Problema 1

Sea $\gamma: I \to \mathbb{R}^3 \setminus \{0\}$ una curva regular tal que $\gamma''(t) \neq 0$ para todo $t \in I$ ($I \subset \mathbb{R}$ es un intervalo). Supongamos que para todo $t \in I$ existe una constante $\lambda(t)$ tal que $\gamma(t) + \lambda(t)n(t) = \mathbf{0} \in \mathbb{R}^3$. Pribar que existe $c \in \mathbb{R}_{>0}$ tal que $\langle \gamma(t), \gamma(t) \rangle = c$ para todo $t \in I$.

Demostración: Dado que γ es regular, podemos suponer sin perdidad de generalidad que γ esta parametrizada por longitud de arco. Queremos probar que $\langle \gamma(t), \gamma(t) \rangle = c$ para todo $t \in I$, lo cual equivale a probar que $(\langle \gamma(t), \gamma(t) \rangle)' = 0$, mas aún, sabemos que $(\langle \gamma(t), \gamma(t) \rangle)' = 2\langle \gamma(t), \gamma'(t) \rangle$, por lo cual probaremos que $\langle \gamma(t), \gamma'(t) \rangle = 0$.

Por hipotesis tenemos que $\gamma(t) + \lambda(t)n(t) = 0$, lo que implica $\gamma(t) = -\lambda(t)n(t)$, entonces:

$$\langle \gamma(t), \gamma'(t) \rangle = \langle -\lambda(t) n(t), \gamma'(t) \rangle = -\lambda(t) \langle n(t), \gamma'(t) \rangle,$$

como γ esta parametrizada por longitud de arco tenemos que γ' y n son ortogonales pues γ' y γ'' lo son. Se sigue que $-\lambda(t)\langle n(t), \gamma'(t)\rangle = 0$ y por tanto $\langle \gamma(t), \gamma'(t)\rangle = 0$ como queremos.

Problema 2

Sean $A = (-r, 0), B = (r, 0) \in \mathbb{R}^2$. $AB = [-r, r] \subset \mathbb{R} \stackrel{?}{\subset}$, el segmento que los une, de longitud 2r.

- 1. Para todo l>2r probar que existe un circulo $C\subset\mathbb{R}^2$ tal que $A,B\in C$ y si $C=C_1\cup C_2$ donde C_1 y C_2 son los arcos con bordes A y B, entonces l es la longitud de C_1 (o C_2).
- 2. Sea λ una curva que une A con B. Supongamos que el segmento AB seguido de λ forman una curva cerrada, simple y convexa. Sea R_1 la region acotada con borde esta curva. Sea R_2 la region acotada por AB y C_1 . Probar que el area de R_2 es mayor o igual que el area de R_1 .

Solución:

1. Por simpliciadad consideremos C con centro $O=(0,k)\in\mathbb{R}^2$, con k>0, sea C_1 el arco AB y sea C_2 el arco BA^1 . Podemos notar que el radio del circulo es $\sqrt{r^2+k^2}$ y por tanto su longitud es $l(C)=2\pi\sqrt{r^2+k^2}$, sin embargo estamos interesados en $l(C_1)$. Sea $\alpha=\angle BAO$, como $\triangle AOB$ es isoceles tenemos que $\angle ABO=\alpha$, por lo cual $\angle AOB=\pi-2\alpha$, $(\alpha\in(0,2\pi))$. De lo anterior haciendo una regla de tres obtenemos que

$$l(C_1) = \frac{2\pi\sqrt{r^2 + k^2}(\pi - 2\alpha)}{2\pi} = \sqrt{r^2 + k^2}(\pi - 2\alpha),$$

ademas notemos que $\tan(\alpha) = \frac{k}{r}$, entonces $\alpha = \arctan(\frac{k}{r})$, se sigue que

$$l(C_1) = \sqrt{r^2 + k^2} \bigg(\pi - 2 \arctan \bigg(\frac{k}{r} \bigg) \bigg),$$

la cual es una funicón continua en k (r fijo). Por ultimo notemos que

$$\lim_{k\to 0} l(C_1) = \lim_{k\to 0} \sqrt{r^2 + k^2} \bigg(\pi - 2\arctan\bigg(\frac{k}{r}\bigg)\bigg) = \pi r,$$

y que

$$\lim_{k\to\infty} l(C_1) = \lim_{k\to\infty} \sqrt{r^2 + k^2} \bigg(\pi - 2\arctan\bigg(\frac{k}{r}\bigg)\bigg) = \infty,$$

dado que $\pi r < l < \infty$ y la continuidad de $l(C_1)$ obtenemos que existe un circulo C tal que $l(C_1) = l$, como queremos.

2. En este caso podemos suponer que $l(C_1) = l(\gamma)$, sea D la curva C_2 o su reflejo sobre el eje x de tal forma que γ y D queden en distintas partes del plano, se cumple que γ seguida de D sige siendo una curva cerrada simple. Podemos notar que el area encerrada por γ seguida de D es igual a $A(\gamma) + A(D)^2$ y el area encerrada por C_1 y C_2 es $A(C_1) + A(C_2)$, por como definimos D tenemos que $A(C_2) = A(D)$. De lo anterior podemos notar que $l(C) = l(C_1 \cup C_2) = l(\gamma \cup D)$, luego, por la desigualdad isoperimetrica, pues $\gamma \cup D$ es una curva cerrada simple, tenemos que $A(\gamma \cup D) \leq A(C_1 \cup C_2)$, es decir,

$$A(\gamma) + A(D) \leq A(C_1) + A(C_2),$$

de donde obtenemos lo deaseado, pues $A(\gamma) = R_1$ y $A(C_1) = R_2$.

¹En dirección de las manecillas del reloj.

 $^{^2\}mathrm{Aqui}$ consideramos el area entre la curva y AB.