StudentPerformance HypTesting Project

February 7, 2022

```
[28]: import pandas as pd
      import matplotlib.pyplot as plt
      from scipy.stats import ttest_ind, chi2_contingency, f_oneway
      import numpy as np
      import nbconvert
      import seaborn as sns
      from statsmodels.stats.multicomp import pairwise_tukeyhsd
[29]: # data source: https://www.kaggle.com/spscientist/students-performance-in-exams_
      → It should be noted that this is fictional data.
      student_df = pd.read_csv('StudentsPerformance.csv')
      print("First 5 rows of data: ")
      print(student_df.head())
      print("Column info: ")
      print(student_df.info())
      print("Stats on Numerical Columns: ")
      print(student_df.describe())
     First 5 rows of data:
        gender race/ethnicity parental level of education
                                                                  lunch \
     0 female
                      group B
                                       bachelor's degree
                                                                standard
     1 female
                      group C
                                             some college
                                                                standard
     2 female
                      group B
                                         master's degree
                                                                standard
     3
                                       associate's degree free/reduced
          male
                      group A
     4
          male
                      group C
                                             some college
                                                                standard
       test preparation course math score reading score writing score
     0
                          none
                                        72
                                                       72
     1
                     completed
                                        69
                                                       90
                                                                       88
     2
                                        90
                                                       95
                                                                       93
                          none
     3
                                        47
                                                       57
                                                                       44
                          none
     4
                                                       78
                                                                      75
                                        76
                          none
     Column info:
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1000 entries, 0 to 999
     Data columns (total 8 columns):
        Column
                                       Non-Null Count Dtype
      --- ----
```

```
gender
      0
                                     1000 non-null
                                                    object
      1
         race/ethnicity
                                     1000 non-null
                                                    object
      2
         parental level of education 1000 non-null
                                                    object
      3
         lunch
                                     1000 non-null
                                                    object
      4
                                     1000 non-null
         test preparation course
                                                    object
      5
         math score
                                     1000 non-null
                                                    int64
         reading score
                                     1000 non-null
                                                    int64
                                     1000 non-null
         writing score
                                                    int64
     dtypes: int64(3), object(5)
     memory usage: 62.6+ KB
     None
     Stats on Numerical Columns:
           math score reading score writing score
     count 1000.00000
                         1000.000000
                                       1000.000000
     mean
             66.08900
                          69.169000
                                         68.054000
             15.16308
                          14.600192
                                         15.195657
     std
     min
              0.00000
                          17.000000
                                         10.000000
     25%
             57.00000
                          59.000000
                                         57.750000
     50%
             66.00000
                          70.000000
                                         69.000000
     75%
             77.00000
                          79.000000
                                         79.000000
     max
            100.00000
                          100.000000
                                        100.000000
[30]: #Data Cleaning
     #rename columns to variable-friendly names
     ⇔'math_score', 'reading_score', 'writing_score']
     #replace free/reduced from lunch column to variable_friendly name
     student_df.lunch = student_df.lunch.replace('free/reduced', 'free_or_reduced')
     print(student_df.lunch.value_counts())
     print()
     #remove apostrophe from degree titles for easier string usage
     student_df.parent_ed = student_df.parent_ed.replace("associate's degree", u
      student_df.parent_ed = student_df.parent_ed.replace("bachelor's degree",u
      ⇔'bachelor degree')
     student_df.parent_ed = student_df.parent_ed.replace("master's degree", 'mastersu

degree')
     #parental level of education should be an ordinal categorical variable rather
      ⇔than nominal
     print(student_df.parent_ed.value_counts()), print()
     student_df.parent_ed = pd.Categorical(student_df.parent_ed, ['some high_
       ⇔school', 'high school', 'some college', 'associate degree', 'bachelor⊔

degree', 'masters degree'], ordered = True)
```

```
print(student_df.parent_ed.unique())
     standard
                        645
     free_or_reduced
                        355
     Name: lunch, dtype: int64
     some college
                         226
     associate degree
                         222
     high school
                         196
     some high school
                         179
     bachelor degree
                         118
     masters degree
                          59
     Name: parent_ed, dtype: int64
     ['bachelor degree', 'some college', 'masters degree', 'associate degree', 'high
     school', 'some high school']
     Categories (6, object): ['some high school' < 'high school' < 'some college' <
     'associate degree' < 'bachelor degree' < 'masters degree']
[31]: sns.kdeplot(student_df.math_score, shade=True)
      sns.kdeplot(student_df.reading_score, shade=True)
      sns.kdeplot(student_df.writing_score, shade=True)
      plt.legend(["Math score", "Reading score", "Writing score"], loc = 2)
      plt.xlabel("Exam Scores")
      plt.title("Exam Score Distributions")
      plt.savefig('exam_distr.png')
      plt.show()
      plt.clf()
```


