#### Ex. 3.17

## New variant of Greedy:

Sort items s.t. 
$$\sqrt{1/s_1} \geqslant \sqrt{2/s_2} \geqslant \dots \geqslant \sqrt{n/s_n}$$

Choose k s.t.  $\sum_{i=1}^{k} s_i \leq B$ , but  $\sum_{i=1}^{k+1} s_i > B$ 

Choose it s.t.  $v_{i+1} = \max_{1 \leq i \leq n} v_i$ 

If  $\sum_{i=1}^{k} v_i > v_{i+1}$ 

Ruturn  $\{1, \dots, k\}$ 

Else

Ruturn  $\{i^{+}\}$ 



Since no solution has more value Containing items 1,..., k and a

C-fraction of item k+1:

NOT < 5 12. + C. U.

$$OPT \leq \sum_{i=1}^{k} U_i + C \cdot U_{k+1}$$

$$< \sum_{i=1}^{k} U_i + U_{k+1}, \quad Since \quad C < 1$$

$$\leq \sum_{i=1}^{k} U_i + U_{k+1}, \quad Since \quad U_{i} \geqslant U_{k+1}$$

$$\max \left\{ \begin{array}{l} \sum_{i=1}^{k} \sigma_{i}, \sigma_{i*} \end{array} \right\} \geqslant \frac{1}{2} \left( \sum_{i=k}^{k} \sigma_{i} + \sigma_{i*} \right)$$

$$\geqslant \frac{1}{2} \cdot OPT$$

## Section 3.3: Bin Packing

### Bin Packing

Input: n items with sizes between 0 and 1.

Objective: Pack items in bins of size 1,

using as jou bins as possible.

Last time we discussed simple approximation algorithms. Today we will develop an approximation scheme:

#### $A_{\varepsilon}(I)$

Split input I into

•  $T_s$ : items smaller than  $\frac{\varepsilon}{2}$  (small items)

· I : remaining îtems (large îtems)

1. Pack large items:

a. Round up item sizes  $(I_e \rightarrow I'_e)$  $\Rightarrow O(\frac{1}{\epsilon^2})$  different sizes

b. Do dyn. prg. on  $I'_{\ell}$  $\Rightarrow A_{\mathcal{E}}(I'_{\ell}) = OPT(I'_{\ell})$ 

2. Add small items to the packing using First-fit (or any other Any-Fit alg.)

The rounding scheme (1.a.) will be described later.

# Adding small items to the packing (2.)

Lemma 3.10
$$A_{\varepsilon}(I) \leq \max \left\{ A_{\varepsilon}(I_{\varepsilon}), \frac{2}{2-\varepsilon} \cdot \operatorname{Size}(I) + 1 \right\}$$

$$\leq 1+\varepsilon, \leq Opt(I)$$

$$\text{for } \varepsilon \leq 1$$

Proof: If no extra bin is needed for adding the small items,  $A_{\varepsilon}(I) = A_{\varepsilon}(I_{\varepsilon})$ .

Otherwise, all bins, except possibly the last one, are filled to more than  $1-\frac{\varepsilon}{2}$ . In this case,

$$A_{\varepsilon}(I) \leq \left\lceil \frac{\text{size}(I)}{|-\varepsilon/2|} \right\rceil < \frac{\text{size}(I)}{|-\varepsilon/2|} + |$$

$$= \frac{2}{2-\varepsilon} \text{size}(I) + |$$

Thus, we just need to ensure that  $A_{\varepsilon}(I_{\varepsilon}) \leq (1+\varepsilon) OPT$ .

## Rounding scheme (I.a.)

Last time we saw that a randing schene similar to the one we used for Knapsack would at best yield an approx. factor of 1.5. Instead, we will use:

## Linear grouping:

- · Sort items in Ie by decreasing sizes.
- · Partition sorted Ie in groups of k consecutive items. (k will be determined later.)
- · For each graup, round up item sizes to largest Size in the graup. The result is called I'e.



