对点练 ▶先练透基础

类型1 两个函数和、差的导数

例1 求下列函数的导数:

(1)
$$y=x^{-2}+x^2$$
;

(2)
$$y=x^2-4\sin\frac{x}{2}\cos\frac{x}{2}$$
.

【解析】 (1) $y'=2x-2x^{-3}$.

(2) 因为
$$y=x^2-4\sin\frac{x}{2}\cos\frac{x}{2}=x^2-2\sin x$$
,

所以 $y'=2x-2\cos x$.

变式 (1) 若函数 f(x)的导函数为 f(x),且满足 $f(x)=2f(1) \ln x + 2x$,则 f(1)=______, f'(2)=_____.

【答案】 -2 0

【解析】 因为 $f(x) = 2f(1) \ln x + 2x$,则有 $f(x) = 2f(1) \cdot \frac{1}{x} + 2$,故 f(1) = 2f(1) + 2,解得 f'(1) = -2, $f(x) = -\frac{4}{x} + 2$,所以 f(2) = 0.

(2) 已知 f(x)为函数 $f(x)=ax-b \ln x$ 的导函数,且满足 f(1)=0, f'(-1)=2,则 f(2) 等于()

A. 1 B.
$$-\frac{4}{3}$$
 C. $\frac{1}{2}$ D. $\frac{4}{3}$

【答案】 C

【解析】 因为f(x)为函数 $f(x)=ax-b\ln x$ 的导函数,所以 $f(x)=a-\frac{b}{x}$.若f(1)=0,

f'(-1)=2,则 a-b=0, a+b=2,解得 a=1, b=1,所以 $f(x)=1-\frac{1}{x}$,所以 $f(2)=\frac{1}{2}$.

规律总结:函数关系式中含有 $f(x_0)$,首先认清 $f'(x_0)$ 为常数,进而求导赋值计算.

类型 2 两个函数积、商的导数

例2 求下列函数的导数:

(1)
$$y=(2x^2+3)(3x-1)$$
;

(2)
$$y = 3^x e^x - 2^x + e$$
;

(3)
$$y = \frac{\ln x}{x^2 + 1}$$
.

【解析】 (1) 方法一: $y'=(2x^2+3)'(3x-1)+(2x^2+3)\cdot(3x-1)'=4x(3x-1)+3(2x^2+3)=18x^2-4x+9$.

方法二: 因为 $y=(2x^2+3)(3x-1)=6x^3-2x^2+9x-3$,

所以
$$y'=(6x^3-2x^2+9x-3)'=18x^2-4x+9$$
.

(2)
$$y' = (\ln 3 + 1) \cdot (3e)^x - 2^x \ln 2$$
.

(3)
$$y' = \frac{x^2 + 1 - 2x^2 \ln x}{x(x^2 + 1)^2}$$
.

变式 (1) 若函数 $f(x) = \frac{e^x}{x}$ 在 x = a 处的导数值与函数值互为相反数,则 a 的值为

【答案】 $\frac{1}{2}$

【解析】 因为
$$f(x) = \frac{e^x}{x}$$
 ,所以 $f(a) = \frac{e^a}{a}$.又因为 $f'(x) = \left(\frac{e^x}{x}\right)' = \frac{e^x \cdot x - e^x}{x^2}$,所以 $f(a)$

$$=\frac{{
m e}^a \cdot a - {
m e}^a}{a^2}$$
.由题意知 $f(a) + f'(a) = 0$,所以 $\frac{{
m e}^a}{a} + \frac{{
m e}^a \cdot a - {
m e}^a}{a^2} = 0$,所以 $2a - 1 = 0$,所以 $a = \frac{1}{2}$.

(2) 函数 $y=2x(\ln x+1)$ 在 x=1 处的切线方程为()

A.
$$y=4x+2$$
 B. $y=2x-4$

C.
$$y=4x-2$$
 D. $y=2x+4$

【答案】 C

【解析】 由已知得 $y'=2(\ln x+1)+2x \cdot \frac{1}{x}=2\ln x+4$,则 $y'|_{x=1}=4$.又当 x=1 时,y=

2,则切线方程为y=4x-2.

