www.xrenepalers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the November 2004 question paper

0606 ADDITIONAL MATHEMATICS

0606/01 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0606 (Additional Mathematics) in the November 2004 examination.

	maximum	minimum	mark required	for grade:
	mark available	А	С	E
Component 1	80	64	30	20

Grade A* does not exist at the level of an individual component.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The following abbreviations may be used in a mark scheme or used on the scripts:

AG	Answer Given on the question paper (so extra checking is needed to ensure
	that the detailed working leading to the result is valid)

BOD	Benefit	of	Doubt	(allowed	when	the	validity	of	а	solution	may	not	be
	absolute	γle	clear)										

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only – often written by a 'fortuitous' answer

ISW Ignore Subsequent Working

MR Misread

PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW -1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S -1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

November 2004

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0606/01

ADDITIONAL MATHEMATICS (Paper 1)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2004	0606	1

			1	,
1		OA = i + 9j OB = 5i - 3j OC = k(i + 3j)		
		AB or BA = $4i - 12j$ AC or CA = $(k - 1)i + (3k - 9)j$	M1	For one relevant vector . Must be
		CB or BC = $(5 - k)i - (3k + 3)j$	A1	Any 2 of these correct unsimplified.
		Ratio of i to j is the same \rightarrow k = 2	M1 A1	Using ratio idea (not DM). Co. If use of AB = a – b and correct answer obtained, allow full marks.
		[or m = -3 = $(3k + 3) \div (k - 5)$ = $(3k - 9) \div (k - 1)$ \rightarrow M1 A1 \rightarrow k = 2 M1 A1]	[4]	
		[or $(1, 9) \rightarrow (5, -3)$ $y = -3x + 12$ M1 A1 subs $(k, 3k)$ or solve with $y = 3x$ M1A1]		Drawing M2 A2
2	(i)		B1 B1	Co.co
	(ii)	$P \cap D' \cap T'$ or $P \cap (D \cup T)'$ or $D' \cap T'$ or $(D \cup T)'$	B1 B1 [4]	Co.co
3		P \cap D' \cap T Change to powers of 2. $2^{3x} \div 2^{y} = 2^{6} \rightarrow 3x - y = 6$	M1 A1	Needs to try all terms as powers of 2 and have \pm . Co
		Change to powers of 3. $3^{4x} \times 3^{-2y+2} = 3^4 \rightarrow 4x - 2y + 2 = 4$	M1 A1	Needs to try all terms as powers of 3 and have \pm . Co with bracket sorted.
		\rightarrow x = 5 and y = 9	A1	Co
			[5]	
4		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		Let OR = r $\frac{1}{2}r^2(4/3) - \frac{1}{2}7^2(4/3) = 48$	M1 A1	Any use of ½r²θ for M mark. A1 unsimplified, but complete.
		\rightarrow r = 11 If x + 7 for r allow A1 for x = 4.	A1	Co.
		Perimeter = $11 \times (4/3) + 7 \times (4/3) + 2 (11 - 7)$	M1 A1√	M1 for any use of s = $r\theta$. A1 $$ unsimplified and $$ on his r or x only.
		\rightarrow 32	A1 [6]	Co – allow anything rounding to 32.0

