UNIVERSITY OF TORONTO

Faculty of Arts and Science

DECEMBER 2010 EXAMINATIONS

STA257H1F - Section L0101

Duration – 3 hours

Examination aids: Non-programmable Calculators

Instructions:

- 1. There are 10 questions and 14 pages in total (including this cover sheet), each worth 10 marks.
- 2. The last two pages contain lists of useful formulas.
- 3. Answer all questions directly on the examination paper. Use the backs of the pages or the third-to-last page if more space is needed, and provide clear pointers to your work.
- 4. Show your intermediate work, and write clearly and legibly.
- 5. Answers that are algebraic expressions should be simplified. Series and integrals should be evaluated. Numerical expressions need not necessarily be expressed in decimal format.
- 6. Read the questions carefully and answer the question that is being asked.

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	Total

1. Let A, B, and C be any 3 events in some sample space S.

a. (4 marks)

If $P(A|C) \ge P(B|C)$ and $P(A|\overline{C}) \ge P(B|\overline{C})$, show that $P(A) \ge P(B)$.

b. (6 marks)

If P(A) = 1/3, P(B) = 1/5, and P(A|B) + P(B|A) = 2/3, find $P(\overline{A} \cap \overline{B})$.

A fair coin is tossed repeatedly and X is the number of tosses before the first head appears. You independently repeat the experiment, and Y is the number of tosses before the first head appears in the second sequence of tosses.

a. (2 marks)

Give the probability mass function of X.

b. (2 marks)

Find P(X > n), for $n \ge 1$.

c. (3 marks)

Find P(X = Y).

d. (3 marks)

Find P(X > Y).

$$X_1, X_2$$
 are positive continuous random variables, with joint probability density function
$$f(x_1, x_2) = \begin{cases} 2 \cdot x_1 \cdot \exp\{-x_1(2 + x_2)\}, & \text{for } x_1, x_2 > 0 \\ 0, & \text{otherwise} \end{cases}$$

a. (2 marks)

Find the marginal probability density function of X_1 .

b. (2 marks)

Find $P(X_1 > 1)$.

c. (6 marks)

Find the marginal probability density function of $\,X_2^{}$.

4

Let X be an arbitrary random variable with $E(X^4) < \infty$.

a. (3 marks)

Show that $E(X^2) \ge [E(X)]^2$.

b. (4 marks)

For $\mu = E(X)$, show that $E[(X - \mu)^4] \ge \sigma^4$.

c. (3 marks)

If $\mu = E(X) = 1$, $E(X^2) = 2$, and $E(X^3) = 5$, find $E[(X - \mu)^3]$.

5

 $X_{\scriptscriptstyle 1}, X_{\scriptscriptstyle 2}$ are two independent Exponential(β) random variables.

a. (3 marks)

Find the probability density function of $Y = \min(X_1, X_2)$.

b. (2 marks)

Use the moment generating function method to identify the distribution of $Z=X_1+X_2$.

c. (5 marks)

For constant c > 0, find $P(X_1 > c \cdot X_2)$.

6. X_1, X_2 are two independent Gamma random variables, with parameters $(a_1, 1)$ and $(a_2, 1)$, respectively. Define the random variables $Y = X_1 + X_2$ and $Z = X_1 / X_2$.

a. (2 marks)

Find $Cov(Y, X_1)$.

b. (3 marks)

Find the joint probability density function of X_1 and Z .

c. (5 marks)

Find the marginal probability density function of Z.

 $\boldsymbol{X_1}, \boldsymbol{X_2}$ are continuous random variables with joint probability density function

$$f\left(x_{1},x_{2}\right)=\begin{cases}c\cdot x_{1}^{2}, & \text{for } 0\leq x_{1}\leq 1 \text{ and } -x_{1}\leq x_{2}\leq x_{1}\\0, & \text{otherwise}\end{cases}.$$

a. (3 marks)

Find the value of c.

b. (3 marks)

Find $Cov(X_1, X_2)$.

c. (4 marks)

Find the marginal probability density function of $\,X_2\,.$

 X_1, X_2, X_3 independently follow Gamma distributions with shape parameters $\alpha_1 = 1, \alpha_2 = 2, \alpha_3 = 3$ and scale parameters $\beta_1 = \beta_2 = \beta_3 = 1$, and define $Y = X_1 + X_2 + X_3$.

a. (2 marks)

Find the mean and variance of Y.

b. (3 marks)

Using Markov's inequality, find an upper bound for $P(Y \ge 30)$.

c. (5 marks)

Find $E(Y/X_3)$.

 X_1, X_2 are Normal random variables with means μ_1, μ_2 , variances σ_1^2, σ_2^2 , and correlation coefficient ρ . Let $Y = X_1 + X_2$ and $Z = X_1 - X_2$, where

$$E(Y) = 5$$
, $V(Y) = 19$
 $E(Z) = 1$, $V(Z) = 7$, $Cov(Y, Z) = -5$

a. (2 marks)

Find μ_1, μ_2 .

b. (4 marks)

Find ρ .

c. (4 marks)

Find $E(e^{Y+Z})$.

10

$$\begin{split} X_1, X_2 &\text{ are two continuous random variables. The marginal probability density function} \\ \text{of} \quad X_1 &\text{ is } f_1\left(x_1\right) = \begin{cases} 12x_1^2(1-x_1), &\text{for } 0 < x_1 < 1 \\ 0, &\text{otherwise} \end{cases}, \text{ and the conditional probability density} \\ \text{function of } X_2 &\text{ given } X_1 = x_1 &\text{ is } f_{2|1}\left(x_2 \mid x_1\right) = \begin{cases} 1/x_1, &\text{for } 0 < x_2 < x_1 \\ 0, &\text{otherwise} \end{cases}. \end{split}$$

a. (5 marks)

Find the marginal probability density function of X_2 .

b. (5 marks)

Find the marginal probability density function of $Y = \log(X_2)$.

Extra Space Use if needed and indicate clearly which questions you are answering

Some Useful Formulas

Distribution	Probability Mass Function	Mean	Variance	Moment Generating Function $m(t)$
Binomial	$p(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$	np	np(1-p)	$\left[pe^t + (1-p)\right]^n$
	$x = 0, 1, \dots, n$			
Geometric	$p(x) = p(1-p)^{x-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	pe^{t}
	$x = 1, 2, \dots$	p	p^2	$\frac{pe^t}{1-(1-p)e^t}$
Hypergeometric	$p(x) = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}}$	$\frac{nr}{N}$	$\frac{nr}{N} \left(\frac{N-r}{N} \right) \left(\frac{N-n}{N-1} \right)$	
	$x = 0, 1, \dots, \min(n, r)$			
Poisson	$p(x) = \frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ	$\exp\left[\lambda\left(e^{\prime}-1\right)\right]$
N:	$x = 0, 1, 2, \dots$	 		
Negative Binomial	$p(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^r$
	$x = r, r+1, \dots$			<u> </u>

Some Useful Formulas

Distribution	Probability Density Function	Mean	Variance	Moment Generating
				Function $m(t)$
Uniform	$f(x) = \frac{1}{\theta_2 - \theta_1}$	$\frac{\theta_1 + \theta_2}{2}$	$\frac{\left(\theta_2 + \theta_1\right)^2}{12}$	$\frac{e^{i\theta_2}-e^{i\theta_1}}{t\left(\theta_2-\theta_1\right)}$
	for $\theta_1 \le x \le \theta_2$; where $\theta_1, \theta_2 \in \mathbb{R}$			
Normal	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	μ	σ^2	$\exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$
	for $x \in \mathbb{R}$; where $\mu \in \mathbb{R}$, $\sigma > 0$			
Exponential	$f(x) = \frac{1}{\beta} e^{-x/\beta}$	β	β^2	$(1-\beta t)^{-1}$
	for $x > 0$; where $\beta > 0$			
Gamma	$f(x) = \frac{x^{\alpha - 1} e^{-x/\beta}}{\beta^{\alpha} \Gamma(\alpha)}$	αβ	$\alpha \beta^2$	$(1-\beta t)^{-\alpha}$
	for $x > 0$; where $\alpha, \beta > 0$			
Chi-square	$f(x) = \frac{x^{(\nu/2)-1}e^{-x/2}}{2^{\nu/2}\Gamma(\nu/2)}$	ν	2ν	$\left(1-2t\right)^{-\nu/2}$
	for $x > 0$; where $\nu \ge 1$ $(\nu \in \mathbb{N})$,
Beta	$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{\left(\alpha+\beta\right)^2\left(\alpha+\beta+1\right)}$	no closed form expression
	for $0 < x < 1$; where $\alpha, \beta > 0$			

End of Exam Total pages = 14

Total Marks = 100