## Estatística e Informática

Aula 12 - Comparação de Parâmetros

Alan Rodrigo Panosso alan.panosso@unesp.br

Departamento de Engenharia e Ciências Exatas FCAV/UNESP

(06-06-2024)

# Comparações de parâmetros de duas populações

Suponha duas amostras aleatórias independentes de tamanhos  $n_1$  e  $n_2$  ou seja,  $X_1, X_2, \ldots, X_{n1}$  e  $Y_1, Y_2, \ldots, Y_{n2}$ , respectivamente, de uma população com distribuição  $N(\mu_1, \sigma_1^2)$  e de população com distribuição  $N(\mu_2, \sigma_2^2)$ 

### Hipóteses

$$H_0:\sigma_1^2=\sigma_2^2$$
 ou seja  $\left(rac{\sigma_1^2}{\sigma_2^2}=1
ight)$ 

$$H_1:\sigma_1^2
eq\sigma_2^2$$
 ou seja  $\left(rac{\sigma_1^2}{\sigma_2^2}
eq 1
ight)$ 

#### Estatística do teste:

Sendo  $s_1^2$  e  $s_2^2$  as variâncias, respectivamente das amostras  $n_1$  e  $n_2$ , o quociente

$$rac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$$

Segue a distribuição de F (Snedecor) com  $n_1-1$  e  $n_2-1$  graus de liberdade (GL), tem a denotação  $F(n_1-1,n_2-1)$ .

Sob a suposição de  $H_0$  ser verdadeira, isto é,  $\sigma_1^2=\sigma_2^2$ , tem-se que

$$F=rac{s_1^2}{s_2^2}\sim F(n_1-1,n_2-1)$$

#### Construção da região crítica

Fixado  $\alpha$ , os pontos críticos serão  $F_1$  e  $F_2$  da distribuição F, tais que:



Se  $\alpha=10\%$ , pode-se, utilizando a Tabela da distribuição F, encontrar diretamente  $F_2(5\%)$ . Para encontrar  $F_1(95\%)$  utiliza-se a propriedade:

$$F_{(1-lpha;\;n_1-1,\;n_2-1)}=rac{1}{F_{(lpha;\;n_2-1,\;n_1-1)}}$$
, assim:  $F_{(0,95;\;n_1-1,\;n_2-1)}=rac{1}{F_{(0,05;\;n_2-1,\;n_1-1)}}$ 

#### Exemplo: Construir a regição crítica para o caso abaixo:

Se 
$$n_1-1=5$$
 e  $n_2-1=7$  dado  $lpha=10\%$ 

$$F2_{(0,05;\;5,\;7)}=3,97$$
 olhamos na tabela

#### Tabela - Distribuição F-Snedecor



F1 precisamos calcular:

$$F1_{(0,95;\ 5,\ 7)} = rac{1}{F_{(0,05;\ 7,\ 5)}} = rac{1}{4,88} = 0,205$$

Assim, 
$$RC = \{0 < F < 0, 205 ext{ ou } F > 3, 97\}$$

Entretanto, o procedimento que se usa na prática é calcular F utilizando sempre a maior variância no numerador  $s_1^2 > s_2^2$  portanto F > 1, e considerar o ponto crítico  $F_{2(\alpha; n1-1, n2-1)}$ .

**Amostra:** Colhidas amostras aleatórias  $n_1$  e  $n_2$ , calcula-se  $s_1^2$  e  $s_2^2$  com  $(s_1^2>s_2^2)$ , então:

$$F_{obs} = rac{s_1^2}{s_2^2} \sim F_{(n_1-1;n_2-1)}$$

Conclusão: Se  $F_{obs} \in RC$ , rejeita-se  $H_0$ , no caso contrário, não se rejeita  $H_0$  .

