Size (and Domain) Matters: Evaluating Semantic Word Space Representations for Biomedical Text

Pontus Stenetorp*, Hubert Soyer, Sampo Pyysalo Sophia Ananiadou and Takashi Chikayama

http://pontus.stenetorp.se
<pontus@stenetorp.se>

Aizawa Laboratory University of Tokyo

4th of September 2012

"A word is characterized by the company it keeps" - J.R. Firth (1957)

"A word is characterized by the company it keeps" - J.R. Firth (1957)

Aspects

"A word is characterized by the company it keeps" - J.R. Firth (1957)

Aspects

• Captures syntax

"A word is characterized by the company it keeps" - J.R. Firth (1957)

Aspects

- Captures syntax
- But also aspects of semantics

The Good

• Easy to apply

- Easy to apply
- Performance boost:

- Easy to apply
- Performance boost:
 - Named Entity Recognition: $+7.0 F_1$ (Turian et al. 2010)

- Easy to apply
- Performance boost:
 - Named Entity Recognition: $+7.0 F_1$ (Turian et al. 2010)
 - Parsing: +1.4% F_1 (Koo and Collins 2008)

The Good

- Easy to apply
- Performance boost:
 - Named Entity Recognition: $+7.0 F_1$ (Turian et al. 2010)
 - Parsing: +1.4% F_1 (Koo and Collins 2008)

The Bad

The Good

- Easy to apply
- Performance boost:
 - Named Entity Recognition: $+7.0 F_1$ (Turian et al. 2010)
 - Parsing: +1.4% F_1 (Koo and Collins 2008)

The Bad

• No given "intuitive" interpretation

The Good

- Easy to apply
- Performance boost:
 - Named Entity Recognition: $+7.0 F_1$ (Turian et al. 2010)
 - Parsing: +1.4% F_1 (Koo and Collins 2008)

The Bad

- No given "intuitive" interpretation
- Many possible variations

The Good

- Easy to apply
- Performance boost:
 - Named Entity Recognition: $+7.0 F_1$ (Turian et al. 2010)
 - Parsing: +1.4% F_1 (Koo and Collins 2008)

The Bad

- No given "intuitive" interpretation
- Many possible variations
- Generation computationally costly

Format

Format

Vector-based

Format

- Vector-based
- But details vary...

Format

- Vector-based
- But details vary...

Format

- Vector-based
- But details vary...

```
Hard (One-hot) \qquad \begin{bmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{bmatrix}
```

Format

- Vector-based
- But details vary...

Format

- Vector-based
- But details vary...

Format

- Vector-based
- But details vary...

Newswire

Newswire

• Helps for a great variety of tasks

Newswire

- Helps for a great variety of tasks
- "Off-the-rack" representations available

Newswire

- Helps for a great variety of tasks
- "Off-the-rack" representations available

BioNLP

Newswire

- Helps for a great variety of tasks
- "Off-the-rack" representations available

BioNLP

• Can word representations boost performance?

Newswire

- Helps for a great variety of tasks
- "Off-the-rack" representations available

BioNLP

- Can word representations boost performance?
- Are in-domain word representations necessary?

Word Representations Used

Name	Method	Domain	Src.	Dim.	Publication
Brown-news-100	Brown	news	63M	100	
Brown-news-320	Brown	news	63M	320	
Brown-news-1000	Brown	news	63M	1,000	
Brown-news-3200	Brown	news	63M	3,200	Turian et al.
HLBL-news	HLBL	news	63M	100	
C&W-news-200d-0.1	C&W	news	63M	200	
C&W-news- $50d$ - 0.3	C&W	news	63M	50	
Google	K-means	web	10^{12}	1,000	Lin et al.
ClarkNE-bio	Clark-NE	bio	31M	45	McClosky et al.
Brown-bio-100	Brown	bio	13M	100	- T
Brown-bio-320	Brown	bio	13M	320	This study
Brown-bio-1000	Brown	bio	13M	1,000	

