DP(Disease Prediction)

1. 프로젝트 개요

1-1. 프로젝트 목적

단백질 간 관계, 유전자 정보, 단백질 구조 등 다양한 생물학 데이터를 통합 분석하여 질병을 예측할 수 있다. 즉, 단백질의 생물학적 정보를 기반으로, 입력받은 단백질이 어떤 질병과 연관되어 있는지 예측하는 시스템이다.

1-2. 네트워크 연결망을 사용하지 않고, 왜 GCN을 사용하는가?

기존의 질병 예측 시스템에서 사용되는 전통적인 네트워크 연결망 기반 분석 방법은 주로 단백질 간의 연결 (PPI), 유전자-질병 매핑 등을 기반으로 **정적 연결망(graph)** 을 구성 같은 방식으로 구성된다.

그래프 상에서 연결 강도(combined score 등)를 기준으로 이웃 탐색 또는 전파 기반 예측 수행할 수 있다. 주로 rule-based, random walk, 또는 통계적 네트워크 분석 방법 사용될 정도로 전통적이다. 그러나 이러한 전통적인 연결망 방식은 다음과 같은 한계를 가진다:

- 이웃 정보에만 의존하는 한계: 네트워크 상에서 직접적으로 연결된 이웃의 정보에만 의존하여 예측하기 때문에, 간접적이고 복잡한 관계(2-hop 이상) 는 잘 반영되지 않는다.
- **피처 정보의 결합이 어려움**: 단백질의 서열, 구조, 기능(GO term)과 같은 복잡한 속성 데이터를 네트워크 구조와 함께 통합적으로 학습하기 어렵다.
- **노이즈에 취약하고 일반화가 어려움**: 연결망에서의 한두 개의 잘못된 엣지나 결손된 정보가 전체 예측 성능에 영향을 줄 수 있으며, 데이터가 희소할수록 정확도 저하가 심각하다.

GCN(Graph Convolutional Network)은 그래프 구조를 학습에 직접 활용하는 딥러닝 모델로, 다음과 같은 방식으로 위의 단점을 극복한다:

전통 연결망의 한계	GCN의 해결 방식
직접 연결에만 의존	GCN은 k-layer를 통해 다중 hop 이웃의 정보를 자연스럽게 통합하여 간접적 관계도 반영
속성(feature) 통합 어 려움	단백질 서열, 기능 정보 등 노드 feature를 함께 학습하며 관계와 특성의 통합적 표현 가능
노이즈 및 데이터 결손 에 취약	학습된 노드 임베딩은 구조와 속성 모두를 반영하므로, 일부 연결이 누락되어도 강건한 예측 가능
지식 기반 의존	GCN은 데이터 기반 자동 학습 모델로, 사전에 설계된 룰 없이도 관계를 스스로 학습함

따라서 본 프로젝트는 단순한 네트워크 탐색 기반 접근이 아닌, GCN을 활용한 학습 기반 예측 방식을 채택함으로써 다음과 같은 장점을 확보한다:

- 단백질 간 복잡한 상호작용 및 질병 연관성의 깊이 있는 이해
- 다중 데이터(구조, 기능, 연관성 등)를 통합한 효율적인 표현 학습
- 기존 방식 대비 일반화 가능성과 확장성이 높은 질병 예측 시스템 설계 가능

GCN은 단순한 연결 유무가 아닌, **"누가 누구와 어떻게 연결되어 있으며, 어떤 생물학적 특성을 가지는가?"** 를 동시에 학습하여, 더 정밀하고 신뢰도 높은 질병 예측을 가능하게 한다.

2. 프로젝트 구조 요약

2-1. 사용자 INPUT

본 시스템은 단백질 기반 질병 예측을 목표로 하며, 사용자는 예측하고자 하는 단백질 정보를 입력으로 제공하게 된다. 입력 정보는 다음과 같은 형태로 제공된다:

항목 	설명
Protein ID or Name	Protein ID (예: 9606 . ENSP00000346839), UniProt ID, 또는 단백질 이름
Input Type(선택)	미지의 단백질 또는 기존에 알려진 단백질 여부 (선택적)
Feature Option (선택)	기능, 구조, GO term 등 포함 여부 (향후 확장 가능)

시스템은 입력된 단백질 ID 또는 이름을 내부 단백질 식별자(Protein ID 또는 UniProt ID)로 변환한 뒤, 해당 단백질의 임베딩 벡터를 생성하고, 학습된 모델을 통해 관련 질병 예측 결과를 도출한다.

