Verteilte Systeme und Komponenten

Zusammenfassung Frühlingssemester 2018

Patrick Bucher

27.05.2018

Inhaltsverzeichnis

1	Kom	ponenten	1
	1.1	Begriffe und Architekturen	1
		1.1.1 Der Komponentenbegrif	1
		1.1.2 Der Nutzen von Komponenten	2
		1.1.3 Der Entwurf mit Komponenten	3
		1.1.4 Komponenten in Java	3
	1.2	Schnittstellen	4
		1.2.1 Begriff und Konzept	4
		1.2.2 Dienstleistungsperspektive	5
		1.2.3 Spezifikation von Schnittstellen	5
	1.3	Modularisierung	6
		1.3.1 Modulkonzept	6
		1.3.2 Layers, Tiers & Packages	7
2	Entv	vicklungsprozess	8
	2.1	Projektplanung	8
	2.2	Source-Code-Management, Build und Dependency-Management	8
	2.3	Build-Server	8
	2.4	Integrations- und Systemtesting	8
	2.5	Entwurfsmuster	8
	2.6	Testing	8
	2.7	Continuous Integration	8
	2.8	Review	8
	2.9	Konfigurationsmanagement	8
	2.10	Deployment	8
	2.11	Code-Qualität	9
3	Vert	eilte Systeme	9
	3.1	Socket-Kommunikation	9
	3.2	Serialisierung	9

3.3	Message-Passing	9
3.4	Verteilung & Kommunikation: RMI	9
3.5	Uhrensynchronisation	9
3.6	Verteilung: Data Grid	9

1 Komponenten

Herkunft: componere (lat.) = zusammensetzen

Abbildung 1: Komponentendiagramm (UML2)

1.1 Begriffe und Architekturen

1.1.1 Der Komponentenbegrif

- Definition: Eine Software-Komponente
 - 1. ist ein Software-Element
 - 2. passt zu einem bestimmten Komponentenmodell
 - 3. folgt einem bestimmten Composition Standard
 - 4. kann ohne Änderungen mit anderen Komponenten verknüpft und ausgeführt werden
- Eigenschaften: Software-Komponenten
 - 1. sind eigenständig ausführbare Softwareeinheiten
 - 2. sind über ihre Schnittstellen austauschbar definiert
 - 3. lassen sich unabhängig voneinander entwickeln
 - 4. können kunden- und anwendungsspezifisch oder anwendungsneutral und wiederverwendbar sein
 - COTS (Commercial off-the-shelf): Software «von der Stange»
 - 5. können installiert und deployed werden
 - 6. können hierarchisch verschachtelt sein
- Komponentenmodelle
 - sind konkrete Ausprägungen des Paradigmas der komponentenbasierten Entwicklung

- definieren die genaue Form und Eigenschaften einer Komponente
- definieren einen Interaction Standard
 - * wie können die Komponenten miteinander über Schnittstellen kommunizieren (Schnittstellenstandard)
 - * wie werden die Abhängigkeiten der Komponenten voneinander festgelegt
 - · von der Komponente verlange Abhängigkeiten: Required Interfaces
 - · von der Komponente angebotene Abhängigkeiten: Provided Interfaces
- definieren einen Composition Standard
 - * wie werden die Komponenten zu grösseren Einheiten zusammengefügt
 - * wie werden die Komponenten ausgeliefert (Deployment)
- Beispiele verbreiteter Komponentenmodelle:
 - Microsoft .NET
 - EJB (Enterprise Java Beans)
 - OSGi (Open Services Gateway Initiative)
 - CORBA (Common Object Request Broker Architecture)
 - DCOM (Distributed Component Object Model)

1.1.2 Der Nutzen von Komponenten

- Packaging: Reuse Benefits
 - Komplexität durch Aufteilung reduzieren (*Divide and Conquer*)
 - Wiederverwendung statt Eigenentwicklung spart Entwicklungszeit und Testaufwand
 - erhöhte Konsistenz durch Verwendung von Standardkomponenten
 - Möglichkeit zur Verwendung bestmöglichster Komponente auf dem Markt
- Service: Interface Benefits
 - erhöhte Produktivität durch Zusammenfügen bestehender Komponenten
 - erhöhte Qualität aufgrund präziser Spezifikationen und vorgetesteter Software
- Integrity: Replacement Benefits
 - erweiterbare Spezifikation durch inkrementelle Entwicklung und inkrementelles Testing
 - parallele und verteilte Entwicklung durch präzise Spezifizierung und Abhängigkeitsverwaltung
 - Kapselung begrenzt Auswirkungen von Änderungen und verbessert so wie Wartbarkeit

