PATENT COOPERATION TREATY

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

• •	or agent's file refe		THER ACTION		Transmittal of Internat nation Report (Form P	
19922 P						
	al application No.		filing date (day/month		ity date <i>(day/month/yea</i>)6/1997	ar)
PCT/DK9		19/06/199		23/0		
International C12N15/		tion (IPC) or national classifica	ition and IPC			
Applicant						
BIRKELL	JND, Svend et	al.				
1. This i	ntornational proj	iminary examination report	has been prepared	t by this Internation	nal Preliminary Exar	nining Authority
		he applicant according to A		by this internation	man reminary Exam	ining Additionly
2. This f	REPORT consis	ts of a total of 5 sheets, inc	cluding this cover sl	heet.		
_						
		o accompanied by ANNEXE and are the basis for this rep				
		and Section 607 of the Adm				no / tutilonty
				•		
These	e annexes consi	st of a total of 5 sheets.				
3. This r	enort contains ir	ndications relating to the fol	lowing items:			
0. 111151	cport contains i	idioanono rolaling to the lor	owng kome.			
I	🖾 Basis of t	he report				
11	☐ Priority					
Ш		olishment of opinion with re	gard to novelty, inv	entive step and in	dustrial applicability	
IV		nity of invention				
V		d statement under Article 3 and explanations suporting		novelty, inventive	step or industrial app	olicability;
VI		locuments cited				
VII	☐ Certain d	efects in the international a	pplication			
VIII	⊠ Certain of	oservations on the internati	onal application			
						
Date of sub	mission of the den	nand	Date of o	completion of this rep	port	
					1 5. 09. 99	
08/01/19	99					
Name and	mailing address -4	the international	Authoria	ed officer		
	nailing address of examining authoril		Authoriz	eu onicei		THE OUTS M. C. INST.
· · · · · · · · · · · · · · · · · · ·	European Patent	•				
-711	D 90209 Munich		1.0.1	obtaon II		

Telephone No. +49 89 2399 8933

Fax: +49 89 2399 - 4465

Tel. +49 89 2399 - 0 Tx: 523656 epmu d

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/DK98/00266

I.	Bas	is o	f th	e re	port
----	-----	------	------	------	------

1.	This report has been drawn on the basis of (substitute sheets which have been furnished to the receiving Office in
	response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to
	the report since they do not contain amendments.):

	tne	report since they a	o not contain amer	naments.):			
	Des	scription, pages:					
	1-4	,6-88	as originally filed				
	5,5	a	as received on		24/06/1999	with letter of	21/06/1999
	Cla	ims, No.:					
	1-1	5	as received on		26/07/1999	with letter of	22/07/1999
	Dra	wings, sheets:					
	1/2	1-21/21	as originally filed				
2.	The	amendments have	e resulted in the ca	ncellation of:			
		the description,	pages:				
	\boxtimes	the claims,	Nos.:	16. 17			
		the drawings,	sheets:				
3.			en established as beyond the disclosi			its had not been made	e, since they have been
4.	Ada	litional observation	s, if necessary:				•

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/DK98/00266

V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Statement

Novelty (N)

Yes: No: Claims 1-15

Claims

Claims

Inventive step (IS)

Yes: Claim

NI.

Claims 1-15

No:

Industrial applicability (IA)

Yes:

Claims 1-15

No: Claims

2. Citations and explanations

see separate sheet

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:

see separate sheet

Re Item V

Reasoned statement under Rule 66.2(a)(ii) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement

1. Reference is made to the following document (D):

D1: Longbottom et al. 1996, FEMS Microbiology Letters, vol. 142, 277-281

- 2. The present application relates to nucleic acid and corresponding polypeptide sequences derived from outer membrane proteins of Chlamydia pneumonia. Said sequences are also used as components in diagnostic kits for the detection of infection of a mammal with Chlamydia pneumonia.
- The closest prior art document D1 discloses partial sequences of polypeptide 3. fragments from Chlamydia psittaci that are 51-63% identical to some of the outer membrane proteins of Chlamydia pneumonia claimed in the present application (cf. description, page 32, line 33 to page 33, line 18).

The specific proteins with the nucleic acid and amino acid sequences shown in SEQ ID NO 1-24 are neither known from nor rendered obvious by, the available prior art. The same applies for their use in diagnostic kits.

Thus, claims 1 to 15 meet the requirements of Articles 33(2) and (3) with regard to novelty and inventive step.

Re Item VIII

: :)

Certain observations on the international application

1. The expression "homology of at least 50%" used throughout the claims is not clear and leaves the reader in doubt as to the exact scope of the claims (Article 6 PCT).

Homology is a qualitative inference while the accepted term in the field of quantitative nucleic acid and amino acid sequence comparison is identity (e.g. two nucleic acid sequences are said to be 70% identical when they have 70% of nucleotides in common at aligned positions).

bands originating from Chlamydia pneumoniae proteins in general separated by SDS-PAGE are describe therein.

However, the gene encoding this protein has not been determined before the present invention. Only a very weak or no reaction with patient sera can be observed to the 98 kDa protein (Campbell et al. 1990) and prior to the work of the present inventors it has not been recognized that the 89-101 kDa proteins are surface exposed or that they in fact is immunogenic (see below). In this report it is described that a number of human serum samples reacts with a C. pneumoniae protein that in SDS-PAGE migrate as 98 kDa. The protein was not further characterized and it is therefore not in conflict with the present application.

Campbell et al. (1990) described that sera from four patients from which Chlamydia pneumonia was isolated reacted with bands of 98 kDa in immunoblotting using whole-cell lysates. They also showed that no proteins with similar molecular weights were recognised by serum samples in either Chlamydia trachomatis or Chlamydia psittaci and they therefore suggest that the protein present in the 98 kDa band could be used as a potential diagnostic tool for the recognition of Chlamydia pneumoniae infection. The protein content within the 98 kDa region was not further characterised and its localisation within the Chlamydia was not shown.

20

45)

Halme et al. (1997) described the presence of human T-cell epitopes in C. pneumoniae proteins of 92-98 kDa. The proteins were eluted from SDS-PAGE of total chlamydia proteins but the identity of the proteins were not determined.

- Use of antibodies to screen expression libraries is a well known method to clone fragments of genes encoding antigenic parts of proteins. However, since patient sera do not show a significant reaction with the 98 kDa protein it has not been possible to use patient serum to clone the proteins.
- 30 It was known that monoclonal antibodies generated by the inventors reacted with conformational epitopes on the surface of C. pneumoniae and that they also reacted with C. pneumoniae OMC by immuno-electron microscopy (Christiansen et al. 1994). Furthermore, the 98 kDa protein is the only unknown protein from the C. pneumoniae OMC (Melgosa et al. 1993). The present inventors chose to take an unconventional step in order

to clone the gene encoding the hitherto unknown 98 kDa protein: C. pneumoniae OMC was purified and the highly immunogenic conformational epitopes were destroyed by SDS-treatment of the antigen before immunization. Thereby an antibody (PAB 150) to less immunogenic linear epitopes was obtained. This provided the possibility to obtain an

5

Claims (Amended)

1. Species specific diagnostic test for identifying infection of a mammal, such as a human, with Chlamydia pneumoniae, said test comprising detecting in a patient or in a patient sample the presence of antibodies against one or more proteins from the outer membrane of Chlamydia pneumoniae, said proteins being outer membrane proteins selected from proteins having the sequence as shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or in SEQ ID NO: 24, or a variant or subsequence thereof or

being said proteins encoded by the nucleic acid fragments selected from nucleotide sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, or in SEQ ID NO: 23, or a variant or subsequence thereof and wherein a subsequence of 100 nucleic acids or lower shows a homology of at least 80%.

- 2. Diagnostic test according to claim 1 wherein detection of nucleic acid fragments is obtained by using nucleic acid amplification.
- 3. Diagnostic test according to claim 2, wherein detection of nucleic acid fragments is obtained by using polymerase chain reaction.
- 4. A nucleic acid fragment derived from Chlamydia pneumoniae comprising the nucleotide sequence SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, or SEQ ID NO: 23, or a variant or subsequence of said nucleotide sequence which has a sequence homology of at least 50% with any of the sequences mentioned and wherein a subsequence of 100 nucleic acids or lower shows a homology of at least 80%.
- 5. A protein derived from Chlamydia pneumoniae having the amino acid sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof having a sequence similarity of at least 50% and a similar biological function.
- 6. Polyclonal monospecific antibody against the protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12,

SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof.

- 7. A diagnostic kit for the diagnosis of infection of a mammal, such as a human, with Chlamydia pneumoniae, said kit comprising a protein with the amino acid sequence SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof.
- 8. A diagnostic kit for the diagnosis of infection of a mammal, such as a human, with Chlamydia pneumoniae, said kit comprising antibodies against a protein with the amino acid sequence SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof.
- 9. A diagnostic kit for the diagnosis of infection of a mammal, such as a human, with Chlamydia pneumoniae, said kit comprising a nucleic acid fragment with the sequence SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, or SEQ ID NO: 23, or a variant or subsequence thereof and wherein a subsequence of 100 nucleic acids or lower shows a homology of at least 80%.
- 10. A composition for immunising a mammal, such as a human, against Chlamydia pneumoniae, said composition comprising a protein with the amino acid sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof.
- 11. Use of a protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof in diagnosis of infection of a mammal, such as a human, with Chlamydia pneumoniae.
- 12. Use of the protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24 or a variant or

subsequence thereof in an undenatured form, in diagnosis of infection of a mammal, such as a human, with Chlamydia pneumoniae.

- 13. Use of a protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof, for immunising a mammal, such as a human, against Chlamydia pneumoniae.
- 14. Use of the protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof in an undenatured form, for immunising a mammal, such as a human, against Chlamydia pneumoniae.

15. Use of a nucleic acid fragment with the nucleotide sequence shown in SEQ ID NO: 1 SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, or SEQ ID NO: 23, or a variant or subsequence of said nucleotide sequence which has a sequence homology of at least 50% and wherein a subsequence of 100 nucleic acids or lower shows a homology of at least 80% with any of the mentioned nucleotide sequences encoding a protein used for effecting *in vivo* expression of antigens against Chlamydia pneumoniae, in a mammal such as a human.

F .. ENT COOPERATION TREA.

From the INTERNATIONAL BUREAU

PCT

NOTIFICATION OF ELECTION

(PCT Rule 61.2)

United States Patent and Trademark

Office (Box PCT) Crystal Plaza 2 Washington, DC 20231 ÉTATS-UNIS D'AMÉRIQUE

Date of mailing (day/month/year) 27 January 1999 (27.01.99)

in its capacity as elected Office

International application No.
PCT/DK98/00266

International filing date (day/month/year)
19 June 1998 (19.06.98)

Priority date (day/month/year)
23 June 1997 (23.06.97)

19922 PC 1

Applicant's or agent's file reference

Applicant

BIRKELUND, Svend et al

1.	The designated Office is hereby notified of its election made:
	X in the demand filed with the International Preliminary Examining Authority on:
	08 January 1999 (08.01.99)
	in a notice effecting later election filed with the International Bureau on:
	
2.	The election X was
	was not
	made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of ₩IPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland **Authorized officer**

Lazar Joseph Panakal

Facsimile No.: (41-22) 740.14.35

Telephone No.: (41-22) 338.83.38

~ATENT COOPERATION TR! ~Y

	From the INTERNATIONAL BUREAU			
PCT	То:			
NOTIFICATION OF THE RECORDING OF A CHANGE (PCT Rule 92bis.1 and Administrative Instructions, Section 422) Date of mailing (day/month/year) 30 November 1999 (30.11.99)	PLOUGMANN, VINGTOFT & PARTNERS A/S Sankt Annæ Plads 11 P.O. Box 3007 DK-1021 Copenhagen K DANEMARK			
Applicant's or agent's file reference				
19922 PC 1	IMPORTANT NOTIFICATION			
International application No. PCT/DK98/00266	International filing date (day/month/year) 19 June 1998 (19.06.98)			
The following indications appeared on record concerning: X the applicant Name and Address Name and Address	the agent the common representative State of Nationality State of Residence			
MYGIND, Per Falstersgade 5, 3.tv DK-8000 Århus C Denmark	DK DK Telephone No. Facsimile No.			
	Teleprinter No.			
2. The International Bureau hereby notifies the applicant that t the person the name X the add				
Name and Address MYGIND, Per Cort-Adelers Gade 17, 1.tv. DK-8200 Århus N Denmark	State of Nationality State of Residence DK DK Telephone No. Facsimile No. Teleprinter No.			
3. Further observations, if necessary:				
4. A copy of this notification has been sent to: X the receiving Office the International Searching Authority X the International Preliminary Examining Authority	the designated Offices concerned X the elected Offices concerned other:			
The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Facsimile No : (41,22) 740 14 35	Authorized officer Athina Nickitas-Etienne Telephone No.: (41.22) 338 83 38			

PATENT COOPERATION TREETY

	From the INTERNATIONAL BUREAU				
PCT	To:				
NOTIFICATION OF THE RECORDING OF A CHANGE (PCT Rule 92bis.1 and Administrative Instructions, Section 422) Date of mailing (day/month/year) 30 November 1999 (30.11.99)		PLOUGMANN, VINGTOFT & PARTNERS A/S Sankt Annæ Plads 11 P.O. Box 3007 DK-1021 Copenhagen K DANEMARK			
Applicant's or agent's file reference 19922 PC 1		IMPORTAN	T NOTIF	FICATION	
International application No. PCT/DK98/00266	1	nal filing date (day/ une 1998 (19.06	•	ar)	
The following indications appeared on record concerning: X the applicant X the inventor	the ager	<u></u>		n representative	
Name and Address MADSEN, Anna-Sofie		State of National	ity	State of Residence DK	
Ramsherred 51 b, 1.tv. DK-6200 Aabenraa Denmark		Telephone No.	i		
		Facsimile No.			
		Teleprinter No.	,		
2. The International Bureau hereby notifies the applicant that t	he following	change has been r	ecorded co	oncerning:	
the person X the name X the add	dress	the nationality	' [the residence	
Name and Address		State of Nationali DK	ity	State of Residence DK	
HEBSGAARD PEDERSEN, Anna-Sofie Vestergade 26C, 2.th. DK-8600 Silkeborg Denmark		Telephone No.		DK	
Delinark		Facsimile No.			
		Teleprinter No.			
3. Further observations, if necessary:					
4. A copy of this notification has been sent to:		······································			
X the receiving Office		the designated	d Offices c	oncerned	
the International Searching Authority		the elected Off	fices conce	erned	
X the International Preliminary Examining Authority		other:			
The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland	Authorized		a Nickita	s-Etienne	
Facsimile No.: (41-22) 740.14.35	Telephone No : (41,22) 338 83 38				

Form PCT/IB/306 (March 1994)

NT COOPERATION TREATY

F

PCT

INTERNATIONAL SEARCH REPORT

(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference	FOR FURTHER see Notification	of Transmittal of International Search Report
19922 PC 1	ACTION (Form PCT/ISA/2	220) as well as, where applicable, item 5 below.
International application No.	International filing date (day/month/year)	(Earliest) Priority Date (day/month/year)
PCT/DK 98/00266	19/06/1998	23/06/1997
Applicant	<u> </u>	
BIRKELUND, Svend et al.		
This International Search Report has bee according to Article 18. A copy is being tra	on prepared by this International Searching Aut ansmitted to the International Bureau.	thority and is transmitted to the applicant
This International Search Report consists X It is also accompanied by a cop	of a total of5 sheets. by of each priorant document cited in this repor	t.
1. χ Certain claims were found un	searchable(see Box I).	
2. Unity of invention is lacking(s	see Box II).	
3. X The international application co	ntains disclosure of a nucleotide and/or amir	no acid sequence listing and the
international search was carried	d out on the basis of the sequence listing	
1	d with the international application. hished by the applicant separately from the inte	ernational application
	but not accompanied by a statement to the matter going beyond the disclosure in the	he effect that it did not include
Tra	nscribed by this Authority	
4. With regard to the title, the	text is approved as submitted by the applican	t
X the	text has been established by this Authority to	read as follows:
SURFACE EXPOSED PROTE	INS FROM CHLAMYDIA PNEUMONI	AE
5. With regard to the abstract,		
X the	text is approved as submitted by the applican	t
Box	text has been established, according to Rule (III. The applicant may, within one month from arch Report, submit comments to this Authority	the date of mailing of this International
6. The figure of the drawings to be pub	lished with the abstract is:	
Figure No as	suggested by the applicant.	X None of the figures.
bed	cause the applicant failed to suggest a figure.	
bed	cause this figure better characterizes the inven	tion.

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
see FURTHER INFORMATION sheet
Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International Application No. PCT/DK 98 /00266
FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210
Although claims 1-3 and 13 and 14 (all partially, as far as an in vivo method is concerned) are directed to a diagnostic method practised on the human/animal body, and although claims 15-17 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

From the

INTERNATIONAL PRELIMINARY EXAMINING AUTHORITY

To: PLOUGMANN, VINGTOFT & PARTNERS AFOUGM Sankt Ann Plads 11 INGTO NOTIFICATION OF TRANSMITTAL OF PARTNERS P.O. Box 3007 THE INTERNATIONAL PRELIMINARY DK-1021 Copenhagen K **EXAMINATION REPORT** 17 Sec. 1903 **DANEMARK** (PCT Rule 71.1) bate of mailing 1 5, 09, 99 (day/month/year) Applicant's or agent's file reference IMPORTANT NOTIFICATION 19922 PC 1 International filing date (day/month/year) Priority date (day/month/year) International application No. 23/06/1997 PCT/DK98/00266 19/06/1998

BIRKELUND, Svend et al.

- 1. The applicant is hereby notified that this International Preliminary Examining Authority transmits herewith the international preliminary examination report and its annexes, if any, established on the international application.
- 2. A copy of the report and its annexes, if any, is being transmitted to the International Bureau for communication to all the elected Offices.
- 3. Where required by any of the elected Offices, the International Bureau will prepare an English translation of the report (but not of any annexes) and will transmit such translation to those Offices.

4. REMINDER

The applicant must enter the national phase before each elected Office by performing certain acts (filing translations and paying national fees) within 30 months from the priority date (or later in some Offices) (Article 39(1)) (see also the reminder sent by the International Bureau with Form PCT/IB/301).

Where a translation of the international application must be furnished to an elected Office, that translation must contain a translation of any annexes to the international preliminary examination report. It is the applicant's responsibility to prepare and furnish such translation directly to each elected Office concerned.

For further details on the applicable time limits and requirements of the elected Offices, see Volume II of the PCT Applicant's Guide.

Name and mailing address of the IPEA/

Authorized officer

Vullo, C

European Patent Office D-80298 Munich

Tel. +49 89 2399 - 0 Tx: 523656 epmu d

Fax: +49 89 2399 - 4465

Tel.+49 89 2399-8061

WOKLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: **A2**

(11) International Publication Number:

WO 98/58953

(43) International Publication Date:

30 December 1998 (30.12.98)

(21) International Application Number: PCT/DK98/00266

(22) International Filing Date:

19 June 1998 (19.06.98)

(30) Priority Data:

0744/97

C07K 14/00

23 June 1997 (23.06.97)

DK

(71)(72) Applicants and Inventors: BIRKELUND. [DK/DK]; Søtoften 26, DK-8250 Egå (DK). CHRIS-TIANSEN, Gunna [DK/DK]; Søtoften 26, DK-8250 Egå (DK).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): KNUDSEN, Katrine [DK/DK]; Lundingsgade 33, Lejlighed 407, DK-8000 Århus C (DK). MADSEN, Anna-Sofie [DK/DK]; Ramsherred 51 b, 1.tv., DK-6200 Aabenraa (DK). MYGIND, Per [DK/DK]; Falstersgade 5, 3.tv., DK-8000 Århus C (DK).
- (74) Agent: PLOUGMANN, VINGTOFT & PARTNERS A/S; Sankt Annæ Plads 11, P.O. Box 3007, DK-1021 Copenhagen K (DK).

(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: NOVEL SURFACE EXPOSED PROTEINS FROM CHLAMYDIA PNEUMONIAE

(57) Abstract

The invention relates to the identification of members of a gene family from the human respiratory pathogen Chlamydia pneumoniae, encoding surface exposed membrane proteins of a size of approximately 89-101 kDa and of 56-57 kDa, preferably about 89.6-100.3 kDa and about 56.1 kDa. The invention relates to the novel DNA sequences, the deduced amino acid sequences of the corresponding proteins and the use of the DNA sequences and the proteins in diagnosis of infections caused by C. pneumoniae, in pathology, in epidemiology, and as vaccine components.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
\mathbf{AM}	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KР	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

NOVEL SURFACE EXPOSED PROTEINS FROM CHLAMYDIA PNEUMONIAE

The present invention relates to the identification of members of a gene family from the human respiratory pathogen Chlamydia pneumoniae, encoding surface exposed membrane proteins of a size of approximately 89-101 kDa and of 56-57 kDa, preferably about 89.6-100.3 kDa and about 56.1 kDa. The invention relates to the novel DNA sequences, the deduced amino acid sequences of the corresponding proteins and the use of the DNA sequences and the proteins in diagnosis of infections caused by C. pneumoniae, in pathology, in epidemiology, and as vaccine components.

GENERAL BACKGROUND

- C. pneumoniae is an obligate intracellular bacteria
 (Christiansen and Birkelund (1992); Grayston et al. (1986)).
- It has a cell wall structure as Gram negative bacteria with an outer membrane, a periplasmic space, and a cytoplasmic membrane. It is possible to purify the outer membrane from Gram negative bacteria with the detergent sarkosyl. This fraction is named the 'outer membrane complex (OMC)' (Caldwell
- et al. (1981)). The COMC (Chlamydia outer membrane complex) of *C. pneumoniae* contains four groups of proteins: A high molecular weight protein 98 kDa as determined by SDS-PAGE, a double band of the cysteine rich outer membrane protein 2 (Omp2) protein of 62/60 kDa, the major outer membrane protein
- 25 (MOMP) of 38 kDa, and the low-molecular weight lipo-protein Omp3 of 12 kDa. The Omp2/Omp3 and MOMP proteins are present in COMC from all Chlamydia species, and these genes have been cloned from both *C. trachomatis*, *C. psittaci* and *C. pneumoniae*. However, the gene encoding 98 kDa protein from *C*.
- 30 pneumoniae COMC have not been characterized or cloned.

The current state of C. pneumoniae serology and detection

C. pneumoniae is an obligate intra-cellular bacteria belonging to the genus Chlamydia which can be divided into

four species: C. trachomatis, C. pneumoniae, C. psittaci and C.pecorum. Common for the four species is their obligate intra cellular growth, and that they have a biphasic life cycle, with an extracellular infectious particle (the elementary body, EB), and an intercellular replicating form (the reticulate body, RB). In addition the Chlamydia species are characterized by a common lipopolysaccharide (LPS) epitope that is highly immunogenic in human infection. C. trachomatis is causing the human ocular infection (trachoma) and genital infections. C. psittaci is a variable group of 10 animal pathogens where the avian strains can occasionally infect humans and give rise to a severe pneumonia (ornithosis). The first C. pneumoniae isolate was obtained from an eye infection, but it was classified as a non-typable Chlamydia. Under an epidemic outbreak of pneumonia in Finland 15 it was realized that the patients had a positive reaction in the Chlamydia genus specific test, (the lygranum test), and the patients showed a titre increase to the untyped Chlamydia isolates. Similar isolates were obtained in an outbreak of 20 upper respiratory tract infections in Seattle, and the Chlamydia isolates were classified as a new species, Chlamydia pneumoniae (Grayston et al. (1989)). In addition, C. pneumoniae is suggested to be involved in the development of atherosclerotic lesions and for initiating bronchial asthma (Kuo et al. (1995)). These two conditions are thought 25 to be caused by either chronic infections, by a hypersensitivity reaction, or both.

Diagnosis of Chlamydia pneumoniae infections

Diagnosis of acute respiratory tract infection with *C*.

30 pneumoniae is difficult. Cultivation of *C*. pneumoniae from patient samples is insensitive, even when proper tissue culture cells are selected for the isolation. A *C*. pneumoniae specific polymerase chain reaction (PCR) has been developed by Campbell et al.(1992).

Even though Chlamydia pneumoniae has in several studies been detected by this PCR it is debated whether this method is suitable for detection under all clinical situations. The reason for this is, that the cells carrying Chlamydia pneumoniae in acute respiratory infections have not been determined, and that a chronic carrier state is expected but it is unknown in which organs and cells they are present. Furthermore, the PCR test is difficult to perform due to the low yield of these bacteria and due to the presence of inhibitory substances in the patient samples. Therefore, it 10 will be of great value to develop sensitive and specific sero-diagnostics for detecting both acute and chronic infections. Sero-diagnosis of Chlamydia infections is currently based on either genus specific tests as the Lygranum test and ELISA, measuring the antibodies to LPS, or 15 the more species specific tests where antibodies to purified EBs are measured by microimmuno fluorescence (Micro-IF) (Wang et al. (1970)). However, the micro-IF method is read by microscopy, and in order to ensure correct readings the 20 result must be compared to the results with C. trachomatis used as antigen due to the cross-reacting antibodies to the common LPS epitope. Thus, there exists in the art an urgent need for development of reliable methods for species specific diagnosis of Chlamydia pneumoniae, as has been expressed in Kuo et al. (1995); "..a rapid reliable laboratory test of 25 infection for the clinical laboratory is a major need in the field". Furthermore, the possible involvement of C. pneumoniae in atherosclerosis and bronchial asthma clearly warrants the development of an effective vaccine.

30 DETAILED DISCLOSURE OF THE INVENTION

35

The present invention aims at providing means for efficient diagnosis of infections with *Chlamydia pneumoniae* as well as the development of effective vaccines against infection with this microorganism. The invention thus relates to species specific diagnostic tests for infection in a mammal, such as a human, with *Chlamydia pneumoniae*, said tests being based on

the detection of antibodies against surface exposed membrane proteins of a size of approximately 89-101 kDa and of 56-57 kDa, preferably of about 89.6-100.3 kDa and about 56.1 kDa (the range in size of the deduced amino acid sequences was from 100.3 to 89.6 except for Omp13 with the size of 56.1 kDa), or the detection of nucleic acid fragments encoding such proteins or variants or subsequences thereof. The invention further relates to the amino acid sequences of proteins according to the invention, to variants and subsequences thereof, and to nucleic acid fragments encoding these proteins or variants or subsequences thereof. The present invention further relates to antibodies against proteins according to the invention. The invention also relates to the use of nucleic acid fragments and proteins according to the invention in diagnosis of Chlamydia pneumoniae and vaccines against Chlamydia pneumoniae.

10

15

Prior to the disclosure of the present invention only a very limited number of genes from C. pneumoniae had been sequenced. These were primarily the genes encoding known C. trachomatis homologues: MOMP, Omp2, Omp3, Kdo-transferase, 20 the heat shock protein genes GroEl/Es and DnaK, a ribonuclease P homologue and a gene encoding a 76 kDa protein of unknown function. The reason why so few genes have been cloned to date is the very low yield of C. pneumoniae which can be obtained after purification from the host cells. After such purification the DNA must be purified from the EBs, and at this step the C. pneumoniae DNA can easily be contaminated with host cell DNA. In addition to these inherent difficulties, it is exceedingly difficult to cultivate C. pneumoniae and use DNA technology to produce expression 30 libraries with very low amounts (few μg) of DNA. It has been known since 1993 (Melgosa et al., 1993) that a 98 kDa protein is present in OMC from C. pneumoniae. Even though the protein bands of 98 kDa was mentioned to be part of the OMC of C. pneumoniae by Melgosa, the gene sequences and thus the 35 deduced amino acid sequences have not been determined. Only

20

bands originating from Chlamydia pneumoniae proteins in general separated by SDS-PAGE are describe therein. However, the gene encoding this protein has not been determined before the present invention. Only a very weak or no reaction with patient sera can be observed to the 98 kDa protein (Campbell et al. 1990) and prior to the work of the present inventors it has not been recognized that the 89-101 kDa proteins are surface exposed or that they in fact is immunogenic. In this report it is described that a number of human serum samples reacts with a C. pneumoniae protein that in SDS-PAGE migrate as 98 kDa. The protein was not further characterized and it is therefore not in conflict with the present application.

Halme et al. (1997) described the presence of human T-cell epitopes in *C. pneumoniae* proteins of 92-98 kDa. The proteins were eluted from SDS-PAGE of total chlamydia proteins but the identity of the proteins were not determined.

Use of antibodies to screen expression libraries is a well known method to clone fragments of genes encoding antigenic parts of proteins. However, since patient sera do not show a significant reaction with the 98 kDa protein it has not been possible to use patient serum to clone the proteins.

It was known that monoclonal antibodies generated by the
inventors reacted with conformational epitopes on the surface of *C. pneumoniae* and that they also reacted with *C. pneumoniae* OMC by immuno-electron microscopy (Christiansen et al. 1994). Furthermore, the 98 kDa protein is the only unknown protein from the *C. pneumoniae* OMC (Melgosa et al. 1993). The present inventors chose to take an unconventional step in order to clone the gene encoding the hitherto unknown 98 kDa protein: *C. pneumoniae* OMC was purified and the highly immunogenic conformational epitopes were destroyed by SDS-treatment of the antigen before immunization. Thereby an antibody (PAB 150) to less immunogenic linear epitopes was obtained. This provided the possibility to obtain an

antiserum which could detect the protein, and it was shown that a gene family encoding the 89-101 kDa and 56 proteins according to the invention could be detected in colony blotting of recombinant *E. coli*.

Mice infected with *C. pneumoniae* generate antibodies to the proteins identified by the inventors and named Omp4-15, but do not recognize the SDS treated heat denatured antigens normally used for SDS-PAGE and immunoblotting. However, a strong reaction was seen if the antigen was not heat denatured. It is therefore highly likely that if a similar reaction is seen in connection with human infections the antigens of the present invention will be of invaluable use in sero-diagnostic tests and may very likely be used as a vaccine for the prevention of infections.

15

20

25

30

35

By generating antibodies against COMC from C. pneumoniae a polyclonal antibody (PAB 150) was obtained which reacted with all the proteins. This antibody was used to identify the genes encoding the 89.6-101.3 kDa and 56.1 kDa proteins in an expression library of C. pneumoniae DNA. A problem in connection with the present invention was that a family comprising a number of similar genes were found in C. pneumoniae. Therefore, a large number of different clones were required to identify clusters of fragments. Only because the rabbit antibody generated by the use of SDS-denatured antigens contained antibodies to a high number of different epitopes positioned on different members of the protein family did the inventors succeed in cloning and sequencing four of the genes. One gene was fully sequenced, a second was sequenced except for the distal part and shorter fragments of two additional genes were obtained by this procedure. To obtain the DNA sequence of the additional genes and to search for more members of the gene family long range PCR with primers derived from the sequenced genes, and primers from the genes already published in the database were used. This approach gave rise to the detection of additional eight genes belonging to this family. The genes were situated in two gene

clusters: Omp12,11,10,5,4,13 and 14 in one cluster and Omp6,7,8,9 and 15 in the second. Full sequence was obtained from Omp4,5,6,7,8,9,10,11 and 13, and partial sequence of Omp12,14. Omp13 was a truncated gene of 1545 nucleotides. The rest of the full length genes were from 2526 (Omp7) to 2838 (Omp15) nucleotides. The deduced amino acid sequences revealed putative polypeptides of 89.6 to 100.3 kDa, except for Omp13 of 56.1 kDa. Alignment of the deduced amino acid sequences showed a maximum identity of 49% (Omp5/Omp9) when all the sequences were compared. Except for Omp13, the lowest homology was to Omp7 with no more than 34% identity to any of the other amino acid sequences. The scores for Omp13 was from 29-32% to all the other sequences.

10

35

In the present context SEQ ID Nos. 1 and 2 correspond to

Omp4, SEQ ID Nos 3 and 4 correspond to Omp5, SEQ ID Nos 5 and

correspond to Omp6, SEQ ID Nos 7 and 8 correspond to Omp7,

SEQ ID Nos 9 and 10 correspond to Omp8, SEQ ID Nos 11 and 12 correspond to Omp9, SEQ ID Nos 13 and 14 corresponds to

Omp10, SEQ ID Nos 15 and 16 corresponds to Omp11, SEQ ID Nos

and 18 corresponds to Omp12, SEQ ID Nos 19 and 20 corresponds to Omp13, SEQ ID Nos 21 and 22 corresponds to

Omp14, and SEQ ID Nos 23 and 24 corresponds to Omp15.

The estimated size of the Omp proteins of the of the present invention are listed in the following. Omp 4 has a size of 98.9 kDa, Omp5 has an estimated size of 97.2 kDa, Omp6 has an estimated size of 100.3 kDa, Omp7 has an estimated size of 89.7 kDa, Omp8 has an estimated size of 90.0 kDa, Omp9 has an estimated size of 96.7 kDa, Omp10 has an estimated size of 98.4 kDa, Omp11 has an estimated size of 97.6 kDa, Omp13 has an estimated size of 56.1 kDa, Omp 12 and 14 being partial.

Furthermore, SEQ ID No 25 is a subsequence of SEQ ID No 3, SEQ ID No 26 is a subsequence of SEQ ID No 4, SEQ ID No 27 is a subsequence of SEQ ID No 5, SEQ ID No 28 is a subsequence of SEQ ID No 6, SEQ ID No 29 is a subsequence of SEQ ID No 7, and SEQ ID No 30 is a subsequence of SEQ ID No 8.

Part of the omp proteins were expressed as fusion proteins, and mice polyclonal monospecific antibodies against the proteins were produced. The antibodies reacted with the surface of C. pneumoniae in both immunofluorescence and immunoelectron microscopy. This shows for the first time that the 89-101 kDa and 56-57 kDa protein family in C. pneumoniae comprises surface exposed outer membrane proteins. This important finding leads to the realization that members of the 89-101 kDa and 56-57 kDa C. pneumoniae protein family are good candidates for the development of a sero diagnostic test for C. pneumoniae, as well as the development of a vaccine against infections with C. pneumoniae based on using these proteins. Furthermore, the proteins may be used as epidemiological markers, and polyclonal monospecific sera against the proteins can be used to detect C. pneumoniae in human tissue or detect C. pneumoniae isolates in tissue culture. Also, the genes encoding the 89-101 kDa and 56-57 kDa such as the 89.6-100.3 kDa and 56.1 protein family may be used for the development of a species specific diagnostic test based on nucleic acid detection/amplification.

