MPSI 2

Programme des colles de mathématiques.

 $Semaine \ 21 \ : \ {\it du lundi} \ 4 \ {\it avril} \ {\it au vendredi} \ 8.$

Dérivation, convexité

Liste des questions de cours

- $\mathbf{1}^{\circ})\;$ Dérivée d'un produit de la forme B(f,g) : énoncé et démonstration.
- 2°) Dérivée d'une composée : énoncé et démonstration.
- $\mathbf{3}^{\circ}$) Montrer qu'une composée de deux applications de classe C^n est de classe C^n .
- 4°) Enoncer et démontrer le lemme de Rolle généralisé.
- $\mathbf{5}^{\circ}$) Enoncer et démontrer le théorème de la limite de la dérivée.

Que se passe-t-il lorsque $f'(x) \underset{x \in I \setminus \{a\}}{\xrightarrow{x \to a}} +\infty$?

- $\mathbf{6}^{\circ}$) CNS pour que f^{-1} soit dérivable en f(t): énoncé et démonstration.
- 7°) CNS pour que f soit un C^n -difféomorphisme de I dans f(I): énoncé et démonstration.
- 8°) Représentez graphiquement le comportement d'une suite (x_n) vérifiant $x_{n+1} = f(x_n)$.
- $\mathbf{9}^{\circ}$) Lorsque $f(\ell) = \ell$ avec $|f'(\ell)| < 1$, montrer que ℓ est un point d'équilibre localement stable.
- 10°) Enoncer et démontrer la propriété d'associativité du barycentre.
- 11°) Donner la définition d'une fonction convexe ainsi que son interprétation géométrique.
- 12°) Montrer qu'une fonction est convexe si et seulement si son épigraphe est convexe. En déduire l'inégalité de Jensen.
- 13°) Si f est dérivable, montrer que f est convexe si et seulement si f' est croissante.

Dérivation

 $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$. I est un intervalle d'intérieur non vide et $a\in I$.

Les applications considérées sont définies sur I et sont à valeurs dans un \mathbb{K} -espace vectoriel normé E.

1 Dérivabilité

Dérivée en un point, dérivées à gauche et à droite.

f est dérivable en a si et seulement s'il existe $l \in E$ tel que f(t) = f(a) + (t-a)l + o(t-a).

 $d\acute{e}rivable \Longrightarrow continue.$

2 Opérations sur les fonctions dérivables

Dérivation d'une application à valeurs dans un produit cartésien d'espaces vectoriels normés.

Dérivation d'une application à valeurs dans un K-espace vectoriel de dimension finie, en fonction de ses applications coordonnées.

Cas particulier : $f: I \longrightarrow \mathbb{C}$ est dérivable en a ssi Im(f) et Re(f) sont dérivables en a.

Linéarité de la dérivation,

Dérivée de $u \circ f$, où u est linéaire continue et f dérivable.

Définition d'une application bilinéaire,

dérivée de B(f,g), où B est bilinéaire continue et où f et g sont dérivables.

Dérivation d'une composée.

Dérivée de l'inverse lorsque $f(I) \subset \mathbb{K}$.

Dérivée logarithmique.

3 Dérivées d'ordre supérieur

Applications D^n et C^n .

Formule de Leibniz pour la dérivée d'ordre n de B(f,g).

Composée d'applications D^n ou C^n .

4 L'égalité des accroissements finis

Dans ce paragraphe, toutes les applications utilisées sont définies sur I et sont à valeurs dans \mathbb{R} .

Les extremums locaux sur $\overset{\circ}{I}$ de $f:I\longrightarrow\mathbb{R}$ dérivable sont des points critiques de f. Réciproque faussse.

lemme de Rolle

Généralisation : Soit $(a,b) \in \mathbb{R} \cup \{-\infty,+\infty\}$ avec a < b. Si f est dérivable sur]a,b[et $\lim_{x \to a} f(x) = \lim_{x \to b} f(x) \in \mathbb{R} \cup \{-\infty,+\infty\}$, alors il existe $c \in]a,b[$ tel que f'(c) = 0.

Théorème des accroissements finis.

