Chalmers tekniska högskola ÖvningsTentamen Datum: 121008 kl. 08.30–12.30 Telefonvakt:

Lösning till Linjär algebra AT

Del 1: Godkäntdelen

1. (a) Matriserna $A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ är totalmatriser till tre linjära ekvationssystem. Lös dessa ekvationssystem.

Lösning och svar: Lösningarna kan avläsas utan räkning. För båda systemen svarande mot A och B är $x_2 = t$ en fri variabel. I det första fallet är alltså $x_1 = 1 - 2t$, $x_2 = t$, $x_3 = 1$, $t \in \mathbb{R}$ och i det andra fallet är $x_1 = 1 - 2t$, $x_2 = t$, $x_3 = 0$, $t \in \mathbb{R}$. Matrisen C svarar mot ett system utan lösning.

(b) En linjär avbildning $F: \mathbb{R}^2 \to \mathbb{R}^2$ avbildar vektorn $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ på $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ och $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ på $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ och $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ på $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Bestäm standardmatrisen för F. Bestäm också bilden av $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Lösning och svar: Vi kan direkt skriva upp standardmatrisen $F = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$. Den sökta bilden är då

$$\left[\begin{array}{cc} 2 & 1 \\ 1 & -1 \end{array}\right] \left[\begin{array}{c} 1 \\ 2 \end{array}\right] = \left[\begin{array}{c} 3 \\ -1 \end{array}\right].$$

(c) Ange baser för kolonnrummet och nollrummet till matrisen $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$. (3p)

Lösning: Succesiv elimination ger

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

De två första kolonnerna är pivotkolonner. Vi kan alltså ta $\begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}^T$ och $\begin{bmatrix} 1 & 2 & 0 & 1 \end{bmatrix}^T$ som bas för kolonnrummet. Vi ser vidare att lösningen till det homogena systemet kan skrivas $t\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^T$, $t \in \mathbb{R}$. Vi kan alltså ta $\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^T$ som bas för nollrummet.

(d) Bestäm en ortogonal bas $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ för \mathbb{R}^2 om $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Bestäm sedan koordinatvektorn $[\mathbf{x}]_{\mathcal{B}}$ för $\mathbf{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ i den bas \mathcal{B} du hittat.

Lösning: Vi ser att $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ är ortogonal mot \mathbf{v}_1 . Koordinatvektorn kan nu beräknas genom projektionsformeln; vi har

$$\frac{\mathbf{x} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} = \frac{1}{2}, \qquad \frac{\mathbf{x} \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} = \frac{5}{2}.$$

Alltså är
$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 1/2 \\ 5/2 \end{bmatrix}$$
.

(e) Bestäm inversen till matrisen
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 2 & 2 & 3 \\ 0 & 1 & 4 \end{bmatrix}$$
. (3p)

Lösning: Elimination av utökade matrisen [A|I] ger

$$\begin{bmatrix} 2 & 1 & 0 & 1 & 0 & 0 \\ 2 & 2 & 3 & 0 & 1 & 0 \\ 0 & 1 & 4 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 3 & -1 & 1 & 0 \\ 0 & 1 & 4 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 2 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 3 & -1 & 1 & 0 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 2 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -4 & 4 & -3 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 2 & 0 & 0 & 5 & -4 & 3 \\ 0 & 1 & 0 & -4 & 4 & -3 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 5/2 & -2 & 3/2 \\ 0 & 1 & 0 & -4 & 4 & -3 \\ 0 & 0 & 1 & 1 & -1 & 1 \end{bmatrix}.$$

(2p)

(2p)

Alltså är
$$A^{-1} = \begin{bmatrix} 5/2 & -2 & 3/2 \\ -4 & 4 & -3 \\ 1 & -1 & 1 \end{bmatrix}$$
.

(f) Ange LU-faktoriseringen av matrisen

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 & 1 \\ 2 & 3 & 1 & 4 \\ 3 & 2 & 1 & 1 \end{array} \right]$$

Lösning: För att erhålla LU-faktorisering skall A överföras till trappform enbart genom operationen: addera multipel av en rad till en annan. Då man utför radoperationerna

$$R_2 \mapsto R_2 - 2R_1, \quad R_3 \mapsto R_3 - 3R_1, \quad R_3 \mapsto R_3 - 4R_2,$$

så erhålls trappstegsformen

$$U = \left[\begin{array}{cccc} 1 & 2 & 3 & 1 \\ 0 & -1 & -5 & 2 \\ 0 & 0 & 12 & -10 \end{array} \right].$$

De motsatta operationerna som leder från U till A ger elementen i L. Vi kan då skriva ner L direkt.

