University of Oxford

ELLIPTIC PDES -PROBLEM SHEET FOUR

Aili Shao

Exercise 1. Suppose $d \geq 3$. Using the non-linear approach introduced in Section 3.3, show that there is at most one solution in $H_0^1(\Omega)$ to

$$-div(A\nabla u) + H(x, \nabla u) + u = f \text{ in } \mathcal{D}'(\Omega)$$

with $f \in H^{-1}(\Omega)$ and $c \ge 0$.

Adapt this proof to show that there is at most one solution in $H_0^1(\Omega)$ to

$$-div(A\nabla u) + b \cdot \nabla u + cu = f \text{ in } \mathcal{D}'(\Omega)$$

with $b \in L^d(\Omega)$ and $c \in L^{d/2}(\Omega)$ with $c \ge 0$.

Proof.

Claim 1. Suppose that $v \in H_0^1(\Omega)$ satisfies

$$-div(A\nabla v) + cv \le b(x)|\nabla v| \text{ in } \mathcal{D}'(\Omega)$$

for $c \geq 0$, then $v \leq 0$.

proof of claim 1: For k > 0, test the problem against $(v - k)^+$ to obtain

$$\int_{\Omega} A \nabla v \nabla (v - k)^{+} + \int_{\Omega} c v (v - k)^{+} \le \int_{\Omega} b(x) |\nabla v| |(v - k)^{+}|.$$

Define $B_k := \{x \in \Omega \colon v \ge k \text{ and } |\nabla v| > 0\}$. Then by ellipticity of A, we have

$$\lambda \int_{B_k} |\nabla (v - k)^+|^2 + \int_{B_k} ck(v - k)^+ \le \int_{B_k} b(x) |\nabla v| |(v - k)^+|.$$

Note that by applying Hölder's inequality and Sobolev embedding, we have

$$\int_{B_k} b(x) |\nabla v| |(v-k)^+| \le \left(\int_{B_k} b^d\right)^{\frac{1}{d}} \left(\int_{B_k} |\nabla v|^2\right)^{\frac{1}{2}} \left(\int_{B_k} |(v-k)^+|^{\frac{2d}{d-2}}\right)^{\frac{d-2}{2d}}$$

$$\le C(d) \left(\int_{B_k} b^d\right)^{\frac{1}{d}} \left(\int_{B_k} |\nabla v|^2\right)^{\frac{1}{2}} \left(\int_{B_k} |\nabla (v-k)^+|^2\right)^{\frac{1}{2}}$$

This implies that

$$\lambda \int_{B_k} |\nabla (v - k)^+|^2 \le C(d) \left(\int_{B_k} b^d \right)^{\frac{1}{d}} \left(\int_{B_k} |\nabla v|^2 \right)^{\frac{1}{2}} \left(\int_{B_k} |\nabla (v - k)^+|^2 \right)^{\frac{1}{2}} \tag{1}$$

Let $M = \sup v$. We first assume that $0 < M < \infty$ and take k < M. Then we have

$$\lambda \int_{B_k} |\nabla v|^2 \le C(d) \left(\int_{B_k} b^d \right)^{\frac{1}{d}} \left(\int_{B_k} |\nabla v|^2 \right)^{\frac{1}{2}} |M - k| |B_k|^{\frac{d-2}{2d}}$$

Thus

$$\left(\int_{B_k} |\nabla v|^2\right)^{\frac{1}{2}} \leq \frac{C(d)}{\lambda} \left(\int_{B_k} b^d\right)^{\frac{1}{d}} |M - k| |\Omega|^{\frac{d-2}{2d}} \to 0 \text{ as } k \to M.$$

Note that v is fixed and does not depend on k, thus either $\lim_{k \uparrow M} |B_k| = 0$ or $\nabla v \equiv 0$ on the limit set, which is a contradiction.

If $\sup v = \infty$, then as $k \to \infty$, $|B_k| = 0$ as v is integrable.

Altogether this mean that for some $k_0 < M$ we have

$$C(d)(\int_{B_{k_0}} b^d)^{\frac{1}{d}} < \frac{\lambda}{2}.$$

Therefore equality (1) shows that $\int_{B_{k_0}} |\nabla(v-k)|^2 = 0$. This implies that $|\{x \in \Omega \colon v \ge k_0\}| = 0$ which yields a contradiction as $k_0 < M$. Thus $M \le 0$, which implies that $v \le 0$.

