1.7 Distinguishable Balls

In the previous chapter, we had seen the following:

Let A and B be two non-empty finite disjoint subsets of a set S. Then

- 1. $|A \cup B| = |A| + |B|$.
- 2. $|A \times B| = |A| \cdot |B|$.
- 3. A and B have the same cardinality if there exists a one-one and onto function $f: A \longrightarrow B$.

Lemma 1.7.1. Let M and N be two sets such that |M| = m and |N| = n. Then the total number of functions $f: M \longrightarrow N$ equals n^m .

Proof: Let $M = \{a_1, a_2, \dots, a_m\}$ and $N = \{b_1, b_2, \dots, b_n\}$. Since a function is determined as soon as we know the value of $f(a_i)$, for $1 \le i \le m$, a function $f: M \longrightarrow N$ has the form

$$f \leftrightarrow \begin{pmatrix} a_1 & a_2 & \cdots & a_m \\ f(a_1) & f(a_2) & \cdots & f(a_m) \end{pmatrix},$$

where $f(a_i) \in \{b_1, b_2, \dots, b_n\}$, for $1 \le i \le m$. As there is no restriction on the function f, $f(a_1)$ has n choices, b_1, b_2, \dots, b_n . Similarly, $f(a_2)$ has n choices, b_1, b_2, \dots, b_n and so on. Thus, the total number of functions $f: M \longrightarrow N$ is

$$\underbrace{n \cdot n \cdot \dots \cdot n}_{m \text{ times}} = n^m.$$

Remark 1.7.2. Observe that Lemma 1.7.1 is equivalent to the following question: In how many ways can m distinguishable/distinct balls be put into n distinguishable/distinct boxes? Hint: Number the balls as a_1, a_2, \ldots, a_m and the boxes as b_1, b_2, \ldots, b_n .

Lemma 1.7.3. Let M and N be two sets such that |M| = m and |N| = n. Then the total number of distinct one-to-one functions $f: M \longrightarrow N$ is $n(n-1) \cdots (n-m+1)$.

Proof: Observe that "f is one-to-one" means "whenever $x \neq y$ we must have $f(x) \neq f(y)$ ". Therefore, if m > n, then the number of such functions is 0.

So, let us assume that $m \leq n$ with $M = \{a_1, a_2, \ldots, a_m\}$ and $N = \{b_1, b_2, \ldots, b_n\}$. Then by definition, $f(a_1)$ has n choices, b_1, b_2, \ldots, b_n . Once $f(a_1)$ is chosen, there are only n-1 choices for $f(a_2)$ ($f(a_2)$ has to be chosen from the set $\{b_1, b_2, \ldots, b_n\} \setminus \{f(a_1)\}$). Similarly, there are only n-2 choices for $f(a_3)$ ($f(a_3)$ has to be chosen from the set $\{b_1, b_2, \ldots, b_n\} \setminus \{f(a_1), f(a_2)\}$), and so on. Thus, the required number is $n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-m+1)$.

Remark 1.7.4. 1. The product $n(n-1)\cdots 3\cdot 2\cdot 1$ is denoted by n!, and is commonly called "n factorial".

- 2. By convention, we assume that 0! = 1.
- 3. Using the factorial notation $n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-m+1) = \frac{n!}{(n-m)!}$. This expression is generally denoted by $n_{(m)}$, and is called the falling factorial of n. Thus, if m > n then $n_{(m)} = 0$ and if n = m then $n_{(m)} = n!$.
- 4. The following conventions will be used in these notes:

$$0! = 0_{(0)} = 1, \ 0^0 = 1, \ n_{(0)} = 1 \ for \ all \ n \ge 1, \ 0_{(m)} = 0 \ for \ m \ne 0.$$

The proof of the next corollary is immediate from Lemma 1.7.3 and hence the proof is omitted.

Corollary 1.7.5. Let M and N be two sets such that |M| = |N| = n (say). Then the number of one-to-one functions $f: M \longrightarrow N$ equals n!, called "n-factorial".