An ACC satisfiability algorithm (lecture notes)

Course: Circuit Complexity, Autumn 2024, University of Chicago

Instructor: William Hoza (williamhoza@uchicago.edu)

1 The algorithmic method of proving circuit lower bounds

Recall that " $AC^0[m]$ circuits" can use AND gates, OR gates, and MOD_m gates, all with unbounded fan-in. There are constants and literals at the bottom. When m is not a power of a prime, the class $AC^0[m]$ is poorly understood. As mentioned previously in this course, it is an open problem to show $NP \nsubseteq AC^0[6]$.

On the bright side, there is a line of work showing that there are "somewhat explicit" functions that cannot be computed by small $AC^0[6]$ circuits and similar models. In particular, Murray and Williams showed $NQP \not\subseteq ACC$ [MW18], where NQP is nondeterministic quasipolynomial time and $ACC = \bigcup_m AC^0[m]$. The full proof that $NQP \not\subseteq ACC$ is beyond the scope of this course, but we will present some elements of the proof. At a high level, the proof that $NQP \not\subseteq ACC$ has two steps. The first step is a nontrivial satisfiability algorithm for $AC^0[m]$ circuits:

Theorem 1 (Nontrivial satisfiability algorithm for ACC). For all constants $m, d \in \mathbb{N}$, there exists a constant $\varepsilon > 0$ such that the following holds. Given the description of a depth-d $AC_d^0[m]$ circuit $C: \{0,1\}^n \to \{0,1\}$ of size at most $2^{n^{\varepsilon}}$, it is possible to determine whether C is satisfiable in time $2^{n-n^{\varepsilon}}$.

The second step (ignoring some technicalities) is to show that for any circuit class \mathcal{C} , if there is a nontrivial satisfiability algorithm with the parameters described above, then $NQP \not\subseteq \mathcal{C}$. The second step is very interesting, but we will focus on the first step (Theorem 1) in these lecture notes.

2 Depth reduction for ACC circuits

Recall that $\mathbb{Z}[x_1,\ldots,x_n]$ is the set of *n*-variate polynomials with integer coefficients.

Definition 1 (L_1 norm of a polynomial). If $h \in \mathbb{Z}[x_1, \ldots, x_n]$, then we define $L_1(h)$ to be the sum of the absolute values of the coefficients.

Definition 2 (SYM⁺). We define SYM⁺[k] to be the class of functions $C: \{0,1\}^n \to \{0,1\}$ of the form C(x) = g(h(x)), where $h \in \mathbb{Z}[x_1, \ldots, x_n]$ satisfies $\deg(h) \leq k$ and $L_1(h) \leq 2^k$. Note that h is multilinear without loss of generality. The function $g: \mathbb{Z} \to \{0,1\}$ can be arbitrary, but we emphasize that it is a function of just one integer variable.

You can double check that each function in $\mathsf{SYM}^+[k]$ can be computed by a "SYM of AND of literals," where the AND gates have fan-in at most k and the SYM gate has fan-in at most $2^{O(k)}$. Consequently, each function in $\mathsf{SYM}^+[k]$ can be computed by a TC^0_3 circuit of size $2^{O(k)}$. The following theorem is a key step in the proof of Theorem 1, as well as being interesting in its own right.

Theorem 2 (Simulating $AC^0[m]$ circuits using SYM^+ circuits). Let $m, d \in \mathbb{N}$ be constants. If $C \colon \{0,1\}^n \to \{0,1\}$ is an $AC^0_d[m]$ circuit of size $S \ge n$, then $C \in SYM^+[\text{polylog } S]$.

When d and m are growing parameters, the best bound known is $C \in \mathsf{SYM}^+[(\log S)^{O(d \cdot s)}]$, where s is the number of distinct prime factors of m [CP19]. In these lecture notes, we assume d and m are constant for simplicity.

¹We assume a random access model of computation throughout these lecture notes.

2.1 Simulating MOD_m gates using MOD_p gates

Lemma 1. Let $p, e \in \mathbb{N}$ be constants, where p is prime and $e \geq 1$. Then $\mathsf{MOD}_{p^e} \in \mathsf{AC}^0[p]$.

