极大谱的一些拓扑性质

戚天成 ⋈

复旦大学 数学科学学院

2023 年 12 月 25 日

这份笔记主要用于记录含幺环的极大谱赋予素谱的 Zariski 子空间拓扑后的一些基本性质. 设 R 是含幺交换环, 那么 Spec R 是不可约空间的充要条件是素根 N(R) 是 R 的素理想. 使用类似方法可以得到

Proposition 1. 设 R 是含幺交换环, 那么 $\max \operatorname{Spec} R$ 是不可约空间的充要条件是 $\operatorname{Jac} R$ 是素理想.

Proof. 必要性: 设理想 I,J 满足 $IJ\subseteq JacR$, 那么 $V(I)\cup V(J)=\max SpecR$. 于是 V(I) 与 V(J) 中至少有一个是 $\max SpecR$, 不妨设 $V(I)=\max SpecR$, 那么 I 含于 R 的所有极大理想之交中. 因为 R 是交换的, 所以 $I\subseteq JacR$. 充分性: 设理想 I,J 满足 $V(I)\cup V(J)=\max SpecR$, 那么 $IJ\subseteq JacR$, 于是 $I\subseteq JacR$ 或 $J\subseteq JacR$, 不妨设 $I\subseteq JacR$, 那么 $V(I)=\max SpecR$. 这说明 $V(I)=\max SpecR$. 这说明 $V(I)=\max SpecR$.

一般地, 当 Spec R 是不可约空间时, 未必有 max Spec R 不可约. 下面的例子来自黄逸敏.

Example 2. 设 R 是 P.I.D., 且至少有两个不相伴的素元 p,q. 取 $S = \{a \in R | p, q$ 均不整除 $a\}$, 则 R_S 的素谱 Spec R 是不可约空间但极大谱 max Spec R 是可约的.

Proof. 因为 R 是整区, 所以 R_S 仍为整区. 这说明 R_S 的素谱 Spec R 是不可约空间. 设 R_S 的 Jacobson 根为 I_S , 这里 I=(a) 是 R 的主理想. 那么由 $(p)_S$ 和 $(q)_S$ 是 R_S 的极大理想可知 $I_S\subseteq (p)_S\cap (q)_S$. 由此可直接验证 $a\in (p)\cap (q)$, 因此 pq 整除 a. 这说明 I_S 不是 R_S 的素理想. 由 [命题??] 得到 maxSpec R 非不可约.

Proposition 3. 设含幺交换环 R 是 Jacobson 环, 那么 $\max Spec R$ 不可约的充要条件是 Spec R 不可约.

Proof. 这时 R 的素根与 R 的 Jacobson 根相同, 所以由 [命题??] 立即得到结论.

一般地,交换环的极大谱未必是素谱的开子空间,也未必是闭子空间.

Example 4. 设 $R = \mathbb{C}[x]$, 那么 JacR = 0, 所以不存在非零理想 I 使得 $maxSpecR = V(I) \subseteq SpecR$. 于是由零理想不是极大理想知 R 的极大谱不是素谱的闭子空间.

Example 5. 设 $R = \mathbb{C}[[x]]$ 为形式幂级数环, 那么 $\operatorname{Spec} R = \{0, (x)\}$ 且 $\operatorname{macSpec} R = \{(x)\}$. 于是由零理想不是 R 的极大理想可知 R 的极大谱不是素谱的开子空间. 这一例子也表明 $\operatorname{macSpec} R$ 在 $\operatorname{Spec} R$ 中未必稠密.