MTH 375 Fall 2022 Hw 2 key

- 1. Let X_1, \ldots, X_n and Y_1, \ldots, Y_n be two random samples with the same mean μ and variance σ^2 .
 - (a) Show that $T = \frac{1}{2}\overline{X} + \frac{1}{2}\overline{Y}$ and $U = \frac{1}{3}\overline{X} + \frac{2}{3}\overline{Y}$ are both unbiased estimators of μ .

$$E(T) = E(\frac{1}{2}\overline{X} + \frac{1}{2}\overline{Y}) = \frac{1}{2}E(\overline{X}) + \frac{1}{2}E(\overline{Y}) = \frac{1}{2}\mu + \frac{1}{2}\mu = \mu, \text{ and } E(U) = E(\frac{1}{3}\overline{X} + \frac{2}{3}\overline{Y}) = \frac{1}{3}E(\overline{X}) + \frac{2}{3}E(\overline{Y}) = \frac{1}{3}\mu + \frac{2}{3}\mu = \mu.$$

(b) Evaluate $MSE(T; \mu)$ and $MSE(U; \mu)$. According to the MSE criterion, is T or U the better estimator of μ ?

Since
$$T$$
 and U are unbiased, $\mathrm{MSE}(T) = V(\frac{1}{2}\overline{X} + \frac{1}{2}\overline{Y}) = \frac{\sigma^2}{4n} + \frac{\sigma^2}{4n} = \frac{\sigma^2}{2n}$, and $\mathrm{MSE}(U) = V(\frac{1}{3}\overline{X} + \frac{2}{3}\overline{Y}) = \frac{\sigma^2}{9n} + \frac{4\sigma^2}{9n} = \frac{5\sigma^2}{9n}$
According to the MSE criterion, T is a slightly better estimator of μ that U .

- 2. Let X_1, \ldots, X_n be a random sample uniform on $[0,\theta]$.
- (a) Show that $T=2\overline{X}$ is an unbiased estimator of θ , and evaluate $MSE(T;\theta)$.
- $E(T) = 2E(\overline{X}) = 2 \cdot \theta/2 = \theta$. Since T is unbiased, $MSE(T;\theta) = V(T) = \frac{4}{n}V(X_i) = \frac{1}{3n}\theta^2$.
- (b) Let $M = \max\{X_1, \dots, X_n\}$. Find the pdf of M.

(Hint: Use the fact that $F_M(m) = P(M \le m) = P(X_1 \le m \& \cdots \& X_n \le m)$.)

 $F_M(m) = P(X \le m)^n = (m/\theta)^n$, so $f_M(m) = nm^{n-1}/\theta^n$ for $0 < m < \theta$.

(c) Compute E(M) and V(M).

$$E(M) = \int_0^\theta m \cdot \frac{1}{\theta^n} n m^{n-1} dm = \frac{n}{n+1} \theta. \quad E(M^2) = \int_0^\theta m^2 \cdot \frac{1}{\theta^n} n m^{n-1} dm = \frac{n}{n+2} \theta^2,$$
so $V(M) = \frac{n}{n+2} \theta^2 - \left(\frac{n}{n+1}\theta\right)^2 = \frac{n}{(n+1)^2(n+2)} \theta^2.$

(d) Use you answers to (c) find an unbiased estimator M^* of θ based on M, and to evaluate $MSE(M^*;\theta)$. According to the MSE criterion, which is a better estimator of θ , T or M^* ?.

$$M^* = \frac{n+1}{n}M$$
. Of course, $E(M^*) = \theta$. $MSE(M^*) = \left(\frac{n+1}{n}\right)^2 V(M) = \frac{1}{n(n+2)}\theta^2$.

For n=1, $MSE(T)=MSE(M^*)$, and $MSE(M^*)$ is smaller for all n>1. By the MSE criterion, M^* is the better estimator.

