Міністерство освіти і науки України Харківський національний університет радіоелектроніки

Кафедра системотехніки

Дисципліна: «Методи та системи штучного інтелекту»

ПРАКТИЧНА РОБОТА № 6

«Зменшення розмірності даних»

Виконала: ст. гр. IТКН-18-4 Левченко А.С. Прийняв: к.т.н., ст. викл. каф.СТ Жернова П.Є.

Мета роботи:

Отримання практичних навичок при обробці даних для подальшої їх візуалізації та моделювання за допомогою методу PCA та t-SNE.

Хід роботи:

1. Необхідно імпортувати необхідні пакети і класи: Pandas, Numpy, Sklearn, matplotlib.pyplot.

1. Імпорт необхідних пакетів

```
In [1]:

import sklearn as sk
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Рисунок 1 – Імпорт необхідних пакетів та класів

2. Імпортувати набір даних для подальшої роботи.

Для завантаження .csv файлу з даними в pandas використовується функція read_csv ().

2. Імпорт набору даних для подальшої роботи

:	<pre>dataset = pd.read_csv('Wine.csv') dataset</pre>												
		Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflavanoid_Phenols	Proa			
Ī	0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28				
	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26				
	2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30				
	3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24				
	4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39				
	173	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52				

Рисунок 2 – Імпорт набору даних для подальшої роботи

3. Перевірити на наявність пропущених даних та заповнити їх. Необхідно скористатись декількома методами для заповнення пропусків.

3. Перевірка на наявність пропущених даних

```
In [6]:
         1 dataset.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 178 entries, 0 to 177
         Data columns (total 14 columns):
              Column
                                     Non-Null Count Dtype
             _____
                                     -----
          0
             Alcohol
                                    178 non-null
                                                      float64
              Malic_Acid
                                     178 non-null
                                                      float64
          1
             Ash 178 non-null float64
Ash_Alcanity 178 non-null float64
Magnesium 178 non-null int64
Total_Phenols 178 non-null float64
Flavanoids 178 non-null float64
          2
             Ash_Alcanity
          3
            Magnesium
          7 Nonflavanoid_Phenols 178 non-null
                                                      float64
          8 Proanthocyanins 178 non-null
                                                      float64
          9 Color Intensity
                                     178 non-null
                                                      float64
          10 Hue
                                     178 non-null
                                                      float64
          11 OD280
                                     178 non-null
                                                      float64
                                                      int64
          12 Proline
                                     178 non-null
         13 Customer_Segment 178 non-null
                                                      int64
         dtypes: float64(11), int64(3)
         memory usage: 19.6 KB
```

Рисунок 3 — Перевірка на наявність пропущених даних за допомогою функції .*info()*

In [9]:	<pre>1 pd.isnull(dataset).any()</pre>							
	Alcohol Malic_Acid Ash Ash_Alcanity Magnesium Total_Phenols Flavanoids Nonflavanoid_Phenols Proanthocyanins Color_Intensity Hue OD280 Proline Customer Segment	False						
	dtype: bool							

Рисунок 4 – Перевірка на наявність пропущених даних за допомогою функції .isnull() та. any()

Див. рис. 4, можна сказати, що у будь-якому стовпці, немає наявних пропущених даних.

Відсутні дані об'єктів можна замінити на конкретні числові значення, для цього можна використовувати метод fillna ().

