Correct Mark 0.50 out of 0.50

Question 1

Use Fermat's method to determine the decomposition of the number n = 7003 into two factors.

□ perfect square (yes/no)

□ perfect square (yes/no)

□ perfect square (yes/no)

□ perfect square (yes/no)

perfect square (yes/no)

□ perfect square (yes/no)

□ perfect square (yes/no)

□ perfect square (yes/no)

perfect square (yes/no)

□ perfect square (yes/no) x

perfect square (yes/no) x

Important note: All answer boxes should be filled in using the convention that those not applicable must be filled in with x.

no

no

no

ves

Solution.

Initialization:
$$t_0 = \lceil \sqrt{n} \rceil = \boxed{83}$$

Iterations:

$$t=t_0+1$$
: $t^2-n=53$ perfect square (yes/no) no

$$t = t_0 + 2$$
: $t^2 - n = 222$

$$t = t_0 + 3$$
: $t^2 - n = 393$
 $t = t_0 + 4$: $t^2 - n = 566$

$$t = t_0 + 4$$
: $t^2 - n = 566$

$$t = t_0 + 5$$
: $t^2 - n = \boxed{741}$
 $t = t_0 + 6$: $t^2 - n = \boxed{918}$

$$t = t_0 + 7$$
: $t^2 - n = 1097$

$$t = t_0 + 8$$
: $t^2 - n = 1278$

$$t = t_0 + 9$$
: $t^2 - n = 1461$
 $t = t_0 + 10$: $t^2 - n = 164$

$$= t_0 + 10: t^2 - n =$$

$$t = t_0 + 10$$
: $t^2 - n = 1646$
 $t = t_0 + 11$: $t^2 - n = 1833$

$$= t_0 + 11: t^2 - n =$$

$$= t_0 + 11: t^2 - n =$$

$$t = t_0 + 11$$
: $t^2 - n = 1833$
 $t = t_0 + 12$: $t^2 - n = 2022$

$$t = t_0 + 12$$
: $t^2 - n = 2022$
 $t = t_0 + 13$: $t^2 - n = 2213$

$$t = t_0 + 14$$
: $t^2 - n = 2406$
 $t = t_0 + 15$: $t^2 - n = 2601$

$$t = t_0 + 16$$
: $t^2 - n = \boxed{\times}$
 $t = t_0 + 17$: $t^2 - n = \boxed{\times}$

$$t = t_0 + 18$$
: $t^2 - n = \times$
 $t = t_0 + 19$: $t^2 - n = \times$

Values:
$$s = 51 \quad \Box \quad t = 98$$

 $t = t_0 + 20$: $t^2 - n = \times$

Conclusion:

The obtained two factors of n are (in increasing order!) 47