EUT to Mitest box port 1	Flexco	SMA Cable port1	None	20 Dec 2015
RF#1 SMA#2	EUT to Mitest box port 2	Flexco	SMA Cable port2	None	20 Dec 2015
RF#1 SMA#3	EUT to Mitest box port 3	Flexco	SMA Cable port3	None	20 Dec 2015
RF#1 SMA#4	EUT to Mitest box port 4	Flexco	SMA Cable port4	None	20 Dec 2015
RF#1 USB#1	USB Cable to Mitest Box	Dynex	USB Cable	None	Not Required

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 19 of 102

5.2. Radiated Emission Test Set-Up

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. Radiated Spurious Emissions
- 2. Radiated Digital Emissions (0.03 1 GHz)
- 3. Receiver Spurious Emissions

Radiated Emission Test Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 20 of 102

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CY101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	27 Aug 2016
310	SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001	30 Oct 2015
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	15 Aug 2016
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	18 Aug 2016
393	DC - 1050 MHz Low Pass Filter	Microcircuits	VLFX-1050	N/A	08 Oct 2016
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	24 Feb 2016
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	10 Nov 2015
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	28 May 2016
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0.73	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	25 Feb 2016
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	25 Feb 2016
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	25 Feb 2016
480	Cable - Bulkhead to Amp	SRC Haverhill	157-157- 3050360	480	11 Aug 2016
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-151- 3050787	481	11 Aug 2016
482	Cable - Amp to Antenna	SRC Haverhill	157-157- 3051574	482	11 Aug 2016

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 21 of 102

5.3. ac Wireline Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

1. ac Wireline Conducted Emissions

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Traceability of Test Equipment Utilized for ac Wireline Emission Testing

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
184	Pulse Limiter	Rhode & Schwarz	ESH3Z2	357.8810.52	Cal when used
190	LISN (two-line V-network)	Rhode & Schwarz Rhode & Schwarz	ESH3Z5	836679/006	12 Sep 2016
287	Rohde & Schwarz 40 GHz Receiver		ESIB40	100201	31 Jul 2016
316	Dell desktop computer workstation with Vasona			WS04	Not Required

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 22 of 102

6. TEST RESULTS

6.1. Device Characteristics

6.1.1. Occupied Bandwidth and Emission Mask

FCC 47 CFR Part 90, Subpart Y; 2.1049; §90.210(m)

Test Procedure

The transmitter terminal of EUT was connected to the input of the spectrum analyzer set to measure the 26 dB occupied bandwidth and emission mask for the radio. The system highest power setting was selected with modulation ON and duty cycle set for 100% i.e. continuous operation at all times.

For emission masks the zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz.

Ambient conditions.

Temperature: 19 to 26 °C Relative humidity: 31 to 57 % Pressure: 999 to 1009 mbar

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 23 of 102

TABLE OF RESULTS - 20 MHz 26 dB Bandwidth(s)

Center Frequency (MHz)	26 dB Bandwidth (MHz)				
	Port A	Port B	Port C	Port D	
4950	17.675	17.675	17.675	17.816	
4965	17.675	17.675	17.675	17.816	
4980	17.675	17.675	17.675	17.816	

