

משוואות מקסוול

צורה דיפרנציאלית	צורה אינטגרלית	
$\vec{\nabla} \cdot \vec{E} = 4\pi k \rho$	$\oint \!$	חוק גאוס
$\vec{\nabla} \cdot \vec{B} = 0$	$\oiint \vec{B} \cdot d\vec{a} = 0$	חוק גאוס המגנטי
$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	$\oint_{\partial \Sigma} \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \iint_{\Sigma} \vec{B} \cdot d\vec{a}$	חוק פארדיי
$ec{ abla} imesec{B}=\mu_0\Bigg(ec{J}+arepsilon_0rac{\partialec{E}}{\partial t}\Bigg)$	$\oint_{\partial \Sigma} \vec{B} \cdot d\vec{l} = \mu_0 \iint_{\Sigma} \left(\vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right) \cdot d\vec{a}$	חוק אמפר- מקסוול

- $\mu_0 = 4\pi \cdot 10^{-7} \frac{\text{N}}{\text{A}^2}$, $\varepsilon_0 = 1/4\pi k \approx 8.85 \cdot 10^{-12} \frac{\text{C}^2}{\text{Nm}^2}$, $k \approx 9 \cdot 10^9 \frac{\text{Nm}^2}{\text{C}^2}$.1
- $.\,dq=
 ho dV$: נפחית: משטחית: משטחית: מפחית: $dq=\lambda dl$. נפחית: 2
- $\vec{F}_{12} = k \frac{q_1 q_2}{\left|\vec{r}_2 \vec{r}_1
 ight|^3} (\vec{r}_2 \vec{r}_1)$: $(\vec{r}_1$ הכוח על חלקיק q_2 הנמצא ב q_2 בהשפעת חלקיק (הנמצא ב q_2 הנמצא ב q_2 הוא הכוח על חלקיק.
- שדה $d\vec{E}(\vec{r}) = \frac{kdq(\vec{r}-\vec{r}')}{\left|\vec{r}-\vec{r}'\right|^3}: \vec{r}'$ שדה שמלי: \vec{r} שדה בנקודה \vec{r} הנוצר ע"י אלמנט מטען שנמצא ב \vec{r} שדה בנקודה \vec{r} הנוצר ע"י אלמנט מטען 4 \vec{r}

של תיל אינסופי טעון אחידות בצפיפות λ שנמצא על ציר z=z (כש z=x אינסופי (z=x). שדה של מישור אינסופי z=0 הנמצא ב z=0 וטעון אחידות בצפיפות z=0

- $\Phi = \iint_{\Sigma} \vec{E} \cdot d\vec{a}$: Σ הגדרת השטף של השדה ברך המשטח המכוון .5
- משפט הקפיצה בשדה: אי רציפות בשדה נובעת מקיומה הדף. משפט הקפיצה בשדה: אי רציפות בשדה נובעת מקיומה $\Delta E = 4\pi k\sigma$ של צפיפות מטען משטחית כש
 - או בצורה הדיפרנציאלית $\vec{E}(\vec{r}) = -\vec{\nabla} \varphi$ או בצורה הדיפרנציאלית $\varphi(\vec{r}) = \varphi(\vec{r_0}) \int\limits_{\vec{r_0}}^{\vec{r}} \vec{E}(\vec{r}') \cdot d\vec{r}'$ לגוף סופי נהוג לבחור.

 $d \varphi(\vec{r}) = rac{kdq}{\left| \vec{r} - \vec{r} \, \right|}$: הוא \vec{r} הוא שנמצא ב dq שנמצא ב "י אלמנט מטען הפוטנציאל בנקודה \vec{r} הנוצר ע"י אלמנט מטען $\phi(\infty) = 0$

- . $\nabla^2 \varphi = 0$ ולפלס: $\nabla^2 \varphi = -4\pi k \rho$ ולפלס: 8
- 9. **קבלים:** הגדרת הקיבול $C=rac{Q}{V}$ כש Q מטען הפריקה של הקבל ו V הפרש הפוטנציאל בין קצותיו. בקבל לוחות $C=rac{Q}{V}$ כש $C=rac{Q}{V}$ כש $C=rac{Q}{V}$ המרחק ביניהם ו $arepsilon_r$ המקדם הדיאקטרי היחסי של החומר בין הלוחות. חיבור $C=arepsilon_r$ חיבור במקביל $C_T=\sum C_i$ חיבור במקביל $C_T=\sum C_i$
 - טטית: של אוסף מטענים נקודתיים $ilde{arphi}_i = rac{1}{2} \sum_i q_i \sum_{j \neq i} rac{kq_j}{r_{ij}} = rac{1}{2} \sum_i q_i ilde{arphi}_i$ הוא הפוטנציאל 10.

