Regular Expressions and DFAs

Regular Expression

- Notation to specify a language
 - Declarative
 - Sort of like a programming language.
 - Fundamental in some languages like perl and applications like grep or lex
 - Capable of describing the same thing as a NFA
 - The two are actually equivalent, so RE = NFA = DFA
 - We can define an algebra for regular expressions

Algebra for language

- Previously we discussed these operators:
 - Union
 - Concatenation
 - Kleene Star

Remember

* has a higher precedence than concatenation and concatenation has a higher precedence than +

RE Examples

```
\begin{split} L(\textbf{001}) &= \{001\} \\ L(\textbf{0+10*}) &= \{\ 0,\ 1,\ 10,\ 100,\ 1000,\ 10000,\ \dots\} \\ L(\textbf{0*10*}) &= \{1,\ 01,\ 10,\ 010,\ 0010,\ \dots\} \\ L(\boldsymbol{\Sigma\Sigma})^* &= \{w \mid w \text{ is a string of even length}\} \\ L((\textbf{0(0+1)})^*) &= \{\ \epsilon,\ 00,\ 01,\ 0000,\ 0001,\ 0100,\ 0101,\ \dots\} \\ L((\textbf{0+\epsilon})(\textbf{1+\epsilon})) &= \{\epsilon,\ 0,\ 1,\ 01\} \\ L(1\emptyset) &= \emptyset \quad ; \text{ concatenating the empty set to any set yields the empty set.} \\ R\epsilon &= R \\ R+\emptyset &= R \end{split}
```

Exercise 1

- Let ∑ be a finite set of symbols
- $\sum = \{10, 11\}, \sum^* = ?$

Answer:

$$\Sigma^* = \{\varepsilon, 10, 11, 1010, 1011, 1110, 1111, ...\}$$

Exercises 2

L1 = {10, 1}, L2 = {011, 11}, L1L2 = ?

L1L2 = {10011, 1011, 111}

Exercises 3

- Write RE for
 - All strings of 0's and 1's
 - **(0|1)***
 - All strings of 0's and 1's with at least 2 consecutive 0's
 - (0|1)*00(0|1)*
 - All strings of 0's and 1's beginning with 1 and not having two consecutive 0's
 - **(1+10)***

More Exercises

 All strings of 0's and 1's ending in 011 (0|1)*011

any number of 0's followed by any number of 1's followed by any number of 2's 0*1*2*

strings of 0,1,2 with at least one of each symbol 00*11*22*

More Exercise

- The set of all strings whose number of 0's is divisible by 3
 - (1+01*01*0)*

Theory of DFAs and REs

- RE. Concise way to describe a set of strings.
- DFA. Machine to recognize whether a given string is in a given set.
- Duality: for any DFA, there exists a regular expression to describe the same set of strings; for any regular expression, there exists a DFA that recognizes the same set.

Duality Example

DFA for multiple of 3 b's:

RE for multiple ot 3 p s:

Problem 1

 Make a DFA that accepts the strings in the language denoted by regular expression ab*a

Problem 2

Write the RE for the following automata:

a(a|b)*a

DFA to RE: State Elimination

- Eliminates states of the automaton and replaces the edges with regular expressions that includes the behavior of the eliminated states.
- Eventually we get down to the situation with just a start and final node, and this is easy to express as a RE

DFA to RE via State Elimination (1)

- Starting with intermediate states and then moving to accepting states, apply the state elimination process to produce an equivalent automaton with regular expression labels on the edges.
- The result will be one or two state automaton with a start state and accepting state.

DFA to RE State Elimination (2)

If the two states are different, we will have an automaton that looks like the following:

We can describe this automaton as: (R | SU*T)*SU*

DFA to RE State Elimination (3)

If the start state is also an accepting state, then we must also perform a state elimination from the original automaton that gets rid of every state but the start state. This leaves the following:

We can describe this automaton as simply R*

DFA to RE State Elimination (4)

- If there are n accepting states, we must repeat the above steps for each accepting states to get n different regular expressions, R1, R2, ... Rn.
- For each repeat we turn any other accepting state to non-accepting.
- The desired regular expression for the automaton is then the union of each of the n regular expressions: R1 U R2... U RN

DFA->RE Example

Convert the following to a RE:

First convert the edges to KE's:

DFA -> RE Example (2)

Eliminate State 1:

Note edge from 3->3

Answer: (0+10)*11(0+1)*

Second Example

 Automata that accepts even number of 1's

Eliminate state 2:

Second Example (2)

Two accepting states, turn off state 3 first

This is just 0*; can ignore going to state 3 since we would "die"

Second Example (3)

Turn off state 1 second:

- This is just 0*10*1(0|10*1)*
- Combine from previous slide to get 0* | 0*10*1(0|10*1)*

- We have shown we can convert an automata to a RE. To show equivalence we must also go the other direction, convert a RE to an automaton.
- We can do this easiest by converting a RE to an ε-NFA
 - Inductive construction
 - Start with a simple basis, use that to build more complex parts of the NFA

• Basis:

R=a
$$\xrightarrow{a}$$
 \bigcirc
R= ϵ $\stackrel{\epsilon}{\longrightarrow}$ \bigcirc
R= \emptyset \longrightarrow \bigcirc

- Convert $R = (ab+a)^*$ to an NFA
 - We proceed in stages, starting from simple elements and working our way up

- Another approach
 - Mishra