Emission Mask 90.210 L was used to prove compliance

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 24 of 102

Port A 26 dB Bandwidth 20 MHz Channel Freq 4950 MHz

19.OCT.2015 09:18:41

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 25 of 102

Port B 26 dB Bandwidth 20 MHz Channel Freq 4950 MHz

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 26 of 102

Port C 26 dB Bandwidth 20 MHz Channel Freq 4950 MHz

19.OCT.2015 09:21:10

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 27 of 102

Port D 26 dB Bandwidth 20 MHz Channel Freq 4950 MHz

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 28 of 102

Port A 26 dB Bandwidth 20 MHz Channel Freq 4965 MHz

Date: 19.0CT.2015 09:11:51

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 29 of 102

Port B 26 dB Bandwidth 20 MHz Channel Freq 4965 MHz

19.OCT.2015 09:10:14

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 30 of 102

Port C 26 dB Bandwidth 20 MHz Channel Freq 4965 MHz

19.OCT.2015 09:09:01

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 31 of 102

Port D 26 dB Bandwidth 20 MHz Channel Freq 4965 MHz

19.OCT.2015 09:07:27

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 32 of 102

Port A 26 dB Bandwidth 20 MHz Channel Freq 4980 MHz

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 33 of 102

Port B 26 dB Bandwidth 20 MHz Channel Freq 4980 MHz

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 34 of 102

Port C 26 dB Bandwidth 20 MHz Channel Freq 4980 MHz

19.OCT.2015 08:56:11

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 35 of 102

Port D 26 dB Bandwidth 20 MHz Channel Freq 4980 MHz

19.OCT.2015 09:04:41

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 36 of 102

Specification Limits FCC Part §90.210

Limits for Authorized Bandwidth

Frequency Band (MHz) and Related Documents	Spectrum Masks with Audio Filter	Without Audio Filter
4950 – 4990 MHz	L or M	L or M

Reference to the emission masks are provided below

Limits Emission Masks 90.210(L)

Emission Mask L. For low power transmitters (20 dBm or less) operating in the 4940-4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:

- (1) On any frequency removed from the assigned frequency between 0-45% of the authorized bandwidth (BW): 0 dB.
- (2) On any frequency removed from the assigned frequency between 45-50% of the authorized bandwidth: 219 log (% of (BW)/45) dB.
- (3) On any frequency removed from the assigned frequency between 50-55% of the authorized bandwidth: $10 + 242 \log (\% \text{ of (BW)/50}) \text{ dB}$.
- (4) On any frequency removed from the assigned frequency between 55-100% of the authorized bandwidth: 20 + 31 log (% of (BW)/55) dB attenuation.
- (5) On any frequency removed from the assigned frequency between 100-150% of the authorized bandwidth: 28 + 68 log (% of (BW)/100) dB attenuation.
- (6) On any frequency removed from the assigned frequency above 150% of the authorized bandwidth: 40 dB.
- (7) The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz. The power spectral density is the power measured within the resolution bandwidth of the measurement device divided by the resolution bandwidth of the measurement device. Emission levels are also based on the use of measurement instrumentation employing a resolution bandwidth of at least one percent of the occupied bandwidth.

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 37 of 102

Limits Emission Masks (continued) 90.210(M),

- (m) *Emission Mask M.* For high power transmitters (greater than 20 dBm) operating in the 4940-4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:
- (1) On any frequency removed from the assigned frequency between 0-45% of the authorized bandwidth (BW): 0 dB.
- (2) On any frequency removed from the assigned frequency between 45-50% of the authorized bandwidth: 568 log (% of (BW)/45) dB.
- (3) On any frequency removed from the assigned frequency between 50-55% of the authorized bandwidth: 26 + 145 log (% of BW/50) dB.
- (4) On any frequency removed from the assigned frequency between 55-100% of the authorized bandwidth: 32 + 31 log (% of (BW)/55) dB.
- (5) On any frequency removed from the assigned frequency between 100-150% of the authorized bandwidth: 40 + 57 log (% of (BW)/100) dB.
- (6) On any frequency removed from the assigned frequency between above 150% of the authorized bandwidth: 50 dB or 55 + 10 log (P) dB, whichever is the lesser attenuation.
- (7) The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz. The power spectral density is the power measured within the resolution bandwidth of the measurement device divided by the resolution bandwidth of the measurement device. Emission levels are also based on the use of measurement instrumentation employing a resolution bandwidth of at least one percent of the occupied bandwidth.

NOTE TO PARAGRAPH (m): Low power devices may as an option, comply with paragraph (m).

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method

Measurements were made per work instruction WI-03 'Measurement of RF Spectrum Mask'

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 38 of 102

6.1.2. Output Power

FCC 47 CFR Part 90, Subpart Y; §90.1215

Test Procedure

Average power measurements were measured with the use of an average power head. Peak power measurements were recorded via the spectrum analyzer. The system highest power setting was selected with modulation ON. Should the device implement a duty cycle then this is added to the measured power as a Duty Cycle Correction Factor (DCCF).

