TABLE I: Comparison robustness performances among different data corruption in the lung segmentation task on JSRT dataset using UNet [25] as baseline. Dice is utilized as the evaluation metric.

Corruption	UNet —	UNet (+ VAE)	UNet (+Ours)	SWAE-UNet	SWAE-UNet (+Ours)
Ori.	94.18 ± 0.2 -	95.43 ± 0.2 -	95.41 ± 0.1 -	95.07 ± 0.1 -	96.56 ± 0.2 –
Gauss. Noise	$74.02\pm0.4\downarrow$	75.70 \pm 0.2 \downarrow	$94.96\pm0.1\downarrow$	$86.26\pm0.2\downarrow$	95.30 \pm 0.1 \downarrow
Shot Noise	$65.85\pm0.1\downarrow$	74.14 \pm 0.3 \downarrow	94.53 \pm 0.3 \downarrow	$78.52\pm0.1\downarrow$	$94.50\pm0.3\downarrow$
Impulse Noise	72.78 \pm 0.2 \downarrow	$66.80\pm0.1\downarrow$	95.01 \pm 0.1 \downarrow	87.21 \pm 0.5 \downarrow	$94.81\pm0.3\downarrow$
Speckle Noise	72.12 \pm 0.4 \downarrow	$74.34 \pm 0.3 \downarrow$	93.78 \pm 0.3 \downarrow	82.44 \pm 0.3 \downarrow	94.67 \pm 0.2 \downarrow
Poisson Noise	76.33 \pm 0.5 \downarrow	75.89 \pm 0.1 \downarrow	95.02 \pm 0.2 \downarrow	87.11 \pm 0.1 \downarrow	94.83 \pm 0.5 \downarrow
Dropout	77.50 \pm 0.3 \downarrow	$78.56\pm0.4\downarrow$	$94.60\pm0.1\downarrow$	74.63 \pm 0.2 \downarrow	$94.83\pm0.2\downarrow$
Gauss. Blur	93.38 \pm 0.1 \downarrow	87.54 \pm 0.1 \downarrow	$95.26\pm0.3\downarrow$	92.76 \pm 0.4 \downarrow	96.03 \pm 0.2 \downarrow
Glass Blur	$94.13\pm0.2\downarrow$	$86.58\pm0.3\downarrow$	$94.86\pm0.5\downarrow$	$93.76\pm0.2\downarrow$	96.07 \pm 0.4 \downarrow
Defocus Blur	92.89 \pm 0.3 \downarrow	$95.44 \pm 0.2 \uparrow$	$93.22\pm0.1\downarrow$	$86.96\pm0.1\downarrow$	95.87 \pm 0.3 \downarrow
Motion Blur	87.46 \pm 0.2 \downarrow	83.77 \pm 0.3 \downarrow	89.40 \pm 0.4 \downarrow	87.12 \pm 0.5 \downarrow	90.06 \pm 0.1 \downarrow
Zoom Blur	85.25 \pm 0.5 \downarrow	79.42 \pm 0.2 \downarrow	82.79 \pm 0.1 \downarrow	83.56 \pm 0.3 \downarrow	$84.66\pm0.4\downarrow$
Fog	$58.17\pm0.6\downarrow$	$64.72\pm0.1\downarrow$	70.45 \pm 0.4 \downarrow	62.93 \pm 0.2 \downarrow	70.40 \pm 0.2 \downarrow
Contrast	$03.82\pm0.2\downarrow$	$37.59\pm0.2\downarrow$	$54.29\pm0.2\downarrow$	03.06 \pm 0.5 \downarrow	65.80 \pm 0.1 \downarrow
Brightness	05.78 \pm 0.3 \downarrow	$42.29\pm0.1\downarrow$	71.03 \pm 0.3 \downarrow	09.54 \pm 0.2 \downarrow	74.69 \pm 0.2 \downarrow
Saturate	$94.72 \pm 0.5 \uparrow$	$88.15\pm0.2\downarrow$	94. 97 \pm 0.3 \downarrow	93.94 \pm 0.1 \downarrow	96.18 \pm 0.3 \downarrow
JpegComp.	94.01 \pm 0.1 \downarrow	$88.14\pm0.3\downarrow$	95. 32 \pm 0.1 \downarrow	93.75 \pm 0.4 \downarrow	96.23 \pm 0.4 \downarrow
Elastic Trans.	93.08 \pm 0.3 \downarrow	93.05 \pm 0.2 \downarrow	95. 49 \pm 0.3 \uparrow	$93.45\pm0.1\downarrow$	95.51 \pm 0.2 \downarrow
Avg.	67.61 (\psi 26.57)	75.51 (\ 19.92)	88.66 (\ 06.75)	76.66 (\ 18.41)	90.02 (\psi 06.54)

TABLE II: Comparison robustness performances among different data corruption in the lung segmentation task on JSRT dataset using PSPNet [28] as baseline. Dice is utilized as the evaluation metric.

