第8章 数字系统设计基础

- 8.1 数字系统在逻辑上可以划分成哪两个部分?其中哪一部分是数字系统的核心?
- 解:数字系统在逻辑上可以划分成控制器和数据处理器两部分,控制器是数字系统的核心。
- 8.2 什么是数字系统的ASM图?它与一般的算法流程图有什么不同?ASM块的时序意义是什么?
- 解:算法状态机(ASM)是数字系统控制过程的算法流程图。它与一般的算法流程图的区别为 ASM 图表可表示事件的精确时间间隔序列,而一般的算法流程图只表示事件发生的先后序列,没有时间概念。ASM 块的时序意义是一个 ASM 块内的操作是在一个 *CLK* 脉冲作用下完成的。
- 8.3 某数字系统,在 T_0 状态下,下一个 CLK 到,完成无条件操作:寄存器 $R \leftarrow 1010$,状态由 $T_0 \rightarrow T_1$ 。在 T_1 状态下,下一个 CLK 到,完成无条件操作:R 左移,若外输入 X=0,则完成条件操作:计数器 $A \leftarrow A+1$,状态由 $T_1 \rightarrow T_2$;若 X=1,状态由 $T_1 \rightarrow T_3$ 。画出该系统的 ASM 图。
- 解: ASM 图表如图所示

8.4 一个数字系统在 T_1 状态下,若启动信号 C=0,则保持 T_1 状态不变;若 C=1,则完成条件操作: $A \leftarrow N_1$, $B \leftarrow N_2$,状态由 $T_1 \rightarrow T_2$ 。在 T_2 状态下,下一个 CLK 到,完成无条件操作 $B \leftarrow B-1$,若 M=0,则完成条件操作:P 右移,状态由 $T_2 \rightarrow T_3$;若 M=1,状态由 $T_2 \rightarrow T_4 \rightarrow T_1$ 。画出该数字系统的 ASM 图。

解: ASM 图表如图

8.5 控制器状态图如题图8.5所示, 画出其等效的 ASM 图。

题图 8.5

解: ASM 图

- 8.6 设计一个数字系统,它有三个4位的寄存器 X、Y、Z,并实现下列操作:
 - ① 启动信号 S 出现,传送两个 4 位二进制数 N_1 、 N_2 分别给寄存器 X、Y;
 - ② 如果 X>Y, 左移 X 的内容, 并把结果传送给 Z;
 - ③ 如果 X<Y, 右移 Y 的内容, 并把结果传送给 Z;
 - ④ 如果X=Y, 把X或Y传送给Z。

画出满足以上要求的 ASM 图。

解: ASM 图如下图

8.7 某数字系统的 ASM 图如题图 8.7 所示, 试完成下列要求:

- (1) 画出其等效的状态图;
- (2) 用每态一个触发器的方法设计控制器。

题图 8.7

解: (1) 状态图

(2)

 $\begin{array}{l} D_0 = T_0 \overline{S} \\ D_1 = T_0 S + T_2 B C \\ D_2 = T_1 \overline{A} + T_2 B \overline{C} + T_3 \overline{B} \overline{C} + T_4 \\ D_3 = T_1 A + T_2 \overline{B} + T_3 \overline{B} C \\ D_4 = T_3 B \end{array}$

电路图略

8.8 某数字系统的 ASM 图如题图 8.8 所示,试根据此 ASM 图用 MUX、D-FF、译码器方法设计控制器。

题图 8.8

解: 状态转换真值表

状态	Q_1^n	Q_0^n	SXYZ	Q_1^{n+1}	Q_0^{n+1}	T ₀	T_1	T_2	T ₃
T_0	0	0	0 φφφ	0	0	1	0	0	0
	0	0	1 φφφ	0	1	1	0	0	0
T_1	0	1	φθθφ	0	1	0	1	0	0
	0	1	φ010	1	1	0	1	0	0
	0	1	φ011	1	0	0	1	0	0
	0	1	φ1φφ	1	0	0	1	0	0
T_2	1	0	φ10φ	1	0	0	0	1	0
	1	0	φθθφ	1	1	0	0	1	0
	1	0	φ01φ	0	0	0	0	1	0
	1	0	φ11φ	0	0	0	0	1	0
T ₃	1	1	φφφφ	0	0	0	0	0	1

卡诺图

电路图

8.9 某公园有一处 4 种颜色的彩色艺术图案灯,它的艺术图案由 4 种颜色顺序完成,绿色亮 16 s,红色亮 10 s,蓝色亮 8 s,黄色亮 5 s,周而复始地循环,试设计这种灯的控制系统。

解: (1) ASM 图

16 s 到, F=1; 10 s 到, H=1; 8 s 到, M=1; 5 s 到, N=1;

(2) 控制器设计

根据 ASM 图,有四个状态 T_0 , T_1 , T_2 , T_3 ,可画出控制器的状态转换表

符号	现	现态		输入			次 态		输出			
	Q_1''	Q_0''	F	H	M	N	Q_1^{n+1}	Q_0^{n+1}	T_0	T_1	T_2	T_3
T ₀	0	0	0	Ø	Ø	Ø	0	0	1	0	0	0
	0	. 0	1	Ø	Ø	Ø	0	1	1	0	0	0
<i>T</i> ₁	0	1	Ø	0	Ø	Ø	0	1	0	1	0	0
	0	1	Ø	1	Ø	Ø	1	0	0	1	0	0
T_2	1	0	Ø	Ø	0	Ø	· 1	Q	0	0	1	0
	1	0	Ø	Ø	1	Ø	1	1	0	0	1	0
T_3	1	1	Ø	Ø	Ø	0	1	1	0	0	0	1
	1	1	Ø	Ø	Ø	1	0	0	0	0	0	1

