79546 - Timeseries Emphirical Paper

Clear all variables in work space and install packages

```
rm(list=ls())

requiredPackages = c('quantmod','TTR','tseries')
for(p in requiredPackages){
   if(!require(p,character.only = TRUE)) install.packages(p) #install package if it does not exist
   library(p,character.only = TRUE)
}

#suppress `getSymbols` message
options("getSymbols.warning4.0"=FALSE)
```

Load the forecasting packages

Get to Know Time-Series Data

Load Dataset

Data is collected from Yahoo Finance using the Quantitative Financial Modeling Framework (Quantmod). Data obtained in eXtensible-Time-Series format is being used for data exploration.

```
#Download data from yahoo finance
df_tsm <- getSymbols('TSM',src='yahoo',auto.assign=FALSE,from="2011-01-01")
#Check the contents of the data
class(df_tsm)</pre>
```

```
## [1] "xts" "zoo"

#List the number of rows in the data
nrow(df_tsm)

## [1] 2776

#Print the last 6 rows of the data
tail(df_tsm)

## TSM.Open TSM.High TSM.Low TSM.Close TSM.Volume TSM.Adjusted
## 2022-01-04 130.87 135.50 130.3000 133.40 25554900 133.40
## 2022-01-05 130.71 130.88 126.8800 127.06 17891200 127.06
```

пπ		Ibii. opcii	1011.111611	IDII.LOW	1011.01050	IDII. VOI unic	ibii. Aajab cca
##	2022-01-04	130.87	135.50	130.3000	133.40	25554900	133.40
##	2022-01-05	130.71	130.88	126.8800	127.06	17891200	127.06
##	2022-01-06	127.00	129.00	124.8100	128.47	16249000	128.47
##	2022-01-07	126.55	127.14	123.3100	123.50	21239000	123.50
##	2022-01-10	125.11	125.87	123.2600	125.01	11857700	125.01
##	2022-01-11	126.54	129.55	125.4975	129.17	11861326	129.17

Stock price visualization

This shows the patterns of the data.

```
tsm_title = "Taiwan Semiconductor Manufacturing Company Limited Stock Price (TSM) (2011-2022)"
chartSeries(df_tsm , name="TSM price 2011-2022")
```


Time plot of the data

```
#returns the closing price
tsm_close = Cl(to.monthly(df_tsm))

#decompose the data
dc <- decompose(as.ts(tsm_close, start=c(2011,1)))
plot(dc)</pre>
```

Decomposition of additive time series

#Display seasonal stock data dc\$seasonal

```
##
                            Feb
                Jan
                                        Mar
                                                    Apr
                                                                 May
                                                                             Jun
## 2011
         1.79468171
                     1.86118201
                                 0.32059876 -0.29815104 -1.74860927 -1.81240113
## 2012
         1.79468171
                     1.86118201
                                 0.32059876 -0.29815104 -1.74860927 -1.81240113
                                 0.32059876 -0.29815104 -1.74860927 -1.81240113
## 2013
         1.79468171
                     1.86118201
## 2014
         1.79468171
                     1.86118201
                                 0.32059876 -0.29815104 -1.74860927 -1.81240113
                                 0.32059876 -0.29815104 -1.74860927 -1.81240113
## 2015
        1.79468171
                     1.86118201
                                 0.32059876 - 0.29815104 - 1.74860927 - 1.81240113
## 2016
        1.79468171
                    1.86118201
## 2017
         1.79468171 1.86118201
                                 0.32059876 -0.29815104 -1.74860927 -1.81240113
## 2018 1.79468171 1.86118201 0.32059876 -0.29815104 -1.74860927 -1.81240113
```

```
1.79468171
                     1.86118201
                                 0.32059876 -0.29815104 -1.74860927 -1.81240113
  2020
                     1.86118201
                                 0.32059876 -0.29815104 -1.74860927 -1.81240113
         1.79468171
                     1.86118201
                                 0.32059876 -0.29815104 -1.74860927 -1.81240113
  2021
         1.79468171
  2022
         1.79468171
##
##
                Jul
                            Aug
                                        Sep
                                                    Oct
                                                                 Nov
                                                                             Dec
## 2011 -0.16154515 -0.57835953 -0.51898464 -0.09623412
                                                         0.36151508
                                                                      0.87630733
## 2012 -0.16154515 -0.57835953 -0.51898464 -0.09623412
                                                         0.36151508
                                                                      0.87630733
## 2013 -0.16154515 -0.57835953 -0.51898464 -0.09623412
                                                         0.36151508
                                                                      0.87630733
## 2014 -0.16154515 -0.57835953 -0.51898464 -0.09623412
                                                         0.36151508
                                                                      0.87630733
## 2015 -0.16154515 -0.57835953 -0.51898464 -0.09623412
                                                         0.36151508
                                                                      0.87630733
## 2016 -0.16154515 -0.57835953 -0.51898464 -0.09623412
                                                         0.36151508
                                                                      0.87630733
## 2017 -0.16154515 -0.57835953 -0.51898464 -0.09623412
                                                         0.36151508
                                                                      0.87630733
## 2018 -0.16154515 -0.57835953 -0.51898464 -0.09623412
                                                         0.36151508
                                                                      0.87630733
## 2019 -0.16154515 -0.57835953 -0.51898464 -0.09623412
                                                         0.36151508
                                                                      0.87630733
## 2020 -0.16154515 -0.57835953 -0.51898464 -0.09623412
                                                         0.36151508
                                                                      0.87630733
## 2021 -0.16154515 -0.57835953 -0.51898464 -0.09623412
                                                         0.36151508
                                                                      0.87630733
## 2022
```