Corruption	PSPNet —	PSPNet (+VAE)	PSPNet (+ImageNet)	PSPNet (+Jigsaw)	PSPNet (+MoCo)	PSPNet (+Ours)	SWAE-PSPNet	SWAE-PSPNet (+Ours)
Ori.	95.34 ± 0.2 -	94.26 ± 0.3 -	96.54 ± 0.1 -	96.32 ± 0.3 -	96.50 ± 0.1 -	96.24 ± 0.2 -	95.52 ± 0.3 -	97.19 ± 0.1 –
Gauss. Noise	84.28 \pm 0.4 \downarrow	89.71 \pm 0.2 \downarrow	80.97 \pm 0.1 \downarrow	78.97 \pm 0.1 \downarrow	$87.62\pm0.3\downarrow$	$95.45\pm0.2\downarrow$	$85.35\pm0.4\downarrow$	95.61 \pm 0.4 \downarrow
Shot Noise	$88.35\pm0.2\downarrow$	88.03 \pm 0.1 \downarrow	79.51 \pm 0.2 \downarrow	$78.67\pm0.1\downarrow$	87.56 \pm 0.4 \downarrow	95.00 \pm 0.2 \downarrow	$88.53\pm0.3\downarrow$	95.80 \pm 0.2 \downarrow
Impulse Noise	87.56 \pm 0.4 \downarrow	89.46 \pm 0.1 \downarrow	$78.92\pm0.4\downarrow$	$81.40\pm0.3\downarrow$	$84.10\pm0.2\downarrow$	95.80 \pm 0.4 \downarrow	$86.82\pm0.3\downarrow$	95.89 \pm 0.2 \downarrow
Speckle Noise	88.64 \pm 0.1 \downarrow	88.93 \pm 0.3 \downarrow	79.13 \pm 0.2 \downarrow	83.62 \pm 0.1 \downarrow	$85.63\pm0.2\downarrow$	$95.86\pm0.2\downarrow$	88.61 \pm 0.2 \downarrow	95.92 \pm 0.1 \downarrow
Poisson Noise	82.38 \pm 0.3 \downarrow	89.11 \pm 0.2 \downarrow	$82.89\pm0.2\downarrow$	$78.17\pm0.2\downarrow$	$90.49\pm0.3\downarrow$	$94.51\pm0.4\downarrow$	$85.23\pm0.4\downarrow$	95.01 \pm 0.3 \downarrow
Dropout	87.59 \pm 0.1 \downarrow	$86.96\pm0.3\downarrow$	70.69 \pm 0.2 \downarrow	73.19 \pm 0.5 \downarrow	$86.79\pm0.1\downarrow$	94.94 \pm 0.2 \downarrow	$86.51\pm0.1\downarrow$	95.47 \pm 0.4 \downarrow
Gauss. Blur	$94.72\pm0.2\downarrow$	$93.23\pm0.2\downarrow$	$93.70\pm0.3\downarrow$	93.91 \pm 0.2 \downarrow	$94.69\pm0.3\downarrow$	96.42 \pm 0.1 \downarrow	$95.58\pm0.1\downarrow$	96.42 \pm 0.2 \downarrow
Glass Blur	94.77 \pm 0.3 \downarrow	$93.88\pm0.2\downarrow$	91.24± 0.1 ↓	$92.83\pm0.3\downarrow$	$93.32\pm0.2\downarrow$	96.55 \pm 0.2 \downarrow	$95.48\pm0.4\downarrow$	$96.51\pm0.1\downarrow$
Defocus Blur	94.87 \pm 0.1 \downarrow	$93.40\pm0.1\downarrow$	93.94 \pm 0.3 \downarrow	94.03 \pm 0.3 \downarrow	$94.95\pm0.2\downarrow$	96.48 \pm 0.3 \downarrow	95.78 \pm 0.1 \downarrow	96.53 \pm 0.2 \downarrow
