Funktionale Hauptkomponentenanalyse

Philipp Lintl

12. Januar 2018

Inhaltsverzeichnis

- 1 Motivation Hauptkomponentenanalyse
- 2 Hauptkomponentenanalyse
 - Für multivariate Daten
 - Für funktionale Daten
- 3 Anwendung auf Datensatz
 - Anzahl benötigter Hauptkomponenten
 - Visualisierung der Hauptkomponenten
 - Glättung der Hauptkomponenten

Hauptkomponentenanalyse

- umfangreiche Datensätze zu strukturieren, zu vereinfachen und zu veranschaulichen
- Grundidee: Datenreduktion bzw. Dimensionsreduktion
- betrachtete Daten auf möglichst wenige Hauptkomponenten reduzieren, ohne zu großen Informationsverlust
- ullet Hauptkomponenten sollen einen möglichst großen Teil der Varianz der Daten erklären
- ⇒ funktional: wichtigste Arten der Variabilität / Strukturen in Daten

Beispiel

- Variablen x_1, x_2
- gesucht: Linearkombination $\alpha^T \mathbf{x} = \alpha_1 x_1 + \alpha_2 x_2$ mit maximaler Varianz
- HK1: Gerade, bei der die Summe der Fehlerquadrate minimal ist (rote Linien)
- HK2: zu HK1 ortogonal, wieder maximierte Varianz

Für multivariate Daten

- Datenmatrix: $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_N)^T$, $\mathbf{X} \in \mathbb{R}^{N \times p}$
- N Beobachtungen, p Variablen
- zentrierte Daten: $\tilde{x}_{ij} = x_{ij} \frac{1}{N} \sum_{i=1}^{N} x_{ij}$
- Varianz: $\widehat{Var}(\tilde{x}_j) = \frac{1}{N-1} \sum_{i=1}^{N} \tilde{x}_{ij}^2$
- Kovarianz: $\widehat{Cov}(\tilde{x}_j, \tilde{x}_k) = \frac{1}{N-1} \sum_{i=1}^N \tilde{x}_{ij} \tilde{x}_{ik}$
- Kovarianzmatrix: $\mathbf{V} = \frac{1}{N-1} \mathbf{X}^T \mathbf{X}, \quad \mathbf{V} \in \mathbb{R}^{p \times p}$

- Idee: Varianz in $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_p)$ durch unkorrellierte Variablen $\boldsymbol{\xi} = (\xi_1, \dots, \xi_p)^T$ beschreiben
- $oldsymbol{\phi}$ als Linearkombination der originalen Variablen und den $oldsymbol{\mathsf{Gewichten}}$

$$\xi_1 = \sum_{j=1}^{p} \phi_{j1} x_j$$
$$\xi_1 = \phi_1^T \mathbf{x}$$

• Schrittweise finden der derjenigen **Hauptkomponenten** ϕ_i , die Varianz der ξ_i maximieren

• 1. Hauptkomponente: Der Gewichtsvektor $\phi_1 = (\phi_{11}, \dots, \phi_{p1})^T$ für den

$$\xi_{i1} = \sum_{i} \phi_{j1} x_{ij} = \boldsymbol{\phi_1^T x_i}, \quad i = 1, \dots, N, j = 1, \dots, p$$

• Varianz **maximal**: $Var(\boldsymbol{\xi}_1) = \frac{1}{N-1} \sum_i \xi_{i1}^2 \rightarrow max$

• ⇒ erklärt stärkste Art der Variabilität in den Daten

ullet Eindeutigkeit durch Normierung: $\|oldsymbol{\phi}_1\|^2 = \sum_j \phi_{j1}^2 = 1$

• m-te HK: Gewicht ϕ_m mit

$$Var(\boldsymbol{\xi}_m)
ightarrow max, \quad \|\boldsymbol{\phi_m}\|^2 = 1$$

• und m-1 zusätzlichen Bedingungen

$$\langle \phi_k, \phi_m \rangle = \phi_k^T \phi_m = 0, \quad k < m.$$

- ullet zueinander orthogonale Hauptkomponenten o jede HK erklärt Neues
- zu jedem Schritt Varianzmaximierung: insgesamt sinkende erklärte Varianz

Lösung des Optimierungsproblems

wird Optimierungsproblem zu

$$\max \ Var(\boldsymbol{\xi}) = \max \ \frac{1}{N-1} \sum (\phi^T \boldsymbol{x})^2 = \max \ \frac{1}{N-1} \phi^T \boldsymbol{X}^T \boldsymbol{X} \phi$$
$$= \max \ \phi^T \boldsymbol{V} \phi \quad \text{mit NB} : \|\phi\|^2 = 1,$$

$$V\phi = \lambda \phi$$

• mit (λ_m, ϕ_m) Eigenwert-Eigenvektor Paare, $Var(\xi_m) = \lambda_m$ m-größter Eigenwert

