

Warranty and Liability

Note

The Application Examples are not binding and do not claim to be complete regarding the circuits shown, equipping and any eventuality. The Application Examples do not represent customer-specific solutions. They are only intended to provide support for typical applications. You are responsible for ensuring that the described products are used correctly. These Application Examples do not relieve you of the responsibility to use safe practices in application, installation, operation and maintenance. When using these Application Examples, you recognize that we cannot be made liable for any damage/claims beyond the liability clause described. We reserve the right to make changes to these Application Examples at any time without prior notice.

If there are any deviations between the recommendations provided in these Application Examples and other Siemens publications – e.g. Catalogs – the contents of the other documents have priority.

We do not accept any liability for the information contained in this document. Any claims against us – based on whatever legal reason – resulting from the use of the examples, information, programs, engineering and performance data etc., described in this Application Example shall be excluded. Such an exclusion shall not apply in the case of mandatory liability, e.g. under the German Product Liability Act ("Produkthaftungsgesetz"), in case of intent, gross negligence, or injury of life, body or health, guarantee for the quality of a product, fraudulent concealment of a deficiency or breach of a condition which goes to the root of the contract ("wesentliche Vertragspflichten"). The damages for a breach of a substantial contractual obligation are, however, limited to the foreseeable damage, typical for the type of contract, except in the event of intent or gross negligence or injury to life, body or health. The above provisions do not imply a change of the burden of proof to your detriment.

Any form of duplication or distribution of these Application Examples or excerpts hereof is prohibited without the expressed consent of the Siemens AG.

Security information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks. In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept. Siemens' products and solutions only form one element of such a concept.

Customer is responsible to prevent unauthorized access to its plants, systems, machines and networks. Systems, machines and components should only be connected to the enterprise network or the internet if and to the extent necessary and with appropriate security measures (e.g. use of firewalls and network segmentation) in place.

Additionally, Siemens' guidance on appropriate security measures should be taken into account. For more information about industrial security, please visit http://www.siemens.com/industrialsecurity.

Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends to apply product updates as soon as available and to always use the latest product versions. Use of product versions that are no longer supported, and failure to apply latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed under http://www.siemens.com/industrialsecurity.

Table of Contents

War	ranty and	Liability	2
1	Introdu	ction	4
	1.1 1.2	Overview Components used	
2	Test Pro	oject Engineering	8
	2.1 2.2 2.3 2.4 2.5 2.5.1 2.5.2 2.6 2.6.1 2.6.2 2.6.3 2.6.4	Hardware configuration of the test project Configuring the diagnostic settings IP addresses, PROFIBUS addresses and device names Assigning the PROFINET device names Integration into the user project Integrating PLC objects Integrating HMI objects (TP 700) Operation Overview Devices and module icon legend Diagnostics on the operator panel Evaluating the diagnostic information	9 10 12 16 17 17
3	Valuabl	e Information	23
	3.1 3.2 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 3.3.10	Basics of system diagnostics for S7-1200 PLCs Diagnostic instructions Details about how the program blocks work Complete overview "UserDiag_Constants" tag table "UserDiag_DiagnosticsData" DB "UserDiag_HmiData" DB "UserDiag_PLCCheck" FB "UserDiag_IOSystemCheck" FB "UserDiag_Diagnostics" FB FB "UserDiag_GetIPAddress" "UserDiag_DiagnosticsHmi" FB "UserDiag_Main" FB	23 24 25 25 30 36 38 38
4	Append	lix	42
	4.1 4.2 4.3	Service and SupportLinks and literature	43

1 Introduction

In the SIMATIC environment, diagnostics of devices and modules are grouped under the term 'system diagnostics'. The monitoring functions are automatically derived from the hardware configuration.

All SIMATIC products have integrated diagnostic functions that allow you to detect and clear faults. The components automatically report a fault during operation and provide additional detailed information. Plant-wide diagnostics can minimize unscheduled downtimes.

Diagnostics with the user program enables you to identify faulty devices and modules. This allows you to program responses to diagnostic alarms in the user program.

Note

If diagnostic information is only displayed on different visual display devices and not used in the user program, it is recommended to use the S7-1200 controllers' integrated system diagnostics. For more information about integrated system diagnostics, please refer to the following application example: "System Diagnostics with S7-1500 and TIA Portal"

https://support.industry.siemens.com/cs/ww/en/view/68011497

1.1 Overview

This application example describes how to monitor a PROFINET IO system and a PROFIBUS DP master system with different devices in the user program. The devices are connected to an S7-1200 controller via PROFINET IO. The devices detect faults on their modules and send the diagnostic data to the assigned controller. The controller evaluates this diagnostic information with the diagnostic instructions in the user program and saves it to a global data block. The operator panel graphically displays the evaluated diagnostic information in one view per IO system or in a device view.

It considers the following states:

- State OK
- State FAULTY
- State LOST CONNECTION
- State DEACTIVATED
- State PROBLEM / MAINTENANCE
- State WAS FAULTY
- State HAD LOST CONNECTION
- State WAS DEACTIVATED
- State WAS PROBLEM / MAINTENANCE

The following figure shows the hardware that was used for testing.

