```
In [3]:
        #import libraries for titanic project
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [4]: # importing dataset
         df=pd.read_csv(r"C:\Users\ARUTHRA D\Downloads\archive (1)\Titanic-Dataset.csv")
         print(df)
              PassengerId
                           Survived
                                       Pclass
                                               \
         0
                         1
                                   0
                                            3
                         2
                                            1
         1
                                   1
         2
                         3
                                   1
                                            3
         3
                         4
                                   1
                                            1
         4
                         5
                                   0
                                            3
         . .
                       . . .
                                  . . .
         886
                       887
                                   0
                                            2
                                   1
                                            1
         887
                       888
         888
                       889
                                   0
                                            3
         889
                       890
                                   1
                                            1
         890
                       891
                                   0
                                            3
                                                              Name
                                                                        Sex
                                                                              Age
                                                                                    SibSp \
         0
                                                                             22.0
                                          Braund, Mr. Owen Harris
                                                                       male
                                                                                        1
              Cumings, Mrs. John Bradley (Florence Briggs Th...
         1
                                                                     female
                                                                              38.0
                                                                                        1
         2
                                           Heikkinen, Miss. Laina
                                                                     female 26.0
                                                                                        0
         3
                   Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                                     female 35.0
                                                                                        1
         4
                                         Allen, Mr. William Henry
                                                                       male 35.0
                                                                                        0
                                                                        . . .
                                                                               . . .
         . .
         886
                                            Montvila, Rev. Juozas
                                                                       male 27.0
                                                                                        0
                                     Graham, Miss. Margaret Edith
                                                                     female 19.0
                                                                                        0
         887
         888
                        Johnston, Miss. Catherine Helen "Carrie"
                                                                     female
                                                                              NaN
                                                                                        1
         889
                                            Behr, Mr. Karl Howell
                                                                       male 26.0
                                                                                        0
         890
                                              Dooley, Mr. Patrick
                                                                       male 32.0
                                                                                        0
              Parch
                                            Fare Cabin Embarked
                                Ticket
         0
                  0
                             A/5 21171
                                          7.2500
                                                    NaN
                                                               S
         1
                  0
                              PC 17599
                                                    C85
                                                               C
                                         71.2833
         2
                  0
                     STON/02. 3101282
                                         7.9250
                                                   NaN
                                                               S
         3
                  0
                                113803
                                         53.1000
                                                   C123
                                                               S
         4
                  0
                                373450
                                          8.0500
                                                               S
                                                    NaN
                                              . . .
                                                    . . .
         . .
                 . . .
                                    . . .
                                                              . . .
                                                               S
         886
                  0
                                211536
                                         13.0000
                                                    NaN
                                                               S
         887
                  0
                                112053
                                         30.0000
                                                    B42
                                                               S
         888
                  2
                            W./C. 6607
                                         23.4500
                                                    NaN
         889
                  0
                                111369
                                         30.0000
                                                   C148
                                                               C
         890
                                370376
                                          7.7500
                  0
                                                    NaN
                                                               Q
         [891 rows x 12 columns]
```

In [5]: df.shape

Out[5]: (891, 12)

```
In [6]: df.describe()
```

Out[6]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
In [8]: # If the column is named 'Survived'
print(df['Survived'].value_counts())
```

Survived 0 549 1 342

Name: count, dtype: int64

dtype='object')

```
In [21]: # Plotting with seaborn (sns)
import seaborn as sns
import matplotlib.pyplot as plt
sns.countplot(x=df['Survived'], hue=df['Pclass'])
plt.show()
```


Out[10]: 0.22895622895622897

