Lecture Notes in Computer Science

3418

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell

Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan

Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos

New York University, NY, USA

Doug Tygar

University of California, Berkeley, CA, USA

Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ulrik Brandes Thomas Erlebach (Eds.)

Network Analysis

Methodological Foundations

Volume Editors

Ulrik Brandes
University of Konstanz
Department of Computer and Information Science
Box D 67, 78457 Konstanz, Germany
E-mail: ulrik.brandes@uni-konstanz.de

Thomas Erlebach University of Leicester Department of Computer Science University Road, Leicester, LE1 7RH, U.K. E-mail: t.erlebach@mcs.le.ac.uk

Library of Congress Control Number: 2005920456

CR Subject Classification (1998): G.2, F.2.2, E.1, G.1, C.2

ISSN 0302-9743 ISBN 3-540-24979-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media springeronline.com

© Springer-Verlag Berlin Heidelberg 2005 Printed in Germany

Typesetting: Camera-ready by author, data conversion by Markus Richter, Heidelberg Printed on acid-free paper SPIN: 11394051 06/3142 5 4 3 2 1 0

Preface

The present book is the outcome of a seminar organized by the editors, sponsored by the Gesellschaft für Informatik e.V. (GI) and held in Dagstuhl, 13–16 April 2004.

GI-Dagstuhl-Seminars are organized on current topics in computer science that are not yet well covered in textbooks. Most importantly, this gives young researchers an opportunity to become actively involved in such topics, and to produce a book that can provide an introduction for others as well.

The participants of this seminar were assigned subtopics on which they did half a year of research prior to the meeting. After a week of presentations and discussion at Schloss Dagstuhl, slightly more than another half-year was spent on writing the chapters. These were cross-reviewed internally and blind-reviewed by external experts. Since we anticipate that readers will come from various disciplines, we would like to emphasize that it is customary in our field to order authors alphabetically.

The intended audience consists of everyone interested in formal aspects of network analysis, though a background in computer science on, roughly, the undergraduate level is assumed. No prior knowledge about network analysis is required. Ideally, this book will be used as an introduction to the field, a reference and a basis for graduate-level courses in applied graph theory.

First and foremost, we would like to thank all participants of the seminar and thus the authors of this book. We were blessed with a focused and determined group of people that worked professionally throughout. We are grateful to the GI and Schloss Dagstuhl for granting us the opportunity to organize the seminar, and we are happy to acknowledge that we were actually talked into doing so by Dorothea Wagner who was then chairing the GI-Beirat der Universitätsprofessor(inn)en. We received much appreciated chapter reviews from Vladimir Batagelj, Stephen P. Borgatti, Carter Butts, Petros Drineas, Robert Elsässer, Martin G. Everett, Ove Frank, Seokhee Hong, David Hunter, Sven O. Krumke, Ulrich Meyer, Haiko Müller, Philippa Pattison and Dieter Rautenbach. We thank Barny Martin for proof-reading several chapters and Daniel Fleischer, Martin Hoefer and Christian Pich for preparing the index.

December 2004 Ulrik Brandes
Thomas Erlebach

List of Contributors

Andreas Baltz

Mathematisches Seminar Christian-Albrechts-Platz 4 University of Kiel 24118 Kiel, Germany

Nadine Baumann

Department of Mathematics University of Dortmund 44221 Dortmund, Germany

Michael Baur

Faculty of Informatics University of Karlsruhe Box D 6980 76128 Karlsruhe, Germany

Marc Benkert

Faculty of Informatics University of Karlsruhe Box D 6980 76128 Karlsruhe, Germany

Ulrik Brandes

Computer & Information Science University of Konstanz Box D 67 78457 Konstanz, Germany

Michael Brinkmeier

Automation & Computer Science Technical University of Ilmenau 98684 Ilmenau, Germany

Thomas Erlebach

Department of Computer Science University of Leicester University Road Leicester LE1 7RH, U.K.

Marco Gaertler

Faculty of Informatics University of Karlsruhe Box D 6980 76128 Karlsruhe, Germany

Riko Jacob

Theoretical Computer Science Swiss Federal Institute of Technology Zürich 8092 Zürich, Switzerland

Frank Kammer

Theoretical Computer Science Faculty of Informatics University of Augsburg 86135 Augsburg, Germany

Gunnar W. Klau

Computer Graphics & Algorithms Vienna University of Technology 1040 Vienna, Austria

Lasse Kliemann

Mathematisches Seminar Christian-Albrechts-Platz 4 University of Kiel 24118 Kiel, Germany

Dirk Koschützki

IPK Gatersleben Corrensstraße 3 06466 Gatersleben, Germany

Sven Kosub

Department of Computer Science Technische Universität München Boltzmannstraße 3 D-85748 Garching, Germany

Katharina A. Lehmann

Wilhelm-Schickard-Institut für Informatik Universität Tübingen Sand 14, C108 72076 Tübingen, Germany

Jürgen Lerner

Computer & Information Science University of Konstanz Box D 67 78457 Konstanz, Germany

Marc Nunkesser

Theoretical Computer Science Swiss Federal Institute of Technology Zürich 8092 Zürich, Switzerland

Leon Peeters

Theoretical Computer Science Swiss Federal Institute of Technology Zürich 8092 Zürich, Switzerland

Stefan Richter

Theoretical Computer Science RWTH Aachen Ahornstraße 55 52056 aachen, Germany

Daniel Sawitzki

Computer Science 2 University of Dortmund 44221 Dortmund, Germany

Thomas Schank

Faculty of Informatics University of Karlsruhe Box D 6980 76128 Karlsruhe, Germany