**Exemplo**. Dois grupo de 8 animais da mesma idade e raças diferentes foram submetidos a um mesmo regime alimentar. Os resultados para ganho de peso foram:

 R1:
 2,30
 2,10
 1,91
 1,20
 1,93
 1,88
 1,95
 2,10

 R2:
 2,30
 2,15
 2,00
 1,28
 2,15
 2,20
 1,91
 2,06

Ao nível de 5%, as variâncias dos ganhos de pesos raças diferem entre si?

```
r1<-c(2.30,2.10,1.91,1.20,1.93,1.88,1.95,2.10)
r2<-c(2.30,2.15,2.00,1.28,2.15,2.20,1.91,2.06)
var.test(r1,r2)

#>
#>
    F test to compare two variances
#>
#> data: r1 and r2
#> F = 1.0362, num df = 7, denom df = 7, p-value = 0.9638
#> alternative hypothesis: true ratio of variances is not equal to 1
#> 95 percent confidence interval:
#> 0.2074474 5.1756306
```

#> sample estimates:
#> ratio of variances

#>

1.036181

#### Testar as hipóteses:

$$\left\{egin{aligned} H_0:\sigma_{r1}^2=\sigma_{r2}^2\ H_1:\sigma_{r1}^2
eq\sigma_{r2}^2 \end{aligned}
ight.$$

Calculando os valores de variância para as duas raças:

$$s_{r1}^2 = 0,10433$$

e

$$s_{r2}^2 = 0,10068$$

sendo que  $n_{r1}=n_{r2}=8$ 

e 
$$lpha=5\%$$

A estatística do teste:  $rac{s_{r1}^2}{s_{r2}^2} = rac{0,10433}{0,10068} = 1,03618$ 

$$F_{c(0,05;7,7)}=3,79$$
 assim,  $RC=\{F>3,79\}$ 



Como  $F_{obs} \notin RC$  não se rejeita  $H_0$ , ou seja, as variâncias são estatisticamente iguais ao nível de 5% de significância, ou seja, as variâncias dos ganhos de peso das raças são homocedásticas.

# Comparação de duas médias de populações normais: amostras independentes

A análise da hipótese da igualdade de variâncias é crucial para o uso do teste t, na comparação de duas médias, apresentado a seguir.

Com o objetivo de se comparar duas populações examinaremos a situação na qual os dados estão na forma de realizações de amostras aleatórias de tamanhos  $n_1$  e  $n_2$ , selecionadas, respectivamente, das populações 1 e 2.

Uma coleção de  $n_1 + n_2$  elementos são aleatoriamente divididos em 2 grupos de tamanhos  $n_1$  e  $n_2$ , onde cada membro do primeiro grupo recebe o tratamento 1 e do segundo, o tratamento 2. Especificamente, estaremos interessados em fazer inferência sobre o parâmetro:

 $\mu_1 - \mu_2$  = (média da população 1) – (média da população 2)

**Hipótese:**  $H_0: \mu_1=\mu_2$  ou seja,  $\mu_1-\mu_2=0$ 

Estatística do teste: 
$$Z=rac{(ar{X}-ar{Y})-(\mu_1-\mu_2)}{\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}}\sim N(0,1)$$

#### Caso 1: variâncias conhecidas

$$Z = rac{(ar{X} - ar{Y})}{\sqrt{rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

#### Caso 2: variâncias desconhecidas e iguais

Preliminarmente, testa-se se as variâncias das duas populações são iguais. Caso a hipótese não seja rejeitada, isto é, que  $\sigma_1^2=\sigma_2^2=\sigma^2$ , a estatística anterior transforma-se em:

$$Z=rac{(ar{X}-ar{Y})}{\sigma\sqrt{rac{1}{n_1}+rac{1}{n_2}}}$$
 , substituimos  $\sigma$  por um estimador, teremos uma expressão

muito semelhante à t de Student. Uma estatística para  $\sigma^2$  é a média ponderada:

$$S_P^2 = rac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{(n_1-1) + (n_2-1)}$$

que, como  $s_1^2$  e  $s_2^2$  são dois estimadores não viciados de  $\sigma^2$ , também é um estimador não viciado de  $\sigma^2$ .

