

802.11 Physical Layer Frame Format Modulation Techniques PLCP Protocol Data Unit

Pankaj Seervi

CONTENTS

- Physical Layer Frame Format
- Modulation Techniques
 - 1. FHSS PHY
 - 2. DSSS PHY
 - 3. BPSK
 - 4. QPSK
 - 5. QAM
- PLCP Protocol DATA UNIT
- PICP HEADER

Physical layer

MODULATION

• **Modulation** is the process of varying one or more properties of a periodic waveform, called the **carrier signal**, with a modulating signal that typically contains information to be transmitted.

Need for Modulation:

- To reduce the antenna height
- For multiplexing of signals
- To reduce noise and interference

• Types of Modulation:

- Analog modulation
- Digital Modulation

Digital Modulation Techniques

- ASK
- FSK(BFSK)
- PSK(BPSK)
- QPSK

Digital Modulation Techniques

802.11 FHSS(Frequency hopping spread spectrum) PHY

- Frequency hopping spread spectrum (FHSS) was used in the original 802.11 (Legacy) standard.
- FHSS provides 1 and 2 Mbps RF communications using the 2.4 GHz ISM band for legacy radios.
- Frequency hopping depends on rapidly changing the transmission frequency in a predetermined, pseudo random pattern.
- 802.11 FHSS would use 79 MHz of frequencies, from 2.402 GHz to 2.480 GHz.
- The original IEEE 802.11 standard mandates that each hop is 1 MHz in size.
- The hopping sequences contain at least 75 hops, but no greater than 79 hops.
- FHSS uses Gaussian Frequency Shift Keying (GFSK) to encode the data.

802.11 FHSS PHY

802.11 FHSS PHY

- Sync: To alert the receiver that the potentially receivable signal is present.
- Start Frame Delimiter: Consists of 16 bit as 0000 1100 1011 1101
- PSDU Length Word(PLW): The 12-bit length field informs the receiver of the length of the MAC frame that follows the PLCP header
- PLCP signaling(PSF): bit 0 is reserved, bit 1-3 encode the speed at which the payload MAC frame is trasmitted.
- Header Error Check(HEC)

802.11 DSSS(Direct sequence spread spectrum) PHY

- DSSS provides 1 and 2 Mbps RF communications using the 2.4 GHz ISM band.
- The data that is being transmitted is spread across the range of frequencies that make up the channel. The process of spreading the data across the channel is known as **data encoding**.
- The system converts the 1 bit of data into a series of bits that are referred to as chips.
- To create the chips, a Boolean XOR is performed on the data bit and a fixed-length bit sequence pseudo random number (PN) code. Using a PN code known as the **Barker code.**
- Binary data 1 = 10110111000
- Binary data $0 = 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1$

802.11 DSSS PHY

802.11 DSSS PHY

- Although 1 bit of data might need only 2 MHz of frequency space, the 11 chips will require 22 MHz of frequency carrier space.
- This process of converting a single data bit into a sequence is often called spreading or chipping.

802.11 DSSS PHY

BPSK

• The bit rate is equal to the baud rate (symbol rate).

QPSK

- QPSK is a form of Phase Shift Keying in which two bits are modulated at once, selecting one of four possible carrier phase shifts (0, 90, 180, or 270 degrees).
- QPSK allows the signal to carry twice as much information as ordinary PSK using the same bandwidth.
- The bit rate is two times the baud rate (symbol rate).

QPSK

QAM

- QAM 16
- QAM 64

802.11b HR - DSSS PHY

- HR DSSS provides 1 Mbps, 2Mbps, 5.5Mbps and 11 Mbps RF communications using the 2.4 GHz ISM band.
- The 802.11b 5.5 and 11 Mbps speeds are known as High-Rate DSSS (HR-DSSS).
- To help provide the faster speeds of HR-DSSS, a more complex code, Complementary Code Keying (CCK) is used.
- CCK uses an eight-chip pseudorandom number (PN), along with using different PNs for different bit sequences.

Long PPDU format

Short PPDU format

PPDU Format

- Sync Field
 - ightarrow TO alert receiver that the potentially receivable single is present. Rx(STA) will synchronize with the incoming

single after detecting the sync field.

- For Long PLCP preamble \rightarrow 128 bits (1111.....1)
- For short PLCP preamble \rightarrow 56 bits (0000.....0)
- SFD (Start Of Frame Delimiter)
 - → It is a dictator that information PLCP header is coming next. Syn with Tx and Rx must occur before SFD filed.
 - For Long PLCP preamble → 16 bits (1111 0011 1010 0000)
 - For short PLCP preamble → 16 bits (0000 0101 1100 1111)

PLCP HEADER

- Signal (8 bits)
 - → Indicate with modulation method will be used to transmit the PSDU portion of PPDU.
 - For Long PLCP preamble $\rightarrow 0x0A 1$ Mbps; 0x14 2 Mbps; 0x37 5.5 Mbps; 0x6E 11 Mbps
 - For short PLCP preamble → 2 Mbps, 5.5 Mbps, & 11 Mbps
- Service(8bits)
 - For Both PLCP Preamble \rightarrow b2 Clock lock, b3— Modulation(0=CCK, 1=PBCC), b7— Extension bit.

Length

- Length
 - → Number of microseconds that are required to transmit the PSDU.
- CRC(16 bit):→ Provides protection for the other three filed in PPDU signal.

OFDM PLCP Preamble

- OFDM training structure, consists of 10 short symbols and 2 long symbols.
- t1 to t10 identify the short training symbols, GI2 is a long guard interval, and T1 and T2 identify the long training symbols.
- Following the PLCP preamble is the SIGNAL field and the DATA fields, each with a guard interval preceding them.
- The total training length is 16 μ s. A short OFDM training symbol consists of 12 subcarriers and a long OFDM training symbol consists of 53 subcarriers.

OFDM - PLCP sublayer

OFDM - PLCP sublayer

802.11n HT PHY

PPDU Format

- Non-HT format (NON HT)
- HT-mixed format (HT MF)
- HT-greenfield format (HT GF)

Large enough to Deliver, Small enough to Care

Global Village IT SEZ Bangalore

South Main Street Milpitas California

Raheja Mindspace IT Park Hyderabad

Thank you

Fairness

Learning

Responsibility

Innovation

Respect