Tema 1

Soluții

Exercițiul 1

- a) A singur se realizează: $A \cap B^c \cap C^c$
- b) A și C se realizează dar nu și $B: A \cap B^c \cap C$
- c) cele trei evenimente se produc: $A \cap B \cap C$
- d) cel puțin unul dintre cele trei evenimente se produce: $A \cup B \cup C$
- e) cel puţin două evenimente din cele trei se produc: $(A^c \cap B \cap C) \cup (A \cap B^c \cap C) \cup (A^c \cap B \cap C^c) \cup (A \cap B \cap C)$
- f) cel mult un eveniment se produce: $(A^c \cap B^c \cap C) \cup (A^c \cap B \cap C^c) \cup (A \cap B^c \cap C^c) \cup (A^c \cap B^c \cap C^c)$
- g) niciunul din cele trei evenimente nu se produce: $A^c \cap B^c \cap C^c$
- h) exact două evenimente din cele trei se produc: $(A^c \cap B \cap C) \cup (A \cap B^c \cap C) \cup (A^c \cap B \cap C^c)$
- i) nu mai mult de două evenimente nu se realizează: $(A \cap B \cap C)^c$

Exercițiul 2

- a) "soțul are mai mult de 40 de ani dar nu și soția sa" = $A \cap C^c$
- b)
- $A \cap B \cap C^c = \{$ soțul are mai mult de 40 de ani dar soția are mai puțin de 40 de ani $\}$,
- $A \setminus (A \cap B) = \{ \text{ soțul are mai mult de } 40 \text{ de ani iar soția lui este mai in varstă decat el } \},$
- $A \cap B^c \cap C = \{$ bărbatul are mai mult de 40 de ani iar soția lui este mai in varstă decat el $\}$,
- $A \cup B = \{$ sau bărbatul are mai mult de 40 de ani sau femia este mai tanără decat el $\}$
- c) Avem $A \cap C^c \subset (A \cap C^c) \cup (A \cap B \cap C) \cup (A^c \cap B \cap C^c) = B$

Exercițiul 3

- a) Reamintim că $d: X \times X \to \mathbb{R}$ este o distanță pe X dacă verifică următoarele proprietăți:
 - i) $d(x,y) \ge 0$ (pozitivitate)
 - ii) d(x,y) = d(y,x) (simetrie)
 - iii) $d(x,y) = 0 \iff x = y$
 - iv) $d(x,y) \le d(x,z) + d(y,z)$ pentru orice $x,y,z \in X$ (inegalitatea triunghiului)

In cazul problemei noastre obsrvăm că $d(A,B) \geq 0$ şi că d(A,B) = d(B,A) deoarece $A \triangle B = B \triangle A$. Să presupunem acum că d(A,B) = 0. Avem $A \triangle B = (A \cap B^c) \cup (A^c \cap B)$ iar din $(A \cap B^c) \cap (A^c \cap B) = \emptyset$ rezultă că

$$\mathbb{P}(A \triangle B) = \mathbb{P}(A \cap B^c) + \mathbb{P}(A^c \cap B) = 0 \Rightarrow \mathbb{P}(A \cap B^c) = 0 \text{ si } \mathbb{P}(A^c \cap B) = 0$$

de unde $\mathbb{P}(A) = \mathbb{P}(A \cap B) = \mathbb{P}(B)$ deci A = B (a.s.).

Grupele: 241, 242, 243, 244

Pagina 1

Curs: Probabilități și Statistică Instructori: A. Amărioarei, G. Popovici

Fie $A,B,C\in\mathcal{F}$. Vrem să arătăm că $d(A,B)\leq d(A,C)+d(B,C)$. Considerăm evenimentele elementare $A\cap B\cap C,\ A^c\cap B\cap C,\ A\cap B^c\cap C,\ A\cap B\cap C^c,\ A^c\cap B\cap C^c$, avem următoarele descompuneri:

$$\begin{split} A\triangle B &= (A\cap B^c\cap C) \cup (A\cap B^c\cap C^c) \cup (A^c\cap B\cap C) \cup (A^c\cap B\cap C^c) \\ A\triangle C &= (A\cap B\cap C^c) \cup (A\cap B^c\cap C^c) \cup (A^c\cap B\cap C) \cup (A^c\cap B^c\cap C) \\ B\triangle C &= (A\cap B\cap C^c) \cup (A^c\cap B\cap C^c) \cup (A\cap B^c\cap C) \cup (A^c\cap B^c\cap C) \\ \end{split}$$

