

Seven Fundamental Statistical Tests for Categorical Data

Kim Love

Outline of Topics

- Introduction
- Goodness of Fit Tests
 - Chi-Square Test
- Tests of Independence
 - Chi-Square Test; Cochran-Mantel-Haenszel Test
 - Note on Measures of Association
- Tests of Homogeneity
 - Chi-Square Test; Fisher Exact Test; Two-Sample Z Test for Proportions;
 McNemar Test of Symmetry
- Discussion

Introduction

Categorical Data

- Nominal ("color" = red, green, orange)
- Ordinal ("size" = small, medium, large)

Introduction

"Simple" Tests

- Generally for two variables
- Simple questions:
 - Are these measures related?
 - Are these groups different?
- All for nominal data
- Equations ahead!
 - Maybe not be simple on first glance

Introduction

Chi-Square Distributions

- Observed: number of observations observed in a category
- Expected: number of observations expected in a category

$$\sum \frac{(Observed - Expected)^2}{Expected} = \chi^2$$

- Many variations
- Approximation considered acceptable if
 - Expected in all categories ≥ 1
 - 80% of categories, expected ≥ 5

Goodness of Fit Tests

Goodness of fit

- One variable test
- "Does this distribution fit these data?" or "Could these data be produced by this distribution?"
- Familiar examples: Kolmogorov-Smirnov, Shapiro-Wilk

Example 1: Eye Color (multinomial distribution)

- Eye color alleles: B and b
- Four possible combinations
 - BB = two brown eyes
 - Bb, bB = one brown, one blue eye
 - bb = two blue eyes
- Question: Are both alleles equally likely to be passed to offspring?

Example 1: Eye Color

- 100 (independent) sets of parents, all Bb/bB
- 1 offspring per set of parents
- Eye color recorded:

Two Brown	Mixed	Two Blue	Total
36	43	21	100

- Expected under null hypothesis (equally likely B/b combinations)?
 - 25% each: BB, Bb, bB, bb

Two Brown	Mixed	Two Blue	Total
25	50	25	100

Example 1: Eye Color

• Chi-square statistic:

$$\sum_{i=1}^{k} \frac{(Observed_i - Expected_i)^2}{Expected_i} = \chi_{k-1}^2$$

• k = 3 categories

Example 1: Eye Color

Chi-square statistic:

$$\sum_{i=1}^{3} \frac{(Observed_i - Expected_i)^2}{Expected_i} = \chi_2^2$$

- Calculation: $\frac{(36-25)^2}{25} + \frac{(43-50)^2}{50} + \frac{(21-25)^2}{25} = 6.46$
- Determine: p value = $P(\chi_2^2) > 6.46 = 0.0396$

Example 2*: Number of Shoppers per Minute (Poisson Distribution)

- Number of shoppers entering store in one minute
- Question: Is this Poisson distributed (potentially with a mean of 2 per minute)?

^{*}Borrowed from Prof. Robert Schulman's Inference Fundamentals course

Example 2: Number of Shoppers per Minute

- 200 randomly selected minutes in store observed
- Number of people entering during each minute recorded

Number of People

	0	1	2	3	4	5	≥ 6
Number of Minutes	18	44	49	43	27	12	7
Expected under Poisson (λ =2)	27.07	54.13	54.13	36.09	18.05	7.22	3.31

Example 2: Number of Shoppers per Minute

$$\sum_{i=1}^{7} \frac{(Observed_i - Expected_i)^2}{Expected_i} = \chi_6^2$$

• Calculation:
$$\frac{(18-27.07)^2}{27.07} + \frac{(44-54.13)^2}{54.13} + \cdots + \frac{(7-3.31)^2}{3.31} = 18.46$$

Example 2: Number of Shoppers per Minute

- Rejected; is Poisson rejected? Or just $\lambda=2$?
- Estimate λ from data: try $\lambda = 2.41$

Number of Minutes

$$0$$
 1 2 3 4 5 ≥ 6 Number of People 18 44 49 43 27 12 7 Expected under Poisson (λ=2.41) 17.96 43.29 52.17 41.91 25.25 12.17 7.26

• Calculation:
$$\frac{(18-17.96)^2}{17.96} + \frac{(44-43.29)^2}{43.29} + \dots + \frac{(7-7.26)^2}{7.26} = 0.365$$

• $P(\chi_5^2) > 0.365 = 0.9962$

Tests of Independence

Independence

- Two variable test—mostly
- "Are the values of these two variables related?" or "Does the value of one variable help predict the value of the other?"
- Not the same concept as correlation, but connected

Recall recurring chi-square theme:

$$\sum \frac{(Observed - Expected)^2}{Expected} = \chi^2$$

What does this look like for independence?

Example: Car Transmission and Drive Train Types

Is manual transmission availability related to a car's drive train type?

