NGS Genome Assembly Workflow

Quality control to consensus

Current Situation • This data is specific for SARS-CoV-2 • Illumina is still widely used, followed by ONT/Pacbio. • MGI sequencing – new player? • Discrepancy between European/American and Asia/Africa/Pacific.

Reference assembly

- Required a reference in which NGS reads can be mapped into.
- The reference must be similar to the organism from which the NGS data is generated.
 - -NCBI Refseq is a good start.
- Once reads are mapped, variants can be identified.
- This variants will then be applied to the reference, producing a consensus.

9 Phylogenetic and NGS data analysis workshop, 23-27 October 2023

De novo assembly

LUXEMBOURG INSTITUTE OF HEALTH
RESEARCH OEDICATED TO LIFE

- Trying to complete a jigsaw puzzle that you bought secondhand.
 - Missing pieces some parts cannot be sequenced.
 - —Pieces from other puzzles contaminants.
 - Missing reference picture no reference to align.

LUXEMBOURG INSTITUTE OF **HEALTH** Assembly - De novo assembly Reads: THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG OUER THE LAZY DOG THE QUICK BRO CK BROWN FOX **RHWN FOX JUM** RIWN FOX JUM THE QUICK BRO JUMPS OVER MPS OUER THE **CK BROWN FOX** OUER THE LAZY DOG JUMPS OVER HE LAZY DOG HE LAZY DOG THE QUICK BROWN FOX JUMPS OUER THE LAZY DOG MPS OVER THE 11 Phylogenetic and NGS data analysis workshop, 23-27 October 2023

De novo assembly

- · Graph-based assembly:
 - —Reads are divide into kmers (a sequence length of k).
 - —Find overlap with a length of k-1 between kmers.
 - —Build the graph.
 - —Find best path remove branches.

(ii) Build graph

(b) De Bruijn graph assembly

(iii) Walk graph and output contigs

CGATTCTAAGT

Ayling et al., Briefings in Bioinformatics, 2019

13 Phylogenetic and NGS data analysis workshop, 23-27 October 2023

De novo assembly

Challenges in repeats

MISSISSIPPI

Read 1: MISSIS Read 2: SSISSI Read 3: SSIPPI MISS SSIS SSIP ISSI SISS SIPP SSIS ISSI IPPI

"It is impossible to resolve a repeat of a length of N without having reads longer than N."

De novo assembly

LUXEMBOURG INSTITUTE OF HEALTH RESEARCH DEDICATED TO LIFE

LUXEMBOURG INSTITUTE OF **HEALTH**

Challenges

• Computational resources – analyzing million reads.

General flowchart or reference assembly

- Highly similar sequences repeats.
- · Ploidy or quasi-species.
- Long read vs short read:
 - —Hybrid assembly is possible.

15 Phylogenetic and NGS data analysis workshop, 23-27 October 2023

16 Phylogenetic and NGS data analysis workshop, 23-27 October 2023

Basecalling Preprocessing Consensus Polishing Signals to ATCG Quality check Collect Making database Correction and filtering information. Getting · Call variants and references filtering. · Aligning reads · SAM to BAM Visualization · Calculating coverage depth and breadth.

Pre-processing — Quality check and filtering Two important graph is the per base quality and per sequence quality. Ideally quality should be above 20 (~99% error rate). Quality of the reads reduced towards the 3' end. Trim the low quality bases with Trimmomatic. Outling screen across all bases targety (filtrins 1.9 ecoders) Someon Someon across all bases targety (filtrins 1.9 ecoders) Someon Someon across all bases targety (filtrins 1.9 ecoders) Someon Someon across across all bases targety (filtrins 1.9 ecoders) Someon Someon across across all bases targety (filtrins 1.9 ecoders) Someon Someon across across all bases targety (filtrins 1.9 ecoders) Someon Someon across across all bases targety (filtrins 1.9 ecoders) Someon Someon across across all bases targety (filtrins 1.9 ecoders) Someon Someon across across all bases targety (filtrins 1.9 ecoders) Someon Someon across across all bases targety (filtrins 1.9 ecoders) Someon Someon across across all bases targety (filtrins 1.9 ecoders) Someon Someon across across all bases targety (filtrins 1.9 ecoders) Someon Someon across across

Sequence complexity

- The complexity is defined as the percentage of base that is different from its next base (base[i] != base[i+1]).
- Example:
 - —A 51-bp sequence, with 3 bases that is different from its next base.

