MATRIX THEORY: RANK OF MATRIX

TYPES OF MATRICES

FY BTECH SEM-I

MODULE-2

SUB-MODULE 2.1

- Show that every square matrix can be uniquely expressed as sum of Hermitian and skew Hermitian matrices.
- **Proof:** Let A be any square matrix.

Consider
$$A = \frac{1}{2}(A + A^{\theta}) + \frac{1}{2}(A - A^{\theta})$$

= P + Q, Where,
 $P = \frac{1}{2}(A + A^{\theta})$
 $Q = \frac{1}{2}(A - A^{\theta})$

Part I To Prove: P is Hermitian

$$P^{\theta} = \left[\frac{1}{2}(A + A^{\theta})\right]^{\theta}$$
$$= \frac{1}{2}(A^{\theta} + (A^{\theta})^{\theta})$$
$$= \frac{1}{2}(A^{\theta} + A) = P$$

<u>Part II To Prove</u>: Q is skew-Hermitian

$$Q^{\theta} = \left[\frac{1}{2}(A - A^{\theta})\right]^{\theta}$$
$$= \frac{1}{2}(A^{\theta} - A)$$
$$= -\frac{1}{2}(A - A^{\theta}) = -Q$$

Part III: To prove uniqueness

Suppose there is another representation of A = R + S, where R is Hermitian $(R^{\theta} = R)$ and S is skew Hermitian $(S^{\theta} = -S)$

Now,
$$A^{\theta} = (R + S)^{\theta}$$

= $R^{\theta} + S^{\theta}$
= $R - S$

For uniqueness, we need to prove P=R & Q=S

$$P = \frac{1}{2}(A + A^{\theta}) = \frac{1}{2}(R + S + R - S)$$

= R

$$Q = \frac{1}{2}(A - A^{\theta}) =$$

$$\frac{1}{2}(R + S - (R - S)) = S$$

 Hence A = R + S = P+Q. So given representation is unique.

- Show that every square matrix can be uniquely expressed as sum of symmetric and skew
- symmetric matrices.
- Proof: Let A be any square matrix.

$$A = \frac{1}{2}(A + A') + \frac{1}{2}(A - A')$$
= P + Q, Where,
$$P = \frac{1}{2}(A + A')$$

$$Q = \frac{1}{2}(A - A')$$

<u>Part I</u> To Prove : P is symmetric

$$P' = \left[\frac{1}{2}(A + A')\right]'$$

$$= \frac{1}{2}(A' + (A')')$$

$$= \frac{1}{2}(A' + A) = P$$

<u>Part II To Prove</u>: Q is skew-Hermitian

$$Q' = \left[\frac{1}{2}(A - A')\right]'$$

$$= \frac{1}{2}(A' - A)$$

$$= -\frac{1}{2}(A - A') = -Q$$

Part III: To prove uniqueness

Suppose there is another representation of A = R + S, where R is symmetric (R' = R) and S is skew symmetric (S' = -S)

Now,
$$A' = (R + S)'$$

= $R' + S'$
= $R - S$

For uniqueness, we need to prove P=R & Q=S

$$P = \frac{1}{2}(A + A')$$

$$= \frac{1}{2}(R + S + R - S) = R$$

$$Q = \frac{1}{2}(A - A') = \frac{1}{2}(R + S - (R - S)) = S$$

Hence A = R + S = P+Q. So given
 representation is unique.

- Show that every square matrix can be uniquely expressed as P + iQ, where P and Q both are Hermitian matrices.
- **Proof:** Let A be any square matrix. Consider $A = \frac{1}{2}(A + A^{\theta}) + i\left[\frac{1}{2i}(A A^{\theta})\right] = P + iQ$

Where,
$$P = \frac{1}{2}(A + A^{\theta})$$
 and $Q = \left[\frac{1}{2i}(A - A^{\theta})\right]$

Part I To Prove: P is Hermitian

$$P^{\theta} = \left[\frac{1}{2}(A + A^{\theta})\right]^{\theta} = \frac{1}{2}(A^{\theta} + (A^{\theta})^{\theta}) = \frac{1}{2}(A^{\theta} + A) = P$$

Part II To Prove: Q is Hermitian

$$Q^{\theta} = \left[\frac{1}{2i}(A - A^{\theta})\right]^{\theta} = \left(\frac{1}{2i}\right)^{\theta}(A^{\theta} - A) = -\frac{1}{2i}(A^{\theta} - A) = \frac{1}{2i}(A - A^{\theta}) = Q$$

Part III: To prove uniqueness

Consider another representation, say A=R+iS, where R and S are Hermitian. ($R^{\theta}=R$, $S^{\theta}=S$)

Then
$$A^{\theta} = (R + iS)^{\theta} = R^{\theta} + i^{\theta}S^{\theta} = R - iS$$

Now consider, $P = \frac{1}{2}(A + A^{\theta}) = \frac{1}{2}(R + iS + R - iS) = R$
and $Q = \frac{1}{2i}(A - A^{\theta}) = \frac{1}{2i}(R + iS - (R - iS)) = S$

Thus we establish R is same as P and S is same as Q. Hence given representation is unique.

