Deep Reinforcement Learning applied to Statistical Arbitrage Investment Strategy on Cryptomarket

Presented by:

Gabriel Vergara Schifferli

Name of the student: Gabriel Vergara^{1,2}

Thesis advisor:

Werner Kristjanpoller¹

External Examiner:

Thesis coadvisor:

Pedro Gajardo²

Javier Mella³

¹ Departamento de Industrias, Universidad Técnica Federico Santa María, Chile.

² Departamento de Matemática, Universidad Técnica Federico Santa María, Chile.

³ Universidad de los Andes, Chile

Contenido

Introducción

Objetivos

Preliminares

Modelo

Entrenamiento del Modelo

Resultados

Conclusiones

Introducción

Introducción

- Interés en el desarrollo de nuevas estrategias de inversión en ambientes de extrema volatilidad.
- Implementación inteligencia artificial (DRL) para la toma de decisiones de inversión.
- Estudiar estrategias ajustadas por riesgo en el mercado Crypto.
- Al mejor de nuestro conocimiento no existen investigaciones sobre estrategias de arbitraje mediante técnicas de DRL.
- Se propone un nuevo esquema de inversión a través del DRL.

Investigaciones relacionadas

direct RL con representación difuza sobre los retornos pasados.

• Wu et al. (2020) introducen un método de trading adaptivo utilizando DRL junto.

• Deng et al. (2016) introduce un sistema de trading utilizando un framework de deep

- Wu et al. (2020) introducen un método de trading adaptivo utilizando DRL junto utilizando GDQN (Gated Deep Q-learning) y GDPG (Gated Deterministic Policy Gradient)
- Liu et al. (2021) proponen un sistema de alta frecuencia basado en DRL utilziando LSTM como política para el algoritmo PPO sobre Bitcoin.
- Pelger et al. (2021) generalizan el modelo de arbitraje mediande PCA y IPCA combinando los portafolios con técnicas de deep learning para generar estrategias de inversión óptimas.

5/25

Objetivos

Objetivos

Objetivo Principal

• Utilizar métodos de Aprendizaje Reforzado Profundo (DRL) para la generación de estrategias de arbitraje en el mercado de criptodivisas.

Objetivos Específicos

- Proponer una metodología unificada combinando elementos del arbitraje estadístico innovando en la implemetación de DRL.
- Reducir el riesgo generando retornos ajustados por riesgo superiores al mercado.
- La metodología es robusta ante fricciones de mercado, e.g. costos de transacción.
- Determinar que las acciones del agente no son aleatorias, mas bien fundamentadas.

Preliminares

Statistical Arbitrage

Características Principales.

Para operar un esquema de arbitraje se requiere de :

- Múltiples Activos
- Alta Volatilidad
- Alta correlación o dirección de movimiento conjunto ⇒ Cointegración
- Reversión a la media

Publicaciones más citadas.

- Distancia: Gatev et al. 2006
- PCA: Avellaneda et al. 2010
- Cointegración (COIN): Galenko et al. 2012
- COINMAN: Yu y Rengjie 2017

7 Septiembre, 2023

VECM: Vector Error Correction Model

Considerando precios logarítmicos $\mathbf{p}_t = (p_{i,t}, \dots p_{n,t})'$

y un modelo VAR(k) sobre \mathbf{p}_t reescrito como:

$$\Delta \mathbf{p}_{t} = \mu + \sum_{i=1}^{k-1} \Gamma_{i} \Delta \mathbf{p}_{t-1} + \Pi \mathbf{p}_{t-1} + \varepsilon_{t}$$
(1)

Donde $\Gamma_i \in \mathbb{R}^{n \times n}$, $\Pi \in \mathbb{R}^{n \times n}$ y $\varepsilon_t \stackrel{iid}{\sim} N(0, \Lambda)$.

Si $rank(\Pi) = n$, entonces \mathbf{p}_t es estacionario.

Si $rank(\Pi) = 0$ entonces $\Pi = 0$ implica que $\Delta \mathbf{p}_t$ es un proceso VAR(k-1) y no hay vectores de cointegración.

Si $1 \le rank(\Pi) = r \le n-1$, entonces existen $n \times r$ matrices de rango r, **A** y **B**, tal que Π el modelo (1) se puede expresar como:

$$\Pi = \mathbf{A}\mathbf{B}' \tag{2}$$

y $\mathbf{b}_1'\mathbf{p}_1,\ldots,\mathbf{b}_r'\mathbf{p}_t$ son estacionarios, donde $\mathbf{B}=(\mathbf{b}_1,\ldots,\mathbf{b}_r)$.

