

M11 - Fungi & Parasites

√ 3 more properties

Add a comment...

Learning Objectives

- Describe the basic classification and morphology of medically important fungi and parasites.
- List locally important examples of fungi and parasites causing human infections.
- Understand the types of infection caused by fungi and parasites. Describe the life cycle and vector for transmission of malaria parasites.

Introducing to Fungi

Characteristic of Fungi Comparison of Mammalian cells

Plasma membrane

Source: Kenneth J. Ryan Sherris & Ryan's Medical Microbiology, 8e

Copyright @ McGraw Hill. All rights reserved.

A yeast cell showing the	cell wall and internal structure	Proteins complexed with mannan (mannoproteins)
	Mammalian	Fungi
Cell Type	Eukaryotic	Eukaryotic [Nucleus, Mitochondria, ER] + Cell Wall - Saprophytes (腐生菌) - Commensal (共生菌) - Parasites (寄生虫)
Dominant membrane Sterol	Cholesterol	Ergosterol
DNA Content	Diploid nuclei	- Haploid - Diploid - Polyploid [in Stress] - Aneuploid [in Stress]
Cell Wall	Nil	- Cell wall mannan linked to surface proteins → Mannoprotein - Chitin and glucans → Rigidity
Metabolism	Heterotrophic metabolism	Heterotrophic metabolism
Reproduction	Sexual	- Asexual: Mitosis → Conidia - Sexual: Meiosis → Spores, with Specialized Structure In General: Spores, Budding, or Fission

Golgi apparatus

▼ Remark

 Aneuploid refers to an abnormal number of chromosomes in a cell. Heterotrophic metabolism uses available organic matter

Classification of Fungi

▼ Molds - Elongated, Filamentous Hyphae

Molds → Grow as: Hyphae [filamentous, tube-like structures]

。 Structures: Hyphal septa [菌丝隔] — Cross-walls ⊥ Cell walls → Separate Hypha into Subunit cells. Septate Hyphae Aseptate hyphae Pores → Nutrients, Organelles, and Nuclei → Adj. cells. Form septae that are very distant Properties Number of Nuclei Multiple

▼ Yeasts - Single Cells

 Yeasts [Round cellular] ° Reproducing: Asexual budding → Constriction → Separation

 Pseudohyphae Elongated yeast cells growing end-to-end.

Distinguished by Recurring bud-like constrictions and Less rigid cell walls

The hyphal walls are rigid to support the extensive, intertwining network.

Aerial mycelium: Reproductive Conidia / Spores

Vegetative mycelium: a root in medium → Collecting Nutrients and Moisture.

▼ Dimorphic Fungi Common Example of Dimorphic Fungi

Coccidioides immitis	Histoplasma capsulatum	Penicillium (Talaromyces) marneffei	
厌酷球孢子菌	荚膜组织胞浆菌	塔拉罗霉菌 / 马拉尼菲青霉菌	
• In Hong Kong, Penicillium (Talaromyces) marneffei is common.		

Some fungi can transition: $\underline{\text{Yeast-like}} \leftrightarrow \to \underline{\text{Hyphal morphologies}}$. : Shape is directly related to pathogenesis - Different microenvironments.

Introducing to Fungus Diseases

- Prolonged neutropenia
- · Defects in cellular immunity o receiving high-dose corticosteroids o transplant recipients
- o HIV-infected Patient † Immunocompromised hosts
- Hospital
- Broad-spectrum antibiotic therapy → More Immunocompromised Hosts
- Breaches in cutaneous and mucosal integrity due to indwelling medical devices o Defects in host immune mechanisms
- Community settings.
- Systemic mycoses

Infection	Pathogens	Nosocomial Infection
Fungaemia	Various fungi - usually yeasts such as Candida	- Catheter-related infections - Intra-abdominal Infection
Systemic candidiasis	Candida	1-1
Cryptococcosis	Cryptococcus neoformans	(2)
Aspergillosis	Aspergillus	(-)
Talaromycosis (penicilliosis)	Talaromyces (Penicillium) marneffei	

Classification of Fungus Diseases

Tinea / Ringworm

Diagnosing

Malassezia furfur.

Microsporum

Yeasts

Epidermophyton

Candida species

Trichosporion ashaii

- Clinical suspicion Radiological suspicion
- Microscopy • Fungal culture
- Antigens of fungi in blood or body fluids (e.g. cryptococcal antigen) Histopathology Nucleic acid amplification

Cryptococcosis

 Cryptococcus neoformans. Targets: Most Immunocompromise. o Some Immunocompetent Diseases: o Pneumonia Lung nodules

o Cryptococcal Meningitis (Related to AID)

 Pathogen: o Aspergillus fumigatus [Septate Hyphae] Aspergillus flavus

Aspergillosis

Target: Most Immunocompromise o Bone marrow, Lung, Heart-lung transplant recipients Diseases: o Pneumonia

Talaromycosis

 Talaromyces (Penicillium) marneffei [Dimorphic] Target: o Immunocompromised patient ° Endemic in Southeast Asia. · Diseases:

o Skin lesions or ulcers Enlarged lymph nodes

Pneumocystosis

Trichophyton

Microsporum

Epidermophyton

Type: dermatophytes

Affect

Keratinized Epidermis

Skin appendages

- Pneumocystis jirovecii. • Route: Spread by inhalation.
- Location: Respiratory tract [Asymptomatically]
- Target: Immunocompromised hosts.
- Diagnosis Cannot Cultured: Methenamine silver stain of the bronchoalveolar lavage. 支气管肺泡灌洗 × Expectorated sputum

Introducing to Parasites Basic Definition:

• Parasitism: any reciprocal association in which a species depends upon another for its existence. 寄生关系: 任何相互依赖的关联, 其中一种物种依赖另一种物种的存在。 • Parasite: the species that derives all the benefit from the association.

