Midterm 2

Midterm 1 Review: Midterm 1 Study Guide
Section 2.2: The Inverse of a Matrix

Definitions

- Invertible Matrix
 - An $n \times n$ matrix A where $AA^{-1} = I$
- Inverse of a Matrix
 - \circ A⁻¹ where $AA^{-1} = I$
- Singular
 - Not invertible
- Determinant of a 2x2 matrix
 - o ad bc
- Elementary Matrix (E)
 - Matrix obtained by performing a single row operation on an identity matrix
 - Are invertible: inverse of an elementary matrix, E, is another elementary matrix of the same type that **transforms E back to I**
 - o **All** elementary matrices are invertible
- Row Equivalent Matrices
 - Matrices that can transform into each other through a sequence of elementary row operations

- Invertible = **non**singular
- **Not** invertible = singular
- Inverse of a 2x2 Matrix

$$A = egin{bmatrix} a & b \ c & d \end{bmatrix}$$
 $A^{-1} = rac{1}{ad-bc} egin{bmatrix} d & -b \ -c & a \end{bmatrix}$

- If (ad bc) = 0, then A is **not invertible**
- Ax = b can be rewritten using inverses **only if A is invertible**

$$Ax = b \ A^{-1}Ax = A^{-1}b \ x = A^{-1}b$$

- Of course, you can still use the **row reduction** method to solve Ax = b
- For all b in R^n , $x = A^{-1}b$ is a **unique solution**
 - Invertible matrices have **no free variables**
 - Unique solution
- Product of $n \times n$ invertible matrices is invertible
 - Inverse of product is the product of the inverses in **reverse order**

- When an elementary row operations is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA
 - What if we had **multiple elementary row operations** on A?
 - lacksquare $E_k \dots E_2 E_1 A$
- Method to find the inverse
 - Row reduce A to the identity matrix while performing the same row operations on the identity matrix at the same time
 - \circ $[A | I] => [I | A^{-1}]$
- A matrix is invertible if and only if it is **row equivalent** to the identity
 - o Pivots in every row and column (onto & one-to-one)

Section 2.3: Characterizations of Invertible Matrices

Definitions

- Linear Transformation
 - Mapping between two vector spaces (Rn's) that preserves all vector addition
 & scalar properties
- Invertible Linear Transformation
 - Linear transformation T: $R^n \rightarrow R^n$ is invertible if there is **another linear transformation S**: $R^n \rightarrow R^n$ such that:
 - S(T(x)) = x for all x in R^n
 - T(S(x)) = x for all x in R^n
 - Equivalent to saying:

Key Notes

• The IMT

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

- a. A is an invertible matrix.
- b. A is row equivalent to the $n \times n$ identity matrix.
- c. A has n pivot positions.
- d. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- e. The columns of A form a linearly independent set.
- f. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- g. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- h. The columns of A span \mathbb{R}^n .
- i. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- j. There is an $n \times n$ matrix C such that CA = I.
- k. There is an $n \times n$ matrix D such that AD = I.
- 1. A^T is an invertible matrix.

0

- Let A and B be square matrices:
 - o If AB = I, then A and B are **both invertible**
 - \circ B = A⁻¹ & A = B⁻¹
- How to determine if a linear transformation is **invertible**?
 - Let a matrix A represent the linear transformation
 - o If A is invertible, then the linear transformation is invertible

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} : reflection through y - axis (invertible)$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} : projection \ onto \ x - axis \ (not \ invertible)$$

Section 2.4: Partitioned Matrices

Definitions

- Partitioned Matrix
 - Matrix divided up into separate blocks
- Block Diagonal Matrix
 - o A partitioned matrix where all blocks except the main diagonal are 0's
 - Is invertible if the main diagonal blocks are invertible

- Adding 2 partitioned matrices A and B
 - A and B must be the **same size** and partitioned in the **exact same way**
 - Add block by block
- Scaling partitioned matrices

