

LOUISIANA STATE UNIVERITY

College of Agriculture School of Plant, Environmental, and Soil Sciences AGRO 7075 Prediction-based Breeding

Base populations and breeding schemes

Prof. Roberto Fritsche-Neto

rfneto@agcenter.lsu.edu

Baton Rouge, May 1st, 2023

Building a base population

- Combine high mean and large (and good) variability
- Open mating among parents
- Closed system *since the begin, all the alleles are present*
- HWE binomial and multinomial distributions
- How many parents?
- Variability vs. Mean vs. % Heterosigozyty
- Number of cycles vs. Ne
- What is the maximum of RS? $RS = 2.Ne.i.r_{aP}.\sigma_a$
- Choosing parents:
- Breeding program objectives
- Heterotic Groups (SCA and GCA)

What is the best base population?

- Combine mean and variability (divergence)
- $L_1 = AABBCC$
- $L_2 = aabbCC$
- $L_1 = u + \alpha_a + \alpha_b + \alpha_c$
- $L_2 = u \alpha_a \alpha_b + \alpha_c$
- $X_{P(12)} = u + \alpha_c$
- Which is the best populations to obtain lines?
- $X_S = u + (p q)a + 2pqd 2pqdF$
- $X_{S0} = u + (p q)a + 2pqd$
- $X_{S1} = u + (p q)a + pqd$
- The best can be estimated by = $2.X_{S1}$ X_{S0}
- 2u + 2(p q)a + 2pqd (u + (p q)a + 2pqd)
- u + (p q)a (estimated value for F = 1)

- $L_1 = AABBCC$
- $L_2 = AAbbCC$
- $L_3 = aaBBCC$
- $L_4 = aabbCC$
- $L_1 = u + \boldsymbol{\alpha}_a + \boldsymbol{\alpha}_b + \boldsymbol{\alpha}_c$
- $L_2 = u + \boldsymbol{\alpha}_a \boldsymbol{\alpha}_b + \boldsymbol{\alpha}_c$
- $L_3 = u \alpha_a + \alpha_b + \alpha_c$
- $L_4 = u \alpha_a \alpha_b + \alpha_c$
- $X_{P(1234)} = u + \alpha_c$

Why after so many cycles there is Va?

- Two-locus model = $A_i A_i / B_k B_l$
- $G_{ijkl} = (\boldsymbol{\alpha}_i + \boldsymbol{\alpha}_j + \boldsymbol{S}_{ij}) + (\boldsymbol{\alpha}_k + \boldsymbol{\alpha}_l + \boldsymbol{S}_{kl}) + I_{ijkl}$
- $G_{ijkl} = u + A_{ij} + B_{kl} + I_{ijkl}$
- The epistatic effect is
- $I_{ijkl} = G_{ijkl} (u + A_{ij} + B_{kl})$
- 1 or 2 dominant allele = 13
- Otherwise = 1
- p = q = 0.5
- Population mean
- $u = p^2p^2G_{1111} + p^22pqG_{1112} + ... + q^2q^2G_{2222}$
- = $\frac{1}{4}$. $\frac{1}{4}$. $\frac{1}{3}$ + $\frac{1}{4}$. $\frac{1}{2}$. $\frac{13}{3}$ + ... + $\frac{1}{4}$. $\frac{1}{4}$. $\frac{1}{1}$ = $\frac{12}{4}$
- A_iA_i and B_kB_1 effects
- G_{22} .. = $p^213 + 2pq13 + q^21 = 10$
- $A_{22} = Gij... u = 10 12^{-1}/4 = -9/4$
- I_{iikl} effect
- $I_{1111} = G_{1111} (u + A_{11} + B_{11})$
- = $13 (12 + \frac{1}{4}) \frac{3}{4} \frac{3}{4} = -\frac{3}{4}$

	B_1B_1	B_1B_2	B_2B_2	G _{ij}	A _{ij}
A_1A_1	$G_{1111} = 13$	$G_{1112} = 13$	$G_{1122} = 13$	G ₁₁ = 13	$A_{11} = \frac{3}{4}$
	$u+A_{11}+B_{11}=13\frac{3}{4}$	$u+A_{11}+B_{12}=13\frac{3}{4}$	$u+A_{11}+B_{22}=10^{3}/_{4}$		
	$I_{1111} = -3/4$	$I_{1112} = -3/4$	$I_{1122} = 9/4$		
A_1A_2	$G_{1211} = 13$	$G_{1212} = 13$	$G_{1222} = 13$	$G_{12} = 13$	$A_{12} = \frac{3}{4}$
	$u+A_{12}+B_{11}=13\frac{3}{4}$	$u+A_{12}+B_{12}=13\frac{3}{4}$	$u+A_{12}+B_{22}=10^{3}/_{4}$		
	$I_{1211} = -3/4$	$I_{1212} = -3/4$	$I_{1222} = 9/4$		
A_2A_2	$G_{2211} = 13$	$G_{2221} = 13$	$G_{2222} = 1$	G ₂₂ = 10	$A_{22} = -9/4$
	$u+A_{22}+B_{11}=10^{3}/_{4}$	$u+A_{22}+B_{21}=10^{3}/_{4}$	$u+A_{22}+B_{22}=7^{3}/_{4}$		
	$I_{2211} = 9/4$	$I_{2221} = 9/4$	$I_{2222} = -27/4$		
Gkl	$G_{11} = 13$	$G_{12} = 13$	$G_{22} = 10$	u = 121/4	
\mathbf{B}_{kl}	$B_{11} = \frac{3}{4}$	$B_{12} = \frac{3}{4}$	$B_{22} = -9/4$		