<Figure size 432x288 with 0 Axes>

```
[32]: #Hypothesis 1: relation between gender and math score
      \#Null\ Hyp: There is no association between a student's gender and their math_
       ⇔score.
      #Alt Hyp: There is a significant difference (5% significance threshhold)_{\sqcup}
       ⇒between the math scores of males vs females
      #print(student_df.gender.value_counts())
      female_math_scores = student_df.math_score[student_df.gender == 'female']
      male_math_scores = student_df.math_score[student_df.gender == 'male']
      female_math_mean = np.mean(female_math_scores)
      male_math_mean = np.mean(male_math_scores)
      print("Mean math score of female students: " + str(female_math_mean))
      print("Mean math score of male students: " + str(male_math_mean))
      print("Mean difference: " + str(female_math_mean - male_math_mean))
      plt.hist(female_math_scores, color = 'red', label = "female math scores", u
       →density = True, alpha = 0.5)
      plt.axvline(female_math_mean, color = 'r', linestyle = 'dotted', label = ___

¬"female mean")
```

```
plt.hist(male_math_scores, color = 'blue', label = "male math scores", densityu
 \Rightarrow= True, alpha = 0.5)
plt.axvline(male_math_mean, color = 'b', linestyle = 'dotted', label = "male_u
 ⊸mean")
plt.legend()
plt.xlabel("Math Score")
plt.ylabel("Density")
plt.title("Math scores by Gender Comparison")
plt.savefig('gender_math_hist.png')
plt.show()
plt.clf()
#Two-sample T-Test
tstat, pval = ttest_ind(female_math_scores, male_math_scores)
print("P-Value: " + str(pval))
if pval < 0.05:</pre>
    print("There is a statistically significant difference between female and ⊔
 ⇔male math scores.")
    if female_math_mean > male_math_mean:
        print("Female students averaged higher with statistical significance.")
        print("Male students averaged higher with statistical significance.")
else:
    print("There is NOT a statistically significant difference between female⊔
 ⇔and male math scores.")
print()
```

Mean math score of female students: 63.633204633204635 Mean math score of male students: 68.72821576763485

Mean difference: -5.095011134430216

P-Value: 9.120185549328822e-08

There is a statistically significant difference between female and male math scores.

Male students averaged higher with statistical significance.

```
[]:
```

```
plt.hist(female_reading_scores, color = 'red', label = "female_reading_scores", __

density = True, alpha = 0.5)

plt.axvline(female_reading_mean, color = 'r', linestyle = 'dotted', label = ___
 plt.hist(male_reading_scores, color = 'blue', label = "male reading scores", u
 →density = True, alpha = 0.5)
plt.axvline(male_reading_mean, color = 'b', linestyle = 'dotted', label = "male_"
 →mean")
plt.legend()
plt.xlabel("Reading Score")
plt.ylabel("Density")
plt.title("Reading scores by Gender Comparison")
plt.savefig('gender_reading_hist.png')
plt.show()
plt.clf()
#Two-sample T-Test
tstat, pval = ttest_ind(female_reading_scores, male_reading_scores)
print("P-Value: " + str(pval))
if pval < 0.05:
   print("There is a statistically significant difference between female and,
 →male reading scores.")
    if female_reading_mean > male_reading_mean:
        print("Female students averaged higher with statistical significance.")
   else:
       print("Male students averaged higher with statistical significance.")
else:
   print("There is NOT a statistically significant difference between female⊔
 →and male reading scores.")
print()
```

Mean reading score of female students: 72.60810810810811 Mean reading score of male students: 65.47302904564316 Mean difference: 7.135079062464953

P-Value: 4.680538743933289e-15

There is a statistically significant difference between female and male reading scores.

Female students averaged higher with statistical significance.

```
[34]: #Hypothesis 3: relation between gender and writing score
#Null Hyp: There is no association between a student's gender and their writing_
score.

#Alt Hyp: There is a significant difference (5% significance threshold)_
between the writing scores of males vs females

female_writing_scores = student_df.writing_score[student_df.gender == 'female']

male_writing_scores = student_df.writing_score[student_df.gender == 'male']

female_writing_mean = np.mean(female_writing_scores)

male_writing_mean = np.mean(male_writing_scores)

print("Mean writing score of female students: " + str(female_writing_mean))

print("Mean writing score of male students: " + str(male_writing_mean))

print("Mean difference: " + str(female_writing_mean - male_writing_mean))
```

```
plt.hist(female_writing_scores, color = 'red', label = "female writing scores", u
   ⇔density = True, alpha = 0.5)
plt.axvline(female_writing_mean, color = 'r', linestyle = 'dotted', label = dotted', label 
   plt.hist(male_writing_scores, color = 'blue', label = "male writing scores", __

density = True, alpha = 0.5)

plt.axvline(male_writing_mean, color = 'b', linestyle = 'dotted', label = "male_u
    →mean")
plt.legend()
plt.xlabel("Writing Score")
plt.ylabel("Density")
plt.title("Writing scores by Gender Comparison")
plt.savefig('gender_writing_hist.png')
plt.show()
plt.clf()
\#Two-sample\ T-Test
tstat, pval = ttest_ind(female_writing_scores, male_writing_scores)
print("P-Value: " + str(pval))
if pval < 0.05:
           print("There is a statistically significant difference between female and ⊔
   →male writing scores.")
           if female_writing_mean > male_writing_mean:
                      print("Female students averaged higher with statistical significance.")
           else:
                      print("Male students averaged higher with statistical significance.")
           print("There is NOT a statistically significant difference between female⊔
  →and male writing scores.")
print()
```

Mean writing score of female students: 72.46718146718146 Mean writing score of male students: 63.31120331950208 Mean difference: 9.155978147679384

P-Value: 2.019877706867934e-22

There is a statistically significant difference between female and male writing scores.

