

US006340583B1

(12) **United States Patent**
Yan et al.

(10) Patent No.: **US 6,340,583 B1**
(45) Date of Patent: **Jan. 22, 2002**

(54) **ISOLATED HUMAN KINASE PROTEINS,
NUCLEIC ACID MOLECULES ENCODING
HUMAN KINASE PROTEINS, AND USES
THEREOF**

(75) Inventors: Chunhua Yan, Boyds; Karen A. Ketchum, Germantown; Valentina Di Francesco, Rockville; Ellen M. Beasley, Darnestown, all of MD (US)

(73) Assignee: PE Corporation (NY), Norwalk, CT (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/813,817

(22) Filed: Mar. 22, 2001

(51) Int. Cl.⁷ C12N 9/12; C12N 1/20;
C12N 15/00; C12N 5/00; C07H 21/04

(52) U.S. Cl. 435/194; 435/320.1; 435/252.3;
435/325; 536/23.2

(58) Field of Search 435/194, 252.3,
435/325, 320.1; 536/23.2

(56)

References Cited

PUBLICATIONS

GenEmbl Database, Accession No. D45906, Feb. 1999.*

Sambrook et al., Molecular Cloning Manual, 2nd edition,
Cold Spring Harbor Laboratory Press, 1989.*

* cited by examiner

*Primary Examiner—Rebecca E. Prouty
Assistant Examiner—M. Monshipouri*

(74) Attorney, Agent, or Firm—Celera Genomics; Robert A. Millman; Justin D. Karjala

(57) **ABSTRACT**

The present invention provides amino acid sequences of peptides that are encoded by genes within the human genome, the kinase peptides of the present invention. The present invention specifically provides isolated peptide and nucleic acid molecules, methods of identifying orthologs and paralogs of the kinase peptides, and methods of identifying modulators of the kinase peptides.

9 Claims, 41 Drawing Sheets

1 CCCAGGGCGC CGTAGGCGGT GCATCCCGTT CGCGCCTGGG GCTGTGGTCT
51 TCCCAGCGCCT GAGGCAGGCGG CGGCAGGAGC TGAGGGAGT TGTAGGGAAC
101 TGAGGGGAGC TGCTGTGTCC CCCGCCCTCCT CCTCCCCATT TCCCGCGCTCC
151 CGGGACCATG TCCCGCGCTGG CGGGTGAAGA TGTCTGGAGG TGTCCAGGCT
201 GTGGGGGACCA CATTGCTCCA AGCCAGATAT GGTACAGGAC TGTCAACGAA
251 ACCTGGCACG GCTCTTGCTT CCGGTGAAAG TGATGCGCAG CCTGGACCAC
301 CCCAATGTGC TCAAGTTCAT TGGTGTGCTG TACAAGGATA AGAAGCTGAA
351 CCTGCTGACA GAGTACATTG AGGGGGGCAC ACTGAAGGAC TTTCTGCGCA
401 GTATGGATCC GTTCCCTGG CAGCAGAAGG TCAGGTTTGC CAAAGGAATC
451 GCCTCCGGAA TGGACAAGAC TGTGGTGGTG GCAGACTTTG GGCTGTCAAG
501 GCTCATAGTG GAAGAGAGGA AAAGGGCCCC CATGGAGAAG GCCACCCACCA
551 AGAAACGCAC CTTGCGCAAG AACGACCGCA AGAAGCGCTA CACGGTGGTG
601 GGAAACCCCT ACTGGATGGC CCCTGAGATG CTGAACGGAA AGAGCTATGA
651 TGAGACGGTG GATATCTTCT CTTTGGGAT CGTTCTCTGT GAGATCATTG
701 GGCAGGTGTA TGCAGATCCT GACTGCCTTC CCCGAACACT GGACTTTGGC
751 CTCAACGTGA AGCTTTCTG GGAGAAGTTT GTTCCCACAG ATTGTCCCCC
801 GGCCCTCTTC CCGCTGGCCG CCATCTGCTG CAGACTGGAG CCTGAGAGCA
851 GACCAGCATT CTCGAAATTG GAGGACTCCT TTGAGGGCCT CTCCTGTAC
901 CTGGGGGAGC TGGGCATCCC GCTGCCTGCA GAGCTGGAGG AGTTGGACCA
951 CACTGTGAGC ATGCACTACG GCCTGACCCCG GGACTCACCT CCCTAGCCCT
1001 GGCCCAGCCC CCTGCAGGGG GGTGTTCTAC AGCCAGCATT GCCCCCTCTGT
1051 GCCCCATTCC TGCTGTGAGC AGGGCCGTCC GGGCTTCTG TGGATTGGCG
1101 GAATGTTTAG AAGCAGAACAA ACCATTCCCT ATTACCTCCC CAGGAGGCAA
1151 GTGGGGCGCAG CACCAGGGAA ATGTATCTCC ACAGGTTCTG GGGCTAGTT
1201 ACTGTCTGTA AATCCAATAC TTGCTGAAA GCTGTGAAGA AGAAAAAAAC
1251 CCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC
1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC
1351 CTGGACCTGC TGGGCAGGAT CCCAGGGTGA ACCTGCCTGT GAACCTGTGAA
1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GGACGAAAGA
1451 AAGACTGATG GCTCAAAGGG TGTAAAAAG TCAGTGATGC TCCCCCTTTC
1501 TACTCCAGAT CCTGCTCTTC CTGGAGCAAG GTTGAGGGAG TAGGTTTGA
1551 AGAGTCCCTT AATATGTGGT GGAACAGGCC AGGAGTTAGA GAAAGGGCTG
1601 GCTTCTGTGTT ACCTGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACATCAA
1651 TGTGAGAGGA AGCCTCCACC TCATGTTTTC AAACCTTAAATA CTGGAGACTG
1701 GCTGAGAACT TACGGACAAC ATCCTTCTG TCTGAAACAA ACAGTCACAA
1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAAGA GGCCCTGCC TCTAGAAAGC
1801 TCAGATCTTG GCTTCTGTAA CTCAACTCG GGTGGGCTCC TTAGTCAGAT
1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC
1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGTC TCAGCAATCT
1951 CTTGGCTTGC GCTTCTGCG AACCACTGCT CACCCCAA CATGCCTGGT
2001 TTAGGCAGCA GCTTGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG
2051 AGATGCTGAG AGAGATAGCT CCCTGAGCTG GGCCATCTGA CTTCTACCTC
2101 CCATGTTTGC TCTCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC
2151 CACATGTGCA GGTACTGGAA AACCTCCATC TTGGCTCCCA GAGCTCTAGG
2201 AACTCTTCAT CACAACCTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC
2251 ACCATATTAA ATAATTGGG AATGGGTTTGG TGGTATTAAGA AAAAAAAAAA
2301 AAAAAAAAAA AAAAAAAAAA (SEQ ID NO:1)

FIG. 1A

FEATURES:

5'UTR: 1-228
 Start Codon: 229
 Stop Codon: 994
 3'UTR: 997

Homologous proteins:

Top 10 BLAST Hits

			Score	E
CRA	1000682328847 /altid=gi 8051618 /def=ref NP_057952.1 LIM d...		485	e-136
CRA	18000005015874 /altid=gi 5031869 /def=ref NP_005560.1 LIM ...		485	e-136
CRA	88000001156379 /altid=gi 7434382 /def=pir JC5814 LIM motif...		469	e-131
CRA	88000001156378 /altid=gi 7434381 /def=pir JC5813 LIM motif...		469	e-131
CRA	18000005154371 /altid=gi 7428032 /def=pir JE0240 LIM kinas...		469	e-131
CRA	18000005126937 /altid=gi 6754550 /def=ref NP_034848.1 LIM ...		469	e-131
CRA	18000005127186 /altid=gi 2804562 /def=dbj BAÄ24491.1 (AB00...		469	e-131
CRA	18000005127185 /altid=gi 2804553 /def=dbj BAA24489.1 (AB00...		469	e-131
CRA	18000005004416 /altid=gi 2143830 /def=pir I78847 LIM motif...		468	e-131
CRA	18000005004415 /altid=gi 1708825 /def=sp P53670 LIK2_RAT LI...		468	e-131

BLAST dbEST hits:

		Score	E
gi	10950740 /dataset=dbest /taxon=96...	1049	0.0
gi	10156485 /dataset=dbest /taxon=96...	975	0.0
gi	5421647 /dataset=dbest /taxon=9606 ...	952	0.0
gi	10895718 /dataset=dbest /taxon=96...	757	0.0
gi	13043102 /dataset=dbest /taxon=960...	714	0.0
gi	519615 /dataset=dbest /taxon=9606 /...	531	e-149
gi	11002869 /dataset=dbest /taxon=96...	511	e-143

EXPRESSION INFORMATION FOR MODULATORY USE:

library source:From BLAST dbEST hits:

gi|10950740 teratocarcinoma
 gi|10156485 ovary
 gi|5421647 testis
 gi|10895718 nervous_normal
 gi|13043102 bladder
 gi|519615 infant brain
 gi|11002869 thyroid gland

From tissue screening panels:

Fetal whole brain

FIG.1B

1 MVQDCQRNL A RLLL P V K V M R SLD H P N V L K F I G V L Y K D K K L N L L T E Y I E G G
51 T L K D F L R S M D P F P W Q Q K V R F A K G I A S G M D K T V V V A D F G L S R L I V E E R K R A
101 P M E K A T T K K R T L R K N D R K K R Y T V V G N P Y W M A P E M L N G K S Y D E T V D I F S F G
151 I V L C E I I G Q V Y A D P D C L P R T L D F G L N V K L F W E K F V P T D C P P A F F P L A A I C
201 C R L E P E S R P A F S K L E D S F E A L S L Y L G E L G I P L P A E E L E L D H T V S M Q Y G L T
251 R D S P P (SEQ ID NO:2)

FEATURES:

Functional domains and key regions:

[1] PDOC00004 PS00004 CAMP_PHOSPHO_SITE

cAMP- and cGMP-dependent protein kinase phosphorylation site

Number of matches: 2

1 108-111 KKRT

2 119-122 KRYT

[2] PDOC00005 PS00005 PKC_PHOSPHO_SITE

Protein kinase C phosphorylation site

Number of matches: 4

1 51-53 TLK

2 106-108 TTK

3 107-109 TKK

4 111-113 TLR

[3] PDOC00006 PS00006 CK2_PHOSPHO_SITE

Casein kinase II phosphorylation site

Number of matches: 4

1 51-54 TLKD

2 76-79 SGMD

3 139-142 SYDE

4 212-215 SKLE

[4] PDOC00008 PS00008 MYRISTYL

N-myristoylation site

Number of matches: 4

1 73-78 GIASGM

FIG.2A

2 77-82 GMDKTV

3 150-155 GIVLCE

4 158-163 GQVYAD

Membrane spanning structure and domains:

Helix	Begin	End	Score	Certainty
1	142	162	0.872	Putative
2	184	204	0.652	Putative

BLAST Alignment to Top Hit:

>CRA|1000682328847 /altid=gi|8051618 /def=ref|NP_057952.1| LIM domain kinase 2 isoform 2b [Homo sapiens] /org=Homo sapiens /taxon=9606 /dataset=nraa /length=617
Length = 617

Score = 485 bits (1235). Expect = e-136

Identities = 241/265 (90%). Positives = 241/265 (90%). Gaps = 22/265 (8%)

Query: 13 LLPVKVMRSLDHPNVLKFIGVLYKDKKLNLLETEYIEGGTLKDFLRSMDPFPWQQKVRF 72
Sbjct: 353 LTEVKVMRSLDHPNVLKFIGVLYKDKKLNLLETEYIEGGTLKDFLRSMDPFPWQQKVRF 412

Query: 73 GIASGM-----DKTVVADFGLSRLIVEERKRAPMEKATTKKR 110
Sbjct: 413 GIASGMAYLHSMCIIHRDLNSHNCLIKLDKTVVADFGLSRLIVEERKRAPMEKATTKKR 472

Query: 111 TLRKNDRKRYTVVGNPYWMAPEMLNGKSYDETVDIFSFGIVLCEIIIGQVYADPDCLPRT 170
Sbjct: 473 TLRKNDRKRYTVVGNPYWMAPEMLNGKSYDETVDIFSFGIVLCEIIIGQVYADPDCLPRT 532

Query: 171 LDFGLNVKLFWEKFVPTDCPPAFFPLAACCRLEPESRPAFSKLEDSFEALSLYLGELGI 230
Sbjct: 533 LDFGLNVKLFWEKFVPTDCPPAFFPLAACCRLEPESRPAFSKLEDSFEALSLYLGELGI 592

Query: 231 PLPAELEELDHTVSMQYGLTRDSPP 255

Sbjct: 593 PLPAELEELDHTVSMQYGLTRDSPP 617 (SEQ ID NO:4)

Hmmер search results (Pfam):

Model	Description	Score	E-value	N
PF00069	Eukaryotic protein kinase domain	100.1	1.1e-26	2
CE00031	CE00031 VEGFR	4.9	0.14	1
CE00204	CE00204 FIBROBLAST_GROWTH_RECECTOR	4.7	1	1
CE00359	E00359 bone_morphogenetic_protein_receptor	1.8	7.9	1
CE00022	CE00022 MAGUK_subfamily_d	1.5	2.5	1
CE00287	CE00287 Eph_orphan_receptor	-48.4	3.8e-05	1
CE00292	CE00292 PTK_membrane_span	-61.8	2.1e-05	1

FIG.2B

CE00291	CE00291	PTK_fgf_receptor	-113.0	0.027	1
CE00286	E00286	PTK_EGF_receptor	-125.1	0.0021	1
CE00290	CE00290	PTK_Trk_family	-151.3	6.5e-05	1
CE00288	CE00288	PTK_Insulin_receptor	-210.4	0.014	1

Parsed for domains:

Model	Domain	seq-f	seq-t	hmm-f	hmm-t	score	E-value
PF00069	1/2	16	79 ..	41	105 ..	52.1	2.3e-13
CE00022	1/1	124	153 ..	187	216 ..	1.5	2.5
PF00069	2/2	81	156 ..	129	182 ..	48.0	3.1e-12
CE00031	1/1	129	156 ..	1114	1141 ..	4.9	0.14
CE00204	1/1	129	156 ..	705	732 ..	4.7	1
CE00359	1/1	79	157 ..	287	356 ..	1.8	7.9
CE00290	1/1	9	218 ..	1	282 []	-151.3	6.5e-05
CE00287	1/1	1	218 [.	1	260 []	-48.4	3.8e-05
CE00291	1/1	1	218 [.	1	285 []	-113.0	0.027
CE00292	1/1	1	218 [.	1	288 []	-61.8	2.1e-05
CE00288	1/1	1	218 [.	1	269 []	-210.4	0.014
CE00286	1/1	6	218 ..	1	263 []	-125.1	0.0021

FIG.2C

1 TCATCCTTGC GCAGGGGCCA TGCTAACCTT CTGTGTCCTA GTCCAATTT
51 AATGTATGTG CTGCTGAAGC GAGAGTACCA GAGGTTTTTG TGATGGCAGT
101 GACTTAACT TATTAAAAG ATAAGGAGGA GCCAGTGAGG GAGAGGGGTG
151 CTGTAAGAT AACTAAAAGT GCACCTCTT TAAGAAGTAA GATGGAATGG
201 GATCCAGAAC AGGGGTGTCA TACCGAGTAG CCCAGCCTT GTTCCGTGGA
251 CACTGGGGAG TCTAACCCAG AGCTGAGATA GCTTGAGTG TGATGAGCC
301 AGCTGAGTAC AGCAGATAGG GAAAAGAAC CAAAAATCTG AAGTAGGGCT
351 GGGGTGAAGG ACAGGGAAGG GCTAGAGAGA CATTTGGAAA GTGAAACCAG
401 GTGGATATGA GAGGAGAGAG TAGAGGGCT TGATTTGGG TCTTCATGC
451 TTAACCCAAA GCAGGTACTA AAGTATGTGT TGATTGAATG TCTTGGGTT
501 TCTCAAGACT GGAGAAAGCA GGGCAAGCTC TGGAGGGTAT GGCAATAACA
551 AGTTATCTTG AATATCCTCA TGGTGGAAAG TCCTGATCCT GTTGAATT
601 TGGAAATAGA AATCATTCAAG AGCCAAGAGA TTGAATTGTT GAGTAAGTGG
651 GTGGTCAGGT TACAGACTTA ATTTGGGTT AAAAAGTAAA ACAAGAAC
701 AAGGTGTGGC TCTAAAATAA TGAGATGTGC TGGGGGTGG GCATGGCAGC
751 TCATAAACTG ACCCTGAAAG CTCTTACATG TAAGAGTTCC AAAAATATT
801 CCAAAACTTG GAAGATTCA TTGGATGTTT GTGTTCTTA AAATCTCTCA
851 CTAATTCTT GTCTGTCCA CTGTCGTAA CCCAACCTGG GATTGGTTG
901 AGTGAGTCTC TCAGACTTTC TGCTTGGAG TTTGTGAGAG AGATGGCATA
951 CTCTGTGACC ACTGTCACCC TAAAACAAA AAGGCCCTC TTGACAAGGA
1001 GTCTGAGGAT TTTAGACCCA GGAAGAAAGA GTGATGGCA TATATATATC
1051 CTATTACTGA GGCATGAGAA GAGTGGAAATG GGTGGGTTGA GGTGGTGT
1101 TAAGGCCTCT TGCCAGCTT TTTAACTCTT CTCTGGGAA CGAGGGGGAC
1151 AACTGTGTAC ATTGGCTGCT CCAGAATGAT GTTGAGCAAT CTTGAAGTGC
1201 CAGGAGCTGT GCTTTGTCTA TTCATGGCCC CTGTGCGTGT GAAACAGGGT
1251 TCGGTACTG TCACTGTGCC TGTGGCAGTC TGTAGTTACC CAGAGAGAAC
1301 AAAGCTGCAT ACACAGAGCG CACAAGGGAG TCTTGTAAACA ACCTGTCTC
1351 GCTTCTAGG GCTGAGTCAG GTACCACAGC TTGATCTCAG CTGCTCTCT
1401 TATTTCAAGA AGTTGACATC TGAGCCATAC CAGGAGTATT GTATTTGTT
1451 TGAGGCCTCT CTTTTGGAG GAACATGGAC CGACTCTGTG CTTTGTCTA
1501 TGCTGGTCTC TGAGCTACA CAACCCCTCA CCCTCCTTC TCAGCCAGTG
1551 ATAGGTAAGT CTTCCCTATC TTGCAAGGCT CAGCTCAAGT GTCAGCTTCC
1601 TCTACAAAGA CTTTCTGGT TCCCCTCATT GGAGTGAACA AGAGTTGACA
1651 TGGTAGAATG GAAAGAGCAG AAGCTTACA ATGAGCCAGA CCTGAGTATG
1701 AATGCTAGAT CCACCACTTA GCTAGTCAC CCTGCCCCCT GCCTCAAGTT
1751 TTAATTTCC TATCCATTAA GTGAATATAA TAATACCTGT GTCACAGGGAT
1801 TATTTTGAGA ATTAATGAG ATTAGGTCTA TGAAAGCACC TAGCAGAGTT
1851 CTTGGCATAT AGGAGGCATT CATTAAATAT TTGTTCTTCC CCTTTTATAC
1901 CCATTACTTT TCTTTTCTG AACTAAAATA ATACTGGTT CTATCTCTGA
1951 AATAACATCC AAGTAAAAAA TCAACAAACAT GAAAGAGCAG TTCTTTTCCA
2001 GTGGATTTGC TTCTTAAGGA GCAGAGATTA TGTAATCTAA CAGCCTCCAA
2051 CATAACAAAGA GCTTTGTATC TAGAACAGGG GTCCCCAGCC CCTGGACCGC
2101 CAACTGGTAC GGGTCTGTAG CCTGTTAGGA ACCAGGCTGC ACAGCAGGAG
2151 GTGAGCGGGCG GGCCAGTGGAG CATTGCTGCC TGAGCTCTGC CTCCGTCTCAG
2201 ATCACTGGTG GCATTAGATT CTCATAGGAG TGTGAACCCCT ATTGTGAACCT
2251 GCACATGCA AGGATCTGGG TTGCTATGCTC CTTATGAGAA TCTCACTAAT
2301 GGCTGATGAT CTGAGTTGGA ACAGTTGAT ACCAAAACCA TCCCCCCGCC
2351 CCCCCAACCC CAGCCTAGGG TCCGTGGAAA AATTGGCCCC TGGTGCCAAA
2401 AAGGTTGAGG ACTGCTGATC TAGAGGACCA ATTTATTCAA TGTTGGTTGA
2451 GTAAATGAGC TCTTGGATTA GGTGATGGAA AAATCTGAAA AACAGGGCT

FIG. 3-1

2501	TTTGAGGAAT	AGGAAAAGGC	AGTAACATGT	TTAACCCAGA	GAGAAGTTTC
2551	TGGCTGTTGG	CTGGGAATAG	TCATAGGAAG	GGCTGACACT	GAAAAGAAGG
2601	AGATTGTGTT	CGTTTCTTCT	TCTCAGAGCT	ATAAGCAAAG	GCTGAAAGTT
2651	CTAGAAAAAG	GCAAGTTTG	TTTCAGTAGA	AAAAGGATA	ATCAGAACCA
2701	TTTTTAGAAA	ATGGAATGAG	ACTACTTTG	AGGCCATGAG	TTCCCTTGTC
2751	CTGGAGAGAT	GAGCAGAGGT	TGGACAAGTG	CTTACCAAGAG	ATCTTGTGGA
2801	GGCAGAAACT	GTGCATCTAG	CAGAGCATTG	GCCTAACCCCT	TTCAAATGAG
2851	ATGCTGTTAA	CTCAGTCTTA	TTCTACATGG	TAGGAATCCT	GTCCCCTTGC
2901	CTCCTGCTAC	TTGGGGCCTC	TCAACCTTT	GGTTTGTGT	GCAGGTGAAG
2951	ATGTCTGGAG	GTGTCCAGGC	TGTGGGGACC	ACATTGCTCC	AAGCCAGATA
3001	TGGTACAGGA	CTGTCAACGA	AACCTGGCAC	GGCTCTTGCT	TCCGGTAGGT
3051	GGGCCTATCC	TCCCATTTT	ACCACTGTAC	TATGGGCCAA	GCACTATTTC
3101	ATGTTCTGAT	GGAAAACACA	GAAACAAGCT	TCTGAGTTGA	GAATTTCAAT
3151	CTTAGGGTGG	GGAAAAGGAAT	GTACCAAGGA	AGAGCTCATG	ACCAAACCTC
3201	AAGTGTGGCC	CCCCCTGAACC	CAGGTTAAAT	TGGAAGAGCC	ATAAATGGGC
3251	CAGCTGGAGG	CAGGGTGGGG	GGATGAGAGG	AGCCCTTCC	AGGGTTGTC
3301	CATATCCTC	ACTTTATGGG	TGAGGAAACT	GAGGCCAGG	AAGAGTGA
3351	TTCCCTGTGGC	TGCACTACAG	ATTATGCAGG	TACTTCAAGA	GTTGTTGTA
3401	TTCTTATTTT	ATTTTATTTT	ATTTTATTTT	ATTTTATTTT	ATTTTATGAG
3451	AGGGATTCTT	GCTGTTGCC	AGGCTGGAGT	GCAGTGGTGC	AATCTCGGCT
3501	CACTGCAATC	TCTGCCTGCT	GGGTTCAAGT	GATTTTCTG	CCTTAGCTTC
3551	CTGAGTAGCT	GAGATGACAG	GCACCTGCCA	CCATGCGCAG	CTAAFTTTG
3601	TATTTTAGTG	GAGACGGGGG	TTTCAACATG	TTGGTCAGGC	TGGTCTTGA
3651	CTCCTGACCT	CAAATGATGC	ACCCACCTCG	ACCTCCAAA	GTGCTGGAA
3701	TACAGGCGTG	AACCACTGTG	CCCAGCCAAG	AGTTGTTTTT	AGTGTGGTG
3751	GCAGAGCCAG	CTCTCCCTTC	ACCACAGGAT	GCCTCCCTAG	GTTCTACTT
3801	TTTGTACTA	GCTTTTATT	TAGCTATATT	ATTATTATT	TTATTATTAT
3851	TATTATTATT	ATTATTGAGA	CAGAGTCTCG	CTCTGTCGCC	CAGGCTGGTG
3901	TACAGTGGTG	CGATCCCAGG	CTCACTGCAA	CCTCTGCC	CCGAGTTCAA
3951	GCAGTTCTCC	TGCTTCAGCC	CCCCGAGTAG	GTGGGACTAC	AGGCGCCTGC
4001	CACCACACCC	GGCTAATTTT	TGTATTTTA	GTAGAGACGG	GGTTTCACCT
4051	TGTTGACCAAG	GCTGGTCTGG	AGCTCCTGAC	CTCAGGTAAG	TGCTAGAAC
4101	ACAGGCGTGA	ACCACTGCGC	CCAGCCAAGA	GTTGTTTTA	GTGTGGTTGG
4151	CAGAGCCAGC	TCTCCTCAC	CACAGGTTGC	CTCCCTAGGT	TCCTACTTT
4201	TGTTACTAGC	TTTATTATAG	CTACATTATT	ATTATTATTG	TTATTATTAT
4251	TGAGACAGAG	TCTCGCTCTG	TCGCCCAGGC	TGGTGTACAG	TGATGTGATC
4301	TTGGCTCACT	GCAACCTCTG	CCCCCCCAGT	TCAAGCAATT	CTCCTGCTTC
4351	AGCCCCCTA	GTAGGTGGGA	CTCCAGGCAC	CTGCCACCAC	GCCCAGCTAA
4401	TTTTGTATT	TTTAGTAGAG	GCGGGGTTTC	ACCTGTTGG	CCAGGCTGGT
4451	CTCAAACCTCC	TGACCTCAGG	TGATCCGCC	GCCTCGGC	CCAAAATGT
4501	TGGGATTACA	GGCATGAGCC	ACCGCGCC	GCCTATAGCT	ACATTATTT
4551	TGTAGGCAGC	TCAGTTTCTT	AAAATTATA	CAGACTCAA	ATCAGATTG
4601	TTCCCTGCTGT	CTGAGGCTCA	GTTTCTTCAT	CTGGAAAATG	GATGGAATA
4651	ATCTTGTGA	GATTGAATGA	AATAATATAT	GCAGTGTATC	CAGTACATGG
4701	TAGACACCCA	GTGAATGGTT	ATTCCTTCCT	CCCATCGGAT	TGGAATTCTC
4751	AAGGGTGGGA	ACTTGTCTT	ATATTCTCA	CAACGTAAAA	TAGTTGAAT
4801	TTGTTGGTGG	AAAGAAGAGC	AGTCCACTCC	AGAGGCTGGA	TGGGCATGCC
4851	TGGCCCCCAA	GGTCTGAAGT	GGTAGGGCTG	TGCCTATATC	CTGAGAATGA
4901	GATAGACTAG	GCAGGCACCT	TGTGCTGTAG	ATTCCAGCTC	CTGCACATAG
4951	CTCTTGTGT	AAAACATCCC	TGTGCTTATA	CCAAGTAATT	GAGTTGACCT

FIG.3-2

5001 TTAAACACTT GCCTCTTCCC TGGGAACCAT ATAGGGGATT GGCCTGGAGA
5051 CGTCTGGCCT CTGGAAGAGT TGGAAAGCAG CCATCATTAT TATCCTTTCC
5101 TTTCAGCTAT AACTCAGAGC TCTCAAGTCT TTTCTGTGGA TCTTATTGCC
5151 TTGGTTCTTG CCCCTTTAC TCCCAGGGAA GTTGATTCTG TCTTTCTGT
5201 TCCATTTAGT ATGACAGGAG CAGAGAACAT GTAGCTGTA AGGGACCTTA
5251 TAGTTAAAGC CTTGGCTGG TCCTTTCATT TTATAGCTGG GACTAATAAG
5301 TAACGTCAA ACCCAATGAG TTCACAGATT GGGCTCGCC TTGGCATGTA
5351 ACCCATATGT TCATATTCTT GCTGTTTCC TATGTGTATG AATATTTCT
5401 ATCCAAAATA AGCAGGACAG GGTAGAGCAA GTTAATCTT GGAATTCTG
5451 GATTCTCTTA GAGCTAAAAA ACTTCAGAAC TAGAAGAAC CACCCACTAT
5501 ATGGTATAAC CCATTCAAT CACAGATGAG GCCTGAAACC AAAAAGACTT
5551 GCTCAGGCCA TGGATGACAA GAGCTGGCC TAGCACTGAA CTCTTGGGTC
5601 ATTTGTAGGT CTAGTCAGAT GCTAGCTTGT TAGCTCTGTG CGTGCCTGTG
5651 TGTGTGTGTG TGTGTGTGTG TGTGTGAGAT AGAGACAGAA AGATAACATA
5701 TGTACACAAA TACATAAAGA GGAAGTAGAC ACGTTAGCAT GGTAGATAAG
5751 AGTACAGGCA GGCCAGGCGT GGTGGCTCAC GCCTGTAATC CCAGCACTT
5801 GGGAGGCCAA GGCAGGTGGA TCACCTGAGG TCAGGAATTG GAGACCAGCC
5851 TGACCAACAT GGTGAAACCC CATCTCTACT AAATACAGAA AAAAATTAGC
5901 TTGGCATGGT GGCACATGCC TGTAATCCA GCTACTTGGG AAGCTGAAGC
5951 AGGAGAATCG CTTGAATCCG GGAAGCAGAA GTTGCAGTGA GCCGAGATTG
6001 TGCCATTACA GTCTAGCCTG GGCAACAAGA GGGAAACTCC ATCGAAAAAA
6051 AACAAACACC ACCAAGAGTA CAGGCTATGG AATGAGACTA TGGTTTAA
6101 TCCTGGCTTT GCAATTATT AACTAGCCTT AAGTGAATT CCTGAGCTTC
6151 AGGCACCAAT CTGTAAAATG AGGATAAGAA TATTACTCAT GCCACATGGT
6201 TGTAGGGAG GATTAATGT GATAACCTAT ATAAGTGGC TAGCATAGCA
6251 TCTGACATAT AGAAAACCTCT TAATAGGGCC GGACGTGGT GCTTATGCCT
6301 GTAATCCTAG CACTCTGGGA GGCGAGGCA GAAGGATCGC TTGAGCCCCAT
6351 GAGCCCAGGA GTTGAGACC AGCCTGGCCA ACATGGCAAA ACTCCACCTC
6401 TACAAAAAAT ACAAAATAT TAGCCAGGCG TGATGGCACA CACCTGTAGT
6451 CCCAGCTACT TGGGAAGCTG AGGAGCGATG ATTACCTGAG CCCAGGGATA
6501 TCAAGGCTGT AGTGAGCTGT GATCATGCCA CTGACTCCA TCCAGCTGGG
6551 GGACAGAGTG AAACCCCTGT CTCAAAACAA AACAAATGAA AAAAANACCC
6601 CTTAATAATC AGTAACGTGTC ACTTTATATT ATGTTGTGAG TGTGTGTCTA
6651 TATACACCTA TATGTATACA TTTCTCTTAT TACACATTCA TTGGTGATCT
6701 GATGTGGAGC CCCAGGGATT AAGGGCAACT TTGAACCTACC CTGACACAAAT
6751 CAAGCCAAAT ATCATTCCCG TGGAGGAAGT AGAGTATCTA GGTTCTGTCT
6801 CCTAGTTGCA GCTTACCTT GAGGACAGAG ACTCTAATCC AGCTGTGCTG
6851 AAGGAGCACA TCTCTGACT TCTGAGCTT CCCCTGGTAA ATTCAAACCTG
6901 GATGTACGG CGCCCTCAGA TAGAGCCTGG TAATTGCC TGGGGAGAGT
6951 GACTGTCTT TGGATCTAAT TTGACTTTTG CCCCAGTTGG AGGAAAATCT
7001 TCAGGGCTAG GAAGGATTGT ATTTGTCTGA CCCCAGAGAT AACCTGGGTT
7051 TTGAGGAACA TGGGGCATCA ACCTGAATGG TCTTGTAAAGA TCTCTCCCAC
7101 GCCAGCTTGC CAGTCTTCT CTGATGAATT TAGAGTACCT GAGTAGTGCA
7151 GGCCTGCTGG GAGGAGACT CTCCCTCTGT GCTACTCAGA GAAATTCTT
7201 CTTCAAGGCC CCCCTCCAGC CTTGCTCTTA CCCAGCTGGG CTACAGTTAC
7251 AATAAAGGAA ATGACTTTTC TTCTCCCCCTT CCCCCAGTAC CTTTGTCTT
7301 CTAGTCACAG GGTGGGGCTG GATATTGAAT GGAGAAATTG CTGGGGTCCA
7351 TCCTAAACTC CTCCCCCTCAT CTCTCCCTTA CATTACCCCA TTCTCTGTG
7401 TGCAGGCCACA TCCATAATCC TGCCCTGTGTT AGCCTCCGA CAGACCCCTCA
7451 GGTGCCAGG ACAACAGGAA GCTACTTAA GCTGGAACCT CAGACTGTGC

FIG.3-3

7501 AATGGAGGCC AGTGACAAAA CTGAAAGTAG CTCTGTCAGT AATTGTGCTG
7551 GTGCGATTAG GCAGCTGCC AGAATCTTT GGATCTCCTG GACATATGGC
7601 TGACTAGTCC TCCAAGCCT TCCAACAGG CCTCTTTTTT TTCCCTTTTT
7651 TCTTTCTTT TTTTCTTTC TTTCTTCTT TCTTTTTTT TTTTTTTAG
7701 GCTAGTGAAG TGAATTGTG GGAGTGGAAA AGGAACAAAG AAATCGGTAA
7751 CTGGTAGTGA TCAATTACTT GTAAACACTA TTGTACTTGG ACCAGCCCAG
7801 TAGGCCTTT TAAAAACTCT GAGTTACCTC TCTTCCCTT CCTTGAGCAG
7851 TGCCATTAAT TCTGTATCTG GGGCAATCCT TTCTGATGTT CTCTGGACCT
7901 GGCTCTCTC CCTTAGGAGA GGCCAGGAGA GTAGCCAGAG AGCATGTCAT
7951 TTGTAGCTGA GGTAAAGTG TGGAGCTATC AATGGTGACC TGGCCTCTT
8001 GCATGTTAGC AAGCCAGAGG ACCTTGACAA CTTTTTGAT GATTGTCGGT
8051 TCACCCCTGAT CAAAGGTGTT TGGCTTAGGA GGAGGGAAAGA AAAGCTACCC
8101 CTATTAGTCT TGATGGCCCC AGCGTGGTC TCTATTGCTT GACCTGGTT
8151 CTAGCAGCAT TATCAGAAGG AAAATCCACC GCTCTTAAGG CTCCCTGGAA
8201 CTTTCAGGAC TTCTTTCTC AGGATTGCAA ACATAAGACT ATTTGAGCCT
8251 TCACTTTGA AAAGCGGTTA CTAATACCTA TACTCTGGGA AAGGGCTAAT
8301 GCAGATAGAA GACTGTGGTC ACTGCATCAG GCAACAGACC ATTTCCGCTA
8351 AATTTAGTGA CTCCAGGAAG GCCAGTGAAG AAATAACACA CGTAGCAACC
8401 AGAGACTGTG TTGTAATATG TTGGCTGACA GCAGGGTACT TTCTGTGATG
8451 CTGAAAGCCA CATTCACTT CTCTCCCTC ATCCCCATCT AAGCAAGCCT
8501 GGTAGAACAT TAATTACAGT AATAGGTACC ACTTATTGAG TACTCTGTG
8551 CAGACACCCCT CCTGAGCATA CGACATGCAT AGCACATTTA ATCCTTACAA
8601 TGACTTAATA AAATGTAGTA CTAGCTTAC CTACTTCGAG AATAGGGAAA
8651 TGGAGGTTAC TTGTTTAAAG TCACAGAGCT AATAGGTAGC ATAGCTGAGA
8701 TTGAACTCA GGCATTCTTA CTCCCTGCCT GCAAGAGTCT CTTGGCATT
8751 TTGAATGCAA GCATATTCT TAACCTCACT GAGGCTCAGT TTCCCTCTT
8801 ATAATATGGG GTAAGAGGCC CTCACCCCTGC CTGCCACACA CTGGTAGTGT
8851 CAGATAACAT TGAAGGGTGT TAGTTAAAG GCTTCATGGA CTCTATAATG
8901 TCAACAAAAG TCGTGTAAAC TTCTCTGG GTCTCAGGCT CCTGATGTAG
8951 AGTCAGTGGA GCAACCCCTGC CATCTGCTGT TATGCTGTTG ATGTTGCTG
9001 CACACTTACT AACCTAAACC TTGATTCTG GCTGTGGCCT TCTCCAGAAG
9051 GTGTTTACTC ATTGTCCAG TTATCTTT AGGAAACAGC CAGCCCGTAG
9101 ATCATTAAAGG CTGGCTATTG GACAGGGGGC TGGGGCCTGC CTGACAGAGG
9151 AAGGAAGGGC AGACATCTGG TTCTCTCTC GCCCCTACAA GAGACTCCAG
9201 CCTGACCACA GAGTGGTACT CCTAGGATGT AGCAGCAGCA TATGAGCTT
9251 AATGTGCCTT AATCCTGCTC TTACTTTGA GAAGAGAGAA CTAAGGACCC
9301 ACAGATGTTT CACAGCTTCT ATAGGAGGCA GAGGTAGAAA AATGGAGAGA
9351 GATGAGGCCA GAGATAGATA ACTGATATTA ATAAACGTT GTATTAAGAA
9401 CCTCACTTAG ATTATCTGAT TCAATCTCA TAATAACCC GCAACCCCCA
9451 CCTTTTTTG AGAACAGGGT CTGCTCTGT TGTCAGGCT ACAGTGCAC
9501 GGTACAATCA TAGTTCACTG CAGTGTCAAC CTCTGAGCT CAAGCAATCC
9551 TCCCACTCTA GCCTTGCAAG CAGTTGGAC TACAGGCCTG CCACCCAC
9601 TTGCCATTCTT TTTTATTTT AAGTAGAAC AAGGTCTTAT TAATACTATG
9651 TTGCCAGGC TGGCTTGAA CTCCAGCGAT CCTCTGCC CAGCCTCCCA
9701 AAGTGTGTTGG GATTACGGAA GTAAGCCACT GTGCCTGGCC AGTGCAACCC
9751 CCATTTATA CTAACACAGG AAGGCCAGA AAGGTTGGA GTAACTTGT
9801 CAGGGTCACA CAGATGATAT TTGAACTCAG GTCTCCCTGG CTCCCAAGAG
9851 AGTCTGCTTT CCACTAGGAC TCCCAGGAGA AAAAAAAAAA AAAAAACAGT
9901 AGACTGGAG ACAGAAAATC TGATTTGAGT CTAGTTGAG CTAGGCTAAC
9951 TGTGTAAC TGCGCAAGTT CCTAGCCCC TGAGCCTC AGTTCTTAT

FIG. 3-4

10001 CTGTAAAATG TCATAAAAGA AATCCATCTC ATGGAGTAGT TGTGATGATC
10051 AAGGACTCTG AAAACATTAG AATGGTTAA TGTGAAGGAT TAGCAGCAGC
10101 ACATGGCAAC ATTGTGCATC TTATATTAAAC TATCCAATA TATCAAGCGT
10151 CATTGCTAT ATATAAAAGT CATCAAATTA GGCACGTGAG GGGATACGGA
10201 GTTGGCATAC TAGCCTGGCC TCTTAATTAA TTCATTAATT AGCTTATTAA
10251 TTTTGAGAT AGGTCTTGCT CTATTGCCA GGCTGGAGTG CAGTGGCATG
10301 ATGATAGCTT ACTATAGCCT CAATCTCCA GGCTTAAACA ATCCTCCTGA
10351 GTAGCTGGGA CTACAGGCAC ACACTACCAC GCCCAGCTAA TTTTTTTTAA
10401 ATTTTTGTA GAGACAGGGT CTTGCTCTGT TGCCCAGGCT GGTCTAAAC
10451 TCCTGGGCTC GAGATCCTCC CACCTGGGCC TCACAAAGTG TTGGGATTAC
10501 AGGTATGAGC CACGGCACCT GGCCCTGGTCT CTTAACCTGGT TCCCTAAGAC
10551 AGCTGAAAT AGAGAATGTC ATGGAGCATT CCTAACCATG GGCTCCAGCC
10601 TGGCTTTCAT TCTGTTTCTC CCCTGAAACA ACATTCCTT AGTAATATTC
10651 CGAATAACAG CTTCATCAGT CTGTCCTACCG ACCACTCTTC AGGCTTCATC
10701 TTATATGACC TCCCAAACCTG CACTAAGGGT TGTATTAGAG AAAAGTGGAT
10751 AAAGTTCGGA GTCAAGGCTGC TTGAGCTTAA ATGCCAGCTT CACTTACCAAG
10801 CCACCTGACC ATGAGTCAGC TGCTTAACCA TTCTTGCCA CAGTTTCTT
10851 GTCTATGAAA AGGGAAATGG CTCCCACCTC AAAAAGTTGT TAACATTAAA
10901 TTCAATCATG TATTCAAAGT CCTGAGCAGA ATGTCAGGCC ATGACTGGGA
10951 CTTAACAGAT GTTAGCATTT ATTATTAGTA TCTGTCAGTC TTGAAATGTT
11001 CTCTCCCTT GGCTTCATG ACATTCACAC CTCTCCTGGT TTTCTCTTAC
11051 CTCTCTGGTA ATACCTGTTT GCTTATCCTT CTTTGTCAG CTCTGGGATG
11101 TTACCATTC CTCAGGCGTG CTGTTTCTC CTTAGGCAGT CTTACACACA
11151 CTCATGACTT CCTCCATTG TCCTCCACAC ACTGATGACC CTAAAATCAG
11201 TATCTCCAGC CAAACCTTT CCACTGAGTT CTAGACCCAT ATGTTGTACT
11251 ATCAACCTGG CTTGTCATT TGAATGTCTT CCAGGCACCT CAGACTCTCT
11301 TCTCTAGACT TTGCTGGACT TTCACTCTTC CCCCTAAAAC TGGCTCTCT
11351 TCCACTGAAA CATGTATGTC ATTGAGAGGC ACCACCATCC ACCCAGTGCC
11401 TAAGCCAGAA ACCTAGGAAT CCTTGATACC TGTTCTCT CATCCTGCAT
11451 ATCCAAGCCT ATCAGTTTA TCTCTAAATT ATATTTGGT AGGTTTACTT
11501 CTTCCTTTT CTCCCACAC CACCCCTGTC CAAGCTACCA TCATCTCACC
11551 TGGATGTCTG CAATAGCCTC ATCTCCACAC GCCACTCTGC ACCCCCCTAAT
11601 CTGTTCTCTA TAGAGCAGTT GGAAGGAGTG ATTTTTGTTG TTTGTTTGT
11651 TTTGTTTGTAG ACAGAGCTC ACTCTGTTCC CCAAGGCTGG AGTGCAGTGG
11701 CACAATTTCG GCTCACTGCA ACTTCTGCCT CCCGGTTTA AGCAATTCTC
11751 CTGCCTCAGC CTCCCAAGTA GCTGGGATTA AGGCACCGGC CCCCATACCC
11801 AGCTAATTTT TATATTTTA GTAGAGATGG GGTTTTGCCA TGTTGGCCAA
11851 GCTAGCTCG AACTCCTGAC CTCAAGTGAT CCACCTGCCT CGGCCTCCCC
11901 AAGTGCTGGG ATTACAGGTG TGAGCCACTG CACCTGGCTG GAAGGAGTGA
11951 TCTTAAAAAA AAAAAAAACA AAAAAAAACT TGACTGTGTC ACTCTGTGTT
12001 GTCTCTCTA CCTTGATAC TTCCACAAC TCCCAGTGTT CTTGGATAAAA
12051 GACCAAAATC CTTAACTTGG CCAGGCGCGG TGGCTCACAC CTATCATCTC
12101 AGCACTTGG GAGGCCGAGG CAGGCAGATC ATGAAGTCAA GAGATTGAGA
12151 CCATCCTGGC CAACATGGTG AAACCCCATC TCTACTAAA ATACAAAAAT
12201 TAGCTGGCTG TGGTGGCGTG TGCGCTGTAGT CCCAGCTACT TGGGAGGCTG
12251 AGGCAGGAGA ATCACTTGAA CCTGGGAGGC AGAGGTTGCA GTGAGCCAG
12301 ATCACGCCAC TGCACCTCAG CCTGGTGACA GAGTAAGACT CCATCTCAA
12351 AAAAAAAACA AAAAAAAATAA TTCCCTTAATT TGGCCTACAG TAGAGCCCTC
12401 CGTAATGTGG CCTCTCTCCA CATCTCCACA ACCTCCTGCT CCCTGCACTT
12451 CAGCCTCACC TCTCTCTGG ACAGGCCCTC CTTCTGACAA GGGCTTTGTT

FIG.3-5

12501 CATTCTGCTC CCTCTGCCTA GAATGCCCCC TTACTCTGTT CACTTAACTC
12551 CTGCTTATCG TTTAGATCTT TACCTGGATG GCTCAGAGAA ATATAGAAGT
12601 AATTCCCTCAC CCTGAAAAAT AGGTTAGGTG CCTGTTTAT GTTTTCATAG
12651 ACCCTTCCTT TGAGGCTTTT TTTAAAAAAG TAGTTTAAT CTCACATTTA
12701 TTCATGTGAT CATCTCCTTA ATGATATCTT AAGACCTCTA ATAGAACAAAT
12751 TTGGTCATGG ACTGTGGGGT TTTGCCCT CATTGTGTCA GCACTGAGCA
12801 TATTGTTGGC ATAGGAGGGGA TATTGTTGA ATGAATTGCT AGAGGTGGCC
12851 AAGAGATATG ATGTAAGTCA GGTTTTCCC TGCCCTTCCC CTTCCCTTC
12901 CCCACATCCT TCCTATAGCA GCCACCGTGG CTGCAGTTAC TGTAATGGC
12951 AAGACGGAAT CAGTCCGGA CATTGGGTTG TTTAGAAAA TTGCCTGCAA
13001 GTGTCAGGGT GATAAGTTAA AGCTTTGTCT TTTGCCCTCA GAGGAGCTAT
13051 CCCATAGTGA GTAGAAGCCA GAGAAGCTGA CCCCAGGAGT CTTCTTTCC
13101 AGCAGCAGGT CTTGAGCTGC ACTTCTCTGT AGCTACAATC CAGGCAGGAA
13151 CAAGCCCTAG GTACCTCCGG AGAGGAGGGC AAGAGAGGAA GAATGAGTTC
13201 AGCTACTCTA GCCACCAAAC TGATTATGAA TTGCCCTGAA ATCTGAAAAA
13251 TTCAATTCC AATCGTAAGT TTGTTTTGTT TCATTTGTT TTCTTAAATT
13301 GTATATTGTA AAGATGGCAT TAACTAAAGA TATATATTCA ATATAGAGTG
13351 GAAAAAAATGG AATACTTGCA TAGTATCTT TACTTATAGG TGATTTATGA
13401 TGGGGAGTGG GGTGGATAGG TTGGCAGTTC CCCCAGAAG TTGGAAATGA
13451 AGTTTGTCT CTGTGAGTTG AACTAATTAG ATCCACAAGT AATGAAAGCA
13501 GTATTGTGTT GTAGTTAAGA GCACACTCTA GAACCAGATT GCTTAGTTT
13551 AAATCCTGGT TCTGCCCTTT ATTATCTGTG TACTTTGGC AAGTTACTTG
13601 CCCTTTGTGT GCTTCATTTT TCTCATCTAG AAAATGGAGA GGCCAGGC
13651 AGTGGCTCAT GCCTATAATC CCAGCACTT GGGAGGCCGA GGCGGGCAGA
13701 TCACCTGAGG TGAGAAGTTC AAGACCAGCC TGGCCAACAT GGTGAAACCC
13751 TGTCTCTACA AAAATACAAA AATTAGCCAG GCATGATGGC GGGTGCCTGT
13801 AATCCCAGCT ACCCAGGAGC CTGAGGCGGG AGAAACACTT GAACCTGGAA
13851 GGCAGAGGTT GTAGTGAGCC AGGATTGCAC CACTGCACTC CAGCCTGGGT
13901 GACAAGAGCT AGACTCAGTC TAAAAAAAAA AAAAAAAAC AACTGGAGA
13951 TACAGGCTGG GTGCAGGGCT TACACTTATA ATATCAGCAC TTTGGGAGGC
14001 CTAGGCGGGA GGATTGCTTG AACTCAGGAG TTCAAGATC AGTCTGGGT
14051 ACAGAGCAAG ACCTCATCCC CACAAAAAAT CAAAAATTAA GCCAGGCATG
14101 GTGGCTCATG CCTGTGGTCC CAGCTACTCA GGAGGCTGAG GCGAGAGGAT
14151 TGCTTGAGCC CAGGAGGTTG AGGCTGCAGT GAACCATGAC TGCACTTA
14201 CATGCCAGCC TGGATGACAG AGCAAGACCC TATCTCAAAA AAAAAAA
14251 AAAGAAACGA GCCAGGCGCG TTTGCTCACG CCAGTAATCC CAGCACTTTG
14301 GGAGGCCAAG GCAGGTGGAT CACTTGAGGT CAGGAGATCG AGACTAGCCT
14351 GGCCAACATG GTGAAACCCC ATCTCAACTG AAAATACAAA AATTAGCCAG
14401 GCATGGTGGC ATGCTCCTGT AGTCCCAGCT ACTCACTTGG AGGCTGAGGC
14451 ACGAGAAATCG CTTGAACCCA GGAGGCGGGAG GTTGCAGTGG GCCAACATCA
14501 TGTCACTGCA CTCCAGCCTG GGAGACAGAG CGAGACTCTG TCTCAATAAA
14551 TAAATAAACAA TAAATAAAAA TAAATAAAAA TAAATAAAAA TAAAAAAATA
14601 TGGAGGCCAG CAGGCACGGT GGCTCACGCA TGTAATCCCA GCACTTTGGG
14651 AGGCCGAGGG GGGCGGATCA CAAGGTCAAGG AGATCGAGAC CATCCTGGCT
14701 AACACAGTGA AACCGCGTCT CTACTAAAAA TACACAAAT TAGCCAGGCA
14751 TGGTGGCAGG CACCTGTAGT CCCTGCTACT CAGGAGGCTG AGGCAGGAGA
14801 ATGGCGTGA CCCGGGAGGC GGAGCTTGCA GTGAGCTGAG ATCGCGCCAC
14851 TGCAGTCAG CCTGGGCGAC AGAGCAAGAC TCTGTCTCAA AAAAAAA
14901 AAAATGGAG GTTGGGCGCG GTGGCTCGCG CCTGTAATCC CAGCACTTTG
14951 GGAGGTCGAG GCAGGCCGGAT CACCTGAGGT CAGGAGTTCC AGACCAGCCT

