Министерство Науки и Высшего Образования Российской Федерации Федеральное Государственное Автономное Образовательное Учреждение Высшего Образования

Национальный Исследовательский Ядерный Университет «МИФИ»

Институт Ядерной Физики и Технологий Кафедра Теплофизики

Оценка характеристик биологической защиты BBЭP-1000

Домашнее задание по курсу «Теория переноса излучений»

Работу выполнил:

М. Д. Панин

Группа: Б18-101

Преподаватель:

М.Ю Терновых

Москва 2022

Содержание

1.	Расчет биологической защиты		3
	1.1.	Постановка задачи	3
	1.2.	Построение расчетной модели биологической защиты	3
	1.3.	Расчет дозы нейтронов из активной зоны реактора	7
	1.4.	Расчет дозы нейтронов за защитой или минимального размера слоя биологической защиты для нейтронов	9
Пе	рече	нь использованных источников	11

1. Расчет биологической защиты

1.1. Постановка задачи

Необходимо рассчитать дозу облучения при стационарном режиме работы ЯЭУ ВВЭР-1000 за биологической защитой

1.2. Построение расчетной модели биологической защиты

Для формирования расчетной модели рассмотрим разомкнутую компоновку элементов и помещений ЯЭУ с РУ ВВЭР-1000. Такая компоновка предполагает разделения реакторного и машинного залов в разные здания, что позволяет локализовать возможную аварию и обеспечить большую безопасность.

Рисунок 1.1. Общая компоновка энергоблока с РУ ВВЭР-1000 разомкнутой компоновки (Южно-Украинская АЭС) [2]:

1 — реактор; 2 — машина для перегрузки топлива; 3 — подъемный кран реакторного отделения; 4 — компенсатор давления, 5 — барботер; 6 — деаэратор; 7 — гидроемкость, 8 — турбогенератор; 9 — подъемный кран машинного зала; 10 — регенеративные подогреватели; 11 — защитная оболочка; 12 — блочный щит управления;

Элементы компоновки вокруг реактора Рассмотрим основные элементы защиты, внешние по отношению к ВВЭР-1000 в сборе. Корпус реактора установливается в бетонную шахту (рис 1.2), которая играет роль основной опоры и крепления реактора с учетом сейсмических нагрузкок, а также биологической защиты от излучения со стороны АЗ. Между корпусом реактора и шахтой имеется кольцевой зазор, предназначенный для периодического контроля металла корпуса в связи с требованиями правил. Шахта резделена по высоте на два объема разделительным сильфоном:

- Верхний, снабжен гидрозатвором и соединяется с бассейном выдержки. При перегрузке верхний объем шахты вместе с бассейном заливается водой.
- Нижний, условно разделяемый фермой опорной на шахту зоны патрубков и шахту цилиндрической части корпуса. Соединяется проемом, снабженным герметичной дверью, с помещением для машины осмотра корпуса.

В помещении зоны патрубков биологическая защита выполнена из металлических коробов, заполненных специальным составом, в который входят серпентинитовая галя, кристаллический карбид бора, дробь чугунная литая. В районе активной зоны применяется «сухая» защита, которая представляет из себя слой серпентинитового бетона толщиной 720 мм и высотой 4,7 м, облицованного металлической оболочкой. Такой бетон обладает высокой радиационной стойкостью, что позволяет удовлетворить требования по нейтронной защите. [1]

Рисунок 1.2. Бетонная шахта реактора

Все оборудование первого контура заключено в цилиндрическую оболочку, в верхней части которой расположен грузоподъемный поворотный кран. Между реакторным и машинным залами располагается этажерка электротехнических устройств, где размещены также деаэраторы и различные лаборатории.

