Numerical Optimal Control From linear MPC to real-time NMPC

Sébastien Gros

ITK, NTNU

NTNU PhD course

Outline

- Preliminaries
- Parametric Embedding
- Parametric NLPs & NMPC
- 4 Real-time dilemma and the Real-Time Iteration
- 5 From Linear MPC to NMPC

Looking ahead in the future...

...design a control sequence minimizing a penalty function

NMPC problem

$$P\left(\hat{\mathbf{x}}(t)\right) : \min_{u,s} \quad \int_{t}^{t+T} L\left(\mathbf{x}, \mathbf{u}\right) d\tau$$
s.t.
$$\dot{\mathbf{x}} = \mathbf{F}\left(\mathbf{x}, \mathbf{u}\right), \quad \mathbf{x}\left(t\right) = \hat{\mathbf{x}}(t)$$

$$\mathbf{h}\left(\mathbf{x}, \mathbf{u}\right) \le 0$$

Looking ahead in the future...

...design a control sequence minimizing a penalty function

NMPC problem

$$P\left(\hat{\mathbf{x}}(t)\right) : \min_{u,s} \quad \int_{t}^{t+T} L\left(\mathbf{x}, \mathbf{u}\right) d\tau$$
s.t.
$$\dot{\mathbf{x}} = \mathbf{F}\left(\mathbf{x}, \mathbf{u}\right), \quad \mathbf{x}\left(t\right) = \hat{\mathbf{x}}(t)$$

$$\mathbf{h}\left(\mathbf{x}, \mathbf{u}\right) \le 0$$

Looking ahead in the future...

...design a control sequence minimizing a penalty function

NMPC problem

$$P(\hat{\mathbf{x}}(t)) : \min_{u,s} \quad \int_{t}^{t+T} L(\mathbf{x}, \mathbf{u}) d\tau$$
s.t. $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, \mathbf{u}), \quad \mathbf{x}(t) = \hat{\mathbf{x}}(t)$

$$\mathbf{h}(\mathbf{x}, \mathbf{u}) \le 0$$

Looking ahead in the future...

...design a control sequence minimizing a penalty function

NMPC problem

$$P\left(\hat{\mathbf{x}}(t)\right) : \min_{u,s} \quad \int_{t}^{t+T} L\left(\mathbf{x}, \mathbf{u}\right) d\tau$$
s.t.
$$\dot{\mathbf{x}} = \mathbf{F}\left(\mathbf{x}, \mathbf{u}\right), \quad \mathbf{x}\left(t\right) = \hat{\mathbf{x}}(t)$$

$$\mathbf{h}\left(\mathbf{x}, \mathbf{u}\right) \le 0$$

Looking ahead in the future...

...design a control sequence minimizing a penalty function

NMPC problem

$$P\left(\hat{\mathbf{x}}(t)\right) : \min_{u,s} \quad \int_{t}^{t+T} L\left(\mathbf{x}, \mathbf{u}\right) d\tau$$
s.t.
$$\dot{\mathbf{x}} = \mathbf{F}\left(\mathbf{x}, \mathbf{u}\right), \quad \mathbf{x}\left(t\right) = \hat{\mathbf{x}}(t)$$

$$\mathbf{h}\left(\mathbf{x}, \mathbf{u}\right) \le 0$$

Looking ahead in the future...

...design a control sequence minimizing a penalty function

NMPC problem

$$P\left(\hat{\mathbf{x}}(t)\right) : \min_{u,s} \quad \int_{t}^{t+T} L\left(\mathbf{x}, \mathbf{u}\right) d\tau$$
s.t.
$$\dot{\mathbf{x}} = \mathbf{F}\left(\mathbf{x}, \mathbf{u}\right), \quad \mathbf{x}\left(t\right) = \hat{\mathbf{x}}(t)$$

$$\mathbf{h}\left(\mathbf{x}, \mathbf{u}\right) \le 0$$

Looking ahead in the future...

...design a control sequence minimizing a penalty function

NMPC problem

$$P\left(\hat{\mathbf{x}}(t)\right) : \min_{u,s} \quad \int_{t}^{t+T} L\left(\mathbf{x}, \mathbf{u}\right) d\tau$$
s.t.
$$\dot{\mathbf{x}} = \mathbf{F}\left(\mathbf{x}, \mathbf{u}\right), \quad \mathbf{x}\left(t\right) = \hat{\mathbf{x}}(t)$$

$$\mathbf{h}\left(\mathbf{x}, \mathbf{u}\right) \le 0$$

Looking ahead in the future...

...design a control sequence minimizing a penalty function

NMPC problem

$$P\left(\hat{\mathbf{x}}(t)\right) : \min_{u,s} \quad \int_{t}^{t+T} L\left(\mathbf{x}, \mathbf{u}\right) d\tau$$
s.t.
$$\dot{\mathbf{x}} = \mathbf{F}\left(\mathbf{x}, \mathbf{u}\right), \quad \mathbf{x}\left(t\right) = \hat{\mathbf{x}}(t)$$

$$\mathbf{h}\left(\mathbf{x}, \mathbf{u}\right) \le 0$$

Looking ahead in the future...

...design a control sequence minimizing a penalty function

NMPC problem

$$P\left(\hat{\mathbf{x}}(t)\right) : \min_{u,s} \quad \int_{t}^{t+T} L\left(\mathbf{x}, \mathbf{u}\right) d\tau$$
s.t.
$$\dot{\mathbf{x}} = \mathbf{F}\left(\mathbf{x}, \mathbf{u}\right), \quad \mathbf{x}\left(t\right) = \hat{\mathbf{x}}(t)$$

$$\mathbf{h}\left(\mathbf{x}, \mathbf{u}\right) \le 0$$

Looking ahead in the future...

...design a control sequence minimizing a penalty function

NMPC problem

$$P\left(\hat{\mathbf{x}}(t)\right) : \min_{u,s} \quad \int_{t}^{t+T} L\left(\mathbf{x}, \mathbf{u}\right) d\tau$$
s.t.
$$\dot{\mathbf{x}} = \mathbf{F}\left(\mathbf{x}, \mathbf{u}\right), \quad \mathbf{x}\left(t\right) = \hat{\mathbf{x}}(t)$$

$$\mathbf{h}\left(\mathbf{x}, \mathbf{u}\right) \le 0$$

- Inputs discretized (z.o.h.) over an ad-hoc time grid t₀,...,t_N
- Alternative formulations:
 - Terminal cost
 - Terminal constraint

Outline

- Preliminaries
- Parametric Embedding
- Parametric NLPs & NMPC
- 4 Real-time dilemma and the Real-Time Iteration
- 5 From Linear MPC to NMPC

Generic parametric NLPs:

$$P(p) : \min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p})$$

s.t. $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

Parametric embedding:

$$\begin{aligned} P_{\mathrm{E}}\left(p\right) &: \underset{\mathbf{w}, \theta}{\text{min}} \quad \Phi\left(\mathbf{w}, \boldsymbol{\theta}\right) \\ &\text{s.t.} \quad \mathbf{g}\left(\mathbf{w}, \boldsymbol{\theta}\right) = 0 \\ & \quad \mathbf{h}\left(\mathbf{w}, \boldsymbol{\theta}\right) \leq 0 \\ & \quad \mathbf{p} - \boldsymbol{\theta} = 0 \end{aligned}$$

What difference does this make?!? Consider QP for $P_{E}(p)$:

Generic parametric NLPs:

$$P(p) : \min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p})$$

s.t. $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

Parametric embedding:

$$\begin{aligned} P_{\mathrm{E}}\left(p\right) &: \underset{\mathbf{w}, \theta}{\text{min}} \quad \Phi\left(\mathbf{w}, \boldsymbol{\theta}\right) \\ &\text{s.t.} \quad \mathbf{g}\left(\mathbf{w}, \boldsymbol{\theta}\right) = 0 \\ & \quad \mathbf{h}\left(\mathbf{w}, \boldsymbol{\theta}\right) \leq 0 \\ & \quad \mathbf{p} - \boldsymbol{\theta} = 0 \end{aligned}$$

What difference does this make?!? Consider QP for $P_{E}(p)$:

Generic parametric NLPs:

$$P(p) : \min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p})$$

s.t. $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

Parametric embedding:

$$\begin{aligned} P_{\mathrm{E}}\left(\mathbf{p}\right) &: \min_{\mathbf{w}, \theta} \quad \Phi\left(\mathbf{w}, \boldsymbol{\theta}\right) \\ &s.t. \quad \mathbf{g}\left(\mathbf{w}, \boldsymbol{\theta}\right) = 0 \\ & \quad \mathbf{h}\left(\mathbf{w}, \boldsymbol{\theta}\right) \leq 0 \\ & \quad \mathbf{p} - \boldsymbol{\theta} = 0 \end{aligned}$$

What difference does this make?!? Consider QP for $P_{\rm E}\left(\mathbf{p}\right)$:

$$\begin{split} & \underset{\Delta \mathbf{w}, \Delta \boldsymbol{\theta}}{\text{min}} & \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \boldsymbol{H} \Delta \mathbf{w} + \nabla_{\mathbf{w}} \boldsymbol{\Phi}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\boldsymbol{\theta}} \boldsymbol{\Phi}^{\mathsf{T}} \Delta \boldsymbol{\theta} + \Delta \boldsymbol{\theta}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} + \frac{1}{2} \Delta \boldsymbol{\theta}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{p}} \mathcal{L} \Delta \boldsymbol{\theta} \\ & \quad \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \boldsymbol{\theta} = \mathbf{0} \\ & \quad \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \boldsymbol{\theta} \leq \mathbf{0} \\ & \quad \mathbf{p} - \boldsymbol{\theta} - \Delta \boldsymbol{\theta} = \mathbf{0} \end{split}$$

Generic parametric NLPs:

$$\begin{split} P\left(\mathbf{p}\right) : \min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{split}$$

Parametric embedding:

$$\begin{aligned} P_{\mathrm{E}}\left(\mathbf{p}\right) &: \min_{\mathbf{w}, \theta} \quad \Phi\left(\mathbf{w}, \boldsymbol{\theta}\right) \\ &s.t. \quad \mathbf{g}\left(\mathbf{w}, \boldsymbol{\theta}\right) = 0 \\ & \quad \mathbf{h}\left(\mathbf{w}, \boldsymbol{\theta}\right) \leq 0 \\ & \quad \mathbf{p} - \boldsymbol{\theta} = 0 \end{aligned}$$

What difference does this make?!? Consider QP for $P_{\rm E}\left(\mathbf{p}\right)$:

$$\begin{split} & \underset{\Delta \mathbf{w}, \Delta \theta}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla_{\mathbf{w}} \Phi^{\mathsf{T}} \Delta \mathbf{w} + \frac{\nabla_{\boldsymbol{\theta}} \Phi^{\mathsf{T}} \Delta \boldsymbol{\theta}}{\Delta \boldsymbol{\theta}} + \Delta \boldsymbol{\theta}^{\mathsf{T}} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} + \frac{1}{2} \underline{\Delta \boldsymbol{\theta}^{\mathsf{T}}} \nabla_{\mathbf{p} \mathbf{p}} \mathcal{L} \underline{\Delta \boldsymbol{\theta}} \\ & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \boldsymbol{\theta} = \mathbf{0} \\ & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\mathsf{T}} \Delta \boldsymbol{\theta} \leq \mathbf{0} \\ & & \mathbf{p} - \boldsymbol{\theta} - \Delta \boldsymbol{\theta} = \mathbf{0} \end{split}$$

