章节 08 - 09 函子与自然变换

LATEX Definitions are here.

一些特殊的范畴

现在规定几种特殊的范畴。

- 离散范畴: 只有对象不含箭头(恒等箭头除外)的范畴。
- Set: **所有集合构成的范畴**, 为局部小范畴, 满足
 - Set 中对象为任意集合;
 - Set 中箭头为集合间映射。
- Cat: 所有范畴构成的范畴, 满足
 - Cat 中任何对象都构成一个范畴;
 - Cat 中任何箭头都构成一个函子。

若 C, D 为 Cat 中对象,则:

- C^{op}: **反范畴**,满足
 - C^{op} 中对象皆形如 c,
 c 为任意 C 中的对象;
 - C^{op} 中箭头皆形如 $i^{\mathrm{op}}:\mathsf{c}_2\stackrel{\mathsf{C}^{\mathrm{op}}}{\longrightarrow}\mathsf{c}_1$, $i:\mathsf{c}_1\stackrel{\mathsf{C}}{\to}\mathsf{c}_2$ 可为任意 C 中的箭头 。
- C × D: **积范畴**,满足
 - C^{Cat} D 中对象皆形如 c . d ,
 c , d 分别为任意 C , D 中的对象 ;
 - C × D 中箭头皆形如 *i* . *j* ,
 i , *j* 分别为任意 C , D 中的箭头 。
- C → D: 所有 C 到 D 的函子的范畴 , 满足
 - C
 —→ D 中任何对象
 都是 C 到 D 的函子;
 - $C \xrightarrow{Cat} D$ 中任何箭头都是函子间自然变换。
- C/c: **俯范畴**, 这里 c 为任意 C 中对象; 满足
 - C/c 中对象皆形如 x 1 · i , 其中 x 和
 i : x → c 分别为 C 中任意的对象和箭头 ;
 - c/C 中箭头皆形如 f_1 元 id 且满足下述交换图, 其中 x_1 , x_2 为 C 中任意对象且 f_1 , i_1 , i_2 为 C 中任意箭头;

- c/C: **仰范畴**, 这里 c 为任意 C 中对象; 满足
 - c/C 中对象皆形如 1.x.i, 其中 x 和 $i: c \xrightarrow{c} x$ 分别为 C 中任意的对象和箭头;
 - C/c 中箭头皆形如 g_1 且满足下述交换图,其中 x_1 , x_2 为 C 中任意对象且 g_1 , i_1 , i_2 为 C 中任意箭头;

函子

接下来我们来提供函子的正式定义:

- $P_1:\mathsf{C}\overset{\mathsf{Cat}}{\longrightarrow}\mathsf{D}$ 为**函子**当且仅当
 - 对任意 C 中对象 c , c P_1 为 D 中对象且 :cid $P_1 = :$ c P_1 id ;
 - 对任意 C 中箭头 $i_1: \mathsf{c}_1 \overset{\mathsf{c}}{\to} \mathsf{c}_2$ 和 $i_2: \mathsf{c}_2 \overset{\mathsf{c}}{\to} \mathsf{c}_3$, 始终都有等式 $(i_1 \overset{\mathsf{c}}{\circ} i_2) P_1 = i_1 P_1 \overset{\mathsf{D}}{\circ} i_2 P_1$ 成立。

函子的复合运算

若知道 $P_1:\mathsf{C}\stackrel{\mathsf{Cat}}{\longrightarrow}\mathsf{D}$ 构成函子且 还知道 $Q_1:\mathsf{D}\stackrel{\mathsf{Cat}}{\longrightarrow}\mathsf{E}$ 为函子 , 则

• $P_1 \overset{\mathsf{Cat}}{\circ} Q_1 : \mathsf{C} \overset{\mathsf{Cat}}{\longrightarrow} \mathsf{E}$ 也构成一个函子。

恒等函子

对于函子我们也有恒等映射,即:

$$\begin{array}{ll} \bullet & {}_{:\mathsf{C}}\mathrm{id} \overset{\mathsf{Cat}}{\circ} P_1 = P_1 \\ & = P_1 \overset{\mathsf{Cat}}{\circ} {}_{:\mathsf{D}}\mathrm{id} \end{array}$$

忠实,完全和本质满函子

若 C, D, E 皆为局部小范畴,则

- P_1 是**忠实的**当且仅当对任意 C 中的对象 c_1 , c_2 $(c_1 \overset{c}{\rightarrow} c_2)$ 与 $(c_1 P_1 \overset{D}{\rightarrow} c_2 P_1)$ 之间始终存在单射 ;
- P_1 是**完全的**当且仅当对任意 C 中的对象 c_1 , c_2 $(c_1 \overset{c}{\rightarrow} c_2)$ 与 $(c_1 P_1 \overset{D}{\rightarrow} c_2 P_1)$ 之间始终存在满射 ;
- P_1 是**完全忠实的**当且仅当任意 C 中对象 c_1 , c_2 $(c_1 \overset{\mathsf{C}}{\to} c_2)$ 与 $(c_1 P_1 \overset{\mathsf{D}}{\to} c_2 P_1)$ 之间始终存在双射 。

