Function growth

یادآوری

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X

 $A \leftarrow$ new array of n integers

for
$$i \leftarrow 0$$
 to $n - 1$ do

$$s \leftarrow X[0]$$

for
$$j \leftarrow 1$$
 to i do

$$s \leftarrow s + X[j]$$

$$A[i] \leftarrow s / (i + 1)$$

return A

یادآوری

```
Algorithm f(n, m)
k \leftarrow m
for i \leftarrow 1 \text{ to } m \text{ do}
j \leftarrow 1
while j < n \text{ do}
k \leftarrow k + 1
j \leftarrow 2*j
```


یادآوری

```
Algorithm f(n, m)
k \leftarrow m
for i \leftarrow 1 \text{ to } m \text{ do}
j \leftarrow 1
while j < n \text{ do}
k \leftarrow k + 1
j \leftarrow 2*j
```


Growth of common functions

A Display of the Growth of Functions Commonly Used in Big-O Estimates

Consumed time of common functions

	n	$n \log_2 n$	n ²	n^3	1.5 ⁿ	2^{π}	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10^{25} years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

Notations

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

نماد 0

- f(n) = O(g(n)) فرض کنید
- مشخص می کند. G در واقع یک حد بالای مجانبی برای تابع G

$$O(g(n)) = \{ f(n) | (\exists c, n_0 > 0), \forall n > n_0 : 0 \le f(n) \le cg(n) \}$$

$$T(n) = \frac{1}{3}n^2 - n \Rightarrow O(n^2)$$

$$\frac{1}{3}n^2 - n \le cn^2 \stackrel{c = \frac{1}{3}}{\Longrightarrow} n > 0 \Rightarrow n_0 = 0$$

Ω salc

- $f(n) = \Omega(g(n))$ فرض کنید
- مشخص می کند. Ω در واقع یک حد پایین مجانبی برای تابع f(n) مشخص می کند.

$$\Omega(g(n)) = \{f(n) | (\exists c, n_0 > 0), \forall n > n_0 : 0 \le cg(n) \le f(n) \}$$

$$T(n) = \frac{1}{3}n^2 - n \Rightarrow \Omega(n^2)$$

$$cn^{2} \le \frac{1}{3}n^{2} - n \Longrightarrow \stackrel{c = \frac{1}{6}}{\Longrightarrow} -\frac{1}{6}n^{2} + n \le 0 \Rightarrow n \ge 6 \Rightarrow n_{0} = 6$$

نماد 🕀

$$f(n) = \Theta(g(n))$$
 فرض کنید

نماد Θ نماینده مجموعهای از توابع است که نماینده Θ آنها تابع Θ است:

$$\Theta(g(n)) = \{f(n) | (\exists c_1, c_2, n_0 > 0), \forall n > n_0 : c_1 g(n) \le f(n) \le c_2 g(n) \}$$

$$\Box T(n) = 3n^2 + 2n \Rightarrow \Theta(n^2)$$

□ c1,c2,n0=?

ادامه مثال

□ یک مثال دیگر:

$$T(n) = \frac{1}{3}n^2 - n \Rightarrow \Theta(n^2)$$

$$c_1 n^2 \le \frac{1}{6} n^2 - n \stackrel{c_1 = \frac{1}{6}}{\Longrightarrow} - \frac{1}{6} n^2 + n \le 0 \Rightarrow n \ge 6$$

$$c_2 n^2 \ge \frac{1}{3} n^2 - n \stackrel{c_2 = \frac{1}{3}}{\Longrightarrow} n > 0$$

$$c_1 = \frac{1}{6}, c_2 = \frac{1}{3}, n_0 = 6$$

ال حل:

$$T(n) = 3n^2 + 2n \Rightarrow \Theta(n^2)$$

$$c_1 n^2 \le 3n^2 + 2n \xrightarrow{c_1=1} 2n^2 + 2n \ge 0 \Rightarrow$$

$$c_2 n^2 \ge 3n^2 + 2n \xrightarrow{c_2 = 4} n \ge 2$$

$$c_1 = 1$$
, $c_2 = 4$, $n_0 = 2$

Notations

For any two functions f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

$$f(n) = O(g(n))$$
 is like $a \le b$,
 $f(n) = \Omega(g(n))$ is like $a \ge b$,
 $f(n) = \Theta(g(n))$ is like $a = b$.

