UNIVERSIDAD DE COSTA RICA

ESCUELA DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA PURA Y CIENCIAS ACTUARIALES DISTRIBUCIÓN DE PÉRDIDAS

Proyecto Distribución de Pérdidas

BITÁCORAS

Realizado por

Daniel Núñez

Andrés González

Capítulo 1

Bitácora 1

La idea inicial que se planteó va de la mano con calcular la pérdida esperada de un Banco a la hora de otorgar créditos basado en el perfil de la persona. Bajo este contexto se pueden encontrar dos tipos de riesgos:

- 1) El primer riesgo que se distingue es aquel en el que la persona presente una probabilidad alta de que no pague el crédito y que aún así el banco lo apruebe.
- 2) El segundo haciendo alusión al riesgo de que una persona tenga una probabilidad de pagar de vuelta el crédito pero el banco lo niegue, lo que resulta en una pérdida para la entidad bancaria.

Cuatro formas diferentes de reenplantearse la idea anterior son:

- 1) ¿Cuál sería la pérdida esperada de un banco a la hora de determinar la elegibilidad de una persona para un crédito?
- 2) ¿Por qué es importante conocer las probabilidades de pago o de impago de una persona solicitante?
- 3) ¿Cuáles son los factores que más importan para determinar la probabilidad de impago de un individuo?
- 4) ¿Cómo se relacionan las pérdidas con un buen sistema de elegibilidad para créditos?

Base de datos

Para efectos de la investigación se va a trabajar con una base de datos de un banco alemán que contiene información de personas solicitantes de un crédito y con base en esta información se determina su elegibilidad. Los datos fueron recuperados de kaggle y originalmente fueron obtenidos de Penn State Eberly College of Science. Los datos son públicos y son de libre acceso, sin embargo, por motivos de confidencialidad el nombre del banco nunca se menciona. Vale la pena mencionar que los datos no están delimitados temporalmente.

La población de estudio se define como las personas que solicitaron un crédito en esta entidad bancaria ubicada en Alemania mientras que la unidad estadística se define como la persona solicitante de un crédito en el banco alemán estudiado. La muestra para el desarrollo de dicha investigación consta de 1000 individuos. Asimismo, la base cuenta con 21 variables de interés donde en su columna matriz se encuentra la variable binaria de elegibilidad, que toma el valor de 1 si fue elegible y el valor de 0 si no lo fue.

Ahora se procede a dar una leve explicación de cada una de las variables que conforman esta base:

- Elegibilidad: toma el valor de 1 si fue elegible y el valor de 0 si no lo fue.
- Accout Balance: variable categórica que toma el valor de 1 si la persona no cuenta con ninguna cuenta en el banco, el valor de 2 si no tiene un balance pendiente con el banco y el valor de 3 si sí tiene un balance pendiente.
- Duration: la duración en meses del crédito solicitado
- Payment Status of Previous Credit: variable categórica que toma el valor de 1 si el individuo presenta problema con el pago del crédito anterior, el valor de 2 si ya lo pagó y el valor de 3 si no tiene problemas con el crédito anterior
- Purpose: variable categórica que toma el valor de 1 si es para un auto nuevo, 2 si es para un auto de segunda mano, 3 si es para una casa/apartamento y 4 si es para cualquier otra cosa.
- Credit Amount: el monto del crédito solicitado en "Deutsche Mark" (DM), que es la unidad monetaria usada en la base.
- Saving/Stock value: toma el valor de 1 si no tiene nada de ahorros o de stock, de 2 si el valor es menor a los 100 DM, 3 si se está en el intervalo [100, 500[DM , 4 si está en [500, 1000[DM y 5 si está arriba de los 1000 DM.
- Length of currrent employment: variable categórica que toma el valor de 1 si es desempleado, de 2 si tiene menos de año, de 3 si es de 1 a 4 años, de 4 si es de 4 a 7 años y de 5 si es mayor a 7 años.
- Sex/marital status: toma el valor de 1 si es un hombre divorciado, el de 2 si es hombre soltero, el de 3 si es hombre casado/viudo y el de 4 si es mujer
- Guarantors: variable binaria que toma el valor de 1 si la persona tiene un fiador y de 0 si no lo tiene.
- Duration in current address: variable categórica que determina cuánto tiempo lleva la persona viviendo en la última dirección registrada. Toma el valor de 1 si es menos de un año, el de 2 si lleva entre uno y 4 años, el de 3 si lleva entre 4 y 7 años y el de 4 si lleva más de 7 años.
- Most valuable asset: toma el valor de 1 si no tiene ninguno, el de 2 si es un carro, el de 3 si es un seguro de vida y el de 4 si son bienes raíces.
- Edad: edad en años
- Tarjetas de créditos: toma el valor de 1 si el aplicante tiene tarjetas con otros bancos, el valor ed 2 si tiene tarjetas de créditos con empresas y el de 3 si no tiene nada.
- Type of department: toma el valor de 1 si no paga renta/hipoteca, el de 2 en caso de pague renta o hipoteca y el de 3 si es dueño de la vivienda/apartamento.
- No. of credits at this bank: toma el valor de 1 si solo tiene 1, el de 2 si tiene entre 2 y 3 créditos, el de 3 si tiene entre 4 y 5 créditos y el de 4 tiene más de 6 créditos.
- Occupation: 1 en caso de que sea desempleado o no calificado, 2 en caso de que sea un residente permanente no calificado, 3 en caso de que sea una persona calificada y 4 en caso de que sea un ejecutivo/a.
- No. of dependents: número de personas que mantiene. Toma el valor de 1 si son más de 3 y de 2 si son entre 0 y 2 personas.

