

# Aufgaben zur Theoretischen Elektrotechnik

1

## **Aufgabe**

- a) Wie ist der Differentialoperator "Nabla" in kartesischen Koordinaten definiert?
- b) Drücken Sie die Differentialoperatoren "Gradient", "Divergenz", "Rotation" und "Laplace" mit Hilfe des Nabla-Operators aus.
- c) Wenden Sie die Grassmann-Identität auf die doppelte Rotation eines Vektors an.

2

## **Aufgabe**

Zeigen Sie, dass 
$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b})$$
 gilt!

Diese Gleichung ist als *Graßmann* Identität (Entwicklungssatz) oder sogenannte BAC-CAB-Formel bekannt.

3

## **Aufgabe**

Bilden Sie den Gradienten der folgenden Funktionen:

a) 
$$f(\vec{r}) = x \cdot y \cdot z$$

b) 
$$f(\vec{r}) = x + y + z$$

c) 
$$f(\vec{r}) = \frac{1}{|\vec{r}|}$$

d) 
$$f(\vec{r}) = u(\vec{r}) \cdot v(\vec{r})$$

e) 
$$f(\vec{r}) = \vec{v} \cdot \vec{r}$$
 mit  $\vec{v} = \text{const.}$ 

f) 
$$f(\vec{r}) = \vec{v} \cdot \frac{\vec{r}}{|\vec{r}|}$$
 mit  $\vec{v} = \text{const.}$ 

Hinweis: 
$$\vec{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$



#### **Aufgabe**

Berechnen Sie die Divergenz und Rotation folgender Funktionen (a, b, c = const.)

a) 
$$\vec{w} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

b) 
$$\vec{w} = \begin{pmatrix} a \\ b \\ z \end{pmatrix}$$

c) 
$$\vec{w} = \begin{pmatrix} a \\ z \\ c \end{pmatrix}$$

d) 
$$\vec{w} = \begin{pmatrix} z \\ b \\ c \end{pmatrix}$$

e) 
$$\vec{w} = \begin{pmatrix} yz \\ xz \\ xy \end{pmatrix}$$

f) 
$$\vec{w} = \begin{pmatrix} \cos x \\ 0 \\ -\sin z \end{pmatrix}$$

g) 
$$\vec{w} = \begin{pmatrix} \cos z \\ 0 \\ -\sin x \end{pmatrix}$$

h) 
$$\vec{w} = \begin{pmatrix} 6xy \\ 3x^2 + 2z \cdot \sin yz \\ 2y \cdot \sin yz \end{pmatrix}$$

5

# **Aufgabe**

Gegeben ist das folgende Vektorfeld:  $\vec{F}(x, y, z) = y \cdot \vec{e}_x - x \cdot \vec{e}_y$ 

- a) Berechnen Sie den prinzipiellen Feldverlauf (Gleichung der Feldlinien).
- b) Bestimmen Sie die Orientierung der Feldlinien.
- c) Zeigen Sie durch Rechnung, um was für ein Feld es sich handelt.

6

#### **Aufgabe**

Gegeben sei das elektrische Potentialfeld  $\varphi(x, y) = k \cdot x \cdot y$  mit k = const.

- a) Skizzieren Sie den prinzipiellen Verlauf ausgewählter Potentiallinien.
- b) Berechnen Sie das Feldstärkefeld  $\vec{E}(x,y)$ .
- c) Berechnen und skizzieren Sie den prinzipiellen Verlauf der Feldstärkelinien.



## **Aufgabe**

Das Vektorfeld  $\vec{B}(r,\vartheta,\alpha)$  lasse sich als Gradient einer Funktion  $f(r,\vartheta,\alpha)$  darstellen, von der nur  $\frac{\partial f}{\partial r}$  auf der Kugelfläche r=R existiert. Welche Aussage lässt sich über die Existenz von Quellen innerhalb der Kugelfläche r=R machen, wenn

a) 
$$\vec{B} = \frac{\partial}{\partial r} f(r = R, \vartheta, \alpha) = A \cdot \sin \vartheta \sin \left(\frac{\alpha}{2}\right)$$

b) 
$$\vec{B} = \frac{\partial}{\partial r} f(r = R, \vartheta, \alpha) = A \cdot \cos \vartheta \cos \left(\frac{\alpha}{2}\right)$$

ist?

