Index

A	11 04
Abelian groups	vol.1: p.24
Adjoint operators	vol.1: pp.43 - 44,87,103
Adjugate matrix	vol.2: pp.120 - 121
Affine spaces	vol.1: p.93
Asymptotically stable	vol.2: p.76
Attracting fixed point	vol.2: p.76
Autonomous systems	vol.1:p.7
B	
Basin boundary	vol.2: p.89
Basin of attraction	vol.2:p.89
Basis	vol.2: pp.125 - 127
Bifurcation	vol.1: pp.11 - 12, 63 - 64
Body velocity	vol.1:p.38
C	
Causal systems	vol.2:p.152
	vol.3: pp.3-4
Cayley-hamilton theorem	vol.2: pp.139 - 140
Centroid of area	vol.1: pp.4-6
Characteristic equation	vol.2: pp.77, 138 - 139
Column space	vol.2: pp.133 - 134
Connection vector field	vol.1: pp.118 - 119
Conservative system	vol.2: pp.89 - 91, 103
Conservative vector fields	vol.1: pp.145 - 146
Conserved quantity	vol.2:p.90
Constraint, holonomic	vol.1:pp.76-77
Constraint, nonholonomic	vol.1: pp.110 - 117, 135 - 136
Contour	vol.2: pp.91-92
Convolution	vol.3:pp.2-4
Convolution (discrete)	vol.3:pp.14,17
Coordinate transformation matrix	vol.2: pp.128 - 129
Coordinate vector	vol.2: pp.126 - 127
Corange	vol.2:pp.51-54
Corank	vol.2: pp.51 - 54
Cotangent bundle	vol.1:p.126
Cotangent space	vol.1:p.126
Cotangent vector	vol.1: pp.127 - 130
Cramer's rule	vol.2: p.121
Cross product	vol.1: pp.1-2
Curl (vector)	vol.1: p.145
Curvature (constraint)	vol.1: pp.144 - 145
D	
Dead zone nonlinearity	vol.2:p.151
Deficient matrix	vol.2: pp.140 - 141
Degenerate matrix	vol.2: p.139
O	r = 0

Degrees of freedom	vol.1:p.17
Determinant	vol.2: pp.78 - 81, 115 - 119
Diagonalization	vol.2: pp.142 - 144
Diffeomorphic	vol.1: p.20
Differential-algebraic equations	vol.2: pp.41 - 44,47 - 48
Differential-algebraic equations, differentiation index	vol.2: pp.47 - 48
Differential-algebraic equations, model consistency	vol.2: p.44
Differential-algebraic equations, regularity	vol.2: p.45
Differential-algebraic equations, solution	vol.2: p.44
Dimension (of a vector space)	vol.2: pp.125 - 126
Direct product of two sets	vol.1: p.20
Direct sum	vol.1: p.20
Direct sum of two sets	vol.1: p.125
Directional linearity	vol.1: p.106
Distribution (allowable velocities)	vol.1: pp.112, 148 - 150
Dot product	vol.2: pp.134 - 135
E	11
Eigenspace	vol.2:p.140
Eigenvalue	vol.2: pp.77, 138 - 145
Eigenvector	vol.2: pp.76 - 77, 138 - 145
Elementary row operators	vol.2: p.107
Embedding	vol.1:p.96
Equilibrium point	vol.3: pp.1, 5-10
Equivalent vectors w.r.t. functions	vol.1: pp.100 - 101
Euler-lagrange equation	vol.1: p.136
Existence and uniqueness theorem	vol.1: pp.11, 13
•	vol.2:p.82
Exponential map	vol.1: pp.48 - 51, 103 - 104
External forces	vol.1:p.1
F	
Force couple	vol.1:p.2
Force couple system	vol.1:p.3
Forward euler integration	vol.2:p.148
Forward kinematics	vol.1: pp.78, 83 - 84
Fundamental vector field (infinitesimal generators)	vol.1: pp.99 - 100
G	
Gait generation	vol.1:p.124
Gaussian elimination	vol.2:p.104
Generalized coordinates	vol.1:p.78
Geodesics	vol.1: pp.44 - 46, 51, 96 - 99
Gradient vector field	vol.1: pp.129 - 130
Gram schmidt orthogonality procedure	vol.2:p.137
Group	vol.1: pp.21, 94-95
Group invariant vectors	vol.1:p.100
Group, left/right action	vol.1: pp.24-29, 33, 80, 96, 137
Group, symmetry	vol.1: pp.108 - 109, 137
H	