Svar:
$$A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -1 & -5 & 2 \\ 0 & 0 & 12 & -10 \end{bmatrix}$$

- 2. (a) Förklara vad som menas med begreppet linjärt beroende mängd av vektorer i \mathbb{R}^n . (2p) Svar: Se kursboken.
 - (b) Låt

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 3 \\ h \end{bmatrix}.$$

- i. Avgör för vilka värden på h vektorerna \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 är linjärt beroende.
- ii. För varje värde på h, bestäm dimensionen av det underrum som spänns upp av $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$. (2p)

Lösning: Vi bildar en matris med de givna vektorerna som kolonner. Succesiv elimination ger

$$\left[\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 1 & 0 & h \end{array}\right] \sim \left[\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & -2 & h - 1 \end{array}\right] \sim \left[\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & h + 5 \end{array}\right].$$

Då $h \neq -5$ är alla kolonner pivotkolonner. De spänner då upp hela rummet och är linjärt oberoende. Då h=-5 är enbart de två första kolonnerna pivotkolonner, dvs kolonnerna spänner upp ett plan och är linjärt beroende. Svaret på första delfrågan är alltså för h=-5, på andra delfrågan att dimensionen är 2 då h=-5 och 3 då $h\neq -5$.

3. (a) Bestäm alla egenvärden och egenvektorer till matrisen
$$A = \begin{bmatrix} 2 & 5 \\ 1 & -2 \end{bmatrix}$$
. (4p)

Lösning: Vi beräknar

$$\det(A - \lambda I) = \det \left[\begin{array}{cc} 2 - \lambda & 5 \\ 1 & -2 - \lambda \end{array} \right] = \lambda^2 - 9 = (\lambda + 3)(\lambda - 3).$$

Egenvärdena är alltså ± 3 . Egenvärdesekvationen $A\mathbf{x} = 3\mathbf{x}$ är ekvivalent med $-x_1 + 5x_2 = 0$, eller med $\mathbf{x} = t \begin{bmatrix} 5 & 1 \end{bmatrix}^T$, $t \in \mathbb{R}$.

På samma sätt ger $A\mathbf{x}=-3\mathbf{x}$ egenvektorerna $\mathbf{x}=t\begin{bmatrix}1&-1\end{bmatrix}^T,\,t\in\mathbb{R}.$

(b) Bestäm, med hjälp av resultatet i (a), alla lösningar till följande system av differentialekvationer (2p)

$$\begin{cases} x_1'(t) = 2x_1(t) + 5x_2(t) \\ x_2'(t) = x_1(t) - 2x_2(t). \end{cases}$$

Lösning: Lösningen kan skrivas

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = C \left[\begin{array}{c} 5 \\ 1 \end{array}\right] e^{3t} + D \left[\begin{array}{c} 1 \\ -1 \end{array}\right] e^{-3t},$$

där C och D är godtyckliga konstanter.

4. Låt \mathcal{P} vara det plan i \mathbb{R}^3 som spänns upp av vektorerna $\mathbf{v}_1 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ och $\mathbf{v}_2 = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$.

(a) Bestäm en ortogonal bas för \mathcal{P} . (3p)

Lösning: Vi väljer den första basvektorn som $\mathbf{b}_1 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. För den andra basvektorn gör vi först ansatsen $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T + C \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. Villkoret att denna vektor är ortogonal mot $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ ger C = -4/3. För att slippa irriterande nämnare tredubblar vi svaret och väljer $\mathbf{b}_2 = 3 \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T - 4 \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T = \begin{bmatrix} -1 & 2 & -1 \end{bmatrix}^T$.

