
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: Thu May 31 14:48:15 EDT 2007

Validated By CRFValidator v 1.0.2

Application No: 10591464 Version No: 1.0

Input Set:

Output Set:

Started: 2007-05-31 12:44:55.099

Finished: 2007-05-31 12:44:56.187

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 88 ms

Total Warnings: 14

Total Errors: 0

No. of SeqIDs Defined: 17

Actual SeqID Count: 17

Error code		Error Descripti	ion								
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)

SEQUENCE LISTING

<110>	Kudo, Toshiak	i											
	Motoyama, Tak	ayuki											
<120>	METHOD OF SCR THEREFOR	EENING FUNGU	S-SPECIFIC .	ANTIMICROBI <i>I</i>	AL AGENT AND	KIT							
<130>	295899USOPCT												
<140>	10591464												
<141>	2007-05-31												
<150>	US 10/591,4	64											
<151>	2006-09-01												
<150>	PCT/JPO5/0042	72											
<151>	2005-03-04												
<150>	JP 2004-06127	3											
<151>	2004-04-04												
<160>	17												
<170>	PatentIn vers	ion 3.3											
<210>	1												
<211>	5457												
<212>	DNA												
<213>	Magnaporthe g	risea											
<400>	1												
taatttt	cca teceecteg	t gtcgccttcg	cgcctactta	ccgacttacc	gccttctcgc	60							
tgattga	ıgcc acggagagg	c aattgggctt	gggggcgcta	ttttttattt	tcttattact	120							
attcttt	ttt tttgaatct	t taccaacctt	ccttggctgg	tttacttcct	cgtctttaca	180							
ctgcaad	agt agcacgcca	t ccgaccagcg	acaacaatct	ccaaccctcc	ccagagccac	240							
ccaatca	acc aacaagctt	g gttctccacg	accacagcaa	tcctttgatt	ccctgtcgcg	300							
cccgcta	acc tcatgaatt	c ctaagccgac	ctggatcaat	ccaacgcctg	cttcggtgtt	360							
tagggca	igct geegaettt	t tttttcttct	acatatatat	tttcaaatcg	tcctatattt	420							
gaccgt	egge egagtteeg	a cacccgccac	gcgcatcatg	gcggacgcgg	cgactctggc	480							
agctgto	gct gcgattgtg	g agaatatcgc	taccaactcg	ggggcccctg	gaaaaaatgc	540							
ttcattt	ege tecagtace	t atgtccagct	teceggtecg	gaateegaeg	agaagaaaca	600							
gctcgaq	gege gagettgee	g ccctggtgat	aagggtacag	cagctcgaaa	cccgtgccaa	660							
cgcggct	cct gctacaata	t teceegaeae	acccaacgaa	actgcacatt	cactctttgg	720							