综合练▶再融会贯通

- 一、 单项选择题
- 1. 若函数 $f(x) = (x-1)\ln x$,则 f(1)等于()

A. -1 B. 0 C. 1 D. 6

【答案】 B

【解析】 因为 $f(x) = \ln x + \frac{x-1}{x}$, 所以f(1) = 0.

2. 己知
$$f(x) = x(2\ 021 + \ln x)$$
,若 $f'(x_0) = 2\ 022$,则 x_0 等于()

A. e² B. 1 C. ln 2 D. e

【答案】B

【解析】 $f'(x)=2\ 021+\ln x+1=\ln x+2\ 022$,因为 $f'(x_0)=2\ 022$,所以 $f'(x_0)=\ln x_0+2\ 022=2\ 022$,所以 $\ln x_0=0$,所以 $x_0=1$.

3. 已知函数 $f(x) = 2x + 3f(0) \cdot e^x$,则 f(1)等于()

A.
$$\frac{3}{2}$$
 e B. 3-2e C. 2-3e D. 2+3e

【答案】 C

【解析】 $f(x)=2+3f(0)\cdot e^x$,所以f(0)=2+3f'(0),解得f(0)=-1,所以 $f(x)=2-3e^x$,所以f'(1)=2-3e.

4. 己知函数 $f(x) = \frac{3}{e^x + 1} + x^3$, 其导函数为 f(x),则 $f(2\ 020) + f(-2\ 020) + f(2\ 021) - f(-2\ 021)$ 的值为()

A. 1 B. 2 C. 3 D. 4

【答案】 C

【解析】 $f(x) = \frac{-3e^x}{(e^x + 1)^2} + 3x^2$, $f'(-x) = \frac{-3e^{-x}}{(e^{-x} + 1)^2} + 3(-x)^2 = \frac{-3e^x}{(e^x + 1)^2} + 3x^2$, 所以 f(x) 为偶函数,所以 f'(x) 2021) -f(-2021) = 0.因为 $f(x) + f(-x) = \frac{3}{e^x + 1} + x^3 + \frac{3}{e^{-x} + 1} - x^3 = \frac{3}{e^x + 1} + \frac{3e^x}{e^x + 1} = 3$,所以 f(2020) + f(-2020) = 3,所以 f(2020) + f(-2020) + f'(-2020) = 3.

二、多项选择题

5. 在下列函数中, 求导正确的有()

A.
$$f(x) = x^2 - 1$$
,则 $f'(x) = 2x$

B.
$$g(x) = x \ln x + 1$$
, $\lim_{x \to 1} g'(x) = \ln x + \frac{1}{x}$

C.
$$h(x) = \frac{x+2}{e^x}$$
, $M h'(x) = -\frac{x+1}{e^x}$

D. $\phi(x) = x \sin x + \cos x$, $\emptyset | \varphi'(x) = -x \cos x$

【答案】 AC

【解析】 $f(x)=(x^2)'-1'=2x$,故选项 A 正确; $g'(x)=x'\ln x+x(\ln x)'=\ln x+x\cdot\frac{1}{x}=\ln x$ +1,故选项 B 不正确; $h'(x)=\frac{(x+2)'e^x-(x+2)(e^x)'}{(e^x)^2}=-\frac{x+1}{e^x}$,故选项 C 正确; $\varphi'(x)=x'\sin x+x(\sin x)'+(\cos x)'=\sin x+x\cos x-\sin x=x\cos x$,故选项 D 不正确.

6. 若函数 f(x)的导函数 f'(x)的图象关于 y 轴对称,则 f(x)的解析式可能为(

A.
$$f(x) = 3\cos x$$
 B. $f(x) = x^3 + x$

C.
$$f(x) = x + \frac{1}{x}$$
 D. $f(x) = e^x + x$

【答案】 BC

【解析】 根据题意,依次分析选项: 对于 A, $f(x) = 3\cos x$, 其导函数 $f'(x) = -3\sin x$, 它为奇函数,图象不关于 y 轴对称,不符合题意; 对于 B, $f(x) = x^3 + x$, 其导函数 $f'(x) = 3x^2 + 1$, 它为偶函数,图象关于 y 轴对称,符合题意; 对于 C, $f(x) = x + \frac{1}{x}$,其导函数 $f'(x) = 1 - \frac{1}{x^2}$,它为偶函数,图象关于 y 轴对称,符合题意; 对于 D, $f(x) = e^x + x$,其导函数 $f'(x) = e^x + 1$,它不是偶函数,图象不关于 y 轴对称,不符合题意.

