ЛЕКЦІЯ 9

Дерева, ліс Остовні дерева, остовний ліс Алгоритми на графах

Визначення дерева. Властивості дерев

Неорієнтованим деревом називають зв'язний неорієнтований граф без циклів. **Кореневим деревом** називають таке дерево, у якому існує виділена вершина,

Корінь у неорієнтованому графі — це одна з вершин, обрана за бажанням спостерігача.

що має назву кореня.

Орієнтованим деревом називають зв'язний орієнтований граф без циклів, у якому напівстепінь входу кожної вершини, за винятком кореневої, дорівнює 1, а напівстепінь входу

кореневої вершини дорівнює 0.

Остовним підграфом називають такий підграф, у якому множина його вершин збігається з множиною вершин самого графа.

Остовним деревом графа G називають остовний підграф графа G, який є деревом.

Теорема 1. Граф є деревом тоді і тільки тоді, коли будьякі дві його вершини зв'язані єдиним ланцюгом.

Доведення. Нехай граф є деревом. Якщо припустити існування більш ніж одного ланцюга, що зв'язує будь-які дві його вершини, то в такому графі існує цикл, тобто граф не може бути деревом.

Навпаки, оскільки будь-які дві вершини графа з'єднані ланцюгом, то граф зв'язний, а в силу того, що цей ланцюг єдиний, він не має циклів. Отже, граф є деревом. Теорема доведена.

Наслідок 1. Якщо T — дерево і u — його кінцева вершина, то граф T-u (T мінус u) — дерево.

Дійсно, граф T-u – підграф дерева T, для якого виконуються всі умови теореми.

Наслідок 2. Усяке непусте дерево має принаймні дві висячі вершини і одне висяче ребро.

- 1. Висяча вершина в неорієнтованому графі це вершина степеня 1.
- 2. Висяча вершина в орграфі вершина з напівстепенем входу, що дорівнює 1, і напівстепенем виходу, що дорівнює 0.
- 3. Висяче ребро це ребро, інцидентне вершині зі степенем 1.

Визначення. Ребро зв'язного графа називають *істотним*, якщо його видалення веде до порушення зв'язності цього графа.

Наслідок. У неорієнтованому графі істотним ребром є міст.

Теорема. У дереві кожне ребро істотне.

Доведення. Доведення випливає з того, що видалення ребра e=(u,v) в дереві T через наявність єдиного ланцюга, який з'єднує вершини u і v, веде до появи двох компонент зв'язності: одна компонента містить вершину u, а інша — вершину v.

Теорема 2. Якщо T = (V, E) – дерево і вершина $v \notin V$, то граф $T' = (V \cup \{v\}, E \cup \{(u,v)\})$, де u – довільна вершина з V, теж є деревом.

Доведення. Оскільки T — дерево, то існує єдиний ланцюг, що з'єднує будь-яку вершину u' з вершиною u. Оскільки вершина $v \not\in V$, то додавання одного кінцевого ребра (u,v) приводить до того, що з кожної вершини u' маємо лише єдиний ланцюг, який з'єднує вершини u' і v. Виходячи з теореми 1 граф T' є деревом.

Теорема 3. Нехай дерево T має n вершин. Тоді еквівалентними є такі твердження:

- 1. T не має циклів і має n-1 ребро.
- 2. T 3 в' язний граф і має <math>n-1 ребро.
- 3. Т зв'язний граф і кожне його ребро є мостом.
- 4. Будь-які дві вершини графа T з'єднані тільки одним простим ланцюгом.
- 5. T не має циклів, але додавання будь-якого нового ребра в T сприяє виникненню тільки одного циклу.

Теорема Келі. Число різних дерев, які можна побудувати на n вершинах, дорівнює n^{n-2} .

Визначення. Ліс –

незв'язний n-граф без циклів.

1. Зв'язні компоненти лісу є деревами.

- 2. Будь-яка зв'язна компонента лісу або дерева також не має циклів.
- 3. Будь-яка частина лісу є лісом або деревом.

Теорема. Нехай ліс G містить n вершин і k компонентів. Тоді ліс G має n-k ребер.

Доведення. Оскільки кожне дерево має n-1 ребро, то кожний компонент лісу G_i має $\left(n_i-1\right)$ ребро. Але тоді число ребер у G дорівнює

$$\left(n_1-1\right)+\left(n_2-1\right)+...+\left(n_k-1\right)=n_1+n_2+...+n_k-k=n-k$$
, що і потрібно довести.