Generic parametric NLPs:

$$P(p) : \min_{\mathbf{w}} \quad \Phi(\mathbf{w}, \mathbf{p})$$

s.t. $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

Parametric embedding:

$$\begin{aligned} P_{\mathrm{E}}\left(\mathbf{p}\right) : \min_{\mathbf{w}, \theta} & \Phi\left(\mathbf{w}, \boldsymbol{\theta}\right) \\ \mathrm{s.t.} & \mathbf{g}\left(\mathbf{w}, \boldsymbol{\theta}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \boldsymbol{\theta}\right) \leq 0 \\ & \mathbf{p} - \boldsymbol{\theta} = 0 \end{aligned}$$

What difference does this make?!? Consider QP for $P_{\rm E}\left(\mathbf{p}\right)$:

Generic parametric NLPs:

$$\begin{split} P\left(\mathbf{p}\right) : \min_{\mathbf{w}} & \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ \text{s.t.} & \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{split}$$

Parametric embedding:

$$\begin{aligned} P_{E}\left(\mathbf{p}\right) &: \min_{\mathbf{w}, \theta} \quad \Phi\left(\mathbf{w}, \boldsymbol{\theta}\right) \\ &s.t. \quad \mathbf{g}\left(\mathbf{w}, \boldsymbol{\theta}\right) = 0 \\ &\mathbf{h}\left(\mathbf{w}, \boldsymbol{\theta}\right) \leq 0 \\ &\mathbf{p} - \boldsymbol{\theta} = 0 \end{aligned}$$

What difference does this make?!? Consider QP for $P_{\rm E}\left(\mathbf{p}\right)$:

Predictor-corrector for parametric NLP P(p), with $\Delta p = p - \theta$:

$$\begin{aligned} & \underset{\Delta \mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\top} \mathcal{H} \Delta \mathbf{w} + \nabla_{\mathbf{w}} \boldsymbol{\Phi}^{\top} \Delta \mathbf{w} + \Delta \mathbf{p}^{\top} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Generic parametric NLPs:

$$P(p) : \min_{\mathbf{w}} \Phi(\mathbf{w}, \mathbf{p})$$

s.t. $\mathbf{g}(\mathbf{w}, \mathbf{p}) = 0$
 $\mathbf{h}(\mathbf{w}, \mathbf{p}) \le 0$

Parametric embedding:

$$\begin{aligned} P_{E}\left(\mathbf{p}\right) &: \min_{\mathbf{w}, \theta} \quad \Phi\left(\mathbf{w}, \boldsymbol{\theta}\right) \\ &s.t. \quad \mathbf{g}\left(\mathbf{w}, \boldsymbol{\theta}\right) = 0 \\ &\mathbf{h}\left(\mathbf{w}, \boldsymbol{\theta}\right) \leq 0 \\ &\mathbf{p} - \boldsymbol{\theta} = 0 \end{aligned}$$

What difference does this make?!? Consider QP for $P_{E}(\mathbf{p})$:

Predictor-corrector for parametric NLP P(p), with $\Delta p = p - \theta$:

$$\begin{split} \min_{\Delta \mathbf{w}} \quad & \frac{1}{2} \Delta \mathbf{w}^{\top} \boldsymbol{\mathcal{H}} \Delta \mathbf{w} + \nabla_{\mathbf{w}} \boldsymbol{\Phi}^{\top} \Delta \mathbf{w} + \Delta \mathbf{p}^{\top} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\top} \Delta \mathbf{p} = 0 \\ & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\top} \Delta \mathbf{p} \leq 0 \end{split}$$

 \bullet is "old parameter", where we linearize

Generic parametric NLPs:

$$\begin{split} \mathrm{P}\left(\mathbf{p}\right) : \min_{\mathbf{w}} \quad \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ \mathrm{s.t.} \quad \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ \quad \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{split}$$

Parametric embedding:

$$\begin{aligned} P_{E}\left(\mathbf{p}\right) &: \min_{\mathbf{w}, \theta} \quad \Phi\left(\mathbf{w}, \boldsymbol{\theta}\right) \\ &s.t. \quad \mathbf{g}\left(\mathbf{w}, \boldsymbol{\theta}\right) = 0 \\ &\mathbf{h}\left(\mathbf{w}, \boldsymbol{\theta}\right) \leq 0 \\ &\mathbf{p} - \boldsymbol{\theta} = 0 \end{aligned}$$

What difference does this make?!? Consider QP for $P_{E}(p)$:

Predictor-corrector for parametric NLP P(p), with $\Delta p = p - \theta$:

$$\begin{split} \min_{\Delta \mathbf{w}} \quad & \frac{1}{2} \Delta \mathbf{w}^{\top} \boldsymbol{\mathcal{H}} \Delta \mathbf{w} + \nabla_{\mathbf{w}} \boldsymbol{\Phi}^{\top} \Delta \mathbf{w} + \Delta \mathbf{p}^{\top} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\top} \Delta \mathbf{p} = 0 \\ & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\top} \Delta \mathbf{p} \leq 0 \end{split}$$

- \bullet is "old parameter", where we linearize
- p is "new parameter", where we solve

Generic parametric NLPs:

$$\begin{split} P\left(\mathbf{p}\right): & \underset{\mathbf{w}}{\text{min}} \quad \Phi\left(\mathbf{w}, \mathbf{p}\right) \\ & \text{s.t.} \quad \mathbf{g}\left(\mathbf{w}, \mathbf{p}\right) = 0 \\ & \quad \mathbf{h}\left(\mathbf{w}, \mathbf{p}\right) \leq 0 \end{split}$$

Parametric embedding:

$$\begin{split} P_{\mathrm{E}}\left(p\right) : \underset{\mathbf{w},\theta}{\text{min}} & \Phi\left(\mathbf{w},\boldsymbol{\theta}\right) \\ \mathrm{s.t.} & \mathbf{g}\left(\mathbf{w},\boldsymbol{\theta}\right) = 0 \\ & \mathbf{h}\left(\mathbf{w},\boldsymbol{\theta}\right) \leq 0 \\ & \mathbf{p} - \boldsymbol{\theta} = 0 \end{split}$$

What difference does this make?!? Consider QP for $P_{E}(p)$:

Predictor-corrector for parametric NLP P(p), with $\Delta p = p - \theta$:

$$\begin{split} \min_{\Delta \mathbf{w}} \quad & \frac{1}{2} \Delta \mathbf{w}^{\top} \mathcal{H} \Delta \mathbf{w} + \nabla_{\mathbf{w}} \Phi^{\top} \Delta \mathbf{w} + \Delta \mathbf{p}^{\top} \nabla_{\mathbf{p} \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\top} \Delta \mathbf{p} = 0 \\ & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{h}^{\top} \Delta \mathbf{p} \leq 0 \end{split}$$

- ullet is "old parameter", where we linearize
- p is "new parameter", where we solve

Parametric embedding:

- Embed parameters in NLP
- Classic SQP step is a predictor-corrector
- Cheap coding for path-following

Outline

- Preliminaries
- Parametric Embedding
- 3 Parametric NLPs & NMPC
- 4 Real-time dilemma and the Real-Time Iteration
- 5 From Linear MPC to NMPC

NMPC is a parametric NLP

NMPC problem

$$\begin{aligned} \text{NMPC}\left(\hat{\mathbf{x}}(t)\right) &: & \min_{\mathbf{u}, \mathbf{x}} & \int_{t}^{t+T} \phi\left(\mathbf{x}, \mathbf{u}\right) \mathrm{d}\tau \\ & \text{s.t.} & \dot{\mathbf{x}} = \mathbf{F}\left(\mathbf{x}, \mathbf{u}\right), \\ & \mathbf{x}\left(t\right) = \hat{\mathbf{x}}(t) \\ & \mathbf{h}\left(\mathbf{x}, \mathbf{u}\right) \leq 0 \end{aligned}$$

NLP discretization

NLP
$$(\hat{\mathbf{x}}(t))$$
: $\min_{\mathbf{w}} \Phi(\mathbf{w}, \hat{\mathbf{x}}(t))$
s.t. $\mathbf{g}(\mathbf{w}, \hat{\mathbf{x}}(t)) = 0$
 $\mathbf{h}(\mathbf{w}, \hat{\mathbf{x}}(t)) \le 0$

- Initial conditions play the role of parameters
- Solution for $\hat{\mathbf{x}}(t)$ is almost solution for $\hat{\mathbf{x}}(t + \Delta t)$
- Predictor-corrector approach for solving problem $\hat{\mathbf{x}}(t + \Delta t)$?

 If model is good, system will be close to predicted trajectory

- If model is good, system will be close to predicted trajectory
- $\mathbf{x}(t + \Delta t) \approx \mathbf{x}_{\text{pred}}(t + \Delta t)$

- If model is good, system will be close to predicted trajectory
- $\mathbf{x}(t + \Delta t) \approx \mathbf{x}_{\text{pred}}(t + \Delta t)$
- Prediction $\mathbf{x}_{\text{pred}}(.)$ on $[t + \Delta t, t + T]$ is close to solution

- If model is good, system will be close to predicted trajectory
- $\mathbf{x}(t + \Delta t) \approx \mathbf{x}_{\text{pred}}(t + \Delta t)$
- Prediction $\mathbf{x}_{pred}(.)$ on $[t + \Delta t, t + T]$ is close to solution
 - Requires "completion"

- If model is good, system will be close to predicted trajectory
- $\mathbf{x}(t + \Delta t) \approx \mathbf{x}_{\text{pred}}(t + \Delta t)$
- Prediction $\mathbf{x}_{\text{pred}}(.)$ on $[t + \Delta t, t + T]$ is close to solution
 - Requires "completion"
 - It is suboptimal

- If model is good, system will be close to predicted trajectory
- $\mathbf{x}(t + \Delta t) \approx \mathbf{x}_{\text{pred}}(t + \Delta t)$
- Prediction $\mathbf{x}_{\text{pred}}(.)$ on $[t + \Delta t, t + T]$ is close to solution
 - Requires "completion"
 - It is suboptimal

 $x_{\text{pred}}(.)$ + "completion" is called shifting, generates very good guess for NMPC at time $t + \Delta t$, provided that solution at time t is good.

$$\begin{aligned} & \text{NMPC}\left(\hat{\mathbf{x}}(t)\right): \\ & \min_{\mathbf{u}, \mathbf{x}} \int_{t}^{t+T} \phi\left(\mathbf{x}, \mathbf{u}\right) \mathrm{d}\tau \\ & \text{s.t.} \quad \dot{\mathbf{x}} = \mathbf{F}\left(\mathbf{x}, \mathbf{u}\right) \\ & \mathbf{x}\left(t\right) = \hat{\mathbf{x}}(t) \\ & \mathbf{h}\left(\mathbf{x}, \mathbf{u}\right) \leq \mathbf{0} \end{aligned}$$

$$\begin{aligned} & \text{NMPC}\left(\hat{\mathbf{x}}(t)\right): \\ & \min_{\mathbf{u}, \mathbf{x}} \int_{t}^{t+T} \phi\left(\mathbf{x}, \mathbf{u}\right) \mathrm{d}\tau \\ & \text{s.t.} \quad \dot{\mathbf{x}} = \mathbf{F}\left(\mathbf{x}, \mathbf{u}\right) \\ & \mathbf{x}\left(t\right) = \hat{\mathbf{x}}(t) \\ & \mathbf{h}\left(\mathbf{x}, \mathbf{u}\right) \leq \mathbf{0} \end{aligned}$$

