Kapil Soni ORCID iD: 0000-0003-1214-4119

Puneet Khanna ORCID iD: 0000-0002-9243-9963

1.Title: Convalescent plasma a clutch at straws in COVID-19 management! A systematic review and meta-analysis

2. Author information:

Dr.Soumya Sarkar¹, M.D, drsoumyasarkar@yahoo.co.in

Dr.Kapil Dev Soni², M.D, kdsoni111@gmail.com

Dr.Puneet Khanna¹, M.D, k.punit@yahoo.com

The author's institutional affiliations:

¹Department of Anaesthesia, pain medicine & Critical Care, AIIMS, New Delhi

(India)

²Department of Critical & Intensive Care, JPN Apex Trauma Centre, AIIMS, New

Delhi (India)

3.Corresponding Author: Dr.Puneet Khanna,

Contact no: (91) 9873106516

Email: k.punit@yahoo.com,

Mailing address: Department of Anaesthesia, pain medicine & Critical Care,

AIIMS, New Delhi,

Ansari Nagar, NewDelhi-110029

4. Clinical trial number and registry URL: Not applicable

5. Prior Presentations: Not applicable

6.Word and element count: Key words (3), Abstract (199), Introduction (232),

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/jmv.26408.

Discussion (599), Main file (1945), Tables (2), Figures (4), Supplemental file (1)

7.Abbreviated title: Role of convalescent plasma in COVID-19 management

8. **Funding Statement:** This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

9. Conflicts of interest: None

10. Acknowledgments: None.

11. Author's individual contribution:

Dr. Soumya Sarkar: Conceptualization, Search strategy, Study selection, Data extraction, Risk of bias assessment, and drafted the manuscript

Dr. Kapil Dev Soni: Study selection, Data extraction, Risk of bias assessment, Quality of the evidence assessment, Data synthesis, and editing

Dr. Puneet Khanna: Conceptualization, Search strategy, Study selection, Risk of bias assessment, Quality of the evidence assessment, and editing

12. Summary statement:

Impact of Convalescent plasma therapy in COVID-19 management:

- \ \ \ Mortality (OR 0.44, 95\% CI 0.25 to 0.77)
- \(\gamma\) Viral clearance (OR 11.29,95\% CI 4.9 to 25.9,)
- ↑ Clinical-improvement (OR 2.06, 95% CI 0.8 to 4.9)

Abstract:

Background: In absence of definitive therapy for coronavirus disease (COVID-19), convalescent plasma therapy (CPT) may be a critical therapeutic option. This review

was conducted to evaluate the impact of CPT in COVID-19 patients based on the publications reported to date.

Methods: A robust screening of electronic databases was conducted up to 10th July 2020. The randomized controlled trials (RCTs), cohort studies, and case series with control group evaluating the effectiveness and safety of CPT in patients with COVID-19 are included for the meta-analyses.

Results: Our search retrieved seven studies, including two RCTs and five cohort studies, with a total of 5,444 patients. In patients with COVID-19, the use of CPT reduces mortality [Odd's ratio (OR) 0.44, 95% CI 0.25 to 0.77], increases viral clearance [OR 11.29, 95% CI 4.9 to 25.9] and improves clinically [OR 2.06, 95% CI 0.8 to 4.9]. However, the evidences are of low quality (mortality reduction, and viral clearance), and very low quality (clinical improvement).

Conclusions: CPT may be beneficial for reducing mortality, viral shedding. and improving clinical conditions in COVID-19 patients. However, further randomized control trials (RCT) are required to substantiate the safety margin, initiation, optimal dosage, titre and duration of CPT.

Key words: (COVID-19): coronavirus disease, (SARS-CoV-2): severe acute respiratory syndrome coronavirus-2, (CPT): convalescent plasma therapy

1. Introduction:

1.1 *Convalescent Plasma Transfusion* (CPT) has been traditionally tried during large-scale epidemics in patients with viral infections whose critical condition refractory to supportive care. It is obtained from a recently recovered person from a viral illness,

which is prospected to have the maximum levels of polyclonal antibodies directed against the virus.²

Both passive immunity (reduction in viremia)³ and active immunity (host immune response)⁴

have been postulated for providing an immediate promising treatment option during the evaluation of existing drugs and developing new definitive therapies.

