# Binary Search Trees

COMPSCI 220: WEEK 8.6

Instructor: Meng-Fen Chiang





#### OUTLINE

- Tree Data Structure
- Binary Search Tree Operations
- Time Complexity Analysis



In Order Traversal: 1 2 3 4 5 6 7



## Tree Structure of Binary Search







## Binary Search Tree

- The execution of Binary search (looking for all possible keys) can be described by a decision tree which is called a (static) binary search tree.
- A binary search tree (**BST**) is a binary tree with the following properties:

- 1. keys stored in nodes
- 2. key of each node is  $\geq$  the key of every node in the left subtree
- 3. key of each node is  $\leq$  the key of every node in the right subtree



#### Binary Search Tree: Left-Right Ordering of Keys

- Left-to-right numerical ordering in a BST: for every node i,
  - the values of all the keys  $k_{\text{left}:i}$  in the left subtree are smaller than the key  $k_i$  in i and
  - the values of all the keys  $k_{\mathrm{right}:i}$  in the right subtree are larger than the key  $k_i$  in i:  $\{k_{\mathrm{left}:i}\} \ni l < k_i < r \in \{k_{\mathrm{right}:i}\}$



# Binary Search Tree: Left-Right Ordering of Keys





### Binary Search Tree Operations

- BST is an explicit data structure implementing the table ADT.
  - BST are more complex than heaps: any node may be removed, not only a root or leaves.
  - The only practical constraint: no duplicate keys (attach them all to a single node).
- Basic operations
  - Find a given search key or detect that it is absent in the BST.
  - Insert a node with a given key to the BST if it is not found.
  - FindMin: find the minimum key.
  - FindMax: find the maximum key.
  - Remove a node with a given key and restore the BST if necessary.



## BST Operations: Find / Insert a Node

find: a successful binary search

**insert**: creating a new node at the point where an unsuccessful search stops.







## BST Operations: FindMin / FindMax

- Extremely simple: starting at the root, branch repeatedly left (findMin) or right (findMax) if a corresponding child exists.
- The root of the tree plays a role of the pivot in quicksort and quickselect.
- As in quicksort, the in-order traversal of the tree can sort the items:
  - First visit the left subtree;
  - Then visit the root, and
  - Then visit the right subtree.
- $O(\log n)$  average-case and O(n) worst-case running time for find, insert, findMin, and findMax operations, as well as for selecting a single item



### BST Operations: Remove a Node

- The most complex because the tree may be disconnected. Need to reconnect some nodes!
  - Reconnection must retain the ordering condition.
  - Reconnection should not needlessly increase the tree height.



## BST Operations: Remove a Node

• Standard method of removing a node i with c children:

| С | ACTION                                                                                                   |
|---|----------------------------------------------------------------------------------------------------------|
| 0 | Simply remove the leaf <i>i</i> .                                                                        |
| 1 | Remove the node <i>i</i> after linking its child to its parent node.                                     |
| 2 | Swap the node $i$ with the node $j$ having the smallest key $k_j$ in the right subtree of the node $i$ . |
|   | After swapping, remove the node <i>i</i> (as now it has at most one right child).                        |

# BST Operation: Remove a Node



# BST Operation: Remove a Node





## The Worst-Case Time Complexity

- The find, insert, and remove operations in a BST all take time in O(h) in the worst case, where h is the height of the tree
- **Proof**: The running time T(n) of these operations is proportional to the number of nodes visited
  - Find / insert: 1+*h*
  - Remove: "1 + the depth of the node + the height of its highest subtree"  $\rightarrow$ 1+h
  - In each case  $T(n) = \Theta(h)$
  - For a well-balanced BST,  $T(n) \in O(\log n)$  (logarithmic time)
  - In the worst case  $T(n) \in \Theta(n)$  (linear time) because insertions and deletions may heavily destroy the balance

# The Worse-Case Time Complexity

BSTs of height  $h \approx \log n$ 



BSTs of height  $h \approx n$ 



15



## The Average-Case Time Complexity

- More balanced trees are more frequent than unbalanced ones.
- **Definition** (Internal Path Length): The total internal path length,  $S_{\tau}(n)$ , of a binary tree  $\tau$  is the sum of the depths of all its nodes.



• Average complexity of a successful search in  $\tau$ : the average node depth,  $1/n S_{\tau}(n)$ , e.g. 1/8  $S_{\tau}(8)$  =15/8=1.875 in this example.



# The Average-Case Time Complexity (Contd.)

- Average-case complexity of searching:
  - Averaging  $S_{\tau}(n)$  for all the trees of size n, i.e. for all possible n! insertion orders, occurring with equal probability  $\frac{1}{n!}$





#### Example: All possible BSTs with 4 nodes [1,2,3,4]





#### Definition 3.12

•  $S_{\tau}(n)$ : the sum of the depths of all its nodes in a binary tree  $\tau$ 





- $\frac{1}{n}S_{\tau}(n)$ : the average time complexity of a successful search in a particular tree  $\tau$
- n! insertion orders  $\rightarrow n!$  possible trees := {  $\tau_1, \tau_2, \tau_3, ..., \tau_{n!}$ }



# The $\Theta(\log n)$ Average-case BST Operations

• Let S(n) be the average of the total internal path length,  $S_{\tau}(n)$ , over all BST  $\tau$  created from an empty tree by sequences of n random insertions, each sequence considered as equally possible.

