Wersja robocza: 26.10.2021, 23:46

 $style=default, position=default, listformat=default\\ parboxrestore=default @minipage=default\\ hypcap=1, hypcapspace=.5$

 $\begin{tabular}{ll} list-entry=default\\ FP list=caption, FP ref=figure\\ [boxed] skip=2pt \end{tabular}$

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Praca magisterska

Aproksymacja funkcji kawałkami regularnych przy użyciu informacji dokładnej i niedokładnej

Tomasz Czyż

Kierunek: Matematyka

Specjalność: Matematyka obliczeniowa

i komputerowa

Promotor

Nr albumu: 290565 dr Maciej Goćwin

Oświadczenie studenta

Uprzedzony(-a) o odpowiedzialności karnej na podstawie art. 115 ust. 1 i 2 ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (t.j. Dz.U. z 2018 r. poz. 1191 z późn. zm.): "Kto przywłaszcza sobie autorstwo albo wprowadza w bład co do autorstwa całości lub części cudzego utworu albo artystycznego wykonania, podlega grzywnie, karze ograniczenia wolności albo pozbawienia wolności do lat 3. Tej samej karze podlega, kto rozpowszechnia bez podania nazwiska lub pseudonimu twórcy cudzy utwór w wersji oryginalnej albo w postaci opracowania, artystyczne wykonanie albo publicznie zniekształca taki utwór, artystyczne wykonanie, fonogram, wideogram lub nadanie.", a także uprzedzony(-a) o odpowiedzialności dyscyplinarnej na podstawie art. 307 ust. 1 ustawy z dnia 20 lipca 2018 r. Prawo o szkolnictwie wyższym i nauce (Dz. U. z 2018 r. poz. 1668 z późn. zm.) "Student podlega odpowiedzialności dyscyplinarnej za naruszenie przepisów obowiązujących w uczelni oraz za czyn uchybiający godności studenta.", oświadczam, że niniejszą pracę dyplomową wykonałem(-am) osobiście i samodzielnie i nie korzystałem(-am) ze źródeł innych niż wymienione w pracy. Jednocześnie Uczelnia informuje, że zgodnie z art. 15a ww. ustawy o prawie autorskim i prawach pokrewnych Uczelni przysługuje pierwszeństwo w opublikowaniu pracy dyplomowej studenta. Jeżeli Uczelnia nie opublikowała pracy dyplomowej w terminie 6 miesięcy od dnia jej obrony, autor może ją opublikować, chyba że praca jest częścią utworu zbiorowego. Ponadto Uczelnia jako podmiot, o którym mowa w art. 7 ust. 1 pkt 1 ustawy z dnia 20 lipca 2018 r. – Prawo o szkolnictwie wyższym i nauce (Dz. U. z 2018 r. poz. 1668 z późn. zm.), może korzystać bez wynagrodzenia i bez konieczności uzyskania zgody autora z utworu stworzonego przez studenta w wyniku wykonywania obowiązków związanych z odbywaniem studiów, udostępniać utwór ministrowi właściwemu do spraw szkolnictwa wyższego i nauki oraz korzystać z utworów znajdujących się w prowadzonych przez niego bazach danych, w celu sprawdzania z wykorzystaniem systemu antyplagiatowego. Minister właściwy do spraw szkolnictwa wyższego i nauki może korzystać z prac dymlomowych znajdujących się w prowadzonych przez niego ba t

awidłowego utrzymania i rozwoju rmatycznych.
(Podpis czytelny studenta)
otora
$m\ mag is terskim.$
(Podpis promotora)

Spis treści

Streszczenie

Streszczenie

Słowa kluczowe

słowa kluczowe

Abstract

Abstract

Key words

keywords

Wprowadzenie

Aproksymacja funkcji oparta na dostępnej inforamcji jest problemem badanym od lat. Powstają coraz bardziej zaawansowane algorytmy, działające przy coraz słabszych założeniach o funkcji. Często jednak w rozważaniach teoretycznych pomijany jest czynnik zewnętrzny, który może powodować zaburzenia dostępych informacji. W tej pracy rozważamy, jaki wpływ na wyniki numeryczne może mieć zaniedbanie tego faktu.

W rozważaniach zakładamy, że mamy dostęp tylko do częściowej informacji o funkcji, a jedynym źródłem informacji jest tzw. *wyrocznia*. To podejście ma praktyczne uzasadnienie w obliczeniach numerycznych, gdzie odwołania do wyroczni odpowiadają ewaluacjom funkcji. Na ogół wartości, które otrzymujemy są wynikiami pewnych pomiarów (np. fizycznych), które zawsze są obarczone pewnym błędem. Uwzględnienie zaburzenia danych jest więc intuicyjne.

Dodatkowo, najczęściej spotykane dane cechują się pewnym stopniem nieregularności. Z tego powodu powstaje wiele prac, w których przyjmuje się słabsze założenia na aproksymowaną funkcje. W tej pracy rozważać będziemy funkcje, które zawierają dokłanie jeden, nieznany punkt osobliwy, w którym nie musi być zachowna ciągłości czy różniczkowalność.

Mówimy, że funkcja skalarna g jest (r, ϱ) -regularna na przedziale [a, b], jeśli $g \in C^r([a, b])$ oraz $g^{(r)}$ jest Hölderowsko ciągła z wykładnikiem $\varrho \in (0, 1]$. Rozważmy przestrzeń $F_{r,\varrho}$ T-okresowych funkcji f, które składają się z dwóch (r, ϱ) -regularnych części oddzielonych nieznanym punktem osobliwym \hat{t}_f . Założenie o okresowości funkcji zostało wprowadzone, aby uprościć prezentację problemu. Po kilku techniczych modyfikacjach wszystkich wyniki działają dla funkcji nieokresowych.

W celu porównania wpływu zaburzenia informacji przedstawimy dwa algorytmy z artukułów [?] i [?]. Pierwszy z nich bazuje na wielomianach Lagrnage'a i jego analiza nie uwzględnia zaburzenia danych wejściowych. Algorytm z [?] dopuszcza informacje niedokładną, a kluczowy krok opiera się na różnicach dzielonych.

Oba algorytmy stosują podejście adaptacyjne do wybierania dodatkowych ewaluacji funkcji, to znaczy, wybór kolejnych punktów jest uzależniony od wcześniejszych wartości. Skuteczność algorytów adaptacyjnych i nieadaptacyjnych została szeroko przeanalizowana dla wielu klas funkcji przy założeniu, że informacja jest dokładna. Użycie adaptacji w obu z omawianych algorytmów jest uzasadnione wynikami z m.in. [?]. W artukule pokazano, że błąd L_p -aprkosymacji funkcji z jednym punktem osobliwym dla algorytmów nieadaptacyjnych używających n ewaluacji funkcji nie może być

Wersja robocza: 26.10.2021, 23:46 Wprowadzenie

lepszy niż $n^{1/p}$, przy czym algorytmy adaptacyjne osiągają optymalne tępo zbieżności n^{-r} .

W tej samej pracy udowodniono również, że dla funkcji posiadających wiele punktów osobliwych tępo zbieżności błądu najgorszego przypadku względem normy L_p maleje do $n^{1/p}$. Z tego powodu skupiamy się na funkcjach z jedną osobliwością. Wyniki te przytoczymy w rozdziale $\ref{eq:constraint}$?

W rozdziale?? przedstawimy algorytmy z prac [?] i [?].

Definicje

1.1. Informacja, algorytm, aproksymacja

W tym rozdziale wyjaśnijmy co rozumiemy przez aproksymację i w jaki sposób ją otrzymujemy. W tym celu wprowadzimy fundamentalne pojęcia, takie jak operator rozwiązania, informacja zaburzona oraz algorytm. Szczególną uwagę poświęcimy informacji która, mówiąc w skrócie, jest tym co wiemy o problemie do rozwiązania. W niniejszej pracy kluczownym założeniem jest zaburzenie informacji, tzn. otrzymujemy ją z jakimś błędem. Taką informację nazywamy niedokładną lub zaburzoną.

Niech F będzie przestrznią liniową a G przestrzenią unormowaną, obie nad ciałem liczb rzeczywistych. Odwzorowanie

$$S: F \to G$$

nazywamy operatorem rozwiązania. Dla każdego elementu f z F chcemy obliczyć aproksymację S(f). Niech U(f) będzie obliczoną aproksymacją.

Niech $\varepsilon \geq 0$. Mówimy, że S(f) jest ε -aprkosymacją funkcji f wtedy i tylko wtedy, gdy $||S(f) - U(f)|| \leq \varepsilon$. Celem jest znalezienie takiej aproksymacji U(f), że jest ona ε -aprkosymacją dla wszysktich elementów f z F. Aby to zrobić potrzebujemy posiadać pewną wiedzę o f.

Operatorem informacji (lub informacją) nazywamy odwzorowanie

$$N: F \to 2^Y$$
,

gdzie Y jest zbiorem skończonych ciągów liczb rzeczywistych, $Y \subset \bigcup_{n=1}^{\infty} \mathbb{R}^n$, czyli N(f) jest pozbiorem Y. Na ogół nie mamy dostępu do pełnej wiedzy o funkcji, dlatego musimy założyć, że możemy zbierać informacje o f poprzez pewnien funkcjonał L(f), gdzie $L: F \to \mathbb{R}$.

Przez Λ oznaczmy klasę dopuszczalneh operacji L, czyli $L \in \Lambda$ wtedy i tylko wtedy, gdy L(f) może zostać obliczone dla każdego elementu f z F. Rozważmy teraz dwa

Wersja robocza: 26.10.2021, 23:46

sposoby doboru inforamcji. Inforamcję N nazywamy nieadaptacyjną wtedy i tylko wtedy, gdy istnieje $L_1, \ldots, L_n \in \Lambda$ takie, że

$$N(f) = [L_1(f), L_2(f), \dots, L_n(f)] \ \forall f \in F.$$

W tym przypadku poszczególne funkcjonały informacji zależą tylko od funkcji f i są obliczane niezależnie. Ogólniejszą klasą jest informacja adaptacyjna, w której możemy wybierać wartości bazując na poprzednich wynikach. Mówiąc dokłądniej, informacja N jest adaptacyjna wtedy i tylko wtedy, gdy

$$N(f) = [L_1(f), L_2(f; y_1), \dots, L_i(f; y_1, \dots, y_{n(f)-1})],$$

gdzie $y_1 = L(f_1)$ i $y_i = L_i(f; y_1, y_2, \dots, y_{i-1})$ dla $i = 2, 3, \dots, n(f)$. Musimy również założyć, że $L_i(\cdot; y_1, \dots, y_{i-1})$ należą do operacji dozwolonych. W przypadku informacji adaptacyjnej nie możemy z góry określić liczby operacji na problemie f, ponieważ jest to dynamicznie ustalne podczas procesu oblicznia kolejnych wartości y_i .

Warto zauważyć, że jeśli rozważany problem wymaga obliczenia bardzo dużej ilości informacji o funkcji w krótkim czasie, to zastosowanie informacji nieadaptacyjnej może przyśpieszyć proces, ze względu na możliwość zrównoleglenia obliczeń. W przypadku adaptacyjnym kolejność obliczeń ma znaczenie, więc informacje musimy pozyskiwać sekwencyjnie, co zazwyczaj jest wolniejsze.

W niniejszej pracy zakładamy, że f jest funkcją, a jedynymi dostępnymi funkcjonałami informacji są wartości funkcji w punktach. Informację nieadaptacyjną oraz adaptacyjną możemy więc zapisać w postaci $N(f) = [f(t_1), f(t_2), \ldots, f(t_{n(f)})]$. Jeżeli n(f) = n i punkty t_i otrzymujemy a priori, wtedy N jest nieadaptacyjna. Natomiast, jeżeli n(f) różni się lub wybór punktów t_i jest zależny od $f(t_1), f(t_2), \ldots, f(t_{i-1})$, to N jest adaptacyjna.

Kluczowym założeniem jest fakt, że informacje o funkcji uzyskujemy z pewnym błędem. Mówiąc dokłądniej, inforamacje o funkcji przyjmują postać $y_i = f(x_i) + e_i$, dla $1 \le i \le n$, gdzie $|e_i| \le \delta$ to tak zwany szum.

Dla przykładu, dla informacji nieadaptacyjnej składającej się z zaburzonych ewaluacji funkcji f w punktach x_1, \ldots, x_n z precyzją δ , mamy:

$$N(f) = \{ y \in \mathbb{R}^n : |y_i - f(x_i)| \le \delta, \quad 1 \le i \le n \}$$

Każdy element $y \in N(f)$ będziemy nazywać informacją o f. Zauważmy, że dla $\delta = 0$, zbiór N(f) ma dokładnie jeden element dla wszystkich $f \in F$, tzn. informacja N jest dokładna. Zakładamy, że N(f) jest niepuste dla wszystkich $f \in F$. W przypadku, gdy istnieje f dla którego N(f) ma przynajmniej dwa elementy, wtedy informacja jest niedokładna (cześciowa).

Naszym zadaniem jest aproksymacja elementów S(f) dla f należącego do $E \subset F$, bazując wyłącznie na informacji zaburzonej o f.

Znając informację y o f możemy wprowadzić aproksymację, a raczej algorytm który ją skonstruuje. Algorytmem nazywamy odwzorowanie:

$$\varphi: Y \to G$$

Innymi słowy, aproksymacją S(f) jest $\varphi(y)$, gdzie y jest informacją o f. Błąd aproksymacji zdefiniownay jest jako różnica $||S(f) - \varphi(y)||$, gdzie $||\cdot||$ jest normą w przestrzeni G.

7

1.2. Model obliczeniowy

W ogólności, optymalność algorytmu oraz złożonść problemu zależą od przyjętego modelu obliczeniowego. Model jest określony poprzez sposób w jaki błąd i koszt algorytmu są zdefiniowane.

