L^{∞} coefficient operators and non-smooth Riemannian metrics

Lashi Bandara

Centre for Mathematics and its Applications Australian National University

17 October 2012

Geometric Analysis Seminar Stanford University

Let $\mathcal M$ be a smooth, complete Riemannian manifold with metric g, Levi-Civita connection ∇ , and volume measure $d\mu$.

Let \mathcal{M} be a smooth, complete Riemannian manifold with metric g, Levi-Civita connection ∇ , and volume measure $d\mu$.

Write $\operatorname{div} = -\nabla^*$ in L^2 and let $S = (I, \nabla)$.

Let $\mathcal M$ be a smooth, complete Riemannian manifold with metric g, Levi-Civita connection ∇ , and volume measure $d\mu$.

Write $\operatorname{div} = -\nabla^*$ in L^2 and let $S = (I, \nabla)$.

Consider the following *uniformly elliptic* second order differential operator $L_A: \mathcal{D}(L_A) \subset L^2(\mathcal{M}) \to L^2(\mathcal{M})$ defined by

$$L_A u = aS^* A S u = -a \operatorname{div}(A_{11} \nabla u) - a \operatorname{div}(A_{10} u) + a A_{01} \nabla u + a A_{00} u.$$

where a and $A = (A_{ij})$ are L^{∞} multiplication operators.

Let $\mathcal M$ be a smooth, complete Riemannian manifold with metric g, Levi-Civita connection ∇ , and volume measure $d\mu$.

Write $\operatorname{div} = -\nabla^*$ in L^2 and let $S = (I, \nabla)$.

Consider the following *uniformly elliptic* second order differential operator $L_A: \mathcal{D}(L_A) \subset L^2(\mathcal{M}) \to L^2(\mathcal{M})$ defined by

$$L_A u = aS^* A S u = -a \operatorname{div}(A_{11} \nabla u) - a \operatorname{div}(A_{10} u) + a A_{01} \nabla u + a A_{00} u.$$

where a and $A = (A_{ij})$ are L^{∞} multiplication operators.

That is, that there exist $\kappa_1, \kappa_2 > 0$ such that

Re
$$\langle av, v \rangle \ge \kappa_1 \|v\|^2$$
, $v \in L^2$
Re $\langle ASu, Su \rangle \ge \kappa_2 (\|u\|^2 + \|\nabla u\|^2)$, $u \in H^1$

The problem

The Kato square root problem on manifolds is to determine when the following holds:

The problem

The Kato square root problem on manifolds is to determine when the following holds:

$$\begin{cases} & \mathcal{D}(\sqrt{L_A}) = \mathrm{H}^1(\mathcal{M}) \\ & \left\| \sqrt{L_A} u \right\| \simeq \left\| \nabla u \right\| + \left\| u \right\| = \left\| u \right\|_{\mathrm{H}^1}, \ u \in \mathrm{H}^1(\mathcal{M}) \end{cases}$$

3 / 23

Theorem (B.-Mc [BMc])

Let (\mathcal{M}, g) be a smooth, complete Riemannian manifold $|Ric| \leq C$ and $inj(M) \geq \kappa > 0$. Suppose there exist $\kappa_1, \kappa_2 > 0$ such that

$$\operatorname{Re} \langle av, v \rangle \ge \kappa_1 \|v\|^2$$
$$\operatorname{Re} \langle ASu, Su \rangle \ge \kappa_2 \|u\|_{H^1}^2$$

for $v \in L^2(\mathcal{M})$ and $u \in H^1(\mathcal{M})$. Then, $\mathcal{D}(\sqrt{L_A}) = \mathcal{D}(\nabla) = H^1(\mathcal{M})$ and $\|\sqrt{L_A}u\| \simeq \|\nabla u\| + \|u\| = \|u\|_{H^1}$ for all $u \in H^1(\mathcal{M})$.

