QUALIFY EXAMINATION ANSWERS - ALGEBRA

1. Sem 2, 2000/2001

Question 1.1. Let G be a finite group with a unique maximal subgroup. Show that G is cyclic.

Proof. Let M be the maximal subgroup of G. For any $g \in G \setminus M$. $\langle g \rangle = G$. Since otherwise $\langle g \rangle$ should contained in the maximal subgroup M, a contradiction. \square

Question 1.2. Let A be a subgroup of index n of a finite group G and let

$$\{g_1A, g_2A, \cdots, g_nA\}$$

be a set of coset representatives of G/A. For each $g \in G$, define

$$f_q\colon G/A\to G/A$$

by $f_g(g_iA) = gg_iA$. Prove that f_g is a bijection. Define $\chi \colon G \to S_n$ by

$$\chi(g) = f_a$$

Prove that χ is a group homomorphism. Determine the kernel of χ .

Proof. Since $f_g \circ f_{g^{-1}} = \mathrm{id}_{G/A}$, $f_{g^{-1}} \circ f_g = \mathrm{id}_{G/A}$. f_g is bijection. It's easy to see that $\chi(gh)(g_iA) = f_{gh}(g_iA) = ghg_iA = f_g \circ f_h(g_iA) = (\chi(g)\chi(h))(g_iA)$. So χ is a group homomorphism.

 $\chi_g = 1$ iff $f_g = \mathrm{id}_{G/A}$ iff $gg_iA = g_iA$ for all g_i . g_i just representative element of g_iA . So it's equivalent to ghA = hA for all $h \in G$. So $\mathrm{Ker}\chi = \{ g \in G \mid h^{-1}gh \in A \forall h \in G \}$. \square

Question 1.3. Let R be a commutative ring with identity and let $\chi: R \to F$ be a nontrivial ring homomorphism, where F is an integral domain. Prove that kernel of χ is a prime ideal.

Proof. F is integral domain then $\text{Im}\chi$ is integral domain by the definition. So $\text{Ker}\chi$ is prime. (If $ab \in \text{Ker}\chi$, $\text{Ker}\chi = ab + \text{Ker}\chi = (a + \text{Ker}\chi)(b + \text{Ker}\chi)$. So $a + \text{Ker}\chi = \text{Ker}\chi$ or $b + \text{Ker}\chi = \text{Ker}\chi$ by definition of integral domain. So either a or b in $\text{Ker}\chi$.)

Question 1.4. Let V be a vector space of finite dimension over a field F. Suppose that V is a integral domain. Prove that V is a field.

Proof. Note that all right ideal of V is F vector subspace of V ($xf = x(1_V f) \in I$ for any right ideal I of V and $x \in I$, $f \in F$). Since V is finite dimension, V is right Artinian ring. So for any $0 \neq a \in V$, exists $k \in \mathbb{N}$, $b \in V$, s.t. $a^k = a^{k+1}b((a) \supset (a^2) \supset (a^3) \cdots$ terminate). Since V is integral domain, $ab = 1_V$. So V is a field.

Question 1.5. Let E/F be a field extension and let $a, b \in E$ be algebraic over F. Prove that every element in F(a,b) is algebraic over F.

Proof. For any $v \in F(a,b)$, $F(v) \subset F(a,b)$. So $[F(v):F] \leq [F(a,b):F] = [F(a)(b):F(a)][F(a),F] \leq [F(b):F][F(a):F] < \infty$. Hence v is algebraic over F.

2. Sem 1, 2001/2002

- Question 2.1. (a) Show that if R is a commutative ring with identity, then every maximal ideal of R is a prime ideal.
- (b) Show that if R is a Principal Ideal Domain, then every Prime ideal of R is a maximal ideal.
- (c) Give an example of a ring R which has a prime ideal that is not maximal.
- *Proof.* (a) I maximal $\Leftrightarrow R/I$ is field, So R/I is integral domain $\Leftrightarrow I$ prime.
- (b) (i) I = (p) is prime iff p is prime (p nonunit and p|ab gives p|a or p|b). It's easy since $p|a \Leftrightarrow a \in (p)$.
 - (ii) p is prime the p is irreducible (r nonunit and r = ab gives a or b is unit). If p = ab, then p|ab. WLOG, suppose that p|a then a = ps. So p = psb, then 1 = sb since R is integral domain. So b is unit.
 - (iii) r is irreducible iff (r) is maximal in the set of all proper principle ideals. If r is irreducible, $(r) \subset (s)$. Then r = sb. If s is unit, (s) = R, if b is unit, $s = rb^{-1}$, i.e. $(s) \subset (r)$. So (r) is maximal in all proper principle ideals. If (r) is maximal in all proper principle ideals, r = ab, $(r) \subset (a)$. Then if (a) = R, a is unit. If (a) = (r), a = rs. So r = rsb, so sb = 1 i.e. b is unit.

In the PID, every ideal is principle, so if I is prime, I is maximal.

(c) See Question 6.1

Question 2.2. (a) Let G and H be finite groups with relatively prime orders. Let $\theta: G \to H$ be a group homomorphism. What can conclude about θ why?

