Übungsblatt 8 zur Algebra I

Abgabe bis 10. Juni 2013, 17:00 Uhr

Aufgabe 1. Irreduzibilitätstest

Bestimme numerisch die Nullstellen von $f(X) = X^4 - 10X^2 + 1$ bis auf wenige Stellen nach dem Komma, und nutze diese Information um zu zeigen, dass f(X) über den rationalen Zahlen irreduzibel ist.

Aufgabe 2. Inhalt von Polynomen

Sei f(X) ein normiertes Polynom mit rationalen Koeffizienten.

- a) Zeige, dass der Inhalt von f genau dann ganzzahlig ist, wenn alle Koeffizienten von f ganzzahlig sind.
- b) Zeige, dass der Inhalt von f das Inverse des Leitkoeffizienten von \widetilde{f} ist.
- c) Zeige, dass der Inhalt von f das Inverse einer ganzen Zahl ist. ...nicht getreu...

Aufgabe 3. Kongruenzrechnungen

- a) Sei n eine ganze Zahl und seien a, a', b, b' ganze Zahlen mit $a \equiv a'$ und $b \equiv b'$ modulo n. Rechne explizit nach, dass dann auch $a + b \equiv a' + b'$ modulo n.
- b) Sei a eine ganze Zahl mit $a \equiv 1$ modulo 3. Für welche Exponenten k ist $a^k \equiv 2$ modulo 3?
- c) Finde zwei Inverse von 6 modulo 35.

Aufgabe 4. Reduktion modulo einer Primzahl

Sei f(X) ein normiertes Polynom mit ganzzahligen Koeffizienten. Beweise oder widerlege: Ist f(X) modulo einer Primzahl reduzibel, so ist f(X) auch über den rationalen Zahlen reduzibel.

Aufgabe 5. Irreduzibilitätstest nach Leopold Kronecker

- a) Seien b_0, \ldots, b_m von Null verschiedene ganze Zahlen. Zeige, dass es nur endlich viele Polynome g(X) vom Grad $\leq m$ mit ganzzahligen Koeffizienten gibt, sodass für alle $i = 0, \ldots, m$ die ganze Zahl g(i) ein Teiler von b_i ist.
- b) Sei f(X) ein primitives Polynom vom Grad n mit ganzzahligen Koeffizienten und $f(i) \neq 0$ für alle $0 \leq i \leq \frac{n}{2}$. Zeige, dass es nur endlich viele Polynome g(X), h(X) mit ganzzahligen Koeffizienten und $f = g \cdot h$ gibt.
- c) Verwende Teilaufgabe b), um ein Verfahren anzugeben, das von einem primitiven Polynom f(X) mit ganzzahligen Koeffizienten feststellt, ob es reduzibel oder irreduzibel ist.