

Principles of Electrosurgery

Quick Reference Guide

Disclaimer

This training material is intended for training purposes only. All content is marked "Internal Use Only" which means that it is prohibited to pass this information on to any external party. The comparison to competition has been written to the best of our knowledge at the date of publication. Please keep in mind that our competitors enhance their products as well, so their products might have changed in the meantime. Make sure you use competitor comparisons only carefully in your conversations with customers. This training material does not constitute medical or legal advice and should not be relied upon as such. This training material should not be considered as a substitute for carefully reading all applicable labelling, including the Instructions for Use (IFU) supplied with the devices and published, peer-reviewed articles concerning the topics presented. Before using or selling any product, please thoroughly review the relevant user manual(s) for instructions, warnings and cautions. It is the clinicians' to decide in each clinical situation which instrument mode and settings they use.

Principles of Electricity

Electric current (measured in Ampère)

- Electric current is the flow of charged particles per time.
- Current is 'lazy' and prefers the path of least resistance and needs a circuit to flow.
- The electric current I is measured in ampere [A]*.

Voltage U (measured in Volts)

- Voltage is the driving force that "pushes" electrons/ions to flow through resistances.
- The higher the voltage the more "aggressive".
- The voltage U is measured in volts [V].

^{*1} A = 6.24*1018 ions/s , 1mA = 6240 giga-ions/s (1015)

Principles of Electricity

Resistance = R (Ohms)

- Opposition to the flow of current is called resistance.
- A resistance can convert power into heat.
- The resistance R is measured in ohms $[\Omega]$.

Note: When tissue dries (coagulates), its resistance increases.

Resistance of Body Tissue

Principles of Electricity

Power (P, measured in watts W)

- Charged particles can do work. The more power they have, the more work they can do.
- P = U · I

Note: The higher the power level, the more the tissue is heated.

Frequency (f)

- Number of cycles of an oscillation
- (Change in direction of the electric current per unit of time)
- 1 Hertz (Hz) = 1 oscillation/sec.

Energy (E, measured in Joule)

- The tissue effect is reached by electric energy that is converted to thermal energy in the tissue
- The "amount" of energy applied to the tissue is dependent on power and application time (E = P ⋅ t)

Principles of Electricity

Direct Current (DC)

The electric charges flow in the same direction (e.g. battery).

Direct current is **not suitable** for electrosurgical procedures because it also generates an **undesirable electrolytic effect,** producing acids and alkalis at the electrode poles.

Danger of corrosive/acid burns!

HF Alternating Current (AC)

- The electric charges do not "flow" but oscillate around a single spot according to the frequency of electric current.
- In electrosurgery only alternating current is used.

One alternation per second is 1 Hz: "It has a frequency f of 1 Hz".

Principles of Electricity

What Happens to a Cell Treated with HF* Alternating Current?

Charged particles in the cell (ions) are oscillating because of electrical current.

Movement of charged particles creates frictional energy and \dots

... thereby induces heat generation in the tissue.

The rising temperature inside the tissue leads to coagulation (from 60°C) or also to cutting (100°C).

* HF = high frequency

Principles of Electricity

Cells and Temperature

Principles of Electricity

Overview of the Terminology					
Parameter (Symbol)	Unit (Symbol)	Formula	Explanation		
Voltage (U)	Volt (V)	U = R x I	Voltage is the driving force to move charged particles.		
Current (I)	Ampere (A)	I = (n x e)/t I = U / R	Movement or flow of charged particles.		
Resistance (R)	Ohm (Ω)	R = U / I (Ohm's law)	Resistance is an obstacle against the flow of charged particles (current).		
Power (P)	Watt (W)	P = U x I	Power is responsible for heat generation in the tissue.		
Frequency (f)	Hertz (Hz)	f = 1/t	Number of oscillations per second.		
Energy (E)	Joule (J)	E = P·t	Electrical energy is transported by electrical current and transformed into thermal energy (heat) in the tissue.		

Electrosurgical Modalities

Monopolar Electrosurgery

10

Current flows between the active electrode and the neutral electrode/patient plate.

Electrosurgical Modalities

Patient Plates for Monopolar Electrosurgery

Split type

- 2 electrodes
- Warning if P plate detaches from the patient's body. -> Safer!

Non-split type

- 1 electrode
- No warning if P plate detaches from the patient's body.

Positioning of the neutral electrode

- Use well vascularized muscle close to the surgery site.
- Optimum: thigh (alternative: back or arm)

Wrong application (b) or malfunction of the neutral electrode can cause burns!

Electrosurgical Modalities

(Conventional) Bipolar Electrosurgery Electrode 1 ✓ Electrode 2 Electrode 1 Neutral electrode No neutral electrode necessary. Current flows between active electrode 1 and electrode 2 and NOT through the entire body!

Please note: advanced bipolar electrosurgery refers to vessel sealing instruments such as the PK cutting forceps (see differences on the next page).

Electrosurgical Modalities

Pros & Cons

Monopolar Technology				
Pro	Contra			
■ Widely accepted	■ HF current flows through the patient			
technology	 Neutral electrode required 			
Rapid cut and	Wide thermal spread			
coagulation	High risk of carbonization			
Low cost	Lots of smoke (surgical plume)			
accessories	No reliable hemostasis			
	Imprecise			
	Limited safety			
	For simple procedures			

Factors of Influence in Electrosurgery

- 1.Generator settings (mode, power, effect)
- 2. Type of tissue (resistance, patient condition, e.g. obesity, arteriosclerosis)
- 3. Electrode design (surface area defines current density)
- 4. Handling of the physician (speed, pressure, duration of application)

Conventional Bipolar Technology				
Pro	Contra			
■ Proven technology	Limited energy introduction			
HF current flows	into tissue			
only locally	No dedicated sealing algorithm			
 Good coagulation 	Smoke (surgical plume)			
capabilities	Limited cutting			
■ Reliable hemostasis	Insufficient vessel sealing			
Increased safety	Limited applications			

Advanced	l Bipolar	Technolo	gy

Pro	Contra	
■ Dedicated sealing algorithm*	■ Time-consuming -> two-step	
for controlled energy	sealing and cutting action due	
delivery**	to the mechanical blade	
Mechanical cutting	Limited dissection capabilities	
capability	Smoke (surgical plume)	
Reduced thermal spread	Limited applications	
■ Reliable vessel sealing	Slower dissection	
Reliable hemostasis		

^{*(}E.g. pulsed energy application) **(Including constant measurement of tissue resistance)

