Первая половина лекции не была записана

Определение. f-n-гладкая, если $\forall i=1\dots n \; \exists i$ -ная непрерывная производная.

Класс функций $C^n([a,b])$ — множество функций, n-гладких на [a,b]

Некоторые разложения по Тейлору:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n+1} \frac{x^{n}}{n} + o(x^{n})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^{3} + \dots + \binom{\alpha}{n} x^{n} + o(x^{n})$$

Лемма 1. $e^2 - upp$.

Доказательство. Предположим обратное: e^2 — рационально. Тогда e^2 представимо следующим образом:

$$e^2 = \frac{2k}{n}$$

$$ne = 2ke^{-1}$$

$$n(2k-1)!e = (2k)!e^{-1}$$

$$n(2k-1)!e=n(2k-1)!\left(1+1+\frac{1}{2}+\ldots+\frac{1}{(2k-1)!}+\frac{e^c}{(2k)!}\right)=\text{целое число}+\frac{ne^c}{2k}$$

$$\frac{ne^c}{2k}\leq \frac{ne}{2k}=e\cdot e^{-2}=e^{-1}\leq \frac{1}{2}$$

$$(2k)!e^{-1}=(2k)!\left(1-1+rac{1}{2}+\ldots+rac{1}{(2k)!}-rac{e^d}{(2k+1)!}
ight)=$$
 целое число $-rac{e^d}{2k+1}$

M3137y2019

Заметим, что $d \in [-1, 0]$

$$\frac{e^d}{2k+1} \le \frac{e^d}{3} \le \frac{e^0}{3} \le \frac{1}{3}$$

Дробная часть левой части $\leq \frac{1}{2}$, дробная часть правой $\geq \frac{2}{3}$ — противоречие. \square

Лемма 2. Метод Ньютона

 $f:\langle a,b
angle
ightarrow\mathbb{R}-$ дважды дифф.

$$m:=\inf_{\langle a,b\rangle}|f'|>0$$

$$M := \sup |f''|$$

$$\xi \in (a,b) : f(\xi) = 0$$

$$x_1 \in (a,b): |x_1 - \xi| \frac{M}{2m} < 1$$

Рассмотрим последовательность $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Тогда $\exists \lim x_n = \xi$ и при этом !. Кроме того, оно очень быстро сходится.

$$|x_n - \xi| \le \left(\frac{M}{2m}|x_1 - \xi|\right)^{2^n}$$

$$x_{n+1} - \xi = x_n - \xi - \frac{f(x_n)}{f'(x_n)} = \frac{(x_n - \xi)f'(x_n) - f(x_n)}{f'(x_n)}$$

$$|x_{n+1} - \xi| = \frac{|f(x_n) + f'(x_n)(\xi - x_n)|}{|f'(x_n)|} = \frac{\frac{1}{2}|f''(c)||\xi - x_n|^2}{|f'(x_n)|} \le \frac{2M}{m}|\xi - x_n|^2$$

Теорема 0.1. О разложении рациональной дроби на простейшие.

$$P(x), Q(x)$$
 — многочлен $\deg P < \deg Q = n$

$$Q(x) = (x - a_1)^{k_1} \dots (x - a_m)^{k_m} \quad (k_1 + \dots + k_m = n; a_i \neq a_i)$$

Тогда ∃

$$\frac{P(x)}{Q(x)} = \left(\frac{A_1}{(x-a_1)} + \frac{A_2}{(x-a_1)^2} + \dots + \frac{A_{k_1}}{(x-a_1)^{k_1}}\right) + \left(\frac{B_1}{(x-a_2)} + \frac{B_2}{(x-a_2)^2} + \dots + \frac{B_{k_2}}{(x-a_2)^{k_2}}\right) + \dots + \left(\frac{C_1}{(x-a_m)} + \frac{C_2}{(x-a_m)^2} + \dots + \frac{C_{k_m}}{(x-a_m)^{k_m}}\right)$$

Доказательство.

$$\frac{P(x)}{(x-a_1)^{k_1}\dots(x-a_m)^{k_m}} = \frac{1}{(x-a_1)^{k_1}} \frac{P(x)}{(x-a_2)^{k_2}\dots(x-a_m)^{k_m}} =
= \frac{1}{(x-a_1)^{k_1}} (A_{k_1} + A_{k_1+1}(x-a_1) + A_{k_1-2}(x-a_1)^2 + \dots + A_1(x-a_1)^{k_1} + o((x-a_1)^{k_1}))
\frac{P}{Q} - \left(\frac{A_1}{x-a_1} + \dots + \frac{A_{k_1}}{(x-a_1)^{k_1}}\right) = \frac{o((x-a_1)^{k_1})}{(x-a_1)^{k_1}}$$

$$\frac{P}{Q}-$$
 (Пр. часть) = знам. сократится \Rightarrow многочлен $\equiv 0$

M3137y2019 December 23, 2019