Bases formelles du TAL

Pierre-Léo Bégay

January 26, 2020

La théorie des automates est l'algèbre linéaire de l'informatique [...], connaissance de base, fondamentale, connue de tous et utilisée par tous, qui fait partie du paysage intellectuel depuis si longtemps qu'on ne l'y remarquerait plus

Jacques Sakarovitch, dans l'avant-propos de Eléments de théorie des automates

Contents

1.1 Mots	
1.1 MOTS	
1.2 Langage	
2 Expressions régulières	
2.1 Lexique et idée générale	
2.1.1 Les lettres et ϵ , la bas	se
2.1.2 ., la concaténation .	
2.1.3 *, l'itération	
2.1.4 +, la disjonction	
2.2 Syntaxe	
2.3 Sémantique	
2.3.1 Les cas de base	
	caténation
	onction
	$tion \dots \dots$
2.4.2 Syntaxe en pratique	
3 Automates	1
4 Grammaires formelles	2
5 Introduction à la calculabilité	2
6 Théorème de Kleene et hiérar	rchie de Chomsky 2
A Rappels mathématiques	2
*	$ bsurde \dots \dots$

Langages

On définit d'abord la notion de mot, nécessaire à celle de langage. On verra ensuite comment décrire des langages à l'aide de notations ensemblistes, révisant ces dernières par la même occasion.

1.1 Mots

Définition 1.1.1: Mot

Un **mot** est une suite de lettres tirées d'un alphabet donné. L'ensemble des mots sur un alphabet Σ est noté Σ^* .

Exemple 1.1.1. Etant donné l'alphabet $\Sigma = \{a, b, c\}$, on peut construire une infinité de mots parmi lesquels

- *abc*
- \bullet aab
- cc
- a

Remarque On va s'intéresser ici à des langages et mots complètement abstraits, en général composés uniquement de a, b et c.

Définition 1.1.2: Mot vide

Une suite de lettres peut être de longueur zéro, formant alors le mot vide. Quel que soit l'alphabet, ce dernier sera noté ϵ .

Définition 1.1.3: Concaténation

L'opération de concaténation, notée ., consiste tout simplement à "coller" deux mots.

Exemple 1.1.2. Quelques concaténations :

- ab.c = abc
- ab.ba = abba

De plus, pour tout mot w,

$$w.\epsilon = \epsilon.w = w$$

Remarque Les algébristes enthousiastes remarqueront que $(\Sigma^*,.,\epsilon)$ forme un monoïde libre de base Σ

Définition 1.1.4: Longueur d'un mot

Etant donné un mot w, on note sa **longueur** |w|.

Exemple 1.1.3. Tout naturellement,

- |abc| = 3
- |abba| = 4
- |c| = 1
- $|\epsilon| = 0$

Définition 1.1.5: Principe d'induction sur un mot

Etant donnée une propriété P sur les mots. Si on a

- 1. $P(\epsilon)$ (cad. que P est vraie pour le mot vide)
- 2. $\forall w, \forall c \in \Sigma, (P(w) \to P(c.w))$ (cad. que si P est vraie pour un mot, alors elle reste vraie si on rajoute n'importe quelle lettre à gauche du mot)

Alors la propriété P est vraie pour tout mot w.

Remarque Est également valide le principe d'induction où, dans le cas récursif, la lettre est rajoutée à droite du mot plutôt qu'à sa gauche.

On va s'entraı̂ner à utiliser ce principe d'induction en prouvant deux lemmes qui ne le nécessitaient sans doute pas :

Lemme 1. $\forall w \in \Sigma^*, |w| \geq 0$, cad. que tout mot a une longueur positive.

Proof. On procède par induction sur w.

Dans le cas de base, $w = \epsilon$. On a donc $|w| = |\epsilon| = 0 \ge 0$.

Dans le cas récursif, w = c.w' avec $c \in \Sigma$ et on suppose $|w'| \ge 0$. On a $|c.w'| = 1 + |w'| \ge |w'| \ge 0$.

On va s'entraîner à utiliser ce principe d'induction en prouvant deux lemmes qui n'en nécessitaient sans doute pas tant :

Lemme 2. $\forall w \in \Sigma^*, |w| \geq 0$, cad. que tout mot a une longueur positive.

Proof. On procède par induction sur w.

Dans le cas de base, $w = \epsilon$. On a donc $|w| = |\epsilon| = 0 \ge 0$.

Dans le cas récursif, w = c.w' avec $c \in \Sigma$ et on suppose $|w'| \ge 0$. On a $|c.w'| = 1 + |w'| \ge |w'| \ge 0$.

Lemme 3. Etant donnés deux mots w_1 et w_2 , $|w_1.w_2| = |w_1| + |w_2|$.

Proof. On procède par induction sur w_1 .

