Customer Credit Risk Analysis

Bank of Questrom

Table of Contents

1. Introduction

Bank of Questrom

Bank of Questrom

Financial Product 'BA305' Timeline

Urgent Need for Credit Risk Evaluation!

Credit Risk Analyst Team BA 305 Team Only One

Anshi Mittal
Data Scientist

Michelle M. Lu
Business Analyst

Neri A. Arreaga
Data Analyst

David E. Kim
B.I. Engineer

66

1. What are the **most important features** in classifying someone with high credit risk?

66

2. What are the characteristics of an average customer with low or high credit risk?

(66)

3. What are the **optimal benchmarks for the application** approval and rejection?

2. Dataset

Bank of Questrom

100,000 Observations

8 Months For All 12,500 Unique Clients

Data Type

Before

Pooled Data

*Time Series + Cross Section

After

Cross Sectional Data

*Remove Time Series (Months)

	ID	Customer_ID	Month	Name
0	0x1609	CUS_0xd40	8	NaN
1	0x1615	CUS_0x21b1	8	Rick Rothackerj
2	0x1621	CUS_0x2dbc	8	Langep
3	0x162d	CUS_0xb891	8	Jasond
4	0x1639	CUS_0x1cdb	8	Deepaa

Feature Selection

- Drop
 - Identification variables
 - Time related variables
 - 'Occupation' variable

Missing Values

- Removed
 - NaN values
 - .dropna()
 - '_' values
 - manual removal

```
'Monthly_Inhand_Salary', 'Changed_Credit_Limit', 'Payment_of_Min_Amount',
'Total_EMI_per_month', 'Amount_invested_monthly', 'Payment_Behaviour', 'Monthly_Balance'],
inplace=True)
```

```
df.Credit_Mix.unique()
array(['Good', '_', 'Standard', 'Bad'], dtype=object)
```

Reformatting

- String to Integer and Floats
 - Remove non-numeric chars.
- 00 Years and 00 Months
 - Recalculation to Months

Outliers

 Removed the outliers that represent approximately 1% of the data in the columns.

```
# Outliers

df.Annual_Income.value_counts(normalize=True, bins=5)

(-16821.693, 4772544.4] 0.992134
(14303621.2, 19069159.6] 0.003078
(9538082.8, 14303621.2] 0.001710
(4772544.4, 9538082.8] 0.001596
(19069159.6, 23834698.0] 0.001482
Name: Annual_Income, dtype: float64
```


Dependent Variable

- Decision Tree
 - 0: Good & Standard
 - 1: Poor
- K-Means Clustering
 - Good
 - Standard
 - Poor

RangeIndex: 6015 entries, 0 to 6014							
Data columns (total 14 columns):							
#	Column	Non-Null Count	Dtype				
0	Age	6015 non-null	int64				
1	Annual_Income	6015 non-null	int64				
2	Num_Bank_Accounts	6015 non-null	int64				
3	Num_Credit_Card	6015 non-null	int64				
4	Interest_Rate	6015 non-null	float64				
5	Num_of_Loan	6015 non-null	int64				
	Delay_from_due_date	6015 non-null	int64				
7	Num_of_Delayed_Payment	6015 non-null	int64				
8	Num_Credit_Inquiries	6015 non-null	int64				
	Credit_Mix	6015 non-null	object				
10	Outstanding_Debt	6015 non-null	int64				
11	Credit_Utilization_Ratio	6015 non-null	float64				
12	Credit_History_Age	6015 non-null	int64				
13	Credit_Score	6015 non-null	int64				
dtypes: float64(2), int64(11), object(1) memory usage: 658.0+ KB							

6,015 Observations

2 Categorical & 12 Numerical Variables

Correlations

Assumptions

Red Highlights

- Negative effects on Credit Score

Blue Highlights

- Positive effects on Credit Score

3. Methodologies

Bank of Questrom

Decision Trees

 What are the most important features in classifying someone with high credit risk?

Figure 4.2 Reduced Decision Tree Model ROC curve

What are the characteristics of an average customer with low credit risk or high credit risk?

4. Analysis

Bank of Questrom

Decision Tree

Feature Importance

- Outstanding_Debt
- Interest_Rate
- Num_of_Delayed_Payment
- Delay_from_due_date
- Num_Bank_Accounts
- Num_Credit_Card
- Num_Credit_Inquiries

Decision Tree

- Reduced Decision Tree
 - Outstanding debt higher than 2488 USD and interest rate higher than 34%.
 - Outstanding debt between 1493.5 and
 2488 USD and the number of bank
 accounts higher than 5.5.