Stability

Theorem (B.-Mc [BMc])

Let (\mathcal{M}, g) be a smooth, complete Riemannian manifold with $|Ric| \leq C$ and $inj(M) \geq \kappa > 0$. Suppose that there exist $\kappa_1, \kappa_2 > 0$ such that

$$\operatorname{Re} \langle av, v \rangle \ge \kappa_1 \|v\|^2$$
$$\operatorname{Re} \langle ASu, Su \rangle \ge \kappa_2 \|u\|_{H^1}^2$$

for $v \in L^2(\mathcal{M})$ and $u \in H^1(\mathcal{M})$. Then for every $\eta_i < \kappa_i$, whenever $\|\tilde{a}\|_{\infty} \leq \eta_1$, $\|\tilde{A}\|_{\infty} \leq \eta_2$, the estimate

$$\left\| \sqrt{\mathcal{L}_A} \, u - \sqrt{\mathcal{L}_{A+\tilde{A}}} \, u \right\| \lesssim \left(\|\tilde{a}\|_{\infty} + \|\tilde{A}\|_{\infty} \right) \|u\|_{\mathcal{H}^1}$$

holds for all $u \in H^1(\mathcal{M})$. The implicit constant depends in particular on A, a and η_i .

History of the problem

In the 1960's, Kato considered the following abstract evolution equation

$$\frac{du}{dt} + A(t)u = f(t), \quad t \in [0, T].$$

on a Hilbert space \mathscr{H} .

History of the problem

In the 1960's, Kato considered the following abstract evolution equation

$$\frac{du}{dt} + A(t)u = f(t), \quad t \in [0, T].$$

on a Hilbert space \mathcal{H} .

In 1962, Kato showed in [Kato61] that for $0 \le \alpha < 1/2$ and A(t) maximal accretive that

$$\mathcal{D}(A(t)^{\alpha}) = \mathcal{D}(A(t)^{*\alpha}) = \mathcal{D}_{\alpha} = \text{const}, \text{ and}$$
$$\|A(t)^{\alpha}u\| \simeq \|A(t)^{*\alpha}u\|, \quad u \in \mathcal{D}_{\alpha}. \tag{K_{α}}$$

History of the problem

In the 1960's, Kato considered the following abstract evolution equation

$$\frac{du}{dt} + A(t)u = f(t), \quad t \in [0, T].$$

on a Hilbert space \mathcal{H} .

In 1962, Kato showed in [Kato61] that for $0 \le \alpha < 1/2$ and A(t) maximal accretive that

$$\mathcal{D}(A(t)^{\alpha}) = \mathcal{D}(A(t)^{*\alpha}) = \mathcal{D}_{\alpha} = \text{const}, \text{ and}$$
$$\|A(t)^{\alpha}u\| \simeq \|A(t)^{*\alpha}u\|, \quad u \in \mathcal{D}_{\alpha}. \tag{K_{α}}$$

Counter examples were known for $\alpha > 1/2$.

(K1) Does
$$(K_{\alpha})$$
 hold for $\alpha = 1/2$?

- (K1) Does (K_{α}) hold for $\alpha = 1/2$?
- (K2) For the case $\omega = 0$, we know (K1) is automatically true, but is

$$\left\| \frac{d}{dt} \sqrt{A(t)} u \right\| \lesssim \|u\|$$

for $u \in \mathcal{W}$?

- (K1) Does (K_{α}) hold for $\alpha = 1/2$?
- (K2) For the case $\omega = 0$, we know (K1) is automatically true, but is

$$\left\| \frac{d}{dt} \sqrt{A(t)} u \right\| \lesssim \|u\|$$

for $u \in \mathcal{W}$?

In 1972, McIntosh provided a counter example in [Mc72] demonstrating that (K1) is false in such generality.

- (K1) Does (K_{α}) hold for $\alpha = 1/2$?
- (K2) For the case $\omega = 0$, we know (K1) is automatically true, but is

$$\left\| \frac{d}{dt} \sqrt{A(t)} u \right\| \lesssim \|u\|$$

for $u \in \mathcal{W}$?

In 1972, McIntosh provided a counter example in [Mc72] demonstrating that (K1) is false in such generality.

