Relational Logic: Syntax & Semantic

Source: Computational Logic Lecture Notes Stanford University

IF2121 Computational Logic 2023/2024

Informatics Engineering Study Program School of Electrical Engineering and Informatics ITB

Contents

- Review
- ▶ Relational Logic → Introduction

Review

- ightharpoonup Reasoning: information \rightarrow conclusion
- Computational Logic
 - Propositional Logic:
 - ▶ Syntax → Simple sentence, Compound Sentence
 - ▶ [something] is [anything]: [something] → [anything]
 - ▶ Semantics → interpretation, evaluation, reverse evaluation, types of compound sentence
 - Logical Entailment :
 - □ Semantic Reasoning → Two tables, Validity Checking, Unsatisfiability Checking
 - □ Proof Method → Rules of Inference, Axiom Schemata, Propositional Resolution
 - ▶ Relational Logic → Today

Propositional Logic vs Relational Logic

- Constants refer to atomic propositions/ logical constants.
 raining snowing wet
- Compound sentences capture relationships among propositions
 raining V snowing ⇒ wet
- How to represent general concepts??
 In Propositional Logic:
 - I. If Ali knows Budi, then Budi knows Ali (a \rightarrow b)
 - 2. Ali knows Budi (a)
 - 3. Conclusion by Modus Ponens: Budi knows Ali (b)
 - What if we want to say something more general, such as If person I knows person II, then person II knows person I
 - In Relational Logic: $\forall x,y \text{ (knows(x,y) } \rightarrow \text{knows(y,x))}$

Relational Logic Syntax

Two new vocabularies:

- Variables: begin with letters from the end of the alphabet
- Constants:
 - \triangleright begin with either alphabetic letters (other than u,v, w, x, y, z),
 - mathematical characters (+, -, etc.),
 - or digits
- **Example:**
 - \rightarrow u, v, w, x, y, z \rightarrow ???
 - ▶ a, b, c, arthur, betty, cathy, 1, 2, ... \rightarrow ???

Relational Logic Syntax (2): Constants

- Object constants refer to objects in the universe of discourse.
- Function constants denote functions.
 - father, mother, age, plus, times
- Relation constants refer to relations.
 - person, happy, parent, loves
- There is no syntactic distinction between object constants, function constants, and relation constants. The type of each such word is determined from context

Relational Logic Syntax (3): Arity

- ▶ The arity of a function constant or a relation constant is the number of arguments it takes.
 - Unary Function constants: father I, mother
 - ▶ Binary Function constants: plus2, times2
 - ► Ternary Function constants: price3
 - Unary Relation constants: person I, happy I
 - ▶ Binary Relation constants: parent2, loves2
 - ▶ Ternary Relation constants: between3
- The arity of a function constant or a relation constant is optionally notated as a subscript on the constant

Relational Logic Syntax (4): Term

- A term is either a variable, an object constant, or a functional term.
- ▶ Terms refer to items in the universe of discourse.
- Terms are analogous to noun phrases in natural language.

Functional Terms

- A functional term is an expression formed from an nary function constant and n terms enclosed in parentheses and separated by commas.
 - father I (joe)
 - age I (joe)
 - plus2(x,2)
- Functional terms are terms and, as such, can be nested.
 - plus2(age I (father I (joe)), age I (mother I (joe)))

Relational Logic Syntax (5): Sentences

▶ There are three types of sentences:

- Relational sentences analogous to the simple sentences in Propositional Logic
- Logical sentences analogous to the compound sentences in Propositional Logic
- Quantified sentences sentences that express the significance of variables

Relational Sentences

- A relational sentence is an expression formed from an n-ary relation constant and n terms enclosed in parentheses and separated by commas.
 - happy_I(art)
 - loves₂(art,cathy)
- Relational sentences are not terms and cannot be nested in terms or relational sentences.

```
happy<sub>1</sub>(person<sub>1</sub>(joe)) --> WRONG
```

Should be written:

```
happy<sub>1</sub>(joe)
person<sub>1</sub>(joe)
```

Logical Sentences

- Logical sentences in Relational Logic are analogous to those in Propositional Logic (Compound Sentences).
 - ▶ ¬loves(art,cathy)
 - ▶ (loves(art,betty) ∧ loves(betty,art))
 - (loves(art,betty) \(\) loves(art,cathy))
 - \rightarrow (loves(x,y) \Rightarrow loves(y,x))
 - \blacktriangleright (loves(x,y) \Leftarrow loves(y,x))
 - \blacktriangleright (loves(x,y) \Leftrightarrow loves(y,x))
- Parenthesization rules are the same as for Propositional Logic

Quantified Sentences

Quantified sentences can be nested within other sentences.

```
\forall x.(apple(x) \lor \exists x.pear(x))
\forall x. \forall y.loves(x,y)
```

- Universally quantified sentences:
 - is used to assert that all objects have a certain property
 - $\forall x.p(x)$
- Existentially quantified sentences:
 - is used to assert that some object has a certain property
 - → ∃ x.p(x)

Other Sentences

- A sentence is ground if and only if it contains no variables
 - Example:
 - Ground Sentence: human(joe)
 - Not Ground Sentence: ∀x.human(x)
- A sentence is open if and only if it has free variables (iff it is not in the scope of a quantifier of that variable)
 - **Example:**
 - ▶ $p(y) \rightarrow \exists x.q(x,y)$ - > Open sentence since y is a free variable
 - ▶ $\forall y.(p(y) \rightarrow \exists x.q(x,y))$ - > Close sentence since x & y are bound

Reminder

- Variables
- ▶ Constants: Object, [Functional, Relational] → has arguments (n-ary)
- ► Term: variables, object constants, functional terms → noun phrase in natural language
- Sentence: relational, logical, quantified
- Functional Term vs Relational Sentence:
 - Functional terms may be used within other functional terms.
 - Functional terms may be used within relational sentences.
 - Relational sentences may not be used in functional terms.
 - Relational sentences may not be used in relational sentences.