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 39 of 102

TABLE OF RESULTS - 20 MHz Bandwidth Modulated Carrier

Center Frequency	Peak Transmitter Power (+dBm)			Total Power + DCCF (dBm)	
(MHz)	Port A	Port B	Port C	Port D	Calculated
4950	12.20	13.02	12.62	13.87	19.21
4965	12.41	12.97	12.93	13.94	19.32
4980	12.63	13.38	12.85	14.53	19.70

DCCF – Duty Cycle Correction Factor

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 40 of 102

Specification Limits

FCC Part §90.1215

Power limits.

The transmitting power of stations operating in the 4940-4990 MHz band must not exceed the maximum limits in this section.

(a)(1) The maximum conducted output power should not exceed:

Channel Bandwidth (MHz)	Low Transmitter Power (dBm)	High Transmitter Power (dBm)
1	7	20
5	14	27
10	17	30
15	18.8	31.8
20	20	33

- (2) High power devices are also limited to a peak power spectral density of 21 dBm per one MHz. High power devices using channel bandwidths other than those listed above are permitted; however, they are limited to peak power spectral density of 21 dBm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the maximum conducted output power and the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point and point-to-multipoint operations (both fixed and temporary-fixed rapid deployment) may employ transmitting antennas with directional gain up to 26 dBi without any corresponding reduction in the maximum conducted output power or spectral density. Corresponding reduction in the maximum conducted output power and peak power spectral density should be the amount in decibels that the directional gain of the antenna exceeds 26 dBi.
- (b) Low power devices are also limited to a peak power spectral density of 8 dBm per one MHz. Low power devices using channel bandwidths other than those listed above are permitted; however, they are limited to a peak power spectral density of 8 dBm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the maximum conducted output power and the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi.
- (c) The maximum conducted output power is measured as a conducted emission over any interval of continuous transmission using instrumentation calibrated in terms of an RMS-equivalent voltage. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true maximum conducted output power measurement conforming to the definitions in this paragraph for the emission in question.

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 41 of 102

(d) The peak power spectral density is measured as conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements are made over a bandwidth of one MHz or the 26 dB emission bandwidth of the device, whichever is less. A resolution bandwidth less than the measurement bandwidth can be used, provided that the measured power is integrated to show total power over the measurement bandwidth. If the resolution bandwidth is approximately equal to the measurement bandwidth, and much less than the emission bandwidth of the equipment under test, the measured results shall be corrected to account for any difference between the resolution bandwidth of the test instrument and its actual noise bandwidth.

(e) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

Laboratory Measurement Uncertainty for Power Measurement

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method

Measurements were made per work instruction WI-03

'Measurement of RF Output Power'

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 42 of 102

6.1.3. Peak Power Spectral Density (PPSD)

FCC 47 CFR Part 90, Subpart Y; §90.1215

Test Procedure

The test methodology used for this measurement was determined to provide the highest possible PPSD readings.

Peak power spectral density measurements were performed via the spectrum analyzer and plots were recorded. Modulation was ON and the system duty cycle was set for 100% i.e. continuous operation at all times. The system highest power setting was selected with modulation ON and duty cycle set for 100% i.e. continuous operation at all times.