Hartman-grobman theorem	vol.2:p.88
Heteroclinic trajectory	vol.2:p.94
Holonomic constraint	vol.1: pp.76-77
Homeomorphic	vol.1:p.19
	vol.2:p.88
Homogeneity	vol.3:p.1
Homogeneous equations	vol.2:p.105
Hyperbolic fixed point	vol.2: pp.87 - 88
Hysteresis	vol.1: pp.66, 70 - 71
11,50010010	vol.2: p.42
I	000.2 . p. 12
Idempotent	vol.2:p.37
Image (algebra)	vol.1: p.124
	-
Impulse response	vol.3: pp.19 - 20
Index theory	vol.2: pp.98 - 101
Inner product	vol.2: pp.134 - 135
Internal forces	vol.1: p.1
Intersection (spaces)	vol.2: pp.130 - 131
Invariance	vol.1: p.139
Isocline	vol.2: pp.74, 84
Isomorphic	vol.1:p.22
J	
Jacobi-liouville formula	vol.3:p.27
Jacobian	vol.1: pp.84 - 86
	vol.2:p.85
K	
Kernel	vol.1: pp.124 - 125
Kinematic locomotion	vol.1: pp.105 - 107
L	
Lagrangian	vol.2:p.45
Lagrangian multipliers	vol.2: pp.45-46
Laplace transform	vol.2:p.147
	vol.3:p.29
Liapunov fixed point	vol.2:p.76
Lie algebra	vol.1: pp.41, 98-100, 103, 151-152
Lie bracket	vol.1: pp.148 - 150
	vol.2:p.1
Lie groups	vol.1: pp.21, 96 - 99
Lifted actions	vol.1: pp.31 - 42, 52 - 54, 85, 137 - 138
Linear combination	vol.2:p.124
Linear equations	vol.2: p.104
Linear independence	vol.2: pp.124 - 125
Linear time invariance	vol.2: p.152
Zinom viino internation	vol.3: p.89 = 9,17
Linear transformation	vol.2: pp.131 - 133
Linearity	vol.2 : pp.151 - 155 vol.3 : p.15
Linearity Linearity (mapping)	vol.3 : p.13 vol.1 : pp.106 - 107
Emourey (mapping)	pp.100 - 101

Linearity (systems)	vol.2:p.152
	vol.3:p.1
Linearization at a fixed point	vol.1: pp.10 - 11
	vol.2: pp.84 - 85
	vol.3: pp.1, 7-10
Local connection	vol.1: pp.114 - 117, 120, 122 - 123, 130, 142
Locomotion	vol.1:p.104
Lotka-volterra model of competition	vol.2:p.88
M	
Manifolds	vol.1: pp.17 - 19,93
Manifolds, accessible	vol.1: pp.76 - 78
Manifolds, c^k -differentiable	vol.1:p.20
Manifolds, curvature	vol.1:p.93
Manifolds, stable	vol.2:p.89
Manifolds, topology	vol.1:p.93
Markov parameters	vol.3:p.20
Matrix cofactor	vol.2: pp.111, 118 - 120
Matrix determinant	vol.2: pp.115 - 119
Matrix inverse	vol.2: pp.110 - 115
Matrix minor	vol.2:p.111
Matrix operations	vol.2:p.106
Matthew equation	vol.3:p.27
Memoryless systems	vol.2:p.152
v	vol.3:p.4
Model consistency	vol.2:p.44
Modular addition	vol.1:p.21
Momentum	vol.1: pp.138 - 140
Monotonic function	vol.1:p.13
Multiplicative calculus	vol.1: pp.34 - 38,46 - 47
N	,
Neumann series	vol.3:p.22
Neutrally stable	vol.2:p.76
Noether's theorem	vol.1: pp.131 - 134
Noncommutativity	vol.1:p.147
Nonconservativity	vol.1: pp.145 - 147
Nonholonomic constraint	vol.1: pp.110 - 117, 135 - 136
Nullcline	vol.2:p.84
Nullity	vol.2: p.134
Nullspace	vol.2: pp.132 - 134
O O	000.2 . pp.102 101
One-form	vol.1: pp.125, 127 - 129
Optimal frame	vol.1 : p.83
Orthogonal compliment	vol.2: pp.137 - 138
Orthogonal set	vol.2: pp.137 = 138 vol.2: p.135
Orthonormal	vol.2: pp.135 - 136
Orthonormal basis	vol.2 : pp.135 = 130 vol.2 : p.136
Ottoolormar basis Outer product	vol.2 : p.136 vol.2 : p.136
Outer product	voi.2 : p.150