Natural Language Representation

- $\forall x.P(x)$ For all x, x is P
- ~∀x.P(x)Not all x are P.Some x are P.
- ► $\forall x. \sim P(x)$ All x are not P.

Natural Language Representation(2)

- $\exists x.P(x)$ Some x is P
- ► $\exists x. \sim P(x)$ Some x is not P
- ∀x. ∃y.P(x,y)
 For all x, there is y such that P

Natural Language Representation(3)

- ∀x.(P(x) → Q(x))For all x, all P are QAll P is Q
- ∀x.(P(x) → ~Q(x))
 For all x, no P are Q
 No P is Q
- ∃x.(P(x) ∧ Q(x))
 For some x, x are P and Q
 Some P is Q
- ∃x.(P(x) ∧ ~Q(x))
 For some x, x are P and not Q
 Some P is not Q

Examples

- All human is mortal.
 - If a thing is human, then it is mortal.
 - $\forall x.(human(x) \rightarrow mortal(x))$
- Purple mushrooms are poisonous.
 - If a thing is a purple mushroom, then it is poisonous.
 - If a thing is mushroom and it is purple, then it is poisonous.

 $\forall x.(mushroom(x) \land purple(x) \rightarrow poisonous(x))$

Exercise 1

Given:

- Object Constants: art, betty, cathy
- Functional Constants: father₁, mother₁, age₁, plus₂, times₂
- Relational Constants: person₁, sad₁, reflexive₁, parent₂, loves₂, friends₂,

Syntax Test:

20

- friends(father(art),betty)
- friends(mother(art), friends(father(art), betty))
- 3. sad(person(cathy))
- 4. $loves(x,y) \rightarrow loves(y,x)$
- 5. reflexive(z) \rightarrow z(x,x)

Exercise 2

- Apakah ekpresi logika relasional di bawah ini legal atau tidak? Jika tidak, jelaskan dimana letak kesalahannya dan mengapa, dengan ketentuan variabel dan konstanta sebagai berikut:
- variables: x, y, z
- object constants: patrick, joe, kevinKW, PR, cemilan
- function constants: mother, anak, plus
- relational constants dengan aritas satu: hantu, biru, ramah, senang, sepupu
- relational constants dengan aritas dua: takutpada, suka, mengerjakan, teman

Exercise 2 (2)

- (a) ~suka(joe, PR) ∨ mengerjakan(joe, PR)
- (b) $plus(joe, z) \rightarrow suka(mother(kevinKW), joe)$
- (c) $hantu(x) \land ramah(x) \rightarrow patrick(x)$
- (d) \sim senang(z) \wedge takutpada(kevinKW, anak(sepupu(patrick)))
- (e) biru(mother(anak(patrick))) ∨ ramah(anak(mother(kevinKW)))⇔senang(joe)
- (f) suka(joe, cemilan) \land suka(kevinKW, cemilan) \rightarrow teman(kevinKW)
- (g) takutpada(joe, sepupu(patrick))
- (h) teman(patrick, joe) ∧ ~takutpada(kevinKW, hantu(patrick))
- (i) suka(kevinKW, mother(x)) \land teman(kevinKW, x) \rightarrow hantu(x) \land biru(y)
- (j) $plus(mother(anak(z)), anak(anak(anak(cemilan)))) \land plus(joe, kevinKW)$

Relational Logic Semantics

- Review Propositional Logic Semantic:
 - A Propositional logic *interpretation* is an association between the propositional constants in a propositional language and the truth values T or F
- The big question: what is a relational logic interpretation?
- There are no propositional constants, just object constants, function constants, and relation constants.
- To what do they refer?

Introduction to Relational Logic Semantic

- Modeling the World
 - Objects, Functions, Relations
 - Data
 - Models
- Semantics of Relational Logic
 - Atomic Sentences
 - Logical Sentences
 - Quantified Sentences

Exercise 3: Translate into FOL

Relation Constants:

- person(x)
- femur(x)
- leg(x)
- eye(x)
- has(x, y)

- heart(x)
- sinus_rhythm(x)
- seeing(x)
- living(x)
- rhythm(x)
- regular(x)
- differ(x,y): x and y are different
- a) All femurs are part of some legs
- b) All living hearts have a rhythm
- c) Not all eyes are seeing
- d) All people have two eyes

Exercise 4: Translate into FOL

Relation Constants:

- person(x)
- child(x)
- parent(x,y): x is the parent of y

- male(x)
- female(x)
- ancestor(x,y): x is the ancestor of y
- sibling(x,y)
- differ(x,y): x and y are different
- a) All people have two parents
- b) No person is both male and female
- All people have one male parent and one female parent
- One child is a sibling of another if they both have the same two parents

THANK YOU