- Scale block by block
- Multiplying 2 partitioned matrices A and B (A*B)
 - o Column partition of A must equal row partition of B
 - Number of columns in partition A = number of rows in partition B
 - Just like multiplying regular matrices
 - \blacksquare (2 x 2) * (2 x 1) => (2 x 1)
 - \blacksquare (3 x 4) * (4 x 1) => (3 x 1)
- Inverses of Partitioned Matrices

$$egin{bmatrix} A & B \ 0 & C \end{bmatrix} egin{bmatrix} X & Y \ Z & W \end{bmatrix} = egin{bmatrix} I_n & 0 \ 0 & I_n \end{bmatrix} : (A, B, and C are invertible) \ AX + BZ = I_n \ AY + BW = 0 \ 0X + CZ = 0 \ 0Y + CW = I_n \ \end{pmatrix}$$

 $_{\odot}$ Solve for X, Y, Z, W in terms of A, B, C

Section 2.5: Matrix Factorizations

Definitions

- Factorization of a matrix
 - o Expression of a matrix as the product of two or more matrices
- Row interchanges
 - Swapping rows when row reducing
- Lower triangular matrix
 - o Entries above the main diagonal are all 0's
- Upper triangular matrix
 - o Entries below the main diagonal are all 0's
- Algorithm for an LU Factorization
 - 1. Reduce A to an echelon form U by a sequence of row replacement operations, if possible.
 - 2. Place entries in L such that the same sequence of row operations reduces L to I.

- LU Factorization
 - Why do we use it?
 - More efficient to solve a sequence of equations with the same coefficient matrix ($Ax = b_1$, $Ax = b_2$, ..., $Ax = b_n$) by LU factorization than row reducing the equations every single time
- Let A be an $m \times n$ matrix that can be row reduced to echelon form **without row exchanges**, then:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ * & 1 & 0 & 0 \\ * & * & 1 & 0 \\ * & * & * & 1 \end{bmatrix} \begin{bmatrix} \blacksquare & * & * & * & * \\ 0 & \blacksquare & * & * & * \\ 0 & 0 & 0 & \blacksquare & * \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$L \qquad U$$

- L: $m \times m$ lower triangular matrix with one's on the main diagonal
- **U**: $m \times n$ echelon form of A
- Rewriting Ax = b using A = LU

0

$$L\mathbf{y} = \mathbf{b}$$
$$U\mathbf{x} = \mathbf{y}$$

- $\circ \quad Ax = b \rightarrow L(Ux) = b$
- The LU Factorization Algorithm
 - How do we get U?
 - Row reduce A to echelon form using only row replacements that add a multiple of one row to another <u>below</u> it
 - How do we get L?
 - Take the row replacement operations you did on A when getting echelon form
 - Basically: find the **elementary matrices** that transform A into U
 - Then, **reverse** the signs and input them in their respective spots in the $m \times m$ identity matrix
 - Replace the 0's below the main diagonal with the row replacement "coefficients"
 - Basically: after finding all the elementary matrices, take their inverses

$$E_p \cdots E_1 A = U$$

$$A = (E_p \cdots E_1)^{-1} U = LU$$

$$L = (E_p \cdots E_1)^{-1}$$

- Using the LU Decomposition
 - After constructing A = LU, solve Ax = LUx = b by:
 - 1. Forward solve for y in Ly = b
 - R1(x) + R2 -> R2
 - Modify rows **below** using **above rows**

- 2. Backwards solve for x in Ux = y
 - R2(x) + R1 -> R1
 - Modify rows **above** using **below rows**

Section 2.6: The Leontief Input-Output Model

Definitions

- Production vector in Rⁿ (x)
 - Lists the output of each sector for one year
- Final demand vector (d)
 - Lists the value of goods and services produced for the consumers (nonproductive part of the economy)
- Intermediate demand (Cx)
 - The demand for goods and services that the producers (sectors) need as inputs for their own production
 - Ex: electricity sector needs inputs from the water sector and vice versa
- Consumption matrix (C)
 - How much each sector consumes from other sectors in terms of percentages
- Column sum
 - o The sum of the entries in a column

Key Notes

The Leontief Input-Output Model (Production Equation)

- o Can be rewritten as:
 - (I C)x = d
 - Solve for x (amount produced) by row reduction
 - $\mathbf{x} = (I C)^{-1} * d$
 - Solve for x (amount produced) by multiplying
- For a good economy, the column sum of each sector should be less than 1
 - A sector should in general require less than one unit's worth of inputs to produce one unit of output
- Output vector (x)
 - o x_i: entry i of vector x
 - \blacksquare Number of units produced by sector i

