

CAPSTONE PROJECT: PREDICTING CHURN CUSTOMERS

Albert Chiu December 2018

PROBLEM

- Retaining existing customers is important for subscription businesses.
- Existing customers:
 - reduce expenditure on marketing
 - · provide free word of mouth advertising
 - · more likely to pay for premium features and products

Churn is the annual rate at which customers stop subscribing to a service.

DATA SET

- Data set: https://www.kaggle.com/blastchar/telco-customer-churn
- The data set used for this project contains customer information for a telecom company, including 7043 customer observations with 21 features
- As expected, there is a data set imbalance: **74% non-churn** customers compared to 26% **churn customers**

PROJECT GOALS

- I. Identify the profile of customers that are likely to churn
- 2. Build models that predict probability of whether customers will churn or not

CHURN CUSTOMERS

 It was observed that churn customers primarily subscribe to fiber optic internet with few other services besides streaming TV and movies

CHURN CUSTOMERS

- · Churn customers overwhelmingly favor month-to-month contract.
- Month-to-month contracts account for 88% of the contract type for churn customers compared to 43% for non-churn customers.

CHURN CUSTOMERS

• Although senior citizens account for around 20% of the customer base, they churn nearly twice as often as non-senior citizens.

MACHINE LEARNING MODELING

- Since the machine learning models for this model will be making categorical predictions (whether customers churn or not), **supervised** classification methods were used.
- Churn recall will be used to measure algorithm performance, since the company will be interested in identifying as many potential churn customers as possible.

MACHINE LEARNING MODELING

- Hyperparameter tuning was used to optimize results.
- To address data set imbalance, resampling techniques were applied. This improved model performance significantly.

MODEL CLASSIFICATION REPORTS

Classification report results for non			_	_
	Precision			
k-NN			0.857	
Lasso Reg			0.862	
Ridge Reg	0.8223		0.8597	
Random Forest			0.8565	
Random Forest w/ Random Over-Sampler			0.8449	
Random Forest w/ SMOTE	0.7982	0.8918	0.8424	100
Log Reg w/ Random Over-Sampler	0.912	0.7408	0.8175	100
Log Reg w/ SMOTE	0.9096	0.7398	0.816	100
Random Forest w/ Random Under-Sampler	0.8708	0.7498	0.8058	100
Random Forest w/ Tomek Links		0.8858	0.8577	100
Log Reg w/ Random Under-Sampler	0.9101	0.7239	0.8064	100
Log Reg w/ Tomek Links	0.8427	0.862	0.8522	100
Classification report results for chu				
Classification report results for the	rn customer	s:		
classification report results for the	rn customer Precision		F-score	Suppor
k-NN		Recall	F-score 0.4768	
	Precision 0.7059	Recall 0.36		40
k-NN	0.7059 0.6787	0.36 0.5175	0.4768	40
k-NN Lasso Reg	0.7059 0.6787 0.6711 0.6667	0.36 0.5175 0.51 0.47	0.4768 0.5872 0.5795 0.5513	40 40 40
k-NN Lasso Reg Ridge Reg	0.7059 0.6787 0.6711 0.6667	0.36 0.5175 0.51 0.47	0.4768 0.5872 0.5795	40 40 40
k-NN Lasso Reg Ridge Reg Random Forest	0.7059 0.6787 0.6711 0.6667 0.6154	0.36 0.5175 0.51 0.47 0.52	0.4768 0.5872 0.5795 0.5513	40 40 40 40 40
k-NN Lasso Reg Ridge Reg Random Forest Random Forest w/ Random Over-Sampler	0.7059 0.6787 0.6711 0.6667 0.6154	0.36 0.5175 0.51 0.47 0.52 0.4325	0.4768 0.5872 0.5795 0.5513 0.5637 0.5073	40 40 40 40 40
k-NN Lasso Reg Ridge Reg Random Forest Random Forest w/ Random Over-Sampler Random Forest w/ SMOTE	0.7059 0.6787 0.6711 0.6667 0.6154 0.6135 0.5569	Recall 0.36 0.5175 0.51 0.47 0.52 0.4325 0.82	0.4768 0.5872 0.5795 0.5513 0.5637 0.5073	40 40 40 40 40 40
k-NN Lasso Reg Ridge Reg Random Forest Random Forest w/ Random Over-Sampler Random Forest w/ SMOTE Log Reg w/ Random Over-Sampler	Precision 0.7059 0.6787 0.6711 0.6667 0.6154 0.6135 0.5569 0.5544	Recall 0.36 0.5175 0.51 0.47 0.52 0.4325 0.82 0.815	0.4768 0.5872 0.5795 0.5513 0.5637 0.5073 0.6633	40 40 40 40 40 40 40
k-NN Lasso Reg Ridge Reg Random Forest Random Forest w/ Random Over-Sampler Random Forest w/ SMOTE Log Reg w/ Random Over-Sampler Log Reg w/ SMOTE	Precision 0.7059 0.6787 0.6711 0.6667 0.6154 0.6135 0.5569 0.5544	Recall 0.36 0.5175 0.51 0.47 0.52 0.4325 0.82 0.815 0.72	0.4768 0.5872 0.5795 0.5513 0.5637 0.5073 0.6633 0.6599	40 40 40 40 40 40 40 40
k-NN Lasso Reg Ridge Reg Random Forest Random Forest w/ Random Over-Sampler Random Forest w/ SMOTE Log Reg w/ Random Over-Sampler Log Reg w/ SMOTE Random Forest w/ Random Under-Sampler	Precision 0.7059 0.6787 0.6711 0.6667 0.6154 0.6135 0.5569 0.5544 0.5333 0.6557	Recall 0.36 0.5175 0.51 0.47 0.52 0.4325 0.82 0.815 0.72 0.5475	0.4768 0.5872 0.5795 0.5513 0.5637 0.5073 0.6633 0.6599 0.6128	40 40 40 40 40 40 40 40

MACHINE LEARNING RESULTS

- The top performing classifier was Logistic Regression paired with SMOTE, random oversampling or random random undersampling.
- There appears to be an inverse correlation between churn recall and churn precision.
 - A lower churn precision is an acceptable trade off for better churn recall performance. A company would prefer to identify as many potential churn customers as possible at the expense of slightly more incorrect churn predictions.

RECOMMEDATIONS

- Given the insights gained, the company can take some steps to help reduce churn rate:
 - 1. Conduct interviews and surveys to identify promotions preferred by senior citizens.
 - 2. Offer price promotion for service extension to high risk churn customers prior to a year and a half of tenure (average churn customer stops service at 18 months).
 - 3. Collect age of customers. Different age groups have different consumption habits. This information will allow for more granular insights of churn customers by age range.

SUPPLEMENTAL INFO

• For all my code and final report, please see my Github link for this project: https://github.com/albertdchiu1/Springboard-Data-Science/tree/master/Capstone-1-Project

