# WEST CHICKUNDING INTE

「电计 2203 班 | 周常规知识整理共享

**35** 



日期: 2024-9-27 学科: 人工智能

### 设有如下一组知识:

 $r_1$ : IF 头痛 AND 免疫力低 THEN 感冒 (0.8)  $r_2$ : IF 感冒 AND (流清鼻涕 OR 喉咙干痒) THEN 风寒感冒 (0.85)  $r_3$ : IF 感冒 AND 流黄鼻涕 THEN 风热感冒 (0.8)  $r_4$ : IF 感冒 AND 喉咙肿痛 THEN 风热感冒 (0.9)

某同学对以下症状的可信度分别如下表,请你帮忙分别算出该同学患风寒感冒和风热感冒的可信度。

| 症状   | 可信度 | 症状   | 可信度  |
|------|-----|------|------|
| 头痛   | 0.8 | 免疫力低 | 0.75 |
| 流清鼻涕 | 0.6 | 流黄鼻涕 | 0.2  |
| 喉咙干痒 | 0.3 | 喉咙肿痛 | 0.5  |

本题考察的是可信度方法与 C-F 模型,详见《人工智能》课本第 4 章第 117 页。

#### 具体包括以下规则:

- 合取规则:  $CF(E_1 \text{ AND } E_2) = \min\{CF(E_1), CF(E_2)\}$
- 析取规则:  $CF(E_1 \text{ OR } E_2) = \max\{CF(E_1), CF(E_2)\}$
- 传递规则:  $CF(H) = CF(H, E) \cdot \max\{0, CF(E)\}$
- 合成规则:若有  $\left\{egin{array}{ll} ext{IF} & E_1 & ext{THEN} & H & (\mathit{CF}(H,E_1)) \\ ext{IF} & E_2 & ext{THEN} & H & (\mathit{CF}(H,E_2)) \end{array}
  ight.$ ,须先由传递

规则算出  $a=\mathit{CF}_1(H)$  、 $b=\mathit{CF}_2(H)$  。设  $S=\mathit{CF}_{12}(H)$  ,则

- 1. 当  $a \ge 0, b \ge 0$  时, S = a + b ab
- 2. 当 a < 0, b < 0 时, S = a + b + ab
- 3. 当 a, b 异号时, $S = \frac{a+b}{1-\min\{|a|,|b|\}}$

可以形式化地把头痛、免疫力低、流清鼻涕、流黄鼻涕、喉咙干痒、喉咙肿痛分别设为  $E_1 \sim E_6$ ,把感冒、风寒感冒、风热感冒分别设为  $H,H_1,H_2$ 。如此,原始知识整理为

$$r_1: ext{ IF } E_1 ext{ AND } E_2 ext{ THEN } H ext{ } (0.8) \\ r_2: ext{ IF } H ext{ AND } (E_3 ext{ OR } E_5) ext{ THEN } H_1 ext{ } (0.85) \\ r_3: ext{ IF } H ext{ AND } E_4 ext{ THEN } H_2 ext{ } (0.8) \\ r_4: ext{ IF } H ext{ AND } E_6 ext{ THEN } H_2 ext{ } (0.9) \\ \end{array}$$

| 症状        | 可信度 | 症状        | 可信度  |
|-----------|-----|-----------|------|
| $CF(E_1)$ | 0.8 | $CF(E_2)$ | 0.75 |
| $CF(E_3)$ | 0.6 | $CF(E_4)$ | 0.2  |
| $CF(E_5)$ | 0.3 | $CF(E_6)$ | 0.5  |

#### 计算感冒 H 的可信度:

$$CF(E_1 \text{ AND } E_2)$$
 章取  $\min\{CF(E_1), CF(E_2)\} = \min\{0.8, \ 0.75\} = 0.75$   $CF(H)$  章题  $0.8 \times \max\{0, \ CF(E_1 \text{ AND } E_2)\} = \textbf{0.6}$ 

## 计算风寒感冒 $H_1$ 的可信度:

$$CF(H_1)$$
 = 0.85 × max{0,  $CF(H \text{ AND } (E_3 \text{ OR } E_5))}$   
= 0.85 × max{0, min{ $CF(H)$ ,  $CF(E_3 \text{ OR } E_5)$ }}  
= 0.85 × max{0, min{0.6, max{ $CF(E_3)$ ,  $CF(E_5)$ }}}  
= 0.85 × max{0, min{0.6, max{0.6, 0.3}}}  
= 0.85 × 0.6 = **0.51**

由  $r_3$  计算风热感冒  $H_2$  的可信度  $CF_1(H_2)$ , 记为 a:

$$CF(H \text{ AND } E_4) \stackrel{\triangle \mathbb{R}}{=\!=\!=\!=\!=} \min\{CF(H), \ CF(E_4)\} = \min\{0.6, 0.2\} = 0.2$$
  $a = CF_1(H_2) \stackrel{\text{传递}}{=\!=\!=\!=}} 0.8 \times \max\{0, CF(H \text{ AND } E_4)\} = 0.16$ 

由  $r_4$  计算风热感冒  $H_2$  的可信度  $CF_2(H_2)$ , 记为 b:

$$CF(H \text{ AND } E_6) \stackrel{\triangle \mathbb{R}}{=\!=\!=\!=} \min\{CF(H), CF(E_6)\} = \min\{0.6, 0.5\} = 0.5$$
  
 $b = CF_2(H_2) \stackrel{\text{传递}}{=\!=\!=}} 0.9 \times \max\{0, CF(H \text{ AND } E_6)\} = 0.45$ 

通过 a 和 b 由结论不确定性合成规则算出  $S=CF_{12}(H_2)$ ,由 a>0,b>0 故使用第 1 条规则:

$$S = CF_{12}(H_2) = a + b - ab = 0.16 + 0.45 - 0.072 = 0.538$$

因此该同学患风寒感冒和风热感冒的可信度分别是 0.51 和 0.538。采用可信度方法推断该同学更有可能患风热感冒。

【结论】该同学患风寒感冒和风热感冒的可信度分别是 0.51 和 0.538。

【点评】本题考察了可信度方法,综合运用了 C-F 模型的相关规则。由于人工智能这个学科实在找不到什么合适的考题,结合可信度方法可能是大题考点这一信息,自编了这一题。题中的情景可能与真实情况有一定差异,请勿全信。

IF 期末考试 THEN 考可信度方法大题 (0.7)

CF(期末考试) = 1, CF(考可信度方法大题)  $\stackrel{\text{传递}}{=\!=\!=\!=} 0.7 \times \max\{0,1\} = 0.7$ , 果然考可信度方法大题的可信度是 0.7, 实在不小。