SEQUENCE LISTING

<110> Finlay, Brett B Kenny, Brendan DeVinney, Rebekah Stein, Markus


```
<120> HOST RECEPTOR FOR PATHOGENIC BACTERIA
```

<130> 07422/013001

<140> 09/189,415

<141> 1998-11-10

<150> 60/065,130

<151> 1997-11-12

<160> 9

<170> PatentIn Ver. 2.0

<210> 1

<211> 1920

<212> DNA

<213> Escherichia coli

<400> 1

cggctgcata ccattacgtc atagtaatat aaaggaacgt gtcaaatttc taaataaaag 60 gatatatgta tgcctattgg taaccttggt aataatgtaa atggcaatca tttaattccc 120 cctgcgccgc cactaccttc acaaacagac ggcgcggcac ggggaggaac tggtcatcta 180 attageteta caggageatt aggatetegt teattgtttt eteceetgag aaattetatg 240 gctgattctg tcgattccag agatattcca ggacttccta caaacccatc gaggcttgct 300 gcagctacat ctgagacatg cttgcttgga ggatttgaag ttctccatga taaggggcca 360 cttgatattc tcaatacgca aattggaccc tctgcatttc gtgttgaagt gcaggcagat 420 ggtactcatg ccgctattgg agaaaaaaat ggtttggagg ttagcgttac attaagtcct 480 caagaatgga gcagcttgca atctattgat actgagggta aaaacagatt tgtttttacc 540 gggggacgtg gcggtagtgg gcatccgatg gtcactgtcg catcagatat cqcqqaaqct 600 cgtacgaaaa tactggccaa attagaccca gacaatcatg gaggacgtca acccaaggac 660 gttgatacgc gttctgttgg tgttggcagc gcttcgggaa tagatgatgg cgttgttagc 720 gaaacccata cttcaacaac aaattccagc gttcgctcag atcctaaatt ctgggtttct 780 gtcggcgcaa ttgctgctgg tttagcggga ctggcggcaa ctggtattgc acaggcgttg 840 getttgacae eggaacegga tgateetaca accaeegate etgateagge egcaaatget 900 gcagaaagtg caacaaaaga tcagttaacg caagaagcat tcaagaaccc tgagaaccag 960 aaagttaaca tcgatgcgaa cggaaatgct attccgtctg gggaattaaa agatgatatt 1020 gttgagcaaa tagcacaaca agctaaagag gctggtgagg tggccagaca gcaggctgtt 1080 gaaagcaatg cacaggcgca gcagcgatat gaggatcagc atgccagacg tcaggaggaa 1140 ttacagcttt catcgggtat tggttacggc ctcagcagtg cattgattgt tgctggggga 1200 attggtgctg gtgtaacgac tgcgctccat agacgaaatc agccggcaga acagacaact 1260

actacaacaa cacatacggt agtgcagcaa cagaccggag ggatacccca gcacaaggtg 1320 gcactgatgc cacaagagcg aagacgcttc tctgatagac gtgattcgca gggggagtgtt 1380 gcatcgacac actggtcaga ttcctctagc gaagtggtta atccatatgc tgaagttggg 1440 ggggctcgga atagtctatc ggctcatcag ccagaagagc atatttatga tgaggtcgct 1500 gcagatcctg gttatagcgt tattcagaat ttttcaggga gcggcccagt taccggaagg 1560 ttaataggaa ctccagggca aggataccaa agtacttatg cgcttctggc aaacaagcggc 1620 ggattgcgtt taggtatggg aggattaacg agtggtggcg agacggcagt aagttctgta 1680 aatgccgcac caacgcaggg accagtacgt ttcgtttaaa tatatctgtg agtatttagt 1740 tgaggttggg gtgggtggg ggggcgtttt actagcgtta atgtttcaga gaacaacgtt 1800 gcagcatggg taactcttga acttctgtta ttataatcaa ttaagagaaa ttataatgtc 1860 atcaagatat gaacttttat tagataggtt tgcggaaaaa attggtgttg gatctattc 1920

