TEST REPORT

Reference No. : WTS17S0888240-5E V1

FCC ID...... : 2AC88-G1701

Applicant: HONGKONG UCLOUDLINK NETWORK TECHNOLOGY LIMITED

Address Suite 603, 6/F, Laws Commercial Plaza, 788 Cheung Sha Wan

Road, Kowloon, HongKong

Manufacturer: Shenzhen uCloudlink Network Technology, Co., Ltd

3rd Floor, A Part of Building 1, Shenzhen Software Industry Base,

Address : nanshan district xuefu Road Post Code 518057, Shenzhen City,

Guangdong Province, P.R.China

Product :: Smart Phone

Model(s)..... : G1701

Brand Name: GlocalMe

Standards.....: FCC CFR47 Part 15 C Section 15.407: 2016

Date of Receipt sample..... : 2017-08-23

Date of Test : 2017-08-24 to 2017-11-30

Date of Issue : 2018-01-12

Test Result Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Ford Wang / Project Engineer

Philo Zhong / Manager

proved by:

Reference No.: WTS17S0888240-5E V1 Page 2 of 58

2 Laboratories Introduction

Waltek Services Test Group Ltd. is one of the largest and the most comprehensive third party testing organizations in China, our headquarter located in Shenzhen (CNAS Registration No. L3110, A2LA Certificate Number: 4243.01) and have branches in Foshan (CNAS Registration No. L6478), Dongguan (CNAS Registration No. L9950), Zhongshan, Suzhou (CNAS Registration No. L7754), Ningbo and Hong Kong, Our test capability covered four large fields: safety test. Electronic Magnetic Compatibility(EMC), reliability and energy performance, Chemical test. Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CPSC(Consumer Product Safety Commission), CEC(California energy efficiency), IC(Industry Canada) and ELI(Efficient Lighting Initiative). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as UL, Intertek(ETL-SEMKO), CSA, TÜV Rheinland, TÜV SÜD, etc. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

Waltek Services (Shenzhen) Co., Ltd.

A. Accreditations for Conformity Assessment (International)

Country/Region	Accreditation Body	Scope	Note
USA		FCC ID \ DOC \ VOC	1
Canada		IC ID \ VOC	2
Japan	CNAS	MIC-T \ MIC-R	-
Europe	(Registration No.: L3110)	EMCD \ RED	-
Taiwan	A2LA (0.04)	NCC	-
Hong Kong	(Certificate No.: 4243.01)	OFCA	-
Australia		RCM	-
India		WPC	_
Thailand	International Services	NTC	-
Singapore		IDA	-

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- IC Canada Registration No.: 7760A

B. TCBs and Notify Bodies Recognized Testing Laboratory.

Decemined Testing Laboratory of	Notify hady nymbor
Recognized Testing Laboratory of	Notify body number

Reference No.: WTS17S0888240-5E V1 Page 3 of 58

TUV Rheinland	
Intertek	
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

3 Contents

	COVED DAGE	Page
1	COVER PAGE	
2	LABORATORIES INTRODUCTION	
3	CONTENTS	
4	REVISION HISTORY	
5	GENERAL INFORMATION	
	5.1 GENERAL DESCRIPTION OF E.U.T. 5.2 DETAILS OF E.U.T.	
	5.2 DETAILS OF E.U.T	
6	TEST SUMMARY	
7	EQUIPMENT USED DURING TEST	
	7.1 EQUIPMENTS LIST	
	7.2 DESCRIPTION OF SUPPORT UNITS	
	7.3 MEASUREMENT UNCERTAINTY	
	7.4 TEST EQUIPMENT CALIBRATION	
8	CONDUCTED EMISSION	
	8.1 E.U.T. OPERATION	
	8.3 MEASUREMENT DESCRIPTION	
	8.4 CONDUCTED EMISSION TEST RESULT	
9	RADIATED EMISSIONS	16
	9.1 EUT OPERATION	
	9.2 TEST SETUP	
	9.3 SPECTRUM ANALYZER SETUP	
	9.5 SUMMARY OF TEST RESULTS	
10	DUTY CYCLE	27
	10.1 SUMMARY OF TEST RESULTS	27
11	BAND EDGE	30
	11.1 TEST PRODUCE	
	11.2 TEST RESULT	
12		
	12.1 TEST PROCEDURE:	
10	12.2 TEST RESULT:	
13	CONDUCTED OUTPUT POWER	
	13.1 TEST PROCEDURE: 13.2 TEST RESULT: 13.2 TEST	
14	POWER SPECTRAL DENSITY	
	14.1 Test Procedure:	
	14.2 TEST RESULT:	
15	ANTENNA REQUIREMENT	56
16	RF EXPOSURE	57
17	PHOTOGRAPHS OF TEST SETUP AND EUT.	58

