

US-SPI

New generation of High performances Ultrasonic device

US-SPI

Ultrasound device single channel

Features

- SPI High Speed connection
- ➤ Ultralow noise preamplifier : $0.74 \text{ nV}/\sqrt{\text{Hz}}$
- 6 dB bandwidth : 540 KHz to 18 MHz
- High voltage transmitting pulses
- \triangleright 50 Ω load drive
- Digitizer 12 bits at 80 MSPS
- > Programmable gain: 0 to 80 dB
- DAC curve
- > 5 Volts power supply necessary
- Very small size : 70 x 36 mm
- Ultra simple integration

Applications

- Medical ultrasound imaging
- > NDT metal flaw detection
- Research and university

General Description

US-SPI is our new generation ultrasound devices with a single channel to transmit and receive ultrasonic waves. Its very small size and its advanced technology allow to have an unique product for more applications like medical ultrasound imaging, the NDT and also for the research and university.

The transmitter can generate pulses with a voltage level and a width programmed by the user. A low noise preamplifier combined to a VGA gives a gain range between 0 and 80 dB, a DAC curve is also available. A 12 bits analog digital converter with a sampling frequency of 80 MHz is used to digitize ultrasound signals.

The device has 2 working modes: Transmission or Reflection. The power supply is delivered by the SPI connector (5 VDC).

There are two versions available:

- one with I/O Sata connector
- > one without it

Block Diagram

SOC : System On Chip
* : 4 Mbits memory option

Absolute Maximum Ratings

Parameter	Value
Power Supply	+ 5.4V
High Voltage	- 230V
Logic signals	+ 3.3V

Absolute Maximum Ratings are those values beyond damage to the device may occur. Functional operation under theses conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Outline Dimensions

US-SPI

Operating Conditions

Parameter	Value
Power Supply	+ 5V
Logic signals	+ 3.3V

Electrical Characteristics

(Over operating conditions unless otherwise specified)

Receiver / Amplifier			
Sym	Parameter	+25°C	Units
BW	Bandwidth to - 6dB	0.54 to 18	MHz
F0	Central Frequency	3	MHz
Lin	Gain Linearity	+/- 0.5	dB
Gain	Gain Range	0 to 80	dB
Zin	Input Impedance (+/- 5%)	100	Ω
Vin	Input Voltage Range	+/- 275	mV
Noise	Preamplifier noise	0.74	nV/√Hz

Simplified Receiver / Amplifier Schematic

Amplifier's components

➤ LNA : Low Noise Amplifier (≡ Preamplifier)

> VGA : Variable Gain Amplifier

Digitizer			
Sym	Parameter	+25°C	Units
Resolution	ADC Resolution	12	Bits
Fs *	Sampling Frequency	80	MHz

^{*} Option to increase this value to 160 MHz.

Transmitter *				
Sym	Parameter	+25°C	Units	
HV Min	High Voltage Min	- 30	V	
HV Max	High Voltage Max	- 230	V	
HV Step	High Voltage Variation Step	5	V	
PW Min	Pulse Width Min (- 6dB)	16.6	ns	
PW Max	Pulse Width Max (- 6dB)	480	ns	
PW Mean Step	Pulse Width Variation Step	6	ns	
TF **	Pulse Fall Time	5.2 to 7.8	ns	

^{*} These tests were carried out with a 50Ω load and at - 140 V for the widths.

^{**} Depend on the pulse width (5.2 ns for a width of 16.6 ns)

Typical Performance Characteristic

Pulse with 50Ω load

More informations on our web site:

www.lecoeur-electronique.com

© 2015 Lecoeur Electronique, All right reserved. Trademarks and registered trademarks are the property of their respective owners.