Algorithmique Avancée

Michèle Soria

Michele.Soria@lip6.fr

Master Informatique M1-STL

http://www-master.ufr-info-p6.jussieu.fr/2009 http://www-master.ufr-info-p6.jussieu.fr/2009/algav

Année 2009-2010

1/1

Michèle Soria

Algorithmique Avancée

Plan du cours

Objectifs : Complexité des algorithmes \rightarrow Comparer, Optimiser

- Structures de données avancées
 - Files de priorités : Files Binomiales et Fibonacci
 - Recherche : Arbres équilibrés et méthodes de Hachage
 - o coût amorti et coût moyen
- Algorithmique géométrique
 - Enveloppe convexe, statique et dynamique
 - Distances minimales
 - Analyse et implantation
- Algorithmes de compression
 - Compression statistique et compression par dictionnaires
 - Compression par dictionnaires
 - Applications

Organisation

• L'équipe pédagogique :

Cours : Michèle Soria (me 10h45)

• **TD-TME**: G1 (lu 13h30): Maryse Pelletier G2 (ma 13h30): Philippe Trébuchet G3 (me 13h30): Philippe Aubry

L'organisation :

- 10 semaines (TDs décalés d'une semaine vs cours)
- Session 1
 - ecrit réparti 1 (E1) : semaine du 9 Novembre
 - fin des enseignements le 5 décembre
 - ecrit réparti 2 (E2) : semaine du 14 décembre
 - note Session 1 = 0.2 E1 + 0.2 TP + 0.6 E2
- Session 2
 - examen Session 2 (SS): en janvier
 - note Session 2 = SS

2/1 Michèle Soria Algorithmique Avancée

Bibliographie

- T. Cormen, C. Leiserson, R. Rivest, C. Stein *Introduction à l'algorithmique*,
- C. Froidevaux, M-C. Gaudel, M. Soria
 Types de données et algorithmes
- D. Beauquier, J. Berstel, P. Chrétienne Eléments d'algorithmique
- D. Salomon
 Data Compression: The Complete Reference

3/1 Michèle Soria Algorithmique Avancée 4/1 Michèle Soria Algorithmique Avancée

Plan Cours 1-2

CHAPITRE 0 : Introduction, Complexité des algorithmes

- Classification de problèmes
- Analyse d'algorithmes
- Cas pire, cas moyen, coût amorti

CHAPITRE 1 : Files de Priorités : binomiales et Fibonacci

- Opérations sur les files de priorités
- Arbres binomiaux : définition et propriétés
- Files binomiales : définition et propriétés
- Union de 2 files binomiales en temps logarithmique
- Autres opérations sur les files binomiales
- Analyse en Coût amorti

5/1

Michèle Soria

Algorithmique Avancée

Opérations sur les files de priorités

Ensemble d'éléments

- Chaque élément a une clé
- Ordre total sur les clés

Opérations

- Ajouter un élément
- Supprimer l'élément de clé minimale
- Union de 2 files de priorités
- Construction
- Modification d'une clé

Complexité des algorithmes

- Théorie de la complexité et classification de problèmes
- Problèmes pôlynomiaux : tri, recherche, géométrie, arithmétique, ...
- Analyse des algorithmes
- Coût (temps, espace) fonction de la taille des données
- Cas pire, cas moyen, coût amorti
- Ordre de grandeur

6/

Michele Sol

Algorithmique Avancée

Représentations et Efficacité

Nombre de comparaisons dans le pire des cas

	Liste triée	Tas (Heap)	File Binomiale
Supp Min (n)	<i>O</i> (1)	<i>O</i> (log <i>n</i>)	<i>O</i> (log <i>n</i>)
Ajout (n)	<i>O</i> (<i>n</i>)	O(log n)	O(log n)
Construction (n)	$O(n^2)$	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)
Union (n, m)	O(n+m)	O(n+m)	$O(\log(n+m))$

Applications des Files de priorité

- Tri heapsort
- Sur les graphes
 - plus court chemin à partir d'une source (Dijkstra)
 - plus court chemin entre tous les couples de sommets (Johnson)
 - arbre couvrant minimal (Prim)
- Interclassement de listes triées
- Code de Huffmann (compression)

9/1

Michèle Soria

Algorithmique Avancée

Arbre binomial - Propriétés

Propriétés de B_k , $(k \ge 0)$

- \bigcirc B_k a 2^k nœuds
- 2 B_k a $2^k 1$ arêtes
- \bigcirc B_k a hauteur k
- Le degré à la racine est k
- **5** Le nombre de nœuds à profondeur i est $\binom{k}{i}$
- **1** La forêt à la racine de B_k est $< B_{k-1}, B_{k-2}, \dots, B_1, B_0 >$

Arbre binomial- Définition

Un arbre binomial pour chaque entier positif.

