Homework

值迭代和策略迭代

在 Frozen Lake 环境中实现值迭代和策略迭代算法。环境及代码模板已在 VI_and_PI 文件夹中提供。

- 1. **(策略迭代)** 根据 vi_and_pi.py 中提供的代码文件实现 policy_evaluation 函数, policy_improvement 函数and policy_iteration 函数. 其中迭代停止的阈值 (即 $max_s|V_{old}(s)-V_{new}(s)|$) 被给定为 tol = 10^{-3} , 折扣因子 $\gamma=0.9$ 。
- 2. **(值迭代)** 根据 $vi_and_pi.py$ 中提供的代码文件实现 $value_iteration$.其中迭代停止的阈值被 给定为 $tol=10^{-3}$,折扣因子 $\gamma=0.9$ 。

Sarsa和Q-learning

在 Maze 环境中实现Sarsa和Q-learning算法。环境及代码模板已在 Sarsa_and_QLearning 文件夹中提供。在迷宫环境中,一个红色的智能体被初试化在一个大小为 4×4 的网格迷宫环境中。智能体仅仅只能观测到自己的位置信息。在每个时间步,智能体可以向上下左右四个方向移动。当智能体到达黄色网格处时获得+1的奖励值,到达黑色网格时获得-1的奖励值,其他情况下均不会获得奖励值。

- 1. (Sarsa) 在 RL_sarsa.py 中实现Sarsa算法。
- 2. (Q-learning) 在 RL_q_learning.py 中实现Q_learning算法。

DQN

在Atari中实现最基本的DQN算法。环境及代码模板已在 DQN_and_PG 文件夹中提供。Atari环境会返回大小为(height × width × channels)图片作为智能体的观测。而强化学习的观测一般是采用一维向量的形式,通常只需要利用全连接神经网络,算法就可以收敛。由于Atari环境返回的是图片,因此需要用CNN对图像信息预处理,并将处理完的信息reshape成一维向量的形式作为强化学习神经网络的输入。强化学习算法的评判标准主要有reward收敛值大小、reward收敛速度等。

1. **(DQN)** 在Atari PongNoFrameskip-v4 环境中实现DQN、Double DQN、Dueling DQN算法。环境最终的reward至少收敛至17.0。

Policy Gradient

在 cartpole 中实现policy gradient及其改进算法。环境及代码模板已在 DQN_and_PG 文件夹中提供。策略梯度更新公式如下:

$$abla_{ heta}J(heta) = \mathbb{E}_{\pi_{ heta}}[
abla_{ heta}log\pi_{ heta}(a|s)Q^{\pi_{ heta}(s,a)}]$$

1. **(REINFORCE)** 在 cartpole 环境中实现基本的REINFORCE算法,即使用蒙特卡洛采样 G_t 作为 $Q^{\pi_{\theta}(s,a)}$ 的无偏估计,更新公式如下:

$$J(heta) = rac{1}{\sum T_i} \sum_{i=1}^{|D|} \sum_{t=1}^{T_i} [log\pi_{ heta}(a_t^i|s_t^i)G_t^i],$$

其中, $\tau^i=(s^i_0,a^i_0,r^i_0,s^i_1,\ldots,s^i_{T_i},a^i_{T_i},r^i_{T_i})$,D是在环境中执行策略 π_θ 产生的所有轨迹的集合。最终算法性能的评判标准:环境最终的reward至少收敛至180.0。

2. **(A2C)** 在 CartPole 环境中实现A2C算法.最终算法性能的评判标准:环境最终的reward至少收敛至 180.0。

开悟

环境要求

```
tensorflow 1.x cpu 版
numpy
```

作业目录结构

- 1. kaiwu 目录为作业的开发目录,主要实现 exp_1.py 和 exp_2.py 的 _build_output_tensors 方 法
- 2. 每个作业提供了 frozen.pb 文件,可通过 netron 可视化完整的网络结构以及各个op与tensor的名字
- 3. exp_1.py 为作业1的代码文件, exp_2.py 为作业2的代码文件

作业

1. 通过 inference.py 生成 exp_1 和 expe_2 目录下的 checkpoint 和 frozen.pb 初始化 checkpoint 和 frozen.pb ,执行以下命令之后将会生成 exp_1 和 exp_2 目录以及相关文件

```
python inference.py init exp_1
python inference.py init exp_2
```

2. 作业

- 1. 在 exp_1.py 中使用 tensorflow 实现 loss 函数
- 2. 在 exp_2.py 中实现给定的网络结构,并成功加载 checkpoint 进行推理
- 3. 验证作业结果

通过 main.py 来验证 exp_1 和 exp_2 的结果是否正确

- 从代码文件加载测试的网络,从 frozen.pb 加载baseline
- 随机生成输入数据,分别使用测试网络和baseline得到运行结果,对比两者结果是否一致
- 重复10次
- 。 测试命令

```
python main.py test exp_1
python main.py test exp_2
```

4. 作业开发整体流程

o 每个作业都提供了 frozen.pb 文件, 该文件提供了整个网络所有 op 和 tensor 的描述,可以通过 netron 进行可视化查看

- o 按照 frozen.pb 的描述要求, 实现对应的网络代码 (相关名字定义要一致, 否则无法加载 checkpoint)
- 使用 main.py 进行测试

PS:

- 1. 不要求提交作业
- 2. 相关代码下载地址: https://github.com/ZYC9894/2022Al-Practice/tree/main/Homework
- 3. 相关环境的说明文档: https://www.gymlibrary.ml/
- 4. 参考答案: https://github.com/ZYC9894/2022Al Practice/tree/main/Answer