2-2. 모델 OUTPUT

모델은 입력된 단백질에 대해, 관련 질병 및 관련 단백질을 예측하고, 기능적 정보를 함께 제공한다. 예측 결과 는 다음과 같은 항목으로 구성된다:

항목 	설명	
related_diseases	해당 단백질과 연관될 가능성이 높은 질병 리스트 및 score	
related_proteins	PPI 기반으로 유사성이 높은 단백질 리스트 및 유사도 점수	
functional_annotation	า 단백질의 기능 요약 텍스트 (GO term, 구조 정보 포함)	
network_graph	질병 및 단백질을 포함한 시각화용 그래프 데이터 (nodes, edges)	

모델은 위 정보를 바탕으로 질병 예측 결과를 사용자에게 텍스트 및 시각화 형태로 제공할 수 있도록 구성된다.

3. GCN 모델 학습 계획

3-1. GCN 학습에 사용될 데이터 Feature(수정 될 수 있음)

○ 기본 형태

아래는 질병 예측을 위한 GCN 학습에 사용되는 주요 데이터 컬럼이며, 단백질-질병-유전자 간의 관계 및 단백질 기능 정보를 통합하여 feature로 활용된다.

컬럼명 	설명	기능 / 용도
Disease ID	질병 고유 ID (예: DOID_0050156)	분석 기준이 되는 질병 식별자

컬럼명	설명	기능 / 용도
Disease Name	질병 이름 (예: breast cancer)	결과 해석 및 시각화 시 사용
Gene ID	유전자 식별 번호 (NCBI 기준)	병합 키로 사용됨
UniProt_ID	단백질 고유 ID (UniProt 기준)	단백질 식별자
GO_Terms	단백질의 기능 분류 정보 (Gene Ontology)	기능 기반 분석에 활용
PDB_IDs	단백질 구조 ID (Protein Data Bank)	구조 기반 연구 시 / 질병 예측 활 용
PubMed_IDs	관련 논문 ID	참고 문헌 추적 가능
Protein_ID_Formatted	9606. 접두어가 붙은 단백질 ID	PPI 병합 시 사용되는 표준 포맷
protein1, protein2	상호작용하는 단백질 쌍	PPI 네트워크 연결 정보
combined_score	단백질 간 상호작용 강도 (0~1000)	상호작용 신뢰도 기준

♦ UniProt 메타데이터 컬럼 설명

아래 컬럼들은 UniProt 데이터베이스에서 제공하는 **기본 생물학적 정보**로, 단백질의 기능, 서열, 존재 근거 등을 포함한다. 본 프로젝트에서는 GCN 모델 학습을 위한 feature로 활용되며, 예측 결과의 생물학적 해석에도 사용된다.

컬럼명 -	설명	용도
entryId	UniProt 내부 entry ID	고유 식별자
gene_x	유전자 이름 (from UniProt)	분석에 사용되는 유전자명
geneSynonyms	유전자 별칭들	보조 검색 키
isReferenceProteome	기준 단백질 여부 (True/False)	표준 단백질 여부 확인
isReviewed	리뷰 여부 (Swiss-Prot vs TrEMBL)	데이터 신뢰도 판단
sequenceChecksum	시퀀스 무결성 검사용 코드	데이터 검증
sequenceVersionDate	시퀀스 버전이 갱신된 날짜	버전 추적
uniprotAccession	공식 단백질 Accession ID	고유 단백질을 추적 가능
uniprotId	단백질 이름 ID	uniprot DB에서 고유 식별 번호
uniprotDescription	단백질 기능 설명	분석에 사용 가능한 설명
taxId	생물종 ID (9606 = 인간)	종 분류
organismScientificName	생물학적 학명	Homo sapiens
globalMetricValue	글로벌 통계 수치	분석 또는 품질 관련 지표
uniprotStart, uniprotEnd	단백질 시퀀스의 일부분 위치	위치 기반 기능 연구 가능

컬럼명	설명	용도
uniprotSequence	단백질 아미노산 서열	생물학적 분석의 핵심
modelCreatedDate	이 데이터가 만들어진 날짜	데이터 생성 시점 추적
organismCommonNames	종의 일반 이름 (human)	종 구분 가능능
proteinFullNames	단백질 전체 이름	설명적 이름
latestVersion, allVersions	최신 및 전체 버전 기록	변경 이력 파악
isAMdata	Additional metadata 포함 여부	추가 분석용
organismScientificNameT	종 학명 (변형 또는 반복)	구조상 중복 필드 가능성
version	내부 DB 버전	시스템용
proteinShortNames	단백질 약칭	간단한 이름 사용 시
uniprotAccession_unchar	미지의 단백질 ID	기능 발견 전 데이터 가능성
entry_name	UniProt entry 이름	주로 유전자 기반 명칭
protein_name	단백질 이름 (일반적 표현)	단백질 이름름
organism	종 이름 (일반 표현)	Human
tax_id	종 ID (중복 필드 가능)	taxId와 유사
gene_y	유전자 이름 (병합된 또 다른 필드)	gene_x와 동일 가능
protein_existence	단백질 존재 근거 (1~5 등급)	신뢰도 판단
sequence_version	시퀀스 버전 정보	변경 이력 추적용
sequence	아미노산 서열 정보	단백질 기능 예측의 핵심