Hopf Fibrations

Erdaifu Luo

SUMaC Algebraic Topology, August 2023

- 1 Fiber Bundles
 - Definition
 - Trivial Bundles
- 2 Hopf Fibrations
 - Definition
 - Visualization
- 3 Applications
- 4 Citations

Fiber Bundles

- 1 Fiber Bundles
 - Definition
 - Trivial Bundles
- - Definition
 - Visualization

■ A fiber bundle in topology is a space that is *locally* a product space, but *globally* may have a different topological structure.

- A fiber bundle in topology is a space that is locally a product space, but globally may have a different topological structure.
- To be more specific, the similarity between a space E and a product space $B \times F$ is defined with the continuous map

$$\pi: E \to B$$
.

- A fiber bundle in topology is a space that is locally a product space, but globally may have a different topological structure.
- To be more specific, the similarity between a space E and a product space $B \times F$ is defined with the continuous map

$$\pi: E \to B$$
.

■ The map π is known as the **projection** of the bundle, the space E is known as the **total space**, B as the **base space**, and F as the **fiber**.

■ The map π is known as the **projection** of the bundle, the space E is known as the **total space**, B as the **base space**, and F as the **fiber**.

■ The map π is known as the **projection** of the bundle, the space E is known as the **total space**, B as the **base space**, and F as the **fiber**.

Definition (Fiber Bundles)

A fiber bundle is a structure (E, B, π, F) as defined above. We shall assume that the base space B is connected. We require for every $x \in B$, $\exists U \subseteq B$ such that U is an open neighborhood, such that there is a homeomorphism

$$\phi:\pi^{-1}(U)\to U\times F.$$

Or, for any $p \in B$, the preimage $\pi^{-1}(\{p\})$ is homeomorphic to Fand is called the fiber over p.

Trivial Bundles

Fiber Bundles

Now, let's define trivial bundles.

Now, let's define trivial bundles.

Definition (Trivial Bundles)

Let π equals a fiber bundle of F over B, meaning that $E = B \times F$ and $\pi: E \to B$. Here, E is not just locally a product, it is globally one. Any fiber bundles like this is called a trivial bundle.

Now, let's define trivial bundles.

Definition (Trivial Bundles)

Let π equals a fiber bundle of F over B, meaning that $E = B \times F$ and $\pi: E \to B$. Here, E is not just locally a product, it is globally one. Any fiber bundles like this is called a trivial bundle.

It would be much helpful for us to see a visualization, since our ultimate goal is understanding the Hopf Fibration.

Here are some trivial fiber bundles with the base space and fibers.

Credit: Richard Behiel

Here are some trivial fiber bundles with the base space and fibers.

Credit: Richard Behiel

- - Definition
 - Trivial Bundles
- 2 Hopf Fibrations
 - Definition
 - Visualization

■ The Hopf Fibration describes a 3-sphere (hypersphere in 4d) that maps from itself to a 2-sphere, such that each point on the 2-sphere is mapped from a **great circle** of the 3-sphere.

- The Hopf Fibration describes a 3-sphere (hypersphere in 4d) that maps from itself to a 2-sphere, such that each point on the 2-sphere is mapped from a **great circle** of the 3-sphere.
- The fiber bundle structure is denoted.

$$S^1 \hookrightarrow S^3 \stackrel{p}{\longrightarrow} S^2$$
.

- The Hopf Fibration describes a 3-sphere (hypersphere in 4d) that maps from itself to a 2-sphere, such that each point on the 2-sphere is mapped from a **great circle** of the 3-sphere.
- The fiber bundle structure is denoted

$$S^1 \hookrightarrow S^3 \stackrel{p}{\longrightarrow} S^2$$
.

■ This means that the fiber space S^1 (a circle) is embedded into the space S^3 (a hypersphere), and then $p:S^3\to S^2$ projects S^3 onto the base space S^2 .

• With **stereographic projection** of the Hopf fibration, we can observe this incredible structure, where each fiber projects to a circle in space.

- With **stereographic projection** of the Hopf fibration, we can observe this incredible structure, where each fiber projects to a circle in space.
- Some unique properties are that none of the circles intersect, and one of the projected fibers is a line, which is thought of as a circle through infinity.

- With **stereographic projection** of the Hopf fibration, we can observe this incredible structure, where each fiber projects to a circle in space.
- Some unique properties are that none of the circles intersect, and one of the projected fibers is a line, which is thought of as a circle through infinity.
- We won't go over how to construct the Hopf fibration, although it is quite simple with the fiber bundle structure, but we will visualize it.

Credit: Richard Behiel

Visualization

The link leads you to a simulation you can mess around in. https://philogb.github.io/page/hopf/

The link leads you to a simulation you can mess around in. https://philogb.github.io/page/hopf/

Credit: William Irvine

- - Definition
 - Trivial Bundles
- - Definition
 - Visualization
- 3 Applications

• One last thing is that the Hopf fibration appears frequently in fields like physics. In fact, it is utilized in

- One last thing is that the Hopf fibration appears frequently in fields like physics. In fact, it is utilized in
 - Qubits: Two level quantum systems
 - Mechanics: Harmonic oscillator
 - General Relativity: Taub-NUT space
 - Twistor Theory: Robinson congruences
 - Wignerism: Helicity Representations
 - Magnetic monopoles
 - Dirac equation
 - Gauge symmetry

- - Definition
 - Trivial Bundles
- - Definition
 - Visualization
- 4 Citations

Sources:

- https://ncatlab.org/nlab/show/Hopf+fibration
- https://encyclopediaofmath.org/index.php?titleHopf_fibration
- https://ncatlab.org/nlab/show/fiber+bundle
- https://youtu.be/PYR9worLEGo
- https://youtu.be/dkyvZo68IoM
- https://arxiv.org/abs/1808.08271