```
In [7]: 1 coppy=dataset
2 coppy.fillna(0)
```

Рисунок 5 – Заповнення пропусків за допомогою ф-ції .fillna()

Дані можна заповнити середнім значенням по стовпцю.

coppy.fillna(coppy.mean())											
		Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflavanoid		
	0	14.23	1.71	2.43	15.6	127	2.80	3.06			
	1	13.20	1.78	2.14	11.2	100	2.65	2.76			
	2	13.16	2.36	2.67	18.6	101	2.80	3.24			
	3	14.37	1.95	2.50	16.8	113	3.85	3.49			
	4	13.24	2.59	2.87	21.0	118	2.80	2.69			
	173	13.71	5.65	2.45	20.5	95	1.68	0.61			
	174	13.40	3.91	2.48	23.0	102	1.80	0.75			
	175	13.27	4.28	2.26	20.0	120	1.59	0.69			
	176	13.17	2.59	2.37	20.0	120	1.65	0.68			
	177	14.13	4.10	2.74	24.5	96	2.05	0.76			

178 rows × 14 columns

Рисунок 6 – Заповнення пропусків середніми значеннями

Досить часто використовуваний підхід при роботі з відсутніми даними - це видалення записів (рядків) або полів (стовпців), в яких зустрічаються пропуски. Для того, щоб видалити всі об'єкти, які містять значення NaN скористайтеся методом dropna () без аргументів.

In [9]:	1	coppy.d	ropna()							
Out[9]:		Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflavanoid_Phenols	Proanthocyanins
	0	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29
	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28
	2	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81
	3	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18
	4	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82
	173	13.71	5.65	2.45	20.5	95	1.68	0.61	0.52	1.06
	174	13.40	3.91	2.48	23.0	102	1.80	0.75	0.43	1.41
	175	13.27	4.28	2.26	20.0	120	1.59	0.69	0.43	1.35
	176	13.17	2.59	2.37	20.0	120	1.65	0.68	0.53	1.46
	177	14.13	4.10	2.74	24.5	96	2.05	0.76	0.56	1.35

178 rows × 14 columns

Рисунок 7 – Заповнення пропусків середніми значеннями

```
In [12]: 1 X = dataset.iloc[:, :-1].values
2 Y = dataset.iloc[:, -1].values
```

Рисунок 8 – Розподіл набору даних на X та У

Рисунок 8 – Заповнення даних за допомогою SimpleImputer, strategy="mean"

Рисунок 9 – Заповнення даних за допомогою SimpleImputer, strategy="median"

Рисунок 10 – Заповнення даних за допомогою SimpleImputer,

strategy="most_frequent"

За першими двома ознаками

```
fig = plt.figure(figsize = (8,8))
In [18]:
              ax = fig.add_subplot(1,1,1)
           4 ax.set_xlabel('Alcohol', fontsize = 15)
5 ax.set_ylabel('Malic_Acid', fontsize = 15)
             ax.set_title('Data visualization', fontsize = 20)
              targets = [1, 2, 3]
colors = ['r', 'g', 'b']
for target, color in zip(targets,colors):
          10
                   indicesToKeep = dataset['Customer_Segment'] == target
                   11
          12
          13
                               c = color,
                               s = 50)
          14
          15 ax.legend(targets)
          16 ax.grid()
```


Рисунок 11 – Візуалізація початкових даних за першими двома ознаками

За першими трьома ознаками

```
2 fig = plt.figure(figsize = (8,8))
In [14]:
              ax = Axes3D(fig, elev=-130, azim=70)
           4 ax.set_xlabel('Alcohol', fontsize = 15)
           5 ax.set_ylabel('Malic_Acid', fontsize = 15)
           6 ax.set_zlabel('Ash', fontsize = 15)
7 ax.set_title('Data visualization 3D', fontsize = 20)
          8 targets = [1, 2, 3]
9 colors = ['r', 'g', 'b']
10 for target, color in zip(targets, colors):
           11
                  indicesToKeep = dataset['Customer_Segment'] == target
                   12
           13
           14
           15
                               edgecolor='k',
           16
                               alpha = 1,
                               c = color,
s = 50)
           17
           18
           19 ax.legend(targets)
           20 ax.grid()
```


Рисунок 12 – Візуалізація початкових даних за першими трьома ознаками

4. Розділити набір даних на тестову та тренувальну вибірку даних.

