

Our network has 2 inputs, 3 hidden units, and 1 output.

```
#Import code from last time
%pylab inline
from part1 import *

Populating the interactive namespace from numpy and matplotlib

print X.shape, y.shape
(3, 2) (3, 1)

X

array([[ 0.3,  1. ],
       [ 0.5,  0.2],
       [ 1. ,  0.4]])

y

array([[ 0.75],
       [ 0.82],
       [ 0.93]])
```

This time we'll build our network as a python class.

The init() method of the class will take care of instantiating constants and variables.

```
class NeuralNetwork(object):
    def __init__(self):
        self.inputLayerSize = 2
        self.hiddenLayerSize = 3
        self.outputLayerSize = 1

def forwardPropagation(self, X):
    #Propagate inputs though network
    pass
```

Quick Preview (/python/scikit-learn/scikit_machine_learning_qu

scikit-learn: Data
Preprocessing I - Missing /
Categorical data)
(/python/scikitlearn/scikit_machine_learning_Data-CategoricalData.php)

scikit-learn: Data
Preprocessing II - Partitioning a
dataset / Feature scaling /
Feature Selection /
Regularization (/python/scikit-learn/scikit_machine_learning_Datasets-PartitioningFeature-scaling-FeatureSelection-Regularization.php)

scikit-learn: Data
Preprocessing III Dimensionality reduction vis
Sequential feature selection /
Assessing feature importance
via random forests
(/python/scikit-learn/scikit_machine_learning_Da
III-Dimensionality-reductionvia-Sequential-featureselection-Assessing-featureimportance-via-randomforests.php)

scikit-learn: Data Compression via Dimensionality Reduction I - Principal component analysis (PCA) (/python/scikit-learn/scikit_machine_learning_Da_PCA.php)

scikit-learn: Data Compression via Dimensionality Reduction II
- Linear Discriminant Analysis (LDA) (/python/scikit-learn/scikit_machine_learning_Dates)

scikit-learn: Data Compression via Dimensionality Reduction III - Nonlinear mappings via kernel principal component

Variables

Code Symbol	Math Symbol	Definition	Dimensions
X	X	Input Data, each row in an example	(numExamples, inputLayerSize)
у	у	target data	(numExamples, outputLayerSize)
W1	$W^{(1)}$	Layer 1 weights	(inputLayerSize, hiddenLayerSize)
W2	$W^{(2)}$	Layer 2 weights	(hiddenLayerSize, outputLayerSize)
z2	z ⁽²⁾	Layer 2 activation	(numExamples, hiddenLayerSize)
a2	a ⁽²⁾	Layer 2 activity	(numExamples, hiddenLayerSize)
z3	z ⁽³⁾	Layer 3 activation	(numExamples, outputLayerSize)

$$z^{(2)} = XW^{(1)} \ a^{(2)} = f\left(z^{(2)}
ight) \ z^{(3)} = a^{(2)}W^{(2)} \ \hat{y} = f\left(z^{(3)}
ight)$$

Each input value in matrix X should be multiplied by a corresponding **weight** and then added together with all the other results for each neuron.

 $z^{\left(2\right)}$ is the activity of our second layer and it can be calculated as the following:

$$z^{(2)} = XW^{(1)}$$

(KPCA) analysis (/python/scikit-learn/scikit_machine_learning_Danonlinear-mappings-via-kernel-principal-component-analysis.php)

scikit-learn: Logistic Regression, Overfitting & regularization (/python/scikitlearn/scikitlearn_logistic_regression.php)

scikit-learn: Supervised
Learning & Unsupervised
Learning - e.g. Unsupervised
PCA dimensionality reduction
with iris dataset (/python/scikit-learn/scikit_machine_learning_Su

