五、美式模擬法的特性

- (一)美式路徑相關選擇權的定價
- ◆ 美式選擇權在任何時點皆可執行之
 - ▶ 必須評估立刻執行的價值, Ve,與繼續持有的價值, Vh。

$$V_t = Max[V_e, V_h]$$

- ✓ 立刻執行的價值通常可由股票的價格模擬程序求得。
- ✔ 繼續持有的價值則涉及對未來預期。

◆ 在樹狀模型中,由於選擇權價格是由期末往前算,因此可以得知繼續持有的價值

- 美式賣權
- K=52
- 風險中立機率
 p = [Exp(0.05*1 0.8)]/(1.2 0.8)
 = 0.6282

- ◆ 在模擬法中,如果要判斷是否應提前執行,則必須形成預期。
 - ▶ 以最小平方法(Least-Squares Approach, LSM)形成預期,來評估繼續持有的價值,為目前的主流方法。
 - ✓ Longstaff and Schwartz, (*Review of Financial Studies*, 2001 Spring, Vol. 14, No. 1, pp. 113-47), 為一完整的參考資料。
 - ▶ 下面以一個三期模擬的數值範例,說明此方法。

(二) 最小平方法的美式選擇權定價

◆ 一美式賣權,其標的資產價格模擬程序如下,S₀ = 1.0, K=1.10, r = 6%。

Stock price paths (X=1.10, r=0.06, T=3)

<u>Path</u>	<u>t=0</u>	<u>t=1</u>	<u>t=2</u>	<u>t=3</u>
1	1.00	1.09	1.08	1.34
2	1.00	1.16	1.26	1.54
3	1.00	1.22	1.07	1.03
4	1.00	0.93	0.97	0.92
5	1.00	1.11	1.56	1.52
6	1.00	0.76	0.77	0.90
7	1.00	0.92	0.84	1.01
8	1.00	0.88	1.22	1.34

◆ 每一時點執行選擇權,產生的現金流量。

Cash flow matrix

<u>Path</u>	<u>t=0</u>	<u>t=1</u>	<u>t=2</u>	<u>t=3</u>
1		0.01	0.02	0
2		0	0	0
3		0	0.03	0.07
4		0.17	0.13	0.18
5		0	0	0
6		0.34	0.33	0.20
7		0.18	0.26	0.09
8		0.22	0	0

◆ 在時點 2 中,選擇 ITM 的選擇權進行回歸估計,作為預期的根據。

The Regression at Time 2

<u>Path</u>	<u>t=2</u>	<u>t=3</u>
1	1.08	1.34(0.00)
2	1.26	1.54
3	<u>1.07</u>	1.03(0.07)
4	0.97	0.92(0.18)
5	1.56	1.52
6	0.77	0.90(0.20)
7	0.84	1.01(0.09)
8	1.22	1.34

- ◆ 利用時點 2 的資訊(股價...),預測時點 3 的選擇權價值,作為判斷是否繼續持有
 - ▶ 只有在時點 2 ITM 的股價才需考慮, Path 1, 3, 4, 6, 7。
 - ▶ 需將時點3的選擇權價值折現至時點2。
 - ▶ 以時點 2 的股價 S 與 S² 為自變數,時點 3 的選擇權價 C 為因變數,回歸估計。

Regression at time 2

Path	Y	X
1	$.00 \times .94176$	1.08
2		
3	$.07 \times .94176$	1.07
4	$.18 \times .94176$.97
5		
6	$.20 \times .94176$.77
7	$.09 \times .94176$.84
8		

◆ 回歸結果如下

<u>Path</u>	$\underline{\mathbf{Y}}$	$\underline{\mathbf{X}}$
1	0.00*0.94176	1.08
2		
3	0.07*0.94176	1.07
4	0.18*0.94176	0.97
5		
6	0.20*0.94176	0.77
7	0.09*0.94176	0.84
8		

Note: $\exp(-0.06*1) = 0.94176$

Independent variables: constant, X, X^2 .

