Homomorphisms

Let G and H be groups. A function $\varphi:G \to H$ is called a homomorphism if for all $g_1,g_2 \in G$ we have $\varphi(g_1g_2)=\varphi(g_1)\varphi(g_2)$

If q is also bijective, then q is an isomorphism, but a homomorphism is not necessarily bijective.

Examples: ① Piek $d \in \mathbb{Z}$, and define $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ by $\varphi(k) = kd$ Check $\varphi(k_1 + k_2) = (k_1 + k_2)d = k_1d + k_2d = \varphi(k_1) + \varphi(k_2)$ so q is a homomorphism.

→ If d=±1, q is an isomorphism

 \rightarrow If d=0, $\varphi(k)=0$ for all k (φ constant)

-> If d+0,1, or-1, then q is injective but not surjective.

② φ: Z→Zh by φ(k) =[k]: φ(k1+k2)=[k1+k2]=[k1]+[k2] $=\varphi(k_1)+\varphi(k_2)$

This function is surjective but not injective.

Related: For a cyclic group $G = \langle c \rangle$, can define $\varphi : \mathbb{Z} \to G$ $\varphi(k) = a^k$.

3 General linear group = in xertible NXM mutrices

GL(N,IR) = { A nxm metrix | Let(A) \ \det(A) \ \det(ar A^{-1} \exists) \}

real cutrics

Affice transformations: $Aff(\mathbb{R}^n) = \left\{ T: \mathbb{R}^n \rightarrow \mathbb{R}^n \middle| T(x) = Ax + b \text{ for some } A \in GL(n,\mathbb{R}), b \in \mathbb{R}^n \right\}$

 $\varphi: AF(\mathbb{R}^n) \to GL(\mathbb{N}\mathbb{R})$ $\varphi(\tau) = A$ where T(x) = Ax+bsurjectue, not injectice. [Check it is homomorphism].

- PX = R\{0} is a group under multiplication

 Determinant function

 det: GL(n,R) -> RX

 is a humanorphin sine det (AB) = det (A) det (B)
- (5) Let $R_{+}=ix\in R \mid x>0$. It is a group under multiplication. The rules $e^{x+y}=e^{x}e^{y}$ and ln(xy)=ln(x)+ln(y) mean that $exp:(R_{+},\cdot)\to(R_{+},\cdot)$ are homomorphisms $ln:(R_{+},\cdot)\to(R_{+},\cdot)$. Since exp and ln are inverses, these are bijective functions, hence isomorphisms. Thus $(R_{+},+)$ is isomorphic to (R_{+},\cdot) .
- (6) $S_n = permutations of {1,2,...,n}.$ $T: S_n \rightarrow GL(u,lR)$ $T(0) = (e_{O(1)}|e_{O(2)}|...|e_{O(n)})$ where $e_j = (i)$ ejth spot is the standard basis of R^n .

 This is the matrix of the linear transformation that maps $e_i \mapsto e_{O(i)}$ "permute the basis by σ ."
 - $T(\sigma_{1}\sigma_{2})e_{j} = e_{\sigma_{1}\sigma_{2}(j)} = T(\sigma_{1})e_{\sigma_{2}(j)} = T(\sigma_{1})T(\sigma_{2})e_{j}$ is true for every j, so $T(\sigma_{1}\sigma_{2}) = T(\sigma_{1})T(\sigma_{2})$. V
- Proposition: let $\varphi:G\to H$ and $\psi:H\to K$ be homomorphisms. Then $\psi\circ\varphi:G\to K$ is a homomorphism. Pf. exercise.
- Example $T: S_n \to GL(n, \mathbb{R})$, Let: $GL(n, \mathbb{R}) \to \mathbb{R}^n$. $E = \det \sigma T: S_n \to \mathbb{R}^n$ is a homomorphism. Fact: $\det(T(\sigma)) = \pm 1$ for each $\sigma \in S_n$. $E: S_n \to \{\pm 1\}$ is called the sign homomorphism.

Proposition let $\varphi: G \to H$ be a homomorphism. Then

(i) $\varphi(e_G) = e_H$ (ii) $\varphi(g^{-1}) = \varphi(g)^{-1}$ for all $g \in G$.

Proof led ge G. thu $\varphi(g) = \varphi(g \cdot e_{4}) = \varphi(g) \varphi(e_{5})$ $\Rightarrow \varphi(e_{6}) = e_{H}$ by exercise 2.1.3.

 $\varphi(g^{-1})\varphi(g) = \varphi(g^{-1}g) = \varphi(e_{G}) = e_{H}$ $\Rightarrow \varphi(g^{-1}) = \varphi(g)^{-1} \text{ by Prop. 2.1.2.}$

Proposition let Q:6->H be a homomorphism.

(i) If A is a subgroup of G, then (p(A) is a subgroup of H.

(Direct image of a subgroup is a subgroup)

(ii) If B is a subgroup of H, then $Q^{-1}(B)^{s} \{g \in G | Q(g) \in B \}$ is a subgroup of H. (Inverse image of a subgroup is a subgroup.).

Proof: See dext for (a). For (b): let $B \le H$ be a subgroup. Since $\psi(e_G) = e_H$ and $e_H \in B$, we have $e_G \in \psi^{-1}(B)$, so $\psi^{-1}(B) \neq \emptyset$.

