- $_{\scriptscriptstyle 1}$ Satisfying housework division? Gender role beliefs and religion as moderators of housework
- division and satisfaction
- Carlotta Reinhardt¹, Margaret Bassney¹, & Anushree Goswami¹
- ¹ Smith College

Satisfying housework division? Gender role beliefs and religion as moderators of housework division and satisfaction

7 Analysis Strategy

To test our hypotheses that gender role beliefs and religion moderate the relationship between housework distribution and satisfaction, we used multilevel modeling and the Actor-Partner Interdependence Model (APIM; Kenny, Kashy, & Cook, 2006). The APIM 10 measures the effect of the explanatory variables for both members in a dyad at the same 11 time. This way we get both the actor and partner effects. We will be able to see how one 12 partner's housework distribution effects both their own satisfaction with the housework 13 distribution and their partners satisfaction with the housework distribution. In terms of 14 moderation, we will get an actor effect moderated by each members gender role beliefs and 15 a partner effect moderated by each members gender role beliefs and religion. The APIM 16 measures proportion of variance in satisfaction that occurs between dyads vs the total variation present. In other words, how much of the variation in satisfaction is caused by the dyad. This allows us to estimate satisfaction with the distribution of housework is a function of both housework distribution and the random errors at both the individual and dyad level. This accounts for the non-independent data.

In order to calculate our APIM's we had to put our data into a paired data structure,
where both the actor and the partner's data was all contained in one line. This way we
could calculate the actor and partner effects for both the husbands and wives.

25 Main Results

Gender Role Beliefs. Looking at the summary table above, the only relationship
that is statistically significant is the one between the wife's satisfaction level and her
average housework. We know this because the p-value for
as.factor(genderE_A)1:Cavg_housework_female_A is 0.0041, which is less than 0.05.

Figure 1. Actor Partner Effects in the APIM

- Since the value for this relationship is -0.029132, it signifies that as the wife's average
- housework increases, her satisfaction level decreases.

housework distribution constant.

For women, gender role beliefs significantly moderated the relationship between her own housework distribution and her satisfaction with the housework distribution. The moderation effect was 0.07 with a p value of <0.05 and a standard deviation of 0.02. For every one unit increase in her gender role beliefs, her satisfaction increases by 0.07 while keeping housework distribution constant. Again for women, her partners gender role beliefs significantly moderated the relationship between her own housework distribution and her satisfaction with the housework distribution. The moderation effect was -0.06 with a p-value of 0.01 and a standard deviation of 0.02. For every one unit increase in her partners gender role beliefs, her own satisfaction increased by -0.06 while keeping

42

significant: as.factor(genderE_A)1:Cavg_housework_female_A:Cavg_grbs_P,

8.742833e-03 as.factor(genderE_A)1:Cavg_housework_female_A:Cavg_grbs_A,

8.408625e-04 as.factor(genderE_A)0:Cavg_housework_female_A, 2.259373e-02

Only looking at the three way interactions with gender we found two significant gender differences in the moderation effects. The interaction between actors housework distribution and their own gender role beliefs was significantly different for husbands and wives with an estimate of 0.06 a p value of 0.03 and a standard deviation of 0.03. The moderation effect of ones own gender role beliefs was 0.06 units higher for women than men meaning the moderation effect of gender role beliefs had a significantly larger positive effect on satisfaction for wives than for husbands.

In addition the interaction between actors housework distribution and their partners.

Looking at the summary table above, these are the relationships that are statistically

In addition the interaction between actors housework distribution and their partners gender role beliefs was significantly different for husbands and wives with an estimate of -0.08 a p-value of 0.01 and a standard deviation of 0.03. The moderation effect of ones partners gender role beliefs was -0.08 units lower for women than men meaning the moderation effect of her husbands gender role beliefs had a significantly larger negative effect on satisfaction compared to how her gender role beliefs effected the relationship between housework distribution and satisfaction for her husband.

As the housework distribution increases for wives with low gender role beliefs, their satisfaction decreases. This makes sense because wives with low gender role beliefs would believe in an equal housework distribution where she wasn't doing majority of the housework tasks. As the housework distribution increases for wives with high gender role beliefs, their satisfaction has a very slight decrease, but it stays more or less the same.

```
65 ## $x
66 ## [1] "housework distribution"
67 ##
```


 $Figure~2.~(\# fig: wife_plot) (ref: my-figure-caption 1)$

```
## $\frac{1}{1} \"Satisfaction"
##
## $\frac{1}{1} \"Interaction of wives housework distribution and their husbands gender role belei
##
## attr(,"class")
## [1] "labels"
```


As the housework distribution increases for wives whose husbands have low gender role beliefs, their satisfaction remains constant. As the housework distribution increases for wives whose husbands have high gender role beliefs, their satisfaction decreases.

Religion. The two intercept model gives us the two coefficients for men and women

Exploratory Results

76

80

87

Mediation is a way for researchers to explain the process of one variable affecting
another variable. It is essentially a possible explanation for the relationship between the
two variables. Mediation assesses whether the effects of the X variable (the independent
variable) are significant on the Y variable (the dependent variable), through a third variable
called M (the mediator).

Based on our primary analysis so far, we are interested in further exploring how to

- concept of gatekeeping fits into our research. We want to explore whether gatekeeping is a
- mediator variable in our relationship between the partners' gender role beliefs and
- housework tasks. Are women with higher gender role beliefs more likely to gatekeep
- 91 housework tasks?
- ####Interpretation:
- All four paths are positive and statistically significant: Seeing your partner positively
- leads you and your partner to be more satisfied. All four of these paths could potentially
- 95 be mediated.
- ###Step 2: Testing the effects of the grbs (X) on the mediators of Wife and
- 97 Husband gatekeeping (M).
- Interpretation: All four paths of the "a" paths are negative and statistically
- 99 significant: Seeing your partner positively leads you and your partner to have lower levels
- of tension.

