```
# importing necessary libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline

# reading dataset
data = pd.read_csv('/content/Brest cancer.csv')

#reading first five rows from our dataset
data.head()
```

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_m
	0 842302	М	17.99	10.38	122.80	1001.0	0.11
	1 842517	М	20.57	17.77	132.90	1326.0	0.08
	2 84300903	М	19.69	21.25	130.00	1203.0	0.10
Savin	n		11.42	20.38	77.58	386.1	0.14
Saviii	y		20.29	14.34	135.10	1297.0	0.10

5 rows × 32 columns


```
# finding the columns/features in our dataset
data.columns
```

```
\label{prop:linear_state} \mbox{\tt \#finding the length of the features dataset} \\ \mbox{\tt len(data.columns)}
```

32

found 32 columns in our dataset

```
#shape of the dataset
data.shape

(569, 32)
```

findings: Here we have 569 rows and 32 columns in out dataset

```
data.isnull().sum()

id 0
diagnosis 0
radius_mean 0
texture_mean 0
perimeter_mean 0
area_mean 0
smoothness_mean 0
```

```
{\tt compactness\_mean}
concavity_mean
concave points_mean
symmetry_mean
fractal_dimension_mean
radius_se
texture_se
perimeter_se
area_se
smoothness_se
compactness_se
concavity_se
concave points_se
symmetry_se
fractal_dimension_se
radius_worst
texture_worst
perimeter_worst
area_worst
smoothness_worst
compactness_worst
concavity_worst
concave points_worst
symmetry_worst
                           0
fractal_dimension_worst
dtype: int64
```

data.info()

```
<class 'pandas.core.frame.DataFrame'>
Saving...
                                                                                   on-Null Count Dtype
                                                                                                                       int64
         0
                  id
                                                                                569 non-null
                   diagnosis
                                                                                569 non-null
                                                                                                                       object
                    radius mean
                                                                                569 non-null
                                                                                                                       float64
                                                                               569 non-null
                                                                                                                       float64
          3
                    texture_mean
                   perimeter_mean
                                                                               569 non-null
                                                                                                                       float64
                                                                                569 non-null
                                                                                                                       float64
                    area_mean
                    smoothness_mean
                                                                               569 non-null
                                                                                                                       float64
                                                                               569 non-null
                                                                                                                       float64
          7
                    compactness_mean
          8
                    concavity_mean
                                                                               569 non-null
                                                                                                                       float64
                    concave points mean
                                                                               569 non-null
                                                                                                                       float64
                                                                               569 non-null
                                                                                                                       float64
          10 symmetry_mean
          11 fractal_dimension_mean 569 non-null
                                                                                                                       float64
                 radius_se
                                                                               569 non-null
                                                                                                                       float64
          13
                  texture_se
                                                                               569 non-null
                                                                                                                       float64
                                                                               569 non-null
                                                                                                                       float64
          14 perimeter_se
          15 area_se
                                                                               569 non-null
                                                                                                                       float64
                    smoothness se
                                                                               569 non-null
                                                                                                                       float64
          16
                                                                               569 non-null
                   compactness_se
                                                                                                                       float64
          17
          18
                    concavity_se
                                                                              569 non-null
                                                                                                                       float64
                    concave points_se
                                                                               569 non-null
                                                                                                                       float64
                                                                               569 non-null
                                                                                                                       float64
          20
                    symmetry_se
          21 fractal_dimension_se 569 non-null
                                                                                                                       float64
                    radius_worst
                                                                               569 non-null
                                                                                                                       float64
                                                                               569 non-null
                                                                                                                       float64
          23 texture worst
          24 perimeter_worst
                                                                               569 non-null
                                                                                                                       float64
          25
                    area_worst
                                                                               569 non-null
                                                                                                                       float64
                   concavity_worst 509 non-null 569 non-null 56
          26 smoothness_worst
                                                                                                                       float64
                                                                                                                       float64
          27
          28 concavity_worst
                                                                                                                       float64
          29 concave points_worst
                                                                               569 non-null
                                                                                                                       float64
          30 symmetry_worst
                                                                                569 non-null
                                                                                                                       float64
          31 fractal_dimension_worst 569 non-null
                                                                                                                       float64
        dtypes: float64(30), int64(1), object(1)
        memory usage: 142.4+ KB
```

data.describe()

