- 1) Lösung. Alle verwendeten Regeln im Kalkül \mathcal{NK} sind korrekt und gemeinsam vollständig. Das heißt, sämtliche in \mathcal{NK} ableitbaren Formeln sind tatsächlich Tautologien ("Korrektheit") und andererseits sind sämtliche Tautologien auch wirklich ableitbar ("Vollständigkeit").
 - 1 $a \wedge b$ Prämisse
 - 2 $b \rightarrow c$ Prämisse
 - $3 \quad b \qquad \land :e \ 1$
 - $4 \quad c \longrightarrow :e \ 2,3$
 - $5 \quad c \vee d \quad \ \vee : \mathbf{i} \ 4$
- 2) Lösung. Die Axiome lauten:
 - (1) $A \rightarrow (B \rightarrow A)$
 - $(2) \ (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
 - $(3) (\neg A \to \neg B) \to (B \to A)$

1	p	Annahme
2	q	Annahme
3	p	Kopieren
4	$q \rightarrow p$	→: i 2,3
5	$p \to (q \to p)$	→: i 1–4

3) Lösung.

a)

1	$p \to (q \to r)$	Annahme
2	$p \rightarrow q$	Annahme
3		Annahme
4	$ \ \ \ q o r$	\rightarrow : e 3,1
5	$ \cdot $ q	\rightarrow : e 3,2
6	$ \cdot $ r	\rightarrow : e 5,4
7	$p \rightarrow r$	→: i 3–6
8	$(p \to q) \to (p \to r)$	→: i 2–7
9	$(p \to (q \to r)) \to ((p \to q) \to (p \to r))$	→: i 1–8

b)

1	$\neg p \rightarrow \neg q$	Annahme
2	q	Annahme
3	$ \neg p $	Annahme
4	$ \cdot \cdot \neg q$	\rightarrow : e 3,1
5	False	¬: e 2,4
6	-p	¬: i 3–5
7	$ \ \ p$	¬¬: e 6
8	$q \rightarrow p$	→: i 2–7
9	$(\neg p \rightarrow \neg q) \rightarrow (q \rightarrow p)$	→: i 1–8