Calculating scattering coefficients from a cylinder

Artur L. Gower¹

¹ School of Mathematics, University of Manchester Oxford Road, Manchester M13 9PL, UK

November 11, 2017

Abstract

Here we derive some of the theory used in the Mathematica package MultipleScattering2D. Specifically the function ScatteringCoefficientOperator, which calculates the scattering coefficients for any source/exciting function, is given by combing equations (26,23,19) for Dirichlet boundary conditions. Similar equations are given for Neumann too.

Keywords: Multi-pole method, multiple scattering, scattering operator

1 The General Setup

For a review on multiple scattering from a finite number of obstacles see [1].

Consider a homogeneous isotropic medium that can propagate wave according to the scalar Helmholtz equation

$$(\Delta + k^2)\psi(\mathbf{r}) = 0, (1)$$

where k is real for acoustics and possibly imaginary for fluids. Let there be N scatterers, with the centre located at $\mathbf{r}_1, \mathbf{r}_1, ..., \mathbf{r}_N$. If we excite the scatterers by sending an incident wave $\psi^I(\mathbf{r})$, we can then write the total wave field $\psi(\mathbf{r}|\mathbf{r}_1, ..., \mathbf{r}_N) = \psi^I(\mathbf{r}) + \sum_{j=1}^N \psi^S(\mathbf{r}; \mathbf{r}_j | \mathbf{r}_1, ..., \mathbf{r}_N)$, where $\psi^S_j(\mathbf{r}) := \psi^S(\mathbf{r}; \mathbf{r}_j | \mathbf{r}_1, ..., \mathbf{r}_N)$ is the outward going wave* being emitted from the boundary of the j-th scatterer. The term

^{*}We are only concerned with what the scatterer is emitting, and not waves that might bounce around inside.

 r_1, \ldots, r_N indicates the dependence of ψ and ψ_j^S 's on the position of all the scatterers. Each scattered wave ψ_j^S is excited by

$$\psi_j^E(\mathbf{r}) = \psi^I(\mathbf{r}) + \sum_{i \neq j} \psi_i^S(\mathbf{r}), \tag{2}$$

which we can relate to ψ_j^S through the boundary condition on the j-th scatterer to give

$$\psi_j^S(\mathbf{r}) = \mathfrak{T}_j \left\{ \psi_j^E \right\} (\mathbf{r}), \tag{3}$$

where $\mathcal{T}_j\{\circ\}(\boldsymbol{r})$ is the linear scattering operator which acts on the whole function \circ . Directlett and Neumann boundary conditions are examples of when \mathcal{T}_j is a linear operator. By expanding ψ_j^S as in Eq.(3), then substituting ψ_j^E from Eq.(2) and then repeating the process by expanding ψ_i^S with eq.(3) again we obtain

$$\psi_j^S(\mathbf{r}) = \mathfrak{I}_j\{\psi^I\}(\mathbf{r}) + \sum_{i \neq j} \mathfrak{I}_j \circ \mathfrak{I}_i \left\{\psi^I\right\}(\mathbf{r}) + \sum_{i \neq j} \sum_{n \neq i} \mathfrak{I}_j \circ \mathfrak{I}_i \circ \mathfrak{I}_n \left\{\psi^I\right\}(\mathbf{r}) + \dots (4)$$

For two scatterers this becomes,

$$\psi_1^S(\mathbf{r}) = \mathfrak{I}_1\{\psi^I\}(\mathbf{r}) + \mathfrak{I}_1 \circ \mathfrak{I}_2\{\psi^I\}(\mathbf{r}) + \mathfrak{I}_1 \circ \mathfrak{I}_2 \circ \mathfrak{I}_1\{\psi^I\}(\mathbf{r}) + \dots$$
 (5)

If on the other hand we stopped expanding the series at

$$\psi_1^S(\mathbf{r}) = \mathfrak{I}_1 \left\{ \psi^I \right\} (\mathbf{r}) + \mathfrak{I}_1 \left\{ \psi_2^S \right\} (\mathbf{r}),$$

$$\psi_2^S(\mathbf{r}) = \mathfrak{I}_2 \left\{ \psi^I \right\} (\mathbf{r}) + \mathfrak{I}_2 \left\{ \psi_1^S \right\} (\mathbf{r}).$$
 (6)

If we could expand each ψ_i^S into a general outgoing wave

$$\psi_j^S(\mathbf{r}) = \sum_{n=-\infty}^{\infty} s_{jn} \mathcal{C}_n(r) \mathcal{A}_n(\theta, \phi),$$

then we could solve for the coefficients s_{jn} by substituting into Eqs.(6).