ints_me	cavity_mean	compactness_mean	smoothness_mean	area_mean	perimeter_mean	texture_mean	radius_mean	id			
569.0000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	5.690000e+02	count		
0.0489	0.088799	0.104341	0.096360	654.889104	91.969033	19.289649	14.127292	3.037183e+07	mean		
0.0388	0.079720	0.052813	0.014064	351.914129	24.298981	4.301036	3.524049	1.250206e+08	std		
0.0000	0.000000	0.019380	0.052630	143.500000	43.790000	9.710000	6.981000	8.670000e+03	min		
0.0203	0.029560	0.064920	0.086370	420.300000	75.170000	16.170000	11.700000	8.692180e+05	25%		
	<pre>data = data.drop('id',axis=1)</pre>										
N N74N	N 13N7NN	N 13N4NN	0 105300	782 700000	104 100000	21 ጸበበበበበ	15 780000	8 813129e+06	75%		
0 0 0 0	569.000000 0.088799 0.079720 0.000000 0.029560	0.104341 0.052813 0.019380 0.064920	0.096360 0.014064 0.052630 0.086370	654.889104 351.914129 143.500000 420.300000	91.969033 24.298981 43.790000 75.170000	19.289649 4.301036 9.710000 16.170000	14.127292 3.524049 6.981000 11.700000 s=1)	3.037183e+07 1.250206e+08 8.670000e+03 8.692180e+05 .drop('id',axi	mean std min 25% data = data		

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	symm
0	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	
1	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	
2	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	
3	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	
4	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	

data['diagnosis'].value_counts()

B 357

4

M 212

Name: diagnosis, dtype: int64

#graphical representation of diagnosis
sns.countplot(data['diagnosis'], label = 'count')

<matplotlib.axes._subplots.AxesSubplot at 0x7f0cebb28880>

 $\hbox{\tt\#importing label encoder for converting the categorical variables in to numerical variables} \\ from sklearn.preprocessing import LabelEncoder$

le = LabelEncoder()

le_diagnosis = le.fit_transform(data.iloc[:,0].values)