Assim, 
$$t=rac{(X-Y)}{s_p\sqrt{rac{1}{n_1}+rac{1}{n_2}}}\sim t(n_1+n_2-2)GL$$

**Exemplo**. Dois grupo de 8 animais da mesma idade e raças diferentes foram submetidos a um mesmo regime alimentar. Os resultados para ganho de peso foram:

R1: 2,30 2,10 1,91 1,20 1,93 1,88 1,95 2,10 R2: 2,30 2,15 2,00 1,28 2,15 2,20 1,91 2,06

Ao nível de 5%, as médias dos ganhos de pesos raças diferem entre si?

```
r1 < -c(2.30, 2.10, 1.91, 1.20, 1.93, 1.88, 1.95, 2.10)
r2 < -c(2.30, 2.15, 2.00, 1.28, 2.15, 2.20, 1.91, 2.06)
t.test(r1, r2, alternative = "le", var.equal = TRUE)
#>
#>
       Two Sample t-test
#>
#> data: r1 and r2
\#> t = -0.53098, df = 14, p-value = 0.3019
#> alternative hypothesis: true difference in means is less than 0
#> 95 percent confidence interval:
         -Inf 0.1969546
#>
#> sample estimates:
#> mean of x mean of v
```

1.92125 2.00625

#>

Usando os dados do exemplo anterior, testar se há evidência de que as duas raças apresentam o mesmo ganho de peso  $(H_0: \mu_A = \mu_B \text{ vs. } H_1: \mu_A < \mu_B)$ , ao nível de 5%.

$$\left\{egin{aligned} H_0: \mu_{r1} = \mu_{r2} \ H_1: \mu_{r1} < \mu_{r2} \end{aligned}
ight.$$

Calculando os valores de média e desvio-padrão:

$$ar{X} = 1,92125$$
 e  $s_{r1}^2 = 0,10433$  e  $ar{Y} = 2,00625$  e  $s_{r2}^2 = 0,10068$ 

sendo que  $n_{r1}=n_{r2}=8$  e lpha=5%

Assim,

$$S_P^2 = rac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{(n_1-1) + (n_2-1)} = rac{(8-1)0,10433 + (8-1)0,10068}{(8-1) + (8-1)} = 0,1025054$$

sendo  $S_P = 0,3201646$ 

Portanto,

$$t_{obs} = rac{(ar{X} - ar{Y})}{s_p \sqrt{rac{1}{n_1} + rac{1}{n_2}}} = rac{(1,92125 - 2,00625)}{0,3201646 \sqrt{rac{1}{8} + rac{1}{8}}} = -0,5309908$$

