Package 'Rmach'

August 6, 2024
Title Provides machine learning algorythm
Version 2.0.0.0
Description Provides these algorythms: coefficient finder for regression functions
License GPL (==3)
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.1
Imports stringr
Contents
best_model
calcall
calcall_var
datf_folder
individual_cloning
individual_equalizer_max
individual_equalizer_min
individual_route
knn_Rmach
knn_Rmach_cross_validation_k 21 knn_Rmach_cross_validation_train 22
knn_Rmach_cross_validation_train
sample_Rmach-class
Sumple_Islandii cluss
Index 29
best_model best_model

Description

Returns the best input models. The coefficient of the best model can be found with the $poly_model$ function

best_model

Usage

```
best_model(
  inpt_datf,
  Degree,
  Coeff_v = NA,
  Powers = NA,
  Mth_symb,
  Numrtr_v = NA
)
```

Arguments

inpt_datf	is the input dataframe, first column for the x values and second column for the y values
Degree	is a vector containing all the degrees. Each degree represents how many coefficients the model has.
Coeff_v	is a list containing the vector containing the coefficients for each model. The first value of each coefficient vector is always the constant, so it is not linked to any math symbol
Powers	is a list containing all the values associated with the math symbols of mth_symb list for each model. Because you can have multiple models in the function, so Powers is separated with the "-" separator between the different powers values for each model like in the examples
Mth_symb	is a list containing the vector of the different math symbols linked to the coefficients from the second value
Numrtr_v	is a list containing the different numerator values for each math symbol for each model, see examples

```
print(best_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), Degree=c(2, 2), Coeff_v=c("
[1] 2
print(best_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), Degree=c(2, 2), Coeff_v=c("
[1] 1
print(best_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), Degree=c(2, 2), Coeff_v=c("
[1] 1
print(best_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), Degree=c(2, 2), Coeff_v=c("
[1] 1
print(best_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), Degree=c(2, 2), Coeff_v=c("
#' [1] 1
```

calcall 3

calcall

calcall

Description

Takes a formula as a character as an input and makes the calculation. Accepts also variables, in this case the part of the formula that contains the variable wont be calculated, but the others part will be as usual.

Usage

```
calcall(inpt)
```

Arguments

inpt

is the input formula as a character

```
print(calcall(inpt="ze+(yu*((fgf)-(-12+8-Y+4-T+4+97+a)+tt))"))
   [1] "ze+(yu*(fgf-(-4-Y+4-T+101+a)+tt))"
print(calcall(inpt="ze+(yu*((fgf)-(-12+8-7+3-67+4+97+1)+tt))"))
   [1] "ze+(yu*(fgf-27+tt))"
print(calcall(inpt="ze+(yu*((fgf)+(12*3/2+4)+tt))"))
   [1] "ze+(yu*(fgf+22+tt))"
print (calcall(inpt="1+3*2+(-2/-3*-3*((fgf)-(--12-6)+2))+5-3*5"))
   [1] "7+(-2*(fgf-4))+20"
 \texttt{print} \, (\texttt{calcall} \, (\texttt{inpt="1+3*2+(-2/-3*-3*((fgf)-(--12-6)+2))+(-log\_e\_1\_e\_2+t+2^3)+m-log\_e\_1\_e\_2+t+2^3) + (\texttt{print} \, (\texttt{print}) + (\texttt{pri
  [1] "7+(-2*(fgf-4))+(-2+t+8)+m+6-m-12+(e_{ii}-8+log_{im}_4-67)-4+(y+2)"
print (calcall ("(6+4*-(4-5))+3/3"))
   [1] "11"
 \texttt{print} \ (\texttt{calcall} \ (\texttt{inpt="1+3*2+(-2/-3*-3*((fgf)-(--12-6)+2))+(-log\_e\_1\_e\_2+t+2^3)+m-log\_e\_1\_e\_2+t+2^3) + m-log\_e\_1\_e\_2+t+2^3) + m-log\_e\_1-e\_2+t+2^3) + m-log\_e\_1-e\_2+t+2^3) + m-log\_e\_1+2^3) + m-log_e\_1+2^3) + m-lo
   [1] "7+(-2*(fgf-4))+(-2+t+8)+m+6-m-16"
print (calcall(inpt="(log_5_Z-2-6+5)+-6+2"))
  [1] "(log_5_Z-3)-4"
print(calcall(inpt="m--2+-5"))
   [1] "m-3"
```

4 calcall_var

```
print (calcall(inpt="(-2-6)+-6+2"))
[1] "-12"
print(calcall(inpt="m-6"))
[1] "m-6"
print(calcall(inpt="--6"))
[1] "6"
```

calcall_var

calcall_var

Description

Does the same thing as calcall function but calculates the formula that have variables. The values of the variables have to be given in a list of vectors, see examples.

Usage

```
calcall_var(inpt, var_name_v, var_val_l)
```

the variable in var_name_v.

Arguments

is the input formula, with the variables
 var_name_v
 is the vector that contains the variables name in the order of apparition in the formula. If the variable appears multiple times in the formula, it has to be specified in this vector, see examples.
 var_val_l
 is the list containing the vectors containing the values of each variable, for each point you want to calculate. The vectors has to be given in the same order has

datf_folder 5

```
c(3, 4, 2, 5, 6, 1),
c(6:1))))
[1] "11.5" "11.6" "4.75" "14" "19.5" "-8"
```

datf_folder

 $datf_folder$

Description

Folds a dataframe, see examples.

Usage

```
datf_folder(inpt_datf)
```

Arguments

Examples

print(datf_folder(inpt_datf = iris))

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	6.9	3.1	4.9	1.5	versicolor
3	4.7	3.2	1.3	0.2	setosa
4	5.1	3.5	1.4	0.3	setosa
5	7.2	3.0	5.8	1.6	virginica
6	5.8	2.7	5.1	1.9	virginica
7	5.4	3.0	4.5	1.5	versicolor
8	6.7	3.1	5.6	2.4	virginica
9	6.0	3.0	4.8	1.8	virginica
10	5.4	3.4	1.5	0.4	setosa
11	6.9	3.1	5.4	2.1	virginica
12	5.8	2.7	5.1	1.9	virginica
13	6.4	3.1	5.5	1.8	virginica
14	5.7	2.6	3.5	1.0	versicolor
15	5.4	3.9	1.7	0.4	setosa
16	5.7	2.8	4.1	1.3	versicolor
17	5.1	3.7	1.5	0.4	setosa
18	4.4	3.0	1.3	0.2	setosa
19	5.7	3.8	1.7	0.3	setosa
20	5.1	3.8	1.5	0.3	setosa
21	5.4	3.4	1.7	0.2	setosa
22	6.7	3.1	4.7	1.5	versicolor
23	6.0	3.4	4.5	1.6	versicolor
24	6.9	3.1	4.9	1.5	versicolor
25	4.8	3.4	1.9	0.2	setosa
26	5.8	2.7	5.1	1.9	virginica

