Import the required lib

```
In [101]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import tensorflow as tf
   import matplotlib.pyplot as plt
```

Load Datasets

```
In [102]: training_dataset=pd.read_csv('train.csv')
In [93]: testing_dataset=pd.read_csv('test.csv')
In [94]: #gender_submission=pd.read_csv('gender_submission.csv')
```

Q1: In training set, which features are available?

In [95]: training dataset.head() Out[95]: Passengerld Survived Pclass Name Sex Age SibSp Parch **Ticket** Fare Cabi Braund, 0 1 0 0 A/5 21171 3 male 22.0 1 7.2500 Mr. Owen Na Harris Cumings, Mrs. John Bradley 2 1 0 PC 17599 71.2833 C8 female 38.0 (Florence Briggs Th... Heikkinen, STON/O2. 2 3 3 female 26.0 7.9250 Miss. Na 3101282 Laina Futrelle, Mrs. Jacques female 35.0 3 1 1 0 113803 53.1000 C12 Heath (Lily May Peel) Allen, Mr. 5 0 3 0 0 373450 8.0500 William male 35.0 Na Henry

```
In [96]: training dataset.info()
         <class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

#	Column	Non-Null Count	: Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtyp	es: float64(2), int64(5), ob	ject(5)

memory usage: 83.7+ KB

Q5: In training set, which features contain

1. null

In [97]: training_dataset.isnull().any(axis=0) # this function is use to show all null val # axis=0, we are checking the null values i

Out[97]: PassengerId False Survived False Pclass False Name False Sex False True Age SibSp False False Parch False Ticket Fare False Cabin True Embarked True

dtype: bool

