

HM S

Compression

28 November 2022

Sebastian Wild

Learning Outcomes

- Understand the necessity for encodings and know ASCII and UTF-8 character encodings.
- 2. Understand (qualitatively) the *limits of compressibility*.
- 3. Know and understand the algorithms (encoding and decoding) for *Huffman codes*, *RLE*, *Elias codes*, *LZW*, *MTF*, and *BWT*, including their *properties* like running time complexity.
- **4.** Select and *adapt* (slightly) a *compression* pipeline for specific type of data.

Unit 7: Compression

Outline

7 Compression

- 7.1 Context
- 7.2 Character Encodings
- 7.3 Huffman Codes
- 7.4 Entropy
- 7.5 Run-Length Encoding
- 7.6 Lempel-Ziv-Welch
- 7.7 Lempel-Ziv-Welch Decoding
- 7.8 Move-to-Front Transformation
- 7.9 Burrows-Wheeler Transform
- 7.10 Inverse BWT

7.1 Context

Overview

- ► Unit 4–6: How to *work* with strings
 - finding substrings
 - finding approximate matches
 - finding repeated parts
 - ▶ ...
 - ► assumed character array (random access)!
- ▶ Unit 7–8: How to *store/transmit* strings
 - computer memory: must be binary
 - how to compress strings (save space)
 - ▶ how to robustly transmit over noisy channels → Unit 8

Clicker Question

What compression methods do you know?

→ sli.do/comp526

Terminology

- ▶ **source text:** string $S \in \Sigma_S^*$ to be stored / transmitted Σ_S is some alphabet
- ▶ **coded text:** encoded data $C \in \Sigma_C^*$ that is actually stored / transmitted usually use $\Sigma_C = \{0, 1\}$
- **encoding:** algorithm mapping source texts to coded texts $\leq \sim \sim \subset$

Terminology

- ▶ **source text:** string $S \in \Sigma_S^*$ to be stored / transmitted Σ_S is some alphabet
- ▶ **coded text:** encoded data $C \in \Sigma_C^*$ that is actually stored / transmitted usually use $\Sigma_C = \{0, 1\}$
- ▶ encoding: algorithm mapping source texts to coded texts
- ▶ decoding: algorithm mapping coded texts back to original source text
- ► Lossy vs. Lossless
 - lossy compression can only decode approximately; the exact source text S is lost
 - ▶ **lossless compression** always decodes *S* exactly
- ► For media files, lossy, logical compression is useful (e. g. JPEG, MPEG)
- ► We will concentrate on *lossless* compression algorithms. These techniques can be used for any application.

What is a good encoding scheme?

- ▶ Depending on the application, goals can be
 - ► efficiency of encoding/decoding
 - ► resilience to errors/noise in transmission → Uwif 🖇
 - security (encryption)
 - ▶ integrity (detect modifications made by third parties)
 - ▶ size

What is a good encoding scheme?

- ▶ Depending on the application, goals can be
 - efficiency of encoding/decoding
 - ▶ resilience to errors/noise in transmission
 - security (encryption)
 - ▶ integrity (detect modifications made by third parties)
 - size
 - Focus in this unit: **size** of coded text

 Encoding schemes that (try to) minimize the size of coded texts perform *data compression*.
- ► We will measure the <u>compression ratio:</u> $\frac{|C| \cdot \lg |\Sigma_C|}{|S| \cdot \lg |\Sigma_S|} \stackrel{\Sigma_C = \{0,1\}}{=} \frac{|C|}{|S| \cdot \lg |\Sigma_S|}$
 - < 1 means successful compression
 - = 1 means no compression
 - > 1 means "compression" made it bigger!? (yes, that happens ...)

Clicker Question

Do you know what uncomputable problems (halting problem, Post's correspondence problem, . . .) are?

- A Sure, I could explain what it is.
- B Heard that in a lecture, but don't quite remember
- No, never heard of it

→ sli.do/comp526

Is this image compressible?

Is this image compressible?

visualization of Mandelbrot set

- ► Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- ▶ but:
 - completely defined by mathematical formula
 - → can be generated by a very small program!

Is this image compressible?

visualization of Mandelbrot set

- ► Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- ▶ but:
 - completely defined by mathematical formula
 - \leadsto can be generated by a very small program!

→ Kolmogorov complexity

- ightharpoonup C = any program that outputs S
 - self-extracting archives!
- ► Kolmogorov complexity = length of smallest such program

Is this image compressible?

visualization of Mandelbrot set

- Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- ▶ but:
 - completely defined by mathematical formula
 - → can be generated by a very small program!

→ Kolmogorov complexity

- ightharpoonup C = any program that outputs S
 - self-extracting archives!
- ► Kolmogorov complexity = length of smallest such program
- ▶ **Problem:** finding smallest such program is *uncomputable*.
- → No optimal encoding algorithm is possible!
- → must be inventive to get efficient methods

What makes data compressible?

