B.Tech. DEGREE EXAMINATION, DECEMBER 2022 OPEN BOOK EXAMINATION

Fifth Semester

18ECC204J - DIGITAL SIGNAL PROCESSING

(For the candidates admitted from the academic year 2020-2021 to 2021-2022)

Specific approved THREE text books (Printed or photocopy) recommended for the course
 Handwritten class notes (certified by the faculty handling the course / head of the department)

Time: 3 Hours Max. Marks: 100 Answer FIVE questions (Question No 3 is compulsory) CO 1.a.i. A digital communication link carries binary coded words representing samples of an input signal $x(t) = 3\cos 600\pi t + 200\cos 1800\pi t$. The link is operated at 10,000 bits/sec and each input sampled is quantized in to 1024 different voltage levels. (i) What are the sampling frequency and folding frequency? What is the Nyquist rate for the given signal? (ii) What are the frequencies in the resulting discrete time signal? (iii) ii. Validate that the quality of the quantized signal increases for each bit added to the word length for each doubling of the quantization level. b. The phase function of a discrete time signal $x(n) = a^n$, where $a = r \cdot e^{j\theta}$ is (A) $tan(n\theta)$ (B) $n\theta$ (D) $\cot^{-1}(n\theta)$ (C) $\tan^{-1}(n\theta)$ c. The quantization step size with b = 3 bits is (A) 0.175 (B) 9.125 (D) 0.875 (C) 0.125 2.a.i. Using DIF FFT algorithm find the input sequences for the given DFT 2 sequences $\{36, -1 + j2.414, -8 + j8, -1 + j0.414, -8, -1 - j0.414, -8, -j8, -1 - j2.414\}$ 2 ii. Perform the circular convolution of $x(n) = \{0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6\}$ and $h(n) = \{0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5\}$. b. The structure that uses separate delays for input and output samples is (B) Parallel form (A) Cascade form (D) Direct form -I (C) Direct form-II

C.	How many complex multiplications are need to be performed for each FFT algorithm?							2	2	
		$2N\log_2 N$		(B)	$N\log_2 N$					
		$\frac{N}{2}\log N$	# 48 K2 3 b	(D)	$\left(\frac{N}{2}\right)\log_2 N$	DEFENDRALIA				
		2			(2)					
3.a.i.		the given	$x(n)=2^{n+1},$	determine	8-point DFT	using DIT-FFT	12	3	2	2
ii.			and $X(N-$	k) are con	nplex conjugate an	nd also discover	6	4	2	1
	the r	emaining D	FT sequences	of $\{10,6+\}$	$\{3,0,0.4+j0.6,0\}$	for $N = 8$.				
b.	The	number of	complex addi	tions requir	ed using FFT alg	gorithm for 128	1	2	2	2
		t sequence i								
		689			869					
	(C)	986		(D)	896					
c.	The	value of W ₈	⁻² is				1	2	2	2
	(A)	-j		(B)						
	(C)	0.707-j0.7	07	(D)	-0.707-j0.707					
4.a.i.	Real	lize a band s	stop filter to st ectangular win	op the frequence dow function	uencies, from 1 to n.	2 rad/sec for 7	12	3	3	2
ii.	Illus	trate the nee	d for employi	ng window	technique for FIR	filter design.	6	4	3	1
							1	1	3	1
b.			main lobe in	(B)	ndow spectrum is 16π					
	(A)	-			N					
	(C)	N 2=		(D)	8π					
	(C)	$\frac{2\pi}{N}$		(Marie La	\overline{N}					
			ition on the sy	stem functi	on of a linear pha	se filter?	1	2	3	1
C.	Wha	t is the cond	$V_{LL}(z^{-1})$	(B)	$H(z) = \pm z^{-N}H$	$\left(z^{-1}\right)$				
		$H(z) = \pm z^{1}$			$H(z) = z^N H(z^{-1})$					
	(C)	$H(z)=z^{-\lambda}$	$H(z^{-1})$		H(z)=z $H(z)$	1				
	n1:	as a Buttern	vorth digital fi	lter for the	given specificatio	ons	12	2	4	2
5.a.i.	0.707	$7 \le H(\omega) \le$	1; $0 \le \omega \le 0$	0.2π						
		$ H(\omega) \leq$	$0.08; 0.4\pi \le \omega$	$\leq \pi$	A STATE OF THE STATE OF					
	Using	Bilinear tra	insformation t	echnique						
ii.	Illustr	rate the ma	pping proceding of different	ure between	en S-plane and	Z-plane in the	6	1	4	1
	meuio	or mappi	ig or different						4	1
b '	The ze	eros of Butte	erworth filter	exist at			1			
		eft half of S		(B)	Infinity					
		Origin			Right half of S-	plane				
								100000000000000000000000000000000000000	· orc	COUA

	Which of the following transformation domain?	1	2	4	2		
	(A) $S \to \frac{\Omega_e}{S}$	(B)	$S \to \Omega_e S^2$ $S \to \Omega_e S$				
	(A) $S \to \frac{\Omega_e}{S}$ (C) $S \to \frac{S}{\Omega_e}$	(D)	$S \to \Omega_e S$				
	Design a LPF using Chebyshev approx $\alpha_p = 1dB$ ripple in passband $0 \le \omega \le$ band $0.3\pi \le \omega \le \pi$ using impulse inva	0.2π	$\alpha_s = 15dB$ ripple in the stop	12	3	4	2
ii.	Why impulse invariant method is no filter?			6	4	4	I
b.	Poles of Chebyshev filter lies on (A) Circle (C) Ellipse		Origin Parabola	1	1	4	I
c.	The non linear relation between analo (A) Antialiasing (C) Aliasing	(B)	digital frequencies is called Prewarping Warping	1	2	4	1
7.a.i	Considering a discrete time signal x (show that a cascade of D down samp only when D and I are co-prime. Assu	ler ar	nd I upsampler is interchangeable	12	3	5	2
ii	i. Show that the upsampler and down sampler are time varying systems.					5	1
b	To eliminate multiple images at the cis filtered to have a bandwidth of	outpu	t, during interpolation the output	1	2	5	2
	(A) $\frac{\pi}{I^2}$	(B)	$\frac{I}{\pi}$				
	(C) $\frac{\kappa}{I^2}$	(D)	πI				
c	Time scaling operation is also known		C. I	1	1	5	1
	(A) Upsamping(C) Aliasing	300000	Sampling Down sampling				

.