Théorème de la limite de la dérivée, généralisation aux dérivées d'ordre supérieur.

5 Formules de Taylor

L'égalité de Taylor-Lagrange (hors programme) pour une fonction à valeurs dans R.

Inégalité des accroissements finis pour une fonction C^1 à valeurs dans \mathbb{C} .

Formule de Taylor avec reste intégral.

Inégalite de Taylor-Lagrange.

Primitivation d'un développement limité.

Formule de Taylor-Young.

6 Monotonie et dérivabilité

Lien entre sens de variation et signe de la dérivée.

Condition de stricte monotonie.

Dérivée de f^{-1} .

CNS pour que f soit un C^n -difféomorphisme de I dans f(I).

7 Suites récurrentes d'ordre 1

Étude de suites (x_n) vérifiant $x_{n+1} = f(x_n)$, lorsque x_0 est dans un intervalle I tel que $f: I \longrightarrow I$ est continue et monotone.

Représentation graphique de (x_n) .

Limites et points fixes de f.

Lorsque $f|_I$ est croissante, (x_n) est monotone, toujours à gauche ou toujours à droite d'un point fixe.

Lorsque $f|_I$ est décroissante, les deux suites (x_{2n}) et (x_{2n+1}) sont monotones et de sens contraires.

Lorsque $f(\ell) = \ell$ et $|f'(\ell)| < 1$ (resp : $|f'(\ell)| > 1$), ℓ est un point d'équilibre localement stable (resp : instable).

Convexité

Remarque. Les deux premiers paragraphes n'ont presque pas fait l'objet d'exercices en TD.

8 Sous-espaces affines

Repère affine.

Dimension d'un sous-espace affine.

Sous-espaces affines parallèles.

L'ensemble des solutions d'une équation linéaire compatible est un sous-espace affine.

Intersection de sous-espaces affines.

9 Barycentres et convexité

Notation. On fixe un espace affine \mathcal{E} , p points A_1, \ldots, A_p de \mathcal{E} et p scalaires $\lambda_1, \ldots, \lambda_p$ dans \mathbb{K} .

Fonction vectorielle de Leibniz : $\forall M \in \mathcal{E}, \, \varphi(M) = \sum_{i=1}^{p} \lambda_i \overrightarrow{A_i M}.$

Barycentre des $(A_i, \lambda_i)_{1 \le i \le p}$ lorsque $\sum_{i=1}^p \lambda_i \ne 0$.

Homogénéïté et associativité du barycentre.

Parties convexes.

Les sous-espaces affines sont des convexes.

Une intersection de parties convexes est convexe.

Enveloppe convexe.

10 Fonctions convexes

10.1 Définition

Notation. On fixe une application $f: I \longrightarrow \mathbb{R}$, où I est un intervalle de \mathbb{R} d'intérieur non vide.

Convexité et concavité, stricte convexité.

Interprétation géométrique.

Sommes de fonctions convexes.

Points d'inflexion.

L'épigraphe de f, égal à $\{(x,y) \in \mathbb{R}^2 / x \in I \text{ et } y \geq f(x)\}$, est convexe si et seulement si f est convexe. Inégalité de Jensen.

la moyenne géométrique $\prod_{i=1}^n x_i^{\frac{1}{n}}$ est inférieure à la moyenne arithmétique $\frac{1}{n}\sum_{i=1}^n x_i$.

10.2 Croissance des pentes

Convexité et croissance des pentes : en posant $p_x(y) = \frac{f(x) - f(y)}{x - y} = p_y(x)$, f est convexe sur I si et seulement si pour tout $a, b, c \in I$ avec a < b < c, $p_a(b) \le p_a(c)$ (resp : $p_b(a) \le p_b(c)$, ou encore $p_c(a) \le p_c(b)$).

Hors programme : Si f est convexe sur I, elle est dérivable à droite et à gauche, donc elle est continue, en tout point de $\stackrel{\circ}{I}$.

10.3 Fonctions convexes dérivables

Si f est dérivable, f est convexe si et seulement si f' est croissante, ou bien si et seulement si son graphe est au dessus de ses tangentes.

Prévisions pour la semaine suivante :

Polynômes (début).