

Club de Robotique et d'Electronique Programmable de Ploemeur

Support de l'atelier d'Electronique Embarquée Confirmé

Nicolas Le Guerroué

Table des matières

Préambu	ule	3
Glossaire	e	3
0.1	e Cahier des charges	3
	O.1.1 Les pistes de réflexions	3
	Faisabilité	
	Liste du matériel	
0.4	Pistes de réflexions	6

Préambule

- Document réalisé en ETEX par Nicolas Le Guerroué pour le Club de Robotique et d'Électronique Programmable de Ploemeur (CREPP)
- Version du 11 décembre 2023
- A Taille de police : 11pt (carlito)
- N'hésitez pas à faire des retours sur le document, cela permettra de l'améliorer
- ☑ nicolasleguerroue@gmail.com
- https://github.com/CREPP-PLOEMEUR 1
- Permission vous est donnée de copier, distribuer et/ou modifier ce document sous quelque forme et de quelque manière que ce soit.
- Dans la mesure du possible, évitez d'imprimer ce document si ce n'est pas nécessaire. Il est optimisé pour une visualisation sur un ordinateur et contient beaucoup d'images (o images)

Cahier des charges

Ce document établie une première version simple du cahier des charges pour le projet de nichoir ². Il est possible de réutiliser le projet pour d'autres applications (poulailler...).

Les pistes de réflexions

▶ Taille

Quelle sera la taille du nichoir et de ses différents éléments, à savoir :

- 1. Click-droit et Copier l'adresse du lien
- 2. Année 2023-2024

- Le nichoir à proprement parler
- le boîtier qui contiendra l'électronique

Les réflexions sur la taille de l'ensemble :

- La taille de l'électronique est relativement constante, la taille globale va surtout dépendre de la taille du nichoir
- La taille de l'ensemble va dépendre du besoin énergétique pour dimensionner le panneau solaire
- ► Les contraintes environnementales
 - Impression 3D pour le boîtier d'électronique
 - nichoir transparent?
- gestion de la lumière infrarouge
 - oiseaux éclairés quand ils sont là (capteur PIR)
 - miroirs
 - gestion électronique (transistors)
- conception et fabrication du nichoir (découpeuse laser)
- réserve d'énergie :
 - taille
 - nombre de cellule
 - BMS a voir
 - LiFe, Lipo
- moyen de charge pour les cellules
 Panneau solaire, essais sur plusieurs panneaux solaires
- commencer avec une version épurée du nichoir
- ou envoyer les photos?
 - Stockage buffer pour carte SD
 - Stockage sur carte SD puis envoie de paquets de photo pour économiser du Wifi
 - Compteur d'écriture
 - envoi du numéro de la photo sur le serveur pour prévenir que la carte SD va lâcher?
 - sur un serveur
- scénario d'utilisation
 - séquence avec bouton poussoir?

- ► Interface utilisateur :
 - Bouton poussoir
 - Interface serveur
- positionnement de la caméra
- Utilisation la nuit?
 - mesure de la lumière
 - mesure du temps

1ere version avec une utilisation la nuit

Faisabilité

- ▶ mesure de consommation avec différent mode (sleep, wifi (émissions))
- mesures des sources de lumières
- envoi des photos (temps d'envoi pour envoyer)

Liste du matériel

- Panneau solaire (6V 3W -; 7 € 150mmx112)
- capteur de lumière
- capteur de présence (PIR, levier, mécanique...)
- transistors
- LED infrarouges
- ESP12 Raspbeerry ZW RPI 2 ou 3
- Camera
- Accumulateur :
- modules BMS (Battery Management System)
- Module d'alimentation (step-up)
- Bouton-poussoirs
- résistance shunt
- Led de debug (rouge, orange, vert) ou led RGB

- Interrupteur pour l'alimentation
- antenne externe
- matière première (Leclerc Larmor plage)

Pistes de réflexions

- chargement condensateur?
- Moteur brushless pour alimenter le module?
- Traitement d'image sur serveur
- Caméra I2C pour avoir plusieurs points de vue