STATISTICAL INVARIANCE OF BETTI NUMBERS

Siddharth Vishwanath 1 Kenji Fukumizu 2 Satoshi Kuriki 2 Bharath Sriperumbudur 1

¹Department of Statistics, The Pennsylvania State University 2Depatrment of Statistical Inference, Institute for Statistical Mathematics

Topology and Data

Topological Data Analysis (TDA) is a promising new paradigm comprising of *mathematical*, *statistical* and *algorithmic* tools to study the shape of data.

- Consider a "black-box" probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- $X_n = \{X_1 \dots X_n\}$ is a random collection of points in \mathbb{R}^d
- Topological summaries $Top(\boldsymbol{X}_n)$ are random variables pushed-forward to a summary space $(S, \mathcal{B}(S), \mathbb{Q})$

Betti Numbers and Topological Invariants

- The homology $\{H_k(\mathfrak{X})\}_{k\in\mathbb{N}}$ is a topological invariant of \mathfrak{X}
- The Betti numbers are given by $\beta_k(\mathfrak{X}) = \dim (H_k(\mathfrak{X}))$
- Informally, $\beta_k(\mathfrak{X})$ counts the # of k-dimensional voids in \mathfrak{X}

 $\beta_k = 1, 0, 1, 0 \dots$ $\beta_k = 1, 2, 1, 0 \dots$

The TDA Pipeline

Persistent homology examines topological features across a wide spectrum of resolutions.

- 1. At resolution r > 0 form a thickening $\{B_r(X_k)\}_{k=1}^n$
- 2. Next, construct a simplicial complex K_r (ex. $\operatorname{\check{e}ech}$, Rips, etc.)
- 3. Examine the simplicial homology for the filtration $\{K_r\}_{r>0}$

Figure 1. Data is uniformly sampled from a circle. The persistence barcode depicts the number of connected components (blue) and the number of loops (red) as the resolution r increases

Motivation

- $\mathcal{P} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$ is a parametric family of distributions
- Let $X_n \sim \mathbb{P}_{\theta_1}$ and $Y_n \sim \mathbb{P}_{\theta_2}$ be two collections of points which are from fundamentally different distributions
- Our aim is to examine the conditions under which they have identical asymptotic behaviour of the Betti numbers i.e.

$$\lim_{n \to \infty} \frac{1}{n} \mathbb{E}\left(\beta_k \left(\check{\mathcal{C}}\left(\boldsymbol{X}_n, r_n\right)\right)\right) \stackrel{?}{=} \lim_{n \to \infty} \frac{1}{n} \mathbb{E}\left(\beta_k \left(\check{\mathcal{C}}\left(\boldsymbol{Y}_n, r_n\right)\right)\right)$$

This outlines conditions when topological inference is possible

Asymptotic Regimes

The asymptotic behaviour (as $n \to \infty$) is qualitatively different as the behaviour of the resolution $r_n \to 0$ varies. These are:

- Sparse regime : $r_n = o\left(n^{-1/d}\right)$
- Thermodynamic regime: $r_n = \Theta\left(n^{-1/d}\right)$
- Dense regime : $r_n = \omega \left(n^{-1/d} \right)$

Table 1. Asymptotic regimes of β_0 for 2D-Poisson Process with $\lambda=700$

Minimal Spanning Trees

Minimal spanning trees are intrinsically related to $\beta_0(\boldsymbol{X}_n,r)$ (Lemma): Let $\boldsymbol{X}_n=\{X_1,X_2\ldots X_n\}$ be a random collection of points in \mathbb{R}^d . Then the following hold true:

- 1. The Euclidean MST $\mathcal{M}(\boldsymbol{X}_n)$ is unique a.s. \mathbb{P}
- 2. The smallest edge e^* is an element of $\mathcal{M}(\boldsymbol{X}_n)$
- 3. For each $\boldsymbol{Y}, \boldsymbol{Z} \subseteq \boldsymbol{X}_n$ s.t. $\boldsymbol{Y} \cap \boldsymbol{Z} = \varnothing$ and $\boldsymbol{Y} \cup \boldsymbol{Z} = \boldsymbol{X}_n$, the edge e defined by $\|e\| = \min_{y \in \boldsymbol{Y}, z \in \boldsymbol{Z}} \|y z\|$ is in $\mathfrak{M}(\boldsymbol{X}_n)$.

This reveals the relationship between the Euclidean MST and the 0^{th} persistence barcode.