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2004	0606	1

			1	
5		$(a + x) (1 - 2nx +) = 3 - 41x + bx^2$		
		term in $x^3 = {}_{n}C_2 (\pm 2x)^2$	B1	Wherever it comes.
		→ a = 3	B1	Co – anywhere
		$1 - 2an = -41 \rightarrow n = 7$	M1 A1	Must use 2 terms.
		Coeff of x^2 is $3 \times 84 - 1 \times 14$	M1	Must use sum of 2 products.
		→ 238	A1	Co.
			[6]	
6		$f(x) = 5 + 3\cos 4x$		
	(i)	a = 3, period = $\frac{1}{2}\pi$	B1 B1	Co. allow 90° for period.
	(ii)	max/min x = $\pi/4$ or $2\pi/4$ or $3\pi/4$ \rightarrow max of 8 \rightarrow min of 2	B1 B1	When "8" is used as stationary value. When "2" is used as stationary value.
		$(\pi/4, 2) (2\pi/4, 8) (3\pi/4, 2)$	B2, 1√	$\sqrt{\text{ for 5} \pm \text{ his "a". [B0 if degrees here]}}$
			[6]	Ignore inclusion of max/min at 0 or π .
7	(a)	$8 \times 8!$ or $\frac{8}{9} \times 9!$ or $9! - 8!$	M1	
		→ 322 560	A1 [2]	Must be ${}_{n}C_{r}-$ knows what to do. Ans only is ok for 2 marks.
	(b)	2G, 1B ${}_5C_2 \times {}_3C_1 = 10 \times 3 = 30$ 3G, 0B ${}_5C_3 = 10$	M1 A1 B1	Needs to be a product of ${}_{n}C_{r}$'s. Co. Anywhere.
		total = sum of these = 40	A1	Co.
			[4]	
8	(i)	y = (3x + 11)/(x - 3)		
		Makes x the subject.	M1	Good algebra in making x the
		$f^{-1}(x) = (3x + 11)/(x - 3)$	A1	subject.
		f and f ⁻¹ are the same functions.		
		\rightarrow Graph has y = x as line of	B1	Co accept any mention of $y = x$.
		symmetry.	[3]	
	(ii)	$g(x) = \frac{1}{2}(x-3)$ $g^{-1}(x) = 2x + 3$ $\rightarrow 2x + 3 = \frac{3x + 11}{(x-3)}$	B1	Anywhere.
		$\rightarrow 2x^{2} - 6x - 20 = 0 \rightarrow x = -2 \text{ or } 5$	M1 A1	Algebra must lead to quadratic. Co.
			[3]	
	(iii)	$gf(x) = -2 \rightarrow f(x) = g^{-1} (-2)$ $\rightarrow x = -2$	B1	However obtained.
			[1]	

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2004	0606	1

			1	
9	(a)	$s^2 = 3c^2 + 4s$ Use of $s^2 + c^2 = 1$ $\rightarrow 4s^2 - 4s - 3 = 0 \rightarrow s = -\frac{1}{2}$ or $3/2$	M1 DM1	Used to eliminate cos completely. Scheme for quadratic.
		\rightarrow x = 210° and 330°	A1 A1√	Co. √ for 2 nd value from incorrect
			[4]	sine. (A1√ not given for extra values <u>in the</u> range, but could be given if soln of quadratic led to 2 values of sine<1.)
	(b)	cot = 1/tan used tan 2y = 4	M1	Use of cot = 1/tan even if "2" removed incorrectly. Not for tan and 2y split.
		$2y = 1.326 \rightarrow y = 0.66$ or $2y = \pi + 1.326$ or $2\pi + 1.326$	A1	Co (must be radians) – not for 0.67.
		\rightarrow y = 2.23 \rightarrow y = 3.80 or 3.81	A1√ A1√	For (i) + $\frac{1}{2}\pi$ For (i) + π or (ii) + $\frac{1}{2}\pi$
			[4]	[S–1 for extra values in the range] [sc All answers in degrees B1.]
10		$y = x^3 lnx$		
	(i)	$dy/dx = 3x^2 lnx + x^3 (1/x)$	M1	M1 correct "uv". A1 ok unsimplified.
		$= 3x^2 \ln x + x^2$	A1 [2]	·
	(ii)	$dy/dx = 0 Inx = -\frac{1}{3}$	M1 A1 [2]	Not DM – setting his dy/dx to 0 + attempt to solve.
	(ii)	$\delta y = dy/dx \times \delta x = (e^2 + 3e^2)p$ = $4e^2p$ or 29.6p	M1 A1 [2]	Use of small increases. Allow for use of dy/dt. Δx = p essential for M mark. Alg expression with "p" ok for M1.
	(iii)	$d/dx (x^3 lnx) = x^2 + 3x^2 lnx$	M1 A1	∫ is reverse of diff used. A1 needs 1/₃x³
		Integrating $\rightarrow x^3 \ln x = \frac{1}{3}x^3 +$	A1	со
		∫3x ² lnxdx	[3]	Integration by parts ok. M1 A1 A1.
		$\int x^{2} \ln x dx = \frac{1}{3} (x^{3} \ln x - \frac{1}{3} x^{3})$		
11		4y = 3x + 1 and xy = $28x - 27y$ Sim equations. $\rightarrow x^2 - 10x + 9 = 0$ or $y^2 - 8y + 7 = 0$	M1 DM1	Complete elimination of x or y Soln of quadratic (by scheme)
		\rightarrow (9, 7) [(1, 1) was given]	A1	Co for (9, 7)
		P(1, 1), Q(9, 7) \rightarrow gradient of PQ = $\frac{3}{4}$		
		Gradient of perp bisector is -4/3 M (mid-point of PQ) = (5, 4)	M1 M1	Use of $m_1m_2 = -1$ with his PQ Use of $(\frac{1}{2}(x_1 + x_2), \frac{1}{2}(y_1 + y_2))$
		Eqn of perp bis. $y-4 = -4/3(x-5)$ 3y + 4x = 32 meets y = 4x at R(2, 8)	A1 M1	Co – unsimplified ok. Simulataneous eqns. Must be with a perp
		Area of $\triangle PQ = \frac{1}{2} \times PQ \times MR$	M1	Any correct method.
		= $\frac{1}{2} \times 10 \times 5$ (or matrix method) $\rightarrow 25$	A1 [9]	Co.

