		Note	e
		-	
		I	I
Name Vorname			
	1		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)	2		
	-		
Unterschrift der Kandidatin/des Kandidaten	3		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	4		
rakultat fur Mathematik			
Semestrale	5		
Lineare Algebra 1			
Prof. Dr. F. Roesler			
	6		
19. Februar 2007, 10:15 – 11:45 Uhr			
	7		
Hörsaal: Reihe: Platz:	′		
Tiotsual			
Hinweise:			
Überprüfen Sie die Vollständigkeit der Angabe: 7 Aufgaben			
Bearbeitungszeit: 90 min.	\sum		
Erlaubte Hilfsmittel: keine			
	J		
Iur von der Aufsicht auszufüllen:			
örsaal verlassen von bis	ī		
orbadi veriasseri voii bis	-	Erstkorrek	tur
orzeitig abgegeben um			
	II		
esondere Bemerkungen:		Zweitkorr	ektur

Aufgabe 1 Lineare Abbildung [ca. 8 Punkte]

Sei $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ die \mathbb{R} -lineare Abbildung, die durch

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \longmapsto \begin{pmatrix} -1 & 0 & 4 & 0 \\ -3 & 1 & -4 & 1 \\ -4 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

definiert wird.

- (i) Geben Sie $\ker f$ an.
- (ii) Geben Sie $\operatorname{rg} f$ und eine Basis von $\operatorname{im} f$ an.
- (iii) Untersuchen und begründen Sie, ob die Abbildung injektiv, surjektiv oder bijektiv ist.

Lösung

(i) ker f ist die Lösungsmenge des Gleichungssystems

$$\begin{pmatrix} -1 & 0 & 4 & 0 \\ -3 & 1 & -4 & 1 \\ -4 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Zur Lösung dieses Gleichungssystems kann natürlich jedes beliebige Verfahren benutzt werden. Beispielsweise kann man 'per Hand' lösen, da zwei der Gleichungen sehr leicht umformbar sind: wir erhalten also drei Gleichungen mit vier Unbekannten:

$$-x_1 + 4x_3 = 0 (i)$$

$$-3x_1 + x_2 - 4x_3 + x_4 = 0 (ii)$$

$$-4x_1 + x_2 = 0 (iii)$$

Aus Gleichung (i) folgt $x_1 = 4x_3$; Gleichung (iii) impliziert $x_2 = 4x_1 = 16x_3$. Gleichung (ii) vereinfacht sich dann zu

$$-3 \cdot (4x_3) + 16x_3 - 4x_2 + x_4 = 0 \implies x_4 = 0$$
 (ii)

Der Kern dieser Abbildung ist also

$$\ker f = \lim \left\{ \begin{pmatrix} 4\\16\\1\\0 \end{pmatrix} \right\}$$

(ii) Da dim $\mathbb{R}^4 = 4 = \dim \operatorname{im} f + \dim \ker f = \operatorname{rg} f + 1$ hat f vollen Rang, $\operatorname{rg} f = 3$. Andererseits ist $\dim \mathbb{R}^3 = 3$ und somit im $f = \mathbb{R}^3$. Entweder können wir also drei der vier Spaltenvektoren als

Basis für im f wählen oder benutzen die kanonischen Basisvektoren für $\mathbb{R}^3.$

$$\operatorname{im} f = \mathbb{R}^4 = \operatorname{lin} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

(iii) Da im $f = \mathbb{R}^3$ und ker $f \neq \{0\}$ ist f surjektiv, aber nicht injektiv. Somit ist f auch nicht bijektiv.

Aufgabe 2 [ca. 6 Punkte]

Es sei V ein \mathbb{K} -Vektorraum.

- (i) Beweisen Sie: zu $v_0, v_1 \in V$ mit $v_0 \neq v_1$ existiert eine Gerade in V (d.h. eine Nebenklasse p + U mit $p \in V$ und einem eindimensionalen Unterraum $U \leq V$), die v_0 und v_1 enthält.
- (ii) Zeigen Sie, dass die Gerade in (i) eindeutig bestimmt ist.