(Theorem): Under the conditions of the previous Lemma:

- 1. The edges of $\mathcal{M}(\boldsymbol{X}_n)$ generate the 0^{th} persistence barcode.
- 2. The 0^{th} persistent Betti number at resolution r is given by

$$\beta_0\left(\check{\mathcal{C}}(\boldsymbol{X}_n)\right) = n - \sum_{e \in \mathcal{M}(\boldsymbol{X}_n)} \mathbb{1}_{[0,r]}\left(\|e\|\right)$$

Table 2. Correspondence between $\mathcal{M}(\boldsymbol{X}_n)$ and 0^{th} Barcode

Thermodynamic Behaviour

The thermodynamic regime exhibits interesting behaviour

Table 3. β_0 in the theormodynamic regime for PP with $\lambda=10,50,500$

(Theorem): Let $X_n \stackrel{iid}{\sim} f$, where f(x) is bounded, Riemann integrable with compact support. When $n^{1/d}r_n \to t \in (0, \infty)$:

$$\frac{1}{n}\mathbb{E}\left(\beta_0\left(\check{\mathcal{C}}\left(\boldsymbol{X}_n,r_n\right)\right)\right) \to \int_{\mathbb{R}^d} \mathbb{E}\left(\sum_{e \in \mathcal{M}(\mathcal{P}_{1,0})} \mathbb{1}_{[0,t]}\left(f(\boldsymbol{x})^{\frac{-1}{d}} \|e\|\right)\right) f(\boldsymbol{x}) d\boldsymbol{x}$$

where $M(\mathcal{P}_{1,0})$ is the MST for the unit intensity Poisson process with a point at the origin. Now, when we look at any β_k

(Theorem 3.3, [3]) Under the conditions of the Theorem above there exist functions $\hat{\beta}_k$ such that:

$$\frac{1}{n}\mathbb{E}\left(\beta_k\left(\check{\mathcal{C}}\left(\boldsymbol{X}_n,r_n\right)\right)\right)\xrightarrow[\mathbb{R}^d]{n\to\infty}\int\limits_{\mathbb{R}^d}\hat{\beta_k}\left(f(\boldsymbol{x})^{1/d}t\right)f(\boldsymbol{x})d\boldsymbol{x}:=\Psi_k(f,t)$$

Statistical Invariance : Characterization

Define \mathcal{F}_k as a Ψ_k -invariant family of densities such that $\Psi_k(f,t)=\Psi_k(g,t) \ \forall f,g\in\mathcal{F}_k$. These densities admit identical behaviour for β_k in the thermodynamic regime.

We define \mathcal{F}^* as the family of densities such that for each $t \geq 0$ $\mathbb{E}\left(\mathbb{1}\left(f(\boldsymbol{X}) \geq t\right)\right) = \mathbb{E}\left(\mathbb{1}\left(g(\boldsymbol{Y}) \geq t\right)\right) \ \forall \boldsymbol{X} \sim f, \boldsymbol{Y} \sim g.$

For families indexed by Θ we denote them $\mathcal{F}^*(\Theta)$ and $\mathcal{F}_k(\Theta)$

(Lemma):
$$\mathfrak{F}^* \subset \bigcap_{k=0}^{\infty} \mathfrak{F}_k$$

Thus, \mathcal{F}^* admits identical behaviour for each Betti number β_k

Statistical Invariance : I

We employ groups to characterize strong invariance properties.

(Theorem): Suppose $\mathcal G$ is a group of Borel-measurable isometries acting on $\mathfrak X\subseteq\mathbb R^d$, and $T:\mathfrak X\to\mathfrak T$ is $\mathcal G$ -maximal invariant. If $\boldsymbol X_\theta\sim f_\theta(\boldsymbol x)$ where

$$f_{\theta}(\boldsymbol{x}) = \phi\left(g_{\theta} \circ \Psi\left(\boldsymbol{x}\right)\right)$$

where $\Psi \in \mathcal{C}^1(\mathfrak{X})$; and, $\phi : \mathfrak{X} \to \mathbb{R}_{\geq 0}$ is some function which ensures that f_θ is a valid density.

Then, $\{f_{\theta}: \theta \in \Theta\}$ admits $\mathcal{F}^*(\Theta)$ -invariance if and only if $\det \left(\boldsymbol{J}_{\Psi^{-1}}(x) \right) = \zeta \left(T\left(\boldsymbol{x} \right) \right)$ for some function $\zeta: \mathcal{T} \to \mathbb{R}$

This gives us necessary and sufficient conditions for identifying f_{θ} upto isometry from the asymptotic behaviour of Betti numbers.