Figure 1-1: Hardware overview

Note

This application example influences the cycle time of your program. The cycle time extension size depends on the plant configuration to be monitored and the CPU used. Therefore, no approximate values can be given at this point.

You can copy the PLC objects of the application example directly to your project. All you have to do is customize the constants to define the size of the diagnostic structure (highest device number or slave address in the IO system). In addition, customize the hardware ID of your CPU and IO system.

1.2 Components used

This application example was created with the following hardware and software components:

Table 1-1: Hardware and software components

Component	Qty.	Article number	Note
CPU 1214C DC/DC/DC	1	6ES7214-1AG40-0XB0	Alternatively, any other CPU S7-1200 can be used.
Memory Card, 12 Mbyte	1	6ES7954-8LE02-0AA0	optional
SCALANCE X208	1	6GK5208-0BA10	Alternatively, any other Switch can be used.
IM 155-5 PN ST	1	6ES7155-5AA00-0AB0	ET 200MP
Digital input module, DI 32x24VDC HF	1	6ES7521-1BL00-0AB0	Diagnostics can be configured
Digital output module, DQ 32x24VDC/0.5A ST	1	6ES7522-1BL00-0AB0	Diagnostics can be configured
Analog input module, AI 8xU/I/RTD/TC ST	1	6ES7531-7KF00-0AB0	Diagnostics can be configured
Front connector, screw- type, 40-pin	2	6ES7592-1AM00-0XB0	-
Front connector, push-in type, 40-pin	1	6ES7592-1BM00-0XB0	-
IM 155-6 PN ST, incl. server module, incl. bus adapter 2xRJ45	1	6ES7155-6AA00-0BN0	ET 200SP
DI 8x24VDC HF	1	6ES7131-6BF00-0CA0	Diagnostics can be configured
DQ 8x24VDC/0.5A HF	1	6ES7132-6BF00-0CA0	Diagnostics can be configured
AQ 4xU/I ST	1	6ES7135-6HD00-0BA1	Diagnostics can be configured
BU type A0, 16 push-in, 2 infeed terminals separated (digital/analog, max. 24VDC/10A)	1	6ES7193-6BP00-0DA0	-
BU type A0, 16 push-in, 2 infeed terminals bridged (digital/analog, 24VDC/10A)	2	6ES7193-6BP00-0BA0	-
IM 155-6 PN ST, incl. server module, incl. bus adapter 2xRJ45	1	6ES7155-6AA00-0BN0	ET 200SP
DI 16x24VDC ST	1	6ES7131-6BH00-0BA0	Diagnostics can be configured
BU-Typ A0, 16 Push-In, 2 Einspeiseklemmen getrennt (Digital-/Analog, max.24VDC/10A)	1	6ES7193-6BP00-0DA0	-
TP700 Comfort	1	6AV2124-0GC01-0AX0	-

Component	Qty.	Article number	Note
STEP 7 Professional V14 SP1	1	6ES7822-104	-
WinCC Comfort V14 SP1	1	6AV2104-0	-
STEP 7 Professional V15	1	6ES7822-105	-
WinCC Comfort V15	1	6AV2105-0	-

This application example consists of the following components:

Table 1-2: Components of the application example

Component	File name
Documentation	109483251_User_defined_diagnostics_S7-1200_DOC_V20_en.pdf
STEP 7 project TIA V14 SP1	109483251_Diag1200_TIAV14SP1_PROJ_V20.zip
STEP 7 project TIA V15	109483251_Diag1200_TIAV15_PROJ_V20.zip

2 Test Project Engineering

2.1 Hardware configuration of the test project

Figure 2-1: Hardware configuration of the test project

2.2 Configuring the diagnostic settings

You can enable the module-specific diagnostic settings separately for each module of your project. You can configure the diagnostic settings in the device view in the module properties.

The following diagnostic settings can be made:

- No supply voltage L+
- Wire break
- · Short circuit to ground
- etc.

Note

For examples of how to configure the diagnostic settings, please refer to the following application example:

"System Diagnostics with S7-1500 and TIA Portal"

https://support.industry.siemens.com/cs/ww/en/view/68011497

2.3 IP addresses, PROFIBUS addresses and device names

The application example uses the following device numbers, device names, IP addresses and PROFIBUS addresses:

Table 2-1: Overview of IP addresses, PROFIBUS addresses and device names

Component	Device number	IP address	Device name
SIMATIC CPU 1214C	0	192.168.0.1	PLC_1
SIMATIC IM 155-6 PN	1	192.168.0.2	ET200SP_1
SIMATIC IM 155-5 PN	2	192.168.0.3	ET200MP_2
SIMATIC IM 155-6 PN	3	192.168.0.10	ET200SP_10
SIMATIC HMI TP700	-	192.168.0.4	HMI_1

2.4 Assigning the PROFINET device names

For all PROFINET devices to communicate with each other, assign a PROFINET device name to the devices.

- 1. Open the network view.
- 2. Right-click the PROFINET connection line and select "Assign device name". The "Assign PROFINET device name" dialog is displayed.

