CSCE 156 - Lab 13.0 - Sorting - Worksheet

the arrays. Be prepared to demonstrate this to a lab instructor.

Name	es:												
1.	Verify	that	your	sorting	algorithms	are	correctly	sorting	by	printing	the	content	t of

2.	Run some timed experiments as outlined in the lab handout for each algorithm for
	various input sizes. Note that you can restrict the number of locations loaded from
	the data file by changing the value of n in the main method of the SortingPerformance
	class. Fill in the table below (for best results, run the experiment at least three
	times each and take an average running time unless you're feeling lazy).

Algorithm	Theoretical Efficiency	Observed Performance (sec)					
		n = 2,000	n = 4,000	n = 8,000	n = 16,000		
Java Sort	$O(n\log(n))$						
Selection Sort	$O(n^2)$						
Insertion Sort	$O(n^2)$						
Quick Sort	$O(n\log(n))$						

- 3. Without actually running the simulation, predict the running time of each algorithm for n=64,000 based on the theoretical efficiency and observed running time.
- 4. According to your experiments, is there a clear ranking of the sorting algorithms? If so, list them from best to worst. Present your results to the lab instructor.

Lab Instructor Signature_