- #3. 4.1.10 Let X_1, \ldots, X_n be a sample of iid Bin(1, θ) random variables, and let $T = \overline{X}(1 - \overline{X})$ be an estimator of $V(X_i) = \theta(1 - \theta)$. Determine

- a) E(T). $E(\overline{X}) = \theta$, and $E(\overline{X}^2) = (E(\overline{X}))^2 + V(\overline{X}) = \theta^2 + \frac{\theta(1-\theta)}{n}$ so $E(T) = E(\overline{X}(1-\overline{X})) = \theta \theta^2 \frac{\theta(1-\theta)}{n} = (1-\frac{1}{n})\theta(1-\theta)$. b) $\operatorname{Bias}(T; \theta(1\theta)) = E(T) \theta(1-\theta) = (1-\frac{1}{n})\theta(1-\theta) \theta(1-\theta) = -\frac{1}{n}\theta(1-\theta)$. c) the asymptotic bias of T for estimating $\theta(1-\theta)$. $\lim_{n\to\infty} \operatorname{Bias}(T; \theta(1-\theta)) = 0$
- d) an unbiased estimator of $\theta(1-\theta)$ based on T.

Since $E(T) = (\frac{n-1}{n})\theta(1-\theta)$, an unbiased estimator of $\theta(1-\theta)$ is $T^* = \frac{n}{n-1}T$.

- 4. Let X_1, \ldots, X_n be a sample of i.i.d $N(0, \sigma^2)$ random variables. Let $T = \frac{1}{n} \sum_{i=1}^{n} X_i^2$.
- (a) Show that T is an unbiased estimator of σ^2 . Since $E(X_i) = 0$, $E(T) = E(X_1^2) = \sigma^2$. as required.
 - (b) Find MSE (T, σ^2) . **Hint**: The mgf of X_i is $M(t) = e^{\frac{1}{2}\sigma^2 t^2}$.

 $MSE(T) = \frac{1}{n}V(X_1^2) = \frac{1}{n}(E(X_1^4) - (E(X_1^2))^2 = \frac{1}{n}(E(X^4) - \sigma^4)$. Use the MGF to compute $E(X_1^4)$:

$$M'(t) = \sigma^2 t e^{\frac{1}{2}\sigma^2 t^2}; \quad M''(t) = (\sigma^2 + \sigma^4 t^2) e^{\frac{1}{2}\sigma^2 t^2};$$

$$M'''(t) = (2\sigma^4t + \sigma^4t + \sigma^6t^3)e^{\frac{1}{2}\sigma^2t^2} = (3\sigma^4t + \sigma^6t^3)e^{\frac{1}{2}\sigma^2t^2};$$

 $M'(t) = \sigma^2 t e^{\frac{1}{2}\sigma^2 t^2}; \quad M''(t) = (\sigma^2 + \sigma^4 t^2) e^{\frac{1}{2}\sigma^2 t^2};$ $M'''(t) = (2\sigma^4 t + \sigma^4 t + \sigma^6 t^3) e^{\frac{1}{2}\sigma^2 t^2} = (3\sigma^4 t + \sigma^6 t^3) e^{\frac{1}{2}\sigma^2 t^2};$ $M''''(t) = (3\sigma^4 + 3\sigma^6 t^2 + 3\sigma^6 t^2 + \sigma^8 t^4) e^{\frac{1}{2}\sigma^2 t^2}, \text{ so } E(X_1^4) = M''''(0) = 3\sigma^4. \text{ Substituting }$ into the formula above, we have $MSE(T) = \frac{2}{n}\sigma^4$.

A quicker way to do 4(b): We know that X_i/σ is N(0,1), so $\frac{nT}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i}{\sigma}\right)^2$ is χ^2 with n df, so $V\left(\frac{nT}{\sigma^2}\right) = 2n$, and it follows that $MSE(T, \sigma^2) = V(T) = \frac{2}{n}\sigma^4$.

5. #4.1.20. Let $X_1, \ldots X_n$ be a sample of iid $\text{Exp}(\beta)$ random variables. Use the Delta Method to determine the approximate standard error of $\hat{\beta}^2 = \overline{X}^2$.

Since
$$X_i$$
 is $\operatorname{Exp}(\beta)$, $V(X_i) = \beta^2$, $V(\overline{X}) = \beta^2/n$ and so $\operatorname{SE}(\overline{X}) = \beta/\sqrt{n}$.
 Let $g(x) = x^2$, so $g'(\beta) = 2\beta$. According to the delta-method, $\operatorname{SE}(\overline{X}^2) \approx |g'(\beta)| \operatorname{SE}(\overline{X}) = 2\beta^2/\sqrt{n}$.

Let
$$g(x) = x^2$$
, so $g'(\beta) = 2\beta$. According to the delta-method

$$SE(\overline{X}^2) \approx |g'(\beta)| SE(\overline{X}) = 2\beta^2/\sqrt{n}$$