• Show that every Hermitian matrix can be uniquely expressed as P + iQ, where P is real symmetric and Q is real skew symmetric matrix.

Proof: Let A be any Hermitian matrix. Consider $A = \frac{1}{2}(A + \bar{A}) + i\left[\frac{1}{2i}(A - \bar{A})\right] = P + iQ$ Where, $P = \frac{1}{2}(A + \bar{A})$ and $Q = \left[\frac{1}{2i}(A - \bar{A})\right]$

<u>Part I</u> To Prove : P is real symmetric, we show $\bar{P}=P$ and $P^T=P$

$$\bar{P} = \frac{1}{2}(A + \bar{A}) = \frac{1}{2}(\bar{A} + \bar{A}) = \frac{1}{2}(\bar{A} + A) = P \quad \text{Hence, P is real}$$

$$P^T = \left[\frac{1}{2}(A + \bar{A})\right]^T = \frac{1}{2}(A^T + (\bar{A})^T) = \frac{1}{2}(A^T + A^\theta) \quad \text{(Since A is Hermitian,}$$

$$= \frac{1}{2}(\bar{A} + A) = P \quad (A^\theta = A \text{ and } A^T = \bar{A}) \text{ Hence P is symmetric.}$$

Part II To Prove : Q is real Skew-symmetric we show $\bar{Q}=Q$ and $Q^T=-Q$

$$\bar{Q} = \frac{1}{2i}(A - \bar{A}) = -\frac{1}{2i}\overline{(A - \bar{A})} = -\frac{1}{2i}(\bar{A} - A) = \frac{1}{2i}(A - \bar{A}) = Q \quad \text{Hence, Q is real.}$$

$$Q^T = \left[\frac{1}{2i}(A - \bar{A})\right]^T = \frac{1}{2i}(A^T - (\bar{A})^T) = \frac{1}{2i}(A^T - A^\theta) \quad \text{(Since A is Hermitian,}$$

$$= \frac{1}{2i}(\bar{A} - A) = -Q \qquad \qquad A^\theta = A \text{ and } A^T = \bar{A} \text{)}$$

Part III: To prove uniqueness

Consider another representation, say A = R + iS, where R is real symmetric and S is real skew symmetric.

Then
$$\bar{A}=\overline{R+iS}=\bar{R}+\bar{\imath}\bar{S}=R-iS$$
 (since $\bar{R}=R$, $\bar{S}=S$) Now consider, $P=\frac{1}{2}(A+\bar{A})=\frac{1}{2}(R+iS+R-iS)=R$ and $Q=\frac{1}{2i}(A-\bar{A})=\frac{1}{2i}(R+iS-(R-iS))=S$

Thus, we establish R is same as P and S is same as Q. Hence given representation is unique.

- Show that every skew Hermitian matrix can be uniquely expressed as P + iQ, where P is real skew symmetric and Q is real symmetric matrix.
- (Try yourself)

Table of results on unique representation

Matrix	Expressed As	Unique Representation
Square	Symmetric + skew symmetric	$A = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T})$
Square	Hermitian + skew Hermitian	$A = \frac{1}{2}(A + A^{\theta}) + \frac{1}{2}(A - A^{\theta})$
Square	P + iQ, P and Q both Hermitian	$A = \frac{1}{2}(A + A^{\theta}) + i\left[\frac{1}{2i}(A - A^{\theta})\right]$
Hermitian	P + iQ, P real symmetric	$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$
	Q real skew symmetric	$A = \frac{1}{2}(A + \bar{A}) + i\left[\frac{1}{2i}(A - \bar{A})\right]$
Skew	P + iQ, P real skew symmetric	$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$
Hermitian	Q real symmetric	$A = \frac{1}{2}(A + \bar{A}) + i\left[\frac{1}{2i}(A - \bar{A})\right]$

Example-1

Express following Matrix as sum of Hermitian and skew Hermitian

Matrices.
$$A = \begin{bmatrix} 2 & 3-i & 2+i \\ i & 0 & 1-i \\ 1+2i & -1 & 3i \end{bmatrix}$$

