Dimitri Racordon Didier Buchs

Centre Universitaire d'Informatique, Université de Genève

December 7, 2017

How to compute efficiently on sets?

- represent sets in a compact way
- compute on a whole set instead on a single element
 - aka SIMD or graphic card computing
- respect union : set homomorphism

various approaches based on decision diagrams.

A SFDD is a directed acyclic graph where

- each node represent a term
- each node has two children, indicating whether or not the term is contained
- each path from the root to an accepting terminal represents a set of terms

Set Family Decision Diagrams Example

Encodes the sets:

- ▶ {*a*, *b*, *c*}
- ▶ {a, d}
- ▶ {*b*, *c*}
- ▶ {d}

Set Family Decision Diagrams Formal Definition

Definition (Formal definition)

Let T be a set of terms. The set of SFDDs $\mathbb S$ is inductively defined by:

- $ightharpoonup oxedsymbol{\perp} \in \mathbb{S}$ is the rejecting terminal
- ▶ $T \in S$ is the accepting terminal
- ▶ $\langle t, \tau, \sigma \rangle \in \mathbb{S}$ if and only if $t \in T \land \tau, \sigma \in \mathbb{S}$

Let $S \in \mathbb{S}$ be the SFDD $\langle t, \tau, \sigma \rangle$, we call τ its take node and σ its skip node.

S is canonical if for all its nodes, the skip node and take node represent greater terms or terminals, and no take node is the rejecting terminal.

Canonical Form

Definition (Canonical form)

Let T be a set of terms, and $< \in T \times T$ a total ordering on T. A SFDD $S \in \mathbb{S}$ is canonical if and only if

- ightharpoonup S is the rejecting terminal ot
- ightharpoonup S is the accepting terminal \top
- $S = \langle t, \tau, \sigma \rangle$ where
 - $ightharpoonup au = \langle t_{ au}, au_{ au}, \sigma_{ au}
 angle \implies t < t_{ au} ext{ and } au
 eq \bot$

 - ightharpoonup au and σ are canonical

The union of two SFDDs is given by:

$$A \cup B = B \cup A$$

$$A \cup A = A$$

$$\bot \cup A = A$$

$$\top \cup \langle t, \tau, \sigma \rangle = \langle t, \top \cup \tau, \top \cup \sigma \rangle$$

$$\langle t, \tau, \sigma \rangle \cup \langle t', \tau', \sigma' \rangle = \begin{cases} \langle t, \tau, \sigma \cup \langle t', \tau', \sigma' \rangle \rangle & \text{if } t < t' \\ \langle t, \tau \cup \tau', \sigma \cup \sigma' \rangle & \text{if } t = t' \\ \langle t', \tau', \sigma' \cup \langle t, \tau, \sigma \rangle \rangle & \text{if } t > t' \end{cases}$$

Intersection

The intersection of two SFDDs is given by:

$$A \cap B = B \cap A$$

$$A \cap A = A$$

$$\bot \cap A = \bot$$

$$\top \cap \langle t, \tau, \sigma \rangle = \top \cap \sigma$$

$$\langle t, \tau, \sigma \rangle \cap \langle t', \tau', \sigma' \rangle = \begin{cases} \sigma \cap \langle t', \tau', \sigma' \rangle & \text{if } t < t' \\ \langle t, \tau \cap \tau', \sigma \cap \sigma' \rangle & \text{if } t = t' \\ \langle t, \tau, \sigma \rangle \cap \sigma' & \text{if } t > t' \end{cases}$$

Set Family Decision Diagrams Encoding

The encoding of a set into a SFDD is given by:

$$\operatorname{enc}(\varnothing) = \bot$$
 $\operatorname{enc}(\{\varnothing\}) = \top$
 $\operatorname{enc}(S \cup \{s\}) = \operatorname{enc}(S) \cup \operatorname{enc}(\{s\})$
 $t < \min(s) \implies \operatorname{enc}(\{s \cup \{t\}\}) = \langle t, \operatorname{enc}(\{s\}), \bot \rangle$

Set Family Decision Diagrams Decoding

The decoding of one SFDD is given by:

$$\begin{split} \operatorname{dec}(\bot) &= \varnothing \\ \operatorname{dec}(\top) &= \{\varnothing\} \\ \operatorname{dec}(\langle t, \tau, \sigma \rangle) &= (\operatorname{dec}(\tau) \oplus t) \cup \operatorname{dec}(\sigma) \end{split}$$

Where \oplus is defined as follows:

$$\bigcup_{s \in S} \{s\} \oplus t = \bigcup_{s \in S} \{s \cup \{t\}\}\$$

Correctness

The decoding/encoding of one set is the identity (and the reverse):

$$\forall S \subseteq \mathcal{P}(T), \operatorname{dec}(\operatorname{enc}(S)) = S$$

 $\forall S \in \mathbb{S}, \operatorname{enc}(\operatorname{dec}(S)) = S$

Homomorphisms

Homomorphisms are operations that preserve union:

$$\phi(S \cup S') = \phi(S) \cup \phi(S')$$

They also support operations that are themselves homomorphisms:

$$\forall S, (\phi_1 + \phi_2)(S) = \phi_1(S) \cup \phi_2(S)$$

$$\forall S, (\phi_1 \times \phi_2)(S) = \phi_1(S) \cap \phi_2(S)$$

$$\forall S, (\phi_1 \circ \phi_2)(S) = \phi_1(\phi_2(S))$$

Insertion

 $\oplus : \mathbb{S}, T \to \mathbb{S}$ inserts a term $t \in T$ into all sets of a SFDD:

$$\bot \oplus a = \bot$$

$$\top \oplus a = \langle a, \top, \bot \rangle$$

$$\langle t, \tau, \sigma \rangle \oplus a = \begin{cases}
\langle t, \tau \oplus a, \sigma \oplus a \rangle & \text{if } t < a \\
\langle t, \tau \cup \sigma, \bot \rangle & \text{if } t = a \\
\langle a, \langle t, \tau, \sigma \rangle, \bot \rangle & \text{if } t > a
\end{cases}$$

NB: \oplus is an homomorphism.

Insertion

Example: $enc(\{\{a,b,c\},\{a,d\},\{b,c\},\{d\}\}) \oplus b$

Insertion

Example: $\operatorname{enc}(\{\{a,b,c\},\{a,d\},\{b,c\},\{d\}\}) \oplus b$

Insertion

Example: $enc(\{\{a,b,c\},\{a,d\},\{b,c\},\{d\}\}) \oplus b$

Encodes the sets:

- ► {a, b, c}
- $\blacktriangleright \{a,b,d\}$
- ▶ {*b*, *c*}
- ▶ {*b*, *d*}

Set Family Decision Diagrams Removal

 $\ominus: \mathbb{S}, T \to \mathbb{S}$ removes a term $t \in T$ from all sets that contain it:

$$\begin{array}{l} \bot\ominus a=\bot\\ \top\ominus a=\top\\ \\ \langle t,\tau,\sigma\rangle\ominus a=\begin{cases} \langle t,\tau\ominus a,\sigma\ominus a\rangle & \text{if }t< a\\ \sigma\cup\tau & \text{if }t=a\\ \langle t,\tau,\sigma\rangle & \text{if }t> a \end{cases}$$

 $NB: \ominus$ is an homomorphism.

Removal

Example: $\operatorname{enc}(\{\{a,b,c\},\{a,d\},\{b,c\},\{d\}\}) \ominus b$

Removal

Example: $enc(\{\{a, b, c\}, \{a, d\}, \{b, c\}, \{d\}\}) \ominus b$

Removal

Example: $enc(\{\{a, b, c\}, \{a, d\}, \{b, c\}, \{d\}\}) \ominus b$

Encodes the sets:

- ▶ {*a*, *c*}
- ▶ {*a*, *d*}
- ▶ {*c*}
- ▶ {*d*}

filter : \mathbb{S} , $T \to \mathbb{S}$ filters out the sets that don't contain a term $t \in T$:

$$\begin{split} & \mathsf{filter}(\bot, a) = \bot \\ & \mathsf{filter}(\top, a) = \bot \\ & \mathsf{filter}(\langle t, \tau, \sigma \rangle, a) = \begin{cases} \langle t, \mathsf{filter}(\tau, a), \mathsf{filter}(\sigma, a) \rangle & \text{if } t < a \\ \langle t, \tau, \bot \rangle & \text{if } t = a \\ \bot & \text{if } t > a \end{cases} \end{split}$$

NB1: filter is an homomorphism.

