Supplementary: Boundary Multiple Measurement Vectors for Multi-Coset Sampler

Dong Xiao, Jian Wang and Yun Lin

This supplementary material is dedicated to the proofs for Theorems 1-3 in our main paper.

Before proceeding to the proofs, we review some useful notations. For a complex matrix $\mathbf{X} \in \mathbb{C}^{n \times L}$ and a set $S \subseteq \{1, \cdots, n\}$, \mathbf{X}_S (or \mathbf{X}^S) denotes the submatrix of \mathbf{X} with columns (or rows) indexed by S; $\mathbf{X}_{i,j}$, $\mathbf{X}_{i,:}$ and $\mathbf{X}_{:,i}$ are the (i,j)th entry, ith row and ith column of \mathbf{X} , respectively; \mathbf{X}^{\dagger} , \mathbf{X}^H and \mathbf{X}^T mean the Moore-Penrose pseudo-inverse, conjugate transpose and transpose of \mathbf{X} , respectively; $\sup(\mathbf{X})$ is the non-zero row indices (i.e., joint sparsity) of \mathbf{X} ; $\|\mathbf{X}\|_F$ and $\|\mathbf{X}\|_2$ signify the Frobenius and Euclidean norm of \mathbf{X} , respectively. Moreover, S^c is the complement of set S; \mathbf{I}_L is an $L \times L$ identity matrix.

I. Proof of Theorem 1

Theorem 1. The actual sampling rate of (4) is $\min (pf_s, f_{nyq})$, which attains the theoretical lower bound of sampling rate in MCS when $|supp(\mathbf{X})| \leq \frac{N_{sig}B}{f_s}$.

Proof. Assume that a multi-coset sampler has p channels. In the ith channel, The sampling sequence is given by

$$x_{c_i}[n] = x(LTn + \tau_i), \quad n = 0, 1, \cdots$$
 (S.1)

The sampling rate of each channel is determined by the sampled signal sequence. Because the sampling time interval is LT, the sampling rate of each channel is 1 in L of the Nyquist sampling rate (i.e. $\frac{f_{\rm nyq}}{L}$). The average sampling rate of p channels is p times that of one channel (i.e. $\frac{pf_{\rm nyq}}{L}$). Noting that when the sampling rate of p channels is greater than the Nyquist rate, the advantage of sub-Nyquist sampling structure no longer exists. Thus, we only need to sample at Nyquist sampling rate $f_{\rm nyq}$, the actual sampling rate can be represented as

$$\min\left(\frac{p}{LT}, f_{\text{nyq}}\right). \tag{S.2}$$

The theoretical lower bound of the sampling rate is given in [17], which is directly determined by the true bandwidth of the signal:

$$\min(2\lambda(\mathcal{T}), f_{\text{nvg}}).$$
 (S.3)

In most cases, the subband bandwidth $\lambda(\mathcal{T})$ and the actual sampling rate does not exceed $f_{\rm nyq}$ (when not satisfied, the sampling rate is $f_{\rm sig}$). To ensure reconstruction performance, the parameter p is often not set too low (for instance, it's often chosen to be at least twice the sparsity level ${\rm supp}(\mathbf{X})$). It can be seen from above that the theoretical lower bound on the sampling rate is achieved only when $p/LT=pf_s\leq 2\lambda(\mathcal{T})=2N_{sig}B$. In other words, when $p=2{\rm supp}(\mathbf{X})$ for

the worst case of p, the condition for the actual sampling rate to meet the theoretical lower bound is $|\operatorname{supp}(\mathbf{X})| \leq \frac{N_{\operatorname{sig}}B}{f_s}$. \square

II. PROOF OF THEOREM 2

Theorem 2. When $r \in [\lceil \frac{f_s}{(M-1)f_s-B} \rceil, \infty)$ and $B > f_s$, we have $\max_{i \in \{1, \dots, r\}} \left| supp(\bar{\mathbf{X}}_{S_i}) \right| \leq \frac{N_{sig}B}{f_s}$.

Proof. Consider all blocks $\{\mathbf{X}^{U_1}, \cdots, \mathbf{X}^{U_M}\}$ in \mathbf{X} , where there are consecutive corresponding frequency points of length B. For the case $B > f_s$ and each block occupies M rows in \mathbf{X} , the length of the frequency point in each $\bar{\mathbf{X}}^{U_i}$ meets

$$l = B - (M - 2)f_s < f_s. (S.4)$$

Because $l < f_s$, we know that the non-zero elements of an any sub-block (i.e. $\bar{\mathbf{X}}^{U_i}$) are distributed on both sides and do not intersect on the columns. Conside one block $\bar{\mathbf{X}}^{U_i}$, We let $r \to \infty$ and observe the change in $\bar{\mathbf{X}}^{U_i}$, $\bar{\mathbf{X}}^{U_i}$ gradually changes from an MMV form to an SMV form. In SMV, the sparsity of the signal is determined by the column in $\bar{\mathbf{X}}^{U_i}$ where it is located. It is observed that

$$\lim_{r \to \infty, i, j} \operatorname{supp}(\bar{\mathbf{X}}_{:,j}^{U_i}) \le 1. \tag{S.5}$$

Thus, the sparsity of each column in $\bar{\mathbf{X}}^{U_i}$ is less than N_{sig} .

