EE1101: Signals and Systems JAN-MAY 2019

Tutorial 8 Solutions

1. (a) Given $x(t) \longleftrightarrow X(j\omega)$ implies

$$X(j\omega) = \int\limits_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

Substituting $\omega = 0$, we get,

$$X(0) = \int_{-\infty}^{\infty} x(t)e^{0}dt = \int_{-\infty}^{\infty} x(t)dt$$

(b) Let $x(t) = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wt}{\pi}\right)$, then

$$X(j\omega) = \begin{cases} 1, & \text{for } |\omega| < W, \\ 0, & \text{elsewhere.} \end{cases}$$

When $W=\pi, \ x(t)=\mathrm{sinc}(t).$ Now, the Fourier transform of $\mathrm{sinc}(t)$ is a rectangular function of magnitude 1 from $-\pi$ to π .

$$X(j\omega) = \int_{-\infty}^{\infty} \operatorname{sinc}(t)cdt$$

From part (a), $\int_{-\infty}^{\infty} \operatorname{sinc}(t)dt$ is equal to the Fourier transform $X(j\omega)$ at $\omega=0$ which is equal to 1.

$$\int_{-\infty}^{\infty} \operatorname{sinc}^{2}(t)dt = \int_{-\infty}^{\infty} |x(t)|^{2}dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^{2}d\omega$$
(From Parseval's Theorem)
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} 1d\omega$$

$$= 1$$

Alternatively, we can use the multiplication property,

$$\operatorname{sinc}^2(t) = x^2(t) \longleftrightarrow \frac{1}{2\pi} X(j\omega) * X(j\omega) = Y(j\omega)$$

where

$$Y(j\omega) = \begin{cases} 1 - \frac{|\omega|}{2\pi}, & |\omega| \le 2\pi \\ 0, & |\omega| > 2\pi \end{cases}$$

to get $\int_{-\infty}^{\infty} \operatorname{sinc}^2(t) dt = Y(0) = 1.$

Thus,
$$\int_{-\infty}^{\infty} \operatorname{sinc}(t)dt = \int_{-\infty}^{\infty} \operatorname{sinc}^{2}(t)dt = 1.$$

2. (a) Given $f_1(t) = 2 \operatorname{rect}\left(\frac{t}{4}\right)$ and $f_2(t) = \operatorname{rect}\left(\frac{t}{2}\right)$

$$g(t) = f_1(t) * f_2(t) = \begin{cases} 2(t+3) &, -3 \le t \le -1\\ 4 &, -1 < t \le 1\\ 2(3-t) &, 1 < t \le 3\\ 0 &, |t| \ge 3 \end{cases}$$

(b) Using the analysis equation,

$$G(j\omega) = \int_{-\infty}^{\infty} g(t)e^{-j\omega t}dt$$
$$= \int_{-3}^{-1} 2(t+3)e^{-j\omega t}dt + \int_{-1}^{1} 4e^{-j\omega t}dt$$
$$+ \int_{1}^{3} 2(3-t)e^{-j\omega t}dt$$

Using the formulae $\int xe^{cx} = \left(\frac{cx-1}{c^2}\right)e^{cx}$ and $\int e^{cx} = \frac{1}{c}e^{cx}$,

$$\begin{split} G(j\omega) &= \left[\frac{(-2j\omega t - 2 - 6j\omega)e^{-j\omega t}}{-\omega^2}\right]_{-3}^{-1} + \left[\frac{4e^{-j\omega t}}{-j\omega}\right]_{-1}^{1} \\ &+ \left[\frac{(2j\omega t + 2 - 6j\omega)e^{-j\omega t}}{-\omega^2}\right]_{1}^{3} \\ &= \frac{(2 + 4j\omega)e^{j\omega} - 2e^{j3\omega}}{\omega^2} + \frac{8\sin\omega}{\omega} \\ &+ \frac{(2 - 4j\omega)e^{-j\omega} - 2e^{-j3\omega}}{\omega^2} \\ &= \frac{4\cos(\omega) - 8\omega\sin(\omega) - 4\cos(3\omega)}{\omega^2} + \frac{8\sin\omega}{\omega} \\ &= \frac{4[\cos(\omega) - \cos(3\omega)]}{\omega^2} \\ &= \frac{8\sin(2\omega)\sin(\omega)}{\omega^2} \\ &= 16\operatorname{sinc}(2\omega/\pi)\operatorname{sinc}(\omega/\pi) \end{split}$$

where $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$.

