

DDPM及其在用户建模中的应用

周红 2025/1/3

Outline

一、浅谈扩散模型

二、DDPM背后的数学原理

Denoising Diffusion Probabilistic Models, NIPS 2020

三、DDPM在用户建模中的应用

- Diffusion Recommender Model, SIGIR 2023
- Generate What You Prefer: Reshaping Sequential Recommendation via Guided Diffusion, NIPS 2023

一、浅谈扩散模型

Forward Process

Reverse Process

- 目标: 从随机噪声中生成符合目标分布的数据。
- 手段: 加噪。
- 如何生成:对加噪后的数据进行建模,学习如何通过去噪得到符合目标分布的数据。

二、DDPM背后的数学原理

Denoising Diffusion Probabilistic Models

Jonathan Ho
UC Berkeley
jonathanho@berkeley.edu

Ajay Jain UC Berkeley ajayj@berkeley.edu Pieter Abbeel
UC Berkeley
pabbeel@cs.berkeley.edu

Figure 2: The directed graphical model considered in this work.

1. Forward Process

- 前向过程是一个初始状态为x0马尔可夫过程,其中x0由目标数据集中随机采样得到。
- 不断向分布中添加噪声,该加噪过程是一个高斯分布,均值和方差由 β_t 决定。
- 随着t的不断增大,最终数据分布 XT 变为各向独立的高斯分布。

$$x_{t-1}$$
 ε

 \boldsymbol{X}_{t}

1. Forward Process

• 任意时刻的分布可直接得出,不用进行迭代。

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1-\bar{\alpha}_t)\mathbf{I}) \qquad \alpha_t \coloneqq 1-\beta_t \text{ and } \bar{\alpha}_t \coloneqq \prod_{s=1}^t \alpha_s$$

$$= \sqrt{1-\beta_1} \qquad + \sqrt{\beta_1}$$

$$= \sqrt{1-\beta_2} \qquad + \sqrt{\beta_2}$$

$$= \sqrt{1-\beta_2} \qquad + \sqrt{\beta_2}$$

$$= \sqrt{1-\beta_2} \sqrt{1-\beta_1} \qquad + \sqrt{\beta_2}$$

$$= \sqrt{1-\beta_2} \sqrt{1-\beta_1} \qquad + \sqrt{\beta_2}$$

$$= \sqrt{1-\beta_2} \sqrt{1-\beta_1} \qquad + \sqrt{\beta_2}$$

$$+ \sqrt{1-(1-\beta_2)(1-\beta_1)}$$

$$+ \sqrt{1-(1-\beta_2)(1-\beta_1)}$$

- 逆向过程是一个初始状态为XT的马尔可夫过程,XT是服从标准正态分布的高斯噪声。
- 不断从分布中去除噪声,假设该去噪过程也是一个高斯分布,均值和方差取决于模型参数0。
- 随着t的不断减小,得到符合目标数据分布的样本。

$$p_{\theta}(\mathbf{x}_{0:T}) \coloneqq p(\mathbf{x}_T) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t), \qquad p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\theta}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\theta}(\mathbf{x}_t, t))$$

- 图像生成的本质目标: 训练得到的模型生成的图像与真实图像是相似的。
- 采用最大似然估计,最大化 $P_{\theta}(x_0)$ 。

• 最大化对数似然函数的下界

$$\log_{\boldsymbol{p}_{\boldsymbol{\theta}}(\mathbf{x}_{0})} = \log \int p_{\boldsymbol{\theta}}(\mathbf{x}_{0:T}) d\mathbf{x}_{1:T}$$

$$= \log \int \frac{p_{\boldsymbol{\theta}}(\mathbf{x}_{0:T}) q(\mathbf{x}_{1:T}|\mathbf{x}_{0})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} d\mathbf{x}_{1:T}$$

$$= \log \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} \left[\frac{p_{\boldsymbol{\theta}}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} \right]$$

