Ejercicio 1. Responda la siguiente pregunta

Debe ingresar como respuesta -al menos- 7 filas.

Dado el siguiente pseudocódigo:

```
Principal() {
    Entero i = 0;
    IdProceso pid;
    Mientras (i <= 5) {
        pid = CrearProceso();
        si (pid ==0) SalirDelMientras();
        i = i + 1;
    }
    Mostrar piddelpadre(), pidpropio() , i;
}</pre>
```

La siguiente tabla representa el Mostrar del proceso más dos columnas adicionales que debe completar. Completar la tabla suponiendo que el Identificador del proceso Principal es 7777 y el Identificador del proceso Shell es 6666. Para responder separe las columnas con comas y las filas con Enter

Indique si es proceso Padre o Hijo	Id Proceso Padre	Id propio	Valor de i	Indique si es huérfano o Zombie o no huérfano
	***			***

Ejercicio 2. Responda la siguiente pregunta

Dado el siguiente pseudocódigo de 17 lineas:

```
Principal(){
1
2
3
   Entero i = 0; IdProceso pid;
4
5
   Mientras (i <= 5)
6
7
       pid = CrearProceso();
8
9
       si
          (pid >0)
                     SalirDelMientras();
10
11
       i = i + 1;
12
    }
13
   Mostrar piddelpadre(), pidpropio(), i;
14
15
16
17
   }
```

Modifique las líneas o utilice las que están en blanco, para poner instrucciones con el objetivo de que no existan procesos huérfanos ni zombies y para que el o los procesos padres muestren el valor de la variable i del proceso hijo cuando el hijo ya haya terminado. Para responder escriba: número de línea e instrucción y separe cada renglón con la tecla Enter.

Ejercicio 3. Responda la siguiente pregunta

Dados dos semáforos binarios con la siguiente inicialización <u>SemA</u> = 1 y <u>SemB</u> = 1, y la siguiente sección de entrada y sección de salida de dos procesos:

Proceso A	Proceso B	
Adquirir(SemA)	Adquirir (SemB)	
Adquirir(SemB)	Adquirir (SemA)	
Sección Critica	Sección Crítica	
Liberar(SemA)	Liberar(SemA)	
Liberar(SemB)	Liberar (SemB)	

Tilde TODAS las opciones posibles de secuencia de ejecución de estos procesos

a. Secuencia ABABABABA
b. Secuencia ABBBBBBBBBB
c. Secuencia BABABABAB
d. Secuencia AAAAABBBBBB
e. Secuencia BBBBBBBBBBB
f. Secuencia BAAAAAAAA BLOQUEO
g. Secuencia ABABABABA
h. Secuencia ABBBBBBBBBBBBBBBBBCQUEO
i. Secuencia BABABABAB
j. Secuencia AAAAAAAAA BLOQUEO
k. Secuencia BBBBBBBBBBB
I. Secuencia BAAAAAAAAA

Ejercicio 4. Responda las siguientes Preguntas

Todas las preguntas de esta sección estan relacionadas y conforman un único problema a resolver.

Dados los procesos A,B,C,D, E. Se tiene que lograr la siguiente secuencia de ejecución de procesos A(BoC)(DoE) y comienza el ciclo nuevamente, el 'o' es exclusivo, realizar lo que se pide con la menor cantidad de semáforos. ¿Cuántos Semáforos voy a utilizar? *

Tu respuesta

Ponerle nombre a los semáforos a utilizar (Por ejemplo: Sa Sb) escríbalos uno al lado del otro, separados por un espacio *

Tu respuesta

Inicialice los semáforos que indicó en la respuesta anterior (considerar que se trata de semáforos binarios) (Por ejemplo: Sa = 1 Sb = 1) separe cada inicialización con un espacio. *

En todo proceso tenemos una sección de entrada, una sección crítica y una sección de salida. En la sección de entrada y salida manipulamos a los semáforos haciendo operaciones P(Sem) o V(Sem). INDIQUE las INSTRUCCIONES de la Sección de entrada y Salida DEL PROCESO A. (Separe cada instrucción con un espacio, escriba SC para indicar sección crítica) Ejemplo: P(Sa) V(Sb) SC P(Sb) P(Sc) *

La instrucción P(Sa) significa "proberen" probar, wait del semaforo Sa y V(Sb) significa "verhogen" incrementar, señalar semaforo Sb

Tu respuesta

En todo proceso tenemos una sección de entrada, una sección crítica y una sección de salida. En la sección de entrada y salida manipulamos a los semáforos haciendo operaciones P(Sem) o V(Sem). INDIQUE las INSTRUCCIONES de la Sección de entrada y Salida DEL PROCESO B. (Separe cada instrucción con un espacio, escriba SC para indicar sección crítica) Ejemplo: P(Sa) V(Sb) SC P(Sb) P(Sc) *

La instrucción P(Sa) significa "proberen" probar, wait del semaforo Sa y V(Sb) significa "verhogen" incrementar, señalar semaforo Sb

Tu respuesta

En todo proceso tenemos una sección de entrada, una sección crítica y una sección de salida. En la sección de entrada y salida manipulamos a los semáforos haciendo operaciones P(Sem) o V(Sem). INDIQUE las INSTRUCCIONES de la Sección de entrada y Salida DEL PROCESO C. (Separe cada instrucción con un espacio, escriba SC para indicar sección crítica) Ejemplo: P(Sa) V(Sb) SC P(Sb) P(Sc) *

La instrucción P(Sa) significa "proberen" probar, wait del semaforo Sa y V(Sb) significa "verhogen" incrementar, señalar semaforo Sb

En todo proceso tenemos una sección de entrada, una sección crítica y una sección de salida. En la sección de entrada y salida manipulamos a los semáforos haciendo operaciones P(Sem) o V(Sem). INDIQUE las INSTRUCCIONES de la Sección de entrada y Salida DEL PROCESO D. (Separe cada instrucción con un espacio, escriba SC para indicar sección crítica) Ejemplo: P(Sa) V(Sb) SC P(Sb) P(Sc) *

La instrucción P(Sa) significa "proberen" probar, wait del semaforo Sa y V(Sb) significa "verhogen" incrementar, señalar semaforo Sb

Tu respuesta

En todo proceso tenemos una sección de entrada, una sección crítica y una sección de salida. En la sección de entrada y salida manipulamos a los semáforos haciendo operaciones P(Sem) o V(Sem). INDIQUE las INSTRUCCIONES de la Sección de entrada y Salida DEL PROCESO E. (Separe cada instrucción con un espacio, escriba SC para indicar sección crítica) Ejemplo: P(Sa) V(Sb) SC P(Sb) P(Sc) *

La instrucción P(Sa) significa "proberen" probar, wait del semaforo Sa y V(Sb) significa "verhogen" incrementar, señalar semaforo Sb

Tu respuesta

Atràs

Siguiente

Ejercicio 5. Responda la siguiente Pregunta

Escriba pseudocódigo de thr3 *

En un contexto de hilos, hay 3 hilos: thr1, thr2, thr3 que trabajan en forma coordinada utilizando una variable de condición, se indica el pseudocódigo de thr1 y thr2. Escriba el pseudocódigo de thr3 (separe cada instrucción con Enter)

thr1	thr2	
mientras proceso	mientras proceso	
lock ml	lock ml	
seccion critica	seccion critica	
si condición entonces	si condición entonces	
señalo cv1	señalo cvl	
fin si	fin si	
unlock ml	unlock ml	
fin mientras	fin mientras	