Adatbázisok 1. Többértékű függőségek

Negyedik normálforma

Funkcionális és többértékű függőségek következtetése

Motiváció

Oktató	Város	Közterület		Tárgy	Szemeszter	
Kovács István	Budapest	Rákóczi út 1.	ı	Adatbázisok	2020/21/1	
Kovács István	Debrecen	Kossuth tér 1.	ı	Adatbázisok	2020/21/1	
Kovács István	Budapest	Rákóczi út 1.	ı	Hálózatok	2019/20/2	
Kovács István	Debrecen	Kossuth tér 1.	ı	Hálózatok	2019/20/2	
Kovács István	Budapest	Rákóczi út 1.	ı	Programozás	2018/19/1	
Kovács István	Debrecen	Kossuth tér 1.		Programozás	2018/19/1	

A többértékű függőség (multivalued dependency) definíciója

- A *többértékű függőség* (TÉF): az *R* reláció fölött *X* ->->*Y* teljesül: ha bármely két sorra, amelyek megegyeznek az *X* minden attribútumán, az *Y* attribútumaihoz tartozó értékek felcserélhetők, azaz a keletkező két új sor R-beli lesz.
- Más szavakkal: X minden értéke esetén az Y -hoz tartozó értékek függetlenek az R-X-Y értékeitől.
- Az előző példában: Oktató ->-> Város Közterület

Példa: TÉF

Vendégek(név, cím, tel, kedveltTeák)

- A vendégek telefonszámai függetlenek az általuk kedvelt teáktól.
 - név->->tel és név ->->kedveltTeák.
- Így egy-egy vendég minden telefonszáma minden általa kedvelt teával kombinációban áll.
- Ez a jelenség független a funkcionális függőségektől.
 - itt a név->cím az egyetlen FF.

A név->->tel által implikált sorok

Ha ezek a soraink vannak:

cím	tel	kedveltTeák
a	p1	b1
a	p2	b2
a	p2	b1
a	p1	b2
	a a	a p1 a p2

Akkor ezeknek a soroknak is szerepelnie kell

→ módosítási anomália!

(Pl. p2-t p3-ra módosítjuk, mindenütt meg kell tenni...)

Az X ->->Y TÉF képe

TÉF szabályok

- Minden FF TÉF.
 - Ha X ->Y és két sor megegyezik X-en, Y-on is megegyezik, emiatt ha ezeket felcseréljük, az eredeti sorokat kapjuk vissza, azaz: X ->->Y.
- Komplementálás (complementation): Ha X ->->Y és Z
 jelöli az összes többi attribútum halmazát, akkor X ->->Z.

Oktató	Város	Közterület	Tárgy	Szemeszter	Oktató	Város	Közterület	Tárgy	Szemeszter
Kovács István	Budapest	Rákóczi út 1.	Adatbázisok	2020/21/1	Kovács István	Budapest	Rákóczi út 1.	Adatbázisok	2020/21/1
				2000/04/4	Kovács István	Budapest	Rákóczi út 1.	Hálózatok	2019/20/2
Kovács István	Budapest	Rákóczi út 1.	Hálózatok	2019/20/2	Kovács István	Budapest	Rákóczi út 1.	Programozás	2013/20/2
KOVACS ISTVAII	budapest	Nakoczi ut 1.	Halozatok	2019/20/2	KOVACS ISLVAII	budapest	Nakoczi ut 1.	riogiailiozas	2018/19/1
1.0 va 05 15 cva 11	Debresen	Nooduit to: 1	Harozatok	2023/20/2			•••		
Kovács István	Budapest	Rákóczi út 1.	Programozás	2018/19/1					

7

Nem tudunk darabolni

- Ugyanúgy, mint az FF-ek esetében, a baloldalakat nem "bánthatjuk" általában.
- Az FF-ek esetében a jobboldalakat felbonthattuk, míg ebben az esetben ez sem tehető meg.

Példa: többattribútumos jobboldal

Vendégek(név, tTársaság, tel, kedveltTeák, gyártó)

- Egy vendégnek több telefonja lehet, minden számot két részre osztunk: tTársaság (pl. Vodafone) és a maradék hét számjegy.
- Egy vendég több teát is kedvelhet, mindegyikhez egy-egy gyártó tartozik.

Példa folytatás

• Mivel a tTársaság-tel kombinációk függetlenek a kedveltTeák-gyártó kombinációtól, azt várjuk, hogy a következő TÉF-ek teljesülnek:

```
név ->-> tTársaság tel
```

név ->-> kedveltTeák gyártó

Példa adat

Egy lehetséges előfordulás, ami teljesíti az iménti TÉF-et:

név	tTársaság	tel	kedveltT	gyártó
Sue	20	555-1111	Brisk	Lipton
Sue	20	555-1111	E. G.	Tetley
Sue	70	555-9999	Brisk	Lipton
Sue	70	555-9999	E. G.	Tetley

Ugyanakkor sem a név->->tTársaság sem a név->->tel függőségek nem teljesülnek.