Figure 2-2: Network view

- 3. In "PROFINET device name", select the device name.
- 4. From the list of accessible devices, select the device to which you want to assign the PROFINET device name. You can update the list by clicking "Update list".
- Click "Assign name".This assigns the device name.

Figure 2-3: "IO Systems" screen

6. Repeat steps 3 through 5 for all devices.

2.5 Integration into the user project

The application example described here can be fully integrated into your project. The necessary steps are described below.

Note

Chapter 3.3 describes how the program blocks work.

2.5.1 Integrating PLC objects

Copying PLC objects

You can integrate the PLC objects of the application example directly into your project.

To do this, proceed as follows:

- 1. Use TIA Portal to open your project.
- Open the application example in a second instance of TIA Portal.
 Alternatively, you can open the application example as a reference project for your project.
- 3. In the application example, "PLC_1 > PLC tags", copy the "UserDiag" folder and paste the folder into the same location in your project.
- 4. In the application example, "PLC_1 > PLC data types", copy the "UserDiag" folder and paste the folder into the same location in your project.
- 5. In the application example, "PLC_1 > Program blocks", copy the "UserDiag" folder and paste the folder into the same location in your project.
- 6. Call the FB "UserDiag_Main" in the first network of the OB "Main".

Abbildung 2-4: Call in OB "Main"

7. Close the second instance of TIA Portal with the application example.

Customizing constants to the project

The user constants allow you to customize the size of the diagnostic structures in the "UserDiag_DiagnosticsData" DB to your project.

To do this, proceed as follows:

- 1. In "PLC_1 > PLC tags > UserDiag > UserDiag_Constants", open the "User constants".
- Optional: If the highest device number/slave address in your project is greater than 128, modify the "USERDIAG_DEVICES_PER_ IO_SYSTEM_UPPER_LIM" constant to the highest device number/slave address.

Figure 2-5: "User constants"

Customizing the call of the diagnostic blocks to the project

The hardware IDs of the controller and the IO systems in your project may differ from the hardware IDs in the application example. The hardware IDs are customized when calling the diagnostic blocks in the "UserDiag_Diagnostics" FB.

Note

If you upgrade TIA Portal V13 SP1 projects to TIA Portal V14, you will not find a hardware ID for the PLC named "Local~Device" in the system constants. In this case, assign the value "32" to the "plcHwld" parameter of the "UserDiag_PLCCheck" FB (see step 4).

- 1. Open the "UserDiag_Diagnostics" FB.
- 2. In "PLC_1 > PLC tags > Default tag table", open the system constants.
- Vertically split the editor area.
- 4. Use drag and drop to assign the PLC hardware ID to the "plcHwld" parameter of the "UserDiag PLCCheck" FB.
- 5. The PLC's diagnostic structure has already been assigned to the "plcData" parameter of the "UserDiag_PLCCheck" FB.
- 6. Use drag and drop to assign the IO system hardware ID to the "ioSystemHwld" parameter of the "UserDiag IOSystemCheck" FB.
- 7. The diagnostic structure of the appropriate IO system (PROFINET IO system or DP master system) has already been assigned to the "ioSystemData" parameter of the "UserDiag_IOSystemCheck" FB. Please note that each IO system gets its own index, for example "IO SYSTEM1".

Figure 2-6: Customizing the call to the project

Calling "UserDiag_GetIPAddress"

With the FB "UserDiag_GetIPAddress" you can read the IP addresses of the devices of a PROFINET IO system.

Insert additional instances of the FB "UserDiag_GetIPAddress" in the FB "UserDiag_Main" as needed. For each PROFINET IO system a separate instance of the FB "UserDiag_GetIPAddress" is necessary.

Notice that each IO system requires a unique index, e.g. "USERDIAG_IOSYSTEM_1".

Figure 2-7: Call of "UserDiag_GetIPAddress"

Enable System memory

The system memory bit "DiagStatusUpdate" is used in the application example to evaluate the diagnosis at change of the diagnostic state. Therefore you have to enable the system memory of the PLC.

- 1. Open the properties of the PLC.
- 2. Navigate to "System and clock memory".
- 3. Enable "Enable the use of system memory byte".

Abbildung 2-8: Enable System memory

2.5.2 Integrating HMI objects (TP 700)

Note

Alternatively, you can copy the entire HMI from the application example to your project.

You can integrate the HMI objects of the application example directly into your project.

- 1. Use TIA Portal to open your project.
- Open the application example in a second instance of TIA Portal.
 Alternatively, you can open the application example as a reference project for your project.
- 3. In the application example, "HMI_1 > HMI tags", copy the "UserDiag" folder and paste the folder into the same location in your project.
- 4. Open the "UserDiag_TagTable" HMI tag table and in the "Connection" column, set the HMI connection of your HMI.

Figure 2-9: "UserDiag_TagTable" HMI tag table

- In the application example, "HMI_1 > Screen management > Pop-up screens", copy the "UserDiag" folder and paste the folder into the same location in your project.
- 6. In the application example, "HMI_1 > Screens > 001_Application", copy the "Topic_001.0_PLC", "Topic_002.0_IO_System" and "Topic_003.0_Messages" screens and paste the screens into your project.
- In the screens' properties, select your template or no template.
 You can also copy the templates in "HMI_1 > Screen management > Templates" to your project.
- 8. To be able to open the screens on the operator panel, integrate the screens into your screen navigation.

