

Naïve Bayes

NAIVE BAYES CLASSIFIER WORKS ON THE PRINCIPLES OF CONDITIONAL PROBABILITY AS GIVEN BY THE BAYES' THEOREM

BEFORE WE MOVE AHEAD, LET US GO THROUGH SOME OF THE SIMPLE CONCEPTS IN PROBABILITY THAT WE WILL BE USING

FOLLOWING EXAMPLE OF TOSSING TWO COINS

Here, the sample space is:

{HH, HT, TH, TT}

- P(Getting two heads) = 1/4
- 2. P(At least one tail) = 3/4
- P(Second coin being head given first coin is tail) = 1/2
- P(Getting two heads given first coin is a head) = 1/2

Bayes' Theorem gives the conditional probability of an event A given another event B has occurred

Bayes Theorem

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

where:

P(A|B) = Conditional Probability of A given B

P(B|A) = Conditional Probability of B given A

P(A) = Probability of event A

P(B) = Probability of event A

TO OUR EXAMPLE

Here, the sample space is:

{HH, HT, TH, TT}

- P(Getting two heads) = 1/4
- 2. P(Atleast one tail) = 3/4
- P(Second coin being head given first coin is tail) = 1/2
- P(Getting two heads given first coin is a head) = 1/2

Here, the sample space is:

{HH, HT, TH, TT}

- 1. P(Getting two heads) = 1/4
- P(Atleast one tail) = 3/4
- 5. P(Second coin being head given first coin is tail) = 1/2
- P(Getting two heads given first coin is a head) = 1/2

THESE TWO USE SIMPLE PROBABILITIES CALCULATED DIRECTLY FROM THE SAMPLE SPACE

Here, the sample space is:

{HH, HT, TH, TT}

- P(Getting two heads) = 1/4
- 2. P(Atleast one tail) = 3/4
- P(Second coin being head given first coin is tail) = 1/2
- P(Getting two heads given first coin is a head) = 1/2.

THIS USES CONDITIONAL PROBABILITY, LET US UNDERSTAND THIS IN DETAIL

Introducing Naive Bayes Classifier

IN THIS SAMPLE SPACE, LET A BE THE EVENT THAT SECOND COIN IS HEAD AND BE THE EVENT THAT FIRST COIN IS TAIL

In the sample space:

{HH, HT, TH, TT}

P(Second coin being head given first coin is tail)

- = P(A|B)
- = [P(B|A) * P(A)] / P(B)
- = [P(First coin being tail given second coin is head) * P(Second coin being head)] / P(First coin being tail)
- = [(1/2) * (1/2)] / (1/2)
- = 1/2 = 0.5

BAYES' THEOREM BASICALLY CALCULATES
THE CONDITIONAL PROBABILITY OF THE
OCCURRENCE OF AN EVENT BASED ON
PRIOR KNOWLEDGE OF CONDITIONS THAT
MIGHT BE RELATED TO THE EVENT

BAYES' THEOREM BASICALLY CALCULATES
THE CONDITIONAL PROBABILITY OF THE
OCCURRENCE OF AN EVENT BASED ON
PRIOR KNOWLEDGE OF CONDITIONS THAT
MIGHT BE RELATED TO THE EVENT

WE WILL EXPLORE THIS IN DETAIL WHEN WE TAKE UP AN EXAMPLE OF ONLINE SHOPPING FURTHER IN THIS TUTORIAL

Understanding Naive Bayes and Machine Learning

Understanding Naive Bayes and Machine Learning

Where is Naive Bayes used?

Face Recognition

Weather Prediction

Where is Naive Bayes used?