Female students averaged higher with statistical significance.

```
plt.figure(figsize = (10, 5))
plt.hist(standard_math_scores, color = 'green', label = "standard lunch math_
 ⇔scores", density = True, alpha = 0.5)
plt.axvline(standard_math_mean, color = 'g', linestyle = 'dotted', label = ___
 plt.hist(free_or_reduced_math_scores, color = 'red', label = "free/reduced_u
 ⇔lunch math scores", density = True, alpha = 0.5)
plt.axvline(free_or_reduced_math_mean, color = 'r', linestyle = 'dotted', labelu
 ⇒= "free/reduced mean score")
plt.legend(bbox_to_anchor=(1, 1))
plt.xlabel("Math Score")
plt.ylabel("Density")
plt.title("Math scores by Lunch Status Comparison")
plt.tight_layout()
plt.savefig('lunch_math_hist.png')
plt.show()
plt.clf()
#Two-sample T-Test
tstat, pval = ttest_ind(standard_math_scores, free_or_reduced_math_scores)
print("P-Value: " + str(pval))
if pval < 0.05:
   print("There is a statistically significant difference between standard and \sqcup
 →free/reduced lunch math scores.")
    if standard_math_mean > free_or_reduced_math_mean:
       print("Standard lunch students averaged higher with statistical ∪
 ⇔significance.")
   else:
       print("Free/reduced lunch students averaged higher with statistical ⊔
 ⇔significance.")
else:
   print("There is NOT a statistically significant difference between standard ⊔
 →and free/reduced lunch math scores.")
print()
```

Mean math score of standard lunch students: 70.03410852713178

Mean math score of free/reduced lunch students: 58.92112676056338

Mean difference: 11.112981766568396

P-Value: 2.4131955993137074e-30

There is a statistically significant difference between standard and free/reduced lunch math scores.

Standard lunch students averaged higher with statistical significance.

```
[36]: #Hypothesis 5: relation between lunch type and reading score
      #Null Hyp: There is no association between a student's lunch type and their
       ⇔reading score.
      #Alt Hyp: There is a significant difference (5% significance threshhold)_{\sqcup}
       ⇒between the reading scores of free/reduced lunches vs standard lunches
     standard_reading_scores = student_df.reading_score[student_df.lunch ==_
       free_or_reduced_reading_scores = student_df.reading_score[student_df.lunch ==_u
       standard_reading_mean = np.mean(standard_reading_scores)
     free or reduced reading mean = np.mean(free or reduced reading scores)
     print("Mean reading score of standard lunch students: " +
       ⇔str(standard_reading_mean))
     print("Mean reading score of free/reduced lunch students: " +_
       str(free_or_reduced_reading_mean))
     print("Mean difference: " + str(standard_reading_mean -_
       →free_or_reduced_reading_mean))
     plt.figure(figsize = (10, 5))
```

```
plt.hist(standard_reading_scores, color = 'green', label = "standard lunchu
 →reading scores", density = True, alpha = 0.5)
plt.axvline(standard_reading_mean, color = 'g', linestyle = 'dotted', label = u
 plt.hist(free_or_reduced_reading_scores, color = 'red', label = "free/reduced_"
 →lunch reading scores", density = True, alpha = 0.5)
plt.axvline(free_or_reduced_reading_mean, color = 'r', linestyle = 'dotted', u
 ⇔label = "free/reduced mean score")
plt.legend(bbox_to_anchor=(1, 1))
plt.xlabel("Reading Score")
plt.ylabel("Density")
plt.title("Reading scores by Lunch Status Comparison")
plt.tight_layout()
plt.savefig('lunch_reading_hist.png')
plt.show()
plt.clf()
#Two-sample T-Test
tstat, pval = ttest_ind(standard_reading_scores, free_or_reduced_reading_scores)
print("P-Value: " + str(pval))
if pval < 0.05:
   print("There is a statistically significant difference between standard and,

¬free/reduced lunch reading scores.")
    if standard_reading_mean > free_or_reduced_reading_mean:
       print("Standard lunch students averaged higher with statistical ⊔
 ⇔significance.")
    else:
       print("Free/reduced lunch students averaged higher with statistical ⊔
 ⇔significance.")
   print("There is NOT a statistically significant difference between standard_{\sqcup}
 →and free/reduced lunch reading scores.")
print()
```

Mean reading score of standard lunch students: 71.65426356589147

Mean reading score of free/reduced lunch students: 64.65352112676057

Mean difference: 7.000742439130903

P-Value: 2.0027966545279011e-13

There is a statistically significant difference between standard and free/reduced lunch reading scores.

Standard lunch students averaged higher with statistical significance.

```
[37]: #Hypothesis 6: relation between lunch type and writing score
      #Null Hyp: There is no association between a student's lunch type and their
       ⇔writing score.
      #Alt Hyp: There is a significant difference (5% significance threshhold)_{\sqcup}
       ⇒between the writing scores of free/reduced lunches vs standard lunches
     standard_writing_scores = student_df.writing_score[student_df.lunch ==_
       free_or_reduced_writing_scores = student_df.writing_score[student_df.lunch ==_u
       standard_writing_mean = np.mean(standard_writing_scores)
     free_or_reduced_writing mean = np.mean(free_or_reduced_writing_scores)
     print("Mean writing score of standard lunch students: " +
       ⇔str(standard_writing_mean))
     print("Mean writing score of free/reduced lunch students: " +_
       str(free_or_reduced_writing_mean))
     print("Mean difference: " + str(standard_writing_mean -_

¬free_or_reduced_writing_mean))
     plt.figure(figsize = (9, 5))
```

```
plt.hist(standard_writing_scores, color = 'green', label = "standard lunchu
 ⇔writing scores", density = True, alpha = 0.5)
plt.axvline(standard_writing_mean, color = 'g', linestyle = 'dotted', label = u
 plt.hist(free_or_reduced_writing_scores, color = 'red', label = "free/reduced_"
 →lunch writing scores", density = True, alpha = 0.5)
plt.axvline(free_or_reduced_writing_mean, color = 'r', linestyle = 'dotted', u
 ⇔label = "free/reduced mean score")
plt.legend(bbox_to_anchor=(1, 1))
plt.xlabel("Writing Score")
plt.ylabel("Density")
plt.title("Writing scores by Lunch Status Comparison")
plt.tight_layout()
plt.savefig('lunch_writing_hist.png')
plt.show()
plt.clf()
#Two-sample T-Test
tstat, pval = ttest_ind(standard_writing_scores, free_or_reduced_writing_scores)
print("P-Value: " + str(pval))
if pval < 0.05:
   print("There is a statistically significant difference between standard and,

¬free/reduced lunch writing scores.")
    if standard_writing_mean > free_or_reduced_writing_mean:
       print("Standard lunch students averaged higher with statistical ⊔
 ⇔significance.")
       print("Free/reduced lunch students averaged higher with statistical ⊔
 ⇔significance.")
   print("There is NOT a statistically significant difference between standard_{\sqcup}
 →and free/reduced lunch writing scores.")
print()
```

Mean writing score of standard lunch students: 70.8232558139535 Mean writing score of free/reduced lunch students: 63.02253521126761 Mean difference: 7.800720602685885

P-Value: 3.1861895831664765e-15

There is a statistically significant difference between standard and free/reduced lunch writing scores.

Standard lunch students averaged higher with statistical significance.

```
[38]: #Hypothesis 7: relation between parental level of education and lunch
      #Null Hyp: The education level of a student's parents has no impact on whether
       → they receive standard or free/reduced lunch
      #Alt Hyp: There is a significant difference (5% significance threshhold)_{\sqcup}
       between the the type of lunch service a student received based on their
       ⇔parent's education level
      #print(student_df.parent_ed.value_counts())
      #print(student_df.lunch.value_counts())
      #print(student_df.parent_ed.unique())
     lunch_counts_by_parent_ed = student_df.groupby(['parent_ed', 'lunch']).gender.
       lunch_counts_by_parent_ed.rename(columns = {'gender': 'count'}, inplace = True)
     #print(lunch_counts_by_parent_ed)
      #need [list of standard lunch counts, ordered by parent_ed], [list of__
       → free_or_reduced lunch counts, ordered by parent_ed]
      #pivot table?
```

```
#then will need to iterate through each list to convert it to a percent of the
 ⇔sum of that list
lunch_counts_by_parent_ed = lunch_counts_by_parent_ed.pivot(columns = __
s'parent ed', index = 'lunch', values = 'count').reset index()
#print(lunch_counts_by_parent_ed), print()
lunch_counts_by_parent_ed_lists = lunch_counts_by_parent_ed.values.tolist()
#print(lunch_counts_by_parent_ed_lists)
freeReduced_by_parentEd = lunch_counts_by_parent_ed_lists[0]
freeReduced_by_parentEd.pop(0)
freeReduced_by_parentEd_perc = [np.round(100*i/np.sum(freeReduced_by_parentEd),_
 →decimals = 1) for i in freeReduced_by_parentEd]
standard_by_parentEd = lunch_counts_by_parent_ed_lists[1]
standard_by_parentEd.pop(0)
standard by parentEd perc = [np.round(100*i/np.sum(standard by parentEd),_

→decimals = 1) for i in standard_by_parentEd]
#print(freeReduced_by_parentEd_perc, standard_by_parentEd_perc)
# free/reduced lunch x placement
n = 1 # This is our first dataset (out of 2)
t = 2 # Number of datasets
d = 6 # Number of sets of bars
w = 0.8 \# Width of each bar
x_values1 = [t*element + w*n for element in range(d)]
# standard lunch x placement
n = 2 # This is our second dataset (out of 2)
t = 2 # Number of datasets
d = 6 # Number of sets of bars
w = 0.8 \# Width of each bar
x_values2 = [t*element + w*n for element in range(d)]
labels = ['some high school', 'high school', 'some college', 'associate,
 ⇔degree', 'bachelor degree', 'masters degree']
plt.figure(figsize = (6, 5.8))
plt.bar(x_values1, freeReduced_by_parentEd_perc)
plt.bar(x_values2, standard_by_parentEd_perc)
ax = plt.subplot()
ax.set_xticks(2*np.arange(len(labels))+1.18, labels, rotation = 20)
plt.ylabel("Percent of Students by Lunch Type")
plt.xlabel("Parent Level of Education")
plt.legend(['Free/Reduced Lunch', 'Standard Lunch'], loc = 3)
plt.title("Do parents' education level affect student lunch status?")
plt.tight_layout()
plt.savefig('lunch_parentEd_bar.png')
```

```
plt.show()
plt.clf()

#chi-square test
Xtab = pd.crosstab(student_df.parent_ed, student_df.lunch)
#print(Xtab)
chi2, pval, dof, expected = chi2_contingency(Xtab)
#print(expected)
print("P-Value: " + str(pval))
if pval < 0.05:
    print("There is a statistically significant relationship between parental_
    deducation level and whether the student receives free/reduced lunch.")
else:
    print("There is NOT a statistically significant relationship between_
    print("There is NOT a statistically significant relationship between_
    parental education level and whether the student receives free/reduced lunch.
    d")</pre>
```


