LL(1) grammars

A grammar whose parsing table has no multiply-defined entries is said to be **LL(1)** which stands for: scanning the input from **L**eft to right producing a **L**eftmost derivation and using **1** input symbol of lookahead at each step to make parsing action decisions.

Example: the following grammar:

$$\begin{split} \mathbf{E} &\to \mathbf{T} \; \mathbf{E'} \\ \mathbf{E'} &\to + \; \mathbf{T} \; \mathbf{E'} \mid \boldsymbol{\lambda} \\ \mathbf{T} &\to \mathbf{F} \; \mathbf{T'} \\ \mathbf{T'} &\to * \; \mathbf{F} \; \mathbf{T'} \mid \boldsymbol{\lambda} \\ \mathbf{F} &\to (\mathbf{E}) \mid \mathbf{id} \end{split}$$

whose parsing table M is

N/I	id	+	*	()	\$
E	Е→ТЕ'			Е→ТЕ'		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \lambda$	$E' \rightarrow \lambda$
Т	T→FT'			T→FT'		
T'		$T' \rightarrow \lambda$	$T' \rightarrow *FT'$		$T' \rightarrow \lambda$	$T' \rightarrow \lambda$
F	$F \rightarrow id$			$F \rightarrow (E)$		

is an LL(1) grammar

LL(1) grammars enjoys several nice properties: for example they are not ambiguous and not left recursive.

Example: the following grammar:

$$\begin{split} \mathbf{S} &\to \mathbf{i}\mathbf{E}\mathbf{t}\mathbf{S}\mathbf{S}' \mid \mathbf{a} \\ \mathbf{S}' &\to \mathbf{e}\mathbf{S} \mid \boldsymbol{\lambda} \\ \mathbf{E} &\to \mathbf{F} \ \mathbf{b} \end{split}$$

whose parsing table M is

N/I	a	b	е	i	t	\$
S	$S \rightarrow a$			S→iEtSS'		
S'			$S' \rightarrow \lambda$			$S' \rightarrow \lambda$
			S'→eS			
Е		Е→Ь				

is not **LL(1)** grammar because the table element M[S',e] has the two entries S' $\to \lambda$ and S' \to eS

Bottom-up parsing

Here we study two types of bottom-up parsing: shift-reduce parsing and LR parsing which is more general.

Shift-reduce parsing

Shift-reduce parsing attempts to construct a parse tree for an input string beginning at the leaves (the bottom) and working up towards the root (the top)

Example: Consider the following grammar:

$$S \rightarrow aABe$$

 $A \rightarrow Abc \mid b$
 $B \rightarrow d$

the parse tree for the input string abbcde can be formed (bottom-up) as follows:

this is similar to rightmost derivation but in reverse order: abbcde \Leftarrow aAbcde \Leftarrow aAde \Leftarrow aAbe \Leftarrow S

LR parsing

LR parsing is an efficient, bottom-up syntax analysis technique that can be used to parse a large class of context-free grammars.

LR means: scanning the input string from Left-to-right constructing a Rightmost derivation in reverse.

The following diagram models the LR parser:

LALR parsing: it stands for **L**ook**A**head-**LR**. This parsing method is often used in practice because it produce a smaller tables.