Aluno(a): _____

Terceira avaliação (Valor: 10,0)

1. [Valor: 2,0] Professor Trolêncio estava explicando a classe de complexidade \mathcal{P} e a definiu como sendo a classe de problemas que podem ser resolvidos em tempo polinomial numa máquina determinística, isto é, problemas para os quais existe um algoritmo que o resolve em tempo $O(n^k)$ para um k constante. Para ilustrar, professor Trolêncio apresentou o seguinte exemplo:

FACTORIAL(n)1 $fat \leftarrow 1$ 2 for i = 1 to n do

3 | $fat \leftarrow fat * i$ 4 return fat

"Como podemos observar, a linha 1 consome tempo $\Theta(1)$, as linhas 2 e 3 consomem tempo $\Theta(n)$, a linha 4 consome tempo $\Theta(1)$. Como Factorial(n) consome ao todo tempo $\Theta(n)$, portanto Factorial(n) e \mathcal{P} ". A análise e conclusão do professor estão corretas? Justifique.

- 2. [Valor: 2,0] Para cada uma das sentenças a seguir, indique se ela é **verdadeira**, **falsa** ou **indeterminada**. Justifique brevemente sua resposta.
 - (a) [Valor: 0,5] $3SAT \in \mathcal{P}$.
 - (b) [Valor: 0,5] Se $\mathcal{P} \neq \mathcal{NP}$, então $\mathcal{P} \cap \mathcal{NP} = \emptyset$.
 - (c) [Valor: 0,5] Se $X \in \mathcal{NP}$ -completo, $Y \in \mathcal{P}$ e existe uma redução $X \preceq_p Y$, então $\forall Z \in \mathcal{NP}, \ Z \preceq_p Y$.
 - (d) [Valor: 0,5] Se $\mathcal{P} = \mathcal{NP}$, então \mathcal{NP} -completo = \mathcal{NP} -difícil.
- 3. [Valor: 2,0] Considere o seguinte problema: dadas duas sequências X e Y sobre um alfabeto finito, existe uma subsequência comum de tamanho maior ou igual a k? Mostre que este problema pertence a \mathcal{NP} .
- 4. [Valor: 2,0] Escolha um dos seguintes problemas e mostre que ele é \mathcal{NP} -completo. Restrição: o problema escolhido não pode ser o mesmo usado na apresentação de seu grupo.
 - 3-Color = $\{\langle G \rangle$: Existe uma forma de colorir G com 3 cores tal que vértices adjacentes não possuam cores iguais $\}$.
 - Vertex-Cover = $\{\langle G, k \rangle : \text{Existe uma cobertura de vértices em } G \text{ de tamanho menor ou igual a } k \}.$
 - CLIQUE-COVER = $\{\langle G, k \rangle$: Existe um conjunto de k cliques que cobrem $G\}$.
 - Set-Partition = $\{\langle S \rangle : \text{Existem duas partições disjuntas } P_1 \in P_2 \text{ do multiconjunto } S = P_1 \cup P_2, \text{ tal que } \sum_{x \in P_1} x = \sum_{x \in P_2} x \}.$
- 5. [Valor: 2,0] Um ciclo hamiltoniano em G é um ciclo que passa exatamente uma única vez por cada vértice de G. Sabendo que HAM-CYCLE é \mathcal{NP} -completo, mostre que o problema de decisão do Caixeiro Viajante (TSP-DEC) é \mathcal{NP} -completo.
 - Ham-Cycle = $\{\langle G \rangle : \text{Existe um ciclo hamiltoniano em } G\}.$
 - TSP-DEC = $\{\langle G, k \rangle : \text{Existe um ciclo hamiltoniano com custo menor ou igual a } k \text{ no grafo completo } G\}.$