Lösung

- (i) Durch G := p + U mit $p := v_0$ und $U := \mathbb{K}(v_1 v_0)$ wird das Gewünschte geleistet. Denn:
 - (1) Nach Voraussetzung ist $v_1 v_0 \neq 0$, also $\mathbb{K}(v_1 v_0)$ tatsächlich ein eindimensionaler Unterraum und damit G eine Gerade in V;
 - (2) Es ist $v_0 = 1 \cdot v_0 + 0 \cdot (v_1 v_0) \in G$ und $v_1 = 1 \cdot v_0 + 1 \cdot (v_1 v_0) \in G$.
- (ii) Sei auch G':=p'+U' eine Gerade in V, die v_0 und v_1 enthält. Zu zeigen ist G'=G. Wegen $v_0,v_1\in G'$ gibt es $u_0',u_1'\in U'$ mit

$$v_0 = p' + u'_0,$$

 $v_1 = p' + u'_1.$

Es folgt $v_1 - v_0 = u_1' - u_0' \in U'$. Da U' eindimensional ist, muss $U' = \mathbb{K}(v_1 - v_0) = U$ sein. Weiter folgt:

$$G' = p' + U' = (v_0 - u'_0) + U' \stackrel{(*)}{=} v_0 + U' = v_0 + U = G.$$

Der Schritt (*) beruht dabei auf der Nebenklassenaddition.

(Ausführlich:
$$(v_0 - u_0') + U' = (v_0 + U') + \underbrace{(-u_0' + U')}_{=U'} = (v_0 + U') + U' = v_0 + U'.$$
)

Aufgabe 3 Basisdarstellung [ca. 8 Punkte]

Sei V der \mathbb{R} -Vektorraum, der durch die Funktionen

$$f_1: \mathbb{R} \longrightarrow \mathbb{R}, \ x \mapsto f_1(x) = 1$$

$$f_2: \mathbb{R} \longrightarrow \mathbb{R}, \ x \mapsto f_2(x) = x$$

$$f_3: \mathbb{R} \longrightarrow \mathbb{R}, \ x \mapsto f_3(x) = \sin x$$

$$f_4: \mathbb{R} \longrightarrow \mathbb{R}, \ x \mapsto f_4(x) = \cos x$$

aufgespannt wird. Der formelle Ableitungsoperator ist die R-lineare Abbildung, die durch

$$\frac{d}{dx}(f_1) = 0$$
, $\frac{d}{dx}(f_2) = f_1$, $\frac{d}{dx}(f_3) = f_4$, $\frac{d}{dx}(f_4) = -f_3$

definiert ist. Weiterhin definieren wir die Abbildung $H: V \longrightarrow V$ durch

$$f \mapsto \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^2 f + f = \frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}}{\mathrm{d}x}(f)\right) + f$$

- (i) Zeigen Sie, dass $b := \{f_1, f_2, f_3, f_4\}$ eine Basis von V ist.
- (ii) Geben Sie die darstellende Matrix $\left\lceil \frac{H(b)}{b} \right\rceil = M_b^b(H)$ von H bezüglich b an.
- (iii) Geben Sie ker H an.

Lösung

(i) Eine Basis ist ein Erzeugendensystem aus linear unabhängigen Vektoren, das heißt es bleibt zu zeigen, dass $\{f_1, f_2, f_3, f_4\}$ linear unabhängig sind. Wir müssen überprüfen, ob aus

$$\sum_{j=1}^{4} \alpha_j f_j = 0$$

immer $\alpha_j = 0$, j = 1, 2, 3, 4 folgt.

Das ist aber hier der Fall, denn der Nullvektor ist die Nullfunktion und die Gleichung muss auch *punktweise* erfüllt sein. Setzt man $x=-\pi,0,\pi/2,\pi$ ein, so erhält man ein lineares Gleichungssystem, dass nur die triviale Lösung hat und die Vektoren sind linear unabhängig.

(ii) Es ist klar, dass $H(f_1) = f_1$ und $H(f_2) = f_2$. $H(f_3)$ berechnet sich zu

$$H(f_3) = \left(\frac{d}{dx}\right)^2 (f_3) + f_3 = \frac{d}{dx}(f_4) + f_3 = -f_3 + f_3$$

= 0

Analog dazu erhalten wir auch $H(f_4) = 0$. Daher ist die Matrix zu H in der Basis $b := \{f_1, f_2, f_3, f_4\}$ gegeben durch

(iii) Aus der Matrixdarstellung von H folgt sofort, dass $\ker H = \phi_b^{-1} \Big(\ker M_b^b(H) \Big) = \big\langle \phi_b^{-1}(e_3), \phi_b^{-1}(e_4) \big\rangle = \big\langle f_3, f_4 \big\rangle$ ist.

