Algoritmos y Estructura de Datos 2

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Exorcismo Extremo TP1

Integrante	LU	Correo electrónico
Rosinov, Gaston Einan	37/18	grosinov@gmail.com
Schuster, Martin Ariel		
Panichelli, Manuel		

Reservado para la cátedra

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

Índice

1.	TAD JUEGO	3
2.	TAD Habitacion	4
3.	TAD Accion	5
4.	TAD DIRECCION	7
5.	Extensiones y Renombres	8

1. TAD JUEGO

TAD JUEGO

géneros juego

exporta TODO

usa Habitacion

igualdad observacional

$$(\forall j,j': \text{juego}) \ \left(j =_{\text{obs}} j' \Longleftrightarrow \begin{pmatrix} (n=0? =_{\text{obs}} m=0?) \land_{\text{L}} \\ (\neg (n=0?) \Rightarrow_{\text{L}} (\text{pred}(n) =_{\text{obs}} \text{pred}(m))) \end{pmatrix} \right)$$

igualdad observacional

$$(\forall j,j': \text{juego}) \left(j =_{\text{obs}} j' \iff \begin{pmatrix} (\text{accionesPJs}(j) =_{\text{obs}} \text{accionesPJs}(j')) \land \\ (\text{accionesFan}(j) =_{\text{obs}} \text{accionesFan}(j')) \land \\ (\text{localizarJugadores}(j) =_{\text{obs}} \text{localizarJugadores}(j')) \land \\ (\text{hab}(j) =_{\text{obs}} \text{hab}(j')) \land \\ ((\forall p: pj) \text{ (vivePJ?}(j, p) =_{\text{obs}} \text{vivePJ?}(j', p))) \land \\ ((\forall f: \text{fantasma}) \text{ ((viveFan?}(j, p) =_{\text{obs}} \text{viveFan?}(j', p)))} \end{pmatrix} \right)$$

observadores básicos

 $\operatorname{accionesPJs} \qquad \qquad : \ \operatorname{juego} \qquad \qquad \longrightarrow \ \operatorname{dicc}(\operatorname{pj}, \operatorname{secu}(\operatorname{accion}))$

acciones Fan : juego \longrightarrow dicc(pj, secu(accion))

hab : juego \longrightarrow hab

vivePJ? : juego $j \times pj p$ \longrightarrow bool $\{p \in \text{jugadores}(j)\}$

viveFan? : juego $j \times \text{fantasma } f \longrightarrow \text{bool}$ $\{f \in \text{fantasmas}(j)\}$

ubicacionInicialFan : juego $j \times \text{fantasma } f \longrightarrow \text{ubicacion}$ $\{f \in \text{fantasmas}(f)\}$

localizarJugadores : juego \longrightarrow dicc(pj, ubicacion)

generadores

iniciar : conj(pj) $pjs \times secu(accion)$ $as \longrightarrow juego$

 \times ubicacion $u \times$ hab h

 $\{ esConexa?(h) \, \wedge \, \neg \, \emptyset?(as) \, \wedge \, \neg \, \emptyset?(pjs) \, \wedge \, esValida?(h, \, pos(u)) \}$

proxPaso : juego $j \times pj p \times accion a \longrightarrow juego$

 $\{p \in jugadores(j) \land_L vivePJ?(j, p) \land \neg termino?(j) \land \neg esMirar(a)\}$

otras operaciones

axiomas $\forall n, m$: nat 0 = 0? $\equiv \text{true}$

Fin TAD

2. TAD HABITACION

TAD HABITACION

géneros hab

exporta hab, observadores, generadores, esConexa?

usa POSICION, BOOL, NAT

igualdad observacional

$$(\forall h, h': \text{hab}) \left(h =_{\text{obs}} h' \iff \begin{pmatrix} (\forall p: \text{posicion})(\text{esValida}?(p, h) =_{\text{obs}} \text{esValida}?(p, h') \land_{\text{L}} \\ (\text{esValida}?(p, h) \Rightarrow_{\text{L}} \\ (\text{estaOcupada}?(p, h) =_{\text{obs}} \text{estaOcupada}?(p, h')))) \end{pmatrix} \right)$$

observadores básicos

es Valida? : hab \times posicion \longrightarrow bool

esta Ocupada? : hab $h \times \text{posicion } p \longrightarrow \text{bool}$ {esValida?(h, p)}