(c) We know that

$$\operatorname{rect}\left(\frac{t}{\tau}\right) \longleftrightarrow \tau \operatorname{sinc}\left(\frac{\omega\tau}{2\pi}\right)$$
$$f_1(t) = 2 \operatorname{rect}\left(\frac{t}{4}\right) \longleftrightarrow 2(4) \operatorname{sinc}(2\omega/\pi)$$
$$f_2(t) = \operatorname{rect}\left(\frac{t}{2}\right) \longleftrightarrow 2 \operatorname{sinc}(\omega/\pi)$$

Using the convolution property of Fourier Transform,

$$G(j\omega) = F_1(j\omega)F_2(j\omega)$$

$$= 8\operatorname{sinc}(2\omega/\pi)2\operatorname{sinc}(\omega/\pi)$$

$$= 16\operatorname{sinc}(2\omega/\pi)\operatorname{sinc}(\omega/\pi)$$

(d) The magnitude spectrum of $G(j\omega)$ is plotted using matlab in Figure 1. Phase spectrum is plotted in Figure 2.

Figure 1: Magnitude spectrum of $G(j\omega)$ in Q2 generated using matlab

Figure 2: Phase spectrum of $G(j\omega)$ in Q2

Note: $\angle G(j\omega)$ can take either π or $-\pi$ for values of ω for which $G(j\omega)$ is negative. Here we have taken π for when ω is positive and $-\pi$ for when ω is negative to imply the point that phase spectrum is an odd function for real-valued time-domain signals.

3. The given signal x(t) can be written as,

$$x(t) = x_1(t) * x_2(t)$$
 where, $x_1(t) = \text{rect}(t)$ and $x_2(t) = \text{rect}\left(\frac{t}{2}\right)$

Using the convolution property of Fourier Transform,

$$X(j\omega) = X_1(j\omega)X_2(j\omega)$$

$$= \operatorname{sinc}\left(\frac{\omega}{2\pi}\right)2\operatorname{sinc}\left(\frac{\omega}{\pi}\right)$$

$$= 2\operatorname{sinc}\left(\frac{\omega}{\pi}\right)\operatorname{sinc}\left(\frac{\omega}{2\pi}\right)$$

4. (a) Given $X(j\omega) = \frac{2\sin(3(\omega - 2\pi))}{(\omega - 2\pi)}$

$$\mathrm{rect}\left(\frac{t}{\tau}\right) \longleftrightarrow \tau \, \mathrm{sinc}\left(\frac{\omega \tau}{2\pi}\right) = \frac{2}{\omega} \, \mathrm{sin}\left(\frac{\omega \tau}{2}\right) \qquad (1)$$

Comparing with standard form in (1),

$$\operatorname{rect}\left(\frac{t}{6}\right)\longleftrightarrow\frac{2}{\omega}\sin(3\omega)$$

Using the frequency shifting property of Fourier Transform,

$$e^{j2\pi t} \operatorname{rect}\left(\frac{t}{6}\right) \longleftrightarrow \frac{2\sin(3(\omega - 2\pi))}{(\omega - 2\pi)}$$

(b) Given $X(j\omega) = cos(4\omega + \frac{\pi}{3})$

$$\begin{split} X(j\omega) &= \cos(4\omega + \frac{\pi}{3}) \\ &= \frac{1}{2} \Big[e^{j(4\omega + \frac{\pi}{3})} + e^{-j(4\omega + \frac{\pi}{3})} \Big] \\ &= \Big(\frac{e^{j\frac{\pi}{3}}}{2} \Big) e^{j4\omega} + \Big(\frac{e^{-j\frac{\pi}{3}}}{2} \Big) e^{-j4\omega} \end{split}$$

We know that,

5. a)

$$\delta(t) \longleftrightarrow 1$$

By using time shifting property,

$$\delta(t+4) \longleftrightarrow e^{j4\omega}$$

 $\delta(t-4) \longleftrightarrow e^{-j4\omega}$

By using linearity property,
$$x(t) = \left(\frac{e^{j\frac{\pi}{3}}}{2}\right)\delta(t+4) + \left(\frac{e^{-j\frac{\pi}{3}}}{2}\right)\delta(t-4)$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$

$$X(0) = \int_{-\infty}^{\infty} x(t)e^{-j(0)t} dt$$

$$X(0) = \int_{-\infty}^{\infty} x(t) dt$$

$$X(0) = \int_{-1}^{0} 1 dt + \int_{0}^{1} (-t+1) dt$$

$$+ \int_{1}^{2} (t-1) dt + \int_{2}^{3} 1 dt$$

$$\implies X(0) = 3$$

b)
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

$$x(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega(0)} d\omega$$

$$x(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) d\omega$$

$$\int_{-\infty}^{\infty} X(j\omega) d\omega = 2\pi x(0)$$

$$\implies \int_{-\infty}^{\infty} X(j\omega) d\omega = 2\pi$$

c)
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

$$x(1) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega(1)} d\omega$$

$$x(1) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega} d\omega$$

$$\int_{-\infty}^{\infty} X(j\omega) e^{j\omega} d\omega = 2\pi x(1)$$

$$\implies \int_{-\infty}^{\infty} X(j\omega) e^{j\omega} d\omega = 2\pi .0$$

$$\implies \int_{-\infty}^{\infty} X(j\omega) e^{j\omega} d\omega = 0$$

d)