1.1.3 Der Entwurf mit Komponenten

- Komponentenbasierte Enwicklung
 - steigende Komplexität von Systemen, Protokollen und Anwendungsszenarien
 - Eigenentwicklung wegen Wirtschaftlichkeit und Sicherheit nicht ratsam
 - Konstruktion von Software aus bestehenden Komponenten immer wichtiger
 - Anforderungen (aufgrund mehrmaliger Anwendung) an Komponenten höher als an reguläre Software

- Praktische Eigenschaften
 - Einsatz einer Komponente erfordert nur Kenntnisse deren Schnittstelle
 - Komponenten mit gleicher Schnittstelle lassen sich gegeneinander austauschen
 - Komponententests sind Blackbox-Tests
 - Komponenten lassen sich unabhängig voneinander entwickeln
 - Komponenten fördern die Wiederverwendbarkeit
- Komponentenspezifikation
 - Export: angebotene/unterstützte Interfaces, die von anderen Komponenten genutzt werden können
 - Import: benötigte/verwendete Interfaces von anderen Komponenten
 - Kontext: Rahmenbedingungen für den Betrieb der Komponente
 - Verhalten der Komponente

1.1.4 Komponenten in Java

- · Komponenten in Java SE
 - Komponenten als normale Klassen implementiert
 - Komponenten können, müssen sich aber nicht and die Java Beans Specification halten
 - * Default-Konstruktor
 - * Setter/Getter
 - * Serialisierbarkeit
 - * PropertyChange
 - * Vetoable
 - * Introspection
 - Weitergehende Komponentenmodelle in Java EE
 - * Servlets
 - * Enterprise Java Beans
- · Austauschbarkeit
 - Die Austauschbarkeit von Komponenten wird durch den Einsatz von Schnittstellen erleichtert.
 - Schnittstellen werden als Java-Interface definiert und dokumentiert (JavaDoc).
 - Eine Komponente implementieren eine Schnittstelle als Klasse.
 - * mehrere, alternative Implementierungen möglich
 - * Austauschbarkeit über Schnittstellenreferenz möglich
 - Beispiel: API von JDBC (Java Database Connectivity)
 - * von Sun/Oracle als API definiert
 - * von vielen Herstellern implementiert (JDBC-Treiber für spezifische Datenbanksysteme)
 - * Datenbankaustausch auf Basis von JDBC möglich
- Deployment
 - über . jar-Dateien (Java Archive): gezippte Verzeichnisstrukturen bestehend aus
 - * kompilierten Klassen und Interfaces als .class-Dateien
 - * Metadaten in META-INF/manifest.mf

- * optional weitere Ressourcen (z.B. Grafiken, Textdateien)
- Deployment von Schnittstelle und Implementierung zum einfacheren Austausch häufig in getrennten . jar-Dateien mit Versionierung, Beispiel (fiktiv):
 - * jdbc-api-4.2.1.jar enthält die Schnittstelle
 - * jdbc-mysql-3.2.1.jar enthält die MySQL-Implementierung
 - jdbc-postgres-4.5.7. jar enthält die PostgreSQL-Implementierung
 - * Versionierung idealserweise im Manifest und im Dateinamen (Konsistenz beachten!)

