

# Universal Scalable Firmware: Security Aspects of an Evolutionary Approach to System Firmware

Vincent Zimmer and Jiewen Yao (Intel)
UEFI 2023 Virtual Plugfest

#### Jiewen Yao

Force.

• Jiewen Yao is a principal engineer in the Intel Software and Advanced Technology Group. He has been engaged as a firmware developer for over 15 years. He is a member of the UEFI Security Sub Team, and co-chairing TCG PC Client Working Group and DMTF SPDM Code Task





#### **Vincent Zimmer**

 Vincent Zimmer is a senior principal engineer in the Intel Software and Advanced Technology Group. He has been engaged w/ firmware for over 30 years and presently leads the UEFI Security sub team.



Vincent Zimmer Intel







Following today's webinar, join the live, interactive WebEx Q&A for the opportunity to chat with the presenters

Visit this link to attend: <a href="https://bit.ly/3xklPQR">https://bit.ly/3xklPQR</a>

**Meeting number:** 2554 924 4620

Password: UEFIForum (83343678 from phones and

video systems)

## Agenda



- Universal Scalable Firmware (USF) Overview
- Security Hardening
- OpenSSL 1.1 EOL Update
- Commercial National Security Algorithm (CNSA) Compliance

#### What is Universal Scalable Firmware (USF)?



- Multi-layer view of the firmware stack
  - Interfaces for boot environments (payload), platform code (EDKII, coreboot, slim bootloader, etc)
- Interfaces and infrastructure at different levels
- <a href="https://github.com/universalscalablefirmware">https://github.com/universalscalablefirmware</a> for code and spec sources
- <a href="https://universalscalablefirmware.groups.io/g/discussion">https://universalscalablefirmware.groups.io/g/discussion</a> for community discussions
- https://www.youtube.com/watch?v=oEBtWsBZve4&list=PLehYIRQs6PR6J9Zf6Cajws FkAHedDXjLl&index=13 for past meetings
- <a href="https://universalscalablefirmware.github.io/documentation/">https://universalscalablefirmware.github.io/documentation/</a> for the 'compiled' specification
- Past prezo <a href="https://www.osfc.io/2021/talks/an-evolutionary-approach-to-system-firmware/">https://www.osfc.io/2021/talks/an-evolutionary-approach-to-system-firmware/</a>

## Today's Talk – Security Impacts of USF to UEFI and EDKII ecosystem

5.1.1. Firmware Resiliency - Protection

5.1.1.1. Critical Resource Lock (hardware)





1. Universal Scalable Firmware (USF) Specification





The platform shall always lock the important resource before it exits the platform manufacture phase.

### **USF Security Topic Areas**



#### ☐ 5. Security

- ☐ 5.1. Security Overview
  - ⊞ 5.1.1. Firmware Resiliency Protection
  - ⊕ 5.1.2. Firmware Resiliency Detection
  - ⊞ 5.1.3. Firmware Resiliency Recovery
  - ⊕ 5.1.4. Measurment and Attestation
    - 5.1.5. DMA Protection
    - 5.1.6. Cryptography Agility

- 5.2. Vulnerability Mitigation Strategy

  - ⊕ 5.2.3. Contain Damage
  - ⊕ 5.2.4. Limit Attack Window

#### **Continue Strengthening the Supply Chain**



https://uefi.org/sites/default/files/resources/Traceable%20Firmware %20Bill%20of%20Materials%20-%2020211207%20-%20007.pdf

• Type-II-B indicates the one loaded from peripheral device, such as NIC, NVMe, Graphic Card.

For Type-I firmware, the component provider may provide a reference integrity manifest (RIM) for this specific component.

Intel FSP 2.x measurement and attesation defines a mechanism to report FSP manifest according to TCG PC Client Reference Integrity Manifest Specification. The RIM format could be SWID or CoSWID.