Motion Blur	88.97 \pm 0.1 \downarrow	$86.50\pm0.3\downarrow$	$88.01\pm0.2\downarrow$	90.52 \pm 0.4 \downarrow	91.76 \pm 0.3 \downarrow	90.01 \pm 0.2 \downarrow	89.62 \pm 0.1 \downarrow	90.26 \pm 0.1 \downarrow
Zoom Blur	82.65 \pm 0.4 \downarrow	83.87 \pm 0.2 \downarrow	$85.88\pm0.3\downarrow$	84.91 \pm 0.1 \downarrow	89.11 \pm 0.2 \downarrow	84.47 \pm 0.1 \downarrow	$85.44\pm0.2\downarrow$	$85.23\pm0.2\downarrow$
Fog	$58.48\pm0.2\downarrow$	$61.80\pm0.1\downarrow$	77.58 \pm 0.4 \downarrow	76.30 \pm 0.2 \downarrow	79.77 \pm 0.2 \downarrow	$74.50\pm0.3\downarrow$	$61.68\pm0.3\downarrow$	76.48 \pm 0.1 \downarrow
Contrast	43.77 \pm 0.5 \downarrow	$60.73\pm0.3\downarrow$	59.07 \pm 0.2 \downarrow	56.59 \pm 0.4 \downarrow	$65.55\pm0.4\downarrow$	$65.37\pm0.3\downarrow$	55.71 \pm 0.4 \downarrow	67.74 \pm 0.3 \downarrow
Brightness	00.75 \pm 0.1 \downarrow	72.73 \pm 0.2 \downarrow	$81.99\pm0.2\downarrow$	82.08 \pm 0.3 \downarrow	82.93 \pm 0.3 \downarrow	79.89 \pm 0.1 \downarrow	$01.27\pm0.1\downarrow$	$81.95\pm0.1\downarrow$
Saturate	$95.34\pm0.2\downarrow$	$94.26\pm0.1\downarrow$	$96.52\pm0.1\downarrow$	$96.32\pm0.1\downarrow$	$96.47\pm0.1\downarrow$	96.18 \pm 0.1 \downarrow	$96.32\pm0.2\downarrow$	97.11 \pm 0.2 \downarrow
JpegComp.	$95.16\pm0.1\downarrow$	94.09 \pm 0.1 \downarrow	$91.22\pm0.4\downarrow$	$91.47\pm0.3\downarrow$	$92.88\pm0.3\downarrow$	96.30 \pm 0.3 \downarrow	96.11 \pm 0.1 \downarrow	96.88 \pm 0.3 \downarrow
Elastic Trans.	$95.15\pm0.4\downarrow$	94.08 \pm 0.1 \downarrow	$94.07\pm0.3\downarrow$	$95.32\pm0.1\downarrow$	$96.65\pm0.2\downarrow$	$96.55\pm0.1\downarrow$	$95.90\pm0.3\downarrow$	96.74 \pm 0.1 \downarrow
Avg.	80.20 \((15.14)	85.93 \((08.33)	83.84 \((12.80)	84.01 \((12.31)	88.25 \((07.99)	90.65 \(\tau (05.59)	81.76 \((13.76)	91.51 (\psi 05.68)

TABLE III: Comparison robustness performances among different data corruption in the lung segmentation task on SH dataset using UNet [25] as baseline. Dice is utilized as the evaluation metric.

