第四讲 室内定位技术

--原理及其方法

本讲主要内容

- ●背景
- Geometry-based Method
 基于几何的定位方法
- Fingerprint-based Method
 基于指纹的定位方法
- Image-based Method 基于图像的定位方法

背景

- 室内定位即:
 - 在室内环境中实现位置 定位
- 未来是移动互联的时代
- 室内定位是移动服务最 后一米的解决方案

为什么需要室内定位?

- 应用场景广泛
 - 公共安全及应急响应
 - 定位导览
 - 社交需求
 - 仓库物流管理

• • •

- 传统的室外定位方法不适合室内场景
 - GPS信号的穿透能力很差
 - 室内定位需要的精度更高(1m vs 10m)
- 室内定位是物联网的基础服务

设计室内定位系统时需要考虑的因素

- •精度
 - 不同场景需要的精度不同 1cm? 1dm? 1m?
- 成本
 - 成本越高,越难推广和普及
- 功耗
 - 移动设备需求
- 实时性
- 稳定性
- 隐私

主要难点

(a) Signal Reflection

- 信号反射
- 多径效应

(b) Signal Blocking

- 信号遮挡
- 非视距传输(NLOS)

(c) Environment Dynamic

- 动态环境
- 位置变化

定位方法分类

Geometry-based Method 基于几何的定位方法

Fingerprint-based Method基于指纹的定位方法

Image-based Method基于图像的定位方法

Geometry-based Method 基于几何的定位方法

• RSS (Received-Signal-Strength) 衰减模型:

$$RSS = P_t - K - 10\alpha \log_{10} d$$

 P_t :发射功率

K:取决于环境和频率的常数

α:路径损耗指数

d:传输距离

• 在定位目标处采集RSS可以推 算和AP(Access Point)间的距离

• 已知接入点A、B、C的坐标:

$$(x_1, y_1), (x_2, y_2), (x_3, y_3)$$

待定位目标P到接入点的距离:

$$R_1, R_2, R_3$$

• 求解:

$$(x_p, y_p)$$

通过RSS衰减模型获得

• 损失函数:

min
$$F(x,y) = \sum_{i=1}^{N} \alpha_i^2 f_i^2(x,y)$$

其中:

$$f_i(x, y) = R_i - \sqrt{(x_i - x)^2 + (y_i - y)^2}$$

 α_i :第i个AP的可靠性参数

- 缺点:
 - 衰减参数难以确定
 - 衰减参数敏感,易受环境影响
 - RSS稳定性较差

基于信号衰减模型的定位精度较差,很少直接使用,一般和其它方法结合使用

基于到达时间

• ToA (Time-of-Arrival)原理与基于信号衰减的定位原理相同

• 待定位目标与各AP之间的距离通过 到达时间与传播速度的乘积获得

$$R_{i} = v \cdot t_{i}$$

v:一般取光速或声速

通过信号传播时间获得

基于到达时间

• 损失函数:

min
$$F(x,y) = \sum_{i=1}^{N} \alpha_i^2 f_i^2(x,y)$$

$$f_i(x,y) = v \cdot t_i - \sqrt{(x_i - x)^2 + (y_i - y)^2}$$

或:

min
$$F(x, y, t) = \sum_{i=1}^{N} \alpha_i^2 f_i^2(x, y, t)$$

$$f_i(x, y, t) = v \cdot (t_i - t) - \sqrt{(x_i - x)^2 + (y_i - y)^2}$$

基于到达时间

• 精度一般高于基于信号衰减模型的定位方式

- 缺点:
 - 需要极其精确的时间同步
 - 受NLOS影响严重
 - 穿透障碍物时电磁波速度会明显减慢,造成时间误差
 - 玻璃和混凝土大概会减慢到1/2
 - 钢筋混凝土大概会减慢到1/3

