Química Geral

Prof^a. Laurinete S. Pinheiro

Email: <u>laurinete.pinheiro@fametro.edu.com</u>

Estados da Matéria

Estados da Matéria

Sublimação

Ressublimação

TEMPERATURA ou ENERGIA

Ativar o Windo Acesse Configuraçã

Macroscópico

Par Molecular

 H_2O (liquid) \longrightarrow H_2O (gas)

Representação

Elementos

Ativar o Wind Acesse Configuraç

Substâncias puras e misturas

- Substância pura: substância com composição característica e definida, com um conjunto definido de propriedades, exemplos: água, ferro (Fe), sal (NaCl), açúcar comestível, oxigênio (O2).
- Mistura: são duas ou mais substâncias separadas fisicamente.
 Algumas misturas podem formar solução (ligação a nível molecular ou atômico)

SUBSTÂNCIAS PURAS E MISTURAS

Uma substância pura é formada por um único tipo de espécie química, ou seja, sua composição e propriedades são fixas.

SUBSTÂNCIAS PURAS

Substância Simples	Fórmula Molecular	Substância Composta	Fórmula Molecular
	H ₂		HCN
	N ₂		H₂O
	O ₂		CO ₂
000	O ₃		CH₄

SUBSTÂNCIAS PURAS E MISTURAS

Uma mistura contém mais de um tipo de componente e, por isso, sua organização é variável.

Tipos de misturas

 Homogêneas: a água do mar (água e sal) e estas são chamadas misturas homogêneas.

• Heterogêneas: como o óleo e água ou o granito (quartzo, mica e feldspato) apresentando-se em diferentes fases.

MISTURAS

- Misturas Homogêneas
- Mistiras Heterogêneas

SUBSTÂNCIAS PURAS E MISTURAS

Purificação

Elementos e compostos

Há duas espécies de substâncias puras: os elementos e os compostos.

Elementos: são as formas mais simples de matéria, as substâncias simples no seu estado fundamental ou elementar, exemplos: cloro, oxigênio, ferro (os elementos da tabela periódica). São a base de todas as substâncias complexas com as quais trabalhamos.

Um elemento não pode ser separado em substâncias mais simples.

Elementos e compostos

Compostos: são combinações de dois ou mais elementos, substâncias mais complexas que os elementos e que podem ser decompostos (separados) em seus elementos constituintes. Portanto, os elementos se combinam para formar

compostos, como por exemplo: H2(g) + O(g) H2O(g)

Propriedades físicas

Propriedade	Avaliação
cor	Qual a cor qual a sua intensidade
Estado da matéria	Solido liquido ou gás, solido qual o formato das suas partículas?
Ponto de fusão	Em que temperatura o sólido se funde?
Ponto de ebulição	Em que temperatura um liquido entra em ebulição (1 atm)
Densidade	Qual a densidade da substancia?
Solubilidade	Qual é a densidade da substância pode ser dissolvida em um dado volume de água ou outro solvente
Condutividade eléctrica	Se a substância conduz electricidade
Maleabilidade	Facilidade com que um sólido pode ser deformado
Ductilidade	Facilidade com que um sólido pode ser transformado em um fio
Viscosidade	Facilidade com que um liquido flui

$$densidade = \frac{massa}{volume}$$

Propriedades físicas

Em relação às propriedades devemos distinguir entre:

- propriedades físicas: aquelas que podem ser especificadas sem referência à qualquer outra substância (densidade, cor, magnetismo, massa, volume);
- propriedades químicas: denotam alguma interação entre substâncias químicas, por exemplo, o sódio reage violentamente diante da água mas não na presença do gás hélio; ou então, o ferro exposto à água e ao ar enferruja segundo a reação:

Fe(s) + H2O + O2 óxido de ferro

Massa, inércia e peso

Matéria: é tudo o que tem massa e ocupa espaço.
 Tudo que podemos tocar, canetas, pizza, livros, etc. tem uma coisa em comum: todos são compostos de massa.

• Massa: é a quantidade de matéria do objeto, seja um balde de chumbo ou um balde de água.

Massa, inércia e peso

 Inércia: é a resistência de um corpo a um esforço para mudar seu estado de movimento. Assim, um objeto em repouso tende a estar em repouso e um objeto em movimento tende a estar em movimento na mesma direção e velocidade (Primeira Lei de Newton).

 Peso: refere-se à força com que um objeto é atraído pela força gravitacional da Terra. O peso de um objeto depende de dois fatores: da massa da Terra;

Densidade da água Temperatura (ºC) 0.917 0 (ice) 0 (liq water) 0.99984 2 0.99994 0.99997 10 0.99970 25 0.99707 100 0.95836

Temperatura influencia as propriedades físicas...