FIG.3-6

15001 GGCCAACATG GTGAAACCTT GTCTCTACTA AAATTACAAA AATTAGCCAG
15051 GCACGATGGC AGGCACCTGT AATCCCAGCT ACTTAGGAGA CTAAGGCAGG
15101 AGAATAGCTT GAACCTGGGA GATGGAGGTT GCAGTGTGCT GAGATCGCGC
15151 CACTGCCCTC CAGTAGAGTG AGATTCGTC TCAAAAAAAA AAAAAAAAGAA
15201 GAAATGGAGA TACAAACTTA CTACCTACCT CCTTACAACC TACCCCTCAC
15251 GTATTACTGT GAATAAAAGT GTGTGTAGCA CTGGGAACAC TATTACAGA
15301 GCACTCATGA ATGTTTGTTC TTGTTATTA GTTACTAGAG AGGCAAATGT
15351 CTGCCAGGGC TGAAATAATAT GTGTGAATTG GTGATTGTCG CACATATCTA
15401 AAGAACGTAGT TATTTTTTTC AATTAAAATC TAGTTAAAA ACCAATATAA
15451 GGCGGAGCGC AGTGGCTCAC ACCTGTAATC CCAGCACTTT GGGAGGCCGA
15501 GGTGGCAGA TCATTTGAGG TCAGGAGTTC GAGACTAGCC TGGCCAACAT
15551 GGTGAAACCC TGTCCTGCT AAAAAAAA AAAAAGTACA AAAATTAGCC
15601 AGGCATGATG GCAGGGCCCT GTAAATCCCAG CTACTGGGA GGCGGAGGCA
15651 GGAGAATTGC TTGAAACCCAG GAGGTGGAGG TTGTTAGTGTAG CCGAGTTGT
15701 GCCACTGCAC TTCAGCCTGG GTGACAGAGG GAGACACTGT CTAAAAAAA
15751 AAAAAAAA ACCAAAACCA ATATAATAA TAAGTGGCCA GCAATGAAAC
15801 AGAAAGTGA AAGTTAGTGA AGCAAAACTA GTACTGTATT CAGATAAAGA
15851 TGCTGAATCT AGATTTGGTC ACCAGAAATAG GGTCTTTGT GGCAACCTGG
15901 GCTAGTTGG CTGACTCACC ACTGCCAGGA TGAAATTCTT TTCAGTGGCT
15951 ACTCATTTC CTTTATTTA AGTCATGCT CACAGAGCAA CCTTCTGATG
16001 CCTAATTCACTG CTTCTGGGA TACTTAATAA CAGGAAGGGT CTGGAAGTAG
16051 TACCTGTATA GGGGATATGA GTGTTCTGAT TTTAATAGTC AATTCTAAAG
16101 TGTACAGAGG GTTTGATAAA TGGTTAGGTC AGAACCATCA CAGAATGCT
16151 ACACCTCTT GGACATTAGG AAGGTCAAAA ACCTGAAAGG CCAAAAGCTA
16201 GGCCTAGATT AGGGTCATTC ACCAAGAAAA CATCAGCCTT GAAGAGTTCT
16251 CTGGGTGGTC CACCAGCTAA CCTTCCTTTG ATCACACCTC CTTCTCGTT
16301 GCTTCTTTAA GCATTGACCT GTAAATGGTA TGGAAATTCTT TGCTCACCTA
16351 ACTCCTTCCT TTTACAGAGG AAGAAGTGTAG AGCCCAGAGA GATTTAATGG
16401 CTTGCCTAAG ATCACACGCA GATTTCTGT TAACCAGGGT GATTTTTCA
16451 GTGTTCCCTG CCAGACGAGG GCTTTTTCC TTGAATTGCC TAGAGATTT
16501 TTGAGATATC CGAAGCATT TTCCCAGTGC AGCCTGGAGA AGGATGTCCC
16551 TGTCAACACA GCATTTGTTA CTCATGTTA GACATTAAT TTTCTAATT
16601 GTATCATGGA GCAACAGTGG ATGATTATCT ATAAGGGGTT GCAATTCCAT
16651 GCTTATGTGC TTACAGCCCA TATAGACAAA TATCAGCTGT TAAAATGACA
16701 AGGCAGTAGA GATGTGGCCC CAGGACAAAG GCATACTCTG CTGTTAGTGA
16751 ACACTAGTTG GCCAGCAAAT TTCACATGGG CATATACAG GCCAACTGT
16801 GACTTTAGGC ATTATACCC ATTCAAGAGAG CCAAACGTGC AACTAAAGAT
16851 CAGCATTCTC TTTGGCATT CAGCTTGCCT TTCTGTTAAA AATCACTGCT
16901 TGCTTAAATA CCTCTGATAG CTCTTCACTG CCTGTTAGGCA ACTCTTCTGC
16951 CTAGCAGACT TGGTCTTTAG TGCTCTGCCCT CTAACCTCTT CCACCAATTCT
17001 GGCCTCTGT CTAATTGCTG CCCATATGTG CCATGCACTA GAGCTTACAG
17051 ACCTGCTCAG CGTTATATGA GCATACCCATA CTCTTATGC CTCAGTGCAT
17101 TTGCACATGT TGTTCTTCA GGCCAGAATG CCTGTTACTG CCTGGCAATC
17151 AGCCTATTAG AGTCTGCCAA TACCATCCCA TCTTCTGTGG AGGAGCCCC
17201 CGCCAAATCC ACCCATACCT CTCCCCACCA ATCAGAGACT TCTTCTCT
17251 TTGTTATTCT CTCGTTATT CTCTTCATAC CTCAGTTATA TCCATTTCAG
17301 TATTTGTTTA CACATCTAGC ATCACTCTTA GAGTGTGAAA TTCTCCAAGT
17351 GTGGAGCCGT ATCTAGTTG TCTTGTATC CCAGAGCTTA GCAAAGTGC
17401 TAGAAATGTAG TGGGTGCTCA GAGTGTGTTGC TGGGTGAATG ATGTATTGT
17451 TGAACGACTC TTTGGACACT TGAATAAAAGT CCATCCAGTA TGCACCATT

FIG.3-7

17501 CCATCTCTTC GCTCTACAAT ATTCTTTAG GCAAGAGCTT ATCTTTGAG
17551 GTGATAAGAT AAGCTAAAC TTATGTAGAC TAAGACCTA GTCTGTAAT
17601 GTCATCCCTA AGTCTTAAAC CATAAAACC AGGGCCTCAA GGAATGGCAT
17651 GCCTTCTGCA ACTGTAGCAA CCTGCTGTGC TTATTTGCC GTGTTTTCA
17701 TTTTCCCCC AAAAGCTAGA GTCCCTTCTC CCATGGGCAG TGCTGGAAGT
17751 GTGCTAACAA ATTCTTCTC CATACTGCTT ACGATTACAA AAAAACCT
17801 CAGCATCTCA TGCCAGACTT GAGTTAAGGT TGTTTCTT TGTGTGTCAG
17851 CTGTATTCTG GTCATGACTT CCTGATGATG CCCTATAGAG ATTTTGCTGA
17901 GATCAGAGGG TGCTCCACTG CCATCAGTAG CACTGACTCT TGCAAGAGCA
17951 CCGTTCTGA AGTTGGCTAA TGTCATCCCT CACGTTGTT TGTTGAAAT
18001 TTGTTTGT TCCAGAGATA GCACTTCAT GGAATGACGC TATTTCTAG
18051 AATCACTTTT TTTTTTTTGAG TGAGTTGGAG TCTCGCTGTG TCGCCAGGCT
18101 GGAGTGCAGT GGCACAATCT CAGCTCACTG CAATCTCCAC CTTCCGGGTT
18151 CAAGTGATT CCCTGCCTCA GCCTCCCGAG GAGCTGTTAC TACAGGCCA
18201 CACCCCCACT CCTGGCTAAT TTATGTGTT TTAGTAGAGA CGGGGTTTCA
18251 CCGTGTGGC CAGGATGGTC TCGATCTCT GACTTTGTGA TCTGCCTGCT
18301 TCAGCCTCCC AAAGTGCTGG GATTACAGGT GTGAGTCACC GCGCCTGGCC
18351 TAGAACACC TTTTATACC ATAACGTGAG CACCACTGCC GCGTCACCAA
18401 GGAAAGAGAG AGGCAGCTAC TGTTGGGTTA CAAATGGGTA AGAGTGGCAC
18451 CAGGAAGGTG AAAGTCTCTA CTTAGCCAAG GCTTAACAAA ATGTCATCA
18501 CAAACATTT ATTATTAAG CTACGTTAG GATAAGAAGA TGAACAAGCT
18551 ATCTGTACAT TCATTTCTC GTTGTAAAC AGGTATGAT AGTGTATCTAT
18601 CCTGCCTGCC TCTGAGGGTT ATTGTGAGAA TAAAATGAAA TCAAGTGGAA
18651 AAGCACTTAG GAAAAAGAAA AGCATTGTT TTCATTGTT AGTGTGGATC
18701 AGAAAACACTG GGGCTGTTT AAAATGCAGA TTCTTAGCCC CAGTCTCAGC
18751 GATTCTGATT CTGTATATCT GAAGTGGGAC TCAGGAATCT TGATTTCAA
18801 CAAGCTGACC AGAGGGTCCA ATGCTGCTAT TCCTTAGTT ACACTTTCAG
18851 AAATATTACT GTAATCAAA TGGCAAGAAT AAAATAGTTA TTTGAGGCAG
18901 TTTTAGTATG TTGGACCTGG AGTCCAAAGA CTTGGGTCAA ACTCCAGCTT
18951 TGTCAGTCC TAGACCTGTG ACCTTAAACA GCAACCTCT CTGTGAACCT
19001 TAGTCCCTC AGGAACGGCT CTGGTCACCT CCTGCTGTAC TCCATTGATG
19051 ACTCACCA TAAGGCTCCC TGGGAGTCCC CCAAACCTT GCTCTCTAA
19101 CTCCCTTAC AGCCTCTAC ATCTCTGCA GGTGCTGTCT TCTCCTCCTT
19151 TTTCCAGGCC CTGCTCTGAC ACAGCATTCA TTCTCTCTG GGAAGGGTT
19201 CTTCAATGTG TCTCCAAGCA CATCACACCC AGGAAGGACC CTGTGGCCAT
19251 ATCTGTCTAT CACCAAGATCA AACTACGTGA AGGCAGGCAC TAGGTACTGT
19301 CAGTGCCCAG CATAGGCCTG GCCCATACCA GGTGTCACCA GATGCCTAGT
19351 AAAGAAACCT ATGATTCAAGG ACCCCCATGA TGAGCAACTA TAGCACTAGA
19401 ACAGTGATAA TAACTAATGT TTATAATGCA TCTTCAGTTT ACAGAGGGCT
19451 TTTGTACTCA TCATCTAGTT TAGTTCTGC AACACCTCT TGAGGAATAT
19501 AGCACAAGCA GGACAAGGGGA AGCCCAGAGA TGTTAAATAA TTTATCCAAG
19551 TTTATGCTGC TGGGAAGGGC AGCACTGAAA TTAAAAGAAA AGTTTCTGA
19601 GCTCAAATCC CATGCCCTT CCTCAATGT AGCTCTAGCA AGGTATTGAG
19651 GAATCCTGCC TCTACAGTTC AGAGCCTCAA ATTGCTGGGT ATGTTGAGTT
19701 CTTGTATCTG ATTTTCTAG ATTTCTGCA CACATTCTTA CTGTCTGGAT
19751 ATCAGGAAAG AGTTTATCAA ATGCCTGTGG AAATCCAAGA TAAGGTCTCA
19801 TGATGAGTAA CCCAGTGAAA ACATGAAGTC AAGTCTAACT AGTCACTACT
19851 ATTTCACTAC TGCTGACTCC TGATGATCAG CTCCCTTCT AAGTGCTTAC
19901 TGTCCACTTA TTCCATCATC TGCCCTAGAAT TTATGTGAAG GAATCAAAGC
19951 AAAAGGATCA TAAGGCTTCC TTTTCCAGT ATGTTTCTC TCCTTTTGA

FIG. 3-8

20001 AAACTGGGCC AGTTAGCTAT CTCCATTTC ATTTCATGAA TACATCCCCA
20051 GCGCCTGGTA TATAGTAGAT ATGGAACATT ACACCTTGGA GATATTGCAC
20101 CCATTCTCCA GTTCTCCAA AGTTACTAAC AATGGTTCCA TCACTGTGCC
20151 AACATATTTC CTTTTTCAA TATATTGGGA AATAATTCTC CCAGTCTGAA
20201 AATCTGAACA CATTCTCATGT GACTTGGTAT CCTCATATGT CTTGGGCTTC
20251 CAATTCTCCA TTCTAGTT CAAGTTCATG AACTGTAAAA CAAAGGATTA
20301 GACTAAATCT CAAAGTTCT ATCCAGATGC CAAATTCTT TCTCTTTCCA
20351 TGATACCTAA GATAGATGCC AAATATTGTC TTTTACCTGG TGTTTGTGAA
20401 CATGACATCA CATTACAGGA GTAGCAGATA CTAAACTCTC ACTCTGTAAA
20451 AACTGACTG AGTTCATGA GCCAGATACT GAAGTGGACT TGTTCACATA
20501 TGTTCTCATT TAATGCTCAT AACCTGTGA AGCTGGGAAT TGCTGGGACA
20551 TTTTATTAT TTATTTATTG AGACGGAGTC TGGCTCTGTC ACCTAGGCTG
20601 GTGTGCAATG GCATGATCTT GGCTCACCGC AACCTCCGCC TCCCGGGTTG
20651 AAGCGATTCT CTTGCCTCAG CCTCCGCAGT AGCTGGGATT ACGGGGCACA
20701 CACCACCA CCAAGCTAAT TTTGTATTT TAGCAGAGAT GGAGTTCTC
20751 CATGTTGGCC AGGTTGGTCA CGAACACTTG ACCTCAAGTG ATCTGCCTGC
20801 CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC
20851 CGGGACCCCTT GTTTAGAAG GATGACTGCT GCTATAATGT AGAAAGTGT
20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GATGGGGGTG
20951 GTAATGCTTA CCTTTCAGTA TTTGGAGGCT TCAGGAGTCCT CAAAAATTCT
21001 CTTCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGCTTC CACAAACAGT
21051 TTCTTGGGTT TTGAATTGTT TGACCAAGAGC TTTCTCCGA CAAAAGGTTG
21101 GGGTGATTCA TTCACCTTAC ACACCTTGCC TGAACATTCA CTTGGGGCTG
21151 CCGGTTATGA AGGCTATTGT TCTCCAGCT GTACAGACG CTTTGAAGAC
21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTAGCT CGTGCAGG
21251 TTTCAACCT ATGAAATGTG CTGGAGATTA ACACCTCTCC TGCCATTTC
21301 TCCCTACTAT AATTGCCAGT CAAAGGATTG CTGAGTTGC CTCTGGCAGC
21351 CATAACTGAT GAATGTTCTG CCAGCTGCTC TGAGGACCTA GAAGAGCAGT
21401 TTTCTATCCA GGACCAGTTT CCAAGGGTGG GAGGGTGAAA TATATCCTCC
21451 AGTGTGACAT TTCATCTCCC AGTGTGGGT GGCTTGGGCC CTTTGAAGTT
21501 GGCTCTGAGG AACACACAC TTGGGTCTGA GCAGCCAGCA GCTTATCACA
21551 TCTGGTGATC AATCCTCAA AGGTTCTCC TGAAGTCTGA ATTGTTGGAG
21601 GTCAAATGGA TTCCACCTGG GAGGGGCTTC TGCTTCAGT CAGGACATGG
21651 GGAGAAGGCT GTTCCCTTCC CAGGGGGAGG CAGTTTCAT GGCATTGAGA
21701 TGTCCCTCTCA CTTATCCCC ACCCACCCAC CAAGTCCTT GTAAGAGGAG
21751 TAGGGGGAGA GGAGAGCGCC TGCAGCCTCC TGCTCACATT CCTAGACACC
21801 GACTCACTGA GCCCCTCGCC GCTGGAAACAG CAGAGCTGTG TGAATGTCA
21851 AGAGGAGTTA TGCTCATAGG CTCCTGGCC TCAGTCTCTT TGTGGCTTGC
21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGAAATCA GAGGGTACAA
21951 TTAAAAGATA ATTGCTAGT CCCAGACTTA ATTTGGGGCC CCCTTCTTGC
22001 CTGATTGAAT TACAGGGAA CATAATAGAT TTTTGGTGTG AAATAGTTGT
22051 CTGTGTGGCT GGGGAGAAAGA TTGCTCCAG CTCTCCAGCT GGGCAGCCCT
22101 TTCACTGATTC CGTATGTTAT TTCCCCACTT CCAGCCCACC TCACCTCTC
22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA
22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCAACCT
22251 CATAGGGGTG AAAATGTTG ATGCTGGGAG CTATTAGAG ACTAACCAA
22301 GGCCCAGACA GAGAGAGTGA CTGCTAAAG GCCACATAGC TAGCCCACAG
22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT
22401 TTAATGTGTC CCAGACTTG TGCCAAGGGC TTACATGCAG TGCATTGTG
22451 CATTCAAACC CAGACAGTCT GGCTCTGGC CCAGGCTGAG CTTGGTATA

FIG.3-9

22501 GCATGGTAGA ACGTTGCTA TAATGTCTAG TCTGGGTTCA AATCCTGGCT
22551 TCACTTCTCA CATTACAGC TGAGTGACCT CAGGCAAGTG ATTTAACCTC
22601 CCTGTACCTC AGTTGCTTTA TCTGTAAAGA GAAAAATCAC AGCACTGTGG
22651 AATAGTGGGG GTTAAAATTC ATTACATACAA GTAGTGCTGC AAGCAATGTT
22701 TAATACAGGG TGAGCACCTG TTCAGTGCTT CCTTCTCTG GCTGCCTCTG
22751 GGGCTAGAGT GTGGTGTCTT CGTGGTATAG ATAGATAGAT ATGGCTGAGC
22801 TCTGCACAAA CACCAAGAGC TGTTCTTCAC TATTAGAGGT AGTAAACAGA
22851 GTGGTTGAGC TCTGTGGTT TAGAACAGAG GCCGGCAAGC TATGGCCCAT
22901 TGCCTATTT AATACGGCCT GTGATTGATT GATTTTTTT TTCTTTTTGA
22951 GACAGAGTTT CACTCTTGTG GCCCAGGCTG GAATGCAATG GCACGAACTC
23001 AGCTCACCGC AACCTCTGCC TCCTGGGTT AAGCGATTCT CCTGTCTCAG
23051 CCTCTCGAGT AGCTGGGATT ACAGGCATGT GCCACCACGC CTGGCTAATT
23101 TTTGTATTT TAGTAGAGAC AGGGTTTCTC CATGTTGGTC AGGCTAGTCT
23151 CGAACTTCCA ACCTCAGGTG ATCTGCCGC CTCAGCCTTC CAAAGTGTG
23201 GGATTACAGG CGTGAGCCAC CATGACTGGC CTGATTGACT GATTTTTTA
23251 GTAGAGATAG GGTCTTGGTT TGTTACCCAG GCTGGTCTCA AACTCTGGC
23301 TTCAAGCAGT CCTCCCTCCT TGGCCTCTCG AATGCTGGGA TTATAGGCAT
23351 GAGCCACTAT GCCTGGCTA TATGACCTGT GATTTTAAT GGTTAGGGGA
23401 AAAAAAGCAA AAAAATGCTT TGTGACATGT GGAAATTACA TGAAACTCAA
23451 ATATCAGTGT CCCAGCCTGG GCAACAAAGT GAGACCCGT CTCTACAAAA
23501 AATAAAAAAA ATAAGCCAG GGCGGGCGC AGTGGCTCAC ACCTATAATC
23551 TCAGCACTTT GGGAGGCCGA GGCAAGTGGA TCACCTGAGG TCAGGAGTTC
23601 AAGACCAGCC TGACCAATAT GGTGAAACCC TGTCTGTACT AAAAACACAA
23651 AAATTAGCCG AGCATGGTGG CATGCGCCTG TAGTCCCAGC TACTTGGGAG
23701 GCTGAGACAA GAGAATTGCT TGAACCTGGG AGGCGGAGGT TGCACTGAGC
23751 CAAGATCGCG ACACTACACT GCAGCCTGGG CAACAGAGCG AGACTCCGAC
23801 ACACGCACGC ACGCACACAC ACACACACAC ACACACACAC ACGCTGGTA
23851 TGGTGGCCAG CACGTGTGGT CCCAGGATGC ACTGGAGGCT TAGGTAGGAG
23901 GATCACTTGA GCTTAGGTGG TTGAGACTAC AATGAACCAT GTTTATACCA
23951 CTGCACTTTA GCCAGGGCAA CAGTGTGAGA CTGAATCTCA AAAGAAAAAA
24001 AAAAAAAAGA AAAAAATCTT TCCATAAGTA AATATCTGTT GGAACATAGC
24051 CATGTCCTT AGTTTATGTT TTATATATGG CTGCTTTGC CCTATAATGA
24101 CACAATTGAG TG GCCACGAC AGTCTGTATG GCCTGCAGAG CCTAAGATAT
24151 TTGCTCTCTG GCCCTTACA GAAAAAGTGC CTTGACCTGT GCTCTAGAGC
24201 CATATGTACC AGGTTTGGAA CTCAGCCTCA CAGCTGGGTG TGATGGCAGC
24251 CATCTGTAGT CCCAGCTACT CTGGAGGCTG AGGTGAGAGG ATCACTTGAG
24301 TCCAGAAGGT CGAGGTCAAG ATTGTAGTGA GCCATGATGG CATCACCGCA
24351 CTCCAGCCTG AGTGACAGAG AGAGACCTG ACTCAAAAAA AAAAAACAA
24401 AAAAAAAACCA CACCCCTCACC ACTTATCAGC TATTGTCTT GAGAATAGT
24451 ACATAACCCCC TCAGAACCTA TTTCTAAC TGTAAATGA GGCTGATGAC
24501 GTTTCTCCTT TTTACTGGCA ATTTAAACAT GATGGATAAT AAATGCTAAG
24551 CACTAACAC AGGGCCTAGA AGATATTAAC TGCTCAATAA ATGGTAGCTT
24601 CTTAACAGTA TCAAACCCA TGTGCTTTA TCACATGCAT TGTGTCCT
24651 GTGTCCAGTT GGTGGAATGG GAAAAGGCTC CCTTGTAAACC CCATCTACCA
24701 TCTTATCG ACTTTCTGC CATGGTTCAC AGTAAGAGAT AGAAGCTGCA
24751 CGGTGACTTC TGCTCTTTA CAATGGTAG CGGTGTGTGC CTGGTAAGGG
24801 AGAGCTGATG TCACTGCCCA AAATCCAGTA GTGAGATCTG AGTGTCTGG
24851 TTTCTCCAG CAGCCTTGCT TTTCTTTA CAATCCTGCA GGCAGGGAGA
24901 CAAGGGCTTT CTACATGGTA GGCTCTGGTT TGGTCATCGT CACAACCTGGG
24951 GGCTGTTAG GTGGGCTCCC ATTCCAGATA CCTAGGCTTA TCAATCCCTT

FIG.3-10

25001 TTGGCACCCC AGGCCTTTT CTCCCTCATG CCCCCATTTT CAGTTTGAAA
25051 AGCATGGTTA TCACAGGACA AGTAGAAGAA GCTCCACTGT CCACTGAGGC
25101 CAATGGATGG TGTTCTGCAT GTGAACACTC AGTGAATAGT GAGTGAATGA
25151 GAGTAACCTG GGCTCCATCC TATTCAGA GAGCTTGGA AAAGATTTT
25201 CTCCCTAAAG AGCCAGAATG AAGCCTGGTA GTGGGAGAGC TCCAGCTCTA
25251 GAGTCACATG AGCCTACATT TAAATTCCAG CCCTGCCACT GACTCCCTT
25301 TTGACCTTGA GTGAGTTACC TAATCTCTCT GTACCTCACT TTTCTTGCT
25351 GTAGAGTGGG AATAATTCCCT GTCTCAGAGA AATAAAAGAG TGCAATATAGT
25401 GTTGCCACA TGGAGACACA TCAGGTGTA GTTAATACTC TGGGCCTTGT
25451 TTCCCTTATT GCAACACAGC CCTGCCCTGG AGTGGAAAGTG GCACCTCCCA
25501 TTGGTCAGCT CTTGAGGCTG TCCCCAGGAC AGGCAGAGGG AGGGAATGAA
25551 TGGGAGCCCT AGTGCCAGGA CAGAACAGAT GGCAGCTCAG AGCTAGGATG
25601 GCTCTCTGGA CCTGTCTCTC CTACCAGAGG TCCCCCGTC TGGTGTGGCT
25651 CTTCCTGGAC CTGGCATCCT CTGCTTTTTT TTTTTTCCA CCTCCAAGCA
25701 GAATTACTGT CCTGTAGGCA GCTCCTCTGC TTGAGGACAT CTGGGGCCAG
25751 ATATGTTCAC ACTCTATCCT GCCTTGCCCT TCCCTGAGCT CAGGATGGAC
25801 GCTCAATTGG TCCCAGTTAT TGTCTGCAGC GCCTGCCCTGC AGCCTCGATC
25851 CAGCCCAGCT CCACCCCTTG CCTGCAAGGT CTGTTTCCA ACAGCTGCTC
25901 CAACCACACA CCTCGGTTCT GCGGGAGCCC CTCCCTTCC TCCCTCCCTC
25951 CCTCATTCAG GGGTGGGACT GAAGAAGAAG GCTAACTTGA CAGCAGCGCT
26001 TCTTTCTTAG CTAGTCACCG GCCCCCTGCTC AAGAAATGCCA GTGTGTGTGT
26051 AGCCTCCACA GAGAGGTGCTG TTTCTCGGAG TCCAGAGGGG CCGCCTGAGC
26101 TTCTGAGAAC TAGGGAGGAG CCATCCCAGC CATGAGCCCC TGTGGGAATC
26151 TGCTGGGGC CAAGTGGCCT GGAGTCTCAG GCCTCCCGCA GCTGCTCCGG
26201 AGGGAGAGGT GAGCTCAGGG CAGCCTGCCCT GCAGCCAGAG GTGCCGGGAG
26251 CCCCGGGCCT GTCATGGTGG CCATCTACAG CGGGCCTGAG GCAGTCACAG
26301 ACGGATTTCG AGCTGAGCCT GTCTATCTGG TGTGGGAAGA AGATGGGGAG
26351 TTACTTGTCA GTCCCGGCTT ACTTCACCTC CAGAGACCTG TTTCGGTGAG
26401 TTGGTCTCCG AGTCCCCCTC TCCATCTCTC CTGGCCCCCTG GTCTGAGAG
26451 GAGGGTGGTC TCCCTAAATC TCCCTCTCAC TTAGTCTTT ACCATCGGTT
26501 CTGCCGGGCA GAAGCCAGCG GAGGTTATAC CCAAGGAGAA TCGGCCCTTGT
26551 GAGGTACCCC CATTATGTCC TGGAAAGTGGT GAGGGGAGGG ATATAACCCAG
26601 AAGGAACCTTC TTAGGGAGCT CCAGCTCCCC TTCTATCCA GACAAACCTG
26651 AAGGAGCCTC CAAAGATGC CACTGACCTG CCCATTGTAG ATGTTACTGC
26701 TTCCGGGGGG AATAGCCCAA ATAGAGTGCT GTTCCAGCT CTCACATGTC
26751 TTACCTGCGG GCCATGCTGC CTGCCAGGA ATTGTCCA ACAAGCAGGA
26801 TGGGCAGGTT TTGCAAACACT GTGGAAACTG GCAAGTCTG GGTGTGGTA
26851 GCCTGGTACA CAGTAGGCAC CTTATAAACG TTGTTCTCT TAATGGCAGG
26901 CACATTTGCC TCTGCCCTTG AAGGGCTTCT GAGCTCCAG GTGAATGTAG
26951 TTGCTGGGGAA AAGACCTGGG CGAGTGCTTC TAAGACTGGA GCAATGGGCT
27001 TTAGAGTGTGTT CCTGAGCTGC TGGGCCAGCC CCCACACCTC CTCAGTCCCT
27051 AGGCCTAAAGT ACCTCCACGA GCCTCTCTCT GTGGGGCTTC TCAGAGGGAG
27101 ATGTGGAAAC TCTACCTCTA ACCTGGCTTT CTTCGCTCAT TGCCCCACTC
27151 CACCTCCCAT AGAAACTCCC CAGGGGGTTT CTGGCCCTCT GGGTCCCTTC
27201 TGAATGGAGC CATTCCAGGC TAGGGTGGGG TTGTTTCA TTCTTTGGGA
27251 GCAGCCTGTT GTTCAAAAAA GGCTGCCCTCC CCCTCACCAG TGGTCTGGT
27301 CGACTTTCC CTTCTGGCTT CTCTAAGCTA GGTCCAGTGC CCAGATCTTG
27351 CTGCCGGGAT ACTAGTCAGG TGGCCAGGCC CTGGGCAGAA AACAGTGTAA
27401 CCATGTGGTT TTGTGGAATG ACCGGACCCCT GGTAGATTGC TGGGAAGTGT
27451 CTGGACAGGG GGAAGGGGGAA AGGGAACTGG TCCTCAATGC TGACTCTACC

FIG.3-11

27501 AAGGCCCTG CTAGACACTT TATCCTTAA TCTCTAACCA GCCTAAAGAG
27551 ATTATATATC CCCATTTAC AGATGAGGCA ACCAGTTCA ACAGAGTTAA
27601 CATATGGAGC CTCACTGGGC AGCTTTTCT GTCTTCTGA CTTTCTCTA
27651 TCCTTCAGGG GGCTGCAGGT TTGTTTCTT CTCTTAGTGG AGAGGAAATT
27701 CTCAGGTTT GTTTCTCTC CTAGCAGAGA GTAAAAAAAG GGATAGTTG
27751 CCTGACTTGT TGAAGGTGTG GCTGAGATTG TTTCTAAAG AGCCAATGGA
27801 AATTGATCTT GAGTTTAGGA GAAAGCTTT ACATGTGGAA TTAAGATGCC
27851 AAGTGTGAA GTAGCCACAT TTCAGGTCTT CATTAAATTTC TCTTAATCCT
27901 GGGAAAGGCAG CTTAGGAGAA GGGTTGTTCC TTTAGGAGCC AGGAACATA
27951 CCCCTTTAC CTTGGAGAG GCAGGGAAAGC CAGGGAGGAC ACAACCTCTC
28001 AGGAAGAGGA GAAGCTAGAG CAGATAGTGA ACTCTCAACC TGAAACCTTTA
28051 AGGGCCAGAC CACTAATGCC ACCCAAGTCC ACCTGCCGTT TGTCTTGTT
28101 TGTCCCAGGC TTTCTGGAGA ACCTGATCTT CTGCCCCCTA CCCCCAAGCT
28151 CCGTTTGGCC AGCTAGAGTC TGGGGGGTAC TGACTGACTT TCGTAGACAT
28201 TCTTCCCTTC CCCAAATAAG AGGCCACATT CCTGAAGTCA CTTCTGAAGA
28251 GATAGCTGCC ACACAGGGCT CTTTCCCCC AGGGAGGGAC CACCCAGACC
28301 CTCTGCTCTC CCAGGTATCC GTTACCAT CACTACCTGG TCAGAAAGCT
28351 GTTTCTGCCA TTAGCCCTC CCTCTTTAT TATAGGATAT CCTCAAGGGC
28401 TCCTCTTGG GCCTCAGTTT CATCCTTGGC AGAAAGTAGA AGCTAGACTT
28451 CTTGGGCTCC TGAACAGGGT CTTGCTGGA TTCTGTGAAA CAAATTAAGT
28501 TCTTGACCCCT AGGCCTCTGG GGGAGTACAA AGTCTATGGG AGTTCTGGGG
28551 CTGTGGTTGC AAGGAAAGTG ACGCAACCAAG ATTCATGGG GACATGATCA
28601 GGCCTGACAT GTGAGGGAGG AAGAGGGAGC AAGGGAATGA AGAATACAAC
28651 TTCTGTGTCC CATACACCCCC TGCCCTGACAG GCCATACATA CTCAGCAGAG
28701 AATGCACTGT CTTCTTACCA ACACTAGCGT GAGGAGTGAG CTGCAATTAC
28751 CACTGTGCTT CCAAGTAAGA AAATACCTCA AATTGGATT TACAAAAGAG
28801 GTAAATTAGG GAGTGGCTTT TGTCGGACAT CTTTAAAGCA TTTTTCTTTT
28851 TATAGAATTTC CACTTAATGT CCAATACTGA TTTAATGAGC TTGGGTTTAC
28901 ACATTATCTC TTGAAGAAAA CAAATGAACC TTTGTGTTCC AAAGCAATTCC
28951 ATGTTAAAG GGAAAAAATT ATGCATAACT CTGCCCAGCT TCACAGTAAC
29001 CTTGGCAGG TGCCCTAGGT CCTCTGGAC TCTTTCCCTT ATCTGAAAAA
29051 TGAAGGACTT GGATCAGGTG AATGGTTCCC AGCTCTGCAA CTTATGTGGC
29101 TCCTCAGAGG CACACAAGCT CTTTCCATT ATTTGCCAAA TAATGGAGGC
29151 CCTGTCTTTA ACTGCAGTAC AACTACACAA AATACTGAA ACTACAGTCT
29201 TCCTGGTTTT TGGTTGGAAC TGAATCAGTG CACTCTAGCA ACACCTATT
29251 CTTGCTGTTG GTAGGCTTCA TTATGTGTTT GGTTAATTTT TAAAAACAAC
29301 AATAACATAT TCCATAATAA TTACAGCTT ATTGGCAGAC TGTTTCAGTC
29351 TATAGGATCT GCAGGAAGGA GGAGTAATAA AGGGATTTTT GACTGAGCTC
29401 TTATGGAACA GAGTCTCTC AGGCCCTGT CATATCTGCC CTTCTGGGCC
29451 CTGGGGAAAA GTGGCATCC CCAGTTGTTG TGCTCTCCAG GTGCCCTCAG
29501 GCTGTGGTGG AGGGAGCTTC CCATTCTCTC CTTCAGCCCA CTCATTCTCAG
29551 AGGCTAGGGG CTGAAAGAAG CTTCTCTACA ACTGGCTGTT CACTGGGAGG
29601 TTAAGGGATG ACCATCCAGC CAGGCCCTCC TCAGGACATG GGAGGGCTTA
29651 TGCTTTAACCA TGTGTAATC CACTGCAATA ATGACTGGTT CTTTACCCCC
29701 ATAAGGTGAA GAATTACCT GTAAACATT TTGCTGTGAG AATTGGATG
29751 TAAGTGAAGGG CTGGGCCTCT ATCTTATCTC ACTGGCTTC TCTCAGCACA
29801 GCACCTTGCC TGCTTGTCT TACACATCTC AGATGCACAG TAACTATTT
29851 CTAATTATTA GAAATCTATT AGAATCAATT GATTTCAGCT GGGCTTGGTG
29901 GCTCCTTCCT GTAATCCCAG CACTTGGGA GGCTAAGGCT GGAGGATCAC
29951 CTGAGTCCAG GAGTTTAAGA CCAGCCTGGG CAACATAGGG AGACCCTGTC

FIG.3-12

30001 TCTACAAAAA ATAAAAAATT AGCCAGGCAT GGTGGTGTGC ACCTGTAGTC
30051 CCAGCTACTC AGGAGGCTGA GGCAGGAGGA TCTCTTGAGC CTGGGAGGTC
30101 AGACTACAGT GAGCAATGAT TG GCCACTG CACTCCAGCC TGGGTGACAG
30151 AGTAAGACTC TGTCTCTAA AAAAAAAA AAAAAGTTG ATTTCTATTT
30201 GGATAGATAA ATAATTCTATT TTAGGACCTT TCTTTTCAC TTACAGAAAT
30251 CTGTTTCATT CTGGGCTGAG AAGCAGGTCC ATATTGCTAG GCATAGGAGA
30301 AAAAGGGGTC TGTCGCATT TGCCCTGGT GGTCTCAAAT TGGGGAGGGA
30351 AAGAAATGAA CACTTACTGG CTACCTCTG TGAGGCCAGGC ATCATGCAAG
30401 ACATCTGTAC ATAATTAAAT TCTCATAACC CCATAAGATA TTATTAGCAA
30451 TGTACAAGTG AGGAAACTGA GGCTCAGAGT CATGAAGTAA CTGGCCTTGG
30501 GTGACACAGA TGGTAAATGG CAGAGAAGGA ATATGGATCC AGGTCTTGAA
30551 AGAGAAAATC TCAACTGATT ATCTTTTTA AAAAACTCAT ATGTTCTCTG
30601 CTGACTCAAAGGCTCTGT GTGGATCTGG GTTGACCCAC TGAACGTGACC
30651 ATCAGGGTTC CATGCACTTT GTATCTGCC AAGCCTCAG ACCCCCTCAG
30701 TAATGTTTTG GAAGATGAGT TTGGAGGTT GTCTTAGGC ATAGCCTCA
30751 CGTATGTAGG CCTCTAGGTG ATCTCCCCA ACCTGAGGAT TTCAGCTCAA
30801 TTCACTCTGG CTCCTCAGGA CAGTGGGATG ACTGGTTCA ACCTCAGCTT
30851 TACCACCTCC CAGCTGGGTA CTCTTCTACC TACAGCCAGG GCAGATTTG
30901 ACTTTCACTT GAAACTTCCA AAAATTGAAA GGTAGAAAAA CAGCCTTGGC
30951 TTTGGGAAGA ACGTATGATG TCCATGGCCT CTAAGCATCT GAGGTGGGAC
31001 ATGTTCGAGT AGCACCTTAC AGTTCCAAAG TGTGTTCTGG GTTCTTTGTT
31051 TAAAAGAACAGAGACTGCTG GGGATTGAA CACTGTGAAG TATATGAAGG
31101 AGGAGAAATTG TGCTATTAA CATTCACTGAC TTGGGCTAAA GGAGAAGCAG
31151 CACGAAGTGT TAACACTCAA AGGGTCTTGA GCTGTCAAGG CTCCAGCTTC
31201 CTTATTTCA CAGGTGAGAA TCCTGAGGCT CAGCTGTTGA GATGTGCTGT
31251 CTCACTCCGG TGACATAGTA CAGTGGATGT GGCTTGCAG CCAAGCACAC
31301 ATAGCTTCAC ATTCCAGCTC CATCAATTAT GTATTGGCA GCTTTGCAGA
31351 ATGATTTGAC TTAACTCTG CTTTCACTG TTCTGTAAAA CAGGGATAAT
31401 CCTGCTACCG TAGGGTTGTC AGGATTAGAG ATAATATAAA TAAGGTACCT
31451 CATATAGGAC CTGGATTATG GCTGGCATTTC AATAAATAGT AGCTGTTAAT
31501 TGATAGCTAA GCTAGAACCTC TGAAGTCTAC CATGGCAACT TCTTAAGTGG
31551 TCTGAGAACCCAGTTGTCTG CTGTGGCAAA ACACAGCTTA GGGATCCATA
31601 CCCAGCCCTC CTGTCACTG TTACACCTTC AGTTCTTCAG AGACATGTGT
31651 GGCAGTGAATGTTGCCACAT AGCTGGCTGT GCCCTTAAA GGCATTCCCT
31701 GACACAGATA TGTGGACTGG TGACGTTGCT CTCCAGCCAG GTGTTCTTC
31751 CAGCAGGCTG GCCTGGCTGT CTCCCTGCATG CCTGTACTTG TTTGTCTCCC
31801 TGCTCCCTCT CCTGGGCTG GCCAGAGCTA CTTGCAGCAA ACAAAAGCAG
31851 GATATTGGCA ATGAAAGGA GGGTGTGTT TGGTGTCTCC ATGCCCTGCG
31901 GCGCACATAC CATTGCAAGG GCGTAACAGA GCCCAGGCC GCAATTGGGT
31951 GCAAATAAGT CTGCACACAG AAGAAAAGAA GGACCTGGTG ACCAGGAGCC
32001 ATGGAACCTCTGTGCTCCCC TACCTGGGCT ACTGGTTCTT GCCACTCCTA
32051 CCATTTCACTGTTGGAAATA TTTGTTAAGG CTTTGTCTT CCAGGTCTT
32101 TGCTTGGTGC TGAGTCTACC AAGAGTAAGT GGGATGCTGT TTTGTCTC
32151 AGGGAGCTAA CAGTCTAGTG AAGAAGAAAG ATGGTTGCC AGGAACCTTCT
32201 AAGTCAGAAG GCAGGAGGCA AGAAGGAAGC CCCTGCTCCT ACTGCCAGCC
32251 CTCTGTTGGG CACCCATAG TTCTTCAGAA CCACATTAA TCCTCACTGC
32301 AGGCCAGGCA TAGTGGCTCA CACCTGTAAT CGCAGCACTT CGGGAGGCCA
32351 AGGCAGGGCAG ATCACTTGAG GTGGGAGTT CGAGACCAGC CTCACCAACA
32401 TGGGAAACC CCGTCTCTAC TAAAAATAGA AAAATTAGCC GGGTGTGGTG
32451 GCATGCGCCA GTAATCCCAG CTACTCAGGA GGCTGAGGTG GGAAAATCAC

FIG.3-13

32501 TTGAACTCGG GAAGCAGAGG TTGCAGTGAG CCGAGATTGT GCCACTGCAC
32551 TCCAGCCTGG GCGATAAGAG CAAAATCCA TCTCAAAAAA AAAAAGAAAA
32601 AAGAAAAAAT CCTCACTGCT ACCTTGAAG TAGGTGATGA CATTGCCATT
32651 TCACAAATGA GAAGTGAAGG GGCTAGCCC AGATCACTTA GGTGGTAAAT
32701 GGTGGTGCTA AGATTAGAAC CTCAGATCAT CTAGGGAAAA ACACAGATAT
32751 GCACAGAGTT AAGGGGACCC AGGGTATTGT TTGTCCTCTT GTTTCACAGG
32801 TGGGAAACA ACCCAGAGAG GGAAAGGGC TTGTCCAAGG CAATTAGCA
32851 CCCAAGAACT TGAACCCATA TCTCTCTCT CCTCATTAG AGCTCATCCC
32901 ACATGTATCT TATATTGAGA GGAGTGTGAG CCACATACCA AGAACAGTCT
32951 TCCCCCTGCCTCCTCAACCTC ACTGTGCACT TTTGAGACAC TTCACAGCCA
33001 TACTCTTCAT GCCATACCCA GCCCTTAAGA CCCTGAAGTT CCCCTTCAT
33051 AAGACAAGTA GGAAAAGCTA TAGGGTAAAA ATAGCCATCA GTGTTTGTG
33101 AGCACCCAGG AGGAATTGGG CACTCCAGAA AGATAAAAGGG ATTCTCAGGG
33151 ACTTGTCTCT CTAGACTTCC CTAGCTCAGC TGCTTCAACT CATTCTGCC
33201 CCTCTTCTCT ACCTCCGCA GTGCTCAGAA GTAGTAGAAC TCACTGTGGC
33251 CTCTCACCTT GCATTGTTGA GTTTTATTTA GACTTTCTCT TCCTCAACTC
33301 TTCATAAGCT CATGAAAGGT GAAGTAGGGT GCCCTGTGTA TTTATCTTTT
33351 ATATCTGCAG TGCTTAGCAA GTTATAATAA TGCACTTGCC TGGCAAAAGG
33401 CTTCTCTCA TACATTAGCT TATTTCTCT TCACATTGGC TCTTGTAGT
33451 AATAGGATGC TATTAGTTAT TTTCAATGAG AGAAAGCTAC TAAGAGAAGT
33501 TGTCAGCTA GTGACAGTAA GTGGCTGATA AAGTGAGCTG CCATTACATT
33551 GTCATCATCT TTAATAGAAC TTAACACATA CTGAGTTCT ACTATATTGG
33601 GTCTTTTTTT TTTTTTTTT TTTTTTTTA GAGACGGAAT CTTGCTCTGT
33651 TGTCAGGCT GGAACGCACT GGTGCAATT TGCGTACCA CAACCTCCGC
33701 TTCCCAGGTT CAAGCGATTCA CCTGCCTCA GCCTCCTGAG TAGCTGGAC
33751 TACCACTGCA CGCCACCACG CCCGGCTAAT TTTTGTATTT TTAGTAGAGA
33801 CAGGGTTTCA CCATGTTGGC CAGGCTGGTC TTGAACTCCT GACCTTGTA
33851 TCTGCCGCC TCAGCCTCCC AAAGTGTGG GATTACAGGT GTGAGCCACC
33901 GCGCCCTGCC TATATTAGGA CTTTTATATA AGCTATCTCT AGCTAGCTAG
33951 CTAGCTAGCT ATAATGTTTT TTGAGACAGA GTCTGACTCT GTCAACCCAGG
34001 CTGGAGTGC GTGGCGTGTAT CTCGACTCAC TGCAACCTCC ACCTCTGGG
34051 TTCCAGTGTAT TCTCCTGCCCT CAGCCTCCCG AGTAGCTGGG ATTATAGGTG
34101 CATGCCACCA CGCCCAAGCTA ATTTTTGTAT TTTTTAGTAG ACCAGGTTTC
34151 ACCATGTTGG CCAGGCTGGT CTCGAACCTCC TGACTTCAAG TGATCCACCC
34201 GCCTCGGCCT CCCAAAGTGC TGGGATTATA AGCATAAGCC ACTGTGCCA
34251 GCTGCTCTCT ATATTTTAA TACATATTAT TTCCATTAAT TTTCACAGCA
34301 GTTCATTTTA TAGATGAGGA AACTAGGCCA GAGAAGTAAA ATATCTGCC
34351 CAAGATGATG TAACTAGTAA GTGGCAGGAT CAAGATTCAA ACCAAGCAAT
34401 GTTCAAACCT CTGGAAAGCA AGAATGTGGC CACTGTGGAA GGTGCAAGGC
34451 CTTGACAAACA AGAATAGGGAA AAAGAAGGAA CTAGAAGGAA AGAGATGGCA
34501 TGGGCTCAGC AGGCCAGGGAA GCTCTTAGCT GTGTGTGTG GGAAGCTCAG
34551 AAGGGAGGAA GAGGTTGTCT GTGCAGGTA GTCTGAGAA CACACCAGAC
34601 TTTTGAGAGG TGAGCTTCA TAGCCAGGTC ATTAGGGGAG AAGGGAGCTA
34651 TAGATTTTTT TTTTTTTTT TTTTTTTTT TTTTTTTTAG AGACGGGGTC
34701 TTACTATGTT GCCCAGGCTG GTCTTGAAC CCTGGGCTCA AGTGTATCCTC
34751 CCACCTCAGC CTCCCAAAGT GCTGGGATTA GAGGCATCAG CCACCCGCC
34801 CAGCGAGCTA TGATCTAAC ATGTACATCT TACACAGTGC TAATAGAATG
34851 TTGGGTTCT TCCCCAATAT TTTATTTGA AAAAAAATTC AAATATATAG
34901 AAAAGTTGAA AAATGTAGTT CAAAGAACAC CTACATACCT TTCACATAGA
34951 TTCATGATTT GTTAATGTTA TGCCACTTGT TATATATCTC TCTCCCTCCT

