Lebesgue - Nagell - Ramanyjan Egnal-ion

Samir Siksek - University of Warwick

- joint work with J. Cremona (Nottigham)

- joint work with Y. Bugeand | Strasbourg

M. Mignotte | Strasbourg

LNR equation $x^2 + D = y^n \qquad x, y \in \mathbb{Z}$ $n \geqslant 3$

History I

Fernat $3^2+2=y^3 \Rightarrow x=\pm 5$ Euler (1770) y=3

Ramanyan 1913 proposed 3 x2+7=2"
Nagell 1948 solved J

x=±1,±3,±5, ±11,±181

$$x^2+D=y^2$$

Fixed n, Arbitrary y

Example
$$x^2 + 2 = y^3$$

$$\Rightarrow (x+\sqrt{-2})(x-\sqrt{-2}) = y^{3}$$
coprime

$$= (u^3 - 6uv^2) + (3u^2v - 2v^3) \sqrt{-2}$$

$$\Rightarrow 1 = v(3u^2 - 2v^2) \quad (\text{coeff} \ \text{f})$$

$$\Rightarrow v = \pm 1, u = \pm 1$$

$$\Rightarrow v = \pm 5, u = 3$$

$$\Rightarrow$$
 $x=\pm 5$, $y=3$.

Example
$$z^2 + 25 = y^3$$

(i)
$$x+5i = (u+iv)^3$$

 $\Rightarrow 3u^2v-v^3=5$ (coeff of i)
 $\Rightarrow v=\pm 1, \pm 5$

(ii)
$$x+5i = (10+5i)(u+iv)^3$$

 $\Rightarrow 5u^3 + 30u^2v - 15uv^2 - 10v^3 = 5$

 $\Rightarrow u^3 + 6u^2v - 3uv^2 - 2v^3 = 1$ Thre equation can be solved by MAGMA > u=1, v=0 => x=10, y=5 (iii) x+5i= (-10+5i)(u+iv) ⇒ x=-10, y=5 n fixed Summary x2+D=yn · factor LHS
· get finitely many Thre equs · solve using MAGMA (algorithm of Bilu & Harrot). (practical for n & 20) History II (n arbitrary) Lebesgue 1850 $x^2 + 1 = y^2$ n≥3 Nagell 1923 $x^2+3=y^n$ $x^2+5=y^n$ hundreds of people

John Cohn 1993 completed the soln of 2+D=yn for 1≤D≤100 except

D=7, 15, 18, 23, 25, 31, 39, 45, 47, 60, 63, 71, 72, 79, 87, 92, 99, 100.

19 bad values of D

How to Deal with Good Values of D?

For good D, write $D = D_1^2 D_2$ De sque-free.

Suppose n=p prime. Then

$$\Rightarrow x + D_1 \sqrt{-D_2} = (u + v \sqrt{-D_2})^r$$
for $p \ge 0$

For bad D

Cremona & Siksele 2002:

Apply the proof of Fermat's last Theorem

to $z^2 + D = y^p$ (because of veriable) exponent

Proof Sketch of FLT (Wiles)

Suppose $a, b, c \in \mathbb{Z}$ are coprime, $abc \neq 0$ $a^{p} + b^{p} + c^{p} = 0$, p = 35 prime.

Associate to this the 'Frey elliptiz curve' $E: Y^2 = X(X-a^p)(X+b^p)$

Wiles: E is modular.

Ribet's Theorem => Galois representation on E[P] arises from a cusp form at level 2.

But, there are no cusp forms at level 2. Contradiction.

Return to 23+7 = yt P≥11 6 Frey ellipsic curve

Ex: Y2 = X3 + x X + (23+4) X Wiles => Exis modular Ribet's Theoren => Galois representation on Ex[p] arises from a cusp form at level 14. Cusp form at level 14 corresponds to $E: Y^2 + XY + Y = X^3 + 4X - 6$ [diverged from proof of FLT] "---- arises from --- " means : V primer 1 # 2,7 (i) if ly then (#Ex mod l) = (# E mod l) mod p (ii) if lly then (#Emod l) = 0 or 21+2 mod p.

Fix p > 11. We want to get a P
contradiction [adapting ideas of Krans].