data.iloc[:,0].values

```
'B',
                            'M',
                                 'M',
                                       'B',
                                            'B',
                 'B',
                                                  'B',
                                                       'M',
                                                             'M',
                                                                   'B',
                                                                        'B', 'B',
            'B',
                      'B',
                            'B',
                                 'M',
                                                  'B',
                                                                              'B',
                 'M',
                                       'B',
                                            'Β',
                                                        'B',
                                                             'B',
                                                                   'B',
                                                                        'Β',
                                  'M',
                                                  'B',
                                                             'M',
                            'B',
                                       'M',
                                                       'B',
                                             'B',
                'M',
                      'M',
                                 'M',
                                       'M',
                                            'B',
                                                       'M',
                                                             'B',
                                                                        'M',
                            'B',
                                                  'B',
                                                                   'B',
            'B',
                                                                              'B'
                'B',
                            'M',
                                                             'B',
                      'B',
                                 'Β',
                                                                   'B',
                                                                        'B',
                                       'B',
                                             'B',
                                                  'B'
                                                        'B',
                                                                              'B'
                      'B',
                                 'B',
                                       'M',
                                            'M',
                                                  'B',
                                                             'B',
                            'B',
                                                       'M',
                                                  'B',
                      'M',
                            'M',
                                 'B',
                                       'B',
                                            'B',
                                                             'B',
                                                                   'B',
            'B',
                 'B',
                                                        'M',
                                                                        'M',
                'B',
                      'M',
                                                       'M',
                                                                   'B',
                                       'B',
                                                             'B',
            'Μ',
                            'B',
                                  'M',
                                             'B',
                                                  'Β',
                                                                        'M',
                                                                              'M'
           'B',
                'M',
                            'M',
                                 'M',
                                                  'M',
                                                             'B',
                                                                   'M',
                                                                        'B',
                      'M',
                                       'B',
                                             'M',
                                                       'M',
                                                                              'M'
                            'B',
                                  'M',
                                       'M',
           'B',
                      'M',
                                            'M',
                                                  'M',
                                                        'B',
                                                             'B',
                                                                   'M',
                 'B',
                'B',
                                                        'M',
                                                             'M',
                                                                        'B',
           'B',
                      'M'
                            'B',
                                  'B',
                                       'B',
                                                  'B',
                                                                   'B',
                                            'B',
                 'B',
                      'M',
                            'M',
                                 'B',
                                       'M',
                                            'B',
                                                  'B',
                                                       'B',
                                                             'B',
                                                                        'B',
           'B',
                                                                   'M',
                                                                              'B'
                            'M',
                                             'M',
                                                  'M',
                                                             'M',
                                                                   'M',
           'B',
                 'B',
                      'B'
                                  'B',
                                       'M',
                                                        'M'
                                                                        'M',
                                                                              'M
                'M',
                                 'M',
                                            'B',
                                                             'B',
                                                                        'B',
           'M',
                      'M',
                            'M',
                                       'M',
                                                  'B',
                                                       'B',
                                                                   'B',
                                                                              'M'
                                            'B',
                                                             'M',
                'M',
                      'B',
                            'B',
                                 'M',
                                       'B',
                                                  'M',
                                                       'B',
                                                                   'M',
                                                                        'B',
           'B',
                                                                              'R'
                                                             'B',
                                                                         'M',
            'B',
                 'B'
                      'B'
                            'B',
                                  'B',
                                       'B'
                                             'B',
                                                  'B',
                                                        'B'
                                                                   'B',
                                                                              'В
                'M',
                                 'B',
                                       'B',
                                                  'B',
                      'B',
                            'M',
                                                       'B',
                                                             'B',
                                            'B',
                                                                   'B',
                                 'B',
                                       'M',
                                                  'B',
                                                       'B',
                                                             'M',
            'B',
                'B',
                      'B'
                            'B',
                                            'B',
                                                                   'B',
                                                                        'M',
                                                                              'B'
                'B',
                            'M',
                                                  'B',
                                                             'B',
                                                                   'M',
                                                                        'B',
            'B',
                      'B',
                                  'M',
                                       'M',
                                            'Β',
                                                        'B',
                                                                              'M'
                                 'B',
                                                  'B',
                      'B',
                            'B',
                                       'M',
                                                                   'B',
                'M',
                                            'B',
                                                       'B',
                                                             'B',
                                                  'B',
            'M',
                'M',
                      'M',
                            'B',
                                 'B',
                                       'B',
                                            'B',
                                                       'B',
                                                             'B',
                                                                   'B',
                                                                        'B',
                'M',
                      'M',
                            'B',
                                 'M',
                                       'M',
                                                  'B',
                                                       'M',
                                                             'M',
                                                                   'B',
                                            'M',
            'Β',
                                                                        'B',
                                                                              'B'
                                 'B',
                                                  'B',
                                                             'B',
           'B',
                'B',
                      'M',
                                       'B',
                                            'B',
                                                                        'B',
                            'B',
                                                       'M',
                                                                   'B',
                                                  'B',
            'B',
                      'M',
                            'M',
                                 'B',
                                       'B',
                                            'B',
                                                        'B',
                                                             'B',
                                                                   'M',
                 'B',
                                                                        'B',
                                                                              'В
                'B',
                                            'B',
                                                  'B',
                                                             'B',
                                                                        'M',
                      'B',
                                  'B',
                                       'M',
                                                       'B',
                            'B',
            'B',
                                                                   'Β',
                                                                              'R'
           'B',
                                 'B',
                                            'B',
                                                                        'B',
                'M',
                      'B',
                            'B',
                                       'B',
                                                  'B',
                                                       'B',
                                                                   'B',
                                                             'B',
                                                                              'B'
           'B',
                'M',
                      'B',
                            'M',
                                  'M',
                                       'B',
                                             'M',
                                                  'B',
                                                        'B',
                                                             'B',
                                                                   'B',
                                                                        'B',
                                 'M',
                'B',
                      'M',
                           'B',
                                       'B',
                                            'B',
                                                  'M',
                                                       'B',
                                                             'M',
                                                                   'B',
                                                                        'B',
           'B',
                                                                              'В'
                      'B',
                                 'B',
                                       'M',
                                                             'B',
                                                                        'B',
                'B', 'B', 'B', 'B', 'B', 'B', 'B',
                           'B',
                                                  'Β',
                                                       'B',
                                                                   'B',
           'B',
                                            'M',
                                                                              'R'
           'M',
                                 'B',
                                       'B',
                                             'B',
                                                  'B',
                                                        'B'
                                                             'B',
                                                                   'B',
                                                                        'M',
                                                                              'В
                                                  'B',
                                       'B',
                                            'M',
                                                       'M',
                                                             'B',
                                                                   'B',
                      'B'.
                            'B'
                                 'B',
                                                       'B',
                                                             'M',
                                       'M',
                                            'B',
                                                  'M',
                                                                   'B',
                                                                        'B',
                                                                              'B'
Saving...
                                            'B',
                                                  'M',
                                                             'M',
                                                                   'M',
                                       'M'
                                                       'B',
                                                                        'B',
                                                                              'B'
                                       'B',
                                            'B',
                                                  'B',
                                                       'B',
                                                             'B',
                                                                   'B', 'B',
                                 'B',
                                       'B',
                                            'B',
                                                  'B',
                                                       'B',
                                                             'B',
                                                                   'B',
           'M', 'B', 'M', 'M', 'B', 
'B', 'B', 'B', 'B', 'B',
                                                                        'B',
                                                                              'B'
                                                       'B',
                                                             'B',
                                       'B',
                                            'B', 'B',
                                                                   'B', 'B', 'B'
                                       'M', 'M', 'M', 'B'], dtype=object)
           'B', 'B', 'B', 'M', 'M',
```

