MATE-1214 – PARCIAL III

Por favor, conteste a las preguntas explicando claramente su respuesta, si una pregunta no tiene sentido explique porque. Si utiliza algún teorema mencione que teorema es y explique porque puede utilizarlo. No se admite el uso de libros, notas y de ningún aparato que entre sus funciones incluya la de calculadoras o teléfono celulare o navegador de Internet o transceptor portátil (PTT, PoC o similares). Los cuatro puntos tienen el mismo valor, las respuestas sin justificación no serán tenidas en cuenta. Tiempo: 60'. ¡Buena suerte!

- (1.) Determine si las siguientes series convergen o divergen, para las series que convergen determinen si la convergencia es absoluta o condicional:
- (a) $\sum_{n=1}^{\infty} \frac{\sqrt{n^5 2n^2}}{n^3 + n^2 + 2}.$

(b) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\ln(\ln(n))}$.

(2.) Determine para cuales valores de k en \mathbb{R} la siguiente serie converge: $\sum_{n=2}^{\infty} \frac{1}{n \ln(n) (\ln(\ln(n)))^k}$.

(3.) Determine el domínio de la siguiente función: $f(x) = \sum_{n=1}^{\infty} \frac{(4x+1)^n}{n^2}$ y calcule $f^{(21)}(-\frac{1}{4})$.

 $({\bf 4.})$ Sea $(a_n)_n$ la sucesión definida por:

$$\begin{cases} a_1 = 1 \\ a_{n+1} = 3 - \frac{1}{a_n} & \text{si } n \ge 1. \end{cases}$$

Determine si la sucesión es convergente y si lo es calcule su límite.

MATE-1214 – PARCIAL III

Por favor, conteste a las preguntas explicando claramente su respuesta, si una pregunta no tiene sentido explique porque. Si utiliza algún teorema mencione que teorema es y explique porque puede utilizarlo. No se admite el uso de libros, notas y de ningún aparato que entre sus funciones incluya la de calculadoras o teléfono celulare o navegador de Internet o transceptor portátil (PTT, PoC o similares). Los cuatro puntos tienen el mismo valor, las respuestas sin justificación no serán tenidas en cuenta. Tiempo: 60'. ¡Buena suerte!

- (1.) Determine si las siguientes series convergen o divergen, para las series que convergen determinen si la convergencia es absoluta o condicional: (a) $\sum_{n=1}^{\infty} \frac{n^3-2n^2}{\sqrt{n^7+n^2+2}}$.

(b) $\sum_{n=1}^{\infty} (-1)^n \sin(\frac{1}{n^2})$.

(2.) Determine para cuales valores de k en \mathbb{R} la siguiente serie converge: $\sum_{n=2}^{\infty} \frac{1}{n(\ln(n))^k}$.

(3.) Determine el domínio de la siguiente función: $f(x) = \sum_{n=1}^{\infty} \frac{(4x+1)^n}{n^2}$ y calcule $f^{(21)}(-\frac{1}{4})$.

 $({\bf 4.})$ Sea $(a_n)_n$ la sucesión definida por:

$$\begin{cases} a_1 = 1 \\ a_{n+1} = 3 - \frac{1}{a_n} & \text{si } n \ge 1. \end{cases}$$

Determine si la sucesión es convergente y si lo es calcule su límite.

Universidad de Los Andes Calculo

Partial 3

Exercise 1

Show that $a_n = \frac{2^n}{1+2^n}$ is an increasing sequence and compute $\lim_{n\to\infty} a_n$.

Exercise 2

Establish if the following series are convergent, justifying your answer:

- a) $\sum_{n=1}^{\infty} 2^{2n} 5^{-n}$;
- b) $\sum_{n=1}^{\infty} \frac{(n+1)^4}{2^n}$;
- c) $\sum_{n=1}^{\infty} \frac{\sin(n)+2}{n}$;
- d) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2+1}$;
- e) $\sum_{n=1}^{\infty} \frac{\sin(\theta \cdot n)}{n^2}$, with $\theta := \frac{\text{your age}}{\text{the age of the teacher}}$.

Exercise 3

Establish if the following integral

$$\int_{1}^{+\infty} \frac{(x+1)^4}{2^x} dx.$$

is convergent, justifying your argument.