Observăm că $A\triangle B\subset (A\triangle C)\cup (B\triangle C)$ de unde

$$\mathbb{P}(A\triangle B) \le \mathbb{P}\left((A\triangle C) \cup (B\triangle C)\right) \le \mathbb{P}(A\triangle C) + \mathbb{P}(B\triangle C)$$

ceea ce arată că d este distanță.

b) Considerăm evenimentele elementare disjuncte $A \cap B$, $A \cap B^c$, $A^c \cap B$ şi $A^c \cap B^c$. Avem următoarea descompunere

$$A = (A \cap B^c) \cup (A \cap B)$$
$$B = (A^c \cap B) \cup (A \cap B)$$

de unde obținem că

$$\mathbb{P}(A) - \mathbb{P}(B) = \mathbb{P}(A \cap B^c) + \mathbb{P}(A \cap B) - \mathbb{P}(A^c \cap B) - \mathbb{P}(A \cap B)$$

ceea ce arată că

$$|\mathbb{P}(A) - \mathbb{P}(B)| \le \mathbb{P}(A \cap B^c) + \mathbb{P}(A^c \cap B) = \mathbb{P}(A \triangle B).$$

Exerciţiul 4

Figure 1: Interpretare geometrică

- 1. Considerăm un segment de dreaptă de lungime n ca şi in Fig. 1. O soluție (x_1, x_2, \ldots, x_r) a ecuației $x_1 + \cdots + x_r = n$ astfel incat x_i sunt numere intregi strict pozitive, corespunde unei descompuneri a acestui segment de dreaptă in r părți de lungime dată de numere intregi strict pozitive. Cele r-1 puncte care determină extremitățile acestor segmente (altele decat P_0 şi P_n) trebuie să fie alese din cele n-1 puncte $P_1, P_2, \ldots, P_{n-1}$ şi acest lucru poate fi făcut in $\binom{n-1}{r-1}$ moduri diferite. Prin urmare numărul de soluții strict pozitive ale ecuației $x_1 + \ldots + x_r = n$ este $\binom{n-1}{r-1}$.
- 2. Fie $y_1 = x_1 + 1$, $y_2 = x_2 + 1$, ..., $y_r = x_r + 1$. Observăm că y_i sunt numere intregi strict pozitive şi $y_1 + y_2 + \cdots + y_r = n + r$. Prin urmare numărul de soluții intregi pozitive ale ecuației $x_1 + \ldots + x_r = n$ este egal cu numărul de soluții intregi strict pozitive ale ecuației $y_1 + y_2 + \cdots + y_r = n + r$ care am văzut că este egal cu $\binom{n+r-1}{r} = \binom{n+r-1}{n}$.

Exercițiul 5

- 1. (a) Spaţiul stărilor Ω este $\Omega = \{(O, b), (O, m), (O, s), (N, b), (N, m), (N, s)\}.$
 - (b) Avem

 $A = \text{starea de sănătate a pacientului este serioară} = \{(O,s), (N,s)\},$ $B = \text{pacientul nu este asigurat} = \{(N,b), (N,m), (N,s)\},$ $B^c \cup A = \text{sau pacientul este asigurat sau starea acestuia este serioasă}$ $= \{O,b), (O,m), (O,s), (N,s)\}.$

