Kinematics

DPP-03

- Object is moving such that its velocity and acceleration is in opposite direction then
 - (A) speed may constant
 - (B) speed may increasing
 - (C) speed must be decreasing
 - (D) speed may be increasing or decreasing
- Which of the following option is correct:
 - (A) Velocity of object increasing and acceleration may decreasing
 - (B) Velocity of object decreasing and acceleration may increasing
 - (C) When acceleration may be non-zero when velocity of object is zero
 - (D) All of these
- Object is moving with constant velocity then which of the following option is
 - (A) Acceleration may be increases
 - (B) Acceleration is zero
 - (C) Acceleration is decreasing
 - (D) Acceleration is non-zero
- Equation of motion is applicable for:
 - (A) all type of motion
 - (B) accelerated motion
 - (C) uniformly accelerated motion
 - (D) non-uniform acceleration
- 5. Which of the following option is correct for acceleration
 - (A) $\frac{d\vec{V}}{dt}$

- (D) all of these

- Which of the following statement is correct for retardation
 - (A) –ve acceleration is called retardation
 - (B) may be +ve and -ve acceleration is called acceleration
 - (C) acceleration which is in the direction of motion
 - (D) acceleration which is parallel to the velocity.
- Which of the following is correct relation:-
 - (a) If $V = \cos t^n$ then acceleration is increasing
 - (B) If velocity is constant then acceleration must be zero
 - (C) If acceleration is constant then velocity must be constant
 - (D) If acceleration is zero, then velocity may increasing
- In which option acceleration of object is constant
 - (A) $x = t^3 + 2t$
- (C) $q = \alpha t^{3/2}$
- In which of acceleration of object is constant
 - (A) a = kx
- (B) $v = 4 \sin(2t)$ (D) v = 4 t
- (C) $v = e^{2}$
- **10.** La uniform motion :-
 - (A) Velocity must be constant
 - (B) Speed may be variable
 - (C) Speed must be constant
 - (D) Acceleration may be non-zero

- 11. Which of the following option is correct for magnitude of acceleration
 - (A) $\frac{d\vec{V}}{dt}$
- (B) $\frac{d|\vec{V}|}{dt}$
- (C) $\left| \frac{d\vec{V}}{dt} \right|$
- (D) none of these

ANSWERS

- **1.** (C)
- **2. (D)**
- **3. (B)**
- **4.** (C)
- **5. (D)**
- **6.** (**B**)
- 7. **(B)**
- **8.** (**D**)
- 9. (D)
- **10.** (A)
- 11. (C)

Note - If you have any query/issue

Mail us at support@physicswallah.org