A more complex situation is when r is a finite value, assuming $r = r^{\star}$ is a finite value. In this case, the length of frequency point in each sub-matrix is $\frac{f_s}{r^{\star}}$. We use reduction to absurdity to prove the condition that the sparsity of each sub-matrix is less than $N_{\rm sig}$. Assuming that there exists a sub-matrix $\bar{\mathbf{X}}_{S_i}$ with ${\rm supp}(\bar{\mathbf{X}}_{S_i}) > N_{\rm sig}$. Also, the non-zero elements of an any sub-block of $\bar{\mathbf{X}}_{S_i}$ do not intersect on the columns. $\bar{\mathbf{X}}_{S_i}$ must contain both non-zero elements on both sides of one block. From (S.4), we know that the length of any block of $\bar{\mathbf{X}}$ is less than f_s . We can draw a conclusion that

$$\frac{f_s}{r^*} > f_s - l = (M - 1)f_s - B.$$
 (S.6)

As can be seen, there exist a contradiction between (S.6) and Theorem 2, so the length of any column-partition submatrix non-zero elements in $\bar{\mathbf{X}}$ must be less or equal than $f_s - l$, which is equivalent to r satisfying

$$r \ge \left\lceil \frac{f_s}{(M-1)f_s - B} \right\rceil. \tag{S.7}$$

III. PROOF OF THEOREM 3

Theorem 3. Consider the column-partitioned MMV model (5) with $\min_{i,j} \|(\mathbf{X}_{S_i})_{j,:}\|_2 / \|\mathbf{X}_{S_i}\|_F = \eta$ and $|\operatorname{supp}(\mathbf{X}_{S_i})| \leq s$. Let $s_1 := \min_{i,k} |\Lambda^k_{S_i} \cap \operatorname{supp}(\mathbf{X}_{S_i})|$, $s_2 := \min_{i,k} |\Lambda^k_{S_i} \cap \operatorname{supp}(\mathbf{X}_{S_i}) \cap \tilde{S}^k_{S_i} |$ and $s_3 := \min_{i,k} |\Lambda^k_{S_i} \cap \operatorname{supp}(\mathbf{X}_{S_i}) \cap \tilde{S}^k_{S_i} \setminus S^k_{S_i}|$. Then, if the sensing matrix \mathbf{A} obeys the RIP with

$$\delta_{3s} \le \sqrt{\frac{\nu_1 \sqrt{\nu_1^2 + 4\nu_2^2} - \nu_1^2 - 1}{4\nu_1^2 \nu_2^2 - 2\nu_1^2 - 1}}$$
 (S.8)

where $\nu_1:=\frac{1+\omega}{1+\eta\omega\sqrt{s_2}}$ and $\nu_2:=\frac{1+\omega}{1+\eta\omega\sqrt{s_3}}$, SI-SSP produces an signal estimate $\mathbf{X}^k=[\mathbf{X}_{S_1}^k,\cdots,\mathbf{X}_{S_r}^k]$ satisfying

$$\|\mathbf{X} - \mathbf{X}^k\|_F \le \rho^k \|\mathbf{X}\|_F + \tau \|\mathbf{E}\|_F,$$
 (S.9)

where $\rho \in (0,1)$ and τ are constants depending on δ_{3s} , ν_1 and ν_2 . Furthermore, after at most $k^* = \lceil \log_{\rho} \frac{\|\mathbf{X}\|_F}{\tau \|\mathbf{E}\|_F} \rceil$ iterations, SI-SSP estimates \mathbf{X} with

$$\|\mathbf{X} - \mathbf{X}^{k^*}\|_F \le (\tau + 1)\|\mathbf{E}\|_F.$$
 (S.10)

To prove Theorem 3, we first introduce six useful lemmas, whose proofs are left to appendices.

Lemma 1. (Lemma 1 in [25]): For nonnegative numbers a, b, c, d, x, y,

$$(ax+by)^2 + (cx+dy)^2 \le (\sqrt{a^2+c^2}x + (b+d)y)^2$$
. (S.11)

Lemma 2. Consider the system model $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{E}$, $supp(\mathbf{X}) = T$ and |T| = s. Suppose S, $T_0 \subseteq \{1, 2, ..., n\}$, |S| = t. \mathbf{W}_{T_0} is constructed with diagonal entries indexed by T_0 being $\omega \geq 0$. Let $\tilde{\mathbf{X}}$ be the solution of the least squares problem $\arg\min_{\mathbf{Z}} \{\|\mathbf{Y} - \mathbf{A}\mathbf{Z}\|_2, supp(\mathbf{Z}) \subseteq S\}$, if $\delta_{3s} < 1$, then

$$\|\mathbf{W}_{T_0}(\mathbf{X} - \tilde{\mathbf{X}})_S\|_F \le \omega \delta_{s+t} \|\mathbf{X} - \tilde{\mathbf{X}}\|_F + \omega \sqrt{1 + \delta_t} \|\mathbf{E}\|_F$$
(S.12)

and

$$\|\mathbf{X} - \tilde{\mathbf{X}}\|_F \le \sqrt{\frac{1}{1 - \delta_{s+t}^2}} \|\mathbf{X}_{S^c}\|_F + \frac{\sqrt{1 + \delta_t}}{1 - \delta_{s+t}} \|\mathbf{E}\|_F.$$
 (S.13)

If t > s, define T_{∇} as the row-indices of the smallest t - s row norm entries of $\tilde{\mathbf{X}}$ in S, we have

$$\|\mathbf{X}_{T_{\nabla}}\|_{F} \leq \sqrt{2}\nu_{2}\delta_{s+t}\|\mathbf{X} - \tilde{\mathbf{X}}\|_{F} + \nu_{2}\sqrt{2(1+\delta_{t})}\|\mathbf{E}\|_{F}.$$
(S.14)

Remark 1. When we consider the atom selection strategy of $\|\tilde{\mathbf{X}}_{T_{\nabla}} + \mathbf{W}_{T_0}\tilde{\mathbf{X}}_{T_{\nabla}}\|_F \leq \|\tilde{\mathbf{X}}_{S'} + \mathbf{W}_{T_0}\tilde{\mathbf{X}}_{S'}\|_F$, we can also obtain another upper bound for $\|\mathbf{X}_{T_{\nabla}}\|_F$ in (S.14). In this case, we should allocate $2\|\mathbf{X}_{T_{\nabla}}\|_F$ to the left hand side of (A.38), we have

$$\|\mathbf{X}_{T_{\nabla}}\|_{F} \leq \sqrt{2}\nu_{3}\delta_{s+t} \|\mathbf{X} - \tilde{\mathbf{X}}\|_{F} + \nu_{4}\sqrt{2(1+\delta_{t})} \|\mathbf{E}\|_{F}.$$
(S.15)

where $\nu_3=(1-\omega+\omega\delta_{s+t}+\delta_{s+t})/(2\delta_{s+t})$ and $\nu_4=(1+\omega)/(2\delta_{s+t})$.