- ► Lossless compression methods mainly exploit two types of redundancies in source texts:
 - uneven character frequencies some characters occur more often than others → Part I
 - 2. repetitive texts
 different parts in the text are (almost) identical → Part II

What makes data compressible?

- Lossless compression methods mainly exploit two types of redundancies in source texts:
 - uneven character frequencies some characters occur more often than others → Part I
 - 2. repetitive texts different parts in the text are (almost) identical → Part II

There is no such thing as a free lunch!

Not *everything* is compressible (\rightarrow tutorials)

→ focus on versatile methods that often work

Part I

Exploiting character frequencies

7.2 Character Encodings

Character encodings

- ► Simplest form of encoding: Encode each source character individually
- \rightsquigarrow encoding function $E: \Sigma_S \to \Sigma_C^*$
 - typically, $|\Sigma_S| \gg |\Sigma_C|$, so need several bits per character
 - ▶ for $c \in \Sigma_S$, we call E(c) the *codeword* of c
- ▶ **fixed-length code:** |E(c)| is the same for all $c \in \Sigma_C$
- ▶ variable-length code: not all codewords of same length

Fixed-length codes

- ▶ fixed-length codes are the simplest type of character encodings
- Example: ASCII (American Standard Code for Information Interchange, 1963)

```
0000000 NUL
               0010000 DLE
                              0100000
                                            0110000 0
                                                         1000000 a
                                                                       1010000 P
                                                                                    1100000 '
                                                                                                 1110000 p
0000001 SOH
               0010001 DC1
                              0100001 !
                                            0110001 1
                                                         1000001 A
                                                                       1010001 0
                                                                                    1100001 a
                                                                                                 1110001 q
0000010 STX
               0010010 DC2
                              0100010 "
                                            0110010 2
                                                         1000010 B
                                                                       1010010 R
                                                                                    1100010 b
                                                                                                 1110010 r
0000011 ETX
               0010011 DC3
                              0100011 #
                                            0110011 3
                                                         1000011 C
                                                                      1010011 S
                                                                                   1100011 c
                                                                                                 1110011 s
0000100 EOT
               0010100 DC4
                              0100100 $
                                            0110100 4
                                                         1000100 D
                                                                       1010100 T
                                                                                   1100100 d
                                                                                                 1110100 t
0000101 ENO
               0010101 NAK
                              0100101 %
                                            0110101 5
                                                         1000101 E
                                                                       1010101 U
                                                                                    1100101 e
                                                                                                 1110101 u
0000110 ACK
               0010110 SYN
                              0100110 &
                                            0110110 6
                                                         1000110 F
                                                                      1010110 V
                                                                                   1100110 f
                                                                                                 1110110 v
0000111 BEL
               0010111 ETB
                              0100111 '
                                            0110111 7
                                                         1000111 G
                                                                       1010111 W
                                                                                    1100111 a
                                                                                                 1110111 w
0001000 BS
               0011000 CAN
                              0101000 (
                                            0111000 8
                                                         1001000 H
                                                                       1011000 X
                                                                                    1101000 h
                                                                                                 1111000 ×
0001001 HT
               0011001 EM
                              0101001 )
                                            0111001 9
                                                         1001001 I
                                                                      1011001 Y
                                                                                   1101001 i
                                                                                                 1111001 v
0001010 LF
               0011010 SUB
                              0101010 *
                                            0111010 :
                                                         1001010 J
                                                                      1011010 Z
                                                                                   1101010 i
                                                                                                 1111010 z
               0011011 ESC
                                            0111011 :
0001011 VT
                              0101011 +
                                                         1001011 K
                                                                       1011011 [
                                                                                    1101011 k
                                                                                                 1111011 {
0001100 FF
               0011100 FS
                              0101100 ,
                                            0111100 <
                                                         1001100 L
                                                                       1011100 \
                                                                                   1101100 l
                                                                                                 1111100
0001101 CR
               0011101 GS
                              0101101 -
                                            0111101 =
                                                         1001101 M
                                                                       1011101 1
                                                                                   1101101 m
                                                                                                 1111101 }
0001110 SO
               0011110 RS
                              0101110 .
                                            0111110 >
                                                         1001110 N
                                                                       1011110 ^
                                                                                    1101110 n
                                                                                                 1111110 ~
0001111 SI
               0011111 US
                              0101111 /
                                            0111111 ?
                                                         1001111 0
                                                                       1011111
                                                                                    1101111 o
                                                                                                 1111111 DEL
```

- ▶ 7 bit per character
- ▶ just enough for English letters and a few symbols (plus control characters)

Fixed-length codes – Discussion

Unless all characters equally likely, it wastes a lot of space

inflexible (how to support adding a new character?)

Variable-length codes

- ▶ to gain more flexibility, have to allow different lengths for codewords
- ▶ actually an old idea: Morse Code

https://commons.wikimedia.org/wiki/File: International Morse Code.svg

Clicker Question

How many characters are there in the alphabet of the coded text in Morse Code, i. e., what is $|\Sigma_C|$?