7. 下列函数在点 x=0 处有切线的是(

A.
$$f(x) = 3x^2 + \cos x$$
 B. $g(x) = x \cdot \sin x$

C.
$$h(x) = \frac{1}{x} + 2x$$
 D. $w(x) = \frac{1}{\cos x}$

【答案】 ABD

【解析】 $f(x)=6x-\sin x$, f'(0)=0, 此时切线的斜率为 0, 故在点 x=0 处有切线. $g'(x)=\sin x+x\cos x$, g'(0)=0, 此时切线的斜率为 0, 故在点 x=0 处有切线. $h'(x)=-\frac{1}{x^2}+2$, 在 x=0 处不可导,则在 x=0 处没有切线. $w'(x)=\frac{\sin x}{\cos^2 x}$, w'(0)=0, 此时切线的斜率为 0, 故在点 x=0 处有切线.

三、填空题

8. 已知函数
$$f(x) = \frac{1}{1 - \sqrt{x}} + \frac{1}{1 + \sqrt{x}}$$
 ,则 $f(x)$ 在 $x = 2$ 处的导数 $f(2) = ______$

【答案】 2

【解析】 因为
$$f(x) = \frac{1}{1 - \sqrt{x}} + \frac{1}{1 + \sqrt{x}} = \frac{2}{1 - x}$$
 ,所以 $f'(x) = \frac{2}{(1 - x)^2}$,所以 $f(2) = \frac{2}{1 - x}$

2.

9. 满足"若 f(x)为偶函数,则 f(x)为奇函数"为假命题的一个函数是______

【答案】 答案不唯一,如 $f(x)=x^3+1$.

10. 已知函数 f(x)的导函数为 f(x),记 $f_1(x) = f'(x)$, $f_2(x) = f'_1(x)$,…, $f_{n+1}(x) = f_n(x)$ $(n \in \mathbb{N}^*)$. 若 $f(x) = x \sin x$,则 $f_{2,021}(x) + f_{2,023}(x) =$ ______.

【答案】 $-2\sin x$

【解析】 $f(x)=x\sin x$,则 $f_1(x)=f'(x)=\sin x+x\cos x$, $f_2(x)=f_1(x)=\cos x+\cos x-x\sin x$ = $2\cos x-x\sin x$, $f_3(x)=f_2(x)=-2\sin x-\sin x-x\cos x=-3\sin x-x\cos x$, $f_4(x)=f_3(x)=-3\cos x-\cos x+x\sin x=-4\cos x+x\sin x$, $f_5(x)=f'$ 4(x)= $4\sin x+\sin x+x\cos x=5\sin x+x\cos x$, $f_6(x)=f'$ 5(x)= $5\cos x+\cos x-x\sin x=6\cos x-x\sin x$, $f_7(x)=f'$ 6(x)= $-6\sin x-\sin x-x\cos x=-7\sin x-x\cos x$,…,则 $f_1(x)+f_3(x)=\sin x+x\cos x-3\sin x-x\cos x=-2\sin x$, $f_3(x)+f_5(x)=-3\sin x-x\cos x+5\sin x+x\cos x=2\sin x$, $f_5(x)+f_7(x)=5\sin x+x\cos x-7\sin x-x\cos x=-2\sin x$,即 $f_{4n+1}(x)+f_{4n+3}(x)=-2\sin x$, $f_{4n+3}(x)+f_{4n+5}(x)=2\sin x$,则 $f_{2021}(x)+f_{2023}(x)=-2\sin x$.

四、解答题

- 11. 已知曲线 $f(x) = \frac{1}{x} + a \ln x + \ln a$ 在 x = 1 处的切线与直线 x + 3y + 1 = 0 垂直.
- (1) 求实数 a 的值;
- (2) 记 g(x) = f(x), 求 g'(1).