На рисунку
$$n = 10$$
, $k = 4$, $|E| = 10 - 4 = 6$

Процедура побудови остовного дерева

- 1.Видалимо зі зв'язного графа G одне ребро, що належить деякому циклу і не порушує зв'язності графа G.
- 2.Будемо повторювати видалення доти, поки в G не залишиться жодного циклу.
- 3.У результаті одержимо дерево, що містить усі вершини графа G. Це дерево називають остовним деревом графа G.

Процедура побудови остовного лісу

Нехай G являє собою незв'язний граф з n вершинами, m ребрами і k компонентами.

- 1. Застосуємо процедуру видалення ребра до одного з циклів у кожній компоненті зв'язності графа G.
- 2. Будемо повторювати видалення доти, поки в кожній компоненті G не залишиться жодного циклу.
- 3. У результаті одержимо граф, який називають *остовним лісом*.
- 4. Число ребер, які при цьому видаляються, називають цикломатичним числом або циклічним рангом графа G і позначають C(G). Таким чином, цикломатичне число є мірою зв'язності графа.

$$C(G) = 3$$

$$T \qquad T_1 = T - (5,6) \qquad T_2 = T_1 - (6,7) \qquad T_3 = T_2 - (2,3)$$

Властивості циклічного рангу (цикломатичного числа)

- 1. Циклічний ранг дерева дорівнює нулю.
- 2. Циклічний ранг циклічного графа дорівнює одиниці.

Циклічний граф – зв'язний регулярний граф степеня 2, єдина компонента зв'язності циклічного графа є простим циклом.

Остовне дерево графа – це дерево, що містить усі вершини графа.

Остовним лісом називають незв'язний граф, що складається з компонентів, які є остовними деревами.

Теорема. Нехай T — остовний ліс графа G. Граф G', отриманий із графа G шляхом видалення всіх ребер графа T, називають доповненням остовного лісу T графа G.

Теорема 4. Якщо T — остовний ліс графаG, то

- а) усякий перетин в G має спільне ребро з T ;
- б) усякий цикл у G має спільне ребро з доповненням T .

Фундаментальна система циклів графа

Нехай T — остовний ліс графа G.

Якщо додати до T будь-яке ребро графа G, що не входить до нього, то за п.5 теореми 3 одержимо єдиний цикл.

• Визначення. Множину всіх циклів, які одержують шляхом додавання окремо кожного ребра з G, що не входить в T, називають фундаментальною системою циклів, асоційованою з T.

Цикли даної фундаментальної системи будуть різними, але їх кількість дорівнює циклічному рангу графа G.

На рисунку дано графи, які показують фундаментальну систему циклів.

Рисунок: а – граф G; **б** – остовне дерево графа G; **в** – фундаментальна система циклів, асоційована з остовним деревом графа G.

Теорема 5. Нехай G = (V, E) — довільний скінченний граф. Число ребер графа G, які необхідно вилучити для одержання остовного лісу T, не залежить від порядку їх видалення і дорівнює C(G) = |E| - |V| + k, де k — число компонент зв'язності графа G.

Наслідок 1. Граф G є остовним лісом тоді і тільки тоді, коли C(G)=0.

Наслідок. Граф G має єдиний цикл тоді і тільки тоді, коли $C\left(G\right)=1$.

Наслідок 2. Граф G, у якого число ребер перевищує число вершин, має цикл.

Наслідок 3. Будь-яке дерево порядку $n \geq 2$ має принаймні дві кінцеві вершини. •——•

Остовне дерево найменшої ваги

Постановка задачі

Нехай кожному ребру графа $G = \left(V, E\right)$ поставлене у відповідність деяке число

$$d_i = d(e_i), \quad e_i \in E, \quad i = 1, 2, ..., |E|.$$

Необхідно в графі G знайти остовне дерево, сума чисел d_i у якому найменша.

$$S = \min \sum_{e_i \in E} \left(d\left(e_i\right) \right)$$

Число d_i в цьому випадку називають вагою ребра e_i , а сам граф G – таким, що має вагу (зваженим).

Отже, завдання полягає в тому, щоб знайти остовне дерево з найменшою вагою.

Розв'язок, що випливає з теореми Келі

1. Розглянемо всі можливі остовні дерева повного графа G з n вершинами.