System Details

• System by Ratinov and Roth (2009)

- System by Ratinov and Roth (2009)
- Single-class NER

- System by Ratinov and Roth (2009)
- Single-class NER
- Strong baseline NER model

- System by Ratinov and Roth (2009)
- Single-class NER
- Strong baseline NER model
- Add word representations and their combinations

System Details

- System by Ratinov and Roth (2009)
- Single-class NER
- Strong baseline NER model
- Add word representations and their combinations

Corpora

System Details

- System by Ratinov and Roth (2009)
- Single-class NER
- Strong baseline NER model
- Add word representations and their combinations

Corpora

• Anatomical Entity Mention (AnEM) (Ohta et al., 2012)

System Details

- System by Ratinov and Roth (2009)
- Single-class NER
- Strong baseline NER model
- Add word representations and their combinations

Corpora

- Anatomical Entity Mention (AnEM) (Ohta et al., 2012)
- BCII Gene Mention (BC2GM) (Smith et al., 2008)

System Details

- System by Ratinov and Roth (2009)
- Single-class NER
- Strong baseline NER model
- Add word representations and their combinations

Corpora

- Anatomical Entity Mention (AnEM) (Ohta et al., 2012)
- BCII Gene Mention (BC2GM) (Smith et al., 2008)
- NCBI disease (NCBID) (Islamaj Dogan and Lu, 2012)

Definition

Definition

• Given a span, in a context, assign a semantic category

Definition

• Given a span, in a context, assign a semantic category

Definition

• Given a span, in a context, assign a semantic category

Data

• Induce contexts using unambigous seed-words

Definition

• Given a span, in a context, assign a semantic category

- Induce contexts using unambigous seed-words
- Seed-words for 10 categories (McIntosh and Curran, 2009)

Definition

• Given a span, in a context, assign a semantic category

- Induce contexts using unambigous seed-words
- Seed-words for 10 categories (McIntosh and Curran, 2009)
- Blind the focus word

Definition

• Given a span, in a context, assign a semantic category

- Induce contexts using unambigous seed-words
- Seed-words for 10 categories (McIntosh and Curran, 2009)
- Blind the focus word
- Stratify semantic categories

Definition

• Given a span, in a context, assign a semantic category

- Induce contexts using unambigous seed-words
- Seed-words for 10 categories (McIntosh and Curran, 2009)
- Blind the focus word
- Stratify semantic categories
- Enables evaluation on large data

The effects of electric fields on and PANC1 cells .

The effects of electric fields on and PANC1 cells .

Cell line
The effects of electric fields on and PANC1 cells .

Zürich, Switzerland, 4th of September 2012

	Dataset			
Model	AnEM	BC2GM	NCBID	μ
Baseline	56.19	78.07	68.02	67.43

	Dataset			
Model	AnEM	BC2GM	NCBID	μ
Baseline	56.19	78.07	68.02	67.43
Brown-news-100	55.73	78.77	69.30	67.93
Brown-news-320	54.56	78.19	69.10	67.29
Brown-news-1000	56.70	78.43	68.99	68.04
Brown-news-3200	55.31	78.94	69.08	67.78

Model	AnEM	Data BC2GM	set NCBID	μ
Baseline	56.19	78.07	68.02	67.43
Brown-news-100	55.73	78.77	69.30	67.93
Brown-news-320	54.56	78.19	69.10	67.29
Brown-news-1000	56.70	78.43	68.99	68.04
Brown-news-3200	55.31	78.94	69.08	67.78
HLBL-news	58.52	79.46	69.06	69.02

Model	AnEM	Data BC2GM	set NCBID	μ
Baseline	56.19	78.07	68.02	67.43
Brown-news-100	55.73	78.77	69.30	67.93
Brown-news-320	54.56	78.19	69.10	67.29
Brown-news-1000	56.70	78.43	68.99	68.04
Brown-news-3200	55.31	78.94	69.08	67.78
HLBL-news	58.52	79.46	69.06	69.02
Google	61.66	79.43	69.68	70.26

