GEL-2002 ÉLECTRONIQUE DES COMPOSANTS DISCRETS

EXAMEN PARTIEL Le 24 février 2016 De 14h30 à 16h20 Local PLT-2501

Document autorisé	- Une feuille format lettre (8.5 po. x 11 po.) manuscrite recto-verso
Remarques	- Écrivez proprement et lisiblement - La démarche de votre solution doit être clairement expliquée - Les tensions et les courants doivent être bien identifiés sur les schémas - Les courbes doivent être faites avec soins

Problème no. 1 (25 points)

a) Soit le circuit montré dans la figure suivante.

- En utilisant le modèle à V_F constante pour les LEDs, **déterminer** les LEDs qui sont allumées. (4 points)
- Calculer le courant dans chaque LED allumée. (8 points)
- b) Soit l'alimentation DC montrée à la figure suivante.

- Calculer la tension V_{z0}. (3 points)
- Utilisant le modèle « V_{z0} et r_Z » pour la diode Zener, **déterminer** l'équivalent Thévenin de l'alimentation. (6 points)
- On connecte une résistance de 60 Ω à la sortie. **Déterminer** la tension V_o et le courant I_o : (4 points)

Problème no. 2 (25 points)

a) Considérons le circuit suivant.

- On désire obtenir une tension $V_C = 9$ V. Choisir les valeurs des résistances R_1 et R_2 en utilisant des valeurs standardisées. (8 points)
- Avec les valeurs de résistances choisies, **déterminer** la tension V_C dans le cas où le gain β est égal à 300. (5 points)
- b) Considérons le circuit suivant.

À partir de ces mesures, déterminer la tension de seuil de conduction V_t et le paramètre k_n du MOSFET. (12 points)

Problème no. 3 (25 points)

Considérons l'amplificateur à transistor bipolaire suivant.

- a) Déterminer le point de fonctionnement (I_C, V_{CE}) du transistor. (4 points)
- b) Calculer les paramètres r_{π} et g_m du modèle "petit signal" en π du transistor. (4 points) En supposant que la résistance r_o du transistor est très grande par rapport à R_C , tracer un circuit équivalent petit signal de l'amplificateur utilisant le modèle en π du transistor. (5 points)
- c) À l'aide du circuit équivalent petit signal, **calculer** la résistance d'entrée R_i , la résistance de sortie R_o et le gain en tension (sans charge) $A_{v0} = \frac{v_o}{v_i}\Big|_{R_L = \infty}$ de l'amplificateur. (8 points)

Calculer l'amplitude de la tension de sortie v_o lorsqu'une charge de $1.5~k\Omega$ est connectée et l'amplitude de la source v_s est égale à 10~mV. (4 points)

Problème no. 4 (25 points)

Considérons l'amplificateur à MOSFET suivant.

- a) Déterminer le point de fonctionnement (I_D , V_{DS}) du MOSFET. (4 points)
- b) Calculer la transconductance g_m du MOSFET (à I_D = valeur calculée dans la question a) (4 points) En supposant que la résistance r_o du MOSFET est très grande par rapport à R_D , tracer un circuit équivalent petit signal de l'amplificateur. (5 points)
- c) À l'aide du circuit équivalent petit signal, **calculer** la résistance d'entrée R_i , la résistance de sortie R_o et le gain en tension (sans charge) $A_{vo} = \frac{v_o}{v_i}\Big|_{R_L = \infty}$ de l'amplificateur. (8 points)

Calculer l'amplitude de la tension de sortie v_o lorsqu'une charge de 2 k Ω est connectée et l'amplitude de la source v_s est égale à 10 mV. (4 points)