• Foreign worker: variable binaria que toma el valor de 0 en caso de que sea un trabajador extranjero y 1 en caso de que no lo sea.

Como se pudo observar, la base cuenta con una cantidad considerable de variables de interés, donde leyendo la descripción de cada una se puede entender e intuir el posible impacto que tengan en la elegibilidad de las personas. Sin embargo, se tratará de reducir la cantidad de variables haciendo un análisis exploratorio de los datos de tal manera que se pueda eliminar variables que estén correlacionados entre sí. Para llevar a cabo dicho proceso, se utilizara el modelo de cópulas para eliminar o unificar este tipo variables y se utilizarán modelos predictivos como la regresión logística y Random Forest para determinar la elegibilidad de las personas.

Principios y/o teorías

Fichas bibliográficas

• Título: The Grouped t-copula with an Application to Credit Risk

Autor(es): Stéphane Daul, Enrico De Giorgi, Filip Lindskog & Alexander McNeil

■ Año: 2003

Nombre del tema: Cópulas

Forma de organizarlo:

-Cronológico: 2003

-Metodológico: Grouped t-Copulas

-Temático: Métodos para explicar la depedencia de covariables

-Teoría: Uso de cópulas en el riesgo crediticio

• Resumen en una oración:

- Argumento central: Lo esencial de este artículo es la justificación del uso en particular de la t-Cópulas agrupadas en problemas de riesgo crediticio.
- Problemas con el tema: Los parámetros de los grados de libertad calculados por lo autores fueron considerablemente altos, sin embargo, aún así siguen dando incrementos importantes en el aumento del riesgo comparado con el modelo con cópula Gaussiana.
- Resumen en un parráfo: Se extiende el concepto de t-Cópula para generar una nueva t-Cópula agrupada que describe de manera más efectiva la dependencia que existe entre factores de riesgo en el ámbito financiero. En el artículo también se explica el proceso de cálculo de los nuevos parámetros de las t-Cópulas agrupadas. Básicamente la idea que hay de fondo es juntar los diferentes factores de riesgo en esta t-Cópula agrupada donde las variables aleatorias dentro de esta cópula tienen una t-cópula con diferentes grados de libertad. Como resultado, esto da una estructura de dependencia más flexible que se ajusta mejor para modelos de riesgos que tengan múltiples factores. A modo de conclusión, utilizan el value-at-risk para comparar el modelo usando t-Cópulas con el modelo de t-Cópulas agrupadas y este segundo siempre arroja resultados con medidas de riesgo mayores, por lo que se tiene un modelo más conservador y preciso.

• Título: Application of Vine Copulas to Credit Portfolio Risk Modeling

Autor(es): Marco Geidosch & Matthias Fischer

Año: 2016

Nombre del tema: Cópulas

Forma de organizarlo:

-Cronológico: 2015

-Metodológico: Vine Copulas

-Temático: Métodos para explicar la depedencia de covariables

-Teoría: Uso de cópulas para modelar problemas relacionados con riesgo

- Resumen en una oración: Dado lo poco flexibles que pueden llegar a ser los modelos convencionales de cópulas se propone el uso de Vine Cópulas para modelar problemas multivariados relacionados con riesgo
- Argumento central: Mostrar la superioridad de las Vine Cópulas sobre las cópulas convencionales para la modelación del riesgo
- Problemas con el tema: La flexibilidad que presentan las Vine Cópulas viene con la desventaja de que hay una abundante número de estructuras de las que se puede escoger y a priori no se sabe cuál es la que mejor describe los datos.
- Resumen en un parráfo: El uso de cópulas convencionales presenta dos limitantes, la primera es que cuando el número de dimensiones es mayor que dos, el número de familias de cópulas aplicables se limita al caso elíptico y arquimediano. La segunda limitante es que solo dependencias simétricas y simples pueden ser modeladas y eso está lejos de ser considerado un escenario real. De ahí nace la necesidad de usar Vine Cópulas. Las Vines Cópulas se usan para describir cópulas de varias variables usando como base cópulas bivariadas o "pair-copulas". La idea que existe de fondo con los Vines Cópulas es que distribuciones multivariadas se pueden descomponer secuencialmente en descomposiciones bivariadas y para llevar acabo dicho proceso se hace uso de os D-vine y los R-vine. Lo que se hace es tomar la densidad multivariada de la distribución y se transforma en funciones de densidad de las cópulas bivariadas.

Referencias

- Cediel, Y. F. (2016). Regular vine cópulas: Una aplicación al cálculo de valor al riesgo. *Revista de Investigación En Modelos Financieros*, 2, 30–64.
- Daul, S., De Giorgi, E. G., Lindskog, F., & McNeil, A. (2003). The grouped t-copula with an application to credit risk. *Available at SSRN 1358956*.
- Geidosch, M., & Fischer, M. (2016). Application of vine copulas to credit portfolio risk modeling. *Journal of Risk and Financial Management*, 9(2), 4.