Probabilistic Topic Models: Expectation-Maximization Algorithm

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Probabilistic Topic Models: Expectation-Maximization (EM) Algorithm

Estimation of One Topic: $P(w \mid \theta_d)$

How to set θ_d to maximize p(d| Λ)? (all other parameters are known)

d

... text mining... is... clustering... we.... Text.. the

If we know which word is from which distribution...

Given all the parameters, infer the distribution a word is from...

The Expectation-Maximization (EM) Algorithm

Hidden Variable: $z \in \{0, 1\}$

the paper presents⁻ text mining algorithm _____0 for clustering —

Initialize $p(w|\theta_d)$ with random values.

Then iteratively improve it using E-step & M-step. Stop when likelihood doesn't change.

$$p^{(n)}(z=0 \mid w) = \frac{p(\theta_d)p^{(n)}(w \mid \theta_d)}{p(\theta_d)p^{(n)}(w \mid \theta_d) + p(\theta_B)p(w \mid \theta_B)}$$
 E-step How likely w is from θ_d

$$p^{(n+1)}(w \mid \theta_d) = \frac{c(w,d)p^{(n)}(z = 0 \mid w)}{\sum_{w' \in V} c(w',d)p^{(n)}(z = 0 \mid w')}$$

M-step

EM Computation in Action

E-step
$$p^{(n)}(z=0|w) = \frac{p(\theta_d)p^{(n)}(w|\theta_d)}{p(\theta_d)p^{(n)}(w|\theta_d) + p(\theta_B)p(w|\theta_B)}$$

$$\text{M-step} \quad p^{(n+1)}(w \mid \theta_d) = \frac{c(w,d)p^{(n)}(z=0 \mid w)}{\sum_{w' \in V} c(w',d)p^{(n)}(z=0 \mid w')} \quad \begin{array}{l} \text{p(θ_d)=p(θ_B)= 0.5} \\ \text{and p(w | θ_B) is known} \end{array}$$

Assume

Word	#	$p(w \theta_B)$	Iteration 1		Iteration 2		Iteration 3	
			$P(w \theta)$	p(z=0 w)	$P(w \theta)$	P(z=0 w)	$P(w \theta)$	P(z=0 w)
The	4	0.5	0.25	0.33	0.20	0.29	0.18	0.26
Paper	2	0.3	0.25	0.45	0.14	0.32	0.10	0.25
Text	4	0.1	0.25	0.71	0.44	0.81	0.50	0.93
Mining	2	0.1	0.25	0.71	0.22	0.69	0.22	0.69
Log-Likelihood			-16.96		-16.13		-16.02	

Likelihood increasing

EM As Hill-Climbing -> Converge to Local Maximum

Summary

- Expectation-Maximization (EM) algorithm
 - General algorithm for computing ML estimate of mixture models
 - Hill-climbing, so can only converge to a local maximum (depending on initial points)
- E-step: "augment" data by predicting values of useful hidden variables
- M-step: exploit the "augmented data" to improve estimate of parameters ("improve" is guaranteed in terms of likelihood)
- "Data augmentation" is probabilistic → Split counts of events probabilistically