- Internal consumption (C)
 - o 2 equivalent ways of defining entries of C where an entry is c_{i, i}:
 - Sector i sends a proportion of its units to sector j
 - Sector j requires a proportion of the units created by sector i
- Consumption matrix (Cx)
 - Total output for each sector (per one unit) is the sum of the columns for each sector

• A Formula for (I - C)⁻¹

0

- o As an economy is introduced to a demand vector, the equation starts off as:
 - $\mathbf{x} = \mathbf{d}$
- However, production will require intermediate demand from other sectors, and then that intermediate demand will require more inputs from even more sectors
 - $\mathbf{x} = \mathbf{d} + \mathbf{C}\mathbf{d} + \mathbf{C}^2\mathbf{d} + \mathbf{C}^3\mathbf{d} + \dots$
 - => $(I + C + C^2 + C^3)d$

$$(I-C)^{-1} \approx I + C + C^2 + C^3 + \dots + C^m$$

when the column sums of C are less than 1.

- We can approximate $(I C)^{-1}$ by making m as large as possible
 - Add as many intermediate demands as we can
- Economic Importance of Entries in (I C)⁻¹
 - \circ Entries used to predict how the production x will have to change when the final demand d changes
 - Remember: $x = (I C)^{-1} * d$
 - The entries in each column of (I C)⁻¹ are the *increased* amounts each sector has to produce in order to satisfy *an increase* of 1 *unit* in the final demand

Section 2.7: Applications to Computer Graphics

Definitions

- Homogeneous coordinates
 - Each point (x, y) in R^2 can be identified with the point (x, y, 1) on the plane in R^3 that lies one unit above the xy plane
- Composite transformations
 - Multiplication of 2 or more basic transformations

- Why do we use homogeneous coordinates?
 - Translations are **not** linear transformations

• Homogeneous coordinates are allowed to be **scalars**

$$\circ$$
 (3, 5, 1) = (6, 10, 2)

- $(x, y) \rightarrow (x + h, y + k)$
 - Translation cannot be represented by an R² matrix multiplication

$$(x, y, 1) \rightarrow (x + h, y + k, 1)$$

$$\begin{bmatrix} 1 & 0 & h \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + h \\ y + k \\ 1 \end{bmatrix}$$

- Translation not possible if we used a 2x2 identity matrix
- Linear transformations in R² represented with homogeneous coordinates are written as partitioned matrices:

$$\begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix}$$
 where A is a 2x2 matrix

o Examples

$$\begin{bmatrix} \cos \varphi - \sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} s & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Counterclockwise rotation about the origin, angle φ

$$\begin{bmatrix} \cos \varphi - \sin \varphi & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} s & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Reflection Scale x by s and y by t

- Composite Transformations
 - "Add" on more transformation matrices to the left of the other transformations
 - First transformation is always the **rightmost** (modifies the x vector first)
- Homogeneous 3D Coordinates
 - (X, Y, Z, H) are homogeneous coordinates for (x, y, z) if $H \neq 0$ and

$$x = \frac{X}{H}$$
, $y = \frac{Y}{H}$, and $z = \frac{Z}{H}$

Section 2.8: Subspaces of Rⁿ

Definitions

- Subset of Rⁿ
 - Any collection of vectors that are in Rⁿ
- Subspace of Rⁿ
 - A subset H in Rⁿ that has 3 properties:
 - The zero vector is in H
 - $\overrightarrow{u} + \overrightarrow{v} \epsilon H$ (closed under addition)

- $c\overrightarrow{u} \in H$ (closed under scalar multiplication)
- Subspace can be written as the Span{} of some amount of linearly independent vectors
- Column Space of a Matrix A $(m \times n)$
 - Col A: the subspace of \mathbb{R}^m spanned by $\{a_1, \dots, a_n\}$
 - Essentially all the **pivot columns**
- Null Space of a Matrix A (m x n)
 - Null A: the subspace of \mathbb{R}^n spanned by the set of all vectors \mathbf{x} that solve $\mathbf{A}\mathbf{x} = \mathbf{0}$
- Basis for a Subspace **H** of **R**ⁿ
 - A linearly independent set in H that spans H
 - DOES NOT CONTAIN THE ZERO VECTOR (BECAUSE IT IS LINEARLY INDEPENDENT) UNLIKE THE SPAN
- Standard Basis for \mathbb{R}^n
 - $\circ \quad \{e_1,\ldots,e_n\}$