cgatgatagc tcgtccccta ccagttcgag ctcaggccgg gagcctaaac gactgaagtc 780

ggcatc	cagc	acaacgagga	atggtttcac	tacggacggt	cgtccatcaa	agctcaacgc	840	
aatcac	cgat	gaggagctcg	aaggcttgcg	cgaacatgtt	gacggccagt	cccggctgct	900	
cgacag	ccaa	agggccgagc	tggacggcgt	caatgcccaa	ctcttggagc	agaagcagct	960	
gcaaga	gcgc	gcccttgcca	taatcgagca	ggaacgtgta	gccactttgg	agagagagct	1020	
atggaa	acat	caaaaggcca	acgaggcctt	ccagaaggct	ctccgggaga	ttggatcgat	1080	
agtgac	cgct	gcagcccggg	gtgacctctc	taagagggtc	aagataaacc	cgattgagat	1140	
ggaccc	tgaa	atcaccacat	tcaagaggac	catgaacgcc	atgatggatc	aacttggcgt	1200	
cttctc	tagt	gaagtetege	gagtggcaag	agaggtcggc	accgagggca	tattaggtgg	1260	
acaggc	ccag	atcgagggag	tggacggcac	gtggaaagaa	ctgacggaca	atggtacggt	1320	
cgaaac	gctg	ctcatcacct	ctcctatcca	taactaccac	cgcagatgct	aacattgata	1380	
ctttca	taca	gtcaacgtca	tggcgcagaa	cctgaccgac	caagtccgcg	aaatcgcctc	1440	
agtcac	taca	gctgtggccc	acggagattt	gacccaaaag	attgagagtg	cggccaaggg	1500	
agaaat	ccta	cagcttcaac	aaactataaa	taccatggtg	gaccaactac	gcacatttgc	1560	
ttcaga	ggtt	acccgtgtcg	cccgtgacgt	cggaaccgag	ggaatgctcg	gcgggcaggc	1620	
tgacgt	tgaa	ggggtcaagg	gcatgtggaa	tgagctgacg	gtcaacgtca	acgccatggc	1680	
caacaa	ttta	acaacccaag	tgcgcgacat	catcaacgtt	accacagccg	tcgcaaaggg	1740	
agatct	taca	caaaaggtgc	aggcggaatg	tcgcggcgag	atttttgagc	tcaagaacac	1800	
gatcaa	ttcc	atggtggacc	agctgcagca	atttgctcgc	gaggttacca	agatcgccag	1860	
agaggt	tggt	accgaaggac	ggctgggcgg	ccaagcaact	gttcacgatg	tacagggaac	1920	
ttggcg	agat	ctcacagaaa	acgtgaacgg	aatggctatg	aatctcacca	cacaagtacg	1980	
agagat	agcc	aatgttacca	gtgccgtcgc	tgcaggcgac	ctatccaaga	agatcagggt	2040	
agaggt	caag	ggcgagattc	tggacctcaa	aaataccatc	aacaccatgg	ttgaccgcct	2100	
cggaac	tttc	gccttcgaag	tcagcaaagt	agcccgagcc	gtcggcacag	atggcactct	2160	
tggtgg	tcag	gctcaagttg	agaatgtgga	gggcaaatgg	aaagacctca	ccgaaaacgt	2220	
caacac	catg	gcgtcaaacc	tcacttctca	ggtaagcgga	ccttatccac	tggattggac	2280	
tggtgg	cttt	tcctctgaat	tcagccctat	tgtaaatcaa	tgtatgcacc	agtgtgcatg	2340	
ttctgc	aggg	cctgctgtgt	gtgcgtcgcc	agctgttttg	gagacgctgg	gcgcatcccg	2400	
gcgtgc	gctt	gcattttgtc	aaccaaattt	gtctgcacat	tgatgcatag	cgagcacgtg	2460	