6 datf_folder

27	5.0	3.4	1.6	0.4	setosa
28	5.8	2.8	5.1	2.4	virginica
29	6.3	2.3	4.4		versicolor
30	4.7	3.2	1.6	0.2	
		3.0			setosa
31	4.8		1.4	0.3	setosa
32	5.4	3.4	1.5	0.4	setosa
33	6.1	2.6	5.6	1.4	virginica
34	6.1	3.0	4.6		versicolor
35	6.0	2.2	4.0		versicolor
36	5.0	3.2	1.2	0.2	setosa
37	5.5	3.5	1.3	0.2	setosa
38	5.8	2.8	5.1	2.4	virginica
39	6.2	3.4	5.4	2.3	virginica
40	5.1	3.4	1.5	0.2	setosa
41	5.0	3.5	1.3	0.3	setosa
42	4.5	2.3	1.3	0.3	setosa
43	4.9	3.6	1.4	0.1	setosa
44	5.0	3.5	1.6	0.6	setosa
45	5.7	3.0	4.2	1.2	versicolor
46	6.4	2.8	5.6	2.1	virginica
47	6.2	3.4	5.4	2.3	virginica
48	4.6	3.2	1.4	0.2	setosa
49	6.4	3.2	5.3	2.3	virginica
50	5.5	4.2	1.4	0.2	setosa
51	7.7	3.0	6.1	2.3	virginica
52	5.9	3.0	4.2		versicolor
53	6.5	3.0	5.5	1.8	virginica
54	5.4	3.9	1.7	0.4	setosa
55	6.5	2.8	4.6		versicolor
56	5.8	2.6	4.0		versicolor
57	5.7	2.8	4.5		versicolor
58	4.9	2.4	3.3		versicolor
59	6.7	3.1	5.6	2.4	virginica
60	6.1	3.0	4.9	1.8	_
61	5.8	2.8	5.1	2.4	virginica
62	5.9	3.0	4.2		versicolor
63	5.2	4.1	1.5	0.1	setosa
64	6.9	3.1	4.9		versicolor
65	5.6	2.9	3.6		versicolor
66	5.4	3.4	1.7	0.2	setosa
67	5.6	3.0	4.5		versicolor
68	5.8	2.7	4.1		versicolor
			4.5		
69 70	6.2 6.2	2.2	4.5		versicolor versicolor
		2.2			
71	5.9	3.2	4.8		versicolor
72	6.1	2.8	4.0		versicolor
73	6.3	2.5	4.9		versicolor
74	5.0	3.0	1.6	0.2	setosa
75	4.6	3.4	1.4	0.3	setosa
76	6.4	3.2	5.3		virginica
77	6.7	3.1	4.7		versicolor
78	5.5	4.2	1.4	0.2	setosa
79	6.0	2.9	4.5		versicolor
80	5.4	3.9	1.7	0.4	setosa
81	5.5	3.5	1.3	0.2	setosa
82	6.3	3.3	6.0	2.5	_
83	5.8	2.7	3.9	1.2	versicolor

datf_folder 7

84	6.0	2.7	5.1	1.6 versicolor
85	6.8	2.8	4.8	1.4 versicolor
86	6.1	3.0	4.6	1.4 versicolor
87	6.7	3.1	4.7	1.5 versicolor
88	5.1	3.8	1.6	0.2 setosa
89	6.8	2.8	4.8	1.4 versicolor
90	6.9	3.2	5.7	2.3 virginica
91	6.0	3.4	4.5	1.6 versicolor
92	6.1	3.0	4.6	1.4 versicolor
93	5.8	2.6	4.0	1.2 versicolor
94	5.0	2.3	3.3	1.0 versicolor
95	5.7	3.0	4.2	1.2 versicolor
96	5.7	3.0	4.2	1.2 versicolor
97	5.7	2.9	4.2	1.3 versicolor
98	6.4	2.8	5.6	2.2 virginica
99	5.1	3.4	1.5	0.2 setosa
100	5.7	2.8	4.1	1.3 versicolor
101	6.5	2.8	4.6	1.5 versicolor
102	4.8	3.4	1.9	0.2 setosa
103	4.4	2.9	1.4	0.2 setosa
104	5.1	2.5	3.0	1.1 versicolor
105	7.4	2.8	6.1	1.9 virginica
106	7.6	3.0	6.6	2.1 virginica
107	4.9	2.5	4.5	1.7 virginica
108	7.3	2.9	6.3	1.8 virginica
109	4.8	3.4	1.9	0.2 setosa
110	5.7	4.4	1.5	0.4 setosa
111	6.5	3.2	5.1	2.0 virginica
112	6.9	3.2	5.7	2.3 virginica
113	5.9	3.2	4.8	1.8 versicolor
114	7.1	3.0	5.9	2.1 virginica
115	5.8	2.8	5.1	2.4 virginica
116	4.8	3.4	1.9	0.2 setosa
117	4.3	3.0	1.1	0.1 setosa
118	6.6	2.9	4.6	1.3 versicolor
119	5.1	2.5	3.0	1.1 versicolor
120	6.0	2.2	5.0	1.5 virginica
121	5.1	3.4	1.5	0.2 setosa
122	6.3	2.7	4.9	1.8 virginica
123	6.7	3.3	5.7	2.1 virginica
124	6.1	2.6	5.6	1.4 virginica
125	5.0	3.3	1.4	0.2 setosa
126	7.2	3.2	6.0	1.8 virginica
127	6.2	2.8	4.8	1.8 virginica
128	6.1	3.0	4.9	1.8 virginica
129	5.0	3.4	1.6	0.4 setosa
130	6.2	2.2	4.5	1.5 versicolor
131	7.4	2.8	6.1	1.9 virginica
132	6.6	2.9	4.6	1.3 versicolor
133	6.7	3.3	5.7	2.1 virginica
134	6.3	3.3	4.7	1.6 versicolor
135	5.7	2.9	4.2	1.3 versicolor
136	7.2	3.6	6.1	2.5 virginica
137	6.5	3.0	5.5	1.8 virginica
138	6.4	3.1	5.5	1.8 virginica
139	5.5	4.2	1.4	0.2 setosa
140	5.8	2.7	5.1	1.9 virginica
-		* *	- · -	

8 individual_cloning

141	5.0	2.0	3.5	1.0	versicolor
142	6.9	3.1	5.1	2.3	virginica
143	5.8	2.7	5.1	1.9	virginica
144	6.8	3.2	5.9	2.3	virginica
145	6.7	3.3	5.7	2.5	virginica
146	5.1	3.3	1.7	0.5	setosa
147	5.1	3.8	1.9	0.4	setosa
148	6.5	3.0	5.2	2.0	virginica
149	4.6	3.6	1.0	0.2	setosa
150	5.9	3.0	5.1	1.8	virginica

individual_cloning individual_cloning

Description

Allow to generate individuals with the same label as those existig and having as values at variables, a value generated with a normal distribution having as parameters the mean for the variable A for the individual I and the same goes for the standard deviation, see examples.

Usage

```
individual_cloning(inpt_datf, col_vars = c(), label_var, hmn)
```

Arguments

inpt_datf is the input dataset as a dataframe

col_vars is a vector containing the columns or the column numbers of the variables

label_var is a either the columns or the column number of the label variable

hmn is how many of new individual from the same label will be generated

```
datf <- iris
datf[, 5] <- as.character(datf[, 5])</pre>
datf <- individual_cloning(inpt_datf = datf, col_vars = c(1:4), label_var = 5, hmn = 3)</pre>
print(datf)
nrow(datf)
nrow(iris)
    Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                      Species
1
        5.100000
                   3.500000 1.400000 0.2000000
                                                        setosa
                                         0.200000
2
        4.900000
                   3.000000
                                1.400000
                                                        setosa
                                         0.200000
3
                                1.300000
        4.700000
                   3.200000
                                                        setosa
                                         0.200000
4
        4.600000
                   3.100000
                                1.500000
                                                        setosa
5
                   3.600000
                                1.400000 0.2000000
        5.000000
                                                       setosa
                                1.700000 0.4000000
        5.400000
                  3.900000
6
                                                       setosa
7
        4.600000
                  3.400000
                               1.400000 0.3000000
                                                       setosa
8
        5.000000 3.400000
                               1.500000 0.2000000
                                                        setosa
9
        4.400000 2.900000
                               1.400000 0.2000000
                                                       setosa
10
        4.900000 3.100000
                              1.500000 0.1000000
                                                       setosa
11
        5.400000 3.700000
                               1.500000 0.2000000
                                                        setosa
```

