

6

Sep 06, 2022

© Duplicating 96-well plate-cultured hPSCs clones

In 1 collection

Hanqin Li¹, Yogendra Verma¹, Dirk Hockemeyer¹, Frank Soldner²

¹University of California, Berkeley; ²Albert Einstein College of Medicine

1 Works for me Share

dx.doi.org/10.17504/protocols.io.b4mjqu4n

ABSTRACT

This protocol describes a standard procedure for duplicating 96-well plate-cultured human pluripotent stem cells (hPSCs).

General notes:

1. Throughout this protocol, the term hPSC is used to collectively refer to both hiPSCs and hESCs. All described procedures have been tested and work equally well for hiPSCs and hESCs

DOI

dx.doi.org/10.17504/protocols.io.b4mjqu4n

PROTOCOL CITATION

Hanqin Li, Yogendra Verma, Dirk Hockemeyer, Frank Soldner 2022. Duplicating 96-well plate-cultured hPSCs clones. **protocols.io** https://dx.doi.org/10.17504/protocols.io.b4mjqu4n

FUNDERS ACKNOWLEDGEMENT

Aligning Science Across Parkinson's

Grant ID: ASAP-000486

COLLECTIONS (1)

Standard operating procedure for the isolation of genetically engineered hPSCs clones in a high-throughput way

KEYWORDS

ASAPCRN

1

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Feb 03, 2022

LAST MODIFIED

Sep 06, 2022

PROTOCOL INTEGER ID

57739

PARENT PROTOCOLS

Part of collection

Standard operating procedure for the isolation of genetically engineered hPSCs clones in a high-throughput way

MATERIALS TEXT

Α	В	С
Item	Vendor	Catalog #
DMEM/F12	Thermo	11320082
	Fisher	
DPBS w/o	Corning	MT21031CV
Calcium and magnesium (DPBS)		
Fetal Bovine	Corning	35-011-CV
Serum (FBS)		
Knockout Serum Replacement	Thermo	10828-028
	Fisher	
L-Glutamine	Sigma	G8540
Penicillin & Streptomycin (100X)	Thermo	15140163
	Fisher	
MEM Non-Essential Amino Acids	Thermo	11140050
(100X)	Fisher	
Heat Stable Recombinant Human	Thermo	PHG0360
FGF2	Fisher	
Y-27632	Chemdea	CD0141
2-Mercaptoethanol	Sigma	M3148
0.25% Trypsin with EDTA	Thermo	25200114
(Trypisin)	Fisher	
DMSO	Fisher	BP231-100
	Scientific	
Proteinase K	Sigma	P6556

1 Change medium to hPSCs medium + Rock inhibitor one day ahead of plate duplication.

1.1 hPSC medium

Α	В
DMEM/F12	385 ml
Fetal	75 ml
Bovine Serum (FBS)	
Knockout Serum	25 ml
Replacement	
L-Glutamine (100X)	5 ml
Penicillin &	5 ml
Streptomycin (100X)	
MEM Non-Essential Amino	5 ml
Acids (100X)	
2-Mercaptoethanol	50 μΙ
(10,000X)	
Heat Stable Recombinant	80 µl
Human FGF2 (25ug/ml)*	

^{*}While we prefer Heat Stable Recombinant Human FGF2, we also have used regular FGF2. Final volume: 500ml

L-Glutamine (100X)

L-Glutamine,	14.6 g
powder	
MilliQ H2O	500 ml

2-Mercaptoethanol (10,000X)

2-Mercaptoethanol	0.78 ml
MilliQ H2O	9.22 ml

Heat Stable Recombinant Human FGF2 (25µg/ml)

A	В
Heat Stable Recombinant Human	500 μg
FGF2	
0.1% BSA	20 ml

Final volume: 20ml

Y-27632 (1,000X)

Y-27632	5 mg
DMSO	1.56 ml

hPSC medium + Rock inhibitor

Α	В
hPSCs medium	500 ml
Y-27632	500 μl
(1,000X)	

Final volume: 500ml

2 Prepare 11 ml DPBS, 3 ml Trypsin, 15 ml hPSCs medium + Rock inhibitor and 3 ml 2x Crude lysis buffer (with proteinase K) into separate reservoirs.

2.1 Crude lysis buffer (2x)

Α	В
KCI	100 mM
MgCl2	4 mM
NP-40	0.9%
Tween-20	0.9%
Tris	20 mM
Proteinase K (add before use)	500 μg/ml

pH: 8

- 3 Aspirate the medium from plates, wash by dispensing 100 µl DPBS per well using a Multichannel pipette. Gently swirl plates to wash the content of the wells.
- 4 Aspirate DPBS from the plates using multichannel aspirator.
- 5 Add 25 µl Trypsin to each well using a Multichannel pipette.

6 Incubate at § 37 °C © 00:05:00

5m

7 Take a 96-well PCR plate and dispense 25 μl of 2X Crude lysis buffer with Proteinase K per well onto the plates. Label the plates according to your tissue culture plates.

- 8 Take a new 96-well MEFs plate. Aspirate MEF medium and add 75 μl of hPSCs medium + Rock inhibitor to the wells.
- 9 Take the Trypsin-dissociated cells out from 37°C . Dispense $25\,\mu\text{l}$ hPSCs medium + Rock inhibitor onto each well using a Multichannel pipette to inactivate trypsin.

NOTES: Try not to touch the base of each well, this way you keep reusing the same pipette tips for multiple wells without crossing or mixing cells between wells. Or else, use fresh pipette tips for each well.

10 Use a fresh 200 µl filter tip box for this step:

Set the Multichannel at 25μ l, load it with pipette tips, break down the trypsinized wells by pipette at least 7-8 times, focusing mostly on the center of the well, also pipette 2-3 times near the circumference of the wells.

- 11 Using the same tips, take out 25 μ l of the dissociated cells, and dispense them over the new MEFs plate from step 8.
- Take the same tips to pipette out the remaining approx. $25 \,\mu$ l cell suspension to the PCR plate from step 7. This becomes the gDNA plate. The location for all wells on tissue culture plate should correspond with their particular gDNA collection plate.

Throughout steps 10-12, make sure to use fresh tips for each well. Eject out the used tips before proceeding to other wells. To make it easier to follow, mimic the location of the tips in the tip box with the location of the wells on tissue culture and gDNA plates. Also make sure to prioritize adding the first 25 μ l of cells to the new tissue culture plate , and then go back to collect the remaining 25 μ l to be added to gDNA plate.

After adding all samples to tissue culture and gDNA plates, transfer the tissue culture plates to \$ 37 °C . Do not shake. Medium change every other day.

- Seal the gDNA plate using an adhesive plate seal. Ensure they are tightly covered to prevent evaporation.

 Place the gDNA plate at \$50 °C © Overnight

 Heat inactivate at \$95 °C © 00:05:00 in a thermocycler

 This is on ice

 Proceed to PCR, NGS and analysis to identify properly edited clones.
- 19 Genotyping needs to be done in a week before the duplicated cells overgrow.