 - —complexity = 3/(51-1) = 6%
- Low complexity sequences are less useful for taxonomic analysis (i.e. Kraken) and can be a problem for assembler

29 Phylogenetic and NGS data analysis workshop, 23-27 October 2023

Assembly – finding references

- Reference based assembly highly depends on the reference.
 - "Good reference = good consensus"
- · Generally it is advised to use sequences listed in NCBI RefSeq.
- Some viruses, like FLUAV is unique: they are **highly diverse** as a combination of error prone RDRP and reassorment event.
 - -Each sample need a unique reference set.
- Perform alignment search to find the best possible reference in the available database.

Assembly – finding references Understanding the tabular BLAST output

qseqid	sseqid	pident	length	mismatch	gapopen	qstart	qend	sstart	ssend	evalue	bitscore
23c3a299-f8d1-44b7-8ee6-7d809e74fb5a	2247312	95.56	901	9	23	14	895	4	892	0.00E+00	1413
23c3a299-f8d1-44b7-8ee6-7d809e74fb5a	2247304	95.56	901	9	23	14	895	4	892	0.00E+00	1413
23c3a299-f8d1-44b7-8ee6-7d809e74fb5a	2247296	95.56	901	9	23	14	895	4	892	0.00E+00	1413
23c3a299-f8d1-44b7-8ee6-7d809e74fb5a	2247288	95.56	901	9	23	14	895	4	892	0.00E+00	1413
23c3a299-f8d1-44b7-8ee6-7d809e74fb5a	2247192	95.56	901	9	23	14	895	4	892	0.00E+00	1413

- · A summarized version of the result, without the alignment.
 - -qseqid: sequence name.
 - -sseqid: name of the subject (reference sequence).
 - -pident: percent identity.
 - -length: alignment length, not always equal to read length.
 - -mismatch: number of mismatch.
 - -gapopen: number of gap openings.

- -qstart: start position of the alignment in query.
- —qend: end position of the alignment in query.
- -sstart: start position of the alignment in subject.
- -send: end position of the alignment in subject.
- -evalue: expect value, in short how likely to find the alignment by chance.
- -bitscore: alignment score (in bit).

35 Phylogenetic and NGS data analysis workshop, 23-27 October 2023

Assembly – finding references Understanding the tabular BLAST output

bitscore
1413
1413
1413
1413
1413
-00

Sorting the result based on percent identity?

Ref2 Read B =

- 99.5% identity, from 50 bases

- · Important parameter to sort the results:
 - -E-value bit score corrected for database size.
 - -Bit score.
 - —Percent identity.
- Thresholds can be set for pident and evalue.

Assembly - finding references

How to optimize BLAST search

- · Database:
 - -Smaller database faster.
 - -Completeness.
- As a **heuristic process**, it is difficult to define "best hit" from the search.
 - -Avoid limiting the result to less than five hits.
- Word size define the length of the initial sequence to look for (default is 28 for megablast).
 - —Smaller word size more accurate, but takes more time.
- · BLAST has several algorithms, or tasks:
 - -megablast (default): for very similar sequences.
 - —dc-megablast: discontigous megablast, for more dissimilar sequence.
 - —blastn: finding related sequence from other species find homologous.
 - —blastn-short: short sequences, <30 bp.

37 Phylogenetic and NGS data analysis workshop, 23-27 October 2023

Assembly - Mapping

Sahlin et al., Genome Biology, 2023.

