Neural Network For Handwrites Recognition

Chen Yuxuan 1W15BG12

3	5	9	2	4	7	6	6	9	8
9	9	3	7	9	1	5	6	C	1
4	6	7	3	7	9	7	5	5	4
4	7	2_	7	9	1	7	1	8	0
6	8	8	4	8	9	0	3	8	7
1	0	3	1	1	5	0	3	1	9
7	0	4	3	1	3	0	9	8	2
0	8	7	5	9	2	0	0	7	1
5	9	1	7	2	4	1	5	8	9
3	9	0	7	8	1	9	8	8	5
						1	200	1	

Definition and Engine of Recognition

Signature of country star, Tex Williams

Numbers of Recognition

OCR software

Artificial Neural Network

Neural Networks as the Brain

- Basic Concepts
- Configuration
- Cost Function

Each circular node represents an artificial neuron and an arrow represents a connection from the output of one neuron to the input of another

Neural Networks and Common Algorithm

- 1. Backpropagation, is a common method of training artificial neural networks
- 2. Optimization method such as gradient descent

A simple example of Neural Network: XOR problem

• A neural network that can learn to produce the correct output given the XOR problem.

Given th	Produce this output	
<i>X</i> ₁	<i>x</i> ₂	у
0	0	0
0	1	1
1	0	1
1	1	0

Successfully Trained XOR problem

Iterations	Result of 0,0	Deviation J
1000	0.47689	0.69423
68000	0.026558	0.037856
100000	0.019090	0.025859

- Network guesses small numbers (close to 0) for the first and last XOR examples and high (close to 1)
- Result is more accurate when Iterations is larger.
- Successfully trained!

Handwritten Digits Recognition

3592476698 6937915641 4673797554 4727977780 6884890382 1031750719 7043130982 0875920071 5917241589

AIM: Build a
 neural network
 that can
 successfully
 learn to produce
 the correct
 output given the
 MNIST
 handwritten
 digits.

Algorithms

Data Division: Index (divideind)

Training: Levenberg-Marquardt (trainIm)

Performance: Mean Squared Error (mse)

Derivative: Default (defaultderiv)

Trained Handwritten Digits Recognition

Accuracy	Samples	Hidden Neruons
23.3%	120	4
66.7%	120	16
95.5%	5000	25

TRAINLM, Epoch 0/200, MSE 0.902926/0, Gradient 600.48/1e-010
TRAINLM, Epoch 21/200, MSE 0.0738405/0, Gradient 0.0262333/1e-010
TRAINLM, Validation stop.

SIMULATION...

Training Set Accuracy: 23.333333

- Training set accuracy is around 63% with the small sample (120) and small hidden neurons (16).
- While, larger sample (5000), and more hidden neurons (25) yields 95%.
- Sucessfully Trained!

What we learned so far... And more

So Far:

- Basic Concepts of Neural Network
- A Neural Network
 For XOR problem
- A Neural Network
 For Handwrites
 Recognition

Future:

- More Difficult Recognition
- Possibilities of solving any problems.
- Neural Network that can exceed human beings.