Computer Vision

Class 02 - Complement

Raquel Frizera Vassallo

Object
Transformation
X
Changing Reference
Frame

Let's use an example to explain the difference

Consider the following reference frames:

Both reference frames are aligned and placed at the same position.

$$C_0 = C_1 = [0,0,1]^{\mathrm{T}}$$

1.A rotation of 45°

- 1. A rotation of 45°
- 2. Translation of (1,1)

- 1. A rotation of 45°
- 2. Translation of (1,1)

$$C_1' = T(1, 1).R(45^o).C_1$$

$$C_1 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$$

$$C_1' = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$$

$$C_1' = T(1,1).R(45^o).C_1$$

$$C_1' = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$C'_{1} = T(1,1).R(45^{o}).C_{1}$$

$$C'_{1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$C'_{1} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$C'_{1} = T(1,1).R(45^{o}).C_{1}$$

$$C'_{1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$C'_{1} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$C'_{1} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{T}$$

Now, let's define a point P in S_1 with coordinates $P_1 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$ It is easy to infer that such point in S_0 has the coordinates $P_0 = \begin{bmatrix} 1 + \frac{\sqrt{2}}{2} & 1 + \frac{\sqrt{2}}{2} & 1 \end{bmatrix}^T$

Now, let's define a point P in S_1 with coordinates $P_1 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$ It is easy to infer that such point in S_0 has the coordinates $P_0 = \begin{bmatrix} 1 + \frac{\sqrt{2}}{2} & 1 + \frac{\sqrt{2}}{2} & 1 \end{bmatrix}^T$

To change coordinates that are known in S_1 to the reference frame S_0 , we can use the transformation defined previously when we transformed the "object" S_1 . Thus to obtain the coordinates P_0 from the known coordinates P_1 , we can do as:

$$P_0 = T(1, 1).R(45^{\circ}).P_1$$

Now, let's define a point P in S_1 with coordinates $P_1 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$ It is easy to infer that such point in S_0 has the coordinates $P_0 = \begin{bmatrix} 1 + \frac{\sqrt{2}}{2} & 1 + \frac{\sqrt{2}}{2} & 1 \end{bmatrix}^T$

To change coordinates that are known in S_1 to the reference frame S_0 , we can use the transformation defined previously when we transformed the "object" S_1 . Thus to obtain the coordinates P_0 from the known coordinates P_1 , we can do as:

$$P_0 = T(1,1).R(45^o).P_1$$

$$P_0 = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$

Now, let's define a point P in S_1 with coordinates $P_1 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$ It is easy to infer that such point in S_0 has the coordinates $P_0 = \left[1 + \frac{\sqrt{2}}{2} \ 1 + \frac{\sqrt{2}}{2} \ 1\right]^T$

 $P_0(1+\sqrt{2}/2, 1+\sqrt{2}/2)$ $P_1(1,0)$

To change coordinates that are known in S₁ to the reference frame S_0 , we can use the transformation defined previously when we transformed the "object" S_1 . Thus to obtain the coordinates P_0 from the known coordinates P_1 , we can do as:

$$P_0 = T(1,1).R(45^o).P_1$$

$$P_{0} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$

$$P_{0} = \begin{bmatrix} 1 + \frac{\sqrt{2}}{2} & 1\\ 1 \end{bmatrix}$$

$$P_0 = \left[1 + \frac{\sqrt{2}}{2} \ 1 + \frac{\sqrt{2}}{2} \ 1\right]^T$$

Now, let's define a point P in S_1 with coordinates $P_1 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$ It is easy to infer that such point in S_0 has the

$$P_0 = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$

$$P_0 = \left[1 + \frac{\sqrt{2}}{2} \ 1 + \frac{\sqrt{2}}{2} \ 1\right]^T$$

ference frame

hen we

nates P_{o}

Using such method, to change from S_1 to S_0 , we transform S_0 until it overlaps S_1 .

