```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

Creating Arrays	Notes
np.array([[1, 2, 3], [4, 5, 5]])	From nested list; optionally specify dtype='float'
np.full((3, 5), 2)	3x5 array full of 2s
np.arange(0, 10, 3)	Equivalent to np.array(range(0, 10, 3))
np.linspace(0, 2, 10)	10 numbers evenly spaced from 0 through 2
np.random.random((5, 2))	5x2 array of random numbers in [0, 1). See also np.random.randint, np.random.normal

NumPy Expression	Notes	
a.ndim	Number of dimensions of a	
a.shape	Shape of a (a tuple)	
a.size	Total number of elements in a	
a.dtype	Data type of a's elements	
a[2, 3]	Element in row 2, column 3 of a. Each index can be a slice	
a[2:4, 5:8]	Rows 2-3 and 5-7 of a. A view without .copy()	
a.reshape(3, 16)	Elements of a rearranged into a 3x16 array. A view	
a.concatenate(b)	a and b stacked. To concatenate side-by-side: axis=1	
a + np.sin(b)	Applied element-wise. If a is 4x1 and b is 1x6, result is 4x6, broadcast to make dimensions match	
np.sum(a, axis=0)	Sums along row dimension, giving one sum per column. See also prod, mean, std, min, max	
a[(a > 3) & (a < 10)]	Elements of a greater than and less than 10. a > 3 itself is an array of bools. Use for or, ~ for not	

df = pd.read_csv('path/to/your_file.csv')

Pandas Expression	Notes
pd.DataFrame({'a':[1, 2, 3], 'b':[4, 5, 6]})	A dataframe with the specified values in columns 'a' and 'b'.
df.columns	Column names of df
df.head()	First five rows of df
df.describe()	Basic stats on numeric columns of df
df['area']	The 'area' column of df
df.loc['Oregon']	The row of df indexed by 'Oregon'. Can specify column in addition.

Pandas Expression	Notes
df.iloc[3]	Row 3 of df
df.dropna()	A copy of df without any rows containing NaN
pd.concat([a, b])	Concatenation of DataFrames a and b
pd.merge(a, b, how='inner')	Joins a and b; how can be 'inner', 'outer', 'left', or 'right'
df.sort_values(by='name')	A copy of df, sorted by the 'name' column
<pre>df.pivot_table('survived',</pre>	Pivot table showing the mean survival rate for each combination of sex and class

Matplotlib Expression or Statement	Notes
plt.plot(x, y)	Line plot of x and y (Series, DataFrame columns, or lists). Optional third argument like 'c' for dashed cyan line
plt.scatter(x, y)	Scatter plot of x and y
plt.hist(x)	Histogram of x
plt.xlim(0, 10)	Set x limits of plot
plt.xlabel('Year')	Set x label of plot
plt.title('Duck Prices')	Set title of plot
plt.legend()	Add legend
plt.text(x, y, 'look here')	Add annotation
fig, ax = plt.subplots(2, 3)	Creates a figure with a 2x3 grid of axes

Named Argument	Matplotlib Functions	Notes
С	plot, scatter	Color (plot) or sequence of colors (scatter)
S	scatter	Sequence of sizes (numbers)
label	plot, scatter	Label to use in legend
marker	plot, scatter	Marker to use for each point

Marker	Linestyle	Color
'.' point	'-' solid	'blue'
'o' circle	':' dotted	'g' green, from among rgbcmyk
'v', '^', '<' triangles	'' dashed	'0.75' grayscale
's' square	'' dashdot	'#FFDD44' hex code
'+' plus		(1.0, 0.2, 0.3) RGB tuple
'x' x		
'D' diamond		Color examples from VanderPlas, Python Data Science Handbook