Analiza Matematyczna - Powtórka do egzaminu

1 Granice

1.1 Podstawienia

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = e^a \tag{1}$$

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \log_a e \; , \; \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$$
 (2)

$$\lim_{x \to 0} \frac{(\sin|\tan|\sinh|\sinh|\sin^{-1}|\tan^{-1})x}{x} = 1 \tag{3}$$

2 Pochodne

2.1 Różniczka funkcji

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0)\Delta x \tag{4}$$

$$f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y$$
 (5)

3 Całki

3.1 Metody całkowania

3.1.1 Przez części

$$\int u \, dv = uv - \int v \, du \tag{6}$$

3.1.2 Complete the square

$$ax^2 + bx + c \Rightarrow a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right)$$
 (7)

3.1.3 Metoda nieoznaczonych współczynników

Wi Rto funkcje zmienne
j $x.\ W$ jest wielomianem stopnia $n>1.\ R$ jest wielomianem stopnia
2.

$$\int \frac{W_n}{\sqrt{R}} dx = W_{n-1} \sqrt{R} + \int \frac{A}{\sqrt{R}} dx \Rightarrow$$

$$\Rightarrow W_n = W'_{n-1} R + W_{n-1} \frac{1}{2} R' + A$$
(8)

3.1.4 Podstawienie trygonometryczne

$t = \tan \frac{x}{2}$	$t = \tan x$
$dx = \frac{2dt}{1+t^2}$	$dx = \frac{dt}{1+t^2}$
$\sin x = \frac{2t}{1+t^2}$	$\sin^2 x = \frac{t^2}{1+t^2}$
$\cos x = \frac{1 - t^2}{1 + t^2}$	$\cos^2 x = \frac{1}{1+t^2}$
_	$\sin x \cos x = \frac{t}{1+t^2}$

4 Szeregi

4.0.1 Warunek konieczny zbieżności

Dla szeregu $\sum_{n=1}^{\infty} a_n$:

$$\lim_{n \to \infty} a_n = 0 \tag{9}$$

4.1 Szeregi o wyrazach dodatnich

Dla szeregu $\sum_{n=1}^{\infty} a_n$, gdzie $a_n > 0$:

4.1.1 Kryterium d'Alemberta

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = g \tag{10}$$

4.1.2 Kryterium Cauchy'ego

$$\lim_{n \to \infty} \sqrt[n]{a_n} = g \tag{11}$$

Szereg zbieżny, gdy g < 1Szereg rozbieżny, gdy g > 1

4.1.3 Kryterium porównawcze

Dla szeregów $A:\sum_{n=1}^{\infty}a_n$ i $B:\sum_{n=1}^{\infty}b_n$

$$\exists_{n_0 \in N} \ \forall_{n > n_0} \ a_n \le b_n \tag{12}$$

Szereg B jest zbieżny, gdy szereg A jest zbieżny Szereg A jest rozbieżny, gdy szereg B jest rozbieżny

4.1.4 Kryterium całkowe

Dla szeregu $\sum_{n=n_0}^{\infty} f(n),$ gdzie $n_0 \in N$

$$\forall_{x \in [n_0, \infty)} \left[f(x) \ge 0 \land f'(x) \le 0 \right] \tag{13}$$

(jeśli f jest nieujemna i nierosnąca)

Szereg jest (ro)zbieżny gdy $\int_{n_0}^{\infty} f(x)dx$ jest (ro)zbieżna

4.2 Szeregi potęgowe

4.2.1 Promień zbieżności

Dla szeregu $\sum_{n=0}^{\infty} a_n (x - x_0)^n$, gdzie $x \in R$:

$$r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \lor r = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$$
 (14)

4.2.2 Szereg Taylora

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \tag{15}$$

5 """Praktyczne""" wzory

5.0.1 Długość łuku krzywej

$$|L| = \int_{a}^{b} \sqrt{1 + f'(x)^{2}} dx \tag{16}$$

5.0.2 Długość łuku krzywej parametrycznej

$$|L| = \int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2} dt \tag{17}$$

5.0.3 Pole obrotu OX

$$|P| = 2\pi \int_{a}^{b} f(x)\sqrt{1 + f'(x)^{2}} dx \tag{18}$$

5.0.4 Pole obrotu OY

$$|P| = 2\pi \int_{a}^{b} x\sqrt{1 + f'(x)^{2}} dx \tag{19}$$

5.0.5 Objętość obrotu OX

$$|V| = \pi \int_{a}^{b} \left[g(x)^{2} - f(x)^{2} \right] dx \tag{20}$$

5.0.6 Objętość obrotu OY

$$|V| = 2\pi \int_{a}^{b} x \left[g(x) - f(x) \right] dx$$
 (21)

6 Trywialne wzory

Uwaga: "-" nie oznacza, że pochodna/całka nie istnieje!

$\int f(x)dx \ (+ \ C)$	f(x)	f'(x)
$\frac{a^x}{\ln a}$	a^x	$a^x \ln a$
$\frac{1}{a}e^{ax}$	e^{ax}	ae^{ax}
$x \ln x - x$	$\ln x$	$\frac{1}{x}$
_	$\log_a x$	$\frac{1}{x \ln a}$
$\ln f(x) $	$\frac{f'(x)}{f(x)}$	_
$\frac{c}{a} \ln ax + b $	$\frac{c}{ax+b}$	_
$\frac{1}{a} \tan^{-1} \frac{x}{a}$	$\frac{1}{x^2 + a^2}$	_
$\frac{1}{2a} \ln \left \frac{x-a}{x+a} \right $	$\frac{1}{x^2 - a^2}$	_
$\ln x + \sqrt{a^2 + x^2} $	$\frac{1}{\sqrt{a^2 + x^2}}$	_
$\sin^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{a^2 - x^2}}$	_
$-\cos x$	$\sin x$	$\cos x$
$\sin x$	$\cos x$	$-\sin x$
$-\ln \cos x $	$\tan x$	$\frac{1}{\cos^2 x}$
$\ln \sin x $	$\cot x$	$-\frac{1}{\sin^2 x}$
_	$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$
_	$\cos^{-1} x$	$-\frac{1}{\sqrt{1-x^2}}$
_	$\tan^{-1} x$	$\frac{1}{1+x^2}$
_	$\cot^{-1} x$	$-\frac{1}{1+x^2}$

7 Appendix: Szkoła podstawowa

7.1 Suma ciągu arytmetycznego

$$S_n = n \frac{a_1 + a_n}{2}$$

7.2 Suma ciągu geometrycznego

$$S_n = a_1 \frac{1 - q^n}{1 - q}$$

7.3 Trig

$$1 = \sin^2 x + \cos^2 x$$
$$\cos 2x = \cos^2 x - \sin^2 x$$
$$\sin a \sin b = \frac{1}{2}(\cos(a-b) - \cos(a+b))$$
$$\cos a \cos b = \frac{1}{2}(\cos(a-b) + \cos(a+b))$$
$$\sin a \cos b = \frac{1}{2}(\sin(a-b) + \sin(a+b))$$