2.6 Operation

Operation is shown using the TP700 Comfort operator panel.

2.6.1 Overview

The following figure shows the user interface of the TP700 Comfort.

Figure 2-10: HMI screens overview

Start screen

The "Topic" screen shows the start screen of the application example.

Screen navigation

The slide-in screen is used for screen navigation.

PLC overview

The "PLC" screen shows the diagnostic information of the controller and its modules.

- Clicking the "Legend" button opens the pop-up screen with the different appearances of the icons for the devices and modules and their meaning.
- The "Reset overview" button allows you to delete the saved state of the controller.
- In the "Wait time Acknowledge" input field, you can enter a wait time after startup for automatic reset of the saved error state.

Overview of the devices in the IO system

The "IO-Systems" screen shows the configured devices of the selected IO system.

- The "Filter" button allows you to view only faulty devices.
- Clicking the "Legend" button opens the pop-up screen with the different appearances of the icons for the devices and modules and their meaning.
- The "Reset overview" button allows you to delete the saved state of the current IO system.
- Clicking the button of a device opens the pop-up screen with the detail view of the device.

Detail view of a device

The pop-up screen displays:

- Diagnostic information of the modules of a device
- Index of the IO system
- Device number
- IP address
- Device name

Clicking the "close" button closes the pop-up screen.

System diagnostics

The "System diagnostics" screen shows the System diagnostics view.

Legend

The pop-up screen shows the different appearances of the icons for the devices and modules and their meaning.

2.6.2 Devices and module icon legend

The devices and modules can each have different states. The following table shows the appearance of the icons and their meaning.

Table 2-2: Icon legend

State	Appearance	Meaning
1		State OK
2		State FAULTY
3		State LOST CONNECTION
4		State DEACTIVATED
5		State PROBLEM / MAINTENANCE
12		State WAS FAULTY
13		State HAD LOST CONNECTION
14		State WAS DEACTIVATED
15		State WAS PROBLEM / MAINTENANCE

2.6.3 Diagnostics on the operator panel

Diagnostics of "missing module on ET200SP_1"

To diagnose the fault, proceed as follows:

- 1. Remove the DQ8 module from slot 2 of the ET200SP_1.
- 2. On the operator panel, open the "IO System" screen.
- 3. For detailed information about the fault, click the button of device 1.

Figure 2-11: "IO Systems" screen

4. The pop-up screen with the detail view of device 1 opens. The view displays an error on slot 2, the index of the IO system, the device number, the IP address and the device name.

Clicking "close" closes the pop-up screen.

Figure 2-12: Pop-up screen with the detail view of the device

5. Open the "System diagnostics" screen if you want to view the System diagnostics information for the fault.

Figure 2-13: "System diagnostics" screen

Reinsert the module into slot 2.
 The icon of device 1 turns green with a yellow border. This means that the device was faulty and the fault has been cleared.

Clicking "Reset overview" deletes the saved state and the border color returns to black.

Figure 2-14: "IO Systems" screen

2.6.4 Evaluating the diagnostic information

This chapter uses an example to show you where to find the diagnostic information in the event of an error. Retrieving this information in your program allows you to program specific responses to certain faults in the plant.

Evaluating the "missing module on ET200SP_1" diagnostic information

Remove the DQ8 module from slot 2 of the ET200SP_1 to cause a fault. The fault is saved in the "UserDiag_DiagnosticsData" DB. Clicking the "Monitor all" button allows you to view the actual values of the tags.

The data in the "UserDiag DiagnosticsData" DB have to be interpreted as follows:

- The "ioSystemData > ioSystemData[1]" structure displays the saved diagnostic information of the entire IO system. The "error = TRUE" tag indicates a fault in the IO system.
- The "devices > devices[1]" structure displays the saved diagnostic information
 of the device with device number 1. The "error = TRUE" tag indicates a fault in
 the device.
- 3. The "slot > slot[2]" structure displays the saved diagnostic information of the module on slot 2. The "error = TRUE" tag indicates the fault in the module. The "exists = FALSE" tag indicates that the module is missing.

Figure 2-15: Diagnostic information about the fault in the "UserDiag_DiagnosticsData" DB

3 Valuable Information

3.1 Basics of system diagnostics for S7-1200 PLCs

System diagnostics allow you to analyze errors in the system and generate alarms with a textual error description and the error location.

System diagnostics are integrated in the S7-1200 PLC's firmware and operate independently of the cyclic user program. Therefore, system diagnostics are also available in STOP mode of the PLC. Faults are detected immediately and reported to the higher-level HMI devices, the web server, the LED displays on the relevant module and TIA Portal even in STOP mode. This ensures that system diagnostics are always synchronized with the actual plant status.

All connected diagnostic display media are supplied with the same system diagnostic information by a uniform mechanism.