Jeżeli za błąd i koszt przyjmujemy wydajność na najtrudniejszym spośród wszystkich problemów w danej klasie, wtedy mówimy o *modelu najgorszego przypadku*. Innymi często rozważanymi modelami są: probablistyczny, średni, mieszany, losowy czy asymptotyczny, jednak nimi nie będziemy zajmować się w tej pracy.

Niech $N: F \to 2^Y$ będzie operatorem inforamcji a $S: F \to G$ operatorem rozwiązania. Poprzez *błąd najgorszego przypadku* algorytmu $\varphi: Y \to G$ na zbiorze $E \subset F$ rozumiemy:

$$e^{\mathrm{wor}}(\varphi, N, E) = \sup_{f \in E} \sup_{y \in N(f)} ||S(f) - \varphi(y)||$$

Celem jest znalezienia algorytmu, który minimalizuje błąd najgorszego przypadku względem wszystkich algorytmów w danej klasie. Algortym osiągający to minimum nazywamy *optymalnym*.

W praktyce rozważania dotyczą algorytmów, które wykorzystując określoną liczbę wartości funkcji. Oznaczmy przez $\mathcal{N}(n,\delta)$ klasę wszystkich (adaptacyjnych) informacji N, które używają co najwyżej n ewaluacji funkcji, z precyzją δ każda. Wtedy przez minimalany błąd najgorszego przypadku w klasie E, który może zostać osiągnięty przez algorytm używający informacji o co najwyżej n wartościach funkcji z precyzją δ rozumiemy:

$$r_n^{\text{wor}}(n, \delta, E) = \inf\{e^{\text{wor}}(\varphi, N, E) : \varphi \text{ używa } N \in \mathcal{N}(n, \delta)\}$$

W tej pracy porównujemy dwa algorytmy aproksymujęce funkcje z osobliwością, które osiągają błąd na takim samym, optymalnym, poziomie błędu najgorszego przypadku, jednak tylko w przypadku jednego z nich w analizie zostało uwzgędione zaburzenie informacji.

Drugą kluczową cechą jest koszt algorytmu. Na koszt może się składać zarówno koszt uzyskania informacji o wartości funkcji, jak i koszt operacji arytmetycznych potrzebnych do obliczenia algorytmu. W tej pracy przyjmujemy, że koszt algorytmu φ jest równy tylko kosztowi uzyskania informacji o wartości funkcji f, czyli

$$cost(\varphi, f) = n,$$

Koszt algorytmu w całej klasie F ma postać

Autor: Tomasz Czyż

$$\mathrm{cost}(\varphi,F) = \sup_{f \in F} \mathrm{cost}(\varphi,f)$$

Niech $\varepsilon>0.$ $\varepsilon\text{-złożoność}$ najgorszego przypadku klasy Fmierzymy w następujący sposób

$$\operatorname{comp}(\varepsilon,F) = \inf\{\operatorname{cost}(\varphi,F), \mid \varphi \text{ - algorytm oraz } \sup_{f \in F} \sup_{t \in [a,b]} \|f(t) - \varphi(t)\| \leq \varepsilon\}.$$

Celem jest otrzymanie ścisłych granic na comp (φ, F) , gdy $\varepsilon \to 0$.

Wersja robocza: 26.10.2021, 23:46

Do określania błędu będziemy używać notacji Ω , Θ , \mathcal{O} , o (wersji Knutha). Gdy dwie funkcje f i g zdefiniowane na \mathbb{R}_+ i przyjmują wartości nieujemne, to piszemy $f(x) = \Omega\left(g(x)\right)$ wtedy, gdy istnieją dodatnie stałe c_1 i c_2 , takie że $f(x) \geq c_1 g(x)$ dla $x \in [0, c_2]$. Przez $f(x) = \Theta\left(g(x)\right)$ rozumiemy $f(x) = \Omega\left(g(x)\right)$ and $g(x) = \Omega\left(f(x)\right)$, czyli istnieją takie stałe c_1 , c_2 i c_3 , że $c_1 g(x) \leq f(x) \leq c_2 g(x)$ dla $x \in [0, c_3]$. Natomiast przez $f(x) = \mathcal{O}(g(x))$ rozumiemy, że $g(x) = \Omega(f(x))$, a przez f(x) = o(g(x)) rozumiemy, że $\lim_{x\to 0} \frac{f(x)}{g(x)} = 0$.

1.3. Klasy funkcji

W tej pracy będziemy rozważać problem, w którym opertor rozwiązania S jest odwzorowaniem identycznościowym prowadzącym w przestrzeń L^p . Wprowadzimy teraz klasy funkcji, na których operują algorytmy.

Dla liczby całkowitej $r \geq 0$, $\varrho \in (0,1]$ oraz a < b, przez $H_{r,\varrho}(a,b)$ oznaczamy klasę funkcji $g:[a,b] \to \mathbb{R}$ takich, że $g \in C^r([a,b])$ i $g^{(r)}$ jest Hölderowsko ciągła z wykładnikiem ϱ , tzn.

$$c(g) := \sup_{a \le x \le y \le b} \frac{|g^{(r)}(x) - g^{(r)}(y)|}{|x - y|^{\varrho}} < \infty.$$

Dla danego T > 0 niech $F_{r,\varrho} = F_{r,\varrho}(T)$ będzie przestrzenią funkcji $f : \mathbb{R} \to \mathbb{R}$ spełniających następujące warunki: istnieje $\hat{t}_f \in [0,T)$ i $g_f \in H_{r,\varrho}(0,T)$ takie, że

$$f(lT + \hat{t}_f + x) = g_f(x)$$
 dla każdego $l = 0, \pm 1, \pm 2, \dots$ i $x \in [0, T)$

Można powiedzieć, że f jest 'kopią' g_f na każdym z przedziałów $(lT+\hat{t}_f,(l+1)T+\hat{t}_f]$ i f jest prawostronnie ciągła w $lT+\hat{t}_f$. W związku z tym wszystkie punkty, które różnią się między sobą o wielokrotność T będą uważane za identyczne. Dla przykładu, jeżeli $0 < x_1 \le T < x_2 \le 2T$, to przedział $(x_1, x_2]$ będzie utożsamiany z $(x_1, T] \cup (0, x_2 - T] \subset (0, T]$.

Przez $\Delta_f^{(j)}$ ozanaczmy skoki nieciągłości dla kolejnych pochdnych f w punkcie nieciągłości \hat{t}_f ,

$$\Delta_f^{(j)} = f^{(j)}(\hat{t}_f^+) - f^{(j)}(\hat{t}_f^-) = g_f^{(j)}(0) - g_f^{(j)}(T) \quad 0 \le j \le r,$$

W tej pracy będziemy rozpatrywać aproksymacje $\varphi: Y \to L^p(0,T)$ funkcji $f \in F_{r,\varrho}$ względem normy L^p , gdzie $1 \le p \le \infty$. Czyli, z definicji normy L_p , błąd aproksymcji funkcji f dla informacji g wynosi:

$$||f - \varphi(y)||_{L^p} = \left(\int_0^T |(f - \varphi(y))(x)|^p dx\right)^{1/p} \quad \text{dla } 1 \le p < \infty$$

oraz

$$||f - \varphi(y)||_{L^{\infty}} = \operatorname{ess\,sup}_{0 < x \le T} |(f - \varphi(y))(x)|$$

Wersja robocza: 26.10.2021, 23:46 1.3. Klasy funkcji

Ze względu na zachowanie się funkcji w punkcie osobliwym, rozróżniamy następujące klasy funkcji:

$$\mathcal{K} = \{ f = c \mathbb{1}_{\mathbb{R}}, c \in \mathbb{R} \},$$

$$\mathcal{H}_{r,\varrho} = \{ f \in F_{r,\varrho} : c(g_f) \leq 1, \Delta_f^{(j)} = 0 \text{ dla każdego } 0 \leq j \leq r \}$$

$$\mathcal{F}_{r,\varrho}^C = \{ f \in F_{r,\varrho} : c(g_f) \leq 1, \Delta_f^{(0)} = 0 \}$$

$$\mathcal{F}_{r,\varrho}^D = \{ f \in F_{r,\varrho} : c(g_f) \leq 1, |\Delta_f^{(0)}| \leq 1 \}$$

$$\mathcal{F}_{r,\varrho} = \{ f \in F_{r,\varrho} : c(g_f) \leq 1 \}$$

Oczywiście

$$\mathcal{K} \subset \mathcal{H}_{r,\varrho} \subset \mathcal{F}_{r,\varrho}^C \subset \mathcal{F}_{r,\varrho}^D \subset \mathcal{F}_{r,\varrho}$$

Algorytm przedstawiony w [?], oryginalnie bazuje na lekko zmodyfikowanych klasach funkcji, co wynika z innej natury problemu rozważanego w pracy. Dla spójności i lepszego przedstawiania problemu wprowadzimy oryginalnie rozważane klasy funkcji i sprecyzujemy różnice między klasami przedstawionymi wcześniej.

Niech $L_0, L_r, D_0, D_1, \ldots, D_r$ będą dodatnimi stałymi.

$$G_{r,\varrho}^{\text{reg}}([a,b]) = \left\{ g : [a,b] \to \mathbb{R}^d \mid g \in C^{(r)}([a,b]), \|g^{(j)}(x)\| \le D_j, j = 0, 1, \dots, r \\ \|g^{(r)}(x) - g^{(r)}(y)\| \le L_r |x - y|^{\varrho}, \|g(y) - g(x)\| \le L_0 |y - x|, x, y \in [a,b] \right\}$$

Rozważmy następującą klasę $\mathcal{G}_{r,\varrho}([a,b])$ funkcji $g:[a,b]\to\mathbb{R}^d$ z co najwyżej jednym (nieznanym) punktem osobliwym \hat{t}_g . Funkcja $g:[a,b]\to\mathbb{R}^d, g=\left[g^1,g^2,\ldots,g^d\right]^T$, należy do $\mathcal{G}_{r,\varrho}([a,b])$, jeśli istnieje punkt $\hat{t}_g\in(a,b)$ taki, że

$$g \in G_{r,o}^{\text{reg}}\left(\left[a, \hat{t}_g\right)\right) \cap G_{r,o}^{\text{reg}}\left(\left[\hat{t}_g, b\right]\right)$$

oraz lewostronna granica każdej składowej pochdnej $(g^k)^{(j)}$ istnieje w \hat{t}_g . W punkcie osobliwym \hat{t}_g , pochodne są rozumiane jako prawostronne.

Dla funkcji $g \in \mathcal{G}_{r,\varrho}([a,b])$ definiujemy wielomian

$$s_g(x) = \sum_{j=0}^r \frac{1}{j!} \Delta_g^j \left(x - \hat{t}_g \right)^j, \quad x \in [a, b],$$
 (1.1)

gdzie $\Delta_g^{(j)}$ jest wektorem skoków w punkcie osobliwym zdefiniowanym jak wcześniej. Jeżeli $\Delta_g^j=0$ dla wszystkich $j=0,1,\ldots,r,$ wtedy g jest regularna, czyli $g\in G^{\mathrm{reg}}_{r,\varrho}([a,b]).$ Jeżeli $g\in \mathcal{G}_{r,\varrho}([a,b])$ i $\Delta_g^0=0,$ wtedy g jest Lipschitzowsko ciągła w [a,b]. Definicja klasy $G_{r,\varrho}$ różni się od definicji $F_{r,\varrho}$ dopuszczeniem wielowymiarowości funkcji g oraz bardziej ogólnym podejściem do parametrów klasy. Przyjęcie, że funkjce prowadzą w \mathbb{R} ułatwia rozważania praktyczne, a wyniki teoretyczne można łatwo uogólnić. W przypadku drugiej różnicy, ponieważ w tej pracy skupiamy się na wynikach numerycznych, przyjęcie za jedyny parametr klasy $c(g_f)=1$ jest uzasadnionym uproszczeniem. Funkcje zawsze możemy przemnożyć przez stałą, aby otrzymać odpowiedni parameter.

Ograniczenia na błąd

2.1. Ograniczenie z dołu

Na początku przytoczymy znane wyniki dotyczące ogranieczeń z dołu dla informacji dokładnej, które uzasadniają użycie algorytmów adaptacyjnych. Wiadomo, że w klasie funkcji r-regularnych, najlepszym tępem zbieżności dla błędu jest n^{-r} . Pokazano to m.in. w [?], gdzie skonstruowano algorytm zachowujący tą własność. W tej samej pracy udowodniono również, że wprowadzenie osobliwości, powoduje pogorszenie się tępa zbieżności dla algorytmów nieadaptacyjnych do $n^{1/p}$. Pokazuje to następnujące twierdzenie z [?].

Twierdzenie 2.1. Niech φ_n będzie dowolnym algorytmem nieadaptacyjnym korzystającym z n ewaluacji funkcji oraz niech $\Delta > 0$. Istnieje kawałkami stała funkcja $f \in F_{r,1}$ taka, że $|\Delta_f^{(0)}| \leq \Delta$ oraz

$$||f - \varphi_n f||_{L^p} \ge \frac{1}{2} \Delta \left(\frac{T}{n+1}\right)^{1/p}$$

Dowód. Załóżmy, że φ_n oblicza f w punktach $x_0 < \ldots < x_n$. Niech $x_0 = 0$ i $x_n = T$. Istnieją 0 < a < b < T takie, że $b - a \ge T/(n+1)$ i $[a,b] \subset [x_k,x_{k+1}]$ dla pewnego $0 \le k \le n-1$. Weźmy teraz funkcje $g_1 = \Delta \mathbbm{1}_{(a,T]}$ oraz $g_2 = \Delta \mathbbm{1}_{(b,T]}$. Ponieważ g_1 i g_2 używają tej samej informacji, tj. $g_1(x_i) = g_2(x_i)$ dla wszystkich $1 \le i \le n$ i $\|g_1 - g_2\|_{L^p} \ge \Delta (T/(n+1))^{1/p}$, to błąd algorytmu nie może być mniejszy niż $\Delta (T/(n+1))^{1/p}/2$ dla przynajmniej jednej z funkcji g_i , co dowodzi tezę.

