Работа 1.2

Исследование эффекта комптона

Цель работы: Исследовать энергетический спектр у-квантов с помощью сцинтилляционного спектрометра, рассеянных на графите. Определить энергию рассеянных у-квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

Теоретическая часть.

Изменение длины волы рассеянного излучения:

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_k (1 - \cos \theta),$$

где λ_1,λ_2 - длины волн γ - кванта.

Тоже самое через энергию γ - квантов:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta$$

Здесь $\varepsilon_0=E_0/(mc^2)$ - энергия падающих γ - квантов, $\varepsilon(\theta)$ - испытывающих комптоновское рассеяние.

Запишем через каналы:

$$\frac{1}{N(\theta)} - \frac{1}{N_0} = A(1 - \cos \theta).$$

Возвращаясь к энергии и подставляя $\theta = 90^{\circ}$ получаем:

$$mc^2(\frac{1}{E(90)} - \frac{1}{E(0)}) = 1$$

или

$$mc^2 = E_{\gamma} \frac{N(90)}{N(0) - N(90)},$$

где $E(0)=E_{\gamma}-$ -энергия\gamma\$ - лучей, испускаемых источником.

Рис. 3. Блок-схема установки по изучению рассеяния у-квантов

In []:

```
import numpy as np
import scipy
import matplotlib.pyplot as plt
import pandas as pd
from scipy.optimize import minimize
```

In [90]:

```
def linear(coeffs, x):
    return coeffs[0] * x + coeffs[1]
def loss(coeffs):
    return sum((linear(coeffs, x_i) - y_i)**2 for x_i, y_i in zip(x, y))
```

1) Запишем результаты измерений в таблицу. Посчитаем сразу погрешность полученных величин.

In [164]:

```
pd.options.display.float_format = '{:,.5f}'.format table = pd.read_excel("5.1.2.xlsx", dtype={'Theta':str, 'Channel':float}) kwargs = {"1/N" : lambda x: 1/x.N, "1-cos\theta" : lambda x: 1 - np.cos(np.radians(x.\theta)) table = table.assign(**kwargs) kwargs = {"\sigma(1-cos\theta)" : lambda x: np.sin(np.radians(x.\theta)*np.pi/180), '\sigma(1/N)' : lambda x: 5/(table[['N']]**2)} table = table.assign(**kwargs) table
```

Out[164]:

	θ	N	1/N	1-cosθ	σ(1-cosθ)	σ(1/N)
0	0	862	0.00116	0.00000	0.00000	0.00001
1	10	881	0.00114	0.01519	0.00305	0.00001
2	20	755	0.00132	0.06031	0.00609	0.00001
3	30	710	0.00141	0.13397	0.00914	0.00001
4	40	652	0.00153	0.23396	0.01218	0.00001
5	50	575	0.00174	0.35721	0.01523	0.00002
6	60	508	0.00197	0.50000	0.01828	0.00002
7	70	439	0.00228	0.65798	0.02132	0.00003
8	80	398	0.00251	0.82635	0.02437	0.00003
9	90	362	0.00276	1.00000	0.02741	0.00004
10	100	326	0.00307	1.17365	0.03046	0.00005
11	110	302	0.00331	1.34202	0.03350	0.00005
12	120	278	0.00360	1.50000	0.03655	0.00006

2) Построим по таблице график зависимости $\frac{1}{N}$ от $(1-\cos\theta)$. Ожидаем увидеть зависимость y=a+bx.

In [178]:

```
%matplotlib inline
x = table['1-cos\theta']
y = table['1/N']
coefs = minimize(loss, [1,1]).x
#plt.plot(x, y, 'x')
plt.figure(figsize=(8,8))
plt.subplot()
plt.errorbar(table['1-\cos\theta'], table['1/N'], xerr=table['\sigma(1-\cos\theta)'],
                                   yerr=table['\sigma(1/N)'],
                                           fmt='x', color='w', ecolor='red', barsa
bove=True)
plt.plot(x, [linear(res.x, x_i) for x_i in x], 'b-')
plt.xlabel('1-\cos(\theta)')
plt.ylabel('1/N')
plt.grid()
plt.show()
print("b = ", coefs[0])
print("a = ", coefs[1])
```



```
a = 0.0016116609319762817

b = 0.001171244122506826
```

3) С помощью графика и теоретической формулы определим энергию покоя частицы. Известно, что $E_{\gamma}=661.6\kappa$ эВ.

In [191]:

```
N_0 = 1 / coefs[1]
N_90 = 1 / (coefs[0] + coefs[1])
E = 661.6 * N_90 / (N_0 - N_90)
print("N(0) = ", N_0)
print("N(90) = ", N_90)
print("E = ", E)
```

```
N(0) = 853.7929717501503

N(90) = 359.33672921720944

E = 480.80529600001483
```

Вывод: мы исследовали энергетический спектр γ - квантов, рассеянных на графите и определлили энергию рассеяния γ -квантов в зависимости от угла рассеяния, а так же энергию покоя частиц, на которых происходит комптоновское рассеяние: 480 ± 18 КэВ.