Programmation linéaire

Pr Adil Bellabdaoui

www.decision.ma

Séance 0

Présentation de formateur

Mise en œuvre du cours

Ouvrages suggérés

Evaluation

www.decision.ma

Ma présentation

- Docteur en Sciences Appliquées (13 fév. 2007)
 - Faculté Polytechnique de Mons, Belgique
 - Spécialité Informatique et Gestion
- Chargé de recherche attaché au département I&G (déc. 1999 nov. 2009)
 - Faculté Polytechnique de Mons
- Projets en collaboration avec :
 - Région Wallonne (nov. 2007 nov. 2009) : « Fret4you : Conception d'un système d'aide à la décision pour l'organisation et la collaboration en transport et logistique »
 - Arcelor Mittal (déc. 1999 avr. 2004) : « 3.5 millions de Chertal : Modélisation, simulation et intégrtion de flux métal : industrie sidérurgique»
- Professeur à ENSIAS, Rabat
 - Recherche Opérationnelle : Théorie des Graphes, Programmation Linéaire, Méthodes d'Optimisation Combinatoire, Ateliers de la Modélisation ...
 - Systèmes d'Informations Logistiques
 - Gestion de projets

Mise en œuvre du cours

- Séance 1 : Introduction à la RO; Programmation linéaire, Modélisation
 - Durée : demi-journée
- Séance 2 : Exercice de modélisation
 - Durée : demi-journée
- Séance 3 : Résolution graphique
 - Durée : demi-journée
- Séance 4 : Méthode de simplexe
 - Durée : demi-journée
- Séance 5 : Méthode de simplexe (2), dégénérescence, exercices
 - Durée : demi-journée
- Séance 6 : Analyse de la sensibilité
 - Durée : demi-journée

Ouvrages suggérées

- Y. Nobert, R. Ouellet, R. Parent, La recherché opérationnelle, 3ème édition, gaëtan morin éditeur, 2001
- C. Guéret, C. Prins, M. Sevaux, Programmation linéaire, Editions Eyrolles, 2000
- E. Jacquet-Lagreze, Programmation linéaire : Modélisation et mise en oeuvre informatique, Economica, 1998
- J. Teghem, Programmation linéaire, Presses de l'Université Libre de Bruxelles (Belgique) et éditions Ellipses (Paris), 2003
- L.A. Wolsey, Integer programming, John Wiley & Sons, 1998

A vous la parole??

Je vous invite de s'enregistrer sur le site : www.decision.ma/pl3gil

Login : pl

Mot de passe : hestim@pl3gil

- Présentation
- Parcours académique
- Parcours industriel
- Votre attente

Evaluation

- a. Modélisation: 25%
- b. Résolution graphique : 25%
- c. Méthode de simplexe : 30%
- d. Analyse de sensibilité : 20 %

Séance 1

Introduction à la RO, PL

La modélisation

www.decision.ma

Définition de la RO

Une discipline dont le but est d'aider les gestionnaires à prendre des décisions dans des situations complexes grâce à l'utilisation de méthodes scientifiques, en particulier de modèles mathématiques

Méthodes et applications de RO

La démarche classique

Problèmes de Recherche Opérationnelle

- 1. Concrets et réalistes, ne nécessitant aucun pré-requis
- 2. Facilement définissables
- 3. Difficiles à résoudre :
 - Grande complexité
 - Temps de calcul très important

La modélisation mathématique d'un PL

Définir le problème

- Quelle est la nature exacte du problème?
- Quel est l'objectif recherché?
- Quelles sont les conditions d'opération?
- Quels sont les paramètres à considérer?

