OSCILADORES A CRISTAL

OSCILADORES A CRISTAL - PIEZOELECTRICIDAD (I)

- Descubierta por los hermanos Curie (Pierre y Jacques) en 1880.

Piezoelectricidad = Piezo (Piezein = Fuerza o presión en Griego + Electricidad

"Conjunto de fenómenos eléctricos que se manifiestan en algunos cuerpos sometidos a presión u otra acción mecánica". (VOX)

"Appearance of positive electric charge on one side of certain nonconducting crystals and negative charge on the opposite side when the crystals are subjected to mechanical pressure". Enciclopedia Británica

Materiales naturales: Turmalina, Cuarzo, Sal de la Rochelle, Azúcar de caña.

Materiales artificiales: Berlinita (AIPO4), Ortofosfato de Galio(GaPO4), BaTiO3, KNbO3, LiNbO3, LiTaO3, BiFeO3, NaxWO3, Ba2NaNb5O5, Pb2KNb5O15), y muchos otros.

Aplicaciones: Osciladores, alineamiento de láseres, micrófonos, sonar, mecheros, etc.

OSCILADORES A CRISTAL – HITOS EN LA TECNOLOGIA DEL CUARZO

1880	Jacques y Pierre Curie descubren el efecto piezoeléctrico.
1905	 G. Spezia crece el primer cristal de cuarzo en un laboratorio.
1917	Primera aplicación del efecto piezoeléctrico en un sonar.
1918	Primera utilización del cuarzo en un oscilador.
1926	Primera estación de radiodifusión dotada de cristal de cuarzo.
1927	Se descubre la primera talla compensada en temperatura.
1927	Primer reloj con cristal de cuarzo.
1934	Se desarrolla la talla AT.
1949	Se desarrollan las tallas AT de alto Q.
1956	Primera tecnología comercial de crecimiento de cristales.
1956	Primer TCXO.
1972	Desarrollo de cristales miniatura. Reloj de pulsera a cristal.
1974	Se predice la talla SC (y TS/TTC); Se verifica en 1976.
1982	Primer MCXO autocompensado en temperatura.

OSCILADORES A CRISTAL - PIEZOELECTRICIDAD (II)

Cuarzo: SiO₂ cristal con estructura hexagonal de Silicio triagonal

OSCILADORES A CRISTAL - PIEZOELECTRICIDAD (III)

OSCILADORES A CRISTAL - PIEZOELECTRICIDAD (IV)

MODOS DE VIBRACIÓN

Puntos nodales

Flexión

Extensión

Corte

Espesor

Espesor en modo fundamental

Espesor en 3er overtono

OSCILADORES A CRISTAL – PIEZOELECTRICIDAD (V) FRECUENCIA DE VIBRACIÓN

La frecuencia de Resonancia (vibración) de un cristal depende de:

- Dimensiones físicas del cristal
- Tipo de talla
- Constantes de elasticidad del cristal
- Modo de vibración
- Temperatura
- Aceleración
- Efectos de Radiaciones, etc.

P.e. cristal vibrando en espesor: fo (KHz) = 1630 / e (mm) Para fo = 2 MHz —→0,815 mm

La relación entre fuerzas aplicadas, elongación, compresión, cargas generadas y d.d.p. aplicadas es de tipo Tensiorial

Constantes Piezoeléctricas:

- d (C/N) (carga desarrollada / fuerza aplicada)
- g (V/ m.N) (campo eléctrico desarrollado / fuerza aplicada)
- e (N.m /V) (fuerza desarrollada / campo aplicado

Coeficiente de Acoplamiento Electromecánico

K mide el intercambio entre energía eléctrica y mecánica.

	d [pC/N]	ε_r
Quartz	d ₁₁ =2.31, d ₁₄ =0.73	4.5
PZT	d ₃₃ =80~593, d ₃₁ =-94~-274	500~ 2000
PVDF	d ₃₃ =-35, d ₃₁ =23	4
ZnO	d ₃₃ =12, d ₃₁ =-4.7	1400

EFECTO PIEZOELÉCTRICO DEL CUARZO - TALLAS (I)

Presión		Campo en el eje:			Z∱	
		Х	Υ	Z	/ :\	
←	Х					
De Extensión a lo	Υ				I Y	
largo de:	Z				X • +	
	X	7				
De Corte o	Υ	•	√.		Y	
Espesor:	Z		1			

EQUIVALENCIAS ELECTRO-MECÁNICAS: CIRCUITO EQUIVALENTE (I)

Ley Mecanica

$$F = m \cdot \frac{\partial^2 l}{\partial t^2}$$

Ley Electrica

$$V = L \cdot \frac{\partial^2 q}{\partial t^2}$$

EQUIVALENCIAS ELECTRO-MECÁNICAS

Propiedad Mecánica	Equivalencia Eléctrica	
Masa	Inductancia	
Pérdidas por fricción	Resistencia	
Desplazamiento	Carga eléctrica	
Velocidad	Intensidad de corriente	
Fuerza	Diferencia de Potencial	
Elasticidad	Capacidad	

SÍmbolo eléctrico Capacidad del encapsulado y terminales

Elasticidad del cristal (elongación o compresión por unidad de fuerza)

Masa del cristal

Fricción entre los átomos de Si y O en la vibración

EQUIVALENCIAS ELECTRO-MECÁNICAS: CIRCUITO EQUIVALENTE (II)