le_diagnosis

```
1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0,
      0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1,
      0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1,
        0, 0, 0,
                0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0,
                                                1, 1,
      1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
      0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0,
      0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1,
      1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1,
      0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0,
        0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
      1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0,
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0,
                                                      0, 0, 1,
        0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
           0, 0,
                0, 0, 0, 0, 0,
                              0, 0, 0, 0, 1, 1, 0, 1, 1, 1,
      0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0,
      0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1,
        0,
           0, 0,
                0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1,
                                                0, 1,
                                                      0, 0, 0,
      0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
        0, 0, 0,
                0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
      0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0,
      0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,
      0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0])
```

finding the correlation
data.corr().T

	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	conca points_me
radius_mean	1.000000	0.323782	0.997855	0.987357	0.170581	0.506124	0.676764	0.8225
texture_mean	0.323782	1.000000	0.329533	0.321086	-0.023389	0.236702	0.302418	0.2934
perimeter_mean	0.997855	0.329533	1.000000	0.986507	0.207278	0.556936	0.716136	0.8509
area_mean	0.987357	0.321086	0.986507	1.000000	0.177028	0.498502	0.685983	0.8232
smoothness_mean	0.170581	-0.023389	0.207278	0.177028	1.000000	0.659123	0.521984	0.5536
compactness_mean	0.506124	0.236702	0.556936	0.498502	0.659123	1.000000	0.883121	0.8311
concavity_mean	0.676764	0.302418	0.716136	0.685983	0.521984	0.883121	1.000000	0.9213
concave points_mean	0.822529	0.293464	0.850977	0.823269	0.553695	0.831135	0.921391	1.0000
symmetry_mean	0.147741	0.071401	0.183027	0.151293	0.557775	0.602641	0.500667	0.4624
fractal_dimension_mean	-0.311631	-0.076437	-0.261477	-0.283110	0.584792	0.565369	0.336783	0.1669
radius_se	0.679090	0.275869	0.691765	0.732562	0.301467	0.497473	0.631925	0.6980
texture_se	-0.097317	0.386358	-0.086761	-0.066280	0.068406	0.046205	0.076218	0.0214
perimeter_se	0.674172	0.281673	0.693135	0.726628	0.296092	0.548905	0.660391	0.7106
area_se	0.735864	0.259845	0.744983	0.800086	0.246552	0.455653	0.617427	0.6902
smoothness_se	-0.222600	0.006614	-0.202694	-0.166777	0.332375	0.135299	0.098564	0.0276
	000	0.191975	0.250744	0.212583	0.318943	0.738722	0.670279	0.4904
Saving	× 204	0.143293	0.228082	0.207660	0.248396	0.570517	0.691270	0.4391
concave points_se	0.376169	0.163851	0.407217	0.372320	0.380676	0.642262	0.683260	0.6156
symmetry_se	-0.104321	0.009127	-0.081629	-0.072497	0.200774	0.229977	0.178009	0.0953
fractal_dimension_se	-0.042641	0.054458	-0.005523	-0.019887	0.283607	0.507318	0.449301	0.2575
radius_worst	0.969539	0.352573	0.969476	0.962746	0.213120	0.535315	0.688236	0.8303
texture_worst	0.297008	0.912045	0.303038	0.287489	0.036072	0.248133	0.299879	0.2927
perimeter_worst	0.965137	0.358040	0.970387	0.959120	0.238853	0.590210	0.729565	0.8559
area_worst	0.941082	0.343546	0.941550	0.959213	0.206718	0.509604	0.675987	0.8096
smoothness_worst	0.119616	0.077503	0.150549	0.123523	0.805324	0.565541	0.448822	0.4527
compactness_worst	0.413463	0.277830	0.455774	0.390410	0.472468	0.865809	0.754968	0.6674
	0 506011	0 001005	0 50070	0 510000	0.40.4000	0.01/075	0.004100	0.7500

#correlation matrix for all the features (Heat Map)

plt.figure(figsize=(25,25))

sns.heatmap(data.corr(),annot=True)