Programmation linéaire PL

- Problème d'optimisation consistant à maximiser (ou minimiser) une fonction objectif linéaire de n variables de décision
- Soumises à un ensemble de contraintes exprimées sous forme <u>d'équations ou</u> <u>d'inéquations linéaires</u> exprimées avec les n variables de décision

Hypothèses

- La linéarité des contraintes et de la fonction objectif
- La proportionnalité des gains/coûts et des consommation de ressources
- Le déterministe des données

Mise en forme mathématique

Définir les variables de décision

- Ensemble des variables qui régissent la situation à modéliser
- Variables réelles, entières, binaires

2. Préciser la fonction objectif

- Fonction mathématique composée des variables de décision qui représente le modèle physique modélisé
- Fonction linéaire
- Optimiser : Maximiser ou Minimiser

3. Préciser les contraintes du problème

- Ensemble des paramètres qui limitent le modèle réalisable
- Equations ou inéquations composées des variables de décision

Formulation mathématique d'un PL

FONCTION OBJECTIF

Maximiser ou minimiser

$$Z = C_1X_1 + C_2X_2 + C_3X_3 + ... + + C_nX_n$$

Contraintes

$$a_{11}X_1 + a_{12}X_2 + a_{13}X_3 + ... + a_{1n}X_n \ (\le, =, \ge) b_1$$

 $a_{21}X_1 + a_{22}X_2 + a_{23}X_3 + ... + a_{2n}X_n \ (\le, =, \ge) b_2$
 $a_{m1}X_1 + a_{m2}X_2 + a_{m3}X_3 + ... + a_{mn}X_n \ (\le, =, \ge) b_m$

Contraintes technologiques

Contraintes de non-négativité

$$x_j \ge 0$$
 ; $j = 1, 2, 3, \dots n$

Contraintes liées aux variables

avec

$$x_j$$
 a_{ij} , b_i , c_j

variables de décision (inconnues) paramètres du programme linéaire

Séance 2

Exercice de la modélisation

www.decision.ma

Ex1. Problème de production

- Vous disposez, pour confectionner des chaussons et des tartes, de :
 - 8 kg de pommes
 - 2,5 kg de pâte
 - 6 plaques
- Pour faire un chausson, il vous faut :
 - 150 g de pommes
 - et 75 g de pâte
- Chaque chausson est vendu 30 Dh
- Pour faire une tarte, il vous faut
 - 1 kg de pommes
 - 200 g de pâte
 - et 1 plaque
- Chaque tarte est divisée en 6 parts vendues chacune 20 Dh

Que faut-il cuisiner pour maximiser le chiffre d'affaires de la vente ?

Problème d'allocation de ressources

- Définissons 2 variables de décision
 - x₁: le nombre de chaussons confectionnés
 - x₂: le nombre de tartes confectionnées
- Le chiffre d'affaires associé à une production $(x_1; x_2)$ est $z = 30x_1 + (6 \times 20)x_2 = 30x_1 + 120x_2$
- Il ne faut pas utiliser plus de ressources que disponibles

```
150x_1 + 1000x_2 \le 8000 (pommes)

75x_1 + 200x_2 \le 2500 (pâte)

x_2 \le 6 (plaques)
```

On ne peut pas cuisiner des quantités négatives :

$$x_1$$
 et $x_2 \ge 0$

Problème d'allocation de ressources

 Pour maximiser le chiffre d'affaires de la vente, il faut déterminer les nombres x₁ et x₂ de chaussons et de tartes à cuisiner, solution du problème :

```
Max z = 30x_1 + 120x_2
Sujet à 150x_1 + 1000x_2 \le 8000
75x_1 + 200x_2 \le 2500
x_2 \le 6
x_1, x_2 \ge 0
```

 En fait, il faudrait également imposer à x₁ et x₂ de ne prendre que des valeurs entières

Ex2. Production de portes et fenêtres

3 ateliers: #1 cadres d'aluminium

#2 cadres de bois

#3 vitres et assemblages des produits

2 produits: A portes vitrées avec cadrage d'aluminium

B fenêtres avec cadrage en bois

demande illimitée pour les produits

profits par lot: A: 3000 Dh B: 5000 Dh

temps de production pour chaque lot produit par heure

#1 A: 1 B: 0 #2 A: 0 B: 2 #3 A: 3 B: 2

temps de production disponible par semaine

#1: 4h #2: 12h #3: 18h

L'objectif est de maximiser le profit

Formulation du problème

Atelier	Tps de production 1	Tps de production 2	Tps disponible par semaine	
1	1	0	4	
2	0	2	12	
3	3	2	18	
Profit	3000	5000		

