Lecture 14: Linear Dimensionality Reduction for Spectra and Images

Instructor: Sergei V. Kalinin

Geometric Idea of PCA and LDA

From Intelligent Data Analysis and Probabilistic Inference by Longin Jan Latecki Temple University

Scanning probe microscopy:

- Force-distance curve measurements
- Current-voltage measurements
- Piezoresponse force/electrochemical strain spectroscopy

Electron microscopy:

• Electron Energy Loss Spectroscopy

Optical microscopy:

- Hyperspectral imaging
- Time resolved measurements

Mass-spectrometry:

Secondary ion MS imaging

In many cases, measured signal can be represented or approximated as a linear combination of signals. However, their functional forms are generally unknown

Very important: convolution with resolution function is also mixing

Multiple Linear Regression

Linear mixing $S(\mathbf{x}, \mathbf{R}) = \sum_{i} a_i(\mathbf{x}) w_i(\mathbf{R}) + N$ but $w_i(\mathbf{R})$ are **known**

STEM of STO/LSMO/BFO interface Low-loss EELS spectra of three components

A.Y. Borisevich et al., Suppression of Octahedral Tilts and Associated Changes in Electronic Properties at Epitaxial Oxide Heterostructure Interfaces, Phys. Rev. Lett. 105, 087204 (2010).

"Plasmons" 5 to 35 eV

Eigenvectors and loadings

Figure by A. Belianinov

Scree plot and correlations

- Semi log plot indicating the "weight" of each component as a function of all components
- Only the first few components contain useful info, while others are dominated by noise

Figure by A. Belianinov

• We can also analyze correlations in images

Bayesian Linear Unmixing

$$S(\mathbf{x}, \mathbf{R}) = \sum_{i=1}^{K} a_i(\mathbf{x}) w_i(\mathbf{R}) + N$$

$$\sum_{i=1}^K a_i(\mathbf{x}) = 1$$

- The eigenvectors $w_i(\mathbf{R})$ are nonnegative, $w_i(\mathbf{R}) \ge 0$
- The loading coefficients sum to 1
- The number of eigenvectors, *K*, is a priori unknown

BLU is ideally suited for certain classes of problems, e.g. conduction through parallel channels, optical or electronic spectra of mixtures, etc

Laser heating induced phase transitions

- Copper indium thiophosphate (Cu_{0.77}In_{1.12}P₂S₆) layered ferroelectric
 - Ferroelectric state at room temperature
 - Curie temperature $T_c = 320 \text{ K}$
 - Non-polar $In_{4/3}P_2S_6$ inclusions
- Combined Atomic Force Microscopy (AFM) and confocal Raman spectroscopy investigative approach
 - AFM topography measurements
 - Piezoresponse force microscopy (PFM) static ferroelectric domain structure
 - Raman crystallographic structure via Raman spectra

Ferroelectric domain structure

Single point Raman spectra

A. IEVLEV, ACS Nano

9, 12442 (2015).

Laser heating induced phase transition

Laser can be used for local heating to induce ferroelectric- paraelectric phase transition

- Measurements with variation of the laser power
 - PFM in-situ change in the domain structure above T_c
 - Raman evolution of the Raman spectra through the phase transition
- Comprehensive analysis of Raman spectra is complicated by inhomogeneous chemical composition and high noise level
- Bayesian Linear Unmixing can be used for automated identification of spectra evolution

Raman spectra evolution (averaged)

BLU separation of components

Spatial concentration of components

Results of BLU: components and loading maps

A. IEVLEV, ACS Nano 9, 12442 (2015).

Unmixing showed presence of three independent components in Raman spectra:

- 1. Non-polar $In_{4/3}P_2S_6$ weak changes in intensity with temperature
- 2. Paraelectric CuInP₂S₆ above T_c appears at higher laser powers
- 3. Ferroelectric CuInP₂S₆ below T_c disappears at higher temperatures

PCA vs. LDA for elements

- Our element space is described by 13 descriptors
- In PCA, we found 2 linear combinations of these descriptors that describe this data set best.
- Alkali, alkali-earth, and halogens are close to each other in PCA space
- LDA finds best representation to separate alkali and halogens from everything else
- In LDA representation, alkali earth are close to alkali

What else can LDA give us?

• Decision function allows us to quantify how likely is the feature to belong to certain class

Visualizing the decision surfaces

- Generate multiple points uniformly distributed in the original high-dimensional space
- Perform the LDA transform
- Calculate the KDE