Lemma 3. In steps 4 and 5 of SI-SSP, we have

$$\|\mathbf{X}_{(\tilde{S}^k)^c}\|_F \le \sqrt{2\nu_1}\delta_{3s} \|\mathbf{X} - \mathbf{X}^{k-1}\|_F + \nu_1\sqrt{2(1+\delta_{3s})} \|\mathbf{E}\|_F.$$
(S.16)

Remark 2. When we consider the atom selection strategy in select step that

$$\left\| ((\mathbf{I}_L + \mathbf{W}_{T_0}) \mathbf{A}^H (\mathbf{Y} - \mathbf{A} \mathbf{X}^{k-1}))_T \right\|_F$$

$$\leq \left\| ((\mathbf{I}_L + \mathbf{W}_{T_0}) \mathbf{A}^H (\mathbf{Y} - \mathbf{A} \mathbf{X}^{k-1}))_{\Delta S} \right\|_F. \quad (S.17)$$

We can also obtain another upper bound for $\|\mathbf{X}_{(\tilde{S}^k)^c}\|_F$ in (S.16). In this case, we should allocate $2\|\mathbf{X}_{(\tilde{S}^k)^c}\|_F$ to the left hand side of (A.51), we have

$$\|\mathbf{X}_{(\tilde{S}^{k})^{c}}\|_{F} \leq \sqrt{2}\nu_{4}\delta_{3s} \|\mathbf{X} - \mathbf{X}^{k-1}\|_{F} + \nu_{4}\sqrt{2(1+\delta_{3s})} \|\mathbf{E}\|_{F}.$$
 (S.18)

where $\nu_4 = (1 - \omega + \omega \delta_{3s} + \delta_{3s})/(2\delta_{3s})$ and $\nu_4 = (1 + \omega)/(2\delta_{3s})$. Based on conclusions (S.15) and (S.18), we know that the sensing matrix **A** obeys the RIP with

$$\delta_{3s} \le \sqrt{\frac{\nu_3 \sqrt{\nu_3^2 + 4\nu_4^2} - \nu_3^2 - 1}{4\nu_3^2\nu_4^2 - 2\nu_3^2 - 1}}.$$
 (S.19)

Lemma 4. Let $T_0 \subseteq \{1, 2, ..., n\}$, for two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, if $|supp(\mathbf{u}) \cup supp(\mathbf{v})| \leq t$,

$$\left|\left\langle \mathbf{u}, (\mathbf{W}_{T_0} - \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{A}) \mathbf{v} \right\rangle \right| \le \omega \delta_t \|\mathbf{u}\| \|\mathbf{v}\|; \quad (S.20)$$

moreover, if $U \subseteq \{1, 2, ..., n\}$ and $|U \cup supp(\mathbf{v})| \leq t$, then

$$\left| (\mathbf{W}_{T_0} - \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{A}) \mathbf{v} \right| \le \omega \delta_t \| \mathbf{v} \|.$$
 (S.21)

Lemma 5. For SMV model $\mathbf{y} = \mathbf{\Phi} \mathbf{x} + \mathbf{e}$, let $T_0 \subseteq \{1, 2, ..., n\}$, let $U \subseteq \{1, 2, ..., n\}$ and $|U \cap T_0| \leq u$, we have

$$\left\| (\mathbf{W}_{T_0} \mathbf{A}^H e)_U \right\|_2 \le \omega \delta_u \left\| e \right\|_2. \tag{S.22}$$

Lemma 6. Consider MMV model $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{E}$, let $\tilde{\mathbf{X}}$ be the solution of the least squares problem $\arg\min_{\mathbf{Z}} \{ \|\mathbf{Y} - \mathbf{A}\mathbf{Z}\|_F, supp(\mathbf{Z}) \subseteq S \}$, then

$$\left\langle \mathbf{W}_{T_0} \mathbf{X} - \mathbf{W}_{T_0} \tilde{\mathbf{X}}, \mathbf{A}^H \mathbf{A} \mathbf{Z} \right\rangle + \omega \left\langle \mathbf{E}, \mathbf{A} \mathbf{Z} \right\rangle = \mathbf{0}.$$
 (S.23)

Proof of Theorem 3. Now we have all ingredients to prove Theorem 3. In step 3 and 4 of SI-SSP, by Lemma 3, in the kth iteration, we have

$$\|\mathbf{X}_{(\tilde{S}^k)^c}\|_F \le \sqrt{2}\nu_1 \delta_{3s} \|\mathbf{X} - \mathbf{X}^{k-1}\|_F + \nu_1 \sqrt{2(1+\delta_{3s})} \|\mathbf{E}\|_F.$$
(S.24)

Since the step 6 in SI-SSP is a process to solve a least squares problem. Let $S = \tilde{S}^k$ and $\tilde{\mathbf{X}} = \tilde{\mathbf{X}}^k$, t = 2s, by (S.13), we can know that

$$\|\mathbf{X} - \tilde{\mathbf{X}}\|_{F} \le \sqrt{\frac{1}{1 - \delta_{3s}^{2}}} \|\mathbf{X}_{(\tilde{S}^{k})^{c}}\|_{F} + \frac{\sqrt{1 + \delta_{2s}}}{1 - \delta_{3s}} \|\mathbf{E}\|_{F}.$$
(S.25)

Combining (S.24) and (S.25) and magnifying δ_{2s} to δ_{3s} , we have

$$\|\mathbf{X} - \tilde{\mathbf{X}}^k\|_F \le \nu_1 \sqrt{\frac{2\delta_{3s}^2}{1 - \delta_{3s}^2}} \|\mathbf{X} - \mathbf{X}^{k-1}\|_F + \tau_1 \|\mathbf{E}\|_F.$$
 (S.26)

 $\|\mathbf{E}\|_F$. Next, after step 7 of SI-SSP in kth iteration, let $S_{\nabla} = (\mathbf{S}.\mathbf{16})$ $\tilde{S}^k \setminus S^k$ as the row-indices of the smallest t-s row norm

entries in $\tilde{\mathbf{X}}^k$. Let $T = \tilde{S}^k$, $\tilde{\mathbf{X}} = \tilde{\mathbf{X}}^k$, $T_{\nabla} = S_{\nabla}$ and t = 2s, by (A.37), we have

$$\|\mathbf{X}_{S_{\nabla}}\|_{F} \leq \sqrt{2}\nu_{2}\delta_{3s}\|\mathbf{X} - \tilde{\mathbf{X}}^{k}\|_{F} + \nu_{2}\sqrt{2(1+\delta_{2s})}\|\mathbf{E}\|_{F}.$$
(S.27)

