ADDERS and SUBTRACTORS

Experiment No. 03

Aim: To Implement Adders and Subtractor circuits.

In this experiment you will construct and test various adders and subtractors circuits.

Half Adders: A half adder performs the arithmetic addition of two binary digits. It has two inputs (Augend & Addend) and two outputs (Sum & Carry). The two inputs are the two 1-bit numbers X and Y, and the two outputs are the sum(S) and carry (C).

Full-Adders: A full-adder is a combinational circuit that performs the arithmetic sum of three input bits namely Augend-bit(X), addend-bit(Y), and carry-bit from the lower significant position(Z).

Half-Subtractor: The half-subtractor is and combinational circuit which is used to perform the subtraction operation of two bits. It has two inputs, X(minuend) and Y(subtrahend) and two outputs D(difference) and B(borrow).

Logic symbol

Full-Subtractor: And full subtractor is and combinational circuit that performs the subtraction operation of three bits, namely, X(minuend), Y(subtrahend), and Z(borrow from the previous stage) and produces two outputs D(difference) and B(borrow).

Activity. 1. Half-Adder

Design, construct and test a half-adder circuit using one XOR gate and one AND gate, only.

Observations Truth-Table

In	puts	Out	outs
X	Y	S	C
0	0		
0	1		
1 '	0		
1	1		

Write: The switching expressions for Sum (S) = and for Carry(C) =

Exercise-1. Design, construct and test and half-adder circuit using five NAND gates, only and verify the truth-table, you made above.

Activity. 2. Full-Adder

Design, construct and test a full-adder circuit using two half-adders and one OR gate only.

Get the gate level circuitry you made, before making connections in the bread-board.

Observations

Tru	+12	To	h	la.
IFE	1151-	· 1 (.	[57]	w.

r-rane.	Inputs		Ou	tputs
X	Y	Z	S	C
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Write: The switching expressions for Sum $(S) = \dots$ and for Carry $(C) = \dots$

Activity.3. Half-Subtractor

Design, construct and test and half-subtractor circuit using one XOR gate, one AND gate, and one NOT gate only.

Observations Truth-Table

Inp	uts	Outputs		
X	Y	D	В	
.0	0			
0	1			
1	0			
1	1			

Activity. 4. Full-Subtractor Design, construct and test a full-adder circuit using two half-adders and one OR gate only the state of th	Exercise-2. I	Design, or ify the tr	onstruc uth-tabl	e, you	made a	l half-s bove.	ubtract	or circu	it using	live N	IAND	gat
Design, construct and test a full-adder circuit using two half-adders and one OR gate only Design X	my and voi	ny die d	aur caor	, j ou	· · · · · · · · · · · · · · · · · · ·	0010.						
Design, construct and test a full-adder circuit using two half-adders and one OR gate only Design X												
Design, construct and test a full-adder circuit using two half-adders and one OR gate only Design X												
Design, construct and test a full-adder circuit using two half-adders and one OR gate only Design X												
Design, construct and test a full-adder circuit using two half-adders and one OR gate only Design X												
Design, construct and test a full-adder circuit using two half-adders and one OR gate only Design X												
Design, construct and test a full-adder circuit using two half-adders and one OR gate only Design X												
Design, construct and test a full-adder circuit using two half-adders and one OR gate only Design X												
Design, construct and test a full-adder circuit using two half-adders and one OR gate only Design X	-											
YI BI YZ BZ	lecion con	etruct and	test a f	i full-ad	lder circ	nit usin	o two h	alf-adde	ers and o	ne OR	gate of	nlv
	Design, con Design	struct and	d test a f	full-ad	lder circ		X2	D2	ers and o	one OR	gate or	nly.
Z	Design, con Design X	struct and	d test a f	D1	lder circ	,	X2 H	D2 S2	ers and o	one OR	gate or	nly.
7	Design, con Design X	struct and	d test a f	D1	lder circ	,	X2 H	D2 S2	ers and o	one OR	gate or	nly.
Get the gate level circuitry you made, before making connections in the bread-board.	Design, con Design X Y	struct and	d test a f	D1	lder circ	,	X2 H	D2 S2	ers and c	one OR	gate or	nly.
	Design, con Design X Y Z	x1	HS1	D1 Br		,[X2 H: Y2	D2 S2 B2)	
	Design, con Design X Y Z	x1	HS1	D1 Br		,[X2 H: Y2	D2 S2 B2)	
	Design, con Design X Y Z	x1	HS1	D1 Br		,[X2 H: Y2	D2 S2 B2)	
	Design, con Design X Y Z	x1	HS1	D1 Br		,[X2 H: Y2	D2 S2 B2)	
	Design, con Design X Y Z	x1	HS1	D1 Br		,[X2 H: Y2	D2 S2 B2)	
	Design, con Design X Y Z	x1	HS1	D1 Br		,[X2 H: Y2	D2 S2 B2)	
	Design, con Design X Y Z	x1	HS1	D1 Br		,[X2 H: Y2	D2 S2 B2)	
	Design, con Design X Y Z	x1	HS1	D1 Br		,[X2 H: Y2	D2 S2 B2)	

Observations
Truth-Table:

	Inputs		Ou	tputs
X	Y	Z	D	В
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Activity. 5. 4-bit Parallel-Adder

IC type 7493 is and '4-Bit Binary Parallel Adder'. Its internal construction is shown below:

Truth-Table

								outs				
44	43	12	Al	B4	B3	B2	BI	C4	S4	.S3	S2	SI .
	1		1								-	
		-	1									
-			+	-		-						
	-	-	-	-				-				

The two four-bit binary numbers are A1, A2, A3, A4, and B1, B2, B3, B4. The four-bit sum is obtained from S1, S2, S3, S4. Here, C0 is the input carry and C4 is the output carry.

