

- 1. (10 points) Given is the following automaton
  - 1 Simulate the following input: "xaxxxyabbxb". Is it accepting or non-accepting?

## Accepting

$$0 - x \longrightarrow 1 - a \longrightarrow 2 - x \longrightarrow 2 - x \longrightarrow 2 - x \longrightarrow 2$$

$$y$$

$$\downarrow y$$

$$\downarrow y$$

$$\downarrow y$$

$$\downarrow y$$

$$\downarrow y$$

$$\downarrow x$$

2 Simulate the following input: "axaaabx". Is it accepting or non-accepting?

## Non-Accepting

$$0 - a \longrightarrow 3 - x \longrightarrow 1 - a \longrightarrow 2 - a \longrightarrow 0 - a \longrightarrow 3$$

$$b$$

$$1 \longrightarrow x \longrightarrow 3$$

2. (20 points) Create a parse table for the previous automaton

|   | а  | b  | С  | х  | λ-х | λ-a-b |
|---|----|----|----|----|-----|-------|
| 0 | 3  | -1 | 1  | 1  | -1  | 1     |
| 1 | 2  | 4  | -1 | -1 | -1  | -1    |
| 2 | 0  | 0  | 0  | 2  | 0   | -1    |
| 3 | -1 | 3  | 4  | 1  | -1  | -1    |
| 4 | -1 | -1 | -1 | -1 | -1  | -1    |

- 3. (10 points) With the use of the parse table you created in 2, parse:
  - xaxxoabc



abbxaas



- 4. (12 points) Using only union, concatenation and closure, write regular expressions for the following:
  - 1 All numbers of the senary system (base 6).

## (0|1|2|3|4|5)(0|1|2|3|4|5)\*

2 All binary strings that start with 101 and end with a 011 or 00.

## (101)(0|1)\*(011|00)

3 All words that start with letter w or x or z, end with a z or a ? and have at least 4 characters. (w|x|z)...\*(az|a\?)