| Graus de liberdace | TÁBUA                                     |                                           |                                           | Distribuição de Student: St(n) $ \mbox{Valores críticos de t tais que P}(-t_C < t < t_C) = 1 - p $ |                                           |                                           |                                           |                                           |                                           |                                           |                                           | p/2 1 - p p/2                             |                                           |                                           |                                           | Graus de liberdade     |
|--------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------|
| O                  | p = 90%                                   | .80%                                      | 70%                                       | 60%                                                                                                | 50%                                       | 40%                                       | 30%                                       | 20%                                       | 10%.                                      | 5%                                        | 4%                                        | 2%                                        | 1%                                        | 0,2%                                      | 0,1%                                      | Ö                      |
| 1                  | 0,158                                     | 0,325                                     | 0.510                                     | 0.727                                                                                              | 1,000                                     | 1,376                                     | 1,963                                     | 3.078                                     | 6,314                                     | 12,706                                    | 15,894                                    | 31,821                                    | 63,657                                    | 318,309                                   | 636,619                                   | 1                      |
| 2                  | 0,142                                     | 0,289                                     | 0.445                                     | 0.617                                                                                              | 0,8 <b>1</b> 6                            | 1,061                                     | 1,386                                     | 1,886                                     | 2,920                                     | 4,303                                     | 4,849                                     | 6,965                                     | 9,925                                     | 22,327                                    | 31,598                                    | 2                      |
| 3                  | 0,137                                     | 0,277                                     | 0.424                                     | 0.584                                                                                              | 0,765                                     | 0,978                                     | 1,250                                     | 1,638                                     | 2,353                                     | 3,182                                     | 3,482                                     | 4,541                                     | 5,841                                     | 10,214                                    | 12,924                                    | 3                      |
| 4                  | 0,134                                     | 0,271                                     | 0.414                                     | 0.569                                                                                              | 0,741                                     | 0,941                                     | 1,190                                     | 1,533                                     | 2,132                                     | 2,776                                     | 2,998                                     | 3,747                                     | 4,604                                     | 7,173                                     | 8,610                                     | 4                      |
| 5                  | 0,132                                     | 0,267                                     | 0.408                                     | 0.559                                                                                              | 0,727                                     | 0,920                                     | 1,156                                     | 1,476                                     | 2,015                                     | 2,571                                     | 2,756                                     | 3,365                                     | 4,032                                     | 5,893                                     | 6,869                                     | 5                      |
| 6<br>7<br>8<br>9   | 0,131<br>0,130<br>0,130<br>0,129<br>0,129 | 0,265<br>0,263<br>0,262<br>0,261<br>0,260 | 0.404<br>0.402<br>0.399<br>0.398<br>0,397 | 0.553<br>0.549<br>0.546<br>0.543<br>0.542                                                          | 0.718<br>0.711<br>0.706<br>0.703<br>0.700 | 0,906<br>0,896<br>0,889<br>0,883<br>0,879 | 1.134<br>1.119<br>1.108<br>1.100<br>1.093 | 1,440<br>1,415<br>1,397<br>1,383<br>1,372 | 1,943<br>1,895<br>1,860<br>1,833<br>1,812 | 2,447<br>2,365<br>2,306<br>2,262<br>2,228 | 2.612<br>2.517<br>2.449<br>2,398<br>2,359 | 3.143<br>2.998<br>2.896<br>2.821<br>2.764 | 3,707<br>3,499<br>3,355<br>3,250<br>3,169 | 5,208<br>4,785<br>4,501<br>4,297<br>4,144 | 5,959<br>5,408<br>5,041<br>4,781<br>4,587 | 6<br>7<br>8<br>9<br>10 |
| 11                 | 0,129                                     | 0,260                                     | 0.396                                     | 0.540                                                                                              | 0,697                                     | 0,876                                     | 1.088                                     | 1,363                                     | 1,796                                     | 2,201                                     | 2,328                                     | 2,718                                     | 3,106                                     | 3,025                                     | 4,437                                     | 11                     |
| 12                 | 0,128                                     | 0,259                                     | 0.395                                     | 0.539                                                                                              | 0,695                                     | 0,873                                     | 1.083                                     | 1,356                                     | 1,782                                     | 2,179                                     | 2,303                                     | 2,681                                     | 3,055                                     | 3,930                                     | 4,318                                     | 12                     |
| 13                 | 0,128                                     | 0,259                                     | 0.394                                     | 0.538                                                                                              | 0,694                                     | 0,870                                     | 1.079                                     | 1,350                                     | 1,771                                     | 2,160                                     | 2,282                                     | 2,650                                     | 3,012                                     | 3,852                                     | 4,221                                     | 13                     |
| 14                 | 0,128                                     | 0,258                                     | 0.393                                     | 0.537                                                                                              | 0,692                                     | 0,868                                     | 1.076                                     | 1,345                                     | 1,761                                     | 2,145                                     | 2,264                                     | 2,624                                     | 2,977                                     | 3,787                                     | 4,140                                     | 14                     |
| 15                 | 0,128                                     | 0,258                                     | 0.393                                     | 0.536                                                                                              | 0,691                                     | 0,866                                     | 1.074                                     | 1,341                                     | 1,753                                     | 2,131                                     | 2,248                                     | 2,602                                     | 2,947                                     | 3,733                                     | 4,073                                     | 15                     |
| 16                 | 0,128                                     | 0.258                                     | 0,392                                     | 0,535                                                                                              | 0,690                                     | 0.865                                     | 1.071                                     | 1,337                                     | 1,748                                     | 2,120                                     | 2.235                                     | 2,583                                     | 2.921                                     | 3,686                                     | 4,015                                     | 16                     |
| 17                 | 0,128                                     | 0.257                                     | 0,392                                     | 0,534                                                                                              | 0,689                                     | 0.863                                     | 1.069                                     | 1,333                                     | 1,740                                     | 2,110                                     | 2.224                                     | 2,567                                     | 2.898                                     | 3,646                                     | 3,965                                     | 17                     |
| 18                 | 0,127                                     | 0.257                                     | 0,392                                     | 0,534                                                                                              | 0,688                                     | 0.862                                     | 1.067                                     | 1,330                                     | 1,734                                     | 2,101                                     | 2.214                                     | 2,552                                     | 2.878                                     | 3,610                                     | 3,922                                     | 18                     |
| 19                 | 0,127                                     | 0.257                                     | 0,391                                     | 0,533                                                                                              | 0,688                                     | 0.861                                     | 1.066                                     | 1,328                                     | 1,729                                     | 2,093                                     | 2.205                                     | 2,539                                     | 2.861                                     | 3,579                                     | 3,883                                     | 19                     |