Note

For more information about integrated system diagnostics, please refer to the following application example:

"System Diagnostics with S7-1500 and TIA Portal"

https://support.industry.siemens.com/cs/ww/en/view/68011497

3.2 Diagnostic instructions

If you want to retrieve the diagnostic information of a device in the user program, STEP 7 provides the following instructions:

Table 3-1: Diagnostic instructions overview

Instruction	Description
RD_SINFO	Read start information of current OB
LED	Read LED status
Get_IM_Data	Read identification and maintenance data
GET_NAME	Read name of a module
GetStationInfo	Read information of an IO device
DeviceStates	Read module status information in an IO system
ModuleStates	Read module status information of a module
GET_DIAG	Read diagnostic information (not part of this application example)

Note

For more information about the diagnostic instructions, please refer to the STEP 7 Professional V14 SP1 system manual:

https://support.industry.siemens.com/cs/ww/en/view/109747136

3.3 Details about how the program blocks work

This chapter describes the program blocks of the application example.

3.3.1 Complete overview

The following figure shows the program structure of the entire STEP 7 project.

3.3.2 "UserDiag_Constants" tag table

The "UserDiag_Constants" table defines the user constants. With the user constants, you define the size of the diagnostic structures in the "UserDiag_DiagnosticsData" DB.

Table 3-2: "UserDiag_Constants" tag table

Constant	Туре	Value	Meaning
USERDIAG_SLOTS_ PER_DEVICE_UPPER_LIM	Int	31	Maximum number of modules per device.
USERDIAG_SLOTS_ PER_PLC_UPPER_LIM	Int	9	Maximum number of local modules.
USERDIAG_DEVICES_ PER_IO_SYSTEM_UPPER_LIM	Int	16	Upper array limit for devices per IO system.
USERDIAG_IO_SYSTEMS_ UPPER_LIM	Int	1	Upper array limit for IO systems.
USERDIAG_DEVICES_ PER_SCREEN_UPPER_LIM	Int	16	Upper array limit for number of devices per HMI screen.
USERDIAG_SLOTS_ PER_SCREEN_UPPER_LIM	Int	31	Upper array limit for number of slots per HMI screen.
USERDIAG_IO_SYSTEM_1	Int	1	Index for first IO system.

3.3.3 "UserDiag_DiagnosticsData" DB

The "UserDiag_DiagnosticsData" DB saves the hardware IDs and the diagnostic information of the controller and the IO systems.

The following table shows the structure of the "UserDiag_DiagnosticsData" DB.

Table 3-3: "UserDiag_DiagnosticsData" DB

Tag name	Data type	Meaning
plcData	UserDiag_typePLC	Diagnostic data of the PLC. (See <u>plcData</u> [<u>UserDiag_typePlc</u>])
ioSystemData	Array [1 USERDIAG_IO_ SYSTEMS_UPPER_LIM] of UserDiag_typeIoSystem	Diagnostic data of the IO systems. (See ioSystemData [UserDiag_typeloSystem])
startDiag	Bool	Start Diagnostics.

For greater clarity, the individual tags of the components were grouped into the following PLC data types.

plcData [UserDiag_typePlc]

The PLC data type contains the information of the controller and the modules in the local slots.

Table 3-4: "UserDiag typePlc" PLC data type

Tag name	Data type	Meaning
hardwareld	HW_DEVICE	Hardware ID of the PLC.
error	Bool	Error pending.
errorLedActive	Bool	Error LED of PLC active.
actualConfigured Slots	Int	Number of configured local slots.
slots	Array [0USERDIAG_SLOTS_ PER_PLC_UPPER_LIM] of "UserDiag_typeSlot"	See slots [UserDiag_typeSlot].

slots [UserDiag_typeSlot]

The PLC data type contains the information of a module (slot).

Table 3-5: "UserDiag_typeSlot" PLC data type

Tag name	Data type	Meaning
hardwareld	HW_IO	Hardware ID of the module in the slot
state	USInt	Module state (see 2.6.2)
exists	Bool	Module exists
configured	Bool	Module configured
faulty	Bool	Module faulty
problem	Bool	Module has a problem
disabled	Bool	Module disabled
error	Bool	Error in the module

ioSystemData [UserDiag_typeIoSystem]

The PLC data type contains the information of an IO system.

Table 3-6: "UserDiag_typeIoSystem" PLC data type

Tag name	Data type	Meaning
hardwareld	HW_IOSYSTEM	Hardware ID of the IO system.
number	UInt	Number of the IO system / DP master system.
error	Bool	Error in the IO system / DP master system.
firstDevice	Int	Number of the first device in the IO system / DP master system.
lastDevice	Int	Number of the last device in the IO system / DP master system.
actualConfigured Devices	Int	Number of configured devices in the IO system / DP master system.
devices	Array [0USERDIAG_DEVICES_ PER_IO_SYSTEM_UPPER_LIM] of "UserDiag_typeDevice"	Diagnostic structure of the devices. See devices [UserDiag_typeDevice].

Note

The array index of the "device" tag corresponds to the device number.

devices [UserDiag_typeDevice]

The PLC data type contains the information of a device (device or slave).