או $U=rac{1}{2}ig(\iiint arphi
ho dV + \iint arphi \sigma daig)$ או להתפלגות מטען מלבד יי כל המטענים מלבד יי כל המטענים מלבד בנקודה $ec{r}_i$

$$U=rac{1}{2}CV^2$$
 לקבל . $U=rac{1}{2}arepsilon_0 \iiint E^2 dV$

- . הזרם בתיל: $I=\left|rac{dQ}{dt}
 ight|$ כש $I=\int_{\Sigma}ec{J}\cdot dec{a}:\Sigma$ נשטח מכוון $I=\left|rac{dQ}{dt}
 ight|$ כש וקטור צפיפות הזרם. $I=\left|rac{dQ}{dt}
 ight|$ ביטוי ל $ec{I}$ באמצעות הצפיפות מספרית של נושאי המטען n , המטען שלהם q , ומהירות הסחיפה $ec{I}=naec{u}$
 - $.\vec{
 abla}\cdot\vec{J}=-rac{\partial
 ho}{dt}$ בצורה דיפרנציאלית $\vec{J}\cdot d\vec{a}=-rac{dQ_{in}}{dt}$ בצורה 12
- V כש R התנגדות הנגד ו V=IR הוק אוהם: המקומי $J=\sigma ec E$ כש $J=\sigma ec E$ כש $I=\sigma ec E$ היא הפרש הפוטנציאלים בין קצותיו. ההתנגדות של תיל באורך I=0 ושטח חתך I=0 היא הפרש הסגולית.
- 14. **חוקי קירכהוף:** סכום הזרמים בצומת הוא אפס. כשהזרם קבוע בזמן, סכום המתחים בלולאה סגורה הוא אפס.
 - $p=\vec{J}\cdot\vec{E}$ נפח: P=IV הספק. 15.
- $dec{F}_L = Idec{l} imes ec{B}$: I מטען q הנע במהירות $ec{V}$ הוא $ec{V}$ הוא $ec{V}$ הוא $dec{l}$ הוקטור $dec{l}$ מציין את אורך האלמנט ואת כיוון הזרם.
 - עם $T=rac{2\pi m}{qB}$ זמן המחזור הוא $R=rac{m v_\perp}{qB}$ כש $T=rac{m v_\perp}{qB}$ זמן המחזור הוא $T=rac{2\pi m}{qB}$ כש $T=rac{2\pi m}{qB}$ מטען החלקיק ו $T=rac{2\pi}{\omega}$ המסה שלו ו $T=rac{2\pi}{\omega}$
 - 18. **אי קיום מטען מגנטי.** ראה חוק גאוס המגנטי בטבלה בראש הדף
- כש \vec{r} כש $d\vec{B}=\frac{\mu_0 I}{4\pi}\frac{d\vec{l}\times\hat{r}}{r^2}$ הוא ווקטור מאלמנט הזרם אל הנקודה P ע"י אלמנט תיל בו זורם זרם I הוא הוקטור מאלמנט הזרם אל הנקודה P .
 - או בצורה דיפרנציאלית אמפר: כאשר צפיפות המטען קבועה בזמן מתקיים $\vec{J}\cdot d\vec{a}$ או בצורה דיפרנציאלית 20.