FIG.3-14

35001 ATCTGTATACTTTTATTTGC TGAACATTTCAGAGTAAC
35051 TAAAGGCATCTTGATTTAC CCTTGAAACAG TTCAATATGT TTCTGCTAAG
35101 AATTCTCCTA TATAAGTCAG ATATCATTAC ATCTAAGAAA ATTACGGCA
35151 ATTTTACAAT ATAATATTAT AGTCCAAATC CATATTCCT CAGTTGTTCC
35201 AAAAAATGTT CATGGCTGTT TCCTTTTTA ATCTAAATT GAATCCAAGT
35251 TTGAGGCATT GTATTTGGTT GCTGTGTC TAGGGTTTT AAAATCTGTG
35301 CCTTTCTTC TCCCCATGAC TTTTAAAG AGTCAAGACC GGTTATTCTT
35351 ATAGAATAAC CCACATTCTA GATTTGCCTG ATTAGTTTT TTATACTTAA
35401 CGTATTTTG GCAAGAACAT TACATTGGTA ACGCTGTTGG TGATGGGTCA
35451 GTTTGAAGA GTGGAGATGA TTAAACTGCT TTTGTTCATTAAGTATCTG
35501 TCAAGACCAAG AGATCCTAA CTGGTGCCT AAATAGGTT CAGAGAACCC
35551 TTTATATATA CACCCTGTCC CCCACCTAAA TTATATACAC ATCTTCTTTA
35601 TATATTCTT TTTCTAGGGG AGGCTTCTTG GCTTTATCA AATTCTCAGA
35651 GGGCCCCAAG ACCCAAAGAG GTTATGAAAC ACTAGTCTGT CCACTGAGGC
35701 AGGCAACACA GAGCTGGTT CTGGGGCCTT GTTCAGTCTG AACCAAGCTTC
35751 CCTTGGGGAG ATAGCACAAG GCTGTAACT TGCCCCATCT TGGCTTTGGA
35801 TCAAAGAGGA CTGTCCATT TGTTGTACATA CCTAGGAACC AGGGACAGCT
35851 TATGTGGCCT GGTCCAGGG ATCCAGGAGA ATTCAGTTC TTGTCTTGC
35901 TTCAGGTGT TCAGAATGCC AGGATTCCCT CACCAACTGG TACTATGAGA
35951 AGGATGGAA GCTCTACTGC CCCAAGGACT ACTGGGGAA GTTTGGGGAG
36001 TTCTGTCTG GGTGCTCCCT GCTGATGACA GGCCCTTTA TGGTAGTGA
36051 ATCCCTTCAT ATCTGCCCT CTTGGTCTTC AGAGTCCATT GACAGTGCTT
36101 CCAGTTCCCT GTGGCCTGTT AATCTTTAG TCTTCCATC AGCCAGGGCA
36151 TCTCCCTTTA TTTATTCTT CATTCAACTA GCAGGTATCA ATTGAGCACCC
36201 TACTAAGTGA AAGGTAAGAT CCTTCCCTCA AAGACTTAAT AGTTGAACGT
36251 TGGGAGTGGG AGGAGAGGCA GGCAGAGAGG AGACACAATA TAGTTGGATA
36301 AGGACCTCCA AGGAGAGTGT TACAGGCTGA GAGGAGGATA TACTTAGGTT
36351 GTCTTAGGG AATCAGAAAA GGAGACTCTG GAATAGGCTG GCAGAGAGAG
36401 GGGCTACCTC CTATACCTGC TCTGGACAAA CGACTTTAAG CATACTGACA
36451 GATTTGCCAA CCCTGTATTG GAAGAACTGA TCTTTTTAG TGGGGATGAT
36501 TACTTCTGGG GATTCTTCT CATAACTGAG ACCAAAACAG TTTTGTGCAG
36551 TCTCAGAAAT GACAGGAGGT ACCAATCTGA CACTTCCCTT GGAAGCTCTA
36601 GGGCAGAGAG TGAAAGAGTG GATTTTGACG GGGGCCTTGC TTGGAGGTCA
36651 TTCACCCACC CCTGTCTCA CTCCAGCAAC AGTGATAACT CACTTCTTC
36701 CTCCCTTGT ACACCCCTCT CCCCACCTGC TCACAGGTGG CTGGGGAGTT
36751 CAAGTACCAAC CCAGAGTGT TTGCTGTAT GAGCTGCAAG GTGATCATTG
36801 AGGATGGGA TGCAATATGCA CTGGTGCAGC ATGCAACCTT CTACTGGTAA
36851 GATAGTGGTC CTTGTCTAT CCTCTCCAT ATAAGAGTGG CTGGCGGGGA
36901 GGGACAGTGG CAGGGTGAGT TGGGCAGAAG GAGTGTAGG GTAGTCAGAG
36951 CATTGGATTCTTACACACAGC AGTGTCTTA ACCAGCTCTT TAACTTGAA
37001 GCAGAAATGAT TTACACATGT CTCTACCCCTT TTTCTTACCAACCTTGAA
37051 ATGTCTTCAC TCTGCCCTGC AATCCTCCCA GTGGGAGGCA CTCTTCAGG
37101 ACGATCCCAG AACATTAAG TCAAAGACCC CTTAGAGCTC ACCCTGTCCA
37151 ACCACCTTGG TTGATAAAAG AAGTCAGCCT GGGGCCCATG GAATAGAATA
37201 GTACAAGGGC AAGGTTCTCA TTGTGAGTCA AAGGTAGAGT GAAGAGAAC
37251 CAGACCATCT CACCCCAACC CAGGCCAGTG TTTTCCAAA TATACCACTT
37301 GCTGCAGATC TAGCTCAGCA CCCCCAGTCC CAGCCCACCC TGAGAACCCA
37351 GGCTCCTCAT TCTGAGCAGC CAGCTAGAAT CATGACAAAG AGGGTGGTAG
37401 TGAGACTATG GGTACTGTT CTTAAAGCCA CATGGTGCAG TGGTTGCTGG
37451 GGGGCTTCTG TGTGGGACTC TAGCATCTTA TTCCCCCTG TGCCCTCTCC

FIG.3-15

37501 CCAGTGGGAA GTGCCACAAT GAGGTGGTGC TGGCACCCAT GTTTGAGAGA
37551 CTCTCACAG AGTCTGTTCA GGAGCAGCTG CCCTACTCTG TCACGCTCAT
37601 CTCCATGCCG GCCACCACTG AAGGCAGGCG GGGCTCTCC GTGTCCGTGG
37651 AGAGTGCCTG CTCCAACATGCC ACCACTG TGCAAGTGAA AGAGTAAGTA
37701 TTTTGAGAAC CCTTCAGCAG GGGTTCTTGA GCAGAGTCTG TAAATGGGCC
37751 TCAGAGGGCT TAGACCTCCA AAGTCTCATG CAGAACTCCC TTATTCTCA
37801 TCTCATATCT TTCTCCTGGC CCCCCACTATG CTGTAACCGT ACCTGGGCCT
37851 TGGCACTTAC TGTTCTCTCT GCCCCAGGCTA CTTCTACCC GATACTTAAG
37901 GCAAGAATCA CTACACCTTCA AGGTGTCAGG TTTCAGGTCA TGTTTGCTCT
37951 TTGAAATCAT CTGGCTTGAT TATGTGTATT AGTTGTTTAT CTTCTATCCC
38001 CTCCACTAGA ATGTAATTG CAGAAGAAAAC TTGCTGTCTT ATTCACTGCT
38051 GCATGCCAG GGCTTGGAAAG AGTACCTGGC ATATAGTAGG AGTTGATTGA
38101 TTATTATTTT GTCAAGTCAG AGAATGAATG GAGAAAATGT GGTCCATGGC
38151 CCAAAAGAAG TTAAGACCCCT ATCCTAGATT CAGGCCAGAG ACCAGATGGA
38201 GAAAGAGTCT GTGTCTATCT AATACCAGTA ATGTCGTACC TCTGGCCGCT
38251 TACCATGTAA ATATTGATTG TGTATCTACC ATGTGTGGA CACTAGGCTA
38301 GTGCTTGCAC AGCAGGTGAA AGATACTAGA GTTGGGAAG TCAGGAGGAG
38351 CTAAGGTCTG TTCTACAAAC TTATTAGATG AAGAGGAGAG GGAATTGTGT
38401 TCAGGGCAGA GGGAGAAGCA TTCTCCAAA AGTAGGAGTC TTAATCATGT
38451 CTGATGTAGG TTGAGTGTGG CCAGAAAAGG GGCTGTTAAG TATAGAGGGC
38501 CTGGATTATG AAAATCCAGC AGATCCATTG AGAGTTAAG CAGCAAGGTG
38551 TTGTGACCAA GTTAACATT TAGAAGGATC ACTGGTATGG AGGTTGGATT
38601 GGAGAGGGGA AAGCCTAAAG GTATAGAGAC TAGTTAGGAA GCTATTGTAG
38651 GCTGGGCATG GTGGTTCATG CCTGTAATCT CAGCACTTTG GGAGGCTGAG
38701 GTGGGAGGAT TGCTTGAGGC CAGGAGTTGA AGACCAACCT GGCAACATA
38751 GCAAGACCCC GTCTCTGTT TTCTTAATTA AAAGAAAAGT CCAGACGTAG
38801 ACATAGTGGC TCACGCCTGT AATGCCAGCA CTTTGGGAGG CCAAGGTGG
38851 CAGATTGCTT GAGGTCAAGA GTTGGGATT AGGCCAGGCG CAGTGGCTCA
38901 CGCCTGTAAT CCCAGCACTT TGGGAGGCCG AGGTGGCGG ATCACAAGGT
38951 CAGGAGATCA AGACCACCTT GGCTAACACA ATGAAACCCC GTCTCTACTA
39001 AAAGTACAAA AATTAGCCGG GCATGGTGGC GGACGCCTGT AGTCCCAGCT
39051 ACTCGGGAGG CTGAGGCAGG AGAATGGCGT GAACCTAGGA GGCGGAGCTT
39101 GCTGTGAGCA GAGATCACGC CACTGCACTC CAGCCTGAGC GACAGAGCGA
39151 GACTCCATCT CAAAAAAAGAA AAAGAGTTG GGATTAGCCT GGCAACATG
39201 GCAAAACCCC ATCTCTACAA AAAGTACAAA AAAATTAGCT GGGTATGGTG
39251 GTGCGGCCT GTAATCCAG TTACTCAGGA GGCTGAGGCA TGAGAATTGC
39301 TTGAGCCTGG GAGGTGGAGG TTGCAGTGAG CCCAGATCAT GCCACTGCAC
39351 TCCAGCCTGG ATGACAGAGT AAGATGCAT CTCAAATAA AATTAAAAAC
39401 AAAGTTAAA AAAAAAATAG AAGCTATTAC CGTGATCCAG GTAAAGAGATG
39451 TGAATAACTA CAATGATGGA AAGAAGGCAG AGTTCTTAGA GATGGGAGTA
39501 GGAGAGATGA GGGAACTCCA GATTGGGAAG ATGATGTTCA AGTTTCTGGC
39551 TTAGGCCACA GGGTGAGTGG CAATCCCTT CACTGAGATG GGGCATCCTG
39601 GAAAAGGTGT TGCTTCTG TGTGGGTATC CTGGGCCCT TAGGGGCCAC
39651 TGGTGGCCTG GGACCTGGTA AACCTTCCT GCACAAAGCAG AATTGGTCAA
39701 GCAGGTTTTT AGGACATCTT TACCCCTGCCT CAACTCTTGT CTGGCCCAGG
39751 GTCAACCGGA TGACACATCAG TCCCAACAAT CGAAACGCCA TCCACCCCTGG
39801 GGACCGCCTC CTGGAGATCA ATGGGACCCC CGTCCGCACA CTTCGAGTGG
39851 AGGAGGTAGA GTGTGTGTCT AATCTGTTTG GTGAGGGTGG GACATGGAAC
39901 AGATCCTCTG GGAAATCAGG CTGTAGCCTT TACCTTTCC TACCCCCAGC
39951 CCATCTCTT GTCTTAGCAT TGAGCCTGTG ACCACTGGTG ACCTATTCA

40001 GCGTAACAGG TTCCCAGGGT AGCAGGGATG GTTGATGGAC GGGAGAGCTG
40051 ACAGGATGCC AGGCAGAGGG CACTGTGAGG CCACTGGCAG CTAAAGGCCA
40101 CCATTAGACA AGTTGAGCAC TG GCCACACT GTGCCCTGAGT CATCTGGTT
40151 GGCCATGGGT GGCCCTGGGAT GGGGCAGCCT GTGGGAGCTT TATACTGCTC
40201 TTGGCCACAG GTGGAGGATG CAATTAGCCA GACGAGCCAG ACACCTCAGC
40251 TGTTGATTGA ACATGACCCC GTCTCCCAAC GCCTGGACCA GCTGC GGCTG
40301 GAGGCCCGGC TCGCTCCTCA CATGCAGAAT GCCGGACACC CCCACGCCCT
40351 CAGCACCCCTG GACACCAAGG AGAATCTGGA GGGGACACTG AGGAGACGTT
40401 CCCTAAGGTG CCACCTCCCA CCCTGGCTCT GTTCTGTCT ATGTCTGTCT
40451 CTCGGATGAA GCTGAGCTGG CTTTCAGAAG CCTGCAGAGT TAGGAAAGGA
40501 ACCAGCTGGC CAGGGACAGA CTATGAGGAT TGTGCTGACC CAGCTGCC
40551 TGTGGGGATC ACAGTTACA GCCAGAGCCT GTGC GGACCC AGCTGTCTGC
40601 CAGGTTTCCT TAGAACCTG AGAGTCAGTC TCTGTCCACT GAACTCCTAA
40651 GCTGGACAGG AGGCAGTGAT GCTAAACCTT GAAGGGCAAC ATGGCCTATG
40701 GAGAAAGCAT GGAGCTCAGA GCCTGGAGTA CGGGCACAGA TAGGATTGAA
40751 TAAATTGTGT AGAAAGACTT TGAAAACAAT AAAGCAAAAG ATGAATGAAC
40801 GTTTTTTTTA GACTTGAGGG ACCAACAAACC CCCAAACCCCC AGATTCTGCC
40851 AGGTCCATGG GGAAGGGAGAA GTTGCTTGA GTGGAGGCC CAAGTAGGGA
40901 GACTTACAGA AAAGAAGTCAGA AGAGCACTGG CTCCCAGGCA GAAATACTGA
40951 TACCCCTACTG GGGCTTCAGG CTGAGCTCTT CCCTTCACAA ATCACTTCAT
41001 CTCTCTGAGC CTGTTCTGC ATCTGTGACA TAAGATGGTA AGATAAAGGT
41051 GGCTGTCTCA CCAATTATGT AAGGATTTAA TGTGGAAAAG GACATAAAAGT
41101 TGTATAGTGC TGCCATAGGG ACAGTGTCTA GTAAACGTGA CACATTCTTA
41151 GTATCACTAA GAATCAGGTT CTTGGCCAGG CACC GTGGCT CATGCCTGTA
41201 ATCCCAACAC TCTGGGAGGC CTAGGTCGGGA GGATGGCTTG AACACAGGAG
41251 TTTGAGACCA GCCTGAGCAA CATAGTGAGA CACTGTCTCT ACAAAAAAAA
41301 AATAATAATA ATAATTGTCTT TTAATTAGAT GGGCAGGGCA CTGTGGCTCA
41351 CACCTGTAAT CCCAGCACTT TGGGAGGCC AGGCGGGAGG ATTGCTTGAG
41401 GCCAGGAGTT CAGGAGCAGC CTGGGCCACA TTCTGTCTC TACAAAGAAT
41451 AAAAAAGTTA ACTGGGCATG GTGGCACATG CCTGTAATCC CAGCTACTCA
41501 AGAGGCTGAG GAGGAGGATT GCCTGAGGCC AGGAGTTCAA GACTGCAGTG
41551 AGCCTTGATC ACACCACTGT ACTACAGCTT GGGCAACAGA GTGAGACCTT
41601 GTCTCCAAAA AAAAAAGTTT GTTTTTTTT ATCCACTCTC CTCACCAAAAC
41651 AAACTGAGTA AGTTAGAGCC CTCTCAGCTG GCATGTGTTG GAAACAGTGC
41701 CCTCTCATTA AAGTGTGCC CTCACTCCCC TTGCTCTTG GCCTTGGTCA
41751 GTATGATGAA ATTAGTGGGA GGCAGGGCAA CAGAGGGCAG GGAAGAGCTA
41801 GAAATCCATG GCCTGGAAAA GGGAAAGATTG GGGAGTGGCC AGGTATCTGT
41851 AGAGCCACCA TGCAAGGGAG GGGGGCAGCT AGCCTTGTGT GCTCTGGTGG
41901 GCATGGTCAG CAGGAGGCAG AGCAAAAGGA CAAGGGTAAG TAAACCTGTA
41951 GGTGGGACCA AGCCAAGAGC CATCCAGCGT CAGTCTCTC TGGGTAGGCC
42001 AAGTAAAGCA GGAGCATACC CCAGAGAGAA AGTTCGCAGG GCTGTTCA
42051 TGCA GTGCTGCTG TGGA CTTCAA CCTTCTTGTT CCTTCTTCAG TAAGTGA
42101 TAACAGTCAT TGACCATGAC TATTATCGAC CGCTTTGAA AATGTAAACA
42151 TAGTGA CTTT ATTGCTGTAA AAATCATACG TGTTTATCAT CTTAAATTC
42201 AGGAAACATG GACAGGTACA AAGATGTGCA AAATATCATC CAAAATCCC
42251 TTTGCTGGCC AGGCACGGTG GCTCACGCCT GTAATCCCAG CACATTGGGA
42301 GGCGGAGGCG GGCAAATCAC TTGAGGTCA GAGTTTGAGA CCAGCCTGGC
42351 CAACATGGTG AAACCCCTATC TCTACTAAAA ATACAATAAT TAGGCTGGGC
42401 GCAGTGGCTC ACGCCTATAA TCCCAGCACT TTGGGAGGCC GAGGTGGGCG
42451 AATCACAAGG TCAGGAGTTT GAGACTAGCC TGGCCAATAT GGTGAAACCC

42501 CATCTCTACT AAAAATACAA AAATTAGGGC CGGGTGTGGT GGCTCACGCC
42551 TGTAATCCA GCACTTAGGG AGGCCGAGAC AGATGGATCG CGAGATCAGG
42601 AGTTGAGAC CAACCTAGCC AACATGGTGA AACCCCCATCT CTACTAAAAA
42651 AATACAAAAA TTATTCGGTT GTGGTGGCAC ACGCCGTAA TCCCAGCTAC
42701 TTGGGAGGCT GAGGCAGGAG AATCTTGTGA ACCTGGGAGG CAGAGGTTGC
42751 AGTGAGTGGA GATCCCAGCG TTGCACTCCA GCCTGGGCGA CAGAGTGAGA
42801 CTCCATCAA AAAAAGAAAAA AAAAAAAA AAATTAGCCG GGCGTGGTGG
42851 CGTGCACCTA TACTCCCAGC TACTTGGGAG GCTGAGGCAG GAGAACCGCT
42901 TGAACCTGGA AGGCGGAGGT CGCAGTGAGC CGAGATCGTG CCATTGACT
42951 TCAGCCTGGG CGACAGAGCG AGACTCTGTC TCAAAAATAA TAATAATAAC
43001 AATAACTAGC CGGGCCTGGT GGCACATGCC TGTAGTCCC GTTACTCAGG
43051 AGGCAGGAGC ATGAGACTCA GGTGAACTAG GGAGACAGAG GTTGCAGTGA
43101 GCCAAGATCA CACCACTGCA CTCCAGCCTG GTTGACAGAG CGAGACTCTG
43151 TCTCAAAAAA AAAAATCC CATTGCTCA TTTTTGGAT ACTAGTATAA
43201 CTATCACT AAACCAGTTA GTACTAAAT CAAGCAGATA TGGGAGATGG
43251 TGAATTACCA TCTACAGTGT TGTCATATAT GTCACATACT GAGCATTATC
43301 AGCTAGTAGA ATCTAGTTAA TTGTTCTATG TGTGATGTAT GCAGAGTCC
43351 CATTGGAAT GTGTTTAC TATGCTTAA TAAATGACTG ATGTCAGCAA
43401 CCCCAAAATG ATACATCTGA TGTAAGAGCC CCTGTTCCCC AATAATAACA
43451 TCTAAACTAT AGACATTGGA ATGAACAGGT GCCCCTAAGT TTCCTCCCTC
43501 CAGGGTTTCT TGGCCGGTCT CTGAGGACTA CACATCCCTA CTCCCGTCTT
43551 TCCTCATCTT CAGGCAGT AACAGTATCT CCAAGTCCCC TGGCCCGAGC
43601 TCCCCAAAGG AGCCCTGCT GTTCAGCCGT GACATCAGCC GCTCAGAAC
43651 CTTCTGTTGT TCCAGCAGCT ATTACAGCA GATCTCCGG CCCTGTGACC
43701 TAATCCATGG GGAGGTCCCTG GGGAAAGGGCT TCTTTGGCA GGCTATCAAG
43751 GTGAGCCAG GCAACAATTG CTTGCTCTT CTGCCCCAG TCCCTCTGTC
43801 ACTGTCTTTC GGGGATTCT CATCACTTGG CCCCACCCCA CACCATGAG
43851 GATGCCAGGC CTCTTCCCTG GCTTTGGTG TTGGTGTGAG AGGTATCCTT
43901 CACCCCCACC CAGGCCACCT AAGGTCAATG TTGCTGTTAC AGTGAGCTTG
43951 TGGACCTGGA GATCCAGGTT GGGTTGAGCT GTGCTGTGG CCCTCCTGCC
44001 TCCAGTCAGT GGGTGTGGT TAGGTGCCCTG CAGACCTCAG TACCAGGGCAT
44051 GCTACAAGGA GCACACAGGG GAATGGCTCC TGCCTCCCTG GTGAACAGTC
44101 TCAGGGACTA ACCTCTCTCT TTCTCTCCCTC CTCCCTCCCT TCTGCTGAGA
44151 ACTGGGAGGG GGGGTCAAGT AAGACGTGTG TCTCAGCTTG GGGGCAGCAG
44201 GGCTGGAGAG CTCACCCCG ATCCACCCAG CTCCCTGGTG CATGTCTT
44251 GCACTGACCT TCCCTGCCCTC AGACTTCTGT TCACTCAGGA GACTCACTTC
44301 TATGCCAAAT GACCAGAGCC CCTGCTTGGC TTGGCAGCAT CCCCTCCTGC
44351 CTTCTCCCTT ACTTCCCTT TCTGGGTTCT TGCCTGTCT CTGTGCATGC
44401 CCAGCTCTCC AGGAAAGAGG GTTGTCTTCC GTGTGAGTCC CATGTTGCTC
44451 CACGCTGCAT CTTCCACACA TGAACCTGT CATTCTGACC CGGCTCAGTG
44501 TGCCCTCCAA GGGATGGGAT GGCCAGCTGC ATAGATTTTC TCAAAACAGTT
44551 CTCCAGAACT TCCCTCTGGTC TCAGCACCAT TAACAGTCAC CCTCCCTGTA
44601 GGTGACACAC AAAGCCACGG GCAAAGTGT GGTGATGAAA GAGTTAATT
44651 GATGTGATGA GGAGACCCAG AAAACTTTTC TGACTGAGGT AAGAAGATGG
44701 AGGGGGCCCG GGAGGTGGT GTCACCATGG GAAGAGAGAA GACCTTACAA
44751 ATAATGGCTT CAAGAGAAAA TACAGTTGG AATTACTGTC TTAAAGACTA
44801 AGCAGAAAAG AGCCCTAGAG GAATATCCA CTCCCTCTAA ATTACAGCGT
44851 AATTATTTGT TCAATGAACA CTTACTAAA GCAACACAAA CAGGGTACAA
44901 GGGATGCAGT AACAAAAAGAT ACAGGGTCA GAAGAGCTCT CAGGTTATGA
44951 GGATGATGGA CATGAAAACA CTCCAATTAA GTACAACCTCA ATGTTATAAT

45001 CCTCACCTGA ACGCCCTGCT AAGGGAGCCT GGAGGGGGAGC TCCCCTGAGCA
45051 CTCACACTCC TTGGGCATTT ACAGTTTCA CTACCCCTCC CAAGTTACTT
45101 CATGGAGTAA CTTAAGTTGG GGACACCTGT GGTCTGGGTA TTGCCCTCCA
45151 AGCCACTTGG CCACCTCCCAC CCCAGTTCTC CCAATGCAGT TCCAAGGGTA
45201 AGGCCTATGA AGCCATCTCC ATCTATATGG TGGTGGTCTT CCCTCATCCT
45251 GATCTTAGTG CCCTGTCTATA TCACAAGATA GGAGGTAGGA GATACAGGTG
45301 GTAACACTTG TCAAGCTGAT TCCTTGGAGG GAAGAGGTAA GGAAGACAGT
45351 GAGAAGTTAA CCACCAAGCTT TCCTTGGCTT CCCCCACCCCC CAGGTGAAAG
45401 TGATGCGCAG CCTGGACCAC CCCAATGTGC TCAAGTTCAT TGTTGTGCTG
45451 TACAAGGATA AGAACGCTGAA CCTGCTGACA GAGTACATTG AGGGGGGCAC
45501 ACTGAAGGAC TTTCTGCGCA GTATGGTGGAG CACACCCACCC CATAGTCTCC
45551 AGGAGCCTTG GTGGGTTGTC AGACACCTAT GCTATCACTA CCCTAGGAGC
45601 TTAAAGGGCA GAGGGGGCCCT GCTTGCCTC CAAAGGACCA TGCTGGGTGG
45651 GACTGAGCAT ACATAGGGAG GCTTCACTGG GAGACCACAT TGACCCATGG
45701 GGCCTGGACC ACCAGGTGGGA CAGGGCTCAA CAGCCTCTGA AAATCATTCC
45751 CCATTCTGCA GGATCCGTTCC CECTGGCAGC AGAAGGTCAG GTTTGCCAAA
45801 GGAATCGCCT CCGGAATGGT GAGTCCCACC AACAAACCTG CCAGCAGGGC
45851 GAGAGTAGGG AGAGGTGTGA GAATTGTTGGG CTTCACTGGAA AGGTAGAGAC
45901 CCCTTCCTAT GCAACTTGTG TGGGCTGGGT CAGCAGCTAT TCATTGAGTT
45951 TGTCTGTGTC ACTGAAACTG ACCCCAGCCA ACTGTTCTCA GTTCACAGCC
46001 CTGTTTCAA AGAATTACAC ATCTCTAAAG GCAAACAGGG CACGGACAAG
46051 GCAAACCTGGA GAGGCAAACG GTAGCCTGAG ATGGCCTGGG CTTGCCATCA
46101 CAGGTATTCA GGTGCTGAGG GCCCTTAGAC CAACTAGAGC ACCTCACTGC
46151 CTAGGAAATC AATGAAGGGG AAATGAGTTC TAGGGAGCC CTGAAGGATC
46201 AGAATTGGAT AAAGTTCTTA TTGGCAGAGA GGCACCAAGGA TTGAAGTGAC
46251 AGGAGCAAAG ACCTGGGAGG AAAGAGGAGA AAATCATCTA TTTCACCTGG
46301 AAACAAATGA TTCCAAGCAT AGAAATAATA ACAGCTGACA AGTACTGAGT
46351 GCCCTCTATA TGCTAGGCAC TGGGCTGAGG GATTAACATG CATGTGCATG
46401 TTATTCCTC ATGACAACCT TGGTTCCAG ATAAGCTGGA CTGGAAAGGG
46451 ACAGAGCTGG GATCCTGGGC TAATCAGTCT GGTGCCAAG CCTGAGACTT
46501 TAGCCACTGC CCTTCACATG GGGGTCCATG AAAATAGTAG TAGTCTGGAA
46551 CAGTTGGGG GTACATCAAG GTCGCTGTGT TTAAGCTAT GGAGTCTGG
46601 CTATAGGAGA CAAATGTAAA AGAGTTTTTG GGTTGACTGG CTTTTTGGTT
46651 TTTTTGTTTG TTTGTTGTT TGTTGTTTG TTTGTTGTT TTTCTGTT
46701 TCTGGGGCTT GAATCAGGAA GGAGGTTTTTG TTGTTGTTGT TGTTTGAGA
46751 AAGGATATTG CTCTGTTGCC CAGACTGGAG TGCACTGGCA CGATCATGGC
46801 TCACTACAGC TTGACCTCC TGGGCTCAAG CAATCCTCCT GCCTTAGCCT
46851 CCCAAGTAGC TGGACTACAG GTGTGTACCA CCACACCTAA TTTTTGAAT
46901 TTTTTTTCT TTTTTTTTT TTTTTTTTTT GGTAGAGACA GGTTCTCACT
46951 TTGTTGCCCA GGCCTGAATC TCAAACCTCT GGGCTCAAGC ATTCCCTCCTG
47001 CCTCGCCCTC CCAAAGTGTGTT GGGATTACAG TTGTGAGCCA CCATGCCCG
47051 CAGGAAAAGA TTTTAAGCA AGAAAGCTTA AGAGCTGTGG TTTTTCAAA
47101 ATGAGTCTGG GCTGGCACAG TGGCTCATGC CTGTAATCCCC AGCACTTTTT
47151 TGGGAGGCCG AGGTGAGTGG ATCACTTGAG GTCAGGAGTT TGAGACCAGC
47201 CTGGCCAACCT GGTGAAACCC CTGTTCTAC TAAAGAAAAA AATGCAAAA
47251 TTAGCTGGC GTGGTGGTGC ACGCCTGTAG TCCCAGCTAC TCAGGAGGCC
47301 GAGGCAGGAG AATAGCTTGA ACCTGGGAGG CAGAAGTTGC AGTGAGCCAA
47351 GATCACACCA CTGCATTCCA GCCTGGGTGA CAGAGTGAGA CTTCATCTCA
47401 AAAAAAAAAA AAAAGAGAGA CTGATATGGT TAGTACATTG GGGTGGAATG
47451 CGGAGGGTCC AGGGAATGGA GCCCTGCATA GGGGCTAAT GAAACATTC

47501 AGATTTCTGA ATTAAGGTAG TGGCTGTGGG GACAGGAGCC TGGGAGGCAG
47551 GGTGGAGTCA GAATGGAGAG ACTGGTGGC AATGAGGGAA CAGGAGGAGG
47601 AGGAGGAGGA GTTACGAGTG GCTTGAGGTG TCACCTTACCA GACATTTGGG
47651 GGATGGGGGA TAGCCGTGAT TGTTGAGCAA CTGGTTGGG AAGAGCTAGC
47701 ATTGATCCCT GCTGTTCTGTC GCTAGCAGAA CCTATCAGCA TCTTCTGGC
47751 AGGAAACTGG CTCCATGAGA CTGGCTTAGG GAGAGGCTGC TAGTCACCTA
47801 ATCTGCAGAG AAGGGGCAGC TGGAGCTGTG GGACAGAAGA GGCATCCATG
47851 TAGCTGGTGG GGGTGTCTCA GCTTGTGAAG AGGAGATGGC TTTGAGCAGG
47901 GCTGACACTG AAAAGGCTGG AAGAAAAAAA CAGACACACA AGAGTCTCAG
47951 GATCAGGTAG CATAGGAAAG TTGTGGACAG TCTTTGAGGA GCACTCCCTC
48001 AGGCAGGCAG GCAGGCAGGT CATGAGCTAT AGCGATTCAAG GAAGAGCTCC
48051 CTGGGTGTGT GAGCAGCTCC AGGAGCCTAA GGGATGAAAG TAGTATTGCA
48101 GGGGGCTGGA GAGCAAGGAG TGGCTCCTTC TACATTGCA AGGGAAAGGAG
48151 AAAGGAAGTT GCTCTGAGA GTGGTAAGAG TCAGTGGTGG AGGCCTGGAG
48201 AGGAGACATA ACAAAACAAT TTGTTGACAA ACATTTGGT AGGAAGGGGG
48251 AGAGCTTAAAG GTTTAGACAG TGGGGAAAGT GGAGTCTTAG AGGAGGTGAA
48301 TGTCTGAAAG ACAGAGCTAG CTGGAGCAAG AAGTCACCTC TCTGTTGCAG
48351 GCAGGAAGGA TCCAAAGTGG CTCAAGCCAG AGATTGGGAG AGTGGGGAGG
48401 AGGGAGCAGC CTGGATCTAA GTAAAATGGG TAGAGGTGGA GGGGGTGCTG
48451 CAACGGCCAG GGTTCCTGAGA AGTTGGGAC ATTAGGAGAG AGCTGTGAGG
48501 GCTTTGCCA GCCACTGTGC TAGTGATTGG TGAACCAAAG GATGGGCAGG
48551 AGATGGCAGC AGGGAAAGCAG AGGAAGTCCA GGCTTCCTGT TGGTATTGGG
48601 ACAAGGGAGA GGCCATAGGA GGCCCTGGCC CTGTTGTCCA GTTGGGGTTC
48651 TGAAGCTGGG TGGCATGGC CTGGTAGGAG AGCATCTATG GCGCCCCAATT
48701 CCAGATTCAAG GGTCTAGTTG ATTTGCTGGC CCTGCTAGCCT CAGCTCATGC
48751 TTCTGTTCCA GGCTTATTTG CACTCTATGT GCATCATCCA CCGGGATCTG
48801 AACTCGACA ACTGCCTCAT CAAGTTGGTA TGTCCCCTAG CTCCTGGGCCT
48851 GGCCTCCAGG GTCCCTATCCT TCCTGGCTTC CTTGTACAA AGGAGGCTGA
48901 CTTGTCCCCCT CTGGCTAGAG GGCAGAGGTG TTGCTCTAGGA GCTCCTATCT
48951 TTCCCTTCCCT GCTTCTTCCA ATGCCCTTCT CTGTCCTCTG GGAGCTCCGA
49001 GACACACACA GACATAATTTC CACCTTCTCT CATTAGCAAC CTTTGAATA
49051 ATTTGATTAG AAGGGACTTC AGAAGTTTG TGACTATATG TAGAAAACCC
49101 TGTCAATTAA CCTGCTTTTG CCCCCATAGTA GTCTTGAAA ACAGTTCA
49151 GCTGACCCCA TTTTACAGTG GTGGCACCTG AAGCCTCAGC CTGAGGCCAC
49201 CGAGCTAGTA AATTTCAGG GACCAGTTTG AGACCAGCAT TCCTCCACT
49251 GCCCCCTCAGC TGTGGTGGTT ACAATGTTGT TTGCTCTACT GACTTGCTAT
49301 CTGGCTTCCCT GGGTGTCTAC CGGCTGGCCC TGGCTCTGCC CTCTAGACCC
49351 ACACCACGCA ATCTTCATTTC CTTTCCCACA TGACTGCCCT GTAGCTATTIC
49401 AAAGAGCTTG TCTCCCCAA GTCTCCCAT CTACTGCCTC CACCTTGCC
49451 TTTTCTGTCT TATCCTGGTT CTAGCCACTG CCTGAAATCA TTTTAGGAAT
49501 AAGACAGGAC AGGGAAAAAC AAAAGCAACC CCCTGTCCCA CCTCTGAGTT
49551 CCACTCTCCA AGTCCCTGAG CCTCACCTCC AGGGCTCCAG TGGCTCTGCC
49601 ATGAACCCAC TGTGGGCTGG GAGTCTGCTG TGCACAGATA CCAGACCC
49651 AGAAACACAA ATGCCAAGTG TGTCTGTTTT TTTGTTTGT TTTGTTTGT
49701 TTTTCTGTCT TATCCTGGTT CTGTTTCCCA GGCTGGAGTG CAGTGGTGCA
49751 ATCTTGGCTT ACTGCAGCCT CTACCTCCCG GGTTCTAGTG ATTGTTCTGC
49801 TTCAGCCTCC CAGTAGCTAG GACTACAGGC GTGTGCCACC ACGCCAGCT
49851 AATTTTTTTT TTTTTTTT TGTATTTTA GTAGAGACAG GGTTTGCCCA
49901 TGGCCTCCCA AAGTTCTGGG ATTACAGGTG GAAGCCACCG TGCCCTGGCCT
49951 TGGCCTCCCA AAGTTCTGGG ATTACAGGTG GAAGCCACCG TGCCCTGGCCT

FIG.3-20

50001 GAGTGTGTCT ATTTGATAGA GCTTTCTGCT CTGATTCTCC CTTGCTATAAC
50051 ACCTTTCTC CCCTTCTAG TGGCTTCTCT TGCCATGCT TCCTCCCCAG
50101 GGCCAGGTTT GAGAACATCC CCATGAAGTC CTGACCTGTC TTTTATCCTA
50151 CCAGGACAAG ACTGTGGTGG TGGCAGACTT TGGGCTGTCA CGGCTCATAG
50201 TGGAAGAGAG GAAAAGGGCC CCCATGGAGA AGGCCACCAC CAAGAAACGC
50251 ACCTTGCGCA AGAACGACCG CAAGAAGCGC TACACGGTGG TGGGAAACCC
50301 CTACTGGATG GCCCTGAGA TGCTGAACGG TGAGTCCTGA AGCCCTGGAG
50351 GGGACACCCG CAGAGGGAGG ACAGATGCTG CCCTTGCATC AGAGCCCTGG
50401 GAATTCCAGG GGAGGCCGTG GAAGCGTAGG ACCGGATACC CAGAGCTGAG
50451 GATATTTTC CCTTGCCAGG TGGGGCCTCA CGATTAGCT CCTGAGCTCA
50501 GGGGGCTGGG AACTGATCG TGCCCACATCA TGGGGATAA GGTGAGTTCT
50551 GACTGTGGCA TTTGTGCCTC AGGGATCGT AAGAGCTCAG GCTATTGTCC
50601 CAGCTTTAGC CTTCTCTCTC CATGGTGAGA ACTGAAGTGT GGTGCCCTCT
50651 GGTGGATAAT GCTCAAACCA ACCAGAGATG CTGGTTGGGA TTCTTGAAT
50701 CAGGGTTGT AGGCCTCAGA AATGGTCTGA ATACAATCCA TTTTGGAGTC
50751 TGAGGCCAG AGAAGTTCAAG TGAATTGCCT AGGAGCATAAC AGCTGCCTAA
50801 TGGCAGAGGC TAGATGAACC CTAGTCTGGT TCTTTCCAC TTAACGTGC
50851 AGTTTCATCC TAGGCAGTGT TATGTTATAA GGGCTCTCCA AGGCAGTTCA
50901 CCTACGGCTG AGGAAGGACT ATTTTCAGGT GGTGTCCTGC CAGGACAGCC
50951 TGTGGGGTGT CCCTACAGAA CCTGTTCTAG CCCTAGTTCT TAGCTGTGGC
51001 TTAGATTGAC CCTAGACCCA GTGCAGAGCA GTAAAGGGAT GTAAACTTAA
51051 CAGTGTGCTC TCCTGTGTT CCCAAGGAAA GAGCTATGAT GAGACGGTGG
51101 ATATCTTCTC CTTGGGATC GTTCTCTGT AGGTGAGCTC TGGCACCAAG
51151 GCCATGCCCG AGGCAGCAGG CCTAGCAGCT CTGCCCTCCC TCGGAACCTGG
51201 GGCATCTCCT CCTAGGGATG ACTAGCTGA CTAAAATCAA CATGGGTGTA
51251 GGGTTTTATG GTTTATAACG CATCTGCACA TCTTGCACAC GTTCGTGTTT
51301 CATTGGTCTT AAGAGAAGGA CTGGCAGGGT TTTTTGGTT TAGATGGAGC
51351 CTCACCTCGT TGCCCAGGCT GGAGTGCAGT GGCACAATCT GGGCTCACTG
51401 CAACCTCTGC CTTCTGGGTT CAAGTGAATTC TCCTGCCTCA GCCTCCCAAG
51451 TAGCTGGGAC TACCGGCACA CACCACCATG CCCGGCTAAT TTTTGTATTT
51501 TTAGTAGAGA CAGGGTTTCA CCATGTTGGC CAGGCTGGTC TTGAACCTCG
51551 GACCTCAGGT GATCCGCCTG CCTCAGCCTC TAAAAGTGT GGAATTAAATA
51601 GGCCTGAGCT ACCTCGCCCG GCCAGGTTTT TTTTTTTTT TTTTTAGTTG
51651 AGGAAACTGA GGCTTGAAG AGGGCAGTGG CTTGCACATG GTCGATAAGG
51701 GGCAGATGAG ACTCAGAATT CCAGAAGGAA GGGCAAGAGA CTGTTCATGT
51751 GGCTGTCTAG CTAGCTCTG GGCCAAATGT AGCCCTCTC AGTTCCCTTC
51801 AAGTAGAAAGT AGCCACTCTA GGAAGTGTCA GCCCTGTGCC AGGTACCAACG
51851 TGGACAGAGT GAGGAATCTT GGAAAGATTG CTACCTTCTAG GAGTTTAGTC
51901 AGGTGACAGC ATATCTCAGC GACTCAAACA CACACACATT CAAAGCCTTC
51951 TGTAAATTCT ACAAAAGTTGT GAGGGGTAGA GGAGAGGAGA GACAAGGGAT
52001 GGTTAGGATA ATGAAGGAAT GTTTTGTGTT TGTTTTGTT TTGAGATGG
52051 AGTTTCACTC TGTCACCCAG GCTGGAGTGC AGAGGTGCAA TCTTGGCTCA
52101 CTGCAGCCTC CGCCTCCCG AGTCAAGCAA TCCTCCTGCC TCAGCCTCCC
52151 AAGTAGCTGG GACTACAGGT GTGCGCCACC ACGCCCTGGCT AATTTTTGTA
52201 TTTTCAGTAG AGACAGGGTT TCGCCATATT GGCCAGGCTG GTCTCAAATG
52251 CCTGACCTCA GGTGATAACAC CCGCTTCAGC CTCCCAAAGT GCTGAGATTA
52301 CAGGCATGAG CTACCGTGCC TGGCCATGAA GGAAGATTTG TTTTAAAAAA
52351 TTGTTTTCTT TAATATTAAAT TGAACACCTC TGTCAGAGC ACTGGGCTGG
52401 TGCCAGAGGG TTTCAGACAT GAATCAGATC CAGCACCTCA TAGAGCCTTA
52451 ATCTGGCACA CACACACAGC CACAAGGAGA CACAGACAAG GCAGGGTAGG

52501 ATGAGTGGAA GCTAGGAGCA GATGCTGATT TGGAACACTT GGCTTCTGCA
52551 GTGAAGCCCC TTCTTAGTCC TCTTCAGTAA CCCAGCTCTC AGTGGATACA
52601 GGTCTGGATT AGTAAGATTG GGAGAGATGA TTGGGGATTG GGGAGAGCTC
52651 TCTAACCTAT TTTACCACCT CCTCTTCTGC CATTCTTCCT GTCCACATCC
52701 CCAGCATCCC TTTCCCTTGC CAAGTATCTG TGGCCTCTGT AGTCCTTGT
52751 AAACAGCTGT CTTCTTACCC TACAGATCAT TGGGCAGGTG TATGCAGATC
52801 CTGACTGCCT TCCCCGAACA CTGGACTTTG GCCTCAACGT GAAGCTTTTC
52851 TGGGAGAAAGT TTGTTCCCAC AGATTGTCCTT CGGGCCTTCT TCCCGCTGGC
52901 CGCCATCTGC TGCAAGACTGG AGCCTGAGAG CAGGTTGGTA TCCTGCCTT
52951 TTCTCCCAGC TCACAGGGTC CTGGGACGTT TGCCCTGTGTC TAAGGCCACC
53001 CCTGAGCCCT CTGCAAGCAC AGGGGTGAGA GAAGCCTTGA GGTCAAGAAT
53051 GTGGCTGTCA ACCCTGAGC CATCTGACAA CACATATGTA CAGGTTGGAG
53101 AAGAGAGGAG TAAAGACATA GCAGCAAGTA ATCTGGATAG GACACAGAAA
53151 CACAGCCATT AAAAGAAAAGT TTAAAAGAAG GAAATTCAACC CAAACCATTT
53201 GAATACAGTA AGTGTATTCA TCTTTCGATA TTCCCTGTGTC CATACTACA
53251 CATATACTTT TTTTTATAGT AAATAGTTCT GTATTTGCC CTGCATTTCC
53301 CTTGTGTTTA CTATCCAGTC TTCTGTGTTA TCATTTTGTCGACAACATG
53351 AAATTCTATT GAGAGACTGT CTGAACATAT TGTATGTAG ATGTTCAAGGT
53401 TTTTCCAGTT TCTCTTACA ATAGGTATTT AACTACAGTG AGCAGTTTA
53451 TGCAATTAGC TAATTTCTCC TTTGAGGAAG TATTTCAAA ATTACCTTTA
53501 TTCTTCTCAG GTAATAATT CATTATTACCAAAAGTACCC TAGGTCTTTT
53551 CAAGTGTGTG GTAAAAAAAC GAGAATCTGG CTGGCGCGA TGGCTCACAC
53601 CTGTAATCCC AGCACTTTGG GAGGCTGAGG CTGGTGGATC ACCTGAGGTC
53651 TGGAGTTCGA GACCAGCCTG GCCAACATGG TGAAACCCCCA TCTCTACTAA
53701 AAATACAAAA CTTAGCCAGG CATGGTGGCA GGTGCTGTA ACCCCAGCTA
53751 CTTGGGAGGC TGAGGGCAGGA GAATTGCTTG AACCCAGGGG CGGAGGTTGC
53801 AGTGAGCCGA TATCACGCCA TTGCACTCCA GCCTCGGCAA CAAGAGTGA
53851 ACTCTGTCTC AAAATGGGG TTCTTTCTC GCCATCAAAA ATCATGTTTC
53901 TTTTAAAAAC AAGTTCAAAAC ATTACCAAAG TTTATAGCAC AGGAAATACG
53951 TCTTCTGTAA TCTCCCTTAA CCAATATATC CCTCAACATT CTCCCTCACCC
54001 CCAACTCCAC CCTCCCAGGA TAACCAAGTT GGACATAATC TTTATTTAAA
54051 AATGGTTTCC GGATAGAGAA AGCGCTTCGG CGGCGGCAGC CCCGGCGGCG
54101 GCCGCAGGGGG ACAAAAGGGCG GGCAGGATCGG CGGGGAGGGG CGGGGGCGCG
54151 ACCAGGCCAG GCCCCGGGGC TCCGCATGCT GCAGCTGCCT CTGGGGCGCC
54201 CCCGCCGCCG CCCTCGCCGC GGAGCCGGCG AGCTAACCTG AGCCAGCCGG
54251 CGGGCGTCAC GGAGGCGCG GCACAAGGGAG GGGCCCCACG CGCGCACGTG
54301 GCCCCGGAGG CGGCCGTGGC GGACAGCGGC ACCGCGGGGG CGCGGGCGTT
54351 GGCGGCCCCG GCCCCGGGCC CCAGGCCAGG CAGTGGCGGC CAAGGACCAC
54401 GCATCTACTT TCAGAGCCCC CCCCAGGGGC GCAGGAGAGG GCCCGGGCTG
54451 GGCGGATGAT GAGGGCCCAG TGAGGCAGCA AGGGAAGGTC ACCATCAAGT
54501 ATGACCCAA GGAGCTACGG AAGCACCTCA ACCTAGAGGA GTGGATCCTG
54551 GAGCAGCTCA CGCGCCTCTA CGACTGCCAG GAAGAGGAGA TCTCAGAACT
54601 AGAGATTGAC GTGGATGAGC TCCTGGACAT GGAGAGTGAC GATGCCTGGG
54651 CTTCCAGGGT CAAGGAGCTG CTGGTTGACT GTTACAAACC CACAGAGGCC
54701 TTCATCTCTG GCCTGCTGGA CAAGATCCGG GCCATGCAGA AGCTGAGCAC
54751 ACCCCAGAAG AAGTGAGGGT CCCCCGACCCA GGCAGAACGGT GGCTCCCATA
54801 GGACAATCGC TACCCCCCGA CCTCGTAGCA ACAGCAATAC CGGGGGACCC
54851 TGCAGGCCAGG CCTGGTTCCA TGAGCAGGGC TCCTCGTGCC CCTGGCCAG
54901 GGGTCTCTTC CCCTGCCCCC TCAGTTTCC ACTTTGGAT TTTTTTATTG
54951 TTATTAAACT GATGGGACTT TGTGTTTTA TATTGACTCT GCGGCACGGG

