Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

Расчетная работа

по дисциплине «Традиционные и интеллектуальные информационные технологии» на тему Найти максимальную степень вершины в неориентированном графе

Выполнил П.А. Котко

Студент группы 321702

Проверила: Н.В. Малиновская

Минск 2024

1 Введение

Цель: Получить навыки формализации и обработки информации с использованием семантических сетей

Задача: Найти максимальную степень вершины в неориентированном графе

2 Список понятий

1. *Неориентированный граф* (Рис.1)-граф, в котором все ребра являются звеньями, то есть порядок двух концов ребра графа не существенен

Рис. 1: Неориентированный граф

2. Степень вершины (Рис.2)-это количество рёбер, которые выходят из этой вершины.

Рис. 2: Степень вершины графа(на примере выделенной вершины)

 $3.\ Mampuųa\ cмежности$ (Рис. 3) - это вид представления графа в виде матрицы, когда пересечение столбцов и строк задаёт дуги. Каждая строка и столбец матрицы соответствуют вершинам, номер строки соответствует вершине, из которой выходит дуга, а номер столбца - в какую входит дуга.

Рис. 3: Матрица смежности

3 Тестовые примеры

Во всех тестах графы будет приведены в сокращенной форме со скрытыми ролями элементов графа.

3.1 Тест (Рис.4, Рис.5)

Вход: Необходимо найти максимальную степень вершины в неориентированном графе.

Puc. 4: $Bxod\ mecma\ 1$

Выход: Результатом будет 1 2 1 0, Наибольшая степень вершины - 2, так как вершина с наибольшей степенью это вершина В равная 2.

Puc. 5: Выход теста 1

3.2 Тест (Рис.6, Рис.7)

Вход: Необходимо найти максимальную степень вершины в неориентированном графе, где A^* — обозначение цетли A

Puc. 6: Bxod mecma 2

Выход: Результатом будет 6 1 1 2 2, Наибольшая степень вершины - 2, так как вершина с наибольшей степенью это вершина A равная 6.

Рис. 7: Выход теста 2

3.3 Тест (Рис.8, Рис.9)

Вход: Необходимо найти максимальную степень вершины в неориентированном графе.

Puc. 8: Bxod mecma 3

Выход: Результатом будет $2\ 2\ 2\ 2\ 2$, Наибольшая степень вершины - 2, так как каждая вершина имеет наибольшую степень, равную 2.

Рис. 9: Выход теста 3

4 Пример работы алгоритма в семантической памяти

1. Входной граф. (Рис.7)

• graph получит в качестве значения sc-узел неориентированного графа:

Рис. 10: Входной граф

- Создаем объект для перебора всех вершин, изначально он установлен на первую вершину.
- \bullet Создаем счётчик для отслеживания количества рёбер у каждой вершины, изначально он равен 0.

Рис. 11: Первая вершина графа

- Начинаем просматривать первую вершину на количество ребер, проверяем до тех пор пока не найдём все ребра вершины;
- Проверяем количество ребёр у остальных вершин графа;

Рис. 12: Последняя вершина графа

- После просмотра всех вершин на количество ребёр, находим наибольшее среди этих значений;
- Завершение алгоритма.