Choose a prime I such that

I = mp + 1

(#E mod I) \neq 0, 2l + 2 mod p.

By (ii) Ity. Hence

(# E mod I) = (# E mod I)

(# Ex mod l) = (# E mod l) mod p

=> x = x1, 22,, xr mod l.

But $x^2+7 = y^p$

 $\Rightarrow (z^2+7)^m = y^m P$

 $=y^{l-1} \qquad (l=mp+1)$

= 1 mod l

If $(x_i^2 + 7)^m \neq 1 \mod l$ i=1,..., r then contradiction.

Get a <u>criterion</u> for von-existence of solutions for any posticular value of P.

Theorem (Cremona & Siksak 2002) The equation $x^2+7=y^{\dagger}$ (p prime) closs not have solutions for Computation | Hook 4 days $11 \leq P \leq 10^8$ History III x2+7=yP Baker's newry -> bounds for p Baker & Wisthelz 1993 => P ≤ 6.6×1015

Matreer 1999 => P & 6.81 × 10/2 Mignotte 2003 => P € 1.11×109

Bugeand, Mignolte & Siksek

Lemma Suppose \$= 11. Then y > (VP -1)2 (Modular lower)
bound for y

Proof let 1/4. Than

 $(\#E \mod l) \equiv 0$ or $2l+2 \mod p$.

Case 1 (# E mod l) = 0 mod p. 9 Hasse-Weil 1+1-2/2 < (# E mod l) < 1+1+2/T 7 5 (# E mod 1) < l+1+2/e = (I+1) 1 > (P - 1)But lly ... y > (1F-1). Case 2 Similar.

Suppose 7 = 11. Then $7 = 10^8$. $y = (\sqrt{10^8} - 1)^2 = 9999^2$

i.e. y is big. Baker's theory now works better. Get

P ≤ 1.81 × 108

Re-run the program upto this new bound.

Theorem The only solutions to

$$x^2 + 7 = y^n$$

are

n	3	3	4	5	5	7	15	
×	±1	±181	±3	±5	±181	±11	±181	
4	2	32	±2_	2	. 8	2	2	

Also solved $x^2 + D = y^n$ for $1 \le D \le 100$.

Role of MAGMA

- for small n
- · Computing cusp forms at levels predicted by Ribet's Theorem
- · Computing elliptic curves corresponding to rational curp forms

Modular forms package Stein +

Elliptic cure database Cremona Theorem Bugeauch, Mignotte & Siksek Let [Fn] be the Fibonacci sequence:

The only perfect powers in the Fib.

Sequence are $f_{5}=0$, $f_{9}=f_{2}=1$, $f_{6}=8$, $f_{12}=144$.

Proved again using modularity + Baker's theory - but much, much deeper.

Theorem BMS

The only solutions to 7"x"-2"3"=±1 N 活 3 4, 1,5 >0

 $7 \times 1^{n} - 2 \times 3 \times 1^{n} = 1$ $7^2 \times 1^2 - 2^4 \times 3 \times 1^2 = 1$ $7 \times 5^4 - 2 \times 3^7 \times 1^4 = 1$.

Proved using . multi- Frey curves

- · Baker's theory
 . Deep theorems of M. Bennett.

12

Challange Show that the only solves to $x^2 - 2 = y^{\dagger}$ are $(\pm 1)^2 - 2 = (-1)^{\dagger}$

Current method fails for $\chi^2 - (a^2 \pm 1) = y^{\dagger}$ but seems to work for $\chi^2 - D = y^{\dagger}$ if $D \neq a^2 \pm 1$.

> ž ž

- 1. Siksele & Cremona
 - "On the Diophantine equal ion x2+7=y""
 Acta Arithmetrica 109.2 (2003)
- 2. Bugeaud, Mignotte & Siksele

 "Clanical & Modular Approaches to
 Diophantine Equation I: Fibonacci
 and lucas Perfect Powers",
 Annal: of Math. (to appear).
- 3. Bugeand, Mignotte & Siksek

 "Classical & Modular Approaches to

 Diophanhine Equations II: The Rebesque
 Magell Equations" Compositio Math.

 (to appear).
- 4. Bugeaud, Mignotte & Siksek

 "A Multi-Frey Approach to Some

 Multi-Parameter Families of Diophentine
 Equations"