Rough Set Theory for Feature Selection

A sample explaining how to apply Rough Set Theory to select the most significant features from a database

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Outline

- Decision and Information Systems
- Indiscernibility Relation
- Set Approximation
- Positive region & Dependency of attributes
- Core and Reduct

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Rough Set Theory

• Rough set theory was developed by Zdzislaw Pawlak in the early 1980's.

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

- Rough set theory was developed by Zdzislaw Pawlak in the early 1980's.
- Rough sets constitutes a sound basis for data mining as a tool to:

- Rough set theory was developed by Zdzislaw Pawlak in the early 1980's.
- Rough sets constitutes a sound basis for data mining as a tool to:
 - Feature selection;

- Rough set theory was developed by Zdzislaw Pawlak in the early 1980's.
- Rough sets constitutes a sound basis for data mining as a tool to:
 - Feature selection;
 - Discretization;

- Rough set theory was developed by Zdzislaw Pawlak in the early 1980's.
- Rough sets constitutes a sound basis for data mining as a tool to:
 - Feature selection;
 - Discretization;
 - Decision rule generation;

- Rough set theory was developed by Zdzislaw Pawlak in the early 1980's.
- Rough sets constitutes a sound basis for data mining as a tool to:
 - Feature selection;
 - Discretization;
 - Decision rule generation;
 - Classification;

- Rough set theory was developed by Zdzislaw Pawlak in the early 1980's.
- Rough sets constitutes a sound basis for data mining as a tool to:
 - Feature selection;
 - Discretization;
 - Decision rule generation;
 - Classification;

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Information System/Table

TABLE – Information System (IS)

Patients	Headache	Muscle-pain	Temperature
<i>O</i> ₁	Yes	Yes	very high
<i>O</i> ₂	Yes	No	high
<i>O</i> 3	Yes	No	high
04	No	Yes	normal
0 5	No	Yes	high
<i>O</i> ₆	No	Yes	very high

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Information System/Table

TABLE – Information System (IS)

Patients	Headache	Muscle-pain	Temperature
<i>O</i> ₁	Yes	Yes	very high
<i>O</i> ₂	Yes	No	high
<i>O</i> 3	Yes	No	high
04	No	Yes	normal
0 5	No	Yes	high
<i>O</i> ₆	No	Yes	very high

•
$$IS = (U, C);$$

Information System/Table

TABLE – Information System (IS)

Patients	Headache	Muscle-pain	Temperature
<i>O</i> ₁	Yes	Yes	very high
<i>O</i> ₂	Yes	No	high
<i>O</i> ₃	Yes	No	high
04	No	Yes	normal
0 5	No	Yes	high
<i>0</i> ₆	No	Yes	very high

- IS = (U, C);
- $U = \{o_1, o_2, \dots, o_j\}$ is a non-empty, finite set of objects called the "universe";

Information System/Table

TABLE – Information System (IS)

Patients	Headache	Muscle-pain	Temperature
<i>O</i> ₁	Yes	Yes	very high
<i>O</i> ₂	Yes	No	high
<i>O</i> ₃	Yes	No	high
04	No	Yes	normal
0 5	No	Yes	high
<i>0</i> ₆	No	Yes	very high

- IS = (U, C);
- $U = \{o_1, o_2, \dots, o_j\}$ is a non-empty, finite set of objects called the "*universe*";
- $C = \{c_1, c_2, ..., c_n\}$ is a non-empty, finite set of "condition" attributes;

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Information System/Table

TABLE – Information System (IS)

Patients	Headache	Muscle-pain	Temperature
<i>O</i> ₁	Yes	Yes	very high
0 2	Yes	No	high
<i>O</i> ₃	Yes	No	high
<i>O</i> ₄	No	Yes	normal
0 5	No	Yes	high
<i>O</i> ₆	No	Yes	very high

Decision and Information Systems
Indiscernibility Relation
Set Approximation
Positive region & Dependency of attributes
Core and Reduct

Information System/Table

TABLE – Information System (IS)

Patients	Headache	Muscle-pain	Temperature
<i>O</i> ₁	Yes	Yes	very high
<i>O</i> ₂	Yes	No	high
<i>O</i> ₃	Yes	No	high
<i>O</i> ₄	No	Yes	normal
0 5	No	Yes	high
<i>O</i> ₆	No	Yes	very high

 \sim The Table represents an *IS* consisting of 3 conditional features (*Headache*, *Muscle-pain*, *Temperature*) and 6 objects (o_1, \ldots, o_6) .

