

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/536,642	05/27/2005	David N. Roundhill	US020471US	4312
24737	7590	08/16/2010	EXAMINER	
PHILIPS INTELLECTUAL PROPERTY & STANDARDS			BEKELE, MEKONEN T	
P.O. BOX 3001			ART UNIT	PAPER NUMBER
BRIARCLIFF MANOR, NY 10510			2624	
			MAIL DATE	DELIVERY MODE
			08/16/2010	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No. 10/536,642	Applicant(s) ROUNDHILL ET AL.
	Examiner MEKONEN BEKELE	Art Unit 2624

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If no period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(o).

Status

- 1) Responsive to communication(s) filed on 07/19/2010 (based on RCE).
 2a) This action is FINAL. 2b) This action is non-final.
 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-19 is/are pending in the application.
 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
 5) Claim(s) _____ is/are allowed.
 6) Claim(s) 1-19 is/are rejected.
 7) Claim(s) _____ is/are objected to.
 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
 10) The drawing(s) filed on 27 May 2005 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
 3) Information Disclosure Statement(s) (PTO/SB/06)
 Paper No(s)/Mail Date _____
- 4) Interview Summary (PTO-413)
 Paper No(s)/Mail Date _____
- 5) Notice of Informal Patent Application
 6) Other: _____

DETAILED ACTION

1. Claims 1-19 are pending in this application.

Continued Examination Under 37 CFR 1.114.

2. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicants' submission filed on 06/24/2010 has been entered.

Priority

3. Applicants' claim for domestic priority under 35 U.S.C 119(e) is Acknowledge based on the Provisional Application Serial No. 60/430,226, filed on December 2, 2002.

Drawings

4. The Drawings filed on 05/27/2005 are accepted for examination.

Response to Amendment

5. Applicants' response to the last Office Action filed on 06/24/2010 has been entered and made of record.

6. Claims 1 and 12 are amended.

7. Applicants' amendment has required new grounds of rejection. New grounds rejection is therefore presented in the Office Action.

Claim Rejections - 35 USC § 101

35 U.S.C. 101 reads as follows:

Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.

8. Claims 1-11 are rejected under 35 U.S.C. 101 as not falling within one of the four statutory categories of invention. Based upon consideration of all the relevant factors with respect to the claim as a whole, claim 1 is held to claim an abstract idea, and is therefore rejected as ineligible subject matter under 35 USC 101. The rationale for this finding is explained below:

The claimed process of surveying the image to collect motion data , analyzing the motion data, scanning, distinguishing plaque from clutter are drawn to the disembodied concept of human analysis and judgment (i.e., mental activity in the form of forming a judgment, observation, evaluation, or opinion), without any tangible implementation (e.g., no machine implementation or transformation of an article), and absent any observable and verifiable steps (i.e., all steps may be performed mentally). Thus, the claim is drawn to an abstract idea and is thus non-statutory.

9. Claims 12-19 are rejected under 35 U.S.C. 101 because the claimed invention is directed to non-statutory subject matter as follows. Claim 12 defines a "system". However, while the preamble defines a "system", which would typically be indicative of an "apparatus", the body of the claim lacks definite structure indicative of a physical apparatus. Furthermore, the specification indicates that the invention may be embodied as pure software (page 6 lines 5-10, Survey system 12 can be implemented in any manner to collect any type of survey" data that can help indicate a region of interest 33, namely, motion or flow. Once identified, a segmentation system 18 may be implemented to store the information in a motion map 20 that

delineates the flow regions 22 from the non-flow regions 24). Therefore, the claim as a whole appears to be nothing more than a "system" of software elements, thus defining a program.

- i. Amending the claim to embody the program on "computer-readable medium" or equivalent; assuming the specification does NOT define the computer readable medium as a "signal", "carrier wave", or "transmission medium" which are deemed non-statutory; or
- ii. Adding structure to the body of the claim that would clearly define a statutory apparatus.

Any amendment to the claim should be commensurate with its corresponding disclosure.

Note:

"A transitory, propagating signal ... is not a "process, machine, manufacture, or composition of matter." Those four categories define the explicit scope and reach of subject matter patentable under 35 U.S.C. § 101; thus, such a signal cannot be patentable subject matter." (*In re Nuijten*, 84 USPQ2d 1495 (Fed. Cir. 2007)).