Reference No.: WTS17S0888240-5E V1 Page 5 of 58

4 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS17S08882 40-5E	2017-08-23	2017-08-24 to 2017-11- 30	2017-12-12	original	-	Replaced
WTS17S08882 40-5E V1	2017-08-23	2017-08-24 to 2017-11- 30	2018-01-12	Version 1	Updated	Valid

Reference No.: WTS17S0888240-5E V1 Page 6 of 58

5 General Information

5.1 General Description of E.U.T.

Product: Smart Phone

Model(s): G1701 Model Description: N/A

GSM Band(s): GSM 850/900/1800/1900MHz

GPRS/EGPRS Class: 12

WCDMA Band(s): FDD Band I/II/IV/V

FDD Band 2/4/5/7/12/13/25/26

LTE Band(s): TDD Band 41

Wi-Fi Specification: 2.4G-802.11b/g/n HT20 5G-802.11a/n HT20
Bluetooth Version: Bluetooth v4.0 with BLE

GPS: Support NFC: Support

Hardware Version: G1701_VER_B

Software Version: S1_C00_TSV1.0.001.008.171030 user dev-keys

Highest frequency

(Exclude Radio):

1.25GHz

Storage Location: Internal Storage

Note: N/A

5.2 Details of E.U.T.

Operation Frequency: GSM/GPRS/EDGE 850: 824~849MHz

PCS/GPRS/EDGE 1900: 1850~1910MHz

WCDMA Band II: 1850~1910MHz
WCDMA Band V: 824~849MHz
WCDMA Band IV:1710~1755MHz
LTE Band 2: 1850~1910MHz
LTE Band 4: 1710~1755MHz
LTE Band 5: 824~849MHz
LTE Band 7: 2500~2570MHz
LTE Band 12: 699~716MHz
LTE Band 13: 777~787MHz
LTE Band 17: 704~716MHz
LTE Band 25 1850~1915MHz
LTE Band 26: 814~849MHz
LTE Band 41: 2496~2690MHz

WiFi:

802.11b/g/n HT20: 2412~2462MHz 802.11a/ n(HT20): 5150MHz~5250MHz 5725MHz~5850MHz Reference No.: WTS17S0888240-5E V1 Page 7 of 58

Bluetooth: 2402~2480MHz

NFC:13.56MHz

Max. RF output power: GSM 850: 32.82dBm

PCS1900: 29.98dBm

WCDMA Band II: 22.81dBm WCDMA Band V: 22.70dBm WCDMA Band IV: 22.81dBm

WCDMA Band IV: 22.81dBm LTE Band 2: 23.90dBm LTE Band 4: 22.89dBm LTE Band 5: 22.95dBm LTE Band 7: 21.97dBm LTE Band 12: 23.88dBm LTE Band 13: 23.73dBm LTE Band 17: 22.93dBm LTE Band 25: 22.95dBm LTE Band 26: 22.98dBm LTE Band 41: 22.95dBm WiFi(2.4G): 9.49dBm

WiFi(5G) Band I: 9.52dBm WiFi(5G)Band IV: 7.44dBm

Bluetooth: 2.13dBm

Type of Modulation: GSM,GPRS: GMSK

EDGE: GMSK, 8PSK WCDMA: BPSK, 16QAM LTE: QPSK, 16QAM WiFi: CCK, OFDM

Bluetooth: GFSK, Pi/4 DQPSK, 8DPSK

NFC: ASK, 2ASK

Antenna installation: GSM/WCDMA/LTE: internal permanent antenna

WiFi/Bluetooth: internal permanent antenna

NFC: Loop antenna

Antenna Gain: GSM 850: -1.56dBi

PCS1900: 1.79dBi

WCDMA Band II: 1.79dBi WCDMA Band V: -1.56dBi WCDMA Band IV: -0.12dBi

LTE Band 2: 1.79dBi LTE Band 4: -0.12dBi LTE Band 5: -1.56dBi LTE Band 7: 3.01dBi LTE Band 12: -2.76dBi LTE Band 13: -1.28dBi LTE Band 17: -2.76dBi LTE Band 25: 1.79dBi LTE Band 26 -1.56dBi LTE Band 41 3.62dBi WiFi(2.4G): 2.47dBi Reference No.: WTS17S0888240-5E V1 Page 8 of 58

WiFi(5G): 2.47dBi Bluetooth: 2.47dBi

Ratings: Battery DC 3.85V, 2900mAh

DC 5V, 2.0A; 9V, 2.0A; 12V, 1.5A charging from adapter 1

(Adapter Input: 100-240V~50/60Hz 0.6A) DC 5V, 2.0A charging from adapter 2

(Adapter Input: 100-240V~50/60Hz MAX 0.3A)