Let $\tau_1 = (\nu_1 \sqrt{2(1-\delta_{3s})} + \sqrt{1+\delta_{3s}})(1-\delta_{3s})^{-1}$ and $\tau_2 = \sqrt{1+\delta_{3s}}$. Dividing $(S^k)^c$ into 2 disjoint subsets: $(\tilde{S}^k)^c$ and S_{∇} , we get

$$\begin{aligned} & \left\| \mathbf{X}_{(S^{k})^{c}} \right\|_{F}^{2} = \left\| \mathbf{X}_{S_{\nabla}} \right\|_{F}^{2} + \left\| \mathbf{X}_{(\tilde{S}^{k})^{c}} \right\|_{F}^{2} \\ & \leq 2 \left(\nu_{2} \delta_{3s} \left\| \mathbf{X} - \tilde{\mathbf{X}}^{k} \right\|_{F} + \nu_{2} \tau_{2} \left\| \mathbf{E} \right\|_{F} \right)^{2} \\ & + 2 \left(\nu_{1} \delta_{3s} \left\| \mathbf{X} - \mathbf{X}^{k-1} \right\|_{2} + \nu_{1} \tau_{2} \left\| \mathbf{E} \right\|_{F} \right)^{2} \\ & \leq 2 \left(\sqrt{\frac{2\nu_{1}^{2} \nu_{2}^{2} \delta_{3s}^{4}}{1 - \delta_{3s}^{2}}} \left\| \mathbf{X} - \mathbf{X}^{k-1} \right\|_{F} + \nu_{2} (\tau_{1} \delta_{3s} + \tau_{2}) \right. \\ & \times \left\| \mathbf{E} \right\|_{F} \right)^{2} + 2 \left(\nu_{1} \delta_{3s} \left\| \mathbf{X} - \mathbf{X}^{k-1} \right\|_{F} + \nu_{1} \tau_{2} \left\| \mathbf{E} \right\|_{F} \right)^{2} \\ & \leq 2 \left(\sqrt{\frac{2\nu_{1}^{2} \nu_{2}^{2} \delta_{3s}^{4}}{1 - \delta_{3s}^{2}}} + \nu_{1}^{2} \delta_{3s}^{2} \left\| \mathbf{X} - \mathbf{X}^{k-1} \right\|_{F} \\ & + \left((\nu_{1} + \nu_{2}) \tau_{2} + \nu_{2} \delta_{3s} \tau_{1} \right) \left\| \mathbf{E} \right\|_{F} \right)^{2}. \end{aligned} \tag{S.28}$$

Squaring both sides, we can get

$$\|\mathbf{X}_{(S^{k})^{c}}\|_{F} \leq \left(\sqrt{\frac{4\nu_{1}^{2}\nu_{2}^{2}\delta_{3s}^{4}}{1-\delta_{3s}^{2}}} + 2\nu_{1}^{2}\delta_{3s}^{2} \|\mathbf{X} - \mathbf{X}^{k-1}\|_{F} + \sqrt{2}\left((\nu_{1} + \nu_{2})\tau_{2} + \nu_{2}\delta_{3s}\tau_{1}\right) \|\mathbf{E}\|_{F}\right)^{2}. (S.29)$$

Step 9 of the kth iteration in SI-SSP also solves a least squares problem. Letting $T=S^k$, $\tilde{\mathbf{X}}=\mathbf{X}^k$ and t=s, by (S.13), we have

$$\|\mathbf{X} - \mathbf{X}^k\|_F \le \sqrt{\frac{1}{1 - \delta_{2s}^2}} \|\mathbf{X}_{(S^k)^c}\|_F + \frac{\sqrt{1 + \delta_s}}{1 - \delta_{2s}} \|\mathbf{E}\|_F.$$
(S.30)

Combining (S.29) and (S.30) yields

$$\|\mathbf{X} - \mathbf{X}^k\|_F \le \rho \|\mathbf{X} - \mathbf{X}^{k-1}\|_F + (1-\rho)\tau \|\mathbf{E}\|_F \quad (S.31)$$
 where $\rho := \sqrt{2}\delta_{3s}\sqrt{2\nu_1^2\nu_2^2}\delta_{3s}^2 + \nu_1^2 - \nu_1^2\delta_{3s}^2 (1-\delta_{3s}^2)^{-1}$ and $\tau := \sqrt{2}\delta_{3s}\nu_2(\nu_1\sqrt{2(1-\delta_{3s})} + \sqrt{1+\delta_{3s}})(1-\delta_{3s}^2)^{-1/2}(1-\delta_{3s})^{-1}(1-\rho)^{-1} + (\nu_1\nu_2\sqrt{2(1-\delta_{3s})} + \sqrt{1+\delta_{3s}})(1-\delta_{3s})^{-1}.$ Second, we recursively apply (S.31) to obtain

$$\|\mathbf{X} - \mathbf{X}^k\|_F \le \rho^k \|\mathbf{X}\|_F + \tau \|\mathbf{E}\|_F \tag{S.32}$$

where $\rho < 1$ under (S.8). When $k^* = \lceil \log_{\rho} \frac{\|\mathbf{X}\|_F}{\tau \|\mathbf{E}\|_F} \rceil$, we have $\rho^k \|\mathbf{X}\|_F \le \tau \|\mathbf{E}\|_F$, and thus the stability result (S.10).