期望的定义

$\geq \mathbb{E}_{q(oldsymbol{x}_{1:T}|oldsymbol{x}_0)} \left| \log rac{p(oldsymbol{x}_{0:T})}{q(oldsymbol{x}_{1:T}|oldsymbol{x}_0)} ight|$

根据詹森不等式

对于一个凸函数 f 和一个随机变量 X $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$

$$p_{\theta}(\mathbf{x}_0) \coloneqq \int p_{\theta}(\mathbf{x}_{0:T}) d\mathbf{x}_{1:T}$$

$$p_{\theta}(\mathbf{x}_{0:T}) \coloneqq p(\mathbf{x}_T) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)^{X_0}$$

$$= \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0)} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_0|\boldsymbol{x}_1) \right] + \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0)} \left[\log \frac{p(\boldsymbol{x}_T)}{q(\boldsymbol{x}_T|\boldsymbol{x}_0)} \right] + \sum_{t=2}^T \mathbb{E}_{q(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0)} \left[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)}{q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0)} \right]$$

$$= \mathbb{E}_{q(\boldsymbol{x}_1|\boldsymbol{x}_0)} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_0|\boldsymbol{x}_1) \right] + \mathbb{E}_{q(\boldsymbol{x}_T|\boldsymbol{x}_0)} \left[\log \frac{p(\boldsymbol{x}_T)}{q(\boldsymbol{x}_T|\boldsymbol{x}_0)} \right] + \sum_{t=2}^T \mathbb{E}_{q(\boldsymbol{x}_t,\boldsymbol{x}_{t-1}|\boldsymbol{x}_0)} \left[\log \frac{p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)}{q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t,\boldsymbol{x}_0)} \right]$$

最小化负对数似然函数的上界

$$L = \mathbb{E}_q \left[-\log \frac{p_{\boldsymbol{\theta}}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \right] \quad p_{\boldsymbol{\theta}}(\mathbf{x}_{0:T}) := p(\mathbf{x}_T) \prod_{t=1}^T p_{\boldsymbol{\theta}}(\mathbf{x}_{t-1}|\mathbf{x}_t)$$

$$= \mathbb{E}_{q(\boldsymbol{x}_1|\boldsymbol{x}_0)} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_0|\boldsymbol{x}_1) \right] - \mathbb{E}_{p(\boldsymbol{x}_1|\boldsymbol{x}_0)} \left[D_{\mathrm{KL}}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t,\boldsymbol{x}_0) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t))\right]$$

$$= \mathbb{E}_{q(\boldsymbol{x}_1|\boldsymbol{x}_0)} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_0|\boldsymbol{x}_1) \right] - \mathbb{E}_{p(\boldsymbol{x}_1|\boldsymbol{x}_0)} \left[D_{\mathrm{KL}}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t,\boldsymbol{x}_0) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t))\right]$$

$$= \mathbb{E}_{q(\boldsymbol{x}_1|\boldsymbol{x}_0)} \left[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}_0|\boldsymbol{x}_1) \right] - \mathbb{E}_{p(\boldsymbol{x}_1|\boldsymbol{x}_0)} \left[D_{\mathrm{KL}}(q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t,\boldsymbol{x}_0) \parallel p_{\boldsymbol{\theta}}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t))\right]$$

$$= \mathbb{E}_q \left[-\log p(\mathbf{x}_T) - \sum_{t \geq 1} \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)}{q(\mathbf{x}_t|\mathbf{x}_{t-1})} \right]$$
 提出t=1的项

$$= \mathbb{E}_q \left| -\log p(\mathbf{x}_T) - \sum_{t \geq 1} \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)}{q(\mathbf{x}_t|\mathbf{x}_{t-1})} - \log \frac{p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)}{q(\mathbf{x}_1|\mathbf{x}_0)} \right| q(\mathbf{x}_t|\mathbf{x}_{t-1})q(\mathbf{x}_{t-1}|\mathbf{x}_0) = q(\mathbf{x}_t|\mathbf{x}_0)q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$$

