ESO207A

Assignment 1

Rahul Sethi 190668

Q1 (a)

```
Algorithm 1 Count Inversions - Divide and Conquer
Input: An array A of size n
Output: Sorted (ascending) version of array A
 1: B[i] \leftarrow 0 for all 1 \le i \le n
 2: return InversionCount(A, B, 1, n)
 3: function InversionCount(A, B, start, end)
 4:
       count \longleftarrow 0
       if start < end then
 5:
 6:
           mid \leftarrow |(start + end)/2|
           count += InversionCount(A, B, start, mid)
                                                                       ▷ count inversions in left subarray
 7:
           count += InversionCount(A, B, mid + 1, end)
                                                                     ▷ count inversions in right subarray
 8:
           count += MergeAndCount(A, B, start, mid, end)
                                                                                  9:
       end if
10:
       return\ count
11:
12: end function
13: function MERGEANDCOUNT(A, B, start, mid, end)
       p \longleftarrow start
14:
       q \longleftarrow mid + 1
15:
       r \longleftarrow start
16:
17:
       count \longleftarrow 0
       while p \leq mid and q \leq end do
18:
           if A[p] \leq A[q] then
19:
               B[r] \longleftarrow A[p]
20:
               r += 1
21:
              p += 1
22:
23:
               B[r] \longleftarrow A[q]
24:
               count += mid - p + 1
25:
               r += 1
26:
               q += 1
27:
           end if
28:
       end while
29:
```

Continued on next page

 $^{^{0}}$ sethir@iitk.ac.in, 190668, BS MTH

```
while p \leq mid do
30:
          B[r] \longleftarrow A[p]
31:
          r += 1
32:
33:
          p += 1
       end while
34:
       while q \leq end do
35:
          B[r] \longleftarrow A[q]
36:
37:
          r += 1
          q += 1
38:
       end while
39:
       while start \leq i \leq end do
                                                               40:
          A[i] \longleftarrow B[i]
41:
          i += 1
42:
       end while
43:
44:
       return count
45: end function
```

Q1 (b)

Definition 1

Given an array A[start:end], a pair (i,j) for $start \le i < j \le end$ is an inversion if A[i] > A[j].

Definition 2

Given $start \le p < q \le end$, the boolean S(p,q) is true if A[p] > A[q], and false otherwise.

Details and Correctness of InversionCount:

If $start \ge end$, the number of inversions = 0 (one or no elements in the array). Otherwise, divide the array into two parts, A[start:mid] and A[mid+1:end], where $mid = \lfloor (start+end)/2 \rfloor$. Any inversion (i,j) in A[start:end] is of one of the three following types:

- 1. $i < j \le mid$, which implies (i, j) is an inversion in A[start : mid]. Let such inversions belong to the set I_1 . (Line 7)
- 2. $mid + 1 \le i < j$, which implies (i, j) is an inversion in A[mid + 1 : end]. Let such inversions belong to the set I_2 . (Line 8)
- 3. $i \leq mid < j$ these are cross inversions, let them belong to the set C. (Line 9)

Clearly, we need to return $|I_1| + |I_2| + |C|$. Suppose we have computed (recursively) the number of inversions in these two arrays as $|I_1|$ and $|I_2|$ respectively. The MERGEANDCOUNT function (line 13) merges the two sorted sub-arrays, while counting the cross-inversions.

Details and Correctness of Mergeand Count:

Two pointers p and q are initialized to start and mid + 1 respectively (Lines 14-15), which are incremented within the respective sub-arrays as the algorithm proceeds. Moreover, A[start:mid] and A[mid + 1:end] are sorted. The array B is used to collect elements from A[start:mid] and

 $^{^1}$ If A[start:mid] and A[mid+1:end] are sorted, the number of cross inversions can be calculated in O(n) time, where n=end-start+1

A[mid + 1 : end] such that B[start : end] is sorted. (Lines 20, 24, 31, 36). B's elements are later copied onto A in Lines 40-43.

Lemma A

The number of cross-inversions between A[start:mid] and A[mid+1:end] is the same as that between sorted(A[start:mid]) and sorted(A[mid+1:end]).

Proof

Let (i,j) be a cross-inversion, i.e. $i \leq mid < j$ and A[i] > A[j]. After sorting A[start : mid] and A[mid + 1 : end] separately, let $i \mapsto i'$ and $j \mapsto j'$. A[i'] > A[j'] holds. Moreover, $i' \leq mid$ and j' > mid. This implies $i' \leq j'$ and A[i'] > A[j'], i.e. (i', j') is a cross-inversion.

