Mathematik für Informatiker 1

Blatt 2¹

Prof. Dr. Theo de Jong Klaus Mattis

Übung 2.1

Seien A, B und C drei Mengen. Beweisen Sie:

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Man nehme nun an, dass A und B Teilmengen einer Obermenge X seien. Beweisen Sie:

- $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$
- $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$

Hinweis: Um eine Gleichheit von Mengen Y=Z zu beweisen, müssen sie nacheinander die beiden Inklusionen $Y\subset Z$ und $Z\subset Y$ beweisen.

Übung 2.2

Wir betrachten die Abbildung $f: A \to B, x \mapsto x^2$. Betrachten Sie folgende Fälle und beweisen Sie die Aussage P und Q:

A	$\mid B \mid$	P	Q
[-1, 1]	[-1, 1]	f ist nicht injektive	f ist nicht surjektive
[0, 1]	[-1, 1]	f ist injektive	f ist nicht surjektive
[-1, 1]	[0, 1]	f ist nicht injektive	f ist surjektive
[0, 1]	[0, 1]	f ist injektive	f ist surjektive

Hinweis: Um zu beweisen, dass eine Funktion nicht injektive (oder nicht surjektiv) ist, reicht es, jeweils ein Gegenbeispiel anzugeben!

Übung 2.3

Seien $f:A\to B$ und $g:B\to C$ zwei Abbildungen zwischen den nichtleeren Mengen A, B und C. Beweisen Sie:

- Ist $g \circ f$ injektiv, so ist f injektiv.
- Ist $g \circ f$ surjectiv, so ist g surjectiv.
- Sind f und g injektiv, so ist $g \circ f$ injektiv.

¹Geben Sie das Übungsblatt in der Woche vom 4.11. bis 8.11. in ihrem Tutorium ab

• Sind f und g surjektiv, so ist $g \circ f$ surjektiv.

Finden Sie zudem ein Gegenbeispiel für folgende Aussagen:

- Ist g surjektive und f injektiv, so ist $g \circ f$ injektive.
- Ist g surjektive und f injektiv, so ist $g \circ f$ surjektiv.

Übung 2.4

Beweisen Sie mittels vollständiger Induktion folgende Formeln:

•
$$\sum_{k=1}^n k^3 = \frac{n^2(n+1)^2}{4}$$
 für all $n \in \mathbb{N}_+$.

•
$$\sum_{k=0}^{n} 2^k = 2^{n+1} - 1$$
 für all $n \in \mathbb{N}_+$.

•
$$\sum_{k=0}^{n} 3^k = \frac{3^{n+1}-1}{2}$$
 für all $n \in \mathbb{N}_+$.

Hinweis: Ihr Beweis sollte folgende Struktur haben:

- 1. Zeigen Sie zunächst den Induktionsanfang, das heißt, zeigen Sie die Aussage für n=1.
- 2. Nehmen Sie nun an, dass Sie die Aussage bereits für ein $n \in \mathbb{N}_+$ gezeigt haben.
- 3. Zeigen Sie nun im Induktionsschritt, dass die Aussage auch für n+1 gilt, unter der Annahme, dass die Aussage für n gilt.