Proof. We prove it by induction on e. The base case e = 1 is trivial. For the inductive step, let $e \ge 2$, let $x \in \{0,1\}^n$, and let N be the Hamming weight of x. We claim that

$$\mathsf{MOD}_{p^e}(x) = \mathsf{MOD}_p(x) \vee \mathsf{MOD}_{p^{e-1}} \left(\bigwedge_{i \in S_1} x_i, \dots, \bigwedge_{i \in S_{\binom{n}{p}}} x_i \right), \tag{1}$$

where $S_1, S_2, \ldots, S_{\binom{n}{p}}$ is an enumeration of all size-p subsets of [n]. If N is not a multiple of p, this is trivial: $\mathsf{MOD}_{p^e}(x) = \mathsf{MOD}_p(x) = 1$. Now assume N is a multiple of p. In this case, observe that

$$\binom{N}{p} = \frac{N \cdot (N-1) \cdots (N-p+1)}{p \cdot (p-1) \cdots 1}.$$

In both the numerator and the denominator, only the first term is a multiple of p. Therefore, the exponent of p in the prime factorization of $\binom{N}{p}$ is one less than the exponent of p in the prime factorization of N. That is, $p^e \mid N$ if and only if $p^{e-1} \mid \binom{N}{p}$. Eq. (1) follows. By induction, Eq. (1) shows $\mathsf{MOD}_{p^e} \in \mathsf{AC}^0[p]$; note that $\mathsf{poly}(\binom{n}{p}) = \mathsf{poly}(n)$ since p is a constant.

More generally, let m be an arbitrary positive integer, with prime factorization $m = p_1^{e_1} \cdot p_2^{e_2} \cdots p_s^{e_s}$. Then

$$\mathsf{MOD}_m(x) = \mathsf{MOD}_{p_1^{e_1}}(x) \lor \cdots \lor \mathsf{MOD}_{p_s^{e_s}}(x).$$

Thus, we can simulate an $AC^0[m]$ circuit using AND gates, OR gates, MOD_{p_1} gates, MOD_{p_2} gates, ..., and MOD_{p_s} gates. The depth blows up by a constant factor and the size blows up polynomially, assuming m is a constant.

2.2 Eliminating one layer of MOD_p gates

Lemma 2 (Modulus-amplifying polynomials). For every $k \in \mathbb{N}$, there exists a polynomial $M_k \in \mathbb{Z}[x]$ such that $\deg(M_k) = O(k)$, $L_1(M_k) = 2^{O(k)}$, and for every $x \in \mathbb{Z}$ and every $p \in \mathbb{N}$,

$$x \equiv 0 \pmod{p} \implies M_k(x) \equiv 0 \pmod{p^k}$$

 $x \equiv 1 \pmod{p} \implies M_k(x) \equiv 1 \pmod{p^k}.$ (2)

Proof. Define

$$M_k(x) = \sum_{i=0}^{k-1} {2k-1 \choose i} \cdot x^{2k-1-i} \cdot (1-x)^i.$$

The degree and L_1 bounds are straightforward. Observe that $M_k(x)$ is a multiple of x^k , which proves Eq. (2). Now suppose $x \equiv 1 \pmod{p}$. Then 1-x is a multiple of p, so $(1-x)^i \equiv 0 \pmod{p^k}$ whenever $i \geq k$. Consequently,

$$M_k(x) \equiv \sum_{i=0}^{2k-1} {2k-1 \choose i} \cdot x^{2k-1-i} \cdot (1-x)^i \pmod{p^k}$$

$$= (x+1-x)^{2k-1} \qquad \text{by the binomial theorem}$$

$$= 1.$$

²Recall that we defined $\mathsf{MOD}_m(x) = 1 \iff x_1 + \dots + x_n \not\equiv 0 \pmod{m}$, which is opposite to the way many sources define it.

Lemma 3 (SYM⁺ can simulate SYM⁺ \circ MOD_p). Let $n, k \in \mathbb{N}$, let p be prime, and let $C : \{0,1\}^n \to \{0,1\}$ be a formula consisting of variables feeding into MOD_p gates feeding into a SYM⁺[k] gate. Then k \in SYM⁺[k] k0 \in SYM⁺[k1] k2 \in SYM⁺[k3 \in P \in SYM⁺[k3 \in P \in SYM⁺[k4] gate.

