$$s_n = f_1 + f_2 + \cdots + f_n$$

$$s_n = f_1 + f_2 + \cdots + f_n$$

Key observation: a success run will occur *at* trial n if, and only if, there is a *first* success run occurring at *some* trial j at or before n.

$$s_n = f_1 + f_2 + \cdots + f_n$$

Key observation: a success run will occur *at* trial n if, and only if, there is a *first* success run occurring at *some* trial j at or before n.

$$s_n = f_1 + f_2 + \dots + f_n$$

Key observation: a success run will occur *at* trial n if, and only if, there is a *first* success run occurring at *some* trial j at or before n.

A first success run terminating at j: probability f_j

$$s_n = f_1 + f_2 + \dots + f_n$$

Key observation: a success run will occur *at* trial n if, and only if, there is a *first* success run occurring at *some* trial j at or before n.

A first success run terminating at j: probability f_j

Renewal at j followed by a success run terminating at the (n - j)th trial after restart: probability u_{n-j}

$$s_n = f_1 + f_2 + \cdots + f_n$$

Key observation: a success run will occur *at* trial n if, and only if, there is a *first* success run occurring at *some* trial j at or before n.

A first success run terminating at j: probability f_j

Renewal at j followed by a success run terminating at the (n - j)th trial after restart: probability u_{n-j}

Independence: the probability of the sequence is $f_j \cdot u_{n-j}$.

$$s_n = f_1 + f_2 + \cdots + f_n$$

Key observation: a success run will occur *at* trial n if, and only if, there is a *first* success run occurring at *some* trial j at or before n.

A first success run terminating at j: probability f_j

Renewal at j followed by a success run terminating at the (n - j)th trial after restart: probability u_{n-j}

Independence: the probability of the sequence is $f_j \cdot u_{n-j}$.

Additivity!
$$u_n = f_1 u_{n-1} + f_2 u_{n-2} + \dots + f_j u_{n-j} + \dots + f_{n-1} u_1 + f_n$$

$$s_n = f_1 + f_2 + \cdots + f_n$$

Key observation: a success run will occur *at* trial n if, and only if, there is a *first* success run occurring at *some* trial j at or before n.

A first success run terminating at j: probability f_j

Renewal at j followed by a success run terminating at the (n - j)th trial after restart: probability u_{n-j}

Independence: the probability of the sequence is $f_j \cdot u_{n-j}$.

— a convolution sum

Additivity!
$$u_n = f_1 u_{n-1} + f_2 u_{n-2} + \dots + f_j u_{n-j} + \dots + f_{n-1} u_1 + f_n$$

$$s_n = f_1 + f_2 + \cdots + f_n$$

a convolution sum

Key observation: a success run will occur *at* trial n if, and only if, there is a *first* success run occurring at *some* trial j at or before n.

A first success run terminating at j: probability f_j

Renewal at j followed by a success run terminating at the (n - j)th trial after restart: probability u_{n-j}

Independence: the probability of the sequence is $f_j \cdot u_{n-j}$.

Additivity!
$$u_n = f_1 u_{n-1} + f_2 u_{n-2} + \dots + f_j u_{n-j} + \dots + f_{n-1} u_1 + f_n$$

$$- \text{ or equivalently } -$$

$$s_n = f_1 + f_2 + \dots + f_n$$

Key observation: a success run will occur *at* trial n if, and only if, there is a *first* success run occurring at *some* trial j at or before n.

A first success run terminating at j: probability f_j

Renewal at j followed by a success run terminating at the (n - j)th trial after restart: probability u_{n-j}

Independence: the probability of the sequence is $f_j \cdot u_{n-j}$.

 $f_n = u_n - f_1 u_{n-1} - f_2 u_{n-2} - \dots - f_j u_{n-j} - \dots - f_{n-1} u_1$

Additivity!
$$u_n = f_1 u_{n-1} + f_2 u_{n-2} + \dots + f_j u_{n-j} + \dots + f_{n-1} u_1 + f_n$$
 — or equivalently —

$$s_n = f_1 + f_2 + \cdots + f_n$$

a convolution sum

Key observation: a success run will occur *at* trial n if, and only if, there is a *first* success run occurring at *some* trial j at or before n.

A first success run terminating at j: probability f_j

Renewal at j followed by a success run terminating at the (n - j)th trial after restart: probability u_{n-j}

Independence: the probability of the sequence is $f_j \cdot u_{n-j}$.

Additivity!
$$u_n = f_1 u_{n-1} + f_2 u_{n-2} + \dots + f_j u_{n-j} + \dots + f_{n-1} u_1 + f_n$$

$$- \text{ or equivalently } -$$

$$f_n = u_n - f_1 u_{n-1} - f_2 u_{n-2} - \dots - f_j u_{n-j} - \dots - f_{n-1} u_1$$

Slogan: If you know $u_1, u_2, ..., u_n$ and $f_1, f_2, ..., f_{n-1}$ then you know f_n .