Corruption	UNet —	UNet (+ VAE)	UNet (+Ours)	SWAE-UNet	SWAE-UNet (+Ours)
Ori.	$88.03 - \pm 0.2$	86.66 ± 0.2 -	91.31 ± 0.2 -	89.34 ± 0.4 -	93.17 ± 0.3 –
Gauss. Noise	85.97 \pm 0.4 \downarrow	$86.47\pm0.2\downarrow$	90.50 \pm 0.2 \downarrow	$86.59\pm0.2\downarrow$	90.37 \pm 0.1 \downarrow
Shot Noise	83.78 \pm 0.3 \downarrow	$84.93\pm0.4\downarrow$	90.61 \pm 0.3 \downarrow	83.09 \pm 0.2 \downarrow	88.45 \pm 0.2 \downarrow
Impulse Noise	$86.96\pm0.2\downarrow$	$85.57\pm0.1\downarrow$	$90.18\pm0.4\downarrow$	87.09 \pm 0.3 \downarrow	90.22 \pm 0.3 \downarrow
Speckle Noise	82.03 \pm 0.2 \downarrow	82.91 \pm 0.4 \downarrow	87.64 \pm 0.2 \downarrow	$81.31\pm0.1\downarrow$	88.81 \pm 0.3 \downarrow
Poisson Noise	$84.03 \pm 0.3 \downarrow$	$84.23\pm0.4\downarrow$	87.73 \pm 0.3 \downarrow	$83.60\pm0.1\downarrow$	88.36 \pm 0.1 \downarrow
Dropout	$88.30\pm0.3\downarrow$	$86.17\pm0.2\downarrow$	89.03 \pm 0.3 \downarrow	$84.24\pm0.2\downarrow$	88.99 \pm 0.2 \downarrow
Gauss. Blur	85.07 \pm 0.1 \downarrow	$84.86\pm0.2\downarrow$	89.47 \pm 0.3 \downarrow	$85.79\pm0.2\downarrow$	89.93 \pm 0.2 \downarrow
Glass Blur	$85.25\pm0.2\downarrow$	$86.43\pm0.4\downarrow$	90.76 \pm 0.1 \downarrow	$85.79\pm0.1\downarrow$	91.56 \pm 0.2 \downarrow
Defocus Blur	85.05 \pm 0.1 \downarrow	86.66 ± 0.4 –	90.90 \pm 0.2 \downarrow	$86.53\pm0.2\downarrow$	90.05 \pm 0.4 \downarrow
Motion Blur	80.73 \pm 0.2 \downarrow	$81.62\pm0.2\downarrow$	84.91 \pm 0.5 \downarrow	82.45 \pm 0.2 \downarrow	85.56 \pm 0.3 \downarrow
Zoom Blur	69.43 \pm 0.3 \downarrow	$71.28\pm0.1\downarrow$	77.68 \pm 0.2 \downarrow	70.19 \pm 0.1 \downarrow	79.06 \pm 0.4 \downarrow
Fog	55.31 \pm 0.4 \downarrow	$51.22\pm0.4\downarrow$	$56.70\pm0.2\downarrow$	$53.25\pm0.2\downarrow$	56.98 \pm 0.4 \downarrow
Contrast	$37.75\pm0.2\downarrow$	$35.45\pm0.2\downarrow$	43.19 \pm 0.2 \downarrow	$35.85\pm0.3\downarrow$	$41.78\pm0.1\downarrow$
Brightness	57.72 \pm 0.4 \downarrow	$61.48\pm0.1\downarrow$	62.70 \pm 0.2 \downarrow	65.68 \pm 0.3 \downarrow	65.41 \pm 0.1 \downarrow
Saturate	87.64 \pm 0.4 \downarrow	$88.93 \pm 0.4 \uparrow$	91.72 \pm 0.3 \uparrow	$86.90\pm0.2\downarrow$	90.96 \pm 0.1 \downarrow
JpegComp.	87.55 \pm 0.4 \downarrow	$88.44 \pm 0.2 \uparrow$	$91.34 \pm 0.2 \uparrow$	87.72 \pm 0.1 \downarrow	91.76 \pm 0.2 \downarrow
Elastic Trans.	86.07 \pm 0.2 \downarrow	86.47 \pm 0.4 \downarrow	$91.48 \pm 0.2 \uparrow$	$86.82\pm0.2\downarrow$	92.95 \pm 0.3 \downarrow
Avg.	78.16 (\ 09.87)	78.42 (\ 08.24)	84.50 (\psi 06.81)	78.41 (\psi 10.93)	83.01 (\ 10.17)

TABLE IV: Comparison robustness performances among different data corruption in the lung segmentation task on SH dataset using PSPNet [28] as baseline. Dice is utilized as the evaluation metric.