In 1982, McIntosh showed that (K2) also did not hold in general in [Mc82].

The Kato square root problem then became the following.

Lashi Bandara (ANU)

The Kato square root problem then became the following.

Suppose $A \in L^{\infty}$ is a pointwise matrix multiplication operator satisfying the following ellipticity condition:

$$\operatorname{Re} \langle A \nabla u, \nabla u \rangle \ge \kappa \|\nabla u\|^2$$
, for some $\kappa > 0$.

The Kato square root problem then became the following.

Suppose $A \in L^{\infty}$ is a pointwise matrix multiplication operator satisfying the following ellipticity condition:

$$\operatorname{Re} \langle A \nabla u, \nabla u \rangle \ge \kappa \|\nabla u\|^2$$
, for some $\kappa > 0$.

Is it then true that

$$\mathcal{D}(\sqrt{\operatorname{div} A \nabla}) = \operatorname{H}^{1}(\mathbb{R}^{n})$$

$$\left\| \sqrt{\operatorname{div} A \nabla} u \right\| \simeq \|\nabla u\|$$
(K1)

This was answered in the positive in 2002 by Pascal Auscher, Steve Hofmann, Michael Lacey, Alan McIntosh and Phillipe Tchamitchian in [AHLMcT].

In [AKMc], the authors created a *first-order* framework using the language of Dirac type operators to study such problems.

In [AKMc], the authors created a *first-order* framework using the language of Dirac type operators to study such problems.

(H1) Let Γ be a densely-defined, closed, nilpotent operator on a Hilbert space \mathscr{H} ,

In [AKMc], the authors created a *first-order* framework using the language of Dirac type operators to study such problems.

- (H1) Let Γ be a densely-defined, closed, nilpotent operator on a Hilbert space \mathcal{H} .
- (H2) Suppose that $B_1, B_2 \in \mathcal{L}(\mathcal{H})$ such that here exist $\kappa_1, \kappa_2 > 0$ satisfying

$$\operatorname{Re} \left\langle B_1 u, u \right\rangle \geq \kappa_1 \left\| u \right\|^2 \quad \text{ and } \quad \operatorname{Re} \left\langle B_2 v, v \right\rangle \geq \kappa_2 \left\| v \right\|^2$$
 for $u \in \mathcal{R}(\Gamma^*)$ and $v \in \mathcal{R}(\Gamma)$,

Lashi Bandara (ANU)

In [AKMc], the authors created a *first-order* framework using the language of Dirac type operators to study such problems.

- (H1) Let Γ be a densely-defined, closed, nilpotent operator on a Hilbert space \mathscr{H} ,
- (H2) Suppose that $B_1,B_2\in\mathcal{L}(\mathscr{H})$ such that here exist $\kappa_1,\kappa_2>0$ satisfying

$$\operatorname{Re} \langle B_1 u, u \rangle \ge \kappa_1 \|u\|^2$$
 and $\operatorname{Re} \langle B_2 v, v \rangle \ge \kappa_2 \|v\|^2$

for
$$u \in \mathcal{R}(\Gamma^*)$$
 and $v \in \mathcal{R}(\Gamma)$,

(H3) The operators B_1, B_2 satisfy $B_1B_2\mathcal{R}(\Gamma) \subset \mathcal{N}(\Gamma)$ and $B_2B_1\mathcal{R}(\Gamma^*) \subset \mathcal{N}(\Gamma^*)$.

9 / 23

In [AKMc], the authors created a *first-order* framework using the language of Dirac type operators to study such problems.