```
In [11]: df.drop('Cabin',inplace=True,axis=1)#because there is more than 70% empty values
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 891 entries, 0 to 890
        Data columns (total 10 columns):
         #
             Column
                      Non-Null Count Dtype
                      -----
        ---
            -----
         0
             Survived 891 non-null int64
             Pclass
                      891 non-null int64
         1
         2
             Name
                      891 non-null
                                     object
         3
                      891 non-null
             Sex
                                     object
         4
                      714 non-null float64
             Age
         5
                      891 non-null int64
             SibSp
         6
                      891 non-null int64
             Parch
             Ticket
         7
                      891 non-null
                                     object
         8
                      891 non-null
                                     float64
             Fare
         9
             Embarked 889 non-null
                                     object
        dtypes: float64(2), int64(4), object(4)
        memory usage: 69.7+ KB
In [12]: df['Age'].count()/df.shape[0]
        0.8013468013468014
        df.dropna(subset=['Age', 'Embarked'], inplace=True)
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        Index: 712 entries, 0 to 890
        Data columns (total 10 columns):
           Column
                      Non-Null Count Dtype
        --- ----
                      -----
         0
             Survived 712 non-null
                                     int64
         1
             Pclass
                      712 non-null
                                     int64
         2
             Name
                      712 non-null
                                     object
         3
             Sex
                      712 non-null
                                     object
         4
                      712 non-null
                                     float64
             Age
             SibSp
         5
                      712 non-null
                                     int64
                      712 non-null
         6
             Parch
                                     int64
         7
             Ticket
                      712 non-null
                                     object
         8
             Fare
                      712 non-null
                                     float64
             Embarked 712 non-null
         9
                                     object
        dtypes: float64(2), int64(4), object(4)
        memory usage: 61.2+ KB
```

```
In [13]:
          df['Title']=df['Name'].str.extract(r'([A-Za-z]+\.)',expand=False)
           df.drop('Name',inplace=True,axis=1)
           pd.set_option('display.max_columns',None)
           pd.set option('display.max rows', None)
           df
                        0
                                                    2
                                                           0
                                                                                                   S
            333
                               3
                                    male 16.00
                                                                          345764
                                                                                   18.0000
                                                                                                            Mr.
            336
                        0
                                         29.00
                                                    1
                                                                          113776
                                                                                                   S
                               1
                                    male
                                                           0
                                                                                   66.6000
                                                                                                            Mr.
            337
                        1
                               1
                                  female 41.00
                                                    0
                                                           0
                                                                           16966
                                                                                  134.5000
                                                                                                   С
                                                                                                           Miss.
            338
                        1
                               3
                                    male
                                         45.00
                                                    0
                                                           0
                                                                            7598
                                                                                    8.0500
                                                                                                   S
                                                                                                            Mr.
            339
                        0
                                         45.00
                                                                           113784
                                                                                   35.5000
                                                                                                    S
                               1
                                    male
                                                    0
                                                           0
                                                                                                            Mr.
            340
                        1
                               2
                                    male
                                           2.00
                                                    1
                                                                          230080
                                                                                   26.0000
                                                                                                    S
                                                                                                         Master.
                                                           1
                                                                                                   S
            341
                                         24.00
                                                    3
                                                           2
                                                                           19950
                                                                                  263.0000
                                                                                                           Miss.
                        1
                               1
                                  female
            342
                        0
                               2
                                    male
                                         28.00
                                                    0
                                                           0
                                                                          248740
                                                                                   13.0000
                                                                                                   S
                                                                                                            Mr.
                                                                          244361
            343
                        0
                               2
                                    male
                                         25.00
                                                    0
                                                           0
                                                                                   13.0000
                                                                                                   S
                                                                                                            Mr.
            344
                        0
                               2
                                    male 36.00
                                                    0
                                                           0
                                                                          229236
                                                                                   13.0000
                                                                                                    S
                                                                                                            Mr.
            345
                        1
                               2
                                  female
                                         24.00
                                                    0
                                                           0
                                                                          248733
                                                                                   13.0000
                                                                                                    S
                                                                                                           Miss.
                                         40.00
                                                                                   13.0000
                                                                                                   S
            346
                        1
                                  female
                                                    0
                                                           0
                                                                           31418
                                                                                                           Miss.
                                                                                                   S
            348
                        1
                               3
                                    male
                                           3.00
                                                    1
                                                           1
                                                                       C.A. 37671
                                                                                   15.9000
                                                                                                         Master.
```

In [14]: df['Survived'].value_counts()

Out[14]: Survived 0 424

1 288

```
In [15]: sns.countplot(data=df,x='Survived')
   plt.ylabel('Number Of Survived')
   plt.title('Survival Rate')
   plt.grid()
   plt.show()
```



```
In [16]: sns.countplot(x='Sex',data=df)
  plt.ylabel('Number Of Gender')
  plt.title('Gender Rate')
  plt.grid()
  plt.show()
```



```
In [19]: sns.countplot(x='Pclass',data=df)
plt.ylabel('Number Of Classes')
plt.title('Classes')
plt.show()
```



