I. Introduction

Introduction

Overview Use cases

Model

Submodel

Notations

Inference

Penalizatio QNMCEM

Evaluation

Conclusion

Overview

- Deal with the problem of joint modeling of longitudinal data and censored durations
- ► Large number of both longitudinal and time-independent features are available
- Flexibility in modeling the dependency between the longitudinal features and the event time with appropriate penalties
- Inference achieved using an efficient and novel Quasi-Newton Monte Carlo Expectation Maximization algorithm

Introduction

Overview Use cases

Use cases

Model

Notations

Likelihood

Penalization

Evaluation

Conclusion

Use cases

- Predict the risk for an event of interest to occur quickly, taking into account simultaneously a huge number of longitudinal signals in a high-dimensional context
- Provides powerful interpretability by automatically pinpointing significant time-dependent and time-independent features

Real-time decision support

- Medical context → event of interest: survival time, re-hospitalization, relapse or disease progression; longitudinal data: biomarkers or vital parameters measurements
- Customer's satisfaction monitoring context → event of interest: time when a client churns; longitudinal data: the client's activity recorded from account opening throughout the duration of the business relationship

ntroduction

Use cases

Framewo

C 1 11

Notations Likelihood

> nference Penalization

Evaluation

Conclusion

High-dimensional framework

Survival analysis

$$T = T^{\star} \wedge C$$
 and $\Delta = \mathbb{1}_{\{T^{\star} \leq C\}}$

- ▶ Time-independent features $X \in \mathbb{R}^p$ with $p \gg n$
- ▶ L longitudinal outcomes such that $L \gg n$ and

$$Y(t) = \left(Y^1(t), \dots, Y^L(t)
ight)^ op \in \mathbb{R}^L$$

► Heterogeneity of the population: latent subgroups

$$\textit{G} \in \{0, \ldots, \textit{K}-1\}$$

Softmax link function for the latent class membership probability given time-independent features

$$\pi_{\xi_k}(x) = \mathbb{P}[G = k | X = x] = \frac{e^{x^\top \xi_k}}{\sum_{k=0}^{K-1} e^{x^\top \xi_k}}$$

Introduction

Overview

Framework

Model

Submodels

Notations Likelihood

> Penalization ONMCEM

Evaluation

Conclusion

II. Model

Introduction

Overview Use cases

Model

Submodels Notations Likelihood

Inference

Penalizatio QNMCEM

Evaluation

Conclusion

Submodels

Group-specific marker trajectories

- ▶ $h_l(\mathbb{E}[Y^l(t)|b^l,G=k]) = m_k^l(t) = u^l(t)^\top \beta_k^l + v^l(t)^\top b^l$ with fixed effect parameters $\beta_k^l \in \mathbb{R}^{q_l}$ and subject-and-longitudinal outcome specific random effects $b^l \in \mathbb{R}^{r_l} \sim \mathcal{N}(0,D_l)$
- ightharpoonup Cov $[b',b'']=D_{ll'}$ and

$$D = \begin{bmatrix} D_{11} & \cdots & D_{1L} \\ \vdots & \ddots & \vdots \\ D_{1L}^\top & \cdots & D_{LL} \end{bmatrix}$$

the global variance-covariance matrix

Introduction

Use cases

Model

Submodels

Notations Likelihood

Penalization
ONMCEM

Evaluation

Conclusion

Submodels

Group-specific risk of event

- ▶ Functionals $(\varphi_a)_{a \in \mathcal{A}}$

Description	$\varphi_{k,a}(t,b')$	\imath_{a}	Reference
Linear predictor	$m'_k(t)$	1	Chi and Ibrahim [2]
Random effects	b'	r_l	Hatfield et al. [3]
Time-dependent slope	$\frac{\mathrm{d}}{\mathrm{d}t}m_k^I(t)$	1	Rizopoulos and Ghosh [4]
Cumulative effect	$\int_0^t m_k^I(s) \mathrm{d} s$	1	Andrinopoulou et al. [1]

Introductio

Overviev

Erameum

Model

Submodels

Notations Likelihood

Penalization

Evaluation

Conclusion

Submodels

 Graphical representation of a joint model of a time-to-event submodel and K-multivariate longitudinal outcomes submodel

ntroductio

Overview

Framework

Vlodel

Submodels

Notations Likelihood

> ference enalization

enalization NMCEM

Conclusion

Conclusion

Notations

$$\mathcal{D}_n = \left\{ (x_1, y_1^1, \dots, y_1^L, t_1, \delta_1), \dots, (x_n, y_n^1, \dots, y_n^L, t_n, \delta_n) \right\} \text{ with }$$

$$y_i^l = (y_{i1}^l, \dots, y_{in_i^l}^l)^\top \in \mathbb{R}^{n_i^l} \text{ and } y_{ij}^l = Y_i^l(t_{ij}^l)$$

$$y_i = (y_i^{1\top} \cdots y_i^{L\top})^{\top} \in \mathbb{R}^{n_i} \text{ with } n_i = \sum_{l=1}^L n_i^l$$

$$lackbox{b}_i = (b_i^{1^\top} \cdots b_i^{L^\top})^\top \in \mathbb{R}^r \text{ with } r = \sum_{l=1}^L r_l$$