P-Value: 0.9531014927218223

⇒who did not.

There is NOT a statistically significant relationship between parental education level and whether the student receives free/reduced lunch.

<Figure size 432x288 with 0 Axes>

[40]: #Hypothesis 8: relation between test preparation course and math score
#Null Hyp: There is no association between whether a student took the test prepu
→course and their math score.

#Alt Hyp: There is a significant difference (5% significance threshhold)
→between the math scores of students who took the test prep course vs those
□

```
testprep_math_scores = student_df.math_score[student_df.test_prep ==_
 #print(testprep_math_scores.describe())
noprep math scores = student df.math score[student df.test prep == 'none']
#print(noprep_math_scores.describe())
testprep_math_mean = np.mean(testprep_math_scores)
noprep_math_mean = np.mean(noprep_math_scores)
print("Mean math score of students who completed the Test Prep Course: " + L
 ⇔str(testprep_math_mean))
print("Mean math score of students who did not complete the Test Prep Course: "
 →+ str(noprep math mean))
print("Mean difference: " + str(testprep_math_mean - noprep_math_mean))
#side by side box plots for scores based on test prep
plt.figure(figsize = (6,8))
sns.boxplot(data = student_df, x = 'test_prep', y = 'math_score')
plt.ylabel("Math Score")
plt.xlabel("Test Preparation Course")
plt.title("Math Scores by Test Prep")
plt.tight_layout()
plt.savefig('testprep_math.png')
plt.show()
#Two-sample T-Test
tstat, pval = ttest_ind(testprep_math_scores, noprep_math_scores)
print("P-Value: " + str(pval))
if pval < 0.05:</pre>
    print("There is a statistically significant difference between math scores⊔
 →of students who completed the test prep course vs those who didn't.")
    if testprep_math_mean > noprep_math_mean:
        print("Students who completed the test prep course averaged higher with⊔
 ⇔statistical significance.")
    else:
        print("Students who did NOT complete the test prep course averaged ⊔
 →higher with statistical significance.")
else:
    print("There is NOT a statistically significant difference between math⊔
 scores of students who completed the test prep course vs those who didn't.")
print()
Mean math score of students who completed the Test Prep Course:
```

```
Mean math score of students who completed the Test Prep Course: 69.69553072625699

Mean math score of students who did not complete the Test Prep Course: 64.0778816199377

Mean difference: 5.617649106319291
```


P-Value: 1.5359134607147415e-08 There is a statistically significant difference between math scores of students who completed the test prep course vs those who didn't.

Students who completed the test prep course averaged higher with statistical significance.

```
[41]: | #Hypothesis 9: relation between test preparation course and reading score
      #Null Hyp: There is no association between whether a student took the test prep_{\sqcup}
       →course and their reading score.
      #Alt Hyp: There is a significant difference (5% significance threshhold)⊔
       →between the reading scores of students who took the test prep course vs_
       ⇔those who did not.
      testprep_reading_scores = student_df.reading_score[student_df.test_prep ==_
      #print(testprep_reading_scores.describe())
      noprep_reading_scores = student_df.reading_score[student_df.test_prep == 'none']
      #print(noprep_reading_scores.describe())
      testprep_reading_mean = np.mean(testprep_reading_scores)
      noprep_reading_mean = np.mean(noprep_reading_scores)
      print("Mean reading score of students who completed the Test Prep Course: " +_{\sqcup}
       ⇒str(testprep_reading_mean))
      print("Mean reading score of students who did not complete the Test Prep Course:
       + str(noprep_reading_mean))
      print("Mean difference: " + str(testprep reading mean - noprep reading mean))
      #side by side box plots for scores based on test prep
      plt.figure(figsize = (6,8))
      sns.boxplot(data = student df, x = 'test prep', y = 'reading score')
      plt.ylabel("Reading Score")
      plt.xlabel("Test Preparation Course")
      plt.title("Reading Scores by Test Prep")
      plt.tight_layout()
      plt.savefig('testprep_reading.png')
      plt.show()
      #Two-sample T-Test
      tstat, pval = ttest_ind(testprep_reading_scores, noprep_reading_scores)
      print("P-Value: " + str(pval))
      if pval < 0.05:
          print("There is a statistically significant difference between reading ⊔
       scores of students who completed the test prep course vs those who didn't.")
          if testprep_reading_mean > noprep_reading_mean:
             print("Students who completed the test prep course averaged higher with⊔
       ⇔statistical significance.")
          else:
              print("Students who did NOT complete the test prep course averaged ⊔
       ⇔higher with statistical significance.")
```

