Московский физико-технический институт Физтех-школа прикладной математики и информатики

ОСНОВЫ КОМБИНАТОРИКИ И ТЕОРИИ ЧИСЕЛ

II CEMECTP

Лектор: Райгородский

Автор: Киселев Николай Репозиторий на Github

Содержание

1	Дин	намическое программирование (окончание)	2
	1.1	ДП с помощью масок	2
		1.1.1 Задача 1	2
		1.1.2 Задача 2	2
		1.1.3 Задача 3	3
	1.2	ДП по профилю	3
		1.2.1 Задача 1	3
	1.3	Изломанный профиль	4
2	OT	\mathbf{A}	4
	2.1	Первое доказательство (не было доведено)	4
	22	Второе доказательство	4

«««< HEAD

1 Динамическое программирование (окончание)

1.1 ДП с помощью масок

Пусть
$$U = \{0, 1, ..., n-1\}$$
 $A \subset U$

Тогда будем записывать A как массив длины n, где $i \in A \leftrightarrow a_i = 1$. Такое представление называется маской множества

Kак проверить входит ли x в A?

Как брать пересечения и объединения?

$A \cap B$	$A \cup B$
$ mask_A mask_B$	$mask_A\&mask_B$

1.1.1 Задача 1

Пусть даны a_{ij} - стоимость выполнения j-го задания i-ым работников. Найти минимальную стоимость выполнения всех заданий.

Решение:

Пусть dp[i][mask] - минимальная стоимость распределить первых i работников, чтобы они выполнили множество заданий маски.

$$dp[i][mask] = min_{b \in mask}(a_{ib} + dp[i-1][\underbrace{mask|b}_{mask+(1 < < b)}])$$

 $A c u м n m o m u \kappa a : O(2^n n^2)$

1.1.2 Задача 2

Максимальная клика в графе за $O(2^{\frac{n}{2}})$

Определение 1.1. Клика $C \subset V$ такова, что для любых ее двух вершин есть ребро между ними.

Решим пока задачу за $O(2^k)$, где k - количество вершин

Обозначим за neighbour(v) маску соседей v

Тогда $clique(mask) = true \leftrightarrow clique(mask|v) = true, mask|v \subset neighbour(v)$

Осталось только придумать, как из маски за O(1) выкидывать ее вершину.

Сделаем это предпосчетом для каждой маски за $O(2^k)$, записывая последовательно ее старший бит.

1.1.3 Задача 3

Найти максимальную клику в маске.

Решение:

- 1. Если clique(mask) == true, то subclique(mask) = |mask|
- 2. Возьмем максимальное значение из:
 - (a) subclique(mask | v) не берем v
 - (b) 1 + subclique(mask & neighbour(v)) берем v

Такое тоже работает за $O(2^k)$

Теперь мы готовы решить основную задачу...

- **Шаг 1** Разобьем граф на 2 половинки, где будем искать клики. Пусть corr[mask] множество вершин правой доли, которые соединены со всеми вершинами mask.
- Шаг 2 Хотим добавить их к mask, чтобы получилась клика. Единственное требование все выбранные вершины corr[mask] должны быть кликой -> А ЭТО ВЕДЬ ЗАДАЧА 3!!! То есть ответ будет состоять из max(|mask| + subclique(mask)), где mask клика из левой части. Осталось понять, как считать corr[mask]

Шаг 0 corr[mask] = corr[mask|v] & neighbour(v)

1.2 ДП по профилю

1.2.1 Задача 1

Пусть есть доска $n \times m$, сколько существует способов покрыть ее доминошками. dp[j][mask] - количество способов полностью покрыть j столбцов, т. ч. mask - множество строк, где лежат "торчащие" доминошки.

"Торчащие "доминошки - те, что расположены в j и j+1 столбцах.

- 1. База: $dp[0][0] = 1, dp[0][\neq 0] = 0$
- 2. Переход: Обозначим за old_mask маску на j-1 столбце. Переберем по всевозможным old mask.
- 3. Заметим, что, зафиксировав mask и old_mask, картинка полностью заполняется. Добавляем dp[i-1][old] к dp[j][mask], если
 - (a) old \cap mask = 0
 - (b) B old ∪ mask все блоки из нулей-четной длины

Получаем асимптотику $O(4^n m)$, но можно подправить на $O(3^n m)$, если не рассматривать случаи $old \cap mask = 1$ в каком-то бите.

