Булгаков Илья, Гусев Илья

Московский физико-технический институт

Москва, 2020

Содержание

- 🚺 Задача сортировки
- Виды сортировок
 - Сортировка вставками
 - Сортировка слиянием (MergeSort)
 - Быстрая сортировка (QuickSort)
- Оравнение сортировок
- Библиотечные функции сортировки
- Особенности реализации
- $oldsymbol{6}$ Доказательство $\Omega(nlog(n))$ для сортировок сравнениями

Задача сортировки

Пусть требуется упорядочить N элементов: R_1, R_2, \ldots, R_n . K - K - ключ сортировки, $\forall j \in 1 \ldots n, K_j \in R_j$ $\forall a,b,c \in K \to (a < b) \lor (b > a) \lor (a = b)$ $\forall a,b,c \in K \to (a < b) \land (b < c) \Rightarrow (a < c)$ Найти $p(1)p(2)\ldots p(n)$ т.ч. $K_{p(1)} \leq K_{p(2)} \leq \cdots \leq K_{p(n)}$ Устойчивая (стабильная) перестановка: $\forall i < j, K_{p(j)} = K_{p(j)} \to p(i) < p(j)$

Устойчивая сортировка

Пример устойчивой сортировки. Вы сначала отсортировали по фамилии, а потом хотите отсортировать по грейдам, но **сохранить порядок по** фамилиям

An Example, Code, and a Demo

BEFORE		
Name Grade		
Dave	С	
Earl	В	
Fabian	В	
Gill	В	
Greg	Α	
Harry	A	

AFTER		
Name	Grade	
Greg	Α	
Harry	Α	
Earl	В	
Fabian	В	
Gill	В	
Dave	С	

Устойчивая сортировка

Пример неустойчивой сортировки

BE	FORE	
Name	Grade	
Dave	С	
Earl	В	
Fabian	В	
Gill	В	
Greg	Α	· ·
Harry	Α	

AFTER			
Name	Grade		
Greg	A		
Harry	A		
Gill	В		
Fabian	В		
Earl	В		
Dave	С		

Чем плохо - вы проделали часть работы по сортировке по одному ключу, а сортировка по другому ключу все испортила

Сортировка вставками

Сложность? Устойчивость? Доп. память? Сложность на уже сортированных массивах?

Сортировка вставками (Insertion Sort)

Код

Сортировка вставками

- Квадратичное время в худшем случае
- Линейное на уже отсортированном массиве
- Устойчива
- Не требует доп.памяти

Recursive

Рекурсивный вариант

- Сортируемый массив разбивается на две части примерно одинакового размера
- Каждая из получившихся частей сортируется отдельно, например

 тем же самым алгоритмом
- Два упорядоченных массива половинного размера соединяются в один

Merge

- Время работы процедуры: $\Theta(m)$, где m суммарное количество входных данных
- Суммарно для всех вызовов на одном уровне: $\Theta(n)$, где n количество элементов коллекции

Iterative

- Альтернатива: итеративный алгоритм
- Сложность? Устойчивость? Доп. память? Сложность на уже сортированных массивах?

- O(n * logn) в худшем случае
- O(n * logn) на уже отсортированном массиве
- Устойчива
- Требует доп.памяти по размеру исходного массива

Partition

Идея - выбираем элемент, упорядочивая элементы массива относительно него После этого мы имеем элемент на своем месте и нам остается отсортировать две подчасти.

Partition

Операция Partition - выбираем опорный элемент, а остальные элементы делим на две части: меньше опорного и больше или равные опорному. $\Theta(n)$ Для обоих частей рекурсивно выполняем Partition Основые тип операции Partition:

Partition

```
0=0, hi=7
2 AUG. 7 , 754 . 14341
  B- quicksort (A, loco, p-1=2)
  C+ quicksort (A, pote4, h;=7)
```

Partition

Hoare's Partitioning Algorithm - Ex1 (pivot=5)

Termination: i = 6; j = 5, i.e., i = j + 1

Analysis of Algorithms

Partition

BASIS	LOMUTO'S	HOARE'S	
Implementation	Easier to implement	Comparatively harder to implement	
Efficiency	Less efficient	Comparatively more efficient	
Number of swaps and partitioning	Three times more swaps compared to Hoare's	Three times fewer swaps and creates efficient partitions	
Time complexity when all elements are equal	O(n²)	O(nlogn)	
Time complexity when the array is already sorted	O(n²)	O(n²)	

Сложность? Устойчивость? Доп. память? Сложность на уже сортированных массивах?

