The Fröhlich-Morchio-Strocchi mechanism in the minimal supersymmetric standard model

Philipp Schreiner

June 14, 2022

Supersymmetry and the MSSM

Motivations
Extension of Poincaré Algebra
Building Theories
The MSSM

FMS Mechanism and Augmented PT SM Weak Sector

Master's Thesis
Model
Custodial Symmetry
Results so far

Motivation

Motivation

Cancellation of mass corrections

[Martin, Adv.Ser.Dir.HEP 18 (1998)]

Gauge Coupling Unification

[Martin, Adv.Ser.Dir.HEP 18 (1998)]

Idea: Relate bosons and fermions

- Spin is spacetime property; not isolated from Poincaré algebra
- Coleman-Mandula: Poincaré symmetry is largest possible spacetime symmetry

Idea: Relate bosons and fermions

- Spin is spacetime property; not isolated from Poincaré algebra
- Coleman-Mandula: Poincaré symmetry is largest possible spacetime symmetry

Haag-Łopuszański-Sohnius:

$$egin{aligned} [P_{\mu},P_{
u}]&=0\ [M_{\mu
u},P_{\lambda}]&=i(\eta_{
u\lambda}P_{\mu}-\eta_{\mu\lambda}P_{
u})\ [M_{\mu
u},M_{
ho\sigma}]&=-i(\eta_{\mu
ho}M_{
u
ho}-\eta_{\mu\sigma}M_{
u
ho}-\eta_{
u
ho}M_{\mu\sigma}+\eta_{
u\sigma}M_{\mu
ho})\ \{Q_{a},Q_{\dot{a}}^{\dagger}\}&=2\sigma_{a\dot{a}}^{\mu}P_{\mu}\ [Q_{a},P_{\mu}]&=0\ [Q_{a},M_{\mu
u}]&=(\sigma_{\mu
u})_{a}^{b}Q_{b} \end{aligned}$$

⇒ "Super-Poincaré-Algebra" (SUSY Algebra)

Irreps of the SUSY algebra

Most general SUSY Lagrangian

$$\mathcal{L} = \begin{bmatrix} -\frac{1}{4}F_{\mu\nu}^{a}F_{a}^{\mu\nu} + i\lambda^{\dagger a}\bar{\sigma}^{\mu}(D_{\mu}\lambda)_{a} \\ -\frac{g^{2}}{2}(\phi_{i}^{\dagger}T^{a}\phi_{i})(\phi_{j}^{\dagger}T_{a}\phi_{j}) - \left|\frac{\partial W(\phi_{i})}{\partial\phi_{i}}\right|^{2} \\ -\sqrt{2}g\left[(\phi_{i}^{\dagger}T^{a}\chi_{i})\lambda_{a} + \lambda^{\dagger a}(\chi_{i}^{\dagger}T_{a}\phi_{i})\right] \end{bmatrix}$$

$$\mathcal{L} = \begin{bmatrix} -\frac{1}{4}F_{\mu\nu}^{a}F_{a}^{\mu\nu} + i\lambda^{\dagger a}\bar{\sigma}^{\mu}(D_{\mu}\lambda)_{a} \\ -\frac{g^{2}}{2}(\phi_{i}^{\dagger}T^{a}\phi_{i})(\phi_{j}^{\dagger}T_{a}\phi_{j}) - \left|\frac{\partial W(\phi_{i})}{\partial\phi_{i}}\right|^{2} \\ -\sqrt{2}g\left[(\phi_{i}^{\dagger}T^{a}\chi_{i})\lambda_{a} + \lambda^{\dagger a}(\chi_{i}^{\dagger}T_{a}\phi_{i})\right] \end{bmatrix}$$

- Multiple gauge and chiral multiplets possible (and mixing)
- $W(\phi) = M^{ij}\phi_i\phi_j + y^{ijk}\phi_i\phi_j\phi_k$ (no field adjoints!)
- Independent couplings: M_{ij} , y_{ijk} , g

Building Theories

Only Freedom:

- Particle content (participating multiplets)
- Gauge groups (g)
- Potential W (M_{ij} and y_{ijk})
- (Breaking Terms)

Particular choice: Minimal Supersymmetric Standard Model (MSSM)

The MSSM: Particle Content

	Spin 0	Spin 1/2	Spin 1	Naming convention
Chiral Multiplets		$ \begin{array}{cccc} e & u \\ \mu & c \\ \hline \tau & t \end{array} $ $ \begin{array}{ccccc} \tilde{H}_u \\ \tilde{H}_d \end{array} $		lepton \rightarrow slepton quark \rightarrow squark higgs \rightarrow higgsino
Gauge Multiplets		\widetilde{W} \widetilde{Z} \widetilde{g} $\widetilde{\gamma}$	W Z g y	$W \rightarrow wino$ $gluon \rightarrow gluino$ $photon \rightarrow photino$