Material: Cuarzo (SiO2)

Parámetro	Frecuencia: 200 KHz Fundamental	Frecuencia: 2 MHz Fundamental	Frecuencia: 30 MHz 3er Overtono	Frecuencia: 90 MHz 5° Overtono
R1	2 ΚΩ	100 Ω	20 Ω	40 Ω
L1	27 H	520 mH	11 mH	6 mH
C1	0,024 pF	0,012 pF	0,0026 pF	0,0005 pF
Со	9 pF	9 pF	6 pF	4 pF
Factor de Calidad Q	18·10³	54·10 ³	10 ⁵	85·10 ³

OSCILADORES A CRISTAL - ENCAPSULADO

Encapsulado HC

HC-35/U (TO5)

HC-36/U HC-47/U

HC-37/U

HC-42/U HC-43/U

HC-45/U

OSCILADORES A CRISTAL - FRECUENCIAS DE RESONANCIA (I)

Sean
$$Z_0 \triangleq \frac{1}{j\omega \cdot C_0}$$
 (1) $y Z_1 \triangleq R_1 + j \left(\omega \cdot L_1 - \frac{1}{\omega \cdot C_1}\right)$ (2)

las impedancias de las dos ramas del circuito equivalente del cristal.

La impedancia total que presenta el mismo entres bornas para cualquier frecuencia es:

$$Z_{AB}(\omega) = Z_0 / / Z_1 = \frac{Z_0 \cdot Z_1}{Z_0 + Z_1} = \frac{\frac{1}{j\omega \cdot C_0} \cdot \left[R_1 + j \left(\omega \cdot L_1 - \frac{1}{\omega \cdot C_1} \right) \right]}{R_1 + j \left(\omega \cdot L_1 - \frac{1}{\omega \cdot C_1} - \frac{1}{\omega \cdot C_0} \right)} = \frac{\frac{-j \cdot R_1}{\omega \cdot C_0} + \frac{\omega \cdot L_1 - \frac{1}{\omega \cdot C_1}}{\omega \cdot C_0}}{R_1 + j \left(\omega \cdot L_1 - \frac{1}{\omega \cdot C_1} - \frac{1}{\omega \cdot C_0} \right)} = \frac{\frac{-j \cdot R_1}{\omega \cdot C_0} + \frac{\omega \cdot L_1 - \frac{1}{\omega \cdot C_0}}{\omega \cdot C_0}}{R_1 + j \left(\omega \cdot L_1 - \frac{1}{\omega \cdot C_1} - \frac{1}{\omega \cdot C_0} \right)} = \frac{\frac{-j \cdot R_1}{\omega \cdot C_0} + \frac{\omega \cdot L_1 - \frac{1}{\omega \cdot C_0}}{\omega \cdot C_0}}{R_1 + j \left(\omega \cdot L_1 - \frac{1}{\omega \cdot C_0} - \frac{1}{\omega \cdot C_0} \right)}$$

$$= \frac{a + j \cdot b}{c + j \cdot d} = \frac{(a + j \cdot b) \cdot (c + j \cdot d)}{c^2 + d^2} = \frac{(a \cdot c + b \cdot d) + j \left(b \cdot c - a \cdot d \right)}{c^2 + d^2}$$
(3)

donde hemos llamado:
$$a \triangleq \frac{\omega \cdot L_1 - \frac{1}{\omega \cdot C_1}}{\omega \cdot C_0}$$
; $b \triangleq \frac{-R_1}{\omega \cdot C_0}$; $c \triangleq R_1$; $d \triangleq \omega \cdot L_1 - \frac{1}{\omega \cdot C_1} - \frac{1}{\omega \cdot C_0}$ (4)

Se definen como

frecuencias de resonancia del cristal a aquellas para las cuales se anula la parte reactiva de la impedancia

de (3) debe cumplirse que $b \cdot c - a \cdot d = 0 \Rightarrow$

$$\Rightarrow \frac{b}{a} = \frac{d}{c} \Rightarrow \frac{\frac{-R_1}{\omega \cdot C_0}}{\underbrace{\omega \cdot L_1 - \frac{1}{\omega \cdot C_1}}} = \frac{\omega \cdot L_1 - \frac{1}{\omega \cdot C_1} - \frac{1}{\omega \cdot C_0}}{R_1} \Rightarrow \text{operando y simplificando:}$$

OSCILADORES A CRISTAL - FRECUENCIAS DE RESONANCIA (II)

$$-R_1^2 = \left(\omega \cdot L_1 - \frac{1}{\omega \cdot C_1}\right) \cdot \left(\omega \cdot L_1 - \frac{1}{\omega \cdot C_1} - \frac{1}{\omega \cdot C_0}\right)$$
(5) operando y simplificando queda:

$$\omega^4 + \omega^2 \cdot \left[\frac{-2}{L_1 \cdot C_1} + \left(\frac{R_1}{L_1} \right)^2 - \frac{1}{L_1 \cdot C_0} \right] + \left(\frac{1}{L_1^2 \cdot C_1^2} + \frac{1}{L_1^2 \cdot C_1 \cdot C_0} \right) = 0 \quad (6)$$

que es una ecuación de cuarto grado. Haciendo el cambio de variable $x = \omega^2$ resulta:

$$x^{2} + x \cdot \left[\frac{-2}{L_{1} \cdot C_{1}} + \left(\frac{R_{1}}{L_{1}} \right)^{2} - \frac{1}{L_{1} \cdot C_{0}} \right] + \left(\frac{1}{L_{1}^{2} \cdot C_{1}^{2}} + \frac{1}{L_{1}^{2} \cdot C_{1} \cdot C_{0}} \right) = 0 \quad (7) \text{ cuyas soluciones son:}$$

$$\omega^{2} = x = \frac{1}{2} \left[\frac{2}{L_{1} \cdot C_{1}} + \frac{1}{L_{1} \cdot C_{0}} - \left(\frac{R_{1}}{L_{1}} \right)^{2} \right] \pm \sqrt{\left\{ \left[\frac{-2}{L_{1} \cdot C_{1}} + \left(\frac{R_{1}}{L_{1}} \right)^{2} - \frac{1}{L_{1} \cdot C_{0}} \right]^{2} - 4 \cdot \left(\frac{1}{L_{1}^{2} \cdot C_{1}^{2}} + \frac{1}{L_{1}^{2} \cdot C_{1} \cdot C_{0}} \right) \right\}} (8)$$

desarrollemos el termino bajo la raiz cuadrada:

$$\left\{ \left[\frac{-2}{L_1 \cdot C_1} + \left(\frac{R_1}{L_1} \right)^2 - \frac{1}{L_1 \cdot C_0} \right]^2 - 4 \cdot \left(\frac{1}{L_1^2 \cdot C_1^2} + \frac{1}{L_1^2 \cdot C_1 \cdot C_0} \right) \right\}^{\frac{1}{2}} = \left[\left(\frac{1}{2 \cdot L_1 \cdot C_0} - \frac{R_1^2}{2 \cdot L_1^2} \right)^2 - \frac{R_1^2}{L_1^3 \cdot C_1} \right]^{\frac{1}{2}} \tag{9}$$

OSCILADORES A CRISTAL - FRECUENCIAS DE RESONANCIA (III)

para cualquier cristal real se cumple que: $\left(\frac{1}{2 \cdot L_1 \cdot C_0} - \frac{R_1^2}{2 \cdot L_1^2}\right)^2 >> \frac{R_1^2}{L_1^3 \cdot C_1}$

p.e. para un cristal a 2 MHz con $R_1 = 100\Omega$, $L_1 = 520$ mH, $C_1 = 0,012$ pF y $C_0 = 9$ pF se tiene:

$$\left(\frac{1}{2 \cdot L_1 \cdot C_0} - \frac{R_1^2}{2 \cdot L_1^2}\right)^2 = 1,141 \cdot 10^{22} \text{ y } \frac{R_1^2}{L_1^3 \cdot C_1} = 5,926 \cdot 10^{18}, \text{ por lo tanto se puede poner:}$$

$$\left[\left(\frac{1}{2 \cdot L_1 \cdot C_0} - \frac{{R_1}^2}{2 \cdot L_1^2} \right)^2 - \frac{{R_1}^2}{{L_1}^3 \cdot C_1} \right]^{\frac{1}{2}} \simeq \frac{1}{2 \cdot L_1 \cdot C_0} - \frac{{R_1}^2}{2 \cdot L_1^2} \text{ de esta manera (8) queda como:}$$

$$\omega^{2} = x = \frac{1}{2} \left[\frac{2}{L_{1} \cdot C_{1}} + \frac{1}{L_{1} \cdot C_{0}} - \left(\frac{R_{1}}{L_{1}} \right)^{2} \right] \pm \frac{1}{2 \cdot L_{1} \cdot C_{0}} - \frac{R_{1}^{2}}{2 \cdot L_{1}^{2}} \text{ y finalmente:}$$

$$f_{resonancia} = \frac{1}{2\pi} \left\{ \left[\frac{1}{L_1 \cdot C_1} + \frac{1}{2 \cdot L_1 \cdot C_0} - \frac{R_1^2}{2 \cdot L_1^2} \right] \pm \left(\frac{1}{2 \cdot L_1 \cdot C_0} - \frac{R_1^2}{2 \cdot L_1^2} \right) \right\}^{\frac{1}{2}}$$
 (10)

de esta forma tenemos dos frecuencias de resonancia del cristal:

OSCILADORES A CRISTAL - FRECUENCIAS DE RESONANCIA (IV)

tomando el signo negativo queda:

■ Frecuencia de Resonancia Serie (fs):

$$f_{s} = \frac{1}{2\pi} \left(\frac{1}{L_{1} \cdot C_{1}} \right)^{\frac{1}{2}} = \frac{1}{2\pi\sqrt{L_{1} \cdot C_{1}}}$$
 (11)

De la misma forma empleando el signo positivo queda:

■ Frecuencia de Resonancia Paralelo (fp):

$$f_p = \frac{1}{2\pi} \left(\frac{1}{L_1 \cdot C_1} + \frac{1}{L_1 \cdot C_0} - \frac{{R_1}^2}{L_1^2} \right)^{\frac{1}{2}}$$
 en todo cristal real se verifica siempre que $\frac{1}{L_1 \cdot C_1} + \frac{1}{L_1 \cdot C_0} >> \frac{{R_1}^2}{L_1^2}$

asi con el cristal anterior se tiene: $\frac{1}{L_1 \cdot C_1} + \frac{1}{L_1 \cdot C_0} = 1,604 \cdot 10^{14} \text{ y } \frac{R_1^2}{L_1^2} = 36982$, con lo que la frecuencia

de resonancia paralelo queda en la forma:

$$f_p = \frac{1}{2\pi} \left(\frac{1}{L_1 \cdot C_1} + \frac{1}{L_1 \cdot C_0} \right)^{\frac{1}{2}} = \frac{1}{2\pi} \sqrt{\frac{1}{L_1} \left(\frac{C_1 + C_0}{C_1 \cdot C_0} \right)}$$
(12)

Observando (11) se tiene que la frecuencia de resonancia Serie de todo el cristal coincide con aquella a la que resuena en serie la rama "dinámica" del mismo. De la misma forma, (12) expresa que la de resonancia Paralelo coincide con la que resonaría L1 con un condensador "virtual" formado por C1 en serie con Co.

OSCILADORES A CRISTAL - FRECUENCIAS DE RESONANCIA (V)

Puesto que C1 es siempre muy inferior a Co, es habitual expresar la fp en la forma:

$$f_p = \frac{1}{2\pi} \cdot \left(\frac{1}{L_1 \cdot C_1} + \frac{1}{L_1 \cdot C_0}\right)^{\frac{1}{2}} = \frac{1}{2\pi} \left(\frac{1}{L_1 \cdot C_1}\right)^{\frac{1}{2}} \cdot \left(1 + \frac{C_1}{C_0}\right)^{\frac{1}{2}} = f_s \cdot \left(1 + \frac{C_1}{C_0}\right)^{\frac{1}{2}} \text{ y como}$$

 $C_1 \ll C_0$ haciendo un Desarrollo en Serie de Taylor de $(1+x)^{\frac{1}{2}} \simeq 1 + \frac{x}{2}$ con $x \ll 1 \Rightarrow$

$$f_p \simeq f_s \cdot \left(1 + \frac{C_1}{2 \cdot C_0}\right) \tag{13}$$

Puesto que $C_1/2$. C_0 es muy pequeño, ambas frecuencias de resonancia en todo cristal están muy próximas. Llamando Δf =fp – fs se tiene:

$$\Delta f = f_p - f_s = f_s \cdot \frac{C_1}{2 \cdot C_0} \Rightarrow \boxed{\frac{\Delta f}{f_s} = \frac{C_1}{2 \cdot C_0}}$$
 (14)

para el cristal de nuestro ejemplo se tiene: fs=2,014780953 MHz y fp=2,016123694 MHz ⇒

$$\Delta f = 1.342,741 \text{ Hz}; \frac{\Delta f}{f_s} = 666,4\cdot10^{-6} \text{ y } \frac{C_1}{2\cdot C_0} = 666,6\cdot10^{-6}.$$

o lo que es lo mismo: fp difiere de fs en 666 p.p.m. (partes por millon).

RESONADOR A CRISTAL - FRECUENCIAS DE RESONANCIA (VI)

Se puede hacer un análisis rápido y simplificado del comportamiento del cristal si se desprecia "a priori" el efecto de las pérididas representado por R1:

Sean como antes
$$Z_0 \triangleq \frac{1}{j \omega \cdot C_0}$$
 y $Z_1 \triangleq R_1 + j \left(\omega \cdot L_1 - \frac{1}{\omega \cdot C_1} \right)$

las impedancias de las dos ramas del circuito equivalente del cristal.

La impedancia total que presenta el mismo entres bornas para cualquier frecuencia es:

$$Z_{AB}(\omega) = Z_0 / / Z_1 = \frac{Z_0 \cdot Z_1}{Z_0 + Z_1} = \frac{\frac{1}{j\omega \cdot C_0} \cdot \left[j \left(\omega \cdot L_1 - \frac{1}{\omega \cdot C_1} \right) \right]}{j \left(\omega \cdot L_1 - \frac{1}{\omega \cdot C_1} - \frac{1}{\omega \cdot C_0} \right)} = \frac{\frac{L_1}{C_0} - \frac{1}{\omega^2 \cdot C_1 \cdot C_0}}{j \left(\omega \cdot L_1 - \frac{1}{\omega \cdot C_1} - \frac{1}{\omega \cdot C_0} \right)}$$
(15)

Se apreia claramente la existencia de un cero y polo en la impedancia:

$$\begin{aligned} \operatorname{cero} & \Rightarrow Z_{AB}(\omega_s) \to 0 \Rightarrow \frac{L_1}{C_1} = \frac{1}{\omega_s^2 \cdot C_1 \cdot C_0} \Rightarrow \omega_s = \frac{1}{\sqrt{L_1 \cdot C_1}} \\ \operatorname{polo} & \Rightarrow Z_{AB}(\omega_p) \to \infty \Rightarrow \omega_p \cdot L_1 = \frac{1}{\omega_p \cdot C_1} - \frac{1}{\omega_p \cdot C_0} \Rightarrow \omega_p = \frac{1}{\sqrt{L_1 \cdot C_1 \cdot C_0}} \end{aligned}$$

Fórmulas que coinciden con las obtenidas anteriormente de forma rigurosa. Aunque hay que tener en cuenta que realmente las impedancias del cristal real a las frecuencias de resonancia serie y paralelo son finitas y no nula o infinita (respectivamente) como predice el procedimiento indicado.