Többértékű függőségek

Axiomatizálás

Funkcionális	Többértékű	Vegyes
függőségek	függőségek	függőségek
A1 (reflexivitás): Y⊆X esetén X→Y.	A4 (komplementer): X→→Y és Z=R-XY esetén X→→Z.	A7 (funkcionálisból többértékű): X→Y esetén X→→Y.
A2 (bővíthetőség):	A5 (bővíthetőség):	A8 (többértékűből
X→Y és tetszőleges	X→→Y és tetszőleges	és funcionálisból
Z esetén XZ→YZ.	V⊆W esetén XW→→YV.	funkcionális):
A3 (tranzitivitás):	A6 (tranzivitás):	X→→Y és W→S,
X→Y és Y→Z esetén	X→→Y és Y→→S esetén	ahol S⊆Y, W∩Y=Ø
X→Z.	X→→S-Y.	esetén X→S.

Negyedik normálforma (fourth normal form)

- A TÉF-ek okozta redundanciát a BCNF nem szünteti meg.
- A megoldás: a negyedik normálforma!
- A negyedik normálformánál (4NF) amikor dekomponálunk, a TÉF-eket úgy kezeljük, mint az FF-eket, a kulcsok megtalálásánál azonban nem számítanak.

Triviális TÉF-ek

- Legyen R egy reláció, X és Y részhalmazai R attribútumainak, jelölés: $X,Y \subseteq R$
- $X \rightarrow Y T EF$ automatikusan fennáll, ha $Y \subseteq X$
- X ->->Y TÉF automatikusan fennáll, ha X U Y = R

4NF definíció

- Egy R reláció 4NF -ben van ha: minden X ->->Y
 nemtriviális TÉF esetén X szuperkulcs.
 - Nemtriviális TÉF :
 - 1. Y nem részhalmaza X-nek,
 - 2. X és Y együtt nem adják ki az összes attribútumot.
 - A szuperkulcs definíciója ugyanaz marad, azaz csak az FF-ektől függ.

BCNF kontra 4NF

- Kiderült, hogy minden X ->Y FF
 X ->->Y TÉF is.
- Így, ha R 4NF-ben van, akkor BCNF-ben is.
 - Mert minden olyan FF, ami megsérti a BCNF-t, a 4NF-t is megsérti.
- De *R* lehet úgy BCNF-ben, hogy közben nincs 4NFben.

Dekompozíció és 4NF

- H X ->->Y megsérti a 4NF-t, akkor R-t hasonlóan dekomponáljuk, mint a BCNF esetén.
 - 1. XY az egyik dekomponált reláció.
 - 2. Az Y X-be nem tartozó attribútumok a másik.

Példa: 4NF dekompozíció

Vendégek(név, cím, tel, kedveltTeák)

FF: név -> cím

TÉF-ek: név ->-> tel

név ->-> kedveltTeák

- Kulcs {név, tel, kedveltTeák}.
- Ezért az összes függőség megsérti 4NF-et.

Példa folytatás

- Dekompozíció név -> cím szerint:
- 1. Vendégek1(név, cím)
 - Ez 4NF-beli; az egyetlen függőség név-> cím.
- 2. Vendégek2(<u>név</u>, <u>tel</u>, <u>kedveltTeák</u>)
 - □ Nincs 4NF-ben. A név ->-> tel és
 név ->-> kedveltTeák függőségek teljesülnek. A három attribútum együtt kulcs (mivel nincs nemtriviális FF).

Példa: Vendégek2 dekompozíciója

- Bármelyik, név ->-> tel, vagy a név ->-> kedveltTeák TÉF szerinti dekompozíció ugyanazt eredményezi:
 - Vendégek3(<u>név</u>, <u>tel</u>)
 - Vendégek4(<u>név</u>, <u>kedveltTeák</u>)

TÉF és FF-ek együttes következtetése

- Probléma: R relációsémához adott a TÉF-ek és FF-ek egy halmaza, kérdés: egy adott FF vagy TÉF következik-e ezekből R fölött?
- Megoldás: használjunk egy táblázatot (tablót), hogy a függőségek hatásait feltárjuk. (A chase mögötti ötletet terjesztjük ki.)

Miért foglalkozunk ilyesmivel egyáltalán?

- 1. 4NF azon múlik, hogy van-e olyan TÉF, ami sérti a feltételt.
 - Előfordulhat, hogy a megadott FF-ek és TÉF-ek nem sértik a feltételt, de egy belőlük következő függőség igen.
- 2. Amikor dekomponálunk az FF-eket és TÉF-eket is vetítenünk kell.

