Dealing with Separation in Logistic Regression Models

Carlisle Rainey
Assistant Professor
Texas A&M University
crainey@tamu.edu

The prior matters a lot, so choose a good one.

The prior matters a lot,

- 1. in practice
- 2. in theory

so choose a good one.

- 3. concepts
- 4. software

The Prior Matters in Practice

politics

need

Coefficient	Confidence Interval
-26.35	[-126,979.03; 126,926.33]
0.92	[-3.46; 5.30]
0.01	[-0.17; 0.18]
2.43	[-0.47; 5.33]
0.00	[-0.02; 0.02]
-0.32	[-2.45; 1.80]
0.05	[-0.12; 0.21]
-0.08	[-0.17; 0.02]
2.58	[-7.02; 12.18]
	-26.35 0.92 0.01 2.43 0.00 -0.32 0.05 -0.08

Variable Coefficient Confidence Interval

Democratic Governor -26.35 [-126,979.03; 126,926.33]

Variable Coefficient Confidence Interval

Democratic Governor -26.35 [-126,979.03; 126,926.33]

This is a failure of maximum likelihood.

Donald J. Trump @realDonaldTrump · Now

Those inferences from supposedly "default" priors aren't even close to similar. Very sad!

FAVORITES

823

4835

6:23 AM - 21 May 2016 • Details

Different *default* priors produce different results.

The Prior Matters in Theory

For

- 1. a monotonic likelihood $p(y|\beta)$ decreasing in β_s ,
- 2. a proper prior distribution $p(\beta|\sigma)$, and
- 3. a large, negative β_s ,

the posterior distribution of β_s is proportional to the prior distribution for β_s , so that $p(\beta_s|y) \propto p(\beta_s|\sigma)$.

For

- 1. a monotonic likelihood $p(y|\beta)$ decreasing in β_s ,
- 2. a proper prior distribution $p(\beta|\sigma)$, and
- 3. a large, negative β_s ,

the posterior distribution of β_s is proportional to the prior distribution for β_s , so that $p(\beta_s|y) \propto p(\beta_s|\sigma)$.

The prior *determines* crucial parts of the posterior.

Key Concepts

for Choosing a Good Prior

$$Pr(y_i) = \Lambda(\beta_c + \beta_s s_i + \beta_1 x_{i1} + \dots + \beta_k x_{ik})$$

Transforming the Prior Distribution

$$\tilde{\beta} \sim p(\beta)$$

$$\tilde{\pi}_{new} = p(y_{new} | \tilde{\beta})$$

$$\tilde{q}_{new} = q(\tilde{\pi}_{new})$$

We Already Know Few Things

$$\beta_1 \approx \hat{\beta}_1^{mle}$$

$$\beta_2 \approx \hat{\beta}_2^{mle}$$

$$\vdots$$

$$\beta_k \approx \hat{\beta}_k^{mle}$$

$$\beta_s < 0$$

Partial Prior Distribution

$$p^*(\beta|\beta_s < 0, \beta_{-s} = \hat{\beta}_{-s}^{mle}),$$
where $\hat{\beta}_s^{mle} = -\infty$

Software

for Choosing a Good Prior

separation

(on GitHub)

rstanarm

StataStan

Conclusion

The prior matters a lot, so choose a good one.

What should you do?

- 1. Notice the problem and do something.
- 2. Recognize the the prior affects the inferences and choose a good one.
- 3. Assess the robustness of your conclusions to a range of prior distributions.