Andererseits können wir das auch explizit lösen.

$$H(f) \stackrel{!}{=} 0$$

$$H(\sum_{j=1}^{4} \alpha_{j} f_{j}) = \sum_{j=1}^{4} \alpha_{j} H(f_{j}) = \alpha_{1} f_{1} + \alpha_{2} f_{2} + \alpha_{3} \cdot 0 + \alpha_{4} \cdot 0 = 0$$

Da die Basisvektoren f_j linear unabhängig sind, müssen $\alpha_1=0$ und $\alpha_2=0$ sein und f_3 und f_4 spannen kerH auf.

Aufgabe 4 Lineares Gleichungssystem auf endlichen Körpern mit Parameter [ca. 4 Punkte] Lösen Sie folgendes Gleichungssystem in $\mathbb{F}_5 := \mathbb{Z}/5\mathbb{Z}$:

$$\overline{16} \cdot x_1 + \overline{2} \cdot x_2 = \overline{99}$$

$$\overline{14} \cdot x_1 + \mu \cdot x_2 = \overline{-1}$$

Geben Sie die Lösungsmengen für alle Werte von $\mu \in \mathbb{F}_5$ an. Untersuchen Sie, für welche Werte von μ das Gleichungssystem keine Lösung hat.

Lösung Wir fangen an indem wir die Multiplikationstabelle für $\mathbb{F}_5 = \mathbb{Z}/5\mathbb{Z}$ aufschreiben.

Ī	$\bar{2}$		4
Ī	$\bar{2}$	3	4
$\bar{2}$	4	Ī	$\bar{3}$
$\bar{3}$	Ī	4	4 3 2 1
4	3	$\bar{2}$	Ī
	$ \begin{array}{c} \bar{1} \\ \bar{1} \\ \bar{2} \\ \bar{3} \\ \bar{4} \end{array} $		

Wir schreiben zuerst das Gleichungssystem um, indem wir die einfachstmöglichen Repräsentanten (also $\bar{0}$ bis $\bar{4}$) wählen.

$$\overline{1} \cdot x_1 + \overline{2} \cdot x_2 = \overline{4} \tag{i}$$

$$\bar{4} \cdot x_1 + \mu \cdot x_2 = \bar{4} \tag{ii}$$

Aus (i) erhalten wir $x_1 = \overline{4} - \overline{2} \cdot x_2 = \overline{4} + \overline{3} \cdot x_2$. Eingesetzt in (ii) liefert das

$$\bar{4} \cdot (\bar{4} + \bar{3} \cdot x_2) + \mu \cdot x_2 = \bar{4}$$

Hieraus folgt

$$\bar{1} + \bar{2} \cdot x_2 + \mu \cdot x_2 = \bar{4} \implies (\mu + \bar{2}) \cdot x_2 = \bar{3}$$

und somit letztendlich

$$x_2 = \bar{3} \cdot (\mu + \bar{2})^{-1}$$

$$x_1 = \bar{4} + \bar{3} \cdot \bar{3} \cdot (\mu + \bar{2})^{-1} = \bar{4} + \bar{4} \cdot (\mu + \bar{2})^{-1}$$

falls das Inverse existiert. Die Lösungsmenge ist daher für $\mu \neq \bar{3}$ gegeben durch

$$\{(\bar{4} + \bar{4} \cdot (\mu + \bar{2})^{-1}, \bar{3} \cdot (\mu + \bar{2})^{-1})\}$$

Für $\mu = \bar{3}$ ist $\mu + \bar{2}$ nicht invertierbar und das Gleichungssystem hat keine Lösung. Da der Körper endlich ist, können wir alle Lösungen explizit angeben.

Parameter	Lösungsmenge
$\mu = \bar{0}$	$\{(x_1, x_2)\} = \{(\bar{1}, \bar{4})\}$
$\mu=ar{1}$	$\{(x_1, x_2)\} = \{(\bar{2}, \bar{1})\}$
$\mu = \bar{2}$	$\{(x_1, x_2)\} = \{(\bar{0}, \bar{2})\}\$
$\mu = \bar{3}$	Ø
$\mu = \bar{4}$	$\{(x_1, x_2)\} = \{(\bar{3}, \bar{3})\}$

Aufgabe 5 Rang einer linearen Abbildung [ca. 4 Punkte]

Sei $f: V \longrightarrow W$ eine \mathbb{K} -lineare Abbildung zwischen zwei \mathbb{K} -Vektorräumen mit rg f = n.

- (i) Zeigen Sie, dass $\dim_{\mathbb{K}} W \ge n$ gilt.
- (ii) Zeigen Sie, dass $\dim_{\mathbb{K}} V \ge n$ gilt.