Définition par récurrence

- B₀ est l'arbre réduit à un seul nœud,
- Étant donnés 2 arbres binomiaux B_k , on obtient B_{k+1} en faisant de l'un des B_k le premier fils à la racine de l'autre B_k .

Exemples: dessiner B_0 , B_1 , B_2 , B_3 , B_4

10/1

Michele Sor

Algorithmique Avancée

Arbre binomial - Preuves

- $n_0 = 1 \text{ et } n_k = 2n_{k-1}$
- 2 arbre : x nœuds $\Rightarrow x 1$ arêtes
- \bullet $h_0 = 0$ et $h_k = 1 + h_{k-1}$
- $0_0 = 0 \text{ et } d_k = 1 + d_{k-1}$
- **5** $n_{k,0} = 1$, $n_{k,l} = 0$ pour l > k, et $n_{k,i} = n_{k-1,i} + n_{k-1,i-1}$, pour i = 1, ..., k
- o propriété de décomposition, par récurrence sur k

12/1

File Binomiale

Tournoi Binomial

Un *tournoi binomial* est un arbre binomial étiqueté croissant (croissance sur tout chemin de la racine aux feuilles)

File Binomiale

Une *file binomiale* est une suite de tournois binomiaux de tailles strictement décroissantes

Exemples:

- $FB_{12} = \langle TB_3, TB_2 \rangle$,
- $FB_7 = \langle TB_2, TB_1, TB_0 \rangle$

13/1

Michele Soria

Algorithmique Avancée

File binomiale - Propriétes

Propriétés de FB_n

- \bullet FB_n a n nœuds
- ② FB_n a $n \nu(n)$ arêtes
- **3** Le plus grand arbre de la file est $B_{\lfloor \log_2 n \rfloor}$ (hauteur $\lfloor \log_2 n \rfloor$ et nombre de nœuds $2^{\lfloor \log_2 n \rfloor}$)
- Le nombre d'arbres de la file est $\nu(n)$ (avec $\nu(n) \le 1 + |\log_2 n|$)
- 5 Le minimum de la file est à la racine de l'un des arbres
- 2 $n-\nu(n)=\sum b_i(2^i-1),$

Représentation d'une file de priorité

Représentation d'une file de priorité \mathcal{P} de n éléments

- si $n = 2^k$, \mathcal{P} tournoi binomial
- sinon \mathcal{P} file binomiale, suite de tournois correspondants aux bits égaux à 1 dans la représentation binaire de n.

Représentation binaire de n

$$n = \sum_{i=0}^{\lfloor \log_2 n \rfloor} b_i 2^i, \qquad ext{avec} \qquad b_i \in \{0,1\}, \ b_{\lfloor \log_2 n \rfloor} = 1$$

 $\nu(n) = \sum_i b_i$: # bits à 1 dans représentation binaire de n.

14/1

Michele Sor

Algorithmique Avancée

Union de files binomiales

1 Union de 2 tournois de tailles différentes :

 $TB_{k1} \cup TB_{k2} \longrightarrow F_{2^{k1}+2^{k2}} = \langle TB_{k1}, TB_{k2} \rangle$ Exemple: $TB_1 \cup TB_2$

Union de 2 tournois de même taille :

 $TB_k \cup TB_{k'} \longrightarrow TB_{k+1}$, avec $rac(TB_{k+1}) = min(rac(TB_k), (rac(TB_{k'})))$ Exemple : $TB_2 \cup TB_2'$

10 Union de 2 files binomiales $\equiv \equiv$ addition binaire Exemple : $FB_5 \cup FB_7$

Union de deux files

- interclasser les 2 files en partant des tournois de degré minimum
- 2 lorsque 2 tournois de taille k on engendre un tournoi de taille k + 1
- à chaque étape au plus 3 tournois de même taille à fusionner (1 dans chacune des files + 1 retenue de la fusion à l'étape précédente)
- Iorsque 3 tournois de taille k on en retient 2 pour engendrer un tournoi de taille k + 1, et l'on garde le troisième comme tournoi de taille k.