ctaatttttg gccgggtctt	ataggtcagg	ggaatatcaa	ccgtgacaca	agccatcgcg	2520
aacggtgaca tgagccgaaa	gatcgacgtg	gaagccaagg	gcgagatact	aatcctcaag	2580
gaaactatca acaacatggt	tgatcgtctg	tcgatattct	gcaatgaagt	acaacgagtc	2640
gcaaaagatg taggcgttga	tggcattatg	gggggacaag	ccgacgttgc	aggtctcaag	2700
gggcgatgga aggagattac	caccgatgtc	aacaccatgg	ccaacaatct	tgtaagtgct	2760
ggaagatete aaacaaeggg	aaactcaagc	cagtgctaac	ctaatccgca	gacggcgcaa	2820
gtacgcgctt tcggagatat	aaccaatgcc	gctaccgacg	gagacttcac	caagctggtc	2880
gaggttgagg cgtcgggcga	aatggacgaa	ctgaagcgca	agatcaatca	aatggtctac	2940
aatctccgag acagtatcca	aagaaacacg	caagcaagag	aagccgcaga	attggccaac	3000
aagacgaagt cggagttcct	cgctaacatg	tcccacgaaa	tccgcacacc	catgaacggt	3060
atcatcggca tgacacaact	tactcttgat	acagatttga	cgcaatacca	acgcgaaatg	3120
ctcaacattg tcaacaatct	cgccatgagt	ctgctcacca	ttatcgacga	catcctcgat	3180
ctgtcaaaga ttgaggctaa	gcggatggtt	atcgaggaga	ttccatacac	gttacgagga	3240
acggtcttca acgcactgaa	gactttggcg	gtcaaggcga	acgacaagtt	tttggatctc	3300
acgtaccgtg tggacagctc	agtteetgae	cacgtcatcg	gtgactcgtt	ccgtctgcgc	3360
cagattatcc tgaacctggt	tggcaatgcc	atcaaattca	ccgagcatgg	agaggtcagc	3420
cttactatcc agaagggcaa	cgacgtgacg	tgcctgccaa	acgagtacat	gatcgaattt	3480
gtcgtgtcgg acacgggcat	aggaattcca	acggacaaac	tgggtctcat	cttcgacaca	3540
ttccagcagg ctgatggatc	catgacacgc	aagtttggcg	gaaccgggct	tggtctgtct	3600
atttccaaga ggctcgtcaa	cctcatgggc	ggtgacgtgt	gggtcaagtc	acaatacggc	3660
aagggcagct cgttctactt	cacttgtcgt	gtccgcctcg	ccgacgtgga	tatctcactc	3720
atcaggaagc agctgaagcc	ttacaaggga	caccaggtcc	tgttcatcga	taagggcaag	3780
actggacacg ggcccgaggt	ggggcagatg	ctcggccagc	tgggtttggt	gcccatcgtg	3840
ctggaatccg agcaaaatca	caccctgacg	cgggtgcgcg	gcaaggaatg	tccctacgac	3900
gtgatagttg tcgactcaat	cgacacagcc	cggcgcctga	gaggaattga	cgacttcaag	3960
tatctgccca tcgttctcct	ggcgccaact	gtccacgtca	gcctgaaatc	ctgcttggac	4020
ttgggtatta cctcgtatat	gacgatgccc	tgcaagctca	tcgacctcgg	caatggtatg	4080
gttcccgctc ttgagaaccg	tgccacacca	tcactatcag	acaacactaa	gtcgttcgaa	4140
attctgctgg ccgaggacaa	caccgtcaac	cagegeetgg	ccgttaagat	tcttgaaaag	4200

tacaaccacg	ttgtgacggt	agtcagcaac	ggtgctgaag	ctcttgaagc	tgtcaaggat	4260
aacaaatacg	atgtgatcct	gatggatgtt	caaatgcctg	tcatggtaag	ttgatactcc	4320
ctcgtacata	ttccatgatc	ctccgttccc	gacccgccag	atagtctcga	taagttccaa	4380
tactaatacg	ttgcaacatt	aatagggtgg	atttgaggcg	acggcaaaga	ttcgtgaata	4440
cgagcgcagc	ctgggcacac	agaggacacc	aatcatcgcg	cttaccgctc	acgcaatgat	4500
gggcgaccgt	gagaagtgta	tcgaggccca	gatggacgag	tacctgtcga	agcctctgca	4560
gcagaaccac	ttgatacaaa	caattctcaa	gtgtgcaacg	ctgggtggcg	ccttgttgga	4620
acaaaatcgt	gagcgcgagc	ttgaactagc	aaggcatgcc	gaacacaaag	gaggactgtc	4680
tacggacccg	gcgagggcat	cgtcggtaat	gcgtccgcca	ctacaccacc	gaccggtgac	4740
tacagccgag	tegetttetg	gtggcgccga	aagcccctcg	ttgatggcaa	atgacggcga	4800
agatccaata	caaagggcac	gtagcagtct	ctctgaacca	ggatgcctat	aaggctgaca	4860
gctctggcct	cctcgcactt	gagggcgagc	ctgaacattt	gtagcttctc	ttacgatcct	4920
tgagcgcata	gatcactgct	gcctttttgt	aacagccagc	gcgatgacga	tgttttcaac	4980
agcctatact	tttacctata	ccacaaacgc	atacgattat	cccggtgtac	ttctgtctat	5040
teeetaggag	tctgggaggt	tacattttgt	tctagtcatt	aatgggtcga	tggccaactg	5100
gttttggcca	caacgcatca	aaaccaaacc	agttctgtca	tcactgacct	tttgttccat	5160
gtcggtaatg	tcttcattaa	tattgttact	tttgcgggtc	tgggtctgct	tttacgatgg	5220
atacatcggg	ggaacaattt	ctttcttctt	gttttgttgg	atatttgtgg	tagtttctag	5280
atatctgtcg	aactacggga	aggtgtggag	agtgcattaa	gaggcggcgc	agttgttgtg	5340
atcttgacac	cccgagatga	ccacagtcaa	cccaatgaat	aacacaaaat	atacaactct	5400
ctatgtcagt	agaccaaata	cgtattcgtt	gtgttagtgt	ttagcgcaag	ggaaacc	5457