W [?] pokazano również ograniczenia dla algorytmów nieadaptacyjnych w przypadku wielu punktów osobliwych. Wprowadźmy dodatkowe oznaczenie, aby przytoczyć te wyniki.

Wersja robocza: 26.10.2021, 23:46

Oznaczymy przez $F_{r,1}^{\ell}$ klasę funkcji $f:[0,T]\to\mathbb{R}$ kawałkami gładkich z co najwyżej ℓ punktami osobliwymi. Precyzując, istnieje liczba całkowita ℓ , punkty $0=\hat{t}_0<\hat{t}_1<\ldots<\hat{t}_{\ell}<\hat{t}_{\ell+1}=T$ oraz $g_i(\hat{t}_i,\hat{t}_{i+1})\in H_{r,1}(\hat{t}_i,\hat{t}_{i+1})$, takie że dla każdego $0\leq i\leq \ell$ i $x\in(\hat{t}_i,\hat{t}_{i+1})$ zachodzi

$$f(x) = g_i(x)$$

oraz $f(0) = g_0(0)$, $f(T) = g_{\ell}(T)$ i f jest lewo lub prawostronnie ciągła z każdym \hat{t}_i . Wybierzymy teraz funkcje o interesującej nas regularności.

$$\mathcal{F}_{r,1}^{\ell} = \mathcal{F}_{r,1}^{\ell} \left(L_r, L_1, D_0 \right) := \left\{ f \in F_r^{\ell} \mid \left\| f^{(r)} \right\|_{L^{\infty}} \le L_r, \left\| f' \right\|_{L^{\infty}} \le L_1, \left\| \bar{\Delta}_f^{(0)} \right\|_q \le D_0 \right\}$$

gdzie $\bar{\Delta}_f^{(0)} = \left(\Delta_1^{(0)},\dots,\Delta_{k_f}^{(0)}\right) \in \mathbb{R}^\ell$ jest wektorem wszystkich skoków nieciągłości funkcji f,

$$\left\| \bar{\Delta}_f^{(0)} \right\|_q = \left(\sum_{j=1}^{\ell} \left| \Delta_j^{(0)} \right|^q \right)^{1/q} \quad \text{dla } 1 \le q < \infty$$

oraz $\left\| \bar{\Delta}_f^{(0)} \right\|_{\infty} = \max_{1 \le j \le \ell} \left| \Delta_j^{(0)} \right|.$

Stwierdzenie 2.2. Przypuśćmy, że $f \in F_{1,1}^{\ell}$ ma dokładnie ℓ punktów osobliwych \hat{t}_j z skokami nieciągłości $\Delta_j^{(0)}$, $1 \leq j \leq \ell$. Wtedy

$$||f - \varphi_n f||_{L^p} \le \frac{T}{2(n-1)} \left(\frac{T}{p+1}\right)^{1/p} ||f'||_{L^\infty} + \left(\frac{T}{2(n-1)}\right)^{1/p} \left(\sum_{j=1}^{\ell} |\Delta_j^{(0)}|\right),$$

 $gdzie \varphi_n$ jest nieadaptacyjnym algorytmem zdefiniowanym następująco

$$\varphi_n f := f(0)1_{[0,c_1)} + \sum_{i=2}^{n-1} f(x_i) 1_{[c_{i-1},c_i)} + f(T)1_{[c_{n-1},T]}$$

dla

$$x_i := \frac{i-1}{n-1}T$$
 oraz $c_i := \frac{x_i + x_{i+1}}{2}$

Dowód. Rozważmy dowolny przedział $[x_i, c_i]$, gdzie $1 \le i \le n-1$. Niech P_i będzie zbiorem wszystkich indeksów j, takich że $\hat{t}_j \in [x_i, c_i]$. Wtedy dla każdego $x \in [x_i, c_i]$ mamy

$$f(x) = g_i(x) + \sum_{j \in P_i} \Delta_j^{(0)} \mathbb{1}_{I_{i,j}}(x)$$

dla pewnego $g_i \in F_{1,1}^\ell \cap C$ oraz $I_{i,j} = [s_j, c_i]$ lub $I_{i,j} = (s_j, c_i]$. Stąd

$$|f(x) - (\varphi_n f)(x)| = |f(x) - f(x_i)| \le (x - x_i) ||f'||_{L^{\infty}} + \sum_{j \in P_i} |\Delta_j^{(0)}|$$

Podobnie, dla każdego $x \in [c_i, x_{i+1}], 1 \le i \le n-1$, mamy

$$|f(x) - (\varphi A_n f)(x)| \le (x_{i+1} - x) ||f'||_{L^{\infty}} + \sum_{j \in Q_i} |\Delta_j^{(0)}|$$

Wersja robocza: 26.10.2021, 23:46

gdzie Q_i jest zbiorem wszystkich indeksów j, takich że $\hat{t}_i \in [c_i, x_{i+1}]$. Zauważmy, że dla każdego \hat{t}_j jest dokładnie w jednym z zbiorów P_i lub Q_i . Z tego wynika, że błąd może być ograniczony z góry przez sumę dwóch funkcji

$$A(x) = ||f'||_{L^{\infty}} \min_{1 \le i \le n} |x - x_j|$$

oraz kawałkami stałej funkcji

$$B(x) = \sum_{i=1}^{n-1} \left(\mathbb{1}_{[x_i, c_i)}(x) \sum_{j \in P_i} \left| \Delta_j^{(0)} \right| + \mathbb{1}_{[c_i, x_{i+1}]}(x) \sum_{j \in Q_i} \left| \Delta_j^{(0)} \right| \right)$$

Obliczając normy otrzymujemy

$$||A||_{L^p} = \frac{T}{2(n-1)} \left(\frac{T}{p+1}\right)^{1/p} ||f'||_{L^\infty}$$

oraz

$$||B||_{L^{p}} = \left(\frac{T}{2(n-1)}\right)^{1/p} \left(\sum_{i=1}^{n-1} \left(\left(\sum_{j \in P_{i}} \left|\Delta_{j}^{(0)}\right|\right)^{p} + \left(\sum_{j \in Q_{i}} \left|\Delta_{j}^{(0)}\right|\right)^{p}\right)\right)^{1/p}$$

$$\leq \left(\frac{T}{2(n-1)}\right)^{1/p} \left(\sum_{j=1}^{k} \left|\Delta_{j}^{(0)}\right|\right)$$

Dodanie $||A||_{L^p}$ i $||B||_{L^p}$ daje ograniczenie w tezy.

Z powyżeszgo stwierdzenia wynika, że dla φ_n zdefiniowanego jak w stwierdzeniu, dla $\ell < \infty$ najgorszy przypadek błędu $\varphi_n^{\rm non}$ w klasie $\mathcal{F}_{r,1}^{\ell}$ jest ograniczony poprzez

$$\sup_{f \in \mathcal{F}_{r,1}^{\ell}} \|f - \varphi_n^{\text{non}} f\|_{L^p} \le C_{\ell} \cdot n^{-1/p}$$
(2.1)

W celu uzasadnienia dlaczego interesują nas klasa funkcji z tylko jednym punktem osobliwym, przytoczymy jeszcze jeden wynik z [?].

Stwierdzenie 2.3. Niech $2 \le \ell \le \infty$ i $1 \le q \le \infty$. Dla każdego (adaptacyjnego) algorytmu φ_n używającego n ewaluacji funkcji, mamy

$$\sup_{f \in \mathcal{F}_{r,1}^{\ell}} \|f - \varphi_n f\|_{L^p} \ge D_0 2^{-1/q} \lfloor \ell/2 \rfloor^{1-1/q} \left(\frac{T}{n+1} \right)^{1/p}$$

(stosując konwencję $\infty^0 = 1$ oraz $\infty^a = \infty$ dla a > 0).

Dowód. Niech $x_1 \leq x_2 \leq \cdots \leq x_n$ będą punktami, w których obliczamy wartości funkcji $f \equiv 0$. Niech $0 \leq a < b \leq T$ będą takie, że $b-a \geq T/(n+1)$ oraz $[a,b] \subset [x_s,x_{s+1}]$ dla pewnego s, gdzie $x_0=0,x_{n+1}=T$.

Dla $2 \le \ell < \infty$, weźmy $s := \lfloor \ell/2 \rfloor$ i $\Delta := D_0(2k)^{-1/q}$ oraz zdefiniumy

$$f^* := \Delta \sum_{j=1}^{s} \mathbb{1}_{(a+\delta j, b-\delta j)} \quad 0 < \delta < \frac{b-a}{2s}$$

Autor: Tomasz Czyż

Wersja robocza: 26.10.2021, 23:46

Zauważmy, że $f_1 := f^*$ i $f_{-1} := -f^*$ dzielą wspólną informację i obie są w $\mathcal{F}_{r,1}^{\ell}$. Dodatkowo zauważmy, że $f_1(x) = \Delta s$ dla każdego $x \in (a + \delta s, b - \delta s)$. Stąd, dla każdego δ , błąd najgorszego przypadku w normie L^p algorytmu φ_n jest ograniczony poprzez

$$\frac{1}{2} \|f_1 - f_{-1}\|_{L^p} \ge \Delta k (b - a - 2\delta k)^{-1/p} \ge D_0 2^{-1/q} \lfloor \ell/2 \rfloor^{1 - 1/q} \left(\frac{T}{n+1} - 2\delta \left[\frac{\ell}{2} \right] \right)^{1/p}$$

Gdy weźmiemy $\ell \to \infty$ otrzymamy ograniczenie dla $\ell = \infty$.

Powyższe twierdzenie pokazuje, że ograniczenia z (??) nie moga zostać poprawione przez algorytmy adaptacyjne.

Wiemy już jakie minimalne błędy mogą zostać osiągnięte przez algorytmy aproksymujące bazujące na informacji dokładnej. Poniższe stwierdzenie, przedstawione w [?], wprowadza kilka własności problemu aproksymacji przy obecności zaburzenia inforamcji.

Stwierdzenie 2.4. Dla każdego n i $\delta > 0$ mamy:

- (i) $r_p^{\text{wor}}(n, \delta, \mathcal{K}) \geq \delta T^{1/p}$ (ii) $r_p^{\text{wor}}(n, \delta, \mathcal{H}_{r,\varrho}) \geq a_{r,\varrho} n^{-(r+\varrho)}$ dla pewnego $a_{r,\varrho} > 0$ (iii) $r_p^{\text{wor}}(n, \delta, \mathcal{F}_{r,\varrho}) = \infty, \quad r \geq 1$

Dowód. W celu udowodnienia ?? wystarczy zauważyć, że y = (0, ..., 0) jest informacją o funkcji stałej postaci $f_{\pm} = \pm \delta$ dla każdego N z precyzją δ . Wynika z tego, że błąd dowlonego algorytmu używającego N jest równy conajmniej $||f_{+\delta} - f_{-\delta}||_{L^p}/2 = \delta T^{1/p}$.

Nierówność?? wynika z znanych rezultatów dotyczących minimalnego błędu aproksymacji dla informacji dokładnej, zobacz [?].

Aby pokazać??, użyjemy rozumowania podobnego do [?] [sekcja, 5.2], gdzie przeprowadzono dowód dla $\varrho = 1$ i $\delta = 0$. Niech $S(M) \subset \mathcal{F}_{r,\varrho}$ będzie rodziną funkcji f_s dla $s \in [0, T)$

$$f_s(x) = \frac{M}{T} \left(x \mathbb{1}_{[0,s)}(x) + (x - T) \mathbb{1}_{[s,T)}(x) \right), \quad 0 \le x \le T$$

Niech N będzie dowolną (adaptacyjną) informacją używającą nie więcej niż n ewaluacji funkcji. Ponieważ dla każdego ustalonego x, funkcja $f_s(x)$ może przyjmować tylko dwie wartości w zależności czy $s \le x$ lub s > x, to całkowita liczba punktów użytych przez N dla klasy S(M) wynosi co najwyżej 2^n-1 . Dlatego istnieje przedział $[s_1,s_2]\subset$ (0,T)o długości $T2^{-(n-1)},$ który nie zawiera żadnego z tych punktów. To oznacza, że $N(f_{s_1}) = N(f_{s_2})$, a więc błąd dowolnego algorytmu używającego informacji N wynosi przynajmniej $||f_{s_1}-f_{s_2}||_{L^p}/2=\delta M(T2^{-(n+p+1)})^{1/p}$. Z uwagi na to, że M jest dowlonie duże, błąd również może być dowolnie duży.

Stwierdzenie ?? ?? mówi, że nie możemy uogólnić wyników na klasę kawałkami Hölderowskich fukncji $\mathcal{F}_{r,\varrho}$ z $r\geq 1$. Z tego powodu rozważania będziemy prowadzić głównie na klasie $\mathcal{F}_{r,o}^D$ funkcji kawałakmi Hölderowskich z jednostajnie ograniczonymi skokami nieciągłości $\Delta_f^{(0)}$ oraz na klasie $\mathcal{F}_{r,\varrho}^C$ fukcji kawałkami Hölderowskich ciągłych. Podsumowując, z stwierdzenia ?? ??-?? otrzymujemy ogranicznia z dołu

$$r_p^{\text{wor}}(n, \delta, \mathcal{F}_{r,o}^D) \ge r_p^{\text{wor}}(n, \delta, \mathcal{F}_{r,o}^C) \ge \max(\delta T^{1/p}, a_{r,o} n^{-(r+\varrho)})$$

W dalszej części pracy udowodnimy, że te nierówności są ostre, z wyjątkiem pierwszej dla $p = \infty$. Jest to główny wynik artykułu [?].