 $\mathbf{f}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right)$ integrates the dynamics \mathbf{F} over the time interval $\left[t_{k},\,t_{k+1}\right]$

NMPC
$$(\hat{\mathbf{x}}(t))$$
:

$$\min_{\mathbf{u}, \mathbf{x}} \int_{t}^{t+T} \phi(\mathbf{x}, \mathbf{u}) d\tau$$
s.t. $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, \mathbf{u})$
 $\mathbf{x}(t) = \hat{\mathbf{x}}(t)$
 $\mathbf{h}(\mathbf{x}, \mathbf{u}) \leq 0$

 $\mathbf{f}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right)$ integrates the dynamics \mathbf{F} over the time interval $\left[t_{k},\,t_{k+1}\right]$

9/16

$\begin{aligned} & \text{NMPC}\left(\hat{\mathbf{x}}(t)\right): \\ & \min_{\mathbf{u}, \mathbf{x}} \int_{t}^{t+T} \phi\left(\mathbf{x}, \mathbf{u}\right) \mathrm{d}\tau \\ & \text{s.t.} \quad \dot{\mathbf{x}} = \mathbf{F}\left(\mathbf{x}, \mathbf{u}\right) \\ & \mathbf{x}\left(t\right) = \hat{\mathbf{x}}(t) \\ & \mathbf{h}\left(\mathbf{x}, \mathbf{u}\right) \leq \mathbf{0} \end{aligned}$

 $\mathbf{f}\left(\mathbf{x}_{k},\mathbf{u}_{k}\right)$ integrates the dynamics \mathbf{F} over the time interval $\left[\mathit{t}_{k},\,\mathit{t}_{k+1}\right]$

NLP with
$$\mathbf{w} = \{x_0, \mathbf{u}_0, ..., x_{N-1}, \mathbf{u}_{N-1}, \mathbf{x}_N\}$$
 min $\Phi\left(\mathbf{w}\right)$

s.t.
$$\mathbf{g}(\mathbf{w}, \hat{\mathbf{x}}(t)) = \begin{bmatrix} \mathbf{x}_0 - \hat{\mathbf{x}}(t) \\ \mathbf{f}(\mathbf{x}_0, \mathbf{u}_0) - \mathbf{x}_1 \\ \dots \\ \mathbf{f}(\mathbf{x}_{N}, \mathbf{u}_{N-1}) - \mathbf{x}_{N-1} \end{bmatrix} = \mathbf{0}$$

$$\mathbf{h}\left(\mathbf{w}\right) = \left[\begin{array}{c} \mathbf{h}\left(\mathbf{x}_{0}, \mathbf{u}_{0}\right) \\ \dots \\ \mathbf{h}\left(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}\right) \\ \mathbf{h}\left(\mathbf{x}_{N}\right) \end{array} \right] \leq \mathbf{0}$$

9/16

Outline

- Preliminaries
- Parametric Embedding
- Parametric NLPs & NMPC
- 4 Real-time dilemma and the Real-Time Iteration
- 5 From Linear MPC to NMPC

Real-time Path Following - The real-time dilemma

Suppose $\mathbf{p}(t)$ is **continuously changing with time** t and "continuously" measured... How should we use this information?

NLP
$$(\hat{\mathbf{x}}(t))$$
: $\min_{\mathbf{w}} \Phi(\mathbf{w})$
s.t. $\mathbf{g}(\mathbf{w}, \hat{\mathbf{x}}(t)) = 0$
 $\mathbf{h}(\mathbf{w}) \le 0$

Real-time dilemma:

- Solve NLP $(\hat{\mathbf{x}}(t))$ to full convergence \rightarrow good solution but outdated
- Iterate NLP $(\hat{\mathbf{x}}(t))$ on latest $\hat{\mathbf{x}}(t)$ \rightarrow approximate solution but up-to-date

Suppose p(t) is **continuously changing with time** t and "continuously" measured... How should we use this information?

• NMPC: p(t) is a state estimation $\hat{x}(t)$

NLP
$$(\hat{\mathbf{x}}(t))$$
: $\min_{\mathbf{w}} \Phi(\mathbf{w})$
s.t. $\mathbf{g}(\mathbf{w}, \hat{\mathbf{x}}(t)) = 0$
 $\mathbf{h}(\mathbf{w}) \le 0$

- Solve NLP (x̂(t)) to full convergence
 → good solution but outdated
- Iterate NLP $(\hat{\mathbf{x}}(t))$ on latest $\hat{\mathbf{x}}(t)$ \rightarrow approximate solution but up-to-date

Suppose $\mathbf{p}(t)$ is **continuously changing with time** t and "continuously" measured... How should we use this information?

- NMPC: p(t) is a state estimation $\hat{x}(t)$
- ullet $\mathbf{w}\left(\hat{\mathbf{x}}(t)
 ight)$ contains the control $\mathbf{u}_0,\ldots,\mathbf{u}_{\mathit{N-1}}$, control \mathbf{u}_0 is delivered to the system

NLP
$$(\hat{\mathbf{x}}(t))$$
: $\min_{\mathbf{w}} \Phi(\mathbf{w})$
s.t. $\mathbf{g}(\mathbf{w}, \hat{\mathbf{x}}(t)) = 0$
 $\mathbf{h}(\mathbf{w}) \le 0$

- Solve NLP (x̂(t)) to full convergence
 → good solution but outdated
- Iterate NLP $(\hat{\mathbf{x}}(t))$ on latest $\hat{\mathbf{x}}(t)$ \rightarrow approximate solution but up-to-date

Suppose $\mathbf{p}(t)$ is **continuously changing with time** t and "continuously" measured... How should we use this information?

- NMPC: $\mathbf{p}(t)$ is a state estimation $\hat{\mathbf{x}}(t)$
- ullet $\mathbf{w}\left(\hat{\mathbf{x}}(t)
 ight)$ contains the control $\mathbf{u}_0,\ldots,\mathbf{u}_{N-1}$, control \mathbf{u}_0 is delivered to the system
- ullet Feedback arises from $\hat{\mathbf{x}}(t) \xrightarrow{\mathrm{NMPC}} \mathbf{u}_0$

NLP
$$(\hat{\mathbf{x}}(t))$$
: $\min_{\mathbf{w}} \Phi(\mathbf{w})$
s.t. $\mathbf{g}(\mathbf{w}, \hat{\mathbf{x}}(t)) = 0$
 $\mathbf{h}(\mathbf{w}) \le 0$

- Solve NLP (x̂(t)) to full convergence
 → good solution but outdated
- Iterate NLP $(\hat{\mathbf{x}}(t))$ on latest $\hat{\mathbf{x}}(t)$ \rightarrow approximate solution but up-to-date

Suppose p(t) is **continuously changing with time** t and "continuously" measured... How should we use this information?

- NMPC: p(t) is a state estimation $\hat{x}(t)$
- ullet $\mathbf{w}\left(\hat{\mathbf{x}}(t)
 ight)$ contains the control $\mathbf{u}_0,\ldots,\mathbf{u}_{N-1}$, control \mathbf{u}_0 is delivered to the system
- ullet Feedback arises from $\hat{x}(t) \xrightarrow{\mathrm{NMPC}} u_0$
- $\bullet \xrightarrow{\mathrm{NMPC}}$ is control delay!! Minimize time for updating solution

NLP
$$(\hat{\mathbf{x}}(t))$$
: $\min_{\mathbf{w}} \Phi(\mathbf{w})$
s.t. $\mathbf{g}(\mathbf{w}, \hat{\mathbf{x}}(t)) = 0$
 $\mathbf{h}(\mathbf{w}) \le 0$

- Solve NLP (x̂(t)) to full convergence
 → good solution but outdated
- Iterate NLP $(\hat{\mathbf{x}}(t))$ on latest $\hat{\mathbf{x}}(t)$ \rightarrow approximate solution but up-to-date

Suppose $\mathbf{p}(t)$ is **continuously changing with time** t and "continuously" measured... How should we use this information?

- NMPC: p(t) is a state estimation $\hat{x}(t)$
- ullet $\mathbf{w}\left(\hat{\mathbf{x}}(t)
 ight)$ contains the control $\mathbf{u}_0,\dots,\mathbf{u}_{\mathit{N}-1}$, control \mathbf{u}_0 is delivered to the system
- ullet Feedback arises from $\hat{\mathbf{x}}(t) \xrightarrow{\mathrm{NMPC}} \mathbf{u}_0$
- $\bullet \xrightarrow{\mathrm{NMPC}}$ is control delay!! Minimize time for updating solution

Algorithm: Path-following SQP for

NMPC

Input: Solution estimate $\hat{z}(\hat{x})$, \hat{x}_{+}

Predictor-corrector with $\Delta \hat{x} = \hat{x}_+ - \hat{x}$

$$\begin{aligned} & \underset{\Delta \mathbf{w}}{\text{min}} & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla \Phi^{\mathsf{T}} \Delta \mathbf{w} + \Delta \hat{\mathbf{x}}^{\mathsf{T}} \nabla_{\hat{\mathbf{x}}(t) \mathbf{w}} \mathcal{L} \Delta \mathbf{w} \\ & \text{s.t.} & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\hat{\mathbf{x}}(t)} \mathbf{g}^{\mathsf{T}} \Delta \hat{\mathbf{x}} = \mathbf{0} \end{aligned}$$

$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} + \nabla_{\hat{\mathbf{x}}(t)} \mathbf{h}^{\top} \Delta \hat{\mathbf{x}} \leq 0$$

Update
$$\hat{\mathbf{z}}(\hat{\mathbf{x}}_+) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$$

return $\hat{z}\left(\hat{x}_{+}\right)$

Suppose $\mathbf{p}(t)$ is **continuously changing with time** t and "continuously" measured... How should we use this information?

- NMPC: p(t) is a state estimation $\hat{x}(t)$
- ullet $\mathbf{w}\left(\hat{\mathbf{x}}(t)
 ight)$ contains the control $\mathbf{u}_0,\dots,\mathbf{u}_{\mathit{N}-1}$, control \mathbf{u}_0 is delivered to the system
- $lackbox{f ar }$ Feedback arises from $\hat x(t) \xrightarrow{
 m NMPC} u_0$
- $\bullet \xrightarrow{\mathrm{NMPC}}$ is control delay!! Minimize time for updating solution

Algorithm: Path-following SQP for

NMPC

Input: Solution estimate $\hat{\mathbf{z}}(\hat{\mathbf{x}})$, $\hat{\mathbf{x}}_{+}$

Predictor-corrector with $\Delta \hat{x}$ = $\hat{x}_+ - \hat{x}$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla \Phi^{\mathsf{T}} \Delta \mathbf{w}
s.t. \quad \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\hat{\mathbf{x}}(t)} \mathbf{g}^{\mathsf{T}} \Delta \hat{\mathbf{x}} = 0
\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} < 0$$

Update
$$\hat{\mathbf{z}}(\hat{\mathbf{x}}_+) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$$

return $\hat{z}(\hat{x}_+)$

Note:

ullet $\Delta \hat{x}$ enters linearly and only in g

11 / 16

Suppose $\mathbf{p}(t)$ is **continuously changing with time** t and "continuously" measured... How should we use this information?

