Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Υπολογιστική Πολυπλοκότητα

- Υπολογιστική πολυπλοκότητα αλγόριθμου Α:
 - Ποσότητα υπολογιστικών πόρων που απαιτεί Α ως αύξουσα συνάρτηση μεγέθους στιγμιότυπου εισόδου.
 - Χρόνος, μνήμη, επεξεργαστές, επικοινωνία, τυχαιότητα.
 - Χειρότερης, μέσης, καλύτερης περίπτωσης.
- Μέγεθος στιγμιότυπου εισόδου n :
 - #bits για αναπαράσταση δεδομένων εισόδου στη μνήμη.
 - Πλήθος βασικών συνιστωσών που αποτελούν μέτρο μεγέθους και δυσκολίας στιγμιότυπου (π.χ. κορυφές & ακμές γράφου).
- Υπολογιστική πολυπλοκότητα προβλήματος Π:
 - Πολυπλοκότητα (χειρότερης περίπτωσης) καλύτερου αλγόριθμου που λύνει πρόβλημα Π.

Ανάλυση Αλγορίθμου

- Απόδειξη ορθότητας
 - Μερικές φορές για ένα καλώς ορισμένο υποσύνολο των στιγμιοτύπων εισόδου.
- Εκτίμηση υπολογιστικής πολυπλοκότητας.
 - Χειρότερης, μέσης, και καλύτερης περίπτωσης.
- Καταλληλότερη λύση ανάλογα με απαιτήσεις εφαρμογής.

Ασυμπτωτική Εκτίμηση

- Χρόνος εκτέλεσης αλγόριθμου Α:
 - Αύξουσα συνάρτηση του T(n) που εκφράζει σε πόσο χρόνο ολοκληρώνεται ο A όταν εφαρμόζεται σε στιγμ. μεγέθους n.
- Ενδιαφέρει η τάξη μεγέθους T(n) και
 όχι ακριβής εκτίμηση T(n).
 - Ακριβής εκτίμηση είναι συχνά δύσκολη και εξαρτάται από υπολογιστικό περιβάλλον, υλοποίηση, ...
 - Τάξη μεγέθους είναι εγγενής ιδιότητα του αλγόριθμου.
 - Δυαδική αναζήτηση έχει λογαριθμικό χρόνο.
 - Γραμμική αναζήτηση έχει γραμμικό χρόνο.
- Ασυμπτωτική εκτίμηση αγνοεί σταθερές και εστιάζει σε τάξη μεγέθους χρόνου εκτέλεσης.

- ... εκφράζει τα αποτελέσματα ασυμπτωτικής εκτίμησης.
- Θ() δηλώνει την ακριβή εκτίμηση τάξης μεγέθους.

$$f(n) \in \Theta(g(n))$$
 ή $f(n) = \Theta(g(n))$ ανν \exists σταθερές $c_1, c_2, n_0 > 0$: $\forall n \geq n_0 \ , \ c_1 g(n) \leq f(n) \leq c_2 g(n)$

 Θ(g(n)) σύνολο συναρτήσεων ἰδιας τάξης μεγέθους με g(n).

$$an^{2} + bn + c = \Theta(n^{2})$$

$$500n^{2} + 100n^{3} + 10^{-5}n^{3}\log n = \Theta(n^{3}\log n)$$

O() δηλώνει ἀνω φράγμα στην τάξη μεγέθους.

$$f(n) \in O(g(n))$$
 ή $f(n) = O(g(n))$ ανν \exists σταθερές $c, n_0 > 0$: $\forall n \geq n_0, \ f(n) \leq c g(n)$

Ο(g(n)) σύνολο συναρτήσεων με τάξη μεγέθους που δεν υπερβαίνει τάξη μεγέθους g(n).

$$100n^3 + 10^{-5}n^3 \log n = O(n^3 \log n) = O(n^4)$$
$$10^{-10}n^2 \notin O(n)$$

ο() δηλώνει **άνω φράγμα** στην τάξη μεγέθους που δεν είναι ακριβές.

$$f(n) \in o(g(n)) \ \acute{\eta} \ f(n) = o(g(n)) \ \text{and} \ \forall c > 0, \ \exists n_0 > 0:$$

$$\forall n \ge n_0, \ f(n) < c \ g(n) \ \acute{\eta} \ \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