```
In [20]: 1  from sklearn.model_selection import train_test_split
2    X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=1)
3    print("X_train", X_train)
4    print("X_test", X_test)
5    print("y_train", y_train)
6    print("y_test", y_test)

X_train [[1.200e+01 1.510e+00 2.420e+00 ... 1.050e+00 2.650e+00 4.500e+02]
[1.272e+01 1.810e+00 2.200e+00 ... 1.160e+00 3.140e+00 7.140e+02]
[1.208e+01 1.390e+00 2.500e+00 ... 9.300e-01 3.190e+00 3.850e+02]
...
[1.349e+01 1.660e+00 2.240e+00 ... 9.800e-01 2.780e+00 4.720e+02]
[1.293e+01 2.810e+00 2.700e+00 ... 7.700e-01 2.310e+00 6.000e+02]
[1.305e+01 1.650e+00 2.550e+00 ... 1.120e+00 2.510e+00 1.105e+03]]
X_test [[1.369e+01 3.260e+00 2.540e+00 2.000e+01 1.070e+02 1.830e+00 5.600e-01 5.000e-01 8.000e-01 5.880e+00 9.600e-01 1.820e+00 6.800e+02]
[1.242e+01 1.610e+00 2.190e+00 9.2550e+01 1.080e+02 2.000e+00 2.090e+00 3.400e-01 1.610e+00 2.060e+00 1.060e+00 2.960e+00 3.450e+02]
```

Рисунок 13 – Розподіл даних на тестову та тренувальну вибірки

5. Виконати масштабування даних.

Маштабування даних

```
In [23]:
          1 from sklearn.preprocessing import MinMaxScaler
              sc = MinMaxScaler(feature_range=(0,1))
             sc.fit(X)
           4 X = sc.transform(X)
             print(X)
             X_train = sc.transform(X_train)
              X_test = sc.transform(X_test)
           8 print("Масштаб. тренувальна вибірка X")
           9 print(X_train)
          10 print("Масштаб. тестова вибірка X")
          11 print(X_test)
         [[0.84210526 0.1916996 0.57219251 ... 0.45528455 0.97069597 0.56134094]
          [0.57105263 0.2055336 0.4171123 ... 0.46341463 0.78021978 0.55064194]
[0.56052632 0.3201581 0.70053476 ... 0.44715447 0.6959707 0.64693295]
          [0.58947368 0.69960474 0.48128342 ... 0.08943089 0.10622711 0.39728959]
          [0.56315789 0.36561265 0.54010695 ... 0.09756098 0.12820513 0.40085592]
          [0.81578947 0.66403162 0.73796791 ... 0.10569106 0.12087912 0.20114123]]
         Масштаб. тренувальна вибірка Х
         [[1.200e+01 1.510e+00 2.420e+00 ... 1.050e+00 2.650e+00 4.500e+02]
           [1.272e+01 1.810e+00 2.200e+00 ... 1.160e+00 3.140e+00 7.140e+02]
          [1.208e+01 1.390e+00 2.500e+00 ... 9.300e-01 3.190e+00 3.850e+02]
          [1.349e+01 1.660e+00 2.240e+00 ... 9.800e-01 2.780e+00 4.720e+02]
           [1.293e+01 2.810e+00 2.700e+00 ... 7.700e-01 2.310e+00 6.000e+02]
          [1.305e+01 1.650e+00 2.550e+00 ... 1.120e+00 2.510e+00 1.105e+03]]
         Масштаб. тестова вибірка Х
         [[1.369e+01 3.260e+00 2.540e+00 2.000e+01 1.070e+02 1.830e+00 5.600e-01
           5.000e-01 8.000e-01 5.880e+00 9.600e-01 1.820e+00 6.800e+02]
           [1.242e+01 1.610e+00 2.190e+00 2.250e+01 1.080e+02 2.000e+00 2.090e+00
            3.400e-01 1.610e+00 2.060e+00 1.060e+00 2.960e+00 3.450e+02]
```

Рисунок 14 — Масштабування даних за допомогою метода *MinMaxScler()*

- 6. Зменшити розмірність вхідних даних за домомогою методу PCA та t-SNE.
 - 6.1 Зменшення розмірності даних за допомогою методу РСА

Метод РСА