Using Parseval's theorem,

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

$$\implies \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega = 2\pi \left[\int_{-1}^{0} 1^2 dt + \int_{0}^{1} (1-t)^2 dt + \int_{1}^{2} (t-1)^2 dt + \int_{2}^{3} 1^2 dt \right]$$

$$= 2\pi \left[1 + \frac{1}{3} + \frac{1}{3} + 1 \right] = \frac{16\pi}{3}$$

$$Re\{X(j\omega)\} = \frac{X(j\omega) + X^*(j\omega)}{2}$$

$$\mathcal{F}^{-1}\{Re\{X(j\omega)\}\} = \frac{\mathcal{F}^{-1}\{X(j\omega)\} + \mathcal{F}^{-1}\{X^*(j\omega)\}}{2}$$

$$= \frac{x(t) + x^*(-t)}{2}$$

$$= \frac{x(t) + x(-t)}{2} \longrightarrow Ev\{x(t)\}$$

- 6. For the given signal, $T_0 = 1, \omega_0 = 2\pi$.
 - (a) Fourier series coefficients P_n of function p(t):

$$P_{n} = \frac{1}{T_{0}} \int_{\frac{-1}{4}}^{\frac{1}{4}} p(t)e^{-jn\omega_{0}t}dt, \quad n \neq 0$$

$$= \int_{\frac{-1}{4}}^{0} (1+4t)e^{-j2\pi nt}dt + \int_{0}^{\frac{1}{4}} (1-4t)e^{-j2\pi nt}dt$$

$$= \frac{4\sin^{2}(\pi n/4)}{\pi^{2}n^{2}}, \quad n \neq 0.$$

$$P_{0} = \int_{\frac{-1}{4}}^{\frac{1}{4}} p(t)dt = \frac{1}{4}.$$

Note: This can be solved using convolution property as well. Convolution of rect function with itself will give triangular function. In Fourier domain that manifests as $sinc^2()$ function.

Figure 3: Sketch for P_n vs. n in Q6(a)

(b) Fourier transform of function p(t):

By using Fourier series expansion,

$$p(t) = \sum_{n = -\infty}^{\infty} P_n e^{j2\pi nt}$$

$$P(j\omega) = \sum_{n = -\infty}^{\infty} \mathcal{F}\{P_n e^{j2\pi nt}\}$$

$$= \sum_{n = -\infty}^{\infty} P_n \mathcal{F}\{e^{j2\pi nt}\}$$

$$= \sum_{n = -\infty}^{\infty} 2\pi P_n \delta(\omega - 2\pi n)$$

$$= \sum_{n = -\infty}^{\infty} \frac{8\sin^2(\pi n/4)}{\pi n^2} \delta(\omega - 2\pi n)$$

Figure 4: Sketch for $P(j\omega)$ vs. ω in Q6(a)

(d) $x(t) = \operatorname{sinc}(t)$, has the Fourier transform

$$X(j\omega) = \operatorname{rect}\left(\frac{\omega}{2\pi}\right).$$

$$Y(j\omega) = \frac{1}{2\pi} \{ P(j\omega) * X(j\omega) \}$$
$$= \sum_{k=-\infty}^{\infty} \frac{4\sin^2(\pi k/4)}{\pi^2 k^2} \operatorname{rect}\left(\frac{\omega - 2\pi k}{2\pi}\right).$$

7. Given,

$$z_1(t) = x(t)\cos(\omega_1 t) + y(t)\cos(\omega_2 t)$$

$$\omega_1 = 5W$$

$$\omega_2 = 7W$$

For $z_1(t)$:

$$z_1(t) = x(t)\cos(\omega_1 t) + y(t)\cos(\omega_2 t)$$
$$= x(t)\left(\frac{e^{j\omega_1 t} + e^{-j\omega_1 t}}{2}\right) + y(t)\left(\frac{e^{j\omega_2 t} + e^{-j\omega_2 t}}{2}\right)$$

