Arquitetura e Organização de Computadores II

Pipeline

Nilton Luiz Queiroz Junior

Ciclo de instruções

Ciclo de instruções

- Uma instrução pode ser composta por várias etapas;
- A quantidade de etapas e o que cada uma faz depende da arquitetura;
 - A arquitetura MIPS por exemplo é divido em 5 etapas:
 - Busca de Instrução;
 - Decodificação da instrução;
 - Execução;
 - Acesso a memória;
 - Escrita de volta aos registradores;

Ciclo de Instruções

- Para execução da instrução é necessário apontar para ela;
- Assim faz se o Program Counter (PC) armazenar o endereço de memória no qual a instrução está;
 - Antes de cada instrução é feita uma operação de soma;
 - Essa soma irá resultar na próxima instrução sequencial a ser executada;

Ciclo de instrução

- A decodificação de instrução e busca por operandos requer um banco de registradores, porém, o que vai ser utilizado depende da instrução;
 - Algumas podem utilizar três registradores, outras apenas um, etc...

Ciclo de Instrução

- Por exemplo, na arquitetura MIPS:
 - Instruções Lógicas e aritméticas:
 - Lêem até dois registradores e escrevem em um, usando assim três registradores;
 - Instruções de leitura e escrita:
 - Lêem a memória e um registrador;
 - Instruções de desvio condicional;
 - Lêem até dois registradores;
- Essa etapa também é responsável pela extensão do número de 16 bits para algumas operações;
 - Não é possível operar dois valores de tamanhos diferentes

Ciclo de instrução

- Na arquitetura MIPS a execução da instrução é feita por ULAs, onde se usam unidades de controle e multiplexadores para sua ativação.
 - Cada instrução faz uso de diferentes componentes dentro do processador, por exemplo:
 - Instruções lógicas e aritméticas usam apenas uma ULA e não acessam a memória
 - Instruções de desvio usam uma ULA para comparar os operandos e outra para somar o endereço da próxima instrução ao deslocamento
 - Caso o desvio seja tomado esse é o endereço usado, caso contrario ele é descartado;

Ciclo de instrução

- O acesso a memória na arquitetura MIPS é feito somente por leituras e escritas;
 - Leituras buscam valores na memória de acordo com o endereço especificado e os escrevem em um registrador;
 - Escritas armazenam valores dos registradores na memória;

Ciclo de Instrução

- A escrita de volta aos registradores de uso geral nem sempre é feita;
 - Instruções de desvio por exemplo escrevem somente no PC;
 - Instruções de armazenamento na memória não escrevem o dado no banco de registradores;

Ciclo para instruções lógicas e aritméticas

Ciclo para instruções de leitura

Ciclo para instruções de desvio

Pipeline

Visão geral de Pipeline

- O que é Pipelining?
 - Técnica para paralelismo em nível de instrução;
 - Estágios da execução ocorrem simultaneamente;
 - Transparente a nível de software;
- Ocorre também em processos fora da computação:
 - Lavar roupas;
 - Fabricar carros;

Visão geral de Pipeline

- Utiliza os recursos existentes no processador de maneira mais eficiente;
- Não reduz o tempo da execução de uma instrução;
- Reduz o intervalo de "saída" entre as instruções;
- Em condições ideais:
 - Pipeline de N estágios produz valor próximo a N vezes a execução sequencial;

Visão geral de Pipeline

- Pipelines ideais requerem que:
 - Todos objetos passem pelos mesmos estágios;
 - Não exista recursos compartilhados entre estágios;
 - Estágios tenham mesmo tempo;
 - Estágios não necessitem esperar por etapas ainda não concluídas;
- Quase impossíveis em arquiteturas reais;

Pipeline na arquitetura MIPS

- O Pipeline da arquitetura MIPS tem 5 estágios;
 - Os 5 estágios normalmente exigidos nas instruções;

Pipelining na arquitetura MIPS

Execução de 3 instruções load sem pipelining

Pipelining na arquitetura MIPS

Execução de 3 instruções load com pipelining

Obs: note que algumas etapas de uma instrução são mais rápidas

Caminho de dados

- O caminho de dados de um pipeline requer algumas alterações:
 - São necessários bancos de registradores;
 - Esses são chamados de registradores de pipeline;
 - Atualizam a cada ciclo;
 - O registrador de escrita na operação de load deve "trafegar" junto com o fluxo da instrução;
 - Se isso não ocorrer, o registrador errado será atualizado;

Caminho de dados - execução sequencial

Caminho de dados - Pipeline

Controle

- Existirão diversas instruções ao mesmo tempo no processador;
- Nem todos sinais de controle são usados na execução;
 - Muitas vezes é necessário saber se uma instrução irá escrever ou ler da memória;
 - Em caso de leitura, em qual registrador será escrito;
- Apenas um OPCODE não consegue armazenar todos sinais de controle das instruções que estão em execução;
 - Note que as duas primeiras etapas não precisam de seus sinais armazenados;

Controle

- É necessário um sinal de controle para cada estágio do pipeline;
 - Busca e decodificação de instruções: Sinais sempre ativos;
 - Execução: Sinais selecionam registrador destino, operação ou extensão;
 - Acesso a memória: Linhas de controle para desvio, leitura e escrita;
 - Escrita do resultado: Linha de controle decide se o valor escrito no registrador vem da ALU ou da memória;

Controle

Representação gráfica de Pipeline

- É possível representar os pipelines graficamente de diversas maneiras, entre elas tem-se:
 - Tradicional:
 - Instruções x Tempo;
 - Recursos físicos;

Representação gráfica de Pipeline

Estágios

	ciclo 1	ciclo 2	ciclo 3	ciclo 4	ciclo 5	ciclo 6	ciclo 7	ciclo 8	ciclo 9	ciclo 10
Instrução 1	Busca de	Decodificação	Execução	Acesso aos	Escrita do					
	Instrução	de instrução		dados	resultado	- 1111				
Instrução 2		Busca de	Decodificação de instrução	Execução	Acesso aos	Escrita do				
		Instrução			dados	resultado	,			
Instrução 3			Busca de Instrução	Decodificação	Execução	Acesso aos	Escrita do			
				de instrução		dados	resultado			
				Busca de	Decodificação	Execução	Acesso aos	Escrita do		
Instrução 4				Instrução	de instrução		dados	resultado	.,	
Instrução 5				100	Busca de	Decodificação	F	Acesso aos	Escrita do	
					Instrução	de instrução	Execução	dados	resultado	
Instrução 6						Busca de	Decodificação	Execução	Acesso aos	Escrita do
						Instrução	de instrução		dados	resultado

Representação gráfica de Pipeline

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Recursos físicos

Referências

PATTERSON, D. A.; HENNESSY, J. L. Computer Organization and Design: The Hardware/Software Interface. Fourth edition.