- (H1) Let Γ be a densely-defined, closed, nilpotent operator on a Hilbert space \mathscr{H} ,
- (H2) Suppose that $B_1,B_2\in\mathcal{L}(\mathscr{H})$ such that here exist $\kappa_1,\kappa_2>0$ satisfying

$$\operatorname{Re} \langle B_1 u, u \rangle \ge \kappa_1 \|u\|^2$$
 and $\operatorname{Re} \langle B_2 v, v \rangle \ge \kappa_2 \|v\|^2$

for
$$u \in \mathcal{R}(\Gamma^*)$$
 and $v \in \mathcal{R}(\Gamma)$,

(H3) The operators B_1, B_2 satisfy $B_1B_2\mathcal{R}(\Gamma) \subset \mathcal{N}(\Gamma)$ and $B_2B_1\mathcal{R}(\Gamma^*) \subset \mathcal{N}(\Gamma^*)$.

Let
$$\Gamma_B^* = B_1 \Gamma^* B_2$$
, $\Pi_B = \Gamma + \Gamma_B^*$ and $\Pi = \Gamma + \Gamma^*$.

Quadratic estimates and Kato type problems

Proposition

If (H1)-(H3) are satisfied and

$$\int_0^\infty \left\| t \Pi_B (\mathbf{I} + t^2 \Pi_B^2)^{-1} u \right\|^2 \; \frac{dt}{t} \simeq \|u\|$$

for $u \in \overline{\mathcal{R}(\Pi_B)}$, then

(i)
$$\mathcal{D}(\Gamma)\cap\mathcal{D}(\Gamma_B^*)=\mathcal{D}(\Pi_B)=\mathcal{D}(\sqrt{\Pi_B^2})$$
, and

(ii)
$$\|\Gamma u\| + \|\Gamma_B u\| \simeq \|\Pi_B u\| \simeq \|\sqrt{\Pi_B^2} u\|$$
, for all $u \in \mathcal{D}(\Pi_B)$.

Set $\mathscr{H} = L^2(\mathcal{M}) \oplus (L^2(\mathcal{M}) \oplus L^2(T^*\mathcal{M})).$

11 / 23

Set $\mathscr{H} = L^2(\mathcal{M}) \oplus (L^2(\mathcal{M}) \oplus L^2(T^*\mathcal{M})).$

Define

$$\Gamma_{\mathrm{g}} = \begin{bmatrix} 0 & 0 \\ S & 0 \end{bmatrix}, \ B_1 = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}, \ \mathrm{and} \ B_2 = \begin{bmatrix} 0 & 0 \\ 0 & A \end{bmatrix}.$$

Set $\mathscr{H} = L^2(\mathcal{M}) \oplus (L^2(\mathcal{M}) \oplus L^2(T^*\mathcal{M})).$

Define

$$\Gamma_{\mathrm{g}} = \begin{bmatrix} 0 & 0 \\ S & 0 \end{bmatrix}, \ B_1 = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}, \ \mathrm{and} \ B_2 = \begin{bmatrix} 0 & 0 \\ 0 & A \end{bmatrix}.$$

Then,

$$\Gamma_{\rm g}^* = \begin{bmatrix} 0 & S^* \\ 0 & 0 \end{bmatrix} \text{ and } \Pi_B^2 = \begin{bmatrix} \mathcal{L}_A & 0 \\ 0 & * \end{bmatrix}$$

Lashi Bandara (ANU)

Set
$$\mathscr{H} = L^2(\mathcal{M}) \oplus (L^2(\mathcal{M}) \oplus L^2(T^*\mathcal{M})).$$

Define

$$\Gamma_{\mathrm{g}} = \begin{bmatrix} 0 & 0 \\ S & 0 \end{bmatrix}, \ B_1 = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}, \ \mathrm{and} \ B_2 = \begin{bmatrix} 0 & 0 \\ 0 & A \end{bmatrix}.$$

Then,

$$\Gamma_{\mathbf{g}}^* = \begin{bmatrix} 0 & S^* \\ 0 & 0 \end{bmatrix} \text{ and } \Pi_B^2 = \begin{bmatrix} \mathbf{L}_A & 0 \\ 0 & * \end{bmatrix}$$

and

$$\Pi_{B,\mathrm{g}}(u,0)=(0,u,\nabla u)$$
 and $\sqrt{\Pi_{B,\mathrm{g}}^2}(u,0)=(\sqrt{\mathrm{L}_A}u,0).$

Theorem 1 and 2 are a direct consequence of the following.