APPENDIX A PROOF OF LEMMA 2

• First, we give a upper bound of $\|\mathbf{X}_{T_{\nabla}}\|_{F}$, by Lemma 6, let $\mathbf{Z} = (\mathbf{W}_{T_{0}}\mathbf{X} - \mathbf{W}_{T_{0}}\tilde{\mathbf{X}})_{S}$, we have

$$\left\langle \mathbf{W}_{T_0}(\mathbf{X} - \tilde{\mathbf{X}}), \mathbf{A}^H \mathbf{A} (\mathbf{W}_{T_0} \mathbf{X} - \mathbf{W}_{T_0} \tilde{\mathbf{X}})_S \right\rangle + \left\langle \mathbf{W}_{T_0} \mathbf{E}, \mathbf{A} (\mathbf{W}_{T_0} \mathbf{X} - \mathbf{W}_{T_0} \tilde{\mathbf{X}})_S \right\rangle = \mathbf{0}. \quad (A.33)$$

Noticing that supp($\tilde{\mathbf{X}}$) $\subseteq S$, we have

$$\left\| (\mathbf{W}_{T_0}\mathbf{X} - \mathbf{W}_{T_0}\mathbf{\tilde{X}})_S \right\|_F^2$$

$$= \left\langle \mathbf{W}_{T_{0}}(\mathbf{X} - \tilde{\mathbf{X}}), (\mathbf{W}_{T_{0}}\mathbf{X} - \mathbf{W}_{T_{0}}\tilde{\mathbf{X}})_{S} \right\rangle$$

$$\stackrel{(\mathbf{A}33)}{=} \left\langle \mathbf{W}_{T_{0}}(\mathbf{X} - \tilde{\mathbf{X}}), (\mathbf{I}_{L} - \mathbf{A}^{H}\mathbf{A})(\mathbf{X} - \tilde{\mathbf{X}})_{S} \right\rangle$$

$$- \left\langle \mathbf{W}_{T_{0}}\mathbf{E}, \mathbf{A}(\mathbf{W}_{T_{0}}\mathbf{X} - \mathbf{W}_{T_{0}}\tilde{\mathbf{X}})_{S} \right\rangle$$

$$\stackrel{(7)}{\leq} \omega \delta_{s+t} \left\| (\mathbf{W}_{T_{0}}\mathbf{X} - \mathbf{W}_{T_{0}}\tilde{\mathbf{X}})_{S} \right\|_{F} \left\| \mathbf{X} - \tilde{\mathbf{X}} \right\|_{F}$$

$$+ \omega \left\| \mathbf{E} \right\|_{F} \sqrt{1 + \delta_{t}} \left\| \mathbf{W}_{T_{0}}(\mathbf{X} - \tilde{\mathbf{X}})_{S} \right\|_{F} (\mathbf{A}.34)$$

Divide both sides by $\|(\mathbf{W}_{T_0}\mathbf{X} - \mathbf{W}_{T_0}\tilde{\mathbf{X}})_S\|_F$ to obtain (S.12).

• By expanding Lemma 2 in [25] to MMV model, we could get a relationship between $\|\mathbf{X} - \tilde{\mathbf{X}}\|_F$ and $\|\mathbf{X}_{S^c}\|_F$. We have

$$\left\| \mathbf{X} - \tilde{\mathbf{X}} \right\|_{F} \le \sqrt{\frac{1}{1 - \delta_{s+t}^{2}}} \left\| \mathbf{X}_{S^{c}} \right\|_{F}^{2} + \frac{\sqrt{1 + \delta_{t}}}{1 - \delta_{s+t}} \left\| \mathbf{E} \right\|_{F} (A.35)$$

Finally, we established the relationship between X_{T_∇} and X - X̄. There exist a subset S' ⊆ S and S' ∩ T = ∅.
 Since T_∇ is defined by the set of indices of the t - s smallest row entries of X̄, we can conclude that

$$\left\| \tilde{\mathbf{X}}_{T_{\nabla}} \right\|_{F} + \left\| \mathbf{W}_{T_{0}} \tilde{\mathbf{X}}_{T_{\nabla}} \right\|_{F}$$

$$\leq \left\| \tilde{\mathbf{X}}_{S'} \right\|_{F} + \left\| \mathbf{W}_{T_{0}} \tilde{\mathbf{X}}_{S'} \right\|_{F}. \quad (A.36)$$

By eliminating the contribution from $T_{\nabla} \cap S'$ and noticing that $S' \cap T = \emptyset$, we have

$$\left\| \tilde{\mathbf{X}}_{T_{\nabla} \backslash S'} \right\|_{F} + \left\| \mathbf{W}_{T_{0}} \tilde{\mathbf{X}}_{T_{\nabla} \backslash S'} \right\|_{F}$$

$$\leq \left\| (\tilde{\mathbf{X}} - \mathbf{X})_{S' \backslash T_{\nabla}} \right\|_{F}$$

$$+ \left\| \mathbf{W}_{T_{0}} (\tilde{\mathbf{X}} - \mathbf{X})_{S' \backslash T_{\nabla}} \right\|_{F}. \tag{A.37}$$

For the left-hand side of (A.37), we have

$$\begin{aligned} & \left\| \tilde{\mathbf{X}}_{T_{\nabla} \setminus S'} \right\|_{F} + \left\| \mathbf{W}_{T_{0}} \tilde{\mathbf{X}}_{T_{\nabla} \setminus S'} \right\|_{F} \\ &= \left\| (\tilde{\mathbf{X}} - \mathbf{X} + \mathbf{X})_{T_{\nabla} \setminus S'} \right\|_{F} \\ &+ \left\| (\mathbf{W}_{T_{0}} (\tilde{\mathbf{X}} - \mathbf{X}) + \mathbf{W}_{T_{0}} \mathbf{X})_{T_{\nabla} \setminus S'} \right\|_{F} \\ &\geq \left\| \mathbf{X}_{T_{\nabla}} \right\|_{F} + \left\| \mathbf{W}_{T_{0}} \mathbf{X}_{T_{\nabla}} \right\|_{F} \\ &- \left\| (\tilde{\mathbf{X}} - \mathbf{X})_{T_{\nabla} \setminus S'} \right\|_{F} \\ &- \left\| \mathbf{W}_{T_{0}} (\tilde{\mathbf{X}} - \mathbf{X})_{T_{\nabla} \setminus S'} \right\|_{F}. \end{aligned} (A.38)$$

