

Puras y Aplicadas Enero - Marzo, 2004

Carnet:		
Nombre:		
Sección:		

MA-1116 —SEGUNDO PARCIAL 45 % - A —

1. (12 ptos.)

Sea $T: \mathbb{R}^5 \longrightarrow \mathbb{R}^3$ una transformación lineal definida por

$$T\begin{pmatrix} x \\ y \\ z \\ u \\ v \end{pmatrix} = \begin{pmatrix} u - v + y \\ u + v + y \\ x - z + u \end{pmatrix}$$

Hallar

- a) matriz asociada A_T a la transformación T en la base canónica
- b) una base del núcleo de T
- c) una base de la imagen de T
- 2. (12 ptos.)

Sea
$$W = \operatorname{gen} \left\{ \begin{pmatrix} 6 \\ 3 \\ -2 \end{pmatrix}; \begin{pmatrix} 9 \\ 1 \\ 4 \end{pmatrix} \right\}$$
 un subespacio en R^3 .

Hallar

- a) una base ortonormal para W
- b) una base para W^{\perp}

c) sea
$$\overline{v}=\left(\begin{array}{c} 7\\7\\7\end{array}\right)$$
 . Hallar $\mathrm{proy}_W\overline{v}$

3. (11 ptos.)

Sea $\{\overline{v_1}; \overline{v_2}; \overline{v_3}; \overline{v_4}\}$ una base en R^4 . Demostrar que $\{\overline{v_1} + \overline{v_2}; \overline{v_2} + \overline{v_3}; \overline{v_3} + \overline{v_4}; \overline{v_4}\}$ también es una base en el mismo espacio.

4. (10 ptos.)

Sea
$$A = \begin{pmatrix} -2 & 6 & 3 \\ 6 & 3 & -2 \\ 3 & -2 & 6 \end{pmatrix}$$

- a) Probar que $\lambda = -7$ es un autovalor para A.
- b) Hallar un autovector correspondiente a $\lambda = -7$.