Homework - Serie 10

Kevin Sturm Python 3

Test your code with examples!

Problem 1.

- (a) Create a figure object called fig using plt.figure().
- (b) Use add_axes to add an axis to the figure canvas at [0.1, 0.1, 0.8, 0.8]. Call this new axis ax.
- (c) Plot (x, y) on that axes and set the labels and titles to match the plot below:

Problem 2.

(a) Create a figure object and put two axes ax1 and ax2 on it which are located at [0.1, 0.1, 0.8, 0.8] and [0.2, 0.5, .2, .2], respectively.

Figure 1: Problem 2

(b) Reproduce Figure 1!

Problem 3.

Use plt.subplots to create the following plot. Notice that the columns share the same x range. Also the location of the legends should be identical to the one in Figure ??.

Figure 2: Problem 3

Problem 4. Consider the real nodes $x_1 < \cdots < x_n$ and function values $y_j \in \mathbf{R}$. Then, linear algebra provides a unique polynomial $p(t) = \sum_{j=1}^n a_j t^{j-1}$ of degree n-1, such that $p(x_j) = y_j$ for all $j = 1, \ldots, n$. Pick a fixed evaluation point $t \in \mathbf{R}$. The Neville-algorithm is able to compute

the point evaluation p(t) without computing the vector of coefficients $a \in \mathbf{R}^n$. It consists of the following steps: First, define for $j, m \in \mathbb{N}$ with $m \ge 2$ and $j + m \le n + 1$ the values

$$p_{j,1} := y_j,$$

$$p_{j,m} := \frac{(t - x_j)p_{j+1,m-1} - (t - x_{j+m-1})p_{j,m-1}}{x_{j+m-1} - x_j}.$$

It can be shown that $p(t) = p_{1,n}$, that is, the function value of p at t can be computed by $p_{1,n}$. Write a function neville which computes p(t) for a given evaluation point $t \in \mathbf{R}$ and vectors $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbf{R}^n$. To do that, you can use the following scheme

$$y_{1} = p_{1,1} \longrightarrow p_{1,2} \longrightarrow p_{1,3} \longrightarrow \dots \longrightarrow p_{1,n} = p(t)$$

$$y_{2} = p_{2,1} \longrightarrow p_{2,2}$$

$$y_{3} = p_{3,1} \longrightarrow \vdots$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$y_{n-1} = p_{n-1,1} \longrightarrow p_{n-1,2}$$

$$y_{n} = p_{n,1}$$

$$(1)$$

One easy way to implement this scheme is by building a matrix with entries $(p_{j,m})_{j,m=1}^n$. For testing, take an arbitrary polynomial resp. nodes, and compute $y_j = p(x_j)$.

Problem 5. Study the documentation of mlab.quiver3d(ux,uy,uz,vx,vy,vz) of the mayavi module. In this exercise we want to plot the (outward pointing) unit normal vector field along an ellipsoid

$$E^2 := \{(x, y, z) : ax^2 + by^2 + cz^2 = 1\}.$$

In order to plot this vector field consider the parametrisation of the ellipsoid:

$$\varphi:(u,v)\to(a\sin(u)\cos(v),b\sin(u)\sin(v),c\cos(v)):[0,\pi)\times[0,2\pi):\to E^2\subset\mathbf{R}^3,$$

The functions (ux,uy,uz) are the component functions of φ and the functions (vx,vy,vz) are the component functions of $\partial_u \varphi \times \partial_v \varphi / \|\partial_u \varphi \times \partial_v \varphi\|_2$. Also put a nice coordinate system into the plot. The output in case of a = b = c = 1 should look like Figure 3.

Problem 6. Write a function saveMatrix which takes a matrix $A \in \mathbf{R}^{d \times d}$ and writes it into a file matrix.dat via open. Write another function loadMatrix, which takes a string 'matrix.dat' and reads the file with open and stores the data into numpy array. Compare your result with numpy.savetxt and numpy.loadtxt.

Problem 7. Use the matplotlib function plt.quiver to visualise the vector field $F: \mathbf{R}^2 \to \mathbf{R}^2$ given by

$$F(x,y) := \begin{cases} (1,1) + (-y,x) & \text{if } x > 0 \\ -(1,1) + (y,-x) & \text{if } x < 0 \end{cases}.$$

Plot the vector field on $[-1,1] \times [-2,1]$ and make nice captions and legends. Make sure the font size of your plot is not too small.

Figure 3: Problem 5

Problem 8. Use the matplotlib function plt.scatter to produce the following plots.