Dans le cas de base, $w_1 = \epsilon$. On a donc $|w_1.w_2| = |\epsilon.w_2| = |w_2| = 0 + |w_2| = |w_1| + |w_2|$.

Dans le cas récursif, $w_1 = c.w_1'$ avec $c \in \Sigma$ et on suppose $|w_1'.w_2| = |w_1'| + |w_2|$. On a

```
|w_1.w_2|
= |c.w'_1.w_2| par définition de w_1

= 1 + |w'_1.w_2| par définition de |.|

= 1 + (|w'_1| + |w_2|) par hypothèse d'induction

= (1 + |w'_1|) + |w_2| par associativité de l'addition

= |c.w'_1| + |w_2| par définition de |.|

= |w_1| + |w_2| par définition de w_1
```

On a donc bien nos deux conditions pour le raisonnement par induction.

Définition 1.1.6: Nombre d'occurrences d'une lettre

Etant donné un mot w et une lettre a, on note $|\mathbf{w}|_{\mathbf{a}}$ le nombre de a dans w.

Exemple 1.1.4. On a

- $|abc|_a = 1$
- $|abba|_b = 2$
- $|c|_a = 0$
- $\bullet \ |\epsilon|_a = 0$

Définition 1.1.7: Préfixe

Un mot p est un **préfixe** du mot w ssi $\exists v, w = p.v$, cad. ssi w commence par p.

Définition 1.1.8: Suffixe

Un mot s est un suffixe du mot w ssi $\exists v, w = v.s$, cad. ssi w finit par p.

Exemple 1.1.5. Le mot abba admet comme préfixes ϵ , a, ab, abb et abba. Ses suffixes sont, quant à eux, ϵ , a, ba, bba et abba.

Lemme 4. $\forall w \in \Sigma^*, \epsilon \text{ et } w \text{ sont des préfixes de } w$

Proof. Pour ϵ , il suffit de prendre v=w. A l'inverse, en prenant $v=\epsilon$, on voit que w est son propre préfixe.

Lemme 5. $\forall w \in \Sigma^*, \epsilon \text{ et } w \text{ sont des suffixes de } w$

Proof. Analogue au lemme précédent.

Exercice 1.1.1. Combien de préfixes et suffixes admet un mot w quelconque ?

Définition 1.1.9: Facteur

Un mot f est un facteur du mot w ssi $\exists v_1v_2, w = v_1.f.v_2$, cad. ssi f apparaît dans w.

Exemple 1.1.6. Les facteurs du mot abba sont ϵ , a, b, ab, ba, abb, bba et abba.

Lemme 6. $\forall w \in \Sigma^*, \epsilon \text{ et } w \text{ sont des facteurs de } w.$

Proof. Pour ϵ , il suffit de prendre $v_1 = w$ et $v_2 = \epsilon$ (ou l'inverse) et la condition est trivialement vérifiée. Pour w, on prend $v_1 = v_2 = \epsilon$.

Exercice 1.1.2. Donner l'ensemble des facteurs du mot abbba.

Exercice 1.1.3. (*) Donner la borne la plus basse possible du nombre de facteurs d'un mot w. Donner un mot d'au moins 3 lettres dont le nombre de facteurs est exactement la borne donnée.

Définition 1.1.10: Sous-mot

Un mot s est un **sous-mot** du mot w ssi $w = v_0 s_0 v_1 s_1 v_2 ... s_n v_n$ et $s = s_0 s_1 ... s_n$, cad. ssi w est "s avec (potentiellement) des lettres en plus".

Exemple 1.1.7. On souligne les lettres originellement présentes dans le sous-mot :

- ab est un sous-mot de baab, qu'on pourrait aussi voir comme baab
- abba est un sous-mot de $ba\underline{a}abaa\underline{b}ba\underline{a}$.
- ba <u>n</u>'est pas un sous-mot de aaabbb (l'ordre du sous-mot doit être préservé dans le mot)

Lemme 7. $\forall w \in \Sigma^*, \epsilon \text{ et } w \text{ sont des sous-mots de } w.$

Proof. Pour ϵ , il suffit de prendre $n=0, s_0=\epsilon, v_0=w$ et $v_1=\epsilon$ (ou l'inverse) et la condition est trivialement vérifiée. Pour w, on prend $n=0, s_0=w$ et $v_0=v_1=\epsilon$.

Exercice 1.1.4. Montrer que tout facteur d'un mot en est également un sous-mot. A l'inverse, montrer qu'un sous-mot n'est pas forcément un facteur.

Exercice 1.1.5. Donner toutes les façons de voir abba comme sous-mot de baaabaabbaa (cf. exemple 1.1.7).

Exercice 1.1.6. Donner l'ensemble des sous-mots de abba

Exercice 1.1.7. (*) Donner la borne la plus basse possible du nombre de sous-mots d'un mot w. Donner un mot dont le nombre de sous-mots est exactement la borne donnée.