Formulation du problème

Objectif

Maximiser les profits

Variables de décision

x₁: quantité du produit A fabriquée

x₂: quantité du produit B fabriquée

Fonction objectif

MAXIMISER
$$z = 3x_1 + 5x_2$$

Contraintes

atelier 1: $1x_1 + 0x_2 \le 4$

atelier 2: $0x_1 + 2x_2 \le 12$

atelier 3: $3x_1 + 2x_2 \le 18$

Contraintes de non-négativité

 $x_1 \ge 0$ (entier)

 $x_2 \ge 0$ (entier)

Ex3. Geppetto: Cas de fabrication

Geppetto, Inc., fabrique des jouets en bois :

Soldats: vendus 27F et coûtant 10F de matériel brut

coûts généraux : 14F par soldat

quantité de travail : 1h de menuiserie et 2h de finissage

Trains : vendus 21F et coûtant 9F de matériel brut

coûts généraux : 10F par train

quantité de travail : 1h de menuiserie et 1h de finissage

Au maximum, on dispose de

80h de menuiserie et

100h de finissage par semaine

Demande : illimitée pour les trains

maximum 40 soldats par semaine

Comment maximiser les bénéfices de Geppetto ?

Formulation du problème

Modélisation:

1. Variables de décision :

 x_1 = nombre de soldats produits par semaine

 x_2 = nombre de trains produits par semaine

2. Fonction objectif:

Bénéfice = revenu – coût du matériel – coûts généraux

Revenu = revenu pour les soldats +

revenu pour les trains

= 27 $x_1 + 21 x_2$

Coût du matériel = $10 x_1 + 9 x_2$

Coûts généraux = $14 x_1 + 10 x_2$

Formulation du problème

Bénéfice =
$$(27 x_1 + 21 x_2)-(10 x_1 + 9 x_2)-(14 x_1 + 10 x_2)$$

= $3 x_1 + 2 x_2$

On notera Maximiser $z = 3 x_1 + 2 x_2$

3. Contraintes:

- a. Pas plus de 100 h de finissage par semaine
- b. Pas plus de 80 heures de menuiserie par semaine
- c. Pas plus de 40 soldats par semaine

Finissage/semaine =

(finissage/soldat)(soldats/semaine) + (finissage/train)(trains/semaine) = $2 x_1 + x_2$

Contrainte a :
$$2 x_1 + x_2 \le 100$$

Contrainte b :
$$x_1 + x_2 \le 80$$

Contrainte c :
$$x_1 \le 40$$

$$x_1 \ge 0, x_2 \ge 0$$

Ex4. Problème de recouvrement

DONNÉES :

Les demandes journalières en chauffeurs dans une entreprise de transport

Lu	Ma	Me	Je	Ve	Sa	Di
13	18	21	16	12	25	9

Les chauffeurs travaillent 5 jours d'affilée (et peuvent donc avoir leurs 2 jours adjacents de congé n'importe quand dans la semaine)

OBJECTIFS:

Déterminer les effectifs formant les 7 équipes possibles de chauffeurs de manière à :

- couvrir tous les besoins
- engager un nombre minimum de chauffeurs

Problème de recouvrement : Modélisation

Variables de décision :

On associe une variable de décision à chacune des 7 équipes possibles

x₁ : nombre de chauffeurs dans l'équipe du lundi (repos le samedi et le dimanche),

x₂: nombre de chauffeurs dans l'équipe du mardi, ...

x₇ : nombre de chauffeurs dans l'équipe du dimanche.

