

TEKNOLOGI JARINGAN KOMPUTER (1)

Jaringan komputer adalah sekumpulan perangkat komputer yang saling terhubung dengan menggunakan media tertentu yang disediakan oleh perangkat jaringan dengan aturan/protokol yang telah ditetapkan.

TEKNOLOGI JARINGAN KOMPUTER (2)

Perangkat yang dapat terhubung ke jaringan:

TEKNOLOGI JARINGAN KOMPUTER (3)

Perangkat sebagai media pembentukan jaringan:

TEKNOLOGI JARINGAN KOMPUTER (4)

Media sebagai perantara jaringan:

Wired Network

Wireless Network

Aturan dalam sistem jaringan:

PERANGKAT JARINGAN KOMPUTER (1)

Network Adapter/Network Interface Card (NIC)

- Berupa printed circuit board (PCB)
- Terpasang pada komputer/server pada expansion slot (PCI, PCIe. dll)

PERANGKAT JARINGAN KOMPUTER (2)

Hub dan Switch

- Merupakan perangkat yang menghubungkan antara satu komputer dengan komputer/perangkat lainnya dalam jaringan komputer.
- Hub mengirimkan paket-paket data ke semua port yang ada di hub tersebut.
- Switch menganalisa terlebih dahulu paket-paket data berdasarkan MAC Address, sehingga paket data hanya akan dikirimkan ke port tujuan saja.
- Umumnya bekerja pada layer 2 OSI.

PERANGKAT JARINGAN KOMPUTER (3)

Router

- Merupakan perangkat yang menghubungkan dua jaringan atau lebih sehingga data dapat dikirim dari satu jaringan ke jaringan yang lain.
- Bekerja pada layer 3 OSI.

PERANGKAT JARINGAN KOMPUTER (4)

Modem (Modulator-Demodulator)

- Mengubah sinyal-sinyal digital ke dalam bentuk analog dan sebaliknya sehingga memungkinkan sinyal-sinyal data tersebut berjalan melalui saluran telepon biasa.
- Biasanya digunakan sebagai dial-up layanan internet ISP.

PERANGKAT JARINGAN KOMPUTER (5)

Wireless Access Point / Wireless Router

- Menghubungkan perangkat-perangkat jaringan melalui media nirkabel.
- Dapat dianggap seabagi sebuah switch atau hub yang bertindak sebagai pusat dari pemamncar dan juga penerima pada sinyal-sinyal radio.
- Biasanya berfungsi juga sebagai router yang menghubungkan dua jaringan yang berbeda (LAN dan WAN).

PERANGKAT JARINGAN KOMPUTER (6)

Simbol-simbol perangkat jaringan komputer

Common Data Network Symbols

STRUKTUR FISIK DAN TOPOLOGI JARINGAN

- Bentuk hubungan diantara perangkat-perangkat tersebut di dalam suatu jaringan komputer.
- Struktur fisik suatu jaringan adalah pola hubungan antara perangkatperangkat jaringan secara fisik, seperti yang kita lihat, misalnya pada struktur atau pola pemasangan kabel-kabel jaringan.
- Topologi jaringan menggambarkan bagaimana komputer-komputer yang lebih mengarah pada bentuk atau struktur jaringan tersebut secara logical.

STRUKTUR FISIK (1)

Struktur Bus

 Struktur bus terdiri dari kabel utama dengan dua ujung, di mana perangkat-perangkat akan dihubungkan dengan drop cable pendek atau konektor "T" ke kabel utama tersebut.

STRUKTUR FISIK (2)

Struktur Star

• Struktur star terdiri dari beberapa kabel yang masing-masing menghubungkan suatu perangkat jaringan ke satu pusat jaringan.

STRUKTUR FISIK (3)

Struktur Star-wired Ring

 Struktur Star-wired Ring terdiri dari perangkat-perangkat yang terhubung ke pusat jaringan (hub/switch/concentrator) seperti halnya pada struktur star. Tetapi di dalam tiap-tiap hub hubungan fisik antara masingmasing point membentuk suatu lingkaran (ring).