Adapter1: Manufacture: ShenZhen HuaJin Electronics CO.,LTD

Model No.: HJ-FC010K7-US

Adapter2: Manufacture: SHENZHEN HONOR ELECTRONIC CO.,LTD

Model No.: ADS-12DA-05 05010E

Reference No.: WTS17S0888240-5E V1 Page 9 of 58

5.3 Channel List

Band I (5.15-5.25GHz)					
channel	Frequency(MHz)	channel	Frequency(MHz)		
36	5180	38	5190		
40	5200	42	5210		
44	5220	46	5230		
48	5240				
	Band IV (5	5.725-5.85GHz)			
channel	Frequency(MHz)	channel	Frequency(MHz)		
149	5745	151	5755		
153	5765	155	5785		
157	5785	159	5795		
161	5805	165	5825		

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11a/n(HT20):

BANDI:

channel	Frequency(MHz)	channel	Frequency(MHz)
36	5180	40	5200
48	5240		

BANDIV

channel	Frequency(MHz)	channel	Frequency(MHz)
149	5745	155	5785
165	5825		

Reference No.: WTS17S0888240-5E V1 Page 10 of 58

6 Test Summary

Test Items	Test Requirement	Result
Conducted Emissions	15.207(a)	PASS
Radiated Emissions	15.407(a) 15.205(a) 15.209(a)	PASS
Duty Cycle	KDB 789033	PASS
6dB Bandwidth	15.407(a)	PASS
26 dB Emission Bandwidth & 99% Occupied Bandwidth	15.407(a)	PASS
Maximum Conducted Output Power	15.407(a)	PASS
Power Spectral Density	15.407(a)	PASS
Restricted bands around fundamental frequency	15.407(a)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

7 Equipment Used during Test

7.1 Equipments List

Condu	Conducted Emissions Test Site 1#						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMI Test Receiver	R&S	ESCI	100947	2017-09-12	2018-09-11	
2.	LISN	R&S	ENV216	101215	2017-09-12	2018-09-11	
3.	Cable	Тор	TYPE16(3.5M)	-	2017-09-12	2018-09-11	
Condu	cted Emissions Test	Site 2#					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMI Test Receiver	R&S	ESCI	101155	2017-09-12	2018-09-11	
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	2017-09-12	2018-09-11	
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	2017-09-12	2018-09-11	
4.	Cable	LARGE	RF300	-	2017-09-12	2018-09-11	
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1	Spectrum Analyzer	R&S	FSP	100091	2017-04-29	2018-04-28	
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	2017-04-09	2018-04-08	
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	2017-04-09	2018-04-08	
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2017-09-12	2018-09-11	
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2017-04-09	2018-04-08	
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2017-04-09	2018-04-08	
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2017-04-13	2018-04-12	
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	2017-04-13	2018-04-12	
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	2#			
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date	
1	Test Receiver	R&S	ESCI	101296	2017-04-13	2018-04-12	
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2017-04-09	2018-04-08	
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	2017-04-13	2018-04-12	
4	Cable	HUBER+SUHNER	CBL2	525178	2017-04-13	2018-04-12	

RF Coi	RF Conducted Testing							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	2017-09-12	2018-09-11		
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	2017-09-12	2018-09-11		
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	2017-09-12	2018-09-11		

7.2 Description of Support Units

Equipment	Manufacturer	Model No.	Series No.
1	1	1	1

7.3 Measurement Uncertainty

Parameter	Uncertainty				
Conducted Emission	± 3.64 dB(AC mains 150KHz~30MHz)				
Radiated Spurious Emissions	± 5.08 dB (Bilog antenna 30M~1000MHz)				
Radiated Spurious Emissions	± 5.47 dB (Horn antenna 1000M~25000MHz)				
Radio Frequency	± 1 x 10 ⁻⁷ Hz				
RF Power	± 0.42 dB				
RF Power Density	± 0.7dB				
Conducted Spurious Emissions	± 2.76 dB (9kHz~26500MHz)				
Confidence interval: 95%. Confidence factor:k=2					

7.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS17S0888240-5E V1 Page 13 of 58

8 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: Frequency (MHz) Limit (dBµV)

Quasi-peak Average

0.15 to 0.5

66 to 56*

56 to 46*

	Quasi-peak	Average
0.15 to 0.5	66 to 56*	56 to 46*
0.5 to 5	56	46
5 o 30	60	50

8.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in TX transmitting mode, the test data were shown in the report.

8.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4.

8.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

8.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines. only the worst data (802.11n20 mode middle channel) were reported.