10

15

20

35

The full length Omp4 was cloned into an expression vector system that allowed expression of the Omp4 polypeptide. This polypeptide was used as antigen for immunization of a rabbit. Since the protein was purified under denaturing condition the antibody did not react with the native surface of C. pneumoniae, but it reacted with a 98 kDa protein in immunoblotting where purified C. pneumoniae EB was used as antigen. Furthermore, the antibody reacted in paraffin embedded sections of lung tissue from experimentally infected mice.

A broad aspect of the present invention relates to a species specific diagnostic test for infection of a mammal, such as a human, with *Chlamydia pneumoniae*, said test comprising detecting in a patient or preferable in a patient sample the presence of antibodies against proteins from the outer membrane of *Chlamydia pneumoniae*, said proteins being of a

molecular weight of 89-101 kDa or 56-57 kDa, or detecting the presence of nucleic acid fragments encoding said outer membrane proteins or fragments thereof.

In the context of the present application, the term "patient sample" should be taken to mean an amount of serum from a patient, such as a human patient, or an amount of plasma from said patient, or an amount of mucosa from said patient, or an amount of tissue from said patient, or an amount of expectorate, forced sputum or a bronchial aspirate, an amount 10 of urine from said patient, or an amount of cerebrospinal fluid from said patient, or an amount of atherosclerotic lesion from said patient, or an amount of mucosal swaps from said patient, or an amount of cells from a tissue culture originating from said patient, or an amount of material which 15 in any way originates from said patient. The in vivo test in a human according to the present invention includes a skin test known in the art such as an intradermal test, e.g similar to a Mantaux test. In certain patients being very sensitive to the test, such as is often the case with 20 children, he test could be non-invasive, such as a superficial test on the skin, e.g. by use of a plaster

In the present context, the term 89-101 kDa protein means proteins normally present in the outer membrane of *Chlamydia pneumoniae*, which in SDS-PAGE can be observed as one or more bands with an apparent molecular weight substantially in the range of 89-101 kDa. From the deduced amino acid sequences the molecular size varies from 89.6 to 100.3 kDa.

Within the scope of the present invention are species

specific sero-diagnostic tests based on the usage of the
genes belonging to the gene family disclosed in the present
application.

Preferred embodiments of the present invention relate to species specific diagnostic tests according to the invention, 35 wherein the outer membrane proteins have sequences selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24.

When used in connection with proteins according to the present invention the term "variant" should be understood as a sequence of amino acids which shows a sequence similarity of less than 100% to one of the proteins of the invention. A variant sequence can be of the same size or it can be of a different size as the sequence it is compared to. A variant will typically show a sequence similarity of preferably at least 50%, preferably at least 60%, more preferably at least 70%, such as at least 80%, e.g. at least 90%, 95% or 98%.

The term "sequence similarity" in connection with sequences
of proteins of the invention means the percentage of
identical and conservatively changed amino acid residues
(with respect to both position and type) in the proteins of
the invention and an aligned protein of equal of different
length. The term "sequence identity" in connection with
sequences of proteins of the invention means the percentage
of identical amino acid with respect to both position and
type in the proteins of the invention and an aligned protein
of equal of different length.

Within the scope of the present invention are subsequences of one of the proteins of the invention, meaning a consecutive stretch of amino acid residues taken from SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24. A subsequence will typically comprise at least 100 amino acids, preferably at least 80 amino acids, more preferably at least 70 amino acids, such as 50 amino acids. It might even be as small as 10-50 amino acids, such as 20-40 amino acids, e.g. about 30 amino acids. A subsequence will typically show a sequence homology of at least 50%, preferably at least 60%, more

preferably at least 70%, such as at least 80%, e.g. at least 90%, 95% or 98%.

Diagnostic tests according to the invention include immunoassays selected from the group consisting of a direct or indirect EIA such as an ELISA, an immunoblot technique such as a Western blot, a radio immuno assay, and any other non-enzyme linked antibody binding assay or procedure such as a fluorescence, agglutination or precipitation reaction, and nephelometry.

- A preferred embodiment of the present invention relates to species specific diagnostic tests according to the invention, said test comprising an ELISA, wherein antibodies against the proteins of the invention or fragments thereof are detected in samples.
- A preferred embodiment of the invention, is an ELISA based on detection in samples of antibodies against proteins of the invention. The ELISA may use proteins of the invention, or variants thereof, i.e. the antigen, as coating agent. An ELISA will typically be developed according to standard methods well known in the art, such as methods described in "Antibodies; a laboratory manual", Ed. David Lane Harlow, Cold Spring Habor laboratories (1988), which is hereby incorporated by reference.

Recombinant proteins will be produced using DNA sequences
obtained essentially using methods described in the examples
below. Such DNA sequences, comprising the entire coding
region of each gene in the gene family of the invention, will
be cloned into an expression vector from which the deduced
protein sequence can be purified. The purified proteins will
be analyzed for reactivity in ELISA using both monoclonal and
polyclonal antibodies as well as sera from experimentally
infected mice and human patient sera.

From the experimentally infected mice sera it is known that non-linear epitopes are recognized predominantly. Thus, it is contemplated that different forms of purification schemes known in the art will be used to analyze for the presence of discontinuous epitopes, and to analyze whether the human immune response is also directed against such epitopes.

Preferred embodiments of the present invention relate to species specific diagnostic tests according to the invention, wherein the nucleic acid fragments have sequences selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, and SEQ ID NO: 23.

10

In connection with nucleic acid fragments according to the

present invention the term "variant" should be understood as
a sequence of nucleic acids which shows a sequence homology
of less than 100%. A variant sequence can be of the same size
or it can be of a different size as the sequence it is
compared to. A variant will typically show a sequence

homology of at least 50%, preferably at least 60%, more
preferably at least 70%, such as at least 80%, e.g. at least
90%, 95% or 98%.

The term "sequence homology" in connection with nucleic acid fragments of the invention means the percentage of matching nucleic acids (with respect to both position and type) in the nucleic acid fragments of the invention and an aligned nucleic acid fragment of equal or different length.

In order to obtain information concerning the general distribution of each of the genes according to the present invention, PCR will be performed for each gene on all available *C. pneumoniae* isolates. This will provide information on the general variability of the genes or nucleic acid fragments of the invention. Variable regions will be sequenced. From patient samples PCR will be used to

WO 98/58953 PCT/DK98/00266

amplify variable parts of the genes for epidemiology. Non-variable parts will be used for amplification by PCR and analyzed for possible use as a diagnostic test. It is contemplated that if variability is discovered, PCR of variable regions can be used for epidemiology. PCR of non-variable regions can be used as a species specific diagnostic test. Using genes encoding proteins known to be invariable in all known isolates prepared as targets for PCR to genes encoding proteins with unknown function.

- Particularly preferred embodiments of the present invention, relate to diagnostic tests according to the invention, wherein detection of nucleic acid fragments is obtained by using nucleic acid amplification, preferably polymerase chain reaction (PCR).
- Within the scope of the present invention is a PCR based test directed at detecting nucleic acid fragments of the invention or variants thereof. A PCR test will typically be developed according to methods well known in the art and will typically comprise a PCR test capable of detecting and differentiating between nucleic acid fragments of the invention. Preferred are quantitative competitive PCR tests or nested PCR tests. The PCR test according to the invention will typically be developed according to methods described in detail in EP B 540 588, EP A 586 112, EP A 643 140 OR EP A 669 401, which are hereby incorporated by reference.

Within the scope of the present invention are variants and subsequences of one of the nucleic acid fragments of the invention, meaning a consecutive stretch of nucleic acids taken from SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 19, SEQ ID NO: 21, or SEQ ID NO: 23. A variant or subsequence will preferably comprise at least 100 nucleic acids, preferably at least 80 nucleic acids, more preferably at least 70 nucleic acids, such as at least 50 nucleic acids.

35 It might even be as small as 10-50 nucleic acids, such as

20-40 nucleic acids, e.g. about 30 nucleic acids. A subsequence will typically show a sequence homology of at least 30%, preferably at least 60%, more preferably at least 70%, such as at least 80%, e.g. at least 90%, 95% or 98%. The shorter the subsequence, the higher the required homology. Accordingly, a subsequence of 100 nucleic acids or lower must show a homology of at least 80%.

A very important aspect of the present invention relates to proteins of the invention derived from Chlamydia pneumoniae

10 having amino acid sequences selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24 having a sequence similarity of at least 50%, preferably at least 60%, more preferably at least 70%, such as at least 80%, e.g. at least 90%, 95% or 98% and a similar biological function.

By the term "similar biological function" is meant that the protein shows characteristics similar with the proteins derivable from the membrane proteins of *Chlamydia pneumoniae*. Such proteins comprise repeated motifs of GGAI (at least 2, preferable at least 3 repeats) and/or conserved positions of tryptophan, (w).

20

Comparison of the DNA sequences from genes encoding Omp4-15
shows that the overall similarity between the individual
genes ranges between 43-55%. Comparison of the amino acid
sequences of Omp4-15 shows 34-49% identity and 53-64%
similarity. The homology is generally scattered along the
entire length of the deduced amino acids. However, as seen
from figure 8 A - J there are some regions in which the
homology is more pronounced. This is seen in the repeated
sequence where the sequence GGAI is repeated 4-7 times in the
genes. It is interesting that the DNA homology is not
conserved for the sequences encoding the four amino acids
GGAI. This may indicate a functional role of this part of the

WO 98/58953 PCT/DK98/00266

15

protein and indicates that the repeated structure did not occur by a duplication of the gene. In addition to the four amino acid repeats GGAI a region from amino acid 400 to 490 has a higher degree of homology than the rest of the protein, with the conserved sequence FYDPI occurring in all sequences. As further indication of similarity in function the amino acid tryptophan (W) is perfectly conserved at 4-6 localizations in the C-terminal part of the protein.

Since none of the genes and deduced amino acid sequences of the invention are identical the following is within the scope 10 of the present invention; production of monospecific antibodies, the use of said antibodies for characterizing which C. pneumoniae proteins are expressed, the use of said antibodies for characterizing at which time during developmental life cycle said C. pneumoniae proteins are 15 expressed, and the use of said antibodies for characterizing the precise cellular localization of said C. pneumoniae proteins. Also within the scope of the present invention is the use of monospecific antibodies against proteins of the invention for determining which part of said proteins is 20 surface exposed and how proteins in the C. pneumoniae COMC interact with each other.

Preferred embodiments of the present invention relate to
25 polypeptides which comprise subsequences of the proteins of
the invention, said subsequences comprising the sequence
GGAI. Further preferred embodiments of the present invention
relate to polypeptides which comprise subsequences of the
proteins of the invention, said subsequences comprising the
30 sequence FSGE.

Polypeptides according to the invention will typically be of a length of at least 6 amino acids, preferably at least 15 amino acids, preferably at least 20 amino acids, preferably at least 25 amino acids, preferably at least 30 amino acids, preferably at least 35 amino acids, preferably at least 40 amino acids, preferably at least 45 amino acids, preferably

35

at least 50 amino acids, preferably at least 55 amino acids, preferably at least 100 amino acids.

A very important aspect of the present invention relates to nucleic acid fragments of the invention derived from Chlamydia pneumoniae, variants and subsequences thereof.

Another important aspect of the present invention relates to antibodies against the proteins according to the invention, such antibodies including polyclonal monospecific antibodies and monoclonal antibodies against proteins with sequences selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24.

A very important aspect of the present invention relates to diagnostic kits for the diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*, said kits comprising one or more proteins with amino acid sequences selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24.

Another very important aspect of the present invention relates to diagnostic kits for the diagnosis of infection of a mammal, such as a human, with Chlamydia pneumoniae, said kits comprising antibodies against a protein with an amino acid sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24.

30 Antibodies included in a diagnostic kit according to the invention can be polyclonal or monoclonal or a mixture

hereof.

Still another very important aspect of the present invention relates to diagnostic kits for the diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*, said kits comprising one or more nucleic acid fragments with sequences selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, and SEQ ID NO: 23.

An aspect of the present invention relates to a composition for immunizing a mammal, such as a human, against Chlamydia pneumoniae, said composition comprising one or more proteins with amino acid sequences selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24.

An important role for the proteins of the invention in prevention of infection of a mammal, such as a human, with *C. pneumoniae* is expected. Thus proteins of the invention, including variants and subsequences will be produced, typically by using recombinant techniques, and will then be used as an antigen in immunization of mammals, such as rabbits. Subsequently, the hyper immune sera obtained by the immunization will be analyzed for protection against *C. pneumoniae* infection using a tissue culture again.

20

- 25 pneumoniae infection using a tissue culture assay. In addition it is contemplated that monoclonal antibodies will be produced, typically using standard hybridoma techniques, and analyzed for protection against infection with C. pneumoniae.
- It is envisioned that particularly interesting and immunogenic epitopes will be found in connection with the proteins of the invention, which will comprise subsequences of said proteins. It is preferred to use polypeptides comprising such subsequences of the proteins of the invention

in immunizing a mammal, such as a human, against Chlamydia pneumoniae.

An important aspect of the present invention relates to the use of proteins with sequences selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24 in diagnosis of infection of a mammal, such as a human, with Chlamydia pneumoniae.

A preferred embodiment of the present invention relates to the use of proteins according to the invention in an undenatured form, in diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*.

A very important aspect of the present invention relates to the use of proteins with sequences selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, and SEQ ID NO: 24, for immunizing a mammal, such as a human, against Chlamydia pneumoniae.

A preferred embodiment of the present invention relates to the use of proteins according to the invention in an undenatured form, for immunizing a mammal, such as a human, against Chlamydia pneumoniae.

- A very important aspect of the present invention relates to the use of nucleic acid fragments with nucleotide sequences selected from the group consisting of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO:
- 30 19, SEQ ID NO: 21, and SEQ ID NO: 23 for immunizing a mammal, such as a human, against Chlamydia pneumoniae.

19

It is envisioned that one type of vaccine against *C*.

pneumoniae will be developed by using gene-gun vaccination of mice. Typically, different genetic constructs containing nucleic acid fragments, combinations of nucleic acid fragments according to the invention will be used in the gene-gun approach. The mice will then subsequently be analyzed for production of both humoral and cellular immune response and for protection against infection with *C*.

pneumoniae after challenge herewith.

In line with this, the invention also relates to the uses of the proteins of the invention as a pharmaceutical (a vaccine) as well as to the uses thereof for the preparation of a vaccine against infections with Chlamydia pneumoniae.

Preparation of vaccines which contain protein sequences as active ingredients is generally well understood in the art, 15 as exemplified by U.S. Patents 4,608,251; 4,601,903; 4,599,231; 4,599,230; 4,596,792; and 4,578,770, all incorporated herein by reference. Typically, such vaccines are prepared as injectables either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension 20 in, liquid prior to injection may also be prepared. The preparation may also be emulsified. The active immunogenic ingredient is often mixed with excipients which are pharmaceutically acceptable and compatible with the active ingredient. Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol, or the like, and combinations thereof. In addition, if desired, the vaccine may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, or adjuvants which enhance the effectiveness of the vaccines. 30

The vaccines are conventionally administered parenterally, by injection, for example, either subcutaneously or intramuscularly. Additional formulations which are suitable for other modes of administration include suppositories and, in some cases, oral formulations. These compositions take the form of

35

20

solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and contain 10-95% of active ingredient, preferably 25-70%, and optionally a suitable carrier.

The protein sequences may be formulated into the vaccine as neutral or salt forms known in the art. The vaccines are administered in a manner compatible with the dosage formulation, and in such amount as will be therapeutically effective and immunogenic. The quantity to be administered 10 depends on the subject to be treated. Suitable dosage ranges are of the order of several hundred micrograms active ingredient per vaccination with a preferred range from about 0.1 μg to 1000 μg . The immune response may be enhanced if the vaccine further comprises an adjuvant substance as known in 15 the art. Other possibilities involve the use of immunomodulating substances such as lymphokines (e.g. IFN- γ , IL-2 and IL-12) or synthetic IFN- γ inducers such as poly I:C in combination with the above-mentioned adjuvants.

It is also possible to produce a living vaccine by introducing, into a non-pathogenic microorganism, at least one
nucleic acid fragment encoding a protein fragment or protein
of the invention, and effecting expression of the protein
fragment or the protein on the surface of the microorganism
(e.g. in the form of a fusion protein including a membrane
anchoring part or in the form of a slightly modified protein
or protein fragment carrying a lipidation signal which allows
anchoring in the membrane). The skilled person will know how
to adapt relevant expression systems for this purpose.

Another part of the invention is based on the fact that

recent research have revealed that a DNA fragment cloned in a vector which is non-replicative in eukaryotic cells may be introduced into an animal (including a human being) by e.g. intramuscular injection or percutaneous administration (the so-called "gene gun" approach). The DNA is taken up by e.g.

muscle cells and the gene of interest is expressed by a

promoter which is functioning in eukaryotes, e.g. a viral promoter, and the gene product thereafter stimulates the immune system. These newly discovered methods are reviewed in Ulmer et al., 1993, which hereby is included by reference.

- Thus, a nucleic acid fragment encoding a protein or protein of the invention may be used for effecting in vivo expression of antigens, i.e. the nucleic acid fragments may be used in so-called DNA vaccines. Hence, the invention also relates to a vaccine comprising a nucleic acid fragment encoding a protein fragment or a protein of the invention, the vaccine effecting in vivo expression of antigen by an mammal, such as a human, to whom the vaccine has been administered, the amount of expressed antigen being effective to confer substantially increased resistance to infections with Chlamydia pneumoniae in an mammal, such as a human.
- The efficacy of such a "DNA vaccine" can possibly be enhanced by administering the gene encoding the expression product together with a DNA fragment encoding a protein which has the capability of modulating an immune response. For instance, a gene encoding lymphokine precursors or lymphokines (e.g. IFN-γ, IL-2, or IL-12) could be administered together with the gene encoding the immunogenic protein fragment or protein, either by administering two separate DNA fragments or by administering both DNA fragments included in the same vector.

 25 It is also a possibility to administer DNA fragments compri-
- It is also a possibility to administer DNA fragments comprising a multitude of nucleotide sequences which each encode relevant epitopes of the protein fragments and proteins disclosed herein so as to effect a continuous sensitization of the immune system with a broad spectrum of these epitopes.
- The following experimental non-limiting examples are intended to illustrate certain features and embodiments of the invention.

LEGENDS TO FIGURES

- Figure 1. The figure shows electron microscopy of negative stained purified C. pneumoniae EB (A) and purified OMC (B).
- Figure 2. The figure shows silver stained 15% SDS-PAGE of purified EB and OMC. Lane 1, purified C. pneumoniae EB; lane 2, C. pneumoniae OMC; lane 3, purified C. trachomatis EB; and lane 4 C. trachomatis OMC.
- Figure 3. The figure shows immunoblotting of *C. pneumoniae* EB separated by 10% SDS-PAGE, transferred to nitrocellulose and reacted with rabbit anti *C. pneumoniae* OMC.
 - Figure 4. The figure shows coomassie blue stained 7.5% SDS-PAGE of recombinant pEX that were detected by the rabbit anti *C. pneumoniae* serum. Arrow indicated the localization of the 117 kDa b-galactosidase protein.
- 15 Figure 5. The figure shows immunoblotting of recombinant pEX colones detected by colony blotting separated by 7.5% SDS-PAGE and transferred to nitrocellulose and reacted with rabbit anti *C. pneumoniae* OMC. Lane 1, seablue molecular weight standard. Lane 2-6 pEX clones cultivated at 42°C to induce the production of the b-galactosidase fusion proteins.
 - Figure 6. The figure shows sequence strategy for Omp4 and Omp5. Arrows indicates primers used for sequencing.
- Figure 7. *C pneumoniae* omp genes. The genes are arranged in two clusters. In cluster 1 Omp12, 11, 10, 5, 4, 13, and 14 are found. In cluster 2 are found Omp6, 7, 8, 9, and 15.
 - Figure 8 A J. The figure shows alignment of C. pneumoniae Omp4-15, using the program pileup in the GCG package.
 - Figure 9. The figure shows immunofluorescence of \mathcal{C} . pneumoniae infected HeLa, 72 hrs. after infection, reacted

23

with mouse monospecific anti-serum against pEX3-36 fusion protein. pEX3-36 is a part of the Omp5 gene.

Figure 10. The figure shows immunoblotting of *C. pneumoniae* EB, lane 1-3 heated to 100°C in SDS-sample buffer, lane 4-6 unheated. Lane 1 reacted with rabbit anti *C. pneumoniae* OMC; lane 2 and 4 pre-serum; lane 3 and 5 polyclonal rabbit anti pEX1-1 fusion protein; lane 6 MAb 26.1.

Figure 11. The figure shows immunoblotting of *C. pneumoniae* EB, lane 1-4 heated to 100oC in SDS-sample buffer, lane 5-6 unheated. Reacted with serum from C57-black mice 14 days after infection with 10⁷ CFU of *C. pneumoniae*. Lane 1 and 5 mouse 1; lane 2 and 6 mouse 2; lane 3 and 5 mouse 3; and lane 4 and 8 mouse 4.

Figure 12. The figure shows immunohistochemistry analysis of mouse lung tissue with *C. pneumoniae* inclusions present both in the bronchial epithelium and in the lung parenchyma (arrows).

24

EXAMPLE 1

Cloning of the genes encoding the $98/95~\mathrm{kDa}$ C. pneumoniae COMC proteins

Purification of C. pneumonia EBs and COMC

C. pneumoniae was cultivated in HeLa cells. Cultivation was 5 done according to the specifications of Miyashita and Matsumoto (1992), with the modification that centrifugation of supernatant and of the later precipitate and turbid bottom layer was carried out at 100,000 X g. The microorganism attached to the HeLa cells by 30 minutes of centrifugation at 10 1000 x g, after which the cells were incubated in RPMI 1640 medium (Gibco BRL, Germany cat No. 51800-27), containing 5% foetal calf serum (FCS, Gibco BRL, Germany Cat No. 10106.169) gentamicin for two hours at 37°C in 5% CO2 atmosphere. The medium was changed to medium that in addition contained 1 mg 15 per ml of cycloheximide. After 48 hours of incubation a coverslip was removed from the cultures and the inclusion was tested with an antibody specific for C. pneumoniae (MAb 26.1) (Christiansen et al. 1994) and a monoclonal antibody specific for the species C. trachomatis (MAb 32.3, Loke diagnostics, 20 Århus Denmark) to ensure that no contamination with C. trachomatis had occurred. The HeLa cells were tested by Hoechst stain for Mycoplasma contamination as well as by culture in BEa and BEg medium (Freund et al., 1979). Also the C. pneumoniae stocks were also tested for Mycoplasma 25 contamination by cultivation in BEa and BEg medium. No contamination with C. trachomatis, Mycoplasmas or bacteria were detected in cultures or cells. 72 hours post-infection the monolayer was washed in PBS, the cells were loosened in PBS with a rubber policeman, and the Chlamydia were liberated from the host cell by sonication. The C. pneumoniae EBs and RBs were purified on discontinuous density gradients (Miyashita et al. (1992)). The purity of the Chlamydia EBs were verified by negative staining and electronmicroscopy (Figure 1), only particles of a size of 0.3 to 0.5 mm were 35

detected in agreement with the structure of *C. pneumonia* EBs. The purified Chlamydia EBs were subjected to sarkosyl extraction as described by Caldwell et al (1981) with the modification that a brief sonication was used to suspend the COMC. The purified COMC was tested by electronmicroscopy and negative staining (Figure 1), where a folded outer membrane complex was seen.

SDS-PAGE analysis of purified EBs and COMC

The proteins from purified EBs and C. pneumoniae OMC were separated on 15% SDS-polyacrylamide gel, and the gel was 10 silver stained (Figure 2), in lane 1 it is seen that the purified EBs contain major proteins of 100/95 kDa and a protein of 38 kDa, in the purified COMC (lane 2) these two protein groups are also dominant. In addition, proteins with a molecular weight of $62/60~\mathrm{kDa}$, 55 kDa, and 12 kDa have been 15 enriched in the COMC preparation. When the purified C. pneumoniae EBs are compared to purified C. trachomatis EB (lane 3) it is seen that predominant protein in the C. trachomatis EB is the major outer membrane protein (MOMP), and it is also the dominant band in the COMC preparation of 20 C. trachomatis (lane 4), and Omp2 of 60/62 kDa as well as Omp3 at 12 kDa are seen in the preparation. However, no major bands with a size of 100/95 kDa are detected as in the C. pneumoniae COMC preparation.

25 Production of rabbit polyclonal antibodies against C. pneumoniae COMC

30

To ensure production of rabbit antibodies that would recognize all the C. pneumoniae proteins in immuno-blotting and colony-blotting 10 μ g of COMC antigen was dissolved in 20 μ l of SDS sample buffer and thereafter divided into 5 vials. The dissolved antigen was further diluted in one ml of PBS and one ml of Freund incomplete adjuvant (Difco laboratories, USA cat. No. 0639-60-6) and injected into the quadriceps muscle of a New Zealand white rabbit. The rabbit was given

three times intramuscular injections at an interval of one week, and after further three weeks the dissolved COMC protein, diluted in one ml PBS was injected intravenously, and the procedure was repeated two weeks later. Eleven weeks 5 after the beginning of the immunization, the serum was obtained from the rabbit. Purified C. pneumoniae EBs were separated by SDS-PAGE, and the proteins were electrotransferred to nitrocellulose membrane. The membrane was blocked and immunostained with the polyclonal COMC antibody (Figure 3). The serum recognized proteins with a size of 100/95, 60 and 38 kDa in the EB preparation. This is in agreement with the sizes of the outer membrane proteins.

Cloning of the COMC proteins

10

Due to the cultivation of C. pneumoniae in HeLa cells, contaminating host cell DNA could be present in the EB 15 preparations. Therefore, the purified EB preparations were treated with DNAse to remove contaminating DNA. The C. pneumoniae DNA was then purified by CsCl gradient centrifugation. The C. pneumoniae DNA was partially digested with Sau3A and the fractions containing DNA fragments with a 20 size of approx. 0.5 to 4.0 kb were cloned into the expression vector system pEX (Boehringer, Germany cat. No. 1034 766, 1034 774, 1034 782). The pEX vector system has a β -galactosidase gene with multiple cloning sites in the 3'end of the β -galactosidase gene. Expression of the gene is 25 regulated by the PR promoter, so the protein expression can be induced by elevating the temperature from 32 to 42°C . The colonies of recombinant bacteria were transferred to nitrocellulose membranes, and the temperature was increased to 42°C for two hours. The bacteria were lysed by placing the 30 nitrocellulose membranes on filters soaked in 5% SDS. The colonies expressing outer membrane proteins were detected with the polyclonal antibody raised against C. pneumoniae COMC. The positive clones were cultivated in suspension and induced at 42°C for two hours. The protein profile of the 35 clones were analysed by SDS-PAGE, and increases in the size

of the induced b-galactosidase were observed (Figure 4). In addition, the proteins were electrotransferred to nitrocellulose membranes, and the reaction with the polyclonal serum against COMC was confirmed (Figure 5).

5 Sequencing of positive COMC clones

To characterize the pEX clones, the inserted C. pneumoniae DNA was sequenced. The resulting DNA sequences were searched against the prokaryotic sequences in the GenEmbl database. The search identified 6 clones as part of the Omp2 gene, and 2 clones as part of the Omp3 gene, and 2 clones as part of 10 the MOMP gene, indicating that COMC proteins had been successfully cloned. Furthermore, 32 clones were obtained, containing DNA sequences not found in the GenEmbl database. These sequences could, however, be clustered in two contics of 6 and 4 clones, and three clones were identical. In 15 addition 19 clones were found with no overlap to the contics (Figure 7). To obtain more sequence data for the genes, C. pneumoniae DNA was totally digested with BamHI restriction enzyme, and the fragments were cloned into the vector pBluescript. The ligated DNA was electrotransformed into E. 20 coli XL1-Blue and selected on plates containing Ampicillin. The recombinant bacterial colonies were transferred to a nitrocellulose membrane, and colony hybridisation was performed using the inserts of pEX 1-1 clone as a probe. A clone containing a single BamHI fragment of 4.5 kb was found, 25 and the hybridisation to the probe was confirmed by Southern blotting. The insert of the clone was sequenced bi-directionally using synthetic primers for approx. each 300 bp. The sequence of the BamHI fragment made it possible to join the two contics of pEX clones. Totally, together with the pEX clones it was possible to assemble 6.5 kb DNA sequence, encoding two new COMC proteins. (Figure 6)

Additional sequences were obtained by PCR performed on purified *C. pneumoniae* DNA with primers both from the known 35 Omp genes and from other known genes. The obtained PCR

28

products were sequenced, The sequence organisation is shown in Fig. 7. Additional 8 Omp genes were detected. The alignment of the deduced amino acid sequences are shown in Fig. 8 A and B.

5 Analysis of DNA sequence

The DNA sequence encoding the Omp4-15 proteins with a size of 89.6-100.3 kDa (and for Omp13: 56.1 kDa). Omp4 and Omp5 were transcribed in opposite directions. Downstream Omp4 a possible termination structure was located. The 3'end of the Omp5 gene was not cloned due to the presence of the BamHI 10 restriction enzyme site positioned within the gene. The translated DNA sequence of Omp4 and Omp5 was compared by use of the gap programme in the GCG package (Wisconsin package, version 8.1-UNIX, August 1995, sequence analysis software package). The two genes had an amino acid identity of 41% 15 (similarity 61%), and a possible cleavage site for signal peptidase 1 was present at amino acid 17 in Omp4 and amino acid 25 in Omp5. When the amino acid sequence encoded by two other pEX clones were compared to the sequence of Omp4 and Omp5 they also had amino acid homology to the genes. It is 20 seen that the two clones have homology to the same area in the Omp4 and Omp5 proteins. Consequently, the pEX clones must have originated from two additional genes. Therefore these genes were named Omp6 and Omp7. Similar analyses were performed with the other genes. In contrast to what was seen 25 for Omp4 and 5 none of the other putative omp proteins had a cleavage site for signal peptides.

EXAMPLE 2

Polyclonal monospecific antibodies against pEX fusion proteins and full length recombination + Omp4

To investigate the topology of the Omp4-7 proteins, representative pEX clones, were selected from each gene. The fusion proteins of β -galactosidase/omp were induced, and the

WO 98/58953

proteins were partially purified as inclusion bodies. Balb/c mice were immunized three times intramuscular with the antigens at an interval of one week, and after six weeks the serum was obtained from the mice. HeLa cells were infected with the C. pneumoniae. 72 hours after the infection the mono-layers were fixed with 3.7% formaldehyde. This treatment makes the outer membrane of the Chlamydia impermeable for antibodies due to the extensive cross-linking of the outer membrane proteins by the formaldehyde. The HeLa cells were permeabilized with 0.2% Triton X100, the monolayers were 10 washed in PBS, then incubated with 20% (v/v) FCS to inactivate free radicals of the formaldehyde. The mice sera were diluted 1:100 PBS with 20% (v/v) FCS and incubated with the monolayers for half an hour. The monolayers were washed in PBS and secondary FITCH conjugated rabbit anti mouse serum 15 was added for half an hour, and the monolayers were washed and mounted. Several of the antibodies reacted strongly with the EBs in the inclusions (Figure 9). In spite of the formaldehyde fixation it could not be excluded that the surface of the EB was changed by the treatments, so that the 20 antibodies could get access to the Omp4-7. Therefore, the reaction was confirmed by immuno-electron microscopy with the antibody raised against clone pEX3-36. Purified EB of C. pneumoniae were absorbed to carbon coated nickel grids. After the absorption the grids were washed with PBS and blocked in 25 0.5% Ovalbumin dissolved in PBS. The antibodies were diluted 1:100 in the same buffer and incubated for 30 minutes. The grids were washed in PBS. Rabbit anti mouse Ig conjugated with 10nm colloidal gold diluted in PBS containing 1% gelatin was added to the grids for half an hour. The grids were 30 washed in 3 x PBS with 1% gelatin and 3 times in PBS, the grids were contrastained with 0.7% phospho tungstic acid. The grids were analysed in a Jeol 1010 electron microscope at 40 kV. It was seen that the gold particles were covering the surface of the purified EB. Because the C. pneumoniae EBs 35 were not exposed to any detergent or fixation under either the purification or the reaction with antibodies, these

results show that the cloned proteins have surface exposed epitopes.

Polyclonal monospecific antibodies against Omp4

10

The Omp4 gene was amplified by PCR with primers that contained LIC-sites, and the PCR product was cloned into the pET-30 LIC vector (Novagen). The histidine tagged fusion protein was expressed by induction of the synthesis by IPTG and purified over a nickel column. The purified Omp4 protein was used for immunization of a rabbit (six times, 8 μ g each time).

Use of rabbit polyclonal antibodies to recombinant Omp4 for detection of Chlamydia pneumoniae in paraffin embedded sections

The lungs of C. pneumoniae infected mice were obtained three days after intranasal infection. The tissue samples were 15 fixed in 4% formaldehyde, paraffin embedded, sectioned and deparaffinized prior to staining. The sections were incubated with the rabbit serum diluted 1:200 in TBS (150 mM NaCl, 20mM Tris pH 7.5) for 30 min at room temperature. After wash two times in TBS the sections were incubated with the 20 secondary antibody (biotinylated goat anti-rabbit antibodies) diluted 1:300 in TBS, followed by two times wash in TBS. The sections were stained with streptavidin-biotin complex (streptABComplex/AP, Dako) for 30 min washed and developed 25 under microscopic inspection with chromagen + new fuchsin (Vector laboratories). The sections were counter stained with Hematoxylin and analyzed ny microscopy.

Immuno blotting analysis with hyperimmune monospecific rabbit anti-serum

The insert of pEX1-1 clone was amplified by PCR using primers containing LIC sites. The PCR product could therefore be inserted in the pET-32 LIC vector (Novagen, UK cat No. 69076-

1). Thereby the insert sequence of the pEX1-1 clone was expressed in the new vector as a fusion protein, the part of the fusion protein encoded by the pET-32 LIC vector had 6 histidine residues in a row. The expression of the fusion protein was induced in this vector, and the fusion protein could be purified under denaturing condition on a Ni2+ column due to the high affinity of the histidine residues to divalent cations. The purified protein was used for immunization of a New Zealand white rabbit. After 6 times intramuscular and 2 times intravenous immunization the serum 10 was obtained from the rabbit. Purified C. pneumoniae EB was dissolved in SDS-sample buffer. Half of the sample was heated to 100°C in the sample buffer, whereas the other half of the sample was not heated. The samples were separated by SDS-PAGE, and the proteins were transferred to 15 nitrocellulose, the serum was reacted with the strips. With the samples heated to 100°C the serum recognized a high molecular weight band of approximately 98 kDa. This is in agreement with the predicted size of Omp5, of which the pEX1-1 clone is a part, however, when the antibody was 20 reacted to the strip with unheated EB, the pattern was different. Now a band was seen with a size of 75 kDa, in addition weaker bands were observed above the band (Figure 10). These data demonstrate that Omp5 needs boiling in SDS-sample buffer to be fully denatured and migrate with a 25 size as predicted from the gene product. When the samples were not boiled, the protein was not fully denatured and less SDS binds to the protein and it has a more globular structure that will migrate faster in the acrylamide gel. The band 30 pattern looked identical to what was obtained with a monoclonal antibody (MAb 26.1) (lane 6), we earlier have described (Christiansen et al., 1994), reacting with the surface of C. pneumoniae EB, but the antibody do not react with the fully SDS denatured C. pneumoniae EB in 35 immunoblotting.

PCT/DK98/00266

32

Experimental infection of C57 black mice

Due to the realization of the altered migration of the Omp4-7 proteins without boiling, we chose to analyse antibodies against C. pneumoniae EBs after an experimental infection of mice. To obtain antibodies from an infection caused by C. pneumoniae, C57 black mice were inoculated intranasally with 10^7 CFI of *C. pneumoniae* under a light ether anaesthesia. After 14 days of infection the serum samples were obtained and the lungs were analysed for pathological changes. In two of the mice a severe pneumonia was observed in the lung 10 sections, and in the third mouse only minor changes were observed. The serum from the mice was diluted 1:100 and reacted with purified EBs dissolved in sample buffer with and without boiling. In the preparations that had been heated to 100°C the sera from two of the mice reacted strongly with 15 bands of 60/62 kDa and weaker bands of 55 kDa, but no reaction was observed with proteins of the size of Omp4-7 (Figure 11). However, when the sera were reacted with the preparation that had not been heated they all had a strong reaction with a broad band of an approximate size of 75 kDa. 20 This is in agreement with the size of the Omp4-7 proteins in the unheated preparation. Therefore, it could be concluded that the epitopes of the Omp4-7 proteins recognized by the antibodies after a C. pneumoniae infection were discontinuous epitopes because the full denaturation of the antigen 25 completely destroyed the epitopes. The 75 kDa protein observed in unheated samples is not Omp2 (Shown in immunoblotting with an Omp2 specific antibody)

EXAMPLE 3

30 Comparison of Omp4-7 of C. pneumoniae with putative outer membrane proteins (POMP) of C. psittaci

Longbottom et al. (1996) have published partial sequence from 98 to 90 kDa proteins from *C. psittaci*. They have entered the full sequence of 5 genes in this family in the EMBL database.

They have named the genes "putative outer membrane proteins" (POMP) since their precise location was not determined. The family is composed of two genes that are completely identical, and two genes with high homology to these genes.

- They calculated a molecular size of 90 and 91 kDa. The 5th encode a protein of 98 kDa. The sequence of the Omp4-7 proteins of *C. pneumoniae* were compared to the sequences of the *C. Psittaci* POMP proteins with the programme pileup in the GCG package. The amino acid homologies were in the range
- of 51-63%. It is seen that the *C. pneumoniae* Omp4-5 proteins are most related to the 98 kDa POMP protein of *C. psittaci*. Interestingly, the 98 kDa *C. psittaci* POMP protein is more related to the *C. pneumoniae* genes than to the other *C. psittaci* genes. The repeated sequences of GGAI were conserved
- in the 98 kDa POMP protein, but only three GGAI repeats were present in the 90 and 91 kDa *C. psittaci* POMP proteins. For *C.psittaci* it has been shown that antibodies to these proteins seem to be protective for the infection.

REFERENCES

20

25

- 1. Caldwell, H.D., J. Kromhout and J. Schachter, Infect. Immun. 31, 1161-1176 (1981).
- Campbell, L.A., M.P. Melgosa, D.J. Hamilton, C.-C. Kuo and J.T. Grayston, J. Clinical Microbiol., 30, 434-439 (1992).
- 3. Christiansen, G., and S. Birkelund. Eur. Microbiol. 1:24-29 (1992).
- 4. Christiansen, G., L. Østergaard, and S. Birkelund.
 Proceedings of the eight International symposium on
 Human Infections, Eds. Orfila et al., pp 173-176,
 (1994).
 - 5. Grayston, J.T., Kuo, C.-C., Campbell, L.A., and Vang, S.-P. Int. J. Syst. Bacteriol. 39, 88-90 (1989).
- 6. Grayston, J.T., C.-C. Kuo, S.-P. Wang and J. Altman. 35 1986. N. Engl. J. Med. 315, 161-168 (1986).
 - 7. Kuo, C.C., L.A. Jackson, L.A. Campbell and J.T. Graystone. Clin. Microbiol. Rev. 8, 451-461 (1995).

- 8. Longbottom, D., M. Russell, G.E Jones, A. Lainson, and A.J. Herring. FEMS Microbiol. Lett. 142, 277-281 (1996).
- Melgosa, M.P., C.-C. Kuo and L.A. Campbell, FEMS
 Microbiol. Lett. 112, 199-204 (1993).
 - 10. Campbell, L.A., C.-C kuo, S.P. Wang amd J.T.
 Grayston. J. Clin. Microbiol. 28, 1261-1264 (1990).
 - 11. Halme, S., P. Saikku and H.-M. Surcel. Scand. J. Immunol. 45, 378-384 (1997).
- 10 12. Miyashita, N. and A. Matsumoto. J. Clin. Microbiol. 30, 2911-2916 (1992).
 - 13. Wang, S.P., and J.T. Grayston, Am. J. Ophtalmol. 70, 367-374 (1970).
- 14. Freund, E.A., H. Ernø and R.M. Lemcke. Identification of mycoplasma, P377-443 in I. Norris and J.R. Bergen; Methods in Microbiology vol 13, A.P. Inc. London 1979)

SEQUENCE LISTING

(1) GENERAL	INFORMATION
-------------	-------------

1	' ; ') <i>T</i>	מי	DI	т	~~	ידיזא
١) F	12	PL.	1 L	L.A	IN I

- (A) NAME: Svend Birkelund
- (B) STREET: Dept. of Medical Microbiology and Immunology, University of Arhus
- (C) CITY: Arhus C
- (D) STATE OR PROVINCE:
- (E) COUNTRY: Denmark
- (F) POSTAL CODE: 8000
- (ii) TITLE OF THE INVENTION: Chlamydia pneumoniae anti gens
- (iii) NUMBER OF SEQUENCES: 30
- (iv) COMPUTER-READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (v) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3200 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ix) FEATURE:
 - (A) NAME/KEY: Coding Sequence
 - (B) LOCATION: 205...2987
 - (D) OTHER INFORMATION:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CAATGTCGAA	GAGAGCACTA	ACCAGGAAAA	TTGCGATTT	C ATAAACCCAC	TTTATTATTA	60
AATTCTTACT	TGCGTCATAT	AAAATAGAAA	ACTCAGAGA	G TCAAGATAAA	AATTCTTGAC	120
AGCTGTTTTG	TCATCTTTAA	CTTGATTTAC	TTATTTTGT	T TCTATATTGA	TGCGAATAGT	180
TCTCTAAAAA	ACAAAAGCAT	TACC ATG A	AG ACT TCG	ATT CCT TGG	GTT TTA	231
		Met L	ys Thr Ser	Ile Pro Trp	Val Leu	

the Lys Thr Ser IIe Pro Trp Val I

GTT TCC TCC GTG TTA GCT TTC TCA TGT CAC CTA CAG TCA CTA GCT AAC
Val Ser Ser Val Leu Ala Phe Ser Cys His Leu Gln Ser Leu Ala Asn
10 20 25

												AAT Asn					327
GGA Gly	ACG Thr	TTT Phe	ACT Thr 45	CCA Pro	AAA Lys	ACT Thr	TCA Ser	GCC Ala 50	ACA Thr	ACA Thr	TAT Tyr	TCT Ser	CTA Leu 55	ACA Thr	GGA Gly		375
GAT Asp	GTC Val	TTC Phe 60	TTT Phe	TAC Tyr	GAG Glu	CCT Pro	GGA Gly 65	AAA Lys	GGC Gly	ACT Thr	CCC Pro	TTA Leu 70	TCT Ser	GAC Asp	AGT Ser		423
TGT Cys	TTT Phe 75	AAG Lys	CAA Gln	ACC Thr	ACG Thr	GAC Asp 80	AAT Asn	CTT Leu	ACC Thr	TTC Phe	TTG Leu 85	GGG Gly	AAC Asn	GGT Gly	CAT His		471
AGC Ser 90	TTA Leu	ACG Thr	TTT Phe	GGC Gly	TTT Phe 95	ATA Ile	GAT Asp	GCT Ala	GGC Gly	ACT Thr 100	CAT His	GCA Ala	GGT Gly	GCT Ala	GCT Ala 105		519
GCA Ala	TCT Ser	ACA Thr	ACA Thr	GCA Ala 110	AAT Asn	AAG Lys	AAT Asn	CTT Leu	ACC Thr 115	TTC Phe	TCA Ser	GGG Gly	TTT Phe	TCC Ser 120	TTA Leu	/	567
CTG Leu	AGT Ser	TTT Phe	GAT Asp 125	TCC Ser	TCT Ser	CCT Pro	AGC Ser	ACA Thr 130	ACG Thr	GTT Val	ACT Thr	ACA Thr	GGT Gly 135	CAG Gln	GGA Gly		615
ACG Thr	CTT Leu	TCC Ser 140	TCA Ser	GCA Ala	GGA Gly	GGC Gly	GTA Val 145	AAT Asn	TTA Leu	GAA Glu	AAT Asn	ATT Ile 150	CGT Arg	AAA Lys	CTT Leu		663
GTA Val	GTT Val 155	GCT Ala	GGG Gly	AAT Asn	TTT Phe	TCT Ser 160	ACT Thr	GCA Ala	GAT Asp	GGT Gly	GGA Gly 165	GCT Ala	ATC Ile	AAA Lys	GGA Gly		711
GCG Ala 170	TCT Ser	TTC Phe	CTT Leu	TTA Leu	ACT Thr 175	GGC Gly	ACT Thr	TCT Ser	GGA Gly	GAT Asp 180	GCT Ala	CTT Leu	TTT Phe	AGT Ser	AAC Asn 185		759
AAC Asn	TCT Ser	TCA Ser	TCA Ser	ACA Thr 190	AAG Lys	GGA Gly	GGA Gly	GCA Ala	ATT Ile 195	GCT Ala	ACT Thr	ACA Thr	GCA Ala	GGC Gly 200	GCT Ala		807
CGC Arg	ATA Ile	GCA Ala	AAT Asn 205	Asn	ACA Thr	GGT Gly	TAT Tyr	GTT Val 210	AGA Arg	TTC Phe	CTA Leu	TCT Ser	AAC Asn 215	Ile	GCG Ala		855
TCT Ser	ACG Thr	TCA Ser 220	Gly	GGC	GCT Ala	ATC Ile	GAT Asp 225	GAT Asp	GAA Glu	GGC Gly	ACG Thr	TCG Ser 230	Ile	CTA Leu	TCG Ser		903
AAC Asn	AAC Asn 235	Lys	TTT Phe	CTA Leu	TAT	TTT Phe 240	GAA Glu	GGG Gly	AAT Asn	GCA Ala	GCG Ala 245	Lys	ACT Thr	ACT Thr	GGC Gly		951
GGT	GCG	ATC	TGC	AAC	ACC	AAG	GCG	AGT	GGA	TCT	CCT	GAA	CTG	ATA	ATC		999

37

Gl _y 250	Ala	Ile	Cys	Asn	Thr 255	Lys	Ala	Ser	Gly	Ser 260	Pro	Glu	Leu	Ile	Ile 265	
TCT	AAC Asn	AAT Asn	AAG Lys	ACT Thr 270	CTG Leu	ATC Ile	TTT Phe	GCT Ala	TCA Ser 275	AAC Asn	GTA Val	GCA Ala	GAA Glu	ACA Thr 280	AGC Ser	1047
GG7 Gly	GGC Gly	GCC Ala	ATC Ile 285	CAT His	GCT Ala	AAA Lys	AAG Lys	CTA Leu 290	GCC Ala	CTT Leu	TCC Ser	TCT Ser	GGA Gly 295	GGC Gly	TTT Phe	1095
ACA Thi	GAG Glu	TTT Phe 300	CTA Leu	CGA Arg	AAT Asn	AAT Asn	GTC Val 305	TCA Ser	TCA Ser	GCA Ala	ACT Thr	CCT Pro 310	AAG Lys	GGG Gly	GGT Gly	1143
GCT Ala	ATC Ile 315	AGC Ser	ATC Ile	GAT Asp	GCC Ala	TCA Ser 320	GGA Gly	GAG Glu	CTC Leu	AGT Ser	CTT Leu 325	TCT Ser	GCA Ala	GAG Glu	ACA Thr	1191
GG# G1 ₃ 330	A AAC / Asn	ATT Ile	ACC Thr	TTT Phe	GTA Val 335	AGA Arg	AAT Asn	ACC Thr	CTT Leu	ACA Thr 340	ACA Thr	ACC Thr	GGA Gly	AGT Ser	ACC Thr 345	1239
GAT Asp	ACT Thr	CCT Pro	AAA Lys	CGT Arg 350	AAT Asn	GCG Ala	ATC Ile	AAC Asn	ATA Ile 355	GGA Gly	AGT Ser	AAC Asn	GGG Gly	AAA Lys 360	TTC Phe	1287
ACC Thi	GAA Glu	TTA Leu	CGG Arg 365	GCT Ala	GCT Ala	AAA Lys	AAT Asn	CAT His 370	ACA Thr	ATT Ile	TTC Phe	TTC Phe	TAT Tyr 375	GAT Asp	CCC Pro	1335
ATC Ile	C ACT	TCA Ser 380	GAA Glu	GGA Gly	ACC Thr	TCA Ser	TCA Ser 385	GAC Asp	GTA Val	TTG Leu	AAG Lys	ATA Ile 390	AAT Asn	AAC Asn	GGC Gly	1383
TC: Se:	GCG Ala 395	GGA Gly	GCT Ala	CTC Leu	AAT Asn	CCA Pro 400	TAT Tyr	CAA Gln	GGA Gly	ACG Thr	ATT Ile 405	CTA Leu	TTT Phe	TCT Ser	GGA Gly	1431
GAZ Gli 410	A ACC 1 Thr	CTA Leu	ACA Thr	GCA Ala	GAT Asp 415	GAA Glu	CTT Leu	AAA Lys	GTT Val	GCT Ala 420	GAC Asp	AAT Asn	TTA Leu	AAA Lys	TCT Ser 425	1479
TC:	A TTC c Phe	ACG Thr	CAG Gln	CCA Pro 430	GTC Val	TCC Ser	CTA Leu	TCC Ser	GGA Gly 435	GGA Gly	AAG Lys	TTA Leu	TTG Leu	CTA Leu 440	CAA Gln	1527
AA(Ly:	G GGA Gly	GTC Val	ACT Thr 445	TTA Leu	GAG Glu	AGC Ser	ACG Thr	AGC Ser 450	TTC Phe	TCT Ser	CAA Gln	GAG Glu	GCC Ala 455	GGT Gly	TCT Ser	1575
CT	C CTC 1 Leu	GGC Gly 460	ATG Met	GAT Asp	TCA Ser	GGA Gly	ACG Thr 465	ACA Thr	TTA Leu	TCA Ser	ACT Thr	ACA Thr 470	GCT Ala	GGG Gly	AGT Ser	1623
AT'	T ACA E Thr	ATC Ile	ACG Thr	AAC Asn	CTA Leu	GGA Gly	ATC Ile	AAT Asn	GTT Val	GAC Asp	TCC Ser	TTA Leu	GGT Gly	CTT Leu	AAG Lys	1671

	475					480					485					
CAG Gln 490	CCC Pro	GTC Val	AGC Ser	CTA Leu	ACA Thr 495	GCA Ala	AAA Lys	GGT Gly	GCT Ala	TCA Ser 500	AAT Asn	AAA Lys	GTG Val	ATC Ile	GTA Val 505	1719
TCT Ser	GGG Gly	AAG Lys	CTC Leu	AAC Asn 510	CTG Leu	ATT Ile	GAT Asp	ATT Ile	GAA Glu 515	GGG Gly	AAC Asn	ATT Ile	TAT Tyr	GAA Glu 520	AGT Ser	1767
CAT His	ATG Met	TTC Phe	AGC Ser 525	CAT His	GAC Asp	CAG Gln	CTC Leu	TTC Phe 530	TCT Ser	CTA Leu	TTA Leu	AAA Lys	ATC Ile 535	ACG Thr	GTT Val	1815
GAT Asp	GCT Ala	GAT Asp 540	GTT Val	GAT Asp	ACT Thr	AAC Asn	GTT Val 545	GAC Asp	ATC Ile	AGC Ser	AGC Ser	CTT Leu 550	ATC Ile	CCT Pro	GTT Val	1863
CCT Pro	GCT Ala 555	GAG Glu	GAT Asp	CCT Pro	AAT Asn	TCA Ser 560	GAA Glu	TAC Tyr	GGA Gly	TTC Phe	CAA Gln 565	GGA Gly	CAA Gln	TGG Trp	AAT Asn	1911
GTT Val 570	AAT Asn	TGG Trp	ACT Thr	ACG Thr	GAT Asp 575	ACA Thr	GCT Ala	ACA Thr	AAT Asn	ACA Thr 580	AAA Lys	GAG Glu	GCC Ala	ACG Thr	GCA Ala 585	1959
ACT Thr	TGG Trp	ACC Thr	AAA Lys	ACA Thr 590	GGA Gly	TTT Phe	GTT Val	CCC Pro	AGC Ser 595	CCC Pro	GAA Glu	AGA Arg	AAA Lys	TCT Ser 600	GCG Ala	2007
TTA Leu	GTA Val	TGC Cys	AAT Asn 605	ACC Thr	CTA Leu	TGG Trp	GGA Gly	GTC Val 610	TTT Phe	ACT Thr	GAC Asp	ATT Ile	CGC Arg 615	TCT Ser	CTG Leu	2055
CAA Gln	CAG Gln	CTT Leu 620	GTA Val	GAG Glu	ATC Ile	GGC Gly	GCA Ala 625	ACT Thr	GGT Gly	ATG Met	GAA Glu	CAC His 630	AAA Lys	CAA Gln	GGT Gly	2103
TTC Phe	TGG Trp 635	GTT Val	TCC Ser	TCC Ser	ATG Met	ACG Thr 640	AAC Asn	TTC Phe	CTG Leu	CAT His	AAG Lys 645	ACT Thr	GGA Gly	GAT Asp	GAA Glu	2151
AAT Asn 650	CGC Arg	AAA Lys	GGC Gly	TTC Phe	CGT Arg 655	CAT His	ACC Thr	TCT Ser	GGA Gly	GGC Gly 660	TAC Tyr	GTC Val	ATC Ile	GGT Gly	GGA Gly 665	2199
AGT Ser	GCT Ala	CAC His	ACT Thr	CCT Pro 670	AAA Lys	GAC Asp	GAC Asp	CTA Leu	TTT Phe 675	ACC Thr	TTT Phe	GCG Ala	TTC Phe	TGC Cys 680	CAT His	2247
CTC Leu	TTT Phe	GCT Ala	AGA Arg 685	GAC Asp	AAA Lys	GAT Asp	TGT Cys	TTT Phe 690	ATC Ile	GCT Ala	CAC His	AAC Asn	AAC Asn 695	TCT Ser	AGA Arg	2295
ACC Thr	TAC Tyr	GGT Gly 700	GGA Gly	ACT Thr	TTA Leu	TTC Phe	TTC Phe 705	Lys	CAC His	TCT Ser	CAT His	ACC Thr 710	CTA Leu	CAA Gln	CCC Pro	2343

					TTA Leu											2391
GAA Glu 730	AAA Lys	TTC Phe	CCT Pro	AGG Arg	GAA Glu 735	ATT Ile	CCC Pro	CTA Leu	GCC Ala	TTG Leu 740	GAT Asp	GTC Val	CAA Gln	GTT Val	TCG Ser 745	2439
					AAC Asn											2487
					TGG Trp											2535
CTA Leu	GAC Asp	CTT Leu 780	CCT Pro	TTT Phe	GTT Val	CTT Leu	TCC Ser 785	AAC Asn	CCA Pro	CAT His	CCT Pro	CTT Leu 790	TTC Phe	AAG Lys	ACC Thr	2583
					AAA Lys											2631
TTC Phe 810	TTC Phe	GAA Glu	AGC Ser	TCT Ser	AGT Ser 815	GAT Asp	GGC Gly	CGT Arg	GGT Gly	TTT Phe 820	AGT Ser	ATT Ile	GGA Gly	AGG Arg	CTG Leu 825	2679
					CCT Pro											2727
					TAT Tyr											2775
TAT Tyr	CGT Arg	AAC Asn 860	AAT Asn	CCC Pro	CAA Gln	TCT Ser	ACA Thr 865	GCG Ala	ACT Thr	CTT Leu	GTG Val	ATG Met 870	AGC Ser	CCA Pro	GAC Asp	2823
TCT Ser	TGG Trp 875	AAA Lys	ATT	CGC Arg	GGT Gly	GGC Gly 880	AAT Asn	CTT Leu	TCA Ser	AGA Arg	CAG Gln 885	GCA Ala	TTT Phe	TTA Leu	CTG Leu	2871
					TAC Tyr 895											2919
CAT His	TAC Tyr	GCT Ala	ATG Met	GAA Glu 910	CTC Leu	CGT Arg	GGA Gly	TCT Ser	TCA Ser 915	AGG Arg	AAC Asn	TAC Tyr	AAT Asn	GTA Val 920	GAT Asp	2967
GTT Val	GGT Gly	ACC Thr	AAA Lys 925	Leu	CGA Arg	TT Phe	CTAG	ATTG	CT A	AAAC	TCCC	T AG	TTCT	TCTA	GGGAG	3022
TTT	TCTC	ATA	CTTT	TAGG	GA A	TATA	TTGC	T AT	AGGG	AATG	CTI	TCCT	TGC	AAAC	TGTAAA	3082

40

AAATAACATT TGTCCCTCTT CAAAAAAGAT TTCTTTTAAT AATTTCTAGT TATAATTTTA 3142 TTTTAAAAAC AGTTAAATAA TTAATAGACA ATAATCTATT CTTATTGACT TCTTTTTT 3200

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 928 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

1				5					10			Val		15	
			20					25				Leu	3.0		
		35					40					Thr 45			
	50					55					60	Phe			
65					70					75		Gln			80
				85					90			Phe		95	
			100					105				Thr	110		
		115					120					Asp 125			
	130					135					140	Ser			
145					150		,			155		Gly			160
				165					170			Leu		175	
			180					185				Ser	190		
		195					200					Asn 205			
	210					215					220	Gly			
225					230					235		Phe			240
				245					250			Cys		255	
			260					265				Lys	270		
		275					280					Ile 285			_
	290					295					300	Leu			
Val	Ser	Ser	Ala	Thr	Pro	Lys	Gly	Gly	Ala	Ile	Ser	Ile	Asp	Ala	Ser

305					310					315					200
	Glu	Leu	Ser	Leu		Ala	Glu	Thr	Glv		Ile	Thr	Phe	Val	320 Arg
				325					330					335	_
Asn	Thr	Leu	Thr 340	Thr	Thr	Gly	Ser	Thr 345	Asp	Thr	Pro	Lys	Arg 350	Asn	Ala
		355					Lys 360					365			_
	370					375	Asp				380				
385					390		Asn			395					400
				405			Ser		410					415	
			420				Lys	425					430		
		435					Leu 440					445			
	450					455	Gly				460				_
465					470		Gly			475					480
				485			Leu		490					495	
			500				Ile	505					510		
		515					Glu 520					525			
	530					535	Thr				540				
545					550		Pro			55 5					560
				565			Trp		570					575	
			580				Thr	585					590		
		595					Ser 600					605			_
	610					615	Ser				620				-
625					630					635					Thr 640
				645			Asp		650					655	
			660				Gly	665					670		_
		675					Cys 680					685			_
	690					695					700				Phe
705					710					715					Gly 720
				725			Ala		730					735	
			740					745					750		Arg
Met	GLu	755	His	Tyr	Thr	Ser	Leu 760		Glu	Ser	Glu	Gly 765		Trp	Ser

Asn Glu Cys Ile Ala Gly Gly Ile Gly Leu Asp Leu Pro Phe Val Leu 775 Ser Asn Pro His Pro Leu Phe Lys Thr Phe Ile Pro Gln Met Lys Val 790 795 Glu Met Val Tyr Val Ser Gln Asn Ser Phe Phe Glu Ser Ser Ser Asp 805 810 Gly Arg Gly Phe Ser Ile Gly Arg Leu Leu Asn Leu Ser Ile Pro Val 820 825 Gly Ala Lys Phe Val Gln Gly Asp Ile Gly Asp Ser Tyr Thr Tyr Asp 840 Leu Ser Gly Phe Phe Val Ser Asp Val Tyr Arg Asn Asn Pro Gln Ser 855 860 Thr Ala Thr Leu Val Met Ser Pro Asp Ser Trp Lys Ile Arg Gly Gly 870 875 Asn Leu Ser Arg Gln Ala Phe Leu Leu Arg Gly Ser Asn Asn Tyr Val 890 Tyr Asn Ser Asn Cys Glu Leu Phe Gly His Tyr Ala Met Glu Leu Arg 905 Gly Ser Ser Arg Asn Tyr Asn Val Asp Val Gly Thr Lys Leu Arg Phe

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2815 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

		GTTAGTGCTC	TCTTCGACAT	TGGCATGTTT	TACTAGTTGT	60
TCCACTGTTT	TTGCTGCAAC	TGCTGAAAAT	ATAGGCCCCT	CTGATAGCTT	TGACGGAAGT	120
ACTAACACAG	GCACCTATAC	TCCTAAAAAT	ACGACTACTG	GAATAGACTA	TACTCTGACA	180
GGAGATATAA	CTCTGCAAAA	CCTTGGGGAT	TCGGCAGCTT	TAACGAAGGG	TTGTTTTTCT	240
GACACTACGG	AATCTTTAAG	CTTTGCCGGT	AAGGGGTACT	CACTTTCTTT	TTTAAATATT	300
AAGTCTAGTG	CTGAAGGCGC	AGCACTTTCT	GTTACAACTG	ATAAAAATCT	GTCGCTAACA	360
GGATTTTCGA	GTCTTACTTT	CTTAGCGGCC	CCATCATCGG	TAATCACAAC	CCCCTCAGGA	420
AAAGGTGCAG	TTAAATGTGG	AGGGGATCTT	ACATTTGATA	ACAATGGAAC	TATTTTATTT	480
AAACAAGATT	ACTGTGAGGA	AAATGGCGGA	GCCATTTCTA	CCAAGAATCT	TTCTTTGAAA	540
AACAGCACGG	GATCGATTTC	TTTTGAAGGG	AATAAATCGA	GCGCAACAGG	GAAAAAAGGT	600
GGGGCTATTT	GTGCTACTGG	TACTGTAGAT	ATTACAAATA	ATACGGCTCC		660
TCGAACAATA	TTGCTGAAGC		GCTATAAATA			720
ACAGGGAATA	CGTCTCTTGT		AATAGTGTGA			780
GGAGCTCTTT	CTGGAGATGC		ATATCTGGGA		AACTTTCTCA	840
GGAAACCAAG	CTGTAGCTAA	TGGCGGAGCC				900
GGGGGGGGG	GGGGTATCTC		AATATAGTCC			960
GGTGGAGCCA	TTTCTATACT					1020
ATTACCTTCA	ATGGGAATGC	CATTGTTGCA		AAACTACAAA	AAGAAATTCT	1020
ATTGACATAG	GATCTACTGC	AAAGATCACG	AATTTACGTG		GCATAGCATC	1140
TTTTTCTACG	ATCCGATTAC	TGCTAATACG	GCTGCGGATT	CTACAGATAC	TTTAAATCTC	1200
AATAAGGCTG	ATGCAGGTAA	TAGTACAGAT	TATAGTGGGT		TTCTGGTGAA	1260
						1200

43

AAGCTCTCTG	AAGATGAAGC	AAAAGTTGCA	GACAACCTCA	CTTCTACGCT	GAAGCAGCCT	1320
GTAACTCTAA	CTGCAGGAAA	TTTAGTACTT	AAACGTGGTG	TCACTCTCGA	TACGAAAGGC	1380
TTTACTCAGA	CCGCGGGTTC	CTCTGTTATT	ATGGATGCGG	GCACAACGTT	AAAAGCAAGT	1440
ACAGAGGAGG	TCACTTTAAC	AGGTCTTTCC	ATTCCTGTAG	ACTCTTTAGG	CGAGGGTAAG	1500
AAAGTTGTAA	TTGCTGCTTC	TGCAGCAAGT	AAAAATGTAG	CCCTTAGTGG	TCCGATTCTT	1560
CTTTTGGATA	ACCAAGGGAA	TGCTTATGAA	AATCACGACT	TAGGAAAAAC	TCAAGACTTT	1620
TCATTTGTGC	AGCTCTCTGC	TCTGGGTACT	GCAACAACTA	CAGATGTTCC	AGCGGTTCCT	1680
ACAGTAGCAA	CTCCTACGCA	CTATGGGTAT	CAAGGTACTT	GGGGAATGAC	TTGGGTTGAT	1740
GATACCGCAA	GCACTCCAAA	GACTAAGACA	GCGACATTAG	CTTGGACCAA	TACAGGCTAC	1800
CTTCCGAATC	CTGAGCGTCA	AGGACCTTTA	GTTCCTAATA	GCCTTTGGGG	ATCTTTTTCA	1860
GACATCCAAG	CGATTCAAGG	TGTCATAGAG	AGAAGTGCTT	TGACTCTTTG	TTCAGATCGA	1920
GGCTTCTGGG	CTGCGGGAGT	CGCCAATTTC	TTAGATAAAG	ATAAGAAAGG	GGAAAAACGC	1980
AAATACCGTC	ATAAATCTGG	TGGATATGCT	ATCGGAGGTG	CAGCGCAAAC	TTGTTCTGAA	2040
AACTTAATTA	GCTTTGCCTT	TTGCCAACTC	TTTGGTAGCG	ATAAAGATTT	CTTAGTCGCT	2100
AAAAATCATA	CTGATACCTA	TGCAGGAGCC	TTCTATATCC	AACACATTAC	AGAATGTAGT	2160
GGGTTCATAG	GTTGTCTCTT	AGATAAACTT	CCTGGCTCTT	GGAGTCATAA	ACCCCTCGTT	2220
TTAGAAGGGC	AGCTCGCTTA	TAGCCACGTC	AGTAATGATC	TGAAGACAAA	GTATACTGCG	2280
TATCCTGAGG	TGAAAGGTTC	TTGGGGGAAT	AATGCTTTTA	ACATGATGTT	GGGAGCTTCT	2340
TCTCATTCTT	ATCCTGAATA	CCTGCATTGT	TTTGATACCT	ATGCTCCATA	CATCAAACTG	2400
AATCTGACCT	ATATACGTCA		TCGGAGAAAG	GTACAGAAGG	AAGATCTTTT	2460
GATGACAGCA	ACCTCTTCAA	TTTATCTTTG	CCTATAGGGG	TGAAGTTTGA	GAAGTTCTCT	2520
GATTGTAATG	ACTTTTCTTA	TGATCTGACT	TTATCCTATG	TTCCTGATCT	TATCCGCAAT	2580
GATCCCAAAT	GCACTACAGC	ACTTGTAATC	AGCGGAGCCT	CTTGGGAAAC	TTATGCCAAT	2640
AACTTAGCAC	GACAGGCCTT	GCAAGTGCGT	GCAGGCAGTC	ACTACGCCTT	CTCTCCTATG	2700
TTTGAAGTGC	TCGGCCAGTT	TGTCTTTGAA		CCTCACGGAT	TTATAATGTA	2760
GATCTTGGGG	GTAAGTTCCA	ATTCTAGGAG	CGTCTCTCAT	GTCTCAGAAA	TTCTG	2815

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 928 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

1.				5					10				Leu	15	
			20					25					Asn 30		
		35					40					45	Tyr		
Lys	Asn 50	Thr	Thr	Thr	Gly	Ile 55	Asp	Tyr	Thr	Leu	Thr 60	Gly	Asp	Ile	Thr
Leu 65	Gln	Asn	Leu	Gly	Asp 70	Ser	Ala	Ala	Leu	Thr 75	Lys	Gly	Cys	Phe	Ser 80
Asp	Thr	Thr	Glu	Ser 85	Leu	Ser	Phe	Ala	Gly 90	Lys	Gly	Tyr	Ser	Leu 95	Ser
Phe	Leu	Asn	Ile 100	Lys	Ser	Ser	Ala	Glu 105	Gly	Ala	Ala	Leu	Ser 110	Val	Thr
Thr	Asp	Lys 115	Asn	Leu	Ser	Leu	Thr 120	Gly	Phe	Ser	Ser	Leu 125	Thr	Phe	Leu
Ala	Ala 130	Pro	Ser	Ser	Val	Ile 135	Thr	Thr	Pro	Ser	Gly 140	Lys	Gly	Ala	Val

Lys 145	Cys	Gly	Gly	Asp	Leu	Thr	Phe	Asp	Asn		Gly	Thr	Ile	Leu	Phe
	~ 1	_		_	150					155					160
Lys	Gin	Asp	Tyr	Cys 165	Glu	Glu	Asn	Gly	Gly 170	Ala	Ile	Ser	Thr	Lys 175	Asn
Leu	Ser	Leu	Lys 180	Asn	Ser	Thr	Gly	Ser 185	Ile	Ser	Phe	Glu		Asn	Lys
Ser	Ser	Ala		Gly	Lys	Lys	Gly	Gly	Ala	Ile	Cys	Ala	190 Thr	Gly	Thr
		195					200					205			
Val	Asp 210	Ile	Thr	Asn	Asn	Thr 215	Ala	Pro	Thr	Leu	Phe 220	Ser	Asn	Asn	Ile
Ala 225	Glu	Ala	Ala	Gly	Gly 230	Ala	Ile	Asn	Ser	Thr 235		Asn	Cys	Thr	
	Gly	Asn	Thr	Ser		Val	Phe	Ser			Ser	Val	Thr	Ala	240 Thr
~ T -	~ 3	_	~- 3	245					250					255	
			260					265					270	Ile	
Gly	Asn	Gln	Ser	Val	Thr	Phe	Ser	Glv	Asn	Gln	Ala	Va 1	Ala	Asn	Glv
		275					280	_				285		11011	CIY
Gly	Ala	Ile	Tvr	Ala	Lvs	Lvs		Thr	T.eu	Δl =	Sa~	203 Clv	C1	Gly	01
•	290		-1-		70	295			пеа	ALG		GIY	GLY	GIY	GIY
Glv		Ser	Dhe	Sar	y c n		т1.	17-3	G1	G1	300		_ ~		
305		JCI	rne	361	ASII	ASII	116	vai	GIN		Thr	Thr	Ala	Gly	
	C1	77.	T1 -	0	310	_				315					320
GIY	GIY	Ald	тте	ser	TTE	Leu	Ala	Ala	Gly	Glu	Cys	Ser	Leu	Ser	Ala
				325					330					335	
Glu	Ala	Gly	Asp 340	Ile	Thr	Phe	Asn	Gly 345	Asn	Ala	Ile	Val	Ala 350	Thr	Thr
Pro	Gln	Thr	Thr	Lys	Arq	Asn	Ser	Ile	Asp	Tle	Glv	Ser	Thr	Ala	Tara
		355		-	_		360				O-y	365	T 1111	AIG	БУБ
Ile	Thr	Asn	Len	Ara	ΔЗа	Tle		Glv	uic	80~	т1.	202	Dh.	Tyr	_
	370			3		375	OCI	Gry	urs	SET		Pne	Pne	Tyr	Asp
Dro		Th~	ת ז ת	7 ~ ~	mls .s		3.7	_	_		380				
305	TIC	1111	ALG	Wall	1111	Ата	Ата	Asp	Ser		Asp	Thr	Leu	Asn	Leu
385	Ŧ		_		390	_				395					400
Asn	rys	Ala	Asp	Ala	GLY	Asn	Ser	Thr		Tyr	Ser	Gly	Ser	Ile	Val
	_			405					410					415	
Phe	Ser	Gly	Glu 420	Lys	Leu	Ser	Glu	Asp 425	Glu	Ala	Lys	Val	Ala 430	Asp	Asn
Leu	Thr	Ser	Thr	Leu	Lvs	Gln	Pro	Val	Thr	T.e.n	Thr	ת ז ת	C1	Asn	T 011
		435					440					445			
val	Leu	Lys	Arg	GIA	vai	Thr	Leu	Asp	Thr	Lys	Gly	Phe	Thr	Gln	Thr
	450					455					460				
Ala	GIY	Ser	Ser	Val	Ile	Met	Asp	Ala	${ t Gly}$	Thr	Thr	Leu	Lys	Ala	Ser
465					470					475					480
\mathtt{Thr}	Glu	Glu	Val	Thr	Leu	Thr	Gly	Leu	Ser	Ile	Pro	Val	Asp	Ser	Leu
				485			-		490					495	
Gly	Glu	Gly	Lys	Lvs	Val	Val	He	Ala	Δla	Ser	Δla	Δ 1 =	Sar	Lys	7 an
_		-	500	-				505	1124	DCI	AIG	AIG		цуѕ	ASII
Val	Ala	Leu		Gly	Pro	Ile	Leu		Leu	Asp	Asn	Gln	510 Gly	Asn	Ala
m	~ 1	515		_	_		520					525			
Tyr	530	Asn	His	Asp	Leu	Gly 535	Lys	Thr	Gln	Asp	Phe 540	Ser	Phe	Val	Gln
Leu	Ser	Ala	Leu	Gly	Thr		Thr	Thr	Thr	Asn	Val	Pro	Δla	Val	D~c
545					550		~ -		- 414	555	* a T	FTO	urd	val	
	٧a٦	Αla	ጥ ኮ	Pro		ui ~	Τι	C1	m	755	C 1	m.		~ -	560
				565	* 111	1172	TÀL	gry		GIN	GTA	Inr	Trp	Gly	Met
Thr	ጥ~~	17-7	7~-		m1	7A 7	.	·	570	_		_		575	
-111	ττb	v d T	ASD	ASD	ınr	Αта	ser	Thr	Pro	Lys	Thr	Lys		Ala	Thr
T 011	71.7 ~	m	580	70	m²	a :	_	585					590		
neu	wrd	тrp	inr	asn	inr	GIY	Tyr	Leu	Pro	Asn	Pro	Glu	Arg	Gln	Gly

		595					600					605			
	Leu 610	Val	Pro	Asn	Ser	Leu 615	Trp	Gly	Ser	Phe	Ser 620	Asp	Ile	Gln	Ala
Ile 625	Gln	Gly	Val	Ile	Glu 630	Arg	Ser	Ala	Leu	Thr 635	Leu	Cys	Ser	Asp	Arg 640
Gly	Phe	Trp	Ala	Ala 645	Gly	Val	Ala	Asn	Phe 650	Leu	Asp	Lys	Asp	Lys 655	Lys
			660		Tyr			665					670		_
		675			Cys		680					685			
	690				Asp	695					700				
705					Ala 710					715				_	720
				725	Leu				730					735	
			740		Glu			745					750		
		755			Tyr		760					765			
	770				Asn	775					780				-
785					Cys 790					795					800
				805	Arg				810					815	
			820		Asp			825				•	830		
		835			Lys		840					845		-	
	850				Val	855					860				_
865					Ile 870					875			_		880
Asn	Leu	Ala	Arg	Gln 885	Ala	Leu	Gln	Val	Arg 890		Gly	Ser	His	Tyr 895	
			900		Glu			905					910		
Gly	Ser	Ser 915	Arg	Ile	Tyr	Asn	Val 920		Leu	Gly	Gly	Lys 925		Gln	Phe

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3052 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ATGCGATTTT CGC	TCTGCGG ATTTCCTCT	GTTTTTTCTT	TAACATTGCT	CTCAGTCTTC	60
GACACTTCTT TGA	GTGCTAC TACGATTTCT	TTAACCCCAG	AAGATAGTTT	TCATGGAGAT	120
AGTCAGAATG CAG	AACGTTC TTATAATGTT	CAAGCTGGGG	ATGTCTATAG	CCTTACTGGT	180

GATGTCTCAA	TATCTAACGT	CGATAACTCT	GCATTAAATA	AAGCCTGCTT	СУУТСТСУСС	240
TCAGGAAGTG	TGACGTTCGC	AGGAAATCAT	CATGGGTTAT	ΑΤΤΤΤΑΑΤΑΑ	יים דיידייר מאככ	300
GGAACTACAA	AGGAAGGGC	TGTACTTTGT	TGCCAAGATC	CTCAAGCAAC	GGCACGTTTT	360
TCTGGGTTCT	CCACGCTCTC	TTTTATTCAG	AGCCCCGGAG	ATATTAAAGA	ACAGGGATGT	420
CTCTATTCAA	AAAATGCACT	TATGCTCTTA	AACAATTATG	TAGTGCGTTT	TGAACAAAAC	480
CAAAGTAAGA	CTAAAGGCGG	AGCTATTAGT	GGGGCGAATG	TTACTATAGT	AGGCAACTAC	540
GATTCCGTCT	CTTTCTATCA	GAATGCAGCC	ACTTTTGGAG	GTGCTATCCA	TTCTTCAGGT	600
CCCCTACAGA	TTGCAGTAAA	TCAGGCAGAG	ATAAGATTTG	CACAAAATAC	TGCCAAGAAT	660
GGTTCTGGAG	GGGCTTTGTA	CTCCGATGGT	GATATTGATA	TTGATCAGAA	TGCTTATGTT	720
CTATTTCGAG	AAAATGAGGC	ATTGACTACT	GCTATAGGTA	AGGGAGGGC	TGTCTGTTGT	780
CTTCCCACTT	CAGGAAGTAG	TACTCCAGTT	CCTATTGTGA	CTTTCTCTGA	CAATAAACAG	840
TTAGTCTTTG	AAAGAAACCA	TTCCATAATG	GGTGGCGGAG	CCATTTATGC	TAGGAAACTT	900
AGCATCTCTT	CAGGAGGTCC	TACTCTATTT	ATCAATAATA	TATCATATGC	AAATTCGCAA	960
AATTTAGGTG	GAGCTATTGC	CATTGATACT	GGAGGGGAGA	TCAGTTTATC	AGCAGAGAAA	1020
GGAACAATTA	CATTCCAAGG	AAACCGGACG	AGCTTACCGT	TTTTGAATGG	CATCCATCTT	1080
TTACAAAATG	CTAAATTCCT	GAAATTACAG	GCGAGAAATG	GATGCTCTAT	AGAATTTTAT	1140
GATCCTATTA	CTTCTGAAGC	AGATGGGTCT	ACCCAATTGA	ATATCAACGG	AGATCCTAAA	1200
AATAAAGAGT	ACACAGGGAC	CATACTCTTT	TCTGGAGAAA	AGAGTCTAGC	AAACGATCCT	1260
AGGGATTTTA	AATCTACAAT	CCCTCAGAAC	GTCAACCTGT	CTGCAGGATA	CTTAGTTATT	1320
AAAGAGGGGG	CCGAAGTCAC	AGTTTCAAAA	TTCACGCAGT	CTCCAGGATC	GCATTTAGTT	1380
TTAGATTTAG	GAACCAAACT	GATAGCCTCT	AAGGAAGACA	TTGCCATCAC	AGGCCTCGCG	1440
ATAGATATAG	ATAGCTTAAG	CTCATCCTCA	ACAGCAGCTG	TTATTAAAGC	AAACACCGCA	1500
AATAAACAGA	TATCCGTGAC	GGACTCTATA	GAACTTATCT	CGCCTACTGG	CAATGCCTAT	1560
GAAGATCTCA	GAATGAGAAA	TTCACAGACG	TTCCCTCTGC	TCTCTTTAGA	GCCTGGAGCC	1620
GGGGGTAGTG	TGACTGTAAC	TGCTGGAGAT	TTCCTACCGG	TAAGTCCCCA	TTATGGTTTT	1680
CAAGGCAATT	GGAAATTAGC	TTGGACAGGA	ACTGGAAACA	AAGTTGGAGA	ATTCTTCTGG	1740
GATAAAATAA	ATTATAAGCC	TAGACCTGAA	AAAGAAGGAA	ATTTAGTTCC	TAATATCTTG	1800
TGGGGGAATG	CTGTAAATGT	CAGATCCTTA	ATGCAGGTTC	AAGAGACCCA	TGCATCGAGC	1860
TTACAGACAG	ATCGAGGGCT	GTGGATCGAT	GGAATTGGGA	ATTTCTTCCA	TGTATCTGCC	1920
TCCGAAGACA	ATATAAGGTA	CCGTCATAAC	AGCGGTGGAT	ATGTTCTATC	TGTAAATAAT	1980
GAGATCACAC	CTAAGCACTA	TACTTCGATG	GCATTTTCCC	AACTCTTTAG	TAGAGACAAG	2040
GACTATGCGG	TTTCCAACAA	CGAATACAGA	ATGTATTTAG	GATCGTATCT	CTATCAATAT	2100
ACAACCTCCC	TAGGGAATAT	TTTCCGTTAT	GCTTCGCGTA	ACCCTAATGT	AAACGTCGGG	2160
ATTCTCTCAA	GAAGGTTTCT	TCAAAATCCT	CTTATGATTT	TTCATTTTTT	GTGTGCTTAT	2220
GGTCATGCCA	CCAATGATAT	GAAAACAGAC	TACGCAAATT	TCCCTATGGT	GAAAAACAGC	2280
TGGAGAAACA	ATTGTTGGGC	TATAGAGTGC	GGAGGGAGCA	TGCCTCTATT	GGTATTTGAG	2340
AACGGAAGAC	TTTTCCAAGG	TGCCATCCCA	TTTATGAAAC	TACAATTAGT	TTATGCTTAT	2400
CAGGGAGATT	TCAAAGAGAC	GACTGCAGAT	GGCCGTAGAT	TTAGTAATGG	GAGTTTAACA	2460
TCGATTTCTG	TACCTCTAGG	CATACGCTTT	GAGAAGCTGG	CACTTTCTCA	GGATGTACTC	2520
TATGACTITA	GTTTCTCCTA	TATTCCTGAT	ATTTTCCGTA	AGGATCCCTC	ATGTGAAGCT	2580
GCICIGGIGA	TTAGCGGAGA	CTCCTGGCTT	GTTCCGGCAG	CACACGTATC	AAGACATGCT	2640
CCAACTATIO	GTGGAACGGG	TCGGTATCAC	TTTAACGACT	ATACTGAGCT	CTTATGTCGA	2700
COMMUNICA	AATGCCGCCC	CCATGCTAGG	AATTATAATA	TAAACTGTGG	AAGCAAATTT	2760
ATCOMMONON	AGGITTCCAT	TGCCTGTGTG	GTTCCGGATC	TTAACTATAA	ATCCTGGACT	2820
TANCOCANTA	CTCCTTTGGGT	TTCTCGAACT	TGTGTGGAGA	ATAACGACAT	TTTATATGCA	2880
	TATEMENTATICAC	ACAATICOTT	AGAGACATTC	TTTAGGGGTT	CTTTATTTGT	2940
TINNACIICG	TATITIATEG	AGAATCCTTT	ACGTTCTTGG	TTTGCTTGTC	TCCGAGGAGT	
LCICIMACGA	ATCATAGGGA	1 I CCAGGGTT	CTGTTCCTTG	AGTCCTTTGG	CA	3052

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 922 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

	Arg	Phe	Ser		Cys	Gly	Phe	Pro		Val	Phe	Ser	Leu	Thr	Leu
1 Leu	Ser	Val		5 Asp	Thr	Ser	Leu	Ser	10 Ala	Thr	Thr	Ile	Ser	15 Leu	Thr
Pro	Glu	Asp	20 Ser	Phe	His	Gly	Asp	25 Ser	Gln	Asn	Ala	Glu	30 Arg	Ser	Tyr
		35					40					45			_
	50					55					60			Ser	
65					70					75				Val	80
Ser	Gly	Ser	Val	Thr 85	Phe	Ala	Gly	Asn	His 90	His	Gly	Leu	Tyr	Phe 95	Asn
Asn	Ile	Ser	Ser 100	Gly	Thr	Thr	Lys	Glu 105	Gly	Ala	Val	Leu	Cys 110	Cys	Gln
Asp	Pro	Gln 115	Ala	Thr	Ala	Arg	Phe 120	Ser	Gly	Phe	Ser	Thr 125	Leu	Ser	Phe
Ile	Gln 130	Ser	Pro	Gly	Asp	Ile 135	Lys	Glu	Gln	Gly	Cys 140	Leu	Tyr	Ser	Lys
Asn	Ala	Leu	Met	Leu		Asn	Asn	Tyr	Val	Val	Arg	Phe	Glu	Gln	Asn
145 Gln	Ser	Lvs	Thr	Lve	150	Glv	Nla	Tlo	Com	155	7.7	3	17- 7	Thr	160
				165					170					175	
		•	180					185					190	Thr	
Gly	Gly	Ala 195	Ile	His	Ser	Ser	Gly 200	Pro	Leu	Gln	Ile	Ala 205	Val	Asn	Gln
Ala	Glu 210	Ile	Arg	Phe	Ala	Gln 215	Asn	Thr	Ala	Lys	Asn 220	Gly	Ser	Gly	Gly
Ala 225	Leu	Tyr	Ser	Asp	Gly 230	Asp	Ile	Asp	Ile	Asp 235	Gln	Asn	Ala	Tyr	Val 240
Leu	Phe	Arg	Glu	Asn 245	Glu	Ala	Leu	Thr	Thr 250		Ile	Gly	Lys	Gly 255	Gly
Ala	Val	Cys	Cys 260	Leu	Pro	Thr	Ser	Gly 265	Ser	Ser	Thr	Pro	Val 270	Pro	Ile
Val	Thr	Phe 275	Ser 	Asp	Asn	Lys	Gln 280	Leu	Val	Phe	Glu	Arg 285	Asn	His	Ser
Ile	Met 290	Gly	Gly	Gly	Ala	Ile 295	Tyr	Ala	Arg	Lys		Ser	Ile	Ser	Ser
Gly		Pro	Thr	Leu	Phe	Ile	Asn					Ala	Asn	Ser	
305 Asn	Leu	Gly	Gly	Ala			Ile			315 Glv		Glu	Tle	Ser	320 Leu
				325					330					335	
			340					345					350		Leu
		355					360					365			Lys
	370					375					380	Asp			Thr
Ser	Glu	Ala	Asp	Gly	Ser	Thr	Gln	Leu	Asn	Ile	Asn	Gly	Asp	Pro	Lys
385					390					395					400
ASI	ոչ	GIU	ıyr	405	GТĀ	Thr	īīe	Leu	Phe 410	Ser	Gly	Glu	Lys	Ser 415	Leu
Ala	Asn	Asp	Pro		Asp	Phe	Lys	Ser		Ile	Pro	Gln	Asn	Val	Asn

			420					425					430		
		435			Leu		440	Lys				445	Val		
	450				Ser	455					460				_
Thr 465	Lys	Leu	Ile	Ala	Ser 470	Lys	Glu	Asp	Ile	Ala 475	Ile	Thr	Gly	Leu	Ala 480
				485	Leu				490					495	-
			500		Lys			505					510		
		515			Asn		520					525			
	530				Leu	535					540				
545					Asp 550					555				_	560
				565	Leu				570					575	-
			580		Lys			585					590	_	
		595			Asn		600					605			
	610				Gln	615					620				
625					Asp 630					635					640
				645	Arg				650			-	_	655	
		-	660		Ile			665					670		
		675			Arg		680					685			
	690				Gly	695					700				
705					Tyr 710					715					720
				725	Phe				730					735	
			740		His			745					750		
		755			Lys		760					765			
	770				Met	775					780				
785					Pro 790					795					800
				805					810					815	
			820		Ile			825					830		
		835			Asp		840					845			
	850				Lys	855					860				
865	OLY	чэр	Ser	112	Leu 870	val	FI.O	нта	АТА	875		ser	Arg	His	Ala 880

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2526 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATGAAGATTC	CACTCCGCTT	TTTATTGATA	TCATTAGTAC	CTACGCTTTC	TATGTCGAAT	60
TTATTAGGAG	CTGCTACTAC	CGAAGAGCTA	TCGGCTAGCA	ATAGCTTCGA	TGGAACTACA	120
TCAACAACAA	GCTTTTCTAG	TAAAACATCA	TCGGCTACAG	ATGGCACCAA	TTATGTTTTT	180
			AAAACAGGGG		TACTAGTTGT	240
			AATTTCTTAG		TTCTTTCACA	300
			GGAGCTGCTA			360
			CTTTCTTTTC			420
GTGACTAATG	GATTGGGAGC	TATCAATGTT	AAAGGGAATT	TAAGCCTATT	GGATAATGAT	480
AAGGTATTGA	TTCAGGACAA	TTTCTCAACA	GGAGATGGCG	GAGCAATTAA	TTGTGCAGGC	540
			TCTTTTATTG			600
			CTATCTTCTG			660
			GGAGGTGCTA			720
ACCCTATCCA	TTTCTGGAGA	CAGTGGCGAC	ATTATCTTTG	AAGGCAATAC	GATAGGAGCT	780
ACAGGAACCG	TCTCTCATAG	TGCTATTGAT	TTAGGAACTA	GCGCTAAGAT	AACTGCGTTA	840
CGTGCTGCGC	AAGGACATAC	GATATACTTT	TATGATCĊGA	TTACTGTAAC	AGGATCGACA	900
			CCTGATACTG			960
GGAACCATAG	TCTTTTCTGG	AGAGAAGCTC	ACGGAGGCAG	AAGCTAAAGA	TGAGAAGAAC	1020
			TTTAAAAATG		TTTAAAAGGT	1080
			CAGGATGCAA		GATTATGGAT	1140
			AGTATCGAGT		GGAAATTAAT	1200
ATAGACTCTC	TCAGGAACGG	GAAAAAGATA	AAACTCAGTG	CTGCCACAGC	TCAGAAAGAT	1260
	ATCGTCCTGT		ATTAGCGATG	AGAGTTTTTA	TCAAAATGGC	1320
TTTTTGAATG	AGGACCATTC	CTATGATGGG	ATTCTTGAGT	TAGATGCTGG	GAAAGACATC	1380
GTGATTTCTG	CAGATTCTCG	CAGTATAAAT	GCTGTACAAT	CTCCGTATGG	CTATCAGGGA	1440
			AAGAAAGCTA		GGCAAAGCAA	1500
			CCGTTAGTTC		TTGGGGTTCT	1560
			ATAGAGCTAG		TGCTCCTTAC	1620
GAAAAGAGAT	TTTGGGTTGC	AGGCATTTCC	AATGTTTTGC	ATAGGAGCGG	TCGTGAAAAT	1680
CAAAGGAAAT	TCCGTCATGT	GAGTGGAGGT	GCTGTAGTAG	GTGCTAGCAC	GAGGATGCCG	1740
GGTGGTGATA	CCTTGTCTCT	GGGTTTTGCT	CAGCTCTTTG	CGCGTGACAA	AGACTACTTT	1800
ATGAATACCA	ATTTCGCAAA	GACCTACGCA	GGATCTTTAC	GTTTGCAGCA	CGATGCTTCC	1860
CTATACTCTG	TGGTGAGTAT	CCTTTTAGGA	GAGGGAGGAC	TCCGCGAGAT		1920
TATGTTTCCA	AGACTCTGCC	GTGCTCTTTC	TATGGGCAGC	TTAGCTACGG		1980
CATCGCATGA	AGACCGAGTC	TCTACCCCCC	CCCCCCCGA	CGCTCTCGAC	GGATCATACT	2040
TCTTGGGGAG	GATATGTCTG	GGCTGGAGAG	CTGGGAACTC	GAGTTGCTGT	TGAAAATACC	2100
			CCATTTGTAA			2160
			ATCAGTCGTG			2220
TATAACCTTC	CGATTCCTCT	TGGAATCAAG	TTAGAGAAAC	GGTTTGCAGA	GCAATATTAT	2280

WO 98/58953

CATGTTGTAG	CGATGTATTC	TCCAGATGTT	TGTCGTAGTA	ACCCCAAATG	TACGACTACC	2340
CTACTTTCCA	ACCAAGGGAG	TTGGAAGACC	AAAGGTTCGA	ACTTAGCAAG	ACAGGCTGGT	2400
ATTGTTCAGG	CCTCAGGTTT	TCGATCTTTG	GGAGCTGCAG	CAGAGCTTTT	CGGGAACTTT	2460
GGCTTTGAAT	GGCGGGGATC	TTCTCGTAGC	TATAATGTAG	ATGCGGGTAG	CAAAATCAAA	2520
TTTTAG						2526

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 841 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

1			Pro	5					10					15	
			Asn 20					25					3.0		
		35	Phe				40					45			
	50		Ala			55					60				
65			Asn		70					75					80
			Asp	85					90					95	
			Thr 100					105					110		
		115	Ser				120					125			
	130		Ser			135					140				
145			Ile		150					155					160
			Ile	165					170					175	
			Gly 180					185					190		
		195	Ser				200					205			
	210		Ser			215					220				
225			Ala		230					235	Ile				240
			Ile	245					250					255	
			Ala 260					265					270		
		275	Lys				280					285			
	290		Asp			295					300				
Ala	Leu	Asn	Ile	Asn	Ser	Pro	Asp	Thr	Gly	Asp	Asn	Lys	Glu	Tyr	Thr

305					310					315					220
	Thr	Ile	Val	Phe		Glv	Glu	Lvs	Leu		Glu	Δla	Glu	בומ	320 Lyc
				325					330					335	
			340				Lys	345					350		-
		355					Gly 360					365			_
	370					375	Lys				380	Leu			
385					390		Ile			395					400
				405			Lys		410					415	
			420				Asp	425					430		
		435					Gly 440					445			
	450					455	Ala				460				
465					470		Val			475					480
				485			Thr		490					495	
			500				Pro	505					510		
		515					Ser 520					525			
	530					535	Glu				540			_	
545					550		Val			555					560
				565			Ser		570					575	
			580				Thr	585					590		
		595					Phe 600					605			
	610					615	Gln				620				
625					630		Gly			635					640
				645			Cys		650					655	
			660				Lys	665					670		
		675					Thr 680					685			
	690					695	Ala				700				
705					710					715					Ser 720
				725			Leu		730					735	
			740					745					750		Glu
Lys	Arg	Phe 755	Ala	Glu	Gln	Tyr	Tyr 760		Val	Val	Ala	Met 765		Ser	Pro

52

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2787 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ATGAAGTCTT	CTTTCCCCAA	GTTTGTATTT	TCTACATTTG	CTATTTTCCC	TTTGTCTATG	60
ATTGCTACCG	AGACAGTTTT	GGATTCAAGT	GCGAGTTTCG	ATGGGAATAA	AAATGGTAAT	120
TTTTCAGTTC	GTGAGAGTCA	GGAAGATGCT	GGAACTACCT	ACCTATTTAA	GGGAAATGTC	180
		AACAGGCACA		AAAGCTGTTT	TAACAACACT	240
AAGGGCGATT	TGACTTTCAC	AGGTAACGGG	AACTCTCTAT	TGTTCCAAAC	GGTGGATGCA	300
	CAGGGGCTGC	TGTTAACAGC	AGCGTGGTAG	ATAAATCTAC	CACGTTTATA	360
GGGTTTTCTT		TATTGCGTCT	CCTGGAAGTT	CGATAACTAC	CGGCAAAGGA	420
GCCGTTAGCT	GCTCTACGGG	TAGCTTGAAG	TTTGACAAAA	ATGTCAGTTT	GCTCTTCAGC	480
AAAAACTTTT	CAACGGATAA	$\mathtt{TGGCGGTGCT}$	ATCACCGCAA	AAACTCTTTC	ATTAACAGGG	540
ACTACAATGT	CAGCTCTGTT	TTCTGAAAAT	ACCTCCTCAA			600
	CCCTTACCAT	TACTGGAAAC	CAAGGGGAAG	TCTCTTTTTC	TGACAATACT	660
TCTTCGGATT	CTGGAGCTGC	${\tt AATTTTTACA}$	GAAGCCTCGG	TGACTATTTC	TAATAATGCT	720
AAAGTTTCCT	TTATTGACAA	TAAGGTCACA	GGAGCGAGCT	CCTCAACAAC	GGGGGATATG	780
TCAGGAGGTG	CTATCTGTGC	TTATAAAACT	AGTACAGATA	CTAAGGTCAC	CCTCACTGGA	840
	TACTCTTCAG		TCGACAACAG	CGGGAGGAGC	TATCTATGTG	900
AAAAAGCTCG	AACTGGCTTC	CGGAGGACTT	ACCCTATTCA	GTAGAAATAG	TGTCAATGGA	960
GGTACAGCTC	CTAAAGGTGG	AGCCATAGCT	ATCGAAGATA	GTGGGGAATT	GAGTTTATCC	1020
GCCGATAGTG	GTGACATTGT	CTTTTTAGGG	AATACAGTCA	CTTCTACTAC	TCCTGGGACG	1080
AATAGAAGTA	GTATCGACTT	AGGAACGAGT	GCAAAGATGA	CAGCTTTGCG	TTCTGCTGCT	1140
GGTAGAGCCA	TCTACTTCTA	TGATCCCATA	ACTACAGGAT	CTTCCACAAC	AGTTACAGAT	1200
GTCTTAAAAG	TTAATGAGAC	TCCGGCAGAT	TCTGCACTAC	AATATACAGG	GAACATCATC	1260
TTCACAGGAG	AAAAGTTATC	AGAGACAGAG	GCCGCAGATT	CTAAAAATCT		1320
CTACTACAGC	CTGTAACTCT	TTCAGGAGGT	ACTCTATCTT	TAAAACATGG	AGTGACTCTG	1380
CAGACTCAGG	CATTCACTCA	ACAGGCAGAT	TCTCGTCTCG	AAATGGACGT	AGGAACTACT	1440
CTAGAACCTG	CTGATACTAG	CACCATAAAC	AATTTGGTCA	TTAACATCAG	TTCTATAGAC	1500
GGTGCAAAGA	AGGCAAAAAT	AGAAACCAAA	GCTACGTCAA	AAAATCTGAC	TTTATCTGGA	1560
ACCATCACTT	TATTGGACCC	GACGGGCACG	TTTTATGAAA	ATCATAGTTT	AAGAAATCCT	1620
		GCTCAAAGCT	TCTGGAACTG	TAACAAGCAC	CGCAGTGACT	1680
CCAGATCCTA	TAATGGGTGA	GAAATTCCAT	TACGGCTATC	AGGGAACTTG	GGGCCCAATT	1740
	CAGGGGCTTC		ACCTTCAACT			1800
	AGCGTATCGG		CCTAATAGCT			1860
	TCCATTATCT	TATGGAGACT	GCAAACGAAG	GGTTGCAGGG	AGACCGTGCT	1920
TTTTGGTGTG	CTGGATTATC	TAACTTCTTC	CATAAGGATA	GTACAAAAAC	ACGACGCGGG	1980
TTTCGCCATT	TGAGTGGCGG	TTATGTCATA	GGAGGAAACC	TACATACTTG	TTCAGATAAG	2040
						•

ATTCTTAGTG CTGCATTTTG	TCAGCTCTTT	GGAAGAGATA	GAGACTACTT	TGTAGCTAAG	2100
AATCAAGGTA CAGTCTACGG	AGGAACTCTC	TATTACCAGC	ACAACGAAAC	CTATATCTCT	2160
CTTCCTTGCA AACTACGGCC	TTGTTCGTTG	TCTTATGTTC	CTACAGAGAT	TCCTGTTCTC	2220
TTTTCAGGAA ACCTTAGCTA	CACCCATACG	GATAACGATC	TGAAAACCAA	GTATACAACA	2280
TATCCTACTG TTAAAGGAAG	CTGGGGGAAT	GATAGTTTCG	CTTTAGAATT	CGGTGGAAGA	2340
GCTCCGATTT GCTTAGATGA	AAGTGCTCTA	TTTGAGCAGT	ACATGCCCTT	CATGAAATTG	2400
CAGTTTGTCT ATGCACATCA	GGAAGGTTTT	AAAGAACAGG	GAACAGAAGC	TCGTGAATTT	2460
GGAAGTAGCC GTCTTGTGAA	TCTTGCCTTA	CCTATCGGGA	TCCGATTTGA	TAAGGAATCA	2520
GACTGCCAAG ATGCAACGTA	CAATCTAACT	CTTGGTTATA	CTGTGGATCT	TGTTCGTAGT	2580
AACCCCGACT GTACGACAAC	ACTGCGAATT	AGCGGTGATT	CTTGGAAAAC	CTTCGGTACG	2640
AATTTGGCAA GACAAGCTTT	AGTCCTTCGT	GCAGGGAACC	ATTTTTGCTT	TAACTCAAAT	2700
TTTGAAGCCT TTAGCCAATT		TTGCGTGGGT	CATCTCGCAA	TTACAATGTA	2760
GACTTAGGAG CAAAATACCA	ATTCTAA				2787

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 928 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

1		Ser		5					10					15	
		Ser	20					25					30		
		Gly 35					40					45			
	50	Gly				55					60				
65		Gly			70					75					80
		Asp		85					90					95	
		Asp	100					105					110		
		Lys 115					120					125			
	130	Pro				135					140				
145		Gly			150					155					160
		Phe		165					170					175	
		Thr	180					185					190		
		Lys 195					200					205			
Gly	Asn 210	Gln	Gly	Glu	Val	Ser 215	Phe	Ser	Asp	Asn	Thr 220	Ser	Ser	Asp	Ser
Gly 225	Ala	Ala	Ile	Phe	Thr 230	Glu	Ala	Ser	Val	Thr 235		Ser	Asn	Asn	Ala 240
Lys	Val	Ser	Phe	Ile	Asp	Asn	Lys	Val	Thr		Ala	Ser	Ser	Ser	Thr

			. •	245					550						
Thr	Glv	Asn	Met		Glv	Glaz	חות	т1.	250	77		-		255	
	-		260	DCI	Gry	GLY	нта	265	Cys	Ala	Tyr	Lys	270	Ser	Thr
Asp	Thr	Lys	Val	Thr	Leu	Thr	Glv		Gln	Met	Len	T.e.11	Dhe	Ser	λcn
		275					280					285			
Asn	Thr	Ser	Thr	Thr	Ala	Gly	Gly	Ala	Ile	Tyr	Val	Lys	Lys	Leu	Glu
	290					295					300				
Leu	Ala	Ser	Gly	Gly	Leu	Thr	Leu	Phe	Ser	Arg	Asn	Ser	Val	Asn	Gly
305	m\		D	-	310	~ 3				315					320
GIY	Inr	Ата	Pro	Lуs 325	GIY	GIY	Ala	Ile		Ile	Glu	Asp	Ser	Gly	Glu
Leu	Ser	Leu	Ser		Asn	Ser	Glv	λan	330	17-7	Dha	T	a 3	335 Asn	err).
			340			001	Cly	345	116	vai	Pne	Leu	350	Asn	Tnr
Val	Thr	Ser	Thr	Thr	Pro	Gly	Thr		Ara	Ser	Ser	Tle	Asn	Leu	Glv
		355					360					365			
Thr	Ser	Ala	Lys	Met	Thr	Ala	Leu	Arg	Ser	Ala	Ala	Gly	Arg	Ala	Ile
	370					375					380				
Tyr	Phe	Tyr	Asp	Pro	Ile	Thr	Thr	Gly	Ser		Thr	Thr	Val	Thr	Asp
385 Val	Len	Tara	17-1	7 ~~	390	m\	D		_	395			_		400
vai	пеа	шуъ	vai	405	GIU	1111	PIO	Ата	410	Ser	Ala	Leu	Gln	Tyr	Thr
Gly	Asn	Ile	Ile		Thr	Glv	Glu	Lvs		Ser	Glu	Thr	C1.,	415 Ala	71-
-			420			1		425		501	Giu	1111	430	нта	Ald
Asp	Ser	Lys	Asn	Leu	Thr	Ser	Lys	Leu	Leu	Gln	Pro	Val	Thr	Leu	Ser
		435					440					445			
Gly	Gly	Thr	Leu	Ser	Leu		His	Gly	Val	Thr	Leu	Gln	Thr	Gln	Ala
Dho	450	71 -	a 1			455	_	_			460				
465	ınr	GIN	GIN	Ala	470	Ser	Arg	Leu	Glu		Asp	Val	Gly	Thr	
	Glu	Pro	Ala	Asp		Ser	Thr	Tla	7 cn	475	T 0	17a 7	T1 -	Asn	480
				485		501	1111	116	490	ASII	Leu	vai	тте	495	TIE
Ser	Ser	Ile	Asp	Gly	Ala	Lys	Lys	Ala		Ile	Glu	Thr	Lvs	Ala	Thr
			500					505					510		
Ser	Lys	Asn	Leu	Thr	Leu	Ser	Gly	Thr	Ile	Thr	Leu	Leu	Asp	Pro	Thr
		515					520					525			
GIA	530	Pne	Tyr	Glu	Asn	His	Ser	Leu	Arg	Asn		Gln	Ser	Tyr	Asp
Tle		Glu	ī.eu	Luc	c f A	535	~1	The	37 - 7	m\	540	m)			
545			1100	цуз	550	Ser	GIY	1111	val	555	ser	Thr	Ala	Val	
Pro	Asp	Pro	Ile	Met		Glu	Lvs	Phe	His	Tvr	Glv	Tvr	Gln	Gly	560
				565					570					575	
Trp	Gly	Pro	Ile	Val	\mathtt{Trp}	Gly	Thr	Gly	Ala	Ser	Thr	Thr	Ala	Thr	Phe
			580					585					590		
Asn	Trp	Thr	Lys	Thr	Gly	Tyr		Pro	Asn	Pro	Glu		Ile	Gly	Ser
Len	Val	595 Pro	λen	Sar	T OU	Т~~	600	7. 7.	D1	-1.	_	605	_	_	
204	610	110	ASII	261	neu	615	ASII	Ala	Pne	ше		ile	Ser	Ser	Leu
His		Leu	Met	Glu	Thr		Asn	Glu	Gly	T.A.II	620	Glar	λαν	Arg	71.
625	•				630			014	Gry	635	GIII	Gry	Asp	Arg	640
Phe	Trp	Cys	Ala	Gly	Leu	Ser	Asn	Phe	Phe	His	Lys	Asp	Ser	Thr	Lvs
				645					650					655	
Thr	Arg	Arg	Gly	Phe	Arg	His	Leu		Gly	Gly	Tyr	Val	Ile	Gly	Gly
			660					665					670		
usii	ьeп	675	TIII	cys	ser	Asp		Пе	Leu	Ser	Ala		Phe	Cys	Gln
Leu	Phe		Ara	Asp	Arc	Asn	680	Dhe	Val.	~ ומ	Lare	685	01 -	Gly	ml-
	690	1	3	P	3	695	- y -	- 116	vai	n.d	700	ASII	GIII	сту	inr

```
Val Tyr Gly Gly Thr Leu Tyr Tyr Gln His Asn Glu Thr Tyr Ile Ser
705
                   710
                                      715
Leu Pro Cys Lys Leu Arg Pro Cys Ser Leu Ser Tyr Val Pro Thr Glu
               725
                                   730
Ile Pro Val Leu Phe Ser Gly Asn Leu Ser Tyr Thr His Thr Asp Asn
                               745
Asp Leu Lys Thr Lys Tyr Thr Thr Tyr Pro Thr Val Lys Gly Ser Trp
                           760
Gly Asn Asp Ser Phe Ala Leu Glu Phe Gly Gly Arg Ala Pro Ile Cys
                       775
Leu Asp Glu Ser Ala Leu Phe Glu Gln Tyr Met Pro Phe Met Lys Leu
                   790
                                    795
Gln Phe Val Tyr Ala His Gln Glu Gly Phe Lys Glu Gln Gly Thr Glu
                                   810
Ala Arg Glu Phe Gly Ser Ser Arg Leu Val Asn Leu Ala Leu Pro Ile
                                825
Gly Ile Arg Phe Asp Lys Glu Ser Asp Cys Gln Asp Ala Thr Tyr Asn
                           840
Leu Thr Leu Gly Tyr Thr Val Asp Leu Val Arg Ser Asn Pro Asp Cys
                       855
                                           860
Thr Thr Leu Arg Ile Ser Gly Asp Ser Trp Lys Thr Phe Gly Thr
                   870
                                       875
Asn Leu Ala Arg Gln Ala Leu Val Leu Arg Ala Gly Asn His Phe Cys
               885
                                   890
Phe Asn Ser Asn Phe Glu Ala Phe Ser Gln Phe Ser Phe Glu Leu Arg
                              905
Gly Ser Ser Arg Asn Tyr Asn Val Asp Leu Gly Ala Lys Tyr Gln Phe
       915
                           920
```

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2757 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

ATGAGATCGT	CTTTTTCCTT	GTTATTAATA	TCTTCATCTC	TAGCCTTTCC	TCTCTTAATG	60
AGTGTTTCTG	CAGATGCTGC	CGATCTCACA	TTAGGGAGTC	GTGACAGTTA	TAATGGTGAT	120
ACAAGCACCA	CAGAATTTAC	TCCTAAAGCG	GCAACTTCTG	ATGCTAGTGG	CACGACCTAT	180
ATTCTCGATG	GGGATGTCTC	GATAAGCCAA	GCAGGGAAAC	AAACGAGCTT	AACCACAAGT	240
		AAATCTTACC				300
GACAATATTA	TTTCGTCTAC	TGTTGCAGGT	GTTGTTGTTA	GCAATACAGC	AGCTTCTGGG	360
ATTACGAAAT		TTCAACTCTT				420
AAAGGAGCCA	TTAAAATTAC	CGATGGTCTG	GTGTTTGAGA	GTATAGGGAA	TCTTGACCAA	480
		AAATGGGGGA				540
GGGAGTACGC	GGTTTGTAGC	GTTCCTTGGC	AATAGCTCGT	CGCAACAAGG	GGGAGCGATC	600
		GATTTCTGAG				660
AGTGCGACAA	CATCAGGAGG	CGCGATCTCT	GCTGAAGGGA	ACCTTCTCAT	CTCCAATAAC	720
CAAAATATCT	TTTTCGATGG		ACTACAAATG	GCGGAGCTAT		. – •
AAAGCAGGGG	CGAACCCAGA		ACTCTTTCAG		TGATTGTAAC	780
		TAGTGGAGGT			CCTGCATTTT	840
TCAGGACGAG		ATTTTCTAAC		-	GGTGTTATCC	900
	O. COMOTOTI	HILLCIMAC	AACAAAGCIG	CGAATGCTAC	TCCTAAAGGA	960

WO 98/58953

```
GGGGCAATTG CGATTCTAGA TTCTGGAGAG ATTAGCATTT CTGCAGATCT CGGCAATATC
ATTTTCGAGG GCAATACTAC GAGCACTACA GGAAGTCCTG CGAGTGTGAC CAGAAATGCT 1080
ATAGATCTTG CATCGAATGC AAAATTTTTA AATCTCCGAG CGACTCGGGG AAATAAAGTT 1140
ATTTTCTATG ATCCTATCAC GAGCTCAGGA GCTACTGATA AGCTCTCTTT GAATAAAGCT 1200
GACGCAGGAT CTGGAAATAC CTATGAAGGC TACATCGTTT TCTCTGGAGA GAAACTCTCA 1260
GAAGAGGAAC TTAAGAAACC TGACAATCTG AAGTCTACAT TTACACAGGC TGTAGAGCTT
GCTGCAGGTG CCTTAGTATT GAAAGATGGA GTGACTGTAG TTGCAAATAC TATAACGCAG 1380
GTCGAGGGAT CGAAAGTCGT TATGGATGGA GGGACTACTT TTGAGGCAAG CGCTGAGGGG 1440
GTCACTCTCA ATGGCCTAGC CATTAATATA GATTCCTTAG ATGGGACAAA TAAAGCTATC 1500
ATTAAGGCGA CGGCAGCAAG TAAGGATGTT GCCTTATCAG GGCCTATCAT GCTTGTAGAT 1560
GCTCAGGGGA ACTATTATGA GCATCATAAT CTCAGTCAAC AGCAGGTCTT TCCTTTAATA 1620
GAGCTTTCTG CACAAGGAAC GATGACTACT ACAGATATCC CCGATACCCC AATTCTAAAT 1680
ACTACGAATC ACTATGGGTA TCAAGGAACT GGAATAATTG TTTGGGTCGA CGATGCAACT
GCAAAAACAA AAAATGCTAC CTTAACTTGG ACTAAAACAG GATACAAGCC GAATCCAGAA
CGTCAGGGAC CTTTGGTTCC TAATAGCCTG TGGGGTTCTT TTGTCGATGT CCGCTCCATT 1860
CAGAGCCTCA TGGACCGGAG CACAAGTTCG TTATCTTCGT CAACAAATTT GTGGGTATCA 1920
GGAATCGCGG ACTTTTTGCA TGAAGATCAG AAAGGAAACC AACGTAGTTA TCGTCATTCT 1980
AGCGCGGGTT ATGCATTAGG AGGAGGATTC TTCACGGCTT CTGAAAATTT CTTTAATTTT 2040
GCTTTTTGTC AGCTTTTTGG CTACGACAAG GACCATCTTG TGGCTAAGAA CCATACCCAT 2100
GTATATGCAG GGGCAATGAG TTACCGACAC CTCGGAGAGT CTAAGACCCT CGCTAAGATT
TTGTCAGGAA ATTCTGACTC CCTACCTTTT GTCTTCAATG CTCGGTTTGC TTATGGCCAT
                                                                 2220
ACCGACATA ACATGACCAC AAAGTACACT GGCTATTCTC CTGTTAAGGG AAGCTGGGGA 2280
AATGATGCCT TCGGTATAGA ATGTGGAGGA GCTATCCCGG TAGTTGCTTC AGGACGTCGG 2340
TCTTGGGTGG ATACCCACAC GCCATTTCTA AACCTAGAGA TGATCTATGC ACATCAGAAT 2400
GACTTTAAGG AAAACGGCAC AGAAGGCCGT TCTTTCCAAA GTGAAGACCT CTTCAATCTA 2460
GCGGTTCCTG TAGGGATAAA ATTTGAGAAA TTCTCCGATA AGTCTACGTA TGATCTCTCC 2520
ATAGCTTACG TTCCCGATGT GATTCGTAAT GATCCAGGCT GCACGACAAC TCTTATGGTT
TCTGGGGATT CTTGGTCGAC ATGTGGTACA AGCTTGTCTA GACAAGCTCT TCTTGTACGT 2640
GCTGGAAATC ATCATGCCTT TGCTTCAAAC TTTGAAGTTT TCAGTCAGTT TGAAGTCGAG 2700
TTGCGAGGTT CTTCTCGTAG CTATGCTATC GATCTTGGAG GAAGATTCGG ATTTTAA
                                                                  2757
```

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 918 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

 Met
 Arg
 Ser
 Ser
 Phe
 Ser
 Leu
 Leu
 Leu
 Ile
 Ser
 Ser
 Ser
 Leu
 Ala
 Phe
 Phe
 J5
 J5
 J5
 J6
 J7
 <

Val	Ser	Asn 115	Thr	Ala	Ala	Ser	Gly 120	Ile	Thr	Lys	Phe	Ser 125	Gly	Phe	Ser
Thr	Leu 130	Arg	Met	Leu	Ala	Ala 135		Arg	Thr	Thr	Gly 140		Gly	Ala	Ile
Lvs	Ile	Thr	qaA	Glv	Leu		Phe	Glu	Ser	Tle		λen	Leu	λαη	Cln
145					150			014	001	155	GLY	Mali	Leu	Asp	
	Glu	Asn	Ala	Ser		Glu	λen	Gly	G137		тіс	7 ~~	Thr	T	160
				165	001	GIU	ASII	GIY		Ald	116	ASII	Thr		Thr
T AN	Ca~	Lou	The		C	mb	3	Dl	170			_		175	
TEU	Ser	Leu		GIA	ser	Thr	Arg		Val	Ala	Phe	Leu	${\tt Gly}$	Asn	Ser
0		~ 7	180					185					190		
Ser	Ser	Gin	Gin	GIY	GIY	Ala		Tyr	Ala	Ser	Gly	Asp	Ser	Val	Ile
		195					200					205			
Ser	Glu	Asn	Ala	Gly	Ile	Leu	Ser	Phe	Gly	Asn	Asn	Ser	Ala	Thr	Thr
	210					215					220				
Ser	Gly	Gly	Ala	Ile	Ser	Ala	Glu	Gly	Asn	Leu	Val	Ile	Ser	Asn	Asn
225					230					235					240
Gln	Asn	Ile	Phe	Phe	qzA	Glv	Cvs	Lvs	Ala		Thr	Asn	Gly	Glv	Δla
				245	-	-	-2-	-1-	250				O-y	255	ALG
Ile	Asp	Cvs	Asn		Ala	Glv	Δla	Δen		Acn	Dro	Tlo	Leu	The	T 0
		-1-	260	_,_		CLY	ALG	265	FIO	ASD	PIO	TIG		IIII	Leu
Ser	Glaz	Δen		802	Ten	uio	Dha		3	3	m)		270	_	_
JCI	OTA	275	Giu	SEL	Leu	urs		Leu	Asn	Asn	Thr		Gly	Asn	Ser
01. -	01.		T1 -	m		_	280	_				285			
GLY	GIY	Ala	TTE	Tyr	Thr		гàг	Leu	Val	Leu	Ser	Ser	Gly	Arg	Gly
	290	_		_		295					300				
GLY	Val	Leu	Phe	Ser		Asn	Lys	Ala	Ala	Asn	Ala	Thr	Pro	Lys	Gly
305					310					315					320
Gly	Ala	Ile	Ala	Ile	Leu	Asp	Ser	Gly	Glu	Ile	Ser	Ile	Ser	Ala	Asp
				325					330					335	
Leu	Gly	Asn	Ile	Ile	Phe	Glu	Gly	Asn	Thr	Thr	Ser	Thr	Thr	Glv	Ser
			340				_	345					350	1	
Pro	Ala	Ser	Val	Thr	Arq	Asn	Ala		Asp	ī.en	Δla	Ser	Asn	λla	Luc
		355			,		360				2114	365	r.SII	TTG	цуъ
Phe	Leu	Asn	Leu	Ara	Ala	Thr		Glv	Acn	Lare	Val		Phe	Т	7.00
	370			3		375	5	O-1	21011	Буз	380	116	FILE	ıyı	Asp
Pro		Thr	Ser	Ser	Glv		Thr	700	Taro	T 0		Ť	Asn	T	2.7 -
385				UCI	390	AIG	TIII	Asp	пуѕ		ser	Leu	ASI	гÀг	
	Λ1 ¬	Gly	ea~	C1		mb	m	a 1	~ 1	395				_	400
лэр	ALG	Gry	361		MSII	TILL	TAL	GIU			тте	vaı	Phe		GLY
C1	T	T	0	405	a 1	~ 3	_	_	410					415	
GIU	гуѕ	Leu			Glu						Asp	Asn	Leu	Lys	Ser
m	73	_1	420										430		
Thr	Pne	Thr	Gin	Ala	Val	Glu	Leu	Ala	Ala	Gly	Ala	Leu	Val	Leu	Lys
	_	435					440					445			
Asp	Gly	Val	Thr	Val	Val	Ala	Asn	Thr	Ile	Thr	Gln	Val	Glu	Gly	Ser
	450					455					460				
Lys	Val	Val	Met	Asp	Gly	Gly	Thr	Thr	Phe	Glu	Ala	Ser	Ala	Glu	Glv
465					470	-				475					480
Val	Thr	Leu	Asn	Gly	Leu	Ala	Ile	Asn	Ile	Asp	Ser	Len	Asp	Glaz	Thr
				485					490					495	
Asn	Lvs	Ala	Ile		Lvs	Δla	Thr	Δla			Lare	λαν	Val	712	T
	-2-		500		2,5	mu	1111		ALG	261	цуѕ	Asp		ALa	ren
Ser	Glv	Pro		M≥+	Len	77-7	7 ~~	505	C1~	01-		œ-	510	~ 7	
	- Ly	515	-16	1-1€ €	nea	val			GTU	сту	ASÑ		Tyr	GLu	His
и÷	7			01	~ 7	~-	520		_	_		525			
uis	ASII	ьeu	ser	GID	GIN			Phe	Pro	Leu			Leu	Ser	Ala
<i>a</i> 3	530	ω,				535					540				
GIN	GTA	Thr	Met	Thr			Asp	Ile	Pro	Asp	Thr	Pro	Ile	Leu	Asn
545					550					555					560
Thr	Thr	Asn	His	Tyr	Gly	Tyr	Gln	Gly	Thr	Gly	Ile	Ile	Val	Trp	Val
														_	

				565					570					575	
			580					585					590	Thr	_
		595					600					605		Pro	
	610					615					620			Leu	
625					630					635				Val	640
				645					650					Arg 655	
			660					665					670	Phe	
		675					680					685		Gly	-
	690					695					700			Ala	
705					710					715				Lys	720
				725					730					Arg 735	
			740					745					750	Gly	
		755					760					765		Glu	_
	770					775					780			Val	
785					790					795				Gln	800
				805					810					Glu 815	
			820					825					830	Phe	
		835					840					845		Val	
	850					855					860			Asp	
865					870					875				Val	880
				885					890					Ser 895	
			900			Gly	Ser	Ser 905	Arg	Ser	Tyr	Ala	Ile 910	Asp	Leu
Gly	Gly	Arg		Gly	Phe										

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2787 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

ATGAAATCCT	CTCTTCATTG	GTTTGTAATC	TCGTCATCTT	TAGCACTTCC	CTTGTCACTA	60
AATTTCTCTG	CGTTTGCTGC	TGTTGTTGAA	ATCAATCTAG	GACCTACCAA	TAGCTTCTCT	120
GGACCAGGAA	CCTACACTCC	TCCAGCCCAA	ACAACAAATG	CAGATGGAAC	TATCTATAAT	180
CTAACAGGGG	ATGTCTCAAT	CACCAATGCA	GGATCTCCGA	CAGCTCTAAC	CGCTTCCTGC	240
TTTAAAGAAA	CTACTGGGAA	TCTTTCTTTC	CAAGGCCACG	GCTACCAATT	TCTCCTACAA	300
AATATCGATG	CGGGAGCGAA	CTGTACCTTT	ACCAATACAG	CTGCAAATAA	GCTTCTCTCC	360
TTTTCAGGAT	TCTCCTATTT	GTCACTAATA	CAAACCACGA	ATGCTACCAC	AGGAACAGGA	420
GCCATCAAGT	CCACAGGAGC	TTGTTCTATT	CAGTCGAACT	ATAGTTGCTA	CTTTGGCCAA	480
AACTTTTCTA	ATGACAATGG	AGGCGCCCTC	CAAGGCAGCT	CTATCAGTCT	ATCGCTAAAC	540
CCCAACCTAA	CGTTTGCCAA	AAACAAAGCA	ACGCAAAAAG	GGGGTGCCCT	CTATTCCACG	600
GGAGGGATTA	CAATTAACAA	TACGTTAAAC	TCAGCATCAT	TTTCTGAAAA	TACCGCGGCG	660
AACAATGGCG	GAGCCATTTA	CACGGAAGCT	AGCAGTTTTA	TTAGCAGCAA	CAAAGCAATT	720
AGCTTTATAA	ACAATAGTGT	GACCGCAACC	TCAGCTACAG	GGGGAGCCAT	TTACTGTAGT	780
AGTACATCAG	CCCCCAAACC	AGTCTTAACT	CTATCAGACA	ACGGGGAACT	GAACTTTATA	840
GGAAATACAG	CAATTACTAG	TGGTGGGGCG	ATTTATACTG	ACAATCTAGT	TCTTTCTTCT	900
GGAGGACCTA	CGCTTTTTAA	AAACAACTCT	GCTATAGATA	CTGCAGCTCC	CTTAGGAGGA	960
GCAATTGCGA	TTGCTGACTC	TGGATCTTTG	AGTCTTTCGG	CTCTTGGTGG	AGACATCACT	1020
TTTGAAGGAA	ACACAGTAGT	CAAAGGAGCT	TCTTCGAGTC	AGACCACTAC	CAGAAATTCT	1080
ATTAACATCG	GAAACACCAA	TGCTAAGATT	GTACAGCTGC	GAGCCTCTCA	AGGCAATACT	1140
ATCTACTTCT	ATGATCCTAT	AACAACTAAC	CATACTGCAG	CTCTCTCACA	TCCTCTAAAC	1200
TTAAATGGTC	CTGACCTTGC	AGGGAATCCT	GCATATCAAG	GAACCATCCT	ATTTTCTCA	1260
GAGAAGCTCT	CGGAAGCAGA	AGCTGCAGAA	GCTGATAATC	TCANATCTAC	ATTICIONA	
CCTCTAACTC	TTGCGGGAGG	GCAACTCTCT	CTTAAATCAG	CACTCACTCT	AMIICAGCAA	1320
TCCTTTTCGC	AATCTCCGGG	CTCTACCCTC	CTCATGGATG	CACCCACCAC	AGTIGCTAAG	1380
GCTGATGGGA	ТСАСТАТСАА	TAATCTTCTT	CTCAATGTAG	A TUTO COTTON A A	ATTAGAAACC	1440
AAGGCTACGC	TAAAAGCAAC	ACANCCANCT	CAGACAGTCA	ATTCCTTAAA	AGAGACCAAG	1500
CTTGTAGATC	CTTCTGGAAA	TCTCTACCAAGI	GATGTCTCTT	CITTATCTGG	ATCGCTCTCT	1560
тсттстстса	CTCTTACTCC	TCACCACCCC	GCGAATATTC	GGAATAACCC	TCAAGTCTTT	1620
GATCCCCTAG	AAAAAAATCC	TATCCATTCC	GGATACCAAG	ACATCACAGA	CTTAGCTGCT	1680
CAACACCATA	CTCCCACTAA	ATCCALIGG	GGATACCAAG	GGAATTGGGC	ATTATCTTGG	1740
AATCCGAATC	CTCACCCTCC	TCCA A CCTTA	GCGACTCTTA	CCTGGACAAA	AACAGGATAC	1800
CATCTCCCCT	CIGAGCGICG	COMMONTA	GTTGCTAACA	CGCTATGGGG	ATCCTTTGTT	1860
CCCATCTCCT	CTCNACACA	GCTTGTAGCC	ACTAAAGTAC	GCCAATCTCA	AGAAACTCGC	1920
COMMUNICACION	A CAMA A CORGO	CICGAACTIC	TTCCATAAAG	ATAGCACGAA	GATAAATAAA	1980
A A TO COTTON TO A	ACATAAGTGC	AGGTTATGTT	GTAGGAGCGA	CTACAACATT	AGCTTCTGAT	2040
AAICITAICA	CTGCAGCCTT	CTGCCAATTA	TTCGGGAAAG	ATAGAGATCA	CTTTATAAAT	2100
AAAAATAGAG	CTTCTGCCTA	TGCAGCTTCT	CTCCATCTCC	AGCATCTAGC	GACCTTGTCT	2160
TCTCCAAGCT	TGTTACGCTA	CCTTCCTGGA	TCTGAAAGTG	AGCAGCCTGT	CCTCTTTGAT	2220
GCTCAGATCA	GCTATATCTA	TAGTAAAAAT	ACTATGAAAA	CCTATTACAC	CCAAGCACCA	2280
AAGGGAGAGA	GCTCGTGGTA	TAATGACGGT	TGCGCTCTGG	AACTTGCGAG	CTCCCTACCA	2340
CACACTGCTT	TAAGCCATGA	GGGTCTCTTC	CACGCGTATT	TTCCTTTCAT	CAAAGTAGAA	2400
GCTTCGTACA	TACACCAAGA	TAGCTTCAAA	GAACGTAATA	CTACCTTGGT	ACGATCTTTC	2460
GATAGCGGTG	ATTTAATTAA	CGTCTCTGTG	CCTATTGGAA	TTACCTTCGA	GAGATTCTCG	2520
AGAAACGAGC	GTGCGTCTTA	CGAAGCTACT	GTCATCTACG	TTGCCGATGT	CTATCGTAAG	2580
AATCCTGACT	GCACGACAGC	TCTCCTAATC	AACAATACCT	CGTGGAAAAC	TACAGGAACG	2640
AATCTCTCAA	GACAAGCTGG	TATCGGAAGA	GCAGGGATCT	TTTATGCCTT	CTCTCCAAAT	2700
CTTGAGGTCA	CAAGTAACCT	ATCTATGGAA	ATTCGTGGAT	CTTCACGCAG	CTACAATGCA	2760
GATCTTGGAG	GTAAGTTCCA	GTTCTAA				2787
						-

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 928 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEO ID NO:14:

Met Lys Ser Ser Leu His Trp Phe Val Ile Ser Ser Ser Leu Ala Leu Pro Leu Ser Leu Asn Phe Ser Ala Phe Ala Ala Val Val Glu Ile Asn 25 Leu Gly Pro Thr Asn Ser Phe Ser Gly Pro Gly Thr Tyr Thr Pro Pro Ala Gln Thr Thr Asn Ala Asp Gly Thr Ile Tyr Asn Leu Thr Gly Asp 55 . Val Ser Ile Thr Asn Ala Gly Ser Pro Thr Ala Leu Thr Ala Ser Cys 70 75 Phe Lys Glu Thr Thr Gly Asn Leu Ser Phe Gln Gly His Gly Tyr Gln 90 Phe Leu Leu Gln Asn Ile Asp Ala Gly Ala Asn Cys Thr Phe Thr Asn 105 Thr Ala Ala Asn Lys Leu Leu Ser Phe Ser Gly Phe Ser Tyr Leu Ser 120 Leu Ile Gln Thr Thr Asn Ala Thr Thr Gly Thr Gly Ala Ile Lys Ser 135 Thr Gly Ala Cys Ser Ile Gln Ser Asn Tyr Ser Cys Tyr Phe Gly Gln 150 155 Asn Phe Ser Asn Asp Asn Gly Gly Ala Leu Gln Gly Ser Ser Ile Ser 165 170 Leu Ser Leu Asn Pro Asn Leu Thr Phe Ala Lys Asn Lys Ala Thr Gln 185 Lys Gly Gly Ala Leu Tyr Ser Thr Gly Gly Ile Thr Ile Asn Asn Thr 200 Leu Asn Ser Ala Ser Phe Ser Glu Asn Thr Ala Ala Asn Asn Gly Gly 215 220 Ala Ile Tyr Thr Glu Ala Ser Ser Phe Ile Ser Ser Asn Lys Ala Ile 230 Ser Phe Ile Asn Asn Ser Val Thr Ala Thr Ser Ala Thr Gly Gly Ala 250 Ile Tyr Cys Ser Ser Thr Ser Ala Pro Lys Pro Val Leu Thr Leu Ser 265 Asp Asn Gly Glu Leu Asn Phe Ile Gly Asn Thr Ala Ile Thr Ser Gly 280 Gly Ala Ile Tyr Thr Asp Asn Leu Val Leu Ser Ser Gly Gly Pro Thr 295 Leu Phe Lys Asn Asn Ser Ala Ile Asp Thr Ala Ala Pro Leu Gly Gly 310 315 Ala Ile Ala Ile Ala Asp Ser Gly Ser Leu Ser Leu Ser Ala Leu Gly 325 330 Gly Asp Ile Thr Phe Glu Gly Asn Thr Val Val Lys Gly Ala Ser Ser 345 Ser Gln Thr Thr Arg Asn Ser Ile Asn Ile Gly Asn Thr Asn Ala 360 Lys Ile Val Gln Leu Arg Ala Ser Gln Gly Asn Thr Ile Tyr Phe Tyr 375 380 Asp Pro Ile Thr Thr Asn His Thr Ala Ala Leu Ser Asp Ala Leu Asn 390 395 Leu Asn Gly Pro Asp Leu Ala Gly Asn Pro Ala Tyr Gln Gly Thr Ile 410 Val Phe Ser Gly Glu Lys Leu Ser Glu Ala Glu Ala Glu Ala Asp 425 Asn Leu Lys Ser Thr Ile Gln Gln Pro Leu Thr Leu Ala Gly Gly Gln

		435					440					445			
Leu	Ser 450	Leu	Lys	Ser	Gly	Val 455		Leu	Val	Ala	Lys 460	Ser	Phe	Ser	Gln
Ser 465	Pro	Gly	Ser	Thr	Leu 470	Leu	Met	Asp	Ala	Gly 475	Thr	Thr	Leu	Glu	Thr 480
Ala	Asp	Gly	Ile	Thr 485	Ile	Asn	Asn	Leu	Val 490	Leu	Asn	Val	Asp	Ser 495	Leu
			500					505	Ala				510		
		515					520		Val			525			
	530					535			Gln		540				
545					550				His	555					560
				565					Trp 570					575	
			580					585	Thr				590		
		595					600		Pro			605			
	610					615			Ser		620				
625					630				Arg	635					640
				645					Phe 650					655	
			660					665	Ser				670		_
		675					680		Leu			685			
	690					695			Phe		700				
705					710				Gly	715					Ser 720
				725					730 Ile					735	
			740					745					750		Met
		755					760					765			Leu
	770					775					780				Glu
785					790					795					800 Leu
				805					810					815	Ile
			820					825					830		Glu
		835					840					845			Cys
	850					855					860				Thr
865					870					875					880 Ala
			J	885	_	-1	-	y	890		y		- 114	895	AIG

- (2) INFORMATION FOR SEQ ID NO:15:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2793 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

ATGAAAATAC	CCTTGCACAA	ACTCCTGATC	TCTTCGACTC	TTGTCACTCC	CATTCTATTG	60
AGCATTGCAA	CTTACGGAGC	AGATGCTTCT	TTATCCCCTA	CAGATAGCTT	TGATGGAGCG	120
GGCGGCTCTA	CATTTACTCC	AAAATCTACA	GCAGATGCCA	ATGGAACGAA	CTATGTCTTA	180
TCAGGAAATG	TCTATATAAA	CGATGCTGGG	AAAGGCACAG	CATTAACAGG	CTGCTGCTTT	240
ACAGAAACTA	CGGGTGATCT	GACATTTACT	GGAAAGGGAT	ACTCATTTTC	ATTCAACACG	300
GTAGATGCGG	GTTCGAATGC	AGGAGCTGCG	GCAAGCACAA	CTGCTGATAA	AGCCCTAACA	360
TTCACAGGAT	TTTCTAACCT	TTCCTTCATT	GCAGCTCCTG	GAACTACAGT	TGCTTCAGGA	420
AAAAGTACTT	TAAGTTCTGC	AGGAGCCTTA	AATCTTACCG	ATAATGGAAC	GATTCTCTTT	480
AGCCAAAACG	TCTCCAATGA	AGCTAATAAC	AATGGCGGAG	CGATCACCAC	AAAAACTCTT	540
TCTATTTCTG	GGAATACCTC	TTCTATAACC	TTCACTAGTA	ATAGCGCAAA	AAAATTAGGT	600
GGAGCGATCT	ATAGCTCTGC	GGCTGCAAGT	ATTTCAGGAA	ACACCGGCCA	GTTAGTCTTT	660
ATGAATAATA	AAGGAGAAAC	TGGGGGCGGG	GCTCTGGGCT	TTGAAGCCAG	CTCCTCGATT	720
ACTCAAAATA	GCTCCCTTTT	CTTCTCTGGA	AACACTGCAA	CAGATGCTGC	AGGCAAGGGC	780
GGGGCCATTT	ATTGTGAAAA	AACAGGAGAG	ACTCCTACTC	TTACTATCTC	TGGAAATAAA	840
AGTCTGACCT	TCGCCGAGAA	CTCTTCAGTA	ACTCAAGGCG	GAGCAATCTG	TGCCCATGGT	900
CTAGATCTTT	CCGCTGCTGG	CCCTACCCTA	TTTTCAAATA	ATAGATGCGG	GAACACAGCT	960
GCAGGCAAGG	GCGGCGCTAT	TGCAATTGCC	GACTCTGGAT	CTTTAAGTCT	CTCTGCAAAT	1020
CAAGGAGACA	TCACGTTCCT	TGGCAACACT	CTAACCTCAA	CCTCCGCGCC	AACATCGACA	1080
CGGAATGCTA	TCTACCTGGG	ATCGTCAGCA	AAAATTACGA	ACTTAAGGGC	AGCCCAAGGC	1140
CAATCTATCT	ATTTCTATGA	TCCGATTGCA	TCTAACACCA	CAGGAGCTTC	AGACGTTCTG	1200
ACCATCAACC	AACCGGATAG	CAACTCGCCT	TTAGATTATT	CAGGAACGAT	TGTATTTTCT	1260
GGGGAAAAGC	TCTCTGCAGA	TGAAGCGAAA	GCTGCTGATA	ACTTCACATC	TATATTAAAG	1320
CAACCATTGG	CTCTAGCCTC	TGGAACCTTA	GCACTCAAAG	GAAATGTCGA	GTTAGATGTC	1380
AATGGTTTCA	CACAGACTGA	AGGCTCTACA	CTCCTCATGC	AACCAGGAAC	AAAGCTCAAA	1440
GCAGATACTG	AAGCTATCAG	TCTTACCAAA	CTTGTCGTTG	ATCTTTCTGC	CTTAGAGGGA	1500
AATAAGAGTG	TGTCCATTGA	AACAGCAGGA	GCCAACAAAA	CTATAACTCT	AACCTCTCCT	1560
CTTGTTTTCC	AAGATAGTAG	CGGCAATTTT	TATGAAAGCC	ATACGATAAA	CCAAGCCTTC	1620
ACGCAGCCTT	TGGTGGTATT	CACTGCTGCT	ACTGCTGCTA	GCGATATTTA	TATCGATGCG	1680
CTTCTCACTT	CTCCAGTACA	AACTCCAGAA	CCTCATTACG	GGTATCAGGG	ACATTGGGAA	1740
GCCACTTGGG	CAGACACATC	AACTGCAAAA	TCAGGAACTA	TGACTTGGGT	AACTACGGGC	1800
TACAACCCTA	ATCCTGAGCG	TAGAGCTTCC	GTAGTTCCCG	ATTCATTATG	GGCATCCTTT	1860
ACTGACATTC	GCACTCTACA	GCAGATCATG	ACATCTCAAG	CGAATAGTAT	CTATCAGCAA	1920
CGAGGACTCT	GGGCATCAGG	AACTGCGAAT	TTCTTCCATA	AGGATAAATC	AGGAACTAAC	1980
CAAGCATTCC	GACATAAAAG	CTACGGCTAT	ATTGTTGGAG	GAAGTGCTGA	AGATTTTTCT	2040
GAAAATATCT	TCAGTGTAGC	TTTCTGCCAG	CTCTTCGGTA	AAGATAAAGA	CCTGTTTATA	2100
GTTGAAAATA	CCTCTCATAA	CTATTTAGCG	TCGCTATACC	TGCAACATCG	AGCATTCCTA	2160
GGAGGACTTC	CCATGCCCTC	ATTTGGAAGT	ATCACCGACA	TGCTGAAAGA	TATTCCTCTC	2220
ATTTTGAATG	CCCAGCTAAG	CTACAGCTAC	ACTAAAAATG	ATATGGATAC	TCGCTATACT	2280
TCCTATCCTC	AAGCTCAAGG	TTCTTGGACC	AATAATTCTG	GGGCTCTAGA	GCTCGGAGGA	2340
TCTCTGGCTC	TATATCTCCC	TAAAGAAGCA	CCGTTCTTCC	AGGGATATTT	CCCCTTCTTA	2400

AAGTTCCAGG	CAGTCTACAG	CCGCCAACAA	AACTTTAAAG	AGAGTGGCGC	TGAAGCCCGT	2460
GCTTTTGATG	ATGGAGACCT	AGTGAACTGC	TCTATCCCTG	TCGGCATTCG	GTTAGAAAAA	2520
ATCTCCGAAG	ATGAAAAAA	TAATTTCGAG	ATTTCTCTAG	CCAACATTGG	TGATGTGTAT	2580
CGTAAAAATC	CCCGTTCGCG	TACTTCTCTA	ATGGTCAGTG	GAGCCTCTTG	GACTTCGCTA	2640
TGTAAAAACC	TCGCACGACA	AGCCTTCTTA	GCAAGTGCTG	GAAGCCATCT	GACTCTCTCC	2700
CCTCATGTAG	AACTCTCTGG	GGAAGCTGCT	TATGAGCTTC	GTGGCTCAGC	ACACATCTAC	2760
AATGTAGATT	GTGGGCTAAG	ATACTCATTC	TAG			2793

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 930 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Met 1	Lys	Ile	Pro	Leu 5	His	Lys	Leu	Leu	Ile	Ser	Ser	Thr	Leu	Val 15	Thr
			20					25	Gly		Asp		30	Leu	
		35					40				Thr	45			_
	50					55					Leu 60				
65					70					75	Thr				80
				85					90		Lys			95	
			100	-				105			Gly		110		
		115					120				Phe	125	Asn		
	130					135					Gly 140				
145					150					155	Gly				160
				165					170		Gly			175	
			180					185			Ser		190	Phe	
		195					200				Tyr	205	Ser		
	210					215					Phe 220				
225					230					235	Ala				240
				245					250		Thr			255	
			260					265			Thr		270	Thr	
Thr	Leu	Thr 275	Ile	Ser	Gly	Asn	Lys 280	Ser	Leu	Thr	Phe	Ala 285	Glu	Asn	Ser
Ser	Val	Thr	Gln	Gly	Gly	Ala	Ile	Cys	Ala	His	Gly		Asp	Leu	Ser

	290					295					300				
Ala 305	Ala	Gly	Pro	Thr	Leu 310	Phe	Ser	Asn	Asn	Arg 315		Gly	Asn	Thr	
	Gly	Lys	Gly	Gly 325		Ile	Ala	Ile			Ser	Gly	Ser	Leu	320 Ser
Leu	Ser	Ala	Asn 340		Gly	Asp	Ile		330 Phe	Leu	Gly	Asn		335 Leu	Thr
Ser	Thr	Ser 355		Pro	Thr	Ser		345 Arg	Asn	Ala	Ile		350 Leu	Gly	Ser
Ser	Ala 370		Ile	Thr	Asn	Leu 375	360 Arg	Ala	Ala	Gln		365 Gln	Ser	Ile	Tyr
Phe		Asp	Pro	Ile	Ala		Asn	Thr	Thr	Gly	380 Ala	Ser	Asp	Val	Leu
385					390					395					400
				405					410					Gly 415	
			420					425					430	Ala	
		435					440					445		Ser	_
	450					455					460			Phe	
465					470					475				Leu	480
Ala	Asp	Thr	Glu	Ala 485	Ile	Ser	Leu	Thr	Lys 490	Leu	Val	Val	Asp	Leu 495	Ser
Ala	Leu	Glu	Gly 500	Asn	Lys	Ser	Val	Ser 505		Glu	Thr	Ala	Gly 510	Ala	Asn
Lys	Thr	Ile 515	Thr	Leu	Thr	Ser	Pro 520		Val	Phe	Gln	Asp 525		Ser	Gly
Asn	Phe 530	Tyr	Glu	Ser	His	Thr 535		Asn	Gln	Ala	Phe 540	Thr	Gln	Pro	Leu
Val 545	Val	Phe	Thr	Ala	Ala 550		Ala	Ala	Ser	Asp 555		Tyr	Ile	Asp	Ala 560
Leu	Leu	Thr	Ser	Pro 565		Gln	Thr	Pro	Glu 570		His	Tyr	Gly	Tyr 575	Gln
Gly	His	Trp	Glu 580		Thr	Trp	Ala	Asp 585		Ser	Thr	Ala	Lys 590	Ser	Gly
Thr	Met	Thr 595		Val	Thr	Thr	Gly 600		Asn	Pro	Asn	Pro 605		Arg	Arg
Ala	Ser 610		Val	Pro	Asp	Ser 615		Trp	Ala	Ser	Phe 620		Asp	Ile	Arg
Thr 625		Gln	Gln	Ile	Met 630		Ser	Gln	Ala	Asn 635		Ile	Tyr	Gln	Gln
	Gly	Leu	Trp	Ala 645		Gly	Thr	Ala	Asn 650		Phe	His	Lys	Asp	640 Lys
Ser	Gly	Thr	Asn 660	_	Ala	Phe	Arg	His 665		Ser	Tyr	Gly		655 Ile	Val
Gly	Gly	Ser 675		Glu	Asp	Phe	Ser 680		Asn	Ile	Phe	Ser 685	670 Val	Ala	Phe
Cys	Gln 690	_	Phe	Gly	Lys	Asp 695		Asp	Leu	Phe	Ile 700		Glu	Asn	Thr
Ser		Asn	Tyr	Leu			Leu	Tyr	Leu	Gln		Arg	Ala	Phe	Leu
705					710					715					720
				725					730					735	Lys
	-10	110	740	*16	Leu	ASN	AIā	745	ren	ser	Tyr	ser	Tyr 750	Thr	Lys

65

```
Asn Asp Met Asp Thr Arg Tyr Thr Ser Tyr Pro Glu Ala Gln Gly Ser
       755 760
Trp Thr Asn Asn Ser Gly Ala Leu Glu Leu Gly Gly Ser Leu Ala Leu
                      775
Tyr Leu Pro Lys Glu Ala Pro Phe Phe Gln Gly Tyr Phe Pro Phe Leu
                 790
                                    795
Lys Phe Gln Ala Val Tyr Ser Arg Gln Gln Asn Phe Lys Glu Ser Gly
              805
                                 810
Ala Glu Ala Arg Ala Phe Asp Asp Gly Asp Leu Val Asn Cys Ser Ile
                            825
Pro Val Gly Ile Arg Leu Glu Lys Ile Ser Glu Asp Glu Lys Asn Asn
                          840
Phe Glu Ile Ser Leu Ala Asn Ile Gly Asp Val Tyr Arg Lys Asn Pro
                      855
                                         860
Arg Ser Arg Thr Ser Leu Met Val Ser Gly Ala Ser Trp Thr Ser Leu
                  870
                                     875
Cys Lys Asn Leu Ala Arg Gln Ala Phe Leu Ala Ser Ala Gly Ser His
              885
                                 890
Leu Thr Leu Ser Pro His Val Glu Leu Ser Gly Glu Ala Ala Tyr Glu
                   905
Leu Arg Gly Ser Ala His Ile Tyr Asn Val Asp Cys Gly Leu Arg Tyr
       915
                      920
                                             925
Ser Phe
    930
```

- (2) INFORMATION FOR SEQ ID NO:17:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 840 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

```
GAAGACAATA TAAGGTACCG TCATAACAGC GGGGGTTATG CACTAGGGAT CACAGCAACA
ACTCCTGCCG AGGATCAGCT TACTTTTGCC TTCTGCCAGC TCTTTGCTAG AGATCGCAAT
CATATTACAG GTAAGAACCA CGGAGATACT TACGGTGCCT CTTTGTATTT CCACCATACA
GAAGGGCTCT TCGACATCGC CAATTTCCTC TGGGGAAAAG CAACCCGAGC TCCCTGGGTG
CTCTCTGAGA TCTCCCAGAT CATTCCTTTA TCGTTCGATG CTAAATTCAG TTATCTCCAT
ACAGACAACC ACATGAAGAC ATATTATACC GATAACTCTA TCATCAAGGG TTCTTGGAGA
AACGATGCCT TCTGTGCAGA TCTTGGAGCT AGCCTGCCTT TTGTTATTTC CGTTCCGTAT
CTTCTGAAAG AAGTCGAACC TTTTGTCAAA GTACAGTATA TCTATGCGCA TCAGCAAGAC
                                                                   480
TTCTACGAGC GTCATGCTGA AGGACGCGCT TTCAATAAAA GCGAGCTTAT CAACGTAGAG
ATTCCTATAG GCGTCACCTT CGAAAGAGAC TCAAAATCAG AAAAGGGAAC TTACGATCTT
                                                                   600
ACTCTTATGT ATATACTCGA TGCTTACCGA CGCAATCCTA AATGTCAAAC TTCCCTAATA
                                                                   660
GCTAGCGATG CTAACTGGAT GGCCTATGGT ACCAACCTCG CACGACAAGG TTTTTCTGTT
                                                                    720
CGTGCTGCGA ACCATTTCCA AGTGAACCCC CACATGGAAA TCTTCGGTCA ATTCGCTTTT
                                                                   780
GAAGTACGAA GTTCTTCACG AAATTATAAT ACAAACCTAG GCTCTAAGTT TTGTTTCTAG
                                                                    840
```

- (2) INFORMATION FOR SEO ID NO:18:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 279 amino acids
 - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
- Glu Asp Asn Ile Arg Tyr Arg His Asn Ser Gly Gly Tyr Ala Leu Gly 10 Ile Thr Ala Thr Thr Pro Ala Glu Asp Gln Leu Thr Phe Ala Phe Cys 25 Gln Leu Phe Ala Arg Asp Arg Asn His Ile Thr Gly Lys Asn His Gly Asp Thr Tyr Gly Ala Ser Leu Tyr Phe His His Thr Glu Gly Leu Phe Asp Ile Ala Asn Phe Leu Trp Gly Lys Ala Thr Arg Ala Pro Trp Val 75 Leu Ser Glu Ile Ser Gln Ile Ile Pro Leu Ser Phe Asp Ala Lys Phe 90 Ser Tyr Leu His Thr Asp Asn His Met Lys Thr Tyr Tyr Thr Asp Asn 105 Ser Ile Ile Lys Gly Ser Trp Arg Asn Asp Ala Phe Cys Ala Asp Leu 120 Gly Ala Ser Leu Pro Phe Val Ile Ser Val Pro Tyr Leu Leu Lys Glu 135 140 Val Glu Pro Phe Val Lys Val Gln Tyr Ile Tyr Ala His Gln Gln Asp 150 155 Phe Tyr Glu Arg His Ala Glu Gly Arg Ala Phe Asn Lys Ser Glu Leu 165 170 Ile Asn Val Glu Ile Pro Ile Gly Val Thr Phe Glu Arg Asp Ser Lys 185 Ser Glu Lys Gly Thr Tyr Asp Leu Thr Leu Met Tyr Ile Leu Asp Ala 200 Tyr Arg Arg Asn Pro Lys Cys Gln Thr Ser Leu Ile Ala Ser Asp Ala 215 220 Asn Trp Met Ala Tyr Gly Thr Asn Leu Ala Arg Gln Gly Phe Ser Val 230 Arg Ala Ala Asn His Phe Gln Val Asn Pro His Met Glu Ile Phe Gly 250 Gln Phe Ala Phe Glu Val Arg Ser Ser Ser Arg Asn Tyr Asn Thr Asn 260 265 Leu Gly Ser Lys Phe Cys Phe 275
 - (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1545 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: Genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

ATGACCATAC TTCGAAATTT TCTTACCTGC TCGGCTTTAT TCCTCGCTCT CCCTGCAGCA

GCACAAGTTG	TATATCTTCA	TGAAAGTGAT	GGTTATAACG	GTGCTATCAA	TAATAAAAGC	120
TTAGAACCTA	AAATTACCTG	TTATCCAGAA	GGAACTTCTT	ACATCTTTCT	AGATGACGTG	180
AGGATTTCCA	ACGTTAAGCA	TGATCAAGAA	GATGCTGGGG	TTTTTTAAAA	TCGATCTGGG	240
AATCTTTTTT	TCATGGGCAA	CCGTTGCAAC	TTCACTTTTC	ACAACCTTAT	GACCGAGGGT	300
TTTGGCGCTG	CCATTTCGAA	CCGCGTTGGA	GACACCACTC	TCACTCTCTC	TAATTTTTCT	360
TACTTAACGT	TCACCTCAGC	ACCTCTACTA	CCTCAAGGAC	AAGGAGCGAT	TTATAGTCTT	420
GGTTCCGTGA	TGATCGAAAA	TAGTGAGGAA	GTGACTTTCT	GTGGGAACTA	CTCTTCGTGG	480
AGTGGAGCTG	CGATTTATAC	TCCCTACCTT	TTAGGTTCTA	AGGCGAGTCG	TCCTTCAGTA	540
AATCTCAGCG	GGAACCGCTA	CCTGGTGTTT	AGAGACTATG	TGAGCCAAGG	TTATGGCGGC	600
GCCGTATCTA	CCCACAATCT	CACACTCACG	ACTCGAGGAC	CTTCGTGTTT	TGAAAATAAT	660
CATGCTTATC	ATGACGTGAA	TAGTAATGGA	GGAGCCATTG	CCATTGCTCC	TGGAGGATCG	720
ATCTCTATAT	CCGTGAAAAG	CGGAGATCTC	ATCTTCAAAG	GAAATACAGC	ATCACAAGAC	780
GGAAATACAA	TACACAACTC	CATCCATCTG	CAATCTGGAG	CACAGTTTAA	GAACCTACGT	840
GCTGTTTCAG	AATCCGGAGT	TTATTTCTAT	GATCCTATAA	GCCATAGCGA	GTCGCATAAA	900
ATTACAGATC	TTGTAATCAA	TGCTCCTGAA	GGAAAGGAAA	CTTATGAAGG	AACAATTAGC	960
TTCTCAGGAC	TATGCCTGGA	TGATCATGAA	GTTTGTGCGG	AAAATCTTAC	TTCCACAATC	1020
CTACAAGATG	TCACATTAGC	AGGAGGAACT	CTCTCTCTAT	CGGATGGGGT	TACCTTGCAA	1080
CTGCATTCTT	TTAAGCAGGA	AGCAAGCTCT	ACGCTTACTA	TGTCTCCAGG	AACCACTCTG	1140
CTCTGCTCAG	GAGATGCTCG	GGTTCAGAAT	CTGCACATCC	TGATTGAAGA	TACCGACAAC	1200
TTTGTTCCTG	TAAGGATTCG	CGCCGAGGAC	AAGGATGCTC	TTGTCTCATT	AGAAAAACTT	1260
AAAGTTGCCT	TTGAGGCTTA	TTGGTCCGTC	TATGACTTTC	CTCAATTTAA	GGAAGCCTTT	1320
ACGATTCCTC	TTCTTGAACT	TCTAGGGCCT	TCTTTTGACA	GTCTTCTCCT	AGGGGAGACC	1380
ACTTTGGAGA	GAACCCAAGT	CACAACAGAG	AATGACGCCG	TTCGAGGTTT	CTGGTCCCTA	1440
AGCTGGGAAG	AGTACCCCCC	TTCTCTGGAT	AAAGACAGAA		AACTAAGAAA	1500
ACTGTTTTCC	TCACTTGGAA	TCCTGAGATC	ACTTCTACGC	CATAA		1545

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 514 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Met	Thr	Ile	Leu	Arg	Asn	Phe	Leu	Thr	Cys	Ser	Ala	Leu	Phe	Leu	Ala
1				5					10					15	
Leu	Pro	Ala	Ala	Ala	Gln	Val	Val	Tyr	Leu	His	Glu	Ser	Asp	Gly	Tyr
			20					25					30		_
Asn	Gly	Ala	Ile	Asn	Asn	Lys	Ser	Leu	Glu	${\tt Pro}$	Lys	Ile	Thr	Cys	Tyr
		35					40					45			_
Pro	Glu	Gly	Thr	Ser	Tyr	Ile	Phe	Leu	Asp	Asp	Val	Arg	Ile	Ser	Asn
	50					55					60				
Val	Lys	His	Asp	Gln	Glu	Asp	Ala	Gly	Val	Phe	Ile	Asn	Arg	Ser	Gly
65					70					75			_		80
Asn	Leu	Phe	Phe	Met	Gly	Asn	Arg	Cys	Asn	Phe	Thr	Phe	His	Asn	Leu
				85					90					95	
Met	Thr	Glu	Gly	Phe	Gly	Ala	Ala	Ile	Ser	Asn	Arg	Val	Gly	Asp	Thr
			100					105					110		
Thr	Leu	Thr	Leu	Ser	Asn	Phe	Ser	Tyr	Leu	Thr	Phe	Thr	Ser	Ala	Pro
		115					120					125			
Leu	Leu	Pro	Gln	Gly	Gln	Gly	Ala	Ile	Tyr	Ser	Leu	Gly	Ser	Val	Met
	130					135					140				
Ile	Glu	Asn	Ser	Glu	Glu	Val	Thr	Phe	Cys	Gly	Asn	Tyr	Ser	Ser	Trp

145					150					155					160
Ser	Gly	Ala	Ala	Ile	Tyr	Thr	Pro	Tyr	Leu		Glv	Ser	Lvs	Ala	Ser
				165	-			•	170		1		-1-	175	001
Arg	Pro	Ser	Val	Asn	Leu	Ser	Gly	Asn	Arg	Tyr	Leu	Val	Phe	Arg	asp
			180				_	185	Ū	•			190		F
Tyr	Val	Ser	Gln	Gly	Tyr	Gly	Gly	Ala	Val	Ser	Thr	His	Asn	Leu	Thr
		195					200					205			
Leu	Thr	Thr	Arg	Gly	Pro	Ser	Cys	Phe	Glu	Asn	Asn	His	Ala	Tyr	His
	210					215					220				
Asp	Val	Asn	Ser	Asn	Gly	Gly	Ala	Ile	Ala	Ile	Ala	Pro	Gly	Gly	Ser
225					230					235					240
Ile	Ser	Ile	Ser	Val	Lys	Ser	Gly	Asp	Leu	Ile	Phe	Lys	Gly	Asn	Thr
				245					250					255	
Ala	Ser	Gln	Asp	Gly	Asn	Thr	Ile	His	Asn	Ser	Ile	His	Leu	Gln	Ser
			260					265					270		
Gly	Ala	Gln	Phe	Lys	Asn	Leu	Arg	Ala	Val	Ser	Glu	Ser	Gly	Val	Tyr
		275					280					285			
Phe	Tyr	Asp	Pro	Ile	Ser	His	Ser	Glu	Ser	His	Lys	Ile	Thr	Asp	Leu
_	290					295					300				
Val	Ile	Asn	Ala	Pro	Glu	Gly	Lys	Glu	Thr	Tyr	Glu	Gly	Thr	Ile	Ser
305	_			_	310					315					320
Phe	Ser	Gly	Leu	Cys	Leu	Asp	Asp	His	Glu	Val	Cys	Ala	Glu	Asn	Leu
_,	_	_,		325					330					335	
Thr	Ser	Thr	Ile	Leu	Gln	Asp	Val		Leu	Ala	Gly	Gly	Thr	Leu	Ser
T	0	3	340			_		345					350		
Leu	ser	Asp	GIY	val	Thr	Leu		Leu	His	Ser	Phe		Gln	Glu	Ala
807	C0*	355	Τ	mh	Mak	0	360	~ 1			_	365			_
Ser	370	Inr	Leu	inr	мет		Pro	GLY	Thr	Thr		Leu	Cys	Ser	${ t Gly}$
Nen		λνα	V-1	C1 =	7 ~~	375	T1: -	-1			380	_			_
385	ALG	Arg	val	GIII	390	Leu	HIS	ııe	Leu		Glu	Asp	Thr	Asp	
	Val	Pro	V= l	λrα		7~~	- דת	<i>α</i> 1	7	395	2	* 7 -	-		400
1110	Val	110	vai	405	TIE	ALG	Ala	GIU	410	гуѕ	Asp	Ата	Leu	Val	Ser
Leu	Glu	Lvs	Len		Val	Δla	Dho	Glu		Т	Trans	0.000	17- 1	415 Tyr	
		2,5	420	- y 5	vai	AIG	FIIC	425	Ala	ıyı	пр	ser	430	Tyr	Asp
Phe	Pro	Gln	_	Ivs	Glu	Δla	Dhe		Tla	Dro	Lou	T 011		Leu	T
		435		_, _	014		440	1111	116	FIO	ьеи	445	GIU	Leu	Leu
Glv	Pro	Ser	Phe	Asp	Ser	Len		Len	Glv	Glu	Thr		LOW	Glu	7
	450			F		455		ncu.	Gry	Gru	460	TIII	цец	GIU	Arg
Thr	Gln	Val	Thr	Thr	Glu		Asp	Δla	Val	Δrσ		Dhe	ጥፖጥ	Ser	Lou
465					470		<u>F</u>			475	-	1110	11P	Ser	480
Ser	Trp	Glu	Glu	Tyr		Pro	Ser	Leu	Asp		Asp	Ara	Ara	Ile	
	-			485					490	_,.		••••	9	495	* ***
Pro	Thr	Lys	Lys	Thr	Val	Phe	Leu	Thr		Asn	Pro	Glu	Ile	Thr	Ser
		-	500					505	- 1				510		
Thr	Pro														

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 787 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

ATGAAAACGT	CTATTCGTAA	GTTCTTAATT	TCTACCACAC	TGGCGCCATG	TTTTGCTTCA	60
ACAGCGTTTA	CTGTAGAAGT	TATCATGCCT	TCCGAGAACT	TTGATGGATC	GAGTGGGAAG	120
ATTTTTCCTT	ACACAACACT	TTCTGATCCT	AGAGGGACAC	TCTGTATTTT	TTCAGGGGAT	180
CTCTACATTG	CGAATCTTGA	TAATGCCATA	TCCAGAACCT	CTTCCAGTTG	CTTTAGCAAT	240
AGGGCGGGAG	CACTACAAAT	CTTAGGAAAA	GGTGGGGTTT	TCTCCTTCTT	AAATATCCGT	300
TCTTCAGCTG	ACGGAGCCGC	GATTAGTAGT	GTAATCACCC	AAAATCCTGA	ACTATGTCCC	360
TTGAGTTTTT	CAGGATTTAG	TCAGATGATC	TTCGATAACT	GTGAATCTTT	GACTTCAGAT	420
ACCTCAGCGA	GTAATGTCAT	ACCTCACGCA	TCGGCGATTT	ACGCTACAAC	GCCCATGCTC	480
TTTACAAACA	ATGACTCCAT	ACTATTCCAA	TACAACCGTT	CTGCAGGATT	TGGAGCTGCC	540
ATTCGAGGCA	CAAGCATCAC	AATAGAAAAT	ACGAAAAAGA	GCCTTCTCTT	TAATGGTAAT	600
GGATCCATCT	CTAATGGAGG	GGCCCTCACG	GGATCTGCAG	CGATCAACCT	CATCAACAAT	660
AGCGCTCCTG	TGATTTTCTC	AACGAATGCT	ACAGGGATCT	ATGGTGGGGC	TATTTACCTT	720
ACCGGAGGAT	CTATGCTCAC	CTCTGGGAAC	CTCTCAGGAG	TCTTGTTCGT	TTATAATAGC	780
TCGCGCT						787

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 262 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

1				5	Arg				10					15	
			20		Ala			25					30		
		35			Ser		40					45			
	50				Leu	55					60				
65					Ile 70					75					80
Arg	Ala	Gly	Ala	Leu 85	Gln	Ile	Leu	Gly	Lys 90	Gly	Gly	Val	Phe	Ser 95	Phe
Leu	Asn	Ile	Arg 100	Ser	Ser	Ala	Asp	Gly 105	Ala	Ala	Ile	Ser	Ser	Val	Ile
Thr	Gln	Asn 115	Pro	Glu	Leu	Cys	Pro 120	Leu	Ser	Phe	Ser	Gly 125	Phe	Ser	Gln
Met	Ile 130	Phe	Asp	Asņ	Cys	Glu 135	Ser	Leu	Thr	Ser	Asp 140	Thr	Ser	Ala	Ser
Asn 145	Val	Ile	Pro	His	Ala 150	Ser	Ala	Ile	Tyr	Ala 155	Thr	Thr	Pro	Met	Leu 160
Phe	Thr	Asn	Asn	Asp 165	Ser	Ile	Leu	Phe	Gln 170	Tyr	Asn	Arg	Ser	Ala 175	Gly
Phe	Gly	Ala	Ala 180	Ile	Arg	Gly	Thr	Ser 185	Ile	Thr	Ile	Glu	Asn 190	Thr	Lys
Lys	Ser	Leu 195	Leu	Phe	Asn	Gly	Asn 200	Gly	Ser	Ile	Ser	Asn 205	Gly	Gly	Ala
Leu	Thr 210	Gly	Ser	Ala	Ala	Ile 215	Asn	Leu	Ile	Asn	Asn 220		Ala	Pro	Val

Ile Phe Ser Thr Asn Ala Thr Gly Ile Tyr Gly Gly Ala Ile Tyr Leu 225 230 235 Thr Gly Gly Ser Met Leu Thr Ser Gly Asn Leu Ser Gly Val Leu Phe 245 Val Tyr Asn Ser Ser Arg 260

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2838 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

ATGAAGACTT	CAGTTTCTAT	GTTGTTGGCC	CTGCTTTGCT	CGGGGGCTAG	CTCTATTGTA	60
	CAACCACTCC			TTATTGGGGA	GGGCAATACA	120
AATACTTTTT	CTCCGAAATC	TACAACGGAT	GCTGCAGGAA	CTACCTACTC	TCTCACAGGA	180
GAGGTTCTGT	TTATAGATCC	GGGGAAAGGT	${\tt GGTTCAATTA}$	CAGGAACTTG	CTTTGTAGAA	240
ACTGCTGGCG	ATCTTACATT	TTTAGGTAAT	GGAAATACCC	TAAAGTTCCT	GTCGGTAGAT	300
GCAGGTGCTA	ATATCGCGGT	TGCTCATGTA	CAAGGAAGTA	AGAATTTAAG	CTTCACAGAT	360
TTCCTTTCTC	TGGTGATCAC	AGAATCTCCA	AAATCCGCTG	TTAGTACAGG	AAAAGGTAGC	420
CTAGTCAGTT	CAGGTGCAGT	CCAACTGCAA	GATATAAACA	CTCTAGTTCT	TACAAGCAAT	480
GCCTCTGTCG	AAGATGGTGG	CGTGATTAAA	GGAAACTCCT	GCTTGATTCA	GGGAATCAAA	540
AATAGTGCGA	TTTTTGGACA	AAATACATCT	TCGAAAAAAG	GAGGGGCGAT	CTCCACGACT	600
CAAGGACTCA	CCATAGAGAA	TAACTTAGGG	ACGCTAAAGT	TCAATGAAAA	CAAAGCAGTG	660
ACCTCAGGAG	GCGCCTTAGA	TTTAGGAGCC	GCGTCTACAT	TCACTGCGAA	CCATGAGTTG	720
ATATTTTCAC	AAAATAAGAC	TTCTGGGAAT	GCTGCAAATG	GCGGAGCCAT	AAATTGCTCA	780
GGCGACCTAA	CATTTACTGA	TAACACTTCT	TTGTTACTTC	AAGAAAATAG	CACAATGCAG	840
GATGGTGGAG	CTTTGTGTAG	CACAGGAACC	ATAAGCATTA	CCGGTAGTGA	TTCTATCAAT	900
GTGATAGGAA	ATACTTCAGG	ACAAAAAGGA	GGAGCGATTT	CTGCAGCTTC	TCTCAAGATT	960
TTGGGAGGGC	AGGGAGGCGC	TCTCTTTTCT	AATAACGTAG	TGACTCATGC	CACCCCTCTA	1020
GGAGGTGCCA	TTTTTATCAA	CACAGGAGGA	TCCTTGCAGC	TCTTCACTCA	AGGAGGGGAT	1080
ATCGTATTCG	AGGGGAATCA	GGTCACTACA	ACAGCTCCAA	ATGCTACCAC	TAAGAGAAAT	1140
GTAATTCACC	TCGAGAGCAC	CGCGAAGTGG	ACGGGACTTG	CTGCAAGTCA	AGGTAACGCT	1200
ATCTATTTCT	ATGATCCCAT	TACCACCAAC	GATACGGGAG	CAAGCGATAA	CTTACGTATC	1260
AATGAGGTCA	GTGCAAATCA	AAAGCTCTCG	GGATCTATAG	TATTTTCTGG	AGAGAGATTG	1320
TCGACAGCAG	AAGCTATAGC	TGAAAATCTT	ACTTCGAGGA	TCAACCAGCC	TGTCACTTTA	1380
GTAGAGGGGA	GCTTAGAACT	TAAACAGGGA	GTGACCTTGA	TCACACAAGG	ATTCTCGCAG	1440
GAGCCAGAAT	CCACGCTTCT	TTTGGATTTG	GGGACCTCAT	TACAAGCTTC	TACAGAAGAT	1500
ATCGTCATCA	CAAATTCATC	TATAAATGCC	GATACCATTT	ACGGAAAGAA	TCCAATCAAT	1560
ATTGTAGCTT	CAGCAGCGAA	TAAGAACATT	ACCCTAACAG	GAACCTTAGC	ACTTGTAAAT	1620
GCAGATGGAG	CTTTGTATGA	GAACCATACC	TTGCAAGACT	CTCAAGATTA	TAGCTTTGTA	1680
AAGTTATCTC	CAGGAGCGGG	AGGGACTATA	ATTACTCAAG	ATGCTTCTCA	GAAGCTTCTT	1740
GAAGTAGCTC	CTTCTAGACC	ACATTATGGC	TATCAAGGAC	ATTGGAATGT	GCAAGTCATC	1800
CCAGGAACGG	GAACTCAACC	GAGCCAGGCA	AATTTAGAAT	GGGTGCGGAC	AGGATACCTT	1860
CCGAATCCCG	AACGGCAAGG	ATTTTTAGTT	CCCAATAGCC	TGTGGGGTTC	TTTTGTTGAT	1920
CAGCGTGCTA	TCCAAGAAAT	CATGGTAAAT	AGTAGCCAAA	TCTTATGTCA	GGAACGGGGA	1980
GTCTGGGGAG	CTGGAATTGC	TAATTTCCTA	CATAGAGATA	AAATTAATGA	GCACGGCTAT	2040
CGCCATAGCG	GTGTCGGTTA	TCTTGTGGGA	GTTGGCACTC	ATGCTTTTTC	TGATGCTACG	2100
ATAAATGCGG	CTTTTTGCCA	GCTCTTCAGT	AGAGATAAAG	ACTACGTAGT	ATCCAAAAAT	2160
CATGGAACTA	GCTACTCAGG	GGTCGTATTT	CTTGAGGATA	CCCTAGAGTT	TAGAAGTCCA	2220
CAGGGATTCT	ATACTGATAG	CTCCTCAGAA	GCTTGCTGTA	ACCAAGTCGT	CACTATAGAT	2280

ATGCAGTTGT	CTTACAGCCA	TAGAAATAAT	GATATGAAAA	CCAAATACAC	GACATATCCA	2340
GAAGCTCAGG	GATCTTGGGC	AAATGATGTT	TTTGGTCTTG	AGTTTGGAGC	GACTACATAC	2400
TACTACCCTA	ACAGTACTTT	TTTATTTGAT	TACTACTCTC	CGTTTCTCAG	GCTGCAGTGC	2460
ACCTATGCTC	ACCAGGAAGA	CTTCAAAGAG	ACAGGAGGTG	AGGTTCGTCA	CTTTACTAGC	2520
GGAGATCTTT	TCAATTTAGC	AGTTCCTATT	GGCGTGAAGT	TTGAGAGATT	TTCAGACTGT	2580
		TACCCTTGCT				2640
AAGAGCACGG	CAACATTGGC	TAGTGGAGCT	ACGTGGAGCA	CCCACGGAAA	CAATCTCTCC	2700
					AATTGAGGTG	2760
TTCAGTCACG	GAGCTATTGA	ATTGCGGGGA	TCCTCTCGTA	ATTATAACAT	CAATCTCGGG	2820
GGTAAATACC	GATTTTAA					2838

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 946 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Met 1	Lys	Thr	Ser	Val 5	Ser	Met	Leu	Leu	Ala 10	Leu	Leu	Cys	Ser	Gly 15	Ala
			20					25					30	Glu	-
Gly	Phe	Ile 35	Gly	Glu	Gly	Asn	Thr 40	Asn	Thr	Phe	Ser	Pro 45	Lys	Ser	Thr
	50					55					60			Leu	
65					70					75				Val	80
				85					90					Lys 95	
			100					105					110	Gln	_
Ser	Lys	Asn 115	Leu	Ser	Phe	Thr	Asp 120	Phe	Leu	Ser	Leu	Val 125	Ile	Thr	Glu
	130					135					140			Ser	
Gly 145	Ala	Val	Gln	Leu	Gln 150	Asp	Ile	Asn	Thr	Leu 155	Val	Leu	Thr	Ser	Asn 160
Ala	Ser	Val	Glu	Asp 165	Gly	Gly	Val	Ile	Lys 170	Gly	Asn	Ser	Cys	Leu 175	Ile
			180					185					190	Ser	_
Lys	Gly	Gly 195	Ala	Ile	Ser	Thr	Thr 200	Gln	Gly	Leu	Thr	Ile 205	Glu	Asn	Asn
Leu	Gly 210	Thr	Leu	Lys	Phe	Asn 215	Glu	Asn	Lys	Ala	Val 220	Thr	Ser	Gly	Gly
Ala 225	Leu	Asp	Leu	Gly	Ala 230	Ala	Ser	Thr	Phe	Thr 235	Ala	Asn	His	Glu	Leu 240
				245					250					Gly 255	
Ile	Asn	Cys	Ser 260	Gly	Asp	Leu	Thr	Phe 265	Thr	Asp	Asn	Thr	Ser 270	Leu	Leu

Leu	Gln	Glu 275	Asn	Ser	Thr	Met	Gln 280	Asp	Gly	Gly	Ala	Leu 285	Cys	Ser	Thr
Gly	Thr 290	Ile	Ser	Ile	Thr	Gly 295		Asp	Ser	Ile	Asn 300		Ile	Gly	Asn
Thr 305	Ser	Gly	Gln	Lys	Gly 310	Gly	Ala	Ile	Ser	Ala 315	Ala	Ser	Leu	Lys	Ile 320
Leu	Gly	Gly	Gln	Gly 325	Gly	Ala	Leu	Phe	Ser 330		Asn	Val	Val	Thr 335	His
Ala	Thr	Pro	Leu 340	Gly	Gly	Ala	Ile	Phe		Asn	Thr	Gly	Gly 350	Ser	Leu
Gln	Leu	Phe 355	Thr	Gln	Gly	Gly	Asp		Val	Pḥe	Glu	Gly 365	Asn	Gln	Val
Thr	Thr 370	Thr	Ala	Pro	Asn	Ala 375		Thr	Lys	Arg	Asn 380		Ile	His	Leu
Glu 385	Ser	Thr	Ala	Lys	Trp 390		Gly	Leu	Ala	Ala 395		Gln	Gly	Asn	Ala 400
Ile	Tyr	Phe	Tyr	Asp 405	Pro	Ile	Thr	Thr	Asn 410	Asp	Thr	Gly	Ala	Ser 415	Asp
Asn	Leu	Arg	Ile 420	Asn	Glu	Val	Ser	Ala 425	Asn	Gln	Lys	Leu	Ser 430	Gly	Ser
Ile	Val	Phe 435	Ser	Gly	Glu	Arg	Leu 440	Ser	Thr	Ala	Glu	Ala 445	Ile	Ala	Glu
	450					455					460	Val	Glu	_	
465					470					475	Gln		Phe		480
				485					490				Leu	495	Ala
			500					505					Ala 510		
		515					520					525	Ala		_
	530					535					540		Asp	_	
545					550					555			Ser		560
				565					570				Asp	575	
			580					585					Gly 590	-	
		595					600					605	Gln		
	610					615					620		Asn		
625					630					635			Phe		640
				645					650				Ile	655	
			660					665					Leu 670		
		675					680					685	Gly		
	690					695					700		Asn		
705					710					715			Ser		720
His	Gly	Thr	Ser	Tyr	Ser	Gly	Val	Val	Phe	Leu	Glu	Asp	Thr	Leu	Glu

				725					730					735	
Phe	Arg	Ser	Pro 740	Gln	Gly	Phe	Tyr	Thr 745	Asp	Ser	Ser	Ser	Glu 750	Ala	Cys
Cys	Asn	Gln 755	Val	Val	Thr	Ile	Asp 760	Met	Gln	Leu	Ser	Tyr 765	Ser	His	Arg
	770					775			Thr		780				_
785					790				Glu	795			,		800
				805					Asp 810					815	
			820					825	Glu				830		_
		835					840		Asp			845			
	850					855			Ser		860				
865					870				Asp	875					880
				885					Ala 890					895	-
			900					905	Leu				910		-
Leu	Ile	Asn 915	Pro	Gly	Ile	Glu	Val 920	Phe	Ser	His	Gly	Ala 925	Ile	Glu	Leu
Arg Phe 945	Gly 930	Ser	Ser	Arg	Asn	Tyr 935	Asn	Ile	Asn	Leu	Gly 940	Gly	Lys	Tyr	Arg

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3000 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: Coding Sequence
- (B) LOCATION: 259...3000
- (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

ATCAGGTGAT AAAAGTTCCT	CGTTAGCTAG	TGACTGTAGG	TGACATGAGA AAGCTAACAC	60
GGAGGAAACT AAAACCCAAG	GAATCGAAGT	CTTCATGGTA	ATGCTTTTGT TTTTTAGAGA	120
ACTATTCGCA TCAATATAGA	AACAAAATAA	GTAAATCAAG	TTAAAGATGA CAAAACAGCT	180
GTCAAGAATT TTTATCTTGA	CTCTCTGAGT	TTTCTATTTT	ATATGACGCA AGTAAGAATT	240
TAATAATAAA GTGGGTTT A				291
			Trp Leu Val Leu Ser	
	1	5	10	

TCG Ser	ACA Thr	TTG Leu	GCA Ala 15	TGT Cys	TTT Phe	ACT Thr	AGT Ser	TGT Cys 20	TCC Ser	ACT Thr	GTT Val	TTT Phe	GCT Ala 25	GCA Ala	ACT Thr	339
GCT Ala	GAA Glu	AAT Asn 30	ATA Ile	GGC Gly	CCC Pro	TCT Ser	GAT Asp 35	AGC Ser	TTT Phe	GAC Asp	GGA Gly	AGT Ser 40	ACT Thr	AAC Asn	ACA Thr	387
GGC Gly	ACC Thr 45	TAT Tyr	ACT Thr	CCT Pro	AAA Lys	AAT Asn 50	ACG Thr	ACT Thr	ACT Thr	GGA Gly	ATA Ile 55	GAC Asp	TAT Tyr	ACT Thr	CTG [.] Leu	435
ACA Thr 60	GGA Gly	GAT Asp	ATA Ile	ACT Thr	CTG Leu 65	CAA Gln	AAC Asn	CTT Leu	GGG Gly	GAT Asp 70	TCG Ser	GCA Ala	GCT Ala	TTA Leu	ACG Thr 75	483
AAG Lys	GGT Gly	TGT Cys	TTT Phe	TCT Ser 80	GAC Asp	ACT Thr	ACG Thr	GAA Glu	TCT Ser 85	TTA Leu	AGC Ser	TTT Phe	GCC Ala	GGT Gly 90	AAG Lys	531
GGG Gly	TAC Tyr	TCA Ser	CTT Leu 95	TCT Ser	TTT Phe	TTA Leu	AAT Asn	ATT Ile 100	AAG Lys	TCT Ser	AGT Ser	GCT Ala	GAA Glu 105	GGC Gly	GCA Ala	579
GCA Ala	CTT Leu	TCT Ser 110	GTT Val	ACA Thr	ACT Thr	GAT Asp	AAA Lys 115	AAT Asn	CTG Leu	TCG Ser	CTA Leu	ACA Thr 120	GGA Gly	TTT Phe	TCG Ser	627
AGT Ser	CTT Leu 125	ACT Thr	TTC Phe	TTA Leu	GCG Ala	GCC Ala 130	CCA Pro	TCA Ser	TCG Ser	GTA Val	ATC Ile 135	ACA Thr	ACC Thr	CCC Pro	TCA Ser	675
GGA Gly 140	AAA Lys	GGT Gly	GCA Ala	GTT Val	AAA Lys 145	TGT Cys	GGA Gly	GGG Gly	GAT Asp	CTT Leu 150	ACA Thr	TTT Phe	GAT Asp	AAC Asn	AAT Asn 155	723
GGA Gly	ACT Thr	ATT Ile	TTA Leu	TTT Phe 160	AAA Lys	CAA Gln	GAT Asp	TAC Tyr	TGT Cys 165	GAG Glu	GAA Glu	AAT Asn	GGC Gly	GGA Gly 170	GCC Ala	771
ATT Ile	TCT Ser	ACC Thr	AAG Lys 175	AAT Asn	CTT Leu	TCT Ser	TTG Leu	AAA Lys 180	AAC Asn	AGC Ser	ACG Thr	GGA Gly	TCG Ser 185	Ile	TCT Ser	819
TTT Phe	GAA Glu	GGG Gly 190	Asn	AAA Lys	TCG Ser	AGC Ser	GCA Ala 195	ACA Thr	GGG Gly	AAA Lys	AAA Lys	GGT Gly 200	GGG	GCT Ala	ATT Ile	867
TGT Cys	GCT Ala 205	Thr	GGT Gly	ACT Thr	GTA Val	GAT Asp 210	ATT	ACA Thr	AAT Asn	AAT Asn	ACG Thr 215	GCT Ala	CCT Pro	ACC Thr	CTC Leu	915
TTC Phe 220	Ser	AAC Asn	AAT Asn	ATT Ile	GCT Ala 225	Glu	GCT Ala	GCA Ala	GGT Gly	GGA Gly 230	Ala	ATA Ile	AAT Asn	'AGC	ACA Thr 235	963
GGA	AAC	TGT	ACA	ATT	ACA	. GGG	AAT	' ACG	TCT	CTT	GTA	TTT	TCT	' GAA	AAT	1011

Gly	Asn	Cys	Thr	Ile 240	Thr	Gly	Asn	Thr	Ser 245	Leu	Val	Phe	Ser	Glu 250	Asn	
AGT Ser	GTG Val	ACA Thr	GCG Ala 255	ACC Thr	GCA Ala	GGA Gly	AAT Asn	GGA Gly 260	GGA Gly	GCT Ala	CTT Leu	TCT Ser	GGA Gly 265	GAT Asp	GCC Ala	1059
GAT Asp	GTT Val	ACC Thr 270	ATA Ile	TCT Ser	GGG Gly	AAT Asn	CAG Gln 275	AGT Ser	GTA Val	ACT Thr	TTC Phe	TCA Ser 280	GGA Gly	AAC Asn	CAA Gln	1107
	GTA Val 285	GCT Ala	AAT Asn	GGC Gly	GGA Gly	GCC Ala 290	ATT Ile	TAT Tyr	GCT Ala	AAG Lys	AAG Lys 295	CTT Leu	ACA Thr	CTG Leu	GCT Ala	1155
TCC Ser 300	GGG Gly	GGG Gly	GGG Gly	GGG Gly	GGT Gly 305	ATC Ile	TCC Ser	TTT Phe	TCT Ser	AAC Asn 310	AAT Asn	ATA Ile	GTC Val	CAA Gln	GGT Gly 315	1203
ACC Thr	ACT Thr	GCA Ala	GGT Gly	AAT Asn 320	GGT Gly	GGA Gly	GCC Ala	ATT Ile	TCT Ser 325	ATA Ile	CTG Leu	GCA Ala	GCT Ala	GGA Gly 330	GAG Glu	1251
TGT Cys	AGT Ser	CTT Leu	TCA Ser 335	GCA Ala	GAA Glu	GCA Ala	GGG Gly	GAC Asp 340	ATT Ile	ACC Thr	TTC Phe	AAT Asn	GGG Gly 345	AAT Asn	GCC Ala	1299
ATT Ile	GTT Val	GCA Ala 350	ACT Thr	ACA Thr	CCA Pro	CAA Gln	ACT Thr 355	ACA Thr	AAA Lys	AGA Arg	AAT Asn	TCT Ser 360	ATT Ile	GAC Asp	ATA Ile	1347
GGA Gly	TCT Ser 365	ACT Thr	GCA Ala	AAG Lys	ATC Ile	ACG Thr 370	AAT Asn	TTA Leu	CGT Arg	GCA Ala	ATA Ile 375	TCT Ser	GGG Gly	CAT His	AGC Ser	1395
ATC Ile 380	TTT Phe	TTC Phe	TAC Tyr	GAT Asp	CCG Pro 385	ATT Ile	ACT Thr	GCT Ala	AAT Asn	ACG Thr 390	GCT Ala	GCG Ala	GAT Asp	TCT Ser	ACA Thr 395	1443
~	ACT Thr	TTA Leu	AAT Asn	CTC Leu 400	AAT Asn	AAG Lys	GCT Ala	GAT Asp	GCA Ala 405	GGT Gly	AAT Asn	AGT Ser	ACA Thr	GAT Asp 410	TAT Tyr	1491
AGT Ser	GGG Gly	TCG Ser	ATT Ile 415	GTT Val	TTT Phe	TCT Ser	GGT Gly	GAA Glu 420	AAG Lys	CTC Leu	TCT Ser	GAA Glu	GAT Asp 425	GAA Glu	GCA Ala	1539
AAA Lys	GTT Val	GCA Ala 430	GAC Asp	AAC Asn	CTC Leu	ACT Thr	TCT Ser 435	ACG Thr	CTG Leu	AAG Lys	CAG Gln	CCT Pro 440	GTA Val	ACT Thr	CTA Leu	1587
ACT Thr	GCA Ala 445	GGA Gly	AAT Asn	TTA Leu	GTA Val	CTT Leu 450	AAA Lys	CGT Arg	GGT Gly	GTC Val	ACT Thr 455	CTC Leu	GAT Asp	ACG Thr	AAA Lys	1635
GGC Gly	TTT Phe	ACT Thr	CAG Gln	ACC Thr	GCG Ala	GGT Gly	TCC Ser	TCT Ser	GTT Val	ATT Ile	ATG Met	GAT Asp	GCG Ala	GGC Gly	ACA Thr	1683

460					465					470					475	
ACG Thr	TTA Leu	AAA Lys	GCA Ala	AGT Ser 480	ACA Thr	GAG Glu	GAG Glu	GTC Val	ACT Thr 485	TTA Leu	ACA Thr	GGT Gly	CTT Leu	TCC Ser 490	ATT Ile	1731
CCT Pro	GTA Val	GAC Asp	TCT Ser 495	TTA Leu	GGC Gly	GAG Glu	GGT Gly	AAG Lys 500	AAA Lys	GTT Val	GTA Val	ATT Ile	GCT Ala 505	GCT Ala	TCT Ser	1779
GCA Ala	GCA Ala	AGT Ser 510	AAA Lys	AAT Asn	GTA Val	GCC Ala	CTT Leu 515	AGT Ser	GGT Gly	CCG Pro	ATT Ile	CTT Leu 520	CTT Leu	TTG Leu	GAT Asp	1827
AAC Asn	CAA Gln 525	GGG Gly	AAT Asn	GCT Ala	TAT Tyr	GAA Glu 530	AAT Asn	CAC His	GAC Asp	TTA Leu	GGA Gly 535	AAA Lys	ACT Thr	CAA Gln	GAC Asp	1875
TTT Phe 540	TCA Ser	TTT Phe	GTG Val	CAG Gln	CTC Leu 545	TCT Ser	GCT Ala	CTG Leu	GGT Gly	ACT Thr 550	GCA Ala	ACA Thr	ACT Thr	ACA Thr	GAT Asp 555	1923
GTT Val	CCA Pro	GCG Ala	GTT Val	CCT Pro 560	ACA Thr	GTA Val	GCA Ala	ACT Thr	CCT Pro 565	ACG Thr	CAC His	TAT Tyr	GGG Gly	TAT Tyr 570	CAA Gln	1971
GGT Gly	ACT Thr	TGG Trp	GGA Gly 575	ATG Met	ACT Thr	TGG Trp	GTT Val	GAT Asp 580	GAT Asp	ACC Thr	GCA Ala	AGC Ser	ACT Thr 585	CCA Pro	AAG Lys	2019
ACT Thr	AAG Lys	ACA Thr 590	GCG Ala	ACA Thr	TTA Leu	GCT Ala	TGG Trp 595	ACC Thr	AAT Asn	ACA Thr	GGC Gly	TAC Tyr 600	CTT Leu	CCG Pro	AAT Asn	2067
CCT Pro	GAG Glu 605	CGT Arg	CAA Gln	GGA Gly	CCT Pro	TTA Leu 610	GTT Val	CCT Pro	AAT Asn	AGC Ser	CTT Leu 615	TGG Trp	GGA Gly	TCT Ser	TTT Phe	2115
TCA Ser 620	GAC Asp	ATC Ile	CAA Gln	GCG Ala	ATT Ile 625	CAA Gln	GGT Gly	GTC Val	ATA Ile	GAG Glu 630	AGA Arg	AGT Ser	GCT Ala	TTG Leu	ACT Thr 635	2163
CTT Leu	TGT Cys	TCA Ser	GAT Asp	CGA Arg 640	GGC Gly	TTC Phe	TGG Trp	GCT Ala	GCG Ala 645	GGA Gly	GTC Val	GCC Ala	AAT Asn	TTC Phe 650	TTA Leu	2211
GAT Asp	AAA Lys	GAT Asp	AAG Lys 655	AAA Lys	GGG Gly	GAA Glu	AAA Lys	CGC Arg 660	AAA Lys	TAC Tyr	CGT Arg	CAT His	AAA Lys 665	TCT Ser	GGT Gly	2259
GGA Gly	TAT Tyr	GCT Ala 670	ATC Ile	GGA Gly	GGT Gly	GCA Ala	GCG Ala 675	CAA Gln	ACT Thr	TGT Cys	TCT Ser	GAA Glu 680	AAC Asn	TTA Leu	ATT Ile	2307
AGC Ser	TTT Phe 685	GCC Ala	TTT Phe	TGC Cys	CAA Gln	CTC Leu 690	TTT Phe	GGT Gly	AGC Ser	GAT Asp	AAA Lys 695	GAT Asp	TTC Phe	TTA Leu	GTC Val	2355

GCT Ala 700	AAA Lys	AAT Asn	CAT His	ACT Thr	GAT Asp 705	ACC Thr	TAT Tyr	GCA Ala	GGA Gly	GCC Ala 710	TTC Phe	TAT Tyr	ATC Ile	CAA Gln	CAC His 715	2403
ATT Ile	ACA Thr	GAA Glu	TGT Cys	AGT Ser 720	GGG Gly	TTC Phe	ATA Ile	GGT Gly	TGT Cys 725	CTC Leu	TTA Leu	GAT Asp	AAA Lys	CTT Leu 730	CCT Pro	2451
GGC Gly	TCT Ser	TGG Trp	AGT Ser 735	CAT His	AAA Lys	CCC Pro	CTC Leu	GTT Val 740	TTA Leu	GAA Glu	GGG Gly	CAG Gln	CTC Leu 745	GCT Ala	TAT Tyr	2499
AGC Ser	CAC His	GTC Val 750	AGT Ser	AAT Asn	GAT Asp	CTG Leu	AAG Lys 755	ACA Thr	AAG Lys	TAT Tyr	ACT Thr	GCG Ala 760	TAT Tyr	CCT Pro	GAG Glu	2547
Val	Lys 765	Gly	Ser	Trp	GGG Gly	Asn 770	Asn	Ala	Phe	Asn	Met 775	Met	Leu	Gly	Ala	2595
Ser 780	Ser	His	Ser	Tyr	CCT Pro 785	Glu	Tyr	Leu	His	Cys 790	Phe	Asp	Thr	Tyr	Ala 795	2643
Pro	Tyr	Ile	Lys	Leu 800	AAT Asn	Leu	Thr	Tyr	11e 805	Arg	Gln	Asp	Ser	Phe 810	Ser	2691
GAG Glu	AAA Lys	GGT Gly	ACA Thr	GAA Glu	GGA Gly	AGA Arg	TCT Ser	TTT Phe 820	GAT Asp	GAC Asp	AGC Ser	AAC Asn	CTC Leu 825	TTC Phe	AAT Asn	2739
			815													
TTA Leu	TCT Ser	Leu 830	CCT Pro	Ile	GGG Gly	Val	Lys 835	TTT Phe	Glu	Lys	Phe	Ser 840	GAT Asp	Cys	Asn	2787
TTA Leu GAC Asp	TCT Ser TTT Phe 845	Leu 830 TCT Ser	CCT Pro TAT Tyr	Ile GAT Asp	Gly CTG Leu	ACT Thr 850	Lys 835 TTA Leu	TTT Phe TCC Ser	Glu TAT Tyr	Lys GTT Val	Phe CCT Pro 855	Ser 840 GAT Asp	GAT Asp CTT Leu	Cys ATC Ile	Asn CGC Arg	2787
TTA Leu GAC Asp AAT Asn 860	TCT Ser TTT Phe 845 GAT Asp	Leu 830 TCT Ser CCC Pro	CCT Pro TAT Tyr AAA Lys	GAT Asp TGC Cys	CTG Leu ACT Thr 865	ACT Thr 850 ACA Thr	Lys 835 TTA Leu GCA Ala	TTT Phe TCC Ser CTT Leu	Glu TAT Tyr GTA Val	GTT Val ATC Ile 870	CCT Pro 855 AGC Ser	Ser 840 GAT Asp GGA Gly	GAT Asp CTT Leu GCC Ala	Cys ATC Ile TCT Ser	CGC Arg TGG Trp 875	
TTA Leu GAC Asp AAT Asn 860 GAA Glu	TCT Ser TTT Phe 845 GAT Asp	Leu 830 TCT Ser CCC Pro	CCT Pro TAT Tyr AAA Lys GCC Ala	GAT Asp TGC Cys AAT Asn 880	CTG Leu ACT Thr 865 AAC Asn	ACT Thr 850 ACA Thr TTA Leu	Lys 835 TTA Leu GCA Ala GCA	TTT Phe TCC Ser CTT Leu CGA	TAT Tyr GTA Val CAG Gln 885	GTT Val ATC Ile 870 GCC Ala	CCT Pro 855 AGC Ser TTG Leu	Ser 840 GAT Asp GGA Gly CAA Gln	GAT Asp CTT Leu GCC Ala GTG Val	Cys ATC Ile TCT Ser CGT Arg	CGC Arg TGG Trp 875 GCA Ala	2835
TTA Leu GAC Asp AAT Asn 860 GAA Glu GGC Gly	TCT Ser TTT Phe 845 GAT Asp ACT Thr	Leu 830 TCT Ser CCC Pro TAT Tyr	CCT Pro TAT Tyr AAA Lys GCC Ala TAC Tyr 895	GAT Asp TGC Cys AAT Asn 880 GCC Ala	CTG Leu ACT Thr 865 AAC Asn	ACT Thr 850 ACA Thr TTA Leu	Lys 835 TTA Leu GCA Ala GCA Ala	TTT Phe TCC Ser CTT Leu CGA Arg	TAT Tyr GTA Val CAG Gln 885	GTT Val ATC Ile 870 GCC Ala	CCT Pro 855 AGC Ser TTG Leu	Ser 840 GAT Asp GGA Gly CAA Gln	GAT Asp CTT Leu GCC Ala GTG Val	Cys ATC Ile TCT Ser CGT Arg 890 CAG	Asn CGC Arg TGG Trp 875 GCA	2835

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 914 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

1				5					10	Ser				15	
			20					25		Thr			30		_
		35					40			Thr		45			
	50					55				Leu	60				
65					70					Thr 75					80
				85					90	Lys				95	
			100					105		Ala			110		
		115					120			Ser		125			
	130					135				Ser	140				
145					150					Asn 155					160
				165					170	Ala				175	
			180					185		Ser			190		
		195					200			Ile		205			
	210					215				Leu	220				
225					230					Thr 235					240
				245					250	Asn				255	
			260					265		Ala			270		
		275					280			Gln		285			
	290					295				Ala	300				_
305					310					Gly 315				_	320
				325					330					335	
Glu	Ala	Gly	340	Ile	Thr	Phe	Asn	Gly 345		Ala	Ile	Val	Ala 350	Thr	Thr

Pro	Gln	Thr 355	Thr	Lys	Arg	Asn	Ser 360	Ile	Asp	Ile	Gly	Ser 365	Thr	Ala	Lys
Ile	Thr 370	Asn	Leu	Arg	Ala	Ile 375		Gly	His	Ser	Ile 380	Phe	Phe	Tyr	Asp
Pro 385	Ile	Thr	Ala	Asn	Thr		Ala	Asp	Ser	Thr 395		Thr	Leu	Asn	
	Lys	Ala	Asp	Ala 405		Asn	Ser	Thr	Asp		Ser	Gly	Ser	Ile	400 Val
Phe	Ser	Gly	Glu 420		Leu	Ser	Glu	Asp		Ala	Lys	Val		415 Asp	Asn
Leu	Thr	Ser		Leu	Lys	Gln	Pro		Thr	Leu	Thr		430 Gly	Asn	Leu
Val	Leu 450		Arg	Gly	Val	Thr 455		Asp	Thr	Lys	Gly 460	445 Phe	Thr	Gln	Thr
Ala 465		Ser	Ser	Val	Ile 470		Asp	Ala	Gly	Thr 475	Thr	Leu	Lys	Ala	
	Glu	Glu	Val	Thr		Thr	Gly	Leu	Ser		Pro	Val	Asp	Ser	480 Leu
				485					490					495	
GIY	GIU	GIY	500	гуу	Val	vai	11e	505	Ala	Ser	Ala	Ala	Ser 510	Lys	Asn
		515					520	Leu				525	Gly	Asn	
Tyr	Glu	Asn	His	Asp	Leu		Lys	Thr	Gln	Asp		Ser	Phe	Val	Gln
Leu	530 Ser	Ala	Leu	Gly	Thr	535 Ala	Thr	Thr	Thr	Asp	540 Val	Pro	Ala	Val	Pro
545	17-1	ת 1 ת	Thr	Dwo	550	***	M	G1		555	~1		_		560
				565					570					Gly 575	
			580					585					590		Thr
		595					600					605			Gly
	610					615					620			Gln	
Ile	Gln	Gly	Val	Ile		Arg	Ser	Ala	Leu		Leu	Cys	Ser	Asp	Arg
625 Gly	Phe	Trp	Ala		630 Gly	Val	Ala	Asn		635 Leu	Asp	Lys	Asp	Lys	640 Lys
Gly	Glu	Lvs	Ara	645 Lvs	Tvr	Ara	His	Lvs	650 Ser	Glv	Glv	Туг	פות	655	Gly
			660					665					670		
Gly	Ala	Ala 675	Gln	Thr	Cys	Ser		Asn	Leu	Ile	Ser			Phe	Cys
Gln	Leu 690		Gly	Ser	Asp	Lys 695	680 Asp	Phe	Leu	Val	Ala 700	685 Lys	Asn	His	Thr
Asp		Tyr	Ala	Gly	Ala		Tyr	Ile	Gln	His		Thr	Glu	Cys	Ser
705					710					715					720
				725					730					735	His
			740					745					750		Asn
		755					760					765			Trp
	770					775					780	Ser	His		Tyr
Pro 785	Glu	Tyr	Leu	His	Cys 790	Phe	Asp	Thr	Tyr	Ala 795	Pro	Tyr	Ile	Lys	Leu 800
Asn	Leu	Thr	Tyr	Ile	Arg	Gln	Asp	Ser	Phe			Lys	Gly	Thr	Glu

80

805 810 Gly Arg Ser Phe Asp Asp Ser Asn Leu Phe Asn Leu Ser Leu Pro Ile 825 Gly Val Lys Phe Glu Lys Phe Ser Asp Cys Asn Asp Phe Ser Tyr Asp 840 Leu Thr Leu Ser Tyr Val Pro Asp Leu Ile Arg Asn Asp Pro Lys Cys 855 860 Thr Thr Ala Leu Val Ile Ser Gly Ala Ser Trp Glu Thr Tyr Ala Asn 870 875 Asn Leu Ala Arg Gln Ala Leu Gln Val Arg Ala Gly Ser His Tyr Ala 885 890 Phe Ser Pro Met Phe Glu Val Leu Gly Gln Phe Val Phe Glu Val Arg 905 Gly Ser

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1200 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ix) FEATURE:

- (A) NAME/KEY: Coding Sequence
- (B) LOCATION: 1...1200
- (D) OTHER INFORMATION:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

														GGA Gly 15		48
														CCT Pro		96
AAC Asn	GTC Val	AAC Asn 35	CTG Leu	TCT Ser	GCA Ala	GGA Gly	TAC Tyr 40	TTA Leu	GTT Val	ATT Ile	AAA Lys	GAG Glu 45	GGG Gly	GCC Ala	GAA Glu	144
GTC Val	ACA Thr 50	GTT Val	TCA Ser	AAA Lys	TTC Phe	ACG Thr 55	CAG Gln	TCT Ser	CCA Pro	GGA Gly	TCG Ser 60	CAT His	TTA Leu	GTT Val	TTA Leu	192
GAT Asp 65	TTA Leu	GGA Gly	ACC Thr	AAA Lys	CTG Leu 70	ATA Ile	GCC Ala	TCT Ser	AAG Lys	GAA Glu 75	GAC Asp	ATT Ile	GCC Ala	ATC Ile	ACA Thr 80	240
GGC Gly	CTC Leu	GCG Ala	ATA Ile	GAT Asp 85	ATA Ile	GAT Asp	AGC Ser	TTA Leu	AGC Ser 90	TCA Ser	TCC Ser	TCA Ser	ACA Thr	GCA Ala 95	GCT Ala	288

GTT Val	ATT Ile	AAA Lys	GCA Ala 100	AAC Asn	ACC Thr	GCA Ala	AAT Asn	AAA Lys 105	CAG Gln	ATA Ile	TCC Ser	GTG Val	ACG Thr 110	GAC Asp	TCT Ser	33	6
ATA Ile	GAA Glu	CTT Leu 115	ATC Ile	TCG Ser	CCT Pro	ACT Thr	GGC Gly 120	AAT Asn	GCC Ala	TAT Tyr	GAA Glu	GAT Asp 125	CTC Leu	AGA Arg	ATG Met	38	34
AGA Arg	AAT Asn 130	TCA Ser	CAG Gln	ACG Thr	TTC Phe	CCT Pro 135	CTG Leu	CTC Leu	TCT Ser	TTA Leu	GAG Glu 140	CCT Pro	GGA Gly	GCC Ala	GGG Gly	43	32
GGT Gly 145	AGT Ser	GTG Val	ACT Thr	GTA Val	ACT Thr 150	GCT Ala	GGA Gly	GAT Asp	TTC Phe	CTA Leu 155	CCG Pro	GTA Val	AGT Ser	CCC Pro	CAT His 160	4.8	30
TAT Tyr	GGT Gly	TTT Phe	CAA Gln	GGC Gly 165	AAT Asn	TGG Trp	AAA Lys	TTA Leu	GCT Ala 170	TGG Trp	ACA Thr	GGA Gly	ACT Thr	GGA Gly 175	AAC Asn	52	28
AAA Lys	GTT Val	GGA Gly	GAA Glu 180	TTC Phe	TTC Phe	TGG Trp	GAT Asp	AAA Lys 185	ATA Ile	AAT Asn	TAT Tyr	AAG Lys	CCT Pro 190	AGA Arg	CCT Pro	57	76
GAA Glu	AAA Lys	GAA Glu 195	GGA Gly	AAT Asn	TTA Leu	GTT Val	CCT Pro 200	AAT Asn	ATC Ile	TTG Leu	TGG Trp	GGG Gly 205	AAT Asn	GCT Ala	GTA Val	62	24
AAT Asn	GTC Val 210	AGA Arg	TCC Ser	TTA Leu	ATG Met	CAG Gln 215	GTT Val	CAA Gln	GAG Glu	ACC Thr	CAT His 220	GCA Ala	TCG Ser	AGC Ser	TTA Leu	67	72
CAG Gln 225	ACA Thr	GAT Asp	CGA Arg	GGG Gly	CTG Leu 230	TGG Trp	ATC Ile	GAT Asp	GGA Gly	ATT Ile 235	GGG Gly	AAT Asn	TTC Phe	TTC Phe	CAT His 240	72	20
GTA Val	TCT Ser	GCC Ala	TCC Ser	GAA Glu 245	GAC Asp	AAT Asn	ATA Ile	AGG Arg	TAC Tyr 250	CGT Arg	CAT His	AAC Asn	AGC Ser	GGT Gly 255	GGA Gly	76	68
TAT Tyr	GTT Val	CTA Leu	TCT Ser 260	GTA Val	AAT Asn	AAT Asn	GAG Glu	ATC Ile 265	ACA Thr	CCT Pro	AAG Lys	CAC His	TAT Tyr 270	ACT Thr	TCG Ser	8:	16
ATG Met	GCA Ala	TTT Phe 275	TCC Ser	CAA Gln	CTC Leu	TTT Phe	AGT Ser 280	AGA Arg	GAC Asp	AAA Lys	GAC Asp	TAT Tyr 285	GCG Ala	GTT Val	TCC Ser	8	64
AAC Asn	AAC Asn 290	GAA Glu	TAC Tyr	AGA Arg	ATG Met	TAT Tyr 295	TTA Leu	GGA Gly	TCG Ser	TAT Tyr	CTC Leu 300	TAT Tyr	CAA Gln	TAT Tyr	ACA Thr	9	12
ACC Thr 305	Ser	CTA Leu	GGG Gly	AAT Asn	ATT Ile 310	TTC Phe	CGT	TAT	GCT Ala	TCG Ser 315	CGT Arg	AAC Asn	CCT Pro	AAT Asn	GTA Val 320	9	60
AAC	GTC	GGG	ATT	CTC	TCA	AGA	AGG	TTT	CTT	CAA	AAT	CCT	CTT	ATG	ATT	10	80

Asn Va	al Gly	Ile	Leu 325	Ser	Arg	Arg	Phe	Leu 330	Gln	Asn	Pro	Leu	Met 335	Ile	
TTT CA	AT TTT is Phe	TTG Leu 340	TGT Cys	GCT Ala	TAT Tyr	GGT Gly	CAT His 345	GCC Ala	ACC Thr	AAT Asn	GAT Asp	ATG Met 350	AAA Lys	ACA Thr	1056
GAC TY	AC GCA yr Ala 355	AAT Asn	TTC Phe	CCT Pro	ATG Met	GTG Val 360	AAA Lys	AAC Asn	AGC Ser	TGG Trp	AGA Arg 365	AAC Asn	AAT Asn	TGT Cys	1104
Trp A	CT ATA la Ile 70	AAA Lys	TGC Cys	GGA Gly	GGG Gly 375	AGC Ser	ATG Met	CCT Pro	CTA Leu	TTG Leu 380	GTA Val	TTT Phe	GAA Glu	AAC Asn	1152
GGA AM Gly Ly 385	AA CTT ys Leu	TTC Phe	CAA Gln	GGT Gly 390	GCC Ala	ATC Ile	CCA Pro	TTT Phe	ATG Met 395	AAA Lys	CTA Leu	CAA Gln	TTA Leu	GTT Val 400	1200

