MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas-hatóan** javítsa ki.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy **a hiba jelzése** mellett az egyes **részpontszámokat** is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányiel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. Egy feladatra adott többféle megoldási próbálkozás közül a vizsgázó által megjelölt változat értékelhető. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Egy feladatra vagy részfeladatra adott összpontszám **nem lehet negatív**.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. A gondolatmenet kifejtése során a zsebszámológép használata további matematikai indoklás nélkül – a következő műveletek elvégzésére fogadható el: összeadás,

kivonás, szorzás, osztás, hatványozás, gyökvonás,
$$n!$$
, $\binom{n}{k}$ kiszámítása, a függvénytáb-

lázatban fellelhető táblázatok helyettesítése (sin, cos, tg, log és ezek inverzei), a π és az e szám közelítő értékének megadása, nullára rendezett másodfokú egyenlet gyökeinek meghatározása. További matematikai indoklás nélkül használhatók a számológépek az átlag és a szórás kiszámítására abban az esetben, ha a feladat szövege kifejezetten nem követeli meg az ezzel kapcsolatos részletszámítások bemutatását is. **Egyéb esetekben a géppel elvégzett számítások indoklás nélküli lépéseknek számítanak, így azokért nem jár pont.**

- 11. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 12. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 13. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 14. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

1813 írásbeli vizsga 3 / 23 2018. május 8.

I.

1. a)		
(Elegendő megmutatni, hogy a háromszög legnagyobb szöge hegyesszög.) A legnagyobb szög a legnagyobb (11 cm hosszú) oldallal szemben van.	2 pont	Ez a 2 pont akkor is jár, ha a vizsgázó a három- szög mindhárom szögét helyesen kiszámolja. (A két kisebb szög 54,7°, illetve 39,4°.)
Jelölje ezt a szöget α . A koszinusztétellel: $\cos \alpha = \frac{7^2 + 9^2 - 11^2}{2 \cdot 7 \cdot 9} = \frac{1}{14} (\approx 0,0714).$	2 pont	
$\alpha \approx 85.9^{\circ}$, tehát a háromszög valóban hegyesszögű.	1 pont	Mivel $0 < \cos \alpha (< 1)$, ezért α hegyesszög.
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó tanult tételként hivatkozik arra, hogy $a \le b \le c$ esetén a háromszög pontosan akkor hegyesszögű, ha $a^2 + b^2 > c^2$, akkor ezért 3 pontot kapjon. További 2 pont jár azért, ha a tételt a konkrét esetre alkalmazva belátja, hogy $7^2 + 9^2 > 11^2$ igaz, tehát a háromszög valóban hegyesszögű.

1. b)		
Jelölje a háromszög oldalainak hosszát $a-d$, a és $a+d$ ($0 < d < a$).	1 pont	b, b+d, b+2d (b, d>0)
A Pitagorasz-tétel alapján $(a-d)^2 + a^2 = (a+d)^2$.	1 pont	$b^2 + (b+d)^2 = (b+2d)^2$
A négyzetre emeléseket elvégezve és rendezve: $a^2 = 4ad$.	1 pont	$b^2 - 2db - 3d^2 = 0$
$(a \neq 0$ -val osztva) $a = 4d$.	1 pont	A b-ben másodfokú egyen- letet megoldva $b = 3d$ (b = -d nem megoldás).
A háromszög oldalai tehát 3 <i>d</i> , 4 <i>d</i> és 5 <i>d</i> , az oldalak aránya ezért valóban 3:4:5.	1 pont	
Összesen:	5 pont	

1. c)		
A háromszög területe: $\frac{3d \cdot 4d}{2} = 121,5$.	1 pont	
Innen $12d^2 = 243$, azaz $(d > 0 \text{ miatt}) d = 4.5$.	1 pont	
A háromszög oldalainak hossza tehát 13,5 cm, 18 cm és 22,5 cm.	1 pont	
Összesen:	3 pont	

2. a)		
20x + 30y = 36x + 18y	1 pont	$\frac{y}{4 \cdot \frac{x}{y} + 2} = \frac{9}{10}.$
12y = 16x	1 pont	$20 \cdot \frac{x}{y} + 30 = 36 \cdot \frac{x}{y} + 18$
Ebből $\frac{x}{y} = \frac{3}{4}$.	1 pont	
Összesen:	3 pont	

Megjegyzés: Ha a vizsgázó csak a 2x + 3y = 9 és 4x + 2y = 10 esettel foglalkozik, akkor legfeljebb 1 pontot kaphat.

2. b) első megoldás		
$f(x+1) = (x+1)^2 - 11(x+1) + 30 = x^2 - 9x + 20$	2 pont	
Szorzattá alakítunk: $x^2 - 9x + 20 = (x - 4)(x - 5)$,	1 pont	
és $x^2 - 11x + 30 = (x - 5)(x - 6)$.	1 pont	
$\frac{f(x+1)}{f(x)} = \frac{(x-4)(x-5)}{(x-5)(x-6)} = \frac{x-4}{x-6} \text{ valóban.}$	1 pont	
Összesen:	5 pont	

2. b) második megoldás		
$f(x+1) = (x+1)^2 - 11(x+1) + 30 = x^2 - 9x + 20$	2 pont	
(Ha $f(x) \neq 0$, akkor $x \notin \{5; 6\}$, tehát a bal és a jobb oldalon álló tört is értelmezve van.) A nevezőkkel szorozva: $(x-6) \cdot f(x+1) = (x-4) \cdot f(x)$. $(x-6)(x^2-9x+20) = (x-4)(x^2-11x+30)$	1 pont	
$x^3 - 15x^2 + 74x - 120 = x^3 - 15x^2 + 74x - 120$	1 pont	
Ekvivalens átalakításokat végeztünk (az R \{5;6} halmazon), ezért az eredeti állítás igaz.	1 pont	
Összesen:	5 pont	

