Cours

MODBUS

MODBUS C'EST QUOI?

Pour résumer brièvement ce qu'est MODBUS, on peut dire qu'il émane de la société GOULD MODICON, que c'est un protocole de communication basé sur un principe Maître/esclave.

Un seul maître et plusieurs esclaves.

- 255 esclaves maxi sur RS485
- 2 maxi sur RS232.

Ce standard a été implémenté sur de nombreux appareils, car il est indépendant du matériel et s'adapte parfaitement aux architectures ouvertes. On retrouve aussi ce protocole sous le nom JBUS.

MODBUS peut converser en

- ASCII 7 bits
- binaire RTU 8bits

L'avantage du mode RTU est que les données à transmettre prennent moins de place donc moins de temps. En effet, on adresse plus de données en 8 qu'en 7 bits.

MODBUS/RTU est un protocole sécurisé basé sur le calcul d'un CRC (cyclical Redundancy check) ou test de redondance cyclique. Ce CRC calculé sur 16 bits est partie intégrante du message et il est vérifié par le destinataire. Il est calculé sur tous les octets de la trame à part lui-même bien-entendu.

Cet entier de type WORD (2 octets) sera calculé dans la gamme 0 à 65535 mais sera ramené dans la gamme -32768 à 32767. Le maître (PC) envoie des requêtes à l'esclave qui lui répondra si le message lui convient.

Pour que le message convienne il doit être rédigé selon des règles normées.

CARACTERISTIQUE DES ECHANGES

Les commandes de diffusion sont obligatoirement des commandes d'écriture. Il n'y a pas de réponse émise par les esclaves.

Cours

MODBUS

PROTOCOLE MODBUS

Chaque trame contient quatre types d'informations

• Le numéro de l'esclave (1 octet) :

 le numéro de l'esclave spécifie l'esclave destinataire (1 à 255). Si ce numéro est zéro, la demande concerne tous les esclaves, il n'y a pas de message de réponse.

• Le code fonction (1 octet):

il permet de sélectionner une commande (lecture, écriture, bit, mot) et de vérifier si la réponse est correcte.

Structure de la trame	Jbus	Modbus		
N° d'esclave Code fonction Longueur trame	1 à 255 1 à 16 (sauf 9 & 10) 255 Octets max.	à 247 à 24 '61 Octets max.		
CRC Détection des trames *	CRC16 silence > 3 caractères	CRC16 silence > 1,5 ou > 3,5 caractères		
	de problème à des débits supérie itement de l'équipement (temps d			
Fonctions standard				
F1	Lecture de n bits à @ 0 to FFFF (1 < n < 2000)	Lecture de n bits à @ 1 to 9999		
F2	Lecture de n bits à @ 0 to FFFF (1 < n < 2000)	Lecture de n bits à @ 10001 to 19999		
F3	Lecture de n mots à @ 0 to FFFF (1 < n < 125)	Lecture de n mots à @ 40001 to 49999		
F4	Lecture de n mots à @ 0 to FFFF (1 < n < 125)	Lecture de n mots à @ 30001 to 39999		
F5	Ecriture de 1 bit à @ 0 to FFFF	Ecriture de 1 bit à @ 1 to 9999		
F6	Ecriture de 1 mot à @ 0 to FFFF	Ecriture de 1 mot à @ 40001 to 49999		
F7	Lecture rapide de 8 bits utilisateur	Lecture du status d'exception (8 bits) Signale des défauts sur l'équipement		
F15	F15 Ecriture de n bits à @ 0 to FFFF	Ecriture de n bits à @ 1 to 9999		
F16	Ecriture de n mots à @ 0 to FFFF	Ecriture de n mots à @ 40001 to 49999		

• Le champ information (n octets):

o il contient les paramètres liés à la fonction : adresse bit, adresse mot, valeur de bit, valeur de mot, nombre de bits, nombre de mots.

• Le mot de contrôle : CRC (2 octets) :

Le maître émet une demande en indiquant

- Le numéro d'esclave.
- Le code fonction.
- o Les paramètres de la fonction.

Il calcule et émet le contenu du mot de contrôle (CRC 16). Lorsque l'esclave reçoit le message de demande, il le range en mémoire, calcule le CRC et le compare au CRC 16 reçu :

- o Si le message reçu est incorrect (inégalité des CRC 16), l'esclave ne répond pas.
- Si le message reçu est correct mais que l'esclave ne peut le traiter (adresse erronée, donnée incorrecte...), il renvoie une réponse d'exception.

Cours

MODBUS

EXEMPLE: LECTURE DE N MOTS

Demande :

Réponse :

Exercice d'application, étude du message :

Le relevé du message étant le suivant :

- Analysez la trame et indiquer le numéro de l'esclave, la fonction, les données, le CRC.
- Sachant que le registre ModBus : 219C (en hexadécimal) des groupes électrogènes correspond à la vitesse de rotation en tr/min, indiquer à quoi correspond le message.

Cours

MODBUS

La réponse de l'esclave étant la suivante :

Cours

MODBUS

• Indiquer, en décimal, la vitesse de rotation du moteur :

CALCUL DU CRC 16

Le CRC est une technique utilisée pour assurer une fiabilité proche de 100%. CRC signifie (cyclical Redundancy check) ou test de redondance cyclique. Ce CRC calculé sur 16 bits est partie intégrante du message et il est vérifié par le destinataire. Il est calculé sur tous les octets de la trame à part lui-même bien-entendu.

Algorigramme et algorigramme de calcul du CRC 16(polynôme arbitraire Ox A001)

```
DEBUT

CRC = 0xFFFF
nombre octets traités = 0
octet suivant = premier octet
REPETER
octet à traiter = octet suivant
CRC = (CRC) Ou Exclusif (octet à traiter)
REPETER 8 fois
si CRC impair : CRC = (CRC/2) Ou Exclusif (0xA001)
sinon : CRC = (CRC/2)
nombre octets traités = nombre octets traités + 1
TANT QUE nombre octets traités <= nombre octets à traiter
FIN
```


Cours

MODBUS

Exercice de calcul du CRC16 du début de notre chaine de réponse 01 03...

						FLAG
Init CRC		1111	1111	1111	1111	
1 ^{er} octet	XOR			0000	0001	
Résultat		1111	1111	1111	1110	
Décalage 1		0111	1111	1111	1111	0
Décalage 2		0011	1111	1111	1111	1
Flag=1, poly	XOR	1010	0000	0000	0001	
Résultat		1001	1111	1111	1110	
Décalage 3		0100	1111	1111	1111	0
Décalage 4		0010	0111	1111	1111	1
Flag=1, poly	XOR	1010	0000	0000	0001	
Résultat		1000	0111	1111	1110	
Décalage 5		0100	0011	1111	1111	0
	1					

Cours

MODBUS

SUPPORT PHYSIQUE: LA LIAISON RS485

Le bus RS485

Un des principaux problèmes des liaisons séries est l'absence d'immunité pour le bruit sur les lignes de signal. L'émetteur et le récepteur comparent les tensions par rapport à une masse commune en ligne (exemple RS232). Un changement dans le niveau du potentiel de terre peut avoir des effets désastreux.

Le bruit limite à la fois la distance maximale et la vitesse de communication. Avec l'**RS485** il n'y a pas une masse commune comme signal de référence. La transmission est différentielle Le récepteur compare la *différence de tension* entre les deux lignes, au lieu d'un *niveau de tension absolue* sur une ligne de signal.

Des circuits trois états électrique permettent des liaisons multipoints

Caractéristique électrique de la norme RS485

Caractéristiques	Min.	Max.
Tension du générateur en circuit ouvert (VAB)	-	±6 V
Courant de sortie en court-circuit (I0)	-	150 mA
Résistance interne du générateur	50 Ω	100 Ω
Résistance de charge (RL)	100 Ω	-
Capacité parallèle (CL)	-	2500 pF
Vitesse	-	10 Mbit/s
Longueur de câble	-	1km

Modbus.docx 7/7