Find study resources

Misr University for Science & Technology / INFORMATIO / INFORMATIO CIT 651 / Na\u00efve Bayes Classifier 14 Exampl...

Naïve bayes classifier 14 example consider the data

School Course Title Type Uploaded By Pages Ratings

Misr University f... INFORMATIO CI... Notes ashrafeltonsy 23 Pages 100% (1)

① This **preview** shows page **14 - 19** out of **23** pages.

View full document

See Page 1 ↑

Naïve Bayes Classifier

• Example:

Consider the data about car theft given in the table below

Example No.	Color	Type	Origin	Stole
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Black	Sports	Domestic	No
5	Black	Sports	Imported	Yes
6	Black	SUV	Imported	No
7	Black	SUV	Imported	Yes
8	Black	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

Solution:

Since the goal is to classify a Red Domestic SUV as stolen (first define two classes C_1 and C_2 , corresponding to Stolen = Stolen = No, respectively.

To classify the given car with attributes x, we need to compup(Stolen = Yes | Color = Red, Type = SUV, Origin = Domesti

and $p(C_2|x)$:

 $p(Stolen = No \mid Color = Red, Type = SUV, Origin = Domestic$

and find which conditional probability is larger. If the first one then our prediction is Stolen = Yes. If the second one is large prediction is Stolen = No. Note that x here is 3 dimensional corresponding to Color, Type and Origin.

Naïve Bayes Classifier

Since
$$p \stackrel{\frown}{\mathbb{C}}_1 \times \stackrel{\frown}{\mathbb{C}}_1 \stackrel{\frown}{\mathbb{C}_1 \stackrel{\frown}{\mathbb{C}}_1 \stackrel{\frown}{\mathbb{C}}_1 \stackrel{\frown}{\mathbb{C}}_1 \stackrel{\frown}{\mathbb{C}}_1 \stackrel{\frown}{\mathbb{C}_$$

We need to compute $p(x|C_1) = p(Color = Red, Type = SUV, Oriç Domestic | Stolen = Yes).$

Using the Naïve Bayes assumption which assumes that the din the input data (the attributes of the car) are independent, we cap($x|C_1$) as

$$p x C_1 \square \square p x_i C_1 \square$$

= $p(\text{Color} = \text{Red} \mid \text{Stolen} = \text{Yes}) p(\text{Type} = \text{SUV} \mid \text{Stolen} = \text{Yes}) p(\text{Type} = \text{SUV} \mid \text{Stolen} = \text{Yes})$

03.04.2021 Na\u00efve Bayes Classifier 14 Example Consider the data about car theft given in | Course Hero Similarly, $p(x|C_2)$ can be re-written as $P = C_2 =$ = $p(Color = Red \mid Stolen = No) p(Type = SUV \mid Stolen = No) p(Color = N$ Domestic | Stolen = No)

Naïve Bayes Classifier

To classify the given car, we need to compare $p(C_1|x)$ to $p(C_2|x)$ If then , otherwise

Therefore, for the this problem

Therefore, our prediction is C_{α} which is that the car is not stoler

Upload your study docs or become a

Course Hero member to access this document

Continue to access

Upload your study docs or become a

Course Hero member to access this document

Continue to access

€ End of preview. Want to read all 23 pages?

Upload your study docs or become a

Course Hero member to access this document

Continue to access

Term Professor Tags

Fall Seif Conditional Probability, Maximum Likelihood,

Likelihood Function, Probabilistic Generative

Models, P X Ck

Report

Students who viewed this also studied

Rakib_Ayon_finaltermprojoption1.pdf

New Jersey Institute Of Technology

CS 634

IS 665 Data Minging Project v1.2

New Jersey Institute Of Technology

IS 665

Module 1 HW 2.xlsx

George Mason University

BUS 310

CSCI567_second_exam_solutions.pdf

University of Southern California

CSCI 567

test_prep

IS-665-S18-Syllabus.docx

New Jersey Institute Of Technology

IS 665

notes

Assignment_1_student - ECON145-Introductory Data Analytics in Healthcare-G1.pdf

Singapore Management University

ECON 145

View more			
Dolsib Avon finaltownships and solf			
Rakib_Ayon_finaltermprojoption1.pdf			
₽ 26			
IS 665 Data Minging Project v1.2			
Q 9			
Module 1 HW 2.xlsx			
1 4			
CSCI567_second_exam_solutions.pdf			

20

Assignment_1_student - ECON145-Introductory Data Analytics in Healthcare-G1.pdf Homework

P 7

View more

Recently viewed

INFORMATIO CIT 651
Lecture 3

Linear Classifiers (2)

Viewing now

Other Related Materials

CIT651_Lec4.pdf

Nile University

CIT 651

notes

Lecture 3.pdf

Massachusetts Institute of Technology

ECON 2750

notes

Chap4-Part2

SUNY Buffalo State College

CSE 574

notes

Lecture 1.pdf

Nile University

CIT 651

notes

Lecture 2.pdf

Nile University

CIT 651

notes

Lecture 1.pdf

Nile University

CIT 651

notes

CIT651_Lec4.pdf

Notes

29

Lecture 3.pdf

Notes

23

Chap4-Part2

Notes

🖺 18

Lecture 1.pdf

Notes

46

What students are saying

As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran

Temple University Fox School of Business '17, Course Hero Intern

I cannot even describe how much Course Hero helped me this summer. It's truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana

University of Pennsylvania '17, Course Hero Intern

The ability to access any university's resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA's materials to help me move

Jill

Tulane University '16, Course Hero Intern

Company	Get Course Hero
About Us	iOS
Scholarships	Android
Sitemap	Educators
Standardized Tests	
Education Summit	
Educator Resources	
Careers	Help
Leadership	Contact Us
Careers	FAQ
Campus Rep Program	Feedback
Legal	Connect with Us
Copyright Policy	College Life
Academic Integrity	Facebook
Our Honor Code	Twitter
Privacy Policy	LinkedIn
Terms of Use	YouTube
	Instagram