8

#### Aufgabe

Gegeben sei ein Vektorfeld  $\vec{A}(\vec{r})$ , das durch folgendes Umlaufintegral entsteht:

$$\vec{A}(\vec{r}) = \frac{I}{4\pi} \oint \frac{d\vec{s}}{|\vec{r}|} = \frac{I}{4\pi} \oint \frac{d\vec{s}}{r}$$

Bilden Sie die Rotation über das Vektorfeld  $\vec{A}(\vec{r})$ . Welches bekannte Gesetz ergibt sich dadurch?

9

## **Aufgabe**

Eine spezielle transversal-elektrische Welle (TE-Welle), die sich in einem Rechteckhohlleiter ausbreitet, hat folgendes E-Feld:

$$\vec{E} = E_0 \cdot \sin \frac{x\pi}{a} \cdot e^{j(\omega t - kz)} \vec{e}_y$$

Berechnen Sie mit Hilfe der Beziehung rot  $\vec{E}=-j\omega\vec{B}$  das  $\vec{B}$ -Feld. Wie heißt diese Gleichung?

**10** 

#### **Aufgabe**

Berechnen Sie das Flächenintegral des Einheitsvektors  $\vec{e}_r$  in Kugelkoordinaten über die geschlossene Oberfläche einer Kugel (Radius R, Mittelpunkt im Koordinatenursprung)

$$\iint\limits_{\partial V}\vec{e}_r d\vec{A}$$

- a) Auf direkte Weise
- b) Durch Anwendung des GAUß'schen Satzes



## **Aufgabe**

Eine Linienladung in der z-Achse erzeugt den elektrischen Feldvektor:

$$\vec{E} = \frac{{}^A}{\varrho} \vec{e}_\varrho$$

*و*: Zylinderkoordinate

# A: Konstante

Berechnen Sie das Umlaufintegral  $\oint \vec{E} d\vec{s}$  entlang der Kurve C

- a) Auf direkte Weise
- b) Durch Anwendung des STOKES'schen Satzes



**12** 

# **Aufgabe**

Berechnen Sie die Potentialverteilung  $\varphi(x)$  und die Feldstärkeverteilung E(x) in einem abrupten pn-Übergang in Abhängigkeit von der Sperrspannung U. Wie groß sind die differentielle und die absolute Kapazität?





#### **Aufgabe**

Berechnen Sie die Potentialverteilung  $\varphi(x)$  und die Feldstärkeverteilung E(x) in einem koaxialen Kabel mit Hilfe der Potentialgleichung  $\Delta \varphi = 0$  mit  $\varphi(a) = 0$ ;  $\varphi(b) = U$ 



# **14**

## **Aufgabe**

Ein Elektronenstrahl (Raumladungsdichte  $\rho$ , Radius  $R_E$ ) wird axial durch ein evakuiertes geerdetes Metallrohr (Radius  $R_R$ ) geführt. Berechnen Sie die Potentialverteilung  $\varphi(r)$ . Skizzieren Sie die Potentialverteilung.

Hinweis: Fallunterscheidung der Raumbereiche und Stetigkeit von  $\varphi$  sowie (wegen  $\varepsilon$  = const.)  $\frac{d\varphi}{dr}$  an der Bereichsgrenze beachten.

# **15**

#### **Aufgabe**

Die Raumladungsverteilung in einer Kugel mit dem Radius R sei

 $\varrho = \eta r \text{ mit } 0 \le r \le R$ 

 $\eta = \text{const.}$ 

Außerhalb der Kugel ist  $\varrho=0$ . Es sei überall  $\varepsilon=\mathrm{const.}$ 

Berechnen Sie die Potentialverteilung innerhalb und außerhalb der Kugel.