- (b) Let H be a subgroup of a group G with index 2. Prove that $H \triangleleft G$.
- (c) Give an example to show that H may not be a normal subgroup of G if [G:H]=3.
- *Proof.* (a) θ is trivial. Im(θ) is a subgroup of H so |H| divided by $|\text{Im}(\theta)|$. By $|\text{Im}(\theta)| = \frac{|G|}{|\text{Ker}(\theta)|}$, |G| divided by $|\text{Im}(\theta)|$. Hence Im(θ) is trivial, since |G|, |H| coprime.
- (b) Note that if $g \notin H$, $\{H, gH\}$ forms a partition of G. Also $\{H, Hg\}$ is a partition of G. So gH = Hg since H = H. (Then $gHg^{-1} = H$). So H is normal in G.
- (c) Consider S_3 which is a non-abelian order 6 group. It has a order 2 subgroup H and order 3 subgroup N. Then $H \cap N = 1$, $N \triangleleft G$. So H can not be normal in S_3 otherwise $S_3 = H \times N$ is abelian.

Question 2.3. If L is a field extension of K such that [L:K] = p where p is a prime number, show that L = K(a) for every $a \in L$ that is not in K.

Proof. Note that [L:K] = [L:K(a)][K(a),K], [K(a),K] > 1 since $a \notin K$. So [L:K(a)] i.e. L = K(a).

3. Sem 2, 2001/2002

Question 3.1. Classify all groups of order n up to isomorphism.

- (a) n is the square of a prime integer.
- (b) n = pq where p, Q are primes with p > q and q does not divide p 1.

Proof. (a) Suppose that $|G| = p^2$. We claim that G is abelian. First, the center Z(G) of G is non-trivial. Consider G act on itself by conjugation. If $x \in Z(G)$, the orbit length is 1. Let $S = \{x_i\}$ be the representative set of different orbit. Then we get the class equation:

$$|G| = |Z(G)| + \sum_{i} [G : H_i]$$

where $H_i = C_G(x_i)$. Note that $p|[G: H_i]$. So $|Z(G) \equiv 0 \pmod{p}$. |Z(G)| non-trivial since $e \in Z(G)$.

If Z(G) = G, then G is abelian. If Z(G) < G, then |G/Z(G)| = p so G/Z(G) is cyclic. Let $a \in G \setminus Z(G)$ and a + Z(G) is a generator of G/Z(G). Then every element in G can written as $a^n g$ for $n \in \mathbb{Z}$, $g \in Z(G)$. So $a^{n_1} g_1 a^{n_2} g_2 = a^{n_1} a^{n_2} g_1 g_2 = a^{n_2} g_2 a^{n_1} g_1$. Hence G is abelian.

So G can be \mathbb{Z}_{p^2} and $\mathbb{Z}_p \times \mathbb{Z}_p$ by the classification of finite abelian group.

(b) Consider Sylow q-subgroup Q. The number of Sylow q-subgroup is kq+1 and divides pq. Since $q \nmid p-1$, only 1 Sylow q-subgroup. So Q is normal in G. On the other hand, there is a Sylow p-subgroup P. It is normal in G since p>q, the number of Sylow p-group is 1. Clearly $p \cap Q = \langle e \rangle$, PQ = G. $P \cong \mathbb{Z}_p$ and $Q \cong \mathbb{Z}_q$. So $G \cong \mathbb{Z}_p \oplus \mathbb{Z}_q = \mathbb{Z}_{pq}$.

4. Sem 1, 2002/2003

Question 4.1. (a) Determine whether each of the following pairs of groups are isomorphic:

- (i) $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, \mathbb{Z}_8 ;
- (ii) \mathbb{Z} , \mathbb{Q} ;
- (iii) \mathbb{R}^* , \mathbb{C}^* ;
- (iv) \mathbb{R}^* , \mathbb{Q}^* ;
- $(v) \mathbb{Q}, \mathbb{Q} \times \mathbb{Q}.$
- (b) $\mathbb{Z}[i] = \{ a + bi \mid a, b \in \mathbb{Z} \}$ is a Euclidean domain with respect to the Euclidean distance d, where

$$d(a+bi) = a^2 + b^2$$

(i) Find $\alpha, \beta \in \mathbb{Z}[i]$ such that

$$1 - 5i = (1 + 2i)\alpha + \beta,$$

where $|\beta| < 5$.

(ii) Decide, with reasons, which of the following elements are irreducible in $\mathbb{Z}[i]$:

$$1 + i, 2 + 3i, 1 + 3i.$$

Proof. (a) (i) No. \mathbb{Z}_8 have order 8 element, but all element in $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ at most order 2.

- (ii) No. \mathbb{Q} is divisible, say any $x \in \mathbb{Q}$, $n \in \mathbb{Z}$ exists $y \in bQ$ s.t. ny = x. But \mathbb{Z} is not divisible.
- (iii) No. \mathbb{C}^* have any order n subgroup say $\langle e^{2\pi i/n} \rangle$. But the only finite subgroup in \mathbb{R}^* is $\{\pm 1\}$.

