Math 425: Abstract Algebra 1

Section 1.4: Permutations

Mckenzie West

Last Updated: September 19, 2022

Last Time.

- Arithmetic Modulo n
- Some further results

Today.

- Permutations
- Notation for Permutations
- Composition of Permutations
- Cycles
- Disjoint Cycles
- Transpositions
- Even vs Odd Permutations

A permutation of $T_n = \{1, 2, ..., n\}$ is a mapping $\sigma \colon T_n \to T_n$ that is both one-to-one and onto (a bijection).

We call the collection of all permutations of T_n the symmetric group of order n, and we write

$$S_n := \{ \sigma \colon T_n \to T_n \mid \sigma \text{ is a permutation} \}.$$

Note.

We can define a permutation on any set X to be a bijection $\sigma: X \to X$. And the set of all permutation on X is the set of symmetries of X:

$$S_X := \{ \sigma \colon X \to X \mid \sigma \text{ is a bijection} \}.$$

Note.

The set S_n has an operation, composition. With this operation on S_n , we have

- (a) an identity, ε , the identity map,
- (b) associativity, $\sigma \circ (\tau \circ \gamma) = (\sigma \circ \tau) \circ \gamma$, and
- (c) inverses, if $\sigma \in S_n$, then $\sigma^{-1} \in S_n$.

A look ahead to the future: This is why we can call S_n a group.

5- Notation 1 - Two-Line Notation

Example.

In the case of
$$\sigma: T_4 \to T_4$$
, $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$ means
 (a) $\sigma(1) = 3$ (b) $\sigma(2) =$ (c) $\sigma(3) =$ (d) $\sigma(4) =$

Definition (Two-Line Notation).

For $\sigma: T_n \to T_n$, we can write

6- Notation 2 - One-Line Notation

Example.

For the previous example, the permutation in two-line notation

$$\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 2 & 4 & 1
\end{array}\right)$$

can instead be written as

$$\sigma = 3 \ 2 \ 4 \ 1.$$

Definition (One-Line Notation).

For $\sigma: T_n \to T_n$, we can write

Example.

There are 6 permutations in S_3 , written in one-line notation as:

8 - Notation 3 - Braid or Arrow Notation

Example.

For $\sigma =$ 3 2 4 1:

9- Notation 4 - Permutation Matrices

Recall: Standard basis for \mathbb{R}^n , $\{\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}\}$ We can view permutations as "permuting" the indices of the $\vec{e_i}$.

Example.

The permutation $\sigma=3$ 2 4 1 corresponds to the linear transformation $\mathcal{T}:\mathbb{R}^4\to\mathbb{R}^4$ defined by

$$T(\vec{e_1}) = \vec{e_3}, \quad T(\vec{e_2}) = \vec{e_2}, \quad T(\vec{e_3}) = \vec{e_4}, \quad T(\vec{e_4}) = \vec{e_1}$$

10- Notation 4 - Permutation Matrices

Definition.

A permutation matrix is an $n \times n$ matrix that has exactly one 1 in each row and column and every other entry is 0.

Note.

Every permutation matrix has determinant ± 1 , and can be constructed by swapping columns (or rows) of the identity matrix.

11

Brain Break.

Black Licorice?

Composition (aka Multiplicaiton in S_n).

Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$$
 and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$.

Compute $\tau \sigma$

Example.

Same operation in terms of braids, computing $\tau \sigma$:

14- Notation 5 - Cycle Notation

Definition.

The r-cycle $(x_1 \ x_2 \ \dots \ x_r)$ in S_n is the permutation that sends

$$\begin{array}{cccc} x_1 & \mapsto & x_2 \\ x_2 & \mapsto & x_3 \\ x_3 & \mapsto & x_4 \\ & \vdots \\ x_{r-1} & \mapsto & x_r \\ x_r & \mapsto & x_1. \end{array}$$

15- Notation 5 - Cycle Notation

Example.

 $(2\ 4\ 1)\in S_5$ does the following

$$\begin{array}{cccc} 2 & \mapsto & 4 \\ 4 & \mapsto & 1 \\ 1 & \mapsto & 2 \end{array}$$

Question 1.

What does this permutation do to 3 and 5?

Note.

There are several equivalent ways to write (2 4 1):

17

Exercise 2.

Write our original σ and τ in cycle notation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$

$$\tau\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$$

18- Multiplying Cycles - Right to Left

Example.