Lashi Bandara (ANU)

Theorem 1 and 2 are a direct consequence of the following.

Proposition

Let $\mathcal M$ be a smooth, complete manifold with smooth metric g. Suppose there exist $\eta, \kappa > 0$ such that $|\mathrm{Ric}_g| \le \eta$ and $\mathrm{inj}(\mathcal M, g) \ge \kappa$. Furthermore, suppose that there exist κ_1, κ_2 such that

Re
$$\langle av, v \rangle \ge \kappa_1 \|v\|^2$$
, $v \in L^2(\mathcal{M}, g)$
Re $\langle ASu, Su \rangle \ge \kappa_2 \|u\|_{H^1}^2$, $u \in H^1(\mathcal{M}, g)$.

Then,

$$\int_0^\infty ||t\Pi_B(I + t^2\Pi_B^2)^{-1}u||^2 \frac{dt}{t} \simeq ||u||^2$$

for $u \in \overline{\mathcal{R}(\Pi_B)}$.

Rough metrics

We let \mathcal{M} be a smooth, complete manifold as before but now let g be a C^0 metric. Let μ_g denote the volume measure with respect to g.

Rough metrics

We let \mathcal{M} be a smooth, complete manifold as before but now let g be a C^0 metric. Let μ_g denote the volume measure with respect to g.

Definition

Let $h \in C^0(\mathcal{T}^{(2,0)}\mathcal{M})$. Then, define

$$\left\|\mathbf{h}\right\|_{\mathrm{op,g}} = \mathrm{esssup}_{\mu_{\mathbf{g}}(x)-\mathsf{a.e.}} \ \sup_{|u|_{\mathbf{g}} = |v|_{\mathbf{g}} = 1} \left|\mathbf{h}_x(u,v)\right|,$$

and

$$\|\mathbf{h}\|_{\mathrm{op,s,g}} = \sup_{x \in \mathcal{M}} \sup_{\|u|_{\sigma} = \|v|_{\sigma} = 1} |\mathbf{h}_x(u,v)|.$$

Rough metrics

We let \mathcal{M} be a smooth, complete manifold as before but now let g be a C^0 metric. Let μ_g denote the volume measure with respect to g.

Definition

Let $h \in C^0(\mathcal{T}^{(2,0)}\mathcal{M})$. Then, define

$$\left\|\mathbf{h}\right\|_{\mathrm{op,g}} = \mathrm{esssup}_{\mu_{\mathbf{g}}(x)-\mathsf{a.e.}} \ \sup_{|u|_{\mathbf{g}}=|v|_{\mathbf{g}}=1} \left|\mathbf{h}_x(u,v)\right|,$$

and

$$\|\mathbf{h}\|_{\text{op,s,g}} = \sup_{x \in \mathcal{M}} \sup_{\|u|_{\sigma} = \|v|_{\sigma} = 1} |\mathbf{h}_x(u, v)|.$$

We say that two C^0 metrics g and \tilde{g} are $\delta\text{-close}$ if $\|g-\tilde{g}\|_{\mathrm{op},g}<\delta$ for $\delta>0.$

Translating from one metric to another

Suppose that we now have a smooth metric $\tilde{\mathrm{g}}.$

Translating from one metric to another

Suppose that we now have a smooth metric $\tilde{\mathbf{g}}$. Write $f_u(v) = \tilde{\mathbf{g}}(u,v) - \mathbf{g}(u,v)$.