Exercice 1.1.8. (*) Dans l'exercice 1.1.1, on demande le nombre exact de préfixes et suffixes d'un mot, alors que dans les exercices 1.1.3 et 1.1.7, on demande une borne, pourquoi ?

1.2 Langage

Définition 1.2.1: Langage

Un langage, c'est un ensemble de mots.

On distingue donc d'entrée les deux langages extrêmes : Σ^* , l'ensemble (infini) de tous les mots formés à partir de Σ , et \emptyset , le langage / ensemble vide, qui se caractèrise comme ne contenant aucun élément.

Remarque Ne surtout pas confondre \emptyset et $\{\epsilon\}$. Le premier est un ensemble vide, contenant donc $\mathbf{0}$ élément, trandis que le second contient $\mathbf{1}$ élément, le mot ide.

La question maintenant est maintenant de savoir comment on définit et parle de langages précis et plus "intermédiaires" que les deux précédents. En tout généralité, les ensembles peuvent être définis de façon **extensionnelle** ou **intentionnelle**.

Définition 1.2.2: Définition extensionnelle d'un ensemble

On définit extensionnellement un ensemble en en donnant la liste des éléments. L'ensemble vide se note quant à lui \emptyset .

Exemple 1.2.1. On définit par exemple l'ensemble (sans intérêt) suivant :

$$A = \{b, aca, abba\}$$

Les définitions extensionnelles ont le mérite d'être pour le moins simples, mais pas super pratiques quand il s'agit de définir des ensembles avec un nombre infini d'éléments, comme l'ensemble des mots de longueur pair.

Définition 1.2.3: Définition intensionnelle d'un ensemble

On définit intensionnellement un ensemble à l'aide d'une propriété que tous ses éléments satisfont. Étant donnés une propriété Q(x) (typiquement représentée sous la forme d'une formule logique) et un ensemble A, on note $\{x \in A \mid Q(x)\}$ l'ensemble des éléments de A qui satisfont P. Si l'ensemble A est évident dans le contexte, on s'abstiendera de le préciser.

Exemple 1.2.2. On peut définir l'ensemble des mots de longueur paire $\{w \in \Sigma^* \mid |w| \ pair \}$.

Si les définitions intentionnelles permettent, contrairement aux extensionnelles, de dénoter des ensembles contenant une infinité de mots, elles sont avant tout un outil théorique. En effet, une propriété comme "|w| paire" ne dit rien à un ordinateur en soi, et doit donc être définie formellement. Se pose alors la question d'un langage pour les propriétés.

Plusieurs logiques équipées des bonnes primitives peuvent être utilisées, mais les traductions sont rarement très agréables. Certaines propriétés nécessitent en effet de ruser contre le langage, voire sont impossibles à formaliser dans certaines logiques. Il existe heureusement un outil qui va nous aider, avec le premier problème du moins.

Expressions régulières

Les expressions régulières permettent définir de façon finie - et relativement intuitive - "la forme" des mots d'un langage, potentiellement infini. On en présentera d'abord le lexique et l'idée générale à l'aide d'exemples, puis on en définira formellement la syntaxe et la sémantique.

2.1 Lexique et idée générale

Une expression rationnelle (ou regex, pour $regular\ expression^1$) est, en gros, une $forme\ de\ mot$, écrite à l'aide de lettres et des symboles .. * et +.

2.1.1 Les lettres et ϵ , la base

Les regex sont construites récursivement, en partant bien sûr des cas de base. Étant donné un alphabet Σ , ces derniers sont les différentes lettres de Σ , ainsi que ϵ . Ces regex dénotent chacune un seul mot, la lettre utilisée dans le premier cas, et le mot vide dans le second.

Exemple 2.1.1. La regex a dénote le langage $\{a\}$.

2.1.2 ., la concaténation

On peut heureusement concaténer des regex en utilisant à nouveau le symbole .. La concaténation de deux expressions rationnelles e_1 et e_2 , notée $e_1.e_2$ donc, dénote l'ensemble des mots qui peuvent se décomposer en une première partie "de e_1 " et une deuxième "de e_2 ".

Remarque En pratique, on ne notera pas les . dans les regex, mais quelque chose comme abbc devrait en théorie être lu comme a.b.b.c

Exemple 2.1.2. La regex abca dénote l'ensemble {abca}.

¹On se trompera sans doute souvent en parlant d'"expression régulière"

2.1.3 *, l'itération

Le symbole * permet de dire qu'une regex peut être répétée autant de fois que voulu (y compris 0).

