Prof. Eurinardo

Aulas Passadas

PROBLEMA SAT

PROBLEMA 3SAT

Aula 26 Teoria da Complexidade Problemas SAT, 3SAT e CLIQUE

Projeto e Análise de Algoritmos

Professor Eurinardo Rodrigues Costa Universidade Federal do Ceará Campus Russas

2021.1

Aulas Passadas

PROBLEMA SAT

PROBLEMA 3SAT
3SAT é NP-completo
Ideia

PROBLEMA CLIQUE

CLIQUE é NP-completo
CLIQUE ∈ NP
CONSTRUÇÃO
sim → sim
não → não

Prof Eurinardo

Aulas Passadas

PROBLEMA SAT

PROBLEMA 3SAT 3SAT é NP-completo

Problem/ CLIQUE

CLIQUE é NP-complete
CLIQUE € NP
CONSTRUÇÃO
sim → sim

Aulas Passadas

PROBLEMA SA

PROBLEMA 3SAI
3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE é NP-complete
CLIQUE € NP
CONSTRUÇÃO
sim → sim

Problemas "Fáceis" e "Razoáveis"

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE é NP-completo
CLIQUE ∈ NP
CONSTRUÇÃO
sim → sim

4 □ ト 4 圖 ト 4 圖 ト 4 圖 ・ 夕 Q ○ ○

► Classe P, NP e NPC

Problemas "Fáceis" e "Razoáveis"

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

> CLIQUE é NP-complete CLIQUE ∈ NP Construção sim → sim

► Classe P, NP e NPC

Redução Polinomial

Problemas "Fáceis" e "Razoáveis"

- Classe P, NP e NPC
- ► Redução Polinomial

$$A \leq_{p} B$$

$$w \to f(w)$$

$$sim \leftrightarrow sim$$

Prof. Eurinardo

Aulas Passadas

PROBLEMA SAT

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE é NP-completo
CLIQUE ∈ NP
CONSTRUÇÃO

- Classe P, NP e NPC
- Redução Polinomial

$$A \leq_{p} B$$
 $w \to f(w)$
 $sim \leftrightarrow sim$

Alguns Teoremas

Prof. Eurinardo

Aulas Passadas

PROBLEMA SAT

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE é NP-complete
CLIQUE € NP
CONSTRUÇÃO
sim → sim

- Problemas "Fáceis" e "Razoáveis"
- Classe P. NP e NPC
- Redução Polinomial

$$A \leq_{p} B$$
 $w \to f(w)$
 $sim \leftrightarrow sim$

Alguns Teoremas

PROBLEMA CLIQUE

CLIQUE ∈ NP Construção sim → sim

- Problemas "Fáceis" e "Razoáveis"
- ► Classe P, NP e NPC
- Redução Polinomial

$$A \leq_{p} B$$
 $w \to f(w)$
 $sim \leftrightarrow sim$

► Alguns Teoremas

Problemas "Fáceis" e "Razoáveis"

- Classe P, NP e NPC
- Redução Polinomial

$$A \leq_{p} B$$

 $w \to f(w)$
 $sim \leftrightarrow sim$

Alguns Teoremas

► (Cook-Levin) SAT ∈ NPC

4 D > 4 A P > 4 B > 4 B > 9 Q P

Teoria da Complexidade

PAA - Aula 26

Prof. Eurinardo

Aulas Passadas

PROBLEMA SAT

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE é NP-complete
CLIQUE € NP
CONSTRUÇÃO
sim → sim

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE € NP-completo
CLIQUE € NP
Construção
sim → sim

PROBLEMA CLIQUE

CLIQUE e NP-completo CLIQUE ∈ NP Construção sim → sim

Fórmula lógica na Forma Normal Conjuntiva (FNC)

Consiste de conjunções

LIQUE e NP-completo CLIQUE ∈ NP Construção

ão → não

Fórmula lógica na Forma Normal Conjuntiva (FNC)

Consiste de conjunções (operador lógico "e", denotado por \wedge)

Fórmula lógica na *Forma Normal Conjuntiva* (FNC)

Consiste de conjunções (operador lógico "e", denotado por ∧) de cláusulas

Fórmula lógica na *Forma Normal Conjuntiva* (FNC)

Consiste de conjunções (operador lógico "e", denotado por ∧) de cláusulas, onde uma cláusula consiste de disjunções

PROBLEMA
CLIQUE
CLIQUE é NP-comple

CLIQUE ∈ NP Construção

im → sim ião → não

Fórmula lógica na Forma Normal Conjuntiva (FNC)

Consiste de conjunções (operador lógico "e", denotado por \land) de cláusulas, onde uma cláusula consiste de disjunções (operador "ou", denotado por \lor)

