第3讲 语法分析

学习的主要内容和目标

> 学习的主要向客

- ◆ 语法分析的基本思想
- ◆ 自顶向下的语法分析实现方法

> 学习的目标

- ◆ 理解程序设计语言的语法
- ◆ 理解LL(1) 文法的概念
- ◇ 掌握递归下降分析实现机制

语法分析概述

户程序设计语言的语法以及语法分析

```
int b=3;
int main()
int a=2, sum;
sum=a+b;
return 0;
```


语法分析概述

户语法分析

◆ 判定输入序列是否符合特定语法规则,并确定输入序列的语 词法记号的特点是 什么?

户实现语法分析的基本策略

◆ 判定从词法分析器获得的词法记号序列是否符合语法的定义, 并确定输入序列的语法结构

语法分析概述

- > "程序设计语言"的语法
 - ◆ 可以使用上下文无关文法来描述的语言规则
- >语法分析的实现
 - ◆ 输入词法记号序列;
 - ◆ 词法记号之间的上下文无关约束
- >语法分析的数学抽象
 - ♦ 对任意上下文无关文法 $G = (V_T, V_N, P, S)$ 和任意 $w \in V_T^*$, 判断 $w \in L(G)$?

➤回顾推导: aaab

S

 $\Rightarrow AB$

 $\Rightarrow aAB$

 $\Rightarrow aaAB$

 $\Rightarrow aaaAB$

 $\Rightarrow aaaB$

 $\Rightarrow aaab$

 $(1) S \rightarrow AB$

(2) $A \rightarrow aA$

 $(3) A \rightarrow a$

 $(4) B \rightarrow b$

 $(5) B \rightarrow bB$

>无回溯推导的关键和难点?

♦ aaab

$$(1) S \rightarrow AB$$

(2)
$$A \rightarrow aA$$

$$(3) A \rightarrow a$$

$$(4) B \rightarrow b$$

$$(5) B \rightarrow bB$$

- > 每一步推导都是确定的这样
 - ◇ 最左推导:
 - ✓总是对最左边的非终结符进行展开
 - ◇ 对当前非终结符选择一个确定的候选式
 - ◆ 从左向右扫描,向前查看确定数目的符号
 - ◆ 分析成功的结果: 得到唯一的最左推导

>对 aaab的预测分析

aaab#

◆ 向前查看 2个符号

S

 $(1) S \rightarrow AB$

 $\Rightarrow AB$

(2) $A \rightarrow aA$

 $\Rightarrow aAB$

(3) $A \rightarrow a$

 $\Rightarrow aaAB$

 $(4) B \rightarrow b$

 $\Rightarrow aaaB$

 $(5) B \rightarrow bB$

 \Rightarrow aaab

只要向前查看 2 个符号, 就可预测分析L(G)中所有句子

>对 aaab的预测分析

♦ 向前查看1个符号

文法 G[S]:

$$(1) S \rightarrow AB$$

(2)
$$A \rightarrow aA$$

(3)
$$A \rightarrow a$$

$$(4) B \rightarrow b$$

$$(5) B \rightarrow bB$$

S

 $\Rightarrow AB$

 $\Rightarrow aAB$

 $\Rightarrow aaAB$

 $\Rightarrow aaaB$

 \Rightarrow ?

>引入的目的

- ◆ 实现无回溯的语法分析
- ◇ 文法的子类
 - ✓ 在最左(L)推导中,从左(L)到右扫描输入序列并且读1个单词,就可以为每一步推导中当前非终结符号做唯一、确定的选择。

First 集合

设 $G = (V_T, V_N, P, S)$ 是上下文无关文法,对 $\alpha \in (V_T \cup V_N)^*$,

- 1 First $(\alpha) = \{ a \mid \alpha \stackrel{*}{\Rightarrow} a\beta, a \in V_T, \beta \in (V_T \cup V_N)^* \}$
- ② 若α ⇒ ε则规定ε∈First (α)

►计算First 集合

文法 G[S]:

$$(1) S \rightarrow AB$$

(2)
$$A \rightarrow Da \mid \varepsilon$$

(3)
$$B \rightarrow cC$$

(4)
$$C \rightarrow aADC \mid \varepsilon$$

(5)
$$D \rightarrow b \mid \varepsilon$$

$$First(D) = \{b, \epsilon\}$$

$$First(C) = \{a, \varepsilon\}$$

$$\mathbf{First}(\mathbf{B}) = \{c\}$$

$$First(A) = \{b, a, \varepsilon\}$$

$$First(S) = \{b, a, c\}$$

▶计算 First 集合

- ♦ 设X∈V_N \cup V_T , 则First(X) 可按如下步骤计算:

 - ✓ \dot{z} $\dot{z$
 - \checkmark 若 X→ε 也是一个产生式,则把 ε 也加到 First(X)中;
 - \checkmark 若 $X \to Y_1 Y_2 ... Y_K$ 是一个产生式,对于任何 i:1 \le i \le k和任何 j:1 \le j \le i-1, First(Y_j)都含有 ε , 但 First(Y_i)不含 ε , 则把 First(Y_j)中的所有非 ε 元素和First(Y_i)中的所有元素都加到 First(X)中;特别是若 First(Y_i)都含 ε , 则把所有First(Y_i)都加到First(X)中.

- Follow 集合
 - ◆ 设 G =(V_T , V_N , P, S)是上下文无关文法, 对 A∈ V_N ,

 Follow(A)={ $a \mid S \stackrel{*}{\Rightarrow} \alpha A \beta$ 且a∈First(β), α ∈($V_T \cup V_N$)*, β ∈($V_T \cup V_N$)+}

 - ◆ #代表输入单词序列右边的结束符

>Follow 集合

- ♦ 对于文法的开始符号S, 置#于Follow(S) 中;
- ◆ 若A →αBβ是一个产生式,则把 First(β)-{ε}加至 Follow(B) 中;
- ◆ 若 $A \rightarrow \alpha B$ 是一个产生式,或 $A \rightarrow \alpha B$ β是一个产生式而β ⇒ ϵ (即 $\epsilon \in \text{First}(\beta)$), 则把 Follow(A)加至Follow(B)中.

>计算Follow 集合

文法 G[S]:

- (1) $S \rightarrow AB$
- (2) $A \rightarrow Da \mid \varepsilon$
- (3) $B \rightarrow cC$
- (4) $C \rightarrow aADC \mid \varepsilon$
- (5) $D \rightarrow b \mid \varepsilon$

$$First(D) = \{b, \varepsilon\}$$
 Follow(S) = $\{\#\}$

$$First(C) = \{a, \epsilon\}$$
 $Follow(C) = \{\#\}$

$$First(B) = \{c\} \qquad Follow(A) = \{c,b,a,\#\}$$

$$First(A) = \{b, a, \epsilon\}$$
 $Follow(B) = \{\#\}$

$$First(S) = \{b,a,c\}c \qquad Follow(D) = \{a,\#\}$$

►LL(1)女法定义

- \diamondsuit 文法G是LL(1),当且仅当对G的每个非终结符A的任何两个候选式 $A \rightarrow \alpha \mid \beta$ 满足:
 - \checkmark First(α) \cap First(β)= ϕ , 即α和β推导不出同一个终结符为首的符号串,也不同时推导出 ϵ

▶验证的下文法G(S)不是LL(1)文法

文法 G[S]:

$$(1) S \rightarrow AB$$

(2)
$$A \rightarrow Da \mid \varepsilon$$

(3)
$$B \rightarrow cC$$

(4)
$$C \rightarrow aADC \mid \varepsilon$$

(5)
$$D \rightarrow b \mid \varepsilon$$

$$First(D) = \{b, \varepsilon\}$$

$$First(C) = \{a, \varepsilon\}$$

$$First(B) = \{c\}$$

$$First(A) = \{b, a, \epsilon\}$$

$$First(S) = \{b,a,c\}c$$

$$First(Da) = \{b,a\}$$

Follow(
$$A$$
) = { c , b , a , #}

$$First(b) = \{b\}$$

$$Follow(D) = \{a, \#\}$$

$$First(aADC) = \{a\}$$

$$Follow(C) = \{\#\}$$

$$Follow(S) = \{\#\}$$

$$Follow(C) = \{\#\}$$

Follow(
$$A$$
) = { c , b , a , #}

$$Follow(B) = \{\#\}$$

Follow(
$$D$$
) = { a ,#}

因为 $A \rightarrow Da$ ϵ 的两个 候选式有冲突

- > 左递归带来的问题
 - ◆ 考虑下列文法识别 ban 的分析过程

文法 G[S]:

- (1) $S \rightarrow Sa$
- (2) $S \rightarrow b$

S

 $\Rightarrow Sa$

 \Rightarrow Saa

 \Rightarrow Saaa

• • • • •

 $\Rightarrow Sa^n$

 $\Rightarrow ba^n$

◆需要向前查看n+1个符号,才能确定这样的推导序列

> 递归特征和定义

$$\diamondsuit$$
 递归: $A \Rightarrow \alpha A \beta$

$$\diamondsuit$$
 左递归: $A \stackrel{+}{\Rightarrow} A \beta$

$$\diamondsuit$$
 右递归: $A \Rightarrow \alpha A$

$$\diamondsuit$$
 直接递归: $A \Rightarrow \alpha A \beta$

$$\diamondsuit$$
 间接递归: $A \Longrightarrow \alpha A \beta$

> 左递归消除

- ϕ 对如下产生式,如果α, β 不以P 打头 $P \rightarrow P \alpha \mid \beta$
- ◇ 可改写为:

$$P \to \beta Q$$

$$Q \to \alpha Q \mid \varepsilon$$

其中Q为新增加的非终结符

> 左递归消除

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

$$F \to (E) \mid a$$

◆ 消除左递归后的文法 G'[E]:

$$E \to TR$$

$$R \to + TR \mid \varepsilon$$

$$T \to FP$$

$$P \to *FP \mid \varepsilon$$

$$F \to (E) \mid a$$

> 左递归消除

令 原文法
$$G[S]$$
:
$$S \rightarrow PQ \mid a$$

$$P \rightarrow QS \mid b$$

$$Q \rightarrow SP \mid c$$

$$Q \to SP \mid c$$

$$Q \to PQP \mid aP \mid c$$

$$Q \to QSQP \mid bQP \mid aP \mid c$$

$$Q \to bQPR \mid aPR \mid cR$$

$$R \to SQPR \mid \varepsilon$$

结果:

$$S \rightarrow PQ \mid a$$

$$P \rightarrow QS \mid b$$

$$Q \rightarrow bQPR \mid aPR \mid cR$$

$$R \rightarrow SQPR \mid \epsilon$$

> 左公因子

◆ 向前查看3个符号来预测分析,文法 G[S]:

$$S \to abA \mid abB$$

$$A \to a$$

$$B \to b$$

◆ 向前查看?个符号来预测分析,文法 G[S]:

$$S \to aAb \mid aAc$$

$$A \to a \mid aA$$

> 左公因子

$$P \to \alpha Q$$

$$Q \to \beta \mid \gamma$$

其中Q为新增加的未出现过的非终结符

> 左公因子

 \diamond 一般含有左公因子的产生式形如 $P \to \alpha \beta_1 | \alpha \beta_2 | ... | \alpha \beta_m | \gamma_1 | \gamma_2 | ... | \gamma_n$ 其中,每个 γ 不以 α 开头.提取左公共因子, 产生式改写成: $P \to \alpha Q | \gamma_1 | \gamma_2 | ... | \gamma_n$ $Q \to \beta_1 | \beta_2 | ... | \beta_m$

卢左公因子

♦ 对文法 G[S]:

$$S \to \underline{if} C t S \mid \underline{if} C t S e S$$

$$C \to b$$

提取左公因子后,可改写为文法G'[S]:

$$S \to \underline{\text{if}} C t S A$$

$$A \to \varepsilon \mid e S$$

$$C \to b$$

实现LL(1) 女法的预测分析

- > 递归下降分析程序
- > 非递归分析

▶基本特点

- ◆ 每个非终结符都对应一个子程序:
- ◆ 每个子程序若干分支, 每个分支的行为根据语法描述来明确:
 - ✓ 每遇到一个终结符,则判断当前读入的单词是否与该终结符相匹配,若匹配,再读取下一个单词继续分析;不匹配,则进行出错处理
 - ✓ 每遇到一个非终结符,则调用相应的子程序

- > 非终结符A 对应的递归下降子程序
- \triangleright 产生式 $A \rightarrow u_1 \mid u_2 \mid ...$

```
void ParseA()
    switch (lookahead) {
        case First(u<sub>1</sub>):
             /* code to recognize u<sub>1</sub> */
             break:
       case First(u<sub>2</sub>):
             /* code to recognize u<sub>2</sub> */
             break;
       case Follow(A): /* when A \Rightarrow* \epsilon */
            /* usually do nothing here */
            break;
       default:
             printf("syntax error \n");
             exit(0);
```

>递归下降分析程序实例

文法 G (S):

$$S \rightarrow aAS \mid bB \mid d$$

$$A \rightarrow BbS \mid \varepsilon$$

$$B \rightarrow c$$

	FIRST	FOLLOW
S	a, b, d	#, a, b, d
\boldsymbol{A}	C, E	a, b, d
В	c	b, #, a, d

> 递归下降分析程序实例

```
S \rightarrow aAS \mid bB \mid d void ParseS(){

if (token==a) {

gettoken():
```

```
gettoken();
ParseA();
ParseS();
}
else if (token ===b) {
    gettoken();
    ParseB();
}
```

```
else if (token==d)
    gettoken();
else {
    printf("syntax error \n");
    exit(0);
}
```

