Sistemas Informáticos

Fundamentos del Hardware

Introducción y Sistemas Numéricos

Introducción y Sistemas Numéricos Objetivos

- ☐ Conocer el concepto de Sistemas Informático.
- ☐ Conocer los Sistemas Numéricos y de Codificación más habituales en la Informática.
- □ Conocer las unidades de almacenamiento de información en los Sistemas Informáticos.

Contenidos

- 1. Introducción Sistema Informático
- 2. Sistemas Numéricos y Códigos
 - a. Decimal
 - b. Binario
 - c. Octal
 - d. Hexadecimal
 - e. Cambios de Base
- 3. Aritmética Binaria
- 4. Información Binaria

Introducción - Debate Inicial

- ☐ Cómo Definirías el Concepto de *Informática*?
- □ Por Ejemplo: ¿Cómo le explicaríais a un abuelo/bisabuelo o persona mayor, qué es la informática o un ordenador?
- ☐ ¿Qué es lo que hacen? ¿Para qué sirven? ¿Cómo funcionan?
- ☐ ¿Qué es un bit?

Introducción

- □ <u>Sistema:</u> " Un conjunto ordenado de elementos que se relacionan entre sí y contribuyen a un determinado objetivo".
- □ <u>Sistema de comunicación</u>: "Aquel conjunto de elementos que emiten, reciben e interpretan información"

Sistema Informático

☐ Un Sistema Informáticos se entiende como un conjunto de dispositivos que estarán física y lógicamente conectados entre sí (de manera local o remota), y que interactuarán con el usuario para el proceso y tratamiento de información digital.

Elementos de un Sistema Informático

- ☐ Hardware → Sistema Físico
- ☐ Software → Sistema Lógico que lo forman S. Operativo + Aplicaciones
- Usuarios

RECURSOS DE UN SISTEMA INFORMÁTICO

U: recursos humanos o usuarios

S: recursos de software

H: recursos de hardware

USUARIO

APLICACIÓN INFORMATICA

SISTEMA OPERATIVO

HARDWARE

Información Digital

Señal digital

Un sistema informático maneja información de todo tipo: números, texto, imágenes, audio, vídeo, etc., y cuyo soporte es principalmente dispositivos electrónicos que manejan información binaria → Electrónica Digital

Señal Analógica: Tiene magnitudes Físicas, señal eléctrica, Continuidad Números reales.

Señal Digital: Magnitudes discretas, valores binarios, 0 y 1.

Información Digital: Ventajas

- ☐ Es más inmune al ruido.
- ☐ Proporciona elevada densidad de integración en chips semiconductores.
- ☐ Mayor facilidad de acoplamiento entre subsistemas
- ☐ Permite un diseño más sistemático
- ☐ Garantiza un comportamiento totalmente predecible
- ☐ Hace posible una codificación sencilla de la información

Sistema de Numeración

☐ Un <u>sistema de numeración</u> es un conjunto de símbolos (dígitos) y reglas que los ordenan, que permite representar cualquier número y operar con él.

□ *Código* es un convenio que permite representar cosas: números, letras, ideas,

órdenes, etc.

Sistema de Numeración Decimal

- ☐ Es el sistema de numeración usado en la vida cotidiana.
- □ Su base de numeración es 10, esto quiere decir que dispone de 10 signos para representar los números: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9.

Sistema de Numeración Binario

- Su base de numeración es el 2, usando para representar cualquier número de signos
 0 y 1
- □ La palabra bit deriva de las dos palabras inglesas "binary digit" cifra binaria, y designa a las dos cifras 0 y 1.
- ☐ Un bit es también, la porción más pequeña de información representable mediante un número, e indica si una cosa es verdadera o falta, alta o baja, negra o blanca, encendido o apagado, etc.

- ✓ Presencia de Tensión = 1
- ✓ Ausencia de Tensión = 0

Sistema de Numeración Binario

- ☐ Un **byte** es una secuencia de 8 bits.
- □ Ocho ceros y unos se pueden ordenar de 256 maneras diferentes ya que cada bit tiene un valor de posición diferente, donde el bit número 1 es el LSB (Bit Menos Significativo) y el último bit, el número 8, es el MSB (Bit Más Significativo).

110101₂ =
$$(1 \times 2^5) + (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0)$$

= 32 + 16 + 0 + 4 + 0 + 1
= 53 ◀

Sistema de Numeración Octal

- □ Sistema de Base 8. Este sistema sólo utiliza 8 cifras (0, 1, 2, 3, 4, 5, 6, 7), y cuando se llega a la cuenta 7 se pasa a 10, etc.
- □ La cuenta hecha en octal: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21,

Número	Cero	Uno	Dos	Tres	Cuatro	Cinco	Seis	Siete
Símbolo	0	1	2	3	4	5	6	7

Decimal	l	l	l	l	l	l	l .	l							l .		
Octal	0	1	2	3	4	5	6	7	10	11	12	13	14	15	16	17	20

□ La facilidad con que se pueden convertir entre el sistema Octal y el binario hace que el sistema octal sea atractivo como un medio "taquigráfico" de expresión de números binarios grandes.

Sistema de Numeración Hexadecimal

- Es un Sistema de Base 16, y es un sistema mucho más sencillo de utilizar para interpretación de los números digitales.
- ☐ El sistema dispone de 16 símbolos para representar los números (0,1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F).