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Decision System/Table

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
0 2	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
0 5	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Decision System/Table

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
0 2	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
0 5	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

•
$$DS = (U, C \cup \{d\});$$

Decision System/Table

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
0 2	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
<i>O</i> ₅	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

- $DS = (U, C \cup \{d\});$
- $U = \{o_1, o_2, \dots, o_j\}$ is a non-empty, finite set of objects called the "universe":

Core and Reduct

Decision System/Table

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
0 2	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
<i>O</i> ₅	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

- $DS = (U, C \cup \{d\});$
- $U = \{o_1, o_2, \dots, o_j\}$ is a non-empty, finite set of objects called the "universe";
- $C = \{c_1, c_2, \dots, c_n\}$ is a non-empty, finite set of "condition" attributes;

Core and Reduct

Decision System/Table

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
0 2	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
0 5	No	Yes	high	Yes
<i>o</i> ₆	No	Yes	very high	Yes

- $DS = (U, C \cup \{d\});$
- $U = \{o_1, o_2, \dots, o_j\}$ is a non-empty, finite set of objects called the "universe":
- $C = \{c_1, c_2, \dots, c_n\}$ is a non-empty, finite set of "condition" attributes:
- $d \notin C$ is a distinguished attribute called "decision";

Decision and Information Systems
Indiscernibility Relation

Set Approximation

Positive region & Dependency of attributes Core and Reduct

Decision System/Table

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
0 2	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
0 5	No	Yes	high	Yes
<i>o</i> ₆	No	Yes	very high	Yes

- $DS = (U, C \cup \{d\});$
- $U = \{o_1, o_2, \dots, o_j\}$ is a non-empty, finite set of objects called the "universe":
- $C = \{c_1, c_2, \dots, c_n\}$ is a non-empty, finite set of "condition" attributes;
- $d \notin C$ is a distinguished attribute called "decision";
- The value set of d, called $\theta = \{d_1, d_2, \dots, d_s\}$;

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Decision System/Table

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
0 2	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
0 5	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

Decision and Information Systems
Indiscernibility Relation
Set Approximation
Positive region & Dependency of attributes
Core and Reduct

Decision System/Table

TABLE – Decision System (DS)

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
<i>O</i> ₂	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
0 5	No	Yes	high	Yes
0 6	No	Yes	very high	Yes

 \sim The Table represents a *DS* consisting of 3 conditional features (*Headache*, *Muscle-pain*, *Temperature*), 1 decision feature (*Flu*) having the values {*Yes*, *No*} and 6 objects.

Rough Set Theory for Feature Selection

Rough Sets and the Use of Heuristics

Decision and Information Systems

Indiscernibility Relation Set Approximation

Positive region & Dependency of attributes Core and Reduct

Issues in the Decision Table

RST recalls that:

Rough Set Theory for Feature Selection

Rough Sets and the Use of Heuristics

Decision and Information Systems

Indiscernibility Relation
Set Approximation
Positive region & Dependency of attributes
Core and Reduct

Issues in the Decision Table

RST recalls that:

 The same or indiscernible objects may be represented several times.

Decision and Information Systems
Indiscernibility Relation
Set Approximation
Positive region & Dependency of attributes

Core and Reduct

Issues in the Decision Table

RST recalls that:

- The same or indiscernible objects may be represented several times.
- Some of the attributes may be superfluous.

Decision and Information Systems
Indiscernibility Relation
Set Approximation
Positive region & Dependency of attributes
Core and Reduct

Issues in the Decision Table

RST recalls that:

- The same or indiscernible objects may be represented several times.
- Some of the attributes may be superfluous.
- Some of attributes values may be superfluous.

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Indiscernibility Relation

• The indiscernibility relation IND_C is an equivalence relation :

Decision and Information Systems
Indiscernibility Relation
Set Approximation
Positive region & Dependency of attributes
Core and Reduct

Indiscernibility Relation

- The indiscernibility relation IND_C is an equivalence relation :
- This equivalence relation induces a **partitioning** of the universe.