Medical Diagnosis

News Classification

Understanding Naive Bayes Classifier

Naive Bayes Classifier is based on Bayes' Theorem which gives the conditional probability of an event A given B

Bayes Theorem

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

where:

P(A|B) = Conditional Probability of A given B

P(B|A) = Conditional Probability of A given B

P(A) = Probability of event A

P(B) = Probability of event A

Shopping Demo - Problem Statement

To predict whether a person will purchase a product on a specific combination of Day, Discount and Free Delivery using Naive Bayes Classifier

Shopping Demo - Dataset

We have a small sample dataset of 30 rows for our demo

1	A	В	C	D
1	Day	Discount	Free Delivery	Purchase
2	Weekday	Yes	Yes	Yes
3	Weekday	Yes	Yes	Yes
4	Weekday	No	No	No
5	Holiday	Yes	Yes	Yes
6	Weekend	Yes	Yes	Yes
7	Holiday	No	No	No
8	Weekend	Yes	No	Yes
9	Weekday	Yes	Yes	Yes
10	Weekend	Yes	Yes	Yes
11	Holiday	Yes	Yes	Yes
12	Holiday	No	Yes	Yes
13	Holiday	No	No	No
14	Weekend	Yes	Yes	Yes
15	Holiday	Yes	Yes	Yes
-	N	aive Bayes D	Dataset +	113000

Shopping Demo - Frequency Table

Based on this dataset containing three input types of *Day*, *Discount* and *Free Delivery*, we will populate frequency tables for each attribute

Fragues	ov Tabla	В	ıy
Frequen	cy Table	Yes	No
Discount	Yes	19	1
	No	5	5

Eroguon	ou Table	Buy		
Frequen	cy Table	Yes No		
Free Delivery	Yes	21	2	
	No	3	4	

Frequency Table		Buy	
		Yes	No
Day	Weekday	9	2
	Weekend	7	1
	Holiday	8	3

Shopping Demo - Frequency Table

Based on this dataset containing three input types of *Day*, *Discount* and *Free Delivery*, we will populate frequency tables for each attribute

Shopping Demo - Likelihood Table

Now let us calculate the Likelihood table for one of the variable, Day which includes Weekday, Weekend and Holiday

	ana Table	В	Buy	
Frequ	ency Table	Yes	No	
	Weekday	9	2	11
Day	Weekend	7	1	8
	Holiday	8	3	11
		24	6	30

Libalik	nood Table	Вц	ıy	
Likelir	1000 Table	Yes	No	
	Weekday	9/24	2/6	11/30
Day	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

Shopping Demo - Likelihood Table

Based on this likelihood table, we will calculate conditional probabilities as below

Likelihood Table		Bu	У	
Likelin	nod lable	Yes	No	
Day	Weekday	9/24	2/6	11/30
	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
,		24/30	6/30	

Shopping Demo - Likelihood Table

Based on this likelihood table, we will calculate conditional probabilities as below

t des lit	nood Table	Bu	iy	
Listeni	1000 lable	Yes	No	
	Weekday	9/24	2/6	11/30
Day	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

As the Probability(Buy | Weekday) is more than Probability(No Buy | Weekday), we can conclude that a customer will most likely buy the product on a Weekday

Shopping Demo - Naive Bayes Classifier

Similarly, we can find the likelihood of occurrence of an event involving all three variables

Frequency Table		В	ıy
Frequenc	y lable	Yes	No
	Yes	9	2
Discount	No	5	14

Frequency Table		В	iy.
Frequenc	y lable	Yes	No
Free	Yes	6	3
Free Delivery	No	5	16

F		Buy	
Frequ	ency Table	Yes	No
Day	Weekday	9	2
	Weekend	-7	-1
	Holiday	8	3

WE HAVE THE FREQUENCY TABLES
OF ALL THE THREE INDEPENDENT
VARIABLES. WE WILL NOW
CONSTRUCT LIKELIHOOD TABLES
FOR ALL THE THREE

Shopping Demo - Naive Bayes Classifier

TABLES TO CALCULATE WHETHER A
CUSTOMER WILL PURCHASE A PRODUCT
ON A SPECIFIC COMBINATION OF DAY,
DISCOUNT AND FREE DELIVERY OR NOT

HERE, LET US TAKE A COMBINATION OF THESE FACTORS:

- . DAY = HOLIDAY
- DISCOUNT = YES
- FREE DELIVERY = YES

Shopping Demo - No Purchase

Likelihood Tables

Likelihood Table		Buy		
Elweim	ood lable	Yes	No	
Day	Weekday	9/24	2/6	11/30
	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

Frequency Table		Buy		
		Yes	No	
Discount	Yes	19/24	1/6	20/30
	No	5/24	5/6	10/30
		24/30	6/30	

Frequency Table		Buy		
		Yes	No	
Free	Yes	21/24	2/6	23/30
Delivery	No	3/24	4/6	7/30
		24/30	6/30	

Calculating Conditional Probability of purchase on the following combination of day, discount and free delivery:

Where B equals:

- Day = Holiday
- Discount = Yes
- Free Delivery = Yes

Let A = No Buy

P(A|B) = P(No Buy | Discount = Yes, Free Delivery = Yes, Day = Holiday)

$$= \frac{(1/6) * (2/6) * (3/6) * (6/30)}{(20/30) * (23/30) * (11/30)}$$

= 0.178

Understanding Naive Bayes Classifier

Naive Bayes Classifier is based on Bayes' Theorem which gives the conditional probability of an event A given B

Bayes Theorem

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

where:

P(A|B) = Conditional Probability of A given B

P(B|A) = Conditional Probability of A given B

P(A) = Probability of event A

P(B) = Probability of event A

Shopping Demo - No Purchase

Likelihood Tables

Likelihood Table		Bu		
		Yes	No	
	Weekday	9/24	2/6	11/30
Day	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

Frequency Table		Buy		
		Yes	No	
Discount	Yes	19/24	1/6	20/30
	No	5/24	5/6	10/30
		24/30	6/30	

Frequency Table		Buy		
		Yes	No	
Free Delivery	Yes	21/24	2/6	23/30
	No	3/24	4/6	7/30
		24/30	6/30	

Calculating Conditional Probability of purchase on the following combination of day, discount and free delivery:

Where B equals:

- Day = Holiday
- Discount = Yes
- Free Delivery = Yes

Let A = No Buy

$$= 0.178$$

Shopping Demo - Purchase

Likelihood Tables

Likelihood Table		Bu		
		Yes	No	
Day	Weekday	9/24	2/6	11/30
	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

Frequency Table		Buy		
		Yes	No	
Discount	Yes	19/24	1/6	20/30
	No	5/24	5/6	10/30
		24/30	6/30	

Frequency Table		Buy		
		Yes	No	
Free Delivery	Yes	21/24	2/6	23/30
	No	3/24	4/6	7/30
		24/30	6/30	

Calculating Conditional Probability of purchase on the following combination of day, discount and free delivery:

Where B equals:

- Day = Holiday
- Discount = Yes
- Free Delivery = Yes

$$= \frac{(19/24) * (21/24) * (8/24) * (24/30)}{(20/30) * (23/30) * (11/30)}$$

$$= 0.986$$

Shopping Demo - Naive Bayes Classifier

PROBABILITY OF PURCHASE = 0.986
PROBABILITY OF NO PURCHASE = 0.178

FINALLY, WE HAVE CONDITIONAL PROBABILITIES OF PURCHASE ON THIS DAY!

PROBABILITIES TO GET THE LIKELIHOOD OF THE EVENTS

Shopping Demo - Result

SUM OF PROBABILITIES

= 0.986 + 0.178 = 1.164

LIKELIHOOD OF PURCHASE

= 0.986 / 1.164 = 84.71 %

LIKELIHOOD OF NO PURCHASE

= 0.178 / 1.164 = 15.29 %

PROBABILITY OF PURCHASE = 0.986
PROBABILITY OF NO PURCHASE = 0.178

AS 84.71% IS GREATER THAN 15.29%, WE CAN CONCLUDE THAT AN AVERAGE CUSTOMER WILL BUY ON A HOLIDAY WITH DISCOUNT AND FREE DELIVERY

Use Case - Text Classification using Naive Bayes

To perform text classification of News Headlines and classify news into different topics for a News Website