Корпус и внутрикорпусные элементы компоновки Корпус представляет собой вертикальный герметичный сосуд цилиндрической формы с эллиптическими днищем и крышкой с наружним диаметром 4535 мм, высотой 10.897 м и толщиной 192 мм в цилиндрической части и 210 мм в районе патрубков [1]. В качестве основного материала используется сталь сталь 15Х2НМФА. е. Вся внутренняя поверхность корпуса покрыта антикоррозионной наплавкой из нержавеющей стали толщиной не менее 8 мм. В местах соприкосновения корпуса с крышкой, шахтой, уплотнительными прокладками, в местах приварки кронштейнов, деталей крепления трубок КИП, на поверхности разделительного кольца выполнена наплавка толщиной не менее 15 мм. Внутрь реактора также устанавливается шахта, которая представляет собой цилиндрическую обечайку с фланцем и эллиптическим днищем, в котором закреплены 163 опорные трубы (стаканы) с шагом 236 мм, верхние части которых образуют опорную плиту для установки и дистанционирования кассет активной зоны. Материал шахты — сталь 08Х18Н10Т толщиной 55 мм.

Устройство твэла Твэл ядерного реактора ВВЭР-1000 представляет собой трубку, заполненную таблетками из двуокиси урана UO2 и герметично уплотненную концевыми деталями на сварке. Трубка твэла изготовлена из циркония, легированного 1 % ниобия. Наружный диаметр трубки твэла 9.1±0.05 мм, ее толщина 0.65±0.03 мм, а внутренний диаметр 7.72+0.08 мм. В эту трубку с зазором 0.19–0.32 мм на диаметр помещены таблетки двуокиси урана высотой (длиной) 20 мм и диаметром 7.57±0.04 мм. В середине этих таблеток имеются отверстия диаметром 1.5 мм, а края таблеток скруглены фасками. Общая длина столба этих таблеток в твэле составляет 3530 мм. Все размеры указаны для холодного состояния. Длина трубки твэла составляет 3800 мм, поэтому положение столба топливных таблеток в твэле зафиксировано разрезными втулками из нержавеющей стали и пружиной, не препятствующими тепловым перемещениям. Вид твэла приведён на рис. 1.3 [3]

Рисунок 1.3. Тепловыделяющий элемент: 1 — заглушка верхняя; 2 — оболочка; 3 — фиксатор; 4 — таблетка; 5 — заглушка нижняя

Преимущество циркония заключается в удачном сочетании ядерных и физических характеристик с механическими и коррозионными свойствами. Цирконий коррозионно стоек в большинстве сред, применяемых в качестве теплоносителей ядерных реакторов, и достаточно технологичен.

Естественная радиоактивность одной свежей ТВС составляет $1.8 \cdot 10^{10}$ Бк., гамма- излучение на поверхности около 0.2 бэр/ч.

Построение одномерной модели В качестве помещения постоянного пребывания персонала рассматривается блочный щит управления, расположенный в этажерке электроустройств (цифра 12 на рис. ??). Также в этажерке электроустройств размещаются распределительные устройства сетей электропитания двигателей электростанции, аккумуляторные батареи, трансформаторы и т. д. Для построения расчетной модели был определен ряд значимых элементов конструкции реакторной установки с точки зрения нейтронной защиты. От активной зоны рассматриваемое помещение отделено внутрикорпусными элементами, такими как оболочка твэла, внутрикорпусная шахта; корпусом, бетонной внешней шахтой, внешней бетонной оболочкой реактора и бетонной стеной машинного зала. Суммарный слой бетона складывается из 3 м основания гермо-

оболочки, 0.72 м сухой защиты шахты, 1.5 м шахты и 0.5 м стены машинного зала перед этажеркой. Основная доля нейтронного излучения в реакторе приходится на нейтроны теплового спектра. Для таких энергий хрошими поглотителями являются кадмий, графит, бетон. Присутствующее гамма-излучение для своего эффективного поглощения требует свинец и подобные высокоплотные материалы. Таким образом были выбран слои биологической защиты, представленные в таблице 1.1:

Таблица 1.1: Слои биологической защиты

Название	Материал	Размер, см	$\mid \Pi$ лотность, г/см 3
Внутрикорпусная шахта	сталь 08Х18Н10Т	5.5	7.9
Теплоноситель	$\mathrm{H_{2}O}$	26.3	0.71
Корпус	сталь 15Х2НМФА	19.25	7.8
Шахта + гермооболочка + стена	бетон	572	2.35

1.3. Расчет дозы нейтронов из активной зоны реактора

Таблица 1.2: Основные параметры для расчета

Параметр	Значение	
Тепловая мощность реактора, МВт $W_{ m теп}$	$2.904 \cdot 10^3$	
Средняя энергия, выделяющаяся в одной реакции деления, МэВ E_f	200	
Средняя энергия нейтронов спектра деления, МэВ E_{nf}	2	
Среднее число нейтронов деления на середину кампани, $ u_f$	2.42	
Коэффициент размножения K_{∞}	1.03	
Доля нейтронов спектра деления в спектре утечки γ		
Среднее число гамма-квантов деления на середину кампании	7.51	
Высота активной зоны $H_{\rm as}$, м	3.5	
Радиус активной зоны $R_{\rm as}$, м	1.58	

Число реакций деления в реакторе в единицу времени:

$$N_f = \frac{W_{\text{теп}}}{E_f} \tag{1}$$

$$N_f = \frac{2.90 \cdot 10^9}{2.00 \cdot 10^2 \cdot 1.60 \cdot 10^{-13}} = 9.06 \cdot 10^{19} \, \frac{\text{дел}}{\text{с}}$$

Число нейтронов, образующихся в реакторе в единцу времени:

$$N_n = N_f \cdot \nu_f \tag{2}$$

$$N_n = 9.06 \cdot 10^{19} \cdot 2.42 = 2.19 \cdot 10^{20}$$

Площадь полной поверхности акивной зоны

$$S_{\text{пов}} = S_{\text{бок}} + 2S_{\text{top}} \tag{3}$$

где

•
$$S_{\mathrm{бок}} = H_{\mathrm{a}\mathrm{s}} 2\pi R_{\mathrm{a}\mathrm{s}}$$

•
$$S_{\text{top}} = \pi R_{\text{as}}^2$$

$$S_{\text{пов}} = 3.50 \cdot 2 \cdot \pi \cdot 1.58 + 2 \cdot \pi \cdot (1.58)^2 = 5.04 \cdot 10^1 \ \mathrm{m}^2$$

Поток нейтронов утечки из активной зоны:

$$\Phi = \frac{N_n(K_{\infty} - 1)}{S_{\text{TOR}}} \tag{4}$$

$$\Phi = \frac{2.19 \cdot 10^{20} (1.03-1)}{5.04 \cdot 10^1} = 1.30 \cdot 10^{17} \, \frac{\text{нейтрон}}{\text{c} \cdot \text{m}^2}$$

Поток нейтронов спектра деления в утечке из активной зоны:

$$\Phi_f = \Phi \cdot \gamma \tag{5}$$

$$\Phi_f = 1.30 \cdot 10^{17} \cdot 5.00 \cdot 10^{-01} = 6.52 \cdot 10^{16} \; \frac{\text{нейтрон}}{\text{c} \cdot \text{m}^2}$$

Мощность экивалентной дозы нейтронов перед защитой

$$D_{0n} = \Phi_f \cdot E_{nf} \cdot \overline{\mu_{\text{3H}}} \cdot K \tag{6}$$

где

- $\overline{\mu_{
 m 3H}}=\frac{1~{
 m M}^2}{100~{
 m kr}}$ массовый коэффициент поглощения энергии в биологической ткани, принимается равным отношению площади человека к его массе
- $K=10~\frac{{
 m 3B}}{{
 m \Gamma p}}$ коэффициент качества нейтронов спектра деления

$$D_{0n} = 6.52 \cdot 10^{16} \cdot 2.00 \cdot 1.60 \cdot 10^{-13} \cdot 1.00 \cdot 10^{-02} \cdot 1.00 \cdot 10^{1} = 2.09 \cdot 10^{3} \frac{3B}{C}$$

