RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

Credit Based Grading System

Electrical Engineering, IV-Semester EE-4002 Electrical Machine-I

COURSE OBJECTIVE

The objective of this foundational course is to develop fundamentals, physical concepts and systematic development of circuit models analysis of transformers, induction motors and special machines.

COURSE CONTENT

Transformer-I:Working principle, e.mf. equation, construction, phasor diagrams, equivalent circuit, voltage regulation, losses, separation of hysteresis and eddy current losses, efficiency, tests: open circuit and short circuit, load, Sumpner's test, Condition for maximum efficiency and regulation, Power and distribution transformer, allday efficiency, Excitation phenomenon. Autotransformer: working, advantages, its equivalent circuit and phasor diagram.

Transformer-II: Three phase transformer: its construction, groups and connections, their working and applications; Scottconnection; Parallel operation of Transformers: application, advantages, requirement and load sharing; Tap changers, cooling, conservator and breather. Pulse and high frequency transformers.

Three phase Induction Motor- I:Working principle, construction, comparison of slip ring and squirrel cage motors, steady state analysis, phasor diagram and equivalent circuit, power flow diagram, torque-speed and power-speed characteristics, Losses and efficiency, No load and block rotor test, circle diagram

Three phase Induction Motor-II:Starting of squirrel cage and slip ring motors, power factor control, Cogging & Crawling, Double cage &Deep bar Indication Motor, impact of unbalanced supply and harmonics on performance, speed control, braking, Induction Generator. Applications

Single Phase Motors: Single Phase Induction motor; double revolving field theory, equivalent circuit and its determination, performance calculation, starting methods and types of single phase Induction motors: their working principle and applications, comparison with three phases Induction Motor. Single phase A.C. series motor, Servo motors, Linear Induction Motor

COURSE OUTCOME:

After the completion of course, students must learn the foundation to the theory of electromechanical devices with specific emphasis on transformers and induction motor.

EVALUATION

Evaluation will be continuous an integral part of the class as well through external assessment. Laboratory assessment will be based on external assessment, assignments, presentations, and interview of each candidate.

TEXT BOOKS

- 1. Electrical Machines by Nagrath and Kothari, McGraw-Hill
- 2. P.S.Bimbhra, Electrical Machines, Khanna Publishers

REFERENCES

- 1.V.Del Toro, "Electrical Machines & Power Systems", 1985, Prentice-Hall, Inc., EnglewoodCliffs
- 2.S K Bhattacharya, Electrical Machines, McGraw-Hill
- 3. Ashfaq Hussain, Electrical Machines, Dhanpat Rai & Co
- 4. Langsdorf, A.C. Machines, McGraw-Hill
- 5. Samarajit Ghosh, Electrical Machines, Pearson

List of Experiments (expandable)

Experiments can cover any of the above topics, following is a suggestive list:

- 1. Perform turn ratio and polarity test on 1-phase transformer
- 2. Perform load test on a 1-phase transformer and plot its load characteristic
- 3. Perform OC and SC tests on a 1-phase transformer and determine its equivalent circuit. Also find its efficiency and regulation at different load and power factor.
- 4. Perform OC and SC tests on a 3-phase transformer and determine its equivalent circuit. Also find its efficiency and regulation at different load and power factor.
- 5. Perform Sumpner's test on two 1-phase transformer and determine its efficiency at various load.
- 6. Perform No-load and block rotor test on a 3- phase IM and determine its equivalent circuit.
- 7. Perform load test on a 3- phase IM and plot its performance characteristics.
- 8. Study various types of starters used for 3- IMs.
- 9. Perform No-load and block rotor test on a 1- phase IM and determine its equivalent circuit.