The frequency shift property of Fourier Transform states that,

$$f(t)e^{j\omega_0t} \longleftrightarrow F(j(\omega-\omega_0))$$

Using this property and linearity, $Z_1(j\omega)$ can be written as,

$$Z_1(j\omega) = \frac{1}{2} \Big(X(j(\omega - \omega_1)) + X(j(\omega + \omega_1)) + X(j(\omega - \omega_2)) + Y(j(\omega + \omega_2)) \Big)$$

Figure 5: Sketch for $X(j\omega)$ in Q6(c)

Figure 6: Sketch for $Y(j\omega)$ in Q6(c)

Figure 7: Sketch for $Z_1(j\omega)$

For $z_2(t)$:

 $Z_2(j\omega)$ is $Z_1(j\omega)$ bandlimited to 4W and 6W

$$Z_2(j\omega) = \frac{1}{2} \left(X(j(\omega - \omega_1)) + X(j(\omega + \omega_1)) \right)$$

For $z_3(t)$:

$$z_3(t) = z_2(t)\cos(\omega t)$$

= $\frac{1}{2} (z_2(t)e^{j\omega_1 t} + z_2(t)e^{-j\omega_1 t})$

Using frequency shifting property of Fourier Transform,

$$Z_3(j\omega) = \frac{1}{2} \left(Z_2(j(\omega - \omega_1)) + Z_2(j(\omega + \omega_1)) \right)$$

$$= \frac{1}{4} \left(X(j(\omega - 2\omega_1)) + 2X(j\omega) + X(j(\omega + 2\omega_1)) \right)$$

$$= \frac{1}{2} X(j\omega) + \frac{1}{4} \left(X(j(\omega - 2\omega_1)) + X(j(\omega + 2\omega_1)) \right)$$
(2)

Figure 8: Sketch for $Z_2(j\omega)$

Figure 9: Sketch for $Z_3(j\omega)$

For $z_4(t)$:

 $z_4(t)$ is the LPF output for the input $z_3(t)$ with cutoff freq = W. So, only the first summation term from eqn.(2) is available as output in the form of $z_4(t)$, i.e.:

$$Z_4(j\omega) = \frac{1}{2}X(j\omega) \Rightarrow z_4(t) = \frac{1}{2}x(t)$$

Figure 10: Sketch for $Z_4(j\omega)$

8. Let the impulse train be denoted by i(t).

$$x_s(t) = x(t)i(t)$$

Which implies,

$$X_s(j\omega) = \frac{1}{2\pi} \left(X(j\omega) * I(j\omega) \right)$$

To find $I(j\omega)$, the Fourier transform of i(t), it can be noted that i(t) is a periodic function and can be written in terms of its Fourier series coefficients as:

$$i(t) = \sum_{k=-\infty}^{\infty} \frac{1}{T} e^{jk\frac{2\pi}{T}t}$$

Now, the Fourier transform can be easily found out by using the modulation property (shifting in frequency).

$$I(j\omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega - k\left(\frac{2\pi}{T}\right)\right)$$

Thus,

$$X_s(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X\left(j\left(\omega - k\left(\frac{2\pi}{T}\right)\right)\right)$$

- (b) Sketch is as given in Figure 11
- (c) Sketch is as given in Figure 12
- (d) Largest T such that $X_{sr}(j\omega) = X(j\omega)$ is $\frac{1}{2B}$.
- 9. (a) Find the Nyquist rates for the signals:

(i). $x_1(t) = \frac{\sin(4000\pi t)}{\pi t}$. This signal is bandlimited to $\omega = 4000\pi$. Thus, the minimum Nyquist rate = 4000 samples per sec.

(ii). $x_2(t) = \left(\frac{\sin(4000\pi t)}{\pi t}\right)^2$. This signal is squared of $x_1(t)$. which means its Fourier Transform will be the self convolution of the Fourier Transform of $x_1(t)$. So, this signal is bandlimited to $\omega = 8000\pi$. Thus, the minimum Nyquist rate = 8000 samples per sec.

(b)
$$y(t) = x_1(t) * x_2(t)$$

Which implies $Y(j\omega) = X_1(j\omega)X_2(j\omega)$

Thus, $Y(j\omega) = 0$ for $|\omega| > 1000\pi$.

Hence, the sampling period range which ensures that y(t) is recoverable from the samples is (0, 1ms), which means the sampling period should be less than 1 ms.

(i).
$$T = \frac{1}{4B}$$

(ii). $T = \frac{1}{2B}$

(iii). $T = \frac{1}{B}$

Figure 11: Sketch for $X_s(j\omega)$

(i).
$$T = \frac{1}{4B}$$

(ii). $T=\frac{1}{2B}$

(iii). $T = \frac{1}{B}$

Figure 12: Sketch for $X_{sr}(j\omega)$