Justifique sucintamente as respostas

N°:_____ Nome: _____

cotações indicadas

Duração: 1h00

1. Enuncie e explique resumidamente por palavras suas as Leis de Kirchhoff (3 v.)

- 2. Qual a condição ou condições a que deve obedecer um circuito eléctrico para que este possa ser analisado pelo método da sobreposição? (2 v.)
- 3. Determine a resistência equivalente entre os pontos A e B das malhas seguintes (3 v.)

4. Pretende-se que determine no circuito seguinte a tensão V_x , recorrendo obrigatoriamente, em algum momento da resolução, à regra do divisor de tensão ou à regra do divisor de corrente, conforme lhe pareça mais conveniente (3 v.)

5. Considerando o circuito seguinte, siga o raciocínio de análise e complete-o de acordo com a lógica dos princípios que aprendeu (3 v.)

Resolução a completar: Vamos começar por admitir por hipótese $I_5 = 1A$ (valor arbitrário). Pela lei de Ohm teríamos então $V_B=2.I_5=2V$. Donde resulta que $I_4=V_B/3=0,66(6)A$. Isto vem a dar que $I_3=I_4+I_5=1,66(6)A$, donde se conclui que $V_A=V_B+3.I_3=7V$. Perante isto, teríamos $I_2=V_A/14=0,5A$ e ainda $I_1=I_2+I_3=2,166(6)A$. Em conformidade com tudo isto, teríamos um valor de $V_F=$ ______ = ______ V. Uma vez que, na realidade, o valor da tensão da fonte é de 10V, a corrente I_5 será efectivamente de _______ A.

6. Considere o circuito seguinte e responda às questões:

a) Utilize o método das tensões nodais para calcular V_B –V_C. (3 v.)

b) Represente no diagrama as correntes fictícias que considere necessárias à análise pelo método homónimo e apresente as equações resultantes: equações das malhas, eventuais equações extra e as relações entre correntes fictícias e correntes reais nos ramos (3 v.)

(p.f. responder no verso da folha 1)