Live line:

Neutral line:

Reference No.: WTS17S0888240-5E V1 Page 16 of 58

9 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.407

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

_	Field Stre	ngth	Field Strength Limit at 3m Measurement Dist				
Frequency (MHz)	uV/m Distance (m)		uV/m	dBuV/m			
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80			
0.490 ~ 1.705	24000/F(kHz) 30		100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40			
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40			
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾			
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾			
216 ~ 960	16 ~ 960 200 3		200	20log ⁽²⁰⁰⁾			
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾			

9.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

9.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

Sweep Speed	Auto
IF Bandwidth	10kHz
Video Bandwidth	10kHz
Resolution Bandwidth	10kHz

30MHz ~ 1GHz

Sweep Speed	Auto
Detector	PK
Resolution Bandwidth	100kHz
Video Bandwidth	300kHz

Above 1GHz

Sweep Speed	Auto
Detector	PK
Resolution Bandwidth	1MHz
Video Bandwidth	3MHz
Detector	Ave.
Resolution Bandwidth	1MHz
Video Bandwidth	10Hz

Reference No.: WTS17S0888240-5E V1 Page 19 of 58

9.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.

4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.

5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

6. Repeat above procedures until the measurements for all frequencies are complete.

7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in Z axis,so the worst data were shown as follow.

8. A 2.4GHz high –pass filter is used druing radiated emissions above 1GHz measurement.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

9.5 Summary of Test Results

Test Frequency: 9KHz~30MHz

Remark: Only the worst case data (802.11a/n HT20 low channel mode) were recorded.

Frequency	Measurement results dBµV @3m	Detector PK/QP	Correct factor dB/m	Extrapolatio n factor dB	Measurement results (calculated) dBµV/m @30m	Limits dBµV/m @30m	Margin dB
(MHz)	Measurement results	Detector	Detector		Measurement results (calculated)	Limits	Margin
			802.11a	(HT20)			
6.021	25.02	QP	21.84	40.00	6.86	29.54	-22.68
8.304	26.14	QP	21.02	40.00	7.16	29.54	-22.38
26.127	24.09	QP	20.55	40.00	4.64	29.54	-24.90
			802.11n	(HT20)			
6.021	24.96	QP	21.84	40.00	6.80	29.54	-22.74
8.304	26.51	QP	21.02	40.00	7.53	29.54	-22.01
26.127	25.33	QP	20.55	40.00	5.88	29.54	-23.66

Test Frequency : 30MHz ~ 18GHz

Frequency	Receiver Reading	Detector	Turn table	RX An	tenna	Corrected Factor	Corrected	FCC Part 15.407/209/205				
	reading		Angle	Height	Polar	1 40101	Amplitude	Limit	Margin			
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
	802.11a(HT20) band I low Channel 5180MHz											
223.50	40.54	QP	55	1.4	Н	-11.62	28.92	46.00	-17.08			
223.50	35.69	QP	275	1.5	V	-11.62	24.07	46.00	-21.93			
4534.99	50.33	PK	169	1.1	Н	-2.03	48.30	74.00	-25.70			
4534.99	47.08	Ave	169	1.1	Н	-2.03	45.05	54.00	-8.95			
5147.63	50.78	PK	318	1.8	Н	-1.02	49.76	74.00	-24.24			
5147.63	47.05	Ave	318	1.8	Н	-1.02	46.03	54.00	-7.97			
10360.00	41.13	PK	126	1.6	Н	5.33	46.46	74.00	-27.54			
10360.00	36.66	Ave	126	1.6	Н	5.33	41.99	54.00	-12.01			
5362.28	43.00	PK	334	1.5	Н	-1.21	41.79	74.00	-32.21			
5362.28	38.50	Ave	334	1.5	Н	-1.21	37.29	54.00	-16.71			

Frequency	Receiver	Detector	Turn table	RX An	tenna	Corrected	Corrected	FCC F 15.407/20	
	Reading	2 0.00.0	Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11a	a(HT20) ba	and I mid	dle chai	nnel 5200MF	lz		
223.50	39.34	QP	341	1.3	Н	-11.62	27.72	46.00	-18.28
223.50	36.84	QP	142	1.3	V	-11.62	25.22	46.00	-20.78
4518.39	49.37	PK	360	1.6	Н	-1.94	47.43	74.00	-26.57
4518.39	48.53	Ave	360	1.6	Н	-1.94	46.59	54.00	-7.41
5123.05	49.84	PK	223	1.9	Н	-1.06	48.78	74.00	-25.22
5123.05	47.64	Ave	223	1.9	Н	-1.06	46.58	54.00	-7.42
10400.00	40.66	PK	246	1.4	Н	5.21	45.87	74.00	-28.13
10400.00	37.65	Ave	246	1.4	Н	5.21	42.86	54.00	-11.14
5352.85	46.02	PK	101	1.5	Н	-1.37	44.65	74.00	-29.35
5352.85	39.91	Ave	101	1.5	Н	-1.37	38.54	54.00	-15.46