<210> 2

<211> 33

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic DNA

<400> 2

cctcgctaac atgtccgtcg aaatccgcac acc

33

```
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 3
gatgtgatcc tgatggaggt tcaaatgcct gtcatg
                                                                    36
<210> 4
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 4
                                                                     37
tttaagctta tcgattgaag gaaataagag gaatagc
<210> 5
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 5
                                                                     35
tttaagcttg ggtgagacag ctatttagca agttc
<210> 6
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 6
                                                                    31
tttaagcttc ccactgctgg atcgaccatt c
<210> 7
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 7
tttaagcttt agttgccagt caagatttcc c
                                                                     31
```

```
<210> 8
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 8
                                                                    37
tttaagctta tcgattgaag gaaataagag gaatagc
<210> 9
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 9
                                                                    35
tttaagcttg ggtgagacag ctatttagca agttc
<210> 10
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 10
tttaagcttc ccactgctgg atcgaccatt c
                                                                    31
<210> 11
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
<400> 11
tttaagcttt agttgccagt caagatttcc c
                                                                    31
<210> 12
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic DNA
```

<400>	12	
tttccc	ggga tatgtctact attccctcag aaatc	35
<210>	13	
<211>	37	
<212>	DNA	
	Artificial Sequence	
	•	
<220>		
<223>	Synthetic DNA	
1223/	by hencete but	
<400>	13	
		2.7
ttteteç	gagt tataggtttg tgttgtaata tttagat	37
<210>	14	
<211>	35	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic DNA	
<400>	14	
tttccc	ggga tatgeteaat tetgegttae tgtgg	35
-		
<210>	15	
<211>	32	
<211>		
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic DNA	
<400>	15	
tttctcc	gagt cacaattcta tttgagtggg cg	32
<210>	16	
<211>	1307	
<212>	PRT	
<213>	Magnaporthe grisea	
<400>	16	
N		
	a Asp Ala Ala Thr Leu Ala Ala Val Ala Ala Ile Val Glu Asn	
1	5 10 15	
Ile Ala	a Thr Asn Ser Gly Ala Pro Gly Lys Asn Ala Ser Phe Arg Ser	