- NMPC: p(t) is a state estimation $\hat{x}(t)$
- ullet $\mathbf{w}\left(\hat{\mathbf{x}}(t)
 ight)$ contains the control $\mathbf{u}_0,\dots,\mathbf{u}_{\mathit{N}-1}$, control \mathbf{u}_0 is delivered to the system
- ullet Feedback arises from $\hat{\mathbf{x}}(t) \xrightarrow{\mathrm{NMPC}} \mathbf{u}_0$
- ullet is control delay!! Minimize time for updating solution

Algorithm: Path-following SQP for

NMPC

Input: Solution estimate $\hat{\mathbf{z}}(\hat{\mathbf{x}})$, $\hat{\mathbf{x}}_{+}$

Predictor-corrector with $\Delta \hat{x} = \hat{x}_+ - \hat{x}$

$$\min_{\Delta \mathbf{w}} \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla \Phi^{\mathsf{T}} \Delta \mathbf{w}$$
s.t. $\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\hat{\mathbf{x}}(t)} \mathbf{g}^{\mathsf{T}} \Delta \hat{\mathbf{x}} = 0$

$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} < 0$$

Update $\hat{\mathbf{z}}(\hat{\mathbf{x}}_+) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$

return $\hat{z}(\hat{x}_+)$

- ullet $\Delta \hat{x}$ enters linearly and only in g
- \hat{x} is previous state estimate, \hat{x}_+ most recent one

Suppose $\mathbf{p}(t)$ is **continuously changing with time** t and "continuously" measured... How should we use this information?

- NMPC: $\mathbf{p}(t)$ is a state estimation $\hat{\mathbf{x}}(t)$
- ullet $\mathbf{w}\left(\hat{\mathbf{x}}(t)
 ight)$ contains the control $\mathbf{u}_0,\dots,\mathbf{u}_{\mathit{N}-1}$, control \mathbf{u}_0 is delivered to the system
- $lackbox{ Feedback arises from } \hat{x}(t) \xrightarrow{\mathrm{NMPC}} u_0$
- ullet is control delay!! Minimize time for updating solution

Algorithm: Path-following SQP for

NMPC

Input: Solution estimate $\hat{\mathbf{z}}(\hat{\mathbf{x}})$, $\hat{\mathbf{x}}_+$

Predictor-corrector with $\Delta \hat{x} = \hat{x}_+ - \hat{x}$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla \Phi^{\mathsf{T}} \Delta \mathbf{w}$$
s.t.
$$\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\hat{\mathbf{x}}(t)} \mathbf{g}^{\mathsf{T}} \Delta \hat{\mathbf{x}} = 0$$

$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} < 0$$

Update $\hat{\mathbf{z}}(\hat{\mathbf{x}}_+) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$

return $\hat{z}\left(\hat{x}_{\scriptscriptstyle{+}}\right)$

- ullet $\Delta \hat{x}$ enters linearly and only in g
- \hat{x} is previous state estimate, \hat{x}_+ most recent one
- $\hat{\mathbf{z}}(\hat{\mathbf{x}})$ comes from shifting previous solution

Suppose $\mathbf{p}(t)$ is **continuously changing with time** t and "continuously" measured... How should we use this information?

- NMPC: $\mathbf{p}(t)$ is a state estimation $\hat{\mathbf{x}}(t)$
- ullet $\mathbf{w}\left(\hat{\mathbf{x}}(t)
 ight)$ contains the control $\mathbf{u}_0,\dots,\mathbf{u}_{\mathit{N}-1}$, control \mathbf{u}_0 is delivered to the system
- ullet Feedback arises from $\hat{\mathbf{x}}(t) \xrightarrow{\mathrm{NMPC}} \mathbf{u}_0$
- $\bullet \xrightarrow{\mathrm{NMPC}}$ is control delay!! Minimize time for updating solution

Algorithm: Path-following SQP for

NMPC

Input: Solution estimate $\hat{\mathbf{z}}(\hat{\mathbf{x}})$, $\hat{\mathbf{x}}_+$

Predictor-corrector with $\Delta \hat{x}$ = $\hat{x}_+ - \hat{x}$

$$\begin{aligned} & \underset{\Delta \mathbf{w}}{\text{min}} & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla \Phi^{\mathsf{T}} \Delta \mathbf{w} \\ & \text{s.t.} & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\hat{\mathbf{x}}(t)} \mathbf{g}^{\mathsf{T}} \Delta \hat{\mathbf{x}} = 0 \\ & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} < 0 \end{aligned}$$

Update $\hat{\mathbf{z}}(\hat{\mathbf{x}}_+) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$

return $\hat{z}(\hat{x}_+)$

- ullet $\Delta \hat{x}$ enters linearly and only in g
- $\boldsymbol{\hat{x}}$ is previous state estimate, $\boldsymbol{\hat{x}}_{\scriptscriptstyle{+}}$ most recent one
- $\hat{\mathbf{z}}(\hat{\mathbf{x}})$ comes from shifting previous solution
- $\Delta \hat{x} \equiv \text{prediction error}$

Suppose $\mathbf{p}(t)$ is **continuously changing with time** t and "continuously" measured... How should we use this information?

- NMPC: p(t) is a state estimation $\hat{x}(t)$
- ullet $\mathbf{w}\left(\hat{\mathbf{x}}(t)
 ight)$ contains the control $\mathbf{u}_0,\ldots,\mathbf{u}_{N-1}$, control \mathbf{u}_0 is delivered to the system
- ullet Feedback arises from $\hat{x}(t) \xrightarrow{\mathrm{NMPC}} u_0$
- ullet is control delay!! Minimize time for updating solution

Algorithm: Path-following SQP for

NMPC

Input: Solution estimate $\hat{\mathbf{z}}(\hat{\mathbf{x}})$, $\hat{\mathbf{x}}_+$

Predictor-corrector with $\Delta \hat{x} = \hat{x}_+ - \hat{x}$

$$\begin{aligned} & \underset{\Delta \mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla \Phi^{\mathsf{T}} \Delta \mathbf{w} \\ & \text{s.t.} & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\hat{\mathbf{x}}(t)} \mathbf{g}^{\mathsf{T}} \Delta \hat{\mathbf{x}} = 0 \\ & & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} \le 0 \end{aligned}$$

Update $\hat{\mathbf{z}}(\hat{\mathbf{x}}_{+}) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$

return $\hat{z}(\hat{x}_+)$

- ullet $\Delta \hat{x}$ enters linearly and only in g
- $\boldsymbol{\hat{x}}$ is previous state estimate, $\boldsymbol{\hat{x}}_{\scriptscriptstyle{+}}$ most recent one
- $\hat{\mathbf{z}}(\hat{\mathbf{x}})$ comes from shifting previous solution
- $\Delta \hat{x} \equiv \text{prediction error}$
- All can be done via initial condition embedding

Suppose p(t) is **continuously changing with time** t and "continuously" measured... How should we use this information?

- NMPC: p(t) is a state estimation $\hat{x}(t)$
- $\mathbf{w}(\hat{\mathbf{x}}(t))$ contains the control $\mathbf{u}_0, \dots, \mathbf{u}_{N-1}$, control \mathbf{u}_0 is delivered to the system
- Feedback arises from $\hat{\mathbf{x}}(t) \xrightarrow{\text{NMPC}} \mathbf{u}_0$
- \bullet $\xrightarrow{\mathrm{NMPC}}$ is control delay!! Minimize time for updating solution

Algorithm: Path-following SQP for

NMPC

Input: Solution estimate $\hat{\mathbf{z}}(\hat{\mathbf{x}})$, $\hat{\mathbf{x}}_{+}$

Predictor-corrector with $\Delta \hat{x} = \hat{x}_+ - \hat{x}$

$$\begin{aligned} & \underset{\Delta \mathbf{w}}{\text{min}} & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla \Phi^{\mathsf{T}} \Delta \mathbf{w} \\ & \text{s.t.} & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\hat{\mathbf{x}}(t)} \mathbf{g}^{\mathsf{T}} \Delta \hat{\mathbf{x}} = 0 \\ & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} < 0 \end{aligned}$$

Update $\hat{\mathbf{z}}(\hat{\mathbf{x}}_{+}) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$

return $\hat{\mathbf{z}}(\hat{\mathbf{x}}_{+})$

Workload:

- Form $H, \nabla_{\mathbf{w}} \Phi, \mathbf{g}, \nabla_{\mathbf{w}} \mathbf{g}, \mathbf{h}, \nabla_{\mathbf{w}} \mathbf{h}$ at $\hat{\mathbf{z}}(\hat{\mathbf{x}})$
- Solve QP

Suppose $\mathbf{p}(t)$ is **continuously changing with time** t and "continuously" measured... How should we use this information?

- NMPC: p(t) is a state estimation $\hat{x}(t)$
- ullet $\mathbf{w}\left(\hat{\mathbf{x}}(t)
 ight)$ contains the control $\mathbf{u}_0,\dots,\mathbf{u}_{\mathit{N}-1}$, control \mathbf{u}_0 is delivered to the system
- ullet Feedback arises from $\hat{x}(t) \xrightarrow{\mathrm{NMPC}} u_0$
- $\bullet \xrightarrow{\mathrm{NMPC}}$ is control delay!! Minimize time for updating solution

Algorithm: Path-following SQP for

NMPC

Input: Solution estimate $\hat{\mathbf{z}}(\hat{\mathbf{x}})$, $\hat{\mathbf{x}}_{+}$

Predictor-corrector with $\Delta \hat{x} = \hat{x}_+ - \hat{x}$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla \Phi^{\mathsf{T}} \Delta \mathbf{w}
\text{s.t.} \quad \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\hat{\mathbf{x}}(t)} \mathbf{g}^{\mathsf{T}} \Delta \hat{\mathbf{x}} = 0
\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} < 0$$

Update $\hat{\mathbf{z}}(\hat{\mathbf{x}}_+) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$

return $\hat{z}\left(\hat{x}_{\scriptscriptstyle{+}}\right)$

Workload:

- Form H, $\nabla_{\mathbf{w}}\Phi$, \mathbf{g} , $\nabla_{\mathbf{w}}\mathbf{g}$, \mathbf{h} , $\nabla_{\mathbf{w}}\mathbf{h}$ at $\hat{\mathbf{z}}(\hat{\mathbf{x}})$
- Solve QP

Note:

Approximation for H is often used

Suppose $\mathbf{p}(t)$ is **continuously changing with time** t and "continuously" measured... How should we use this information?