Згідно з теоремою Келі число різних дерев, які можна побудувати на n вершинах, дорівнює n^{n-2} .

- 2. При виборі кожного дерева визначимо суму його ваг.
- 3. Застосувавши сортування за величиною суми ваг, на початку списку одержимо ті остовні дерева, які мають мінімальну суму ваг.

Але оскільки число n^{n-2} навіть при невеликому n буде дуже великим, то такий шлях розв'язування даної задачі досить трудомісткий.

Тому актуальним є використання більш ефективних алгоритмів.

Попередні зауваження

- 1. Порядок графа число, яке дорівнює кількості вершин графа.
- 2. Порожній граф граф, що не містить ребер або регулярний граф степеня 0.

Алгоритм Краскала

Алгоритм Краскала полягає у виконанні такої послідовності дій:

- 1. Беремо порожній граф O і будуємо граф $T_1 = O + e_1,$ де e_1 ребро графа $G = \left(V, E\right)$ мінімальної ваги.
- 2. Якщо граф T_k уже побудований і k < n-1, то будуємо граф $T_{k+1} = T_k + e_{k+1}$, де e_{k+1} ребро мінімальної ваги серед ребер графа G, що не ввійшли в граф T_k , яке не становить циклу з ребрами графа T_k .

Цей алгоритм базується на спеціальній теоремі.

Теорема 7. Нехай G — зв'язний граф порядку n і T — підграф графа G, отриманий у результаті виконання кроків 1 і 2 алгоритму Краскала. Тоді підграф T — остовне дерево графа G мінімальної ваги.

Приклад. Нехай дано граф G, показаний на рисунку ліворуч. Необхідно знайти остовне дерево мінімальної ваги цього графа за допомогою алгоритму Краскала. **Розв'язок.**

Властивості алгоритму Краскала

- 1. Алгоритм використовується для зважених неорієнтованих графів.
- 2. Алгоритм може бути використаний для побудови остовного лісу в багатокомпонентних незв'язних графах. У цьому випадку структури даних, що описують кожну з компонент зв'язності, повинні бути окремими.

3. Обчислювальна складність алгоритму Краскала $O(e \cdot \log e)$, де e – кількість ребер у даному графі.

Алгоритм Прима

Алгоритм Прима полягає у виконанні такої послідовності дій:

- 1. У порожньому графі O вибираємо довільну **вершину**.
- 2. Вибираємо ребро e_1 мінімальної ваги до суміжної вершини і будуємо підграф $T_1 = O + e_1$,.
- 3. Якщо граф T_k уже побудований і k < n-1, то будуємо граф $T_{k+1} = T_k + e_{k+1}$, де e_{k+1} ребро мінімальної ваги, що з'єднує вершину графа T_k із суміжною вершиною, яка не включена в множину вершин графа T_k .

Приклад. Нехай даний граф G. Необхідно знайти остовне дерево мінімальної ваги цього графа за допомогою алгоритму Прима.

Розв'язок. 1.Вибираємо довільну вершину r і проводимо інцидентне ребро мінімальної ваги.

2. Потім, переглядаючи інцидентні ребра на кожній з кінцевих вершин, знаходимо ребро мінімальної ваги.

Властивості алгоритму Прима

- 1. Алгоритм використовується для зважених **неорієнтованих зв'язних** графів.
- 2. Обчислювальна складність алгоритму Прима $O(n^2)$, де n- кількість вершин графа. Якщо значення n достатньо велике, то використовувати цей алгоритм не раціонально.
- 3. Якщо кількість ребер e значно менша, ніж n^2 , то алгоритм Краскала кращий, але якщо e близька до n^2 , то рекомендують застосовувати алгоритм Прима.

Структура алгоритму Прима

Даний графG(V,E), де множина вершин $V = \{1,2,...,i,...,n\}$

 $U = \emptyset$ # множина вершин остовного дерева. $T = \emptyset$ # множина ребер остовного дерева.

```
def Prim (G):
#U- множина вершин;
# u, v - вершини;
T = \emptyset; U = \{u\};
while U \neq V:
Знаходження ребра (u, v) найменшої вартості і такого, що u \in U і v \in V \setminus U
T = T \cup \{(u, v)\};
U = U \cup \{v\}
print(T)
```

Обхід графів. Основні положення

Обійти граф — це значить побувати у всіх вершинах точно по одному разу.