2.2. Ograniczenia z góry

Dla uproszczenia, w dalszej części pracy przyjmiemy oznaczenia algorytmów pochodzące od pierwszych liter nazwisk autorów poszczególnych artykułów. Oznaczenie φ^{KP} odnosi się do algorytmu z pracy [?] opartego na wielomianach Lagrange'a. Analogicznie, oznaczenie φ^{MP} odnosi sie do algorytmu z pracy [?] opartego na różnicach dzielonych.

Górne ograniczenia na błąd otrzymujemy poprzez analizę skonstruowanych algorytmów, przedstawioną szczegółowo w rodziale ??.

Omawiane algorytmy osiągają te same ogranieczenia z góry z dokładnością do stałej, jednak jak wspomnieliśmy, algorytm przedstawiony w pracy [?] bazuje na informacji dokładnej, w przeciwieństwie do algorytmu z pracy [?], który uwzględnia zaburzenie danych. Ta różnica wpłynęła na to, że do uzyskania tych samych wyników autorzy doszli w odmienny sposób. Aby lepiej przedstawić przebieg rozumowania, nie uogólniamy wyników, które są bardziej szczegółowe niż załóżenia tej pracy wymagają. Tyczy się to głównie algorytmu φ^{KP} , ponieważ jest on tylko częścią rozwiązania innego problemu, który jest tematem pracy [?]. Analiza błędu algtymu φ^{MP} opiera się na badaniu właściowści jego poszczególnych kroków. Oszacowanie błędu dla φ^{KP} wynika z dokładnej analizy własności wiolomianów Lagrange'a i testu na nich opartego.

Poniższe twierdzenie łączy wyniki artykułów [?] i [?] dotyczące górnych ograniczeń na błąd algorytmów.

Twierdzenie 2.5. Niech $r + \varrho \ge 1$ oraz niech $\mathcal{G}_{r,\varrho} = \mathcal{G}_{r,\varrho}([a,b])$ z $\Delta_g^0 = 0$. Wtedy zachodzi

```
 \begin{array}{ll} (i) \ e_p^{\mathrm{wor}}(\varphi^{MP}, N, \mathcal{F}_{r,\varrho}^D) = \mathcal{O}(\max(\delta, n^{-(r+\varrho)})) & dla \ 1 \leq p \leq \infty \\ (ii) \ e_\infty^{\mathrm{wor}}(\varphi^{MP}, N, \mathcal{F}_{r,\varrho}^C) = \mathcal{O}(\max(\delta, n^{-(r+\varrho)})) \\ (iii) \ e_\infty^{\mathrm{wor}}(\varphi^{KP}, N, \mathcal{G}_{r,\varrho}) = \mathcal{O}(n^{-(r+\varrho)}) \end{array}
```

Dodatkowo w rodziale ?? pokażemy, że koszty algorytmów zachowują się następująco:

Stwierdzenie 2.6.

1.
$$cost(\varphi^{MP}, \mathcal{F}_{r,\varrho}^D) = cost(\varphi^{MP}, \mathcal{F}_{r,\varrho}^C) = \mathcal{O}(n)$$

2. $cost(\varphi^{KP}, \mathcal{G}_{r,\varrho}) = \mathcal{O}(n)$

Z powyższych wyników oraz przytoczonych wcześniej rezultatów o ograniczeniach z dołu wynikają wnioski dotyczące minimalnych błędów najgorszego przypadku.

Wniosek 2.7.

$$\begin{array}{ll} (i) \ r_p^{\mathrm{wor}}(n,\delta,\mathcal{F}_{r,\varrho}^D) = \varTheta(\max(\delta,n^{-(r+\varrho)})) & dla \ 1 \leq p \leq \infty \\ (ii) \ r_{\infty}^{\mathrm{wor}}(n,\delta,\mathcal{F}_{r,\varrho}^C) = \varTheta(\max(\delta,n^{-(r+\varrho)})) \\ (iii) \ r_{\infty}^{\mathrm{wor}}(n,0,\mathcal{G}_{r,\varrho}) = \varTheta(n^{-(r+\varrho)}) \end{array}$$

Algorytmy

Oba algortmy na wejściu otrzymują siatkę o m+1 równoodległych punktach $t_j=a+(b-a)/m$, przyjmując $a=0,\,b=T$ dla algorytmu φ^{KP} . Długość przedziału $[t_j,t_{j+1}]$ wynosi $h=\frac{T}{m}$.

3.1. Algorytm oparty na wielomianach Lagrange'a

Wprowadźmy postać wielomianów Lagrange'a używanych w algorytmie. Niech g: $[\alpha, \beta] \to \mathbb{R}$. Przez $w_g^s([\alpha, \beta])$ oznaczamy interpolacyjny wielomian Lagrange'a o rzędzie co najwyżej s, oparty na s+1 równoodległych węzłach $x_j = \alpha + (\beta - \alpha)j/s$, dla $j = 0, 1, \ldots, s$.

$$w_g^s([\alpha, \beta])(x) = \sum_{i=0}^s g(x_i) \Phi_i(x), \quad x \in \mathbb{R}$$
(3.1)

gdzie

$$\Phi_i(x) = \prod_{k=0, k \neq i}^{s} \frac{x - x_k}{x_i - x_k}, \quad i = 0, 1, \dots, s$$

Algorytm przedstawiony w pracy [?] lokalizuje osobliwość przy pomocy wielomianów Lagrange'a w_g^r . Na wejściu algorytm otrzymuje $g \in \mathcal{G}_{r,\varrho}([a,b])$, przedział [a,b], regularność r oraz współczynnik Höldera ϱ . Kluczowym elementem algorytmu jest zdefiniowana poniżej wielkość (test), która jest użyta do wykrycia punktu osobliwego.

$$A_g(\alpha, \bar{\alpha}, \bar{\beta}, \beta) = \max_{0 \le j \le r} \frac{\left\| w_g^r([\bar{\beta}, b])(z_j) - w_g^r([\alpha, \bar{\alpha}])(z_j) \right\|}{\bar{h}^{r+\varrho}}, \tag{3.2}$$

gdzie $\alpha < \bar{\alpha} < \bar{\beta} < \beta$, $z_j = \bar{\alpha} + (\bar{\beta} - \bar{\alpha})j/r$, dla j = 0, 1, ..., r oraz $\bar{h} = \beta - \alpha$ jest długością przedziału, na którym test jest zdefiniowany.

```
Tablica3.1Ta-
ble
Ti-
tle
```

$$\begin{split} \textbf{K1:} & \text{Niech } \omega \coloneqq h^{r+\varrho}, \ B \coloneqq \emptyset \\ & \textbf{jeżeli} \max_{0 \leq i \leq p-1} (t_{i+1} - t_i) \leq 4\omega \ \textbf{wtedy} \\ & \text{idź do } K3 \\ & \textbf{w p.p.} \\ & \text{Niech } A_g^i = A_g \left(t_i, t_i + \omega, t_{i+1} - \omega, t_{i+1} \right) \\ & A \coloneqq \max \left\{ A_g^i \mid t_{j+1} - t_j > 4\omega, \ j = 0, 1, \dots, p-1 \right\} \\ & \textbf{jeżeli} \ \text{istnieja} \ \text{różne} \ k \ \text{i} \ l \ \text{takie, że} \ A = A_g^k \wedge A = A_g^l \ \textbf{wtedy} \\ & \text{idź do } K3 \end{split}$$

K2: Niech
$$[t_k, t_{k+1}]$$
 - przedział otrzymany w $K1$
Niech $[\alpha, \beta] = [t_k, t_{k+1}]$ oraz $B = B \cup \{\alpha, \beta\}$
dopóki $\beta - \alpha > \omega$ **wykonuj**:
Oblicz $v = (\alpha + \beta)/2$ oraz $B = B \cup \{v\}$
jeżeli $A_g(\alpha, \alpha + \omega, v - \omega, v) = A_g(v, v + \omega, \beta - \omega, \beta)$ **wtedy**
idź do $K3$
w p.p.
za następny przedział $[\alpha, \beta]$ wybierz podprzedział $[\alpha, v]$ lub $[v, \beta]$,
dla którego wartość testu była większa

$$K3: \text{ Niech } \overline{M} = \{t_0, \dots, t_m\} \cup B \text{ będzie podziałem zdefiniownym punktami}$$

$$\alpha = t_0 < t_1 < \dots < t_k = \beta, \text{ gdzie } k = m + \mathcal{O}(\log m)$$

$$\varphi^{KP}(x) = \begin{cases} g(t_i) & \text{gdy } x \in [t_i, t_{i+1}) \land t_{i+1} - t_i \leq 4\omega \\ g(t_i) & \text{gdy } x \in [t_i, t_i + \omega) \land t_{i+1} - t_i > 4\omega, \\ w_g^r([t_i + \omega, t_{i+1} - \omega])(x) & \text{gdy } x \in [t_i + \omega, t_{i+1} - \omega) \land t_{i+1} - t_i > 4\omega \\ g(t_{i+1} - \omega) & \text{gdy } x \in [t_{i+1} - \omega, t_{i+1}) \land t_{i+1} - t_i > 4\omega \end{cases}$$

dla $i=0,1,\ldots,k-1$ z $\varphi^{KP}(b)$ zdefiniowanym przez ciągłość na ostatnim przedziale

3.2. Algorytm oparty na różnicach dzielonych

W tym rozdziale opiszemy algorytm bazujący na informacji zaburzonej przedstawiony w artykule [?]. Analizowany algorytm używa co najwyżej n wartości funkcji z precyzją δ oraz w najgorszym przypadku ma błąd proporcjonalny do max $(\delta, n^{-1/(r+\varrho)})$ w klasie funkcji $\mathcal{F}_{r,\varrho}^D$ dla $p < \infty$ oraz w klasie $\mathcal{F}_{r,\varrho}^C$ dla $p \leq \infty$. Do wykrycia przedziału z punktem osobliwym, algorytm wykorzystuje różnice dzielone.

18

Niech $m \geq 2r + 1$, $h = \frac{T}{m}$ oraz $t_i = ih$ dla każdego i. Przez d_i oznaczmy różnicę dzieloną stopnia r + 1 bazującą na wartościach $f(t_i)$:

$$d_{i} = f[t_{i}, \dots, t_{i+r+1}] = \sum_{j=1}^{i+r+1} f(t_{j}) \prod_{\substack{k=1\\k \neq j}}^{i+r+1} (t_{k} - t_{j})^{-1}$$
(3.3)

Następnie oznaczmy przez \tilde{d}_i (niedokładną) różnicę dzieloną stopnia r+1 bazującą na wartościach $y_j=f(t_j)+e_j$, gdzie $|e_j|\leq \delta$

$$\tilde{d}_i = \tilde{f}[t_i, \dots, t_{i+r+1}] = \sum_{j=1}^{i+r+1} y_j \prod_{\substack{k=1\\k \neq j}}^{i+r+1} (t_k - t_j)^{-1}$$
(3.4)

Jak wcześniej, długość przedziału w początkowym podziale wynosi h=T/m, ale dodatkowo $m\geq 2r+1$, gdzie m jest początkową gęstością siatki. Dodatkowo, niech $\omega=\omega(h)$ spełnia $0<\omega<(r+1)h$.

Na początku, algorytm aproksymuje punkt osobliwy \hat{t}_f . Jest to realizowane w trzech krokach. W kroku 1. przy pomocy siatki o rozmiarze długości h i różnic dzielonych lokalizowany jest punkt \hat{t}_f na przedziale $[u_1, v_1]$ o długości (r+1)h. W kroku 2. używamy wielomianów interpolujących \tilde{p}_+ i \tilde{p}_- do zwężenia tego przedziału do $[u_2, v_2]$. Krok 3. produkuje przedział $[u_3, v_3] \subseteq [u_2, v_2]$, w którym różnica $|\tilde{p}_+ - \tilde{p}_-|$ jest nierosnąca na $[u_3, \xi]$ i niemalejąca na $[\xi, v_3]$, gdzie ξ jest finalną aproksymacją \hat{t}_f .

Oznaczenia arg $\max_j \psi_j$ oraz arg $\min_j \psi_j$ użyte w algorytmie oznaczają argument j maksymalizujący oraz minimalizujący ψ_j względem j.

Algorytm oparty na różnicach dzielonych

- K1 Oblicz różnice dzielone $\tilde{d}_i=\tilde{f}[t_i,\dots,t_{i+r+1}]$ for $1\leq i\leq m$ oraz znajdź $i^*=\mathop{\arg\max}_{1\leq i\leq m}|\tilde{d}_i|$ Niech $u_1=t_{i^*}$ i $v_1=t_{i^*+r+1}.$
- K2 Oznaczymy przez \tilde{p}_+ i \tilde{p}_- wielomiany stopnia $\leq r$, które interpolują węzły $(t_j, \tilde{f}(t_j))$ odpowiednio dla $i^* r \leq j \leq i^*$ oraz dla $i^* + r + 1 \leq j \leq i^* + 2r + 1$. Następnie wykonaj iterację:

$$u:=u_1,\,v:=v_1$$

dopóki $v - u > \omega$ wykonuj:

$$\begin{aligned} z_j &:= u + j(v-u)/(r+2), & j = 1, 2, \dots, r+1 \\ j^* &:= \argmax_{1 \leq j \leq r+1} |\tilde{p}_+(z_j) - \tilde{p}_-(z_j)| \\ \mathbf{je\dot{z}eli} &|\tilde{f}(z_{j^*}) - \tilde{p}_-(z_j)| \leq |\tilde{f}(z_{j^*}) - \tilde{p}_+(z_j)| \ \mathbf{wtedy} \\ u &:= z_{j^*} \\ \mathbf{w} \ \mathbf{p.p.} \\ v &:= z_{j^*} \end{aligned}$$

koniec

Niech $u_2 = u$ i $v_2 = v$.