TOPOLOGI JARINGAN (1)

Topologi Ring

- Jalur yang dipergunakan untuk lalu-lintas data membentuk suatu rangkaian tertutup atau closed path.
- Salah satu implementasi topologi *ring* yang cukup terkenal adalah jaringan *Token-Ring* IBM.

TOPOLOGI JARINGAN (2)

Topologi Bus

 Komputer-komputer yang ada di jaringan dihubungkan melalui suatu medium linear yang memiliki dua ujung.

 Untuk mencegah terjadinya interferensi akibat media transmisi yang digunakan secara bersama-sama, maka ada teknologi yang disebut

Media Access Control (MAC).

TOPOLOGI JARINGAN (3)

Topologi Star

- Hubungan secara logical antara komputer-komputer di dalam jaringan dimana semua perangkat terhubung ke satu switch/hub yang terpusat.
- Switch digunakan untuk membatasi transmisi sinyal-sinyal elektronik pada satu jalur tertentu dalam jaringan.

MEDIA DALAM JARINGAN (1)

Jenis-jenis kabel yang digunakan dalam jaringan:

Kabel Coaxial

• Kabel tembaga yang dibungkus dengan metal lunak, bentuknya mirip dengan kabel antena TV

Kabel Unshielded Twisted Pair (UTP)

• Merupakan sepasang kabel yang di-twist/dililit satu sama lain dengan tujuan untuk mengurangi interferensi listrik yang dapat terdiri dari 4 pasang kabel.

Kabel Shielded Twisted Pair (STP)

• Kabel yang sama dengan UTP tetapi tetapi perbedaannya kabel shielded mempunyai selubung tembaga atau alumunium foil yang khusus dirancang untuk mengurangi gangguan elektrik.

Kabel Fiber Optik

• Kabel serat optik terbuat dari material gelas atau plastik dan mampu mentransmisikan sinyal dalam bentuk cahaya.

MEDIA DALAM JARINGAN (2)

Kabel UTP berdasarkan kecepatan transfer data:

Cat	TIA/EIA Standar	Deskripsi
Cat 1	-	Sifatnya mampu mentransmisikan data kecepatan rendah, contohnya kabel telepon.
Cat 2	-	Sifatnya mampu mentransmisikan data lebih cepat dibandingkan dengan kategori 1. Dapat digunakan untuk transmisi digital dengan <i>bandwitdh</i> hingga 4MHz.
Cat 3	TIA/EIA 568-B	Mampu mentransmisikan data hingga 16 MHz, dan digunakan untuk Ethernet dan TokenRing.
Cat 4	-	Mampu mentransmisikan data hingga 20 MHz.
Cat 5	-	100 Mbps (Fast Ethernet)-Mampu mentransmisikan data hingga 100 MHz.
Cat 5e	TIA/EIA 568-B	100 Mbps & Gigabit Ethernet - Mampu mentransmisikan data hingga 100 MHz .
Cat 6	TIA/EIA 568-B	2x kemampuan Cat 5 / Cat 5e Mampu mentransmisikan data hingga 250 MHz
Cat 6a	-	Kedepannya untuk spesifikasi aplikasi 10Gbps.
Cat 7	ISO/IEC 11801 Class F	Didesain untk transmisi hingga 600 MHz.

MEDIA DALAM JARINGAN (3)

- Kabel UTP straight-through: Menghubungkan komputer dengan HUB atau SWITCH, komputer dengan outlet pada dinding, atau untuk menghubungkan dari HUB ke outlet pada dinding.
- Kabel UTP cross-over:
 Menghubungkan HUB/SWITCH
 dengan HUB/SWITCH yang
 lain.

