

Uji Vektor Nilai Tengah Satu Populasi

Pertemuan 3 – STA1342

Uji Nilai Tengah

- Jika ingin mengambil keputusan valid mengenai rataan dari suatu populasi berdasarkan contoh yang diperoleh maka dilakukan uji nilai tengah
- Dari satu populasi diambil sejumlah contoh, di mana contoh tersebut terdiri dari beberapa peubah yang saling berkorelasi sebanyak $p \rightarrow$ maka harus dilakukan analisis secara bersama-sama
- Analisis beberapa peubah yang dilakukan secara bersama-sama akan memberikan hasil uji yang lebih valid

Uji Nilai Tengah

Uji ini didasarkan pada hipotesis berikut:

$$H_0: \mu = \mu_0$$

$$H_1$$
: $\mu \neq \mu_0$

- Di mana μ_{px1} merupakan vektor nilai tengah populasi dan $\mu_{0,px1}$ merupakan beberapa nilai tertentu di bawah hipotesis nol.
- p merupakan banyak peubah yang diuji nilai tengahnya. Jika p = 1, maka pengujian dilakukan dengan statistik t.
- Jika p > 1, maka pengujian dilakukan dengan statistik T^2 Hotelling.

Kasus Univariat

- Jika kita punya contoh acak dari *n* amatan dari suatu populasi, di mana:
 - Amatan saling bebas
 - Amatan berasal dari populasi yang sama, $E(X_i) = \mu$ untuk semua i
 - Jika ukuran contoh kecil, diasumsikan X_i ~ N(μ , σ^2)

Maka:
$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

• Jika ingin dilakukan pengujian terhadap nilai tengah, digunakan statistik uji berikut: $\bar{x} - \mu_0$

$$t = \frac{\bar{x} - \mu_0}{\frac{S}{\sqrt{n}}} \sim t_{n-1}$$

Pada Kasus p Dimensi, p > 1

Jika dicari kuadrat dari statistik uji t:

$$t^{2} = \frac{(\bar{x} - \mu_{0})^{2}}{\frac{s^{2}}{n}} = n(\bar{x} - \mu_{0})(s^{2})^{-1}(\bar{x} - \mu_{0})$$

- Diperoleh bahwa t2 adalah jarak kuadrat statistik antara rataan contoh dan nilai hipotesis μ_0
- Ingat bahwa $t_{df}^2 = F_{1,df}$
- Maka,

$$t^2 = n(\bar{x} - \mu_0)(s^2)^{-1}(\bar{x} - \mu_0) \sim F_{1,df}$$

Di mana *df = n - p*

Kasus Multivariat

$$H_0: \mu = \mu_0$$

$$H_1$$
: $\mu \neq \mu_0$

Untuk kasus multivariat, ganti skalar dengan vektor dan matriks sebagai berikut:

$$T^{2} = n(\overline{X} - \mu_{0})'S^{-1}(\overline{X} - \mu_{0}) \left(\frac{(n-1)p}{n-p}F_{p,(n-p)}\right) = c^{2}$$

Di mana:

$$\overline{X}_{p \times 1} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \qquad \mu_{0}_{p \times 1} = \begin{pmatrix} \mu_{1}_{0} \\ \mu_{2}_{0} \\ \vdots \\ \mu_{p_{0}} \end{pmatrix} \qquad \text{Tolak H}_{0} \text{ jika:}$$

$$T^{2} > c^{2} = \frac{(n-1)p}{(n-p)} F_{(p,n-p)}(\alpha)$$

$$T^2 > c^2 = \frac{(n-1)p}{(n-p)} F_{(p,n-p)}(\alpha)$$

$$S_{p\times p} = \frac{1}{n-1}\sum_{i=1}^{n}(X_i - \overline{X})(X_i - \overline{X})'$$

Selang Kepercayaan Multivariat

- Untuk kasus univariat, selang kepercayaan untuk parameter θ adalah daerah yang memuat nilai sebenarnya dari parameter tersebut dengan peluang 1α .
- Untuk kasus multivariat berdimensi p, daerah kepercayaan untuk parameter θ adalah daerah yang memuat nilai sebenarnya dari parameter tersebut dengan peluang sebesar 1α .
- Beberapa selang kepercayaan yang dapat digunakan pada kasus multivariat antara lain selang kepercayaan simultan, Bonferroni, dan ellips.

Selang Kepercayaan Simultan

- Digunakan untuk mencari selang kepercayaan pada setiap parameter peubah ke-i.
- Batas-batas selang kepercayaan $(1 \alpha)100\%$ bagi μ diperoleh dengan rumus:

$$\bar{x_i} \pm c\sqrt{\frac{Sii}{n}}$$
 atau $a'\bar{x} \pm c\sqrt{\frac{a'Sa}{n}}$ dengan $c^2 = \frac{(n-1)p}{n-p}F_{(p,n-p)}(\alpha)$

Peluang nilai parameter akan berada di dalam selang adalah:

$$P\left(\bar{x}_i - \sqrt{\frac{(n-1)p}{n-p}}F_{(p,n-p)}(\alpha)\sqrt{\frac{Sii}{n}} \le \mu_i \le \bar{x}_i + \sqrt{\frac{(n-1)p}{n-p}}F_{(p,n-p)}(\alpha)\sqrt{\frac{Sii}{n}}\right) = 1 - \alpha$$

