Trabalho: Minimização de Autômatos Finitos

Alunos: Claudio Meireles (2321070) e Felipe Dutra (2321017)

Parte 1: Minimização do Autômato 1 (Autômato C)

1.1. Definição Inicial

- Autômato (M): Conforme a imagem do autômato C.
- **Estados (Q):** {q0, q1, q2, q3, q4, q5, q6}
- Alfabeto (Σ): {a, b}
- Estado Inicial (q₀): q0
- **Estados Finais (F):** {q0, q1, q3, q6}

Tabela de Transições Original

Estado	a	b
->*q0	q1	q2
*q1	q3	q4
q2	q5	q6
*q3	q3	q3
q4	q4	q4
q5	q5	q5
*q6	q6	q6

1.2. Etapa 1: Remoção de Estados Inalcançáveis

Não há estados inalcançáveis. Todos os estados são alcançáveis a partir de q0.

1.3. Etapa 2: Remoção de Estados Mortos e Conclusão do AFD

Um estado é morto se dele não é possível alcançar um estado final.

- q4 transita apenas para si mesmo e não é final. É um estado morto.
- q5 transita apenas para si mesmo e não é final. É um estado morto.

Removemos q4 e q5. O conjunto de estados se torna {q0, q1, q2, q3, q6}.

Com a remoção, algumas transições se tornam indefinidas ($\delta(q1, b)$ que ia para q4 e $\delta(q2, a)$ que ia para q5). Para manter um AFD completo, introduzimos um **estado de ralo (sink)**, aqui chamado de q_sink.

A tabela de transições completa para a minimização é:

Estado	a	b
->*q0	q1	q2
*q1	q3	q_sink
q2	q_sink	q6

*q3	q3	q3
*q6	q6	q6
q_sink	q_sink	q_sink

(-> denota inicial, * denota final)

1.4. Etapa 3: Agrupamento de Estados Equivalentes

- Partição Inicial (P₀): Separamos estados finais e não-finais.
 - o Grupo 1 (Finais): {q0, q1, q3, q6}
 - o Grupo 2 (Não-Finais): {q2, q sink}
- **Refinamento (P1):** Analisamos as transições de P0.
 - No Grupo 1:
 - $\delta(q0, b) = q2$ (vai para o Grupo 2)
 - $\delta(q1, b) = q \sin k \text{ (vai para o Grupo 2)}$
 - $\delta(q3, b) = q3$ (vai para o Grupo 1)
 - $\bullet \delta(q6, b) = q6 \text{ (vai para o Grupo 1)}$
 - q0 e q1 são separados de q3 e q6.
 - A partição é refinada para: {q0, q1}, {q3, q6}, {q2, q sink}
- Refinamento (P2): Analisamos as transições de P1.
 - No grupo {q0, q1}:
 - $\bullet \quad \delta(q0, a) = q1 \text{ (está no grupo } \{q0, q1\})$
 - $\bullet \quad \delta(q1, a) = q3 \text{ (está no grupo } \{q3, q6\})$
 - Como q0 e q1 levam a grupos diferentes com o símbolo a, eles são separados.
 - A partição é refinada para: {q0}, {q1}, {q3, q6}, {q2, q sink}
- **Refinamento** (**P**₃): Analisamos as transições de **P**₂.
 - No grupo {q2, q sink}:
 - $\bullet \delta(q2, b) = q6 \text{ (está no grupo } \{q3, q6\})$
 - $\delta(q \sin k, b) = q \sin k \text{ (está no grupo } \{q2, q \sin k\})$
 - Como q2 e q sink levam a grupos diferentes com o símbolo b, eles são separados.
 - A partição final e estável é: {q0}, {q1}, {q2}, {q3, q6}, {q_sink}

1.5. Construção do Autômato Minimizado (M')

- Novos Estados (Q'): {[q0], [q1], [q2], [q3, q6], [q_sink]}
- Novo Estado Inicial (q'0): [q0]
- Novos Estados Finais (F'): {[q0], [q1], [q3, q6]}

Tabela de Transições de M'

Estado	a	b
->*[q0]	[q1]	[q2]
*[q1]	[q3, q6]	[q_sink]
[q2]	[q_sink]	[q3, q6]
*[q3, q6]	[q3, q6]	[q3, q6]
[q_sink]	[q_sink]	[q_sink]

Parte 2: Minimização do Autômato 2 (Autômato G)

2.1. Definição Inicial

- Autômato (M): Conforme a imagem do autômato G.
- **Estados (Q):** {q0, q1, q2, q3, q4, q5, q6}
- **Alfabeto (Σ):** {a, b}
- Estado Inicial (q₀): q0
- Estados Finais (F): {q1, q3}

Tabela de Transições Original

Estado	a	b
->*q0	q1	-
*q1	q1	q2
q2	q5	-
*q3	q3	q3
q4	q3	q5
q5	q5	q4
q6	q6	q4

2.2. Etapa 1: Remoção de Estados Inalcançáveis

- O estado **q6 é inalcançável** a partir do estado inicial **q**0. Ele é removido.
- Estados restantes: {q0, q1, q2, q3, q4, q5}.

