Naifeng Zhang

Department of Electrical and Computer Engineering College of Engineering Carnegie Mellon University naifengz@cmu.edu +1 323 868 5267 naifengz.com

EDUCATION

Ph.D. Electrical and Computer Engineering, Carnegie Mellon University, 2021-Advisor: Prof. Franz Franchetti

B.S. Computer Science, University of Southern California, 2021 Advisor: Prof. Viktor K. Prasanna W.V.T. Rusch Undergraduate Engineering Honors Program magna cum laude

B.S. Mathematics, University of Southern California, 2021

Departmental Honors Program

magna cum laude

AWARDS

Outstanding Short Paper Award
IEEE High Performance Extreme Computing

Second place in ACM Student Research Competition
IEEE/ACM Code Generation and Optimization

Discovery Scholar Distinction
University of Southern California

Academic Achievement Award
University of Southern California

FELLOWSHIPS

Carnegie Institute of Technology Dean's Fellowship
University of Southern California Provost's Research Fellowship

RESEARCH EXPERIENCE

SciDAC: Simulation of the Response of Structural Metals in Molten Salt Environment
Applied SPIRAL's formalism to optimize elasto-viscoplastic fast Fourier transform (EVPFFT) for materials science simulations.

DoE

Neocortex: SPIRAL Code Generation for Wafer-Scale Engine
Extended SPIRAL to target Cerebras second-generation Wafer-Scale Engine (WSE-2).
NSF

- Trebuchet: NTTX for OpenFHE

 Developed SPIRAL NTTX package to automatically generate high-performance vectorized number theoretic transform (NTT) code for fully homomorphic encryption (FHE) applications.

 DARPA DPRIVE
- 2022–23 Performance Analysis and Optimization of Quantum Library
 Conducted real-world performance analysis and optimizations of IBM's quantum library Qiskit for Shor's Algorithm.
- 2020–21 Compiler Abstractions Supporting High Performance on Extreme-scale Resources (CASPER)

 Developed a compiler-oriented autotuner that automatically profiles a kernel and performs tuning guided by performance prediction.

 DARPA PAPPA
- Dynamic Data-Aware Reconfiguration, INtegration and Generation (DDARING)

 Developed a lightweight augmented neural network for performance prediction.

 DARPA SDH

PUBLICATIONS

Conference Proceedings

- N. Zhang, A. Ebel, N. Neda, P. Brinich, B. Reynwar, A. G. Schmidt, M. Franusich, J. Johnson, B. Reagen, F. Franchetti. "Generating High-Performance Number Theoretic Transform Implementations for Vector Architectures." IEEE High Performance Extreme Computing Conference (HPEC).
- D. Sun, N. Zhang, F. Franchetti. "Optimization and Performance Analysis of Shor's Algorithm in Qiskit." IEEE High Performance Extreme Computing Conference (HPEC).
- D. Soni, N. Neda, N. Zhang, B. Reynwar, H. Gamil, B. Heyman, M. N. T. Moopan, A. Al Badawi, Y. Polyakov, K. Canida, M. Pedram, M. Maniatakos, D. B. Cousins, F. Franchetti, M. French, A. Schmidt, B. Reagen. "RPU: The Ring Processing Unit." IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).
- N. Zhang, A. Srivastava, R. Kannan, V. K. Prasanna. "GenMAT: A General-PurposeMachine Learning-Driven Auto-Tunerfor Heterogeneous Platforms." Workshop on Programming Environments for Heterogeneous Computing (PEHC).
- A. Srivastava*, N. Zhang*, R. Kannan, V. K. Prasanna. "Towards High Performance, Portability, and Productivity: Lightweight Augmented Neural Networks for Performance Prediction." International Conference on High Performance Computing, Data, and Analytics (HiPC). *Equal contribution.
- C. Imes, A. Colin, N. Zhang, A. Srivastava, V. K. Prasanna, J. P. Walters. "Compiler Abstractions and Runtime for Extreme-scale SAR and CFD Workloads." Workshop on Extreme Scale Programming Models and Middleware (ESPM2).

Other Conference Papers, Technical Reports, Extended Abstracts, and Posters

- P. Brinich, N. Zhang, A. Ebel, F. Franchetti, J. Johnson. "Twiddle Factor Generation for a Vectorized Number Theoretic Transform." IEEE High Performance Extreme Computing Conference (HPEC), Extended abstract. **Outstanding Short Paper Award**.
- H. Mankad, A. Rovinelli, M. Zecevic, P. McCorquodale, F. Franchetti, N. Zhang, S. Rao, R. A. Lebensohn, L. Capolungo "EVPFFTX: A First Look at FFTX Applications in Material Science." IEEE High Performance Extreme Computing Conference (HPEC), Extended abstract.
- D. B. Cousins, Y. Polyakov, A. Al Badawi, M. French, A. Schmidt, A. Jacob, B. Reynwar, K. Canida, A. Jaiswal, C. Mathew, H. Gamil, N. Neda, D. Soni, M. Maniatakos, B. Reagen, N. Zhang, F. Franchetti, P.

- Brinich, J. Johnson, P. Broderick, M. Franusich B. Zhang, Z. Cheng, M. Pedram. "TREBUCHET: Fully Homomorphic Encryption Accelerator for Deep Computation." Government Microcircuit Applications and Critical Technology Conference (GOMACTech), Preprint.
- N. Zhang, F. Franchetti. "Generating Number Theoretic Transforms for Multi-Word Integer Data Types." IEEE/ACM International Symposium on Code Generation and Optimization (CGO), Poster with extended abstract. **Second Place in ACM Student Research Competition**.
- N. Zhang, H. Gamil, P. Brinich, B. Reynwar, A. Al Badawi, N. Neda, D. Soni, K. Canida, Y. Polyakov, P. Broderick, M. Maniatakos, A. G. Schmidt, M. Franusich, J. Johnson, B. Reagen, D. B. Cousins, F. Franchetti. "Towards Full-Stack Acceleration for Fully Homomorphic Encryption." IEEE High Performance Extreme Computing Conference (HPEC), Extended abstract.
- I. Grosof, N. Zhang, M. Heule. "Towards the shortest DRAT proof of the Pigeonhole Principle." Pragmatics of SAT International Workshop (PoS), Preprint.

TALKS

Conference Presentations

- "Generating High-Performance Number Theoretic Transform Implementations for Vector Architectures." IEEE High Performance Extreme Computing Conference. Virtual. Sep 29.
- "Generating Number Theoretic Transforms for Multi-Word Integer Data Types." IEEE/ACM International Symposium on Code Generation and Optimization. Montreal, Canada. Feb 28.
- "Towards Full-Stack Acceleration for Fully Homomorphic Encryption." IEEE High Performance Extreme Computing Conference. Virtual. Sep 23.
- "GenMAT: A General-Purpose Machine Learning-Driven Auto-Tuner for Heterogeneous Platforms." Workshop on Programming Environments for Heterogeneous Computing. Virtual. Nov 19.
- "Towards High Performance, Portability, and Productivity: Lightweight Augmented Neural Networks for Performance Prediction." International Conference on High Performance Computing, Data, and Analytics. Virtual. Dec 16.

Tutorials Given

"Open Source SPIRAL 8.5 Tutorial." IEEE High Performance Extreme Computing Conference. Virtual. Sep 27. Together with F. Franchetti, M. Franusich, P. Broderick.

TEACHING EXPERIENCE

Carnegie Mellon Univeristy

Teaching Assistant

23 Spring Computational Problem Solving for Engineers

University of Southern California

Undergraduate Teaching Assistant

21 Spring Special Topics - Accelerated Computing Using FPGAs

20 Fall Parallel and Distributed Computation

20 Spring Special Topics - Accelerated Computing Using FPGAs

Discrete Methods in Computer Science

19 Fall Parallel and Distributed Computation

Discrete Methods in Computer Science

MENTORING

Master's

2023- Kofi Poku2022-23 Dewang Sun2022 Hongbo Sun

Undergraduate

2023- Gordon Xu
 2022-23 Matt Ngaw
 2022-23 Jimmy Zhou

SERVICE

Conference Peer Review

IEEE International Conference on Big Data (BigData)
IEEE High Performance Extreme Computing Conference (HPEC)

Service to the University

CMU ECE Faculty Hiring Student Council, 2022-23