1.2 Schnittstellen

1.2.1 Begriff und Konzept

- Der Begriff Schnittstelle als Metapher
 - Beim Zerschneiden eines Apfels entstehen zwei spiegelsymmetrische Oberflächen.
 - Die Komponenten müssen so definiert werden, damit sie an der Schnittstelle zusammenpassen, als ob sie vorher auseinandergeschnitten worden wären.
 - Tatsächlich werden Verbindungsstellen erstellt, welche Kombinierbarkeit sicherstellen.
 - Eine Schnittstelle tut nichts und kann nichts.
 - Schnittstellen trennen nichts, sie verbinden etwas:
 - * Komponenten untereinander (Programmschnittstellen)
 - * Komponenten mit dem Benutzer
- Die Bedeutung von Schnittstellen (bei korrektem Gebrauch):
 - 1. machen Software leichter verständlich (man braucht nur die Schnittstelle und nicht die Implementierung zu kennen)
 - 2. helfen uns Abhängigkeiten zu reduzieren (Abhängigkeit nur von einer Schnittstelle, nicht von einer Implementierung)
 - 3. erleichtern die Wiederverwendbarkeit (bei der Verwendung bewährter Schnittstellen statt Eigenentwicklung)
- Die Beziehung zwischen Schnittstellen und Architektur:
 - System > Summe seiner Teile (Beziehungen zwischen den Teilen: durch Schnittstellen ermöglicht)
 - * Schnittstellen & Beziehungen zwischen den Komponenten: wichtigste Architekturaspekte!
 - * Mehrwert des Systems gegenüber Einzelkomponenten liegt in den Schnittstellen & Beziehungen der Komponenten zueinander
 - Spezialisten für Teilsysteme konzentrieren sich auf ihr Zeilproblem
 - * Architekten halten das Gesamtsystem über Schnittstellen zusammen
 - * Schnittstellen verbinden ein System mit der Aussenwelt und ermöglichen die Interaktion damit
- Kriterien für gute Schnittstellen
 - 1. Schnittstellen sollen *minimal* sein:
 - wenige Methoden (mit möglichst geringen Überschneidungen in ihren Aufgaben)

- geringe Anzahl von Parameters
- setzen möglichst keine oder nur wenige globale Daten voraus
- 2. Schnittstellen sollen einfach zu verstehen sein
- 3. Schnittstellen sollen gut dokumentiert sein

1.2.2 Dienstleistungsperspektive

- Die Schnittstelle als Vertrag:
 - Ein Service Consumer schliesst einen Vertrag mit einem Service Provider für eine Dienstleistung ab
- Design by Contract (DbC): Das Zusammenspiel zwischen den Komponenten wir mit einem Vertrag geregelt
 - Preconditions: Zusicherungen, die der Aufrufer einhalten muss
 - * Nutzer: Prüfen der Vorbedingungen vor der Ausführung
 - * Anbieter: Überprüfung mittels Assertions
 - Postconditions: Nachbedingungen, die der Aufgerufene garantiert
 - * Nutzer: Überprüfung mittels Assertions
 - * Anbieter: Prüfen der Nachbedingungen nach der Ausführung
 - Invarianten: Über alle Instanzen einer Klasse geltende Grundannahmen ab deren Erzeugung
 - * Anbieter: Überprüfung mittels Assertions

1.2.3 Spezifikation von Schnittstellen

- Dokumentation von Schnittstellen
 - Umfang:
 - * was ist wichtig für die Benutzung der Komponente
 - * was muss der Programmierer versethen und beachten
 - Eigenschaften der Methoden:
 - * Syntax (Rückgabewerte, Argumente, Typen, call by value/reference)
 - * Semantik (was bewirkt die Methode)
 - * Protokoll (synchron/asynchron)
 - * Nichtfunktionale Eigenschaften (Performance, Robustheit, Verfügbarkeit)
 - Schnittstellen an der Systemgrenze fliessen in die Systemspezifikation ein
- öffentliche Schnittstellen werden als API bezeichnet (Application Programming Interface)
 - objektorientierte API (sprachabhängig, z.B. API der JSE)
 - REST-API (Representational State Transfer, sprach- und plattformunabhängig, datenzentriert)
 - Messaging-API (sprach- und plattformunabhängig, z.B. Push-Notifications für Mobile Apps)
 - dateibasierte API (Informationsaustausch, Konfigurationsdateien)

1.3 Modularisierung

Modul: in sich abgeschlossener Teil des Programmcodes, bestehend aus Verarbeitungsschritten und Datenstrukturen

1.3.1 Modulkonzept

- · Kopplung und Kohäsion
 - Kopplung: Ausmass der Kommunikation zwischen Modulen
 - * hohe Kopplung: grosse Abhängigkeit
 - * Kopplung minimieren!
 - Kohäsion: Ausmass der Kommunikation innerhalb eines Moduls
 - * gerine Kohäsion: geringer Zusammenhalt
 - * Kohäsion maximieren!
 - Viele Module: Hohe Kopplung, geringe Kohäsion
 - Wenige Module: Geringe Kopplung, hohe Kohäsion
 - Idealer Kompromiss: Reduziert Gesamtkomplexität
- · Arten von Modulen
 - Bibliothek: Sammlung oft verwendeter, thematisch zusammengehörender Funktionen (Datumsmodul, Mathematik-Modul, I/O-Modul)
 - Abstrakte Datentypen: Implementierung eines neuen Datentyps mit definierten Operationen (verkettete Liste, binärer Baum Hash-Tabelle)
 - Physische Systeme: Abgegrenztes Hardware-Modul (Ultraschallsensor, Anzeigemodul, Kommunikationsmodul)
 - Logisch-konzeptionelles System: Modellierung von Funktionalität auf hoher Abstraktionsstufe (Datenbankmodul, Bildverarbeitungsmodul, GUI-Framework)

