©Copyright 2018 Jonathan Fintzi

Bayesian Modeling of Partially Observed Epidemic Count Data

Jonathan Fintzi

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

University of Washington

2018

Reading Committee:
Vladimir Minin, Chair
Jon Wakefield, Chair
M. Elizabeth Halloran
James Hughes

Program Authorized to Offer Degree: Biostatistics

University of Washington

Abstract

Bayesian Modeling of Partially Observed Epidemic Count Data

Jonathan Fintzi

Co-Chairs of the Supervisory Committee: Co-chair Vladimir Minin Co-chair Jon Wakefield

An incredible abstract with all the best words will appear here.

TABLE OF CONTENTS

	Pa	age		
List of I	igures	iii		
List of T	ables	iv		
Glossary	·	V		
Chapter	1: Introduction and data setting	1		
1.1	Motivating examples	1		
	1.1.1 Influenza in a British boarding school	1		
	1.1.2 Ebola in West Africa	1		
	1.1.3 Pandemic A(H1N1) influenza in Finland	1		
1.2	Organization of this dissertation	1		
Chapter	2: Background	2		
2.1	Models for the spread of infectious disease	2		
	2.1.1 Deterministic representations	2		
	2.1.2 Stochastic representations	2		
	2.1.3 Large–population approximations	2		
2.2	Computational approaches to fitting stochastic epidemic models	2		
2.3	Bayesian computation	2		
	2.3.1 Markov chain Monte Carlo	2		
	2.3.2 Bayesian data augmentation	2		
Chapter	3: Agent–Based Data Augmentation for Fitting Stochastic Epidemic Models to Prevalence Data	3		
3.1	Overview			
3.2	The data augmentation algorithm for an SIR model			
3.3	Generalizing the algorithm to other models			

	3.3.1	Data augmentation for SEIR dynamics	į
	3.3.2	Data augmentation for SIRS dynamics	3
	3.3.3	Data augmentation for arbitrary dynamics	3
3.4	Simul	ation results	3
3.5	Exam	ple: Influenza in a British boarding school	3
3.6	Discu	ssion	Ş
Chapter	4:	Approximate Inference for Stochastic Epidemic Models of Outbreaks in Large Populations	4
Chapter	5:	Dynamic Transmission Modeling of Pandemic A(H1N1) Influenza in Finland	5
Chapter	6:	Discussion and Future Work	6
Bibliogra	aphy		7
Appendi	ix A·	Appendix A	8

LIST OF FIGURES

Figure Number Page

LIST OF TABLES

Table Number Page

GLOSSARY

CTMC: Continuous-time Markov chain.

DA: Data augmentation.

LNA: Linear noise approximation.

MJP: Markov jump process.

SEM: Stochastic epidemic model.

ACKNOWLEDGMENTS

Very grateful to many people.

DEDICATION

Dedication to important people.

INTRODUCTION AND DATA SETTING

1.1 Motivating examples

- 1.1.1 Influenza in a British boarding school
- 1.1.2 Ebola in West Africa
- 1.1.3 Pandemic A(H1N1) influenza in Finland
- 1.2 Organization of this dissertation

BACKGROUND

- 2.1 Models for the spread of infectious disease
- 2.1.1 Deterministic representations
- 2.1.2 Stochastic representations

 $Agent-based\ models$

 $Population{--level \ models}$

2.1.3 Large-population approximations

 ${\it Diffusion \ approximations \ of \ Markov \ jump \ processes}$

 $Linear\ noise\ approximation$

- 2.2 Computational approaches to fitting stochastic epidemic models
- 2.3 Bayesian computation
- 2.3.1 Markov chain Monte Carlo
- 2.3.2 Bayesian data augmentation

AGENT-BASED DATA AUGMENTATION FOR FITTING STOCHASTIC EPIDEMIC MODELS TO PREVALENCE DATA

- 3.1 Overview
- 3.2 The data augmentation algorithm for an SIR model
- 3.3 Generalizing the algorithm to other models
- 3.3.1 Data augmentation for SEIR dynamics
- 3.3.2 Data augmentation for SIRS dynamics
- 3.3.3 Data augmentation for arbitrary dynamics
- 3.4 Simulation results
- 3.5 Example: Influenza in a British boarding school
- 3.6 Discussion

APPROXIMATE INFERENCE FOR STOCHASTIC EPIDEMIC MODELS OF OUTBREAKS IN LARGE POPULATIONS

DYNAMIC TRANSMISSION MODELING OF PANDEMIC A(H1N1) INFLUENZA IN FINLAND

Chapter 6 DISCUSSION AND FUTURE WORK

BIBLIOGRAPHY

Appendix A

APPENDIX A