Should the full scope of the claim as properly read in light of the disclosure encompass non-statutory subject matter such as a "signal", the claim as a whole would be non-statutory. Should the applicant's specification define or exemplify the computer readable medium or memory (or whatever language applicant chooses to recite a computer readable medium equivalent) as statutory tangible products such as a hard drive, ROM, RAM, etc, as well as a non-statutory entity such as a "signal", "carrier wave", or "transmission medium", the examiner suggests amending the claim to include the disclosed tangible computer readable storage media, while at the same time excluding the intangible transitory media such as signals, carrier waves, etc.

Response to Arguments

9. Applicant's arguments with respect to claims 1 and 12 regarding to Hatfield et al. and Lin et al. have been fully considered. See the discussion below.

a) The Applicants amend claim 1 by adding "distinguishing plaque from clutter when low-level echoes are presented." And substantially argue that the applied reference (Hatfield et al.) discloses the identification of plaque, but fails to disclose the distinguishing between plaque and clutter as specifically recited in claim 1. Therefore, Applicants respectfully submit that the applied art fails at least one feature of claim 1 (see page 8 2nd paragraph).

Regarding the above argument [a] the examiner agrees with the applicants that Hatfield et al. fail to teach identifying the clutter. And because this reasons the rejection(s) of claims 1-12 under 35 U.S.C 103(a) has been withdrawn. However, upon further consideration, a new ground(s) of rejection is made in view of the applied prior arts and in view of Muzilla et al. US patent No. 6,500,125, filed on Mar. 30, 2000.

b) The Applicants amend claim 12 by adding " a plaque/clutter analysis system configured to distinguishing plaque from clutter." And substantially argue that the applied reference (Hatfield et al.) discloses the identification of plaque, but fails to disclose the distinguishing between plaque and clutter as specifically recited in claim 12. Therefore, Applicants respectfully submit that the applied art fails at least one feature of claim 12 (see page 9 1st and 2nd paragraphs).

Regarding the above argument[b] the Examiner agrees with the applicants that Hatfield et al. fail to teach "identifying the clutter". And because this reasons the rejection(s) of claims

Art Unit: 2624

13-19 under 35 U.S.C 103(a) has been withdrawn. However, upon further consideration, a new ground(s) of rejection is made in view of the applied prior arts and in view of Muzilla et al. US patent No. 6,500,125, filed on Mar. 30, 2000.

c) On page 8 4th paragraph and page 9 1st paragraph, the Applicants argue “a plaque/clutter analysis system 28 automatically adjusts the gain imaging acquisition system 11 based on whether plaque is present or clutter is preset. . For distinguishing plaque from clutter when low level echoes are preset in vessel interior...”.

As the above argument [c], the Examiner respectfully disagrees with the Applicants. Examiner would like to point out that claim language is given its broadest reasonable interpretation. The specification is not measure of invention. Therefore, limitations contained therein can not be read into the claims for the purpose of avoiding the prior art. *Ir re Sporck*, 55CCPA 743, 386 F. 2d 924, 155 USPQ 687 (1968). In the instant case the claim language not include “ plaque/clutter analysis system automatically adjusts the gain imaging acquisition system based on whether plaque is present or clutter is preset. For distinguishing plaque from clutter when low level echoes are preset in vessel interior...”

Claim Rejections - 35 USC § 103

The following is a quotation of the 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained thought the invention is not identically disclosed or described as set forth in section 102 of this title, if the difference between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

10. Claims 1-19 are rejected under 35 U.S.C 103(a) as being unpatentable over Hatfield et al. (hereafter Hatfield), US Patent No. 5840032, published on November 24, 1998 in view of Lin et al. (here after Lin), US Patent No. 5957138 published on September 28, 1999, further in view of Muzilla et al.(hereafter Muzilla), US Patent No. 6500125, field on March 30, 2000.

