ESTIMATE THE CROP YIELD USING DATA ANALYTICS

PNT2022TMID21122

SUGUMAR R, SANJAY R, NADEESHWARAN A, SHARUK B

1. INTRODUCTION:

1.1 PROJECT OVERVIEW:

Agriculture is the backbone of Indian Economy In India, majority of the farmers are not getting the expected crap yield due to several reasons. The agricultural yield is primarily depends on weather conditions. Rainfall conditions also influences the rice cultivation. In this context, the farmers necessarily requires a timely advice to predict the future crop productivity and an analysis is to be made in order to help the farmers to maximize the crop production in their crops. Yield prediction is an important agricultural problem. Every farmer is interested in knowing how much yield he is about expect. In the past, yield prediction was performed by considering firmer's previous experience on a particular crop. The volume of data is enormous in Indian agriculture. The data when become information is highly useful for many purposes.

1.2 PURPOSE:

Crop production in India is one of the most important sources of income and India is one of the top countries to produce crops. As per this project we will be analyzing some important visualization, creating a dashboard and by going through these we will get most of the insights of Crop production in India.

2.LITERATURE SURVEY:

2.1 EXISTING PROBLEM:

Crop Predictions are important for governments, farmers, and traders - a more accurate prediction of future supply allows for better policies, better profits, and better pricing.

The concept of using satellites to predict crop yield is very simple: Take a picture of a field, look at the crops growing, measure the area of field and predict the yield. However, there are substantial challenges to this, including:

- Clouds
- Scale-global
- Size-small farm to large agri-business
- Colour-it's all green
- Phenology-Identification of relevant crops
- Area v Yield Giving the area does not give the yield.

2.2. REFERENCES:

- https://ieeexplore.ieee.org/document/8697806
- https://ieeexplore.ieee.org/document/7918789
- https://www.researchgate.net/publication/329467349_Agriculture_Data_Analytics_in_Crop_Yield_Estimation_A_Critical_Review
- https://ieeexplore.ieee.org/document/8746001/references#references

2.3 PROBLEM STATEMENT DEFINITION:

Problem Statement (PS)	I am (Customer)	I'm trying to	But	Because	Which makes me feel
PS-1	A Farmer	Harvest my crops	I am not sure about the best time to harvest the crops	Harvesting in a wrong season can reduce my yield	Disappointment
PS-2	A Farmer	Get more yield when harvesting	Some birds, insects and animals damages the crops they eat the crops which reduces my production	they eat the crops which reduces my production	Frustrated
PS-3	A Farmer	Get proper production	I don't know exactly which crop to plant in my field based on my locality	I got low production last year when I planted a crop that doesn't suit my locality/soil nature	Dispirited

3.IDEATION & PROPOSED SOLUTION:

3.1 EMPATHY MAP CANVAS:

3.2 IDEATION & BRAINSTORMING:

TOP THREE IDEAS:

- 3.2.1 Understand how the data analytics platform will support the overall business strategy of the organization.
- 3.2.2 Develop an analytics vision and set target maturity levels for core processes.
- 3.2.3 Increasing Innovation, Productivity & Reduce wastage.

3.3 PROPOSED SOLUTION:

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	The main objective of this project is to predict crop-yield which can be extremely useful to farmers in planning for harvesting and cultivating the crops.
2.	Idea / Solution description	The farmer should get information about the climatic factors because it will save the crop from natural disaster.
3.	Novelty / Uniqueness	By visualizing the data, the farmers can able to choose the crop which will give more profit in the desired season
4.	Social Impact / Customer Satisfaction	Knowledge about the climatic factors to save the farmers from losses and crop damage.
5.	Business Model (Revenue Model)	The farmers will take better decision with the help of dashboard which shows the visualization of the crop production.
6.	Scalability of the Solution	Based on the data analytics report they can cultivate the crops according to some factors like climatic conditions soil fertility level, etc

3.4 PROBLEM SOLUTION FIT:

3.5 SOLUTION ARCHITECTURE

4 REQUIREMENT ANALYSIS:

4.1 FUNCTIONAL REQUIREMENTS:

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form Registration through Gmail
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	Data requirement	The user data is required to analyse the historical data and data visualization on the crops yield.
FR-4	Data Storage	A private cloud storage is required with enhanced security level and with data encryption facility.
FR-5	Data Analysis	Analyse the datasets and choose only the required columns and clean the dataset by removing duplicates records.
FR-6	Estimation	A clear visualization chart and appropriate techniques to improve the accuracy of prediction.