Proof. By introducing dummy variables if necessary, we can write

$$C(x) = g\left(\left(\sum_{i=1}^{L} c_i \prod_{j=1}^{k} \mathsf{MOD}_p(x_{ij1}, \dots, x_{ij\ell})\right) \bmod p^{k+2}\right),$$

where $g: \mathbb{Z} \to \{0,1\}$, each $c_i \in \mathbb{Z}$, we have $\sum_{i=1}^{L} |c_i| \leq 2^k$, and $\ell \leq n$. (Reducing mod p^{k+2} doesn't destroy any information, because the sum lies between -2^k and 2^k .) Therefore,

$$C(x) = g\left(\left(\sum_{i=1}^{L} c_{i} \bigwedge_{j=1}^{k} \left(\sum_{t=1}^{\ell} x_{ijt} \not\equiv 0 \mod p\right)\right) \mod p^{k+2}\right) \quad \text{by definition of MOD}_{p}$$

$$= g\left(\left(\sum_{i=1}^{L} c_{i} \cdot \mathbb{1} \left[\prod_{j=1}^{k} \sum_{t=1}^{\ell} x_{ijt} \not\equiv 0 \mod p\right]\right) \mod p^{k+2}\right) \quad \text{because a product of nonzero elements is nonzero in any field, including } \mathbb{F}_{p}$$

$$= g\left(\left(\sum_{i=1}^{L} c_{i} \cdot M_{k+2} \left(\left(\prod_{j=1}^{k} \sum_{t=1}^{\ell} x_{ijt}\right)^{p-1}\right)\right) \mod p^{k+2}\right) \quad \text{by Fermat's little theorem and modulus amplification.}$$

The expression above has the format of SYM⁺: first we apply a multivariate polynomial, and then we apply a univarate function ("reduce mod p^{k+2} , then apply g"). The degree of the polynomial is at most $k \cdot (p-1) \cdot \deg(M_{k+2}) = O(p \cdot k^2)$. The L_1 norm of this polynomial is at most $2^k \cdot L_1(M_{k+2}) \cdot (\ell^{k \cdot (p-1)})^{\deg(M_{k+2})} = n^{O(p \cdot k^3)}$.

2.3 Simulating the entire circuit

Proof sketch of Theorem 2. There are several steps, but none is too difficult, given the tools that we have developed.

- 1. Replace each MOD_m gate with AND gates, OR gates, MOD_{p_1} gates, ..., and MOD_{p_s} gates, as described in Section 2.1.
- 2. Replace each AND/OR gate with a probabilistic polynomial over the field \mathbb{F}_2 with error 0.1/S and degree $\ell = O(\log S)$. Note that a degree- ℓ polynomial over \mathbb{F}_2 is a $\mathsf{MOD}_2 \circ \mathsf{AND}_\ell$ circuit, where the MOD_2 gate has fan-in at most $S^{O(\log S)}$. Let \mathcal{D} be the resulting distribution over circuits.
- 3. Independently sample t = O(n) circuits $C_1, \ldots, C_t \sim \mathcal{D}$ and set $C(x) = \mathsf{MAJ}_t(C_1(x), \ldots, C_t(x))$. By Hoeffding's inequality and the union bound over all $x \in \{0,1\}^n$, there is some fixing of C_1, \ldots, C_t such that C computes f. Note that each C_i consists of MOD_2 gates, MOD_{p_1} gates, MOD_{p_2} gates, ..., MOD_{p_s} gates, and AND_ℓ gates (with literals and constants at the bottom).
- 4. By introducing dummy gates if necessary, we can ensure that all gates at the same level are of the same type. In other words, we can compute f using a circuit of the following form:

$$\mathsf{MAJ}_t \circ (\mathsf{MOD}_2 \circ \mathsf{MOD}_{p_1} \circ \cdots \circ \mathsf{MOD}_{p_s} \circ \mathsf{AND}_\ell)^{O(1)}.$$

5. Note that $\mathsf{MAJ}_t \in \mathsf{SYM}^+[\log t]$. We eliminate the layers underneath the SYM^+ gate one by one to get a $\mathsf{SYM}^+[k]$ circuit. To handle MOD_p layers, we use Lemma 3. To handle AND_ℓ layers, we use the trivial fact $\mathsf{SYM}^+[k] \circ \mathsf{AND}_\ell \subseteq \mathsf{SYM}^+[k \cdot \ell]$. Since the number of layers is O(1), we get $f \in \mathsf{SYM}^+[\operatorname{polylog}(S)]$.