Hauptkomponentenanalyse für funktionale Daten

Für funktionale Daten

- Zufallsstichprobe reellwertiger Funktionen $x_1(t), \dots, x_N(t)$ auf Intervall $\mathcal{T} = [0, T]$
- Individuell: Realisierungen eines eindimensionalen stochastischen Prozesses X = X(t)
- Wieder zentrierte Daten: $x_i(t) = \tilde{x}_i(t) \frac{1}{N} \sum_{j=1}^{N} \tilde{x}_j(t)$
- ullet unendlich dimensionale funktionale Daten $\stackrel{FPCA}{\longrightarrow}$ endlich dimensionale Darstellung

	PCA	FPCA
Variablen	$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_p),$ $\mathbf{x}_i = (x_{1i}, \dots, x_{Ni}),$ $i = 1, \dots, p$	$(x_1(t),\ldots,x_N(t)),$ $t\in[0,T]$
Daten	$Vektoren \in \mathbb{R}^p$	$Kurven \in \mathit{L}_{2}(\mathcal{T})$
Mittelwert	$\mu=\mathbb{E}(X)$	$\mu(t) = \mathbb{E}(X(t))$
Kovarianz	$Cov(\mathbf{x}_j,\mathbf{x}_k) = \mathbf{V}_{jk}$	$Cov(x(s),x(t)) = \gamma(s,t)$

Kovarianzfunktion:

$$\widehat{\gamma}(s,t) = \frac{1}{N-1} \sum_{i=1}^{N} x_i(s) x_i(t)$$

• Multivariate Linearkombination:

$$\langle \phi, \mathbf{x} \rangle = \sum_{j=1}^p \phi_j \mathbf{x}_j \quad \xrightarrow{\textit{wird zu}} \quad \langle \phi, x \rangle = \int_{\mathcal{T}} \phi(t) x(t) dt$$

- \Rightarrow Gewichts-/Hauptkomponentenfunktionen $\phi(t)$
- ⇒ Hauptkomponentenscores

$$\xi_{i1} = \langle \phi_1, x_i \rangle = \int \phi_1(t) x_i(t) dt.$$

Karhunen-Loeve Erweiterung zentrierter Daten:

$$x(t) = \sum_{j=1}^{\infty} \xi_j \phi_j(t)$$

Dimensionsreduktion, wenn

$$x(t) \approx \sum_{j=1}^{k} \xi_j \phi_j(t)$$

• gute Approximation der unendlichen Summe

- gleiche schrittweise Prozedur:
- 1. $\phi_1(t)$ aus:

$$Var(\xi_1) = \frac{1}{N-1} \sum_{i=1}^{N} (\xi_{i1})^2 \to max$$

Bedingung:

$$\|\phi_1\|^2=\langle\phi_1,\phi_1
angle=\int\phi_1(t)^2dt=1$$

- 2. weitere HK durch maximale Varianz der m-ten HK
- und zusätzlich

$$\int \phi_k(t)\phi_m(t)dt = 0, k < m$$

- Gesuchte Gewichtsfunktionen $\phi(t)$ lösen:
- funktionales Eigenwertproblem:

$$\int \hat{\gamma}(s,t)\phi(t)dt = \lambda\phi(s)$$

• Kovarianzoperator Γ einer Funktion ϕ :

$$\Gamma\phi(s)=\int\hat{\gamma}(s,t)\phi(t)dt$$

• Eigenwertproblem also wieder der Form:

$$\Gamma \phi = \lambda \phi$$

• ϕ nun Eigenfunktionen und $V(\xi_m) = \lambda_m$ m-größter Eigenwert von Γ .

- Unterschied zum multivariaten Fall: Anzahl mgl.
 Eigenwert-Eigenfunktionspaare
- theoretisch: max #Eigenfunktionen = #Funktionswerte x(t)
 ⇒ unbegrenzt
- In der Praxis: Basisdarstellung der Funktionen $x_i(t)$:

$$\hat{x}_i(t) = \sum_{m=1}^k c_{im} v_m(t)$$

gemäß bekannter Basisfunktionen $v_m(t)$ (Spline, Fourier,...)