PROBLEMA CLIQUE CLIQUE é NP-comp

CLIQUE ∈ NP
CONSTRUÇÃO

im → sim ião → não

Fórmula lógica na Forma Normal Conjuntiva (FNC)

Consiste de conjunções (operador lógico "e", denotado por \land) de cláusulas, onde uma cláusula consiste de disjunções (operador "ou", denotado por \lor) de literais

Fórmula lógica na Forma Normal Conjuntiva (FNC)

Consiste de conjunções (operador lógico "e", denotado por ∧) de cláusulas, onde uma cláusula consiste de disjunções (operador "ou", denotado por ∨) de literais (variável lógica ou complemento de variável lógica)

Fórmula lógica na *Forma Normal Conjuntiva* (FNC)

Consiste de conjunções (operador lógico "e", denotado por ∧) de cláusulas, onde uma cláusula consiste de disjunções (operador "ou", denotado por ∨) de literais (variável lógica ou complemento de variável lógica) Exemplo:

Exemplo: $(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3})$

Fórmula lógica na *Forma Normal Conjuntiva* (FNC)

Consiste de conjunções (operador lógico "e", denotado por ∧) de cláusulas, onde uma cláusula consiste de disjunções (operador "ou", denotado por ∨) de literais (variável lógica ou complemento de variável lógica)

4 ロ ト 4 倒 ト 4 豆 ト 4 豆 ト 9 9 9 9

Exemplo: $(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3})$

Fórmula lógica na *Forma Normal Conjuntiva* (FNC)

Consiste de conjunções (operador lógico "e", denotado por ∧) de cláusulas, onde uma cláusula consiste de disjunções (operador "ou", denotado por ∨) de literais (variável lógica ou complemento de variável lógica)

PROBLEMA SAT

Fórmula lógica na *Forma Normal Conjuntiva* (FNC)

Consiste de conjunções (operador lógico "e", denotado por ∧) de cláusulas, onde uma cláusula consiste de disjunções (operador "ou", denotado por ∨) de literais (variável lógica ou complemento de variável lógica)

Exemplo: $(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3})$

PROBLEMA SAT

Instância: uma fórmula ϕ na FNC.

Instância: uma fórmula ϕ na FNC.

Exemplo: $(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3})$

Pergunta: existe uma atribuição de V ou F às variáveis de ϕ de modo que o resultado da fórmula com essa atribuição seja V?

Fórmula lógica na *Forma Normal Conjuntiva* (FNC)

Consiste de conjunções (operador lógico "e", denotado por ∧) de cláusulas, onde uma cláusula consiste de disjunções (operador "ou", denotado por ∨) de literais (variável lógica ou complemento de variável lógica)

Fórmula lógica na *Forma Normal Conjuntiva* (FNC)

Consiste de conjunções (operador lógico "e", denotado por ∧) de cláusulas, onde uma cláusula consiste de disjunções (operador "ou", denotado por ∨) de literais (variável lógica ou complemento de variável lógica) Exemplo: $(x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3})$

PROBLEMA SAT

Instância: uma fórmula ϕ na FNC.

Pergunta: existe uma atribuição de V ou F às variáveis de ϕ de modo que o resultado da fórmula com essa atribuição seja V? Isto é, ϕ é satisfatível?

Aulas Passadas

PROBLEMA SA

PROBLEMA 3SAT 3SAT é NP-completo Ideia

PROBLEMA CLIQUE

CLIQUE é NP-complete
CLIQUE ∈ NP
CONSTRUÇÃO
sim → sim

Aulas Passadas

PROBLEMA SA

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE é NP-completo
CLIQUE \in NP
CONSTRUÇÃO
sim \rightarrow sim

◆□▶◆□▶◆□▶◆□▶ ■ めの○

PROBLEMA 3SAT

Instância: uma fórmula ϕ na FNC com 3 literais por

cláusula.

Ideia

- Aulas Passadas

Instância: uma fórmula ϕ na FNC com 3 literais por cláusula.

Pergunta: existe uma atribuição de V ou F às variáveis de ϕ de modo que o resultado da fórmula com essa atribuição seja V? Isto é, ϕ é satisfatível?

Instância: uma fórmula ϕ na FNC com 3 literais por cláusula.

Pergunta: existe uma atribuição de V ou F às variáveis de ϕ de modo que o resultado da fórmula com essa atribuição seja V? Isto é, ϕ é satisfatível?

$SAT \leq_{p} 3SAT$

PROBLEMA 3SAT

Instância: uma fórmula ϕ na FNC com 3 literais por cláusula.

Pergunta: existe uma atribuição de V ou F às variáveis de ϕ de modo que o resultado da fórmula com essa atribuição seja V? Isto é, φ é satisfatível?

