

MACHINE LEARNING Classification et Clustering

Référents module : Jérémie Suzan et Théo Trouillon

Objectifs

A l'issue de ce module, vous serez capable de :

- Entrainer et évaluer un modèle de classification
- Utiliser des méthodes d'ensemble
- Mettre en évidence les phénomènes de sur/sous apprentissage
- Entrainer et évaluer un modèle de clustering

Pré-requis

- Programmation en Python
- Bases de statistique
- Régression linéaire

Projet étape 1 : Classification (1 jour)

Modalités

- Travail en autonomie
- Production individuelle

Compétences

- Se familiariser avec la bibliothèque scikit-learn
- Savoir entraîner un modèle de classification et faire des prédictions
- Connaître les différentes métriques d'évaluation pour les problèmes de classification
- Mettre en place une procédure de sélection de modèle par grid-search et cross-validation

Consignes

Ouvrir et compléter le notebook

Ressources

- https://scikit-learn.org/stable/tutorial/basic/tutorial.html
- https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_compar ison.html
- "Hands on machine learning ...", chapitres 2 et 3: https://www.lpsm.paris/pageperso/has/source/Hand-on-ML.pdf
- "Introduction to statistical learning", chapitre 4:
 http://faculty.marshall.usc.edu/gareth-james/ISL/ISLR%20Seventh%20Printing.pdf

Livrables

Répondre aux questions du fichier mémo
Le notebook rempli, permettant d'évaluer les performances d'un classifieur par k
plus proches voisins

Projet étape 2 : Introduction aux méthodes d'ensemble (1,2 jour)

Modalités

- Travail en autonomie
- Production individuelle

Compétences

- Entraîner un modèle de classification en utilisant les techniques de bagging et de boosting.
- Trier les paramètres d'un problèmes par ordre d'importance.
- Évaluer les performances d'un modèle de classification.

Consignes

- Téléchargez l'archive contenant le projet (un notebook et un jeu de données)
- Compléter le notebook

Ressources

- https://scikit-learn.org/stable/modules/ensemble.html
- https://martin-thoma.com/ensembles/
- https://medium.com/@rrfd/boosting-bagging-and-stacking-ensemble-methods-with-sklearn-and-mlens-a455c0c982de
- https://xgboost.readthedocs.io/en/latest/index.html
- https://www.lpsm.paris/pageperso/has/source/Hand-on-ML.pdf (chapitre 7)

Python - Notions de base

Livrables		
Visualisation du classement des paramètres sous forme d'histogramme		
Utilisation des méthodes d'ensemble		
Notebook complété.		
Mémo/Schéma sur les méthodes d'ensemble comprenant:		

☐ Avantage/Inconvénients de chacunes des méthodes.

☐ Schéma de fonctionnement des méthodes de bagging et de boosting.

Projet étape 3 : Introduction au partitionnement (clustering) (0,8 jour)

Modalités

- Travail en autonomie
- Production individuelle

Compétences

- Utiliser des méthodes de partitionnement
- Trouver le nombre de cluster optimal
- Créer des partitions à partir d'un jeu de données en utilisant des méthodes mise à disposition dans scikit-learn
- Visualiser les partitions créées par un algorithme de partitionnement

Consignes

• Compléter le notebook

Ressources

- https://scikit-learn.org/stable/modules/clustering.html#clustering
- https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
- https://scikit-image.org/

Livrables

Visualisation sous forme de nuages de points avec des colorations différentes
selon les clusters.
3 Images contenant n couleurs avec n:
le nombre optimal de cluster (deux images)
le doubles du nombre optimal de cluster