Introduction to R

Jan-Philipp Kolb

05 Mai, 2019

Introduction round

- Where are you from? What are you studying/working?
- What are your expectations of this course?
- Where do you think you can use Machine Learning in the future?

Preliminaries

- This topic is huge we concentrate on presenting the application in R
- Usually we have big differences in knowledge and abilities of the participants - please tell, if it is too fast or slow.
- We have many exercises because at the end you can only learn on your own
- We have many examples try them out
- If there are questions always ask
- R is more fun together ask your neighbor

Why R is a good choice ...

- ... because it is an open source language
- ... outstanding graphs graphics, graphics, graphics
- ... relates to other languages R can be used in combination with other programs e.g. data linking
- ... R can be used for automation
- ... Vast Community you can use the intelligence of other people ;-)
- . . .
- Because of the large comunity
- New statistical methodologies are implemented quite fast
- Because R can be combined with other programs like Postgresql or Python

Constraints

Newer modules in Python

- Machine learning is a field that changes rapidly.
- Some new tools are first developed in Python.
- The package reticulate offers the possibility to use these modules from an R environment.
- Good news Python is also Open Source

Big Data

- Especially if you work with web data, you quickly have to deal with large amounts of data.
- Therefore one must fall back on databases, which can be used in combination with R.

Content of this part

• Introduction to programming in R

what is relevant for this course.

- How to import data?
- What to do with missing values?
- Parallelization

Import data

Using a path to import data

The titanic dataset

X	pclass	survived	name	sex	age	sibsp	parch	ticket	fare			
1	1	1	Allen, Miss. Elisabeth Walton									
2	1	1	Allison, Master. Hudson Trevor									
3	1	0	Allison, Miss. Helen Loraine									
4	1	0	Allison, Mr. Hudson Joshua Creighton									
5	1	0	Allison, Mrs. Hudson J C (Bessie Waldo Daniels)									
6	1	1	Anderson, Mr. Harry									

The function scan to import data

The R-package data.table

Get an overview

```
##
   Ozone Solar.R Wind Temp Month Day
     41
## 1
          190 7.4 67
## 2 36 118 8.0 72 5
## 3 12 149 12.6 74 5
                          3
## 4 18 313 11.5 62 5
                          4
## 5 NA NA 14.3 56 5
                          5
         NA 14.9
                       5
                          6
## 6
     28
                  66
```

Overview with data.table

Warning: package 'data.table' was built under R version
Ozone Solar.R Wind Temp Month Day
1: 41 190 7.4 67 5 1
2: 36 118 8.0 72 5 2

3: 12 149 12.6 74 5 3 ## 4: 18 313 11.5 62 5 4

Exercise

- Compute the logarithm of x, return suitably lagged and iterated differences,
- compute the exponential function and round the result

```
## [1] 3.3 1.8 1.6 0.5 0.3 0.1 48.8 1.1
```

The pipe operator

```
## [1] 3.3 1.8 1.6 0.5 0.3 0.1 48.8 1.1
```

How to deal with missing values

##		Ozone	Solar.R	Wind	Temp	Month	Day
##	1:	41	190	7.4	67	5	1
##	2:	36	118	8.0	72	5	2
##	3:	12	149	12.6	74	5	3
##	4:	18	313	11.5	62	5	4
##	5:	NA	NA	14.3	56	5	5
##							
##	149:	30	193	6.9	70	9	26
##	150:	NA	145	13.2	77	9	27
##	151:	14	191	14.3	75	9	28
##	152:	18	131	8.0	76	9	29
##	153:	20	223	11.5	68	9	30
		_	~ · · · ·		_		_
##		Uzone	Solar.R	Wind	Temp	Month	Day
##	1:	41	190	7.4	67	5	1
##	2:	36	118	8.0	72	5	2
##	2.	10	1/10	12 6	7/	5	3

Clean the titanic data set

```
## Warning: package 'dplyr' was built under R version 3.5.
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.tab
##
##
      between, first, last
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
## Warning: package 'bindrcpp' was built under R version 3
```

Get an overview of the data

```
## Observations: 1,045
## Variables: 13
## $ X
                                                                                   <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
## $ pclass <fct> Upper, Upper
## $ survived <fct> Yes, Yes, No, No, Yes, Yes, No, Ye
## $ name
                                                                                       <fct> Allen, Miss. Elisabeth Walton, Allison
## $ sex
                                                                              <fct> female, male, female, male, female, male, female, male, male, female, male, male, female, male, 
## $ age
                                                                                       <dbl> 29.0000, 0.9167, 2.0000, 30.0000, 25.0
## $ sibsp
                                                                                       <int> 0, 1, 1, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0
                                                                                           <int> 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0
## $ parch
## $ ticket
                                                                                           <fct> 24160, 113781, 113781, 113781, 113781
## $ fare
                                                                                           <dbl> 211.3375, 151.5500, 151.5500, 151.5500
## $ cabin <fct> B5, C22 C26, C22 C26, C22 C26, C22 C26
## $ embarked <fct> S, S, S, S, S, S, S, S, S, C, C, C, C
## $ home.dest <fct> St Louis, MO, Montreal, PQ / Chestery:
```

Example Data - Housing Values in Suburbs of Boston

```
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
```

crim	zn	indi	us cha	s n	XC	rm	age	dis	rad	tax	ptratio	bla
0.0063	32	18	2.31	0	0	.538	6.575	65	.2	4.0900	1	296
0.0273	31	0	7.07	0	0	.469	6.421	78	.9	4.9671	2	242
0.0272	29	0	7.07	0	0	.469	7.185	61	.1	4.9671	2	242
0.0323	37	0	2.18	0	0	.458	6.998	3 45	.8	6.0622	3	222
0.0690	05	0	2.18	0	0	.458	7.147	⁷ 54	.2	6.0622	3	222
0.0298	85	0	2.18	0	0	.458	6.430	58	.7	6.0622	3	222

Normalize your data

Set a seed

Time measurement

Time difference of $0.790045~{\rm secs}$

How many cores are available

```
## Warning: package 'doParallel' was built under R version
## Loading required package: foreach
## Warning: package 'foreach' was built under R version 3.5
## Loading required package: iterators
## Loading required package: parallel
## [1] 4
```

Make cluster

Time difference of $0.7690439~{\rm secs}$

The swirl package

Resources

• Course materials for the Data Science Specialization