2. c) első megoldás		
(Ekvivalens átalakításokkal oldjuk meg az egyenlőt-		
lenséget.)		
$\left \frac{x-4}{x-6} + 1 \le 0 \right $	1 pont	
$\frac{2x-10}{x-6} \le 0$		
x = 5, vagy a számláló és a nevező előjele különböző.	1 pont*	Ezek a pontok akkor is járnak, ha a vizsgázó egy
$2x-10 < 0 \ (x < 5)$ és $x-6 > 0 \ (x > 6)$ egyszerre nem lehetséges.	1 pont	számegyenesen helyesen ábrázolja a számláló és a nevező előjelét, és onnan
2x-10 > 0 és $x-6 < 0$ egyszerre teljesül, ha $5 < x < 6$.	1 pont	olvassa le jól a megol- dást.
Tehát $5 \le x < 6$.	1 pont	
Összesen:	5 pont	

Megjegyzés: A *-gal jelölt pontot akkor is megkaphatja a vizsgázó, ha (a szigorú egyenlőtlenségek helyett) a $2x-10 \le 0$ és a $2x-10 \ge 0$ esetek vizsgálatával oldja meg a feladatot.

2. c) második megoldás		
(Ekvivalens átalakításokkal oldjuk meg az egyenlőt-		
lenséget.)	1 pont	
Ha $x > 6$, akkor $x - 4 \le 6 - x$.		
Ebből $x \le 5$, tehát a]6; $+\infty$ [halmazon nincs megol-	1 mant	
dása az egyenlőtlenségnek.	1 pont	
Ha $x < 6$, akkor $x - 4 \ge 6 - x$.	1 pont	
Ebből $x \ge 5$, tehát a] $-\infty$; 6[halmazon az [5; 6[inter-		
vallum minden eleme megoldása az egyenlőtlenség-	2 nont	
nek.	2 pont	
(Az egyenlőtlenség megoldáshalmaza tehát: [5; 6[.)		
Összesen:	5 pont	

3. a) első megoldás		
Ha Ágoston mindhárom osztályzata azonos, akkor	1 pont	
5 megfelelő számhármas van.	1 point	
Két egyforma és egy különböző osztályzatot		
5 · 4-féleképpen szerezhetett (a két egyforma osztály-	1 nont*	
zat 5-féleképpen, a harmadik osztályzat 4-féleképpen	1 pont*	
választható).		
Három különböző osztályzatot $\binom{5}{3}$ = 10-féleképpen	2 pont	
szerezhetett. (A nem egyforma osztályzatok sor-	1	
rendje mindkét esetben már egyértelmű.)		
A megfelelő esetek száma $(5+5\cdot4+10=)35$.	1 pont	
Összesen:	5 pont	

Megjegyzés: A *-gal jelölt pont a következő gondolatért is jár.

A két különböző osztályzat $\binom{5}{2}$ -féleképpen választható, a kiválasztás után pedig kétféleképpen választható meg az, hogy melyik osztályzatból legyen két egyforma.

Ez
$$2 \cdot \binom{5}{2} = 20$$
 lehetőség.

3. a) második megoldás		
Ha Ágoston első osztályzata 1, akkor a második osztályzat lehet 1, 2, 3, 4 vagy 5. Ekkor rendre 5, 4, 3, 2,		
illetve 1 lehetőség van a harmadik osztályzatára.	1 pont	
Ez összesen $(5 + 4 + 3 + 2 + 1 =)$ 15 lehetőség.		
Ha Ágoston első osztályzata 2, akkor a második osz-		
tályzat lehet 2, 3, 4 vagy 5. Ekkor rendre 4, 3, 2, il-	1 pont	
letve 1 lehetőség van a harmadik osztályzatára.	1 point	
Ez összesen $(4+3+2+1=)$ 10 lehetőség.		
Ha Ágoston első osztályzata 3, akkor a második osz-		
tályzat lehet 3, 4 vagy 5. Ekkor rendre 3, 2, illetve 1 lehetőség van a harmadik osztályzatára.	1 pont	
Ez összesen $(3 + 2 + 1 =)$ 6 lehetőség.		
Ha Ágoston első osztályzata 4 vagy 5, akkor osztály-		
zatai lehetnek: 4-4-4, 4-4-5, 4-5-5 vagy 5-5-5.	1 pont	
Ez összesen 4 lehetőség.		
A megfelelő számhármasok száma tehát	1 pont	
(15+10+6+4=) 35.	т ропі	
Összesen:	5 pont	

3. a) harmadik megoldás		
Ha Ágoston második osztályzata 1, akkor az első osztályzata 1-féle, a harmadik osztályzata 5-féle lehet, ez 1 · 5 lehetőség.	1 pont	
Hasonlóan, ha a második osztályzata 2, 3, 4 vagy 5, akkor az első osztályzata rendre 2, 3, 4, 5-féle; a harmadik osztályzata pedig 4, 3, 2, 1-féle lehet. A lehetőségek száma így 2 · 4, 3 · 3, 4 · 2, illetve 5 · 1.	3 pont	
A megfelelő számhármasok száma $(2 \cdot (1 \cdot 5 + 2 \cdot 4) + 3 \cdot 3 =) 35$.	1 pont	
Összesen:	5 pont	

3. a) negyedik megoldás		
Ha adott Ágoston három osztályzata, akkor ezek sorrendje már egyértelmű. Tehát a megfelelő számhármasok számát megkapjuk, ha az 1, 2, 3, 4, 5 számok közül kiválasztunk hármat úgy, hogy a kiválasztás sorrendje közömbös, és egy-egy számot többször is választhatunk.	3 pont	
A megfelelő számhármasok száma egyenlő 5 elem 3-adosztályú ismétléses kombinációinak a számával: $C_5^{3(i)} = \binom{5+3-1}{3} = 35.$	2 pont	
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó az összes lehetséges számhármast rendezetten felsorolja, és ez alapján helyes választ ad, akkor teljes pontszámot kapjon.

