Linjär Algebra Föreläsning 13 - Determinanter

Erik Sjöström

December 1, 2015

1 Terminologi

• $n! = n \cdot (n-1) \cdot \dots \cdot 1$

Exempel 1.1.

$$3! = 3 \cdot 2 \cdot 1$$
$$25! = 25 \cdot 24 \cdot \dots \cdot 2 \cdot 1 \approx 1.5 \cdot 10^{25}$$

• Permutation är en uppräkning av {1,2,3,...,n} i en given ordning.

Exempel 1.2.

Det 3! möjliga permutationerna av {1,2,3} nämligen:

 $\{1, 2, 3\}$

 $\{1, 3, 2\}$

 $\{2, 1, 3\}$

 $\{2, 3, 1\}$

 ${3,1,2}$

 ${3,2,1}$

 \bullet En permutation kallas udda om det krävs ett udda antal platsbyten för att överföra den till $\{1,2,...,n\}$, annars jämn.

Exempel 1.3.

Låt $A_{n\times n}$ vara en 2×2 -matris:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Möjliga produkter:	Permutation av kolumnindex:	Udda/jämn permutation:
$a_{11} \cdot a_{22}$	$\{1,2\}$	Jämn
$a_{12} \cdot a_{21}$	$\{2,1\}$	Udda

$$\mathbf{det}(\mathbf{A}) = a_{11} \cdot a_{22} - a_{21} \cdot a_{12}$$

Exempel 1.4. Här fattas det ett exempel eftersom Blom ej har lagt upp det på hemsidan än.

Vi ser från determinanten av en matris A att:

- Om **A** innehåller en rad eller kolumn med bara nollor blir $\mathbf{det}(\mathbf{A}) = 0$
- $\det(\mathbf{A}) = \det(\mathbf{A}^T)$
- Om **A** är triangulär:

$$\mathbf{A} = \begin{bmatrix} d_1 & \dots & x \\ \vdots & \ddots & \vdots \\ 0 & \dots & d_n \end{bmatrix}$$
eller
$$\mathbf{A} = \begin{bmatrix} d_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ x & \dots & d_n \end{bmatrix}$$

så är det(A) = produkten av diagonalelementent.

För att beräkna $\det(\mathbf{A}_{n\times n})$ behöver vi utfära cirka n! multiplikationer och additioner.

Exempel 1.5.

 $A_{25\times25}$. Det behövs cirka $25!\approx1.5\cdot10^{25}$ operationer. Antag att en dator utför 10^{12} operationer/sekund då tar det cirka 500 tusen år att beräkna.

Lösningen på detta problem är att radreducera (Gausseliminera) innan man beräknar $\det(\mathbf{A})$.

Låt **A** och **B** vara två $(n \times n)$ -matriser och **B** vara resultatet av precis <u>en</u> radoperation på **A**. Resultat beroende på operation blir:

- Addition: det(B) = det(A)
- Platsbyte: det(B) = -det(A)
- Skalning med k: $det(\mathbf{B}) = k \cdot det(\mathbf{A})$

Exempel 1.6.

Beräkna:

$$\begin{vmatrix} 1 & 2 & 3 \\ -2 & 0 & 1 \\ 0 & 4 & 2 \end{vmatrix} \xleftarrow{2} + = \begin{vmatrix} 1 & 2 & 3 \\ 0 & 4 & 7 \\ 0 & 4 & 2 \end{vmatrix} \xrightarrow{-1} = \begin{vmatrix} 1 & 2 & 3 \\ 0 & 4 & 7 \\ 0 & 0 & -5 \end{vmatrix} = 1 \cdot 4 \cdot (-5) = -20$$

Antalet operationer (mul, add, subtr) som behövs för Gausseliminering av en $(n \times n)$ -matris är cirka $2n^3/3$.

Exempel 1.7.

Radreduceringen av en (25×25) -matris blir $2 \cdot 25^3/3 \approx 10.000$ operationer, vilket tar mindre än 1 sekund.

Låt $\mathbf{A}_{n\times n}$ gausselimineras till övertriangulär form:

$$\begin{bmatrix} d_1 & \dots & x \\ \vdots & \ddots & \vdots \\ 0 & \dots & d_n \end{bmatrix}$$

med hjälp av addition och platsbyte. Då har vi att:

$$\mathbf{det}(\mathbf{A}) = (-1)^r \cdot d_1 \cdot d_2 \cdot \dots \cdot d_n$$

där r är antalet platsyten.

Om \mathbf{A} ej är inverterbar så kommer minst ett av diagonalelementen att vara 0 (ty \mathbf{A} ej har pivotelement i varje kolumn) $\Rightarrow \mathbf{det}(\mathbf{A}) = 0$

Om $det(\mathbf{A}) = 0$, så måste något av diagonalelementen vara 0, dvs \mathbf{A} har ej pivotelement i varje kolumn, dvs \mathbf{A} är ej inverterbar.

$$\mathbf{A}$$
 inverterbar $\Leftrightarrow \mathbf{det}(\mathbf{A}) \neq 0$

Sats 1.1.

