

NATIONAL OPEN UNIVERSITY OF NIGERIA 14-16 AHMADU BELLO WAY, VICTORIA ISLAND, LAGOS SCHOOL OF SCIENCE AND TECHNOLOGY JANUARY/FEBRUARY 2013 EXAMINATION

COURSE CODE: PHY 309 CREDIT UNIT: 3
COURSE TITLE: Quantum Mechanics I TIME: 3 Hours

INSTTRUCTION: Answer any five questions.

$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \right\}$$
is linearly independen

1 (a) (i) Show that the set

(b) Find the inner product of the following vectors:

$$\begin{pmatrix} i \\ -2 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$

(ii)
$$A \ , \ B \in M_{mn} \ \text{if} \ A = \begin{bmatrix} 2 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} -1 & -1 & 2 \\ 1 & 3 & 1 \end{bmatrix} \ .$$

(c) Find the norm of the following:

$$\begin{pmatrix}
2i \\
-1 \\
3
\end{pmatrix}$$
(ii) ix^2+2 , $0 \le x \le 1$

(ii) Normalise the vector \mathbf{a} , given that $a = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

2. (a) (i) Given that the quantum operators $\hat{A}=\hat{x}$ and $\hat{B}=\hat{p}_x=-i\frac{d}{dx}$ do not commute, evaluate $\hat{A}\,\hat{B}-\hat{B}\,\hat{A}$ and comment on your result.

- $\psi = \sqrt{\frac{2}{L}}\sin\left(\frac{2\pi x}{L}\right) \text{ , with } n = 2 \text{, and } 0 < x < L \text{ , calculate the expectation value } < x > \text{ of position x and } \text{ of momentum p.}$
 - $\begin{pmatrix}
 1 & 2 & -1 \\
 2 & -1 & 1 \\
 1 & 3 & 2
 \end{pmatrix}$ ir
- (b) (i) Calculate the expectation value of a matrix operator,
 - te $\begin{pmatrix} 2i \\ 1 \\ -1 \end{pmatrix}$

(ii) Given the kinetic energy operator

$$\hat{T} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$$

and the linear momentum operator

$$\hat{p} = -i\hbar \frac{d}{dx}$$

evaluate $[\hat{T},\hat{p}]$.

- 3(a) (i) Briefly discuss two experimental basis of the inadequacy of classical mechanics.
- (ii) Find the change in wavelength if a photon is scattered at an angle of 23° after its collision with an electron initially at rest.
- (b)(i) What is the wavelength of the wave associated with an electron moving at $10^6 \ m/s$?
- (ii) What value does Rayleigh-Jeans formula predict for the radiation of frequency $6\times10^{13} Hz$ emitted by a blackbody per unit time, per unit area at 2500 °K. Compare this value with that predicted by Planck.
- 4(a)(i) Write down the one-dimensional time-independent Schroedinger equation.
- (ii) Briefly discuss the interpretation of the Schroedinger equation and its solutions.
- (b) (i) By solving the time-dependent Schroedinger equation for a free particle (V = 0), find the condition imposed on the angular frequency and the wave number.
- $\psi(x) = \left(\frac{x}{x_0}\right)^n e^{-2x/x_0}$ (ii) What would the potential function be if is an eigenfunction of the Schroedinger equation? Assume that when $x \to \infty$, $V(x) \to 0$.

(b). A particle of mass m is confined within a one-dimensional box of length $\ L/2$, subject to a potential:

$$V(x)=i[0,0\leq x\leq L/2iiii$$

If at t_0 , the wavefunction is $\psi(x) = Ax(L-x/2)$, i.e., $\psi(x,0) = Ax(L-x/2)$,

(i) normalise ψ , and hence, determine the value of A.

(ii) write $\psi(x,t)$ as a series, where t>0 .

6. (a)(i) State two conditions which apply to a system in bound state.

(ii) What are the allowable eigenfunctions and energy eigenvalues of the infinite potential well?

$$V(x)=i[0, -L \le x \le Liiii$$

(b) A particle of mass m is incident from the left on the potential step shown in the figure.

Find the probability that it will be scattered backward by the potential if

(i) $E > V_0$, and

(ii)
$$E < V_0$$

7 (a) Given that the ladder operators
$$a = \sqrt{\frac{m\omega}{2\hbar}} \left(x + \frac{ip}{m\omega} \right)$$
,

$$a = \sqrt{\frac{m\omega}{2\hbar}} \left(x + \frac{ip}{m\omega} \right)$$
 $a^+ = \sqrt{\frac{m\omega}{2\hbar}} \left(x - \frac{ip}{m\omega} \right)$

and the position and momentum operators are given by $\hat{\chi} = \sqrt{\frac{m\omega}{\hbar}}$

$$\hat{p} = \sqrt{\frac{1}{m\hbar\,\omega}}\,p$$

(i) What is the value of the commutator $[\hat{x},\hat{p}]$.

(ii) Show that
$$\hat{x} = \frac{1}{\sqrt{2}}(a+a^+) \qquad \hat{p} = \frac{-i}{\sqrt{2}}(a-a^+)$$

- (b) (i) For the ground state in question 7(a), find $i\hat{x}^2 > i\hat{t}$ and $i\hat{p}^2 > i\hat{t}$.
- (ii) Given that the expectation of the position and the momentum operators under consideration are zero in the ground state of the oscillator, prove that the

following expression holds:
$$ix^2 > \langle p^2 > ii \rangle = \frac{1}{4} |\langle [x,p] \rangle|^2$$