```
In [25]:
          1 from sklearn.decomposition import PCA
          pca_method = PCA(n_components=3)
          3 principalComponents = pca_method.fit_transform(X)
          4 print("Метод РСА для X з 3 компонентами")
          5 print(principalComponents)
         Метод РСА для X з 3 компонентами
         [[-7.06335756e-01 -2.53192753e-01 2.40926932e-02]
          [-4.84976802e-01 -8.82289142e-03 -2.80482048e-01]
          [-5.21172266e-01 -1.89187222e-01 1.96216736e-01]
          [-8.21643663e-01 -5.80905512e-01 8.11097172e-02]
          [-2.02546382e-01 -5.94665740e-02 3.00239941e-01]
          [-6.08190152e-01 -4.87519191e-01 -7.54332321e-02]
          [-5.44047399e-01 -3.00196497e-01 -1.05074621e-01]
          [-4.74357495e-01 -2.98197021e-01 -2.82149308e-03]
          [-5.00432012e-01 -3.07602859e-01 -2.30493613e-01]
```

Рисунок 15 – Код зменшення розмірності методом РСА

```
principDataset = pd.DataFrame(data = principalComponents [:, 0:2],
columns = ['principal component 1', 'principal component 2'])
In [27]:
                  principDataset
                  finalDataset = pd.concat([principDataset, dataset[['Customer_Segment']]], axis = 1)
              5 | finalDataset
Out[27]:
                                          principal component 2 Customer_Segment
                               -0.706336
                                                       -0.253193
                               -0.484977
                               -0.521172
                                                       -0.189187
                               -0.821644
                                                       -0.580906
                               -0.202546
                                                       -0.059467
             173
                               0.739510
                                                       -0.471901
             174
                                0.581781
                                                       -0.348366
             175
                               0.626313
                                                       -0.546857
             176
                                0.572991
                                                       -0.425516
             177
                               0.701764
                                                       -0.513505
```

178 rows × 3 columns

Рисунок 16 – Створення таблиці для двовимірного відображення

Візуалізація для методу РСА з 2 компонентами

```
In [28]:
            1 fig = plt.figure(figsize = (8,8))
               ax = fig.add_subplot(1,1,1)
               ax.set_xlabel('Principal Component 1', fontsize = 15)
ax.set_ylabel('Principal Component 2', fontsize = 15)
               ax.set_title('2 component PCA', fontsize = 20)
               targets = [1, 2, 3]
colors = ['r', 'g', 'b']
                for target, color in zip(targets,colors):
                    indicesToKeep = finalDataset['Customer_Segment'] == target
                    ax.scatter(finalDataset.loc[indicesToKeep, 'principal component 1']
           10
                                 , finalDataset.loc[indicesToKeep, 'principal component 2']
           11
           12
                                 , c = color
           13
                                   s = 50)
           14 ax.legend(targets)
           15
               ax.grid()
```


Рисунок 17 – Візуалізація для методу РСА з 2 компонентами

Формування таблиці за методом РСА для тривимірної візуалізації

```
principDataset3 = pd.DataFrame(data = principalComponents [:, 0:3],
              columns = ['p_comp 1', 'p_comp 2', 'p_comp 3'])
           3 finalDataset3 = pd.concat([principDataset3, dataset[['Customer_Segment']]], axis = 1)
           4 finalDataset3
Out[29]:
              p_comp 1 p_comp 2 p_comp 3 Customer_Segment
           0 -0.706336 -0.253193 0.024093
            1 -0.484977 -0.008823 -0.280482
            2 -0.521172 -0.189187 0.198217
            3 -0.821644 -0.580906 0.081110
           4 -0.202546 -0.059467 0.300240
          173 0.739510 -0.471901 0.209360
          174 0.581781 -0.348366 0.083590
          175 0.626313 -0.546857 -0.030495
          176 0.572991 -0.425516 -0.094537
                                                        3
          177 0.701764 -0.513505 0.293910
```

178 rows × 4 columns

Рисунок 18 – Створення таблиці для трьохвимірного відображення

Рисунок 19 – Візуалізація для методу РСА з 3 компонентами

6.1 Зменшення розмірності даних за допомогою методу t-SNE

Метод t-SNE

Рисунок 20 – Код зменшення розмірності методом t-SNE

Таблиця для двовимірного відображення