The MSSM: Gauge Groups

	Spin 0	Spin 1/2	Spin 1	Gauge Structure
Chiral Multiplets		$ \begin{array}{ccc} e & u \\ \mu & c \\ \hline \tau & t \end{array} $ $ \begin{array}{cccc} \tilde{H}_{U} \\ \tilde{H}_{d} \end{array} $		fund. rep. keep charges from SM and extend to superpartners
Gauge Multiplets		\widetilde{W} \widetilde{Z} \widetilde{g} $\widetilde{\gamma}$	W Z g	adj. rep.

$$W_{\text{MSSM}} = \mu H_u H_d + \tilde{\bar{u}} \mathbf{y}^u \tilde{Q} H_u - \tilde{\bar{d}} \mathbf{y}^d \tilde{Q} H_d - \tilde{\bar{e}} \mathbf{y}^e \tilde{L} H_d$$

- Differentiation yields Yukawa terms from SM
- Reason for additional Higgs
- No non-trivial Higgs vev ⇒ no EWSB

 \Rightarrow Need for (soft) SUSY breaking terms!

FMS Mechanism and Augmented PT

- Gauge Principle is mathematical Tool (philosophical depate ongoing)
- Physical quantities must **not** depend on our mathematical description
- In particular: states with open gauge indices cannot be physical states

- Gauge Principle is mathematical Tool (philosophical depate ongoing)
- Physical quantities must **not** depend on our mathematical description
- In particular: states with open gauge indices cannot be physical states

• In particular, explaining mass degeneracy of W is delicate

$$\mathcal{L} = -rac{1}{4}W_a^{\mu
u}W_{\mu
u}^{oldsymbol{a}} + (D^\mu\phi)^\dagger(D_\mu\phi) - \lambda\left(\phi^\dagger\phi - rac{v^2}{2}
ight)^2$$

$$\Phi \equiv egin{pmatrix} \phi_1 & -\phi_2^* \ \phi_2 & \phi_1^* \end{pmatrix}, \quad \Phi o U_L(x) \Phi U_R^\dagger$$

$$\mathcal{L} = -rac{1}{4}W_a^{\mu
u}W_{\mu
u}^a + rac{1}{2}\operatorname{tr}(D^\mu\Phi)^\dagger(D_\mu\Phi) - rac{\lambda}{4}\left(\operatorname{tr}\Phi^\dagger\Phi - v^2
ight)^2$$

Higgs vev: $SU(2) \times SU(2) \rightarrow SU(2)$

Masses for elementary fields

$$\langle h(x)h(y)\rangle$$

 $\langle W_{\mu}^{a}(x)W_{\nu}^{b}(y)\rangle$

BUT: h and W are classified according to SU(2)!

Higgs vev: $SU(2) \times SU(2) \rightarrow SU(2)$

Masses for elementary fields

$$\langle h(x)h(y)\rangle$$

 $\langle W_{\mu}^{a}(x)W_{\nu}^{b}(y)\rangle$

BUT: h and W are classified according to SU(2)!

Build gauge-invariant operators first:

$$egin{aligned} O &= \operatorname{\sf tr} \Phi^\dagger \ O_\mu^A &= \operatorname{\sf tr} au^A \Phi^\dagger D_\mu \Phi \end{aligned}$$

Masses for composite operators

$$\left\langle O(x)O^{\dagger}(y)\right\rangle$$

 $\left\langle O_{\mu}^{A}(x)O_{\nu}^{B}(y)\right\rangle$

Higgs vev: $SU(2) \times SU(2) \rightarrow SU(2)$

Masses for elementary fields

$$\langle h(x)h(y)\rangle$$

 $\langle W_{\mu}^{a}(x)W_{\nu}^{b}(y)\rangle$

BUT: h and W are classified according to SU(2)!

Build gauge-invariant operators first:

$$O=\operatorname{\mathsf{tr}} \Phi^\dagger \ O_\mu^A=\operatorname{\mathsf{tr}} au^A \Phi^\dagger D_\mu \Phi$$

Masses for composite operators

$$\left\langle O(x)O^{\dagger}(y)\right\rangle$$

 $\left\langle O_{\mu}^{A}(x)O_{\nu}^{B}(y)\right\rangle$

$$\Leftarrow$$
 Relation? \Rightarrow

Quick Reminder

Perform formal split
$$\phi(x) \to v + \eta(x)$$

$$\langle O(x)O^{\dagger}(y)\rangle = \text{const.} + 4v^2 \langle h(x)h(y)\rangle + \mathcal{O}(v)$$

$$\left\langle O_{\mu}^{A}(x)O_{\nu}^{B}(y)\right\rangle = \frac{v^{2}}{4}\delta_{a}^{A}\delta_{b}^{B}\left\langle W_{\mu}^{a}(x)W_{\nu}^{b}(y)\right\rangle + \mathcal{O}(v)$$

Observations:

- ullet Propagation of elementary fields \leftrightarrow propagation of gauge-invariant operators with identical quantum numbers
- From here on \rightarrow usual PT (hence, "augmented")

FMS Formalism and Augmented PT

Higher correlation functions

$$e^-e^+ o \mu^-\mu^+ \ \left\langle O(x_1)\bar{O}(x_2)O(x_3)\bar{O}(x_4) \right
angle$$

[See Larissa Egger, Fabian Veider]

FMS Formalism and Augmented PT

Higher correlation functions

$$e^-e^+ o \mu^-\mu^+ \ \left\langle O(x_1)\bar{O}(x_2)O(x_3)\bar{O}(x_4) \right\rangle$$

[See Larissa Egger, Fabian Veider]

The Catch

[Törek and Maas, PoS LATTICE2016 (2016)]

This only works so well in the SM because of its special structure. Qualitative mismatch e.g. for SU(3) + fund. scalar.

My thesis:

Is there a qualitative mismatch for mass spectrum in MSSM?

Specifying Lagrangian

$$\begin{split} \mathcal{L} &= -\frac{1}{4}F_{\mu\nu}^{a}F_{a}^{\mu\nu} + i\lambda^{\dagger a}\bar{\sigma}^{\mu}(D_{\mu}\lambda)_{a} + (D_{\mu}\phi)_{i}^{\dagger}(D^{\mu}\phi)_{i} + i\chi_{i}^{\dagger}\bar{\sigma}^{\mu}D_{\mu}\chi_{i} \\ &- \frac{g^{2}}{2}(\phi_{i}^{\dagger}T^{a}\phi_{i})(\phi_{j}^{\dagger}T_{a}\phi_{j}) - \left|\frac{\partial W(\phi_{i})}{\partial\phi_{i}}\right|^{2} - \frac{1}{2}\left[\left(\frac{\partial^{2}W(\phi_{i})}{\partial\phi_{i}\partial\phi_{j}}\right)\chi_{i}\chi_{j} + \text{h.c.}\right] \\ &- \sqrt{2}g\left[(\phi_{i}^{\dagger}T^{a}\chi_{i})\lambda_{a} + \lambda^{\dagger a}(\chi_{i}^{\dagger}T_{a}\phi_{i})\right] + \mathcal{L}_{\text{soft}} \end{split}$$

- 1 Gauge multiplet (W and λ), adj. SU(2)
- 2 Chiral multiplet (H_i and χ_i), fund. SU(2)
- $W = \mu H_1 H_2$
- $\mathcal{L}_{soft} = -m^2(H_1^{\dagger}H_1 + H_2^{\dagger}H_2) m_{12}^2(H_1H_2 + h.c.)$

Custodial Symmetry

Scalar potential:

$$V(H_1, H_2) = \frac{g^2}{8} (H_i^{\dagger} \sigma^a H_i) (H_j^{\dagger} \sigma^a H_j) + \left| \frac{\partial W(H_i)}{\partial H_i} \right|^2 - \mathcal{L}_{soft}$$

$$= (|\mu|^2 + m^2) (H_1^{\dagger} H_1 + H_2^{\dagger} H_2) + m_{12}^2 (H_1 H_2 + c.c.)$$

$$+ \frac{g^2}{8} \left[(H_1^{\dagger} H_1)^2 + (H_2^{\dagger} H_2)^2 \right] - \frac{g^2}{4} (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \frac{g^2}{2} (H_1^{\dagger} H_2) (H_2^{\dagger} H_1)$$

Naive guess:

More fields \rightarrow larger symmetry?

??
$$H_1 o \begin{pmatrix} h_{11} - h_{12}^* \\ h_{12} & h_{11}^* \end{pmatrix} H_2 o \begin{pmatrix} h_{21} - h_{22}^* \\ h_{22} & h_{21}^* \end{pmatrix} H_i o H_i R^{\dagger}$$
 ??

Potential structure enforced by SUSY ruins this idea.

Idea: Translate into 2HDM and use results thereof

$$\begin{split} V &= -M_1^2(\phi_1^{\dagger}\phi_1) - M_2^2(\phi_2^{\dagger}\phi_2) - M_{12}^2(\phi_1^{\dagger}\phi_2) - M_{12}^{*2}(\phi_2^{\dagger}\phi_1) + \lambda_1(\phi_1^{\dagger}\phi_1)^2 + \lambda_2(\phi_2^{\dagger}\phi_2)^2 \\ &+ \lambda_3(\phi_1^{\dagger}\phi_1)(\phi_2^{\dagger}\phi_2) + \lambda_4(\phi_1^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_1) + \frac{\lambda_5}{2}(\phi_1^{\dagger}\phi_2)^2 + \frac{\lambda_5^*}{2}(\phi_2^{\dagger}\phi_1)^2 \\ &+ \lambda_6(\phi_1^{\dagger}\phi_1)(\phi_1^{\dagger}\phi_2) + \lambda_6^*(\phi_1^{\dagger}\phi_1)(\phi_2^{\dagger}\phi_1) + \lambda_7(\phi_2^{\dagger}\phi_2)(\phi_1^{\dagger}\phi_2) + \lambda_7^*(\phi_2^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_1) \end{split}$$

Our special case

$$M_1^2 = M_2^2 = -(|\mu|^2 + m^2)$$
 $M_{12}^2 = -m_{12}^2 \in \mathbb{R}$ $4\lambda_1 = 4\lambda_2 = 2\lambda_3 = -\lambda_4 = \frac{g^2}{2}$ $\lambda_5 = \lambda_6 = \lambda_7 = 0$

Custodial Symmetry

Find special case in tabulated parameter restrictions:

[Pilaftsis, Phys.Lett.B 706 (2012)]

No.	Symmetry	M_1^2	M_2^2	M_{12}^2	λ_1	λ_2	λ_3	λ_4	${\sf Re}\lambda_5$	$\lambda_6 = \lambda_7$
10	$O(2) \times O(3)$	-	M_1^2	0	-	λ_1	$2\lambda_1$	1	0	0
		$-(\mu ^2+m^2)$		$-m_{12}^2$	<u>g</u>	.2	$\frac{g^2}{4}$	$-\frac{g^2}{2}$		0

Copy group generators:

[Pilaftsis, Phys.Lett.B 706 (2012)]

$$\mathcal{K}^0 = \frac{1}{2}\sigma^3 \otimes \sigma^0 \otimes \sigma^0 \qquad \mathcal{K}^8 = \frac{1}{2}\sigma^1 \otimes \sigma^1 \otimes \sigma^0 \qquad \mathcal{K}^9 = \frac{1}{2}\sigma^2 \otimes \sigma^1 \otimes \sigma^0$$

Translation back to MSSM

$$H\equiv \left(egin{array}{c} i\sigma^2H_1^*\ H_2\ -H_1\ i\sigma^2H_2^* \end{array}
ight)$$

$$U_{c} = \exp\left\{i\theta^{A}K^{A}\right\}$$

$$\left[U_{c}, \Sigma^{1,2}\right] = 0$$

Manifestly custodial invariant potential

$$V = \frac{1}{2}(|\mu|^2 + m^2)H^{\dagger}H - m_{12}^2(H^{\dagger}\Sigma^1 H) + \frac{g^2}{32}(H^{\dagger}H)^2 - \frac{g^2}{8}[(H^{\dagger}\Sigma^1 H)^2 + (H^{\dagger}\Sigma^2 H)^2]$$

Remarks: Can be extended to kinetic and Higgsino part; effectively Higgs family transformation

Gauge-Invariant Operators

Operator	Spin	$SU(2)_c$	СР	
$H^\dagger H$	0	0	even	
$H^\dagger \Sigma^1 H$	0	0	even	
$H^{\dagger}i\Sigma^{2}H$	0	0	odd	
$H^\dagger K^3 \kappa^A H$	0	1	-	
$H^\dagger \kappa^A D_\mu H$	1	1	-	

Tree-level Spectrum

Gauge-Fixing:

(t'Hooft Gauge)

$$egin{align} C^a &= \partial^\mu W_\mu^a + rac{g \, \xi}{2} \, ext{Im} \Big\{ V^\dagger au^a H \Big\} \ \mathcal{L}_{ ext{gf}} &= -rac{1}{2 \xi} \, C^a C^a \ \end{align}$$

vev-Expansion:

$$H_1 \to (v_1, 0)^T + \eta_1$$

 $H_2 \to (0, v_2)^T + \eta_2$

$$\mathcal{L} = -\frac{1}{4}W_{\mu\nu}^aW_a^{\mu\nu} + \frac{1}{2}m_W^2W_\mu^aW_a^\mu \\ + \text{kinetic Terms in } \eta + \text{quadratic Terms in } \eta \\ + \text{interaction Terms}$$

Tree-level Spectrum

Scalar masses:
$$\left. \frac{1}{2} \frac{\partial^2 (\text{quadratic Terms in } \eta)}{\partial \eta_i \partial \eta_j} \right|_{\eta=0}$$

FMS Mechanism

Expand into vev and fluctuations

$$H \rightarrow V + \eta$$

Operator	Spin	$SU(2)_c$	CP	
$O_0 = H^\dagger H$	0	0	even	$O_0 \pm O^3 \sim \begin{pmatrix} H_1^0 \end{pmatrix} \begin{pmatrix} H_2^0 \end{pmatrix}$
$\mathit{O}_1 = \mathit{H}^\dagger \Sigma^1 \mathit{H}$	0	0	even	$O_2 \sim H_3^0$
$O_2 = H^\dagger i \Sigma^2 H$	0	0	odd	$O^2 \mp iO^1 \sim H^+ H^-$
$O^A = H^\dagger K^3 \kappa^A H$	0	1	_	
$O_\mu^A=H^\dagger \kappa^A D_\mu H$	1	1	_	$O^A_\mu \sim c^{Aa}W^a_\mu W_1 \qquad W_2 \qquad W_3$

Summary and Outlook

- Supersymmetric theories have rich phenomenology and some nice properties (even though they might turn out wrong eventually)
- Gauge-invariant formulation absolutely necessary
- GI treatment of MSSM so far: Situation as in SM

What's next?

- Extend to higgsinos
- Include at least one fermion generation
- Add hypercharge

The MSSM: Potential

Standard Model

(right handed, left handed)

$$\begin{split} V(\phi^{\dagger}\phi) &= -\mu^2 \phi^{\dagger}\phi + \lambda (\phi^{\dagger}\phi)^2 \\ \mathcal{L}_{\text{Yukawa}} &= -\bar{\boldsymbol{u}} \mathbf{y}^u Q \phi^{\text{c.c.}} - \bar{\boldsymbol{d}} \mathbf{y}^d Q \phi - \bar{\boldsymbol{e}} \mathbf{y}^e L \phi + \text{h.c.} \end{split}$$

MSSM

$$W_{\rm MSSM} = \mu' H_u H_d + \tilde{\underline{\boldsymbol{u}}} \mathbf{y}^u \tilde{\boldsymbol{Q}} H_u - \tilde{\underline{\boldsymbol{d}}} \mathbf{y}^d \tilde{\boldsymbol{Q}} H_d - \tilde{\underline{\boldsymbol{e}}} \mathbf{y}^e \tilde{\boldsymbol{L}} H_d$$

Remember: $W(\phi) = M^{ij}\phi_i\phi_j + y^{ijk}\phi_i\phi_j\phi_k$ interactions from derivatives of W

Hypercharge

Standard Model

[Maas, Prog.Part.Nucl.Phys. 106 (2019)]

$$\phi \to e^{i\alpha(x)}\phi$$

$$\phi \to e^{i\alpha(x)}\phi$$
 $\Phi \to \Phi e^{i\alpha(x)\tau^3}$

$$\begin{pmatrix} \phi_1 & -\phi_2^* \\ \phi_2 & \phi_1^* \end{pmatrix} \begin{pmatrix} e^{i\alpha(x)} & 0 \\ 0 & e^{-i\alpha(x)} \end{pmatrix}$$

This amounts to gauging the U(1)subgroup of $SU(2)_c$:

$$\Phi o \Phi U_R^{\dagger}$$

Mass degeneracy is lifted $\Rightarrow W^{\pm}, W^3$

MSSM

$$H_i
ightarrow e^{\mp i lpha(x)} H_i$$
 $H
ightarrow e^{i lpha(x) \kappa^3} H$

Same situation as in the SM. Interpretation: Custodial symmetry = Higgs family symmetry (undistinguishable without hypercharge)

Tree-level mass relation

$$m_{H^{\pm}}^2 = 0$$
 $m_{H_{1,2}^0}^2 = \mp \frac{g^2}{2} (v_1^2 - v_2^2)$
 $m_{H_3^0}^2 = -m_W^2$

MSSM contraints on tree-level:

[Rosiek (1995)]
$$m_{H^\pm}^2 = m_{H^0_3}^2 + m_W^2 \\ m_{H^0_1}^2 + m_{H^0_2}^2 = m_{H^0_3}^2 + m_Z^2$$