Geometria e Algebra - MIS-Z

Secondo appello - Luglio

03/07/2023

Nome e Cognome:		
Corso di laurea:		
Matricola:		

Informazioni

Questo appello contiene 5 esercizi per un totale di 34 punti (di cui 2 punti sono attribuiti in base alla qualità della redazione). Il punteggio ottenuto x sarà convertito in 30esimi nella maniera seguente:

- se $x \leq 30$, allora x sarà il voto in 30esimi;
- se $30 < x \le 34$, allora il voto sarà 30 e Lode.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Le risposte devono inoltre essere inserite negli appositi spazi bianchi e si potranno allegare fogli supplementari solo previa autorizzazione della docente.

Il tempo a disposizione è di 3 ore. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio
1	
2	
3	
4	
5	
Redazione	

TOTALE

ESERCIZIO 1 [6 punti]. Vero o Falso?

Per ciascun asserto si stabilisca se è vero o falso, motivando in modo conciso ed esauriente la risposta.

(a) I vettori (1,0,0,0), (1,1,0,0), (1,1,1,0) generano \mathbb{R}^4 .

 \square VERO

 \Box FALSO

(b) L'applicazione lineare

$$f: \quad \mathbb{R}^2 \quad \to \quad \mathbb{R}^2$$
$$(x,y) \quad \mapsto \quad (0,x+y).$$

è iniettiva.

 \square VERO

 \square FALSO

(c)	Nel piano \mathbb{E}^2 , la retta r passante per i punti $(1,0)$ e $(0,-3)$ e la retta s passante per i punti $(-2,1)$ e $(4,-1)$ sono perpendicolari.
	□ VERO
	\Box FALSO
(d)	Siano $A, B \in \mathcal{M}_2(\mathbb{R})$ due matrici invertibili. Allora la matrice $A + B$ è invertibile. \square VERO

ESERCIZIO 2 [6 punti]. Sistema con parametro.

Al variare di $k \in \mathbb{R}$ si discuta la compatibilità del sistema

$$\begin{cases} kX_1 + 2X_2 - X_3 + X_4 = 1\\ X_2 + 2X_3 + kX_4 = 0\\ kX_1 + X_2 - 3X_3 - 2X_4 = 1\\ X_1 + X_3 = 1 \end{cases}$$

e, quando il sistema è compatibile, se ne determinino il "numero" delle soluzioni e l'insieme delle soluzioni. Si riassuma quanto trovato nella tabella seguente:

k	Compatibile?	Numero di soluzioni	Insieme delle soluzioni

ESERCIZIO 3 [7 punti]. Una famiglia di endomorfismi di \mathbb{R}^3 .

Per $k \in \mathbb{R}$ si consideri l'endomorfismo

$$f_k: \mathbb{R}^3 \to \mathbb{R}^3 (x, y, z) \mapsto (3x + kz, 12x + 3y + 4z, -6x + ky + z).$$

(a) Si mostri che f_k è un isomorfismo per ogni $k\in\mathbb{R}.$

(b) Si richiami la definizione di autovettore e di autovalore di un endomorfismo di uno spazio vettoriale.

(c) Si determini
no i valori di k per cui il vettore (1,2,1) è un autovettore di f_k . Per tali valori di k si determini l'autovalore corrispondente.

(d) Per k=0, si determini se f_0 è diagonalizzabile e in caso affermativo si trovi una base diagonalizzante.

ESERCIZIO 4 [6 punti]. Geometria nello spazio.

Si consideri lo spazio \mathbb{E}^3 con il riferimento cartesiano standard.

(a) Si considerino i punti A(0,-1,-1), B(3,2,1) e C(1,1,0) di \mathbb{E}^3 . Dopo aver mostrato che A,B e C non sono allineati, si determini il punto D tale che ABCD sia un parallelogramma e se ne determini l'area.

(b) Si scrivano le equazioni parametriche e un'equazione cartesiana del piano π passante per i punti A,B e C.

(c) Sia $k \in \mathbb{R}$. Si consideri il piano π_k definito dall'equazione cartesiana

$$\pi_k : kX + (4-k)Y - 3kZ - k = 0.$$

Al variare di k si determini la posizione reciproca di π e π_k . Per i valori di k per cui π e π_k sono paralleli si calcoli la distanza tra i due piani.

ESERCIZIO 5 [7 punti]. Sottospazi vettoriali e somma diretta.

(a) Sia V uno spazio vettoriale su un campo K e siano U e W due sottospazi vettoriali di V. Si definisca quando V è somma diretta di U e di W.

(b) Sia V uno spazio vettoriale su un campo K e siano U e W due sottospazi vettoriali di V. Si dimostri che se $V = U \oplus W$ allora ogni elemento di V si scrive in modo unico come somma di un elemento di U e di un elemento di W.

(c) Sia $h \in \mathbb{R}$ e sia

$$U_h = Span\{(h, -2, 1, 1), (-1, h, 1, 0), (6, 4, h, 2), (3, 2, 2, 1)\} \subseteq \mathbb{R}^4.$$

Al variare di h si determini la dimensione di U_h .

(d) Per h=4 si determini un sottospazio W di \mathbb{R}^4 tale che $\mathbb{R}^4=U_4\oplus W$.