Результаты расчетов дозы нейтронов из активной зоны представлены в таблице 1.3

Таблица 1.3: Результаты расчета дозы нейтронов

Параметр	Значение		
N_f , дел	$9.06 \cdot 10^{19}$		
N_n , нейтрон	$2.19 \cdot 10^{20}$		
S_{nob} , m^2	50.4		
$\Phi, \frac{\text{нейтрон}}{M^2 \cdot C}$	$1.3 \cdot 10^{17}$		
$\Phi_f, rac{ ext{нейтрон}}{ ext{м}^2 \cdot ext{с}}$	$6.52 \cdot 10^{16}$		
$D_{0n}, \frac{3\mathrm{B}}{\mathrm{C}}$	$2.09 \cdot 10^3$		

1.4. Расчет дозы нейтронов за защитой или минимального размера слоя биологической защиты для нейтронов

Для расчета дозы нейтронов за защитой используется модель сечения выведения многослойной системы.

Сечение выведение для многослойной системы:

$$D = D_0 \exp\left(-\sum_{i} \Sigma_{\text{rem}}^{i} \cdot d_i\right) \tag{7}$$

Для текущей модели раскрывается как:

$$D = D_0 \exp\left(-\Sigma_{\rm rem}^{\rm H_2O} \cdot d_{\rm H_2O} - \Sigma_{\rm rem}^{\rm cr} \cdot d_{\rm cr} - \Sigma_{\rm rem}^{\rm \varkappa/6} \cdot d_{\rm \varkappa/6}\right) \tag{8}$$

где $\Sigma^{\rm H_2O}_{\rm rem}$ — сечение выведеня слоя воды, $\Sigma^{\rm cr}_{\rm rem}$ — сечение выведения слоя стали, $\Sigma^{\rm x/6}_{\rm rem}$ — сечение выведения слоя бетона, $d_{\rm H_2O}, d_{\rm cr}, d_{\rm x/6}$ — толщины слоев воды, стали и бетона

Таблица 1.4: Значения сечений выведений защиты и толщины различных слоев [3]

Слой защиты	d, см	$ ho, rac{\Gamma}{{ m CM}^3}$	$\Sigma_{ m rem}$, ${ m cm}^{-1}$
Вода	26.3	0.71	0.069
Сталь	24.75	7.9	0.166
Бетон	572	2.35	0.08

$$\begin{split} D_n &= 2.09 \cdot 10^3 \exp(-6.90 \cdot 10^{-02} \cdot 2.63 \cdot 10^1 - \\ &- 1.66 \cdot 10^{-01} \cdot 2.48 \cdot 10^1 - 8.00 \cdot 10^{-02} \cdot 5.72 \cdot 10^2) = 7.49 \cdot 10^{-20} \, \frac{\mathrm{3b}}{\mathrm{c}} \end{split}$$

Для учета 20% погрешности по дозе модели сечения выведения необходимо использовать поправочный коэффициент 1.2. Итоговая доза с учетом погрешности в 3в / нед:

$$D_{n,\mathrm{нед}} = 1.2 \cdot 7 \cdot 24 \cdot 60 \cdot 60 \cdot 7.490 \cdot 10^{-20} = 5.436 \cdot 10^{-14} \ \frac{\mathrm{3B}}{\mathrm{нед}}$$

Перечень использованных источников

- 1. *Лескин С.*, *Шелегов А.*, *Слободчук В*. Физические особенности и конструкция реактора ВВЭР-1000: [учебное пособие для вузов]. М.: НИЯУ "МИ-ФИ", 2011. ISBN 9785726214924.
- 2. *Монахов А*. Атомные электрические станции и их технологическое оборудование: Учеб. пособие для энерг. и энергостроит. техникумов. М.: Энергоатомиздат, 1986.
- 3. Физика и эксплуатационные режимы реактора ВВЭР-1000 / В. И. Белозеров [и др.]. М. : НИЯУ МИФИ, 2014. С. 159, 157, 167, 172.