Information Visualization

User tasks and infovis techniques 2020

Marco Winckler

Université Nice Sophia (Polytech) | I3S | SPARKS team | bureau 446 winckler@unice.fr

http://www.i3s.unice.fr/~winckler/

User tasks

Approach "what-why-how"

- It is a way to analyze visualization techniques using three questions:
- What
 - · Which data are represented
- Why
 - Why users are using the visualization technique
- How
 - Which are the visual codification and which are the interaction techniques implemented

Standard visualization model

Foundations

- Data characterization
- Interaction and user tasks
- Perception

Interaction

- Changing the display
 - Selection
 - Navigation
 - Reorder/reorganize
 - Changing the visual coding
 - Remove/include elements using filtering, clustering, etc
- Latency
- Feedback
- Costs
 - Time and user attention

User tasks

Keller & Keller (1994)

- Identify
- Localize
- Distinguish
- Categorize
- Cluster
- Order
- Compare
- Associate
- Correlate

Keller, P. e Keller, M. *Visual Cues: Practical Data Visualization*. IEEE Computer Society Press, 1994

Shneiderman (1996)

- Overview
- "Zoom"
- Filtering
- Details on demand
- Relate
- History
- Export (data)

Shneiderman, Ben *The Eyes Have it: A Task by Data Type Taxonomy for Information Visualization*. 1996 IEEE Symposium on Visual Language, pp336-343

User tasks

- Wehrend and Lewis, 1990
- Springmeyer, 1990
- Shneiderman, 1996
- Zhou and Feiner, 1998
- Morse et al., 2000
- Amar and Stasko, 2004
- Amar et al., 2005
- Valiati et al., 2006

Low level analytical tasks

- Find value
- Filter data
- Compute value
- Find limits
- Classify/order
- Determine threshold
- Characterize distribution
- Find anomalies
- Cluster
- Correlate

Visual strategies for user tasks

 Two levels of abstraction to explain the relationship between user tasks and interaction with infovis techniques

Visual tasks

- Are characterized by two dimensions
 - Visual goals)
 - Goals that should be accomplished with the infovis technique
 - Visual implications
 - The visual actions the infovis technique implements

Visual goals & visual tasks

Visual goal and visual tasks

Why people are using vis in terms of actions and targets

High-level actions: Analyze

- Consume
 - Discover vs Present
 - classical split
 - explore vs explain
 - Enjoy
 - newcomer
 - casual, social
- Produce
 - Annotate, Record
 - Derive
 - crucial design choice

Actions: Mid-level search, low-level query

- what does user know?
 - target, location
- how much of the data matters?
 - one, some, all

	Target known	Target unknown
Location known	·.·· Lookup	••• Browse
Location unknown	⟨`@∙> Locate	₹ Explore

Why: Targets

→ Distribution

→ Extremes

→ All Data
 → Trends
 → Outliers
 → Features
 ✓ ✓
 → Attributes
 → One
 → Many

→ Dependency → Correlation → Similarity

- → Network Data

 → Topology

 → → Paths
- → Spatial Data→ Shape→ The state of the sta

Interaction

- Distinguishes infovis from static paper visualizations.
- Analysis is a process, often iterative, with branches and sideways paths.

Acceptable Response Times

- .1 second
 - Animation, visual continuity, sliders
- 1 second
 - System response, pause in conversation
- 10 seconds
 - Cognitive response

Basic Interaction Techniques

- Selecting
 - Mouse click
 - Mouseover / hover / tooltip
 - Lasso / drag
- Rearrange
 - Move
 - Sort
 - Delete

Selecting

Strategies for interactive visualization

How to exhibit large data sets?

details

zoom

O+D

F+C

transformation

How to ensure overview: by scalability

- Small datasets are easy
 - "Just show everything"
- Large datasets...
 - What to exhibit?

Strategies for scalability

- Compress information
 - Reduce size (geometric zoom)
- Reduce amount of information
 - Compress without losing data (semantic zoom)
 - Increase density

Example: SeeSoft

• 1 pixel line per line of code

Reduce the amount of data

- Example
 - Reduce # attributes
 - Reduce # items
 - Reduce range of values
- Two ways
 - Remove
 - Grouping

http://exposedata.com/parallel/

Remove= cut/ prunning

Remove items

- Remove attributes
 - Scatterplots:
 - Select 2 or 3 attributes, ignore the others
 - Spotfire:
 - Use the query to select attributes
 - · And show details on demand
- Problem: loosing information

Grouping= clustering

- Clustering (grouping many items in a one entity)
 - What to group?
 - By category (SQL "group by")
 - Spatial (TableLens)
 - · By algorithm (clustering)
 - Defined by the user ("folders")
 - What are the values associated to a group?
 - Mathematic functions (SQL "group by")
 - Counting, average, min, max
 - · Semantic abstraction
 - Grouping many levels = trees
 - · Navigation:
 - · Parallel visualizations
 - · Semantic zooming

Clustering

Advanced Interaction Techniques

- Overview + Detail (O+D)
- Focus + Context (F+C)
- Brushing and Linking
- Zoom: Panning and Zooming
- Transformation: distortion-based Views

Overview + Details

- Separate views
 - No distortion
 - Shows both overview and details simultaneously
 - Drawback: requires the viewer to consciously shift there focus of attention.

