Lecture 9 Ordered and Sorted Ranges Algorithms and D.S. to Represent Sets

EECS 281: Data Structures & Algorithms

find/ secondary

Types of Containers

Туре	Distinctive interfaces (not all methods listed)				
Container	Supports add() and remove() operations				
Searchable Container	Adds find() operation				
Sequential Container	Allows iteration over elements in some order				
Ordered Container	Sequential container which maintains current order.				
	Can arbitrarily insert new elements anywhere.				
	Example: Books on a shelf				
Sorted Container	Ordered container with pre-defined order.				
	Can NOT arbitrarily insert elements.				
	Example: Students sorted by ID				

When would sorted containers be preferred over ordered?

Implementing Sorted and Ordered Containers

· Two implementation styles: connected, contiguous

- Preferred implementation dependent upon requirements of application
 - Know which operations will be called often
- Study multiple implementations
 - Know asymptotic complexity of each operation

When would a linked list be preferred over an array?

Asymptotic Complexities: **Sorted** Container

Operation	Array	Linked List
addElement(val)	O(n)	O(n)
remove(val)	O(n)	O(n)
remove(iterator)	O(n)	O(n) or O(1)
find(val)	O(log n)	O(n)
Iterator::operator*()	O(1)	O(1)
operator[](unsigned)	O(1)	O(n)
insertAfter(iterator, val)	N/A	N/A
insertBefore(iterator, val)	N/A	N/A

Container Review

- · Objects storing a variable number of other objects
- · Allow for control/protection of data
- · Can copy/edit/sort/move many objects at once
- Examples: vector, deque, stack, map, list, array

Unordered Container

Ordered Container

Nested

Ordered Clarification

- Ordered container elements maintain their "relative" position unless they are removed
- Example: If A comes before Q, and then Z is inserted between them, their relative ordering has not changed
 - A still comes before Q
- If Q is then removed, the container is still ordered
 - Before and after delete, A comes before Z

Asymptotic Complexities: **Ordered** Container

Operation	Array	Linked List
addElement(val)	O(1)	O(1)
remove(val)	O(n)	O(n)
remove(iterator)	O(n)	<i>O</i> (<i>n</i>) or <i>O</i> (1)
find(val)	O(n)	O(n)
Iterator::operator*()	O(1)	O(1)
operator[](unsigned)	O (1)	<i>O</i> (<i>n</i>)
insertAfter(iterator, val)	O(n)	O(1)
insertBefore(iterator, val)	O(n)	<i>O</i> (<i>n</i>) or <i>O</i> (1)

Binary Search Example: Find 21

Binary search requires elements to be sorted

billary search

Binary Search

```
int bsearch(double a[], double val,
                                              n is size of all
  n = right - left
                                              loop at most k times
    int mid = left + (right - left) / 2;
                                              1 step
    if (val == a[mid])
                                              1 step
      return mid;
                                              1 step
    if (val < a[mid])</pre>
                                              1 step
      right = mid;
                                              1 step
       left = mid + 1;
                                              n is split in half each loop
  } // while
                                              n = n/2
                                              2^k = n
  return -1; // val not found
                                              Total: 5k \text{ steps} = O(k)
} // bsearch()
                                              But what is k? log(n)
```

Asymptotic Complexity = $O(\log n)$

How do we compare elements that are objects?

Speeding up Binary Search

- Speed-up idea: == rarely triggers,
 - check if < first
 - else if >
 - else must be ==
- More radical idea: move the == check out of the loop
 - Find a sharp lower bound for the sought element first
 - First item >= what I'm looking for
 - Check for the value == after the loop

2 Comparisons Half the Time

```
int bsearch(double a[], double val,
     int left, int right) {
while (right > left) {
                                                // ONE
       int mid = left + (right - left) / 2;
                                // TWO: check < not ==
       if (a[mid] < val)</pre>
          left = mid + 1;
       else if (val < a[mid])</pre>
                                                // THREE
          right = mid;
       else // (val == a[mid])
          return mid;
11
12
     } // while
13
     return -1; // val not found
14
  } // bsearch()
```

Binary Search in STL

binary search() returns a bool, not the location

To find locations use these functions that return iterators

- lower_bound() <u>First item not less than target</u>
- upper_bound() First item greater than target
- equal_range() pair(lb, ub), all items equal to target

