K- Means Clustering

To Explore Unsupervised Machine Learning

Loading the Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn import datasets
from sklearn.cluster import KMeans
import seaborn as sns
from mpl_toolkits.mplot3d import Axes3D
import warnings
warnings.filterwarnings("ignore")
```

Display the Dataset

Out[122]:

		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Spo
	0	1	5.1	3.5	1.4	0.2	St
	1	2	4.9	3.0	1.4	0.2	Sŧ
	2	3	4.7	3.2	1.3	0.2	St
	3	4	4.6	3.1	1.5	0.2	Sŧ
	4	5	5.0	3.6	1.4	0.2	St

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Spo
145	146	6.7	3.0	5.2	2.3	virç
146	147	6.3	2.5	5.0	1.9	virç
147	148	6.5	3.0	5.2	2.0	virç
148	149	6.2	3.4	5.4	2.3	virç
149	150	5.9	3.0	5.1	1.8	virç

150 rows × 6 columns

·

Removing first column

```
In [123]: iris=iris.drop('Id',axis=1)
    iris.head()
```

Out[123]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	5.1	3.5	1.4	0.2	Iris- setosa
1	4.9	3.0	1.4	0.2	Iris- setosa
2	4.7	3.2	1.3	0.2	Iris- setosa
3	4.6	3.1	1.5	0.2	Iris- setosa
4	5.0	3.6	1.4	0.2	Iris- setosa

Analysing the Dataset

```
In [124]: iris.shape # dimension of data contains 150 rows and 5 cols
Out[124]: (150, 5)
```

```
In [125]: iris.isnull().sum()# missing values
```

```
Out[125]: SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
```

Species (dtype: int64

```
In [126]: # displaying the descriptive statistics of dataset
    iris.describe().plot(kind = "area", fontsize=27, figsize = (20,8), t
    able = True, colormap="rainbow")
    plt.xlabel('Statistics',)
    plt.ylabel('Value')
    plt.title("General Statistics of Iris Dataset")
```

Out[126]: Text(0.5, 1.0, 'General Statistics of Iris Dataset')


```
In [127]: iris.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	SepalLengthCm	150 non-null	float64
1	SepalWidthCm	150 non-null	float64
2	PetalLengthCm	150 non-null	float64
3	PetalWidthCm	150 non-null	float64
4	Species	150 non-null	object

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

```
In [128]: plt.figure(figsize = (10, 7))
    x = iris["SepalLengthCm"]

plt.hist(x, bins = 20, color = "green")
    plt.title("Sepal Length in cm")
    plt.xlabel("Sepal_Length_cm")
    plt.ylabel("Count")
```

Out[128]: Text(0, 0.5, 'Count')


```
2.0 2.5 3.0 3.5 4.0 4.5 Sepal_Width_cm
```



```
In [131]: plt.figure(figsize = (10, 7))
    x = iris.PetalWidthCm

plt.hist(x, bins = 20, color = "green")
    plt.title("Petal Width in cm")
    plt.xlabel("Petal_Width_cm")
    plt.ylabel("Count")
```



```
In [132]: plt.figure(figsize = (10, 7))
    x = data.PetalWidthCm

plt.hist(x, bins = 20, color = "green")
    plt.title("Petal Width in cm")
    plt.xlabel("Petal_Width_cm")
    plt.ylabel("Count")
```



```
In [133]: sns.pairplot(iris)
```

Out[133]: <seaborn.axisgrid.PairGrid at 0x25c2cf45910>


```
In [134]: plt.figure(figsize=(10,11))
    sns.heatmap(iris.corr(),annot=True)
    plt.plot()
```

Out[134]: []


```
In [135]: plt.figure(figsize = (10, 7))
   iris.boxplot()
```

Out[135]: <matplotlib.axes._subplots.AxesSubplot at 0x25c2d1f6fa0>


```
In [139]: #Iris Dataset
    iris = datasets.load_iris()
    X = iris.data
```

```
In [140]: #KMeans
km = KMeans(n_clusters=3)
km.fit(X)
km.predict(X)
labels = km.labels_
```

```
In [120]: plt.scatter(X[:,0], X[:,1], c=y, cmap='gist_rainbow')
    plt.xlabel('Speal Length', fontsize=18)
    plt.ylabel('Sepal Width', fontsize=18)
```

Out[120]: Text(0, 0.5, 'Sepal Width')

