Solving L_1 regularized Least Squares by Reweighted Least Squares

Andersen Ang

Mathématique et recherche opérationnelle UMONS, Belgium

manshun.ang@umons.ac.be Homepage: angms.science

First draft : August 5, 2020 Last update : August 6, 2020

Reweighted Least squares on absolute value

- ▶ The absolute value |x| is a nonsmooth function.
- ► The function can be approximate by the parametric quadratic function

$$\phi(x;\eta) = \frac{1}{2\eta}x^2 + \frac{1}{2}\eta,$$

for some $\eta \geq 0$.

► The idea is to use a quadratic function to approximate the nonsmooth absolute value.

The advantage of replacing |x| by ϕ is that ϕ is smooth and it is a quadratic function, easy to deal with.

Small details about ϕ

▶ The optimal η for $\phi(x,\eta)$ at a specific point $x=x_0$ is $\eta=|x_0|$: this can be shown by completing the square. The key is to treat $x^2=|x|^2$.

$$\begin{split} \phi(x;\eta) &=& \frac{1}{2\eta} x^2 + \frac{1}{2} \eta \\ &=& \frac{1}{2\eta} |x|^2 + \frac{1}{2} \eta \\ &=& \frac{1}{2\eta} |x|^2 + \frac{1}{2\eta} \eta^2 \\ &=& \frac{1}{2\eta} (|x|^2 + \eta^2) \\ &=& \frac{1}{2\eta} (|x|^2 - 2|x|\eta + \eta^2 + 2|x|\eta) \\ &=& \frac{1}{2\eta} (|x| - \eta)^2 + |x|. \end{split}$$

Now ϕ is minimized on η at $\eta = |x|$, which gives $\phi(x; \eta) = |x|$.

▶ Furthermore, why we have to restrict $\eta \ge 0$ in ϕ : if $\eta < 0$, it flips the quadratic function along the x-axis.

Application to L_1 -regularized Least squares

► L_1 -regularized least squares

$$\min_{\mathbf{x}} \ \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_1.$$

Here the optimization variable is $\mathbf{x} \in \mathbb{R}^n$.

▶ As $\|\mathbf{x}\|_1 = \sum |x_i|$, using the ϕ function on each component in \mathbf{x} , we arrive at an equivalent problem

$$\min_{\eta} \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \lambda \left(\sum_{i=1}^{n} \frac{x_{i}^{2}}{2\eta_{i}} + \frac{\eta_{i}}{2} \right).$$

Here the optimization variables are $\mathbf{x} \in \mathbb{R}^n$ and $\eta = [\eta_1, \dots, \eta_n] \in \mathbb{R}^n$.

► The new problem has two variables, it can solved using coordinate descent.

Solving the new problem

$$\min_{\eta} \min_{\mathbf{x}} f(\mathbf{x}, \eta) = \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_{2}^{2} + \lambda \left(\sum_{i=1}^{n} \frac{x_{i}^{2}}{2\eta_{i}} + \frac{\eta_{i}}{2} \right).$$

- ▶ The optimum of f with respect to η_i is $|x_i|$.
- f is convex in η_i so the update $\eta_i = |x_i|$ gives the global minimizer.
- ▶ To derive the optimal \mathbf{x} of f, we can use the 1st-order optimality condition: $\nabla_{\mathbf{x}} f = 0$. First, the gradient is

$$\nabla_{\mathbf{x}} f = \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - \mathbf{A}^{\top} \mathbf{b} + \lambda \mathsf{Diag}(\eta)^{-1} \mathbf{x}$$
$$= \left(\mathbf{A}^{\top} \mathbf{A} + \lambda \mathsf{Diag}(\eta)^{-1} \right) \mathbf{x} - \mathbf{A}^{\top} \mathbf{b}.$$

Then $\nabla_{\mathbf{x}} f = 0$ gives

$$\mathbf{x} = \left(\mathbf{A}^{\top}\mathbf{A} + \lambda \mathsf{Diag}(\eta)^{-1}\right)^{-1}\mathbf{A}^{\top}\mathbf{b}.$$

As f is convex in x, this gives the global minimizer.

The two-line algorithm

Algorithm 1: RLS: Reweighted Least Squares

Result: Solution to L_1 -regularized least squares

Initialize $\eta_i = |x_i|$;

for k = 1, 2, ... do

$$\mathbf{x} = \left(\mathbf{A}^{\top}\mathbf{A} + \lambda \mathsf{Diag}(\eta)^{-1}\right)^{-1}\mathbf{A}^{\top}\mathbf{b};$$

 $\eta_i = |x_i|;$

end

Note : the terms $\mathbf{A}^{\top}\mathbf{A}$, $\mathbf{A}^{\top}b$ should be precomputed before the main loop.

RLS compared with ISTA and FISTA

RLS may perform worse than proximal gradient methods as RLS does not have a "hard projection step".

Figure: x produced by the algorithms with same initialization and number of iterations

Links to the details of proximal gradient algorithm, convergence of ISTA and FISTA.

7/9

RLS compared with ISTA and FISTA

RLS may perform worse than proximal gradient methods as RLS does not have a "hard projection step".

Figure: x produced by the algorithms with same initialization and number of iterations

Links to the details of proximal gradient algorithm, convergence of ISTA and FISTA.

Last page - summary

► Approximating absolute value by a parametric quadratic function

$$\phi(x;\eta) = \frac{1}{2\eta}x^2 + \frac{1}{2}\eta, \quad \eta \ge 0.$$

- ▶ Application to L_1 -regularized least squares
- ► RLS algorithm

Reference: Francis Bach's blog

End of document