Making a Matching Layer for Acoustic Sensors

for a Dark Matter Detector

Justin P. Skycak
Marian High School

On behalf of the COUPP collaboration

Acknowledgements

- Professor Ilan Levine (http://mypage.iu.edu/~ilevine/) mentor
- The COUPP collaboration (http://www.coupp.fnal.gov/)
- Mr. Edward Behnke, Mr. Adam Behnke, Mr.
 Cale Harnish, and Mr. Thomas Nania advice, help in lab
- Indiana University South Bend lab and equipment

COUPP Dark Matter Detector

Acoustic transducers

Glass bubble chamber

Superheated CF3I

Bubbles

N.d. Fermilab Center for Particle Astrophysics. Web. 23 Feb 2013. http://astro.fnal.gov/projects/DarkMatter/coup p.html>

Excess Noise

- Background radiation = unwanted bubbles
 - External neutron radiation
 - Cosmic rays
 - External alpha radiation
 - Neutron radiation from sensor's alpha emissions
 - not blocked

Blocked by location

Problem

- Can't remove acoustic sensors
 - Needed for discrimination

 Solution: Greater sensitivity = fewer sensors = decrease in background noise

Sound Waves

Unimpeded Wave

Impeded Wave

Concentric Circles. 2013. bon appetit. Web. 23 Feb 2013. http://www.bonappetit.com/tipstools/tips/2008/10/concentric_circles.

Hwang, Fu-Kwun. *reflection of a point source wave from a wall*. N.d. NTNUJAVA Virtual Physics LaboratoryWeb. 23 Feb 2013.

Reflection

• % Reflection:
$$R = \left(\frac{z_2 - z_1}{z_2 + z_1}\right)^2$$

 Z = acoustic impedance = density * speed of sound

$$- \operatorname{Rayl} = \frac{kg}{m^2 * s} ; \operatorname{Mrayl} = 10^6 Rayl$$

Decrease acoustic impedance mismatch >
decrease percent reflection

Matching Layer

Without layer of intermediate acoustic impedance

With layer of intermediate acoustic impedance

A Way to Improve COUPP Sensors

Glass jar = fused silica quartz

$$Z = 13.156 \text{ MRayl}$$

 Acoustic sensor exterior = PZT made by Virginia Tech

$$Z = 18 MRayl$$

Acoustic impedance mismatch -> matching layer!

Simulate in Lab

- Glass: 8.26 MRayl
- pz-27 transducer: 23.5 MRayl

Optimal matching layer: 13.9 MRayl

Making Samples

- Various proportions of tungsten carbide powder to epoxy
- Remove air with bell jar evacuation chamber
- Rotate to keep tungsten carbide powder from settling out

Measuring Acoustic Impedances

- Measure densities scale and water displacement method
- Measure speed of sound "Sono clamp"
 - First with aluminum sample (check)
- Acoustic impedance = density * speed of sound through sample

The "Sono Clamp"

Pulse-emitting transducer

Pulse

Sample

Pulse-receiving transducer

Oscilloscope display
Pulse leaves pulse-emitting
transducer

Pulse received by pulsereceiving transducer

Pulse transit time

Sample Data

Sample Data

$$\chi_{TV} = \frac{1.1\chi_{TM}}{15.8 - 14.7\chi_{TM}}$$

Layer Thickness

Wafer must correctly couple to sensor (keep waves in phase)

Thickness = 3.2mm $\frac{\lambda}{4} = \frac{1}{4} * \frac{speed\ of\ sound\ through\ sample}{resonant\ frequency\ of\ transducer}$

Testing the Matching Layer

Create WPD for transducer with glass only

Create WPD for transducer with glass and matching layer

Compare WPDs

Results from 15 MRayl Layer

(13.9 Mrayl layer still needs to be tested)

Possible Explanation

Lattice (Structured)

N.d. University of Maine. Web. 24 Feb 2013. http://chemistry.umeche.maine.edu/~amar/spring2012/bur255 42 1213.jpg>.

- No density fluctuations
- Speed of sound constant throughout
- Same wave speed

Mixture (Unstructured)

- Density fluctuations
- Speed of sound varies throughout
- Different speeds for different parts of wave

Conclusions/Future Action

- Tungsten powder/epoxy mixture may not be ideal for matching layer
- Need to test 13.9 MRayl layer
- Application as backing layer
 - Absorb sound energy → control vibration of sensor

Are there any questions?