A) 1

(E) 20

B) 2

F 3

c 3

G 256

D) 4

→ sli.do/comp526

Clicker Question

How many characters are there in the alphabet of the coded text in Morse Code, i. e., what is $|\Sigma_C|$?

A) 1

(E) 2(

B) 2

F) 3(

) 3 ✓

G 256

 $\left[\mathsf{D} \right] 4$

→ sli.do/comp526

Variable-length codes – UTF-8

▶ Modern example: UTF-8 encoding of Unicode:

default encoding for text-files, XML, HTML since 2009

- ► Encodes any Unicode character (137 994 as of May 2019, and counting)
- ▶ uses 1–4 bytes (codeword lengths: 8, 16, 24, or 32 bits)
- Every ASCII character is encoded in 1 byte with leading bit 0, followed by the 7 bits for ASCII
- Non-ASCII charactters start with 1–4 1s indicating the total number of bytes, followed by a 0 and 3–5 bits.

The remaining bytes each start with 10 followed by 6 bits.

Char. number range	UTF-8 octet sequence					
(hexadecimal)	(binary)					
0000 0000 - 0000 007F	0xxxxxx					
0000 0080 - 0000 07FF	110xxxxx 10xxxxxx					
0000 0800 - 0000 FFFF	1110xxxx 10xxxxxx 10xxxxxx					
0001 0000 - 0010 FFFF	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx					

For English text, most characters use only 8 bit, but we can include any Unicode character, as well.

Pitfall in variable-length codes

Pitfall in variable-length codes

- **9** $C = 1100100100 \text{ decodes both to banana and to bass: } \frac{110}{b} \frac{0}{a} \frac{100}{s} \frac{100}{s}$
- → not a valid code . . . (cannot tolerate ambiguity)
 but how should we have known?

Pitfall in variable-length codes

- ► Happily encode text S = banana with the coded text $C = \underbrace{1100}_{\text{b}} \underbrace{1000}_{\text{a n a n a}} \underbrace{0100}_{\text{a n n a n a}}$
- $7 C = 1100100100 \text{ decodes both to banana and to bass: } \frac{110}{b} \frac{0100100}{a} \frac{100}{s}$
- → not a valid code . . . (cannot tolerate ambiguity)
 but how should we have known?
- E(n) = 10 is a (proper) **prefix** of E(s) = 100
 - → Leaves decoder wondering whether to stop after reading 10 or continue!

Code tries

► From now on only consider prefix-free codes E: E(c) is not a prefix of E(c') for any $c, c' \in \Sigma_S$.

Any prefix-free code corresponds to a *(code) trie* (trie of codewords) with characters of Σ_S at **leaves**.

no need for end-of-string symbols \$ here (already prefix-free!)

- ► Encode AN ANT 01061
- ► Decode 11/100000/101/01/11

Code tries

- ► From now on only consider prefix-free codes E: E(c) is not a prefix of E(c') for any $c, c' \in \Sigma_S$.

Any prefix-free code corresponds to a *(code) trie* (trie of codewords) with characters of Σ_S at **leaves**.

no need for end-of-string symbols \$ here (already prefix-free!)

- ► Encode AN_ANT → 010010000100111
- ► Decode 1110000010101111 → T0_EAT

Who decodes the decoder?

- ▶ Depending on the application, we have to **store/transmit** the **used code**!
- ► We distinguish:
 - ▶ fixed coding: code agreed upon in advance, not transmitted (e. g., Morse, UTF-8)
 - ► static coding: code depends on message, but stays same for entire message; it must be transmitted (e. g., Huffman codes → next)
 - ▶ adaptive coding: code depends on message and changes during encoding; implicitly stored withing the message (e. g., LZW → below)

7.3 Huffman Codes

Character frequencies

- ▶ Goal: Find character encoding that produces short coded text
- ▶ Convention here: fix $\Sigma_C = \{0, 1\}$ (binary codes), abbreviate $\Sigma = \Sigma_S$,
- ▶ **Observation:** Some letters occur more often than others.

Typical English prose:

e	12.70%		d	4.25%	_	p	1.93%	•
t	9.06%		1	4.03%	_	b	1.49%	•
a	8.17%		c	2.78%		\mathbf{v}	0.98%	•
О	7.51%	_	u	2.76%		k	0.77%	
i	6.97%		m	2.41%		j	0.15%	1
n	6.75%		\mathbf{w}	2.36%	-	x	0.15%	1
s	6.33%		f	2.23%		q	0.10%	1
h	6.09%	_	g	2.02%		\mathbf{z}	0.07%	1
r	5.99%	_	y	1.97%				

→ Want shorter codes for more frequent characters!