Decimal	Hex
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7

Decimal	Hex
8	8
9	9
10	Α
11	В
12	C
13	D
14	E
15	F

Resumen

Decimal	Octal	Hexadecimal	Binario
0	0	0	0000
1	1	1	0001
2	2	2	0010
3	3	3	0011
4	4	4	0100
5	5	5	0101
6	6	6	0110
7	7	7	0111
8	10	8	1000
9	11	9	1001
10	12	A	1010
11	13	В	1011
12	14	C	1100
13	15	D	1101
14	16	E	1110
15	17	F	1111

Conversión entre Bases

□ Cualquier número, en cualquier base, se puede representar en forma polinómica.

Ejemplo

$$2539 = 2. \ 10^{3} + 5. \ 10^{2} + 3. \ 10^{1} + 9. \ 10^{0}$$

$$2539 = 2. \ 1000 + 5. \ 100 + 3. \ 10 + 9. \ 1$$

$$2539 = 2000 + 500 + 30 + 9$$

$$10110 = 1. \ 2^{4} + 0. \ 2^{3} + 1. \ 2^{2} + 1. \ 2^{1} + 0. \ 2^{0}$$

$$10110 = 1. \ 16 + 0. \ 8 + 1. \ 4 + 1. \ 2 + 0. \ 1$$

$$10110 = 16 + 0 + 4 + 2 + 0 = 22$$

$$3D7 = 3.16^{2} + 13.16^{1} + 7.16^{0}$$

 $3D7 = 3.256 + 13.16 + 7.1$
 $3D7 = 768 + 208 + 7 = 983$

Conversión Binario a Decimal

<u>Ejemplo</u>

- 1. Tomamos los valores de posición correspondiente a las columnas donde aparezcan únicamente unos.
- 2. Sumamos los valores de posición para identificar el numero decimal equivalente.

Ejemplo

Convertir 11011, a su equivalente decimal.

Conversión Hexadecimal a Decimal

<u>Ejemplo</u>

□ La conversión se realiza siguiendo el mismo procedimiento que en las conversiones binario-decimal, pero considerando la base B=16. En este caso, además, deberemos sustituir los valores A, B, C, D, E y F por su equivalencia en el sistema decimal.

C7A =
$$12 \cdot 16^2 + 7 \cdot 16^1 + 10 \cdot 16^0$$

C7A = $12 \cdot 256 + 7 \cdot 16 + 10 \cdot 1$
C7A = $3072 + 112 + 10 = 3194$

Conversión Octal a Decimal

Ejemplo

☐ La conversión se realiza siguiendo el mismo procedimiento que en las conversiones binario-decimal, pero considerando la base B=8.

$$4316_{|8} = 2254_{|10}$$

Octal = 37246

$$761_{(8} = 7.8^2 + 6.8^1 + 1.8^0 = 497_{(10)}$$

Conversión Decimal a Binario

Ejemplo

□ Se realizan divisiones sucesivas por la base, 2, hasta que el resto sea inferior al mismo. El número binario se obtiene a partir del último cociente (el bit más significativo) y los demás restos obtenidos.

El resultado de pasar 124 a binario es:

Siendo el primer nº el resto de la última división

Conversión Decimal a Hexadecimal

Ejemplo

□ Se realizan divisiones sucesivas por la base, 16, hasta que el resto sea inferior al mismo. El número binario se obtiene a partir del último cociente (el bit más significativo) y los demás restos obtenidos.

Conversión Hexadecimal a Binario / Binario a Hexadecimal

- La conversión entre estos dos sistemas de numeración es muy sencilla. Para ello tendremos en cuenta que cada 4 bits binarios tenemos un dígito hexadecimal.
- ☐ Para realizar la operación inversa, sustituiremos cada dígito hexadecimal por un equivalente binario.

Conversión Octal a Hexadecimal

□ Pasamos el número a binario, luego agrupamos los dígitos binarios de 4 en 4, de derecha a izquierda, y añadiendo ceros por la izquierda si fuera necesario. Acudimos a la tabla, y sustituimos cada cuatro dígitos binarios por su correspondiente dígito hexadecimal. Ejemplo

Conversión Hexadecimal a Octal

□ Pasamos el número a binario, agrupamos de 3 en 3 de derecha a izquierda, y añadiendo ceros por la izquierda si fuera necesario. Luego vamos a la tabla, y sustituimos cada grupo de 3 por su correspondiente dígito en octal.

Conversión Octal a Binario

☐ Utilizamos la tabla y sustituimos directamente cada dígito en octal por sus correspondientes dígitos en binario.

Conversión Binario a Octal

□ Tenemos que agrupar los dígitos binarios de tres en tres, empezando por la derecha. De derecha a izquierda, si a la izquierda nos quedara un grupo de menos de tres dígitos, añadimos ceros por la izquierda. Luego, vamos a la tabla, y sustituimos cada grupo de tres dígitos binarios por su correspondiente dígito decimal:

Código Binario: BCD

- ☐ Se trata de un código para representar dígitos decimales en binarios. Sus siglas significan Decimal Codificado en Binario (BCD).
- □ Para representar un número decimal en BCD se representan cada uno de sus dígitos en binario. Se emplea en electrónica digital para la representación de números decimales en displays.

Decimal	BCD	Deci mal	BCD
0	0000	5	0101
1	0001	6	0110
2	0010	7	0111
3	0011	8	1000
4	0100	9	1001

Código Binario: Decimal a BCD

□ El código BCD se obtiene sustituyendo cada dígito decimal por su equivalente en binario, usando 4 bits.

87							
8 7							
1000	0111						
10000111							

28						
2 8						
0010	1000					
00101000						

56							
5	6						
0101	0110						
01010110							

Código Binario: BCD a Decimal

☐ El paso de código BCD a Decimal es igualmente de sencillo:

DECIMAL	BCD
	8421
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Ejercicios de Cambios de Base