2 Cylindrical Scatterers

The outgoing wave from a scatterer at r_j be expanded as

$$\psi^{S_j}(\mathbf{r}) = \sum_{n=-\infty}^{\infty} a_{jn} H_n(k \|\mathbf{r} - \mathbf{r}_j\|) e^{in\alpha_j},$$
 (7)

where $H_n := H_n^{(1)}$ is a Hankel function of the first kind and α_j is the angle between $\mathbf{r} - \mathbf{r}_j$ and the x-axis.

We can expand the outgoing waves (7) by using Graf's addition theorem[†]:

$$\mathcal{C}_{\nu}(k\|\boldsymbol{r}-\boldsymbol{r}_{1}\|)e^{\mathrm{i}\nu(\alpha_{1}-\theta_{12})} = \sum_{m=-\infty}^{\infty} \mathcal{C}_{\nu+m}(k\|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\|)J_{m}(k\|\boldsymbol{r}-\boldsymbol{r}_{2}\|)e^{\mathrm{i}m(\pi+\theta_{12}-\alpha_{2})}, (8)$$

provided $\|\boldsymbol{r}-\boldsymbol{r}_2\| < \|\boldsymbol{r}_1-\boldsymbol{r}_2\|$, where θ_{12} and α_2 are respectively the angular cylindrical coordinate of $\boldsymbol{r}_1-\boldsymbol{r}_2$ and $\boldsymbol{r}-\boldsymbol{r}_2$. In the addition theorem \mathcal{C}_{ν} can be substituted with any of the Bessel functions $J_{\nu}, Y_{\nu}, H_{\nu}^{(1)}$ and $H_{\nu}^{(2)}$, or linear combinations of them

Using Eq.(8) we write ψ^{S_j} in terms of an origin centered at the *i*-th scatterer by substituting

$$H_n(k||\boldsymbol{r}-\boldsymbol{r}_j||)e^{in\alpha_j} = \sum_{m=-\infty}^{\infty} H_{n-m}(k||\boldsymbol{r}_j-\boldsymbol{r}_i||)J_m(k||\boldsymbol{r}-\boldsymbol{r}_i||)e^{im\alpha_i+i(n-m)\theta_{ij}},$$

into the ψ^{S_j} to arrive at

$$\psi^{S_j}(\boldsymbol{r}) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} a_{jn} H_{n-m}(k \|\boldsymbol{r}_j - \boldsymbol{r}_i\|) J_m(k \|\boldsymbol{r} - \boldsymbol{r}_i\|) e^{\mathrm{i}m\alpha_i + \mathrm{i}(n-m)\theta_{ij}}.$$
 (9)

In Section 2.1 we derive some explicit forms for the scattering operator \mathcal{T} , given by Eqs.(26) and (27). Assuming that the scatterers are small compared with the wavelength $kr_S \ll 1$, where r_S is the radius of the scatterer, then the most general form for outgoing waves from the j-th scatterer is

$$\psi^{S_j}(\boldsymbol{r}) = a_j H_0(k \|\boldsymbol{r} - \boldsymbol{r}_j\|) + (c_j \cos(\boldsymbol{r} - \boldsymbol{r}_j) + s_j \sin(\boldsymbol{r} - \boldsymbol{r}_j)) H_1(k \|\boldsymbol{r} - \boldsymbol{r}_j\|), \quad (10)$$

with $c_j = s_j = 0$ for Dirichlet boundary conditions, where $\cos(\mathbf{r} - \mathbf{r}_j) = \cos \vartheta$ and ϑ is the angle between $\mathbf{r} - \mathbf{r}_j$ and the x-axis. In which case, using the results in Section 2.1, the scattering operator for Neumann boundary conditions can be written as