Overview

http://www.gapminder.org/

Overview

- It provides
 - Maps, spatial orientation
 - Contextual information, relationships
 - Which information is (or not) present in the display
- Detection of patterns
- Direct access
- Reduce searching process
- Enforce exploration, help to select the next move
- HCI metric improve user performance, time of learning and satisfaction

- It is the result of a cleaning data process (data that are of the scope/focus)
- It provides details about part of data
- Semantic zooming

Overview+Detail: Treemaps

Treemaps: overview + detail (time separation)

Overview+Detail: Seesoft

Spatial separation

Focus + Context

- A single view shows information in context
 - Contextual info is near to focal poin
 - Distortion may make some parts hard to interpret
 - Distortion may obscure structure in data
 - We'll have a lecture on distortion later
- Examples from Xerox PARC:
 - TableLens
 - Perspective Wall
 - Hyperbolic Tree Browser

Focus + Context: TableLens from PARC/Inxight

2) what day of the week has the most delays: least delays:

3) Can you see that United flights tended to get later and later as the day went on?

http://www.inxight.com/products/sdks/tl/ http://www.inxight.com/demos/tl_calcrisis/tl_calcrisis.html

Focus + Context (+ Distortion): Perspective Wall from PARC/Inxight

Focus + Context: Hyperbolic Tree from PARC/Inxight

Highlighting / Brushing and Linking / Dynamic Queries

- Spotfire, by Ahlberg & Shneiderman
 - http://hcil.cs.umd.edu/video/1994/1994 visualinfo.mpg
 - Now a very sophisticated product:
 - http://spotfire.tibco.com/products/gallery.cfm

Highlighting and Brushing: Parallel Coordinates by Inselberg

- Free implementation: Parvis by Ledermen
 - http://home.subnet.at/flo/mv/parvis/

Pan and Zoom

How to show a lot of information in a small space?

- Multiple Levels of Resolution
 - The view changes depending on the "distance" from the viewer to the objects
- Distortion-based techniques
 - Keep a steady overview, make some objects larger while simultaneously shrinking others

Zooming

- Standard Zooming
 - Get close in to see information in more detail
 - Example: Google earth zooming in
- Intelligent Zooming
 - Show semantically relevant information out of proportion
 - Smart speed up and slow down
 - Example: speed-dependent zooming, Igarishi & Hinkley
- Semantic Zooming
 - Zooming can be conceptual as opposed to simply reducing pixels
 - Example tool: Pad++ and Piccolo projects
 - http://hcil.cs.umd.edu/video/1998/1998 pad.mpg

Speed-dependent Zooming by Igarashi & Hinkley 2000

http://www-ui.is.s.u-tokyo.ac.jp/~takeo/video/autozoom.mov http://www-ui.is.s.utokyo.ac.jp/~takeo/java/autozoom/autozoom.htm

Standard vs. Semantic Zooming

- Geometric (standard) zooming:
 - The view depends on the physical properties of what is being viewed
- Semantic Zooming:
 - When zooming away, instead of seeing a scaled-down version of an object, see a different representation
 - The representation shown depends on the meaning to be imparted.

Examples of Semantic Zoom

- Information Maps
 - zoom into restaurant
 - see the interior
 - see what is served there
 - maybe zoom based on price instead!
 - see expensive restaurants first
 - keep zooming till you get to your price range
- Browsing an information service
 - Charge user successively higher rates for successively more detailed information

Examples of Semantic Zoom

- Infinitely scalable painting program
 - close in, see flecks of paint
 - farther away, see paint strokes
 - farther still, see the holistic impression of the painting
 - farther still, see the artist sitting at the easel

Pad++

- An infinite 2D plane
- Can get infinitely close to the surface too
- Navigate by panning and zooming
- Pan:
 - move around on the plane
- Zoom:
 - move closer to and farther from the plane
 - http://hcil.cs.umd.edu/video/1998/1998_pad.mpg

Pad++ Tour

How to Pan While Zooming?

How to Pan While Zooming?

Distortion

Mapping the information to a surface of exhibition

Mapping function

Identity function = normal overview

Bifocal

Perspective Wall / Document Lens

Contexto diminui gradualmente

Perspective

"Bubble"

Inconvenient: local context is smaller

Non linear

"Fisheye", "wide-angle lens"

Inconvenient: don't have a plain area

Summary

- Bifocal
- Perspective
- Bubble
- Wide-angle

60

Shneiderman's Taxonomy of Information Visualization Data Types

- 1-D Linear Document Lens, SeeSoft
- **2-D Map** GIS, Medical imagery
- **3-D World** CAD, Medical, Molecules, Architecture
- Multi-Dim Parallel Coordinates, Spotfire, Influence Explorer, TableLens
- **Temporal** Perspective Wall, LifeLines, Lifestreams
- **Tree** Cone/Cam/Hyperbolic, TreeBrowser, Treemap
- **Network** Netmap, netViz, Multi-trees

Shneiderman's Taxonomy of Information Visualization Tasks

- Overview: see overall patterns, trends
- Zoom: see a smaller subset of the data
- Filter: see a subset based on values, etc.
- Details on demand: see values of objects when interactively selected
- Relate: see relationships, compare values
- History: keep track of actions and insights
- Extract: mark and capture data

Shneiderman's Visualization Mantra

- Overview, zoom & filter, details on demand
- Overview, zoom & filter, details on demand