Procedure:

Step. 1. Connect the power supply and ground terminals of 4-bit binary adder IC 7483.

Step.2. Connect the four 'A' inputs to a fixed binary number 1101 and the B input and the input carry to the final toggle switches.

Step. 3. Apply five outputs to indicator lamps/LEDs. Step. 4. Perform the experiment and records the results.

Observations

Table 1. When A(A4A3A2A1) = 1001 and C0=0

		Inputs				Outputs		
B4	B3	B2	BI	C4	S4	S3	S2	SI
0	0.	0	0 -					
0	0	0	. 7					
0	0	1	0.					
0	-0-	1 -	1					
0	1,	0	0					
0	1	- 0	1				-	
0	1	1	0					
0	1	1	-1					
1	0	0	0					
1	0	0	1					
1	0	1	0					
1	0	1	1					
1	1	0	0					
1	1	0	1					
1	1	1	0					
1	1	1	1					

Table. 2.	When A(A4A.	34241) =	1001 and	dC0=1

Tubic.2.	THEN THAT		1001 an	a cy 1				
	Inj	outs				Outputs		
B4	B3	B2	BI	C4	S4	S3	S2	SI
0	0	0	0					
0	0	0	1					
0	0	1	0					
0	0	1,	1					
0	1	0	0					
0	1	0	1					
0	1	1	0					
0	1	1	1					
1	0	0	0					
1	0	0	1				4	
1	0	1	0					
1	0	1	- 1					
1	1	0	0					
1	1	0	1					
1	1	1	0					
1	1	1	1					

Write the outputs:

1.	When	A = 101	0 and	B=1	110.

For C0=0, S=..... & For C0=1, S=....

2. When A=1100 and B=1010

For C0=0, S=..... & For C0=1, S=.....

3.When A=1011 and B=1111.

For C0=0, S=..... & For C0=1, S=....

4. When A=0011 and B=1100.

For C0=0, S=..... & For C0=1, S=....

Activity. 6. Adder-Subtractor

The subtraction of two binary numbers can be done by taking the 2's complement of the subtrahend and adding it to the minuend. The two's complement can be obtained by taking the 1's complement and adding 1. To perform A-B, we complement the four bits of B, add them to the four bits of A, and add 1 through the input carry.

Procedure

This is done as the fig. Shown below.

Step. 1. When M=1,

The four XOR gates complement the bits of B, since $X\oplus 1=X$ '. Thus, when M=1, the input carry C0 is equal to 1 and the sum output is A plus 2's complement of B; i.e. the output generated is A-B.

Step.2. When M=0,

The four XOR gates leaves the bits of B unchanged, since $X \oplus 0=X$. Thus, when M=0, the input carry C0 is equal to 0 and the sum output is A plus B; i.e. the output generated is A+B.

Construct the adder-subtractor circuit and test it for proper operation.

Observations

Table 1. When M = 0 and A(A4A3A2A1) = 1001

		outs	(3A2A1) =			Outputs		
B4	B3	B2	BI	C4	S4	S3	S2	SI
0	0	0	0					
0	0	0	1					
0	0	1	0					
0	0	1	1					
0	1	Ò	0					
0	1	0	1,					
0	1	1	0					
0	1	1	1					
1 .	0	0	0					
1	0	0	1				-	
1	0	1	0					
1	0	1	1					
1	1	0	0					
1	1	0	1					
1	1	1	0					
1	1	1	1					

By analyzing the truth-table you made above, write:

(i) the name of the operation performed

(ii) the output for: 11+5; 15+15; 7+9; 8+15; and 13+4.

Table 2. When M = 1 and A(A4A3A2A1) = 1001

		outs	3A2A1) = 10	Outputs						
B4	B3	B2	B1	C4	S4	S3	S2	SI		
0	0	0	0							
0	0	0	1							
0	0	1	0							
0	0	1	1							
0	1	0	0							
0	1	0	1							
0	1	1	0							
0	1	1	1							
1	0	0	0							
1	0	0	1							
1	0	1	0							
1	0	1	1							
1	1	0	0							
1	1	0	1							
1	1	1	0							
1	1	1	1							

By analyzing the truth-table you made above, write:

(i) the name of the operation performed

(ii) the output for: 11-5; 15-15; 7-9; 8-15; and 13-4.

Inputs							Outputs					
$\overline{A4}$	A3	A2	AI	B4	B3	B2	BI	C4	S4	S3	S2	SI
												-
									-	_	-	-
								_		-	-	-
									-			
											-	