### Approximation

Each item in the i'th group of Ir is at least as large as any item in the (i+1)st group of I'e:



$$OPT(I_{\ell}) \leq OPT(I_{\ell,l}) + OPT(I_{\ell,2})$$
 $\leq k, \leq OPT(I_{\ell})$ 
Since  $|I_{\ell,l}| = k$ 

This proves:

Lemma 3.11: OPT
$$(I_{\ell}) \leq OPT(I_{\ell}) + k$$

$$= A_{\epsilon}(I_{\ell})$$

Thus, letting 
$$R = \lfloor \mathcal{E} \cdot \text{Size}(\mathbf{I}) \rfloor \stackrel{(k)}{\leq} \mathcal{E} \cdot \text{OPT}(\mathbf{I})$$
 will ensure that 
$$A_{\mathcal{E}}(\mathbf{I}_{\mathcal{E}}) = A_{\mathcal{E}}(\mathbf{I}_{\mathcal{E}}') \\ = \text{OPT}(\mathbf{I}_{\mathcal{E}}') + \mathbf{E} \cdot \text{OPT}(\mathbf{I}), \text{ by themma 3.11} \\ \leq \text{OPT}(\mathbf{I}_{\mathcal{E}}) + \mathcal{E} \cdot \text{OPT}(\mathbf{I}), \text{ by (t)} \\ \leq (l+\mathcal{E}) \cdot \text{OPT}(\mathbf{I}), \text{ since } \mathbf{I}_{\mathcal{E}} \in \mathbf{I}$$
Now, by Lemma 3.10, 
$$A_{\mathcal{E}}(\mathbf{I}) \leq \text{Max} \left\{ A_{\mathcal{E}}(\mathbf{I}_{\mathcal{E}}), \frac{2}{2-\mathcal{E}} \cdot \text{Size}(\mathbf{I}) + l \right\} \\ \leq (l+\mathcal{E}) \text{OPT}(\mathbf{I}), \leq (l+\mathcal{E}) \text{OPT} + l : \\ \text{as just} \\ \text{Shawn} \qquad \frac{2}{2-\mathcal{E}} \leq l+\mathcal{E} \iff 2 \leq (l+\mathcal{E})(2-\mathcal{E}) \iff 2 \leq 2+\mathcal{E} - \mathcal{E}^{\mathcal{E}} \iff 2 \leq 2+\mathcal{E}^{\mathcal{E}} \iff 2 \leq 2+\mathcal{E}^{\mathcal{$$

# Packing $T_{\ell}$ using dynamic programming (1.b.)

At most  $2/\epsilon$  items jit into one bin, since all items in  $I_{\ell}$  have size at least  $2/\epsilon$ .

There are  $N \leq \lceil n/k \rceil$  different sizes  $S_1, ..., S_N$  in  $I'_k$ .

Hence, any packing of a bin can be represented by a vector  $(m_1, ..., m_N)$ , where  $m_i$ ,  $1 \le i \le N$ , is the # items of size  $S_i$  in the bin and  $0 \le m_i \le \frac{3}{2} \varepsilon$ . A vector representing the contents of a bin is called a configuration.

Let  $\mathcal E$  denote the set of possible bin Configurations. Note that  $|\mathcal E| < (\frac{2}{\epsilon})^N$ 

Let no be the #items of size so in I'e

For the dyn. prg. we use an N-dimensional table B with  $N_i+1$  rows in the i'th dimension.  $B[m_1,...,m_N]$  will be the minimum #bins required to pack  $m_i$  items of size  $S_i$ ,  $1 \le i \le N$ .

$$T = \langle 0.6, 0.5, 0.5, 0.4, 0.4, 0.4, 0.3, 0.1, 0.1 \rangle$$

$$E = 0.4, k = 4$$

$$T_{\ell} = \langle 0.6, 0.5, 0.5, 0.5, 0.4, 0.4, 0.4, 0.4 \rangle$$

$$T_{\ell} = \langle 0.6, 0.6, 0.6, 0.6, 0.4, 0.4, 0.4 \rangle$$

$$S_1 = 0.6$$
  $S_2 = 0.$   
 $N_1 = 4$   $N_2 = 3$ 

$$6 = \{(0,1), (0,2), (1,0), (1,1)\}$$

| \0. <sup>L</sup> |   |    |             |     |
|------------------|---|----|-------------|-----|
| 0.6              | 0 | l  | 2           | 3   |
| 0                | 0 | _  |             |     |
| 1                |   |    |             |     |
| 2                | 2 | イー | <b>→</b> ≤3 | ><3 |
| 3                | 3 | →3 | X × 3       |     |
| 4                | 7 |    |             |     |

| \0. <sup>4</sup> |   |    |    |   |
|------------------|---|----|----|---|
| 0.6              | 0 |    | 2  | 3 |
| 0                | 0 | _  |    |   |
|                  | _ | —  | マ  |   |
| 2                | ン | 2  | √< |   |
| 3                | 3 | 3∻ | -3 |   |
| 4                | 4 | 4  |    |   |