$SAT \leq_{p} 3SAT$

Ideia

Instância: uma fórmula ϕ na FNC com 3 literais por cláusula.

Pergunta: existe uma atribuição de V ou F às variáveis de ϕ de modo que o resultado da fórmula com essa atribuição seja V? Isto é, φ é satisfatível?

$SAT \leq_{p} 3SAT$

Ideia

Duplicar literais em cláusulas com menos de três literais

Prof Furinardo Aulas Passadas

PROBLEMA 3SAT Ideia

Instância: uma fórmula ϕ na FNC com 3 literais por cláusula.

Pergunta: existe uma atribuição de V ou F às variáveis de ϕ de modo que o resultado da fórmula com essa atribuição seja V? Isto é, φ é satisfatível?

$SAT \leq_{p} 3SAT$

Ideia

- Duplicar literais em cláusulas com menos de três literais
 - \triangleright $(x \lor y)$

Prof Furinardo

Aulas Passadas

PROBLEMA 3SAT Ideia

Instância: uma fórmula ϕ na FNC com 3 literais por cláusula.

Pergunta: existe uma atribuição de V ou F às variáveis de ϕ de modo que o resultado da fórmula com essa atribuição seja V? Isto é, φ é satisfatível?

$SAT \leq_{p} 3SAT$

Ideia

- Duplicar literais em cláusulas com menos de três literais
 - \blacktriangleright $(x \lor y) \rightarrow (x \lor x \lor y)$

Prof Furinardo

Aulas Passadas

PROBLEMA 3SAT Ideia

Instância: uma fórmula ϕ na FNC com 3 literais por cláusula.

Pergunta: existe uma atribuição de V ou F às variáveis de ϕ de modo que o resultado da fórmula com essa atribuição seja V? Isto é, ϕ é satisfatível?

$\mathsf{SAT} \leq_{\rho} \mathsf{3SAT}$

Ideia

 Duplicar literais em cláusulas com menos de três literais

 Para cláusulas com mais de três, fazer trocas semelhantes a seguinte Prof. Eurinardo

Aulas Passadas

PROBLEMA SA

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE CLIQUE é NP-com

CLIQUE ∈ NP
CONSTRUÇÃO
sim → sim
não → não

não ightarrow não

Pergunta: existe uma atribuição de V ou F às variáveis de ϕ de modo que o resultado da fórmula com essa atribuição seja V? Isto é, φ é satisfatível?

$SAT \leq_{p} 3SAT$

Ideia

 Duplicar literais em cláusulas com menos de três literais

$$\blacktriangleright (x \lor y) \to (x \lor x \lor y)$$

Para cláusulas com mais de três, fazer trocas semelhantes a seguinte

Prof Furinardo

Aulas Passadas

PROBLEMA 3SAT Ideia

PROBLEMA 3SAT

Instância: uma fórmula ϕ na FNC com 3 literais por cláusula.

Pergunta: existe uma atribuição de V ou F às variáveis de ϕ de modo que o resultado da fórmula com essa atribuição seja V? Isto é, φ é satisfatível?

$SAT \leq_{p} 3SAT$

Ideia

Duplicar literais em cláusulas com menos de três literais

$$\blacktriangleright (x \lor y) \to (x \lor x \lor y)$$

Para cláusulas com mais de três, fazer trocas semelhantes a seguinte

$$(x_1 \lor x_2 \lor x_3 \lor x_4) \to (x_1 \lor x_2 \lor y) \land (\overline{y} \lor x_3 \lor x_4)$$

Prof Furinardo

Aulas Passadas

PROBLEMA 3SAT Ideia

Aulas Passadas

Problema S*A*

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE é NP-complete
CLIQUE ∈ NP
CONSTRUÇÃO
sim → sim

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE € NP-completo

CLIQUE € NP

CONSTRUÇÃO

sim → sim

PROBLEMA CLIQUE

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE € NP
CONSTRUÇÃO
sim → sim

PROBLEMA CLIQUE

Instância: um grafo G e inteiro positivo k

PROBLEMA CLIQUE

CLIQUE ← NP Construção sim → sim

PROBLEMA CLIQUE

Instância: um grafo G e inteiro positivo k

Pergunta: existe um subconjunto de vértices

 $C \subseteq V(G)$ de tamanho k de modo que cada par de

vértices em C possui aresta em G?

PROBLEMA CLIQUE

PROBLEMA CLIQUE

Instância: um grafo G e inteiro positivo k

Pergunta: existe um subconjunto de vértices

 $C \subseteq V(G)$ de tamanho k de modo que cada par de vértices em C possui aresta em G? isto é, existe

uma clique de tamanho k em G?