基于到达角度

• AoA (Angle-of-Arrival)通过与各AP之间的角度计算目标位置

• 已知:

$$(x_1, y_1), (x_2, y_2)$$
$$\theta_1, \theta_2$$

• 求解:

$$(x_p, y_p)$$

基于到达角度

- 优点
 - 只需两个AP即可进行定位
 - 不需要时间同步

- 缺点
 - 硬件要求较高,需要定向天线或阵列天线
 - 受信号反射影响较大
 - 定位目标距离AP越远,定位误差越大

基于到达时间差

• TDoA(Time-Difference-of-Arrival)基于时间差进行定位,不需要严格的时间同步

• 已知:

$$(x_1, y_1), (x_2, y_2), (x_3, y_3)$$

 $PB - PA = R_{21}$
 $PC - PA = R_{31}$

• 求解:

$$(x_p, y_p)$$

基于到达时间差

求解算法主要分为两种:

- 迭代法:Taylor-series method
 - 依赖初始值进行迭代
 - 如果初始值接近实际位置,定位精度较高
 - 无法保证收敛或收敛到全局最佳
 - 计算复杂度较高
- 非迭代法:Chan and Ho Algorithm
 - 无需初始值
 - 计算复杂度低

$$R_i^2 = (x_i - x)^2 + (y_i - y)^2 = K_i - 2x_i x - 2y_i y + x^2 + y^2$$

其中: $K_i = x_i^2 + y_i^2$

$$R_{i1} + R_1 = R_i$$

$$R_{i1}^2 + 2R_{i1}R_1 + R_1^2 = K_i - 2x_ix - 2y_iy + x^2 + y^2$$

$$R_{i1}^{2} + 2R_{i1}R_{1} = -2x_{i1}x - 2y_{i1}y + K_{i} - K_{1}$$

上式中含有三个未知数 R_1, x, y

设
$$\mathbf{z}_a = (\mathbf{z}_p^T, R_1)^T, \mathbf{z}_p = (x, y)^T$$

则误差向量可以表示为:

$$\psi = h - G_a z_a$$

其中:
$$\boldsymbol{h} = \frac{1}{2} \begin{bmatrix} R_{21}^2 - K_2 + K_1 \\ R_{31}^2 - K_3 + K_1 \\ \dots \\ R_{N1}^2 - K_N + K_1 \end{bmatrix}$$
, $G_a = -\begin{bmatrix} x_{21} & y_{21} & r_{21} \\ x_{31} & y_{31} & r_{31} \\ \dots & \dots \\ x_{N1} & y_{N1} & r_{N1} \end{bmatrix}$

ψ 还可以表示为:

$$\boldsymbol{\psi} = cB\boldsymbol{n} + 0.5c^2\boldsymbol{n} \odot \boldsymbol{n}$$

其中: $B = diag\{R_2, R_3, \dots, R_N\}$

n是TDoA的测量误差,其均值为0,协方差矩阵为Q

则 ψ 的协方差矩阵可以表示为:

$$\Psi = E(\boldsymbol{\psi}\boldsymbol{\psi}^T) = c^2 B Q B$$

假设 x, y, R_1 之间不相关,则运用最小二乘法得:

$$\mathbf{z}_a = \arg\min\{(\mathbf{h} - G_a\mathbf{z}_a)^T \Psi^{-1}(\mathbf{h} - G_a\mathbf{z}_a)\}$$

$$= \left(G_a^T \Psi^{-1} G_a\right)^{-1} G_a^T \Psi^{-1} \boldsymbol{h} \tag{1}$$

由于计算 Ψ 时需要B,而B是未知的,我们可以假设定位目标距离AP很远,此时 $B \approx RI$,其中R是定值,I是单位矩阵,可得:

$$\boldsymbol{z}_{a} \approx \left(G_{a}^{T} Q^{-1} G_{a}\right)^{-1} G_{a}^{T} Q^{-1} \boldsymbol{h} \tag{2}$$

