

Linear Regression in scikit-learn

Linear Regression

In this section, you'll use linear regression to predict life expectancy from **body mass index (BMI)**. Before you do that, let's go over the tools required to build this model.

For your linear regression model, you'll be using scikit-learn's **LinearRegression** class. This class provides the function **fit()** to fit the model to your data.

```
>>> from sklearn.linear_model import LinearRegression
>>> model = LinearRegression()
>>> model.fit(x_values, y_values)
```

In the example above, the model variable is a linear regression model that has been fitted to the data x_values and y_values . Fitting the model means finding the best line that fits the training data. Let's make two predictions using the model's predict() function.

```
>>> print(model.predict([ [127], [248] ]))
[[ 438.94308857, 127.14839521]]
```

The model returned an array of predictions, one prediction for each input array. The first input, <code>[127]</code>, got a prediction of <code>438.94308857</code>. The seconds input, <code>[248]</code>, got a prediction of <code>127.14839521</code>. The reason for predicting on an array like <code>[127]</code> and not just <code>127</code>, is because you can have a model that makes a prediction using multiple features. We'll go over using multiple variables in linear regression later in this lesson. For now, let's stick to a single value.

Linear Regression Quiz

In this quiz, you'll be working with data on the average life expectancy at birth and the average BMI for males across the world. The data comes from **Gapminder**.

The data file can be found under the "bmi_and_life_expectancy.csv" tab in the quiz below. It includes three columns, containing the following data:

Linear Regression in scikit-learn

• BMI - The mean BMI of males in that country.

You'll need to complete each of the following steps:

1. Load the data

- The data is in the file called "bmi_and_life_expectancy.csv".
- Use pandas read_csv to load the data into a dataframe (don't forget to import pandas!)
- Assign the dataframe to the variable bmi_life_data.

2. Build a linear regression model

- Create a regression model using scikit-learn's LinearRegression and assign it to bmi_life_model.
- Fit the model to the data.

3. Predict using the model

• Predict using a BMI of 21.07931 and assign it to the variable laos_life_exp .

```
bmi_and_life_expectancy.csv
                                               solution.py
gapminder1.py
  1 # TODO: Add import statements
     import pandas as pd
    import numpy as np
    from sklearn.linear_model import LinearRegression
  5
 6 # Assign the dataframe to this variable.
 7
    # TODO: Load the data
 8
    bmi_life_data = pd.read_csv('bmi_and_life_expectancy.csv')
 9
    #print(bmi_life_data)
10
11
    y = bmi_life_data['Life expectancy']
12
13
    X = bmi life data.drop(['Life expectancy', 'Country'], axis =1 )
14
15
16
    print(X)
17
18
19
    # Make and fit the linear regression model
20
    #TODO: Fit the model and Assign it to bmi_life_model
21
22
    model = LinearRegression()
23
     bmi_life_model = model.fit(X,y)
```


Linear Regression in scikit-learn

```
28 1003_1110_exp = mode1.pr cd1cc([21.07551])
```

29

/usr/local/lib/python2.7/dist-packages/sklearn/utils/validation.py:386: DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and willraise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.

DeprecationWarning) BMI

0	20.62058
1	26.44657
2	24.59620
3	27.63048
4	22.25083
5	25.35542
6	27.56373
7	26.46741
8	25.65117

RESET QUIZ

TEST RUN

SUBMIT ANSWER

NEXT