Aulas Passadas

PROBLEMA SA

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA
CLIQUE
CLIQUE 6 NP-completo

sim → sim

Teoria da Complexidade

Teorema

PAA - Aula 26

Prof. Eurinardo

Aulas Passadas

PROBLEMA SA

PROBLEMA 3SAT 3SAT é NP-completo

CLIQUE é NP-completo

im → sim

PROBLEMA 3SAT 3SAT é NP-completo

CLIQUE é NP-completo

CLIQUE € NP

CONSTRUÇÃO im → sim

Teorema

PROBLEMA CLIQUE é NP-completo.

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE é NP-completo.

Demonstração.

Teorema

3SAT é NP-completo Ideia

CLIQUE é NP-completo
CLIQUE € NP
CONSTRUÇÃO
sim → sim

PROBLEMA 3SAT

CLIQUE é NP-completo

Teorema PROBLEMA CLIQUE é NP-completo.

Demonstração.

Usaremos o teorema

PROBLEMA CLIQUE é NP-completo.

Demonstração.

Usaremos o teorema

$$\left\{
 B \in NPC \\
 B \leq_p C \\
 C \in NP
 \right\} \Rightarrow C \in NPC$$

PROBLEMA CLIQUE é NP-completo.

Demonstração.

Usaremos o teorema

$$\left\{
 B \in NPC \\
 B \leq_p C \\
 C \in NP
 \right\} \Rightarrow C \in NPC$$

Em que B = 3SAT

Teoria da Complexidade

Teorema

PROBLEMA CLIQUE é NP-completo.

Demonstração.

Usaremos o teorema

$$\left\{
 B \in NPC \\
 B \leq_p C \\
 C \in NP
 \right\} \Rightarrow C \in NPC$$

Em que B = 3SAT e C = CLIQUE

PROBLEMA CLIQUE é NP-completo.

Demonstração.

Usaremos o teorema

$$\left\{
B \in NPC \\
B \leq_{p} C \\
C \in NP
\right\} \Rightarrow C \in NPC$$

Em que B = 3SAT e C = CLIQUE. Deste modo,

PROBLEMA CLIQUE é NP-completo.

Demonstração.

Usaremos o teorema

$$\left\{
 B \in NPC \\
 B \leq_p C \\
 C \in NP
 \right\} \Rightarrow C \in NPC$$

Em que B = 3SAT e C = CLIQUE. Deste modo, basta mostrar que 3SAT \leq_{p} CLIQUE

PROBLEMA CLIQUE é NP-completo.

Demonstração.

Usaremos o teorema

$$\left\{
 B \in NPC \\
 B \leq_p C \\
 C \in NP
 \right\} \Rightarrow C \in NPC$$

Em que B = 3SAT e C = CLIQUE. Deste modo, basta mostrar que 3SAT \leq_{p} CLIQUE e que CLIQUE \in NP.

PROBLEMA 3SAT

CLIQUE ∈ NP

Teorema

PROBLEMA CLIQUE é NP-completo.

Demonstração.

CLIQUE ∈ NP

PROBLEMA CLIQUE é NP-completo.

Demonstração.

CLIQUE ∈ NP

Certificado:

PROBLEMA 3SAT

CLIQUE ∈ NP

Teorema

PROBLEMA CLIQUE é NP-completo.

Demonstração.

CLIQUE ∈ NP

Certificado: conjunto *C* de vértices de *G*

PROBLEMA CLIQUE é NP-completo.

Demonstração.

CLIQUE ∈ NP

Certificado: conjunto *C* de vértices de *G*

Verificação:

PROBLEMA CLIQUE é NP-completo.

Demonstração.

CLIQUE ∈ NP

Certificado: conjunto *C* de vértices de *G*

Verificação:

$$|C| = k$$
?

PROBLEMA CLIQUE é NP-completo.

Demonstração.

CLIQUE ∈ NP

Certificado: conjunto *C* de vértices de *G*

Verificação:

|C| = k? O(k) = O(n)

PROBLEMA CLIQUE é NP-completo.

Demonstração.

CLIQUE ∈ NP

Certificado: conjunto *C* de vértices de *G*

Verificação:

|C| = k? O(k) = O(n), basta contar.

PROBLEMA CLIQUE é NP-completo.

Demonstração.

CLIQUE ∈ NP

Certificado: conjunto *C* de vértices de *G*

Verificação:

- |C| = k? O(k) = O(n), basta contar.
- Em G, existe uma aresta entre cada par de vértices de C?

PROBLEMA CLIQUE é NP-completo.

Demonstração.

CLIQUE ∈ NP

Certificado: conjunto *C* de vértices de *G*

Verificação:

- |C| = k? O(k) = O(n), basta contar.
- Em G, existe uma aresta entre cada par de vértices de C? $O(k^2) = O(n^2)$

Demonstração.

