

ASSAM SCIENCE AND TECHNOLOGY UNIVERSITY

Guwahati

Course Structure and Syllabus

Computer Science and Engineering (CSE)

Semester VIII/ CSE/ B.TECH

Sl	Sub-Code	Subject	Hrs		Credits	
No			L	T	P	С
		Theory				
1	CS131801	Artificial Intelligence	3	0	0	3
2	CS131802	Compiler Design	3	0	0	3
3	CS1318E03	Elective III(Departmental)	3	0	0	3
4	CS1318E04	Elective IV(Departmental)	3	0	0	3
5	**1318E05 Elective V(Open)		3	0	0	3
	Practical					
6	CS131812	Compiler Design Lab	0	0	2	1
7	CS131816	Project	0	0	10	5
8	CS131821	Comprehensive Viva	0	0	0	4
	Total 15 0 12 25					25
	Total Contact Hours: 27					
	Total Credits : 25					

Elective-III Subjects				
Sl No Subject Code Subject		Subject		
1	CS1318E03(I)	Multimedia Computing		
2	CS1318E03(II)	Game Theory		
3	CS1318E03(III)	Any other subject offered from time		
	to time with the approval of the			
		university		

Elective-IV Subjects				
Sl No	Subject Code	Subject		
1	CS1318E04(I)	Cloud Computing		
2	CS1318E04(II)	Web Service and Service Oriented		
	Architecture			
3	CS1318E04(III)	Any other subject offered from time		
	to time with the approval of the			
		university		

Elective-V Subjects				
Sl No	Subject Code	Subject		
1	**1318E05(I)	Engineering System Analysis and		
		Design		
2	**1318E05(II)	Planning for Sustainable		
		Development		
3	**1318E05(III)	Disaster Management		
4	**1318E05(IV)	Any other subject offered from time		
	to time with the approval of the			
	university			

Course Title: ARTIFICIAL INTELLIGENCE

Course Code: CS131801

L-T-P-C: 3-0-0-3

Class Hours/week	3
Expected weeks	12
Total hrs. of	36
classes	

MODULE	TOPIC	COURSE CONTENT	HOURS
1.	INTRODUCTION	What is intelligence? Foundations of artificial	6
		intelligence (AI). History of AI; Problem	
		Solving- Formulating problems, problem types,	
		states and operators, state space, search	
		strategies.	
2.	INFORMED	Best first search, A* algorithm, heuristic	7
	SEARCH STRATEGIES	functions, Iterative deepening A*(IDA), small	
	SIRATEGIES	memory A*(SMA); Game playing - Perfect	
		decision game, imperfect decision game,	
		evaluation function, alpha-beta pruning	
3.	REASONING	Representation, Inference, Propositional Logic,	5
		predicate logic (first order logic), logical	
		reasoning, forward chaining, backward	
		chaining; AI languages and tools - Lisp, Prolog,	
		CLIPS	
4.	PLANNING	Basic representation of plans, partial order	4
		planning, planning in the blocks world,	
		hierarchical planning, conditional planning,	
		representation of resource constraints,	
		measures, temporal constraints	
5.	UNCERTAINTY	Basic probability, Bayes rule, Belief networks,	4
		Default reasoning, Fuzzy sets and fuzzy logic;	
		Decision making- Utility theory, utility	
	N I N I O O O O O O O O O O O O O O O O	functions, Decision theoretic expert systems.	
6.	INDUCTIVE LEARNING	Decision trees, rule based learning, current-	7
	LEARINING	best-hypothesis search, least-commitment	
		search , neural networks, reinforcement	
		learning, genetic	
		algorithms; Other learning methods - neural	
		networks, reinforcement learning, genetic	
	COMMINICATION	algorithms.	
7.	COMMUNICATION	Commiunication among agents, natural	3
		language processing, formal grammar, parsing,	
		grammar	

Text Books:

- 1 .Stuart Russell and Peter Norvig. *Artificial Intelligence A Modern Approach*, Pearson Education Press
- 2 .Kevin Knight, Elaine Rich, B. Nair, Artificial Intelligence, McGraw Hill