Design matrices

$$U_i = \begin{bmatrix} U_{i1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & U_{iL} \end{bmatrix} \in \mathbb{R}^{n_i \times q} \text{ and } V_i = \begin{bmatrix} V_{i1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & V_{iL} \end{bmatrix} \in \mathbb{R}^{n_i \times r}$$

with $q = \sum_{l=1}^{L} q_l$ and where for all l = 1, ..., L, one writes

$$\left\{ \begin{array}{ll} U_{il} &= \left(u_i^l(t_{i1}^l)^\top \cdots u_i^l(t_{in_i^l}^l)^\top\right)^\top \in \mathbb{R}^{n_i^l \times q_l}, \\ V_{il} &= \left(v_i^l(t_{i1}^l)^\top \cdots v_i^l(t_{in_i^l}^l)^\top\right)^\top \in \mathbb{R}^{n_i^l \times r_l}. \end{array} \right.$$

$$\qquad M_{ik} = U_i \beta_k + V_i b_i \in \mathbb{R}^{n_i}$$

Introduction

Use cases

Model

Notations

Likelihood

Penalization

Evaluation

Conclusion

Likelihood

 $\blacktriangleright \ \theta = \left(\xi_0^\top \cdots \xi_{K-1}^\top, \beta_0^\top \cdots \beta_{K-1}^\top, \phi^\top, \mathsf{vech}(D), \lambda_0^\top, \gamma_0^\top \cdots \gamma_{K-1}^\top\right) \in \mathbb{R}^\vartheta$

$$f(y_i|b_i, G_i = k) = \exp \left\{ (y_i \odot \Phi_i)^\top M_{ik} - c_\phi(M_{ik}) + d_\phi(y_i) \right\} \text{ with } \Phi_i = (\phi_1^{-1} \mathbf{1}_{n_i^T}^{\top} \cdots \phi_L^{-1} \mathbf{1}_{n_i^L}^{\top})^\top \in \mathbb{R}^{n_i}$$

Survival part:

$$f(t_i, \delta_i | b_i, G_i = k; \theta) = \left[\lambda(t_i | \mathcal{M}_k(t_i), G_i = k)\right]^{\delta_i} \times \exp\left\{-\int_0^{t_i} \lambda(s | \mathcal{M}_k(s), G_i = k) ds\right\}$$

Then, the likelihood writes

$$\ell_n(\theta) = n^{-1} \sum_{i=1}^n \log \int_{\mathbb{R}^r} \sum_{k=0}^{K-1} \pi_{\xi_k}(x_i) f(t_i, \delta_i | b_i, G_i = k; \theta)$$
$$\times f(y_i | b_i, G_i = k; \theta) f(b_i; \theta) db_i$$

ntroduction

Overview Use cases

Use case:

Nodel

Notations

Likelihood

Penalization

Evaluation

Conclusion

III. Inference

Introduction

Overvie

Use case:

Model

Submode

Likelihoo

Inference

Penalizatio ONMCEM

Evaluation

Conclusion

Penalization

Penalized objective

$$\ell_n^{\text{pen}}(\theta) = -\ell_n(\theta) + \sum_{k=0}^{K-1} \zeta_{1,k} \|\xi_k\|_{\text{en},\eta} + \zeta_{2,k} \|\gamma_k\|_{\text{sg}h,\tilde{\eta}}$$

with the elasticnet penalty

$$\|z\|_{\mathsf{en},\eta} = (1-\eta)\|z\|_1 + \frac{\eta}{2}\|z\|_2^2$$

and the sparse group lasso penalty

$$||z||_{\operatorname{sg} I_1, \tilde{\eta}} = (1 - \tilde{\eta})||z||_1 + \tilde{\eta} \sum_{l=1}^{L} ||z^l||_2$$

Resulting optimization problem

$$\hat{ heta} \in \operatorname{argmin}_{ heta \in \mathbb{R}^{artheta}} \ell_n^{\mathsf{pen}}(heta)$$

Introduction

Overviev Use case

1odel

Notations Likelihood

Interence

Penalization QNMCEM

Conclusion

QNMCEM algorithm (1/2)

 $\qquad \qquad \ell_n^{\mathsf{comp}}(\theta) = \ell_n^{\mathsf{comp}}(\theta; \mathcal{D}_n, \boldsymbol{b}, \boldsymbol{G})$

Monte Carlo E-step

- ▶ Requires to compute expectations of the form

$$\mathbb{E}_{\theta^{(w)}}[g(b_i,G_i)|t_i,\delta_i,y_i] = \sum_{k=0}^{K-1} \pi_{ik}^{\theta^{(w)}} \int_{\mathbb{R}^r} g(b_i,G_i) f(b_i|t_i,\delta_i,y_i;\theta^{(w)}) \mathrm{d}b_i$$

for different functions g, where we denote

$$\pi_{ik}^{\theta^{(w)}} = \mathbb{P}_{\theta^{(w)}}[G_i = k | t_i, \delta_i, y_i]$$

