

N91-17560

DIGITAL AVIONICS
A CORNERSTONE OF AVIATION

by

Cary R. Spitzer

NASA Langley Research Center

Presented to the NASA Formal Methods Workshop

by

Charles W. Messner, Jr.

6 51-016 P-24
5-1982

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

INTRODUCTION: Avionics Roles

- Communication
 - HF and VHF
 - Satellite
 - Data Links
- Navigation
 - Ground-based systems
 - Inertial and satellite-based systems
- Goal: Autonomous operation!!

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

INTRODUCTION

CURRENT EXAMPLES

CURRENT ISSUES

FUTURE TRENDS

INTERNATIONAL SCENE

SUMMARY

FIGHTER INSTALLED AVIONICS WEIGHT

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

INTRODUCTION: Avionics Roles

- Fly-by-wire flight controls
- Historically used for stability & control augmentation
 - Not flight critical
- Emerging as a flight critical system
- Driven by performance and economic demands
 - F-16, A-320, B-777

TOTAL ON BOARD COMPUTER CAPACITY (OFP)

TRENDS IN AVIONICS ABOARD FIGHTER/ATTACK AIRCRAFT

F-16 AVIONICS SYSTEM ARCHITECTURE

F-16 AVIONICS SYSTEM ARCHITECTURE

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

CURRENT EXAMPLES: A-320

Hydraulic	
THS	Trimmable horizontal stabilizer
ELAC	Elevator and aileron computer
SEC	Spoiler and elevator computer
B	Blue system
G	Green system
Y	Yellow system

Pitch Control

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

CURRENT EXAMPLES: A-320

Electronic Flight Control System Architecture

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

CURRENT EXAMPLES: A-320

	Hydraulic		
	B	G	Y
M	Motor actuator		
FAC	Flight augmentation computer		

Yaw Control

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

CURRENT EXAMPLES: A-320

		Hydraulic
		B Blue system
		G Green system
		Y Yellow system
M	Motor actuator	
FAC	Flight augmentation computer	

Yaw Control

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

CURRENT ISSUES: Hardware

- Modeling of complex systems
- Proof of fault tolerance, high reliability
- Electromagnetic interference
- Growing concern due to composite aircraft, increased emission of RF, and smaller electronic element sizes

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

CURRENT ISSUES: Hardware

- Modeling of complex systems
- Proof of fault tolerance, high reliability
- Electromagnetic interference
- Growing concern due to composite aircraft, increased emission of RF, and smaller electronic element sizes

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

FUTURE TRENDS: PAVE PILLAR

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

CURRENT ISSUES: Software

- Developing competency in Ada
- Mandated for DoD, Space Station Freedom, civil transports
- Computer-Aided Software Engineering (CASE) Tools
 - Capabilities for real-time software analysis & design
 - Tool validation

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

FUTURE TRENDS: INTEGRATED MODULAR AVIONICS

ORIGINAL PAGE IS
OF POOR QUALITY

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

FUTURE TRENDS: INTEGRATED MODULAR AVIONICS

ORIGINAL PAGE IS
OF POOR QUALITY

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

FUTURE TRENDS: Supporting Technologies

- Flat panel, full color, liquid crystal displays
- Replacing CRTs
- Advanced formats; not electronic steam gauges
- Higher speed data buses
- Artificial intelligence pioneer programs
- Faultfinder
- Diverter
- Pilot's Associate

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

FUTURE TRENDS: Supporting Technologies

- Flat panel, full color, liquid crystal displays
- Replacing CRTs
- Advanced formats; not electronic steam gauges
- Higher speed data buses
- Artificial intelligence pioneer programs
- Faultfinder
- Diverter
- Pilot's Associate

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

INTERNATIONAL SCENE: Japan

- An emerging competitor in the world market
- Historically has been component oriented: displays, microprocessors, etc.
- Lack system design and analysis, & software capabilities
 - FS-X program will help to build a foundation for military & civil avionics
- MITI has established a committee to define an avionics technology development plan

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

INTERNATIONAL SCENE: Japan

- An emerging competitor in the world market
- Historically has been component oriented: displays, microprocessors, etc.
- Lack system design and analysis, & software capabilities
 - FS-X program will help to build a foundation for military & civil avionics
- MITI has established a committee to define an avionics technology development plan

DIGITAL AVIONICS - A CORNERSTONE OF AVIATION

SUMMARY

- Continually expanding role for avionics
- Flight critical avionics are here
- Strong emphasis on Ada
- Module-based architectures emerging
- Artificial intelligence applications being developed
- Significant competitive threat to U.S. firms from Europe & Japan