Héritage et classe abstraite, application aux matrices - 2

Exercice 1 Nous allons modifier la structure interne des matrices creuses : Nous allons utiliser 3 tableaux val_, idx_ et start_ comme nouveaux membres de donnée. Pour chaque coefficient non nul, la valeur sera conservée dans le tableau val_, ordonnée par indice de ligne croissant, puis par indice de colonnes croissant. En même temps, on remplit le tableau idx_ avec l'indice de la colonnes du coefficient. Les deux tableaux ont donc la même taille. Enfin, le tableau start_ sera tel que start_[i] sera l'indice de début de la i-ème ligne dans les tableaux précédents. Ainsi, le nombre de coefficients non nuls de la ligne i est start_[i+1]-start_[i].

- 1. Implémenter dans la classe Matrix_Sparse la méthode Matrix full_get() const qui renvoie la matrice pleine associée à une matrice creuse.
- 2. Implémenter dans la classe Matrix la méthode Matrix_Sparse sparse_get() const qui renvoie la matrice creuse associée à une matrice pleine.

Exercice 2 Reprendre le précédent TD en re-écrivant les classes dans le namespace va qui implémente les matrices pleines avec un valarray, et mesurer la différence de vitesse des multiplications matricielles entre les deux implémentations (utiliser la fonction gettimeofday() pour ceci.