1.3 Изломанный профиль

Считаем, что профиль - теперь часть доски, покрытая доминошками по предположению.

2 OTA

Эту часть конспекта для вас затеха: Иван Бирюков

Теорема 2.1.

1) $\forall n > 1$ $\exists !$ его представление в виде

$$n = p_1 p_2 \dots p_s$$

Комментарий: p_1, p_2, \dots, p_s - простые числа, единственность с точностью до порядка множителей

2) p_i - i-ое простое число Тогда $\forall n \exists ! (\alpha_1, \alpha_2, \dots, \alpha_n)$:

$$n = \prod_{i=1}^{\infty} p_i^{\alpha_i}$$

Следствие. $\nu_p(n)$ - тах степень вхождения p в $n \Longrightarrow n \not p^{\nu_p(n)+1}$

Сейчас мы приведем несколько доказательств этой теоремы

2.1 Первое доказательство (не было доведено)

Доказательство. Найдем существование разложения по индукции по n:

База:
$$n=2$$
. Переход: $n=ab \to \left(p_{a_1}^{\alpha_{a_1}}p_{a_2}^{\alpha_{a_2}}\dots p_{a_s}^{\alpha_{a_s}}\right)\cdot \left(p_{b_1}^{\alpha_{b_1}}p_{b_2}^{\alpha_{b_2}}\dots p_{b_k}^{\alpha_{b_k}}\right)$ или n - простое Осталось понять единственность.

Пойдем от противного: пусть $\exists \ min \ n = p_1 p_2 \dots p_s = q_1 q_2 \dots q_k$

Для простоты упорядочим простые числа в обоих разложениях.

Если $p_1=q_1$, то у числа $\frac{n}{p_1}$ есть 2 разложения. Значит, $p_1\neq q_1\to n\geqslant p_1p_2\geqslant p_1^2$

Аналогично получается $n \geqslant q_1^2 \to n \geqslant max(p_1^2, q_1^2) \geqslant q_1(p_1 + 2) > q_1p_1 + 1$

Рассмотрим число $x = n - p_1 q_1$. Оно меньше n и больше 1, а тогда у него есть единственное разложение на простые сомножители $\tau_1, \tau_2, \dots, \tau_m$:

$$x = p_1(p_2 \dots p_s - q_1) = q_1(q_2 \dots q_k - p_1) = \tau_1 \dots \tau_m$$
, в наборе $\tau : \tau_1 \leqslant \dots \leqslant p_1 \leqslant q_1 \leqslant \tau_m$

2.2 Второе доказательство

Лемма 2.1 (Евклида). p - npocmoe. $Torda\ mn:p o m:p$ $unu\ n:p$

Лемма 2.2 (Евклида 2.0). $(m, k) = 1, mn : k \to n : k$

$$2 \Longrightarrow 1:. \ k = p, m \not p \to (m, p) = 1 \to n \dot{k}$$

Доказательство. Докажем единственность по лемме Евклида:

$$n = p_1 \underbrace{\dots p_s}_{m} = q_1 \dots q_l$$

По лемме Евклида $p_1=q_1$ или $m:q_1$. Повторяя процедуру, получим, что $p_i=q_1$, сократим на него и повторим алгоритм. \square

Докажем теперь лемму Евклида 2.0

Доказательство. По линейному представлению НОДа $\exists x \; \exists y: \; mx+ky=1$

$$mx + ny = 1 \rightarrow \underbrace{mn}_{k} x + \underbrace{k}_{k} ny = n \rightarrow n \dot{k}$$

 $\vdots_{k} \vdots_{k}$

Доказательство этой же леммы через идеалы:

Определение 2.1. I - идеал в \mathbb{Z} , если:

- 1. $\forall a, b \in I : a + b = I$
- 2. $\forall a \in I \ \forall b \in \mathbb{Z} : ab \in I$

Доказательство. Зафиксируем m и определим $I_m = \{a \mid ma : p\} \to n, p$ лежат в идеале

Лемма 2.3. Пусть d - минимальное положительное число в I Тогда $I = \{cd \mid c \in \mathbb{Z}\}$

Следует из деления элемента с остатком

А тогда d=1 или d=p. Во втором случае n : p, в первом - $m \dots p$ »»»> 574 fc 0 c 2 d 8 f 10 f 22 d f 24 bae 7 ee 15 b 18 cc f 992 e 4 e