ο(g(n)) σύνολο συναρτήσεων με τάξη μεγέθους που υπολείπεται τάξης μεγέθους g(n).

$$5n^3 \log n = o(n^4)$$
$$10n^2 \not\in o(n^2).$$

Ω() δηλώνει κάτω φράγμα στην τάξη μεγέθους.

$$f(n) \in \Omega(g(n))$$
 ή $f(n) = \Omega(g(n))$ ανν \exists σταθερές $c, n_0 > 0$: $\forall n \geq n_0, \ f(n) \geq c g(n)$

 Ω(g(n)) σύνολο συναρτήσεων με τάξη μεγέθους που δεν υπολείπεται τάξης μεγέθους g(n).

$$10^{-5}n^3 \log n = \Omega(n^3 \log n) = \Omega(n^3)$$

 $10^{10}n \notin \Omega(n^2).$

ω() δηλώνει κάτω φράγμα στην τάξη μεγέθους που δεν είναι ακριβές.

$$f(n) \in \omega(g(n)) \ \acute{\eta} \ f(n) = \omega(g(n)) \ \text{and} \ \forall c > 0, \exists n_0 > 0:$$

$$\forall n \ge n_0, \ f(n) > c \ g(n) \ \acute{\eta} \ \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

 ω(g(n)) σύνολο συναρτήσεων με τάξη μεγέθους που υπερβαίνει τάξης μεγέθους g(n).

$$5n^3 \log n = \omega(n^3)$$
$$10n^2 \neq \omega(n^2).$$


```
□ f(n) = \Theta(g(n)) \sim \text{ασυμπτωτικά } f(n) = g(n)
f(n) = O(g(n)) \sim \text{ασυμπτωτικά } f(n) \leq g(n)
f(n) = o(g(n)) \sim \text{ασυμπτωτικά } f(n) < g(n)
f(n) = \Omega(g(n)) \sim \text{ασυμπτωτικά } f(n) \geq g(n)
f(n) = \omega(g(n)) \sim \text{ασυμπτωτικά } f(n) > g(n)
```

- Κάποιες απλές σχέσεις:
 - $O(g(n)) = O(g(n)) \cup \Theta(g(n))$

 - $o(g(n)) \cap \omega(g(n)) = \emptyset$

- lacksquare Πολυώνυμο βαθμού d: $a_d n^d + a_{d-1} n^{d-1} + a_1 n + a_0 = \Theta(n^d)$
- Κάποια αθροίσματα:

$$\sum_{i=1}^{n} i = \Theta(n^2), \ \sum_{i=1}^{n} i^2 = \Theta(n^3), \dots, \sum_{i=1}^{n} i^k = \Theta(n^{k+1})$$

$$\sum_{i=1}^{n} 1/i = \Theta(\log n), \ \sum_{i=1}^{n} 2^{i} = \Theta(2^{n})$$

- **□** Eπίσης: $\log(n!) = \Theta(n \log n)$
- □ Ιεράρχηση: $O(1) \subset O(\log^* n) \subset O(\log n) \subset O(\operatorname{poly}(\log n)) \subset$ $\subset O(\sqrt{n}) \subset O(n) \subset O(n \log n) \subset O(\operatorname{poly}(n)) \subset$ $\subset O(n^{\log n}) \subset O(2^n) \subset O(3^n) \subset O(n!) \subset O(n^n) \subset O(A(n))$

Ποιες από τις παρακάτω προτάσεις είναι αληθείς;

```
• 10 f(n) + 10^{100} = O(f(n)) Αληθής
```

- $f(n) + g(n) = \Theta(\min\{f(n), g(n)\})$ Ψευδής
- $f(n) + g(n) = \Omega(\min\{f(n), g(n)\})$ Aληθής
- $f(n) + g(n) = O(\max\{f(n), g(n)\})$ Αληθής

Να συμπληρωθεί ο πίνακας:

f(n)	g(n)	$\Theta(g(n))$	O(g(n))	o(g(n))	$\Omega(g(n))$	$\omega(g(n))$
2^{n+5}	$2^n + 2^5 + n^{100}$					
$n^4 - n^3$	$16^{\log n}$					
5^{4n}	10^{2n}					
$n^{1/\log\log n}$	$n^{0.001}$					
n!	n^n					
$n^{\log^{20} n}$	2^n					