generadores

nueva : nat $n \longrightarrow hab$ $\{n>1\}$

ocupar : hab $h \times \text{posicion } p \longrightarrow \text{hab}$

 $\{esValida?(h, p) \land_{L} \neg estaOcupada?(h, p)\}$

otras operaciones

esConexa? : hab \longrightarrow bool tamano : hab \longrightarrow nat

posiciones : hab \longrightarrow conj(posicion)

verificarAlcancePos: hab $h \times \text{conj}(\text{posicion}) ps \times \text{posicion} p \longrightarrow \text{bool}$

 $\{ps \subseteq posiciones(h) \land p \in posiciones(h)\}$

axiomas $\forall h$: hab $\forall ps$: conj(posicion) $\forall p$: posicion $\forall n, k, tam$: nat

esValida?(nueva(n),p) $\equiv \ 0 \leq \Pi_1(p) < n \ \land \ 0 \leq \Pi_2(p) < n$

es Valida?(ocupar(h,p'),p) $\equiv \ p = p' \vee_{\scriptscriptstyle L} esValida?(h,\,p)$

 $estaOcupada?(nueva(n),p) \qquad \equiv \ false$

estaOcupada?(ocupa $(h,p'),p) \equiv p = p' \lor esta<math>O$ cupada?(h,p)

tamano(nueva(n)) $\equiv n$

 $tamano(ocupar(h, p)) \equiv tamano(h)$

esConexa?(h) = verificarAlcance(h, posicionesLibres(posiciones(h)))

posicionesLibres(h, ps) \equiv if \emptyset ?(ps)

then Ø

(if estaOcupada?(h, dameUno(ps)) then \emptyset else {dameUno(ps)} fi)

 \cup posicionesLibres(h, sinUno(ps))

fi

verificarAlcance(h, ps) \equiv if \emptyset ?(ps)

then true

else

 $verificar A lance Pos(h, \, ps, \, dame Uno(ps)) \, \wedge \, verificar A lcance(h, \, p)$

ì

```
 \begin{array}{lll} \text{verificarAlcancePos(h, ps, p)} & \equiv & \textbf{if} \quad \emptyset?(ps) \\ & \textbf{then} \quad \textbf{true} \\ & \textbf{else} \\ & \text{esAlcanzable(h, p, dameUno(ps))} \land \textbf{verificarAlcancePos(h, p, sinUno(ps))} \\ & \textbf{fi} \\ & \text{posiciones(h)} \\ & \equiv & \text{darPosiciones(h, tamano(h) - 1, tamano(h) - 1, tamano(h) - 1)} \\ & \equiv & \textbf{if} \quad n = 0? \land k = 0? \\ & \textbf{then} \quad \emptyset \\ & \textbf{else if} \quad k = 0? \\ & \textbf{then} \quad Ag((n,k), \text{darPosiciones(h, n - 1, tam, tam))} \\ & \text{else } Ag((n,k), \text{darPosiciones(h, n, k - 1, tam))} \\ & \textbf{fi} \\ & \textbf{fi} \\ \end{array}
```

3. TAD ACCION

TAD ACCION

géneros accion

exporta observadores, generadores, genero, otras operaciones

igualdad observacional

$$(\forall a, a': accion) \left(a =_{obs} a' \iff \begin{pmatrix} esNada(a) =_{obs} esNada(a') \land \\ esDisparar(a) =_{obs} esDisparar(a') \land \\ esMover(a) =_{obs} esMover(a') \land \\ esMirar(a) =_{obs} esMirar(a') \land \\ ((esMover(a) \lor esMirar(a)) \Rightarrow_{L} direccion(a) =_{obs} direccion(a')) \end{pmatrix} \right)$$

secu(accion)

observadores básicos

esMover: accion \longrightarrow boolesMirar: accion \longrightarrow boolesDisparar: accion \longrightarrow boolesNada: accion \longrightarrow bool

