

Ukuran Keseragaman

Oleh:

Sevi Nurafni Hj. Nanik Risnawati, Ir., M.Si. Agrivinie Rainy Firohmatillah, S.E., M.Si. M. Haris Fadhillah, S.E., M.M.

UKURAN KESERAGAMAN

bilangan yang memperlihatkan variasi data (perbedaan data yang satu dengan data yang lain) dalam kumpulan data Ukuran Keseragaman adalah bilangan yang memperlihatkan variasi data (perbedaan data yang satu dengan data yang lain) dalam kumpulan data.

Nilai ukuran keseragaman selalu positif. Jika nilai ukuran keseragaman = 0 berarti bilangan-bilangan dalam kumpulan data tersebut nilainya sama semua (seragam sempurna). Dan semakin besar nilai ukuran keseragaman berarti semakin bervariasi bilangan-bilangan dalam kumpulan data tersebut. Sebaiknya semakin kecil nilai ukuran keseragaman berarti semakin kecil perbedaan nilai, antara data yang satu dengan data yang lain (semakin seragam bilangan dalam kumpulan data tersebut).

Ukuran keseragaman biasanya diartikan secara relatif artinya penggunaannya untuk membandingkan kumpulan data yang satu dengan kumpulan data yang lain, untuk mengetahui mana yang lebih bervariasi antara kedua kumpulan data tersebut.

LAMBANG PARAMETER & STATISTIK

Besaran	Parameter (Populasi)	Statistik (Sampel)
Jumlah Observasi	N	n
Rata-rata	μ	Χ̄
Varians	σ^2	S ²
Simpangan Baku	σ	S
Proporsi	Р	р

UK DATA TIDAK BERKELOMPOK

RENTANG

Selisih antara data tertinggi dan data terendah (mempunyai satuan), dihitung dengan rumus:

R = Data Tertinggi - Data Terendah

VARIANS

Nilai statistik yang sering kali dipakai dalam menentukan kedekatan sebaran data yang ada di dalam sampel dan seberapa dekat titik data individu dengan rata-rata (mean) nilai dari sampel itu sendiri.

Varians digunakan untuk mengetahui apakah sampel data yang digunakan dapat mewakili seluruh populasi.

Semakin besar nilai varians artinya semakin jauh jarak data individu dengan rata-rata sampel yang artinya nilai ratarata sampel tersebut tidak bisa mewakili populasi.

Varians (untuk Populasi)

$$\qquad \qquad \qquad \bigcirc$$

$$\sigma 2 = \frac{N \Sigma (\mathbf{X}^2) - (\Sigma X)^2}{N^2}$$

Varians (untuk Sampel)

$$S^{2} = \frac{n \Sigma (X^{2} - (\Sigma X)^{2})}{n(n-1)}$$

SIMPANGAN BAKU / STANDAR DEVIASI

Persebaran data pada suatu sampel untuk melihat seberapa jauh atau seberapa dekat nilai data dengan rata-ratanya.

Simpangan baku adalah nilai akar kuadrat dari varians dan menunjukkan standar penyimpangan data terhadap nilai rata-ratanya. Jika nilai standar deviasi semakin kecil, artinya semakin mendekati rata-rata. Namun jika nilai standar deviasi semakin besar, artinya semakin lebar variasi datanya.

Simpang Baku (untuk Populasi)

$$\sigma = \sqrt{\sigma^2}$$

Simpangan Baku (untuk Sampel)

$$S = \sqrt{S^2}$$

KOEFISIEN VARIASI

Perbandingan Simpangan Baku (Standar Deviasi) dengan Rata-rata Hitung dan dinyatakan dalam bentuk persentase.

Kegunaan koefisien variasi adalah untuk melihat sebaran/distribusi data dari rata-rata hitungnya

Koefisien Variasi (untuk Populasi)

$$\frac{\sigma}{\mu}$$
 X 100 % dimana

$$\mu = \frac{\sum x}{N}$$

$$\overline{X} = \frac{\Sigma X}{n}$$

RENTANG ANTAR KUARTIL

Merupakan selisih antara kuartil atas dengan kuartil bawah. Jadi, cara untuk menentukan rentang antar kuartil adalah dengan menentukan nilai dari kuartil atas dan juga kuartil bawah. Nilai dari rentang antar kuartil dapat digunakan untuk melihat jarak dari kuartil dua ke kuartil satu atau ke kuartil tiga, karena sebenarnya nilai rentang antar kuartil adalah rata-rata jarak dari kuartil tersebut

$$RAK = K3 - K1$$

SIMPANGAN KUARTIL

$$SK = \frac{RAK}{2}$$

SOAL LATIHAN

Dalam suatu ujian yang diikuti oleh 11 orang sebagai sampel, masing-masing mahasiswa mendapat-kan nilai 67, 78, 60, 55, 47, 92, 84, 77, 50, 95, 65, maka nilai Ukuran Keseragamannya adalah:

- Rentang
- 2. Varians
- Simpangan Baku
- Koefisien Variasi
- Rentang Antar Kuartil
- 6. Simpangan Kuartil

JAWABAN

Data di-array (diurutkan) terlebih dahulu.

47, 50, 55, 60, 65, 67 77, 78, 84, 92, 95,

1 Rentang

2 Varians

$$\Sigma X^{2} = (47^{2}) + (50^{2}) + (55^{2}) + (60^{2}) + (65^{2}) + (67^{2}) + (77^{2}) + (78^{2}) + (84^{2}) + (92^{2}) + (95^{2})$$

$$= 2209 + 2500 + 3025 + 3600 + 4225 + 4489 + 5929 + 6084 + 7056 + 8464 + 9025$$

$$= 56.606$$

$$(\Sigma X)^2 = (47 + 50 + 55 + 60 + 65 + 67 + 77 + 78 + 84 + 92 + 95)$$

$$= 770$$

$$= (770)^2$$

$$= 592.900$$

$$S^{2} = \frac{n \sum X^{2} - (\sum X)^{2}}{n (n-1)} = \frac{11 (56.606) - (592.900)}{11(11-1)}$$
$$= \frac{622.666 - 592.900}{110}$$
$$= \frac{29.766}{110}$$
$$= 270,6$$

Jadi, varians nilai dari 11 mahasiswa adalah 270,6 poin

JAWABAN

Data di-array (diurutkan) terlebih dahulu.

47, 50, 55, 60, 65, 67 77, 78, 84, 92, 95,

Simpangan Baku

$$S = \sqrt{S^2}$$

 $S = \sqrt{270,6} = 16,44992401 \approx 16,45 \text{ poin}$

Jadi, simpangan baku nilai dari 11 mahasiswa adalah 16,45 poin

Koefisien Variasi

$$KV = \frac{S}{\overline{X}} = \frac{16,44992401}{70} \times 100 \% = 23,49 \%$$
$$= 0,234998914$$

dimana:
$$\overline{X} = \frac{770}{11}$$

Jadi, koefisien variasi nilai dari 11 mahasiswa adalah 23,49%

JAWABAN

Data di-array (diurutkan) terlebih dahulu.

47, 50, 55, 60, 65, 67 77, 78, 84, 92, 95,

5 Rentang antar Kuartil

$$LK_3 = \frac{3(11+1)}{4} = \frac{36}{4} = 9 \rightarrow K_3$$
 berada pada data ke 9 \longrightarrow 84

$$LK_1 = \frac{1(11+1)}{4} = \frac{12}{4} = 3 \rightarrow K_1$$
 berada pada data ke 3 \longrightarrow 55

$$RAK = 84 - 55 = 29 poin$$

Jadi, rentang antar kuartil nilai dari 11 mahasiswa adalah 29 poin

$$LK_i = \frac{i(n+1)}{4}$$

UK TIDAK BERKELOMPOK

JAWABAN

Data di-array (diurutkan) terlebih dahulu.

47, 50, 55, 60, 65, 67, 77, 78, 84, 92, 95,

6 Simpangan Kuartil

$$SK = \frac{RAK}{2}$$

$$SK = \frac{29}{2} = 14.5$$

Jadi, simpangan kuartil nilai dari 11 mahasiswa adalah 14,5 poin

UK DATA BERKELOMPOK

RENTANG

Selisih antara data tertinggi dan data terendah (mempunyai satuan), dihitung dengan rumus:

R = Ujung Kelas Atas Tertinggi - Ujung Kelas Atas Terendah

R = Ujung Kelas Bawah Tertinggi - Ujung Kelas Bawah Terendah

R = Batas Kelas Atas Tertinggi - Batas Kelas Atas Terendah

R = Batas Kelas Bawah Tertinggi - Batas Kelas Bawah Terendah

R = Nilai Tengah Tertinggi - Nilai Tengah Terendah

VARIANS

Nilai statistik yang sering kali dipakai dalam menentukan kedekatan sebaran data yang ada di dalam sampel dan seberapa dekat titik data individu dengan rata-rata (mean) nilai dari sampel itu sendiri.

Varians digunakan untuk mengetahui apakah sampel data yang digunakan dapat mewakili seluruh populasi.

Varians (untuk Populasi)

$$\qquad \qquad \qquad \bigcirc$$

$$\sigma 2 = \frac{N \sum F_i (X_i)^2 - (\sum F_i X_i)^2}{N^2}$$

Varians (untuk Sampel)

$$S^{2} = \frac{n \Sigma F_{i}(X_{i})^{2} - (\Sigma F_{i}X_{i})^{2}}{n(n-1)}$$

SIMPANGAN BAKU / STANDAR DEVIASI

Persebaran data pada suatu sampel untuk melihat seberapa jauh atau seberapa dekat nilai data dengan rata-ratanya.

Simpangan baku adalah nilai akar kuadrat dari varians dan menunjukkan standar penyimpangan data terhadap nilai rata-ratanya. Jika nilai standar deviasi semakin kecil, artinya semakin mendekati rata-rata. Namun jika nilai standar deviasi semakin besar, artinya semakin lebar variasi datanya.

Simpang Baku (untuk Populasi)

$$\sigma = \sqrt{\sigma}$$

Simpangan Baku (untuk Sampel)

$$S = \sqrt{S^2}$$

KOEFISIEN VARIASI

Perbandingan Simpangan Baku (Standar Deviasi) dengan Rata-rata Hitung dan dinyatakan dalam bentuk persentase.

Kegunaan koefisien variasi adalah untuk melihat sebaran/distribusi data dari rata-rata hitungnya

Koefisien Variasi (untuk Populasi)

$$\frac{\sigma}{\mu} \quad X \ 100 \ \% \qquad \text{dimana} \qquad \mu = \frac{\Sigma F_i X_i}{N}$$

Koefisien Variasi (untuk Sampel)

$$\frac{S}{=}$$
 × 100 %

$$\frac{S}{\overline{X}} \times 100 \% \quad \text{dimana} \quad \overline{X} = \frac{\Sigma F_i X_i}{n}$$

RENTANG ANTAR KUARTIL

Merupakan selisih antara kuartil atas dengan kuartil bawah. Jadi, cara untuk menentukan rentang antar kuartil adalah dengan menentukan nilai dari kuartil atas dan juga kuartil bawah. Nilai dari rentang antar kuartil dapat digunakan untuk melihat jarak dari kuartil dua ke kuartil satu atau ke kuartil tiga, karena sebenarnya nilai rentang antar kuartil adalah rata-rata jarak dari kuartil tersebut

$$RAK = K3 - K1$$

SIMPANGAN KUARTIL

$$SK = \frac{RAK}{2}$$

SOAL LATIHAN

Dari Tabel Distribusi Frekuensi berikut ini hitunglah nilai-nilai ukuran keseragamannya, mulai dari nilai Rentang, Varians, Standar Deviasi, Koefisien Variasi dan Rentang Antar Kuartilnya?

Tabel Distribusi Frekuensi (nilai tabungan karyawan dalam % dari pendapatannya)

ΚI	UK	Xi	Fi	FiXi	Xi ²	Fi(Xi²)
18 - 24	17,5 – 24,5	21	10	210		
25 – 31	24,5 – 31,5	28	8	224		
32 – 38	31,5 – 38,5	35	5	175		
39 – 45	38,5 – 45,5	42	10	420		
46 – 52	45,5 – 52,5	49	7	343		
53 – 59	52,5 – 59,5	56	8	448		
60 - 66	59,5 – 66,5	63	2	126		
	Jumlah		50	1946		

SOAL LATIHAN

Dari Tabel Distribusi Frekuensi berikut ini hitunglah nilai-nilai ukuran keseragamannya, mulai dari nilai Rentang, Varians, Standar Deviasi, Koefisien Variasi dan Rentang Antar Kuartilnya?

Tabel Distribusi Frekuensi (nilai tabungan karyawan dalam % dari pendapatannya)

KI	UK	Xi	Fi	FiXi	Xi ²	Fi(Xi²)
18 - 24	17,5 – 24,5	21	10	210	$21^2 = 441$	10 x 441 = 4410
25 – 31	24,5 – 31,5	28	8	224	$28^2 = 784$	8 x 784 = 6272
32 – 38	31,5 – 38,5	35	5	175	$35^2 = 1225$	5 x 1225 = 6125
39 – 45	38,5 – 45,5	42	10	420	42 ² = 1764	10 x 1764 = 17640
46 – 52	45,5 – 52,5	49	7	343	49 ² = 2401	7 x 2401 = 16807
53 – 59	52,5 - 59,5	56	8	448	$56^2 = 3136$	8 x 3136 = 25088
60 - 66	59,5 - 66,5	63	2	126	$63^2 = 3969$	2 x 3969 = 7938
	Jumlah		50	1946		84280

Diketahui:

$$\Sigma$$
 FiXi = 1946
 Σ **FiXi2** = 84280
n = 50

1 Rentang

$$R = 66,5 - 24,5 = 42$$

 $R = 66 - 24 = 42$
 $R = 63 - 21 = 42$

Jadi, rentang nilai Tabungan karyawan adalah 42 % dari pendapatannya

2 Varians

3 Simpangan Baku

$$S = \sqrt{174,32} = 13,2030299553 \approx 13,2$$

Jadi, simpangan baku besar Tabungan karyawan adalah 13,2 % dari pendapatannya

Diketahui:

$$\Sigma$$
 = 1946
 Σ FiXi2 = 84280
 Σ Fi / n = 50

4 Koefisien Variasi

$$KV = \frac{S}{\overline{X}} X 100 \%$$

$$\overline{X} = \frac{\sum FiXi}{\sum Fi} = \frac{1946}{50} = 38,92$$

$$KV = \frac{13,2030299553}{38,92} = 0,33923509642 \approx 0,34$$

Jadi, koefisien variasi besar Tabungan karyawan adalah 34 % dari pendapatannya

5 Rentang antar Kuartil

$$L_{K3} = \frac{i(n)}{4} = \frac{3(50)}{4} = 37,5$$

$$N_{K3} = 45,5 + 7(\frac{37,5 - 33}{7}) = 50$$

$$L_{K1} = \frac{i(n)}{4} = \frac{1(50)}{4} = 12,5$$

$$N_{K1} = 24,5 + 7(\frac{12,5 - 10}{8}) = 26,6875$$

$$RAK = 50 - 26,688 = 23,312$$

Jadi, rentang antar kuartil besarTabungan karyawan adalah 23,312 % dari pendapatannya

Diketahui:

$$\sum$$
 FiXi = 1946
 \sum FiXi2 = 84280
 \sum Fi / n = 50

6 Simpangan Kuartil

$$SK = \frac{RAK}{2}$$

$$SK = \frac{RAK}{2} = \frac{23,312}{2} = 11,656$$

Jadi, simpangan kuartil besarTabungan karyawan adalah 11,656 % dari pendapatannya

Thank You