

■ Z分数和标准分布

cho4 Z标准分和标准分布

- Z分数的计算
 - z分数的直观表示
 - z分数转换为实际测量值

ch04 Z标准分和标准分布

Info

在 NBA 比赛里,解说员总是或说某位球员是矮个子球员. 比如很多人喜欢的斯蒂夫.库里或许很多人会觉得这很荒谬. 对于统计学和一个故事一样, 需要背景的上下文材料, 统计信息才算完整. 对于解说的这个看法, 的确是有一定理由. 这里我们借用*NBA* 的身高资料来看看解说员所说的是否有依据.

1 rows × 5 columns

	name	year_start	year_end	position	hc
	String31	Int64	Int64	String3	Float64
1	Stephen Curry	2010	2018	G	190.5

对于普通人身高,是比较高的. 但是在 NBA的数据集可能是另外一种情况. 同一个统计数字出现在不同的上下文 里意义不同. 数据的核心是不是数值, 而是位置(排名)关系.

在针对不同试卷和不同科目,同一个分数的意义不同.同一个分数 当考试内容简单时会考试者排名可能会靠后,当 考试内容较难,会排名靠前.

Z标准分就是提取位置信息的一种方法.

有了z分数就可以比较不同数据集下的变异问题.

Z分数的计算

由于会使用到均数, 所以必须要考虑到符号问题. 因为不同批次抽样获取的样本中个体不同, 所以提取的位置信息也不同. 这一点要注意, 我认为这个地方是理解抽样统计的一个很好的切入点.

在使用总体计算 z 分数, 位置信息是参数, 一旦总体确定, z分数就不会改变.

在分段和分类统计中,抽取的个体分属于不同的区间或者类型,在不同类型的集合中一个观察值的位置会有所不同

在随机抽样中,抽取的个体不同,同一个分数在不同的样本中是和不同的个体在一起,位置信息就会不同.这里的位置也可以考虑为一个平均位置,当样本抽样次数增加,位置信息会趋近于一个值.

例如以 NBA的所有选手作为一个总体, 那么库里会得到一个 z分数 作为参数

抽取 2000 年以后的选手作为一个样本, 库里会得到在该样本中的 z 分数,这是分段统计

抽取所有后卫选手作为一个样本, 库里会得到在后卫样本中的 z分数. 这是分类统计

如果我们随机抽取 100 名选手的数据, 重复多次, 由于随机性, 每次抽取的队员都有所不同, 同一个身高在不同次的抽样中的 z 分数会有所不同

Z 分数计算公式:

针对总体z分数:

$$z = \frac{X - \mu}{\sigma}$$

针对样本z 分数:

$$z=rac{X-ar{X}}{s}$$

其中符号表示:

X - 原始数据

 μ - 总体均值

σ-总体标准差

 \bar{X} – 样本均值

s - 样本标准差

Example

example₁

计算下面样本集合的 z 分数

```
sampla_data1 =
1×112 Matrix{Int64}:
78  73  72  66  63  71  67  42  62  73  ...  12  82  32  92  73  46  68  19  11  64

• sampla_data1=[78  73  72  66  63  71  67  42  62  73  45  22  62  99  73  91  52  37  55  97  91  51  44
        23  46  64  97  62  97  31  21  49  93  91  89  46  73  82  55  98  12  56  73  82  37  55  89  83  73  27  83
        82  73  46  97  62  57  96  46  55  46  19  13  67  73  26  58  64  32  73  23  94  66  55  91  73  67  73  82
        55  64  62  46  39  87  11  99  73  56  73  63  73  91  82  63  33  16  88  19  42  62  91  12  82  32  92  73
        46  68  19  11  64]
```

z_score (generic function with 1 method)

```
    begin
    # z_zscore 函数接收一个数据集, 返回一个新的函数等待输入单个测量值
    function z_score(data)
    return (X,digits=1)->round((X-mean(data))/std(data),digits=digits)
    end
    end
```

```
get_zscore = #1 (generic function with 2 methods)
```

