AAEを用いた推定

ER17076

安井 理

線表

タスク	開始 終了 ステータス 月 10			1			11				12				1				
目的																			
SSDを用いたマーカー推定																			
SSDの基礎知識	10/19	11/2																	
SSDをTensorflowを用いて動作	11/2	11/16								8									
円柱で変化させたARマーカのモデル作成	11/2	11/16							6 5 6 5	9									
SSDの評価	11/16	11/23					Į.												
SSDのバウンディングボックスの画像化	11/23	12/1																	
AAEを用いた姿勢推定																			
illustratorを用いてARマーカ画像の変形	10/19	10/27																	
自作モデルでのトレーニング	11/2	11/9																	
AAEを使った自作モデルでの評価	11/9	11/15																	
AAEで得られた情報の可視化	11/16	11/23																	
SSD+AAEでのARマー力推定																			
バウンディングボックスからAAEへの渡し方の調査	11/23	12/1																	
ARマーカを平面化	11/23	12/1							6 8 6 8	8									
ar_track_alvarとの精度比較	12/1	12/12																	
卒業論文		0																	
卒業論文作成																			
発表準備																			

線表

タスク

目的

SSDを用いたマーカー推定

SSDの基礎知識

SSDをTensorflowを用いて動作 円柱で変化させたARマーカのモデル作成 SSDの評価

SSDのバウンディングボックスの画像化

AAEを用いた姿勢推定

illustratorを用いてARマーカ画像の変形 自作モデルでのトレーニング

AAEを使った自作モデルでの評価

AAEで得られた情報の可視化

榎元

安井

SSDとAAEを色分け

赤色の部分を榎元 黄色の部分を安井 で分担を考えている

まだ足らない部分の追加が必要

やるべき事

- 。目的
 - ∘ 歪んだARマーカを推定し,歪んだARマーカを平面状に変換する事

やるべき事

- それぞれやる事
 - SSD
 - 円柱に張られた(歪みのある) ARマーカの推定
 - 鈴木さんと同じ方法でトレーニングデータ作成
 - · ARマーカのID,位置,大きさを推定
 - AAE
 - ARマーカのモデルを作成
 - トレーニング画像はモデルから自動生成
 - 歪ませたマーカー画像でテスト
 - ARマーカの姿勢(回転方向)を推定

研究目的の対比

鈴木さんの研究

- 。目的
 - 機械学習で変形による変化の吸収
 - 歪んだARマーカを正面から見たARマーカに変換
- ・アプローチ
 - 。ID,座標,大きさ,変化度合いの推定

今回の研究

- 。目的
 - 歪んだARマーカを推定し ARマーカを平面に変換
- アプローチ
 - 。ID,座標,大きさ,姿勢推定

鈴木さんの研究目的と方法

鈴木さんの卒論スライドより引用

- 研究目的
 - ◆機械学習を用いることで変形による見えの変化を吸収
 - ◆正面から見たARマーカ画像に変換するために変形度

- ◆Faster R-CNNによりARマーカの種類(ID)の認識, 位 置・大きさ・変形度合いを推定
- ◆Faster R-CNNの学習サンプルをセンサシミュレーションにより自動的に作成

研究イメージ

円柱正面にARマーカを張ったときの推定

山家でつうりに入り

バウンディングボックス 画像をAAEに入力

研究イメージ

円柱横にARマーカを張ったときの推定

AAEで行う検証

。実験

- 平面状のARマーカ3Dモデルをトレーニング
 - → トレーニング画像はモデルから自動生成
- 歪ませたARマーカ画像でテストを実行
 - → 数値指定でそれぞれ歪みを変え用意

。目的

- ARマーカを変形させたもので、どれほどの変化量まで対応できるか検証
- · AAEの問題点を調査
- ∘ SSDからのバウンディングボックスを想定しテストを行う

テストで使用する画像

。方法

- Illustratorのアーチの機能を使用して円柱に張られたイメージの変形ARマーカを用意
- 用意する度合いは,それぞれ[+-] 30,50,70,100%の変化を加えたものを用意
- 正面向きの変形を加えたもので一度検証. うまくいけば角度を変え行う

・用意した画像

-30%

-50%

-70%

-100%

AAEの動作確認

- 。問題
 - 自作モデルのトレーニングがいまだにエラーを起こし未解決
- 行ったこと
 - 。Blenderで作製したモデルが使えなかったため、CADで作成したモデルを使用 → ×
 - ・ 形状を変え試す → ×
- ・解決に向け
 - ●もう一度学習できたモデルデータと自作モデルデータを見比べ、形式などの違いを確認する

参考文献

・6次元物体検出の論文

http://openaccess.thecvf.com/content_ECCV_2018/papers/Martin_Sundermeyer_Implicit_3D_Orientation_ECCV_2018_paper.pdf

•git-hub

https://github.com/DLR-RM/AugmentedAutoencoder#testing