

Rise4: Inductive Charging for Medication Adherence Tracking System

Luke Cohen
December 3rd, 2020

Background

Background: Glaucoma

- Leading cause of irreversible blindness worldwide
- Poor adherence to medication regimen
- Standards for medication adherence
 - Smart pill containers
 - Wearable sensors
 - Ingestible sensors
- Smart eye dropper sleeve

Background: Previous Work (Mechanical)

- Inner "skeleton"
 - Harder plastic
 - Holds Reed switches (2) and PCB (4-6))
 - Allows for easier assembly
- Cap with 3 bar magnets (1) placed over bottle cap
- Cylinder with copper tape for fluid level detection (3) inside "skeleton"
- Silicone-like cover
 - Window for on/off switch

Figure 1: Eyedropper Sleeve Overview³

Background: Previous Work (Electrical)

- IMU/Capacitance-to-digital converter on board
- Locations to wire capacitance sensor/reed switches
- Bluetooth (BLE) module for connection
- On/off switch for testing
- Includes LEDs and microcontroller (MCU)

Figure 2: Eyedropper PCB Overview³

Background: Results

- System that could...
 - Identify 97% of use cases
 - Measure fluid level at a 0.4 mL resolution
 - Transmit data to healthcare provider
 - Operate for 7 hours unattended

Overview

Overview: Elaboration on Previous Work

- Increase ease of use by minimizing system complexity
 - Inductive charging
 - Enclosed sleeve design
 - Seamless charging base station design

Overview: Project Objectives

- Electrical
 - Understand electrical characteristics of current system
 - Understand constraints of inductive charging
 - Design or find inductive charging unit
- Mechanical
 - Alter sleeve design to fit inductive charging
 - Design charging station for device

Approach

Approach: Inductive Charging

- Current running through lower coil generates magnetic field
- Magnetic field induces a current on receiver coil
- Considerations
 - Alignment
 - Proximity
 - Shielding

- · Current in primary coil (transmitter) generates magnetic field
- · Magnetic field induces current in secondary coil (receiver)
- · Received current is used to charge battery or power load device

Figure 3: Open Loop Inductive Charging⁴

Approach: Inductive Charging

- TX power transformer
- RX communication
 - In Band
 - Out of Band

Figure 4: Smart Inductive Charging⁴

Approach: Electrical Analysis

- MCP73831 PMIC
 - 5V input
 - 510μA typical supply current
 - 14.5mA output current regulation
- Micro USB input
 - 5V output
 - Typically 1A output current

Figure 5: On Board Power Management IC

Approach: Charging Choice

- Off the shelf dev kit
 - 5V output
 - 300mA current
 - Mechanical design fits our needs
- Can be placed on updated PCBs

Figure 6: Smart Inductive Charging Dev Kit

Results

Results: Charging Characteristics

• Tested current through a $1K\Omega$ resistor to compare characteristics

	Proximity (mm)	Voltage (V)	Current (mA)
USB	N/A	5.04	3.65
Inductive Charger	0	4.96	3.57
	2	4.96	3.50
	5	4.96	3.50
	10	3.85	2.65
	15	2.18	1.74
	>15	0.00	0.00

Results: Mechanical Design

Figure 7: Revised Sleeve Design and Charging Base Station

Conclusion

Conclusion: Goals Met

- Electrical
 - Was able to match power needs with inductive charger
- Mechanical
 - Sleeve altered to hold inductive receiver
 - Charging base station designed to hold inductive transmitter
- Improvements to overall system can still be made

Conclusion: Next Steps

- Gather data on validity of device
 - Data generation
 - User experience
- Update PCB
 - Include inductive charging components
 - Less power intensive accelerometer
 - Ease of assembly

Thanks

- Dr. Shorter and Dr. Sample
- Nolan Payne, Rahul Gangwani, and Amani Alkayyali
- ESTAR Lab Members
- Barton Research Group Members
- RISE4

Questions?

References

- 1. Ilya Kovarik, "Building a wireless power transmitter," Application Report (SLUA635A), August 2012
- 2. Jing Ye, "NVDC charging design considerations," Video Tutorial.
- 3. Payne, N.; Gangwani, R.; Barton, K.; Sample, A.P.; Cain, S.M.; Burke, D.T.; Newman-Casey, P.A.; Shorter, K.A. Medication Adherence and Liquid Level Tracking System for Healthcare Provider Feedback. *Sensors* **2020**, *20*, 2435.
- 4. Segupta, U.; Johns, B.; Stacey D.; Electromagnetic Induction the Basics Behind Wireless Power. *Electronic Design* **2015.**
- 5. Tahar Allag, "Layout Guidelines for wireless power receiver," Application Report (SLUA710), June 2014.