RESONADOR A CRISTAL - FRECUENCIAS DE RESONANCIA (VII)

Para comprender cómo se emplea el cristal en un resonador de un oscilador, hay que analizar la forma en la que varían tanto la parte real, la reactancia y la propia impedancia entre bornas, con la frecuencia. Las gráficas siguientes ilustran esto para el cristal del ejemplo.

■ Módulo de la impedancia Z_{AR}(w)

$$ModZab := \left(\frac{RI^{2}}{w \, CO\left(RI^{2} + \left(-\frac{1}{w \, CO} + w \, LI - \frac{1}{w \, CI}\right)^{2}\right)} + \frac{\left(w \, LI - \frac{1}{w \, CI}\right)\left(-\frac{1}{w \, CO} + w \, LI - \frac{1}{w \, CI}\right)}{w \, CO\left(RI^{2} + \left(-\frac{1}{w \, CO} + w \, LI - \frac{1}{w \, CI}\right)^{2}\right)}\right)^{2} + \frac{\left(w \, LI - \frac{1}{w \, CO} + w \, LI - \frac{1}{w \, CI}\right)^{2}\right)}{w \, CO\left(RI^{2} + \left(-\frac{1}{w \, CO} + w \, LI - \frac{1}{w \, CI}\right)\right)}\right)^{2} + \frac{\left(\frac{1}{2}\right)^{2}}{w \, CO\left(RI^{2} + \left(-\frac{1}{w \, CO} + w \, LI - \frac{1}{w \, CI}\right)^{2}\right)}\right)^{2}$$

$$(16)$$

Que representado queda:

RESONADOR A CRISTAL - FRECUENCIAS DE RESONANCIA (VII))

RESONADOR A CRISTAL - FRECUENCIAS DE RESONANCIA (IX)

■ Reactancia de la impedancia X_{AB}(w)

$$Xab := -\frac{RI^{2}}{w \, CO \left(RI^{2} + \left(-\frac{1}{w \, CO} + w \, LI - \frac{1}{w \, CI}\right)^{2}\right)} - \frac{\left(w \, LI - \frac{1}{w \, CI}\right)\left(-\frac{1}{w \, CO} + w \, LI - \frac{1}{w \, CI}\right)}{w \, CO \left(RI^{2} + \left(-\frac{1}{w \, CO} + w \, LI - \frac{1}{w \, CI}\right)^{2}\right)}$$
(17)

RESONADOR A CRISTAL - FRECUENCIAS DE RESONANCIA (X)

■ Parte Real de la impedancia R_{AB}(w)

$$RAB := \frac{\left(wLI - \frac{1}{wCI}\right)RI}{wCO\left(RI^2 + \left(-\frac{1}{wCO} + wLI - \frac{1}{wCI}\right)^2\right)} - \frac{RI\left(-\frac{1}{wCO} + wLI - \frac{1}{wCI}\right)}{wCO\left(RI^2 + \left(-\frac{1}{wCO} + wLI - \frac{1}{wCI}\right)^2\right)}$$

$$R_{AB}(\omega)$$
Poice Seni de Zabiyo

$$R_{AB}(\omega)$$
Poice Seni de Zabiyo

$$R_{AB}(\omega)$$
Poice Seni de Zabiyo

$$R_{AB}(\omega)$$
Poice Seni de Sabiyo

$$R_{AB}(\omega)$$
Poice Seni de Sabiyo

$$R_{AB}(\omega)$$
Poise Seni de Sabiyo

RESONADOR A CRISTAL – FRECUENCIAS DE RESONANCIA (XI) MODOS DE TRABAJO DEL XTAL EN UN OSCILADOR

En un circuito oscilador, el cristal puede emplearse de dos maneras diferentes:

■ <u>Cristal en Modo Serie:</u> el oscilador trabaja a una frecuencia igual a la de resonancia serie del cristal, es decir: fo = fs

De esta forma el cristal se comporta como un elemento de carácter resistivo puro, ya que la parte reactiva a esta frecuencia es nula:

$$Z_{AB}(\omega_0) = R_{AB}(\omega_0) + j \cdot X_{AB}(\omega_0) = \Big|_{\omega_0 - \omega_x} = R_{AB}(\omega_0) = R_{eq} = R_x = \text{ESR (19)}$$
(ESR= Equivalent Series Resistance)

- Cuando el xtal trabaja en modo serie, presenta mínima impedancia entre bornas y por tanto deja pasar a su través la máxima corriente. La potencia disipada en el xtal no debe superar la máxima permitida en ningún caso.
- Aunque L1 y C1 entren resonancia a la frecuencia fs, aún persiste el efecto de la capacidad del encapsulado Co. Ahora bien, siempre se verifica que X_{Co} >> R1, de forma que a efectos prácticos el cristal se comporta casi como una resistencia pura y de valor muy próximo (pero superior) a R1.