Lemma B

For some q = q', let S(p,q) be true for the first time when p = p', i.e. A[p'] > A[q']. Then, $I_C(q') = \{(p^*, q') : p^* \ge p'\}$ is the set of all cross-inversions involving q'.

Proof

Since A[start:mid] is sorted, $A[p^*] > Q[j'] \ \forall p^* \geq p'$, and so all such (p^*,q') are inversions. To show that this is the complete set of inversions involving q', consider some p'' < p'. Since the pointer p is currently at p' > p'', at some earlier stage the algorithm must have compared A[p''] and A[q''], where $q'' \leq q'$ - and found that $A[p''] \leq A[q'']$, i.e. S(p'',q'') was false. Since A[mid+1:end] is sorted, this implies $A[p''] \leq A[q']$. As a result, $\forall p'' < p'$, (p'',q') is not an inversion. Hence, $I_C(q') = \{(p^*,q'): p^* \geq p'\}$ is the set of all cross-inversions involving q'.

Correctness of Cross-Inversion Count

Consider the while loop in MERGEANDCOUNT (Lines 18-29). If S(p,q) is false, count is not incremented. Else, if S(p,q) is true, count is incremented by mid - p + 1 (follows from Lemma B), which exactly corresponds to $|I_C(q)|$ defined earlier.

Correctness of Merge

Consider the while loops in Mergeand Count (Lines 18-39). We define the following loop invariants:⁴

- 1. ϕ_1 : B[start: r-1] is sorted.
- 2. ϕ_2 : B[start: r-1] is a permutation of $A[start: p-1] \cup A[mid+1: q-1]^5$
- 3. ϕ_3 :
 - (a) $B[start: r-1] \leq A[p], A[q] \text{ if } p \leq mid \text{ and } q \leq end$

²sorted(A[l:l']) refers to the permutation of A[l:l'] wherein $A[i] \leq A[j] \ \forall l \leq i < j \leq l'$.

 $^{^3 \}text{Note that } C = \bigcup_{q'=mid+1}^{end} I_C(q')$

⁴In particular, we show that (i) B[start:end] is sorted after completion of Mergeand Count, i.e. A[start:mid] and A[mid+1:end] are merged correctly, and (ii) count = number of inversions $seen\ so\ far$

⁵Slight abuse of notation. This does not account for repeated elements. However, the generalization is fairly straightforward, and a sketch of the same has been provided in the appendix.

- (b) $B[start: r-1] \leq A[p]$ if $p \leq mid$ and q > end
- (c) $B[start: r-1] \leq A[q]$ if p > mid and $q \leq end$
- 4. ϕ_4 : $start \leq p \leq mid + 1$, $mid + 1 \leq q \leq end + 1$, and r = p + q mid 1
- 5. ϕ_5 : count = number of cross-inversions corresponding to the indices in the interval $\mathcal{Q}(q) = [mid + 1, q)^6$

Invariance of ϕ_1 -

Before entering the while loop (Line 18), r = start and B[start : r - 1] is empty, hence the claim ϕ_1 is vacuously true. Assume ϕ_1 holds before a particular iteration of the loop, when (p, q, r) = (p', q', r').

- If S(p,q) is false, B[r'] = A[p'] and (p,r) = (p'+1,r'+1). We show that $B[r'-1] \leq B[r']$:
 - If B[r'-1] = A[p'-1], then $B[r'-1] \le A[p'] = B[r']$ as A[start:mid] is sorted.
 - If B[r'-1] = A[q'-1], then S(p',q'-1) is true and A[p'] > A[q'-1]. As a result, B[r'-1] < A[p'] = B[r'].
- If S(p,q) is true, B[r'] = A[q'] and (q,r) = (q'+1,r'+1). We show that $B[r'-1] \le B[r']$:
 - If B[r'-1] = A[q'-1], then $B[r'-1] \le A[q'] = B[r']$ as A[mid+1:end] is sorted.
 - If B[r'-1] = A[p'-1], then S(p'-1,q') is false and $A[p'-1] \le A[q']$. As a result, $B[r'-1] \le A[q'] = B[r']$.

As $B[r'-1] \leq B[r']$, B[start:r'] is sorted, ϕ_1 continues to hold after the iteration as well. Note that when p = mid + 1 or q = end + 1 (one of the two sorted sub-arrays exhausted), we exit the loop on Lines 18-29 and simply copy the elements of the remaining array onto B (Lines 30-39). Finally (p,q,r) = (mid + 1, end + 1, end + 1), and B[start:end] is sorted.

Invariance of ϕ_2 -

Before entering the while loop (Line 18), r = start and B[start : r - 1] is empty, hence the claim ϕ_2 is vacuously true. Assume ϕ_2 holds before a particular iteration of the loop, when (p, q, r) = (p', q', r').

- If S(p,q) is false, B[r'] = A[p'] and (p,r) = (p'+1,r'+1). Clearly, B[start:r'] is a permutation of $A[start:p'] \cup A[mid+1:q'-1]$.
- If S(p,q) is true, B[r'] = A[q'] and (q,r) = (q'+1,r'+1). Clearly, B[start:r'] is a permutation of $A[start:p'-1] \cup A[mid+1:q']$.

 ϕ_2 continues to hold after the iteration as well. Finally (p,q,r) = (mid + 1, end + 1, end + 1) and B[start:end] is a permutation of $A[start:mid] \cup A[mid + 1:end]$, as required.

Invariance of ϕ_3 -

Before entering the while loop (Line 18), r = start and B[start : r - 1] is empty, hence the claim ϕ_3 is vacuously true. Assume ϕ_3 holds before a particular iteration of the loop, when (p, q, r) = (p', q', r'). We shall prove the three cases separately:

- 1. B[start: r'-1] < A[p'], A[q'] if p' < mid and q' < end holds to begin with.
 - If S(p,q) is false, B[r'] = A[p'] and (p,r) = (p'+1,r'+1). Since A[start:mid] is sorted, $B[r'] = A[p'] \le A[p'+1]$. So, $B[start:r'] \le A[p'+1]$, A[q'] holds.

⁶When q = end + 1, we're done.

- If S(p,q) is true, B[r'] = A[q'] and (q,r) = (q'+1,r'+1). Since A[mid+1:end] is sorted, $B[r'] = A[q'] \le A[q'+1]$. So, $B[start:r'] \le A[p']$, A[q'+1] holds.
- 2. $B[start:r'-1] \leq A[p']$ if $p' \leq mid$ and q' > end holds to begin with (loop in Lines 30-34 is being executed). After the iteration, (p,r) = (p'+1,r'+1) and $B[r'] = A[p'] \leq A[p'+1]$ as A[start:mid] is sorted. So, $B[start:r'] \leq A[p'+1]$ holds.
- 3. $B[start:r-1] \leq A[q]$ if p > mid and $q \leq end$ holds to begin with (loop in Lines 35-39 is being executed). After the iteration, (q,r) = (q'+1,r'+1) and $B[r'] = A[q'] \leq A[q'+1]$ as A[mid+1:end] is sorted. So, $B[start:r'] \leq A[q'+1]$ holds.

 ϕ_3 continues to hold after the iteration as well.

Invariance of ϕ_4 -

Before entering the while loop (Line 18), (p,q,r) = (start, mid + 1, start). Also, p + q - mid - 1 = start = r. So, $start \le p \le mid + 1$, $mid + 1 \le q \le end + 1$, and r = p + q - mid - 1 are clearly true. Assume ϕ_4 holds before a particular iteration of the loop, when (p,q,r) = (p',q',r'). After the iteration, we have one of the following cases:

- (p,r) = (p'+1,r'+1) $r' = p'+q'-mid-1 \iff (r'+1) = (p'+1)+q'-mid-1$. Additionally, the loop condition guarantees that $p' \leq mid$, so that $p'+1 \leq mid+1$. $start \leq p'+1 \leq mid+1$ is satisfied.
- (q,r) = (q'+1,r'+1) $r' = p'+q'-mid-1 \iff (r'+1) = p'+(q'+1)-mid-1$. Additionally, the loop condition guarantees that $q' \leq end$, so that $q'+1 \leq end+1$. $mid+1 \leq q'+1 \leq end+1$ is satisfied.

The operations on (p, q, r) in Lines 30-39 are a proper subset of those in lines 18-29, so the above proof suffices. ϕ_4 continues to hold after the iteration as well.

