Durata della prova: 1h 30'				
	I	1	1	1

Esame di Logica e Algebra						
Politecnico di Milano – Ingegneria Informatica – 30 Agosto 2021						
Voto Lab. precedente & docente:	Cognome:	Nome:	Matricola:			

Tutte le risposte devono essere motivate. Gli esercizi vanno svolti su questi fogli, nello spazio sotto il testo e sul retro. I fogli di brutta non devono essere consegnati. I compiti privi di indicazione leggibile di nome e cognome non verranno corretti.

1. (Punteggio: 4,5) Sia data la seguente tavola di verità:

A	В	C	f(A,B,C)
1	1	1	X
1	1	0	1
1	0	1	1
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	у

(a) Si stabiliscano i valori di x,y in modo tale che valgano contemporaneamente le seguenti deduzioni:

$$\{\neg A \Rightarrow B, A\} \vDash f(A, B, C), \quad \{\neg C, B \Rightarrow C, \neg B \land \neg A\} \vDash f(A, B, C)$$

(b) Con i valori di x, y ottenuti in precedenza, verificare utilizzando la risoluzione che vale $\{\neg A \Rightarrow B, A\} \models f(A, B, C)$.

Soluzione:

- (a) Nel testo originale mancava $\neg C$, ma questo non pregiudica la risoluzione dell'esercizio visto che $\neg C$ serviva solo per rendere l'esercizio consistente. I modelli di $\{\neg A \Rightarrow B, A\}$ sono tutti quelli per cui A=1 e B, C arbitrari. Quindi in particolare la prima riga è un modello e quindi x deve assumere il valore 1. L'unico modello di $\{\neg C, B \Rightarrow C, \neg B \land \neg A\}$ è A=B=C=0, quindi in questo caso l'ultima riga contenente y deve essere un modello da cui deduciamo y=1.
- (b) Sia f(A, B, C) la formula avente la tavola di verità descritta nell'esercizio con x = y = 1. Dal teorema di correttezza e completezza per refutazione dobbiamo verificare che $\{\neg A \Rightarrow B, A, \neg f(A, B, C)\}^c \vdash_R \square$. Ora scrivendo la forma normale disgiuntiva di $\neg f(A, B, C) \equiv (\neg A \land B \land C) \lor (\neg A \land \neg B \land C) \equiv (\neg A \land C)$ ricaviamo le clausole $\{\neg A\}, \{C\},$ mentre dall'insieme di formula $\{\neg A \Rightarrow B, A\}$ otteniamo le clausole $\{A, B\}, \{A\}$. Si nota subito che dalle due clausole $\{A\}, \{\neg A\}$ otteniamo la clausola vuota \square .

2. (Punteggio: 3,3,2,4)

Sia $R \subseteq X \times X$, con $X = \{1, 2, 3, 4, 5, 6\}$ la relazione binaria definita da $(a, b) \in R$ se $a \le b$ e $\exists c \in X$ tale che a + b = c.

- (a) Si scriva la matrice d'adiacenza di R e si stabilisca se R è una funzione. In caso negativo si dica se esistono funzioni contenute in R oppure funzioni che contengono R.
- (b) Si dimostri che R non è una relazione d'ordine e si calcoli la minima relazione d'ordine T contenente R. Si determinino, se esistono, elementi massimali, minimali, massimo e minimo di X rispetto a T.
- (c) Si scriva la matrice d'adiacenza della chiusura riflessiva e simmetrica S di R e si dica se S è una relazione d'equivalenza.
- (d) Si consideri la seguente formula della logica del primo ordine:

$$\exists z \forall x \forall y ((A(x,y) \land A(y,x) \Rightarrow E(x,y)) \land (A(x,z) \Rightarrow E(x,z)))$$

Si stabilisca se la formula è vera, falsa o soddisfacibile ma non vera nell'interpretazione avente come dominio l'insieme X e in cui E interpreta la relazione di uguaglianza e la lettera predicativa A interpreta la relazione T. Cosa si può dire se invece la lettera predicativa A interpreta la relazione S? Si dica, infine, se la formula data è logicamente valida o logicamente contraddittoria.

Soluzione:

(a) Abbiamo $R = \{(1,1),(2,2),(3,3),(1,3),(1,4),(1,5),(2,3),(2,4)\}$ da cui otteniamo la seguente matrice d'adiacenza:

chiaramente R non è una funzione dato che non è seriale, e in particolare non contiene nessuna funzione. Non è nemmeno contenuta in nessuna funzione dato che per esempio $(1,2),(1,3) \in R$.

(b) R non è riflessiva, quindi non può essere d'ordine, ma si verifica facilmente che è transitiva e antisimmetrica. LA chiusura d'ordine esiste dato che chiudendo riflessivamente non pregiudica le altre proprietà, quindi $T = R \cup I_A$. Disegnando il diagramma di Hasse:

otteniamo che non esiste minimo e massimo, e l'insieme di minimali è $\{1,6\}$, mentre l'insieme di massimali è $\{3,4,5,6\}$.