• Entwurfskriterien

- Zerlegbarkeit (modular decomposability): Teilprobleme können unabhängig voneinander gelöst werden
 - * *Divide and Conquer*: Softwareproblem in weniger komplexe Teilprobleme zerlegen, sodass sie unabhängig voneinander bearbeitet werden können
 - * Rekursive Zerlegung: Weitere Zerlegung von Teilproblemen
- Kombinierbarkeit (modular composability): Module sind unabhängig voneinander wiederverwendbar
 - * Module sollten möglichst frei kombinierbar sein und sich auch in anderen Umfeldern wieder einsetzen lassen
 - * Zerlegbarkeit und Kombinierbarkeit sind unabhängig voneinander
- Verständlichkeit: Module sind unabhängig voneinander verständlich
 - * Der Code eines Moduls soll ohne Kenntnis anderer Module verstehbar sein
 - * Module müssen unabhängig voneinander versteh- und wartbar sein
- Stetigkeit: Änderungen der Spezifikation proportional zu Codeänderungen
 - * Anforderungen können sich ändern, sollten sich aber nur auf ein Teilsystem auswirken

- Entwurfsprinzipien
 - lose Kopplung: schlanke Schnittstellen, Austausch nur des Nötigsten
 - starke Kohäsion: hoher Zusammenhalt innerhalb des Moduls
 - Geheimnisprinzip (information hiding): Modul nach aussen nur über dessen Schnittstellen bekannt
 - wenige Schnittstellen: zentrale Struktur mit minimaler Anzahl Schnittstellen
 - explizite Schnittstellen: Aufrufe und gemeinsam genutzte Daten sind im Code ersichtlich
- · Vorgehen bei Modularisierung
 - Basiskonzepte: Kopplung & Kohäsion
 - Kriterien: Verständlichkeit, Kombinierbarkeit, Zerlegbarkeit, Stetigkeit
 - Modularten: Bibliotheken, abstrakte Datentypen, physische und logische Systeme
 - Prinzipien: geringe Kopplung, hohe Kohäsion, Geheimnisprinzip, wenige & explizite Schnittstellen
 - sinnvolle Modularisierung: eine der anspruchsvollsten Aufgaben der Informatik
- Parnas: On the Criteria to be Used in Decomposing Systems into Modules (1972)
 - TODO: zusammenfassen

1.3.2 Layers, Tiers & Packages

- Layer
 - öffentliche Methoden eines tieferstehenden Layers B dürfen vom höherstehenden Layer
 A genutzt werden
 - Beispiel (Layers von oben nach unten): A B C
 - * richtig: A -> B, B -> C
 - * zulässig: A -> C (gefährlich: Umgehung einer API)
 - * falsch: C -> B, B -> A, C -> A (von unten nach oben)
 - * falsch: A -> B -> C -> A (zyklische Abhängigkeit)
 - call-Beziehung: ein höherstehender Layer verwendet Funktionalität eines tieferstehenden Layers
 - use-Bezehung: korrektes Verhalten von Layer A hängt von der korrekten Implementierung des Layers B ab (initialisiertes Device, aufgenommene Netzwerkverbindung, erstellte Datei)
- Tier: oft mit Layern verwechselt
 - Presentation Tier
 - Business Logic (Tier)
 - Data Tier
- Packages: Implementierung des Layer-Konzepts
 - abstrakt: UML
 - konkret: Java-Package

2 Entwicklungsprozess

- 2.1 Projektplanung
- 2.2 Source-Code-Management, Build und Dependency-Management
- 2.3 Build-Server
- 2.4 Integrations- und Systemtesting
- 2.5 Entwurfsmuster
- 2.6 Testing
- 2.7 Continuous Integration
- 2.8 Review
- 2.9 Konfigurationsmanagement
- 2.10 Deployment

Abbildung 2: Deploymentdiagramm

- 2.11 Code-Qualität
- 3 Verteilte Systeme
- 3.1 Socket-Kommunikation
- 3.2 Serialisierung
- 3.3 Message-Passing
- 3.4 Verteilung & Kommunikation: RMI
- 3.5 Uhrensynchronisation
- 3.6 Verteilung: Data Grid