$$= \mathbb{E}_q \left[-\log p(\mathbf{x}_T) - \sum_{t>1} \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)}{q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)} \cdot \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_0)}{q(\mathbf{x}_t|\mathbf{x}_0)} - \log \frac{p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)}{q(\mathbf{x}_1|\mathbf{x}_0)} \right] \quad \text{t>1$ on n is p in β in $$$

$$= \mathbb{E}_{q} \left[-\log \frac{p(\mathbf{x}_{T})}{q(\mathbf{x}_{T}|\mathbf{x}_{0})} - \sum_{t>1} \log \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} - \log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1}) \right]$$

$$(1)$$

$$\mathsf{KL} \& \mathsf{E} \& \mathsf{E} = \mathsf{M} \land \mathsf{A} \land \mathsf{A} \not \mathsf{A}$$

$$= \mathbb{E}_q \left[D_{\mathrm{KL}}(q(\mathbf{x}_T | \mathbf{x}_0) \parallel p(\mathbf{x}_T)) + \sum_{t>1} D_{\mathrm{KL}}(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) \parallel p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)) - \log p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1) \right]$$

3. 学习目标

$$\mathbb{E}_{q} \left[\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{T}|\mathbf{x}_{0}) \parallel p(\mathbf{x}_{T}))}_{L_{T}} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}))}_{L_{t-1}} \underbrace{-\log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}_{L_{0}} \right]$$

- L_T: 前向过程确定, p(X_T) 是标准正态分布, 故为定值。
- L_0 : 可以理解为重构项,可以用 $Monte\ Carlo$ 估计来近似和优化。
- L₁₋₁: 需要重点关注的项。

$$q(x_{t-1}|x_t,x_0) = \frac{q(x_{t-1},x_t,x_0)}{q(x_t,x_0)} = \frac{q(x_t|x_{t-1})q(x_{t-1}|x_0)q(x_0)}{q(x_t|x_0)q(x_0)} = \frac{q(x_t|x_{t-1})q(x_{t-1}|x_0)}{q(x_t|x_0)}$$

$$q(x_{t-1}|x_t,x_0) = \frac{q(x_{t-1},x_t,x_0)}{q(x_t,x_0)} = \frac{q(x_{t-1},x_t,x_0)}{q(x_t|x_0)q(x_0)} = \frac{q(x_{t-1},x_t,x_0)}{q(x_t|x_0)}$$

$$\propto \mathcal{N}(\boldsymbol{x}_{t-1}; \underbrace{\frac{\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1})\boldsymbol{x}_t + \sqrt{\bar{\alpha}_{t-1}}(1-\alpha_t)\boldsymbol{x}_0}{1-\bar{\alpha}_t}}_{\mu_q(\boldsymbol{x}_t,\boldsymbol{x}_0)}, \underbrace{\frac{(1-\alpha_t)(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t}}_{\boldsymbol{\Sigma}_q(t)} \mathbf{I}) \quad p_{\boldsymbol{\theta}}(\mathbf{x}_{t-1}|\mathbf{x}_t) \coloneqq \mathcal{N}(\mathbf{x}_{t-1}; \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{x}_t, t), \boldsymbol{\Sigma}_{\boldsymbol{\theta}}(\mathbf{x}_t, t))$$

- ①式均值方差固定。
- ②式中作者将方差设为固定值。
- 故两个分布的差异只与均值之差有关; 直观来 说,要想两个分布差异最小,就需要两分布的 均值差异最小。换而言之、需要模型去预测分 布(1)的均值。

三项均为已知的高斯分布

3. 学习目标

$$\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) \coloneqq \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t}\mathbf{x}_0 + \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t}\mathbf{x}_t$$

分布①的均值

$$q(\mathbf{x}_{t}|\mathbf{x}_{0}) = \mathcal{N}(\mathbf{x}_{t}; \sqrt{\bar{\alpha}_{t}}\mathbf{x}_{0}, (1 - \bar{\alpha}_{t})\mathbf{I})$$

$$\frac{x_{t} - \sqrt{1 - \bar{\alpha}_{t}}\varepsilon}{\sqrt{\bar{\alpha}_{t}}} = x_{0}$$

$$\tilde{\boldsymbol{\mu}}_{t} = \frac{1}{\sqrt{\bar{\alpha}_{t}}} \left(x_{t} - \frac{1 - \alpha_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \underline{\varepsilon} \right)$$

