Лабораторная работа 4.3.3. Исследование разрешающей способности микроскопа методом Аббе.

Вязовцев Андрей, Б01-005

13.05.22

Цель работы: изучение дифракционного предела разрешения объектива микроскопа.

В работе используются: лазер; кассета с набором сеток разного периода; линзы; щель с микрометрическим винтом; оптический стол с набором рейтеров и крепёжных винтов; экран; линейка.

Теоретическая справка:

Формула для расчета периодов решёток:

$$d\sin\varphi = m\lambda$$

Формула для расчета увеличения микроскопа:

$$\Gamma = \frac{b_1 b_2}{a_1 a_2}$$

Формула для расчета минимального расстояния, разрешимого микроскопом:

$$d \ge \frac{\lambda}{(D/2f)}$$

Экспериментальная установка:

Схему рабочего места можно посмотреть на рис. 1.

Рис. 1. Модель проекционного микроскопа

Ход работы:

- 1. Подготовим установку к работе, выпишем её основные характеристики: $L=120\pm0.01$ см, $\lambda=532\pm1$ нм.
- 2. Закрепим кассету с решетками, пронаблюдаем дифракционные картины для разных сеток. Измерим расстояния между соседними дифракционными максимумами для каждой решетки.

№ решетки	1	2	3	4	5
Расстояние, мм	31.3	21.0	10.5	5.2	4.3

3. Соберем модель проекционного микроскопа. Запишем его характеристики: $F_1=110\,$ мм, $F_2=25\,$ мм, $a_1=64\pm 1\,$ мм, $a_2=280\pm 1\,$ мм, $b_1=500\pm 1\,$ мм, $b_2=380\pm 1\,$ мм. Посчитаем увеличение микроскопа $\Gamma\approx 10.6\pm 0.3.$ Измерим периоды изображений сеток на экране:

№ решётки	1	2	3	4	5
b, мм	30	50	50	133	146
n	14	14	8	10	8
Период, мм	2.1	3.6	6.3	13.3	18.3

4. Поместим щелевую диафрагму с микрометрическим винтом в фокальную плоскость F линзы Π_1 . Определим для каждой решётки минимальный размер диафрагмы, при котором на экране еще видно изображение сетки (при меньших размерах щели изображение выглядит как одномерная решётка).

№ решетки	1 и 2	3	4	5
D, мм	Не видно	1.64	1.22	1.05

5. Проведём качественный опыт по пространственной фильтрации. Для этого будет поворачивать щель и наблюдать максимумы по разным направлениям. Результаты занесём в таблицу:

положение	n, ед.	1, мм	период, мм
вертикальное	15	100	6.7
горизонтальное	15	100	6.7
диагональное	15	100	6.7

6. Получим мультиплицированное изображение для всех сеток. Для этого изменим установку по методичке. При этом установим ширину щели D=0.16 мм. Заметим, что при сужении щели изображения уменьшаются, а при смене сетки уменьшается количество щелей.

Обработка результатов:

7. По измерениям спектра определим дифракционные углы и рассчитаем периоды решеток.

№ решетки	1	2	3	4	5
$\varphi, 10^{-3}$	26.1	17.5	8.75	4.31	3.61
Период, мкм	20	30	61	124	147

8. По измерениям с щелью рассчитаем период решетки:

Номер решетки		4	5
Период решетки, мкм	16	22	25

Измерения здесь, очевидно, не сошлись с предыдущими. К сожалению, автор не смог обнаружить ошибку в вычислениях.

9. Для проверки теории Аббе построим график зависимости d = f(1/D). Периоды решеток возьмем определенные по спектру.

Рис. 2. График зависимости $d=f\left(1/D\right)$