3. b) első megoldás		
Ha az osztálylétszám n fő, az egy tanulóra jutó szállásköltség pedig (n résztvevő esetén) x Ft, akkor $n \cdot x = (n-1) \cdot (x+120)$ $n \cdot x = (n-2) \cdot (x+250)$	2 pont	
Az első egyenletből <i>x</i> -et kifejezve:	1 pont	0 = -x + 120n - 120 0 = -2x + 250n - 500
x = 120n - 120.	1 point	0 = -2x + 250n - 500
Ezt a második egyenletbe behelyettesítve és nullára	1 .	Az első egyenlet (–2)-sze-
rendezve: $0 = -2(120n - 120) + 250n - 500$.	1 pont	resét a másodikhoz adva: $0 = 10n - 260$.
n = 26 (tehát az osztálylétszám 26 fő), és $x = 3000$.	1 pont	
A fizetendő teljes szállásdíj: $n \cdot x = 26 \cdot 3000 = 78000$ Ft.	1 pont	
Ellenőrzés: $26 \cdot 3000 = 25 \cdot 3120 = 24 \cdot 3250 (= 78000)$.	1 pont	
Összesen:	7 pont	

3. b) második megoldás		
Ha az osztálylétszám n fő, akkor (a szöveg szerint) az egy tanulóra jutó szállásdíj $(n-1)\cdot 120$ Ft,	1 pont	
a két tanulóra jutó szállásdíj pedig $(n-2) \cdot 250$ Ft.	1 pont	
Tehát $(n-2) \cdot 250 = 2 \cdot (n-1) \cdot 120$,	1 pont	
n = 26 (az osztálylétszám 26 fő).	1 pont	
Az egy tanulóra jutó szállásdíj (25 · 120 =) 3000 Ft, a teljes szállásdíj pedig (26 · 3000 =) 78 000 Ft.	2 pont	
Ellenőrzés: 26 · 3000 = 25 · 3120 = 24 · 3250 (= 78 000).	1 pont	
Összesen:	7 pont	

4. a)		
Az adatok száma páratlan, ezért a medián (a 72) szerepel az adatok között.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A hét adat között a 71 és a 75 pontosan kétszer szerepel (egynél többször kell előfordulniuk, de ha háromszor szerepelnének, akkor a terjedelem 4 lenne). Még két adatot kell tehát meghatározni.	1 pont	
A hét adat összege $(7 \cdot 73 =) 511$, a hiányzó két adat összege így $(511 - 364 =) 147$.	1 pont	
A hiányzó adatok egyike sem lehet a 72, mert akkor nem teljesülne a móduszokra vonatkozó feltétel, és nem lehet mindkettő 72-nél nagyobb sem, mert akkor a 72 nem lenne medián.	1 pont	A már ismert öt adat és a terjedelem miatt a legki- sebb adat legalább (75 – 7 =) 68, a legna- gyobb pedig legfeljebb (71 + 7 =) 78 lehet.
Tehát a hiányzó adatok közül az egyik legfeljebb 70 lehet, a másik pedig ekkor a terjedelem miatt legfeljebb 77 lehet.	1 pont	Ezt figyelembe véve a 147 lehetséges felbontásai: 147 = 68 + 79 = 69 + 78 = = 70 + 77 = 71 + 76 = = 72 + 75 = 73 + 74.
(Mivel 70 + 77 = 147, ezért) csak a 70 és a 77 lehetséges.	1 pont	Ezek közül a terjedelem miatt csak a 70 + 77 felel meg.
A hét szám: 70, 71, 71, 72, 75, 75, 77.	1 pont	Tetszőleges sorrendben megadva is jár a pont.
Összesen:	7 pont	

Megjegyzés: Ha a vizsgázó indoklás nélkül, nemcsökkenő (vagy nemnövekvő) sorrendben felsorolva, helyesen adja meg a hét számot, akkor 2 pontot kapjon. Ha ezen túl igazolja, hogy a megadott hét szám megfelel a feladatban megadott feltételeknek (és ezeket a megállapításokat dokumentálja), akkor további 2 pontot kapjon. A további 3 pontot akkor kaphatja meg, ha igazolja, hogy más megoldása nem lehet a feladatnak.

1813 írásbeli vizsga 9 / 23 2018. május 8.

4. b)		
$72 = 2^3 \cdot 3^2$ és $27720 = 2^3 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$.	2 pont	
(A legkisebb közös többszörös definíciója miatt) $n = 2^k \cdot 3^m \cdot 5 \cdot 7 \cdot 11 \text{ alakban írható fel,}$	1 pont	(A legkisebb közös több- szörös definíciója miatt) az n prímtényezői között szerepel az 5, a 7 és a 11, mindegyikük pontosan az első hatványon,
ahol $k \in \{0; 1; 2; 3\}$ és $m \in \{0; 1; 2\}$.	1 pont	a 2-es prímtényező legnagyobb kitevője 3 (4 lehetőség), a 3-as prímtényezőé pedig legfeljebb 2 lehet (3 lehetőség). (Más prímtényezője pedig nincs az n-nek.)
Az n lehetséges értékeinek száma tehát $4 \cdot 3 = 12$.	1 pont	
Az <i>n</i> legkisebb lehetséges értéke $(2^0 \cdot 3^0 \cdot 5 \cdot 7 \cdot 11 =) 385.$	1 pont	
Összesen:	6 pont	

Megjegyzések:

- 1. Az n lehetséges értékei növekvő sorrendben felsorolva:
- 385, 770, 1155, 1540, 2310, 3080, 3465, 4620, 6930, 9240, 13 860, 27 720.
- 2. Ha a vizsgázó a válaszát az n lehetséges értékeinek prímtényezős alakban történő felsorolására alapozva helyesen adja meg, akkor teljes pontszámot kapjon.

II.

