Arquitecturas y Organización de Computadoras I

3: Microarquitectura/Organización: El camino de datos

Rafael Ignacio Zurita

Depto. Ingeniería de Computadoras

October 13, 2020

» Temario

Microarquitectura

Como implementar una arquitectura en hardware meta: costo, rendimiento, etc

La microarquitectura está compuesta por registros, archivos de registros, control, ALU, multiplexores, decodificadores, etc.

Todos estos componentes son circuitos combinacionales o circuitos secuenciales

Estos circuitos digitales son construídos físicamente en la actualidad con circuitos CMOS

- * Al evaluar/definir el rendimiento de una computadora:
 - * La **Arquitectura y el compilador** definen la cantidad de instrucciones que se ejecutan de un programa
 - * La Organización/Microarquitectura definen:
 - * la cantidad de ciclos de reloj por instrucción
 - el tiempo del período del reloj (y por lo tanto la frecuencia)
- * Los principios básicos de diseño de MIPS se observan en su microarquitectura:
 - * Hacer rápido el caso común
 - * La Simplicidad favorece a la Regularidad

COMO se diseña una Microarquitectura (diseño del procesador)

1. Analizar el conjunto de instrucciones (ISA)

- 1. Analizar el conjunto de instrucciones (ISA)
 - * Obtener los requerimientos del camino de datos

- 1. Analizar el conjunto de instrucciones (ISA)
 - * Obtener los requerimientos del camino de datos
- 2. Seleccionar los componentes y establecer la metodología del reloj

- 1. Analizar el conjunto de instrucciones (ISA)
 - * Obtener los requerimientos del camino de datos
- 2. Seleccionar los componentes y establecer la metodología del reloj
 - * Ejemplo: registros, ALU. Flanco de subida.

- 1. Analizar el conjunto de instrucciones (ISA)
 - * Obtener los requerimientos del camino de datos
- 2. Seleccionar los componentes y establecer la metodología del reloj
 - * Ejemplo: registros, ALU. Flanco de subida.
- 3. Diseñar el camino de datos para cumplir los requerimientos

- 1. Analizar el conjunto de instrucciones (ISA)
 - * Obtener los requerimientos del camino de datos
- 2. Seleccionar los componentes y establecer la metodología del reloj
 - * Ejemplo: registros, ALU. Flanco de subida.
- 3. Diseñar el camino de datos para cumplir los requerimientos
 - * Ejemplo: conectar las señales de salida del archivo de registros con la ALU.

- 1. Analizar el conjunto de instrucciones (ISA)
 - * Obtener los requerimientos del camino de datos
- 2. Seleccionar los componentes y establecer la metodología del reloj
 - * Ejemplo: registros, ALU. Flanco de subida.
- 3. Diseñar el camino de datos para cumplir los requerimientos
 - * Ejemplo: conectar las señales de salida del archivo de registros con la ALU.
- 4. Determinar las señales de control para cada instrucción

- 1. Analizar el conjunto de instrucciones (ISA)
 - * Obtener los requerimientos del camino de datos
- 2. Seleccionar los componentes y establecer la metodología del reloj
 - * Ejemplo: registros, ALU. Flanco de subida.
- 3. Diseñar el camino de datos para cumplir los requerimientos
 - * Ejemplo: conectar las señales de salida del archivo de registros con la ALU.
- 4. Determinar las señales de control para cada instrucción
 - * Ejemplo: señales de "sumar" hacia la ALU, cuando hay que calcular la dirección efectiva

- 1. Analizar el conjunto de instrucciones (ISA)
 - * Obtener los requerimientos del camino de datos
- 2. Seleccionar los componentes y establecer la metodología del reloj
 - * Ejemplo: registros, ALU. Flanco de subida.
- 3. Diseñar el camino de datos para cumplir los requerimientos
 - * Ejemplo: conectar las señales de salida del archivo de registros con la ALU.
- 4. Determinar las señales de control para cada instrucción
 - * Ejemplo: señales de "sumar" hacia la ALU, cuando hay que calcular la dirección efectiva
- 5. Diseñar la lógica de control (unidad de control) que genera las señales de control

- 1. Analizar el conjunto de instrucciones (ISA)
 - * Obtener los requerimientos del camino de datos
- 2. Seleccionar los componentes y establecer la metodología del reloj
 - * Ejemplo: registros, ALU. Flanco de subida.
- 3. Diseñar el camino de datos para cumplir los requerimientos
 - * Ejemplo: conectar las señales de salida del archivo de registros con la ALU.
- 4. Determinar las señales de control para cada instrucción
 - * Ejemplo: señales de "sumar" hacia la ALU, cuando hay que calcular la dirección efectiva
- 5. Diseñar la lógica de control (unidad de control) que genera las señales de control
 - * Ejemplo: Circuito combinacional o máquina de estados