Manual Transmission	n Drive Train				
Available?	Front	Rear	4WD	Total	
No	22	<u>)</u>	7	3	32
Yes	45	,	9	7	61
Total	67	,	16	10	93

Example: Car Transmission and Drive Train Types

Manual Transmission	D	rive Ti			
Available?	Front	Rear	4WD	Total	
No	22	<u>)</u>	7	3	32
Yes	45	· •	9	7	61
Total	67	, :	16	10	93

- Under independence, how many expected manual transmission x front wheel drive models?
 - P(MT) = 61/93 = 65.59%; P(Front) = 67/93 = 72.04%
 - P(MT & Front) = 65.59% x 72.04% = 47.25%
 - Expected count of MT & Front = 47.25% x 93 = 43.94

Example: Car Transmission and Drive Train Types

• Chi-square statistic:

$$\sum_{j=1}^{3} \sum_{i=1}^{2} \frac{\left(Observed_{ij} - Expected_{ij}\right)^{2}}{Expected_{ij}} = \chi^{2}_{(2-1)(3-1)}$$

• Calculation:
$$\frac{(22-23.05)^2}{23.05} + \frac{(45-43.95)^2}{43.95} + \dots + \frac{(7-6.56)^2}{6.56} = 0.778$$

• $P(\chi_2^2) > 0.778 = 0.678$

- Similar to chi-square test
 - Includes a "blocking" or "strata" variable
 - Are two variables independent after stratification?

Example: Car Transmission and Drive Train Types—by Origin

- Previous result indicates independence
- Does independence hold if we break into strata?

Foreign Cars

Manual Transmission	Drive Train		
Available?	Rear/4WD Front	Total	
No	3	3	6
Yes	9	30	39
Total	12	33	45

US Cars

Manual Transmission	Drive Train		
Available?	Rear/4WD Front	Total	
No	7	19	26
Yes	7	15	22
Total	14	34	48

Example: Car Transmission and Drive Train Types—by Origin

A single stratum 2 x 2 table:

Manual Transmission	Drive Tr	ain
Available?	Rear/4WD	Front
No	а	b
Yes	С	d

• n = a + b + c + d (total observations within a stratum)

Example: Car Transmission and Drive Train Types—by Origin

• Chi-square statistic:

$$\frac{\left\{ \left| \sum \left(a - \frac{(a+b)(a+c)}{n} \right) \right| - 0.5 \right\}^{2}}{\sum \left(\frac{(a+b)(a+c)(b+d)(c+d)}{n^{3} - n^{2}} \right)} = \chi_{1}^{2},$$

where sums are over all strata

Example: Car Transmission and Drive Train Types—by Origin

Foreign Cars

Manual Transmission	Drive Train		
Available?	Rear/4WD Front	Total	
No	3	3	6
Yes	9	30	39
Total	12	33	45

US Cars

Manual Transmission	Drive Train		
Available?	Rear/4WD Front	Total	
No	7	19	26
Yes	7	15	22
Total	14	34	48

• Calculation:
$$\frac{\left\{ \left(3 - \frac{(6)(12)}{45} \right) + \left(7 - \frac{(26)(14)}{48} \right) - 0.5 \right\}^2}{\frac{(6)(12)(39)(33)}{45^3 - 45^2} + \frac{(26)(14)(22)(34)}{48^3 - 48^2}} = 0.028$$

•
$$P(\chi_1^2) > 0.028 = 0.837$$

Tests of Independence: Note on Measures of Association

- Tests provide evidence of non-zero effect (when it exists)
 - Strength of effect also important
 - Direction of effect important for ordinal variables
- See https://programs.theanalysisfactor.com/statistically-speaking/trainings/measures-of-association-beyond-pearsons-correlation/

Tests of Homogeneity

Homogeneity

- Two variable test
- "Are these populations the same with respect to this variable?" or "Is the distribution of this variable the same within these populations?"
- Like t-tests, but for categories

Tests of Homogeneity: Chi-Square Test

Example: Reasons for Immigration in Madagascar

• Is the distribution of reasons for immigrating to an urban center the same for male and female residents of Madagascar?

	Reas	Reason for Move				
Gender	Education Family	1	Work/Money Other	To	otal	
Female	4	11	10	7	32	
Male	11	2	7	3	23	
Total	15	13	17	10	55	

Tests of Homogeneity: Chi-Square Test

Example: Reasons for Immigration in Madagascar

Recurring chi-square statistic theme:

$$\sum \frac{(Observed - Expected)^2}{Expected} = \chi^2$$

- If male/female are the same, for example:
 - Percent of people naming education = 15/55 = 27.27%
 - Expected education count for female: $27.27\% \times 32 = 8.73$
 - Expected education count for male $27.27\% \times 23 = 6.27$

Tests of Homogeneity: Chi-Square Test

Example: Reasons for Immigration in Madagascar

In fact, chi-square statistic turns out to be

$$\sum_{j=1}^{2} \sum_{i=1}^{4} \frac{\left(Observed_{ij} - Expected_{ij}\right)^{2}}{Expected_{ij}} = \chi^{2}_{(4-1)(2-1)},$$

same as if testing for independence

• Calculation:
$$\frac{(4-8.73)^2}{8.73} + \frac{(11-6.27)^2}{6.27} + \dots + \frac{(3-4.18)^2}{4.18} = 10.433$$

•
$$P(\chi_3^2) > 10.433 = 0.015$$

- Earlier: chi-square approximation considered acceptable if
 - Expected always ≥ 1
 - 80% of expected ≥ 5
- Fisher exact test does not rely on any approximation
 - Appropriate for small sample sizes
 - Appropriate for "rare event" data

Example: Reasons for Immigration in Madagascar

• Suppose we limit reasons to family/not family and ask again: Is the distribution of reasons for immigrating to an urban center the same for male and female residents of Madagascar?