2. Cum măsura de probabilitate \mathbb{P} corespunde echiprobabilității pe Ω avem că $\mathbb{P}((O,b)) = \mathbb{P}((O,m)) = \mathbb{P}((O,b)) = \mathbb{P}((N,b)) = \mathbb$

$$\begin{split} \mathbb{P}(A) &= \mathbb{P}((O,s)) + \mathbb{P}((N,s)) = \frac{1}{3}, \\ \mathbb{P}(B) &= \mathbb{P}((N,b)) + \mathbb{P}((N,m)) + \mathbb{P}((N,s)) = \frac{1}{2}, \\ \mathbb{P}(B^c \cup A) &= \mathbb{P}((O,b)) + \mathbb{P}((O,m)) + \mathbb{P}((O,s)) + \mathbb{P}((N,s)) = \frac{2}{3}. \end{split}$$

3. In acest caz avem

$$\begin{split} \mathbb{P}(A) &= \mathbb{P}((O,s)) + \mathbb{P}((N,s)) = 0.1 + 0.1 = 0.2, \\ \mathbb{P}(B) &= \mathbb{P}((N,b)) + \mathbb{P}((N,m)) + \mathbb{P}((N,s)) = 0.1 + 0.3 + 0.1 = 0.5, \\ \mathbb{P}(B^c \cup A) &= \mathbb{P}((O,b)) + \mathbb{P}((O,m)) + \mathbb{P}((O,s)) + \mathbb{P}((N,s)) = 0.2 + 0.2 + 0.1 + 0.1 = 0.6. \end{split}$$

Exercițiul 6

a) Careu:
$$\frac{\binom{13}{1}\binom{12}{1}\binom{4}{1}}{\binom{52}{5}} = \frac{624}{2598960} = 0.024\%$$

b) Full-house:
$$\frac{\binom{13}{1}\binom{4}{3}\binom{12}{1}\binom{4}{2}}{\binom{52}{5}} = \frac{3744}{2598960} = 0.14\%$$

c) Trei cărți de același tip:
$$\frac{\binom{13}{1}\binom{4}{3}\binom{12}{2}\binom{4}{1}\binom{4}{1}}{\binom{52}{5}} = \frac{54912}{2598960} = 2.1\%$$

d) Două perechi:
$$\frac{\binom{13}{2}\binom{4}{2}\binom{4}{2}\binom{11}{1}\binom{4}{1}}{\binom{52}{5}} = \frac{123552}{2598960} = 4.75\%$$

e) O pereche:
$$\frac{\binom{13}{1}\binom{4}{2}\binom{12}{3}\binom{4}{1}\binom{4}{1}^3}{\binom{52}{5}} = \frac{1098240}{2598960} = 42.26\%$$

Exercițiul 7

Considerăm evenimentele următoare:

- $A = \{\text{testul considerat este pozitiv}\}$
- $B = \{\text{automobilistul a depășit nivelul de alcool autorizat}\}$
- 1. Din ipoteză știm că $\mathbb{P}(B)=0.005$, $\mathbb{P}(A|B)=\mathbb{P}(A^c|B^c)=0.99$. Vrem să găsim probabilitatea $\mathbb{P}(B|A)$. Avem

$$\begin{split} \mathbb{P}(B|A) &= \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A|B)\mathbb{P}(B) + \mathbb{P}(A|B^c)\mathbb{P}(B^c)} \\ &= \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A|B)\mathbb{P}(B) + [1 - \mathbb{P}(A^c|B^c)] (1 - \mathbb{P}(B))} = \frac{0.99 \times 0.005}{0.99 \times 0.005 + 0.01 \times 0.995} \approx 0.332. \end{split}$$

2. Căutăm p așa incat $\mathbb{P}(B|A)=0.95$. Am văzut că $\mathbb{P}(B|A)=\frac{p\mathbb{P}(B)}{p\mathbb{P}(B)+(1-p)(1-\mathbb{P}(B))}$ de unde

$$p = \frac{(1 - \mathbb{P}(B))\mathbb{P}(B|A)}{(1 - \mathbb{P}(B))\mathbb{P}(B|A) + (1 - \mathbb{P}(B|A))\mathbb{P}(B)} = \frac{0.995 \times 0.95}{0.995 \times 0.95 + 0.05 \times 0.005} \approx 0.99973.$$

3. Ştim că $\mathbb{P}(B)=0.3$, prin urmare $\mathbb{P}(A)=\mathbb{P}(A|B)\mathbb{P}(B)+\mathbb{P}(A|B^c)\mathbb{P}(B^c)=0.99\times0.3+0.01\times0.7\approx0.304$ şi

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A|B)\mathbb{P}(B) + \mathbb{P}(A|B^c)\mathbb{P}(B^c)} \approx 0.9769,$$

de unde tragem concluzia că testul este mult mai fiabil in această situatie.