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 400 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

1				5					10					Gly 15	
			20					25					30	Pro	
		35					40					45		Ala	
	50					55					60			Val	
65					70					75				Ile	80
Gly	Leu	Ala	Ile	Asp 85	Ile	Asp	Ser	Leu	Ser 90	Ser	Ser	Ser	Thr	Ala 95	Ala
			100					105					110	Asp	
Ile	Glu	Leu 115	Ile	Ser	Pro	Thr	Gly 120	Asn	Ala	Tyr	Glu	Asp 125	Leu	Arg	Met
Arg	Asn 130	Ser	Gln	Thr	Phe	Pro 135	Leu	Leu	Ser	Leu	Glu 140	Pro	Gly	Ala	Gly
Gly 145	Ser	Val	Thr	Val	Thr 150	Ala	Gly	Asp	Phe	Leu 155	Pro	Val	Ser	Pro	His 160
Tyr	Gly	Phe	Gln	Gly 165	Asn	Trp	Lys	Leu	Ala 170	Trp	Thr	Gly	Thr	Gly 175	Asn
Lys	Val	Gly	Glu 180	Phe	Phe	Trp	Asp	Lys 185	Ile	Asn	Tyr	Lys	Pro 190		Pro

Glu	Lys	Glu 195	Gly	Asn	Leu	Val	Pro 200	Asn	Ile	Leu	Trp	Gly 205	Asn	Ala	Val
	210					215					220		Ser		
Gln 225	Thr	Asp	Arg	Gly	Leu 230	Trp	Ile	Asp	Gly	Ile 235	Gly	Asn	Phe	Phe	His
Val	Ser	Ala	Ser	Glu 245	Asp	Asn	Ile	Arg	Tyr 250	Arg	His	Asn	Ser	Gly 255	Gly
Tyr	Val	Leu	Ser 260	Val	Asn	Asn	Glu	Ile 265	Thr	Pro	Lys	His	Tyr 270	Thr	Ser
Met	Ala	Phe 275	Ser	Gln	Leu	Phe	Ser 280	Arg	Asp	Lys	Asp	Tyr 285	Ala	Val	Ser
Asn	Asn 290	Glu	Tyr	Arg	Met	Tyr 295	Leu	Gly	Ser	Tyr	Leu 300	Tyr	Gln	Tyr	Thr
Thr 305	Ser	Leu	Gly	Asn	Ile 310	Phe	Arg	Tyr	Ala	Ser 315	Arg	Asn	Pro	Asn	Val
Asn	Val	Gly	Ile	Leu 325	Ser	Arg	Arg	Phe	Leu 330	Gln	Asn	Pro	Leu	Met 335	Ile
Phe	His	Phe	Leu 340	Cys	Ala	Tyr	Gly	His	Ala	Thr	Asn	Asp	Met 350		Thr
Asp	Tyr	Ala 355	Asn	Phe	Pro	Met	Val 360	Lys	Asn	Ser	Trp	Arg 365	Asn	Asn	Cys
Trp	Ala 370	Ile	Lys	Cys	Gly	Gly 375	Ser	Met	Pro	Leu	Leu 380	Val	Phe	Glu	Asr
Gly 385	Lys	Leu	Phe	Gln	Gly 390	Ala	Ile	Pro	Phe	Met 395	Lys		Gln		Val

- (2) INFORMATION FOR SEQ ID NO:29:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1830 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: Coding Sequence
 - (B) LOCATION: 1...1830
 - (D) OTHER INFORMATION:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GAT Asp 1	CTC Leu	ACA Thr	TTA Leu	GGG Gly 5	AGT Ser	CGT Arg	GAC Asp	AGT Ser	TAT Tyr 10	AAT Asn	GGT Gly	GAT Asp	ACA Thr	AGC Ser 15	ACC Thr	48
ACA Thr	GAA Glu	TTT Phe	ACT Thr 20	CCT Pro	AAA Lys	GCG Ala	GCA Ala	ACT Thr 25	TCT Ser	GAT Asp	GCT Ala	AGT Ser	GGC Gly 30	ACG Thr	ACC Thr	96
							TCG Ser 40									144

AGC Ser	TTA Leu 50	ACC Thr	ACA Thr	AGT Ser	TGT Cys	TTT Phe 55	TCT Ser	AAC Asn	ACT Thr	GCA Ala	GGA Gly 60	AAT Asn	CTT Leu	ACC Thr	TTC Phe	192
TTA Leu 65	GGG Gly	AAC Asn	GGA Gly	TTT Phe	TCT Ser 70	CTT Leu	CAT His	TTT Phe	GAC Asp	AAT Asn 75	ATT Ile	ATT Ile	TCG Ser	TCT Ser	ACT Thr 80	240
GTT Val	GCA Ala	GGT Gly	GTT Val	GTT Val 85	GTT Val	AGC Ser	AAT Asn	ACA Thr	GCA Ala 90	GCT Ala	TCT Ser	GGG Gly	ATT Ile	ACG Thr 95	AAA Lys	288
TTC Phe	TCA Ser	GGA Gly	TTT Phe 100	TCA Ser	ACT Thr	CTT Leu	CGG Arg	ATG Met 105	CTT Leu	GCA Ala	GCT Ala	CCT Pro	AGG Arg 110	ACC Thr	ACA Thr	336
GGT Gly	AAA Lys	GGA Gly 115	GCC Ala	ATT Ile	AAA Lys	ATT Ile	ACC Thr 120	GAT Asp	GGT Gly	CTG Leu	GTG Val	TTT Phe 125	GAG Glu	AGT Ser	ATA Ile	384
GGG Gly	AAT Asn 130	CTT Leu	GAT Asp	CCG Pro	ATT Ile	ACT Thr 135	GTA Val	ACA Thr	GGA Gly	TCG Ser	ACA Thr 140	TCT Ser	GTT Val	GCT Ala	GAT Asp	432
GCT Ala 145	CTC Leu	AAT Asn	ATT Ile	AAT Asn	AGC Ser 150	CCT Pro	GAT Asp	ACT Thr	GGA Gly	GAT Asp 155	AAC Asn	AAA Lys	GAG Glu	TAT Tyr	ACG Thr 160	480
GGA Gly	ACC Thr	ATA Ile	GTC Val	TTT Phe 165	TCT Ser	GGA Gly	GAG Glu	AAG Lys	CTC Leu 170	ACG Thr	GAG Glu	GCA Ala	GAA Glu	GCT Ala 175	AAA Lys	528
GAT Asp	GAG Glu	AAG Lys	AAC Asn 180	CGC Arg	ACT Thr	TCT Ser	AAA Lys	TTA Leu 185	CTT Leu	CAA Gln	AAT Asn	GTT Val	GCT Ala 190	TTT Phe	AAA Lys	576
AAT Asn	GGG Gly	ACT Thr 195	GTA Val	GTT Val	TTA Leu	AAA Lys	GGT Gly 200	GAT Asp	GTC Val	GTT Val	TTA Leu	AGT Ser 205	GCG Ala	AAC Asn	GGT Gly	624
TTC Phe	TCT Ser 210	CAG Gln	GAT Asp	GCA Ala	AAC Asn	TCT Ser 215	AAG Lys	TTG Leu	ATT Ile	ATG Met	GAT Asp 220	TTA Leu	GGG Gly	ACG Thr	TCG Ser	672
TTG Leu 225	GTT Val	GCA Ala	AAC Asn	ACC Thr	GAA Glu 230	AGT Ser	ATC Ile	GAG Glu	TTA Leu	ACG Thr 235	AAT Asn	TTG Leu	GAA Glu	ATT Ile	AAT Asn 240	720
ATA Ile	GAC Asp	TCT Ser	CTC Leu	AGG Arg 245	AAC Asn	GGG Gly	AAA Lys	AAG Lys	ATA Ile 250	AAA Lys	CTC Leu	AGT Ser	GCT Ala	GCC Ala 255	ACA Thr	768
GCT Ala	CAG Gln	AAA Lys	GAT Asp 260	ATT Ile	CGT Arg	ATA Ile	GAT Asp	CGT Arg 265	CCT Pro	GTT Val	GTA Val	CTG Leu	GCA Ala 270	ATT Ile	AGC Ser	816
GAT	GAG	AGT	TTT	TAT	CAA	AAT	GGC	TTT	TTG	AAT	GAG	GAC	CAT	TCC	TAT	864

Asp	Glu	Ser 275	Phe	Tyr	Gln	Asn	Gly 280	Phe	Leu	Asn	Glu	Asp 285	His	Ser	Tyr	
GAT Asp	GGG Gly 290	ATT Ile	CTT Leu	GAG Glu	TTA Leu	GAT Asp 295	GCT Ala	GGG Gly	AAA Lys	GAC Asp	ATC Ile 300	GTG Val	ATT Ile	TCT Ser	GCA Ala	912
GAT Asp 305	TCT Ser	CGC Arg	AGT Ser	ATA Ile	GAT Asp 310	GCT Ala	GTA Val	CAA Gln	TCT Ser	CCG Pro 315	TAT Tyr	GGC Gly	TAT Tyr	CAG Gln	GGA Gly 320	. 960
AAG Lys	TGG Trp	ACG Thr	ATC Ile	AAT Asn 325	TGG Trp	TCT Ser	ACT Thr	GAT Asp	GAT Asp 330	AAG Lys	AAA Lys	GCT Ala	ACG Thr	GTT Val 335	TCT Ser	1008
TGG Trp	GCG Ala	AAG Lys	CAG Gln 340	AGT Ser	TTT Phe	AAT Asn	CCC Pro	ACT Thr 345	GCT Ala	GAG Glu	CAG Gln	GAG Glu	GCT Ala 350	CCG Pro	TTA Leu	1056
GTT Val	CCT Pro	AAT Asn 355	CTT Leu	CTT Leu	TGG Trp	GGT Gly	TCT Ser 360	TTT Phe	ATA Ile	GAT Asp	GTT Val	CGT Arg 365	TCC Ser	TTC Phe	CAG Gln	1104
AAT Asn	TTT Phe 370	ATA Ile	GAG Glu	CTA Leu	GGT Gly	ACT Thr 375	GAA Glu	GGT Gly	GCT Ala	CCT Pro	TAC Tyr 380	GAA Glu	AAG Lys	AGA Arg	TTT Phe	1152
TGG Trp 385	GTT Val	GCA Ala	GGC Gly	ATT Ile	TCC Ser 390	AAT Asn	GTT Val	TTG Leu	CAT His	AGG Arg 395	AGC Ser	GGT Gly	CGT Arg	GAA Glu	AAT Asn 400	1200
CAA Gln	AGG Arg	AAA Lys	TTC Phe	CGT Arg 405	CAT His	GTG Val	AGT Ser	GGA Gly	GGT Gly 410	GCT Ala	GTA Val	GTA Val	GGT Gly	GCT Ala 415	AGC Ser	1248
ACG Thr	AGG Arg	ATG Met	CCG Pro 420	GGT Gly	GGT Gly	GAT Asp	ACC Thr	TTG Leu 425	TCT Ser	CTG Leu	GGT Gly	TTT Phe	GCT Ala 430	CAG Gln	CTC Leu	1296
TTT Phe	GCG Ala	CGT Arg 435	GAC Asp	AAA Lys	GAC Asp	TAC Tyr	TTT Phe 440	ATG Met	AAT Asn	ACC Thr	AAT Asn	TTC Phe 445	GCA Ala	AAG Lys	ACC Thr	1344
TAC Tyr	GCA Ala 450	GGA Gly	TCT Ser	TTA Leu	CGT Arg	TTG Leu 455	CAG Gln	CAC His	GAT Asp	GCT Ala	TCC Ser 460	CTA Leu	TAC Tyr	TCT Ser	GTG Val	1392
GTG Val 465	AGT Ser	ATC Ile	CTT Leu	TTA Leu	GGA Gly 470	GAG Glu	GGA Gly	GGA Gly	CTC Leu	CGC Arg 475	GAG Glu	ATC Ile	CTG Leu	TTG Leu	CCT Pro 480	1440
TAT Tyr	GTT Val	TCC Ser	AAT Asn	ACT Thr 485	CTG Leu	CCG Pro	TGC Cys	TCT Ser	TTC Phe 490	TAT Tyr	GGG Gly	CAG Gln	CTT Leu	AGC Ser 495	TAC Tyr	1488
GGC Gly	CAT His	ACG Thr	GAT Asp	CAT His	CGC Arg	ATG Met	AAG Lys	ACC Thr	GAG Glu	TCT Ser	CTA Leu	CCC Pro	CCC Pro	CCC Pro	CCC Pro	1536

500 505 510 CCG ACG CTC TCG ACG GAT CAT ACT TCT TGG GGA GGA TAT GTC TGG GCT 1584 Pro Thr Leu Ser Thr Asp His Thr Ser Trp Gly Gly Tyr Val Trp Ala 515 520 GGA GAG CTG GGA ACT CGA GTT GCT GTT GAA AAT ACC AGC GGC AGA GGA 1632 Gly Glu Leu Gly Thr Arg Val Ala Val Glu Asn Thr Ser Gly Arg Gly 535 TTT TTC CGA GAG TAC ACT CCA TTT GTA AAA GTC CAA GCT GTT TAC TCG 1680 Phe Phe Arg Glu Tyr Thr Pro Phe Val Lys Val Gln Ala Val Tyr Ser 545 550 CGC CAA GAT AGC TTT GTT GAA CTA GGA GCT ATC AGT CGT GAT TTT AGT 1728 Arg Gln Asp Ser Phe Val Glu Leu Gly Ala Ile Ser Arg Asp Phe Ser 565 GAT TCG CAT CTT TAT AAC CTT GCG ATT CCT CTT GGA ATC AAG TTA GAG 1776 Asp Ser His Leu Tyr Asn Leu Ala Ile Pro Leu Gly Ile Lys Leu Glu 585 AAA CGG TTT GCA GAG CAA TAT TAT CAT GTT GCG ATG TAT TCT CCA 1824 Lys Arg Phe Ala Glu Gln Tyr Tyr His Val Val Ala Met Tyr Ser Pro 595 GAT GTT 1830 Asp Val 610

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 610 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

 Asp
 Leu
 Thr
 Leu
 Gly
 Ser
 Arg
 Asp
 Ser
 Tyr
 Asn
 Gly
 Asp
 Thr
 Ser
 Thr
 10
 10
 10
 10
 15
 15
 15
 15
 15
 15
 15
 15
 15
 11
 15
 15
 15
 11
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20

			100					105					110		
		115					120	Asp				125	Glu	Ser	
	130					135					140			Ala	_
145					150					155				Tyr	160
				165					170					Ala 175	
			180					185					190	Phe	_
		195					200					205		Asn	
	210					215					220			Thr	
225					230					235				Ile	240
				245					250					Ala 255	
			260					265					270	Ile	
		275					280					285		Ser	_
	290					295					300			Ser	
305					310					315				Gln	320
				325					330					Val 335	
			340					345					350	Pro	
		355					360					365		Phe	
	370					375					380			Arg	
385					390					395				Glu	400
				405					410					Ala 415	
			420					425					430		Leu
		435					440					445		_	Thr
	450					455					460				Val
465					470					475					Pro 480
				485					490					495	Tyr
			500					505					510		Pro
		515					520					525		_	Ala
	530					535					540				Gly
545	rne	arg	GIU	ıyr	Thr 550	Pro	Phe	Val	Lys	Val 555		Ala	Val	Tyr	Ser 560

Claims

- 1. Species specific diagnostic test for identifying infection of a mammal, such as a human, with Chlamydia pneumoniae, said test comprising detecting in a patient or in a patient sample the presence of antibodies against one or more proteins from the outer membrane of Clamydia pneumoniae, said proteins being of a molecular weight of 100.3-89.6 kDa or of 56.1 kDa, or detecting the presence of nucleic acid fragments encoding said outer membrane proteins.
- Diagnostic test according to claim 1, wherein the outer membrane protein has the sequence as shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or in SEQ ID NO: 24, or a variant or subsequence thereof.
 - 3. Diagnostic test according to claim 1, wherein the nucleic acid fragment has the sequence shown in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 10, SEQ ID NO: 10,
- 20 19, SEQ ID NO: 21, or in SEQ ID NO: 23, or a variant or subsequence thereof.
 - 4. Diagnostic test according to claim 3 wherein detection of nucleic acid fragments is obtained by using nucleic acid amplification.
- 5. Diagnostic test according to claim 4, wherein detection of nucleic acid fragments is obtained by using polymerase chain reaction.
 - 6. A nucleic acid fragment derived from *Chlamydia pneumoniae* comprising the nucleotide sequence SEQ ID NO: 1, SEQ ID NO:
- 30 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, or SEQ ID NO: 23, or a variant or subsequence

of said nucleotide sequence which has a sequence homology of at least 50% with any of the sequences mentioned.

- 7. A protein derived from Chlamydia pneumoniae having the amino acid sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof having a sequence similarity of at least 50% and a similar biological function.
- 10 8. Polyclonal monospecific antibody against the protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof.
- 9. A diagnostic kit for the diagnosis of infection of a mammal, such as a human, with Chlamydia pneumoniae, said kit comprising a protein with the amino acid sequence SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18,
 20 SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof.
- 10. A diagnostic kit for the diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*, said kit comprising antibodies against a protein with the amino acid sequence SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof.
- 11. A diagnostic kit for the diagnosis of infection of a mammal, such as a human, with *Chlamydia pneumoniae*, said kit comprising a nucleic acid fragment with the sequence SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO:

WO 98/58953 PCT/DK98/00266

91

17, SEQ ID NO: 19, SEQ ID NO: 21, or SEQ ID NO: 23, or a variant or subsequence thereof.

- 12. A composition for immunizing a mammal, such as a human, against *Chlamydia pneumoniae*, said composition comprising a protein with the amino acid sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof.
- 10 13. Use of a protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof in diagnosis of infection of a mammal, such as a human, with Chlamydia pneumoniae.
- 14. Use of the protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24 or a variant or subsequence thereof in an undenatured form, in diagnosis of infection of a mammal, such as a human, with Chlamydia pneumoniae.
- 15. Use of a protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 25 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof, for immunizing a mammal, such as a human, against Chlamydia pneumoniae.
- 16. Use of the protein with the sequence shown in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, or SEQ ID NO: 24, or a variant or subsequence thereof in an undenatured form, for

immunizing a mammal, such as a human, against Chlamydia pneumoniae.

17. Use of a nucleic acid fragment with the nucleotide sequence shown in SEQ ID NO: 1 SEQ ID NO: 3, SEQ ID NO: 5,

5 SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, or SEQ ID NO: 23, or a variant or subsequence of said nucleotide sequence which has a sequence homology of at least 50% with any of the sequences mentioned for immunizing a mammal, such as a human, against Chlamydia pneumoniae.

BEST AVAILABLE COPY

C O BES.

--py 2/21

Fig. 2

PCT/DK98/00266

3/21

Fig. 3

Fig. 4

Fig. 5

Fig. 6

C. pneumoniae omp4-15 gene clusters

Fig. 7

- [0 0 0 0 0 0 0 0 m k 0 ZXZXEZZÖZZX らままままない。国中 「[다 거 다 다 거 다 다 다 그 | 그 ㅋ 1 0 0 0 0 0 0 0 0 0 0 0 ことではまままらぼられ T K Y L L L O J L J A K J | OOF SOUZE 4XO I Z Z W U I D Z W O Z W I X X Q I I X H H Q X I 1 0 0 0 0 0 0 0 0 0 0 0 DAZDAZHOHZD 1 百万岁日日日日日日7日日 | N N N N N N N N N N N N N N N - DOONGNEHE I D N H N N H A D D - 中国上京王安正臣王〉臣 · 国众口口臣因中中中VV HOLHARKIII 11112444144 HAAGESAGAAH SPSECOFFCD マロコロマエママコマニ I T > S A S H S Z S A F 一点中マエボひはったっぴ I H S S S S S S I D I D · MOMULO · Fi · · I I G S S I S L L S S S I I これで正てむこりばらっこ HARDARAFFEA · KLTHTTTTTTT - FESESSIDEE これるののののこれはので | N N N N N N | N > D N HHHHH 1 HHHH てでははってんでけんへっ KZJKZZZFOKK こかららまますられりまた · Freedh > Produ · NONTON ON OT NHO I N N N H N H H H H H · BZA · AH · FAHE | EEEEEEE 及対対と対対と omp5 omp11 omp10 omp4 omp4 omp7 omp7 omp12 omp8 omp9 omp11 omp10 omp15 omp7 omp7

I H W H H W H H Z H F Q 1 4 4 4 4 4 4 4 4 4 4 4 PZODDZZDZODI X H A H H H A A S S A 1111114511 · NONEBNOR · KN I Z S S F X X X X X X X | NONCONFINADO 一 X X F O 女 D ひ F X O S 1 HUUUUUU AU OU O こなれらななならまればら I H A H H H H H B H I O H 1 D N Q D A D D D D N D A I F O X X S X X F X H X 1 0 0 0 0 0 0 0 0 X D X D LCCPPPPPPLPI 1 HZQQZHQ>ZZZ 1 NONZHXHZNNA і шынныйынн エスススススススエエ Кооооооооо ·×コロコロロコスロドド I HEHDENOR HHH 3 よより なんなん なんしょ LSCKHHHKHDKI LEHERFFFZDFF NEPOPI QUANK 141444140044 DKCHD I ZDD I D I 「田」ら丸T・TAMCS では太らむ・エコエエと・

9/21

132 132 133 134 129 129 141	178 179 179 179 177 174 171 171 188
12	2 S I T T G K G A V S C - S T G S L K F D K N V S L L F S K N F S T D N G G A I T A K T L S L S S V I T T P S G K G A V K C G G D L T F D N N G T I L F K Q D Y C E E N G G A I T A K T L S L S L S S V I T T T G K G A I K I T D G L V F E S I G N L D Q N E N A S S E N G G A I N T K T L S L S L S A G A L N L T D D O N E N A S S E N G G A I T T K T L S I T T T T T T T T T T T T T T T T T T
omp12 omp8 omp5 omp11 omp10 omp4 omp15 omp7 omp7	omp12 omp8 omp5 omp1 omp10 omp1 omp15 omp15 omp15 omp13

224 228 228 222 222 172 161 235	266 266 268 268 253 253 260 260 262
	1
THEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	
S I D I L I L I L I L I L I L I L I L I L	W
N L I L A N N T N N L I I N N N T N N T N N T N N T N N T N N N T N N N T N N N T N N N T N N N T N N N T N N N T N N N T N N N N T N N N N T N N N N T N N N N T N N N N T N	
	1
K G G A I I I G G A I I I G G A I I I I G G A I I I I	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
\Q \Q \X \B \Q \X \C \B \X \C \X \C \B \X \C \X \C \B \X \C \X \	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
N K K C C C C C C C C C C C C C C C C C	I NO TO NO NO THE
NONSRGKI SONSONS SONSO	TYNCONT - LANGURY - LANGUR
20.00	2 C C C C C C C C C C C C C C C C C C C
omp12 omp8 omp5 omp1 omp11 omp15 omp7 omp7 omp6	omp12 omp8 omp9 omp11 omp10 omp16 omp15 omp7 omp6

307 307 300 300 300 201 201 201 201 201 201 300	2232333333 658666665 658886088630
	G G L T L F S R N S V N G G T A P K G G A I A I B D S G B L S L S A B A B D I V F L G N T V G G G G I S F S N N N A A A N A T P - K G G A I A I L D S G B I S I S A D L G N I I F E G N T T S - G G P T L F S N N R C G N T A A G K G G A I A I A D S G S L S L S A B G G D I T F N G N A I V G G P T L F K N N R C G N T A A G K G G A I A I A D S G S L S L S A B G G D I T F L G N T L T - G G P T L F K N N V S A I D T A A P L G G A I A I A D S G S L S L S A B G G D I T F E G N T L T - G G P T L F S N N V V T H A T P L G G A I S I D A S G E L S L S A B C G D I V F E G N Q V T G G B T L F Q G N T A A G K G G A I A I A D S G T L S I S G D I I F E G N T I F C G N T A A G K G G A I A I A D S G T L S I S G D I I F E G N T I F C G N T A A G K G G A I A I A D S G T L S I S G D I I F E G N T I F C G N T A A G K G G A I A I A D S G T L S I S A E K G T I T F Q G N T A P T A A G K G A I A I A D G G E I S L S A E K G T I T F Q G N T A C G A I A I A D T G G E I S L S A E K G T I T F Q G N T A C C C E N N H A Y H D V N S N G G A I A I A D G G S I S I S T S V K S G D L I F K G N T A C C C C C C C C C C C C C C C C C C
omp12 omp8 omp5 omp11 omp11 omp15 omp7 omp7 omp6	omp12 omp8 omp5 omp11 omp10 omp4 omp15 omp7

Fig. 8D

0-1	
401 397 399 399 398 391 305 305 262	451 444 4444 4484 464 453 350 350 262
omp12	omp12
	TO T

Fig. 8E

007467745792	S M 10 0) 5 10 10 0 1 11 10 10
0 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	24425444444444444444444444444444444444
S L K H G V T L Q T Q A F T Q Q A D S R L E M D V G T T L E P - A D T S T I N N L V I N I S I D 500 V L K R G V T L D T K G F T Q T A G S S V I M D A G T T L K A S T E E V T L T G L S I P V D S L G 497 V L K B G V T L V A N T I T Q V E G S K V V M D G G T T F E A S A E G V T L N G L A I N I D S L D A L K G N V E L D V V A N T I T Q V E G S K V V M D G G T T F E A S A E G V T L N G L A I N I D S L D S L K S G V T L V A K S F S Q S P G S T L L M Q P G T T L E T - A D G I T I N N L V L N V D S L G A 87 E L K Q G V T L I T Q G F S Q E A G S L L G M D S G T T L S T T A G S I T I T N L G I N V D S L G E L K Q G V T L I T Q G F S Q E A S S L L L D L G T S L V A N T E S I E L T N L E I N I D S L R V L K G D V V L S A N G F S Q D A N S K L I M D L G T K L I A S K E D I A I T G L A I D I D S L S S L S D G V T L Q L H S F K Q E A S S T L T M S P G T T L L C S G D A - R V Q N L H I L I E 262 262	A K K - A K I E T K A T S K N L T L S G T I T L L D P T G T F Y E N H S L R N P Q S Y - D I L E L S 48 G K K - V V I A A S A A S K N V A L S G P I L L L D N Q G N A Y E H H N L S Q Q Q V F - S F V Q L S 42 T N K - A I I F A A A S K D V A L S G P I M L V D A Q G N Y Y E H H N L S Q Q Q V F - P L I E L 542 N K S - V S L T A G A N K T I T L T S P L V F Q D S G N F Y E B H N L S Q Q Q V F - P L V V F 547 T K K - A T L K A T Q A S Q T V T L S G S L S L V D P S G N V Y E D V S M N N P Q V F - S C L T L 545 K Q P - V S L T A K G A S N K V I V S G K L N L I D I E G N I Y E S H M F S H D Q L F - S L L K I 535 K N P - I N I V A S A A N K N I T L T G T L A L V N A D G A L Y E N H T L Q D S Q D Y - S F V K L 562 G K K - I K L S A A T A Q K D I R I D R P V V L A I S D E S F Y Q N G F L N E D H S Y D G I L E L 516 S S T A A V I K A N T A N K Q I S V T D S I E L I S P T G N A Y E D L R M R N S Q T E - P L L S L 545 T D N F V P V R I R A E D K D - A L V S L E K L K V A F E A Y W S V Y D F P Q F K E A F T I P L L 545
omp12 - omp8 L omp8 L omp9 L omp10 L omp10 L omp10 L omp14 C omp15 V omp6 L omp13 L omp14 - omp15 C omp15 C omp14 - om	omp12 - omp8 G omp5 E omp9 G omp11 G omp10 E omp10 E omp15 G omp15 G omp15 G omp15 G
	Two

Fig. 8F

500 500 500 500 500 500 500 500 500 500	641 641 6641 6641 6641 6641 6641 664
- REFARENCE SERVER I LE RENCE BARAGE PA LE	
O	I I N A N D A N A N L I I I N B N N O N A I I I I N D A N A I I I N D A N B N A N A N I I I N B N B N B N B N B N B N B N B
	HERRETPEE I I HERRETPEE I I HERRETPEE I I I HERRETPEE I I I I HERRETPEE I I I I HERRETPEE I I I I HERRETPEE I I I I I HERRETPEE I I I I I I I I I I I I I I I I I I
L L A C E E E E E E E E E E E E E E E E E E	
T X X X X X X Z C C C C C C C C C C C C C	A S S S S S S S S S S S S S S S S S S S
HEERANOOF	NOOR CONTRACTOR OF THE CONTRAC
	NN
THE THE LET LET LET LET LET LET LET LET LET LE	HOOKKKOHHE
- 400 X X 00 F 1 - 1	TOUGUGAGAGA TOUGUGAGAGA TEEBEEEEEE
	THE LEAN CONTRACTOR OF THE LEAN CONTRACTOR OF THE CONTRACTOR OF TH
- S G C C D D D C C C C C C C C C C C C C C	NAFFFFF TANT - TRUNCHT - T
282610457984 - XSSHFHSUUHH - - AAAAADUAHI -	
omplomplomplomplomplomplomplomplomplompl	omp12 omp8 omp5 omp9 omp11 omp16 omp7 omp15 omp17

Fig. 8G

Fig. 8H

129 778 778 776 777 777 796 771 514 514	177 826 826 818 828 826 844 741 820 514
Y P T V K G S W G N D A F C A D L G Y P E V K G S W G N D A F R M M L G Y P E V K G S W G N D A F G I E F G Y P E A Q G S W T N N S G A L E L G Y P E A Q G S W Y N D G C A L E L A T T A P K G E S S W Y N D G C A L E L A T T A P E S E G S W A N D V F G L E F G Y P E A Q G S W A N D V F G L E F G T T A F F M V K N S W R N N C W A I E C G T T A F F F F F F F F F F F F F F F F F	722122244219
N D L K T K Y T T D N N D L K T K Y T T T Y Y N D L K T T K Y T T T Y Y N D M D T T K Y T T G Y Y N D M D T T K Y T T G Y Y T T G Y Y T T G Y Y T T G Y Y T T G Y Y T T G Y Y T T G Y Y T T G Y Y T G Y Y T G Y Y T G Y Y T G Y Y T G Y Y T G Y Y C Y T G Y Y G Y G Y G Y G Y G Y G Y G Y G Y	F V K V Q Y I Y A H Q Q D G Y I K L Q F V Y A H Q E G G Y I K L N L T Y I R Q D S Y I K V E A I X A H Q D S Y I K V E A I X Y I R Q D S Y I R V E A I X Y I R Q D S Y I R V E A I X Y I R Q D S Y I R V Q A V Y S R Q D S Y I R V Q A V Y S R Q D S Y I R V Q A V Y S R Q D S Y I R V Q A V Y S R Q D S Y I R V Q A V Y S R Q D S Y I R V Q I X I X I X I X I X I X I X I X I X I
I P L - S F D A K F S Y L H T D N K P S Y L H T D N K P L - V L E G Q L A Y S H V S N L D V C V L B Y S Y L H T D N Y C L D V Q V S F S H S D N L D C - S F Y G Q L S Y S H R N N D L M I F H F L C A Y G H T D F C A Y G H T D F C A Y G H T D F C A Y G H T D F C A Y G H A T D F C A Y G C	L P F V I - S V P Y L L K E V M M P I C L - D E S A L F E Q Y M M P I P V V A S G R R S W V D T H T P I P F V L S N P H P L F K T F I P I P F V L S N P H P L F K T F I P I P F V L S N P H P L F K T F I P I P F V L S N P H P L F K T F I P I P I F V F R B V F R G R G F F R E V T F I P I F I F V F F I F I F I F I F I F I F I
omp12 Q I omp8 T E omp5 S H omp10 S E omp10 S E omp16 C N omp15 C N omp15 C N omp15 C N omp16 L Q I	omp12 A S 1 omp8 G R 4 omp5 A S 0 omp1 G S 1 omp10 S S 1 omp15 A T omp15 A T omp6 G S N omp13 omp14

Fig. 8

227 876 876 876 878 876 893 789 262	25 4 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	279 928 928 928 928 945 2514 262
N	TYANLARQGESVRAANHFOVNPHMEIFGOFFSFELRGSSRNYNTNLGSKFFCTNLARQGESVRABGNHFOVNPHMEIFGOFFSFELRGSSRNYNTNLGARY TYANNLARQALVLRAGNHFOVNPHMEIFGOFFSFELRGSSRNYNVDLGGKFF TYANNLARQALVLRAGSHLTLSPHVELSGEAYELRGSSRIYNVDLGGKF TGTSLSRQALLVRAGSHLTLSPHVELSGEAYELRGSRSYANDLGGKF TGGNLSRQAFILNCGNHCLTSPHVELSGEAYELRGSRSYNNNDCGLRY TRGGNLSRQAFILRGSNNYVYNSNCELFGHYAMELRGSSRNYNVDVGTKY TRGSNLARQAGIVQASGFRSLGAABELFGNFGFEWRGSSRNYNVDVGTKY TRGSNLARQAGIVQASGFRSLGAABELFGNFGFEWRGSSRSYNVNDAGSKT TRGSNLARQANINCGSSRNYNINCGSKT	CONTRACTOR AND
omp12 omp6 omp6 omp11 omp10 omp16 omp15 omp15 omp13 omp13	omplomplomplomplomplomplomplomplomplompl	omp12 omp8 omp5 omp11 omp10 omp15 omp7 omp6 omp13

-ig. 8J

Fig. 9

BEST AVAILABLE COPY

Immunoblotting of *C. pneumoniae* EB, lane 1-3 heated to 100°C in SDS-sample buffer, lane 4-6 unheated. Lane 1 reacted with rabbit anti *C. pneumoniae* OMC; lane 2 and 4 pre-serum; lane 3 and 5 polyclonal rabbit anti pEX1-1 fusion protein; lane 6 MAb 26.1.

Fig. 10

Fig. 11

Fig. 12