direction : accion $a \longrightarrow direction$ {esMirar(a) \vee esMover(a)}

generadores

otras operaciones

 $\neg \bullet \hspace{1cm} : accion \hspace{1cm} \longrightarrow accion$

```
invertir
                                 : hab h \times \text{ubicacion } u \times \text{secu(accion)} \longrightarrow \text{secu(accion)}
                                                                                                                {esValida?(h, pos(u))}
                 \forall n, m: \text{nat}, \forall u: \text{ubicacion}, \forall a: \text{habitacion}
axiomas
  posicionesAfectadasPor(mover(d), h, u)
  posicionesAfectadasPor(mirar(d), h, u)
                                                       \equiv \emptyset
  posicionesAfectadasPor(nada, h, u)
  posiciones
Afectadas
Por(disparar, h, u)
                                                      \equiv if esValida?(h, proxPosEnDir(dir(u), pos(u)) \land_L
                                                           \neg estaOcupada?(h, proxPosEnDir(dir(u), pos(u)))
                                                           Ag(proxPosEnDir(dir(u), pos(u)),posicionesAfectadasPor(disparar,h,
                                                           \langle \operatorname{proxPosEnDir}(\operatorname{dir}(\mathbf{u}), \operatorname{pos}(\mathbf{u})), \operatorname{dir}(\mathbf{u}) \rangle ) \rangle
                                                           else ∅
                                                          fi
  invertir(h, u, as)

≡ if vacia?(as)

                                                           then <>
                                                           else
                                                                          ubicacionLuegoDe(prim(as), h, u),
                                                          invertir(h,
                                                                                                                             fin(as)
                                                           \neg(\text{prim}(\text{as}), \text{h}, \text{u})
                                                           fi
   \neg(mover(d), h, u)
                                                       \equiv if pos(ubicacionLuegoDe(mover(d), h, u)) = pos(u)
                                                           then mirar(opuesta(d))
                                                           else mover(opuesta(d))
                                                           fi
   \neg(mirar(d), h, u)
                                                       \equiv mirar(opuesta(d))
   ¬(disparar, h, u)

≡ disparar

   \neg(nada, h, u)
                                                       \equiv nada
   ubicacionLuegoDe(nada, h, u)
                                                       = u
   ubicacionLuegoDe(disparar, h, u)
                                                       = u
   ubicacionLuegoDe(mirar(d), h, u)
                                                       \equiv \langle pos(u), d \rangle
   ubicacionLuegoDe(mover(d), h, u)
                                                       \equiv \langle (\mathbf{if} \text{ esValida?}(h, \text{proxPosEnDir}(d, \text{pos}(u))) \wedge_L \rangle
                                                           ¬estaOcupada?(h, proxPosEnDir(d, pos(u)))
                                                           then proxPosEnDir(d, pos(u))
                                                           else pos(u)
                                                           \mathbf{fi}), \mathbf{d}
  esMirar(mirar(d))
                                                       ≡ true
   esMirar(mover(d))
                                                       \equiv false
  esMirar(disparar)
                                                       \equiv false
  esMirar(nada)
                                                       \equiv false
  esMover(mirar(d))
                                                       \equiv false
  esMover(mover(d))
                                                       ≡ true
  esMover(disparar)
                                                       \equiv false
  esMover(nada)
                                                       \equiv false
  esDisparar(mirar(d))
                                                       \equiv false
  esDisparar(mover(d))
                                                       \equiv false
  esDisparar(disparar)
                                                       ≡ true
  esDisparar(nada)
                                                       \equiv false
  esNada(mirar(d))
                                                       \equiv false
  esNada(mover(d))
                                                       \equiv false
```

```
\begin{array}{ll} \operatorname{esNada}(\operatorname{disparar}) & \equiv \operatorname{false} \\ \operatorname{esNada}(\operatorname{nada}) & \equiv \operatorname{true} \\ \operatorname{direccion}(\operatorname{mirar}(\operatorname{d})) & \equiv \operatorname{d} \\ \operatorname{direccion}(\operatorname{mover}(\operatorname{d})) & \equiv \operatorname{d} \end{array}
```