Why after so many cycles there is Va?

- Considering AA = Aa = 13 and aa = 10
- a = d = 3/2
- $Va = 2pq[a + (p q)d)]^2$
- = $2\frac{1}{2}\frac{1}{2}[3/2 + (\frac{1}{2} \frac{1}{2})3/2)$
- = 9/8 = 1.12
- $Vd = (2pqd)^2$
- $\bullet = (2 \frac{1}{2} \frac{1}{2} \frac{3}{2})^2$
- = 9/16 = 0.56
- The same values are found for B. Thus,
- Va = VaA + VaB = 2.25
- Vd = VdA = VdB = 1.12
- $Vg = \frac{1}{4}\frac{1}{4}(13 (12 + 1/4))^2 + ... + \frac{1}{4}\frac{1}{4}(1 12\frac{1}{4})^2$
- = 135/16 = 8.44
- Vi = Vg Va Vd = 81/16 = 5.06
- Va = 13.33 %
- Vd = 6.66 %
- $V_i = 80.01\%$

	B_1B_1	B_1B_2	B_2B_2	G _{ij}	A _{ij}
A_1A_1	$G_{1111} = 13$	$G_{1112} = 13$	$G_{1122} = 13$		$A_{11} = \frac{3}{4}$
	$u+A_{11}+B_{11} = 13^{3}/_{4}$	$u+A_{11}+B_{12} = 13^{3}/4$	$u+A_{11}+B_{22} = 10^{3}/4$	$G_{11} = 13$	
	$I_{1111} = -3/4$	$I_{1112} = -\frac{3}{4}$	$I_{1122} = 9/4$		
A_1A_2	$G_{1211} = 13$	$G_{1212} = 13$	$G_{1222} = 13$	G ₁₂ = 13	$A_{12} = \frac{3}{4}$
	$u+A_{12}+B_{11} = 13^{3}/4$	$u+A_{12}+B_{12} = 13^{3}/4$	$u+A_{12}+B_{22} = 10^{3/4}$		
	$I_{1211} = -3/4$	$I_{1212} = -\frac{3}{4}$	$I_{1222} = 9/4$		
$\mathbf{A_2}\mathbf{A_2}$	$G_{2211} = 13$	$G_{2221} = 13$	$G_{2222} = 1$	G ₂₂ = 10	$A_{22} = -9/4$
	$u+A_{22}+B_{11} = 10^{3}/4$	$u + A_{22} + B_{21} = 10^{3}/4$	$u+A_{22}+B_{22} = 73/4$		
	$I_{2211} = 9/4$	$I_{2221} = 9/4$	$I_{2222} = -27/4$		
Gkl	$G_{11} = 13$	$G_{12} = 13$	$G_{22} = 10$	$u = 12\frac{1}{4}$	
\mathbf{B}_{kl}	$B_{11} = \frac{3}{4}$	$B_{12} = \frac{3}{4}$	$B_{22} = -9/4$		

Why after so many cycles there is Va?

- Considering B_2B_2 fixed, AA = Aa = 13, and aa = 10
- $u = p^2G_{1122} + 2pqG_{1222} + q^2G_{2222}$
- = $\frac{1}{4}.13 + \frac{2}{2}.\frac{1}{2}.13 + \frac{1}{4}.1 = 10$
- A_iA_j effect
- $G_{22..} = 1$
- $A_{22} = G_{ij}... u = 1 10 = -9$
- $I_{ijkl} = G_{ijkl} (u + A_{ij} + B_{kl})$
- $I_{1111} = 13 10 3 + 0 = 0$
- Variances
- $Vg = \frac{1}{4}(13-10)^2 + \frac{2}{2}\cdot\frac{1}{2}(13-10)^2 + \frac{1}{4}(1-10)^2 = 27$
- a = d = 6
- $Va = 2pq[a + (p q)d]^2 = 18 = 66.66\%$
- $Vd = (2pqd)^2 = 9 = 33.33\%$
- $V_i = V_g V_a V_d = 0 = 0\%$