- Mapping → simply aligning the reads to the reference genome.
- Mapping tools is specific to long read, or short read.
 - —Difference in algorithm used.
 - —Popular tools for **short read**: BWA, BWA-MEM, Bowtie2.
 - —Popular tools for long read: minimap2, BWA-MEM.
 - —Splice aware mapping for RNAseq: STAR, Tophat.

Assembly – SAM and BAM • Mapping results are stored as a SAM (Sequence Alignment Map) or in compressed form as BAM (Binary Alignment Map). • A specialized tool called samtools is available to manipulate SAM/BAM files (http://www.htslib.org/doc/samtools.html). • BAM file can be visualized: —Available tools: IGV, Tablet, Ugene, Geneious, etc. —The reference files must be the same reference used for mapping. —The index file is required.

LUXEMBOURG INSTITUTE OF **HEALTH** Assembly - SAM and BAM **CIGAR** string · Stands for Compact Idiosyncratic Gapped **Examples** Alignment Report. Ref : ATGCGTCG TAAGCGTG · How alignment is written in a sam file. Query **CGTCGTTAAGCG** Operators Cigar : 5M1I6M -M = Match -N = gap: ATGCGTCGTTAA CGTG Ref -D = deletion Query CGTCG AAGCG —I = insertion Cigar: 5M2D2M1I2M 43 Phylogenetic and NGS data analysis workshop, 23-27 October 2023

Assembly – Genome coverage

Statistics

- Get alignment statistics samtools coverage.
- · Calculate the coverage and mean depth.
 - —Important samtools coverage calculates read with depth more or equal to one.
 - —Calculate the depth at certain × manually using output from samtools depth.
 - —The depth threshold varies; 10× to 30× is suggested for Illumina read.

#rname	startpos	endpos	numreads	covbases	coverage	meandepth	meanbaseq	meanmapq
1963319 EPI_ISL_9012572 NA	1	1458	691	1458	100	426.525	19.5	59.6
2130820 EPI_ISL_14533193 MP	1	1027	12841	1027	100	11814.3	19.4	59.8
2247243 EPI_ISL_16189978 PA	1	2227	257	2227	100	94.2685	20.3	59.2
2247289 EPI_ISL_16190394 PB2	1	2345	370	2345	100	97.449	19.9	58.6
2247293 EPI_ISL_16190394 NP	1	1569	856	1569	100	662.576	20.3	59.9
2247300 EPI_ISL_16190395 HA	1	1780	485	1780	100	226.219	19.5	59.4
2247306 EPI_ISL_16190578 PB1	1	2342	174	2342	100	55.1763	20.2	59.3
2247312 EPI_ISL_16190578 NS	1	892	21749	892	100	20203.7	19.6	59.9

47 Phylogenetic and NGS data analysis workshop, 23-27 October 2023

Assembly - Genome coverage

LUXEMBOURG INSTITUTE OF HEALTH

Statistics

- Visualization of depth across the genome is useful to identify the low coverage region.
 - —Use samtools depth to get per base depth, which then can be plot using R.
- Other useful tools is deepTools (https://deeptools.readthedocs.io/en/develop/index.html), which gives coverage (y axis) on different depth (x axis).

Assembly – Consensus calling Collecting information

- · Generate a "pileup" file.
 - -Per-base summary of the alignment file.
 - —Transforming information from aligned read to base/position information.
 - -Important to take into account: base quality and mapping quality.
 - —Samtools and BCFtools can both generate pileup file, but BCFtools is the preferred approach.