Table 3-7: "UserDiag_typePlc" PLC data type

Tag name	Data type	Meaning
hardwareld	HW_DEVICE	Hardware ID of the device.
number	UInt	Device number / PROFIBUS address.
name	String[50]	Device name.
ipAddress	IP_V4	IP address of the device (for IO system only).
state	USInt	Device state. (See 2.6.2)
exists	Bool	Device exists.
configured	Bool	Device configured.
faulty	Bool	Device faulty.
problem	Bool	Device has a problem.
disabled	Bool	Device disabled.
error	Bool	Error in the device.
nextDevice	Int	Number of the next device.
actualConfigured Slots	Int	Number of configured slots of the device.
slots	Array [0USERDIAG_SLOTS_ PER_DEVICE_UPPER_LIM] of "UserDiag_typeSlot"	Diagnostic structure of the modules. See slots [UserDiag_typeSlot].

Note

The array index of the "slots" tag corresponds to the slot number on the device.

3.3.4 "UserDiag_HmiData" DB

The "UserDiag_HmiData" DB serves as an interface to the visualization. The DB is of the PLC data type "UserDiag_typeHmiData".

[UserDiag_typeHmiData]

Table 3-8: "UserDiag_typeHmiData" PLC data type

Tag name	Data type	Meaning
actIOSystem	Int	Index of the selected IO system.
actDeviceOf Screen	Int	Index of the selected device in the screen.
ioSlotDiagnostics Loaded	Bool	"Device detail view" screen open.
actScreenDevices	Int	Current device overview screen of the selected IO system.
maxScreens Devices	Int	Maximum number of device overview screens of the selected IO system.
ackWaitTime	Int	Wait time after startup for automatic reset of the saved error state in [s].
ackStates	Bool	Reset saved error state.
actIOSystemData	UserDiag_typeActIOSystem	Diagnostic data of the selected IO system. (See actIOSystemData [UserDiag_typeActIOSystem])
actDeviceNumber	UInt	Device number of the selected device.
actDeviceName	String[50]	Device name of the selected device.
actIPAddress	IP_V4	IP address of the selected device.
errorAtLower Screen	Bool	Error on the previous device overview screen of the selected IO system.
errorAtUpper Screen	Bool	Error on the next device overview screen of the selected IO system.
filterErrorDevices	Bool	Filter, only faulty devices are displayed.
ioSystemError	Array [0USERDIAG_IO_ SYSTEMS_UPPER_LIM] of Bool	Error in the IO system.

actIOSystemData [UserDiag_typeActIOSystem]

The data type contains the information of the selected IO system and the selected device or the information of the controller.

Table 3-9: "UserDiag_typeActIOSystem" PLC data type

Tag name	Data type	Meaning
actloSystem Number	Int	Number of the selected IO system.
Numbers PER_SCREEN_UPPER_LIM]		Device numbers / PROFIBUS addresses of the selected IO system.
actIODeviceState	Array [1USERDIAG_DEVICES_ PER_SCREEN_UPPER_LIM] of USInt	State of the devices of the selected IO system.
actDeviceSlots Used	Array [0USERDIAG_SLOTS_ PER_SCREEN_UPPER_LIM] of Bool	Slots used of the selected device. (Determined during startup.)
actDeviceSlots State	Array [0USERDIAG_SLOTS_ PER_SCREEN_UPPER_LIM] of USInt	State of the slots of the selected device.

3.3.5 "UserDiag_PLCCheck" FB

During the first call, the "UserDiag_PLCCheck" FB determines the hardware IDs of the local components. The FB reads the status information of the local modules and evaluates it.

Interfaces

Figure 3-2: Call in "UserDiag_Diagnostics"

Table 3-10: Parameters of the block interface

Туре	Parameter	Data type	Description
Input	plcHwld	HW_DEVICE	Hardware ID of the controller.
InOut	plcData	UserDiag_typePlc	Diagnostic data of the controller and its local modules.
Output	error	Bool	An error occurred while processing the FB. The "status" and "statusID" outputs provide related information about locating the error cause.
	status	Word	Error code of the FB or of a diagnostic instruction that was called internally. The error location within the FB can be additionally read via the "statusID" output.
	statusID	Word	Specifies an additional error code for locating the error cause within the FB.

"status" error code

The following table describes the possible error code:

Table 3-11: Error code at the "status" output

Error code	Description	
16#0000	No error.	
16#8xxx	Error (RET_VAL) of the diagnostic instructions.	
16#8400	Internal error: The number of configured modules exceeds the array limit, "USERDIAG_SLOTS_PER_PLC_UPPER_LIM".	

"statusID" error sources

The following table describes the error sources:

Table 3-12: Error source at the "statusID" output

statusID	Meaning	Note
0	No error.	-
1	Internal error of the FB.	-
2	Error while reading the status information of the modules with "ModuleStates" in mode "1: Modules are configured".	Reserve
3	Error while reading the status information of the modules with "ModuleStates" in mode "2: Modules are faulty".	-
4	Error while reading the status information of the modules with "ModuleStates" in mode "5: A problem has occurred in the modules".	-
5	Error while reading the status information of the modules with "ModuleStates" in mode "4: Modules exist".	-

Functional description

The FB is used to automatically determine the hardware IDs of the local components using the "GEO2LOG" instruction based on the slot information. The slot information is rewritten with a tag of the "GEOADDR" system data type before each call of the instruction.