Lösung

- (i) Da $\operatorname{rg} f = \dim_{\mathbb{K}} \operatorname{im} f$ und $\operatorname{im} f \subseteq W$ ein Unterraum von W ist, so folgt $\dim_{\mathbb{K}} \operatorname{im} f = n \le \dim_{\mathbb{K}} W$. Es müssen also mindestens n linear unabhängige Vektoren in W existieren.
- (ii) Mit der Dimensionsformel gilt

$$\dim_{\mathbb{K}} V = \dim_{\mathbb{K}} \ker f + \dim_{\mathbb{K}} \operatorname{im} f = \dim_{\mathbb{K}} \ker f + \operatorname{rg} f$$
$$= \dim_{\mathbb{K}} \ker f + n \ge n$$

Alternativ kann man das auch 'zu Fuß' beweisen. Da $\operatorname{rg} f = \dim_{\mathbb{K}} \operatorname{im} f = n$, können wir n linear unabhängige Bildvektoren $\{b_1, \ldots, b_n\} = \{f(v_1), \ldots, f(v_n)\}$ finden, die die Urbilder $\{v_1, \ldots, v_n\}$ haben.

Wir zeigen nun, dass die Urbilder $\{v_1,\ldots,v_n\}$ ebenfalls linear unabhängig sein müssen. Sei also $v=\sum_{j=1}^n\alpha_jv_j$ eine Linearkombination der Urbildvektoren. Wir zeigen nun, dass aus $\sum_{j=1}^n\alpha_jv_j=0$ immer $\alpha_j=0$ folgt, $j=1,\ldots,n$.

$$\sum_{j=1}^{n} \alpha_j \nu_j = 0 \in V \implies f\left(\sum_{j=1}^{n} \alpha_j \nu_j\right) = f(0) = 0 \in W$$

Da f linear ist, können wir die Summe aus der Funktion ziehen.

$$f\left(\sum_{j=1}^{n} \alpha_{j} \nu_{j}\right) = \sum_{j=1}^{n} \alpha_{j} f(\nu_{j}) = 0$$

Da die Bildvektoren $\{f(v_j)\}_{1\leq j\leq n}$ linear unabhängig sind, folgt sofort $\alpha_j=0\ \forall j=1,\ldots,n$ und die Urbilder sind ebenfalls linear unabhängig. Da V mindestens n linear unabhängige Vektoren besitzt, muss $\dim_{\mathbb{K}} V \geq n$ gelten.

Aufgabe 6 [ca. 4 Punkte]

Es sei V ein \mathbb{K} -Vektorraum und $f:V\longrightarrow V$ ein Endomorphismus. Wie immer bezeichne f^k für $k\in\mathbb{N}$ die k-malige Hintereinanderausführung von f und für k=0 die Identität auf V. Zeigen Sie:

$$\forall k \in \mathbb{N}: f(\ker(f^k)) \subseteq \ker(f^{k-1}).$$

(Hinweis: Es ist einfacher, diese Aussage nicht per Induktion zu beweisen.)

Lösung Sei $k \in \mathbb{N}$ beliebig. Dann gilt für alle $v \in V$:

$$v \in f(\ker(f^k))$$

$$\Rightarrow \exists w \in \ker(f^k) : f(w) = v$$

$$\Rightarrow \exists w \in V : f^k(w) = 0 \land f(w) = v$$

$$\Rightarrow 0 = f^k(w) = f^{k-1}(f(w)) = f^{k-1}(v)$$

$$\Rightarrow v \in \ker(f^{k-1}).$$

Also ist $f(\ker(f^k)) \subseteq \ker(f^{k-1})$.

Da dies für alle $k \in \mathbb{N}$ zutrifft, ist die Aussage damit bewiesen.

Aufgabe 7 [6 Punkte]

Kreuzen Sie an, ob die nachfolgenden Aussagen wahr oder falsch sind. Begründungen sind nicht verlangt. (Für jedes richtige Kreuz gibt es 1 Punkt, **für jedes falsche Kreuz 1 Punkt Abzug.** Wenn Sie bei einer Aussage nichts ankreuzen, gibt es dafür 0 Punkte. Bei mehr falschen als richtigen Antworten wird die Aufgabe insgesamt mit 0 Punkten bewertet.)