Combining (A.39) and (A.37), and noticing that

$$(T_{\bigtriangledown} \setminus S') \cap (S' \setminus T_{\bigtriangledown}) = \emptyset \tag{A.40}$$

$$(T_{\nabla} \setminus S') \cup (S' \setminus T_{\nabla}) \subseteq T,$$
 (A.41)

we have

$$\|\mathbf{X}_{T_{\nabla}}\|_{F} + \|\mathbf{W}_{T_{0}}\mathbf{X}_{T_{\nabla}}\|_{F}$$

$$\leq \|(\tilde{\mathbf{X}} - \mathbf{X})_{T_{\nabla} \setminus S'}\|_{F} + \|(\mathbf{W}_{T_{0}}(\tilde{\mathbf{X}} - \mathbf{X}))_{T_{\nabla} \setminus S'}\|_{F}$$

$$+ \|(\tilde{\mathbf{X}} - \mathbf{X})_{S' \setminus T_{\nabla}}\|_{F} + \|(\mathbf{W}_{T_{0}}(\tilde{\mathbf{X}} - \mathbf{X}))_{S' \setminus T_{\nabla}}\|_{F}$$

$$\leq \sqrt{2} \|(\tilde{\mathbf{X}} - \mathbf{X})_{(S' \setminus T_{\nabla}) \cup (T_{\nabla} \setminus S')}\|_{F}$$

$$+ \sqrt{2} \left\| (\mathbf{W}_{T_0}(\tilde{\mathbf{X}} - \mathbf{X}))_{(S' \setminus T_{\nabla}) \cup (T_{\nabla} \setminus S')} \right\|_F$$

$$\leq \sqrt{2} \left\| (\tilde{\mathbf{X}} - \mathbf{X})_S \right\|_F + \sqrt{2} \left\| (\mathbf{W}_{T_0}(\tilde{\mathbf{X}} - \mathbf{X}))_S \right\|_F$$

$$\leq \sqrt{2} (1 + \omega) \delta_{s+t} \left\| \mathbf{X} - \tilde{\mathbf{X}} \right\|_F$$

$$+ (1 + \omega) \sqrt{2(1 + \delta_t)} \left\| \mathbf{E} \right\|_F. \tag{A.42}$$

Also, we can obtain the relationship between $\|\mathbf{W}_{T_0}\mathbf{X}_{T_{\nabla}}\|_F$ and $\|\mathbf{X}_{T_{\nabla}}\|_F$:

$$\eta \omega \sqrt{s_3} \| \mathbf{X}_{T_{\nabla}} \|_F \le \| \mathbf{W}_{T_0} \mathbf{X}_{T_{\nabla}} \|_F. \tag{A.43}$$

Combining (A.42) and (A.43), we have

$$\|\mathbf{X}_{T_{\nabla}}\|_{F} \leq \frac{\sqrt{2}(1+\omega)\delta_{s+t}}{1+\eta\omega\sqrt{s_{3}}} \|\mathbf{X} - \tilde{\mathbf{X}}\|_{F}$$
$$+ \frac{(1+\omega)\sqrt{2}(1+\delta_{t})}{1+\eta\omega\sqrt{s_{3}}} \|\mathbf{E}\|_{F}. \quad (A.44)$$

Noting the definition of ν_2 , we complete the proof of Lemma 2.

APPENDIX B PROOF OF LEMMA 3

Proof: From step 5 of SI-SSP, we have

$$\mathbf{X}_{S_i}^k = \underset{\boldsymbol{\Theta}: \operatorname{supp}(\boldsymbol{\Theta}) = S_{S_i}^k}{\arg\min} \|\mathbf{Y}_{S_i} - \mathbf{A}\boldsymbol{\Theta}\|_F. \tag{A.45}$$

From the step 4 of SI-SSP, let $\mathbf{X}^k = [\mathbf{X}_{S_1}^k, \cdots, \mathbf{X}_{S_r}^k]$, we have the following conclusion

$$\|(\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T}\|_{F}$$
+
$$\|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T}\|_{F}$$

$$\leq \|(\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S}\|_{F}$$
+
$$\|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S}\|_{F}. \quad (A.46)$$

By removing the same coordinates $T \cap \Delta S$, we can get

$$\begin{aligned} & \left\| (\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus \Delta S} \right\|_{F} \\ &+ & \left\| (\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus \Delta S} \right\|_{F} \\ &\leq & \left\| (\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus T} \right\|_{F} \\ &+ & \left\| (\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus T} \right\|_{F}. \quad (A.47) \end{aligned}$$

Because supp(\mathbf{X}) = T and supp(\mathbf{X}^{k-1}) = S^{k-1} ,

$$(\mathbf{X} - \mathbf{X}^{k-1})_{\Delta S \setminus (T \cup S^{k-1})} = 0. \tag{A.48}$$

For the right-hand of (A.47), we have

$$\begin{aligned} & \left\| (\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus T} \right\|_{F} \\ + & \left\| (\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus T} \right\|_{F} \\ = & \left\| (\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus (T \cup S^{k-1})} \right\|_{F} \\ + & \left\| (\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus (T \cup S^{k-1})} \right\|_{F} \\ = & \left\| (\mathbf{A}^{H}(\mathbf{A}\mathbf{X} + \mathbf{E} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus (T \cup S^{k-1})} \right\|_{F} \\ + & \left\| (\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{A}\mathbf{X} + \mathbf{E} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus (T \cup S^{k-1})} \right\|_{F} \\ \leq & \left\| ((\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{\Delta S \setminus T} \right\|_{F} \\ + & \left\| (\mathbf{A}^{H}\mathbf{E})_{\Delta S \setminus T} \right\|_{F} \end{aligned}$$

+
$$\|(\mathbf{W}_{T_0}(\mathbf{A}^H\mathbf{A} - \mathbf{I}_L)(\mathbf{X} - \mathbf{X}^{k-1}))_{\Delta S \setminus T}\|_F$$

+ $\|(\mathbf{W}_{T_0}\mathbf{A}^H\mathbf{E})_{\Delta S \setminus T}\|_F$. (A.49)

Note that $\tilde{S}^k = S^{k-1} \cup \Delta S$, we have

$$(\mathbf{X} - \mathbf{X}^{k-1})_{T \setminus \tilde{S}^k} = \mathbf{X}_{(\tilde{S}^k)^c}.$$
 (A.50)

