Интерполяция по формулам Лагранжа и Ньютона

Интерполяционные многочлены строятся на основе соблюдения условий совпадения значений многочлена в узлах интерполяции с табличными значениями. Степень интерполяционного многочлена на 1 меньше, чем количество узлов интерполяции.

Интерполяционный многочлен Лагранжа используют в таблицах с неравноотстоящими значениями аргумента.

$$L_n(x) = \sum_{i=0}^n \frac{(x-x_0)(x-x_1)....(x-x_{i-1})(x-x_{i+1})....(x-x_n)}{(x_i-x_0)(x_i-x_1)....(x_i-x_{i-1})(x_i-x_{i+1})....(x_i-x_n)} y_i .$$

Перед вычислениями формулу удобно преобразовать, чтобы вычисления вести в следующей таблице.

X-X0	x ₀ -x ₁	X ₀ -X ₂	X ₀ -X ₃	 	 x ₀ -x _n	D_0	y_0/D_0
x ₁ -x ₀	X-X 1	X_1 - x_2	X ₁ -X ₃	 	 x_1 - x_n	D_1	y_1/D_1
X2-X0	x ₂ -x ₁	X-X2	X2-X3	 	 x ₂ - x _n	D_2	y_2/D_2
•••	• • •	•••	•••	 	 •••		
•••	• • •	•••	•••	 	 •••		
X _n -X ₀	x_n-x_1	X _n -X ₂	X _n -X ₃	 	 x-x _n	D _n	y _n /D _n

Преобразованная формула принимает вид:

$$L_n(x) = \prod_{n+1} (x) \sum_{i=0}^n \frac{y_i}{D_i}$$
 . В формуле введены следующие обозначения:

 $\prod_{n+1}(x)$ – произведение элементов главной диагонали таблицы,

 D_i — произведение элементов і-ой строки таблицы, включая диагональный элемент. Погрешность интерполяции можно оценить по формуле:

$$\left|R_n(x)\right| \le \frac{\left|\Pi_{n+1}(x)\right| \max \left|f^{(n+1)}(x)\right|}{(n+1)!} \quad .$$

Пример 1. Для таблично заданной функции найти значение у при x=0,527 с шестью значащими цифрами после запятой, используя интерполяционный многочлен Лагранжа.

K	0	1	2	3	4	5
X_k	0,43	0,48	0,55	0,62	0,70	0,75
$\mathbf{Y}_{\mathbf{k}}$	1,63597	1,73234	1,87686	2,03345	2,22846	2,83973

Составляется таблица разностей.

						D _k 10 ⁻⁶	$Y_k/D_k 10^6$
0,097	-0,050	-0,120	-0,190	-0,270	-0,320	-9,55411	-0,171232
0,050	0,047	-0,070	-0,140	-0,220	-0,270	1,36798	1,266347
0,120	0,070	-0,023	-0,070	-0,150	-0,200	0,40572	4,625998
0,190	0.140	0,070	-0,093	-0,080	-0,130	-1,80093	-1,129113
0,270	0,220	0,150	0,080	-0,173	-0,050	6,18572	0,361427
0,320	0,270	0,200	0,130	0,050	-0,223	-25,04736	-0,113374

Сумма элементов последнего столбца таблицы разностей:

$$S = 4,840053 \ 10^6$$
.

Произведение элементов главной диагонали:

$$\prod_{n+1}(x) - 0.3762 \ 10^{-6}$$
.

Искомое значение функции при х=0,527 найдено:

$$Y(x=0,527)=1,82083.$$

Проверка в системе MathCAD y=1,8208805.

Интерполяционные формулы Ньютона применяют в таблицах с постоянным шагом h=const, причём, <u>1-ую формулу Ньютона</u> используют для интерполяции в начале таблицы, <u>2-ую формулу Ньютона</u> используют для интерполяции в конце таблицы.

В основе формул Ньютона – аппарат конечных разностей.

$$P_n(x) = y_0 + q\Delta y_0 + \frac{q(q-1)}{2!}\Delta^2 y_0 + \dots + \frac{q(q-1)\dots(q-n+1)}{n!}\Delta^n y_0; (1)$$

$$P_n(x) = y_n + q\Delta y_{n-1} + \frac{q(q+1)}{2!}\Delta^2 y_{n-2} + \dots + \frac{q(q+1)\dots(q+n-1)}{n!}\Delta^n y_0; (2)$$

Для расчёта по формулам Ньютона к исходной таблице присоединяют справа таблицу конечных разностей.

k	$\mathbf{x}_{\mathbf{k}}$	y _k	Δy_k	$\Delta^2 y_k$	$\Delta^3 y_k$
0	\mathbf{x}_0	\mathbf{y}_0	Δy_0	$\Delta^2 y_0$	$\Delta^3 y_0$
1	\mathbf{x}_1	\mathbf{y}_1	Δy_1	$\Delta^{2}y_1$	$\Delta^3 y_1$
2	\mathbf{x}_2	y_2	Δy_2	$\Delta^{2}y_2$	
3		y ₃	Δy_3	·	
4	X 4	y ₄	3 5		

В *1-ую* интерполяционную формулу Ньютона подставляют значения из *первой строки* таблицы конечных разностей, а значение параметра q вычисляют по формуле: $q = (x-x_0)/h>0$.

Во **2-ую** интерполяционную формулу Ньютона подставляют значения с **диагонали** таблицы конечных разностей, а значение параметра q вычисляют по формуле: $q = (x-x_n)/h < 0$.

Степень интерполяционного многочлена Ньютона определяется порядком тех конечных разностей, которые оказываются практически постоянными в построенной таблице конечных разностей.

Эти формулы используют и для **экстраполяции**, точность которой невелика: 1-ую формулу – для интерполяции "вперёд" и экстраполяции "назад"; 2-ую формулу – для интерполяции "назад" и экстраполяции "вперёд".

Пример 2. Функция задана таблицей с равноотстоящими значениями аргумента. Найти значения у для x=1,217 и x=1,253.

X _k	y _k	Δy_k	$\Delta^2 y_k$
1,215	0,106044	0,000447	-0,000003
1,220	0,106491	0,000444	-0,000002
1,225	0,106935	0,000442	-0,000001
1,230	0,107377	0,000441	-0,000002
1,235	0,107818	0,000439	0,000000
1,240	0,108257	0,000439	-0,000001
1,245	0,108696	0,000438	-0,000001
1,250	0,109134	0,000437	0,000000
1,255	0,109571	0,000437	
1,260	0,110008		

В данном примере конечные разности первого порядка практически постоянны, а это приводит к тому, что конечные разности второго порядка близки к нулю.

Чтобы найти значение функции для аргумента x=1,217, находящегося вблизи начала таблицы, воспользуемся 1-ой формулой Ньютона и вычислим:

$$q = (1,217 - 1,215) : 0,005 = 0,4$$

Подставляем в 1-ую формулу значения из первой строки таблицы:

$$y(x=1,217) = 0,106044 + 0,4 (0,000447) + (0,4 (-0,6): 2)(-0,000003) =$$

= 0,106044 + 0,000179 + 0,0000003 = 0,106223

Чтобы найти значение функции для аргумента x=1,253, находящегося вблизи конца таблицы, воспользуемся 2-ой формулой Ньютона и вычислим:

$$q = (1,253 - 1,260) : 0,005 = -1,4$$

Подставляем во 2-ую формулу значения конечных разностей с диагонали таблицы:

$$y(x=1,253) = 0.110008 + (-1,4) \ 0.000437 = 0.110008 - 0.000612 = 0.109396$$