

Generative Al with Diffusion Models

Part 1: From U-Nets to Diffusion

Agenda

- Part 1: From U-Nets to Diffusion
- Part 2: Denoising Diffusion Probabilistic Models
- Part 3: Optimizations
- Part 4: Classifier Free Diffusion
- Part 5: CLIP
- Part 6: Wrap-up & Assessment

Prerequisites

- Basic familiarity with convolutional neural networks (CNNs)
- Basic familiarity with a deep learning framework such as:
 - PyTorch
 - TensorFlow

The Imitation Game

A.K.A The Turing Test

A robot looks in a mirror and the reflection is human, cyberpunk

IBM 704

The First Singing Computer

Eliza

The First Gen Al Chatbot?

Talk to Eliza
> Hello, I am Eliza. * Nice to meet you > Oh ? * How are you > Would you prefer if I were not ? * were not what? > Have you asked anyone else?
Input:

Generative AI of the 70's, 80's and 90s?

- Electronic music
- Video games graphics
- Video game Al
- Computer animation
- Instant messaging chatbots

Deep Dreaming

Images by Martin Thoma

Original 10 Iterations 50 Iterations

GANs

Generative Adversarial Networks

Noise Vector

Image Segmentation

Image Segmentation + GANs NVIDIA Spade

GANs U-Nets

The U shaped Autoencoder

U-Nets
The U shaped Autoencoder

Convolution Review

Kernel

Image

.25	.25
.25	.25

1	O	1
O	1	O
1	0	1

Convolution Review

Kernel

Image

.25	.25
.25	.25

1 • .25	0 • .25	1
0 • .25	1 • .25	O
1	O	1

Convolution Review

Kernel

Image

Output

.25 .25

1	0 • .25	1 • .25
O	1 • .25	0 • .25
1	0	1

Convolution Review

Kernel

Image

Output

.25

1	O	1
0 • .25	1 • .25	O
1 • .25	0 • .25	1

.5 .5

Convolution Review

Kernel

Image

.25	.25
.25	.25

1	O	1
O	1 • .25	0 • .25
1	0 • .25	1 • .25

.5	.5
.5	.5

Image Upscaling

Kernel

Image

.25	.25
.25	.25

1	0	1
0	1	0
1	0	1

Image Upscaling

Kernel

.25 .25

Image

Stride = 2

1	O	O	O	1
O	O	O	O	O
0	O	1	O	0
O	O	O	O	O
1	O	O	O	1

Image Upscaling

Kernel

.25 .25

Image

Stride = 2

1 • .25	0 • .25	0	0	1
0 • .25	0 • .25	O	0	0
0	0	1	0	0
0	0	0	0	0
1	0	O	O	1

Image Upscaling

Kernel

.25 .25

Image

Stride = 2

1	0 • .25	0 • .25	0	1
0	0 • .25	0 • .25	0	0
0	0	1	0	0
0	0	0	0	0
1	O	O	0	1

Output

.25 0

Image Upscaling

Kernel

.25 .25

Image

Stride = 2

1	0	0	0	1
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0
1	O	O	0	1

.25	O	0	.25
0	.25	.25	O
0	.25	.25	O
.25	O	O	.25

Stride

Image

Stride = 2

1	O	0	O	1
O	O	O	O	O
O	O	1	O	0
O	O	O	O	O
1	O	O	O	1

Image

Stride = 3

1	O	O	O	O	O	1
O	O	O	O	O	O	O
O	O	O	O	O	O	O
0	O	O	1	O	O	O
O	O	O	O	O	O	O
O	O	O	O	O	O	O
1	O	O	0	O	O	1

Padding

lmage

Stride = 3

Padding = 0

Image

Stride = 3

Padding = 2

Padding

Image

Stride = 3

Padding = 0

Image

Stride = 3

Padding = 2

Out Padding

Image

Out Padding = 0

 1
 0
 1

 0
 1
 0

 1
 0
 1

Image

Out Padding = 1

 1
 0
 1
 0

 0
 1
 0
 0

 1
 0
 1
 0

 0
 0
 0
 0

Image

Out Padding = 2

1	0	1	O	0
0	1	0	O	O
1	0	1	O	O
O	O	O	O	O
0	O	O	O	0

Image Resizing Upsampling

128 px

192 px

Image Resizing Upsampling

Deconvolution?

Same as Transposed Convolution?

Deconvolved Convolved Image

FashionMNIST

Convolutional Neural Network "Hello World"

Hypothesis: Generate an image from Noise

The Experiment

From Coin Flips to Bells

$$Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

$$\Pr(X = k) = \frac{n!}{k! (n - k)!} p^k (1 - p)^{n - k}$$

$$\Pr(X=2) = \frac{4!}{2!(4-2)!} \left(\frac{1}{2}\right)^2 (1 - \frac{1}{2})^{4-2}$$

$$Pr(X=2) = \frac{4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 2 \cdot 1} \left(\frac{1}{4}\right) \left(\frac{1}{4}\right)$$

$$\Pr(X = 2) = \frac{6}{16}$$

A weighted coin flipping through the air like a cartoon

$$p=\frac{1}{2}$$

$$n = 4$$

$$k = 2$$

From Coin Flips to Bells

From Coin Flips to Bells

$$\Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

$$\Pr(X = k) = \frac{n!}{k! (n - k)!} p^k (1 - p)^{n - k}$$

$$n! \approx \sqrt{2\pi} \left(\frac{n}{e}\right)^n$$

$$\binom{n}{k} p^k q^{n-k} \simeq \frac{1}{\sqrt{2\pi npq}} e^{-\frac{(k-np)^2}{2npq}}$$

$$N(\mathbf{x}; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{\mathbf{x}-\mu}{\sigma}\right)^2}$$

A weighted coin flipping through the air like a cartoon

From Coin Flips to Bells

$$N(\mathbf{x}; \boldsymbol{\mu}, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{\mathbf{x}-\boldsymbol{\mu}}{\sigma})^2}$$

 $\mu = mean, a.k.a. average$

 $\sigma = standard\ devaition, a.k.a.\ spread$

$$z = \frac{x - \mu}{\sigma}$$