(Theorem): Let \mathcal{P} be a family of distributions such that, for each $f_{\theta} \in \mathcal{P}$, f_{θ} statisfies stochastic regularity conditions. Then, \mathcal{P} admits \mathcal{F}^* -invariance if and only if

$$\langle f_{\theta}^k, S_{\theta} \rangle_{L^2} = 0 \ \forall k \in \mathbb{N}$$

where, S_{θ} is the score-function given by $S_{\theta}(\boldsymbol{x}) = \nabla_{\theta} \log(f_{\theta}(\boldsymbol{x}))$

(Example 1): Consider $\mathfrak{X} = \mathbb{R}^2$ and $R_{\theta} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$ is the 2D-rotation matrix with $v_{\theta} := (\cos(\theta), \sin(\theta))^{\top}$.

Denote $\Phi(\boldsymbol{x})$ as the CDF of a $\mathcal{N}(\mathbf{0}, I_2)$ distribution. Then,

$$f_{\theta}(x,y) = \left(v_{\theta}^{\top} \Phi^{-1}(x,y)\right)^2 = \left(\cos(\theta)\Phi^{-1}(x) + \sin(\theta)\Phi^{-1}(y)\right)^2$$

admits invariance for each 2D-rotation R_{θ} .

In the general case, $\mathfrak{X}=\mathbb{R}^d$ and $\mathcal{G}=S\mathcal{O}(d)$ with $v_{\theta}\in S^{d-1}$

Statistical Invariance : Non-isometric Cases

We illustrate conditions where fundamentally different distributions admit asymptotic invariance.

(Example 2): Let g be a density on \mathbb{R}_+ with $\phi_a(x) = ax$ and $\phi_b(x) = -bx$ with the condition that $\frac{1}{a} + \frac{1}{b} = 1$. Then,

 $f(x) = \{g(ax)\mathbb{1} (x \ge 0) + g(-bx)\mathbb{1} (x \le 0)\} \text{ admits invariance }$

Table 4. Illustration of invariance for Gamma(10, 0.5) distribution

(Abridged Theorem): Under some technical conditions on ν , μ and Θ ; Suppose g is a density with respect to ν which satisfies $\nu(d\boldsymbol{y}) = \Psi\left(\left|\det\left(J_{\phi}\right)\right|\right)\nu(d\boldsymbol{x})$, where $\phi_{\boldsymbol{\theta}}: \mathbb{R}^d \to \mathbb{R}^d$ is a full-rank linear bijection for each $\boldsymbol{\theta} \in (\Theta, \Xi, \mu)$. Define,

$$f(\boldsymbol{x}, \boldsymbol{\theta}) = g(\phi_{\boldsymbol{\theta}}(\boldsymbol{x}))$$

Then f admits \mathcal{F}^* -invariance for each $(\phi_{\pmb{\theta}}, \mu)$ if

$$\int\limits_{\Theta} \Psi\left(\left|\det\left(J_{\phi_{\pmb{\theta}}^{-1}}\right)\right|\right) \mu(d\pmb{\theta}) = 1$$

(Example 3): Suppose g(r) be a density with $supp(g) \subseteq \mathbb{R}_+$ w.r.t. the measure ν such that $\nu(dr) = d(r^d) = r^{d-1}dr$.

Let $\Theta = S^{d-1}$ and $a: S^{d-1} \to \mathbb{R}_+$ be a non-negative function.

For each $\pmb{\theta} \in S^{d-1}$ define the mapping $\phi_{\pmb{\theta}}(r) = ra(\pmb{\theta})$ such that

$$\int_{S^{d-1}} \frac{\mu(d\boldsymbol{\theta})}{a(\boldsymbol{\theta})^d} = 1$$

Then for each such $(a(\boldsymbol{\theta}), \mu)$ we have that

 $f(\boldsymbol{x}) = f(r, \boldsymbol{\theta}) = g(ra(\boldsymbol{\theta}))$ admits invariance

References

- [1] Morris L Eaton. Group invariance applications in statistics. In Regional conference series in Probability and Statistics, pages i–133. JSTOR, 1989.
- [2] Mathew D Penrose, Joseph E Yukich, et al. Weak laws of large numbers in geometric probability. *The Annals of Applied Probability*, 13(1):277–303, 2003.
- [3] Khanh Duy Trinh. A remark on the convergence of betti numbers in the thermodynamic regime. *Pacific Journal of Mathematics for Industry*, 9(1):4, 2017.
- [4] Robert A Wijsman. Invariant measures on groups and their use in statistics. IMS, 1990.