Exercise 4.2: Prove that if $x \sqcup y$ exists then $x \sqsubseteq y \Leftrightarrow x \sqcup y = y$, and conversely, if $x \sqcap y$ exists then $x \sqsubseteq y \Leftrightarrow x \sqcap y = x$.

证明:

1.证当 $x \sqcup y$ 存在时,有 $x \sqsubseteq y \Leftrightarrow x \sqcup y = y$ 成立。

(1) 证充分性:

令 $X = \{x, y\}$, $S = \{x, y\}$, 那么 $X \subseteq S$, 由上界定义: 如果 $\forall x \in X = \{x, y\}$ 且 $x \subseteq y$, 那么称 $y \in S$ 是 $X = \{x, y\}$ 的一个上界,又由最小上界定义得到 $\sqcup X = \sqcup \{x, y\} \subseteq y$ ①;

因为 $y \in \{x,y\}$,故 $y \sqsubseteq \sqcup \{x,y\}$ ②。由①和②,根据偏序反对称性得 $\sqcup \{x,y\} = y$ ③; 已知当 $x \sqcup y$ 存在的情况下, $x \sqcup y = \sqcup \{x,y\}$ ④,由③和④得出 $x \sqcup y = y$,充分性证明成

(2) 证必要性:

7.0

已知当 $x \sqcup y$ 存在的情况下, $x \sqcup y = \sqcup \{x,y\}$,而且 $x \sqcup y = y$,得出 $y = \sqcup \{x,y\}$ ①。因为 $x \in \{x,y\}$,故 $x \subseteq \sqcup \{x,y\}$ ②,由①和②得出 $x \subseteq y$,必要性证明成立。

综上, 当 $x \sqcup y$ 存在时, 有 $x \sqsubseteq y \Leftrightarrow x \sqcup y = y$ 成立。

2.证当 $x \sqcap v$ 存在时,有 $x \sqsubseteq v \Leftrightarrow x \sqcap v = x$ 成立。

(1) 证充分性:

令 $X = \{x, y\}$, $S = \{x, y\}$, 那么 $X \subseteq S$, 由下界定义: 如果 $\forall y \in X = \{x, y\}$ 且 $x \subseteq y$, 那么称 $x \in S$ 是 $X = \{x, y\}$ 的一个下界,又由最大下界定义得到 $x \subseteq \Pi X = \Pi \{x, y\}$ ①;

因为 $x \in \{x, y\}$,故 $\Pi\{x, y\} \subseteq x$ ②。由①和②,根据偏序反对称性得 $x = \Pi\{x, y\}$ ③; 已知当 $x \sqcap y$ 存在的情况下, $x \sqcap y = \Pi\{x, y\}$ ④,由③和④得出 $x \sqcap y = x$,充分性证明成立。

(2) 证必要性:

已知当 $x \sqcap y$ 存在的情况下, $x \sqcap y = \Pi\{x,y\}$,而且 $x \sqcap y = x$,得出 $x = \Pi\{x,y\}$ ①。因为 $y \in \{x,y\}$,故 $\Pi\{x,y\} \subseteq y$ ②,由①和②得出 $x \subseteq y$,必要性证明成立。

综上, 当 $x \sqcap y$ 存在时, 有 $x \sqsubseteq y \Leftrightarrow x \sqcap y = x$ 成立。