else:

print("There is NOT a statistically significant difference between reading \cup scores of students who completed the test prep course vs those who didn't.") print()

Mean reading score of students who completed the Test Prep Course: 73.89385474860335

Mean reading score of students who did not complete the Test Prep Course: 66.53426791277259

Mean difference: 7.359586835830754

P-Value: 9.081783336892205e-15 There is a statistically significant difference between reading scores of students who completed the test prep course vs those who didn't.

Students who completed the test prep course averaged higher with statistical significance.

```
[42]: #Hypothesis 10: relation between test preparation course and writing score
      #Null Hyp: There is no association between whether a student took the test prep_{\sqcup}
       ⇒course and their writing score.
      #Alt Hyp: There is a significant difference (5% significance threshhold)⊔
       →between the writing scores of students who took the test prep course vs_
       ⇔those who did not.
      testprep_writing_scores = student_df.writing_score[student_df.test_prep ==_
      #print(testprep_writing_scores.describe())
      noprep_writing_scores = student_df.writing_score[student_df.test_prep == 'none']
      #print(noprep_writing_scores.describe())
      testprep_writing_mean = np.mean(testprep_writing_scores)
      noprep_writing_mean = np.mean(noprep_writing_scores)
      print("Mean writing score of students who completed the Test Prep Course: " +_{\sqcup}
       ⇒str(testprep_writing_mean))
      print("Mean writing score of students who did not complete the Test Prep Course:
       + str(noprep_writing_mean))
      print("Mean difference: " + str(testprep writing mean - noprep writing mean))
      #side by side box plots for scores based on test prep
      plt.figure(figsize = (6,8))
      sns.boxplot(data = student df, x = 'test prep', y = 'writing score')
      plt.ylabel("Writing Score")
      plt.xlabel("Test Preparation Course")
      plt.title("Writing Scores by Test Prep")
      plt.tight_layout()
      plt.savefig('testprep_writing.png')
      plt.show()
      #Two-sample T-Test
      tstat, pval = ttest_ind(testprep_writing_scores, noprep_writing_scores)
      print("P-Value: " + str(pval))
      if pval < 0.05:
          print("There is a statistically significant difference between writing⊔
       scores of students who completed the test prep course vs those who didn't.")
          if testprep_writing_mean > noprep_writing_mean:
             print("Students who completed the test prep course averaged higher with⊔
       ⇔statistical significance.")
          else:
              print("Students who did NOT complete the test prep course averaged ⊔
       ⇔higher with statistical significance.")
```

else:

print("There is NOT a statistically significant difference between writing $_{\sqcup}$ $_{\hookrightarrow}$ scores of students who completed the test prep course vs those who didn't.") print()

Mean writing score of students who completed the Test Prep Course: 74.41899441340782

Mean writing score of students who did not complete the Test Prep Course: 64.50467289719626

Mean difference: 9.914321516211558

P-Value: 3.68529173524572e-24 There is a statistically significant difference between writing scores of students who completed the test prep course vs those who didn't.