$$\mathfrak{I}_{j}: \psi^{E}(r,\theta) \to \frac{\mathrm{i}\pi r_{S}^{2}}{4} (\psi_{\boldsymbol{r}_{j},xx}^{E} + \psi_{\boldsymbol{r}_{j},yy}^{E}) H_{0}(k \|\boldsymbol{r} - \boldsymbol{r}_{j}\|)
+ \frac{i\pi r_{S}^{2}}{2} k (\psi_{\boldsymbol{r}_{j},x}^{E} \cos(\boldsymbol{r} - \boldsymbol{r}_{j}) + \psi_{\boldsymbol{r}_{j},y}^{E} \sin(\boldsymbol{r} - \boldsymbol{r}_{j})) H_{1}(k \|\boldsymbol{r} - \boldsymbol{r}_{j}\|), \quad (11)$$

accurate up to order r_S^3 in the scatterer radius r_S , where the subscript \mathbf{r}_j on $\psi_{\mathbf{r}_j}^E$ means that ψ^E and its derivatives are evaluated at $\mathbf{r} = \mathbf{r}_j$ after differentiation. This

 $^{^{\}dagger}\mathrm{I}$ double checked this with both http://dlmf.nist.gov/10.23 and http://www.wikiwaves.org/Graf's_Addition_Theorem.

implies that to solve Eqns. (6) for every \boldsymbol{r} we need to equate the coefficients of $H_0(k\|\boldsymbol{r}-\boldsymbol{r}_j\|)$, $\cos(\boldsymbol{r}-\boldsymbol{r}_j)H_1(k\|\boldsymbol{r}-\boldsymbol{r}_j\|)$ and $\sin(\boldsymbol{r}-\boldsymbol{r}_j)H_1(k\|\boldsymbol{r}-\boldsymbol{r}_j\|)$ each to be zero, from which we get

$$a_{i} = \frac{i\pi r_{S}^{2}}{4} (\psi_{\mathbf{r}_{i},xx}^{I} + \psi_{\mathbf{r}_{i},yy}^{I} + \psi_{\mathbf{r}_{i},xx}^{S_{j}} + \psi_{\mathbf{r}_{i},yy}^{S_{j}}), \tag{12}$$

$$c_i = \frac{i\pi r_S^2}{2} k(\psi_{r_i,x}^I + \psi_{r_i,x}^{S_j}), \quad s_i = \frac{i\pi r_S^2}{2} k(\psi_{r_i,y}^I + \psi_{r_i,y}^{S_j}). \tag{13}$$

To simplify we choose, without loss of generality, $x_2 = x_1$ and $-y_1 = y_2 = Y/2$ which we use to reduce Eqns. (6) to

$$\frac{k^2}{2}(H_0 - H_2)a_1 + \frac{k^2}{4}(3H_1 - H_3)s_1 - \frac{4i}{\pi r_S^2}a_2 = \psi_{r_2,xx}^I + \psi_{r_2,yy}^I, \tag{14}$$

$$\frac{H_1}{Y}c_1 + \frac{2i}{\pi k r_S^2}c_2 = -\psi_{r_2,x}^I, \quad kH_1a_1 - \frac{2i}{\pi k r_S^2}s_2 - \frac{k}{2}(H_0 - H_2)s_1 = \psi_{r_2,y}^I$$
 (15)

where the Hankel functions H_0 , H_1 , H_2 and H_3 are evaluated at kY, with $Y = \|\mathbf{r}_1 - \mathbf{r}_2\|$, and to reach the above equations we have used some recurrence relations to calculate the derivatives of H_0 and H_1 .

Apply \mathcal{T}_1 on ψ_2^S with the centre of scatterer 1 as the origin we get

$$\mathfrak{I}_1 \psi_2^S(\mathbf{r}) = a_2 H_0(k \|\mathbf{r} - \mathbf{r}_2\|) + (c_2 \cos(\mathbf{r} - \mathbf{r}_2) + s_2 \sin(\mathbf{r} - \mathbf{r}_2)) H_1(k \|\mathbf{r} - \mathbf{r}_2\|), (16)$$

The following formulas will be useful, for $f(\|\mathbf{r} - \mathbf{r}_j\|)$ we have

$$f_{,x}(kr_j) = \frac{kx_j}{r_j} f'(kr_j), \quad f_{,y}(kr_j) = \frac{ky_j}{r_j} f'(kr_j),$$
 (17)

$$f_{,yy}(kr_j) + f_{,xx}(kr_j) = \frac{k}{r_j} f'(kr_j) + k^2 f''(kr_j).$$
(18)