<210> 2

<211> 549

<212> PRT

<213> Escherichia coli

<400> 2

Met Pro Ile Gly Asn Leu Gly Asn Asn Val Asn Gly Asn His Leu Ile
1 5 10 15

Pro Pro Ala Pro Pro Leu Pro Ser Gln Thr Asp Gly Ala Ala Arg Gly
20 25 30

Gly Thr Gly His Leu Ile Ser Ser Thr Gly Ala Leu Gly Ser Arg Ser 35 40 45

Leu Phe Ser Pro Leu Arg Asn Ser Met Ala Asp Ser Val Asp Ser Arg
50 55 60

Asp Ile Pro Gly Leu Pro Thr Asn Pro Ser Arg Leu Ala Ala Ala Thr 65 70 75 80

Ser Glu Thr Cys Leu Leu Gly Gly Phe Glu Val Leu His Asp Lys Gly 85 90 95

Pro Leu Asp Ile Leu Asn Thr Gln Ile Gly Pro Ser Ala Phe Arg Val 100 105 110

Glu Val Gln Ala Asp Gly Thr His Ala Ala Ile Gly Glu Lys Asn Gly
115 120 125

Leu Glu Val Ser Val Thr Leu Ser Pro Gln Glu Trp Ser Ser Leu Gln 130 135 140

Ser Ile Asp Thr Glu Gly Lys Asn Arg Phe Val Phe Thr Gly Gly Arg 145 150 155 160

Gly Gly Ser Gly His Pro Met Val Thr Val Ala Ser Asp Ile Ala Glu Ala Arg Thr Arg Ile Leu Ala Lys Leu Asp Pro Asp Asn His Gly Gly Arg Gln Pro Lys Asp Val Asp Thr Arg Ser Val Gly Val Gly Ser Ala Ser Gly Ile Asp Asp Gly Val Val Ser Glu Thr His Thr Ser Thr Thr Asn Ser Ser Val Arg Ser Asp Pro Lys Phe Trp Val Ser Val Gly Ala Ile Ala Ala Gly Leu Ala Gly Leu Ala Ala Thr Gly Ile Ala Gln Ala Leu Ala Leu Thr Pro Glu Pro Asp Asp Pro Thr Thr Asp Pro Asp Gln Ala Ala Asn Ala Ala Glu Ser Ala Thr Lys Asp Gln Leu Thr Gln Glu Ala Phe Lys Asn Pro Glu Asn Gln Lys Val Asn Ile Asp Ala Asn Gly Asn Ala Ile Pro Ser Gly Glu Leu Xaa Asp Asp Ile Val Glu Gln Ile Ala Gln Gln Ala Lys Glu Ala Gly Glu Val Ala Arg Gln Gln Ala Val Glu Ser Asn Ala Gln Ala Gln Gln Arg Tyr Glu Asp Gln His Ala Arg Arg Gln Glu Glu Leu Gln Leu Ser Ser Gly Ile Gly Tyr Gly Leu Ser Ser Ala Leu Ile Val Ala Gly Gly Ile Gly Ala Gly Val Thr Thr Ala Leu His Arg Arg Asn Gln Pro Ala Glu Gln Thr Thr Thr Thr Thr Thr His Thr Val Val Gln Gln Gln Thr Gly Gly Ile Pro Gln His Lys

Val Ala Leu Met Pro Gln Glu Arg Arg Arg Phe Ser Asp Arg Arg Asp 420 425 430

Ser Gln Gly Ser Val Ala Ser Thr His Trp Ser Asp Ser Ser Ser Glu 435 440 445

Val Val Asn Pro Tyr Ala Glu Val Gly Gly Ala Arg Asn Ser Leu Ser 450 455 460

Ala His Gln Pro Glu Glu His Ile Tyr Asp Glu Val Ala Ala Asp Pro 465 470 475 480

Gly Tyr Ser Val Ile Gln Asn Phe Ser Gly Ser Gly Pro Val Thr Gly 485 490 495

Arg Leu Ile Gly Thr Pro Gly Gln Gly Ile Gln Ser Thr Tyr Ala Leu 500 505 510

Leu Ala Asn Ser Gly Gly Leu Arg Leu Gly Met Gly Gly Leu Thr Ser 515 520 525 .