Arbitrage Portfolios

Entonces, para los log-precios de cada activo \mathbf{p}_t , las r columnas de \mathbf{B} pueden ser utilizadas para formar r portafolios (COIN).

Los portafolios se generan a partir de los vectores de cointegración normalizados.

Dado el vector de cointegración $\mathbf{b}_i = (b_i^1, \dots, b_i^n)'$ se define la posición direccional para cada activo:

$$k \in L_i \iff b_i^k \ge 0, \quad \forall i = 1, \dots r$$
 (3)

$$k \in S_i \iff b_i^k < 0, \quad \forall i = 1, \dots r$$
 (4)

luego, los conjuntos L_i y S_i definen la posición dirección para cada activo del protafolio de cointegración formado por el vector \mathbf{b}_i .

Markov Decision Process

- El agente interactúa con la naturaleza en cada intervalo de tiempo
- En cada momento t el Agente observa el estado S_t y realiza una acción A_t a travéz de la política π
- En función de la acción, se observa un nuevo estado S_{t+1} y se genera una recompensa R_{t+1}
- La interación continua entre el agente y la naturaleza produce una trayectoria de estado-acción-recompensa : $\tau = (S_0, A_0, R_1, S_1, A_1, R_2, \dots)$

El **objetivo** del agente es maximizar la **recompensa acumulada** G_t :

$$G_t = \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k \tag{5}$$

donde $\gamma \in [0,1)$ corresponde al factor de descuento.

Deep Reinforcement Learning

- Implementación de técnicas de aprendizaje profundo para modelación
- Paradigma distinto al aprendizaje supervisado y no supervisado
- Utilización de redes neuronales como parametrización de funciones generales
 - política π : $\pi(\cdot|\theta)$
 - función Valor: $V^{\pi}(s) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h R_{t+h} | s_t = s\right]$
 - Q Valor : $Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{h=0}^{\infty} \gamma^h R_{t+h} | s_t = s, a_t = a\right]$
- Algoritmos de entrenamiento por backpropagation:
 - PPO : Optimización directa de la política
 - DQN : Optimización directa del Q-Valor
 - A2C : doble red , una determina la política y otra evalúa la acción

Modelo

Portafolios de Arbitraje

Se construyen dos portafolios en función del signo del coeficiente de cointegración obteniendo posiciones direccionales contrarias.

Así, se construyen r portafolios neutrales. Para cada vector \mathbf{b}_i se tiene su costante de normalización $l_i = \sum_{k \in L_i} |b_i^k|$ y $s_i = \sum_{k \in S_i} |b_i^k|$.

Por lo tanto los pesos se determinan como:

$$W_i^{(k)} = \begin{cases} b_i^{(k)}/I_i & \text{if } b_i^{(k)} \ge 0\\ b_i^{(k)}/s_i & \text{if } b_i^{(k)} < 0 \end{cases}$$
 (6)

Estos r portafolios son *dollar-neutral* y el portafolio ${\bf P}$ se construye como una equiponderación de todos:

$$\mathbf{P} = \frac{1}{r} \sum_{k=1}^{r} \mathbf{W}_{k}, \quad \mathbf{W}_{k} = (W_{k}^{1}, \dots, W_{k}^{n}) \quad , \mathbf{P} = \mathbf{A} - \mathbf{B}$$
 (7)

Reward Function

Con los portafolios A y B, la acción correponde a la posición direccional

(largo-**A** y corto-**B** o viceversa) con $A_t \in \{-1,1\}$.

Dado el retorno de la acción: $r_t^A = \ln P_t^A - \ln P_{t-1}^A$ and $r_t^B = \ln P_t^B - \ln P_{t-1}^B$, por lo tanto

$$R_t = A_{t-1} \left[e^{r_t^A} - e^{r_t^B} \right]. \tag{8}$$

Se busca resolver el problema

$$\max_{\Theta} U_T\{R_1 \dots R_T | \Theta\}$$

 $U_{\mathcal{T}}(\cdot)$ es la recompensa del periodo, donde

$$U_T = \sum_{t=1}^T R_t$$

Trading Game

Figure 1: Esquema de interacción del sistema DRL para la aplicación de trading. Los estados corresponden a aquellos definidos a través de indicadores técnicos, volatilidades y otros generados a partir de activos sintéticos y spreads.

Entrenamiento del Modelo

Configuración de entrenamiento

- Step 1: Definir una ventana de tiempo historica de 6 días para estimar los portafolios de cointeración.
- Step 2: Usar la relación de cointegración y la data historica para la construcción de los portafolios A y B. El rango de cointegración se determina según el test de cointegración de Johansen a un nivel del 90%.
- Step 3: Con los activos sintéticos y la historia construír los estados del mercado a traves de señales (indicadores técnicos varios).
- Step 4: Definir un horizonte de 1 día para operar con los portafolios obtenidos.

