Raport nSARSA

Wojciech Ciężobka Informatyka - Data Science Uczenie Maszynowe Laboratorim 3

PS kod źródłowy wraz z kontekstem jest wgrany w UPEL.

Uzupełnione luki w kodzie

TODO: Tutaj trzeba zaktualizować tablicę wartościującą akcje Q

```
self.q[state_t, action_t] += \
    self.step_size * \
    return_value_weight * \
    (return_value - self.q[state_t, action_t])
```

TODO: Tutaj trzeba policzyć zwrot G

```
def _return_value(self, update_step):
        return_value = 0.0
        for i in range(
                update_step + 1,
                min(update_step + self.step_no, self.final_step) + 1
        ):
            discount = self.discount_factor ** (i - update_step - 1)
            reward = self.rewards[self._access_index(i)]
            return_value += discount * reward
        if update_step + self.step_no < self.final_step:</pre>
            discount = self.discount_factor ** self.step_no
            estimate = self.q[
                    self.states[self._access_index(update_step + self.step_no)],
                    self.actions[self._access_index(update_step + self.step_no)]
            return_value += discount * estimate
        return return_value
```

TODO: Tutaj trzeba policzyć korektę na różne prawdopodobieństwa ρ (ponieważ uczymy poza-polityką)

TODO: tutaj trzeba ustalic prawdopodobieństwa wyboru akcji według polityki ϵ -zachłannej

Prosty zakręt testowy

Wizualizacja mapy

Czy algorytm się uczy?

Przez pierwsze 200 epok, agent intensywnie się uczy. Po 600 epokach można uznać że agent się osiągnął punkt zbieżności.

Przykładowe przejazdy dla wyuczonego algorytmu

Aby zwizualizować optymalne trasy, należy zapisać stan tabeli wartościującej Q, a następnie uruchomić agenta podejmującego akcje w oparciu o politykę zachłanną.

Trudniejszy zakręt dla optymalizacji hiperparametrów

Wizualizacja mapy

Przebieg uczenia dla domyślnych hiperparametrów

Na tej mapie, agent potrzebuje więcej czasu na naukę. Zaczyna zbiegać po ok 2000 epizodów.

Studium Parametrów

Przeszukuję przestrzeń parametrów α oraz liczby kroków n aby znaleźć najlepiej działającego agenta. Uznałem, że miarą jakości agenta będzie całkowity $\dot{z}al$ (ang. regret). Ponieważ nie znam idealnej nagrody, to uznałem że dobrym szacunkiem optymalnej nagrody jest wartość 0, kiedy agent po pierwszym kroku ląduje na mecie. W takim przypadku, estymowany żal, to po prostu wartość kary.

Środowisko testowe HPC

Eksperymenty przeprowadziłem na klastrze obliczeniowym Ares, uruchamiając równolegle symulacje za pomocą poniższego skryptu

```
#!/bin/bash -1
TIMESTAMP=$(date +%y%m%d_%H%M%S)
FOLDER_SPEC="nsarsa"
GITREPO="nSARSA"
# Create directory structure to store logs
mkdir -p $SCRATCH/Logs/$FOLDER_SPEC/
mkdir -p $SCRATCH/Logs/$FOLDER_SPEC/$TIMESTAMP/
ALPHA_SPAN=20
N_STEP_SPAN=9
for ((n = 1; n < N_STEP_SPAN; n++)); do
    for ((a = 0; a < ALPHA_SPAN; a++)); do
        N_{STEP}=\$((2**n))
        ALPHA=\$(echo "scale=5; 1.25^{-$a}" | bc)
        LOG_OUTPUT_DIR=$SCRATCH/Logs/$FOLDER_SPEC/$TIMESTAMP/n$N_STEP-a$ALPHA-output.out
        LOG_ERROR_DIR=$SCRATCH/Logs/$FOLDER_SPEC/$TIMESTAMP/n$N_STEP-a$ALPHA-error.err
        sbatch \
                    --job-name="nsarsa"
                    --account="plgsano4-cpu"
                    --partition="plgrid"
                    --output="$LOG_OUTPUT_DIR"
                    --error="$LOG_ERROR_DIR"
                    --time="4:00:00"
                    --nodes="1"
                    --ntasks-per-node="1"
                    --cpus-per-task="1"
                    --mem-per-cpu="1GB"
                    $SCRATCH/Files/GitRepos/$GITREPO/hpc-runner.sh $N_STEP $ALPHA
    done
done
```

Wykres oczekiwanego "żalu" od parametrów lpha oraz n

Wykres nie jest tak ładny jak dla zabawkowego problemu z polecenia, jednak kształty krzywych oraz ich wzajemne położenie zgadzają się z teorią. Okazuje się, że agent najlepiej sobie radzi z parametrem $\alpha=0.512$ oraz n=4. Takie parametry ustawiłem od tej pory jako domyślne i przeszedłem do testów na najtrudniejszej mapie.

Najtrudniejszy przypadek dla walidacji

Wizualizacja mapy

Raport nSARSA

6

Przebieg uczenia

Agent z dostrojonymi parametrami na mapie **C**, radzi sobie bardzo dobrze na trudniejszej mapie **D**. Co prawda trening zajmuje więcej czasu (ok. 11 000 epok), ale zbieżność jest bardzo ładna i cały proces uczenia jest stabilny.

Przykładowe przejazdy dla wyuczonego algorytmu

Agent nauczył się bardzo efektywnie pokonywać zakręt. Niezależnie od pozycji startowej dociera do mety oraz ścina zakręty aby jak najbardziej skrócić czas przejazdu.

Raport nSARSA

8