Exemple 2.1.3. La regex ab^*c dénote l'ensemble des mots de la forme "un a, puis une série (éventuellement vide) de b, puis un c", c'est-à-dire $\{ac, abc, abbc, abbc, ...\}$

En utilisant des parenthèses, on peut appliquer * à des facteurs entiers :

Exemple 2.1.4. La regex $(aa)^*$ dénote l'ensemble des mots de la forme "une série (éventuellement vide) de deux a", c'est-à-dire $\{\epsilon, aa, aaaa, aaaaaa, ...\}$, ou encore les mots composés uniquement de a et de longueur paire.

On peut bien sûr utiliser plusieurs * dans une même expression. Dans ce cas, les nombres de "copies" des facteurs concernés ne sont pas liés, comme l'illustrent les examples suivant :

Exemple 2.1.5. La regex a^*b^* dénote l'ensemble des mots de la forme "Une série (éventuellement vide) de a, puis une série (éventuellement vide) de b", contenant notamment ϵ , a, b, aaab, abbbb, bb, aaa, ab, aabb et aaabb

Exemple 2.1.6. La regex $ab(bab)^*b(ca)^*b$ dénote l'ensemble des mots de la forme "ab, puis une série (éventuellement vide) de bab, puis un b, puis une série (éventuellement vide) de ca, puis un b", contenant notamment abbb, abbabb, abbabb ou abbabbabbabbabcab.

Exercice 2.1.1. Donner 5 autres mots appartenant au langage dénotée par l'expression de l'exemple 2.1.6.

Exercice 2.1.2. Pourquoi le changement de formulation dans les exemples 2.1.5 et 2.1.6 par rapport aux exemples précédents ("c'est à dire $\{x, y, z...\}$ " qui devient "contenant notamment x, y ou z")?

On peut même faire encore plus rigolo, en enchâssant les étoiles:

Exemple 2.1.7. La regex $(a^*b^*)^*$ dénote l'ensemble des mots de la forme "une série (éventuellement vide) de [(une série (éventuellement vide) de a] puis [une série (éventuellement vide) de b]]", contenant notamment ϵ , abba; baba ou abbbabba.

Remarque Certaines regex peuvent générer des mêmes mots de plusieurs façons. Si on prend l'expression de l'exemple 2.1.7 et le mot *abbbabba*, on peut la voir comme

•
$$\underbrace{a \quad b}_{a^1 \quad b^1} \underbrace{a^0 \quad b^2}_{a^0 \quad b^2} \underbrace{a^1 \quad b^1}_{a^1 \quad b^1} \underbrace{a^0 \quad b^1}_{a^0 \quad b^1} \underbrace{a^1 \quad b^0}_{a^1 \quad b^1} \underbrace{a^0 \quad b^1}_{(a^*b^*)^5}$$
• $\underbrace{a \quad b}_{a^1 \quad b^1} \underbrace{a^0 \quad b^0}_{a^0 \quad b^1} \underbrace{a^0 \quad b^1}_{a^0 \quad b^1} \underbrace{a^1 \quad b^1}_{a^1 \quad b^1} \underbrace{a^0 \quad b^1}_{a^0 \quad b^1} \underbrace{a^1 \quad b^0}_{a^1 b^1} \underbrace{a^0 \quad b^1}_{a^1 b^0} \underbrace{a^1 \quad b^1}_{a^1 b^0} \underbrace{a^0 \quad b^0}_{a^1 b^0}$

Le premier déroulement (on parlera de **dérivation**) semble bien sûr plus "naturel" et optimal que les deux autres. Ils sont pourtant tout aussi valides, et il sera utile en pratique d'éviter des expressions fortement ambiguës comme celle-ci.

2.1.4 +, la disjonction

Le symbole + permet quant à lui de signifier qu'on a le choix entre plusieurs sous-regex.

Exemple 2.1.8. La regex aa + bb dénote l'ensemble $\{aa, bb\}$

Si on a par exemple $\Sigma = \{a, b, c\}$, alors (a + b + c) correspond à "n'importe quelle lettre de l'alphabet". On écrira cette expression plus simplement Σ .

Exemple 2.1.9. L'expression $\Sigma\Sigma\Sigma$, ou Σ^3 , correspond à n'importe quel mot de longueur 3.

La disjonction peut bien sûr se combiner avec *:

Exemple 2.1.10. La regex $(aa)^* + (bb)^*$ dénote l'ensemble des mots composés uniquement de a et de longueur paire, ou uniquement de b et de longueur également paire, par exemple ϵ , aa, bb, aaaa ou bbbbbb. La dérivation du dernier mot serait alors de la forme

$$\underbrace{\underbrace{\begin{array}{c}bb\ bb\ bb\ bb}_{(bb)^4}\\ (bb)^*\\ (aa)^*+(bb)^*\end{array}}_{}$$

Exemple 2.1.11. La regex $(aa + bb)^*$ dénote l'ensemble des mots de la forme "une série (éventuellement vide) de aa et bb", par exemple aabb, aaaaaaaaaaa ou bbaabbbbbbaa. La dérivation du dernier mot ressemblerait alors à

$$\underbrace{aa + bb}_{aa + bb} \underbrace{aa}_{aa + bb} \underbrace{bb}_{aa + bb} \underbrace{bb}_{aa + bb} \underbrace{aa}_{aa + bb}$$
$$\underbrace{(aa + bb)^{6}}$$

Exercice 2.1.3. Donner un mot acceptant deux dérivations avec la regex de l'exemple 2.1.10 (justifier en donnant les dérivations). Existe-t-il un autre mot admettant plusieurs dérivations?