For the left-side of (A.47), we have

$$\| (\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus \Delta S} \|_{F}$$

$$+ \| (\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus \Delta S} \|_{F}$$

$$= \| (\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus (\Delta S \cup S^{k-1})} \|_{F}$$

$$+ \| (\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus (\Delta S \cup S^{k-1})} \|_{F}$$

$$= \| (\mathbf{A}^{H}(\mathbf{A}\mathbf{X} + \mathbf{E} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus (\Delta S \cup S^{k-1})} \|_{F}$$

$$+ \| (\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{A}\mathbf{X} + \mathbf{E} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus (\Delta S \cup S^{k-1})} \|_{F}$$

$$= \| ((\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1})$$

$$+ \mathbf{A}^{H}\mathbf{E} + \mathbf{X})_{\Delta S \setminus (T \cup S^{k-1})} \|_{F}$$

$$+ \| \mathbf{W}_{T_{0}}(\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1})$$

$$+ \| \mathbf{W}_{T_{0}}\mathbf{A}^{H}\mathbf{E} + \mathbf{W}_{T_{0}}\mathbf{X})_{\Delta S \setminus (T \cup S^{k-1})} \|_{F}$$

$$\geq \| \mathbf{X}_{(\tilde{S}^{k})^{c}} \|_{F} + \| (\mathbf{W}_{T_{0}}\mathbf{X})_{(\tilde{S}^{k})^{c}} \|_{F}$$

$$- \| ((\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{(\tilde{S}^{k})^{c}} \|_{F}$$

$$- \| (\mathbf{W}_{T_{0}}(\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{(\tilde{S}^{k})^{c}} \|_{F}$$

$$- \| (\mathbf{A}^{H}\mathbf{E})_{(\tilde{S}^{k})^{c}} \|_{F} - \| (\mathbf{W}_{T_{0}}\mathbf{A}^{H}\mathbf{E})_{(\tilde{S}^{k})^{c}} \|_{F} .$$

$$(A.51)$$

Combining (A.53) and (A.52), we have

$$\begin{aligned} & \left\| \mathbf{X}_{(\tilde{S}^{k})^{c}} \right\|_{F} + \left\| (\mathbf{W}_{T_{0}} \mathbf{X})_{(\tilde{S}^{k})^{c}} \right\|_{F} \\ \leq & \left\| ((\mathbf{A}^{H} \mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{T \setminus \tilde{S}^{k}} \right\|_{F} \\ + & \left\| (\mathbf{W}_{T_{0}} (\mathbf{A}^{H} \mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{T \setminus \tilde{S}^{k}} \right\|_{F} \\ + & \left\| ((\mathbf{W}_{T_{0}} (\mathbf{A}^{H} \mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{\Delta S \setminus T} \right\|_{F} \\ + & \left\| ((\mathbf{A}^{H} \mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{\Delta S \setminus T} \right\|_{F} \\ + & \left\| (\mathbf{A}^{H} \mathbf{E})_{T \setminus \tilde{S}^{k}} \right\|_{F} + \left\| (\mathbf{W}_{T_{0}} \mathbf{A}^{H} \mathbf{E})_{T \setminus \tilde{S}^{k}} \right\|_{F} \\ + & \left\| (\mathbf{A}^{H} \mathbf{E})_{\Delta S \setminus T} \right\|_{F} + \left\| (\mathbf{W}_{T_{0}} \mathbf{A}^{H} \mathbf{E})_{\Delta S \setminus T} \right\|_{F} \\ \leq & \sqrt{2} \left\| ((\mathbf{A}^{H} \mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{T \cup \Delta S} \right\|_{F} \\ + & \sqrt{2} \left\| (\mathbf{M}_{T_{0}} (\mathbf{A}^{H} \mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{T \cup \Delta S} \right\|_{F} \\ + & \sqrt{2} \left\| (\mathbf{A}^{H} \mathbf{E})_{T \cup \Delta S} \right\|_{F} + \sqrt{2} \left\| (\mathbf{W}_{T_{0}} \mathbf{A}^{H} \mathbf{E})_{T \cup \Delta S} \right\|_{F} \\ \leq & \sqrt{2} (1 + \omega) \delta_{3s} \left\| \mathbf{X} - \mathbf{X}^{k-1} \right\|_{F} \\ + & (1 + \omega) \sqrt{2} (1 + \delta_{3s}) \left\| \mathbf{E} \right\|_{F}. \tag{A.53} \end{aligned}$$

We can obtain the relationship between $\left\|\mathbf{X}_{(\tilde{S}^k)^c}\right\|_F$ $\left\|(\mathbf{W}_{T_0}\mathbf{X})_{(\tilde{S}^k)^c}\right\|_F$:

$$\eta \omega \sqrt{s_2} \left\| \mathbf{X}_{(\tilde{S}^k)^c} \right\|_F \le \left\| (\mathbf{W}_{T_0} \mathbf{X})_{(\tilde{S}^k)^c} \right\|_F.$$
 (A.54)

Combining (A.53) and (A.54), we have

$$\left\| \mathbf{X}_{(\tilde{S}^k)^c} \right\|_F \leq \frac{\sqrt{2}(1+\omega)\delta_{3s}}{1+m\omega\sqrt{s_2}} \left\| \mathbf{X} - \tilde{\mathbf{X}} \right\|_F$$

$$+\frac{(1+\omega)\sqrt{2(1+\delta_{2s})}}{1+\eta\omega\sqrt{s_2}} \|\mathbf{E}\|_F. \qquad (A.55)$$

Noting the definition of ν_1 , we complete the proof of Lemma 3.