- Low Credit Risk
 - Higher average Credit_History_Age
 - Lower average for everything else

- O High Credit Risk
 - Opposite of low credit risk
 - Lower average Credit_History_Age
 - Higher average for everything else

- Standard Credit Risk
 - In between low and high credit risk
 - Outstanding_Debt and Delay_from_due_date

 have the highest difference compared to high

 credit risk

5. Conclusion

Bank of Questrom

Result

1. Amount of **outstanding debt** + **interest rate** ⇒ Most Important in identifying high credit risk!

2. Excessive number of **delayed payments**, **accounts**, **credits**, and **inquiries** ⇒ Can be red flag!

- 3. **Lengthy credit history age** ⇒ Good indicator of low credit risk.
 - But! **Negative factors** may diminish the positive influence of the credit history age.

Optimal Benchmark

3. What are the optimal benchmarks for the application approval and rejection?

Reject the following criteria

(Debt amount > 1900 USD) & (Interest rate higher > 20%) & (Delay from due date > 28 days)

Testing the Evaluation Model

- Unfortunately, the decision tree model was unable to identify the average person in the 'high credit risk' cluster.
- Problem: Low sensitivity score
- Only identifies **extreme** (**polar**) **cases**

```
c_test = pd.read_csv('data/centroid_test.csv')
   y_pred = dt.predict(c_test)
   y_pred
array([0, 0, 0])
```

Improvement

Increased Data

Accuracy

F1 Score & Sensitivity

Include all 8 months

77.62% **⇒ 84.18%**

6015 **⇒ 47,900**

Observations

- 51.21% **⇒ 71.35%**
- 41.25% **⇒ 71.01%**

Success!

The improved evaluation model **identified** the average individual within the **'high credit risk'** cluster.

```
c_test = pd.read_csv('data/centroid_test.csv')

y_pred = dt.predict(c_test)
y_pred

0.0s

array([0 1, 0])
```

Thanks!

Any questions?

Appendix

Codes 6.1

1_credit_data_cleaning.ipynb

Data cleaning file with the dependent variable 'Credit Score' as a polytomous variable Unique values of dependent variable: Good, Standard, Poor

6.1.2 1 credit data cleaning2.ipvnb

Data cleaning file with the dependent variable 'Credit_Score' as a binary variable Unique values of dependent variable: 0 (Includes Good and Standard), 1 (Poor)

6.1.3 2_credit_data_correlation.ipynb

File for finding correlations between variables via correlation matrix heatmap.

6.1.4 3 credit knn.ipvnb

KNN classification model with cleaned_credit_data.csv (Polytomous dependent variable)

6.1.5 3_credit_knn2.ipynb

KNN classification model with cleaned_credit_data2.csv (Binary dependent variable)

6.1.6 4_credit_decision_tree.ipynb

Decision tree model with cleaned_credit_data.csv (Polytomous dependent variable)

6.1.7 4_credit_decision_tree2.ipynb

Decision tree model with cleaned_credit_data2.csv (Binary dependent variable)

6.1.8 5 credit kmeans.ipvnb

K-means clustering with cleaned_credit_data.csv (Polytomous dependent variable)

6.1.9 experiment.ipvnb

File for experimental improvement stage for the study

Increased number of observations by including all months instead of only 'August' Decision tree model with binary dependent variable

Data 6.2

credit raw.csv

Original unprocessed data from the following url https://www.kaggle.com/datasets/parisrohan/credit-score-classification 100,000 Entries with 28 columns

6.2.2 cleaned credit data.csv

Processed data with the dependent variable 'Credit_Score' as a polytomous variable 6015 Observations with 2 categorical and 12 numerical variables

6.2.3 cleaned credit data2.csv

Processed data with the dependent variable 'Credit_Score' as a binary variable 6015 Observations with 2 categorical and 12 numerical variables

6.2.4 centroids.csv

Centroids dataframe saved from '5 credit kmeans.ipvnb' Standardized feature values of centroids within the three clusters

6.2.5 centroids test.csv

Centroids dataframe used for testing the decision tree models Unstandardized feature values of centroids within the three clusters