Model	AnEM	Data BC2GM	aset NCBID	μ
Baseline	56.19	78.07	68.02	67.43
Brown-news-100	55.73	78.77	69.30	67.93
Brown-news-320	54.56	78.19	69.10	67.29
Brown-news-1000	56.70	78.43	68.99	68.04
Brown-news-3200	55.31	78.94	69.08	67.78
HLBL-news	58.52	79.46	69.06	69.02
Google	61.66	79.43	69.68	70.26
ClarkNE-bio	52.81	78.81	67.83	66.48

		Data	aset	
Model	AnEM	BC2GM	NCBID	μ
Baseline	56.19	78.07	68.02	67.43
Brown-news-100	55.73	78.77	69.30	67.93
Brown-news-320	54.56	78.19	69.10	67.29
Brown-news-1000	56.70	78.43	68.99	68.04
Brown-news-3200	55.31	78.94	69.08	67.78
HLBL-news	58.52	79.46	69.06	69.02
Google	61.66	79.43	69.68	70.26
ClarkNE-bio	52.81	78.81	67.83	66.48
Brown-bio-100	57.20	78.79	69.75	68.58
Brown-bio-150	52.97	79.08	69.72	67.26
Brown-bio-320	57.96	79.33	69.50	68.93
Brown-bio-500	62.11	79.81	69.88	70.60
Brown-bio-1000	62.49	80.04	70.52	71.02

	Dataset			
Model	AnEM	BC2GM	NCBID	μ
Baseline	56.19	78.07	68.02	67.43
Brown-news-100	55.73	78.77	69.30	67.93
Brown-news-320	54.56	78.19	69.10	67.29
Brown-news-1000	56.70	78.43	68.99	68.04
Brown-news-3200	55.31	78.94	69.08	67.78
HLBL-news	58.52	79.46	69.06	69.02
Google	61.66	79.43	69.68	70.26
ClarkNE-bio	52.81	78.81	67.83	66.48
Brown-bio-100	57.20	78.79	69.75	68.58
Brown-bio-150	52.97	79.08	69.72	67.26
Brown-bio-320	57.96	79.33	69.50	68.93
Brown-bio-500	62.11	79.81	69.88	70.60
Brown-bio-1000	62.49	80.04	70.52	71.02
HLBL-news+Brown-news-1000	58.91	79.31	69.22	69.15
HLBL-news+Brown-bio-1000	62.10	80.32	70.15	71.16

Model	Accuracy
BoW	67.61
Comp	71.59

Model	Accuracy
BoW	67.61
Comp	71.59
Comp-Brown-news-100	71.54
Comp-Brown-news-320	71.93
Comp-Brown-news-1000	71.45
Comp-Brown-news-3200	71.42

Model	Accuracy
BoW	67.61
Comp	71.59
Comp-Brown-news-100	71.54
Comp-Brown-news-320	71.93
Comp-Brown-news-1000	71.45
Comp-Brown-news-3200	71.42
Comp-ClarkNE-bio	72.05
Comp-Brown-bio-100	71.73
Comp-Brown-bio-320	72.03
Comp-Brown-bio-1000	72.31

Model	Accuracy
BoW	67.61
Comp	71.59
Comp-Brown-news-100	71.54
Comp-Brown-news-320	71.93
Comp-Brown-news-1000	71.45
Comp-Brown-news-3200	71.42
Comp-ClarkNE-bio	72.05
Comp-Brown-bio-100	71.73
Comp-Brown-bio-320	72.03
Comp-Brown-bio-1000	72.31
Comp-Google	73.70

Conclusions

Conclusions

• In-domain word representations outperform out-of-domain

Conclusions

- In-domain word representations outperform out-of-domain
- Combinations of the two can potentially be beneficial

Conclusions

- In-domain word representations outperform out-of-domain
- Combinations of the two can potentially be beneficial
- Performance benefits does not appear to saturate

Conclusions

- In-domain word representations outperform out-of-domain
- Combinations of the two can potentially be beneficial
- Performance benefits does not appear to saturate

Future Work

Conclusions

- In-domain word representations outperform out-of-domain
- Combinations of the two can potentially be beneficial
- Performance benefits does not appear to saturate

Future Work

• What is the impact of the size of the data?