individual_cloning 9

1.0	4 000000	2 400000	1 600000	0 000000	
12	4.800000	3.400000	1.600000	0.2000000	setosa
13	4.800000	3.000000	1.400000	0.1000000	setosa
14	4.300000	3.000000	1.100000	0.1000000	setosa
15	5.800000	4.000000	1.200000	0.200000	setosa
16	5.700000	4.400000	1.500000	0.400000	setosa
17	5.400000	3.900000	1.300000	0.400000	setosa
18	5.100000	3.500000	1.400000	0.3000000	setosa
19	5.700000	3.800000	1.700000	0.3000000	setosa
20	5.100000	3.800000	1.500000	0.3000000	setosa
21	5.400000	3.400000	1.700000	0.2000000	setosa
22	5.100000	3.700000	1.500000	0.4000000	setosa
23	4.600000	3.600000	1.000000	0.2000000	
					setosa
24	5.100000	3.300000	1.700000	0.5000000	setosa
25	4.800000	3.400000	1.900000	0.2000000	setosa
26	5.000000	3.000000	1.600000	0.200000	setosa
27	5.000000	3.400000	1.600000	0.400000	setosa
28	5.200000	3.500000	1.500000	0.200000	setosa
29	5.200000	3.400000	1.400000	0.200000	setosa
30	4.700000	3.200000	1.600000	0.200000	setosa
31	4.800000	3.100000	1.600000	0.2000000	setosa
32	5.400000	3.400000	1.500000	0.4000000	setosa
33	5.200000	4.100000	1.500000	0.1000000	setosa
34	5.500000	4.200000	1.400000	0.2000000	setosa
35	4.900000	3.100000	1.500000	0.2000000	setosa
36	5.000000	3.200000	1.200000	0.2000000	
					setosa
37	5.500000	3.500000	1.300000	0.2000000	setosa
38	4.900000	3.600000	1.400000	0.1000000	setosa
39	4.400000	3.000000	1.300000	0.200000	setosa
40	5.100000	3.400000	1.500000	0.200000	setosa
41	5.000000	3.500000	1.300000	0.3000000	setosa
42	4.500000	2.300000	1.300000	0.3000000	setosa
43	4.400000	3.200000	1.300000	0.200000	setosa
44	5.000000	3.500000	1.600000	0.6000000	setosa
45	5.100000	3.800000	1.900000	0.4000000	setosa
46	4.800000	3.000000	1.400000	0.3000000	setosa
47	5.100000	3.800000	1.600000	0.2000000	setosa
48	4.600000	3.200000	1.400000	0.2000000	setosa
49	5.300000	3.700000	1.500000	0.2000000	setosa
50	5.000000	3.300000	1.400000	0.2000000	setosa
51	7.000000	3.200000	4.700000		versicolor
52					
	6.400000	3.200000	4.500000		versicolor
53	6.900000	3.100000	4.900000		versicolor
54	5.500000	2.300000	4.000000		versicolor
55	6.500000	2.800000	4.600000		versicolor
56	5.700000	2.800000	4.500000		versicolor
57	6.300000	3.300000	4.700000	1.6000000	versicolor
58	4.900000	2.400000	3.300000	1.0000000	versicolor
59	6.600000	2.900000	4.600000	1.3000000	versicolor
60	5.200000	2.700000	3.900000	1.4000000	versicolor
61	5.000000	2.000000	3.500000		versicolor
62	5.900000	3.000000	4.200000		versicolor
63	6.000000	2.200000	4.000000		versicolor
64	6.100000	2.900000	4.700000		versicolor
65	5.600000	2.900000	3.600000		versicolor
66	6.700000	3.100000	4.400000		versicolor
67	5.600000		4.500000		
		3.000000			versicolor
68	5.800000	2.700000	4.100000	1.0000000	versicolor

10 individual_cloning

69	6.200000	2.200000	4.500000	1.5000000	versicolor
70	5.600000	2.500000	3.900000	1.1000000	versicolor
71	5.900000	3.200000	4.800000	1.8000000	versicolor
72	6.100000	2.800000	4.000000	1.3000000	versicolor
73	6.300000	2.500000	4.900000	1.5000000	versicolor
74	6.100000	2.800000	4.700000	1.2000000	versicolor
75	6.400000	2.900000	4.300000	1.3000000	versicolor
76	6.600000	3.000000	4.400000	1.4000000	versicolor
77	6.800000	2.800000	4.800000		versicolor
78	6.700000	3.000000	5.000000	1.7000000	versicolor
79	6.000000	2.900000	4.500000	1.5000000	versicolor
80	5.700000	2.600000	3.500000	1.0000000	versicolor
81	5.500000	2.400000	3.800000	1.1000000	versicolor
82	5.500000	2.400000	3.700000	1.0000000	versicolor
83	5.800000	2.700000	3.900000	1.2000000	versicolor
84	6.000000	2.700000	5.100000	1.6000000	versicolor
85	5.400000	3.000000	4.500000	1.5000000	versicolor
86	6.000000	3.400000	4.500000		versicolor
87	6.700000	3.100000	4.700000	1.5000000	versicolor
88	6.300000	2.300000	4.400000		versicolor
89	5.600000	3.000000	4.100000	1.3000000	versicolor
90	5.500000	2.500000	4.000000	1.3000000	versicolor
91	5.500000	2.600000	4.400000		versicolor
92	6.100000	3.000000	4.600000		versicolor
93	5.800000	2.600000	4.000000		versicolor
94	5.000000	2.300000	3.300000		versicolor
95	5.600000	2.700000	4.200000	1.3000000	versicolor
96	5.700000	3.000000	4.200000	1.200000	versicolor
97	5.700000	2.900000	4.200000		versicolor
98	6.200000	2.900000	4.300000	1.300000	versicolor
99	5.100000	2.500000	3.000000		versicolor
100	5.700000	2.800000	4.100000		versicolor
101	6.300000	3.300000	6.000000	2.5000000	virginica
102	5.800000	2.700000	5.100000	1.9000000	virginica
103	7.100000	3.000000	5.900000	2.1000000	virginica
104	6.300000	2.900000	5.600000	1.8000000	virginica
105	6.500000	3.000000	5.800000	2.2000000	virginica
106	7.600000	3.000000	6.600000	2.1000000	virginica
107	4.900000	2.500000	4.500000	1.7000000	virginica
108	7.300000	2.900000	6.300000	1.8000000	virginica
109	6.700000	2.500000	5.800000 6.100000	1.8000000	virginica
110	7.200000	3.600000		2.5000000	virginica
111	6.500000	3.200000	5.100000	2.0000000	virginica
112	6.400000	2.700000	5.300000	1.9000000	virginica
113	6.800000	3.000000	5.500000 5.000000	2.1000000	virginica
114	5.700000	2.500000		2.0000000	virginica
115	5.800000 6.400000	2.800000	5.100000	2.4000000	virginica virginica
116 117	6.500000	3.200000 3.000000	5.300000 5.500000	2.3000000 1.8000000	virginica
	7.700000	3.800000	6.700000	2.2000000	virginica
118 119	7.700000	2.600000	6.900000	2.3000000	virginica
120	6.00000	2.200000	5.000000	1.5000000	virginica
121	6.900000	3.200000	5.700000	2.3000000	virginica
121	5.600000	2.800000	4.900000	2.0000000	virginica
123	7.700000	2.800000	6.700000	2.0000000	virginica
123	6.300000	2.700000	4.900000	1.8000000	virginica
125	6.700000	3.300000	5.700000	2.1000000	virginica
140	0.70000	3.300000	3.700000	2.100000	virgillica

