MAIN MEMORY SYSTEM

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

- Announcement
 - Tonight: Homework 4 submission deadline

- □ This and the following lectures
 - Dynamic random access memory (DRAM)
 - DRAM operations
 - Memory scheduling basics
 - Emerging memory technologies

Recall: DRAM Row Buffer

□ All reads and writes are performed through RB

- □ DRAM read is destructive
 - After a read, contents of cells are destroyed

	Precharge	Activate	Sense
Reading a zero			
Reading a one			

- □ DRAM read is destructive
 - After a read, contents of cells are destroyed

- □ DRAM read is destructive
 - After a read, contents of cells are destroyed

- □ DRAM read is destructive
 - After a read, contents of cells are destroyed

- □ DRAM read is destructive
 - After a read, contents of cells are destroyed

- □ DRAM read is destructive
 - After a read, contents of cells are destroyed

- □ DRAM read is destructive
 - After a read, contents of cells are destroyed

DRAM Operations

- □ Main DRAM operations are
 - Precharge bitlines to prepare subarray for activating a wordline
 - Activate a row by connecting DRAM cells to the bitlines and start sensing
 - Read the contents of a data block from the row buffer
 - Write new contents for data block into the row buffer
 - Refresh DRAM cells
 - can be done through a precharge followed by an activate

DRAM Row Buffer

- □ Row buffer holds a single row of the array
 - A typical DRAM row (page) size is 8KB
- The entire row is moved to row buffer; but only a block is accessed each time
- □ Row buffer access possibilities
 - Row buffer hit: no need for a precharge or activate
 - \sim 20ns only for moving data between pins and RB
 - Row buffer miss: activate (and precharge) are needed
 - \sim 40ns for an empty row
 - ~60ns for on a row conflict

DRAM System

□ DRAM chips can perform basic operations

DRAM Control

- DRAM chips have no intelligence
 - An external controller dictates operations
 - Modern controllers are integrated on CPU
- □ Basic DRAM timings are
 - \blacksquare t_{CAS}: column access strobe (RD \rightarrow DATA)
 - \blacksquare t_{RAS}: row active strobe (ACT \rightarrow PRE)
 - \blacksquare t_{RP}: row precharge (PRE \rightarrow ACT)
 - \blacksquare t_{RC}: row cycle (ACT \rightarrow PRE \rightarrow ACT)
 - \blacksquare t_{RCD}: row to column delay (ACT \rightarrow RD/WT)

DRAM Control

- □ DRAM chips have no intelligence
 - An external controller dictates operations
 - Modern controllers are integrated on CPU
- □ Basic DRAM timings are
 - \blacksquare t_{CAS}: column access strobe (RD \rightarrow DATA)
 - \blacksquare t_{RAS}: row active strobe (ACT \rightarrow PRE)
 - \blacksquare t_{RP}: row precharge (PRE \rightarrow ACT)
 - \blacksquare t_{RC}: row cycle (ACT \rightarrow PRE \rightarrow ACT)
 - \blacksquare t_{RCD}: row to column delay (ACT \rightarrow RD/WT)

Enforcing Timing

- □ Access time
 - Row hit: t_{CAS}
 - Row empty: t_{RCD} + t_{CAS}
 - \blacksquare Row conflict: $t_{RP} + t_{RCD} + t_{CAS}$

Cmd	
Addr	·
Data	

Requests □ Access time RD B ■ Row hit: t_{CAS} RD A ■ Row empty: t_{RCD} + t_{CAS} \blacksquare Row conflict: $t_{RP} + t_{RCD} + t_{CAS}$ **Row Buffer** X Data Array Cmd Addr **Data**

Requests □ Access time RD B ■ Row hit: t_{CAS} RD A ■ Row empty: t_{RCD} + t_{CAS} \blacksquare Row conflict: $t_{RP} + t_{RCD} + t_{CAS}$ **Buffer** X Data Array t_{RCD} Cmd Addr Data

Requests □ Access time RD B ■ Row hit: t_{CAS} RD A ■ Row empty: t_{RCD} + t_{CAS} \blacksquare Row conflict: $t_{RP} + t_{RCD} + t_{CAS}$ **Buffer** X Data Array t_{RCD} Cmd Addr Data

Requests □ Access time RD B ■ Row hit: t_{CAS} RD A ■ Row empty: t_{RCD} + t_{CAS} \blacksquare Row conflict: $t_{RP} + t_{RCD} + t_{CAS}$ **Buffer** X Data Array t_{RCD} Cmd Addr Data

Requests Access time RD B ■ Row hit: t_{CAS} ■ Row empty: t_{RCD} + t_{CAS} \blacksquare Row conflict: $t_{RP} + t_{RCD} + t_{CAS}$ **Buffer** X Data Array t_{RCD} Cmd Addr Data

Requests □ Access time RD B ■ Row hit: t_{CAS} ■ Row empty: t_{RCD} + t_{CAS} \blacksquare Row conflict: $t_{RP} + t_{RCD} + t_{CAS}$ **Buffer** X Data Array t_{RAS} t_{RCD} Cmd Addr Data

Requests □ Access time RD B ■ Row hit: t_{CAS} ■ Row empty: t_{RCD} + t_{CAS} \blacksquare Row conflict: $t_{RP} + t_{RCD} + t_{CAS}$ **Row Buffer** X Data Array t_{RAS} t_{RP} t_{RCD} Cmd Addr Data