- 1. George F. Luger, Artificial Intelligence, Pearson Education
- 2 .Nils J. Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kauffman

Course Title: COMPILER DESIGN

Course Code: CS131802

L-T-P-C: 3-0-0-3

Class Hours/week	3
Expected weeks	12
Total hrs. of	36
classes	

MODULE	TOPIC	COURSE CONTENT	HOURS
1.	OVERVIEW OF	The structure of a compiler and applications of	4
	COMPILATION	compiler technology; Lexical analysis - The role	
		of a lexical analyzer, specification of tokens,	
		recognition of tokens, hand-written lexical	
		analyzers, LEX, examples of LEX programs.	
2.	INTRODUCTION	Role of a parser, use of context-free grammars	4
	TO SYNTAX	(CFG) in the specification of the syntax of	
	ANALYSIS	programming languages, techniques for writing	
		grammars for programming languages (removal	
		left recursion, etc.), non- context-free constructs	
		in programming languages, parse trees and	
		ambiguity, examples of programming language	
	_	grammars.	
3.	TOP-DOWN	FIRST & FOLLOW sets, LL(1) conditions,	4
	PARSING	predictive parsing, recursive descent parsing,	
		error recovery. LR-parsing - Handle pruning,	
		shift-reduce parsing, viable prefixes, valid items,	
		LR(0) automaton, LR-parsing algorithm, SLR(1),	
		LR(1), and LALR(1) parsing. YACC, error	
		recovery with YACC and examples of YACC	
	CINTATED A NO	specifications.	4
4.	SYNTAX- DIRECTED	Synthesized and inherited attributes, examples of	4
	DEFINITIONS	SDDs, evaluation orders for attributes of an SDD,	
	(ATTRIBUTE	dependency graphs. S-ttributed and L-attributed	
	GRAMMARS)	SDDs and their implementation using LR-parsers	
=	SEMANTIC	and recursive descent parsers respectively.	7
5.	ANALYSIS	Symbol tables and their data structures.	7
		Representation of "scope". Semantic analysis of	
		expressions, assignment, and control-flow statements, declarations of variables and	
		statements, declarations of variables and functions, function calls, etc., using S- and L-	
		attributed SDDs (treatment of arrays and	
		structures included). Semantic error recovery.	
6.	INTERMEDIATE	Different intermediate representations –	7
0.	CODE	quadruples, triples, trees, flow graphs, SSA	,
	GENERATION	forms, and their uses. Translation of expressions	
		(including array references with subscripts) and	
		assignment statements. Translation of control-	
		flow	
		statements – it- then-else, while-do, and switch.	
		Short-circuit code and control-flow translation of	
		Boolean expressions. Back patching. Examples to	
		illustrate intermediate code generation for all	
		mastrate intermediate code generation for all	

7.	RUN-TIME ENVIRONMENTS	constructs. Stack allocation of space and activation records. Access to non-local data on the stack in the case	3
		of procedures with and without nesting of procedures.	
8.	INTRODUCTION TO MACHINE CODE GENERATION AND OPTIMIZATION	Simple machine code generation, examples of machine-independent code optimizations.	3

Text Books:

- 1. Compilers: Principles, Techniques, and Tools, by A.V. Aho, Monica Lam, Ravi Sethi, and J.D. Ullman
- 2. K.D. Cooper, and Linda Torczon, Engineering a Compiler, Morgan Kaufmann

- 1. K.C. Louden, Compiler Construction: Principles and Practice, Cengage Learning 2. D. Brown, J. Levine, and T. Mason, LEX and YACC, O"Reilly Media

Course Title: ELECTIVE III (Departmental)

Course Code: CS1318E03(I)