- (1) scikit-learn:
- (2) Unsupervised_Learning -
- (3) KMeans clustering with iris
- dataset (/python/scikit-
- learn/scikit_machine_learning_U

scikit-learn: Linearly Separable
Data - Linear Model &
(Gaussian) radial basis function
kernel (RBF kernel)
(/python/scikitlearn/scikit_machine_learning_Linearn/scikit_machine_learning_Linearn/scikit_machine_learning_Linearn/scikit_machine_learning_Linearn/scikit_machine_learning_Lin

scikit-learn: Decision Tree
Learning I - Entropy, Gini, and
Information Gain
(/python/scikitlearn/scikt_machine_learning_De

scikit-learn: Decision Tree Learning II - Constructing the Decision Tree (/python/scikitlearn/scikit_machine_learning_Co

scikit-learn: Random Decision Forests Classification (/python/scikitlearn/scikit_machine_learning_Ra

scikit-learn : k-Nearest Neighbors (k-NN) Algorithm

(1) (/python/scikitlearn/scikit_machine_learning_k-

$$=\begin{bmatrix}3 & 5 \\ 5 & 1 \\ 10 & 2\end{bmatrix}\begin{bmatrix}W_{11}^{(1)} & W_{12}^{(1)} & W_{13}^{(1)} \\ W_{21}^{(1)} & W_{22}^{(1)} & W_{23}^{(1)}\end{bmatrix}$$

$$=\begin{bmatrix}3W_{11}^{(1)} + 5W_{21}^{(1)} & 3W_{12}^{(1)} + 5W_{22}^{(1)} & 3W_{13}^{(1)} + 5W_{23}^{(1)} \\ 5W_{11}^{(1)} + W_{21}^{(1)} & 5W_{12}^{(1)} + W_{22}^{(1)} & 5W_{13}^{(1)} + W_{23}^{(1)} \\ 10W_{11}^{(1)} + 2W_{21}^{(1)} & 10W_{12}^{(1)} + 2W_{22}^{(1)} & 10W_{13}^{(1)} + 2W_{23}^{(1)}\end{bmatrix}$$

Note that each entry in z is a sum of weighted inputs to each hidden neuron. z is 3×3 matrix, one row for each sample, and one column for each hidden unit.

Activation function - sigmoid

Now that we have the **activities** for our second layer, $z^{(2)}=XW^{(1)}$, we need to apply the activation function.

We'll independently apply the **sigmoid** function to each entry in matrix z:

```
class NeuralNetwork(object):
    def __init__(self):
        self.inputLayerSize = 2
        self.hiddenLayerSize = 3
        self.outputLayerSize = 1

def forwardPropagation(self, X):
    #Propagate inputs though network
    pass

def sigmoid(self, z):
    #Apply sigmoid activation function to scalar, vector, or matrix
    return 1/(1+np.exp(-z))
```

By using numpy we'll apply the activation function element-wise, and return a result of the same dimension as it was given:

NN_k-nearest-neighbors-algorithm.php)

scikit-learn : Support Vector Machines (SVM) (/python/scikit-learn/scikit_machine_learning_Su

scikit-learn : Support Vector Machines (SVM) II (/python/scikitlearn/scikit_machine_learning_Su

Flask with Embedded Machine Learning I: Serializing with pickle and DB setup (/python/Flask/Python_Flask_Eml

Flask with Embedded Machine Learning II : Basic Flask App (/python/Flask/Python_Flask_Eml

Flask with Embedded Machine Learning III: Embedding Classifier (/python/Flask/Python_Flask_Eml

Flask with Embedded Machine Learning IV : Deploy (/python/Flask/Python_Flask_Eml

Flask with Embedded Machine Learning V: Updating the classifier (/python/Flask/Python_Flask_Eml

scikit-learn: Sample of a spam comment filter using SVM classifying a good one or a bad one (/python/scikitlearn/scikit_learn_Support_Vecto

MACHINE LEARNING ALGORITHMS

Batch gradient descent algorithm (/python/python_numpy_batch_§

Let's see how the **sigmoid()** takes an input and how returns the result:

The following calls for the **sigmoid()** with args: a number (scalar), 1-D (vector), and 2-D arrays (matrix).

