Zusammenfassung Software-orientierte Informatik

Henrik Tscherny

22. Januar 2022

Inhaltsverzeichnis

1	Systeme									1											
	1.1	Verknüpfung von Systemen.																			2

1 Systeme

Ein System ist ein natürliches oder künstliches Gebilde, welches aus Eingangssignalen (E) ein Ausgangssignal (A) macht. Das System besitzt zudem einen inneren Zustand, der durch Zustandsgrößen (\vec{Z}) beschrieben wird. Eine Systemfunktion (F) legt fest wie das Eingangssignal in das Ausgangssignal umgewandelt wird $(\vec{A} = F(\vec{E}, \vec{Z}, ...))$

Statische Systeme Der Output zum Zeitpunkt t (y(t)) ist nur von dem zu gleichen Zeitpunkt am Input anliegenden Wert (x(t)) abhängig. Innere Zustände (\vec{Z}) sind egal. die dazugehörige Funktion y = f(x) nennt man statische Kennlinie.

Dynamische Systeme Der Output (y(t)) ist von dem am Input anliegenden Signal (x(t)) und dem inneren Zustand des Systems (\vec{Z}) abhängig. Dabei kann man sich den inneren Zustand als eine Art Gedächtnis vorstellen

Lineare Systeme Ein System ist linear, wenn der Überlagerungssatz/Superpositionsprinzip gilt, bzw nicht-linear falls dieser nicht gilt.

$$f(x_1 + x_2) = f(x_1) + f(x_2) \Rightarrow y(t) = f(x_1(t) + x_2(t)) = f(x_1(t)) + f(x_2(t))$$
 lineare Systeme werden durch lineare Differenzialgleichungen mit konstanten Koeffizienten beschrieben

Zeit(in)variante Systeme Ändern sich die Systemeigenschaften sich nicht mit der Zeit, d.h. es gilt das Verschiebungsprinzip $(y(t-t_0)=f(x(t-t_0)))$, ist das System zeitinvariant, andernfalls ist es zeitvariant

Kausales System Der Output ist nur von den aktuellen und vergangenen Inputs abhängig, Sprung- und Impulsantwort sind gleich 0 für t < 0, gilt dies nicht ist das System akausal.

- schwach kausal
 - reagiert auf Input x immer mit gleichem Output y
- stark kausal
 - reagiert auf ähnlichen Input x mit ähnlichem Output y

1.1 Verknüpfung von Systemen

Reihenschaltung

statisches System	dynamisches System						
$k_{ges} = \prod_{i=1}^{n} k_i = \frac{\text{output}}{\text{input}}$	$G_{ges}(f) = \prod_{i=1}^{n} G_{i}(f) = \frac{\operatorname{input}(f)}{\operatorname{output}(f)}$						
$G_i = k_i$: statische Übertragungsfaktor	$G_i(f)$: Übertragungsfunktion des Teilsystems i						

Parallelschaltung

statisches System	dynamisches System					
n	<u>n</u>					
$k_{ges} = \sum k_i$	$G_{ges}(f) = \sum G_i(f)$					
<i>i</i> =1	<i>i</i> =1					
$G_i = k_i$: statische Übertragungsfaktor	$G_i(f)$: Übertragungsfunktion des Teilsystems i					

Rückkopplungsschaltung

statisches System	dynamisches System
$k_{ges} = \frac{y}{x} = \frac{k_1}{1 \pm k_1 k_2}$	$G_{ges}(f) = \frac{G_1(f)}{1 \pm G_1(f)G_2(f)}$