

Exercises

- **2.4** Let $\{e_t\}$ be a zero mean white noise process. Suppose that the observed process is $Y_t = e_t + \theta e_{t-1}$, where θ is either 3 or 1/3.
 - (a) Find the autocorrelation function for $\{Y_t\}$ both when $\theta = 3$ and when $\theta = 1/3$.
 - (b) You should have discovered that the time series is stationary regardless of the value of θ and that the autocorrelation functions are the same for $\theta = 3$ and $\theta =$ 1/3. For simplicity, suppose that the process mean is known to be zero and the variance of Y_t is known to be 1. You observe the series $\{Y_t\}$ for t = 1, 2, ..., nand suppose that you can produce good estimates of the autocorrelations ρ_{ν} . Do you think that you could determine which value of θ is correct (3 or 1/3) based on the estimate of ρ_k ? Why or why not?
- **2.5** Suppose $Y_t = 5 + 2t + X_t$, where $\{X_t\}$ is a zero-mean stationary series with autocovariance function γ_k .
 - (a) Find the mean function for $\{Y_t\}$.
 - (b) Find the autocovariance function for $\{Y_t\}$.
 - (c) Is $\{Y_t\}$ stationary? Why or why not?

Exercises

(Cryer and Chan, 2008, Chapter 2)

- **2.1** Suppose E(X) = 2, Var(X) = 9, E(Y) = 0, Var(Y) = 4, and Corr(X,Y) = 0.25. Find:
 - (a) Var(X + Y).
 - **(b)** Cov(X, X + Y).
 - (c) Corr(X + Y, X Y).
- **2.2** If *X* and *Y* are dependent but Var(X) = Var(Y), find Cov(X + Y, X Y).
- 2.3 Let X have a distribution with mean μ and variance σ^2 , and let $Y_t = X$ for all t.
 - (a) Show that $\{Y_t\}$ is strictly and weakly stationary.
 - (b) Find the autocovariance function for $\{Y_t\}$.
 - (c) Sketch a "typical" time plot of Y_t .

Grenoble - January 2015

Exercises

- 2.6 (c) IS $\{Y_t\}$ stationary? Why or why not? Let $\{X_t\}$ be a stationary time series, and define $Y_t = \begin{cases} X_t \\ X_t + 3 \end{cases}$ for t odd for t even.
 - (a) Show that $Cov(Y_t, Y_{t-k})$ is free of t for all lags k.
 - **(b)** Is $\{Y_t\}$ stationary?
- 2.7 Suppose that $\{Y_t\}$ is stationary with autocovariance function γ_k .
 - (a) Show that $W_t = \nabla Y_t = Y_t Y_{t-1}$ is stationary by finding the mean and autocovariance function for $\{W_t\}$.
 - **(b)** Show that $U_t = \nabla^2 Y_t = \nabla [Y_t Y_{t-1}] = Y_t 2Y_{t-1} + Y_{t-2}$ is stationary. (You need not find the mean and autocovariance function for $\{U_t\}$.)
- **2.8** Suppose that $\{Y_t\}$ is stationary with autocovariance function γ_t . Show that for any fixed positive integer n and any constants $c_1, c_2, ..., c_n$, the process $\{W_t\}$ defined by $W_t = c_1 Y_t + c_2 Y_{t-1} + \dots + c_n Y_{t-n+1}$ is stationary. (Note that Exercise 2.7 is a special case of this result.)

Exercises

- Suppose $Y_t = \beta_0 + \beta_1 t + X_t$, where $\{X_t\}$ is a zero-mean stationary series with autocovariance function γ_k and β_0 and β_1 are constants.

 - series and μ_t is a polynomial in t of degree d, then $\nabla^m Y_t = \nabla(\nabla^{m-1} Y_t)$ is stationary for $m \ge d$ and nonstationary for $0 \le m < d$.
- **2.10** Let $\{X_t\}$ be a zero-mean, unit-variance stationary process with autocorrelation function ρ_k . Suppose that μ_t is a nonconstant function and that σ_t is a positive-valued nonconstant function. The observed series is formed as $Y_t = \mu_t + \sigma_t X_t$.
 - (a) Find the mean and covariance function for the $\{Y_t\}$ process.
 - the time lag. Is the $\{Y_t\}$ process stationary?
 - $Corr(Y_t, Y_{t-1})$ free of t but with $\{Y_t\}$ not stationary?

Exercises

(a) Is $\{X_t\}$ stationary?

mally distributed.

(a) $Y_t = \theta_0 + te_t$.

(b) Is $\{Y_t\}$ stationary?

2.11 Suppose $Cov(X_t, X_{t-k}) = \gamma_k$ is free of t but that $E(X_t) = 3t$.

autocorrelation function is nonzero only for lag k = 12.

each case, determine whether or not the process is stationary.

(b) Let $Y_t = 7 - 3t + X_t$. Is $\{Y_t\}$ stationary?

(a) Find the autocorrelation function for $\{Y_t\}$.

(b) $W_t = \nabla Y_t$, where Y_t is as given in part (a).

(c) $Y_t = e_t e_{t-1}$. (You may assume that $\{e_t\}$ is normal white noise.)

2.12 Suppose that $Y_t = e_t - e_{t-1}$. Show that $\{Y_t\}$ is stationary and that, for k > 0, its

2.13 Let $Y_t = e_t - \theta(e_{t-1})^2$. For this exercise, assume that the white noise series is nor-

2.14 Evaluate the mean and covariance function for each of the following processes. In

4 D F 4 D F 4 D F 4 D F 5 Grenoble - January 2015

Exercises

- **2.18** Let $\{Y_t\}$ be stationary with autocovariance function γ_k . Define the sample variance as $S^2 = \frac{1}{n-1} \sum_{t=1}^{n} (Y_t \overline{Y})^2$.
 - (a) First show that $\sum_{t=1}^{n} (Y_t \mu)^2 = \sum_{t=1}^{n} (Y_t \overline{Y})^2 + n(\overline{Y} \mu)^2$.
 - **(b)** Use part (a) to show that
 - (c) $E(S^2) = \frac{n}{n-1} \gamma_0 \frac{n}{n-1} Var(\overline{Y}) = \gamma_0 \frac{2}{n-1} \sum_{k=1}^{n-1} \left(1 \frac{k}{n}\right) \gamma_k.$
 - (Use the results of Exercise 2.17 for the last expression.)
 - (d) If $\{Y_t\}$ is a white noise process with variance γ_0 , show that $E(S^2) = \gamma_0$.

- (a) Show that $\{Y_t\}$ is not stationary but that $W_t = \nabla Y_t = Y_t Y_{t-1}$ is stationary.
- (b) In general, show that if $Y_t = \mu_t + X_t$, where $\{X_t\}$ is a zero-mean stationary
- - (b) Show that the autocorrelation function for the $\{Y_t\}$ process depends only on
 - (c) Is it possible to have a time series with a constant mean and with

Grenoble - January 2015

Exercises

- **2.15** Suppose that X is a random variable with zero mean. Define a time series by $Y_t = (-1)^t X$.
 - (a) Find the mean function for $\{Y_t\}$.
 - **(b)** Find the covariance function for $\{Y_t\}$.
 - (c) Is $\{Y_t\}$ stationary?
- **2.16** Suppose $Y_t = A + X_t$, where $\{X_t\}$ is stationary and A is random but independent of $\{X_t\}$. Find the mean and covariance function for $\{Y_t\}$ in terms of the mean and
- autocovariance function for $\{X_t\}$ and the mean and variance of A. **2.17** Let $\{Y_t\}$ be stationary with autocovariance function γ_k . Let $\overline{Y} = \frac{1}{n} \sum_{t=1}^{n} Y_t$. Show that

$$Var(\overline{Y}) = \frac{\gamma_0}{n} + \frac{2}{n} \sum_{k=1}^{n-1} \left(1 - \frac{k}{n}\right) \gamma_k$$
$$= \frac{1}{n} \sum_{k=-n+1}^{n-1} \left(1 - \frac{|k|}{n}\right) \gamma_k$$

