Der blaue Planet und seine Geozonen

Atmosphärische Grundlagen

Der Kohlenstoffkreislauf

1 Erläutern Sie die in M1 dargestellten Kohlenstoff-Flüsse.

Führen Sie ein Experiment durch. Erklären Sie Ihre Beobachtungen.

Öffnen Sie zwei gekühlte Flaschen Mineralwasser und ziehen Sie sofort je einen Luftballon über die Flaschenhälse. Stellen Sie die eine Flasche samt Luftballon zurück in den Kühlschrank, die andere an einen warmen Ort. Vergleichen Sie, wie sich Kälte und Wärme auf die Luftballons auswirken. Erklären Sie Ihre Beobachtungen.

Berechnen Sie mithilfe von M2 die Speicherfähigkeit von Nord- und Ostsee.
Berechnen Sie, wie viel CO₂ rein rechnerisch in Nord- und Ostsee gelöst werden könnten, wenn man Strömungen, lokale Temperaturabweichungen und den Faktor Zeit nicht berücksichtigt.

a) bei einer Wassertemperatur T von 0°C.

b) bei einer Wassertemperatur T von 25°C.

Wasservolumen Nordsee: ca. 93 830km³ Wasservolumen Ostsee: ca. 21 721km³

4 Erläutern Sie die Auswirkungen der globalen Klimaerwärmung auf die CO₂-Senke Ozean.

M1 Kohlenstoff-Flüsse

M2 Löslichkeit von CO₂ in Wasser bei Normaldruck

Name: Klasse: Datum:

