

It is known that
$$\vec{a}\cdot\vec{b}=\left|\vec{a}\right|\left|\vec{b}\right|\cos\theta$$

$$\vec{a} \cdot \vec{b} \ge 0$$

$$\Rightarrow |\vec{a}||\vec{b}|\cos\theta \ge 0$$

$$\Rightarrow \cos \theta \ge 0$$

$$\left| |\vec{a}| \right|$$
 and $\left| \vec{b} \right|$ are positive

$$\Rightarrow 0 \le \theta \le \frac{\pi}{2}$$

Hence,
$$\vec{a}.\vec{b} \ge 0$$
 when $0 \le \theta \le \frac{\pi}{2}$.

The correct answer is B.

Question 17

Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a}+\vec{b}$ is a unit vector if

$$(\text{A}) \ \theta = \frac{\pi}{4} \, (\text{B}) \ \theta = \frac{\pi}{3} \, (\text{C}) \ \theta = \frac{\pi}{2} \, (\text{D}) \ \theta = \frac{2\pi}{3}$$

Answer

Let \vec{a} and \vec{b} be two unit vectors and θ be the angle between them.

Then,
$$|\vec{a}| = |\vec{b}| = 1$$
.

Now, $\vec{a} + \vec{b}$ is a unit vector if $|\vec{a} + \vec{b}| = 1$.

$$\left| \vec{a} + \vec{b} \right| = 1$$

$$\Rightarrow (\vec{a} + \vec{b})^2 = 1$$

$$\Rightarrow (\vec{a} + \vec{b}).(\vec{a} + \vec{b}) = 1$$

$$\Rightarrow \vec{a}.\vec{a} + \vec{a}.\vec{b} + \vec{b}.\vec{a} + \vec{b}.\vec{b} = 1$$

$$\Rightarrow \left| \vec{a} \right|^2 + 2\vec{a}.\vec{b} + \left| \vec{b} \right|^2 = 1$$

$$\Rightarrow 1^2 + 2|\vec{a}||\vec{b}|\cos\theta + 1^2 = 1$$

$$\Rightarrow$$
 1+2.1.1cos θ +1=1

$$\Rightarrow \cos \theta = -\frac{1}{2}$$

$$\Rightarrow \theta = \frac{2\pi}{3}$$

Hence, $\vec{a} + \vec{b}$ is a unit vector if $\theta = \frac{2\pi}{3}$.

The correct answer is D.

Question 18:

The value of
$$\hat{i}.(\hat{j}\times\hat{k})+\hat{j}.(\hat{i}\times\hat{k})+\hat{k}.(\hat{i}\times\hat{j})$$
 is

Answer

$$\hat{i}.\left(\hat{j}\times\hat{k}\right)+\hat{j}.\left(\hat{i}\times\hat{k}\right)+\hat{k}.\left(\hat{i}\times\hat{j}\right)$$

$$=\hat{i}\cdot\hat{i}+\hat{j}\cdot(-\hat{j})+\hat{k}\cdot\hat{k}$$

$$=1-\hat{j}\cdot\hat{j}+1$$

The correct answer is C.

Question 19:

If θ is the angle between any two vectors \vec{a} and \vec{b} , then $\left|\vec{a}.\vec{b}\right| = \left|\vec{a} \times \vec{b}\right|$ when θ is equal to

(A) 0 (B)
$$\frac{\pi}{4}$$
 (C) $\frac{\pi}{2}$ (D) π

Answer

Let θ be the angle between two vectors \vec{a} and \vec{b} .

Then, without loss of generality, \vec{a} and \vec{b} are non-zero vectors, so

that $\left| \vec{a} \right|$ and $\left| \vec{b} \right|$ are positive .

$$\left| \vec{a} \cdot \vec{b} \right| = \left| \vec{a} \times \vec{b} \right|$$

$$\Rightarrow |\vec{a}| |\vec{b}| \cos \theta = |\vec{a}| |\vec{b}| \sin \theta$$

$$\Rightarrow \cos \theta = \sin \theta$$
 $\left[\left| \vec{a} \right| \text{ and } \left| \vec{b} \right| \right]$ are positive $\left[\left| \vec{a} \right| \right]$

$$\Rightarrow \tan \theta = 1$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

Hence,
$$\left|\vec{a}.\vec{b}\right| = \left|\vec{a}\times\vec{b}\right|$$
 when θ is equal to $\frac{\pi}{4}$. The correct answer is B.