```
In [98]: training_dataset.isnull().any(axis=1) # axis =1, checking null values in the trai
 Out[98]: 0
                   True
                  False
           1
           2
                   True
           3
                  False
           4
                   True
                  . . .
           886
                   True
           887
                  False
           888
                   True
           889
                  False
           890
                   True
           Length: 891, dtype: bool
 In [99]: training_dataset.isnull().sum()
 Out[99]: PassengerId
                             0
           Survived
                             0
           Pclass
                             0
           Name
                             0
           Sex
                             0
                           177
           Age
           SibSp
                             0
           Parch
                             0
           Ticket
                             0
           Fare
                             0
           Cabin
                           687
           Embarked
                             2
           dtype: int64
In [100]: d = {'empty': pd.Series([0,1,2,3,4,5,6,7,8,9,10], index=['PassengerId', 'Survived']
           df = pd.DataFrame(d)
           print (df)
                          empty
           PassengerId
                              0
           Survived
                              1
           Pclass\tName
                              2
           Sex
                              3
                              4
           Age
           SibSp
                              5
           Parch
                              6
                              7
           Ticket
           Fare
                              8
                              9
           Cabin
           Embarked
                             10
  In [ ]: training dataset.dtypes
```

DataFrame-empty property

the empty property indicates whether DataFrame is empty or not. this properties teturn in term of True and False

1. True if DataFrame is entirely empty means any of the axes are of the length

2. False if the DataFrame is not Entirely empty means any of the axes are of the length not zero

special case:

if DataFrame contains only NaNS(Not a Numbers), then it is still not considerted empty

In []: | training dataset.empty

In []: # Blank?

Q2: In training set, which features are categorical?

categorical features in the traning dataset

- 1. Name
- 2. Sex
- 3.Ticket

Q3: In training set, which features are numerical (e.g., discrete, continuous, or time series based)?

In [103]: trainig numerical data=training dataset[['PassengerId','Survived','Pclass','Age'

In [53]: trainig numerical data.head()

Out[53]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare	
0	1	0	3	22.0	1	0	7.2500	
1	2	1	1	38.0	1	0	71.2833	
2	3	1	3	26.0	0	0	7.9250	
3	4	1	1	35.0	1	0	53.1000	
4	5	0	3	35.0	0	0	8.0500	

Q7: To understand the distribution of numerical feature values across the samples, please list the

properties, including count, mean, std, min, 25% percentile, 50% percentile, 75% percentile, max, of numerical features?

In [54]: trainig_numerical_data.describe()

Out[54]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In training set, which features are mixed data types?

In [104]: trainig_category_data=training_dataset[['Name','Sex','Ticket','Cabin','Embarked']

In [56]: trainig_category_data.head()

Out[56]:

	Name	Sex	Ticket	Cabin	Embarked
0	Braund, Mr. Owen Harris	male	A/5 21171	NaN	S
1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	PC 17599	C85	С
2	Heikkinen, Miss. Laina	female	STON/O2. 3101282	NaN	S
3	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	113803	C123	S
4	Allen, Mr. William Henry	male	373450	NaN	S

In [57]: trainig_category_data.count()

Out[57]: Name

Name 891
Sex 891
Ticket 891
Cabin 204
Embarked 889
dtype: int64

In [58]: trainig_category_data.describe()

Out[58]:

	Name	Sex	Ticket	Cabin	Embarked
count	891	891	891	204	889
unique	891	2	681	147	3
top	Madill, Miss. Georgette Alexandra	male	1601	G6	S
freq	1	577	7	4	644

In [105]: training_dataset

Out[105]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Ci
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	

891 rows × 12 columns

 \blacktriangleleft

Q9: Can you observe significant correlation (average survivied ratio>0.5) among the group of

Pclass=1 and Survived? If Pclass has significant correlation with Survivied, we should include this

feature in the predictive model. Based on your computation, will you include this feature in the

predictive model?

In [60]: from PIL import Image
 image = Image.open('pic.jpg')
 image.show()

In [61]: image # A claculated Ratios charts of correlation and coefficents, we are keeping

Out[61]:

	Coef	ficient <i>r</i>
	Positive	Negative
Strong	1 to 0.8	-0.8 to -1
Moderate	0.8 to 0.5	-0.5 to -0.8
Weak	0.5 to 0.3	-0.3 to -0.5
No Correlation	0.3 to 0	0 to -0.3

In [62]: corrMatrix = training_dataset.corr()
 sns.heatmap(corrMatrix, annot=True)
 plt.show()

the correlation between pclass and survived is 'weak'(-0.34) which less then 0.5 we can not include this feature in our model.

In [106]: dataset_sex_survived=training_dataset[['Sex','Survived']]

In [107]: dataset_sex_survived.head()

Out[107]:

	Sex	Survived
0	male	0
1	female	1
2	female	1
3	female	1
4	male	0

In [109]: dataset_age=training_dataset[['Age','Survived']]
 dataset_age.head()

Out[109]:

	Age	Survived
0	22.0	0
1	38.0	1
2	26.0	1
3	35.0	1
4	35.0	0

In [110]: training_dataset

Out[110]:

	Daggangarid	Curvived	Dologo	Nama	Sav	٨٥٥	SibSp	Daroh	Ticket	Fore
	Passengerld	Survived	PCIASS	Name	Sex	Age	Sinoh	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500
891 ra	ows × 12 colu	mns								
4	12 0010									

Q11: Let us start by understanding correlations between a numeric feature (Age) and our predictive

goal (Survived). A histogram chart is useful for analyzing continuous numerical variables like Age

where banding or ranges will help identify useful patterns. The histogram can indicate distribution of

samples using automatically defined bins or equally ranged bands. This helps us answer questions

relating to specific bands (e.g., infants, old). Please plot the histogram plots between ages and

Survived (Figure 1 is an example), and answer the following questions:

- Do infants (Age <=4) have high survival rate?
- Do oldest passengers (Age = 80) survive?
- Do large number of 15-25 year olds not survive?

Solution for Q11:

a histogram shows the number of occurances of different values in a dataset in our case is training_dataset, in our dataset we calculate the occurances between age and survived attributes. the age and survived in our dataset is one big python list, so as the principel of statistical average and statistical variablity we have to compress these numbers into a few values that are easier to understand yet describe our dataset well enough, such as under:

- 1. mean
- 2. median
- 3. STD

based on these values we can get a good sense data BINS AND RANGES:

we see that in the age attributs we have mean value 29.699118, ang survived mean value 0.383838, and std value for the age is 14.526497 and std value for the survivied is 0.486592, the age dataset have unique value 29____ 30 and for survivied have unique value 14_____ 15 unique values if we simply count the unique values in the dataset and put that on a bar chart we got the following visualization. i used a random generator to generat the data point of the both data sets. this will generate two dataset with 250, point in each and we also fixed the parameter of the random generator. Thus we will get the very same numpy arrays with same data points that we have in the required attributes. in the training_dataset_age we will get 250 values of age, in the training_dataset_survived there are 250 survived values of survived people Note: .hist() grouping into bins is not the same as grouping by unique values as a bin usually conatin a range of values