- (iv) No. \mathbb{R}^* and \mathbb{Q}^* have different cardinal number.
- (v) Consider \mathbb{Q} and $\mathbb{Q} \times \mathbb{Q}$ as \mathbb{Z} -module, If \mathbb{Q} isomorphism to $\mathbb{Q} \times \mathbb{Q}$ by homomorphism ϕ . We have exact sequence:

$$0 \to \mathbb{Q} \xrightarrow{\phi} \mathbb{Q} \times \mathbb{Q} \to 0.$$

localization by tensor product with \mathbb{Q} . It gives a \mathbb{Q} -module(\mathbb{Q} -vector space) exact sequence:

$$0 \to \mathbb{Q} \xrightarrow{\phi \otimes \mathrm{id}_{\mathbb{Q}}} \mathbb{Q} \times \mathbb{Q} \to 0.$$

Since \mathbb{Q} have IBN, \mathbb{Q} can not isomorphism to $\mathbb{Q} \times \mathbb{Q}$.

- (b) (i) 1 5i = (1 + 2i)(-2 1i) + 1.
 - (ii) N(1+i)=2, N(2+3i)=13 are prime, so they are irreducible. N(1+3i)=10, if it is reducible, i.e. rs=1+3i, N(r)=2, N(s)=5. So $r=\pm 1\pm i$. Then it's clearly that (1+i)(2+i)=1+3i.

Question 4.2. (a) If p is a prime number, show that the symmetric group S_p has exactly (p-2)! Sylow p-subgroups. Deduce that (p-1)! + 1 is divisible by p.

- (b) Prove that a ring wit a prime number of elements is either a field or a zero ring (i.e. a ring in which all products are zero).
- *Proof.* (a) Clearly by combination, S_p has p!/p = (p-1)! order p elements. Different p-subgroups has different non-trivial element, and such element is order p. So S_p has (p-1)!/(p-1) = (p-2)! Sylow p-subgroup. Then $(p-2)! \equiv 1 \mod p$. Then $(p-1)! + 1 \equiv -1(p-2)! + 1 \equiv 0 \mod p$.
- (b) Clearly the additive group of R is \mathbb{Z}_p . Let 0 and e be the identity of additive and multiplication respectively. Then if 0 = e, R is zero ring. If $0 \neq e$, e is a generator of the additive group. Then it determine the ring structure of R by xy = (ne)(se) = nse where x = ne, y = se for $n, s \in \mathbb{Z}$. So R is isomorphic to \mathbb{Z}_p .

5. Sem 2, 2002/2003

Question 5.1. Let G be a group of order 2p, where p is an odd prime. Prove that either G is a cyclic, or $G = \{1, a, a^2, \dots, a^{p-1}, b, ab, a^2b, \dots, a^{p-1}b\}$ where a has order p, b has order 2, and $ba = a^{-1}b$.

Proof. See Question 8.2

Question 5.2. Let F be a finite field with p^n elements. Prove that

- (a) the multiplicative group $F^{\times} = F \setminus \{0\}$ is cyclic.
- (b) F contains a subfield with p^m elements if and only if m|n.

Proof. (a) It's the same as Question 9.5.

(b) Suppose that K is a subfield of F then K^{\times} is a subgroup of F^{\times} . So $|K^{\times}|$ divides F^{\times} . As we know finite field with character p is a extension field of \mathbb{Z}_p So have p^m elements. It's clearly that $p^m - 1|p^n - 1$ if and only if m|n.

On the other hand, if m|n, $p^m - 1|p^n - 1$. Let a be a generator of F^{\times} , then consider

$$K = \{ 0 \} \cup \langle a^{\frac{p^n - 1}{p^m - 1}} \rangle$$

Clearly $|K| = p^n$. We will prove that K is a field. Consider the map

$$\phi_m \colon F \to F$$
$$x \mapsto x^{p^m}$$

Note that ϕ is a field homomorphism since $(x+y)^{p^m} = x^{p^m} + y^{p^m}$.

It's also easy to see that every element x in K satisfy $\phi_m(x) = x$ (0 is trivial; it's true for other elements in K since $|\langle a^{\frac{p^n-1}{p^m-1}}\rangle| = p^m-1$.) But equation $x^{p^m}-x=0$ have at most p^m solutions. So K is the set of all elements s.t. $\phi_k(x) = x$. So K is a field since the set $\{x \in F \mid \phi_k(x) = x\}$ form a field $(x+y, xy, x^{-1} \in K \text{ if } x, y \in K)$.