126	7.200000	3.200000	6.000000	1.8000000	virginica
127	6.200000	2.800000	4.800000	1.8000000	virginica
128	6.100000	3.000000	4.900000	1.8000000	virginica
129	6.400000	2.800000	5.600000	2.1000000	virginica
130	7.200000	3.000000	5.800000	1.6000000	virginica
131	7.400000	2.800000	6.100000	1.9000000	virginica
132	7.900000	3.800000	6.400000	2.0000000	virginica
133	6.400000	2.800000	5.600000	2.2000000	virginica
134	6.300000	2.800000	5.100000	1.5000000	virginica
135	6.100000	2.600000	5.600000	1.4000000	virginica
136	7.700000	3.000000	6.100000	2.3000000	virginica
137	6.300000	3.400000	5.600000	2.4000000	virginica
138	6.400000	3.100000	5.500000	1.8000000	virginica
139	6.000000	3.000000	4.800000	1.8000000	virginica
140	6.900000	3.100000	5.400000	2.1000000	virginica
141	6.700000	3.100000	5.600000	2.4000000	virginica
142	6.900000	3.100000	5.100000	2.3000000	virginica
143	5.800000	2.700000	5.100000	1.9000000	virginica
144	6.800000	3.200000	5.900000	2.3000000	virginica
145	6.700000	3.300000	5.700000	2.5000000	virginica
146	6.700000	3.000000	5.200000	2.3000000	virginica
147	6.300000	2.500000	5.000000	1.9000000	virginica
148	6.500000	3.000000	5.200000	2.0000000	virginica
149	6.200000	3.400000	5.400000	2.3000000	virginica
150	5.900000	3.000000	5.100000	1.8000000	virginica
151	4.601009	3.727368	1.268078	0.3122136	setosa
210	4.613076	3.989209	1.555392	0.2953775	setosa
310	4.722235	3.602591	1.479940	0.2471369	setosa
513	5.660667	2.449398	4.241485	1.5317590	versicolor
511	5.987887	3.016099	3.690411	1.5357972	versicolor
512	5.803584	2.828602	4.024589	1.2767213	versicolor
1013	6.851160	3.287923	5.157840	1.5365199	virginica
1011	7.119751	3.460045	4.990113	1.2895762	virginica
1012	7.370573	3.140464	5.680828	1.8674812	virginica
[1] 159					
[1] 150					

```
individual\_equalizer\_max\\ individual\_equalizer\_max
```

Description

Remove the individual that are in exess according to a given value, see examples

Usage

```
individual_equalizer_max(inpt_datf, label_var, hmn)
```

```
print(individual_equalizer_max(inpt_datf = datf, label_var = 5, hmn = 15))
```

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.0	3.2	1.2	0.2	setosa
2	5.5	3.5	1.3	0.2	setosa
3	4.9	3.6	1.4	0.1	setosa
4	4.4	3.0	1.3	0.2	setosa
5	5.1	3.4	1.5	0.2	setosa
6	5.0	3.5	1.3	0.3	setosa
7	4.5	2.3	1.3	0.3	setosa
8	4.4	3.2	1.3	0.2	setosa
9	5.0	3.5	1.6	0.6	setosa
10	5.1	3.8	1.9	0.4	setosa
11	4.8	3.0	1.4	0.3	setosa
12	5.1	3.8	1.6	0.2	setosa
13	4.6	3.2	1.4	0.2	setosa
14	5.3	3.7	1.5	0.2	setosa
15	5.0	3.3	1.4	0.2	setosa
16	6.0	3.4	4.5		versicolor
17	6.7	3.1	4.7		versicolor
18	6.3	2.3	4.7		versicolor
19	5.6	3.0	4.1		
20					versicolor versicolor
	5.5	2.5	4.0		
21	5.5	2.6	4.4		versicolor
22	6.1	3.0	4.6		versicolor
23	5.8	2.6	4.0		versicolor
24	5.0	2.3	3.3		versicolor
25	5.6	2.7	4.2		versicolor
26	5.7	3.0	4.2		versicolor
27	5.7	2.9	4.2		versicolor
28	6.2	2.9	4.3		versicolor
29	5.1	2.5	3.0		versicolor
30	5.7	2.8	4.1		versicolor
31	7.7	3.0	6.1	2.3	virginica
32	6.3	3.4	5.6	2.4	virginica
33	6.4	3.1	5.5	1.8	virginica
34	6.0	3.0	4.8	1.8	virginica
35	6.9	3.1	5.4	2.1	virginica
36	6.7	3.1	5.6	2.4	virginica
37	6.9	3.1	5.1	2.3	virginica
38	5.8	2.7	5.1	1.9	virginica
39	6.8	3.2	5.9	2.3	virginica
40	6.7	3.3	5.7	2.5	virginica
41	6.7	3.0	5.2	2.3	virginica
42	6.3	2.5	5.0	1.9	virginica
43	6.5	3.0	5.2	2.0	virginica
44	6.2	3.4	5.4	2.3	virginica
45	5.9	3.0	5.1	1.8	virginica

individual_equalizer_min

 $individual_equalizer_min$

Description

Allow to increase the number of inividual from any label to a certain point based on the individual_cloning function from the same package (Rmach)

Usage

```
individual_equalizer_min(inpt_datf, col_vars = c(), label_var, untl)
```

Arguments

inpt datf is the input dataset as a dataframe col_vars is a vector containing the colnames or the column numbers of the variables is a either the colnames or the column number of the label variable label_var untl is how many individual from the same label the dataset has to have, at minimum

Examples

```
datf <- iris
datf[, 5] <- as.character(datf[, 5])</pre>
datf <- individual_equalizer_min(inpt_datf = datf, col_vars = c(1:4), label_var = 5, untl</pre>
print(datf)
nrow(datf)
nrow(iris)
     Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                         Species
1
        5.100000
                   3.500000
                                1.400000 0.20000000
                                                         setosa
2
        4.900000
                    3.000000
                                1.400000
                                          0.20000000
                                                         setosa
3
        4.700000
                    3.200000
                                1.300000
                                          0.20000000
                                                         setosa
        4.600000
                   3.100000
                                1.500000
                                          0.20000000
                                                         setosa
5
        5.000000
                   3.600000
                                1.400000
                                          0.20000000
                                                         setosa
6
                                1.700000 0.40000000
        5.400000
                   3.900000
                                                         setosa
7
                                1.400000 0.30000000
        4.600000
                   3.400000
                                                         setosa
8
        5.000000
                                1.500000 0.20000000
                   3.400000
                                                         setosa
9
       4.400000
                   2.900000
                                1.400000 0.20000000
                                                         setosa
10
        4.900000
                                1.500000 0.10000000
                   3.100000
                                                         setosa
11
        5.400000
                   3.700000
                                1.500000 0.20000000
                                                         setosa
12
       4.800000
                   3.400000
                                1.600000 0.20000000
                                                         setosa
13
       4.800000
                   3.000000
                                1.400000 0.10000000
                                                         setosa
14
       4.300000
                   3.000000
                                1.100000 0.10000000
                                                         setosa
15
       5.800000
                   4.000000
                                1.200000 0.20000000
                                                         setosa
16
        5.700000
                   4.400000
                                1.500000 0.40000000
                                                         setosa
17
        5.400000
                   3.900000
                                1.300000 0.40000000
                                                         setosa
18
                                1.400000 0.30000000
        5.100000
                   3.500000
                                                         setosa
19
        5.700000
                   3.800000
                                1.700000 0.30000000
                                                         setosa
2.0
        5.100000
                   3.800000
                                1.500000 0.30000000
                                                         setosa
21
        5.400000
                   3.400000
                                1.700000 0.20000000
                                                         setosa
22
        5.100000
                    3.700000
                                1.500000 0.40000000
                                                         setosa
23
        4.600000
                    3.600000
                                1.000000
                                          0.20000000
                                                         setosa
24
        5.100000
                    3.300000
                                1.700000
                                          0.50000000
                                                         setosa
25
        4.800000
                    3.400000
                                1.900000
                                          0.20000000
                                                         setosa
26
        5.000000
                    3.000000
                                 1.600000
                                          0.20000000
                                                         setosa
27
        5.000000
                    3.400000
                                1.600000 0.40000000
                                                         setosa
28
        5.200000
                    3.500000
                                1.500000
                                          0.20000000
                                                         setosa
       5.200000
29
                   3.400000
                                1.400000 0.20000000
                                                         setosa
30
       4.700000
                   3.200000
                                1.600000 0.20000000
                                                         setosa
31
        4.800000
                   3.100000
                                1.600000 0.20000000
                                                         setosa
32
        5.400000
                   3.400000
                                1.500000 0.40000000
                                                         setosa
33
        5.200000
                   4.100000
                                1.500000 0.10000000
                                                         setosa
34
        5.500000
                   4.200000
                                1.400000 0.20000000
                                                         setosa
35
        4.900000
                   3.100000
                                1.500000 0.20000000
```

