

Kapitel 2: Polynome Übungen

Aufgabe 1: Führen Sie eine Polynomdivision durch.

a)
$$(x^3 - 6x^2 + 11x - 6):(x - 1) =$$

b)
$$(4x^3 - 20x^2 - x + 110):(x + 2) =$$

c)
$$(x^3 + 5x^2 - 22x - 56):(x - 4) =$$

b)
$$(4x^3 - 20x^2 - x + 110):(x + 2) =$$

= d) $(x^4 - 2x^3 - 11x^2 + 12x + 36):(x - 3) =$

Aufgabe 2: Berechnen Sie die Nullstellen der Funktion.

a)
$$f(x) = x^3 - 3x^2 - 28x$$

b)
$$f(x) = (x^2 + 2x - 8)(x^2 - 9)$$

c)
$$f(x) = x^4 - 6x^2 + 5$$

d)
$$f(x) = (x + 2)^3 - (x + 2)^2 - 6(x + 2)$$

Aufgabe 3: Der angegebene Wert x_1 ist eine Nullstelle der Funktion.

Bestimmen Sie weitere Nullstellen.

a)
$$f(x) = 4x^3 - 3x - 1$$
; $x_1 = 1$

b)
$$f(x) = x^4 + 4x^3 - 17x^2 - 60x$$
; $x_1 = -3$

c)
$$f(x) = x^3 + 4x^2 - 31x - 70$$
; $x_1 = 5$

a)
$$f(x) = 4x^3 - 3x - 1$$
; $x_1 = 1$
b) $f(x) = x^4 + 4x^3 - 17x^2 - 60x$; $x_1 = -3$
c) $f(x) = x^3 + 4x^2 - 31x - 70$; $x_1 = 5$
d) $f(x) = 2x^4 + 18x^3 + 12x^2 - 112x$; $x_1 = -7$

Kapitel 3: Reelle Funktionen Fortführung/Erweiterung des Beispiels im Buch, Seite 33

Erweiterung bzw. Fortführung des Beispiel 5

Wir definieren für $x \in \mathbb{R}$ die Funktion q durch q(x) = |2x - 1|.

Will man die Betragsstriche entfernen, kommt es auf das Vorzeichen des Terms T(x) = 2x - 1

Es ist T(x) < 0 für $x < \frac{1}{2}$ und entsprechend $T(x) \ge 0$ für $x \ge \frac{1}{2}$.

Daher gilt g(x) = -T(x) für $x < \frac{1}{2}$ und g(x) = T(x) für $x \ge \frac{1}{2}$.

Man schreibt das übersichtlicherweise in einem sogenannten **Struktogramm** auf:

Zusammen gilt daher: $g(x) = \begin{cases} -2x + 1 & \text{für } x < \frac{1}{2} \\ 2x - 1 & \text{für } x \ge \frac{1}{2} \end{cases}$

Die Figur zeigt den Graphen von g. Er hat einen Knick bei $x = \frac{1}{2}$.

Aufgabe 1: Lösen Sie analog zum obigen Beispiel: $h(x) = |2x - |x - 3|| - x \ (x \in \mathbb{R})$. Erstellen Sie auch ein Struktogramm.

Kapitel 3: Reelle Funktionen Beispiel für eine mündliche Prüfung

Teil A – Aufgabe

Bild 1 zeigt den Graphen einer Potenzfunktion $f_1(x) = x^n$ mit ganzzahligem Exponenten.

- a) Beschreiben Sie die typischen Eigenschaften des Graphen von f₁ und berechnen Sie n.
- b) Die Graphen von Bild 2, 3 und 4 sind durch Verschiebung und / oder Spiegelung des Graphen von f₁ entstanden. Wie lautet jeweils die Funktionsvorschrift bei jedem Bild?
- c) Erläutern Sie, wie man mit dem Vorgehen aus b) den Graphen der Funktion h mit $h(x) = (x 2)^3 + 1$ skizzieren kann. Von welcher "Grundfunktion" müsste man ausgehen?
- d) Welche Funktionen aus b) besitzen dieselbe Ableitung? Begründen Sie Ihre Antwort zuerst anhand der Schaubilder. Bestätigen Sie Ihre Antwort dann rechnerisch mit den ersten Ableitungen aller vier Funktionen.