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 43 of 102

TABLE OF RESULTS – 20 MHz Peak Power Spectral Density(s)

Center Frequency	Peak Power Spectral Density (dBm/MHz)				Total
(MHz)	Port A	Port B	Port C	Port D	dBm
4950	-0.31	0.93	0.33	1.90	6.81
4965	-0.13	0.95	0.30	1.62	6.72
4980	0.05	1.01	0.27	1.75	6.84

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 44 of 102

Port A Peak Power Spectral Density 20 MHz Channel Freq 4950 MHz

Date: 19.0CT.2015 05:57:53

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 45 of 102

Port B
Peak Power Spectral Density 20 MHz Channel Freq 4950 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 46 of 102

Port C
Peak Power Spectral Density 20 MHz Channel Freq 4950 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 47 of 102

Port D
Peak Power Spectral Density 20 MHz Channel Freq 4950 MHz

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 48 of 102

Port A Peak Power Spectral Density 20 MHz Channel Freq 4965 MHz

Date: 19.OCT.2015 07:00:30

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 49 of 102

Port B
Peak Power Spectral Density 20 MHz Channel Freq 4965 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 50 of 102

Port C
Peak Power Spectral Density 20 MHz Channel Freq 4965 MHz

Date: 19.OCT.2015 07:06:25

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 51 of 102

Port D
Peak Power Spectral Density 20 MHz Channel Freq 4965 MHz

Date: 19.OCT.2015 07:07:02

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 52 of 102

Port A Peak Power Spectral Density 20 MHz Channel Freq 4980 MHz

Date: 19.OCT.2015 08:18:22

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 53 of 102

Port B
Peak Power Spectral Density 20 MHz Channel Freq 4980 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 54 of 102

Port C
Peak Power Spectral Density 20 MHz Channel Freq 4980 MHz

Date: 19.OCT.2015 08:13:15

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 55 of 102

Port D Peak Power Spectral Density 20 MHz Channel Freq 4980 MHz

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 56 of 102

Specification Limits FCC Part §90.1215

Refer to the Power Limits Specification in Section 6.1.2 of this report.

Laboratory Measurement Uncertainty for Power Measurement

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method

Measurements were made per work instruction WI-03

'Measurement of RF Output Power'

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 57 of 102

6.1.4. Frequency Stability; Temperature Variations, and Voltage Variations

FCC 47 CFR Part 90, Subpart Y; §90.213

Test Procedure

The transmitter output was connected to a spectrum analyzer and the frequency stability was measured in either modulated or unmodulated state. Frequency stability was measured through the extremes of temperature on the selected channel only. Prior to a taking a frequency / temperature measurement the device is powered off and the temperature changed. The device is left to stabilize at the new temperature for 15 mins then switched on before any measurement is taken.

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 58 of 102

Ambient conditions.

Temperature: 19 to 26 °C Relative humidity: 31 to 57 % Pressure: 999 to 1009 mbar

TABLE OF RESULTS Frequency Stability;-

Voltage (dc)	Temperature	Measured Frequency (Hz) Channel 4965 MHz	Delta (kHz)	Drift (ppm)
	+55	4964934.51000	-65.49	-13.19
48	+50	4964934.56000	-65.44	-13.18
40	+40	4964936.08000	-63.92	-12.87
	+30	4964936.28000	-63.72	-12.83
43.2	+20	4964937910.00	-62.09	-12.51
52.8	+20	4964937610.00	-62.39	-12.57
	+20	4964938020.00	-61.98	-12.48
48	+10	4964937980.00	-62.02	-12.49
	+0	4964937.99000	-62.01	-12.49
	-10	4964938.28000	-61.72	-12.43
	-20	4964938.98000	-61.02	-12.29
	-30	4964937.69000	-62.31	-12.55
	-40	4964938.65000	-61.35	-12.36

Modulated carrier breakthrough was used to measure frequency stability.

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 59 of 102

Frequency Stability 4965 MHz 48 Vdc +55°C

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 60 of 102

Frequency Stability 4965 MHz 48 Vdc +50°C

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 61 of 102

Frequency Stability 4965 MHz 48 Vdc +40°C

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 62 of 102

Frequency Stability 4965 MHz 48 Vdc +30°C

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 63 of 102

Frequency Stability 4965 MHz 43.2 Vdc +20°C

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 64 of 102

Frequency Stability 4965 MHz 52.8 Vdc +20°C

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 65 of 102

Frequency Stability 4965 MHz 48 Vdc +20°C

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 66 of 102

Frequency Stability 4965 MHz 48 Vdc +10°C

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 67 of 102

Frequency Stability 4965 MHz 48 Vdc +0°C

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 68 of 102

Frequency Stability 4965 MHz 48 Vdc -10°C

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 69 of 102

Frequency Stability 4965 MHz 48 Vdc -20°C

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 70 of 102

Frequency Stability 4965 MHz 48 Vdc -30°C

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 71 of 102

Frequency Stability 4965 MHz 48 Vdc -40°C

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 72 of 102

Specification Limits – Frequency stability

FCC Part §90.213

(a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency stability as specified in the following table.