17/1

Michèle Soria

Algorithmique Avancée

Primitives sur les files binomiales

 $EstVide: FileB \rightarrow booleen$

renvoie vrai ssi la file est vide

MinDeg: FileB → TournoiB

renvoie le tournoi de degré minimal de la file

Reste : FileB → FileB

renvoie la file privée de son tournoi de degré minimal

AjoutMin : TournoiB * FileB → FileB

hypothèse : le tournoi est de degré inférieur au MinDeg de la

file

19/1

renvoie la file obtenue en ajoutant le tournoi comme tournoi de degré minimal de la file initiale

Primitives sur les tournois binomiaux

 $EstVide: TournoiB \rightarrow booleen$

renvoie vrai ssi le tournoi est vide

Degre : TournoiB → entier renvoie le dégré du tournoi

 $UTid: TournoiB * TournoiB \rightarrow TournoiB$

renvoie l'union de 2 tournois de même taille $T_k * T_k \mapsto T_{k+1}$

 $Decapite: TournoiB \rightarrow FileB$

renvoie la file binomiale obtenue en enlèvant la racine du

tournoi $T_k \mapsto \langle T_{k-1}, T_{k-2}, ..., T_1, T_0 \rangle$

18/1

Michele Sol

Maorithmique Avancée

Algorithmique Avancée

Algorithme d'Union

UnionFile : FileB * FileB → FileB

renvoie la file binomiale union des deux files F1 et F2

Fonction UnionFile(F1, F2)

Retourne UFret(F1, F2, Ø)

FinFonction *UnionFile*

UFret : FileB * FileB * TournoiB → FileB

renvoie la file binomiale union de deux files et d'un tournoi

Fonction UFret(F1, F2, T)

```
Fonction UFret(F1, F2, T)

Si EstVide(T); pas de tournoi en retenue

Si EstVide(F1) Retourne F2

Si EstVide(F2) Retourne F1

Soient T1=MinDeg(F1) et T2=MinDeg(F2); tourn deg min

Si Degre(T1)<Degre(T2)

Retourne AjoutMin(T1,UnionFile(reste(F1),F2))

Si Degre(T2)<Degre(T1)

Retourne AjoutMin(T2,UnionFile(F1,reste(F2)))

Si Degre(T2)=Degre(T1)

Retourne UFret(reste(F1),reste(F2),UTid(T1,T2))
```

21/1

nichele Soria

Algorithmique Avancée

Analyse de complexité

Union de 2 files binomiales FB_n et FB_m en $O(\log_2(n+m))$

- Hypothèse : toutes les primitives ont une complexité en O(1)
- Critère de complexité : nombre de comparaisons entre clés
- Complexité dans le pire des cas
- idée

1 union de 2 tournois de même taille \longrightarrow 1 comparaison entre clés et ajoute une arête dans la file résultat.

 Conséquence : nombre de comparaisons pour faire l'union de 2 files égale nombre d'arêtes de la file union diminué du nombre d'arêtes des files de départ

```
Sinon; un tournoi en retenue
Si EstVide(F1) Retourne UnionFile(File(T), F2)
Si EstVide(F2) Retourne UnionFile(File(T), F1)
Soient T1=MinDeg(F1) Et T2=MinDeg(F2)
Si Degre(T)<Degre(T1) Et Degre(T)<Degre(T2)
Retourne AjoutMin (T,UnionFile(F1,F2)))
Si Degre(T)=Degre(T1)=Degre(T2)
Retourne
AjoutMin(T,UFret(reste(F1), reste(F2), UTid(T1,T2)))
Si Degre(T)=Degre(T1); et < Degre(T2)
Retourne UFret(reste(F1),F2,UTid(T1,T))
Si Degre(T)=Degre(T2); et < Degre(T1)
Retourne UFret(F1,reste(F2),UTid(T2,T))
FinFonction UFret
```

22/1

Michele Soi

Algorithmique Avancée

Calcul

Nombre de comparaisons pour faire l'union d'une file binomiale de n éléments et d'une file binomiale de m éléments.

