KNN Algorithm Hardware Accelerator

IOB-KNN User Guide, V1, Build e5feba2

December 29, 2020

Contents

•	intro	oduction	5
2	Sym	nbol	5
3	Feat	tures	5
4	Ben	efits	6
5	Deli	verables	6
6	Bloo	ck Diagram and Description	7
7	Syn	thesis Parameters	8
8	Inte	rface Signals	8
9	Reg	isters	9
10	FPG	iA Results	10
Li	ist d	of Tables	
	1	Block descriptions	7
	2	General Interface Signals	8
	3	CPU Native Slave Interface Signals	8
	4	CPU AXI4 Lite Slave Interface Signals	9
	5	Software accessible registers	9
	6	Kintex Ultrascale	10
Li	ist d	of Figures	
	1	IP Core Symbol	5
_			

KNN Algorithm Hardware Accelerator IOB-KNN User Guide, V1 , Build e5feba2

2

1 Introduction

The IObundle KNN core includes a configurable hardware accelerator for the KNN machine learning algorithm. It is written in Verilog and includes a C software driver. The user may change the size of the module to fit in its own FPGAs balancing the compromise between desired performance and space available. The IP is currently supported for use in FPGAs.

2 Symbol

Figure 1: IP Core Symbol

3 Features

- Verilog KNN machine learning algorithm accelerator
- C software driver.
- Reset, enable, data and test point send and neighbour read functions.
- IOb-SoC native CPU interface.
- AXI4 Lite CPU interface (premium option).

4 Benefits

- Compact hardware implementation
- Can adapt the core size to different size FPGAs
- Can adapt to the algorithm parameters of the user
- Low power consumption ???

5 Deliverables

- Verilog source code
- User documentation for easy system integration
- Example integration in IOb-SoC (premium)
- FPGA synthesis and implementation scripts (premium)
- ASIC synthesis and place and route scripts (premium)

6 Block Diagram and Description

A high-level block diagram of the IOB-KNN core is presented in Figure 6 and a brief explanation of each block is given in Table 1.

Figure 2: High-level block diagram

Block Description				
Register File Configuration, control and status registers accessible by the sofware				
KNN core	Size ajustable N Test-Point K Neighbour KNN Accelerator			
Control	State Machine controlling the KNN data flow			

Table 1: Block descriptions.

7 Synthesis Parameters

In this section are explained the synthesis parameters that can be changed in order to generate a bigger or smaller module to better fit the user needs.

N_Neighbour is the parameter that defines the number of neightbour points for each of the KNN Cores that are going to be ordered by their distance to the main point.

NT_points defines the number of KNN Cores available in the hardware.

8 Interface Signals

The interface signals of the I²S/TDM transceiver core are described in the following tables.

Name	Direction	Width	Description	
clk	input	1	System clock input	
rst	input	1	System reset asynchronous and active high	

Table 2: General Interface Signals

Name	ame Direction Width		Description	
valid	input	1	Native CPU interface valid signal	
address	input	ADDR_W	Native CPU interface address signal	
wdata	input	WDATA_W	Native CPU interface data write signal	
wstrb	input	DATA_W/8	Native CPU interface write strobe signal	
rdata	output	DATA_W	Native CPU interface read data signal	
ready output 1		1	Native CPU interface ready signal	

Table 3: CPU Native Slave Interface Signals

Name	Direction	Width	Description
s axil awaddr	input	ADDR_W	Address write channel address
s_axil_awcache	input	4	Address write channel memory type. Transactions set with
5_axii_awcaciie	input	4	Normal Non-cacheable Modifiable and Bufferable (0011).
s_axil_awprot	input	3	Address write channel protection type. Transactions set with
S_axii_awpiot	Input	3	Normal Secure and Data attributes (000).
s_axil_awvalid	innut	1	Address write channel valid
0 - 0	input	· ·	
s_axil_awready	output	1 DATA 14/	Address write channel ready
s_axil_wdata	input	DATA_W	Write channel data
s_axil_wstrb	input	DATA_W/8	Write channel write strobe
s_axil_wvalid	input	1	Write channel valid
s_axil_wready	output	1	Write channel ready
s_axil_bresp	output	2	Write response channel response
s_axil_bvalid	output	1	Write response channel valid
s_axil_bready	input	1	Write response channel ready
s_axil_araddr	input	ADDR_W	Address read channel address
s_axil_arcache	input	4	Address read channel memory type. Transactions set with
			Normal Non-cacheable Modifiable and Bufferable (0011).
s_axil_arprot	input	3	Address read channel protection type. Transactions set with
			Normal Secure and Data attributes (000).
s_axil_arvalid	input	1	Address read channel valid
s_axil_arready	output	1	Address read channel ready
s_axil_rdata	output	DATA_W	Read channel data
s_axil_rresp	output	2	Read channel response
s_axil_rvalid	output	1	Read channel valid
s_axil_rready	input	1	Read channel ready

Table 4: CPU AXI4 Lite Slave Interface Signals

Registers

The software accessible registers of the KNN core are described in Table 5. The table gives information on the name, read/write capability, word aligned addresses, used word bits and a textual description.

Name	R/W	Addr	Bits	Initial	Description
				Value	
KNN_RESET	W	0x00	0:0	0	KNN soft reset
KNN_ENABLE	W	0x04	0:0	0	KNN enable
KNN_B	W	0x08	DATA_W-1:0	0	Point B coordinates
KNN_LABEL	W	0x0c	LABEL-1:0	0	Point B label
KNN₋INFO	R	0x10	(LABEL*2000)-1:0	0	Register Bank of the neighbours' Labels
KNN_A	W	0x204	(DATA ₋ W*200)-1:0	0	Point A coordinates Bank

Table 5: Software accessible registers.

www.iobundle.com

FPGA Results 10

The following is the FPGA implementation for the Kintex Ultrascale.

Resource	Used
LUTs	79053
Registers	86526
DSPs	200
BRAM	0

Table 6: Kintex Ultrascale