Using such method, to change from S_1 to S_0 , we transform S_0 until it overlaps S_1 .

1. Translate (1,1)

Using such method, to change from S_1 to S_0 , we transform S_0 until it overlaps S_1 .

- 1. Translate (1,1)
- 2.Rotate 45°

Using such method, to change from S_1 to S_0 , we transform S_0 until it overlaps S_1 .

- 1. Translate (1,1)
- 2.Rotate 45°

$$P_0 = T(1, 1).R(45^o).P_1$$
Convert from S_1 to S_0 .

$$P_1 = [T(1,1).R(45^o)]^{-1}.P_0$$

$$P_1 = [T(1,1).R(45^o)]^{-1}.P_0$$

$$C_0 = C_1$$

$$C_1 = C_1$$

$$C_1 = C_1$$

$$C_1 = C_1$$

$$P_1 = R(45^{\circ})^{-1}.T(1,1)^{-1}.P_0$$

 $P_1 = [T(1,1).R(45^o)]^{-1}.P_0$

$$P_1 = [T(1,1).R(45^o)]^{-1}.P_0$$

$$P_1 = R(45^{\circ})^{-1}.T(1,1)^{-1}.P_0$$

$$P_1 = R(-45^\circ).T(-1, -1).P_0$$

Convert from S_0 to S_1 .

When using intermediate frames, that corresponds to:

- 1. Rotate -45°
- 2. Translate (-1,-1)

$$P_{0} = \begin{bmatrix} 1 + \frac{\sqrt{2}}{2} & 1 + \frac{\sqrt{2}}{2} & 1 \end{bmatrix}^{T}$$

$$P_{1} = R(-45^{o}).T(-1, -1).P_{0}$$

$$P_{0}(1+\sqrt{2}/2, 1+\sqrt{2}/2)$$

$$P_{1}(1,0)$$

$$P_{1} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 + \frac{\sqrt{2}}{2} \\ 1 + \frac{\sqrt{2}}{2} \\ 1 \end{bmatrix}$$

$$P_{1} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 + \frac{\sqrt{2}}{2} \\ 1 + \frac{\sqrt{2}}{2} \\ 1 \end{bmatrix}$$

$$P_{0} = \begin{bmatrix} 1 + \frac{\sqrt{2}}{2} & 1 + \frac{\sqrt{2}}{2} & 1 \end{bmatrix}^{T}$$

$$P_{1} = R(-45^{o}).T(-1, -1).P_{0}$$

$$P_{1} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 + \frac{\sqrt{2}}{2} \\ 1 + \frac{\sqrt{2}}{2} \\ 1 \end{bmatrix}$$

$$P_{1} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -\sqrt{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 + \frac{\sqrt{2}}{2} \\ 1 + \frac{\sqrt{2}}{2} \\ 1 + \frac{\sqrt{2}}{2} \end{bmatrix}$$

$$P_{1} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{T}$$

IMPORTANT:

When considering intermediate reference frames, translation and rotation must be defined according to the current frame.

From
$$S_1$$
 to $S_0 \to P_0 = T(1, 1).R(45^o).P_1$

From
$$S_0$$
 to $S_1 \to P_1 = R(-45^o).T(-1, -1).P_0$

IMPORTANT:

When considering intermediate reference frames, translation and rotation must be defined according to the current frame.

From
$$S_1$$
 to $S_0 \to P_0 = T(1, 1).R(45^o).P_1$

From
$$S_0$$
 to $S_1 \to P_1 = R(-45^o).T(-1,-1).P_0$

Note that in both cases above, the translation is defined according to the orientation of S_0 . Thus before performing such translation we must align the intermediate frame with S_0 , so it can be applied correctly.