```
In [20]: sns.histplot(df['Age'],bins=25)
    plt.yticks(np.arange(0,100,10))
    plt.xticks(np.arange(0,90,5))
    plt.title('Age Distribution',fontsize=14)
    plt.xlabel('No Of People')
    plt.show()
```



```
In [21]: sns.countplot(x='SibSp',data=df)
plt.show()
```


In [22]: sns.countplot(x='Parch',data=df)

Out[22]: <Axes: xlabel='Parch', ylabel='count'>


```
In [23]: print('Siblings:\n',df['SibSp'].value_counts())
         print('Parents : \n',df['Parch'].value_counts())
          Siblings:
           SibSp
          0
               469
          1
               183
          2
                25
          4
                18
          3
                12
          5
                 5
          Name: count, dtype: int64
          Parents:
           Parch
          0
               519
          1
               110
          2
                68
          5
                 5
                 5
          3
          4
                 4
          6
                 1
          Name: count, dtype: int64
         df.min()
In [24]:
Out[24]: Survived
                            0
          Pclass
                            1
          Sex
                      female
          Age
                        0.42
          SibSp
                            0
          Parch
                            0
          Ticket
                      110152
          Fare
                         0.0
          Embarked
                            C
          Title
                       Capt.
          dtype: object
In [26]:
         df.max()
Out[26]: Survived
                               1
                               3
          Pclass
          Sex
                            male
          Age
                            80.0
                               5
          SibSp
          Parch
                               6
          Ticket
                      WE/P 5735
                       512.3292
          Fare
          Embarked
                               S
          Title
                            Sir.
          dtype: object
In [27]:
         df.mode()
Out[27]:
             Survived Pclass
                            Sex Age SibSp Parch Ticket Fare Embarked Title
          0
                                                 0 347082 13.0
                   0
                          3 male 24.0
                                                                      S
                                                                          Mr.
```

C:\Users\ARUTHRA D\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: Th
e figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

In [29]: df.groupby('Survived')['Sex'].value_counts()

Out[29]: Survived Sex
0 male 360
female 64
1 female 195
male 93
Name: count, dtype: int64

```
In [30]: sns.catplot(x='Survived',hue='Sex',col='Pclass',data=df,kind='count')
plt.yticks(np.arange(0,250,20))
plt.show()
```

C:\Users\ARUTHRA D\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: Th
e figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

In [31]: df.groupby(['Survived','Pclass'])['Sex'].value_counts()

Out[31]: Survived Pclass Sex male 1 61 female 3 2 male 84 female 6 3 male 215 female 55 female 1 1 80 male 40 2 female 68 male 15 3 female 47 male 38

Name: count, dtype: int64

```
In [32]: sns.catplot(x='Survived',hue='Sex',col='Embarked',data=df,kind='count')
plt.yticks(np.arange(0,330,30))
plt.show()
```

C:\Users\ARUTHRA D\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: Th
e figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

In [33]: df.groupby(['Survived','Embarked'])['Sex'].value_counts()

Out[33]:	Survived	Embarked	Sex	
	0	C	male	45
			female	6
		Q	male	15
			female	5
		S	male	300
			female	53
	1	С	female	55
			male	24
		Q	female	7
			male	1
		S	female	133
			male	68

```
In [34]: sns.catplot(x='Survived',hue='Sex',col='Embarked',row='Pclass',data=df,kind='count')
plt.yticks(np.arange(0,190,20))
plt.tight_layout()
plt.show()
```

C:\Users\ARUTHRA D\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: Th
e figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)
C:\Users\ARUTHRA D\AppData\Local\Temp\ipykernel_15688\1850565211.py:3: UserWarning: The
figure layout has changed to tight

In [35]: df.groupby(['Survived','Embarked','Pclass'])['Sex'].value_counts()

Out[35]:	Survived	Embarked	Pclass	Sex	
	0	C	1	male	20
				female	1
			2	male	7
			3	male	18
				female	5
		Q	1	male	1
			2	male	1
			3	male	13
				female	5
		S	1	male	40
				female	2
			2	male	76
				female	6
			3	male	184
				female	45
	1	C	1	female	37
				male	16
			2	female	7
				male	1
			3	female	11
				male	7
		Q	1	female	1
			2	female	1
			3	female	5
				male	1
		S	1	female	42
				male	24
			2	female	60
				male	14
			3	female	31
				male	30