2.3. Etapa 2: Conclusão do AFD

Para as transições indefinidas no autômato restante, adicionamos o estado q_sink.

Tabela de Transições Completa

Estado	a	b
->q0	q1	q_sink

*q1	q1	q2
q2	q5	q_sink
*q3	q3	q3
q4	q3	q_sink
q5	q5	q4
q_sink	q_sink	q_sink

2.4. Etapa 3: Remoção de Estados Mortos

Com os estados finais corretos {q1, q3}, nenhum dos estados originais (q0 a q5) é morto. Todos podem alcançar um estado final. q_sink é, por definição, um estado morto, mas é mantido para garantir que o autômato seja completo.

2.5. Etapa 4: Agrupamento de Estados Equivalentes

- Partição Inicial (P₀):
 - Grupo 1 (Finais): {q1, q3}
 - Grupo 2 (Não-Finais): {q0, q2, q4, q5, q sink}
- Refinamento (P₁):
 - No Grupo 1:
 - $\delta(q1, b) = q2$ (vai para o Grupo 2)
 - $\delta(q3, b) = q3$ (vai para o Grupo 1)
 - q1 e q3 são separados.
 - No Grupo 2:
 - \bullet $\delta(q0, a) = q1$ (vai para o Grupo 1)
 - \bullet $\delta(q2, a) = q5$ (vai para o Grupo 2)
 - $\delta(q4, a) = q3$ (vai para o Grupo 1)
 - \bullet $\delta(q5, a) = q5$ (vai para o Grupo 2)
 - $\delta(q \sin k, a) = q \sin k \text{ (vai para o Grupo 2)}$
 - q0 e q4 se separam de q2, q5 e q sink.
 - Partição resultante: {q1}, {q3}, {q0, q4}, {q2, q5, q_sink}

• Refinamento (P₂):

- No grupo {q0, q4}:
 - $\bullet \delta(q0, b) = q \sin k \text{ (vai para o grupo } \{q2, q5, q \sin k\}\text{)}$
 - $\bullet \delta(q4, b) = q \sin k \text{ (vai para o grupo } \{q2, q5, q \sin k\}\text{)}$
 - Até aqui, parecem equivalentes.
- No grupo {q2, q5, q sink}:
 - $\bullet \delta(q2, b) = q \sin k \text{ (vai para o grupo } \{q2, q5, q \sin k\}\text{)}$

- $\bullet \delta(q5, b) = q4 \text{ (vai para o grupo } \{q0, q4\})$
- q5 se separa de q2 e q sink.
- Partição resultante: {q1}, {q3}, {q0, q4}, {q5}, {q2, q_sink}

• Refinamento (P₃):

- No grupo {q2, q_sink}:
 - $\bullet \delta(q2, a) = q5 \text{ (vai para o grupo } \{q5\})$
 - $\delta(q_{sink}, a) = q_{sink}$ (vai para o grupo $\{q2, q_{sink}\}$)
 - q2 e q sink são separados.
- o Partição resultante: {q1}, {q3}, {q0, q4}, {q5}, {q2}, {q_sink}

• Refinamento (P₄):

- No grupo {q0, q4}:
 - $\delta(q0, a) = q1$ (vai para o grupo $\{q1\}$)
 - $\bullet \quad \delta(q4, a) = q3 \text{ (vai para o grupo } \{q3\})$
 - q0 e q4 são separados.
- Partição Final: {q0}, {q1}, {q2}, {q3}, {q4}, {q5}, {q_sink}
 - Nenhum estado é equivalente a outro.

2.6. Construção do Autômato Minimizado (M')

Como nenhum estado pôde ser agrupado, o autômato minimizado é o próprio autômato após a remoção do estado inalcançável (q6) e a adição do estado de ralo (q_sink) para completá-lo. Sua estrutura é idêntica à tabela de transições da Etapa 2.3.