From S_1 to $S_0 \rightarrow Transform S_0$ until it overlaps S_1 :

From S_1 to $S_0 \to Transform S_0$ until it overlaps S_1 : 1. Rotate 45°

From S_1 to $S_0 \rightarrow$ Transform S_0 until it overlaps S_1 :

- 1. Rotate 45°
- 2. Translate $(\sqrt{2},0)$

From S_1 to $S_0 \to Transform S_0$ until it overlaps S_1 :

- 1. Rotate 45°
- 2. Translate $(\sqrt{2},0)$

Defined according to the new orientation of the intermediate frame.

From S_1 to $S_0 \rightarrow$ Transform S_0 until it overlaps S_1 :

- 1. Rotate 45°
- 2. Translate $(\sqrt{2},0)$

$$P_0 = R(45^\circ).T(\sqrt{2},0).P_1$$

From S_1 to $S_0 \rightarrow Transform S_0$ until it overlaps S_1 :

- 1. Rotate 45°
- 2. Translate $(\sqrt{2},0)$

$$P_{0} = R(45^{o}).T(\sqrt{2},0).P_{1}$$

$$P_{0} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & \sqrt{2}\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$$

Now, let's try a different order of intermediate transformations.

From S_1 to $S_0 \to Transform S_0$ until it overlaps S_1 :

- 1. Rotate 45°
- 2. Translate $(\sqrt{2},0)$

$$P_{0} = R(45^{o}).T(\sqrt{2}, 0).P_{1}$$

$$P_{0} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & \sqrt{2}\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$$

$$P_{0} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \end{bmatrix} \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$$

Now, let's try a different order of intermediate transformations.

Now, let's try a different order of intermediate transformations.

From S_1 to $S_0 \rightarrow Transform S_0$ until it overlaps S_1 :

1. Rotate 45°

1. Rotate
$$45^{\circ}$$
2. Translate $(\sqrt{2},0)$

$$P_{0}(1+\sqrt{2}/2,1+\sqrt{2}/2)$$

$$P_{1}(1,0)$$

$$P_{0} = R(45^{\circ}).T(\sqrt{2},0).P_{1}$$

$$C_{0} = C_{1}$$

$$S_{0}$$
It is the same matrix obtained from $T(1,1).R(45^{\circ})!!!!$

$$P_{0} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & \sqrt{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$P_{0} = \begin{bmatrix} 1 + \frac{\sqrt{2}}{2} & 1 + \frac{\sqrt{2}}{2} & 1 \\ 0 & 0 & 1 \end{bmatrix}^{T}$$

From S_0 to $S_1 \to Transform <math>S_1$ until it overlaps S_0 :

From S_0 to $S_1 \to Transform S_1$ until it overlaps S_0 : 1. Translate $(-\sqrt{2},0)$

From S_0 to $S_1 \rightarrow Transform <math>S_1$ until it overlaps S_0 :

- 1. Translate $(-\sqrt{2},0)$
- 2. Rotate -45°

From S_0 to $S_1 \rightarrow Transform <math>S_1$ until it overlaps S_0 :

- 1. Translate $(-\sqrt{2},0)$
- 2. Rotate -45°

$$P_1 = T(-\sqrt{2}, 0).R(-45^{\circ}).P_0$$

From S_0 to $S_1 \rightarrow Transform <math>S_1$ until it overlaps S_0 :

- 1. Translate $(-\sqrt{2},0)$
- 2. Rotate -45°

$$P_{1} = T(-\sqrt{2}, 0).R(-45^{o}).P_{0}$$

$$P_{1} = \begin{bmatrix} 1 & 0 & -\sqrt{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 + \frac{\sqrt{2}}{2} \\ 1 + \frac{\sqrt{2}}{2} \\ 1 \end{bmatrix}$$

$$P_{1} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -\sqrt{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 + \frac{\sqrt{2}}{2} \\ 1 + \frac{\sqrt{2}}{2} \\ 1 \end{bmatrix}$$

From S_0 to $S_1 \rightarrow$ Transform S_1 until it overlaps S_0 :