- If v_1 and v_2 are in \mathbb{R}^n and $\mathbb{H} = \frac{\mathbf{Span}\{v_1, v_2\}}{\mathbf{then H}}$ is a subspace of \mathbb{R}^n
 - o v_1 and v_2 must be in \mathbb{R}^n for this relation to work
- For v_1, \ldots, v_p in \mathbb{R}^n , the set of all linear combinations of v_1, \ldots, v_p is a subspace of \mathbb{R}^n
 - o **Span** $\{v_1, \dots, v_p\}$ = subspace spanned by v_1, \dots, v_p
- Is **b** in the column space of **A**?
 - Same as: Is **b** a linear combination of **A**?
 - Same as : Is **b** in the Span of **A**?
- Is **H** a subspace of **R**ⁿ?
 - Basically asking if H has **n linearly independent** columns
 - o Does H have no free variables?
- Subspaces vs. Bases
 - Subspaces => **Span** $\{v_1, ..., v_n\}$
 - Includes the 0 vector
 - \circ Bases $\Rightarrow \{v_1, \dots, v_n\}$
- Defining a basis for column space A
 - Number of entries for each vector = number of rows in matrix A
 - Number of vectors in the basis = number of pivot columns
 - What vectors can you include in the basis?
 - Scalar multiples
 - The identity matrix columns **only if** every column is pivotal in A
- Finding the Column Space
 - Row reduce the matrix
 - Row operations do not affect linear dependence relations

- Determine the pivot columns
- o Create a basis/subspace using the pivot columns in the **original matrix**
 - Not the row reduced one
- If every column is linearly independent, then the elementary vectors are included in the column space
 - Linear combinations of elementary vectors can get you **any column** of the original matrix
- Finding the Null Space
 - Determine all the free variables
 - o Rewrite system in parametric vector form
 - Vectors created in parametric vector form generate the null space

Section 2.9: Dimension and Rank

Definitions

- Coordinates
 - Weights that map our vectors to get to some point in the span of the vectors
- Coordinate Vector

Suppose the set $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ is a basis for a subspace H. For each \mathbf{x} in H, the **coordinates of x relative to the basis** \mathcal{B} are the weights c_1, \dots, c_p such that $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_p \mathbf{b}_p$, and the vector in \mathbb{R}^p

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_p \end{bmatrix}$$

is called the coordinate vector of x (relative to \mathcal{B}) or the \mathcal{B} -coordinate vector of \mathbf{x} .

- Dimension of a Subspace
 - o dim H: the number of vectors in a basis of H
 - $\circ \quad \dim\{0\} = 0$
- Rank of a Matrix A
 - Dimension of the column space of A
 - Number of pivots in A

- Why we choose to write bases:
 - Each vector in **H** can be written in **only one way** as a linear combination of the **basis** vectors
- A plane through 0 in R³ is two-dimensional
 - o 3x3 matrix A has 2 pivots
- A line through 0 in R² is one-dimensional

- o 2x2 matrix A has one pivot
- Any two choices of bases of a non-zero subspace H have the **same dimension**

- o $\dim R^n = n$
- o dim(Col A) = number of pivots
- o dim(Null A) = number of free variables
- dim(Col A) = rank A
- Rank Theorem
 - o If A has n columns, then:
 - \blacksquare rank A + dim(Null A) = n
 - Number of pivots + number of free variables = number of columns
- Basis Theorem
 - Any two bases for a subspace have the same dimension (cardinality)
 - Many choices for the basis of a subspace
- Continuation of the Invertible Matrix Theorem with Rank

The Invertible Matrix Theorem (continued)

Let A be an $n \times n$ matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix.

m. The columns of A form a basis of \mathbb{R}^n .

n. $\operatorname{Col} A = \mathbb{R}^n$

o. $\dim \operatorname{Col} A = n$

p. rank A = n

q. Nul $A = \{0\}$

r. $\dim \text{Nul } A = 0$

Section 3.1: Introduction to Determinants

Definitions

- A_{ij} submatrix
 - Delete the ith row and jth column of matrix A
 - Remaining elements will form the new submatrix
- Determinant for a 2x2