- NMPC: $\mathbf{p}(t)$ is a state estimation $\hat{\mathbf{x}}(t)$
- ullet $\mathbf{w}\left(\hat{\mathbf{x}}(t)
 ight)$ contains the control $\mathbf{u}_0,\dots,\mathbf{u}_{\mathit{N}-1}$, control \mathbf{u}_0 is delivered to the system
- ullet Feedback arises from $\hat{\mathbf{x}}(t) \xrightarrow{\mathrm{NMPC}} \mathbf{u}_0$
- $\bullet \xrightarrow{\mathrm{NMPC}}$ is control delay!! Minimize time for updating solution

Algorithm: Path-following SQP for

NMPC

Input: Solution estimate $\hat{\mathbf{z}}(\hat{\mathbf{x}})$, $\hat{\mathbf{x}}_+$

Predictor-corrector with
$$\Delta \hat{x} = \hat{x}_+ - \hat{x}$$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla \Phi^{\mathsf{T}} \Delta \mathbf{w}$$

s.t.
$$\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\top} \Delta \mathbf{w} + \nabla_{\hat{\mathbf{x}}(t)} \mathbf{g}^{\top} \Delta \hat{\mathbf{x}} = 0$$

 $\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} < 0$

Update $\hat{\mathbf{z}}(\hat{\mathbf{x}}_+) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$

return $\hat{z}\left(\hat{x}_{+}\right)$

Workload:

- Form H, $\nabla_{\mathbf{w}}\Phi$, \mathbf{g} , $\nabla_{\mathbf{w}}\mathbf{g}$, \mathbf{h} , $\nabla_{\mathbf{w}}\mathbf{h}$ at $\hat{\mathbf{z}}(\hat{\mathbf{x}})$
- Solve QP

- Approximation for *H* is often used
- $\begin{array}{l} \bullet \quad \nabla_{\mathbf{w}} \Phi, \nabla_{\mathbf{w}} \mathbf{h} \text{ cheap, } \nabla_{\hat{\mathbf{x}}(t)} \mathbf{g} \text{ is constant,} \\ \nabla_{\mathbf{w}} \mathbf{g} \text{ is expensive...} \end{array}$

Suppose $\mathbf{p}(t)$ is **continuously changing with time** t and "continuously" measured... How should we use this information?

- NMPC: $\mathbf{p}(t)$ is a state estimation $\hat{\mathbf{x}}(t)$
- ullet $\mathbf{w}\left(\hat{\mathbf{x}}(t)
 ight)$ contains the control $\mathbf{u}_0,\dots,\mathbf{u}_{\mathit{N}-1}$, control \mathbf{u}_0 is delivered to the system
- ullet Feedback arises from $\hat{\mathbf{x}}(t) \xrightarrow{\mathrm{NMPC}} \mathbf{u}_0$
- $\bullet \xrightarrow{\mathrm{NMPC}}$ is control delay!! Minimize time for updating solution

Algorithm: Path-following SQP for

NMPC

Input: Solution estimate $\hat{\mathbf{z}}(\hat{\mathbf{x}})$, $\hat{\mathbf{x}}_+$

Predictor-corrector with
$$\Delta \hat{x} = \hat{x}_+ - \hat{x}$$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla \Phi^{\mathsf{T}} \Delta \mathbf{w}$$

s.t.
$$\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\top} \Delta \mathbf{w} + \nabla_{\hat{\mathbf{x}}(t)} \mathbf{g}^{\top} \Delta \hat{\mathbf{x}} = 0$$

 $\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} < 0$

Update $\hat{\mathbf{z}}(\hat{\mathbf{x}}_+) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$

return $\hat{z}\left(\hat{x}_{+}\right)$

Workload:

- Form H, $\nabla_{\mathbf{w}}\Phi$, \mathbf{g} , $\nabla_{\mathbf{w}}\mathbf{g}$, \mathbf{h} , $\nabla_{\mathbf{w}}\mathbf{h}$ at $\hat{\mathbf{z}}(\hat{\mathbf{x}})$
- Solve QP

- Approximation for *H* is often used
- $\begin{array}{l} \bullet \quad \nabla_{\mathbf{w}} \Phi, \nabla_{\mathbf{w}} \mathbf{h} \text{ cheap, } \nabla_{\hat{\mathbf{x}}(t)} \mathbf{g} \text{ is constant,} \\ \nabla_{\mathbf{w}} \mathbf{g} \text{ is expensive...} \end{array}$

Suppose $\mathbf{p}(t)$ is **continuously changing with time** t and "continuously" measured... How should we use this information?

- NMPC: p(t) is a state estimation $\hat{x}(t)$
- ullet $\mathbf{w}\left(\hat{\mathbf{x}}(t)
 ight)$ contains the control $\mathbf{u}_0,\ldots,\mathbf{u}_{\mathit{N-1}}$, control \mathbf{u}_0 is delivered to the system
- ullet Feedback arises from $\hat{x}(t) \xrightarrow{\mathrm{NMPC}} u_0$
- ullet is control delay!! Minimize time for updating solution

Algorithm: Path-following SQP for

NMPC

Input: Solution estimate $\hat{\mathbf{z}}(\hat{\mathbf{x}})$, $\hat{\mathbf{x}}_+$

Predictor-corrector with $\Delta \hat{x} = \hat{x}_+ - \hat{x}$

$$\begin{aligned} & \underset{\Delta \mathbf{w}}{\text{min}} & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla \Phi^{\mathsf{T}} \Delta \mathbf{w} \\ & \text{s.t.} & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\hat{\mathbf{x}}(t)} \mathbf{g}^{\mathsf{T}} \Delta \hat{\mathbf{x}} = 0 \\ & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} \leq 0 \end{aligned}$$

Update $\hat{\mathbf{z}}(\hat{\mathbf{x}}_{+}) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$

return $\hat{z}(\hat{x}_+)$

Workload:

- Form H, $\nabla_{\mathbf{w}}\Phi$, \mathbf{g} , $\nabla_{\mathbf{w}}\mathbf{g}$, \mathbf{h} , $\nabla_{\mathbf{w}}\mathbf{h}$ at $\hat{\mathbf{z}}(\hat{\mathbf{x}})$
- Solve QP

- Approximation for *H* is often used
- $\begin{array}{l} \bullet \quad \nabla_w \Phi, \nabla_w h \text{ cheap, } \nabla_{\hat{x}(t)} g \text{ is constant,} \\ \nabla_w g \text{ is expensive...} \end{array}$
- $\bullet \ \ \text{All matrices are independent of } \hat{x}_+!!$

Algorithm: Path-following

NMPC

Input: Solution estimate $\hat{\mathbf{z}}(\hat{\mathbf{x}})$, $\hat{\mathbf{x}}_+$

Predictor-corrector with $\Delta \hat{x} = \hat{x}_+ - \hat{x}$

$$\label{eq:linear_equation} \begin{aligned} & \underset{\Delta w}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla \boldsymbol{\Phi}^{\mathsf{T}} \Delta \mathbf{w} \end{aligned}$$

s.t.
$$\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \hat{\mathbf{x}} = 0$$

 $\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} < 0$

$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} \leq 0$$

Update
$$\hat{\mathbf{z}}(\hat{\mathbf{x}}_+) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$$

return
$$\hat{z}\left(\hat{x}_{\scriptscriptstyle{+}}\right)$$

Algorithm: Path-following

NMPC

Input: Solution estimate $\hat{\mathbf{z}}(\hat{\mathbf{x}})$, $\hat{\mathbf{x}}_+$

Predictor-corrector with $\Delta \hat{x} = \hat{x}_+ - \hat{x}$

$$\begin{aligned} & \underset{\Delta \mathbf{w}}{\text{min}} & & \frac{1}{2} \Delta \mathbf{w}^\mathsf{T} H \Delta \mathbf{w} + \nabla \Phi^\mathsf{T} \Delta \mathbf{w} \\ & \text{s.t.} & & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^\mathsf{T} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^\mathsf{T} \Delta \hat{\mathbf{x}} = \mathbf{0} \end{aligned}$$

$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^\top \Delta \mathbf{w} \leq 0$$

Update
$$\hat{\mathbf{z}}(\hat{\mathbf{x}}_+) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$$

return $\hat{z}(\hat{x}_+)$

Time-split of the algorithm...

Algorithm: Path-following

Perform between \hat{x} and \hat{x}_{+} :

NMPC

Input: Solution estimate $\hat{\mathbf{z}}(\hat{\mathbf{x}})$, $\hat{\mathbf{x}}_{+}$

Predictor-corrector with $\Delta \hat{x} = \hat{x}_+ - \hat{x}$

$$\begin{aligned} & \underset{\Delta \mathbf{w}}{\text{min}} & \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla \Phi^{\mathsf{T}} \Delta \mathbf{w} \\ & \text{s.t.} & \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \hat{\mathbf{x}} = 0 \\ & & \mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\mathsf{T}} \Delta \mathbf{w} \le 0 \end{aligned}$$

Update
$$\hat{\mathbf{z}}(\hat{\mathbf{x}}_{+}) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$$

return $\hat{z}(\hat{x}_+)$

Algorithm: Preparation phase

Input: $\hat{\mathbf{z}}(\hat{\mathbf{x}})$ and $\hat{\mathbf{x}}$

Compute $H, \mathbf{h}, \nabla_{\mathbf{w}} \mathbf{h}, \nabla_{\mathbf{w}} \mathbf{g}, \nabla_{\mathbf{w}} \Phi$ and

$$\tilde{\mathbf{g}} = \left[\begin{array}{c} \mathbf{f}\left(\mathbf{x}_{0}, \mathbf{u}_{0}\right) - \mathbf{x}_{1} \\ \vdots \\ \mathbf{f}\left(\mathbf{x}_{N-1}, \mathbf{u}_{N-1}\right) - \mathbf{x}_{N} \end{array} \right]$$

return $H, h, \nabla h, \nabla g, \nabla \Phi$ and \tilde{g}

Time-split of the algorithm...

Algorithm: Path-following

NMPC

Input: Solution estimate $\hat{\mathbf{z}}(\hat{\mathbf{x}})$, $\hat{\mathbf{x}}_+$

Predictor-corrector with $\Delta \hat{x} = \hat{x}_+ - \hat{x}$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla \Phi^{\mathsf{T}} \Delta \mathbf{w}$$
s.t.
$$\mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \hat{\mathbf{x}} = 0$$

$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} \le 0$$
Update $\hat{\mathbf{z}}(\hat{\mathbf{x}}_{+}) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$

return $\hat{z}(\hat{x}_+)$

Time-split of the algorithm...