6. Sem 1, 2003/2004

- **Question 6.1.** (a) Let G be the additive group \mathbb{Q}/\mathbb{Z} . Show that any finite subgroup of G is cyclic.
- (b) For the ring $R = \mathbb{Z} \times \mathbb{Z}$, give an example for each of the following:
 - (i) a maximal ideal of R.
 - (ii) a prime ideal of R that is not maximal.
- *Proof.* (a) Let G be a finite subgroup of G. Let $a = \min\{x \in [0,1) \mid \bar{x} \in G\}$. Then $G = \langle \bar{a} \rangle$. If not, there is $b \in G \setminus \langle \bar{a} \rangle$. It's easy to see that, we can find $\bar{b} = n\bar{a} + \bar{c}$, where 0 < c < a. This contradicte to the choice of a.
- (b) $p\mathbb{Z} \times \mathbb{Z}$ is a maximal idel of R since $\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z} \cong \mathbb{Z}_p$ is a field. $0 \times \mathbb{Z}$ is prime but not maximal since $\mathbb{Z} \times \mathbb{Z}/0 \times \mathbb{Z} \cong \mathbb{Z}$ is a integral domain but not a field.
- **Question 6.2.** (a) Let G be a finite group, and H be a subgroup of index 2. Show that $x^2 \in H$ for any $x \in G$ and hence deduce that H contains all elements of G of odd order.
- (b) Let n > 3 be an integer, and let G be a subgroup of S_n . Assume that G has an odd permutation. Show that G has a normal subgroup of index 2.
- (c) Let A_4 be the subgroup of even permutations in S_4 . Show that A_4 has no subgroup of index 2.
- *Proof.* (a) Clearly H is normal in G. G/H is order 2. So $\pi(x^2) = \pi(x)^2 = e$ where π is the canonical map. Then $x^2 \in H$. Suppose that x have odd order, then x^2 is the generator of $\langle x \rangle$ (A result of cyclic group, $\langle x^r \rangle = \langle x \rangle$ for any (r, |x|) = 1). Since $x^2 \in H$, $\langle x \rangle \subset H$. So $x \in H$.
- (b) There is a natural sign map form $\operatorname{sgn}: S_n \to \{\pm 1\}$. restrict on G. If G has odd permutation, $\operatorname{sgn}|_G$ is epimorphism. Then Kersgn_G is a normal subgroup of G with index 2.
- (c) Note that $\langle (123) \rangle$, $\langle (124) \rangle$, $\langle (134) \rangle$ and $\langle (234) \rangle$ gives 4-distinct order 3 subgroup of A_4 . If A_4 have index 2 subgroup H. then |H| = 6. But there already have 8 odd order element. They should be in H, a contradiction.

Question 6.3. Recall that an element p of an itegral domain D is called irreducible if p is a non-zero, non-unit and in any factorization p = rs with $r, s \in D$, one of r, s is a unit. Now let

$$D = \mathbb{Z}[\sqrt{-7}] = \left\{ a + b\sqrt{-7} \mid a, b \in \mathbb{Z} \right\}.$$

- (i) By using the norm function $N(a+b\sqrt{-7})=a^2+7b^2$, show that $2,1\pm\sqrt{-7}$ are irreducible elemens of D.
- (ii) Is 2D a prime ideal? Is D a unique factorization domain? Justify your answers.
- Proof. (i) Note that N(rs) = N(r)N(s) for $r, s \in D$. Moreover $N(r) \in \mathbb{N}$ for $r \in D$. So we can determin all the units of D. In fact, if u is a unit in D. $N(u)N(u^{-1}) = 1$. So N(u) = 1, i.e. $u = \pm 1$.

If 2 = rs, then N(r)N(s) = 4. No solution of the equation $2 = a^2 + 7b^2$ for $a, b \in \mathbb{Z}$. So N(r) = 1 or N(s) = 1, i.e. r or s is unit.

If $1 \pm \sqrt{-7} = rs$, then N(r)N(s) = 8. By the same reason of above, $1 \pm \sqrt{-7}$ is irreducible.

(ii) Note that $(1+\sqrt{-7})(1-\sqrt{-7})=8\in 2D$, but $1\pm\sqrt{-7}\notin 2D$. So 2D is not prime.

Clearly $(1+\sqrt{-7})(1-\sqrt{-7})=8=2*2*2$. So *D* is not a unique factorization domain.

Question 6.4. (a) Let R be a finite commutative ring with 1, such that $1 \neq 0$. Let $R^* = R \setminus \{0\}$ and put

$$k = \prod_{r \in R^*} r,$$

is a field.

(b) Let p be a positive prime number such that p = 4k + 1 for some $k \in \mathbb{Z}$. Show that there exists $a \in \mathbb{Z}_p$ such that $a^2 = -1$ in \mathbb{Z}_p

Proof. (a) Do not know!

(b) In fact p = 4k + 1 iff exists a s.t. $a^2 = -1$ in \mathbb{Z}_p . Note that the multiplicty group \mathbb{Z}_p^* is cyclic. -1 is the only order 2 element. If p = 4k + 1 then $|\mathbb{Z}_p^*| = 4k$. So exists order 4 subgroup with generator a. Then $a^2 = -1$ since it is order 2.

On the other hand if exists $a^2 = -1$. Then there is a order 4 subgroup in \mathbb{Z}_p^* . So 4 divides $|\mathbb{Z}_p^*|$. Hence p = 4k + 1.

Question 6.5. Show that each of the following polynomials is irreducible over \mathbb{Q} : you may want to consider reduction modulo a prime number.

Question 7.1. Show that if a and b are elements in a group G, then ab and ba have the same order.

Proof. Suppose o(ba) is finite. Note that $(ab)^n = a(ba)^n a^{-1}$. If n = o(ab), $(ab)^n = 1$. So o(ab)|o(ba). In the same way o(ba)|o(ab). It's also easy to see that ab and ba should both have finite order.

Question 7.2. (a) Let H and K be subgroups of a group G with H normal in G. Show that

$$HK := \{ hk : h \in H, k \in K \}$$

is a subgroup of G and show that H is normal in HK.

(b) Show that $(H \cap K)$ is normal in K and that

$$K/(H \cap K) \cong HK/H$$

(c) Show that if H is a normal subgroup of G such that

$$gcd(|H|, [G:H]) = 1$$

then H is the unique subgroup of G of order |H|.