Conclusions

- In-domain word representations outperform out-of-domain
- Combinations of the two can potentially be beneficial
- Performance benefits does not appear to saturate

Future Work

- What is the impact of the size of the data?
- Is the observation regarding saturation accurate?

Conclusions

- In-domain word representations outperform out-of-domain
- Combinations of the two can potentially be beneficial
- Performance benefits does not appear to saturate

Future Work

- What is the impact of the size of the data?
- Is the observation regarding saturation accurate?
- Consider more embedding types?

Thank You for Your Attention

ご清聴ありがとうございました

Tack för er uppmärksamhet

Code and Data: http://wordreprs.nlplab.org/ Slides: http://pontus.stenetorp.se/

Seed-words Used

Category	Seed words		
Antibodies	MAb IgG IgM rituximab infliximab		
Cells	RBC HUVEC BAEC VSMC SMC		
Cell lines	PC12 CHO HeLa Jurkat COS		
Diseases	asthma hepatitis tuberculosis HIV malaria		
Drugs	acetylcholine carbachol heparin penicillin tetracycline		
Molecular functions	kinase ligase acetyltransferase helicase binding		
Mutations and mutants	Leiden C677T C282Y 35delG null		
Proteins and genes	p53 actin collagen albumin IL-6		
Signs and symptoms	anemia hypertension hyperglycemia fever cough		
Tumors	lymphoma sarcoma melanoma neuroblastoma osteosarcoma		

NER Corpora Statistics

		Corpus	
	AnEM	BC2GM	NCBID
Words	91,420	450,991	174,062
Sentences	4,548	20,000	7,844
Entities	$3,\!135$	$24,\!596$	6,900

Bibliography (1/2)

References

- J. Firth. 1957. A synopsis of linguistic theory 1930–1955. In Studies in Linguistic Analysis.
- J. Turian, L. Ratinov, and Y. Bengio. 2010. Word representations: a simple and general method for semi-supervised learning. In Proceedings of ACL 2010.
- T. Koo, X. Carreras and M. Collins. 2008. Simple semi-supervised dependency parsing. In Proceedings of ACL 2008.
- D. Lin and X. Wu. 2009. Phrase clustering for discriminative learning. In Proceedings of ACL-IJCNLP 2009.
- D. McClosky, M. Surdeanu, and C. Manning. 2011. Event extraction as dependency parsing for BioNLP 2011. In Proceedings of BioNLP Shared Task 2011.
- L. Ratinov and D. Roth. 2009. Design challenges and misconceptions in named entity recognition. In Proceedings of CoNLL 2009.

Bibliography (2/2)

References

- T. Ohta, S. Pyysalo, J. Tsujii, and S. Ananiadou. 2012.
 Open-domain anatomical entity mention detection. In Proceedings of DSSD 2012.
- L. Smith, L.K. Tanabe, R.J. Ando, C.J. Kuo, I.F. Chung, et al. 2008.
 Overview of BioCreative II gene mention recognition.
 Genome Biology, 9(Suppl2):S2.
- R. Islamaj Dogan and Z. Lu. 2012. An improved corpus of disease mentions in PubMed citations. In Proceedings of BioNLP 2012.
- T. McIntosh and J.R. Curran. 2009. Reducing semantic drift with bagging and distributional similarity. In Proceedings of ACL 2009.