Corruption	PSPNet —	PSPNet (+VAE)	PSPNet (+ImageNet)	PSPNet (+Jigsaw)	PSPNet (+MoCo)	PSPNet (+Ours)	SWAE-PSPNet	SWAE-PSPNet (+Ours)
Ori.	83.26 ± 0.3 -	91.97 ± 0.2 -	92.67 ± 0.2 -	93.95 ± 0.1 -	94.74 ± 0.1 -	92.68 ± 0.3 -	85.17 ± 0.3 -	94.77 ± 0.2 –
Gauss. Noise	82.45 \pm 0.2 \downarrow	83.43 \pm 0.1 \downarrow	$85.06\pm0.2\downarrow$	86.99 \pm 0.4 \downarrow	87.46 \pm 0.2 \downarrow	85.93 \pm 0.4 \downarrow	$84.32\pm0.1\downarrow$	92.03 \pm 0.2 \downarrow
Shot Noise	82.72 \pm 0.1 \downarrow	76.10 \pm 0.3 \downarrow	$85.57\pm0.3\downarrow$	$85.38\pm0.2\downarrow$	87.10 \pm 0.4 \downarrow	84.96 \pm 0.1 \downarrow	83.02 \pm 0.3 \downarrow	91.00 \pm 0.2 \downarrow
Impulse Noise	$81.46\pm0.2\downarrow$	$85.22\pm0.3\downarrow$	$85.61\pm0.1\downarrow$	$88.67\pm0.4\downarrow$	$85.48\pm0.3\downarrow$	$86.28\pm0.2\downarrow$	83.09 \pm 0.3 \downarrow	92.16 \pm 0.3 \downarrow
Speckle Noise	82.77 \pm 0.2 \downarrow	83.72 \pm 0.3 \downarrow	83.02 \pm 0.4 \downarrow	83.08 \pm 0.1 \downarrow	$86.17\pm0.3\downarrow$	84.20 \pm 0.2 \downarrow	$81.96\pm0.3\downarrow$	90.00 \pm 0.1 \downarrow
Poisson Noise	79.89 \pm 0.2 \downarrow	53.77 \pm 0.4 \downarrow	$88.43\pm0.3\downarrow$	$78.31\pm0.2\downarrow$	89.63 \pm 0.1 \downarrow	84.44 \pm 0.3 \downarrow	83.88 \pm 0.1 \downarrow	90.88 \pm 0.2 \downarrow
Dropout	79.48 \pm 0.2 \downarrow	$67.69\pm0.2\downarrow$	77.57 \pm 0.1 \downarrow	$81.24\pm0.3\downarrow$	$76.35\pm0.1\downarrow$	82.73 \pm 0.2 \downarrow	75.57 \pm 0.3 \downarrow	86.96 \pm 0.1 \downarrow
Gauss. Blur	84.77 ± 0.3 ↑	90.65 \pm 0.2 \downarrow	87.08 \pm 0.4 \downarrow	$78.56\pm0.1\downarrow$	$91.01\pm0.3\downarrow$	84.96 \pm 0.2 \downarrow	85.34 ± 0.1 ↑	91.03 \pm 0.1 \downarrow
Glass Blur	85.32 ± 0.3 ↑	90.92 \pm 0.3 \downarrow	$83.21\pm0.1\downarrow$	$88.44\pm0.2\downarrow$	$91.19\pm0.3\downarrow$	$85.56\pm0.1\downarrow$	85.44 ± 0.3 ↑	91.35 \pm 0.2 \downarrow
