Regressions- och tidsserieanalys

Föreläsning 5 - Modeller: antaganden, kontroll och utvärdering

Mattias Villani

Statistiska institutionen Stockholms universitet

Institutionen för datavetenskap Linköpings universitet

Översikt

- Modellkontroll
- Binära och kategoriska förklarande variabler.
- Modellutvärdering

Multipel linjär regression - antaganden

Populationsmodell för multipel regression:

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \varepsilon, \quad \varepsilon \sim N(0, \sigma_{\varepsilon}^2)$$

Antaganden

- ightharpoonup Betingade väntevärdet $\mu_{y|x}$ är en linjär funktion av x
- ightharpoonup Feltermerna ε_i har **samma varians** σ_{ε}^2 (homoskedastiticitet)
- ► Feltermerna är normalfördelade
- Feltermerna är oberoende.

Mattias Villani

ST123G

Antagandet om linjäritet, normalitet och oberoende

Linjäritet:

- Plotta residualerna mot varje förklarande variabel.
- ► Testa om icke-linjära effekter är signifikanta (se F7).

Normalitet:

- ► Histogram över residualerna
- Q-Q-plot för residualerna
- Normalitetstest
- Oberoende residualer? Ofta problem när variabler i regression är observerade över tid. Ex. cykeluthyrningsdata. Återkommer till detta när vi pratar om tidsserier.

Hälsobudgetdata med USA

Mattias Villani

ST1230

Hälsobudgetdata - utan USA

Cykeluthyrningar

Antagandet om konstant varians

- Plotta residualerna mot varje förklarande variabel.
- Test för heteroskedasticitet

 H_0 : feltermerna har samma varians (homoskedastiska)

 H_1 : feltermerna har olika varians (heteroskedastiska)

Testprocedur

skatta regression med kvadrerade residualer e² som y-variabel

$$e^2 = \tilde{\alpha} + \tilde{\beta}_1 x_1 + \ldots + \tilde{\beta}_k x_k + \tilde{\epsilon}$$

- ightharpoonup använd t ex F-test för att testa $H_0: ilde{eta}_1 = \ldots = ilde{eta}_k = 0$.
- om F-testet förkastas så förkastar vi homoskedastiticitet.
- AJÅ: kvadrater x_1^2, \ldots, x_k^2 som förklarande variabler i regressionen för e^2 . Kollar om variansen är ett icke-linjär funktion av någon förklarande variabel. Se F7.

Multikollinearitet

- Förklarande variabler är ofta korrelerade.
- **Multikollinearitet** linjära beroenden mellan olika x_j .

- Problem vid multikollinearitet:
 - svårt att separera de olika förklarande variablernas effekt på y
 - stora standardfel för b_i.
 - insignifikans
- Prediktioner påverkas inte av multikollinearitet.

Variance inflation factors

Variance Inflation Factor (VIF) för förklarande variabeln x_j

$$VIF_j = \frac{1}{1 - R_j^2}$$

- R_j² är förklaringsgraden i regressionen med x_j som responsvariabel och alla andra x som förklarande variabler.
- Tumregel: VIF > 10 är stark multikollinearitet.
- Cykeluthyrning. Ny variabel: upplevd temperatur (feeltemp).

variable	R ²	VIF
temp	0.033	1.034
hum	0.070	1.075
windspeed	0.078	1.085

variable	R ²	VIF	
temp	0.984	62.969	
feeltemp	0.984	63.632	
hum	0.073	1.079	
windspeed	0.113	1.127	

Binära förklarande variabler

Binära (dummy) variabler som bara kan anta två värden. Ex:

$$holiday = \begin{cases} 1 & \text{om r\"od dag} \\ 0 & \text{annars} \end{cases}$$

$$working day = \begin{cases} 1 & \text{om arbetsdag} \\ 0 & \text{om helg eller arbetsfri dag} \end{cases}$$

- Varianter av kodning: (0,1) eller (-1,1), eller (true,false).
- Regressionsmodell med binär förklarande variabel:

$$y = \alpha + \beta_1 \cdot \text{temp} + \beta_2 \cdot \text{workingday} + \varepsilon$$

innebär att vi får två parallella regressionlinjer

$$y = \begin{cases} \alpha + \beta_1 \cdot \text{temp} + \varepsilon & \text{om workingday} = 0\\ (\alpha + \beta_2) + \beta_1 \cdot \text{temp} + \varepsilon & \text{om workingday} = 1 \end{cases}$$

Mattias Villani ST123G

Binära förklarande variabler

Ännu fler binära förklarande variabler

Multipel liniär regression - nRides mot temp och hum

The REG Procedure Model: MODEL1 Dependent Variable: nRides

Number of Observations Read 731 Number of Observations Used 731

Analysis of Variance									
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F				
Model	6	1995735713	332622619	323.77	<.0001				
Error	724	743799679	1027348						
Corrected Total	730	2739535392							

 Root MSE
 1013.58158
 R-Square
 0.7285

 Dependent Mean
 4504.34884
 Adj R-Sq
 0.7262

 Coeff Var
 22.50229

Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confidence Limits	
Intercept	1	2577.86429	252.55993	10.21	<.0001	2082.02702	3073.70157
temp	1	6280.85581	209.04363	30.05	<.0001	5870.45174	6691.25988
hum	1	-2220.63420	275.17032	-8.07	<.0001	-2760.86122	-1680.40718
windspeed	1	-4363.74853	504.41242	-8.65	<.0001	-5354.03420	-3373.46287
workingday	1	76.55228	83.45154	0.92	0.3593	-87.28362	240.38817
holiday	1	-607.03615	232.02130	-2.62	0.0091	-1062.55104	-151.52126
yr	1	2008.60930	75.63209	26.56	<.0001	1860.12490	2157.09370