Mudanças Físico-Químicas

Naftaleno é uma substancia branca e sólida a 25 ºC. Tem um ponto de ebulição a 80.2 ºC

Aspirina é uma substancia branca e sólida 25 ºC. Tem um ponto de ebulição a 135º C

Exercitando o conhecimento

- 1. Uma amostra de água do rio Solimões, que apresentava partículas em suspensão, foi submetida a processos de purificação obtendo-se, ao final do tratamento, uma solução límpida e cristalina. Em relação às amostras de água antes e após o tratamento, podemos afirmar que correspondem, respectivamente, a:
- a) substâncias composta e simples.
- b) substâncias simples e composta.
- c) misturas homogênea e heterogênea.
- d) misturas heterogênea e homogênea.
- e) mistura heterogênea e substância simples

2. Em um laboratório, foi encontrado um frasco, sem identificação, contendo um pó branco cristalino. Aquecendo este pó com taxa constante de fornecimento de calor, foi obtida a seguinte curva de aquecimento.

Pode-se afirmar que o pó branco encontrado é:

- a) uma substância simples.
- b) uma substância composta.
- c) um mistura de cristais com tamanhos diferentes.
- d) uma mistura de duas substâncias.
- e) uma mistura de três substâncias.

3. Na perfuração de uma jazida petrolífera, a pressão dos gases faz com que o petróleo jorre para fora. Ao reduzir-se a pressão, o petróleo bruto para de jorrar e tem de ser bombeado. Devido às impurezas que o petróleo bruto contém, ele é submetido a dois processos mecânicos de purificação, antes do refino: separá-lo da água salgada e a seguir de impurezas sólidas como areia e argila. Esses processos mecânicos de purificação são, respectivamente:

- a) decantação e filtração.
- b) decantação e destilação fracionada.
- c) filtração e destilação fracionada.
- d) filtração e decantação.
- e) destilação fracionada e decantação.

4. Abaixo está esquematizado o fluxograma relativo à separação dos componentes de uma mistura constituída por azeite, água e açúcar totalmente dissolvido:

Examinando o fluxograma apresentado, você identifica os processos 1 e 2 como sendo:

- a) Destilação e filtração
- b) Decantação e centrifugação
- c) Filtração e decantação
- d) Filtração e centrifugação
- e) Decantação e destilação

- 5) Uma pequena barra de ouro maciço tem massa igual a 95 g e dimensões de 5cm x 2cm x 0,5 cm. Com essas informações, calcule a densidade do ouro em g/cm3.
- 6) Um béquer contendo 550cm3 de um líquido com densidade de 1,95 g/cm3 pesou 1.184 g. Qual a massa do béquer vazio?

- 7. Um cubo de pau-brasil com 2,0 cm de aresta tem massa igual a 6 g. Com base nessa informação, responda:
- a) Qual a densidade do pau-brasil?
- b) Essa madeira flutua em água? Justifique. (Densidade da água = 1,0 g/cm3)

Correção dos Exercícios de Fixação

- 1) Uma amostra de água do rio Solimões, que apresentava partículas em suspensão, foi submetida a processos de purificação obtendo-se, ao final do tratamento, uma solução límpida e cristalina. Em relação às amostras de água antes e após o tratamento, podemos afirmar que correspondem, respectivamente, a:
- a) substâncias composta e simples.
- b) substâncias simples e composta.
- c) misturas homogênea e heterogênea.
- d) misturas heterogênea e homogênea.
- e) mistura heterogênea e substância simples

2) Em um laboratório, foi encontrado um frasco, sem identificação, contendo um pó branco cristalino. Aquecendo este pó com taxa constante de fornecimento de calor, foi obtida a seguinte curva de aquecimento.

Pode-se afirmar que o pó branco encontrado é:

- a) uma substância simples.
- b) uma substância composta.
- c) um mistura de cristais com tamanhos diferentes.
- d) uma mistura de duas substâncias.
- e) uma mistura de três substâncias.

3) Na perfuração de uma jazida petrolífera, a pressão dos gases faz com que o petróleo jorre para fora. Ao reduzir-se a pressão, o petróleo bruto para de jorrar e tem de ser bombeado. Devido às impurezas que o petróleo bruto contém, ele é submetido a dois processos mecânicos de purificação, antes do refino: separá-lo da água salgada e a seguir de impurezas sólidas como areia e argila.

Esses processos mecânicos de purificação são, respectivamente:

- a) decantação e filtração.
- b) decantação e destilação fracionada.
- c) filtração e destilação fracionada.
- d) filtração e decantação.
- e) destilação fracionada e decantação.