setosa

2.0	F 000000	3.200000	1 200000	0 2000000	
36	5.000000	3.500000	1.200000	0.20000000	setosa
37	5.500000		1.300000	0.20000000	setosa
38	4.900000	3.600000	1.400000	0.10000000	setosa
39	4.400000	3.000000	1.300000	0.2000000	setosa
40	5.100000	3.400000	1.500000	0.2000000	setosa
41	5.000000	3.500000	1.300000	0.30000000	setosa
42	4.500000	2.300000	1.300000	0.30000000	setosa
43	4.400000	3.200000	1.300000	0.20000000	setosa
44	5.000000	3.500000	1.600000	0.60000000	setosa
45	5.100000	3.800000	1.900000	0.40000000	setosa
46	4.800000	3.000000	1.400000	0.30000000	setosa
47	5.100000	3.800000	1.600000	0.20000000	setosa
48	4.600000	3.200000	1.400000	0.20000000	setosa
49	5.300000	3.700000	1.500000	0.20000000	setosa
50	5.000000	3.300000	1.400000	0.20000000	setosa
51	7.000000	3.200000	4.700000	1.40000000	versicolor
52	6.400000	3.200000	4.500000	1.50000000	versicolor
53	6.900000	3.100000	4.900000	1.50000000	versicolor
54	5.500000	2.300000	4.000000	1.30000000	versicolor
55	6.500000	2.800000	4.600000	1.50000000	versicolor
56	5.700000	2.800000	4.500000	1.30000000	versicolor
57	6.300000	3.300000	4.700000	1.60000000	versicolor
58	4.900000	2.400000	3.300000	1.00000000	versicolor
59	6.600000	2.900000	4.600000	1.30000000	versicolor
60	5.200000	2.700000	3.900000	1.40000000	versicolor
61	5.000000	2.000000	3.500000	1.00000000	versicolor
62	5.900000	3.000000	4.200000	1.50000000	versicolor
63	6.000000	2.200000	4.000000	1.00000000	versicolor
64	6.100000	2.900000	4.700000	1.40000000	versicolor
65	5.600000	2.900000	3.600000	1.30000000	versicolor
66	6.700000	3.100000	4.400000	1.40000000	versicolor
67	5.600000	3.000000	4.500000	1.50000000	versicolor
68	5.800000	2.700000	4.100000	1.00000000	versicolor
69	6.200000	2.200000	4.500000	1.50000000	versicolor
70	5.600000	2.500000	3.900000	1.10000000	versicolor
71	5.900000	3.200000	4.800000	1.80000000	versicolor
72	6.100000	2.800000	4.000000	1.30000000	versicolor
73	6.300000	2.500000	4.900000	1.50000000	versicolor
74	6.100000	2.800000	4.700000	1.20000000	versicolor
75	6.400000	2.900000	4.300000		versicolor
76	6.600000	3.000000	4.400000		versicolor
77	6.800000	2.800000	4.800000		versicolor
78	6.700000	3.000000	5.000000		versicolor
79	6.000000	2.900000	4.500000		
80	5.700000	2.600000	3.500000	1.00000000	versicolor
81	5.500000	2.400000	3.800000	1.10000000	versicolor
82	5.500000	2.400000	3.700000	1.00000000	versicolor
83	5.800000	2.700000	3.900000		versicolor
84	6.000000	2.700000	5.100000	1.60000000	versicolor
85	5.400000	3.000000	4.500000		versicolor
86	6.000000	3.400000	4.500000	1.60000000	versicolor
87	6.700000	3.100000	4.700000	1.50000000	versicolor
88	6.300000	2.300000	4.400000		versicolor
89	5.600000	3.000000	4.100000		versicolor
90	5.500000	2.500000	4.000000		versicolor
91	5.500000	2.600000	4.400000	1.20000000	versicolor
92	6.100000	3.000000	4.600000	1.40000000	versicolor

93	5.800000	2.600000	4.000000	1 2000000	versicolor
94					
	5.000000	2.300000	3.300000	1.00000000	versicolor
95	5.600000	2.700000	4.200000	1.30000000	versicolor
96	5.700000	3.000000	4.200000	1.20000000	versicolor
97	5.700000	2.900000	4.200000	1.30000000	versicolor
98	6.200000	2.900000	4.300000	1.30000000	versicolor
99	5.100000	2.500000	3.000000	1.10000000	versicolor
100	5.700000	2.800000	4.100000	1.30000000	versicolor
101	6.300000	3.300000	6.000000	2.50000000	virginica
102	5.800000	2.700000	5.100000	1.90000000	virginica
103	7.100000	3.000000	5.900000	2.10000000	virginica
104	6.300000	2.900000	5.600000	1.80000000	virginica
105	6.500000	3.000000	5.800000	2.20000000	virginica
106	7.600000	3.000000	6.600000	2.10000000	virginica
107	4.900000	2.500000	4.500000	1.70000000	virginica
108	7.300000	2.900000	6.300000	1.80000000	virginica
109	6.700000	2.500000	5.800000	1.80000000	virginica
110	7.200000	3.600000	6.100000	2.50000000	virginica
111	6.500000	3.200000	5.100000	2.00000000	virginica
112	6.400000	2.700000	5.300000	1.90000000	-
					virginica
113	6.800000	3.000000	5.500000	2.10000000	virginica
114	5.700000	2.500000	5.000000	2.00000000	virginica
115	5.800000	2.800000	5.100000	2.40000000	virginica
116	6.400000	3.200000	5.300000	2.30000000	virginica
117	6.500000	3.000000	5.500000	1.80000000	virginica
118	7.700000	3.800000	6.700000	2.20000000	virginica
119	7.700000	2.600000	6.900000	2.30000000	virginica
120	6.000000	2.200000	5.000000	1.50000000	virginica
121	6.900000	3.200000	5.700000	2.30000000	virginica
122	5.600000	2.800000	4.900000	2.00000000	virginica
123	7.700000	2.800000	6.700000	2.00000000	virginica
124	6.300000	2.700000	4.900000	1.80000000	virginica
125	6.700000	3.300000	5.700000	2.10000000	virginica
126	7.200000	3.200000	6.000000	1.80000000	virginica
127	6.200000	2.800000	4.800000	1.80000000	virginica
128	6.100000	3.000000	4.900000	1.80000000	virginica
129	6.400000	2.800000	5.600000	2.10000000	virginica
130	7.200000	3.000000	5.800000	1.60000000	virginica
131	7.400000	2.800000	6.100000	1.90000000	virginica
132	7.900000	3.800000	6.400000	2.00000000	virginica
133	6.400000	2.800000	5.600000	2.20000000	virginica
134	6.300000	2.800000	5.100000	1.50000000	virginica
135	6.100000	2.600000	5.600000	1.40000000	virginica
136	7.700000	3.000000	6.100000	2.30000000	virginica
137	6.300000	3.400000	5.600000	2.40000000	virginica
138	6.400000	3.100000	5.500000	1.80000000	virginica
139	6.000000	3.000000	4.800000	1.80000000	virginica
140	6.900000	3.100000	5.400000	2.10000000	virginica
141	6.700000	3.100000	5.600000	2.40000000	virginica
142	6.900000	3.100000	5.100000	2.30000000	virginica
143	5.800000	2.700000	5.100000	1.90000000	virginica
143	6.800000	3.200000	5.900000	2.30000000	virginica
144					_
	6.700000	3.300000	5.700000	2.50000000	virginica
146	6.700000	3.000000	5.200000	2.30000000	virginica
147	6.300000	2.500000	5.000000	1.90000000	virginica
148	6.500000	3.000000	5.200000	2.00000000	virginica
149	6.200000	3.400000	5.400000	2.30000000	virginica

