Analyzing NY Transit Ridership Trends

Using PySpark and MongoDB for Data Processing and Visualization

Presenter: Carina Yan (yy3838), Xiaozhou Wen (xw3759)

Date: August 12, 2025

Agenda

- Introduction to the Project
- Data Sources and Overview
- Analysis and Visualization
- Key Insights and Conclusions
- Q&A

Project Introduction

Objective: Analyze NYC transit ridership patterns. What time fo the day people uses subways? Is Monday ridership pattern same as Friday? Is November ridership pattern same as December? How weather affects the ridership?

Why This Matters: Helps metropolitan transportation authority optimize operations, predict demand, and understand external factors like weather.

Tools Used:

MongoDB: Data storage

PySpark: Scalable processing for large datasets

Matplotlib: Visualization

Tableau: Interactive Visualization

Data Sources and Overview

MTA Subway Hourly Ridership: 2020-2024

- This dataset provides subway ridership estimates on an hourly basis by subway station complex and class of fare payment.
- 2.4 M records per months

transit_timestamp	transit_mode	station_complex_id	station_complex	borough	payment_method	fare_class_category	ridership	transfers	latitude	longitude
12/1/24 0:00	subway	627	Franklin Av (C,S)	Brooklyn	omny	OMNY - Full Fare	15	0	40.68138	-73.95685
12/1/24 0:00	subway	427	West Farms Sq-E Tremont Av (2,5)	Bronx	omny	OMNY - Full Fare	7	1	40.840294	-73.88005
12/1/24 0:00	subway	240	7 Av (F,G)	Brooklyn	omny	OMNY - Full Fare	29	0	40.66627	-73.98031

Historical Hourly NYC Weather Data

dt_nyc	dt	id	main	description	icon	main.temp	main.feels_like	main.pressure	main.humidity	wind.speed	wind.deg	wind.gust
2024-09-01 00:00:00 EDT	1725163200	802	Clouds	scattered clouds	03n	295.84	296.41	1014	86	3.6	180	NaN
2024-09-01 01:00:00 EDT	1725166800	800	Clear	clear sky	01n	295.7	296.26	1014	86	3.09	180	NaN
2024-09-01 02:00:00 EDT	1725170400	802	Clouds	scattered clouds	03n	295.47	296.03	1014	87	3.09	190	NaN
2024-09-01 03:00:00 EDT	1725174000	804	Clouds	overcast clouds	04n	295.64	296.16	1013	85	4.12	210	NaN
2024-09-01 04:00:00 EDT	1725177600	804	Clouds	overcast clouds	04n	295.66	296.19	1013	85	3.6	190	NaN

Total Ridership By Borough

- Manhattan generally has the highest subway ridership among the five boroughs of New York City
- The combined ridership of all other boroughs is nearly equal to that of Manhattan, indicating that most people are commuting to and from other boroughs.

Top 10 Busiest Subway Stations

- Time Square is the busiest Subway station
- 9 stations are from Manhattan and 1 station is from Queens
- Most of the busiest subway stations are those that offer transfers to other subway lines.

Station Ridership on the map

Hourly Ridership Trend

- Morning Rush hour is between 7am - 9am
- Evening Rush hour is between 3pm - 6pm

Ridership Heatmap: Hourly by Date

- This is my favorite Chart.
 Easily compare hourly travel pattern between dates.
- Toward the end of the year, during the big holiday season, it's hardly noticeable that there's a rush hour on the subways—likely because most people choose to take vacation at that time.

Ridership Trend by Weather Condition

good_weather = ['Clear', 'Clouds']

bad_weather = ['Rain', 'Thunderstorm',
'Snow', 'Drizzle','Fog', 'Mist', 'Haze',
'Smoke']

Ridership Distribution by Payment Method

 Metrocard is replaced by OMNY by the end of 2025

Ridership by Payment method and Borough

- Manhattan has the highest adoption of OMNY
- Manhattan also has the highest ridership using metrocard

Tableau - interactive dashboard

Key Insights and Conclusions

This analysis of NYC transit ridership has revealed several key patterns and insights that are crucial for understanding and optimizing the city's transportation network.

- Manhattan as the Epicenter of Ridership: Manhattan dominates subway usage, boasting the highest overall ridership among all boroughs and home to nine of the ten busiest stations.
- **Predictable Daily Commuting Patterns**: Weekday ridership follows a clear and consistent pattern, with distinct morning rush hours between 7-9 AM and evening rush hours from 3-6 PM.
- **Holiday Season Alters Travel Behavior**: The typical rush hour patterns are significantly less pronounced during the major holiday seasons at the end of the year, likely due to an increase in vacation time.
- OMNY is the Leading Payment Method: The transition to the new OMNY payment system is well underway, accounting for 65.2% of ridership compared to MetroCard's 34.8%. Manhattan leads in both OMNY adoption and the remaining MetroCard usage.
- Powerful Tools for Large-Scale Analysis: The successful use of PySpark and MongoDB demonstrates the power of these
 tools for processing and analyzing large, complex datasets to extract meaningful transportation insights.