As to claim 1, Hatfield teaches A method of capturing an image using an ultrasound system (**Abstract, Method and apparatus for three-dimensional ultrasound imaging**), comprising:

directing ultrasound waves from the ultrasound system to a body (**Abstract, ultrasound scanner collects B-mode or color flow mode images. Thus, ultrasound scanner send ultrasound wave to a patient body to collect B-mode or color flow mode images data**); surveying the image to collect motion data (**Abstract, An ultrasound scanner collects B-mode or color flow mode images in a cine memory, i.e., for a multiplicity of slices, where the color flow mode is typically used to detect the velocity (motion) of fluid flow. Thus, the ultrasound scanner scans (survey) images to collect the velocity (motion) of fluid flow**);

analyzing the motion data to identify a flow in the image (**Abstract, Fig.1 element 4B, the color flow mode is typically used to detect the velocity (motion) of fluid flow. And the**

color flow (CF) processor 4B is used to provide a real-time two-dimensional image of blood velocity in the imaging plane by analyzing the output of the beamformer 2 data); scanning a limited region of the image containing the flow with a flow imaging technique(col.4 lines 25-27, method and an apparatus for three-dimensional imaging by projecting ultrasound data acquired by scanning a volume of interest(limited region of the image). The ultrasound scanner collects B-mode or color flow mode images in a cine memory on a continuous basis);

However it is noted that Hatfield does not specifically teach "the analyzing comprising segmenting the image into a flow region and a non-flow region; distinguishing plaque from clutter when low level echoes are preset "; although Hatfield teaches a method of analyzing the motion of a blood flow using a color flow processor 4B.

On the other hand the method for generating 3D images of flow structures and their flow lumen using ultrasound techniques of Lin teaches the analyzing comprising segmenting the image into a flow region and a non-flow region (**Fig. 2A step 200 and Fig.2B;**

distinguishing plaque;; when low level echoes are preset(Fig. 4, col.7 lines 53-61, For example, imaging of flow lumen may be desired to view irregular regions that may be present in the interior of the flow structure, e.g., intimal defects, plaque, stenosis, etc., which may occur on the interior wall of an artery, vein, or other vessel. The irregular surface 404 may represent plaque, stenosis, etc. The regularity of the surface decreases the flow of blood in the vessel which generates low level ultrasound echoes).

It would have been obvious to one of ordinary skill in the art at the time of invention was made to incorporate the method of generating a border between a flow region and a non-flow

region using ultrasound techniques of Lin into the method for three-dimensional imaging using ultrasound techniques of Hatfield, because both Lin and Hatfield are directed to the method for three-dimensional imaging of flow structure using ultrasound technique (Hatfield: Fig.1, col. 1 lines 65-67, Lin: Abstract, Fig.2A-2C).

It would have been obvious to one of ordinary skill in the art to incorporate the technique of three-dimensional imaging of flow structures and their flow lumen using ultrasound imaging techniques of Lin into Hatfield, because the three-dimensional imaging of ultrasound data that includes color flow data of Hatfield (Fig.1, Abstract) can be interactively-controlled to provide several types of views of a flow structure and the interior of the flow structure itself. Thus, the interior of the flow structure, including any irregularities can be viewed. Wherein, such views are especially useful in detecting branches, plaque, intimal defects, stenosis, stents, and/or any other irregular regions in arteries, veins, or other vessels (Lin: col.7 lines 53-61).

However, it is noted that both Lin and Hatfield do not specifically teach "distinguishing; clutter when low level echoes are preset". Specifically the combination of Lin and Hatfield do not teach distinguishing clutter since Lin et al. teaches a technique of distinguishing plaque as discussed above.

On the other hand the Ultrasound b/color priority threshold calculation of Muzilla teaches distinguishing clutter when low level echoes are preset (Fig. 2 col.3 lines 3035, the "slow time" I/Q signal samples are passed through a wall filter 9 which rejects any clutter corresponding to stationary or very slow-moving tissue. Thus, wall filter 9 detects and rejects the clutter).

It would have been obvious to one of ordinary skill in the art to incorporate the technique of Ultrasound b/color priority threshold calculation techniques of Muzilla into the combined method of Hatfield and Lin, because that would have allowed user of Hatfield to detect and reject cutter using the wall filter, and further would have allowed user of Hatfield to optimize display images on a display monitor (18) by automatically adjusting a threshold. B-mode data corresponding to valid color data is subjected to statistical analysis including mean and standard deviation(Muzilla: Abstract). Thus, clearly identify plaque, tissue, and vessel walls typically have a higher gray scale level than those regions containing real flow(Muzilla: col. 1 lines 55-58, col. 7 lines 30-35).