Exercises

- **2.19** Let $Y_1 = \theta_0 + e_1$, and then for t > 1 define Y_t recursively by $Y_t = \theta_0 + Y_{t-1} + e_t$. Here θ_0 is a constant. The process $\{Y_t\}$ is called a **random walk with drift**.
 - (a) Show that Y_t may be rewritten as $Y_t = t\theta_0 + e_t + e_{t-1} + \cdots + e_1$.
 - **(b)** Find the mean function for Y_t .
 - (c) Find the autocovariance function for Y_t .
- **2.20** Consider the standard random walk model where $Y_t = Y_{t-1} + e_t$ with $Y_1 = e_1$.
 - (a) Use the representation of Y_t above to show that $\mu_t = \mu_{t-1}$ for t > 1 with initial condition $\mu_1 = E(e_1) = 0$. Hence show that $\mu_t = 0$ for all t.
 - **(b)** Similarly, show that $Var(Y_t) = Var(Y_{t-1}) + \sigma_e^2$ for t > 1 with $Var(Y_1) = \sigma_e^2$ and hence $Var(Y_t) = t\sigma_a^2$.
 - (c) For $0 \le t \le s$, use $Y_s = Y_t + e_{t+1} + e_{t+2} + \dots + e_s$ to show that $Cov(Y_t, Y_s) =$ $Var(Y_t)$ and, hence, that $Cov(Y_t, Y_s) = \min(t, s)\sigma_a^2$.

Grenoble - January 2015 9 / 13

2.21 For a random walk with random starting value, let $Y_t = Y_0 + e_t + e_{t-1} + \cdots + e_1$

ther that $Y_0, e_1, ..., e_t$ are independent.

(c) Show that $Cov(Y_t, Y_s) = \min(t, s)\sigma_a^2 + \sigma_0^2$.

(a) Show that $E(Y_t) = \mu_0$ for all t.

(b) Show that $Var(Y_t) = t\sigma_e^2 + \sigma_0^2$.

for t > 0, where Y_0 has a distribution with mean μ_0 and variance σ_0^2 . Suppose fur-

(d) Show that $Corr(Y_p, Y_s) = \sqrt{\frac{t\sigma_a^2 + \sigma_0^2}{s\sigma_a^2 + \sigma_0^2}}$ for $0 \le t \le s$.

ADDAMENTED TO SOL Grenoble - January 2015

Exercises

Exercises

(d) For large t, argue that

$$Var(Y_t) \approx \frac{\sigma_e^2}{1 - c^2}$$
 and $Corr(Y_t, Y_{t-k}) \approx c^k$ for $k > \infty$

so that $\{Y_t\}$ could be called **asymptotically stationary**.

(e) Suppose now that we alter the initial condition and put $Y_1 = \frac{c_1}{\sqrt{1-c_2}}$. Show that now $\{Y_t\}$ is stationary.

Exercises

- **2.22** Let $\{e_t\}$ be a zero-mean white noise process, and let c be a constant with |c| < 1. Define Y_t recursively by $Y_t = cY_{t-1} + e_t$ with $Y_1 = e_1$.
 - (a) Show that $E(Y_t) = 0$.
 - **(b)** Show that $Var(Y_t) = \sigma_e^2 (1 + c^2 + c^4 + \dots + c^{2t-2})$. Is $\{Y_t\}$ stationary?
 - (c) Show that

$$Corr(Y_t, Y_{t-1}) = c \sqrt{\frac{Var(Y_{t-1})}{Var(Y_t)}}$$
 and, in general,

$$Corr(Y_t, Y_{t-k}) = c^k \sqrt{\frac{Var(Y_{t-k})}{Var(Y_t)}}$$
 for $k > 0$

Hint: Argue that Y_{t-1} is independent of e_t . Then use

$$Cov(Y_t, Y_{t-1}) = Cov(cY_{t-1} + e_t, Y_{t-1})$$

40 1 40 1 42 1 42 1

Grenoble - January 2015

References

- Cryer, J. D. and K.-S. Chan (2008). Time Series Analysis: With Applications in R (2nd edition ed.). Springer texts in statistics. New York: Springer.
- Lafaye de Micheaux, P., R. Drouilhet, and B. Liquet (2011). Le logiciel R: Maîtriser le langage - Effectuer des analyses statistiques (Statistique et probabilités appliquées) (French Edition) (1 ed.). Springer.
- Shumway, R. H. and D. S. Stoffer (2010). Time Series Analysis and Its Applications: With R Examples (3rd ed. edition ed.). Springer texts in statistics. New York: Springer.
- Tsay, R. (2010). Analysis of Financial Time Series (3 ed.). John Wiley Sons Inc.

4 D > 4 B > 4 E > 4 E > 9 Q C Grenoble - January 2015 13 / 13