plt.savefig('correlation-matrix.png')

```
0.67 0.74 0.22 0.21 0.19 0.38 0.1 0.043 0.97 0.3 0.97 0.94 0.12 0.41 0.53 0.74 0.16 0.007.
                               1 0.99 0.17 0.51 0.68 0.82 0.15 -0.31
                               0.33 0.32 0.023 0.24 0.3 0.29 0.071 0.076 0.28 0.39 0.28 0.26 0.0066 0.19 0.14 0.16 0.0091 0.054 0.35 0.91 0.36 0.34 0.078 0.28 0.3 0.3 0.11 0.12
                                                                     -0.087
                                                                           0.69 0.74 -0.2 0.25 0.23 0.41 -0.082 -0.0055 0.97
                                        0.21 0.56 0.72 0.85 0.18 -0.26
                                                                                                                     0.97 0.94 0.15 0.46 0.56 0.77
           perimeter mean - 1
                                                                                       0.21 0.21 0.37 -0.072 -0.02 0.96
                                                                                                                     0.96 0.96 0.12 0.39 0.51 0.72
               area mean - 0.99
                               0.99
                                                     0.82
                                                          0.15 -0.28
                                                                      -0.066
                                                                           0.73 0.8
                                                0.52 0.55 0.56 0.58 0.3 0.068 0.3 0.25 0.33 0.32 0.25 0.38 0.2 0.28 0.21 0.036 0.24 0.21
                       0.17 -0.023 0.21 0.18
                                                                                                                                                                        0.8
                                                                          0.55 0.46 0.14 0.74 0.57 0.64
                               0.72 0.69
                                            0.88
                                                                                                    0.18 0.45
                                                                                                                     0.73 0.68
                                                                                                                                   0.75 0.88 0.86
                                                                                                                                                0.41 0.51
                                                1
                                                    0.92
           concavity mean
                                                                      0.021 0.71 0.69
                                                                                  0.028 0.49 0.44 0.62 0.095 0.26
        concave points mean -
                      0.82
                               0.85 0.82
                                            0.83 0.92
                                                     1
                                                          0.46 0.17
                                                                                                             0.83
                                                                                                                     0.86 0.81
                                                                                                                                    0.67 0.75 0.91
           symmetry_mean
                      0.15 0.071 0.18 0.15
                                                         1
                                                                  00011 0.16 0.04 -0.09 0.4 0.56 0.45 0.34 0.35
                                            0.57 0.34 0.17 0.48 1
      fractal_dimension_mean
                                        0.3 0.5 0.63
                                                         0.3 0.00011
                                                                  1
                                                                          0.97 0.95
                                                                                   0.72 0.75 0.14 0.29 0.38 0.53
                                 69 0.73
               radius se
                                                                          0.22 0.11 0.4 0.23 0.19 0.23 0.41 0.28 0.11 0.41 0.1 0.083 0.074 0.092 0.069 0.12 0.13 0.046
                           0.39 -0.087 -0.066 0.068 0.046 0.076 0.021 0.13 0.16 0.21
                                        0.3 0.55 0.66 0.71 0.31 0.04 0.97 0.22 1 0.94
                                                                                   0.15 0.42 0.36 0.56 0.27 0.24
                                                                                                                0.2
                                                                                                                     0.72 0.73
                                                                                                                              0.13 0.34 0.42 0.55 0.11 0.085
                                                                          0.94 1
                      0.74
                                                         0.22 -0.09
                                                                 0.95
                                                                                   0.075 0.28 0.27 0.42 0.13 0.13
                                                                                                             0.76
                                                                                                                     0.76 0.81
                                                                                                                              0.13 0.28 0.39 0.54 0.074 0.018
                area_se
                                        0.33 0.14 0.099 0.028 0.19 0.4 0.16 0.4 0.15 0.075 1
            0.34 0.27 0.33 0.41 0.43
                                                                                                            -0.23 -0.075 -0.22 -0.18 0.31 -0.056 -0.058 -0.1 -0.11 0.1
                       0.21 0.19 0.25 0.21 0.32 0.74 0.67 0.49 0.42 0.56 0.36 0.23 0.42 0.28 0.34 1 0.8 0.74
                                                                                                    0.39 0.8
           compactness se
                                                                                                             0.2 0.14 0.26 0.2 0.23
                                                                                                                                   0.68 0.64 0.48 0.28
                                                    044 034 045 033 019 036 027 027 08 1 0.77 031 0.73 019 0.1 0.23 019 017 0.48 0.66 0.44 0.2 0.44
 Saving...
          concave points_se - 0.38 0.16 0.41 0.37 0.38 0.64 0.68 0.62 0.39 0.34 0.51 0.23 0.56 0.42 0.33 0.74 0.77 1
                                                                                                    0.31 0.61 0.36 0.087 0.39 0.34 0.22 0.45 0.55 0.6
                       0.1 0.0091 0.082 0.072 0.2 0.23 0.18 0.095 0.45 0.35 0.24 0.41 0.27 0.13 0.41 0.39 0.31 0.31 1