$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

- כאשר $B_{\hat{p}}\left(\vec{r}_{0}+\delta\hat{n}\right)-B_{\hat{p}}\left(\vec{r}_{0}-\delta\hat{n}\right)=\mu_{0}j_{\hat{n}\times\hat{p}}$ כאשר 31. אי-רציפות בשדה מגנטי: מעידה על צפיפות אורכית של זרם משטחי: $\delta\hat{n}$ ווקטור קטן הניצב למשטח.
 - $(\hat{\theta} = \frac{-y\hat{x} + x\hat{y}}{\sqrt{x^2 + y^2}}$ (כש $\frac{\mu_0 I}{2\pi r}\hat{\theta}: I$ כש זורם בו זרם (כש בי הנמצא על ציר בי הנמצא על ציר בי וזורם בו זרם (כש
 - .23 שדה מגנטי של סליל אינסופי: בפנים $\mu_0 n I$ בחוץ 0. כש מספר הכריכות ליחידת האורך ו $\mu_0 n I$
 - . ביסוול. פארדיי: $\varepsilon = -\frac{d\Phi_{\scriptscriptstyle M}}{dt}$ לניסוחים נוספים ראה טבלת משוואות מקסוול. 24
 - $\varepsilon = -L \frac{dI}{dt}$:ב. השראות עצמית.
 - $U = \frac{1}{2}LI^2$:אנרגיה של משרן $U_B = \frac{1}{2\mu} \iiint B^2 dv$:מנטי: 26.
- 27. **זרם ההעתקה:** כשהשדה החשמלי תלוי בזמן, נוצר שדה מגנטי גם ע"י זרם ההעתקה. צפיפות זרם ההעתקה היא . $\vec{j}_D = arepsilon_0 rac{\partial ec{E}}{\partial t}$. ראה גם חוק-אמפר מקסוול בטבלא בראש הדף.

נספח – נוסחאות מתמטיות

- 21. **קשרים גיאומטריים:** היקף מעגל $2\pi r$. אורך קשת הנשענת על זווית rlpha: שטח עיגול: $2\pi r$. שטח פני כדור: $\pi r^2 h$. נפח כדור: $\pi r^3 h$. נפח גליל: $\pi r^3 h$. נפח כדור: $\pi r^3 h$. נפח גליל: $\pi r^3 h$.
 - c בשפט הקוסינוסים: במשולש $c^2=a^2+b^2-2ab\cos\gamma$ כש היא הזווית שמול הצלע.
 - ב בקואורדינטות כדוריות dv = dx dy dz ב בקואורדינטות כדוריות (פח: בקואורדינטות בקואורדינטות בקואורדינטות בקואורדינטות בקואורדינטות כדוריות

אלמנט . $dv=rd\theta drdz$ כשיש סימטריה כדורית . $dv=4\pi r^2dr$ ב בקואורדינטות גליליות $dv=rd\theta drdz$ כשיש סימטריה כדורית . $da=2\pi rdr$ בקואורדינטות קרטזיות $da=2\pi rdr$ בקואר בקואורדינטות קרטזיות da=dx

$$\left| d\vec{r} \right| = ds \sqrt{\frac{d\vec{r}}{ds} \cdot \frac{d\vec{r}}{ds}} \quad \vec{r} \left(s \right)$$
 אלמנט אורך לאורך קו עקום

- $\vec{r}(s,t) = \vec{r_0} + \vec{Vs} + \vec{Ut}$ מישור: $\vec{r}(s) = \vec{r_0} + \vec{Vs}$ ישר: קו ישר: 4.
 - 5. אופרטורים דיפרנציאליים:
 - : ψ א. **גרדיינט** של פונקציה סקלרית

$$ec{
abla}\psi=rac{\partial\psi}{\partial x}\,\hat{x}+rac{\partial\psi}{\partial y}\,\hat{y}+rac{\partial\psi}{\partial z}\,\hat{z}$$
 בקואורדינטות קרטזיות $ec{r}=x\hat{x}+y\hat{y}+z\hat{z}$ שב $ec{
abla}\cdot\psi=rac{\partial\psi}{\partial r}\,\hat{r}$ כש $ec{
abla}\cdot\psi=rac{\partial\psi}{\partial r}\,\hat{r}$ כש $ec{r}=x\hat{x}+y\hat{y}$ כש $ec{
abla}\cdot\psi=rac{\partial\psi}{\partial r}\,\hat{r}$ בקואורדינטות גליליות כשיש בקואורדינטות גליליות כשיש סימטריה גלילית

ב. $\vec{\nabla} \cdot \vec{A} \equiv \lim_{V \to 0} \frac{1}{V} \oiint_{\partial V} \vec{A} \cdot d\vec{a}$ ב. דרכי חישוב: ב. דיברגנס של פונקציה וקטורית

$$\vec{\nabla} \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$
 בקואורדינטות קרטזיות כדוריות כשיש בקואורדינטות כדוריות כשיש $\vec{r} = x\hat{x} + y\hat{y} + z\hat{z}$ כש $\vec{\nabla} \cdot \vec{A} = \frac{1}{r^2} \frac{d(r^2A)}{dr}$ כש $\vec{\nabla} \cdot \vec{A} = \frac{1}{r^2} \frac{d(rA)}{dr}$ בקואורדינטות גליליות כשיש
$$\vec{r} = x\hat{x} + y\hat{y}$$
 כש $\vec{\nabla} \cdot \vec{A} = \frac{1}{r} \frac{d(rA)}{dr}$ כש $\vec{\nabla} \cdot \vec{A} = \frac{1}{r} \frac{d(rA)}{dr}$ סימטריה גלילית (כלומר כש $\vec{A}(\vec{r}) = A(r)\hat{r}$