Minimum Frequency Stability

[Parts per million (ppm)]

Eroguenov rongo	Fixed and base	Mobile stations		
Frequency range (MHz)	stations	Over 2 watts output power	2 watts or less output power	
Below 25	1,2,3 100	100	200	
25-50	20	20	50	
72-76	5		50	
150-174	^{5,11} 5	⁶ 5	^{4,6} 50	
216-220	1.0		1.0	
220-222 ¹²	0.1	1.5	1.5	
421-512	^{7,11,14} 2.5	⁸ 5	⁸ 5	
806-809	¹⁴ 1.0	1.5	1.5	
809-824	¹⁴ 1.5	2.5	2.5	
851-854	1.0	1.5	1.5	
854-869	1.5	2.5	2.5	
896-901	¹⁴ 0.1	1.5	1.5	
902-928	2.5	2.5	2.5	
902-928 ¹³	2.5	2.5	2.5	
929-930	1.5			
935-940	0.1	1.5	1.5	
1427-1435	⁹ 300	300	300	
Above 2450 ¹⁰				

¹⁰ Except for DSRCS equipment in the 5850-5925 MHz band, frequency stability is to be specified in the station authorization. Frequency stability for DSRCS equipment in the 5850-5925 MHz band is specified in subpart M of this part.

Manufacturers Specification for Frequency Stability

As no apparent frequency stability limits were provided the manufacturer's specification was used ±20 ppm.

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 73 of 102

Laboratory Measurement Uncertainty for Frequency Stability

Measurement uncertainty	±0.866 ppm

Traceability

Method

Measurements were made per work instruction WI-02 'Frequency Measurement'

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 74 of 102

6.1.5. Spurious Emissions at Antenna Terminals - Transmitter

FCC 47 CFR Part 90, Subpart Y; §90.210(m)

Test Procedure

Transmitter conducted spurious emissions were measured for each bandwidth. Measurement were made while EUT was operating in a modulated transmit mode of operation, at the appropriate center frequency, 100% duty cycle and maximum power at all times. Conducted spurious emissions were measured to 40 GHz.

Conducted spurious emissions' testing was performed only in the configuration with the highest spectral density.

From FCC Part 90.210 (I)

(6) On any frequency removed from the assigned frequency above 150% of the authorized bandwidth: 40 dB.

Emission Limit = aggregated output power -40 dB = 20 - 40 = -20 dBm

Limit for each antenna port = -20 - 10 * Log (no. of antenna ports) = -26 dBm

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 75 of 102

TABLE OF RESULTS

PORT A Limit: -25 dBm

	Frequei	ncy (MHz)						
Channel (MHz)	Start (MHz)	Stop (MHz)	Emission Amplitude (dBm)					
			Port A	Port B	Port C	Port D		
4950.0	30	40,000	-37.20	-40.87	-40.50	-37.30		
4967.5.0	30	40,000	-39.01	-40.67	-40.41	-40.92		
4980.0	30	40,000	-40.47	-40.39	-40.40	-41.20		

