

VLSI Testing 積體電路測試

Fault Collapsing

Professor James Chien-Mo James Li 李建模 Lab. of Dependable Systems (LaDS)
Graduate Institute of Electronics Engineering National Taiwan University

Course Roadmap (EDA Topics)

Why Am I Learning This?

- Fault collapsing reduce number of faults
 - Speed up fault simulation and ATPG
 - Reduce Test Patterns

"Simplicity is the ultimate sophistication." (Leonardo da Vinci)

Fault Collapsing

- Introduction
- Equivalence Fault Collapsing
 - Fanout-free circuits
 - Circuits with fanout
- Dominance Fault Collapsing
 - Fanout-free circuits
 - Circuits with fanout
- Discussions
- Conclusion

Introduction

- Why Fault Collapsing?
 - Reduce number of faults so that
 - * Speed up ATPG
 - Shorten test set
- How?
 - Quickly find representative faults
 - Use only those representative faults for ATPG
- Requirement of fault collapsing algorithm
 - Must be fast; otherwise, it is not worth doing
- There are many different ways to do fault collapsing
 - Obtaining the minimum solution is not so important
 - As long as we do not miss any fault

Equivalent Faults

- Faults f and g are functionally equivalent (or simply equivalent)
 - if faulty outputs of them are identical for all test patterns
- Example: A/0 B/0 and C/0 are all equivalent faults
 - They belong to the same equivalent fault class

Input		Output	Output								
A B		good	A/0	C/0	B/0	A/1	C/1	B/1			
0	0	0	0	0	0	0	1	0			
0	1	0	0	0	0	1	1	0			
1	0	0	0	0	0	0	1	1			
1	1	1	0	<u>0</u>	<u>0</u>	1	1	1			

Properties of Equivalence

- Equivalence relationship is symmetric
 - if fault f is equivalent to fault g, then fault g is equivalent to fault f
- Equivalence relationship is also transitive
 - if fault f is equivalent to fault g and fault g is equivalent to fault h,
 then fault f is equivalent to fault h
- Example
 - A/0 fault is equivalent to B/0 fault, which is also equivalent to C/0 fault. These three faults belong to the same equivalence class

Input		Output	Output								
A B		good	A/0	C/0	B/0	A/1	C/1	B/1			
0	0	0	0	0	0	0	1	0			
0	1	0	0	0	0	1	1	0			
1	0	0	0	0	0	0	1	1			
1	1	1	0	<u>0</u>	0	1	1	1			

Equivalence Fault Collapsing, EFC

- EFC reduces fault list using fault equivalence relationship
 - Select one representative fault from every equivalent class
- Example:
 - Originally six faults per 2-input gate
 - After EFC, only four faults per gate
 - 6→4

- NOTE: EFC is not unique
 - {A/0, A/1, B/1, C/1} is also EFC for AND gate

How to Perform EFC?

- EFC can be performed by functional analysis or structure analysis
- Functional analysis
 - Apply all possible test patterns and fault simulate two faults
 - If same faulty outputs, two faults are equivalent
 - Exhaustive functional time consuming
 - * 2ⁿ test patterns may be needed for an *n*-input circuit
- Structure analysis
 - Identify equivalent faults by circuit structure
 - No test patterns applied
- Many different structure analysis approaches
 - In this lecture, we show a linear time structure analysis example
 - Resulting equivalence collapsed fault list may not be minimal
 - but good enough for most applications

Structure Analysis Is Enough for Most Applications

EFC on Fanout-free Circuits

- Our EFC Rules
 - (1) both stuck-at one and zero faults for every primary output
 - (2) one collapsed fault for each gate input
 - stuck-at non-controlling values (see slide 8)
- Example
 - keep both H/0 and H/1 faults for primary output H
 - keep one fault for each gate input,
 - * A/0 and B/0 for OR gate G1 and etc
 - Original 14 faults → 8 faults after EFC
 - Why faults on the gate outputs are removed?
 - * gate G1 output stuck-at zero fault is equivalent to C/0 fault, which is equivalent to E/1, which is equivalent to H/0.

