Statistiques mathématiques : cours 9

Guillaume Lecué

17 septembre 2018

Aujourd'hui

Présentation des statistiques Bayésiennes

Fréquentistes / Bayésiens

 $\underline{\mathsf{Donn\acute{e}}}: X \qquad \underline{\mathsf{Mod\grave{e}le}}: \{\mathbb{P}_{\theta}: \theta \in \Theta\}$

1. fréquentistes (ce que nous avons fait jusqu'ici) : à une donnée X est renvoyée un élément de Θ , appelé estimateur.

2. Bayésiens (programme d'aujourd'hui) : à une donnée X est renvoyée une mesure de probabilité sur Θ .

$$X \rightsquigarrow \mathbb{P}^{\theta} = \hat{\mathbb{P}}(X)^{\theta} = \text{distribution sur } \Theta$$

Statistiques Bayésiennes : interprétation

- Les Bayésien utilisent les données pour construire une distribution \mathbb{P}^{θ} sur Θ .
- Comment interpréter un résultat sous forme de mesure de probabilité?

Les Bayésiens peuvent ne renvoyer qu'une seule valeur d'estimation de θ : le Maximum a posteriori (MAP) ou la moyenne a posteriori ou la médiane a posteriori, etc.

mais en plus ils peuvent donner des niveaux d'incertitude

Statistiques Bayésiennes : formalisme

L'objectif est de munir l'espace Θ d'une mesure de probabilité \Rightarrow

Le paramètre $\boldsymbol{\theta}$ devient donc une variable aléatoire

On dispose alors d'un couple de variable aléatoires

$$(X, \theta) = (donnée, paramètre)$$

ayant deux marginales (naturelles) :

- ▶ $\mathbb{P}^{X|\theta} = \mathbb{P}_{\theta}$: à θ fixé la loi de X est donnée par la loi du modèle $\{\mathbb{P}_{\theta}: \theta \in \Theta\}$ pour cette valeur de θ ! cette marginale est donc donnée par le modèle.
- ▶ $\mathbb{P}^{\theta|X}$: loi du paramètre θ étant donnée l'observation $X \leadsto$ c'est la loi qu'on cherche à construire sur Θ ! Pour la connaître, il faut soit connaître la loi du couple (X,θ) ou connaître les loi $\mathbb{P}^{X|\theta}$ et \mathbb{P}^{θ} et appliquer la formule de Bayes.

Formule de Bayes (1/2)

Etant donné deux événements A et B, on a (par définition)

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$$

De même,

$$\mathbb{P}[B|A] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[A]}$$

On en déduit la formule de Bayes :

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[B|A]\mathbb{P}[A]}{\mathbb{P}[B]}$$

Ecrite pour des lois admettant des densités, on a

$$\mathcal{L}(\theta|X=x_0)(\theta_0) = \frac{\mathcal{L}(X|\theta=\theta_0)(x_0) \cdot \mathcal{L}(\theta)(\theta_0)}{\mathcal{L}(X)(x_0)}$$

où $\mathcal{L}(Z)(z)$ est "la valeur" de la densité de la loi de Z en z.

Formule de Bayes (2/2)

$$\mathcal{L}(\theta|X=x_0)(\theta_0) = \frac{\mathcal{L}(X|\theta=\theta_0)(x_0) \cdot \mathcal{L}(\theta)(\theta_0)}{\mathcal{L}(X)(x_0)}$$

- ▶ $\mathcal{L}(X|\theta = \theta_0)(x_0)$ est <u>connue</u> : c'est la valeur de la densité de la loi \mathbb{P}_{θ_0} en x_0 du modèle $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$,
- $\blacktriangleright \mathcal{L}(\theta)(\theta_0)$ est <u>inconnue</u> : on va devoir se donner cette valeur **a priori**,
- ▶ $\mathcal{L}(X)(x_0)$ (terme indépendant de θ_0) est vu comme une constante de normalisation de la densité

$$\theta_0 \to \mathcal{L}(\theta|X=x_0)(\theta_0) \propto \mathcal{L}(X|\theta=\theta_0)(x_0) \cdot \mathcal{L}(\theta)(\theta_0)$$

donnée par

$$\mathcal{L}(X)(x_0) = \int_{\Theta} \mathcal{L}(X|\theta = \theta_0)(x_0) \cdot \mathcal{L}(\theta)(\theta_0) d\theta_0$$

(donc calculable à partir de $\mathcal{L}(X|\theta)$ et $\mathcal{L}(\theta)$).