Fonction objectif:

On veut minimiser le nombre total de chauffeurs engagés

$$z = x_1 + ... + x_7$$

Problème de recouvrement : Contraintes

Contraintes : Le nombre de chauffeurs présents chaque jour doit être suffisant

$$x_1 + x_2 + x_5 + x_6 + x_7 \ge 13$$
 (lundi)
 $x_1 + x_2 + x_5 + x_6 + x_7 \ge 18$ (mardi)
...
$$x_3 + x_4 + x_5 + x_6 + x_7 \ge 9$$
 (dimanche)

Contraintes de bornes : Le nombre de chauffeurs dans chaque équipe doit non seulement être non négatif mais également entier

```
x_i \ge 0 et entier; i = 1; ...; 7
```

Problème de recouvrement : Formulation

Min
$$z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$

Sujet à:
 $x_1 + x_4 + x_5 + x_6 + x_7 \ge 13$
 $x_1 + x_2 + x_3 + x_6 + x_7 \ge 18$
 $x_1 + x_2 + x_3 + x_4 + x_5 \ge 21$
 $x_1 + x_2 + x_3 + x_4 + x_5 \ge 12$
 $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \ge 25$
 $x_2 + x_3 + x_4 + x_5 + x_6 + x_7 \ge 9$
 $x_1 \ ; \ x_2 \ ; \ x_3 \ ; \ x_4 \ ; \ x_5 \ ; \ x_6 \ ; \ x_7 \ge 0$ entiers

Ce problème n'est pas un PL mais un programme linéaire en nombres entiers (PLNE)

Séance 3

Résolution graphique

www.decision.ma

Résolution graphique

Exemple:

MAXIMISER
$$z = 3x_1 + 5x_2$$

SUJET À
$$x_1 \leq 4$$
$$2x_2 \leq 12$$
$$3x_1 + 2x_2 \leq 18$$
$$x_1 \geq 0 \; ; \; x_2 \geq 0$$

Terminologie de la solution

- Solution réalisable
 - Solution où toutes les contraintes du modèle sont satisfaites.
- Zone de solution
 - Ensemble de toutes les solutions réalisables
- Solution optimale
 - Solution réalisable où la fonction objectif atteint la meilleure valeur, maximum ou minimum

Zone de solution réalisable

Zone limitée par l'ensemble des équations de contraintes du problème et par les limites des variables de décision

Fonction objective

Déplacement de la fonction objective à l'intérieur de la zone de solution réalisable pour atteindre un extremum

Exercices

Résoudre graphiquement les problèmes linéaires suivants:

$$(P_1) \begin{cases} x_1, x_2 \ge 0 \\ -2x_1 + x_2 \le 1 \\ x_1 \le 2 \\ x_1 + x_2 \le 3 \\ 3x_1 + 2x_2 = z \text{ } (Max) \end{cases}$$

$$(P_3) \begin{cases} x_1, x_2 \ge 0 \\ x_1 - 3x_2 \le 3 \\ -1/2x_1 + x_2 \le 4 \\ -2x_1 + x_2 \le 2 \\ x_1 - x_2 = z \text{ } (Min) \end{cases}$$

$$(P_5) \begin{cases} x_1, x_2 \ge 0 \\ -x_1 + x_2 \le -1 \\ x_1 - x_2 \le -1 \\ x_1 + x_2 = z \text{ } (Max) \end{cases}$$

$$(P_2) \begin{cases} x_1, x_2 \ge 0 \\ -2x_1 + x_2 \le 1 \\ x_1 \le 2 \\ x_1 + x_2 \le 3 \\ x_1 + x_2 = z \text{ (Max)} \end{cases}$$

$$(P_4) \begin{cases} x_1, x_2 \ge 0 \\ x_1 - x_2 \le 1 \\ x_1 + x_2 \ge 3 \\ 3x_1 + 2x_2 = z \ (Max) \end{cases}$$

Résolution P1

Résultat d'une optimisation linéaire

Le domaine admissible d'un PL peut être :

Cas 1 : vide: dans un tel cas, le problème est sans solution admissible (pas de solution optimale) : P5

Cas 2 : borné (et non vide): le problème possède toujours au moins une solution optimale : P1 et P2