4.2 NON-FUNCTIONAL REQUIREMENTS:

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The data reports which are provided are based on historical data and these recommendations will help the farmers in choosing the right time and season to cultivate and harvest crops and to gain more profit.
NFR-2	Security	The user data and the crop information is protected with IBM Cognos.
NFR-3	Reliability	The dashboard and the visualization charts are made simple so that the data reports are simple to interpret.Recovery speed is also a important factor.
NFR-4	Performance	The System is fast enough to handle large datasets with advanced visualization techniques.
NFR-5	Availability	The dashboard is user friendly and it is designed in such a way that it is easily accessible and can be accessed on smartphones,laptops,desktops with an active internet connection.
NFR-6	Scalability	The dashboard and the visualization charts should be able to provide data reports for larger datasets with accuracy.

5 PROJECT DESIGN:

5.1 DATA FLOW DIAGRAMS:

User Stories

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1

		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail		Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password		High	Sprint-1
	Dashboard	USN-6	As a user I can access the dashboard to view the required information about the crop yield.	User Profile can be edited.	High	Sprint -2
Customer (Web user)		USN-7	As a user I can register/login the web application and can access	I can login to the website and access my account	Medium	Sprint -1

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
			the dashboard and view the required information			
Customer Care Executive		USN-8	Provides support regarding the application and communicates with the user if the user has any queries.		High	Sprint-2
Administrator		USN-9	As a user I can update the datasets and request to improve the dashboard.		High	Sprint-1

5.2 SOLUTION AND TECHNICAL

ARCHITECTURE: TECHNICAL ARCHITECTURE:

Table-1 :
Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application Web UI	HTML, CSS
2.	Weather data	Past Weather data about the surrounding to predict the yield.	IBM Watson service
3.	Crop yield data	Data about the amount of yield produced by crops on that particular area.	IBM Watson Assistant
4.	Cloud Database	Uploading of dataset and dataset storage	IBM DB2.
5.	File Storage	File storage requirements	Local Filesystem
6.	External API-1	To provide current and forecasted conditions, seasonal and subseasonal forecasts, lifestyle indices, severe weather and historical weather data for analysis.	IBM Weather API.

Table-2:
Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	No open-source frameworks used	Python
2.	Security Implementations	Data is stored in cloud with high security	SHA-256, Encryptions, IAM Controls, OWASP etc.
3.	Scalable Architecture	Large datasets can also be uploaded for visualization and many users can use the model for visualization at same time.	IBM Cloud, IBM Cognos
4.	Availability	Soil recommendations, weather forecasts and contaminated zones recommendations are available in application.	IBM Watson Assistant
5.	Performance	Large requests can be handled at the same time.	Cognos analytics.

5.3 CUSTOMER JOURNEY

Document an existing experience

Narrow your focus to a specific scenario or process within an existing product or service. In the Steps row, document the step-by-step process someone typically experiences, then add detail to each of the other rows.

Browting booking, strending and retirg a book ofly toor	Entice New date sameone intelligible come sealing of the proceed?	Enter What do people experience as they begin the process?	Engage In the core moments In the process, what Inspected	Exit What do pacil spicially experience as the process frished	Extend What happens after the experience is over?
Sleps What does the person (or group) applically experience?	The user has to login to the welcolor On boarding welcolor Welcolor The user bland systems for Java we must supplied to logic new court supplied to logic	Let of contusion to how to use of cherts the deahboard of cherts Seeing a lot of Information displayed	Comparison of different charts Provide me with the user friendly self-to-been paid.	In order to determine the satisfaction of user-te-decks form are provided	A real time view
Interections What it is exciton do they have at each disp along the way? People: Who do they see or talk to? Please: Who as we have yet or talk to? Please: Who as we have yet or talk to? Please: Who as we have yet or talk to? Please: Who as we have yet or talk to? Please: Who as we have yet or talk to? Please: Who as we have yet or talk to? Please: Who as we have yet or talk to?	interacting with the online before the approximate the approximate superts.	interacting with the other fermens implemented by the three fermens implemented by started using it and pave and pave.	They are able to an able to a set to be a set to be traights for performed and better decisions of profit can be made the crop yield by seem analyzed	Aware of Digitzed ferming farming knowledge experience	Any user can use this website Concept for time saving
Goels & motivations As each stop, what is a person's prinsip good or motivation (1440 ma.," or "Neighne avoid")	Help me to a Help me to get estimate the crop yield Assist me for prediction	Help me for better customer assists me for user friendly user friendly Help me to use and access the measure yearses	Help me to make neel Stanfor track the profit cavating the damboard sandysts damboard sandysts	Help me with sharing thoughts	Help me for high evold user productivity inconvemience
Positive moments What steps does a typical person find erloyable, productive, far, motiveling, delightful, or existing?	builted should be a seen an using the new subclassing in last the field benefit	It is interactive for using Feeling that it is very easy to proceed	It is very useful It provides the and crop protection informative events	It is an proper update infigation feature of prediction farming	profit will be Increased
Negetive moments What steps does a typical person find hasheling, containing expering, costly, or time-consuming?	Throw has feer of his because it access through it never the network technology	Feeling bad unable to use to analyze It faster	Confusion in Problems in finding the understanding right decision the visualization	Consumes a loyalty of customer	Engaging to collecting good cultivation studies
Areas of opportunity How might see make each step better with at tiless do we have? What have others suggested?	Creating movement among the people should be people should be people and overtilizent agriculture.	The security Providing the step by step Increased guideliness	updating the datbase updating the features and policies	user interface can be improved	Improve crop production Improve the quality of crop