Frequency	Receiver Reading	L Detector	Detector	Turn table	RX An	tenna	Corrected Factor	Corrected	FCC F 15.407/2	
	rtodding		Angle	Height	Polar	1 40101	Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
		802.11	a(HT20) b	and I Hi	gh chan	nel 5240MH	Z			
223.50	38.94	QP	339	1.5	Н	-11.62	27.32	46.00	-18.68	
223.50	37.01	QP	236	1.4	V	-11.62	25.39	46.00	-20.61	
4500.41	50.20	PK	20	1.4	Н	-2.24	47.96	74.00	-26.04	
4500.41	48.19	Ave	20	1.4	Н	-2.24	45.95	54.00	-8.05	
5121.79	51.12	PK	177	1.0	Н	-1.09	50.03	74.00	-23.97	
5121.79	47.25	Ave	177	1.0	Н	-1.09	46.16	54.00	-7.84	
10480.00	42.34	PK	125	2.0	Н	5.14	47.48	74.00	-26.52	
10480.00	35.94	Ave	125	2.0	Н	5.14	41.08	54.00	-12.92	
5377.03	46.01	PK	66	1.1	Н	-1.38	44.63	74.00	-29.37	
5377.03	37.78	Ave	66	1.1	Н	-1.38	36.40	54.00	-17.60	

Frequency	Receiver Reading	Detector	Turn table	RX Antenna Corrected Factor		Corrected	FCC F 15.407/2		
	rtodding		Angle	Height	Polar	1 40101	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.1	1n(HT20)	band I lov	v Chanr	nel 5180MHz	7		
223.50	38.11	QP	299	1.4	Н	-11.62	26.49	46.00	-19.51
223.50	36.26	QP	47	1.4	V	-11.62	24.64	46.00	-21.36
4512.86	40.68	PK	345	1.1	Н	-1.89	38.79	74.00	-35.21
4512.86	36.28	Ave	345	1.1	Н	-1.89	34.39	54.00	-19.61
5146.96	47.95	PK	217	1.2	Н	-1.06	46.89	74.00	-27.11
5146.96	41.30	Ave	217	1.2	Н	-1.06	40.24	54.00	-13.76
10380.00	39.70	PK	321	1.5	Н	5.26	44.96	74.00	-29.04
10380.00	34.00	Ave	321	1.5	Н	5.26	39.26	54.00	-14.74
5377.48	46.64	PK	70	1.8	Н	-1.03	45.61	74.00	-28.39
5377.48	37.10	Ave	70	1.8	Н	-1.03	36.07	54.00	-17.93

Frequency	Receiver	Detector	Turn table	RX An	tenna	Corrected	Corrected	FCC F 15.407/20	
, ,	Reading		Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11n	(HT20) ba	and I Mide	dle Cha	nnel 5200Mh	łz		
223.50	37.20	QP	79	2.0	Н	-11.62	25.58	46.00	-20.42
223.50	36.80	QP	255	1.7	V	-11.62	25.18	46.00	-20.82
4506.95	40.40	PK	90	1.6	Н	-1.94	38.46	74.00	-35.54
4506.95	35.55	Ave	90	1.6	Н	-1.94	33.61	54.00	-20.39
5115.47	48.88	PK	108	1.8	Н	-1.06	47.82	74.00	-26.18
5115.47	41.96	Ave	108	1.8	Н	-1.06	40.90	54.00	-13.10
10460.00	41.52	PK	279	1.6	Н	5.28	46.80	74.00	-27.20
10480.00	35.81	Ave	279	1.6	Н	5.28	41.09	54.00	-12.91
5379.02	46.26	PK	179	1.3	Н	-1.05	45.21	74.00	-28.79
5379.02	37.98	Ave	179	1.3	Н	-1.05	36.93	54.00	-17.07

Frequency	Receiver Reading	Detector	Turn table Angle	RX An	tenna	Corrected Factor	Corrected	FCC F 15.407/20	
	rtcading			Height	Polar	1 actor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11	n(HT20) k	pand I hig	h Chan	nel 5240MH	Z		
223.45	43.18	QP	315	2.0	Н	-11.62	31.56	46.00	-14.44
223.45	32.96	QP	196	1.3	V	-11.62	21.34	46.00	-24.66
4519.35	53.17	PK	90	1.0	Н	-1.96	51.21	74.00	-22.79
4519.35	46.76	Ave	90	1.0	Н	-1.96	44.80	54.00	-9.20
5141.26	50.93	PK	9	1.5	Н	-1.06	49.87	74.00	-24.13
5141.26	38.58	Ave	9	1.5	Н	-1.06	37.52	54.00	-16.48
10480.00	40.59	PK	204	1.2	Н	5.14	45.73	74.00	-28.27
10480.00	36.88	Ave	204	1.2	Н	5.14	42.02	54.00	-11.98
5384.79	45.89	PK	290	2.0	Н	-1.10	44.79	74.00	-29.21
5384.79	37.92	Ave	290	2.0	Н	-1.10	36.82	54.00	-17.18