Students who completed the test prep course averaged higher with statistical significance.

```
[43]: #Hypothesis 11: relation between race and math score
      #Null Hyp: There is no association between a student's ethnicity and their math_
       ⇔score.
      #Alt Hyp: There is a significant difference (5% significance threshhold)_{\sqcup}
       ⇒between the math scores of students of different ethnicities.
      #print(student df.ethnicity.value counts())
      groupA_math_scores = student_df.math_score[student_df.ethnicity == 'group A']
      groupB_math_scores = student_df.math_score[student_df.ethnicity == 'group B']
      groupC math scores = student df.math score[student df.ethnicity == 'group C']
      groupD_math_scores = student_df.math_score[student_df.ethnicity == 'group D']
      groupE_math_scores = student_df.math_score[student_df.ethnicity == 'group E']
      #ANOVA Hyp Test
      fastat, pval = f_oneway(groupA_math_scores, groupB_math_scores,_
       →groupC_math_scores, groupD_math_scores, groupE_math_scores)
      print("P-value: " + str(pval))
      if pval < 0.5:
          print("There is a statistically significant difference in math scores among_
       →the ethnic groups in this data."), print()
      else:
          print("There is NOT a statistically significant difference in math scores⊔
       →among the ethnic groups in this data."), print()
      #Tukey Range Test -- which group(s) have the significant differences?
      tukey_results = pairwise_tukeyhsd(student_df.math_score, student_df.ethnicity,_
       →0.05)
      print(tukey_results), print()
      rows = tukey_results.summary().data[1:]
      #print(rows)
      print("There are statistically siginificant differences in math scores between:
      for list in rows:
          group1 = list[0]
          group2 = list[1]
          significance = list[-1]
          if significance == True:
              print(group1 + " and " + group2)
      print()
```

```
tukey_df = pd.DataFrame(rows, columns = ['group1', 'group2', 'meandiff', |
 max_meandiff = tukey_df.meandiff.max()
max meandiff row = tukey df.meandiff.idxmax()
max diff group1 = tukey df.iloc[max meandiff row][0]
max diff group2 = tukey df.iloc[max meandiff row][1]
print("The largest difference in math scores was " + str(max_meandiff) + "%__
 sbetween " + str(max_diff_group1) + " and " + str(max_diff_group2))
#Side-by-side box plots
plt.figure(figsize = (10,8))
sns.boxplot(data = student_df, x = 'ethnicity', y = 'math_score', order = __
⇔['group A', 'group B', 'group C', 'group D', 'group E'])
plt.vlabel("Math Score")
plt.xlabel("Student Race/Ethnicity")
plt.title("Math Scores by Race/Ethnicity")
plt.tight_layout()
plt.savefig('ethnicity_math.png')
plt.show()
```

P-value: 1.3732194030370688e-11

There is a statistically significant difference in math scores among the ethnic groups in this data.

```
Multiple Comparison of Means - Tukey HSD, FWER=0.05
```

_____ group1 group2 meandiff p-adj lower upper reject group A group B 1.8234 0.8597 -3.36 7.0068 False group A group C 2.8347 0.4966 -2.0028 7.6723 False group A group D 5.7334 0.0138 0.7824 10.6844 True group A group E 12.1922 0.001 6.7215 17.6629 True group B group C 1.0113 0.9 -2.6867 4.7094 False group B group D 3.91 0.0441 0.0647 7.7552 True group B group E 10.3688 0.001 5.8741 14.8635 True group C group D 2.8986 0.1287 -0.4659 6.2632 False group C group E 9.3575 0.001 5.2665 13.4485 True group D group E 6.4588 0.001 2.2343 10.6834 True

```
There are statistically siginificant differences in math scores between: group A and group D group A and group E group B and group D group B and group E
```

```
group C and group E group D and group E
```

The largest difference in math scores was 12.1922% between group A and group E


```
[44]: #Hypothesis 12: relation between race and reading score

#Null Hyp: There is no association between a student's ethnicity and their

reading score.

#Alt Hyp: There is a significant difference (5% significance threshold)

between the reading scores of students of different ethnicities.

#print(student_df.ethnicity.value_counts())

groupA_reading_scores = student_df.reading_score[student_df.ethnicity == 'group_

A']

groupB_reading_scores = student_df.reading_score[student_df.ethnicity == 'group_

B']

groupC_reading_scores = student_df.reading_score[student_df.ethnicity == 'group_

C']
```

```
groupD_reading_scores = student_df.reading_score[student_df.ethnicity == 'groupL
 ⇔D']
groupE_reading_scores = student_df.reading_score[student_df.ethnicity == 'group_
 ĢЕ']
#ANOVA Hyp Test
fastat, pval = f_oneway(groupA_reading_scores, groupB_reading_scores,_
 agroupC_reading_scores, groupD_reading_scores, groupE_reading_scores)
print("P-value: " + str(pval))
if pval < 0.5:
   print("There is a statistically significant difference in reading scores⊔
 →among the ethnic groups in this data."), print()
   print("There is NOT a statistically significant difference in reading ⊔
 ⇔scores among the ethnic groups in this data."), print()
#Tukey Range Test -- which group(s) have the significant differences?
tukey results = pairwise tukeyhsd(student df.reading score, student df.
 ⇔ethnicity, 0.05)
print(tukey_results), print()
rows = tukey_results.summary().data[1:]
#print(rows)
print("There are statistically siginificant differences in reading scores⊔
 ⇒between:")
for list in rows:
   group1 = list[0]
   group2 = list[1]
    significance = list[-1]
   if significance == True:
       print(group1 + " and " + group2)
print()
tukey_df = pd.DataFrame(rows, columns = ['group1', 'group2', 'meandiff', __
⇔'p adj',
            'lower',
                       'upper', 'reject'])
max_meandiff = tukey_df.meandiff.max()
max_meandiff_row = tukey_df.meandiff.idxmax()
max_diff_group1 = tukey_df.iloc[max_meandiff_row][0]
max_diff_group2 = tukey_df.iloc[max_meandiff_row][1]
print("The largest difference in reading scores was " + str(max_meandiff) + "% |
 sbetween " + str(max_diff_group1) + " and " + str(max_diff_group2))
#Side-by-side box plots
```

P-value: 0.0001780089103235947

There is a statistically significant difference in reading scores among the ethnic groups in this data.