The universal payload should use SWID or CoSWID with below information:

| Element              | Attribute | Required | Description                      |
|----------------------|-----------|----------|----------------------------------|
| Software<br>Identity | Name      | Required | Name of the Universal payload    |
|                      | Version   | Required | Version of the Universal payload |





| Tactics                 | Method                                                                                                                                                                          | Example                                                                                                                                                                                                                                                                                                                     |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eliminate Vulnerability | Reduce Attack Surface                                                                                                                                                           | <ul> <li>Remove Unnecessary Interface, e.g. SMI handler, private auth variable.</li> <li>Adopt Firmware Security Best Practice (EDKII security docs, OCP Secure Firmware Development Best Practices)</li> </ul>                                                                                                             |
| Break Exploitation      | <ul> <li>Data Execution         Prevention (DPE)     </li> <li>Control Flow Guard         (CFG)     </li> <li>Address Space Layout         Randomization (ASLR)     </li> </ul> | <ul> <li>Non-executable Data Page. Read-only Code page.</li> <li>Stack Cookie</li> <li>Intel Control Flow Enforcement Technology (CET) —         Shadow Stack (SS), Indirect Branch Tracking (IBT).</li> <li>ARM Pointer Authentication Code (PAC), Branch Target Identification (BTI).</li> <li>ASLR in DXE/SMM</li> </ul> |
| Contain Damage          | Deprivilege                                                                                                                                                                     | Ring-3 Third Party Option ROM. Ring-3 OEM SMM                                                                                                                                                                                                                                                                               |
| Limit Attack Window     |                                                                                                                                                                                 | <ul> <li>Live Patching Runtime Component</li> <li>Firmware Vulnerability Scan</li> <li>Supply chain - firmware manifest (SBOM)</li> </ul>                                                                                                                                                                                   |

Reference: <a href="https://universalscalablefirmware.github.io/documentation/5">https://universalscalablefirmware.github.io/documentation/5</a> security.html

## **Possible Security Hardening**

SFI OFFI

- Data Execution Protection (DEP)
- & Arbitrary Code Guard (ACG)
  - Image Protection
  - Non-Executable Memory protection
  - OS Loader Protection
  - SMM Code Access Check
- NULL pointer detection
- Address Space Layout Randomization (ASLR)
  - Data Buffer Shift
  - Image Shuffle

#### Buffer Overflow Detection

- Heap Guard
- Stack Cookie
- Address Sanitizer

#### Misc Runtime Check

- Undefined Behavior Sanitizer (Type Cast)
- Memory Sanitizer (Uninitialized Access)

#### Control Flow

- Backward: CET Shadow Stack, ARM PAC
- Forward: CET IBT, ARM BTI

#### However ...



UEFI / PI / APCI are interface specifications

 How do we let end users know what protection is available?

## Example



- Windows SMM Security Mitigation Table (WSMT)
  - Allows system firmware to confirm to the operating system that certain security best practices have been implemented in SMM
  - <a href="https://download.microsoft.com/download/1/8/a/18a21244-eb67-4538-baa2-1a54e0e490b6/wsmt.docx">https://download.microsoft.com/download/1/8/a/18a21244-eb67-4538-baa2-1a54e0e490b6/wsmt.docx</a>
- Windows Hardware Security Test Interface (HSTI)
  - Specifies a standard test interface for proprietary platform security technologies that enforce the Secure Boot promise
  - https://learn.microsoft.com/en-us/windows-hardware/test/hlk/testref/hardware-securitytestability-specification
- TCG Platform Firmware Integrity Measurement
  - Platform Firmware Assertions can be reported in the platform certificate.
  - E.g. HardwareSRTM, SecureBoot, sp800-147, sp800-193, fwSetupAuthLocal, SMMProtection, fwKernelDMAProtection, etc.
  - <a href="https://trustedcomputinggroup.org/resource/tcg-pc-client-platform-firmware-integrity-measurement/">https://trustedcomputinggroup.org/resource/tcg-pc-client-platform-firmware-integrity-measurement/</a>

#### Request For Comment



- Platform Integrity Mitigation Table (PIMT)
  - Specifies the mitigation applied in the system firmware
    - DEP.CodeProtection, DEP.NonExecutableData, NULLPointerProtection, ASLR.BufferShift, ASLR.ImageShuffle, CFG.Backward, CFG.Forward
  - Could be ACPI table or GUIDed UEFI system table
    - ACPI better since all of ACPI most common across all platform implementations (slim, core, and EDKII)

#### Openssl 1.1 EOL



- Openssl 1.1 will be at EOL on September 2023
- https://www.openssl.org/policies/releasestrat.html

- EDKII needs a replacement.
- https://github.com/tianocore/edk2staging/tree/OpenSSL11 EOL

## Openssl 3.0 Design





Source: <a href="https://www.openssl.org/docs/OpenSSL300Design.html">https://www.openssl.org/docs/OpenSSL300Design.html</a>

## Candidate - openssl 3.0



- Good option, but big
- Initial investigation shows size is doubled
- Will break the existing platform

- https://bugzilla.tianocore.org/show\_bug.cgi?id=3466
- https://github.com/kraxel/edk2/tree/archive/openssl3-v1
- https://edk2.groups.io/g/devel/topic/87479913

#### Candidate - mbedtls



- Small, but missing features
- Missing SHA3 (Parallel Hash), SMx, etc.

