

Linear regression

STATS – Modelação Estatística
PhD Programme in Health Data Science

Cristina Costa Santos & Andreia Teixeira

Comparison of Nested Models

Nested Models: Model M_1 is nested in Model M_2 if the parameters in Model M_1 are a subset of the parameters in Model M_2 .

Examples:

```
\mathbf{M_1}: salary = \beta_0 + \beta_1 * Experience + \beta_2 * Management \mathbf{M_2}: salary = \beta_0 + \beta_1 * Experience + \beta_2 * Age \mathbf{M_3}: salary = \beta_0 + \beta_1 * Experience + \beta_2 * Management + \beta_3 * Age
```

 M_1 is nested in M_3 M_2 is nested in M_3 M_1 is not nested in M_2

Requirements: Model M₁ nested in Model M₂

H₀: M₁ and M₂ have the same goodness-of-fit

H₁: M₂ has a better goodness-of-fit than M₁

Reject $H_0 \Rightarrow$ choose M_2 Do not reject $H_0 \Rightarrow$ choose M_1

Instruction in R:

anova(m1,m2)

where m1 and m2 are the models whose goodness of fit is being compared.

M₁ and M₂ non-nested models

There are no hypothesis tests for comparison of the model's goodness-of-fit

Instead, information criteria can be used:

AIC: Akaike Information Criterion

AIC = -2LL + 2p

BIC: Bayesian Information Criterion

BIC = -2LL + p*log(n)

where LL is the value of the model's log-likelihood function, p is the number of regression parameters and n is the nmber of observations.

The lower the infomation criterion, the better.

Comparison of Non-Nested Models

Instruction in R:

extractAIC(object,...,k)

where

- object is the model
- k is the penalization to be used: k=2 gives AIC; k = log(n) gives BIC

Comparison of non-nested linear models can also use R²_a.