- ① 式均值方差固定。
- ②式中作者将方差设为固定值。
- 故两个分布的差异只与均值之差有关;直观来说,要想两个分布差异最小,就需要两分布的均差差异最小。换而言之,需要模型去预测分布①的均值。
- 在逆向过程中, X_t 是已知的,故可以只让模型去预测 X_0 的值。
- 实际中直接预测x₀的值,并将其作为最终 生成结果,会导致生成质量较差。 (一步一步来>一步到位)
- · 对 X_0 进行转换,式子中只有噪声 ε 是未知的,故最终让模型去预测 ε 的值。

注:以上是直观解释,但均可通过证明得到,具体可参考 Understanding Diffusion Models: A Unified Perspective, arXiv 2022

Algorithm 1 Training

- 1: **repeat** 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \| \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \epsilon, t) \|^{2}$$
 6: until converged 加噪后的图像

目标噪声

预测的噪声

Sample t

Algorithm 2 Sampling

1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

6: return x_0

- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$

4:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \mathbf{\varepsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

$$\tilde{\boldsymbol{\mu}}_t = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \mathbf{\varepsilon}_{\theta}(\mathbf{x}_t, t) \right)$$
5: **end for**

$$\tilde{\boldsymbol{\mu}}_t = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\varepsilon} \right)$$

三、DDPM在用户建模中的应用

- 1. 扩散什么?
 - 在整个项目空间上对用户-项目交互进行扩散,例如 $x_0 = \{0,1\}^{|I|}$ 。
 - 在连续潜在空间中进行扩散,去噪后的潜在表示通常用作用户偏好向量或目标项目表示。
- 2. 用什么来指导?
 - 该指导充当条件信息,确保生成的是与每个用户相关的个性化推荐。
- 3. 如何加速?
 - 去噪时从有意义的输入(例如加噪后的交互矩阵)开始,而不是传统的纯高斯噪声。

Diffusion Recommender Model

Wenjie Wang wenjiewang96@gmail.com

National University of Singapore

Yiyan Xu

yiyanxu24@gmail.com University of Science and Technology University of Science and Technology

of China

Fuli Feng*

fulifeng93@gmail.com

of China

Xinyu Lin

xylin1028@gmail.com National University of Singapore Xiangnan He

xiangnanhe@gmail.com University of Science and Technology

of China

Tat-Seng Chua

dcscts@nus.edu.sg

National University of Singapore

论文动机:

- 现有生成模型的局限性: 变分自编码器(VAE)和生成对抗网络(GAN)等生成模型 常用于模拟用户交互的生成过程,但它们存在固有缺陷。
 - VAE: 表示能力受限,可能无法捕捉用户交互的复杂性。
 - GAN: 训练过程不稳定、难以收敛。
- 扩散模型强大的生成能力。

扩散什么?

给定用户 \mathbf{u} , 项目集 \mathbf{I} ,交互历史为 $\mathbf{x}_{u} = \{\mathbf{x}_{u}^{1}, \mathbf{x}_{u}^{2}, \dots, \mathbf{x}_{u}^{|I|}\}$, \mathbf{x}_{u}^{i} 为1表示用户 \mathbf{u} 与项目 \mathbf{i} 进行了交互,为0则表示没有交互。设 $x_0 = x_u$ 为初始状态。

个性化信息保留&加速

• 首先对 x_0 进行加噪,变为 $x_{T'}$,然后设置 $\hat{x}_T = x_{T'}$,并以 \hat{x}_T 为输入(即不是从传统的 纯高斯噪声开始)来执行反向去噪操作。

• 训练过程

Algorithm 1 DiffRec Training

Input: all users' interactions \bar{X} and randomly initialized θ .