RESONADOR A CRISTAL - FRECUENCIAS DE RESONANCIA (XII)

■ <u>Cristal en Modo Paralelo:</u> el oscilador trabaja a una frecuencia comprendida entre las de resonancia serie y paralelo del cristal, es decir: fs < fo < fp</p>

En consecuencia, el cristal se comporta como una inductancia equivalente más una resistencia serie equivalente:

Se denomina "Área de resonancia paralelo usual" o simplemente "resonancia paralelo" (a veces también impropiamente "ancho de banda del cristal") a la región de frecuencias comprendida entre las de resonancia serie y paralelo de dicho cristal.

Capacidad de Carga del xtal CL

Cuando el xtal opera en modo paralelo actúa como una bobina equivalente, para hacerla resonar hace falta poner un condensador en paralelo con la misma (en realidad con el xtal). Esta capacidad debe tener un valor acorde con la frecuencia de oscilación deseada y se denomina genéricamente: Capacidad de Carga C₁

Normalmente esta capacidad varía entre unos 12 y 32 pF, y suele ser la suma del efecto combinado de las capacidades físicas del resonador más las capacidades parásitas del "layout" del circuito impreso, etc.

RESONADOR A CRISTAL - FRECUENCIAS DE RESONANCIA (XIII)

La C_L la especifica el fabricante para los cristales que operan en modo paralelo y a la inversa, si se solicita un cristal a un fabricante y debe operar en modo paralelo hay que indicarle cuál va a ser la capacidad de carga (esperada o estimada) con la que va a trabajar.

 C_L = Capaciades Fisica del Resonador + Capacidades Parasitas Layout (21)

 La presencia de la Capacidad de Carga, modifica la frecuencia de resonancia paralelo del cristal, ya que su efecto se suma al de la del encapsulado Co. A este fenómeno se le conoce como "PULLING" del cristal

Obviamente $f'_{p} < f_{p}$

RESONADOR A CRISTAL – FRECUENCIAS DE RESONANCIA (XIV)

La presencia de la Capacidad de carga modifica también la componente resistiva que presenta el cristal entre sus terminales, que (se puede demostrar) que ahora tiene un valor llamado RESISTENCIA EFECTIVA (Re):

$$R_e = R_1 \cdot \left(\frac{C_L + C_0}{C_L}\right)^2 = R_1 \cdot \left(1 + \frac{C_0}{C_L}\right)^2$$
 (23)

OSCILADORES A CRISTAL - OVERTONOS (I)

- Cuando un cristal vibra, no lo hace únicamente a una sola frecuencia (llamada <u>fundamental)</u> sino
 que debido al acoplamiento mecánico y eléctrico entre las diferentes caras de la estructura
 cristalina, se producen resonancias o energías a otras frecuencias más altas, que tienen valores
 muy próximos –pero no iguales- a los armónicos impares de la frecuencia fundamental y que
 reciben el nombre de <u>OVERTONOS.</u>
- -Los Overtonos también se aprovechan para diseñar osciladores a cristal operando a frecuencias a las que sería imposible fabricar un cristal trabajando a la frecuencia fundamental, ya que su extremada delgadez haría que el cristal se quebrase rápidamente al entrar en vibración.
- En la práctica los cristales resonando a la frecuencia fundamental llegan hasta unos 40 MHz, en tanto que utilizando los overtonos 3º, 5º, 7º (y a veces hasta el 9º) se puede llegar hasta unos 250 MHz.
- Por ejemplo, el espesor de un xtal trabajando en fundamental a 40 MHz es de 1,5 milésimas de pulgada

OSCILADORES A CRISTAL - OVERTONOS (II)

Fotografía de Rayos-X de varios modos excitados en un cristal vibrando en corte AT. La frecuencia de resonancia fundamental es 3,2 KHz, el resto de las señales son espúrias. (Las zonas más oscuras corresponden a zonas de mayor desplazamiento).

Resonancia paralelo

Resonancia serie

OSCILADORES A CRISTAL - OVERTONOS (III)

 Como ocurre con el circuito eléctrico equivalente del cristal resonando a la frecuencia fundamental, cada overtono también lleva asociado su propio circuito, formado por una rama paralelo añadida al modelo elemental formada por la combinación serie de: resistencia de pérdidas + inductancia equivalente a la masa vibrando + capacidad equivalente a la elasticidad del cristal a

ese overtono:

Donde:

R1n = Resistencia de pérdidas para el overtono n-esimo L1n = Inductancia equivalente para el overtono n-ésimo C1n = Capacidad equivalente para el overtono n-ésimo

Se cumple aproximadamente que:

$$R_{ln} \approx R_l \ \forall n$$
 $L_{ln} \approx L_l \ \forall n$
 $C_{ln} \approx \frac{C_l}{n^2}$
(24)

- Es decir, la elasticidad (y por tanto la actividad) del cristal se va reduciendo conforme aumenta el orden del armónico.
- Prácticamente todos los osciladores que aprovechan la frecuencia de un overtono emplean al cristal operando en el modo serie.

OSCILADORES A CRISTAL - TOPOLOGÍAS BÁSICAS.

El oscilador Pierce, Colpitts y Clapp es esencialmente el mismo, cambiando sólo el punto conectado a masa. En el Butler y Butler Modificado la corriente del dispositivo activo pasa por el propio cristal.