Port A
Conducted Emissions Channel Freq 4950 MHz

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 76 of 102

Port B
Conducted Emissions Channel Freq 4950 MHz

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 77 of 102

Port C Conducted Emissions Channel Freq 4950 MHz

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 78 of 102

Port D
Conducted Emissions Channel Freq 4950 MHz

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 79 of 102

Port A
Conducted Emissions Channel Freq 4965 MHz

Date: 21.0CT.2015 01:22:51

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 80 of 102

Port B
Conducted Emissions Channel Freq 4965 MHz

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 81 of 102

Port C Conducted Emissions Channel Freq 4965 MHz

Date: 21.0CT.2015 01:03:05

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 82 of 102

Port D
Conducted Emissions Channel Freq 4965 MHz

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 83 of 102

Port A
Conducted Emissions Channel Freq 4980 MHz

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 84 of 102

Port B
Conducted Emissions Channel Freq 4980 MHz

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 85 of 102

Port C Conducted Emissions Channel Freq 4980 MHz

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 86 of 102

Port D
Conducted Emissions Channel Freq 4980 MHz

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 87 of 102

Specification Limits

Conducted Spurious Emission at Antenna Terminals – Transmitter Limits FCC Part §90.210

Emission Mask (I)

(6) On any frequency removed from the assigned frequency above 150% of the authorized bandwidth: 40 dB.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB
-------------------------	----------

Traceability

Method

Measurements were made per work instruction WI-05

'Measurement of Spurious Emissions'

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 88 of 102

6.1.6. Radiated Spurious Emissions

FCC 47 CFR Part 90, §90.210(m)

Test Procedure

Measurements were made while EUT was operating in a modulated transmit mode of operation, at the appropriate center frequency, 100% duty cycle and maximum power at all times. Radiated spurious emissions were measured to 40 GHz. Substitution was performed on any emissions observed. The antenna port was attenuated with 50 dB attenuation plus a 50 Ω terminator.

The measurement equipment was set to measure in peak hold mode. The emissions were measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode.

The highest emissions relative to the limit are listed for each frequency spanned.

Measurements below 1 GHz utilized 100 KHz RBW, measurements above 1 GHz were performed using a minimum RBW of 1 MHz.

From FCC Part 90.210 (I)

On any frequency removed from the assigned frequency between above 150 % of the authorized bandwidth: 50 dB or 55 + 10 log (P) dB, whichever is the lesser attenuation.

Radiated emissions' testing was performed only in the configuration with the highest spectral density.

From FCC Part 90.210 (I)

(6) On any frequency removed from the assigned frequency above 150% of the authorized bandwidth: 40 dB.

Emission Limit = aggregated output power – 40 dB = 20 – 40 = -20 dBm

Measurements were performed to the 10th harmonic of the transmitter. No emissions were found.

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 89 of 102

Test Freq.	4950 MHz	Engineer	SB
Variant	20 MHz	Temp (°C)	22.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	53
Power Setting	Max	Press. (mBars)	1001
Antenna	50 ohm termination head	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBm	Cable Loss	AF dB	Level dBm	Measurement Type	Pol	Hgt	Azt Deg	Limit dBm	Margin dB	Pass /Fail	Comments
						\/		•	<u> </u>		/. un	FUND
4951.904	-23.3	3.6	1.5	-18.3	Peak [Scan]	V	150	0			FUND	
1302.739	-44.3	2.2	-1.8	-43.8	Peak [Scan]	Ι	151	0	-25.0	-18.8	Pass	
2425.163	-51.6	2.7	1.2	-47.7	Peak [Scan]	Ι	151	0	-25	-22.7	Pass	
9890.460	-55.0	5.4	7.3	-42.4	Peak [Scan]	Н	151	0	-25	-17.4	Pass	

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 90 of 102

Test Freq.	4965 MHz	Engineer	SB
Variant	20 MHz	Temp (°C)	22.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	53
Power Setting	Max	Press. (mBars)	1001
Antenna	50 ohm termination head	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBm	Cable Loss	AF dB	Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail	Comments
4951.904	-26.8	3.6	1.5	-21.7	Peak [Scan]	V	150	0			FUND	
1302.739	-45.5	2.2	-1.8	-45.1	Peak [Scan]	I	151	0	-25.0	-20.1	Pass	
2489.078	-53.2	2.7	1.4	-49.1	Peak [Scan]	Н	151	0	-25	-24.1	Pass	