6.1 SPRINT PLANNING AND ESTIMATION:

(I) PROJECT TRACKER:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

(II)VELOCITY:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

 $AV = Sprint\ Duration\ /\ Velocity = 20\ /\ 20 = 1$

(I) BURDOWN CHART:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

6.2 SPRINT DELIVERY SCHEDULE:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint- 1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password	3	High	Nadeeshwaran.A Sanjay R Sharuk B Sugumar R
		USN- 2	As a user, I can register for the application through Gmail	2	Medium	Nadeeshwaran.A Sanjay R Sharuk B Sugumar R
		USN-3	As a user, I will receive confirmation email once I have registered for the application	3	High	Nadeeshwaran.A Sanjay R Sharuk B Sugumar R
	Login	USN-4	As a user, I can log into the application by entering email & password	4	High	Nadeeshwaran.A Sanjay R Sharuk B Sugumar R
	Working with the Dataset	USN-5	To work on the given dataset, Understand the Dataset.	4	High	Nadeeshwaran.A Sanjay R Sharuk B Sugumar R
		USN-6	Load the dataset to Cloud platform then Build the required Visualizations.	4	High	Nadeeshwaran.A Sanjay R Sharuk B Sugumar R

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-2	Data Visualization Charts	USN-7	Using the Crop production in Indian dataset, create various graphs and charts to highlight the insights and visualizations. Build a Visualization to showcase Average Crop Production by Seasons.	4	Medium	Nadeeshwaran.A Sanjay R
			Build a Visualization to showcase the Yearly usage of Area in Crop Production.	4	Medium	Sharuk B Sugumar R
			Build a visualization to show case top 10 States in Crop Yield Production by Area.	4	Medium	Nadeeshwaran.A Sugumar R
			Build the required Visualization to showcase the Crop Production by State.	4	Medium	Nadeeshwaran.A
			Build Visual analytics to represent the Sates with Seasonal Crop Production using a Text representation.	4	Medium	Sharuk B Sanjay R
Sprint-	Creating The dashboard	USN-8	Create the Dashboard by using the created visualizations.	20	High	Nadeeshwaran.A Sanjay R Sharuk B Sugumar R
Sprint-4	Export The Analytics	USN-9	Export the created Dashboard	20	High	Nadeeshwaran.A Sanjay R Sharuk B Sugumar R

6.3 REPORTS FROM JIRA:

(I) BEFORE START OF THE SPRINT:

(II) SPRINT 2

(III) SPRINT 3:

	OCT 27 28 29 30	NOV 31 1 2 3 4 5 6	NOV 7 8 9 10 11 12 13	NOV 14 15 16 17 18 19 20 21		
Sprints	ECYUDA Sprint 1	ECYUDA Sprint 2	ECYUDA Sprint 3	ECYUDA Sprint 4		
ECYUDA-21 Website						
ECYUDA-10 Working with the Dataset						
ECYUDA-11 Data Visualization Chart						
> ECYUDA-17 Creating The dashboard						
> 1 ECYUDA-19 Export The Analytics						

(IV)SPRINT 4:

7. CODING & SOLUTIONING:

7.1 FEATURE 1:

DASHBOARD DESIGN:

The dashboard is created using IBM cognos tool which efficiently visualises a given data. The design is incorporated along with login page and provides excellent insights on various data regarding crops.

```
<!DOCTYPE html>
<html>
<head>
       <title>Crop Production</title>
       <style>
              button{
                     width: 308px;
  height: 39px:
  background-color: lawngreen;
  border-radius: 10px;
       </style>
</head>
<body style="background-image: url(b1.jpg)">
 <center><h1>Crop Production</h1></center>
 <h3 style="margin-top: 62px;margin-left: 8px;"><button><a href="Season_Av.html" style="text-decoration:</p>
none;">Season with Average Production</a></button> </h3>
 <h3 style="margin-top: 65px; margin-left: 225px;
"><button><a href="With_years.html" style="text-decoration: none;">SeasonWith year Usage of Areaa
Production</a> </button></h3>
  <h3 style="
  margin-top: 70px;
  margin-left: 498px;
"><button><a href="Top10.html" style="text-decoration: none;">SeasonTop 10 State with Most
Area</a></button></h3>
  <h3 style="
  margin-top: 72px;
  margin-left: 700px;
"><button><a href="StateWith.html" style="text-decoration: none;">SeasonState with Crop
Production</a></button></h3>
  <h3 style="
  margin-top: 78px;
  margin-left: 1000px;
"><button><a href="State.html" style="text-decoration: none;">SeasonState with Crop Production Along With
Season</a></button></h3>
</body>
</html>
```

7.2 FEATURE 1:

</body>

```
<!DOCTYPE html>
<html>
<head>
       <title></title>
</head>
<body style="background-image: url(cr3.jpg)">
  <center><h1 style="
  color: white:
">Season With Average Productions </h1></center>
  <center><img src="1.png" style="height: 445px;width: 800px;margin-top: 28px;"></center>
</body>
</html>
FEATURE 2:
<!DOCTYPE html>
<html>
<head>
     <title></title>
</head>
<body style="background-image: url(cr3.jpg)">
      <center><h1 style="
  color: white;
">With Year sage of Area and Production </h1></center>
      <center><img src="2.png" style="height: 445px;width: 800px;margin-top: 28px;"></center>
 <imq src="">
</body>
</html>
FEATURE 3:
<!DOCTYPE html>
<html>
<head>
       <title></title>
</head>
<br/><body style="background-image: url(cr3.jpg)">
  <center><h1 style="
  color: white:
">Top 10 States With Most Area</h1></center>
  <center><img src="3.png" style="height: 445px;width: 800px;margin-top: 28px;"></center>
```

FEATURE 4

FEATURE 5

8 RESULT AND SCREENSHOT

LOGIN

REGISTERATION

DASHBOARD

SEASON WITH AVERAGE PRODUCTION

TOP 10 STATE WITH MOST AREA

STATE WITH CROP PRODUCTION

WITH YEAR STAGE OF AREA AND PRODUCTION

STATE WITH CROP PRODUCTION ALONG WITH SEASON

ADVANTAGES & DISADVANTAGES:

ADVANTAGES:

The advantage of this Crop yield estimation it is relatively less time-consuming and inexpensive. We can able to know the average productions of the crop, the amount of crop produced in different year and in different districts and in different area. And it is also used by farmers to make decisions about when to plant and harvest crops based on soil moisture content and weather conditions.

DISADVANTAGES:

The disadvantage of the system is number of data used for the estimation are less. This method is highly subjective, as the information are collected from the farmers' knowledge and experience.

CONCLUSION:

The proposed "ESTIMATE THE CROP YIELD USING DATA ANALYTICS" is used to predict the crop yield using the attributes such as State_Name,District_Name,Crop_Year,Season,Crop,Area and Production.The proposed model is build with IBM Cognos Watson.As a result of penetration of technology into agricultural field,there is a marginal improvement in the productivity.The innovation have led to new concepts like digital agriculture, smart farming, precision agriculture etc.It has been observed that analysis has been done on crop, hidden pattern discovery using dataset related to season, area, production data.The activities of agriculture field are numerous like weather forecasting, soil quality assessment, seeds selection, crop yield prediction etc. In this survey, the specific activity, crop yield prediction has been surveyed and the major trends have been identified. It can be concluded that the research in the field of agriculture with

reference to using IT trends like data analytics is in its infancy. As the food is the basic need of humans, the requirement of getting the maximum yields using optimal resource will become the necessity in near future as a result of growing population. The survey outcomes indicate the need for improved techniques in crop yield analytics. There exists a lot of research scope in this research area.

FUTURE SCOPE:

The dashboard creation, visualization have taken lots of procedures and steps. The aim of the future work is to analyze the target attribute by reducing the number of procedures and steps. To improve the accuracy of the analysis algorithm selection procedure need to be optimized.

As a future work, the results of the analysis can be improved, using the large number of crop datasets and more weather parameters. This can be also implemented in machine learning model to build in a strong yield prediction model and analysis of all the crops with different climatic conditions and different areas.

9 APPENDIX			
9.1GITHUB			
GITHUB: https://github.com/IBM-EPBL/IBI	M-Project-29452-1660125	642	