Példa: CHASE TÉF-ek és FF-ek esetére

- Az FF-ek esetén ugyanúgy tegyük egyenlővé a szimbólumokat, mint korábban.
- Egy TÉF esetén írjuk be azokat a sorokat, melyek szükségesek ahhoz, hogy az előfordulás ne sértse meg a TÉF-et.
- X->->Y: ha van két sor a tablóban, amelyek megegyeznek X-en → készíthetünk 2 újabb sort, megcserélve Y-on elhelyezkedő komponenseiket

Példa: CHASE TÉF-ek és FF-ek esetére

- A 2 új sornak a relációban szerepelnie kell a tablóban is
- Ha FF-ekből és TÉF-ekből szeretnénk levezetni egy X->->Y, akkor 2 soros tablóval kezdünk, amelyek Xen megegyeznek a többinél különböznek
- A fentieket alkalmazzuk; ha észrevesszük, hogy az eredeti sorok egyikében az Y attr.-okat kicseréljük egy másik eredeti sorból ugyanazokkal >> beláttuk a függőséget

Példa: CHASE TÉF-ek és FF-ek esetére

- Kiindulásként (TÉF): legyen az első sor olyan, hogy nem indexelt betűket tartalmaz X-en és Y-on, a második pedig ugyanilyeneket X-en, és azonkívül a nem Y-belieken.
- A két sorban fennmaradó helyeken új, egyszer szereplő szimbólumok legyenek
- Kérdés: előfordul-e az a sor a tablóban, amelynek minden eleme indexeletlen?

A tabló A->C bizonyítása

□Példa: ha A->->BC és D->C, akkor A->C is teljesül minden esetben.

Cél: bizonyítani, hogy $c_1 = c_2$.

	A	В	С	D	
	а	b1	c1	d1	
	а	b2	c1	d2	
	а	b2	c1 \	d1	
	а	b1	c1 \	d2	
	•				
A->->BC	használata	•	D->(C -t használj	juk.

Példa: tranzitivitás TÉF-ek esetén

- Ha A->->B és B->->C, akkor A->->C?
 - Ha a séma ABC, akkor a komplementálási szabályból ez valóban következik.
 - A példában feltesszük hogy a séma: ABCD, és be fogjuk látni, hogy ott is igaz.

A tabló A->->C esetén

Cél: megjelenjen az (a,b,c,d) sor.

	A	В	С	D	
	а	b1	С	d1	
	a	b	c1	d	
	a	b	С	d1	
	* a	b1	c1	d	
	а	b	c1	d1	
A->->B	a	b	С	d	
A->->B használata.	а	b1	c1	d1	
	а	b1	С	d	

Következtetés: FF használata

- FF X->Y alkalmazásánál keressük meg azon sorpárokat, amelyek megegyeznek X attribútumain. Az Y attribútumain is tegyük őket egyenlővé.
 - Egy változót egy másikra cseréljünk.
 - Ha a lecserélt változó a célsorban is megjelenik, ott is cseréljünk.

Következtés: TÉF használata

- Egy X->->Y TÉF használatánál keressünk két sort, amelyek megegyeznek X attribútumain.
 - Adjuk hozzá a tablóhoz azokat a sorokat, amelyeket az Y attribútumaihoz tartozó értékek felcserélésével kapunk.

Következtetés: célok

- Az *U->V* ellenőrzésekor akkor nyertünk, ha a megfelelő változók V-hez tartozó minden oszlopban egyenlőek.
- U->->V akkor győztünk, ha sikerül egy olyan sort kigenerálni, ami az eredeti két sorból keletkezik V értékeinek felcserélésével.

Következtetés: Végjáték

- Használjuk az összes FF-et és TÉF-et, amíg bármiféle változtatás történhet.
- Ha nyertünk, nyertünk.
- Ha nem, egy ellenpéldát kaptunk.
 - A kapott előfordulás az összes előre megadott függőséget teljesíti.
 - Az eredeti két sor megsérti a kikövetkeztetendő függőséget.

TÉF-ek vetítése

- Le kell tudnunk vetíteni megadott függőségeket 2 reláció sémára
- Legrosszabb eset: ki kell próbálnunk minden lehetséges FF-et és TÉF-et a felbontott relációkra
- Chase teszt alkalmazása; Cél egy TÉF ellenőrzésénél: olyan sor előállítása a tablóban, amely indexeletlen betűket tartalmaz a felbontott reláció oszlopaira

Példa: vetítés

 \square Példa: adott R(A,B,C,D,E) \rightarrow felbontunk

□Egyik létrejövő reláció: S(A,B,C)

□Tfh. A->->CD R-ben fennáll

□Cél: bizonyítani, hogy A->->C fennáll S-ben

A	В	С	D	Е
а	b1	С	d1	e1
а	b	c2	d	е
а	b1	c2	d	e1
¹ a	b	С	d1	е
		0 0		

A->->CD használata.