References

- http://en.wikipedia.org/wiki/Binary search algorithm
- https://www.topcoder.com/thrive/articles/Binary%20Search

Comparators (Function Objects)

Given elements a and b, tell if a "<" b

Almost Always 3 Comparisons/Loop

```
int bsearch(double a[], double val,
                int left, int right) {
     while (right > left) {
                                              // ONE
       int mid = left + (right - left) / 2;
                                              // TWO
       if (val == a[mid])
         return mid;
                                              // THREE
       else if (val < a[mid])</pre>
         right = mid;
q
         left = mid + 1;
11
     } // while
13
     return -1; // val not found
14
15 } // bsearch()
```

Always 2 Comparisons/Loop

Must check if val is present in a[] – do this before returning or (as in STL) require the caller to do this.

Search Bounds

• lower_bound(begin(v), end(v), 7)

2 3 5 7 13 21 25 31 42

lower_bound(begin(v), end(v), 26)

upper_bound(begin(v), end(v), 21)

upper_bound(begin(v), end(v), 4)

2 3 5 7 13 21 25 31 42

Searchable Containers as Sets

A set is well-defined if you can tell
if any given element is in the set

(Searchable containers well suited to finding elements for sets)

Set Operations (STL implements many of these)

- Union (U): in one set or the other (OR)
- Intersection (∩): in both sets (AND)
- Set Difference (\): in one and not the other (AND-NOT)
- Symmetric Difference (÷): in only one (XOR)
- addElement (+)
- isElement (€)
- · isEmpty

set_union() Example Code

Implementing [sub]sets with ranges

Method	Asymptotic Complexity
initialize()	O(1) or O(n log n)
clear()	O (1) or O (<i>n</i>)
isMember()	O(log <i>n</i>)
copy()	O(n)
set_union()	O(n)
set_intersection()	O(n)

Universe: set of all elements that may be in a set

Representing Disjoint Sets

- Sets are disjoint if they do not share any elements.
 (i.e. an element may only belong to one set)
- Many applications require representing and operating on disjoint sets.
 For example, graph connectivity:

set_union() Example

Set1 and Set2 are sorted ranges Set3 is a union of Set1 and Set2

Calling this Function, 2 Ways

Job Interview Problems

- Given a sorted array with n elements and a number z
- Do the following in *O*(*n*) time
 - Find pairs (x, y) such that x y = z
 - Find pairs (x, y) such that |x y| is closest to z
 - Count all pairs (x, y) such that x + y < z
- What if the array was not sorted?

Representing Disjoint Sets

- In this context, only two set operations make sense:
 - Find: check if an element belongs to a particular set (or if two belong to the same set)
 - Union: merge two sets together into a single set

22

Union-Find: Example 1 Separate Containers

Items: 1 2 3 4 5 6 7 8 9 10

Group 1: 1 4 5 8 10

Group 2: 2 6 7

Are 1 and 8 connected? (i.e. in the same set?)

If we add a connection between 1 and 6, how long does it take to merge the two sets?

Union(): *O(n)* Find(): *O(n)*

3

Union-Find: Example 2 Representatives

Item	1	2	3	4	5	6	7	8	
Representative	1	2	3	4	5	Ú	7	8	
	3				1) Un	ion 1	1 & 3	3
8					2) Un	ion 3	3 & 8	3
6	4				3) Un	ion 1	1 & 5	;
4	'	4) Union 7 & 4							-
_ 5					5	5) Union 7 & 2			
1			.,	: O(1	, O) Un	ion 2	2 & 5	;
2		ΗII	nd():	0(1)	-			

Union-Find: Example 2 Representatives

Item	1	2	3	4	5	6	7	8	
Representative	1	2	1	4	1	6	7	1	
	3				1) <u>U</u> n	ion '	1 & 3	3
8	\				2) Un	ion (3 & 8	3
. 6	\		3) Union 1 & 5						
4 _ /					4	4) Union 7 & 4			
5 7		1.1	: ()	. 0/	, 5	5) Union 7 & 2			
2			.,	: O(1	. ()) Un	ion 2	2 & 5	5
_		FII	na():	0(1)				

Union-Find: Example 2 Representatives

Item	1	2	3	4	5	6	7	8		
Representative	y	7	X	7	7	6	7	77		
	3		7		⁷ 1) <u>U</u> n	ion 1	1 & 3		
8					2) Un	ion 3	3 & 8		
6) \				3) Union 1 & 5					
4				4	4) Union 7 & 4					
$\begin{bmatrix} 1 & 0 & 5 \\ 7 & 1 & 1 \end{bmatrix}$			• • • • •	01	, 5) Un	ion 7	7 & 2		
\'_2			Union(): <i>O(n)</i>				6) Union 2 & 5			
\ \ \	/	Fi	nd():	0(1)	-				

Union-Find Data Structure

- Idea 1: every disjoint set should have its unique representative (selected element)
 - Every set element k must know its representative j
- Therefore: to tell if k and m are in the same set, compare their representatives
 - Find() operation becomes quite fast!