Frequency	Receiver Reading	Detector	Turn	RX An	tenna	Corrected Factor	Corrected	FCC F 15.407/2		
	rtcading		Angle	Height	Polar	1 40101	Amplitude	Limit	Margin	
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
802.11a(HT20) band IV low Channel 5745MHz										
223.45	41.91	QP	106	1.1	Н	-11.62	30.29	46.00	-15.71	
223.45	31.83	QP	271	1.2	V	-11.62	20.21	46.00	-25.79	
4520.80	51.69	PK	304	1.2	Н	-1.85	49.84	74.00	-24.16	
4520.80	44.03	Ave	304	1.2	Н	-1.85	42.18	54.00	-11.82	
11490.00	38.94	PK	81	1.3	Н	5.93	44.87	74.00	-29.13	
11490.00	34.48	Ave	81	1.3	Н	5.93	40.41	54.00	-13.59	
5378.50	45.48	PK	137	2.0	Н	-1.01	44.47	74.00	-29.53	
5378.50	37.12	Ave	137	2.0	Н	-1.01	36.11	54.00	-17.89	
5440.80	46.12	PK	27	1.9	Н	-1.36	44.76	74.00	-29.24	
5440.80	37.14	Ave	27	1.9	Н	-1.36	35.78	54.00	-18.22	

Frequency	Receiver	Detector	Turn table Angle	RX An	tenna	Corrected Factor	Corrected	FCC F 15.407/2	
	Reading			Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	802.11a(HT20) band IV middle channel 5785MHz								
223.45	41.92	QP	261	1.5	Н	-11.62	30.30	46.00	-15.70
223.45	31.13	QP	119	1.0	V	-11.62	19.51	46.00	-26.49
4536.37	50.81	PK	219	1.2	Н	-1.89	48.92	74.00	-25.08
4536.37	43.45	Ave	219	1.2	Н	-1.89	41.56	54.00	-12.44
11570.00	41.58	PK	107	1.5	Н	5.81	47.39	74.00	-26.61
11570.00	37.32	Ave	107	1.5	Н	5.81	43.13	54.00	-10.87
5352.17	46.86	PK	26	1.2	Н	-1.04	45.82	74.00	-28.18
5352.17	39.29	Ave	26	1.2	Н	-1.04	38.25	54.00	-15.75
5446.29	46.79	PK	78	1.6	Н	-1.36	45.43	74.00	-28.57
5446.29	37.32	Ave	78	1.6	Н	-1.36	35.96	54.00	-18.04

Frequency _	Receiver Reading	Detector	Turn	RX An	tenna	Corrected Factor	Corrected	FCC F 15.407/20	
	rtcading		Angle	Height	Polar	1 40101	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11a	a(HT20) ba	and IV H	igh chai	nnel 5825MH	łz		
223.45	41.10	QP	92	1.9	Н	-11.62	29.48	46.00	-16.52
223.45	31.51	QP	231	1.2	V	-11.62	19.89	46.00	-26.11
4503.01	50.38	PK	14	2.0	Н	-1.97	48.41	74.00	-25.59
4503.01	44.20	Ave	14	2.0	Н	-1.97	42.23	54.00	-11.77
11650.00	40.46	PK	256	1.8	Н	5.84	46.30	74.00	-27.70
11650.00	36.63	Ave	256	1.8	Н	5.84	42.47	54.00	-11.53
5383.43	45.72	PK	230	1.0	Н	-1.12	44.60	74.00	-29.40
5383.43	38.35	Ave	230	1.0	Н	-1.12	37.23	54.00	-16.77
5452.03	45.91	PK	308	1.0	Н	-1.36	44.55	74.00	-29.45
5452.03	38.59	Ave	308	1.0	Н	-1.36	37.23	54.00	-16.77