Teil B – Prüfungsgespräch

Im Lösungsteil finden Sie ein fiktives Prüfungsgespräch mit Fragen und Antworten.

Kapitel 4: Stetigkeit und Grenzwerte Musterklausur

Aufgabe 1: Bestimmen Sie jeweils die senkrechten und waagrechten Asymptoten der Funktion und skizzieren Sie das Schaubild.

(Hinweis: Das Schaubild in c) ist punktsymmetrisch zum Ursprung.)

a)
$$f(x) = \frac{1}{x-2} + 3$$

b)
$$f(x) = \frac{-2}{2x+5} - 1$$

c)
$$f(x) = \frac{x}{x^2 - 1}$$

Aufgabe 2:

- a) Geben Sie die Definitionsmenge von $f(x) = \frac{6 \cdot (x+3)}{x^2-9}$ an und untersuchen Sie das Verhalten des Schaubilds von f an den Definitionslücken.
- b) In welchen Intervallen ist das Schaubild von f stetig?

Aufgabe 3: Für welche ganzen Zahlen n (mit $n \ge 0$) hat die Funktion $f(x) = \frac{x^2 + 4}{x^n + 2}$

- eine waagrechte Asymptote,
- eine schiefe Asymptote,
- keine Asymptote?

Geben Sie die Gleichungen der Asymptoten an.

Aufgabe 4:

- a) Für welche Werte von $a \in \mathbb{R}$ hat die Funktion $f(x) = \frac{3}{x^2 + a}$ senkrechte Asymptoten?
- b) Geben Sie die Gleichungen der senkrechten Asymptoten für a = -4 an. Handelt es sich dabei um Polstellen mit bzw. ohne Vorzeichenwechsel?
- c) Warum hat die Funktion unabhängig von a immer die x-Achse als waagrechte Asymptote?

Kapitel 5: Transzendente Funktionen Beispiel für eine mündliche Prüfung

Teil A – Aufgabe

- a) Gegeben sind die Funktionen f_1 , f_2 und f_3 mit $f_1(x) = e^x$; $f_2(x) = e^{-x}$; $f_3(x) = e^{x-2}$ Zu welcher Funktion gehört das abgebildete Schaubild? Skizzieren Sie die Schaubilder der anderen Funktionen und erläutern Sie Ihr Vorgehen.
- b) Zeigen Sie, dass das Schaubild der Parabel p mit $p(x) = -x^2 + x + 1$ das Schaubild von f_1 im Punkt $P(0 \mid 1)$ berührt.

- c) Untersuchen Sie das Schaubild von f_4 mit $f_4(x) = e^{-x^2}$ auf Symmetrie. Benutzen Sie dann die Eigenschaften des Schaubilds von f_2 , um das Schaubild von f_4 zu skizzieren.
- d) Nennen Sie eine Anwendung, bei der eine Exponentialfunktion eine Rolle spielt.

Teil B – Prüfungsgespräch

Im Lösungsteil finden Sie ein fiktives Prüfungsgespräch mit Fragen und Antworten.

Kapitel 6: Differenzialrechnung Beispiel für eine mündliche Prüfung

Teil A – Aufgabe

Aufgabe 1: Das Schaubild zeigt den Graphen einer Funktion f. Skizzieren Sie den Graphen der ersten Ableitungsfunktion f' und begründen Sie Ihr Vorgehen.

Aufgabe 2: F sei eine Stammfunktion von f. Bewerten Sie folgende Aussagen über den Graphen von F mit richtig, falsch oder unentscheidbar.

- (1) Das Schaubild von F hat an der Stelle x = -2 einen Hochpunkt.
- (2) Das Schaubild von F hat im Intervall -3 < x < 2 zwei Extrempunkte.
- (3) Das Schaubild von F ist für x > 0 monoton fallend.
- (4) Es gilt F(0) > F(1)
- (5) Das Schaubild von F geht durch $P(0 \mid -1)$.