Proof. (a),(b) are trivial. If K is a order |H| subgroup of G. Let $n = |K/(H \cap K)|$, then n divides |H|. We have $K/(H \cap K) \cong HK/H$. So $n = \frac{|G/H|}{[G/H:HK/H]}$. So n divides [G:H]. Hence n = 1. $H \cap K = K$ i.e. K = H by |K| = |H|.

Question 7.3. (a) Show that if Ris a finite integral domain with a unit element, then R is a field.

- (b) Show that if R is a finite commutative ring with a unit element, then every prime ideal of R is a maximal ideal
- *Proof.* (a) R is finite, so R is right Artinian ring. right Artinian integral domain is field. It's the same as Question 1.4.
- (b) If P is a prime ideal in R, R/P is integral domain. Then R/P is field since it is finite. So P is maximal in R.

Question 7.4. Let R is a ring with a unit element, 1_R , in which

$$(ab)^2 = a^2b^2$$

for all $a, b \in R$. Prove that R must be commutative.

Proof. (From sci.math.) $((a+1)b)^2 = (a+1)^2b^2$ gives $(ab)^2 + ab^2 + bab + b^2 = a^2b^2 + 2ab^2 + b^2$. So $bab = ab^2$. Then $(b+1)a(b+1) = a(b+1)^2$ gives $bab + ba + ab + a = ab^2 + 2ab + a$. Hence ba = ab. So R commutative.

- **Question 7.5.** (a) Let K be a finite field of p element, where p is a prime. Let gcd(n,p) = 1 and F be the splitting field of $x^n 1_K$ over K. Show that if (F:K) = f then the n divides $p^f 1$.
- (b) Show that f is the smallest integer m for which $p^m 1$ is divisible by n.
- Proof. (a) It's clearly that $K \cong \mathbb{Z}_p$ by the uniqueness field of p elements. Let $g(x) = x^n 1 \in K[x]$. Since $\gcd(n, p) = 1$, there exists k such that kn = 1. So $-g + kxg' = -x^n + 1 + knx^n = 1$, i.e. g, g' coprime. So f is separable in F. It's easy to see that the set S consists all solutions of $x^n 1$ form a multiplication subgroup of F^{\times} . Hence n = |S| divides $p^f 1$.
- (b) Clearly F is a finite extension of K. So F is finite field of character p. Then F has p^s elements. If s not the smallest integer m for which $q^m 1$ is divisible by n. Then consider $x^{q^m} 1$ which is

8. Sem 1, 2004/2005

8.1. Ring Theory.

Question 8.1. Let $R = M_n(\mathbb{R})$ be the ring of all $n \times n$ matrices over the real numbers. Find all the ideals of R. Justify your answers.

Proof. R is simple ring, so the all ideals of R are 0 and itself. To prove R is simple \Box

8.2. Group Theory.

Question 8.2. Let p be a prime. Find all he groups (up to isomorphism) of order 2p. Justify your answers.

Proof. If p = 2, then it's order 4 group and is abelian. See Question 3.1 (a). Then G can be $\mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathbb{Z}_4 .

If p > 2, then consider the Sylow p-subgroup P. Clearly it's a cyclic group and suppose that it's generator is a. P is normal in G since it's the only order p subgroup of G. Let $Q = \langle b \rangle$ be a Sylow 2-subgroup of G. Consider Q act on P by conjugation. Then $bab^{-1} = a^k$ and a^k is a generator of P. Moreover $a = b(bab^{-1})b^{-1} = a^{k^2}$ So $k = \pm 1 \pmod{p}$. If k = 1, G is abelian. Then G isomorphic to \mathbb{Z}_{2p} . (Also see the proof of Question 3.1 (a).) If k = 1, then G is non-abelian and isomorphic to the dihedral group D_p .

Question 8.3. Let p be a prime and let G be a group of p^3 elements. Suppose that G is not abelian. Prove that Z(G) is cyclic of order p.

Proof. In the proof of Question 3.1 (a) we see that Z(G) is non-trivial. Then |Z(G)| = p or p^2 since G is not abelian. But if $|Z(G)| = p^2$, G/Z(G) is a cyclic group of order p. Also in the proof of Question 3.1 (a) we know that G should be abelian, a contradiction. So Z(G) is cyclic of order p.

8.3. Field Theory.

Question 8.4. Let σ be a field automorphism from \mathbb{R} to \mathbb{R} . Prove that $\sigma(x) = x$ for all $x \in \mathbb{R}$.

Proof. First σ preserves rational number \mathbb{Q} . Note that $\sigma(1) = 1$. So $\sigma(x) = x$ for all $x_1\mathbb{Z}$. Then there are equal in it's fractional field \mathbb{Q} by the universal property of fractional field. ($\sigma_{\mathbb{Z}} = \mathrm{id}_{\mathbb{Z}}$ clearly can be extended uniquely to a homomorphism $\sigma_{\mathbb{Q}}$ on \mathbb{Q} s.t. $\sigma_{\mathbb{Q}} \circ i = \sigma_{\mathbb{Z}}$ where i is the natrual inclusion map from \mathbb{Z} into \mathbb{Q} . Clearly $\mathrm{id}_{\mathbb{Q}}$ is a map satisfying this property. Hence $\sigma_{\mathbb{Q}} = \mathrm{id}_{\mathbb{Q}}$.)