                                                                                                            -0.13 -0.077 -0.1 -0.11 -0.013 0.06 0.037 -0.03 0.39 0.078
             symmetry se -
                                                                  0.23 0.28 0.24 0.13 0.43 0.8 0.73 0.61 0.37 1 0.037 0.0032 0.001 0.023 0.17 0.39 0.38 0.22 0.11
                      -0.043 0.054 -0.0055 -0.02 0.28 0.51 0.45 0.26 0.33
                                                                                   -0.23
                                                                                                    -0.13 -0.037 1
# Remove the labels which is having high correlation co-efficient
#split the data into features and target variable
x = data.iloc[:,1:32].values
y = data.iloc[:,0].values
х
     array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,
                1.189e-01],
               [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,
               8.902e-02],
               [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,
               8.758e-021,
               [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,
               7.820e-02],
               [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,
                1.240e-01],
              [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,
                7.039e-02]])
                                       'M',
                                                   'M',
      array(['M',
                    'M',
                           'M',
                                 'M',
                                                         'B',
                                                               'B',
                                                                      'M',
               'M',
                    'M',
                                       'M',
                                                   'B',
                                                                            'M',
                                             'M',
                                                         'M',
               'M',
                    'M',
                           'M',
                                 'M',
                                                               'M',
                                                                                  'B',
                                       'M',
                                                    'M',
                                                                      'M',
                                                                            'M',
                                             'M'
                          'M',
                                 'M',
                                       'M',
                                                   'M',
                                                                      'B',
                                                                                 'B',
               'M',
                    'M',
                                             'M',
                                                         'B',
                                                               'M',
                                                                            'B',
                                                                                        'B'
                    'M',
                           'M',
                                 'B',
                                       'M',
                                                   'B',
                                                          'B',
                                                                      'B',
                                             'M'
                                                               'B'
                                                                            'M',
                                                                                  'B',
               'B'.
                           'B',
                                 'B',
                                       'B',
                                             'M',
                                                   'B',
                                                         'M',
                                                                      'B',
                                                               'M',
                                                                            'M',
               'M', 'B',
                    'B',
                          'B',
                                 'B',
                                       'M',
                                             'M',
                                                   'B',
                                                         'M',
                                                               'M',
                                                                     'M',
                                                                            'B',
                                                                                 'B',
               'M',
                           'B',
                                                   'B',
                    'B',
                                 'M',
                                       'M',
                                                         'B',
                                                                     'M',
                                                                            'B',
                                                                                  'B',
               'M',
                                             'B',
                                                               'M',
                                                                                        'B'
                                       'M',
                                                   'B',
                           'B',
                                 'B',
                                             'B',
                                                         'B',
                                                               'B',
                                                                     'B',
               'B', 'M',
                                       'M',
                    'M',
                          'M',
                                 'B',
                                             'M',
                                                   'B',
                                                         'B',
                                                                     'M',
                                                                            'M',
               'M',
                                                               'B',
                                                                                 'B',
                                                                                        'M'
               'B',
                    'M',
                           'M',
                                                   'B',
                                 'B',
                                       'M',
                                                          'B',
                                                                      'B',