Gly Gly Glu Thr Ala Val Ser Ser Val Asn Ala Ala Pro Thr Pro Gly 530 540

Pro Val Arg Phe Val 545

<210> 3

<211> 1723

<212> DNA

<213> Escherichia coli

<400> 3

atgcctattg gtaaccttgg tcataatccc aatgtgaata attcaattcc tcctgcacct 60 ccattacctt cacaaaccga cggtgcaggg gggcgtggtc agctcattaa ctctacgggg 120 ccgttgggat ctcgtgcgct atttacgcct gtaaagaatt ctatggctga ttctggcgac 180 aatcgtgcca gtgatgtcc tggacttcct gtaaatccga tgcgcctggc ggcgtctgag 240 ataacactga atgatggatt tgaagttctt catgatcatg gtccgctcga tactcttaac 300 aggcagattg gctcttcggt atttcgagtt gaaactcagg aagatggtaa acatattgct 360 gtcggtcaga ggaatggtgt tgagacctct gttgttttaa gtgatcaaga gtacgctcgc 420 ttgcagtcca ttgatcctga aggtaaagac aaatttgtat ttactggagg ccgtggtggt 480 gctgggcatg ctatggtcac cgttgcttca gatatcacgg aaggccgcca aaggatactg 540 gagctgttag agcccaaagg gaccgggag tccaaaggtg ctggggagtc aaaaggcgtt 600 ggggagttga gggagtcaaa tagcggtgcg gaaaacacca cagaaactca gacctcaacc 660 tcaacttcca gccttcgttc agatcctaaa ctttggttgg cgttggggac tgttgctaca 720 ggtctgatag ggttggcggc gacgggtatt gtacaaggcg ttgcattgaa tgcgacaaga 840

gatcagttaacgaaagaagcgttccagaacccagataatcaaaaagttaatatcgatgag900ctcggaaatgcgattccgtcaggggtattgaaagatgatgttgttgcgaatatagaagag960caagctaaagcagcaggcgaagaggccaaacagcaagccattgaaaataatgctcaggcg1020caaaaaaaatatgatgaacaacaagctaaacgccaggaggagctgaaagtttcatcgggg1080gctggctacggtcttagtggcgcattgattcttggtggggaattggtgttgccgtcacc1140gctgcgcttcatcgaaaaaatcagccggtagaacaaacaacaacaactactactacaact1200acaactacaagcgcacgtacggtagagaataagcctgcaaataatacacctgcacagggc1260aatgtagatacccttgggtcagaagataccatgggagccgacgtagctcgatggctagc1320acctcgtcgactttctttgacacttccagcatagggacctgcagaatccgtatgctgat1380gttaaaacatcgctgcatgatttgttgtatatagcaccattcaacatcctccccgggatact1500actgataacggcgcacggttattaggaaatccaagtggggggattcaaagcacttatgcg1560cgtctgcgctaagtggtgattacgccatgacatgggggattaacgggggggagtaat1620agcgcttgaatacttcgaataacccaccaggccgggatcccatcgtttcgtctaaata1680tatccataatcattttatttagagggaggaggggggaagtct1723