L-T-P-C: 3-0-0-3

MULTIMEDIA COMPUTING

Class Hours/week	3
Expected weeks	12
Total hrs. of	36
classes	

MODULE	TOPIC	COURSE CONTENT	HOURS
1.	INTRODUCTION TO	Media and Data Streams; Sound/Audio, Images	6
	MULTIMEDIA	and Graphics, Video and Animation	
2.	DATA COMPRESSION	Optical Storage Media; Computer Technology, Multimedia Operating Systems	8
3.	NETWORKING SYSTEMS	Multimedia Communication Systems; Database Systems	6
4.	MULTIMEDIA ARCHITECTURE	Multimedia Documents, Hypertext and MHEG	4
5.	USER INTERFACES	Synchronization, Abstractions for Programming; Multimedia Application Development	8
6.	VIRTUAL REALITY	Future Directions	4

Text Books:

- $1. \\ \\ \text{`Multimedia Computing Communications \& Applications''} \ \\ \text{by Ralf Steinmetz, Klara Nahrstedt} \ , \ , \\ \\ \text{Pearson}$
- 2. Principles of Multimedia by Parekh Ranjan, Tata McGraw-Hill

- 1. Multimedia Systems, By John E Koegal, Buford, IIBK
- 2. Virtual Reality Systems, John Vince, ACM Press
- 3. Computer Networks, A S Tanenbaum, Fourth Edition.
- 4. http://pet.ece.iisc.ernet.in/course/E0262/

Course Title: ELECTIVE III (Departmental)
Course Code: CS1318E03(II)

L-T-P-C: 3-0-0-3

GAME THEORY

Class Hours/week	3
Expected weeks	12
Total hrs. of	36
classes	

MODULE	TOPIC	COURSE CONTENT	HOURS
1.	INTRODUCTION	What is Game Theory? Definition of Games.	5
		Actions, Strategies, Preferences, Payoffs.	
		Examples; Strategic Form Games - Strategic	
		form games and examples: Prisoner's Dilemma,	
		Bach or Stravinsky, Matching Pennies, Tragedy	
		of Commons, Braess Paradox.	
2.	DOMINANT	Strongly dominant strategies, weakly dominant	4
	STRATEGY EQUILIBRIUM	strategies, dominant strategy equilibrium;	
	EQUIEDRIUM	Examples of Prisoner's Dilemma and Vickrey	
		Auction.	_
3.	PURE STRATEGY	Best response strategies; Notion of pure	8
	NASH EQUILIBRIUM	Strategy Nash equilibrium. Examples of Nash	
	EQUIEDRIUM	Equilibrium. Examples of Nash Equilibrium in	
		popular games. Symmetric Games and	
		Symmetric Equilibria; Mixed Strategy Nash	
		Equilibrium- Randomization of Actions, Mixed	
		strategy Nash equilibrium, Necessary and	
		sufficient conditions for a Nash equilibrium.	
		Examples of mixed strategy Nash equilibrium.	
		Computing mixed strategy Nash equilibria.	
	TWO DI AVED	Related algorithmic issues.	0
4.	TWO PLAYER ZEROSUM GAMES	Max-minimization and Minmaximization.	8
	(MATRIX GAMES)	Saddle points. Nash equilibrium in matrix	
	,	games. Mini-max theorem. Solution via linear	
		programming. Examples; Extensive games with Perfect Information- Extensive games,	
		\mathcal{E} ,	
		Strategies and outcomes, Nash equilibrium,	
		Subgame perfect equilibrium, finding subgame perfect equilibria using backward induction.	
		Allowing for simultaneous moves. Examples.	
5.	BAYESIAN GAMES	Motivational Examples. Definition of a	3
J.	ZIZZZZZIII GIZIVIED	Bayesian Game and Bayesian Nash Equilibrium	3
		and examples.	
6.	MECHANISM	Social choice functions. Direct and indirect	4
	DESIGN	mechanisms. Notion of incentive compatibility.	r
		Revelation theorem. Properties of social choice	
		functions, Gibbard Satterthwaite theorem.	
		Quasi-linear utilities. Vickrey auction. Clarke	
		mechanisms. Groves mechanisms. Examples of	
		VCG (Vickrey-Clarke-Groves) mechanisms.	
		Different types of auctions. Revenue	
		equivalence theorem.	
		ogar, aroneo arootom.	

7.	COOPERATIVE GAME THEORY	Correlated strategies and correlated equilibrium. The two person Nash bargaining problem and its solution with examples. Games in characteristic form and examples. The Core of a characteristic form game. Shapley value and its implications.	4
		Examples.	