20 25 30

35 40 45

Leu Glu Arg Glu Leu Ala Ala Leu Val Ile Arg Val Gln Gln Leu Glu 50 55 60

Thr Arg Ala Asn Ala Ala Pro Ala Thr Ile Phe Pro Asp Thr Pro Asn 65 70 75 80

Glu Thr Ala His Ser Leu Phe Gly Asp Asp Ser Ser Ser Pro Thr Ser 85 90 95

Ser Ser Ser Gly Arg Glu Pro Lys Arg Leu Lys Ser Ala Ser Ser Thr 100 105 110

Thr Arg Asn Gly Phe Thr Thr Asp Gly Arg Pro Ser Lys Leu Asn Ala 115 120 125

Ile Thr Asp Glu Glu Leu Glu Gly Leu Arg Glu His Val Asp Gly Gln 130 135 140

Gln Leu Leu Glu Gln Lys Gln Leu Gln Glu Arg Ala Leu Ala Ile Ile $165 \hspace{1.5cm} 170 \hspace{1.5cm} 175$

Glu Gln Glu Arg Val Ala Thr Leu Glu Arg Glu Leu Trp Lys His Gln 180 185 190

Lys Ala Asn Glu Ala Phe Gln Lys Ala Leu Arg Glu Ile Gly Ser Ile 195 200 205

Val Thr Ala Ala Ala Arg Gly Asp Leu Ser Lys Arg Val Lys Ile Asn 210 215 220

Pro Ile Glu Met Asp Pro Glu Ile Thr Thr Phe Lys Arg Thr Met Asn 225 230 235 240

Ala Met Met Asp Gln Leu Gly Val Phe Ser Ser Glu Val Ser Arg Val \$245\$ \$250\$ \$255\$

Ala Arg Glu Val Gly Thr Glu Gly Ile Leu Gly Gly Gln Ala Gln Ile 260 265 270

Glu	Gly	Val 275	Asp	Gly	Thr	Trp	Lys 280	Glu	Leu	Thr	Asp	Asn 285	Val	Asn	Val
Met	Ala 290	Gln	Asn	Leu	Thr	Asp 295	Gln	Val	Arg	Glu	Ile 300	Ala	Ser	Val	Thr
Thr 305	Ala	Val	Ala	His	Gly 310	Asp	Leu	Thr	Gln	Lys 315	Ile	Glu	Ser	Ala	Ala 320
Lys	Gly	Glu	Ile	Leu 325	Gln	Leu	Gln	Gln	Thr 330	Ile	Asn	Thr	Met	Val 335	Asp
Gln	Leu	Arg	Thr 340	Phe	Ala	Ser	Glu	Val 345	Thr	Arg	Val	Ala	Arg 350	Asp	Val
Gly	Thr	Glu 355	Gly	Met	Leu	Gly	Gly 360	Gln	Ala	Asp	Val	Glu 365	Gly	Val	Lys
Gly	Met 370	Trp	Asn	Glu	Leu	Thr 375	Val	Asn	Val	Asn	Ala 380	Met	Ala	Asn	Asn
Leu 385	Thr	Thr	Gln	Val	Arg 390	Asp	Ile	Ile	Asn	Val 395	Thr	Thr	Ala	Val	Ala 400
Lys	Gly	Asp	Leu	Thr 405	Gln	Lys	Val	Gln	Ala 410	Glu	Суз	Arg	Gly	Glu 415	Ile
Phe	Glu	Leu	Lys 420	Asn	Thr	Ile	Asn	Ser 425	Met	Val	Asp	Gln	Leu 430	Gln	Gln
Phe	Ala	Arg 435	Glu	Val	Thr	Lys	Ile 440	Ala	Arg	Glu	Val	Gly 445	Thr	Glu	Gly
Arg	Leu 450	Gly	Gly	Gln	Ala	Thr 455	Val	His	Asp	Val	Gln 460	Gly	Thr	Trp	Arg
Asp 465	Leu	Thr	Glu	Asn	Val 470	Asn	Gly	Met	Ala	Met 475	Asn	Leu	Thr	Thr	Gln 480
Val	Arg	Glu	Ile	Ala	Asn	Val	Thr	Ser	Ala	Val	Ala	Ala	Gly	Asp	Leu