ג. רוטור של פונקציה וקטורית \hat{n} . הגדרה: $\hat{n} \equiv \lim_{\Sigma \to 0} \frac{1}{\Sigma} \oint_{\partial \Sigma} \vec{A} \cdot d\vec{l}$. ברכי \hat{n} כש \hat{n} ניצב לשטח \hat{n} . דרכי

$$ec{
abla} imes ec{A} = egin{bmatrix} \hat{x} & \hat{y} & \hat{z} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ A_x & A_y & A_z \end{bmatrix}$$
:חישוב:

$$\displaystyle \iiint_V \vec{\nabla} \cdot \vec{F} = \iint_{\partial V} \vec{F} \cdot d\vec{a}$$
 משפט הדיברגנס: .6

$$\iint\limits_{\Sigma} \left(\vec{\nabla} \times \vec{F} \right) \cdot d\vec{a} = \oint\limits_{\partial \Sigma} \vec{F} \cdot d\vec{l}$$
 :סטוקס: .7

. ג. אם $x(t) = A\cos(\omega_0 t + \varphi)$ אז $\ddot{x} + \omega_0^2 x = 0$ ב. אם $y(t) = (y_0 + \frac{p}{k})e^{kt} - \frac{p}{k}$ אז $\dot{y} = ky + p$ שז $\dot{y} = ky + p$ משדי"ף: א. אם $\omega = \sqrt{\omega_0^2 - \gamma^2}$ כש $x(t) = Ae^{-\gamma t}\cos(\omega t + \varphi)$ אז $(\omega_0 > \gamma)$ אז $\ddot{x} + 2\gamma \dot{x} + \omega_0^2 x = 0$

$$(1+x)^p pprox 1 + px + inom{p}{2}x^2 + ...$$
 למשל $f(x) = f(x_0) + f'(x_0)(x - x_0) + ... + rac{1}{n!}f^{(n)}(x - x_0)^n + ... + ...$.9 $f(x) = f(x_0) + f'(x_0)(x - x_0) + ... + rac{1}{n!}f^{(n)}(x - x_0)^n + ...$.10 $f(x) = \cos \alpha = \sin(\frac{\pi}{2} - \alpha)$.2 $f(x) = \sin(\pi - \alpha) = \sin \alpha = \cos(\frac{\pi}{2} - \alpha)$.3 $f(x) = \sin(\pi - \alpha) = \sin(\pi - \alpha) = \sin(\pi - \alpha)$.7 $f(x) = \sin(\pi - \alpha)$.8 $f(x) = \sin(\pi - \alpha)$.7 $f(x) = \sin(\pi - \alpha)$.9 $f(x) = \sin(\pi - \alpha)$.1 $f(x) = \sin(\pi - \alpha)$.7 $f(x) = \sin(\pi - \alpha)$.8 $f(x) = \sin(\pi - \alpha)$.9 $f(x) = \sin(\pi - \alpha)$.9

אינטגרלים

$$\int \frac{dx}{\left(x^2 \pm a^2\right)^{1/2}} = \ln\left|x + \sqrt{x^2 \pm a^2}\right| \qquad \int \frac{dx}{\left(x^2 + a^2\right)^{3/2}} = \frac{x}{a^2 \sqrt{x^2 + a^2}} \qquad \int \frac{xdx}{a^2 + x^2} = \frac{1}{2}\ln(a^2 + x^2)$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a}\tan^{-1}\frac{x}{a} \qquad \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\frac{x}{a} \qquad \int \frac{xdx}{(a - x)^2} = \frac{a}{a - x} + \ln(a - x)$$

$$\int \sin^2 x dx = \frac{1}{2}(x - \sin x \cos x) \qquad \int \frac{x^3}{\left(a^2 + x^2\right)^{3/2}} dx = \frac{2a^2 + x^2}{\sqrt{a^2 + x^2}} \qquad \int \frac{x^3}{\sqrt{a^2 + x^2}} dx = \frac{1}{3}(x^2 - 2a^2)\sqrt{a^2 + x^2}$$