	B_2B_2	G _{ij}	A _{ij}	
	$G_{1122} = 13$			
A_1A_1	$u+A_{11}+B_{22}$	$G_{11} = 13$	$A_{11} = 3$	
	$I_{1122} = 0$			
	$G_{1222} = 13$		$A_{12} = 3$ $A_{22} = -9$	
A_1A_2	u+A ₁₂ +B ₂₂	$G_{12} = 13$ $G_{22} = 1$		
	$I_{1222} = 0$			
	$G_{2222} = 1$			
A_2A_2	u+A ₂₂ +B ₂₂			
	$I_{2222} = 0$			
		u = 10		

Main criteria to choose the breeding method

- Propagation system Sexual (cross-pollination or self-pollination) or clonal propagated
- Trait Qualitative vs. Quantitative
- Heritability Low or high
- Genetic control Additive vs. non-additive
- Proportion explored of the additive genetic variance Cov between evaluated and improved population
- Resources available time, money, labor, ...
- Product to be developed lines, hybrid, variety, etc.

How can we maximize the genetic gain per time?

- Increasing the intensity of selection (i)
- Minimizing the environment effect replicates and randomize

$$\sigma_P^2 = \sigma_G^2 + \sigma_E^2 + 2COV_{GE}$$
 $h_A^2 = \frac{\sigma_G^2}{\sigma_S^2 + \sigma_S^2/r}$

$$h_A^2 = \frac{\sigma_G^2}{\sigma_G^2 + \sigma_E^2/r}$$

 $RS = i.r_{aP}.\sigma_a/T$

$$r_{xy} = \frac{\sigma_{xy}}{\sigma_x \sigma_y} = \frac{\sigma_a^2}{\sigma_a \sigma_P} = \frac{\sigma_a}{\sigma_P}$$

$$RS = i \frac{\sigma_a}{\sigma_B} \cdot \sigma_a$$
 $RS = i \frac{\sigma_a^2}{\sigma_B}$

- Increasing the elite genetic variability
- Using more accurate or less time-consuming breeding schemes
- For instance, combining GS and HTP
- Maximizing the additive genetic covariance between evaluated and improved population
- $c = pathway between the unit of selection (US) and improved population <math>(Y_M) indirect selection$

$$RS(us,Ym) = i \frac{\sigma_{GYm}^2}{\sigma_{PYm}} \cdot \frac{COV_{G(us,Ym)}}{\sigma_{GYm}^2} \qquad RS = i \frac{COV_{G(us,Ym)}}{\sigma_{PYm}} \qquad RS = i \frac{r_{g(us,Ym)} \, \sigma_{a(us)} \sigma_{a(us)} \sigma_{a(Ym)}}{\sigma_{PYm}} \qquad RS = i.c. \frac{\sigma_a^2}{\sigma_{PYm}}$$

Massal selection

- Harvest together similar and superior phenotypes
- They will form the newest improved population
- Only one sex (female)

- Little gains
- Easy, cheap, and no time-consuming
- Species little improved and high heritable traits

$$RS = i.c. \frac{\sigma_a^2}{\sigma_{PYm}}$$

$$RS = i.\frac{1}{2}.\frac{\sigma_a^2}{\sigma_{PYm}}$$

$$RS = i.\frac{1}{2}.\frac{\sigma_a^2}{\sqrt{\sigma_G^2 + \sigma_E^2 + 2COV_{GE}}}$$

Massal selection

• Both parents

$$RS = i_1. c. \frac{\sigma_a^2}{\sigma_{PYm}} + i_2. c. \frac{\sigma_a^2}{\sigma_{PYm}}$$

male
$$RS = i_1 \cdot \frac{1}{2} \cdot \frac{\sigma_a^2}{\sigma_{PYm}} + i_2 \cdot \frac{1}{2} \cdot \frac{\sigma_a^2}{\sigma_{PYm}}$$

$$RS = i.\frac{\sigma_a^2}{\sigma_{PYm}}$$

$$RS = i. \frac{\sigma_a^2}{\sqrt{\sigma_G^2 + \sigma_E^2 + 2COV_{GE}}}$$

• Better gains but still low

Selection based on progenies

• Among half-sibs (only one sex)

$$c = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

$$RS = i.\frac{1}{4}.\frac{\sigma_a^2}{\sigma_{PYm}}$$

$$c = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \qquad RS = i \cdot \frac{1}{4} \cdot \frac{\sigma_a^2}{\sigma_{PYm}} \qquad RS = i \cdot \frac{1}{4} \cdot \frac{\sigma_a^2}{\sqrt{\sigma_G^2 + \sigma_E^2/r}}$$

Selection based on progenies

• Half-sibs but in both parents

Recurrent selection – HS / S₁

Comparison between breeding methods

• Response to selection per time

$$RS = \frac{i. r_{aP}. \sigma_a}{T} \qquad EF_{X/Y} = \frac{RS_X. T_Y}{RS_Y. T_X}. 100$$

- It is possible simulate innumerous breeding schemes
- Moreover, the cost per unit / plot must be considered
- Thus, there is no "the best method"