150	5.900000	3.000000	5.100000	1.80000000	virginica
151	5.119546	3.240896	1.659373	0.25516050	setosa
152	4.902088	4.003746	1.228617	0.35778383	setosa
153	4.834331	3.698540	1.547812	0.33339113	setosa
154	5.134884	3.180819	1.588032	0.18761885	setosa
155			1.683031		
	5.488401	3.298369		0.18180736	setosa
156	4.758992	3.086108	1.434159	0.25348240	setosa
157	4.817610	3.052438	1.470246	0.18414810	setosa
158	5.372952	3.815612	1.344489	0.12705451	setosa
159	5.203751	3.331928	1.384586	0.26145797	setosa
160	5.154693	4.326639	1.585445	0.10767788	setosa
161	4.651867	2.915629	1.333128	0.24085761	setosa
162	4.703818	3.295307	1.524695	0.53200346	setosa
163	5.299254	3.127387	1.436154	0.32571756	setosa
164	4.576459	3.690579	1.500380	0.24860844	setosa
165	4.821700	3.891746	1.277726	0.34434218	setosa
166	5.195495	2.693142	1.518095	0.11628275	setosa
167	4.751171	4.076332	1.437831	0.29611751	setosa
168	4.895746	3.340168	1.505157	0.32204518	setosa
169	5.084452	2.649230	1.253577	0.34230634	setosa
170	4.994526	3.283612	1.466568	0.10785695	setosa
				0.13825711	
171	4.914249	3.713116	1.456736		setosa
172	5.168494	3.384539	1.391309	0.36352904	setosa
173	4.868237	3.608825	1.580430	0.16346689	setosa
174	4.922010	3.812630	1.385674	0.17966376	setosa
175	4.782539	3.520596	1.166369	0.19443475	setosa
176	4.999012	2.953373	1.276890	0.04813659	setosa
177	4.237476	3.501651	1.603897	-0.02137016	setosa
178	4.161835	2.900175	1.340508	0.31471652	setosa
179	5.326641	2.690628	1.367918	0.30229792	setosa
180	5.144879	2.889594	1.627228	0.29699450	setosa
181	5.032020	3.092995	1.262743	0.13014888	setosa
182	4.912576	4.102884	1.592814	0.46510333	setosa
183	4.886276	3.643501	1.362697	0.45850332	setosa
184	5.067843	3.644076	1.284018	0.11802271	setosa
185	4.870130	3.261045	1.387769	0.24945158	setosa
186	4.203276	3.532647	1.759381	0.22793382	setosa
187	5.147728	2.949748	1.344759	0.14613345	setosa
188	5.044451	3.821792	1.690910	0.27432788	setosa
189	5.144534	3.260319	1.486522	0.15193060	
					setosa
190	4.749463	3.242690	1.558031		setosa
191	5.012355	4.056773	1.568806	0.28175520	setosa
192	5.286178	3.657418	1.556329	0.25865612	setosa
193	4.739473	3.599081	1.361732	0.11096506	setosa
194	4.763743	3.719912	1.532282	0.23680057	setosa
195	4.352927	3.606171	1.443575	0.22201153	setosa
196	5.420318	3.234039	1.257110	0.29332868	setosa
197	5.032471	4.002458	1.149330	0.14118440	setosa
198	4.679526	3.634655	1.503754	0.19732104	
					setosa
199	4.655581	2.890624	1.538909	0.10855489	setosa
200	5.432263	3.587195	1.448039	0.15201721	setosa
201	5.030955	3.620666	1.379309	0.22296525	setosa
202	5.117052	3.640415	1.680914	0.22426164	setosa
203	4.206403	3.577511	1.579905	0.34627623	setosa
204	5.345245	3.207691	1.351151	0.10816533	setosa
205	5.287934	3.630390	1.494184	0.31610331	setosa
206	4.371540	3.674677	1.483436	0.12756906	setosa
_ 0 0	1.0.1010		100100	,,0000	222004

207	4.458787	3.512193	1.499114	0.35598241	go+ 0g2
207	4.694526	4.189214	1.065203	0.32728599	setosa
209	5.199256	3.164026		-0.00277085	setosa
					setosa
210	4.857067	3.279462	1.431379	0.28051926	setosa
211	5.120333	3.079011	1.256199	0.26650341	setosa
212	5.526492	3.715932	1.385397	0.10935802	setosa
213	4.255062	3.442076	1.032584	0.22553491	setosa
214	5.547997	3.899931	1.805604	0.14245435	setosa
215	5.056086	3.556886	1.485842	0.25052054	setosa
216	4.602273	3.582194	1.637627	0.10750785	setosa
217	5.707143	3.272366	1.495331	0.24957136	setosa
218	4.529437	3.295707	1.370119	0.22733484	setosa
219	4.815724	3.274761	1.264803	0.19839835	setosa
220	5.219331	3.678528	1.534777	0.31111961	setosa
221	7.469393	3.164987	4.045576	1.29571858	versicolor
222	6.435686	2.759148	4.152976	1.38660991	versicolor
223	6.004909	2.617229	3.374965	1.50931533	versicolor
224	5.998960	2.889328	4.787927	0.99816956	versicolor
225	6.066878	2.738260	4.317450	1.35360632	versicolor
226	6.558577	3.004756	3.518091	1.10350572	versicolor
227	5.226591	2.937582	4.211646	1.82617395	versicolor
228	6.519901	3.085536	4.666132	1.47417398	versicolor
229	6.212108	2.297953	3.256134	1.57999643	versicolor
230	6.234065	2.904038	3.899946	1.61728632	versicolor
231	5.891353	2.871663	3.585063		versicolor
232	5.495659	2.332178	4.373762	1.40539853	versicolor
233	5.484945	3.186158	5.022759		versicolor
234	5.002003	2.716631	4.221475		versicolor
235	6.289043	3.017459	3.910062		versicolor
236	5.700736	3.131150	4.960207		versicolor
237	5.500216	3.190272	4.253273		versicolor
238	6.445503	2.960724	4.621510	1.21795268	versicolor
239	5.889688	2.752965	4.360846		versicolor
240	5.217994	2.727503	4.018054		versicolor
241	5.628761	2.782079	4.503714	1.21105694	versicolor
242	5.922639	2.647391	3.774616		versicolor
243	6.021925	2.565549	3.937052		versicolor
243	6.330301	2.687627	4.026615		versicolor
245	6.304311	2.635169	3.998727		versicolor
245	6.663896	3.297885	3.907486		versicolor
					versicolor
247	5.376404	2.885587 2.578715	3.866554		versicolor
248	4.695327		3.943357		
249	6.278448	3.381682	3.893139		versicolor
250	5.808922	2.342279	4.329488		versicolor
251	6.257850	3.299147	4.763327		versicolor
252	5.397398	2.181731	5.237967		versicolor
253	6.318406	3.370869	4.403785		versicolor
254	6.030213	2.934996	5.690094		versicolor
255	6.322254	2.643724	4.712019		versicolor
256	5.483814	3.540120	3.935919		versicolor
257	4.923149	2.834738	3.978205		versicolor
258	5.102353	3.275399	4.167623		versicolor
259	6.503755	2.772905	4.500401		versicolor
260	6.024940	2.379938	3.663719		versicolor
261	6.155505	2.960939	4.628437		versicolor
262	6.547596	2.753326	3.814345		versicolor
263	7.340028	3.049036	4.128880	1.43704378	versicolor