- 1: repeat
- 2: Sample a batch of users' interactions $X \subset \bar{X}$.
- 3: for all $x_0 \in X$ do
- 4: Sample $t \sim \mathcal{U}(1, T)$ or $t \sim p_t$, $\epsilon \sim \mathcal{N}(0, I)$;
- 5: Compute x_t given x_0 , t, and ϵ via $q(x_t|x_0)$ in Eq. (3);
- 6: Compute \mathcal{L}_t by Eq. (11) if t > 1, otherwise by Eq. (12);
- 7: Take gradient descent step on $\nabla_{\theta} \mathcal{L}_t$ to optimize θ ;
- 8: until converged

Output: optimized θ .

对原始交互进行加噪

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1-\bar{\alpha}_t)\mathbf{I}), \tag{3}$$

$$\mathcal{L}_{t} = \mathbb{E}_{q(\mathbf{x}_{t}|\mathbf{x}_{0})} \left[\frac{1}{2} \left(\frac{\bar{\alpha}_{t-1}}{1 - \bar{\alpha}_{t-1}} - \frac{\bar{\alpha}_{t}}{1 - \bar{\alpha}_{t}} \right) \| \hat{\mathbf{x}}_{\theta}(\mathbf{x}_{t}, t) - \mathbf{x}_{0} \|_{2}^{2} \right], \quad (11)$$

$$\mathcal{L}_{1} \triangleq -\mathbb{E}_{q(\mathbf{x}_{1}|\mathbf{x}_{0})} \left[\log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1}) \right]$$

$$= \mathbb{E}_{q(\mathbf{x}_{1}|\mathbf{x}_{0})} \left[\left\| \hat{\mathbf{x}}_{\theta}(\mathbf{x}_{1},1) - \mathbf{x}_{0} \right\|_{2}^{2} \right], \qquad (12)$$

训练参数为 θ 的模型,模型根据加噪后的交互和时间步来对 x_0 进行预测

• 推理过程

Algorithm 2 DiffRec Inference

Input: θ and the interaction history x_0 of user u.

- 1: Sample $\epsilon \sim \mathcal{N}(0, I)$.
- 2: Compute $x_{T'}$ given x_0 , T', and ϵ via Eq. (3), and set $\hat{x}_T = x_{T'}$.
- 3: **for** t = T, ..., 1 **do**
- 4: $\hat{x}_{t-1} = \mu_{\theta}(\hat{x}_t, t)$ calculated from \hat{x}_t and $\hat{x}_{\theta}(\cdot)$ via Eq. (10);

Output: the interaction probabilities \hat{x}_0 for user u.

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I}), \tag{3}$$

$$\mu_{\theta}(\mathbf{x}_{t},t) = \frac{\sqrt{\alpha_{t}}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_{t}}\mathbf{x}_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}(1-\alpha_{t})}{1-\bar{\alpha}_{t}}\hat{\mathbf{x}}_{\theta}(\mathbf{x}_{t},t)$$
(10)

$$\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) \coloneqq \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0 + \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t$$

Generate What You Prefer: Reshaping Sequential Recommendation via Guided Diffusion

Zhengyi Yang[‡] Jiancan Wu^{‡*} Zhicai Wang[‡] Yancheng Yuan^{§*} Xiang Wang^{‡†} Xiangnan He^{‡†}

[‡]University of Science and Technology of China [§]The Hong Kong Polytechnic University {yangzhy,wangzhic}@mail.ustc.edu.cn {wujcan,xiangwang1223,xiangnanhe}@gmail.com yancheng.yuan@polyu.edu.hk

论文动机:解决当前序列推荐系统中的两大局限性。

- **与人类行为的差异**:传统的序列推荐模型采用"学习分类"的范式,通过负采样添加负例, 训练模型区分用户是否偏好某项物品。而人类在选择时,往往会在脑海中构想出理想的 物品,然后寻找与之匹配的选项。
- 负采样的局限性:可能引入噪声,削弱对用户真实偏好的学习效果。

扩散什么?