• get_zscore= z_score(sampla_data1)

1.1

• get_zscore(87)

```
quad = [11.0, 46.0, 64.0, 82.0, 99.0]
```

quad=quantile(sampla_data1[1,:],[0,0.25,0.5, 0.75,1.0]) #求sampla_data1的四分位数

```
[-2.1, -0.6, 0.1, 0.9, 1.6]
```

• get_zscore.(quad) #四分位数的 z 标准分

如果是标准的正态分布,集合的四分位数转换的z分数的绝对值会呈现对称. 中位数的 z分数会是 o.

Example

example 2

使用NBA 统计数据 计算 斯蒂夫库里 和姚明的z分数

NBA 身高数据

https://raw.githubusercontent.com/kuriousrajib/SportsAnalytics/main/playerdatav1.csv

注: 由于姚明的数据里大学有缺失,可以补充一个大学名称,否则使用 dropmissing函数之后会查不到数据 具体方法: 编辑器打开 csv, 查找 yao ming 然后添加一个大学名字

	name	year start	year_end	position	hc
	Hame	year_start	year_ena	Position	110
1	"Alex Acker"	2006	2009	"G"	195.58
2	"Quincy Acy"	2013	2018	"F"	200.66
3	"Hassan Adams"	2007	2009	"G"	193.04
4	"Jordan Adams"	2015	2016	"G"	195.58
5	"Steven Adams"	2014	2018	"C"	215.9
6	"Bam Adebayo"	2018	2018	"C-F"	208.28
7	"Jeff Adrien"	2011	2015	"F"	200.66
8	"Arron Afflalo"	2008	2018	"G"	195.58
9	"Maurice Ager"	2007	2011	"G"	195.58
10	"Blake Ahearn"	2008	2012	"G"	187.96
more					
885	"Luke Ridnour"	2004	2015	"G"	187.96

```
begin
     # preparing processing
     local_server_url="http://127.0.0.1:8080/nba-player-data.csv"
     #remote_server_url="https://raw.githubusercontent.com/kuriousrajib/Sports-
     Analytics/main/player_data_v1.csv"
     getdata(url)=HTTP.get(url).body
     csv(data)=CSV.read(data,DataFrame)
     change_height_name(df)=rename!(df,[8 => :hc])
     processingdata(url)=getdata(url)|>csv|>dropmissing!|>change_height_name
     sort_by_height(df)=sort(df,[order(:hc, rev=true)])
     topten(df)=first(df,10)
     getheight(data)=data[1,"hc"]
     # processing data
     df=processingdata(local_server_url)
     player=select(df,["name","year_start","year_end","position","hc"])
     top10=player|>sort_by_height|>topten
     curry_data=filter(row -> row.name=="Stephen Curry", player)
     yaoming_data=filter(row -> row.name=="Yao Ming", player)
     select_player_since(year)=filter(row -> row.year_start >=year,player)
     later2000_player=select_player_since(2000)
end
```

thread = 2 warning: only found 1 / 11 columns around data row: 3416. Filling remaining columns with 'missing'

Info

NBA身高数据有三个问题要注意

1. 时间跨度

NBA的身高数据时间跨度较大, 如果绘制时间序列, 会发现平均身高一直在上升. 所以在计算的均值时,从数据表中选取最近一段时间的数据, 比如 2000 年以后的数据

2.位置

球员的在不同位置身高要求不同, 比如传统意义上后卫(G),需要灵活跑动身高一般都不会太高, 中锋(C),在球场上需要越过对方的高度方向, 同时要为对手制造高度墙,所以身高都比较高. NBA 身高最高的球员达到 **2.31**米. 不同位置的球员比较身高就没有意义. 最好是按照位置来比较身高.

