Часть третья

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

Глава девятая Выборочный метод

§ 1. Статистическое распределение выборки

Пусть для изучения количественного (дискретного или непрерывного) признака X из генеральной совокупности извлечена выборка x_1, x_2, \ldots, x_k объема n. Наблюдавшиеся значения x_i признака X называют вариантами, а последовательность вариант, записанных в возрастающем порядке, — вариационным рядом.

Статистическим распределением выборки называют перечень вариант x_i вариационного ряда и соответствующих им частот n_i (сумма всех частот равна объему выборки n) или относительных ча-

стот w_i (сумма всех относительных частот равна единице).

Статистическое распределение выборки можно задать также в виде последовательности интервалов и соответствующих им частот (в качестве частоты интервала принимают сумму частот вариант, попавших в этот интервал).

439. Выборка задана в виде распределения частот:

Найти распределение относительных частот.

Решение. Найдем объем выборки: n=1+3+6=10. Найдем относительные частоты:

$$w_1 = 1/10 = 0.1$$
; $w_2 = 3/10 = 0.3$; $w_3 = 6/10 = 0.6$.

Напишем искомое распределение относительных частот:

Контроль: 0,1-+0,3-+0,6=1.

440. Выборка задана в виде распределения частот:

$$x_i$$
 4 7 8 12 n_i 5 2 3 10

Найти распределение относительных частот.

§ 2. Эмпирическая функция распределения

Эмпирической функцией распределения (функцией распределения выборки) называют функцию $F^*(x)$, определяющую для каждого значения x относительную частоту события X < x:

$$F^{\bullet}(x) = n_x/n$$

где n_x — число вариант, меньших x; n — объем выборки.

Эмпирическая функция обладает следующими свойствами.

Свойство 1. Эначения эмпирической функции принадлежат отрежу [0; 1].

Свойство 2. F* (х) — неубывающая функция.

Свойство 3. Если x_1 — наименьшая варианта, а x_k — наибольшая, то $F^*(x) = 0$ при $x \le x_1$ и $F^*(x) = 1$ при $x > x_k$.

441. Найти эмпирическую функцию по данному распределению выборки:

Решение. Найдем объем выборки: n = 10 + 15 + 25 = 50.

Наименьшая варианта равна единице, поэтому $F^*(x) = 0$ при $x \le 1$.

Значение X < 4, а именно $x_1 = 1$, наблюдалось 10 раз, следовательно, $F^*(x) = 10/50 = 0.2$ при $1 < x \le 4$.

Значения x < 6, а именно: $x_1 = 1$ и $x_2 = 4$, наблюдались 10 + 15 = 25 раз; следовательно, $F^*(x) = 25/50 = 0,5$ при 4 < x < 6.

Так как x=6—наибольшая варнанта, то $F^*(x)=$ = 1 при x>6.

Напишем искомую эмпирическую функцию:

$$\overline{x} \quad F^{\bullet}(x) = \begin{cases}
0 & \text{при} & x \le 1, \\
0,2 & \text{при} & 1 < x \le 4, \\
0,5 & \text{при} & 4 < x \le 6, \\
1 & \text{при} & x > 6.
\end{cases}$$

График этой функции изображен на рис. 11.

442. Найти эмпирическую функцию по данному распределению выборки:

§ 3. Полигон и гистограмма

А. Дискретное распределение признака X. Полигоном частот называют ломаную, отрезки которой соединяют точки (x_1, n_1) , (x_2, n_2) , ..., (x_k, n_k) , где x_i —варианты выборки и n_i —соответствующие им частоты.

Полигоном относительных частот называют лочаную, отрезки которой соединяют точки $(x_1; w_1), (x_2; w_2), \ldots, (x_k; w_k)$, где x_i —варианты выборки и w_i —соответствующие им относительные частоты.

Б. Непрерывное распределение признака X. При непрерывном распределении признака весь интервал, в котором заключены все наблюдаемые значення признака, разбивают на ряд частичных интервалов длины h и находят n_i —сумму частот вариант, попавших в i-й интервал. Гистогражмой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные ннтервалы длины h, а высоты равны отношению n_i/h (плотность частоты). Площадь частичного i-го прямоугольника равна h (n_i/h) = n_i — сумме частот вариант, попавших в i-й интервал. Площадь гистограммы частот равна сумме всех частот, т. е. объему выборки n.

 $\dot{\Gamma}$ истограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длины h, а высоты равны отношению w_i/h (плотность относительной частоты). Площадь частичного i-го прямоугольника равна h (w_i/h) $= w_i$ — относительной частоте вариант, попавших в i-й интервал. Площадь гистограммы относительных

частот равна сумме всех относительных частот, т. е. единице.

443. Построить полигон частот по данному распределению выборки:

$$x_i \quad 1 \quad 4 \quad 5 \quad 7$$
 $n_i \quad 20 \quad 10 \quad 14 \quad 6$

Решение. Отложим на оси абсцисс варианты x_i , а на оси ординат — соответствующие им частоты n_i : соединив точки (x_i, n_i) отрезками прямых, получим ис-

444. Построить полигон частот по данному распределению выборки:

a) x_i 2 3 5 6 6 x_i 15 20 25 30 35 n_i 10 15 5 20 n_i 10 15 30 20 25

445. Построить полигон относительных частот по данному распределению выборки:

a) x_i 2 4 5 7 10 w_i 0,15 0,2 0,1 0,1 0,45

6) x_i 1 4 5 8 9 w_i 0,15 0,25 0,3 0,2 0,1

B)
$$x_i$$
 20 40 65 80 w_i 0,1 0,2 0,3 0,4

Решение. а) Отложим на оси абсцисс варианты x_i , а на оси ординат—соответствующие относительные частоты w_i . Соединив точки (x_i, w_i) отрезками прямых, получим искомый полигон относительных частот (рис. 13).