| 20                 | 0,127                                     | 0.257                                     | 0,391                                     | 0,533                                                                                              | 0,687                                     | 0.860                                     | 1.064                                     | 1,325                                     | 1,725                                     | 2,086                                     | 2.197                                     | 2,528                                     | 2.845                                     | 3,552                                     | 3,850                                     | 20                     |
| 21                 | 0,127                                     | 0,257                                     | 0.391                                     | 0,532                                                                                              | 0,686                                     | 0,859                                     | 1,063                                     | 1,323                                     | 1,721                                     | 2,080                                     | 2,189                                     | 2,518                                     | 2,831                                     | 3,527                                     | 3,819                                     | 21                     |
| 22                 | 0,127                                     | 0,256                                     | 0.390                                     | 0,532                                                                                              | 0,686                                     | 0,858                                     | 1,061                                     | 1,321                                     | 1,717                                     | 2,074                                     | 2,183                                     | 2,508                                     | 2,819                                     | 3,505                                     | 3,792                                     | 22                     |
| 23                 | 0,127                                     | 0,256                                     | 0,390                                     | 0,532                                                                                              | 0,685                                     | 0,858                                     | 1,060                                     | 1,319                                     | 1,714                                     | 2,069                                     | 2,177                                     | 2,500                                     | 2,807                                     | 3,485                                     | 3,768                                     | 23                     |
| 24                 | 0,127                                     | 0,256                                     | 0,390                                     | 0,531                                                                                              | 0,685                                     | 0,857                                     | 1,059                                     | 1,318                                     | 1,711                                     | 2,064                                     | 2,172                                     | 2,492                                     | 2,797                                     | 3,467                                     | 3,745                                     | 24                     |
| 25                 | 0,127                                     | 0,256                                     | 0,390                                     | 0,531                                                                                              | 0,684                                     | 0,856                                     | 1,058                                     | 1,316                                     | 1,708                                     | 2,060                                     | 2,166                                     | 2,485                                     | 2,787                                     | 3,450                                     | 3,725                                     | 25                     |
| 26                 | 0.127                                     | 0.256                                     | 0,390                                     | 0,531                                                                                              | 0.684                                     | 0.856                                     | 1.058                                     | 1,315                                     | 1,706                                     | 2,056                                     | 2,162                                     | 2,479                                     | 2,7791                                    | 3,435                                     | 3,707                                     | 26                     |
| 27                 | 0.127                                     | 0.256                                     | 0,389                                     | 0,531                                                                                              | 0.684                                     | 0.855                                     | 1.057                                     | 1,314                                     | 1,703                                     | 2,052                                     | 2,158                                     | 2,473                                     | 2,771                                     | 3,421                                     | 3,690                                     | 27                     |
| 28                 | 0.127                                     | 0.266                                     | 0,389                                     | 0,530                                                                                              | 0.684                                     | 0.855                                     | 1.056                                     | 1,313                                     | 1,701                                     | 2,048                                     | 2,154                                     | 2,467                                     | 2,763                                     | 3,408                                     | 3,674                                     | 28                     |
| 29                 | 0.127                                     | 0,256                                     | 0,389                                     | 0,530                                                                                              | 0.683                                     | 0.854                                     | 1.055                                     | 1,311                                     | 1,699                                     | 2,045                                     | 2,150                                     | 2,462                                     | 2,756                                     | 3,396                                     | 3,659                                     | 29                     |
| 30                 | 0.127                                     | 0,256                                     | 0,389                                     | 0,530                                                                                              | 0.683                                     | 0.854                                     | 1.055                                     | 1,310                                     | 1,697                                     | 2,042                                     | 2,147                                     | 2,457                                     | 2,750                                     | 3,385                                     | 3,646                                     | 30                     |
| 35                 | 0,126                                     | 0,255                                     | 0,388                                     | 0,529                                                                                              | 0,682                                     | 0,852                                     | 1.052                                     | 1,306                                     | 1,690                                     | 2.030                                     | 2,133                                     | 2,438                                     | 2,724                                     | 3.340                                     | 3,591                                     | 35                     |
| 40                 | 0,126                                     | 0,255                                     | 0,388                                     | 0,529                                                                                              | 0,681                                     | 0,851                                     | 1.050                                     | 1,303                                     | 1,684                                     | 2.021                                     | 2,123                                     | 2,423                                     | 2,704                                     | 3.307                                     | 3,551                                     | 40                     |
| 50                 | 0,126                                     | 0,254                                     | 0,387                                     | 0,528                                                                                              | 0,679                                     | 0,849                                     | 1.047                                     | 1,299                                     | 1,676                                     | 2.009                                     | 2,109                                     | 2,403                                     | 2,678                                     | 3,261                                     | 3,496                                     | 50                     |
| 60                 | 0,126                                     | 0,254                                     | 0,387                                     | 0,527                                                                                              | 0,679                                     | 0,848                                     | 1.045                                     | 1,296                                     | 1,671                                     | 2.000                                     | 2,099                                     | 2,390                                     | 2,660                                     | 3.232                                     | 3,460                                     | 60                     |
| 120                | 0,126                                     | 0,254                                     | 0,386                                     | 0,526                                                                                              | 0,677                                     | 0,845                                     | 1.041                                     | 1,289                                     | 1,658                                     | 1.980                                     | 2,076                                     | 2,358                                     | 2,617                                     | 3.160                                     | 3,373                                     | 120                    |
| ∞                  | 0,126<br>p = 90%                          | 0,253<br>80%                              | 70%                                       | 60%                                                                                                | 50%                                       | 0,842<br>40%                              | 30%                                       | 1,282                                     | 1,645                                     | 1,960                                     | 2,054                                     | 2,326                                     | 2,576                                     | 0,2%                                      | 3,291                                     | ∞                      |