As to claim 2, Hatfield teaches surveying step comprises the step of collecting a sample of color flow data (**Abstract, An ultrasound scanner collects B-mode or color flow mode images in a cine memory, i.e., for a multiplicity of slices, where the color flow mode is typically used to detect the velocity (motion) of fluid flow**)).

As to claim 3, Hatfield teaches surveying step comprises the step of collecting contour data (**Abstract, col. 1 lines 15-28, An ultrasound scanner collects B-mode or color flow mode images, where the B- mode is used to image internal visual structure(contour), and color flow used to image flow characteristics, such as in blood vessels. Thus, ultrasound scanner scans (survey) the internal visual structure (contour) to collect contour data**).

As to claim 4, Lin teaches the analyzing step generates a motion map that identifies flow and non-flow regions (**Figs. 2B, 2C and 3A, for example Fig.2B shows a map that identifies a flow region 252 and a non-flow region 254**).

As to claim 5, Hatfield teaches the flow imaging technique includes a technique selected from the group consisting of: color flow (**Abstract, Fig. 1 element 4B**), time domain correlation (**Abstract, the color flow velocity which is expressed in time domain , speckle tracking**(**col.6 lines 38-35, To prevent the selection of maximum intensities which are bright speckle as opposed to desired pixel data, a filter can be used to remove such bright speckle intensities prior to projection**), strain imaging, pulse wave Doppler, and continuous wave Doppler (**Abstract, col. 1 lines 15-28, Doppler, and color flow used to image flow characteristics, such as in blood vessels**).

As to claim 6, Lin teaches the flow is associated with a valve in a heart (**col. 2 lines 7-28, the flow lumen may approximate the physical structure enclosing a flow structure, such as, for example, the interior wall(s) of an artery, vein, or other vessel**).

As to claim 7, Hatfield teaches the flow indicates a blood vessel (**co. 1 lines 5-18**).

As to claim 8, Hatfield teaches the scanning step uses multi-line beamforming (**Fig. 1. element 2 col. 3 lines 39-42, Beamformer2, the beamformer2 has multiple channels**).

As to claim 9, Lin teaches the flow is periodically tracked (**Fig.5. the flow data can be periodically track under control of user**) and the limited region of the image containing the flow is automatically adjusted (**col.7 lines 44-50, the flow region can be automatically adjusted using Keyboard for instant by the user**).

As to claim 10, Hatfield and Lin teaches the limited region for acquisition is a region selected from the group consisting of a 3D pie slice (**Hatfield: co1.4 lines 25-28, a method for**

three-dimensional imaging by projecting ultrasound data acquired by scanning a volume of interest. The object volume is scanned using a multiplicity of parallel slices having a substantially uniform thickness, Lin: col.6 lines 8-15),

Further Lin teaches a cube, an arbitrary shape and a collection of shapes (col. 2 lines 7-28, **an artery, vein, or other vessel**).

As to claim 11, Hatfield teaches the scanning step includes adjusting a set of acquisition parameters (**Abstract, Fig. 1, col. 1 lines 44-53, the master controller 8 of the ultrasound imaging system accepts operator inputs through an operator**)selected from the group consisting of b-mode line densities (**Fig.1, the B- Mode Processor 4A process B- mode data and store the processed data in the B-mode Acoustic Line Memory14a**) color flow line densities(**Fig. 1, the Color Flow Processor 4B process the color flow data and store the processed color flow data in to a Color Acoustic Line Memory14B**)pulse repetition frequency (**Abstract, Hatfield teaches ultrasound velocity, and the pulse repetition frequency (prf) is related to the ultrasound velocity. Since prf is defined as a transit time required for a plus to travel and back again at a given ultrasound velocity. Thus, Hatfield inherently teaches the pulse repetition frequency (prf), and ensemble length**(**col. 1 lines 15-25, Hatfield teaches Doppler imaging system, wherein a Ensemble length by definition is the number of pulses emitted by a color Doppler imaging system to create a single line of Doppler data in the image**).