# **Aufgabe**

Berechnen Sie das Potentialfeld eines elektrischen Dipols in einer Entfernung r, die viel größer ist als der Abstand a der beiden Ladungen.



# **17**

## **Aufgabe**

Berechnen Sie das Potential in der Umgebung einer unendlich langen Linienladung mit der Linienladungsdichte  $\lambda$  durch Lösen der Potentialgleichung. Wählen Sie dazu einen geeigneten Bezugspunkt. Berechnen Sie weiterhin aus dem Potential die elektrische Feldstärke.



## **Aufgabe**

Prüfen Sie, ob folgende Probleme mit der Spiegelungsmethode lösbar sind. Geben Sie Ort und Größe der Spiegelladungen an.



 $\kappa > 0$   $Q_{l}$ 



a) Punkladung gegenüber leitendem Halbraum



b) Linienladung gegenüber leitendem Halbraum



c) Punktladung gegenüber leitendem Zylinder



d) Linienladung gegenüber leitendem Zylinder e) Punktladung gegenüber 2 rechtwinklig angeordneten leitenden Platten f) Punktladung zwischen 2 gegenüberliegenden leitenden Platten

## 19

## **Aufgabe**

Berechnen Sie die Kapazität einer elektrischen Doppelleitung durch Lösen der Laplace-Gleichung. Die Leiter tragen die Ladung Q und haben den Abstand a zueinander.





## **Aufgabe**

Eine Punktladung Q befindet sich im Abstand a von der ebenen Grenzfläche zweier Dielektrika mit unterschiedlichen Permittivitäten  $\varepsilon_1$  und  $\varepsilon_2$ . Durch welche Ersatzladungen kann das Feld in beiden Dielektrika dargestellt werden?



# **21**

# **Aufgabe**

Berechnen Sie die Kräfte, mit welchen sich

a) die Platten eines Plattenkondensators



c) zwei Kugeln







bei anliegender Spannung  ${\it U}$  anziehen.

## **22**

# Aufgabe

Ein Wasserleitungsrohr dient als Erder.



Berechnen Sie die Feldstärke  $\vec{E}(x)$  an der Erdoberfläche, wenn das Rohr h=1 m tief einen Strom von I=50 A auf einer Länge von  $\ell=10$  m in die Erde ( $\kappa=10^{-2}\,$  A/Vm) ableitet.



# **Aufgabe**

Es ist zu zeigen, dass im Strömungsfeld die je Zeit- und Volumeneinheit in Wärme umgewandelte Energie die Größe

$$\frac{\left|\vec{S}\right|^2}{\kappa}$$

hat.

# **24**

# **Aufgabe**

In einem leitfähigen Medium ( $\kappa={
m const.}$ ) klingt die elektrische Feldstärke  $E(\vec{r},t)$  an einem konstanten Ort ( $\vec{r}={
m const.}$ ) exponentiell mit der Zeitkonstanten  $\tau$  ab. Berechnen Sie die Energiedichte  $w_d={
m d}\,W/{
m d}\,V$  am Ort  $\vec{r}$ .





# **Aufgabe**

Gegeben sei ein zylindrischer Leiter der Länge  $\ell$  mit dem Radius R. Die Leitfähigkeit des Leitermaterials hängt nach folgender Beziehung vom Radius ab:

$$\kappa = \kappa_0 \cos\left(\frac{\pi}{2R}r\right)$$

Über die ideal leitenden Stirnseiten des Leiters ist der Leiter an die Spannungsquelle  $U_0$  angeschlossen.



- a) Bestimmen Sie die Stromdichte und den Gesamtstrom im Leiter durch Lösen der Potentialgleichung (Laplace-Gleichung).
- b) Berechnen Sie die magnetische Feldstärke und die magnetische Flussdichte innerhalb und außerhalb ( $\mu_r=1$ ) des Leiters ( $\ell\gg R$ ).

26

## **Aufgabe**

Berechnen Sie mit Hilfe des Vektorpotentials die magnetische Feldstärke  $\vec{H}$  in der Nähe der z-Achse eines Stromringes ( $\varrho$ -Umgebung).