CLIQUE ∈ NP

Certificado: conjunto *C* de vértices de *G*

Verificação:

- ightharpoonup |C| = k? O(k) = O(n), basta contar.
- ► Em G, existe uma aresta entre cada par de vértices de C? $O(k^2) = O(n^2)$, para cada vértice em C verificar se forma aresta com os k-1 outros vértices de C.

Prof. Eurinardo

Aulas Passadas

PROBLEMA SA

PROBLEMA 3SAT 3SAT é NP-completo

> CLIQUE CLIQUE é NP-completo CLIQUE € NP CONSTRUÇÃO sim → sim

CLIQUE ∈ NP

Teorema

PROBLEMA CLIQUE é NP-completo.

Demonstração.

PROBLEMA CLIQUE é NP-completo.

Demonstração.

(i)
$$\langle \phi \rangle \rightarrow \langle G, k \rangle$$

Teoria da Complexidade

Teorema

PROBLEMA CLIQUE é NP-completo.

Demonstração.

- (i) $\langle \phi \rangle \rightarrow \langle G, k \rangle$
- (ii) $\mathsf{sim} \to \mathsf{sim}$

Demonstração.

$3SAT \leq_{p} CLIQUE$

- (i) $\langle \phi \rangle \rightarrow \langle G, k \rangle$
- (ii) $sim \rightarrow sim$
- (iii) $\tilde{nao} \rightarrow \tilde{nao}$

Prof. Eurinardo

Aulas Passadas

PROBLEMA SAT

PROBLEMA 3SAT

CLIQUE ∈ NP

Construção

Aulas Passadas

Teorema

PROBLEMA CLIQUE é NP-completo.

Demonstração.

PROBLEMA CLIQUE é NP-completo.

Demonstração.

(i)
$$<\phi> \rightarrow <$$
 G, *k* $>$

PROBLEMA CLIQUE é NP-completo.

Demonstração.

(i)
$$<\phi>
ightarrow <$$
 $G,k>$ (Construção)

PROBLEMA CLIQUE é NP-completo.

Demonstração.

- (i) $<\phi> \rightarrow <$ G, k> (Construção)
 - ▶ \forall cláusula $(x_1 \lor x_2 \lor x_3)$ criar vértices x_1, x_2 e x_3 .

Construção

Teorema

PROBLEMA CLIQUE é NP-completo.

Demonstração.

- (i) $\langle \phi \rangle \rightarrow \langle G, k \rangle$ (Construção)
 - \triangleright \forall cláusula $(x_1 \lor x_2 \lor x_3)$ criar vértices $x_1, x_2 \in x_3$.
 - ► Faça *k* = número de cláusulas

PROBLEMA CLIQUE é NP-completo.

Demonstração.

- (i) $\langle \phi \rangle \rightarrow \langle G, k \rangle$ (Construção)
 - \triangleright \forall cláusula $(x_1 \lor x_2 \lor x_3)$ criar vértices $x_1, x_2 \in x_3$.
 - Faça k = número de cláusulas
 - Adicione todas as arestas, exceto em:

PROBLEMA CLIQUE é NP-completo.

Demonstração.

- (i) $\langle \phi \rangle \rightarrow \langle G, k \rangle$ (Construção)
 - \triangleright \forall cláusula $(x_1 \lor x_2 \lor x_3)$ criar vértices $x_1, x_2 \in x_3$.
 - Faça k = número de cláusulas
 - Adicione todas as arestas, exceto em:
 - vértices associados a mesma cláusula e

PROBLEMA CLIQUE é NP-completo.

Demonstração.

- (i) $\langle \phi \rangle \rightarrow \langle G, k \rangle$ (Construção)
 - \triangleright \forall cláusula $(x_1 \lor x_2 \lor x_3)$ criar vértices $x_1, x_2 \in x_3$.
 - Faça k = número de cláusulas
 - Adicione todas as arestas, exceto em:
 - vértices associados a mesma cláusula e
 - vértices associados a literais complementares.

PROBLEMA CLIQUE é NP-completo.

Demonstração.

$3SAT \leq_{p} CLIQUE$

- (i) $<\phi> \rightarrow <$ G, k> (Construção)
 - ightharpoonup \forall cláusula $(x_1 \lor x_2 \lor x_3)$ criar vértices $x_1, x_2 \in x_3$.
 - Faça k = número de cláusulas
 - Adicione todas as arestas, exceto em:
 - vértices associados a mesma cláusula e
 - vértices associados a literais complementares.

Redução Polinomial?

CLIQUE € NP-completo
CLIQUE € NP
Construção
sim → sim

não → não

Teorema

PROBLEMA CLIQUE é NP-completo.

Demonstração.

