Série d'exercices

Exercice 1

- 1 Répondre par vrai ou faux
 - Le corps solide ionique est une molécule électriquement neutre.
 - Le corps solide ionique est une molécule apolaire.
 - Le corps solide ionique contient autant de cations que d'anions .
 - Toute molécule contenant deux atomes identiques est apolaire .
 - La molécule diatomique est polaire si et seulement s'elle est constituée de deux atomes de deux éléments chimiques différents.
 - L'eau est un solvant polaire.
 - Une molécule apolaire est plus soluble dans l'eau qu'une molécule polaire.
 - La concentration effective d'une espèce chimique est toujours égale à la concentration de la solution.
 - La dissolution d'un électrolyte dans l'eau donne une solution conduisant le courant électrique.
 - Plus l'électronégativité d'un atome est élevée plus son aptitude d'attirer le doublet d'électrons vers lui est élevé.

Exercice 2

On fait dissoudre une masse m = 12g du chlorure de potassium KCl dans un volume

V=50mL de l'eau distillée . On donne : $M(K)=39,1g.\,mol^{-1}$; $M(Cl)=35,5g.\,mol^{-1}$

- O Préciser les étapes de la dissolution chlorure de potassium KCl dans l'eau.
- 2 Écrire l'équation de la dissolution du chlorure de potassium KCl dans l'eau.
- **©** Calculer la quantité de matière de *KCl* dissoute dans la solution.
- 4 Calculer la concentration de la solution obtenue.
- 6 Calculer les concentrations des effectives des ions dans la solution.

Exercice 3

- 1 Définir le corps solide ionique.
- ② En exploitant le tableau périodique, étudier la polarité de chacune des molécules suivantes : KCl; I2; NH3; CH4; CO.
- § Écrire l'équation de dissolution de chacun des électrolytes suivants : KI ; NaOH ; FeCl₃.

Série d'exercices

Exercice 4

On prépare une solution ionique (S) du chlorer de fer III $(Fe_{(aq)}^{3+} + 3Cl_{(aq)}^{-})$ de concentration

 $C=2\times 10^{-2} mol.\,L^{-1}$ et de volume V=100mL, en dissolvant une masse m du chlorure de fer

III anhydre dans l'eau distillée. On donne: $M(Fe) = 55, 8g.mol^{-1}$; $M(Cl) = 35, 5g.mol^{-1}$

- Écrire l'équation de la dissolution du chlorure de fer III dans l'eau.
- Calculer la quantité de matière du chlorure de fer III dans la solution (S).
- © Calculer la masse du chlorure de fer III dissoute dans la solution (S).
- 4 Calculer les concentrations des effectives des ions dans la solution (S).
- **6** On ajoute à la solution (S) une quantité $\mathbf{n} = 1 \times 10^{-3} mol$ de du chlorure de fer III . On suppose que le volume du mélange n'a pas changé.
 - a Calculer la nouvelle concentration de la solution (S).
 - **b** -Déduire les nouvelles valeurs des concentrations des ions dans la solution (S).
 - **Données:** $M(Fe) = 55,8g.mol^{-1}; M(Cl) = 35,5g.mol^{-1}$

Exercice 5

Pour préparer une solution ionique (S_0) de l'acide chlorhydrique $(H_{(aq)}^+ + Cl_{(aq)}^-)$ de concentration $C_0 = 1, 7 \times 10^{-2} mol. L^{-1}$ et de volume $V_0 = 80 mL$ en dissolvant un volume V du chlorure d'hydrogène gazeux dans l'eau distillée .

- Écrire l'équation de la dissolution du chlorure d'hydrogène dans l'eau.
- 2 Calculer la quantité de matière du chlorure d'hydrogène dissoute dans la solution (S_0) .
- $oldsymbol{6}$ Calculer le volume $oldsymbol{V}$ du chlorure d'hydrogène dissoute dans la solution $(oldsymbol{S_0})$.
- Calculer les concentrations des effectives des ions dans la solution (S).
- 6 On mélange la solution (S_0) avec une autre solution (S) du chlorure de sodium $(Na^+_{(aq)} + Cl^-_{(aq)})$ de concentration $C = 1, 3 \times 10^{-2} mol. L^{-1}$ et de volume V = 20 mL
 - a Calculer les quantités de matière des espèces chimique ionique dans le mélange.
 - b -Déduire les nouvelles les concentrations des espèces chimiques ionique dans le mélange.
 Données:
 - Le volume molaire du gaz dans les conditions de l'expérience : $V_m = 22, 4L. mol^{-1}$
 - La masse molaire du chlore : $M(Cl) = 35, 5g. mol^{-1}$
 - La masse molaire d'hydrogène : $M(H) = 1g. mol^{-1}$