Алгоритми обходу складаються з:

- 1. Послідовного відвідування вершин. При цьому:
 - 1.1. Вершину, яка ще не відвідана, називають новою.
- 1.2. Факт відвідування вершини запам'ятовується, так що з моменту відвідування і до кінця роботи алгоритму вона вважається відвіданою.
- 1.3. У результаті відвідування вершина стає відкритою і залишається такою, поки не будуть досліджені всі інцидентні їй ребра.
- 1.3. Після дослідження всіх інцидентних ребер вона перетворюється в закриту.
- 2. Дослідження ребер.

Які саме дії виконуються при відвідуванні вершини і дослідженні ребра – залежить від конкретної задачі Алгоритми обходу графа: - обхід графа в глибину -обхід графа в ширину.

Обхід у глибину

Обхід у глибину – це обхід графа за такими правилами:

- 1. Перебуваючи у вершині x, потрібно рухатися в будь-яку іншу y, раніше не відвідану вершину (якщо така знайдеться), одночасно запам'ятовуючи ребро, по якому ми вперше потрапили в дану вершину.
- 2. Якщо з вершини z ми не можемо потрапити в раніше не відвідану вершину або такої немає, то ми повертаємося у вершину y, з якої вперше потрапили в z, і продовжуємо обхід у глибину з вершини y.

При виконанні обходу графа за цими правилами ми прагнемо проникнути "углиб" графа так далеко, як тільки це можливо, потім відступаємо на крок назад і знову прагнемо пройти вперед, і так далі.

Приклад обходу графа в глибину

Пошук у глибину починаємо з будь-якої вершини. Рекурсивно застосуємо до всіх вершин, у які можна потрапити з поточної, таку послідовність дій.

- 1. Задамо граф з n вершин матрицею суміжності A розміром $n \times n$ у вигляді списку A[n,n].
- 2. Задамо одномірний список Visited[n] і заповнимо його нулями, уважаючи, що жодна вершина до початку виконання алгоритму не була відвідана.
- 3. Задамо рекурсивну процедуру обходу графа в глибину.

Обхід в ширину

Обхід в ширину — це обхід графа за наступними правилами: a

- 2. Нехай ми перебуваємо у початковій вершині а.
- 3. Із цієї вершини відбувається перегляд відразу всіх ще не переглянутих вершин, суміжних вершині
- а. Таким чином, пошук ведеться у всіх можливих напрямках одночасно.
- 4. Потім проглядаються вершини, що перебувають від a на відстані 2, і т.д.

Чим ближче вершина до стартової вершини, тем раніше вона буде відвідана.

Обхід в ширину шукає найкоротший можливий шлях.

Приклад обходу графа в ширину

При пошуку в ширину замість стека рекурсивних викликів **використовується черга**, у яку записуються вершини в порядку віддалення від початкової.

- 1. **Задамо список** Visited[n] і заповнимо його нулями, вважаючи, що жодна вершина до початку виконання алгоритму не була відвідана.
- 2. **Створимо чергу** для зберігання вершин у вигляді списку Queue[n]. У початок черги запишемо початкову вершину.
- 3. Змінна r вказує на позицію в черзі, з якої ми читаємо дані.
- 4. Змінна w вказує на позицію в черзі, куди ми будемо писати дані.
- 5. Задамо процедуру обходу в ширину.

```
r = 0, w = 1;
while (r < w):
 r=r+1
 Curr = queue[r] #вибрали активну вершину
 for i in range (1, n+1): #відвідуємо всі суміжні вершини
   if ((Visited[i]=0) AND (A[curr,i]=1):
      Visited[i] = 1 #відзначаємо відвідану вершину
      w = w + 1;
       queue[w] = і; #ставимо її в чергу активних вершин
```

Пошук шляхів у графі. Алгоритм Террі

Виходячи з **початкової вершини** й здійснюючи послідовний перехід **від кожної досягнутої вершини до суміжної вершини**, додержуватися таких правил.

- 1. Позначати напрямок, у якому проходимо ребро, як у прямому, так і у зворотному напрямках.
- 2. З будь-якої вершини просуватися тільки по тому ребру, яке ще не було пройдено або було пройдено в протилежному напрямку.
- 3. Для будь-якої вершини відзначати перше ребро, по якому до неї потрапили, якщо вершина зустрічається вперше.
- 4. Будь-яку вершину покидати по ребру, по якому прийшли в цю вершину (у зворотному напрямку) лише тоді, коли немає іншої можливості.

