

Effect of Extreme Cold Treatment on Morphology and Behavior of Hydrogels and Microgels

Elizabeth Hirst, Erin Anderson, Paola A. D'Angelo Natick Soldier Res., Dev. and Engineering Ctr., Molecular Sci. and Engineering Team, Natick, MA 01760

BACKGROUND

- Stimuli responsive hydrogel systems have been studied for many applications, particularly in the medical and biological
- For future soldiers, the Army has an interest in smart textiles capable of better managing a soldier's comfort by regulating moisture and thermal properties
- Hydrogel or microgel textile coatings are of interest particularly for cold weather and Arctic uniforms,
- The effect of extreme cold on gel responsiveness however is not well studied
- This project seeks to understand the effect of cold temperature (down to -80 °C) on hydrogel and microgel particles properties and response to thermal stimuli
- We chose three common gel systems for study:
 - Poly N-isopropylacrylamide (PNIPAAm) LCST ~25-30° C
 - Polyethylene glycol (PEG)
 - Polyacrylic acid (PAA) UCST ~25-30° C

HYDROGEL SYNTHESIS

HYDROGEL COLD TREATMENT

- Hydrogels were dried in an oven overnight
- Half the samples were rehydrated in water and artificial sweat solutions
- Dry and wet samples were frozen at -20° C and -80° C for 24 hours
- Samples were thawed to room temperature, dried, and rehydrated to determine water uptake post freezing

EFFECTS ON WATER UPTAKE

MORPHOLOGY POST FREEZING

PRELIMINARY MICROGEL THERMAL STUDIES

PNIPAAm

- PNIPAAm microgels relatively homogenous,'
- Show clear narrow LCST,
- Show size contraction near freezing

PEG

- PEG microgels are relatively homogenous
- Show little temperature effect on particle radius

PAA

- PAA
 microgels
 heterogeneou
 s giving noisy
 DLS signal
- however
 phase
 transition is
 still visible

FUTURE WORK

- Prepare more homogenous microgel particle samples
- Test water uptake of particles before and after freezing
- Study effect of cold exposure on sensitivity of response to thermal stimuli, understand contraction in PNIPAAm system and not other gels
- View microgel changes in real time with eSEM
- Coat microgel particles onto textile swatches for cold weather testing

ACKNOWLEDGEMENTS

We would like to thank the Natick Soldier Research, Development, and Engineering Center and the Office of Chief Scientist for funding and support of this project