Seleção de modelos

Prof. Marcus Vinícius Vieira – Instituto de Biologia UFRJ

Seleção de modelos

 Como trabalhar e comparar hipóteses múltiplas ? (= diferentes modelos)

 Como medir a evidência a favor de uma hipótese em comparação com outra(s)?

Verossimilhança Máxima

 Se a probabilidade de um evento x depende de parâmetros p de um modelo, escrevemos
 P (x | p)

mas quando falamos de verossimilhança

(a verossimilhança dos parâmetros considerando o evento x)

Probabilidade

Sabendo os parâmetros -> Previsão de resultado

Verossimilhança

Observação de resultdo -> Estimativa de parâmetros

Prof. Marcus Vinícius Vieira – Instituto de Biologia UFRJ

Verossimilhança Máxima

- Pode ser extendida para comparar hipóteses
- Princípio da verossimilhança (controverso)
 (Likelihood principle):
 "Toda a informação de uma amostra está contida em sua função de verossimilhança"
- Lei de verossimilhança (*Likelihood law*):
 "A razão entre verossimilhanças seria uma medida da *evidência* de uma hipótese em relação

a outra"

http://www.patheos.com/blogs/unequallyyoked/2011/11/how-do-you-pick-a-teacher.html

Entropia de Boltzmann

- A entropia termodinâmica:
 - constante de proporcionalidade k (de Boltzman) multiplicada pelo logaritmo do número de microestados independentes (w) disponíveis ao sistema:

 $S = k \log (w)$

- Mede o grau de desorganização de um sistema.
- Quando a concentração de partículas é homogênea a desorganização e a entropia são máximas.
- Shannon utilizou o mesmo conceito para o grau de entropia "de informação" (H) a partir da fórmula termodinâmica de Boltzman (S).

Figure 1 - Boltzmann's Theorem Engraved on his Tomb in Vienna (1906)

Entropia de Claude Shannon

- $H = \sum p_i \log p_i$
- Incerteza: quantidade de respostas possíveis que conhecemos, mas não sabemos qual delas é verdadeira
- Informação: redução da incerteza quando se obtém resposta a uma pergunta
- log p_i: quanto menor p_i, maior o valor
- Quanto mais raro for a probabilidade de uma categoria, mais a a incerteza será reduzida caso a categoria ocorra
- Ex. palavras que começam com z e palavras que começam com a

- Com uma moeda viciada, que sempre dá cara, quanta informação é necessária para prever o resultado?
- Nenhuma informação, já que o resultado é sempre o mesmo -> não há incerteza!
- Com uma moeda "justa", é preciso mais informação?
- Sim, mais informação já que os resultados têm igual probabilidade de ocorrência
- E uma moeda com algum viés?
- Qualquer moeda com algum viés exigirá menos informação

Perda de Informação dos modelos

- A realidade em sua totalidade não pode ser medida devido à nossas limitações sensoriais
- Temos apenas modelos
- Um modelo da realidade é apenas uma aproximação desta realidade
- Quanta informação é perdida por esta aproximação representada no modelo?
- Distância de Kullback-Leibler

Distância de Kullback-Leibler

- Suponha que a realidade seja f(x), isto é a probabilidade de x dada a realidade
- Podemos aproximar por g(x|p)
- Se (f,g) é a informação perdida nesta aproximação de f com g,
- $(f,g) \neq 0$ quase sempre
- (f,g) = 0 somente se f = g

$$I(f,g) = \int f(x) \log \left(\frac{f(x)}{g(x|p)}\right) dx$$

Distância K-L para dados categóricos

- Com binomiais
- Suponha que a probabilidade real seja p₁ e p₂
- As probabilidades segundo um modelo sejam π_1 e π_2

$$I(f,g) = \sum_{i=1}^{2} p_i \log \left(\frac{p_i}{\pi_i}\right) = p_1 \log \left(\frac{p_1}{\pi_1}\right) + p_2 \log \left(\frac{p_2}{\pi_2}\right)$$

$$I(f,g) = p_1 \log(p_1/\pi_1) + p_2 \log(p_2/\pi_2)$$

- Suponha que tenhamos estimativas perfeitas:
- $\pi_1 = p_1$
- $\pi_2 = p_2$

$$I(f,g) = p_1 \log(1) + p_2 \log(1) = p_1(0) + p_2(0) = 0$$

Suponha que p₁ e p₂ sejam ambos 0,20 maiores:

$$I(f,g) = p_1 \log(1/1.2) + p_2 \log(1/1.2) = \log(1/1.2)(p_1 + p_2) = \log(1/1.2)$$