K3 Wykonaj iterację:

$$u := u_2, v := v_2$$

dopóki istnieje maksimum lokalne $|\tilde{p}_{+} - \tilde{p}_{-}|$ na (u, v) wykonuj z := największe maksimum lokalne $|\tilde{p}_{+} - \tilde{p}_{-}|$ na (u, v)

jeżeli
$$|\tilde{f}(z) - \tilde{p}_{-}(z)| \le |\tilde{f}(z) - \tilde{p}_{+}(z)|$$
 wtedy $u := z$

 $\mathbf{w} \mathbf{p.p.}$ v := z

koniec

Niech $u_3 = u$ i $v_3 = v$.

Finalną aproksymacją \hat{t}_f jest

$$\xi := \underset{u_3 < x < v_3}{\arg \max} |\tilde{p}_+ - \tilde{p}_-|$$

Niech $N_h^*(y_h)$ będzie operatorem informacji odpowiadający naszemu algorytmowi. Aproksymacja $\varphi_h^*(y_h)$ funkcji f dla informacji y_h o f, tj. dla $y_h \in N_h^*(f)$ jest konstruowana w następujący sposób. Na przedziale $[u_1, v_1)$ ekstrapolujemy

$$\varphi_h^*(y_h) = \begin{cases} \tilde{p}_-(x) & \text{if } u_1 \le x < \xi \\ \tilde{p}_+(x) & \text{if } \xi \le x < v_1 \end{cases}$$

Poza przedziałem $[u_1, v_1)$ stosujemy interpolacje funkcjami sklejanymi o stopniu r, bazujących na r+1 kolejnych punktach t_i, \ldots, t_{i+r} , takich że $x \in [t_i, t_{i+r})$ i $t_j \notin (u_1, v_1)$ dla $1 \le j \le i+r$. W przypadku gdy r=0 bierzmy x, takie że $|x-t_i| \le h/2$.

Wersja robocza: 26.10.2021, 23:46

Przedstawiony algorytm używa m wartości funkcji w kroku 1 oraz jedyną wartość funkcji w każdej iteracji w krokach 2 i 3. Czyli w kroku 2 używamy co najwyżej

$$\left\lceil \frac{\ln\left(\frac{(r+1)h}{\omega(h)}\right)}{\ln\left(\frac{r+2}{r+1}\right)} \right\rceil$$

wartości funkcji i (r-1) w kroku 3. Stąd otrzymujemy, że jeżeli $\omega=\omega(h)\geq kh^{\alpha}$ dla pewngo ustalonego k i α , wtedy w najgoryszym przypadku liczba użytych wartości funkcji równa sie asymptotycznie $m=\frac{T}{h}$ dla $h\to 0^+$.

Analiza algorytmów

4.1. Analiza algorytmu opartego o wielomiany Lagrange'a

Analiza, wraz z twierdzeniami i lematami, przedstawiona w tym rozdziale pochodzi z artykułu [?].

Zacznijmy od wyjaśnienia własności testu (??) służącego do wykrywania osobliwości. Rozważmy błąd interpolacji Lagrange'a dla nieciągłej funkcji $g \in \mathcal{G}_{r,\varrho}([\alpha,\beta])$. Błąd jest ograniczony za względu na wielomian s_g (??).

Lemat 4.1. Istnieje stała C taka, że dla wszystkich $[\alpha, \beta] \subset [a, b]$, wszystkich $g \in \mathcal{G}_{r,\varrho}([\alpha, \beta])$ oraz $s = 0, 1, \ldots, r$, mamy

$$\sup_{t \in [\alpha,\beta]} \|g(t) - w_g^s([\alpha,\beta])(t)\| \le C \left(\min \left\{ \sup_{t \in [\alpha,\hat{t}_g)} \|s_g(t)\|, \sup_{t \in [\hat{t}_g,\beta]} \|s_g(t)\| \right\} + \bar{h}^{\min\{s+1,r+\varrho\}} \right)$$

Dowód. Najpierw pokażemy, że

$$\sup_{t \in [\alpha, \beta]} \|g(t) - w_g^s([\alpha, \beta])(t)\| \le C \left(\sup_{t \in [\hat{t}_g, \beta]} \|s_g(t)\| + \bar{h}^{\min(s+1, r+\varrho)} \right)$$
(4.1)

Niech

$$\tilde{g}(t) = \begin{cases} g(t) & \text{gdy } t \in [\alpha, \hat{t}_g) \\ g(t) - s_g(t) & \text{gdy } t \in [\hat{t}_g, \beta] \end{cases}$$
(4.2)

wtedy $\tilde{g} \in G_{r,\varrho}^{\text{reg}}([\alpha,\beta])$. Niech $t_k = \alpha + (\beta - \alpha)k/s$, $k = 0, 1, \ldots, s$ będą węzłami dla interpolacji $w_g^s([\alpha,\beta])$ na przedziale $[\alpha,\beta]$. Zdefiniujmy

$$j^* = \min \left\{ k = 1, 2, \dots, s \mid t_k \ge \hat{t}_g \right\}$$
 (4.3)

wtedy otrzymujemy

$$w_{\tilde{g}}^{s}([\alpha, \beta])(t) = \sum_{i=0}^{j^{*}-1} g(t_{i}) \Phi_{i}(t) + \sum_{i=j^{*}}^{s} (g(t_{i}) - s_{g}(t_{i})) \Phi_{i}(t)$$
(4.4)

gdzie

$$\Phi_i(t) = \prod_{k=0, k \neq i}^s \frac{t - t_k}{t_i - t_k}$$

czyli

$$w_{\tilde{g}}^{s}([\alpha,\beta])(t) = w_{g}^{s}([\alpha,\beta])(t) - \sum_{i=j^{*}}^{s} s_{g}(t_{i}) \Phi_{i}(t)$$

Z (??) i (??) otrzymujemy, że dla $t \in [\alpha, \beta]$ mamy

$$g(t) - w_g^s([\alpha, \beta])(t) = (g(t) - \tilde{g}(t)) + (\tilde{g}(t) - w_{\tilde{g}}^s([\alpha, \beta])(t)) + (w_{\tilde{g}}^s([\alpha, \beta])(t) - w_g^s([\alpha, \beta])(t))$$

$$= \mathbb{1}_{[\hat{t}_g, \beta]}(t)s_g(t) + (\tilde{g}(t) - w_{\tilde{g}}^s([\alpha, \beta])(t)) - \sum_{i=j^*}^s s_g(t_i) \Phi_i(t)$$

a ponieważ \tilde{g} jest funkcją regularną dla $t \in [\alpha,\beta]$ zachodzi

$$||g(t) - w_g^s([\alpha, \beta])(t)|| \le \sup_{t \in [\hat{t}, \beta]} ||s_g(t)|| + \max_{j^* \le i \le s} ||s_g(t_i)|| \sum_{i=j^*}^s |\Phi_i(t)| + C\bar{h}^{\min\{s+1, r+\varrho\}}$$

gdzie C zależny tylko od parametrów klasy $\mathcal{G}_{r,\varrho}([\alpha,\beta])$. Ponadto, istnieje stała \bar{C} , zależna jedynie od s taka, że dla wszystkich $t \in [\alpha,\beta]$ zachodzi

$$\sum_{i=j^*}^s |\Phi_i(t)| \le \bar{C},\tag{4.5}$$

co dowodzi nierówność (??)

Teraz musimy pokazać, że

$$\sup_{t \in [\alpha, \beta]} \|g(t) - w_g^s([\alpha, \beta])(t)\| \le C \left(\sup_{t \in [\alpha, \hat{t}_g)} \|s_g(t)\| + \bar{h}^{\min\{s+1, r+\varrho\}} \right)$$
(4.6)

Postępujemy jak wyżej używając regularnej funkcji

$$\tilde{g}(t) = \begin{cases} g(t) + s_g(t), & \text{if } t \in [\alpha, \hat{t}_g) \\ g(t), & \text{if } t \in [\hat{t}_g, \beta] \end{cases}$$
(4.7)

oraz j^* zdefiniowanym jak w $(\ref{eq:constraint}).$ Nierówności $(\ref{eq:constraint})$ i dowadniają tezę lematu.

Autor: Tomasz Czyż

Poniższy wniosek jest następstwem (??) i mówi o tym, jeśli punkt osobliwy znajduję się na blisko brzegu przedzialu $[\alpha, \beta]$, to nie powoduję to znaczącego wzrostu błędu.

Wniosek 4.2. Istnieje stała C, taka że dla wszystkich $[\alpha, \beta] \subset [a, b]$, wszystkich $g \in \mathcal{G}_{r,\varrho}([\alpha, \beta])$ z $\Delta_q^0 = 0$, $0 \le \delta \le \min\{1, \bar{h}\}$ oraz $s = 0, 1, \ldots, r$, mamy

$$\hat{t}_g \in (\alpha, \alpha + \delta] \cup [\beta - \delta, \beta) \Longrightarrow \sup_{t \in [\alpha, \beta]} \left\| g(t) - w_g^s([\alpha, \beta])(t) \right\| \le C \left(\delta + \bar{h}^{\min\{s+1, r+\varrho\}} \right)$$

Dowód. Wiemy, że $s_g(t) = \sum_{j=1}^r \frac{1}{j!} \Delta_g^j \left(t - \hat{t}_g \right)^j$. Jeżeli $\hat{t}_g \in (\alpha, \alpha + \delta]$, wtedy $||s_g(t)|| = \mathcal{O}(\delta)$ dla $t \in [\alpha, \hat{t}_g)$. To samo zachodzi dla $t \in [\hat{t}_g, \beta]$, jeśli $\hat{t}_g \in [\beta - \delta, \beta)$. Z lematu ?? otrzymujemy szukaną nierówność

Teraz przedstawimy lemat o błądzie interpolacji Lagrange'a w przypadku osobliwości znajdującej się na zewnątrz przedziału zawierającego węzły interpolacji. Jest to ekstrapolacyjna wersja lematu ??.

Lemat 4.3. Istnieje stała C zależna od r i L_r , taka że dla wszystkich $[\alpha, \beta]$, $\bar{\alpha} \in (\alpha, \beta)$ oraz $g \in \mathcal{G}_{r,\rho}([\alpha, \beta])$, mamy

$$\hat{t}_g \in (\bar{\alpha}, \beta) \Longrightarrow g(t) - w_g^r([\alpha, \bar{\alpha}])(t) = s_g(t) \mathbb{1}_{[\hat{t}_g, \beta]}(t) + R_g(t), \quad t \in [\bar{\alpha}, \beta],$$

 $gdzie ||R_a(t)|| \leq C\bar{h}^{r+\varrho}, dla \ t \in [\bar{\alpha}, \beta]$

 $Dow \acute{o}d$. Niech $\tilde{g} \in G_{r,\varrho}^{reg}([\alpha,\beta])$ będzie dane jak w (??). Ponieważ $\hat{t}_g > \bar{\alpha}$, otrzymujemy, że $\tilde{g}(t) = g(t)$ dla wszystkich $t \in [\alpha,\bar{\alpha}]$ oraz

$$w_q^r([\alpha, \bar{\alpha}])(t) = w_{\tilde{q}}^r([\alpha, \bar{\alpha}])(t), \quad t \in [\alpha, \beta],$$

Dlatego, dla $t \in [\bar{\alpha}, \beta]$ mamy

$$g(t) - w_g^r([\alpha, \bar{\alpha}])(t) = g(t) - \tilde{g}(t) + \tilde{g}(t) - w_{\tilde{g}}^r([\alpha, \bar{\alpha}])(t) = s_g(t) \mathbb{1}_{[\hat{t}_g, \beta]}(t) + R_g(t) \quad (4.8)$$

gdzie $R_g(t) = \tilde{g}(t) - w_{\tilde{g}}^r([\alpha, \bar{\alpha}])(t)$. Z regularności \tilde{g} wynikają szukane ograniczenia na R_g .

Poniższy wniosek jest symetryczną wersją??.

Wniosek 4.4. Istnieje stała \bar{C} zależna od r i L_r taka, że dla wszystkich $[\alpha, \beta]$, $\bar{\alpha} \in (\alpha, \beta)$ oraz $g \in \mathcal{G}_{r,o}([\alpha, \beta])$, mamy

$$\hat{t}_g \in (\alpha, \bar{\alpha}) \Longrightarrow g(t) - w_g^r([\bar{\alpha}, \beta])(t) = -s_g(t) \mathbb{1}_{[\alpha, \hat{t}_g]}(t) + \bar{R}_g(t), \quad t \in [\alpha, \bar{\alpha}],$$

 $gdzie \|\bar{R}_g(t)\| \le \bar{C}\bar{h}^{r+\varrho}, \ dla \ t \in [\alpha, \bar{\alpha}].$

 $Dow \acute{o}d$. Niech $\tilde{g} \in G_{r,\varrho}^{reg}([\alpha,\beta])$ będzie dana jak w (??). Ponieważ $\hat{t}_g \leq \bar{\alpha}$, to zachodzi $\tilde{g}(t) = g(t)$ dla $t \in [\bar{\alpha},\beta]$ oraz

$$w_g^r([\bar{\alpha},\beta])(t) = w_{\tilde{g}}^r([\bar{\alpha},\beta])(t), \quad t \in [\alpha,\beta].$$

Reszta dowodu analogicznie jak w??