【解析】 (1) 根据题意, $f(x) = \frac{1}{x} + a \ln x + \ln a$,

$$f'(x) = -\frac{1}{x^2} + \frac{a}{x}$$
, $\emptyset = f(1) = a - 1$.

即曲线 f(x)在 x=1 处的切线的斜率 k=a-1,

若曲线 f(x)在 x=1 处的切线与直线 x+3y+1=0 垂直,则 k=a-1=3,解得 a=4.

(2)
$$\pm (1)$$
 $\pm (1)$ $\pm (1)$

- 12. 己知 a, b, $c \in \mathbb{R}$, 函数 f(x) = (x-a)(x-b)(x-c)的导函数为 f(x).
- (1) 若 b=c, 求曲线 y=f(x)在点(b, f(b))处的切线方程;

(2)
$$\bar{x} \frac{1}{f(a)} + \frac{1}{f(b)} + \frac{1}{f(c)}$$
 的值.

【解析】 (1) 若 b=c, 则 $f(x)=(x-a)(x-b)^2$,

所以 $f(x) = (x-b)^2 + (x-a) \cdot 2(x-b)$,

则 $f(b)=(b-b)^2+(b-a)\cdot 2(b-b)=0$,

即曲线 y=f(x)在点(b, f(b))处的切线斜率为 0.

又因为 $f(b)=(b-a)(b-b)^2=0$,

所以所求切线方程为 y=0.

(2) 由 f(x) = (x-a)(x-b)(x-c)得

$$f'(x) = (x-b)(x-c) + (x-a)[(x-b)(x-c)]' = (x-b)(x-c) + (x-a)(x-c) + (x-a)(x-b),$$
所以 $f(a) = (a-b)(a-c)$, $f'(b) = (b-a)(b-c)$,
$$f'(c) = (c-a)(c-b),$$
因此 $\frac{1}{f'(a)} + \frac{1}{f'(b)} + \frac{1}{f'(c)}$

$$= \frac{1}{(a-b)(a-c)} + \frac{1}{(b-a)(b-c)} + \frac{1}{(c-a)(c-b)}$$

$$= \frac{1}{a-b} \cdot \left(\frac{1}{a-c} - \frac{1}{b-c}\right) + \frac{1}{(a-c)(b-c)}$$

$$= \frac{1}{a-b} \cdot \frac{b-a}{(a-c)(b-c)} + \frac{1}{(a-c)(b-c)}$$

$$= -\frac{1}{(a-c)(b-c)} + \frac{1}{(a-c)(b-c)} = 0.$$

创新练 ▶延伸与迁移

1. 已知三次函数 $f(x) = ax^3 + bx^2 + cx + d(a \neq 0)$ 的图象的对称中心为点 $M(x_0, y_0)$,且点 M在函数 y = f(x)的图象上,记函数 f(x)的导函数为 f'(x), f'(x)的导函数为 f''(x),则有 $f''(x_0)$ = 0.若函数 $f(x) = x^3 - 3x^2$,则可得 $f(\frac{1}{2022}) + f(\frac{2}{2022}) + \cdots + f(\frac{4042}{2022}) + f(\frac{4043}{2022})$ 等于()

【答案】 D

【解析】 $f(x)=3x^2-6x$, f''(x)=6x-6, 由 $f''(x_0)=0$, 得 $x_0=1$, 而 f(1)=-2, 故函数 $f(x)=x^3-3x^2$ 关于点(1, -2)对称,即 f(x)+f(2-x)=-4.所以 $f\left(\frac{1}{2022}\right)+f\left(\frac{2}{2022}\right)+\cdots+f\left(\frac{4042}{2022}\right)+f\left(\frac{4043}{2022}\right)=[f\left(\frac{1}{2022}\right)+f\left(\frac{4043}{2022}\right)]+[f\left(\frac{2}{2022}\right)+f\left(\frac{4042}{2022}\right)]+\cdots+[f\left(\frac{2021}{2022}\right)+f\left(\frac{2021}{2022}\right)]+f\left(\frac{2022}{2022}\right)=-4\times2021+(-2)=-8086.$