```
1 tsneDataset = pd.DataFrame(data = X_2D, columns = ['dim 1', 'dim 2'])
In [38]:
           2 tsneDataset
           3 final_tsneDataset = pd.concat([tsneDataset, dataset[['Customer_Segment']]], axis = 1)
           4 final_tsneDataset
Out[38]:
                  dim 1 dim 2 Customer_Segment
           0 7.713866 9.659583
            1 6.441795 6.914687
           2 10.179637 6.901495
            3 11.261244 9.309397
               8.651131 2.264675
          173 -11.864552 -10.053349
          174 -10.085733 -10.449601
          175 -9.508742 -12.125190
                                               3
          176 -10.115598 -12.029475
                                               3
          177 -11.450240 -11.269584
         178 rows × 3 columns
```

Рисунок 21 – Створення таблиці для двовимірного відображення

Візуалізація для методу t-SNE з 2 компонентами

Рисунок 22 – Візуалізація для методу t-SNE з 2 компонентами

Формування таблиці за методом t-SNE для тривимірної візуалізації

```
1 | tsne_method = TSNE (n_components = 3, perplexity = 5, n_iter=5000, random_state = 0, learning_rate = 100)
In [42]:
           2 X_3D = tsne_method.fit_transform(X)
           3 tsneDataset = pd.DataFrame(data = X_3D, columns = ['dim 1', 'dim 2', 'dim 3'])
           4 tsneDataset
           5 final_tsneDataset = pd.concat([tsneDataset, dataset[['Customer_Segment']]], axis = 1)
           6 final_tsneDataset
Out[42]:
                             dim 2
                                       dim 3 Customer_Segment
            0 -102.573128 -25.631596 33.992153
            1 -49.533241 -24.351484 14.020737
            2 -80.553822 -14.767481 57.521206
            3 -79.285988 -39.363842 55.620331
           4 -52.520065 -3.574616 31.077799
          173 122.854843 -25.579245 7.969127
          174 112.313927 -27.514774 -16.957693
          175 113.415581 -36.078808 -29.829729
          176 118.815239 -40.798215 -24.808651
```

Рисунок 23 – Створення таблиці для трьохвимірного відображення

177 125.387894 -28.788553 -13.235101

178 rows × 4 columns

Візуалізація для методу t-SNE з 3 компонентами

```
In [41]:
2     ax = Axes3D(fig, elev=-160, azim=70)
3     ax.set_xlabel('dim 1', fontsize = 15)
4     ax.set_ylabel('dim 2', fontsize = 15)
5     ax.set_zlabel('dim 3', fontsize = 15)
6     ax.set_title('t-SNE', fontsize = 20)
7     targets = [1, 2, 3]
8     colors = ['r', 'g', 'b']
9     for target, color in zip(targets, colors):
10         indicesToKeep = final_tsneDataset['Customer_Segment'] == target
11         ax.scatter(final_tsneDataset.loc[indicesToKeep, 'dim 1'],
12         final_tsneDataset.loc[indicesToKeep, 'dim 2'],
13         final_tsneDataset.loc[indicesToKeep, 'dim 3'],
14         c = color, alpha = 1,
15         s = 50)
16     ax.legend(targets)
17     ax.grid()
```


Рисунок 24 — Візуалізація для методу t-SNE з 3 компонентами

7. Провести навчання моделей на навчальному наборі даних використовуючи будь який метод.

Навчання моделі K-Means на наборі даних

Рисунок 25 — Навчання моделей методом K-Means

Навчання моделі Random Forest на наборі даних

