ANÁLISIS DE DATOS Y VISUALIZACIÓN

PREDICCIÓN DE LOS COSTOS DE SEGUROS MÉDICOS

Integrantes:

- María Juarez
- Fabricio Paredes
- Roberto Valladolid
- •Bryan Portilla

MAESTRIA EN INTELIGENCIA ARTIFICIAL APLICADA

ACTIVIDADES

- EDA: Explicar el dataset usado, como tamaño, variables, distribuciones y destacar los patrones relevantes encontrados en los datos.
- 2. Preprocesamiento y preparación de datos: Explicar las tareas de limpieza y transformación de datos realizadas.
- 3. Modelado: Construcción de modelos, explicación y justificación de métodos usados en la predicción.
- 4. Evaluación de modelos: Sustentar con el uso de métricas.
- 5. Explicación e interpretación de resultados

Estructura solución

Fuente del Dataset: KAGGLE

https://www.kaggle.com/datasets/muhammadanwaar101/healthcare-insurance-charges-dataset

Este dataset proporciona información sobre los cargos del seguro médico de las personas en estos registros; incluye varios factores que podrían influir en los cargos del seguro, como la edad, el sexo, el índice de masa corporal (IMC), el número de hijos, el tabaquismo, la región y los cargos del seguro correspondientes.

INFORMACIÓN DEL DATASET

CARACTERISTICAS DEL DATASET

• Fuente: Kaggle

Nombre: Insurance.csv

Ámbito: Salud

Tamaño: 1407 filas y 7 columnas

Detalle de columnas:

AGE: Edad (Años).

Gender: Género (Male / Female).

 Body_Mass_Index (BMI): Índice de masa corporal.

 Number_of_Children: Número de hijos que tiene la persona asegurada.

Smoking_Status: Fumador (yes/no).

 Region: Región donde vive la persona asegurada.

 Insurance_Charges: Cargos del seguro médico (Valor a predecir)

VISIÓN GENERAL DE DATASET

#	Column	Non-Null Count	Dtype	
0	AGE	1407 non-null	int64	
1	Gender	1407 non-null	object	
2	<pre>Body_Mass_Index(BMI)</pre>	1407 non-null	float64	
3	Number_of_Children	1407 non-null	int64	
4	Smoking_Status	1407 non-null	object	
5	Region	1407 non-null	object	
6	Insurance_Charges	1407 non-null	float64	
<pre>dtypes: float64(2), int64(2), object(3)</pre>				

ANÁLISIS EXPLORATORIO DE DATOS (EDA)

- Distribución de variables numéricas con KDE
- 2. Distribución de variables categóricas
- Distribución de los datos
- 4. Matriz de correlación
- 5. Relación entre variables independientes y la variable dependiente.

EDA: DISTRIBUCIÓN DE VARIABLES NUMÉRICAS CON KDE

```
int_vars = data.select_dtypes(include = ['int','float'])
num_vars = int_vars.shape[1]
num_rows = math.ceil(num_vars / 4)
print("Distribución de variables numéricas:")

fig, axs = plt.subplots(nrows=num_rows, ncols=4, figsize=(15,(num_rows*4)+1))
axs = axs.flatten()

for i, var in enumerate (int_vars):
    sns.histplot(x=var,data=data,ax=axs[i], kde=True)
    axs[i].set_title(var)
# Si hay más subplots que columnas, ocultar los subplots sobrantes
for j in range(i + 1, len(axs)):
    fig.delaxes(axs[j])

plt.tight_layout()
plt.show()
```


EDA: DISTRIBUCIÓN DE VARIABLES CATEGÓRICAS

```
cat_vars = data.select_dtypes(include=['object'])
num_varsc = cat_vars.shape[1]
num_rowsc = math.ceil(num_varsc / 3)
print("Distribución de variables categóricas:")

fig, axs = plt.subplots(nrows=num_rowsc, ncols=3, figsize=(15, (num_rowsc*3)+1))
axs = axs.flatten()

for i, var in enumerate(cat_vars):
    sns.countplot(x=var, data=data, ax=axs[i])
    axs[i].set_title(var)
    axs[i].set_ylabel('Count')

# Si hay más subplots que columnas, ocultar los subplots sobrantes
for j in range(i + 1, len(axs)):
    fig.delaxes(axs[j])

plt.tight_layout()
plt.show()
```


EDA: DISTRIBUCIÓN DE LOS DATOS

```
# Boxplot de variables numéricas
print("Boxplot de variables numéricas:")
fig, axs = plt.subplots(nrows=num_rows, ncols=4, figsize=(15,(num_rows*4)+1))
axs = axs.flatten()
for i, columna in enumerate(int vars.columns):
  sns.boxplot(data=int_vars[columna], orient="h", ax=axs[i])
  axs[i].set_title(f'Boxplot de {columna}')
# Si hay más subplots que columnas, ocultar los subplots sobrantes
for j in range(i + 1, len(axs)):
 fig.delaxes(axs[j])
plt.show()
```


EDA: MATRIZ DE CORRELACIÓN

```
# Filtrar las variables numéricas excluyendo 'Insurance_Charges'
numeric_columns = data.select_dtypes(include=['float64', 'int64'])
# Calcular la matriz de correlación
correlation_matrix = numeric_columns.corr()
# Crear una figura y un eje para la gráfica
plt.figure(figsize=(10, 8))
# Visualizar la matriz de correlación como un mapa de calor con anotaciones
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", vmin=-1, vmax=1, linewidths=0.5)
plt.title('Matriz de correlación.')
plt.xticks(rotation=45)
plt.yticks(rotation=0)
plt.show()
```


EDA: RELACIÓN ENTRE VARIABLES INDEPENDIENTES Y LA VARIABLE DEPENDIENTE

```
# Relación entre edad y cargos del seguro
sns.scatterplot(x='AGE', y='Insurance_Charges', data=data)
plt.title('Relación entre Edad y Cargos del Seguro')
plt.xlabel('Edad')
plt.ylabel('Cargos del Seguro')
plt.show()
# Relación entre BMI y cargos del seguro
sns.scatterplot(x='Body Mass Index(BMI)', y='Insurance Charges', data=data)
plt.title('Relación entre BMI y Cargos del Seguro')
plt.xlabel('BMI')
plt.ylabel('Cargos del Seguro')
plt.show()
# Boxplot de cargos del seguro por género
sns.boxplot(x='Gender', y='Insurance_Charges', data=data)
plt.title('Cargos del Seguro por Género')
plt.xlabel('Género')
plt.vlabel('Cargos del Seguro')
plt.show()
# Boxplot de cargos del seguro por estado de tabaquismo
sns.boxplot(x='Smoking_Status', y='Insurance_Charges', data=data)
plt.title('Cargos del Seguro por Estado de Tabaquismo')
plt.xlabel('Estado de Tabaquismo')
plt.ylabel('Cargos del Seguro')
plt.show()
# Boxplot de cargos del seguro por región
sns.boxplot(x='Region', y='Insurance_Charges', data=data)
plt.title('Cargos del Seguro por Región')
plt.xlabel('Región')
plt.vlabel('Cargos del Seguro')
plt.show()
```


Preparación de datos

- Eliminación de datos duplicados.
- Codificación de variables One Hot Encoding
- Normalización de variables

Eliminación de datos

4.1 Eliminar datos duplicados.

data.drop_duplicates()

Hallazgos:

Antes: 1407 filas

Despué:1339 filas.

Se eliminaron 68 filas duplicadas.

Codificación One-Hot-Encoding 1/2

```
# One Hot Encoder
# Seleccionar columnas categóricas
categorical_columns = data.select_dtypes(include=['object']).columns.tolist()
# Codificar las columnas categóricas
encoder = OneHotEncoder(sparse_output=False)
one_hot_encoded = encoder.fit_transform(data[ columns: Axes | None
one_hot_data = pd.DataFrame(one_hot_encoded, columns=encoder.get_feature_names_out(categorical_columns))
# Concatenar las columnas codificadas con las otras columnas
data_encoded = pd.concat([data.drop(columns=categorical_columns), one_hot_data], axis=1)
# Mostrar el DataFrame resultante
print(data_encoded)
```


Codificación One-Hot-Encoding 2/2

- Antes de Codificación: El DataFrame original tenía 7 columnas.
- Después de Codificación:
 El DataFrame resultante
 tiene 4 columnas
 numéricas originales y 8
 columnas codificadas, lo
 que suma un total de
 12 columnas.

Gender_female	<pre>Gender_male</pre>	Smoking_Status_no	Smoking_Status_yes	\
1.0	0.0	0.0	1.0	
0.0	1.0	1.0	0.0	
0.0	1.0	1.0	0.0	
0.0	1.0	1.0	0.0	
0.0	1.0	1.0	0.0	
1.0	0.0	1.0	0.0	
1.0	0.0	1.0	0.0	
1.0	0.0	1.0	0.0	
1.0	0.0	1.0	0.0	
0.0	1.0	1.0	0.0	

Region_northeast	Region_northwest	Region_southeast	Region_southwest
0.0	0.0	0.0	1.0
0.0	0.0	1.0	0.0
0.0	0.0	1.0	0.0
0.0	1.0	0.0	0.0
0.0	1.0	0.0	0.0
0.0	0.0	1.0	0.0
0.0	0.0	0.0	1.0
0.0	1.0	0.0	0.0
0.0	1.0	0.0	0.0
0.0	1.0	0.0	0.0

Escalado de variables numéricas

from sklearn.preprocessing import StandardScaler scaler = StandardScaler() num_vars = ['AGE', 'Body_Mass_Index(BMI)', 'Number_of_Children'] data_encoded[num_vars] = scaler.fit_transform(data_encoded[num_vars]) #Verificar print(data_encoded.head()) Body_Mass_Index(BMI) Number_of_Children Insurance_Charges \ AGE 16884.92400 0 - 1.440270-0.449394-0.904693 1 -1.511352 0.509676 -0.082404 1725.55230 2 -0.800537 0.383870 1.562174 4449.46200 3 -0.445130 -1.298180-0.904693 21984.47061 4 - 0.516212-0.289277-0.904693 3866.85520

Métodos predictivos 1/4

- Datos de entranamiento y pruebas.
- Método 1: Regresión Lineal
- Método 2: Random Fores
- Máquinas de soporte vectorial
- 5.1 División en conjuntos de entranamiento y prueba.

