Линейная алгерба 1 из 5

### 1 Векторная алгебра

### 2 Аналитическая геометрия

### 3 Алгебраические структуры. СЛАУ

#### 3.1 Алгебраические структуры: группа, кольцо, поле

**Определение**. **Полугруппа** — множество G с заданной на нём бинарной ассоциативной операцией  $\circ$ , т.е.

$$(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$$

**Определение**. **Группа** — полугруппа, где выбран нейтральный элемент и для каждого элемента есть обратный:

- 1. Нейтральный элемент  $e:e\circ g=g\circ e=g$
- 2. Обратный элемент:  $\forall g \in G \ \exists g^{-1} \ g \circ g^{-1} = g^{-1} \circ g = e$

Определение. Абелева группа — группа с коммутативной операцией, т.е.

$$\forall g_1, g_2 \in G \ g_1 \circ g_2 = g_2 \circ g_1$$

Определение. Кольцо — множество с двумя бинарными операциями  $\{R, `+`, `\cdot`\}$ , которое является абелевой группой относительно сложения, полугруппой относительно умножения и эти операции согласованны (дистрибутивны):

$$r_1 \cdot (r_2 + r_3) = r_1 \cdot r_2 + r_1 \cdot r_3; \quad (r_2 + r_3) \cdot r_1 = r_2 \cdot r_1 + r_3 \cdot r_1$$

Определение. Поле — множество с двумя бинарными операциями  $\{R, `+`, `\cdot`\}$ , где эти операции согласованны и:

- 1.  $\{K, '+'\}$  абелева группа
- 2.  $\{K \setminus \{0\}, `\cdot`\}$  абелева группа

### 3.2 Алгебраические структуры: линейное пространство, алгебра

Определение. Модуль над кольцом R — абелева группа  $\{G, `+`\}$  с операцией  $R \times G \to G$ , записываемой как rg и для которой выполняется следующее:

- 1.  $(r_1 + r_2)q = r_1q + r_2q$
- 2.  $r(g_1 + g_2) = rg_1 + rg_2$
- 3.  $(r_1r_2)g = r_1(r_2g)$

**Определение**. Линейное пространство — модуль над кольцом, которое также является полем.

Определение. Вектор — элемент линейного пространства.

Определение. Алгебра — модуль над кольцом, где сам модуль также является кольцом.

Линейная алгерба 2 из 5

#### 3.3 Поле комплексных чисел

$$i^2 := 1$$

$$\mathbb{C} = \{ a + bi : \forall a, b \in \mathbb{R} \}$$

Модуль комплексного числа c:  $|c| = r = \sqrt{a^2 + b^2}$ , если c = a + bi

**Аргумент** комплексного числа c:  $\varphi=\arg(c)=\arg(a+bi)=2\arctan\left(\frac{b}{\sqrt{a^2+b^2}+a}\right)$ 

Тогда  $c = r(\cos \varphi + i \sin \varphi)$ 

Дополнение комплексного числа c записывается как  $\overline{c}=\overline{a+bi}=a-bi$ 

#### 3.4 Линейное пространство. Примеры линейных пространств.

Дано выше. *(3.2, стр. 1)* 

Примеры:

1. 
$$X = \{x = (\xi^1, \dots \xi^n)^T, \xi^i \in \mathbb{R}\}$$
 (или  $\mathbb{C}$ )

2. 
$$\mathcal{P}_n = \{$$
многочлены $p(t) : \deg p(t) \leq n, n \in \mathbb{N} \}$ 

### 3.5 Линейная зависимость векторов. Основные леммы о линейной зависимости.

Определение. Линейной комбинацией называется следующее выражение:

$$\alpha_1 x_1 + \ldots + \alpha_n x_n$$

где  $\{x_i\}_{i=1}^n$  — вектора,  $\{\alpha_i\}_{i=1}^n$  — коэффициенты.

Определение. Набор векторов  $\{x_i\}_{i=1}^n$  называется линейнонезависимым, если не существует его линейной комбинации, где не все коэффициенты равны 0, а сама комбинация равна  $0_X$ :

Иначе набор называется линейно зависимым

Пемма 1. Любой набор, содержащий нулевой вектор, является линейнозависимым.

Пемма 2. Набор, содержащий линейнозависимый поднабор, является линейнозависимым.

Лемма 3. Любой поднабор линейнонезависимого набора также является линенйнонезависимым.

**Пемма 4**. Набор векторов линейнозависим тогда и только тогда, когда хотя бы один из векторов набора выражается линейной комбинацией остальных.

$$\exists k \in \{1 \dots n\} : x_k = \sum_{i=1, i \neq k}^n \alpha^i x_i \Leftrightarrow \{x_i\}_{i=1}^n - J3$$

Линейная алгерба 3 из 5

#### 3.6 Базис и размерность линейного пространства.

**Определение**. Набор векторов называется **полным** в линейном пространстве X, если любой вектор этого пространства можно выразить как линейную комбинацию этого набора:

$$\forall x \in X \quad \exists \{\alpha_i\}_{i=1}^n \quad x = \sum_{i=1}^n \alpha^i x_i$$

**Определение**. Набор векторов называется базисом пространства X, если он является полным и ЛНЗ.

**Определение**. Линейное пространство называется конечномерным, если в нём существует конечный полный набор векторов

Определение. Размерность пространства  $\dim X$  — количество векторов в его базисе.

#### 3.7 Изоморфизм линейных пространств.

**Определение.** Изоморфизм — биекция, сохраняющая линейность, установленная между двумя линейными пространствами над одним и тем же полем:

$$\begin{cases} x_1 \leftrightarrow y_1 \\ x_2 \leftrightarrow y_2 \end{cases} \Rightarrow \begin{cases} x_1 + x_2 \leftrightarrow y_1 + y_2 \\ \alpha x_1 \leftrightarrow \alpha y_1 \end{cases}$$

# 3.8 Подпространства линейного пространства: определение, примеры, линейная оболочка, линейное многообразие.

Определение. Подпространство линейного пространства X — замкнутое множество  $L \subset X$ 

Пример. 1. X и  $\{0\}$  называются тривиальными подпространствами

- 2. Прямая и плоскость, содержащие начало координат подпространство  $E_3$
- 3.  $\mathbb{R}^{m < n}$  подпространство  $\mathbb{R}^n$
- 4. Множество симметричных  $n \times n$  матриц подпространство  $\mathbb{R}^n$
- 5. Множество полиномов с членами только чётных степеней подпространство  $\mathcal{P}_n$

**Определение**. Линейная оболочка набора векторов — множество всех линейных комбинаций этих векторов:

$$\mathcal{L}(x_1 \dots x_n) = \left\{ \sum_{i=1}^k \alpha^i x_i \mid \forall \alpha_1 \dots \alpha_n \right\}$$

**Определение**. Линейное многообразие, параллельное подпространству L линейного пространства X — множество M:

$$M = \{ y \in X : y = x_0 + x \quad \forall x \in L \}$$

Линейная алгерба 4 из 5

# 3.9 Подпространства линейного пространства: сумма и пересечение подпространств, прямая сумма, дополнение.

**Определение.** Пересечение подпространств  $L_1$  и  $L_2$  — множество L', такое что:

$$L' = \{x \in X : x \in L_1 \text{ if } x \in L_2\}$$

Определение. Сумма подпространств  $L_1$  и  $L_2$  — множество L'', такое что:

$$L' = \{ x \in X : x = x_1 + x_2 \ \forall x_1 \in L_1, x_2 \in L_2 \}$$

Определение. Прямая сумма подпространств  $L_1$  и  $L_2$  — множество  $L=L_1\dot{+}L_2$ , такое что:

$$L = \{x \in X : x! = x_1 + x_2 \ \forall x_1 \in L_1, x_2 \in L_2\}$$

Определение. Если  $X = L_1 \dot{+} L_2, L_1$  — дополнение  $L_2$  до X

# 3.10 Линейные алгебраические системы. Геометрическое исследование систем. Теорема Крамера *(геометрическая формулировка)*.

Определение.

$$\begin{cases} \alpha_1^1 \xi^1 + \alpha_2^1 \xi^2 + \ldots + \alpha_n^1 \xi^n = \beta^1 \\ \alpha_1^2 \xi^1 + \alpha_2^2 \xi^2 + \ldots + \alpha_n^2 \xi^n = \beta^2 \\ \vdots \\ \alpha_1^m \xi^1 + \alpha_2^m \xi^2 + \ldots + \alpha_n^m \xi^n = \beta^m \end{cases}$$

— линейная алгебраическая система,  $\alpha$  — коэффициенты,  $\beta$  — свободные члены,  $\xi$  — неизвестные

**Определение.** Решение системы — такой набор, при подстановке которого равенства становятся верными.

Определение. Совместная система — система, у которой есть решение.

**Определение. Определенная система** — совместная система, которая имеет единственное решение.

**Определение. Однородная система** — система, у которой все свободные члены равны 0.

Запишем в векторной форме:  $\sum\limits_{i=1}^{n}a_{i}\xi^{i}=b$ 

**Теорема 1**. Если m=n и  $\{a_i\}_{i=1}^n-\Pi\!H\!3$ , система совместна и определена, т.е. есть единственное решение.

Линейная алгерба 5 из 5

# 3.11 Геометрическое исследование систем. Теорема Кронекера-Капелли *(геометрическая формулировка)* и ее следствия.

Рассмторим случай, когда  $\dim \mathcal{L}\{a_1 \dots a_n\} = r \leq m$ . Тогда можно переписать систему как:

$$a_1\xi^1 + \ldots + a_r\xi^r = b - a_{r+1}\xi^{r+1} - \ldots - a_n\xi^n$$

**Теорема 2.**  $b \in \mathcal{L} \Leftrightarrow$  система совместна. Если r = n, система определена, иначе — нет.

Следствие. Однородная система:

- 1. Всегда совместна, т.к. существует тривиальное решение
- 2. Имеет нетривиальные решения тогда и только тогда, когда r < n
- 3. Является неопределенной тогда и только тогда, когда m < n

#### 3.12 Альтернатива Фредгольма для линейной системы уравнений.

**Теорема 3.** *Если* m = n, *mo*:

- 1. Или однородная система имеет только тривиальное решение, и неоднородная система совместна и определена для любого b
- 2. Или существуют нетривиальные решения однородной системы и неоднородная система совместна не при любых b

## 3.13 Фундаментальная система решений линейной однородной системы. Общее решение однородных и неоднородных систем.

Определение. Фундаментальной системой решений линейной однородной системы уравнений называется любая система из n-r линейнонезависимых решений этой системы, то есть базис пространтва решений однородной системы.

Любое решение можно представить в виде общего решения:

$$z = z' + \sum_{i=1}^{n} c_i x_i,$$

где  $\{x_i\}_{i=1}^n - \Phi \mathrm{CP}.$ 

### 4 Полилинейные формы. Определители