Indiscernibility Relation

- The indiscernibility relation IND_C is an equivalence relation :
- This equivalence relation induces a partitioning of the universe.
- The partitions can be used to build new **subsets** of the universe.

$$IND_C = U/C = \{ [o_j]_C | o_j \in U \}$$
 (1)

$$[o_j]_C = \{o_i | C(o_i) = C(o_j)\}$$
 (2)

Indiscernibility Relation

- The indiscernibility relation IND_C is an equivalence relation :
- This equivalence relation induces a **partitioning** of the universe.
- The partitions can be used to build new **subsets** of the universe.

$$IND_C = U/C = \{[o_j]_C | o_j \in U\}$$
 (1)

$$[o_j]_C = \{o_i | C(o_i) = C(o_j)\}$$
 (2)

• The **equivalence class** that includes o_j is denoted by $[o_i]_C$.

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Indiscernibility Relation

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
<i>O</i> ₂	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
<i>O</i> 5	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Indiscernibility Relation

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
<i>O</i> ₂	Yes	No	high	Yes
<i>o</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
<i>O</i> ₅	No	Yes	high	Yes
<i>o</i> ₆	No	Yes	very high	Yes

The IND relation for some subsets of condition attributes C:

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Indiscernibility Relation

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
0 2	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
<i>0</i> 5	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

The IND relation for some subsets of condition attributes C:

™ We look for the objects having the same attribute value!

Indiscernibility Relation

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
0 2	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
<i>0</i> 5	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

The IND relation for some subsets of condition attributes C:

We look for the objects having the same attribute value!

•
$$IND_{\{Headache\}} = \{\{o_1, o_2, o_3\}, \{o_4, o_5, o_6\}\}$$

Indiscernibility Relation

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
0 2	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
<i>0</i> 5	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

The IND relation for some subsets of condition attributes C:

- **™** We look for the objects having the same attribute value!
- $IND_{\{Headache\}} = \{\{o_1, o_2, o_3\}, \{o_4, o_5, o_6\}\}$
- $IND_{\{Headache, Muscle-pain\}} = \{\{o_1\}, \{o_2, o_3\}, \{o_4, o_5, o_6\}\}$

Indiscernibility Relation

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
0 2	Yes	No	high	Yes
<i>o</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
<i>0</i> 5	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

The IND relation for some subsets of condition attributes C:

We look for the objects having the same attribute value!

•
$$IND_{\{Headache\}} = \{\{o_1, o_2, o_3\}, \{o_4, o_5, o_6\}\}$$

•
$$IND_{\{Headache, Muscle-pain\}} = \{\{o_1\}, \{o_2, o_3\}, \{o_4, o_5, o_6\}\}$$

•
$$IND_C = U/C = \{\{o_1\}, \{o_2, o_3\}, \{o_4\}, \{o_5\}, \{o_6\}\}\}$$
 (*C* all condition attributes : the 3 features)

Lower & Upper Approximations

• If we have target concept:

$$X = \{o_j | Flu(o_j) = \{yes\}\} = \{o_1, o_2, o_5, o_6\}$$

• We want to describe X using the subsets of the universe:

$$U/C = \{\{o_1\}, \{o_2, o_3\}, \{o_4\}, \{o_5\}, \{o_6\}\}$$

Lower & Upper Approximations

• If we have target concept:

$$X = \{o_j | Flu(o_j) = \{yes\}\} = \{o_1, o_2, o_5, o_6\}$$

 \bullet We want to describe X using the subsets of the universe:

$$U/C = \{\{o_1\}, \{o_2, o_3\}, \{o_4\}, \{o_5\}, \{o_6\}\}$$

The concept X cannot be defined in a crisp manner, due to the subset {o₂, o₃}: o₁, o₅ and o₆ are singletons belonging to X.
 But o₂ is coupled with o₃ which does not belong to X.

Lower & Upper Approximations

• If we have target concept:

$$X = \{o_j | Flu(o_j) = \{yes\}\} = \{o_1, o_2, o_5, o_6\}$$

• We want to describe X using the subsets of the universe :

$$\textit{U/C} = \{\{o_1\}, \{o_2, o_3\}, \{o_4\}, \{o_5\}, \{o_6\}\}$$

- The concept X cannot be defined in a crisp manner, due to the subset {o₂, o₃}: o₁, o₅ and o₆ are singletons belonging to X.
 But o₂ is coupled with o₃ which does not belong to X.
- We can approximate X by constructing two certain subsets:
 - **1** Lower Approximation
 - **2** Upper Approximation