(c) La matrice di S è

$$M_S = \left(\begin{array}{ccccccc} 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right)$$

si vede che S non è d'equivalenza dato che $(3,1),(1,4) \in S$ ma $(3,4) \notin S$.

(d) Se interpretiamo A con la relazione T, dato che T è antisimmetrica, abbiamo che la prima parte della formula $(A(x,y) \land A(y,x) \Rightarrow E(x,y))$ è vera, mentre prendendo z=6 abbiamo che A(x,6) è sempre falsa, e quindi la formula $(A(x,z) \Rightarrow E(x,z))$ è anche in questo caso sempre vera, e quindi otteniamo che la formula completa è vera. Nel caso usassimo S come interpretazione vediamo che (1,2),(2,1) ma $1 \neq 2$, da cui otteniamo che la formula $(A(x,y) \land A(y,x) \Rightarrow E(x,y))$ è falsa e quindi la formula completa è falsa. Questo mostra che la formula non è ne logicamente valida ne logicamente contraddittoria.

- 3. (Punteggio: 3,4,4) Sia $(\mathbb{Z}_8,+,\cdot)$ l'anello delle classi di resto modulo 8.
 - (a) Si risolva la seguente equazione in \mathbb{Z}_8 : $[6]_8 \cdot x = [2]_8$.
 - (b) Data la seguente relazione binaria R su \mathbb{Z}_8 definita da:

$$([a]_8, [b]_8) \in R$$
 se e solo se $a + b$ è pari

si dimostri che è una congruenza del gruppo ($\mathbb{Z}_8, +$).

(c) Si consideri la seguente formula della logica del primo ordine:

$$\forall x (\exists y A(f(x,y), a) \Rightarrow \forall z \exists y A(f(x,y), z))$$

Si stabilisca se la formula è vera, falsa o soddisfacibile ma non vera nell'interpretazione avente come dominio \mathbb{Z}_8 e in cui A interpreta la relazione di uguaglianza, f interpreta l'operazione di moltiplicazione fra classi e la costante a interpreta la classe $[1]_8$.

Soluzione:

- (a) Si potrebbe a cercare la soluzione per tentativi (otto), ma possiamo ragionare in quest'altro modo. L'equazione $[6]_8 \cdot [x]_8 = [2]_8$ implica il rappresentante x debba soddisfare 6x = 2 + 8n per un certo intero n. Quindi dividendo per 2 otteniamo 3x = 1 + 4n che vista come equazione in \mathbb{Z}_4 diviene $[3]_4[x]_4 = [1]_4$. Ora, visto che 3 è primo con 4, abbiamo che $[x]_4$ è l'unico inverso (che esiste) di $[3]_4$, cioè $[x]_4 = [3]_4$ ($[3]_4[3]_4 = [1]_4$). Quindi sappiamo che necessariamente $x = 3 \mod 4$, quindi le possibili soluzioni di $[6]_8 \cdot [x]_8 = [2]_8$ sono $x_1 = 3, x_2 = 7$ (visto che soddisfano $x = 3 \mod 4$). Ora si verifica subito che per questi due valori l'equazione $[6]_8 \cdot [x]_8 = [2]_8$ è soddisfatta.
- (b) Mostriamo prima che R è d'equivalenza: è chiaramente riflessiva (a+a è sempre pari!) e simmetrica. Mostriamo che è anche transitiva: se $([a]_8, [b]_8), ([b]_8, [c]_8) \in R$, allora a+b e b+c sono pari quindi anche (a+b)+(b+c) è pari, e quindi anche a+c lo è, e quindi $([a]_8, [c]_8) \in R$. Mostriamo la compatibilità rispetto alla somma: se $([a]_8, [b]_8), ([c]_8, [d]_8) \in R$ allora dobbiamo mostrare che $([a]_8 + [c]_8, [b]_8 + [d]_8) \in R$. Come ipotesi abbiamo che a+b e c+d è pari dato che $([a]_8, [b]_8), ([c]_8, [d]_8) \in R$, inoltre dato che $[a]_8 + [c]_8 = [a+c]_8, [b]_8 + [d]_8 = [b+d]_8$, abbiamo che $([a]_8 + [c]_8, [b]_8 + [d]_8) = ([a+c]_8, [b+d]_8)$ che appartiene ad R dato che (a+c) + (b+d) è pari essendo sia a+b che c+d pari.
- (c) La formula si traduce come per ogni $x \in \mathbb{Z}_8$ se esiste un $y \in \mathbb{Z}_8$ tale che $xy = [1]_8$, allora per ogni $z \in \mathbb{Z}_8$ esiste $t \in \mathbb{Z}_8$ tale che xt = z. In questa interpretazione la formula è vera, infatti se $xy = [1]_8$, allora prendendo t = yz, abbiamo che $xt = xyz = [1]_8z = z$.