Exercițiul 8

- 1. Considerăm evenimentele următoare:
 - $A_i = \{ \text{suma celor două zaruri la cea de- a } i \text{-a aruncare este 5} \}$
 - $B_i = \{ \text{suma celor două zaruri la cea de- a } i \text{-a aruncare este } 7 \}$

Evenimentul E_n se scrie

$$E_n = (A_1^c \cap B_1^c) \cap (A_2^c \cap B_2^c) \cap \dots \cap (A_{n-1}^c \cap B_{n-1}^c) \cap A_n.$$

Aplicand independența avem că

$$\mathbb{P}(E_n) = \mathbb{P}((A_1^c \cap B_1^c) \cap (A_2^c \cap B_2^c) \cap \dots \cap (A_{n-1}^c \cap B_{n-1}^c) \cap A_n)$$

$$\stackrel{indep.}{=} \mathbb{P}(A_1^c \cap B_1^c) \times \mathbb{P}(A_2^c \cap B_2^c) \times \dots \times \mathbb{P}(A_{n-1}^c \cap B_{n-1}^c) \times \mathbb{P}(A_n)$$

$$= \mathbb{P}(A_1^c \cap B_1^c)^{n-1} \mathbb{P}(A_n).$$

Observăm că spațiul stărilor la cea de-a n-a lansare este $\Omega = \{(i,j)|1 \le i,j \le 6\}$ și probabilitatea ca suma celor două zaruri să fie 5 este $\mathbb{P}(A_n) = \frac{4}{36}$, deoarece cazurile favorabile sunt $\{(1,4),(2,3),(4,1),(3,2)\}$. Obținem de asemenea că probabilitatea ca suma să nu fie nici 5 și nici 7 la prima lansare este $\mathbb{P}(A_1^c \cap B_1^c) = \frac{26}{36}$, deoarece situațiile in care suma este 7 sunt $\{(1,6),(2,3),(3,4),(4,3),(5,2),(6,1)\}$.

In concluzie, probabilitatea evenimentului

 $A = \{\text{suma 5 (a fețelor celor două zaruri) să apară inaintea sumei 7}\}$

este

$$\mathbb{P}(A) = \mathbb{P}\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(E_n) = \sum_{n=1}^{\infty} \left(\frac{26}{36}\right)^{n-1} \frac{4}{36}$$
$$= \frac{1}{9} \sum_{n=0}^{\infty} \left(\frac{13}{18}\right)^n = \frac{1}{9} \frac{1}{1 - \frac{13}{18}} = \frac{2}{5}.$$

2. Fie F_n evenimentul ce corespunde la: in primele n-1 aruncări nu a apărut nici suma 2 și nici suma 7 iar in a n-a aruncare a apărut suma 2 și C_i evenimentul ce corespunde la suma celor două zaruri la cea de-a i-a aruncare este 2. Avem

$$F_n = (C_1^c \cap B_1^c) \cap (C_2^c \cap B_2^c) \cap \cdots \cap (C_{n-1}^c \cap B_{n-1}^c) \cap C_n$$

și probabilitatea lui $\mathbb{P}(F_n)$ este

$$\mathbb{P}(F_n) = \mathbb{P}((C_1^c \cap B_1^c) \cap (C_2^c \cap B_2^c) \cap \dots \cap (C_{n-1}^c \cap B_{n-1}^c) \cap C_n)$$

$$\stackrel{indep.}{=} \mathbb{P}(C_1^c \cap B_1^c) \times \mathbb{P}(C_2^c \cap B_2^c) \times \dots \times \mathbb{P}(C_{n-1}^c \cap B_{n-1}^c) \times \mathbb{P}(C_n)$$

