Introduction to Discrete Analysis

October 8, 2018

C	ONTENTS	2
C	Contents	
0	Introduction	3
1	The discrete Fourier transform	4

3

0 Introduction

 ${\it asdasd}$

1 The discrete Fourier transform

Let N be a fixed positive integer. Write ω for $e^{2\pi i/N}$, and \mathbb{Z}_N for $\mathbb{Z}/n\mathbb{Z}$. Let $f: \mathbb{Z}_N \to \mathbb{C}$. Given $f \in \mathbb{Z}_N$, define $\hat{f}(r)$ to be

$$\frac{1}{N} \sum_{x \in \mathbb{Z}_N} f(x) \omega^{-rx}$$

From now on we use the notation $\mathbb{E}_{x \in \mathbb{Z}_N}$ for $\frac{1}{N} \sum_{x \in \mathbb{Z}_N}$, so $\hat{f}(r) = \mathbb{E}_x f(x) e^{-\frac{2\pi i r x}{N}}$.

If we write ω_r for the function $x \to \omega^{rx}$, and $\langle f, g \rangle$ for $\mathbb{E}_x f(x) \overline{g(x)}$, then $\hat{f}(r) = \langle f, \omega_r \rangle$. So the discrete fourier transforn is basically expanding the function f in the set of orthonormal basis ω_r .

Let us write $||f||_p$ for $\mathbb{E}_x|f(x)|^p)^{1/p}$ (the L_p -norm), and call the resulting space $L_p(\mathbb{Z}_n)$.

Important convention: we use averages for the 'original functions' in 'physical spaces', and sums for their Fourier transforms in 'frequency space' (referring to \mathbb{E} : \langle , \rangle is average in the original space but just \sum in frequency space, i.e. for \hat{f}, \hat{g} etc.)

Lemma. (Parseval's identity) If $f, g : \mathbb{Z}_n \to \mathbb{C}$, then $\langle \hat{f}, \hat{g} \rangle = \langle f, g \rangle$.

Proof.

$$\begin{split} \langle \hat{f}, \hat{g} \rangle &= \sum_{r} \hat{f}(r) \overline{\hat{g}(r)} \\ &= \sum_{r} (\mathbb{E}_{x} f(x) \omega^{-rx}) (\overline{\mathbb{E}_{y} g(y) \omega^{-ry}}) \\ &= \mathbb{E}_{x} \mathbb{E}_{y} f(x) \overline{g(y)} \sum_{r} \omega^{-r(x-y)} \\ &= \mathbb{E}_{x} \mathbb{E}_{y} f(x) \overline{g(y)} n \delta_{xy} \\ &= \langle f, g \rangle \end{split}$$

Lemma. (Convolution identity)

$$\widehat{f*g}(r) = \widehat{f}(r)\widehat{g}(r)$$

where

$$(f * g)(x) = \mathbb{E}_{y+z=x} f(y)g(z) = \mathbb{E}_y f(y)g(x-y)$$

5

Proof.

$$\widehat{f * g}(r) = \mathbb{E}_x f * g(x) \omega^{-rx}$$

$$= \mathbb{E}_x \mathbb{E}_{y+z=x} f(y) g(z) \omega^{-rx}$$

$$= \mathbb{E}_x \mathbb{E}_{y+z=x} f(y) g(z) \omega^{-ry} \omega^{-rz}$$

$$= \mathbb{E}_y \mathbb{E}_z f(y) \omega^{-ry} g(z) \omega^{-rz}$$

$$= \widehat{f}(r) \widehat{g}(r)$$

Lemma. (Inversion formula)

$$f(x) = \sum_{r} \hat{f}(r)\omega^{rx}$$

(note the sign of ω^{rx}).

Proof.

$$\sum_{r} \hat{f}(r)\omega^{rx} = \sum_{r} \mathbb{E}_{y} f(y)\omega^{r(x-y)}$$
$$= \mathbb{E}_{y} f(y) \sum_{r} \omega^{r(x-y)}$$
$$= \mathbb{E}_{y} f(y) n \delta_{xy}$$
$$= f(x)$$

This is really just the statement that we get the original vector back when we sum up its components. $\hfill\Box$

Further observations: If f is real-valued, then $\hat{f}(-r) = \mathbb{E}_x f(x) \omega^{rx} = \overline{\mathbb{E}_x f(x) \omega^{-rx}} = \overline{\hat{f}(r)}$.

If $A \subset \mathbb{Z}_n$, write A (instead of $1_A, \chi_A$) for the characteristic function of A. Then $\hat{A}(0) = \mathbb{E}_x A(x) = \frac{|A|}{N}$, the density of A.

Also, $||\hat{A}||_2^2 = \langle \hat{A}, \hat{A} \rangle = \langle A, A \rangle = \mathbb{E}_x A(x)^2 = \mathbb{E}_x A(x) = \frac{|A|}{N}$, again the density.

Let $f: \mathbb{Z}_n \to \mathbb{C}$. Given $\mu \in \mathbb{Z}_n$, define $f_{\mu}(x)$ to be $f(\mu^{-1}x)$ (so we need $(\mu, N) = 1$). Then

$$\hat{f}_{\mu}(r) = \mathbb{E}_{x} f_{\mu}(x) \omega^{-rx}$$

$$= \mathbb{E}_{x} f(x/\mu) \omega^{-rx}$$

$$= \mathbb{E}_{x} f(x) \omega^{-r\mu x}$$

$$= \hat{f}(\mu r)$$

1.1 Roth's theorem

Theorem. For every $\delta > 0$, $\exists N$ s.t. if $A \subset \{1, ..., N\}$ is a set of size at least δN , then A must contain an arithmetic progression of length 3.

This is also true for 4,5,..., but the proof is much harder – Szemeredi's theorem. Basic strategy of proof: show that if A has density δ and no AP of length 3 (3AP), then there's a long AP in $P \subset \{1,2,...,n\}$ s.t.

$$|A \cap P| \ge (\delta + c(\delta))|p|$$

where $c(\delta)$ is some positive number. But then we can continue this argument to expand $A \cap P$ to infinity (note that $|A \cap P|$ is an integer, so each time increase by 1 at least).

The best known relationship between δ and the N required is around $\delta \sim \frac{c}{\log \log N}$ for some constant c.