16. (*Claire and Yutian*) Show that the symmetric banded matrix $(a_{ij} \neq 0 \text{ only if } |i-j| \leq b \text{ where } b \text{ is the 'bandwidth'})$ the Cholesky factorization can be done with no fill-in outside the band. Note that a tridiagonal matrix is the special case of a banded matrix with bandwidth b = 1.

Let $P_n=(V,E)$ be defined by $V=\{v_1,...,v_n\}$ where $V_iV_i\in E\iff |i-j|\leq b$. Consider the neighbors of V_i ; by construction, they are exactly the vertices $\{v_2,...,v_{b+1}\}$. But for any $1\leq k\leq b+1$, we have $|k-(b+1)|\leq b$, meaning all such V_k are already adjacent to each other, and so $N(V_i)$ is a complete subgraph of P_n^b . Therefore deleting V_i gives no fill-in.

Finally, notice that $P^b - \frac{1}{2}\sqrt{3} = P^b$. Thus an orderly that gives no fill-in is any that always removes the ends of the underlying path in P^b (specifically the subgraph $P^b \in P^b$).