IB Physics Name: Leonid Kozlov

Exam 1. Corrections

$$F_g = \frac{mMG}{r^2}$$

		2
Description	Symbol	Quantity
Gravitational Constant	G	6.67 × 10-11N·m2/kg2
Mass of Earth	mearth	$5.98 \times 10^{24} \text{kg}$
Mass of Moon	mmoon	7.36×10^{22} kg
Radius of Earth	Rearth	6.38×10^{6} m
Radius of Moon	Rmoon	1.74×10^{6} m
Orbital Radius of Earth	r earth	1.50×10^{11} m
Orbital Radius of Moon	rmoon	3.84×10^{8} m
Period of Earth's Orbit	T_{earth}	365.24 days
Period of Moon's Orbit	Tmoon	27.3 days

Table 1: A list of physical quantities.

The first question of the exam is worth 30 points. The above table is required.

- 1) Consider the earth moving around the sun.
- a. Determine the orbital angular velocity of the earth.

$$\omega = \frac{2\pi}{T}$$

$$\omega = \frac{2*3.14}{365.24*24*60*60}$$

$$\omega = 1.99 \times 10\text{--7}\text{_rad}$$

b. Determine the speed of the earth relative to the sun.

$$\mathbf{V} = \frac{2r\pi}{T}$$

$$V = r\omega = (1.99 * 10^{-7}) * 1.5 * 10^{11} _m$$

c. Determine centripetal acceleration of the earth relative to the sun.

$$a = \frac{v^2}{r} = \frac{(3*10^4)^2}{1.5*10^4} = 6.0*10^{-3} - \frac{m}{\rm sec^2}$$

d. Determine the net force on the earth considering this acceleration.

$$F = ma = 5.98 * 10^{24} * 6.0 * 10^{-3} = 3.6 * 10^{22} N$$

e. Determine the mass of the sun from the above.

$$F = \frac{mMG}{r^2}$$

$$M = \frac{Fr^2}{mG} = \frac{3.6*10^{22}*(1.5*10^4)^2}{5.98*10^{24}*6.67*10^{-4}} = 2.0*10^{30} \text{kg}$$

The second question is worth 30 points. The table is required.

- 2) Consider gravitation at the surface of the moon.
- a. Determine the acceleration due to gravity on the surface of the moon.

$$F = \frac{mMG}{r^2} = am$$

$$a = \frac{MG}{r^2}$$

$$7.36*10^{22}*6.67*10^{-11}$$

$$a = \frac{7.36 * 10^{22} * 6.67 * 10^{-11}}{(1.74 * 10^{6})^{2}} = 1.62$$

b. Determine the launch velocity for circular orbit.

$$a = \frac{V^2}{r}$$

$$v_1 = \sqrt{aR}$$

$$v_1 = \sqrt[4]{1.62*1.74*10^6} = 1680$$
 s

c. Determine the launch velocity for escape from the moon's gravity.

$$v_3 = \sqrt[2]{\frac{2*7.36*10^{22}*6.87*10^{-11}}{1.74*10^6}}$$
 m
$$v = 2370$$
 s

- d. Determine the result of launching an object at 2000 m/s into the moon's horizon. Question three is worth 40 points.
 - 3) Consider a capacitor. Two very large parallel conducting plates are connected to the leads of a 9 Volt battery.

a. Determine the separation between the plates to generate a 30.0 ${\tt N}_{\tt C}$ electric field.

b. Determine the force of this electric field on a 0.012 Coulomb charge.

$$E = \frac{-\Delta V}{x} = \frac{9}{30}$$

c. Determine the change in potential energy for the $0.012\ C$ charge moving from the 9V plate to the 0V plate.

$$E = qE \Rightarrow \text{always true}!!! = 0.012 * 30 = 0.36\text{N}$$

d. Draw the parallel plates and the electric field between them.