<210> 4

<211> 559

<212> PRT

<213> Escherichia coli

<400> 4

Met Pro Ile Gly Asn Leu Gly His Asn Pro Asn Val Asn Asn Ser Ile
1 5 10 15

Pro Pro Ala Pro Pro Leu Pro Ser Gln Thr Asp Gly Ala Gly Gly Arg
20 25 30

Gly Gln Leu Ile Asn Ser Thr Gly Pro Leu Gly Ser Arg Ala Leu Phe
35 40 45

Thr Pro Val Arg Asn Ser Met Ala Asp Ser Gly Asp Asn Arg Ala Ser 50 55 60

Asp Val Pro Gly Leu Pro Val Asn Pro Met Arg Leu Ala Ala Ser Glu 65 70 75 80

Ile Thr Leu Asn Asp Gly Phe Glu Val Leu His Asp His Gly Pro Leu 85 90 95

Asp Thr Leu Asn Arg Gln Ile Gly Ser Ser Val Phe Arg Val Glu Thr
100 105 110

Gln Glu Asp Gly Lys His Ile Ala Val Gly Gln Arg Asn Gly Val Glu 115 120 125

Thr Ser Val Val Leu Ser Asp Gln Glu Tyr Ala Arg Leu Gln Ser Ile 130 135 140

Asp 145	Pro	Glu	Gly	Lys	Asp 150	Lys	Phe	Val	Phe	Thr 155	Gly	Gly	Arg	Gly	Gly 160	
Ala	Gly	His	Ala	Met 165	Val	Thr	Val	Ala	Ser 170	Asp	Ile	Thr	Glu	Ala 175	Arg	
Gln	Arg	Ile	Leu 180	Glu	Leu	Leu	Glu	Pro 185	Lys	Gly	Thr	Gly	Glu 190	Ser	Lys	
Gly	Ala	Gly 195	Glu	Ser	Lys	Gly	Val 200	Gly	Glu	Leu	Arg	Glu 205	Ser	Asn	Ser	
Gly	Ala 210	Glu	Asn	Thr	Thr	Glụ 215	Thr	Gln	Thr	Ser	Thr 220	Ser	Thr	Ser	Ser	
Leu 225	Arg	Ser	Asp	Pro	Lys 230	Leu	Trp	Leu	Ala	Leu 235	Gly	Thr	Val	Ala	Thr 240	
Gly	Leu	Ile	Gly	Leu 245	Ala	Ala	Thr	Gly	Ile 250	Val	Gln	Ala	Leu	Ala 255	Leu	
Thr	Pro	Glu	Pro 260	Asp	Ser	Pro	Thr	Thr 265	Thr	Asp	Pro	Asp	Ala 270	Ala	Ala	
Ser	Ala	Thr 275	Glu	Thr	Ala	Thr	Arg 280	Asp	Gln	Leu	Thr	Lys 285	Glu	Ala	Phe	
Gln	Asn 290	Pro	Asp	Asn	Gln	Lys 295	Val	Asn	Ile	Asp	Glu 300	Leu	Gly	Asn	Ala	
Ile 305	Pro	Ser	Gly	Val	Leu 310	Lys	Asp	Asp	Val	Val 315	Ala	Asn	Ile	Glu	Glu 320	
Gln	Ala	Lys	Ala	Ala 325	Gly	Glu	Glu	Ala	Lys 330	Gln	Gln	Ala	Ile	Glu 335	Asn	
Asn	Ala	Gln	Ala 340	Gln	Lys	Lys	Tyr	Asp 345	Glu	Gln	Gln	Ala	Lys 350	Arg	Gln	
Glu	Glu	Leu 355	Lys	Val	Ser	Ser	Gly 360	Ala	Gly	Tyr	Gly	Leu 365	Ser	Gly	Ala	
Leu	Ile 370	Leu	Gly	Gly	Gly	Ile 375	Gly	Val	Ala	Val	Thr 380	Ala	Ala	Leu	His	
Arg 385	Lys	Asn	Gln	Pro	Val 390	Glu	Gln	Thr	Thr	Thr 395	Thr	Thr	Thr	Thr	Thr 400	