Let
$$\sigma = (1 \ 3 \ 2)$$
, and $\tau = (1 \ 5 \ 3)$

Exponents.

We write exponents to mean the repeated composition of :

$$\sigma^k := \underbrace{\sigma\sigma\cdots\sigma}_k.$$

Exercise 3.

Let $\sigma = (1 \ 4 \ 2 \ 6) \in S_6$. Compute σ^k for k = 2, 3, 4, 5, ...

Exercise 4.

Recall that permutations are bijective maps, so they ALL have inverses! (Woo!)

- (a) Find the inverse of the cycle (1 2).
- (b) Find the inverse of the cycle (1 4 2 5 3 6).

Note.

The notation for the identity permutation is ε .

Inverses.

The inverse of the cycle $(x_1 \ x_2 \ \dots \ x_r)$ is the cycle $(x_r \ x_{r-1} \ \dots \ x_2 \ x_1)$.

Exercise 5.

If $\sigma=$ (1 2 3) and $\tau=$ (3 2 1), verify that $\sigma\tau=\varepsilon$ and $\tau\sigma=\varepsilon$.

Theorem 0.3.5(3) - Specialized.

Let $\sigma, \tau \in S_n$, then

$$(\sigma\tau)^{-1}=\tau^{-1}\sigma^{-1}.$$

Exercise 6.

Let $\sigma = (1 \ 5 \ 3 \ 4)$ and $\tau = (2 \ 6)$.

Use Theorem 0.3.5 to compute $(\sigma \tau)^{-1}$.

Two cycles $(x_1 \ x_2 \ \dots \ x_r)$ and $(y_1 \ y_2 \ \dots \ y_s)$ are disjoint if $\{x_1, x_2, \dots, x_r\} \cap \{y_1, y_2, \dots, y_s\} = \emptyset$.

Theorem.

Disjoint cycles commute. That is if σ and τ are disjoint cycles then $\sigma\tau=\tau\sigma$.

Theorem 1.4.5 (Cycle Decomposition Theorem).

Every $\sigma \in S_n$ with $\sigma \neq \varepsilon$ can be written as a product of disjoint cycles.

Exercise 7.

Write

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 7 & 4 & 2 & 8 & 1 & 6 \end{pmatrix} \in S_8$$

as a product of disjoint cycles.

A transposition is a cycle of length 2.

Theorem 1.4.6.

If $n \ge 2$, then every cycle in S_n can be written as a product of transpositions.

"Proof."

$$(x_1 \ x_2 \ \dots \ x_r) = (x_1 \ x_r)(x_1 \ x_{r-1}) \cdots (x_1 \ x_3)(x_1 \ x_2)$$
 (1)

Exercise 8.

Verify that $(1\ 2\ 5\ 3) = (1\ 3)(1\ 5)(1\ 2)$.

A permutation $\sigma \in S_n$ is called even if it can be written as a product of an even number of transpositions. Similarly, permutations can be called odd.

The Parity Theorem (Theorem 1.4.7).

If a permutation has two factorizations

$$\sigma = \gamma_{\mathsf{n}} \cdots \gamma_2 \gamma_1 = \mu_{\mathsf{m}} \cdots \mu_{\mathsf{s}} \mu_1,$$

where each of γ_i and μ_j are transpositions, then $m \equiv n \pmod 2$ (m and n have the same parity).

The alternating group of degree n is the set of even permutations in S_n . We call it A_n .

Exercise 9.

Determine A_3 .

Question 10.

How do you think $|A_n|$ compares with $|S_n|$?

Exercise 11.

Let $f = (7\ 3)(2\ 6\ 1\ 9\ 4\ 8\ 7)$ and $g = (6\ 7\ 8\ 3\ 1\ 4\ 9)$.

(a) Begin by re-writing f and g so that the smallest number comes first in each cycle.

- (b) Compute
 - i. fg
 - ii. g^{-1}
 - iii. f^{-1}
 - iv. fgf^{-1}

The order of a permutation, $\sigma \in S_n$ is the smallest positive integer k such that $\sigma^k = \varepsilon$.

Exercise 12.

(a) What is the order of $(1\ 2)(3\ 4)$?

(b) What is the order of $(1\ 2)(3\ 4\ 5)$?

Question 13.

Assuming $\sigma \in S_n$ can be written as k disjoint cycles $\rho_1 \rho_2 \cdots \rho_k$ where cycle ρ_i has order n_i . Conjecture a value for the order of $\sigma \in S_n$.

Note.

You might want to first try some more examples.