Convex Sets Convex Hull Algorithms for Computing Planar Convex Hulls Bibliography

Convex Sets, Convex Hull

Coman Florin-Alexandru

April 2, 2015

Table of contents

- Convex Sets
 - Introduction
 - Convex Combinations
 - Definition
 - Properties
- 2 Convex Hull
 - Definition
 - Example
- 3 Algorithms for Computing Planar Convex Hulls
 - The Jarvis March Algorithm
 - The Andrew's Algorithm
 - The Chan's Algorithm
 - Quickhull Algorithm
 - Graham scan algorithm
- Bibliography

Convex Sets

Intuitively, if we think of \mathbb{R}^2 or \mathbb{R}^3 , a convex set of vectors is a set that contains all the points of any line segment joining two points of the set.

Examples

Convex Combinations - Definition

Let $u, v \in V$. Then the set of all **convex combinations** of u and v is the set of points

$$\{\omega_{\lambda} \in V : \omega_{\lambda} = (1 - \lambda)u + \lambda v, 0 \le \lambda \le 1\}$$
 (1.1)

For example, in \mathbb{R}^2 , this set is exactly the line segment joining the two points u and v.

Definition

Let $K \subset V$. Then the set K is said to be **convex** provided that given two points $u, v \in K$ the set (1.1) is a subset of K.

Example

An interval $[a, b] \subset \mathbb{R}$ is a convex set.

To see this, let $c, d \in [a, b]$ and assume, without loss of generality, that c < d. Let $\lambda \in (0, 1)$. Then,

$$a \le c = (1 - \lambda)c + \lambda c < (1 - \lambda)c + \lambda d$$

$$\le (1 - \lambda)d + \lambda d = d$$

$$\leq (1 - \lambda)u + \lambda u = u$$

$$\leq b$$
.

Proposition 1.1

If X is a convex set and $\beta \in \mathbb{R}$, the set $\beta X = \{y : y = \beta x, x \in X\}$ is convex.

Proposition 1.2

If X and Y are convex sets, then the set

$$X + Y = \{z : z = x + y, x \in X, y \in Y\}$$
 is convex.

Proof

Proposition 1.3

The intersection of any collection of convex sets is convex.

Proof

Definition Example

Convex Hull

Definition

The **convex hull** of a set C is the intersection of all convex sets which contain the set C.

Convex Hull

Example

Representation of a convex set as the convex hull of a set of points.

Convex Hulls - Algorithms

The Jarvis March Algorithm

Convex Hulls - Algorithms

The Andrew's Algorithm

```
Input: a list P of points in the plane. Sort the points of P by x-coordinate (in case of a tie, sort by y-coordinate). Initialize U and L as empty lists.

The lists will hold the vertices of upper and lower hulls respectively.
```

```
for i = 1, 2, ..., n:
    while L contains at least two points and the sequence of last two points of L and the
        point P[i] doesn't make a counter-clockwise turn:
        remove the last point from L
    append P[i] to L
for i = n, n-1, ..., 1:
    while U contains at least two points and the sequence of last two points of U and the
        point P[i] doesn't make a counter-clockwise turn:
        remove the last point from U
    append P[i] to U
```

Remove the last point of each list (it's the same as the first point of the other list). Concatenate L and U to obtain the convex hull of P. Points in the result will be listed in counter-clockwise order.

Convex Hulls - Algorithms

FindHull(P, m)

```
Partition P into n/m groups P_i for i = 1 ... n/m: \mathcal{H}_i = \mathtt{ConvexHull}(P_i) Run Jarvis march on \{\mathcal{H}_i\} for m steps if we get a complete hull then return success else
```

Chan's Algorithm

```
i = 0
while FindHull(P, 2^{2^{i}}) fails
i = i + 1
```

Convex Hulls - Algorithms

Quickhull Algorithm

- 1. Find the points with minimum and maximum ${\sf x}$ coordinates, those are bound to be part of the convex hull.
- 2. Use the line formed by the two points to divide the set in two subsets of points, which will be processed recursively.
- 3. Determine the point, on one side of the line, with the maximum distance from the line. The two points found before along with this one form a triangle.
- 4. The points lying inside of that triangle cannot be part of the convex hull and can therefore be ignored in the next steps.
- 5. Repeat the previous two steps on the two lines formed by the triangle (not the initial line).
- 6. Keep on doing so on until no more points are left, the recursion has come to an end and the points selected constitute the convex hull.

Convex Hulls - Algorithms

Graham scan algorithm I

/* Three points are a counter-clockwise turn if ccw > 0, clockwise if ccw < 0, and collinear if ccw = 0 because ccw is a determinant that gives twice the signed area of the triangle formed by p1, p2 and p3.*/ function ccw(p1, p2, p3):

Convex Hulls - Algorithms

Graham scan algorithm II

```
N = number of points
points[N+1] = the array of points
swap points[1] with the point with the lowest y-coordinate sort points by polar angle with points[1]
/* We want points[0] to be a sentinel point that will stop the loop. */
points[0] = points[N]
/* M will denote the number of points on the convex hull. */
M = 1
for i = 2 to N:
          /* Find next valid point on convex hull. */
          while ccw(points[M-1], points[M], points[i]) i = 0:
                if M ; 1:
                     M -= 1
                /* All points are collinear */
                else if i == N:
                     break
                else
                     i += 1
           /* Update M and swap points[i] to the correct place. */
           M += 1
          swap points[M] with points[i]
```

Bibliography I

- [1] Levent Kandiller, *Principles of Mathematics in Operations Research*, The International Series in Operations Research and Management Science, Vol. 97, Springer, 2007.
- [2] Geoffrey J. Gordon, Lecture 3. Convex sets, Optimization Course, CMU, Fall 2012.
- [3] Anatoli Juditsky, Lecture 1. Convex sets, Convex Optimization, Theory and Algorithmes Course, Laboratoire Jean Kuntzmann
- [4] Arne Hallam, Convex Sets, Convexity and Optimization Course, Iowa State University