3 The satisfiability algorithm

Lemma 4 (Fast multipoint evaluation of multilinear polynomials). Let $h: \{0,1\}^n \to \mathbb{Z}$ be a multilinear polynomial with integer coefficients. Given h, represented as a list of 2^n coefficients, it is possible to compute h(x) for all $x \in \{0,1\}^n$ in time $2^n \cdot \text{poly}(n) \cdot \text{polylog}(L_1(h))$.

Proof. Let $s = L_1(f)$. If n = 0, then the problem is trivial. Otherwise, there are polynomials h_0 , h_1 such that

$$h(x_1, \dots, x_n) = h_0(x_2, \dots, x_n) + x_1 \cdot h_1(x_2, \dots, x_n).$$
(3)

Considered as lists of coefficients, h_0 and h_1 are simply the first half and the second half of h, respectively. In particular, $L_1(h_0) \leq s$ and $L_1(h_1) \leq s$. We recursively compute $h_0(x)$ and $h_1(x)$ for all $x \in \{0,1\}^{n-1}$, and then we use Eq. (3) to compute h(x) for all $x \in \{0,1\}^n$. The time complexity of this algorithm, T(n,s), satisfies

$$T(n,s) \le 2T(n-1,s) + 2^n \cdot \text{poly}(n,\log s),$$

because $|h_0(x)| \le s$ and $|h_1(x)| \le s$ for all $x \in \{0,1\}^{n-1}$. This implies $T(n,s) \le 2^n \cdot \operatorname{poly}(n,\log s)$.

Proof sketch of Theorem 1. First, let us design a satisfiability algorithm that runs in time $2^{\text{polylog}(S)} + 2^n \cdot \text{poly}(n)$, given a circuit of size S where $n \leq S \leq 2^n$.

- 1. By Theorem 2, it is possible to write C in the form C(x) = g(h(x)) where $h: \{0,1\}^n \to \mathbb{Z}$ is a multilinear polynomial satisfying $L_1(h) \leq 2^{\text{polylog }S}$. We only showed that such a representation exists, but it turns out that it can be constructed in quasipolynomial $(2^{\text{polylog }S})$ time, if we represent h as a list of monomials with nonzero coefficients and we represent g as a list of $2^{\text{polylog }(S)}$ output values. We omit the proof that g and h can be efficiently constructed.
- 2. Rewrite h as a list of 2^n coefficients (many of which may be zero). This can be done in time $2^{\text{polylog }S} + 2^n \cdot \text{poly}(n)$.
- 3. Compute h(x) for all $x \in \{0,1\}^n$. By Lemma 4, this can be done in time $2^n \cdot \text{poly}(n)$.
- 4. Check whether there is some $x \in \{0,1\}^n$ such that g(h(x)) = 1. This can be done in time $2^n \cdot \text{poly}(n)$.

Now we are ready to design a satisfiability algorithm with the parameters described in the theorem statement. Given an $\mathsf{AC}^0_d[m]$ circuit $C\colon\{0,1\}^n\to\{0,1\}$ of size 2^{n^ε} , we define $C'\colon\{0,1\}^{n-n^\varepsilon}\to\{0,1\}$ by the rule

$$C'(x) = \bigvee_{y \in \{0,1\}^{n^{\varepsilon}}} C(xy).$$

Then C is satisfiable if and only if C' is satisfiable. The circuit C' is an $\mathsf{AC}^0_{d+1}[m]$ circuit of size 2^{2n^ε} , so using the algorithm described above, we can decide whether it is satisfiable in time $2^{\mathrm{poly}(n^\varepsilon)} + 2^{n-n^\varepsilon} \cdot \mathrm{poly}(n)$. The theorem follows by picking a small enough ε .

References

- [CP19] Shiteng Chen and Periklis A. Papakonstantinou. "Depth reduction for composites". In: SIAM J. Comput. 48.2 (2019), pp. 668–686. ISSN: 0097-5397. DOI: 10.1137/17M1129672.
- [MW18] Cody Murray and Ryan Williams. "Circuit lower bounds for nondeterministic quasi-polytime: an easy witness lemma for NP and NQP". In: *Proceedings of the 50th Annual Symposium on Theory of Computing (STOC)*. 2018, 890–901. DOI: 10.1145/3188745.3188910.