$3SAT \leq_{p} CLIQUE$

- (i) $<\phi> \rightarrow <$ G, k> (Construção)
 - ightharpoonup \forall cláusula $(x_1 \lor x_2 \lor x_3)$ criar vértices $x_1, x_2 \in x_3$.
 - ► Faça *k* = número de cláusulas
 - Adicione todas as arestas, exceto em:
 - vértices associados a mesma cláusula e
 - vértices associados a literais complementares.

Redução Polinomial?

m clásulas

PROBLEMA CLIQUE é NP-completo.

Demonstração.

$3SAT \leq_{p} CLIQUE$

- (i) $<\phi> \rightarrow <$ G, k> (Construção)
 - ightharpoonup \forall cláusula $(x_1 \lor x_2 \lor x_3)$ criar vértices $x_1, x_2 \in x_3$.
 - Faça k = número de cláusulas
 - Adicione todas as arestas, exceto em:
 - vértices associados a mesma cláusula e
 - vértices associados a literais complementares.

Redução Polinomial?

$$m$$
 clásulas $\rightarrow \left\{3m \text{ vértices}\right.$

Prof Furinardo

Aulas Passadas

Door Fue C

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE ∈ NP

Construção

sim → sim

PROBLEMA CLIQUE é NP-completo.

Demonstração.

$3SAT \leq_{p} CLIQUE$

- (i) $\langle \phi \rangle \rightarrow \langle G, k \rangle$ (Construção)
 - \triangleright \forall cláusula $(x_1 \lor x_2 \lor x_3)$ criar vértices $x_1, x_2 \in x_3$.
 - Faça k = número de cláusulas
 - Adicione todas as arestas, exceto em:
 - vértices associados a mesma cláusula e
 - vértices associados a literais complementares.

Redução Polinomial?

$$m$$
 clásulas $\rightarrow \begin{cases} 3m \text{ vértices} \\ \leq (3m)^2 \text{ arestas} \end{cases}$

Prof Furinardo

Aulas Passadas

PROBLEMA 3SAT

CONSTRUÇÃO

PROBLEMA CLIQUE é NP-completo.

Demonstração.

$3SAT \leq_{p} CLIQUE$

- (i) $<\phi> \rightarrow <$ G, k> (Construção)
 - ightharpoonup \forall cláusula $(x_1 \lor x_2 \lor x_3)$ criar vértices $x_1, x_2 \in x_3$.
 - Faça k = número de cláusulas
 - Adicione todas as arestas, exceto em:
 - vértices associados a mesma cláusula e
 - vértices associados a literais complementares.

Redução Polinomial?

$$m ext{ clásulas } o egin{cases} 3m ext{ vértices} \ \leq (3m)^2 ext{ arestas} \end{pmatrix} o O(m^2)$$

 $sim \rightarrow sim$

Teorema

PROBLEMA CLIQUE é NP-completo.

Demonstração.

 $sim \rightarrow sim$

Teorema

PROBLEMA CLIQUE é NP-completo.

Demonstração.

 $3SAT \leq_{p} CLIQUE$

(ii) $sim \rightarrow sim$

PROBLEMA CLIQUE é NP-completo.

Demonstração.

$3SAT \leq_p CLIQUE$

(ii) $sim \rightarrow sim$ Se ϕ é sim no 3SAT

PROBLEMA CLIQUE é NP-completo.

Demonstração.

$3SAT \leq_{p} CLIQUE$

(ii) $sim \rightarrow sim$ Se ϕ é sim no 3SAT, então exite uma valoração em que cada cláusula possui um literal V.

PROBLEMA CLIQUE é NP-completo.

Demonstração.

$3SAT \leq_{p} CLIQUE$

(ii) $sim \rightarrow sim$ Se ϕ é sim no 3SAT, então exite uma valoração em que cada cláusula possui um literal V. Em cada cláusula, selecione o vértice associado ao literal V.

PROBLEMA CLIQUE é NP-completo.

Demonstração.

$3SAT \leq_p CLIQUE$

(ii) $sim \rightarrow sim$ Se ϕ é sim no 3SAT, então exite uma valoração em que cada cláusula possui um literal V. Em cada cláusula, selecione o vértice associado ao literal V. Como os k (= número de cláusulas) vértices selecionados

PROBLEMA CLIQUE é NP-completo.

Demonstração.

$3SAT \leq_p CLIQUE$

(ii) $\sin \rightarrow \sin$ Se ϕ é sim no 3SAT, então exite uma valoração em que cada cláusula possui um literal V. Em cada cláusula, selecione o vértice associado ao literal V. Como os k (= número de cláusulas) vértices selecionados são de cláusulas distintas

PROBLEMA CLIQUE é NP-completo.

Demonstração.