> 递归下降分析程序实例

```
A \rightarrow BbS \mid \varepsilon
```

```
void ParseA( ){
   if (token==c) {
     ParseB();
     if (token==b) gettoken ();
     else{
        printf("syntax error \n");
        exit(0);
     ParseS();
```

```
else if (token ==a|| token ==b|| token ==d){}
 else{
   printf("syntax error \n");
   exit(0);
```

>递归下降分析程序实例

```
void ParseB( ){
B \rightarrow c
                                           if (token==c) {
                                              gettoken();
                                           else{
                                              printf("syntax error \n");
                                              exit(0);
```

表驱动预测分析程序

>基 奉 框 架

>预测分析表

文法 G (S):

$$S \rightarrow aAS \mid bB \mid d$$

$$A \rightarrow BbS \mid \varepsilon$$

$$B \rightarrow c$$

	a	b	c	d	#
S	$S \rightarrow aAS$	$S \rightarrow bB$		$S \rightarrow d$	
\boldsymbol{A}	$A{ ightarrow} \varepsilon$	$A{\rightarrow}\varepsilon$	$A \rightarrow BbS$	$A{\rightarrow}\varepsilon$	
В			$B \rightarrow c$		

- ▶LL(1)女法可以构造出一个M(A,a) 最多只包含一个产生式的预测分析表
- ▶LL(1)预测分析表的构造算法
 - ♦ 对文法G的每个产生式A→α执行如下步骤:
 - ✓ 对每个a∈First(α), 把A $\rightarrow \alpha$ 加入M[A,a]
 - ✓ 若 $\varepsilon \in First(\alpha)$, 则对任何 $b \in Follow(A)$,把 $A \rightarrow \alpha$ 加至M[A,b]中把所有无定义的M[A,a]标上 "出错标志"
 - ◆ 可以证明: 这样为一个文法G构造的的预测分析表不含多重入口,当且仅当该文法是 LL(1)的

>算法

```
a:=gettoken();
push #;
push S;
X是栈顶符号;
while(X\neq\#) {
   if (X \notin V_N \text{ and } X = a) {
     pop;
     a:=gettoken();
   elseif M[X, a] = error error();
   elseif M[X, a]=X \rightarrow Y_1 Y_2 ... Y_n {
     pop;
     for i=n to 1 do push Y_i;
if (X=\# \text{ and } a=\#) return;
```

> 表驱动预测分析过程

文法 G (S):

 $S \rightarrow aAS \mid bB \mid d$

$$A \rightarrow BbS \mid \varepsilon$$

$$B \rightarrow c$$

	a	b	c	d	#
S	$S \rightarrow aAS$	$S \rightarrow bB$		$S \rightarrow d$	
\overline{A}	$A{ ightarrow}arepsilon$	$A{ ightarrow} arepsilon$	$A \rightarrow BbS$	$A{\rightarrow}\varepsilon$	
B			$B \rightarrow c$		

S #

> 表驱动预测分析过程

文法 G (S):

 $S \rightarrow aAS \mid bB \mid d$

$$A \rightarrow BbS \mid \varepsilon$$

$$B \rightarrow c$$

	a	b	c	d	#
S	$S \rightarrow aAS$	$S \rightarrow bB$		$S \rightarrow d$	
A	$A{ ightarrow}arepsilon$	$A{ ightarrow} arepsilon$	$A \rightarrow BbS$	$A{ ightarrow} arepsilon$	
\overline{B}			$B \rightarrow c$		

a A S #

> 表驱动预测分析过程

文法 G (S):

 $S \rightarrow aAS \mid bB \mid d$

$$A \rightarrow BbS \mid \varepsilon$$

$$B \rightarrow c$$

	a	b	c	d	#
S	$S \rightarrow aAS$	$S \rightarrow bB$		$S \rightarrow d$	
A	$A{ ightarrow}arepsilon$	$A{ ightarrow} \varepsilon$	$A \rightarrow BbS$	$A{\rightarrow}\varepsilon$	
\overline{B}			$B \rightarrow c$		

A S #

> 表驱动预测分析过程

文法 G (S):

