Inferential Statistics (A.Y. 2020/2021)

July 16, 2021, time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- This is not an open book exam.
- This examination paper contains 2 (two) questions and comprises two printed pages.
- Answer all questions in clear and readable English. The marks for each sub-question are indicated at the beginning of each sub-question.
- Candidates may use hand calculators or R. Each solution must be fully justified.

Question 1.

A computer scientist is interested in modelling the dynamics of cyber attacks $(y_i, \text{ daily counts})$ against time t_i in days, i.e. $t_1 = 1$ for day 1, $t_2 = 2$ for day 2, etc.. She suspects a quadratic effect with time and uses the following linear regression model

$$Y_i \sim N(\mu_i, \sigma^2),$$

 $\mu_i = \beta_0 + \beta_1 t_i + \beta_2 t_i^2, \quad i = 1, ..., n.$

Observations from one day to the next are independent and $(\beta_0, \beta_1, \beta_2) \in \mathbb{R}^3$, $\sigma^2 > 0$ are unknown parameters. Setting $X = [1_n | T | T^2]$, with $1_n = (1, \dots, 1)$ an $n \times 1$ vector, $T = (t_1, \dots, T_n)$, $T^2 = (T_1^2, \dots, T_n^2)$ and n = 150,

$$X^{T}X = \begin{bmatrix} 67 & 5142 & 530034 \\ ?? & 530034 & 61462338 \\ ?? & ?? & 7601706498 \end{bmatrix}, \quad X^{T}y = \begin{bmatrix} 9348 \\ 740407 \\ 72923845 \end{bmatrix}$$

$$\widehat{\text{cov}}(\hat{\beta}) = \begin{bmatrix} 37.9038847 & -0.9810866 & 0.0052895 \\ ?? & 0.0344132 & -0.0002098 \\ ?? & ?? & 0.0000014 \end{bmatrix}.$$

- (i) (1 pts) Fill in all the spaces denoted by '??'.
- (ii) (4 pts) Derive the minimum least squares estimator of $\beta = (\beta_0, \beta_1, \beta_2)$ and compute the least squares estimate.
- (iii) (2 pts) Compute an approximate confidence interval for β_1 with confidence level 99% and interpret the result.
- (iv) (3 pts) For the model above, set $\beta = \hat{\beta}_{LS}$. Write the likelihood function and the log-likelihood function of σ^2 . Derive $\hat{\sigma}^2_{\beta}$, the maximum likelihood estimator for σ^2 at the fixed value of β .

Question 2.

Let X_1, \ldots, X_n , be i.i.d. r.v.'s with p.d.f. $f(y; r, \theta) = {y+r-1 \choose y} \theta^r (1-\theta)^y$, where r and θ are parameters.

- (i) (3 pts) Specify, the parameter space. Then specify, the statistical model, the likelihood function and the log-likelihood function.
- (ii) (3 pts) Is there a sufficient statistic for the parameter (r, θ) ? If so, find it. If not explain why. And if r is a known constant, is there a sufficient statistic for θ ? If. so, find it. If not explain why
- (iii) (2 pts) Assuming r = 4, compute a method of moments estimator for θ .
- (iv) (3 pts) Compute $\hat{\theta}$, the maximum likelihood estimator for θ and find its exact distribution.
- (v) (3 pts) Let $\tau = \log[\theta/(1-\theta)]$. Compute the MLE of τ without appealing to the equivariance principle of MLE and find a distribution for $\hat{\tau}$.
- (vi) (4 pts) Assuming r=2 and for a sample of size n=10 compute a most powerful test for $H_0: \theta=1/2$ against $H_1: \theta=4/5$ of size or level $\alpha=0.05765915$. With this test, let $\bar{x}=12$, what do you conclude?
- (vii) (3 pts) Let Y_1, \ldots, Y_m be annother iid sample with each Y_j having density function $f(y; 2, \lambda)$, $j = 1, \ldots, m$. Recalling that X_i 's are iid r.v.'s with X_i having density $f(y; 2, \theta)$, $i = 1, \ldots, n$, construct an approximate test for $H_0: \theta = \lambda$ against $H_1: \theta \neq \lambda$. Compute an approximate p-value for these hypothesis given that n = 10, m = 12, $\sum_{i=1}^n x_i = 13$ and $\sum_{j=1}^m y_j = 17$.