3.3 Differentiation Rules

Derivative of a constant function (f(x)=c)	<u>d</u> (c) = 0
2 Derivative of P(x)=x	d (x) = ۱
3 Derivative of $\xi(x) = x^2$	<u>d</u> (x²) = 2x
9 Derivative of 2x	d (2x) = 2
5 Derivative of X3	$\frac{d}{dx}(x^3) = 3x^2$

Power Rule: d (xn) = nxn-1 For any real number n

Examples: Differentiate

1)
$$\frac{d}{dx}(x^6) = \frac{d}{dx}(x^8) = \frac{d}{dt}t^{15}$$

3)
$$f(x) = \sqrt[3]{x^2}$$

4)
$$\frac{d}{ds}(5^3) =$$

The Constant Multiple Rule: c constant and f differentiable $\frac{d}{dx}[c f(x)] = c \frac{d}{dx} f(x)$

Examples: Differentiate

b)
$$f(x) = -x^{-2}$$

The sum and difference Rule: If f and g are differentiable

d [f(x) ± g(x)] = d f(x) ± d g(x)

dx

Examples: Differentiate

a)
$$f(x) = x^5 - 2x^4 + 2x - 3$$

b)
$$\frac{d}{dx}(3x^9 - x^{-3}) =$$

Example: Find the points on the curve $y = x^4 - 6x^2 + 4$ where the tangent line is horizontal.

Exponential Functions: Let p(x) = bx be an exponential function

$$= \lim_{h \to 0} \frac{\mu}{p_{x}(p_{y}-1)} = p_{x} \lim_{h \to 0} \frac{\mu \to 0}{p_{y}-1} = f_{1}(0)$$

$$= \lim_{h \to 0} \frac{\mu}{b_{x}(x+\mu)-b_{x}} = \lim_{h \to 0} \frac{\mu}{p_{x+\mu}-p_{x}} = \lim_{h \to 0} \frac{\mu}{p_{x}p_{y}-p_{x}}$$

Then if $f(x) = b^x$ is differentiable at 0.

then is differentiable everywhere and $f'(x) = f'(0)b^x$

The number e: Is the unique number such that $\lim_{n\to\infty} \frac{e^n-1}{n} = 1$ Among all possible exponential $y=b^x$, e is the base for which the slope of the tangent line is 1.

Then,
$$\frac{d}{dx}(e^x) = e^x$$
 $(\frac{d}{dx}e^x = f'(0)e^x f(x) = e^x)$

Example: If
$$f(x) = e^{x} - x$$
, find $f'(x)$ and $f''(x)$

$$f''(x) = \frac{d}{dx}(e^{x} - x) = \frac{d}{dx}(e^{x}) - \frac{d}{dx}(x) = e^{x} - 1$$

$$f'''(x) = \frac{d}{dx}(e^{x} - 1) = \frac{d}{dx}(e^{x}) - \frac{d}{dx}(1) = e^{x}$$

Example: At what point on the curve $y = e^x$ is the tangent line parallel to the line y = 2x.

Higher Derivatives

Example: Find all higher derivatives of $f(x) = 2x^4 - 3x^3 + 5x^2 - 6x + 18$

What is the derivative of the product of two functions?

Let
$$f(x) = x^2$$
 and $g(x) = x^3$ then $(f \cdot g)' = ?$ $\frac{d}{dx}(f \cdot g)(x) = ?$

The Product Rule

Suppose p and g are two differentiable functions, then

$$(f \cdot g)' = fg' + f'g$$

$$\frac{dx}{dx}[f(x)d(x)] = f(x)\frac{dx}{dx}[d(x)] + \frac{dx}{dx}[f(x)] \cdot d(x)$$

Returning to the above example $\frac{d}{dx}(x^2 \cdot x^3)$

Examples: Find the derivative of the following functions:

1) $y = (x^2 - 1)(3x^4 + 2x)$

3)
$$q(x) = (x^2 - 1)f(x)$$
 and $f(2) = 3$, $f'(2) = -1$. Find $g'(2)$

$$f(x) = xe^{x}$$
 $f'(x) = xe^{x}$
 $f''(x) = xe^{x}$
 $f'''(x) = xe^{x}$

The Quotient Rule

Suppose fand a are two differentiable functions, then

 $b_{(u)}(x) =$

$$\frac{dx}{d} \left[\frac{\partial(x)}{\partial(x)} \right] = \frac{\left[\partial(x) \right]_{5}}{\partial(x) d \left[b(x) \right] - b(x) d \left[\partial(x) \right]}$$

$$\left(\frac{dy}{dx} \right) = \frac{dx}{dx}$$

$$\left(\frac{dy}{dx} \right) - \frac{dx}{dx}$$

$$\left(\frac{dy}{dx} \right) - \frac{dx}{dx}$$

Again $(\frac{f}{g})' \neq \frac{f'}{g'}$ For example, let $f(x) = x^3$ and $g(x) = x^6$

Examples: Find the derivative of the following functions:

1)
$$y = \frac{x^3 - 3x^2 - 5}{2x + 5}$$

2)
$$h(x) = \frac{41x^2}{x^2 - 2}$$

3) Find an equation of the tangent line to the curve
$$y = \frac{e^x}{1 + x^2}$$
 at the point $(1, \frac{1}{2}e)$.

4)
$$f(x) = (x^2+1)(\frac{x+1}{x+2})$$

Practice:

1 Find the first and second derivatives

(a)
$$y = -x^2 + 3$$

(b)
$$y = 6x^2 - 10x - 5x^2$$

2 Find the derivatives of the functions

(a)
$$h(t) = (6t^3 - t)(10 - 20t)$$

(e)
$$y = 2e^{-x} + e^{3x}$$

(f)
$$h(x) = x^3 e^x$$

$$(9) \qquad \gamma = \frac{e^x}{s}$$

(h)
$$y = x^{3/5} + \pi^{3/2}$$

Normal line to a curve at a: Is the line perpendicular to the tangent line at a.

- 3 Find an equation for the normal line to the curve $y = x^3 4x + 1$ at (2,1)
- \bigcirc Find equations for the horizontal tangent lines to the curve $y = x^3 3x 2$ What is the smallest slope on the curve? At what points?