Filtering

Example: filter(enc($\{\{a, b, c\}, \{a, d\}, \{b, c\}, \{d\}\}), b$)

Filtering

Example: filter(enc($\{\{a, b, c\}, \{a, d\}, \{b, c\}, \{d\}\}), b$)

Filtering

Example: filter(enc($\{\{a, b, c\}, \{a, d\}, \{b, c\}, \{d\}\}), b$)

Encodes the sets:

- ▶ {*a*, *b*, *c*}
- ▶ {*b*, *c*}

Inductive Homomorphisms

An inductive homomorphism is a tuple $\phi = \langle S, i \rangle$ where:

- **>** *S* ∈ S
- ▶ $i(A) = \langle \phi_{\tau}, \phi_{\sigma} \rangle$ where $\phi_{\tau}, \phi_{\sigma}$ are homomorphisms and $A \in \mathbb{S} \setminus \{\bot, \top\}$

Let $\phi = \langle S, i \rangle$, its application on $A \in \mathbb{S}$ is given by:

$$\phi(A) = \begin{cases} \bot & \text{if } A = \bot \\ S & \text{if } A = \top \\ \langle t, \phi_{\tau}(\tau), \phi_{\sigma}(\sigma) \rangle & \text{if } A = \langle t, \tau, \sigma \rangle, i(A) = \langle \phi_{\tau}, \phi_{\sigma} \rangle \end{cases}$$

Inductive Homomorphisms

Example: removing values smaller than of 4

$$\phi = \langle \top, i \rangle$$

$$i(\langle t, \tau, \sigma \rangle) = \begin{cases} \langle h[\bot], \phi \circ (h[\tau] + id) \rangle & \text{if } t < 4 \\ \langle id, id \rangle & \text{otherwise} \end{cases}$$

where $\forall S, \mathrm{id}(S) = S$ and $\forall S, h[K](S) = K$.

Inductive Homomorphisms

Example: removing values smaller than of 4

$$\phi = \langle \top, i \rangle$$

$$i(\langle t, \tau, \sigma \rangle) = \begin{cases} \langle h[\bot], \phi \circ (h[\tau] + id) \rangle & \text{if } t < 4 \\ \langle id, id \rangle & \text{otherwise} \end{cases}$$

where $\forall S, \mathrm{id}(S) = S$ and $\forall S, h[K](S) = K$.

Inductive Homomorphisms

Example: removing values smaller than of 4

$$\phi = \langle \top, i \rangle$$

$$i(\langle t, \tau, \sigma \rangle) = \begin{cases} \langle h[\bot], \phi \circ (h[\tau] + \mathrm{id}) \rangle & \text{if } t < 4 \\ \langle \mathrm{id}, \mathrm{id} \rangle & \text{otherwise} \end{cases}$$

where
$$\forall S, \mathrm{id}(S) = S$$
 and $\forall S, h[K](S) = K$.

Set Family Decision Diagrams Global Computation on SFDDs

The count of members in a family is the homomorphism size:

$$\operatorname{size}(S) = \begin{cases} 0 & \text{if } S = \bot \\ 1 & \text{if } S = \top \\ \operatorname{size}(\tau) + \operatorname{size}(\sigma) & \text{if } S = \langle t, \tau, \sigma \rangle \end{cases}$$

NB1: size is an homomorphism.

Algorithm 1: State space computation on individual states

```
Input: s_0: initial state.
Input: T: set of transition.
Result: set of reachable states
begin
     s_{rem}, s: set of states;
     m, mt : states ;
     s_{rem} \leftarrow \{s_0\} \; ; \; s \leftarrow \{\};
     repeat
          m \leftarrow choose(s);
          s_{rem} \leftarrow s_{rem}/\{m\};
          foreach t \in T do
               if fireable(t,m) then
              mt \leftarrow t(m);
                     if m \notin s then s \leftarrow s \cup \{mt\}; s_{rem} \leftarrow s_{rem} \cup \{mt\};
     until s_{rem} = \emptyset:
     return s;
```

Global computation of state space

Algorithm 2: Global state space computation

```
Input: s_0: initial state.
Input: \Phi: set of transition homomorphisms.
Result: set of reachable states
begin
     s, s_{old}, temp: set of states;
     s \leftarrow \{s_0\};
     repeat
          s_{old} \leftarrow s;
          foreach t \in \Phi do
          temp \leftarrow t(s);
s \leftarrow s \cup temp;
     until s = s_{old};
     return s:
```

Global computation of state space

What about t(s)?

$$t(m) = m + post(t) - pre(t)$$

If pre and post are functions on transition and markings.

$$t(m) = post(t, pre(t, m))$$

Extended to set of states:

$$t(s \cup \{m\}) = t(t(s) \cup \{post(t, pre(t, m))\})$$
$$t(\varnothing) = \varnothing$$

Set Family Decision Diagrams Petri nets

Petri nets are defined as $\langle P, T, Pre, Post \rangle$ where:

- P and T are finite disjoint sets.
- ▶ Pre and Post are functions $P \times T \rightarrow \mathbb{N}$

The state of a Petri net is the marking $M: P \to \mathbb{N}$.

A transition $t \in T$ is fireable if and only if

$$\forall p \in P, Pre(p, t) \leq M(p)$$

The firing of a transition modifies the marking (i.e. state):

$$\forall p \in P, M'(p) = M(p) + Post(p, t) - Pre(p, t)$$

Encoding safe PN marking in sets

Encoding a safe Petri net marking M with S_M can be done with sets using simply P as terms:

$$S_M = \bigcup_{p \in P, M(p)=1} \{p\}$$

which is encoded directly in SFDD as: $enc(\bigcup_{p \in P, M(p)=1} \{p\}\})$ with the total order $P = \{p_1, p_2, ..., p_k\}$ and $p_1 < p_2 < \cdots < p_k$

Encoding safe PN pre and post conditions

$$t = post(t) \circ pre(t)$$
 $pre(t) = pre(t, p_1) \circ pre(t, p_2) \circ \cdots \circ pre(t, p_n)$
 $post(t) = post(t, p_1) \circ post(t, p_2) \circ \cdots \circ post(t, p_1)$
 $pre(t, p_i) = \begin{cases} \ominus(p_i) \circ \text{filter}(p_i) & \text{if } Pre(t, p_i) \neq 0 \\ (id) & \text{otherwise} \end{cases}$
 $post(t, p_i) = \begin{cases} \ominus(p_i) & \text{if } Post(t, p_i) \neq 0 \\ (id) & \text{otherwise} \end{cases}$

Set Family Decision Diagrams Optimizations

Homomorphisms may involve uncessary operations on large prefixes:

$$\mathsf{filter}(p_{10})(\mathsf{enc}(\bigcup_{1 < i < 10} p_i))$$

Set Family Decision Diagrams Optimizations

The idea is to dive as deep as possible before applying an homomorphism:

$$\operatorname{dive}(k,\phi)(\bot) = \bot$$

$$\operatorname{dive}(k,\phi)(\top) = \top$$

$$\operatorname{dive}(k,\phi)(\langle t,\tau,\sigma\rangle) = \begin{cases} \langle t,\operatorname{dive}(k,\phi)(\tau),\operatorname{dive}(k,\phi)(\sigma)\rangle & \text{if } t < k \\ \phi(\langle t,\tau,\sigma\rangle) & \text{if } t = k \\ \langle t,\tau,\sigma\rangle & \text{if } t > k \end{cases}$$

Set Family Decision Diagrams Optimizations

Grouping homomorphisms that work on close variables can avoid processing long prefixes multiple times:

$$\mathsf{filter}(p_8) \circ \mathsf{filter}(p_{10}) \equiv \mathsf{dive}(p_8, \mathsf{filter}(p_8) \circ \mathsf{filter}(p_{10}))$$

Some homomorphism may be reordered so they can be grouped:

$$filter(p_i) \circ filter(p_j) \equiv filter(p_j) \circ filter(p_i)$$

Set Family Decision Diagrams Optimizations

If set of terms is sparse and has a minimum value $t \in T$ such that $\forall u \in T, t \neq u \implies t < u$, some nodes can be omitted:

- SFDD encoding of sets
- SFDD properties such as canonization
- Homomorphic operations on SFDD
- ▶ Inductive homomorphisms as pattern of computation
- Encoding of markings and set of markings
- Encoding of fire functions
- Computation of PN state space
- don't care can be defined for particular constraint on T