ME231: Solid Mechanics-I

Stress and Strain

Example 7

For a slender beam, the equilibrium equations were derived as,

$$\frac{dV}{dx} + q = 0$$
 and $\frac{dM}{dX} + V = 0$.

We will prove these equations again using general equilibrium equations derived in this chapter, i.e.,

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} = 0, \qquad \dots (7a)$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} = 0. \qquad \dots (7b)$$

Integrate (7b) in the thickness direction (i.e., y-direction) as,

$$\int_{y=-h/2}^{y=h/2} \left(\frac{\partial \tau_{xy}}{\partial x} dy + \frac{\partial \sigma_{yy}}{\partial y} dy \right) = 0, \quad \Rightarrow \frac{\partial}{\partial x} \int_{y=-h/2}^{y=h/2} \tau_{xy} dy + \int_{y=-h/2}^{y=h/2} d\sigma_{yy} = 0$$

$$\Rightarrow \frac{\partial V}{\partial x} + \sigma_{yy}|_{(y=h/2)} - \sigma_{yy}|_{(y=-h/2)} = 0, \text{ where, } V = \int_{-h/2}^{y=h/2} \tau_{xy} dy, \quad q = \sigma_{yy}|_{(y=h/2)} \text{ and } \sigma_{yy}|_{(y=h/2)=0}.$$

Thus,
$$\frac{\partial V}{\partial x} + q = 0.$$

Now, multiply (7a) with y and integrate in the thickness direction (i.e., y-direction) as,

$$\int_{y=-h/2}^{y=h/2} \left(\frac{\partial \sigma_{xx}}{\partial x} y dy + \frac{\partial \tau_{xy}}{\partial y} y dy \right) = 0, \Rightarrow \frac{\partial}{\partial x} \int_{y=-h/2}^{y=h/2} \sigma_{xx} y dy + \int_{y=-h/2}^{y=h/2} \left(\frac{\partial \tau_{xy}}{\partial y} y \right) dy = 0,$$

$$\Rightarrow -\frac{\partial M}{\partial x} + \int_{y=-h/2}^{y=h/2} \left(\frac{\partial \tau_{xy}}{\partial y}y\right) dy = 0$$
, where $-M = \int_{y=-h/2}^{y=h/2} \sigma_{xx}y dy$,

$$\Rightarrow -\frac{\partial M}{\partial x} + y\tau_{xy}|_{y=-h/2}^{y=h/2} - \int_{y=-h/2}^{y=h/2} \tau_{xy}dy = 0, \text{ where, } V = \int_{y=-h/2}^{y=h/2} \tau_{xy}dy, \text{ and } y\tau_{xy}|_{y=-h/2} = y\tau_{xy}|_{y=h/2} = 0.$$

Thus,
$$\frac{\partial M}{\partial x} + V = 0.$$

ME231: Solid Mechanics-I

Stress, Strain and Temperature relationship

Introduction

- In the previous chapter, we derived three equations (for 3D) of equilibrium for the six components of stress.
- In addition to that there are three components of displacements in the six equations relating strain to displacement.
- Thus, to determine the distributions of stress and strain in a body more equations are required.
- The distribution of stress and strain will depend on the material behavior of the body.
- In this chapter we shall discuss the relations between stress and strain (constitutive law).
- Different materials follow different relationship between stress and strain, and development of constitutive model for materials is an active field of research.

Tensile test

Tensile test specimen

Universal Testing Machine (UTM)

Tensile test

https://www.youtube.com/watch?v=D8U4G5kcpcM

Stress-strain curve

Engineering Stress
$$\sigma = \frac{P}{A_0}$$
, Engineering Strain $\epsilon = \frac{\delta}{L_0}$.

Features of stress-strain curve

- The very first region is where stress is linearly proportional to the strain. The proportional limit is defined as the maximum stress upto which this proportionality exists.
- The elastic limit is defined as the maximum stress up to which material behaves elastically, i.e., there is no permanent strain on release of stress.
- However, neither the proportional nor the elastic limits can be determined precisely. They deal
 ε with the limiting cases of zero deviation from linearity and of no permanent set.

- Since plastic deformations of the order of the elastic strains are often unimportant, instead of reporting the elastic limit it has become standard practice to report a quantity called the yield strength, which is the stress required to produce a certain arbitrary plastic deformation.
- For many of the common steels the plastic deformation begins abruptly, resulting in an increase of strain with no increase, or perhaps even a decrease, in stress.

• For such materials, the stress at which plastic deformation first begins is called the upper yield point; subsequent plastic deformation may occur at a lower stress, called the lower vield point.

- As plastic deformation is continued, the load required for further plastic flow increases. This phenomenon is called strain hardening.
- Finally a point is reached where the load required to cause further elongation begins to decrease. At this point the load has passed a maximum and, consequently, so also has the engineering stress. This maximum value of the engineering stress is termed the ultimate tensile stress (or tensile strength).

- After the ultimate tensile strength, it is observed that at a certain cross-section reduction in the cross-sectional area is higher than that in the other places. This non-uniform deformation is called necking,
- The tensile test reaches its conclusion when a small crack develops at the center of the neck and spreads outward to complete the fracture.
- The stress at which complete fracture occurs is called the breaking stress.