FIG. 3-22

55001 CCCTTTAATA AAGCGAGGTA GGGTACGCCCT TTGGTGCAGC TCAAAAAAAA
55051 AAAAAAAAAT GATTCCAGC GGTCCACATT AGAGTTGAAA TTTTCTGGTG
55101 GGAGAACCTA TACCTTGTC CTTTATAGGC CAAGGACCGC AGTCCTTCAG
55151 TAACACCAGT GTAAAAGCTT GAGGAGAAAT TGTGAAGCTA CACAGTATT
55201 GTTTCTAAT ACCTCTTGTG ATTCTAAATA TCTTTAATT ATTAAAAAAAT
55251 ATATATATAC AGTATTGAAT GCCTACTGTG TGCTAGGTAC AGTTCTAAC
55301 ACTTGGGTTA CAGCAGCGAA CAAAATAAAG GTGCTTACCC TCATAGAAC
55351 TAGATTCTAG CATGGTATCT ACTGTATCAT ACAGTAGATA CAATAAGTAA
55401 ACTATATTGA ATATTAGAAT GTGGCAGATG CTATGGAAAA AGAGTCAAGA
55451 CAAGTAAAGA CGATTGTTCA GGGTACCAAGT TGCAATTAA AATATGGTCG
55501 TCAGAGCAGG CCTCACTGAG GTGACATGAC ATTAAAGCAT AAACATGGAG
55551 GAGGAGGAGT AAGCCTGAGC TGTCTTAGGC TTCCGGGCA GCCAAGCCAT
55601 TTCCGTGGCA CTAGGAGCCT GGTGTTCCG ATTCCACCTT TGATAACTGC
55651 ATTTTCTCTA AGATATGGGA GGGAAAGTTT TCTCCTATTG TTTTTAAGTA
55701 TTAACCTCCAG CTAGTCCAGC CTTGTTATAG TGTTACCTAA TCTTTATAGC
55751 AAATATATGA GGTACCGGTA ACATTATGCC CATTCTCAC AGAGGCACTA
55801 CTAGGTGAAG GAGTTGCTT GACGTTATAC AACCAAGGAAG TAGCTGAGCC
55851 TAGATCCCTT CCACCCACCC CATGGCCCTG CTCATGTTCC ACCTGCCTCT
55901 AATTACCTC TTTCCCTTCT AGACCAGCAT TCTCGAAATT GGAGGACTCC
55951 TTTGAGGCC C TCCCTGTGTA CCTGGGGGAG CTGGCATCC CGCTGCCTGC
56001 AGAGCTGGAG GAGTTGGACC ACACTGTGAG CATGCACTGAC GGCCTGACCC
56051 GGGACTCACC TCCCCTAGCCC TGGCCCAGCC CCCTGCAGGG GGGTGTCTA
56101 CAGCCAGCAT TGCCCCCTTG TGCCCCATTC CTGCTGTGAG CAGGGCCGTC
56151 CGGGCTTCCT GTGGATTGGC GGAATGTTA GAAGCAGAAC AAGCCATTCC
56201 TATTACCTCC CCAGGAGGCA AGTGGGCGCA GCACCAAGGA AATGTATCTC
56251 CACAGTTCT GGGCCTAGT TACTGTCTGT AAATCCAATA CTTGCCTGAA
56301 AGCTGTGAAG AAGAAAAAAA CCCCTGGCT TTGGGCCAGG AGGAATCTGT
56351 TACTCGAAC CACCCAGGA CTCCCTGGCA GTGGATTGTG GGAGGCTCTT
56401 GCTTACACTA ATCAGCGTGA CCTGGACCTG CTGGGCAGGA TCCCAGGGTG
56451 AACCTGCCTG TGAACTCTGA AGTCACTAGT CCAGCTGGGT GCAGGAGGAC
56501 TTCAAGTGTG TGGACGAAAG AAAGACTGAT GGCTCAAAGG GTGTGAAAAA
56551 GTCAGTGATG CTCCCCCTT CTACTCCAGA TCCTGTCTT CCTGGAGCAA
56601 GGTTGAGGGA GTAGGTTTG AAGAGTCCCT TAATATGTGG TGGAACAGGC
56651 CAGGAGTTAG AGAAAGGGCT GGCTTCTGTT TACCTGCTCA CTGGCTCTAG
56701 CCAGCCCCAGG GACCACATCA ATGTGAGAGG AAGCCCTCAC CTCATGTTT
56751 CAAACTTAAT ACTGGAGACT GGCTGAGAAC TTACGGACAA CATCCTTTCT
56801 GTCTGAAACA AACAGTCACA AGCACAGGAA GAGGCTGGGG GACTAGAAAG
56851 AGGCCCTGCC CTCTAGAAAG CTAGATCTT GGCTTCTGTT ACTCATACTC
56901 GGGTGGGCTC CTTAGTCAGA TGCCCTAAAAC ATTTTGCCTA AAGCTCGATG
56951 GGTTCTGGAG GACAGTGTGG CTTGTCACAG GCCTAGAGTC TGAGGGAGGG
57001 GAGTGGGAGT CTCAGCAATC TCTTGGTCTT GGCTTCATGG CAACCACTGC
57051 TCACCCCTCA ACATGCCTGG TTTAGGCAGC AGCTTGGCT GGGAAAGAGGT
57101 GGTGGCAGAG TCTCAAAGCT GAGATGCTGA GAGAGATAGC TCCCTGAGCT
57151 GGGCCATCTG ACTTCTACCT CCCATGTTTG CTCTCCCAAC TCATTAGCTC
57201 CTGGGCAGCA TCCTCTGAG CCACATGTG AGGTACTGG A AACCTCCAT
57251 CTTGGCTCCC AGAGCTCTAG GAACTCTCA TCACAACTAG ATTTGCCTCT
57301 TCTAAGTGTG TATGAGCTTG CACCATATT AATAAATTGG GAATGGGTTT
57351 GGGGTATTAA TGCAATGTGT GGTGGTTGTA TTGGAGCAGG GGGAAATTGAT
57401 AAAGGAGAGT GGTTGCTGTT AATATTATCT TATCTATTGG GTGGTATGTG
57451 AAATATTGTA CATAGACCTG ATGAGTTGTG GGACCAAGATG TCATCTCTGG

FIG.3-23

57501 TCAGAGTTA CTTGCTATAT AGACTGTACT TATGTGTGAA GTTGCAAGC
57551 TTGCTTTAGG GCTGAGCCCT GGACTCCCAG CAGCAGCACA GTTCAGCATT
57601 GTGTGGCTGG TTGTTTCTG GCTGTCCCCA GCAAGTGTAG GAGTGGTGG
57651 CCTGAACCTGG GCCATTGATC AGACTAAATA AATTAAGCAG TTAACATAAC
57701 TGGCAATATG GAGAGTAAA ACATGATTGG CTCAGGGACA TAAATGTAGA
57751 GGGTCTGCTA GCCACCTTCT GGCCTAGCCC ACACAAACTC CCCATAGCAG
57801 AGAGTTTCA TGCACCCAAG TCTAAAACCC TCAAGCAGAC ACCCATCTGC
57851 TCTAGAGAAT ATGTACATCC CACCTGAGGC AGCCCCCTTC TTGCAGCAGG
57901 TGTGACTGAC TATGACCTT TCCTGGCCTG GCTCTCACAT GCCAGCTGAG
57951 TCATTCCCTA GGAGCCCTAC CCTTTCATCC TCTCTATATG AATACTTCCA
58001 TAGCCTGGGT ATCCTGGCTT GCTTTCTCA GTGCTGGGTG CCACCTTGC
58051 AATGGGAAGA AATGAATGCA AGTCACCCCCA CCCCTTGTGT TTCCCTTACAA
58101 GTGCTTGAGA GGAGAAGACC AGTTTCTTCT TGCTTCTGCA TGTGGGGAT
58151 GTCGTAGAAG AGTGACCATT GGGAGGACA ATGCTATCTG GTTAGTGGGG
58201 CCTTGGGCAC AATATAAAC TGTAACCCCCA AAGGTGTGTT CTCCCAGGCA
58251 CTCTCAAAGC TTGAAGAATC CAACTTAAGG ACAGAATATG GTTCCCAGAAA
58301 AAAACTGATG ATCTGGAGTA CGCATTGCTG GCAGAACAC AGAGCAATGG
58351 CTGGGCATGG GCAGAGGTCA TCTGGGTGTT CCTGAGGCTG ATAACCTGTG
58401 GCTGAAATCC CTTGCTAAAA GTCCAGGAGA CACTCCTGTT GGTATCTTT
58451 CTTCTGGAGT CATAGTAGTC ACCTTGAGG GAACTTCCTC AGCCAGGGC
58501 TGCTGCAGGC AGCCCCAGTGA CCCTTCTC TCTGCAGTT TTCCCCCTTT
58551 GGCTGCTGCA GCACACCCCC CGTCACCCAC CACCCAAACCC CTGCCGCACT
58601 CCAGCCTTTA ACAAGGGCTG TCTAGATATT CATTAAACT ACCTCCACCT
58651 TGGAAACAAT TGCTGAAGGG GAGAGGATTG GCAATGACCA ACCACCTTGT
58701 TGGGACGCT GCACACCTGT CTTTCTGCT TCAACCTGAA AGATTCCTGA
58751 TGATGATAAT CTGGACACAG AAGCCGGGCA CGGTGGCTCT AGCCTGTAAT
58801 CTCAGCACTT TGGGAGGCCT CAGCAGGTGG ATCACCTGAG ATCAAGAGTT
58851 TGAGAACAGC CTGACCAACA TGGTGAAACC CCGTCTCTAC TAAAAATACA
58901 AAAATTAGCC AGGTGTGGTG GCACATACCT GTAATCCCAG CTACTCTGGA
58951 GGCTGAGGCA GGAGAATCGC TTGAACCCAC AAGGCAGAGG TTGCAGTGAG
59001 GCGAGATCAT GCCATTGAC TCCAGCCTGT GCAACAAGAG CCAAACCTCCA
59051 TCTCAAAAAA AAAAAA (SEQ ID NO:3)

FEATURES:

Start: 3000
Exon: 3000-3044
Intron: 3045-45393
Exon: 45394-45525
Intron: 45526-45761
Exon: 45762-45818
Intron: 45819-50154
Exon: 50155-50329
Intron: 50330-51076
Exon: 51077-51132
Intron: 51133-52775
Exon: 52776-52933
Intron: 52934-55922
Exon: 55923-56064
Stop: 56065

FIG.3-24

CHROMOSOME MAP POSITION:
Chromosome 22

ALLELIC VARIANTS (SNPs):

DNA

Position	Major	Minor	Domain
941	A	T	Beyond ORF(5')
2612	G	A	Beyond ORF(5')
5080	G	A	Intron
6599	-	A C	Intron
6983	C	G	Intron
9885	A	-	Intron
12538	G	T	Intron
17707	T	C	Intron
18219	-	A	Intron
19670	C	TT	Intron
21153	G	T	Intron
24566	C	-	Intron
26604	G	A	Intron
27255	C	G	Intron
27399	T	C	Intron
28088	G	A	Intron
28734	G	A	Intron
29246	-	T	Intron
29490	G	A	Intron
29934	T	C	Intron
34480	A	G	Intron
38812	T	C	Intron
40731	C	G	Intron
41303	T	A	Intron
41305	-	A	Intron
41457	G	C	Intron
43168	A	- T	Intron
43357	T	G	Intron
45664	T	C	Intron
47549	A	C	Intron
47908	C	A	Intron
52267	C	A	Intron
54654	T	C	Intron
54679	C	G	Intron
54693	A	C	Intron
54706	T	C	Intron
54712	T	C	Intron
54799	T	C	Intron
54819	G	A	Intron
55499	C	T	Intron
56825	C	A	Beyond ORF(3')
58871	T	A	Beyond ORF(3')

Context:

FIG.3-25

DNA
Position

941	GAGTAAGTGGGTGGTCAGGTTACAGACTTAATTTGGGTTAAAAAGTAAAAACAAGAAC AAGGTGTGGCTCTAAAATAATGAGATGTGCTGGGGTGGGCATGGCAGCTCATAAACTG ACCCCTGAAAGCTCTTACATGTAAGAGTTCACAAATATTCCAAAACCTGGAAAGATTCT TTGGATGTGTTGTGTCATTAAATCTCTCACTAATTCAATTGTCTTGCCACTGTCGTAA CCCAACCTGGGATTGGTTGAGTGAAGTCTCTCAGACTTCTGCCTGGAGTTGTGAGAG [A, T] GATGGCATACTCTGTGACCCTGTCAACCTAAAACCAAAAGGCCCTTGTACAAGGGAG TCTGAGGATTAGACCCAGGAAGAATGAGTGAAGTGGCATATATATATCCTATTACTGAG GCATGAGAAGAGTGAATGGGTGGTTGAGGTGGTTAAGGCCTTGCAGCTGT TTAACTCTCTGGGAACGAGGGGACAACGTGTACATTGGCTGCTCCAGAATGATG TTGAGCAATCTGAAGTGCCAGGAGCTGTGCTTTGTCTATTGATGGCCCTGTGCCTGTG
2612	TGAGTTGGAACAGTTGATACCAAAACATCCCCCGCCCCCAACCCCAGCCTAGGGT CCGTGGAAAAATTGGCCCTGGTGCCTGGGTTAGGTGAGTGGACTGCTGATCTAGAGGACCAA TTTATTCAATGTTGGTTGAGTAATGAGCTCTGGATTAGGTGATGGAAAAATCTGAAAA AACAGGGCTTTGAGGAATAGGAAAAGGCAGTAACATGTTAACCCAGAGAGAAGTTCT GGCTGTTGGCTGGGAATAGTCATAGGAAGGGCTGACACTGAAAGAAGGAGATTGTGTT [G, A] TTTCTTCTCTCAGAGCTATAAGCAAAGGCTGAAAGTTCTAGAAAAAGGCAAGTTGTT TCAGTAGAAAAAGGATAATCAGAACCTTTAGAAAATGGAATGAGACTACTTTGAG GCCATGAGTTCCCTGTCCTGGAGAGATGAGCAGAGGTTGGACAAGTGTCTTACAGAGAT CTTGTGGAGGCAGAAACTGTGCATCTAGCAGAGCATTGGCTAACCTTTCAAATGAGAT GCTGTTAACTCAGTCTTACATGGTAGGAATCCTGTCCTTGCCTCTGCTACTT
5080	ACAACGTAAAATAGTTGAAATTGTTGGTGGAAAGAAGAGCAGTCACCTCCAGAGGCTGG ATGGGCATGCCTGGCCCCCAAGGTCTGAAGTGGTAGGGCTGTGCCTATATCCTGAGAATG AGATAGACTAGGCAGGCACCTGTGCTGTAGATTCCAGCTCTGCACATAGCTTGTG TAAAACATCCCTGTGCTTACCAAGTAATTGAGTTGACCTTAAACACTTGCCTTCC CTGGGAACCATATAGGGGATTGGCCTGGAGACGTCTGGCTCTGGAAAGAGTTGGAAAGCA [G, A] CCATCATTATTATCCTTCTTCAGCTATAACTCAGAGCTCTCAAGTCAGTCTGTGGA TCTTATTGCCTGGTTCTGCCCCCTTACTCCCAGGGAGTTGATTCTGTCTTCTGT TCCATTAGTATGACAGGAGCAGAGAATGTCAAGAGCTGTAAGGGACCTTATAGTTAAAGC CTTGGCTGGCTTCTTCTTACAGTGGACTAATAAGTAACGTCAAAACCCAAATGAG TTCACAGATTGGTCTGCCTTGCATGTAACCCATATGTTCATATTCTGCTTTCC
6599	CTGTAATCCTAGCACTCTGGGAGGCCGAGGCAGAAGGATCGCTGAGCCATGAGCCAG GAGTTGAGACCAGCCTGGCCAACATGGCAAAACTCCACCTCTACAAAAATACAAAAAT ATTAGCCAGGCGTGTGGCACACACCTGTAGTCCAGCTACTTGGGAAGCTGAGGAGCGA TGATTACCTGAGCCCAGGGATATCAAGGCTGTAGTGAGCTGTGATCATGCCACTGTACTC CATCCAGCTGGGGACAGAGTGAACACCCCTGTCTCAAAACAAACAAATGAAAAAAA [-, A, C] CCTTAATAATCAGTAACGTCACTTATATTATGTTGTGAGTGTGTCTATATACACCT ATATGTATACATTCTTATTACACATTGGTGTGATCTGAGTGTGAGCCCCAGGGAT TAAGGGCAACTTGAACATACCTGACACAATCAAGCCAATATCATTCCGTGGAGGAAG TAGAGTATCTAGGTTCTGTCTCTAGTTGCAGCTTACCTTGAGGACAGAGACTCTAATC CAGCTGTGCTGAAGGAGCACATCTCTGACTTCTGAGCTTCCCTGTAATTCAAAC

FIG. 3-26

6983 CACATTCACTGGTATCTGATGTGGAGCCCCAGGGATTAAAGGGCAACTTGAACTACCCCT
 GACACAATCAAGCCAATATCATTCCCCTGGAGGAAGTAGAGTATCTAGGTTCTGTCTCC
 TAGTTGCAGCTTACCTGGAGCACAGAGACTCTAATCCAGCTGTGCTGAAGGAGCACATC
 TCCTGACTTCTGAGCTTCCCTGGTAAATTCAAACGGATGTCACGGCGCCCTCAGATA
 GAGCCTGGTAATTGCCCTGGGAGAGTGACTGTCTTGGATCTAATTGACTTTGCC
 [C, G]
 CAGTTGGAGGAAAATCTCAGGGCTAGGAAGGGATTGTATTTGTCGACCCCCAGAGATAAC
 CTGGGTTTGAGGAACATGGGGCATCAACCTGAATGGCTTGTAAAGATCTCTCCCACGCC
 AGCTTGCACTGGTCTCTGATGAATTAGAGTACCTGAGTAGTGCAAGGCCCTGCTGGAG
 GAGGAGCTCCCTGTGCTACTCAGAGAAATTCACTTCAAGGCCCTCCAGCCTT
 GCTCTTACCCAGCTGGCTACAGTTACAATAAGGAAATGACTTTCTCCCCCTTCCC

9885 GGC GTGCCACCACACCTGCCATT TTTTTTTTTTTAAGTAGAAACAAGGTCTTATTAAAT
 ACTATGTTGCCAGGGCTGGCTTGAACCTCAGCGATCCTCTGCCAGCCTCCCAAAGT
 GCTTGGGATTACGGAAGTAAGCCACTGTGCCCTGGCCAGTGCAACCCCCATTTTATACTAA
 AACAGGAAGGCCAGAAAGGTTGGAGTAACTTGTCAGGGTCACACAGATGATATTGA
 ACTCAGGTCTCCCTGGCTCCCAAGAGAGTCTGCTTCCACTAGGACTCCAGGAGAAAAA
 [A, -]
 AAAAAAAAAAACAGTAGACTTGGAGACAGAAAATCTGATTGAGCTTAGTTGAGCTAGG
 CTAACTGTGTAACTGTGGGCAAGTTCCTTAGCCCTGTGAGCCTCAGTTCTTATCTGA
 AAATGTCAAAAAGAAATCCATCTCATGGAGTAGTTGTGATGATCAAGGACTCTGAAAAC
 ATTAGAATGGTTAACATGTGAAGGGATTAGCAGCAGCACATGGCAACATTGTGCATCTTATA
 TTAACTATCCAATATATCAAGCGTATTGCTATATAAAAGTCATCAAATTAGGCAC

12538 ACTTGGGAGGCTGAGGCAGGAGAATCACTGAACCTGGGAGGCAGAGGTTGCAGTGAGCC
 CAGATCACGCCACTGCACTCCAGCCTGGTACAGAGTAAGACTCCATCTCAAAAAAAA
 AAAAAAAAAAAAATTCTTAATTGGCCTACAGTAGAGCCTCCGTAAATGTGGCCTCT
 CCACATCTCCACAACCTCCTGCTCCCTGCACTTCAGCCTCACCTCTTCTGGACAGGCC
 CTCTTCTGACAAGGGCTTGTCAATTCTGCTCCCTGCTAGAATGCCCTACTCT
 [G, T]
 TTCACTTAACTCCTGTTATCGTTAGATCTTACCTGGATGGCTCAGAGAAATATAGAA
 GTAATTCTCACCTGAAAAATAGGTTAGGTCCTGTTTATGTTTCTAGACCTTCC
 TTGAGGCTTTTAAAAAAGTAGTTAACATCTCACATTATTATCATGTGATCATCTCT
 TAATGATATCTTAAGACCTTAATAGAACAAATTGGTCATGGACTGTGGGTTTGGCC
 CTCATTGTGTCAGCACTGAGCATATTGTTGGCATAGGAGGGATATTGTTGAATGAATTG

17707 GTAGTGGGTGCTCAGAGTGTGTTGGTGAATGATGTATTGTTGAACGACTTTGGA
 CACTGAAATAAAAGTCATCCAGTATGCCACATTACCATCTTCGCTCTACAATATTCTT
 TTAGGCAAGAGCTTATTTGAGGTGATAAGATAAGCTCAAACCTATGTAGACTAAGAC
 CTCAGTCTGAAATGTCACTCCCTAAAGCTTAAACCATCAAACCCAGGGCCTCAAGGAATG
 GCATGCCCTCTGCAACTGTAGCAACCTGCTGTCTTATTGCGTGTGTTCTGATGCCCTATA
 [T, C]
 CCCAAAAGCTAGAGTCCCTCTCCATGGCAGTGCTGGAAAGTGTGCTAACAAATTCTT
 CTCCATACTGCTTACGATTACAAAAAAACCTCAGCATCTCATGCCAGACTTGAGTTAA
 GGTTGTTCTTTGTGTCAGCTGTATTCTGGTCATGACTTCCTGATGATGCCCTATA
 GAGATTTGCTGAGATCAGAGGGTGTCCACTGCCATCAGTAGCACTGACTTTGAGAA
 GCACCGTTCTGAAGTGGCTAATGTCATCCCTCACGTTGTTGAAATTGTTT

FIG. 3-27

18219 TGCCATCAGTAGCACTGACTCTTGAGAACGCACCGTTCTGAAGTGGCTAATGTCATCC
 CTCACGTTGTTGAAATTGTTAGTCCAGAGATAGCCTTCAATGGAATGAC
 GCTATCTCTAGAATCACTTTTTTTTTGAGTTGGAGTCTCGCTGTGTCGCCAGG
 CTGGAGTGCAGTGGCACAACTCTCAGCTACTGCAATCTCACCCACCTCCGGGTTCAAGTGAT
 TCCCCTGCCTCAGCCTCCCAGGAGCTTACTACAGGCGCACACCCCCACTCCTGGCTA
 [-, A]
 TTTTATGTGTTTAGAGAGACGGGGTTTACCGTGTGGCCAGGATGGTCTCGATCTCC
 TGACTTTGTGATCTGCCTGCTCAGCCTCCCAAAGTGCTGGGATTACAGGTGTGAGTCAC
 CGCGCCTGCCAGAAATCACCTTTTATACCATAACGTGAGCACCCTGCCGCGTCACCA
 AGGAAAGAGAGAGGGCAGCTACTGTGGGTTACAAATGGTAAGAGTGGCACCAGGAAGGT
 GAAAGTCTACTTAGCCAAGGCTAACAAATGTCAATCACCAAACATTATTAA

19670 GACCCCCATGATGAGCAACTATAGCACTAGAACAGTGATAATAACTAATGTTATAATGC
 ATCTTCAGTTACAGAGGGTTTGTACTCATCATCTAGTTAGTCTGCACAAACCTC
 TTGAGGAATATAGCACAAGCAGGACAAGGGAAAGCCCAGAGATGTTAAATAATTATCAA
 GTTTATGCTGCTGGGAAGGGCAGCACTGAAATTAAAAGAAAAGTTTCTGAGCTCAAATC
 CCATGCCCTTCCTCAATGTGAGCTAGCAAGGTATTAGGAATCTGCCTACAGTT
 [C, T]
 AGAGCCTCAAATTGCTGGGTATGTTGAGTTCTGTATCTGATTTCTAGATTTCTGCC
 CACATTCTACTGTCTGGATATCAGGAAAGAGTTATCAAATGCCGTGGAAATCCAAGA
 TAAGGTCTCATGATGAGTAACCCAGTGAAACATGAAGTCAAGTCTAACTAGTCACACT
 ATTCACTACTGCTGACTCCTGATGATCAGCTCCTTCTAAGTGCTTACTGTCCACTTA
 TTCCATCATCTGCCAGAATTATGTGAAGGAATCAAAGCAAAAGGATCATAAGGCTCC

21153 GGACCCCTGTTAGAAGGATGACTGCTGCTATAATGTAGAAAGTGATTTGGAAAGGGGG
 AGGAGTGGGGCACGAAAGATGGTAGTAGATGGGGTGGTAATGCTTACCTTCAGTATT
 TGGAGGCTCGGAGTCCTCAAAAATTCTTCTTGATTGGAGTCCTCCAGCCAATAGA
 GGGCTCACACAAACAGTTCTGGTTGAATTGTTGACCAGAGCTTCTCCGACA
 AAAGGTTGGGTGATTCACTTACACACCTGCCCTGAACATTCACTGGGCTGCC
 [G, T]
 GTTATGAAGGCTATTGTTCTCCAGCCTGTCACAGACGTTGAAGACCTGTGCCCTAGCT
 GGTTCTAAGGAGTCAGTTGTTAGCTCCGTGCCAGGTTCCAACCTATGAAATGTGCTG
 GAGATTAACACCTCTCTGCCATTATCCCTACTATAATTGCCAGTCAGGATTCTG
 CAGTTGCCCTCGCAGCCATAACTGATGAATGTTCTGCCAGCTGCTTGAGGACCTAGAA
 GAGCAGTTTCTATCCAGGACCAGTTCCAAGGGTGGAGGGTGAATATATCCTCCAGT

24566 CTACTCTGGAGGCTGAGGTGAGAGGATCACTTGAGTCCAGAAGGTGAGGTCAAGATTGT
 AGTGGCCATGATGGCATCCGCACCCACTCCAGCCTGAGTGACAGAGAGAGACCCCTGACTCA
 AAAAAAAAAAAAAACAAAAAAACACCCCTCACCACCTATCAGCTATTGTCTTGAGAA
 TAGTGACATAACCCCTCAGAACCTATTCTCTAAATCTGTTAAATGAGGCTGATGACGTTTC
 CTCCCTTACTGGCAATTAAACATGATGGATAATAATGCTAACACACAGGGC
 [C, -]
 TAGAAGATATTAACTGCTCAATAATGGTAGTCTTAAACAGTATTCAAACCCATGTGCT
 CTTATCACATGCATTGTTGCCCTGTGTCAGTTGGTGGAAATGGAAAAGGCTCCCTTGT
 AACCCCATCTACCATCTTATCAGACTTCTGCCATGGTCACAGTAAGAGATAGAAGC
 TGACGGTGAATTCTGGCTCTTACAATGGTAGCGGGTGTGTCCTGGTAAGGGAGAGCT
 GATGTCACTGCCCAAATCCAGTAGTGAGATCTGAGTGTCTGGTTCTGCCAGCAGCCT

FIG. 3-28

26604 GATTTGCAGCTGAGCTGTCTATCTGGTGTGGGAAGAAGATGGGGAGTTACTTGTCAAGTC
CCGGCTTACCTCACCTCAGAGACCTGTTGGTGAAGTTGGTCTCCAGTTCCCCTCTCC
ATCTCTCCTGGCCCCCTGGTCTGAGAGGGAGGGTGGTCTCCCTAAATCTCCTCTCACTTA
GTCCCTTACCATCGGTTCTGCCGGGCAGAAGCCAGCGGAGGTTAACCCAAGGAGAATCG
GCCTTGTGAGGTACCCCCATTATGTCTGGAAAGTGGTGAGGGGAGGGATAACCCAGAAG
[G, A]
AACTCTTAGGGAGCTCCAGCTCCCTCTATCCCAGACAAACCTGAAGGAGCCTCCAAA
AGATGCCACTGACCTGCCATTGTAGATGTTACTGCTCCGGGGGAATAGCCCCAAATAG
AGTGCTTTCCAGCTCTCACATGTCTTACCTGCCGGGCATGCTGCTGCCAGGAATT
GTCCCAACAAGCAGGATGGCAGGTTTGCCAAACTGTGGAAACTGGCAAGTCTGGTG
TGGTAGCTGGTACACAGTAGGCACCTATAAACGTTTGTCTTAATGGCAGGCACA

27255 TGGGGAAAGACCTGGCGAGTGCTTCTAAGACTGGAGCAATGGCTTAGAGTGTCTG
AGCTGCTGGCCAGCCCCACACCTCCTCAGTCCCTAGGCCAAGTACCTCACGAGCCT
CTCTCTGTGGGGCTTCTCAGAGGGAGATGTGGAAACTCTACCTCTAACCTGGCTTCTT
GCTCATTGCCCACTCCACCTCCATAGAAACTCCCCAGGGGGTTCTGGCCCTCTGGGT
CCCTCTGAATGGAGCCATTCCAGGCTAGGGTGGGTTTGTTCATTCTTGGGAGCAG
[C, G]
CTGTTGTTCCAAAAAGGCTGCCCTCCCCCTACCAGTGGTCTGGTCGACTTTCCCTCT
GGCTCTCTAAGCTAGTCCAGTGCCAGATCTGCTGCCGGATACTAGTCAGGTGGCC
AGGCCCTGGCAGAAAAGCAGTGTACCATGTGGTTTGTTGAATGACCGGACCCCTGGTAG
ATTGCTGGAAAGTGTCTGGACAGGGGGAAAGGGGAAGGGAACTGGTCTCAATGCTGACT
CTACCAAGGCCCTGCTAGACACTTATCCTTAATCTCTAACAGCCTAAAGAGATTAT

27399 AGATGTGGAAACTCTACCTCTAACCTGGCTTCTTGCTCATGGCCCACTCCACCTCCC
ATAGAAACTCCCCAGGGGGTTCTGGCCCTCTGGGTCCTCTGAATGGAGCCATTCCAG
GCTAGGGTGGGTTTGTTCATTCTTGGGAGCAGCCTGTTGTTCCAAAAAGGCTGCC
CCCCCTCACCACTGGTCTGGTCGACTTTCCCTCTGGTCTCTAAGCTAGGTCCAGT
GCCAGATCTGCTGCCGGATACTAGTCAGGTGGCAGGCCCTGGCAGAAAAGCAGTG
[T, C]
ACCATGTGGTTTGTGGAATGACCGGACCTGGTAGATTGCTGGGAAGTGTCTGGACAGG
GGGAAGGGGGAAAGGGAACTGGTCTCAATGCTGACTCTACCAAGGCCCTGCTAGACACT
TTATCCTTAATCTCTAACAGCTAAAGAGATTATATATCCCCATTACAGATGAGGC
AACCAGTTCAACAGAGTTAACATATGGAGCCTACTGGCAGCTTCTGTCTCCTG
ACTTCTCTCATCCTCAGGGGGCTGCAGGTTGTTCTCTCTAGTGGAGAGGAAT

28088 AAGAGCCAATGGAAATTGATCTTGAGTTAGGAGAAAGCTTTACATGTGGATTAAAGAT
GCCAAGTGTGAAGTAGCCACATTCAAGGCTCTTCAATTCTCTTAAATCCTGGGAAGG
CAGCTTAGGAGAAGGGTTCTCCCTTAGGAGCCAGGAACATACCCCTTACCTTGG
GAGGCAGGGAAAGCCAGGGAGGACACAACCTCTCAGGAAGAGGAGAAGCTAGAGCAGATAG
TGAACCTCAACCTGAACCTTAAGGGCCAGACCAACTAATGCCACCCAGTCCACCTGCC
[G, A]
TTGTCTTGTCTGTCCAGGCTTCTGGAGAACCTGATCTCTGCCCTACCCCCAAG
CTCCGTTGCCAGCTAGAGTCTGGGGGGTACTGACTGACTTCTGAGACATTCTCCCT
TCCCCAAATAAGAGGCCACATTCTGAAGTCATTCTGAAGAGATAGCTGCCACACAGGG
CTCTTCCCCCAGGGAGGGACCACCCAGACCCCTCTGCTCTCCAGGTATCGTTACAC
ATCACTACCTGGTCAAGAAAGCTGTTCTGCCATTAGCCCTCCCTTTTATTATAGGAT

FIG. 3-29

28734 AAGTAGAAGCTAGACTTCTGGGCTCCTGAACAGGGCCTTGCTGGATTCTGTGAAACAA
 ATTAAGTTCTTGACCCTAGGCCTCTGGGGAGTACAAAGTCTATGGGAGTTCTGGGCTG
 TGGTTGCAAGGAAAGTGACGCAACCAGATTCCATGGGACATGATCAGGCGTACATGTG
 AGGGAGGAAGAGGGAGCAAGGGAATGAAGAATACAACCTCTGTGTCCTACACCCCCTG
 CTGACAGGCCATACATACTCAGCAGAGAATGCACTGTCTTCTACCACACTAGCGTGAG
 [G, A]
 AGTGAGCTGCAATTACCACTGTGCTTCAAGTAAGAAAATACCTCAAATTGGAATTTACA
 AAAGAGGTAATTAGGGAGTGGCTTTGTGGACATTTAAAGCATTTTCTTTTATA
 GAATTCACTTAATGTCCAATACGTATTAATGAGCTGGGTTACACATTATCTCTG
 AGAAAACAAATGAACCTTGTGTTCAAAGCAATCCATGTTAAAGGGAAAAATTATGC
 ATAACCTGCCAGCTCACAGTAACCTTGGCAGGTGCCTAGGTCTGGACTCTT

29246 AATCCATTTAAAGGGAAAAAATTATGCATAACTCTGCCAGCCTCACAGTAACCTTTG
 GCAGGTGCCCTAGGTCTCTGGGACTCTTCTTATCTGAAAAATGAAGGACTTGGATC
 AGGTGAATGGTCCAGCTCTGCAACTTATGTGGCTCTCAGAGGACACAAGCTCTT
 CCATTATTGCCAATAATGGAGGCCCTGCTTTACTGCACTACAACACACAAATAC
 TTGAAAATACAGTCTCTGGTTTTGGTGGAACTGAATCAGTGCACCTAGCAACACT
 [-, T]
 ATTCTTGCTGTTGCTAGGCTTCATTATGTGTTGGTTAATTAAAACAACAATAAC
 ATATTCCATAATAATTACAGCTTAATTGGCAGACTGTTCAGTCTAGGATCTGCAGGA
 AGGAGGAGTAATAAAGGGATTTTGACTGAGCTCTATGGAACAGAGTCTCTAGGCC
 CTGTCATATCTGCCCTCTGGGCCCTGGGAAAAGTTGGCATCCCCAGTTGTGGTGTCT
 CCAGGTGCCCTCAGGCTGTGGTGGAGGGAGCTCCATTCTCCTTCAGCCCACATCAAT

29490 AACTACAGTCTCTGGTTTTGGTGGAACTGAATCAGTGCACCTAGAACACTTATT
 TCTTGCTGTTGCTAGGCTTCATTATGTGTTGGTTAATTAAAACAACAATAACATA
 TTCCATAATAATTACAGCTTAATTGGCAGACTGTTCAGTCTAGGATCTGCAGGAAGG
 AGGAGTAATAAAGGGATTTTGACTGAGCTCTATGGAACAGAGTCTCTAGGCCCTG
 TCATATCTGCCCTCTGGGCCCTGGGAAAAGTTGGCATCCCCAGTTGTGGTGTCTCCA
 [G, A]
 GTGCCCTCAGGCTGGTGGAGGGAGCTCCATTCTCCTTCAGCCCACCTCAATTAG
 AGGCTAGGGGCTGAAAGAAGCTCTCTACAACACTGGCTGTTCACTGGGAGGTTAAGGGATG
 ACCATCCAGCCAGGCCCTCAGGACATGGGAGGGCTTATGTTAACATGTGTAACATC
 CACTGCAATAATGACTGGTTCTTACCCATAAGGTTGAGAATTACCTGTAACATTT
 TTGTCAGGAGAATTGGATGTAAGTGAGGGCTGGCCTATCTACTTCACTGGCTTC

29934 GGACATGGGAGGGCTTATGTTAACATGTGAAATCCACTGCAATAATGACTGGTTCTT
 TTACCCATAAGGTTGAGAATTACCTGTAACATTTTGCTGAAAGAATTGGATGTA
 GTGAGGGCTGGCCTCTATCTTACCTCACTGGCTTCTCAGCACAGCACCTGGCTGC
 TTGTTCTACACATCCTAGATGCACAGTAACATTCTTAATTATTAGAAATCTATTAGA
 ATCAATTGATTCTAGCTGGCTTGGCTCCTCCTGTAATCCAGCACTTGGGAGGC
 [T, C]
 AAGGCTGGAGGATCACCTGAGTCCAGGAGTTAACGACAGCCTGGCAACATAGGGAGAC
 CCTGTCCTACAAAAAATTTAGCCAGGATGGTGGTGTGCACCTGTAGTCCCAG
 CTACTCAGGAGGCTGAGGCAGGAGGATCTCTTGAGCCTGGGAGGTCAAGACTACAGTGAGC
 AATGATTGTGCCACTGCACTCCAGCCTGGGTGACAGAGTAAGACTCTGTCTTAAAAAA
 AAAAAAAAAAAGTTGATTCTATTGGATAGATAAATAATTCTTCTAGGACCTTCTT

34480 CTGACTTCAAGTGATCCACCCGCCTCGGCCTCCAAAGTGCTGGGATTATAAGCATAAGC
CACTGTGCCAGCTGCTCTATATTTTATACATATTATTCATTAATTTCACAGC
AGTTCATTTATAGATGAGGAAACTAGGCCAGAGAAGTAAAATATCTTGCCCAAGATGAT
GTAACTAGTAAGTGGCAGGATCAAGATTCAAACCAAGCAATGTTCAAACCTTGGAAAGC
AAGAATGTGGCCACTGTGGAAGGTGCAAGGCCCTGACAACAAGAATAGGGAAAAGAAGGA
[A, G]
CTAGAAGGAAAGAGATGGCATGGCCTAGCAGGCCAGGGAGCTTAGCTGTGTGTTG
GGAAGCTCAGAAGGGAGGAAGAGGTGTCAGCAGGTAAGTCTGAGAACACACCAGAC
TTTGAGAGGTGGAGGCTCATAGCCAGGTATTAGGGGAGAAGGGAGCTATAGATTTTT
TTTTTTTTTTTTTTTTTTTTTTTTTTAGAGACGGGCTTACTATGTTGCCAGGCTG
GTCTTGAACCTCTGGCCTAAGTGATCCTCCCACCTCAGCCTCCAAAGTGCTGGGATTA

38812 AAATCCAGCAGATCCATTGAGAGTTAACGAGCAAGGTGTTGACCAAGTTAACATTTT
AGAAGGATCACTGGTATGGAGGTTGGATTGGAGAGGGAAAGCCTAAAGGTATAGAGACT
AGTTAGGAAGCTATTGAGGCTGGGATGGTGTGAGGCTAGGAGTTGAAGACCAACCTGGCCAACATAG
CAAGACCCGTCTGTGTTTCTTAATTAAAAGAAAAGTCCAGACGTAGACATAGTGGCT
[T, C]
ACGCCTGTAATGCCAGCACTTGGGAGGCCAAGGTGGGAGATTGCTTGAGGTCAAGAGT
TTGGGATTAGGCCAGGCCAGTGGCTACGCCGTAAATCCCAGCACTTGGGAGGCCAG
GTGGGCGGATCACAAGGTCAAGGAGATCAAGACCATCCTGGCTAACACAATGAAACCCCGT
CTCTACTAAAAGTACAAAATTAGCCGGGATGGTGGGGACGCCCTGTAGTCCAGCTAC
TCGGGAGGCTGAGGCAGGAGAATGGCGTGAACCTAGGAGGCGGAGCTTGCTGTGAGCAGA

40731 GTTCTGTCCTATGTCTGTCTCGGATGAAGCTGAGCTGGCTTCAGAAGCCTGCAGAGT
TAGGAAAGGAACCAGCTGGCCAGGGACAGACTATGAGGATTGTGCTGACCCAGCTGCC
TGTGGGATCACAGTTACAGCCAGGCCCTGTGGGACCCAGCTGCTGCCAGGTTCT
TAGAAACCTGAGAGTCAGTCTGTCCACTGAACCTCTAACGCTGGACAGGAGGCACTGAT
GCTAAACCCCTGAAGGGCAACATGCCATGGAGAAAGCATGGAGCTAGAGCCTGGAGTA
[C, G]
GGGCACAGATAGGATTGAATAATTGTGAGAAAGACTTTGAAAACAATAAGCAAAAGA
TGAATGAACGTTTTTTAGACTTGAGGGACCAACAACCCCCAACCCCCAGATTCTGCC
GGTCCATGGGAAAGGAGAAGTTGCCCTTGAGTGGAGGCCAAGTAGGGAGACTTACAGAA
AAGAAGTCAGAGCACTGGCTCCAGGCAGAAATACTGATACCCACTGGGCTTCAGGC
TGAGCTCCCTTCAAAATCACTCTGAGCCTGTTCTGCATCTGTGACAT

41303 CTCTGAGCCTGTTCTGCATCTGTGACATAAGATGGTAAGATAAAGGTGGCTGTCACC
AATTATGTAAGGATTAATGTGAAAGGACATAAGTTGATAGTGCTGCCATAGGGAC
AGTGTTCAGTAAACGTGACACATTCTAGTATCACTAAGAATCAGGTTCTGGCCAGGCA
CCGTGGCTCATGCCGTAAATCCCAACACTCTGGGAGGCCAGGTGCGGAGGATGGCTGAA
CACAGGAGTTGAGACCAGCCTGAGCAACATAGTGAGACACTGTCTTACAAAAAAA
[T, A]
AATAATAATAATTGTTTAAATTAGATGGCAGGGCACTGTGGCTCACACCTGTAATCCC
AGCAGCTTGGGAGGCCAAGGCCGGAGGATTGCTTGAGGCCAGGAGTTAGGAGCAGCCTG
GGCCACATTCTGTCTACAAAGAATAAAAAGTTAAGTGGCATGGTGGCACATGCC
GTAATCCCAGCTACTCAAGAGGCTGAGGAGGAGGATTGCCAGGAGTTCAAGAC
TGCACTGAGCCTGATCACACCAGTACTACAGCTGGCAACAGAGTGAGACCTTGTC

FIG.3-31

41305 CTGAGCCTGTTCTGCATCTGTGACATAAGATGGTAAGATAAAGGTGGCTGTCACCAA
 TTATGTAAGGATTAAATGTGGAAAAGGACATAAAAGTTGATAGTGCTGCCATAGGGACAG
 TGTTCACTGACACATTCTAGTACTAAGAACATCAGGTTCTGGCCAGGCACC
 GTGGCTCATGCCTGTAATCCCACACTCTGGGAGGCCTAGGTCGGAGGATGGCTTGAACA
 CAGGAGTTGAGACCAGCCTGAGCAACATAGTGAGACACTGTCTACAAAAAAAATA
 [-, A]
 TAATAATAATTGTTTTAATTAGATGGGAGGCCTGTCACACCTGTAATCCAG
 CACTTGGGAGGCCAAGGCCGGAGGATTGCTTGGGAGGCTCAGGAGCAGCCTGGG
 CCACATTCTGTCTCACAAAGAATAAAAAGTTAAGTGGCATGGTGGCACATGCCGT
 AATCCCAGCTACTCAAGAGGCTGAGGAGGAGGATTGCCCTGAGGCCAGGAGTTCAAGACTG
 CAGTGAGCCTGATCACACCACTGTACTACAGTGGCAACAGAGTGAGACCTGTCTC

41457 CTAAGAACATCAGGTTCTGGCCAGGCACCGTGGCTCATGCCGTAACTCCAAACACTCTGGG
 AGGCCTAGGTCGGAGGATGGCTTGAACACAGGAGTTGAGACCAGCCTGAGCAACATAGT
 GAGACACTGTCTCACAAAGAATAAAATAATTGTTTTAATTAGATGGGAG
 GGCACTGTGGCTCACACCTGTAATCCCAGCACTTGGGAGGCCAAGGCCGGAGGATTGCT
 TGAGGCCAGGAGTTCAAGGAGCAGCCTGGGCCACATTCTGTCTCACAAAGAATAAAA
 [G, C]
 TTAACGGCATGGTGGCACATGCCGTAACTCCAGCTACTCAAGAGGCTGAGGAGGAGG
 ATTGCTGAGCCCAGGAGTTCAAGACTGCACTGAGCCTGATCACACCACTGTACTACAG
 CTTGGGCAACAGAGTGGAGACCTTGTCTCCAAAAAAAGTTGTTTTTTATCCACT
 CTCTCACAAACAAACTGAGTAAGTTAGAGCCTCTCAGCTGGCATGTGTTGAAACAG
 TGCCCTCTCATTAAAGTGCTGCCCTCACTCCATTGCCCTTGGCCTGGTCAGTATGAT

43168 AGCTACTTGGGAGGCTGAGGCAGGAGAACGCTTGAACCTGGAAGGCCGGAGGTCGAGTG
 AGCCGAGATCGTGCCTTGCACTTCAGCCTGGCGACAGAGCAGACTCTGTCTCAAAA
 TAATAATAATAACAATAACTAGCCGGCCTGGTGGCACATGCCGTAGTCCCAGTTACTC
 AGGAGGCAGGAGCATGAGACTCAGGTGAACTAGGGAGACAGAGGTTGCACTGAGCCAAGA
 TCACACCACTGCACTCCAGCCTGGTTGACAGAGCAGACTCTGTCTCAAAAAAAA
 [A, -, T]
 CCCATTGCTCATTGGATACTAGTATAACTACTCTAAACCACTGTTAGTACTTAA
 ATCAAGCAGATATGGGAGATGGTGAATTACCATCTACAGTGTGTCATATATGTCACATA
 CTGAGCATTATCAGCTAGTAACTAGTTAATTGTTATGTGTGATGTATGCAAGAGTT
 CCCATTGTAATGTGTTTACTATGCTTAAATAATGACTGATGTCAGCAACCCAAAA
 TGATACATCTGATGTAAGAGCCCTGTTCCCAATAAAACATCTAAACTATAGACATTG
 AGC

43357 AGGCATGAGACTCAGGTGAACTAGGGAGACAGAGGTTGCACTGAGCCAAGATCACACCA
 TGCACTCCAGCCTGGTTGACAGAGCAGACTCTGTCTCAAAAAAAATCCATTG
 CTCATTGGATACTAGTATAACTATCAGCTAAACCACTGTTGTCATATATGTCACACACTGAGC
 GATATGGGAGATGGTGAATTACCATCTACAGTGTGTCATATATGTCACACACTGAGC
 TATCAGCTAGTAACTAGTTAATTGTTATGTGTGATGTATGCAAGAGTCCATT
 [T, G]
 AATGTGTTTACTATGCTTAAATAATGACTGATGTCAGCAACCCAAAAATGATACTC
 TGATGTAAGAGCCCTGTTCCCAATAAAACATCTAAACTATAGACATTGGAATGAACA
 GGTGCCCCCTAAGTTCCCTCCAGGGTTCTGGCCGGTCTCTGAGGACTACACATCC
 CTACTCCCGTCTTCCATCTCAGGCGCAGTAACAGTATCTCCAAGTCCGGCC
 AGCTCCCAAAAGGAGCCCTGCTGTTAGCCGTGACATCAGCCGCTCAGAATCCCTCGT

FIG. 3-32

45664 CCAGCTTCCCTGGCTCCCCACCCCCAGGTGAAAGTGTGCGCAGCCTGGACCACCCC
 AATGTGCTCAAGTTCATGGTGTGTACAAGGATAAGAAGCTGAACCTGCTGACAGAG
 TACATTGAGGGGGGCACACTGAAGGACTTCTGCGAGTATGGTGAGCACACCACCCAT
 AGTCTCCAGGAGGCCCTGGTGGGTTGTCAAGACACCTATGCTATCACTACCCCTAGGAGCTTA
 AAGGGCAGAGGGGCCCCCTGCTTGGCTCCAAGGACCATGCTGGGTGGACTGAGCATA
 [T.C]
 AGGGAGGCTCACTGGGAGACCACATTGACCCATGGGGCCTGGACCACGAGTGGGACAGG
 GCTCAACAGCCTCTGAAAATCATCCCCATTCTGCAAGGATCGTCCCTGGCAGCAGAA
 GGTCAAGGTTGCCAAGGAATGCCCTCCGGATGGTGAGTCCCACCAACAAACCTGCCAG
 CAGGGCGAGAGTAGGGAGAGGTGTGAGAATTGTTGGGCTTCACTGAAAGGTAGAGACCCCT
 TCCTATGCAACTTGTGTGGCTGGTCAGCAGCTATTGAGTTGTCTGTCACTG