- https://bugzilla.tianocore.org/show bug.cgi?id=4177
- https://github.com/jyao1/edk2/tree/DeviceSecurity/Crypt oMbedTlsPkg

#### **Candidate - Other**

(TA)

- Intel IPP
  - https://software.intel.com/en-us/intel-ipp
  - no certificate support, no TLS
- Libsodium
  - https://doc.libsodium.org/
  - no certificate support, no TLS
- BoringSSL
  - https://github.com/google/boringssl
  - "We don't recommend that third parties depend upon it"
- WolfSSL
  - https://www.wolfssl.com/
  - GPL license
- BearSSL
  - https://bearssl.org/
  - beta-quality software

## Latest Result – openssl 3.0



 https://github.com/tianocore/edk2staging/blob/OpenSSL11 EOL/CryptoPkg/Readme-OpenSSL3.0.md

| Driver          | 1.1.1 | 3.0  | percent |
|-----------------|-------|------|---------|
| CryptoDxeFull   | 1014  | 1578 | 57%     |
| CryptoPei       | 386   | 794  | 106%    |
| CryptoPeiPreMem | 31    | 417  | 1245%   |
| CryptoDxe       | 804   | 1278 | 59%     |
| CryptoSmm       | 558   | 986  | 77%     |



| Driver          | 1.1.1 | 3.0  | percent |
|-----------------|-------|------|---------|
| CryptoPei       | 386   | 398  | 3.1%    |
| CryptoPeiPreMem | 31    | 31   | 0%      |
| CryptoDxeFull   | 1014  | 1031 | 1.7%    |
| CryptoDxe       | 804   | 886  | 10.1%   |
| CryptoSmm       | 558   | 604  | 8.2%    |

#### **Acknowledgement**

-- Gerd Hoffmann kraxel@redhat.com, Li, Yi1 yi1.li@intel.com, Ard Biesheuvel ardb@kernel.org

#### Latest Result – mbedtls 3.0

OFF

- https://github.com/tianocore/edk2staging/blob/OpenSSL11\_EOL/CryptoPkg/ReadmeMbedtls.md
- PKCS7: included in mbedtls 3.0.
- SHA3: under development <a href="https://github.com/Mbed-TLS/mbedtls/pull/5820">https://github.com/Mbed-TLS/mbedtls/pull/5822</a>

| Driver    | OpenSSL | MbedTLS |  |
|-----------|---------|---------|--|
| PEI       | 387Kb   | 162Kb   |  |
| PeiPreMem | 31Kb    | 58Kb    |  |
| DXE       | 804Kb   | 457Kb   |  |
| SMM       | 558Kb   | 444Kb   |  |

#### **Acknowledgement**

-- Hou, Wenxing wenxing.hou@intel.com, Marvin Häuser mhaeuser@posteo.de

### Request For Comment



- Openssl 3.0
  - Research on how to reduce size to make it fit to the firmware

#### Dual Mode

- EDKII supports both openssl 3.0 and mbedtls two instances
- Platform chooses the library + feature based on the need

## Commercial National Security Algorithm (CNSA) 1.0 Compliance

- CNSA 1.0
  - Sym: AES-256, SHA-384
  - Asym: ECDH/ECDSA-NIST-P384, RSA-3072 above
  - https://media.defense.gov/2021/Sep/27/2002862527/-1/-1/0/CNSS%20WORKSHEET.PDF
- UEFI/EDKII support crypto agility
  - UEFI-2.10 defines Firmware/OS Crypto Algorithm Exchange.
  - <a href="https://uefi.org/specs/UEFI/2.10/32">https://uefi.org/specs/UEFI/2.10/32</a> Secure Boot and Driver Signing.html?highlight=ecdsa#fir mware-os-crypto-algorithm-exchange
  - Support new algorithms with compatibility consideration.
  - CryptoIndications: Allows the OS to request the crypto algorithm to BIOS.
  - CryptoIndicationsSupported: Allows the firmware to indicate supported crypto algorithm to OS.
  - CryptoIndicationsActivated: Allows the firmware to indicate activated crypto algorithm to OS.