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Terminologies

- Let A = (U, C) and let $B \subseteq C$ and $X \subseteq U$
- The **B-lower approximation** of X, denoted $\underline{B}(X)$

$$\underline{B}(X) = \{o_j | [o_j]_B \subseteq X\}$$
 (3)

Terminologies

- Let A = (U, C) and let $B \subseteq C$ and $X \subseteq U$
- The **B-lower approximation** of X, denoted $\underline{B}(X)$

$$\underline{B}(X) = \{o_j | [o_j]_B \subseteq X\}$$
 (3)

 \sim Objects in $\underline{B}(X)$ can be with certainty classified as members of X on the basis of knowledge in B.

Terminologies

- Let A = (U, C) and let $B \subseteq C$ and $X \subseteq U$
- The **B-lower approximation** of X, denoted $\underline{B}(X)$

$$\underline{B}(X) = \{o_j | [o_j]_B \subseteq X\}$$
 (3)

 \sim Objects in $\underline{B}(X)$ can be with certainty classified as members of X on the basis of knowledge in B.

• The **B-upper approximation** of X, denoted $\overline{B}(X)$

$$\overline{B}(X) = \{o_j | [o_j]_B \cap X \neq \emptyset\}$$
 (4)

Terminologies

- Let A = (U, C) and let $B \subseteq C$ and $X \subseteq U$
- The **B-lower approximation** of X, denoted $\underline{B}(X)$

$$\underline{B}(X) = \{o_j | [o_j]_B \subseteq X\}$$
 (3)

- \sim Objects in $\underline{B}(X)$ can be with certainty classified as members of X on the basis of knowledge in B.
 - The **B-upper approximation** of X, denoted $\overline{B}(X)$

$$\overline{B}(X) = \{o_j | [o_j]_B \cap X \neq \emptyset\}$$
 (4)

 \sim Objects in $\overline{B}(X)$ can be only classified as possible members of X on the basis of knowledge in B.

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Terminologies

• The **B-boundary region** of X,

$$BN_B(X) = \overline{B}(X) - \underline{B}(X)$$
 (5)

Terminologies

• The **B-boundary region** of X,

$$BN_B(X) = \overline{B}(X) - \underline{B}(X)$$
 (5)

 \sim The boundary region, $BN_B(X)$, is the set of objects that can possibly, but not certainly, be classified in this way.

Terminologies

• The **B-boundary region** of X,

$$BN_B(X) = \overline{B}(X) - \underline{B}(X)$$
 (5)

 \sim The boundary region, $BN_B(X)$, is the set of objects that can possibly, but not certainly, be classified in this way.

 \sim A set is said to be rough if its boundary region is non-empty.

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

$$IND_C = U/C = \{\{o_1\}, \{o_2, o_3\}, \{o_4\}, \{o_5\}, \{o_6\}\}$$

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
<i>O</i> ₂	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
0 5	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

Let
$$X_1 = \{o_j | Flu(o_j) = \{yes\}\} = \{o_1, o_2, o_5, o_6\}$$

Set approximation

$$IND_C = U/C = \{\{o_1\}, \{o_2, o_3\}, \{o_4\}, \{o_5\}, \{o_6\}\}$$

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
0 2	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
<i>0</i> 5	No	Yes	high	Yes
0 6	No	Yes	very high	Yes

Let
$$X_1 = \{o_i | Flu(o_i) = \{yes\}\} = \{o_1, o_2, o_5, o_6\}$$

• $\underline{C}X_1 = \{o_1, o_5, o_6\}$: With respect to IND_C and X_1 , o_2 does not belong as we are not certain that it belongs to $\underline{C}X_1$. This is because it is coupled with o_3 .

$$IND_C = U/C = \{\{o_1\}, \{o_2, o_3\}, \{o_4\}, \{o_5\}, \{o_6\}\}$$

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
0 2	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
<i>0</i> 5	No	Yes	high	Yes
0 6	No	Yes	very high	Yes

Let
$$X_1 = \{o_i | Flu(o_i) = \{yes\}\} = \{o_1, o_2, o_5, o_6\}$$

- $\underline{C}X_1 = \{o_1, o_5, o_6\}$: With respect to IND_C and X_1, o_2 does not belong as we are not certain that it belongs to $\underline{C}X_1$. This is because it is coupled with o_3 .
- $\overline{C}X_1 = \{o_1, o_2, o_3, o_5, o_6\}$: Same, o_2, o_3 are included in $\overline{C}X_1$ as they can be considered as possible member of X_1 .

$$IND_C = U/C = \{\{o_1\}, \{o_2, o_3\}, \{o_4\}, \{o_5\}, \{o_6\}\}$$

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
<i>O</i> ₂	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
0 5	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

Let
$$X_1 = \{o_i | Flu(o_i) = \{yes\}\} = \{o_1, o_2, o_5, o_6\}$$

- $\underline{C}X_1 = \{o_1, o_5, o_6\}$: With respect to IND_C and X_1, o_2 does not belong as we are not certain that it belongs to $\underline{C}X_1$. This is because it is coupled with o_3 .
- $\overline{C}X_1 = \{o_1, o_2, o_3, o_5, o_6\}$: Same, o_2, o_3 are included in $\overline{C}X_1$ as they can be considered as possible member of X_1 .
- $BN_C(X_1) = \{o_2, o_3\}$ (Equ. 5)

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

$$IND_C = U/C = \{\{o_1\}, \{o_2, o_3\}, \{o_4\}, \{o_5\}, \{o_6\}\}$$

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
<i>O</i> ₂	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
<i>O</i> 5	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

Let
$$X_2 = \{o_j | Flu(o_j) = \{No\}\} = \{o_3, o_4\}$$

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

$$IND_C = U/C = \{\{o_1\}, \{o_2, o_3\}, \{o_4\}, \{o_5\}, \{o_6\}\}$$

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
<i>O</i> ₂	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
<i>O</i> 5	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

Let
$$X_2 = \{o_j | Flu(o_j) = \{No\}\} = \{o_3, o_4\}$$

• $CX_2 = \{o_4\}$

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

$$IND_C = U/C = \{\{o_1\}, \{o_2, o_3\}, \{o_4\}, \{o_5\}, \{o_6\}\}$$

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
<i>O</i> ₂	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
<i>O</i> ₅	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

Let
$$X_2 = \{o_j | Flu(o_j) = \{No\}\} = \{o_3, o_4\}$$

- $\underline{C}X_2 = \{o_4\}$
- $\overline{C}X_2 = \{o_2, o_3, o_4\}$

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

$$IND_C = U/C = \{\{o_1\}, \{o_2, o_3\}, \{o_4\}, \{o_5\}, \{o_6\}\}$$

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
0 2	Yes	No	high	Yes
<i>o</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
0 5	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

Let
$$X_2 = \{o_i | Flu(o_i) = \{No\}\} = \{o_3, o_4\}$$

- $CX_2 = \{o_4\}$
- $\overline{C}X_2 = \{o_2, o_3, o_4\}$
- $BN_C(X_2) = \{o_2, o_3\}$

$$IND_C = U/C = \{\{o_1\}, \{o_2, o_3\}, \{o_4\}, \{o_5\}, \{o_6\}\}$$

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
0 2	Yes	No	high	Yes
<i>o</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
0 5	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

Let
$$X_2 = \{o_i | Flu(o_i) = \{No\}\} = \{o_3, o_4\}$$

- $CX_2 = \{o_4\}$
- $\overline{C}X_2 = \{o_2, o_3, o_4\}$
- $BN_C(X_2) = \{o_2, o_3\}$
- → The decision class, "Flu", is rough since the boundary region is not empty.

Decision and Information Systems
Indiscernibility Relation
Set Approximation
Positive region & Dependency of attributes

Core and Reduct

FIGURE – Set approximation

Positive region

• **Positive region** is the set of elements of U that can be uniquely classified to blocks of partion $U/\{d\}$, by means of C.

$$POS_{C}\{(d)\} = \bigcup_{X \in U/\{(d)\}} \underline{C}(X)$$
 (6)

Positive region

• Positive region is the set of elements of U that can be uniquely classified to blocks of partion $U/\{d\}$, by means of C.

$$POS_{C}\{(d)\} = \bigcup_{X \in U/\{(d)\}} \underline{C}(X)$$
 (6)

- $CX_2 = \{o_4\}$
- $\underline{C}X_1 = \{o_1, o_5, o_6\}$

Positive region

• Positive region is the set of elements of U that can be uniquely classified to blocks of partion $U/\{d\}$, by means of C.

$$POS_{C}\{(d)\} = \bigcup_{X \in U/\{(d)\}} \underline{C}(X)$$
 (6)

- $CX_2 = \{o_4\}$
- $\underline{C}X_1 = \{o_1, o_5, o_6\}$
- $\rightarrow POS_C\{(d)\} = \{o_1, o_4, o_5, o_6\}$

Positive region & Dependency of attributes

• **Dependency of attributes**: the attribute d depends partially (in a degree k) on a set of attributes C.

$$k = \gamma(C, \{d\}) = \frac{|POS_C\{(d)\}|}{|U|}$$
 (7)

Positive region & Dependency of attributes

• **Dependency of attributes**: the attribute d depends partially (in a degree k) on a set of attributes C.

$$k = \gamma(C, \{d\}) = \frac{|POS_C\{(d)\}|}{|U|}$$
 (7)

- $POS_C\{(d)\} = \{o_1, o_4, o_5, o_6\}$
- $U = \{o_1, \ldots, o_6\}$

Positive region & Dependency of attributes

• **Dependency of attributes**: the attribute d depends partially (in a degree k) on a set of attributes C.

$$k = \gamma(C, \{d\}) = \frac{|POS_C\{(d)\}|}{|U|}$$
 (7)

•
$$POS_C\{(d)\} = \{o_1, o_4, o_5, o_6\}$$

•
$$U = \{o_1, \ldots, o_6\}$$

$$\rightarrow k = \gamma(C, \{d\}) = 4/6$$

Issues in the Decision Table

- The **same or indiscernible** objects may be represented several times.
- Some of the attributes may be superfluous.
- Some of attributes values may be superfluous.

Issues in the Decision Table

- The **same or indiscernible** objects may be represented several times.
- Some of the attributes may be superfluous.
- Some of attributes values may be superfluous.

Core and Reduct Concepts!

Definitions

• **Reduct** is a minimal subset of attributes B from C that preserves the positive region as the whole attributes set C does.

$$RED_C\{(d)\}: POS_B\{(d)\} = POS_C\{(d)\}$$
 (8)

Definitions

• **Reduct** is a minimal subset of attributes B from C that preserves the positive region as the whole attributes set C does.

$$RED_C\{(d)\}: POS_B\{(d)\} = POS_C\{(d)\}$$
 (8)

 Core is the set of indispensable attributes. It is included in every reduct.

$$CORE_{\mathcal{C}}\{(d)\} \cap RED_{\mathcal{C}}\{(d)\}$$
 (9)

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Feature Selection and Reduced Set

TABLE – Decision System (DS)

Patients	Headache	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	Yes	very high	Yes
<i>O</i> ₂	Yes	No	high	Yes
<i>O</i> ₃	Yes	No	high	No
<i>O</i> ₄	No	Yes	normal	No
<i>0</i> 5	No	Yes	high	Yes
<i>O</i> ₆	No	Yes	very high	Yes

Feature Selection and Reduced Set

Needed Calculations

•
$$Pos_C(\{d\}) = \{o_1, o_4, o_5, o_6\}$$

•
$$Pos_{\{H,M\}}(\{d\}) = \{o_1\}$$

•
$$Pos_{\{H,T\}}(\{d\}) = \{o_1, o_4, o_5, o_6\}$$

•
$$Pos_{\{M,T\}}(\{d\}) = \{o_1, o_4, o_5, o_6\}$$

•
$$Pos_{\{T\}}(\{d\}) = \{o_1, o_4, o_6\}$$

H: Headache; M: Muscle-pain; T: Temperature; d: for both X_1 and X_2

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Feature Selection and Reduced Set

 \sim Looking for the minimal subset having the same $Pos_C(\{d\})$.

Feature Selection and Reduced Set

 \sim Looking for the minimal subset having the same $Pos_C(\{d\})$.

•
$$Pos_C(\{d\}) = \{o_1, o_4, o_5, o_6\}$$

•
$$Pos_{\{H,M\}}(\{d\}) = \{o_1\}$$

•
$$Pos_{\{H,T\}}(\{d\}) = \{o_1, o_4, o_5, o_6\}$$

•
$$Pos_{\{M,T\}}(\{d\}) = \{o_1, o_4, o_5, o_6\}$$

•
$$Pos_{\{H\}}(\{d\}) = \emptyset$$

•
$$Pos_{\{M\}}(\{d\}) = \emptyset$$

•
$$Pos_{\{T\}}(\{d\}) = \{o_1, o_4, o_6\}$$

Feature Selection and Reduced Set

 \sim Looking for the minimal subset having the same $Pos_C(\{d\})$.

•
$$Pos_C(\{d\}) = \{o_1, o_4, o_5, o_6\}$$

•
$$Pos_{\{H,M\}}(\{d\}) = \{o_1\}$$

•
$$Pos_{\{H,T\}}(\{d\}) = \{o_1, o_4, o_5, o_6\}$$

•
$$Pos_{\{M,T\}}(\{d\}) = \{o_1, o_4, o_5, o_6\}$$

•
$$Pos_{\{H\}}(\{d\}) = \emptyset$$

•
$$Pos_{\{M\}}(\{d\}) = \emptyset$$

•
$$Pos_{\{T\}}(\{d\}) = \{o_1, o_4, o_6\}$$

→ There are two reducts (two generated reduced data sets): The
selected features are H and T constituting a first reduct {Headache,
Temperature}; or M and T to have the following reduct
{Muscle-pain, Temperature}

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Feature Selection and Reduced Set

TABLE – Reduct 1 : {Muscle-pain, Temperature}

Patients	Muscle-pain	Temperature	Flu
<i>O</i> ₁	Yes	very high	Yes
<i>O</i> ₂	No	high	Yes
<i>O</i> 3	No	high	No
<i>O</i> ₄	Yes	normal	No
0 5	Yes	high	Yes
<i>O</i> ₆	Yes	very high	Yes

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Feature Selection and Reduced Set

TABLE – Reduct 2 : {Headache, Temperature}

Patients	Headache	Temperature	Flu
<i>O</i> ₁	Yes	very high	Yes
<i>O</i> ₂	Yes	high	Yes
<i>O</i> ₃	Yes	high	No
<i>O</i> ₄	No	normal	No
<i>0</i> ₅	No	high	Yes
<i>O</i> ₆	No	very high	Yes

Decision and Information Systems Indiscernibility Relation Set Approximation Positive region & Dependency of attributes Core and Reduct

Feature Selection and Reduced Set

TABLE – Reduct 2 : {Headache, Temperature}

Patients	Headache	Temperature	Flu
<i>O</i> ₁	Yes	very high	Yes
<i>O</i> ₂	Yes	high	Yes
<i>O</i> ₃	Yes	high	No
<i>O</i> ₄	No	normal	No
<i>O</i> ₅	No	high	Yes
<i>O</i> ₆	No	very high	Yes

The Core (The most important feature set to not delete from any generated reduct!):

{Headache, Temperature} \cap {Muscle-pain, Temperature} = {Temperature}

Rough Set Theory for Feature Selection Rough Sets and the Use of Heuristics

Outline

- Rough Set Theory for Feature Selection
- 2 Rough Sets and the Use of Heuristics

How to find the reduct?

Rough Set Theory for Feature Selection Rough Sets and the Use of Heuristics

Heuristic attribute selection

How to find the reduct?

Generate all possible subsets;

How to find the reduct?

- Generate all possible subsets;
- 2 Retrieve those with a maximum rough set dependency degree;

How to find the reduct?

- Generate all possible subsets;
- 2 Retrieve those with a maximum rough set dependency degree;

How to find the reduct?

- Generate all possible subsets;
- 2 Retrieve those with a maximum rough set dependency degree;

Limitation...

• Expensive solution to the problem;

How to find the reduct?

- Generate all possible subsets;
- 2 Retrieve those with a maximum rough set dependency degree;

- Expensive solution to the problem;
- Only practical for very simple data sets;

How to find the reduct?

- Generate all possible subsets;
- 2 Retrieve those with a maximum rough set dependency degree;

- Expensive solution to the problem;
- 2 Only practical for very simple data sets;
- Inquire about which is the best reduct for the classification process;

How to find the reduct?

- Generate all possible subsets;
- 2 Retrieve those with a maximum rough set dependency degree;

- Expensive solution to the problem;
- 2 Only practical for very simple data sets;
- Inquire about which is the best reduct for the classification process;
- → The solution to these issues is to apply a "heuristic attribute selection" method.

In literature:

- QuickReduct algorithm;
- ReverseReduct algorithm;
- PRESET algorithm;
- Based on genetic algorithm;
- Using ant-based framework;
- Using filter-based approach;
- Under uncertain frameworks (belief function);

The most used heuristic is the:

- QuickReduct algorithm;
- ReverseReduct algorithm;
- PRESET algorithm;
- Based on genetic algorithm;
- Using ant-based framework;
- Using filter-based approach;
- Under uncertain frameworks (belief function);

Dr. Zaineb Chelly

• It starts off with an empty set;

- 1 It starts off with an empty set;
- 2 The dependency of each attribute is calculated;

- 1 It starts off with an empty set;
- 2 The dependency of each attribute is calculated;
- The best candidate is chosen;

- 1 It starts off with an empty set;
- 2 The dependency of each attribute is calculated;
- The best candidate is chosen;
- 4 A combination of best attributes is added to the reduct;

- 1 It starts off with an empty set;
- 2 The dependency of each attribute is calculated;
- The best candidate is chosen;
- 4 A combination of best attributes is added to the reduct;
- Back to 2;

- 1 It starts off with an empty set;
- 2 The dependency of each attribute is calculated;
- The best candidate is chosen;
- 4 A combination of best attributes is added to the reduct;
- Back to 2;
- This process continues until the dependency of the reduct equals the consistency of the data set;

TABLE – Decision System

$x \in U$	a	b	c	d	e	X
<i>X</i> ₁	1	2	4	0	1	1
<i>X</i> ₂	0	3	3	2	1	2
<i>X</i> ₃	2	3	1	3	3	2
<i>X</i> ₄	1	1	2	1	2	1
<i>X</i> ₅	0	2	0	1	2	1
<i>X</i> ₆	1	1	2	4	3	2
X 7	2	2	1	3	2	2
<i>X</i> 8	1	2	0	2	2	1

TABLE – Decision System

$x \in U$	a	b	С	d	e	X
<i>X</i> ₁	1	2	4	0	1	1
<i>X</i> ₂	0	3	3	2	1	2
<i>X</i> ₃	2	3	1	3	3	2
<i>X</i> ₄	1	1	2	1	2	1
<i>X</i> ₅	0	2	0	1	2	1
<i>X</i> ₆	1	1	2	4	3	2
<i>X</i> ₇	2	2	1	3	2	2
<i>X</i> ₈	1	2	0	2	2	1

• $\gamma_{\{a,b,c,d,e\}}(X) = 8/8 = 1$ (Equ. 7)

TABLE – Decision System

$x \in U$	a	b	С	d	e	X
<i>X</i> ₁	1	2	4	0	1	1
<i>X</i> ₂	0	3	3	2	1	2
<i>X</i> ₃	2	3	1	3	3	2
<i>X</i> ₄	1	1	2	1	2	1
<i>X</i> ₅	0	2	0	1	2	1
<i>X</i> ₆	1	1	2	4	3	2
<i>X</i> ₇	2	2	1	3	2	2
<i>X</i> ₈	1	2	0	2	2	1

•
$$\gamma_{\{a,b,c,d,e\}}(X) = 8/8 = 1$$
 (Equ. 7)

The reduct is set to the empty set:

Evaluate the dependency of each attribute (Equ. 7):

•
$$\gamma_{\{a\}}(X) = 2/8$$

•
$$\gamma_{\{b\}}(X) = 2/8$$

•
$$\gamma_{\{c\}}(X) = 6/8$$

•
$$\gamma_{\{d\}}(X) = 6/8$$

•
$$\gamma_{\{e\}}(X) = 2/8$$

Evaluate the dependency of each attribute:

- $\gamma_{\{a\}}(X) = 2/8$
- $\gamma_{\{b\}}(X) = 2/8$
- $\gamma_{\{c\}}(X) = 6/8$
- $\gamma_{\{d\}}(X) = 6/8$
- $\gamma_{\{e\}}(X) = 2/8$

As $\{c\}$ generates the highest dependency degree, it is added to the reduct:

•
$$R = \{c\}$$

Again, we evaluate the following dependency values:

- $\gamma_{\{c,a\}}(X) = 6/8$
- $\gamma_{\{c,b\}}(X) = 6/8$
- $\gamma_{\{c,d\}}(X) = 8/8$

Stop the iterations since the generated dependency is equal to the dependency of the whole data set

Generated reduct is the following (the selected features are the following):

•
$$R = \{c, d\}$$