

Departamento de Matemáticas Cálculo Vectorial

Examen Final Mayo de 2021

PRIMERA PARTE. Selección múltiple con única respuesta (Valor:50/100)

I. Para evaluar la integral $\iint_R f(x,y) dA_R$ se transforma la región R (en el plano π_{xy}), en la región T (en el plano π_{uv}), con las sustituciones $x = u^2 + v^2$ e $y = u^2 - v^2$. Una expresión que permite calcular $\iint_R f(x,y) dA_R$ por medio de dicha transformación es:

a)
$$-\iint_T f(x(u,v),y(u,v)) (4-9uv) dA_T$$

b)
$$\iint_T f(x(u,v),y(u,v)) u^2(4-9uv) dA_T$$

c)
$$\iint_T f(x(u,v),y(u,v)) v^2(4+9uv) dA_T$$

d)
$$-\iint_T f(x(u,v),y(u,v)) uv(4+9uv) dA_T$$

II. Tenga en cuenta el campo vectorial $\mathbf{F}(x,y) = \left\langle \frac{1}{y}, 1 - \frac{x}{y^2} \right\rangle$ y la curva en el plano π_{xy} cuya parametrización está dada por $\mathbf{r}(t) = \left\langle t^2 + 1, \sin{(\pi t)} \right\rangle$ si $t \in [0,1]$. Al calcular el trabajo que ejerce el campo \mathbf{F} sobre una partícula que se mueve a lo largo de la curva \mathbf{r} , la afirmación verdadera es:

- a) Se puede aplicar el **Teorema fundamental para integrales de línea** y el valor de dicho trabajo es positivo.
- b) No se puede aplicar el **Teorema fundamental para integrales de línea** y el valor de dicho trabajo es positivo.
- c) No se puede aplicar el **Teorema fundamental para integrales de línea** y el valor de dicho trabajo es negativo.
- d) Se puede aplicar el Teorema fundamental para integrales de línea y el valor de dicho trabajo es negativo.

III. Se dan el campo vectorial $\mathbf{F}(x,y) = \langle x-y, x+y \rangle$ y la curva C en el plano π_{xy} cuya ecuación corresponde a $r-\theta=0$, con $0 \le \theta \le 2\pi$, seguida por el segmento de recta que une el punto $P=(2\pi,0)$ con el punto O=(0,0), recorrida positivamente. Al calcular $\int_C \mathbf{F} \cdot d\mathbf{r}$ la afirmación verdadera es:

- a) No se puede aplicar el **Teorema de Green** y el valor de la integral propuesta es positivo.
- b) No se puede aplicar el **Teorema de Green** y el valor de la integral propuesta es negativo.
- c) Se puede aplicar el Teorema de Green y el valor de la integral propuesta es positivo.
- d) Se puede aplicar el **Teorema de Green** y el valor de la integral propuesta es negativo.

- IV. El plano tangente a la superficie con ecuación $x^2z + 2xy^2 + 3yz^2 6 = 0$, en el punto P = (1,1,1), contiene también al punto:
 - a) Q = (1,0,2)
 - b) Q = (-1, 0, -2)
 - c) Q = (-1, 0, 2)
 - d) Q = (1, 0, -2)
- V. Con respecto al resultado de $\lim_{(x,y)\to(0,0)} \frac{2axy}{x^2+y^2}$ donde $a\in\mathbb{R}-\{0\}$ se puede afirmar que:
 - a) Es cero para cualquier valor de a.
 - b) Es mayor que cero si a > 0.
 - c) Es menor que cero si a < 0.
 - d) No existe para ningún valor de a.
- VI. Una partícula se mueve a lo largo de la curva parametrizada como $\mathbf{r}(t) = \left\langle t \frac{t^3}{3}, t^2, \frac{t^3}{3} + t \right\rangle$, si $t \geq 0$. Un vector tangente unitario en el sentido de la curva dada, si t = 1, es:

a)
$$T = \left\langle 0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right\rangle$$
.

b)
$$T = \left\langle \frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2} \right\rangle$$
.

c)
$$\mathbf{T} = \left\langle 0, \frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right\rangle$$
.

d)
$$T = \left\langle \frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2} \right\rangle$$
.

VII. Dada la integral $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{8-x^2-y^2}} \left(x^2+y^2\right) dz dy dx$ indique cuál (o cuáles) de las siguientes expresiones son equivalentes a ella:

i)
$$\int_0^{\pi} \int_0^{2\sqrt{2}} \int_r^{\sqrt{8-r^2}} r^3 dz dr d\theta$$
 ii) $\int_0^{2\sqrt{2}} \int_0^{\pi} \int_0^{\frac{\pi}{4}} \rho^4 \sin^3(\phi) d\phi d\theta d\rho$:

- a) Tanto i) como ii) son equivalentes a la integral dada inicialmente.
- b) Solamente i) es equivalente a la integral dada inicialmente.
- c) Solamente ii) es equivalente a la integral dada inicialmente.
- d) Ni i) ni ii) son equivalentes a la integral dada inicialmente.

a)
$$\pi a^2 b \sqrt{b^2 + 1}$$

b)
$$\pi ab^2 \sqrt{a^2 + 1}$$

c)
$$\pi a^2 b \sqrt{a^2 + 1}$$

d)
$$\pi a b^2 \sqrt{b^2 + 1}$$

IX. Dada la superficie $f(x,y) = 3x^2 + 4y^3 - 12xy + 2$, la afirmación verdadera es

- a) Tiene un máximo en el punto (0,0) y un punto de silla en (2,4).
- b) Tiene un mínimo en el punto (0,0) y un máximo en (2,4).
- c) Tiene un mínimo en el punto (2,4) y un punto de silla en (0,0).
- d) Tiene un máximo en el punto (2,4) y un mínimo en (0,0).

X. El valor de a para el cual la dirección de máximo incremento de la función $f(x, y, z) = x^2 + y^2 - 4z$ en el punto (2, -1, 1) es < 4, a, -4 > es

- a) -4
- b) -2
- c) 4
- d) 2

SEGUNDA PARTE. Preguntas abiertas (Valor:50/100)

I. [SP-25]

Suponga que C es la curva que es frontera de las superficies $S_1: x^2-y+1=0$, $S_2: y+z-5=0$ y $S_3: z=0$ en el primer octante. El vector normal a la superficie encerrada por dicha curva es positivo hacia afuera de S_1 . Si $\mathbf{F} = \langle yz, x, z^2 \rangle$ y la curva C se recorre positivamente, si se observa desde el punto P=(2,0,1), obtenga el trabajo que ejerce el campo \mathbf{F} sobre una partícula que recorre la curva C una vez, en el sentido indicado.

II. [SP-25]

Una superficie laminar es la sección del semicono circular superior con eje de simetría \vec{z} y vértice en el origen, que contiene a la circunferencia de centro en C=(0,0,a) de radio a paralela al plano π_{xy} , entre las superficies S_1 : Plano π_{xy} y S_2 : 4-z=0. La densidad superficial en cualquier punto de ella está dada por $\delta(x,y,z)=10-z$ gramos por centímetro cuadrado. Determine la masa total de la superficie.