The output shows for plots of TSM closing price which are:

- **Observed**: Original plot of the data.
- **Trend**: There is an upward trend that is significant from 2018.
- Seasonal There is repetitive seasonal fluctuation of data. The closing price reached the highest in January and the lowest in June. This shows that a good time to sell is beginning of the year and the risht time to buy is mid year
- Random irregular or random fluctuation not captured by the trend and seasonal.

```
#plot(df_tsm$TSM.Close,main = tsm_title)
chart_Series(tsm_close,name=tsm_title)
```


From the figure above TSM stock price has a strong positive trend. This shows that it is non-stationary

Stationarity Test on the stock price

```
## Augmented Dickey-Fuller Test
##
## data: tsm_close
## Dickey-Fuller = -0.44478, Lag order = 5, p-value = 0.983
## alternative hypothesis: stationary
```

The p-value is not less than 0.05 hence we fail to reject null hypothesis. This means that the time series is non-stationary.

ACF and PACF plots of the time-series data

```
par(mfrow=c(1,2))
acf(tsm_close)
pacf(tsm_close)
```


from the ACF and PACF plot,AR model would be ideal for this stock price. The trend can be removed by differensing the data to removes the trend

```
par(mfrow=c(2,1))

dy = diff(tsm_close,lag = 1)
    chart_Series(dy,name="Time Plot of difference data")

wld = diff(log(tsm_close))
    chart_Series(wld,name="Time Plot of log difference data")
```


Stationarity test of Differencing log time-series

```
adf.test(wld[!is.na(wld)])
## Warning in adf.test(wld[!is.na(wld)]): p-value smaller than printed p-value

##
## Augmented Dickey-Fuller Test
##
## data: wld[!is.na(wld)]
## Dickey-Fuller = -4.8071, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
```

The p-value is less than 0.05 hence we accept null hypothesis. This means that the difference time series is stationary.

Find the best fit arima model

auto.arima finds the best fit ARIMA model the forecasting

```
\# differencing is set to 1 d=1
# if TRACE = TRUE prints out all models that have been tried
fit_arima = auto.arima(tsm_close,d=1,stepwise = FALSE,approximation = FALSE,trace = FALSE)
print(summary(fit_arima))
## Series: tsm_close
## ARIMA(1,1,0) with drift
##
## Coefficients:
##
            ar1
                  drift
##
         0.2193 0.8929
## s.e. 0.0863 0.3852
##
## sigma^2 = 12.17: log likelihood = -351.25
## AIC=708.51
                AICc=708.69
                              BIC=717.15
##
## Training set error measures:
##
                         ME
                                RMSE
                                                     MPE
                                                             MAPE
                                                                       MASE
                                          MAE
  Training set 0.003168336 3.449081 2.078593 -1.510854 5.428965 0.1884236
##
                      ACF1
## Training set -0.0149737
```

Residuals from ARIMA(1,1,0) with drift

checkresiduals(fit_arima,plot=TRUE)


```
## Ljung-Box test
##
## data: Residuals from ARIMA(1,1,0) with drift
## Q* = 29.309, df = 22, p-value = 0.1362
##
## Model df: 2. Total lags used: 24
```

Genarate a 24-month forecast using best fit ARIMA model

```
fcst = forecast(fit_arima, h=24,level=c(95))
autoplot(fcst)
```

Forecasts from ARIMA(1,1,0) with drift