Multiple Comparison of Means - Tukey HSD, FWER=0.05

group1 group2 meandiff p-adj lower upper reject

group A group B 2.6785 0.5875 -2.3998 7.7567 False
group A group C 4.4293 0.0801 -0.3101 9.1687 False
group A group D 5.3564 0.0219 0.5058 10.2069 True
group A group E 8.3544 0.001 2.9947 13.7141 True
group B group C 1.7508 0.656 -1.8722 5.3738 False
group B group D 2.6779 0.2956 -1.0893 6.4451 False
group B group E 5.6759 0.0041 1.2724 10.0794 True
group C group D 0.9271 0.9 -2.3692 4.2234 False
group C group E 3.9251 0.0583 -0.0829 7.9331 False
group D group E 2.998 0.2768 -1.1408 7.1369 False

There are statistically siginificant differences in reading scores between:

group A and group E group B and group E

The largest difference in reading scores was 8.3544% between group A and group E


```
[45]: #Hypothesis 13: relation between race and writing score
      #Null Hyp: There is no association between a student's ethnicity and their
       ⇔writing score.
      #Alt Hyp: There is a significant difference (5% significance threshhold)_{\sqcup}
       ⇒between the writing scores of students of different ethnicities.
      #print(student_df.ethnicity.value_counts())
      groupA_writing_scores = student_df.writing_score[student_df.ethnicity == 'group_
       ⇔A']
      groupB_writing_scores = student_df.writing_score[student_df.ethnicity == 'group_
       ⇔B']
      groupC_writing_scores = student_df.writing_score[student_df.ethnicity == 'group_
       GC']
      groupD_writing_scores = student_df.writing_score[student_df.ethnicity == 'group_
      groupE_writing_scores = student_df.writing_score[student_df.ethnicity == 'group_
       ⇔E']
      #ANOVA Hyp Test
```

```
fastat, pval = f_oneway(groupA writing scores, groupB_writing_scores,_
 →groupC writing scores, groupD writing scores, groupE writing scores)
print("P-value: " + str(pval))
if pval < 0.5:
   print("There is a statistically significant difference in writing scores⊔
 ⇒among the ethnic groups in this data."), print()
   print("There is NOT a statistically significant difference in writing ⊔
 ⇔scores among the ethnic groups in this data."), print()
#Tukey Range Test -- which group(s) have the significant differences?
tukey_results = pairwise_tukeyhsd(student_df.writing_score, student_df.
 ⇔ethnicity, 0.05)
print(tukey_results), print()
rows = tukey_results.summary().data[1:]
#print(rows)
print("There are statistically siginificant differences in writing scores⊔
 ⇔between:")
for list in rows:
   group1 = list[0]
   group2 = list[1]
   significance = list[-1]
   if significance == True:
       print(group1 + " and " + group2)
print()
tukey_df = pd.DataFrame(rows, columns = ['group1', 'group2', 'meandiff', |
'upper', 'reject'])
max_meandiff = tukey_df.meandiff.max()
max_meandiff_row = tukey_df.meandiff.idxmax()
max_diff_group1 = tukey_df.iloc[max_meandiff_row][0]
max_diff_group2 = tukey_df.iloc[max_meandiff_row][1]
print("The largest difference in writing scores was " + str(max_meandiff) + "%
 detween " + str(max_diff_group1) + " and " + str(max_diff_group2))
#Side-by-side box plots
plt.figure(figsize = (10,8))
sns.boxplot(data = student_df, x = 'ethnicity', y = 'writing_score', order = u
→['group A', 'group B', 'group C', 'group D', 'group E'])
plt.ylabel("Writing Score")
plt.xlabel("Student Race/Ethnicity")
plt.title("Writing Scores by Race/Ethnicity")
```

```
plt.tight_layout()
plt.savefig('ethnicity_writing.png')
plt.show()
```

P-value: 1.0979189070067382e-05

There is a statistically significant difference in writing scores among the ethnic groups in this data.

Multiple Comparison of Means - Tukey HSD, FWER=0.05

group1 group2 meandiff p-adj lower upper reject

group A group B 2.9258 0.5444 -2.3436 8.1953 False
group A group C 5.1534 0.0346 0.2356 10.0712 True
group A group D 7.4709 0.001 2.4377 12.504 True
group A group E 8.733 0.001 3.1715 14.2945 True
group B group C 2.2276 0.4857 -1.5318 5.987 False
group B group D 4.545 0.0133 0.636 8.4541 True
group B group E 5.8071 0.0049 1.2379 10.3764 True
group C group D 2.3175 0.3448 -1.1029 5.7378 False
group C group E 3.5796 0.1294 -0.5793 7.7385 False
group D group E 1.2621 0.9 -3.0326 5.5568 False

There are statistically siginificant differences in writing scores between:

group A and group C

group A and group D

group A and group E

group B and group D

group B and group E

The largest difference in writing scores was 8.733% between group A and group E