Overdetermined system	vol.2:pp.19,41
P	
Pfaffian constraint	vol.1: pp.111 - 117
Phase (angle)	vol.2:p.61
Phase coordinate form	vol.3:p.6
Phase drift	vol.2:p.68
Phase lock	vol.2:p.67
Phase portrait	vol.1: pp.7-9
	vol.2: pp.74, 83
Poles (transfer function)	vol.2:p.147
Position trajectory	vol.1:p.105
Potentials	vol.1:p.17
Preimage (algebra)	vol.1:p.124
Principally kinematic system	vol.1:p.139
Principle of least action	vol.1: pp.131 - 133
Projection operator	vol.2:p.37
R	
Range (matrix)	vol.2: pp.132 - 133
Range of entrainment	vol.2: pp.68 - 69
Rank	vol.2: pp.51, 53 - 54, 132 - 134
Reaction force	vol.1:p.4
Realization theory	vol.2:p.149
Reconstruction equation	vol.1: pp.114 - 123, 138
Regular control problem	vol.2:p.45
Resolvent	vol.3:pp.17-18
Reversible system	vol.2: pp.92 - 95
Rigid body	vol.1:p.23
Rigid body, left lifted action	vol.1: pp.38-41
Rigid body, right lifted action	vol.1: pp.41-43
Row echelon form	vol.2:p.107
Row space	vol.2:p.134
Runge-kutta method	vol.2:p.83
S	
Saddle connection	vol.2:p.94
Semidirect product of two sets	vol.1:p.24
Separatrix	vol.2:p.89
Shape trajectory	vol.1:p.105
Shift operator	vol.3:pp.1-2
Similar matrices	vol.2:p.142
Singular matrix	vol.2: pp.41-42, 51, 110, 122
Solution, differential-algebraic equations	vol.2:p.44
Span	vol.2: pp.124 - 125
Spatial velocity	vol.1:pp.43,85
Special euclidean group	vol.1:p.23
	vol.2: pp.1-2
Special orthogonal group, $so(n)$	vol.1:p.22
	vol.2: pp.1-2

Stable	vol.2:p.76
State space model	vol.2: pp.147 - 150
	vol.3:p.5
State transition matrix	vol.3:pp.11-13
State vector	vol.2: pp.147 - 149
	vol.3:p.5
Strain energy	vol.2:pp.5-7
Structural stability	vol.2:p.88
Subspace	vol.2: pp.129 - 130
Sum (spaces)	vol.2: pp.130 - 131
Superposition	vol.3:pp.1,13
Symmetric matrix	vol.2:p.144
Symmetry	vol.1: pp.108-109, 131
T	
Tangent spaces	vol.1: pp.29 - 30
Taylor series expansion	vol.3:pp.7-8
Tensor product	vol.1:p.20
Time invariance	vol.2:p.152
	vol.3:pp.1-4
Time-reversal symmetry	vol.2: pp.92 - 93
Toeplitx matrix	vol.3:p.3
Trace	vol.2: pp.78 - 80
Transfer function	vol.2: pp.146 - 147, 150
	vol.3: pp.18-20
U	
Underactuated system	vol.1:p.104
Underdetermined system	vol.2:pp.19,41
Unstable	vol.2:p.76
V	
Varignon's theorem	vol.1:p.1
Vector field	vol.1: pp.30 - 31
	vol.2:p.74
Vector mapping	vol.2:p.127
Vector space	vol.2: pp.122 - 123
Vertical space	vol.1:p.125
W	
Work (mechanical)	vol.1:p.145
Z	
Z-transform	vol.3: pp.14-22
Zero set	vol.1: pp.76, 110-111
Zeros (transfer function)	vol.2:p.147
•	