Using R at Grattan Institute

Will Mackey and Matt Cowgill 2019-08-01

Contents

Introduction					
1	Using R at Grattan				
	1.1	Why use R?	7		
	1.2	Using R projects for a fully reproducible workflow	7		
	1.3	Grattan coding style guide	8		
	1.4	What is the tidyverse and why do we use it?	9		
	1.5	An introduction to RMarkdown	9		
	1.6	Resources in this package	9		
2	Data Visualisation				
	2.1	Using ggplot2 to create graphs in R	11		
	2.2	Using grattan theme to make and export "Grattan-y" charts	12		
	2.3	Creating simple interactive graphs with plotly	13		
3	Reading data				
	3.1	Importing data	15		
	3.2	Reading common files:	16		
	3.3	Appropriately renaming variables	16		
	3.4	Getting to tidy data	16		
4	Different data types				
	4.1	Tidy data	17		
	4 2	Dates with lubridate::	17		

4		CONTENTS

	4.3	Strings with stringr::	17
	4.4	Factors with forcats::	17
5	Dat	a transformation	19
	5.1	The pipe	19
	5.2	Key dplyr functions:	19
	5.3	Filter with filter()	19
	5.4	Arrange with arrange()	19
	5.5	Select variables with select()	19
	5.6	Group data with group_by()	19
	5.7	Edit and add new variables with mutate()	19
	5.8	Summarise data with summarise()	19
	5.9	Joining datasets with *_join()	19
6	Ana	alysis	2 1
6 7		eating functions	2123
	Cre	eating functions	23
	Cre	eating functions It can be useful to make your own function	23 23
	7.1 7.2	eating functions It can be useful to make your own function	23 23 23
	7.1 7.2 7.3	eating functions It can be useful to make your own function	23 23 23 23
	7.1 7.2 7.3 7.4	tating functions It can be useful to make your own function Defining simple functions More complex functions Sets of functions	23 23 23 23 23
	7.1 7.2 7.3 7.4 7.5 7.6	Eating functions It can be useful to make your own function Defining simple functions More complex functions Sets of functions Using purrr::map	23 23 23 23 23 23
7	7.1 7.2 7.3 7.4 7.5 7.6	Teating functions It can be useful to make your own function Defining simple functions More complex functions Sets of functions Using purrr::map Sharing your useful functions with Grattan	23 23 23 23 23 23 23 23
7	7.1 7.2 7.3 7.4 7.5 7.6	tating functions It can be useful to make your own function Defining simple functions More complex functions Sets of functions Using purrr::map Sharing your useful functions with Grattan sion control	23 23 23 23 23 23 23 25

Introduction

R is good and cool. Do you want to be good and cool? Use R!

6 CONTENTS

Using R at Grattan

library(tidyverse)

This document sets out good practices for structuring your R analysis at Grattan Institute. Having a clear, consistent structure for our analyses means that our work is more easily checked and revised, including by ourselves in the future. A small investment of time up front to set up your analysis will save time (your own and others') down the track.

This guide is designed for *everyone* using R at Grattan. It includes a combination of rules and guidelines.

You should also be aware of the Grattan Institute R Style Guide, which lives in the same place as this document.

Any compaints or comments about this guide can be sent to Will or Matt, respectively.

1.1 Why use R?

It's good and cool!

1.2 Using R projects for a fully reproducible workflow.

Finally adhering to the 'hit by a bus' rule.

Cover: 1. setwd() and machine-speficic filepaths are bad 2. relative file paths are good 3. RStudio projects are an easy, reproducible way to set your wd

1.2.1 Filepaths

Filepaths should be relative to the working directory, and the working directory should be set by the project.

Good

```
hes <- read_csv("data/HES/hes1516.csv")
grattan_save("images/expenditure_by_income.pdf")</pre>
```

Bad

```
hes <- read_csv("/Users/mcowgill/Desktop/hes1516.csv")
hes <- read_csb("C:\Users\mcowgill\Desktop\hes1516.csv")
grattan_save("/Users/mcowgill/Desktop/images/expenditure_by_income.pdf")</pre>
```

1.2.2 Keep your scripts manageable

As a general rule of thumb, use one script per output. It should be clear what your script is trying to do (use comments!).

Consider breaking your analysis into pieces. For example:

- 01_import.R
- 02_tidy.R
- 03_model.R
- 04_visualise.R

Don't include interactive work (like View(mydf), str(mydf), mean(mydf\$variable), etc.) in your saved script.

1.2.3 Use subfolders of your project folder

Remember the hit-by-a-bus rule. It should be easy for any Grattan colleague to open your project folder and get up to speed with what it does. Putting all your files - raw data, scripts, output - in the one folder makes it harder to understand how your work fits together.