Cas 3: non borné: dans ce cas, selon la fonction objectif

- le problème peut posséder des solutions optimales : P3
- il peut exister des solutions admissibles de valeur arbitrairement grande (ou petite). Dans un tel cas, le PL n'admet pas de solution optimale finie et est dit non borné P4

Séance 4

Forme canonique, standard

Méthode de simplexe

Forme canonique

Problème de maximisation

Max $\sum_{j=1}^{n} c_{j} x_{j}$ sujet à $\sum_{j=1}^{n} a_{ij} \quad x_{j} \leq b_{i} \quad i = 1, ..., m$ $x_{j} \geq 0 \quad j = 1, ..., n$

Problème de minimisation

Min
$$\sum_{j=1}^{n} c_j x_j$$
sujet à
$$\sum_{j=1}^{n} a_{ij} \quad x_j \quad (\geq) b_i \quad i = 1, ..., m$$

$$x_j (\geq) 0 \quad j = 1, ..., n$$

Remarque: 2 propriétés caractérisent la forme canonique:

- 1. $x_i \ge 0$; $1 \le j \le n$
- 2. Toutes les contraintes sont des inégalités et que le sens des inégalités est bien spécifique

Forme standard

Problème de maximisation

Problème de minimisation

Max
$$\sum_{j=1}^{n} c_{j}x_{j}$$
sujet à
$$\sum_{j=1}^{n} a_{ij}x_{j} = b_{i} \quad i = 1, ..., m$$

$$x_{j} \geq 0 \quad j = 1, ..., n$$

Min
$$\sum_{j=1}^{n} c_j x_j$$
sujet à
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad i = 1, ..., m$$

$$x_j \ge 0 \quad j = 1, ..., n$$

Remarque: 2 propriétés caractérisent la forme standard :

- 1. $x_i \ge 0$; $1 \le j \le n$
- 2. Toutes les contraintes sont des égalités (introduction des variables d'écarts)

Forme sous tableau

A partir de la forme standard, nous présentons le tableaux suivant:

Problème de maximisation

Max
$$\sum_{j=1}^{n} c_{j}x_{j}$$
sujet à
$$\sum_{j=1}^{n} a_{ij}x_{j} = b_{i} \quad i = 1, ..., m$$

$$x_{j} \geq 0 \quad j = 1, ..., n$$

Problème de minimisation

\mathbf{x}_{1}	X_2	•••	•••	$\mathbf{X}_{\mathbf{n}}$	b _i
a ₁₁	a ₁₂	••		a _{1n}	b ₁
		••	**	••	
a _{m1}	a_{m2}			a _{mn}	b _m
C ₁	C ₂			C _n	Z
					(Max/Min)

Astuces

- Min f(x) = max (-f(x))
- si x_i est quelconque, alors x_i = y₁ y₂ (y₁, y₂ ≥ 0) où
 - $y_1 = max(0, x_i)$
 - $y_2 = max(0, -x_i)$
- $A_i x = b_i \leftrightarrow (A_i x \le b_i)$ et $(A_i x \ge b_i)$
- A_i x ≤ b_i ↔ A_i x + y_i = b_i avec y_i ≥ 0
 y_i sont des variables d'écarts

Exercice

Soit le programme linéaire :

$$\begin{cases} x_1; x_3 \ge 0; \ x_2 \le 0 \\ x_1 + 2x_2 - 2x_3 = 1 \\ 2x_1 + x_2 - 5x_3 \le 2 \\ x_1 + 3x_2 - x_3 \ge 1 \\ x_1 + 2x_2 + 3x_3 = z \ (Max) \end{cases}$$

Mettre ce programme sous forme canonique, sous forme standard.

