Commutative Algebra

Daniel Yu

September 24,2024

Contents

1	Something	3
2	Nilpotent elements and Nilradical	3

CONTENTS 2

Just Randomly dropped in Imao

1 Something

Note. Examples of Spec(A) and mSpec(A)

- 1. k field, A = k[x], then $Spec(A) = \{(0)\} \cup \{(f) | f \text{ irreducible}\}$, $Spec(A) \setminus \{(0)\}$. When k algebraically closed, the irreducible polynomials in k[x] are of the form b(x-a), $a, b \in k \to spec(k[x]) = k$.
- 2. What if k not algebraically closed? $k = \mathbb{R}$. We set nonlinear irreducible $f \in k[x]$. Goal: determine a geometric interpretation of $(f) \in Spec(k[x])$ where deg(f) > 1 irreducible. Let k[x,y], then $(0) \subseteq (X) \subseteq (x,y)$ where all ideals in this chain are prime, but only (x,y) maximal, $Spec(k[x,y]) \neq mSpec(k[x,y])$. Hw: prove ([x.y]) is maximal. Generally, if $(a.b) \in k^2$, the ideal generated by x-a and y-b:

$$M_{(a,b)} = (x - a, y - b)$$
.

is maximal in k[x, y]. We can make a similar identitification with at least some part of mSpec(k[x, y]) with k^2 , the k-plane.

3. etc.

Highkey lost rn

Definition 1. Given a field k, then a field F containing k so that addition and multiplication agree, we call F a field extension of k and k the base field and write:

$$\frac{F}{k}$$
 = f over k.

Note. Given a field k, there is no natural way to give the set k^2 the structure of a field:

$$(0,1)\cdot(1,0)=(0,0)$$
 nonzero zero divisors and not a field.

This is not to say that there are not definitions that turn k^2 into a ring: Consider \mathbb{R}^2 and define:

$$(a,b)\cdot(c,d)=(ac-bd,ad+bc).$$

$$(a+bi)(c+di) = (ac-bd) + i(ad+bc).$$

Remark. Holy!!!

 \mathbb{R}^2 with the multiplication defined above is a field extension of \mathbb{R} i.e. commonly known as \mathbb{C} :

$$\mathbb{C} \cong \frac{\mathbb{R}[x]}{x^2 + 1} = \mathbb{R}[i].$$

And this generalizes for other k, the underlying set!

2 Nilpotent elements and Nilradical

Definition 2. 1. $x \in A$ is nilpotent if $x^n = 0$ for some $n \in \mathbb{N}$.

2. the set of all nilpotent elements of A is called the **nilradical** of A and denoted:

$$nilrad(A) = \{a \in A | a^n = 0, \text{some n} > 0\}.$$

3. A is reduced if nilrad(A) = (0):

Proposition 1. A integral domain \rightarrow A reduced.

Proposition 2. Furthermore $\frac{A}{nilrad(A)}$ is always reduced.

Proposition 3. $nilrad(A) = \bigcap_{P \in Spec(A)} P$

Definition 3. The jacobson radical of ring A is the intersection of all maximal ideals of A.

$$Jrad(A) = \cap_{M \in mSpec(A)} M.$$

Proposition 4. $x \in Jrad(A) \Leftrightarrow 1 - xy \in A^x$ for all $y \in A$.

Proof. → Assume $x \in jrad(A)$ and $1 - xy \notin A^x$ some $y \in A$. Then we know that 1 - xy must be contained in some maximal ideal of A, denote it as $M \subseteq A$ maximal ideal (any non-unit has to be in some maximal ideal). Since $x \in M$, then $xy \in M$ (since x is in an ideal). Then, $(1 - xy) + xy = 1 \in M$, so M = A and hence is not a maximal ideal, a contradiction, so 1 - xy can't be contained in a maximal ideal of A.

 \leftarrow Suppose $x \notin M$ some maximal $M \subseteq A$ then the ideal generated by x and M must be all of A then u + xy = 1 for some $u \in M$ and $y \in A \Leftrightarrow 1 - xy \in M$ and hence $1 - xy \notin A^x$.

Definition 4. $I \subseteq A$ ideal, the **radical** of the ideal I is the set

$$\sqrt{I} = rad(I) = \{x \in A | x^n = I, \text{ some n} > 0\}.$$

Remark. In some sense, radical is a generalization of nilradical

$$nilrad(A) = rad((0)), (0) \subseteq A.$$

Proposition 5. $rad(I) = \pi^{-1}(nilrad(\frac{A}{I}))$ where $\phi: A \to \frac{A}{I}$

Proof. $x \in rad(I) \Leftrightarrow x^n \in I$ some $n \in N$, so $\pi(x^n) = \pi(x)^n = (x+I)^n = x^n + I = O_{\frac{A}{2}} = \pi(O_A)$.

I'm lost