Assigned: 10/25/2022, Due: 11/01/2022

Airfoil plane
$$\rightarrow z = x + iy$$
Circle plane $\rightarrow \zeta = \chi + i\eta$, Center of circle $\rightarrow \mu_{\chi} + i\mu_{\chi}$
Circle pass through $\chi = 1$ and encompases $\chi = -1$, Radius $= R$
Freestream velocity $\rightarrow V_{\infty}$, Angle of attack $\rightarrow \alpha$

Transform $\rightarrow z = \zeta + \frac{1}{\zeta}$

$$x = \frac{\chi(\chi^2 + \eta^2 + 1)}{\chi^2 + \eta^2}$$

$$y = \frac{\eta(\chi^2 + \eta^2 - 1)}{\chi^2 + \eta^2}$$
Velocity in Circle plane $\rightarrow \widetilde{W} = \widetilde{u} - i\widetilde{v} = V_{\infty}e^{-i\alpha} + \frac{i\Gamma}{2\pi(\zeta - \mu)} - \frac{V_{\infty}R^2e^{i\alpha}}{(\zeta - \mu)^2}$
Circulation to satisfy kutta condition $\rightarrow \Gamma = 4\pi V_{\infty}R\sin\left(\alpha + \sin^{-1}\frac{\mu_{\chi}}{R}\right)$
Velocity in airfoil plane $\rightarrow W = \frac{\widetilde{W}}{1 - \frac{1}{\zeta^2}} = u - iv$

Use the Joukowsky Transform (pertinent equations above) to analyze a 12% thickness airfoil:

- 1.) Show the pressure distribution at 0, 5, 10, 15 degree angles of attack, comment on results
- 2.) Calculate the coefficient of lift as a function of angle of attack, compare results against NACA 0012 data. How does this compare to cl = 2*pi*alpha?
- 3.) Add camber (maximum of 2% chord) and repeat 1 and 2