Telomere-to-Telomere Assembly of the SHRSP/BbbUtx (SHR-A3) Rat

Kai Li

Graduate Student

Department of Veterinary Science

Martin-Gatton College of Agriculture, Food, and Environment

University of Kentucky

Introduction:

Genome Assembly

Goal: produce contiguous and complete genomes, covering complex and repetitive regions.

Challenges: Traditional methods struggle with **complex/repetitive regions** (Telomeres, Centromeres, rDNA arrays)

Telomere-to-Telomere (T2T) Assembly

- Take advantage of Oxford Nanopore ultra long sequencing to overcome challenges with complex/repetitive regions.
- T2T assembly = full chromosome assembly from one telomere to the other.

Data Summary:

Data Type	Reads (M)	Total (Gb)	Coverage
PacBio HiFi	7.67	96.52	~34X
Hi-C	1617.8	242.65	~87X
Oxford Nanopore Ultra-Long	8.49	241.5	~32X
Illumina Short Read WGS	1306.7	128.5	~46X

Assembly Method:

Connecting Associated Scaffolds through Gaps

utig4-21/chr19

utig4-76

utig4-153

utig4-70

utig4-267

Querying aligned ONT Path

```
grep utig4-19 ont-aligned.gaf | grep utig4-18 NULL
```

grep utig4-18 ont-aligned.gaf | grep utig4-17 NULL

```
grep utig4-19 ont-aligned.gaf |grep utig4-17 
<utig4-19<utig4-16>utig4-17 
<utig4-17>utig4-16>utig4-19
```

```
grep utig4-18 ont-aligned.gaf | grep utig4-16 | wc -l 66 grep utig4-19 ont-aligned.gaf | grep utig4-16 | wc -l 84 grep utig4-17 ont-aligned.gaf | grep utig4-16 | wc -l 157
```


for each edge using once and 134kb utig4-16 coverage 69.2x the real path `utig4-19-, utig4-16-, utig4-17+, utig4-16-, utig4-18+`

Gap Filling Using Assembly Results from hifiasm

The input data is exactly the same as the Verkko.

Different assemblers can complement each other's shortcomings through comparison and integration of their results.

haplotype2-0000015: 50412847-50512846

haplotype2-0000015: 50612848-50712847

Simple long sequence repeats and heterozygous regions

grep utig4-202 ont-aligned.gaf |grep utig4-120 >utig4-202>utig4-342>utig4-342<utig4-120

Resolve complex tangles through critical paths

rDNAarrays

```
utig4-151 -> haplotype2-0000027 -> chr3
utig4-313 -> unassigned-0000229 -> chr12
utig4-338 -> unassigned-0000244 -> chr11
```


Polishing:

To avoid over-polishing the NUMT region, the MT genome must be assembled before polishing.

map PacBio HiFi reads to the close-related mitogenome

filter out any mapped reads that are larger than the reference mitogenome to avoid NUMTS

hifiasm to assemble the mapped and filtered reads

MitoHiFi:

blast of the contigs versus the close-related mitogenome

filtering BLAST output to select target sequences

circularize, annotate and rotate each filtered contig

Deeppolisher && PacBio HiFi Pilon && Illumina WGS

Assembly Comparison

	NCBI_SHRSP_A3	121_A3
N50	138,881,597	144,442,684
L50	8	8
Total_Length	2,907,517,304	2,852,523,581
Longest_contig	276,968,795	273,948,194
Number of Contigs	4,130	277
Number of Gaps	1,610	7
Length of Gaps(Kb)	1605.31	700.01
Number of telomeres	16	42
T2T_chromosomes	1	20 **

NCDI CHDCD A2

^{**} chr7 & chrY has one end with telomere

Comparison evaluation

BUSCO Assessment Results

Compleasm:

	nahi A2	TOT 40
	ncbi_A3	T2T_A3
S:	97.90%, <mark>9032</mark>	98.52%, <mark>9089</mark>
D:	1.97%, 182	1.35%, 125
F:	0.08%, 7	0.08%, 7
l:	0.00%, 0	0.00%, 0
M:	0.05%, 5	0.05%, 5
N:	9226	9226

**lineage: glires_odb10

**lineage: mammalia_odb10

Comparison evaluation

Merqury:

	Error Rate	Quality Value	Completeness
NCBI_A3	4.10962E-05	43.862	99.8118
T2T_A3	2.86592E-05	45.427	99.8148

Acknowledgements

- NHGRI
 - Sergey Koren, PhD
 - Adam M. Phillippy, PhD
- University of Louisville
 - Elizabeth Hudson, MS
 - Melissa Laird-Smith, PhD
- University of Kentucky
 - Theodore Kalbfleisch, PhD
- University of Texas McGovern School of Medicine
 - Peter Doris, PhD

Thank you for your attention!

Questions?

kai.li@uky.edu