Unit 5: Trigonometry

Subunit 5.4: Trigonometric identities

Topical Question No: 1

4	(a)	Prove that $\frac{(\sin\theta + \cos\theta)^2}{\cos^2\theta}$	$\frac{2^2-1}{2} \equiv 2\tan\theta.$	[3]
			$(\sin\theta + \cos\theta)^2 - 1$	
	(b)	Hence solve the equation	$\frac{(\sin\theta + \cos\theta)^2 - 1}{\cos^2\theta} = 5\tan^3\theta \text{ for } -90^\circ < \theta < 90^\circ.$	[3]
	(b)	Hence solve the equation	$\frac{\cos^2\theta}{\cos^2\theta} = 5\tan^3\theta \text{ for } -90^\circ < \theta < 90^\circ.$	[3]
	(b)	Hence solve the equation	$\frac{\cos^2 \theta}{\cos^2 \theta} = 5 \tan^3 \theta \text{ for } -90^\circ < \theta < 90^\circ.$	[3]
	(b)	Hence solve the equation	$\frac{\cos^2 \theta}{\cos^2 \theta} = 5 \tan^3 \theta \text{ for } -90^\circ < \theta < 90^\circ.$	[3]
	(b)	Hence solve the equation	$\frac{\cos^2\theta}{\cos^2\theta} = 5\tan^3\theta \text{ for } -90^\circ < \theta < 90^\circ.$	[3]
	(b)	Hence solve the equation	$\frac{\cos^2\theta}{\cos^2\theta} = 5\tan^3\theta \text{ for } -90^\circ < \theta < 90^\circ.$	[3]
	(b)		$\frac{\cos^2\theta}{\cos^2\theta} = 5\tan^3\theta \text{ for } -90^\circ < \theta < 90^\circ.$	[3]
	(b)			

7

		$\equiv {\cos \theta}$.	$\frac{1+\sin\theta}{1}$	y Cos A	ve the identity
		2050	1 1 5111 0	2030	
		•••••			
		•••••			
					••••••
		•••••			
					••••••
	3		 ⊢sin A /		
$\leq 2\pi$.	$= \frac{3}{\sin \theta}, \text{ for } 0 \leqslant \theta \leqslant 2\pi.$	$\frac{\cos \theta}{+\sin \theta} =$	$\frac{1}{\cos \theta} + \frac{1}{1}$	equation —	ice solve the
		•••••		•••••	• • • • • • • • • • • • • • • • • • • •

Prove the identity $\frac{1 - 2\sin^2\theta}{1 - \sin^2\theta} \equiv 1 - \tan^2\theta$.	[2]
Hence solve the equation $\frac{1-2\sin^2\theta}{1-\sin^2\theta} = 2\tan^4\theta$ for $0^\circ \le \theta \le 180^\circ$.	[3]
1 – SIII <i>0</i>	

(a)	Prove the identity	$1 + \sin x$	$1 - \sin x$	$=\frac{4\tan x}{1+\cos x}$	[4]
(a)	Trove the identity	$1 - \sin x$	$1 + \sin x$	$\frac{1}{\cos x}$.	[+]
		•••••			
		•••••			
		•••••			
		•••••			
		•••••			
(b)	Hence solve the e	quation $\frac{1}{1}$	$\frac{-\sin x}{-\sin x} - \frac{1}{1}$	$\frac{-\sin x}{+\sin x} = 8\tan x \text{ for } 0 \le x \le \frac{1}{2}\pi$	[3]
	•••••				

	Prove the identity $\frac{\sin^3 \theta}{\sin \theta - 1} - \frac{\sin^2 \theta}{1 + \sin \theta} = -\tan^2 \theta (1 + \sin^2 \theta).$
•	

5

(a)	Prove the identity $\frac{\sin^2 x - \cos x - 1}{1 + \cos x} \equiv -\cos x$.	[3]
(a)	$1 + \cos x = \cos x$.	
		•••••
		•••••
		••••••
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4}$ for $0^\circ \le x \le 360^\circ$.	[3]
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4}$ for $0^\circ \le x \le 360^\circ$.	[3]
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4}$ for $0^\circ \le x \le 360^\circ$.	[3]
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4}$ for $0^\circ \le x \le 360^\circ$.	[3]
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4}$ for $0^\circ \le x \le 360^\circ$.	[3]
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4}$ for $0^\circ \le x \le 360^\circ$.	[3]
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4}$ for $0^\circ \le x \le 360^\circ$.	[3]
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4}$ for $0^\circ \le x \le 360^\circ$.	[3]
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4}$ for $0^\circ \le x \le 360^\circ$.	[3]
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4}$ for $0^\circ \le x \le 360^\circ$.	[3]
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4}$ for $0^\circ \le x \le 360^\circ$.	[3]
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4}$ for $0^\circ \le x \le 360^\circ$.	[3]
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4}$ for $0^\circ \le x \le 360^\circ$.	[3]
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4}$ for $0^\circ \le x \le 360^\circ$.	[3]
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4} \text{ for } 0^\circ \le x \le 360^\circ.$	[3]
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4} \text{ for } 0^\circ \le x \le 360^\circ.$	[3]
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4} \text{ for } 0^\circ \leqslant x \leqslant 360^\circ.$	[3]
(b)		
(b)	Hence solve the equation $\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} = \frac{1}{4} \text{ for } 0^\circ \leqslant x \leqslant 360^\circ.$	
(b)		
(b)		