• Solution: As we know the unique representation,
$$A = \frac{1}{2}(A + A^{\theta}) + \frac{1}{2}(A - A^{\theta}) = P + Q$$
,

Where,
$$P = \frac{1}{2}(A + A^{\theta})$$
 and $Q = \frac{1}{2}(A - A^{\theta})$

Now,
$$A^{\theta} = \begin{bmatrix} 2 & -i & 1-2i \\ 3+i & 0 & -1 \\ 2-i & 1+i & -3i \end{bmatrix}$$

$$\therefore P = \frac{1}{2} \left\{ \begin{bmatrix} 2 & 3-i & 2+i \\ i & 0 & 1-i \\ 1+2i & -1 & 3i \end{bmatrix} + \begin{bmatrix} 2 & -i & 1-2i \\ 3+i & 0 & -1 \\ 2-i & 1+i & -3i \end{bmatrix} \right\} = \frac{1}{2} \begin{bmatrix} 4 & 3-2i & 3-i \\ 3+2i & 0 & -i \\ 3+i & i & 0 \end{bmatrix}$$

P is Hermitian as $a_{ij} = \overline{a_{ii}}$, $\forall i, j$

•
$$Q = \frac{1}{2} \left\{ \begin{bmatrix} 2 & 3-i & 2+i \\ i & 0 & 1-i \\ 1+2i & -1 & 3i \end{bmatrix} - \begin{bmatrix} 2 & -i & 1-2i \\ 3+i & 0 & -1 \\ 2-i & 1+i & -3i \end{bmatrix} \right\}$$

$$= \frac{1}{2} \begin{bmatrix} 0 & 3 & 1+3i \\ -3 & 0 & 2-i \\ -1+3i & -2-i & 6i \end{bmatrix}$$

• Q is skew Hermitian $a_{ij} = -\overline{a_{ji}}, \ \forall \ i,j$

Hence we get the unique expression,

$$A = \begin{bmatrix} 2 & 3-i & 2+i \\ i & 0 & 1-i \\ 1+2i & -1 & 3i \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 4 & 3-2i & 3-i \\ 3+2i & 0 & -i \\ 3+i & i & 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & 3 & 1+3i \\ -3 & 0 & 2-i \\ -1+3i & -2-i & 6i \end{bmatrix}$$

Example 2

Express following Matrix as P + iQ, where P and Q are both Hermitian matrix.

$$A = \begin{bmatrix} 2 & 3-i & 2+i \\ i & 0 & 1-i \\ 1+2i & 1 & 3i \end{bmatrix}$$

- **Solution:** As we know the unique representation, $A = \frac{1}{2}(A + A^{\theta}) + i\left[\frac{1}{2i}(A A^{\theta})\right]$
- say, A = P + iQ, Where, $P = \frac{1}{2}(A + A^{\theta})$ and $Q = \frac{1}{2i}(A A^{\theta})$

•
$$A^{\theta} = \begin{bmatrix} 2 & -i & 1-2i \\ 3+i & 0 & 1 \\ 2-i & 1+i & -3i \end{bmatrix}$$

•
$$\therefore P = \frac{1}{2} \left\{ \begin{bmatrix} 2 & 3-i & 2+i \\ i & 0 & 1-i \\ 1+2i & 1 & 3i \end{bmatrix} + \begin{bmatrix} 2 & -i & 1-2i \\ 3+i & 0 & 1 \\ 2-i & 1+i & -3i \end{bmatrix} \right\} = \frac{1}{2} \begin{bmatrix} 4 & 3-2i & 3-i \\ 3+2i & 0 & 2-i \\ 3+i & 2+i & 0 \end{bmatrix}$$

•
$$\therefore Q = \frac{1}{2i} \left\{ \begin{bmatrix} 2 & 3-i & 2+i \\ i & 0 & 1-i \\ 1+2i & 1 & 3i \end{bmatrix} - \begin{bmatrix} 2 & -i & 1-2i \\ 3+i & 0 & 1 \\ 2-i & 1+i & -3i \end{bmatrix} \right\} = \frac{1}{2} \begin{bmatrix} 0 & 3 & 1+3i \\ -3 & 0 & -i \\ -1+3i & -i & 6i \end{bmatrix}$$

• For all elements P & Q , $a_{ij}=\overline{a_{ji}}$. Hence P and Q are Hermitian.

Example 3

Express following skew Hermitian Matrix as P + iQ, where P is real skew symmetric and Q is real

symmetric matrix.
$$A = \begin{bmatrix} 3i & -1+i & 3-2i \\ 1+i & -i & 1+2i \\ -3-2i & -1+2i & 0 \end{bmatrix}$$

- **Solution:** As we know the unique representation, $A = \frac{1}{2}(A + \bar{A}) + i\left[\frac{1}{2i}(A \bar{A})\right]$ say, A = P + iQ, Where, $P = \frac{1}{2}(A + \bar{A})$ and $Q = \frac{1}{2i}(A \bar{A})$
- Now, Consider $\bar{A} = \begin{bmatrix} -3i & -1-i & 3+2i \\ 1-i & i & 1-2i \\ -3+2i & -1-2i & 0 \end{bmatrix}$
- $\therefore P = \frac{1}{2} \left\{ \begin{bmatrix} 3i & -1+i & 3-2i \\ 1+i & -i & 1+2i \\ -3-2i & -1+2i & 0 \end{bmatrix} + \begin{bmatrix} -3i & -1-i & 3+2i \\ 1-i & i & 1-2i \\ -3+2i & -1-2i & 0 \end{bmatrix} \right\} = \frac{1}{2} \begin{bmatrix} 0 & -2 & 6 \\ 2 & 0 & 2 \\ -6 & -2 & 0 \end{bmatrix}$
- All elements of P are real and $a_{ij}=a_{ji}$. Hence P is real skew symmetric.

$$Q = \frac{1}{2i} \left\{ \begin{bmatrix} 3i & -1+i & 3-2i \\ 1+i & -i & 1+2i \\ -3-2i & -1+2i & 0 \end{bmatrix} - \begin{bmatrix} -3i & -1-i & 3+2i \\ 1-i & i & 1-2i \\ -3+2i & -1-2i & 0 \end{bmatrix} \right\}$$

$$Q = \frac{1}{2i} \begin{bmatrix} 6i & 2i & -4i \\ 2i & -2i & 4i \\ -4i & 4i & 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 & -2 \\ 1 & -1 & 2 \\ -2 & 2 & 0 \end{bmatrix}$$

All elements of Q are real and $a_{ij}=|a_{ji}|$. So, Q is real symmetric.

Hence we get the unique expression, A = P + iQ,

$$A = \begin{bmatrix} 3i & -1+i & 3-2i \\ 1+i & -i & 1+2i \\ -3-2i & -1+2i & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -1 & 3 \\ 1 & 0 & 1 \\ -3 & -1 & 0 \end{bmatrix} + i \begin{bmatrix} 3 & 1 & -2 \\ 1 & -1 & 2 \\ -2 & 2 & 0 \end{bmatrix}$$

Example 4

 Express following Matrix as P + iQ, where P is real symmetric and Q as real skew symmetric matrix.

$$A = \begin{bmatrix} 2 & 1+i & -i \\ 1-i & 0 & -3-i \\ i & -3+i & -1 \end{bmatrix}$$

Solution: As we know the unique representation, $A = \frac{1}{2}(A + \bar{A}) + i\left[\frac{1}{2i}(A - \bar{A})\right]$

say,
$$A = P + iQ$$
, Where, $P = \frac{1}{2}(A + \overline{A})$ and $Q = \frac{1}{2i}(A - \overline{A})$

Now, Consider
$$\bar{A} = \begin{bmatrix} 2 & 1-i & i \\ 1+i & 0 & -3+i \\ i & -3-i & -1 \end{bmatrix}$$

$$\therefore P = \frac{1}{2} \left\{ \begin{bmatrix} 2 & 1+i & -i \\ 1-i & 0 & -3-i \\ i & -3+i & -1 \end{bmatrix} + \begin{bmatrix} 2 & 1-i & i \\ 1+i & 0 & -3+i \\ i & -3-i & -1 \end{bmatrix} \right\} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & -3 \\ 0 & -3 & -1 \end{bmatrix}$$

All elements of P are real and $a_{ij}=a_{ji}$. Hence P is symmetric.

$$Q = \frac{1}{2i} \left\{ \begin{bmatrix} 2 & 1+i & -i \\ 1-i & 0 & -3-i \\ i & -3+i & -1 \end{bmatrix} - \begin{bmatrix} 2 & 1-i & i \\ 1+i & 0 & -3+i \\ i & -3-i & -1 \end{bmatrix} \right\}$$

$$Q = \frac{1}{2i} \begin{bmatrix} 0 & 2i & -2i \\ -2i & 0 & -2i \\ 2i & 2i & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix}$$

All elements of Q are real and $a_{ij}=-a_{ji}$. So, Q is real skew symmetric.

Hence we get the unique expression, A = P + iQ,

$$A = \begin{bmatrix} 2 & 1+i & -i \\ 1-i & 0 & -3-i \\ i & -3+i & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & -3 \\ 0 & -3 & -1 \end{bmatrix} + i \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix}$$