4. Abaixo está esquematizado o fluxograma relativo à separação dos componentes de uma mistura constituída por azeite, água e açúcar totalmente dissolvido:

Examinando o fluxograma apresentado, você identifica os processos 1 e 2 como sendo:

- a) Destilação e filtração
- b) Decantação e centrifugação
- c) Filtração e decantação
- d) Filtração e centrifugação
- e) Decantação e destilação

5) Uma pequena barra de ouro maciço tem massa igual a 95 g e dimensões de 5cm x 2cm x 0,5 cm. Com essas informações, calcule a densidade do ouro em g/cm3.

$$d = \frac{95}{5} \rightarrow d = 19g/cm3$$

6) Um béquer contendo 550cm3 de um líquido com densidade de 1,95 g/ cm3 pesou 1.184 g. Qual a massa do béquer vazio?

$$d = \frac{m}{V} \rightarrow m = d \times V$$
 $m = 1,95 \times 550 \rightarrow m = 1.072,5g$

Massa do béquer é igual a: $m = 1.184 - 1.072,5$
 $m = 111,5 g$

- 7. Um cubo de pau-brasil com 2,0 cm de aresta tem massa igual a 6 g. Com base nessa informação, responda:
- a) Qual a densidade do pau-brasil?

$$d = \frac{6}{8}$$

$$d = 0.75 \text{ g/cm}^3$$

b) Essa madeira flutua em água? Justifique. (Densidade da água = 1,0 g/cm3)

QUÍMICA GERAL

MODELOS ATÔMICOS

MODELOS ATÔMICOS

MODELO
ATÔMICO DE DALTON

MODELO ATÔMICO DE THOMSON

MODELO ATÔMICO DE RUTHERFORD

MODELO ATÔMICO DE BOHR O modelo atômico de Dalton dizia basicamente que a matéria era formada por átomos - pequenas partículas esféricas, maciças e indivisíveis. A natureza da matéria sempre foi algo que os pensadores, filósofos e cientistas tentaram explicar.

O modelo atômico de Thomson foi proposto no ano de 1898 pelo físico inglês Joseph John Thomson, que a partir de seu modelo, confirmou e provou a existência de elétrons (partículas com carga elétrica negativa) no átomo, ou seja, o átomo possui partículas subatômicas.

O modelo atômico de Rutherford apresenta como principais características um núcleo positivo e uma eletrosfera negativa, todas evidenciadas por um experimento que utilizou radiação e ouro. No ano de 1911, o cientista neozelandês Ernest Rutherford apresentou à comunidade científica o seu modelo atômico.

O Modelo Atômico de Bohr apresenta o aspecto de órbitas onde existem elétrons e, no seu centro, um pequeno núcleo. O físico dinamarquês Niels Henry David Bohr (1885-1962) deu continuidade ao trabalho desenvolvido com Rutherford.

MODELO ATÔMICO DE DALTON

- •A matéria é formada por partículas extremamente pequenas chamadas átomos;
- Os átomos são esferas maciças e indivisíveis;
- Os átomos com as mesmas propriedades, constituem um elemento químico;
- •Elementos diferentes são constituídos por átomos com propriedades diferentes.

As reações químicas são rearranjos, união e separação de átomos.

MODELO ATÔMICO DE THOMSON

O átomo não era uma esfera indivisível.

A experiência que levou a elaboração desse modelo, consistiu na emissão de raios catódicos, onde as partículas negativas eram atraídas pelo pólo positivo de um campo elétrico externo.

Essas partículas negativas foram chamadas de elétrons, e para explicar a neutralidade da matéria, Thomson propôs que o átomo fosse uma esfera de carga elétrica positiva, onde os elétrons estariam uniformemente distribuídos, configurando um equilíbrio elétrico.

Modelo Pudim de Passas

MODELO ATÔMICO DE RUTHERFORD

O modelo atômico de Rutherford concluiu que o átomo era composto por um pequeno núcleo com carga positiva neutralizada por uma região negativa, denominada eletrosfera, onde os elétrons giravam ao redor do núcleo.

Modelo Planetário

O Postulados de Bohr:

I- Os elétrons descrevem ao redor do núcleo órbitas circulares, chamadas de camadas eletrônicas, com energia constante e determinada. Cada órbita permitida para os elétrons possui energia diferente.

II- Os elétrons ao se movimentarem numa camada não absorvem nem emitem energia espontaneamente.

III- Ao receber energia, o elétron pode saltar para outra órbita, mais energética. Dessa forma, o átomo fica instável, pois o elétron tende a voltar à sua orbita original. Quando o átomo volta à sua órbita original, ele devolve a energia que foi recebida em forma de luz ou calor.

MODELO ATÔMICO DE BOHR

