CLAIMS

1. Multiply quaternized polysiloxanes of the formula (S1)

5

where

the sum total of (q + w) has a range of 10-1500 and the q/w ratio has a range of 5-600,

R is C₁-C₄-alkyl, linear or branched,

R₁ is hydrogen, C₁-C₃-alkyl or C₁-C₃-alkoxy,

R₂ is C₁-C₇-alkyl or benzyl,

15 X is a direct bond

or

20

10

where

r is 1-4 and

 R_3 is C_1 - C_7 -alkyl or -NH- C_1 - C_7 -alkyl,

or

5

where

R₂ and r are each as defined above,

 R_4 is C_1 - C_3 -alkyl,

10 or

- O -
$$\mathrm{CH_2}$$
 - CH - $\mathrm{CH_2}$ - OH ,

Y is

15

or

20 -(CH₂)_x-,

where

x is 1-4,

Z is C₂-C₄-alkylene, linear or branched and

25 A is CH₃OSO₃, chloride, bromide, iodide or tosylsulfate,

or of the formula (S2)

$$\begin{array}{c} R \\ N \\ N \\ \Theta \\ A^{\bigcirc} \\ A^{\bigcirc} \\ A^{\bigcirc} \\ A^{\bigcirc} \\ A^{\bigcirc} \\ P_{2} \\ N \\ - CH_{2} \\ - CH_{3} \\ - CH_{2} \\ -$$

where

R, R₂ and A⁻ have the same meaning as in formula (S1),

5 m is 1 - 4,

p is 1 - 4, and

s is 5 - 1500

- 10 2. Multiply quaternized polysiloxanes according to Claim 1 wherein the sum total of (q + w) has a range of 15-600 and the q/w ratio has a range of 10-400,
 - R is methyl, ethyl or propyl,
- 15 R_1 is H, methyl, -OCH₃ or -OC₂H₅,

R₂ is methyl or benzyl,

R₃ is methyl or -NH-C₄H₉,

R₄ is methyl,

Z is C₃-alkylene, linear or branched,

20 A is CH₃OSO₃ or chloride,

m is 3,

p is 3,

s is 10 - 600,

r is 2, and

25 x is 3.

3. Multiply quaternized polysiloxanes according to Claim 1 or 2 having structural units of the formula E1

5

or having structural units of the formula E1a

$$CH_{3} \xrightarrow{A^{\bigcirc}} CH_{3} \xrightarrow{CH_{3}} CH_{2}CHOHCH_{2}N \xrightarrow{C_{2}H_{5}} CH_{2}CHOHCH_{2}N \xrightarrow{C_{2}H_{5}} CH_{2}CHOHCH_{2}N \xrightarrow{C_{2}H_{5}} CH_{2}CHOHCH_{2}N \xrightarrow{C_{2}H_{5}} CH_{3} \xrightarrow{CH_{3}CHOHCH_{2}N} CH_{3} \xrightarrow{CH_{3}CHOHCH_{3}N} CH_{3} \xrightarrow{CH_{3}CHOHCH_{3}N} CH_{3} \xrightarrow{CH_{3}CHOHCH_{3}N} CH_{3} \xrightarrow{CH_{3}CHOHCH_{3}N} CH_{3} \xrightarrow{CH_{3}CHOHCH_{3}N} CH_{3} \xrightarrow{CH_{3}CHOHCH_{3}N} CH_{3}$$

10

4. Multiply quaternized polysiloxanes according to Claim 1 or 2 having structural units of the formula E2

5

$$CH_{3} \xrightarrow{CH_{3}} CH_{2}CHOHCH_{2}N \xrightarrow{C_{2}H_{5}} C_{2}H_{5}$$

$$CH_{3} \xrightarrow{Si-(CH_{2})_{3}} N \xrightarrow{CH_{2}CHOHCH_{2}N} C_{2}H_{5}$$

$$CH_{2}CHOHCH_{2}N \xrightarrow{C_{2}H_{5}} C_{2}H_{5}$$

$$CH_{3} \xrightarrow{CH_{3}CHOHCH_{2}N} C_{2}H_{5}$$

 Multiply quaternized polysiloxanes according to Claim 1 or 2 having structural units of the formula E3

$$CH_{3} = CH_{3}OSO_{3}^{\bigcirc}$$

$$CH_{2}CHOHCH_{2}N C_{3}H_{7}$$

$$CH_{3}C_{3}H_{7}$$

$$CH_{3}C_$$

10 6. Multiply quaternized polysiloxanes according to Claim 1 or 2 having structural units of the formula E4

5

$$CH_{3} - Si-(CH_{2})_{3} - N - CH_{3}$$

$$CH_{2}CHOHCH_{2}N C_{3}H_{7}$$

$$CH_{3} - Si-(CH_{2})_{3} - N - CH_{3}$$

$$CH_{2}CHOHCH_{2}N C_{3}H_{7}$$

$$CH_{3}CH_{3}CHOHCH_{2}N C_{3}H_{7}$$

$$CH_{3}CH_{3}CH_{3}$$

$$CH_{3}CH$$

7. Multiply quaternized polysiloxanes according to Claim 1 or 2 having structural units of the formula E5

CH₃
$$\xrightarrow{A^{\bigcirc}}$$
 $\xrightarrow{CH_3}$ $\xrightarrow{CH_3}$

10 8. Multiply quaternized polysiloxanes according to Claim 1 or 2 of the formula E6

- 9. Process for preparing multiply quaternized polysiloxanes of the formula (S1) according to any one of Claims 1 to 6, characterized in that the following reactions are carried out:
 - A) reaction of dialkylamine with epichlorohydrin to form a glycidyldialkylamine,
 - B) reaction of the glycidyldialkylamine with 3-aminoalkyldialkoxymethylsilane or with 3-(2-aminoalkylamino)alkyldialkoxymethylsilane to form the corresponding silanes,
 - C) reaction of the resultant silanes with polydimethylsiloxanediol or with octamethylcyclotetrasiloxane or with tetraalkyl- or aryltrialkyl-ammonium hydroxide to form polysiloxanes, with subsequent quaternization to form the multiply quaternized polysiloxanes.
- 15 10. Process for preparing multiply quaternized polysiloxanes of the formula (S1) where Y is -(CH₂)_x- and X is

- O -
$$\mathrm{CH_2}$$
 - CH - $\mathrm{CH_2}$ - OH

- characterized in that the following reactions are carried out:
 - A) reaction of N'-[3-(dialkylamino)alkyl]-N,N-dialkylalkane-1,3-diamine with dialkoxy(3-glycidyloxyalkyl)methylsilane,
 - B) reaction of the reaction product from A) with polydimethylsiloxanediol or with octamethylcyclotetrasiloxane, with subsequent quaternization.

25

35

5

10

- 11. Process for preparing multiply quaternized polysiloxanes of the formula (S2) according to Claims 1 or 2, characterized in that the following reactions are carried out:
- 30 A) reaction of octaalkylcyclotetrasiloxane with 1,1,3,3-tetraalkyldisiloxane,
 - B) reaction of the reaction product from A) with an allyl glycidyl ether and a hydrosilylation catalyst;
 - C) reaction of the reaction product from B) with N,N,N',N'tetraalkyldialkylenetriamine to form the polysiloxane and subsequent quaternization.

12. Use of multiply quaternized polysiloxanes according to Claims 1 to 8 as a softener in the textile industry.

5