- $O(n^2)$ в худшем случае
- O(n * logn) в среднем
- $O(n^2)$ на уже отсортированном массиве
- Неустойчива
- Не требует доп.памяти

Модификации:

- Устойчивости можно добиться, но обычно это не делают. Можно через выделение дополнительной памяти, собирая элементы больше и меньше в отдельные массивы
- Выбор опорного элемента: первый, последний, средний, медианный из 3, случайный

Оптимизации при реализации

Возможные оптимизации

- Оптимизация выбора опорного элемента Медиана из трёх, например.
- Оптимизация Partition
 Использовать разбиение Хоара (два индекса, которые приближаются друг к другу) вместо разбиения Ломуто
- Написать с одной ветвью рекурсии
 Рекурсивный вызов вызывается для меньшего куска после разделения,
 больший остаётся сортироваться в теле функции
- Написать без рекурсии
 Рекурсивных вызовов не остается вообще
- Оптимизация концевой рекурсии
 Когда в отрезке остается мало элементов, то перестаем использовать алгоритм быстрой сортировки и переходим на сортирову вставками

Сравнение сортировок

Алгоритм	Худшее	Лучшее	В среднем	Sorted	Уст.	+ память
Insertion	$\Theta(n^2)$	Θ(n)	$\mathcal{O}(n^2)$	Θ(n)	Да	Θ(1)
Heap	$\Theta(nlog(n))$	$\Theta(nlog(n))$	$\Theta(nlog(n))$	$\Theta(nlog(n))$	Нет	Θ(1)
Merge	$\Theta(nlog(n))$	$\Theta(nlog(n))$	$\Theta(nlog(n))$	$\Theta(nlog(n))$	Да	Θ(n)
Quick	$\Theta(n^2)$	$\Theta(nlog(n))$	$\Theta(nlog(n))$	$\Theta(n^2)$	Нет	Θ(1)

Библиотечные функции сортировки

std::sort

 std::sort - функция сортировки на [first, last).
 Объявлена в заголовочном файле <algorithm> Сложность O(N·log(N))

```
#include <algorithm>
int main() {
    int a[5] = { 4, 2, 7, 9, 6 };
    std::sort(a, a + 5);
}
```

3 std::stable_sort - функция устойчивой сортировки на [first, last).

Оптимизация ввода/вывода

• std::ios_base::sync_with_stdio(false); - отключение синхронизации C++ потоков и вывода С. Быстрее, но может приводить к перемешиванию вывода. Если включено, но нет буфферизации, и код потоко-безопасный.

```
std::ios::sync_with_stdio(false);
std::cout << "a\n";
std::printf("b\n");
std::cout << "c\n";

// Возможный вывод:
// b
// a
// c
```

cin.tie(0) и cout.tie(0). По умолчанию cin привязан к cout, что означает, что перед каждой операцией над cin сначала сбрасывается буфер cout. Если отключить, то в интерактивных программах пользователь может не получить вывод своевременно.

Доказательство $\Omega(nlog(n))$ для сортировок сравнениями

- $count(leaves) = l \ge n!$
- 1 ≤ 2^h
- $n! \le l \le 2^h \Rightarrow log_2(n!) \le h$
- $n! > (\frac{n}{e})^n$
 - $1 > \frac{1}{e}$
 - $(\frac{n+1}{e})^{n+1} = (\frac{n}{e})^n \frac{(n+1)^{n+1}}{n^n e} = (\frac{n}{e})^n (1+\frac{1}{n})^n \frac{n+1}{e} > n!(n+1) = (n+1)!$
- $h \ge \log_2(\frac{n}{e})^n = n \cdot \log_2(\frac{n}{e}) = \Omega(n \cdot \log(n))$

Задача 1

На прямой заданы n отрезков координатами своих концов $[a_i,b_i]$. Найдите

- длину их объединения
- длину их пересечения
- максимальное количество отрезков, которое можно выбрать так, чтобы выбранные отрезки попарно не пересекались

Задача 1

1. Длина объединения

```
A1 B1 A2 B2 A3 B3
0 A6 2 B6 3 A7 5B7 6
A4 B4 A5 B5
```

```
struct Point {
    double x;
    bool is_end;
} \\ (1, false) > (1, true)

std::vector<Point> points = transform(segments);// std::vector<Segment>
sort(points);
double sum = 0;
for (auto point: points)
    if (point.is_end)
        sum += point.x - prev_point.x;
    else
        if !(prev_point.is_end)
            sum += point.x - prev_point.x;
```

Задача 1

2. Длина пересечения

3. Длина пересечения

Задача 2

Как реализовать Partition(A, x) с привлечением O(1) дополнительной памяти?

Задача 2

```
void Partition(A, x)
{
   int i = 0, j = n - 1;
   while (i <= j) {
      while (A[i] < x) ++i;
      while (A[j] > x) --j;
      if (i <= j) {
        std::swap(A[i], A[j]);
        ++i;
        --j;
   }
}</pre>
```

Полезные ссылки І

- Wiki Sorting algorithm
 https://en.wikipedia.org/wiki/Sorting_algorithm
- Викиконспекты: Сортировка слиянием https://bit.ly/2DH6XmF