Union-Find: Example 2 Representatives

Item	1	2	3	4	5	6	7	8	
Representative	1	2	1	4	5	6	7	8	
:	3				1) <u>U</u> n	ion	1 & 3	}
8	\				2) Un	ion (3 & 8	}
. 6	3) Union 1 & 5						,		
4	•				4	4) Union 7 & 4 5) Union 7 & 2			
5					5				
2		٠,	: <i>O(1</i> <i>O</i> (1	n) 6	•		2 & 5		

Union-Find: Example 2 Representatives

Item	1	2	3	4	5	6	7	8		
Representative	1	7	1	7	1	6	7	1		
	3				1) <u>U</u> n	ion '	1 & 3	3	
8	\				2) Un	ion (3 & 8	3	
. 6	\				3	3) Union 1 & 5				
4	/				4	4) Union 7 & 4				
/ 5 7			• • • • •	~ ′	ͺ 5	5) Union 7 & 2				
′ _2		Union(): <i>O(n)</i> Find(): <i>O</i> (1)				6) Union 2 & 5				
_		FI	na():	O(1)					

Making Union-Find Faster

- Idea 2: When performing union of two sets, update the smaller set (less work)
- Measure complexity of all unions throughout the lifecycle (together)
 - We call Union() exactly n 1 times
 - If we connect to a disjoint element every time,
 it will take n time total (best case)
 - Merging large sets, say n/2 and n/2 elements,
 will take O(n) time for one Union() too slow!

37

Smarter Union-Find

- Idea 3: No need to store the actual representative for each element, as long as you can find it quickly
 - Each element knows someone who knows the representative (may need more steps)
 - Union() becomes very fast: one of representatives will need to know the other
 - Find() becomes slower

Path Compression

- So far, Find() was read-only
 - For element j, finds the representative k
 - Traverses other elements on the way (for which *k* is also the representative)
- Idea 4: We can tell *j* that its representative is now k
 - Same for other elements on path from $j\rightarrow k$
 - Doubles workload of Find(), but same Big-O

Union-Find: Example 4 Path Compression

Item	1	2	3	4	5	6	7	8
Representative	ľ	2/	3	42	\$8	\$ 5	25	8

- 1) Union 2 & 4
- 2) Union 1 & 2
- 3) Union 5 & 7
- 4) Union 5 & 6
- 5) Union 8 & 5 Union(): $O(\alpha(n))$ 6) Union 4 & 7

Find(): $O(\alpha(n))$

(Amortized over the lifetime of Union-Find)

Union-Find: Example 3 Hierarchical Representatives

	Item	1	2	3	4	5	6	7	8	
Represen	tative									
8 4 7	6 5	3		٠,	: O ('	1)	2) Uı 3) Uı 4) Uı 5) Uı	nion nion nion nion nion	1 & 1 & 5 & 4 &	8 3 6 7
		(w			O(n		7) Uı	nion	5 &	4 39

Complexity with Path Compression

- Must use amortized analysis over the life cycle of union-find (starting with *n* disjoint sets, and merging until there is one set containing all elements)
- Result is surprising
 - $O(n^*\alpha(n))$, where $\alpha()$ grows very slowly
 - $-\alpha()$ is the inverse-Ackerman function
 - In practice, almost-linear-time performance
- Details taught in more advanced courses

Study Questions

- What is the difference between a sorted and an ordered container?
- When should you implement a sorted container with an array instead of a linked list?
- When should you implement an ordered container with an array instead of a linked list?
- What is binary search? Study STL's interface to it.
- What are comparison operators and comparator objects?
- How are searchable containers and sets related?
- What is a universe set?
- Give an example of a universe set and a subset of it.
- Implement set_intersection().
- How would you implement a Union-Find data structure?