Teorema

 $3SAT \leq_{p} CLIQUE$

(ii) $sim \rightarrow sim$ Se ϕ é sim no 3SAT, então exite uma valoração em que cada cláusula possui um literal V. Em cada cláusula, selecione o vértice associado ao literal V. Como os k (= número de cláusulas) vértices selecionados são de cláusulas distintas e não são associados a literais complementares

PROBLEMA CLIQUE é NP-completo.

Demonstração.

$3SAT \leq_p CLIQUE$

(ii) sim → sim
 Se φ é sim no 3SAT, então exite uma valoração em que cada cláusula possui um literal V. Em cada cláusula, selecione o vértice associado ao literal V. Como os k (= número de cláusulas) vértices selecionados são de cláusulas distintas e não são associados a literais complementares (apenas literais V)

PROBLEMA CLIQUE é NP-completo.

D----------

Demonstração.

Teorema

 $3SAT \leq_p CLIQUE$

(ii) $\sin \rightarrow \sin$ Se ϕ é sim no 3SAT, então exite uma valoração em que cada cláusula possui um literal V. Em cada cláusula, selecione o vértice associado ao literal V. Como os k (= número de cláusulas) vértices selecionados são de cláusulas distintas e não são associados a literais complementares (apenas literais V), temos que eles formam (os vértices selecionados)

PROBLEMA 3SAT

Teorema

PROBLEMA CLIQUE é NP-completo.

Demonstração.

$3SAT \leq_{p} CLIQUE$

(ii) $sim \rightarrow sim$ Se ϕ é sim no 3SAT, então exite uma valoração em que cada cláusula possui um literal V. Em cada cláusula, selecione o vértice associado ao literal V. Como os k (= número de cláusulas) vértices selecionados são de cláusulas distintas e não são associados a literais complementares (apenas literais V), temos que eles formam (os vértices selecionados) uma clique em G

PROBLEMA CLIQUE é NP-completo.

Demonstração.

$3SAT \leq_p CLIQUE$

(ii) $\sin \rightarrow \sin$ Se ϕ é sim no 3SAT, então exite uma valoração em que cada cláusula possui um literal V. Em cada cláusula, selecione o vértice associado ao literal V. Como os k (= número de cláusulas) vértices selecionados são de cláusulas distintas e não são associados a literais complementares (apenas literais V), temos que eles formam (os vértices selecionados) uma clique em G (grafos construído a partir de ϕ).

PROBLEMA CLIQUE é NP-completo.

Demonstração.

 $3SAT \leq_p CLIQUE$

PAA - Aula 26

Prof. Eurinardo

Aulas Passadas

PROBLEMA SAT

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE é NP-completo
CLIQUE ∈ NP
CONSTRUÇÃO
sim → sim
não → não

 $3SAT \leq_{p} CLIQUE$

(iii) não → não

PAA - Aula 26

Prof. Eurinardo

Aulas Passadas

PROBLEMA SAT

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE é NP-completo
CLIQUE ∈ NP
CONSTRUÇÃO
sim → sim
não → não

$3SAT \leq_{p} CLIQUE$

(iii) não \rightarrow não (sim \leftarrow sim)

PAA - Aula 26

Prof. Eurinardo

Aulas Passadas

PROBLEMA SAT

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE é NP-completo
CLIQUE € NP
CONSTRUÇÃO
sim → sim
não → não

PROBLEMA CLIQUE é NP-completo.

Demonstração.

$3SAT \leq_p CLIQUE$

(iii) não ightarrow não (sim \leftarrow sim) Seja G o grafo contruído a partir de ϕ PAA - Aula 26

Prof. Eurinardo

Aulas Passadas

PROBLEMA SAT

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE é NP-completo
CLIQUE € NP
CONSTRUÇÃO
sim → sim
não → não

$3SAT \leq_{p} CLIQUE$

(iii) não \rightarrow não (sim \leftarrow sim) Seja G o grafo contruído a partir de ϕ e k o número de cláusulas.

PAA - Aula 26

Prof. Eurinardo

Aulas Passadas

PROBLEMA SAT

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE € NP

CONSTRUÇÃO

sim → sim

não → não

$3SAT \leq_{p} CLIQUE$

(iii) não \rightarrow não (sim \leftarrow sim) Seja G o grafo contruído a partir de ϕ e k o número de cláusulas. Se < G, k > é sim PAA - Aula 26

Prof. Eurinardo

Aulas Passadas

PROBLEMA SAT

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE é NP-completo
CLIQUE € NP
CONSTRUÇÃO
sim → sim
não → não

$3SAT \leq_{p} CLIQUE$

(iii) não \rightarrow não (sim \leftarrow sim) Seja G o grafo contruído a partir de ϕ e k o número de cláusulas. Se < G, k > é sim, então existe uma clique C em G de tamanho k. PAA - Aula 26

Prof. Eurinardo

Aulas Passadas

PROBLEMA SAT

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE € NP-completo

CLIQUE € NP

CONSTRUÇÃO

sim → sim

não → não

PROBLEMA CLIQUE é NP-completo.