Lematy ?? i ?? uasadniają definicję testu $A_g(\alpha, \bar{\alpha}, \bar{\beta}, \beta)$ w następujący sposób. Niech $g \in \mathcal{G}_{r,\varrho}([\alpha, \beta])$, $\alpha < \bar{\alpha} < \bar{\beta} < \beta$, $\bar{h} = \beta - \alpha$. Załóżmy, że $\hat{t}_g \in (\bar{\alpha}, \bar{\beta}]$. Z (??) i (??) otrzymujemy

$$g(t) - w_g^r([\alpha, \bar{\alpha}])(t) = s_g(t) \mathbb{1}_{[\hat{t}_g, \beta]}(t) + R_g(t), \quad t \in [\bar{\alpha}, \beta]$$

$$g(t) - w_g^r([\bar{\beta}, \beta])(t) = -s_g(t) \mathbb{1}_{[\alpha, \hat{t}_g)}(t) + \bar{R}_g(t), \quad t \in [\alpha, \bar{\beta}].$$

Odejmując równania stronami dostajemy

$$w_q^r([\bar{\beta},\beta])(t) - w_q^r([\alpha,\bar{\alpha}])(t) = s_q(t) + R_q(t) - \bar{R}_q(t) \quad \text{dla } t \in [\bar{\alpha},\bar{\beta}], \tag{4.9}$$

gdzie $||R_q(t)|| \le C\bar{h}^{r+\varrho}$ oraz $||\bar{R}_q(t)|| \le \bar{C}\bar{h}^{r+\varrho}$ dla $t \in [\bar{\alpha}, \bar{\beta}]$.

Z tego wynika, że gdy $\hat{t}_g \in (\alpha, \beta]$ wtedy możemy zrekonstruować nieznany wielomian $s_g(t)$ na przedziale $[\alpha, \beta]$ w graniach błędu $\mathcal{O}(\bar{h}^{r+\varrho})$ poprzez wyznaczenie wielomianów Lagrange'a $w_g^r([\bar{\beta}, \beta])$ i $w_g^r([\alpha, \bar{\alpha}])$.

Teraz pokażemy główne właściwości testu $A_g(\alpha, \bar{\alpha}, \bar{\beta}, \beta)$. Zaczniemy od nierówności dla przypadku regularnego.

Stwierdzenie 4.5. Istnieje stała C^* zależna od r i L_r taka, że dla wszystkich $\alpha < \bar{\alpha} < \bar{\beta} < \beta$ i $[\alpha, \beta] \subset [a, b]$ oraz $g \in \mathcal{G}_{r,\varrho}([\alpha, \beta])$, mamy

$$\hat{t}_q$$
 z niezerowym wielomianem s_q nie jest w $(\alpha, \beta) \Longrightarrow A_q(\alpha, \bar{\alpha}, \bar{\beta}, \beta) \leq C^*$

Dowód. Skoro $\hat{t}_g \notin (\alpha, \beta)$, to funkcja g jest regularna na $[\alpha, \beta]$. Stąd dla $t \in [\alpha, \beta]$ mamy

$$\begin{aligned} \left\| w_g^r([\bar{\beta}, \beta])(t) - w_g^r([\alpha, \bar{\alpha}])(t) \right\| &\leq \left\| w_g^r([\bar{\beta}, \beta])(t) - g(t) \right\| + \left\| g(t) - w_g^r([\alpha, \bar{\alpha}])(t) \right\| \\ &\leq C^* \bar{h}^{r+\varrho}, \end{aligned}$$

gdzie C^* jest stałą.

Uwaga 4.6. Stwierdzenie ?? pokazuje, że algorytm φ^{KP} , sukcesywnie wybiera przedziały bazując a wartościach testu. Zauważmy, że jeżeli \hat{t}_g jest jedyna, to wtedy dla jakiegokolwiek przedziału $[\alpha, \beta]$, który nie został wybrany, mamy $A_g(\alpha, \bar{\alpha}, \bar{\beta}, \beta) \leq C^*$

Następna właściwość pokazuje, że w przypadku osobliwym, górne ograniczenie na błąd interpolacji może być wyrażone za pomocą $A_g(\alpha, \bar{\alpha}, \bar{\beta}, \beta)$.

Stwierdzenie 4.7. Niech D > 0. Istnieją stałe C i \bar{N} , zależne tylko od parametrów klasy $\mathcal{G}_{r,\varrho}([\alpha,\beta])$ i D, takie, że dla wszystkich $[\alpha,\beta] \subset [a,b]$, $[\bar{\alpha},\bar{\beta}] \subset (\alpha,\beta)$, $g \in \mathcal{G}_{r,\varrho}([\alpha,\beta])$ oraz $s = 0,1,\ldots,r$, mamy

$$\hat{t}_g \in (\bar{\alpha}, \bar{\beta}] \land \beta - \alpha \leq D(\bar{\beta} - \bar{\alpha}) \Longrightarrow dla \ [\gamma, \omega] = [\alpha, \beta] \lor [\gamma, \omega] = [\bar{\alpha}, \bar{\beta}] \ zachodzi$$

$$\sup_{t \in [\gamma, \omega]} \|g(t) - w_g^s([\gamma, \omega])(t)\| \leq C \left(1 + A_g(\alpha, \bar{\alpha}, \bar{\beta}, \beta)\right) \bar{h}^{\min\{s+1, r+\varrho\}}, \tag{4.10}$$

ponadto

$$\sup_{t \in [\gamma, \omega]} \left\| \left(w_g^s([\gamma, \omega]) \right)^{(j)}(t) \right\| \leq \bar{N} \left(1 + \bar{h}^{\min\{s+1-j, r+\varrho-j\}} + \left(1 + A_g(\alpha, \bar{\alpha}, \bar{\beta}, \beta) \right) \bar{h}^{r+\varrho-j} \right)$$

24

 $dla \ j = 0, 1, \dots, s.$

 $Dow \acute{o}d.$ Załóżmy, że $[\gamma,\omega]=[\bar{\alpha},\bar{\beta}].$ Dow
ód jest analogiczny dla $[\gamma,\omega]=[\alpha,\beta].$ Z (??) mamy

 $||s_g(z_j)|| \le (A_g(\alpha, \bar{\alpha}, \bar{\beta}, \beta) + C + \bar{C}) \bar{h}^{r+\varrho}$ (4.11)

gdzie z_j są z definicji $A_g(\alpha, \bar{\alpha}, \bar{\beta}, \beta)$, natomiast C i \bar{C} zależą wyłącznie od r i L_r . Wielomian s_g możemy wyrazić jako

$$s_g(t) = \sum_{j=0}^r s_g(z_j) \,\bar{\Phi}_j(t), \quad \text{where } \bar{\Phi}_j(t) = \prod_{k=0, k \neq j}^r \frac{t - z_k}{z_j - z_k}, t \in \mathbb{R}$$
 (4.12)

Ponieważ $\beta - \alpha \leq D(\bar{\beta} - \bar{\alpha})$, to istnieje stała \bar{K} zależna tylko od r i D taka, że

$$\sum_{j=0}^{r} \left| \bar{\Phi}_j(t) \right| \le \bar{K}, \quad t \in [\alpha, \beta]$$
(4.13)

stąd,

$$||s_g(t)|| = \mathcal{O}\left(\left(1 + A_g(\alpha, \bar{\alpha}, \bar{\beta}, \beta)\right) \bar{h}^{r+\varrho}\right), \quad t \in [\alpha, \beta]$$
 (4.14)

Widzimy, że (??) wynika z lematu ?? dla $[\alpha, \beta] = [\bar{\alpha}, \bar{\beta}]$. Pokażemy teraz (??).

Dla $g \in \mathcal{G}_{r,\varrho}([\alpha,\beta])$ rozważmy odw
zrowanie \tilde{g} zdefiniowane jak w (??), które jest regularną funkcją z
 $G_{r,\varrho}^{\text{reg}}([\alpha,\beta])$ (z możliwie innymi globalnymi stałymi w porównaniu do $\mathcal{G}_{r,\varrho}([\alpha,\beta])$). Poprzez wielokrotne zastosowanie twierdzenia Rolle'a, w przypadku regularnym otrzymujemy

$$\left\| \tilde{g}^{(j)}(t) - \left(w_{\tilde{g}}^{s}([\bar{\alpha}, \bar{\beta}]) \right)^{(j)}(t) \right\| \leq M \bar{h}^{\min\{s+1-j, r+\varrho-j\}}, \quad t \in [\alpha, \beta], j = 0, 1, \dots, s \quad (4.15)$$

gdzie M zależy tylko od globalnych parametrów $G^{\text{reg}}_{r,\varrho}([\alpha,\beta])$. Co więcej, używając postaci Lagrange'a $w^s_g([\bar{\alpha},\bar{\beta}])$ i $w^s_{\tilde{g}}([\bar{\alpha},\bar{\beta}])$ na przdziale $[\bar{\alpha},\bar{\beta}]$, otrzymujemy dla wszystich $j=0,1,\ldots,s$ i $t\in [\alpha,\beta]$, że

$$\left\| \left(w_g^s([\bar{\alpha}, \bar{\beta}]) \right)^{(j)}(t) - \left(w_{\tilde{g}}^s([\bar{\alpha}, \bar{\beta}]) \right)^{(j)}(t) \right\| \leq \sup_{t \in [\bar{\alpha}, \bar{\beta}]} \|s_g(t)\| \sum_{k=0}^s \left| \Phi_k^{(j)}(t) \right|$$

$$\leq \sup_{t \in [\alpha, \beta]} \|s_g(t)\| \sum_{k=0}^s \left| \Phi_k^{(j)}(t) \right|$$

Ograniczenia na $\sup_{t\in [\alpha,\beta]}\|s_g(t)\|$ są dane w (??), a z tego że

$$\sum_{k=0}^{s} \left| \Phi_k^{(j)}(t) \right| = \mathcal{O}\left(\bar{h}^{-j}\right) \text{ dla } t \in [\alpha, \beta]$$

otrzymujemy

$$\left\| \left(w_g^s([\bar{\alpha}, \bar{\beta}]) \right)^{(j)}(t) - \left(w_{\tilde{g}}^s([\bar{\alpha}, \bar{\beta}]) \right)^{(j)}(t) \right\| \le K \left(1 + A_g(\alpha, \bar{\alpha}, \bar{\beta}, \beta) \right) \bar{h}^{r+\varrho-j}, \quad t \in [\alpha, \beta]$$

$$(4.16)$$

gdzie K zależy tylko od parametrów klasy i D. Z tego, że $\tilde{g}^{(j)}$ jest ograniczone oraz z (??) i (??) wynika nierówność (??)

25

Lemat 4.8. Istnieje stała C taka, że dla wszysktich $[\alpha, \beta] \subset [a, b], 0 \le \delta \le \min\{1, \bar{h}\}$ i $g \in \mathcal{G}_{r,\varrho}([\alpha, \beta])$ z $\Delta_g^0 = 0$ dla $j = 0, 1, \ldots, s$ i $s = 0, 1, \ldots, r$ zachodzi

$$\hat{t}_g \in (\alpha, \alpha + \delta] \cup [\beta - \delta, \beta) \Rightarrow \sup_{t \in [\alpha, \beta]} \left\| \left(w_g^s([\alpha, \beta]) \right)^{(j)} (t) \right\| \le C \left(1 + \delta \bar{h}^{-j} \right)$$

 $Dow \acute{o}d.$ Załóżmy, że $\hat{t}_g \in (\alpha,\alpha+\delta].$ Weżmy \tilde{g} zdefiniowaną jak w $(\ref{eq:constraints}).$ Wtedy dla $t \in [\alpha,\beta]$ zachodzi

$$\left\| \left(w_{\bar{g}}^{s}([\alpha,\beta]) \right)^{(j)}(t) - \left(w_{g}^{s}([\alpha,\beta]) \right)^{(j)}(t) \right\| \leq \max_{0 \leq k \leq j^{*}-1} \left\| s_{g}(t_{k}) \right\| \sum_{k=0}^{j^{*}-1} \left| \Phi_{k}^{(j)}(t) \right| \leq \bar{C} \delta \bar{h}^{-j}$$

$$(4.17)$$

gdzie j^* jest zdefiniowana jak w (??) i \bar{C} zależy tylko od parametrów klasy $\mathcal{G}_{r,\varrho}([\alpha,\beta])$. Teza wynika z (??) i (??). Jeżeli $\hat{t}_g \in [d-\delta,d)$, wtedy bierzemy \tilde{g} zdefiniowaną w (??) i postępujemy analogicznie.

Za pomocą wprowadzonych lematów możemy teraz udowodnić ograniczenie górne dla $\varphi^{KP}.$

Dowód twierdzenia ?????. Niech $g \in \mathcal{G}_{r,\varrho}([a,b])$ i $\Delta_g^0 = 0$. W kroku 3. algorytmu, aprokysmacja $\varphi^{KP}(t)$ jest zdefiniowana jako funkcja kawałkami regularna na podziale $t_0 < t_1 < \ldots < t_k$ (włączamy brzegowe przedziały). W każdym podprzedziale, gdzie $\varphi^{KP}(t)$ jest zdefiniowana jako funkcja stała mamy, że $||g(t) - \varphi^{KP}(t)|| = \mathcal{O}(h^{r+\varrho})$. Wynika to z Lipschitzowskiej ciągłości g na $[t_i, t_{i+1})$ oraz faktu, że długośc takiego przedziału jest $\mathcal{O}(h^{r+\varrho})$. W takim razie wystarczy rozważyć przedziały $[t_i + h^{r+\varrho}, t_{i+1} - h^{r+\varrho})$, gdy $t_{i+1} - t_i > 4h^{r+\varrho}$. Na takim przedziale aproksymajca ma postać:

$$\varphi^{KP}(t) = w_g^r \left(\left[t_i + h^{r+\varrho}, t_{i+1} - h^{r+\varrho} \right] \right)(t)$$

Jeżeli $\hat{t}_g \in (t_i + h^{r+\varrho}, t_{i+1} - h^{r+\varrho}]$, wtedy z stwierdzenia ?? dla $t \in [t_i + h^{r+\varrho}, t_{i+1} - h^{r+\varrho})$, mamy

$$||g(t) - w_g^r ([t_i + h^{r+\varrho}, t_{i+1} - h^{r+\varrho}]) (t)||$$

$$= \mathcal{O} ((1 + A_g (t_i, t_i + h^{r+\varrho}, t_{i+1} - h^{r+\varrho}, t_{i+1})) (t_{i+1} - t_i)^{r+\varrho})$$

Natomiast z definicji algorytmu φ^{KP} oraz z uwagi ?? wynika

$$A_g(t_i, t_i + h^{r+\varrho}, t_{i+1} - h^{r+\varrho}, t_{i+1}) \le C^*$$

gdzie C^* jest dane jak w stwierdzeniu ??. Dodatkowo, z uwagi ?? oraz jedyności \hat{t}_g z niezerowym skokiem w pochodnych, jeśli takie istnieje, wiemy, że to zachodzi dla każdego podprzedziału $[t_i, t_{i+1}]$ o długości $t_{i+1} - t_1 > 4h^{r+\varrho}$, który wyprowadzamy w stwierdzeniu ??. Stąd

$$\left\|g(t) - w_g^r\left(\left[t_i + h^{r+\varrho}, t_{i+1} - h^{r+\varrho}\right]\right)(t)\right\| = \mathcal{O}\left(h^{r+\varrho}\right), \quad t \in \left[t_i + h^{r+\varrho}, t_{i+1} - h^{r+\varrho}\right)$$

To dowodzi ograniczenie na błąd przedstawione w twierdzeniu. Zauważmy, że liczba ewaluacji funkcji g jest proporcjonalna do liczby przedziałów końcowej siatki, czyli dla podziału początkowego z równoodległymi węzłami obliczenie optymalnej aproksymacji φ^{KP} wymaga $\mathcal{O}(m)$ ewaluacji funkcji g.