# **Aufgabe**

Berechnen Sie die (äußere) Induktivität einer Doppelleitung.



# **28**

# **Aufgabe**

Berechnen Sie die Gegeninduktivität von zwei Doppelleitungen der Länge  $\ell$  und zeigen Sie, dass  $M_{12}=M_{21}$  ist.



# 29

# Aufgabe

Der Strom I fließe in einem unendlich langen Draht entlang der y-Achse. Der Draht sei unendlich dünn. Berechnen Sie das magnetische Feld  $\vec{H}$  im Punkt P(a,0,0) unter Benutzung

- a) des Durchflutungsgesetzes
- b) des Gesetzes von Biot-Savart
- c) des Vektorpotentialansatzes
- d) einer skalaren Potentialfunktion





#### **Aufgabe**

Das Bild unten zeige drei Magnetfelder, die man jeweils beim Betrachten eines langen Zylinders (Radius R) im Querschnitt sieht. Alle Feldverteilungen seien unabhängig von z. Das Magnetfeld sei in jedem der drei Fälle außerhalb des Zylinders gleich Null. Innerhalb des Zylinders habe es in allen Fällen den gleichen Betrag  $B_0$ , aber jeweils unterschiedliche Richtungen (siehe Bild).



- b) Welche Strom- (Spulen-) Anordnung kann die Feldbilder der zwei verbleibenden Fälle erzeugen. Welche Richtung haben die entsprechenden Stromdichten und welchen Betrag haben die dazugehörigen Ströme.

**31** 

# **Aufgabe**

Die radiale Stromverteilung in einem zylinderförmigen Leiter sei parabelförmig. Berechnen Sie das  $\label{eq:magnetical} \mbox{Magnetfeld innerhalb und außerhalb des Zylinders bei gegebener Stromdichte} \, \mathcal{S}_{m} \mbox{ in der Leiterachse}.$ 





#### **Aufgabe**

Gegeben sei das Drehfeld mit  $i_x=I_x\cos\omega t$  in Spulenpaar  $L_x$  und  $i_y=I_y\sin\omega t$  in Spulenpaar  $L_y$ . Die Erregerspulenpaare  $L_x$  und  $L_y$  sind dicht gewickelte kurze Spulen, die jeweils im Abstand 2a angeordnet sind (wie Helmholtzspulen). Jede hat die Windungszahl n und den Durchmesser  $2r_0$ . Berechnen Sie die induzierte Spannung in der Spule  $L_E$  mit der Windungszahl w und der wirksamen Fläche A. (Hinweis: Das magn. Feld kann im Bereich der Spule  $L_E$  als homogen betrachtet werden.)



#### 33

#### **Aufgabe**

Eine rechteckige Leiterschleife mit dem Widerstand R bewegt sich mit konstanter Geschwindigkeit  $\vec{v}=v\vec{e}_x$ . Zum Zeitpunkt t=0 befindet sich die rechte Kante der Schleife bei x=2a. Längs der y-Achse fließt ein Strom  $I_0$ . Berechnen Sie den in der Leiterschleife induzierten Strom. (Hinweis: Das von diesem Strom induzierte sekundäre Magnetfeld ist zu vernachlässigen.)





## **Aufgabe**

Neben einem unendlich langen, geraden Draht, durch den der im Diagramm abgebildete Strom i(t) fließt, befindet sich im Abstand a eine rechteckige Leiterschleife.

- a) Bestimmen Sie  $\vec{H}(t)$  und  $\vec{B}(t)$  in der Umgebung des Drahtes.
- b) Berechnen Sie den magnetischen Fluss  $\Phi_{\mathrm{m}}(t)$  durch die Leiterschleife.
- c) Berechnen Sie die in der Leiterschleife induzierte Spannung u(t) und stellen Sie diese für die Zeit  $0 \le t \le 12$  Sekunden graphisch dar.