Now we assume for contradiction that both $u_1, u_2 \in H_0^1(\Omega)$ are solutions to

$$-div(A\nabla u) + H(x, \nabla u) + u = f \text{ in } \mathcal{D}'(\Omega).$$

That is, for all $\varphi \in C_c^{\infty}(\Omega)$ (we can assume that $\varphi \in H_0^1(\Omega)$ by a density argument),

$$\int_{\Omega} A \nabla u_1 \nabla \varphi + \int_{\Omega} H(x, \nabla u_1) \cdot \varphi + \int_{\Omega} u_1 \varphi = \int_{\Omega} f \varphi$$

and

$$\int_{\Omega} A \nabla u_2 \nabla \varphi + \int_{\Omega} H(x, \nabla u_2) \cdot \varphi + \int_{\Omega} u_2 \varphi = \int_{\Omega} f \varphi.$$

Note that we assume $\varphi \geq 0$ here since we test against $(v-k)^+$ in the previous proof. Consider $v = u_1 - u_2$, then v satisfies

$$\int_{\Omega} A \nabla v \nabla \varphi + \int_{\Omega} v \varphi \le \int_{\Omega} b(x) |\nabla v| \varphi$$

That is,

$$-div(A\nabla v) + v = H(x, \nabla u_2) - H(x, \nabla u_1) \le b(x)|\nabla v| \text{ in } \mathcal{D}'(\Omega).$$

We need $b \in L^d(\Omega; \mathbb{R}^+)$ so that

$$\int_{\Omega} b(x) |\nabla v| \varphi \le ||b||_{L^{d}(\Omega)} ||\nabla v||_{L^{2}(\Omega)} ||\varphi||_{L^{\frac{2d}{d-2}}(\Omega)} < \infty.$$

By the claim proved, we have $v = u_1 - u_2 \le 0$. If we swap the roles of u_1 and u_2 , we can also get $u_2 - u_1 \le 0$. Therefore $u_1 \equiv u_2$.

Similarly, assume for contradiction that both $u_1, u_2 \in H_0^1(\Omega)$ are solutions to

$$-div(A\nabla u) + b \cdot \nabla u + cu = f \text{ in } \mathcal{D}'(\Omega).$$

That is,

$$\int_{\Omega} A \nabla u_1 \nabla \varphi + \int_{\Omega} b \cdot \nabla u_1 \varphi + \int_{\Omega} c u_1 \varphi = \int_{\Omega} f \varphi$$

and

$$\int_{\Omega} A \nabla u_2 \nabla \varphi + \int_{\Omega} b \cdot \nabla u_2 \varphi + \int_{\Omega} c u_2 \varphi = \int_{\Omega} f \varphi.$$

Then consider the difference $v = u_1 - u_2$, we have

$$-div(A\nabla v) + cv \le |b(x)||\nabla v| \text{ in } \mathcal{D}'(\Omega).$$

Note that we need $b \in L^d(\Omega)$ and $c \in L^{d/2}(\Omega)$ so that

$$\int_{\Omega} b \cdot \nabla v \varphi \leq \|b\|_{L^{d}(\Omega)} \|\nabla v\|_{L^{2}(\Omega)} \|\varphi\|_{L^{\frac{2d}{d-2}}(\Omega)} < \infty$$

and

$$\int_{\Omega} cv\varphi \leq \|c\|_{L^{d/2}(\Omega)} \|v\|_{L^{\frac{2d}{d-2}}(\Omega)} \|\varphi\|_{L^{\frac{2d}{d-2}}(\Omega)} < \infty.$$

The rest of the proof is exactly the same as before.

Exercise 2. Let $\Omega = (0, \pi)^d$. Show the functions

$$\left(\frac{2}{\pi}\right)^{\frac{d}{2}}\sin(k_1x_1)\cdot\ldots\cdot\sin(k_dx_d)$$

with $k_i \in \mathbb{N} \setminus \{0\}$ form a complete orthonormal set of $L^2(\Omega)$.