Exercice 2.1.4. Existe-t-il un mot acceptant plusieurs dérivations pour la regex de l'exemple 2.1.11?

Exercice 2.1.5. Donner un mot accepté par la regex de l'exemple 2.1.11 mais pas celle de l'exemple 2.1.10. Est-il possible de trouver un mot qui, à l'inverse, est accepté par la deuxième mais pas la première ?

Exercice 2.1.6. (*) Exprimer, en langue naturelle et de façon concise, le langage dénoté par la regex de l'exemple 2.1.7. Traduire ensuite ce langage en une regex non-ambiguë, c'est-à-dire où il n'y aura qu'une dérivation pour chaque mot.

Notez que dans l'exemple 2.1.10, on choisit d'abord de composer le mot de a ou de b, puis la longueur. A l'inverse, on choisit dans la regex de l'exemple 2.1.11 la longueur, puis a ou b pour chaque "morceau", et ce, individuellement. Pour mieux comprendre cette différence, il faut s'intéresser formellement à la mécanique des regex, qui se décompose bien évidemment entre syntaxe et sémantique.

2.2 Syntaxe

Les expressions rationnelles ont, comme à peu près tout langage, une structure. Elles sont définies à l'aide de 5 règles, dont 3 récursives, qui correspondent au lexique décrit précédemment :

Figure 2.1: Syntaxe des expression régulières

La figure 2.1 se lit "une expression rationnelle e est

soit le symbole ϵ

soit une lettre appartenant à l'alphabet Σ

soit une expression rationnelle e_1 (définie à l'aide des mêmes règles), suivie de ., puis d'une expression rationnelle e_2

soit une expression rationnelle e_1 , suivie de +, puis d'une expression rationnelle e_2

soit une expression rationnelle e_1 auréolée d'un *

et rien d'autre".

Ces règles de dérivation nous permettent de parser des expressions rationnelles. En notant t() la fonction qui prend une regex et renvoie son arbre syntaxique, on peut la définir à l'aide des 5 règles de la figure 2.1:

• $t(\epsilon)$ renvoie une feuille annotée par ϵ .

- t(a) renvoie une feuille annotée par a.
- $t(e_1.e_2)$ renvoie un noeud . dont les descendants sont les arbres de e_1 et e_2 , comme sur la figure 2.2a
- $t(e_1 + e_2)$ renvoie un noeud + dont les descendants sont les arbres de e_1 et e_2 , comme sur la figure 2.2b
- $t(e_1^*)$ renvoie un noeud * avec un seul descendant, l'arbre de e_1 , comme sur la figure 2.2c

$$t(e_1.e_2) = \underbrace{ \begin{array}{c} \cdot \\ t(e_1.e_2) \end{array}}_{\begin{subarray}{c} \cdot \\ t(e_1) & t(e_2) \end{subarray}} t(e_1 + e_2) = \underbrace{ \begin{array}{c} + \\ t(e_1) & t(e_2) \end{subarray}}_{\begin{subarray}{c} \cdot \\ t(e_1) & t(e_2) \end{subarray}} t(e_1^*) = \underbrace{ \begin{array}{c} * \\ | \\ t(e_1) \end{subarray}}_{\begin{subarray}{c} \cdot \\ t(e_1) \end{subarray}}_{\begin{subarray}{c} \cdot \\ t(e_1) \end{subarray}} t(e_1^*) = \underbrace{ \begin{array}{c} * \\ | \\ t(e_1) \end{subarray}}_{\begin{subarray}{c} \cdot \\ t(e_1) \end{subarray}}_{\begin{subarray}{c} \cdot \\ t(e_1) \end{subarray}}$$

Figure 2.2: Analyse syntaxique récursive de regex

Les règles décrites ci-avant ne disent pas comment parser une expression comme a.b+c. En effet, rien ne dit si elle doit être lue comme (ab)+c ou a.(b+c). Pour éviter d'avoir à mettre des parenthèses absolument partout, on va devoir définir les priorités entre les différentes opérations :

Figure 2.3: Priorités pour les opérateurs d'expressions rationnelles

Concrètement, + < . veut dire qu'une expression comme a.b + c doit être interprétée comme $(a.b) + c^2$. De même, $a.b^*$ se lit $a.(b^*)$, et $a + b^*$ comme $a + (b^*)$.