47549 AATTAGCTGGCGTGGTGTGACGCCGTAGTCCCAGCTACTCAGGAGGCCGAGGCAGG
 AGAACATGCTGAACCTGGGAGGCAGAAGTTGCAAGTGGAGCCAAAGATCACACACTGCATT
 CAGCCTGGGTGACAGAGTGAGACTTCATCTCAAAAAAAAAAAAAAGAGAGACTGATATG
 GTTAGTACATTGGGTGGAATGGGAGGGTCAGGGATGGAGCCCTGCAAGGGCTAAGGGGCTA
 ATGAAACATTCAGATTCTGAATTAGTAGTGGCTGTGGGACAGGAGCCTGGAGGC
 [A.C]
 GGGTGGAGTCAGAATGGAGAGACTGGTGGCAATGAGGGAACAGGAGGAGGAGGAGGAGG
 AGTTACGAGTGGCTTGAGGTGTCACTTACACAGACATTGGGGATGGGGATAGCCGTGA
 TTGGTGGAGCAACTGGTTGGGAAGAGCTAGCATTGATCCCTGCTGTTCTGTGCTAGCAGA
 ACCTATCAGCATCTCTGGCAGGAAACTGGCTCCATGAGACTGGCTTAGGGAGAGGCTG
 CTAGTCACCTAATCTGCAAGAGAAGGGCAGCTGGAGCTGTGGGACAGAAGAGGCATCC

47908 GGAGTTACGAGTGGCTTGAGGTGTCACTTACACAGACATTGGGGATGGGGATAGCCGT
 GATTGTTGAGCAACTGGTTGGGAAGAGACTAGCATTGATCCCTGCTGTTCTGTGCTAGCA
 GAACCTATCAGCATCTCTGGCAGGAAACTGGCTCCATGAGACTGGCTTAGGGAGAGGC
 TGCTAGTCACCTAATCTGCAAGAGAAGGGCAGCTGGAGCTGTGGGACAGAAGAGGCATCC
 ATGTAAGCTGGTGGGGGTGTCAGCTTGTGAAGAGGAGATGGCTTGTGAGCAGGGCTGACA
 [C.A]
 TGAAAAGGCTGGAAGAAAAACAGACACACAAGAGTCAGGATCAGGTAGCATAGGAA
 AGTTGTTGAGCAAGTCTTGAGGAGCACTCCCTAGGCAGGCAGGCAGGCAGGTATGAGCT
 ATAGCGATTCAAGGAAGAGCTCCCTGGGTGTGAGCAGCTCCAGGAGCCTAAGGGATGAA
 AGTAGTATTGCAAGGGCTGGAGAGCAAGGAGTGGCTCTACATTGCAAGGGAAAGG
 AGAAAGGAAGTTGCTCTGAGAGTGGTAAGAGTCAGTGGTGGAGGCCTGGAGAGGAGACA

52267 TTGTGAGGGTAGAGGAGAGGAGACAAGGGATGGTAGGATAATGAAGGAATGTTTG
 TTTTGTGTTTGTTGAGATGGAGTTCACTCTGTCACCCAGGCTGGAGTGCAGAGGT
 GCAATCTGGCTCACTGCAGCCTCCGCCTCCAGGTTCAAGCAATCCTCTGCCTCAGCC
 TCCCAAGTAGCTGGACTACAGGTGTGCGCACACGCCTGGCTAATTGGTATTTCAG
 GTAGAGACAGGGTTTCGCCATTGGCAGGCTGGTCTCAAATGCCTGACCTCAGGTGAT
 [C.A]
 CACCCGCTTCAGCCTCCAAAGTGTGAGATTACAGGCATGAGCTACCGTGCCTGGCCAT
 GAAGGAAGATTGTTAAAAAATTGTTCTTAATTTAATTGAAACACCTCTGTTCAAG
 AGCACTGGCTGGTGCAGAGGGTTCAAGACATGAATCAGATCCAGCACCTCATAGAGCC
 TTAATCTGGCACACACACAGCACAAGGAGACACAGACAAGGCAGGGTAGGATGAGTG
 GAAGCTAGGAGCAGATGCTGTTGGAACACTTGGCTCTGCAAGTGAAGCCCTCTAG

FIG.3-33

54654 GGCCCCGGCCCCGGCCCCCAGGCCAGGCAGTGGCGGCCAAGGACCACGCATCTACTTTCA
 GAGCCCCCCCAGGGCCGCAGGAGAGGGCCGGCTGGCGGATGATGAGGGCCAGTGA
 GGCACAAGGGAAAGGTCAACCATCAAGTATGACCCCAAGGAGCTACGGAAGCACCTAAC
 TAGAGGAGTGGATCCTGGAGCAGCTACGCGCCTTACGACTGCCAGGAAGAGGAGATCT
 CAGAACTAGAGATTGACGTGGATGAGCTCCTGGACATGGAGAGTGACGATGCCCTGGGCTT
 [T, C]
 CAGGGTCAAGGAGCTGCTGGTTGACTGTTACAAACCCACAGAGGCCTTCATCTCTGGCCT
 GCTGGACAAGATCCGGGCCATGCAAGACTGAGCACACCCCCAGAAGAAGTGAGGGTCCCC
 GACCCAGGGCAACGGTGGCTCCCATAGGACAATCGTACCCCCCGACCTCGTAGCAACAG
 CAATACCGGGGGACCTCTGGGCCAGGCCCTGGTCCATGAGCAGGGCTCCTCGTGCCCCCTG
 GCCCAGGGGTCTTCCCCCTGCCCTCAGTTTCACTTTGGATTTTATTGTTAT

54679 GGCAGTGGCGCCAAGGACCACGCATCTACTTCAAGAGCCCCCCCCGGGCCAGGAGA
 GGGCCCGGGCTGGCGGATGATGAGGGCCAGTGAGGCAGCAAGGGAAAGGTCAACCATCAA
 GTATGACCCCAAGGAGCTACGGAAGCACCTAACCTAGAGGAGTGGATCCTGGAGCAGCT
 CACGCGCCTTACGACTGCCAGGAAGAGGAGATCTCAGAACTAGAGATTGACGTGGATGA
 GCTCCTGGACATGGAGAGTGACGATGCCCTGGCTTCCAGGGTAAGGAGCTGCTGGTGA
 [C, G]
 TGTTACAAACCCACAGAGGCCTTCATCTCTGGCTGCTGGACAAGATCCGGGCCATGCAG
 AAGCTGAGCACACCCCCAGAAGAAGTGAGGGTCCCCGACCCAGGGCAACGGTGGCTCCCAT
 AGGACAATCGTACCCCCCGACCTCGTAGCAACAGCAATACCGGGGGACCTCGGGCCAG
 GCCTGGTCCATGAGCAGGGCTCCTCGTGCCCCCTGGCCCAGGGTCTCTTCCCCCTGCC
 CTCAGTTTCACTTTGGATTTTATTGTTATTAACGTGGACTTTGTGT

54693 AGGACCACGCATCTACTTCAAGAGCCCCCCCCGGGCCAGGAGAGGGCCGGCTGGG
 CGGATGATGAGGGCCAGTGAGGCAGCAAGGGAAAGGTCAACCATCAAGTATGACCCCAAGG
 AGCTACGGAAGCACCTAACCTAGAGGAGTGGATCCTGGAGCAGCTACGCGCCTTACG
 ACTGCCAGGAAGAGGAGATCTCAGAACTAGAGATTGACGTGGATGAGCTCCTGGACATGG
 AGAGTGACGATGCCCTGGCTTCCAGGGTAAGGAGCTGCTGGTTGACTGTTACAAACCC
 [A, C]
 AGAGGCCTCATCTCTGGCTGCTGGACAAGATCCGGGCCATGCAAGACTGAGCACACC
 CCAGAAGAAGTGAGGGTCCCCGACCCAGGGCAACGGTGGCTCCCATAGGACAATCGTAC
 CCCCCGACCTCGTAGCAACAGCAATACCGGGGGACCCCTCGGGCCAGGCCCTGGTCCATGA
 GCAGGGCTCTCGTGCCCCCTGGCCCAGGGTCTCTTCCCCCTGCCCTCAGTTTCACT
 TTTGGATTTTATTGTTATTAACGTGGACTTTGTGT

54706 TACTTCAGAGCCCCCCCCGGGCCAGGAGAGGGCCGGCTGGCGGATGATGAGGG
 CCCAGTGAGGCAGCAAGGGAAAGGTCAACCATCAAGTATGACCCCAAGGAGCTACGGAAGCA
 CCTCAACCTAGAGGAGTGGATCCTGGAGCAGCTACGCGCCTTACGACTGCCAGGAAGA
 GGAGATCTCAGAACTAGAGATTGACGTGGATGAGCTCCTGGACATGGAGAGTGACGATGC
 CTGGCTTCCAGGGTAAGGAGCTGCTGGTTGACTGTTACAAACCCACAGAGGCCCTCAT
 [T, C]
 TCTGGCTGCTGGACAAGATCCGGGCCATGCAAGACTGAGCACACCCCCAGAAGAAGTG
 GGGTCCCCGACCCAGGGCAACGGTGGCTCCCATAGGACAATCGTACCCCCCGACCTCGT
 AGCAACAGCAATACCGGGGGACCTCTGGGCCAGGCCCTGGTCCATGAGCAGGGCTCCTCG
 TGCCCCCTGGCCAGGGTCTCTTCCCCCTGCCCTCAGTTTCACTTTGGATTTT
 ATTGTTATTAACGTGGACTTTGTGT

FIG. 3-34

54712 CAGAGCCCCCCCAGGGCCGCAGGAGAGGGCCGGCTGGCGGATGATGAGGGCCAGT
 GAGGCAGCAAGGAAGGTACCATCAAGTATGACCCCAAGGAGCTACGGAAGCACCTCAA
 CCTAGAGGAGTGGAATCTGGAGCAGCTCACGCCCTACGACTGCCAGGAAGAGGAGAT
 CTCAGAACTAGAGATTGACGTGGATGAGCTCTGGACATGGAGAGTGACGATGCTGGC
 TTCCAGGGTCAAGGAGCTGCTGGTTACTGTTACAAACCCACAGAGCCTCATCTGG
 [T, C]
 CTGCTGGACAAGATCCGGGCATGCAGAAGCTGAGCACACCCCAGAAGAAGTGAGGGTCC
 CCGACCCAGGCAGCGAACGGTGGCTCCCATAGGACAATCGTACCCCCCGACCTCGTAGAAC
 AGCAATACCGGGGGACCCCTGCGGCCAGGCTGGTCCATGAGCAGGGCTCCTCGTGC
 TGGCCCAAGGGGTCTTCCCTGCCCCCTAGTTTCCACTTTGGATTTTTATTGTT
 ATTAAACTGATGGGACTTTGTGTTTATATTGACTCTGCGGACGGGCCCTTAATAAAA

54799 GTATGACCCCAAGGAGCTACGGAAGCACCTAACCTAGAGGAGTGGATCCTGGAGCAGCT
 CACGCCTCTACGACTGCCAGGAAGAGGAGATCTCAGAACTAGAGATTGACGTGGATGA
 GCTCCTGGACATGGAGAGTGACGATGCTGGCTTCAGGGTCAAGGAGCTGCTGGTTGA
 CTGTTACAAACCCACAGAGGCTTCATCTCTGGCTGCTGGACAAGATCCGGGCATGCA
 GAAGCTGAGCACACCCCAGAAGAAGTGAGGGTCCCCGACCCAGGCGAACGGTGGCTCCA
 [T, C]
 AGGACAATCGTACCCCCCGACCTCGTAGAACAGCAATACCGGGGACCCCTGCGGCCAG
 GCCTGGTCCATGAGCAGGGCTCTCGTCCCCCTGGCCAGGGTCTCTTCCCCCTGCC
 CTCAGTTTCCACTTTGGATTTTTATTGTTATTAAACTGATGGGACTTTGTGTTTT
 ATATTGACTCTGCGGACGGGCCCTTAATAAAAGCGAGGTAGGGTACGCCCTTGGTGCAG
 CTCAAAAAAAAAAAAAAATGATTTCCAGGGTCCACATTAGAGTTGAAATTCTGGT

54819 GGAAGCACCTAACCTAGAGGAGTGGATCCTGGAGCAGCTACGCCCTACGACTGCC
 AGGAAGAGGAGATCTCAGAACTAGAGATTGACGTGGATGAGCTCTGGACATGGAGAGTG
 ACGATGCCCTGGCTCCAGGGTCAAGGAGCTGCTGGTACTGTTACAAACCCACAGAGG
 CCTTCATCTCTGGCTGCTGGACAAGATCCGGGCCATGCGAACAGCTGAGCACACCCCAGA
 AGAAGTGAGGGTCCCCGACCCAGGCGAACGGTGGCTCCATAGGACAATCGTACCCCC
 [G, A]
 ACCTCGTAGCAACAGCAATACCGGGGACCCCTGCGGCCAGGCTGGTCCATGAGCAGGG
 CTCCCTCGTCCCCCTGGCCAGGGTCTCTCCCTGCCCTCAGTTTCCACTTTGG
 TTTTTTATTGTTATTAAACTGATGGGACTTTGTGTTTTATTGACTCTGCGGACGG
 GCCCTTAATAAAGCGAGGTAGGGTACGCCCTTGGTGCAGCTCAAAAAAAAAAAAAA
 TGATTTCCAGGGTCCACATTAGAGTTGAAATTCTGGTGGGAGAATCTATACCTGTT

55499 TTGTTTCTAATACCTTGTCAATTAAATATCTTAATTATTAAAAATATATAT
 ACAGTATTGAATGCCACTGTGTCTAGGTACAGTTCAACACTTGGGTTACAGCAGCG
 AACAAAATAAAGGTCTTACCCATAGAACATAGATTCTAGCATGGTATCTACTGTATC
 ATACAGTAGATAACAATAAGTAAACTATATTGAATATTAGAATGTGGCAGATGCTATGGAA
 AAAGAGTCAAGACAAGTAAAGACGATTGTTAGGGTACCCAGTGGTCAATTAAATATGGT
 [C, T]
 GTCAGAGCAGGCCACTGAGGTGACATGACATTAAAGCATAAACATGGAGGAGGAGG
 TAAGCCTGAGCTGTCTAGGCTTCCGGGGAGCCAAGCCATTCCGTGGCACTAGGAGCC
 TGGTGTTCGATTCCACCTTGATAACTGCAATTCTAAGATATGGAGGGAGTT
 TTCTCCTATTGTTTAAGTATTAACTCCAGCTAGTCCAGCCTGTTAGTGTACCTA
 ATCTTATAGCAAATATGAGGTACCGGTAACATTATGCCCATTCACAGAGGCACT

FIG. 3-35

56825 ACTGATGGCTAAAGGGTGTGAAAAAGTCAGTGATGCTCCCCTTACTCCAGATCCT
 GTCCCTCCTGGAGCAAGGTTGAGGGAGTAGGTTTGAAAGAGTCCCTTAATATGTGGTGG
 ACAGGCCAGGAGTTAGAGAAAGGGCTGGCTCTGTTACCTGCTACTGGCTCTAGCCAG
 CCCAGGGACCACATCAATGTGAGAGGAAGCCTCCACCTCATGTTCAAACCTTAATACTG
 GAGACTGGCTGAGAACCTACGGACAACATCCTTCTGCTGAAACAAACAGTCACAAGCA
 [C,A]
 AGGAAGAGGCTGGGGACTAGAAAGAGGCCCTGCCCTCTAGAAAGCTCAGATCTGGCTT
 CTGTTACTCATACTCGGGTGGGCTCCTTAGTCAGATGCCTAAAACATTTCGCTAAAGCT
 CGATGGGTTCTGGAGGACAGTGTGGCTTGTACAGGCCTAGAGTCTGAGGGAGGGAGTG
 GGAGTCTCAGCAATCTTGGCTTGGCTCATGGCAACCACTGCTACCCCTCAACATG
 CCTGGTTAGGCAGCAGCTGGCTGGGAAGAGGTGGTGGCAGAGTCTCAAAGCTGAGAT

58871 CGTCACCCACCAACCCCTGCCGCACTCCAGCCTTAAACAAGGGCTGTCTAGATATT
 CATTTTAACCTACCTCCACCTTGGAAACAATTGCTGAAGGGGAGAGGAATTGCAATGACCA
 ACCACCTTGTGGGACGCCCTGCACACCTGTCTTCTGCTTCAACCTGAAAGATTCTGA
 TGATGATAATCTGGACACAGAAGCCGGCACGGTGGCTTAGCCTGTAATCTCAGCACTT
 TGGGAGGCCTCAGCAGGTGGATCACCTGAGATCAAGAGTTGAGAACAGCCTGACCAACA
 [T,A]
 GGTGAAACCCGTCTACTAAAAATACAAAAATTAGCCAGGTGTGGGGCACATACCTG
 TAATCCCAGCTACTCTGGAGGCTGAGGCAGGAGAACGCTTGAACCCACAAGGCAGAGGT
 TGCAGTGAGGCAGATCATGCCATTGCACTCCAGCCTGTGCAACAAGAGCCAAACTCCAT
 CTCAAAAAAAAAA

FIG. 3-36

**ISOLATED HUMAN KINASE PROTEINS,
NUCLEIC ACID MOLECULES ENCODING
HUMAN KINASE PROTEINS, AND USES
THEREOF**

FIELD OF THE INVENTION

The present invention is in the field of kinase proteins that are related to the serine/threonine kinase subfamily, recombinant DNA molecules, and protein production. The present invention specifically provides novel peptides and proteins that effect protein phosphorylation and nucleic acid molecules encoding such peptide and protein molecules, all of which are useful in the development of human therapeutics and diagnostic compositions and methods.

BACKGROUND OF THE INVENTION

Protein Kinases

Kinases regulate many different cell proliferation, differentiation, and signaling processes by adding phosphate groups to proteins. Uncontrolled signaling has been implicated in a variety of disease conditions including inflammation, cancer, arteriosclerosis, and psoriasis. Reversible protein phosphorylation is the main strategy for controlling activities of eukaryotic cells. It is estimated that more than 1000 of the 10,000 proteins active in a typical mammalian cell are phosphorylated. The high energy phosphate, which drives activation, is generally transferred from adenosine triphosphate molecules (ATP) to a particular protein by protein kinases and removed from that protein by protein phosphatases. Phosphorylation occurs in response to extracellular signals (hormones, neurotransmitters, growth and differentiation factors, etc), cell cycle checkpoints, and environmental or nutritional stresses and is roughly analogous to turning on a molecular switch. When the switch goes on, the appropriate protein kinase activates a metabolic enzyme, regulatory protein, receptor, cytoskeletal protein, ion channel or pump, or transcription factor.

The kinases comprise the largest known protein group, a superfamily of enzymes with widely varied functions and specificities. They are usually named after their substrate, their regulatory molecules, or some aspect of a mutant phenotype. With regard to substrates, the protein kinases may be roughly divided into two groups; those that phosphorylate tyrosine residues (protein tyrosine kinases, PTK) and those that phosphorylate serine or threonine residues (serine/threonine kinases, STK). A few protein kinases have dual specificity and phosphorylate threonine and tyrosine residues. Almost all kinases contain a similar 250–300 amino acid catalytic domain. The N-terminal domain, which contains subdomains I–IV, generally folds into a two-lobed structure, which binds and orients the ATP (or GTP) donor molecule. The larger C terminal lobe, which contains subdomains VI A–XI, binds the protein substrate and carries out the transfer of the gamma phosphate from ATP to the hydroxyl group of a serine, threonine, or tyrosine residue. Subdomain V spans the two lobes.

The kinases may be categorized into families by the different amino acid sequences (generally between 5 and 100 residues) located on either side of, or inserted into loops of, the kinase domain. These added amino acid sequences allow the regulation of each kinase as it recognizes and interacts with its target protein. The primary structure of the kinase domains is conserved and can be further subdivided into 11 subdomains. Each of the 11 subdomains contains specific residues and motifs or patterns of amino acids that

are characteristic of that subdomain and are highly conserved (Hardie, G. and Hanks, S. (1995) *The Protein Kinase Facts Books*, Vol I:7–20 Academic Press, San Diego, Calif.).

The second messenger dependent protein kinases primarily mediate the effects of second messengers such as cyclic AMP (cAMP), cyclic GMP, inositol triphosphate, phosphatidylinositol, 3,4,5-triphosphate, cyclic-ADPribose, arachidonic acid, diacylglycerol and calcium-calmodulin. The cyclic-AMP dependent protein kinases (PKA) are important members of the STK family. Cyclic-AMP is an intracellular mediator of hormone action in all prokaryotic and animal cells that have been studied. Such hormone-induced cellular responses include thyroid hormone secretion, cortisol secretion, progesterone secretion, glycogen breakdown, bone resorption, and regulation of heart rate and force of heart muscle contraction. PKA is found in all animal cells and is thought to account for the effects of cyclic-AMP in most of these cells. Altered PKA expression is implicated in a variety of disorders and diseases including cancer, thyroid disorders, diabetes, atherosclerosis, and cardiovascular disease (Isselbacher, K. J. et al. (1994) *Harrison's Principles of Internal Medicine*, McGraw-Hill, New York, N.Y., pp. 416–431, 1887).

Calcium-calmodulin (CaM) dependent protein kinases are also members of STK family. Calmodulin is a calcium receptor that mediates many calcium regulated processes by binding to target proteins in response to the binding of calcium. The principle target protein in these processes is CaM dependent protein kinases. CaM-kinases are involved in regulation of smooth muscle contraction (MLC kinase), glycogen breakdown (phosphorylase kinase), and neurotransmission (CaM kinase I and CaM kinase II). CaM kinase I phosphorylates a variety of substrates including the neurotransmitter related proteins synapsin I and II, the gene transcription regulator, CREB, and the cystic fibrosis conductance regulator protein, CFTR (Haribabu, B. et al. (1995) *EMBO Journal* 14:3679–86). CaM II kinase also phosphorylates synapsin at different sites, and controls the synthesis of catecholamines in the brain through phosphorylation and activation of tyrosine hydroxylase. Many of the CaM kinases are activated by phosphorylation in addition to binding to CaM. The kinase may autophosphorylate itself, or be phosphorylated by another kinase as part of a "kinase cascade".

Another ligand-activated protein kinase is 5'-AMP-activated protein kinase (AMPK) (Gao, G. et al. (1996) *J. Biol. Chem.* 15:8675–81). Mammalian AMPK is a regulator of fatty acid and sterol synthesis through phosphorylation of the enzymes acetyl-CoA carboxylase and hydroxymethylglutaryl-CoA reductase and mediates responses of these pathways to cellular stresses such as heat shock and depletion of glucose and ATP. AMPK is a heterotimeric complex comprised of a catalytic alpha subunit and two non-catalytic beta and gamma subunits that are believed to regulate the activity of the alpha subunit. Subunits of AMPK have a much wider distribution in non-lipogenic tissues such as brain, heart, spleen, and lung than expected. This distribution suggests that its role may extend beyond regulation of lipid metabolism alone.

The mitogen-activated protein kinases (MAP) are also members of the STK family. MAP kinases also regulate intracellular signaling pathways. They mediate signal transduction from the cell surface to the nucleus via phosphorylation cascades. Several subgroups have been identified, and each manifests different substrate specificities and responds to distinct extracellular stimuli (Egan, S. E. and Weinberg, R. A. (1993) *Nature* 365:781–783). MAP kinase signaling

pathways are present in mammalian cells as well as in yeast. The extracellular stimuli that activate mammalian pathways include epidermal growth factor (EGF), ultraviolet light, hyperosmolar medium, heat shock, endotoxic lipopolysaccharide (LPS), and pro-inflammatory cytokines such as tumor necrosis factor (TNF) and interleukin-1 (IL-1).

PRK (proliferation-related kinase) is a serum/cytokine inducible STK that is involved in regulation of the cell cycle and cell proliferation in human megakaryocytic cells (Li, B. et al. (1996) *J. Biol. Chem.* 271:19402-8). PRK is related to the polo (derived from humans polo gene) family of STKs implicated in cell division. PRK is downregulated in lung tumor tissue and may be a proto-oncogene whose deregulated expression in normal tissue leads to oncogenic transformation. Altered MAP kinase expression is implicated in a variety of disease conditions including cancer, inflammation, immune disorders, and disorders affecting growth and development.

The cyclin-dependent protein kinases (CDKs) are another group of STKs that control the progression of cells through the cell cycle. Cyclins are small regulatory proteins that act by binding to and activating CDKs that then trigger various phases of the cell cycle by phosphorylating and activating selected proteins involved in the mitotic process. CDKs are unique in that they require multiple inputs to become activated. In addition to the binding of cyclin, CDK activation requires the phosphorylation of a specific threonine residue and the dephosphorylation of a specific tyrosine residue.

Protein tyrosine kinases, PTKs, specifically phosphorylate tyrosine residues on their target proteins and may be divided into transmembrane, receptor PTKs and nontransmembrane, non-receptor PTKs. Transmembrane protein-tyrosine kinases are receptors for most growth factors. Binding of growth factor to the receptor activates the transfer of a phosphate group from ATP to selected tyrosine side chains of the receptor and other specific proteins. Growth factors (GF) associated with receptor PTKs include; epidermal GF, platelet-derived GF, fibroblast GF, hepatocyte GF, insulin and insulin-like GFs, nerve GF, vascular endothelial GF, and macrophage colony stimulating factor.

Non-receptor PTKs lack transmembrane regions and, instead, form complexes with the intracellular regions of cell surface receptors. Such receptors that function through non-receptor PTKs include those for cytokines, hormones (growth hormone and prolactin) and antigen-specific receptors on T and B lymphocytes.

Many of these PTKs were first identified as the products of mutant oncogenes in cancer cells where their activation was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs, and it is well known that cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity (Carboneau H and Tonks NK (1992) *Annu. Rev. Cell. Biol.* 8:463-93). Regulation of PTK activity may therefore be an important strategy in controlling some types of cancer.

LIM Domain Kinases

The novel human protein, and encoding gene, provided by the present invention is related to the family of serine/threonine kinases in general, particularly LIM domain kinases (LIMK), and shows the highest degree of similarity to LIMK2, and the LIMK2b isoform (Genbank gi8051618) in particular (see the amino acid sequence alignment of the protein of the present invention against LIMK2b provided in

FIG. 2). LIMK proteins generally have serine/threonine kinase activity. The protein of the present invention may be a novel alternative splice form of the art-known protein provided in Genbank gi805161 ; however, the structure of the gene provided by the present invention is different from the art-known gene of gi8051618 and the first exon of the gene of the present invention is novel, suggesting a novel gene rather than an alternative splice form. Furthermore, the protein of the present invention lacks an LIM domain relative to gi8051618. The protein of the present invention does contain the kinase catalytic domain.

Approximately 40 LIM proteins, named for the LIM domains they contain, are known to exist in eukaryotes. LIM domains are conserved, cystein-rich structures that contain 2 zinc fingers that are thought to modulate protein-protein interactions. LIMK1 and LIMK2 are members of a LIM subfamily characterized by 2 N-terminal LIM domains and a C-terminal protein kinase domain. LIMK1 and LIMK2 mRNA expression varies greatly between different tissues. The protein kinase domains of LIMK1 and LIMK2 contain a unique sequence motif comprising Asp-Leu-Asn-Ser-His-Asn in subdomain VIB and a strongly basic insert between subdomains VII and VIII (Okano et al., *J. Biol. Chem.* 270 (52), 31321-31330 (1995)). The protein kinase domain present in LIMKs is significantly different than other kinase domains, sharing about 32% identity.

LIMK is activated by ROCK (a downstream effector of Rho) via phosphorylation. LIMK then phosphorylates cofilin, which inhibits its actin-depolymerizing activity, thereby leading to Rho-induced reorganization of the actin cytoskeleton (Maekawa et al., *Science* 285: 895-898, 1999).

The LIMK2a and LIMK2b alternative transcript forms are differentially expressed in a tissue-specific manner and are generated by variation in transcriptional initiation utilizing alternative promoters. LIMK2a contains 2 LIM domains, a PDZ domain (a domain that functions in protein-protein interactions targeting the protein to the submembranous compartment), and a kinase domain; whereas LIMK2b just has 1.5 LIM domains. Alteration of LIMK2a and LIMK2b regulation has been observed in some cancer cell lines (Osada et al., *Biochem. Biophys. Res. Commun.* 229: 582-589, 1996).

For a further review of LIMK proteins, see Nomoto et al., *Gene* 236 (2), 259-271 (1999).

Kinase proteins, particularly members of the serine/threonine kinase subfamily, are a major target for drug action and development. Accordingly, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown members of this subfamily of kinase proteins. The present invention advances the state of the art by providing previously unidentified human kinase proteins that have homology to members of the serine/threonine kinase subfamily.

SUMMARY OF THE INVENTION

The present invention is based in part on the identification of amino acid sequences of human kinase peptides and proteins that are related to the serine/threonine kinase subfamily, as well as allelic variants and other mammalian orthologs thereof. These unique peptide sequences, and nucleic acid sequences that encode these peptides, can be used as models for the development of human therapeutic targets, aid in the identification of therapeutic proteins, and serve as targets for the development of human therapeutic agents that modulate kinase activity in cells and tissues that express the kinase. Experimental data as provided in FIG. 1

indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

DESCRIPTION OF THE FIGURE SHEETS

FIG. 1 provides the nucleotide sequence of a cDNA molecule that encodes the kinase protein of the present invention. (SEQ ID NO:1) In addition, structure and functional information is provided, such as ATG start, stop and tissue distribution, where available, that allows one to readily determine specific uses of inventions based on this molecular sequence. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

FIG. 2 provides the predicted amino acid sequence of the kinase of the present invention. (SEQ ID NO:2) In addition structure and functional information such as protein family, function, and modification sites is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence.

FIG. 3 provides genomic sequences that span the gene encoding the kinase protein of the present invention. (SEQ ID NO:3) In addition structure and functional information, such as intron/exon structure, promoter location, etc., is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence. As illustrated in FIG. 3, SNPs were identified at 42 different nucleotide positions.

DETAILED DESCRIPTION OF THE INVENTION

General Description

The present invention is based on the sequencing of the human genome. During the sequencing and assembly of the human genome, analysis of the sequence information revealed previously unidentified fragments of the human genome that encode peptides that share structural and/or sequence homology to protein/peptide/domains identified and characterized within the art as being a kinase protein or part of a kinase protein and are related to the serine/threonine kinase subfamily. Utilizing these sequences, additional genomic sequences were assembled and transcript and/or cDNA sequences were isolated and characterized. Based on this analysis, the present invention provides amino acid sequences of human kinase peptides and proteins that are related to the serine/threonine kinase subfamily, nucleic acid sequences in the form of transcript sequences, cDNA sequences and/or genomic sequences that encode these kinase peptides and proteins, nucleic acid variation (allelic information), tissue distribution of expression, and information about the closest art known protein/peptide/domain that has structural or sequence homology to the kinase of the present invention.

In addition to being previously unknown, the peptides that are provided in the present invention are selected based on their ability to be used for the development of commercially important products and services. Specifically, the present peptides are selected based on homology and/or structural relatedness to known kinase proteins of the serine/threonine kinase subfamily and the expression pattern observed. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The art has clearly established the commercial importance of

members of this family of proteins and proteins that have expression patterns similar to that of the present gene. Some of the more specific features of the peptides of the present invention, and the uses thereof, are described herein, particularly in the Background of the Invention and in the annotation provided in the Figures, and/or are known within the art for each of the known serine/threonine kinase family or subfamily of kinase proteins.

10 Specific Embodiments

Peptide Molecules

The present invention provides nucleic acid sequences that encode protein molecules that have been identified as 15 being members of the kinase family of proteins and are related to the serine/threonine kinase subfamily (protein sequences are provided in FIG. 2, transcript/cDNA sequences are provided in FIG. 1 and genomic sequences are provided in FIG. 3). The peptide sequences provided in FIG. 20 2, as well as the obvious variants described herein, particularly allelic variants as identified herein and using the information in FIG. 3, will be referred herein as the kinase peptides of the present invention, kinase peptides, or peptides/proteins of the present invention.

25 The present invention provides isolated peptide and protein molecules that consist of, consist essentially of, or comprise the amino acid sequences of the kinase peptides disclosed in the FIG. 2, (encoded by the nucleic acid 30 molecule shown in FIG. 1, transcript/cDNA or FIG. 3, genomic sequence), as well as all obvious variants of these peptides that are within the art to make and use. Some of these variants are described in detail below.

As used herein, a peptide is said to be "isolated" or "purified" when it is substantially free of cellular material or 35 free of chemical precursors or other chemicals. The peptides of the present invention can be purified to homogeneity or other degrees of purity. The level of purification will be based on the intended use. The critical feature is that the preparation allows for the desired function of the peptide, even if in the presence of considerable amounts of other components (the features of an isolated nucleic acid molecule is discussed below).

In some uses, "substantially free of cellular material" 45 includes preparations of the peptide having less than about 30% (by dry weight) other proteins (i.e., contaminating protein), less than about 20% other proteins, less than about 10% other proteins, or less than about 5% other proteins. When the peptide is recombinantly produced, it can also be 50 substantially free of culture medium, i.e., culture medium represents less than about 20% of the volume of the protein preparation.

The language "substantially free of chemical precursors or other chemicals" includes preparations of the peptide in which it is separated from chemical precursors or other chemicals that are involved in its synthesis. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of the kinase peptide having less than about 30% (by dry weight) chemical precursors or other chemicals, less than about 20% chemical precursors or other chemicals, less than about 10% chemical precursors or other chemicals, or less than about 5% chemical precursors or other chemicals.

65 The isolated kinase peptide can be purified from cells that naturally express it, purified from cells that have been altered to express it (recombinant), or synthesized using known protein synthesis methods. Experimental data as

provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. For example, a nucleic acid molecule encoding the kinase peptide is cloned into an expression vector, the expression vector introduced into a host cell and the protein expressed in the host cell. The protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Many of these techniques are described in detail below.

Accordingly, the present invention provides proteins that consist of the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). The amino acid sequence of such a protein is provided in FIG. 2. A protein consists of an amino acid sequence when the amino acid sequence is the final amino acid sequence of the protein.

The present invention further provides proteins that consist essentially of the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). A protein consists essentially of an amino acid sequence when such an amino acid sequence is present with only a few additional amino acid residues, for example from about 1 to about 100 or so additional residues, typically from 1 to about 20 additional residues in the final protein.

The present invention further provides proteins that comprise the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). A protein comprises an amino acid sequence when the amino acid sequence is at least part of the final amino acid sequence of the protein. In such a fashion, the protein can be only the peptide or have additional amino acid molecules, such as amino acid residues (contiguous encoded sequence) that are naturally associated with it or heterologous amino acid residues/peptide sequences. Such a protein can have a few additional amino acid residues or can comprise several hundred or more additional amino acids. The preferred classes of proteins that are comprised of the kinase peptides of the present invention are the naturally occurring mature proteins. A brief description of how various types of these proteins can be made/isolated is provided below.

The kinase peptides of the present invention can be attached to heterologous sequences to form chimeric or fusion proteins. Such chimeric and fusion proteins comprise a kinase peptide operatively linked to a heterologous protein having an amino acid sequence not substantially homologous to the kinase peptide. "Operatively linked" indicates that the kinase peptide and the heterologous protein are fused in-frame. The heterologous protein can be fused to the N-terminus or C-terminus of the kinase peptide.

In some uses, the fusion protein does not affect the activity of the kinase peptide per se. For example, the fusion protein can include, but is not limited to, enzymatic fusion proteins, for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions, MYC-tagged, HI-tagged and Ig fusions. Such fusion proteins, particularly poly-His fusions, can facilitate the purification of recombinant kinase peptide. In certain host cells (e.g., mammalian host cells), expression and/or secretion of a protein can be increased by using a heterologous signal sequence.

A chimeric or fusion protein can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different protein sequences are ligated together in-frame in accordance with conventional techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see Ausubel et al., *Current Protocols in Molecular Biology*, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST protein). A kinase peptide-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the kinase peptide.

As mentioned above, the present invention also provides and enables obvious variants of the amino acid sequence of the proteins of the present invention, such as naturally occurring mature forms of the peptide, allelic/sequence variants of the peptides, non-naturally occurring recombinantly derived variants of the peptides, and orthologs and paralogs of the peptides. Such variants can readily be generated using art-known techniques in the fields of recombinant nucleic acid technology and protein biochemistry. It is understood, however, that variants exclude any amino acid sequences disclosed prior to the invention.

Such variants can readily be identified/made using molecular techniques and the sequence information disclosed herein. Further, such variants can readily be distinguished from other peptides based on sequence and/or structural homology to the kinase peptides of the present invention. The degree of homology/identity present will be based primarily on whether the peptide is a functional variant or non-functional variant, the amount of divergence present in the paralog family and the evolutionary distance between the orthologs.

To determine the percent identity of two amino acid sequences or two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In a preferred embodiment, at least 30%, 40%, 50%, 60%, 70%, 80%, or 90% or more of the length of a reference sequence is aligned for comparison purposes. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

The comparison of sequences and determination of percent identity and similarity between two sequences can be accomplished using a mathematical algorithm. (*Computational Molecular Biology*, Lesk, A. M., ed., Oxford University Press, New York, 1988; *Biocomputing: Informatics and Genome Projects*, Smith, D. W., ed., Academic Press, New York, 1993; *Computer Analysis of Sequence Data, Part 1*, Griffin, A. M., and Griffin, H. G.,

eds., Humana Press, New Jersey, 1994; *Sequence Analysis in Molecular Biology*, von Heijne, G., Academic Press, 1987; and *Sequence Analysis Primer*, Grabskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (*J. Mol. Biol.* (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at <http://www.gcg.com>), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (Devereux, J., et al., *Nucleic Acids Res.* 12(1):387 (1984)) (available at <http://www.gcg.com>), using a NWS-gapDNA.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Myers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

The nucleic acid and protein sequences of the present invention can further be used as a "query sequence" to perform a search against sequence databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (*J. Mol. Biol.* 215:403-10 (1990)). BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to the nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to the proteins of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (*Nucleic Acids Res.* 25(17):3389-3402 (1997)). When utilizing BLAST and gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used.

Full-length pre-processed forms, as well as mature processed forms, of proteins that comprise one of the peptides of the present invention can readily be identified as having complete sequence identity to one of the kinase peptides of the present invention as well as being encoded by the same genetic locus as the kinase peptide provided herein. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

Allelic variants of a kinase peptide can readily be identified as being a human protein having a high degree (significant) of sequence homology/identity to at least a portion of the kinase peptide as well as being encoded by the same genetic locus as the kinase peptide provided herein. Genetic locus can readily be determined based on the genomic information provided in FIG. 3, such as the genomic sequence mapped to the reference human. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data. As used herein, two proteins (or a region of

the proteins) have significant homology when the amino acid sequences are typically at least about 70-80%, 80-90%, and more typically at least about 90-95% or more homologous. A significantly homologous amino acid sequence, according to the present invention, will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under stringent conditions as more fully described below.

FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

Paralogs of a kinase peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the kinase peptide, as being encoded by a gene from humans, and as having similar activity or function. Two proteins will typically be considered paralogs when the amino acid sequences are typically at least about 60% or greater, and more typically at least about 70% or greater homology through a given region or domain. Such paralogs will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under moderate to stringent conditions as more fully described below.

Orthologs of a kinase peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the kinase peptide as well as being encoded by a gene from another organism. Preferred orthologs will be isolated from mammals, preferably primates, for the development of human therapeutic targets and agents. Such orthologs will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under moderate to stringent conditions, as more fully described below, depending on the degree of relatedness of the two organisms yielding the proteins.

Non-naturally occurring variants of the kinase peptides of the present invention can readily be generated using recombinant techniques. Such variants include, but are not limited to deletions, additions and substitutions in the amino acid sequence of the kinase peptide. For example, one class of substitutions are conserved amino acid substitution. Such substitutions are those that substitute a given amino acid in a kinase peptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu, and Ile; interchange of the hydroxyl residues Ser and Thr; exchange of the acidic residues Asp and Glu; substitution between the amide residues Asn and Gln; exchange of the basic residues Lys and Arg; and replacements among the aromatic residues Phe and Tyr. Guidance concerning which amino acid changes are likely to be phenotypically silent are found in Bowie et al., *Science* 247:1306-1310 (1990).

Variant kinase peptides can be fully functional or can lack function in one or more activities, e.g. ability to bind substrate, ability to phosphorylate substrate, ability to mediate signaling, etc. Fully functional variants typically contain only conservative variation or variation in non-critical residues or in non-critical regions. FIG. 2 provides the result of protein analysis and can be used to identify critical domains/regions. Functional variants can also contain substitution of similar amino acids that result in no change or an insignificant change in function. Alternatively, such substitutions may positively or negatively affect function to some degree.

11

Non-functional variants typically contain one or more non-conservative amino acid substitutions, deletions, insertions, inversions, or truncation or a substitution, insertion, inversion, or deletion in a critical residue or critical region.

Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham et al., *Science* 244:1081-1085 (1989)), particularly using the results provided in FIG. 2. The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as kinase activity or in assays such as an in vitro proliferative activity. Sites that are critical for binding partner/substrate binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al., *J. Mol. Biol.* 224:899-904 (1992); de Vos et al. *Science* 255:306-312 (1992)).

The present invention further provides fragments of the kinase peptides, in addition to proteins and peptides that comprise and consist of such fragments, particularly those comprising the residues identified in FIG. 2. The fragments to which the invention pertains, however, are not to be construed as encompassing fragments that may be disclosed publicly prior to the present invention.

As used herein, a fragment comprises at least 8, 10, 12, 14, 16, or more contiguous amino acid residues from a kinase peptide. Such fragments can be chosen based on the ability to retain one or more of the biological activities of the kinase peptide or could be chosen for the ability to perform a function, e.g. bind a substrate or act as an immunogen. Particularly important fragments are biologically active fragments, peptides that are, for example, about 8 or more amino acids in length. Such fragments will typically comprise a domain or motif of the kinase peptide, e.g., active site, a transmembrane domain or a substrate-binding domain. Further, possible fragments include, but are not limited to, domain or motif containing fragments, soluble peptide fragments, and fragments containing immunogenic structures. Predicted domains and functional sites are readily identifiable by computer programs well known and readily available to those of skill in the art (e.g., PROSITE analysis). The results of one such analysis are provided in FIG. 2.

Polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally occurring amino acids. Further, many amino acids, including the terminal amino acids, may be modified by natural processes, such as processing and other post-translational modifications, or by chemical modification techniques well known in the art. Common modifications that occur naturally in kinase peptides are described in basic texts, detailed monographs, and the research literature, and they are well known to those of skill in the art (some of these features are identified in FIG. 2).

Known modifications include, but are not limited to, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphatidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cystine, formation of pyroglutamate, formylation, gamma carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristylation, oxidation, pro-

12

teolytic processing, phosphorylation, prenylation, racemization, selenylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.

Such modifications are well known to those of skill in the art and have been described in great detail in the scientific literature. Several particularly common modifications, glycosylation, lipid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, for instance, are described in most basic texts, such as *Proteins—Structure and Molecular Properties*, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993). Many detailed reviews are available on this subject, such as by Wold, F., *Posttranslational Covalent Modification of Proteins*, B. C. Johnson, Ed., Academic Press, New York 1-12 (1983); Seifert et al. (*Meth. Enzymol.* 182: 626-646 (1990)) and Rattan et al. (*Ann. N.Y. Acad. Sci.* 663:48-62 (1992)).

Accordingly, the kinase peptides of the present invention also encompass derivatives or analogs in which a substituted amino acid residue is not one encoded by the genetic code, in which a substituent group is included, in which the mature kinase peptide is fused with another compound, such as a compound to increase the half-life of the kinase peptide (for example, polyethylene glycol), or in which the additional amino acids are fused to the mature kinase peptide, such as a leader or secretory sequence or a sequence for purification of the mature kinase peptide or a pro-protein sequence.

30 Protein/Peptide Uses

The proteins of the present invention can be used in substantial and specific assays related to the functional information provided in the Figures; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its binding partner or ligand) in biological fluids; and as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state). Where the protein binds or potentially binds to another protein or ligand (such as, for example, in a kinase-effector protein interaction or kinase-ligand interaction), the protein can be used to identify the binding partner/ligand so as to develop a system to identify inhibitors of the binding interaction. Any or all of these uses are capable of being developed into reagent grade or kit format for commercialization as commercial products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

The potential uses of the peptides of the present invention are based primarily on the source of the protein as well as the class/action of the protein. For example, kinases isolated from humans and their human/mammalian orthologs serve as targets for identifying agents for use in mammalian therapeutic applications, e.g. a human drug, particularly in modulating a biological or pathological response in a cell or tissue that expresses the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant

brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. A large percentage of pharmaceutical agents are being developed that modulate the activity of kinase proteins, particularly members of the serine/threonine kinase subfamily (see Background of the Invention). The structural and functional information provided in the Background and Figures provide specific and substantial uses for the molecules of the present invention, particularly in combination with the expression information provided in FIG. 1. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Such uses can readily be determined using the information provided herein, that which is known in the art, and routine experimentation.

The proteins of the present invention (including variants and fragments that may have been disclosed prior to the present invention) are useful for biological assays related to kinases that are related to members of the serine/threonine kinase subfamily. Such assays involve any of the known kinase functions or activities or properties useful for diagnosis and treatment of kinase-related conditions that are specific for the subfamily of kinases that the one of the present invention belongs to, particularly in cells and tissues that express the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain.

The proteins of the present invention are also useful in drug screening assays, in cell-based or cell-free systems. Cell-based systems can be native, i.e., cells that normally express the kinase, as a biopsy or expanded in cell culture. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. In an alternate embodiment, cell-based assays involve recombinant host cells expressing the kinase protein.

The polypeptides can be used to identify compounds that modulate kinase activity of the protein in its natural state or an altered form that causes a specific disease or pathology associated with the kinase. Both the kinases of the present invention and appropriate variants and fragments can be used in high-throughput screens to assay candidate compounds for the ability to bind to the kinase. These compounds can be further screened against a functional kinase to determine the effect of the compound on the kinase activity. Further, these compounds can be tested in animal or invertebrate systems to determine activity/effectiveness. Compounds can be identified that activate (agonist) or inactivate (antagonist) the kinase to a desired degree.

Further, the proteins of the present invention can be used to screen a compound for the ability to stimulate or inhibit interaction between the kinase protein and a molecule that normally interacts with the kinase protein, e.g. a substrate or a component of the signal pathway that the kinase protein normally interacts (for example, another kinase). Such assays typically include the steps of combining the kinase protein with a candidate compound under conditions that allow the kinase protein, or fragment, to interact with the target molecule, and to detect the formation of a complex between the protein and the target or to detect the biochemical consequence of the interaction with the kinase protein and the target, such as any of the associated effects of signal

transduction such as protein phosphorylation, cAMP turnover, and adenylate cyclase activation, etc.

Candidate compounds include, for example, 1) peptides such as soluble peptides, including Ig-tailed fusion peptides and members of random peptide libraries (see, e.g., Lam et al., *Nature* 354:82-84 (1991); Houghten et al., *Nature* 354:84-86 (1991)) and combinatorial chemistry-derived molecular libraries made of D- and/or L-configuration amino acids; 2) phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang et al., *Cell* 72:767-778 (1993)); 3) antibodies (e.g., polyclonal, monoclonal, humanized, anti-idiotypic, chimeric, and single chain antibodies as well as Fab, F(ab')₂, Fab expression library fragments, and epitope-binding fragments of antibodies); and 4) small organic and inorganic molecules (e.g., molecules obtained from combinatorial and natural product libraries).

One candidate compound is a soluble fragment of the receptor that competes for substrate binding. Other candidate compounds include mutant kinases or appropriate fragments containing mutations that affect kinase function and thus compete for substrate. Accordingly, a fragment that competes for substrate, for example with a higher affinity, or a fragment that binds substrate but does not allow release, is encompassed by the invention.

The invention further includes other end point assays to identify compounds that modulate (stimulate or inhibit) kinase activity. The assays typically involve an assay of events in the signal transduction pathway that indicate kinase activity. Thus, the phosphorylation of a substrate, activation of a protein, a change in the expression of genes that are up- or down-regulated in response to the kinase protein dependent signal cascade can be assayed.

Any of the biological or biochemical functions mediated by the kinase can be used as an endpoint assay. These include all of the biochemical or biochemical/biological events described herein, in the references cited herein, incorporated by reference for these endpoint assay targets, and other functions known to those of ordinary skill in the art or that can be readily identified using the information provided in the Figures, particularly FIG. 2. Specifically, a biological function of a cell or tissues that expresses the kinase can be assayed. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain.