Next not that σ preserves the "order" of \mathbb{R} . Let a > b iff $a - b \in \mathbb{R}^+$. If $x \in \mathbb{R}^+$, there is $y \in \mathbb{R}$, s.t. $y^2 = x$, then $\sigma(x) = \sigma(y^2) = \sigma(y)^2 \in \mathbb{R}^+$. So $\sigma(a) > \sigma(b)$ if a > b. Note that there is one-one corresponding between $x \in \mathbb{R}$ and the set $\{q \in \mathbb{Q} \mid x > q\}$. Since σ preserves rational number σ preserves $\{q \in \mathbb{Q} \mid x > q\}$. So $\sigma(x) = x$ for any $x \in \mathbb{R}$.

9. Sem 2, 2004/2005

9.1. Ring Theory.

Question 9.1. Prove that every integral domain can be embedded in a field.

Proof. Localization. \Box

Question 9.2. Let D be an integral domain and let $F = \{ x \in D \mid xd = 1 \text{ for some } d \in D \}$. Suppose that D is a finite dimensional vector space over F. Prove that D is a field.

Proof. I don't think F is a field. If F is a field, it's the same as Question 1.4.

9.2. Group Theory.

Question 9.3. Let G be a nonabelian finite group generated x and y, where o(x) = o(y) = 2. Prove that G isomorphic to a dihedral group.

Proof. I think this Question is wrong order 4 group are abelian. I think o(x) may be an odd prime number.

Question 9.4. Let G be a group of order 56. Suppose that G has 2 or more subgroups of order 7. Prove that G has a subgroup isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Proof. By Sylow's theorem G has 7 different Sylow 7-subgroups. So there is unique Sylow 2-subgroups containing all element of G not in Sylow 7-subgroups. Let P be a Sylow 7-subgroup. Q be the unique Sylow 2-subgroup. If Q has a order 4 element. Consider the set S of all order 4 element. Let P act on S by conjugation. Then it gives a homomorphism from P to $Aut_{|S|}$. Note that $|S| \leq 6$. So the action is trivial. Let a be a order 4 element. So $H = P \langle a \rangle$ is a subgroup of G. More over H is cyclic group of order 28. Clearly H has order 2 so H is normal in G. By Sylow's theorem gPg^{-1} gives all Sylow 7-subgroup. But, $gPg^{-1} < H$ since P < H and H normal. So $gPg^{-1} = P$ for all g. This contradict to G has 2 or more subgroups of order 7. So Q has no order 4 element. Then $Q \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ (first Q is abelian since every element is order 2, then deduce by the classification of finite abelian group.).

9.3. Field Theory.

Question 9.5. Let F be a finite field. Prove that $F - \{0\}$ under multiplication is a cyclic group.

Proof. It's well know that finite multiplication group of field is cyclic. Clearly $F - \{0\}$ form a group under multiplication, then it is cyclic.

We can prove this result as following. Let G be a finite multiplication subgroup of field F. Let the primary decomposition of G be $\bigoplus_{i=1}^n G_{p_i}$, where $n \in \mathbb{N}$ and p_i are prime number and $G_{p_i} = \bigoplus_{j=1}^{n_i} \mathbb{Z}_{p^{\alpha_j}}, \ n_i \in bN, \ alpha_{i,j} \geq 1$. We claim that $n_i = 1$, i.e. $G_{p_i} = \mathbb{Z}_{p^{\alpha_i}}$, then G is cyclic $(\mathbb{Z}_a \oplus \mathbb{Z}_b = \mathbb{Z}_{ab} \text{ if } \gcd(a,b) = 1)$. If $n_i > 1$, for some i, G has two distinct order p_i subgroup, then there are more than p_i element is G satisfying the equation $x^{p_i} - 1 = 0$. Since F is a field, there at most p_i different solution of the equation, a contradiction.

Question 9.6. Prove that $\sqrt{2} + \sqrt{3} + \sqrt{5} + \sqrt{7}$ is irrational.

Proof. Note that $Q(\sqrt{2}, \sqrt{3}, \sqrt{5})(\sqrt{2} + \sqrt{3} + \sqrt{5} + \sqrt{7}) = Q(\sqrt{2}, \sqrt{3}, \sqrt{5})(\sqrt{7})$. $[Q(\sqrt{2}, \sqrt{3}, \sqrt{5})(\sqrt{7}) : Q] = 16$. $[Q(\sqrt{2}, \sqrt{3}, \sqrt{5}) : Q] = 8$. So $\sqrt{2} + \sqrt{3} + \sqrt{5} + \sqrt{7}$ is irrational since if it is rational, $Q(\sqrt{2}, \sqrt{3}, \sqrt{5}) = Q(\sqrt{2}, \sqrt{3}, \sqrt{5})(\sqrt{2} + \sqrt{3} + \sqrt{5} + \sqrt{7})$.

10. Sem 1, 2005/2006

Question 10.1. Classify all groups of order 8 up to isomorphism.

Proof. If G is abelian, then G can be $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_4 \times \mathbb{Z}_2$ and \mathbb{Z}_8 . If G is non-abelian, G has a order.