• Di mana i = 1, ..., p

Selang Kepercayaan Ellips

• Selang ini memuat nilai μ_0 yang tidak akan ditolak oleh T^2 Hotelling pada taraf nyata α . Selang ini dinyatakan dengan:

$$n(\overline{X} - \mu)'S^{-1}(\overline{X} - \mu) \le c^2 = \frac{(n-1)p}{n-p} F_{p,(n-p)}(\alpha)$$

$$P\left(n(\overline{X}-\boldsymbol{\mu})'S^{-1}(\overline{X}-\boldsymbol{\mu})\leq \frac{(n-1)p}{n-p}F_{p,(n-p)}(\alpha)\right)=1-\alpha$$

Gambar Daerah Kepercayaan Ellips

- Selang ini dibentuk dengan:
 - Panjang ½ sumbu mayor = $\frac{\sqrt{\lambda_1}}{\sqrt{n}}c$
 - Panjang ½ sumbu minor = $\frac{\sqrt{\lambda_2}}{\sqrt{n}}c$
 - Daerah kepercayaan dinyatakan dengan

$$\bar{\mathbf{x}} \pm \frac{\sqrt{\lambda_1}}{\sqrt{n}} c e_i$$

Di mana e, adalah vektor eigen dari eigen matriks S

Dan nilai c diperoleh dari

$$c^2 = \frac{(n-1)p}{n-p} F_{p,(n-p)}(\alpha)$$

Selang Kepercayaan Bonferroni

- Jika ingin membentuk sebanyak m selang kepercayaan dengan masing-masing selang memuat $(1 \alpha)100\%$ amatan, maka peluang dari amatan berada pada selang secara simultan atau keseluruhan akan berkurang menjadi sebesar $(1 m\alpha)100\%$.
- Maka sebaliknya, jika ingin memperoleh selang simultan dengan peluang (1 α)100%, maka pada setiap selang individu dipilih taraf sebesar α/m dan menghasilkan peluang masing-masing selang sebesar (1 α/m)100%.
- Metode dalam membentuk selang kepercayaan simultan ini disebut Metode
 Bonferroni, di mana akan menghasilkan selang yang lebih lebar dibandingkan selang individualnya.
- Selang ini lemah ketika nilai m nya besar, karena dianggap terlalu konservatif.

Selang Kepercayaan Bonferroni

• Selang ini dinyatakan dengan:

(Nilai parameter berada pada selang C_i) = $1 - \alpha_i$

 $P(Semua\ nilai\ parameter\ berada\ pada\ selang\ C) = 1 - (\alpha_1 + \dots + \alpha_p)$

 Adapun batas wilayah dan peluang selang Bonferroni pada setiap selang dinyatakan dengan:

$$\bar{x}_i \pm t_{(n-1)} \left(\frac{\alpha}{2p}\right) \sqrt{\frac{S_{ii}}{n}}$$

$$P\left(\bar{x}_i - t_{(n-1)}\left(\frac{\alpha}{2p}\right)\sqrt{\frac{S_{ii}}{n}} \le \mu_i \le \bar{x}_i + t_{(n-1)}\left(\frac{\alpha}{2p}\right)\sqrt{\frac{S_{ii}}{n}}\right) = 1 - \alpha$$

Contoh Kasus

Berikut ini data dari sampel siswa di sebuah sekolah yang dilihat dari skor nilai matematika (X1) dan fisika (X2). Kedua peubah diasumsikan menyebar normal bivariate:

Siswa	matematika	fisika
1	72.8	69.9
2	46	68.9
3	59.2	58.4
4	66.7	78.2
5	84.2	63.9
6	50.4	54.6
7	49.6	66.5
8	77.9	71.6
9	63.9	77.2
10	55.1	56.8

Contoh Kasus

Pertanyaan:

- 1. Hitung vektor rataan dan matriks kovarian-nya?
- 2. Ujilah pada taraf nyata 10% apakah vektor rataan populasi $\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \begin{bmatrix} 55 \\ 60 \end{bmatrix}$
- 3. Tentukan *ellips* kepercayaan 90% bagi μ dan buatlah gambarnya
- 4. Apakah seorang siswa yg memiliki skor matematika 65 dan skor fisika 70 masuk ke dalam *ellips* kepercayaan tersebut?
- 5. Buatlah selang kepercayaan simultan dan selang bonferroni 90%

Latihan Soal

1. Ada 20 wanita dianalisis tentang kadar gula, kadar garam dan kadar potassium dalam darah mereka. Hasil menunjukkan

$$\overline{x} = \begin{pmatrix} 4.64 \\ 45.40 \\ 9.96 \end{pmatrix} \text{dan S} = \begin{pmatrix} 2.88 & 10.01 & -1.81 \\ 10.01 & 199.79 & -5.64 \\ -1.81 & -5.64 & 3.63 \end{pmatrix}$$

Ujilah
$$H_0$$
: $\mu' = (4 \quad 50 \quad 10)$ lawan H_1 : $\mu' \neq (4 \quad 50 \quad 10)$
Dengan $\alpha = 10$ % dimana $F_{3,17}$ ($\alpha = 10$ %) = 2.44

2. Diketahui data matriks dari sampel acak berukuran n=3 dari populasi normal bivariate

$$X = \begin{pmatrix} 6 & 9 \\ 10 & 6 \\ 8 & 3 \end{pmatrix}$$

Ujilah
$$H_0: \mu' = (9 5)$$

Tugas Kelompok

- 1. 1 Kelompok terdiri dari 2 orang
- 2. Kerjakan secara manual dan menggunakan R
- 3. Tugas dikumpulkan maksimal Selasa, 5 September 2023 pukul 23.59 WIB.
- 4. Link pengumpulan tugas: https://ipb.link/tugas2-sta1342-2023
- 5. Format nama tugas: Tugas2_NamaAnggota1_NamaAnggota2