#### Лабораторная работа 2

#### Математическое моделирование

Оразгелдиев Язгелди

#### Содержание

| 1 | Цель работы                    | 5  |
|---|--------------------------------|----|
| 2 | Задание                        | 6  |
| 3 | Выполнение лабораторной работы | 7  |
| 4 | Выводы                         | 12 |

# Список иллюстраций

| 3.1  | Уравнение(2 случая)                         |
|------|---------------------------------------------|
| 3.2  | Уравнение(2 случая)                         |
| 3.3  | Траектория движения катера                  |
| 3.4  | Код для траектории лодки                    |
| 3.5  | Код для траектории лодки                    |
| 3.6  | Траектория движения лодки                   |
| 3.7  | Пересечение траектории катера и лодки       |
| 3.8  | Траектория движения лодки                   |
| 3.9  | Траектория движения катера                  |
| 3.10 | Точка пересечения траектории катера и лодки |

### Список таблиц

# 1 Цель работы

Построить математическую модель решения задачи о погоне

#### 2 Задание

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии k км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 2 раза больше скорости браконьерской лодки. 1. Записать уравнение, описывающее движение катера с началным условием 2-х случае 2. Построить траекторию движения катера и лодки 3. Найти точку пересечения катера и лодки

#### 3 Выполнение лабораторной работы

Мой вариант 36. Введем полярные координаты. Считаем, что полюс - это точка обнаружения лодки браконьеров. хл0, а полярная ось г проходит через точку нахождения катера береговой охраны

Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса, только в этом случае траектория катера пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.

Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер k-x (или k + x , в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как x/y или x-y/y0. Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние x0 можно найти из следующего уравнения

$$\frac{x}{v} = \frac{14.4 - x}{4.7v}$$

$$\frac{x}{v} = \frac{x + 14.4}{14.7v}$$

$$x_1 = \frac{14.4}{5.7}$$

$$x_2 = \frac{14.4}{3.7}$$

Рис. 3.1: Уравнение(2 случая)

После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v . Для этого скорость катера раскладываем на две составляющие: радиальная скорость и тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем, что dr/dt=v. Тангенциальная скорость — это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости d0/d0 на радиус. Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений:

$$v_{ au} = \sqrt{4.7^2 v^2 - v^2} = \sqrt{21.09} v$$
 
$$\begin{cases} \frac{dr}{dt} = v \\ r \frac{d\theta}{dt} = \sqrt{21.09} v \end{cases}$$
 
$$\frac{dr}{d\theta} = \frac{r}{\sqrt{21.09}}$$
 С начальными условиями 
$$\begin{cases} \theta_0 = 0 \\ r_0 = \frac{14.4}{5.7} & unu \end{cases}$$
  $\begin{cases} \theta_0 = -\pi \\ r_0 = \frac{14.4}{5.7} \end{cases}$ 

Рис. 3.2: Уравнение(2 случая)

Построил траекторию движения катера и лодки для первого случая



Рис. 3.3: Траектория движения катера

```
: u=[fi for i in range(0,15)]
: 16-element Vector{Float64}:
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
```

Рис. 3.4: Код для траектории лодки

```
: u=[fi for i in range(0,15)]
: 16-element Vector{Float64}:
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
   2.356194490192345
```

Рис. 3.5: Код для траектории лодки



Рис. 3.6: Траектория движения лодки

Нашли точку пересечения траектории катера и лодки для 1-го случая. Для этого прописали функцию, которая является решение диффур.

```
y(x)=(48*exp(1*x)/(sqrt(2109)))/(19)
y(fi)
0.5804056239096905
```

Рис. 3.7: Пересечение траектории катера и лодки

Построил траекторию движения катера и лодки для 2-го случая



Рис. 3.8: Траектория движения лодки



Рис. 3.9: Траектория движения катера

Нашли точку пересечения траектории катера и лодки для 2-го случая

```
y2(x)=(114*exp(10*x/sqrt(2109))+(10*pi/sqrt(2109)))/(37)
y2(fi)
```

5.1651391472366495

Рис. 3.10: Точка пересечения траектории катера и лодки

#### 4 Выводы

В ходе работы я построил математическую модель решения задачи о погоне