(b) Bestäm den ortogonala projektionen av $\mathbf{v} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$ på planet \mathcal{P} . (3p) **Lösning:** Den sökta projektionen ges av

$$\frac{\mathbf{v} \cdot \mathbf{b}_1}{\mathbf{b}_1 \cdot \mathbf{b}_1} \mathbf{b}_1 + \frac{\mathbf{v} \cdot \mathbf{b}_2}{\mathbf{b}_2 \cdot \mathbf{b}_2} \mathbf{b}_2 = \frac{2}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \frac{-1}{6} \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 1 \\ 1/2 \end{bmatrix}.$$

Del 2: Överbetygsdelen

5. • Definiera begreppet underrum i ett vektorrum. (6p)

• Låt \mathbb{P}_2 vara vektorrummet av alla polynom av grad högst 2 med reella koefficienter och U mängden av alla polynom i \mathbb{P}_2 som uppfyller p(1) = 0.

i. Visa att U är ett underrum i \mathbb{P}_2 .

ii. Bestäm en bas för U.

Motivera väl.

Lösning och svar: För definitionen av underrum, se kursboken.

Låt p och q vara två element i U, dvs p(1) = q(1) = 0, samt låt a och b vara två tal. Då är

$$(ap + bq)(1) = ap(1) + bq(1) = 0,$$

dvs ap + bq ligger i U. Detta visar att U är ett underrum.

För att bestämma en bas observerar vi först att \mathbb{P}_2 har dimension 3 och att U inte är lika med hela \mathbb{P}_2 . Alltså har U dimension högst 2. Men å andra sidan är x-1 och $(x-1)^2$ två linjärt oberoende element i U. Dimensionen av U är alltså lika med 2, och de båda givna polynomen bildar en bas. (Det finns andra sätt att resonera.)

- **6**. Låt $F: \mathbb{R}^3 \to \mathbb{R}^3$ vara den linjära avbildning som geometriskt motsvarar en spegling i planet $x_1 + x_2 x_3 = 0$.
 - \bullet Bestäm F:s egenvärden och egenvektorer, dvs egenvärdena och egenvektorerna till F:s matris i standardbas.
 - Bestäm $F(\mathbf{v})$ då $\mathbf{v} = \begin{bmatrix} 0 & 2 & -1 \end{bmatrix}^T$.

Lösning och svar: Det är geometriskt klart att det speglande planet består av egenvektorer med egenvärdet 1. Dessutom är multipler av planets normal, dvs linjen $t \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^T$, egenvektorer med egenvärdet -1. Tar man två icke-parallella vektorer i planet och en tredje på linjen har man hittat tre linjärt oberoende egenvektorer, och eftersom dimensionen för \mathbb{R}^3 är 3 så kan det inte finnas fler (detta är också ganska uppenbart geometriskt).

För att bestämma speglingen av vektorn \mathbf{v} beräknar vi först ortogonala projektionen $\hat{\mathbf{v}}$ på planets normalvektor $\mathbf{n} = \begin{bmatrix} 1 & -1 \end{bmatrix}^T$. Enligt projektionsformeln är

$$\hat{\mathbf{v}} = \frac{\mathbf{v} \cdot \mathbf{n}}{\mathbf{n} \cdot \mathbf{n}} \, \mathbf{n} = \frac{3}{3} \, \mathbf{n} = \begin{bmatrix} 1 & 1 & -1 \end{bmatrix}^T.$$

Speglingen ges då av

$$\mathbf{v} - 2\hat{\mathbf{v}} = \begin{bmatrix} -2 & 0 & 1 \end{bmatrix}^T.$$

7. Visa att om produkten AB av två kvadratiska matriser A och B är inverterbar så är både A och B inverterbara. (6p)

Lösning och svar: Om AB är inverterbar $n \times n$ -matris finns en $n \times n$ -matris $C = (AB)^{-1}$ sådan att (AB)C = C(AB) = I. Detta visar dels att BC är en (kvadratisk) högerinvers till A, A(BC) = I och dels att CA är en (kvadratisk) vänsterinvers till B, (CA)B = I. Enligt Sats 8 (k) och (j) i Kapitel 2 gäller då att A respektive B är inverterbara.

Alternativ lösning: Vi påminner om att A är inverterbar om och endast om $\det(A) \neq 0$. Om AB är inverterbar är alltså $\det(AB) \neq 0$. Eftersom $\det(AB) = \det(A) \det(B)$ gäller att både $\det(A) \neq 0$ och $\det(B) \neq 0$ vilket medför att A och B båda är inverterbara. Nackdelen med denna lösning är att vi i beviset av att $\det(AB) = \det(A) \det(B)$ utnyttjar det vi skall visa här!