Binding and/or activating compounds can also be screened by using chimeric kinase proteins in which the amino terminal extracellular domain, or parts thereof, the entire transmembrane domain or subregions, such as any of the seven transmembrane segments or any of the intracellular or extracellular loops and the carboxy terminal intracellular domain, or parts thereof, can be replaced by heterologous domains or subregions. For example, a substrate-binding region can be used that interacts with a different substrate than that which is recognized by the native kinase. Accordingly, a different set of signal transduction components is available as an end-point assay for activation. This allows for assays to be performed in other than the specific host cell from which the kinase is derived.

The proteins of the present invention are also useful in competition binding assays in methods designed to discover compounds that interact with the kinase (e.g. binding part-

ners and/or ligands). Thus, a compound is exposed to a kinase polypeptide under conditions that allow the compound to bind or to otherwise interact with the polypeptide. Soluble kinase polypeptide is also added to the mixture. If the test compound interacts with the soluble kinase polypeptide, it decreases the amount of complex formed or activity from the kinase target. This type of assay is particularly useful in cases in which compounds are sought that interact with specific regions of the kinase. Thus, the soluble polypeptide that competes with the target kinase region is designed to contain peptide sequences corresponding to the region of interest.

To perform cell free drug screening assays, it is sometimes desirable to immobilize either the kinase protein, or fragment, or its target molecule to facilitate separation of complexes from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay.

Techniques for immobilizing proteins on matrices can be used in the drug screening assays. In one embodiment, a fusion protein can be provided which adds a domain that allows the protein to be bound to a matrix. For example, glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtitre plates, which are then combined with the cell lysates (e.g., ^{35}S -labeled) and the candidate compound, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads are washed to remove any unbound label, and the matrix immobilized and radiolabel determined directly, or in the supernatant after the complexes are dissociated. Alternatively, the complexes can be dissociated from the matrix, separated by SDS-PAGE, and the level of kinase-binding protein found in the bead fraction quantitated from the gel using standard electrophoretic techniques. For example, either the polypeptide or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin using techniques well known in the art. Alternatively, antibodies reactive with the protein but which do not interfere with binding of the protein to its target molecule can be derivatized to the wells of the plate, and the protein trapped in the wells by antibody conjugation. Preparations of a kinase-binding protein and a candidate compound are incubated in the kinase protein-presenting wells and the amount of complex trapped in the well can be quantitated. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the kinase protein target molecule, or which are reactive with kinase protein and compete with the target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the target molecule.

Agents that modulate one of the kinases of the present invention can be identified using one or more of the above assays, alone or in combination. It is generally preferable to use a cell-based or cell free system first and then confirm activity in an animal or other model system. Such model systems are well known in the art and can readily be employed in this context.

Modulators of kinase protein activity identified according to these drug screening assays can be used to treat a subject with a disorder mediated by the kinase pathway, by treating cells or tissues that express the kinase. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. These methods of treatment include the steps of administering a modulator of

kinase activity in a pharmaceutical composition to a subject in need of such treatment, the modulator being identified as described herein.

In yet another aspect of the invention, the kinase proteins can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al. (1993) *Cell* 72:223-232; Madura et al. (1993) *J. Biol. Chem.* 268:12046-12054; Bartel et al. (1993) *Biotechniques* 14:920-924; Iwabuchi et al. (1993) *Oncogene* 8:1693/1696; and Brent WO94110300), to identify other proteins, which bind to or interact with the kinase and are involved in kinase activity. Such kinase-binding proteins are also likely to be involved in the propagation of signals by the kinase proteins or kinase targets as, for example, downstream elements of a kinase-mediated signaling pathway. Alternatively, such kinase-binding proteins are likely to be kinase inhibitors.

The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for a kinase protein is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, *in vivo*, forming a kinase-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the kinase protein.

This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a kinase-modulating agent, an antisense kinase nucleic acid molecule, a kinase-specific antibody, or a kinase-binding partner) can be used in an animal or other model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal or other model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.

The kinase proteins of the present invention are also useful to provide a target for diagnosing a disease or predisposition to disease mediated by the peptide. Accordingly, the invention provides methods for detecting the presence, or levels of, the protein (or encoding mRNA) in a cell, tissue, or organism. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The method involves contacting a biological sample with a compound capable of interacting with the kinase protein such that the interaction can be detected. Such an assay can be provided in a single detection format or a multi-detection format such as an antibody chip array.

One agent for detecting a protein in a sample is an antibody capable of selectively binding to protein. A bio-

logical sample includes tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject.

The peptides of the present invention also provide targets for diagnosing active protein activity, disease, or predisposition to disease, in a patient having a variant peptide, particularly activities and conditions that are known for other members of the family of proteins to which the present one belongs. Thus, the peptide can be isolated from a biological sample and assayed for the presence of a genetic mutation that results in aberrant peptide. This includes amino acid substitution, deletion, insertion, rearrangement, (as the result of aberrant splicing events), and inappropriate post-translational modification. Analytic methods include altered electrophoretic mobility, altered tryptic peptide digest, altered kinase activity in cell-based or cell-free assay, alteration in substrate or antibody-binding pattern, altered isoelectric point, direct amino acid sequencing, and any other of the known assay techniques useful for detecting mutations in a protein. Such an assay can be provided in a single detection format or a multi-detection format such as an antibody chip array.

In vitro techniques for detection of peptide include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence using a detection reagent, such as an antibody or protein binding agent. Alternatively, the peptide can be detected in vivo in a subject by introducing into the subject a labeled anti-peptide antibody or other types of detection agent. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Particularly useful are methods that detect the allelic variant of a peptide expressed in a subject and methods which detect fragments of a peptide in a sample.

The peptides are also useful in pharmacogenomic analysis. Pharmacogenomics deal with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Eichelbaum, M. (*Clin. Exp. Pharmacol. Physiol.* 23(10-11):983-985 (1996)), and Linder, M. W. (*Clin. Chem.* 43(2):254-266 (1997)). The clinical outcomes of these variations result in severe toxicity of therapeutic drugs in certain individuals or therapeutic failure of drugs in certain individuals as a result of individual variation in metabolism. Thus, the genotype of the individual can determine the way a therapeutic compound acts on the body or the way the body metabolizes the compound. Further, the activity of drug metabolizing enzymes effects both the intensity and duration of drug action. Thus, the pharmacogenomics of the individual permit the selection of effective compounds and effective dosages of such compounds for prophylactic or therapeutic treatment based on the individual's genotype. The discovery of genetic polymorphisms in some drug metabolizing enzymes has explained why some patients do not obtain the expected drug effects, show an exaggerated drug effect, or experience serious toxicity from standard drug dosages. Polymorphisms can be expressed in the phenotype of the extensive metabolizer and the phenotype of the poor metabolizer. Accordingly, genetic polymorphism may lead to allelic protein variants of the kinase protein in which one or more of the kinase functions in one population is different from those in another population. The peptides thus allow a target to ascertain a genetic predisposition that can affect treatment modality. Thus, in a ligand-based treatment, polymorphism may give rise to amino terminal extracellular domains and/or other substrate-binding regions that are

more or less active in substrate binding, and kinase activation. Accordingly, substrate dosage would necessarily be modified to maximize the therapeutic effect within a given population containing a polymorphism. As an alternative to genotyping, specific polymorphic peptides could be identified.

The peptides are also useful for treating a disorder characterized by an absence of, inappropriate, or unwanted expression of the protein. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Accordingly, methods for treatment include the use of the kinase protein or fragments.

Antibodies

The invention also provides antibodies that selectively bind to one of the peptides of the present invention, a protein comprising such a peptide, as well as variants and fragments thereof. As used herein, an antibody selectively binds a target peptide when it binds the target peptide and does not significantly bind to unrelated proteins. An antibody is still considered to selectively bind a peptide even if it also binds to other proteins that are not substantially homologous with the target peptide so long as such proteins share homology with a fragment or domain of the peptide target of the antibody. In this case, it would be understood that antibody binding to the peptide is still selective despite some degree of cross-reactivity.

As used herein, an antibody is defined in terms consistent with that recognized within the art: they are multi-subunit proteins produced by a mammalian organism in response to an antigen challenge. The antibodies of the present invention include polyclonal antibodies and monoclonal antibodies, as well as fragments of such antibodies, including, but not limited to, Fab or F(ab')₂, and Fv fragments.

Many methods are known for generating and/or identifying antibodies to a given target peptide. Several such methods are described by Harlow, *Antibodies*, Cold Spring Harbor Press, (1989).

In general, to generate antibodies, an isolated peptide is used as an immunogen and is administered to a mammalian organism, such as a rat, rabbit or mouse. The full-length protein, an antigenic peptide fragment or a fusion protein can be used. Particularly important fragments are those covering functional domains, such as the domains identified in FIG. 2, and domain of sequence homology or divergence amongst the family, such as those that can readily be identified using protein alignment methods and as presented in the Figures.

Antibodies are preferably prepared from regions or discrete fragments of the kinase proteins. Antibodies can be prepared from any region of the peptide as described herein. However, preferred regions will include those involved in function/activity and/or kinase/binding partner interaction. FIG. 2 can be used to identify particularly important regions while sequence alignment can be used to identify conserved and unique sequence fragments.

An antigenic fragment will typically comprise at least 8 contiguous amino acid residues. The antigenic peptide can comprise, however, at least 10, 12, 14, 16 or more amino acid residues. Such fragments can be selected on a physical property, such as fragments correspond to regions that are located on the surface of the protein, e.g., hydrophilic regions or can be selected based on sequence uniqueness (see FIG. 2).

Detection on an antibody of the present invention can be facilitated by coupling (i.e., physically linking) the antibody

to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β -galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliflavin, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ^{125}I , ^{131}I , ^{35}S or ^3H .

Antibody Uses

The antibodies can be used to isolate one of the proteins of the present invention by standard techniques, such as affinity chromatography or immunoprecipitation. The antibodies can facilitate the purification of the natural protein from cells and recombinantly produced protein expressed in host cells. In addition, such antibodies are useful to detect the presence of one of the proteins of the present invention in cells or tissues to determine the pattern of expression of the protein among various tissues in an organism and over the course of normal development. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. Further, such antibodies can be used to detect protein in situ, in vitro, or in a cell lysate or supernatant in order to evaluate the abundance and pattern of expression. Also, such antibodies can be used to assess abnormal tissue distribution or abnormal expression during development or progression of a biological condition. Antibody detection of circulating fragments of the full length protein can be used to identify turnover.

Further, the antibodies can be used to assess expression in disease states such as in active stages of the disease or in an individual with a predisposition toward disease related to the protein's function. When a disorder is caused by an inappropriate tissue distribution, developmental expression, level of expression of the protein, or expressed/processed form, the antibody can be prepared against the normal protein. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. If a disorder is characterized by a specific mutation in the protein, antibodies specific for this mutant protein can be used to assay for the presence of the specific mutant protein.

The antibodies can also be used to assess normal and aberrant subcellular localization of cells in the various tissues in an organism. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The diagnostic uses can be applied, not only in genetic testing, but also in monitoring a treatment modality. Accordingly, where treatment is ultimately aimed at correcting expression level or the presence of aberrant sequence and aberrant tissue distribution or developmental expression, antibodies directed against the protein or relevant fragments can be used to monitor therapeutic efficacy.

Additionally, antibodies are useful in pharmacogenomic analysis. Thus, antibodies prepared against polymorphic

proteins can be used to identify individuals that require modified treatment modalities. The antibodies are also useful as diagnostic tools as an immunological marker for aberrant protein analyzed by electrophoretic mobility, isoelectric point, tryptic peptide digest, and other physical assays known to those in the art.

The antibodies are also useful for tissue typing. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Thus, where a specific protein has been correlated with expression in a specific tissue, antibodies that are specific for this protein can be used to identify a tissue type.

The antibodies are also useful for inhibiting protein function, for example, blocking the binding of the kinase peptide to a binding partner such as a substrate. These uses can also be applied in a therapeutic context in which treatment involves inhibiting the protein's function. An antibody can be used, for example, to block binding, thus modulating (agonizing or antagonizing) the peptides activity. Antibodies can be prepared against specific fragments containing sites required for function or against intact protein that is associated with a cell or cell membrane. See FIG. 2 for structural information relating to the proteins of the present invention.

The invention also encompasses kits for using antibodies to detect the presence of a protein in a biological sample. The kit can comprise antibodies such as a labeled or labelable antibody and a compound or agent for detecting protein in a biological sample; means for determining the amount of protein in the sample; means for comparing the amount of protein in the sample with a standard; and instructions for use. Such a kit can be supplied to detect a single protein or epitope or can be configured to detect one of a multitude of epitopes, such as in an antibody detection array. Arrays are described in detail below for nucleic acid arrays and similar methods have been developed for antibody arrays.

Nucleic Acid Molecules

The present invention further provides isolated nucleic acid molecules that encode a kinase peptide or protein of the present invention (cDNA, transcript and genomic sequence). Such nucleic acid molecules will consist of, consist essentially of, or comprise a nucleotide sequence that encodes one of the kinase peptides of the present invention, an allelic variant thereof, or an ortholog or paralog thereof.

As used herein, an "isolated" nucleic acid molecule is one that is separated from other nucleic acid present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. However, there can be some flanking nucleotide sequences, for example up to about 5KB, 4KB, 3KB, 2KB, or 1KB or less, particularly contiguous peptide encoding sequences and peptide encoding sequences within the same gene but separated by introns in the genomic sequence. The important point is that the nucleic acid is isolated from remote and unimportant flanking sequences such that it can be subjected to the specific manipulations described herein such as recombinant expression, preparation of probes and primers, and other uses specific to the nucleic acid sequences.

Moreover, an "isolated" nucleic acid molecule, such as a transcript/cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by

recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. However, the nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated.

For example, recombinant DNA molecules contained in a vector are considered isolated. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include *in vivo* or *in vitro* RNA transcripts of the isolated DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.

Accordingly, the present invention provides nucleic acid molecules that consist of the nucleotide sequence shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule consists of a nucleotide sequence when the nucleotide sequence is the complete nucleotide sequence of the nucleic acid molecule.

The present invention further provides nucleic acid molecules that consist essentially of the nucleotide sequence shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule consists essentially of a nucleotide sequence when such a nucleotide sequence is present with only a few additional nucleic acid residues in the final nucleic acid molecule.

The present invention further provides nucleic acid molecules that comprise the nucleotide sequences shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule comprises a nucleotide sequence when the nucleotide sequence is at least part of the final nucleotide sequence of the nucleic acid molecule. In such a fashion, the nucleic acid molecule can be only the nucleotide sequence or have additional nucleic acid residues, such as nucleic acid residues that are naturally associated with it or heterologous nucleotide sequences. Such a nucleic acid molecule can have a few additional nucleotides or can comprises several hundred or more additional nucleotides. A brief description of how various types of these nucleic acid molecules can be readily made/isolated is provided below.

In FIGS. 1 and 3, both coding and non-coding sequences are provided. Because of the source of the present invention, humans genomic sequence (FIG. 3) and cDNA/transcript sequences (FIG. 1), the nucleic acid molecules in the Figures will contain genomic intronic sequences, 5' and 3' non-coding sequences, gene regulatory regions and non-coding intergenic sequences. In general such sequence features are either noted in FIGS. 1 and 3 or can readily be identified using computational tools known in the art. As discussed below, some of the non-coding regions, particularly gene regulatory elements such as promoters, are useful for a variety of purposes, e.g. control of heterologous gene expression, target for identifying gene activity modulating compounds, and are particularly claimed as fragments of the genomic sequence provided herein.

The isolated nucleic acid molecules can encode the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature peptide (when the mature form has more than one peptide chain, for instance). Such sequences may play a role in processing of

a protein from precursor to a mature form, facilitate protein trafficking, prolong or shorten protein half-life or facilitate manipulation of a protein for assay or production, among other things. As generally is the case *in situ*, the additional amino acids may be processed away from the mature protein by cellular enzymes.

As mentioned above, the isolated nucleic acid molecules include, but are not limited to, the sequence encoding the kinase peptide alone, the sequence encoding the mature peptide and additional coding sequences, such as a leader or secretory sequence (e.g., a pre-pro or pro-protein sequence), the sequence encoding the mature peptide, with or without the additional coding sequences, plus additional non-coding sequences, for example introns and non-coding 5' and 3' sequences such as transcribed but non-translated sequences that play a role in transcription, mRNA processing (including splicing and polyadenylation signals), ribosome binding and stability of mRNA. In addition, the nucleic acid molecule may be fused to a marker sequence encoding, for example, a peptide that facilitates purification.

Isolated nucleic acid molecules can be in the form of RNA, such as mRNA, or in the form DNA, including cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof. The nucleic acid, especially DNA, can be double-stranded or single-stranded. Single-stranded nucleic acid can be the coding strand (sense strand) or the non-coding strand (anti-sense strand).

The invention further provides nucleic acid molecules that encode fragments of the peptides of the present invention as well as nucleic acid molecules that encode obvious variants of the kinase proteins of the present invention that are described above. Such nucleic acid molecules may be naturally occurring, such as allelic variants (same locus), paralogs (different locus), and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis. Such non-naturally occurring variants may be made by mutagenesis techniques, including those applied to nucleic acid molecules, cells, or organisms. Accordingly, as discussed above, the variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions.

The present invention further provides non-coding fragments of the nucleic acid molecules provided in FIGS. 1 and 3. Preferred non-coding fragments include, but are not limited to, promoter sequences, enhancer sequences, gene modulating sequences and gene termination sequences. Such fragments are useful in controlling heterologous gene expression and in developing screens to identify gene-modulating agents. A promoter can readily be identified as being 5' to the ATG start site in the genomic sequence provided in FIG. 3.

A fragment comprises a contiguous nucleotide sequence greater than 12 or more nucleotides. Further, a fragment could at least 30, 40, 50, 100, 250 or 500 nucleotides in length. The length of the fragment will be based on its intended use. For example, the fragment can encode epitope bearing regions of the peptide, or can be useful as DNA probes and primers. Such fragments can be isolated using the known nucleotide sequence to synthesize an oligonucleotide probe. A labeled probe can then be used to screen a cDNA library, genomic DNA library, or mRNA to isolate nucleic acid corresponding to the coding region. Further, primers can be used in PCR reactions to clone specific regions of gene.

A probe/primer typically comprises substantially a purified oligonucleotide or oligonucleotide pair. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 20, 25, 40, 50 or more consecutive nucleotides.

Orthologs, homologs, and allelic variants can be identified using methods well known in the art. As described in the Peptide Section, these variants comprise a nucleotide sequence encoding a peptide that is typically 60–70%, 70–80%, 80–90%, and more typically at least about 90–95% or more homologous to the nucleotide sequence shown in the Figure sheets or a fragment of this sequence. Such nucleic acid molecules can readily be identified as being able to hybridize under moderate to stringent conditions, to the nucleotide sequence shown in the Figure sheets or a fragment of the sequence. Allelic variants can readily be determined by genetic locus of the encoding gene. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences encoding a peptide at least 60–70% homologous to each other typically remain hybridized to each other. The conditions can be such that sequences at least about 60%, at least about 70%, or at least about 80% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in *Current Protocols in Molecular Biology*, John Wiley & Sons, N.Y. (1989), 6.3.1–6.3.6. One example of stringent hybridization conditions are hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2×SSC, 0.1% SDS at 50–65°C. Examples of moderate to low stringency hybridization conditions are well known in the art.

Nucleic Acid Molecule Uses

The nucleic acid molecules of the present invention are useful for probes, primers, chemical intermediates, and in biological assays. The nucleic acid molecules are useful as a hybridization probe for messenger RNA, transcript/cDNA and genomic DNA to isolate full-length cDNA and genomic clones encoding the peptide described in FIG. 2 and to isolate cDNA and genomic clones that correspond to variants (alleles, orthologs, etc.) producing the same or related peptides shown in FIG. 2. As illustrated in FIG. 3, SNPs were identified at 42 different nucleotide positions.

The probe can correspond to any sequence along the entire length of the nucleic acid molecules provided in the Figures. Accordingly, it could be derived from 5' noncoding regions, the coding region, and 3' noncoding regions. However, as discussed, fragments are not to be construed as encompassing fragments disclosed prior to the present invention.

The nucleic acid molecules are also useful as primers for PCR to amplify any given region of a nucleic acid molecule and are useful to synthesize antisense molecules of desired length and sequence.

The nucleic acid molecules are also useful for constructing recombinant vectors. Such vectors include expression vectors that express a portion of, or all of, the peptide sequences. Vectors also include insertion vectors, used to integrate into another nucleic acid molecule sequence, such as into the cellular genome, to alter in situ expression of a gene and/or gene product. For example, an endogenous coding sequence can be replaced via homologous recombination with all or part of the coding region containing one or more specifically introduced mutations.

The nucleic acid molecules are also useful for expressing antigenic portions of the proteins.

The nucleic acid molecules are also useful as probes for determining the chromosomal positions of the nucleic acid molecules by means of in situ hybridization methods. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

The nucleic acid molecules are also useful in making vectors containing the gene regulatory regions of the nucleic acid molecules of the present invention.

The nucleic acid molecules are also useful for designing ribozymes corresponding to all, or a part, of the mRNA produced from the nucleic acid molecules described herein.

The nucleic acid molecules are also useful for making vectors that express part, or all, of the peptides.

The nucleic acid molecules are also useful for constructing host cells expressing a part, or all, of the nucleic acid molecules and peptides.

The nucleic acid molecules are also useful for constructing transgenic animals expressing all, or a part, of the nucleic acid molecules and peptides.

The nucleic acid molecules are also useful as hybridization probes for determining the presence, level, form and distribution of nucleic acid expression. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. Accordingly, the probes can be used to detect the presence of, or to determine levels of, a specific nucleic acid molecule in cells, tissues, and in organisms. The nucleic acid whose level is determined can be DNA or RNA. Accordingly, probes corresponding to the peptides described herein can be used to assess expression and/or gene copy number in a given cell, tissue, or organism. These uses are relevant for diagnosis of disorders involving an increase or decrease in kinase protein expression relative to normal results.

In vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detecting DNA includes Southern hybridizations and in situ hybridization.

Probes can be used as a part of a diagnostic test kit for identifying cells or tissues that express a kinase protein, such as by measuring a level of a kinase-encoding nucleic acid in a sample of cells from a subject e.g., mRNA or genomic DNA, or determining if a kinase gene has been mutated. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by

virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain.

Nucleic acid expression assays are useful for drug screening to identify compounds that modulate kinase nucleic acid expression.

The invention thus provides a method for identifying a compound that can be used to treat a disorder associated with nucleic acid expression of the kinase gene, particularly biological and pathological processes that are mediated by the kinase in cells and tissues that express it. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The method typically includes assaying the ability of the compound to modulate the expression of the kinase nucleic acid and thus identifying a compound that can be used to treat a disorder characterized by undesired kinase nucleic acid expression. The assays can be performed in cell-based and cell-free systems. Cell-based assays include cells naturally expressing the kinase nucleic acid or recombinant cells genetically engineered to express specific nucleic acid sequences.

The assay for kinase nucleic acid expression can involve direct assay of nucleic acid levels, such as mRNA levels, or on collateral compounds involved in the signal pathway. Further, the expression of genes that are up- or down-regulated in response to the kinase protein signal pathway can also be assayed. In this embodiment the regulatory regions of these genes can be operably linked to a reporter gene such as luciferase.

Thus, modulators of kinase gene expression can be identified in a method wherein a cell is contacted with a candidate compound and the expression of mRNA determined. The level of expression of kinase mRNA in the presence of the candidate compound is compared to the level of expression of kinase mRNA in the absence of the candidate compound. The candidate compound can then be identified as a modulator of nucleic acid expression based on this comparison and be used, for example to treat a disorder characterized by aberrant nucleic acid expression. When expression of mRNA is statistically significantly greater in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of nucleic acid expression. When nucleic acid expression is statistically significantly less in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of nucleic acid expression.

The invention further provides methods of treatment, with the nucleic acid as a target, using a compound identified through drug screening as a gene modulator to modulate kinase nucleic acid expression in cells and tissues that express the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. Modulation includes both up-regulation (i.e. activation or agonization) or down-regulation (suppression or antagonization) or nucleic acid expression.

Alternatively, a modulator for kinase nucleic acid expression can be a small molecule or drug identified using the screening assays described herein as long as the drug or small molecule inhibits the kinase nucleic acid expression in the cells and tissues that express the protein. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

The nucleic acid molecules are also useful for monitoring the effectiveness of modulating compounds on the expression or activity of the kinase gene in clinical trials or in a treatment regimen. Thus, the gene expression pattern can serve as a barometer for the continuing effectiveness of treatment with the compound, particularly with compounds to which a patient can develop resistance. The gene expression pattern can also serve as a marker indicative of a physiological response of the affected cells to the compound.

Accordingly, such monitoring would allow either increased administration of the compound or the administration of alternative compounds to which the patient has not become resistant. Similarly, if the level of nucleic acid expression falls below a desirable level, administration of the compound could be commensurately decreased.

The nucleic acid molecules are also useful in diagnostic assays for qualitative changes in kinase nucleic acid expression, and particularly in qualitative changes that lead to pathology. The nucleic acid molecules can be used to detect mutations in kinase genes and gene expression products such as mRNA. The nucleic acid molecules can be used as hybridization probes to detect naturally occurring genetic mutations in the kinase gene and thereby to determine whether a subject with the mutation is at risk for a disorder caused by the mutation. Mutations include deletion, addition, or substitution of one or more nucleotides in the gene, chromosomal rearrangement, such as inversion or transposition, modification of genomic DNA, such as aberrant methylation patterns or changes in gene copy number, such as amplification. Detection of a mutated form of the kinase gene associated with a dysfunction provides a diagnostic tool for an active disease or susceptibility to disease when the disease results from overexpression, underexpression, or altered expression of a kinase protein.

Individuals carrying mutations in the kinase gene can be detected at the nucleic acid level by a variety of techniques. FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data. Genomic DNA can be analyzed directly or can be amplified by using PCR prior to analysis. RNA or cDNA can be used in the same way. In some uses, detection of the mutation involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g. U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al., *Science* 241:1077-1080 (1988); and Nakazawa et al., *PNAS* 91:360-364 (1994)), the latter of which can be particularly useful for detecting point mutations in the gene (see Abravaya et al., *Nucleic Acids Res.* 23:675-682 (1995)). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. Deletions and insertions can be detected by a change in size of the amplified product compared to the normal

genotype. Point mutations can be identified by hybridizing amplified DNA to normal RNA or antisense DNA sequences.

Alternatively, mutations in a kinase gene can be directly identified, for example, by alterations in restriction enzyme digestion patterns determined by gel electrophoresis.

Further, sequence-specific ribozymes (U.S. Pat. No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site. Perfectly matched sequences can be distinguished from mismatched sequences by nuclease cleavage digestion assays or by differences in melting temperature.

Sequence changes at specific locations can also be assessed by nuclease protection assays such as RNase and S1 protection or the chemical cleavage method. Furthermore, sequence differences between a mutant kinase gene and a wild-type gene can be determined by direct DNA sequencing. A variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve, C. W., (1995) *Biotechniques* 19:448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen et al., *Adv. Chromatogr.* 36:127-162 (1996); and Griffin et al., *Appl. Biochem. Biotechnol.* 38:147-159 (1993)).

Other methods for detecting mutations in the gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA duplexes (Myers et al., *Science* 230:1242 (1985)); Cotton et al., *PNAS* 85:4397 (1988); Saleeba et al., *Meth. Enzymol.* 217:286-295 (1992)), electrophoretic mobility of mutant and wild type nucleic acid is compared (Orita et al., *PNAS* 86:2766 (1989); Cotton et al., *Mutat. Res.* 285:125-144 (1993); and Hayashi et al., *Genet. Anal. Tech. Appl.* 9:73-79 (1992)), and movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (Myers et al., *Nature* 313:495 (1985)). Examples of other techniques for detecting point mutations include selective oligonucleotide hybridization, selective amplification, and selective primer extension.

The nucleic acid molecules are also useful for testing an individual for a genotype that while not necessarily causing the disease, nevertheless affects the treatment modality. Thus, the nucleic acid molecules can be used to study the relationship between an individual's genotype and the individual's response to a compound used for treatment (pharmacogenomic relationship). Accordingly, the nucleic acid molecules described herein can be used to assess the mutation content of the kinase gene in an individual in order to select an appropriate compound or dosage regimen for treatment. FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

Thus nucleic acid molecules displaying genetic variations that affect treatment provide a diagnostic target that can be used to tailor treatment in an individual. Accordingly, the production of recombinant cells and animals containing these polymorphisms allow effective clinical design of treatment compounds and dosage regimens.

The nucleic acid molecules are thus useful as antisense constructs to control kinase gene expression in cells, tissues, and organisms. A DNA antisense nucleic acid molecule is designed to be complementary to a region of the gene

involved in transcription, preventing transcription and hence production of kinase protein. An antisense RNA or DNA nucleic acid molecule would hybridize to the mRNA and thus block translation of mRNA into kinase protein.

Alternatively, a class of antisense molecules can be used to inactivate mRNA in order to decrease expression of kinase nucleic acid. Accordingly, these molecules can treat a disorder characterized by abnormal or undesired kinase nucleic acid expression. This technique involves cleavage by means of ribozymes containing nucleotide sequences complementary to one or more regions in the mRNA that attenuate the ability of the mRNA to be translated. Possible regions include coding regions and particularly coding regions corresponding to the catalytic and other functional activities of the kinase protein, such as substrate binding.

The nucleic acid molecules also provide vectors for gene therapy in patients containing cells that are aberrant in kinase gene expression. Thus, recombinant cells, which include the patient's cells that have been engineered ex vivo and returned to the patient, are introduced into an individual where the cells produce the desired kinase protein to treat the individual.

The invention also encompasses kits for detecting the presence of a kinase nucleic acid in a biological sample. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. For example, the kit can comprise reagents such as a labeled or labelable nucleic acid or agent capable of detecting kinase nucleic acid in a biological sample; means for determining the amount of kinase nucleic acid in the sample; and means for comparing the amount of kinase nucleic acid in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect kinase protein mRNA or DNA.

Nucleic Acid Arrays

The present invention further provides nucleic acid detection kits, such as arrays or microarrays of nucleic acid molecules that are based on the sequence information provided in FIGS. 1 and 3 (SEQ ID NOS:1 and 3).

As used herein "Arrays" or "Microarrays" refers to an array of distinct polynucleotides or oligonucleotides synthesized on a substrate, such as paper, nylon or other type of membrane, filter, chip, glass slide, or any other suitable solid support. In one embodiment, the microarray is prepared and used according to the methods described in U.S. Pat. No. 5,837,832, Chee et al., PCT application W095/11995 (Chee et al.), Lockhart, D. J. et al. (1996; *Nat. Biotech.* 14: 1675-1680) and Schena, M. et al. (1996; *Proc. Natl. Acad. Sci.* 93: 10614-10619), all of which are incorporated herein in their entirety by reference. In other embodiments, such arrays are produced by the methods described by Brown et al., U.S. Pat. No. 5,807,522.

The microarray or detection kit is preferably composed of a large number of unique, single-stranded nucleic acid sequences, usually either synthetic antisense oligonucleotides or fragments of cDNAs, fixed to a solid support. The oligonucleotides are preferably about 6-60 nucleotides in length, more preferably 15-30 nucleotides in length, and most preferably about 20-25 nucleotides in length. For a certain type of microarray or detection kit, it may be

Vectors/host Cells

The invention also provides vectors containing the nucleic acid molecules described herein. The term "vector" refers to a vehicle, preferably a nucleic acid molecule, which can transport the nucleic acid molecules. When the vector is a nucleic acid molecule, the nucleic acid molecules are covalently linked to the vector nucleic acid. With this aspect of the invention, the vector includes a plasmid, single or double stranded phage, a single or double stranded RNA or DNA viral vector, or artificial chromosome, such as a BAC, PAC, YAC, OR MAC.

A vector can be maintained in the host cell as an extrachromosomal element where it replicates and produces additional copies of the nucleic acid molecules. Alternatively, the vector may integrate into the host cell genome and produce additional copies of the nucleic acid molecules when the host cell replicates.

The invention provides vectors for the maintenance (cloning vectors) or vectors for expression (expression vectors) of the nucleic acid molecules. The vectors can function in prokaryotic or eukaryotic cells or in both (shuttle vectors).

Expression vectors contain cis-acting regulatory regions that are operably linked in the vector to the nucleic acid molecules such that transcription of the nucleic acid molecules is allowed in a host cell. The nucleic acid molecules can be introduced into the host cell with a separate nucleic acid molecule capable of affecting transcription. Thus, the second nucleic acid molecule may provide a trans-acting factor interacting with the cis-regulatory control region to allow transcription of the nucleic acid molecules from the vector. Alternatively, a trans-acting factor may be supplied by the host cell. Finally, a trans-acting factor can be produced from the vector itself. It is understood, however, that in some embodiments, transcription and/or translation of the nucleic acid molecules can occur in a cell-free system.

The regulatory sequence to which the nucleic acid molecules described herein can be operably linked include promoters for directing mRNA transcription. These include, but are not limited to, the left promoter from bacteriophage λ , the lac, TRP, and TAC promoters from *E. coli*, the early and late promoters from SV40, the CMV immediate early promoter, the adenovirus early and late promoters, and retrovirus long-terminal repeats.

In addition to control regions that promote transcription, expression vectors may also include regions that modulate transcription, such as repressor binding sites and enhancers. Examples include the SV40 enhancer, the cytomegalovirus immediate early enhancer, polyoma enhancer, adenovirus enhancers, and retrovirus LTR enhancers.

In addition to containing sites for transcription initiation and control, expression vectors can also contain sequences necessary for transcription termination and, in the transcribed region a ribosome binding site for translation. Other regulatory control elements for expression include initiation and termination codons as well as polyadenylation signals. The person of ordinary skill in the art would be aware of the numerous regulatory sequences that are useful in expression vectors. Such regulatory sequences are described, for example, in Sambrook et al., *Molecular Cloning: A Laboratory Manual*. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1989).

A variety of expression vectors can be used to express a nucleic acid molecule. Such vectors include chromosomal, episomal, and virus-derived vectors, for example vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, including yeast artificial chromosomes, from viruses such as baculoviruses, papovaviruses such as SV40, Vaccinia

viruses, adenoviruses, poxviruses, pseudorabies viruses, and retroviruses. Vectors may also be derived from combinations of these sources such as those derived from plasmid and bacteriophage genetic elements, e.g. cosmids and phagemids. Appropriate cloning and expression vectors for prokaryotic and eukaryotic hosts are described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1989).

The regulatory sequence may provide constitutive expression in one or more host cells (i.e. tissue specific) or may provide for inducible expression in one or more cell types such as by temperature, nutrient additive, or exogenous factor such as a hormone or other ligand. A variety of vectors providing for constitutive and inducible expression in prokaryotic and eukaryotic hosts are well known to those of ordinary skill in the art.

The nucleic acid molecules can be inserted into the vector nucleic acid by well-known methodology. Generally, the DNA sequence that will ultimately be expressed is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction enzymes and then ligating the fragments together. Procedures for restriction enzyme digestion and ligation are well known to those of ordinary skill in the art.

The vector containing the appropriate nucleic acid molecule can be introduced into an appropriate host cell for propagation or expression using well-known techniques. Bacterial cells include, but are not limited to, *E. coli*, Streptomyces, and *Salmonella typhimurium*. Eukaryotic cells include, but are not limited to, yeast, insect cells such as Drosophila, animal cells such as COS and CHO cells, and plant cells.

As described herein, it may be desirable to express the peptide as a fusion protein. Accordingly, the invention provides fusion vectors that allow for the production of the peptides. Fusion vectors can increase the expression of a recombinant protein, increase the solubility of the recombinant protein, and aid in the purification of the protein by acting for example as a ligand for affinity purification. A proteolytic cleavage site may be introduced at the junction of the fusion moiety so that the desired peptide can ultimately be separated from the fusion moiety. Proteolytic enzymes include, but are not limited to, factor Xa, thrombin, and enterokinase. Typical fusion expression vectors include pGEX (Smith et al., *Gene* 67:31-40 (1988)), pMAL (New England Biolabs, Beverly, Mass.) and pRITS (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc (Amann et al., *Gene* 69:301-315 (1988)) and pET 11 d (Studier et al., *Gene Expression Technology: Methods in Enzymology* 185:60-89 (1990)).

Recombinant protein expression can be maximized in host bacteria by providing a genetic background wherein the host cell has an impaired capacity to proteolytically cleave the recombinant protein. (Gottesman, S., *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, Calif. (1990) 119-128). Alternatively, the sequence of the nucleic acid molecule of interest can be altered to provide preferential codon usage for a specific host cell, for example *E. coli*. (Wada et al., *Nucleic Acids Res.* 20:2111-2118 (1992)).

The nucleic acid molecules can also be expressed by expression vectors that are operative in yeast. Examples of vectors for expression in yeast e.g., *S. cerevisiae* include pYEpSec1 (Baldari, et al., *EMBO J.* 6:229-234 (1987)), pMFa (Kurjan et al., *Cell* 30:933-943(1982)), pJRY88 (Schultz et al., *Gene* 54:113-123 (1987)), and pYES2 (Invitrogen Corporation, San Diego, Calif.).

The nucleic acid molecules can also be expressed in insect cells using, for example, baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al., *Mol. Cell Biol.* 3:2156-2165 (1983)) and the pVL series (Lucklow et al., *Virology* 170:31-39 (1989)).

In certain embodiments of the invention, the nucleic acid molecules described herein are expressed in mammalian cells using mammalian expression vectors. Examples of mammalian expression vectors include pCDM8 (Seed, B. *Nature* 329:840(1987)) and pMT2PC (Kaufman et al., *EMBO J.* 6:187-195 (1987)).

The expression vectors listed herein are provided by way of example only of the well-known vectors available to those of ordinary skill in the art that would be useful to express the nucleic acid molecules. The person of ordinary skill in the art would be aware of other vectors suitable for maintenance propagation or expression of the nucleic acid molecules described herein. These are found for example in Sambrook, J., Fritsch, E. F., and Maniatis, T. *Molecular Cloning: A Laboratory Manual*. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

The invention also encompasses vectors in which the nucleic acid sequences described herein are cloned into the vector in reverse orientation, but operably linked to a regulatory sequence that permits transcription of antisense RNA. Thus, an antisense transcript can be produced to all, or to a portion, of the nucleic acid molecule sequences described herein, including both coding and non-coding regions. Expression of this antisense RNA is subject to each of the parameters described above in relation to expression of the sense RNA (regulatory sequences, constitutive or inducible expression, tissue-specific expression).

The invention also relates to recombinant host cells containing the vectors described herein. Host cells therefore include prokaryotic cells, lower eukaryotic cells such as yeast, other eukaryotic cells such as insect cells, and higher eukaryotic cells such as mammalian cells.

The recombinant host cells are prepared by introducing the vector constructs described herein into the cells by techniques readily available to the person of ordinary skill in the art. These include, but are not limited to, calcium phosphate transfection, DEAE-dextran-mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, lipofection, and other techniques such as those found in Sambrook, et al. (*Molecular Cloning: A Laboratory Manual*. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).

Host cells can contain more than one vector. Thus, different nucleotide sequences can be introduced on different vectors of the same cell. Similarly, the nucleic acid molecules can be introduced either alone or with other nucleic acid molecules that are not related to the nucleic acid molecules such as those providing trans-acting factors for expression vectors. When more than one vector is introduced into a cell, the vectors can be introduced independently, co-introduced or joined to the nucleic acid molecule vector.

In the case of bacteriophage and viral vectors, these can be introduced into cells as packaged or encapsulated virus by standard procedures for infection and transduction. Viral vectors can be replication-competent or replication-defective. In the case in which viral replication is defective, replication will occur in host cells providing functions that complement the defects.

Vectors generally include selectable markers that enable the selection of the subpopulation of cells that contain the

recombinant vector constructs. The marker can be contained in the same vector that contains the nucleic acid molecules described herein or may be on a separate vector. Markers include tetracycline or ampicillin-resistance genes for prokaryotic host cells and dihydrofolate reductase or neomycin resistance for eukaryotic host cells. However, any marker that provides selection for a phenotypic trait will be effective.

While the mature proteins can be produced in bacteria, yeast, mammalian cells, and other cells under the control of the appropriate regulatory sequences, cell-free transcription and translation systems can also be used to produce these proteins using RNA derived from the DNA constructs described herein.

Where secretion of the peptide is desired, which is difficult to achieve with multi-transmembrane domain containing proteins such as kinases, appropriate secretion signals are incorporated into the vector. The signal sequence can be endogenous to the peptides or heterologous to these peptides.

Where the peptide is not secreted into the medium, which is typically the case with kinases, the protein can be isolated from the host cell by standard disruption procedures, including freeze thaw, sonication, mechanical disruption, use of lysing agents and the like. The peptide can then be recovered and purified by well-known purification methods including ammonium sulfate precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic-interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography, or high performance liquid chromatography.

It is also understood that depending upon the host cell in recombinant production of the peptides described herein, the peptides can have various glycosylation patterns, depending upon the cell, or maybe non-glycosylated as when produced in bacteria. In addition, the peptides may include an initial modified methionine in some cases as a result of a host-mediated process.

Uses of Vectors and Host Cells

The recombinant host cells expressing the peptides described herein have a variety of uses. First, the cells are useful for producing a kinase protein or peptide that can be further purified to produce desired amounts of kinase protein or fragments. Thus, host cells containing expression vectors are useful for peptide production.

Host cells are also useful for conducting cell-based assays involving the kinase protein or kinase protein fragments, such as those described above as well as other formats known in the art. Thus, a recombinant host cell expressing a native kinase protein is useful for assaying compounds that stimulate or inhibit kinase protein function.

Host cells are also useful for identifying kinase protein mutants in which these functions are affected. If the mutants naturally occur and give rise to a pathology, host cells containing the mutations are useful to assay compounds that have a desired effect on the mutant kinase protein (for example, stimulating or inhibiting function) which may not be indicated by their effect on the native kinase protein.

Genetically engineered host cells can be further used to produce non-human transgenic animals. A transgenic animal is preferably a mammal, for example a rodent, such as a rat or mouse, in which one or more of the cells of the animal include a transgene. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal in one or more cell types or tissues of the transgenic animal. These animals are useful for

studying the function of a kinase protein and identifying and evaluating modulators of kinase protein activity. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, and amphibians.

A transgenic animal can be produced by introducing nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. Any of the kinase protein nucleotide sequences can be introduced as a transgene into the genome of a non-human animal, such as a mouse.

Any of the regulatory or other sequences useful in expression vectors can form part of the transgenic sequence. This includes intronic sequences and polyadenylation signals, if not already included. A tissue-specific regulatory sequence (s) can be operably linked to the transgene to direct expression of the kinase protein to particular cells.

Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 and 4,870,009, both by Leder et al, U.S. Pat. No. 4,873,191 by Wagner et al. and in Hogan, B., *Manipulating the Mouse Embryo*, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of transgenic mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene can further be bred to other transgenic animals carrying other transgenes. A transgenic animal also includes animals in which the entire animal or tissues in the animal have been produced using the homologously recombinant host cells described herein.

In another embodiment, transgenic non-human animals can be produced which contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, see, e.g., Lasko et al. *PNAS* 89:6232-6236 (1992). Another example of a recombinase system is the FLP recombinase system of *S. cerevisiae* (O'Gorman et al. *Science* 251:1351-1355 (1991)). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recom-

binase and a selected protein is required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. et al. *Nature* 385:810-813 (1997) and PCT International Publication Nos. WO 97/07668 and WO 97/07669. In brief, a cell, e.g., a somatic cell, from the transgenic animal can be isolated and induced to exit the growth cycle and enter G₀ phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyst and then transferred to pseudopregnant female foster animal. The offspring born of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.

Transgenic animals containing recombinant cells that express the peptides described herein are useful to conduct the assays described herein in an in vivo context. Accordingly, the various physiological factors that are present in vivo and that could effect substrate binding, kinase protein activation, and signal transduction, may not be evident from in vitro cell-free or cell-based assays. Accordingly, it is useful to provide non-human transgenic animals to assay in vivo kinase protein function, including substrate interaction, the effect of specific mutant kinase proteins on kinase protein function and substrate interaction, and the effect of chimeric kinase proteins. It is also possible to assess the effect of null mutations, that is, mutations that substantially or completely eliminate one or more kinase protein functions.