Reason for Move						
Gender	Family	Othe	r reason	Tota	al	
Female	-	11	2	1	32	
Male		2	2	1	23	
Total	•	13	4	2	55	

Example: Reasons for Immigration in Madagascar

Fix margins of table:

Reason for Move							
Gender	Family	Othe	er reason	-	Гotal		
Female		11	2	1	32		
Male		2	2	1	23		
Total		13	4	2	55		

- Assume male and female equally likely to move for family
- Given 13/55 moved for family, and 32/55 are female, calculate P(11 female, 2 male) = 0.0225

Example: Reasons for Immigration in Madagascar

 What about even more extreme situations, if male and female equally likely to move for family?

P(12 female, 1 male) = 0.0036, P(13 female, 0 male) = 0.0002, ...

Example: Reasons for Immigration in Madagascar

 What about even more extreme situations, if male and female equally likely to move for family?

P(12 female, 1 male) = 0.0036, P(13 female, 0 male) = 0.0002, P(0 female, 13 male)
$$\approx 0$$
, ..., P(4 female, 9 male) = 0.0202

• Final p value = 0.0225 + 0.0036 + 0.0002 + 0 + ... + 0.0202 = 0.0510

Tests of Homogeneity: Two-Sample Z Test for Proportions

- For homogeneity, chi-square is approximate
- We can also approximate a Z statistic (i.e., standard normal) when table 2 x 2
- Ultimately, they are equivalent
 - $-(Z)^2 = \chi_1^2$
 - p value from Z test = p value from chi-square test

Tests of Homogeneity: Two-Sample Z Test for Proportions

Example: Reasons for Immigration in Madagascar

	Reason for Move							
Gender	Family	Othe	r reason [·]	Total				
Female	11		21	32				
Male	2		21	23				
Total		13	42	55				

- If P(reason = family) the same, best estimate = 13/55 = 23.63%
- P(reason = family) for females = 11/32 = 34.37%
- P(reason = family) for males = 2/23 = 8.69%

Tests of Homogeneity: Two-Sample Z Test for Proportions

Example: Reasons for Immigration in Madagascar

• Calculation:
$$Z = \frac{0.3437 - 0.0869}{\sqrt{0.2363(1 - 0.2363)(\frac{1}{32} + \frac{1}{23})}} = 2.21$$

- P(Z > |2.21|) = 0.027
- Note: Z can be "one tailed," chi-square cannot
 - Are women more likely to move for family?
 - P(Z > 2.21) = 0.014

- What if values of variables not independent?
 - Example: pre/post
- This requires a different test
- Similar to a paired t-test

Example: Exercise Program and Pre-Diabetic Status

Is the probability of pre-diabetes the same before and after an exercise program?

	Post-Ex			
Pre-Exercise	Not Pre-Diabetic	Pre-Diabetic	Total	
Not Pre-Diabetic	1	5	2	17
Pre-Diabetic	1	0	8	18
Total	2	5	10	35

Example: Exercise Program and Pre-Diabetic Status

- Table tells us:
 - Pre-exercise, 18/35 = 51.42% are pre-diabetic
 - Post-exercise, 10/35 = 28.57% are pre-diabetic
 - Overall, 15 + 8 = 23 did not change status; 10 improved, 2 declined
- McNemar test: for those who change, assume P(improve) = P(decline) = 50%

Example: Exercise Program and Pre-Diabetic Status

- For small samples, do an exact test (very similar to Fisher's)
- For larger samples, use standard normal approximation:

$$\frac{n_+ - n_-}{\sqrt{n_+ + n_-}} = Z$$

- Calculation: $\frac{10-2}{\sqrt{10+2}} = 2.309$
- P(Z > |2.309|) = 0.0209

Discussion

Questions?

Resources at The Analysis Factor

Statistically Speaking Presentations: Log in at

https://programs.theanalysisfactor.com

Go to your Statistically Speaking Membership, click on Trainings, and search for:

- Measures of Association: Beyond Pearson's Correlation
- Non-Parametric Analyses
- Determining Levels of Measurement: What Lies Beneath the Surface
- Analysis of Ordinal Variables Options Beyond Nonparametrics
- Types of Regression Models and When to Use Them

References

Practical Nonparametric Statistics by W. J. Conover: <u>click</u>