## **35**

## **Aufgabe**

Ein Ladungsträger (Ladung +q) tritt mit der Geschwindigkeit  $\vec{v}$  in ein elektrisches Feld  $\vec{E}$  ein (vgl. Skizze). Wie ist dazu ein magnetisches Feld anzuordnen, damit der Ladungsträger unabgelenkt hindurchläuft? Wie kann man mit dieser Anordnung das Energiespektrum eines Elektronenstrahls bestimmen?





## **Aufgabe**

Berechnen Sie die Wirbelstromverlustleistung in einem Trafoblech der Dicke d, Breite b und Höhe h ohne Flussverdrängung. Die Leitfähigkeit des Materials sei  $\kappa$ . Die magnetische Flussdichte sei mit  $B_{\nu}(t) = \hat{B}_{\nu} \cos \omega t$  gegeben.



# **37**

# **Aufgabe**

Leiten Sie die Differentialgleichung für die Stromverdrängung im zylindrischen Leiter aus der Integralform der Maxwell-Gleichungen ab.





#### **Aufgabe**

Leiten Sie den Spannungsabfall an der Oberfläche eines zylindrischen stromdurchflossenen Leiters unter Berücksichtigung der Feldverdrängung im Leiter ab und geben Sie Real- und Imaginärteil des Widerstandes an. Benutzen Sie die Reihendarstellung der Besselfunktion mit Abbruch nach wenigen Gliedern.



39

#### **Aufgabe**

Auf einer Drahtleitung wird die Abhängigkeit der Spannung  $\underline{U}$  vom Ort x durch die DGL

$$\frac{\partial^2 \underline{U}}{\partial x^2} = (R' + j\omega L')(G' + j\omega C')\underline{U}$$

beschrieben. Berechnen Sie mit Hilfe von  $\underline{U}=\underline{U}_0e^{\pm\gamma x}$  und  $\gamma=\alpha+j\beta$  den Dämpfungsbelag  $\alpha$  und den Phasenbelag  $\beta$ .

**40** 

#### **Aufgabe**

Wie berechnet man den Realteil und den Imaginärteil des Wellenwiderstandes  $\underline{Z}_{w}$  einer Leitung? Wo treten Reflexionen auf und wie berechnet man diese?

$$\underline{Z}_{w} = \sqrt{\frac{R' + j\omega L'}{G' + j\omega C'}}$$



## **Aufgabe**

Berechnen Sie mit Hilfe des Wellenwiderstandes  $\underline{Z}_{w}$  die Spannungsverteilung  $\underline{U}(x)$  aus der Stromverteilung

$$\underline{I}(x) = \underline{I}_1 e^{-\underline{\gamma}x} + \underline{I}_2 e^{+\underline{\gamma}x}.$$

#### 42

#### **Aufgabe**

Berechnen Sie die Spannungs- und Stromverteilung auf einer Leitung, die am Ausgang kurzgeschlossen ist.



# **43**

## **Aufgabe**

Zeigen Sie, dass elektromagnetische Wellen im freien Raum Transversalwellen sind.

# 44

## **Aufgabe**

Eine ebene elektromagnetische Welle fällt senkrecht auf eine leitende Wand. Wie groß ist die Abschwächung nach einer Wellenlänge in der Wand?





## **Aufgabe**

Berechnen Sie den Energiefluss in der Verbindungsebene einer Doppelleitung? Wie groß ist der Energiefluss an der Oberfläche eines Drahtes mit  $r_0=5$  mm, d=1 m,  $\widehat{U}=10$  kV und  $\widehat{I}=10$  A?



46

#### **Aufgabe**

Eine Rahmenantenne mit der wirksamen Fläche  $A_w$  wird zum Empfang elektromagnetischer Wellen eingesetzt. Die wirksame Fläche wird durch die Windungskontur der Spule multipliziert mit der Windungszahl gebildet. Berechnen Sie die von der Antenne dem Feld entnommene Leistung.



47

#### **Aufgabe**

Zeigen Sie, dass für  $r \ll \lambda$  die Gleichungen für die elektrischen Feldstärkekomponenten des strahlenden Dipols übergehen in die Gleichungen des (quasi)stationären Dipols.