- 1. Analizar el conjunto de instrucciones (ISA)
 - * Obtener los requerimientos del camino de datos
- 2. Seleccionar los componentes y establecer la metodología del reloj
- 3. Componer el camino de datos para cumplir los requerimientos
- 4. Determinar las señales de control para cada instrucción
- 5. Componer la lógica de control (unidad de control) para generar las señales de control

- 1. Analizar el conjunto de instrucciones (ISA)
 - * Obtener los requerimientos del camino de datos

Diseño de la Microarquitectura (diseño del procesador)

- 1. Analizar el conjunto de instrucciones (ISA)
 - * Obtener los requerimientos del camino de datos

¿Qué tipos de instrucciones (formato) MIPS son las dos anteriores?

- 1. Analizar el conjunto de instrucciones (ISA)
 - * Obtener los requerimientos del camino de datos

- 1. Analizar el conjunto de instrucciones (ISA)
 - * Obtener los requerimientos del camino de datos
- * Para nuestro diseño contemplaremos un conjunto de instrucciones MIPS reducido:
 - 1. De tipo-R: and, or, add, sub, slt
 - 2. De carga y almacenamiento (tipo-i): lw, sw
 - 3. De bifurcación (tipo-i): beq
 - 4. De salto (tipo-j): j

Multiple implementaciones para una misma arquitectura

- 1. Camino de datos de un único ciclo
 - * Cada instrucción se ejecuta en un único ciclo de reloj
- 2. Multiciclo
 - * Cada instrucción es dividida en una serie de pasos más cortos, y cada paso toma un ciclo de reloj
- 3. Segmentado (pipelined)
 - * Cada instrucción es dividida en una serie de pasos, cada paso toma un ciclo de reloj
 - * Multiples instrucciones se ejecutan a la vez

- * REQUERIMIENTOS Analizar el conjunto de instrucciones (ISA)
- * Controlar la memoria
 - Leer instrucciones
 - * Leer y escribir datos
- * Controlar el archivo de 32 registros
 - * Leer el valor de un registro (indicado por el campo rs)
 - * Leer el valor de un registro (indicado por el campo rt)
 - * Escribir un valor en un registro (indicado por el campo rd o rt)
- * Controlar el PC
- * Poder extender el signo de un número
- * Realizar operaciones aritméticas y lógicas
- Poder sumar 4 al PC

- 1. Analizar el conjunto de instrucciones (ISA)
 - * Obtener los requerimientos del camino de datos
- 2. Seleccionar los componentes y establecer la metodología del reloj
- 3. Componer el camino de datos para cumplir los requerimientos
- 4. Determinar las señales de control para cada instrucción
- 5. Componer la lógica de control (unidad de control) para generar las señales de control

- * Seleccionar los componentes
- Componentes combinacionales
 - * Sumador
 - * ALU
 - * Multiplexores
 - * Extensor de signo
- * Elementos de memoria
 - * Registros de la microarquitectura
 - * Archivo de registros
 - * Memoria

Diseño de la Microarquitectura (diseño del procesador)

* Componentes Combinacionales

Diseño de la Microarquitectura (diseño del procesador)

* Elementos de Memoria

Diseño de la Microarquitectura (diseño del procesador)

* Metodología del Reloj

Diseño de la Microarquitectura (diseño del procesador)

Metodología del Reloj

- 1. Analizar el conjunto de instrucciones (ISA)
 - * Obtener los requerimientos del camino de datos
- 2. Seleccionar los componentes y establecer la metodología del reloj
- 3. Componer el camino de datos para cumplir los requerimientos
- 4. Determinar las señales de control para cada instrucción
- 5. Componer la lógica de control (unidad de control) para generar las señales de control

Diseño de la Microarquitectura (diseño del procesador)

- * Componer el camino de datos para cumplir los requerimientos
- * Tareas del procesador que se deben implementar
 - 1. Leer una instrucción desde la memoria

Diseño de la Microarquitectura (diseño del procesador)

- * Componer el camino de datos para cumplir los requerimientos
- * Tareas del procesador que se deben implementar
 - 1. Leer una instrucción desde la memoria
 - 2. Decodificar la instrucción y leer los valores de los registros involucrados

Diseño de la Microarquitectura (diseño del procesador)