                                                                            'B',
                                                                                  'M',
                                             'M',
                                                               'M'
                                                                                        'B'
                          'B',
                                                                           'B',
                                                                                 'B',
               'B', 'B',
                                'M', 'B',
                                             'B',
                                                   'B', 'B',
                                                               'B',
                                                                                        'B',
                                                                     'B',
                                                                           'B',
               'M', 'M',
                                                                                 'M', 'M',
```

```
'B', 'B',
                   'B', 'B',
                           'B', 'M', 'M', 'B', 'B', 'M',
                   'M',
                           'B',
                                       'M',
               'B',
                       'B',
                               'B',
                                  'B',
'B', 'B',
                                          'B',
       'M', 'M',
                                               'B',
'B', 'B',
       'B',
                   'M',
                       'M',
                           'M',
           'M',
               'B',
                               'M',
                                   'M',
                                       'M',
                                          'M',
                                       'B', 'B',
'M', 'M', 'M', 'M', 'M',
                   'M', 'B',
                           'B', 'B', 'B',
   'M',
       'B',
           'B',
                   'B',
                           'M',
                                  'M',
               'M',
                       'B',
                               'B',
                                       'M',
'B',
                                          'B',
                                              'B',
'B', 'B', 'B',
                           'B',
                               'B',
                                   'B',
           'B',
                   'B', 'B',
               'Β',
                                       'B',
'B', 'M', 'B', 'M', 'B',
                   'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B'
                          'B',
                                  'M',
'B', 'B',
                               'B',
       'B', 'B', 'B', 'M', 'B',
                                       'B', 'M',
                       'B',
           'M',
               'M',
'B', 'B',
       'B',
                   'M',
                           'B',
                               'B',
                                   'B',
                                          'B', 'M'
                                       'M',
   'M',
       'B',
                   'M',
                               'B',
           'B', 'B',
'B',
                       'B', 'B',
                                   'Β',
                                       'B', 'B',
                                               'R'
   'M',
       'M',
               'B',
                   'B',
                       'B',
                           'B',
                                  'B',
                                       'B',
'M',
           'B',
                               'B',
                                           'B'.
'B', 'M', 'M',
           'M',
           'B', 'B',
                               'M',
'B', 'B',
                   'B',
                                   'B',
                       'B', 'B',
                                       'B', 'B',
       'M',
                   'B',
                                   'B',
'B',
   'B',
           'M',
               'B',
                       'B',
                           'B',
                               'B',
                                       'M',
                                           'B',
       'B',
'B', 'B',
           'B', 'B', 'M', 'B', 'B', 'B', 'B',
                                       'B', 'M', 'B',
       'B',
                           'B',
'B',
   'M',
           'B',
               'B',
                   'B',
                       'B',
                               'B',
                                   'B',
                                       'B',
                                          'B',
                                               'B'
'B', 'M',
       'B',
                                  'B',
           'M',
               'M', 'B', 'M', 'B',
                               'B',
                                       'B',
                                          'B', 'M',
           'B', 'M',
'B', 'B', 'M',
                   'B', 'B', 'M', 'B', 'M',
                                       'B', 'B',
       'B',
           'B',
               'B',
                           'B',
   'B',
                               'B',
                                  'B',
                                       'B',
'B',
                   'M', 'M',
                                          'B',
                               'B',
                                  'Β',
'M', 'B',
       'B',
               'B', 'B', 'B', 'B',
           'B',
                                       'B', 'M', 'B'
'B',
   'B',
       'B', 'B', 'M', 'M', 'B', 'M', 'B',
                                   'M', 'B', 'B', 'B',
'B', 'B', 'M',
               'B', 'M', 'B', 'M', 'B', 'M',
           'B',
                                       'M', 'B', 'B'
```

```
Saving...
                                       train_test_split
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.2, random_state=42)
# importing standarscaler
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_train
     array([[-1.44075296, -0.43531947, -1.36208497, ..., 0.9320124,
             2.09724217, 1.88645014],
[ 1.97409619, 1.73302577, 2.09167167, ..., 2.6989469 ,
               1.89116053, 2.49783848],
             [-1.39998202, -1.24962228, -1.34520926, ..., -0.97023893, 0.59760192, 0.0578942],
             [0.04880192, -0.55500086, -0.06512547, ..., -1.23903365,
              -0.70863864, -1.27145475],
             \hbox{$[-0.03896885,}\quad 0.10207345,} -0.03137406, \ldots, \quad 1.05001236,
               0.43432185, 1.21336207],
             [-0.54860557, 0.31327591, -0.60350155, ..., -0.61102866,
              -0.3345212 , -0.84628745]])
x_test = sc.transform(x_test)
x_test
     \verb"array" ([[-0.46649743, -0.13728933, -0.44421138, \ldots, -0.19435087,
               0.17275669, 0.20372995],
             [ 1.36536344, 0.49866473, 1.30551088, ..., 0.99177862,
             -0.561211 , -1.00838949],
[ 0.38006578,  0.06921974,  0.40410139, ...,  0.57035018,
              -0.10783139, -0.20629287],
             [-0.73547237,\ -0.99852603,\ -0.74138839,\ \dots,\ -0.27741059,
```

