Measurement of the Chiral-Odd Generalized Parton Distribution Functions and Non-Parametric Analysis of the Deeply Virtual Neutral Pion Electroproduction Cross Section at the Thomas Jefferson National Accelerator Facility at 10.6 GeV

by

Robert Johnston

Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of

Interdisciplinary PhD in Physics and Statistics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© Massachusetts Institute of Technology 2023. All rights reserved.

Author	
	Department of Physics
	May 5, 2023
Certified by	
	Richard Milner
	Professor of Physics
	Thesis Supervisor
Accepted by	
	Lindley Winslow
	Associate Department Head of Physics

Measurement of the Chiral-Odd Generalized Parton

Distribution Functions and Non-Parametric Analysis of the

Deeply Virtual Neutral Pion Electroproduction Cross

Section at the Thomas Jefferson National Accelerator

Facility at 10.6 GeV

by

Robert Johnston

Submitted to the Department of Physics on May 5, 2023, in partial fulfillment of the requirements for the degree of Interdisciplinary PhD in Physics and Statistics

Abstract

Deeply virtual exclusive reactions provide unique channels to study both transverse and longitudinal properties of the nucleon simultaneously, allowing for a 3D image of nucleon substructure. This presentation will discuss work towards extracting an absolute cross section for one such exclusive process, deeply virtual neutral pion production, using 10.6 GeV electron scattering data off a proton target from the CLAS12 experiment in Jefferson Lab Hall B . This measurement is important as exclusive meson production has unique access to the chiral odd GPDs, and is also a background for other exclusive processes such as DVCS, making the determination of this cross section crucial for other exclusive analyses.

Thesis Supervisor: Richard Milner

Title: Professor of Physics

Acknowledgments

To Be Completed. Currently this will serve as a to-do list: input list of figures input list of tables

Contents

Li	List of Figures			7
1	Introduction			9
	1.1	Backg	round - Structure of the Proton	9
	1.2	Deepl	y Virtual Neutral Pion Production	9
		1.2.1	The Handbag Approach	9
		1.2.2	The Goloskokov-Kroll Model	9
		1.2.3	Status of Measurements	9
		1.2.4	Analysis Overview	9
2	Exp	erime	ntal Setup	11
	2.1	Exper	iment Overview	11
	2.2 Accelerator Beamline		erator Beamline	11
		2.2.1	Overview of Jefferson Lab	11
		2.2.2	Electron Source	11
		2.2.3	Polarimeters	11
		2.2.4	Accelerator	11
		2.2.5	Target	11
	2.3	CEBA	AF Large Acceptance Spectrometer	11
		2.3.1	Forward Detector	11
		2.3.2	Central Detector	11
	2.4	Exper	iment Running and Data Taking	11

3	Sim	ulatior	1S	13
	3.1	Simula	ation Infrastructure	13
		3.1.1	Motivation for massive simulations	13
		3.1.2	OSG, MIT Tier 2, submission pipeline	13
	3.2	Genera	ator Details	13
		3.2.1	AAO	13
		3.2.2	AAONORAD	13
		3.2.3	AAORAD	13
	3.3	Simula	ation Pipeline	13
4	Ana	llysis		15
	4.1	Genera	al Analysis Overview	16
	4.2	Data I	Pre-Processing	16
		4.2.1	Energy Loss Corrections	16
		4.2.2	Momentum Corrections	16
		4.2.3	Simulation: Experiment Resolution Matching	16
	4.3	Partic	le Identification	16
	4.4	Event	Selection	16
		4.4.1	Rigid Event Selection	16
		4.4.2	Classifier Based Event Selection	16
	4.5	Lumin	osity	16
	4.6	Config	guration and Kinematics	16
	4.7	Binnin	ng	16
	4.8	Accept	tance Correction	16
	4.9	Radiat	tive Corrections	16
	4.10	Binnin	ng Corrections	16
	4.11	Overal	ll Normalization Corrections	16
	4.12	Error	Analysis	16
5	Res	${ m ults}$		17
	5.1	Genera	al Analysis Overview	18