Loi a priori et loi a posteriori

Definition

Une loi a priori est une mesure de probabilité \mathbb{P}^{θ} sur l'espace Θ qui est choisie avant l'observation des données.

En statistiques Bayésienne, on se donne donc (avant toute observation) :

- ▶ un $\underline{\text{modèle}}$ { $\mathbb{P}^{X|\theta}:\theta\in\Theta$ } ($\underline{\Lambda}:\mathbb{P}^{X|\theta}$ est une loi conditionnelle car θ est maintenant une variable aléatoire en statistiques Bayésiennes)
- une loi a priori \mathbb{P}^{θ} sur Θ .

Une fois l'observation $X=x_0$ observée, on calcul la loi $\mathbb{P}^{\theta|X=x_0}$ (grâce à la formule de Bayes) :

$$\mathcal{L}(\theta|X=x_0)(\theta_0) \propto \underbrace{\mathcal{L}(X|\theta=\theta_0)(x_0)}_{\text{vraisemblance}} \cdot \underbrace{\mathcal{L}(\theta)(\theta_0)}_{\text{loi a priori}} \; .$$

Definition

La loi $\mathcal{L}(\theta|X)$ est appelée loi a posteriori.

Méthode en statistiques Bayésiennes

1. On se donne une loi a priori sur Θ

- 2. On observe une **donnée** X
- 3. On modifie notre a priori sur la loi suivie par le paramètre θ en munissant Θ d'une nouvelle loi : la **loi a posteriori**

Une fois la loi a posteriori calculée (généralement à la constante absolue près $\mathcal{L}(X)(X)$ – où le "deuxième X" est la donnée alors que $\mathcal{L}(X)$ est la loi de X), on peut faire de <u>l'inférence sur θ </u>.

Calcul de loi a posteriori : exemple (1/2)

On considère :

- 1. le modèle $\{\mathbb{P}^{X|\theta}: \theta \in \mathbb{R}\}$ où $\mathbb{P}^{X|\theta} = \mathcal{N}(\theta, \sigma^2)$,
- 2. la loi a priori $\mathbb{P}^{\theta} = \mathcal{N}(\mu, \tau^2)$.
- ► Montrer que la loi a posteriori est

$$\mathcal{L}(\theta|X) \sim \mathcal{N}\left(\frac{\tau^2 X + \sigma^2 \mu}{\tau^2 + \sigma^2}, \frac{\sigma^2 \tau^2}{\tau^2 + \sigma^2}\right)$$

► Montrer que le *Maximum a posteriori*, la moyenne a posteriori et la médiane a posteriori sont tous égaux à

$$\frac{\tau^2 X + \sigma^2 \mu}{2(\tau^2 + \sigma^2)}.$$

Quand $\tau = \sigma$:

observation

a posteriori

Calcul de loi a posteriori : exemple (2/2)

On considère :

- 1. le modèle d'échantillonnage $X_1|\theta,\ldots,X_n|\theta\sim_{i.i.d.}X|\theta$ où la loi de X sachant θ a sa loi dans le modèle $\{\mathbb{P}^{X|\theta}:\theta\in\mathbb{R}\}$ où $\mathbb{P}^{X|\theta}=\mathcal{N}(\theta,1)$,
- 2. la loi a priori $\mathbb{P}^{\theta} = \mathcal{N}(0,1)$.
- ▶ la loi a posteriori est

$$\mathcal{L}(\theta|X_1,\ldots,X_n) \sim \mathcal{N}\left(\frac{X_1+\cdots+X_n}{n+1},\frac{1}{n+1}\right)$$

 le Maximum a posteriori, la moyenne a posteriori et la médiane a posteriori sont tous égaux à

$$\frac{X_1+\ldots+X_n}{n+1}.$$

▶ un intervalle de confiance Bayésien à 95% est donné par

$$\left[\frac{X_1 + \ldots + X_n}{n+1} - \frac{1.96}{\sqrt{n+1}}, \frac{X_1 + \ldots + X_n}{n+1} + \frac{1.96}{\sqrt{n+1}}\right]$$