Data

- Ventana temporal: 2020-11-01 00:00:00 until 2022-10-11 05:30:00 (frecuencia de 30 min)
- 6 días (288 t) para construcción de portafolios 1 día (48 t) de operación
- Más de 30.000 escenarios para entrenamiento
- 1. BTC: Bitcoin
- 2. **ETH**: Ethereum
- 3. BNB: BNB
- 4. XRP: Ripple
- 5. ADA: Cardano
- 6. SOL: Solana
- 7. DOT: Polkadot

- 8. BCH: Bitcoincash
- 9. LTC: Litecoin
- 10. AVAX: Avalanche
- 11. ALGO: Algorand
- 12. AAVE: Aave
- 13. UNI: UniSwap
- 14. CAKE: PancakeSwap

Training

Figure 2: Esquema de segmentación de escenarios de entrenamiento y prueba. En el conjunto de entrenamiento hay superposición de escenarios, mientras que en el conjunto de prueba, no ocurre superposición y no se encuentra presente información utilizada para el entrenamiento.

Periodo de Prueba

Performance Testing Period from 2022-10-18 07:30:00 to 2023-03-17 07:30:00

Resultados

Risk and Performance Measures

Para evaluar las diferentes estrategias se utilizaron las siguientes métricas:

Riesgo:

- VaR : Value at Risk 5%
- ES: Expected Shortfall 5%
- σ : Desviación estándar
- MDD : Máximal Drawdown
- AS : Aumann & Serrano (2008) economic risk index (GHYP distribution)

Rendimiento ajustado por riesgo:

- Calmar
- Sharpe
- EPM: Economic Performance Measure

7 Septiembre, 2023

Rendimiento

Strategies Intra Day Performance

Figure 3: Profit & Loss a frecuencia de 30-minutos. Se incluye estrategia neutral A=0, los diferentes agentes DRL utilizados (PPO, DQN, y A2C), el benchmark COIN junto con referencias de mercado.

Rendimiento: Fricciones de mercado

Figure 4: Profit & Loss de resultados diarios aplicando un costo por transacción de 0.02% por operación. La estrategia benchmark corresponde a COIN.

Resumen Métricas diarias

	Max D.	ES 5%	VaR 5%	σ	A-S
PPO	5.87[%]	-1.39[%]	-0.99[%]	0.82[%]	0.0036
DQN	4.96[%]	-1.44[%]	-1.09[%]	0.77[%]	0.0030
A2C	14.57[%]	-1.23[%]	-1.08[%]	0.77[%]	0.0032
COIN	6.56[%]	-1.22[%]	-1.10[%]	0.76[%]	0.0037

	Calmar	Sharpe	EPM	R[%]
PPO	0.0103	0.0738	0.1558	8.77
DQN	0.0239	0.1533	0.4004	18.39
A2C	-0.0035	-0.0670	-0.1430	-7.63
COIN	0.0096	0.0834	0.1597	9.29

Comparativa mercado

			VaR 5% -1.26%						R[%] 1.69
ВТС	26.30%	-5.79%	-3.95%	2.78%	0.01558	0.007	0.068	0.048	32.51
LTC	34.82%	-9.31%	-6.50%	4.59%	0.02902	0.009	0.066	0.040	57.11
SOL	74.78%	-16.32%	-9.94%	7.19%	0.03629	-0.003	-0.040	-0.124	-35.70

• A = 0 : Control de posición

• BTC : Benchmark de mercado

• SOL : Peor rendimiento

• LTC : Mejor rendimiento

Conclusiones

Conclusiones

- 1. Se propone un método unificado de generación de portafolios de arbitraje, representación de mercado y toma de decisiones.
- 2. El método porpuesto se basa en DRL y se prueba con diferentes algoritmos.
- 3. Se propone un innovador método de entrenamiento basado en la generación de escenarios con horizonte fijo.
- 4. La estrategia obtiene buenos resultados en un ambiente de extrema volatilidad reduciendo el riesgo en gran medida.
- 5. Los resultados se mantienen positivos frente a fricciones de mercado (costos de transacción).
- 6. Las acciones del agente son fundamentadas generando decisiones coherentes.

Deep Reinforcement Learning applied to Statistical Arbitrage Investment Strategy on Cryptomarket

Defensa de título profesional de Ingeniera Civil Matemática y grado de Magíster en Ciencias de la Ingeniería Industrial

Gabriel Vergara Schifferli

7 Septiembre, 2023

Departmento de Matemáticas & Departamento de Industrias Universidad Técnica Federico Santa María