

CS120: Computer Networks

Lecture 7. Multiple Access 2

Zhice Yang

Outline

- Wireless MAC
 - Overview of Wireless Technologies
 - WLAN and WLAN MAC
 - CSMA/CD is not feasible
 - Hidden terminal and exposed terminal

Go to Wireless

Go to Wireless

Two Requirements

- Antenna
 - Radiate out electromagnetic signal
- Carrier Wave
 - Choose suitable carrier wave to satisfy communication requirement (coverage, antenna size, spectrum sharing, etc.)
 - Radio: radio band
 - Audio: audio band

Radio Spectrum Allocation

Radio spectrum is like a resource

3 – 300 kHz

 $\lambda = 1000 - 10 \text{km}$

300 – 3000 kHz

 $\lambda = 10 - 1 \text{km}$

3 – 30 MHz

λ=1000 – 100m

30 - 300 MHz

 $\lambda = 100 - 10 \text{m}$

300 – 3000 MHz

 $\lambda = 10 - 1 \text{m}$

3 – 30 GHz

λ=1m – 100mm

30 - 300 GHz

 λ =100mm – 10mm

Radio Spectrum Allocation

- Regulation: defines how to use the radio spectrum
 - Price: licensed and unlicensed
 - Frequency bandwidth
 - Power
 - etc.
- Regulatory Agency
 - China: CMIIT
 - U.S.: FCC

Wireless Technology Overview

Two Big Players: Wi-Fi and Cellular

Cellular and Wireless

Model A1865*

FDD-LTE (Bands 1, 2, 3, 4, 5, 7, 8, 12, 13, 17, 18, 19, 20, 25, 26, 28, 29, 30, 66)

TD-LTE (Bands 34, 38, 39, 40, 41)

TD-SCDMA 1900 (F), 2000 (A)

CDMA EV-DO Rev. A (800, 1900, 2100 MHz)

UMTS/HSPA+/DC-HSDPA (850, 900, 1700/2100, 1900, 2100 MHz)

GSM/EDGE (850, 900, 1800, 1900 MHz)

All models

802.11ac Wi-Fi with MIMO

Bluetooth 5.0 wireless technology

NFC with reader mode

Two Big Players: Wi-Fi and Cellular

Telephone Cellular

Ethernet WLAN (Wi-Fi)

Two Big Players: Wi-Fi and Cellular

WLAN

- Wireless Local Area Network
 - The original goal is to design a "wireless" LAN

Reconsider CSMA/CD in Ethernet

- Assumptions:
 - Full Duplex: transceiver can send/receive concurrently
 - To detect collision while transmitting
 - Symmetry: signals are identical at all receivers
 - Collision is detected when transmitting => collision at receiver

Ethernet transceiver can detect collision when collision occurs at the receiver

- Assumptions of CSMA/CD
 - XFull Duplex: transceiver can send/receive concurrently
 - XSymmetry: signals are identical at all receivers

Is CSMA possible?

CSMA/CD are not Feasible in Wireless Situation

A cannot send and listen in parallel

- Assumptions of CSMA/CD
 - XFull Duplex: transceiver can send/receive concurrently
 - XSymmetry: signals are identical at all receivers

How about CSMA?

Consider CSMA in Wireless Situation

- Consider CSMA in Wireless Situation
 - Not as good as wired situation
 - Hidden Terminal

Hidden Terminal

Hidden Terminal

Exposed Terminal

Exposed Terminal

Wireless LAN MAC

- Consider CSMA in Wireless Situation
 - Not as good as wired situation
 - Hidden Terminal
 - Exposed Terminal
- CSMA/CA
 - CA stands for collision avoidance
 - CTS/RTS scheme

• A wants to transmit to B, but C may interfere B

 A transmits a short packet to B and announces the expected transmission duration

• Request to Send (RTS)

- B transmits a short packet to A and announces the expected transmission duration
 - Clear to Send (CTS)

C can hear CTS and knowns that there will be transmission soon

- C knows the expected transmission duration from CTS and defers
 - Avoids the hidden terminal problem

- However
 - If CTS is lost at C, C can still interfere B

• C wants to transmit to D, but B may interfere C.

- B sends RTS. C waits CTS packet.
 - CTS packets must be replied within a short period of time

- C does not hear CTS packet.
 - ➤ C is not in the coverage of B's receiver (A)
 - ➤ B's receiver (A) is not in the coverage of C

- C transmits to D
 - Avoids the exposed terminal problem

- However
 - ACK is interfered

- RTS/CTS does not solve hidden terminal and exposed terminal completely
- Designing Wireless MAC is non-trivial

- The Wireless LAN is standard by IEEE 802.11
 - "Wi-Fi" is a certification trademark of IEEE 802.11

- Four Address Fields in MAC Frame
 - AP mode
 - Communicate with the help of a AP
 - A -> AP: two addresses
 - A -> AP->B: three addresses
 - ad-hoc mode
 - Directly communicate with each peer
 - A -> C -> B->D: four addresses

- Sender has to wait for DIFS before sending data
- Receivers acknowledge at once (after waiting for SIFS) if the packet was received correctly (CRC)

SIFS & DIFS

- Short Inter Frame Space (SIFS)
 - SIFS = round trip propagation delay + processing delay
 - Ensure nodes at coverage edge can correctly send and receive ACK
- DCF Inter Frame Space (DIFS)
 - DISF = SIFS+2*slots
 - Ensure frames transmit with SIFS, eg, ACK, RTS, etc., will not be interfered

Exponential Backoff

- All backlogged nodes choose a random number
 - R = rand (0, CW_min)
- Each node counts down R
 - Continue carrier sensing while counting down
 - Once carrier busy, freeze countdown
- Whoever reaches ZERO sends data
 - Neighbors freeze countdown

Exponential Backoff

- Receiver replies with ACK
 - After ACK, everyone initiates remaining countdown
 - Tx chooses new R = rand (0, CW_min)
- If DATA collides, i.e. no ACK
 - Chooses new random number R = rand (0, 2*CW_min)

• With RTS/CTS

By Now

By Now