The "ModuleStates" instruction reads the status information of the local modules for different modes. The FB evaluates this status information.

The hardware IDs and the evaluated diagnostic information are saved in the appropriate structure in the "UserDiag_DiagnosticsData" global data block.

The following figure shows the basic program flow of the FB.

Figure 3-3: Program flow of the FB

3.3.6 "UserDiag_IOSystemCheck" FB

During the first call, the "UserDiag_IOSystemCheck" FB determines the hardware IDs of the components of an IO system. The FB reads the status information of the distributed devices and their modules and evaluates it.

Interfaces

Figure 3-4: Call in the "UserDiag_Diagnostics" FB for IO system 1 and IO system 2

Table 3-13: Parameters of the block interface

Туре	Parameter	Data type	Description
Input	ioSystemHwld	HW_IOSYSTEM	Hardware ID of the IO system.
InOut	ioSystemData	UserDiag_ typeIOSystem	Diagnostic data of the IO system.
Output	error	Bool	An error occurred while processing the FB. The "status" and "statusID" outputs provide related information about locating the error cause.
	status	Word	Error code of the FB or of a diagnostic instruction that was called internally. The error location within the FB can be additionally read via the "statusID" output.
	statusID	Word	Specifies an additional error code for locating the error cause within the FB.

"status" error code

The following table describes the possible error code:

Table 3-14: Error code at the "status" output

Error code	Description	
16#0000	No error.	
16#8xxx	Error (RET_VAL) of the diagnostic instructions.	
16#8400	Internal error: The number of configured modules exceeds the array limit, "USERDIAG_SLOTS_PER_DEVICE_UPPER_LIM".	
16#8401	Internal error: The number of configured devices exceeds the array limit, "USERDIAG_DEVICES_PER_IO_SYSTEM_UPPER_LIM".	

"statusID" error sources

The following table describes the error sources:

Table 3-15: Error source at the "statusID" output

statusID	Meaning	Note
0	No error.	-
1	Internal error of the FB.	-
2	Error while reading the status information of the modules with "ModuleStates" in mode "1: Modules are configured".	Reserve
3	Error while reading the status information of the modules with "ModuleStates" in mode "2: Modules are faulty".	-
4	Error while reading the status information of the modules with "ModuleStates" in mode "5: A problem has occurred in the modules".	-
5	Error while reading the status information of the modules with "ModuleStates" in mode "4: Modules exist".	-
6	Error while reading the status information of the devices with "DeviceStates" in mode "1: Devices are configured".	-
7	Error while reading the status information of the devices with "DeviceStates" in mode "2: Devices are faulty".	-
8	Error while reading the status information of the devices with "DeviceStates" in mode "5: A problem has occurred in the devices".	-
9	Error while reading the status information of the devices with "DeviceStates" in mode "4: Devices exist".	-
10	Error while reading the status information of the devices with "DeviceStates" in mode "3: Devices disabled".	-
11	Error while reading the device name with "GET_NAME".	-

Functional description

The FB is used to automatically determine the hardware IDs of the devices and modules of an IO system using the "GEO2LOG" instruction based on the slot information. The slot information is rewritten with a tag of the "GEOADDR" system data type before each call of the instruction.

The "GET_NAME" instruction reads the names of the PROFIBUS DP slaves / PROFINET IO devices.

The "DeviceStates" and "ModuleStates" instructions read the status information of the devices and their modules for different modes. The FB evaluates the status information.

The hardware IDs and the evaluated status information are saved in the appropriate structure in the "UserDiag_DiagnosticsData" global data block.

The following figure shows the basic program flow of the FB.

Figure 3-5: Program flow of the FB

3.3.7 "UserDiag_Diagnostics" FB

The "UserDiag_Diagnostics" FB calls all diagnostic blocks of the controller and the IO systems.

Interfaces

Figure 3-6: Call in "UserDiag_Main" FB

Table 3-16: Parameters of the block interface

Туре	Parameter	Data type	Description
InOut	startDiag	Bool	Start Diagnostics.
	plcData	UserDiag_typePlc	Diagnostic data of the controller and its local modules.
	ioSystemData	Array [1 USERDIAG_ IO_SYSTEMS_ UPPER_LIM] of UserDiag_typeIoSystem	Diagnostic data of the IO systems. (See ioSystemData [UserDiag_typeIoSystem])

The "UserDiag_Diagnostics" FB is called by the following program blocks:

- "UserDiag_Main"
- "Startup"

Functional description

The diagnostics in the FB "UserDiag_Diagnostics" are only executed, if "statStartDiag" is set to "TRUE" by the system memory bit "DiagStatusUpdate" or by "UserDiag_DiagnosticsData".startDiag.

The "UserDiag_Diagnostics" FB calls the "UserDiag_PLCCheck" FB to evaluate the diagnostic information of the controller and the "UserDiag_IOSystemCheck" FB for each IO system to evaluate the diagnostic information of the IO systems.

NOTE

If you activate a device which is not connected to the bus system with the instruction "D_ACT_DP", it is possible that the system memory bit "DiagStatusUpdate" is not be properly set upon activation. In this case you must start the evaluation of the diagnosis by setting the variable "UserDiag DiagnosticsData".startDiag in the user program.