Пояснення алгоритму Террі

Розглянемо алгоритм Террі пошуку шляху в зв'язному графі, з вершини v_i у вершину v_j , де $v_i \neq v_j$.

Починаємо рух з вершини v_i .

Переходимо до вершини з множини $v_k \in \Gamma^+ \left(v_i \right)$ за такими правилами:

1. Вибираємо довільну дугу, проходимо по ній і відзначаємо напрямок проходження.

Нехай початкова вершина v_1 Вибрали першу суміжну v_2

Як правило, вибираємо суміжну вершину з найменшим номером

- **1.**Виходимо з вершини v_k по дузі, яка ще не була вибрана, або була пройдена в протилежному напрямку.
- 2.Відмічаємо проходження ребра в прямому і протилежному напрямку

Перейшли у вершину v_2 Відмітили ребро $\left(v_1,v_2\right)$ Вияснили, що іншого шляху, ніж $\left(v_1,v_2\right)$ не існує

3. Вибираємо те ребро, по якому прийшли, тільки у випадку, коли не існує іншого шляху.

Знову знаходимось у вершині v_{l}

Відмічаємо ребро $\left(v_{1},v_{3}\right)$

Перейшли у вершину $v_{\mathbf{3}}$

Знаходимось у вершині $v_{
m 3}$

Відмічаємо ребро $\left(v_{3},v_{4}\right)$

Перейшли у вершину $v_{\scriptscriptstyle 4}$

Відмічаємо ребро $\left(v_{4}, v_{3}\right)$

Знаходимось у вершині $v_{
m 3}$

Відмічаємо ребро $\left(v_{3},v_{5}\right)$

Перейшли у вершину v_{5}

ВИСНОВОК

За алгоритмом Террі одержали такий шлях:

$$v_1, v_2, v_1, v_3, v_4, v_3, v_5$$

Якщо виключити цикли, то одержимо простий ланцюг:

$$v_1, v_3, v_5$$

Хвильовий алгоритм. Структура даних

Нехай G = (V, E) непустий граф. Потрібно знайти шлях між вершинами s і t графа ($s \neq t$), який містить мінімальну кількість проміжних вершин (ребер).

Структура даних

1. Time[N] — масив хвильових міток вершин графа G.

- 2. OldFront множина вершин старого фронту хвилі. Початкова установка: $OldFront = \{s\}$.
- 3. NewFront множина вершин нового фронту хвилі. Початкова установка: $NewFront = \{\}$.
- 4. T змінна поточного часу.

Початкова установка:T=0.

Алгоритм полягає в наступному:

- 1. Для кожної з вершин, що входять в OldFront, переглядаємо суміжні вершини u_i (Спочатку $OldFront = \{s\}$.)
- 2. Якщо $Time[u_i] == -1$, то $Time[u_i] = T+1$; $NewFront := NewFront \cup \{u_i\}$;
- 3. Якщо $NewFront == \{ \}$, то КІНЕЦЬ ("немає розв'язку");
- 4. Якщо $t \in NewFront$ (тобто одна з вершин u_i співпадає з t), то знайдено найкоротший шлях між s і t з Time[t] := T+1 проміжними ребрами; потім КІНЕЦЬ ("розв'язок знайдений"); Якщо ні одна з вершин u_i не співпадає з t, то п.5
- 5. OldFront = NewFront; $NewFront = \{ \}$; T = T + 1;; goto 1.

Відновлення найкоротшого шляху.

Якщо на кроці (4) була досягнута вершина t, то алгоритм побудови найкоротшого шляху такий:

- 1. Серед сусідів вершини t знайдемо будь-яку вершину з хвильовою міткою $Time\left(t\right)-1$.
- 2. Серед сусідів вже знайденої вершини знайдемо вершину з міткою Time(t)-2, і т. д., поки не досягнемо s.

Знайдена послідовність вершин визначає один з найкоротших шляхів з s в t

На практиці вигідно зберігати інформацію про те, з якої вершини "хвиля" прийшла у вершину u_i — тоді відновлення шляху відбувається швидше.

На малюнку показана нумерація вершин, отримана в результаті роботи хвильового алгоритму.

Пошук найкоротшого шляху у зваженому графі

Нехай дано граф G з матрицею ваг $C = \left(c_{i,j} \right)$.

Задача про найкоротший шлях полягає в знаходженні найкоротшого шляху від заданої початкової вершини $s \in V$ до заданої кінцевої вершини $t \in V$ за умови, що такий шлях існує.

Алгоритм Дейкстри знаходить найкоротший шлях для випадку $c_{ij} \geq 0$.

- 1. Вершинам приписують **тимчасові позначки**. Нехай $l\left(v_i\right)$ позначка вершини v_i .
- 2. Кожна позначка вершини **дає верхню границю довжини шляху** від *s* до цієї вершини.
- 3. Величини цих позначок зменшують ітераційно.
- 4. На кожному кроці ітерації одна з тимчасових позначок **стає постійною**.
- 5. Величина цієї позначки є точною довжиною найкоротшого шляху від s до розглянутої вершини.

Теоретичний опис алгоритму Дейкстри

Присвоєння початкових значень

Крок 1. Встановимо l(s) = 0 і вважатимемо цю позначку постійною. Встановимо $l(v_i) = \infty$ для всіх $v_i \neq s$ і вважатимемо ці позначки тимчасовими.

Встановимо p = s.

Відновлення позначок

Крок 2. Для всіх $v_i \in \Gamma \big(\, p \, \big)$, позначки яких тимчасові, змінимо позначки у відповідності з таким виразом:

$$l(v_i) \leftarrow \min[l(v_i), l(p) + c(p, v_i)]$$

Перетворення позначки в постійну

Крок 3. Серед вершин з тимчасовими позначками знайдемо таку, для якої

$$l(v_i^*) = \min l(v_i), \ v_i \in \Gamma(p)$$

Крок 4. Будемо вважати позначку $l\!\left(v_i^*\right)$ постійною і встановлюємо $p=v_i^*$.

Крок 5. Якщо потрібно знайти шлях від s до t. Якщо p=t, то l(p) є довжиною найкоротшого шляху від вершини s до вершини t. Останов.

Крок 6. Якщо $p \neq t$, перейти до кроку 2.

Крок 7. Якщо потрібно знайти шляхи від *з* до всіх інших вершин. Якщо всі вершини позначені як постійні, то ці позначки дають довжини найкоротших шляхів. Останов.

Крок 8. Якщо деякі позначки залишаються тимчасовими, то перейти до кроку 2.

Алгоритм Форда – Беллмана знаходження мінімального шляху

Математичний опис

Нехай заданий граф G(V,E) з вагами ребер f(e) і виділеною вершиною-джерелом u . Позначимо через d(v) найкоротшу відстань від джерела u до вершини v . Алгоритм Беллмана-Форда шукає функцію d(v) як єдиний розв'язок рівняння

$$d(v) = \min \{d(w) + f(e) | e = (w, v) \in E\}, \forall v \neq u$$

з початковою умовою d(u) = 0.

Основною операцією алгоритму є релаксація ребра.

Якщо $e(w,v) \in E$ і d(v) > d(w) + f(e), то виконують присвоєння нового значення d(v) = d(w) + f(e)

Макроструктура алгоритму

Алгоритм послідовно уточнює значення функції d(v).

- 1.На початку задаємо значення d(u) = 0; $d(v) = \infty$; $\forall v \neq u$.
- 2. Виконуємо n-1 ітерацій під час яких виконуємо релаксацію всіх ребер графа.

Вхідні дані:

```
Граф с вершинами V, ребрами E з вагами f(e); Вершина-дежерело u.
```

Вихідні дані: відстані d(v) до кожної вершини $v \in V$ від вершини u. **for** v in V:

```
for v in v:
d(v) := \infty; d(u) = 0

for i in range (1, |V| | 1):
  for e = (w, v) in E:
   if d(v) > d(w) + f(e):
d(v) = d(w) + f(e)
```

Алгоритм Флойда-Уоршелла

Дано зважений граф G(V,E) з вершинами, що пронумеровані від 1 до n.

Вага ребра
$$w_{uv} = \begin{cases} k, (u,v) \in E, \\ \infty, (u,v) \notin E. \end{cases}$$

Потрібно знайти матрицю найкоротших відстаней D, в якій елемент d_{ij} або дорівнює найкоротшій відстані від вершини i до вершини j, або дорівнює ∞ , якщо вершии j не досяжна з i.

