

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

ESCOLA DE ENGENHARIA

Instrumentação de um veículo aéreo não tripulado para validação de seu projeto

Autor: Túlio Dapper e Silva

Orientador: Edison Pignaton de Freitas

Introdução

Projeto é desafiador.

Introdução

Testes em voo são essenciais.

Projeto é desafiador.

KC-390: 1200 horas. (G1, 2017)

Objetivo

 Sensoriamento de VANT para competição SAE BRASIL AeroDesign

- Velocidade em relação ao ar
- Orientação
- Altitude

PERFORMANCE DE VOO

Corrente drenada pelo sistema elétrico

Sumário

- Revisão Bibliográfica
- Requisitos do Projeto
- Desenvolvimento
 - Componentes
 - Placa de Aquisição de Dados
 - Interfaces com o Usuário
- Apresentação e Discussão dos Resultados
- Conclusões
- Trabalhos Futuros

Sumário

- Revisão Bibliográfica
- Requisitos do Projeto
- Desenvolvimento
 - Componentes
 - Placa de Aquisição de Dados
 - Interfaces com o Usuário
- Apresentação e Discussão dos Resultados
- Conclusões
- Trabalhos Futuros

Escoamentos incompressíveis:

Velocidade do Ar =
$$\sqrt{\frac{2 * Pressão Dinâmica}{Densidade do Ar}}$$

(Schneider, 2000)

Orientação

- Representação
 - Ângulos de Euler, Quaterniões e Matriz Rotacional
- Ângulos de Euler

• Quais sensores podem ser utilizados?

Revisão Bibliográfica

Orientação

Acelerômetro

Giroscópio

(Elettronica Open Source, 2011)

↓ Forças externas

↓ Integração discreta

Orientação

- Fusão de Dados
 - Combinação das vantagens de cada sensor
 - Filtro de Kalman e Filtro Complementar
- Filtro Complementar
 - Acelerômetro:
 - Atenuar as vibrações
 - Giroscópio
 - Eliminar o erro acumulado

Sumário

- Revisão Bibliográfica
- Requisitos do Projeto
- Desenvolvimento
 - Componentes
 - Placa de Aquisição de Dados
 - Interfaces com o Usuário
- Apresentação e Discussão dos Resultados
- Conclusões
- Trabalhos Futuros

Requisitos do Projeto

Velocidade em Relação ao Ar	Orientação
 ■ Mínimo: 10m/s.	 Período de amostragem máximo: 70ms. Erro máximo admissível: 1º.
Altitude	Corrente Elétrica
■ Erro máximo admissível: <mark>0,5m</mark> .	■ Erro máximo admissível: <mark>50mA</mark> .

Sumário

- Revisão Bibliográfica
- Requisitos do Projeto
- Desenvolvimento
 - Componentes
 - Placa de Aquisição de Dados
 - Interfaces com o Usuário
- Apresentação e Discussão dos Resultados
- Conclusões
- Trabalhos Futuros

Componentes

Processamento

Velocidade do Ar

Orientação e Altitude

Corrente Elétrica

Gravação dos dados em cartão SD

Telemetria

Componentes

Processamento

Velocidade do Ar

Orientação e Altitude

Corrente Elétrica

Gravação dos dados em cartão SD

Telemetria

Processamento

Velocidade do Ar

Orientação e Altitude

Corrente Elétrica

Gravação dos dados em cartão SD

Telemetria

Processamento

Velocidade do Ar

Orientação e Altitude

Corrente Elétrica

Gravação dos dados em cartão SD

Telemetria

Componentes

Sensor de Pressão Diferencial

- Falta de interesse: 0 a 250Pa
- MPX7002DP
 - -2kPa a 2kPa
 - Analógico
 - Baixo custo

- MS4525DO-DS3BK002DPL
 - 0 a 500Pa
 - Digital: Comunicação I2C

Sensor de Pressão Diferencial: MPX7002DP

Por que insistir?

Componentes

Sensor de Pressão Diferencial: MPX7002DP

Precisamos validar...

Componentes

Sensor de Pressão Diferencial: MPX7002DP

✓ Faixa de trabalho: 8 a 15,5m/s.

Processamento

Velocidade do Ar

Orientação e Altitude

Corrente Elétrica

Gravação dos dados em cartão SD

Telemetria

Processamento

Velocidade do Ar

Orientação e Altitude

Corrente Elétrica

Gravação dos dados em cartão SD

Telemetria

Componentes

Acelerômetro, Giroscópio, Barômetro e Termômetro

- GY-87
 - Digital: Comunicação I2C
 - MPU6050: Acelerômetro e Giroscópio
 - BMP180: Barômetro e Termômetro