Να βάλετε συναρτήσεις σε αύξουσα σειρά τάξης μεγέθους:

$$2^{5n} \quad \log^4 n \quad (\log n)^{100} \log \log n \quad n \log \log n \quad n^{0.1} \log \log n$$

$$2^n \quad n^{0.6} \quad 2^n + n^{2^{100}} \quad n^{1/\log n} \quad \log(n!)$$

$$n^{\log n} \quad \log \log n \quad 2^{\log^3 n} \quad \frac{n}{\log_n 2} + n \quad (\log n)^{\log n}$$

ΔΠάντηση:

$$n^{1/\log n} = \Theta(1), \ \log\log n, \ \log^4 n, \ (\log n)^{100} \log\log n,$$

$$n^{0.1} \log\log n, \ n^{0.6},$$

$$n \log\log n, \ \log(n!) = \Theta(n\log n), \ \frac{n}{\log_n 2} + n = \Theta(n\log n),$$

$$(\log n)^{\log n} = \Theta(n^{\log\log n}), \ n^{\log n}, \ 2^{\log^3 n} = \Theta(n^{\log^2 n}),$$

$$2^n, \ 2^n + n^{2^{100}} = \Theta(2^n), \ 2^{5n}$$

Σχεδιάσετε διάγραμμα Venn για τις κλάσεις συναρτήσεων:

$$\Omega(n^{\log n})$$

Πρακτικά Αποδοτικοί Αλγόριθμοι

- ... έχουν πολυωνυμική (χρονική) πολυπλοκότητα.
 - Π.χ. logn, n, n logn, n², n³, ...
 - Χρόνοι n⁴, όπου d μεγάλο, σπάνιοι και βελτιώνονται.
- Εκθετική πολυπλοκότητα απαγορευτική για μεγάλα στιγμιότυπα! Π.χ. $100n^2 < 2^{n/5}$ για κάθε $n \ge 100$

Αύξηση μεγεθών που λύνουμε σε συγκεκριμένο χρόνο όταν 10πλασιάζεται η ταχύτητα υπολογιστή:

Πολυπλ.	n	η' μετά	Λόγος
$100 \log n$	2^{100}	2^{1000}	2^{900}
10n	1000	10000	10
1000n	10	100	10
$10n \log n$	140	1003	7.16
$5n^2$	44	141	$\sqrt{10} = 3.16$
$\mathbf{T}_{\alpha}(\mathbf{X}_{1}^{2n})$	vc 2h311	16	$1.25 (n' = n + \log 10)$

Αλγόριθμοι & Πολυπλοκότητα (Χ \mathfrak{e} ιμώνας 2 \mathfrak{b} 31) 16 1.25 $(n'=n+\log 10)$

Αποδοτική Επίλυση: Κλάση Ρ

- □ Αλγόριθμος πολυωνυμικού χρόνου λύνει κάθε στιγμιότυπο σε χρόνο $O(n^d)$, d σταθερά.
- Κλάση P: προβλήματα απόφασης που επιλύονται από αλγόριθμους πολυωνυμικού χρόνου.
 - Shortest paths, MST, max flow, min cut, min-cost flow, maximum matching, linear programming, ...
- Αξίωμα Cook-Karp: κλάση ευεπίλυτων προβλημάτων ταυτίζεται με κλάση P.

Αποδοτική Επίλυση: Κλάση Ρ

- Κλάση P: προβλήματα που λύνονται σε πολυωνυμικό χρόνο.
 - Shortest paths, MST, max flow, min cut, min-cost flow, maximum matching, linear programming, ...
- Θέση Cook-Karp: P ταυτίζεται με ευεπίλυτα προβλήματα.
- Υπέρ θέσης Cook-Karp:
 - Συνήθως πολυώνυμα μικρού βαθμού (π.χ. *n*, *n*², *n*³).
 - Διπλασιασμός υπολογιστικής ισχύος: σημαντική αύξηση στο μέγεθος στιγμιότυπων που επιλύουμε.
- Κριτική στη θέση Cook-Karp:
 - **Α**κραίες περιπτώσεις: θεωρείται πρακτικό το n^{100} αλλά όχι το $2^{n/100}$!
 - Γραμμικός Προγραμματισμός: Simplex vs. Ellipsoid.