Xtal en Modo Paralelo

Condensadores que "cargan al Xtal"

OSCILADORES A CRISTAL – TÉCNICAS DE "PULLING" (I)

- -Se denomina "Pulling" a las técnicas por las que se puede modificar en una cierta cantidad (algunas decenas de partes por millón p.p.m.) la frecuencia de resonancia serie o paralelo de un cristal y por tanto a la propia del oscilador que lo emplea en su resonador.
- -Básicamente consiste en añadir una capacidad o una inductancia en serie o paralelo con el cristal (o una combinación de ambos elementos o topologías).
- Aunque existen muchas posibilidades, las más habituales son sólo dos:

■ Capacidad de ajuste Ct (trimmer) en serie con el xtal:

Para calcular de forma sencilla las nuevas frecuencias de resonancia despreciamos "a priori" la resitencia de pérdidas. Entonces tenemos:

Llamando:

$$\begin{cases} X_t = \frac{-1}{\omega \cdot C_t} \\ X_1 = \omega \cdot L_1 - \frac{1}{\omega \cdot C_1} \end{cases} \text{ La impedancia entre las bornas A y B será: } \Longrightarrow \\ X_0 = \frac{-1}{\omega \cdot C_0} \end{cases}$$

OSCILADORES A CRISTAL - TÉCNICAS DE "PULLING" (II)

$$Z_{AB}(\omega) = \frac{jX_{1} \cdot jX_{0}}{jX_{1} + jX_{0}} + jX_{t} = \frac{-X_{1} \cdot X_{0} - X_{1} \cdot X_{t} - X_{0} \cdot X_{t}}{j\left(X_{1} + X_{0}\right)} = j \cdot \frac{X_{1} \cdot X_{0} + X_{1} \cdot X_{t} + X_{0} \cdot X_{t}}{\left(X_{1} + X_{0}\right)} \tag{26} \Rightarrow$$

En Resonancia $\rightarrow \text{Im}[Z_{AB}(\omega)] = 0 \Rightarrow$

Polo para:
$$X_1 + X_0 = 0 \Rightarrow \omega \cdot L_1 - \frac{1}{\omega \cdot C_1} - \frac{1}{\omega \cdot C_0} = 0 \Rightarrow \boxed{\omega_p^* = \frac{1}{\sqrt{L_1 \cdot \frac{C_1 \cdot C_0}{C_1 + C_0}}} \equiv \omega_p}$$
 (27a)

Cero para: $X_1 \cdot X_0 + X_1 \cdot X_t + X_0 \cdot X_t = 0 \Longrightarrow$

$$\left(\omega \cdot L_{1} - \frac{1}{\omega \cdot C_{1}}\right) \cdot \left(-\frac{1}{\omega \cdot C_{0}}\right) + \left(-\frac{1}{\omega \cdot C_{0}}\right) \cdot \left(\omega \cdot L_{1} - \frac{1}{\omega \cdot C_{1}} - \frac{1}{\omega \cdot C_{0}}\right) = 0 \implies \text{ operando} \implies 0$$

$$\frac{|\omega_{s}|}{\sqrt{L_{1} \cdot \frac{C_{1} \cdot (C_{0} + C_{t})}{C_{1} + C_{0} + C_{t}}}} = \frac{1}{\sqrt{L_{1} \cdot C_{1}}} \cdot \frac{1}{\sqrt{\frac{C_{0} + C_{t}}{C_{1} + C_{0} + C_{t}}}} = \omega_{s} \cdot \sqrt{\frac{C_{1} + C_{0} + C_{t}}{C_{0} + C_{t}}} = \frac{|\omega_{s} \cdot \sqrt{1 + \frac{C_{1}}{C_{0} + C_{t}}} > \omega_{s}|}{\sqrt{1 + \frac{C_{1}}{C_{0} + C_{t}}}} > \omega_{s} \quad (27b)$$

- En resumen: un condensador de pulling (o trimmer) en serie con el cristal, produce un aumento de la frecuencia de resonancia serie y deja inalterada la frecuencia de resonancia paralelo.

Nótese que si en lugar de usar un condensador de trimmer empleamos un diodo varicap el efecto es el mismo y tendremos un Oscilador a Cristal Controlado por Tensión: VCXO (<u>V</u>oltage <u>C</u>ontrolled <u>X</u>tal <u>O</u>scillator)

OSCILADORES A CRISTAL - TÉCNICAS DE "PULLING" (III)

■ Capacidad de ajuste Ct (trimmer) en paralelo con el xtal:

Procediendo como en el caso precedente tendremos:

Llamando
$$C_M = C_0 + C_t \Rightarrow$$

$$\begin{cases} X_{M} = -\frac{1}{\omega \cdot C_{M}}; & X_{1} = \omega \cdot L_{1} - \frac{1}{\omega \cdot C_{1}} (28) \Longrightarrow \\ Z_{AB}(\omega) = \frac{jX_{1} \cdot jX_{M}}{j(X_{1} + X_{M})} = j \cdot \frac{X_{1} \cdot X_{M}}{X_{1} + X_{M}} (29) \Longrightarrow \end{cases}$$

En Resonancia $\rightarrow \text{Im}[Z_{AB}(\omega)] = 0 \Longrightarrow$

$$\Rightarrow \omega_s = \frac{1}{\sqrt{L_1 \cdot C_1}} \equiv \omega_s$$
 (30a)

Polo en
$$X_1 + X_M = 0 \Rightarrow \left(\omega \cdot L_1 - \frac{1}{\omega \cdot C_1}\right) - \frac{1}{\omega \cdot C_M} = 0 \Rightarrow \boxed{\omega_p} = \omega_s \cdot \left(1 + \frac{C_1}{C_M}\right)^{\frac{1}{2}} = \boxed{\omega_s \cdot \left(1 + \frac{C_1}{C_0 + C_t}\right)^{\frac{1}{2}}}$$
 (30b)

comparando con
$$\omega_p = \omega_s \cdot \left(1 + \frac{C_1}{C_0}\right)^{\frac{1}{2}}$$
 resulta claro que $\omega_p < \omega_p$

En resumen: un condensador de pulling (o trimmer) en paralelo con el cristal, produce una disminución de la frecuencia de resonancia paralelo y deja inalterada la frecuencia de resonancia serie.

