一、填空题

1.
$$x = 1 \vec{\boxtimes} x > 2$$
;

1.
$$x = 1$$
 $\exists x > 2$; 2. $f(x) = \frac{1}{a^2 - b^2} \left(\frac{ac}{x} - bcx \right)$; 3. $\frac{1}{3}$; 4. $e^{-\frac{1}{3}}$;

3.
$$\frac{1}{3}$$
;

4.
$$e^{-\frac{1}{3}}$$
;

5.
$$-\frac{3}{2}$$
;

6. ln 2, 1;

3. D

7. e^{2a} ; 8. $\frac{1+\sqrt{13}}{2}$.

二、选择题

2. C

4. B

5. B 6. D

7. C

三、证明题

1. 用函数极限的定义证明 $\lim_{x\to +\infty} \frac{\sin x}{\sqrt{x+1}} = 0$.

证: $\left| \frac{\sin x}{\sqrt{x+1}} - 0 \right| < \frac{1}{\sqrt{x}}$. $\forall \varepsilon > 0$, $\Re X = \frac{1}{\varepsilon^2}$, $\exists x > X$ 时,有 $\left| \frac{\sin x}{\sqrt{x+1}} - 0 \right| < \varepsilon$, 则 $\lim_{x \to +\infty} \frac{\sin x}{\sqrt{x+1}} = 0$.

2. 用函数极限的定义证明 $\lim_{x\to 5} \sqrt{x} = \sqrt{5}$.

证:为了保证 \sqrt{x} 有意义,需要 $x \ge 0$,即 $x-5 \ge -5$.不妨要求|x-5| < 5.

当 $x \to 5$ 时,有 $\left| \sqrt{x} - \sqrt{5} \right| = \frac{|x-5|}{\sqrt{x} + \sqrt{5}} < \frac{1}{\sqrt{5}} |x-5|$.对 $\forall \varepsilon > 0$,取 $\delta = \min\left\{ \sqrt{5}\varepsilon, 5 \right\}$,

当 $0 < |x-5| < \delta$ 时,有 $|\sqrt{x} - \sqrt{5}| < \varepsilon$,所以 $\lim_{x \to 5} \sqrt{x} = \sqrt{5}$.

四、计算题

1. 计算极限 $\lim_{x\to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3} \right)$.

解: 原式 = $\lim_{x \to 1} \frac{1 + x^2 + x - 3}{1 - x^3} = \lim_{x \to 1} \frac{x^2 + x - 2}{1 - x^3} = \lim_{x \to 1} \frac{(x - 1)(x + 2)}{(1 - x)(1 + x + x^2)} = -\lim_{x \to 1} \frac{(x + 2)}{(1 + x + x^2)} = -1$

2. 计算极限 $\lim_{x\to 0^+} \frac{\tan x - \sin x}{x \ln(1+x)}$.

解: 原式 = $\lim_{x \to 0^+} \frac{\tan x - \sin x}{x^2} = \lim_{x \to 0^+} \frac{\tan x (1 - \cos x)}{x^2} = \lim_{x \to 0^+} \frac{x \cdot \frac{1}{2} x^2}{r^2} = 0$

3. 计算极限 $\lim_{n\to\infty} \frac{(-2)^n + 3^n}{(-2)^{n+1} + 3^{n+1}}$.

解: 原式= $\lim_{n\to\infty} \frac{(-2)^n + 3^n}{(-2)^n (-2) + 3^n \cdot 3} = \lim_{n\to\infty} \frac{\left(-\frac{2}{3}\right) + 1}{\left(-\frac{2}{3}\right)^n \cdot (-2) + 3} = \frac{1}{3}$

4. 计算极限 $\lim_{n\to\infty} \left(\frac{1}{2n+\sqrt{1}} + \frac{1}{2n+\sqrt{2}} + \dots + \frac{1}{2n+\sqrt{n}} \right)$.

解: 因为
$$\frac{n}{2n+\sqrt{n}} \le \frac{1}{2n+\sqrt{1}} + \frac{1}{2n+\sqrt{2}} + \dots + \frac{1}{2n+\sqrt{n}} \le \frac{n}{2n+\sqrt{1}}$$
,

又有
$$\lim_{n\to\infty} \frac{n}{2n+\sqrt{n}} = \lim_{n\to\infty} \frac{1}{2+\sqrt{\frac{1}{n}}} = \frac{1}{2}$$
, $\lim_{n\to\infty} \frac{n}{2n+\sqrt{1}} = \lim_{n\to\infty} \frac{1}{2+\sqrt{\frac{1}{n^2}}} = \frac{1}{2}$,

所以由夹逼准则可知
$$\lim_{n\to\infty} \left(\frac{1}{2n+\sqrt{1}} + \frac{1}{2n+\sqrt{2}} + \dots + \frac{1}{2n+\sqrt{n}}\right) = \frac{1}{2}$$
.

五、设
$$\lim_{x\to 1} \frac{x^2 + ax + b}{1-x} = 5$$
,求常数 a 和 b .

解:
$$\lim_{x\to 1} \frac{x^2 + ax + b}{1-x} = 5$$
, 则 $a+b+1 = \lim_{x\to 1} (x^2 + ax + b) = \lim_{x\to 1} \frac{x^2 + ax + b}{1-x} (1-x) = 0$.

将
$$b = -a - 1$$
代入,有 $5 = \lim_{x \to 1} \frac{x^2 + ax - a - 1}{1 - x} = -\lim_{x \to 1} \frac{(x + 1)(x - 1) + a(x - 1)}{x - 1}$
$$= -\lim_{x \to 1} (x + 1 + a) = -(2 + a). \quad \text{所以 } a = -7, \ b = 6.$$

六、已知
$$x_1 > 0$$
, $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$, $n \in \mathbb{N}^+$ 。证明:数列 $\{x_n\}$ 收敛,并求其极限值。

解: 因为
$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right) \ge \sqrt{2}$$
,所以数列 $\{x_n\}$ 有下界.

又
$$x_{n+1} - x_n = \frac{1}{2}(x_n + \frac{2}{x_n}) - x_n = -\frac{1}{2}x_n + \frac{1}{x_n} = \frac{-x_n^2 + 2}{2x_n} \le 0$$
,所以 $x_{n+1} \le x_n$. 因此 $\{x_n\}$ 单调减少.

故由单调有界准则知,数列 $\{x_n\}$ 收敛.

设
$$\lim_{n\to\infty} x_n = a$$
 ,由 $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$,两边同时取极限可得 $a = \frac{1}{2} \left(a + \frac{2}{a} \right)$,所以 $a = \pm \sqrt{2}$.

又因为 $x_n > 0$,所以 $a = \sqrt{2}$.