```
In [68]: %matplotlib inline
   Age= 29.699118 # mean of age
   Survived= 0.383838# mean of survived
   sample=250
   np.random.seed(0)
   training_dataset_age=np.random.normal(Age,Survived,sample).astype(int)

   Age= 14.526497 # std of age
   Survived= 0.486592# Std of survived
   sample=250
   np.random.seed(1)
   training_dataset_Survived=np.random.normal(Age,Survived,sample).astype(int)
```

```
In [69]: training dataset age
Out[69]: array([30, 29, 30, 30, 30, 29, 30, 29, 29, 29, 30, 29, 29, 29, 29, 30,
             29, 29, 29, 28, 29, 30, 29, 30, 29, 29, 30, 30, 29, 29, 28,
             29, 29, 30, 30, 29, 29, 29, 29, 30, 29, 29, 29, 29, 29, 29, 29,
             29, 29, 29, 29, 30, 29, 29, 29, 29, 29, 29, 29, 30, 29, 29, 30,
             30, 30, 29, 29, 30, 29, 30, 29, 30, 29, 29, 30, 29, 29, 30, 29,
             29, 30, 29, 30, 29, 29, 30, 30, 30, 30, 29, 30, 29, 30, 30, 29, 29,
             30, 29, 29, 29, 30, 29, 29, 29, 30, 29, 29, 29, 29, 29, 29, 29,
             29, 29, 29, 29, 29, 29, 29, 30, 30, 29, 30, 29, 29, 29, 30, 29,
             29, 29, 29, 30, 29, 29, 29, 29, 30, 30, 29, 29, 30, 29, 29, 30, 29,
             29, 29, 30, 29, 29, 29, 29, 29, 29, 30, 30, 30, 29, 29, 30, 29,
             29, 29, 29, 29, 29, 30, 29, 30, 29, 29, 29, 29, 29, 30, 29, 29,
             29, 29, 29, 29, 29, 29, 29, 30, 30, 29, 29])
In [70]: training dataset Survived
Out[70]: array([15, 14, 14, 14, 14, 13, 15, 14, 14, 15, 13, 14, 14, 15, 13, 14,
             14, 14, 13, 14, 15, 14, 14, 14, 14, 15, 14, 14, 14, 15, 14, 14, 14,
             14, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 14, 14, 14, 14, 15, 15,
             15, 13, 13, 14, 14, 14, 14, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14,
             14, 14, 14, 14, 15, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15,
             14, 14, 13, 14, 14, 14, 14, 14, 13, 14, 14, 14, 14, 13, 14, 13, 15,
             14, 14, 14, 15, 15, 13, 15, 15, 14, 13, 14, 14, 14, 13, 14, 14, 14,
             15, 14, 14, 14, 14, 14, 13, 14, 14, 14, 14, 14, 14, 15, 14, 15, 13,
             14, 14, 15, 14, 14, 14, 15, 14, 14, 14, 13, 14, 14, 15, 14, 14, 14,
             14, 14, 14, 15, 14, 15, 15, 14, 13, 14, 14, 14, 15, 14, 14, 15,
             13, 13, 13, 14, 13, 15, 14, 13, 15, 14, 13, 14, 14, 14, 15, 14, 15,
             14, 15, 14, 13, 15, 14, 14, 14, 14, 14, 14, 15, 14, 13, 13, 14,
             13, 14, 14, 14, 14, 13, 14, 14, 14, 14, 15, 13])
In [71]: training_dataset=pd.DataFrame({'training_dataset_age':training_dataset_age,'train
```

In [111]: training_dataset

Out[111]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Ci
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	

891 rows × 12 columns

4

In [73]: training_dataset.plot() # bar chart for visualization

Out[73]: <AxesSubplot:>

In [74]: training_dataset.groupby('training_dataset_age').count()

Out[74]:

training_dataset_Survived

	training_dataset_age
4	28
188	29
58	30

In [75]: training_dataset.groupby('training_dataset_age').count().plot()

Out[75]: <AxesSubplot:xlabel='training_dataset_age'>


```
In [76]: training_dataset.groupby('training_dataset_Survived').count().plot()
```

Out[76]: <AxesSubplot:xlabel='training_dataset_Survived'>


```
In [77]: training_dataset.hist()# these unique values is grouped into ranges, these ranges #and in python the default number of bins is 10
```



```
In [78]: training_dataset.hist(bins=20)
```


Out[79]: <AxesSubplot:ylabel='Frequency'>


```
In [80]: training_dataset.plot.hist(bins=20,alpha=0.7)
```

Out[80]: <AxesSubplot:ylabel='Frequency'>

Q16: We can convert features which contain strings to numerical values. This is required by most

model algorithms. Doing so will also help us in achieving the feature completing goal. In this question ,please convert Sex feature to a new feature called Gender where female=1 and male=0.

```
In [81]: d = {'Gender': pd.Series([0,1], index=['male','female'])}
    df = pd.DataFrame(d)
    print (df)
```

Gender male 0 female 1

In [82]: training_dataset.head()

Out[82]:

	training_dataset_age	training_dataset_Survived
0	30	15
1	29	14
2	30	14
3	30	14
4	30	14

```
In [83]: header = training_dataset.iloc[0] #how to change the column name?
```

In [84]: print(header)

training_dataset_age 30 training_dataset_Survived 15

Name: 0, dtype: int32

Q18: Completing a categorical feature: Embarked feature takes S, Q, C values based on port of

embarkation. Our training dataset has some missing values. Please simply fill these with the most common occurrences.

In [85]: training_dataset.ffill(axis = 1)

Out[85]:

	training_dataset_age	training_dataset_Survived
0	30	15
1	29	14
2	30	14
3	30	14
4	30	14
245	29	14
246	30	14
247	30	14
248	29	15
249	29	13
	1 2 3 4 245 246 247	0 30 1 29 2 30 3 30 4 30 245 29 246 30 247 30 248 29

250 rows × 2 columns

```
In [113]: n = 3
    training_dataset['Embarked'].value_counts()[:n].index.tolist()
```

Out[113]: ['S', 'C', 'Q']

In [114]: training_dataset['Embarked'].value_counts() # here we are cheecking the most occu

Out[114]: S 644 C 168 O 77

Name: Embarked, dtype: int64

in the above example S occur=646, Q occure=77, and C occur=168 so we replace the value of missing values with S

In [115]:	15]: training_dataset['Embarked']=training_dataset['Embarked'].fillna('S')# replo		
In [89]:	training_dataset.head()		
Out[89]:	training_dataset_age training_dataset_Survived		
	0 30) 15	
	1 29	9 14	
	2 30) 14	
	3 30		
	4 30	14	
In [90]:	training_dataset.isnull().sum()		
Out[90]:	training_dataset_ag training_dataset_Su dtype: int64		
In []:			