(1125, 11) (282, 11) (1125,) (282,)

```
from sklearn.model_selection import train_test_split

X = data_encoded.drop('Insurance_Charges', axis=1)
y = data_encoded['Insurance_Charges']

# Dividir los datos en conjuntos de entrenamiento y prueba
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Mostrar las formas de los conjuntos para verificar
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
```


Métodos predictivos 2/4

5.2 Método 1: Regresión Lineal.

Regresión lineal

```
from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error, r2_score
    # Crear el modelo de regresión lineal
    model lr = LinearRegression()
    model_lr.fit(X_train, y_train)
    # Hacer predicciones con los datos de prueba
    y pred lr = model lr.predict(X test)
    # Evaluar el modelo
    mse_lr = mean_squared_error(y_test, y_pred_lr)
    r2 lr = r2 score(y test, y pred lr)
    print(f'Regresión Lineal - Mean Squared Error: {mse_lr}')
    print(f'Regresión Lineal - R-squared: {r2 lr}')
Regresión Lineal - Mean Squared Error: 37666354.80802747
    Regresión Lineal - R-squared: 0.7895151998242048
```


Métodos predictivos 3/4

Random Forest

```
# Crear el modelo base de bosques aleatorios
model rf = RandomForestRegressor(random state=42)
param_grid = {
    'n estimators': [100, 200],
    'max_features': ['auto', 'sqrt'],
    'max depth': [10, 20],
    'min_samples_split': [2, 5],
    'min_samples_leaf': [1, 2],
    'bootstrap': [True, False]
# Configurar GridSearchCV
grid_search = GridSearchCV(estimator=model_rf, param_grid=param_grid,
                           cv=3, n jobs=-1, verbose=2, scoring='neg mean squared error')
# Medir el tiempo de inicio
start time = time.time()
# Ajustar el modelo con GridSearchCV
grid_search.fit(X train, y train)
# Medir el tiempo de finalización
end time = time.time()
elapsed time = end time - start time
# Obtener el mejor modelo
best rf = grid search.best estimator
# Hacer predicciones con los datos de prueba usando el mejor modelo
y_pred_rf = best_rf.predict(X_test)
# Evaluar el modelo
mse_rf = mean_squared_error(y_test, y_pred_rf)
r2_rf = r2_score(y_test, y_pred_rf)
```


Métodos predictivos 4/4

Maquina soporte vectorial

```
# Definir el grid de hiperparámetros para GridSearchCV
param grid = {
    'kernel': ['linear', 'rbf', 'poly'],
    'C': [0.1, 1, 10, 100],
    'gamma': ['scale', 'auto']
# Configurar GridSearchCV
grid_search = GridSearchCV(SVR(), param grid, cv=3, n jobs=-1, verbose=2, scoring='neg mean squared erro
# Ajustar el modelo con GridSearchCV
grid search.fit(X train, y train)
# Obtener el mejor modelo
best svm = grid search.best estimator
# Hacer predicciones con los datos de prueba usando el mejor modelo
y_pred_svm = best_svm.predict(X_test)
# Evaluar el mejor modelo
mse_svm = mean_squared_error(y_test, y_pred_svm)
r2 svm = r2 score(y test, y pred svm)
```


4. Evaluación de Modelos

Para evaluar los modelos utilizamos las siguientes métricas de medición.

- Error cuadrático medio MSE
- Coeficiente de determinación R^2

Evaluación de los modelos:

Modelo	Evaluar el modelo	Resultados
Regresión Lineal	mse_lr = mean_squared_error(y_test, y_pred_lr) r2_lr = r2_score(y_test, y_pred_lr)	MSE: 37666354.80802747 R^2: 0.7895151998242048
Random Forest	mse_rf = mean_squared_error(y_test, y_pred_rf) r2_rf = r2_score(y_test, y_pred_rf)	MSE: 17568338.311895933 R^2: 0.9018256956945542
Máquinas de soporte vectorial SVM.	mse_svm = mean_squared_error(y_test, y_pred_svm) r2_svm = r2_score(y_test, y_pred_svm)	MSE: 77506536.2894743 R^2: 0.5668827555425889

4. Evaluación de Modelos

Comparación de las métricas en los diferentes modelos.

5. Interpretación de Resultados

Modelo de Random Forest:

Este modelo proporciona las predicciones más cercanas a los valores reales, captura mejor la media y la desviación estándar de los datos, además maneja mejor los valores extremos y tiene una mayor precisión.

GRACIAS