Dependent variable: Y

Conditional expectation fcn: $E[Y|X] = -1.070+2.983X-1.813 X^2$

◆ 利用回歸結果判斷是否需立刻執行或繼續持有

▶ 繼續持有之價值係由前述之回歸所形成的預期。

Optimal early exercise decision at time 2

Path	Exercise	Continuation
1	.02	.0369
2		
3	.03	.0461
4	.13	.1176
5 6		
6	.33	.1520
7	.26	.1565
8		

- ◆ Path 4, 6, 7 應執行之,
 - ▶ 因立刻執行價值高於繼續持有之價值。

The Optimal Early Exercise Decision at Time 2

Path	Exercise	value	Continuation (Holding value)
			$E[Y X] = -1.070 + 2.983X - 1.813X^2$
1	0.02		0.0369
2			
3	0.03		0.0461
4	0.13	>	0.1176
5			
6	0.33	>	0.1520
7	0.26	>	0.1565
8			

◆ 時點 2 以後的現金流量

▶ Path 4, 6, 7 時點 2 的現金流量由立刻執行的 CF 取代之

Cash flow matrix at Time 2

<u>Path</u>	<u>t=0</u>	<u>t=1</u>	<u>t=2</u>	<u>t=3</u>
1			0	0
2			0	0
3			0	0.07
4			0.13	<u>0</u>
5			0	0
6			0.33	<u>0</u>
7			0.26	<u>0</u>
8			0	0

◆ 在時點 1 中,選擇 ITM 的選擇權進行回歸估計

➤ Path 1, 4, 6, 7, 8 為 ITM

Time 1

<u>Path</u>	<u>t=0</u>	<u>t=1</u>	<u>t=2</u>	<u>t=3</u>
1	1.00	1.09	1.08	1.34
2	1.00	1.16	1.26	1.54
3	1.00	1.22	1.07	1.03
4	1.00	<u>0.93</u>	0.97	0.92
5	1.00	1.11	1.56	1.52
6	1.00	<u>0.76</u>	0.77	0.90
7	1.00	<u>0.92</u>	0.84	1.01
8	1.00	0.88	1.22	1.34

- ◆ 利用時點 2 的選擇權價值,作為判斷是否繼續持有
 - ▶ 取 Path 1, 4, 6, 7, 8 時點 2 的 CF 回歸之。

<u>Path</u>	<u>t=0</u>	$\underline{t=1}$	<u>t=2</u>	<u>t=3</u>
1			0	0
2			0	0
3			0	0.07
4			0.13	<u>O</u>
5			0	0
6			0.33	<u>O</u>
7			0.26	<u>O</u>
8			0	0

The Regression at Time 1

◆ 相關變數如下

Regression at time 1

Path	Y	X
1	$.00 \times .94176$	1.09
2		
3		
4	$.13 \times .94176$.93
5		
6	$.33 \times .94176$.76
7	$.26 \times .94176$.92
8	$.00 \times .94176$.88

回歸結果如下

<u>Path</u>	$\underline{\mathbf{Y}}$	$\underline{\mathbf{X}}$
1	0.00*0.94176	1.09
2		
3		
4	0.13*0.94176	0.93
5		
6	0.33*0.94176	0.76
7	0.26*0.94176	0.92
8	0.00*0.94176	0.88

$$E[Y|X] = 2.038-3.335X+1.356 X^2$$

- ◆ Path 4, 6, 7, 8 應執行之,
 - ▶ 因立刻執行價值高於繼續持有之價值。

The Optimal Early Exercise Decision at Time 1

Path	Exercise value		Continuation (Holding value) $E[Y X] = 2.038-3.335X+1.356X^2$	
1	0.01		0.0139	
2				
3				
4	0.17	>	0.1092	
5				
6	0.34	>	0.2866	
7	0.18	>	0.1175	
8	0.22	>	0.1533	

◆ 時點 1 以後的現金流量

▶ Path 4, 6, 7, 8 時點 1 的現金流量由立刻執行的 CF 取代之

Option Cash Flow Matrix

<u>Path</u>	<u>t=0</u>	<u>t=1</u>	<u>t=2</u>	<u>t=3</u>
1		0	0	0
2		0	0	0
3		0	0	0.07
4		0.17	0	0
5		0	0	0
6		0.34	0	0
7		0.18	0	0
8		0.22	0	0

Option Value= 0.1144

選擇權的期初價值可求得為

$$\frac{1}{8} \left(0.07e^{-0.06*3} + 0.17e^{-0.06*1} + 0.34e^{-0.06*1} + 0.18e^{-0.06*1} + 0.22e^{-0.06*1} \right) = 0.1144$$