All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the above-described modes for carrying out the invention which are obvious to those skilled in the field of molecular biology or related fields are intended to be within the scope of the following claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 4

<210> SEQ ID NO 1
<211> LENGTH: 2320
<212> TYPE: DNA
<213> ORGANISM: Human

<400> SEQUENCE: 1

ccccaggcgcc cgttagggcgtt gcatcccggt cgcgcctggg gctgtggct tccccgcgcct	60
gaggcgccgg cggcaggagc tgaggggagt tgttaggaaac tgaggggagc tgctgtgtcc	120
ccccgcctct cctccccatt tccgcgcgtcc cgggaccatg tccgcgcgtgg cgggtgaaga	180
tgtctggagg tgtccaggct gtggggacca cattgtccca agccagatata ggtacaggac	240

-continued

tgtcaacgaa	acctggcacg	gctttgttcc	ccgggtgaaaag	tgtatgcgcag	cctggaccac	300
cccaatgtgc	tcaagttcat	tggtgtgtcg	tacaaggata	agaagctgaa	cctgtctgaca	360
gagtacattg	agggggcac	actgaaggac	tttctgcgc	gtatggatcc	gttcccctgg	420
cagcagaagg	tcaggttgc	caaaggaaatc	gcctccggaa	tggacaagac	tgtgggttg	480
gcagacttg	ggctgtcacg	gctcatatgc	gaagagagga	aaagggcccc	catggagaag	540
gccaccacca	agaaacgcac	cttgcgc	aaagcaccga	agaagcgcta	cacgggttg	600
ggaaacccct	actggatggc	ccctgagatg	ctgaacggaa	agagctatga	tgagacggtg	660
gatatcttct	cctttggat	cgttctgtgt	gagatcattg	ggcagggtga	tgcagatcct	720
gactgccttc	cccgaaacact	ggactttggc	ctcaacgtga	agctttctg	ggagaagtt	780
gttcccacag	attgtccccc	ggccttcttc	ccgcgtggcc	ccatctgctg	cagactggag	840
cctgagagca	gaccagcatt	ctcgaaattg	gaggactct	ttgaggccct	ctccctgtac	900
ctggggggagc	tgggcattccc	gctgcctgc	gagctggagg	agttggacca	cactgtgagc	960
atgcagtacg	gcctgacccg	ggactcacct	ccctagccct	ggcccaagccc	cctgcagggg	1020
ggtgttctac	agccagcatt	gcccctctgt	gccccattcc	tgctgtgagc	agggccgtcc	1080
gggcttcctg	tggattggcg	qaatgttag	aagcagaaca	aaccattctt	attacctccc	1140
caggaggcaa	gtgggcgcag	caccaggaa	atgtatctcc	acagttctg	gggccttagtt	1200
actgtctgt	aatccaatac	ttgcctgaaa	gctgtgaaga	aaaaaaaac	ccctggcctt	1260
tggggcagga	ggaatctgtt	actcgaatcc	accaggaaac	tccctggcg	tggatgtgg	1320
gaggcttctg	cttacactaa	tcagcgtac	ctggacctgc	tggcaggat	cccagggtga	1380
acctgcctgt	gaactctgaa	gtcacttagtc	cagctgggtg	caggaggact	tcaagtgtgt	1440
ggacgaaaga	aaagactgtat	gctcaaagggg	tgtaaaaaaag	tcaatgtatgc	tcccccttcc	1500
tactccatgt	cctgtcttc	ctggagcaag	gttggggagg	taggtttgt	agagttccctt	1560
aatatgttgt	ggaacaggcc	aggagttaga	gaaagggtg	gcttctgtt	acctgctcac	1620
tggctctagc	cagcccagg	accacatcaa	tgtgagagga	agccctcacc	tcatgttttc	1680
aaacttaata	ctggagactg	gctgagaact	tacggacaac	atcctttctg	tctgaaacaa	1740
acagtcaaaaa	gcacaggaag	aggctgggg	actagaaaga	ggccctgccc	tctagaaagc	1800
tcagatcttg	gtttctgtt	ctcataactcg	ggggcgtcc	ttatgtcgat	gcctaaaaca	1860
ttttgcctaa	agctcgatgg	gttctggagg	acagtgtggc	ttgtcacagg	cctagatgt	1920
gagggggggg	agtggggagtc	tcagcaatct	tttggcttgc	gtttcatggc	aaccactgt	1980
cacccttcaa	catgcctgg	ttaggcagca	gttgggctg	gaaagagggt	gtggcagagt	2040
ctcaaagctg	agatgtcgat	agagatagct	ccctgagctg	ggccatctga	cttctaccc	2100
ccatgtttgc	tctcccaact	cattagctcc	tggcagcat	cctccctgagc	cacatgtca	2160
ggtaactggaa	aacctccatc	ttggctccca	gagctttagg	aactcttcat	cacaactaga	2220
tttgccttct	ctaaatgtct	atgagcttgc	accatattta	ataaaattggg	aatgggttg	2280
gggttataaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa			2320

<210> SEQ ID NO 2

<211> LENGTH: 255

<212> TYPE: PRT

<213> ORGANISM: Human

<400> SEQUENCE: 2

Met Val Gln Asp Cys Gln Arg Asn Leu Ala Arg Leu Leu Leu Pro Val

-continued

1	5	10	15
Lys	Val	Met	Arg
Ser	Leu	Asp	His
20	25		Asn
Val	Leu	Lys	Phe
Tyr		Asp	Ile
35	40	Lys	Gly
Val	Leu	Asn	Leu
		Leu	Thr
			Glu
Gly	Gly	Thr	Leu
		Lys	Lys
		Asp	Phe
		Leu	Arg
			Ser
		Met	Asp
			Pro
		Phe	Pro
		Trp	
50	55	60	
Gln	Gln	Lys	Val
			Arg
			Phe
			Ala
			Lys
			Gly
			Ile
			Ala
			Ser
			Gly
			Met
			Asp
			Lys
65	70	75	80
Thr	Val	Val	Ala
			Asp
			Phe
			Gly
			Leu
			Ser
			Arg
			Leu
			Ile
			Val
			Glu
			Glu
85	90	95	
Arg	Lys	Arg	Ala
			Pro
			Met
			Glu
			Lys
			Ala
			Thr
			Thr
			Lys
			Arg
			Thr
100	105	110	
Arg	Lys	Asn	Asp
			Arg
			Lys
			Tyr
			Thr
			Val
			Val
			Gly
			Asn
			Pro
			Tyr
115	120	125	
Trp	Met	Ala	Pro
			Glu
			Met
			Leu
			Asn
			Gly
			Ser
			Tyr
			Aep
			Glu
			Thr
130	135	140	
Asp	Ile	Phe	Ser
			Phe
			Gly
			Ile
			Val
			Leu
			Cys
145	150	155	160
Tyr	Ala	Aap	Pro
			Aap
			Cys
			Leu
			Pro
			Arg
165	170	175	
Val	Lys	Leu	Phe
			Trp
			Glu
			Lys
			Phe
			Val
			Pro
			Thr
180	185	190	
Phe	Phe	Pro	Leu
			Ala
			Ala
			Ile
			Cys
			Cys
			Arg
195	200	205	
Pro	Ala	Phe	Ser
			Lys
			Leu
			Glu
			Asp
210	215	220	
Leu	Gly	Glu	Leu
			Gly
			Ile
			Pro
			Ala
			Glu
			Leu
			Glu
225	230	235	240
His	Thr	Val	Ser
			Met
			Gln
			Tyr
			Gly
			Leu
			Thr
			Arg
			Asp
			Ser
			Pro
245	250	255	

<210> SEQ ID NO 3

<211> LENGTH: 59065

<212> TYPE: DNA

<213> ORGANISM: Human

<400> SEQUENCE: 3

tcatccttgc	gcaggggcca	tgctaacctt	ctgtgtctca	gtccaaattt	aatgttatgt	60
ctgctgaagc	gagagtacca	gaggtttttt	tgtggcagt	gacttgaact	tatttaaaag	120
ataaggagga	gccagtgagg	gagaggggtg	ctgtaaagat	aactaaaaat	gcacttcttc	180
taagaagtaa	gatggaatgg	gatccagaac	aggggtgtca	taccgagtag	cccagccctt	240
gttccgttgg	cactggggag	tctaaccctt	agctgagata	gcttgcagt	tggatgagcc	300
agctgagatc	agcagatagg	gaaaagaagc	caaaaatctg	aagttagggct	gggggtgaaagg	360
acagggaaagg	gctagagaga	catttgaaaa	gtgaaaaccag	gtggatatga	gaggagagag	420
tagagggct	tgatttcggg	tctttcatgc	ttaaccctaa	gcaggtacta	aagtatgtgt	480
tgattgaatg	tctttgggtt	tctcaagact	ggagaaagca	ggcaagctc	tggagggtat	540
ggcaataaca	agttatcttg	aatatccctca	tggtggaaag	tcctgtatct	gtttgaattt	600
tggaaataga	aatcattcag	agccaagaga	ttgaatttgtt	gagtaagtgg	gtgggtcagg	660
tacagactta	attttgggtt	aaaaataaa	aacaagaac	aagggtgtgc	tctaaaataa	720

-continued

tgagatgtgc tgggggtggg gcatggcage tcataaactg accctgaaag ctcttacatg	780
taagagtcc aaaaatattt caaaaacttg gaagattcat ttggatgttt gtgttcatta	840
aatatctctca ctaattcatt gtcttgcaca ctgtccgtaa cccaacctgg gattggttt	900
agttagtctc tcagacttc tgcccttggag ttgttgagag agatggcata ctctgtgacc	960
actgtcaccc taaaacccaa aaggcccctc ttgacaagga gtctgaggat tttagaccca	1020
ggaagaatga gtatgggca tatatatatac ctattactga ggcatgagaa gagtggaaatg	1080
ggtgtgggtga ggtgggttt taaggcctct tgccagctt tttacttctt ctctgggaa	1140
cgagggggac aactgtgtac attggctgtcc cagaatgtat gttgagaaat ctgtggatgc	1200
caggagctgt gctttgtcta ttcatggccc ctgtgcctgt gaaacagggt tcggtgactg	1260
tcactgtgcc tggcggcgtc ttagttacc cagagagaa acagctgtat acacagagcg	1320
cacaaggag tcttgtaaca accttgcctt gctttctagg gctgagtcg gtaccacagc	1380
ttgatctcag ctgtccctt tatttcaaga agttgacatac tgagccatac caggagttt	1440
gtatTTTttt tgaggcctct cttttggag gaacatggc cgactctgtg cttttgtcta	1500
tgctggcttc tgagctcaca caacccttca ccctcccttc tcagccagtg atagtaagt	1560
cttccctata ttgcaaggct cagctcaagt gtcagcttcc tctacaaaaga ctttccctgt	1620
tcccctcatt ggagtgaaca agagttaca tggtagaaatg gaaagagcag aagctttaga	1680
atgagccaga cctgagttatg aatgcttagat ccaccactta gctagtcac cctgccccct	1740
gcctcaagtt ttaattttcc tatccattaa gtgaatataa taatacctgt gtcacaggat	1800
tatTTTgaga attaaattag attaggtcta tggaaagcacc tagcagagtt cttggcatat	1860
aggaggcatt cattaaatata ttgttcttcc ctttttatac ccattacttt tcttttctg	1920
aactaaaata atacttgggtt ctatcttgc aataacatcc aagtggaaaa tcaacaaat	1980
gaaagagcag ttcttttcca gtggatttgc ttcttaagga gcagagatata tgtaatctaa	2040
cagcctccaa catacaaaga gctttgtatc tagAACAGGG gttcccagcc cctggaccgc	2100
caactggtac gggtctgttag cctgttagga accaggtgc acagcaggag gtggcggcgc	2160
ggccctgttag cattgctgcc ttagctgtgc ctctgtcgtc atcgtgggtg gcatttagatt	2220
ctcatagggat tggtaaccctt attgtgaact gcacatgcaaa gggatctggg ttgcattgtc	2280
cttatgagaa tctcaataat ggctgtatgtat ctgagttggaa acagttgtat accaaaacca	2340
tccccccgccc ccccaacccc cagccttaggg tccgtggaaa aattggcccc tggtgccaaa	2400
aagggttgggg actgtgtatc tagaggacca atttattcaa tgggtgtga gtaaaatgac	2460
tcttggatggaa ggtgtatggaa aaatctgaaa aaacagggtt tttgaggat aggaaaaggc	2520
agtaacatgt ttaacccaga gagaagtttc tggctgttgg ctggaaatag tcataggaaag	2580
ggctgacact gaaaagaagg agattgtgtt cgtttcttct tctcagagct ataagcaag	2640
gctgaaagtt ctggaaaaag gcaagtttg tttcagtaga aaaaaggata atcagaacca	2700
tttttagaaa atggaatgtg actacttttg aggccatgat ttcccttgc ctggagat	2760
gagcagaggt tggacaatgtt cttaccagat atcttggaa ggcagaaact gtgcattgt	2820
cagagcatgtt gcctaaacctt ttcaatgtat atgctgtttaa ctgcgttta ttctacatgg	2880
taggaatctt gtcctttgc ctctgtatc ttggggcttc tcaacctttt ggtttgtgt	2940
gcagggtggaa atgtctgtggat ggtgtccaggc tggggacc acattgtcc aagccagata	3000
tggtagggat ctgtcaacgaa aacctggcactt ggtctttgttcc tccggtaggt ggccctatcc	3060
tcccatctt accagtgtac tatggccaa gcactatttc atgttctgtat ggaaaacaca	3120

-continued

gaaaacaagct tctgagggttga gaattcaat ctttaggggtgg gggaaaggaaat gtaccaagga 3180
agagctcatg accaaaacctc aagtgtggcc cccctgaacc caggttaaat tggaaagagcc 3240
ataaaatgggc cagctggagg caggggtgggg ggtatggaggg agcccttcc aggggttgcc 3300
catatccctc acytttatggg tgagggaaact gaggcccagg aagagtgact ttccctgtggc 3360
tgcactacag attatcgagg tacttcaaga gttgtttgtt ttcttatttt attttatttt 3420
attttatttt attttatttt attttatagag agggattttt gctgttgccc aggctggagt 3480
gcagtggtgc aatctcggtc cactgcaatc tctgcctgtc gggttcaagt gatttttctg 3540
ccttagcttc ctgagtagct gagatgacag gcacactgcca ccatgcgcag ctaattttt 3600
tattttatgt gagacggggg tttcaacatg ttggtcaggc tggtcttggaa ctcctgaccc 3660
caaatgtgc acccacacctc acettccaaaa gttgtggaaat tacaggcgtg aaccactgt 3720
cccagccaaag agttgtttt agtgtgttg gcagagccag ctcttccctc accacaggat 3780
gcctccctag gttcctactt tttgttacta gcttttatta tagctatattt attattattt 3840
ttattttat tattttattt attattgaga cagagtctcg ctctgtcgcc caggctggtg 3900
tacagtggtg cgatccccggg ctcaactgcaa cctctgcctc ccgagttcaa gcagttctcc 3960
tgcctcagcc ccccgagtag gtgggactac aggcgcctgc caccacaccc ggctaatttt 4020
tgtatttta gtagagacgg ggtttcacet tttgtgaccag gttgtctgg agtcctgtac 4080
ctcaggtaag tgctagaatc acaggcgtga accactgcgc ccagccaaaga gttgtttta 4140
gtgtggttgg cagagccagc tcttcctcac cacagggttc ctccttaggt tcctactttt 4200
tgttactagc tttattttatg ctacattattt attattatgt ttattttat ttagacagag 4260
tttcgtctcg tggcccgaggc tgggttacag tgatgtgatc tttggctact gcaacactcg 4320
cccccccgagt tcaagcaattt ctctgtctc agcccccccta gtaggtggga ctccaggac 4380
ctgccaccac gcccagctaa tttttgtattttt ttttagtagag gccccgggttc accttgggg 4440
ccaggctggt ctcaaaactcc tgacactcagg tgatccgcct gcctcgccct cccaaaaatgt 4500
tgggattaca ggcattgagcc accgcgcctc gcctatagct acattttttt ttttagggcgc 4560
tcagtttctt aaaaattata cagacttcaa atcagattttt ttctctgtgt ctgaggctca 4620
gtttttcat ctggaaaatg gatggtaata atcttggtaa gattgaatga aataatataat 4680
gcagtgatc cagtagatgg tagacacccca gttttttttt attccttccctt cccatcgat 4740
tggaaatttcc aagggtggga acttgtttt atattttca caacgtaaaa tagttgaat 4800
ttgttgggtgg aaagaagagc agtccactcc agaggctgg tggcatgcc tggcccccaaa 4860
ggctgtgaatg ggttagggctg tgcctatatac ctgagaatga gatagactag gcaggccact 4920
tgtgtgttag attcctcgatc ctgcacatag ctttttttt aaaaatccc ttttttttttata 4980
ccaagtaattt gatggatccctt tttttttttt tttttttttt tttttttttt tttttttttt 5040
ggcctggaga cgtctggctt ctggaaagatg tggaaagcag ccattttttt tttttttttt 5100
tttcagctat aactcagatc tctcaagttt tttttttttt tttttttttt tttttttttt 5160
cccccttttttac tccctggggaa gttgtttttt tttttttttt tttttttttt tttttttttt 5220
cagagaatgt cagagctgtt aaggacccctt tagttaaagc cttttttttt tttttttttt 5280
tttagctgg gactaataag taacgtcaaa acccaatgtt tttttttttt tttttttttt 5340
ttggcatgtt accccatatgt tttttttttt tttttttttt tttttttttt tttttttttt 5400
atccaaaaata agcaggacag ggttagagcaas gttttttttt tttttttttt tttttttttt 5460

-continued

gagctaaaaa	acttcagaac	tagaagaaac	caccctat	atggtataac	ccattcatat	5520
cacagatgag	gcctgaaacc	aaaaagactt	gctcaggcca	tggatgacaa	gagctggccc	5580
tagcaactgaa	ctcttgggtc	atttgttagt	ctagtcagat	gctagcttgt	tagctctgtg.	5640
cgtgcgtgtg	tgtgtgtgt	tgtgtgtgt	tgtgtgagat	agagacagaa	agataacata	5700
tgtacacaaa	tacataaaga	ggaagttagac	acgttagcat	ggtagataag	agtacaggca	5760
ggccaggcg	gttggctcac	gcctgtatac	ccagcacttt	gggaggccaa	ggcagggtgga	5820
tcacacctgagg	tcaggaattc	gagaccagcc	tgaccaacat	ggtgaaaccc	catctctact	5880
aaatacagaa	aaaaatttgc	ttggcatgtt	ggcacatgcc	tgtaatccca	gtactttggg	5940
aagctgaagc	aggagaatcg	cttgaatccg	ggaagcagaa	gttgcagtga	gccgagattt	6000
tgccattaca	gtctagccctg	ggcaacaaga	gggaaactcc	atcgaaaaaa	aacaaccacc	6060
accaagagta	caggctatgg	aatgagacta	tggttttaaa	tcctggcttt	gcaatttatt	6120
aactagccct	aagtgacttc	cctgagcttc	aggcaccaat	ctgtaaaaatg	aggataagaa	6180
tattactcat	gccacatgg	tgttagggag	gattaaatgt	gataacctat	ataaaagtggc	6240
tagcatagca	tctgacatat	agaaaaactct	taataggcc	ggacgtggtg	gtttatgcct	6300
gtaaatccctag	cactctggga	ggccggaggca	gaaggatcgc	ttgagccat	gagccagga	6360
gtttgagacc	agcctggccca	acatggcaaa	actccaccc	tacaaaaaat	aaaaaaatat	6420
tagccaggcg	tgtatggcaca	cacctgttagt	cccagctact	tggaaagctg	aggagcgtat	6480
attacctgag	cccaggata	tcaaggctgt	agttagctgt	gatcatgcca	ctgtactcca	6540
tccagctggg	ggacagagtg	aaacccctgt	ctcaaaacaa	aacaatgaa	aaaaaaaaacc	6600
cctaataatc	agtaactgtc	actttatatt	atgttgtgag	tgtgtgtcta	tatacaccta	6660
tatgtataca	tttctcttat	tacacattca	ttggtagctt	gatgtggagc	cccaggatt	6720
aagggcaact	ttgaactacc	ctgacacaaat	caagccaaat	atcattcccg	tggaggaagt	6780
agagtatcta	ggttctgtct	cctagttgca	gttttaccc	gaggacagag	actctaattcc	6840
agctgtgtc	aggaggcaca	tctccctact	tctgagcttt	ccccctggaa	attcaaactg	6900
gatgtcacgg	cgccctcaga	taggcctgg	taatggccc	tggggagagt	gactgtcttt	6960
tggatctaatt	ttgacttttgc	ccccagttgg	aggaaaatct	tcagggctag	gaaggattgt	7020
atttgtctga	ccccagagat	aacctgggtt	ttgaggaaca	tggggcatca	acctgaatgg	7080
tcttgtaa	tctctccac	cccaagcttgc	cagtgtttct	ctgtatgaaat	tagatgtact	7140
gagtagtgc	ggccctgtgg	gaggaggact	ctccctctgt	gtacttcaga	gaaattcatt	7200
cttcaaggcc	cccttccac	cttgccttta	cccaagctgg	ctacagttac	aataaaggaa	7260
atgacttttc	ttctccctt	ccccagtagt	ctttgttttc	ctagtcacag	ggtggggctg	7320
gatattaat	ggagaaatttgc	ctggggatcca	tcctaaactc	ctccccctat	ctctccctta	7380
cattaccctt	ttcttctgtc	tgcagccaca	tcctataatcc	tgcctctgtt	agccctccga	7440
cagaccctca	ggtgcccagg	acaacaggaa	gtacttaaa	gtggAACCT	cagactgtgc	7500
atggaggcc	agtgacaaaa	ctgaaatgt	ctctgtcagt	atgtgtgtc	gtgcgatgt	7560
gcagctggcc	agaatcttttgc	ggtatctgt	gacatatggc	tgtactgtcc	tcccaagcc	7620
tcccaacagg	cctcttttttgc	tcttttttttgc	tttttttttgc	tttcttttttgc	tttcttttttgc	7680
tcttttttttgc	tttttttttgc	gttagtgaag	tgaaattgttgc	ggagtgaaagg	aggaacaaag	7740
aaatcggtaa	ctggtagtga	tcaattacttgc	gtaaacacta	ttgtacttgg	accagccag	7800
taggccttttgc	ttaaaactctgc	gatgtaccc	tctttcccttgc	cttgcgtatgt	tgccatataat	7860

-continued

-continued

gttggcatac tagcctggcc tcttaattaa ttcatattaat agcttattta tttttgagat 10260
 aggtcttgct ctattggcca ggctggagt cagtggcatg atgatagctt actatagct 10320
 caatctccca ggcttaaaca atcctctga tagctggga ctacaggcac acactaccat 10380
 gcccagctaa tttttttta atttttgtt gagacagggt cttgcctgt tgccaggt 10440
 ggtctcaaac tcctgggctc gagatctcc cacctggcc tcacaaggta ttgggattac 10500
 aggtatgagc cacggcacct ggcctggctt cttaactggt tccctaagac agctgaaat 10560
 agagaatgtc atggagcatt ccttaaccatg ggctccagcc tggcttcat tctgtttctc 10620
 ccctgaaaca acattccctt agtaatattc cgaataacag cttcatcagt ctgtctaccg 10680
 accactcttc aggattcatac ttatatgacc tcccaaactg cactaaggta tgtatttag 10740
 aaaagtggat aaagttcgga gtcaggctgc ttgagcttaa atgccagctt cacttaccag 10800
 ccacctgacc atgagtccgc tgcttaacca ttctttgcca cagtttcctt gtctatgaaa 10860
 agggaaatgg ctccccaccc aaaaagggtt taacattaaa ttcaatcatg tattcaaagt 10920
 cctgagcaga atgtctggcc atgactggga cttaacagat gtttagcattt attatttagt 10980
 tctgtcagtc ttgaaatgtt ctctccctt ggctttcatg acattccaca ctctctgg 11040
 tttctcttac ctctctggta atacctgtt gcttacccctt ctttgtccag ctctggatg 11100
 ttaccatcc ttcaggcgtg ctgtttctc cttaggcagt cttacacaca ctcatgactt 11160
 ccttccatttgc ttctccacac actgatgacc cttaaatcag tatctccagc cttaacccctt 11220
 ccactgagtt cttagaccat atgttgcact atcaacctgg ctgttccatt tgaatgttt 11280
 ccaggcactt cagactctct tctcttagact ttgtctggact ttcaactctc cccctaaac 11340
 tggctctct tccactgaaa catgtatgtc attgagaggc accaccatcc acccagtgcc 11400
 taagccagaa cccttaggaat ccttgatacc tggatctctc cttccatgtc atccaagct 11460
 atcagttta tctctaaattt atattttgtt aggtttactt ctttccctttt ctccaccac 11520
 caccctgctc caagctacca tcatctcacc tggatgtctg caatagccctc atctccac 11580
 gccactctgc accccctaat ctgttctcta tagagcattt ggaaggagtg atttttgtt 11640
 tttgttttgtt tttgttttagt acagactctc actctgttcc ccaaggctgg agtgcagtgg 11700
 cacaatttccg gtcactgca acttctgcct cccgggttta agcaatttctc ctgcctcagc 11760
 ctccccaaatgta gctgggatata aggcacccgc ccccatacc agctaattttt tataattttt 11820
 gttagagatgg gggtttggca tggatgttgc gctagtcgtc aactccctgac ctcaagtgt 11880
 ccacctgcctt cggccctccca aagtgcgtttt attacaggtt tgagccactg cacctggctg 11940
 gaaggagtga tctaaaaaaa aaaaaaaaaa aaaaaaaaaact tgactgtgtc actctgtgtt 12000
 gtctctccata ctttgcataact tcccaactt tccctgtttt cttggataaa gacccaaatc 12060
 cttaacttgg ccaggcgcgg tggatgttgc cttatcttc agacttgg gaggccagg 12120
 caggcagatc atgaagtccaa gagattgaga cttatcttgc caacatgtt aaacccatc 12180
 tctactaaaa atacaaaaat tagctgttgc tggatgttgc tggatgttgc cccagctact 12240
 tgggaggctg aggaggaga atcacttgc cttggggggc agagggttgc gtgagccag 12300
 atcactccac tgcactccag cttggatgttgc gatgttgcactt ccatctcaaa aaaaaaaaaa 12360
 aaaaaaaaaa ttcccttaattt tggatgttgc tggatgttgc cttatcttgc 12420
 catctccacca acctccctgtt cccatgttgc cttatcttgc tggatgttgc 12480
 cttatcttgc tggatgttgc cttatcttgc tggatgttgc 12540
 cacttaactc ctgcattatcg tttatgttgc tacatgttgc gtcagagaa atataaaatg 12600

-continued

aattcctcac cctgaaaaat aggtaggtc cctgttttat gtttccatag acctttccct 12660
tgaggcttt tttaaaaaaag tagtttaat ctcacattta ttcatgtat catctcccta 12720
atgatatctt aagacctca atagaacaat ttggatcatgg actgtgggg tttgcacct 12780
cattgtgtca gcactgagca tattgttggc ataggaggga tatttgtga atgaattgct 12840
agaggtggcc aagagatata atgttaagtca ggctttccc tgcccttccc cttecccccc 12900
ccccacatctt tcctatagca gccaccgtgg ctgcagttac tgtaaatggc aagacggaat 12960
cagttccgga cattgggttg ttttagaaaa ttgcctgaa gtgtcaggg gataagtta 13020
agctttgtct tttgcacctca gaggagctat cccatagtga gttagaagcca gagaagctga 13080
ccccaggagt ccttctttcc agcagcaggc ctgcagtcg accttcgtg agctacaatc 13140
caggcaggaa caagccctag gtacccccc agaggaggc aagagaggaa gaatgagttc 13200
agctactcta gccaccaaacc tgattatgaa ttgcctgaa atctgaaaaa ttcaatcc 13260
aatcgtaaatgt ttgttttttgc tcatttttttt tcatttttttgc atatatttgc aagatggcat 13320
taactaaaga tatatatattca atatagagtg gaaaaatgg aatacttgca tagtatctt 13380
tactttatagg tgattttatgaa tggggagtttgg ggtggatagg ttggcagttc ccccaagaag 13440
ttggaaatgaa agtttgtcct ctgtgagtttgc aactaattttgc atccacaatc aatgaaagca 13500
gtattgttttgc ttagttaaga gcacactcta gaaccaggat gcttagttc aaatccctgtt 13560
tctgccttttattatctgtg tactttggc aagttacttgc ccctttgtgt gcttcatttt 13620
tctcatcttag aaaatggaga ggccaggcgtt agtggctcat gcctataatc ccagcactt 13680
ggggaggccga ggccggcaga tcacctggg tgagaagttc aagaccagcc tggccaaatc 13740
ggtgaaaccc tgcgtctaca aaaataaaaaa aattagccag gcatgtggc ggggtgcctgt 13800
aatcccgact acccaggaggc ctgggggggg agaaaacactt gaacctggaa ggcagagggtt 13860
gttagtgagcc aggattgcac cactgcactc cagcctgggt gacaagagctt agactcagtc 13920
aaaaaaaaaaa aaaaaaaaaac aaactggaga tacaggctgg gtgcagggtt tacacttata 13980
atatcagcac ttggggagggc ctggggggc ggattgtttgc aactcaggag tttcaagatc 14040
agtctgggtt acagagcaag acctcatccc cacaaaaat caaaaatttttgcaggatc 14100
gtggctcatg cctgtggc cagctactca ggaggctgag ggcggaggat tgcttgagcc 14160
caggagggttgc aggctgcagt gaaccatgac tgcaccacta catgccaggcc tggatgacag 14220
agcaagaccc tatctcaaaa aaaaaaaaaaa aagaaaaacgc gccaggcqcg tttgtctcagc 14280
ccagtaatcc cagcaacttgc ggaggccaaag gcagggtggat cacttgaggat caggagatcg 14340
agactagcct ggccaaatcg gtggaaacccctt atctcaacttgc aaaaataaaaaa aattagccag 14400
gcattggcggc atgtctctgtt agtcccagctt actcacttgc aggctggggc acggaaatcg 14460
cttgcacccca ggaggccggag gttgcagttgc gccaacatca tgcactgc ctccagccctg 14520
ggagacagag cgagactctg tctcaataaaa taaaataaaaaa taaaataaaaaa taaaataaaaaa 14580
taaaaataaaa taaaataaaaata tggaggccag caggcacggt ggctcagcgc tgtaatccca 14640
gcactttggg aggcccgagggg gggcggatca caaggtcagg agatcgagac catccctggct 14700
aacacagtga aaccgcgtctt ctactaaaaa tacacaaaaat tagccaggca tgggtggcagg 14760
cacctgttagt ccctgtactt caggaggctg aggccaggaga atggcgtgaa cccggggaggc 14820
ggagcttgca gttagctgag atcgcgcac tgcagttccag cctggccgac agagcaagac 14880
tctgtctca aaaaaaaaaaaa aaaaatggag gttggggcgcg tggtggcgcg cctgttaatcc 14940

-continued

cgacttttg ggaggctcag gcgggcgat caccttaggt caggagttcc agaccagcct 15000
ggccaaacatg gtgaaacctt gtctctacta aaattacaaa aatttgcggc gcacatggc 15060
aggcacctgt aatcccagct acttaggaga ctaaggcagg agaatagctt gaaacctggg 15120
gatggagggtt gcagtgtgtc gagatcgccgc cactgcccctc cagtagagtg agattccgtc 15180
tcaaaaaaaaaaaaaaaaagaa gaaatggaga tacaaactta ctacctactt ccttacacacc 15240
tacccctcaca gtattactgt gaataaaaagt gtgtgttagca ctggggacac tattcacaga 15300
gcactcatga atgtttgttc ttgttattt gttactagag aggcaaatgt ctggcagggc 15360
tgaataataat gtgtgaatgt gtgattgtcg cacatatcta aagaagttagt tattttttc 15420
aattaaaaact tagttttaaaa accaatataa ggccgagcgc agtggctcac acctgtataatc 15480
ccagcacctt gggaggccga ggtggccaga tcatttgggg tcaggagttc gagactagcc 15540
tggccaaacat ggtgaaaccc tggctctgtc aaaaaaaaaaaa aaaaagtaca aaaattagcc 15600
aggcatgtatg gcagggtccctt gtaatccccag ctacttggga ggccgaggca ggagaattgc 15660
ttgaacccag gaggtggagg ttgttagttag ccgagttgtt gccactgcac ttcagccctgg 15720
gtgacagagg gagacactgt ctcaaaaaaaaaaaa aaaaaaaa accaaaaacca atataataaa 15780
taagtggcca gcaatgaaac agaaagtga aagtttagtga agcAAAacta gtactgtatt 15840
cagataaaga tgctgaatct agatttggtc accagaatag ggtcccttgtt ggcaacctgg 15900
gtctgttgg ctgactcacc actggccagga tgaaaatttctt ttcagttgtc actcatttcc 15960
ctttatTTTA agtccatgtc cacagagcaa ccttctgtatg ccttaatttcag cttccctggg 16020
tacttataaa caggaagggtt ctggaaatgt tacctgtataa ggggatataa gtgttctgtat 16080
tttaatagtc aattcataag tgacagagg gtttgataaa tggtagtgc agaaccatca 16140
cagaatgtctt acacccctttt ggacatttagg aaggtaaaaa acctgaaagg cccaaagacta 16200
ggccttagatt agggtcatttcc accaagaaaa catcagccctt gaagagttct ctgggtggc 16260
caccagtca ccttccctttt atcacacccctt cttccctgtt gcttctttaa gcattgcact 16320
gtaatgggtt tggaaatTTTT tgctcaccta actccttcctt tttacagagg aagaagtgtt 16380
agccccagaga gatttaatgg cttgcctaag atcacacgca gattttctgt taaccagggt 16440
gatttttcag gtgttccctg ccagacgagg gttttttttt tggaaatttgc tagagattc 16500
tttagatatac cgaagcattt ttcccagtgc agcctggaga aggtatgtccc tgtcaacacaca 16560
gcattttgttta ctcaatgttta gacattcaat tttctaaatgtt gatcatgtt gcaacagtgg 16620
atgattatctt ataaagggtt gcaattccat gcttatgtgc ttacagccca tatagacaaa 16680
tatcagctgt taaaatgaca aggcaatgtaa gatgtggccccc caggacaaag gcataactctg 16740
ctgttagtgc acacttagttt gccagcaat ttcacatggg catatacacg gccaactgtt 16800
gacttttaggc atttataccccc attcagagag cccaaactggc aactaaagat cagcattctc 16860
tttggcattt cagctttgc ttctgtttaaa aatcactgtc tgctttaataa cctctgtatag 16920
cttttcaactg cctgttaggc actcttttgc cttagcagact tggcttttag tgctctggcc 16980
ctactctctt ccaccattctt ggcctctgtt ctaattgtc cccatgttgc ccatgcacta 17040
gagcttacag acctgtctcg cgttatgtt gcataccata ctctttatgtc ctcagtgcat 17100
ttgcacatgt tggcccttca gggcagaatg cctgttactg cctggcaatc agcctttag 17160
agtctgcacaa taccatccca ttttctgtgg aggagcccccc cgccaaatcc accccatact 17220
ctccccccacca atcagagact ttttctctt ttttttatttctt cttcggttattt ctcttcatac 17280
ctcagttata tccatTTTCA tttttttttttaa cccatgttgc atcactcttta gatgtgtqaaa 17340

-continued

ttctccaaagt gtggagccgt atcttagtttgc tctttgtatc ccagagctta gcaaagtgc 17400
tagaatgttag tgggtgtca gagtgtttgc tgggtgaatg atgtatttgt tgaacgactc 17460
tttggacact tgaataaaagt ccatccaga tgcaccatttccatcttc getctacaat 17520
attcttttag gcaagagctt atcttttgag gtgataagat aagctaaac ttatgttagac 17580
taagacccca gtcgtgaaat gtcatcccta agtcttaaac catcaaaaacc agggcctcaa 17640
ggaatggcat gccttgcacta actgttagca cctgctgtgc ttatgttgc gtgttttca 17700
tttttccccca aaaagctaga gtcccttctc ccattggcag tgctggaagt gtgctaaacaa 17760
attctttctc catactgctt acgattacaa aaaaaaccct cagcatctca tgccagactt 17820
gagttaaagggt tggtttctt tggtgtcag ctgttattcg gtcatgactt cctgtatgt 17880
ccctatagag attttgcgtca gatcagaggg tgctccactg ccattcgttag cactgactt 17940
tgcagaagca ccgtttctga agttggctaa tgctatccct cacgtttgtt tggttgaat 18000
ttgttttagt tccagagata gcacccatc ggaatgacgc tatcttcttag aatcactttt 18060
tttttttttt tgagttggag tctcgctgtg tcgcaggct ggagtgcagt ggcacaatct 18120
cagctactg caatctccac ctccgggtt caagtgttcc ccttcgttca gcctcccgag 18180
gagctgttac tacaggcgca cacccttcaact cctggctaat ttatgtgtt ttagtagaga 18240
cgggggtttca ccgtgttggc caggatggc tcgatctct gactttgtga tctgcctgtct 18300
tcagccccc aaagtgttgg gattacagggt gtgagtccacc ggcctggcc tagaatccacc 18360
tttttataacc ataacgttag caccactgccc gcgtcacccaa ggaagagag aggccgttac 18420
tgcgggttca caaatgggtt aaggtggcac caggaagggtt aaagtctctt ctttagccaaag 18480
gtttaacaaa atgtcaatca ccaaaacattt atttattaag ctacgttca gataagaaga 18540
tgaacaagct atctgtatcat tcattttctc gtttgcataca aggttaatgtt agtgtatctat 18600
cctgcctgccc tctgagggtt attgtgagaa taaaatgaaa tcaagtggaa aagcacttag 18660
gaaaaagaaa agcatgggtt ttcaattgtt agtggatc agaaacactg gggcttgc 18720
aaaaatgcaga ttcttagccc cagtcgtcagg gattctgatt ctgtatatctt gaagtggac 18780
tcaggaatct tgattttcaaa caagctgacc agagggtccca atgtgtctat tcttttagt 18840
acactttcag aaatattact gtaaatcaaa tggcaagaat aaaaatgttta ttgaggcag 18900
ttttagtatg ttggacctgg agtccaaaga cttgggtcaaa actccagctt tgctcgttcc 18960
tagacccgttgc accttaaaca gcaacccctt ctgtgaacct tagtccctc aggaacggct 19020
ctggtcacccctt cctgtgtac tccattgtatc actcaccaca taaggctccc tggggatccc 19080
ccaaacccctt gctctttaa ctccttttac agecccttccat atctcctgtca ggtgctgtct 19140
tctcccttctt ttccaggcc ctgtctgtac acagcattca ttctcctctg ggaagggttc 19200
cttcaatgttgc tctccaagca catcacaccc aggaaggacc ctgtggccat atctgtctat 19260
caccagatca aactacgtga eggcaggcac tagtactgtt cagtgcccaag cataggccctg 19320
gccccatcca ggtgtccaca gatgcctagt aaagaaaaccctt atgattcagg acccccatga 19380
tgagcaacta tagcaactaga acagtgtataa taactaatgtt ttataatgtca tcttcgtttt 19440
acagagggtt tttgtactca tcatcttagtt tagtccctgc aacaacccttctt tgaggaatatt 19500
agcacaagca ggacaaggga agcccaagaga tgttaaaataa tttatccaag tttatgtc 19560
tgggaaggc agcactgaaa taaaagaaa agtttctga gctcaaatcc catggccctt 19620
cctcaatgttgc agtcttagca aggttattcag gaatcctgccc tctacagttc agagccctca 19680

-continued

-continued

ctctccagct gggcagccct ttcagtatcc cgtatgttat ttccccactt ccagccacc 22140
 tcacccctc tggccctt gtgtgtcccc tggcttagga tcctgaccc tcgtcaaga 22200
 gtttaaactc aacttgagac ccaaggaaaa tagagagcc tctgcaacct catagggtg 22260
 aaaaatgtt atgctggag ctattnag acctaaccas gcccagaca gagagagtga 22320
 cttgctaaag gccacatagc tagcccacag tagttgtaaac aatagttta atgatattaa 22380
 tggctaacat ttatcaacct ttaatgtgc ccagacttg tgccaaggcc ttacatcg 22440
 tgcattgtcg cattcaaacc cagacagct ggctctggc ccaggctgag ctttgtata 22500
 gcatggtaga acgttgtcta taatgtctag tctgggtca aatcctggct tcacttctca 22560
 catttacagc tgagtgcact caggcaagt atttaacctc cctgtaccc agttgttta 22620
 tctgtaaaga gaaaaatcac agcaactgtgg aatagtgggg gttaaaattc attcatacaa 22680
 gtagtgctgc aagcaatgtt taatacaggg tgagcacctg ttcagtgtt ctttctctg 22740
 gctgcctctg gggctaggt gtgggtctt cgtggatag atagatagat atggctgagc 22800
 tctgcacaaa caccaagagc tggcttcac tattagaggt agttaacaga gtgggtgagc 22860
 tctgtggttc tagaacagag gcccggcaagc tatggccat tgcctattt aatacggct 22920
 gtgattgatt gatttttttt ttcttttta gacagagttt cactttgtt gcccaggctg 22980
 gaatgcaatg gcacgaactc agtcacccgc aacctctgcc tcctgggtc aagcgattct 23040
 cctgtctcag cctctcgagt agctgggatt acaggcatgt gcccacacgc ctggcttaatt 23100
 tttgtattt tagtagagac agggtttctc catgtggc aggctagct cgaacttcca 23160
 acctcagggtg atctgcccgc ctcagccctc caaatgtctg ggattacagg cgtgagccac 23220
 catgactggc ctgattgact gatttttta gttagagatag ggtcttggtt tggttccag 23280
 gctggctctca aacttctggc ttcaagcagt cctccctcct tggcctctcg aatgctggga 23340
 ttataggcat gagccactat gcctggccata tatgacctgt gattttaat ggttagggga 23400
 aaaaagcaa aagaatgttt tgtagatgt ggaattaca tgaaactcaa atatacgtgt 23460
 cccagcctgg gcaacaaagt gagacectgt ctctacaaaa aaaaaaaaaa aataagccag 23520
 gggccggccgc agtggctcac acctataatc tcagcacttt gggaggccga ggcaagtgg 23580
 tcacctgagg tcaggagttc aagaccaggc tgaccaatat ggtgaaaccc tgcgtgtact 23640
 aaaaacacaa aaattagccg agcatgggg catgcgcctg tagtcccacg tacttgggag 23700
 gctgagacaa gagaattgtc tgaacctggg aggccggaggt tgcaagtggc caagatcg 23760
 acactacact gcagcctggg caacagagcg agactccgac acacgcacgc acgcacacac 23820
 acacacacac acacacacac acgctgggtt tggtgccag cacgtgtggt cccaggatgc 23880
 actggaggct tagttaggag gatcacttga gtttaggtgg ttgagactac aatgaaccat 23940
 gtttataccca ctgcacttta gcccggccaa cagtgtgaga ctgaatctca aaagaaaaaa 24000
 aaaaaaaaaa aaaaaatctt tccataagta aatatctttt ggaacatagc catgtccctt 24060
 agtttatgtt ttatatatgg ctgttttgc cctataatga cacaatttag gggccacac 24120
 agtctgtatg gcctgcagag cctaagatat ttgcctctcg gccccttaca gaaaaagtgc 24180
 cttgacccgt gctcttagacg catatgtacc aggtttgaaat ctcagccctca cagctgggtg 24240
 tgatggcagc catctgtatg cccagctact ctggaggctg aggtgagagg atcacttgg 24300
 tccagaaggt cgaggtcaag attgttagtga gccatgtatgg catcacccgc ctccagccctg 24360
 agtgcacagag agagaccctg actcaaaaaa aaaaaaaaaa aaaaaaaaaa caccctcacc 24420

-continued

acttatcagc tattttgtctt gagaatagtg acataacccc tcagaaccta tttctaatac 24480
 tgttaaatga ggctgtatgac gtttcctccct tttactggca atttaaacat gatggataat 24540
 aaatgcataag cacttaaacac agggcttaga agatattaac tgctcaataa atggtagctt 24600
 cttaacagta ttcaaaaccca tttgtcttta tcacatgcat tttgtccct gtgtccagg 24660
 ggttggaaatgg gaaaaggctc ctttgcataacc ccatactacca ttttatcg actttccctgc 24720
 catggttcac agtaagagat agaagctgca cggtgacttc tggctcttta caatggtag 24780
 cggtgtgtgc ctggtaaggg agagctgatg tcaactgcccc aatccagta gtgagatctg 24840
 agtgttctgg tttcctccag cagccttgct tttccttta caatctgca ggcagggaga 24900
 caaggggctt ctacatggta ggctctgggtt tggtcatcgat cacaactggg ggctgttcag 24960
 gtgggctccc attccagata cctaggctt tcaatccctt ttggcaccccc aggccctttt 25020
 ctccctcatg ccccatttt cagtttggaa acatggtta tcacaggaca agtagaaagaa 25080
 gctccactgt ccactgaggc caatggatgg tttctgtcat gtaacactc agtgaatagt 25140
 gagtgaatga gagtaaacctg ggctccatcc tatttgcaga gagctttggaa aaagattttt 25200
 ctcccttaaag agccagaatg aagcctggta gtgggagagc tccagctcta gacttcacatg 25260
 agccatacatt taaaattccag ccctggccact gactccctt ttgaccttga gtgaggattacc 25320
 taatctctct gtacctcaact tttcttgct ttagagttggg aataattccct gtctcagaga 25380
 aataaaaagag tgcataatagt gtttgcaca tggagacaca tcaggtttag gttataactc 25440
 tgggcctgtt ttcccttattt gcaacacacgg cctggccctgg agtggaaatggc gaccccttcca 25500
 ttgggtcagct cttgaggctg tccccaggac aggcagaggg agggaaatgaa tgggagccct 25560
 agtgcaggaa cagaacagat ggcagctcag agcttaggatg gctctcttgc cctgtctctc 25620
 ctaccagagg tccccccgtc tgggtgtggct cttectggac ctggcatctt ctgtttttt 25680
 tttttttcca cctccaaagca gaattactgt cctgttaggca gtcctctgc ttgaggacat 25740
 ctggggccag atatgttccac actctatctt gccttgcctt tccctgagct caggatggac 25800
 gctcaattgg tcccaggat tttctgtcagec gcctgcctgc agcctcgatc cagcccaagct 25860
 ccaccccttg cctgcaaggt ctgtttctta acagctgctc caaccacaca cctcggtct 25920
 gcgggagccc ctcccttctcc tccctccctc cctcatttag gggggggact gaagaagaag 25980
 gcttaacttgc cagcagcgt ttttttttag ctgtcaaccg gcctgcctgc aagaatgcac 26040
 gtgtgtgtt agcctccaca gagaggctgt tttctcgag tccagagggg ccgcctgagc 26100
 ttctgagaac tagggaggag ccatcccacg catgagcccc tggggaaatc tgctggggc 26160
 caagtggctt ggagtcctca ggctcccgca gctgctccgg agggagaggt gagctcagg 26220
 cagcctgcctt gcagccagag gtggccggag ccccggtctt gtcattggg ccattctacag 26280
 ccggcctgag gcagtcacag acggatttgc agctgagctt gtctatctt tggggaaaga 26340
 agatggggag ttacttgca gtcctggctt acttcaccc tcaagacactg tttcggttag 26400
 ttgggtctccg agtcccttcc tccatctctc ctggccctgt gtctgagag gaggggtggc 26460
 tcccttaatc tccctctcac tttagtccctt accatcggtt ctggccggca gaagccagcg 26520
 gaggttatac ccaaggagaa tcggccctgtt gaggtacccc cattatgtcc tggaaatgtt 26580
 gagggggaggg atataacccag aaggaacttc ttagggagct ccagctcccc ttctatccca 26640
 gacaaaacctg aaggagccctc caaaagatgc cactgacactg cccattgttag atgttactgc 26700
 ttccgggggg aatagcccaa atagagtgtt gttccagct ctcacatgtc ttacctgccc 26760
 gccatgctgc ctggccctggaa atttgtccca acaagcagga tggggcagggtt ttgccaaact 26820

-continued

gtggaaactg gcaagtccctg ggtgtgggta gcctggata cagtaggcac cttataaacg 26880
 tttgttctct taatggcagg cacattgcc tctggccttg aagggttct gagctcccg 26940
 gtgaatgtat ttgcgtgggaa aagacctggg cgagtgcttc taagactgga gcaatggct 27000
 ttagagtgtt cctgagctgc tggccagcc cccacaccc tcagtcctt aggcctaagt 27060
 acctccacga gcctctctt gtggggcttc tcagaggag atgtggaaac tctaccccta 27120
 acctggcttt ctgtgtcat tgccccactc caccccccata gaaaactccc cagggggttt 27180
 ctggccctctt gggcccttc tgaatgggc cattccaggc tagggggggg tttgtttca 27240
 ttctttgggaa gcagccgtt gttccaaaaa ggctgcctcc ccctcaccag tggctcttgt 27300
 cgacttttcc ctgtgtcat ctctaaatc ggtccagtgc ccagatctt ctgcgggat 27360
 actagtcagg tggccaggcc ctggggcagaa aagcgtgtt ccattgtggg ttgtggaaatg 27420
 accggaccct ggttagattgc tggaaatgtt ctggacaggg ggaagggggg aggaaactgg 27480
 tcctcaatgc tgactctacc aagcgcctg ctagacactt tattccctttaa tctctcaaca 27540
 gcctaaagat attatataatc cccattttac agatggggca accagtttca acagagttaa 27600
 catatggagc ctcaactggc agtttttctt gtcttcctga ctttctctca tccttcagg 27660
 ggctgcagggt ttgtttctt ctcttaggg agaggaaattt ctcagggttgc ttttcctctc 27720
 cttagcagaga gtaaaaaaaag ggatgttttgc cctgacttgt tgaagggttg gctgagattt 27780
 ttttctaaag agccaatggaa aattgtatctt gagtttagga gaaagctttt acatgtggaa 27840
 ttaagatgcc aagtgttggaa gtagccacat ttccaggctt cattaaatcc tcttaatctt 27900
 gggaaaggcag cttagggagaa ggggtgttcc tttagggagcc aggaactata ccccttttac 27960
 ccttggagag gcaggggaaagc cagggaggac acaacttctc aggaaggggaa gaagctagag 28020
 cagatagtgc actctcaacc tgaaccttta agggccagac cactaatgcc acccaagtcc 28080
 acctggcgtt tggcttttgc tggccaggc ttctggaga acctgtatctt ctggccctca 28140
 ccccaagct ccgtttggcc agcttagatc tgggggttgc tgactgtactt tcgttagacat 28200
 tcttccttc cccaaataag agggccacatt cctgaagtca ctgtgtggaa gatagctgcc 28260
 acacagggtt cttttcccccc agggaggggac cacccagacc ctctgtctc ccaggatacc 28320
 gttaccacat cactaccctgg tcgaaagct gtttctggca tttagcccttc ccttttttat 28380
 tataggatat cctcaaggcc ttcttttgg gcctcaggat tatttttttgc agaaagtata 28440
 agcttagactt cttggggctcc tgaacagggtt ctttgcgttgc ttctgtggaaa caaattaatg 28500
 tcttgacccat aggcctctgg gggaggataaa agtctatggg agttctgggg ctgtgggtgc 28560
 aaggaaatgtt acgcaaccatggtt atccatggg gacatgtatc ggcgtgacat gtgagggagg 28620
 aagaggggagc aaggaaatgtt agaatacaccat ttctgtgtcc catacaccacc tgcctgacag 28680
 gccatacata ctcagcagag aatgcactgtt ctttcctacc acactagcgt gaggaggatg 28740
 ctgcatttttac cactgtgttcc ccaagtaaga aaataccatca aatttggaaatt tacaaaagag 28800
 gtaaaatagg gatgtggctt tgcggacat ctttaaagca tttttttttt tatagaattt 28860
 cacttaatgtt ccaataactgtt ttaatggggc ttgggtttac acattatctc ttgaagaaaa 28920
 caaatgttcc ttgtgtttcc aagcaatcc atgtttaaag ggaaaaattt atgcataact 28980
 ctggcccttgc tcaacatgtt ctttggcagg tgccttggat cctctggac tcttttttgc 29040
 atctgtttttt tgaaggactt ggatgtgggg aatgggtttcc agtctgtccaa cttatgtggc 29100
 tcctcagaggc cacacaatgtt cttttccattt atttggccaaa taatggggcc cctgtcttta 29160