Frequency	Receiver Reading	Detector	Turn table	RX An	tenna	Corrected Factor	Corrected	FCC F 15.407/2	
			Angle	Height	Polar	. 0.010	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11	n(HT20) b	and IV lo	w Chan	nel 5745MH	Z		
223.45	41.28	QP	209	1.1	Н	-11.62	29.66	46.00	-16.34
223.45	34.40	QP	269	1.4	V	-11.62	22.78	46.00	-23.22
4503.66	45.84	PK	352	1.3	Н	-1.85	43.99	74.00	-30.01
4503.66	49.59	Ave	352	1.3	Н	-1.85	47.74	54.00	-6.26
11490.00	38.36	PK	231	1.7	Н	5.93	44.29	74.00	-29.71
11490.00	35.47	Ave	231	1.7	Н	5.93	41.40	54.00	-12.60
5356.92	45.12	PK	133	1.5	Н	-1.01	44.11	74.00	-29.89
5356.92	38.25	Ave	133	1.5	Н	-1.01	37.24	54.00	-16.76
5458.27	46.44	PK	214	1.2	Н	-1.36	45.08	74.00	-28.92
5458.27	37.94	Ave	214	1.2	Н	-1.36	36.58	54.00	-17.42

Frequency	Receiver	Detector	Turn table	RX An	tenna	Corrected Factor	Corrected	FCC Part 15.407/209/205	
, ,	Reading		Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
802.11n(HT20) band IV Middle Channel 5785MHz									
223.45	42.07	QP	166	1.9	Н	-11.62	30.45	46.00	-15.55
223.45	34.10	QP	341	1.6	V	-11.62	22.48	46.00	-23.52
4534.59	45.80	PK	187	1.5	Н	-1.89	43.91	74.00	-30.09
4534.59	50.54	Ave	187	1.5	Н	-1.89	48.65	54.00	-5.35
11570.00	41.07	PK	278	1.0	Н	5.81	46.88	74.00	-27.12
11570.00	37.62	Ave	278	1.0	Н	5.81	43.43	54.00	-10.57
5370.60	46.62	PK	155	1.9	Н	-1.04	45.58	74.00	-28.42
5370.60	38.90	Ave	155	1.9	Н	-1.04	37.86	54.00	-16.14
5420.77	46.44	PK	200	1.4	Н	-1.36	45.08	74.00	-28.92
5420.77	38.85	Ave	200	1.4	Н	-1.36	37.49	54.00	-16.51

Frequency	Receiver Reading	Detector	Turn table	RX An	tenna	Corrected Factor	Corrected	FCC F 15.407/20	
	rtcading		Angle	Height	Polar	1 40101	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
		802.11	n(HT20) b	and IV lo	w Chan	nel 5825MH	Z		
223.45	41.80	QP	72	1.6	Н	-11.62	30.18	46.00	-15.82
223.45	33.33	QP	133	1.3	V	-11.62	21.71	46.00	-24.29
4524.09	45.40	PK	270	1.1	Н	-1.97	43.43	74.00	-30.57
4524.09	51.39	Ave	270	1.1	Н	-1.97	49.42	54.00	-4.58
11650.00	40.69	PK	287	1.6	Н	5.84	46.53	74.00	-27.47
11650.00	37.59	Ave	287	1.6	Н	5.84	43.43	54.00	-10.57
5373.88	46.61	PK	269	1.8	Н	-1.12	45.49	74.00	-28.51
5373.88	39.61	Ave	269	1.8	Н	-1.12	38.49	54.00	-15.51
5439.58	45.67	PK	346	1.4	Н	-1.36	44.31	74.00	-29.69
5439.58	38.98	Ave	346	1.4	Н	-1.36	37.62	54.00	-16.38

Test Frequency: 18GHz~40GHz

The measurements were more than 20 dB below the limit and not reported.

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

Reference No.: WTS17S0888240-5E V1 Page 27 of 58

Duty cycle 10

47 CFR Part 15C 15.407 Test Requirement:

Test Method: ANSI C63.10: 2013

N/A Test Limit:

Test Result: **PASS**

Through Pre-scan, and found 802.11a at lowest channel is the worst Remark:

case. Only the worst case is recorded in the report.

10.1 Summary of Test Results

	Bai	nd I								
	802.11a(H	T20) mode								
channel	On time(ms)	Period(ms)	Duty Cycle(%)							
36	100	100	100							
	802.11n(H	T20) mode								
channel	On time(ms)	Period(ms)	Duty Cycle(%)							
38	100	100	100							
	Band IV									
	802.11a(H	T20) mode								
channel	On time(ms)	Period(ms)	Duty Cycle(%)							
149	100	100	100							
	802.11n(H	T20) mode								
channel	On time(ms)	Period(ms)	Duty Cycle(%)							
149	100	100	100							

Test result plots shown as follows:

Band I

802.11a(HT20) band I Low channel

802.11n(HT20) band I Low channel

Band IV

802.11n(HT20) band IV Low channel

Reference No.: WTS17S0888240-5E V1 Page 30 of 58

11 Band Edge

Test Requirement: FCC CFR47 Part 15 Section 15.407

Test Method: ANSI C63.10 2013

Test Limit: (1) For transmitters operating in the 5.15-5.25 GHz band: All

emissions outside of the 5.15-5.35 GHz band shall not exceed an

e.i.r.p. of -27dBm/MHz.