根据以上状态转换表和卡诺图,用 MUX, D-FF,译码器组成的控制器如解体图 8.9 中虚线左部分所示。

解题图 8.9

(3) 处理器设计

根据 ASM 图,可得 t=1 的条件方程为

$$t = T_0 \bullet F + T_1 \bullet H + T_2 \bullet M + T_3 \bullet N$$

t=1 时计时计数器应清 0,表示以上计时结束,准备计下一个定时时间,故 \bar{t} 应接加法计数器的 \bar{LD} 端,加法计数器选用 74161,其 CLK 周期 $T_{CLK}=1$ s。定时信号 t=1 的电路和计时电路 74161 构成的数据处理器如解题图 8.9 虚线右部分所示。解题图 8.9 为四色灯控制系统的整体电路。

8.10 设计十字路口交通灯控制系统: 东西方向道路和南北方向道路各行车 1 分钟,两方向红绿灯交换时,须亮黄灯 5 s。东西方向绿、黄、红灯亮分别用 EG、EY、ER 表示,南北方向绿、黄、红灯亮分别用 SG、SY、SR 表示。试按上述要求设计交通灯控制系统。

解: 1) ASM 图表

设 E=1 分钟 (红绿灯亮时间), F=5 秒(黄灯亮时间)。时间到 S=1, 计数器清零。

2) 控制器设计

控制器的状态转换表

状态	$Q_2^n Q_1^n$	E F	$Q_2^{n+1} Q_1^{n+1}$	输出 T ₀ T ₁ T ₂ T ₃
T_0	0 0 0	0 φ 1 φ	0 0 0 1	1 0 0 0 1 0 0 0
T ₁	0 1 0 1	φ0 φ1	0 1 1 0	0 1 0 0 0 0 1 0 0
T ₂	1 0 1 0	0 φ 1 φ	1 0 1 1	0 0 1 0 0 0 1 0
T ₃	1 1 1 1	φ 0 φ 1	1 1 0 0	0 0 0 1 0 0 1

卡诺图

控制器电路

3) 数据处理器设计

定时电路方程及电路: $S = (T_0 + T_2)E + (T_1 + T_3)F$ 产生 E = 1 分钟和 F = 5 秒的电路由两级 160 实现。

整体电路如图:

- 8.11 设计 8 种花型彩灯控制系统: 由 8 个发光二极管组成的彩灯,一字排开,彩灯的图案循环变换步骤如下:
 - ① 彩灯由左至右逐个亮至最后全亮;
 - ② 彩灯由右至左逐个灭至最后全灭;
 - ③ 彩灯由右至左逐个亮至最后全亮;
 - ④ 彩灯由左至右逐个灭至最后全灭;
 - ⑤ 8个彩灯全亮;
 - ⑥ 8个彩灯全灭;
 - ⑦ 8个彩灯全亮;
 - ⑧ 8个彩灯全灭。

按以上要求设计彩灯控制系统。

解: 设八个彩灯由左至右排列: A₇ A₆ A₅ A₄ A₃ A₂ A₁ A₀

1. ASM 图

2. 控制器设计

控制器实现 $T_0 \sim T_7$ 八个状态。用 74161(高)的 $Q_2Q_1Q_0$ 组成模 8 计数器, 实现 $T_0 \sim T_7$ 八个状态的转换。状态 $T_0 \sim T_3$ 四个状态中有 8 个灯的移动。

用另一 74161(低) 的 Q_2' Q_1' Q_0' 组成模八计数器实现移位控制。

再由 74191 控制移位寄存器实现左、右移和并入, 而 74191 的左、右移及并入由 M_1M_0 控制。 根据 ASM 图表得下列对应关系:

控制器和数据处理器关系表 低) 74161(高) 状态 74194 移入数据

74161(低)	74161(高)	状态	74194 移入数据	74191 控制
Q_2 , Q_1 , Q_0 ,	$Q_2Q_1Q_0$	T_{i}		$M_1 = F_1, M_0 = F_0$
000~111	000	T_0	$SR_1 \rightarrow A_7 = 1 = \overline{Q}_0$ (左移)	0 1
000~111	001	T_1	$SL_2 \rightarrow A_0 = 0 = \overline{Q}_0$ (左移)	1 0
000~111	010	T ₂	$SL_2 \rightarrow A_0 = 1 = \overline{Q}_0$ (左移)	1 0
000~111	011	T ₃	$SR_1 \rightarrow A_7 = 0 = \overline{Q}_0$ (右移)	0 1
φφφ	100	T ₄	$D_7 \sim D_0 = 11111111 = \overline{Q}_0$	1 1
φφφ	101	T ₅	$D_7 \sim D_0 = 000000000 = \overline{Q}_0$	1 1
φφφ	110	T_6	$D_7 \sim D_0 = 11111111 = \overline{Q}_0$	1 1
φφφ	111	T ₇	$D_7 \sim D_0 = 000000000 = \overline{Q}_0$	1 1

: $SR_1 = SL_2 = D_7 = D_6 = D_5 = D_4 = D_3 = D_2 = D_1 = D_0 = \overline{Q}_0$

两个 8 选 1 的 MUX74151(高)和 74151(低)的地址端 A₂A₁A₀=Q₂Q₁Q₀

74151 (高)的 $0 \sim 7$ 输入= M_1 =01101111 74151 (低)的 $0 \sim 7$ 输入= M_0 =10011111

74194(1)和 74194(2)级连实现 8 个灯 A₇~A₀的移动变换, 故: Q₄=DSR₂, Q₃=DSL₁,

74161(高)在 000~111 状态时, 是被模 8 计数器 74161(低)控制的加法计数器.

74161(低)在100~111 状态时, 实现加法计数。 根据以上分析,得彩灯控制电路如下图所示:

