Исследование качества генераторов псевдослучайных чисел при помощи батарей статистических тестов

Яковлева Ольга Валентиновна, гр.522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доц. Коробейников А.И. Рецензент: к.ф.-м.н., доц. Некруткин В.В.

Санкт-Петербург 2015г.

Постановка задачи

Генераторы вырабатывают последовательность целых чисел на решётке $\{0,\ldots,2^d-1\}$.

• Моделирование последовательности вещественных чисел

$$\xi_1, \xi_2, \ldots, \xi_n.$$

 \mathcal{H}_0^U : $\xi_1, \xi_2, \dots, \xi_n$ — независимые, о.р., U(0,1).

Моделирование последовательности единиц и нулей (бит)

$$\beta_1, \beta_2, \ldots, \beta_n.$$

 \mathcal{H}_0^B : $\beta_1,\beta_2,\ldots,\beta_n$ — независимые, о.р., Ber(0.5).

Постановка задачи

Генераторы вырабатывают последовательность целых чисел на решётке $\{0,\dots,2^d-1\}.$

• Моделирование последовательности вещественных чисел

$$\xi_1, \xi_2, \ldots, \xi_n.$$

 \mathcal{H}_0^U : ξ_1,ξ_2,\ldots,ξ_n — независимые, о.р., U(0,1).

Моделирование последовательности единиц и нулей (бит)

$$\beta_1, \beta_2, \ldots, \beta_n.$$

 \mathcal{H}_0^B : $\beta_1, \beta_2, \dots, \beta_n$ — независимые, о.р., Ber(0.5).

Проверка гипотезы: построение теста

- $oldsymbol{0}$ $au=f(eta_1,eta_2,\ldots,eta_n)$ статистика теста
- $oldsymbol{eta}$ ${\cal F}$ известная функция распределения au, если верна ${\cal H}_0^B$
- $m{0}$ $ho=\mathcal{F}(au)$ Если \mathcal{F} непрерывна и гипотеза \mathcal{H}_0^B верна, то $ho\sim U(0,1)$
- lacktriangledown $p ext{-}value$ теста реализация случайной величины ho

Процесс тестирования

lacktriangle Вычисление k реплик статистики au:

$$\tau_1 = f(\beta_1^{(1)}, \beta_2^{(1)}, \dots, \beta_n^{(1)})$$

$$\vdots$$

$$\tau_k = f(\beta_1^{(k)}, \beta_2^{(k)}, \dots, \beta_n^{(k)})$$

- $\rho_1 = \mathcal{F}(\tau_1), \ldots, \rho_k = \mathcal{F}(\tau_k)$
- \odot Проверка гипотезы \mathcal{H}_0 : $ho_1,
 ho_2, \dots,
 ho_k$ — независимые, о.р., U(0,1)с помощью критерия Колмогорова-Смирнова
- p- $value^{Fin}$

Задачи

- Проверить известные факты о качестве линейных конгруэнтных генераторов
- Исследовать качество широко используемых генераторов с помощью битовых тестов
- Исследовать способ улучшения линейных конгруэнтных генераторов с помощью метода замещения значений траектории

Процесс тестирования

- Система тестов TestU01:
 Alphabit, 17 тестов
 Rabbit, 33 теста
- Параметры тестирования

$$\tau_1 = f(\beta_1^{(1)}, \beta_2^{(1)}, \dots, \beta_n^{(1)})$$

$$\vdots$$

$$\tau_k = f(\beta_1^{(k)}, \beta_2^{(k)}, \dots, \beta_n^{(k)})$$

$$n \approx 2^{23}$$
, $k = 100$

ullet Тест пройден, если $p ext{-}value^{Fin}>0.05$

Процесс тестирования

Извлечение последовательности бит:

 Последовательность целых можно рассматривать как последовательность бит:

$$\underbrace{010111\dots0111}_{u_1},\underbrace{110101\dots1010}_{u_2},\dots$$

 Можно использовать не все двоичные разряды целого числа:

$$\underbrace{010111\dots0}_{u_1},\underbrace{110101\dots1}_{u_2},\dots$$

Пример теста: RandomWalk, au_C

• Входная последовательность бит b_1, b_2, \ldots, b_n разбивается на N непересекающихся блоков длины L:

$$[b_1, b_2, \dots, b_L], \dots, [b_{L(N-1)+1}, b_{L(N-1)+2}, \dots, b_{LN}]$$

• Для каждого блока вычисляются следующие величины:

$$\Gamma_k=\sum_{j=1}^k c_j,$$
 где $c_j=egin{cases} 1,&$ если $b_j=1\ -1,&$ если $b_j=0.$ $au_C=\sum_{k=3}^L \mathbb{I}(\Gamma_{k-2}\Gamma_k<0)$

- ullet au_C число перемен знака траектории процесса $\{\Gamma_k\}$
- После вычисления N реализаций случайной величины au_C полученные частоты сравниваются с ожидаемыми с помощью критерия χ^2

$$u_{i+1} = (69069u_i + 1) \mod 2^{32}$$

Количество пройденных тестов

Alphabit	Rabbit
17	33
1	7

Младшие двоичные разряды u_i плохого качества

	Alphabit	Rabbit
Исп. биты	17	33
1-32	1	7
1-31	3	14

Исп. биты	1-32	1-31
$p ext{-}value^{Fin}$	< 0.01	< 0.01

	Alphabit	Rabbit
Исп. биты	17	33
1-32	1	7
1-31	3	14
1-28	4	16

Исп. биты	1-32	1-31	1-28
p - $value^{Fin}$	< 0.01	< 0.01	0.04

	Alphabit	Rabbit
Исп. биты	17	33
1-32	1	7
1-31	3	14
1-28	4	16
1-16	16	28

Исп. биты	1-32	1-31	1-28	1-16
p - $value^{Fin}$	< 0.01	< 0.01	0.04	0.88

Встроенные генераторы пакета R

Встроенные генераторы пакета R

Генератор	Alphabit (17 тестов)	Rabbit (33 теста)
Wichmann-Hill	16	30
Marsaglia-Multicarry	17	32
Super-Duper	17	29
Mersenne-Twister	16	30
Knuth-TAOCP-2002	17	28
L'Ecuyer-CMRG	16	29

Все генераторы проходят большинство тестов

Исходный генератор: $u_{i+1} = (69069u_i + 1) \mod 2^{32}$

- g_1, g_2, \ldots последовательность целых, выработанных надёжным генератором
- Через каждые r значений траектория начинается с нового значения:

$$u_1^{(0)}, u_2^{(0)}, \dots, u_{r-1}^{(0)}, \quad g_1, u_1^{(1)}, u_2^{(1)}, \dots, u_{r-1}^{(1)}, \quad g_2, \dots$$

Предполагаемая выгода:

- Улучшение свойств
- Увеличение периода
- Сохранение высокой скорости работы

	Alphabit	Rabbit
	17	33
LCG	1	7
MMc (R)	17	32

	LCG	MMc (R)	
p - $value^{Fin}$	< 0.01	0.52	

	Alphabit	Rabbit
	17	33
LCG	1	7
MMc (R)	17	32
Комбинация		
r = 16	7	14

	LCG	MMc (R)	r = 16
p - $value^{Fin}$	< 0.01	0.52	< 0.01

	Alphabit	Rabbit
	17	33
LCG	1	7
MMc (R)	17	32
Комбинация		
r = 16	7	14
r = 3	11	27

	1	MMc (R)	r = 16	r = 3
p - $value^{Fin}$	< 0.01	0.52	< 0.01	0.94

Результаты

- С помощью батарей битовых тестов Alphabit и Rabbit проведено тестирование широко распространённых генераторов
- Исследован способ комбинации генераторов с помощью метода замещения значений траектории
- Показано, что предложенный метод позволяет улучшить статистические свойства исходного генератора