Question 10.2. Let R be a ring with 1. A simple left R-module M is a left R-module such that |M| > 1 and if N is a submodule of M, then either N = M or $N = \{0\}$.

- (a) Let I be a maximal left ideal of R. Show that R/I is a simple R-module.
- (b) Let m be a nonzero element of a simple left R-module M. Prove that:
 - (i) $Rm := \{ rm \mid r \in R \} \text{ equals } M;$
 - (ii) $Ann(m) := \{ r \in R \mid rm = 0 \} \text{ is a maximal left ideal of } R;$
 - (iii) $R/Ann(m) \cong M$ as left R-module.

Proof. See uestion 12.1].

11. Sem 2, 2005/2006

- **Question 11.1.** (a) Prove that a group of order 12 either has a normal subgroup of order 3, or is isomorphic to A_4 , the alternating group on 4 letters.
- (b) Show that any simple group acting on a set of n elements is isomorphic to a subgroup of A_n , the alternating group on n letters.
- Proof. (a) If |G| = 12 and has no order 3 normal subgroup. Then the number of it's Sylow 3-subgroups is 4. Let G act on the set of Sylow 3-subgroups S by conjugation. It gives a homomorphism $\phi \colon G \to S_4$. The same as Question 6.2 (c) G has no order 6 subgroup. So $\text{Im}\phi \subset A_4$. Since G act on S transitively. $|\text{Im}\phi| \geq |S| = 4$. So $|\text{Ker}\phi| \leq 3$. Since G have no order 3 subgroup, $|\text{Ker}\phi| \neq 3$. Since G have no order 6 subgroup, $|\text{Ker}\phi| \neq 2$. So G is monomorphism, then isomorphism from G to G.
- (b) See Question 14.1

Question 11.2. Let R be a ring, not necessarily commutative and not necessarily containing the multiplicative identity. Prove that if R[X] is a principal ideal domain, then R is a field.

Proof. First we can embed R in R[X]. Since R[X] is integral domain (commutative, no zero divisor), R is integral domain. Consider the evaluation $\phi \colon R[X] \to R$ by $f \mapsto f(0)$. ϕ is sujective. Since R is integral domain, $\operatorname{Ker} \phi$ is prime ideal in R[X], then it is maximal ideal by Question 2.1 (b). So R is a field.

12. Sem 1, 2007/2008

Question 12.1. Prove that a simple group of order 60 is isomorphic to A_5 .

Proof. Note that, if there is a action of G on set S with |S| = n, then there is a injective from G to A_n . (See Question 11.1 (b)) Since |G| = 60, $|A_n| \ge |G|$ i.e. $n \ge 5$. 60 = 3 × 4 × 5. Consider 2-Sylow group. There is two approachs.

(a) If there are two 2-Sylow subgroup P,Q with non-trivial intersection. Clearly $H=P\cap Q$ is order 2. Choose $e\neq x\in H$. Then $P\cap Pq\subset C_G(x)$ (order 4 group are all abelian), where $q\in Q\setminus H$. So $|C_G(x)|\geq 8$. Cearly $C_G(x)\neq G$, if so C(G) is a non-trivial normal subgroup of G. So $|C_G(x)|\leq 12$, by looking the left action of G on $G/C_G(x)$ ($[G:C_G(x)]\geq 5$). Now $|C_G(x)|$ divides 60 and |P| divides $C_G(x)(P< C_G(x))$. So $|C_G(x)|=12$. Hence it gives a isomorphism from G to A_5 by looking the left action of G on $G/C_G(x)$.

If all 2-Sylow subgroup have no non-trivial intersection, fix a 2-Sylow subgroup P. Consider the normalizer $N_G(P)$. We will prove that $N_G(P) \neq P$. If so, the only possible is $|N_G(P)| = 12$, then $G \cong A_5$.

Suppose that $N_G(P) = P$, then $|N_G(P)| = 4$. So there is fifteen differen 2-Sylow subgroup of G since $N_G(P)$ is the stabilizer of the action of G on the set S of all 2-Sylow subgroups and G act on S transitively. Note that G is simple, so there is six different 5-Sylow subgroups of G. Clearly the interesection of different 5-Sylow subgroups is trivial. Also the interrsection of 5-Sylow subgroup and 2-Sylow subgroup is trivial since $\gcd(4,5) = 1$. Then there at least 1+(4-1)*15+(5-1)*6 = 70 > 60 difference element in G, a contradiction.

- (b) The number of Sylow-2 subgroup can be 3, 5, 15. Now consider G act on Sylow-2 by conjugation.
 - (i) 3 is impossible.
 - (ii) If it has 5 Sylow-2 subgroup, it gives a isomorphism G to A_5 since $|A_5| = 60$.
 - (iii) 15 is impossible in the proof of (a).

13. Sem 2, 2007/2008

Question 13.1. Let R be a commutative ring with 1.

- (a) Let I be an ideal of R. Explain briefly what is meant to say that (i) I is prime, (ii) I is maximal.
- (b) Prove or disprove each of the following statements:
 - (i) If I is a maximal ideal of R, then I is prime.
 - (ii) If I is a nonzero prime ideal of R, then I is maximal.

Proof. See Question 6.1

Question 13.2. Let p and q be a prime integers with $p \leq q$.