Perform between \hat{x} and \hat{x}_{+} :

Algorithm: Preparation phase

Input: $\hat{\mathbf{z}}(\hat{\mathbf{x}})$ and $\hat{\mathbf{x}}$

Compute $H, \mathbf{h}, \nabla_{\mathbf{w}} \mathbf{h}, \nabla_{\mathbf{w}} \mathbf{g}, \nabla_{\mathbf{w}} \Phi$ and

$$\tilde{\mathbf{g}} = \left[\begin{array}{c} f\left(x_{0}, \mathbf{u}_{0}\right) - x_{1} \\ \vdots \\ f\left(x_{N-1}, \mathbf{u}_{N-1}\right) - x_{N} \end{array} \right]$$

return $H, h, \nabla h, \nabla g, \nabla \Phi$ and \tilde{g}

Perform when receiving $\hat{\mathbf{x}}_+$

Algorithm: Feedback phase

Input: $\hat{\mathbf{x}}_+$, $H, \mathbf{h}, \nabla \mathbf{h}, \nabla \mathbf{g}, \nabla \Phi$ and $\tilde{\mathbf{g}}$

Form

$$\mathbf{g}\left(\mathbf{w},\hat{\mathbf{x}}_{i}\right) = \begin{bmatrix} \mathbf{x}_{0} - \hat{\mathbf{x}}_{+} \\ \tilde{\mathbf{g}} \end{bmatrix}$$

Solve QP Update $\hat{\mathbf{z}}(\hat{\mathbf{x}}_{+}) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$

12 / 16

Algorithm: Path-following

NMPC

Input: Solution estimate $\hat{\mathbf{z}}(\hat{\mathbf{x}})$, $\hat{\mathbf{x}}_+$

Predictor-corrector with $\Delta \hat{x} = \hat{x}_+ - \hat{x}$

$$\min_{\Delta \mathbf{w}} \quad \frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} H \Delta \mathbf{w} + \nabla \Phi^{\mathsf{T}} \Delta \mathbf{w}
\text{s.t.} \quad \mathbf{g} + \nabla_{\mathbf{w}} \mathbf{g}^{\mathsf{T}} \Delta \mathbf{w} + \nabla_{\mathbf{p}} \mathbf{g}^{\mathsf{T}} \Delta \hat{\mathbf{x}} = \mathbf{0}$$

$$\mathbf{h} + \nabla_{\mathbf{w}} \mathbf{h}^{\top} \Delta \mathbf{w} \le 0$$

Update
$$\hat{\mathbf{z}}(\hat{\mathbf{x}}_{+}) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$$

return $\hat{\mathbf{z}}(\hat{\mathbf{x}}_{+})$

Time-split of the algorithm...

- RTI reduces control delay by doing linearization before receiving the state estimation (Preparation phase)
- Feedback "reduces" to solving a QP

Perform between \hat{x} and \hat{x}_{+} :

Algorithm: Preparation phase

Input: $\hat{\mathbf{z}}(\hat{\mathbf{x}})$ and $\hat{\mathbf{x}}$ Compute $H, \mathbf{h}, \nabla_{\mathbf{w}} \mathbf{h}, \nabla_{\mathbf{w}} \mathbf{g}, \nabla_{\mathbf{w}} \Phi$ and

$$\widetilde{\mathbf{g}} = \left[\begin{array}{c} f\left(x_{0}, u_{0}\right) - x_{1} \\ \vdots \\ f\left(x_{N-1}, u_{N-1}\right) - x_{N} \end{array} \right]$$

return $H, h, \nabla h, \nabla g, \nabla \Phi$ and \tilde{g}

Perform when receiving $\hat{\mathbf{x}}_+$

Algorithm: Feedback phase

Input: $\hat{\mathbf{x}}_+$, $H, \mathbf{h}, \nabla \mathbf{h}, \nabla \mathbf{g}, \nabla \Phi$ and $\tilde{\mathbf{g}}$ Form

$$\mathbf{g}\left(\mathbf{w},\hat{\mathbf{x}}_{i}\right) = \begin{bmatrix} \mathbf{x}_{0} - \hat{\mathbf{x}}_{+} \\ \tilde{\mathbf{g}} \end{bmatrix}$$

Solve QP Update $\hat{\mathbf{z}}(\hat{\mathbf{x}}_{+}) = \hat{\mathbf{z}}(\hat{\mathbf{x}}) + \Delta \mathbf{z}$

Outline

- Preliminaries
- Parametric Embedding
- Parametric NLPs & NMPC
- 4 Real-time dilemma and the Real-Time Iteration
- 5 From Linear MPC to NMPC

Nonlinear system from shooting:

$$\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right)$$

Nonlinear system from shooting:

$$\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right)$$

• Reference trajectory:

$$\mathbf{x}_k^{\mathrm{ref}},\,\mathbf{u}_k^{\mathrm{ref}}$$

Nonlinear system from shooting:

$$\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right)$$

• Reference trajectory:

$$\mathbf{x}_k^{\mathrm{ref}},\,\mathbf{u}_k^{\mathrm{ref}}$$

• Affine Time-Varying model:

$$\Delta \mathbf{x}_{k+1} = A_k \Delta \mathbf{x}_k + B_k \Delta \mathbf{u}_k + \mathbf{r}_k$$

where

$$\Delta \mathbf{x}_k = \mathbf{x}_k - \mathbf{x}_k^{\text{ref}}, \quad \Delta \mathbf{u}_k = \mathbf{u}_k - \mathbf{u}_k^{\text{ref}}$$

$$A_k = \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\mathbf{x}_k^{\text{ref}}, \mathbf{u}_k^{\text{ref}}}, \ B_k = \left. \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \right|_{\mathbf{x}_k^{\text{ref}}, \mathbf{u}_k^{\text{ref}}}$$

Nonlinear system from shooting:

$$\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right)$$

• Reference trajectory:

$$\mathbf{x}_k^{\mathrm{ref}},\,\mathbf{u}_k^{\mathrm{ref}}$$

• Affine Time-Varying model:

$$\Delta \mathbf{x}_{k+1} = A_k \Delta \mathbf{x}_k + B_k \Delta \mathbf{u}_k + \mathbf{r}_k$$

where

$$\begin{split} \Delta \mathbf{x}_k &= \mathbf{x}_k - \mathbf{x}_k^{\mathrm{ref}}, \quad \Delta \mathbf{u}_k = \mathbf{u}_k - \mathbf{u}_k^{\mathrm{ref}} \\ A_k &= \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\mathbf{x}_k^{\mathrm{ref}}, \mathbf{u}_k^{\mathrm{ref}}}, \, B_k = \left. \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \right|_{\mathbf{x}_k^{\mathrm{ref}}, \mathbf{u}_k^{\mathrm{ref}}} \\ \mathbf{r}_k &= \mathbf{f} \left(\mathbf{x}_k^{\mathrm{ref}}, \mathbf{u}_k^{\mathrm{ref}} \right) - \mathbf{x}_{k+1}^{\mathrm{ref}} \end{split}$$

note $\mathbf{r}_k = 0$ if reference trajectory $\mathbf{x}_k^{\text{ref}}, \mathbf{u}_k^{\text{ref}}$ is feasible

Nonlinear system from shooting:

$$\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right)$$

• Reference trajectory:

$$\mathbf{x}_k^{\mathrm{ref}},\,\mathbf{u}_k^{\mathrm{ref}}$$

• Affine Time-Varying model:

$$\Delta \mathbf{x}_{k+1} = A_k \Delta \mathbf{x}_k + B_k \Delta \mathbf{u}_k + \mathbf{r}_k$$

where

$$\begin{split} \Delta \mathbf{x}_k &= \mathbf{x}_k - \mathbf{x}_k^{\mathrm{ref}}, \quad \Delta \mathbf{u}_k = \mathbf{u}_k - \mathbf{u}_k^{\mathrm{ref}} \\ A_k &= \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\mathbf{x}_k^{\mathrm{ref}}, \mathbf{u}_k^{\mathrm{ref}}}, B_k = \left. \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \right|_{\mathbf{x}_k^{\mathrm{ref}}, \mathbf{u}_k^{\mathrm{ref}}} \\ \mathbf{r}_k &= \mathbf{f} \left(\mathbf{x}_k^{\mathrm{ref}}, \mathbf{u}_k^{\mathrm{ref}} \right) - \mathbf{x}_{k+1}^{\mathrm{ref}} \end{split}$$

note $\mathbf{r}_k = 0$ if reference trajectory $\mathbf{x}_k^{\text{ref}}, \mathbf{u}_k^{\text{ref}}$ is feasible

$$\mathrm{MPC}\left(\mathbf{\hat{x}}_{i},\,\mathbf{x}^{\mathrm{ref}},\,\mathbf{u}^{\mathrm{ref}}\right)$$
:

$$\min_{\Delta \mathbf{x}, \Delta \mathbf{u}} \sum_{k=i}^{i+N-1} \frac{1}{2} \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix}^{\mathsf{T}} W_k \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix}$$

s.t.
$$\Delta \mathbf{x}_i = \hat{\mathbf{x}}_i - \mathbf{x}_i^{\text{ref}}$$

 $\Delta \mathbf{x}_{k+1} = A_k \Delta \mathbf{x}_k + B_k \Delta \mathbf{u}_k + \mathbf{r}_k$

Nonlinear system from shooting:

$$\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right)$$

• Reference trajectory:

$$\mathbf{x}_{k}^{\mathrm{ref}},\,\mathbf{u}_{k}^{\mathrm{ref}}$$

• Affine Time-Varying model:

$$\Delta \mathbf{x}_{k+1} = A_k \Delta \mathbf{x}_k + B_k \Delta \mathbf{u}_k + \mathbf{r}_k$$

where

$$\begin{split} \Delta \mathbf{x}_k &= \mathbf{x}_k - \mathbf{x}_k^{\mathrm{ref}}, \quad \Delta \mathbf{u}_k = \mathbf{u}_k - \mathbf{u}_k^{\mathrm{ref}} \\ A_k &= \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\mathbf{x}_k^{\mathrm{ref}}, \mathbf{u}_k^{\mathrm{ref}}}, \ B_k &= \left. \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \right|_{\mathbf{x}_k^{\mathrm{ref}}, \mathbf{u}_k^{\mathrm{ref}}} \\ \mathbf{r}_k &= \mathbf{f} \left(\mathbf{x}_k^{\mathrm{ref}}, \mathbf{u}_k^{\mathrm{ref}} \right) - \mathbf{x}_{k+1}^{\mathrm{ref}} \end{split}$$

note $\mathbf{r}_k = 0$ if reference trajectory $\mathbf{x}_k^{\text{ref}}, \mathbf{u}_k^{\text{ref}}$ is feasible

$$\mathrm{MPC}\left(\hat{\mathbf{x}}_{i},\,\mathbf{x}^{\mathrm{ref}},\,\mathbf{u}^{\mathrm{ref}}\right)$$
:

$$\begin{aligned} & \min_{\Delta \mathbf{x}, \Delta \mathbf{u}} \ \sum_{k=i}^{i+N-1} \frac{1}{2} \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix}^{\mathsf{T}} W_k \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} \\ & \text{s.t.} \quad \Delta \mathbf{x}_i = \hat{\mathbf{x}}_i - \mathbf{x}_i^{\text{ref}} \end{aligned}$$

 $\Delta \mathbf{x}_{\nu+1} = A_{\nu} \Delta \mathbf{x}_{\nu} + B_{\nu} \Delta \mathbf{u}_{\nu} + \mathbf{r}_{\nu}$

What about deploying NMPC?

NMPC
$$(\hat{\mathbf{x}}_i, \mathbf{x}^{\text{ref}}, \mathbf{u}^{\text{ref}})$$
:

$$\min_{\mathbf{x}, \mathbf{u}} \sum_{k=i}^{i+N-1} \frac{1}{2} \begin{bmatrix} \mathbf{x}_k - \mathbf{x}_k^{\text{ref}} \\ \mathbf{u}_k - \mathbf{u}_k^{\text{ref}} \end{bmatrix}^{\mathsf{T}} W_k \begin{bmatrix} \mathbf{x}_k - \mathbf{x}_k^{\text{ref}} \\ \mathbf{u}_k - \mathbf{u}_k^{\text{ref}} \end{bmatrix}$$
s.t. $\mathbf{x}_i = \hat{\mathbf{x}}_i$

$$\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_k, \mathbf{u}_k\right)$$

$$\begin{aligned} \text{NMPC}\left(\hat{\mathbf{x}}_{i},\,\mathbf{x}^{\text{ref}},\,\mathbf{u}^{\text{ref}}\right) &: \min_{\mathbf{x},\mathbf{u}} \ \sum_{k=i}^{i+N-1} \frac{1}{2} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right]^{\top} W_{k} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right] \\ &\text{s. t.} \quad \mathbf{x}_{i} = \hat{\mathbf{x}}_{i} \\ &\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \end{aligned}$$

Given "guess" $\boldsymbol{\bar{x}},\boldsymbol{\bar{u}},$ SQP iterates:

$$\begin{aligned} & \min_{\Delta \mathbf{x}, \Delta \mathbf{u}} \sum_{k=i}^{i+N-1} \frac{1}{2} \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} H_k \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} + J_k^T \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} \\ & \text{s.t. } \Delta \mathbf{x}_i = \hat{\mathbf{x}}_i - \bar{\mathbf{x}}_i \\ & \Delta \mathbf{x}_{k+1} = A_k \Delta \mathbf{x}_k + B_k \Delta \mathbf{u}_k + \mathbf{r}_k \end{aligned}$$

$$\begin{aligned} A_k &= \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\mathbf{\bar{x}}_k, \mathbf{\bar{u}}_k}, \ B_k &= \left. \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \right|_{\mathbf{\bar{x}}_k, \mathbf{\bar{u}}_k} \\ \mathbf{r}_k &= \mathbf{f} \left(\mathbf{\bar{x}}_k, \mathbf{\bar{u}}_k \right) - \mathbf{\bar{x}}_{k+1}, \quad J_k &= W_k \left[\begin{array}{c} \mathbf{\bar{x}}_k - \mathbf{x}_k^{\text{ref}} \\ \mathbf{\bar{u}}_k - \mathbf{u}_k^{\text{ref}} \end{array} \right] \end{aligned}$$

$$\begin{aligned} \text{NMPC}\left(\hat{\mathbf{x}}_{i},\,\mathbf{x}^{\text{ref}},\,\mathbf{u}^{\text{ref}}\right) &: \min_{\mathbf{x},\mathbf{u}} \ \sum_{k=i}^{i+N-1} \frac{1}{2} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right]^{\top} W_{k} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right] \\ &\text{s. t.} \quad \mathbf{x}_{i} = \hat{\mathbf{x}}_{i} \\ &\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \end{aligned}$$

Given "guess" $\boldsymbol{\bar{x}},\boldsymbol{\bar{u}},$ SQP iterates:

$$\begin{aligned} & \min_{\Delta \mathbf{x}, \Delta \mathbf{u}} \sum_{k=i}^{i+N-1} \frac{1}{2} \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} H_k \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} + J_k^T \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} \\ & \text{s.t. } \Delta \mathbf{x}_i = \hat{\mathbf{x}}_i - \bar{\mathbf{x}}_i \\ & \Delta \mathbf{x}_{k+1} = A_k \Delta \mathbf{x}_k + B_k \Delta \mathbf{u}_k + \mathbf{r}_k \end{aligned}$$

$$\begin{aligned} A_k &= \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\mathbf{\bar{x}}_k, \mathbf{\bar{u}}_k}, \ B_k &= \left. \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \right|_{\mathbf{\bar{x}}_k, \mathbf{\bar{u}}_k} \\ \mathbf{r}_k &= \mathbf{f} \left(\mathbf{\bar{x}}_k, \mathbf{\bar{u}}_k \right) - \mathbf{\bar{x}}_{k+1}, \quad J_k &= W_k \left[\begin{array}{c} \mathbf{\bar{x}}_k - \mathbf{x}_k^{\text{ref}} \\ \mathbf{\bar{u}}_k - \mathbf{u}_k^{\text{ref}} \end{array} \right] \end{aligned}$$

$$\begin{aligned} \text{NMPC}\left(\hat{\mathbf{x}}_{i},\,\mathbf{x}^{\text{ref}},\,\mathbf{u}^{\text{ref}}\right) &: \min_{\mathbf{x},\mathbf{u}} \ \sum_{k=i}^{i+N-1} \frac{1}{2} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right]^{\top} W_{k} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right] \\ &\text{s. t.} \quad \mathbf{x}_{i} = \hat{\mathbf{x}}_{i} \\ &\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \end{aligned}$$

Given "guess" $\boldsymbol{\bar{x}},\boldsymbol{\bar{u}},$ SQP iterates:

$$\begin{aligned} & \min_{\Delta \mathbf{x}, \Delta \mathbf{u}} \sum_{k=i}^{i+N-1} \frac{1}{2} \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} H_k \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} + J_k^T \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} \\ & \text{s.t. } \Delta \mathbf{x}_i = \hat{\mathbf{x}}_i - \bar{\mathbf{x}}_i \\ & \Delta \mathbf{x}_{k+1} = A_k \Delta \mathbf{x}_k + B_k \Delta \mathbf{u}_k + \mathbf{r}_k \end{aligned}$$

$$\begin{aligned} A_k &= \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\mathbf{\bar{x}}_k, \mathbf{\bar{u}}_k}, \ B_k &= \left. \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \right|_{\mathbf{\bar{x}}_k, \mathbf{\bar{u}}_k} \\ \mathbf{r}_k &= \mathbf{f} \left(\mathbf{\bar{x}}_k, \mathbf{\bar{u}}_k \right) - \mathbf{\bar{x}}_{k+1}, \quad J_k &= W_k \left[\begin{array}{c} \mathbf{\bar{x}}_k - \mathbf{x}_k^{\text{ref}} \\ \mathbf{\bar{u}}_k - \mathbf{u}_k^{\text{ref}} \end{array} \right] \end{aligned}$$

$$\begin{aligned} \text{NMPC}\left(\hat{\mathbf{x}}_{i},\,\mathbf{x}^{\text{ref}},\,\mathbf{u}^{\text{ref}}\right) &: \min_{\mathbf{x},\mathbf{u}} \ \sum_{k=i}^{i+N-1} \frac{1}{2} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right]^{\top} W_{k} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right] \\ &\text{s. t.} \quad \mathbf{x}_{i} = \hat{\mathbf{x}}_{i} \\ &\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \end{aligned}$$

Given "guess" \bar{x}, \bar{u} , SQP iterates:

$$\begin{aligned} & \min_{\Delta \mathbf{x}, \Delta \mathbf{u}} \sum_{k=i}^{i+N-1} \frac{1}{2} \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} H_k \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} + J_k^T \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} \\ & \text{s.t. } \Delta \mathbf{x}_i = \hat{\mathbf{x}}_i - \bar{\mathbf{x}}_i \\ & \Delta \mathbf{x}_{k+1} = A_k \Delta \mathbf{x}_k + B_k \Delta \mathbf{u}_k + \mathbf{r}_k \end{aligned}$$

$$\begin{split} A_k &= \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k}, \, B_k = \left. \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \right|_{\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k} \\ \mathbf{r}_k &= \mathbf{f} \left(\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k \right) - \bar{\mathbf{x}}_{k+1}, \quad J_k = W_k \left[\begin{array}{c} \bar{\mathbf{x}}_k - \mathbf{x}_k^{\mathrm{ref}} \\ \bar{\mathbf{u}}_k - \mathbf{u}_k^{\mathrm{ref}} \end{array} \right] \end{split}$$

$$\begin{split} \text{NMPC}\left(\hat{\mathbf{x}}_{i},\,\mathbf{x}^{\text{ref}},\,\mathbf{u}^{\text{ref}}\right) &: \min_{\mathbf{x},\mathbf{u}} \ \sum_{k=i}^{i+N-1} \frac{1}{2} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right]^{\top} W_{k} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right] \\ &\text{s. t.} \quad \mathbf{x}_{i} = \hat{\mathbf{x}}_{i} \\ &\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \end{split}$$

Given "guess" \bar{x}, \bar{u} , SQP iterates:

$$\begin{aligned} & \min_{\Delta \mathbf{x}, \Delta \mathbf{u}} \sum_{k=i}^{i+N-1} \frac{1}{2} \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} H_k \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} + J_k^T \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} \\ & \text{s.t. } \Delta \mathbf{x}_i = \hat{\mathbf{x}}_i - \bar{\mathbf{x}}_i \\ & \Delta \mathbf{x}_{k+1} = A_k \Delta \mathbf{x}_k + B_k \Delta \mathbf{u}_k + \mathbf{r}_k \end{aligned}$$

$$\begin{split} A_k &= \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k}, \, B_k = \left. \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \right|_{\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k} \\ \mathbf{r}_k &= \mathbf{f} \left(\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k \right) - \bar{\mathbf{x}}_{k+1}, \quad J_k = W_k \left[\begin{array}{c} \bar{\mathbf{x}}_k - \mathbf{x}_k^{\mathrm{ref}} \\ \bar{\mathbf{u}}_k - \mathbf{u}_k^{\mathrm{ref}} \end{array} \right] \end{split}$$

$$\begin{aligned} \text{NMPC}\left(\hat{\mathbf{x}}_{i}, \, \mathbf{x}^{\text{ref}}, \, \mathbf{u}^{\text{ref}}\right) &: \min_{\mathbf{x}, \mathbf{u}} \, \sum_{k=i}^{i+N-1} \frac{1}{2} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right]^{\top} \, W_{k} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right] \\ &\text{s. t.} \quad \mathbf{x}_{i} = \hat{\mathbf{x}}_{i} \\ &\mathbf{x}_{k+1} = \mathbf{f} \left(\mathbf{x}_{k}, \mathbf{u}_{k} \right) \end{aligned}$$