0.64	6 554500	0 544650	0 55550	1 05655010	
264	6.771703	2.744679	3.755760		versicolor
265	6.526113	3.315310	4.723554		versicolor
266	5.737681	2.732723	4.619607		versicolor
267	5.118896	3.053538	5.153921	1.24286955	versicolor
268	6.557536	2.506483	3.775426	1.25665234	versicolor
269	6.773637	3.056770	3.907444	1.48359009	versicolor
270	5.231083	2.716242	3.701491	1.43445828	versicolor
271	6.373044	2.810367	3.823155	1.48776176	versicolor
272	6.689764	2.329003	4.315204	1.20003129	versicolor
273	5.909787	2.877026	3.921463	1.44035219	versicolor
274	5.985060	3.408963	4.312826		versicolor
275	5.720711	3.047025	4.502301	1.30692891	versicolor
276	6.075586	2.625810	3.462166	1.13883320	
277	5.979742	3.037604	4.337108		versicolor
278	5.944742	3.187138	4.131605		versicolor
279	5.377366	2.850410	4.848731		versicolor
280	5.911520	2.601061	3.978657		versicolor
281	6.299276	3.083130	3.767828		versicolor
282			4.400327		
	6.508117	2.717810			versicolor
283	5.564065	2.991926	3.244794		versicolor
284	5.636803	3.041730	3.675623		versicolor
285	6.249670	2.545928	4.021866	1.48874150	versicolor
286	5.779178	3.126088	4.456842		versicolor
287	5.056560	3.158496	4.029340	1.09487926	versicolor
288	6.256082	2.754099	3.546839	1.10515518	versicolor
289	6.727157	3.127967	4.478930	1.36983039	versicolor
290	6.644075	2.156546	4.073352	1.24130902	versicolor
291	6.086009	2.661626	6.272420	1.43328200	virginica
292	6.415624	3.507285	4.970803	2.29244152	virginica
293	7.783730	3.194127	6.263952	2.12710505	virginica
294	6.714708	2.207256	4.695838	1.57280728	virginica
295	6.892027	3.146945	5.963832	2.03720894	virginica
296	6.384602	2.842640	5.424208	1.34455702	virginica
297	7.151880	2.761441	5.193842	2.65759524	virginica
298	7.000909	3.538284	5.949645	2.37981867	virginica
299	6.267784	3.471146	5.832588	1.97858577	virginica
300	6.684294	3.095409	5.918461	1.79584906	virginica
301	6.653542	3.193293	5.478747	2.02974253	virginica
302	6.932936	2.532998	5.398907	2.58686242	virginica
303	6.171339	3.401070	5.778270	2.14575174	virginica
304	6.321461	3.238482	5.728325	1.77370288	virginica
305	6.939597	3.105226	5.153168	2.30218152	virginica
306	4.983468	2.869016	5.249331	2.33602954	virginica
307	7.057275	3.000195	5.368063	2.29811745	virginica
308	5.648449	3.022504	4.670324	2.44199827	virginica
309	7.023223	3.038748	6.549980	1.74164740	virginica
310	6.621430	2.928325	4.114293	1.65060008	virginica
311	5.947210	2.572431	6.035025	1.67473550	virginica
312	6.720834	2.791217	4.373968	1.80139289	virginica
313	7.277691	3.013233	6.057093	2.41664038	virginica
314	6.036578	3.034487	5.680667	2.14347484	virginica
314	7.523033	2.906421	5.746571	2.19174990	virginica
316	6.148008	3.219150	5.385260	2.19174990	virginica
317	6.653134	3.286357	5.439343	2.01415643	virginica
317	7.665406	2.418833	4.912548	2.01415643	virginica
					-
319	6.962181	3.122207	5.926113	2.14427668	virginica
320	6.968055	3.394053	5.176526	2.28774948	virginica

individual_route 19

321	8.433217	3.190685	6.154875	1.86645175	virginica
322	5.865485	3.206422	6.182362	2.06380350	virginica
323	6.357587	3.105502	6.086674	2.22194560	virginica
324	7.000027	3.093890	5.694556	1.95490517	virginica
325	5.329756	3.313431	7.114499	1.82374316	virginica
326	7.063835	2.978432	6.702789	1.97846514	virginica
327	6.643032	3.331938	5.319034	1.98032475	virginica
328	5.812732	2.605752	4.698275	2.04751518	virginica
329	5.922603	2.951062	4.789723	1.86828922	virginica
330	6.534338	3.077621	4.735738	1.96590508	virginica
331	6.566409	2.869386	5.256565	2.30887779	virginica
332	5.873025	2.576689	5.399706	1.51365277	virginica
333	6.436762	2.807203	5.237271	1.70436243	virginica
334	6.700115	2.741499	6.361120	2.57743789	virginica
335	6.800498	2.964161	6.726096	2.01077453	virginica
336	6.817689	3.044292	5.651350	1.64623491	virginica
337	6.589657	2.978472	6.011304	2.51979646	virginica
338	8.263734	3.121411	5.285361	1.93618630	virginica
339	7.027356	2.891612	5.821978	1.92039311	virginica
340	4.943241	2.503378	5.732430	1.80385345	virginica
341	7.071175	2.628713	6.012994	2.06170238	virginica
342	6.074115	3.436504	5.791817	1.23968953	virginica
343	6.853310	2.681229	5.643604	1.21275207	virginica
344	6.254123	3.365158	5.832863	2.67274454	virginica
345	6.511558	2.738037	5.355683	1.85846301	virginica
346	5.842295	3.300082	4.540820	2.12329402	virginica
347	6.423004	3.294433	6.394560	1.76478497	virginica
348	5.833874	3.222916	5.861218	1.69319220	virginica
349	6.478021	3.028388	6.606609	2.06623919	virginica
350	7.784342	2.902471	5.142493	1.91602616	virginica
351	6.775815	3.445127	5.519265	2.13719655	virginica
352	7.014933	2.715428	6.798085	2.04147119	virginica
353	7.689606	2.506295	5.531764	1.88075834	virginica
354	7.506985	2.788839	5.837837	2.47057469	virginica
355	7.242421	2.782457	6.390016	1.66938074	virginica
356	6.400116	2.353697	4.388649	2.24717026	virginica
357	7.384851	3.077118	5.716925	2.36297064	virginica
358	6.892294	3.466955	4.959172	2.13813060	virginica
359	5.904443	3.286340	4.911794	1.90991134	virginica
360	6.292600	2.938076	5.710938	2.61396630	virginica
[1]	360				
[1]	150				

individual_route individual_route

Description

From a time serie, allow to get the most common route for each individual at a given depth (time - 1). Access the frequency value as an element from the output vector and the value itself (the path) as a name of its element, see examples.

Usage

```
individual_route(inpt_datf, col_target, id_col, untl_last = 2)
```

20 knn_Rmach

Arguments

inpt_datf is the input time serie as a dataframe
col_target is the column name or number that refers to the value of each individual
id_col is the column name or number that refers to the individual (ids)
untl last is the depth value

Examples

knn_Rmach

knn_Rmach

Description

KNN algorythm, see example

Usage

```
knn_Rmach(train, test, k, col_vars_train = c(), col_vars_test = c(), class_col)
```

Arguments

train is a dataframe with the known individual and their variables and classification

columns

test is a dataframe with the new individuals with ich e do not know the class, only

the variables

k is the number of neighbours

col_vars_train

is a vector containing the column names or column numbers of the variables in train, if empty all column are considered as a variable apart from the last one that is considered as the classification column

```
col_vars_test
```

is a vector containing the column names or column numbers of the variables in test, if empty all column are considered as a variable

class_col is the column name or column number of the classification column in train

Examples

Description

Allow to perform knn with cross validation for the optimal value of k neighbours used, see examples and parameters. The result outputed is a vector containing the ratio of correct label found divided by the total number of unique individuals in the current dataset where the training occurred. So, higher is better.