* (p¹(B) is closed under multiplication: Suppose $g_1, g_2 \in (B)$; this means $G(g_1), G(g_2) \in B$. Then

 $\mathcal{Q}(g_1g_2) = \mathcal{Q}(g_1)\mathcal{Q}(g_2) \in \mathcal{B}$ since \mathcal{B} is a subgrap. So $g_1g_2 \in \mathcal{Q}^{-1}(\mathcal{B})$.

* $(q^{-1}(B))$ is closed under inverses: Suppose $g \in (q^{-1}(B))$ so $g(g) \in B$ then $g(g^{-1}) = g(g)^{-1} \in B$ since $g(g) \in B$ and $G(g) \in B$ since $g(g) \in B$ and $G(g) \in B$.

Back to the homomorphism
$$E: S_n \rightarrow \{\pm 1\}$$

 $E(\sigma) = det(T(\sigma))$ $T(\sigma) = permutation matrix"$
 $= (e_{\sigma(1)}| \cdots | e_{\sigma(n)})$

Definition If $E(\sigma) = 1$, we call σ an even permutation If $E(\sigma) = -1$, we call σ an odd permutation.

Identity is even: $T(\sigma) = (e_1 | \cdots | e_n) = identity water = I$ $E(\sigma) = det (I) = 1$

A transposition is odd: $T((ij)) = (-|e_{i-1}|e_j|e_{i+1}|-|e_{j-1}|e_j|e_{j+1})$ $\Sigma((ij)) = \det(T(ij)) = -1$ since swapping columns changes sign of det.

Now every permutation can be written as a product of transpositions.

Proposition A permutation is even iff it can be written as a product of an even number of transpositions.

Proof for $\sigma \in S_n$, with $\sigma = T_1 T_2 \cdots T_k$, T_i a transposition. Thu $\xi(\sigma) = \xi(T_1 T_2 \cdots T_k) = \xi(T_i) \xi(T_2) \cdots \xi(T_k)$ $= (-1)(-1)\cdots(-1) = (-1)^k$

50 O even (6) E(0)=1 (6) k is even 0 odd (6) E(0)=-1 (6) k is odd.

Corollwy A k-cycle is even as a permutation iff K is odd.

Proof: A k-cycle can be written as a product of K-1 transpositions.

Excise (125)(3789)(410) is even.

Kernel of a homomorphism: $\varphi: G \to H$ a homomorphism. Now $B = \{e_H\} \leq H$ is a subgroup. Therefore $\varphi^{-1}(\{e_H\}) = \{g \in G \mid \varphi(g) = e_H\}$ is a subgrup $g \in G$. We write $\ker(\varphi) = \varphi^{-1}(\{e_H\})$ and we call this the Kernel of φ .

Example: (2) $\varphi: \mathbb{Z} \to \mathbb{Z}_n$ $\varphi(k) = [k]$. $\ker(\varphi) = \{k \mid \mathbb{Z} \neq \mathbb{Z}\} = \{k \mid k = nq \text{ for } q \in \mathbb{Z}\} = \{n\} = n\mathbb{Z}$.

(b) $\varepsilon: S_n \to \{\pm 1\}$, $\ker(\varepsilon) = \operatorname{set} g$ even permutations. Notation: $A_n = \ker(\varepsilon)$ is the <u>afternating group</u> on $\{1, 3, ..., n\}$.

Let: GL(n, IR) → IRX | Ker(det)={A | det(A)=1}=SL(n, IR).

The kernel is always a subgroup, and it has a special property.

Définition: A subgroup $N \leq G$ is called normal if for all $g \in G$ and all $n \in N$, we have $g n g^{-1} \in N$

Proposition. (et 4:67 H be a humanorphism.
Then ker(4) is a normal subgroup of G.

Proof: We know $\ker(\varphi)$ is a subgrup; just need to show it is normalled $g \in G$ and $n \notin \ker(\varphi)$, so $\varphi(n) = e$. Need to show $g \circ e \ker(\varphi)$, so need to show $\varphi(g \circ e) = e$. Indeed $\varphi(g \circ g \circ e) = \varphi(g) \varphi(n) \varphi(g \circ e) = \varphi(g) e \varphi(g \circ e) = \varphi(g) \varphi(g \circ e)$ $= \varphi(g) \varphi(g) \circ e = e$ so we are time. For a group G, a subset NSG, and $g \in G$, define $g N g^{-1} = \frac{7}{2} g n g^{-1} | n \in N$?

Proposition Given a subgroup $N \leq G$, N is normal iff for all $g \in G$, we have $g N g^{-1} = N$.

Proof: The definition of being normal is that for all geG, $g N g^{-1} \subseteq N$, so it is clearly implied by the condition $g N g^{-1} = N$. On the other hund, suppose $\forall g \in G$, $g N g^{-1} = N$. Thun take $h = g^{-1}$, and we have $h N h^{-1} \subseteq N$ so $g^{-1} N g \subseteq N$. Thun $N = g (g^{-1} N g) g^{-1} \subseteq g N g^{-1}$. So $N = g N g^{-1}$.