Defocus Blur	83.54 ± 0.2 ↑	90.80 \pm 0.2 \downarrow	87.23 \pm 0.2 \downarrow	$80.63\pm0.4\downarrow$	91.68 \pm 0.1 \downarrow	$85.45\pm0.3\downarrow$	$85.48 \pm 0.2 \uparrow$	$91.29\pm0.3\downarrow$
Motion Blur	$81.56\pm0.1\downarrow$	85.72 \pm 0.3 \downarrow	$82.58\pm0.2\downarrow$	$83.63\pm0.4\downarrow$	88.81 \pm 0.3 \downarrow	85.72 \pm 0.2 \downarrow	$81.75\pm0.2\downarrow$	86.49 \pm 0.1 \downarrow
Zoom Blur	76.80 \pm 0.2 \downarrow	$76.82\pm0.2\downarrow$	$81.90\pm0.3\downarrow$	$80.25\pm0.1\downarrow$	87.90 \pm 0.4 \downarrow	$81.52\pm0.3\downarrow$	72.28 \pm 0.2 \downarrow	83.84 \pm 0.2 \downarrow
Fog	57.87 \pm 0.2 \downarrow	$54.68\pm0.3\downarrow$	$60.73\pm0.1\downarrow$	55.27 \pm 0.2 \downarrow	74.83 \pm 0.3 \downarrow	60.79 \pm 0.4 \downarrow	$54.55\pm0.3\downarrow$	86.79 \pm 0.2 \downarrow
Contrast	$40.27\pm0.3\downarrow$	56.61 \pm 0.3 \downarrow	$51.69\pm0.4\downarrow$	$43.87\pm0.1\downarrow$	$54.16\pm0.3\downarrow$	53.06 \pm 0.4 \downarrow	59.10 \pm 0.1 \downarrow	60.04 \pm 0.2 \downarrow
Brightness	$00.11\pm0.3\downarrow$	$65.60\pm0.3\downarrow$	$64.86\pm0.2\downarrow$	67.40 \pm 0.4 \downarrow	$63.60\pm0.4\downarrow$	$65.68\pm0.1\downarrow$	$06.60\pm0.2\downarrow$	$64.54\pm0.3\downarrow$
Saturate	$83.22\pm0.2\downarrow$	91.91 ± 0.1 –	93.96 \pm 0.4 \uparrow	93.93 ± 0.3 ↑	95.75 \pm 0.2 \uparrow	90.44 \pm 0.3 \downarrow	$84.10\pm0.3\downarrow$	$93.00\pm0.1\downarrow$
JpegComp.	82.95 \pm 0.1 \downarrow	83.43 \pm 0.1 \downarrow	$91.73\pm0.1\downarrow$	87.85 \pm 0.3 \downarrow	$85.98\pm0.2\downarrow$	89.13 \pm 0.4 \downarrow	$85.85 \pm 0.1 \uparrow$	92.81 \pm 0.2 \downarrow
Elastic Trans.	83.32 \pm 0.1 \downarrow	$91.19\pm0.2\downarrow$	89.20 \pm 0.4 \downarrow	$91.33\pm0.4\downarrow$	94.38 \pm 0.3 \downarrow	86.97 \pm 0.5 \downarrow	84.98 \pm 0.3 \downarrow	$92.46\pm0.1\downarrow$
Avg.	68.77 ↓ (14.49)	78.13 \((13.84)	81.14 \((11.53)	79.68 \((14.30)	84.20 \(\psi(10.54)	81.05 \((11.63)	75.14 \((10.03)	86.86 \(\((07.91) \)