Huffman coding

e.g. frequencies / probabilities

- ▶ **Given:** Σ and weights $w: \Sigma \to \mathbb{R}_{\geq 0}$
- ▶ **Goal:** prefix-free code E (= code trie) for Σ that minimizes coded text length

i. e., a code trie minimizing
$$\sum_{c \in \Sigma} w(c) \cdot |E(c)|$$

Huffman coding

e.g. frequencies / probabilities

- ▶ **Given:** Σ and weights $w: \Sigma \to \mathbb{R}_{\geq 0}$
- ▶ **Goal:** prefix-free code E (= code trie) for Σ that minimizes coded text length

i. e., a code trie minimizing
$$\sum_{c \in \Sigma} w(c) \cdot |E(c)|$$

- ▶ If we use w(c) = #occurrences of c in S, this is the character encoding with smallest possible |C|
 - → best possible character-wise encoding

▶ Quite ambitious! *Is this efficiently possible?*

Huffman's algorithm

► Actually, yes! A greedy/myopic approach succeeds here.

Huffman's algorithm:

- 1. Find two characters a, b with lowest weights.
 - ▶ We will encode them with the same prefix, plus one distinguishing bit, i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (u to be determined)
- 2. (Conceptually) replace a and b by a single character "ab" with w(ab) = w(a) + w(b).
- 3. Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines $u = E(\Box b)$.

Huffman's algorithm

► Actually, yes! A greedy/myopic approach succeeds here.

Huffman's algorithm:

- 1. Find two characters a, b with lowest weights.
 - ▶ We will encode them with the same prefix, plus one distinguishing bit, i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (u to be determined)
- 2. (Conceptually) replace a and b by a single character "ab" with w(ab) = w(a) + w(b).
- 3. Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines $u = E(\boxtimes)$.
- efficient implementation using a (min-oriented) *priority queue*
 - start by inserting all characters with their weight as key
 - ▶ step 1 uses two deleteMin calls
 - ▶ step 2 inserts a new character with the sum of old weights as key

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

L

_

- ► Example text: S = LOSSLESS $\longrightarrow \Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

- ► Example text: S = LOSSLESS $\longrightarrow \Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

- ► Example text: S = LOSSLESS $\longrightarrow \Sigma_S = \{E, L, 0, S\}$
- ► Character frequencies: E:1, L:2, 0:1, S:4

→ *Huffman tree* (code trie for Huffman code)

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

→ *Huffman tree* (code trie for Huffman code)

LOSSLESS
$$\rightarrow$$
 01001110100011 compression ratio: $\frac{14}{8 \cdot \log 4} = \frac{14}{16} \approx 88\%$

Huffman tree – tie breaking

- ► The above procedure is ambiguous:
 - which characters to choose when weights are equal?
 - ▶ which subtree goes left, which goes right?
- ► For COMP 526: always use the following rule:
 - To break ties when selecting the two characters, first use the smallest letter according to the alphabetical order, or the tree containing the smallest alphabetical letter.
 - 2. When combining two trees of different values, place the lower-valued tree on the left (corresponding to a 0-bit).
 - When combining trees of equal value, place the one containing the smallest letter to the left.

Encoding with Huffman code

- ► The overall encoding procedure is as follows:
 - ▶ Pass 1: Count character frequencies in *S*
 - ► Construct Huffman code *E* (as above)
 - ► Store the Huffman code in *C* (details omitted)
 - ▶ Pass 2: Encode each character in *S* using *E* and append result to *C*
- Decoding works as follows:
 - ▶ Decode the Huffman code *E* from *C*. (details omitted)
 - ▶ Decode *S* character by character from *C* using the code trie.
- ► Note: Decoding is much simpler/faster!

Huffman code – Optimality

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w: \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E: \Sigma \to \{0,1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Huffman code – Optimality

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w: \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E: \Sigma \to \{0,1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Proof sketch: by induction over $\sigma = |\Sigma| > 2$

- ightharpoonup Given any optimal prefix-free code E^* (as its code trie).
- ▶ code trie \rightarrow ∃ two sibling leaves x, y at largest depth D
- ▶ swap characters in leaves to have two lowest-weight characters a, b in x, y (that can only make ℓ smaller, so still optimal)
- ▶ any optimal code for $\Sigma' = \Sigma \setminus \{a, b\} \cup \{ab\}$ yields optimal code for Σ by replacing leaf ab by internal node with children a and b.
- \rightarrow recursive call yields optimal code for Σ' by inductive hypothesis, so Huffman's algorithm finds optimal code for Σ .

7.4 Entropy

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

n=6 standard fair die
$$\rho_1 = \rho_2 = \cdots = \rho_6 = \frac{1}{6}$$

$$\mathcal{H}(\rho_1, \dots, \rho_6) = 6 \cdot \frac{1}{6} \cdot \rho_5(6) = \log(6)$$

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

FP3-7 - P4 ->1

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0,1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

- \rightarrow Need to cut [0, 1) in half $\lg(1/p_i)$ times
- more precisely: the expected number of bits (Yes/No questions) required to nail down the random value

Entropy and Huffman codes

▶ would ideally encode value i using $\lg(1/p_i)$ bits not always possible; cannot use codeword of 1.5 bits . . .