Propriétés asymptotiques de la loi a posteriori I

Rappels (fréquentistes) : Dans le modèle d'échantillonnage associé à un modèle régulier on a :

1. L'EMV est consistant : pour tout $\theta \in \Theta$,

$$\widehat{\theta}_{\mathsf{n}}^{\;\mathsf{mv}} \xrightarrow{\;\mathbb{P}_{\theta}\;} \theta.$$

2. **I'EMV** est asymptotiquement normal : pour tout $\theta \in \Theta$,

$$\sqrt{n} \left(\widehat{\theta}_{\mathsf{n}}^{\;\mathsf{mv}} - \theta \right) \stackrel{d}{\longrightarrow} \mathcal{N} \left(0, \frac{1}{\mathbb{I}(\theta)} \right)$$

où $\mathbb{I}(\theta) = \mathbb{E}_{\theta} [(\partial_1 \log f(\theta, X))^2]$ s'appelle l'information de Fisher de la famille $\{\mathbb{P}_{\theta} = f(\theta, \cdot) \cdot \mu : \theta \in \Theta\}$ au point θ .

Il existe des notions similaires en Statistiques Bayésiennes.

Propriétés asymptotiques de la loi a posteriori II

Dans le modèle d'échantillonnage :

- 1. $(X_n|\theta)_n$ une suite de variables aléatoires i.i.d. distribuées selon $X|\theta$ dont la loi (de X conditionnellement à θ) est dans le modèle $\{\mathbb{P}^{X|\theta}:\theta\in\Theta\}$
- 2. \mathbb{P}^{θ} une loi a priori sur Θ (de densité $\mathcal{L}(\theta)$)
- 3. la loi a posteriori $\Pi(\cdot|(X_i)_{i=1}^n)$ a pour densité

$$\theta_0 \to \mathcal{L}(\theta|(X_i)_{i=1}^n)(\theta_0) \propto \text{ vraisemblance } \times \text{ loi a priori}$$

$$\propto \mathcal{L}\left((X_i)_{i=1}^n|\theta=\theta_0\right)\left((X_i)_{i=1}^n\right) \times \mathcal{L}(\theta)(\theta_0).$$

Definition

On dit que la suite de loi a posteriori $(\Pi(\cdot|(X_i)_{i=1}^n))_n$ est **consistante** quand pour tout $\theta \in \Theta$ et tout voisinage U de θ , on a, sous \mathbb{P}_{θ} ,

$$\Pi\big(\theta\in U|(X_i)_{i=1}^n\big)\stackrel{\mathrm{p.s.}}{\longrightarrow} 1.$$

Rem. : Dans cette définition les X_i sont supposés de loi \mathbb{P}_{θ} pour un θ fixé (càd après avoir calculé la loi a posteriori, on revient au modèle fréquentiste en supposant que $X_i \sim \mathbb{P}_{\theta}$).

Exemple de consistance

- 1. Modèle d'échantillonnage de binomiale : $\mathbb{P}^{X|\theta} = \operatorname{Bin}(\theta)$ pour $\theta \in \Theta = (0,1)$
- 2. Loi a priori sur $\Theta = [0,1]$ est une Beta (α, β) , càd de densité

$$\theta_0 \to \mathcal{L}(\theta)(\theta_0) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_0^{\alpha-1} (1-\theta_0)^{\beta-1}.$$

Montrer que

1. la loi a posteriori suit une Beta $(S_n + \alpha, n - S_n + \beta)$ où $S_n = \sum_{i=1}^n X_i$, càd, pour $X_1^n = (X_i)_{i=1}^n$ de densité

$$\theta_0 \to \mathcal{L}(\theta|X_1^n)(\theta_0) = \frac{\Gamma(n+2)}{\Gamma(S_n+1)\Gamma(n-S_n+1)} \theta_0^{S_n} (1-\theta_0)^{n-S_n}.$$

2. les moyenne et variance a posteriori vérifient

$$\mathbb{E}[\theta|X_1^n] = \frac{S_n + \alpha}{n + \alpha + \beta} \text{ et } \text{var}(\theta|X_1^n) = \frac{(S_n + \alpha)(n - S_n + \beta)}{(n + \alpha + \beta)^2(n + \alpha + \beta + 1)}.$$

3. la suite des loi a posteriori est consistante.

