Bayes' and Law of Total Probability

For an event space $\{B_1, \ldots, B_m\}$ with $P[B_i] > 0$ for all i,

$$P[B_i|A] = \frac{P[AB_i]}{P[A]} = \underbrace{\frac{P[A|B_i]P[B_i]}{P[A]}}$$
$$= \underbrace{\frac{P[A|B_i]P[B_i]}{P[A|B_i]P[B_i]}}$$

We know the a priori probabilities of the $B_i(s)$ and also the probability of an observable event A given B_i . Having seen A (the effect) we want to know the chance that a certain B_i is the cause (that caused A)

Bayes' and Law of Total Probability

- Let A be the event {A world class athlete is seen}
- Consider the event space (World) contains countries of origins. It is W = {China, Jamaica, India, Malaysia, Pakistan, Sri Lanka, UK, US,...}. Let B₁ = China and so on...
- P[B_i] is the probability of the event that the country of origin of a human is B_i
- A priori we could calculate P[B_i] as the ratio of the population of B_i and the population of the world.
- We could also arrive at P[A|B_i], say based on past statistics
- Now say I tell you that I saw an athlete, that is observed A, and I want to know what is probability that the athlete is from India
 - I want to know P[India | A] or P[B₃ | A]

2	
DIAGNOSTIC	IEST.

A) disease has a prevalence rate of 1/1000.

A person decides to get tested. What is the probability Ret Re person is injected before he test result is out?

The test has a false the rate of /1000

A a false we rate of O.

The corresponding probabilities?

P(Test is ove Penson is not injected) = 6

P[Test is-ve | Renson is infected] = 0

The test nesult is tree. Is the person injected?

P (Person is injected) Test nesult is tree)

= P (Test nesult is tree (Person is injected) P (Person is injected)

P(Test result is the Penson is if) P(Penisin)

* P(Test result is the Penson is mut if)

P(Penson is not if)

SCREAM DETECTION

APP

P(Voice sample is scream) = P. FPR P(App detects Andre isn't)

App has false the nate > 0.

TOR: P(App detects scream)

Somple is scream)

P(Scream happened App detected scream)

 $= \frac{\text{(TDR)}P}{(\text{TDR)}P + FPR(I-P)} = \frac{P}{P + FPR(I-P)}$

Independence

- Two Events A and B are independent iff P[AB] = P[A]P[B]
- The occurrence of event B does not change your belief about whether event A has occurred or not
 - Implies P[A|B] = P[?]
- Definition 1.9
 - If n>3, the sets A_1 , A_2 ,..., A_n are independent if
 - Every set of n-1 sets taken from A₁, A₂,..., A_n is independent,
 - $P[A_1 \cap A_2 \cap ... \cap A_n] = P[A_1] P[A_2]... P[A_n]$

Quiz 1.6

Monitor two consecutive phone calls going through a telephone switching office. Classify each one as a voice call (v) if someone is speaking, or a data call (d) if the call is carrying a modem or fax signal. Your observation is a sequence of two letters (either v or d). For example, two voice calls corresponds to vv. The two calls are independent and the probability that any one of them is a voice call is 0.8. Denote the identity of call i by C_i . If call i is a voice call, then $C_i = v$; otherwise, $C_i = d$. Count the number of voice calls in the two calls you have observed. N_V is the number of voice calls. Consider the three events $N_V = 0$, $N_V = 1$, $N_V = 2$. Determine whether the following pairs of events are independent:

(1)
$$\{N_V = 2\}$$
 and $\{N_V \ge 1\}$

(2)
$$\{N_V \ge 1\}$$
 and $\{C_1 = v\}$

(3)
$$\{C_2 = v\}$$
 and $\{C_1 = d\}$

(4)
$$\{C_2 = v\}$$
 and $\{N_V \text{ is even}\}$

Problem 1.6.7

For independent events A and B, prove that

- (a) A and B^c are independent.
- (b) A^c and B are independent.
- (c) A^c and B^c are independent.

Sequential Diagrams

Example 1.25 Problem

Suppose traffic engineers have coordinated the timing of two traffic lights to encourage a run of green lights. In particular, the timing was designed so that with probability 0.8 a driver will find the second light to have the same color as the first. Assuming the first light is equally likely to be red or green, what is the probability $P[G_2]$ that the second light is green? Also, what is P[W], the probability that you wait for at least one light? Lastly, what is $P[G_1|R_2]$, the conditional probability of a green first light given a red second light?