Getting Started with R

Enrico Toffalini

PSICOSTAT

Why becoming an R user?

- Mainstream in academia for data science, increasingly used in business. *Job market advantage!*
- Free & open-source: wherever you go, R will be with you at no costs (unlike MPLUS, MATLAB, SPSS, etc.)
- **Real programming language**: difficult at the beginning, but: 1) gives you lots of flexibility; 2) has transfer on other programming languages (e.g., *Python*).
- **Vast community support** thanks to a large and active community (also, *chatGPT*, *Lucrez-IA*, etc., know it pretty well!).
- **Huge ecosystem**, >20,000 packages on CRAN, more from other sources (e.g., GitHub), to do amazing stuff with statistical data analysis, machine learning, data visualization, developing webapps [*shiny*], writing reports and even entire books [*bookdown*, *rmarkdown*]), can integrate with *quarto*, *github*.
- Facilitates reproducible research by sharing code and workflows.

What you may expect to learn in this course:

- Executing fundamental operations and using basic functions;
- Working with essential data types and structures;
- Gaining some proficiency in managing and manipulating data with vectors and dataframes;
- Understanding some fundamental concepts of programming.

Over the next *couple of years*, following this PhD program, you may have the opportunity to learn to use R to perform at least some fundamentals about:

- Core statistical inference methods;
- (Generalized) linear (mixed-effects) modeling;
- Data visualization using ggplot2;
- Power analysis via data simulation;
- Structural Equation Modeling (SEM);
- Conducting Meta-Analysis.

you may even create greeting cards

you may even create greeting cards

or like fancy infographics

or like fancy infographics

perform classical data analysis

you may create interactive webapps with Shiny

see **Shiny gallery**

here's a couple of recent real examples from **Psicostat** members:

- this game-like shiny app developed for the science4all event in Padova; see here some explanation in Italian
- practical ad-hoc shiny app for scoring experimental data collected by students

you may create interactive webapps with Shiny

or entire websites and books

- this entire course is a website in its own right
- the course textbook is a book/website
- also see this wonderful book by Daniël Lakens explaining Statistical Inference

of course, these resources integrate other tools such as GitHub and Quarto, but they can be created within the R ecosystem

install R and Rstudio

first of all, for getting started, follow the instructions in *Chapter 1* of *Introduction2R* to ensure that both R and RStudio are installed

R Console (just base R)

R Studio (full IDE)

Some R packages that you will or may need in the future (1/3)

Package	Used for what	Example(s) of functions
base (base R)	Basic functions	<pre>sum, mean, sqrt, abs, c, data.frame, summary, scale, plot, +, -</pre>
stats (base R)	Basic statistical calculations and functions	<pre>sd, cor, cor.test, t.test, lm, glm, AIC, rnorm, rbinom</pre>
graphics (base R)	Basic statistical calculations and functions	boxplot, hist, barplot
effectsize	Compute different effect sizes	<pre>cohens_d, hedges_g, cohens_f, d_to_r</pre>

Some R packages that you will or may need in the future (2/3)

Package	Used for what	Example(s) of functions
lme4	Fitting (generalized) (non-)linear mixed-effects models	lmer, glmer, ranef
performance	Useful tools for models	<pre>check_collinearity, r2_nagelkerke,icc</pre>
effects	Display effects for various statistical models	allEffects
emmeans	Estimate marginal means for various models	emmeans
ggplot2	Create beautiful plots using The Grammar of Graphics	ggplot, geom_*

Some R packages that you will or may need in the future (3/3)

Package	Used for what	Example(s) of functions
lavaan	Structural equation modeling (SEM)	cfa, sem
semTools	Useful tools for SEMs	reliability
metafor	Perform meta-analysis	rma, rma.mv, forest, funnel, regtest
brms	Fitting practically any Bayesian model via MCMC with STAN	brm, prior
blavaan	Fitting Bayesian SEMs	bcfa, bsem

Let's Test the Environment!

Let's run a few commands in RStudio to familiarize with its console and see if the installation works properly

fisherz(rho=0.9) # use it to transform a correlation into a Fisher's z

```
[1] 1.472219
```