[0.02898271, 2.0334026 , 0.0274851 , ..., -0.49027026,

-0.3820785 , -0.32408328],

```
-1.60905688, -0.33137507],
[ 1.87216885, 2.80077153, 1.80354992, ..., 0.7925579, -0.05868885, -0.09467243]])
```

```
#defining all the necessary models
def models(x_train, y_train):
# train using Logistic Regression
 from sklearn.linear_model import LogisticRegression
 model1 = LogisticRegression()
 model1.fit(x_train,y_train)
 #train using KNN
 from sklearn.neighbors import KNeighborsClassifier
 model2 = KNeighborsClassifier()
 model2.fit(x_train, y_train)
 #train using GaussianNB
 from sklearn.naive_bayes import GaussianNB
 model3 = GaussianNB()
 model3.fit(x_train, y_train)
 #train using Decision Tree
 from sklearn.tree import DecisionTreeClassifier
 model4 = DecisionTreeClassifier()
 model4.fit(x_train,y_train)
 # train using RandomForest
                                    mForestClassifier
 Saving...
  model5.fit(x_train,y_train)
 #train using SVC
 from sklearn.svm import SVC
 model6 = SVC()
 model6.fit(x_train,y_train)
 print('[0] Logistic Regression Training Accuracy', model1.score(x_train, y_train))
 print('[1] KNN training accuracy', model2.score(x_train,y_train))
 print('[2] Guassian NB training accuracy',model3.score(x_train,y_train))
 \label{lem:print([3] decision tree training accuracy', model4.score(x\_train,y\_train))} \\
 print('[4] random forest training accuracy',model5.score(x_train,y_train))
 print('[5] svc training accuracy', model6.score(x_train,y_train))
 return model1, model2, model3, model4, model5, model6
model = models(x_train,y_train)
     [0] Logistic Regression Training Accuracy 0.9868131868131869
     [1] KNN training accuracy 0.9802197802197802
    [2] Guassian NB training accuracy 0.9362637362637363
     [3] decision tree training accuracy 1.0
     [4] random forest training accuracy 1.0
     [5] svc training accuracy 0.989010989010989
# confusion Matrix for all algorithms that we used in models
# importing confusion matrix
from sklearn.metrics import confusion_matrix
for i in range(len(model)):
 cm = confusion_matrix(y_test,model[i].predict(x_test))
 TN = cm[0][0]
 TP = cm[1][1]
 FN = cm[1][0]
 FP = cm[0][1]
 print(cm)
 print('model[{}] testing accuracy = "{}!"'.format(i,(TP+TN)/(TP+TN+FP+FN)))
 print()
    [[70 1]
     [ 2 41]]
    model[0] testing accuracy = "0.9736842105263158!"
    [[68 3]
```

```
[ 3 40]]
     model[1] testing accuracy = "0.9473684210526315!"
    [[70 1]
     [ 3 40]]
     model[2] testing accuracy = "0.9649122807017544!"
     [[67 4]
     [ 3 40]]
     model[3] testing accuracy = "0.9385964912280702!"
     [[70 1]
     [ 3 40]]
     model[4] testing accuracy = "0.9649122807017544!"
     [ 2 41]]
     model[5] testing accuracy = "0.9824561403508771!"
# importing classification_report and accuracy_score
from sklearn.metrics import classification_report, accuracy_score
for i in range(len(model)):
  print('model',i)
 #print classification report
 print(classification_report(y_test,model[i].predict(x_test)))
 Saving...
                                    [i].predict(x_test)))
  print()
                В
                        0.96
                                  0.96
                                            0.96
                                                         71
                        0.93
                                  0.93
                                            0.93
                                                         43
                Μ
                                            0.95
                                                        114
         accuracy
                        0.94
                                  0.94
                                            0.94
                                                       114
        macro avg
     weighted avg
                        0.95
                                  0.95
                                            0.95
                                                        114
     0.9473684210526315
     model 2
                   precision
                                recall f1-score
                                                    support
                В
                        0.96
                                  0.99
                                            0.97
                                                         71
                        0.98
                                  0.93
                                            0.95
                                                         43
                                            0.96
                                                        114
         accuracy
        macro avg
                        0.97
                                  0.96
                                            0.96
                                                        114
     weighted avg
                        0.97
                                  0.96
                                            0.96
                                                        114
     0.9649122807017544
     model 3
                   precision
                                recall f1-score
                                                    support
                        0.96
                                  0.94
                                            0.95
                В
                                                         71
                М
                        0.91
                                  0.93
                                            0.92
                                                         43
         accuracy
                                            0.94
                                                        114
        macro avg
                        0.93
                                  0.94
                                            0.93
                                                        114
                                            0.94
     weighted avg
                        0.94
                                  0.94
                                                       114
     0.9385964912280702
```

```
0.97
          0.99
   B
       1.00
     1.00
        0.95
          0.98
             43
          0.98
            114
  accuracy
     0.99
        0.98
          0.98
            114
 weighted avg
     0.98
          0.98
 0.9824561403508771
#predictions of every model
for i in range(len(model)):
y_pred = model[i].predict(x_test)
print(y_pred)
print()
print(y_test)
'B' 'B' 'B' 'M' 'M' 'B' 'B' 'M'
         'B'
          'B'
           'B'
            'M' 'M'
               'B'
        'M'
              'B'
                'M'
 'B' 'B' 'M' 'B' 'M' 'M']
 'M' 'B' 'B' 'B' 'M' 'M' 'B'
               'B'
        'M' 'B' 'M' 'M' 'M' 'M' 'M' 'B' 'B'
Saving...
         'B' 'M' 'M' 'B' 'M' 'M' 'B' 'B' 'B' 'M'
 'R'
 'B' 'M' 'B' 'B' 'M' 'B' 'B'
         'B' 'B' 'M'
            'B'
        'B'
        'B'
             'B'
              'B'
               'B'
                'B'
 'B' 'B' 'M' 'B' 'B' 'M']
 'M' 'B' 'M' 'B' 'B' 'M']
 'B'
               'B'
                'B' 'B'
 'M' 'B'
    'B' 'B' 'M'
      'B' 'B'
         'B'
   'M'
          'B'
           'B'
            'B'
        'B'
             'B'
              'M'
                'R'
 'B' 'B' 'M' 'B' 'B' 'M']
 'B' 'B' 'M'
 'B' 'B' 'M' 'B' 'B' 'M']
 'M' 'B' 'B'
 'M'
 'B' 'B' 'M' 'B' 'B' 'M']
```