5. a)		
$ \begin{array}{c cccc} A1 & A2 & A3 \\ \hline B1 & & & & & \\ \hline B2 & & & & \\ \hline C1 & C2 & C3 \end{array} $	2 pont	Ha a csúcsok azonosítása hiányzik, akkor legfeljebb l pont jár.
A fokszámok összege $4 \cdot 2 + 4 \cdot 3 + 4 = 24$.	1 pont	A gráfnak 12 éle van, a fokszámösszeg ennek kétszerese, tehát 24.
Összesen:	3 pont	

5. b) első megoldás		
A gráf egy köre – az a) rész megoldásában megadott ábra szerint – 1, 2, 3 vagy 4 "négyzetből" álló sokszöget "keríthet körül".	1 pont	
Ha a körbekerített négyzetek száma 1, 2, 3 vagy 4, akkor a kör éleinek száma rendre 4, 6, 8, 8,	2 pont	
tehát valóban nincs a gráfban páratlan sok élből álló kör.	1 pont	
Összesen:	4 pont	

5. b) második megoldás		
Ha a (fenti ábra szerint rajzolt) gráf egy körét az éleken haladva bejárjuk, és visszaérkezünk a kiindulási pontba, akkor vízszintes irányban jobbra, illetve balra ugyanannyi "lépést" kell tennünk. A vízszintes irányú lépések száma így páros, és hasonlóan páros a függőleges irányú lépések száma is.	2 pont	
Ezért a teljes lépésszám – azaz a gráf körében szereplő élek száma – is páros,	1 pont	
tehát valóban nincs a gráfban páratlan sok élből álló kör.	1 pont	
Összesen:	4 pont	

5. b) harmadik megoldás		
Helyezzük el a 3×3-as gráf csúcsait a derékszögű ko-		
ordináta-rendszer rácspontjaira úgy, hogy a C1 jelű		
csúcs kerüljön az origóba (ekkor koordinátái (0; 0)),		
az A3 jelű csúcs pedig a (2; 2) pontba. Ha a gráf egy körét az éleken haladva bejárjuk, akkor	2 mont	
minden "lépés" során megváltozik a csúcsok koordi-	2 pont	
nátái összegének a paritása. (Ha pl. az (1; 1) pontból		
a (2; 1) pontba lépünk, a koordináták összege 2-ről		
3-ra módosul, azaz párosról páratlanra változik.)		
Ha visszaérkezünk a kiindulási pontba, akkor – a pa-		
ritás megmaradása miatt – a lépések száma, azaz a	1 pont	
kört alkotó élek száma is páros,		
tehát valóban nincs a gráfban páratlan sok élből álló kör.	1 pont	
Összesen:	4 pont	

5. b) negyedik megoldás		
Színezzük a gráf csúcsait pirosra és kékre az ábra szerint. Piros csúcsból csak kékbe, kék csúcsból csak pirosba tudunk lépni.	2 pont	
Ezért ha a gráf egy körét az éleken bejárva visszaér- kezünk a kiindulási pontba, akkor a lépések száma, azaz a gráf körét alkotó élek száma páros,	1 pont	
tehát valóban nincs a gráfban páratlan sok élből álló kör.	1 pont	
Összesen:	4 pont	

5. c) első megoldás		
Például a puzzle A2 és B1 jelű darabját elhagyva a megmaradó 7 puzzle-elem által alkotott részlet nem lesz összefüggő.	2 pont	
Összesen:	2 pont	

5. c) második megoldás		
Például a gráf A2 és B1 jelű csúcsát és az ezekből induló éleket elhagyva a megmaradó hétpontú gráf nem lesz összefüggő.	2 pont	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Összesen:	2 pont	

5. d) első megoldás		
A három kapcsolódó játékelem helyzete lehet vízszintes, függőleges vagy L alakú.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A vízszintes helyzetű elemhármasok száma 3,	1 pont	
és ugyanennyi a függőleges elemhármasoké is.	1 pont	
Négyféle L alakú, összefüggő elemhármas van:	1 pont	
Mind a négy esetben a középső elem 4-féle lehet. (A fenti L alakoknak megfelelően rendre B2, B3, C2, C3; A2, A3, B2, B3; B1, B2, C1, C2; A1, A2, B1, B2.)	2 pont	A1 C A2 A3 B1 B2 B3 C1 C2 C3
A megfelelő elemhármasok száma így $2 \cdot 3 + 4 \cdot 4 = 22$.	1 pont	
Összesen:	7 pont	

5. d) második megoldás		
Az A1, C1, C3, A3 puzzle-elemek mindegyike 5 megfelelő elemhármas egyik darabja: 1 vízszintes és 1 függőleges elemhármasnak, továbbá 1 darab L alaknak a közepén és 2 darab L alaknak valamelyik végén szerepelnek.	1 pont	A1 C A2 A3 B1 B2 B3 C1 C2 C3
Az A1, C1, C3, A3 elemekhez ilyen módon összesen 4·5 megfelelő elemhármas tartozik.	1 pont	
A B1, C2, B3, A2 elemek mindegyike 8 megfelelő elemhármas egyik darabja: 1 vízszintes és 1 függőleges elemhármasnak, továbbá 2 darab L alaknak a közepén és 4 L alaknak a végén szerepelnek.	1 pont	
A B1, C2, B3, A2 elemekhez ilyen módon összesen 4 · 8 megfelelő elemhármas tartozik.	1 pont	

A középső <i>B</i> 2 puzzle-elem 14 megfelelő elemhármas egyik darabja: 1 vízszintes és 1 függőleges elemhármasnak, továbbá 4 darab L alaknak a közepén és 8 darab L alaknak valamelyik végén szerepel.	1 pont	
Mivel a fenti összeszámolásban minden elemhármast 3-szor számoltunk (az őket alkotó 3 puzzle-elem mindegyikénél),	1 pont	
ezért a megfelelő elemhármasok száma $\frac{4 \cdot 5 + 4 \cdot 8 + 14}{3} = 22.$	1 pont	
Összesen:	7 pont	

5. d) harmadik megoldás		
A három kapcsolódó játékelem helyzete lehet vízszintes, függőleges vagy L alakú.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A vízszintes helyzetű elemhármasok száma 3,	1 pont	
és ugyanennyi a függőleges elemhármasoké is.	1 pont	
(A továbbiakban esetszétválasztást végzünk aszerint, hogy az L alakú megfelelő elemhármasok két vízszintes darabját melyik sorból választjuk ki.) Ha az első vagy a harmadik sorból választjuk az L alak két összefüggő elemét, akkor ezekhez a harmadik elemet 2-féleképpen választhatjuk. Ha a második sorból választjuk ki az L alak két	1 pont	
összefüggő elemét, akkor ezekhez a harmadik elemet 4-féleképpen választhatjuk.	1 pont	
Minden sorban 2-féleképpen választhatunk ki két összefüggő elemet,	1 pont	
így a megfelelő elemhármasok száma $2 \cdot 3 + 2 \cdot (2 + 4 + 2) = 22$.	1 pont	
Összesen:	7 pont	

Megjegyzés: Ha a vizsgázó az összes megfelelő elemhármast rendezetten felsorolja, és ez alapján helyes választ ad (1 pont), akkor teljes pontszámot kapjon.

