By the complex exponential function we may rewrite

$$F(x) = \sum_{k=-\infty}^{\infty} c_k \exp(ik\omega x)$$
 with $\omega := \frac{2\pi}{T}$

where the complex Fourier coefficient c_k , $k \in \mathbb{Z}$, is given by

$$c_k = \frac{1}{T} \int_0^T f(x) \exp(-ik\omega x) dx.$$

Note that the limit is to be understood symmetrically:

$$\sum_{k=-\infty}^{\infty} c_k \exp(ik\omega x) := \lim_{n\to\infty} \sum_{k=-n}^{n} c_k \exp(ik\omega x).$$

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Theorem (Orthonormality Relations)

If $m, n \in \mathbb{N}$, then:

$$\frac{2}{T} \int_0^T \sin(m\omega x) \sin(n\omega x) dx = \delta_{m,n},$$

$$\frac{2}{T} \int_0^T \cos(m\omega x) \cos(n\omega x) dx = \delta_{m,n},$$

$$\frac{2}{T} \int_0^T \sin(m\omega x) \cos(n\omega x) dx = 0,$$

and if $m, n \in \mathbb{Z}$, then:

$$\frac{1}{T} \int_0^T \exp(im\omega x) \exp(-in\omega x) \, dx = \delta_{m,n}.$$

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Definition (Piecewise Continuously Differentiable Function)

Let $f: \mathbb{R} \to \mathbb{R}$ with

- (i) Only at a finite number of **singularities** the function *f* is not continuously differentiable.
- (ii) At any singularity x_0 there exist the following one-sided limits:

$$f(x_0+) := \lim_{X \to X_0+} f(X)$$
 $f(x_0-) := \lim_{X \to X_0-} f(X),$ $f'(x_0+) := \lim_{X \to X_0+} f'(X)$ $f'(x_0-) := \lim_{X \to X_0-} f'(X).$

Then *f* is called **piecewise continuously differentiable**.

Discontinuities are singularities, but not any singularity is a discontinuity.

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Theorem (Convergence of Fourier Series)

Let $f : \mathbb{R} \to \mathbb{R}$ be a periodic function that is piecewise continuously differentiable. Then:

- The Fourier series F converges at any x that is not a singularity to f.
- At any singularity x_0 the Fourier series converges to the "mean value" of the jump

$$\frac{1}{2}(f(x_0+)-f(x_0-)).$$

 In any compact interval that does not contain a discontinuity, the convergence of F to f is uniform.

Note that there exist periodic, continuous functions, whose Fourier series does not converge to f!

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Properties of Fourier Series I

Let f and g be piecewise continuous, periodic functions with Fourier series $F = \sum_{k=-\infty}^{\infty} c_k \exp(ik\omega x)$, $G = \sum_{k=-\infty}^{\infty} c_k \exp(ik\omega x)$, resp. There holds:

 $G = \sum_{k=-\infty}^{\infty} d_k \exp(ik\omega x)$, resp. There holds:

• For any $\alpha, \beta \in \mathbb{R}$:

$$\alpha F(x) + \beta G(x) = \sum_{k=-\infty}^{\infty} (\alpha c_k + \beta d_k) \exp(ik\omega x)$$

- $F(-x) = \sum_{k=-\infty}^{\infty} c_{-k} \exp(ik\omega x)$
- For any $\alpha \in \mathbb{R}$

$$F(\alpha x) = \sum_{k=-\infty}^{\infty} c_k \exp(ik\omega \alpha x)$$

• For any $\alpha \in \mathbb{R}$

$$F(\alpha+x) = \sum_{k=-\infty}^{\infty} (c_k \exp(ik\omega\alpha)) \exp(ik\omega x)$$

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

Properties of Fourier Series II

Let f be a piecewise continuous differentiable, periodic function with Fourier series $F = \sum_{k=-\infty}^{\infty} c_k \exp(in\omega x)$. There holds:

• The Fourier series *F'* represents *f'*:

$$F'(x) = \sum_{k=-\infty}^{\infty} (ik\omega c_k) \exp(ik\omega x)$$

- $F(-x) = \sum_{k=-\infty}^{\infty} c_{-k} \exp(ik\omega x)$
- Suppose $c_0 = 0$, then the Fourier series $\tilde{F} := \int F(\xi) d\xi$ represents $\tilde{f} := \int f(\xi) d\xi$:

$$\tilde{F}(x) = \frac{2}{T} \int_0^T \tilde{f}(\xi) \, d\xi + \sum_{k=-\infty, k\neq 0}^{\infty} \frac{c_k}{ik\omega} \exp(ik\omega x)$$

Introduction

Power series

Sequences of Functions

Uniform Convergence

Continuity and Uniform Convergence

Power Series

Taylor Series

Fourier Series

Differentiation in Higher Dimensions

Integration in Higher Dimensions

Further Topics in Calculus