Ser	Lys	Lys	Ile 500	Arg	Val	Glu	Val	Lys 505	Gly	Glu	Ile	Leu	Asp 510	Leu	Lys
Asn	Thr	Ile 515	Asn	Thr	Met	Val	Asp 520	Arg	Leu	Gly	Thr	Phe 525	Ala	Phe	Glu
Val	Ser 530	Lys	Val	Ala	Arg	Ala 535	Val	Gly	Thr	Asp	Gly 540	Thr	Leu	Gly	Gly
Gln 545	Ala	Gln	Val	Glu	Asn 550	Val	Glu	Gly	Lys	Trp 555	Lys	Asp	Leu	Thr	Glu 560
Asn	Val	Asn	Thr	Met 565	Ala	Ser	Asn	Leu	Thr 570	Ser	Gln	Val	Arg	Gly 575	Ile
Ser	Thr	Val	Thr 580	Gln	Ala	Ile	Ala	Asn 585	Gly	Asp	Met	Ser	Arg 590	Lys	Ile
Asp	Val	Glu 595	Ala	Lys	Gly	Glu	Ile 600	Leu	Ile	Leu	Lys	Glu 605	Thr	Ile	Asn
Asn	Met 610	Val	Asp	Arg	Leu	Ser 615	Ile	Phe	Суѕ	Asn	Glu 620	Val	Gln	Arg	Val
Ala 625	Lys	Asp	Val	Gly	Val 630	Asp	Gly	Ile	Met	Gly 635	Gly	Gln	Ala	Asp	Val 640
Ala	Gly	Leu	Lys	Gly 645	Arg	Trp	Lys	Glu	Ile 650	Thr	Thr	Asp	Val	Asn 655	Thr
Met	Ala	Asn	Asn 660	Leu	Thr	Ala	Gln	Val 665	Arg	Ala	Phe	Gly	Asp 670	Ile	Thr
Asn	Ala	Ala 675	Thr	Asp	Gly	Asp	Phe 680	Thr	Lys	Leu	Val	Glu 685	Val	Glu	Ala
Ser	Gly 690	Glu	Met	Asp	Glu	Leu 695	Lys	Arg	Lys	Ile	Asn 700	Gln	Met	Val	Tyr

Asn Leu Arg Asp Ser Ile Gln Arg Asn Thr Gln Ala Arg Glu Ala Ala 705 710 710 715 720

Glu Leu Ala Asn Lys Thr Lys Ser Glu Phe Leu Ala Asn Met Ser His 725 730 735 Glu Ile Arg Thr Pro Met Asn Gly Ile Ile Gly Met Thr Gln Leu Thr 740 745 750 Leu Asp Thr Asp Leu Thr Gln Tyr Gln Arg Glu Met Leu Asn Ile Val 755 760 Asn Asn Leu Ala Met Ser Leu Leu Thr Ile Ile Asp Asp Ile Leu Asp 770 775 780 Leu Ser Lys Ile Glu Ala Lys Arg Met Val Ile Glu Glu Ile Pro Tyr 785 790 795 800 Thr Leu Arg Gly Thr Val Phe Asn Ala Leu Lys Thr Leu Ala Val Lys 805 810 815 Ala Asn Asp Lys Phe Leu Asp Leu Thr Tyr Arg Val Asp Ser Ser Val 820 825 830 Pro Asp His Val Ile Gly Asp Ser Phe Arg Leu Arg Gln Ile Ile Leu 835 840 845 Asn Leu Val Gly Asn Ala Ile Lys Phe Thr Glu His Gly Glu Val Ser 850 855 860 Leu Thr Ile Gln Lys Gly Asn Asp Val Thr Cys Leu Pro Asn Glu Tyr 865 870 875 880 Met Ile Glu Phe Val Val Ser Asp Thr Gly Ile Gly Ile Pro Thr Asp 885 890 895 Lys Leu Gly Leu Ile Phe Asp Thr Phe Gln Gln Ala Asp Gly Ser Met 900 905 910

Thr Arg Lys Phe Gly Gly Th