$$= \mathbb{P}(C_1^c \cap B_1^c)^{n-1} \mathbb{P}(C_n).$$

Curs: Probabilități și Statistică Instructori: A. Amărioarei, G. Popovici

Avem $\mathbb{P}(C_n) = \frac{1}{36}$ (deoarece doar (1,1) ne dă suma 2) şi $\mathbb{P}(C_1^c \cap B_1^c) = \frac{36-7}{36} = \frac{29}{36}$. Prin urmare probabilitatea evenimentului căutat, pe care il notă cu B, este

$$\mathbb{P}(B) = \mathbb{P}\left(\bigcup_{n=1}^{\infty} F_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(F_n) = \sum_{n=1}^{\infty} \left(\frac{29}{36}\right)^{n-1} \frac{1}{36}$$
$$= \frac{1}{36} \sum_{n=0}^{\infty} \left(\frac{29}{36}\right)^n = \frac{1}{36} \frac{1}{1 - \frac{29}{36}} = \frac{1}{7}.$$

Exercițiul 9* 1

Fie partiția $\Pi = \{A_1^{\varepsilon_1} \cap A_2^{\varepsilon_2} \cap \dots \cap A_n^{\varepsilon_n} \mid \varepsilon_1, \dots, \varepsilon_n = 0, 1\}$, unde $A^{\varepsilon} = A$ dacă $\varepsilon = 1$ şi $A^{\varepsilon} = A^c$ dacă $\varepsilon = 0$. Atunci $\mathcal{F} = \mathcal{A}(\{A_1, \dots, A_n\})$ (algebra generată de $\{A_1, \dots, A_n\}$) coincide cu algebra generată de Π , prin urmare orice element din \mathcal{F} poate fi scris ca o reuniune finită (şi disjunctă) de elemente din Π (De ce?). Astfel, pentru $B_1, \dots, B_m \in \mathcal{F}$ există $\alpha_1, \dots, \alpha_{m'} \in \Pi$ aşa incat să avem

$$\sum_{i=1}^{m} c_i \mathbb{P}(B_i) = \sum_{i=1}^{m'} c_i' \mathbb{P}(\alpha_i').$$

Este evident că implicația $a) \implies b$) este adevărată. Reciproc, să presupunem că inegalitatea dorită este adevărată pentru orice măsură de probabilitate cu $\mathbb{P}(A_i) = 0$ sau 1 pentru toți $i \in \{1, 2, ..., n\}$. Avem deci că

$$\sum_{i=1}^{m'} c_i' \mathbb{P}(\alpha_i') \ge 0 \tag{1}$$

pentru toate măsurile de probabilitate cu $\mathbb{P}(A_i)=0$ sau 1, $\forall i\in\{1,2,\ldots,n\}$, prin urmare $\mathbb{P}(\alpha_i)=0$ sau 1 pentru toate elementele α_i din Π (toți atomii). Alegand P așa incat $\mathbb{P}(\alpha_i)=1$, pentru un i fixat, și $\mathbb{P}(\beta)=0$ pentru $\beta\in\Pi$, $\beta\neq\alpha^2$ avem $c_i'\geq0$ $(i=1,2\ldots,m')$. Asta garantează că relația (1) rămane valabilă pentru orice măsură de probabilitate.

Exercițiul 10*

Conform rezultatului demonstrat in exercițiul anterior, este suficient să verificăm relațiile din enunț pentru măsurile de probabilitate \mathbb{P} care verifică $\mathbb{P}(A_1) = \cdots = \mathbb{P}(A_l) = 1$ și $\mathbb{P}(A_{l+1}) = \cdots = \mathbb{P}(A_n) = 0$, cu $0 \le l \le n$.

