Algebra. Corso di Laurea in Informatica. Prof. P. Piazza a.a. 2023-24.

Foglio di esercizi del 11/10/2023

Esercizio 1. Sia (G, \bullet) un gruppo.

- **1.1.** Verificate l'unicità dell'elemento neutro e (esercizio già fatto in classe, rifatelo senza guardare gli appunti!).
- **1.2** Verificate l'unicità dell'inverso di un elemento $g \in G$. Questo unico elemento si denota g^{-1} .
- **1.3** Verificate che $(q \bullet h)^{-1} = h^{-1} \bullet q^{-1}$.

Esercizio 2. Sia $f: A \to B$ una bigezione, o applicazione biunivoca, e sia $f^{-1}: B \to A$ l'inversa di f. Verificare che

$$f \circ f^{-1} = \mathrm{id}_B$$
, $f^{-1} \circ f = \mathrm{id}_A$

dove per ogni insieme C l'applicazione id $_C$ è l'applicazione identità, definita come id $_C$ (c) := c per ogni $c \in C$.

Esercizio 3. Sia A un insieme e $G = \{f : A \to A \mid f \text{ bigezione}\}$. Sia \circ la composizione fra applicazioni. Verificare in dettaglio che (G, \circ) è un gruppo (visto rapidamente a lezione).

Esercizio 4. Sia ora $A = \{1, 2, ..., n\}.$

Il gruppo G definito nell'esercizio precedente possiede allora una notazione specifica, che è S_n , ed un nome specifico che è il gruppo simmetrico di n oggetti.

Scrivere tutti gli elementi del gruppo S_3 (sono 6). Verificare che S_3 non è un gruppo commutativo. Suggerimento: per scrivere, ad esempio, l'elemento di S_3 che manda 1 in 3, 2 in 2 e 3 in 1 potete scrivere

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array}\right)$$

Utilizzate questa scrittura per studiare la composizione di due elementi.

Esercizio 5. Abbiamo visto la definizione rigorosa di \mathbb{Q} . Verificare che le operazioni definite in classe sono ben poste e che rendono \mathbb{Q} un campo.

Esercizio 6. Consideriamo il campo dei numeri reali $(\mathbb{R}, +, \cdot)$. Consideriamo il sottoinsieme

$$\mathbb{Q}[\sqrt{2}] := \{\alpha + \sqrt{2}\beta, \alpha, \beta \in \mathbb{Q}\} \subset \mathbb{R}.$$

Verificare che le due operazioni di $(\mathbb{R}, +, \cdot)$ inducono in questo insieme una struttura di anello ²; dimostrare che $\mathbb{Q}[\sqrt{2}]$ è un campo.

Esercizio 7. Abbiamo visto che in un anello $(A, +, \cdot)$ con elemento neutro additivo 0 si ha sempre che $a \cdot 0 = 0 = 0 \cdot a$. Denotiamo con -a l'inverso additivo di un elemento $a \in A$. Verificare che si ha sempre:

- $a \cdot (-b) = -(a \cdot b) = (-a) \cdot b$
- $\bullet \ (-a) \cdot (-b) = ab$
- denotiamo brevemente (b + (-c)) con b c; verificare che $a \cdot (b c) = a \cdot b a \cdot c$

Esercizio 8. Sia A un anello unitario e sia $\mathcal{U}(A)$ l'insieme degli elementi invertibili di A:

$$\mathcal{U}(A) := \{ a \in A : \exists \ a' \in A \text{ tale che } a \cdot a' = 1 = a' \cdot a \}$$

Dimostrate da soli, senza guardare gli appunti, che il prodotto di due element in $\mathcal{U}(A)$ è ancora in $\mathcal{U}(A)$ e che quindi la moltiplicazione in A induce in $\mathcal{U}(A)$ una struttura di gruppo (il gruppo degli invertibili di A). Suggerimento: utilizzate l'esercizio 1.3.

 $^{^1}$ Vi ricordo che $f^{-1}: B \to A$ è definita come segue: preso $b \in B$ sappiamo che esiste $a \in A$ tale che f(a) = b (perché f è suriettiva); inoltre a è unico dato che f è iniettiva; riassumendo esiste unico a tale che f(a) = b e si pone $f^{-1}(b) = a$.

 $f^{-1}(b) = a$.

²Quindi, più precisamente, la somma di due elementi di $\mathbb{Q}[\sqrt{2}]$, visti come elementi di \mathbb{R} , è ancora un elemento di $\mathbb{Q}[\sqrt{2}]$ e lo stesso è vero per il prodotto