• 通常,每个项目 $U \in I$ 最初被转换为其相应的嵌入向量 e。因此交互序列可以表示为 $e_{1:n-1} = [e_1, e_2, \dots, e_{n-1}]$,使用扩散模型来生成用户可能选择的下一个项目 e_n^0 。

用什么来指导?

- 需要解决个性化问题,提出用相应的历史交 互序列来指导去噪过程。
- 用户在进行购买时,倾向于在他们的头脑中 创建一个理想化的项目,而这个项目的生成 与用户交互历史是高度相关的。

Algorithm 1 Training phase of DreamRec

```
1: repeat
 2: \mathbf{e}_{n}^{0}, \mathbf{e}_{1:n-1} \sim \mathcal{D}
                                                                                                                             Sample and embed a data from training set.
 3: \mathbf{c}_{n-1} = \text{T-enc}(\mathbf{e}_{1:n-1})
                                                                                                                                                         ▶ Encode interaction sequence.
 4: With probability p_u: \mathbf{c}_{n-1} = \Phi
                                                                                                             \triangleright Perform unconditional training with probability p_u.
5: t \sim \text{Uniform}(\{1, \dots, T\})

6: \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) 对\boldsymbol{e}_{n}^{0}, 即目标项目

7: \mathbf{e}_{n}^{t} = \sqrt{\bar{\alpha}_{t}}\mathbf{e}_{n}^{0} + \sqrt{1 - \bar{\alpha}_{t}}\boldsymbol{\epsilon} 进行预测

8: \theta = \theta - \mu \nabla_{\theta} \|\mathbf{e}_{n}^{0} - f_{\theta}(\mathbf{e}_{n}^{t}, \mathbf{c}_{n-1}, t)\|^{2}
                                                                                                                                                                       > Sample diffusion step.

    Sample Gaussian noise.

    Corrupt the traget item with Gaussian noise.

                                                                                                                           \triangleright Take gradient descent step, \mu is the step size.
 9: until converged
```

- 同时训练无条件去噪扩散模型 $f_{\theta}(e_{n}^{t},t)$ 和利用历史交互作为 条件的条件去噪扩散模型 $f_{\theta}(e_{n}^{t}, c_{n-1}, t)$
- 有条件和无条件的权衡——个性化和多样化推荐的权衡

Algorithm 2 Generation phase of DreamRec

- 1: $\mathbf{e}_{1:n-1} \sim \mathcal{D}_t$ 2: $\mathbf{e}_n^T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 3: $\mathbf{c}_{n-1} = \text{T-enc}(\mathbf{e}_{1:n-1})$
- 4: **for** t = T, ..., 1 **do**
- 5: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 6: $\tilde{f}_{\theta}(\mathbf{e}_n^t, \mathbf{c}_{n-1}, t) = (1+w) f_{\theta}(\mathbf{e}_n^t, \mathbf{c}_{n-1}, t) w f_{\theta}(\mathbf{e}_n^t, \Phi, t)$

7:
$$\mathbf{e}_n^{t-1} = \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1-\bar{\alpha}_t} \left[\tilde{f}_{\theta}(\mathbf{e}_n^t, \mathbf{c}_{n-1}, t) \right] + \frac{\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t} \mathbf{e}_n^t + \sqrt{\bar{\beta}_t} \mathbf{z}$$

8: end for

9: **return** \mathbf{e}_n^0

....

进行预测

$$\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0) \coloneqq \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0 + \frac{\sqrt{\alpha_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t$$

- > Sample and embed a data from testing set.
 - Sample Gaussian noise.
 - ▶ Encode interaction sequence.
 - Denoise for T steps. ▷
 - Sample denoising variance.
 - Control the strength of guidance.
 - Denoise for one step.

- 相应地,在推理阶段也需要进行有条件和无条件的权衡。
- W 是控制 C_{n-1} 强度的超参数,较高的W值可以增强个性化指导,但可能会破坏扩散的泛化能力,从而降低生成的目标项的质量。

Thanks