2.1 Boundary conditions and point scatterers

Here we develop expressions for the scattering operator \mathcal{T} and establish how point scatterers behave for different boundary conditions. Given an incident wave ψ^E and outgoing cylindrical wave $\psi^S = a_n H_n(kr) e^{in\theta}$, together $\psi^E + \psi^S$ must satisfy the boundary condition on the cylinder with radius $r = r_S$. To simplify we choose the origin of our coordinate system to be the centre of the scatterer and will use $\bar{r} := rk$.

For a Dirichlet boundary conditions we have

$$\psi^{E}(\bar{r}_{S},\theta) + \psi^{S}(\bar{r}_{S},\theta) = 0 \quad \text{for } 0 \le \theta < 2\pi \implies a_{n} = -\frac{H_{n}(\bar{r}_{S})^{-1}}{2\pi} \int_{0}^{2\pi} \psi^{E}(\bar{r}_{S},\theta) e^{-in\theta} d\theta,$$
(19)

noting that $e^{in\theta}$ forms a complete basis for functions on $\theta \in [0, 2\pi]$. For a Neumann boundary conditions we have

$$\frac{\partial \psi^E}{\partial \bar{r}}(\bar{r}_S, \theta) + \frac{\partial \psi^S}{\partial \bar{r}}(\bar{r}_S, \theta) = 0 \quad \text{for } 0 \le \theta < 2\pi \implies (20)$$

$$a_n = -\frac{\partial_{\bar{r}} H_n(\bar{r}_S)^{-1}}{2\pi} \int_0^{2\pi} \partial_{\bar{r}} \psi^E(\bar{r}_S, \theta) e^{-in\theta} d\theta, \qquad (21)$$

Our main interest is to model point scatterers for which $\bar{r}_S \to 0$. In this limit the incident wave should converge in an open ball to its Taylor series at r_S (as the wave field should be perfectly smooth), so we can write

$$\psi^{E}(\bar{r}_{S}, \vartheta) = \sum_{k=0}^{\infty} \sum_{m=0}^{p} \frac{\partial^{p} \psi_{0}^{E}}{\partial_{x}^{m} \partial_{y}^{p-m}} \frac{r_{S}^{p} (\cos \vartheta)^{m} (\sin \vartheta)^{p-m}}{m! (p-m)!}$$

$$= \sum_{p=0}^{\infty} \sum_{m=0}^{p} \frac{\partial^{p} \psi_{0}^{E}}{\partial_{x}^{m} \partial_{y}^{p-m}} \frac{r_{S}^{p}}{m! (p-m)!} \sum_{m_{1}=0}^{m} \sum_{p_{1}=0}^{p-m} \frac{e^{i(p-2m_{1}-2p_{1})\vartheta}}{(-1)^{p_{1}} 2^{p_{1}p-m}} {m \choose m_{1}} {p-m \choose p_{1}}, \quad (22)$$

where the subscript 0 on ψ_0^E and its derivatives means that the expression was evaluated at x = y = 0 after differentiation. When substituting this expression into the integral in Eq.(19), only terms with $p - 2m_1 - 2p_1 = n$ will have a non-zero contribution, because every other term after multiplying with $e^{-in\vartheta}$ and integrating in ϑ over 0 to 2π will be zero. Likewise, only terms with $p - 2m_1 - 2p_1 = n$ will have a non-zero contribution to Eq.(21). So letting $p_1 = j - n/2 - m_1$ and p = 2j, so that $p - 2m_1 - 2p_1 = n$, and integrating over ϑ we conclude that

$$\mathcal{P}_{n}\{\psi^{E}\} = \frac{1}{2\pi} \int_{0}^{2\pi} \psi^{E}(\bar{r}_{s}, \vartheta) e^{-in\vartheta} d\vartheta = \sum_{j=|n|/2}^{\infty} \left(\frac{r_{S}}{2}\right)^{2j} \sum_{m=0}^{2j} \frac{\partial^{2j} \psi_{0}^{E}}{\partial_{x}^{m} \partial_{y}^{2j-m}} \frac{i^{m-2j} C_{n,j}^{m}}{m!(2j-m)!},$$
(23)

