CS 243 Lecture 13 Affine Transforms

- 1. Loop Permutation as an Example
- 2. Seven Primitive Transforms
- 3. Advanced Topic: Pipelining & Blocking

Readings: Chapter 11.1 - 11.7

Advanced Compilers M. Lam

Affine Partitioning

For every pair of data dependent accesses $F_1i_1+f_1$ and $F_2i_2+f_2$ Find $C_1,\ c_1,\ c_2,\ c_2$:

 $\forall~i_1,~i_2~~F_1~i_1+~f_1=F_2~i_2+f_2\rightarrow C_1i_1+c_1=C_2i_2+c_2$ with the objective of maximizing the rank of C1, C2

1. Example: Loop Interchange (Loop Permutation)

Data dependent operations:

 \forall i, j, i', j' such that,

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i' \\ j' \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i'-i \\ j'-j \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} i'-i \\ j'-j \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Find
$$C_1$$
, C_2 , c for statement in loop
$$\begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + c = \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} i' \\ j' \end{bmatrix} + c$$

$$\begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} i'-i \\ j'-j \end{bmatrix} = 0 \qquad \begin{bmatrix} C_1 & C_2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0$$

One solution: $[C_1 \ C_2] = [0 \ 1] \ c = 0$

Therefore: $p = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} + c \quad p = j$

Advanced Compilers L13. Affine Partitioning

Code Generation: Execute each partition in sequential order Must be correct!

for P = 1 to 3
for I' = 1 to 4
for J' = 1 to 3
if (J' = P)

$$Z[I',J'] = Z[I'-1,J']$$

for P = 1 to 3
for I' = 1 to 4
$$Z[I',P] = Z[I'-1,P]$$

$$\begin{bmatrix} p \\ i' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix}$$

Advanced Compilers

L13. Affine Partitioning

Geometric Interpretation

Affine Partitioning Algorithm: Maximize Degree of Parallelism with No Communication

- Find data dependences
- For each pair of data dependent operations
 - Set up equations $F_1i_1+f_1 = F_2i_2+f_2$ to capture relations of dependent iterations
 - Reduce the number of unknowns lots of identities.
 - Set up equations for affine partitions $C_1i_1+c_1=C_2i_2+c_2$
 - Each operation gets its own C, c
 - Work on C by dropping the c', Rewrite constraints as Ax = 0, where x is the unknown Cs
 - Nullity of A is the rank C
 - Find the basis vectors
 - Find the constant c

2. Primitive Loop Transformations

- Key idea:
 If you draw the dependence graph,
 you can eyeball the code and get the solution derived using linear algebra
- Seven source-level transformations
 - Unimodular transform: Reversal, permutation, skewing
 - Fusion, fission, re-indexing, scaling
- Affine partitioning can express arbitrary combinations of these seven primitives.

Advanced Compilers L13. Affine Partitioning

Fusion

Source Code	Partition	Transformed Code
for (i=1; i<=N; i++) Y[i] = Z[i]; /*s1*/ for (j=1; j<=N; j++) X[j] = Y[j]; /*s2*/	$s_1 : p = i$ $s_2 : p = j$	for (p=1; p<=N; p++) { Y[p] = Z[p]; X[p] = Y[p]; }
$\longrightarrow s_2$		

Fission

Source Code	Partition	Transformed Code
for (p=1; p<=N; p++) { Y[p] = Z[p]; X[p] = Y[p]; }	$s_1 : i = p$ $s_2 : j = p$	for (i=1; i<=N; i++) Y[i] = Z[i]; /*s1*/ for (j=1; j<=N; j++) X[j] = Y[j]; /*s2*/

Advanced Compilers L13. Affine Partitioning

Re-indexing

Source Code	Partition	Transformed Code
<pre>for (i=1; i<=N; i++) { Y[i] = Z[i]; /*s1*/ X[i] = Y[i-1]; /*s2*/ }</pre>	$s_1 : p = i$ $s_2 : p = i - 1$	<pre>if (N>=1) X[1]=Y[0]; for (p=1; p<=N; p++) { Y[p] = Z[p]; X[p+1] = Y[p]; } if (N>=1) Y[N]=Z[N];</pre>
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$		$\bullet \xrightarrow{\bullet} \bullet \bullet \bullet \qquad s_1 \\ s_2$

Scaling

Source Code	Partition	Transformed Code
for (i=1; i<=N; i++) Y[2*i] = Z[2*i]; /*s1*/ for (j=1; j<=2*N; j++) X[j] = Y[j]; /*s2*/	$s_1 : p = 2 \times i$ $s_2 : p = j$	<pre>for (p=1; p<=2*N; p++){ if (p mod 2 == 0) Y[p] = Z[p]; X[p] = Y[p]; } if (N>=1) Y[N]=Z[N];</pre>
s_1		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Advanced Compilers

L13. Affine Partitioning

Reversal

Source Code	Partition	Transformed Code
for (i=0; i<=N; i++) Y[N-i] = Z[i]; /*s1*/ for (j=0; j<=N; j++) X[j] = Y[j]; /*s2*/	$s_1 : p = i$ $s_2 : p = j$	for (p=0; p<=N; p++) { Y[p] = Z[N-p]; X[p] = Y[p]; }

Advanced Compilers

L13. Affine Partitioning

Permutation

Source Code	Partition	Transformed Code
for (i=1; i<=N; i++) for (j=0; j<=M; j++) Z[i,j] = Z[i-1,j];	$ \begin{bmatrix} p \\ q \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} $	for (p=0; p<=M; p++) for (q=1; q<=N; q++) Z[q,p] = Z[q-1,p];

Advanced Compilers L13. Affine Partitioning

Skewing

Source Code	Partition	Transformed Code
<pre>for (i=1; i<=N+M-1; i++) for (j=max(1,i+N); j<=min(i,M); j++) Z[i,j] = Z[i-1,j-1];</pre>		for (p=1; p<=N; p++) for (q=1; q<=M; q++) Z[p,q-p] = Z[p-1,q-p-1];

3. Advanced topic: Pipelining SOR (Successive Over-Relaxation): An Example

Advanced Compilers L13. Affine Partitioning

Finding the Maximum Degree of Pipelining

For every pair of data dependent accesses $F_1i_1+f_1$ and $F_2i_2+f_2$ Let $B_1i_1+b_1\geq 0$, $B_2i_2+b_2\geq 0$ be the corresponding loop bound constraints, Find C_1 , c_1 , c_2 , c_2 :

$$\begin{array}{ll} \forall \ i_1, \ i_2 & \ B_1i_1+b_1 \geq 0, \ B_2i_2+b_2 \geq 0 \\ & (i_1 \leq i_2) \land (F_1 \ i_1 + f_1 = F_2 \ i_2 + f_2) \rightarrow C_1i_1 + c_1 \leq C_2i_2 + c_2 \\ \text{with the objective of maximizing the rank of } C_1, \ C_2 \end{array}$$

Key Insight

- Choice in time mapping => (pipelined) parallelism
- Rank(C) 1 degree of parallelism with 1 degree of synchronization
- Can create blocks with Rank(C) dimensions
- Find time partitions is not as straightforward as space partitions
 - Need to deal with linear inequalities
 - Solved using Farkas Lemma no simple intuitive proof

Advanced Compilers L13. Affine Partitioning

Summary