 $S(n) = \frac{1}{n!} [S_{\tau_1}(n) + S_{\tau_2}(n) + S_{\tau_3}(n) + \dots + S_{\tau_{n!}}(n)]$ 

- The expected time for successful and unsuccessful search (insertion and deletion) in such BST is  $\Theta(\log n)$
- **Proof**: It should be proven that  $S(n) \in \Theta(n \log n)$ 
  - Obviously, S(1) = 0.
  - Any n-node tree, n>1, contains a left subtree with i nodes, a root at level 0, and a right subtree with n-i-1 nodes;  $0 \le i \le n-1$ .
  - For a fixed i, S(n) = (n-1) + S(i) + S(n-i-1), as the root adds 1 to the path length of each other node.

$$S(n) = \frac{1}{n}[S(0) + S(n-1) + S(1) + S(n-2) + S(2) + S(n-3) + \dots + S(n-1) + S(0)] + (n-1)$$

Eq.(1) 
$$S(n) = \frac{2}{n} \sum_{0 \le p \le n-1} S(p) + n - 1$$

Eq.(2) 
$$nS(n) = 2 \sum_{0 \le p \le n-1} S(p) + n(n-1) = 2S(n-1) + 2 \sum_{0 \le p \le n-2} S(p) + n(n-1)$$

Eq.(3) 
$$(n-1)S(n-1) = 2\sum_{0 \le p \le n-2} S(p) + (n-1)(n-2)$$

$$nS(n) = 2S(n-1) + (n-1)S(n-1) - (n-1)(n-2) + n(n-1)$$

$$= (n+1)S(n-1) + 2(n-1)$$

$$\frac{S(n)}{n+1} = \frac{S(n-1)}{n} + \frac{2(n-1)}{n(n+1)} \longrightarrow \frac{4}{n+1} - \frac{2}{n}$$

"Telescoping" 
$$\frac{S(n)}{n+1} = \frac{S(n-1)}{n} + \frac{4}{n+1} - \frac{2}{n}$$
 to get the explicit form:

$$\frac{S(n)}{n+1} + \frac{S(n-1)}{n} + \frac{S(n-2)}{n-1} + \dots + \frac{S(2)}{3} + \frac{S(1)}{2} - \frac{S(n-1)}{n} - \frac{S(n-2)}{n-1} - \dots - \frac{S(2)}{3} - \frac{S(1)}{2} - \frac{S(0)}{1}$$

$$= \left(\frac{4}{n+1} - \frac{2}{n}\right) + \left(\frac{4}{n} - \frac{2}{n-1}\right) + \left(\frac{4}{n-1} - \frac{2}{n-2}\right) + \dots + \left(\frac{4}{2} - \frac{2}{1}\right), \text{ or }$$

$$\frac{S(n)}{n+1} = S(0) + 4\left(\frac{1}{n+1} + \dots + \frac{1}{2}\right) - 2\left(\frac{1}{n} + \dots + 1\right) = \frac{4}{n+1} + 2\left(\frac{1}{n} + \dots + \frac{1}{2}\right) - 2$$
$$= \frac{4}{n+1} + 2(H_n - 1) - 2 = 2H_n - 4 + \frac{4}{n+1}$$

Then, the closed-formed formula is

$$S(n) = 2(n+1)H_n - 4(n+1) + 4$$

This gives  $S(n) \in \Theta(n \log n)$ 

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
 is the  $n^{\text{th}}$  harmonic number and  $H_n \in \Theta(\log n)$ .



#### The $\Theta(\log n)$ Average-case BST Operations (Contd.)

• After summing these recurrences for  $0 \le i \le n-1$  and averaging, just the same recurrence as for the average-case quicksort analysis is obtained:

$$S(n) = (n-1) + \frac{2}{n} \sum_{i=0}^{n-1} S(i)$$

- Therefore,  $S(n) \in \Theta(n \log n)$ , and the expected depth of a node is  $\frac{1}{n}S(n) \in \Theta(\log n)$ .
- Thus, the average-case search and insertion time is in  $\Theta(\log n)$ .
- It is possible to prove (but in a more complicate way) that the average-case deletion time is also in  $\Theta(\log n)$ .
- The BST allow for a special balancing, which prevents the tree height from growing too much, i.e. avoids the worst cases with linear time complexity  $\Theta(n)$ .



#### **SUMMARY**

- Tree Data Structure
- Binary Search Tree Operations
  - find, insert, and remove
- Time Complexity Analysis
  - Worse and average case



In Order Traversal: 1 2 3 4 5 6 7