Related Technologies

•HPC covers a wide range of technologies:

- Computer architecture
- Networking
- · compassignment Project Exam Help
- Algorithms
- · Workload and resource manager com
 - A big HPC system handles many parallel programs from different users _ . . Add WeChat.powcoder
 - Task scheduling and resource allocation
 - metrics: system throughput, resource utilization, mean response time

Related Technologies

•HPC covers a wide range of technologies:

- Computer architecture
- Networking
- · compassignment Project Exam Help
- Algorithms
- · Workload and resource manager com

Add WeChat powcoder

- □1960s: Scalar processor
 - □ Process one data item at a time

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Scalar processor

- □1960s: Scalar processor
- **□1970s: Vector processor**
 - □ Can process an array of data items in one go
 - □ ArchAssignmentaBrojecteExamHeapy math coprocessors (ALU)
 - □ Each timehtte mastruction and a vector of data items and feed them to ALUs
 - Overhead: more complicated address decoding and data fetching procedure echiat powcoder
 - □ Difference between vector processor and scalar processor

GPU (Vector processor)

GPU: Graphical Processing Unit

GPU is treated as a PCIe device by the main CPU

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Computer Science, University of Warwick

GPU (Vector processor)

GPU: Graphical Processing Unit

GPU is treated as a PCIe device by the main CPU

Data processing on GPU

- CUDA: programming on GPU
- Get the array A and B in one memory access operation
- Different threads the cost of the property data it is a property data.
- If no much parallel processing, slower on GPU due to overhead nttps://powcoder.com

```
// Kernel definition
__global__ vAidVectWeChat powcoder

int i = threadIdx.x;
    C[i] = A[i] + B[i];

int main()
{
    ...
    // Kernel invocation with N threads
    VecAdd<<<1, N>>> (A, B, C);
    ...
}

    Device Memory

Device Memory

Device Memory

Device Memory
```

- □1960s: Scalar processor
- **□1970s: Vector processor**
- □ Later 1980s: Massively Parallel Processing (MPP)

 Assignment Project Exam Help

 Up to thousands of processors, each with its own memory

 - □ Processors tean fetch and run instructions in parallel
 - □ Break down the workload in a parallel program
 - · Workload hald new and prace process the control of the control o
 - □ Difference between MPP and vector processor

Architecture of BlueGene/L (MPP)

 Create a philosophy of using a massive number of low performance processors to construct supercomputers

- □1960s: Scalar processor
- □1970s: Vector processor
- □ Later 1980s: Massively Parallel Processing (MPP)
 Assignment Project Exam Help
- □Later 1990s: Cluster
 - □ Connecting to pow concertage Mth high-speed network (over-cable networks)
 - · Commodity definition at the entire the commodity definition of the commodity definit
 - high-speed network: Gigabit Ethernet, infiniband
 - Over-cable network vs. on-board network
 - Not a new term itself, but renewed interests
 - Performance improvement in CPU and networking
 - Advantage over custom-designed mainframe computers: Good portability

Cluster Arechitecture

- □1960s: Scalar processor
- **□1970s: Vector processor**
- □ Later 1980s: Massively Parallel Processing (MPP)
 Assignment Project Exam Help
- □Later 1990s: Cluster
- Later 1990s: https://powcoder.com
- - □ Integrate gaethathiethindistributedraspurces
 - □ Further evolution of cluster computing
 - Draw an analogue from Power grid

- □1960s: Scalar processor
- **□1970s: Vector processor**
- Later 1980s: Massively Parallel Processing (MPP)
 Assignment Project Exam Help
- □Later 1990s: Cluster
- Later 1990s: https://powcoder.com
- Since 2000s: Add WeChat powcoder
 - □ Commercialization of Grid and Cluster computing
 - □ Use the resources and services provided by the third party (Cloud service provider) and pay for the usage
 - □ virtualization technology: secure running environment, higher resource utilization

- All previous HPC systems can be divided into two architecture types
 - Shared memory system
- · Distribasignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

- □ Shared memory (uniform memory access SMP)
 - Multiple CPU cores, single memory, shared I/O (Multicore CPU)
 - All resources in a SMP machine are equally available to each coreAssignment Project Exam Help
 - Due to resource contention, uniform memory access systems do not scale https://powcoder.com
 - CPU cores share access to a common memory space.
 Add WeChat powcoder

 Implemented over a shared system bus or switch
 - Support for critical sections is required
 - Local cache is critical:
 - If not, bus/switch contention (or network traffic) reduces the systems efficiency.
 - Cache introduces problems of coherency (ensuring that stale cache lines are invalidated when other processors alter shared memory).

Shared memory (Non-Uniform Memory Access: NUMA)

- **Multiple CPUs**
- Each CPU has fast access to its local area of the memory, but slower access to other areast Project Exam Help
- Scale well to a large number of processors due to the hierarchical memory access https://powcoder.com
 Complicated memory access pattern: local and remote memory address
- Global addrædebæeChat powcoder

NUMA machine

- □ Distributed Memory (MPP, cluster)
 - Each processor has it's own independent memory
 - Interconnected through over-cable networks
 - Assignment Project Exam Help

 When processors need to exchange (or share data), they must do this through an explicit communication https://powcoder.com
 - · Typically larged later that the control of the co
 - Scalability is good if the task to be computed can be divided properly

Granularity of Parallelism

- Defined as the size of the computations that are being performed in parallel
- Four types of parallelism (in order of granularity size)
 Assignment Project Exam Help
 - □ Instruction-level parallelism (e.g. pipeline)
 - □ Thread-level parallelism (e.g. run a cPU program)
 - □ Process-lexel gattle ismate gottneander job in a cluster)
 - □ Job-level parallelism (e.g. run a batch of independent jobs in a cluster)

Dependency and Parallelism

- → Dependency: If instruction A must finish before instruction B can run, then B is dependent on A
- Two types of Dependency Assignment Project Exam Help
 - □ Control dependency: waiting for the instruction which controls the execuling for the instruction which controls
 - IF (X!=0) Then Y=1.0/X: Y=1.0/X has the control dependency on X!=0
 - □ Data dependency: dependency because of calculations or memory access
 - Flow dependency: A=X+Y; B=A+C;
 - Anti-dependency: B=A+C; A=X+Y;
 - Output dependency: A=2; X=A+1; A=5;

Parallel computing vs. distributed computing

Parallel Computing

- Breaking the problem to be computed into parts that can be run simultaneously in different processors
- Examplication
- · Solve tightupse//plowerodeneom

·Distributed A powcoder

- Parts of the work to be computed are computed in different places (Note: does not necessarily imply simultaneous processing)
- An example: running a workflow in a Grid
- Solve loosely-coupled problems (no much communication)