INFSCI 2595: Introduction to Machine Learning

Week 1: Introduction to regression

Regression deals with continuous responses

- In simple terms, a continuous variable is a decimal number
- More formally, the responses are real-valued, meaning there are an infinite number of real numbers within any given interval.
- Your trained model will output a prediction that can be any floating-point number
- The goal of regression is to find a continuous function that maps every possible value of the input to a corresponding output.
- We'll talk a lot about "linear regression," but you'll see that we are not limited to learning a simple linear trend

Let's work through a concrete, but heavily simplified example

- Recall that all relationships learned from data are approximations: $y \approx f(\mathbf{x})$
- However for this example only, let's create data where we know the ground truth - we will define the noise-free relationship between the single input variable and the response
- The true relationship will be a cubic function with the following 4 coefficients:

$$y = 1.2 + 7x + 3.2x^2 - x^3$$

$$\beta_{TRUE} = [1.2, 7, 3.2, -1]$$

The true relationship is cubic

- In reality, we never see the true, noise-free signal. It is hidden from us
- We see a corrupted signal, where datapoints differ from the ideal line due to chance and errors in measurement

• Remember this is **FAKE** data: no real-life process can be defined exactly, without error, by a mathematical expression

For this example, let's generate synthetic noisy samples based on the true trend

- Let us imagine that we have collected N=51 noisy observations
 - Denote the observed inputs as: $\mathbf{x} = \{x_1, x_2, \dots, x_N\}$
 - Denote the observed responses as: $\mathbf{y} = \{y_1, y_2, ..., y_N\}$
- Thus we collect N = 51 input-output pairs:

$$\{x_n, y_n\} \Big|_{n=1}^{N=51}$$

Since this is a toy problem, all the observations have been created using random number generators

- During the next portion of the course, we will discuss how these points can be generated from the parameterized function
- For now, just imagine that the 51 input-output pairs have been collected independently

If the true trend were not shown, can you immediately tell the "true relationship"?

Scatter plot showing the 51 noisy observations as black markers. Truth is still displayed as the red parabola

Now let's assume we do not know the truth, and all we have are the inputs and their corresponding outputs

- We want to $\underline{\mathsf{train}}$ or $\underline{\mathsf{fit}}$ a model between the response y and the input x
- We will start out with a simple linear relationship (we don't know that it's cubic yet!)

$$y = \beta_0 + \beta_1 x + \text{error}$$

- Always learning approximations you must expect and account for error
- The task of machine learning is to estimate the values of the parameters from the data by minimizing the observed error between the model's predictions and the true labels

We will discuss the exact details of the learning process later in the semester

- For now, let's make use of R's packages to handle the math and statistics
- Data is stored in an object called df which contains two columns (variables) named \boldsymbol{x} and \boldsymbol{y}
- Fit a linear relationship in R using the lm() function and the formula interface.

Print out a few rows of the df object to show the variables we are working with

- The RFDS book has an excellent introduction to dplyr and the pipe operator |> (or, %>%)
- Here we are using dplyr to select the columns named "x" and "y", and then slice off the first 10 rows

Fit the linear model with lm()

The assignment operator <- assigns an object to a variable

Set the data argument to df

lin_mod <- lm(formula =
$$y \sim x$$
, data = df)

Formula interface allows you to specify the response and inputs (more formally the predictors) to the model.

Basic expression: <output variable names> ~ <input variable name>

Read the expression as: "the output, y, is a function of the input, x"

Summarize the results of the model training with

lin_mod <- lm(formula = y ~ x, data = df)
lin_mod |> summary()

summary()

```
Call:
lm(formula = y \sim x, data = df)
Residuals:
  Min
        1Q Median 3Q Max
-40.55 -28.40 1.31 19.59 99.31
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                        4.550 6.358 6.55e-08 ***
(Intercept) 28.933
         \beta_1 -8.592
                        1.546 -5.559 1.11e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 32.5 on 49 degrees of freedom
Multiple R-squared: 0.3867, Adjusted R-squared: 0.3742
F-statistic: 30.9 on 1 and 49 DF, p-value: 1.112e-06
```

Visualize the learned model parameters with coefplot()

We say that a variable is statistically significant if its confidence interval does not overlap with 0

What if we wanted to try a quadratic model instead? We only need to change the formula

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \text{error}$$

quad_mod <- $lm(formula = y \sim x + I(x^2), data = df)$ Call:

 $lm(formula = y2 \sim x + I(x^2), data = df)$

Residuals:

Min 1Q Median -53.898 -19.667 0.543 18.538 50.016

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -6.9655 5.6914 -1.224 1.2884 -6.317 8.21e-08 *** -8.1389 4.2616 0.4896 $I(x^2)$ 8.704 1.94e-11 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 27.09 on 48 degrees of freedom Multiple R-squared: 0.7067, Adjusted R-squared: 0.6945

F-statistic: 57.83 on 2 and 48 DF, p-value: 1.64e-13

Finally, let's fit a cubic model (which we know represents the true trend)

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \text{error}$$

cubic_mod <- $lm(formula = y \sim x + I(x^2) + I(x^3), data = df)$

```
Call:
lm(formula = y2 \sim x + I(x^2) + I(x^3), data = df)
Residuals:
   Min
            1Q Median
                                 Max
-43.883 -16.347 -2.341 13.735 36.013
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.9655
                       4.0607 -1.715 0.09287 .
      6.3693 2.3013 2.768 0.00805 **
                     0.3493 12.200 3.59e-16 ***
I(x^2) 4.2616
I(x^3)
            -0.9305
                       0.1353 -6.877 1.26e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 19.33 on 47 degrees of freedom
Multiple R-squared: 0.8538, Adjusted R-squared: 0.8445
F-statistic: 91.5 on 3 and 47 DF, p-value: < 2.2e-16
```


We know the cubic model is correct because it learns exactly the same parameters as we used to generate the data!

...but this is a toy problem, we shouldn't know the "true" values

- We need a <u>performance metric</u> to decide which of the models we've tested is the best for our data
- Remember we stated that the coefficients are estimated by minimizing the error.
- Specifically, the sum of squared errors between the model and the observations (this is where the phrase Least Squares comes from!)

Regression performance metrics

- A natural choice for the performance metric in regression problems is the Mean Squared Error (MSE).
 - The mean or average squared error across all observations.
 - The MSE is not in the same units as the response,
- Take the square root of the MSE to put the performance metric in the same units as the response
- So, it is common to consider the square Root Mean Squared Error (RMSE)
 as a performance metric.
- Alternatively, we could also consider the Mean Absolute Error (MAE).

Why should we stop at a degree three polynomial?

- If we did not know the true trend, we could not be sure that a higher degree polynomial might not be a better fit to the data.
- Let's compare a total of 9 models, from a degree 0 or intercept-only model, to an 8-degree polynomial.

Why should we stop at a degree three polynomial?

```
intercept_mod <- lm(formula = y \sim x, data = df)
deg4\_mod \leftarrow lm(formula = y \sim x + I(x^2) + I(x^3) + I(x^4), data = df)
deg5\_mod \leftarrow lm(formula = y \sim x + I(x^2) + I(x^3) + I(x^4) + I(x^5), data = df)
deg6\_mod <- lm(formula = y \sim x + I(x^2) + I(x^3) + I(x^4) + I(x^5) + I(x^6), data = df)
deg7\_mod <- lm(formula = y \sim x + I(x^2) + I(x^3) + I(x^4) + I(x^5) + I(x^6) + I(x^7), data = df)
deg8\_mod <- lm(formula = y \sim x + I(x^2) + I(x^3) + I(x^4) + I(x^5) + I(x^6) + I(x^7) + I(x^8), data = df)
model_rmses <- purrr::map2_dfr(list(intercept_mod, lin_mod, quad_mod, cubic_mod,</pre>
                      deg4_mod, deg5_mod, deg6_mod, deg7_mod, deg8_mod),
                0:8,
                function(m, p, data_use){
                  list(poly_degree = p,
                        RMSE = modelr::rmse(m, data_use))
                data\_use = df
model_rmses |> ggplot(aes(x=poly_degree,y=RMSE)) +
 geom_point() +
  geom_line() +
  labs(title="RMSEs for Polynomials of degree 0 to 8")
```


Visualize the predictive trends for all models

How well do the predicted values correlate with the true responses?

Predicted vs Observed Response Plots

Cubic_mod deg4_mod deg5_mod

• The R^2 performance metric measures the correlation coefficient between predicted and observed responses

What happens to these performance metrics as the model complexity increases? Try a degree 20 polynomial

The predicted and observed responses are still highly correlated, and R2 is slightly higher than the smaller models...

What happens to these performance metrics as the model complexity increases? Try a degree 20 polynomial

But the pattern we fit is highly variable, and seems to be fitting to the noise instead of the true signal!