EFC on Circuits with Fanouts

- Fanout stem faults are NOT always equivalent to fanout branch faults
- Example:
 - E/0 is equivalent to F/0
 - * but not equivalent to L/0
 - No two faults are equivalent

*This functional analysis is slow

Input			Output							
Α	В	С	good	E/0	F/0	L/0	E/1	F/1	L/1	
0	0	0	0	0	0	0	1	1	0	
0	0	1	1	0	0	1	1	1	1	
0	1	0	1	0	0	1	1	1	1	
0	1	1	1	0	0	1	1	1	1	
1	0	0	0	0	0	0	0	1	0	
1	0	1	0	0	0	1	0	0	0	
1	1	0	0	0	0	1	0	0	0	
1	1	1	0	0	0	1	0	0	0	

How to Handle Circuits w/ Fanouts?

- Stem analysis determines equivalent faults on fanout stem and its branches
 - However, stem analysis is time consuming
 - * not worth the time
 - * details skipped in this lecture
- An approximate solution
 - Partition circuit into independent fanout-free subcircuits
 - Every fanout stem treated as a primary output
 - * both s@1 s@0 faults are included on branches
 - They are NOT collapsed

Treat each FFS partition independently

Example

- 2 partitions
- Originally 18 faults, → after EFC 10 faults

- NOTE:
 - Inverter G₃ ignored
 - because its input fault s@0 is always equivalent to its output s@1 fault

Simple_EFC Algorithm

Linear time (NOT unique; other EFC algorithm is possible)

```
Simple_EFC (N) /*N is a netlist*/
 0. fault_list = { };
 1. foreach gate or PO or PI g in N
       if ((g \text{ is PO}) \parallel (g \text{ is PI and fanout stem})) then
          fault_list = fault_list \cup g stuck-at 0 and stuck-at 1;
       else if (output of gate g is fanout stem) then
 5.
          fault_list = fault_list \cup g output stuck-at 0 and 1;
     end if
      if (gate g is AND) \parallel (gate g is NAND) then
         fault_list = fault_list \cup g input stuck-at 1;
 8.
      else if (gate g is OR) \parallel (gate g is NOR) then
         fault_list = fault_list \cup g input stuck-at 0;
10.
11.
      end if
12. end foreach
13. return (fault_list );
```

Problems of Simple_EFC (1)

- Does NOT guarantee optimal result because it lacks stem analysis
 - For example, E/0 fault actually equivalent to K/0 fault

* but they both appear after Simple_EFC

Often acceptable in most cases

Input			Output							
Α	В	С	good	E/0	F/0	L/0	E/1	F/1	L/1	
0	0	0	0	0	0	0	1	1	0	
0	0	1	1	0	0	1	1	1	1	
0	1	0	1	0	0	1	1	1	1	
0	1	1	1	0	0	1	1	1	1	
1	0	0	0	0	0	0	0	1	0	
1	0	1	0	0	0	1	0	0	0	
1	1	0	0	0	0	1	0	0	0	
<u>.</u>	1	1	0	0	0	1	0	0	0	

15

Problems of Simple_EFC (2)

- Link between original (uncollapsed) faults and their corresponding collapsed faults is lost
- Example:
 - No link between four faults {F/0, J/1, H/1, K/0} in same equivalence class and their collapsed fault K/0
- Links between uncollapsed faults and collapsed faults are needed when calculating the uncollapsed fault coverage
 - Example: suppose we detect A/1 K/0 and B/0 faults
 - * Collapsed fault coverage is 3/10 = 30%
 - * But uncollapsed fault coverage is ?/18 = ?

FFT

- Q1: Why did we choose C/0?
 - why not A/0 ? B/0?

- Q2: How do we modify the *Simple_EFC* algorithm to calculate number of faults in each equivalence class?
 - i.e. how do we know there are 4 faults in K/0 equivalence class?

