## Markedness effects in paradigm reanalysis: Malagasy consonant alternations

Jennifer Kuo, University of California, Los Angeles jenniferkuo2018@ucla.edu



#### 1 Overview

How do learners reconstruct a neutralized form?



- Possible factors:
  - distributional information (Ernestus and Baayen, 2003; Albright, 2002)
  - innate biases (Moreton, 2008)
- Paradigm reanalysis as window into phonological learning (Kiparsky, 1965)
- Case study: Malagasy (iso:mdg) consonant alternations
- Results: effects of markedness bias
  - not predicted by existing models (e.g. Albright, 2002; Nosofsky, 2011)

## 2 Background: Malagasy

- (C)V syllables, mostly penult stress.
- Weak stems: antepenult stress (if long enough) and end in "weak syllable" (-ka, -na, tra [tsa])
- Weak syllable's consonant may alternate under suffixation:

| pattern    |   | stem                | passive (-ana)       |
|------------|---|---------------------|----------------------|
| na $\sim$  | n | andrávina           | andravánana          |
|            | m | anándrana           | andrámana            |
| ka $\sim$  | h | angátaka            | angatáhana           |
|            | f | anáhaka             | anaháfana            |
| tra $\sim$ | r | iána <b>tr</b> a    | ianárana             |
|            | t | anándratra          | anandrátana          |
|            | f | andráku <b>tr</b> a | andrakú <b>f</b> ana |

- Historically consonant-final (Dahl, 1951; Adelaar, 2012)
  - 1. Final consonant neutralization
  - 2. Vowel epenthesis to resolve codas
- Development of tra $\sim$ r alternation:

|          | *bukiD   | *bukiD-ən | Historical   |
|----------|----------|-----------|--------------|
|          | * wúkit  | _         | (*-D > *-t)  |
|          | _        | *wukírən  | (*D > *r)    |
|          | *wúhitr  | _         | (*-t > *-tr) |
|          | *wúhitra | *wuhírəna | (Epenthesis) |
| <b>\</b> | vúhitra  | vuhírina  | Modern       |

#### Possible reanalyses for [pákutra]

| 1 033IDIC IC | analyses for [pakatia] |
|--------------|------------------------|
| Direction    | passive (stem+ana)     |
| $t \to r$    | pakut-ana→pakur-ana    |
| r 	o t       | pakur-ana→pakut-ana    |

## 3 Reanalysis in weak stems

Method: Compare historical and modern Malagasy

- Historical: Austronesian Comparative Dictionary (ACD; Blust and Trussel, 2010)
- Modern: Malagasy Dictionary & Encyclopedia of Madagascar (de La Beaujardière, 2004)

### **Predicted reanalyses:**

- Distributional models: reanalysis towards more likely alternant
- Expected distribution of alternants + predicted reanalyses, based on historical Malagasy (PMP; Proto-Malayo-Polynesian):

## (1) Expected distribution of alternants:



#### (2) Effect of r-dissimilation

|          | does stem have [r]? |    |  |
|----------|---------------------|----|--|
| Exp. alt | yes                 | no |  |
| t        | 8                   | 39 |  |
| r        | 0                   | 17 |  |

▷ Alternant never [r] when stem has preceding [r].

#### **Observed reanalyses:**

| Type       | Direction         | Count             | Reanalysis of tra-final stems follows  |                   |       |
|------------|-------------------|-------------------|----------------------------------------|-------------------|-------|
| na (n=70)  | $m{ ightarrow}n$  | 3                 | r-dissimilation, as seen by tra-stems: |                   |       |
|            | $n{ ightarrow}m$  | 0                 | has r?                                 | Direction         | Count |
| ka (n=60)  | $h \rightarrow f$ | 0                 | no (n=65)                              | $t \rightarrow r$ | 33    |
|            | $f \rightarrow h$ | 4                 |                                        | $r \rightarrow t$ | 0     |
| tra (n=81) | t→r               | 33 ←Not Predicted | yes (n=16)                             | $t \rightarrow r$ | 0     |
|            | $r \rightarrow t$ | 1                 |                                        | $r \rightarrow t$ | 1     |

For tra-final stems, reanalysis is  $t \rightarrow r$ , not predicted by distributions

## 6 Model Results

Result: Reanalysis in Malagasy explained by successive generations of learning modulated by markedness bias

