EXPLORING EFFICIENT APPROXIMATE MULTIPLIERS

INTRODUCTION

Approximate multiplication is a computational technique to calculate the product of two number with reduced precision to achieve specific trade-offs such as reduced computation time, power and area. It is useful in a lot of applications such as machine learning, signal processing and embedded systems where perfect precision is unnecessary.

VISHAL VIJAY DEVADIGA (CS21BTECH11061) GUIDE: DR. RAJESH KEDIA

Department of Computer Science and Engineering, IIT Hyderabad

ROBA Algorithm [1]

For a number X: Define X_R as the nearest power of 2. Then,

$$A \times B = (A - A_R) \times (B - B_R) + A_R \times B + B_R \times A - A_R \times B_R$$

On ignoring the term $(A - A_R) \times (B - B_R)$,

$$A \times B \cong A_R \times B + B_R \times A - A_R \times B_R$$

Research Question

Can we get a more precise value of $A \times B$ by approximating rather than ignoring the term $(A - A_R) \times (B - B_R)$?

Let $(X - X_R) = X'$. Then we can modify ROBA to recursively apply to the term $(A - A_R) \times (B - B_R) = A' \times B'$. That is,

$$A' \times B' \cong A'_R \times B' + B'_R \times A' - A'_R \times B'_R$$

TD-ROBA Algorithm

Suppose for a number X, X_R is the nearest floor power of 2. This increases the max error rate of the original computation of ROBA to 25%, but now finding A and B is easier as:

$$X' = X - X_R = X \oplus X_R$$

The ROBA multiplication for A' and B' can be parallely computed after finding A_R and B_R . The new max error rate is 6.25%.

R-ROBA Algorithm

Rather than having additional modules for computing the ROBA multiplication for **A'** and **B'**, we can reuse the ROBA module sequentially to calculate **A' x B'**.

This will:

- Increase computation time compared to all variations of ROBA
- Increase the complexity of the circuit
- Slight increase the area compared to ROBA
- Improve the max error rate to 1.21%.

WORK DONE

- Reviewed multiple papers on Approximate Multipliers
- Identified ROBA as area to improve accuracy with tradeoffs in Power, Delay and Area.
- Designed and implemented TD-ROBA with verilog and analysed Power, Delay, Area metrics using Open-Source Libraries
- Designed R-ROBA and derived the possible error reduction

Comparison of Approximate Multipliers									
Multiplier	Signed	Max Error	MRE	Power	Delay	Area			
S-ROBA [1]	Yes	11.11%	2.91%	2.09	1.21	2.90			
U-ROBA [1]	No	11.11%	2.92%	1.23	1.00	2.32			
DRUM6 [2]	No	6.34%	1.47%	1.20	1.17	1.00			
DSM8 [3]	No	9.99%	0.53%	1.00	1.29	1.53			
HAAM [4]	No	13.76%	2.04%	4.01	2.63	4.07			

Comparison of 32-bit inputs and 64-bit output multipliers. P, D, A Metrics are normalized.

Fig 2: TD-ROBA Multiplier

Fig 3: R-ROBA Multiplier

Comparison of ROBA Multipliers									
Multiplier	Signed	Max Error	MRE	Power	Delay	Area			
S-ROBA	Yes	11.11%	2.91%	1.70	1.21	1.25			
U-ROBA	No	11.11%	2.92%	1.00	1.00	1.00			
TD-ROBA	Yes	6.25%	0.96%	4.34	1.08	2.09			

Comparison of 32-bit inputs and 64-bit output multipliers. P, D, A are normalized to U-ROBA

TOOLS

- YoSYS : Verilog RTL Synthesis
- OpenROAD : RTL to GDS Flow
 ABC : Manning to target
- ABC : Mapping to target architectures

FUTURE WORK

- Comparison of TD-ROBA with other multipliers in real world scenarios
- Implementing R-ROBA and establishing the P, D, A metrics

REFERENCES

- [1] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha and M. Pe-dram, "Roba multiplier: A rounding-based approximate multiplier for high-speed yet energy-efficient digital signal processing", *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, vol. 25, no. 2, pp.
- 393-401, 2016.
 [2] S. Hashemi, R. I. Bahar, and S. Reda, "DRUM: A dynamic range unbiased multiplier for approximate applications," in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Austin, TX, USA, 2015, pp. 418–425.
- [3] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N. S. Kim, "Energy-efficient approximate multiplication for digital signal processing and classification applications," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 6, pp. 1180–1184, Jun.
- [4] C.-H. Lin and I.-C. Lin, "High accuracy approximate multiplier with error correction," in Proc. 31st Int. Conf. Comput. Design (ICCD), 2013, pp. 33–38.