Thr Thr Ser Ala Arg Thr Val Glu Asn Lys Pro Ala Asn Asn Thr 405 410 415

Pro Ala Gln Gly Asn Val Asp Thr Pro Gly Ser Glu Asp Thr Met Glu
420 425 430

Ser Arg Arg Ser Ser Met Ala Ser Thr Ser Ser Thr Phe Phe Asp Thr 435 440 445

Ser Ser Ile Gly Gly Pro Cys Arg Ile Arg Met Leu Met Leu Lys His 450 455 460

Arg Cys Met Ile Arg Arg Cys Arg Leu Leu Ile Leu Ile Arg Leu Phe 465 470 475 480

Arg Ile Trp Gly Ile Gln Ile Ser Val Val Tyr Ser Thr Ile Gln His 485 490 495

Pro Pro Arg Asp Thr Thr Asp Asn Gly Ala Arg Leu Leu Gly Asn Pro 500 505 510

Ser Ala Gly Ile Gln Ser Thr Tyr Ala Arg Leu Ala Leu Ser Gly Gly
515 520 525

Leu Arg His Asp Met Gly Gly Leu Thr Gly Gly Ser Asn Ser Ala Val 530 535 540

Asn Thr Ser Asn Asn Pro Pro Ala Pro Gly Ser His Arg Phe Val 555 550

<210> 5

<211> 1460

<212> DNA

<213> Escherichia coli

<400> 5

aattetgttg etgatgetge tgattetegt geeagtgata tteeeggaet teetacaaat 60 ceaetgeget ttgetgegte egaggtatet ttgeatggtg egettgaagt tetteatgat 120 aaagggggge ttgataetet taaetetget attggatett egttatteeg tgttgaaaet 180 egggatgatg geageeatgt tgetateggg caaaaaaaatg geetegagae eactgttgtt 240 ttaagtgage aagagttte tagettaeag teeettgate etgaaggtaa aaacaaattt 300 gtatttaetg gaggeeggg tggeeeaggg eatgetatgg teaegggtge tteagatate 360 geegaageee gteagaggat aatagataaa ttagaaceaa aggataeaaa ggagaegaag 420 gageeagggg ateeaaatag tggegaggga aaaateattg aaatteatae etcaaeetea 480 aettetagee teegtgeaga teetaaaett tggttgteat tggggaetat tgetgeaggt 540 etgataggga tggetgegae ggggattgea eaggetgttg egttgaetee agageeggat 600

