2/2 Exercise 1.1

(a) At first we write down our different sets of the Domain. Then we combine them to form our desired result.

Whe have: $\Sigma_2 \setminus \Sigma_1 = \{d, e\}$, and $Q^2 = \{(q_1, q_1), (q_1, q_2), (q_2, q_1), (q_2, q_2)\}.$

If we make the scalar product of this two sets we obtain the following result:

$$R = \{ ((q_1, q_1), d), ((q_1, q_2), e), ((q_2, q_1), d), ((q_2, q_2), e), ((q_1, q_1), e) \}$$

(b) First of all we write down the domain, that is also the power set of $\Sigma_1 \cap \Sigma_2$:

$$\mathcal{P}(\Sigma_1 \cap \Sigma_2) = \{\emptyset, \{b\}, \{c\}, \{b, c\}\}$$

and the codomain:

$$Q \times V = \{ (q_1, X), (q_1, Y), (q_1, Z), (q_2, X), (q_2, Y), (q_2, Z) \}$$

An example for a total function could be:

$$f: \{\emptyset \mapsto (q_1, X), \{b\} \mapsto (q_2, X), \{c\} \mapsto (q_2, Z), \{b, c\} \mapsto (q_1, Y)\}$$

(c) We want to calculate how many partial functions $f: \Sigma_1 \cup \Sigma_2 \to_p V$ there are. The domain of the function f is:

$$\Sigma_1 \cup \Sigma_2 = \{a, b, c, d, e\}$$

and the codomain:

$$V = \{ X, Y, Z \}$$

Since we have 4 possible mappings for every element of the set (the 3 variables and the emptyset) $\Sigma_1 \cup \Sigma_2$, with cardinality $|\Sigma_1 \cup \Sigma_2| = 5$, we have 4^5 possible partial functions.

2/2 Exercise 1.2

(a) Just for clarity we write the set of all cells: $P = \{ (1,1), (1,2), (2,1), \dots, (n,m) \}$ In the given example we have: n = 3, m = 2, $C = \{ White, Gray, Black \}$ and the following function f:

$$f(P_{3\times 2}) := \begin{cases} Grey & \text{if } P = (1,1) \\ Black & \text{if } P = (3,2) \\ White & else \end{cases}$$

(b) The cartesian product of $P \times P$ results in:

$$P^2 = \{ ((1,1), (1,1)), ((1,1), (1,2)), \dots, ((n,m), (n,m)) \}$$

and therefore the relation R:

$$R = \{ (p, p') = ((x_p, y_p), (x_{p'}, y_{p'})) \mid f(p) \neq f(p'), \ x_p = x_{p'} \text{ and } y_p = y_{p'} + 1 \}$$

R for concrete example in (a):

$$R = \{ ((1,2),(1,1)), ((3,2),(3,1)) \}$$

2.5/3 Exercise 1.3

The statement to prove is:

$$(A \cup B) \subseteq (A \cap B)$$
, then $A \subseteq B$

- (a) Direct proof. In a first step we take an $x \in (A \cup B)$. Because $A \cup B$ is a subset of $A \cap B$, any $x \in A$ is always also element of B and vice versa, and therefore $A \subseteq B$.
- (b) Indirect proof. Assumption: if $(A \cup B) \subseteq (A \cap B)$, then $A \nsubseteq B$.

 There must be an $x \in A \setminus B$, that is also element of $A \cup B$. Because $(A \cup B) \subseteq (A \cap B)$ and $x \notin (A \cap B)$, following the initial condition of our x, x cannot be in A which is a contraddiction to our assumption.
- (c) Contrapositive. We assume: if $A \nsubseteq B$, then $(A \cup B) \nsubseteq (A \cap B)$ but we want to show here that Because of $A \nsubseteq B$, there must be an $x \in A \setminus B$ which contradicts with $(A \cup B) \subseteq (A \cap B)$ this does not hold because if $x \in A \setminus B$, so also $x \in A \cup B$ but x is not element of $A \cap B$. so its not a contradiction but proving our statement -0.5

3/3 Exercise 1.4

Proof. For $a \in \mathbb{R}$ and $a \neq 1$

Basis n = 0:

$$\sum_{i=0}^{0} a^{0} = a^{0} = 1 \stackrel{?}{=} \frac{1-a}{1-a} = 1$$

 $\underline{\mathrm{IH}}$:

$$\sum_{i=0}^{n} a^{i} = \frac{1 - a^{n+1}}{1 - a} \qquad \forall n \in \mathbb{N}_{0}$$

Inductive step $n \rightarrow n + 1$: