EXP NO: 8	MODEL EVALUATION AND IMPROVEMENT:
DATE: 09/10/2025	HYPERPARAMETER TUNING WITH GRID SEARCH AND CROSS-VALIDATION

AIM:

To demonstrate key techniques for model evaluation and improvement:

- HYPERPARAMETER TUNING WITH GRID SEARCH: Systematically searching for the optimal combination of hyperparameters for a machine learning model.
- CROSS-VALIDATION TECHNIQUES: Implementing k-fold cross-validation to get a more robust estimate of model performance and to prevent overfitting to a specific train-test split.

ALGORITHM:

1. HYPERPARAMETER TUNING WITH GRID SEARCH

Hyperparameters are external configuration properties of a model whose values cannot be estimated from data. Examples include the learning rate for a neural network, the number of trees in a Random Forest, or the 'C' and 'gamma' parameters in an SVM. Tuning these parameters is crucial for optimal model performance.

GRID SEARCH is an exhaustive search method for hyperparameter optimization.

STEPS:

- 1. **Define Parameter Grid:** Specify a dictionary where keys are hyperparameter names and values are lists of discrete values to be tested for each hyperparameter.
- 2. **Instantiate Model:** Choose a machine learning model.
- 3. **Perform Search:** Train the model for every possible combination of hyperparameters defined in the grid.
- 4. **Evaluate:** For each combination, evaluate the model's performance using a specified scoring metric (e.g., accuracy, F1-score) and often in conjunction with cross-validation.
- 5. Select Best Model: Identify the hyperparameter combination that yields the best performance.

2. CROSS-VALIDATION TECHNIQUES

Cross-validation is a resampling procedure used to evaluate machine learning models on a limited data sample. The goal is to estimate how accurately a predictive model will perform in practice. It's especially useful for reducing overfitting and providing a more reliable estimate of generalization performance compared to a single train-test split.

K-FOLD CROSS-VALIDATION:

STEPS:

- **1. Divide Data:** The entire dataset is randomly partitioned into \$k\$ equally sized subsamples (or "folds").
- **2. Iterate 'k' Times:** In each iteration, one fold is used as the validation (or test) set, and the remaining \$k-1\$ folds are used as the training set. The model is trained on the training set and evaluated on the validation set.
- 3. Aggregate Results: The performance metric (e.g., accuracy) from each of the \$k\$ iterations is collected.
- 4. Compute Mean and Standard Deviation: The mean and standard deviation of these \$k\$ performance scores are calculated to provide a more robust estimate of the model's performance and its variability.

CODE:

```
# Import necessary libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_iris # A classic dataset for classification
from sklearn.model_selection import train_test_split, KFold, cross_val_score,
GridSearchCV
from sklearn.svm import SVC # Support Vector Classifier, a common model for
tuning
from sklearn.metrics import accuracy_score, classification_report,
confusion matrix
from sklearn.preprocessing import StandardScaler
# --- Part 1: Hyperparameter Tuning with Grid Search ---
print("--- Part 1: Hyperparameter Tuning with Grid Search ---")
# 1. Load a Dataset (Iris Dataset for classification)
```

```
# The Iris dataset is a classic and simple dataset for classification tasks.
# It contains measurements of iris flowers (sepal length, sepal width, petal
length, petal width)
# and their corresponding species (Setosa, Versicolor, Virginica).
iris = load iris()
X = iris.data
y = iris.target
feature_names = iris.feature_names
target_names = iris.target_names
print(f"\nDataset Features (X) shape: {X.shape}")
print(f"Dataset Labels (y) shape: {y.shape}")
print(f"Feature Names: {feature_names}")
print(f"Target Names: {target_names}")
# 2. Split Data into Training and Testing Sets
# It's crucial to split the data before scaling to prevent data leakage.
# The test set will be used for final model evaluation, after tuning.
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random state=42, stratify=y)
print(f"\nTraining set size: {X_train.shape[0]} samples")
print(f"Test set size: {X test.shape[0]} samples")
# 3. Standardize Features
# Scaling features is important for SVMs as they are sensitive to feature
scales.
# Fit scaler only on training data to prevent data leakage.
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
print("\nFeatures standardized.")
# 4. Define the Model and Hyperparameter Grid
# We'll use a Support Vector Classifier (SVC) as our model.
# Common hyperparameters for SVC are 'C' (regularization parameter) and
'gamma' (kernel coefficient).
# 'kernel' also can be tuned (e.g., 'linear', 'rbf').
# Define the parameter grid for Grid Search
param grid = {
    'C': [0.1, 1, 10, 100],
                                      # Regularization parameter
    'gamma': [1, 0.1, 0.01, 0.001], # Kernel coefficient for 'rbf', 'poly'
and 'sigmoid'
```

```
'kernel': ['rbf', 'linear']  # Type of kernel function
print("\nHyperparameter grid defined:")
for param, values in param grid.items():
    print(f" {param}: {values}")
# 5. Perform Grid Search with Cross-Validation
# GridSearchCV automatically performs k-fold cross-validation for each
combination.
# cv=5 means 5-fold cross-validation.
# scoring='accuracy' means we want to optimize for accuracy.
grid_search = GridSearchCV(SVC(), param_grid, cv=5, scoring='accuracy',
verbose=1, n jobs=-1)
print("\nStarting Grid Search with 5-fold Cross-Validation...")
# Fit GridSearchCV on the scaled training data
grid_search.fit(X_train_scaled, y_train)
print("\nGrid Search completed.")
# 6. Get the Best Parameters and Best Score
print(f"\nBest hyperparameters found: {grid_search.best_params_}")
print(f"Best cross-validation accuracy: {grid_search.best_score_:.4f}")
# 7. Evaluate the Best Model on the Test Set
# The best_estimator_ attribute provides the model trained with the best
parameters.
best_model = grid_search.best_estimator
y_pred_tuned = best_model.predict(X_test_scaled)
test_accuracy_tuned = accuracy_score(y_test, y_pred_tuned)
print(f"\nTest set accuracy with tuned model: {test_accuracy_tuned:.4f}")
print("\n--- Classification Report for Tuned Model ---")
print(classification_report(y_test, y_pred_tuned, target_names=target_names))
print("\n--- Confusion Matrix for Tuned Model ---")
cm tuned = confusion matrix(y test, y pred tuned)
plt.figure(figsize=(8, 6))
sns.heatmap(cm tuned, annot=True, fmt='d', cmap='Blues',
xticklabels=target_names, yticklabels=target_names)
plt.title('Confusion Matrix (Tuned SVM)')
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
```

```
plt.show()
# Visualize Grid Search results (optional, but good for understanding)
# Convert results to a DataFrame for easier analysis
results df = pd.DataFrame(grid_search.cv_results_)
print("\n--- Top 5 Grid Search Results ---")
print(results_df[['param_C', 'param_gamma', 'param_kernel', 'mean_test_score',
'rank_test_score']].sort_values(by='rank_test_score').head())
# --- Part 2: Cross-Validation Techniques (k-fold) ---
print("\n--- Part 2: Cross-Validation Techniques (k-fold) ---")
# We will demonstrate k-fold cross-validation on a simple SVM without explicit
tuning for clarity,
# to focus solely on the CV process.
# 1. Instantiate a Model (using default or chosen parameters)
model_cv = SVC(random_state=42) # Using default parameters for simplicity
# 2. Define k-fold Cross-Validation Strategy
# We'll use 5-fold cross-validation.
# KFold ensures that each fold is distinct.
# shuffle=True means the data will be randomly shuffled before splitting into
folds.
# random_state for reproducibility.
k folds = 5
kf = KFold(n_splits=k_folds, shuffle=True, random_state=42)
print(f"\nPerforming {k folds}-fold cross-validation...")
# 3. Perform Cross-Validation and Get Scores
# cross_val_score performs the KFold splitting, training, and evaluation
automatically.
# It returns an array of scores, one for each fold.
cv scores = cross val score(model cv, X train scaled, y train, cv=kf,
scoring='accuracy')
print(f"\nCross-validation scores for each fold: {cv scores}")
print(f"Mean cross-validation accuracy: {np.mean(cv_scores):.4f}")
print(f"Standard deviation of cross-validation accuracy:
{np.std(cv_scores):.4f}")
# 4. Visualize Cross-Validation Scores
plt.figure(figsize=(8, 5))
```

```
plt.bar(range(1, k_folds + 1), cv_scores, color='skyblue')
plt.axhline(y=np.mean(cv_scores), color='r', linestyle='--', label=f'Mean
Accuracy ({np.mean(cv_scores):.4f})')
plt.title(f'{k_folds}-Fold Cross-Validation Accuracy Scores')
plt.xlabel('Fold Number')
plt.ylabel('Accuracy')
plt.ylim(0.8, 1.0) # Set y-axis limits for better visualization
plt.legend()
plt.grid(axis='y', linestyle='--')
plt.show()
# 5. Discuss why CV is useful
print("\n--- Why is Cross-Validation Important? ---")
print("1. More Reliable Performance Estimate: Reduces bias from a single
train-test split.")
print("2. Better Generalization: Helps ensure the model performs well on
unseen data.")
print("3. Efficient Data Usage: All data points are used for both training and
validation across different folds.")
print("4. Detects Overfitting/Underfitting: Variability in scores can indicate
instability.")
```

OUTPUT:

```
--- Part 1: Hyperparameter Tuning with Grid Search ---
Dataset Features (X) shape: (150, 4)
Dataset Labels (y) shape: (150,)
Feature Names: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
Target Names: ['setosa' 'versicolor' 'virginica']
Training set size: 105 samples
Test set size: 45 samples
Features standardized.
Hyperparameter grid defined:
 C: [0.1, 1, 10, 100]
  gamma: [1, 0.1, 0.01, 0.001]
  kernel: ['rbf', 'linear']
Starting Grid Search with 5-fold Cross-Validation...
Fitting 5 folds for each of 32 candidates, totalling 160 fits
Grid Search completed.
Best hyperparameters found: {'C': 1, 'gamma': 0.1, 'kernel': 'rbf'}
Best cross-validation accuracy: 0.9810
Test set accuracy with tuned model: 0.9111
--- Classification Report for Tuned Model ---
              precision
                           recall f1-score
                   1.00
                                       1.00
                                                   15
                             1.00
      setosa
  versicolor
                                       0.88
                                                   15
                   0.82
                             0.93
                                                   15
  virginica
                   0.92
                                       0.86
                             0.80
                                       0.91
                                                   45
    accuracy
                                       0.91
                                                   45
   macro avg
                   0.92
                             0.91
weighted avg
                             0.91
                                                   45
                   0.92
                                       0.91
```


	Top 5 Grid Search Results				
	param_C	param_gamma	param_kernel	mean_test_score	rank_test_score
10	1.0	0.100	rbf	0.980952	1
27	100.0	0.100	linear	0.980952	1
31	100.0	0.001	linear	0.980952	1
29	100.0	0.010	linear	0.980952	1
25	100.0	1.000	linear	0.980952	1

```
--- Part 2: Cross-Validation Techniques (k-fold) ---
Performing 5-fold cross-validation...
Cross-validation scores for each fold: [1.
                                                  0.95238095 0.95238095 0.95238095 1.
Mean cross-validation accuracy: 0.9714
Standard deviation of cross-validation accuracy: 0.0233
                            5-Fold Cross-Validation Accuracy Scores
   1.000
                                    --- Mean Accuracy (0.9714)
   0.975
   0.950
   0.925
   0.900
   0.875
   0.850
   0.825
   0.800
                                            Fold Number
```

- --- Why is Cross-Validation Important? ---
- 1. More Reliable Performance Estimate: Reduces bias from a single train-test split.
- 2. Better Generalization: Helps ensure the model performs well on unseen data.
- 3. Efficient Data Usage: All data points are used for both training and validation across different folds.
- 4. Detects Overfitting/Underfitting: Variability in scores can indicate instability.

RESULT:

Thus, the execution successfully demonstrated model evaluation and improvement techniques by performing Hyperparameter Tuning with Grid Search to find the optimal parameters and applying Cross-Validation to obtain a robust estimate of model performance while preventing overfitting.