Det gäller också att, om \mathbf{A} och \mathbf{B} är $(n \times n)$ -matriser:

$$\mathbf{det}(\mathbf{A}\cdot\mathbf{B})=\mathbf{det}(\mathbf{A})\cdot\mathbf{det}(\mathbf{B})$$

2 Area, volymskala

Kom ihåg (F6). Låt $\mathbf{A}_{2\times 2} = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \end{bmatrix}$

Arean av parallellogrammet som spänns upp av \vec{a}_1 , \vec{a}_2 är: $|\mathbf{det}(\mathbf{A})|$

Exempel 2.1.

Bestäm arean av området vars hörn är:

För att kunna beräkna arean mha determinanter måste vi translatera (flytta) parallellogrammet så att ett av hörnen hamnar i origo (0,0).

 $Vi\ translaterar\ med\ \vec{t} = egin{bmatrix} 2 \\ 2 \end{bmatrix}$. $Vi\ får:$

(0,0)

(2, 5)

(6,1)

(8, 6)

Arean är oförändrad

$$\mathbf{A} = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 5 & 1 \end{bmatrix}$$

Parallellogrammet som spänns upp av \vec{a}_1 och \vec{a}_2 består av alla punkter:

$$\{s \cdot \vec{a}_1 + t \cdot \vec{a}_2 : 0 \le s \le 1, 0 \le t \le 1\}$$

Låt $f: \mathbb{R}^2 \to \mathbb{R}^2$ vara en linjär transformation $f(\vec{x}) = \mathbf{A} \cdot \vec{x}$.

Låt $\mathbf{D}:\{s\cdot\vec{d_1}+t\cdot\vec{d_2}:0\leq s\leq 1,0\leq t\leq 1\}$ vara ett paralellogram i $\mathbb{R}^2.$

Vad blir arean av $f(\mathbf{D})$? (arean av $\mathbf{D} = |\mathbf{det}(\begin{bmatrix} \vec{d_1} & \vec{d_2} \end{bmatrix})|)$

$$f(\mathbf{D}) = f(s \cdot \vec{d}_1 + t \cdot \vec{d}_2) = s \cdot f(\vec{d}_1) + t \cdot f(\vec{d}_2) = s \cdot \mathbf{A} \cdot \vec{d}_1 + t \cdot \mathbf{A} \cdot \vec{d}_2$$

$$\text{Arean av } f(\mathbf{D}) = |\det(\begin{bmatrix} \mathbf{A} \cdot \vec{d}_1 & \mathbf{A} \cdot \vec{d}_2 \end{bmatrix})| =$$

$$\mathbf{Obs:} \ \begin{bmatrix} \mathbf{A} \cdot \vec{d}_1 & \mathbf{A} \cdot \vec{d}_2 \end{bmatrix} = \mathbf{A} \cdot \begin{bmatrix} \vec{d}_1 & \vec{d}_2 \end{bmatrix}$$

$$= |\det(\mathbf{A} \cdot \begin{bmatrix} \vec{d}_1 & \vec{d}_2 \end{bmatrix})| = |\det(\mathbf{A}) \cdot \det(\begin{bmatrix} \vec{d}_1 & \vec{d}_2 \end{bmatrix})| = |\det(\mathbf{A})| \cdot \text{"arean av } \mathbf{D}$$
"

Exempel 2.2.

Låt $m{D}$ vara parallellogrammet som spänns upp av:

$$\begin{bmatrix} 1 \\ 3 \end{bmatrix} \qquad \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

 $Låt f: \mathbb{R}^2 \to \mathbb{R}^2$ och:

$$f(\vec{x}) = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Bestäm arean av bilden av D (f(D)):

Lösning:

"Arean av
$$f(\mathbf{D})$$
" = $|\mathbf{det}(\mathbf{A})| \cdot$ "Arean av \mathbf{D} "
$$\mathbf{det}(\mathbf{A}) = |1 \cdot 2 - 0 \cdot (-1)| = 2$$
"Arean av \mathbf{D} " = $|\mathbf{det}(\begin{bmatrix} 1 & 5 \\ 3 & 1 \end{bmatrix})| = |1 \cdot 1 - 3 \cdot 5| = |-14| = 14$
"Arean av $f(\mathbf{D})$ " = $2 \cdot 14 = 28$

Exempel 2.3.

Låt $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ vara rotationen motsols med θ , dvs:

$$f(\vec{x}) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\mathbf{det}(\mathbf{A}) = \cos^2(\theta) - (-\sin^2(\theta)) = \cos^2(\theta) + \sin^2(\theta) = 1$$

Dvs: rotation förändrar inte arean.