A sub-nanosecond time-resolved gating circuit

Kayla Rodriguez and Scarlett Yu

Department of Physics and Astronomy, UCLA

Dated: June 5th, 2018

How to take out this pico-second signal?

How to take out this pico-second signal?

Picosec fast shutter?

Time tagging? \$\$\$

Search for Possible Approaches (Week 2)

Two routes:

- Time tag the arrival time of each photon.
 - Eg. Use very small (um) CMOS-based TDC (time-digital converter)
 - Eg. Subdivide the clock cycle in a TDC. But low data storage and retrieval rate.
- Some sort of gate

Search for Possible Approaches (Week 2)

Two routes:

- Time tag the arrival time of each photon.
 - Eg. Use very small (um) CMOS-based TDC (time-digital converter)
 - Eg. Subdivide the clock cycle in a TDC. But low data storage and retrieval rate.
- Some sort of gate

An analog solution:

Initial proposed logic

Starting out with lab parts (Week 3-4)

- **1.** Delay: two BNC cables of different lengths
- 2. XOR gates: tried different types

Types	Model	T _{pd} (ns)
NANDS in lab	SNX4LS00	9
XORs in lab	CD4070B	6.8
Purchased XORs	7AC11086	3.8

Time delay created $\Delta t \sim Difference$ in length ΔL

Beta versions - Result Summary (Week 3-4)

Beta versions - Final output (Week 5)

- **3.** AND gate (from 117 lab)
 - Made with fastest XOR gates
 - Rigol Waveform Generator: simulate the PMT noise signal to check logic.

Main Problems & Design Modification (Week 5)

- 1. Output has 2x frequency than inputs?
 - XOR → AND w/ schmitt trigger on rising edges
- 2. New method of delay:
 - RC delay
- 3. Input amplitude (laser TTL) too low for gate operation?
 - Use comparators

- Buffer gates: take a signal that's trying real hard to be digital, clean it up and turn it into a nice, sharp TTL
- Decoupling/bypass capacitors
- Impedance matching resistors

- Buffer gates: take a signal that's trying real hard to be digital, clean it up and turn it into a nice, sharp TTL
- Decoupling/bypass capacitors
- Impedance matching resistors

- Buffer gates: take a signal that's trying real hard to be digital, clean it up and turn it into a nice, sharp TTL
- Decoupling/bypass capacitors
- Impedance matching resistors

High-speed PCB Design, and Printing (Week 6-8)

Issues to consider:

Timing. Signals on the PCB arriving at the proper time relative to each other?

Integrity. Signal waveforms the same at the final point as the starting point?

Noise. What kind of noise does the signal encounter during its journey on the board?

Solutions:

Impedance: Proper impedance between your transmitter and receiver.

Match lengths, account for propagation delay: Match lengths of two coupled traces s.t. signals arrive at the same time.

Spacing: Close traces are the more susceptible to noise and signal interference.

Soldering (Week 9) - a soul-refreshing learning experience

One mistake was made → manually reroute

- Keep temperature ~low
- Chip by chip, start from corner.
- Test each part as we solder.
- Be careful & patient...

Testing part by part (Week 10)

Systematically checked:

- 1. Power, all inputs
- 2. Inputs & outputs of the comparators
 - a. Tuned potentiometer
 - b. Tried with simple square wave
 - c. Tried with real signals
- 3. Inputs & Outputs of gates

"A failure will not appear till a unit has passed final inspection."

Testing with real inputs (Week 10)

- Both signals go negative
- Noisy, has ringing

Tuning the pot to clean up

Newest problems and fixes (Week 10)

- Made the wrong connections
 - Small wires to reroute
- Needed to include a voltage divider
 - Piling resistors
- Laser signal not stable when testing
 - impedance matching

Final Budget

Items	Quantity	Price
Boards	4	176.00
AND chips	15	4.17
SMAs	8	39.04
Comparators	12	50.28

Grand Total: \$269.49

Original Plan:

HMC721LC3C(FAST XOR GATE) from DigiKey. \$150 each x 2

Previous Plan: \$300.00

Acknowledgements & References

- Christian, Tony for help w/ circuit design
- Peter Yu and Prof. Saltzberg for lending us cables and soldering tools.

- [1] Cheng, Zeng, etc. Recent Developments and Design Challenges of High-Performance Ring Oscillator
- [2] Porat, Dan I. Review of sub-nanosecond Time-interval Measurements.
- [3] Spetra-Physics Tsunami manual

Testing with real inputs (Week 10)

Laser pulse monitor signal

- Amplitude too small for logic
- No offset, goes below 0V
- Impedance matching to keep the laser locked

Encountered Problems & Design Modification (Week 5)

- 1. New method of delay
- 2. XOR changed to AND with inverted input
- NOT added to work with the change from XOR
- Schmitt Trigger inputs to trigger only on rising edges

Implementing with lab parts

Initial proposed logic

1. DELAY: two BNC cables of different lengths

Time delay created $\Delta t \sim Difference$ in length ΔL

2. XOR gate:

Туре	Model	T _{pd} (ns)
NANDS in lab	SNX4LS00	9
XOR in lab	CD4070B	6.8
Purchased XOR	7AC11086	3.8

 T_{pd} = Propagation delay in the chip itself, lower bound for rise time: Δt has be be > T_{pd}

Summary of prototype results:

Туре	Model	T _{pd} (ns)	
NANDS in lab	SNX4LS00	9	—
XORs in lab	CD4070B	6.8	-
Purchased XORs	7AC11086	3.8	

Multiple stages, very slow. Output of this XOR was noisy, unable to resolve the Δt delay

Able to resolve hundreds of *ns* pulse width.

Logic worked, but output was not exactly as desired.