	5.2	Data Pre-Processing		
		5.2.1 Energy Loss Corrections	18	
		5.2.2 Momentum Corrections	18	
		5.2.3 Simulation: Experiment Resolution Matching	18	
	5.3	Particle Identification	18	
	5.4	Event Selection	18	
		5.4.1 Rigid Event Selection	18	
		5.4.2 Classifier Based Event Selection	18	
	5.5	Luminosity	18	
	5.6	Configuration and Kinematics	18	
	5.7	Binning	18	
	5.8	Acceptance Correction	18	
	5.9	Radiative Corrections	18	
	5.10	Binning Corrections	18	
	5.11	Overall Normalization Corrections	18	
	5.12	Error Analysis	18	
Re	eferer	nces	21	
A			23	
	A.1	Full Cross Section Data	23	
В			25	
	B.1	Cross check between Andrey Kim and Bobby Johnston	25	

Introduction

- 1.1 Background Structure of the Proton
- 1.2 Deeply Virtual Neutral Pion Production
- 1.2.1 The Handbag Approach
- 1.2.2 The Goloskokov-Kroll Model
- 1.2.3 Status of Measurements
- 1.2.4 Analysis Overview

Hi (Bedlinskiy et al., 2014) see more in section 1.1 just a test

Experimental Setup

- 2.1 Experiment Overview
- 2.2 Accelerator Beamline
- 2.2.1 Overview of Jefferson Lab
- 2.2.2 Electron Source
- 2.2.3 Polarimeters
- 2.2.4 Accelerator
- **2.2.5** Target
- 2.3 CEBAF Large Acceptance Spectrometer
- 2.3.1 Forward Detector
- 2.3.2 Central Detector
- 2.4 Experiment Running and Data Taking

Simulations

- 3.1 Simulation Infrastructure
- 3.1.1 Motivation for massive simulations
- 3.1.2 OSG, MIT Tier 2, submission pipeline
- 3.2 Generator Details
- 3.2.1 AAO
- 3.2.2 AAONORAD
- 3.2.3 AAORAD
- 3.3 Simulation Pipeline

Analysis

4.1	General	Analysis	Overview

- 4.2 Data Pre-Processing
- 4.2.1 Energy Loss Corrections
- 4.2.2 Momentum Corrections
- 4.2.3 Simulation: Experiment Resolution Matching

Kinematics Correction of Experimental Data

Smearing Simulated Data

- 4.3 Particle Identification
- 4.4 Event Selection
- 4.4.1 Rigid Event Selection
- 4.4.2 Classifier Based Event Selection
- 4.5 Luminosity

Results

5.1	General	Analysis	Overview
O• I	G CHOL GI	7 TIICH Y DID	

- 5.2 Data Pre-Processing
- 5.2.1 Energy Loss Corrections
- 5.2.2 Momentum Corrections
- 5.2.3 Simulation: Experiment Resolution Matching

Kinematics Correction of Experimental Data

Smearing Simulated Data

- 5.3 Particle Identification
- 5.4 Event Selection
- 5.4.1 Rigid Event Selection
- 5.4.2 Classifier Based Event Selection
- 5.5 Luminosity

Methods General analysis technique event selection Configuration and kinematics region Cross section extraction Simulation pipeline acceptance correction Radiative corrections Monte carlo estimators

Data post processing energy loss correction for charged particles electron energy loss detector regions for proton energy loss correction details of the two band issue proton energy loss correction biases for higher momentum protons benchmarks for corrections Resolution matching kinematics correction of experimental data smearing the simulation data

Results CLAS12 qality assurance Event selection revisted multidimentsional binning signal yields and acceptance corrections radiative corrections normalization and the modified cross section error analysys unpolarized corss sections plarized cross sections conclusions

References

Bedlinskiy, I., Kubarovsky, V., Niccolai, S., Stoler, P., Adhikari, K. P., Anderson, M. D., ... Zonta, I. (2014). Exclusive π⁰ electroproduction at w>2 gev with clas. *Physical Review C - Nuclear Physics*, 90. Retrieved from https://arxiv.org/pdf/1405.0988.pdf doi: 10.1103/PhysRevC.90.025205

Appendix A

A.1 Full Cross Section Data

To be completed

Appendix B

B.1 Cross check between Andrey Kim and Bobby Johnston

As an additional cross check, Bobby calculated a $DV\pi^0P$ beam spin asymmetry and compared to Andrey Kim's results. This check will not comment on any acceptance, luminosity, or virtual photon flux factor calculations, but does validate exclusive event selection criteria. By examining figure B-1 we can see that agreement is reasonable, especially considering Bobby's calculation does not have sideband subtraction included.

Figure B-1: Overlay comparison of Andrey Kim's results (black datapoints, red fit line) and Bobby's results (red datapoints, orange fit line).