The effectiveness of CPT has been tested since the Spanish Influenza pandemic in 1915-1917⁵, severe acute respiratory syndrome (SARS) in 2003⁶, influenza A (H1N1) in 2009⁷, avian influenza A (H5N1)⁸, and even in Ebola².

Recently, the US Food and Drug Administration has approved the use of CPT for the patients of coronavirus disease (COVID-19) under the emergency investigational new drug category and not for routine clinical use.⁹

1.2 *The* absence of a definitive therapeutic modality for COVID-19 has made CPT most relevant in the current grievous scenario. However, the clinical data for the studies involving COVID-19, are still scarce. Thus, the aim of our study is to systematically analyze the current evidence of the efficacy and safety of convalescent plasma therapy in COVID-19 patients, for decision-making to prevent and control this pandemic. This study is in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-P) guidelines.

2.Methods

2.1. Search strategy

This systematic search was conducted in major electronic databases (PubMed and Medline), Google Scholar (https://scholar.google.com), and preprint platforms MedRxiv (https://www.medrxiv.org) from January 1st,2020 to July 10th,2020,

independently by two researchers (SS & PK). The following terminologies: ("COVID-19") OR ("SARS-CoV-2") AND ("plasma" OR "convalescent plasma") were searched.

2.2. Inclusion and exclusion criteria

We included randomized controlled trials (RCT), controlled clinical trials, prospective and retrospective comparative cohort studies, case-control studies; cross-sectional studies, and case series with a control group on steroid therapy for COVID-19 patients.

Our primary outcome of interest was mortality, and secondary outcomes included improvement in clinical conditions and clearance of viral shedding.

We excluded articles written in languages other than English, absence of essential data, and without retrievable full text (PRISMA flow diagram). 10-11.

2.3. Study selection

The available literature was screened independently after the removal of duplications by two researchers (SS and KDS). We screened all the abstracts primarily to exclude irrelevant articles. Finally, full-texts of the potentially eligible studies were screened for inclusion. Disagreements were consulted with a third researcher (PK).

2.4. Data extraction

Two researchers (SS and KDS) extracted the data independently from all included studies with the use of pre-conceived data extraction sheet. The Extracted information contained details of the intervention and control groups, mortality, clinical improvement, and viral clearance. The number of events along with the total number

of patients per group was extracted for dichotomous data. Studies with missing or unusable data are reported in findings descriptively.

2.5. Risk of bias assessment:

Two researchers (SS & PK) assessed the potential bias in each selected study independently. The third researcher (KDs)was consulted for resolving any difference of opinion.

The RoB 2.0 tool ¹², was used for RCTs, which includes five domains: "randomization process", "deviations from intended interventions", "missing outcome data", "measurement of the outcome", and "selection of the reported result". We used the Risk Of Bias In Non-randomized Studies – of Interventions (ROBINS-I)¹³ tool for assessing the risk of bias in non-randomized studies. It comprises of seven domains: "bias due to confounding", "selection of participants, classification of interventions", "deviations from intended interventions", "missing data", "measurement of outcomes", and "selection of the reported result". Each domain is graded as "Low", "Moderate", "Serious", and "Critical".

2.6. Quality of the evidence:

Two experienced researchers (PK & KDS) evaluated the quality of evidence by using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool. 14-15 It has five downgrading factors (study limitations, consistency of effect, imprecision, indirectness, and publication bias) and three upgrading factors (large magnitude of the effect, dose-response relation, and plausible confounders or biases). The quality of evidence of each outcome is classified as "High", "Moderate", "Low" or "Very low". 16-22

2.7. Data synthesis:

Review manager version 5.4 was used for conducting the meta-analysis. The Odd's ratio (OR) with 95% confidence intervals (CIs) was assessed in accordance with the Cochrane Handbook for Systematic Reviews of Interventions ²³. Statistical heterogeneity was assessed with the I² statistic, >50% indicating substantial heterogeneity. Funnel plot was used to assess publication bias.

The present study was not registered for rapid decision making in the context of the ongoing public health emergency.

3. Results

3.1. Basic characteristics

We included seven studies (two RCTs and five cohort studies) out of 679 identified publications in this rapid review, after satisfying the inclusion criteria. (Figure 1) (Table 1). The risk of bias was low in one of the included RCTs and the other one had some concerns. (Figure 2a). Out of the rest five studies, four studies have been associated with a moderate degree of bias. (Figure 2b)

3.2. Meta-analysis

Mortality was assessed in seven articles (two RCTs and five cohort studies) with a total of 5,444 patients. The use of CPT reduced the risk of mortality almost by half in COVID-19 (OR =0.44, 95% CI 0.25 to 0.77, I^2 =0), which is statistically significant (Figure 3)

Five studies with a total of 259 patients assessed the clinical improvement in COVID-19. The majority of the COVID-19 patients who received CPT showed clinical

improvement than in patients who received no CPT (OR 2.06, 95% CI 0.8 to 4.9, $I^2=44\%$;), (Figure 4a). However, the finding is not statistically significant.

The incidence of viral clearance was assessed in two studies with a total of 144 patients. It is found that the use of CPT helps in viral clearance (OR 11.29, 95% CI 4.9 to 25.9, $I^2=0\%$;) significantly. (Figures 4b).

Apert form mild heterogeneity among studies on assessing clinical improvement $(I^2=44)$, the overall findings are homogeneous. In view of the high homogeneity, the overall effect seems to be conclusive.

3.3. Quality of evidence

The quality of evidence on the impact of CPT on mortality and viral clearance in COVID-19 is of low quality, and clinical improvement is of very low quality (Table 2).

3.4. Publication bias

We assessed publication bias for the studies on COVID-19 mortality. The Funnel plot indicates a publication bias is likely in view of smaller studies with large effect.

(Supplemental Figure 1)

4. Discussion:

4.1. We have identified low-quality evidence with variability that the convalescent plasma therapy is associated with around 44% reduction in the mortality in COVID-19 patients.

Similar systematic review and meta-analysis on severe acute respiratory syndrome (SARS), reported that the CPT is beneficial for reducing the (OR, 0.25; 95% confidence interval, .14–.45; $I^2 = 0\%$) in comparison to placebo or no therapy.³¹

Another recent systematic review on CPT in COVID-19 patients reported about a potential reduction in mortality but unable to provide any opinion regarding the efficacy of CPT in COVID-19 due to paucity in quantitative synthesis ³²

The present study has identified a very low-quality evidence regarding improvement in clinical conditions and a low-quality evidence for viral clearance, are associated with CPT.

A recent systematic review on the efficacy of CPT for the management of COVID-19 also reported a significant decrease in Viral loads and improvement in clinical symptoms within 3-26 days post-transfusion.³³ Rajendran k et al ³² also reported similar findings in their Systematic review.

Another meta-analysis on efficacy and safety of convalescent plasma have found uninformative results regarding complete recovery(OR 1.04, 95% CI 0.69 to 1.64), length of stay (mean difference–1.62, 95% CI –3.82 to 0.58,)and reduction in viral load on day 3 (RR 1.07, 95% CI 0.58 to 1.8),&, day 7 (RR1.32, 95% CI 0.97 to 1.81,). However, the quality of evidence was very low due to the presence of high level of indirectness.³⁴

Salazar et al reported out of 25 critically ill patients, who received CPT on 7th post-transfusion day 9 patients got improvement, while 13 remained static, and 3 deteriorated, and on 14th post-transfusion day 19 patients had better clinical status, as per 6 points WHO ordinal scale.³⁵

The studies have shown significant variation regarding the timing of initiation, dosage and neutralizing antibody titer, and concomitant therapy.

However, the dilemma for getting a concrete conclusion exist about the favorable outcome is due to CP therapy alone based on given evidence and not due to natural disease progression or concomitant therapies.

4.2. Adverse events:

The overall incidence of serious adverse events was very low. None of the patients, who received CPT of two studies Gharbharan et al $(n=43)^{26}$ and Zeng et al $(n=6)^{30}$ had shown any adverse event. Joyner et al 27 reported the incidence of serious adverse events after CPT was low (<1%) in 5,000 patients. They reported about Transfusion-associated circulatory overload (TACO) (n = 7), transfusion-related lung injury (TRALI) (n = 11) and severe allergic reactions (n = 3). Dua et al 25 reported about rashes in one patient out of 10 patients, who received CPT. Another study reported about TRALI in one patient and rashes in one patient out of 52 patients. 28

4.3. Strengths and limitations

Our study is one of the first comprehensive and systematic review of the effectiveness and safety of convalescent plasma therapy for patients with COVID-19 using data from the COVID-19 studies and may be considered at the moment as the best evidence for decision-making.

Although in the current scenario, CPT is an effective therapeutic option in addition to current antiviral, antimicrobial agents. A wide range of variation regarding selection of the donor, clinical stage of the recipient, initiation time, antibody titer, volume, dose and duration of CPT is noted across the available studies so far. We could not conduct subgroup analyses due to lack of data. We also acknowledge the procedure is yet to be standardized and information in this regard is still evolving.

5. Conclusion:

CPT may be an effective therapeutic option, until the availability of therapeutic and/or prophylactic agents for COVID-19, with some early promising evidence on safety, viral clearance, and reduction in mortality. However, large multi-center clinical trials are the need of the hour for establishing stronger quality of evidence along with the optimal doses, titer, and initiation time point for the CPT for effective use.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Reference:

- 1. Arturo Casadevall, Liise-anne Pirofski. The convalescent sera option for containing COVID-19. J Clin Invest. 2020;130(4):1545-1548.
- 2. Use of convalescent whole blood or plasma collected from patients recovered from Ebola virus disease for transfusion, as an empirical treatment during outbreaks.Geneva: World Health Organization; 2014. Available: www.who.int/csr/resources/publications/ebola/convalescent-treatment/en (accessed 2020 july. 16).
- 3. Cheng Y, Wong R, Soo YO, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 2005;24:44-6
- .4. Schoofs T, Klein F, Braunschweig M, et al. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science 2016; 352:997-1001.
- 5. Luke TC, Kilbane EM, Jackson JL, et al. Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? Ann Intern Med. 2006 Oct 17;145(8):599-609.

- 6 Soo YO, Cheng Y, Wong R, et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect. 2004 Jul;10(7):676-8.
- 7. Hung IF, To KK, Lee CK, et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis. 2011 Feb 15;52(4):447-56.
- 8. Zhou B, Zhong N, Guan Y. Treatment with convalescent plasma for influenza A (H5N1) infection. N Engl J Med. 2007 Oct 4;357(14):1450-1.
- 9. Investigational COVID-19 Convalescent Plasma Emergency INDs [Internet]. U.S. Food and Drug Administration. 2020 [cited 16 July 2020]. Available from: https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/recommendations-investigational-covid-19-convalescent-plasma.
- 10. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097

 11. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009;6:e1000100
- 12. Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ* 2019; **366**: 14898
- 13. Sterne JAC, Hernán MA, Reeves BC, Savović J, et al. ROBINS-I: a tool for assessing risk of bias in non-randomized studies of interventions. BMJ 2016; 355; i4919; doi: 10.1136/bmj.i4919.

- 14. Norris SL, Meerpohl JJ, Akl EA, et al. The skills and experience of GRADE methodologists can be assessed with a simple tool. J Clin Epidemiol 2016;79:150-158.e1.
- 15. Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 2011;64:383-94.
- 16. Balshem H, Helfand M, Schünemann HJ, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64(4):401-406. doi:10.1016/j.jclinepi.2010.07.015
- 17. Guyatt GH, Oxman AD, Vist G, et al. GRADE guidelines: 4. Rating the quality of evidence--study limitations (risk of bias). J Clin Epidemiol 2011;64:407-15.
- 18. Guyatt GH, Oxman AD, Montori V, et al. GRADE guidelines: 5. Rating the quality of evidence—publication bias. J Clin Epidemiol 2011;64:1277-82.
- 19. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines 6. Rating the quality of evidence--imprecision. J Clin Epidemiol 2011;64:1283-93.
- 20. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 7. Rating the quality of evidence--inconsistency. J Clin Epidemiol 2011;64:1294-302.
- 21. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 8. Rating the quality of evidence--indirectness. J Clin Epidemiol 2011;64:1303-10.
- 22. Guyatt GH, Oxman AD, Sultan S, et al. GRADE guidelines: 9. Rating up the quality of evidence. J Clin Epidemiol 2011;64:1311-6.
- 23. Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev 2019;10:ED000142.