$$B[4,3] = | + \min_{\{m_1,m_2\} \in \mathcal{B}} \{B[4-m_1,3-m_2]\}$$

$$= | + \min_{\{m_1,m_2\} \in \mathcal{B}} \{B[4,m_1,3-m_2]\}$$

$$= | + \min_{\{m_1,m_2\} \in \mathcal{B}} \{B[4,m_1,3-m_2]\}$$

$$= | + B[3,2] = 4$$

In general:  

$$B[m_{1},...,m_{N}] = | + \min_{(c_{1},...,c_{N}) \in \mathbb{R}} \{ m_{1}-c_{1},...,m_{N}-c_{N} \}$$

| \0. |   |    |   |   |
|-----|---|----|---|---|
| 0.6 | 0 |    | 2 | 3 |
| 0   | 0 | 1  |   | 2 |
| I   | _ | ,K | 2 | 3 |
| 2   | 2 | 2  | 2 | 3 |
| 3   | 3 | 3  | 3 | 3 |
| 4   | 4 | Ч  | 4 | 4 |

| \0. <sup>4</sup> |              |   |            |   |
|------------------|--------------|---|------------|---|
| 0.6              | 0            | - | 2          | 3 |
| 0                | 0            | - |            | 2 |
| 1                |              | K | 2          | 3 |
| 2                | み            | 2 | <b>~</b> ~ | 3 |
| 3                | 3            | 3 | -3         | 3 |
| Ч                | <del>-</del> | ਾ | 7          | 7 |
|                  |              |   |            |   |

| )          | 0.4 | 4.0 | 0.4 |     |
|------------|-----|-----|-----|-----|
| <u>↓</u> ; | 0.6 | 0.6 | 0.6 | 0.6 |

| 0.4 | 0.4 |     | 0.4 |
|-----|-----|-----|-----|
| 0.6 | 0.6 | 0.6 | 0.6 |

|             | 0.4 | 0.4 | 0.3 |     |
|-------------|-----|-----|-----|-----|
| <u>Le</u> ; | 0.6 | 0.5 | 6.5 | 0.4 |

| 一. | 0.4 | 0.4 | 0.3 |     |
|----|-----|-----|-----|-----|
| 丁, | 0.6 | 0.5 | 0.5 | 0.4 |

# Running time

Let 
$$n_{\ell} = |I_{\ell}|$$
. Then,  
 $\text{Size}(I) > \text{Size}(I_{\ell}) > n_{\ell} \cdot \frac{\epsilon}{2}$ , (4)  
Since  $I_{\ell}$  contains only large items.

$$k = \lfloor \varepsilon \cdot \text{size}(I) \rfloor \geqslant \lfloor n_{\varepsilon} \cdot \frac{\varepsilon^{2}}{2} \rfloor \geqslant n_{\varepsilon} \cdot \frac{\varepsilon^{2}}{4}$$
 (\*\*)

$$N \leq \left\lceil \frac{n_{\ell}}{R} \right\rceil \leq \left\lceil \frac{4}{\epsilon^{2}} \right\rceil \tag{444}$$
by (\*\*)

Time per entry 
$$O(|\mathcal{E}|) \subseteq O((3/\epsilon)^{N})$$

Running time 
$$O(n^N \cdot (\frac{2}{\epsilon})^N) = O((\frac{2n}{\epsilon})^N) \subseteq O((\frac{2n}{\epsilon})^N)$$
by (\*\*\*)

Poly. time

Hence, {A<sub>E</sub>} is an

Asymptotic Poly. Time Approx. Scheme (APTAS)

This proves:

Thm 3.12: There is an APTAS for Bin Packing

There is no PTAS for Bin Packing:

Theorem 3.8

No alg. for Bin Packing has an absolute approx. ratio both than 3/2, unless P = NP

Proof:

Reduction from Partition Problem:

Given a set S of integers, can S be partitioned into two sets S, and Sz, such that  $\sum_{s \in S_1} s = \sum_{s \in S_2} s \stackrel{?}{\sim}$ 

For a given instance S of the partition problem, let  $B = \sum_{s \in S} s$  and  $T = \{s : \frac{2}{6} \mid s \in S\}$ .

Thu,  $\sum_{i \in I} i = B \cdot \frac{2}{B} = 2$ 

If we use I as input for the bin packing problem,

- · at least 2 bins are needed, and
- · 2 bins suffice, iff S is a yes-instance for the partition problem.

If we had a bin packing alg. with an approx. factor < 3/2, it would always use only 2 bins, whenever 2 bins suffice

Thus, the alg. could be used to decide any instance of the partition problem.