(2) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of −17 dBm/MHz; for frequencies 10 MHz or greater above or below the

band edge, emissions shall not exceed an e.i.r.p. of −27 dBm/MHz.

Test Result: PASS

11.1 Test Produce

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

11.2 Test Result

Test result plots shown as follows:

Band I

Band IV

Reference No.: WTS17S0888240-5E V1 Page 35 of 58

12 26 dB Bandwidth and 99% Occupied Bandwidth

Test Requirement: 47 CFR Part 15C Section 15.407 (a)

KDB 789033 D02 General U-NII Test Procedures New Rules v02r01

Test Method: KDB 644545 D03 Guidance for IEEE 802.11ac v01

Test Limit: No restriction limits

Test Result: PASS

12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

12.2 Test Result:

	Operation	26 dl	Bandwidth	(MHz)	99% Bandwidth (MHz)			
	mode	Low	Middle	High	Low	Middle	High	
Band I	802.11a(HT20)	21.21	21.29	21.77	16.826	16.876	16.768	
	802.11n(HT20)	21.04	21.31	21.38	17.876	17.897	17.909	

	Operation	26 dl	Bandwidth	(MHz)	99% Bandwidth (MHz)			
_	mode	Low	Middle	High	Low	Middle	High	
Band IV	802.11a(HT20)	25.46	28.57	28.41	16.896	17.100	17.055	
	802.11n(HT20)	22.62	29.93	28.59	17.945	17.419	18.233	

Test result plots shown as follows:

Band I

Band IV

802.11a(HT20) band IV Middle channel

Reference No.: WTS17S0888240-5E V1 Page 42 of 58

13 Conducted Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.407(a)

789033 D02 General U-NII Test Procedures New Rules v02r01

Test Method: KDB 644545 D03 Guidance for IEEE 802.11ac v01

Test Limit: 24dBm

Test Result: PASS

Conducted output power= measurement power+10log(1/x)

Remark: X is duty cycle=1, so $10\log(1/1)=0$

Conducted output power= measurement power

13.1 Test Procedure:

 Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

13.2 Test Result:

	Operation	Conducted Output Power (dBm)		
Band I	mode	Low	Middle	High
	802.11a(HT20)	5.46	4.75	4.73
	802.11n(HT20)	4.76	4.59	4.76

	Operation	Conducted Output Power (dBm)		
Band IV	mode	Low	Middle	High
	802.11a(HT20)	4.70	4.27	3.86
	802.11n(HT20)	4.66	4.29	4.60

Test result plots shown as follows:

Band I

Band IV

Reference No.: WTS17S0888240-5E V1 Page 49 of 58

14 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.407(a)

KDB 789033 D02 General U-NII Test Procedures New Rules v02r01

Test Method: KDB 644545 D03 Guidance for IEEE 802.11ac v01

≤11dBm/MHz for Operation in the band I(5150MHz-5250MHz)of

device

Test Result: PASS

14.1 Test Procedure:

Test Limit:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 510kHz/1MHz. VBW ≥3 RBW Sweep = auto; Detector Function
- = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

14.2 Test Result:

		Power Spectral Density (dBm/MHz)		
	Operation mode	Low	Middle	High
Band I	802.11a(HT20)	-5.201	-4.875	-4.509
	802.11n(HT20)	-5.280	-5.314	-5.408
	Limit	≤11dBm/MHz		

	Operation mode	Power Spectral Density (dBm/MHz)		
		Low	Middle	High
Band IV	802.11a(HT20)	-9.682	-7.875	-10.379
	802.11n(HT20)	-8.008	-9.885	-8.727
	Limit	≤11dBm/MHz		

Test result plots shown as follows:

Center 5.18000 GHz #Res BW 1.0 MHz

Query INTERRUPTED

Band I

#VBW 3.0 MHz

Span 30.00 MHz Sweep 1.00 ms (1001 pts)

802.11n(HT20) band I Low channel

Test result plots shown as follows:

Band IV

802.11a(HT20) band IV Low channel

802.11n(HT20) band IV Low channel

15 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has an internal integrated antenna fulfill the requirement of this section.

Reference No.: WTS17S0888240-5E V1 Page 57 of 58

16 RF Exposure

Remark: refer to SAR test report: WTS17S0888245E.

Reference No.: WTS17S0888240-5E V1 Page 58 of 58

17 Photographs of test setup and EUT.

Note: Please refer to appendix: WTS17S0888240E_Photo.

====End of Report=====