Lashi Bandara (ANU)

Suppose that we now have a smooth metric $\tilde{\mathbf{g}}$. Write $f_u(v) = \tilde{\mathbf{g}}(u,v) - \mathbf{g}(u,v)$. By Riesz-Representation theorem, we find that there exists B such that

$$\tilde{g}((I+B)u,v) = g(u,v).$$

Suppose that we now have a smooth metric $\tilde{\mathbf{g}}$. Write $f_u(v) = \tilde{\mathbf{g}}(u,v) - \mathbf{g}(u,v)$. By Riesz-Representation theorem, we find that there exists B such that

$$\tilde{g}((I+B)u, v) = g(u, v).$$

That is, exactly, we can absorb the lack of regularity of g in terms of a symmetric, bounded operator in $\tilde{g}. \\$

Suppose that we now have a smooth metric $\tilde{\mathbf{g}}$. Write $f_u(v) = \tilde{\mathbf{g}}(u,v) - \mathbf{g}(u,v)$. By Riesz-Representation theorem, we find that there exists B such that

$$\tilde{g}((I+B)u, v) = g(u, v).$$

That is, exactly, we can absorb the lack of regularity of g in terms of a symmetric, bounded operator in \tilde{g} . The operator $\|B\| = \|\tilde{g} - g\|_{\text{op,g}}$.

Suppose that we now have a smooth metric $\tilde{\mathbf{g}}$. Write $f_u(v) = \tilde{\mathbf{g}}(u,v) - \mathbf{g}(u,v)$. By Riesz-Representation theorem, we find that there exists B such that

$$\tilde{g}((I+B)u, v) = g(u, v).$$

That is, exactly, we can absorb the lack of regularity of g in terms of a symmetric, bounded operator in \tilde{g} . The operator $\|B\| = \|\tilde{g} - g\|_{op,g}$. The change of measures

$$\theta = \frac{d\mu_{\rm g}}{d\mu_{\tilde{\rm g}}}$$

is given in terms of I + B.

Stability of function spaces

Proposition

Let g and \tilde{g} be two C^0 metrics on \mathcal{M} . If there exists $\delta \in [0,1)$ such that $\|g-\tilde{g}\|_{\mathrm{op},g} < \delta$, then

(i) the spaces $L^2(\mathcal{M},g)=L^2(\mathcal{M},\tilde{g})$ with

$$(1 - \delta)^{\frac{n}{4}} \| \cdot \|_{2,g} \le \| \cdot \|_{2,\tilde{g}} \le (1 + \delta)^{\frac{n}{4}} \| \cdot \|_{2,g}$$

(ii) the Sobolev spaces $H^1(\mathcal{M}, \tilde{g}) = H^1(\mathcal{M}, g)$ with

$$\frac{(1-\delta)^{\frac{n}{4}}}{1+\delta} \, \| \cdot \|_{H^1,g} \leq \| \cdot \|_{H^1,\tilde{g}} \leq \frac{(1+\delta)^{\frac{n}{4}}}{1-\delta} \, \| \cdot \|_{H^1,g} \, .$$

The operator Γ_g does not change under the change of metric.

The operator $\Gamma_{\!g}$ does not change under the change of metric. However,

Proposition

 $\Gamma_g^* = \Theta \Gamma_{\tilde{g}}^* C$ where Θ is a bounded multiplication operator on $L^2(\mathcal{M})$ and C is a bounded multiplication operator on $L^2(\mathcal{M}) \oplus L^2(T^*\mathcal{M})$.

The operator $\Gamma_{\! g}$ does not change under the change of metric. However,

Proposition

 $\Gamma_g^* = \Theta \Gamma_{\tilde{g}}^* C$ where Θ is a bounded multiplication operator on $L^2(\mathcal{M})$ and C is a bounded multiplication operator on $L^2(\mathcal{M}) \oplus L^2(T^*\mathcal{M})$.

Thus,

$$\Pi_{B,g} = \Gamma_g + B_1 \Gamma_g^* B_2 = \Gamma_{\tilde{g}} + B_1 \Theta \Gamma_{\tilde{g}}^* C B_2.$$

The operator $\Gamma_{\! g}$ does not change under the change of metric. However,

Proposition

 $\Gamma_g^* = \Theta \Gamma_{\tilde{g}}^* C$ where Θ is a bounded multiplication operator on $L^2(\mathcal{M})$ and C is a bounded multiplication operator on $L^2(\mathcal{M}) \oplus L^2(T^*\mathcal{M})$.