103

- Steps 3 and 4: Testing the effects of the Tension (M) and Other Positivity
- 102 (X) on the Satisfaction (Y)...

I didn't change anything from here on yet!

- *Interpretation:* Step 3: All four "b" paths from Tension to Satisfaction are
- negative and three are statistically significant: Seeing more tension in the relationship
- leads to less satisfaction for you and your partner, even after controlling for how positively
- you and your partner see each other. The one effect that is not statistically significant is
- the effect of male's level of tension on his wife's level of satisfaction.
- Step 4: All paths from Other Positivity to Satisfaction, the direct of c', are positive
- and statistically significant: Seeing your partner positively leads you and your partner to
- have higher levels of satisfaction, even after controlling for yours and your partner's tension.

Testing Indirect Effects Using Multilevel Modeling

• Sobel Test

112

- Save effect estimates and standard errors.
- Compute Z test.
- Low power.
- Separately Test a and b
- Old fashioned.
- But may be making a comeback.
- Bootstrapping
- Difficult currently
- See Pituch & Stapleton (Multivariate Behavioral Research, 2008) for a discussion of how to bootstrap in MLM.
- Option available in some MLM programs. Only for effects but not indirect effects.
 - Monte Carlo Method
 - Appears to be the method of choice for MLMeM

Sobel Test

126

127

```
"{r} sobel <- function(aval, bval, seA, seB){

ab <- avalbval ab\_se <- sqrt(aval^{2seB^2+bval}2seA^2) z <- ab/ab\_se p <- 2pnorm(z, lower.tail=FALSE)

return(data.frame(indirect\_effect = ab, z_value = z, p_value = p))

}
```

156

```
134
            ''{r}
135
          #act_H_a <- coef(summary(apim_stp2))[3,1] #this is the a coefficient extracted from the</pre>
136
          #act H a se <- coef(summary(apim stp2))[3,2] # standard error</pre>
137
          #act_H_b <- coef(summary(apim_stp3))[7,1] # b coeff</pre>
138
          #act_H_b_se <- coef(summary(apim_stp3))[7,2]</pre>
139
140
          #sobel(act_H_a, act_H_b, act_H_a_se, act_H_b_se)
           MCMAM Selig & Preacher, 2008
                           "{r} #Function that returns mcmc CI. #mcmamCI <- function(aval, bval, varA,
143
           varB, n)
144
                           #code (Selig & Preacher, 2008). #require(MASS)
145
                          a=aval b=bval rep=n conf=95 pest=c(a,b) acov <- matrix(c(varA, 0, 0, varB),2,2)
146
                          mcmc <- mvrnorm(rep,pest,acov,empirical=FALSE)
147
                          ab < -mcmc[,1]*mcmc[,2]
148
                          low=(1-conf/100)/2 upp=((1-conf/100)/2)+(conf/100)
149
                          LL=quantile(ab,low) UL=quantile(ab,upp) LL=format(LL,digits=3)
150
           UL = format(UL, digits = 3)
151
                          CI <- cbind.data.frame(LL, UL) return(CI)
152
                           }
153
154
          For example, we can find the MCMC 95% CI for the **Actor-Actor: Husband** indirect effective for the statement of the stateme
155
```

```
act_H_a <- coef(summary(apim_stp2))[3,1]
act_H_a_se <- coef(summary(apim_stp2))[3,2]
act_H_b <- coef(summary(apim_stp3))[7,1]
act_H_b_se <- coef(summary(apim_stp3))[7,2]

mcmamCI(act_H_a, act_H_b, act_H_a_se^2, act_H_b_se^2, 3000)
#confidence intervals > does it include 0?
```

165 Summary of Indirect Effects

157

Name	Indirect Effects	Estim.	р	95% CI ^a Lower	Upper
Actor-Actor: W	Xw -> Mw -> Yw	0.165	<.001	0.086	0.257
Actor-Actor: H	Xh -> Mh -> Yh	0.099	<.001	0.042	0.172
Partner-Partner: W	Xw -> Mh -> Yw	0.027	.090	-0.003	0.070
Partner-Partner: H	Xh -> Mw -> Yh	0.034	.024	0.003	0.079
Actor-Partner: W	Xh -> Mh -> Yw	0.038	.086	-0.005	0.092
Actor-Partner: H	Xw -> Mw -> Yh	0.060	.004	0.017	0.115
Partner-Actor: W	Xh -> Mw -> Yw	0.094	.023	0.013	0.186
Partner-Actor: H	$Xw \rightarrow Mh \rightarrow Yh$	0.072	.003	0.023	0.134

^aBootstrapped CI using MCM (The above table was produced by an Excel spreadsheet: IndirectEffects.xls.)

68 Summary Direct and Total Effects

Name	Direct Effects	Direct	p	Total ^a	% Mediated
Actor: Wife	$Xw \rightarrow Yw$	0.185	.007	0.378	50.9
Actor: Husband	Xh -> Yh	0.291	<.001	0.424	31.5
Partner: Wife	Xh -> Yw	0.190	.010	0.321	40.9
Partner: Husband	$Xw \rightarrow Yh$	0.129	.028	0.262	50.8

^aComputed as ab + c' and c with results agreeing.

169

Note that % Mediated equals ab/c or equivalently 1 - c'/c. This value can be larger than one or negative. First, make sure that c is substantial. If it is, then if % Mediated is greater than 100 or negative, you have "inconsistent mediation": the direct and indirect effects are of opposite signs.