剩余的输入串 bc#

 $S \rightarrow aAS \mid bB \mid d$

 $A \rightarrow BbS \mid \varepsilon$

 $B \rightarrow c$

	a	b	c	d	#
S	$S \rightarrow aAS$	$S \rightarrow bB$		$S \rightarrow d$	
\overline{A}	$A{ ightarrow}arepsilon$	$A{ ightarrow} \varepsilon$	$A \rightarrow BbS$	$A{\rightarrow}\varepsilon$	
\overline{B}			$B \rightarrow c$		

S #

> 表驱动预测分析过程

文法 G (S):

 $S \rightarrow aAS \mid bB \mid d$

$$A \rightarrow BbS \mid \varepsilon$$

$$B \rightarrow c$$

	a	b	c	d	#
S	$S \rightarrow aAS$	$S \rightarrow bB$		$S \rightarrow d$	
\overline{A}	$A{ ightarrow}arepsilon$	$A{ ightarrow} arepsilon$	$A \rightarrow BbS$	$A{\rightarrow}\varepsilon$	
B			$B \rightarrow c$		

b B #

> 表驱动预测分析过程

文法 G (S):

 $S \rightarrow aAS \mid bB \mid d$

$$A \rightarrow BbS \mid \varepsilon$$

$$B \rightarrow c$$

	a	b	c	d	#
S	$S \rightarrow aAS$	$S \rightarrow bB$		$S \rightarrow d$	
\overline{A}	$A{ ightarrow}arepsilon$	$A{ ightarrow} arepsilon$	$A \rightarrow BbS$	$A{\rightarrow}\varepsilon$	
B			$B \rightarrow c$		

B #

> 表驱动预测分析过程

文法 G (S):

 $S \rightarrow aAS \mid bB \mid d$

$$A \rightarrow BbS \mid \varepsilon$$

$$B \rightarrow c$$

	a	b	c	d	#
S	$S \rightarrow aAS$	$S \rightarrow bB$		$S \rightarrow d$	
\overline{A}	$A{ ightarrow}arepsilon$	$A{ ightarrow} \varepsilon$	$A \rightarrow BbS$	$A{\rightarrow}\varepsilon$	
\overline{B}			$B \rightarrow c$		

C #

#

> 表驱动预测分析过程

文法 G (S):

 $S \rightarrow aAS \mid bB \mid d$

 $A \rightarrow BbS \mid \varepsilon$

 $B \rightarrow c$

	a	b	c	d	#
S	$S \rightarrow aAS$	$S \rightarrow bB$		$S \rightarrow d$	
\overline{A}	$A{ ightarrow}arepsilon$	$A{ ightarrow} arepsilon$	$A \rightarrow BbS$	$A{\rightarrow}\varepsilon$	
В			$B \rightarrow c$		

剩余的输入串

#

 \odot

#

步骤	分析栈	余留符号	使用的产生式
0	#	abc#	
1	#S	abc#	S→ aAS
2	#SAa	abc#	
3	#SA	bc#	A→ε
4	#S	bc#	
5	#Bb	bc#	$S \rightarrow bB$
6	#B	C#	
7	#c	C#	B→c
8	#	#	

预测分析中的错误处理

- >表驱动22(1)分析中的错误处理
 - ♦ 错误报告 (error reporting)
 - ✓ 栈顶的终结符与当前输入符不匹配
 - ✓ 非终结符A于栈顶,面临的输入符为a, 但分析表M的M[A,a]为空

预测分析中的错误处理

> 应急方式错误处理

- ◆ 把 Follow(A) 中的所有符号作为A的同步符号, 跳过 输入串中的一些符号直至遇到这些"同步符号", 把A从栈中弹出, 可使分析继续
- ◆ 把First(A)中的符号加到A的同步符号集,当First(A)中的符号在输入中 出现时,可根据A恢复分析

自底向上的语法分析

Daaab 自底向上分析过程

文法 G[S]:
$$aaab$$
 $(A \rightarrow a)$ $(A \rightarrow a)$ $(A \rightarrow aA)$ $(A \rightarrow$

自底向上的语法分析

>移进归约模式

文法 G[S]:

$$S \rightarrow AB$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow b \mid bB$$

动作	余留输入串	分析栈	步骤
Shift	aaab#		(0)
Shift	aab#	a	(1)
Shift	ab#	aa	(2)
reduce	b #	aaa	(3)
reduce	b #	aaA	(4)
reduce	b #	aA	(5)
shift	b #	A	(6)
reduce	#	Ab	(7)
reduce	#	AB	(8)
accept	#	S	(9)