Lecture 4

Dr. Krishan Arora Asstt. Prof. and Head

Negative Number Representation

Sign Magnitude r's Compliment (r-1)'s Compliment

Sign magnitude Representation: Number consist of magnitude (lower number) and sign bit (MSR)

sign bit (MSB)

MSB 0 Positive Number

MSB 1 Negative Number

Range of Number =
$$-(2^{(n-1)}-1)to+(2^{(n-1)}-1)$$

So for example: if we have 4 bits to represent a signed binary number, (1-bit for the **Sign bit** and 3-bits for the **Magnitude bits**), then the actual range of numbers we can represent in sign-magnitude notation would be:

$$-2^{(4-1)} - 1$$
 to $+2^{(4-1)} - 1$
 $-2^{(3)} - 1$ to $+2^{(3)} - 1$
 -7 to $+7$

- -15_{10} as a 6-bit number \Rightarrow 101111₂
- $+23_{10}$ as a 6-bit number \Rightarrow 010111₂
- -56_{10} as a 8-bit number \Rightarrow 10111000₂

Compliment

Sign magnitude negate a number by sign Compliment system negate number by taking its compliment

Radix Compliment		Diminished Radix Compliment
r's compliment		(r-1)'s compliment
Binary	2's	1's
Octal	8's	7's
Decimal	10's	9's
Hexadecimal	16's	15's
Base 6	6's	5's

Radix (r) compliment

where r is base n is number of digit

$$(r-1)$$
 compliment of $N = (r^n - 1) - N$
R compliment of $N = r^n - N$
= $(r-1)$ compliment +1

Decimal
$$(r = 10)$$

9's comp lim ent of $456 = 999 - 456 = 543$
10's comp lim ent of $456 = 9$'s comp lim ent $+1 = 544$

$$Octal(r = 8)$$

7's comp lim ent of 456 = 777 - 456 = 321

8's comp $\lim ent \ of \ 456 = 7$'s $comp \lim ent + 1 = 322$

Hexadecimal(r = 16)

15's comp lim ent of C7C = FFF - C7C = 383

16's comp lim ent of 456 = 15's comp lim ent + 1 = 384

Compliment Continue

Generally, there are two types of complement of Binary number: 1's complement and 2's complement. To get 1's complement of a binary number, simply invert the given number.

$$Binary(r = 2)$$
1's comp lim ent of 11011 = 111111-11011 = 00100
2's comp lim ent of 11011 = 1's comp lim ent +1 = 00101

- **Example-1** Find 2's complement of binary number 10101110.
- Simply invert each bit of given binary number, which will be 01010001. Then add 1 to the LSB of this result, i.e., 01010001+1=01010010 which is answer.
- **Example-2** Find 2's complement of binary number 10001.001.
- Simply invert each bit of given binary number, which will be 01110.110 Then add 1 to the LSB of this result, i.e., 01110.110+1=01110.111 which is answer.

Signed Number representation

Signed-Complement – a negative number is represented by its complement.

First represent the number with positive sign and then take complement of that number.

1's comp liment representation

$$17_{10} = (00010001)_2$$

-17₁₀ = 1's comp lim ent of $(00010001)_2 = (11101110)_2$

$$99_{10} = (01100011)_2$$

 $-99_{10} = 1$'s comp $\lim ent \ of \ (01100011)_2 = (10011100)_2$

2's comp lim ent representation

$$17_{10} = (00010001)_2$$

-17₁₀ = 2's comp lim ent of $(00010001)_2 = (11101111)_2$

$$9_{10} = (1001)_2$$

 $-9_{10} = 2's \ comp \ lim \ ent \ of \ (1001)_2 = (0111)_2$

The 2's complement representation of the decimal value -15 is (a) 1111 (b) 11111 (c) 111111 (d) 10001

sign magnitude

2's compliment 1 0001

2's compliment representation of -17 in decimal is

+17= 10001

-17 in 2's compliment 01111

Practice Question

9's complement of
$$(8151)_{10} =$$

10' compliment of $(7)_{10} =$
2's complement $(10001.001)_2 =$
2's complement $(11100)_2 =$
1's complement $(1000)_2 =$
2's complement $(1000)_2 =$
16's complement $(1806)_{16} =$
10' compliment of $(0372)_{10} =$