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2004	0606	1

12		EITHER		
	(a)	N = 20 000e -0.05n		
	(i)	n = 10, N = 12 130 or more places.	B1 [1]	Со
	(ii)	2000 = 20 000e ^{-0.05n}		
		$e^{-0.05n} = 0.1$	M1	Isolating exponential – or taking logs to get 3 terms.
		Take logs	M1	Taking logs.
		n = 45.1 → 2006	A1	Co. needs 2006, not 2005.
			[3]	
	(b)	Put y = 3^x 3^{x+1} = 3y or 3^{x-1} = $1/3$ y	M1	Used.
		$3^{x+1} = 3y \text{ or } 3^{x-1} = \frac{1}{3}y$	A1 A1	For each expression.
		$3y - 2 = 8y/3 \rightarrow y = 6$	A1	Co.
		$3^{x} = 6$, $x = 1.63$	M1 A1	Taking logs for his 3 ^x . co.
		[or \div by 3^{x-1} M1 A1 3^{x-1} = 2 M1 A1]	[6]	
		[or \div by 3^{x+1} M1 A1 3^{x+1} = 18		
		M1 A1]		
12		OR		
		$y = e^{\frac{x}{2}} + 3e^{\frac{-x}{2}}$		
	(i)	$dy/dx = \frac{1}{2}e^{\frac{x}{2}} - \frac{3}{2}e^{\frac{-x}{2}}$	D4 D4	
		dy/dx = _e²	B1 B1	Anywhere –
		$= 0$ when $e^x = 3$	M1	Setting his dy/dx to 0 and reasonable
		$y = \sqrt{3} + 3 \div \sqrt{3} = 2\sqrt{3}$	A1	attempt at making e ^x the subject. Co. Decimal check – A0.
		y = \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	[4]	Ger Besimar enesk 7 ter
	/:: \		[4]	
	(ii)	$d^{2}y/dx^{2} = \frac{1}{4}e^{\frac{x}{2}} + \frac{3}{4}e^{\frac{-x}{2}} > 0, MIN$	M1 A1	M1 Reasonable attempt by any
		4 4		method.
			[2]	A1 Correct deduction but needs
				second differential correct.
	(iii)	$\left(\begin{array}{cccc} \frac{x}{2} & \frac{-x}{2} \\ \end{array}\right) + \begin{array}{cccc} \frac{x}{2} & \frac{-x}{2} \\ \end{array}$	N 4 4 4	
		$\int \left(e^{\frac{x}{2}} + 3e^{\frac{-x}{2}} \right) dx = 2e^{\frac{x}{2}} - 6e^{\frac{-x}{2}}$	M1 A1	Knowing to integrate for area + any attempt with exponentials. A1 co.
		[] at 1 – [] at 0	M1	DM0 if [] at 0 is ignored.
		$= 4 + 2\sqrt{e} - 6\sqrt{e} = 3.66$	A1	Co.
			[4]	
<u> </u>			[7]	

DM1 for quadratic equation.

<u>Formula</u> Equation must be set to 0. Formula must be correct and correctly used, but allow for numerical and algebraic errors.

<u>Brackets</u> Equation must be set to 0. Must be an attempt to get two linear brackets. Each bracket must then be equated to 0 and solved.