Entropy and Huffman codes

would ideally encode value i using $\lg(1/p_i)$ bits not always possible; cannot use codeword of 1.5 bits . . . but:

Theorem 7.3 (Entropy bounds for Huffman codes)

For any $\Sigma = \{a_1, \dots, a_\sigma\}$ and $w : \Sigma \to \mathbb{R}_{>0}$ and its Huffman code E, we have

$$\mathcal{H} \leq \ell(E) \leq \mathcal{H} + 1$$
 where $\mathcal{H} = \mathcal{H}\left(\frac{w(a_1)}{W}, \dots, \frac{w(a_\sigma)}{W}\right)$ and $W = w(a_1) + \dots + w(a_\sigma)$.

Entropy and Huffman codes

would ideally encode value i using $\lg(1/p_i)$ bits but can be not always possible; cannot use codeword of 1.5 bits . . . but:

not as length of single codeword that is; but can be possible *on average*!

Theorem 7.3 (Entropy bounds for Huffman codes)

For any $\Sigma = \{a_1, \dots, a_\sigma\}$ and $w : \Sigma \to \mathbb{R}_{>0}$ and its Huffman code E, we have

$$\mathcal{H} \leq \ell(E) \leq \mathcal{H} + 1$$
 where $\mathcal{H} = \mathcal{H}\left(\frac{w(a_1)}{W}, \dots, \frac{w(a_{\sigma})}{W}\right)$ and $W = w(a_1) + \dots + w(a_{\sigma})$.

Proof sketch:

▶ $\ell(E) \ge \mathcal{H}$ Any prefix-free code E induces weights $q_i = 2^{-|E(a_i)|}$. By Kraft's Inequality, we have $q_1 + \cdots + q_{\sigma} \le 1$. Hence we can apply Gibb's Inequality to get

$$\mathcal{H} = \sum_{i=1}^{\sigma} p_i \lg \left(\frac{1}{p_i}\right) \leq \sum_{i=1}^{\sigma} p_i \lg \left(\frac{1}{q_i}\right) = \ell(E).$$

Entropy and Huffman codes [2]

Proof sketch (continued):

 \blacktriangleright $\ell(E) \leq \mathcal{H} + 1$

Set
$$q_i = 2^{-\lceil \lg(1/p_i) \rceil}$$
. We have $\sum_{i=1}^{\sigma} p_i \lg\left(\frac{1}{q_i}\right) = \sum_{i=1}^{\sigma} p_i \lceil \lg(1/p_i) \rceil \le \mathcal{H} + 1$.

We construct a code E' for Σ with $|E'(a_i)| \le \lg(1/q_i)$ as follows; w.l.o.g. assume $q_1 \le q_2 \le \cdots \le q_n$

not covered in detail

- ► If $\sigma = 2$, E' uses a single bit each. Here, $q_i \le 1/2$, so $g(1/q_i) \ge 1 = |E'(a_i)| \checkmark$
- ▶ If $\sigma \ge 3$, we merge a_1 and a_2 to $\boxed{a_1a_2}$, assign it weight $2q_2$ and recurse. If $q_1 = q_2$, this is like Huffman; otherwise, q_1 is a unique smallest value and $q_2 + q_2 + \cdots + q_{\sigma} \le 1$.

By the inductive hypothesis, we have $|E'(\overline{a_1a_2})| \le \lg\left(\frac{1}{2q_2}\right) = \lg\left(\frac{1}{q_2}\right) - 1$. By construction, $|E'(a_1)| = |E'(a_2)| = |E'(\overline{a_1a_2})| + 1$, so $|E'(a_1)| \le \lg\left(\frac{1}{q_1}\right)$ and $|E'(a_2)| \le \lg\left(\frac{1}{q_2}\right)$.

By optimality of
$$E$$
, we have $\ell(E) \leq \ell(E') \leq \sum_{i=1}^{\sigma} p_i \lg\left(\frac{1}{q_i}\right) \leq \mathcal{H} + 1$.

Clicker Question

When does Huffman coding yield more efficient compression than a fixed-length character encoding?

- **A**) always
- **B** when $\mathcal{H} \approx \lg(\sigma)$
- **C** when $\mathcal{H} < \lg(\sigma)$
- **D** when $\mathcal{H} < \lg(\sigma) 1$
- **E** when $\mathcal{H} \approx 1$

→ sli.do/comp526

Clicker Question

When does Huffman coding yield more efficient compression than a fixed-length character encoding?

- A always 🗸
- B when $\mathcal{H} \simeq \lg(\sigma)$
- C when $\mathcal{H} < \lg(\sigma)$
- E when √ ~ 1

→ sli.do/comp526

Huffman coding – Discussion

- ▶ running time complexity: $O(\sigma \log \sigma)$ to construct code
 - ▶ build PQ + σ · (2 deleteMins and 1 insert)
 - ▶ can do $\Theta(\sigma)$ time when characters already sorted by weight \hookrightarrow
 - \blacktriangleright time for encoding text (after Huffman code done): O(n + |C|)
- ▶ many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, ...)