where

$$C_{n,j}^{m} = \sum_{m_1 = \max\{0, m-j-n/2\}}^{\min\{m, j-n/2\}} (-1)^{-n/2+j-m_1} {m \choose m_1} {2j-m \choose j-n/2-m_1}, \qquad (24)$$

where j (same as all the dummy indexes) increases in increments of 1, and as p_1 was substituted for $j-n/2-m_1$, then from $0 \le p_1 \le p-m$ we conclude that $m_1 \le j-n/2$ and $-j-n/2+m \le m_1$, which combined with the restriction $0 \le m_1 \le m$ implies that max $\{0, m-j-n/2\} \le m_1 \le \min\{m, j-n/2\}$.

For the Neumann boundary condition we need

$$\frac{1}{2\pi} \int_0^{2\pi} \partial_{\bar{r}} \psi^E(\bar{r}_s, \vartheta) e^{-in\vartheta} d\vartheta = k^{-1} \partial_{r_s} \mathcal{P}_n \{ \psi^E \}.$$
 (25)

The terms (23) suggest that the series of the scattering operators converge absolutely if $r_S \leq 2$, assuming the derivatives of ψ^E are uniformly bounded for every n and $\bar{r} > \bar{r}_S$ and $k > \delta > 0$ (as w^E will often have a singularity at k = 0). So for $r_S \leq 2$ we can truncate the series (23) at $j = N_j/2$ for every n, which we denote by $\mathcal{P}_n^{N_j} := \mathcal{P}_n + \mathcal{O}(r_s^{N_j+2})$.

Eq. (23) together with Eq. (19) imply that the scattering operator becomes

$$\mathfrak{I}: \psi^{E}(\bar{r}, \theta) \to \psi^{S}(\bar{r}, \theta) = -\sum_{n=-\infty}^{\infty} \frac{H_{n}(\bar{r})}{H_{n}(\bar{r}_{S})} \mathcal{P}_{n}\{\psi^{E}\} e^{in\theta}, \tag{26}$$

which is indeed linear in ψ^E . Similarly for the Neumann boundary condition the scattering operator becomes

$$\mathfrak{I}: \psi^{E}(\bar{r}, \theta) \to \psi^{S}(\bar{r}, \theta) = -\sum_{n=-\infty}^{\infty} \frac{H_{n}(\bar{r})}{\partial_{\bar{r}} H_{n}(\bar{r}_{S})} k^{-1} \partial_{r_{S}} \mathcal{P}_{n} \{\psi^{E}\} e^{in\theta}, \tag{27}$$

which is also linear in ψ^E .

To examine the limit where the particles radius r_S is small in comparison to the wavelength $kr_S \to 0$, we first note that

$$\frac{H_n(\bar{r})}{H_n(\bar{r}_S)} = H_n(\bar{r}) \begin{cases} \frac{i\pi(kr_S)^n}{2^n(n-1)!} + \mathcal{O}(kr_S)^{n+2}, & n > 0, \\ \frac{\pi}{\pi + 2i(\gamma_0 + \log(kr_S/2))} + \mathcal{O}(kr_S)^2, & n = 0, \end{cases}$$
(28)

and

$$\frac{H_n(\bar{r})}{\partial_{\bar{r}_S} H_n(\bar{r}_S)} = H_n(\bar{r}) \left\{ \begin{array}{ll} -\frac{\pi i (kr_S)^{n+1}}{2^n n!} + \mathcal{O}(kr_S)^{n+3}, & n > 0, \\ -\frac{\pi i}{2} kr_S + \mathcal{O}(kr_S)^3, & n = 0, \end{array} \right.$$
(29)

here $\gamma_0 = 0.5772$, the term $H_n(\bar{r})$ has not been asymptotically expanded as \bar{r} can be of any size, and note that for n < 0 we have $H_n(\bar{r}_S) = (-1)^n H_{|n|}(\bar{r}_S)$. So, for example, if we want to asymptotically expand the scattered wave w^S up too $\mathcal{O}(\bar{r}_S^2)$ for the Dirchlett boundary condition, we need to expand

