nature

Article

Learning from prepandemic data to forecast viral escape

https://doi.org/10.1038/s41586-023-06617-0

Received: 20 July 2022

Accepted: 6 September 2023

Published online: 11 October 2023

Nicole N. Thadani^{1,6}, Sarah Gurev^{1,2,6}, Pascal Notin^{3,6}, Noor Youssef¹, Nathan J. Rollins^{1,5}, Daniel Ritter¹, Chris Sander^{1,4}, Yarin Gal³ & Debora S. Marks^{1,4} ⊠

MUTATIONS EVADING THE IMMUNE RESPONSE

- main goal of pandemic preparedness:
 - which mutations can evade host immune response
 - how likely it is that they will occur
- general approach
 - experiments that require host polyclonal antibodies
 - computational methods that require enormous sequencing data to reliable estimate strain prevalences
- essentially, a bunch of people need to get infected before we are able to tell anything useful about the virus

→ EVEscape

- uses historical sequences with biophysical and structural information
- applicable before surveillance sequencing, DMS and 3D structure information of antibody complexes

EVESCAPE: GENERAL CONCEPT

probability that a mutation can escape immunity:

- probability that it maintains viral fitness
- probability that it is located in an accessible region by antibodies (given it maintains fitness)
- probability that it disrupts antibody binding (given it maintains fitness and is accessible)

product

MODEL: ACCESSIBILITY & DISSIMILARITY

Accessibility component input: Protein structure(s)

WCN

High

WCN

Weighted contact number for residue i in conformer c:

$$WCN_i^{(c)} = \sum_{j \neq i} \frac{1}{(r_{ij}^{(c)})^2}$$

where r_{ij} is the distance between the geometric centers of the residue i and residue j side chains

- The negative $WCN_i^{(c)}$ captures surface accessibility and protrusion from the core structure
- If there are multiple conformers, we take the maximum of negative $WCN_i^{(c)}$ values across conformers
- $\bullet \ \ \mathsf{P}(\mathsf{Mutation} \ \mathsf{accessible} \ \mathsf{to} \ \mathsf{Ab} \ \big| \ \mathsf{fit}) = f \left(\max_{c} \{-WCN_i^{(c)}\} \right)$

Dissimilarity component input: Mutated & WT amino acid(s)

- Change in **hydrophobicity** at residue i (Eisenberg-weiss scale)
- Change in **charge** at residue i (at physiological pH) $\Delta_c^{(i)}$
- P(Mutation disrupts Ab binding | fit, accessible)

$$= f\left(\sigma(\Delta_h^{(i)}) + \sigma(\Delta_c^{(i)})\right)$$

where $\sigma(.)$ applies standard scaling

weighted contact number ~ large for central residues, low for surface ones → use negative WCN **dissimilarity** ~ how much physical properties (**charge**, **hydrophobicity**) change

RESULTS: ANTIGENIC REGIONS

EVEscape **identifies antigenic regions** without prior knowledge on antibody binding regions or epitopes

→ useful in early vaccine development

RESULTS: PREDICTED MUTATIONS

- EVEscape-predicted mutations emerge during the course of the pandemic
- most high-frequency mutations were predicted by EVEscape
- VOC defining mutations have high EVEscape scores

→ escape sites can be predicted before the pandemic and can forewarn waning therapy effectiveness

RESULTS: PREDICTED MUTATIONS

- EVE alone (fitness alone) is better at predicting mutations with low frequency that are assumably irrelevant in terms of immune escape but maintain fitness
- all parts of the model play an important role in predictions

RESULTS: EVESCAPE VS. DMS

MODULAR DESIGN

- model components can be switched to accommodate specific tasks
 - TranceptEVE → indels
 - including glycosylation in the dissimilarity component for HIV
 - retraining fitness component on pandemic data
 - → epistatic shifts

- comparing EVE scores on a Wuhan full Spike model and on an omicron (BA.2) full Spike model
- BA.2 epistatic shift: the Wuhan linear regression residual for a model fit to the two sets of EVE scores for all single mutations to full Spike

STRAIN FORECASTING

distribution of non-VOC EVEscape strain scores (aggregated EVEscape scores for unique combinations of mutations)

more than 40% of circulating strains on average fall into the top decile of EVEscape strain scores

VOCs are among the highest scoring strains in the two-week windows of their emergence

→ VOCs can be forecasted after a single observation!

STRAIN FORECASTING

distribution of non-VOC EVEscape strain scores (aggregated EVEscape scores for unique combinations of mutations)

These are all based on prepandemic data!

more than 40% of circulating strains on average fall into the top decile of EVEscape strain scores

VOCs are among the highest scoring strains in the two-week windows of their emergence

→ VOCs can be forecasted after a single observation!

GENERALIZABILITY: OTHER VIRUSES

At the beginning:

especially useful for non-pandemic viruses (Nipah, Lassa)

During the pandemy:

active surveillance of emerging strains