Például:

vízszintes elemhármasok: *C*1-*C*2-*C*3; (1 pont) A1-A2-A3, B1-B2-B3, függőleges elemhármasok: A1-B1-C1, *A*3-*B*3-*C*3; (1 pont) A2-B2-C2, L alakok: A1-A2-B2, A2-A3-B3, B1-B2-C2, *B*2-*B*3-*C*3; A1-B1-B2, A2-B2-B3, B1-C1-C2, *B*2-*C*2-*C*3; *C*2-*B*2-*B*3; B1-A1-A2, B2-A2-A3, C1-B1-B2, B1-B2-A2, B2-B3-A3, *C*1-*C*2-*B*2, *C*2-*C*3-*B*3. (4 pont)

6. a)		
Az E koordinátáit a kör egyenletébe helyettesítve: $(-7)^2 + 5^2 + 4 \cdot (-7) - 16 \cdot 5 + 34 = 0.$	1 pont	
A bal oldal értéke $(49 + 25 - 28 - 80 + 34 =) 0$, ezért E valóban rajta van a k körön.	1 pont	
Összesen:	2 pont	

6. b)		
A kör egyenletét átalakítva: $(x+2)^2 + (y-8)^2 = 34$,	1 pont	Ez a pont akkor is jár, ha ezt az átalakítást az a) feladat megoldásánál végzi el a vizsgázó.
ahonnan a k kör középpontja $C(-2; 8)$ (sugara pedig $\sqrt{34}$ egység).	1 pont	
Az érintőegyenes egy normálvektora \overrightarrow{EC} = (5; 3).	1 pont	
Az érintőegyenes egyenlete $5x + 3y = -20$.	2 pont	
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó az érintő egyenletét paraméteres alakban keresi, akkor 1 pontot kapjon annak megállapításáért, hogy a keresett érintő egyenlete felírható y = m(x+7)+5 alakban (mert az x = -7 egyenes nem érintő).

További 2 pontot kapjon azért, ha az egyenes és a kör egyenletéből alkotott egyenletrendszerből eljut annak megállapításáig, hogy az

$$(m^2+1)x^2 + (14m^2 - 6m + 4)x + (49m^2 - 42m - 21) = 0$$

 $egyenlet\ diszkrimin\'ansa-a\ 36m^2+120m+100\ \ddot{o}sszeg-null\'aval\ egyenl\~o.$

Ebből az $m = -\frac{5}{3}$ meghatározásáért 1 pontot, a keresett érintő egyenletének felírásáért pedig további 1 pontot kapjon.

6. c) első megoldás		
Az e egyenesnek és a k körnek nincs közös pontja,		
ha az $x^2 + (mx)^2 + 4x - 16 \cdot mx + 34 = 0$ egyenletnek	1 pont*	
nincs valós megoldása.		
Rendezve: $(m^2 + 1)x^2 + (4 - 16m)x + 34 = 0$.	1 pont*	
Ennek a másodfokú egyenletnek pontosan akkor nincs valós megoldása, ha a diszkriminánsa negatív.	1 pont*	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$D = (4 - 16m)^2 - 136(m^2 + 1) =$	1 pont*	
$=120m^2 - 128m - 120 = 8(15m^2 - 16m - 15)$	1 pont*	
A $15m^2 - 16m - 15 = 0$ egyenlet gyökei $-\frac{3}{5}$ és $\frac{5}{3}$.	1 pont	
Mivel az egyenletben a másodfokú tag együtthatója pozitív,	1 pont	Ez a pont jár egy megfe- lelő ábráért is.
ezért $15m^2 - 16m - 15 < 0$ pontosan akkor teljesül, ha $-\frac{3}{5} < m < \frac{5}{3}$. A k körnek és az e egyenesnek nincs közös pontja, ha $m \in \left] -\frac{3}{5}; \frac{5}{3} \right[$.	2 pont	
Összesen:	9 pont	

Megjegyzés: A *-gal jelölt 5 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

	ichetert is r	negnapnatja a vizsgazo.
A k kör sugara $\sqrt{34}$ egység, ezért k -nak pontosan akkor nincs közös pontja az e -vel, ha az egyenes a	2 pont	
$C(-2; 8)$ ponttól $\sqrt{34}$ egységnél távolabb van.		
Az <i>e</i> egyenes egyenlete $mx - y = 0$, így (a pont és egyenes távolságának képletével)		
a C pont és az e egyenes távolsága: $\left \frac{-2m-8}{\sqrt{m^2+1}} \right $.	1 pont	
$\left \frac{-2m - 8}{\sqrt{m^2 + 1}} \right > \sqrt{34}$	1 pont	
Négyzetre emelés után $\frac{4m^2 + 32m + 64}{m^2 + 1} > 34,$	1 pont	
innen pedig $15m^2 - 16m - 15 < 0$.		