Thus,

$$\Pi_{B,g} = \Gamma_g + B_1 \Gamma_g^* B_2 = \Gamma_{\tilde{g}} + B_1 \Theta \Gamma_{\tilde{g}}^* C B_2.$$

The idea is to reduce the Kato problem for $\Pi_{B,\mathrm{g}}$ to a Kato problem for $\Pi_{\tilde{B},\tilde{\mathrm{g}}}=\Gamma_{\tilde{\mathrm{g}}}+\tilde{B}_1\Gamma_{\tilde{\mathrm{g}}}^*\tilde{B}_2$ where $\tilde{B}_1=B_1\Theta$ and $\tilde{B}_2=CB_2$ but now with a smooth metric $\tilde{\mathrm{g}}$.

16 / 23

Ellipticity

Let us define ellipticity of L_A with respect to a metric h by

$$\operatorname{Re} \langle av, v \rangle_{h} \geq \kappa_{1,h} \|v\|_{2,h}^{2}, \ v \in L^{2}(\mathcal{M})$$

$$\operatorname{Re} \langle ASu, Su \rangle_{h} \geq \kappa_{2,h} \|u\|_{H^{1},h}^{2}, \ u \in H^{1}(\mathcal{M}).$$
(E)

Ellipticity (cont.)

Then the loss in the ellipticity constants by transferring from one operator to another is as follows.

Proposition

If $\|g - \tilde{g}\|_{op,g} \le \delta < 1$, then assuming (E) with respect to g implies (E) with respect to \tilde{g} with an appropriate change of the coefficients a and A with ellipticity constants

$$\kappa_{1,\tilde{\mathbf{g}}} = \frac{\kappa_{1,\mathbf{g}}}{(1+\delta)^{\frac{n}{2}}} \quad \text{and} \quad \kappa_{2,\tilde{\mathbf{g}}} = \kappa_{2,\mathbf{g}} \frac{(1-\delta)}{(1+\delta)^{\frac{n}{2}}}.$$

Theorem (Reduction of the rough problem to the smooth)

Let $\mathcal M$ be a smooth manifold with a C^0 metric g and suppose that the ellipticity condition (E) is satisfied for $(\mathcal M,g)$. Suppose further that there exists a smooth, complete metric $\tilde g$ satisfying:

- (i) there exists $\eta>0$ such that $|\mathrm{Ric}_{\tilde{g}}|_{\tilde{g}}\leq \eta$,
- (ii) there exists $\kappa > 0$ such that $\operatorname{inj}(\mathcal{M}, \tilde{g}) \geq \kappa$,
- (iii) $\|g \tilde{g}\|_{op,g} < 1$,

Then, the quadratic estimate

$$\int_0^\infty ||t\Pi_{B,g}(I + t^2\Pi_{B,g}^2)^{-1}u||_g^2 \frac{dt}{t} \simeq ||u||_{2,g}^2$$

holds for all $u \in \overline{\mathcal{R}(\Pi_{B,g})}$.

Compact manifolds

Given a C^0 metric g, we can always find a C^∞ metric \tilde{g} that is as close as we would like in the $\|\cdot\|_{op,s,g}$ norm by pasting together Euclidean metrics via a partition of unity.

Compact manifolds

Given a C^0 metric g, we can always find a C^{∞} metric \tilde{g} that is as close as we would like in the $\|\cdot\|_{\mathrm{op},s,g}$ norm by pasting together Euclidean metrics via a partition of unity.

Further if we assume that \mathcal{M} is compact, then automatically $|\mathrm{Ric}_{\tilde{\mathbf{g}}}| \leq C_{\tilde{\mathbf{g}}}$ and $\operatorname{inj}(\mathcal{M}, \tilde{\mathbf{g}}) \geq \kappa_{\tilde{\mathbf{g}}} > 0$.

Lashi Bandara (ANU)

Compact manifolds

Given a C^0 metric g, we can always find a C^∞ metric \tilde{g} that is as close as we would like in the $\|\cdot\|_{\mathrm{op},s,g}$ norm by pasting together Euclidean metrics via a partition of unity.

