A Bachelor's Thesis Defense

Michal Grňo

September 10, 2021

A magnetic Hamiltonian

$$H_0 = \left(-\mathrm{i}\vec{\nabla} + \vec{A}\right)^2,$$

2/10

A magnetic Hamiltonian

$$\label{eq:H0} \textit{H}_0 = \left(-\mathrm{i}\vec{\nabla} + \vec{\textit{A}}\right)^2,$$

$$\vec{\nabla} \times \vec{A} = \vec{B}_0 = \text{const.}$$

2/10

A magnetic Hamiltonian

$$H_0 = (-i\vec{\nabla} + \vec{A})^2 ,$$

 $\vec{\nabla} \times \vec{A} = \vec{B}_0 = \text{const.}$

restricted to a 2D plane orthogonal to \vec{B}_0 .

Michal Grňo

A magnetic Hamiltonian

$$H_0 = \left(-i\vec{\nabla} + \vec{A}\right)^2,$$
 $\vec{\nabla} \times \vec{A} = \vec{B}_0 = \text{const.}$

restricted to a 2D plane orthogonal to \vec{B}_0 .

This is the Landau Hamiltonian.

2/10

• potential obstacle: $H = H_0 + V(x, y)$

- potential obstacle: $H = H_0 + V(x, y)$
- magnetic obstacle: $\vec{B} = \vec{B}_0 + \vec{b}(x,y)$

3 / 10

- potential obstacle: $H = H_0 + V(x, y)$
- magnetic obstacle: $\vec{B} = \vec{B}_0 + \vec{b}(x,y)$, $\vec{b} \parallel \vec{B}_0$

3 / 10

- potential obstacle: $H = H_0 + V(x, y)$
- magnetic obstacle: $\vec{B} = \vec{B}_0 + \vec{b}(x,y)$, $\vec{b} \parallel \vec{B}_0$
- geometric obstacle:
 - ▶ the system is not restricted to a plane, but to a thin layer

3 / 10

- potential obstacle: $H = H_0 + V(x, y)$
- magnetic obstacle: $\vec{B} = \vec{B}_0 + \vec{b}(x,y)$, $\vec{b} \parallel \vec{B}_0$
- geometric obstacle:
 - ▶ the system is not restricted to a plane, but to a thin layer
 - ► the layer is smoothly bent

3 / 10

- potential obstacle: $H = H_0 + V(x, y)$
- magnetic obstacle: $\vec{B} = \vec{B}_0 + \vec{b}(x, y), \ \vec{b} \parallel \vec{B}_0$
- geometric obstacle:
 - the system is not restricted to a plane, but to a thin layer
 - the layer is smoothly bent
 - Dirichlet boundary is assumed

Magnetic Transport Along

Translationally Invariant Obstacles

- potential obstacle: $H = H_0 + V(x)$
- magnetic obstacle: $\vec{B} = \vec{B}_0 + \vec{b}(x)$, $\vec{b} \parallel \vec{B}_0$
- geometric obstacle:
 - the system is not restricted to a plane, but to a thin layer
 - ▶ the layer is smoothly bent and invariant under translation $y \mapsto y + c$
 - Dirichlet boundary is assumed

Classically:

Classically:

Classically:

Quantum Mechanics:

• Spectrum of *H* is pure point

Quantum Mechanics:

- Spectrum of H is pure point

- Spectrum of *H* is pure point
 - there is a basis consisting of stationary states
 - time evolution is trivial

- Spectrum of *H* is pure point

 - time evolution is trivial
- Spectrum of *H* is continuous

- Spectrum of H is pure point
 - there is a basis consisting of stationary states
 - time evolution is trivial
- Spectrum of H is continuous
 - there are no stationary states

- Spectrum of H is pure point
 - there is a basis consisting of stationary states
 - time evolution is trivial
- Spectrum of *H* is continuous
 - there are no stationary states
 - **Magnetic Transport!**

The Hamiltonian is either of these:

(a)
$$H = (-i\vec{\nabla} + \vec{A})^2 + V(x)$$
 on $L^2(\Omega \subset \mathbb{R}^2)$

(b)
$$H = \left(-i\vec{\nabla} + \vec{A}(x)\right)^2$$
 on $L^2(\Omega \subset \mathbb{R}^2)$

(c)
$$H=(-\mathrm{i}\vec{\nabla}+\vec{A})$$
 on $L^2(\Omega)$, Ω being a thin layer in \mathbb{R}^3

And we are interested in its pure point / continuous spectrum.

7 / 10

The two parts

- Summary of known results
 - ▶ Steep potential wall (Macris et al., 1999) and (Fröhlich et al., 2000)
 - ▶ Half-plane with Dirichlet boundary (Fröhlich et al., 2000)
 - ▶ Bounded magnetic perturbation (Iwatsuka, 1983 and 1985)
 - Layer with one-sided fold, asymptotically flat layer, very thin layer (Exner et al., 2018)

The two parts

- Summary of known results
 - ▶ Steep potential wall (Macris et al., 1999) and (Fröhlich et al., 2000)
 - ▶ Half-plane with Dirichlet boundary (Fröhlich et al., 2000)
 - ▶ Bounded magnetic perturbation (Iwatsuka, 1983 and 1985)
 - Layer with one-sided fold, asymptotically flat layer, very thin layer (Exner et al., 2018)
- Original work
 - Half-plane with Robin boundary
 - ▶ Dirac δ -interaction on a line

Frame Title

Frame Title

Michal Grňo Magnetic Transport September 10, 2021 10 / 10