Design Experiment Experiment

چند مثال

- 🗖 یک قانون ساده برای توابع رشد چندجملهای:
- ✔ تمامی مقادیر ثابت (چه به عنوان ضریب و چه در جمع یا تفریق) و همچنین جملات مرتبه پایینتر قابل حذف هستند.
 - این قانون برای Ω و O هردو برقرار است. ullet
 - 🗖 مثال:
 - ېمرتبه 11 + 100n + 10 چیست؟
 - مرتبه $4n^2$ چیست؟
 - $O(n^2)$
 - $\Omega(n^2)$
 - $O(n^3)$
 - $\Omega(n^3)$

$$4n^2 > cn^3 \stackrel{n \neq 0}{\Longrightarrow} cn < 4$$

• که برای هیچ مقداری از c نمی تواند شرایط مورد نظر ما را برقرار کند.

چند مثال

مرتبه
$$n^2-n$$
 چطور؟ \checkmark

- است. $\Omega(n^2)$ است.
 - چطور؟ $\Omega(n^2)$

$$n^2 - n < cn^2 \stackrel{n \neq 0}{\Longrightarrow} n - 1 < cn \Longrightarrow n(c - 1) > -1 \stackrel{c \neq 1}{\Longrightarrow} n > \frac{1}{c - 1}$$

• کافی است برای یک مقدار c درست باشد. که برای تمام مقادیر نامساوی ۱ برقرار است.

$$3\log(n) + \log(\log(n)) = O(?)$$

More examples and proof

$$\square 3n^2 + 2n = f(n) = O(n^2)$$

$$\checkmark 3n^2 + 2n \le cn^2$$

$$\checkmark c = 4 \Rightarrow n^2 - 2n \ge 0 \Rightarrow n \ge 2 \Rightarrow n_0 = 2$$

$$\square 3n^2 + 2n = f(n) = \Omega(n^2)$$

$$\checkmark cn^2 < 3n^2 + 2n$$

$$\checkmark c = 2 \Rightarrow -n^2 - 2n \leq 0 \Rightarrow n \geq -2 \Rightarrow n_0$$
: all numbers greater tahn 0

$$\sqrt{\frac{1}{3}}n^2 - n \le cn^2$$

$$\checkmark c = 4 \Rightarrow \frac{2}{3}n^2 + n \ge 0 \Rightarrow n \ge -\frac{3}{2} \Rightarrow n_0$$
: all numbers greater tahn 0

چند قانون ساده دیگر:

□ If
$$f_1(n) = O(g_1(n))$$
 and $f_2(n) = O(g_2(n))$

$$\checkmark f_1(n) + f_2(n) = O(g_1(n) + g_2(n)) = O(\max(g_1(n), g_2(n)))$$

$$\checkmark f_1(n) * f_2(n) = O(g_1(n) * g_2(n))$$

- \square log n^x is $O(\log n)$, for x > 0
- \square log $n \neq \Omega(n^x)$, for x > 0

یعنی رشد n برای هیچ توان مثبتی از آن، کوچکتر از رشد $\log n$ نیست.

 $\square \log^x n$ is $O(n^y)$ for x > 0 and y > 0

Inappropriate Expressions

$$f(n) \times O(g(n))$$

$$f(n) \geq O(g(n))$$

Asymptotic analysis - terminology

□ Special classes of algorithms:

logarithmic: O(log n)

linear: O(n)

quadratic: $O(n^2)$

polynomial: $O(n^k)$, $k \ge 1$

exponential: $O(a^n)$, n > 1

- □ Polynomial vs. exponential?
- □ Logarithmic vs. polynomial?

نمادهای مجانبی کوچک

نماد ٥

$$f(n)=o(g(n))$$
 وقتی می گوئیم $g(n)=f(n)$ اینقدر از وچک تر هست که:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

ω نماد

$$f(n)=\omega(g(n))$$
 وقتی می گوئیم $g(n)=g(n)$ یعنی مرتبه $g(n)=g(n)$ اینقدر از کوچکتر هست که:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$