#### **CNSA 2.0 Guideline**





Reference: <a href="https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3148990/nsa-releases-future-quantum-resistant-qr-algorithm-requirements-for-national-se/">https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3148990/nsa-releases-future-quantum-resistant-qr-algorithm-requirements-for-national-se/</a>

## **Industry Preparation - PQC**



- Openssl 3.0
  - Open Quantum Safe (OQS) project support openssl 3.0
    - https://github.com/open-quantum-safe/openssl/tree/OQS-OpenSSL3
  - OQS provider
    - https://github.com/open-quantum-safe/oqs-provider

#### Mbedtls

- Roadmap: <a href="https://mbed-tls.readthedocs.io/en/latest/roadmap/">https://mbed-tls.readthedocs.io/en/latest/roadmap/</a>
- Future:
  - Post Quantum Crypto

#### **CNSA 2.0 Compliance**

- CNSA 2.0 (Post Quantum Crypto)
  - Firmware Image Signing/Verification: XMSS/LMS
  - General Signing/Verification: Dilithium
  - General Key Exchange: Kyber
  - https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA CNSA 2.0 ALGORITHMS .PDF
- UEFI/EDKII Request For Comment
  - Define more bit to support CNSA algorithm.
  - https://bugzilla.tianocore.org/show\_bug.cgi?id=4087
  - When to use XMSS/LMS?
  - When to use Dilithium?



## **Asymmetric Cryptography in System Firmware**

| Usage                           | Category       | Feature                              | Standard | Algorithm        | Comment                                     |
|---------------------------------|----------------|--------------------------------------|----------|------------------|---------------------------------------------|
| Code Signing<br>Verification    | Secure<br>Boot | <b>UEFI Secure Boot</b>              | UEFI     | PKCS7(RSA)       | Signed one time – when the image is created |
|                                 |                | PI Signed FV/Section                 | UEFI PI  | PKCS7(RSA) / RSA |                                             |
|                                 |                | Intel Boot Guard (Verified Boot)     |          | RSA / SM2        |                                             |
|                                 |                | Platform Firmware Resilience (PFR)   |          | RSA/ECDSA        |                                             |
| Up                              | Update         | <b>UEFI FMP Capsule Update</b>       | UEFI     | PKCS7(RSA)       |                                             |
|                                 |                | Intel BIOS Guard                     |          | RSA              |                                             |
|                                 | Recovery       | EDKII Signed Recovery with FMP Cap   | EDKII    | RSA              |                                             |
| Data Signing Verification       | Update         | <b>UEFI Auth Variable Update</b>     | UEFI     | PKCS7(RSA)       | Signed one time, when the data is created   |
| Authentication                  | Device         | SPDM Device Authentication           | DMTF     | RSA/ECDSA        | Runtime Signing based upon challenge        |
|                                 |                | SPDM Device Measurement Verification | DMTF     | RSA/ECDSA        |                                             |
| Secure Session<br>Establishment | Device         | SPDM Session                         | DMTF     | ECHDE            | Key Exchange with                           |
|                                 | Network        | HTTPS Boot (TLS)                     | IETF     | ECDHE            | SIGMA protocol                              |

Reference: <a href="https://uefi.org/sites/default/files/resources/Post%20Quantum%20Webinar.pdf">https://uefi.org/sites/default/files/resources/Post%20Quantum%20Webinar.pdf</a>



#### Questions?





Following today's webinar, join the live, interactive WebEx Q&A for the opportunity to chat with the presenters

Visit this link to attend: <a href="https://bit.ly/3xklPQR">https://bit.ly/3xklPQR</a>

**Meeting number:** 2554 924 4620

Password: UEFIForum (83343678 from phones and

video systems)

#### Thanks for attending the UEFI 2023 Virtual Plugfest



For more information on UEFI Forum and UEFI Specifications, visit <a href="http://www.uefi.org">http://www.uefi.org</a>

presented by