(You may want to check that if you have two orthonormal bases on $L^2(X)$ and $L^2(Y)$, then the product of the elements gives a basis on $L^2(X \times Y)$).

Proof.

Claim 2. If $\{e_m : m \in \mathbb{N}\}$ and $\{\hat{e}_n : n \in \mathbb{N}\}$ are two bases on $L^2(X)$ and $L^2(Y)$, then $\{e_m \cdot \hat{e}_n : (m,n) \in \mathbb{N}^2\}$ is an orthonormal basis on $L^2(X \times Y)$.

Proof of Claim 2: We first show that $\{e_m \cdot \hat{e}_n : (m,n) \in \mathbb{N}^2\}$ is an orthonormal set on $L^2(X \times Y)$.

$$\begin{split} \langle e_m \hat{e}_n, e_p \hat{e}_q \rangle &= \int_Y \int_X e_m \hat{e}_n e_p \hat{e}_q d\mu(x) d\nu(y) \\ &= \int_Y \left(\int_X e_m e_p d\mu(x) \right) \hat{e}_n \hat{e}_q d\nu(y) \\ &= \int_Y \delta_{m,p} \hat{e}_n \hat{e}_q d\nu(y) \\ &= \delta_{m,p} \delta_{n,q} \\ &= \delta_{(m,p),(n,q)} \end{split}$$

Now we show the completeness. If $h \in \{e_m \cdot \hat{e}_n \colon (m,n) \in \mathbb{N}^2\}^{\perp}$, then we have

$$0 = \int_X \left(\int_Y h(x, y) \hat{e}_n(y) d\nu(y) \right) e_m(x) d\mu(x).$$

This implies that

$$x \longmapsto \int_Y h(x,y)\hat{e}_n(y)d\nu(y)$$
 is zero almost everywhere.

Define

$$E_n:=\{x\in\ X\colon \int_Y h(x,y)\hat{e}_n(y)d\nu(y)\neq 0\}.$$

 E_n is a null set for each n, and so its countable union $E = \bigcup_n E_n$. This implies that

$$\int_{Y} h(x,y)\hat{e}_{n}(y)d\nu(y) = 0 \text{ almost everywhere for all } n.$$

Then $h(x,y) \equiv 0$ almost everywhere, and

$$\int_{X\times Y}|h(x,y)|^2d(\mu)=\int_{X\backslash E}\int_Y|h(x,y)|^2d\nu(y)d\mu(x)=0.$$

With this result, it is sufficient to prove that $\frac{\sqrt{2}}{\sqrt{\pi}}\sin(kx)$ is a complete orthonormal set on $L^2(0,\pi)$ and conclude the desired result using induction.

Note that

$$\begin{split} \frac{2}{\pi} \int_0^{\pi} \sin(kx) \sin(lx) dx &= \frac{2}{\pi} \int_0^{\pi} \frac{1}{2} [\cos((k-l)x) - \cos((k+l)x)] dx \\ &= \frac{1}{\pi} \left[\frac{\sin((k-l)x)}{k-l} - \frac{\sin((k+l)x)}{k+l} \right]_0^{\pi} \\ &= 0 \text{ if } k \neq l \end{split}$$

and

$$\frac{2}{\pi} \int_0^{\pi} \sin^2(kx) = \frac{2}{\pi} \int_0^{\pi} \frac{1}{2} - \frac{\cos(2x)}{2} dx$$
$$= \frac{2}{\pi} \left[\frac{x}{2} - \frac{\sin(2x)}{4} \right]_0^{\pi}$$
$$= 1.$$

Thus $\{\frac{\sqrt{2}}{\sqrt{\pi}}\sin(kx)\colon k\in\mathbb{N}\setminus\{0\}\}\$ form an orthonormal set in $L^2(0,\pi)$.

To show completeness, we assume that $f \in L^2(0,\pi)$ such that f is orthogonal to $\{\frac{\sqrt{2}}{\sqrt{\pi}}\sin(kx)\colon k\in\mathbb{N}\setminus\{0\}\}$.