24. Chen, B. and Xia, R. (2020), Early experience with convalescent plasma as immunotherapy for COVID-19 in China: Knowns and unknowns. Vox Sang. Accepted Author Manuscript. doi:10.1111/vox.12968

25.Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA. 2020 Apr 28;117(17):9490.

26.Gharbharan A, Jordans CCE, GeurtsvanKessel C, den Hollander JG, Karim F, Mollema FPN, et al. Convalescent Plasma for COVID-19. A randomized clinical trial. medRxiv. 2020 Jan 1;2020.07.01.20139857.

27. Joyner MJ, Wright RS, Fairweather D, Senefeld JW, Bruno KA, Klassen SA, et al. Early safety indicators of COVID-19 convalescent plasma in 5,000 patients. J Clin Invest [Internet]. 2020 Jun 11; Available from: https://doi.org/10.1172/JCI140200 28. Li L, Zhang W, Hu Y, et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial. *JAMA*. Published online June 03, 2020. doi:10.1001/jama.2020.10044

29. Liu STH, Lin H-M, Baine I, Wajnberg A, Gumprecht JP, Rahman F, et al. Convalescent plasma treatment of severe COVID-19: A matched control study. medRxiv. 2020 Jan 1;2020.05.20.20102236.

30. Zeng QL, Yu ZJ, Gou JJ, et al. Effect of Convalescent Plasma Therapy on Viral Shedding and Survival in Patients With Coronavirus Disease 2019. *J Infect Dis*. 2020;222(1):38-43. doi:10.1093/infdis/jiaa228

31. John Mair-Jenkins, Maria Saavedra-Campos, J. Kenneth Baillie, et al. The Effectiveness of Convalescent Plasma and Hyperimmune Immunoglobulin for the Treatment of Severe Acute Respiratory Infections of Viral Etiology: A Systematic

Review and Exploratory Meta-analysis, *The Journal of Infectious Diseases*, Volume 211, Issue 1, 1 January 2015, Pages 80–90, https://doi.org/10.1093/infdis/jiu396 32. Rajendran K, Krishnasamy N,Rangarajan J, Rathinam J, et al.Convalescent plasma transfusion for the treatment of COVID-19: Systematic review. J Med Virol. 2020;1–9.

https://doi.org/10.1002/jmv.25961

- 33.Khadka S, Saleem M, Shrestha D, Budhathoki P. Safety and efficacy of convalescent plasma therapy for the management of COVID-19: A systematic review. 2020.
- 34.Devasenapathy N, Ye Z, Loeb M, Fang F, Najafabadi BT, Xiao Y, et al. Efficacy and safety of convalescent plasma for severe COVID-19 based on evidence in other severe respiratory viral infections: a systematic review and meta-analysis. CMAJ. 2020 Jul 6;192(27):E745.
- 35. Salazar E., Perez K. K, Ashraf M., et al. Treatment of COVID-19 Patients with Convalescent Plasma in Houston, Texas. medRxiv. 2020.

doi:https://doi.org/10.1101/2020.05.08.20095471

Legends:

Table 1: Characteristics of included studies

S	Studies, Year	Type of Study, centre	No of	Conditi	Time of			Concomitant therapy	Author's conclusio n
1	Chen et	Retrospect	29	Severel	19 days	200–500	>1:160	Not specified	Significa

	al, ²⁴	ive		y ill	(IQR14 -	ml			nt
	2020	Observati			20)	(4–5			improve
	2020	onal, MC				ml/k			ment in
		onar, wic				g)			clinical
									outcomes
									in
									comparis
									on to the
									untreated
									cases.
2	Duan et	Pilot	20	Severel	16.5 days	200	>1:640	antiviral	СРТ
	al, ²⁵	prospectiv		y ill	(IQR 11-	ml.		therapy,	shows a
	2020	e cohort			19)			steroids and	potential
	2020	with a			17)			supportive	therapeuti
		historical						care as	c effect
		control						appropriate.	and low
		group, SC							risk in the
									treatment
									of severe
									COVID-
									19
									patients.
3	Gharbha	Open-	86	Mild –	9 days	300	1:640	Chloroquine,	No

ran et al,label	modera	t(IQR 7 –	ml	(IQR	azithromycin,	statistical
²⁶ RCT,	ely ill	13)		1:320 -	lopinavir/rito	ly
2020 MC				1:1280	navir,	significan
2020 MC)	tocilizumab, anakinra as appropriate.	t differenc es in mortality (OR 0.95, CI 0.20 – 4.67, p=0.95) or improve ment in the day-15 disease severity (OR 1.30, CI 0.52 - 3.32, p=0.58) was observed
						observed

4		Observati onal CT,			200 – 500	Not specifi	Not specified	when the study was suspende d. Sevenday
		MC			ml	ed		mortality rate = 14.9%
5	al ²⁸ ., 2020	Open label RCT, MC	Criticall y ill	(IQR 22- 39)	4 to 13 mL/k g 200 ml (IQR 200- 300),		steroids, immunoglobu lin, antibiotics and Chinese herbal medicines, as appropriate	In severe or life- threatenin g COVID- 19 patients, in addition to standard treatment, CPT did

							not result
							in a
							statistical
							ly
							significan
							t
							improve
							ment in
							time to
							clinical
							improve
							ment
							within 28
							days.
							Interpreta
							tion is
							limited
							by early
							terminati
							on of the
							trial
				4 days	2		
	Case	185	Modera		units.	antivirals,	Plasma
al ²⁹ ,	controlled		te-		Each	anti-biotics,	recipients
			Criticall				also

	2020	study,		y ill		unit		steroid and	demonstr
		SC				of		immunoglobu	ated
		SC .				250		lins as	improved
						ml		appropriate	survival,
									compared
									to control
									patients
7	Zeng et	Retrospect	21	Criticall		300	Not	antivirals,	CPT can
	al ³⁰ .	ive		y ill		ml	specifi	steroid and	discontin
	2020	observatio			23)	(IOD	ed	immunoglobu	ue the
		nal study,				(IQR		lins as	viral
						200-		appropriate.	shedding
		MC				600)			and
									contribut
									e longer
									survival
									duration
									in
									COVID-
									19
									patients
									with
									respirator
									y failure,
									,,

				although
				it cannot
				reduce
				the
				mortality
				in
				critically
				end-stage
				patients.

CPT: Convalescent plasma transfusion, MC: Multi center, SC: Single center, IQR: Inter quartile range,

RCT: Randomized controlled trial, OR: Odds ratio

Table 2: GRADE evidence profile of COVID-19 studies

Out	No.	of partici	pants	Ri	Inconsi	Indire	Impre	Other	Quali	Rela
come				sk	stency	ctness	cision	conside	ty of	tive
	То	Interv	Con	of				rations	evide	effe
	tal	ention	trol	bi					nce	ct
	no			as					(Gra	
	•								de)	
Mortali	54	5169	285	Y	No	No	No	None	Low	OR
ty	44			es					$\oplus \oplus$	0.44
									99	(95

										%
										CI
										0.25
										to
										0.77
)
Clinica	25	130	129	Y	No	No	Yes	None	Very	OR
1	9			es					low	2.06
improv									$\oplus \ominus$	(95
ement									$\Theta\Theta$	%
										CI
										0.8
										to
										4.9)
Viral	14	68	76	Y	No	No	No	None	Low	OR
Cleara	4			es					$\oplus \oplus$	11.2
nce									$\Theta\Theta$	9
									00	
										(95
										%
										CI
										4.9
										to

25.9

CI = confidence interval; COVID-19 = coronavirus disease 2019; GRADE = Grading of Recommendations Assessment, Development, and Evaluation; MD = mean difference; OR = odds ratio;

Figure 1: PRISMA-2009-Flow-Diagram-

Figure 1: PRISMA-2009-Flow-Diagram

Figure 2a: ROB2 tool assessment for the included RCTs

Figure2b: ROBINS-I assessment for the included non-randomized cohort studies

Figure 2: Risk of bias assessment in RCTs(ROB2), & non-randomized cohort studies (ROBINS-I)

Fig: 2a Fig: 2b

Figure 3: The efficacy of convalescent plasma therapy on mortality in COVID-19 patients

Figure 3: The efficacy of convalescent plasma therapy on mortality in COVID-19 patients

	Convalescent	Plasma	No Convalescent P	lasma		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Liu et al 2020	5	39	38	156	31.3%	0.46 [0.17, 1.25]	
Chen et al 2020	0	19	3	10	3.3%	0.05 [0.00, 1.20]	
Duan et al 2020	0	10	3	10	3.3%	0.10 [0.00, 2.28]	• • • • • • • • • • • • • • • • • • •
Gharbharan et al 2020	6	43	11	43	26.2%	0.47 [0.16, 1.42]	
Li et al 2020	8	52	12	51	32.2%	0.59 [0.22, 1.60]	
Zeng et al 2020	5	6	14	15	3.6%	0.36 [0.02, 6.85]	-
Joyner et al 2020	602	5000	0	0		Not estimable	
Total (95% CI)		5169		285	100.0%	0.44 [0.25, 0.77]	•
Total events	626		81				
Heterogeneity: $Tau^2 = 0$.	00; $Chi^2 = 3.01$,	df = 5 (F	$P = 0.70$; $I^2 = 0\%$				
Test for overall effect: Z					0.01 0.1 1 10 100 Favours C Plas Favours No C plasm		

Figure 4a: The impact of convalescent plasma therapy on clinical improvement in COVID-19 patients

Figure 4b: The effect of convalescent plasma therapy on viral clearance in COVID-19 patients

Figure 4: The effect of convalescent plasma therapy on clinical improvement, & viral clearance in COVID-19 patients

	Convalescent	Plasma	No Convalescent F	lasma		Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Random, 95	% CI	
Liu et al 2020	5	39	38	156	31.3%	0.46 [0.17, 1.25]				
Chen et al 2020	0	19	3	10	3.3%	0.05 [0.00, 1.20]				
Duan et al 2020	0	10	3	10	3.3%	0.10 [0.00, 2.28]	+	-		
Gharbharan et al 2020	6	43	11	43	26.2%	0.47 [0.16, 1.42]				
Li et al 2020	8	52	12	51	32.2%	0.59 [0.22, 1.60]				
Zeng et al 2020	5	6	14	15	3.6%	0.36 [0.02, 6.85]	0	*		
Joyner et al 2020	602	5000	0	0		Not estimable				
Total (95% CI)		5169		285	100.0%	0.44 [0.25, 0.77]		•		
Total events	626		81							
Heterogeneity: $Tau^2 = 0$.00; Chi ² = 3.01,	df = 5 (P	$= 0.70$; $I^2 = 0\%$				0.01	01	10	100
est for overall effect: Z = 2.86 (P = 0.004)				F	ig: 4a			Favours C Plas Favour	s No C plas	

	Convalescent Plasma		No Convalescent Plasma		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Duan et al 2020	7	10	0	10	7.2%	45.00 [2.01, 1006.75]	
Li et al 2020	41	52	15	51	85.7%	8.95 [3.65, 21.95]	
Zeng et al 2020	6	6	3	15	7.1%	46.43 [2.07, 1042.10]	
Total (95% CI)		68		76	100.0%	11.29 [4.92, 25.92]	•
Total events	54		18				
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 1.85$, $df = 2$ (P = 0.40); $I^2 = 0$ %							0.01 0.1 1 10 100
Test for overall effect: $Z = 5.72 (P < 0.00001)$					Fig:	4b	Favours No C Plasma Favours C Plasma