- GY-80
- GY-91

Processamento

Velocidade do Ar

Orientação e Altitude

Corrente Elétrica

Gravação dos dados em cartão SD

Telemetria

Processamento

Velocidade do Ar

Orientação e Altitude

Corrente Elétrica

Gravação dos dados em cartão SD

Telemetria

Componentes

Sensor de Corrente Elétrica

- ✓ INA219 + R100
 - Resistor shunt
 - -3,2A a 3,2A
 - Digital: Comunicação I2C
 - Calibrado

- Efeito Hall
- -5A a 5A
- Analógico
- Baixo custo

Processamento

Velocidade do Ar

Orientação e Altitude

Corrente Elétrica

Gravação dos dados em cartão SD

Telemetria

Processamento

Velocidade do Ar

Orientação e Altitude

Corrente Elétrica

Gravação dos dados em cartão SD

Telemetria

Processamento

Velocidade do Ar

Orientação e Altitude

Corrente Elétrica

Gravação dos dados em cartão SD

Telemetria

Processamento

Velocidade do Ar

Orientação e Altitude

Corrente Elétrica

Gravação dos dados em cartão SD

Telemetria

Componentes

Telemetria

- √ 3DR
 - Firmware de código aberto: SiK
 - 433MHz ou 915MHz
 - Baixo custo

- XBee
 - Protocolo de comunicação: ZigBee
 - Frequência ISM

Componentes

Processamento

Velocidade do Ar

Orientação e Altitude

Corrente Elétrica

Gravação dos dados em cartão SD

Telemetria

Placa de Aquisição

Regulador de Tensão

Firmware

- Gravação dos dados em arquivos partilhados
- Cálculo da orientação +Gravação em novo arquivo = 33ms
- 1º Iteração: aquisição dos dados
- 2º Iteração: gravação e envio dos dados por telemetria
- Período de gravação = 66ms

Interface

Telemetria

Análise dos Dados

Sumário

- Revisão Bibliográfica
- Requisitos do Projeto
- Desenvolvimento
 - Componentes
 - Placa de Aquisição de Dados
 - Interfaces com o Usuário
- Apresentação e Discussão dos Resultados
- Conclusões
- Trabalhos Futuros

Decolagem

Decolagem

Velocidade

Manobra de descida

Manobra de descida

- ↑ Avaliação do comportamento da aeronave.
- ↓ Caráter oscilatório.
- ↓ Faixa de trabalho de 8 a 15,5m/s.
- ↓ Diferença das condições de medição
 - Calibração: 100 amostras em intervalos de 50ms.
 - Teste: 3 amostras em intervalos de 66ms.
- Não está satisfatório.

Altitude

Decolagem

- Média móvel de 3 valores.
- ↓ Ultrapassa o erro máximo tolerado.
- Não está satisfatório.

Rolamento e Arfagem

- ↓ Caráter oscilatório.
- Não está satisfatório.

Rolamento e Arfagem

- Média móvel de 3 valores.
- ↑ Avaliação do comportamento da aeronave.

Corrente Elétrica

Satisfatório.

Conclusões

- ↑ Plataforma de aquisição e transmissão dados estão satisfatórios.
- ↑ É possível avaliar características da aeronave com os resultados obtidos.
- ↓ Resultados de velocidade do ar e orientação não estão satisfatórios devido, basicamente, à vibração mecânica da estrutura.

Trabalhos Futuros

- Identificar a influência da vibração mecânica na resposta de velocidade do ar e aceleração realizando a coleta dos dados a uma frequência superior a 420Hz.
- Estudar a influência da temperatura no resultado no sensor de pressão diferencial MPX7002DP.
- Comparar a resposta do sensor com e sem a influência aerodinâmica da asa em um túnel de vento.
- Comparar os resultados de orientação e altitude com instrumentos comerciais.

Referências

G1. Avião militar da Embraer tem incidente durante voo de teste em Gavião Peixoto, SP. G1, 2017. Disponível em: https://g1.globo.com/sp/sao-carlos-regiao/noticia/aviao-militar-da-embraer-tem-incidente-durante-voo-de-teste-em-gaviao-peixoto-sp.ghtml. Acesso em: 15 dez. 2017.

ELETTRONICA OPEN SOURCE. Sensori MEMS offrono dieci gradi di libertà. Elettronica Open Source, 2011. Disponível em: https://it.emcelettronica.com/sensori-mems-offrono-dieci-gradi-di-liberta. Acesso em: 14 dez. 2017.

HALL, N. **Pitot-Static Tube**. NASA, 2015. Disponível em: < https://www.grc.nasa.gov/www/k-12/airplane/pitot.html>. Acesso em: 14 dez. 2017.

SCHNEIDER, P. S. **Medição de Velocidade e Vazão de Fluidos**. Porto Alegre: Universidade Federal do Rio Grande do Sul, 2000. Apostila para disciplina "Medições Térmicas".

LECCADITO, M. A Kalman Filter Based Atitude Heading Reference System Using a Low Cost Inertial Measurement Unit. Richmond. 2013. Dissertação de Mestrado em Ciência.

OBRIGADO!

Extra

Animação