Semaine du 10 Février - Planche nº 1

Exercice no 1:

(Question de cours) : Énoncé et démontrer les énoncés suivants : Chapitre 19, propriétés 6 et 7 : opérations sur les équivalents.

Exercice nº 2:

(Analyse asymptotique):

- 1. Déterminer un équivalent simple de $w_n = \frac{n^3 \sqrt{1 + n^2}}{\ln(n) 2n^2}$ quand $n \to +\infty$.
- 2. Déterminer la limite quand $n \to +\infty$ de $n^2((n+1)^{1/n} n^{1/n})$.

Exercice no 3:

(Morphisme et applications) : Les deux questions suivantes sont indépendantes mais la philosophie de résolutions sont proches.

- 1. Soit A un anneau intègre commutatif fini. Montrer que A est un corps.
- 2. Soit f un morphisme non constant d'un groupe fini (G,\cdot) dans (\mathbb{C}^*,\times) . Calculer $\sum_{x\in G} f(x)$.

Semaine du 10 Février - Planche nº 2

Exercice no 1:

(Question de cours) : Énoncer et démontrer les résultats suivants : Chapitre 19, propriétés 1 et 2 : opérations sur les petits o et grands O.

Exercice nº 2:

(Analyse asymptotique):

- 1. Déterminer un équivalent simple quand $n \to +\infty$ de $u_n = \frac{(1-e^{1/n})\sin(\frac{1}{n})}{n^2+n^3}$.
- 2. Déterminer la limite quand $n \to +\infty$ de $(1 + \sin(\frac{1}{n}))^n$.

Exercice no 3:

(Structures algébriques) : Soit p un nombre premier. On note

$$\mathbb{Z}_p = \left\{ \frac{a}{b} : (a, b) \in \mathbb{Z} \times \mathbb{Z}^*, \operatorname{pgcd}(p, b) = 1 \right\}$$

- 1. Démontrer que \mathbb{Z}_p est un sous-anneau de $(\mathbb{Q}, +, \times)$.
- 2. Démontrer que pour tout nombre rationnel non-nul x, au moins un des deux éléments x ou x^{-1} est un élément de \mathbb{Z}_p .
- 3. Soit B un sous-anneau de \mathbb{Q} contenant \mathbb{Z}_p . Démontrer que $B = \mathbb{Q}$ ou que $B = \mathbb{Z}_p$.

Semaine du 10 Février - Planche nº 3

Exercice no 1:

(Question de cours) : Énoncer et démontrer les propriétés 15 et 17 du Chapitre 18 : image de l'élément neutre et de l'inverse dun element par un morphisme de groupes, image directe et réciproque dun groupe par un morphisme de groupes.

Exercice nº 2:

(Analyse asymptotique):

- 1. Déterminer un équivalent simple de $\frac{\sqrt{1+x}-1}{1-\cos(x)}$ en 0.
- 2. Déterminer la limite quand $n \to +\infty$ de $n \sin\left(\frac{1}{n}\right)$.

Exercice nº 3:

(Anneaux et corps):

- 1. On note $\mathbb{Z}[i] = \{a + ib, (a, b) \in \mathbb{Z}^2\}$. Montrer que $(\mathbb{Z}[i], +, \times)$ est un anneau commutatif.
- 2. Soit F un sous-corps de $(\mathbb{Q}, +, \times)$. Montrer que $F = \mathbb{Q}$.