3. 单纯的比较身高没有意义

体育运动始终都是力量和智慧的结合. 总结NBA 身高最高的前 10 位,除了姚明得分较高以外,其他选手的成绩都不算太好

10 rows × 5 columns

name	year_start	year_end	position	hc
String31	Int64	Int64	String3	Float64
Manute Bol	1986	1995	С	231.14
Shawn Bradley	1994	2005	С	228.6
Yao Ming	2003	2011	С	228.6
Sim Bhullar	2015	2015	С	226.06
Chuck Nevitt	1983	1994	С	226.06
Mark Eaton	1983	1993	С	223.52
	String31 Manute Bol Shawn Bradley Yao Ming Sim Bhullar Chuck Nevitt	String31 Int64 Manute Bol 1986 Shawn Bradley 1994 Yao Ming 2003 Sim Bhullar 2015 Chuck Nevitt 1983	String31 Int64 Int64 Manute Bol 1986 1995 Shawn Bradley 1994 2005 Yao Ming 2003 2011 Sim Bhullar 2015 2015 Chuck Nevitt 1983 1994	String31 Int64 Int64 String3 Manute Bol 1986 1995 C Shawn Bradley 1994 2005 C Yao Ming 2003 2011 C Sim Bhullar 2015 2015 C Chuck Nevitt 1983 1994 C

	name	year_start	year_end	position	hc
	String31	Int64	Int64	String3	Float64
7	Priest Lauderdale	1997	1998	С	223.52
8	Randy Breuer	1984	1994	С	220.98
9	Keith Closs	1998	2000	С	220.98
10	Swede Halbrook	1961	1962	С	220.98

get_player_zscore = #1 (generic function with 2 methods)

get_player_zscore= z_score(later2000_player[:,:hc])

curry_zscore = -1.1

• curry_zscore=curry_data|>getheight|>get_player_zscore #库里Z分数

yaoming_zscore = 3.3

yaoming_zscore=yaoming_data|>getheight|>get_player_zscore #姚明 z分数

z分数的直观表示

比较上面的数据,可以看到库里的身高比均值低了 1.1个标准差, 而姚明的 z分数比均值高了 3.3个标准差.

所以说库里是矮个子球员也是可以的, 因为他的身高比均值低. 姚明的身高比均值高出了三个标准差, 属于很少出现的测量值.

当数据转换为 z 分数时, 数据集合 均值的 z 分数为 o, 作为一个分界线, 负值比均值小, 正值比均值大.

z分数直观的显示了个体得分在集合中的位置

z分数转换为实际测量值

以总体 z分数公式为例:

$$z = rac{X - \mu}{\sigma}$$

经过代数变化后可以表示为:

$$X = \sigma * z + \mu$$

也就是知道了均值和标准差,带入 z 分数就可以得到实际的观察值

(199.905, 8.82484)

player_mean, player_std=mean_and_std(later2000_player[:,:hc])

curry_height = 190.19784873068184

curry_height=player_std*curry_zscore+player_mean

```
yaoming_height = 229.02715437292665
```

- yaoming_height=player_std*yaoming_zscore+player_mean #由于 求 z分数时进行保留了位数,所以计算稍有差异
- describe(later2000_player[:,:hc])

```
?
Summary Stats:
                885
Length:
Missing Count: 0
                199.905175
Mean:
Minimum:
                175.260000
1st Quartile:
                193.040000
Median:
                200.660000
3rd Quartile:
                205.740000
Maximum:
                228.600000
Type:
                Float64
```

(175.26, 228.6)

minheight,maxheight=extrema(later2000_player[:,:hc])

```
Histogram{Int64, 1, Tuple{StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwiceP
edges:
    195.0:5.0:225.0
weights: [159, 177, 183, 60, 55, 1]
closed: right
isdensity: false
```

- begin
- #以 2为间隔装箱
- bins =195:5:maxheight;
- nbah = fit(Histogram, later2000_player[:,:hc], bins,closed=:right)
- end

885

- length(later2000_player[:,:hc])

- begin
- bar(nbah, label=false, yticks=(0:20:200), xticks=bins, alpha=0.5, gridalpha=0.3)
- end