Introduction

- Développée initialement par George Dantzig en 1947
- Seule méthode exacte pour solutionner des problèmes linéaires de grande taille
- Méthode itérative algébrique où l'on circule séquentiellement sur les sommets à l'intérieur de la zone de solution jusqu'à l'obtention de la solution optimale

Propriétés du simplexe

- S'il existe une seule solution optimale au problème linéaire, elle est obligatoirement localisée sur un sommet de la zone de solution
- S'il existe de multiples solutions optimales, au moins deux d'entre elles doivent être localisées sur des sommets adjacents
- Le nombre de sommets de la zone de solution est fini
- Si la solution réalisable localisée à un sommet donné n'a pas de voisin adjacent dont la solution est supérieure, ce sommet est la solution optimale

Définitions

Systèmes d'équations équivalents

Systèmes qui possèdent le même ensemble de solutions

Variable de base

Variable qui a un coefficient unitaire positif dans une des équations du système et un coefficient nul partout ailleurs

Opérations pivot

Opération de Gauss-Jordan pour transformer un système d'équations équivalent dans lequel une variable devient de base

Solution de base

Système d'équations -où les variables hors base sont fixées à zérorésolu pour les variables de base

Hypothèses

- 1. Le programme linéaire de départ est proposé sous forme canonique
- 2. Tous les b_i (1≤i≤m) sont de valeurs positives

Forme canonique

Forme standard

Étape d'initialisation

- Déterminer une solution de base réalisable
- Porter les variables hors base à zéro
- Solutionner les variables de base

Exemple:

- x₃, x₄ et x₅ sont les variables de base
- x₁ et x₂ sont les variables hors base

On obtient donc:

$$x_1 = 0$$
 et $x_2 = 0$

$$(1) \Rightarrow x_3 = 4$$

$$(2) \Rightarrow X_4 = 12$$

$$(3) \Rightarrow x_5 = 18$$

L'évaluation de la fonction objectif nous donne :

$$z = 3*(0) + 5*(0) = 0$$

Tableau initiale

	\mathbf{x}_{1}	$\mathbf{X_2}$	X_3	X_4	X_5	b _i
X ₃	1	0	1	0	0	4
X ₄	0	2	0	1	0	12
X ₅	3	2	0	0	1	18
C _j	3	5	0	0	0	z - 0

Variable entrant dans la base

- Variable hors base entrant dans la base
- Celle qui sera choisie fera augmenter la valeur de la fonction objective le plus rapidement possible
- Variable ayant le plus grand coefficient positif (cas de maximisation) dans la fonction objective

Exemple:

```
Max Z = 3 x_1 + 5 x_2
x_2 devient variable de base
```

Variable entrant dans la base (sous forme de tableau)

		1				
	X ₁	X ₂	X_3	X_4	X_5	$\mathbf{b_i}$
X_3	1	0	1	0	0	4
X_4	0	2	0	1	0	12
X_5	3	2	0	0	1	18
Cj	3	(5)	0	0	0	z - 0

Variable sortant de la base

Variable qui limitera le plus rapidement la progression de la nouvelle variable de base

```
Exemple  \begin{array}{l} \text{si } x_2 \text{ entre dans la base} \\ \text{équation (2)} \\ 2 x_2 + x_4 = 12 \\ x_2 \max = 12/2 = 6 \\ \text{équation (3)} \\ 3 x_1 + 2 x_2 + x_5 = 18 \\ x_2 \max = 18/2 = 9 \\ \text{limite maximale de } x_2 \text{ égale 6 sinon } x_4 \text{ devient négatif} \end{array}
```

Variable sortant de la base

Opérations pivot

Système d'équations original (variables de base en gras)

$$z - 3 x_1 - 5 x_2 = 0$$
 (0)
 $x_1 + x_3 = 4$ (1)
 $2 x_2 + x_4 = 12$ (2)
 $3 x_1 + 2 x_2 + x_5 = 18$ (3)

Pour revenir à la forme canonique, il faut que les variables de base aient un coefficient unitaire dans une équation et nul dans les autres

Puisque la variable x_2 rentre et la variable x_2 sort, alors l'équation (2) sera multipliée par $\frac{1}{2}$ pour apparaître le coefficient unitaire positif

$$2 x_{2}/2$$
 + $x_{4}/2 = 12/2$ (2)
 x_{2} + $\frac{1}{2} x_{4} = 6$ (2)

