Board Questions

Fifth Session, Oct 3rd

1 Sufficient Statistics

You are given a data set $x = x_1^n$ of n i.i.d. geometrically distributed observations. Show that $\sum_{i=1}^n$ is a sufficient statistic for the geometric distribution.

2 MLE

A coin is taken from a box containing three coins, which give heads with probability $p = \frac{1}{3}$, $\frac{1}{2}$, and $\frac{2}{3}$. The mystery coin is tossed 80 times, resulting in 49 heads and 31 tails.

- a) What is the likelihood of this data for each type on coin? Which coin gives the maximum likelihood?
- b) Now suppose that we have a single coin with unknown probability p of landing heads. Find the likelihood and log likelihood functions given the same data. What is the maximum likelihood estimate for p?

3 Bayes' Rule for Parameters

A coin is taken from a box containing three coins, which give heads with probability $p = \frac{1}{3}, \frac{1}{2}$, and $\frac{2}{3}$. The mystery coin is tossed 80 times, resulting in 49 heads and 31 tails.

- a) What is the likelihood of this data for each type on coin? Which coin gives the maximum likelihood?
- b) Now suppose that we have a single coin with unknown probability p of landing heads. Find the likelihood and log likelihood functions given the same data. What is the maximum likelihood estimate for p?

4 Geometric MLE

For an i.i.d. data set $x=x_1^n$ find the MLE for the geometric distribution:

$$P(X=x)=(1-\theta)^{x}\theta$$