寄生虫: 从这种关联中获益的物种。 • Host: the harboring species.

宿主: 提供庇护的物种。

o Definitive host: harbours the adult or sexual stages of the parasite. 最终宿主:寄生虫的成虫或性阶段。

o Intermediate host: harbours the intermediate or larval stages of the parasite.

中间宿主:寄生虫的中间阶段或幼虫阶段。

Classification of parasites Protozoa Nematodes

Ectoparasites	Insects (6 legs in the adult stage)	Arachnids (8 legs in the adult stage
Lice	Mosquitoes	Spiders
Fleas	Flies	Scorpions
Maggots	Bugs	Ticks
Maggots Sarcoptes scabiei (scabies mite)	Bugs	-

Trematodes

Cestodes

Diagnosis

- Direct microscopy, staining, or tissue sections • Serology [血清检验] Culture of a small number of protozoa.
- Nucleic acid amplification.

▼ Treatment Supportive treatment

Ectoparasites	Insects (6 legs in the adult stage)	Arachnids (8 legs in the adult stage)
Lice	Mosquitoes	Spiders
Fleas	Flies	Scorpions
Maggots	Bugs	Ticks
Sarcoptes scabiei (scabies mite)		Mites

▼ Protozoa

Unicellular organism	ns.
Blood and tissue protozoa	Lumen-dwelling protozoa (gut, genital tract)
Plasmodium spp.	Entamoeba histolytica

▼ Nematodes - Helminths

Arthropods

Intestinal nematodes	Blood and tissue nematodes
Ascaris lumbricoides	Wuchereria bancrofti - Filaria
Hookworms	Brugia malayi - Filariae
Enterobius vermicularis (pinworms)	Trichinella spiralis
Trichuris trichiura	
Strongyloides stercoralis	

▼ Trematodes - Helminths

Transmission

• Congenital - 先天的.

Diagnosis

Female Anopheles mosquitoes

· Blood transfusion, transplantation.

· Contaminated needles, medications, medical instruments.

History: travel history, chemoprophylaxis taken, transfusion.

Standard method: thick and thin blood films stained with Giemsa stain

° Remember: one set of negative blood smear does not rule out malaria.

Specimens: Peripheral blood, anticoagulated with EDTA.

Detection of plasmodial antigens in blood.

Nucleic acid amplification

£	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Flukes		
	Examples	
Liver flukes	Clonorchis (Opisthorchis) sinensis Fasciola hepatica	
Intestinal flukes	Fasciolopsis buski	
Lung flukes	Paragonimus westermani	
Blood flukes	Schistosoma	

Trophozoite

schizont

Schizont

More about Malaria

Leishmania spp.

Toxoplasma gondii

Epidemiology			
Species	Distribution	Remarks	
Plasmodium vivax	Worldwide	Common	
Plasmodium falciparum	Generally in the tropics	Common	
Plasmodium malariae	Usually sporadic		
Plasmodium ovale	West Africa, some South Pacific islands		
Plasmodium knowlesi	Southeast Asia. A simian (monkey) malaria usually found in jungles.		

Trichomonas vaginalis

▼ Remarks: About 95% of all cases of malaria are due to P. vivax and P. falciparum.

Life Cycle of Malaria parasites

12. Multiplication and Release:

14. Gametocyte Formation:

The life cycle of malaria parasites involves both the mosquito vector and the human host. Here is a brief overview of the life cycle: Mosquito Stage: · The parasites undergo sexual reproduction within the mosquito, forming male and female gametocytes.

- Exflagellation: Inside the mosquito's midgut, the male gametocytes are releasing microgametes. 3. Fertilization:
- The microgametes fertilize the female gametocytes, forming zygotes. 4. Ookinete Formation:
- Oocyst Formation: The ookinetes transform into oocysts, where they multiply and develop.
- Oocyst Rupture: The mature oocysts rupture, releasing thousands of sporozoites into the mosquito's body cavity.
- Salivary Glands: The sporozoites migrate to the salivary glands of the mosquito. 8. Human Stage:
- Liver Stage: The sporozoites invade hepatocytes (liver cells) and develop into liver-stage parasites called schizonts. 10. Blood Stage:
- After a period of development in the liver, the schizonts rupture, releasing merozoites into the bloodstream. 11. Erythrocyte Invasion:
- The ring-stage parasites multiply inside the red blood cells, causing them to rupture and release more merozoites. 13. Clinical Symptoms: . The release of merozoites is associated with the clinical symptoms of malaria, including fever and chills.

Some of the parasites develop into sexual-stage gametocytes, which can be taken up by mosquitoes during a blood meal.

The zygotes develop into motile ookinetes, which penetrate the mosquito's midgut wall. Liver-stage In mosquito gut parasites Gamete—→zygote →ookinete →oocyst When an infected mosquito bites a human, sporozoites are injected into the bloodstream. Merozoites . Gametocytes The merozoites invade red blood cells (erythrocytes) and develop into ring-stage parasites.