= -0,1823

• E se forem 0,40 maiores:

$$I(f,g) = p_1 \log(1/1.4) + p_2 \log(1/1.4) = \log(1/1.4)$$

= -0,3365

- Informação e entropia são aditivas -> escala logarítmica
- Probabilidade é multiplicativa
- Se $P_1 = 0.3$, $P_2 = 0.2$

Assumindo que são independentes: $P_1 * P_2 = 0.06$

Em escala logarítimica:

$$Log(P_1) = -1,204$$

$$Log(P_2) = -1,609$$

$$e^{(-1,204 + -1,609)} = 0,06$$

Mas não é possível conhecer a verdade!

- Verdade = p_1 , p_2 , f(x)
- Não é preciso conhecê-la!
- Lembre-se:

$$\log(a/b) = \log(a) - \log(b)$$

$$I(f,g) = \sum_{i=1}^{2} p_{i} \log \left(\frac{p_{i}}{\pi_{i}}\right) = p_{1} \log \left(\frac{p_{1}}{\pi_{1}}\right) + p_{2} \log \left(\frac{p_{2}}{\pi_{2}}\right)$$

$$I(f,g) = p_{1} \log(p_{1}) - p_{1} \log(\pi_{1}) + p_{2} \log(p_{2}) - p_{2} \log(\pi_{2})$$

$$= \sum_{i} p_{i} \log(p_{i}) - \sum_{i} p_{i} \log(\pi_{i})$$

A verdade é constante, modelos não

- Diferenças de I(f,g) entre modelos (g):
 - nos dizem o que precisamos: qual modelo mais se aproxima da realidade:

$$I(f, g_1) = \sum_{i} p_i \log(p_i) - \sum_{i} p_i \log(\pi_{i,1})$$

$$I(f, g_2) = \sum_{i} p_i \log(p_i) - \sum_{i} p_i \log(\pi_{i,2})$$

$$I(f, g_1) - I(f, g_2) = -\sum_{i} p_i \log(\pi_{i,1}) - \sum_{i} p_i \log(\pi_{i,2})$$

- A realidade pode ser cancelada então ...
- Não precisamos conhecê-la!

- Só precisamos das estimativas pi
- Hitsoguro Akaike (1971) demonstrou que a distância relativa à realidade (incomensurável),

é proporcional:

- ao logaritmo da verossimilhança máxima do modelo
- subtraída de um valor proporcional ao número de parâmetros no modelo (K)

$$\sum_{i} p_{i} \log(\pi_{i}) \propto \log \left(\Pr(\text{data}|\hat{p}) \right) - K$$

Akaike definiu um critério de informação, AIC,
 "Akaike Information Criterion"

$$AIC = -2\log(\Pr(\operatorname{data}|\hat{p})) + 2K$$

- AIC estima a distância relativa de um modelo por
 - log (verossimilhança máxima)
- Valores menores indicam modelos mais próximos à realizadade, ou ...
- que têm menor perda de informação em relação a realidade

AICc

- A demonstração de que AIC é uma medida relativa da distância à realidade vale somente para grandes quantidades de dados
- Quando existem muitos parâmetros a serem estimados em relação à quantidade de evidência (dados), AIC tem um viés
- Correção de "2a $\mathrm{AIC}_c = \mathrm{AIC} + \frac{2K(K+1)}{n-K-1}$
- n = número de observações (dados)
- Conforme n aumente, AICc -> AIC

Seleção de modelos na prática

- (1) Defina o conjunto de modelos a serem comparados
- (2) Obtenha estimativas de ajuste de cada um aos dados através de verossimilhança máxima
- (3) Calcule o AIC ou AICc de cada um
- (4) Calcule o ajuste relativo: $\Delta_i = AIC_i AIC_{min}$

Seleção de modelos na prática

• É possível converter valores do ajuste relativo (Δ_i)em estimativas de verossimilhança do modelo considerando os dados: $\Pr(g_i|\mathrm{data}) \propto \exp(-\frac{1}{2}\Delta_i)$

- Pr(g_i|data) é a probabilidade que o modelo i é o melhor no conjunto de modelos comparado
- AIC presume que todos os modelos são "errados", não são a realidade
- Estas verossimilhanças relativas são mais fáceis de interpretar, mas não há um limiar de "significância" baseado na teoria da informação e de seleção de modelos.