```
In [37]: sns.boxplot(df['Age'])
         plt.show()
          80
          70
          60
          50
           40
          30
          20 -
           10 -
            0
                                              0
In [38]: def boundaries(data,col,dis):
             Q1=data[col].quantile(0.25)
             Q3=data[col].quantile(0.75)
             IQR=Q3-Q1
             low=Q1-(IQR*dis)
             upper=Q3+(IQR*dis)
             return low,upper
         lower,upper=boundaries(df,'Age',1.5)
         print('Lower Range : ',lower,' Upper Range : ',upper)
```

```
In [39]: not_out=(df['Age']<upper)&(df['Age']>lower)
df['Age'][~not_out].count()
```

Lower Range : -7.0 Upper Range : 65.0

Out[39]: 11

```
In [40]: df=df[not_out]
    df['Agebin']=pd.cut(df['Age'],5,labels=['a','b','c','d','e'],include_lowest=True)
    sns.countplot(x='Agebin',data=df)
    plt.show()
```

C:\Users\ARUTHRA D\AppData\Local\Temp\ipykernel_15688\1455345314.py:2: SettingWithCopyW
arning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df['Agebin']=pd.cut(df['Age'],5,labels=['a','b','c','d','e'],include_lowest=True)


```
In [48]: # Step 1: Import necessary libraries
    import pandas as pd
    import numpy as np
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler, LabelEncoder
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
```

```
In [45]: # Step 2: Load the dataset
file_path = r"C:\Users\ARUTHRA D\Downloads\archive (1)\Titanic-Dataset.csv"
titanic_data = pd.read_csv(file_path)
```

```
In [46]: # Step 3: Data Preprocessing
         # Handling missing values
         titanic_data['Age'].fillna(titanic_data['Age'].median(), inplace=True)
         titanic data['Embarked'].fillna(titanic data['Embarked'].mode()[0], inplace=True)
         titanic data.drop(columns=['Cabin'], inplace=True)
In [49]: # Encoding categorical variables
         label encoder = LabelEncoder()
         titanic_data['Sex'] = label_encoder.fit_transform(titanic_data['Sex'])
         titanic data['Embarked'] = label encoder.fit transform(titanic data['Embarked'])
In [50]: # Selecting features and target variable
         features = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
         X = titanic data[features]
         y = titanic_data['Survived']
In [51]: # Splitting the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42
         # Scaling the features
         scaler = StandardScaler()
         X train = scaler.fit transform(X train)
         X_test = scaler.transform(X_test)
In [52]: |# Step 4: Model Building
         model = LogisticRegression()
         model.fit(X_train, y_train)
         # Making predictions
         y_pred = model.predict(X_test)
         # Step 5: Model Evaluation
         accuracy = accuracy_score(y_test, y_pred)
         conf_matrix = confusion_matrix(y_test, y_pred)
         class_report = classification_report(y_test, y_pred)
In [53]: |print(f"Accuracy: {accuracy}")
         print("Confusion Matrix:")
         print(conf matrix)
         print("Classification Report:")
         print(class_report)
         Accuracy: 0.8044692737430168
         Confusion Matrix:
         [[90 15]
          [20 54]]
         Classification Report:
                       precision recall f1-score
                                                       support
                    0
                                      0.86
                                                0.84
                            0.82
                                                           105
                    1
                            0.78
                                      0.73
                                                            74
                                                0.76
                                                0.80
                                                           179
             accuracy
            macro avg
                            0.80
                                      0.79
                                                0.80
                                                           179
                            0.80
                                      0.80
                                                0.80
                                                           179
         weighted avg
```

```
In [54]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.impute import SimpleImputer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix
```

In [56]: # importing dataset

df=pd.read_csv(r"C:\Users\ARUTHRA D\Downloads\archive (1)\Titanic-Dataset.csv")
print(df)

pr inc (ar	,			
143	144	0	3	
144	145	0	2	
145	146	0	2	
146	147	1	3	
147	148	0	3	
148	149	0	2	
149	150	0	2	
150	151	0	2	
151	152	1	1	
152	153	0	3	
153	154	0	3	
154	155	0	3	
155	1 56	0	1	
156	157	1	3	
157	158	0	3	
158	159	0	3	
159	160	0	3	
160	161	0	3	
161	162	1	2	
162	163	0	3	