- Cofactor expansion
 - o A way to solve determinants for square matrices that are 3x3 and greater

- Signs of cofactor expansions
 - \circ Depends on position of element a_{ij} in the matrix

- Shortcut for finding the determinant
 - o Row reduce to REF
 - Effects of row operations on determinant covered in 3.2
 - o Multiply all the numbers on the main diagonal

Section 3.2: Properties of Determinants

Definitions

- Column Operations
 - Same effect on determinants as row operations
 - This is true because the determinant of A = determinant of A^T (transpose)

Key Notes

- Row operations on determinants
 - o Row replacement: nothing
 - o Row swap: multiply determinant by negative one
 - o Row scale: multiply determinant by scale
- Summary of elementary matrices' determinants

If A is an $n \times n$ matrix and E is an $n \times n$ elementary matrix, then

$$\det EA = (\det E)(\det A)$$

where

$$\det E = \begin{cases} 1 & \text{if } E \text{ is a row replacement} \\ -1 & \text{if } E \text{ is an interchange} \\ r & \text{if } E \text{ is a scale by } r \end{cases}$$

• More specific example of row scaling on determinants

$$egin{bmatrix} \cdot & \cdot & \cdot \ 5k & -2k & 3k \ \cdot & \cdot & \cdot \end{bmatrix} = k egin{bmatrix} \cdot & \cdot & \cdot \ 5 & -2 & 3 \ \cdot & \cdot & \cdot \end{bmatrix}$$

- o Row divided by k
 - Determinant is multiplied by 1/k
- If A is invertible (every column is pivotal)
 - o det A ≠ 0
- If A is not invertible
 - \circ det A = 0
 - At least one entry on the main diagonal of REF is 0

$$\det A = \begin{cases} (-1)^r \cdot \begin{pmatrix} \text{product of} \\ \text{pivots in } U \end{pmatrix} & \text{when } A \text{ is invertible} \\ 0 & \text{when } A \text{ is not invertible} \end{cases}$$

- When A is not invertible, the rows are linearly dependent
 - o If A is square, then the columns are also linearly dependent
- $\det A = \det A^T$
- det AB = (det A)(det B)
- $\det A^{-1} = 1 / (\det A)$

Section 3.3: Volume and Linear Transformations

Definitions

• Parallelepiped: a parallelogram in Rⁿ where n > 2

Key Notes

- If A is a 2x2 matrix:
 - Area of the parallelogram determined by the columns of A is | det A |
- If A is a 3x3 matrix:
 - Area of the **parallelepiped** determined by the columns of A is | **det A** |
- Row/column swaps and replacements do not affect the absolute value of the determinant
- Linear transformations on a parallelepiped
 - \circ Area of T(S) = | det A | * { area of S }
 - T: linear transformation determined by matrix A
 - S: parallelogram

Section 4.9: Applications to Markov Chains

Definitions

- Probability vector
 - A vector with nonnegative entries that sum to 1
- Stochastic matrix
 - A **square** matrix whose columns are **probability vectors**
- Markov Chain
 - A sequence of probability vectors $\{x_0, x_1, x_2, ...\}$ together with a stochastic matrix $\{P\}$ such that:

$$lack x_1 = Px_0 \,, \ \ x_2 = Px_1, \ \ x_{k+1} = Px_k$$

- Steady State Vector
 - A probability q such that Pq = q

- o Every stochastic matrix has a steady state vector
- Regular stochastic matrix
 - Stochastic matrix where some power of it will contain only strictly positive entries
 - \blacksquare P^k where all entries > 0

Key Notes

- How to find the next outcome of a Markov Chain?
 - Simply multiply P by x_k to find x_{k+1}
- How to find a steady state vector?

$$egin{aligned} Pq &= q \ Pq - q &= 0 \ (P-I)q &= 0 \end{aligned}$$

- After finding a basis for the null space of (P I) q = 0, remember to make sure that the **column sum is 1**
 - Steady state vector is a **probability vector**
- The initial state has **no effect** on the long term behavior of the Markov Chain