Uwaga 4.9. Twierdzenie ????? zachodzi również dla funkcji g, która ma skok w punkcie t_i początkowego podziału M oraz ma niezerowy wielomian s_g dla co najwyżej jednego nieznanego punktu t_g , $t_g \neq t_i \forall_i$.

4.2. Analiza algorytmu opartego o różnice dzielone

Twierdzenia i lematy w tym rozdziale pochodzą z artykułu [?].

Zanim przejdziemy do analizy samego algorytmu, przedstawimy właściwość niedokładnej różnicy dzielonej (??).

Lemat 4.10. Jeżeli $f \in H_{r,\rho}(t_i, t_{i+r+1})$, wtedy

$$|\tilde{d}_i| \le \frac{c(g_f)(r+1)^{\varrho}}{(r+1)!} h^{\varrho-1} + \delta \frac{2^{r+1}}{(r+1)!} h^{-(r+1)}$$

Dowód. Korzystając z nierówności trójkąta $|\tilde{d}_i| \leq |d_i| + |\tilde{d}_i - d_i|$ możemy oszacować pierwszy człon:

$$|d_{i}| = \frac{|f[x_{i+1}, \dots, x_{i+r+1}] - f[x_{i}, \dots, x_{i+r}]|}{x_{i+r+1} - x_{i}} = \frac{1}{r!} \frac{|f^{(r)}(\xi_{1}) - f^{(r)}(\xi_{2})|}{x_{i+r+1} - x_{i}}$$

$$\leq \frac{c(g_{f})}{r!} \frac{|\xi_{1} - \xi_{2}|^{\varrho}}{x_{i+r+1} - x_{i}} \leq \frac{c(g_{f})}{r!} (x_{i+r+1} - x_{i})^{\varrho - 1} \leq \frac{c(g_{f})(r+1)^{\varrho}}{(r+1)!} h^{\varrho - 1}$$

$$(4.18)$$

oraz drugi człon:

$$\left| \tilde{d}_{i} - d_{i} \right| = h^{-(r+1)} \left| \sum_{i=0}^{r+1} e_{i} \prod_{\substack{\ell=0\\\ell \neq i}}^{r+1} (\ell - j)^{-1} \right|$$

$$\leq \delta h^{-(r+1)} \sum_{i=0}^{r+1} \prod_{\substack{\ell=0\\\ell \neq i}}^{r+1} |\ell - j|^{-1} = \delta \frac{2^{r+1}}{(r+1)!} h^{-(r+1)}$$

$$(4.19)$$

co dowodzi lemat. \Box

Teraz oszacujemy błąd interpolacji i ekstrapolacji w obecności zaburzenia wartości funkcji. Niech p_i i $\tilde{p_i}$ odpowiadają wielomianom stopnia co najwyżej r interpolujących f opartych na dokładnych i niedokładnych wartościach funkcji f w punktach $t_i, t_{i+1}, \ldots, t_{i+r}$. Dla $r \geq 1$, wprowadźmy oznaczenia:

$$\beta_r = \max_{0 \le t \le r} \left| \prod_{k=0}^r (t-k) \right|, \quad \Lambda_r = \max_{0 \le t \le r} \sum_{k=0}^r \prod_{\substack{\ell=0 \\ \ell \ne k}}^r \left| \frac{t-\ell}{k-\ell} \right| \quad \tilde{\Lambda}_r = \sum_{k=0}^r \prod_{\substack{\ell=0 \\ \ell \ne k}}^r \left| \frac{2r+1-\ell}{k-\ell} \right|$$

Lemat 4.11. Niech $f \in H_{0,\varrho}$, wtedy: $dla \ x \in [t_{i-\frac{1}{2}}, t_{i+\frac{1}{2}}]$:

$$|f(x) - \tilde{p}_1(x)| \le C_{0,\varrho}(f)h^{\varrho} + \delta, \quad C_{0,\varrho}(f) = c(g_f)2^{-\varrho}$$

 $dla \ x \in [t_{i-1}, t_{i-\frac{1}{2}}) \cup (t_{i+\frac{1}{2}}, t_{i+1}]:$

$$|f(x) - \tilde{p}_i(x)| \le C_{0,\varrho}(f)h^{\varrho} + \delta, \quad \bar{C}_{0,\varrho}(f) = c(g_f)$$

Niech $f \in H_{r,\varrho}$ i $r \ge 1$, wtedy: $dla \ x \in [t_i, t_{i+r}]$:

$$|f(x) - \tilde{p}_i(x)| \le C_{r,\varrho}(f)h^{r+\varrho} + \delta\Lambda_r, \quad C_{r,\varrho}(f) = c(g_f)2^{-\varrho}$$

 $dla \ x \in [t_{i-r-1}, t_i) \cup (t_{i+r}, t_{i+2r+1}] :$

$$|f(x) - \tilde{p}_i(x)| \le \bar{C}_{r,\varrho}(f)h^{r+\varrho} + \delta\bar{\Lambda}_r, \bar{C}_{r,\varrho}(f) = c(g_f)\frac{(2r+1)!(2r+1)^\varrho}{r(r!)^2}$$

 $Dow \acute{o}d.$ Przypadek dla r=0jest oczywisty. Niech $r\geq 1,$ korzystając z nierówności trójkąta:

$$|f(x) - \tilde{p}_i(x)| \le |f(x) - p_i(x)| + |\tilde{p}_i(x) - p_i(x)|$$

Jeżeli $x \in [t_i, t_{i+r}]$, wtedy, z wyrażenia na błąd interpolacji Lagrange'a dla pierwszego członu powyższej sumy mamy:

$$|f(x) - p_i(x)| = |(x - t_i) \cdots (x - t_{i+r}) f [t_i, \dots, t_{i+r}, x]|$$

$$\leq \beta_r h^{r+1} \frac{|f [t_{i+1}, \dots, t_{i+r}, x] - f [t_i, \dots, t_{i+r-1}, x]|}{t_{i+r} - t_i}$$

$$\leq \beta_r h^{r+1} \frac{c (g_f)}{r^{1-\varrho} r!} h^{\varrho - 1} = C_{r,\varrho}(f) h^{r+\varrho}$$

a dla drugiego człony mamy:

$$|\tilde{p}_i(x) - p_i(x)| = \left| \sum_{k=i}^{i+r} e_k \prod_{\substack{s=i\\s \neq k}}^{i+r} \frac{x - t_s}{t_k - t_s} \right| \le \delta \Lambda_r$$
 (4.20)

Przypadek dla $x \in [t_{i-r-1}, t_i) \cup (t_{i+r}, t_{i+2r+1}]$ jest analogiczny.

Lemat 4.12. Niech $f \in F_{r,\rho}$ oraz

$$\hat{t}_f \in \begin{cases} (t_{i-\frac{1}{2}}, t_{i+\frac{1}{2}}] & gdy \ r = 0\\ (t_i, t_{i-r}] & gdy \ r \ge 1 \end{cases}$$

Przypuśćmy, że

$$|\tilde{d}_k| < Bh^{\varrho - 1} \,\forall_k. \tag{4.21}$$

Wtedy dla każdego $x \in [t_{i-1}, t_{i+1}]$, gdy r = 0 lub dla każdego $x \in [t_{i-r-1}, t_{i+2r+1}]$, $gdy r \ge 1$, mamy:

$$|f(x) - \tilde{p}_i(x)| \le D_r(B, f)h^{r+\varrho} + \delta\Lambda_r,$$

 $gdzie\ D_0(B,f) = c(g_f) + B\ i$

$$D_r(B, f) = c(g_f) \frac{\beta_r(r+1)^{\varrho}}{rr!} + B(2^{r+1} - 1) \frac{(2r)!}{(r-1)!}$$
 dla $r \ge 1$.

Autor: Tomasz Czyż

 $Dow \acute{o}d.$ Przypadki, gdy $\hat{t}_f \leq x$ i $\hat{t}_f > x$ są analogiczne. Weźmy $\hat{t}_f \leq x.$ Jeżeli r=0, wtedy

$$|f(x) - \tilde{p}_i| \le |f(x) - p_{i+1}| + |p_{i+1} - \tilde{p}_{i+1}| + |\tilde{p}_{i+1} - \tilde{p}_i|$$

$$\le c(g_f) h^{\varrho} + \delta + Bh^{\varrho} = (c(g_f) + B) h^{\varrho} + \delta$$

Pokazaliśmy pierwszą część lematu. Załóżmy, że $r \geq 1$ i $\hat{t}_f \leq x < t_{i+r}$. Wybierzmy najmniejszy indeks j taki, że $\hat{t}_f \leq t_j$. Oczywiście $i+1 \leq j \leq i+r$ oraz $x \in [t_{j-1}, t_{j+r}]$. Otrzymujemy

$$|f(x) - \tilde{p}_i(x)| \le |f(x) - p_j(x)| + |p_j(x) - \tilde{p}_j(x)| + |\tilde{p}_j(x) - \tilde{p}_i(x)|. \tag{4.22}$$

A ponieważ $\hat{t}_f \notin (t_j, t_{j+r}]$, to

$$|f(x) - p_j(x)| \le c(g_f) \, \beta_r h^{r+1} \frac{1}{r!} \frac{(t_{j+r} - t_{j-1})^{\varrho}}{t_{j+r} - t_j} = C_{r,\varrho}(f) \left(1 + \frac{1}{r}\right)^{\varrho} h^{r+\varrho}.$$

Tak jak w równaniu (??), mamy

$$|p_j(x) - \tilde{p}_j(x)| \le \delta \Lambda_r$$
.

Możemy tearz oszacować pozostały człon $|\tilde{p}_j(x) - \tilde{p}_i(x)|$. Dla $i + r + 1 \le k \le j + r$, mamy

$$(\tilde{f} - \tilde{p}_i)[t_i, \dots, t_{i+r}, t_k] = \frac{y_k - \tilde{p}_i(t_k)}{(k-i)(k-i-1)\cdots(k-i-r)h^{r+1}}$$
(4.23)

oraz

$$\left| \left(\tilde{f} - \tilde{p}_i \right) [t_i, \dots, t_{i+r}, t_k] \right| = \left| \tilde{f} [t_i, \dots, t_{i+r}, t_k] \right| \le \max_{i \le \ell \le k-r-1} \left| \tilde{d}_\ell \right| \le Bh^{\varrho - 1}, \quad (4.24)$$

gdzie pierwsza nierówność wynika z [?](Lemat 1), natomiast druga z (??). Biorąc (??) oraz (??), otrzymujemy:

$$|y_k - \tilde{p}_i(t_k)| \le \frac{(2r)!}{(r-1)!} Bh^{r+\varrho}$$
 (4.25)

Także ostatni człon nierówności (??) możemy oszacować następująco

$$|\tilde{p}_{j}(x) - \tilde{p}_{i}(x)| = \left| \sum_{k=j}^{j+r} (\tilde{p}_{j}(t_{k}) - \tilde{p}_{i}(t_{k})) \prod_{\substack{s=j\\s \neq k}}^{j+r} \frac{x - t_{s}}{t_{k} - t_{s}} \right|$$

$$\leq \left(\max_{j \leq k \leq j+r} |y_{k} - \tilde{p}_{i}(t_{k})| \right) \left(\max_{\substack{0 \leq t \leq r+1\\s \neq k}} \sum_{k=0}^{r} \prod_{\substack{s=0\\s \neq k}}^{r} \left| \frac{t - s}{k - s} \right| \right).$$

$$(4.26)$$

Pierwsze maksimum z powyższego równania jest oszacowane poprzez (??). Natomiast drugie maksimum jest osiągane dla t=r+1 i jest równe

$$\sum_{k=0}^{r} \prod_{\substack{s=0\\s\neq k}}^{r} \left| \frac{r+1-s}{k-s} \right| = \sum_{k=0}^{r} \binom{r+1}{k} = 2^{r+1} - 1.$$

26.10.2021, 23:46 Wersja robocza:

Stąd

$$|\tilde{p}_j(x) - \tilde{p}_i(x)| \le \frac{(2r)!}{(r-1)!} (2^{r+1} - 1) Bh^{r+\varrho}.$$

Przeprowadzimy teraz punktową analizę błędu, tzn. analizę wartości $|f(x)-\varphi_h^*(y_h)|$ dla każdego x. Rozważmy kilka przypadków w zależności od lokalizacji punktu osobliwego \hat{t}_f . Przypomnijmy, że

$$(u_3, v_3] \subseteq (u_2, v_2] \subseteq (u_1, v_1],$$

gdzie u_i, v_i dla i = 1, 2, 3 są punktami zlokalizowanymi w krokach 1-3 algorytmu. Dla przypadku I przyjmijmy, że

$$\delta \le bh^{r+\varrho}$$
, dla pewnej stałej $b > 0$. (4.27)

Uzasadnienie tego wyjaśnimy poźniej, zobacz uwagę??.