Propriétés asymptotiques de la loi a posteriori III

Dans le modèle d'échantillonnage, $(X_n)_n$ une suite de variables aléatoires i.i.d. distribuées selon une loi dans le modèle $\{\mathbb{P}^{X|\theta}:\theta\in\Theta\}$

- \blacktriangleright π_1 une loi a priori associée à la loi a posteriori $\Pi_1(\cdot|(X_i)_{i=1}^n)$
- \blacktriangleright π_2 une loi a priori associée à la loi a posteriori $\Pi_2(\cdot|(X_i)_{i=1}^n)$

Si $\left(\Pi_1(\cdot|(X_i)_{i=1}^n)\right)_n$ et $\left(\Pi_2(\cdot|(X_i)_{i=1}^n)\right)_n$ sont consistants alors pour tout $\theta \in \Theta$, sous \mathbb{P}_{θ} ,

$$\sup_{A} \left| \Pi_1(A|(X_i)_{i=1}^n) - \Pi_2(A|(X_i)_{i=1}^n) \right| \stackrel{\mathrm{p.s.}}{\longrightarrow} 0.$$

Asymptotiquement le choix de la loi a priori n'a pas d'importance

Propriétés asymptotiques de la loi a posteriori IV

Dans un modèle régulier la loi a posteriori se comporte asymptotiquement comme

$$\Pi(\cdot|(X_i)_{i=1}^n) \approx \widehat{\theta}_n^{\text{mv}} + \frac{1}{\sqrt{n}} \mathcal{N}\left(0, \mathbb{I}(\widehat{\theta}_n^{\text{mv}})^{-1}\right) \underset{\text{sous}}{\approx} \mathbb{P}_{\theta_0} \theta_0 + \frac{1}{\sqrt{n}} \mathcal{N}\left(0, \mathbb{I}(\theta_0)^{-1}\right)$$

οù

- $\blacktriangleright \ \widehat{\theta}_{\mathsf{n}}^{\,\mathrm{mv}} \in \mathrm{argmax}_{\theta_1 \in \Theta} \mathcal{L}\left((X_i)_{i=1}^n | \theta = \theta_1 \right) \left((X_i)_{i=1}^n \right)$
- ▶ $\mathbb{I}(\widehat{\theta}_n^{\ mv})$ est l'information de Fisher en $\widehat{\theta}_n^{\ mv}$ pour une observation.

Théorème

Dans un modèle régulier et pour une loi a priori continue et positive en $\theta_0 \in \Theta \subset \mathbb{R}$, on a

$$\int_{\mathbb{R}} \left| \mathcal{L}(\sqrt{n}(\theta - \widehat{\theta}_{n}^{\text{mv}}) | X_{1}^{n})(t) - \sqrt{\frac{\mathbb{I}(\widehat{\theta}_{n}^{\text{mv}})}{2\pi}} \exp(-t^{2}\mathbb{I}(\widehat{\theta}_{n}^{\text{mv}})/2)) \right| dt \xrightarrow{\text{p.s.}} 0$$

Estimateur de Bayes

Etant donné une fonction de perte

$$\ell:\Theta\times\Theta\to\mathbb{R}^+$$

(par example, $\ell(\theta, \beta) = (\theta - \beta)^2$), l'estimateur de Bayes est

$$\hat{\theta}_b(x) \in \operatorname{argmin}_{\beta \in \Theta} \int_{\theta \in \Theta} \ell(\theta, \beta) d\mathbb{P}^{\theta \mid X = x}(\theta)$$

Par exemple, pour la perte quadratique, l'estimateur de Bayes est la moyenne a posteriori :

$$\hat{\theta}_b(x) = \mathbb{E}[\theta|X=x].$$