Théorie des Langages – Feuille nº 5

AUTOMATES FINIS ET LANGAGES RÉGULIERS

CORRECTION

Exercice 1 - Soit $\Sigma = \{a,b\}$. Soient les automates M_1 (à gauche) et M_2 (à droite) suivants. En utilisant le théorème d'Arden, donnez sous forme d'expressions régulières les langages $L(M_1)$ et $L(M_2)$.

Automate M₁

$$L_0 = aL_1 + bL_2$$

$$L_1 = aL_0 + \varepsilon$$

$$L_2 = aL_0 + bL_3$$

$$L_3 = bL_2$$

On commence par calculer L_3 , nécessaire pour calculer $L(M_1) = L_0$.

$$L_3 = bL_2$$

= $bbL_3 + baL_0$ $\varepsilon \notin bb$, le théorème d'Arden nous donne une solution unique
= $(bb)^*baL_0$

On calcule maintenant $\mathcal{L}(M_1) = L_0$.

$$L_0 = aL_1 + bL_2$$

$$= aaL_0 + a + baL_0 + bbL_3$$

$$= (aa + ba)L_0 + a + bb(bb)^*baL_0$$

$$= (aa + ba + bb(bb)^*ba)L_0 + a$$

$$= (aa + ba + bb(bb)^*ba)^*a$$

$$= (aa + (\epsilon + bb(bb)^*)ba)^*a$$

$$= (aa + (bb)^*ba)^*a$$

$$= (aa + (bb)^*ba)^*a$$

On obtient $\mathcal{L}(M_1) = (aa + (bb)^*ba)^*a$

$$L_0 = a(L_0 + L_1) + bL_2 + \varepsilon$$

 $L_1 = bL_0$
 $L_2 = bL_3$
 $L_3 = aL_0$

On calcule $\mathcal{L}(M_2) = L_0$.

$$L_0 = a(L_0 + L_1) + bL_2 + \varepsilon$$

$$= aL_0 + abL_0 + bbL_3 + \varepsilon$$

$$= aL_0 + abL_0 + bbaL_0 + \varepsilon$$

$$= (a + ab + bba)L_0 + \varepsilon \qquad \varepsilon \notin (a + ab + bba), \text{ Arden solution unique}$$

$$= (a + ab + bba)^*$$

On obtient $\mathcal{L}(M_2) = (a + ab + bba)^*$

Exercice 2 - Soit $\Sigma = \{a,b\}$. Soit l'automate M suivant. Montrez, en utilisant le théorème d'Arden, que $L(M) = (aa^*b)^*$

$$L_0 = aL_1 + aL_2 + \varepsilon$$

$$L_1 = bL_0$$

$$L_2 = aL_2 + aL_1$$

On commence par calculer L_2 , nécessaire pour calculer $L(M) = L_0$.

$$L_2 = aL_2 + aL_1$$
 $\varepsilon \notin a$, le théorème d'Arden nous donne une solution unique $= a^*aL_1$

On calcule maintenant $L(M) = L_0$.

$$L_0 = aL_1 + aL_2 + \varepsilon$$

$$= abL_0 + a^*aL_1 + \varepsilon$$

$$= abL_0 + a^*abL_0 + \varepsilon$$

$$= (ab + a^*ab)L_0 + \varepsilon \quad \varepsilon \not\in (ab + a^*ab), \text{ Arden solution unique}$$

$$= (ab + a^*ab)^* \quad \text{on simplifie}$$

$$= ((\varepsilon + aa^*)ab)^*$$

$$= (a^*ab)^* = (aa^*b)^*$$

Exercice 3 - Par la méthode d'élimination des états, donnez les expressions régulières équivalentes aux automates suivants :

1. Automate M_1

Elimination des états 4 et 5 :

Elimination de l'état 2 :

Elimination de l'état 1 :

Elimination des états 0 et 3 :

2. Automate M_2 (à gauche) et automate M_3 (à droite)

Automate M₂

Elimination de l'état 1 :

Elimination des états 2 et 3 :

$$b + aa^*b (= a^*b)$$

$$(a+b)b^*a$$

Elimination de l'état 0 :

Automate M₃

Elimination de l'état 1 :

Elimination de l'état 3 :

$$\mathcal{L}(M_3) = (b+ab)(bb)^* + (a+bb)(bb)^*
= (b+a+bb+ab)(bb)^*
= (b+a)(\epsilon+b)(bb)^*
= (b+a)((bb)^* + b(bb)^*)
= (b+a)b^*$$