As to claim 12, Hatfield teaches an ultrasound system (**Abstract; Method and apparatus for three-dimensional ultrasound imaging**), comprising:
a survey system for collecting motion data from a target image (**Abstract, An ultrasound scanner collects B-mode or color flow mode images in a cine memory, i.e., for**

a multiplicity of slices, where the color flow mode is typically used to detect the velocity (motion) of fluid flow. Thus, the ultrasound scanner apparatus scans (survey) images to collect the velocity (motion) of fluid flow;

a segmentation system (co1.4 lines 26-30, apparatus for three-dimensional imaging by projecting ultrasound data acquired by scanning a volume of interest where the object volume is scanned using a multiplicity of parallel slices having a substantially uniform thickness) for mapping a region of flow within the image based on the motion data (Abstract, ultrasound scanner collects B-mode or color flow images in a cine memory, i.e., for a multiplicity of slices. Thus, the color flows image data mapped on multiplicity of parallel slices regions of the image);

a flow acquisition system (Fig. 4b, color flow processor) that automatically limits the collection of flow image data within the image to the region of flow(Abstract, Fig.1, co1.1 lines 65-67, the color flow (CF) processor 4B is used to provide a real-time two-dimensional image of blood velocity in the imaging plane).

However as discussed in claim 1 above Hatfield does not specifically teach "the segmentation system configured to segment the image into a flow region and a non-flow region"; although Hatfield suggests the detection of color flow region using a color flow processor.

However it is noted that Hatfield does not specifically teach "the analyzing comprising segmenting the image into a flow region and a non-flow region; a plaque/clutter analysis system configured to distinguish between plaque and clutter"; although Hatfield teaches a method of analyzing the motion of a blood flow using a color flow processor 4B.

On the other hand the method for generating 3D images of flow structures and their flow lumen using ultrasound techniques of Lin teaches the analyzing comprising segmenting the image into a flow region and a non-flow region (**Fig. 2A step 200 and Fig.2B**);

plaque analysis system configured to distinguish plaque (**Fig. 4, col.7 lines 53-61, For example, imaging of flow lumen may be desired to view irregular regions that may be present in the interior of the flow structure, e.g., intimal defects, plaque, stenosis, etc., which may occur on the interior wall of an artery, vein, or other vessel. The irregular surface 404 may represent plaque, stenosis, etc;**).

However, it is noted that both Lin and Hatfield do not specifically teach "clutter analysis system configured to distinguish clutter". Specifically the combination of Lin and Hatfield do not teach distinguishing clutter since Lin et al. teaches a technique of distinguishing plaque as discussed above.

On the other hand the Ultrasound b/color priority threshold calculation of Muzilla teaches clutter analysis system configured to distinguish clutter (**Fig. 2 col.3 lines 3035, the "slow time" I/Q signal samples are passed through a wall filter 9 which rejects any clutter corresponding to stationary or very slow-moving tissue. Thus, wall filter 9 detects and rejects the clutter**).

Regarding claims 13-16, all claimed limitation are set forth and rejected as per discussion for claims 2, 3, 5 and 8 respectively.

Regarding claims 17-19, all claimed limitation are set forth and rejected as per discussion for claims 9-11 respectively.

Contact information

Any inquiry concerning this communication or earlier communication from the examiner should be directed to Mekonen Bekele whose telephone number is 571-270-3915. The examiner can normally be reached on Monday -Friday from 8:00AM to 5:50 PM Eastern Time. If attempt to reach the examiner by telephone are unsuccessful, the examiner's supervisor AHMED SAMIR can be reached on (571)272-7413. The fax phone number for the organization where the application or proceeding is assigned is 571-237-8300. Information regarding the status of an application may be obtained from the patent Application Information Retrieval (PAIR) system. Status information for published application may be obtained from either Private PAIR or Public PAIR.

Status information for unpublished application is available through Privet PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have question on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866.217-919 (tool-free)

/MEKONEN BEKELE/
Examiner, Art Unit 2624
August 6, 2010.
/Brian Q Le/

Primary Examiner, Art Unit 2624