OSCILADORES A CRISTAL - TÉCNICAS DE "PULLING" (IV)

- El resumen gráfico del efecto del condensador de pulling es el siguiente:

OSCILADORES A CRISTAL - PARÁMETROS DEL CRISTAL (I)

- En un oscilador a xtal, además de los parámetros ya estudiados, se definen también:
- Factor de Calidad, Q (a la frecuencia fundamental serie)

$$Q \triangleq \frac{2\pi \cdot f_{s} \cdot L_{1}}{R_{1}} = \frac{1}{2\pi \cdot f_{s} \cdot C_{1} \cdot R_{1}}$$
(31)

Relación de capacidades,

$$\gamma \triangleq \frac{C_0}{C_1}$$
 (32)

 $\gamma \triangleq \frac{C_0}{C_1} \ \ \, \text{(32)} \qquad \text{Este parámetro determina la sensibilidad que presenta el cristal de sufrir cambios en sus frecuencias de resonancia debidos a cambios producidos en el circuito en el que se encuentra el cristal.}$

Figura de Mérito. M.

$$M \triangleq \frac{Q}{\gamma} = \frac{1}{2\pi \cdot \mathbf{f_s} \cdot C_0 \cdot R_1}$$
(33)

■ Relación de capacidades para los overtonos:

$$\gamma_n \triangleq \frac{C_0}{C_{1n}} = \frac{C_0}{C_1/n^2} = n^2 \cdot \gamma \ (34)$$
 Los overtonos se ven más afectados por las variaciones exteriores de la carga al cristal,

OSCILADORES A CRISTAL - PARÁMETROS DEL CRISTAL (II)

■ Factor de Calidad. Q (a los overtonos)

$$Q_{overtono-n} \triangleq \frac{2\pi \cdot f_{s,overtono-n} \cdot L_1}{R_1} = \frac{1}{2\pi \cdot f_{s,overtono-n} \cdot C_{1n} \cdot R_1} = \frac{1}{2\pi \cdot (n \cdot f)_s \cdot \frac{C_1}{n^2} \cdot R_1} = n \cdot Q \tag{35}$$

Sensibilidad al "pulling":

Se refiere a la variación de la frecuencia de resonancia paralelo cuando se producen pequeños cambios en la capacidad de carga C_L:

De (22) se tiene:
$$\frac{\Delta f'}{f_s} = \frac{f'_p - f_s}{f_s} = \frac{C_1}{2 \cdot (C_0 + C_L)} (36) \Rightarrow S \triangleq \frac{d\left(\frac{\Delta f'}{f_s}\right)}{dC_L} = -\frac{C_1}{2 \cdot (C_0 + C_L)^2} (37)$$

Para cristales operando en modo fundamental a alta frecuencia, S puede tomar valores superiores a -20 ppm / pF. Para cristales trabajando en overtonos la sensibilidad disminuye respecto a la frecuencia fundamental, ya que C1 se reduce para los primeros.

Nivel de excitación:

La potencia de alterna disipada en bornas de un xtal no debe superar los límites marcados por el fabricante. Dicha potencia es igual a:

$$P = i^{2} \cdot R_{e} = i^{2} \cdot R_{1} \cdot \left(1 + \frac{C_{0}}{C_{L}}\right)^{2} = \frac{v^{2}}{R_{1} \cdot \left(1 + \frac{C_{0}}{C_{L}}\right)^{2}}$$
(38)

OSCILADORES A CRISTAL -TALLA AT – COMPORTAMIENTO DE LA FRECUENCIA VS. TEMPERATURA (I)

OSCILADORES A CRISTAL - FAMILIAS TECNOLÓGICAS (I)

- XO.....Oscilador a Cristal
- VCXO...... Oscilador a Cristal controlado por Tensión
- OCXO......Oscilador a Cristal controlado por Horno
- TCXO......Oscilador a Cristal Compensado en Temperatura
- TCVCXO.....Oscilador a Cristal controlado por Tensión Compensado en Temperatura
- OCVCXO.....Oscilador a Cristal controlado por Tensión Compensado por Horno
- MCXO......Oscilador a Cristal controlado por Microproceador
- RbXO.....Oscilador a Cristal controlado por Rubidio

OSCILADORES A CRISTAL - FAMILIAS TECNOLÓGICAS (II)

OSCILADORES A CRISTAL - OSCILADORES EN MESA INVERTIDA

La tecnología denominada "mesa invertida" permite crear cristales extra-finos capaces de vribrar en modo fundamental hasta unos 250 MHz con un "jitter" de unos 2 ps.