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 91 of 102

Test Freq.	4989 MHz	Engineer	SB
Variant	20 MHz	Temp (°C)	22.5
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	53
Power Setting	Max	Press. (mBars)	1001
Antenna	50 ohm termination head	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBm	Cable Loss	AF dB	Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail	Comments
4985.972	-27.6	3.6	1.5	-22.5	Peak [Scan]	V	150	0				FUND
1314.084	-49.9	2.2	-1.9	-49.6	Peak [Scan]	Н	151	0	-25.0	-24.6	Pass	
1587.975	-49.5	2.4	-3.3	-50.4	Peak [Scan]	Н	151	0	-25	-25.4	Pass	
2489.078	-54.0	2.7	1.4	-49.9	Peak [Scan]	Н	151	0	-25	-24.9	Pass	

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 92 of 102

Radiated Spurious Emission Limits;

Transmitter Limits FCC Part §90.210 (I)

Emission Mask I

(6) On any frequency removed from the assigned frequency above 150% of the authorized bandwidth: 40 dB.

- (I) *Emission Mask L.* For low power transmitters (20 dBm or less) operating in the 4940-4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:
- (1) On any frequency removed from the assigned frequency between 0-45% of the authorized bandwidth (BW): 0 dB.
- (2) On any frequency removed from the assigned frequency between 45-50% of the authorized bandwidth: 219 log (% of (BW)/45) dB.
- (3) On any frequency removed from the assigned frequency between 50-55% of the authorized bandwidth: 10 + 242 log (% of (BW)/50) dB.
- (4) On any frequency removed from the assigned frequency between 55-100% of the authorized bandwidth: 20 + 31 log (% of (BW)/55) dB attenuation.
- (5) On any frequency removed from the assigned frequency between 100-150% of the authorized bandwidth: 28 + 68 log (% of (BW)/100) dB attenuation.
- (6) On any frequency removed from the assigned frequency above 150% of the authorized bandwidth: 40 dB.
- (7) The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz. The power spectral density is the power measured within the resolution bandwidth of the measurement device divided by the resolution bandwidth of the measurement device. Emission levels are also based on the use of measurement instrumentation employing a resolution bandwidth of at least one percent of the occupied bandwidth.

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Traceability

Method

Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 93 of 102

6.1.7. Digital Emissions (0.03 – 1 GHz)

FCC. Part 15 Subpart C §15.205/ §15.209

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the guasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL - AG + NFL CL = Cable Loss

AG = Amplifier Gain

For example:

Given a Receiver input reading of 51.5dBµV; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dRuV/m = 100 uV/m

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 94 of 102

Variant: Dig Em, Test Freq: 30-1000 MHz, Antenna: 5 dBi, Power Setting: NA, Duty Cycle (%): NA

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	30.70	48.14	3.43	-10.61	40.96	MaxQP	Vertical	101	352	49.5	-8.5	Pass
2	31.20	52.62	3.43	-10.61	45.44	MaxQP	Vertical	100	351	49.5	-4.1	Pass
3	31.72	51.87	3.44	-11.21	44.10	MaxQP	Vertical	100	11	49.5	-5.4	Pass
4	33.01	56.23	3.44	-12.09	47.60	MaxQP	Vertical	150	51	49.5	-1.9	Pass
5	33.51	56.55	3.45	-12.88	47.20	MaxQP	Vertical	150	54	49.5	-2.3	Pass
6	140.24	60.59	4.08	-18.15	46.52	MaxQP	Vertical	100	155	54.0	-7.5	Pass

Test Notes: EUT connected to POE (PhiHong POE50U-560DG) on ground-plane with long (100m) shielded cat6 ethernet. Laptop connected to POE also on ground-plane. (Remotely located device setup – ANSI C63.4 (2014) 6.2.3.2)....