```
In [57]: # Load the dataset
         titanic_data = pd.read_csv(r"C:\Users\ARUTHRA D\Downloads\archive (1)\Titanic-Dataset.cs
         # Display the first few rows of the dataset
         print(titanic_data.head())
            PassengerId Survived Pclass \
         0
                     1
                               0
                                       3
         1
                     2
                               1
                                       1
                     3
         2
                               1
                                       3
                     4
                                       1
         3
                               1
         4
                      5
                               0
                                       3
                                                        Name
                                                                 Sex
                                                                       Age SibSp \
         0
                                     Braund, Mr. Owen Harris
                                                                male
                                                                      22.0
                                                                                1
         1 Cumings, Mrs. John Bradley (Florence Briggs Th... female
                                                                      38.0
                                                                               1
                                      Heikkinen, Miss. Laina female
         2
                                                                      26.0
                                                                               0
         3
                 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0
                                                                               1
         4
                                    Allen, Mr. William Henry
                                                                male 35.0
                                                                               0
            Parch
                            Ticket
                                       Fare Cabin Embarked
         0
                0
                         A/5 21171
                                     7.2500
                                              NaN
                                                         S
                          PC 17599 71.2833
                                                         C
                                              C85
         1
                0
                                                         S
         2
                0 STON/02. 3101282
                                    7.9250
                                              NaN
                                                         S
         3
                0
                            113803 53.1000 C123
         4
                0
                            373450 8.0500
                                              NaN
                                                         S
        # Drop columns that are not needed for this analysis
In [58]:
         titanic_data = titanic_data.drop(columns=['Name', 'Ticket', 'Cabin'])
         # Encode categorical variables
         label encoder = LabelEncoder()
         titanic_data['Sex'] = label_encoder.fit_transform(titanic_data['Sex'])
         titanic_data['Embarked'] = titanic_data['Embarked'].fillna('S')
         titanic data['Embarked'] = label encoder.fit transform(titanic data['Embarked'])
         # Handle missing values
         imputer = SimpleImputer(strategy='mean')
         titanic_data['Age'] = imputer.fit_transform(titanic_data[['Age']])
         # Display the preprocessed data
         print(titanic data.head())
            PassengerId Survived Pclass Sex Age SibSp Parch
                                                                            Embarked
                                                                      Fare
         0
                     1
                               0
                                       3
                                            1 22.0
                                                                0
                                                                   7.2500
                                                                                  2
                                                         1
                      2
         1
                               1
                                       1
                                            0 38.0
                                                         1
                                                                0 71.2833
         2
                                       3
                                            0 26.0
                                                                                  2
                     3
                               1
                                                         0
                                                                0
                                                                   7.9250
         3
                     4
                               1
                                       1
                                            0 35.0
                                                                0
                                                                   53.1000
                                                                                   2
                                                         1
```

5

4

0

3

1 35.0

0

8.0500

2

```
In [59]: # Define features and target variable
         X = titanic_data.drop(columns=['Survived'])
         y = titanic_data['Survived']
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42
In [60]:
        # Initialize and train the Random Forest classifier
         model = RandomForestClassifier(n_estimators=100, random_state=42)
         model.fit(X_train, y_train)
         # Make predictions
         y pred = model.predict(X test)
In [61]: # Print classification report and confusion matrix
         print("Classification Report:")
         print(classification_report(y_test, y_pred))
         print("Confusion Matrix:")
         print(confusion_matrix(y_test, y_pred))
         Classification Report:
                       precision
                                    recall f1-score
                                                       support
                    0
                            0.83
                                      0.88
                                                0.85
                                                           105
                    1
                            0.81
                                      0.74
                                                0.77
                                                            74
                                                0.82
                                                           179
             accuracy
            macro avg
                            0.82
                                      0.81
                                                0.81
                                                           179
         weighted avg
                            0.82
                                      0.82
                                                0.82
                                                           179
         Confusion Matrix:
         [[92 13]
          [19 55]]
```

```
In [62]: # Plot feature importances
         feature_importances = pd.DataFrame(model.feature_importances_, index=X.columns, columns=
         plt.figure(figsize=(10, 6))
         sns.barplot(x=feature_importances.index, y=feature_importances['importance'])
         plt.title('Feature Importances')
         plt.xlabel('Features')
         plt.ylabel('Importance')
         plt.xticks(rotation=45)
         plt.show()
         # Plot confusion matrix
         conf_matrix = confusion_matrix(y_test, y_pred)
         sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='Blues')
         plt.title('Confusion Matrix')
         plt.xlabel('Predicted')
         plt.ylabel('Actual')
         plt.show()
```


In []: