Отчёт о выполнении лабораторной работы 7.4 «Исследование поглощения вторичного космического излучения в веществе»

Цель работы: с помощью телескопа, состоящего из двух сцинтилляционных детекторов, работающих в схеме совпадений, измеряется зависимость интенсивности космического излучения в лаборатории (на уровне моря) от толщины поглотителей из различных материалов. На основе этих измерений определяются эффективные длины поглощения мягкой и жесткой компонент космики в свинце и железе, абсолютные величины их вертикальных интенсивностей и сечение рождения электронно-позитронных пар в этих материалах.

Оборудование: телескоп, состоящий из двух сцинтилляционных детекторов; схема совпадений; свинцовые блоки.

Теория

Жесткая компонента:

$$\pi^+ \to \mu^+ + \nu_\mu, \ \pi^- \to \mu^- + \tilde{\nu}_\mu,$$
 (1)

Электронно-фотонная компонента:

$$\pi^0 \to \gamma + \gamma$$
 (2)

Сечение образования электронно-позитронных пар:

$$\sigma_{pair} = \frac{28}{9} Z^2 \alpha \left(\frac{e^2}{mc^2}\right)^2 \left(\ln \frac{2\hbar\omega}{mc^2} - \frac{109}{42} - (\alpha Z)^2\right)$$
(3)

Для свинца

$$\sigma_{pair} = 11Z^2 \alpha r_0^2 = 11Z^2 \frac{e^6}{\hbar m^2 c^5} \tag{4}$$

Ход работы
Измерения и наблюдения

# опыта	t, c	# импульсов	Пластины	
1	600	172	нет	
2	600	139	1	
3	600	147	2	
4	600	121	3	
5	600	131	4	
6	600	115	5	
7	600	128	6	
8	600	112	7	
9	600	120	8	
10	600	132	9	
11	600	149	9	

# пластины	d, mm
1	19,3
2	19,1
3	19,4
4	19,4
5	19,3
6	19,5
7	20,2
8	19,2
9	19,4

Обработка

Опыт	N_{imp}	$\sigma_{N_{imp}}$	Пластины	$d_{sum},$, mm	$\sigma_{d_{sum}}$, MM	$\frac{N_{imp}(d_{sum})}{N_{imp}(d_{all})} - 1$	σ
1	172	13,1	0	0,0	0,00	0,30	0,05
2	139	11,8	1	19,3	0,05	0,05	0,01
3	147	12,1	2	38,4	0,10	0,11	0,02
4	121	11,0	3	57,8	0,15	-0,08	0,01
5	131	11,4	4	77,2	0,20	-0,01	0,00
6	115	10,7	5	96,5	$0,\!25$	-0,13	0,02
7	128	11,3	6	116,0	0,30	-0,03	0,01
8	112	10,6	7	136,2	$0,\!35$	-0,15	0,03
9	120	11,0	8	155,4	0,40	-0,09	0,02
10	132	11,5	9	174,8	$0,\!45$	0,00	0

Получаем графики:

Обе зависимости аппроксимируются экспонентами.

У первого графика (число частиц от толщины) она имеет вид $f(x) = 48, 8 \cdot \exp(-0.035x) + 121, 8$; тогда эффективная длина пробега будет приближенно равна 28,6 мм.

Обсуждение

Выполнив данную лабораторную работу, мы установили зависимость интенсивности вторичного космического излучения от толщины свинцовых поглотителей. Заметили, что как интенсивность излучения, так и отношение мягкой компоненты к жесткой убывает экспоненциально. Нашли эффективную длину пробега (около 28,6 мм).

Вывод

Эффективная длина пробега мягкой компоненты в свинце равна около 28,6 мм.