На кожному кроці беремо чергову вершину (нехай з номером i) і для всіх пар вершин u і v будемо обчислювати $d_{uv}^{(i)} = \min\left(d_{uv}^{(i-1)}, d_{ui}^{(i-1)} + d_{iv}^{(i-1)}\right)$

Псевдокод

```
d_{uv}^{(0)} = w

for i in V:

for u in V:

for v in V:

d_{uv}^{(i)} = \min \left( d_{uv}^{(i-1)}, d_{ui}^{(i-1)} + d_{iv}^{i-1} \right)
```

У підсумку отримуємо, що матриця $D^{(n)}$ і є шуканою матрицею найкоротших шляхів, оскільки містить в собі довжини найкоротших шляхів між усіма парами вершин, що мають в якості проміжних вершин вершини з множини $\{1,...,n\}$, що є просто всі вершини графа.

На кожній ітерації перебирають всі пари вершин і шлях між ними скорочується за допомогою проміжної i-ї вершини.

Приклад. Розглянемо роботу алгоритму Флойда на прикладі графа G, що складається з чотирьох вершин.

1. Будуємо початкову матрицю T_0 :

$$T_0 = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 5 & 10 & \infty \\ v_2 & 5 & 0 & 4 & \infty \\ v_3 & 10 & 4 & 0 & 2 \\ v_4 & \infty & \infty & 2 & 0 \end{pmatrix}$$

Продовження прикладу роботи алгоритму Флойда

2. Модифікуємо матрицю T_0 при k=1

```
for i in range(1,5):
  for j in range(1,5):
   T[i,j] = min(T[i,j], T[i,1] + T[1,j])
```

Замінюємо елемент матриці, якщо шлях між вершинами i та j виявиться коротшим через вершину k=1

$$T_{1} = \begin{pmatrix} v_{1} & v_{2} & v_{3} & v_{4} \\ v_{1} & 0 & 5 & 10 & \infty \\ v_{2} & 5 & 0 & 4 & \infty \\ v_{3} & 10 & 4 & 0 & 2 \\ v_{4} & \infty & \infty & 2 & 0 \end{pmatrix}$$

На першому етапі в матриці немає змін, оскільки не знайдено більш коротких шляхів між вершинами через вершину 1

2. Модифікуємо матрицю T_1 при k=2

for i in range(1,5):
 for j in range(1,5):
 $T[i,j] = \min(T[i,j], T[i,2] + T[2,j])$ Заміняємо елемент матриці, якщо шлях між вершинами i та j виявиться коротшим через вершину k=2

$$T_{2} = \begin{pmatrix} v_{1} & v_{2} & v_{3} & v_{4} \\ v_{1} & 0 & 5 & 9 & \infty \\ v_{2} & 5 & 0 & 4 & \infty \\ v_{3} & 9 & 4 & 0 & 2 \\ v_{4} & \infty & \infty & 2 & 0 \end{pmatrix}$$

На другому етапі шлях з вершини 1 у вершину 3 виявився коротшим через вершину 2.

3. Модифікуємо матрицю T_2 при k=3

for i in range (1,5):
 for j in range (1,5):
 T[i,j] = min(T[i,j], T[i,3] + T[3,j])
 Заміняємо елемент матриці, якщо шлях між вершинами i та j виявиться коротшим через вершину k=3

$$T_{3} = \begin{pmatrix} v_{1} & v_{2} & v_{3} & v_{4} \\ v_{1} & 0 & 5 & 9 & 12 \\ v_{2} & 5 & 0 & 4 & 6 \\ v_{3} & 9 & 4 & 0 & 2 \\ v_{4} & 12 & 6 & 2 & 0 \end{pmatrix}$$

На 3-му етапі встановили шлях у вершину 4 через вершину 3.

4. Модифікуємо матрицю T_3 при k=4

for i in range (1,5):

for j in range (1,5):

T[i,j] = min(T[i,j], T[i,4] + T[4,j]) Заміняємо елемент матриці, якщо шлях між вершинами i та j виявиться коротшим через вершину k=4

$$T_{4} = \begin{pmatrix} v_{1} & v_{2} & v_{3} & v_{4} \\ v_{1} & 0 & 5 & 9 & 12 \\ v_{2} & 5 & 0 & 4 & 6 \\ v_{3} & 9 & 4 & 0 & 2 \\ v_{4} & 12 & 6 & 2 & 0 \end{pmatrix}$$

На 4-му етапі не знайшли оптимальних шляхів через вершину 4, оскільки вона висяча.