

Smart Cards

An introduction on what they are and how they can be used

Agenda

- Introduction to smart cards
 - Overview
 - What is in a chip?
 - Gemplus know how
 - Types of contact smart cards
 - Why a chip operating system on microprocessor cards ?
- Smart cards and security

What is a Smart Card?

A piece of silicium on a plastic body

A very secure way of storing a small amount of sensitive data

The Smart Card...

- The smart card stores data and programs
 - Protection by advanced security features
- Several types of smart cards
 - Contact
 - Memory
 - Microprocessor
 - Contactless
 - Hybrid: GemTwin and GemCombi technology

Smart card may mean Microprocessor card only

Contact Smart Cards

Contactless Smart Cards

Communication over the air

What is the point of using a card in an application?

- Security
- Secure off-line transactions
- Easy to use
- Capability to support more than one application
- Portable information
- Marketing tool

Agenda

- Introduction to smart cards
 - Overview

- What is in a chip?
- Gemplus know how
- Types of contact smart cards
- Why a chip operating system on microprocessor cards ?
- Smart cards and security

Microprocessor Card = Microcontroller

Agenda

- Introduction to smart cards
 - Overview
 - What is in a chip?

- Gemplus know how
- Types of contact smart cards
- Why a chip operating system on microprocessor cards?
- Smart cards and security

The Players

Chip Manufacturer Electronic Circuit

Initialization Personalization

Card Issuer

Cards Distribution (Personalization)

Card Holder

- Introduction to smart cards
 - Overview
 - What is in a chip?
 - Gemplus know how

- Types of contact smart cards
- Why a chip operating system on microprocessor cards?
- Smart cards and security

Memory Cards

- What for ?
 - Data storage
 - Counter management
- EPROM or EEPROM components
- No microprocessor but some have hardwired logic
- What type of application?
 - phone cards
 - others...

Microprocessor cards

- What for ?
 - Advanced data storage
 - Data processing ("Intelligent" card)
 - High security needs
- Microprocessor card = microcontroller:

- Type of application:
 - e-purse, internet security...

Agenda

- Introduction to smart cards
 - Overview
 - What is in a chip?
 - Gemplus know how
 - Types of contact smart cards

- Why a chip operating system on microprocessor cards?
- Smart cards and security

Chip Operating System Security

- Smart card = Black box
 - Physical device ⇒ Logical device
 - The COS manages
 - Predefined & dedicated file structures
 - Key files, secret code file, purse file...
 - A set of dedicated commands
 - Verify, Set Code, Debit, Credit...
 - Cryptographic capabilities
 - DES, RSA...

Agenda

- Introduction to smart cards
- Smart cards and security

- Application security requirements and how can we meet these requirements
- A few words about cryptography

Authentication

- What is Authentication?
 - Verification that a terminal or a card is genuine
- Authentication what for?
 - To answer the following questions...

Meeting The Authenticity Criteria

- Card/Terminal authentication:
 - the terminal/card verifies that the card/terminal knows the right key
- Example:

Identification

- Identification what for?
 - To verify the identity of the card (serial number, cardholder's identity...)

Am I talking with the real cardholder?

It is my card, make

the transaction

Meeting The Identification Criteria

- Stored in the card
- A secret code SC#1 is presented to the card and then checked by the card:

Integrity

- Integrity what for?
 - To ensure the message has not been modified
 - Intentionally or unintentionally

Non-Repudiation

- Non-repudiation what for?
 - To prevent the denial of a transaction

What was the exact content of the transaction?

I never made this transaction!!

Meeting The Integrity And Non-Repudiation Criteria

- Add to the message/transaction (plain text), the result of a cryptographic calculation made on it:
 - Cryptographic checksum
 - Message Authentication Cryptogram
 - Signature...
- The Receiver recomputes the signature with his key and the message he receives

Confidentiality / Privacy

- Confidentiality what for?
 - To keep information secret from all but those authorized

Meeting The Privacy Criteria

The message encrypted

Security of the Chip

- Security Detectors: chip becomes mute when an external attack is detected
- Very difficult to access the chip's internal signals
- Irreversible physical and logical locks after each step in Manufacturing process

Security architecture

- Security management
 - Not only on the cards
 - Throughout the application

Your application will have the security level of its weakest element!

- Good questions when designing security architecture
 - How are system entities authenticated?
 - How is integrity of system data managed?
 - How is non-repudiation of data met?
 - How is system-data kept confidential?

Summary

- Security functions processed in SAMs
- Audit trail for security functions
- Use security algorithm as part of security scheme
 - authentication
 - signature
 - authenticity
 - integrity
 - non-repudiation
 - enciphering of data
 - confidentiality

Agenda

- Introduction to smart cards
- Smart cards and security
 - Application security requirements and how can we meet these requirements

A few words about cryptography

Definitions

Secret Key Algorithm

Same key for encryption& decryption

- One key for encryption
- Another key for decryption

Secret Key Principles

Sender and Receiver share the SAME key

Same key in every card and in every terminal: KEY DISTRIBUTION IS AN ISSUE!

Key diversification

Key Distribution

