

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

ESCUELA DE ESTUDIOS GENERALES ÁREA DE INGENIERÍA

Álgebra y Geometría Analítica

Tema:Vectores en \mathbb{R}^2 . Operaciones suma y producto por un escalar. Norma de un vector. Producto escalar. Propiedades. Semestre: 2022-i

GUÍA DE PRÁCTICA Nº 9

- 1) Dados los vectores $\vec{a}=(3,4), \vec{b}=(8,-1), \ y \ \vec{c}=(-2,5).$ Determinar:
 - a) $\vec{v} = 3\vec{a} 2\vec{b} + \vec{c}$
 - b) $\vec{v} = 4\vec{a} + \frac{1}{2}(\vec{b} \vec{c})$
 - c) $\vec{v} = 2(\vec{a} \vec{b}) + 3\vec{c}2,4$
- 2) Determinar el vector \vec{x} en las siguientes ecuaciones:
 - a) $3(0,2) + 2\vec{x} 5(1,3) = (-3, -5)$
 - b) $(15,-12) + 2[(-6,5) + \vec{x}] = 4(1,-2)$
- 3) Los vectores \vec{a} , \vec{b} y \vec{c} forman entre si un ángulo de 60^o , con $||\vec{a}|| = 4$, $||\vec{b}|| = 2$ y $||\vec{c}|| = 6$. Determinar el valor de $||\vec{p}||$, si $\vec{p} = \vec{a} + \vec{b} + \vec{c}$.
- 4) Sean los puntos $P\left(\frac{5}{2},5\right)$, $Q\left(\frac{1}{3},\frac{13}{4}\right)$, $R\left(-\frac{16}{5},\frac{7}{5}\right)$ y S(x,y). Determinar la suma de x+y si se cumple: $\overrightarrow{PQ} = \overrightarrow{RS}$.
- 5) Se dan las coordenadas de los puntos de A y B. Expresar $\vec{v} = \overrightarrow{AB}$ en términos de su magnitud y de su ángulo de dirección.
 - a. $A(\sqrt{12}, -3), B(\sqrt{27}, -4)$
 - b. $A(3\sqrt{5}, 4), B(\sqrt{48}, 5)$
 - c. A(-3, 4), B(-5,6)
- 6) Dados los vectores \vec{a} y \vec{b} con $\vec{a} \vec{b} \neq 0$. Demostrar que : $\left|\frac{\|\vec{a}\| \|\vec{b}\|}{\|\vec{a} \vec{b}\|}\right| \leq 1$
- 7) Halla un vector que tenga la misma magnitud del vector que va de A(-2,3) a B(-5,4) y que tenga el sentido opuesto al vector que va de S(9,-1) a T(12,-7).
- 8) Sea \vec{x} un vector de \mathbb{R}^2 tal que $(-5,2) = 2\vec{x} + (1,-8)$. Si $(-5,3) = t \vec{x} + r(2,-1)$. Hallar el valor de 2t + r.
- 9) Se tiene $2[(5.-1)+\vec{c}']=3(1,3)-(-1,a)$. Si A(2,3) y B(3,-1) y el punto final del vector \vec{c} , en posición ordinaria, esta sobre el conjunto $P=\{(x,y):y=x^2-1\}$. Hallar las coordenadas de un punto P tal que $\overrightarrow{AP}+2\overrightarrow{PC}=\overrightarrow{AB}$.
- 10) Si \vec{a} es unitario y se cumple $2\vec{a} 3\vec{b} = \vec{c}$ y $3\vec{a} 2\vec{b} = 5\vec{c}$. Siendo \vec{a} un vector unitario, calcular la norma de $\vec{b} \vec{c}$.
- 11) Dado el vector \overrightarrow{AB} ., y el punto C, donde A = (1, -2); B = (4, 1); C = (3, 6). Halle el simétrico D del punto C con respecto $\overrightarrow{a}.\overrightarrow{AB}$.,
- 12) Si $\|\vec{a}\|=5$, $\|\vec{b}\|=13$ además $\|2\vec{a}-\vec{b}\|=\sqrt{17}$. Hallar
- 13) Si $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ y $||\vec{a}|| = 4$, $||\vec{b}|| = 2$ y $||\vec{c}|| = 5$. Determinar $(3\vec{b} + \frac{\vec{c}}{2}) \cdot \vec{c}$.

Los profesores del curso

- 14) Sabiendo que los puntos A(1,1), B(6,6) y c(3,9) son tres vértices consecutivos de un paralelogramo, determinar las coordenadas del cuarto vértice.
- 15) Determinar los triángulos rectángulos en los siguientes casos:
 - a. (1,0), (3,3), (4,-2)
 - b. (0,-1),(2,2),(3,-3)
 - c. (1,-2), $(2+\sqrt{2},-1)$, $(2-\sqrt{2},-1)$
 - d. (2,3), (5,-2), (4,-4)
- 16) Demostrar el teorema de Pitágoras.
- 17) Si A, B y C son los vértices de un triángulo y si $\overrightarrow{BD} = \frac{2}{3}\overrightarrow{BC}$, $\overrightarrow{CE} = \frac{2}{3}\overrightarrow{CA}$, $\overrightarrow{AF} = \frac{2}{3}\overrightarrow{AB}$. Demostrar que $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \overrightarrow{0}$
- 18) Sean los vectores en el plano u y v Demuestre que: Si. uv=0 si y sólo si

a)
$$||u+v||^2 = ||u||^2 + ||v||^2$$

b)
$$||u+v|| = ||u-v||$$

19) En la figura adjunta, P es un punto tal que el triángulo de área A es tres veces el área del triángulo de área B.

Determine la norma de \vec{V}

20) Dado un hexágono regular de arista a. Se determinan 4 vectores sobre dicho hexágono como se muestra. Determinar el módulo de la suma de dichos vectores:

Los profesores del curso Pág. 2