Project June

Andrew Seo

June Wine Bar – Brooklyn, NY: A Birthday

Introduction

Motivation: Share the love

- How: Designing a classification model to pick "Good" wines
- Audience: Wine store employees and normal consumers

Tools & Methodology

Data: Wine Enthusiast: Week of 6/15/17

"Good" Wine >= Median Score

Python: Analysis and Model Selection

Metric Decision

Accuracy: Blindly classifying all as Good

Recall: Knowing as many Good wines as possible

 Precision: Likelihood the wines recommended as Good are actually Good

Goal: Precision

Why? Cost of false positive > cost of false negative

Picking a bad wine thinking it is good is worse than classifying an actually good wine as bad

Data Cleaning

Problem: Categorical Variables

- · Solutions:
 - Grouping: "Other"
 - Dummy Variables:
 Names to Numbers

Analysis - Baseline

· KNN: 72.4%

Logistic Regression: 75.2%

• Decision Tree: 74.0%

· Random Forest: 73.6%

Analysis - Tuned

· KNN: 72.4% → 77.0%

Logistic Regression:
75.2% → 84.0%!

Decision Tree:
 74.0% → 75.9%

Random Forest:
 73.6% → 74.8%

Analysis – Step Back

Sanity Check: Other Metrics?

• Recall: 71.8% → 43.9%

 Of all of the actually good wines, the model identifies 43.9% of them (+12K wines)

Results

Precision: 84.8%

Conclusions

US, France > Italy, Spain

Pinot Noir > Cabernet Sauvignon

Price isn't everything

Looking Ahead

 Data: More quantitative/continuous variables such as pH, sulfate content, sodium level

Models: Trying out XGBoost and Bayes models

 More comprehensive methodology: voting system

Questions?

Appendix

Appendix: Cont.

Appendix: Cont.

Appendix: Cont.