Example of a pileup file

Ref ID	Pos	Ref	Depth	Bases	Qual
1963319 EPI_ISL_9012572 A/pheasant/Wales/385129/2021 NA	1	Α	10	^].^].^].^].^].^].^].^].	>44291:>*\$
1963319 EPI_ISL_9012572 A/pheasant/Wales/385129/2021 NA	2	G	11	^].	<5366,2:,(.
1963319 EPI_ISL_9012572 A/pheasant/Wales/385129/2021 NA	3	С	12	^].	<7684,2:.+.&
1963319 EPI_ISL_9012572 A/pheasant/Wales/385129/2021 NA	4	Α	13	GGGG^].	26997-28/+3(8
	Check	https://c	doi.org/1	0.1093/bioinformatics/btp3	52 for more explanation.

49 Phylogenetic and NGS data analysis workshop, 23-27 October 2023

LUXEMBOURG INSTITUTE OF **HEALTH Assembly – Consensus calling** Calling variants and apply to the reference Pileup file · The pileup file will be processed through BCFtools to Pos Ref call for the variant. 13 GGG.....G..^]. ...T..^]. -Single nucleotide variants, insertion, deletion, and low coverage region. BCFtools is a tool to manipulate BCF/VCF files Variants Filter position with depth <10 -BCF - binary variant calling file. Ref Alt Sample01.bam Pos —VCF – variant calling file. DP=13 DP=8 · Apply the variants called into the reference sequence. Reference Consensus ATTACG... ATTGCN... 50 Phylogenetic and NGS data analysis workshop, 23-27 October 2023

Assembly – De novo assembly • Available tools for de novo assembly for short reads: —Velvet —SOAPdenovo —Forge —ABySS —Megahit (metagenome assembler). • Available tools for de novo assembly for long reads: —Canu —Flye —MetaFlye (metagenome assembler)

Polishing – error correction

Polishing tools for ONT

- Medaka (https://github.com/nanoporetech/medaka)
 - —Taking a draft consensus, remapping the read and apply **neural network** to correct potential error based on a model.
- Nanopolish (https://github.com/jts/nanopolish)
 - -Error correction based on the raw squiggles signals.
- Homopolish (https://github.com/ythuang0522/homopolish)
 - —Use **support vector machine** to distinguish a systematic error or strain variation using homologous sequences.

Polishing tools for Illumina

- Pilon (https://github.com/broadinstitute/pilon)
 - —Error correction and gap filling of the consensus by inspecting the alignment/pileup.

53 Phylogenetic and NGS data analysis workshop, 23-27 October 2023

LUXEMBOURG INSTITUTE OF **HEALTH Polishing** Minimize sequencing error · Long read sequencing is ATCGGAAAAAAAAATCACGCCACGTCCAAA prone to indel error and homopolymer error. —Depends on the speed of DNA strand passing R9.4.1 the pore: fast = deletion, slow = insertion. -Difficulty in estimating the true length of the homopolymer. R10 54 Phylogenetic and NGS data analysis workshop, 23-27 October 2023

Evaluation

- Other parameter:
 - —Assembly size compared to expected genome size (can be a proxy to completeness).
 - —BUSCO (Benchmarking Universal Single-Copy Orthologs) evaluation of the genome annotation.

57 Phylogenetic and NGS data analysis workshop, 23-27 October 2023

Summary

	Long read	Short read				
Basecalling	Dorado, Guppy.	Bcl2fastq, Illumina-provided software				
Quality check	Nanoplot, NanoQC, Fastp, Qualimap	Fastqc, Fastp, Qualimap				
Demultiplexing	Dorado, Guppy, Porechop					
Quality filtering	Fastp, Porechop	Trimmomatic, Fastp, CutAdapt				
Mapping	Minimap2, BWA-MEM (up to 1 kb)	BWA-mem, BOWTIE2				
De-novo assembly	Canu, Flye , Shasta, MetaFlye	Megahit, SPAdes, IDBA-UD, ABySS				
Hybrid de-novo assembly	MaSuRCA, SPAdes, Unicycler					
Variant calling	iVar, Samtools, BCFtools, Freebayes	Samtools, BCFtools, iVar, Freebayes				
Polishing	Medaka, Homopolish, Nanopolish	Pilon				