Національний технічний університет України

«Київський політехнічний інститут імені Ігоря Сікорського»

Фізико-математичний факультет

Домашня контрольна робота

Виконав студ. Групи

Ткаченко Костянтин Олександрович Іп-з31

варіант 21

задача 1.03

дано: $x = at + bt^2 + ct^3$ a = 5 м/с b = 0,2 м/с² c = 0,1 м/с³ $t_1 = 2$ с $t_2 = 4$ с знайти:

- 1. $v(t_1)$
- $2. v(t_2)$
- 3. vcep

розв'язання:

1. для знаходження миттєвої швидкості потрібно взяти похідну від координати по часу: $v(t) = dx/dt = a + 2bt + 3ct^2$

підставляємо значення констант: $v(t) = 5 + 0.4t + 0.3t^2$

- 2. знаходимо швидкість при $t_1 = 2$ с: $v(2) = 5 + 0.4 \cdot 2 + 0.3 \cdot 2^2 = 5 + 0.8 + 1.2 = 7$ м/с
- 3. знаходимо швидкість при $t_2 = 4$ с: $v(4) = 5 + 0.4 \cdot 4 + 0.3 \cdot 4^2 = 5 + 1.6 + 4.8 = 11.4$ м/с
- 4. середня швидкість визначається як відношення переміщення до часу: vcep = $(x_2 x_1)/(t_2 t_1)$

знаходимо координати в моменти часу t₁ i t₂:

$$x(2) = 5 \cdot 2 + 0, 2 \cdot 2^2 + 0, 1 \cdot 2^3 = 10 + 0, 8 + 0, 8 = 11, 6 \text{ m } x(4) = 5 \cdot 4 + 0, 2 \cdot 4^2 + 0, 1 \cdot 4^3 = 20 + 3, 2 + 6, 4 = 29, 6 \text{ m}$$

$$vcep = (29,6 - 11,6)/(4 - 2) = 18/2 = 9 \text{ m/c}$$

відповідь:

- 1. $v(t_1) = 7 \text{ m/c}$
- 2. $v(t_2) = 11.4 \text{ m/c}$
- 3. vcep = 9 M/c

дано: ϵ = -2 рад/ c^2 n_1 = 4 c^{-1} n_2 = 1,5 c^{-1} знайти:

- 1. п кількість обертів
- 2. t час

розв'язання:

- 1. спочатку переведемо частоту обертання в кутову швидкість: $\omega_1 = 2\pi n_1 = 2\pi \cdot 4 = 8\pi$ рад/с $\omega_2 = 2\pi n_2 = 2\pi \cdot 1,5 = 3\pi$ рад/с
- 2. при рівноприскореному обертанні: $\omega = \omega_0 + \epsilon t$ звідси знаходимо час: $t = (\omega_2 \omega_1)/\epsilon = (3\pi 8\pi)/(-2) = 2,5\pi$ с
- 3. кількість обертів знаходимо через кут повороту ϕ : $\phi=\omega_1 t+(\epsilon t^2)/2$ $n=\phi/(2\pi)$ підставляємо значення: $\phi=8\pi\cdot 2,5\pi+(-2\cdot (2,5\pi)^2)/2$ $\phi=20\pi^2$ $6,25\pi^2$ $\phi=13,75\pi^2$ рад $n=13,75\pi^2/(2\pi)=13,75\pi/2\approx 21,6$ обертів відповідь:
 - 1. $n \approx 21,6$ обертів
 - 2. $t = 2.5\pi c \approx 7.85 c$

дано: $m_1 = 200 \ \Gamma = 0,2 \ \text{кг} \ m_2 = 300 \ \Gamma = 0,3 \ \text{кг} \ t = 1 \ \text{c} \ g = 9,81 \ \text{м/c}^2$ знайти: s - шлях вантажів за $1 \ \text{c}$ розв'язання:

- 1. оскільки нитка нерозтяжна і перекинута через нерухомий блок, то шлях, який пройдуть обидва вантажі, буде однаковим за величиною.
- 2. при цьому більш важкий вантаж т₂ буде опускатися, а легший т₁ підніматися.
- 3. для знаходження шляху використаємо формулу рівноприскореного руху: $s = (at^2)/2$ де a прискорення системи
- 4. знайдемо прискорення системи, використовуючи другий закон ньютона: $(m_2 m_1)g$ = $(m_1 + m_2)a$

звідси: $a = g(m_2 - m_1)/(m_1 + m_2)$ $a = 9.81(0.3 - 0.2)/(0.2 + 0.3) = 9.81 \cdot 0.1/0.5 = 1.962$ м/с²

5. тепер можемо знайти шлях: $s = (1,962 \cdot 1^2)/2 = 0,981$ м

відповідь: кожен вантаж пройде шлях s = 0,981 м за першу секунду руху

дано: $m_1 = 1$ кг (маховик) $m_2 = 200$ г = 0,2 кг (шків) $m_3 = 500$ г = 0,5 кг (гиря) r = 5 см = 0,05 м (радіус шківа) r = 40 см = 0,4 м (радіус маховика) n = 5 об/с (кінцева кутова швидкість) g = 9.81 м/с²

знайти: t - час досягнення заданої швидкості розв'язання:

- 1. переведемо частоту обертання в кутову швидкість: $\omega = 2\pi n = 2\pi \cdot 5 = 10\pi$ рад/с
- 2. момент інерції системи: $i = m_1 r^2 + m_2 r^2$ (момент інерції маховика + момент інерції шківа) $i = 1 \cdot (0.4)^2 + 0.2 \cdot (0.05)^2 = 0.16 + 0.0005 = 0.1605 \text{ кг} \cdot \text{м}^2$
- 3. момент сили тяжіння гирі: $m = m_3 gr = 0.5 \cdot 9.81 \cdot 0.05 = 0.24525$ н·м
- 4. використаємо основне рівняння динаміки обертального руху: $m = i\epsilon$, де ϵ кутове прискорення $\epsilon = m/i = 0.24525/0.1605 = 1.528$ рад/ c^2
- 5. при рівноприскореному обертанні з нульовою початковою швидкістю: $\omega = \epsilon t \ t = \omega/\epsilon$ = $10\pi/1,528 \approx 20,6 \ c$

відповідь: $t \approx 20.6$ с

дано: $m_1 = 4$ кг $m_2 = 4$ кг $v_1 = 3$ м/с $v_2 = -8$ м/с (знак мінус, бо рух назустріч) знайти: δe - енергія деформації розв'язання:

- 1. при непружному ударі частина кінетичної енергії переходить у внутрішню (енергію деформації). енергія деформації = початкова кінетична енергія кінцева кінетична енергія
- 2. початкова кінетична енергія системи: $e_1 = (m_1 v_1^2 + m_2 v_2^2)/2$ $e_1 = (4 \cdot 3^2 + 4 \cdot 8^2)/2 = (36 + 256)/2 = 146$ дж
- 3. для знаходження кінцевої швидкості використаємо закон збереження імпульсу: $m_1v_1+m_2v_2=(m_1+m_2)u, \text{ де } u\text{ кінцева швидкість } 4\cdot 3+4\cdot (-8)=8u\ 12\text{ }32=8u\ u=-2,5\ \text{м/c}$
- 4. кінцева кінетична енергія: $e_2 = (m_1 + m_2)u^2/2$ $e_2 = 8 \cdot (-2,5)^2/2 = 8 \cdot 6,25/2 = 25$ дж
- 5. енергія деформації: $\delta e = e_1 e_2 = 146 25 = 121$ дж

відповідь: δе = 121 дж

дано: r=15 мм =0,015 м m=5 $\Gamma=0,005$ кг h=30 см =0,3 м $h_1=10$ см =0,1 м ρ _води =1000 кг/м 3 g=9,81 м/с 2

знайти: q - кількість теплоти

розв'язання:

- 1. об'єм кульки: $v = 4\pi r^3/3 = 4\cdot 3, 14\cdot (0,015)^3/3 = 1,413\cdot 10^{-5}$ м³
- 2. сила архімеда: f $a = \rho gv = 1000 \cdot 9.81 \cdot 1.413 \cdot 10^{-5} = 0.1386 \text{ H}$
- 3. вага кульки: $p = mg = 0.005 \cdot 9.81 = 0.049$ н
- 4. початкова потенціальна енергія (на глибині h): $e_1 = (f_a p)h = (0,1386 0,049) \cdot 0,3 = 0,02688$ дж
- 5. кінцева потенціальна енергія (на висоті h_1): $e_2 = mgh_1 = 0.005 \cdot 9.81 \cdot 0.1 = 0.00491$ дж
- 6. різниця енергій пішла на тепло: $q=e_1$ $e_2=0,02688$ 0,00491=0,02197 дж відповідь: q=0,022 дж (≈ 22 мдж)

дано: $\phi_0 = 0$ $x_1 = 2,4$ $c_M = 0,024$ м $v_1 = 3$ $c_M/c = 0,03$ м/с $x_2 = 2,8$ $c_M = 0,028$ м $v_2 = 2$ $c_M/c = 0,02$ м/с

знайти: а - амплітуда t - період

розв'язання:

- 1. для гармонічних коливань справедливі рівняння: $x = a \cdot \cos(\omega t) v = -a\omega \cdot \sin(\omega t)$
- 2. з цих рівнянь отримуємо: $v^2 + \omega^2 x^2 = a^2 \omega^2$
- 3. записуємо систему рівнянь для двох точок: $v_1^2 + \omega^2 x_1^2 = a^2 \omega^2 v_2^2 + \omega^2 x_2^2 = a^2 \omega^2$
- 4. прирівнюємо праві частини: $v_1^2 + \omega^2 x_1^2 = v_2^2 + \omega^2 x_2^2$
- 5. підставляємо значення: $(0,03)^2 + \omega^2(0,024)^2 = (0,02)^2 + \omega^2(0,028)^2$ 0,0009 + $0,000576\omega^2 = 0,0004 + 0,000784\omega^2$ 0,0005 = $0,000208\omega^2$ $\omega^2 = 2,404$ c⁻² $\omega = 1,55$ c⁻¹
- 6. тепер можемо знайти амплітуду з будь-якого рівняння: $a^2\omega^2 = v_1^2 + \omega^2 x_1^2$ $a^2 = (0,03)^2 + (1.55)^2(0.024)^2$ $a^2 = 0.0009 + 0.001384$ $a = \sqrt{0.002284} = 0.0478$ м ≈ 4.8 см
- 7. період знаходимо через кутову частоту: $t=2\pi/\omega=2\cdot3,14/1,55=4,05$ с відповідь: $a\approx4.8$ см $t\approx4.05$ с

дано: v = 100 м/с x = 1 м (відстань між точками з протилежними фазами) знайти: v - частота коливань розв'язання:

- 1. точки з протилежними фазами відрізняються на π радіан. найменша відстань між такими точками дорівнює половині довжини хвилі: $x = \lambda/2$ де λ довжина хвилі
- 2. звідси знаходимо довжину хвилі: $\lambda = 2x = 2 \cdot 1 = 2$ м
- 3. використовуємо формулу зв'язку швидкості хвилі, частоти і довжини хвилі: $v = \lambda v$
- 4. виражаємо частоту: $v = v/\lambda = 100/2 = 50$ гц

відповідь: v = 50 гц