

## Aufgaben I Netzwerktechnik Lösung

**Aufgabe 1:** Schreiben Sie zur Wiederholung die 7 Schichten des OSI/ISO Modells einmal in Deutsch und einmal in Englisch beginnend bei Schicht 7 abwärts:

Anwendungsschicht Applikation Layer
Darstellungsschicht Presentation Layer
Sitzungsschicht Session Layer
Transportschicht Transport Layer
Vermittlungsschicht Network Layer
Sicherungsschicht Data Link Layer
Bitübertragungsschicht Physical Layer

**Aufgabe 2:** Rechnen Sie folgende Zweierpotenzen im Kopf in 10-er Potenzen um! Wenn Sie unsicher sind, können Sie den Algorithmus auch schriftlich vornehmen, irgendwann geht's dann auch im Kopf.

 $2^9 = 512$   $2^{24} \approx 16 \text{ Mill.}$   $2^{41} \approx 2 * 10^{12}$ 

 $2^{12}$ = 4096  $2^{32}$ ≈  $4*10^9$   $2^{48}$ ≈ 256  $*10^{12}$  ≈ 2,5\*10<sup>14</sup>

Aufgabe 3: Was heißt ISO, OSI, ITU, DIN und wer hat was wann standardisiert?

ISO - International Standardisation Organisation: OSI 1984 - DIN ISO 7498

OSI – Open System Interconnection

ITU – International Telecomunication Union: OSI 1983 – X.200

DIN – Deutsch Industrienorm: -DIN ISO 7498

Aufgabe 4: Was ist der Unterschied zwischen 4 Mbyte und 4 Mebibyte?

4.000.000 und 4.194.304, der Unterschied ist also 194.304 mehr bei Mebibyte

Aufgabe 5: Ordnen Sie die Bezeichner der Schichten zu, die folgende Reichweite haben:

Auf dem Zielcomputer: Transportschicht 4

Lokal: Sicherungsschicht 2

Systemweit: Vermittlungsschicht 3

**Aufgabe 6:** Nennen Sie die Basis für folgende Zahlensysteme und berechnen Sie die Potenzen 2, 3 und 4 des entsprechenden Systems.

Hexadezimal: 16  $16^2=2^8=256$ ,  $16^3=2^{12}=4.096$ ,  $16^4=2^{16}=65.536$ 

Octal: 8  $8^2=2^6=64$ ,  $8^3=2^9=512$ ,  $8^4=2^{12}=4.096$ 

Binär: 2  $2^2=4$ ,  $2^3=8$ ,  $2^4=16$ 

Dual: 2  $2^2=4$ ,  $2^3=8$ ,  $2^4=16$ 

Dezimal: 10 100, 1.000, 10.000