**Bias terms:** ( $\mu \approx$  preferred weight)

- Flat prior (control): uniform μ
- P-map (control): For \*MAP, perceptually similar mappings get lower  $\mu$
- Markedness:  $\mu$ (\*V[-cont]V) >  $\mu$ (Faith)
- Markedness + P-map



△ Figure: With markedness bias, model fit improves over iterations



vukitra-vukirana vukitra-vukitana

Candidate

△ Figure: Models with markedness bias predict more tra~r alternation. (Change in P of tra-final candidates over 10 iterations; PMP='old' Malagasy, Mlg='new' Malagasy)

## 4 Markedness bias

Markedness bias against intervocalic stops explains t→r reanalysis

- Constraint: \*V[-cont]V
- Historically, intervocalic lenition in Malagasy (\*b>v, \*p>f, \*d>r, \*k, \*g>h)
- Typologically common (Kirchner, 1998; Kaplan, 2010; Katz, 2016)
- Active as phonotactic tendency

## 5 Model Implementation

# Goal: Show effect of markedness bias through modeling

## Model components:

- Iterative: Predictions of one iteration is input to next iteration.
- MaxEnt Harmonic Grammar (Goldwater and Johnson, 2003) to capture gradient alternations.
- Bias implemented as a Gaussian prior (Wilson, 2006; White, 2013).

#### **Model constraints:**

- Constraints enforcing alternation in weak stems: \*tr]V, \*k]V, \*h]V
- Faithfulness constraints: \*MAP (Zuraw, 2010, 2013)
- Useful for implementing perceptual similarity bias
- \*r...r enforces r-dissimilation
- \*V[-cont]V penalizes tra~t alternation.

#### Model evaluation:

- Compare models with markedness bias against controls with no bias.
- See Section 5

#### References

https://no-link-yet.com

## Acknowledgements

Thanks to Bruce Hayes, Kie Zuraw, Claire Moore-Cantwell, members of the UCLA Phonology Seminarm for their helpful comments; audience of TripleAFLA for their input; Vololona for her invaluable time and assistance.

### References

- Adelaar, A. (2012). Malagasy phonological history and Bantu influence. *Oceanic Linguistics*, 51(1):123–159.
- Albright, A. C. (2002). *The identification of bases in morphological paradigms*. PhD thesis, University of California, Los Angeles.
- Blust, R. and Trussel, S. (2010). Austronesian comparative dictionary, web edition. *Blust's Austronesian Comparative Dictionary Website*.
- Dahl, O. C. (1951). Malgache et Maanjan: une comparaison linguistique. *Avhandlinger utgitt av Egede Instituttet*.
- de La Beaujardière, J.-M. (2004). Malagasy dictionary and encyclopedia of Madagascar.
- Ernestus, M. and Baayen, R. H. (2003). Predicting the unpredictable: Interpreting neutralized segments in dutch. *Language*, 79(1):5–38.
- Goldwater, S. and Johnson, M. (2003). Learning OT constraint rankings using a maximum entropy model. In *Proceedings of the Stockholm workshop on variation within Optimality Theory*, volume 111120.
- Kaplan, A. (2010). *Phonology shaped by phonetics: The case of intervocalic lenition*. PhD thesis, University of California, Santa Cruz.
- Katz, J. (2016). Lenition, perception and neutralisation. *Phonology*, 33(1):43–85.
- Kiparsky, P. (1965). *Phonological change*. PhD thesis, MIT.
- Kirchner, R. M. (1998). *An effort-based approach to consonant lenition*. PhD thesis, University of California, Los Angeles.
- Moreton, E. (2008). Analytic bias and phonological typology. *Phonology*, 25(1):83–127.
- Nosofsky, R. M. (2011). The generalized context model: An exemplar model of classification. *Formal approaches in categorization*, pages 18–39.
- White, J. (2013). *Bias in phonological learning: Evidence from saltation*. PhD thesis, University of California, Los Angeles.
- Wilson, C. (2006). Learning phonology with substantive bias: An experimental and computational study of velar palatalization. *Cognitive science*, 30(5):945–982.
- Zuraw, K. (2010). A model of lexical variation and the grammar with application to Tagalog nasal substitution. *NLLT*, 28(2):417–472.
- Zuraw, K. (2013). \*map constraints. Ms, University of California, Los Angeles.