由(2)再次计算(1)可以得到更精确的解

前面的计算基于 x, y, R_1 之间不相关假设,但实际上:

$$R_1^2 = (x_1 - x)^2 + (y_1 - y)^2$$

利用上式可以再次使用最小二乘法,进一步优化 z_a

该算法的思想在于通过引入第三个变量,将非线性方程组转化为 线性方程组

目标追踪

- 大部分应用场景中需要对目标进行追踪
 - 定位+滤波=轨迹
- 优化思路:
 - 方向、速度、加速度、时间差
- 常用滤波算法:
 - 卡尔曼滤波(Kalman Filter)
 - 扩展卡尔曼滤波(Extended Kalman Filter)
 - 粒子滤波(Particle Filter)

如何提升定位精度

- 硬件优化
 - 效果提升最为明显
- 数据筛选
 - 数据质量差,后续难以优化
- 数据扩充
 - 定位结果越多,滤波选择越多
- 多算法融合
- 充分利用历史数据

Fingerprint-based Method 基于指纹的定位方法

定位原理

• Fingerprint: any unique characteristic that differentiates locations

from one another

• 指纹 = 位置的特征

- 定位流程
 - 1. 离线训练阶段: 采集指纹数据,建立数据库
 - 2. 在线定位阶段: 指纹匹配,确定位置

示例

TABLE 2.1 Example Fingerprint Database

Coordinates of Grid Point	$\rho_1 \text{ in dBm}$	ρ_2 in dBm	
(0,0)	-65	-50	
(0,1)	-64	-45	
(0,2)	- 60	-51	

fingerprint location
$$(-65, -49) \longrightarrow (0, 0)$$

数学模型

• Database:

$$\{(r_{11}, r_{12}, \dots, r_{1n}), (x_1, y_1)\}$$

$$\dots$$

$$\{(r_{m1}, r_{m2}, \dots, r_{1n}), (x_m, y_m)\}$$

其中 r_{ij} 表示在位置点 (x_i, y_i) 采集到的第j个AP的指纹信息 n表示AP的数量,m表示数据量

• Input:

$$(r_1, r_2, \ldots, r_n)$$

• Output:

数学模型

• Target:

$$(r_1, r_2, \dots, r_n) \longrightarrow f \longrightarrow (x, y)$$

- 本质上是一个分类问题 , f 相当于分类器
 - 最近邻
 - KNN
 - SVM
 - 贝叶斯推断
 - 神经网络

• • •

确定性算法

概率性算法

- 基本思想:实际的指纹是一个分布
- 通过采集指纹样本来估计联合概率分布(假设来自各个AP的指纹相互独立,用边缘分布的乘积作为联合分布)
- •基于贝叶斯公式:

$$P(GridPoint|\mathbf{r}) = \frac{P(\mathbf{r}|GridPoint) \cdot P(GridPoint)}{P(\mathbf{r})}$$

如何获得更精确的位置

- 更稳定的指纹(物理层面)
 - RSS to CSI
- 更有效的指纹(数据预处理)
 - 去噪
 - 加入标准差等额外信息
- 更精炼的指纹(特征工程)
 - Feature Extraction
 - Feature Selection
- 更强的分类器

RSS vs. CSI

Table I. CSI Versus RSS

	Measurement			Temporal	Frequency
Metric	Band	Layering	Granularity	Stability	Diversity
CSI	Base Band	PHY	Fine grained (per symbol)	High	Yes
RSS	RF Band	MAC	Coarse (per packet)	Low	No

- •实际场景中, RSS稳定性较差
 - 多径效应、衰减、遮挡、折射等
 - 典型实验环境下,静止接收机在1min内接收到的RSS有5dB的波动
- CSI (Channel-State-Information , 信道状态信息)
 - 基于物理层信道状态的细粒度信息(相位振幅等)
 - 稳定性高于RSS

一种深度学习方法

• 非监督特征提取

SAE (堆叠自编码器)

一种深度学习方法

• 训练分类器

基于指纹的定位方法总结

- 优点
 - 硬件门槛低,成本较低
 - AP部署广泛(Wi-Fi),定位设备持有量大(手机)
 - 模型简单,精度可以接受
- 缺点
 - 构建指纹数据库费时费力
 - 对室内环境很敏感
 - 室内环境的多变性造成数据库的维护和更新很困难