(i) Note

刚才提到的"单/满/双射"针对的都是范畴的箭头部分。

• P_1 是**本质满的**当且仅当对任意 D 中对象 d 都存在 C 中对象 c 使 c $P_1 \stackrel{\mathsf{D}}{\to} \mathsf{d}$ 之间有双射 。

根据刚才的信息我们不难得知

- 若 P_1 , Q_1 为忠实函子则 $P_1 \circ Q_1$ 为忠实函子 ;
- 若 P_1 , Q_1 为完全函子则 $P_1 \circ Q_1$ 为完全函子 ;
- 若 P_1 , Q_1 为完全忠实函子 则 $P_1 \circ Q_1$ 为完全忠实函子 ;
- 若 $P_1 \overset{\mathsf{Cat}}{\circ} Q_1$ 为完全忠实函子 且知道 Q_1 为完全忠实函子 则可知 P_1 为完全忠实函子;
- 若 P_1 , Q_1 为本质满函子则 $P_1 \circ Q_1$ 为本质满函子 。

自然变换

如果还知道 $P_2:\mathsf{C}\overset{\mathsf{Cat}}{\longrightarrow}\mathsf{D}$ 为函子 , 那么

 $\eta_1: P_1 \stackrel{\mathsf{C} \overset{\mathsf{Cat}}{\longrightarrow} \mathsf{D}}{\longrightarrow} P_2$ 为自然变换当且仅当对任意 C 中对象 x₁, x₂ 始终都会有下述交换图成立:

自然变换的复合

若已知 $\eta_1: P_1 \xrightarrow{\operatorname{C} \xrightarrow{\operatorname{Cat}} \operatorname{D}} P_2$ 构成自然变换且还知道 $\eta_2: P_2 \xrightarrow{\operatorname{C} \xrightarrow{\operatorname{Cat}} \operatorname{D}} P_3$ 为自然变换则有 • $\eta_1 \xrightarrow{\operatorname{C} \xrightarrow{\operatorname{C} \xrightarrow{\operatorname{at}} \operatorname{D}} \operatorname{D}} \eta_2: P_1 \xrightarrow{\operatorname{C} \xrightarrow{\operatorname{C} \xrightarrow{\operatorname{D}} \operatorname{D}}} P_2$ 为自然变换,

称作 η_1 和 η_2 的**纵复合** 。

如果还知道 $Q_2:$ D $\xrightarrow{\mathsf{Cat}}$ E 也是个函子 及自然变换 $\theta_1:Q_1 \xrightarrow{\mathsf{D} \longrightarrow \mathsf{E}} Q_2$, 那么有

• $\eta_1 \circ \theta_1 : P_1 \overset{\mathsf{Cat}}{\circ} Q_1 \overset{\mathsf{C} \overset{\mathsf{Cat}}{\longrightarrow} \mathsf{E}}{\longrightarrow} P_2 \overset{\mathsf{Cat}}{\circ} Q_2$ 为 自然变换 , 称作 η_1 和 θ_1 的**横复合** 。

若 $heta_2:Q_2 \stackrel{\mathsf{D}\overset{\mathsf{C}_{\mathsf{at}}}{\longrightarrow}\mathsf{E}}{\longrightarrow} Q_3$ 为自然变换则

 $\bullet \quad (\eta_1 \circ \theta_1) \overset{\mathsf{C} \overset{\mathsf{Cat}}{\longrightarrow} \mathsf{E}}{\circ} (\eta_2 \circ \theta_2) = (\eta_1 \overset{\mathsf{C} \overset{\mathsf{Cat}}{\longrightarrow} \mathsf{D}}{\circ} \eta_2) \circ (\theta_1 \overset{\mathsf{D} \overset{\mathsf{Cat}}{\longrightarrow} \mathsf{E}}{\circ} \theta_2) \, ,$ 即便改变了横纵复合的先后顺序也不会影响最终结果。

恒等自然变换

同样对于自然变换也有恒等映射。

• $:P_1$ $\mathrm{id}:P_1 \xrightarrow{\mathsf{C} \overset{\mathsf{Cat}}{\longrightarrow} \mathsf{D}} P_1$ 为恒等自然变换当且仅当对范畴 C 中任意对象 x 有下述交换图成立:

自然同构

自然同构与你想象中的同构不太像。

• $\eta_1:P_1 \xrightarrow{\operatorname{c} \overset{\operatorname{Cat}}{\longrightarrow} \operatorname{D}} P_2$ 为**自然同构**当且仅当 $\operatorname{x}^{\eta_1}$ 总是同构,这里 x 为任意 C 中对象。此时 P_1 , P_2 的关系可用 $P_1 \cong P_2$ 表示

范畴等价的定义

我们用自然同构来定义范畴的等价。