MAT2500 - Prosjektoppgave

Jonas Folvik

26. november 2018

Når vi tenker på rotasjoner så kan man forestille seg et ark eller en mynt som snurrer flatt på et bord. Dette er eksempler på rotasjoner i to dimensjoner. Vi kan også forestille seg hjulene på en bil i bevegelse eller jorden som går rundt sola, dette er da eksempler på rotasjoner i tre dimensjoner. Hvis arket eller mynten som snurrer står stille på samme sted så blir et punkt, et 0 dimensjonalt objekt, holdt fast. Mens i tre dimensjonale rotasjoner så blir en linje, et 1 dimensjonalt objekt, holdt fast. På grunn av dette kan man finne ut at ved en rotasjon i et n dimensjonalt system, så vil man rotere rundt n-2 dimensjonale objekter.

I denne oppgaven vil jeg bevise hvordan oppbyggingen til en rotasjons matrise er og beskrive rotasjoner i to, tre og fire dimensjoner.

Dette teoremet er teorem 11.3.3 i [1].

Teorem 1 Gitt et Euklidisk rom E av dimensjon n, for hver ortogonal lineær transformasjon $f: E \to E$ fins det en ortonormal basis (e_1, \ldots, e_n) slik at matrisen for f med hensyn på denne basisen er en blokk diagonal matrise på formen:

$$\begin{pmatrix} A_1 & \cdots & & \\ & A_2 & \cdots & & \\ \vdots & \vdots & \ddots & \vdots & \\ & & \cdots & A_p \end{pmatrix}$$

slik at hver blokk A_i er enten 1, -1 eller en to-dimensjonal matrise på formen:

$$A_i = \begin{pmatrix} \cos(\theta_i) & -\sin(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \end{pmatrix}$$

hvor $0 < \theta_i < \pi$. Spesielt, så er egenverdiene av $f_{\mathbb{C}}$ på formen: $\cos \theta_i \pm i \sin \theta_i$, 1, eller -1.

Bevis. Tilfellet når n=1 er trivielt. Som i beviset for teorem 11.2.9 [1], har $f_{\mathbb{C}}$ en egenverdi $z=\lambda+i\mu$, hvor $\lambda, \mu\in\mathbb{R}$. Siden $f\circ f^*=f^*\circ f=id$, så er transformasjonen f invertibel. Faktisk så har egenverdiene til f en absolutt verdi lik 1. Hvis $z\in\mathbb{C}$ er en egenverdi for f, og u er en egenvektor for z, har vi:

$$\langle f(u), f(u) \rangle = \langle zu, zu \rangle = z\bar{z}\langle u, u \rangle$$

og

$$\langle f(u), f(u) \rangle = \langle u, (f^* \circ f)(u) \rangle = \langle u, u \rangle$$

fra dette så får vi at:

$$z\bar{z}\langle u,u\rangle=\langle u,u\rangle$$

Siden $u \neq 0$, har vi $z\bar{z} = 1$, som vil si at |z| = 1. Som en konsekvens av dette så er egenverdiene av $f_{\mathbb{C}}$ på formen: $\cos \theta_i \pm i \sin \theta_i$, 1, eller -1. Teoremet følger da umiddelbart fra teorem 11.2.9 [1], hvor betingelsen $\mu > 0$ impliserer at $\sin \theta_i > 0$, og dermed, $0 < \theta_i < \pi$. \square

Ut ifra dette teoremet så kan vi vise at en rotasjons matrise for to dimensjoner kan skrives som dette:

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Denne rotasjons matrisen vil fiksere punktet (0,0), Origo, og rotere alle andre punkter om origo med vinkel θ . Vi kan vise dette ved å multiplisere matrisen med et punkt $p = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$. Vi får da at:

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \cos(\theta) - x_2 \sin(\theta) \\ x_1 \sin(\theta) + x_2 \cos(\theta) \end{pmatrix}$$

Her ser vi at det eneste punktet som ikke blir rotert er origo, (0,0)

Vi kan også vise at en rotasjons matrise i tre dimensjoner kan se ut som denne:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Denne vil da fiksere linjen som ligger på x_1 -aksen og alle andre punkter vil rotere rundt den linjen med vinkel θ . Vi kan vise at dette stemmer ved å multiplisere med et vilkårlig punkt $p = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. Vi får da at:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \cos(\theta) - x_3 \sin(\theta) \\ x_2 \sin(\theta) + x_3 \cos(\theta) \end{pmatrix}$$

Her ser vi at uansett hva punktet p er så vil ikke x_1 -koordinaten endre seg, dermed vil alle punktene langs x_1 -aksen være fiksert.

Rotasjoner i fire dimensjoner er litt mer spesielle, da man roterer rundt forskjellige plan.

$$R_{\phi,\theta} = \begin{pmatrix} \cos(\phi) & -\sin(\phi) & 0 & 0\\ \sin(\phi) & \cos(\phi) & 0 & 0\\ 0 & 0 & \cos(\theta) & -\sin(\theta)\\ 0 & 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Denne typen rotasjoner blir ofte kalt for en dobbel rotasjon, da man roterer rundt to plan. I dette eksempelet roterer vi om x_1x_2 -planet med vinkel ϕ og vi roterer om x_3x_4 -planet med vinkel θ Hvis $\phi = \theta \neq 0$ i en dobbel rotasjon så kalles det for en isoklinisk rotasjon. Hvis vi setter $\phi = 0$ i dobbel rotasjonen så får vi matrisen for R_{θ} .

$$R_{\theta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos(\theta) & -\sin(\theta) \\ 0 & 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Denne rotasjonen fikserer x_1x_2 -planet og roterer x_3x_4 -planet med vinkel θ . Dette er et eksempel på en rotasjon som kalles for en enkel rotasjon.

For at en ortogonal operator T skal være en rotasjon, så må den være orienteringsbevarende. Det vil si at: det(T) = 1

Sjekker om det stemmer for en dobbel rotasjon og en enkel rotasjon. Bruker $R_{\phi,\theta}$ og R_{θ} :

$$\det(R_{\phi,\theta}) = \cos(\phi)^{2}(\cos(\theta)^{2} + \sin(\theta)^{2}) + \sin(\phi)^{2}(\cos(\theta)^{2} + \sin(\theta)^{2}) = \cos(\phi)^{2} + \sin(\phi)^{2} = 1$$
$$\det(R_{\theta}) = \cos(\theta)^{2} + \sin(\theta)^{2} = 1$$

Referanser

[1] Jean Gallier. Geometric methods and applications: for computer science and engineering.