Es gibt genau eine lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^2$ mit $f(-3,1,4) = (1,2)$ und $f(2,2,0) = (0,1)$.	□ wahr	□ falsch
Sind R_1 und R_2 Äquivalenzrelationen auf einer Menge M , so wird auch durch $xRy : \Leftrightarrow xR_1y \vee xR_2y \qquad (x,y\in M)$ eine Äquivalenzrelation auf M definiert.	□ wahr	□ falsch
Die Matrix $\begin{pmatrix} -1 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix}$ hat über allen Körpern denselben Rang.	□ wahr	□ falsch
Im Vektorraum der 2×2 -Matrizen über einem Körper $\mathbb K$ ist $\left\{\begin{pmatrix}a&b\\c&d\end{pmatrix}\in \mathscr M_2(\mathbb K):\ a+b-c=0\right\}$ ein Untervektorraum.	□ wahr	□ falsch
Ist U ein Untervektorraum eines \mathbb{K} -Vektorraums V , so gilt für alle $v, w \in V$: $v \in U \land w \notin U \implies v + w \notin U.$	□ wahr	□ falsch
Für Abbildungen $\varphi:X\to Y$ und $\psi:Y\to Z$ zwischen Mengen gilt: $\psi\circ\varphi \text{ bijektiv }\Rightarrow \psi \text{ injektiv} \wedge \varphi \text{ surjektiv}$	□ wahr	□ falsch

Lösung

Es gibt genau eine lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^2$ mit f(-3,1,4)=(1,2) \square wahr \boxtimes falsch und f(2,2,0)=(0,1).

Begründung (nicht gefordert): Eine lineare Abbildung ist durch die Bilder einer Basis des Urbildraums eindeutig bestimmt. Ergänzt man (-3,1,4) und (2,2,0) durch einen Vektor u zu einer Basis des \mathbb{R}^3 , so werden durch je zwei verschiedene Bilder f(u) zwei verschiedene lineare Abbildungen mit der obigen Eigenschaft festgelegt. (Es gibt also unendlich viele davon.)

Sind R_1 und R_2 Äquivalenzrelationen auf einer Menge M , so wird auch dur $xRy : \Leftrightarrow xR_1y \vee xR_2y \qquad (x,y\in M)$ eine Äquivalenzrelation auf M definiert.	rch □ wahr ⊠ falsch
Begründung (nicht gefordert): R ist im Allgemeinen nicht transitiv. Gegenbei mit den R_1 -Äquivalenzklassen $\{\{a,b\},\{c\}\}\}$ und den R_2 -Äquivalenzklassen $\{aRb\}$ (weil aR_1b) und bRc (weil bR_2c), aber aRc (da weder aR_1c noch aR_2c).	$\{\{a\},\{b,c\}\}$. Dann ist
Die Matrix $\begin{pmatrix} -1 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix}$ hat über allen Körpern denselben Rang.	⊠ wahr □ falsch
Begründung (nicht gefordert): Über jedem Körper liefert z.B. Addieren der der de die Matrix $ \begin{pmatrix} -1 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix},$ und hier kann man an den Spalten den Rang 3 ablesen. (In jedem Körper sind Alternativ kann man die Determinante berechnen, die ist nämlich -1 . Da in vertierbar ist, muss auch die Matrix invertierbar sein und deren Rang ist 3.	1 und −1 ungleich 0.)
Im Vektorraum der 2×2 -Matrizen über einem Körper $\mathbb K$ ist $\left\{\begin{pmatrix}a&b\\c&d\end{pmatrix}\in \mathscr M_2(\mathbb K):\ a+b-c=0\right\}$ ein Untervektorraum.	⊠ wahr □ falsch
Begründung (nicht gefordert): Die Menge enthält die Nullmatrix (ist also ins und ist abgeschlossen gegenüber Addition von Negativen und Multiplikation	•
Ist U ein Untervektorraum eines \mathbb{K} -Vektorraums V , so gilt für alle $v, w \in V$: $v \in U \land w \notin U \implies v + w \notin U.$	⊠ wahr □ falsch
Begründung (nicht gefordert): Angenommen, die Aussage wäre falsch. Dans $V \setminus U$ mit $v + w \in U$. Nach den Unterraumeigenschaften folgte $w = (v + w)$	
Für Menge X,Y,Z und Abbildungen $\varphi:X\to Y$ und $\psi:Y\to Z$ gilt: $\psi\circ\varphi \text{ bijektiv }\Rightarrow \psi \text{ injektiv }\wedge \varphi \text{ surjektiv}$	□ wahr 🗵 falsch

Begründung (nicht gefordert): Als Gegenbeispiel nehme man etwa $X,Z:=\{1\}$ und $Y:=\mathbb{N}$ und für φ und ψ jeweils die passende konstante Abbildung auf 1. Dann ist $\psi\circ\varphi=\mathrm{id}_{\{1\}}$ bijektiv, aber weder ψ injektiv noch φ surjektiv.