Weight-matrices : $W^{\left(1\right)}$ and $W^{\left(2\right)}$

We initialize our weight matrices ($W^{(1)}$ and $W^{(2)}$) in our **__init__()** method with random numbers.

```
class NeuralNetwork(object):
    def __init__(self):
        #Define Hyperparameters
        self.inputLayerSize = 2
        self.outputLayerSize = 1
        self.hiddenLayerSize = 3

        #Weights (parameters)
        self.Wl = np.random.randn(self.inputLayerSize, self.hiddenLayerSize)
        self.W2 = np.random.randn(self.hiddenLayerSize, self.outputLayerSize)
```

Single Layer Neural Network Perceptron model on the Iris
dataset using Heaviside step
activation function
(/python/scikitlearn/Perceptron_Model_with_Iri

Batch gradient descent versus stochastic gradient descent (SGD) (/python/scikit-learn/scikit-learn_batch-gradient-descent-versus-stochastic-gradient-descent.php)

Single Layer Neural Network -Adaptive Linear Neuron using linear (identity) activation function with batch gradient descent method (/python/scikit-learn/Single-Layer-Neural-Network-Adaptive-Linear-Neuron.php)

Single Layer Neural Network: Adaptive Linear Neuron using linear (identity) activation function with stochastic gradient descent (SGD) (/python/scikit-learn/Single-Layer-Neural-Network-Adaptive-Linear-Neuron-with-Stochastic-Gradient-Descent.php)

VC (Vapnik-Chervonenkis)
Dimension and Shatter
(/python/scikitlearn/scikit machine learning VC

Bias-variance tradeoff (/python/scikitlearn/scikit_machine_learning_Bi variance-Tradeoff.php)

Logistic Regression (/python/scikitlearn/logistic_regression.php)

Maximum Likelihood Estimation (MLE) (/python/scikit-learn/Maximum-

Implementing forward propagation

We now have our second formula for forward propagation, using our activation function(f), we can write that our second layer activity: $a^{(2)} = f(z^{(2)})$. The $a^{(2)}$ will be a matrix of the same size (3 \times 3):

$$a^{(2)} = f(z^{(2)}) (2)$$

To finish **forward propagation** we want to propagate $a^{(2)}$ all the way to the output, \hat{y} .

All we have to do now is multiply $a^{(2)}$ by our second layer weights $W^{(2)}$ and apply one more activation function. The $W^{(2)}$ will be of size 3×1 , one weight for each synapse:

$$z^{(3)} = a^{(2)}W^{(2)} \tag{3}$$

Multiplying $a^{(2)}$, a (3 imes 3 matrix), by $W^{(2)}$, a (3 imes 1 matrix) results in a 3 imes 1 matrix $z^{(3)}$, the activity of our 3rd layer. The $z^{(3)}$ has three activity values, one for each sample.

Then, we'll apply our activation function to $z^{(3)}$ yielding our estimate of test score, \hat{y} :

$$\hat{y} = f\left(z^{(3)}\right) \tag{4}$$

Now we are ready to implement forward propagation in our **forwardPropagation()** method, using numpy's built in dot method for matrix multiplication:

```
class NeuralNetwork(object):
        __init__(self):
#Define Hyperparameters
        self.inputLayerSize = 2
        self.outputLayerSize = 1
        self.hiddenLayerSize = 3
        #Weights (parameters)
        self.W1 = np.random.randn(self.inputLayerSize, self.hiddenLayerSize)
        self.W2 = np.random.randn(self.hiddenLayerSize, self.outputLayerSize)
    def forwardPropagation(self, X):
        #Propagate inputs though network
        self.z2 = np.dot(X, self.W1)
        self.a2 = self.sigmoid(self.z2)
        self.z3 = np.dot(self.a2, self.W2)
        yHat = self.sigmoid(self.z3)
        return yHat
    def sigmoid(self, z):
        #Apply sigmoid activation function to scalar, vector, or matrix
        return 1/(1+np.exp(-z))
```