Given "guess" $\boldsymbol{\bar{x}},\boldsymbol{\bar{u}},$ SQP iterates:

$$\begin{aligned} & \min_{\Delta \mathbf{x}, \Delta \mathbf{u}} & \sum_{k=i}^{i+N-1} \frac{1}{2} \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} H_k \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} + J_k^T \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} \\ & \text{s. t. } \Delta \mathbf{x}_i = \hat{\mathbf{x}}_i - \bar{\mathbf{x}}_i \\ & \Delta \mathbf{x}_{k+1} = A_k \Delta \mathbf{x}_k + B_k \Delta \mathbf{u}_k + \mathbf{r}_k \end{aligned}$$

$$\begin{aligned} A_k &= \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k}, \ B_k &= \left. \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \right|_{\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k} \\ \mathbf{r}_k &= \mathbf{f} \left(\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k \right) - \bar{\mathbf{x}}_{k+1}, \quad J_k &= W_k \left[\begin{array}{c} \bar{\mathbf{x}}_k - \mathbf{x}_k^{\text{ref}} \\ \bar{\mathbf{u}}_k - \mathbf{u}_k^{\text{ref}} \end{array} \right] \end{aligned}$$

$$\begin{aligned} & \text{MPC}\left(\hat{\mathbf{x}}_{i}, \, \mathbf{x}^{\text{ref}}, \, \mathbf{u}^{\text{ref}}\right) : \\ & \underset{\Delta \mathbf{x}, \Delta \mathbf{u}}{\text{min}} \, \sum_{k=i}^{i+N-1} \frac{1}{2} \left[\begin{array}{c} \Delta \mathbf{x}_{k} \\ \Delta \mathbf{u}_{k} \end{array} \right]^{\mathsf{T}} \, W_{k} \left[\begin{array}{c} \Delta \mathbf{x}_{k} \\ \Delta \mathbf{u}_{k} \end{array} \right] \\ & \text{s. t.} \quad \Delta \mathbf{x}_{i} = \hat{\mathbf{x}}_{i} - \mathbf{x}_{i}^{\text{ref}} \\ & \Delta \mathbf{x}_{k+1} = A_{k} \Delta \mathbf{x}_{k} + B_{k} \Delta \mathbf{u}_{k} + \mathbf{r}_{k} \end{aligned}$$

$$\begin{aligned} \text{NMPC}\left(\hat{\mathbf{x}}_{i},\,\mathbf{x}^{\text{ref}},\,\mathbf{u}^{\text{ref}}\right) &: \min_{\mathbf{x},\mathbf{u}} \ \sum_{k=i}^{i+N-1} \frac{1}{2} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right]^{\top} W_{k} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right] \\ &\text{s. t.} \quad \mathbf{x}_{i} = \hat{\mathbf{x}}_{i} \\ &\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \end{aligned}$$

Given "guess" \bar{x}, \bar{u} , SQP iterates:

$$\begin{aligned} & \min_{\Delta \mathbf{x}, \Delta \mathbf{u}} \ \sum_{k=i}^{i+N-1} \frac{1}{2} \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} H_k \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} + J_k^T \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} \\ & \text{s. t. } \Delta \mathbf{x}_i = \hat{\mathbf{x}}_i - \bar{\mathbf{x}}_i \\ & \Delta \mathbf{x}_{k+1} = A_k \Delta \mathbf{x}_k + B_k \Delta \mathbf{u}_k + \mathbf{r}_k \end{aligned}$$

where $\Delta x, \Delta u$ is the Newton step and:

$$\begin{split} A_k &= \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k}, \, B_k = \left. \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \right|_{\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k} \\ \mathbf{r}_k &= \mathbf{f} \left(\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k \right) - \bar{\mathbf{x}}_{k+1}, \quad J_k = W_k \left[\begin{array}{c} \bar{\mathbf{x}}_k - \mathbf{x}_k^{\mathrm{ref}} \\ \bar{\mathbf{u}}_k - \mathbf{u}_k^{\mathrm{ref}} \end{array} \right] \end{split}$$

MPC
$$(\hat{\mathbf{x}}_i, \mathbf{x}^{\text{ref}}, \mathbf{u}^{\text{ref}})$$
:

$$\min_{\Delta \mathbf{x}, \Delta \mathbf{u}} \sum_{k=i}^{i+N-1} \frac{1}{2} \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix}^{\mathsf{T}} W_k \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix}$$
s. t. $\Delta \mathbf{x}_i = \hat{\mathbf{x}}_i - \mathbf{x}_i^{\text{ref}}$

$$\Delta \mathbf{x}_{k+1} = A_k \Delta \mathbf{x}_k + B_k \Delta \mathbf{u}_k + \mathbf{r}_k$$

What if guess = reference? I.e. if $\bar{x} = x^{\rm ref}$?

$$\begin{aligned} \text{NMPC}\left(\hat{\mathbf{x}}_{i},\,\mathbf{x}^{\text{ref}},\,\mathbf{u}^{\text{ref}}\right) &: \min_{\mathbf{x},\mathbf{u}} \ \sum_{k=i}^{i+N-1} \frac{1}{2} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right]^{\top} W_{k} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right] \\ &\text{s. t.} \quad \mathbf{x}_{i} = \hat{\mathbf{x}}_{i} \\ &\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \end{aligned}$$

Given "guess" \bar{x}, \bar{u} , SQP iterates:

$$\begin{aligned} & \min_{\Delta \mathbf{x}, \Delta \mathbf{u}} \ \sum_{k=i}^{i+N-1} \frac{1}{2} \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} H_k \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} + J_k^T \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} \\ & \text{s. t. } \Delta \mathbf{x}_i = \hat{\mathbf{x}}_i - \bar{\mathbf{x}}_i \\ & \Delta \mathbf{x}_{k+1} = A_k \Delta \mathbf{x}_k + B_k \Delta \mathbf{u}_k + \mathbf{r}_k \end{aligned}$$

where $\Delta x, \Delta u$ is the Newton step and:

$$\begin{split} A_k &= \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k}, \, B_k = \left. \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \right|_{\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k} \\ \mathbf{r}_k &= \mathbf{f} \left(\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k \right) - \bar{\mathbf{x}}_{k+1}, \quad J_k = W_k \left[\begin{array}{c} \bar{\mathbf{x}}_k - \mathbf{x}_k^{\mathrm{ref}} \\ \bar{\mathbf{u}}_k - \mathbf{u}_k^{\mathrm{ref}} \end{array} \right] \end{split}$$

$$\begin{split} & \text{MPC}\left(\hat{\mathbf{x}}_{i}, \, \mathbf{x}^{\text{ref}}, \, \mathbf{u}^{\text{ref}}\right) : \\ & \underset{\Delta \mathbf{x}, \Delta \mathbf{u}}{\text{min}} \, \sum_{k=i}^{i+N-1} \frac{1}{2} \left[\begin{array}{c} \Delta \mathbf{x}_{k} \\ \Delta \mathbf{u}_{k} \end{array} \right]^{\mathsf{T}} \, W_{k} \left[\begin{array}{c} \Delta \mathbf{x}_{k} \\ \Delta \mathbf{u}_{k} \end{array} \right] \end{split}$$

s. t.
$$\Delta \mathbf{x}_i = \hat{\mathbf{x}}_i - \mathbf{x}_i^{\text{ref}}$$

 $\Delta \mathbf{x}_{k+1} = A_k \Delta \mathbf{x}_k + B_k \Delta \mathbf{u}_k + \mathbf{r}_k$

What if guess = reference? I.e. if $\overline{x} = x^{\rm ref} \ ?$

SQP step = QP correction if $W_k = H_k$ (Gauss-Newton approx.)

$$\begin{aligned} \text{NMPC}\left(\hat{\mathbf{x}}_{i},\,\mathbf{x}^{\text{ref}},\,\mathbf{u}^{\text{ref}}\right) &: \min_{\mathbf{x},\mathbf{u}} \ \sum_{k=i}^{i+N-1} \frac{1}{2} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right]^{\top} W_{k} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right] \\ &\text{s. t.} \quad \mathbf{x}_{i} = \hat{\mathbf{x}}_{i} \\ &\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \end{aligned}$$

Given "guess" \bar{x}, \bar{u} , SQP iterates:

$$\begin{aligned} & \min_{\Delta \mathbf{x}, \Delta \mathbf{u}} \ \sum_{k=i}^{i+N-1} \frac{1}{2} \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} H_k \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} + J_k^T \begin{bmatrix} \Delta \mathbf{x}_k \\ \Delta \mathbf{u}_k \end{bmatrix} \\ & \text{s.t. } \Delta \mathbf{x}_i = \hat{\mathbf{x}}_i - \bar{\mathbf{x}}_i \\ & \Delta \mathbf{x}_{k+1} = A_k \Delta \mathbf{x}_k + B_k \Delta \mathbf{u}_k + \mathbf{r}_k \end{aligned}$$

where $\Delta x, \Delta u$ is the Newton step and:

$$\begin{split} A_k &= \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k}, B_k = \left. \frac{\partial \mathbf{f}}{\partial \mathbf{u}} \right|_{\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k} \\ \mathbf{r}_k &= \mathbf{f} \left(\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k \right) - \bar{\mathbf{x}}_{k+1}, \quad J_k = W_k \left[\begin{array}{c} \bar{\mathbf{x}}_k - \mathbf{x}_k^{\mathrm{ref}} \\ \bar{\mathbf{u}}_k - \mathbf{u}_k^{\mathrm{ref}} \end{array} \right] \end{split}$$

Bottom line:

- NMPC with RTI "re-linearize" the dynamics at every time step based on the previous (shifted) solution.
- Regular MPC linearizes at the reference

From linear MPC to NMPC

$$\begin{aligned} \text{NMPC}\left(\hat{\mathbf{x}}_{i},\,\mathbf{x}^{\text{ref}},\,\mathbf{u}^{\text{ref}}\right) &: \min_{\mathbf{x},\mathbf{u}} \ \sum_{k=i}^{i+N-1} \frac{1}{2} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right]^{\top} W_{k} \left[\begin{array}{c} \mathbf{x}_{k} - \mathbf{x}_{k}^{\text{ref}} \\ \mathbf{u}_{k} - \mathbf{u}_{k}^{\text{ref}} \end{array} \right] \\ &\text{s. t.} \quad \mathbf{x}_{i} = \hat{\mathbf{x}}_{i} \\ &\mathbf{x}_{k+1} = \mathbf{f}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \end{aligned}$$

$$\begin{split} & \operatorname{MPC}\left(\hat{\mathbf{x}}_{i}, \, \mathbf{x}^{\operatorname{ref}}, \, \mathbf{u}^{\operatorname{ref}}\right) : \\ & \underset{\Delta \mathbf{x}, \Delta \mathbf{u}}{\min} \, \sum_{k=i}^{i+N-1} \frac{1}{2} \left[\begin{array}{c} \Delta \mathbf{x}_{k} \\ \Delta \mathbf{u}_{k} \end{array} \right]^{\mathsf{T}} \, W_{k} \left[\begin{array}{c} \Delta \mathbf{x}_{k} \\ \Delta \mathbf{u}_{k} \end{array} \right] \\ & \operatorname{s.t.} \quad \Delta \mathbf{x}_{i} = \hat{\mathbf{x}}_{i} - \mathbf{x}_{i}^{\operatorname{ref}} \\ & \Delta \mathbf{x}_{k+1} = A_{k} \Delta \mathbf{x}_{k} + B_{k} \Delta \mathbf{u}_{k} + \mathbf{r}_{k} \end{split}$$

Linear MPC uses $\bar{\mathbf{x}}_k = \mathbf{x}^{\text{ref}}, \bar{\mathbf{u}}_k = \mathbf{u}^{\text{ref}}$:

Only once, offline form at :

$$A_k$$
, B_k , $J_k = 0$, \mathbf{r}_k

Online: solve QP

At every time instant, RTI does:

- Shift previous solution to get $\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k$
- Form at $\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k$:

$$A_k$$
, B_k , J_k , \mathbf{r}_k

- Solve QP
- RTI ≡ linear MPC + update of the linearization based on our best guess
- If integrators are fast, then NMPC is "as fast as" linear MPC

From Linear to Nonlinear MPC: Bridging the Gap via the Real-Time Iteration, S. Gros, M. Zanon, R. Quirynen, A. Bemporad, M. Diehl