ДОМАШНЕЕ ЗАДАНИЕ

7.1. Найти математическое ожидание, дисперсию и среднеквадратичное отклонение дискретной случайной величины X, ряд распределения которой задан таблицей табл. 1.

X	1	2	3
P	0.30	0.21	0.49

Таблица 1

- 7.2. Вероятность того, что после трех выстрелов стрелок попадет в мишень хотя бы один раз, равна 0.992. Найти математическое ожидание и дисперсию числа X попаданий в мишень после 20 выстрелов.
- 7.3. Непрерывная случайная величина X имеет функцию плотности распределения вероятностей $f(x) = e^{-2|x-3|}, x \in \mathbb{R}$. Найти математическое ожидание, дисперсию и среднеквадратичное отклонение случайной величины X.
- 7.4. Независимые случайные величины X_1 и X_2 имеют экспоненциальные распределения с параметрами λ_1 и λ_2 . Найти математическое ожидание случайной величины $Y = X_1 X_2$.
- 7.5. Дискретная случайная величина имеет ряд распределения, заданный табл. 2. Найти математическое ожидание и дисперсию случайной величины $Y = X^2 + 1$.

X	1	2	3	4
P	0.1	0.4	0.3	0.2

Таблица 2

7.6. Закон распределения дискретного случайного вектора (X,Y) задан таблицей (см. задачу 5.1):

$X \setminus Y$	10	20	30	40
0.5	0.05	0.12	0.08	0.04
2.5	0.09	0.3	0.11	0.21

Найти вектор (MX_1, MX_2) математических ожиданий случайного вектора \overrightarrow{X} , а также его ковариационную и корреляционную матрицы.

7.7. Совместная плотность распределения двумерного случайного вектора $\overrightarrow{X} = (X_1, X_2)$ имеет вид

$$f(x_1, x_2) = \begin{cases} 4x_1x_2e^{-(x_1^2 + x_2^2)}, & x_1 > 0, \ x_2 > 0, \\ 0, & \text{иначе.} \end{cases}$$

Найти вектор (MX_1, MX_2) математических ожиданий случайного вектора \overrightarrow{X} , а также его ковариационную и корреляционную матрицы.