6. c) második megoldás		
Az <i>y</i> = <i>mx</i> egyenletű egyenesek átmennek az origón. Először felírjuk az origón át a körhöz húzható két érintőegyenes egyenletét. Az érintési pontokat az origó és a kör középpontja által meghatározott szakasz, mint átmérő fölé írt Thalész-kör metszi ki a <i>k</i> körből.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A k kör középpontja $C(-2; 8)$. A Thalész-kör középpontja az OC szakasz felezőpontja: $K(-1; 4)$, sugara pedig az OK szakasz hossza, azaz $\sqrt{17}$ egység. A Thalész-kör egyenlete így $(x+1)^2 + (y-4)^2 = 17$.	2 pont	
A két kör metszéspontjainak megállapításához megoldandó az alábbi egyenletrendszer. $\begin{cases} (x+2)^2 + (y-8)^2 = 34 \\ (x+1)^2 + (y-4)^2 = 17 \end{cases}$	1 pont	
A két egyenletet kivonva egymásból: $2x + 3 - 8y + 48 = 17$, azaz $x = 4y - 17$.	1 pont	
Ezt az első egyenletbe visszaírva, majd a négyzetre emeléseket elvégezve és rendezve: $17(y^2 - 8y + 15) = 0$.	1 pont	
Ennek az egyenletnek a gyökei 3 és 5, tehát a két érintési pont (–5; 3) és (3; 5).	1 pont	
Az origón és az egyik, illetve másik érintési ponton áthaladó egyenes meredeksége $-\frac{3}{5}$ és $\frac{5}{3}$.	1 pont	
Az $y = mx$ egyenletű egyenesnek és a k körnek nincs közös pontja, ha $m \in \left] -\frac{3}{5}; \frac{5}{3} \right[$.	1 pont	
Összesen:	9 pont	

7. a)		
Dóri 20, Blanka és Csenge 25-25 figurát készített.	1 pont	Ez a pont akkor is jár, ha ezt a számolást a b) fel- adat megoldásánál végzi el a vizsgázó.
Két figurát $\binom{70}{2}$ (= 2415)-féleképpen választhatunk ki (összes eset száma).	1 pont	A két figura kihúzásának sorrendjét is figyelembe véve: 70 · 69 (= 4830).
Dóri két figurája $\binom{20}{2}$ (= 190), Blanka és Csenge két figurája rendre $\binom{25}{2}$ (= 300)-féleképpen választható ki,	1 pont	20 · 19 (= 380), illetve 25 · 24 (= 600)
$(igy \binom{20}{2} + 2 \cdot \binom{25}{2} (= 790)$ -féleképpen választható ki úgy két figura, hogy mindkettőt ugyanaz a lány ké- szítette (kedvező esetek száma).	1 pont	$20 \cdot 19 + 2 \cdot (25 \cdot 24)$ (= 1580)
Annak a valószínűsége, hogy a két kiválasztott figurát ugyanaz a lány készítette, $\frac{\binom{20}{2} + 2 \cdot \binom{25}{2}}{\binom{70}{2}} =$	1 pont	$\frac{20\cdot 19 + 2\cdot (25\cdot 24)}{70\cdot 69} \approx$
$\left(=\frac{158}{483}\right)\approx 0.327.$	1 pont	
Összesen:	6 pont	

Megjegyzés: Ha a vizsgázó visszatevéses mintavétellel dolgozik, akkor legfeljebb 4 pontot kaphat.

7. b)		
A Blanka, Csenge és Dóri által készített karácsonyfa-	1 pont	
figurák száma rendre 10, 15 és 6.	тропс	
Összesen 31 karácsonyfa-figurát készítettek,		
ezért $\frac{10}{31} \approx 0,323$ annak a valószínűsége, hogy	2 pont	
a kiválasztott figurát éppen Blanka készítette.		
Összesen:	3 pont	

7. c) első megoldás		
A négyszög oldalainak cm-ben mért hosszát valamely		
körüljárási irányban jelölje e, f, g, h .	1 pont	
Az érintőnégyszög szemközti oldalainak összege	i poiit	
egyenlő, ezért $e + g = f + h = 40$.		
Feltehetjük, hogy $e = 23$, ekkor $g = 17$; valamint hogy	1 pont	
$f > h$ (mert a számtani sorozat különbsége $d \neq 0$).	т ропі	
(Esetszétválasztást végzünk <i>e</i> és <i>f</i> nagyságviszonya		
alapján.)	1 pont	
$\operatorname{Ha} f > e$, akkor ($h < g$, és) a sorozat különbsége	i poiit	
d = e - g = 6;		
igy f (= e + 6) = 29 és h (= g - 6) = 11.	1 pont	
$\operatorname{Ha} f < e$, akkor $(g < h < f < e$, és) a sorozat különbsé-	1 pont	
gére $3d = e - g = 6$, innen $d = 2$.	т ропі	
h (= g + 2) = 19 és f (= h + 2) = 21.	1 pont	
A négyszög másik három oldala tehát 11, 17 és 29,		
illetve 17, 19 és 21 (cm) lehet. (Mindkét esetben léte-	1 pont	
zik konvex négyszög.)		
Összesen:	7 pont	

7. c) második megoldás		
Az általánosság megszorítása nélkül feltehetjük, hogy a számtani sorozat növekvő. Ebben az esetben a 23 a sorozatnak a harmadik vagy negyedik tagja lehet (mert a sorozatnak biztosan kétkét 20-nál kisebb, illetve nagyobb tagja van).	1 pont	Ez a pont akkor is jár, ha a vizsgázó azokat az ese- teket is megvizsgálja, amikor a 23 a sorozat első, illetve második tagja.
Ha a 23 a sorozatnak a harmadik tagja, akkor (a sorozat differenciáját d -vel jelölve) (23-2d)+(23-d)+23+(23+d)=80.	1 pont	
Innen $92 - 2d = 80$, azaz $d = 6$.	1 pont	
Ha a 23 a sorozatnak a negyedik tagja, akkor $(23-3d) + (23-2d) + (23-d) + 23 = 80$.	1 pont	
Innen $92 - 6d = 80$, azaz $d = 2$.	1 pont	
A négyszög másik három oldala tehát 11, 17 és 29, illetve 17, 19 és 21 (cm) lehet. (Mindkét esetben létezik konvex négyszög.)	1 pont	
Mivel $11 + 29 = 17 + 23$, illetve $17 + 23 = 19 + 21$, mindkét kapott négyszög valóban érintőnégyszög.	1 pont	
Összesen:	7 pont	