Section 5.1: Eigenvectors and Eigenvalues

Definitions

- Eigenvector of an *n x n* matrix A:
 - **Nonzero** vector x such that $Ax = \lambda x$ for some scalar λ
- Eigenvalue of A:
 - O A scalar λ where there is a **nontrivial solution** x of Ax = λ x
- Eigenspace of an eigenvalue
 - o Contains the zero vector and all eigenvectors corresponding to λ

- Determine if a vector x is an eigenvector
 - A*x => see if product is a scalar multiple of x
- Finding the eigenvector from an eigenvalue (7)
 - \circ Solve (A 7I)x = 0
 - o Then, do the parametric vector form of what you have left
- Finding the eigenvalue λ
 - Solve (A λl)x = 0 for a nontrivial solution
 - Find the set of all solutions to the **null space** of $(A \lambda I)$
- Eigenvalues of a **triangular matrix** are the entries on the **main diagonal**
- 0 is an eigenvalue of A if and only if A is **not invertible**
 - \circ Ax = 0x

- \circ Ax = 0: x is a nontrivial solution if A is not invertible
- Eigenvectors that correspond to distinct eigenvalues are linearly independent
 - Opposite is not always true

Section 5.2: The Characteristic Equation

Definitions

- The Characteristic Polynomial:
 - det(A λI)
- The Characteristic Equation
 - o det(A λI) = 0
- Trace
 - Sum of the diagonal entries in a matrix
- Algebraic Multiplicity of an Eigenvalue
 - The number of times the eigenvalue shows up as roots of the characteristic polynomial
- Geometric Multiplicity of an Eigenvalue
 - The dimension of Null (A λI) for a given eigenvalue λ

Key Notes

- How to find eigenvalues?
 - Solve $(A \lambda I)x = 0$ for a **nontrivial solution**
 - Find the set of all solutions to the **null space** of $(A \lambda I)$
- Continuation of IMT
 - For A: *n* x *n* matrix, A is invertible if and only if:
 - The number 0 is not an eigenvalue of A
 - The determinant of A is not 0
- Finding the characteristic polynomial using **trace** and **determinant** for a characteristic polynomial of **2**
 - \circ $\lambda^2 \lambda(\text{trace}) + \text{det A}$
- Warnings:
 - Cannot determine the eigenvalues of a matrix from its reduced from
 - o Row operations **change** the eigenvalues

Theorems

Chapter 2

Theorem 4: Finding the Inverse of a 2x2 Matrix

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, then A is not invertible.

Theorem 5: Alternate Method of Finding the Solution Set

If A is an invertible $n \times n$ matrix, then for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

Theorem 6: Properties of Invertible Matrices

a. If A is an invertible matrix, then A^{-1} is invertible and

$$(A^{-1})^{-1} = A$$

b. If A and B are $n \times n$ invertible matrices, then so is AB, and the inverse of AB is the product of the inverses of A and B in the reverse order. That is,

$$(AB)^{-1} = B^{-1}A^{-1}$$

c. If A is an invertible matrix, then so is A^T , and the inverse of A^T is the transpose of A^{-1} . That is,

$$(A^T)^{-1} = (A^{-1})^T$$

Theorem 7: Finding the Inverse of a Matrix

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n into A^{-1} .

Theorem 8: The Invertible Matrix Theorem

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

- a. A is an invertible matrix.
- b. A is row equivalent to the $n \times n$ identity matrix.
- c. A has n pivot positions.
- d. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- e. The columns of A form a linearly independent set.
- f. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- g. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^n .
- h. The columns of A span \mathbb{R}^n .
- i. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n .
- j. There is an $n \times n$ matrix C such that CA = I.
- k. There is an $n \times n$ matrix D such that AD = I.
- 1. A^T is an invertible matrix.

Theorem 9: Invertible Linear Transformations

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(\mathbf{x}) = A^{-1}\mathbf{x}$ is the unique function satisfying equations (1) and (2).

$$S(T(\mathbf{x})) = \mathbf{x} \quad \text{for all } \mathbf{x} \text{ in } \mathbb{R}^n$$
 (1)

$$T(S(\mathbf{x})) = \mathbf{x} \quad \text{for all } \mathbf{x} \text{ in } \mathbb{R}^n$$
 (2)

