BBM 231 Logic Design - Midterm 1

Date : November 19, 2018 **DURATION** : 100 MINUTES

Name Last Name

Section

Signature:

Question	1	2	3	4	Total
Points	25	25	25	25	100
Points					
Taken					

Question 1 (5 points each)

Given a Boolean function F = BC + A'BC + AB'C

Fill the truth table for F (7.5 points).

Write F in Sum-of-Minterms (SOM) form (5 points).

Minimize F using Karnaough-Map method (7.5 points).

d. Implement the *optimized circuit* with **only NAND** gates (5 points).

Question 2.

Design a circuit that detects prime numbers from 0 to 13 (Output should be one when the decimal value of the input is a prime number). Just give the function in the most simplified form. Do not draw the circuit.

A	B	C	D	F
4/0000000001I	8 0000,111	0	010101010101	00-1-0-01-000-101 XX
0	2	0	ò	i
ŏ	0	1	1	1
D	1	0	0	0 .
0	1	001	1	1
Q	1	1	0	0
U	1	1	_	-
1	0	0	0	0
(0	0 0 1	1	0
9	0	1	0	0
1	0	1	1	1
Ī	00001	0		0
1	ì	0 0 1	0	1
	ì	-	0	X
(i	1	1	IX

Question 3.

You are given two functions as $F1(A, B, C, D) = \sum (0,2,8,10)$ and F2(A, B, C, D) = A'BD + ABC'D + ABCD. Implement F = F1 OR F2' using minimum number of NAND gates.

A	B	C	D	FI	F	2 (=2	F
0000	0000	00011	0101	1010	0000			1
0000,00001	1 1 0 0	0011	10101101	00000 1-0	10-0-100	1013		100000
	000	000	01 01 01	00000	0000	-1010		111010

Question 4.

A logic unit has the following internal connection structure.

By using this unit; a system, shown below, is constructed. What are the most simple output of the functions f_1 , f_2 , f_3 and f_4 ? You have to give your answer by using only XOR (\oplus) operation.

