OURSTORYBEGINS

```
15 中国11 11 11 11
(1. ixp: (1) a=b(mod m) triff a-b=0 (and m).
   isof.= : mod 具有的理· b=b (mod m)
                  a=b (mod m) 0 } 0-0: a-b=o (mod m)
                b=b (mod m) 0)
                                                    一行论
  a -b = 0 (mod m) 0 } 0 +0: a = b (mod m).
(2) - # a = b (mod m), C = d (mod m), lan a - c = b -d (mod m)
 ixenf: /a=b (mod m) => m/a-b
        c=d(mod m) => m/c-d
   | (a-b)-(e-d) \Rightarrow m | (a-c)-(b-d) \Rightarrow a-c \equiv b-d \pmod{m} 
多义: 在同分运算下左右面边可以进行移攻。
2. neva : 70! = 61! (mod 71)
这啊: -: 61! 571 33, 要这70!=61! (mod71), 只要这 70!=1 (mod71)
   7. 70! = 70 × 69 × ... × 62 = (-1) × (-2) × ... × (-9) = -9! = ( (mod 71)
                                                :特洛
3. 沒 a-1是azy核m的连,这件:
  (1) an = c (mod m) 成立的文字子中 n= a-c (mod m).
  ixing:==: a-1 是 A 对 R m in in in a p a·a-1=1 (mod m)
       対 an =c (mod m) 西地面まるー: a -1. a·n = c, a -1 (mod m)
         a-1 = a-1 (mod m) => h=a-1c (mod m)
E: Sfn = a^{-1}c \pmod{\frac{1000}{1000}} a: a \cdot n = a \cdot a^{-1} \cdot c \pmod{m}
                              => a.n = c (mod m) : 13 is
      Bp. a=a (mod m).
(2). 1 a-1 b-1 是abzf 株mise, mp (ab)= a-1 b-1 (mod m), 特别对YZ,
 (ax)-1 = (a-1) x (mod m).
```

ing: ·· a 是 a 又 技 m m =) g cd (a, m)=1 ·· g cd (ab, m)=1.
·· a b ! 是 abof 按 m in (ab)·(a b !)= (n nod m) . [(1)
(1 2 - gcd (ab, m)=1) 1 - (a-1b-1) = (ab) - (nod m) - 11 (1)
Rp (ab) = a b (mod m) :格池.
没有产产方方 t, 在当方方5: (11)
: (at t = 1 (mod m) , a. S = 1 (mod m) 1 A
= t = (ak)-1 (mod m) 1 = 15 = a - (mod m) = 5k = (a-1) =
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Top t = St (mod m) (1).
= (ak)-1 = (a-1)k (mod m) : Afr.
11 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
4. (1) 乌出楼 9的一个完全和安了。它的多个数是可数。
39,1,11,3,13,15,15,115
(2) 马出接自的一个多厅和自己,它的看了数是作品。
518,10,12,12,4,14,6,16,8)
(3) (1)或(2)中的安求对核(0的完全和原系的杂种的?
7.58.
A * * * * * * * * * * * * * * * * * * *
5. 具体多出核的二16,17,18 的极小非负配约利尔尔、绝对极小配约利尔尔、并奔出
Deptisets 4(16). 4(17). 9(18).
85. M-IL \$ 146 : {1,2,5,7,9,11,15}, 325 5ph: {-7,-5,-3,-1,1,3,
$m=17, \ldots \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$
Seaf {-8,-7,-6,-5,-4,-3,-2,-1,1,2,3,4,5,6,7,8}.
m=18. 最小推: \$1, 1.5, 7.11, 13, 173.
绝对: {-7,-5,-1,1,5,7}
$\varphi(16) = 8. \varphi(17) = 16, \varphi(8) = 6.$

14 m 73, 20 M
(1) 校min-细胞的制度了inff有之及正和对核加以同原于0.1
(2) 核如的最小正积约剂原子参数之和 \$ m(f(m)/2, 对 m=2.也好定。
1011 W 25 M Q K 16 8 2 2 N D M G (W) 12 1 2 3 1 CO 2 .
201. 12 A= 8 au az - aceus & decon - 100-100
in A = { a1, a2,, aq(m)}. * \$q(m) = m-11 · gcd ai ∈ A, m gcd (ai, m) = gcd (-ai, m) = 1, (m-ai, m) = gcd(ai, m)
(M-ai) (F.A. 1) (3 a - m-a: p.1 (a + a) (7 m) 7 a = m 3 h
12 by ai + aj = m. From Artinal Argunation. 12-3/2/2753 m
Box aitazt + acfan) = of(m) - m (11) bill
(m/m) 11/1) => (a) 43/2.
下吃的: 肝多便,一般的配的和军和和权力化配的和军在同一类里的教相
在min一个待截。 四: 排放上的文末之初 = 一个(m) - m是mings数
母二种教主的文末至初二十二十四是如前有意
· 网络模如的一组和新闻了的研查了主和对的外国全于60
(1, 1, 1, 1), (1, A, 2) (1) Air.
(1.11.).", A. 2.) (1) Agric. 9. 51. 165. 11. 11. 15. 15. 15. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16
9.51.1E5/11/11/15/15/15/15/15/15/16/16/16/16/16/16/16/16/16/16/16/16/16/
Soutes (1 & the bytein the cotto interpretation (a)
(a) (3) (3) (3) (4) (4) (4) (4) (4) (4) (5) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
11 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 11 11 11 11 11 11 11 11 11 11 11 11
11 11 1 2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1
11 11 1 2 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1
(1) 11 11 11 11 11 11 11 11 11 11 11 11 1
(1) (1) (1) (2) (1) (2) (1) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
(1) 11 11 11 11 11 11 11 11 11 11 11 11 1