Image-based Method 基于图像的定位方法

定位原理

- 主要基于摄像头拍摄的图片进行定位
- 可以分为两大类:

- 定位目标携带摄像头,场地不需要部署

场地内事先部署多个摄像头,定位目标不需要携带定位设备

一般步骤

对极几何

• 对极几何:拍摄同一物体的两 张图片的几何约束关系,5点共 面约束

• C和C'从不同角度对P点进行拍摄,利用对极几何可以求出两者之间的夹角

• 如果有两张以上的匹配图片, 即可对目标进行定位(AoA)

直接参照图像定位

• 将拍摄的图像直接和数据库进行匹配

Figure 4.2 Example of a view sequence

Figure 4.3 Current view to be compared with the view sequence

参照编码标记定位

• 用编码标记作为参考点

• 优点:

- 人工特征取代自然特征,更强的鲁棒性和更快的检测速度
- 引入了尺度信息
- 不同定位目标使用不同的标记,则具有目标区分和识别性

参照投影定位

• 用投影作为参照点

• 优点:

- 布置简单方便
- 如果使用红外光,不会对 环境产生影响
- 又大又亮,便于标记检测 和特征提取

基于图像的定位方法总结

- 优点
 - 对环境的细微变化鲁棒性较强
 - 设备成本低
 - 应用场景广泛
- 缺点
 - 易受光线条件影响
 - 需要视距传输
 - 较大的计算量

SLAM简介

我在哪儿?

这是什么地方?

怎么离开这儿?

- SLAM (Simultaneous Localization and Mapping) ,即同时定位与建图 ,它包含三个部分:
 - 定位
 - 建图
 - 路径规划
- 应用领域:
 - ■机器人
 - 自动驾驶
 - 无人机
 - VR/AR

根据传感器类型,SLAM可以分为:

- Lidar SLAM (激光雷达SLAM)
 - 单线、多线

- Visual SLAM (视觉SLAM)
 - 単目、双目、RGBD

设计SLAM算法需要考虑的4个问题:

- 1. 地图表示问题
 - 稀疏?密集?
- 2. 信息感知问题
 - 如何全面感知环境
- 3. 数据关联问题
 - 关联不同时刻、不同传感器的数据
- 4. 定位与构图问题
 - 位姿估计和建模

• 基本框架

- 视觉里程计
 - 估计两个时刻机器人的相对位置
 - 结合当前特征点位置、运动前特征点位置以及机器人的运动距离对机器 人当前位置和当前环境信息进行估计

- ●后端
 - 视觉里程计存在累积误差
 - 后端的目的在于减小累积误差
 - 滤波器,如EKF
 - 图优化

- 回环检测
 - 机器人识别曾到达场景的能力
 - 词袋模型(Bag-of-Words, BoW):把图像中的视觉特征(SIFT、SURF等) 聚类,建立词典,进而寻找每个图中含有哪些"单词"
 - 模式识别方法

• Google在Google I/O 2017上提出了新一代视觉定位系统VPS (Visual Positioning Service),是VSLAM在手机端的方案

总结

室内定位方法总结

- 基于几何的定位方法
 - 信号衰减模型、ToA、AoA、TDoA
- 基于指纹的定位方法
 - 确定性方法、概率性方法
- 基于图像的定位方法
 - 直接图像、编码标记、光线投影、视觉SLAM

定位方法比较

面临的挑战

- 缺乏统一的基础性设施和服务(如GPS卫星),使用场景单一
- 室内环境复杂多变
- 成本、精度和易用性之间的博弈
- 理论和实际之间有巨大鸿沟
 - Paper很多,想法层出不穷,但通常基于较理想的实验环境、或者有严苛设备要求,在实际场景下难以复现,更别提投入使用

未来趋势

- 基于智能手机的定位是重点
- Wi-Fi和蓝牙定位是主流
- 多源数据融合是趋势
- 室内地图辅助和环境感知
- 协作定位

第四讲结束