Define
$$\tilde{f}(x) = \begin{cases} f(x) & \text{if } 0 \le x < \pi, \\ -f(-x) & \text{if } -\pi \le x < 0. \end{cases}$$
 Then

$$\int_{-\pi}^{\pi} \tilde{f}(x) \frac{1}{\sqrt{\pi}} = \frac{1}{\sqrt{\pi}} \int_{0}^{\pi} f(x) dx - \frac{1}{\sqrt{\pi}} \int_{-\pi}^{0} f(-x) dx = 0,$$

and

$$\int_{-\pi}^{\pi} \tilde{f}(x) \cos(kx) dx = 0$$

as \tilde{f} is an odd function while $\cos(kx)$ is even for all $k \in \mathbb{N} \setminus \{0\}$.

$$\int_{-\pi}^{\pi} \tilde{f}(x)\sin(kx)dx = 2\int_{0}^{\pi} f(x)\sin(kx)dx = 0$$

by assumption

Since $span\{e^{inx}: n \in \mathbb{Z}\} = \overline{span\{1, \sin(nx), \cos(nx): n \in \mathbb{N} \setminus \{0\}\}} = L^2(-\pi, \pi), \tilde{f}(x) \equiv 0$

0. This implies that $f(x) \equiv 0$.

Then we can conclude that

$$\left(\frac{2}{\pi}\right)^{\frac{d}{2}}\sin(k_1x_1)\cdot\ldots\cdot\sin(k_dx_d)$$

with $k_i \in \mathbb{N} \setminus \{0\}$ form a complete orthonormal set for $L^2(\Omega)$.

Exercise 3. Deduce that all eigenfunctions of $-\Delta u = \lambda u$ in $H_0^1(\Omega)$ are of the form

$$\sin(k_1x_1)\cdot\ldots\cdot\sin(k_dx_d)$$

and give a characterization of the eigenvalues (as sum of squares).

Proof. First note that for $\phi_k = sin(k_1x_1) \cdot \ldots \cdot sin(k_dx_d)$,

$$-\Delta\phi_k = -\left(\sum_{i=1}^d \frac{\partial^2 \phi_k}{\partial x_k^2}\right) = \left(\sum_{i=1}^d k_i^2\right)\phi_k.$$

Thus $\phi_k = \sin(k_1 x_1) \cdot \ldots \cdot \sin(k_d x_d)$ are eigenfunctions of $-\Delta u = \lambda_k u$ with $\lambda_k = \sum_{i=1}^d k_i^2$. By Exercise 4.2, we know that

$$\left(\frac{2}{\pi}\right)^{\frac{d}{2}}\sin(k_1x_1)\cdot\ldots\cdot\sin(k_dx_d)$$

with $k_i \in \mathbb{N} \setminus \{0\}$ form a complete orthonormal set of $L^2(\Omega) \supset H_0^1(\Omega)$. Note that $\phi_k \in H_0^1(\Omega)$ as $\sin(kx) = 0$ for x = k or $x = \pi$. Thus $e_k := \sin(k_1x_1) \cdot \ldots \cdot \sin(k_dx_d)$ for $k_i \in \mathbb{N} \setminus \{0\}$ form an orthogonal basis of $H_0^1(\Omega)$.

We claim that all the eigenvalues are of the form $\lambda_k = \sum_{i=1}^d k_i^2$ for $k = 1, 2 \cdots$. Assume for contradiction that there exists another eigenvalue μ with corresponding eigenvector ϕ , then by definition ϕ is orthogonal to the eigenspace E_k (generated by e_k) corresponding to λ_k for each $k = 1, 2 \cdots$. We know that $\{e_k : k \in \mathbb{N}\}$ form an orthogonal basis of $H_0^1(\Omega)$. This implies $\phi \in span\{e_k : k \in \mathbb{N}\}^\perp = 0$.

Now we show that all the eigensolutions of $-\Delta u = \lambda u$ must be this form with eigenvalues $\lambda_k = \sum_{i=1}^d k_i^2$. For each eigenvalue λ_k , assume for contradiction that ϕ is a corresponding eigenfunction of different form. But we can write ϕ as

$$\phi = \sum_{n=1}^{\infty} (e_n, \phi)_{L^2} e_n.$$

By orthogonality, we know that the inner product $(e_n, \phi)_{L^2}$ is zero except for the term e_k , which shares the same eigenvalue with ϕ . This shows that $\phi = \alpha e_k$ for some constant α .