The following figure shows the basic program flow of the FB.

Figure 3-7: Program flow of the FB

3.3.8 FB "UserDiag_GetIPAddress"

The FB "UserDiag_GetIPAddress" reads the IP addresses of the devices of a PROFINET IO system.

Interfaces

Figure 3-8: Call in "UserDiag_Main" FB

Table 3-17: Parameters of the block interface

Туре	Parameter	Data type	Description
InOut	ioSystemData	UserDiag_ typeIOSystem	Diagnostic data of the IO system.
Output	error	Bool	An error occurred while processing the FB. The "status" and "statusID" outputs provide related information about locating the error cause.
	status	Word	Error code of the instruction "GetStationInfo".
	statusID	Word	ID of the instruction "GetStationInfo".

Functional description

The instruction "GetStationInfo" reads the IP addresses of the PROFINET IO devices of a PROFINET IO system.

The following figure shows the basic program flow of the FB.

Figure 3-9: Program flow of the FB

3.3.9 "UserDiag_DiagnosticsHmi" FB

The "UserDiag_DiagnosticsHmi" FB responds to the inputs made on the HMI and provides the required diagnostic information to the visualization.

Interfaces

Figure 3-10: Call in the "UserDiag_Main" FB

Table 3-18: Parameters of the block interface

Туре	Parameter	Data type	Description
InOut	plcData	UserDiag_typePlc	Diagnostic data of the controller and its local modules.
	ioSystemData	Array [1USERDIAG_ IO_SYSTEMS_ UPPER_LIM] of UserDiag_typelo System	Diagnostic data of the IO systems. (See ioSystemData [UserDiag_typeloSystem])
	actIOSystemData	UserDiag_typeHmiData	Informations for the visualization. (See The DB is of the PLC data type "UserDiag typeHmiData". [UserDiag typeHmiData])

Functional description

After startup and a wait time, the "UserDiag_DiagnosticsHmi" FB resets the saved error state.

The FB responds to the inputs made on the HMI. Following the request, the FB resets the saved error state and supplies the visualization with the requested data, for example:

- Diagnostic information of the controller and its local modules
- Diagnostic information of the IO system
- Diagnostic information of the devices and their modules

The following figure shows the basic program flow of the FB.

Figure 3-11: Program flow of the FB

3.3.10 "UserDiag_Main" FB

The FB "UserDiag_Main" calls all program blocks that are required for diagnostics.

Interfaces

Figure 3-12: Call in "Main" OB

```
"UserDiag_
InstMain"

"FB2000
"UserDiag_Main"

EN ENO
```

Functional description

The FB calls the FBs "UserDiag_Diagnostics", "UserDiag_DiagnosticsHMI" and "UserDiag_GetIPAddresses" for evaluating and visualizing the diagnostics information of the controller.

The following figure shows the basic program flow of the FB.

Figure 3-13: Program flow of the FB

Note

Call the FB "UserDiag_Main" before the processing of your user program, e.g. in the first network of the OB "Main". Thus, the evaluated diagnostics information is consistent for the duration of the cycle.

4 Appendix

4.1 Service and Support

Industry Online Support

Do you have any questions or do you need support?

With Industry Online Support, our complete service and support know-how and services are available to you 24/7.

Industry Online Support is the place to go to for information about our products, solutions and services.

Product Information, Manuals, Downloads, FAQs and Application Examples – all the information can be accessed with just a few clicks: https://support.industry.siemens.com

Technical Support

Siemens Industry's Technical Support offers you fast and competent support for any technical queries you may have, including numerous tailor-made offerings ranging from basic support to custom support contracts.

You can use the web form below to send queries to Technical Support: www.siemens.com/industry/supportrequest.

Service offer

Our service offer includes the following services:

- Product Training
- Plant Data Services
- Spare Part Services
- Repair Services
- Field & Maintenance Services
- Retrofit & Modernization Services
- Service Programs & Agreements

For detailed information about our service offer, please refer to the Service Catalog:

https://support.industry.siemens.com/cs/sc

Industry Online Support app

The "Siemens Industry Online Support" app provides you with optimum support while on the go. The app is available for Apple iOS, Android and Windows Phone: https://support.industry.siemens.com/cs/ww/en/sc/2067

4.2 Links and literature

Table 4-1

No.	Topic		
\1\	Siemens Industry Online Support		
	https://support.industry.siemens.com		
\2\	Link to the entry page of the application example		
	https://support.industry.siemens.com/cs/ww/en/view/109483251		
\3\	System Diagnostics with S7-1500 and TIA Portal		
	https://support.industry.siemens.com/cs/ww/en/view/68011497		
\4\	STEP 7 Professional V14 SP1 System Manual		
	https://support.industry.siemens.com/cs/ww/en/view/109747136		
\5\	S7-1200 Systemhandbuch		
	https://support.industry.siemens.com/cs/ww/de/view/109478121		

4.3 Change documentation

Table 4-2

Version	Date	Modifications
V1.0	09/2014	First version
V2.0	01/2018	Evaluation of the diagnostics in OB "Main". The evaluation is triggered by the system memory bit "DiagStatusUpdate".