446. Построить гистограмму частот по данному распределению выборки объема n=100:

Номер	Частичный	Сумма частот	Плотность
интервала	интервал	вариант интервала	частоты
і	^x i ^{- x} i+1	п;	n _i /h
1	1—5	10	2,5
2	5—9	20	5
3	9—13	50	12,5
4	13—17	12	3
5	17—21	8	2

Решение. Построим на оси абсцисс заданные интервалы длины h=4. Проведем над этими интервалами отрезки, параллельные оси абсцисс и находящиеся от нее на расстояниях, равных соответствующим плотностям частоты n_i/h . Например, над интервалом (1, 5) построим отрезок, параллельный оси абсцисс, на расстоянии $n_i/h = 10/4 = 2,5$; аналогично строят остальные отрезки.

Искомая гистограмма частот изображена на рис. 14. 447. Построить гистограмму частот по данному распределению выборки:

Номер	Частичный	Сумма частот	Плотность частоты n_i/\hbar
интервала	интервал	вариант интервала	
<i>i</i>	^х і ^{-х} і+1	п _į	
1	2—7	5	
2	7—12	10	
3	12—17	25	
4	17—22	6	
5	22—27	4	

Номер	Частичный	Сумма частот	Плотность частоты n_i/\hbar
интервала	интервал	вариант интервала	
<i>i</i>	^х і ^{— х} і+1	п _і	
1	3—5	4	
2	5—7	6	
3	7—9	20	
4	9—11	40	
5	11—13	20	
6	13—15	4	
7	15—17	6	

Указание. Найти предварительно плотность частоты для каждого интервала и заполнить последний столбец таблицы.

448. Построить гистограмму относительных частот по данному распределению выборки:

Номер	Частичный	Сумма частот варнант
янтервала	интервал	частичного нитервала
;	x _i — x _i + f	^п і
1	0-2	20
2	2-4	30
3	4-6	50
	,	$n = \sum n_i = 100$

Решение. Найдем относительные частоты:

$$w_1 = 20/100 = 0.2$$
, $w_2 = 30/100 = 0.3$, $w_2 = 50/100 = 0.5$.

Найдем плотности относительных частот, учитывая, что длина интернала h=2:

$$w_1/h = 0.2/2 = 0.1$$
, $w_2/h = 0.3/2 = 0.15$, $w_3/h = 0.5/2 = 0.25$.

Построим на оси абсцисс данные частичные интервалы. Проведем над этими интервалами отрезки, параллельные оси абсцисс и находящиеся от нее на расстояниях, равных соответствующим плотностям относительной частоты. Например, над интервалом (0, 2) проведем отрезок, параллельный оси абсцисс и находящийся от нее на расстоянии, равном 0,1; аналогично строят остальные отрезки.

Искомая гистограмма относительных частот изображена на рис. 15.

449. Построить гистограмму относительных частот по данному распределению выборки:

a)

Номер штервала 1	Частичный интервал ^х i — хi + 1	Сумма частот вариант частичного интервала п _і
1	1015	2
2 3	15—20 20—25	4 R
4	25—30 30—35	, 4
5	30—35	2
		$n-\sum_{i=1}^{n}n_{i}-20$

Номер	Частичный	Сумма частот варнант
интервала	интервал	частичного интервала
(х _і — х _і + 1	п;
1	2—5	6
2	5—8	10
3	8—1!	4
4	11—14	5
		$n = \sum n_i = 25$

Указание. Найти сначала относительные частоты, соответствующие плотности относительной частоты для каждого интервала.

Глава десятая Статистические оценки параметров распределения

§ 1. Точечные оценки

Статистической оценкой Θ^{\bullet} неизвестного параметра Θ теоретического распределения называют функцию $f(X_1, X_2, ..., X_n)$ от наблюдаемых случайных величин $X_1, X_2, ..., X_n$.

Точечной называют статистическую оценку, которая определяется одним числом $\Theta^{\bullet} = f(x_1, x_2, \ldots, x_n)$, где x_1, x_2, \ldots, x_n —результаты n наблюдений над количественным признаком X (выборка).

Несмещенной называют точечную оценку, математическое ожидание которой равно оцениваемому параметру при любом объеме выборки.

Смещенной называют точечную оценку, математическое ожида-

ние которой не равно оцениваемому параметру.

Несмещенной оценкой генеральной средней (математического ожидания) служит выборочная средняя

$$\bar{x}_{B} = \left(\sum_{i=1}^{k} n_{i} x_{i}\right) / n,$$

где x_i — варианта выборки, n_i — частота варианты x_i , $n = \sum_{i=1}^k n_i$ —

объем выборки.

Замечание 1. Если первоначальные варианты x_l —большие числа, то для упрощения расчета целесообразно вычесть из каждой варианты одно и то же число C, т. е. перейти к условным вариантам $u_i = x_l - C$ (в качестве C выгодно принять число, близкое к выборочной средней; поскольку выборочная средняя неизвестна, число C выбирают «на глаз»). Тогда

$$\tilde{x}_{\mathrm{B}} = C + (\sum n_i u_i)/n.$$