<210> 6

<211> 484

<212> PRT

<213> Escherichia coli

<400> 6

Asn Ser Val Ala Asp Ala Ala Asp Ser Arg Ala Ser Asp Ile Pro Gly
1 5 10 15

Leu Pro Thr Asn Pro Leu Arg Phe Ala Ala Ser Glu Val Ser Leu His
20 25 30

Gly Ala Leu Glu Val Leu His Asp Lys Gly Gly Leu Asp Thr Leu Asn
35 40 45

Ser Ala Ile Gly Ser Ser Leu Phe Arg Val Glu Thr Arg Asp Asp Gly 50 55 60

Ser His Val Ala Ile Gly Gln Lys Asn Gly Leu Glu Thr Thr Val Val 65 70 75 80

Leu Ser Glu Gln Glu Phe Ser Ser Leu Gln Ser Leu Asp Pro Glu Gly
85 90 95

Lys Asn Lys Phe Val Phe Thr Gly Gly Arg Gly Gly Pro Gly His Ala 100 105 110

Met Val Thr Val Ala Ser Asp Ile Ala Glu Ala Arg Gln Arg Ile Ile 115 120 125

Asp Lys Leu Glu Pro Lys Asp Thr Lys Glu Thr Lys Glu Pro Gly Asp 130 135 140

Pro 145	Asn	Ser	Gly	Glu	Gly 150	Lys	Ile	Ile	Glu	Ile 155	His	Thr	Ser	Thr	Ser 160
Thr	Ser	Ser		Arg 165	Ala	Asp	Pro	Lys	Leu 170	Trp	Leu	Ser	Leu	Gly 175	Thr
Ile	Ala	Ala	Gly 180	Leu	Ile	Gly	Met	Ala 185	Ala	Thr	Gly	Ile	Ala 190	Gln	Ala
Val	Ala	Leu 195	Thr	Pro	Glu	Pro	Asp 200	Asp	Pro	Ile	Thr	Thr 205	Asp	Pro	Asp
Ala	Ala 210	Ala	Asn	Thr	Ala	Glu 215	Ala	Ala	Ala	Lys	Asp 220	Gln	Leu	Thr	Lys
Glu 225	Ala	Phe	Gln	Asn	Pro 230	Asp	Asn	Gln	Lys	Val 235	Asn	Ile	Asp	Glu	Asn 240
Gly	Asn	Ala	Ile	Pro 245	Ser	Gly	Glu	Leu	Lys 250	_	Asp	Val	Val	Ala 255	Gln
Ile	Ala	Glu	Gln 260	Ala	Lys	Ala	Ala	Gly 265	Glu	Gln	Ala	Arg	Gln 270	Glu	Ala
Ile	Glu	Ser 275	Asn	Ser	Gln	Ala	Gln 280	Gln	Lys	Tyr	Asp	Glu 285	Gln	His	Ala
Lys	Arg 290	Glu	Gln	Glu	Met	Ser 295	Leu	Ser	Ser	Gly	Val 300	Gly	Tyr	Gly	Ile
Ser 305	Gly	Ala	Leu	Ile	Leu 310	Gly	Gly	Gly	Ile	Gly 315	Ala	Gly	Val	Thr	Ala 320
Ala	Leu	His	Arg	Lys 325	Asn	Gln	Pro	Ala	Glu 330	Gln	Thr	Ile	Thr	Thr 335	Arg
Thr	Val	Val	Asp 340	Asn	Gln	Pro	Thr	Asn 345	Asn	Ala	Ser	Ala	Gln 350	Gly	Asn
Thr	Asp	Thr 355	Ser	Gly	Pro	Glu	Glu 360	Ser	Pro	Ala	Ser	Arg 365	Arg	Asn	Ser
Asn	Ala 370	Ser	Leu	Ala	Ser	Asn 375	Gly	Ser	Asp	Thr	Ser 380	Ser	Thr	Gly	Thr
Val 385	Glu	Asn	Pro	Tyr	Ala 390	Asp	Val	Gly	Met	Pro 395	Arg	Asn	Asp	Ser	Leu 400

Ala Arg Ile Ser Glu Glu Pro Ile Tyr Asp Glu Val Ala Ala Asp Pro . 405 410 415

Asn Tyr Ser Val Ile Gln His Phe Ser Gly Asn Ser Pro Val Thr Gly 420 425 430

Arg Leu Val Gly Thr Pro Gly Gln Gly Ile Gln Ser Thr Tyr Ala Leu 435 440 445

Leu Ala Ser Ser Gly Gly Leu Arg Leu Gly Met Gly Gly Leu Thr Gly 450 460

Gly Gly Glu Ser Ala Val Ser Thr Ala Asn Ala Ala Thr Pro Gly Pro 465 470 475 480

Ala Arg Phe Val

<210> 7

<211> 30

<212> PRT

<213> Escherichia coli

<400> 7

Pro Ile Gly Asn Leu Gly Asn Asn Val Asn Gly Asn His Leu Ile Pro 1 5 10 15

Pro Ala Pro Pro Leu Pro Ser Gln Thr Asp Gly Ala Ala Arg
20 25 30

<210> 8

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PRIMER SEQUENCE

<400> 8

aaagtcgaca agaacctgag aaccag

26

<210> 9

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: PRIMER SEQUENCE

<400> 9

tttgtcgact tatgtttgtg aaggtagtgg

30