Prin urmare, fie $0 \le l \le n$ și $\mathbb P$ care verifică relațiile de mai sus. Dacă l=0 atunci cele două formule sunt evident adevărate (0=0). Să presupunem că $l \ge 1$ și că $1 \le i_1 < i_2 < \cdots < i_k \le n, \ k \ge 1$. Dacă $i_k \le l$ atunci $\mathbb P(A_{i_1}) = \mathbb P(A_{i_1}) = \cdots = \mathbb P(A_{i_k}) = 1$ de unde avem că

$$\mathbb{P}(A_{i_1} \cap A_{i_2}) = \mathbb{P}(A_{i_1}) + \mathbb{P}(A_{i_2}) - \mathbb{P}(A_{i_1} \cup A_{i_2}) = 2 - 1 = 1$$

şi prin inducţie se poate arăta că $\mathbb{P}(A_{i_1} \cap \cdots \cap A_{i_k}) = 1$ (altfel se poate folosi inegalitatea lui Bonferroni). Dacă $i_k \geq l+1$ atunci $0 \leq \mathbb{P}(A_{i_1} \cap \cdots \cap A_{i_k}) \leq \mathbb{P}(A_{i_k}) = 0$. Prin urmare $\mathbb{P}(A_{i_1} \cap \cdots \cap A_{i_k}) = 0$ sau 1 după cum $\{i_1, i_2, \cdots, i_k\}$ este sau nu submulţime a lui $\{1, 2, \cdots, l\}$. Obţinem astfel că suma S_k^n este egală cu numărul de submulţimi $\{i_1, i_2, \cdots, i_k\} \subset \{1, 2, \cdots, l\}$, adică $S_k^n = \binom{l}{k}$.

Pentru a arăta identitatea de la punctul a) să observăm că pentru l < r avem $V_n^r = 0$, pentru că $LHS = V_n^r = \mathbb{P}(B)$ unde

 $^{^{1}}$ Exercițiile cu * sunt suplimentare și nu sunt obligatorii

²putem găsi o asemenea măsură de probabilitate deoarece odată ce am ales $\mathbb{P}(\alpha_i) = 1$ am ales şi valorile pentru $\mathbb{P}(A_i)$

$$B = \{\text{exact } r \text{ dintre } A_1, \dots, A_n \text{ se realizează } \}$$

$$= \bigcup_{1 \leq i_1 < i_2 < \dots < i_r \leq n} \left[\bigcap_{i \in \{i_1, \dots, i_r\}} A_i \cap \bigcap_{j \in \{1, 2, \dots, n\} \setminus \{i_1, \dots, i_r\}} A_j^c \right]$$

iar $\mathbb{P}\left(\bigcap_{i \in \{i_1, \dots, i_r\}} A_i \cap \bigcap_{j \in \{1, 2, \dots, n\} \setminus \{i_1, \dots, i_r\}} A_j^c\right) = 0$ (cum l < r cel puţin una din A_i are probabilitate 0). De asemenea, să observăm că $S_{r+k}^n = \binom{l}{r+k} = 0$ deci membrul drept

$$RHS = \sum_{k=0}^{n-r} (-1)^k \binom{r+k}{k} S_{r+k}^n = 0$$

și concluzionăm că LHS = RHS = 0.

Dacă $l \ge r$ atunci membrul drept devine

$$RHS = \sum_{k=0}^{n-r} (-1)^k \binom{r+k}{k} S_{r+k}^n = \sum_{k=0}^{n-r} (-1)^k \binom{r+k}{k} \binom{l}{r+k}$$
$$= \sum_{k=0}^{l-r} (-1)^k \binom{r+k}{k} \binom{l}{r+k} = \binom{l}{r+k} \sum_{k=0}^{l-r} (-1)^k \binom{l-r}{k}$$

unde pentru r=l avem RHS=1 iar pentru r< l avem RHS=0. In acelaşi timp membrul stang este tot egal cu 1 atunci cand l=r, pentru că $\mathbb{P}(A_1\cap A_l)=1$ și 0 atunci cand l>r. Ultima egalitate rezultă din faptul că in descompunerea evenimentului B apar evenimentele de tipul $\bigcap_{i\in\{i_1,\ldots,i_r\}}A_i\cap\bigcap_{j\in\{1,2,\ldots,n\}\setminus\{i_1,\ldots,i_r\}}A_j^c$ in care cel puțin unul dintre A_i și A_j^c este de probabilitate 0. Conform problemei precedente avem rezultatul dorit.

Punctul b) se face in mod similar.