Mechanics of Materials

Lecture 9 - Torsion

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

15 September, 2020

schedule

- 15 Sep Torsion, Homework 3 Due
- 17 Sep Torsion
- 22 Sep Bending, Homework 4 Due
- 24 Sep Bending

-

outline

- torsion
- power transmission
- group problems

torsion

- Torque is a moment that tends to twist a member about its axis
- For small deformation problems, we assume that the length and radius do not change significantly under torsion
- The primary deformation we are concerned with in torsion is the angle of twist, denoted with ϕ

shear

The shear strain at points on the cross section increases linearly with ρ , i.e., $\gamma = (\rho/c)\gamma_{max}$.

torsion formula

- For a linearly elastic material, Hooke's Law in shear will hold $(au=G\gamma)$
- This means that, like shear strain, shear stress will vary linearly along the radius

torsion formula

 We can find the total force on an element, dA by multiplying the shear stress by the area

$$dF = \tau dA$$

– The torque ($dT = \rho dF$) produced by this force is then

$$dT = \rho(\tau dA)$$

torsion formula

- Integrating over the whole cross-section gives

$$T = \int_{A} \rho(\tau dA) = \frac{\tau_{max}}{C} \int_{A} \rho^{2} dA$$

– The integral $\int_A \rho^2 dA$ is also called the Polar Moment of Inertia, J, so we can write

$$au_{max} = \frac{Tc}{J}$$

polar moment of inertia

- We know that $J=\int_A \rho^2 dA$, so we can compute this for some common shapes
- For a solid circular cross-section, we have

$$J = \int_0^c \rho^2 (2\pi \rho d\rho) = \frac{\pi}{2} c^4$$

For a circular tube we have

$$J = \int_{c_1}^{c_2} \rho^2 (2\pi \rho d\rho) = \frac{\pi}{2} (c_2^4 - c_1^4)$$

example 5.1

Figure 1: On left is a solid 100 mm radius tube, while on the right is a hollow tube with outer radius of 100 mm and inner radius of 75 mm. Element A is on the surface of the solid tube on the left, element B is on the outer surface of the hollow

power transmission

- Shafts and tubes are often connected to belts and drives, and the torque, speed, and power are all related
- Power is the rate of work done, for rotation problems, $P=T\omega$
- We are often given the frequency f instead of the angular velocity, ω , in this case $P=2\pi fT$

power units

- In SI Units, power is expressed in Watts 1 W = 1 N m / sec
- In Freedom Units, power is expressed in Horsepower
 1 hp = 550 ft lb / sec

shaft design

- We often know the power and frequency of a drive, and need to design a shaft such that the shear stress is acceptable
- We can easily find the torque as $T = P/2\pi f$, we can use this combined with the torsion equation

$$\tau_{\text{max}} = \frac{Tc}{I}$$

to find the appropriate shaft diameter. - For solid shafts we can solve for *c* uniquely, but not for hollow shafts

example 5.4

Figure 2: A rotating shaft connected to a motor

Figure 3: A 40 mm radius solid shaft. Point A is on the outer surface, Point B is 30 mm away from the center.

group two

Figure 4: A hollow circular shaft with outer radius of 60 mm and inner radius of 40 mm. Point A is on the inner surface,

Figure 5: There is a fixed support at C, an applied torque of 4 kN.m at B (in the middle) and an applied torque of 2 kN.m at A

group four

Figure 6: A shaft supports to pulleys, one with a 150 mm radius and tension of 6 kN at one end and 2 kN at the other other.