Il reste à éliminer les termes x₂ des autres équations et de la fonction objective

Opérations pivot (suite)

Équation (0) = ancienne (0) + 5 équation (2)

$$z - 3 x_1 - 5 x_2 = 0$$
 (0)
 $5 x_2 + 5/2 x_4 = 30$ (2)

$$\Rightarrow z - 3 x_1 + 5/2 x_4 = 30 (0)$$

Equation (3) = ancienne (3) – 2 équation (2)

$$3 x_1 + 2 x_2 + x_5 = 18$$
 (3)
 $-2 x_2 - x_4 = -12$ (2)

$$\Rightarrow 3 x_1 - x_4 + x_5 = 6$$
 (3)

Opérations pivot (suite)

Nouveau système équivalent d'équations

$$z - 3 x_1 + 5/2 x_4 = 30 (0)$$

$$x_1 + x_3 = 4 (1)$$

$$x_2 + \frac{1}{2} x_4 = 6 (2)$$

$$3 x_1 - x_4 + x_5 = 6 (3)$$

	\mathbf{X}_{1}	$\mathbf{X_2}$	X_3	X_4	X_5	b_i	
X_3	1	0	1	0	0	4	
X_2	0	2	0	1	0	12	(2) / 2
X ₅	3	2	0	0	1	18	
Cj	3	5	0	0	0	z - 0	

	\mathbf{X}_{1}	X_2	X_3	X_4	X_5	b_i	
X_3	1	0	1	0	0	4	
X_2	0	1	0	1/2	0	6	
X ₅	3	2	0	0	1	18	(3)-2(2)
Cj	3	5	0	0	0	z - 0	(0)-5(2)

	\mathbf{X}_{1}	$\mathbf{X_2}$	X_3	X_4	X_5	b _i	
X_3	1	0	1	0	0	4	
X_2	0	1	0	1/2	0	6	
X_5	3	0	0	-1	1	6	(3)-2(2)
C _j	3	0	0	-5/2	0	z - 30	(0)-5(2)

Critère d'optimalité

Optimalité assurée lorsqu'il est impossible de faire augmenter (cas de maximisation) la valeur de z

Exemple:

```
x_1 peut faire augmenter z

\Rightarrow Variable entrante x_1

Variable sortante x_5

équation (1)

x_1 + x_3 = 4

x_1 \max = 4/1 = 4

équation (3)

3x_1 - x_4 + x_5 = 6

x_1 \max = 6/2 = 2
```

	x ₁	$\mathbf{X_2}$	$\mathbf{X_3}$	X_4	X_5	b_{i}	
X_3	1	0	1	0	0	4	4/1 = 4
X_2	0	1	0	1/2	0	6	
X ₅	3	0	0	-1	1	6	6/3 = 2
C _j	(3)	0	0	-5/2	0	z - 30	

		\downarrow						
		\mathbf{X}_{1}	$\mathbf{X_2}$	X_3	X_4	X_5	$\mathbf{b_i}$	
	X_3	1	0	1	0	0	4	(1) - (3)
	X_2	0	1	0	1/2	0	6	
\leftarrow	X ₅	3	0	0	-1	1	6	(3)/3=(3)'
	C _j	3	0	0	-5/2	0	z - 30	(0) - 3(3)'

Solution optimale

Système équivalent d'équations

z
$$+ 3/2 x_4 + x_5 = 36$$
 (0)
 $x_3 + 1/3 x_4 - 1/3 x_5 = 2$ (1)
 $x_2 + \frac{1}{2} x_4 = 6$ (2)
 $x_1 - \frac{1}{3} x_4 + \frac{1}{3} x_5 = 2$ (3)