Text Books:

- 1. Martin Osborne. An Introduction to Game Theory. Oxford University Press
- 2. Y. Narahari. Essentials of Game Theory and Mechanism Design. IISc Press

- Reference Books:
 1 .Phiip D. Straffin, Jr. *Game Theory and Strategy*. The Mathematical Association of America
- 2 .Ken Binmore, Fun and Games: A Text On Game Theory, D. C. Heath & Company

Course Title: ELECTIVE IV (Departmental)

Course Code: CS1318E04 (I)

L-T-P-C: 3-0-0-3

CLOUD COMPUTING

Class Hours/week	3
Expected weeks	12
Total hrs. of	36
classes	

MODULE	TOPIC	COURSE CONTENT	HOURS
1.	INTRODUCTION	Shift from distributed computing to cloud computing; principles and characteristics of cloud computing- IaaS, PaaS, SaaS; service oriented computing and cloud environment	6
2.	CLOUD COMPUTING TECHNOLOGY	Client systems, Networks, server systems and security from services perspectives; Accessing the cloud with platforms and applications; cloud storage	8
3.	WORKING WITH CLOUD	Infrastructure as a Service – conceptual model and working Platform as a Service – conceptual model and functionalities Software as a Service – conceptual model and working Technologies and Trends in Service provisioning with clouds	8
4.	USING CLOUD SERVICES	Cloud collaborative applications and services – technology, applications and case studies with calendars, schedulers and event management; cloud applications in project management.	8
5.	CASE STUDIES	Microsoft Azure, Google App Engine and Open source clouds- Open-Nebula and Eucalyptus, Current trends and research	6

Text Books:

- 1. Anthony T.Velte, Toby J.Velte and Robert E, Cloud Computing A Practical Approach, TMH
- 2 .Michael Miller, Cloud Computing Web based Applications, Pearson Publishing

Course Title: ELECTIVE IV (Departmental)

Course Code: CS1318E04 (II)

L-T-P-C: 3-0-0-3

Class Hours/week	3
Expected weeks	12
Total hrs. of	36
classes	

WEB SERVICE AND SERVICE ORIENTED ARCHITECTURE

MODULE	TOPIC	COURSE CONTENT	HOURS
1.	INTRODUCTION	Service Oriented Enterprise - Service	8
		Oriented Architecture (SOA) – SOA and	
		Web Services - Multi-Channel Access -	
		Business Process management – Extended	
		Web Services Specifications – Overview of	
		SOA – Concepts – Key Service	
		Characteristics – Technical Benefits –	
		Business Benefits	
2.	SOA AND WEB	Web Services Platform – Service Contracts –	12
	SERVICES	Service- Level Data Model - Service	
		Discovery – Service-Level Security –	
		Service-Level Interaction patterns – Atomic	
		Services and Composite Services – Proxies	
		and Skeletons – Communication –	
		Integration Overview – XML and Web	
		ServicesNET and J2EE Interoperability –	
		Service-Enabling Legacy Systems –	
		Enterprise Service Bus Pattern	
3.	MULTI-CHANNEL	Business Benefits – SOA for Multi Channel	8
	ACCESS	Access – Tiers – Business Process	
		Management – Concepts – BPM, SOA and	
		Web Services – WSBPEL – Web Services	
		Composition	
4.	JAVA WEB SERVICES	JAX APIs – JAXP – JAX-RPC – JAXM –	4
		JAXR – JAXB	
5.	METADATA	Web Services Security - Advanced	4
	MANAGEMENT	Messaging – Transaction Management	

Text Books:

- 1. Eric Newcomer, Greg Lomow, "Understanding SOA with Web Services", Pearson Education
- 2. James McGovern, Sameer Tyagi, Michael E Stevens, Sunil Mathew, "Java Web Services Architecture"

- 1. Thomas Erl, "Service Oriented Architecture", Pearson Education
- 2. Frank Cohen, "FastSOA", Elsevier

Course Title: ELECTIVE V (Open)

Course Code: **1318E05 (I)