Para a construção da **região crítica** do teste:  $t_c(14;0,05)=-1,761$  assim, a região crítica é  $RC=\{t\leq -1,76131\}$ 

**Conclusão**: Como  $t_{obs} \notin RC$ , não rejeita-se  $H_0$ , não há evidências de que a raça 1 apresenta maior ganho de peso que a raça 2.



# Caso 3: variâncias desconhecidas e desiguais (Teste de Smith – Satterthwaite)

Quando a hipótese de igualdade de variâncias for rejeitada, deve-se substituir  $\sigma_1^2$  e  $\sigma_2^2$  pelos seus respectivos estimadores  $s_1^2$  e  $s_2^2$  obtendo a estatística:

$$t = rac{(ar{X} - ar{Y})}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$$

que sob a veracidade de  $H_0$  ( $\mu_1 - \mu_2 = 0$ ), aproxima-se de uma distribuição t de Student, com número de graus de liberdade dado aproximadamente por:

$$gl = rac{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}{rac{\left(rac{s_1^2}{n_1}
ight)^2}{n_1 - 1} + rac{\left(rac{s_2^2}{n_2}
ight)^2}{n_2 - 1}}$$

Como o número de graus de liberdade assim calculado, geralmente, é **não inteiro**, recomenda-se aproximá-lo para o inteiro imediatamente anterior a este.

Se  $n_1$  e  $n_2$  são ambos grandes  $(n \geq 30)$ , o teste pode ser baseado na estatística.

$$Z = rac{(ar{X} - ar{Y}) - (\mu_1 - \mu_2)}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}} \sim N(0,1) ext{ sob } H_0$$

pois permanece válido se  $\sigma_1^2$  e  $\sigma_2^2$  são substituídos por seus respectivos estimadores amostrais  $s_1^2$  e  $s_2^2$ .

**Nota**: no caso da inferência originada de amostras grandes, não é necessário assumir que as distribuições das populações originais são normais, porque o teorema central do limite garante que as médias amostrais X e Y são aproximadamente distribuídas como  $N(\mu_1,\sigma^2/n_1)$  e  $N(\mu_2,\sigma^2/n_2)$ , respectivamente. Além disso, a suposição de variâncias populacionais iguais  $(\sigma_1^2=\sigma_2^2)$  que é usada para amostras pequenas, é evitada nessa situação.