Demonstração.

$3SAT \leq_{p} CLIQUE$

(iii) não \rightarrow não (sim \leftarrow sim) Seja G o grafo contruído a partir de ϕ e k o número de cláusulas. Se < G, k > é sim, então existe uma clique C em G de tamanho k. Atribua V a cada literal associado a um vértice de G. PAA - Aula 26

Prof. Eurinardo

Aulas Passadas

PROBLEMA SA

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE CLIQUE & NP-com

CLIQUE ∈ NP
CONSTRUÇÃO
sim → sim
não → não

$3SAT \leq_{p} CLIQUE$

(iii) não → não (sim ← sim) Seja G o grafo contruído a partir de φ e k o número de cláusulas. Se <G, k> é sim, então existe uma clique C em G de tamanho k. Atribua V a cada literal associado a um vértice de C. Note que a valoração é válida PAA - Aula 26

Prof. Eurinardo

Aulas Passadas

PROBLEMA SA

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE e NP-completo
CLIQUE ∈ NP
Construção
sim → sim
não → não

$3SAT \leq_{p} CLIQUE$

(iii) não → não (sim ← sim) Seja G o grafo contruído a partir de φ e k o número de cláusulas. Se <G, k> é sim, então existe uma clique C em G de tamanho k. Atribua V a cada literal associado a um vértice de C. Note que a valoração é válida, pois não há vértices ligados associado a literais complementares. PAA - Aula 26

Prof. Eurinardo

Aulas Passadas

PROBLEMA SA

PROBLEMA 3SAT 3SAT é NP-completo

> PROBLEMA CLIQUE CLIQUE & NP-com

CLIQUE € NP

CONSTRUÇÃO

sim → sim

não → não

PROBLEMA CLIQUE é NP-completo.

Demonstração.

$3SAT \leq_{p} CLIQUE$

(iii) $\tilde{nao} \rightarrow \tilde{nao} (sim \leftarrow sim)$ Seja G o grafo contruído a partir de ϕ e k o número de cláusulas. Se $\langle G, k \rangle$ é sim, então existe uma clique C em G de tamanho k. Atribua V a cada literal associado a um vértice de C. Note que a valoração é válida, pois não há vértices ligados associado a literais complementares. Como dois vértices associados a literais de mesma cláusula não estão ligados

PAA - Aula 26

Prof Furinardo

Aulas Passadas

PROBLEMA 3SAT

$3SAT \leq_{p} CLIQUE$

(iii) não → não (sim ← sim) Seja G o grafo contruído a partir de φ e k o número de cláusulas. Se <G, k> é sim, então existe uma clique C em G de tamanho k. Atribua V a cada literal associado a um vértice de C. Note que a valoração é válida, pois não há vértices ligados associado a literais complementares. Como dois vértices associados a literais de mesma cláusula não estão ligados, então cada vértice de C está associado a exatamente um literal de cada cláusula. PAA - Aula 26

Prof. Eurinardo

Aulas Passadas

PROBLEMA S

PROBLEMA 3SAT 3SAT é NP-completo

CLIQUE é NP-comp

CLIQUE ∈ NP
CONSTRUÇÃO
sim → sim
não → não

PROBLEMA CLIQUE é NP-completo.

Demonstração.

$3SAT \leq_{p} CLIQUE$

(iii) $\tilde{nao} \rightarrow \tilde{nao} (sim \leftarrow sim)$ Seja G o grafo contruído a partir de ϕ e k o número de cláusulas. Se $\langle G, k \rangle$ é sim, então existe uma clique C em G de tamanho k. Atribua V a cada literal associado a um vértice de C. Note que a valoração é válida, pois não há vértices ligados associado a literais complementares. Como dois vértices associados a literais de mesma cláusula não estão ligados, então cada vértice de C está associado a exatamente um literal de cada cláusula. Deste modo. nossa valoração terá um literal V em cada cláusula.

Prof Furinardo

Aulas Passadas

PROBLEMA 3SAT

CLIQUE

Aulas Passadas

PROBLEMA SAT

PROBLEMA 3SAT

SIPSER, M. Introdução a teoria da computação. 2 ed. Thompson Learning, and 2007.

Prof. Eurinardo

Aulas Passadas

PROBLEMA SAT

PROBLEMA 3SAT 3SAT é NP-completo

PROBLEMA CLIQUE

CLIQUE é NP-completo
CLIQUE ∈ NP
CONSTRUÇÃO
sim → sim
não → não

Obrigado!