Summary of prototype results:

x1 attenuation x10 attenuation

Results - Noise Subtraction

- Made with faster XOR gates
- Rigol Waveform Generator: used to simulate the PMT noisy signal to check logic.

Some problems found in slow prototype

- The output peaks have 2x frequency than inputs
- Laser TTL's amplitude is too low for gates.
- High frequency bounce and jitter
- Testing
 - Back-reflection distorting the output
 - BNC lengths

Improved design!

Basic logic:

- Used RC for delay
- AND gates with Schmitt trigger on inputs.

Add ons:

- Comparators on inputs
- Decoupling capacitors
- Buffers to clean up the signal.

High speed PCB board design & considerations

- SMAs to replace BNCs
- Various add-on components (capacitors, resistors, buffers, etc.) to ensure signal is nice.
- Followed high-speed PCB board design rules.
- Closely placed components
- Surface mounted parts

Planned	Comments and adjustments
Week 3: Build and test the circuit, basically, have a prototype of a slow version to make sure logic works.	
Week 4: Improve on the prototype to push for as fast as possible. Calculate the timing, rise/fall times, impedance matching for the fast design. Run some simulations of convolution of two functions.	
Week 5: Improve on the design based on prototype. Start and finish implementing the actual design with fast electronics.	We are currently starting to put together the new fast design, it's projected that the circuit board design will take a long time as timing is important. Adjustments: Week 7,8- Finish the complete circuit board design
Week 6: Testing, debugging and improving.	on Eagle, with details of wire lengths, capacitance/resistor values, gate specs, etc., figured

capacitance/resistor values, gate specs, etc., figured out.

Week 7-8: Finalize the product. Test out with ion trap system and obtain actual results.

Week 9: Finalize and test out the board. Write up final report.

Testing the PCB

- Tested each block
- SMAs and adapters

Initial proposed concept

Brief overview of project

Ion trap system (for visualizing)

Unwanted spikes from laser pulses

Planned	Comments and adjustments
Week 3: Build and test the circuit, basically, have a prototype of a slow version to make sure logic works.	
Week 4: Improve on the prototype to push for as fast as possible. Calculate the timing, rise/fall times, impedance matching for the fast design. Run some simulations of convolution of two functions.	
Week 5: Improve on the design based on prototype. Start and finish implementing the actual design with fast electronics.	We are currently starting to put together the new fast design, it's projected that the circuit board design will take a long time as timing is important. Adjustments: Week 7,8- Finish the complete circuit board design
Week 6: Testing, debugging and improving.	on Eagle, with details of wire lengths, capacitance/resistor values, gate specs, etc., figured out.
Week 7-8: Finalize the product. Test out with ion trap system and obtain actual results.	Week 9: Finalize and test out the board. Write up final report.

Introduction to the Problem & Objective

Objective: Create a sub-nanosecond or picosecond time-resolved "window" to look at the PMT signals, and scan this window in time to reconstruct the cleaner PMT signal.

Some approaches

- Time tagging using time-interval measurements:
 - TDC (time-digital converter)^{3,4}: output the time interval between two events.
 - Ring Oscillator TDC (1-2ps resolution), CMOS TDC (1ps), delay-line based digital TDC...
 - Issue: data storage & retrieval time.
 - Vernier method the idea of using two clocks of Slightly different periods and the time interval between Them to be measured is expanded by a factor k
- Gating the PMT:
 - Where to gate? Photocathode has rise/fall time.
- Well then... messing with the PMT output signals!

Proposed design

Parts, Planned timeline and Evaluation metric

- HMC721LC3C (14 Gbps, FAST XOR / XNOR GATE) DigiKey
 - Fast rise and Fall times: 19 / 18 ps. Time resolution 14 GHz (70ps)
 - \$150 each

<u>Week 3</u>: Build the <u>ciruitry</u>. Prototype a <u>slow version</u> to make sure logic works. Purchase parts.

<u>Week 5:</u> Improve on the design based on prototype. Start and finish <u>implementing the actual design</u> with fast electronics.

Week 6: Testing, debugging and improving.

<u>Week 7-8:</u> Finialsize the product. **Test out** with ion trap system and obtain actual results. If time allows, try out TDC.

Week 9 -one of us won't be here (hopefully): Writing up report and working on final presentation.

Evaluation:

- Prototype(s) of slower version and output data. Simulation results. (40% for correct designs of prototype)
- Test results from using the fast autocorrelator on the real experiment. (60% actual implementation)

References

- The Almighty Tony
- Professors Whitehorn and Campbell, who provided invaluable thoughts and advice on possible designs
- Literature (lot of IEEE papers)
- [1] Image from Chapman Labs at Gatech
- [2] Image from "An Attempt to Calibrate the Laser Induced Fluorescence (LIF) Signal used for Oil Film Thickness (OFT) Measurements in Simulating Test Rigs."
- [3] Cheng, Zeng, etc. Recent Developments and Design Challenges of High-Performance Ring Oscillator CMOS Time-to-Digital Converters. IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 1, JANUARY 2016.
- [4] Porat, Dan I. REVIEW OF SUB-NANOSECOND TIME-INTERVAL MEASUREMENTS.

Introduction to the problem (setup of experiment):

Objective: To make a XOR gate which can perform a desired operation in 12 picoseconds

Methods (two routes, talk a lot about the available ways):

Proposed scheme and design (talk about the planned implementation):

Planned Timeline:

Parts:

Evaluation metric (two prototypes? One actual pne with fast electronics and tested out, python simulation): First test with a slower frequency breakdowns using parts that can be found in the lab, we already have a TDC that can take in two inputs, and we can put this together with a XOR gate in the lab. The two inputs for the TDC can be tested using a function generator. As the circuit gets faster, we plan to do a python simulation