Maintenant qu'on a les règles de dérivation et les priorités associées, on peut commencer à jouer avec quelques exemples.

Exemple 2.2.1. L'expression rationnelle $(aa)^* + (bb)^*$ peut être parsée comme

Figure 2.4: Analyse syntaxique de $(aa)^* + (bb)^*$

On remarquera bien sûr l'absence habile dans l'exemple 2.2.1 de formes encore problématiques : a+b+c et a.b.c. En effet, rien ne nous dit pour l'instant auquel des arbres de la figure 2.5 la première regex correspond.

 $^{^2 \}mathrm{De}$ la même façon que $a \times b + c$ se comprend comme $(a \times b) + c$

Figure 2.5: Ambiguïté syntaxique de a + b + c

Comme on le verra dans la partie sémantique, les symboles + et . sont **associatifs**, ce qui veut dire que, pour toutes expressions e_1 , e_2 et e_3 , $(e_1+e_2)+e_3$ et $e_1+(e_2+e_3)$ ont le même sens³, et pareil avec la concaténation. Malgré une méfiance justifiée des arbres ternaires et plus, on se permettra donc d'écrire des expressions ambiguës comme $e_1+e_2+e_3$ ou $e_1e_2e_3$, et de les parser comme dans la figure 2.6

Figure 2.6: Ambiguïté syntaxique assumée de a+b+c

Exemple 2.2.2. L'expression rationnelle (aa(a+b)*bb)* s'analyse comme

On a pour l'instant uniquement défini le lexique et la syntaxe des expressions régulières, mais les beaux arbres qu'on est désormais en mesure de constuire n'ont en soi aucun sens, et donc aucun intérêt. Il s'agit donc désormais d'en définir une sémantique.

2.3 Sémantique

Avant de regarder la tuyauterie d'une fonction, il s'agit d'en définir le type. La sémantique des expressions rationnelles, notée $[\![e]\!]$, prend en argument une expression et renvoie un langage,

 $^{^3}$ Notez qu'en arithmétique, + et \times sont également associatives

donc un ensemble de mots. Comme pour le parsing, il suffit de définir la sémantique sur les 5 constructeurs des expressions rationnelles pour pouvoir toutes les traiter :

2.3.1 Les cas de base

Ici, pas de surprise, $\llbracket \epsilon \rrbracket = \{ \epsilon \}$ et $\llbracket a \rrbracket = \{ a \}$.

2.3.2 Sémantique de la concaténation

La sémantique de la concaténation repose sur un produit d'ensembles avec la concaténation (cf. définition A.2.1). Formellement, on a

Concrètement, ça veut dire que la sémantique de la concaténation de deux regex est la concaténation des sémantiques de e_1 et e_2 , c'est-à-dire l'ensemble des combinaisons d'un mot de $\llbracket e_1 \rrbracket$ concaténé à un mot de $\llbracket e_2 \rrbracket$. La notation $\bigcup_{u \in \llbracket e_1 \rrbracket} u.v$ est analogue une double boucle sur les $v \in \llbracket e_2 \rrbracket$

éléments de $[e_1]$ et $[e_2]$, comme dans le pseudocode python suivant :

```
s = set()
for u in e1:
    for v in e2:
        s.add(u.v)
return s
```

Exemple 2.3.1. En appliquant les règles de la concaténation et des lettres vues précédemment, la sémantique de l'expression ab est

$$\begin{bmatrix} \dot{} \\ \mathbf{a} & \mathbf{b} \end{bmatrix} = \bigcup_{\substack{u \in \llbracket a \rrbracket \\ v \in \llbracket b \rrbracket}} u.v = \bigcup_{\substack{u \in \{a\} \\ v \in \{b\}}} u.v = \{a.b\} = \{ab\}$$

L'exemple n'est pas renversant, mais permet d'illustrer l'aspect purement systémique et récursif de la sémantique. Pour des exemples plus intéressants, on va avoir besoin d'ajouter des constructeurs à la sémantique.

2.3.3 Sémantique de la disjonction

Formellement, on a

$$\begin{vmatrix} + \\ \\ e_1 \end{vmatrix} = \llbracket e_1 \rrbracket \cup \llbracket e_2 \rrbracket$$

Concrètement, ça veut dire que la sémantique de la disjonction de deux regex est l'union des sémantiques de e_1 et e_2 , c'est-à-dire l'ensemble des mots qui apparaissent dans $[e_1]$ ou (inclusif) $[e_2]$.

Remarque A partir d'ici et pour des raisons de mise en page, on ne mettra pas forcément tout sous forme d'arbres dans les exemples, et on comptera sur la capacité du lecteur ou de la lectrice à *parser* automatiquement toute expression rationnelle qu'il ou elle lit. Ne vous y trompez pas cependant : l'analyse sémantique s'opère bien sur un arbre plutôt que sur une expression "plate".