- 1. Translate $(-\sqrt{2},0)$
- 2. Rotate -45°

$$P_{1} = T(-\sqrt{2}, 0).R(-45^{o}).P_{0}$$

$$P_{1}(1,0) = \begin{bmatrix} 1 & 0 & -\sqrt{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 + \frac{\sqrt{2}}{2} \\ 1 + \frac{\sqrt{2}}{2} \\ 1 \end{bmatrix}$$

$$C_{0} = C_{1}$$

$$S_{0}$$

$$P_{1} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -\sqrt{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 + \frac{\sqrt{2}}{2} \\ 1 + \frac{\sqrt{2}}{2} \\ 1 \end{bmatrix}$$

$$P_{1} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{T}$$

From S_0 to $S_1 \rightarrow$ Transform S_1 until it overlaps S_0 :

- 1. Translate $(-\sqrt{2},0)$
- 2. Rotate -45°

$$P_{1} = T(-\sqrt{2}, 0).R(-45^{o}).P_{0}$$

$$P_{1}(1,0) = \begin{bmatrix} 1 & 0 & -\sqrt{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 + \frac{\sqrt{2}}{2} \\ 1 + \frac{\sqrt{2}}{2} \\ 1 \end{bmatrix}$$

$$C_{0} = C_{1}$$

$$S_{0}$$
It is the same matrix obtained from R(-45^{o}).T(-1,-1)!!!!
$$P_{1} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{T}$$

$$P_{1} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{T}$$

$$C_0 = T(-\sqrt{2}, 0).R(-45^{\circ})C_0'$$

$$C_0 = T(-\sqrt{2}, 0).R(-45^{\circ})C_0'$$

$$C_0 = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -\sqrt{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} C_0'$$

$$C_{0} = T(-\sqrt{2}, 0).R(-45^{o})C'_{0}$$

$$C_{0} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -\sqrt{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} C'_{0} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{T}$$

$$C_{0} = \begin{bmatrix} -\sqrt{2} & 0 & 1 \end{bmatrix}^{T}$$
In frame S₁!!!

$$C_{0} = T(-\sqrt{2}, 0).R(-45^{o})C_{0}'$$
Rotation
$$R(-45^{o})$$

$$C_{0} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -\sqrt{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \end{bmatrix} C_{0}'$$
Translation
$$T(-\sqrt{2}, 0)$$

$$C_{0} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Finally, note that:

From S_1 to S_0 From S_0 to S_1

Defined from S_a

$$M_{01} = T(1,1).R(45^{\circ})$$

$$M_{01} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1\\ 0 & 0 & 1 \end{bmatrix}$$

$$M_{10} = R(-45^{\circ}).T(-1, -1)$$

$$M_{01} = T(1,1).R(45^{o}) \qquad M_{10} = R(-45^{o}).T(-1,-1)$$

$$M_{01} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1\\ 0 & 0 & 1 \end{bmatrix} \qquad M_{10} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -\sqrt{2}\\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Defined from S₁

$$M_{01} = R(45^{\circ}).T(\sqrt{2},0)$$

$$M_{01} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1\\ 0 & 0 & 1 \end{bmatrix}$$

$$M_{10} = T(-\sqrt{2}, 0).R(-45^{\circ})$$

$$M_{01} = R(45^{\circ}).T(\sqrt{2},0) \qquad M_{10} = T(-\sqrt{2},0).R(-45^{\circ})$$

$$M_{01} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1\\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1\\ 0 & 0 & 1 \end{bmatrix} \qquad M_{10} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -\sqrt{2}\\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Finally, note that:

Finally, note that: From
$$S_1$$
 to S_0 define the S_1 (So, if we use intermediate frames to define two if we transformations between two references, or if we transformations transformation by transformations define such conversion by transformations defined in a fixed frame...

$$C_0$$

$$S_0$$

$$We end up with the same result!$$

$$M_{10} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -\sqrt{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M_{10} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -\sqrt{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$