Huffman coding – Discussion

- ▶ running time complexity: $O(\sigma \log \sigma)$ to construct code
 - ▶ build PQ + σ · (2 deleteMins and 1 insert)
 - can do $\Theta(\sigma)$ time when characters already sorted by weight
 - time for encoding text (after Huffman code done): O(n + |C|)
- ▶ many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, . . .)
- optimal prefix-free character encoding
- very fast decoding
- - one-pass variants possible, but more complicated
- $\hfill \bigcap$ have to store code alongside with coded text

Part II

Compressing repetitive texts

Beyond Character Encoding

► Many "natural" texts show repetitive redundancy

All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

- ► character-by-character encoding will **not** capture such repetitions
 - → Huffman won't compression this very much

Beyond Character Encoding

Many "natural" texts show repetitive redundancy

All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

- ► character-by-character encoding will **not** capture such repetitions
 - → Huffman won't compression this very much
- \rightarrow Have to encode whole *phrases* of S by a single codeword

7.5 Run-Length Encoding

▶ simplest form of repetition: *runs* of characters

 same character repeated

- ▶ here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - ► can be extended for larger alphabets

▶ simplest form of repetition: *runs* of characters

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets
- \rightsquigarrow run-length encoding (RLE):

use runs as phrases: S = 00000 111 0000

▶ simplest form of repetition: *runs* of characters

```
0001011001000001111110000000000011111000
00111111111000111111111100000001111111000
00111111111000000000001110011111111111000
001110111110000000001110001111100111100
000000000111000000011100001110000001110
000000000111000000011000001110000001100
000000000110000001100000011000001110
00000000011000001110000001110000001100
000000000111000111000000000110000001110
000000000110000111000000000111000011100
00110111111000111101110100001111111111000
000101100000001010011001000000100100000
```

same character repeated

- ▶ here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets
- \leadsto run-length encoding (RLE):

```
use runs as phrases: S = 00000 \ 111 \ 0000
```

- → We have to store
 - ▶ the first bit of *S* (either 0 or 1)
 - the length each each run
 - ▶ Note: don't have to store bit for later runs since they must alternate.
- ► Example becomes: 0, 5, 3, 4

▶ simplest form of repetition: *runs* of characters

```
0001011001000001111110000000000011111000
00111111111000111111111100000011111111000
00111101101000111000111100001110000000
00111111111000000000001110011111111111000
001110111110000000001110001111100111100
000000000111000000011100001110000001110
000000000111000000011000001110000001100
00000000001100000011000000110000001110
00000000011000001110000001110000001100
000000000111000111000000000110000001110
000000000110000111000000000111000011100
00110111111000111101110100001111111111000
```

same character repeated

- ▶ here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - ► can be extended for larger alphabets
- \rightsquigarrow run-length encoding (RLE):

use runs as phrases: S = 00000 111 0000

- → We have to store
 - ▶ the first bit of *S* (either 0 or 1)
 - ▶ the length each each run
 - ▶ Note: don't have to store bit for later runs since they must alternate.
- ► Example becomes: 0, 5, 3, 4
- **Question**: How to encode a run length k in binary? (k can be arbitrarily large!)

Clicker Question

How would you encode a string that can we arbitrarily long?

→ sli.do/comp526

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - ► must allow arbitrarily large integers
 - must know when to stop reading

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- Much too long
 - (wasn't the whole point of RLE to get rid of long runs??)

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- Much too long
 - (wasn't the whole point of RLE to get rid of long runs??)
- ► Refinement: *Elias gamma code*
 - ▶ Store the **length** ℓ of the binary representation in **unary**
 - ► Followed by the binary digits themselves

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- Much too long
- (wasn't the whole point of RLE to get rid of long runs??)
- ► Refinement: *Elias gamma code*
 - ▶ Store the **length** ℓ of the binary representation in **unary**
 - ► Followed by the binary digits themselves
 - ▶ little tricks:
 - ▶ always $\ell \ge 1$, so store $\ell 1$ instead
 - ▶ binary representation always starts with 1 → don't need terminating 1 in unary
 - \rightarrow Elias gamma code = $\ell 1$ zeros, followed by binary representation

Examples:
$$1 \mapsto 1$$
, $3 \mapsto 011$, $5 \mapsto 00101$, $30 \mapsto 000011110$

Clicker Question

Decode the **first** number in Elias gamma code (at the beginning) of the following bitstream:

$$000110111011100110.$$

$$3^{4} = (0)(2)$$

→ sli.do/comp526

► Encoding:

$$S = \textcolor{red}{\textbf{1}} \textcolor{blue}{\textbf{1}} \textcolor{blue}{\textbf{1$$

$$C = 1$$

► Decoding:

$$C = 00001101001001010$$

► Encoding:

► Decoding:

```
C = 00001101001001010
```

► Encoding:

► Decoding:

```
C = 00001101001001010
```

► Encoding:

► Decoding:

C = 00001101001001010

► Encoding:

► Decoding:

```
C = 00001101001001010
```

► Encoding:

► Decoding:

```
C = 00001101001001010
```

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

C = 00001101001001010

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

C = 00001101001001010

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio:
$$26/41 \approx 63\%$$

$$C = 00001101001001010$$

 $b = 0$

$$S =$$

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

```
C = 00001101001001010
```

$$b = 0$$

$$\ell = 3 + 1$$

$$S =$$

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 0000 \frac{1101}{001001001010}
```

b = 0

 $\ell = 3 + 1$

k = 13

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

```
C = 00001101001001010

b = 1

\ell = 2 + 1

k = 1

k = 1
```

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

```
C = 00001101001001010

b = 1

\ell = 2 + 1

k = 4

S = 000000000000001111
```

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

```
C = 00001101001001010
b = 0
\ell = 0 + 1
k = 000000000000001111
```

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 0000110100100100100
```

$$b = 0$$

$$\ell = 0 + 1$$

$$k = 1$$

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

```
C = 00001101001001010 b = 1 \ell = 1 + 1 k = S = 00000000000011110
```

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

```
C = 00001101001001010

b = 1

\ell = 1 + 1

k = 2

S = 00000000000001111011
```

Run-length encoding – Discussion

- extensions to larger alphabets possible (must store next character then)
- ▶ used in some image formats (e. g. TIFF)

Run-length encoding – Discussion

- extensions to larger alphabets possible (must store next character then)
- used in some image formats (e. g. TIFF)
- fairly simple and fast
- can compress n bits to $\Theta(\log n)$! for extreme case of constant number of runs
- negligible compression for many common types of data
 - ▶ No compression until run lengths $k \ge 6$
 - **expansion** for run length k = 2 or 6

7.6 Lempel-Ziv-Welch

Warmup

https://www.flickr.com/photos/quintanaroo/2742726346

https://classic.csunplugged.org/text-compression/

Clicker Question

Lempel-Ziv Compression

- ▶ Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
"

Lempel-Ziv Compression

- ▶ Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - ▶ in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
"
- ▶ **Lempel-Ziv** stands for family of *adaptive* compression algorithms.
 - ► **Idea:** store repeated parts by reference!
 - → each codeword refers to
 - \triangleright either a single character in Σ_S ,
 - or a *substring* of *S* (that both encoder and decoder have already seen).

Lempel-Ziv Compression

- ► Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
"
- ▶ **Lempel-Ziv** stands for family of *adaptive* compression algorithms.
 - ► **Idea:** store repeated parts by reference!
 - → each codeword refers to
 - ightharpoonup either a single character in Σ_S ,
 - or a *substring* of *S* (that both encoder and decoder have already seen).
 - ► Variants of Lempel-Ziv compression
 - "LZ77" Original version ("sliding window")
 Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, ...
 DEFLATE used in (pk)zip, gzip, PNG
 - "LZ78" Second (slightly improved) version Derivatives: LZW, LZMW, LZAP, LZY, ... LZW used in compress, GIF

Lempel-Ziv-Welch

- ► here: Lempel-Ziv-Welch (LZW) (arguably the "cleanest" variant of Lempel-Ziv)
- ► variable-to-fixed encoding
 - ▶ all codewords have k bits (typical: k = 12) \rightsquigarrow fixed-length
 - but they represent a variable portion of the source text!

Lempel-Ziv-Welch

- ► here: Lempel-Ziv-Welch (LZW) (arguably the "cleanest" variant of Lempel-Ziv)
- variable-to-fixed encoding
 - ▶ all codewords have k bits (typical: k = 12) \leadsto fixed-length
 - but they represent a variable portion of the source text!
- \blacktriangleright maintain a **dictionary** D with 2^k entries \leadsto codewords = indices in dictionary
 - ▶ initially, first $|\Sigma_S|$ entries encode single characters (rest is empty)
 - ▶ **add** a new entry to *D* **after each step**:
 - Encoding: after encoding a substring x of S, add xc to D where c is the character that follows x in S.

- → new codeword in D
- \triangleright *D* actually stores codewords for *x* and *c*, not the expanded string

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

C =

Code	String
32	П
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

C = 89

String
!
0
R
U
Υ

Code	String
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

 $\textbf{Input: Y0!_Y0U!_Y0UR_Y0Y0!}$

 Σ_S = ASCII character set (0–127)

C = 89

Code	String
32	П
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

		Υ	0
C	=	89	79

Code	String
32	П
33	!
(79)	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

$$\Sigma_S$$
 = ASCII character set (0–127)

	Υ	0
C =	89	79

D	=

								ç	_	en	cod	le x	= b	an			
S	h	а	n	n	а	h	b	а	n	S	b	a	n	а	n	а	S
				alre	ady	enco	oded					x		c			
		add $xc = bana$ to dictionary															

Code	String	
32	ш	
33	!	
79	0	
82	R	
85	U	
89	Υ	

Code	String
128	Y0
129	0!
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

	Υ	0	- !
C =	89	79	33

Code	String		
32			
33	!		
79	0		
82	R		
85	U		
89	Y		
	32 33		

Code	String
128	Y0
129	0!
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

	Υ	0	!
C =	89	79	33

Code	String
32	П
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	0!
130	1
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш
C = 89	79	33	32