- (a) Show that any group of order pg has a normal subgroup of order g.
- (b) Hence, or otherwise, classify all groups of order pq up to isomorphism.
- *Proof.* (a) Suppose that |G| = pq. Sylow therem there kq + 1|pq Sylow q-subgroup. By $p \le q$, there only one Sylow q-subgroup, then it is normal.

- (b) Let Q be a Sylow q-subgroup in G. Let P be a Sylwo p-subgroup of G.
 - (i) If $p \nmid q$, i.e. no kp + 1 = q then P is normal in G. So $G \cong \mathbb{Z}_p \times \mathbb{Z}_q = \mathbb{Z}_{pq}$.
 - (ii) IF $p \mid q$. Let $P = \langle a \rangle$, $Q = \langle b \rangle$. Consider P act on Q by conjugation. Then $aba^{-1} = a^s$ should be a generator of Q. So $G = \langle a, b | a^p = 1, b^q = 1, aba^{-1} = a^s \rangle$ where a^s is a generator of Q, i.e. gcd(s, q) = 1.

Question 13.3. Let R be a ring with 1, and let M be a left R-module. Prove that the following statements are equivalent:

- (a) M is nonzero, and if N is a submodule of M, then N = 0 or N = M.
- (b) For every $m \in M \setminus \{0\}$, $M = \{rm \mid r \in R\}$.
- (c) There exists a maximal left ideal I of R such that $M \cong R/I$ as left R-modules.
- *Proof.* $(a) \Rightarrow (b)$: Clearly $N = \{ rm \mid r \in R \}$ is a submodule of M. $0 \neq m \in N$. So $N \neq 0$. Hence N = M.
 - $(b) \Rightarrow (c)$: There is a natural homomorphism ϕ from left R-module R to M by $\phi(r) = rm$. $I = \text{Ker}\phi$ have to be maximal. If not I is contained in some maximal left ideal J since R have 1. Then J/I is a proper nontrivial submodule of R/I, but $R/I \cong M$, a contradiction.
 - $(c) \Rightarrow (a)$: Clearly by the one-one corresponding between left ideals of R which contains I and submodule of R/I.

14. Sem 1, 2008/2009

- **Question 14.1.** (a) Let G be a finite simple group, and suppose that H is proper subgroup of G of index k. Show that there exists an injective group homomorphism from G to the alternating group A_k of degree k.
- (b) Show that a group of order 120 is not simple.
- *Proof.* (a) Consider G act on the set of left cosets $\{gH \mid g \in G\}$ by left multiplication, i.e. $x \cdot gH = (xg)H$. It gives a map ϕ from $G \to S_k$ since $\#\{gH \mid g \in H\} = k$. Clearly ϕ is nontrival since H is proper subgroup of G ($\exists g$ s.t. $gH \neq H$). So ϕ is monomorphism since G is simple (Ker ϕ is normal in G). Moreover $\text{Im}\phi \subset A_n$. If not $\text{sgn}\phi \colon G \to \{\pm 1\}$ is epimorphism. Then G have a nontrivial index 2 normal subgroup $\text{Ker} \text{sgn}\phi(|G| > 2)$.
- (b) If $|G| = 120 = 8 \times 5 \times 3$ and G is simple. By Sylow's theorem, G has 6 Sylow 5-subgroup. Consider G act on the 6 subgroup by conjugation. It gives a embedding of G into A_6 . Clearly G has index 3 in A_6 . By considering A_6 act on the cosets of G, it gives a homomorphism from A_6 to S_3 . But it impossible since A_6 is simple.
- **Question 14.2.** (a) Let R and S be integral domains with $R \subseteq S$. Prove or disprove the following:
 - (i) If R is a Euclidean domain, then S is a unique factorisation domain.
 - (ii) If S is a Euclidean domain, then R is a unique factorisation domain.
- (b) Let $\phi: T \to U$ be a surjective ring homomorphism between two integral domains T and U. Prove or disprove the following:

. ___

- (i) If T is a principal ideal domain, then U is a principal ideal domain.
- (ii) If T is a unique factorisation domain, then U is a unique factorisation domain.

Proof. (a) a

- (b) (i) For any ideal $I \subset U$, $\phi^{-1}(I)$ is a ideal in T. Then $\phi^{-1}(I) = (r)$ for some r. Then $I = (\phi(r))$.
 - (ii) Not true! A example on wikipedia. F[X, Y, Z, W] is UFD for any field F. But F[X, Y, Z, W]/(XY ZW) is not UFD.

Question 14.3. Let K be the splitting field of $X^4 - 2$ over the field \mathbb{Q} of rational numbers.

- (a) Show that there exist field automorphisms τ and σ of K satisfying the following properties.
 - τ has order 2;
 - σ has order 4;
 - $\tau \circ \sigma = \sigma^{-1} \circ \tau$.
- (b) Hence, or otherwise, find all intermediate fields between \mathbb{Q} and K.

Proof.

Question 14.4. Let R be a ring with multiplicative identity, and let M be a finitely generated left R-module.

- (a) Let B be a non-empty finite subset of M. Show that M is a free R-moudle with basis B if and only if every function from B to any left R-module N can be uniquely extended to a left R-module homomorphism from M to N.
- (b) Suppose further that R is a principal ideal domain. Prove that M is a free R-module if and only if M is a projective R-module.

Proof.