Homework 2 Report Problem Set

Professor Pei-Yuan Wu EE5184 - Machine Learning b05902109 資工三 柯上優

Problem 1. (1%) 請簡單描述你實作之 logistic regression 以及 generative model 於此 task 的表現,並試著討論可能原因。

Features	Training	testing public	testing private
logistic regression	0.821700	0.82000	0.82140
generative	0.821350	0.82060	0.82200

觀察:

此實驗的gender, education, martial status, and pay1~pay6都有做one-hat, 這些以外的feature 都有做Normalize。可以觀察到logistic regression比起generative在training accuracy有更好表現,我認為是因為logistic regression能做gradient使的結果較能fit原本的trainining data。然而,在tesing accuracy的部份,generative的結果都比較好。我認為是因為generative的假設是建立在gaussion distribution下,而此次作業的資料剛好有符合,且dataset也不夠大。若資料量更多,可能有完全不同的結果。

Problem 2. (1%) 請試著將 input feature 中的 gender, education, martial status 等改為 one-hot encoding 進行 training process,比較其模型準確率及其可能影響原因。

Features	Training	testing public	testing private
no one-hot	0.821500	0.81960	0.82100
one-hot	0.821700	0.82000	0.82140

觀察:

此實驗的pay1~pay6有做one-hat,gender, education, martial status, and pay1~pay6以外的 feature都有做Normalize。可以觀察到沒做one-hot明顯有較低的正確率。我認為one-hot能將 非連續性的feature各自討論,舉例來說,age的feature有1和2,這或許是指男性與女性,在計 算時不該把它當作1小於2這種數學關係,而one-hot能使得他們分開計算,在regression時當作 某種加權特徵。

Problem 3. (1%) 請試著討論哪些 input features 的影響較大 (實驗方法沒有特別限制,但請簡單闡述實驗方法)。

delete	sex	marrage	age
Acc	0.821600	0.821200	0.821300

delete	pay0	pay2	pay3	pay4	pay5	pay6	
Acc	0.805250	0.820950	0.821450	0.821200	0.821500	0.820950	

delete	LIMIT_BAL	AGE
Acc	0.821950	0.821550

delete BILL_AMT	1	2	3	4	5	6
Acc	0.821600	0.821650	0.821650	0.821600	0.821700	0.821500

delete PAY_AMT	1	2	3	4	5	6
Acc	0.821400	0.821700	0.821650	0.821650	0.821450	0.821450

觀察:

此實驗固定將gender, education, martial status,and pay1~pay6做one-hat,除此以外的模型都有做Normalize。將每一項各自刪除做logistic regression得到以上training accuracy。 觀察發現,最高的training accuracy是在刪除LIMIT_BAL項,最低的training accuracy是刪除pay0項。這是在training set所做的觀察,testing set的觀察可能完全不同。

Problem 4. (1%) 請實作特徵標準化 (feature normalization),並 討論其對於模型準確率的影響與可能原因。

Features	Training	testing public	testing private
no normalize	0.779550	0.78160	0.78100
normalize	0.821700	0.82000	0.82140

粗宏

此實驗固定將gender, education, martial status,and pay1~pay6做one-hat。發現沒有做 Normalize的結果準確率明顯較低,我認為是,沒有做normalize的feature可能數量及差距過大,像是AGE會在百位數內,PAY_AMT卻會有破萬的數值,而regression最好都將input放在接近的範圍內,會有比較好的結果。

Problem 5. (1%)

collabarator: b04902131 黃郁凱

First we proof

$$2\int_0^\infty e^{-t^2}dt=\sqrt{\pi}$$

pf>

$$\begin{split} I^2 &= 4 \int_0^\infty \int_0^\infty e^{-(x^2 + y^2)} dy \, dx \\ &= 4 \int_0^\infty \left(\int_0^\infty e^{-(x^2 + y^2)} \, dy \right) \, dx \\ &= 4 \int_0^\infty \left(\int_0^\infty e^{-x^2 (1 + s^2)} x \, ds \right) \, dx \\ &= 4 \int_0^\infty \left(\int_0^\infty e^{-x^2 (1 + s^2)} x \, dx \right) \, ds \\ &= 4 \int_0^\infty \left[\frac{1}{-2(1 + s^2)} e^{-x^2 (1 + s^2)} \right]_{x=0}^{x=\infty} \, ds \\ &= 4 \left(\frac{1}{2} \int_0^\infty \frac{ds}{1 + s^2} \right) \\ &= 2 \left[\arctan s \right]_0^\infty \\ &= \pi \end{split}$$

Back to the problem,

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$
let $z = \frac{x-\mu}{\sqrt{2}\sigma}$

then

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-(\frac{x-\mu}{\sqrt{2\sigma}})^2} dx = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-(\frac{x-\mu}{\sqrt{2\sigma}})^2} dz = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} e^{-z^2} dz = \frac{1}{\sqrt{\pi}} \sqrt{\pi} = 1$$

Problem 6. (1%)

(a.)
$$\frac{\partial E}{\partial z_k} = \frac{\partial E}{\partial y_k} \frac{\partial g(z_k)}{\partial z_k}$$

(b.)
$$\frac{\partial E}{\partial z_j} = \left(\sum_k \frac{\partial E}{\partial y_k} \frac{\partial g(z_k)}{\partial z_k} \frac{\partial w_j k y_j}{\partial y_j}\right) \frac{\partial g(z_j)}{\partial z_j}$$

(c.)
$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial y_k} \frac{\partial g(z_k)}{\partial z_k} \left(\sum_j \frac{\partial w_j k y_j}{\partial y_j} \frac{\partial g(z_j)}{\partial z_j} \left(\sum_i \frac{w_i y_i}{w_{ij}} \right) \right)$$