	Hub	Switch	Router	Workstation
Hub	Crossover	Crossover	Straight	Straight
Switch	Crossover	Crossover	Straight	Straight
Router	Straight	Straight	Crossover	Crossover
Workstation	Straight	Straight	Crossover	Crossover

MEDIA DALAM JARINGAN (4)

Kabel UTP straight-through:

Standard Patch Cable

Kabe	Kabel jenis "Straight"								
РО	0	PH	В	PB	Н	PC	С	UJUNG 1	
РО	0	PH	В	PB	Н	PC	С	UJUNG LAIN	YANG

MEDIA DALAM JARINGAN (5)

Kabel UTP cross-over:

Kabel jenis "Cross"									
РО	0	PH	В	PB	Н	PC	С	UJUNG 1	
PH	Н	РО	В	PB	0	PC	С	UJUNG LAIN	YANG
Keterangan:									

Keterangan:

PO=putih orange, PH=putih hijau, PB=putih biru, PC=putih coklat

MEDIA DALAM JARINGAN (6)

Wireless-Fidelity: satu standar Wireless Networking, dengan menggunakan komponen yang sesuai, dapat terkoneksi ke jaringan tanpa menggunakan kabel.

Standar	Frekuensi	Kecepatan	Jangkauan
IEEE 802.11a	5 GHz	54 Mbps	300 m
IEEE 802.11b	2.4 GHz	11 Mbps	100 m
IEEE 802.11g	2.4 GHz	54 Mbps	300 m
IEEE 802.11n	2,4 GHz dan 5 GHz	300 Mbps	70 m
IEEE 802.11ac	2,4 GHz dan 5 GHz	1300 Mbps	70 m

Keamanan wifi: Open, WEP, WPA-PSK (TKIP/AES), WPA2-PSK (TKIP/AES)

PROTOKOL JARINGAN (1)

 Model referensi yang berisi cara kerja protokol jaringan disebut dengan Open System Interconnection (OSI).

 OSI layer mendifiniskan komunikasi dalam sebuah jaringan terjadi antar lapisan proses-proses yang diskrit dan dapat teridentifikasi dengan jelas.

PROTOKOL JARINGAN (2)

Physical address

- Dalam data-link layer, node-node dalam sebuah jaringan berkomunikasi dengan node yang lain dalam jaringan dengan menggunakan sebuah alamat yang spesifik untuk jaringan tersebut.
- Setiap node mempunyai physical address spesifik untuk perangkat tersebut yang dikenal dengan MAC (Media Access Control) Address.

PROTOKOL JARINGAN (3)

IP Address

 IP Address adalah alamat atau identitas numerik yang diberikan kepada sebuah perangkat komputer agar komputer tersebut dapat berkomunikasi dengan komputer lain.

	Internet Protocol version 4 (IPv4)	Internet Protocol version 6 (IPv6)	
Deployed	1981	1999	
Address Size	32-bit number	128-bit number	
Address Format	Dotted Decimal Notation: 192.149.252.76	Hexadecimal Notation: 3FFE:F200:0234:AB00: 0123:4567:8901:ABCD	
Prefix Notation	192.149.0.0/24	3FFE:F200:0234::/48	
Number of Addresses	232 = ~4,294,967,296	$2^{128} = \sim 340,282,366,$ 920,938,463,463,374, 607,431,768,211,456	

PROTOKOL JARINGAN (4)

IPv4

- IP versi 4 umumnya diekspresikan dalam notasi desimal bertitik (dotteddecimal notation), yang dibagi ke dalam empat buah oktet berukuran 8 bit.
- Terdiri dari Network Identifier dan Host Identifier.

PROTOKOL JARINGAN (5)

Mask IPv4

 Mekanisme penentuan Network ID dan Host ID disebut dengan masking yang terdiri dari 4 byte.

10000001.00101111.00000110.00010001

Dalam desimal *network portion* dari perhitungan di atas adalah 129.47.6.0 dengan demikian *host portion*nya adalah 17.

PROTOKOL JARINGAN (6)

Kelas IPv4

Address Class	Bit Pattern of First Byte	First Byte Decimal Range	Host Assignment Range in Dotted Decimal
А	0xxxxxxx	1 to 127	1.0.0.1 to 126.255.255.254
В	10xxxxxx	128 to 191	128.0.0.1 to 191.255.255.255.254
С	110xxxxx	192 to 223	192.0.0.1 to 223.255.255.254
D	1110xxxx	224 to 239	224.0.0.1 to 239.255.255.254
E	11110xxx	240 to 255	240.0.0.1 to 255.255.255