8. a)		
Az állítás hamis.	1 pont	
Ha G_1 csúcsainak száma n (n pozitív egész) és G_2 csúcsainak száma $2n$, akkor G_1 éleinek száma $n-1$, G_2 éleinek száma pedig $2n-1$, de $2(n-1) \neq 2n-1$.	2 pont	
Összesen:	3 pont	

8. b) első megoldás		
Összesen $\binom{6}{2}$ = 15 üzletkötés történt az előző hónap-	1 pont	
ban,		
ezek közül 4-et $\binom{15}{4}$ = 1365-féleképpen lehet kivá-	1 pont	
lasztani ellenőrzésre (összes eset száma).		
Nem kedvezők azok az esetek, amelyekben mind a 4 ellenőrzésre kiválasztott üzletkötés a <i>C</i> , <i>D</i> , <i>E</i> és <i>F</i> üzletkötései közül kerül ki.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
C, D, E, F egymás között 6 üzletet kötött, ezek közül 4-et $\binom{6}{4}$ = 15-féleképpen lehet kiválasztani.	1 pont	
A kedvező esetek száma: $\binom{15}{4} - \binom{6}{4} = 1350$,	1 pont	
így a kérdéses valószínűség $\frac{1350}{1365} = \frac{90}{91} \ (\approx 0.989).$	1 pont	
Összesen:	6 pont	

8. b) második megoldás		
Összesen $\binom{6}{2}$ = 15 üzletkötés történt az előző hónap-	1 pont	
ban,		
ezek közül 4-et $\binom{15}{4}$ = 1365-féleképpen lehet kivá-	1 pont	
lasztani ellenőrzésre (összes eset száma).		
Az üzletkötések között $\binom{4}{2}$ = 6 olyan van, amelyben	1 pont	
sem A, sem B nem volt érintett, és 9 olyan üzletkötés	1	
van, amelyben az A vagy a B érintett volt.		

Ezért a 15 üzletkötés közül		
$\binom{9}{1}\binom{6}{3} + \binom{9}{2}\binom{6}{2} + \binom{9}{3}\binom{6}{1} + \binom{9}{4}\binom{6}{0} = 1350$	2 pont	
különböző módon lehet 4-et ellenőrzésre úgy kivá-	1	
lasztani, hogy közöttük szerepeljen legalább egy az		
A vagy B üzletkötései közül (kedvező esetek száma).		
A keresett valószínűség: $\frac{1350}{1365} = \frac{90}{91} \ (\approx 0.989).$	1 pont	
Összesen:	6 pont	

8. b) harmadik megoldás		
Tekintsük a cégeket egy hatpontú (teljes) gráf pontja- inak, a köztük történt üzletkötéseket pedig a gráf élei- nek. Annak a valószínűségét kell kiszámítani, hogy a gráf élei közül 4-et kiválasztva a kiválasztott élek kö- zött lesz <i>A</i> -ból vagy <i>B</i> -ből induló él.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A hatpontú teljes gráfnak $\binom{6}{2}$ = 15 éle van,	1 pont	
ezek között $\binom{4}{2}$ = 6 olyan van, amelynek sem A , sem B nem végpontja (azaz 9 olyan él van, amelynek az A vagy a B végpontja).	1 pont	
Annak a valószínűsége, hogy az első, második, harmadik, majd negyedik kiválasztott él egyik végpontja sem A vagy B , rendre $\frac{6}{15}$, $\frac{5}{14}$, $\frac{4}{13}$, majd $\frac{3}{12}$.	1 pont	
A komplementer esemény valószínűsége ezek szor- zata: $\frac{6}{15} \cdot \frac{5}{14} \cdot \frac{4}{13} \cdot \frac{3}{12} = \frac{1}{91}$.	1 pont	
A kérdéses valószínűség így $1 - \frac{1}{91} = \frac{90}{91} \ (\approx 0.989)$.	1 pont	
Osszesen:	6 pont	

8. c)		
Vegyünk fel egy alkalmas derékszögű koordinátarendszert, amelyben legyen $U(0; 0)$ és $P(100; 0)$. Ekkor $Q(100; 16)$ és $S(50; 0)$ (a tengelyeken az egységeket méterben mérjük).	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból vagy egy megfe- lelő ábrából derül ki.
Az U , Q pontokon átmenő parabola egyenletét keressük, melynek a szimmetriatengelye az y tengely. Mivel a parabola tengelypontja az origó, azért egyenlete $y = cx^2$ alakú.	1 pont	

A parabolán rajta van a $Q(100; 16)$ pont, tehát $16 = c \cdot 100^2$,	1 pont	
ahonnan $c = 0,0016 = \frac{1}{625}$, ezért a parabola egyenlete $y = \frac{x^2}{625}$.	1 pont	
A hirdetővászon által fedett <i>PQRS</i> terület (ezt az $x \mapsto \frac{x^2}{625}$ másodfokú függvény [50; 100] intervallumon vett határozott integrálja adja meg): $\int_{50}^{100} \frac{x^2}{625} dx = \left[\frac{x^3}{1875}\right]_{50}^{100} =$	1 pont	
$= \frac{100^3 - 50^3}{1875} = 466\frac{2}{3}.$	1 pont	≈ 467
Ha 8% veszteséggel kell számolni, akkor $466\frac{2}{3}:0.92\approx507~\text{m}^2~\text{vászonra lesz szükség}.$	1 pont	$467:0,92 \approx 508 \text{ m}^2$
Összesen:	7 pont	1 11 1/

Megjegyzés: Ha a vizsgázó tanult tételként hivatkozik arra, hogy a parabolikus háromszög területe egyharmada a bennfoglaló téglalap területének, akkor ezért 3 pontot kapjon. További 3 pontot kapjon azért, ha az UPQ és az USR parabolikus háromszögek területének különbségeként határozza meg a PQRS területet.