Theorem 10: Column-Row Expansion of AB

Column-Row Expansion of AB

If A is $m \times n$ and B is $n \times p$, then

$$AB = [\operatorname{col}_{1}(A) \quad \operatorname{col}_{2}(A) \quad \cdots \quad \operatorname{col}_{n}(A)] \begin{bmatrix} \operatorname{row}_{1}(B) \\ \operatorname{row}_{2}(B) \\ \vdots \\ \operatorname{row}_{n}(B) \end{bmatrix}$$

$$= \operatorname{col}_{1}(A) \operatorname{row}_{1}(B) + \cdots + \operatorname{col}_{n}(A) \operatorname{row}_{n}(B)$$

$$(1)$$

Theorem 11: Solving the Output Vector (x)

Let C be the consumption matrix for an economy, and let **d** be the final demand. If C and **d** have nonnegative entries and if each column sum of C is less than 1, then $(I - C)^{-1}$ exists and the production vector

$$\mathbf{x} = (I - C)^{-1}\mathbf{d}$$

has nonnegative entries and is the unique solution of

$$\mathbf{x} = C\mathbf{x} + \mathbf{d}$$

Theorem 12: Finding the Null Space of Matrix A

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions of a system $A\mathbf{x} = \mathbf{0}$ of m homogeneous linear equations in n unknowns is a subspace of \mathbb{R}^n .

Theorem 13: Determining the Column Space of Matrix A

The pivot columns of a matrix A form a basis for the column space of A.

Theorem 14: The Rank Theorem

The Rank Theorem

If a matrix A has n columns, then rank $A + \dim \text{Nul } A = n$.

Theorem 15: The Basis Theorem

The Basis Theorem

Let H be a p-dimensional subspace of \mathbb{R}^n . Any linearly independent set of exactly p elements in H is automatically a basis for H. Also, any set of p elements of H that spans H is automatically a basis for H.

Chapter 3

Theorem 1: Cofactor Expansion to find Determinants

The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or down any column. The expansion across the ith row using the cofactors in (4) is

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$

The cofactor expansion down the jth column is

$$\det A = a_{1j} C_{1j} + a_{2j} C_{2j} + \dots + a_{nj} C_{nj}$$

Theorem 2: Shortcut to Computing Determinant

If A is a triangular matrix, then det A is the product of the entries on the main diagonal of A.

Theorem 3: Row Operations on Determinants

Row Operations

Let A be a square matrix.

- a. If a multiple of one row of A is added to another row to produce a matrix B, then det $B = \det A$.
- b. If two rows of A are interchanged to produce B, then det $B = -\det A$.
- c. If one row of A is multiplied by k to produce B, then det $B = k \cdot \det A$.

Theorem 4: IMT DLC: Determinant

A square matrix A is invertible if and only if det $A \neq 0$.

Theorem 5: Transpose Equivalence for Determinants

If A is an $n \times n$ matrix, then $\det A^T = \det A$.

Theorem 6: Multiplicative Property of Determinants

Multiplicative Property

If A and B are $n \times n$ matrices, then det $AB = (\det A)(\det B)$.

Theorem 9: Determinants as Area and Volume

If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\det A|$. If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is $|\det A|$.

Theorem 10: Linear Transformations on Area/Volume

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation determined by a 2×2 matrix A. If S is a parallelogram in \mathbb{R}^2 , then

$$\{\text{area of } T(S)\} = |\det A| \cdot \{\text{area of } S\}$$
 (5)

If T is determined by a 3×3 matrix A, and if S is a parallelepiped in \mathbb{R}^3 , then

$$\{\text{volume of } T(S)\} = |\det A| \cdot \{\text{volume of } S\}$$
 (6)

Chapter 4

Theorem 18: Long-term Behavior of a Markov Chain

If P is an $n \times n$ regular stochastic matrix, then P has a unique steady-state vector \mathbf{q} . Further, if \mathbf{x}_0 is any initial state and $\mathbf{x}_{k+1} = P\mathbf{x}_k$ for $k = 0, 1, 2, \ldots$, then the Markov chain $\{\mathbf{x}_k\}$ converges to \mathbf{q} as $k \to \infty$.

Chapter 5

Theorem 1: Eigenvalues of a Triangular Matrix

The eigenvalues of a triangular matrix are the entries on its main diagonal.

Theorem 2: Eigenvectors for Distinct Eigenvalues

If $\mathbf{v}_1, \dots, \mathbf{v}_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, \dots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is linearly independent.