Sebastian Stiller

Institute of Mathematics Technische Universität Berlin 10623 Berlin, Germany

Hanjo Täubig

Department of Computer Science Technische Universität München Boltzmannstraße 3 85748 Garching, Germany

Dagmar Tenfelde-Podehl

Department of Mathematics Technische Universität Kaiserslautern 67653 Kaiserslautern, Germany

René Weiskircher

Computer Graphics & Algorithms Vienna University of Technology 1040 Vienna, Austria

Oliver Zlotowski

Algorithms and Data Structures Universität Trier 54296 Trier, Germany

Table of Contents

Pr	eface	V
Lis	st of Contributors	VII
1	Introduction U. Brandes and T. Erlebach	1
2	Fundamentals U. Brandes and T. Erlebach 2.1 Graph Theory 2.2 Essential Problems and Algorithms 2.3 Algebraic Graph Theory 2.4 Probability and Random Walks 2.5 Chapter Notes	7 7 9 13 14 15
Pa 3	Centrality Indices D. Koschützki, K. A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-	
	Podehl, and O. Zlotowski. 3.1 Introductory Examples 3.2 A Loose Definition. 3.3 Distances and Neighborhoods 3.4 Shortest Paths 3.5 Derived Edge Centralities 3.6 Vitality 3.7 Current Flow 3.8 Random Processes 3.9 Feedback 3.10 Dealing with Insufficient Connectivity 3.11 Graph- vs. Vertex-Level Indices 3.12 Chapter Notes	16 17 19 19 28 34 36 40 43 46 56 59 60

X Table of Contents

4		orithms for Centrality Indices					
	R.	Jacob, D. Koschützki, K. A. Lehmann, L. Peeters, and D. Tenfelde-					
	Pod	$ehl\ldots$	62				
	4.1	Basic Algorithms	63				
	4.2	Centrality-Specific Algorithms	67				
	4.3	Fast Approximation	72				
	4.4	Dynamic Computation	80				
5		vanced Centrality Concepts					
		Koschützki, K.A. Lehmann, D. Tenfelde-Podehl, and O. Zlotowski	83				
	5.1	Normalization	84				
	5.2	Personalization	87				
	5.3	Four Dimensions of a Centrality Index	92				
	5.4	Axiomatization	96				
	5.5	Stability and Sensitivity	104				
Pa	rt II	Groups					
6	Loc	al Density					
•		$Cosub \dots \dots$	112				
	6.1	Perfectly Dense Groups: Cliques	114				
	6.2	Structurally Dense Groups	126				
	6.3	Statistically Dense Groups	131				
	6.4	Chapter Notes	140				
7		Connectivity					
		Kammer and H. Täubig	143				
	7.1	Fundamental Theorems	144				
	7.2	Introduction to Minimum Cuts	147				
	7.3	All-Pairs Minimum Cuts	148				
	7.4	Properties of Minimum Cuts in Undirected Graphs	149				
	7.5	Cactus Representation of All Minimum Cuts	157				
	7.6	Flow-Based Connectivity Algorithms	158				
	7.7	Non-flow-based Algorithms	165				
	$7.8 \\ 7.9$	Basic Algorithms for Components	169 176				
8	Clustering						
5		Gaertler	178				
	8.1	Quality Measurements for Clusterings	180				
	8.2	Clustering Methods	196				
	8.3	Other Approaches	209				
	8.4	Chapter Notes	215				
		-					

9	Role Assignments	
	J. Lerner	216
	9.1 Structural Equivalence	218
	9.2 Regular Equivalence	223
	9.3 Other Equivalences	238
	9.4 Graphs with Multiple Relations	244
	9.5 The Semigroup of a Graph	246
	9.6 Chapter Notes	251
10	Blockmodels	
	M. Nunkesser, D. Sawitzki	253
	10.1 Deterministic Models	256
	10.2 Stochastic Models	275
	10.3 Chapter Notes	290
Par	rt III Networks	
11	Network Statistics	
	M. Brinkmeier and T. Schank	293
	11.1 Degree Statistics	294
	11.2 Distance Statistics	295
	11.3 The Number of Shortest Paths	300
	11.4 Distortion and Routing Costs	301
	11.5 Clustering Coefficient and Transitivity	302
	11.6 Network Motifs	306
	11.7 Types of Network Statistics	307
	11.8 Chapter Notes	316
12	Network Comparison	
	M. Baur and M. Benkert	318
	12.1 Graph Isomorphism	319
	12.2 Graph Similarity	332
	12.3 Chapter Notes	340
13	Network Models	
	N. Baumann and S. Stiller	341
	13.1 Fundamental Models	342
	13.2 Global Structure Analysis	350
	13.3 Further Models of Network Evolution	364
	13.4 Internet Topology	368
	13.5 Chapter Notes	372

XII Table of Contents

14	Spectral Analysis	
	A. Baltz and L. Kliemann	373
	14.1 Fundamental Properties	373
	14.2 Numerical Methods	385
	14.3 Subgraphs and Operations on Graphs	388
	14.4 Bounds on Global Statistics	393
	14.5 Heuristics for Graph Identification	406
	14.6 Chapter Notes	415
15	Robustness and Resilience	
	G.W. Klau and R. Weiskircher	417
	15.1 Worst-Case Connectivity Statistics	417
	15.2 Worst-Case Distance Statistics	422
	15.3 Average Robustness Statistics	424
	15.4 Probabilistic Robustness Statistics	432
	15.5 Chapter Notes	435
Bik	oliography	439
Ind	lex	467