-continued

-continued

-continued

ggcgcctgcc tatatttagga cttttatata agctatctc agctagctg ctagctagct 33960
 ataatgtttt ttgagacaga gtctgactc gtcaccagg ctggagtgc gtggcgat 34020
 ctgcactcac tgcaacccctt acctccctggg ttccagtgat tctccctgcct caccctcccg 34080
 agtagctggg attataggg catgccacca cgcccaagcta atttttgtt ttttttagtag 34140
 accaggtttc accatgtggg ccaggctgtt ctgcactcc tgacttcaag tgatccaccc 34200
 gcctcgccct cccaaagtgc tgggattata agcataagcc actgtgcaca gctgctctc 34260
 atattttaa tacatattat ttccatataa ttccacagca gtcattttta tagatggaa 34320
 aactaggcca gagaagtaaa atatctgcc caagatgtat taactatgtt gttggcaggat 34380
 caagattcaa accaagcaat gttcaaacct cttggaagca agaatgtggc cactgtggaa 34440
 ggtgcaaggc cttgacaaca agaataggaa aaagaaggaa ctagaaggaa agagatggca 34500
 tgggctcagc aggccaggaa gctcttagt gtgtgtgtt ggaagctcag aaggaggaa 34560
 gaggttgtct gtgcaggtaa gtcctgagaa cacaccagac tttttagagg tggagctca 34620
 tagccaggtc attagggag aaggaggata tagatttttt tttttttttt tttttttttt 34680
 ttttttttagt agacggggtc ttactatgtt gcccaggctg gtcttgaact cctgggctca 34740
 agtgatccctc ccacccctcgc ctcccaagt gctgggatta gaggcatcag ccacccccc 34800
 cagcgagctt tggatctaac atgtacatct tacacagtgc taatagaatg ttgggtttct 34860
 tccccatata ttatatttta aaaaaatttcc aaatatataatg aaaaatgttta aatgttagt 34920
 caaagaacac ctacataacct ttacataga ttcatgattt gttatgtt tgccactttg 34980
 tatataatctc ttcctccct atctgtatc ttatattttt ttatatttgc tgaactatctt 35040
 cagagtaact taaaggatc ttgattttac ctttgcacac ttcaatatgtt ttctgctaa 35100
 aattctccca tataagtccat atatcattac atctaaaggaa attcacggca attttacat 35160
 ataataattat agtccaaatc catatccctt cagttgtcc aaaaatgtt catggctgtt 35220
 tcctttttta atctaaatattt gaatccaatgtt ttgaggcattt gtatgggtt gctgtgtctc 35280
 tagggttttt aaaaatctgtt ctttttttc tccccatgac ttttttagaa agtcaagacc 35340
 ggttattttt atagaataac ccacattctt gatttgcctg attagttttt ttatacttaa 35400
 cgtatttttt gcaagaacat tacattggta acgctgttgg ttaggggtca gttttgaaga 35460
 gtggagatga ttaaaactgtt ttgttcattt gaagttatctt tcaagaccag agatccctaa 35520
 ctgggtccat aataggtttt cagagaatcc ttatataatac caccctgtcc cccacccat 35580
 ttatatacac atcttcttta tatatttattt ttcttagggg aggcttttgc gcttttata 35640
 aattctcaga gggccccaaag acccaaagag gttatgaaac actagtctgtt ccactgaggc 35700
 aggcaacaca gagctggttt ctggggcctt gttcagtttgc aaccagtttcc ctttggggag 35760
 atagcacaacg gctgttaactt tggcccatct tggcttttggta tcaaaaggaga ctgtccattt 35820
 tgggtgtataa ccttaggaacc agggacagct tttgtggctt gttccaggaa atccaggaga 35880
 atttcagtttc ttgtcttgc ttctcaggatgtt tcaaaatgttcc aggtttccctt caccacactgg 35940
 tactatgaga aggtggaa gctctactgc cccaaaggactt actggggaa gtttggggag 36000
 ttctgtcatg ggtgtccctt gtttgcatttgc aaccatgttcc gttccaggaa atccaggaga 36060
 atctgcccctt cttgggttttcc aggtttccattt gacagtgttcc ctttgccttgc gtttggggag 36120
 aatcttttagt tttttccatc agccaggca tttcccttta ttttatttttgc ctttgccttgc 36180
 gcaaggatca attgaggcacc tactaagtga aaggtaatgtt ctttgccttca aagacttaat 36240
 agttgaacgt tgggagttggg agggaggca ggcagagagg agacacaata tagttggata 36300

-continued

aggacacctca aggagagtgt tacaggctga gaggaggata tacttaggtt gtcttttaggg 36360
 aatcagaaaa ggagactctg gaataggctg gcagagagag gggctaccc tcataacctgc 36420
 tctggacaaa cgacttaag catagtgaca gatttgc当地 ccctgtattg gaagaactga 36480
 tcttttttag tgggatgt tacttctggg gatttcttct cataactgag accaaaacag 36540
 ttttgtgcag tctcagaaat gacaggaggt accaactgta cacttc当地 ggaagctcta 36600
 gggcagagag taaaagatg gatttgacg gggccctgc ttggaggta ttcaccacc 36660
 cctgtctca ctccagcaac agtgataact cacttc当地 ctcccttgc acacccttct 36720
 cccccacactgc tcacaggctgg ctggggatg caagtaccac ccagagtgt ttgcctgtat 36780
 gagctgcaag gtgtcatttgg aggtatggg tgcatatgca ctggc当地 atgccc当地 36840
 ctactggtaa gatagtggc ctttgc当地 cctctccat ataagagtgg ctggc当地 36900
 gggacagtgg cagggtgagt tggcagaaag gagtgttagg gtgtcagag cattggattc 36960
 ttaccacagc agtgcttta accagcttta taacttggtaa gcaaatgat ttacacatgt 37020
 ctctaccctt ttcccttacc aaccttggaa atgtcttcc ac tctccctgc aatcctccca 37080
 gtgggaggca ctcttcaagg acgatccag aacattaaag tcaaagaccc cttagagctc 37140
 accctgtcca accacccttgg ttgataaaag aagtccgct gggccctatg gaatagaata 37200
 gtacaaggc aaggttctca ttgtgagtc aaggttagatg gaagagaacc cagaccatct 37260
 caccccaacc cagggcagtg ttttccaaa tataccactt gctgcagatc tagtcagca 37320
 cccccagttcc cagcccaccc tgagaaccca ggctctcat tctgagc当地 cagcttagat 37380
 catgacaaag agggtgtag tgagactatg ggtactgttgc cttaaagccca catggc当地 37440
 tggttgttgg gggcttctg tggacttgc tagcatcttta ttccctctg tgc当地 37500
 ccagtggaa gtgccacaat gaggtggtgc tggcaccat gtttggaga ctctccacag 37560
 agtctgttca ggagcagctg ccctactctg tcacgctcat ctccatgccc gccaccactg 37620
 aaggcaggcg gggcttctcc gtgtccgtgg agagtgc当地 ctccaaactac gccaccactg 37680
 tgcaagtgaa agagtaagta ttttggaaac ctttc当地 cagagggatg gggcttctg gcaagatctg 37740
 taaatggcc tcagaggct tagaccttca aagtctcatg cagaactccc ttatttctca 37800
 tctcatatct ttctcttggc cccctactatg ctgttaaccatg acctggccct tggcacttac 37860
 tggcttctctt gcccaggctt cttcccttacc gatacttaag gcaagaatca ctcacccttc 37920
 aggtgtcagg ttccaggctca tggcttcttgc ttgaaatcat ctggcttgc tatgtgtatt 37980
 agttgtttat cttctatccc ctccactaga atgttaattt cagaagaaac ttgtcttgc 38040
 attcactgtc gcatgcccag ggcttggaaag agtacctggc atatgttgg agttgtatga 38100
 ttatttattt gtcagtcag agaatgaatg gagaatgtt ggtccatggc ccaaaagaag 38160
 ttaagaccct atccttgcaccatg caggccagag accagatgga gaaagagtct gtgttatct 38220
 aataccatgtc atgtcgtaacc tctggcccttaccatgtttaa atattgttgc tggcttctt 38280
 atgtgttggc cactaggctca gtgttgc当地 acgaggatgaa agatactaga gtttggaaag 38340
 tcaggaggag ctaaggctcg ttctacaacc ttatttagatg aagaggagag ggaattgtgt 38400
 tcaggaggcaga gggagaagca ttctccaaa agtagggatc ttaatcatgt ctgtatgttgg 38460
 ttgagtgatgg ccagaaaagg ggcttggtaag tataaggggc ctggattatg aaaatccagc 38520
 agatccattt agatgtttaag cagcaaggatg ttgtgacccaa gtaacattt tagttagatc 38580
 actggatgg aggttggattt ggagggggaa aagcctaaag gtatagagac tagtttagaa 38640

-continued

gctattttag gctgggcatg gtgggtcatg cctgtatct cagactttg ggaggctgag 38700
 gtgggaggat tgcttgaggc caggagttga agaccaacct ggccaaacata gcaagacccc 38760
 gtctctgttt ttcttaatta aaagaaaagt ccagacgtac acatgtggc tcacccctgt 38820
 aatgccagca ctttgggagg ccaaggtggg cagatgttt gaggtcaaga gtttgggatt 38880
 aggccaggcg cagtggctca cgccgtaat cccagactt tggggggccg aggtggccgg 38940
 atcacaaggt caggagatca agaccatctt ggctaaacaca atgaaacccc gtctctacta 39000
 aaagtacaaa aatttgcggc gcatggtggc ggacccctgt agtccctagct actcgggagg 39060
 ctgaggcagg aagaatggcgt gaaccttagga ggcggagctt gctgtgagca gagatcacgc 39120
 cactgcactc cagcctgagc gacagagcga gactccatct caaaaaaaaaa aaagatttg 39180
 ggatttagct ggccaacatg gaaaaacccc atctctacaa aaagtacaaa aaaatttagct 39240
 gggtatggtg gtgcgcgcct gtaatcccag ttactcagga ggctgaggca tgagaattgc 39300
 ttgagcctgg gagggtgggg ttgcagttag cccagatcat gccactgcac tccagcctgg 39360
 atgacagagt aagatgcat ctcaaaaaaa aattaaaaac aaegttaaa aaaaaatag 39420
 aagctattac cgtgatccag gtaagagatg tgaataacta caatgtatgg aagaaggcag 39480
 agttctttaga gatggggata ggagagatgg gggaaactcca gattggaaag atgatgtca 39540
 agtttctggc tttaggcaca gggtgagtgg caattccctt cactgagatg gggcatcctg 39600
 gaaaagggtg tgccttcgt tggggatc ctggggccct tagggccac tggggcctg 39660
 ggacctggta aaccccttgc gacaaagcag aattggtcaa gcagggtttt aggacatctt 39720
 taccctgcct caactctgt ctggccagg gtcacccgg tgcacatcgatccaaat 39780
 cgaaacgcacca tccaccctgg ggaccgcaccc ctggagatca atgggacccc cgccgcaca 39840
 cttcgagtggtt aggaggatgg gttgtgtctt aatctgtttt gtggggatgg gacatggAAC 39900
 agatcctctg gggaaatcagg ctgtggatcc taccccttcc taccccccggccatctcttt 39960
 gtcttagcat tgagcctgtg accactgggtt acctatttca gctaacagg ttcccagggt 40020
 agcagggtatg gttgtgtggc gggagagctg acaggatgcc aggcagaggg cactgtgagg 40080
 ccactggcag ctaaaggcca ccattagaca agttgagcac tggccacact gtcctgagt 40140
 catctgggtt ggcctgggtt ggcctgggtt gggccagctt gtggggatgg tatactgctc 40200
 ttggccacag gtggggatgg caatttagcca gacggccatc acacttcagc tgggtgtttt 40260
 acatgacccc gtctcccaac gctggatcca gctggatcc gggccggc tggccatc 40320
 catgcagaat gcccggacacc cccacccctt cagcaccctt gacaccaagg aagatctgg 40380
 ggggacactg aggagacgtt ccctaagggtt ccaccccttcc ccctggctctt gttctgtctt 40440
 atgtctgtctt ctcggatggaa gctggatggc ctttcagaaat cctggatggatggatgg 40500
 accagctggc cagggacaga ctatggatgt tggatgttcc cagtttttttcc tggggatgg 40560
 acatgttaca gcccggaccc gtcggatcc agctgtgtcc cagtttttttcc tggggatgg 40620
 agatcgtatc tctgtccactt gaaactcttca gctggatggc aggcagatgtatggatgg 40680
 gaaaggcaac atggccatg gagaagatgg gtagctcaga gctggatggc cggggacaca 40740
 taggatggaa taaaattgtgtt agaaaactt tggaaacat aaagcaaaaat atgaaatgg 40800
 gtttttttta gacttgaggg accaacaacc cccaaacccc agattctggc aggtccatgg 40860
 ggaaggagaa gttgccttga gtggaaagccc caagtagggg gacttacaga aaagaagtc 40920
 agagcactgg ctccccaggca gaaatactga taccctactg gggcttccagg ctgagcttct 40980
 cccttcacaa atcacttcat ctctctgagc ctgtttctgc atctgtgaca taagatggta 41040

-continued

agataaaaggt ggctgtctca ccaattatgt aaggattaaa tgtggaaaag gacataaaagt 41100
 tgtatagtgc tgccataggg acagtgttc gtaaacgtga cacattctta gtatcactaa 41160
 gaatcaggtt ctggccagg caccgtgct catgcctgt atccaaacac tctgggaggc 41220
 ctaggtcgga ggtatggcttg aacacaggag tttgagacca gcctgagcaa catagtgaga 41280
 cactgtctct acaaaaaaaaa aataataata ataattgttt ttaatttagat gggcagggca 41340
 ctgtggctca cacctgtata cccagcacct tgggaggcca aggccggagg attgcttgag 41400
 gccaggagtt caggagcagc ctgggccaca ttccctgtctc tacaaagaat aaaaaagttt 41460
 actgggcattg gtggcacatg cctgtatcc cagctactca agaggctgag gaggaggatt 41520
 gcctgagccc aggagttcaa gactgcgtg agccttgatc acaccactgt actacagtt 41580
 gggcaacaga gtgagacctt gtctccaaaa aaaaaagttt gttttttttt atccactctc 41640
 ctcaccaaac aaactgagta agtttagagcc ctctcagctg gcatgtgttg gaaacagtgc 41700
 cctctcatta aagtgtgcc ctcactccca ttgcctcttg gccttggtca gtatgatgaa 41760
 attagtggga ggcaggccaa cagagggcag ggaagagcta gaaatccatg gcctggaaaa 41820
 gggaaagattt gggagtggcc aggtatctgt agagccacca tgcagaggag gggggcagct 41880
 agccttgggt gctctgggg gcatggtcag caggaggcag agcaaaagga caagggttaag 41940
 taaacctgtta ggtcgggaca agccaagagc catccagctg cagtcctctc tgggtggccc 42000
 aagtaaagca ggagcatacc ccagagagaa agttcgcagg gctgttacc tgcagtgtcg 42060
 tggacttcaa cttctttgtt cttcttcag taagtggaaa taacagtcat tgaccatgac 42120
 tattatcgac cgcttttgaa aatgtaaaca tagtgacttt attgctgtaa aaatcatacg 42180
 tgtttatcat cttaaaatcc agggaaacatg gacaggtaca aagatgtgc aaatatcatac 42240
 caaaatccca tttgctggcc aggcacggtg gctcacgcct gtaatcccg cacattggga 42300
 ggccgaggcg ggcaaatcac ttgagggtcag gagtttgaga ccagcctggc caacatggc 42360
 aaacccatcc tctactaaaa atacaataat taggctggc gcagtggctc acgcctataa 42420
 tccccagact ttgggaggcc gaggtgggcg aatcacaagg tcaggagttt gagactagcc 42480
 tggccaataat ggtgaaaccc catctctact aaaaatacaa aaattagggc cgggtgttgt 42540
 ggctcacgccc tgtaatccca gcaacttaggg agggcagac agatggatcg cgagatcagg 42600
 agttcgcagac caaccttagcc aacatggtga aaccccatct ctactaaaaa aataaaaaaa 42660
 ttattcggtt gtgggtggcac acgcctgtaa tcccagctac ttgggaggct gaggcaggag 42720
 aatctctgtt acctggggagg cagagggtgc agtgagttga gatcccgcc ttgcactcca 42780
 gcctggggca cagagtggaa ctccatcaaa aaaaaaaaaa aaaaaaaaaa aaattagggc 42840
 ggcgtgggtgg cgtgcaccta tactccca gacttggag gctgaggcag gagaatcgct 42900
 tgaacctggaa aggcggaggt cgcaactggc cgagatcgcc ccattgcact tcagcctggg 42960
 cgacagagcg agactctgtc tcaaaaataa taataataac aataactagc cgggcctgg 43020
 ggcacatgcc ttagtccccca gttactcagg aggcggaggc atgagactca ggtgaactag 43080
 ggagacagag gttgcagtga gccaagatca caccactgca ctccagccgt gttgacagag 43140
 cgagactctg tctcaaaaaa aaaaaatcc catttgctca ttttttgat actgtataa 43200
 ctatcactct aaaccagttt gtaacttaat caagcagata tgggagatgg tgaattacca 43260
 tctacagtgt tgcataat gtcacatact gaggcattatc agcttagtata gtcataat 43320
 ttgttctatg tgcataat gtcacatact gaggcattatc agcttagtata gtcataat 43380

-continued

```

taaatgactg atgtcagcaa ccccaaaatg atacatctga tgtaagagcc cctgtcccc 43440
aataataaca tctaaactat agacatttga atgaacaggc gcccctaagt ttccctccctc 43500
cagggtttct tggccggct ctgaggacta cacatcccta ctcccgctt tcctcatctt 43560
caggcgcagt aacagtatct ccaagttccc tggcccccage tccccaagg agccctgtc 43620
gttcagccgt gacatcagcc gtcagaatac ctttcgttgttgcagcattcacagca 43680
gatcttccgg ccctgtgacc taatccatgg ggaggtcttg gggaaagggtc tctttggca 43740
ggcttatcaag gtgagcgcag gcaacaatttgc ttttgcctt ctgccccag tccctctgtc 43800
actgtcttc ggggatttct catcacttgg ccccacccca caccatgcag gatgccaggc 43860
ctcccttcctg gctttgggtt tgggtgttag aggtatctt caccacccacc caggecacct 43920
aaggctcaatg ttgctgttac agtgagcttg tggacccatgg gatccagggtt ggggttgc 43980
gtgcctgtgg ccctcctgccc tccagtcagt ggggttttgt taggtgcctg cagacccctag 44040
taccgggcat gctacaaggg gacacacagg gaatggctcc tgcctccctg gtgaacagtc 44100
tcaggggacta acctctctct ttctctcttc ctccctctct tctgtgtgaga actgggagg 44160
ggggtcaggt aagacgtgtg ttcagtcatttggggcagcag ggctggagag ctcacccccc 44220
atccacccag ctccctgtgtg catgttcttgcactgaccccttcccttgc 44280
tcacttcagga gactcacttc tatgccaaat gaccagagcc cctgcttggc ttggcagcat 44340
ccctcctgc ctcttccccc acttccctttt tctgggttct tgcctgtctt ctgtgcattgc 44400
ccagctctcc aggaaagagg gtttgcattcc gtgtgagtc catgttgc tccgctgcat 44460
cttccacaca tgaactctgtt catttcgacc cggctcattg tgcctccaa gggatggat 44520
ggccagctgc atagattttc tcaaacaatg ctccagaact tccctctggc tcagcacccat 44580
taacagtcac ctccctgtgtg ggtgacacac aaagccacgg gcaaaatgtt ggtcatgaaa 44640
gagttaaatc gatgtgtatgaa ggagacccatggaaatcccttgc tgcattttgtt aagaagatgg 44700
agggggcccg ggaggttgggttgcaccatttgc gaaagagatggaa gacccatggaaataatggctt 44760
caagagaaaa tacagtttttgc aattactgttgc taaaagacta agcagaaaaag agcccttagag 44820
gaatatccca ctccctctaa attacagcgt aattattttgt tcaatgaaca cttaactaaaa 44880
gcaacacaaa cagggtacaa gggatgcgtt aacaaaatg acagggttca gaagagctct 44940
caggttatga ggatgtatgaa catgaaaaca ctccaaatgtt gatcaactca atgttataat 45000
cctcacctga acggccctgtt aaggggagctt ggagggggagc tccctgtgca ctcacactcc 45060
ttggggatattt acatgttca ctacccctcc caagttactt catggatgttgc cttaagtgg 45120
ggacacctgtt ggtctgggttgc ttcctccca agccacttgg ccactccac cccagtttc 45180
ccaatgcgtt tccaaagggttgc aggcctatgtt gatccatctcc atctatgtt tggtggctt 45240
ccctcattctt gatcttagtgc ctctgttata tcacaagata ggaggttagga gatcagggtt 45300
gtaaacacttgc tcaagttgttgc ttccttggggatggaa ggaagacatgtt gatccatgtt 45360
ccaccagctt cccttggctt ccccccacccca caggtgaaatg tgatgcgcag cctggaccac 45420
cccaatgtgc tcaagttgttgc ttccttggggatggaa ggaagacatgtt gatccatgtt 45480
gagttacatttgc ttccttggggatggaa ggaagacatgtt gatccatgtt gatccatgtt 45540
catagtcctcc agggaccccttgc ttccttggggatggaa ggaagacatgtt gatccatgtt 45600
ttaaaggccatgg gggggcccttgc ttccttggggatggaa ggaagacatgtt gatccatgtt 45660
acataggggatggaa gtccttcacttgc ttccttggggatggaa ggaagacatgtt gatccatgtt 45720
cagggctcaatgaaatcccttgc ttccttggggatggaa ggaagacatgtt gatccatgtt 45780

```

-continued

agaaggctcg gtttgcacaa ggaatcgcc tcggaaatgtt gaggccacc aacaacactg 45840
ccagcaggc gagagtaggg agagggtgtt gaattgtggg cttcaactgg aagtagagac 45900
cccttcctat gcaacttgc tgggtcggtt cagcagctat tcatttgatt tgctgtgtc 45960
actgaaactg accccagcca actgttctca gttcacagcc ctgttttcaa agaattacac 46020
atctctaaag gcaaaacaggg cacggacaag gaaaactggg gaggcaact gtacgccttag 46080
atggcctggg ctggccatca caggtattca ggtgtcgagg gccccttagac caactagac 46140
acctcaactgc cttagaaatc aatgaagggg aataggttc tagggagcc ctgaaggatc 46200
agaattggat aaagttctta ttggcagaga ggcaccagga ttgaagtgc aggagcaag 46260
acctgggagg aaagaggaga aaatcatcta ttgcacctgg aaacaatgtt ttccaaggat 46320
agaataata acagactgaca agtactgagt gcccctata tgctaggac tgggtcgagg 46380
gattaacatg catgtgcattt tttatccctc atgacaaccc tggttccag ataagctgg 46440
ctggaaaggg acagagctgg gatcctgggc taatcagttt ggtcgccaa cctgagactt 46500
tagccactgc cttcacatg ggggtccatg aaaatagtag tagtctggaa cagtttgggg 46560
gtacatcaag gtcgctgtt ttaagctat gggtctgg aataggaga caaatgtaaa 46620
agagttttt ggttgcactgg cttttttttt tttttttttt tttttttttt tttttttttt 46680
ttttttttt tttttctgtt tttttttttt tttttttttt tttttttttt tttttttttt 46740
tgttttggaa aaggatattt ctctgtggc cagactgggg tgcagtgcc cgtatcatggc 46800
tcactacagc ttgcacccctt tgggtcaag caatccctt gccttagctt cccaaatgtc 46860
tggactacag gttgttacca ccacacctaa ttttttgaat tttttttttt tttttttttt 46920
ttttttttt ggttagagaca ggttctcaact ttttttgcacca ggcctgaatc tcaacttct 46980
gggtcaagc attccctctt ctcgcctcc ccaaagggtt gggattacag tttgtgagcc 47040
ccatgccccg caggaaaaga ttttaagca agaaagctt aagactgtgg ttttccaaa 47100
atgagtcgtt gtcggccacag tggctcatgc ctgtatccc agactttt tggggcccg 47160
agggtgttgg atcaacttgc gtcaggaggat tttttttttt tttttttttt tttttttttt 47220
ctgtttctac taaaagaaaaaa aatgcaaaaaa ttagctggc tgggtgtgc acgcctgtt 47280
tccccatctac tcaggaggcc gaggcaggag aatagcttgc acctgggagg cagaaggatgc 47340
agtgagccaa gatcacacca ctgcattccca gcctgggttgc cagactgaga ctccatctca 47400
aaaaaaaaaaa aaaaagagaga ctgtatgtt tagtacattt ggggtggaaatg cggagggtcc 47460
agggaatggc gcccgtcata gggggctaat gaaacatttc agatttctga attaaggtag 47520
tggctgtggg gacaggagcc tggggaggcc ggtggagtc gaatggagac actgggtggc 47580
aatggggaa caggaggagg aggaggaggat gttacgatgtt gcttgggggg tcacttacca 47640
gacatttggg ggtggggggaa tagccgtat tttttttttt tttttttttt tttttttttt 47700
atgtatccct gctgttctgtt gcttagcata cctatcagca tttttttttt tttttttttt 47760
ctccatgaga ctgggtttagg gagaggctgc tagtcaccta atctgcagag aaggggcaggc 47820
tggagctgtt ggtggggggaa tagccgtat tttttttttt tttttttttt tttttttttt 47880
aggagatggc ttttggcagg gtcgacactg aaaaaggctgg aaaaaaaa cagacacaca 47940
agagtctcg gatcaggatgtt cataggaaat ttgtggacag tttttttttt tttttttttt 48000
aggcaggcaggc gtcaggcaggat tttttttttt tttttttttt tttttttttt tttttttttt 48060
gagcagctcc eggaggctaa gggatggaaat tagtatttgc gggggctgg aagcaaggag 48120

-continued

tggctcccttc tacatggca agggaaaggag aaaggaagtt gctcctgaga gtggtaeag 48180
 tcagtgggg aggccctggag aggagacata acaaaacaaaat ttgttgacaa acatttttgt 48240
 aggaaggggg agagcttaaa gtttagacag tggggaaaggt ggagtcttag aggaggtaa 48300
 tgtctgaaag acagagctag ctggagcaag aagtcaacttc tctgttgca gcaaggaaagg 48360
 tccaaatggg ctcacggccag agattgggg agtggggagg agggagccgc ctggatctaa 48420
 gtaaaatggg tagaggtgga ggggggtctg caacggccag gttttctga agttggggac 48480
 attaggagag agctgtgagg gctttggcca gccactgtgc tagtggatgg tgaaccaaag 48540
 gatggggcagg agatggccgc agggaaagcg aggaagtcca ggcttcgtt tggtattggg 48600
 acaaggggaga ggcctatgga ggcctggcc ctgttgccca ggttgggttc tgaagctggg 48660
 tggcatggc ctggtaggag agcatctatg ggccttcaatt ccagattcg ggtcttagtg 48720
 atttgctggc cctgttagct cagctcatgc ttctgttcca ggcctatgg cactctatgt 48780
 gcatcatcca ccggatctg aactcgccaca actgcctcat caagttggta tggcccactg 48840
 ctctggccct ggcctccagg gtcctatctt tccctggcttc cttgtcacaa aggaggctga 48900
 ctgtccctt ctggcttagag ggcagaggtg ttgccttaga gtcctatctt ttcccttcc 48960
 gcttcttcca atgccttctt ctgtctctg ggagctccga gacacacaca gacataattt 49020
 caccttctt cattagcaac ctttgaata atttgattag aaggacttc agaagttgt 49080
 tgactatatg tagaaaaacc tgcattttt cctgttttg ccccatatgt gtcttgtaaa 49140
 acagttcatt gctgacccca ttttacagtg gtggcacctg aagccctcgc ctgaggccac 49200
 cgagcttaga aatttacagg gaccagttt agaccagcat tccctccact gcccctcgc 49260
 tgggtgggtt acaatgttgtt ttgtcttact gacttgctat ctggcttcc 49320
 cggctggccc tggctctgcc ctctagaccc acaccacga atcttcatc cttcccaaca 49380
 tgactgcctt gtactatc aaagagcttg tctccccaa gtctcccat ctactgcctc 49440
 caccttgcct ttttctgtct tattctgggtt ctggccactg cctgaaatca ttttaggaat 49500
 aagacaggac agggaaaaac aaaagcaacc cccctgtccca cctctgagtt ccactctcca 49560
 agtccctgag cctcacctcc agggctccag tggctctgcc atgaacccac tggggctgg 49620
 gagtctgctg tgcacagata ccagaccctc agaaacacaa atgccaagtg tgcatttttt 49680
 tttttttttt tgcattttttt ttttttagatg gagtctcatt ctgtttccca ggctggagtg 49740
 cagttggcga atcttggctt actgcagctt ctacccctcg ggttctagtg attgttctgc 49800
 ttcagecctcc cagtagctg gactacaggc gtgtgccacc acggccagct aatttttttt 49860
 tttttttttt tgcattttttt tgcattttttt ttttttagatg gagtctcatt ctgtttccca ggctggagtg 49920
 aactccctgac ctcaaggatgt tccatccctt tggctctccca aagttctggg attacaggta 49980
 gaagccaccc tgcctggctt gagtgtgtct attgtataga gctttctgtct ctgattctcc 50040
 cttgtatatac accttttctcc cccttctcag tggcttctct tgcctatgtt tccctccca 50100
 ggccagggtt gagaacatcc ccatgaagtc ctgacactgtc ttttaccta ccaggacaag 50160
 actgtgggg tggcagactt tggctgtca cggctcatag tggaaagagag gaaaaggccc 50220
 cccatggaga aggcacccac caagaaacgc accttgcgcg agaacgaccg caagaagcgc 50280
 tacacgggtgg tggaaaccc ctactggatg gcccctgaga tgctgaacgg tgatgttgc 50340
 agccctggag gggacaccccg cagaggaggc acagatgtc cccttgcata gaggccctgg 50400
 gaattccagg ggaggccctgtt gaagcttagg accggatacc cagagetgag gatatttttc 50460
 ctttgcagg tggggccctca cgatgttgc tggggctggg aactgtatcag 50520

-continued

tgtcccatca tggggataa ggtgagttct gactgtggca tttgtgcctc agggatcgct 50580
 aagagctcg gctatttgcc cagctttagc cttctctc catgggaga actgaagtgt 50640
 ggtgcctct ggtggataat gctcaaaccac accagagatg ctgggtggaa ttcttggaaat 50700
 cagggttgtg aggccctcaga aatggctgta atacaatcca ttttggagtc tgaggcccag 50760
 agaagttcag tgaattgcct aggagcatac agctgcctaa tggcagaggc tagatgaacc 50820
 ctatgtctgtt tcttttccac tttaacgtgc agtttcatcc taggcagtgt tatgtataa 50880
 gggctctcca eggcagtca cctacggctg aggaaggact attttcagggt ggtgtctgcg 50940
 caggacagcc tgggggtgt ccctacagaa cctgttctag cccttagttct tagctgtggc 51000
 ttagattgac cctagacccca gtgcagagca ggtaagggt gtaaaactttaa cagtgtgctc 51060
 tcctgtgttc cccaggaaa gagctatgtat gagacgggtt atatcttctc ctttgggate 51120
 gttctctgtg aggtgagtc tggcaccaag gccatggcc aggcagcagg cctagcagct 51180
 ctgccttccc tcggaactgg ggcacatccct cctaggatg actagcttga ctaaaatcaa 51240
 catgggtgtt gggttttatg gtttataacg catctgcaca tctttggcac gttcgtgttt 51300
 cattgggtttt aagagaagga ctggcagggt tttttgttt tagatggagc ctcacttcgt 51360
 tgcccaggtt ggagtgcagt ggcacaatct gggctactg caaccttcgc cttctgggtt 51420
 caagtgttcc tcctgcctca gcctcccaag tagctggac taccggcaca caccaccatg 51480
 cccggctaat ttttgttattt ttagtagaga cagggttca ccatgttggc caggctggtc 51540
 ttgaactccg gacctcaggat gatccgcctg ctcacgtctc taaaagtgtt ggaattaata 51600
 ggcgtgagct acctcgcccc gccagggttt tttttttttt ttttttagttt agggaaactga 51660
 ggcttggaaag agggcagttt cttgcacatg gtgcataagg ggcagatgag actcagaatt 51720
 ccagaaggaa gggcaagaga ctgttcatgt ggctgtctag ctatgttttggccaaatgt 51780
 agcccttc agttcccttc aagtagaaatg agccactcta ggaagtgtca gcccgtgcc 51840
 aggttaccacg tggacagatg gaggaatctt ggaaagatcc ctacatgtttagt gatgttgc 51900
 aggtgacagc atatctcagc gactcaaaca cacacacatt caaagcccttc tgtaatttct 51960
 acaaaggatgtt gggggtaga ggagaggaga gacaaggatg gtttaggata atgaaggaaat 52020
 gttttgtttt tttttttttt ttttagatgg agtttcaactc tgcacccag gctggagtgc 52080
 agaggtgcaaa tcttggctca ctgcacccctc cgcctcccaag gttcaagcaaa tcttgcctgcc 52140
 tcagccctccc aagtagctgg gactacagggt gtgcgcacc accgcctggct aatttttgtt 52200
 tttttagtagt agacagggtt tcgcctatgg ggcagggtt gtcacaaatg ctcacgttca 52260
 ggtgatacac cccgttccatc ctcccaaaatg gtcgatgatca caggcatgag ctaccgtgcc 52320
 tggccatgaa ggaagatttg tttttttttt taatattaat tgaacacactc 52380
 tggccatgac actggggctgg tgccagagggtt tttccatgtt gatcagatc cagcacccatc 52440
 tagagccctta atctggcaca cacacacacg cacaaggaga cacagacaag gcagggttgg 52500
 atgagtgaa gctaggagca gatgtgttggatggacactt ggcttctgtca gtgaagcccc 52560
 ttcttagtcc tcttcagttaa cccagcttc agtggataca ggtctggatt agtaagattt 52620
 ggagagatgtt tggggattt gggagagctc tctaaacctat tttaccacct ccttcttcgc 52680
 cattcttccct gtcacatccc ccacgttccatcc tttcccttgc caagtatgtt gggcctctgt 52740
 agtcctttgtt aaacagctgtt ctttttaccc tacagatcat tggcagggtt tatgcagatc 52800
 ctgactgcctt tccccgaaca ctggacttttgg ccctcaacgtt gaagcttttgc tgggagaatgtt 52860

-continued

ttgttccccac agattgtccc ccggccttct tcccgtggc cgccatctgc tgcaagactgg	52920
agcctgagag cagggtggta tcctgccttt ttctccca gtcacagggtc ctgggacgtt	52980
tgcctctgtc taaggccacc cctgagccct ctgcaagcac aggggtgaga gaagccctga	53040
ggtcaagaat gtggctgtca acccctgagc catctgacaa cacatatgtc caggttggag	53100
aagagagagg taaagacata gcagcaagta atctggatag gacacagaaa cacaggcatt	53160
aaaagaaaat ttaaaagaag gaaattcacc caaaccattt gaatacagta agtgttattca	53220
tcttcgata ttcccccgtc catatctaca catactatctt ttttttagt aaatagtct	53280
gtattttgc ctgcattttc ctttggttta ctatccagtc ttccctgttta tcattttgt	53340
cgacaacatg aaattctatt gagagactgt ctgaacatat tgtaatgttag atgtttaggt	53400
ttttccagg tctctttaca ataggttattt aactacagtg agcagtttta tgcattttgc	53460
taatttctcc tttgaggaag tattttcaaa attaccttta ttcttctcag gtaataattt	53520
cattattacc aaagtttacc taggtctttt caagtgtgtg gttaaaaaac gagaatctgg	53580
ctgggcgcga tggctcacac ctgtaatccc agcaacttgg gaggctgagg ctgggtggatc	53640
acctgagggtc tggagttcga gaccaggctg gccaacatgg tgaaacccca tctctactaa	53700
aaatacaaaa cttagccagg catgggtggca ggtgcctgtc accccageta ctgggaggc	53760
tgaggcagga gaattgtttt aaccctgggg cggagggttc agtgaggcga tatcacgc	53820
ttgcactcca gcctcgccaa caagagttaa actctgtctc aaaaatgggg ttctttctt	53880
gccatcaaaa atcatgtttc tttaaaaaac aagttcaaac attaccaaaat ttatagcac	53940
aggaaatacg tcttctgtaa tctcccttaa ccaatataatc cctcaacatt ctctcacc	54000
ccaaatccac cctccaggaa taaccagggtt ggacataatc ttatattaaa aatggttcc	54060
ggatagagaa agcgcttcgg cggcggcagc cccggcggcg gccgcagggg acaaaggcg	54120
ggcggatcg cgggggggggg gggggggcg accaggccag gccccggggc tccgcgtgc	54180
gcagctgcct ctcgggcgc cccgcggcg ccctcgccgc ggagccggcg agctaacctg	54240
agccagccgg cggcgtcactc ggaggcggcg gcacaaggag gggccccacg cgccgcacgt	54300
gccccggagg cccggcgtggc ggacagccgc accgcggggg ggcggcggtt ggccgc	54360
gccccggccc ccaggccagg cagtggccgc caaggaccac gcatctactt tcagagcccc	54420
ccccggggcc gcaggagagg gccccggctg ggccggatgt gaggggccag tgaggcgc	54480
agggaaaggtc accatcaagt atgacccaa ggagctacgg aagcacctca acctagagga	54540
gtggatctcg gaggagctca cgcgcctctc cgtactgcag gaagaggaga tctcagaact	54600
agagattgac gtggatgagc tcctggacat ggagagtgc gatgcctggg ctccagggt	54660
caaggagctg ctgggtgact gttacaaccc cacagaggcc ttcatctctg gctgtgtgg	54720
caagatccgg gccatgcaga agctgagcac accccagaag aagtgggggt ccccgaccca	54780
ggcgaacggt ggctccata ggacaatcgc taccggccca cctcgtagca acagcaatac	54840
cgggggaccc tggggccagg cctgggttca tgagcaggcc tccctgtgcc cctggccac	54900
gggtctcttc ccctgcccccc tcagtttcc acttttgat ttttttattt ttatataact	54960
gatgggactt tgggtttta tattgactct gggcacggg ccctttaata aagcgaggta	55020
gggtacgcct ttggtgccgc tcaaaaaaaaaaaaaat gatccacgc ggtccacatt	55080
agagttgaaa ttttctggtg ggagaatcta tacctgttc ctttataggc caaggaccc	55140
agtccttcag taacaccaggta aaaaagctt gaggagaaat tgtgaagcta cacagtattt	55200
gttttctaat acctcttgc attctaaata tctttaattt attaaaaat atatataatac	55260

-continued

agtatttgaat gcctactgtg tgcttaggtac agttctaaac acttgggta cagcagcgaa 55320
 caaaaataaaag gtgccttaccc tcataagaaca tagattctag catggtatct actgttatcat 55380
 acagtagata caataagtaa actatattga atattagaat gtggcagatg ctatggaaaa 55440
 agagtcaaga caagtaaaga cgattgtca gggtaccagt tgcaattta aatatggtcg 55500
 tcagagcagg cctcactgag gtgacatgac atttaagcat aaacatggag gaggaggagt 55560
 aaggcctgagc tgtcttaggc ttccgggca gccaagccat ttccgtggca cttaggacct 55620
 ggtgtttccg attccaccc ttgataactgc attttctcta agatatggga gggaaagttt 55680
 tctccstatg tttttaagta ttaactccag ctgtccagc cttgtttagt tgttacctaa 55740
 tctttatagc aaatataatga ggtaccgta acattatgcc catttctcac agaggcacta 55800
 ctaggtgaag gagtttgct gacgttatac aaccaggaaag tagctgagcc tagatccctt 55860
 ccacccaccc catggccctg ctcatgttcc acctgcctct aatttacctc ttttccttct 55920
 agaccagcat ttcgaaatt ggaggactcc tttagggccc tctccctgta cctggggag 55980
 ctgggcatecc cgctgcctgc agagctggag gagttggacc acactgtgag catgcagtagc 56040
 ggcctgaccc gggactcacc tcctagccc tgccccagcc ccctgcaggg gggtgttcta 56100
 cagccagcat tgccccctctg tgccccatc ctgctgtgag cagggccgtc cgggcttct 56160
 gtggattggc ggaatgttta gaagcagaac aagccattcc tattacctcc ccaggaggca 56220
 agtgggcgcga gcaccaggaa aatgtatctc cacaggttct gggcctagt tactgtctgt 56280
 aaatccaaata cttgcctgaa agctgtgaag aaaaaaaaaa cccctggct ttggggcagg 56340
 aggaatctgt tactcgaatc cacccaggaa ctccctggca gtggatttg ggaggcttctt 56400
 gcttacacta atcagcgtga cctggacctg ctggcagga tcccagggtg aacctgcctg 56460
 tgaactctga agtacttagt ccagctgggt gcaggaggac ttcaagtgtg tggacgaaag 56520
 aaagactgat ggctcaaagg gtgtaaaaaa gtcagtgtg ctccccctt ctactccaga 56580
 tcctgtcctt cctggagcaaa ggttggggaa gttaggtttg aagagtcct taatatgtgg 56640
 tggAACAGGC caggagttag agaaaggctt ggcttctgt tacctgtca ctggctctag 56700
 ccagccccagg gaccacatca atgtgagagg aagccctccac ctcatgttt caaaacttaat 56760
 actggagact ggctgagaac ttacggacaa catccttctt gtctgaaaca aacagtccaca 56820
 agcacaggaa gaggctgggg gactagaaag aggccctgcc ctctagaaag ctcagatctt 56880
 ggcttctgtt actcataactc gggggggctc cttagtcaga tgcctaaaac atttgccta 56940
 aagctcgatg ggttctggag gacagtgtg ctgtcacag gccttagatc tgagggagg 57000
 gagtggggagt cttagcaatc tcttggctt ggcttcatgg caaccactgc tcacccctca 57060
 acatgcctgg tttaggcgc agcttggctt gggaaagagggt ggtggcagag tctcaaagct 57120
 gagatgtga gagagatagc tccctgagctt gggccatctg acttctaccc cccatgttg 57180
 ctctcccaac tcattagctc ctggcagca tccttcctgag ccacatgtgc aggtactgg 57240
 aaacctccat ctggctccc agactcttagt gaacttctca tcacaactag atttgcctt 57300
 tctaagtgtc tatgagctt caccatattt aataaattgg gaatgggtt ggggtattaa 57360
 tgcaatgtgtt ggtgggttgc ttggagcagg gggaaattgtt aaggagagt ggttgctgtt 57420
 aatattatct tatctattgg gtggatgtt gaaatattgtt catagacccatg atgagttgtg 57480
 ggaccagatg tcatctctgg tcagagttt cttgtatata agactgtact tatgtgtgaa 57540
 gtttgcaagc ttgctttagg gctgagccct ggactccac cagcagcaca gttcagcatt 57600

-continued

gtgtggctgg ttgtttccctg gctgtccccca gcaagtgtag gagtgggtggg cctgaactgg 57660
gccattgatc agactaaata aattaagcag ttaacataac tggcaatatg gagagtgtaaa 57720
acatgatgg ctcagggaca taaatgtaga gggtctgtcta gccaccccttgc ggcctagcccc 57780
acacaaactc cccatagcag agagtttca tgcacccaag tctaaaaccc tcaagcagac 57840
accatctgc tctagagaat atgtacatcc cacctgaggc agccccccttgc ttgcagcagg 57900
tgtgactgac tatgacccctt tcctggctg gctctcatatg gccagctgag tcattccctta 57960
ggagccctac cctttcatacc tctctatatg aatacttcca tagcctgggt atccctggctt 58020
gcttccctca gtgctgggtg ccaccccttgc aatggaaaga aatgaatgca agtcacccca 58080
ccctttgtgt ttcccttacaa gtgcttgaga ggagaagacc agtttcttct tgcttctgca 58140
tgtggggat gtcgtagaag agtgaccatt gggaggacaa atgctatctg gtttagtgggg 58200
ccttgggcac aataaaaaatc tgtaaacccca aaggtgtttt ctcccaggca ctctcaaagc 58260
ttgaaagatc caacttaagg acagaatatg gttcccgaaa aaaactgtatg atctggatg 58320
cgccattgtgc gcagaaccac agagcaatgg ctgggcattgg gcagagggtca tctgggtgtt 58380
cctgaggctg ataacctgtg gctgaaatcc cttgtctaaaa gtccaggaga cactccgttt 58440
ggtatctttt cttctggagt catagtagtc accttgcagg gaacttccctc agcccccaggc 58500
tgctgcaggc agcccaagtga cccttccctcc tctgcagttt ttccccctttt ggctgtgcac 58560
gcaccaccccg cgtccacccac caccacccca ctggccact ccagccctta acaagggtctg 58620
tctagatatt cattttaaact acctccaccc tggaaacaaat tgctgaaggg gagaggattt 58680
gcaatgacca accacccctgt tgggacgcct gcacacccctgt ctttccctgt tcaacccctgaa 58740
agattccctga tgatgataat ctggacacag aagccgggcac cgggtggctct agccctgtat 58800
ctcagcactt tgggaggccct cagcagggtgg atcacccctgag atcaagagtt tgagaacacgc 58860
ctgaccaaca tggtgaaacc cccatctctac taaaaataca aaaatttagcc eggtgtgggt 58920
gcacataccct gtaatcccaag ctactctggc ggctgtggcggca ggagaatcgc ttgaacccac 58980
aaggcagagg ttgcagtgag gcgagatcat gccattgcac tccagccctgt gcaacaagag 59040
cccaactccca tctcaaaaaa aaaaa 59065

<210> SEQ ID NO 4
<211> LENGTH: 265
<212> TYPE: PRT
<213> ORGANISM: Human

<400> SEQUENCE: 4

Leu Thr Glu Val Lys Val Met Arg Ser Leu Asp His Pro Asn Val Leu
1 5 10 15

Lys Phe Ile Gly Val Leu Tyr Lys Asp Lys Lys Leu Asn Leu Leu Thr
20 25 30

Glu Tyr Ile Glu Gly Gly Thr Leu Lys Asp Phe Leu Arg Ser Met Asp
35 40 45

Pro Phe Pro Trp Gln Gln Lys Val Arg Phe Ala Lys Gly Ile Ala Ser
50 55 60

Gly Met Ala Tyr Leu His Ser Met Cys Ile Ile His Arg Asp Leu Asn
65 70 75 80

Ser His ASN Cys Ser Ile Lys Leu Asp Lys Thr Val Val Val Val Ala Asp
85 90 95

Arg Leu Ser Arg Leu Ile Val Glu Glu Arg Lys Arg Ala Pro Met
100 105 110

-continued

Glu	Lys	Ala	Thr	Thr	Lys	Lys	Arg	Thr	Leu	Arg	Lys	Asn	Asp	Arg	Lys
115					120				125						
Lys	Arg	Tyr	Thr	Val	Val	Gly	Asn	Pro	Tyr	Trp	Met	Ala	Pro	Glu	Met
130				135					140						
Leu	Asn	Gly	Lys	Ser	Tyr	Asp	Glu	Thr	Val	Asp	Ile	Phe	Ser	Phe	Gly
145					150				155			160			
Ile	Val	Leu	Cys	Glu	Ile	Ile	Gly	Gln	Val	Tyr	Ala	Asp	Pro	Asp	Cys
					165			170			175				
Leu	Pro	Arg	Thr	Leu	Asp	Phe	Gly	Leu	Asn	Val	Lys	Leu	Phe	Trp	Glu
					180			185			190				
Lys	Phe	Val	Pro	Thr	Asp	Cys	Pro	Pro	Ala	Phe	Phe	Pro	Leu	Ala	Ala
					195			200			205				
Ile	Cys	Cys	Arg	Leu	Glu	Pro	Glu	Ser	Arg	Pro	Ala	Phe	Ser	Lys	Leu
					210			215			220				
Glu	Asp	Ser	Phe	Glu	Ala	Leu	Ser	Leu	Tyr	Leu	Gly	Glu	Leu	Gly	Ile
					225			230			235			240	
Pro	Leu	Pro	Ala	Glu	Leu	Glu	Leu	Asp	His	Thr	Val	Ser	Met	Gln	
					245			250			255				
Tyr	Gly	Leu	Thr	Arg	Asp	Ser	Pro	Pro							
					260			265							

That which is claimed is:

1. An isolated nucleic acid molecule consisting of a ³⁰ nucleotide sequence selected from the group consisting of:
 - (a) a nucleotide sequence that encodes an amino acid sequence shown in SEQ ID NO:2;
 - (b) a nucleic acid molecule consisting of the nucleic acid sequence of SEQ ID NO:1;
 - (c) a nucleic acid molecule consisting of the nucleic acid sequence of SEQ ID NO:3; and
 - (d) a nucleotide sequence that is completely complementary to a nucleotide sequence of (a)-(c).
 2. A nucleic acid vector comprising a nucleic acid molecule of claim 1.
 3. A host cell containing the vector of claim 2.
 4. A process for producing a polypeptide comprising culturing the host cell of claim 3 under conditions sufficient for the production of said polypeptide, and recovering the peptide from the host cell culture.
- 45
5. An isolated polynucleotide consisting of a nucleotide sequence set forth in SEQ ID NO:1.
 6. An isolated polynucleotide consisting of a nucleotide sequence set forth in SEQ ID NO:3.
 7. A vector according to claim 2, wherein said vector is selected from the group consisting of a plasmid, virus, and bacteriophage.
 8. A vector according to claim 2, wherein said isolated nucleic acid molecule is inserted into said vector in proper orientation and correct reading frame such that the protein of SEQ ID NO:2 may be expressed by a cell transformed with said vector.
 9. A vector according to claim 8, wherein said isolated nucleic acid molecule is operatively linked to a promoter sequence.

* * * * *