Московский Физико-Технический Институт

Кафедра Общей физики Лабораторная работа №5.4.1

Определение энергии α -частиц по величине их пробега в воздухе

Маршрут VII

14 ноября 2019 г. 21 ноября 2019 г. Работу выполнил Ринат Валиев, 715 гр.

Под руководством А.И. Миланича

Постановка эксперимента

Цель работы: измерить пробег α -частиц в воздухе двумя способами: торцевым счетчиком Гейгера и ионизацонной камерой. Определить энергию частиц.

Связь между энергией α -частицы и периодом полураспада радиоактивного ядра описывается формулой:

 $\ln\left(T_{1/2}\right) = \frac{a}{\sqrt{E}} + b$

Формула ионизационных потерь нерелятивистской тяжелой заряженной частицы имеет вид:

 $\left(\frac{dE}{dx}\right) \approx 2\pi \frac{e^4 z^2}{mv^2} \cdot nZ \cdot \ln\left(\frac{2mv^2}{\bar{I}}\right)$

Экспериментальная установка

Схемы установок, используемых в работе, показаны на рисунке 1.

Рис. 1: Схемы установок для исследования длины пробега α -частиц.

Выполнение работы

$$p_{ ext{atm}} = 757 \ mm \ Hg$$

$$I_0 = 4 \ \pi \text{A}$$

$$I_{745} = 16 \ \pi \text{A}$$

Счетчик Гейгера

1. Проделаем измерения:

x, MM	t, c	N, iiit	$N/t, c^{-1}$
10	60	816	13.6
14	60	869	14.5
16	60	837	14.0
17	60	658	11.0
18	60	374	6.3
19	60	55	0.9
20	60	15	0.2
24	63	18	0.3
28	60	9	0.2

2. График зависимости реагирования на частицы от расстояния до счетчика от излучателя:

Рис. 2: Счетчик Гейгера

3. Длина пробега α -частицы с помощью экстраполяции: $R=19\pm0.5$ мм.

Ионизационная камера

1. Зависимость тока от давления в ионизационной камере:

P, Topp	<i>I</i> , пА	Р, торр	<i>I</i> , пА
740	23	350	700
725	38	330	742
700	75	310	783
670	124	290	828
650	155	270	877
630	185	250	920
610	220	230	955
590	252	210	993
570	283	190	1005
550	319	170	1016
530	357	150	1019
510	393	130	1012
490	430	110	1005
470	463	90	1003
450	500	70	1000
430	541	50	993
410	585	30	987
390	620	10	981
370	663	0	977

2. График зависимости тока от давления в ионизационной камере:

Рис. 3: Ионизационная камера

3.

$$R = rac{P_0}{P_{
m atm}}(D_2 - D_1)$$
 $D_1 = 100 \; {
m mm} \quad D_2 = 5 \; {
m mm}$ $P_0 = 587 \; {
m topp}$ $R = 19 \pm 0.3 \; {
m mm}$

4.

$$R(T,P) = \frac{T_0}{T} \frac{P_0}{P} \Delta D$$

$$R(15^{(\circ)}, 760 \text{ торр}) = \frac{297}{288} \frac{587}{760} = 20 \pm 0.3 \text{ мм}$$

5. Определение энергии частицы:

$$E = \left(\frac{R}{0.32}\right)^{2/3} = 12.3 \pm 0.5 \text{ МэВ}$$

Итоги

Средняя длина пробега α -частиц: $R=19.0\pm0.5$ мм при нормальных условиях.