$$\psi^{S}(\bar{r},\theta) = -\frac{H_{1}(\bar{r})}{H_{1}(\bar{r}_{S})} \mathcal{P}_{-1}\{\psi^{E}\} e^{-i\theta} - \frac{H_{0}(\bar{r})}{H_{0}(\bar{r}_{S})} \mathcal{P}_{0}\{\psi^{E}\} - \frac{H_{1}(\bar{r})}{H_{1}(\bar{r}_{S})} \mathcal{P}_{1}\{\psi^{E}\} e^{i\theta} + \mathcal{O}(\bar{r}_{S}^{2})$$
(30)

$$= -H_0(kr) \frac{\pi \psi_0^E}{2i \log(\bar{r}_S/2) + \pi + 2i\gamma_0} + \mathcal{O}(\bar{r}_S^2), \tag{31}$$

while to expand w^S up too $\mathcal{O}(\bar{r}_S^3)$ for the Neumann boundary condition, we need

$$\psi^{S}(\bar{r},\theta) = -\frac{k^{-1}H_{1}(\bar{r})}{\partial_{\bar{r}}H_{1}(\bar{r}_{S})}\partial_{r_{S}}\mathcal{P}_{1}\{\psi^{E}\}e^{i\theta} - \frac{k^{-1}H_{0}(\bar{r})}{\partial_{\bar{r}}H_{0}(\bar{r}_{S})}\partial_{r_{S}}\mathcal{P}_{0}\{\psi^{E}\}$$

$$-\frac{k^{-1}H_{1}(\bar{r})}{\partial_{\bar{r}}H_{1}(\bar{r}_{S})}\partial_{r_{S}}\mathcal{P}_{-1}\{\psi^{E}\}e^{-i\theta} + \mathcal{O}(\bar{r}_{S}^{3})$$

$$= \frac{i\pi r_{S}^{2}}{2}k(\partial_{x}\psi_{0}^{E}\cos\theta + \partial_{y}\psi_{0}^{E}\sin\theta)H_{1}(kr)$$

$$+\frac{i\pi r_{S}^{2}}{4}(\partial_{x}^{2}\psi_{0}^{E} + \partial_{y}^{2}\psi_{0}^{E})H_{0}(kr) + \mathcal{O}(\bar{r}_{S}^{3}). \tag{32}$$

If we are interested in lower frequencies for k, then we must be careful with the dependence that ψ^E has on the wavenumber k. In general ψ^E will be a sum of terms of the form

$$\psi_q^E = H_q(k||\boldsymbol{r} - \boldsymbol{r}_E||)e^{iq\arctan(\boldsymbol{r} - \boldsymbol{r}_E)}, \tag{33}$$

where $\arctan(x,y) = \arctan(y/x)$, \boldsymbol{r}_E is a constant vector, c_q is determined by boundary conditions and we assume they are uniformly bounded for every k. If we are to approximate $\mathcal{P}_n\{\psi_q^E\}(k\partial_{r_S}\mathcal{P}_n\{\psi_q^E\})$ up too $\mathcal{O}(r_s^{N_j+2})(\mathcal{O}(r_s^{N_j+1}))$ by truncating at $j = N_j/2$, then we should investigate the term left out $j = N_j/2 + 1$. Using (33) and expanding the term $j = N_j/2 + 1$ in $\mathcal{P}_n\{\psi_q^E\}$ in a series of powers of k, the lowest order term will be

$$\mathcal{P}_n\{\psi_q^E\} - \mathcal{P}_n^{N_j}\{\psi_q^E\} = k^{-|q|} r_S^{N_j+2} \mathcal{O}(1) + \mathcal{O}(r_S^{N_j+2} k^{2-|q|}), \tag{34}$$

which is multiplied with Eq. (28) to get the scattering operator. For the Neumann boundary condition,

$$k^{-1} \left(\partial_{r_S} \mathcal{P}_n \{ \psi_q^E \} - \partial_{r_S} \mathcal{P}_n^{N_j} \{ \psi_q^E \} \right) = k^{-q-1} r_S^{N_j+1} \mathcal{O}(1) + \mathcal{O}(r_S^{N_j+1}) \mathcal{O}(k^{1-q}), \tag{35}$$

which is multiplied with Eq. (29).

References

[1] Martin, Paul A. Multiple scattering: interaction of time-harmonic waves with N obstacles. Vol. 107. Cambridge University Press, 2006.