Thus, all eigensolutions of $-\Delta u = \lambda u$ in $H_0^1(\Omega)$ are of the form $\sin(k_1 x_1) \cdot \ldots \cdot \sin(k_d x_d)$ with corresponding eigenvalues $\lambda_k = \sum_{i=1}^d k_i^2$ for $k \in \mathbb{N} \setminus \{0\}$.

Exercise 4. Show that for any $\lambda \in \mathbb{R}, \lambda \geq d$ the number $N(\lambda)$ of positive integers such that

$$\sum_{j=1}^{d} n_j^2 \le \lambda$$

is bounded by

$$\frac{1}{c(d)}\lambda^{d/2} \le N(\lambda) \le c(d)\lambda^{d/2}.$$

(For example, note that this is the number of lattice points included in the closed ball of radius $\sqrt{\lambda}$ and compare the ball to a cube.)

Proof. Note that $N(\lambda)$ is the number of lattice points included in the closed ball of radius $\sqrt{\lambda}$, so we need to consider the maximal cube inscribed in this ball to get the upper bound. The length of this cube is $\sqrt{d}\sqrt{\lambda}$. That is, for each n_j , it has no more than $\sqrt{d}\sqrt{\lambda}$ integer solutions. Then

$$N(\lambda) \leq (\sqrt{d}\sqrt{\lambda})^d = c(d)\lambda^{d/2}$$

where $c(d) = d^{d/2}$. If each $n_j \leq \frac{\sqrt{\lambda}}{\sqrt{d}}$, then $\sum_{j=1}^d n_j^2 \leq \sum_{j=1}^d \frac{\lambda}{d} = \lambda$. This means that the lattice points in the cubic with length $\frac{\sqrt{\lambda}}{\sqrt{d}}$ are included in the set of lattice points represented by $N(\lambda)$. Thus, we have

$$N(\lambda) \ge \left(\frac{\sqrt{\lambda}}{\sqrt{d}}\right)^{d/2} = \frac{1}{c(d)} \lambda^{d/2}.$$

Combining these two inequalities, the result holds.

Remark 1. Note that the question asks for positive solutions only, so we only need to consider the lattice points in the positive quadrant.

Exercise 5. Prove that there exists C(d) such that the kth eigenvalue of $-\Delta u = \lambda u$ satisfies

$$C^{-1}k^{2/d} < \lambda_k < Ck^{2/d}$$
.

Proof. By Exercise 4.3, we know that $\lambda_k = \sum_{j=1}^d k_j^2$. Then applying the result proved in Exercise 4.4, we have

$$\frac{1}{c(d)}\lambda_k^{d/2} \le N(\lambda_k) \le c(d)\lambda_k^{d/2}$$

where $c(d) = d^{d/2}$.

Note that the number of eigenvalues of $-\Delta$ that are less than or equal to the k-th eigenvalue λ_k is $N(\lambda_k)$. This implies that $N(\lambda_k) \geq k$. It follows that

$$k \le N(\lambda_k) \le c(d)\lambda_k^{d/2},$$

that is

$$\lambda_k \ge c(d)^{d/2} k^{2/d}.$$

Note that $N(\lambda_k)$ is the number of lattice points included in the closed ball of radius $\sqrt{\lambda_k}$. Now we decrease the radius so that the number of lattice points is smaller than k. That is, $N(\lambda_k - 1) \leq k$. Then we have

$$\frac{1}{c(d)}(\lambda_k - 1)^{d/2} \le N(\lambda_k - 1) \le k.$$

It follows that

$$\lambda_k \le 1 + k^{2/d} c(d)^{2/d} \le 2c(d)^{2/d} k^{2/d}$$

Therefore,

$$C^{-1}k^{2/d} < \lambda_k < Ck^{2/d}$$

where $C = 2c(d)^{2/d}$.

Alternatively, we can get the upper bound for λ_k in the following way. By Exercise 4.4, we have

$$N(c(d)^{2/d}k^{2/d}) \geq \frac{1}{c(d)}(c(d)k) = k.$$

Then

$$c^{2/d}k^{2/d} \ge \lambda_{N(c^{2/d}k^{2/d})} \ge \lambda_k.$$