Monte Carlo approximations used for untractable integrals

Introduction

Use cases

Model

Notations

nterence Penalization

QNMCEM

Evaluation

Conclusion

QNMCEM algorithm (2/2)

Quasi-Newton M-step

$$\qquad \qquad \boldsymbol{\theta}^{(w+1)} \in \operatorname{argmin}_{\boldsymbol{\theta}} \, \mathcal{Q}_{\boldsymbol{n}}(\boldsymbol{\theta}, \, \boldsymbol{\theta}^{(w)}) + \sum\nolimits_{k=0}^{K-1} \zeta_{1,k} \|\boldsymbol{\xi}_k\|_{\operatorname{en}, \, \boldsymbol{\eta}} + \zeta_{2,k} \|\boldsymbol{\gamma}_k\|_{\operatorname{sgl}_1, \, \tilde{\boldsymbol{\eta}}}$$

$$D^{(w+1)} = n^{-1} \sum_{i=1}^{n} \hat{\mathbb{E}}_{\theta(w)}[b_i b_i^{\top} | t_i, \delta_i, y_i]$$

$$\begin{array}{l} \blacktriangleright & R_{n,k}^{(w)}(\beta_k) = \\ & -n^{-1} \sum_{i=1}^n \hat{\pi}_{ik}^{\theta^{(w)}} \left[(y_i \odot \Phi_i^{(w)})^\top \hat{\mathbb{E}}_{\theta^{(w)}}[M_{ik} | t_i, \delta_i, y_i] - \hat{\mathbb{E}}_{\theta^{(w)}}[c_{\phi^{(w)}}(M_{ik}) | t_i, \delta_i, y_i] \right] \end{array}$$

$$\qquad \qquad \beta_k^{(w+1)} \in \operatorname{argmin}_{\beta_k \in \mathbb{R}^q} \, R_{n,k}^{(w)}(\beta_k)$$

$$P_{n,k}^{(w)}(\xi_k) = -n^{-1} \sum_{i=1}^n \hat{\pi}_{ik}^{\theta^{(w)}} \log \pi_{\xi_k}(x_i)$$

- L-BFGS-B to solve the problem
- Proximal gradient method to estimate $\gamma_{L}^{(w+1)}$

Predictive marker
$$\hat{\mathcal{R}}_{ik} = \frac{\pi_{\hat{\xi}_k}(x_i)\hat{f}(\mathbf{t}_i^{max},y_i|b_i,G_i=k;\hat{\theta})}{\sum_{k=0}^{K-1}\pi_{\hat{\xi}_k}(x_i)\hat{f}(\mathbf{t}_i^{max},y_i|b_i,G_i=k;\hat{\theta})}$$
, which is an estimate of $\mathbb{P}_{\theta}[G_i=k|T_i^{\star}>t_i^{max},y_i]$

ntroduction

Overview Use cases

Framewo

Model

Notations

nference Penalization

QNMCEM

Conclusion

V. Evaluation

Introduction

Overview

Framewo

Mode

Submode

Notation: Likelihoo

Inference

Penalization

Evaluation

Conclusion

Experiments

Introductio

Overvie

Use case

Model

Notations

Inference

Penalization

Evaluation

Conclusion

VI. Conclusion

Introduction

Overview

Framewo

Mode

Submode

Likelihoo

Inference

Penalizatio ONMCEM

Evaluation

Conclusion

Conclusion

- Prognostic method called lights introduced to deal with the problem of joint modeling of longitudinal data and censored durations, where a large number of longitudinal features are available
- Penalization of the likelihood in order to perform feature selection and to prevent overfitting
- New efficient estimation algorithm (QNMCEM) has been derived
- Automatically determines significant prognostic longitudinal features

Python 3 package

- Available at https://github.com/Califrais/lights
- Applications of the model available soon on an arXiv paper.

ntroductio

Use case

Model

Notations

Likelihood

Penalization

Evaluation

Conclusion

Thank you!

Introduction

Overview

Framewo

Model

Submodel Notations

Likelihood

Interence

Penalization QNMCEM

Evaluation

Conclusion

References

- Eleni-Rosalina Andrinopoulou, Dimitris Rizopoulos, Johanna JM Takkenberg, and Emmanuel Lesaffre. Combined dynamic predictions using joint models of two longitudinal outcomes and competing risk data. Statistical methods in medical research, 26(4):1787–1801, 2017.
- [2] Yueh-Yun Chi and Joseph G Ibrahim. Joint models for multivariate longitudinal and multivariate survival data. *Biometrics*, 62(2):432–445, 2006.
- [3] Laura A Hatfield, Mark E Boye, and Bradley P Carlin. Joint modeling of multiple longitudinal patient-reported outcomes and survival. *Journal of Biopharmaceutical Statistics*, 21(5): 971–991, 2011.
- [4] Dimitris Rizopoulos and Pulak Ghosh. A bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Statistics in medicine, 30(12):1366–1380, 2011.

ntroductio

Use case

Submodels

Notations Likelihood

Penalization

Evaluation

Conclusion