The A5 is a Class A device

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 95 of 102

6.1.8. Receiver Radiated Spurious Emissions (above 1 GHz)

Industry Canada RSS-Gen §4.10, §6

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

All Sectors of the EUT were tested simultaneously

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

where: FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Serial #: MIMO05-U9a Rev A Issue Date: 4th November 2015

Page: 96 of 102

For example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

$$FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 97 of 102

Specification

Radiated Receiver Spurious Emissions

RSS-Gen §4.10 the search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g., local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is higher, to at least 3 times the highest tunable or local oscillator frequency, whichever is higher, without exceeding 40 GHz.

For emissions below 1000 MHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. As an alternative to CISPR quasi-peak measurement, compliance with the emission limit can be demonstrated using measuring equipment employing a peak detector function properly adjusted for factors such as pulse desensitization as required, with an equal or greater measurement bandwidth relative to the applicable CISPR quasi-peak bandwidth.

Above 1000 MHz, measurements shall be performed using an average detector with a minimum resolution bandwidth of 1 MHz.

RSS-Gen §6 Receiver Spurious Radiated Limits

Spurious emissions from receivers shall not exceed the radiated limits shown in the table below:

RSS-Gen Spurious Emissions Limits

Frequency (MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)		
30-88	100	40.0	3		
88-216	150	43.5	3		
216-960	200	46.0	3		
Above 960	500	54.0	3		

Traceability:

Test Equipment Used
0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 98 of 102

Receiver Radiated Spurious Emissions above 1 GHz

Test Freq.	4965 MHz	Engineer	SB
Variant	20 MHz	Temp (°C)	18
Freq. Range	1 - 18 GHz	Rel. Hum.(%)	42
Power Setting	Maximum	Press. (mBars)	1003
Antenna	50 ohm load	Duty Cycle (%)	100%
Test Notes 1			
Test Notes 2			

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
17182.365	38.0	12.4	0.4	50.8	Peak [Scan]	Н	100					Noise

Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission

NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205

Serial #: MIMO05-U9a Rev A **Issue Date**: 4th November 2015

Page: 99 of 102

6.1.9. ac Wireline Emissions

FCC, Part 15 Subpart C §15.207

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 100 of 102

Measurement Results for ac Wireline Conducted Emissions (150 kHz - 30 MHz)

Model Number	A5	Engineer	JMH			
Variant	AC Wireline 120V	Temp (°C)	25			
Freq. Range	0.150 MHz - 30 MHz	Rel. Hum.(%)	37			
Power Setting	N/A	Press. (mBars)	1005			
Antenna						
Test Notes 1	PhiHong POE PS Model POE61U-560DG Output 56V DC 1.1 A					
Test Notes 2	Class A Limits					

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
0.763	42.8	9.8	0.090	52.630	Quasi Peak	NEutraL	73	-20.4	Pass	
0.763	42.2	9.8	0.090	52.040	Average	Neutral	60	-8.0	Pass	
28.447	40.4	9.7	0.940	50.930	Quasi Peak	Neutral	73	-22.1	Pass	
28.447	37.1	9.7	0.9	47.7	Average	Neutral	60	-12.4	Pass	
28.954	43.6	9.7	0.9	54.2	Quasi Peak	Neutral	73	-18.8	Pass	
28.954	41.5	9.7	0.9	52.1	Average	Neutral	60	-7.9	Pass	
29.464	40.6	9.7	0.9	51.2	Average	Neutral	60	-8.8	Pass	
29.464	45.4	9.7	0.9	55.9	Quasi Peak	Neutral	73	-17.1	Pass	
29.973	41.5	9.7	0.9	52.1	Average	Neutral	60	-7.9	Pass	
29.973	46.0	9.7	0.9	56.6	Quasi Peak	Neutral	73	-16.4	Pass	
29.776	40.6	9.7	0.9	51.2	Peak [Scan]	Neutral	60	-8.8	Pass	

Legend: DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency

NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

Serial #: MIMO05-U9a Rev A **Issue Date:** 4th November 2015

Page: 101 of 102

Specification

Limits

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

§15.207 (a) Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBμV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB

575 Boulder Court Pleasanton, California 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com