Invariance of ϕ_5 - Before entering the while loop (Line 18), (p,q,r) = (start, mid + 1, start). The interval $\mathcal{Q}(q)$ is empty, and count = 0. Assume ϕ_5 holds before a particular iteration of the loop, when (p,q,r) = (p',q',r'). After the iteration, we have one of the following cases:

- If S(p,q) is false, q is unchanged. ϕ_5 continues to hold.
- If S(p,q) is true, q=q'+1 and *count* is incremented by mid-p+1. Correctness of this step, and hence the invariance of ϕ_5 follow from Lemma B proved earlier.

 ϕ_5 continues to hold after the iteration as well. Lastly, when q = end + 1, count = number of cross-inversions corresponding to the indices in the interval Q(q) = [mid + 1, end + 1), as desired. This completes the proof.

Time Complexity Analysis

Consider Lines 7-9 in the function InversionCount. The input array is of size n = end - start + 1. Clearly, the size of the left subarray $\lceil \frac{n}{2} \rceil$ and that of the right subarray is $\lfloor \frac{n}{2} \rfloor$. Let us first prove a lemma, which will be helpful in deducing the time complexity of this algorithm.

Lemma C:

If T(n) satisfies the following recurrence, then $T(n) \leq n \lceil \log n \rceil \ \forall n \in \mathbb{N}$ (all logarithms have base 2)

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T(\left\lfloor \frac{n}{2} \right\rfloor) + T(\left\lceil \frac{n}{2} \right\rceil) + n & \text{if } n > 1 \end{cases}$$

Proof of Lemma C:

(Strong induction on n)

The base case (n=1) is satisfied. Define $a=\lfloor \frac{n}{2}\rfloor$ and $b=\lceil \frac{n}{2}\rceil$ (notice that a+b=n). Also, it is worth noting that $\log b \leq \lceil \log n \rceil - 1$ (proof shown below)

$$b = \lceil n/2 \rceil$$

$$\leq \lceil 2^{\lceil \log n \rceil - 1} \rceil$$

$$= 2^{\lceil \log n \rceil - 1}$$

$$\log b \leq \lceil \log n \rceil - 1$$

Induction Step: Assume Lemma C holds for 1, 2, ..., n-1.

$$\begin{split} T(n) &\leq T(a) + T(b) + n \\ &\leq a \lceil \log a \rceil + b \lceil \log b \rceil + n \\ &\leq a \lceil \log b \rceil + b \lceil \log b \rceil + n \\ &= n \lceil \log b \rceil + n \\ &\leq n \lceil (\lceil \log n \rceil - 1) \rceil + n \\ &= n (\lceil \log n \rceil - 1) + n \\ &= n \log n \end{split}$$

Proposition:

The InversionCount algorithm counts the number of inversions in a permutation of size n in $O(n \log n)$ time.

Proof:

The worst case running time T(n) satisfies the recurrence:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ T(\left\lfloor \frac{n}{2} \right\rfloor) + T(\left\lceil \frac{n}{2} \right\rceil) + O(n) & \text{if } n > 1 \end{cases}$$
 The above piece-wise definition of $T(n)$ is motivated by the following observations:

- The problem is *divided* into two halves (Lines 7-8) of sizes $\lceil \frac{n}{2} \rceil$ and $\lceil \frac{n}{2} \rceil$.
- Combining solutions to the two halves takes O(n) time as p and q visit all elements in A[start:mid] and A[mid+1:end] exactly once. All other operations take constant time.

The solution of the above-mentioned recurrence, and hence the proof of this proposition follow from Lemma C.

Appendix

1. About Notation in ϕ_2

 ϕ_2 is defined as - "B[start:r-1] is a permutation of $A[start:p-1] \cup A[mid+1:q-1]$ ". As set notation prohibits us from working with multiple instances of the same element, the loop invariant ϕ_2 really only works for arrays with all distinct elements. However, we can easily get around this problem by defining a **new ordering** over the elements of the array, as follows:

- 1. If A[i] > A[j], then A[i] is greater than A[j].
- 2. If A[i] < A[j], then A[i] is **less than** A[j].
- 3. If A[i] = A[j], then:
 - If i = j, then A[i] is **equal to** A[j].
 - If i < j, then A[i] is **less than** A[j].
 - If i > j, then A[i] is greater than A[j].

It is easy to see that this new ordering is in fact consistent.