Lösung Eigenwertproblem: Diskretisierung

- diskretisieren gefitteter $x_i \in L^2(\mathcal{T})$ auf Gitter mit K Werten gleichen Abstands
- neue Datenmatrix $\mathbf{X} \in \mathbb{R}^{N \times K}$

→ multivariate Hauptkomponentenanalyse

• neues Eigenwertproblem \Rightarrow neue Eigenvektoren $\xrightarrow{R\ddot{u}cktransformation}$ Funktionen

Anwendung auf Luftverschmutzungsdaten

Datensatz

- Luftverschmutzung einer italienischen Stadt
- stündliche Mittelwerte CO-Konzentration $[mg/m^3]$
- Zeitraum von 03.2004 04.2005
- eine Beobachtung: 0-23 Uhr (4 Uhr oft NA -> entfernt)
- 282 Beobachtungen zur Analyse
- Quelle: University of California, Irvine

- bimodal (ca. 9 Uhr und 20 Uhr)
- An welchen Stellen liegt nun größte Variabilität in den Daten vor?
 - ⇒ Hauptkomponenten

Visualisierung

Daten gemäß 10 Basisfunktionen

• Mittelwertsfunktion $\hat{\mu}(t)$

Wahl der Anzahl an Hauptkomponenten

- intuitiv: wähle so viele HK, bis t% der Gesamtvarianz in den Daten erklärt
- t meist zwischen 70% und 100%
- wegen $Var(\xi_m)=\lambda_m$, gilt $\sum_k^\infty \lambda_k=p$, mit Varianz der k-ten HK λ_k und Gesamtvarianz in den Daten p
- daher entfallen auf ersten m Hauptkomponenten

$$t_m = 100 \frac{\sum_{k=1}^{m} \lambda_k}{p}$$

• Sobald $t_k \geq t$ Anzahl k an Hauptkomponenten gefunden

Screeplot

- HK 1: meiste Varianz
 Scree: Nur die 1. HK
 betrachten
- Zur Veranschaulichung:4 Hauptkomponenten

• Gewichtsfunktionen ϕ_1, \ldots, ϕ_4

- HK 1: Ähnlich zu $\hat{\mu}(t)$ 6 - 21 Uhr stark gewichtet \rightarrow größte Variabilität Luftverschmutzungsverlauf
- HK 2: Nacht- & Abendstunden positiv → zweite Art der Variabilität Verschmutzung Nachts und Abends

Karhunen-Loeve nicht zentrierter Daten:

$$x(t) pprox \hat{\mu}(t) + \sum_{j=1}^{k} \xi_j \phi_j(t)$$

- ullet Idee: Neue Funktion $ilde{x}$, mit Score-Vektor: $ilde{oldsymbol{\xi}} = (\pm c,0,...,0)$
- Die Karhunen-Loeve Darstellung davon:

$$ilde{x}(t) = \hat{\mu}(t) + \sum_{j=1}^k ilde{\xi}_j \phi_j(t) = \hat{\mu}(t) \pm c \phi_1(t)$$

Visualisierung: Auswirkung auf Mittelwert

- HK 1: genereller Luftverschmutzungsverlauf
- Beobachtung mit hohem ξ_1 : Hohe Verschmutzung (überdurchschnittlich) von 6-21 Uhr, besonders an Gipfeln
- niedriges ξ_1 : geringe Luftverschmutzung (unterdurchschnittlich)
- \Rightarrow Größte Art der Variabilität (64.1%)

- HK 2 Variabilität nachts / spät
- Beobachtung mit hohem ξ_2 : Hohe Verschmutzung 0-5 und 16-23 Uhr, sonst niedrig
- niedriges ξ₂:
 hohes CO zwischen 5 und 15
 Uhr, sonst niedrig
- \Rightarrow Zweitgrößte Variation (11.2%)

Visualisierung der Hauptkomponenten: Scores

Beobachtungen nach Wochentag /-ende

- Nachts-/Abendstunden teilweise höhere Belastung
- über den Tag verteilt allerdings unterdurchschnittlich
- erwartbar: kleines ξ_1 und hohes ξ_2

- Wochenendbeobachtungen vor allem links oben
- also niedrige generelle Verschmutzung
- höhere Belastung früh, spät und unterdurchschnittlich bei erstem Gipfel

Glättung der Hauptkomponenten

Für rauhe Daten: 20 anstatt 10 Basisfunktionen
 → rauhe HK → schlecht interpretierbar

- Glattheitsanforderung für weitere Verwendung der Hauptkomponenten
- 2 Ansätze: Daten vor HKA glätten (Splines) vs. Hauptkomponenten glätten
- mittels **Penalisierungsterm** in der Hauptkomponentenanalyse
- Einführung Rauheitsmaß:

$$PEN_2(\phi) = ||D^2\phi||^2 = \int \phi''(t)^2 dt$$

- 2. Ableitung kontrolliert Krümmung (Rauheit)
- zuvor: $max Var(\xi_m)$ gelöst durch λ, ϕ $\|\phi_m\|^2 = 1$