9. a)		
A tanulmány szerint 10 parkolóőr esetén a bliccelők aránya $(25-10\cdot0,5=)$ 20%,	1 pont	
a parkolóőrök alkalmazásának költsége pedig naponta (330·10 =) 3300 garas lenne.	1 pont	
Mivel az autósok $(100 - 20 =) 80$ százaléka fizeti meg a parkolási díjat, ezért a parkolási díjakból származó napi bevétel: $15\ 000 \cdot 0.8 \cdot 10 = 120\ 000$ garas.	2 pont	
A parkolóőrök (10·200 =) 2000 autót ellenőriznek, ezek 20 százaléka bliccel, ezért a bliccelőktől származó napi bevétel: 2000·0,2·150 = 60 000 garas.	1 pont	
A napi nettó bevétel így 120 000 + 60 000 - 3300 = 176 700 garas.	1 pont	
Összesen:	6 pont	

9. b) első megoldás		
A tanulmány szerint n fő parkolóőr alkalmazása esetén a bliccelők aránya $(25 - 0.5n)$ százalék $(0 \le n \le 50)$, a parkolóőrök alkalmazásának költsége pedig naponta 330 n garas lenne $(n \in \mathbb{N})$.	1 pont	
A parkolási díjat a 15 000 főnek a $(75 + 0.5n)$ százaléka fizeti meg, az ebből származó bevétel tehát $15000 \cdot \frac{75 + 0.5n}{100} \cdot 10 = 112500 + 750n \text{ garas.}$	1 pont	
A parkolóőrök $200n$ számú ellenőrzést hajtanak végre, ennek $(25 - 0.5n)$ százalékában szabnak ki büntetést.	1 pont	
A büntetésből származó napi bevétel $200n \cdot \frac{25 - 0.5n}{100} \cdot 150 = 7500n - 150n^2 \text{ garas.}$	1 pont	
A napi nettó bevétel $(112500 + 750n + 7500n - 150n^2 - 330n =)$ $-150n^2 + 7920n + 112500 \text{ garas.}$	1 pont	
Az $n \mapsto -150n^2 + 7920n + 112500$ $(n \in \mathbb{R})$ másodfokú függvény deriváltfüggvénye $n \mapsto -300n + 7920$,	1 pont*	
tehát a függvény maximumhelye (a deriváltfüggvény zérushelye) a $\frac{7920}{300}$ = 26,4.	1 pont*	
A napi nettó bevétel tehát 26 vagy 27 parkolóőr esetén lesz maximális.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
26 parkolóőr esetén a bevétel 217 020 garas, 27 parkolóőr esetén pedig 216 990 garas,	1 pont	A parabola szimmetriatu- lajdonságára való hivat- kozásért vagy egy megfe- lelő ábráért is jár a pont.
így 26 parkolóőr esetében lesz a legnagyobb a napi nettó bevétel.	1 pont	
Összesen:	10 pont	

Megjegyzések:

1. Ha a vizsgázó a függvény maximumhelyének megállapítása után (további indoklás nélkül) annak kerekítésével válaszol, akkor legfeljebb 9 pontot kaphat.

2. A *-gal jelölt 2 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

2011 Sunjeven = permer uz unaeer genaeum memeren us m	· · · · · · · · · · · · · · · · · · ·	700 00 70=200=00
Az $n \mapsto an^2 + bn + c \ (n \in \mathbb{R}, \ a \neq 0)$ másodfokú		
függvény szélsőértéke $-\frac{b}{2a}$ -nál van, tehát az		
$n \mapsto -150n^2 + 7920n + 112500 \ (n \in \mathbf{R})$ függvénynek	2 pont	
maximuma van $-\frac{7920}{-2.150} = \frac{132}{5} = 26,4$ -nél.		
-2.150 5		

3. A *-gal jelölt 2 pontot az alábbi gondolatmenetért is megkaphatja a vizsgázó.

$-150n^2 + 7920n + 112500 =$		
$=-150(n^2-52,8n)+112500=$		
$=-150[(n-26,4)^2-26,4^2]+112500=$	2 pont	
$=-150(n-26,4)^2+217044$, tehát a függvénynek		
n = 26,4 esetén van maximuma.		

9. b) második megoldás		
n számú parkolóőr ($n \in \mathbb{N}$) alkalmazása esetén jelölje p_n a napi parkolási díjakból, b_n a napi bírságokból származó bevételt, k_n az őrök alkalmazásának napi költségét, f_n pedig a teljes napi nettó bevételt ($f_n = p_n + b_n - k_n$). Az f_n sorozat növekedési viszonyait vizsgáljuk ($n \le 50$ esetén).	1 pont	
$p_{n+1} - p_n = 750$, hiszen 0,5%-kal (75-tel) több lesz a díjfizető autós egy újabb parkolóőr alkalmazása esetén.	1 pont	
n számú parkolóőr alkalmazása esetén a megbírságolt autósok száma $200n \cdot \frac{25-0.5n}{100} = 2n(25-0.5n) =$ $= 50n-n^2$, ezért a bírságból származó bevétel $b_n = 150(50n-n^2) = 7500n-150n^2$.	1 pont	
$b_{n+1} - b_n = 7500(n+1) - 150(n+1)^2 - 7500n + 150n^2 = 7350 - 300n$	1 pont	
$k_{n+1} - k_n = 330$, hiszen eggyel több parkolóőr alkalmazásának költségeit kell kifizetni.	1 pont	
$ \operatorname{fgy} f_{n+1} - f_n = 750 + 7350 - 300n - 330 = = 7770 - 300n. $	1 pont	
$f_{n+1} - f_n = 7770 - 300n > 0$ pontosan akkor teljesül, ha $n < \frac{7770}{300} = 25,9$ (vagyis $n \le 25$), $n > 25,9$ (vagyis $n \ge 26$) esetén pedig a különbség negatív.	1 pont	
Ez azt jelenti, hogy f_n sorozat először szigorúan monoton nő, aztán szigorúan monoton csökken.	1 pont	
A legnagyobb tagja f_{26} , mert $f_{26} - f_{25} > 0$, de $f_{27} - f_{26} < 0$.	1 pont	
Tehát a maximális napi bevételt 26 parkolóőr alkal- mazásával érhetik el.	1 pont	
Összesen:	10 pont	