Mattias Villani S

ST123

Kategoriska förklarande variabler

■ Kategoriska (klass) förklarande variabler. Ex:

$$season = \begin{cases} 1 & \text{om vinter} \\ 2 & \text{om vår} \\ 3 & \text{om sommar} \\ 4 & \text{om höst} \end{cases}$$

■ Koda som fyra binära variabler

	vinter	vår	sommar	h öst	temp	
2011-01-01	1	0	0	0	0.344	
2011-01-02	1	0	0	0	0.363	
:						
2011-04-28	0	1	0	0	0.453	
:						
2011-07-14	0	0	1	0	0.830	
:						
2011-10-04	0	0	0	1	0.521	

Mattias Villani

ST123G

Kategoriska förklarande variabler

Regressionen kan inte skattas pga perfekt multikollinearitet!

$$y = a + b_1 \cdot \text{temp} + b_2 \cdot \text{vinter} + b_3 \cdot \text{vår} + b_4 \cdot \text{sommar} + b_5 \cdot \text{höst}$$

Lösning: ta bort en av de fyra dummyvariabler, t ex vinter:

$$y = a + b_1 \cdot \text{temp} + b_3 \cdot \text{vår} + b_4 \cdot \text{sommar} + b_5 \cdot \text{höst}$$

- Vinter blir nu referenskategorin (alla tre dummies är noll då).
- Vinterdag:

$$y = a + b_1 \cdot \text{temp}$$

Vårdag:

$$y = (a + b_3) + b_1 \cdot \text{temp}$$

- Koefficienten b₃ är hur många fler cyklar hyrs ut under en vårdag jämfört med en vinterdag.
- Koefficienten b₄ är hur många fler cyklar hyrs ut under en sommardag jämfört med en vinterdag.

Cykeluthyrning - säsongsdummies

nRides ~ 1 + temp + spring + summer + fall

Coefficients:

	Coef.	Std. Error	t	Pr(> t)	Lower 95%	Upper 95%
(Intercept)	745.787	187.476	3.98	<1e-04	377.728	1113.85
temp	6241.35	518.142	12.05	<1e-29	5224.11	7258.58
spring	848.724	197.082	4.31	<1e-04	461.806	1235.64
summer	490.196	259.006	1.89	0.0588	-18.2936	998.685
fall	1342.87	164.588	8.16	<1e-14	1019.75	1666.0

Mattias Villani

ST1230

F-test för en grupp av förklarande variabler

- Testa om det finns en säsongseffekt? Vi kan *t*-testa varje säsonsdummy (vår, sommar, höst).
- F-test kan användas för att testa en grupp av variabler

$$H_0:eta_{ extsf{vår}}=eta_{ extsf{sommar}}=eta_{ extsf{h\"{o}st}}=0$$

 H_1 : någon av $eta_{ extsf{vår}}$, $eta_{ extsf{sommar}}$ eller $eta_{ extsf{h\"ost}}$ är skild från noll.

Teststatistiska

$$F = \frac{(R_{\rm UR}^2 - R_{\rm R}^2) / r}{(1 - R_{\rm UR}^2) / (n - k - 1)}$$

- $ightharpoonup R_{\mathrm{UR}}^2$ är R^2 för regressionen Utan nollhypotesens Restriktioner (de tre säsongsdummies är med i modellen)
- $ightharpoonup R_{
 m R}^2$ är R^2 för regressionen med nollhypotesens Restriktioner (de tre säsongsdummies är inte med i modellen)
- ightharpoonup r är antalet restriktioner under H_0 , dvs r=3 här.
- Under H_0 följer teststatistikan F en F(r, n-k-1)-fördelning.

F-test för säsong i cykeluthyrningsdata

- Under H_0 : temp, hum, windspeed.
- Under H_1 : temp, hum, windspeed, vår, sommar, höst.
- \blacksquare Så k = 6 och r = 3.
- $R_{\rm UR}^2 = 0.5354$
- $R_R^2 = 0.4609$

$$F_{\text{obs}} = \frac{(0.5354 - 0.4609)/3}{(1 - 0.5354)/(731 - 6 - 1)} = 38.698$$

$$F_{\text{crit}} = F_{0.95}(3.724) = 2.617$$

 $F_{\rm obs} > F_{\rm crit}$ så nollhypotesen förkastas på signifikansnivån 5%. Det verkar finns en säsonseffekt.

Prognosförmåga på testdata

- Dela upp observationer i två delmängder:
 - ► Träningsdata för att skatta modellens parametrar.
 - ► Testdata för att utvärdera modellens prediktioner.
- Modellen får aldrig chans att anpassa sig till testdata.
- Prediktionsmått: kvadrerade prediktionsfel på testdata

$$Q_{\text{test}} = \sum_{j=1}^{n_{\text{test}}} (y_j - \hat{y}_j)^2$$

- Observera:
 - summan är över observationerna i testdata.
 - lacktriangle modellen som ger \hat{y}_j är **skattad enbart på träningsdata**.
 - ▶ överanpassning på träningsdata ⇒ dåliga prediktioner på testdata.

Korsvalidering

- Vilka observationer ska vara i träning respektive test?
 - Tidsserier: låt de senare observationerna vara i test.
 - ► Regression Korsvalidering

- Mått på modellens prognosförmåga: genomsnittligt Q_{test} över alla K=3 testdataset.
- Prognosförmåga på testdata kan användas för modellval.
- För mer info: masterkursen *Maskininlärning 7.5 hp*.