4. TAD DIRECCION

TAD DIRECCION

géneros direccion

exporta observadores, generadores, otras operaciones

igualdad observacional

$$(\forall d, d': \text{direccion}) \left(d =_{\text{obs}} d' \iff \begin{pmatrix} \text{esArriba}(\mathbf{d}) =_{\text{obs}} \text{esArriba}(\mathbf{d}') \land \\ \text{esAbajo}(\mathbf{d}) =_{\text{obs}} \text{esAbajo}(\mathbf{d}') \land \\ \text{esIzquierda}(\mathbf{d}) =_{\text{obs}} \text{esIzquierda}(\mathbf{d}') \land \\ \text{esDerecha}(\mathbf{d}) =_{\text{obs}} \text{esDerecha}(\mathbf{d}') \end{pmatrix} \right)$$

observadores básicos

esArriba : direccion \longrightarrow bool esIzquierda : direccion \longrightarrow bool esDerecha : direccion \longrightarrow bool \longrightarrow bool

generadores

arriba : \longrightarrow direccion abajo : \longrightarrow direccion izquierda : \longrightarrow direccion derecha : \longrightarrow direccion

otras operaciones

opuesta : direccion \longrightarrow direccion proxPosEnDir : direccion \times posicion \longrightarrow posicion

axiomas

 $\begin{array}{lll} \text{opuesta(arriba)} & \equiv \text{ abajo} \\ \text{opuesta(abajo)} & \equiv \text{ arriba} \\ \text{opuesta(izquierda)} & \equiv \text{ derecha} \\ \text{opuesta(derecha)} & \equiv \text{ izquierda} \\ \text{proxPosEnDir(arriba, p)} & \equiv \langle \Pi_1(p), \Pi_2(p) + 1 \rangle \\ \text{proxPosEnDir(abajo, p)} & \equiv \langle \Pi_1(p), \Pi_2(p) - 1 \rangle \\ \text{proxPosEnDir(izquierda, p)} & \equiv \langle \Pi_1(p) - 1, \Pi_2(p) \rangle \end{array}$

 $\begin{array}{ll} \operatorname{esArriba}(\operatorname{arriba}) & \equiv \operatorname{true} \\ \operatorname{esArriba}(\operatorname{abajo}) & \equiv \operatorname{false} \end{array}$

proxPosEnDir(derecha, p)

 $\equiv \langle \Pi_1(\mathbf{p}) + 1, \Pi_2(\mathbf{p}) \rangle$

```
esArriba(izquierda)
                                  \equiv false
esArriba(derecha)
                                  \equiv false
esAbajo(arriba)
                                  \equiv false
esAbajo(abajo)
                                  \equiv true
esAbajo(izquierda)
                                  \equiv false
esAbajo(derecha)
                                  \equiv false
esIzquierda(arriba)
                                  \equiv false
esIzquierda(abajo)
                                  \equiv false
esIzquierda(izquierda)
                                  \equiv true
esIzquierda(derecha)
                                  \equiv false
esDerecha(arriba)
                                  \equiv false
esDerecha(abajo)
                                  \equiv false
esDerecha(izquierda)
                                  \equiv false
esDerecha(derecha)
                                  \equiv true
```

5. Extensiones y Renombres

TAD FANTASMA ES NAT

 \mathbf{TAD} PJ \mathbf{ES} NAT

TAD POSICION ES TUPLA(NAT, NAT)

TAD NAT extiende NAT

```
otras operaciones
```

```
 \begin{array}{lll} \bullet \mbox{\%} \bullet : & \mathrm{nat} \times \mathrm{nat} & \longrightarrow & \mathrm{nat} \\ \\ \mathbf{axiomas} & \forall \ n, m : \mathrm{nat} \\ \\ \mathrm{n} \ \% \ \mathrm{m} \ \equiv \ \mathbf{if} \ \mathrm{n} < \mathrm{m} \ \mathbf{then} \ \mathrm{n} \ \mathbf{else} \ (\mathrm{n} \ \text{-} \ \mathrm{m}) \ \% \ \mathrm{m} \ \mathbf{fi} \end{array}
```

Fin TAD

TAD UBICACION extiende TUPLA (POSICION, DIRECCION)

otras operaciones

```
\operatorname{pos}: \operatorname{ubicacion} \longrightarrow \operatorname{posicion}
\operatorname{dir}: \operatorname{ubicacion} \longrightarrow \operatorname{direccion}
\operatorname{axiomas} \quad \forall \ u : \operatorname{ubicacion}
\operatorname{pos}(u) \equiv \Pi_1(u)
\operatorname{dir}(u) \equiv \Pi_2(u)
```

Fin TAD

TAD SECUENCIA extiende SECUENCIA

otras operaciones