Variables hors base

$$x_4 = 0, x_5 = 0$$

Variables de base

$$X_1 = 2$$
, $X_2 = 6$, $X_3 = 2$

Fonction objective

$$z = 36$$

Solution compète

			\mathbf{x}_{1}	$\mathbf{X_2}$	X_3	X_4	X	5	b _i	
t	X ₃		1	0	1	0	0		4	
ı	X ₄		0	2	0	1	0)	12	
	X ₅		3	2	0	0	1		18	
	C _j		3	5	0	0	0)	z -	0
			\mathbf{x}_{1}	$\mathbf{X_2}$	X_3	X_4	X_5		b _i	
	X ₃		1	0	1	0	0		4	
	X ₂	П	0	1	0	1/2	0		6	
	X ₅		3	0	0	-1	1	6		
	C _j		3	0	0	-5/2	0	Z	- 30	
			\mathbf{x}_{1}	X_2	X_3	X_4	X_5		b _i	
	X ₃		0	0	1	1/3	-1/3		2	
	X ₂		0	1	0	1/2	0		6	
	X ₁		1	0	0	-1/3	1/3		2	
	C _j		0	0	0	-3/2	-1	Z	- 36	

Interprétation graphique

Séance 5

Unicité de solution

Phénomène de dégénrescence

Ex1. Méthode de simplexe

On vous donne le modèle de programmation suivant :

```
Max z = x_1 + x_2

s.c.:

x_1 + 2x_2 \le 48

4x_1 + 3x_2 \le 120

x_1, x_2 \ge 0
```

- Présenter le programme linéaire sous la forme standard
- Résoudre le problème avec la méthode de simplexe en indiquant à chaque itération la base, la solution de base et la valeur de la fonction objectif
- Discuter l'unicité de la solution

Ex2. Méthode de simplexe

On considère le P.L. suivant :

$$x_1, x_2 \ge 0$$

 $2x_1 + x_2 \le 2$
 $3x_1 + x_2 \le 3$
 $x_1 + x_2 = z(Max)$

1. Donner sa representation graphique dans l'espace à 2 dimensions (t1, t2 sont supposées être des variables d'écart) et vérifier que (x2 = 2, t2 = 1) est sa solution optimale.

2- Retrouver ce résultat en utilisant l'algorithme du simplexe en passant dans l'ordre

suivant par les bases $\{t_1, t_2\}$; $\{t_1, x_1\}$; $\{x_2, x_1\}$; $\{x_2, t_2\}$.

3- Que remarque -t- on pour les bases(t1, x1) et (x2, x1).

Ex3. Méthode de simplexe

```
Soit le problème linéaire x_1, x_2 \ge 0

5x_1 +7x_2 \le 35

(P) -x_1 +2x_2 \le 2

3x_1 -6x_2 = z(Min)

1- Résoudre en utilisant le simplexe le problème (P).

2- la solution optimale est-elle unique? Justifier votre réponse.
```

Séance 6

Analyse post-optimale

Analyse post-optimale

Décrire l'impact sur la solution optimale de changements apportés à l'un ou l'autre des paramètres du modèle :

- Le modèle modifié doit être une variante obtenue du modèle original en y changeant un ou plusieurs c_i, ou encore un ou plusieurs b_i.
- Le tableau final du modèle original doit permettre de calculer, sans pivotage « supplémentaire », une solution optimale du modèle modifié.

La modification d'un coefficient ci

Exemple:

MAXIMISER
$$z = (3+\Delta)x_1 + 5x_2$$

SUJET À

$$x_1 \le 4$$

 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$
 $x_1 \ge 0$; $x_2 \ge 0$

Pour garder la solution, la pente doit être entre 0 et -3/2

Donc $-3/2 \le -(3+\Delta)/5 \le 0$ Par la suite $-3 \le \Delta \le 9/2$

La modification d'un coefficient bi

Exemple:

MAXIMISER
$$z = 3x_1 + 5x_2$$

SUJET À
 $x_1 \leq 4$
 $2x_2 \leq 12$
 $3x_1 + 2x_2 \leq 18 + \Delta$
 $x_1 \geq 0$; $x_2 \geq 0$