Further if we assume that \mathcal{M} is compact, then automatically $|\mathrm{Ric}_{\tilde{\mathbf{g}}}| \leq C_{\tilde{\mathbf{g}}}$ and $\mathrm{inj}(\mathcal{M}, \tilde{\mathbf{g}}) \geq \kappa_{\tilde{\mathbf{g}}} > 0$.

Theorem

Let $\mathcal M$ be a smooth, compact Riemannian manifold and let g be a C^0 metric on $\mathcal M$. Then, the quadratic estimate

$$\int_0^\infty ||t\Pi_{B,g}(I + t\Pi_{B,g}^2)^{-1}u||^2 \frac{dt}{t} \simeq ||u||^2$$

is satisfied for all $u \in \overline{\mathcal{R}(\Pi_{B,g})}$.

 Although we can obtain arbitrarily close smooth metrics via a partition of unity in the noncompact setting, the desired geometric properties are not automatic.

Lashi Bandara (ANU)

- Although we can obtain arbitrarily close smooth metrics via a partition of unity in the noncompact setting, the desired geometric properties are not automatic.
- Intuition is that the smoothing properties of geometric flows could be utilised to find good close smooth metrics.

- Although we can obtain arbitrarily close smooth metrics via a partition of unity in the noncompact setting, the desired geometric properties are not automatic.
- Intuition is that the smoothing properties of geometric flows could be utilised to find good close smooth metrics.
- The non-uniqueness of existence of solutions to geometric flows are not an issue since we only require one good metric near the initial one.

Lashi Bandara (ANU)

- Although we can obtain arbitrarily close smooth metrics via a partition of unity in the noncompact setting, the desired geometric properties are not automatic.
- Intuition is that the smoothing properties of geometric flows could be utilised to find good close smooth metrics.
- The non-uniqueness of existence of solutions to geometric flows are not an issue since we only require one good metric near the initial one.
- A good place to start may be the mean curvature flow since such flows have been studied with rough initial data.

Lashi Bandara (ANU)

- Although we can obtain arbitrarily close smooth metrics via a partition of unity in the noncompact setting, the desired geometric properties are not automatic.
- Intuition is that the smoothing properties of geometric flows could be utilised to find good close smooth metrics.
- The non-uniqueness of existence of solutions to geometric flows are not an issue since we only require one good metric near the initial one.
- A good place to start may be the mean curvature flow since such flows have been studied with rough initial data.
- The first task is to understand the backward behaviour of this flow and the relationship it has to $\|\cdot\|_{\mathrm{op,g}}$.

References I

- [AHLMcT] Pascal Auscher, Steve Hofmann, Michael Lacey, Alan McIntosh, and Ph. Tchamitchian, *The solution of the Kato square root problem for second order elliptic operators on* \mathbb{R}^n , Ann. of Math. (2) **156** (2002), no. 2, 633–654.
- [AKMc] Andreas Axelsson, Stephen Keith, and Alan McIntosh, *Quadratic estimates and functional calculi of perturbed Dirac operators*, Invent. Math. **163** (2006), no. 3, 455–497.
- [BMc] L. Bandara and A. McIntosh, *The Kato square root problem on vector bundles with generalised bounded geometry*, ArXiv e-prints (2012).
- [Kato61] Tosio Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan 13 (1961), 246–274. MR 0138005 (25 #1453)
- [Mc72] Alan McIntosh, On the comparability of $A^{1/2}$ and $A^{*1/2}$, Proc. Amer. Math. Soc. **32** (1972), 430–434. MR 0290169 (44 #7354)

References II

[Mc82] _____, On representing closed accretive sesquilinear forms as $(A^{1/2}u,\,A^{*1/2}v)$, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. III (Paris, 1980/1981), Res. Notes in Math., vol. 70, Pitman, Boston, Mass., 1982, pp. 252–267. MR 670278 (84k:47030)