Code	String	
32	П	
33	!	
79	0	
82	R	
85	U	
89	Υ	

Code	String
128	Y0
129	0!
130	!
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	. !	ш
C = 89	79	33	32

Code	String
32	
33	
79	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	į.	u	Y0
C = 89	79	33	32	128

Code	String
32	П
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	(Y0)
129	0!
130	_:
131	Y
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

	Υ	0	!	ш	Y0
C =	89	79	33	32	128

Code	String
32	ш
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

	Υ	0	!	ш	Y0	U
C =	89	79	33	32	128	85

Code	String
32	П
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	0!
130	!
131	цY
132	YOU
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	u	Y0	U
C = 89	79	33	32	128	85

Code	String		
32	П		
33	!		
79	0		
82	R		
85	U		
89	Υ		

Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	U!
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	u	Y0	U	!
C = 89	79	33	32	128	85	130

	• •		
32	П		
33	!		
79	0		
82	R		
85	U		
89	Υ		

Code

D =

String

Code	String
128	Y0
129	0!
130	(!")
131	Ϋ́
132	YOU
133	U!
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	u	Y0	U	!
C = 89	79	33	32	128	85	130

=		

String		
!		
0		
R		
U		
Υ		

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	! _L Y
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

3	
7	
8	
8	

Code	String	
32	П	
33	!	
79	0	
82	R	
85	U	
89	Υ	

Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	U!
134	! _L Y
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

$$C = 89$$
 $C = 89$ C

=		

D

Code	String
32	
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	U!
134	!_Y
135	YOUR
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	П	Y0	U	!	YOU	R
C = 89	79	33	32	128	85	130	132	82

33
79
82
85

D =

Code

32

89

String	
ш	
!	
0	
R	
U	
Υ	

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	! Y
135	YOUR
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y 0 ! U Y0 U !U Y0U R
C = 89 79 33 32 128 85 130 132 82

Code	String					
32						
33	!					
79	0					
82	R					
85	U					
89	Υ					

Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	U!
134	! _L Y
135	YOUR
136	R⊔
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	П	Y0	U	!	YOU	R	LY
C = 89	79	33	32	128	85	130	132	82	131

Code	String				
32	П				
33	!				
79	0				
82	R				
85	U				
89	Y				

Code	String
128	Y0
129	0!
130	!
131	Y
132	YOU
133	U!
134	! Y
135	YOUR
136	R⊔
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y 0 ! \Box Y0 U ! \Box Y0U R \Box Y C = 89 79 33 32 128 85 130 132 82 131

D =

П	
!	
0	
R	
U	
Υ	

Code

String

Strin
Y0
0!
!
L Y
YOU
U!
!_Y
YOUR
R⊔
Υ0
_

Input: Y0!_Y0U!_Y0UR_Y0Y0!

 Σ_S = ASCII character set (0–127)

D =

	0
32	П
33	!
79	0
82	R
85	U
89	Υ

Code String

Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	U!
134	!_Y
135	YOUR
136	R⊔
137	۲0 ا
138	
139	

Input: Y0!_Y0U!_Y0UR_Y0Y0!

 Σ_S = ASCII character set (0–127)

Code	String	
32	П	
33	!	
79	0	
82	R	
85	U	
89	Y	

Code	String
128	Y0
129	0!
130	!
131	пV
132	YOU
133	U!
134	! _L Y
135	YOUR
136	R⊔
137	۷0 ا
138	0Y
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Code	String
32	
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	YO
129	0!
130	!
131	¬А
132	YOU
133	U!
134	!_Y
135	YOUR
136	R⊔
137	۲0 ا
138	0Y
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y 0 ! L Y0 U ! Y0U R LY 0 Y0 C = 89 79 33 32 128 85 130 132 82 131 79 128

Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	!
131	цY
132	YOU
133	U!
134	!Y
135	Y0UR
136	R⊔
137	۷0 ا
138	0Y
139	Y0!

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Code	String	
32		
33	!	
79	0	
82	R	
85	U	
89	Y	

Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	U!
134	i".
135	YOUR
136	R⊔
137	۷0 ا
138	0Y
139	Y0!

LZW encoding – Code

```
1 procedure LZWencode(S[0..n))
       x := \varepsilon // previous phrase, initially empty
      C := \varepsilon // output, initially empty
       D := dictionary, initialized with codes for c \in \Sigma_S // stored as trie
     k := |\Sigma_S| // next free codeword
    for i := 0, ..., n-1 do
           c := S[i]
7
           if D.containsKey(xc) then
                x := xc
           else
                C := C \cdot D.get(x) // append codeword for x
11
                D.put(xc, k) // add xc to D, assigning next free codeword
12
                k := k + 1: x := c
13
      end for
14
       C := C \cdot D.get(x)
15
       return C
16
```