- * Componer el camino de datos para cumplir los requerimientos
- * Tareas del procesador que se deben implementar
 - 1. Leer una instrucción desde la memoria
 - 2. Decodificar la instrucción y leer los valores de los registros involucrados
 - 3. Incrementar el PC

Diseño de la Microarquitectura (diseño del procesador)

- * Componer el camino de datos para cumplir los requerimientos
- * Tareas del procesador que se deben implementar
 - 1. Leer una instrucción desde la memoria
 - 2. Decodificar la instrucción y leer los valores de los registros involucrados
 - 3. Incrementar el PC
 - 4. Si es necesario, realizar una operación con la ALU

Diseño de la Microarquitectura (diseño del procesador)

- * Componer el camino de datos para cumplir los requerimientos
- * Tareas del procesador que se deben implementar
 - 1. Leer una instrucción desde la memoria
 - 2. Decodificar la instrucción y leer los valores de los registros involucrados
 - 3. Incrementar el PC
 - 4. Si es necesario, realizar una operación con la ALU
 - 5. Si se calcula una dirección efectiva, realizar una operación de carga y almacenamiento

- * Componer el camino de datos para cumplir los requerimientos
- * Tareas del procesador que se deben implementar
 - 1. Leer una instrucción desde la memoria
 - 2. Decodificar la instrucción y leer los valores de los registros involucrados
 - 3. Incrementar el PC
 - 4. Si es necesario, realizar una operación con la ALU
 - 5. Si se calcula una dirección efectiva, realizar una operación de carga y almacenamiento
 - 6. Escribir los resultados en el archivo de registros (si es necesario)
- * ¿Cómo implementar estas tareas con un camino de datos hardware?

- * Componer el camino de datos para cumplir los requerimientos
- * Tareas del procesador que se deben implementar
 - 1. Leer una instrucción desde la memoria
 - 2. Decodificar la instrucción y leer los valores de los registros involucrados
 - 3. Incrementar el PC
 - 4. Si es necesario, realizar una operación con la ALU
 - 5. Si se calcula una dirección efectiva, realizar una operación de carga y almacenamiento
 - 6. Escribir los resultados en el archivo de registros (si es necesario)
 - 7. Escribir el nuevo valor del PC en el registro PC
- * ¿Cómo implementar estas tareas con un camino de datos hardware?

Camino de datos para leer una instrucción desde la memoria

Camino de datos ejecutar una operación de tipo R

Camino de datos ejecutar una operación de carga y almacenamiento

Camino de datos ejecutar una operación de carga y almacenamiento

Camino de datos ejecutar una operación de bifurcacion

Juntando todos los caminos de las diferentes instrucciones

- * Meta: unificar los caminos y componentes para cada función
 - * Leer instrucción
 - * Instrucciones de tipo R
 - * Instrucciones de carga y almacenamiento
 - * Instrucciones de bifurcacion
- * Se deben agregar multiplexores para seleccionar el dato correcto

Camino de datos combinado - tipo R

Camino de datos combinado - instrucciones de carga

Camino de datos combinado - instrucciones de almacenamiento

Camino de datos combinado - instrucciones de bifurcacion

Camino de datos combinado - instrucciones de bifurcacion

¿Qué falta en este camino de datos?

Camino de datos completo - unidad de control

Unidad de control - señales hacia ALU

Instr. type	Operation	funct	Desired Action	ALU Ctl.	ALUOp
data transfer	lw	xxxxxx	add	010	00
data transfer	sw	XXXXXX	add	010	00
branch	beq	XXXXXX	subtract	110	01
r-type	add	100000	add	010	10
r-type	sub	100010	subtract	110	10
r-type	and	100100	and	000	10
r-type	or	100101	or	001	10
r-type	slt	101010	set on less than	111	10

Camino de datos completo - ¿instrucción j?

¿Qué modificaciones puede hacerse para agregar el tipo de instrucción j?

Camino de datos completo - ¿instrucción j?

¿Qué modificaciones puede hacerse para agregar el tipo de instrucción j?

Camino de datos completo - unidad de control

Microarquitectura multiciclo

¿Cuál es el problema en la microarquitectura de un único ciclo?

Microarquitectura multiciclo

Microarquitectura multiciclo

» Consejos y preguntas

* ¿Preguntas?

» Bibliografia

Libros

* David. Patterson John L. Hennessy (1995), ORGANIZACIÓN Y DISEÑO DE COMPUTADORES La interfaz hardware/software, McGraw-Hill (8 copias en biblioteca).