L-T-P-C: 3-0-0-3

Class Hours/week	3
Expected weeks	12
Total hrs. of	36
classes	

ENGINEERING SYSTEM ANALYSIS AND DESIGN

MODULE	TOPIC	COURSE CONTENT	HOURS
1.	INTRODUCTION	Systems, Elements of a system, Types of	9
		systems, Subsystems, Super systems, Need for	
		system analysis and design, CASE tools for	
		analysis and its limitations.	
2.	SYSTEM ANALYSIS	Methods of system analysis, system	9
		development life cycle, structured approach,	
		development tools, data base and networking	
		techniques.	
3.	SYSTEM DESIGN	Design technologies, Design principles, Design	9
		tools and methodologies, feasibility survey,	
		conversion and testing tools, design	
		management and maintenance tools.	
4.	OBJECT ORIENTED	Introduction, Object modeling, Dynamic	9
	ANALYSIS AND	modeling, functional modelling, UML	
	DESIGN	diagrams and tools.	

Text Books:

- 1. Perry Edwards, "System analysis and design", McGraw Hill international edition
 2. Len Fertuck, "System analysis and design with CASE tools", Wm C. Brown Publishers

- 1. Er. V.K. Jain, "System analysis and design", Dreamtech Press.
- 2. Kenneth E.Kendall and Julie E.Kendall, "System analysis and design", Prentice Hall, India

Course Title: ELECTIVE V (Open)
Course Code: **1318E05 (II)

L-T-P-C: 3-0-0-3

Class Hours/week	3
Expected weeks	12
Total hrs. of	36
classes	

PLANNING FOR SUSTAINABLE DEVELOPMENT

MODULE	TOPIC	COURSE CONTENT	HOURS
1.	SUSTAINABLE DEVELOPMENT	Explains and critically evaluates the concept of sustainable development, Environmental degradation and poverty Sustainable development: its main principles, the evolution of ideas about sustainability, strategies for promoting sustainable development, resistances to the concept, and some alternative approaches. Examine some important current issues and areas of debate in relation to sustainable development.	12
2.	INNOVATION FOR SUSTAINABLE DEVELOPMENT	Environmental management and innovation strategies.	6
3.	SOCIETAL TRANSFORMATIONS	Institutional theory.	6
4.	GOVERNANCE FOR SUSTAINABLE DEVELOPMENT	Policy responses to environmental degradation.	6
5.	CAPACITY DEVELOPMENT FOR INNOVATION	Research methods	6

Text/Reference Books:

- 1. Harris, J.M. (2204) Basic Principles for Sustainable Development, Global Development and Environment Institute, working paper 00-04. Available at:
- http://ase.tufts.edu/gdae/publications/Working_Papers/Sustainable%20Development.PDF
- 2. Robinson, J. (2004) Squaring the circle? Some thoughts on the idea of sustainable development Ecological Economics 48(4): 369-384.
- 3. Hjorth, P. and A. Bagheri Navigating towards Sustainable Development: A System Dynamics Approach, Futures 38: 74-92.
- 4. Mog, J.M. "Struggling with Sustainability A Comparative Framework for Evaluating Sustainable Development Programs", World Development 32(12): 2139–2160. IISD Commentary on the OECD's Draft Principles for International Investor Participation in Infrastructure (PDF 68 kb)
- 5. Arundel, A., R. Kemp, and S. Parto Indicators for Environmental Innovation: What and How to Measure, forthcoming in International Handbook on Environment and Technology Management (ETM), edited by D. Annandale, J. Phillimore and D. Marinova, Cheltenham, Edward Elgar.
- 6. Douthwaite, B. Enabling Innovation. A practical guide to understanding and fostering innovation, London, Zed Books.