- \bullet jetzt: zusätzliche Berücksichtigung der Rauheit \Rightarrow Einführung Glattheitsparameter $\lambda \geq 0$
- penalisierte Varianz

$$PCAPSV(\xi) = \frac{Var(\int \phi x_i)}{\|\phi\|^2 + \lambda PEN_2(\phi)}$$

- $\lambda \to 0$: $PCAPSV(\xi) \to \frac{var(\int \phi x_i)}{1}$, gleiche Hauptkomponente wie zuvor
- $\lambda \to \infty$, ergibt Konstante $\phi = a$ im periodischen Fall oder $\phi = a + bt$ im nichtperiodischen Fall
- Für optimales λ : Leave-one-out Kreuzvalidierung

Anwendung der Glättung

Zusammenfassung

- PCA: beobachtete Variablen Orthogonaltransformation
 Iinear unabhängige
 Hauptkomponenten (Dimensionsreduktion ohne zu großen
 Informationsverlust)
- FPCA: Explorative Methode zur Erkennung von Mustern und Variationsquellen in funktionalen Daten
- Anwendung: Meiste Variabilität in den Tagesverläufen (mit Peaks bei Hauptverkehrszeiten)
- Unterschied Werktage / Wochenendtage
- Glättung durch Basenwahl oder Rauheitsmaß (ähnliche Ergebnisse)

Referenzen

- J. O. Ramsay and B. W. Silverman. Functional Data Analysis.
 Springer, 2005.
- I. Jolliffe. Principal Component Analysis. Springer, 2 edition, 2002.
- J. Ramsay and B. Silverman. Applied Functional Data Analysis: Methods and Case Studies. Springer, 2002.
- Ramsay, J. O., Wickham, H., Graves, S., and Hooker, G. (2011). fda: Functional Data Analysis. R package version 2.2.6.
- J.-L.Wang, J.-M. Chiou, and H.-G. Müller. Functional data analysis.
 Annual Review
- Datensatz: https://archive.ics.uci.edu/ml/datasets/Air+Quality#

Anhangsfolien

• Hauptkomponenten 3,4

• Interpretation immer schwieriger

Visualisierung der Hauptkomponenten: Scores

• Hauptkomponentenscores: $\xi_1 vs. \xi_2$

- tendenziell gleich auf Bereiche verteilt
- ullet großes $\xi_1 o$ großes ξ_2
- Kurven mit hoher
 Verschmutzung auch früh und spät stark verschmutzt
- → eher schwer interpretierbar
- mgl. Unterschiede zwischen Wochenende/Arbeitstage

• Definition $\tilde{\phi}$ aus k Werten $\phi(s_i)$

Dann gilt approximativ:

$$V\phi(s_j) = \int \gamma(s_j, s)\phi(s)ds \approx \frac{T}{n}\sum \gamma(s_j, s_k)\tilde{\phi}_k,$$

- mit Elementen der Kovarianzmatrix \mathbf{V} : $\gamma(s_i, s_k)$
- diskrete Form des funktionalen Eigenwertproblems:

$$\frac{T}{k}\mathbf{V}\tilde{\phi} = \lambda \tilde{\phi}$$

- ullet unter $rac{T}{k} \| ilde{\phi} \|^2 = 1$
- ullet gilt für die diskrete Approximierung: $ilde{\phi}=rac{T}{k}^{-rac{1}{2}}oldsymbol{u}$
- ullet Funktion ϕ dann aus $ilde{\phi}$ durch geeignete Interpolation

- Lösung: Singulärwertzerlegung: $X = UDW^T$
 - **U** ist Nxq und orthogonal: $\mathbf{U}^T\mathbf{U} = \mathbf{I}_a$;
 - **D** ist eine qxq Diagonalmatrix mit $diag(D) = d_1 \ge ... \ge d_q \ge 0$;
 - **W** ist kxq und auch orthogonal: $\mathbf{W}^T\mathbf{W} = \mathbf{I}_a$
- symmetrische Matrix $\mathbf{V} \Rightarrow d_i$ beinhalten alle nichtnegativen Eigenwerte von X
- Auswirkungen auf Kovarianzoperator V:

$$NV = X^T X = (WD^T U^T)(UDW^T) = WD^2 W^T$$

• Eigenwerte von V dann $diag(D)^2$; Eigenvektoren in Spalten von W

• maximieren von PCAPSV (ϕ_i) bzgl.

• $\|\phi_i\|^2 = 1$ und einer modifizierten Orthogonalitätsbedingung:

$$\int \phi_j(t)\phi_k(t)dt + \int D^2\phi_j(t)D^2\phi_k(t)dt = 0, \quad k = 1, \dots, j-1$$

ullet ergibt j-te Hauptkomponente ϕ_j

• Unterschied zur Glättung vor Hauptkomponentenanalyse

- Anfangsbereich verschieden, danach ähnlich
- ullet Für optimales λ : Leave-one-out Kreuzvalidierung