

Introduction to Formal Methods

Lecture 6 Hoare Logic Hossein Hojjat & Fatemeh Ghassemi

October 9, 2018

Loop-Free Programs as Relations: Summary

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	R(c)	$\rho(c)$
(x=t)	$x' = t \land \bigwedge_{v \in V \setminus \{x\}} v' = v$	
$c_1; c_2$	$\exists \vec{z}. R(c_1)[\vec{x'} := \vec{z}] \land R(c_2)[\vec{x} := \vec{z}]$	$\rho(c_1) \circ \rho(c_2)$
$c_1 \ [] \ c_2$	$R(c_1) \vee R(c_2)$	$\rho(c_1) \cup \rho(c_2)$
$\operatorname{assume}(F)$	$F \wedge \bigwedge_{v \in V} v' = v$	$\Delta_{S(F)}$

1

Putting Conditions on Sets Makes them Smaller

- Let P_1 and P_2 be formulas ("conditions") whose free variables are among \vec{x} (Those variables may denote program state)
- ullet When we say "condition P_1 is stronger than condition P_2 " it simply means

$$\forall \vec{x}. (P_1 \rightarrow P_2)$$

- if we know P_1 , we immediately get (conclude) P_2
- ullet if we know P_2 , we need not be able to conclude P_1
- ullet Stronger condition = smaller set: if P_1 is stronger than P_2 then

$$\{\vec{x} \mid P_1\} \subseteq \{\vec{x} \mid P_2\}$$

- Strongest possible condition: "false" \equiv smallest set: \emptyset
- Weakest condition: "true" ≡ biggest set: set of all tuples

About Hoare Logic

- We have seen how to translate programs into relations
- We will use these relations in a proof system called Hoare logic
- Hoare logic is a way of inserting annotations into code to make proofs about (imperative) program behavior simpler

```
// \{0 <= v\}
i = y;
// \{0 \le y \& i = y\}
r = 0:
// \{0 < = y \& i = y \& r = 0\}
while // \{r = (y - i) * x & 0 \le i\}
  (i > 0) {
     // \{r = (y - i) * x & 0 < i\}
     r = r + x;
     // \{r = (y - i + 1) * x & 0 < i\}
     i = i - 1;
     // \{r = (y - i) * x & 0 <= i\}
}
// \{ r = x * y \}
```

Example proof:

Hoare Triple

$$P, Q \subseteq S$$
 $r \subseteq S \times S$

Hoare Triple:

$$\{P\}\ r\ \{Q\} \Longleftrightarrow \forall s,s' \in S. \big(s \in P \land (s,s') \in r \rightarrow s' \in Q\big)$$

 $\{P\}$ does not denote a singleton set containing P but is just a notation for an "assertion" around a command. Likewise for $\{Q\}$

Sir Tony Hoare

Sir Charles Antony Richard Hoare giving a conference at EPFL on 20 June 2011 Born Charles Antony Richard

Strongest postcondition:

$$\mathit{sp}(P,r) = \{s' \mid \exists s.s \in P \land (s,s') \in r\}$$

Weakest precondition:

$$\mathit{wp}(r,Q) = \{s \mid \forall s'.(s,s') \in r \rightarrow s' \in Q\}$$

Exercise

Which Hoare triples are valid?

- 1. $\{j = a\}$ j := j + 1 $\{a = j + 1\}$
- 2. $\{i = j\}$ i := j + i $\{i > j\}$
- 3. $\{j = a + b\}$ i := b; $j := a \{j = 2 * a\}$
- 4. $\{i > j\}$ j := i+1; i := j+1 $\{i > j\}$
- 5. $\{i!=j\}$ if i>j then m:=i-j else $m:=j-i\{m>0\}$
- 6. $\{i = 3 * j\}$ if i > j then m := i j else $m := j i \{m 2 * j = 0\}$

Postconditions and Their Strength

What is the relationship between these postconditions?

$$\{x = 5\}$$
 $x := x + 2$ $\{x > 0\}$
 $\{x = 5\}$ $x := x + 2$ $\{x = 7\}$

- weakest conditions (predicates) correspond to largest sets
- strongest conditions (predicates) correspond to smallest sets

that satisfy a given property

(Graphically, a stronger condition $x>0 \land y>0$ denotes one quadrant in plane,

whereas a weaker condition x > 0 denotes the entire half-plane.)

Strongest Postcondition

Definition: For $P \subseteq S$, $r \subseteq S \times S$,

$$\mathit{sp}(P,r) = \{s' \mid \exists s.s \in P \land (s.s') \in r\}$$

This is simply the relation image of a set

Weakest Precondition

Definition: For $P \subseteq S$, $r \subseteq S \times S$,

$$\mathit{wp}(r,Q) = \{s \mid \forall s'.(s.s') \in r \rightarrow s' \in Q\}$$

Note that this is in general not the same as ${\it sp}(Q,r^{-1})$ when the relation is non-deterministic or partial

Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

- $\{P\}\ r\{Q\}$
- $P \subseteq wp(r,Q)$
- $\bullet \ \mathit{sp}(P,r) \subseteq Q$

Three Forms of Hoare Triple

Lemma: the following three conditions are equivalent:

- $\{P\}\ r\{Q\}$
- $P \subseteq wp(r,Q)$
- $\operatorname{sp}(P,r) \subseteq Q$

Proof. The three conditions expand into the following three formulas

- $\forall s, s'. ((s \in P \land (s, s') \in r) \rightarrow s' \in Q)$
- $\forall s. (s \in P \to (\forall s'.(s, s') \in r \to s' \in Q))$
- $\bullet \ \forall s'. \big((\exists s.s \in P \land (s,s') \in P) \rightarrow s' \in Q \big)$

which are easy to show equivalent using basic first-order logic properties

Lemma: Characterization of sp

 $\mathit{sp}(P,r)$ is the the smallest set Q such that $\{P\}$ r $\{Q\},$ that is:

- $\{P\}$ r $\{sp(P,r)\}$
- $\bullet \ \forall Q \subseteq S.\{P\} \ r \ \{Q\} \rightarrow \mathit{sp}(P,r) \subseteq Q$

$$\{P\} \ r \ \{Q\} \Leftrightarrow \forall s, s' \in S. (s \in P \land (s, s') \in r \rightarrow s' \in Q)$$

$$sp(P, r) = \{s' \mid \exists s. s \in P \land (s, s') \in r\}$$

Proof of Lemma: Characterization of sp

Apply Three Forms of Hoare triple. The two conditions then reduce to:

- $\operatorname{sp}(P,r) \subseteq \operatorname{sp}(P,r)$
- $\bullet \ \forall P \subseteq S.\mathit{sp}(P,r) \subseteq Q \to \mathit{sp}(P,r) \subseteq Q$

Lemma: Characterization of wp

 $\mathit{wp}(r,Q)$ is the largest set P such that $\{P\}$ r $\{Q\}$, that is:

- $\bullet \ \{ \mathit{wp}(r,Q) \} \ r \ \{Q\}$
- $\bullet \ \forall P \subseteq S.\{P\} \ r \ \{Q\} \to P \subseteq \mathit{Wp}(r,Q)$

$$\{P\} \ r \ \{Q\} \Leftrightarrow \forall s, s' \in S. (s \in P \land (s, s') \in r \rightarrow s' \in Q)$$

$$wp(r, Q) = \{s \mid \forall s'. (s, s') \in r \rightarrow s' \in Q\}$$

Exercise: Postcondition of inverse versus wp

Lemma:

$$S \backslash wp(r,Q) = sp(S \backslash Q, r^{-1})$$

In other words, when instead of good states we look at the completement set of "error states", then *wp* corresponds to doing *sp* backwards.

Note that $r^{-1} = \{(y,x) \mid (x,y) \in r\}$ and is always defined

More Laws on Preconditions and Postconditions

Disjunctivity of sp

$$\begin{aligned} & \operatorname{sp}(P_1 \cup P_2, r) = \operatorname{sp}(P_1, r) \cup \operatorname{sp}(P_2, r) \\ & \operatorname{sp}(P, r_1 \cup r_2) = \operatorname{sp}(P, r_1) \cup \operatorname{sp}(P, r_2) \end{aligned}$$

Conjunctivity of wp

$$\begin{aligned} &\textit{wp}(r,Q_1 \cap Q_2) = \textit{wp}(r,Q_1) \cap \textit{wp}(r,Q_2) \\ &\textit{wp}(r_1 \cup r_2,Q) = \textit{wp}(r_1,Q) \cap \textit{wp}(r_2,Q) \end{aligned}$$

Pointwise wp

$$wp(r,Q) = \{s \mid s \in S \land sp(\{s\},r) \subseteq Q\}$$

Pointwise sp

$$\mathit{sp}(P,r) = \bigcup_{s \in P} \mathit{sp}(\{s\},r)$$