Programming in C

Chapter 10 / 16a (p.384)

Pointers / Dynamic Memory Allocation

- A variable that stores a memory address
 - Allows C programs to simulate call-by-reference
 - Allows a programmer to create and manipulate dynamic data structures
- Must be defined before it can be used
 - Should be initialized to NULL or valid address

Declaring Pointers

Declaration of pointers

```
<type> *variable
<type> *variable = initial-value
```

Examples:

Pointers

char *grade = NULL;

- A pointer variable has two associated values:
 - Direct value
 - address of another memory cell
 - Referenced by using the variable name
 - Indirect value
 - value of the memory cell whose address is the pointer's direct value.
 - Referenced by using the indirection operator *

Pointer Operators

- Come before a variable name
 - * operator
 - Indirection operator or dereferencing operator
 - Returns a synonym, alias or nickname to which its operand points
 - & operator
 - Address of operator
 - Returns the address of its operand

 One way to store a value in a pointer variable is to use the & operator

```
int count = 5;
int *countPtr = &count;
```

- The address of count is stored in countPtr
- We say, countPtr points to count

 Assume count will be stored in memory at location 700 and countPtr will be stored at location 300

```
int count = 5;
causes 5 to be stored in count
700
5
count

int *countPtr = &count;
causes the address of count to be stored in countPtr
300
700
countPtr
```

We represent this graphically as

- The indirection / dereferencing operator is *
 - *countPtr = 10; stores the value 10 in the address pointed to by countPtr

The character * is used in two ways:

- 1. To declare that a variable is a pointer
 - Pre-pending a variable with a * in a declaration declares that the variable will be a pointer to the indicated type instead of a regular variable of that type
- 2. To access the location pointed to by a pointer
 - Pre-pending a variable with a * in an expression indicates the value in the location pointed to by the address stored in the variable

Simulating By Reference

• Invoked function uses * in formal parameters

```
void increment(int *n) {
    *n += 1; // or (*n)++;
}
```

Invoking function uses & in actual parameters

```
int count = 0;
increment(&count);
printf("%d\n", count); // Prints 1
```

Given

```
int x;
int *xPtr = &x;
*xPtr = 7;
```

- The compiler will know how many bytes to copy into the memory location pointed to by xPtr
- Defining the type that the pointer points to permits a number of other interesting ways a compiler can interpret code

- Consider a block in memory consisting of ten integers of 4 bytes in a row at location 100_{10}
- Now, let's say we point an integer pointer aPtr at the first of these integers

What happens when we write

- Because the compiler "knows"
 - This is a pointer (i.e. its value is an address)
 - That it points to an integer of length 4 at location 100
- Instead of 1, aPtr = aPtr + 1; adds 4 to aPtr
 - Now aPtr "points to" the next integer at location 104
 - Same for: aPtr+=1, aPtr++, and ++aPtr

 Since a block of 10 integers located contiguously in memory is, by definition, an array of integers, this brings up an interesting relationship between arrays and pointers

100	104	108	112	116	120	124	128	132	136	

Consider this array allocated at location 200

```
int scores[10] = {87,98,93,87,83,76,86,83,86,77};
```

- We have an array containing 10 integers
- We refer to each of these integers by means of a subscript to scores
 - Using scores[0] through scores[9]

- The name of an array and the address of the first element in the array represent the same thing
- Consequently, we could alternatively access them via a pointer:

```
int scores[10] = {87,98,93,87,83,76,86,83,86,77};
...
int *scorePtr = NULL;
...
scorePtr = &scores[0]; // Points to first element
```


scores(0) scores(1) scores(2) scores(3) scores(4) scores(5) scores(6) scores(7) scores(8) scores(9)

- The name of an array is a pointer constant to the first element of the array
- So, we could also use :

```
int scores[10] = {87,98,93,87,83,76,86,83,86,77};
...
int *scorePtr = NULL;
...
scorePtr = scores; // Points to array
```


scores(0) scores(1) scores(2) scores(3) scores(4) scores(5) scores(6) scores(7) scores(8) scores(9)

Pointer Arithmetic and Arrays

 If scorePtr is pointing to a specific element in the array and n is an integer,

```
scorePtr + n
is the pointer value n elements away
```

- We can access elements of the array either using the array notation or pointer notation
 - If scorePtr points to the first element, the following two expressions are equivalent:

```
scores[n] Array notation

* (scorePtr + n) Pointer notation
```

Pointers and Dynamic Allocation of Memory

- So far, we have always allocated memory for variables that are located on the stack
 - Size of such variables must be known at compile time
- Sometimes convenient to allocate memory at run time
 - System maintains a second storage area called the heap
 - Functions calloc and malloc allocate memory as needed of size needed

Pointers and Dynamic Allocation of Memory

- Use allocating function (such as malloc(), calloc(), etc.)
 - Returns void pointer
 - void * indicates a pointer to untyped memory
 - > Will have to cast the returned value to the specific type needed
- 2. Use memory through the pointer notation
- Release allocated space when no longer needed, so that it can be reused

Pointers and Dynamic Allocation of Memory: calloc

calloc

- Used to dynamically create an array in the heap
- Contiguous allocation
 - Initialized to binary zeros
- Must #include <stdlib.h>
- Takes two arguments
 - 1. Number of array elements
 - 2. Amount of memory required for one element
 - Use sizeof function / operator
- Returns
 - Void pointer if successful
 - NULL if unsuccessful

Pointers and Dynamic Allocation of Memory: calloc

Example 1: String

```
const int str_len = 500;
char *str_ptr = NULL;
...
str_ptr = (char *) calloc(str_len, sizeof(char));
if (str_ptr == NULL) {
   printf("Halting: Unable to allocate string.\n");
   exit(1);
}
```

Example 2: Integers

```
const int arraySize = 1000;
int *arrayPtr = NULL;
...
arrayPtr = (int *) calloc(arraySize, sizeof(int));
if (arrayPtr == NULL) {
   printf("Halting: Unable to allocate array.\n");
   exit(1);
}
```

Pointers and Dynamic Allocation of Memory: malloc

malloc

- Used to dynamically get memory from heap
- Contiguous allocation
 - No initialization
- Must #include <stdlib.h>
- Takes one argument
 - Total amount of memory required
- Returns
 - Void pointer if successful
 - > NULL if unsuccessful

Pointers and Dynamic Allocation of Memory: malloc

Example 1: String

```
const int str_len = 500;
char *str_ptr = NULL;
...

str_ptr = (char *) malloc(str_len);
if (str_ptr == NULL) {
   printf("Halting: Unable to allocate string.\n");
   exit(1);
}
```

Example 2: Integers

```
const int arraySize = 1000;
int *arrayPtr = NULL;
...
arrayPtr = (int *) malloc(arraySize * sizeof(int));
if (arrayPtr == NULL) {
   printf("Halting: Unable to allocate array.\n");
   exit(1);
}
```

Pointers and Dynamic Allocation of Memory: free

free

- Used to dynamically release memory back to heap
- Contiguous deallocation
- Must #include <stdlib.h>
- Takes one argument
 - Pointer to beginning of allocated memory
- Good idea to also NULL pointer if reusing

Pointers and Dynamic Allocation of Memory: free

Example 2 with free

```
const int arraySize = 1000;
int *arrayPtr = NULL;
arrayPtr = (int *) malloc(arraySize * sizeof(int));
if (arrayPtr == NULL) {
   printf("Halting: Unable to allocate array.\n");
   exit(1);
free (arrayPtr);
arrayPtr = NULL;
```

Programming in C

Chapter 10 / 16a (p.384)

Pointers / Dynamic Memory Allocation