Use subfolders to clearly separate your code, raw data, and output.

1.3 Grattan coding style guide

Short summary of why

Link to style guide

1.4 What is the tidyverse and why do we use it?

Introduce following chapters

1.5 An introduction to RMarkdown

1.6 Resources in this package

- Starting a piece of analysis 'cheat sheet'.
- Updated style guide.
- Written guide/slides.

Data Visualisation

2.1 Using ggplot2 to create graphs in R

2.1.1 Concepts

Main ingredients to a $\operatorname{\mathsf{ggplot}}$ chart: - Tidy data - Aesthetics - Geoms

Along with: - Facets - Colours - Labels

2.1.2 Bar charts

geom_bar if you have unit-record data and you want the geom to calculate
something (count, sum, etc). geom_col if you want to plot numbers exactly as
they are. This is how charts in Excel or Powerpoint work. It is the same as
geom_bar(stat = "identity")

The position argument...

Remember: don't use too many colours (...and other viz tips from the Chart Style Guide)

2.1.3 Line charts

2.1.4 Scatter plots

geom_point geom_smooth

2.1.5 Distributions

```
geom_histogram geom_density
ggridges::
```

2.1.6 Maps

absmapsdata

2.2 Using grattantheme to make and export "Grattan-y" charts

(current text taken from an email I sent an intern once – will need to be updated)

The ${\tt grattantheme}$ package is hosted here: <code>https://github.com/mattcowgill/grattantheme</code>

You can install it with install github from the remotes package:

```
install.packages("remotes")
remotes::install_github("mattcowgill/grattantheme")
library(grattantheme)
```

You can look at explanatory vignette with vignette("using_grattantheme", "grattantheme").

Key functions are:

theme_grattan() to set the size and default single-colour. Set flipped = TRUE if you have used coord_flip() on the chart.

grattan_fill_manual(n = 2) to manually set the fill colours of a chart if you
have mapped fill to an aesthetic, eg aes(..., fill = gender). Set n to the
number of colours you have.

grattan_colour_manual(n = 2) to manually set the colour if you have mapped
colour to an aesthetic, eg aes(..., colour = gender).

grattan_y_continuous() to properly style the Y-axis and align it with zero.

grattan_save() instead of ggsave() to export charts.

plotly::ggplotly()

Reading data

3.1 Importing data

3.1.1 Reading CSV files

3.1.1.1 read_csv()

The read_csv() function from the tidyverse is quicker and smarter than read.csv in base R.

Pitfalls: 1. read_csv is quicker because it surveys a sample of the data

We can also compress .csv files into .zip files and read them directly using $read_csv()$:

```
read_csv("data/my_data.zip")
```

This is useful for two reasons:

- 1. The data takes up less room on your computer; and
- 2. The original data, which shouldn't ever be directly edited, is protected and cannot be directly edited.

3.1.1.2 data.table::fread()

The fread function from data.table is quicker than both read.csv and read_csv.

- 3.1.2 readxl::read_excel()
- 3.1.3 rio
- 3.1.4 readabs

3.2 Reading common files:

- TableBuilder CSVSTRINGs
- HES household file
- SIH
- LSAY and derivatives

See data directory for a list of microdata available to Grattan.

3.3 Appropriately renaming variables

As shown in the style guide

Add rename_abs function to a common Grattan package?

3.4 Getting to tidy data

pivot_long() and pivot_wide() Make sure these are stable btw

Different data types

4.1 Tidy data

Other data structures

4.2 Dates with lubridate::

The lubridate:: package

4.3 Strings with stringr::

- Replacing values
- Matching values
- Separating columns

4.4 Factors with forcats::

• Dangers with factors

Data transformation

- 5.1 The pipe
- 5.2 Key dplyr functions:

All have the same syntax structure, which enable pipe-chains.

- 5.3 Filter with filter()
- 5.4 Arrange with arrange()
- 5.5 Select variables with select()
- 5.6 Group data with group_by()
- 5.7 Edit and add new variables with mutate()
- 5.7.1 Cases when you should use case_when()
- 5.8 Summarise data with summarise()
- 5.9 Joining datasets with *_join()

Analysis

Creating functions

7.1 It can be useful to make your own function

Why on earth would you create your own function?

- 7.2 Defining simple functions
- 7.3 More complex functions
- 7.4 Sets of functions
- 7.5 Using purrr::map
- 7.6 Sharing your useful functions with Grattan

Version control

8.1 Version control is important and intimidating

Version control is great!

8.2 Github

We use Github to version-control and share reports in LaTeX, so you're already a bit set-up.

8.3 Git

Using Git within R Studio...