APPENDIX C PROOF OF LEMMA 4

Proof: the RIC δ_t can be expressed as [25]

$$\delta_t = \max_{S \subseteq \{1, 2, \dots, N\}, |S| \le t} \left\| \mathbf{A}_S^* \mathbf{A}_S - \mathbf{I} \right\|_{2 \to 2}, \quad (A.56)$$

where

$$\|\mathbf{A}_{S}^{*}\mathbf{A}_{S} - \mathbf{I}\|_{2 \to 2} = \sup_{\mathbf{a} \in \mathbb{R}^{|S|} \setminus \{\mathbf{0}\}} \frac{\|(\mathbf{A}_{S}^{*}\mathbf{A}_{S} - \mathbf{I})\mathbf{a}\|_{2}}{\|\mathbf{a}\|_{2}}. \quad (A.57)$$

Let $S = \operatorname{supp}(\mathbf{u}) \cup \operatorname{supp}(\mathbf{v})$, then $|S| \leq t$. Let $\mathbf{u}_{|S}, \mathbf{v}_{|S}$ denote respectively the S-dimensional sub-vectors of \mathbf{u} and \mathbf{v} obtained by only keeping the components indexed by S. We have

$$\begin{aligned} & \left| \left\langle \mathbf{u}, \left(\mathbf{W}_{T_{0}} - \mathbf{W}_{T_{0}} \mathbf{A}^{H} \mathbf{A} \right) \mathbf{v} \right\rangle \right| \\ = & \left| \left\langle \mathbf{W}_{T_{0}} \mathbf{u}, \mathbf{v} \right\rangle - \left\langle \mathbf{A} \mathbf{W}_{T_{0}} \mathbf{u}, \mathbf{A} \mathbf{v} \right\rangle \right| \\ = & \left| \left\langle \mathbf{W}_{T_{0}} \mathbf{u}_{|T}, \left(\mathbf{I}_{L} - \mathbf{A}_{T}^{H} \mathbf{A}_{T} \right) \mathbf{v}_{|T} \right\rangle \right| \\ \leq & \left\| \mathbf{W}_{T_{0}} \mathbf{u}_{|T} \right\|_{2} \left\| \left(\mathbf{I}_{L} - \mathbf{A}_{T}^{H} \mathbf{A}_{T} \right) \mathbf{v}_{|T} \right\|_{2} \\ \leq & \left\| \mathbf{W}_{T_{0}} \mathbf{u}_{|T} \right\|_{2} \left\| \mathbf{I}_{L} - \mathbf{A}_{T}^{H} \mathbf{A}_{T} \right\|_{2 \to 2} \left\| \mathbf{v}_{|T} \right\|_{2} \\ \leq & \left\| \mathbf{W}_{T_{0}} \mathbf{u}_{|T} \right\|_{2} \left\| \mathbf{v}_{|T} \right\|_{2} \\ \leq & \left\| \mathbf{w}_{T_{0}} \mathbf{u}_{|T} \right\|_{2} \left\| \mathbf{v}_{|T} \right\|_{2} \\ = & \left\| \mathbf{w}_{T_{0}} \mathbf{u}_{|T} \right\|_{2} \left\| \mathbf{v}_{|T} \right\|_{2} \end{aligned}$$

$$(A.58)$$

moreover, we have

$$\begin{aligned} & \left\| \left(\left(\mathbf{W}_{T_0} - \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{A} \right) \mathbf{v} \right)_U \right\|_2^2 \\ &= \left\langle \left(\left(\mathbf{W}_{T_0} - \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{A} \right) \mathbf{v} \right)_U, \\ & \left(\mathbf{W}_{T_0} - \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{A} \right) \mathbf{v} \right\rangle \\ &\leq \delta_t \left\| \left(\left(\mathbf{W}_{T_0} - \mathbf{A}^H \mathbf{A} \right) \mathbf{v} \right)_U \right\|_2 \| \mathbf{v} \|_2 \end{aligned} (A.59)$$

which completes the proof of Lemma 4.

APPENDIX D PROOF OF LEMMA 5

Proof: The lemma easily follows from the fact that

$$\| (\mathbf{W}_{T_0} \mathbf{A}^H \mathbf{e})_U \|_2^2$$

$$= \langle \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{e}, (\mathbf{W}_{T_0} \mathbf{A}^H \mathbf{e})_U \rangle$$

$$= \langle \mathbf{e}, \mathbf{W}_{T_0} \mathbf{A} ((\mathbf{A}^H \mathbf{e})_U) \rangle$$

$$\leq \| \mathbf{e} \|_2 \| \mathbf{W}_{T_0} \mathbf{A} ((\mathbf{A}^H \mathbf{e})_U) \|_2$$

$$\stackrel{(7)}{\leq} \| \mathbf{e}' \|_2 \omega \sqrt{1 + \delta_u} \| (\mathbf{A}^H \mathbf{e})_U \|_2.$$
(A.60)

APPENDIX E PROOF OF LEMMA 6

Proof: Due to the orthogonality, the residue $\mathbf{Y} - \mathbf{A}\tilde{\mathbf{X}}$ is orthogonal to the space \mathbf{AZ} , supp $(\mathbf{Z}) \subseteq S$. This means that for all $\mathbf{Z} \in \mathbb{R}$ with supp $(\mathbf{Z}) \subseteq S$,

$$\langle \mathbf{A}(\mathbf{Y} - \mathbf{A}\tilde{\mathbf{X}}), \mathbf{Z} \rangle = \mathbf{0}$$
 (A.61)

then, let \tilde{X}' be the solution of the least squares problem $\arg\min_{\mathbf{Z}}\{\|\mathbf{Y}'-\mathbf{AZ}\|_F,\sup(\mathbf{Z})\subseteq S\}$, where $\mathbf{Y}'=\frac{\mathbf{AW}_{T_0}\mathbf{X}_{T_0}}{\omega}+\mathbf{E}$. We have

$$\tilde{\mathbf{X}}' = \frac{\mathbf{W}_{T_0}\tilde{\mathbf{X}}}{\omega}.\tag{A.62}$$

Then, by (A.61), we have

$$\mathbf{0} = \left\langle \frac{\mathbf{A}\mathbf{W}_{T_0}\mathbf{X}_{T_0}}{\omega} + \mathbf{E} - \mathbf{A} \frac{\mathbf{W}_{T_0}\tilde{X}}{\omega}, \mathbf{A}\mathbf{Z} \right\rangle$$
$$= \left\langle \mathbf{W}_{T_0}\mathbf{X} - \mathbf{W}_{T_0}\tilde{\mathbf{X}}, \mathbf{A}^H \mathbf{A}\mathbf{Z} \right\rangle + \omega \left\langle \mathbf{E}, \mathbf{A}\mathbf{Z} \right\rangle.(A.63)$$