Exemple 2.3.2. En appliquant les règles de la concaténation et des lettres vues précédemment, la sémantique de l'expression a(b+c) est

$$\begin{bmatrix} \bullet \\ \bullet \\ \bullet \\ \bullet \\ c \end{bmatrix} = \bigcup_{\substack{u \in \llbracket a \rrbracket \\ v \in \llbracket b + c \rrbracket}} u.v = \bigcup_{\substack{u \in \{a\} \\ v \in \llbracket b \rrbracket \cup \llbracket c \rrbracket}} = \bigcup_{\substack{u \in \{a\} \\ v \in \{b,c\}}} u.v = \{a.b,a.c\} = \{ab,ac\}$$

Exemple 2.3.3. En appliquant les règles de la concaténation et des lettres vues précédemment, la sémantique de l'expression (a + b)(b + a) est

Il ne nous manque maintenant que le plus ésotérique des constructeurs.

2.3.4 Sémantique de l'itération

Formellement, on a

$$[\![e^*]\!] = [\![e]\!]^* = \bigcup_{n \in \mathbf{N}} [\![e]\!]^n = \{[\![e]\!]^0, [\![e]\!]^1, [\![e]\!]^2, [\![e]\!]^3 \ldots \}$$

Concrètement, on fait l'union de $[e]^n$ pour tous les entiers n, $[e]^n$ étant n mots de [e] concaténés⁴.

Exemple 2.3.4. La sémantique de l'expression $a(aa + bb)^*a$ est

⁴Les puissances sur les ensembles ont le même sens que sur les nombres, avec la multiplication remplacée par la concaténation

2.4 Mise en application

On a abordé les expressions régulières sous un angle très théorique, mais on leur trouve bien sûr des applications concrètes.

2.4.1 Quelques astuces

On présente d'abord, sous forme d'exercices (corrigés dans un autre document), quelques astuces classiques, susceptibles d'aider les TAListes dans leurs futures oeuvres.

Exercice 2.4.1. Donner une regex pour les mots qui commencent par a.

Exercice 2.4.2. Donner une regex pour les mots qui finissent par b.

Exercice 2.4.3. Donner une regex pour les mots qui commencent par a finissent par b.

Exercice 2.4.4. Donner une regex pour les mots de longueur paire.

Exercice 2.4.5. Donner une regex pour les mots de longueur impaire qui contiennent au moins 4 lettres.

Exercice 2.4.6. Donner une regex pour les mots de longueur impaire, qui contiennent au moins 4 lettres, comment par a et finissent par b.

2.4.2 Syntaxe en pratique

Les expressions régulières dans Unix, Python & cie utilisent une syntaxe différente, et surtout plus étendue que celle que l'on vient d'étudier. Celà est dû aux besoins différents que l'on a entre la théorie et la pratique.

Dans la théorie, on veut définir nos objets de façon minimale, c'est-à-dire avec le moins de symboles et de règles possible, afin d'en simplifier l'étude. Par exemple, le peu de règles permet une définition légère de la sémantique formelle des regex. De la même façon, toute preuve à leur propos en sera tout autant simplifiée :

Théorème 1. $\forall e, \exists w \in \llbracket e \rrbracket$, cad. que toute expression rationnelle dénote au moins un mot.

Proof. On procède par induction structurelle sur l'expression rationnelle e:

- Si $e = \epsilon$, alors $[e] = {\epsilon}$, qui contient bien un mot $(\epsilon \text{ donc})$
- Si e = a, alors $[e] = \{a\}$, qui contient bien un mot (a)
- Si $e = e_1 + e_2$, alors $[\![e]\!] = [\![e_1]\!] \cup [\![e_2]\!]$. Par hypothèse d'induction, $[\![e_1]\!]$ contient un mot w_1 et $[\![e_2]\!]$ contient w_2 . $[\![e]\!]$ contient donc non pas un, mais au moins deux mots.
- Si $e = e_1.e_2$, alors $[\![e]\!] = [\![e_1]\!].[\![e_2]\!]$. Par hypothèse d'induction, $[\![e_1]\!]$ contient un mot w_1 et $[\![e_2]\!]$ contient w_2 . $[\![e]\!]$ contient donc un mot, w_1w_2 .

• Si $e = e_1^*$, alors $\llbracket e \rrbracket$ contient ϵ .

Dans la pratique, on préfère ne pas avoir à réinventer la roue chaque matin, la syntaxe des regex y est donc étendue. Ces extensions ne changent rien au fond, dans le sens où elles n'ajoutent pas en expressivité. En effet, les nouveaux symboles peuvent tous être codés avec ceux de la syntaxe minimale :

- e?, ou "e une ou zéro fois", peut être codée comme $(e + \epsilon)$
- e+, ou "e au moins une fois", peut être codée comme ee*

remarque On trouve régulièrement cette notation dans la littérature académique sous la forme e^+ . Le $e_1 + e_2$ qu'on a vu est lui, pour le coup, écrit $e_1|e_2$ en pratique.