Getting estimate of test score

Likelyhood-Estimation-MLE.php)

Neural Networks with backpropagation for XOR using one hidden layer (/python/python_Neural_Networ

minHash (/Algorithms/minHash_Jaccard_Si

tf-idf weight (/Algorithms/tf_idf_term_frequen

Natural Language Processing (NLP): Sentiment Analysis I (IMDb & bag-of-words) (/Algorithms/Machine_Learning_I

Natural Language Processing (NLP): Sentiment Analysis II (tokenization, stemming, and stop words) (/Algorithms/Machine_Learning_I

Natural Language Processing (NLP): Sentiment Analysis III (training & cross validation) (/Algorithms/Machine_Learning_I

Natural Language Processing (NLP): Sentiment Analysis IV (out-of-core) (/Algorithms/Machine_Learning_I

Locality-Sensitive Hashing (LSH) using Cosine Distance (Cosine Similarity)
(/Algorithms/Locality Sensitive F

ARTIFICIAL NEURAL NETWORKS (ANN)

- 1. Introduction (/python/scikit-learn/Artificial-Neural-Network-ANN-1-Introduction.php)
- 2. Forward Propagation

Now we have a class capable of estimating our test score given how many hours we sleep and how many hours we study. We pass in our input data (X) and get real outputs (\hat{u}) .

Note that our estimates (\hat{y}) looks quite terrible when compared with our target (y). That's because we have not yet trained our network, that's what we'll work on next article.

Next:

3. Gradient Descent (/python/scikit-learn/Artificial-Neural-Network-ANN-3-Gradient-Descent.php)

Machine Learning with scikit-learn

scikit-learn installation (/python/scikit-learn/scikit-learn_install.php)

scikit-learn: Features and feature extraction - iris dataset (/python/scikit-learn/scikit machine learning features extraction.php)

scikit-learn: Machine Learning Quick Preview (/python/scikit-learn/scikit_machine_learning_quick_preview.php)

scikit-learn: Data Preprocessing I - Missing / Categorical data (/python/scikit-learn/scikit_machine_learning_Data_Preprocessing-Missing-Data-Categorical-Data.php)

(/python/scikit-learn/Artificial-Neural-Network-ANN-2-Forward-Propagation.php)

- 3. Gradient Descent (/python/scikit-learn/Artificial-Neural-Network-ANN-3-Gradient-Descent.php)
- 4. Backpropagation of Errors (/python/scikit-learn/Artificial-Neural-Network-ANN-4-Backpropagation.php)
- 5. Checking gradient (/python/scikit-learn/Artificial-Neural-Network-ANN-5-Checking-Gradient.php)
- 6. Training via BFGS (/python/scikit-learn/Artificial-Neural-Network-ANN-6-Training-via-BFGS-Broyden-Fletcher-Goldfarb-Shanno-algorithm-a-variant-of-gradient-descent.php)
- 7. Overfitting & Regularization (/python/scikit-learn/Artificial-Neural-Network-ANN-7-Overfitting-Regularization.php)
- 8 Deep Learning I : Image Recognition (Image uploading) (/python/scikit-learn/Artificial-Neural-Network-ANN-8-Deep-Learning-1-Image-Recognition-Image-Uploading.php)
- 9 Deep Learning II: Image Recognition (Image classification) (/python/scikitlearn/Artificial-Neural-Network-ANN-9-Deep-Learning-2-Image-Recognition-Image-Classification.php)
- 10 Deep Learning III : Deep Learning III : Theano, TensorFlow, and Keras (/python/scikit-learn/Artificial-Neural-Network-ANN-10-Deep-