```
In [30]:
                                                      from sklearn.ensemble import RandomForestClassifier
f = RandomForestClassifier(n_estimators=20)
                                                                       rf.fit(X_train, y_train)
Out[30]: RandomForestClassifier(n_estimators=20)
                                                  Прогнозування результатів тестового набору
                                                        2 | print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))
                                                 [[3 3]
[[2 2]
[1 1]
[[2 2]
[1 1]
[[3 3]
[[2 2]
[[1 1]
[[2 2]
[[1 1]
[[2 2]
[[1 1]
[[2 2]
[[1 1]
[[2 2]
[[1 1]
[[2 2]
[[1 1]
[[2 2]
[[1 1]
[[2 2]
[[1 1]
[[1 1]
[[2 2]
[[1 1]
[[1 1]
[[2 2]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 1]
[[1 
 In [32]:
                                                       1 conf_matrix = confusion_matrix(y_test, y_pred)
                                                                         print("Матриця відповідей:")
print(conf_matrix)
                                                                      print('Ouinka точності на тестовому наборі:')
print("{:.0%}".format(accuracy_score(y_test,y_pred)))
second_accur = accuracy_score(y_test,y_pred)
                                                                      print(second_accur)
                                                 Матриця відловідей:
[[14 0 0]
[1 12 0]
[0 0 9]]
                                                  Оцінка точності на тестовому наборі:
                                                  0.972222222222222
```

Рисунок 26 – Навчання моделей методом Random Forest

Навчання моделі SVM на навчальному наборі

```
In [33]: 

| from sklearn.svm import SVC |
| classifier = SVC() |
| 3 classifier.fit(X_train, y_train) |
| 4 svcPred = classifier.predict(X_test) |
| In [34]: 
| from sklearn import svm |
| 2 svc = svm.SVC(kernel='linear', C=1,gamma='auto').fit(X_train,y_train) |
| 3 y_predicted = svc.predict(X_test) |
| 4 print(y_predicted) |
| [3 2 1 2 1 3 2 1 3 2 1 1 2 1 2 2 3 1 2 1 1 2 3 2 1 3 1 1 1 3 2 3 3 1 2 2] |
| In [35]: 
| 2 from matplotlib.colors import ListedColormap |
| result_svm = confusion matrix(y_test, y_predicted) |
| print("Confusion Matrix:") |
| 5 print("result_svm) |
| 6 third_accur = accuracy_score(y_test,y_predicted) |
| 7 print("Accuracy:",third_accur) |
| Confusion Matrix: |
| [14 0 0] |
| [0 13 0] |
| [0 0 9] |
| Accuracy: 1.0
```

Рисунок 27 — Навчання моделей методом SVM

8. Порівняння точності методів навчання моделей

Порівняння точності кожної моделі

```
In [36]:

Accuracy = [first_accur, second_accur, third_accur]

Methods = ['K-Means', 'Random Forest', 'SVM']

Accuracy_pos = np.arange(len(Methods))

plt.bar(Accuracy_pos, Accuracy)

plt.xticks(Accuracy_pos, Methods)

6 plt.title('Nopiвняння точності кожної моделі')

7 plt.show()

Ropiвняння точності кожної моделі

1.0

0.8

0.6

0.4

0.2

K.Means Random Forest SVM
```

Рисунок 27 – Порівняння моделей

Висновки:

В ході виконання практичної роботи було отримано практичні навички при обробці даних для подальшої візуалізації та моделювання за допомогою методів РСА та t-SNE. Було виконано моделювання та візуалізація вхідних даних та перевірено точність цих методів методом K-Means, Random Forest, SVM. Визначили, що метод SVM в даному випадку буде мати найбільшу точність.