$$#cp(FB_n \cup FB_m) = n + m - \nu(n+m) - (n-\nu(n)) - (m-\nu(m))$$

$$= \nu(n) + \nu(m) - \nu(n+m)$$

$$< \lfloor \log_2 n \rfloor + 1 + \lfloor \log_2 m \rfloor + 1$$

$$= O(\log_2(n+m))$$

Exemples:

24/1

- $\bullet \ \mathit{FB}_{21} \cup \mathit{FB}_{11}$
- FB₂₁ ∪ FB₁₀

23/1 Michèle Soria Algorithmique Avancée

Michèle Soria Algorithmique Avancée

Ajout d'un élément x à une file FB_n

Algorithme:

Créer une file binomiale FB_1 contenant uniquement x. Puis faire l'union de FB_1 et FB_n

Complexité : $\nu(n) + 1 - \nu(n+1) \longrightarrow$ entre 0 et $\nu(n)$

Exemples:

- FB₁ ∪ FB₂
- FB₁ ∪ FB₇

25/1

Michele Sori

Algorithmique Avancée

Suppression du minimum de FB_n

Recherche du minimum

Le minimum de la file est à la racine d'un des tournois la composant

$$\longrightarrow \nu(n) - 1$$
 comparaisons = $O(\log n)$

Suppression du minimum

- Déterminer l'arbre B_k de racine minimale
- Supprimer la racine de $B_k \longrightarrow \text{File} < B_{k-1}, \dots, B_0 >$
- Faire l'union des files $FB_n B_k$ et $< B_{k-1}, \dots, B_0 >$

Complexité : $O(\log n)$

Construction

Complexité de la construction d'une file binomiale par **adjonctions successives** de ses *n* éléments.

#
$$cp(FB_n) = \nu(n-1) + 1 - \nu(n)$$

+ $\nu(n-2) + 1 - \nu(n-1)$
+ ...
+ $\nu(1) + 1 - \nu(2)$
= $n - \nu(n)$

Donc le nombre moyen de comparaisons pour 1 ajout est $1 - \nu(n)/n < 1$.

Coût amorti d'une opération dans une série d'opérations : couttotal/nbreop

26/1

Michele Sor

Algorithmique Avancée

Diminuer une clé

N.B. Accès direct au nœud dont il faut diminuer la clé

- modifier la clé
- échanger le nœud avec son père jusqu'à vérifier l'hypothèse de croissance (≡ tas)

Le nombre maximum de comparaisons est la hauteur de l'arbre ($O(\log n)$)

Coût amorti

Files Binomiales:

- ajout d'un élément et recherche du minimum en O(1)
- suppression du minimum et union de 2 files en $O(\log n)$

Files de Fibonacci:

- ajout d'un élément et union de 2 files en O(1)
- suppression du minimum en $O(\log n)$

Remarque : on ne peut pas espérer avoir O(1) pour ajout et suppression du minimum, car alors on serait en contradiction avec les résultats de borne inférieure en $O(n \log n)$ pour le tri par comparaisons.

29/1

Michèle Soria

Algorithmique Avancée

Coût amorti : méthode par agrégat

- **Principe**: majorer le coût total d'une suite de *n* opérations et diviser par *n*.
- Exemple : opérations sur les piles
 - empiler(S,x)
 - dépiler(S)
 - multidépiler(S,k)

Coût amorti de chaque opération en O(1).

Coût amorti

Définition

- Coût amorti d'une opération dans une suite d'opérations = coût moyen d'une opération dans le pire cas.
- coût amorti = coût total / nombre d'opérations

Méthodes

- méthode par agrégat
- méthode du potentiel
- autres...

30/1

Michele So

Algorithmique Avancée

Coût amorti : méthode du potentiel

- Principe :
 - structure de données D_i ,
 - fonction *potentiel* Φ vérifiant $\Phi(D_i) \geq \Phi(D_0)$
 - coût amorti de la i-ème opération :

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

(c_i coût réel de la i-ème opération)

- coût amorti = $\sum_{i=1}^{n} \hat{c}_i / n$
- Exemple : opérations sur les piles
 - $\Phi(D_i)$ = nombre d'objets de D_i
 - coût amorti de chaque opération en O(1)