The Structure of Mathematical Expressions

An ArXiv Case Study

Deyan Ginev and Bruce R. Miller

National Institute of Standards and Techonology

March 16, 2012

Contents

C	onten	ts	2
1	Intr	oduction	3
	1.1	Motivation	3
	1.2	Related Resources	3
	1.3	Experimental Setup	3
2	A S	tudy of Mathematical Syntax	5
	2.1	Basics	5
	2.2	Set Theoretic Notations	5
	2.3	Logical Operators	5
	2.4	Combinatorics	5
	2.5	Number Theory	6
	2.6	Graph Theory	6
	2.7	Algebra	6
	2.8	Functions Theory	6
	2.9	Calculus	6
	2.10	Probability	6
	2.11	Interval Notation and Arithmetic	7
	2.12	Topology	7
		Quantum Physics	7
3	Disc	cussion	9
4	Con	clusion	11

Chapter 1

Introduction

In this study, we survey the notational diversity of present-day mathematical expressions, in order to uncover its linguistic phenomena.

1.1 Motivation

We want to enable machine-reading of formulas, in order to provide a variety of user-assistance services, such as semantic search, text-to-speech synthesis, semantic interactions (definition lookup), as well as computer algebra support ("evaluate subexpressions on demand") and ultimately computer verification ("does that proof step really hold?").¹

EdN:1

1.2 Related Resources

Notation census, beginnings of study are in Deyan's thesis, Naproche and FMathL have examples, but no real systematic study.²

EdN:2

1.3 Experimental Setup

The primary corpus on which we base this investigation is the Cornel pre-print archive "arXiv"³, consisting of over 700,000 articles in 37 scientific subfields.

EdN:3

As a secondary resource, we we will also consult entry-level literature on highschool mathematics, in order to exhibit basic phenomena, as well as to demonstrate phenomena apriori known to the authors

 $^{^{1}\}mathrm{EdNote}$: expand

 $^{^2\}mathrm{EdNote}$: expand

³EDNOTE: cite here

Chapter 2

A Study of Mathematical Syntax

2.1 **Basics**

Foundations

4 5 6

EdN:4 EdN:5 EdN:6 **High School** 7 8 EdN:7 EdN:8

Discrete math 2.2

Set Theoretic Notations

9 10 EdN:9 EdN:10

Logical Operators

11 EdN:11

⁴EdNote: arithmetic, grouping fences and equality

⁵EDNOTE: basic relations and orderings

 $^{^6\}mathrm{Ed}\mathrm{Note}$: arithmetic and algebraic sequences?

 $^{^7\}mathrm{EdNote}$ geometry here, otherwise a separate geometry subsection

⁸EDNOTE: trigonometry, complex and rational numbers

 $^{^9\}mathrm{EdNote}$: elementhood, inclusions, set constructors, overloaded arith ops

 $^{^{10}\}mathrm{EdNote}\colon$ also maps : domains -¿ codomains, xRy notations

¹¹EDNOTE: classic logic, HOL, type theories

Combinatorics

EdN:12

12 13

EdN:13

Number Theory

EdN:14

14 15 16 17

EdN:15

EdN:16 Graph Theory

EdN:17

18 19 20 EdN:18

EdN:19

Algebra EdN:20

EdN:21

21 22 23 24

EdN:22

EdN:23 **Functions Theory**

EdN:24

EdN:25

2.3 Continuous math

Calculus

EdN:26

Probability

EdN:27

27 28

EdN:28

 $^{12}\mathrm{EdNote}$: Infinite sums

¹³EdNote: binomials, combinations, permutations,

¹⁴EDNOTE: modulo modifiers

¹⁵EdNote: tuples

 16 EDNOTE: divisibility notations $a \mid b$ and b/a

¹⁷EDNOTE: DLMF sneaky notations

¹⁸EDNOTE: edge and vertex notations

¹⁹EdNote: incidence and adjacency notations

²⁰EDNOTE: Wiki is very nice: http://en.wikipedia.org/wiki/Glossary_of_graph_theory

 $^{21}\mathrm{EdNote}$: vectors

²²EDNote: maps and complements

²³EDNOTE: groups

²⁴EdNote: lattices

 $^{25}\mathrm{EdNote}$: talk about associativity of application and composition, ";" and " \circ " as notation variants, discuss complex examples

²⁶EDNOTE: differentials, integrals, limits, remember brownian motion integral notations!

 $^{27}\mathrm{EdNote}$: Bayes formula with multiple denotations of P

²⁸EdNote: Various conditional and joint probability notations

Interval Notation and Arithmetic

EdN:29

Topology

30 EdN:30

2.4 Other fields

Quantum Physics

31 32 : EdN:31 EdN:32

 $^{^{29}\}mathrm{EdNote}$: introduce interval notations, then move to interval arithmetic

 $^{^{30}\}mathrm{EdNote}$: manifold constructors and notations

 $^{^{31}\}mathrm{EdNote}$: Bra-ket notation

³²EDNOTE: computer science, biology, chemistry...

Chapter ${\it 3}$

Discussion

Chapter 4

Conclusion