 $Przypadek I: \hat{t}_f \notin (u_1, v_1]$. Przy takich założeniach, z lematu (??) oraz z (??) mamy,

$$|\tilde{d}_i| \le B_r(b, f)h^{\varrho - 1} \quad zB_r(b, f) = \frac{c(g_f)(r+1)^{\varrho} + b2^{r+1}}{(r+1)!}.$$

Przypuśćmy, że $\varphi_h^*(y)(x) = \tilde{p}_i(x)$ dla pewnego i. Jeżeli $x \notin [u_1, v_1)$, wtedy $x \in$ $[t_i, t_{i+r})$ (albo $x \in [t_{i-1/2}, t_{i+1/2})$ dla r = 0) oraz $[t_i, t_{i+r}] \cap (u_1, v_1) = \emptyset$. Wtedy z lematów ?? i ?? wiemy, że błąd aproksymacji w punkcie x jest ograniczony z góry przez $C_{r,\varrho}(f)h^{r+\varrho} + \delta\Lambda_r$ dla $t_f \notin (t_i, t_{i+r}]$ (albo $\hat{t}_f \notin [x_{i-1/2}, x_{i+1/2})$ dla r = 0) lub przez $E_r(f)h^{r+\varrho} + \delta\Lambda_r$ w przeciwnym przypadku, gdzie $E_r(f) = D_r(B_r(b,f),f)$. Z drugiej strony, jeżeli $x \in [u_1, v_1)$, wtedy znów z lematu ?? wiemy, że błąd jest ograniczony przez $\bar{C}_{r,\rho}h^{r+\varrho} + \delta\bar{\Lambda}_r$ dla $\hat{t}_f \notin (t_i, t_{i+r}]$ (albo $\hat{t}_f \notin (t_{i-1/2}, t_{i+1/2}]$ dla r = 0), lub przez $E_r(f)h^{r+\varrho} + \delta\Lambda_r$ w przeciwnym przypadku.

 $Przypadek II: t_f \in (u_1, v_1]$. Bez straty ogólności załóżmy, że

$$u_1 < \hat{t}_f \le \xi \le v_1$$

Z lematu ?? dla $x \notin [u_1, v_1)$ wiemy, że błąd jest ograniczony z góry przez $C_{r,\varrho}(f)h^{r+\varrho} + \delta\Lambda_r$ a dla $x \in [u_1, \hat{t}_f) \cap [\xi, v_1)$ przez $\bar{C}_{r,\varrho}h^{r+\varrho} + \delta\bar{\Lambda}_r$. Z tego powodu możemy założyć, że $x \in [\hat{t}_f, \xi)$, to jest najbardziej interesujący przypadek. Mamy trzy możliwości:

 $Przypadek \ IIa: \hat{t}_f \in (u_1, v_1] \setminus (u_2, v_2]. \ Z przyjętych założeń wynika, że w kroku 2.$ algorytmu, w pewnej iteracji musi zachodzić

$$\left| \tilde{f}(z_{j^*}) - \tilde{p}_{-}(z_{j^*}) \right| \leq \left| \tilde{f}(z_{j^*}) - \tilde{p}_{+}(z_{j^*}) \right| \quad \text{oraz} \quad \hat{t}_f \in (u, z_{j^*}]$$

co powoduje, że dla wszystkich $1 \le j \le r + 1$ zachodzi

$$|\tilde{p}_{+}(z_{j}) - \tilde{p}_{-}(z_{j})| \leq |\tilde{p}_{+}(z_{j*}) - \tilde{p}_{-}(z_{j*})| \leq |\tilde{f}(z_{j*}) - \tilde{p}_{-}(z_{j*})| + |\tilde{f}(z_{j*}) - \tilde{p}_{+}(z_{j*})|$$

$$\leq 2 |\tilde{f}(z_{j*}) - \tilde{p}_{+}(z_{j*})| \leq 2 (C_{r,\varrho}(f)h^{r+\varrho} + \delta\Lambda_{r}).$$

Z faktu, że jeżeli wielomian p stopnia co najwyżej r jest $|p(z_j)| \le a, 1 \le j \le r+1$, wtedy dla wszsytkich $u_1 \le x < v_1$ is $|p(x)| \le (2^{r+1} - 1) a$, zobacz (??). Otrzymaliśmy

$$|f(x) - \varphi_h^*(\mathbf{y})(x)| = |f(x) - \tilde{p}_-(x)| \le |f(x) - \tilde{p}_+(x)| + |\tilde{p}_+(x) - \tilde{p}_-(x)|$$

= $2^{r+1} \left(C_{r,\varrho}(f) h^{r+\varrho} + \delta \Lambda_r \right)$

 $Przypadek\ IIb$: $\hat{t}_f\in(u_2,v_2]\setminus(u_3,v_3]$. Z przyjętych założeń wynika, że w kroku 3. algorytmu, w pewnej iteracji musi zachodzić

$$\left| \tilde{f}(z) - \tilde{p}_{-}(z) \right| \le \left| \tilde{f}(z) - \tilde{p}_{+}(z) \right| \quad \text{oraz} \quad \hat{t}_{f} \in (u, z]$$

$$(4.28)$$

a to wraz z [ref] wskazuję na to, że

$$|\tilde{p}_{+}(x) - \tilde{p}_{-}(x)| \le \max(|\tilde{p}_{+}(z) - \tilde{p}_{-}(z)|, |\tilde{p}_{+}(\hat{t}_{f}) - \tilde{p}_{-}(\hat{t}_{f})|)$$

a ponieważ w przeciwnym przypadku z nie byłoby największym lokalnym maksimum wyrażenia $|\tilde{p}_+ - \tilde{p}_-|$ na przedziale interval (u, v). Następnie otrzymujemy

$$\begin{aligned} \left| \tilde{p}_{+} \left(\hat{t}_{f} \right) - \tilde{p}_{-} \left(\hat{t}_{f} \right) \right| &\leq \left| f \left(\hat{t}_{f}^{+} \right) - \tilde{p}_{+} \left(\hat{t}_{f} \right) \right| + \left| f \left(\hat{t}_{f}^{-} \right) - \tilde{p}_{-} \left(\hat{t}_{f} \right) \right| + \left| f \left(\hat{t}_{f}^{+} \right) - f \left(\hat{t}_{f}^{-} \right) \right| \\ &\leq 2 \left(\bar{C}_{r,\varrho} (f) h^{r+\varrho} + \delta \bar{\Lambda}_{r} \right) + \left| \Delta_{f}^{(0)} \right|, \end{aligned}$$

a z (??) mamy

$$|\tilde{p}_+(z) - \tilde{p}_-(z)| \le 2 \left| \tilde{f}(z) - \tilde{p}_+(z) \right| \le 2 \left(\bar{C}_{r,\varrho}(f) h^{r+\varrho} + \delta \bar{\Lambda}_r \right).$$

Ostatecznie otrzymujemy

$$|f(x) - \varphi_h^*(\mathbf{y})(x)| = |f(x) - \tilde{p}_-(x)| \le |f(x) - \tilde{p}_+(x)| + |\tilde{p}_+(x) - \tilde{p}_-(x)|$$

$$\le 3 \left(\bar{C}_{r,\varrho}(f) h^{r+\varrho} + \delta \bar{\Lambda}_r \right) + \left| \Delta_f^{(0)} \right|.$$

 $Przypadek\ IIc$: $\hat{t}_f \in (u_3, v_3]$ Ponieważ funkcja $|\tilde{p}_+ - \tilde{p}_-|$ nie ma żadnego lokalnego maksimum w przedziale (u_3, v_3) , to wiemy, że jest nierosnąca w przedziale $[\hat{t}_f, \xi)$. Dlatego znów otrzymujemy

$$\left|\tilde{p}_{+}(x) - \tilde{p}_{-}(x)\right| \leq \left|\tilde{p}_{+}\left(\hat{t}_{f}\right) - \tilde{p}_{-}\left(\hat{t}_{f}\right)\right| \leq 2\left(\bar{C}_{r,\varrho}(f)h^{r+\varrho} + \delta\bar{\Lambda}_{r}\right) + \left|\Delta_{f}^{(0)}\right|$$

oraz

$$|f(x) - \varphi_h^*(\mathbf{y})(x)| = |f(x) - \tilde{p}_-(x)| \le |f(x) - \tilde{p}_+(x)| + |\tilde{p}_+(x) - \tilde{p}_-(x)|$$

$$\le 3\left(\bar{C}_{r,\varrho}(f)h^{r+\varrho} + \delta\bar{\Lambda}_r\right) + \left|\Delta_f^{(0)}\right|.$$

Podsumowując analizę błędu dla każdego punktu otrzymujemy, że gdy $\delta \leq bh^{r+\varrho}$ wtedy:

$$\begin{cases} |f(x) - \varphi_h^*(y_h)(x)| \propto \max(1, c(g_f)) h^{r+\varrho} & \text{dla } x \notin (u_2, v_2] \\ |f(x) - \varphi_h^*(y_h)(x)| \propto \max(1, c(g_f)) h^{r+\varrho} + |\Delta_f^{(0)}| & \text{dla } x \in (u_2, v_2] \end{cases}$$

gdzie $v_2 - u_2 \leq \omega$

Mamy również, że liczba ewaluacji funkcji n jest proporcjonalna do h^{-1} , tak więc $h^{r+\varrho}$ jest proporcjonalne do $n^{-(r+\varrho)}$. Z tej obserwacji wynika poniższe stwierdzenie:

Wersja robocza: 26.10.2021, 23:46

Stwierdzenie 4.13. Niech $1 \leq p \leq \infty$. Jeżeli $\delta \leq bh^{r+\varrho}$ oraz $\omega(h) = h^{(r+\varrho)p+1}$, wtedy

$$e_{\mathbf{p}}^{\mathrm{wor}}\left(\varphi_{h}^{*}, N_{h}^{*}; \mathcal{F}_{r, \varrho}^{D}\right) = \mathcal{O}\left(n^{-(r+\varrho)}\right)$$

Przypomnijmy, że powyższe ograniczenia górne nie może zostać spełnione przez algorytmy nieadaptacyjne, co zostało pokazane w [?]. Pokazano tam również, że dla $p=\infty$ nie istnieje algorytm z błędem zbiegającym do zera, dlatego założenia $p<\infty$ jest niezbędne. Dodatkowo, gdy rozważymy klasę $\mathcal{F}_{r,\varrho}^C\subset\mathcal{F}_{r,\varrho}^D$, to możemy uprościć algorytm biorąc $\omega(h)=(r+1)h$ i unikając iteracji w kroku 2. Otrzymujemy w ten sposób algorytm, który dla r=0,1 jest nieadaptacyjny, a dla $r\geq 2$ używa co najwyżej r-1 dodatkowych punktów, niezależnie od tego jak małe jest h. Co więcej, organiczenie górne zachodzi dla $p=\infty$. Stosując powyższą modyfikację możemy sformułować następujące stwierdzenie.

Stwierdzenie 4.14. Jeżeli $\delta \leq bh^{r+\varrho}$ i $\omega(h) = (r+1)h$, wtedy:

$$\mathbf{e}_{\infty}^{\text{wor}}\left(\varphi_{h}^{*}, N_{h}^{*}; \mathcal{F}_{r,\rho}^{C}\right) = \mathcal{O}\left(n^{-(r+\varrho)}\right). \tag{4.29}$$

Ponownie, dla $r \geq 2$ użycie informacji adaptacyjnej jest konieczne. Łącząc wyniki (??), (??) i (??)(??) otrzymujemy ?? i ?? z twierdzenia (??). Faktycznie, dla ustalonego δ i n możemy wybrać $h=\frac{T}{m}$ takie, że

$$m = m(n, \delta) = \left| \min \left(\beta n, \frac{1}{T} \left(\frac{b}{\delta} \right)^{\frac{1}{r+\varrho}} \right) \right| = \Theta \left(\min \left(n, \delta^{-1/(r+\varrho)} \right) \right), \tag{4.30}$$

Uwaga 4.15. Zauważmy, że dla ustalonej precyzji δ nie ma sensu brać m większego niż $m_{max} = \Theta(\delta^{-1/(r+\varrho)})$ wartości funkcji, ponieważ dla $m = m_{max}$ osiągamy maksymalną dokładność dla danego δ .

Testy numeryczne

porównanie algorytmów

Autor: Tomasz Czyż

33

Bibliografia

- [1] F. Arandiga, A. Cohen, R. Donat, N. Dyn, Interpolation and approximation of piecewise smooth functions, SIAM J. Numer. Anal. 43 (2005) 41–57
- [2] L. Plaskota, G. W. Wasilkowski, Y. Zhao, The power of adaption for approximating functions with singularities, Mathematics Of Computation 77 2008, p. 2309–2338
- [3] L. Plaskota, G. W. Wasilkowski, Uniform approximation of piecewise r-smooth and globally continuous functions, SIAM Journal on Numerical Analysis, Vol. 47, No. 1 (2008/2009)
- [4] B. Kacewicz, P. Przybyłowicz, Complexity of the derivative-free solution of systems of IVPs with unknown singularity hypersurface, Journal of Complexity
- [5] P. M. Morkisz, L. Plaskota, Approximation of piecewise Hölder functions from inexact information, Journal of Complexity
- [6] J. F. Traub, H. Woźniakowski, G. W. Wasilkowski Information-Based Complexity, Academic Press, New York, 1988
- [7] E. Novak Deterministic and Stochastic Error Bounds in Numerical Analysis, Springer Velrag, Berlin, 1988