- $e\{n\}$, ou "e exactement n fois" peut être simplement traduite en $\underbrace{eee...eee}_{n \text{ fois}}$
- $e\{n,\}$, ou "e au moins n fois" peut être simplement traduite en $\underbrace{eee...eee}_{n \text{ fois}} e^*$
- $e\{n, m\}$, ou "e entre n et m fois" peut se traduire $\underbrace{eee...eee}_{n \text{ fois}} \underbrace{(e+\epsilon)...(e+\epsilon)}_{m-n \text{ fois}}$

Les traductions proposée ici ne correspondent pas forcément à ce qui se passe concrètement dans les bibliothèques de *regex* des différents langages de programmation (la dernière en particulier semble très ambigüe, et donc inefficace). L'objectif est seulement de montrer que les ajouts à la syntaxe n'ent modifient pas l'expressivité, et qu'il s'agit seulement de ce qu'on appelle du **sucre syntaxique**.

Automates

TODO.

Grammaires formelles

TODO

Introduction à la calculabilité

Théorème de Kleene et hiérarchie de Chomsky

TODO

Bibliography

Appendix A

Rappels mathématiques

A.1 Logique

A.1.1 Raisonnement par l'absurde

Définition A.1.1: Raisonnement par l'absurde

Un raisonnement par l'absurde consiste à prouver une chose en 1) supposant son contraire et 2) montrer que ça fout tout en l'air. Plus formellement, pour prouver P, on suppose $\neg P$ et on montre que ça nous permet de déduire \bot , ce qui veut dire soit que la logique est incohérente, soit que $\neg P$ est fausse, et donc que P est vraie.

Exemple A.1.1. Imaginons une situation où les rues sont sèches, et où on voudrait prouver qu'il n'a pas plu. On suppose alors l'inverse, c'est-à-dire qu'il a plu. Or, s'il a plu, les routes sont mouillées. On obtient alors que 1) les routes sont mouillées et 2) les routes ne sont pas mouillées, ce qui est un paradoxe. La seule hypothèse faite étant le fait qu'il a plu, elle doit être fausse.

Exemple A.1.2. On veut prouver qu'il existe une infinité de nombres premiers. On suppose l'inverse, cad. qu'il y en a un ensemble fini $\{p_1,...,p_n\}$. Soit $n=1+\prod_{i\in[1-n]}p_i=1+p_1\times...\times p_n$. n, comme tout nombre, admet au moins un diviseur premier.

Or, n est strictement plus grand que tout nombre premier et ne peut donc pas en être un. De plus, pour tout $i \in [1-n]$, $\frac{n}{p_i} = p_1 \times ... \times p_{i-1} \times p_{i+1} \times ... \times p_n + \frac{1}{p_i}$. Tout nombre premier étant ≥ 2 , $\frac{1}{p_i}$ ne forme pas un entier, et donc $\frac{n}{p_i}$ non plus.

On obtient une contradiction, notre hypothèse sur la finitude des nombres premiers est donc fausse.

A.2 Ensembles

A.2.1 Opérations entre ensembles

Définition A.2.1: Produit d'ensembles

Soit deux ensembles E_1 et E_2 , contenant respectivement des éléments de types τ_1 et τ_2 . Soit également \cdot une opération de type $\tau_1 \to \tau_2 \to \tau_3$, cad. une opération qui prend en argument gauche un élément de type τ_1 et à droite un argument de type τ_2 et renvoie un objet de type τ_3 , alors

$$E_1 \cdot E_2 = \{x \cdot y \mid x \in E_1 \land y \in E_2\}$$

Dit autrement, un produit d'ensembles renvoie l'ensemble des combinaisons d'éléments de deux ensembles via une opération fournie. Si l'opération \cdot est un endormorphisme, cad. qu'elle est de type $\tau \to \tau \to \tau$, alors on peut itérer le produit de la façon suivante :

$$E^0 = \{1\}$$

 Où 1 est l'élément neutre de τ
$$E^{n+1} = E^n \cdot E$$

Cette notion très générale ne doit pas être confondue avec

Définition A.2.2: Produit cartésien

Soit deux ensembles E_1 et E_2 , ne contenant pas forcément des éléments de même type, alors

$$E_1 \times E_2 = \{(x, y) \mid x \in E_1 \land y \in E_2\}$$

Le produit cartésien, noté \times , renvoie l'ensemble des couples d'éléments de deux ensembles donnés. Il s'agit d'un cas particulier du produit d'ensemble, où l'opération est la "mise en couple". Cette opération ne pouvant pas être un endormorphisme, le produit cartésien ne peut être itéré.