Seleção de modelos na prática

• Pesos de Akaike são bastante úteis:

$$w_i = \frac{\exp(-\frac{1}{2}\Delta_i)}{\sum_j \exp(-\frac{1}{2}\Delta_j)}$$

 w_i varia de 0 a 1 e estima o peso de evidência a favor de um modelo i, considerando o conjunto de modelos comparado

 Pesos de Akaike podem ser usados para previsões baseadas na média dos modelos

Scaling body mass and use of space in three species of marsupials in the Atlantic Forest of Brazil

MARCUS VINÍCIUS VIEIRA1* AND ANDRÉ DE ALMEIDA CUNHA2

¹Laboratório de Vertebrados, Departamento de Ecologia, Universidade Federal do Rio de Janeiro, CP 68020, Rio de Janeiro RJ, CEP 21941-590, (Email: mvvieira@biologia.ufrj.br, mvvieira@gmail.com), and ²Pós-Graduação em Ecologia, Conservação e Manejo da Vida Silvestre, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

As a measurement of area, and assuming a circular shape DHR would be proportional to the square of its linear distance

Hence proportional to the square of day range

$$DHR \approx DR^2$$

If Day range $\approx M^{0.25}$ (Carbone *et al.* 2005), then

$$DHR \approx \left(M^{0.25}\right)^2 \approx M^{0.5}$$

Los marsupiales

Didelphis aurita (ca. 1800 g)

Philander frenatus (ca. 400 g)

Metachirus nudicaudatus (ca. 450 g) *Prof. Marcus Vinícius Vieira – Instituto de Biologia UFRJ*

Métodos

 Gradeados de trampas y animales liberados con carretel de rastreo

Prof. Marcus Vinícius Vieira – Instituto de Biologia UFRJ

Vieira & Cunha (2008)

Table 1. Performance of models predicting daily home range (DHR) and its intensity of use (IU) of individuals of three species of didelphid marsupials.

	Model	Variables	d.f.	K	AICc	Δ_i	w_i
DHR	1	Thread + Body mass	2	4	185.229	0.000	0.501
	2	Thread + Body mass + Species	4	5	186.544	1.315	0.260
	3	Thread + Species	3	4	188.290	3.061	0.109
	4	Thread + Body mass + Species + 2*3	6	6	190.686	5.457	0.033
	5	Thread + Body mass + Species + 1*3	6	6	190.858	5.629	0.030
	6	Thread + Body mass + Species + 1*2*3	6	6	190.899	5.670	0.029
	7	Thread	1	3	192.517	7.288	0.013
IU	1	Thread + Body mass	2	4	82.643	0.000	0.501
	2	Thread + Body mass + Species	4	5	83.958	1.315	0.260
	3	Thread + Species	3	4	85.704	3.061	0.109
	4	Thread + Body mass + Species + 2*3	6	6	88.100	5.457	0.033
	5	Thread + Body mass + Species + 1*3	6	6	88.272	5.629	0.030
	6	Thread + Body mass + Species + 1*2*3	6	6	88.313	5.670	0.029
	7	Thread	1	3	89.931	7.288	0.013

K is number of parameters of the model, AICc is the Akaike Information Criteria corrected for small samples, Δ_i is the difference in AICc between the given model and the best model, and w_i is the Akaike weight, the relative likelihood of a model given the data and the set of models analyzed. Asterisks indicate interactions between variables, coded by numbers (Thread = 1, Body mass = 2, Species = 3).

Cálculo de AIC na prática

Modelos lineares generalizados (Generalized linear models):

```
AIC = -2ln(verossimilhança) + 2K
-2ln(verossimilhança) = desviança
AICc = -2ln(verossimilhança) + 2K(K+1) / (n - K - 1)
K = número de parâmetros
AICc = AIC * (K + 1) / (n - K - 1)
```

Regressão por quadrados mínimos comum (Ordinary least squares regression)

```
AIC = n*ln(RSS/n) + 2K
onde n = número de observações (dados)
RSS = residual sum of squares = Soma dos Quadrados dos Resíduos
```

Referências

- Burnham, K.P., & D. R. Anderson. 2002. Model selection and multimodel inference: A practical information-theoretic approach, 2nd ed (Caps. 1 e 2). Springer-Verlag, Heidelberg.
- Epstein, I. 1986. Teoria da Informação. Coleção Primeiros Passos, Editora Ática, São Paulo.
- McElreath, R. Statistical thinking in evolutionary ecology (http://xcelab.net/rm/?p=198).
- Vieira & Cunha (2008). Austral Ecology 33:872-879