Additional References:

http://www.sustainability.com/developing-value/definitions.asp

Course Title: ELECTIVE V (Open)
Course Code: **1318E05 (III)

L-T-P-C: 3-0-0-3

DISASTER MANAGEMENT

Class Hours/week	3
Expected weeks	12
Total hrs. of	36
classes	

4		COURSE CONTENT	HOURS
1.	INTRODUCTION	Concepts and definitions: disaster, hazard,	4
		vulnerability, risk, capacity, impact,	
		prevention, mitigation).	
2.	DISASTERS	Disasters classification; natural disasters	10
		(floods, draught, cyclones, volcanoes,	
		earthquakes, tsunami, landslides, coastal	
		erosion, soil erosion, forest fires etc.);	
		manmade disasters (industrial pollution,	
		artificial flooding in urban areas, nuclear	
		radiation, chemical spills etc); hazard and	
		vulnerability profile of India, mountain and	
		coastal areas, ecological fragility.	
3.	DISASTER IMPACTS	Disaster impacts (environmental, physical,	6
		social, ecological, economical, political, etc.);	
		health, psycho-social issues; demographic	
		aspects (gender, age, special needs); hazard	
		locations; global and national disaster trends;	
	DAG A GENERA DAGAZ	climate change and urban disasters.	
4.	DISASTER RISK REDUCTION (DRR)	Disaster management cycle – its phases;	12
	REDUCTION (DRR)	prevention, mitigation, preparedness, relief	
		and recovery; structural and non structural	
		measures; risk analysis, vulnerability and	
		capacity assessment; early warning systems,	
		Post-disaster environmental response (water,	
		sanitation, food safety, waste management,	
		disease control); Roles and responsibilities of	
		government, community, local institutions, NGOs and other stakeholders; Policies and	
		legislation for disaster risk reduction, DRR	
		programmes in India and the activities of	
		National Disaster Management Authority.	
5.	DISASTERS,	Factors affecting vulnerability such as impact	4
J.	ENVIRONMENT	of developmental projects and environmental	7
	AND	modifications (including of dams, land-use	
	DEVELOPMENT	changes, urbanization etc.), sustainable and	
		environmental friendly recovery;	
		reconstruction and development methods.	

Text/Reference Books:

- 1. http://ndma.gov.in/ (Home page of National Disaster Management Authority).
- 2. http://www.ndmindia.nic.in/ (National Disaster management in India, Ministry of Home Affairs).
- 3. Pradeep Sahni, Disaster Risk Reduction in South Asia, Prentice Hall.
- 4. Singh B.K., Handbook of Disaster Management: techniques & Guidelines, Rajat Publication.

PRACTICALS

Course Title: COMPILER DESIGN LAB

Course Code: CS131812

L-T-P-C: 0-0-2-1

Expected No. of weeks : 12 (approx)

EXPERIMENT NO	AIM OF EXPERIMENT	HOURS
1	Familiarization with LEX by writing simple specifications for	4
	tokens such as, identifiers, numbers, comments in C/C++, etc.	
	All LEX specifications must be compiled and executed with	
	appropriate inputs.	
2	LEX specification for tokens of the small language	2
3	Complete the specifications in Experiment No. 2 above to make	2
	a complete lexical analyzer.	
4	Familiarization with YACC by writing simple specifications for	4
	desk calculator, variable declarations in C (only numbers and	
	array). All YACC specifications must be compiled and executed	
	with appropriate inputs. Note that this exercise also requires	
	LEX specifications of the tokens involved.	
5	YACC specifications for the syntax of the small language	2
6	Adding error recovery to Experiment No. 5 above to make a	2
	complete parser.	
7	S-attributed specification of the semantics of the small language	6
	to be incorporated into YACC specifications produced in	
	Experiment No. 6 above.	
8	Adding semantic error recovery to the semantic analyzer in	2
	Experiment No. 7 above to make a complete	
	semantic analyzer.	
9	Intermediate code generation for the constructs of the small	6
	language to be incorporated into the semantic analyzer of	
	Experiment No. 8 above.	
	Total	30

CS131816	PROJECT	L = 0 T = 0 P = 10 C = 5	
GUIDELINES WILL BE UPLOADED BY THE UNIVERSITY FROM TIME TO TIME			
CS131821	COMPREHENSIVE VIVA	L = 0 T = 0 P = 0 C = 4	
GUIDELINES WILL BE UPLOADED BY THE UNIVERSITY FROM TIME TO TIME			