QQ:2355820666

4A、650V N沟道增强型场效应管

描述

SVF4N65T/F/FG/M/MJ/MJG/D/K N 沟道增强型高压功率 MOS 场效应晶体管采用士兰微电子的 F-Cell™ 平面高压 VDMOS 工艺技术制造。先进的工艺及条状的原胞设计结构使得 该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿 耐量。

该产品可广泛应用于 AC-DC 开关电源, DC-DC 电源转换 器, 高压 H 桥 PWM 马达驱动。

特点

- * 4A, 650V, $R_{DS(on)}$ (40 = 2.3 Ω @ V_{GS} = 10V
- 低栅极电荷量
- 低反向传输电容
- 开关速度快
- * 提升了 dv/dt 能力

命名规则

产品规格分类

产品名称	封装形式	打印名称	材料	包装形式
SVF4N65T	TO-220-3L	SVF4N65T	无铅	料管
SVF4N65F	TO-220F-3L	SVF4N65F	无铅	料管
SVF4N65FG	TO-220F-3L	SVF4N65FG	无卤	料管
SVF4N65MJ	TO-251J-3L	SVF4N65MJ	无铅	料管
SVF4N65MJG	TO-251J-3L	SVF4N65MJG	无卤	料管
SVF4N65M	TO-251D-3L	SVF4N65M	无铅	料管
SVF4N65D	TO-252-2L	SVF4N65D	无卤	料管
SVF4N65DTR	TO-252-2L	SVF4N65D	无卤	编带
SVF4N65K	TO-262-3L	SVF4N65K	无铅	料管

极限参数(除非特殊说明, T_C=25°C)

	符号	参数范围						
参数名称		SVF4N	SVF4N	SVF4N	SVF4N	SVF4N	单位	
		65T	65F(G)	65M/D	65MJ(G)	65K		
漏源电压	V _{DS}	650					V	
栅源电压	V _{GS}	±30					V	
T _C =25°C	I _D	4.0					А	
漏极电流 T _C =100°C		2.8						
漏极脉冲电流	I _{DM}	16				Α		
耗散功率 (T _C =25°C)		100	33	77	79	95	W	
- 大于 25℃ 每摄氏度减少	P _D	0.80	0.26	0.62	0.63	0.76	W/°C	
单脉冲雪崩能量(注1)	E _{AS}	202					mJ	
工作结温范围	TJ	-55∼ + 150				°C		
贮存温度范围	T _{stg}	-55∼+150				°C		

热阻特性

		参数范围					
参数名称	符号	SVF4N	SVF4N	SVF4N	SVF4N	SVF4N	单位
		65T	65F(G)	65M/D	65MJ(G)	65K	
芯片对管壳热阻	$R_{\theta JC}$	1.25	3.79	1.62	1.58	1.32	°C/W
芯片对环境的热阻	$R_{\theta JA}$	62.5	120	110	110	62.5	°C/W

关键特性参数(除非特殊说明, T_C=25℃)

参数名称	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	B _{VDSS}	V _{GS} =0V, I _D =250μA	650			V
漏源漏电流	I _{DSS}	V _{DS} =650V, V _{GS} =0V			1.0	μΑ
栅源漏电流	I_{GSS}	$V_{GS}=\pm30V$, $V_{DS}=0V$			±100	nA
栅极开启电压	$V_{GS(th)}$	$V_{GS}=V_{DS}, I_{D}=250\mu A$	2.0		4.0	V
导通电阻	R _{DS(on)}	$V_{GS}=10V$, $I_{D}=2A$		2.3	2.7	Ω
输入电容	C_{iss}	V 05V V 0V		464		
输出电容	C_{oss}	V _{DS} =25V, V _{GS} =0V,		54		pF
反向传输电容	C_{rss}	f=1.0MHZ		1.32		
开启延迟时间	t _{d(on)}	V _{DD} =325V, I _D =4.0A,	-	16.6		
开启上升时间	t _r	R _G =25Ω		37.33		
关断延迟时间	$t_{d(off)}$		1	18.0		ns
关断下降时间	t _f	(注 2,3)	-	19.2		
栅极电荷量	Q_g	V _{DS} =520V, I _D =4.0A,	-	8.03		
栅极-源极电荷量	Q_gs	V _{GS} =10V	-	2.57		nC
栅极-漏极电荷量	Q_gd	(注 2, 3)		3.03		

源-漏二极管特性参数

参数名称	符号	测试条件	最小值	典型值	最大值	单位
源极电流	Is	MOS 管中源极、漏极构成的		1	4.0	_
源极脉冲电流	I _{SM}	反偏 P-N 结		1	16	А
源-漏二极管压降	V_{SD}	I _S =4.0A, V _{GS} =0V			1.4	V
反向恢复时间	T_{rr}	I _S =4.0A, V _{GS} =0V,		455.23		ns
反向恢复电荷	Q _{rr}	dl _F /dt=100A/μs		2.01		μC

注:

- L=30mH, I_{AS} =3.36A, V_{DD} =150V, R_{G} =25 Ω ,开始温度 T_{J} =25 $^{\circ}$ C;
- 脉冲测试: 脉冲宽度≤300µs, 占空比≤2%;
- 基本上不受工作温度的影响。

典型特性曲线

典型特性曲线 (续)

典型特性曲线 (续)

典型测试电路

栅极电荷量测试电路及波形图

开关时间测试电路及波形图

EAS测试电路及波形图

封装外形图

封装外形图 (续)

封装外形图 (续)

声明:

- 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最新。
- 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统 设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!

附:

修改记录:

日期	版本号	描述	页码
2011.01.18	1.0	原版	
2011.08.19	1.1	增加TO-252-2L和TO-251D-3L封装	
2012.06.04	1.2	修改T _{rr} 和Q _{rr} 的值	
2012.06.15	1.3	修改R _{DS(on)} 典型值;删除TO-251-3L封装,增加TO-251J-3L封装	
2012.08.23	1.4	增加TO-262-3L封装	
2012.11.08	1.5	增加SVF4N65MJ的无卤信息	
2012.12.17	1.6	修改"封装外形图"	
2013.03.13	1.7	修改"产品规格分类"	

版本号: 1.7 2013.03.13 共10页 第10页