# Assignment 1 - Language Modeling Report (15CS10053)

- Execute the script as:
  - python Assignment\_1\_15CS10053 <path to input test file>
- For the output scores please refer 'output.txt'

### Task 1

- Created the n-gram language models (n=1,2,3) with padding for n>1.
- Verification of Zipf's Law:

Zipf's law states that the frequency of a word (f) is inversely related to its position in the list or rank (r).

$$f \propto 1/r$$

To verify it, we plot logarithm of word frequency (f) versus logarithm of word rank (r) which should be a straight line with negative slope.

$$log(f) + log(r) = Constant$$







- For the trigram model, many test-sequences give 0 probability since the absence of even one trigram in training model dictionary assigns the probability of the complete test-sequence as zero. Such trigrams give negative INF(infinity) as log-likelihood and positive INF as perplexity score
- The top n-grams consist of stopwords like 'the' (56448), 'of'(31276), 'and'(22092), 'to'(20341), 'a'(17780), etc. which is expected.

#### Task 2

- Applying Laplacian smoothing assigns a non-zero probability to every test-sequence
- We add alpha ∈ (0,1] to numerator and alpha\*|N| to the denominator. |N| is the number of unique unigrams (vocabulary size)
- As weight k increases, log-likelihood decreases. Given below are the log-likelihood values for the test sentence "he lived a good life"

| Language<br>model | Log-likelihood<br>(k=0) | Log-likelihood<br>(k=0.0001) | log-likelihood(<br>k=0.001) | log-likelihood(<br>k=0.01) | log-likelihood(<br>k=0.1) | log-likelihood(<br>k=1) |
|-------------------|-------------------------|------------------------------|-----------------------------|----------------------------|---------------------------|-------------------------|
| unigram           | -32.6957                | -32.6957                     | -32.6960                    | -32.6981                   | -32.7196                  | -32.9292                |
| bigram            | -26.7533                | -26.8354                     | -27.4257                    | -29.9723                   | -35.8388                  | -44.3439                |
| trigram           | -inf                    | -47.8799                     | -47.1901                    | -49.4380                   | -54.5686                  | -60.8976                |

#### Task 3

- Assign the probability mass of n-grams that occurs r+1 in the training corpus to those n-grams
  that occurs occurs r times. This is done for all r except r<sub>max</sub>. The probability distribution of the
  most frequent bigrams and trigrams remain the same as before.
- It is not possible to apply Good Turing smoothing to unigram language model because all
  possible uni-grams are seen at-least once. We have no way to predict new unseen words
  which might come up in test sequences. Unigrams which occur 0 times is 0. Hence, the
  effective count of unigrams not seen in corpus is not defined (0\* = 1\*(unigrams which occur
  once)/0).

Effect on GT smoothing on test sentence: "he lived a good life"

| Language model | Log-likelihood (w/o smoothing) | Log-likelihood (with GT<br>smoothing) |  |
|----------------|--------------------------------|---------------------------------------|--|
| bigram         | -26.7533                       | -66.2061                              |  |
| trigram        | -inf                           | -142.4721                             |  |

## Task 4

- Interpolation ensembles different n-gram models. This has a smoothing effect. For e.g. Test bigrams not seen in corpus might occur as uni-grams in corpus. Therefore, the unigram model will assign the test sequence some non-zero probability.
- As lambda increases, contribution of bigram model increases. Since bigram model takes a small context into account, the test-sequence probability increases with lambda.
   Effect on interpolation on test sentence: "he lived a good life"

| Language model | Log-likelihood | Log-likelihood | Log-likelihood | Log-likelihood |
|----------------|----------------|----------------|----------------|----------------|
|                | (lambda=0)     | (lambda = 0.2) | (lambda = 0.5) | (lambda = 0.8) |
| bigram         | -26.7533       | -32.4952       | -29.3943       | -27.6202       |