Instituto Federal de Educação, Ciência e Tecnologia do Maranhão **Campus São Luís - Monte Castelo**

Curso de Sistemas de Informação

Disciplina: Lógica e Matemática Computacional - Prof. Gentil Cutrim Reposição - Etapa I - 20/06/2022

Aluno: _____

1)	[2pt] [VUNESP - 2019 - Prefeitura de Olímpia - SP - Analista de Tecnologia da Informação] A negação lógica da afirmação "Os cachorros estão dóceis, e os gatos não estão agitados" é (complete com <u>E</u> , <u>OU</u> , <u>estão</u> ou <u>não estão</u>):						
	Os cachorros dóceis os gatos agitados						
	Resposta: Os cachorros <u>não estão</u> dóceis <u>OU</u> os gatos <u>estão</u> agitados.						
2)	[1pt] Quantos resultados possíveis existem para uma sequência de <i>n</i> lançamentos consecutivos de uma moeda?						
	Resposta: 2 ⁿ						
3)	[1pt] Um endereço MAC é formado por um conjunto de 6 bytes separados por dois pontos (":") ou hífen ("-"), sendo cada byte representado por dois algarismos na forma hexadecimal, como por exemplo: "00:19:B9:FB:E2:58", e conforme a figura a seguir.						

Considerando isso, quantos números endereços MAC diferentes podemos ter?

Resposta: 248

4) [2pt] Em um campeonato regional juvenil, estudantes de uma escola se inscreveram para participar de competições em três modalidades, conforme mostra a tabela a seguir.

Modalidades esportivas	Número de estudantes inscritos
Handebol	127
Vôlei	118
Basquete	148
Handebol e Basquete	57
Handebol e Vôlei	43
Basquete e Vôlei	40
Handebol, Basquete e Vôlei	12

Considerando os dados apresentados pela tabela, qual o número de inscritos?

Resposta:

39+47+63+43+45+28 = 265 inscritos

5) [1pt] A figura a seguir representa uma operação envolvendo conjuntos, em que a região hachurada corresponde à resolução dessa operação.

A operação representada pode ser relacionada a uma proposição lógica composta, que é chamada de:

- A. conjunção.
- B. disjunção.
- C. condicional.
- D. bicondicional.

Resposta: Letra A

- 6) [3pt] Para cada um dos argumentos abaixo: i) destaque as proposições simples que compõem as premissas e as conclusões, ii) construa uma tabela-verdade com base nas proposições simples e nas premissas, concluindo com a coluna $(\mathbf{p}_1 \ \land \ \mathbf{p}_2 \ \land \cdots \land \ \mathbf{p}_n) \Rightarrow \mathbf{c}$ e iii) diga se os argumentos são válidos ou não.
 - a) Se eu for à Rua Grande, irei comprar uma camisa. Se eu comprar uma camisa, irei comprar uma gravata. Portanto, se eu for à Rua Grande, irei comprar uma gravata.

Resposta equivalente no Livro (Módulo 3), Capítulo 28

Solução: Este argumento têm as proposições básicas

p: O cachorro escapa.

q: O cachorro pega o gato.

r: Eu estou em apuros.

O argumento está estruturado da seguinte forma:

 $p_1 = p \Rightarrow q$: Se o cachorro escapa, ele pegará o gato.

 $p_2 = q \Rightarrow r$: Se o gato for pego (pelo cachorro), eu estarei em apuros.

 $c = p \Rightarrow r$: Se o cachorro escapar, eu estarei em apuros.

p	q	r	$p \Rightarrow q$	$q \Rightarrow r$	$p \Rightarrow r$	$((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$
V	V	V	V	V	V	V
V	V	F	V	F	F	V
V	F	V	F	V	V	V
V	F	F	F	V	F	V
F	V	V	V	V	V	V
F	V	F	V	F	V	V
F	F	V	V	V	V	V
F	F	F	V	V	V	V

As linhas 1, 5, 7 e 8 indicam que sempre que as premissas são verdadeiras, a conclusão é verdadeira.

A Lei do Silogismo afirma que os argumentos do tipo

Premissas: $p \Rightarrow q$

 $q \Rightarrow r$

Conclusão: $p \Rightarrow r$

são válidos.

b) Todas as pessoas inteligentes gostam de Matemática. Romeu é uma pessoa. Romeu não gosta de Matemática. Portanto, Romeu não é inteligente.

Resposta no Livro (Módulo 3), Capítulo 28

Solução: Note que podemos reescrever o argumento da seguinte maneira: Se uma pessoa é inteligente, então esta pessoa gosta de Matemática. Romeu é uma pessoa e não gosta de Matemática. Portanto, Romeu não é inteligente.

Dessa forma, podemos usar as seguintes proposições básicas para analisar o argumento:

- p: Uma pessoa é inteligente.
- q: Uma pessoa gosta de Matemática.
- r: Romeu é uma pessoa.

O argumento está estruturado da seguinte maneira:

Premissas:

 $p_1 = p \Rightarrow q$: Se uma pessoa é inteligente, então esta pessoa gosta

de Matemática.

 $p_2 = \sim q \wedge r$: Uma pessoa não gosta de Matemática e esta pessoa

é Romeu.

Conclusão:

 $p_3 = \sim p \wedge r$: Uma pessoa não é inteligente e esta pessoa é Romeu.

Para analisarmos a validade do argumento temos que saber se, sempre que as premissas forem verdadeiras, a conclusão será verdadeira ou, equivalentemente, se a implicação $(p_1 \wedge p_2) \Rightarrow p_3$ é verdadeira. Ou seja, vamos fazer a tabela-verdade da proposição $((p \Rightarrow q) \wedge (\sim q \wedge r)) \Rightarrow (\sim p \wedge r)$. Vamos chamar de p_1 a proposição $p \Rightarrow q$ e de p_2 a proposição $\sim q \wedge r$.

p	q	r	$p \Rightarrow q$	$\sim q \wedge r$	$p_1 \wedge p_2$	$\sim p \wedge r$	$(p_1 \wedge p_2) \Rightarrow p_3$
V	V	V	V	F	F	F	V
V	V	F	V	F	F	F	V
V	F	V	F	V	F	F	V
V	F	F	F	F	F	F	V
F	V	V	V	F	F	V	V
F	V	F	V	F	F	F	V
F	F	V	V	V	V	V	V
F	F	F	V	F	F	F	V

A linha sete é a única onde as premissas, $p_1 = p \Rightarrow q$ e $p_2 = \sim q \land r$, são ambas verdadeiras. A conclusão p_3 , bem como a proposição $(p_1 \land p_2) \Rightarrow p_3$, são verdadeiras. Isto quer dizer que o argumento é válido.

c) Se Alfredo for ao Arraial do Ipem ele ficará feliz. Alfredo vai ao Arraial do Ipem. Podemos concluir que ele está feliz.

Resposta:

p: Alfredro vai ao arraial.

q: Alfredo fica feliz.

Premissas: $p \Rightarrow q$

р

Conclusão: q

Este argumento é válido!

p	q	$p \Rightarrow q$	$(p\Rightarrow q)\wedge p$	$((p \Rightarrow q) \land p) \Rightarrow q$
V	V	V	V	V
V	F	F	F	V
F	V	V	F	V
F	F	V	F	V