Begründen Sie jeweils Ihre Entscheidung.

Teil B – Prüfungsgespräch

Im Lösungsteil finden Sie ein fiktives Prüfungsgespräch mit Fragen und Antworten.

Kapitel 7: Integralrechnung Übungen

Aufgabe 1: Geben Sie jeweils eine Stammfunktion an.

a)
$$f(x) = 3x^4 + \frac{4}{x^2}$$

b)
$$f(x) = 1 - 4e^{2x}$$

c)
$$g(x) = \frac{5}{\sqrt{x}} + \frac{1}{2}x^2$$

a)
$$f(x) = 3x^4 + \frac{4}{x^2}$$
 b) $f(x) = 1 - 4e^{2x}$ c) $g(x) = \frac{5}{\sqrt{x}} + \frac{1}{2}x^2$ d) $h(x) = \sin(3x) - \frac{2}{3x}$

Aufgabe 2: Berechnen Sie den Wert des Integrals.

a)
$$\int_{0}^{4} 6x^{2} dx$$

b)
$$\int_{0}^{+1} 4 e^{2x+1} dx$$

c)
$$\int_{1}^{4} \frac{1}{x^2} - \frac{2}{x} dx$$

a)
$$\int_{0}^{4} 6x^{2} dx$$
 b) $\int_{0}^{+1} 4e^{2x+1} dx$ c) $\int_{1}^{4} \frac{1}{x^{2}} - \frac{2}{x} dx$ d) $\int_{0}^{\pi} 2x - \cos(0.5x) dx$

Aufgabe 3: Berechnen Sie den Wert des uneigentlichen Integrals, falls möglich.

a)
$$\lim_{z \to \infty} \int_{1}^{z} \frac{3}{x^2} dx$$

b)
$$\lim_{a \to 0} \int_{a}^{4} \frac{2}{x} + 1 dx$$

c)
$$\lim_{z \to 0} \int_{0}^{z} (\ln x) - 3 \, dx$$

a)
$$\lim_{z \to \infty} \int_{1}^{z} \frac{3}{x^{2}} dx$$
 b) $\lim_{a \to 0} \int_{a}^{2} \frac{2}{x} + 1 dx$ c) $\lim_{z \to 0} \int_{8}^{z} (\ln x) - 3 dx$ d) $\lim_{z \to -\infty} \int_{z}^{2} 2 e^{0.5x + 2} dx$

Aufgabe 4:

- a) Berechnen Sie den Inhalt der Fläche zwischen dem Graphen von f mit $f(x) = (0.5x + 1)^3$ und der x-Achse über dem Intervall [2; 6].
- b) Berechnen Sie den Inhalt der Fläche, die von dem Graphen von f mit $f(x) = \frac{2}{x+4} + \frac{4}{\sqrt{x}}$ und den Geraden x = 1 und x = 9 begrenzt wird.
- c) Wie groß ist die Fläche, die von den Graphen von f mit $f(x) = -\frac{4}{x^2}$ und q mit q(x) = 3x - 7 im ersten Quadranten begrenzt wird?

Kapitel 8: Kurvendiskussion Musterklausur

Gegeben ist die Funktion f mit $f(x) = \frac{x^2 + 7x - 8}{4(x - 2)}$. Ihr Schaubild sei K.

- a) Bestimmen Sie die Definitionsmenge von f.
- b) Untersuchen Sie K auf Schnittpunkte mit den Koordinatenachsen, auf Hoch- und Tiefpunkte sowie auf Asymptoten.
- c) Wie lautet die Funktionsgleichung der Näherungsgeraden für sehr große |x|?
- d) Zeigen Sie, dass K für alle $x \in \mathbb{D}$ keinen Wendepunkt haben kann.
- e) Zeichnen Sie K, alle Asymptoten und die Näherungsgerade in ein Schaubild (-9 < x < 7).