Contents

- Comparison of CPUs and GPUs
- Programming Styles
- What is Easy to Accelerate?
- Libraries

CPU or GPU?

Which die is the CPU, which one the GPU?

GK110 XEON-E7

Four Levels of Parallelism

Bandwidth in an Accelerator System

GPUs vs. CPUs

	Tesla K20	Xeon E7-4800 4P
Core count	13 SMs 64/832 (DP), 192/2,496 (SP)	10 Cores 2 FP-ALUs/core, SSE 16B
Frequency	0.7GHz	2.4GHz
Peak Compute Performance	1,165 GFLOPS (DP) 3,494 GFLOPS (SP)	96 GFLOPS (DP)
Use model	throughput-oriented	latency-oriented
Latency treatment	toleration	minimization
Programming	1000s-10,000s of threads	10s of threads
Memory bandwidth	250 GBytes/sec	34 GByte/s (per P)
Memory capacity	5 GB	up to 2TB
Die size	550mm²	684 mm²
Transistor count	7.1 billion	2.3 billion
Technology	28nm	32nm
Power consumption	250W	130W
Power efficiency	4.66 GFLOPs/Watt (DP) 14 GFLOPs/Watt (SP)	0.74 GFLOPs/Watt (DP)

Theoretical Performance

Parallelism on CPUs and GPUs

CPU

- SIMD AVX 32B, Phi 64B
 - MADD with 8-16 floats MADD
 - with 4-8 doubles Coding: explicit,
 - __ automatic
- Minimum multi-threading
 - #threads=#cores (good)
 - #threads= 2*#cores (good)
 - #threads= 10*#cores (difficult)
 - Coding: explicit with resident threads, implicit with libraries

GPU

- SIMD warp size 32
 - MADD with 32 floats
 - MADD with 32 doubles
 - Coding: implicit, partly explicit
- Maximum multi-threading
 - #warps=#'cores'≈15 (bad)
 - #warps ≈100 (difficult)
 - + warps>1000 (good)
 - Coding: implicit with max. parallelism, explicit (advanced)

Memory on CPUs and GPUs

CPU

- Deep and large memories
 - Core: Reg, L1, L2
 - Shared: L3, eDRAM
 - Coding: implicit
- Usage
 - Optimize 1D locality
 - Optimize size of working sets
 - Prefetch, pipeline
 - Coding: implicit, explicit

GPU

- Smaller and specialized memories
 - Core: Reg, L1 or shmem
 - Shared: L2, constant
 - Coding: explicit, implicit with libs
- Usage
 - Optimize 1D, 2D, 3D locality
 - Decide on data location: Reg, L1, shmem, constant
 - Many warps and low latency vs. amount of local data per warp
 - Coding: explicit

Similarities and Differences

CPU

- For high performance
 - _ SIMD
 - Multi-threading
 - Memory access alignment Minimal
 - latency with large caches Working set
 - opt. wrt deep caches
 - Locality opt. wrt cache lines, NUMA
 - _
- Opt. serial performance
 - High normal and boost frequency
 - Low latency caches
 - Speculative execution

GPU

- For high performance
 - SIMD
 - Multi-threading
 - Memory access alignment
 - Minimal latency with many warps
 - Working set opt. wrt #warps
 - Locality opt. wrt memory types
 - Opt. throughput performance
 - Lower normal and boost frequency
 - L2 latency is high
 - No speculative execution

CUDA Ecosystem

What is Easy to Accelerate?

Embarrassingly Parallel Loop

```
for(int i=0; i<SIZE; ++i)
{ c[i]= a[i+1]+b[i]*a[i-yoff];
func(a,b,c,i);
}</pre>
```

Relevant for performance

- SIZE > 10k
- Arithmetic intensity
- Regularity of memory access
- Amount of local state and reuse

Branches in Loops

```
for(int i=0; i<SIZE; ++i) {
   if(cond(i))special_func(a,b,c,i);
   else normal_func(a,b,c,i);
}</pre>
```

- Only a problem if all these conditions hold:
 - Special case is more than 10% of cases
 - Normal and special case differ largely in execution times
 - Data of special cases is scattered in memory

Index Dependencies

```
for(int i=1; i<SIZE; ++i)
{ a[i]+= a[i-1];
}</pre>
```

- Replace serial dependence
 - Use equivalent parallel variant
 - If allowed, use approximate parallel variant
 - Check if parent computation can use other ingredients

Data Movement is Critical

```
• CPU_func1(a,b,c);
GPU_func1(a,b,c); // implicit transfer!
CPU_func2(a,b,c);
GPU_func2(a,b,c); // implicit transfer!
```

- Such CPU-GPU alternation only works well if
 - Execution time of GPU_func* is at least a milisecond
 - High arithmetic intensity, e.g. matrix*matrix, not matrix*vector
- Otherwise
 - GPU must perform multiple operations on the same data, e.g. multiple vector-vector or matrix-vector operations.

Linked List

- for(; elm!=nullptr; elm= elm->next) {
 func(elm->data);
 }
- Do not do this!
 - Unless all parallelism can be used efficiently in func ()
 - Terrible performance on CPUs and GPUs
 - Vector almost always dramatically faster than list
 - Even insert(pos), delete(pos) much faster in vector if
 we first search for pos

Data Structures on GPUs

	Difficulty	Speed	Support	Format
vector	easy	fast	everywhere	contiguous data
dense matrix	easy	fast	many libs	contiguous data
sparse matrix	moderate	fast	many libs	CSR , BCSR, (B)CSC, COO, special
graph	moderate	fast	multiple libs	CSR, special
tree	difficult	fast	little	various special formats
list	moderate	slow	none	special formats

Where to Put the Parallelism?

```
for(int i=0; i<SIZE; i+=block size)</pre>
          func1(a,b,c,i,block size);
                            for(int i=0; i<SIZE; i+=block size)
          func2(a,b,c,i,block size);
                          for(int i=0; i<SIZE; i+=block size) {</pre>
3 loops, block size=1
                            3 loops, block size=10
                                                                      1 loop, block size=10
```

Libraries

Summary

- For high performance on CPUs and GPUs
 - High parallelism and high data locality
 - Optimizations are similar in concept, but different and very involved in detail
 - Difficult to do by hand → use libraries
- What is easy to accelerate?
 - Large loops with no/simple index dependencies
 - Data placement and movement are crucial