Usage

```
knn_Rmach_cross_validation_k(
  inpt_datf,
  train_prop,
  knn_v = c(),
  n_fold = 5,
  col_vars = c(),
  class_col
)
```

Arguments

is the input dataset as a ddataframe

train_prop is the training proportion

knn_v is a vector containing the values of k neighbours to test

n_fold is the number of fold used for each value of k, the higher this value is, he more accurate the result will be but the higher the amount of time it will takes

col_vars is a vector containing the column names or numbers of the variables in the input dataframe

class_col is the column names or number of the variable to predict in the input dataframe

Examples

```
knn_Rmach_cross_validation_train 
 knn_Rmach_cross_validation_train
```

Description

Allow to perform knn with cross validation for the optimal value of k neighbours used, see examples and parameters. The result outputed is a vector containing the ratio of correct label found divided by the total number of individuals in the current dataset where the training occurred. So, higher is better.

Usage

```
knn_Rmach_cross_validation_train(
  inpt_datf,
  train_prop_v = c(),
  k,
  n_fold = 5,
  col_vars = c(),
  class_col
)
```

Arguments

inpt_datf	is the input dataset as a ddataframe
n_fold	is the number of fold used for each value of k, the higher this value is, he more accurate the result will be but the higher the amount of time it will takes
col_vars	is a vector containing the column names or numbers of the variables in the input dataframe
class_col	is the column names or number of the variable to predict in the input dataframe
train_prop	is the training proportion
knn_v	is a vector containing the values of k neighbours to test

poly_model 23

Examples

poly_model

Rmach poly_model

Description

Take a datasets of x and y values and a function tha could fit all the data with the missing coefficients, and returns a list containing the coefficients that fit the best the data for a given function, as a vector for the first index, and at the second index, the actual sum of difference between each data point and the function at the same x values.

Usage

```
poly_model(
   inpt_datf,
   degree,
   twk_val = NA,
   sensi_val = twk_val,
   coeff_v = NA,
   powers = NA,
   mth_symb = c("x"),
   numrtr_v = NA
)
```

Arguments

is the input data as a dataframe, first column is the x values and the second is the y values

degree is how many coefficients will be involved (each coefficient multiplies either an x to the power of something, an exponential of something or a base something logarithm for a something value)

twk_val is the value used for finding the best coefficients, it is directly linked to the accuracy of the coefficients, see the description for more information. Defaults

to (max(yval) - min(yval)) / n

24 poly_model

sensi_val

is the value from which two variations of a coefficient brings a so small accuracy contribution that the algorythm does not continue to find better coefficients. For example, if i set sensi_val = 0.001, so if coefficients alpha1 and beta1 brings a total difference between the function and the actual data of 10.8073 and then the algorythm find alpha2 and beta1 that brings a total difference equal to 10.8066, so the algorythm will stop running. But the coefficients returned will still be the best, that is alpha2 and beta1

coeff v

is a vector containing the original coefficients for the function, so the closest those are from the best one, the fastest the algorythm will compute the best coefficients. The first value of coeff is always the constant.

powers

is a vector containing the exponent, or related value to mth_symb. powers can be a vector if those values are constants or it could be a list of vectors the length of observed individuals, if those values varies like in the examples. Notthat if you use variables in powers (list), each values of a vector from this list has to be at the exact same x coordinates of each observed individuals in the input dataframe. Ex: datf <- data.frame("x"=c(4, 4, 3, 2, 1, 1), "y"=c(1:6)), so vector(s) from powers that contain varying value must be of length 4. Also, the values are not ascendly sorted, don't worry values are ascendly sorted under the hood, so fill your powers vectors in the intuitive ascendly way

mth_symb

is a vector containing the elemnts linked to the coefficients from the second element. It can be x, $e(\exp(x))$ or $\log - X(\log(x)$ -base), and their reverse like 1/x. If the numerator varies the element should be entered like tis list/x, list/e or list/log-base. See numrtr_v for the values related to list

numrtr v

is a vector containing the values for the numerator related to mth_symb if on element is like this: list/x or list/e

```
print(poly_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), degree=2, coeff_v=c(32.5, -
                 numrtr_v=NA))
[[1]]
[1] 33.234375 -4.265625
[[2]]
[1] 74.78275
print(poly_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), degree=2, coeff_v=c(32.5, -
                 numrtr_v=NA))
[[1]]
[1] 31.765625 -3.734375
[[2]]
[1] 80.36228
print(poly_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), degree=2, coeff_v=c(32.5, -
                 numrtr_v=NA))
[[1]]
[1] 32.5 -3.0
```

```
[[2]]
[1] 1.067436e+24
print(poly_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), degree=2, coeff_v=c(32.5, -
                 numrtr_v=list(c(length(mtcars$wt):1))))
[[1]]
[1] 19.28125 -0.06250
[[2]]
[1] 35839.44
print(poly_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), degree=2, coeff_v=c(32.5, -
                 numrtr_v=NA))
[[1]]
[1] 27.359375 -8.140625
[[2]]
[1] 160.2263
print(poly_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), degree=1, coeff_v=c(32.5),
                 numrtr_v=NA))
[[1]]
[1] 19.28125
[[2]]
[1] 148.7625
print(poly_model(inpt_datf=data.frame(mtcars$wt, mtcars$mpg), degree=2, coeff_v=c(32.5, -
                  numrtr_v=NA))
[[1]]
[1] 0.921875 -5.203125 2.000000
[[2]]
[1] 455.6017
```

 $\verb|sample_Rmach-class| v_Rmach_fold|$

Description

Allow to create uniform sampling dataset for cross validation, train and test, see examples and variables

Arguments

```
inpt_datf is the input dataframe
```

```
train_prop is the training proportion
n_fold is the number of distinc pair of training and test dataset that will be outputed
```

```
lst_test <- v_Rmach_fold(inpt_datf = iris[1:25,],</pre>
              train\_prop = 0.7,
              n_fold = 4)
print(lst_test)
$sample1
An object of class "sample_Rmach"
Slot "train":
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species test_status
24
               5.1 3.3 1.7 0.5 setosa 0
18
               5.1
                            3.5
                                          1.4
                                                        0.3 setosa
                           3.4
                                                                                 0
                                          1.6
                                                        0.2 setosa
12
              4.8
                                          1.7
                                                                                 0

      5.7
      3.8

      5.1
      3.8

      5.0
      3.6

      4.6
      3.1

      4.6
      3.5

      5.1
      3.5

      4.6
      3.4

      4.3
      3.0

      4.6
      3.4

      4.6
      3.1

      5.7
      3.8

      4.4
      2.9

      5.0
      3.4

      5.7
      4.4

              5.7
                            3.8
                                                        0.3 setosa
19
          5.1
5.0
4.6
4.6
5.1
5.1
                                          1.5
                                                        0.3 setosa
                                                                                 0
20
                                          1.4
                                                        0.2 setosa
5
                                                                                 0
                                          1.5
4
                                                         0.2 setosa
                                          1.0
1.4
                                                         0.2 setosa
23
18.1
                                                         0.3 setosa
                                                                                 0
                                          1.4
                                                         0.2 setosa
                                                                                 0
                                          1.4
                                                         0.3 setosa
7
                                                                                 0
                                          1.1
                                                        0.1 setosa
              4.3
14
                                                                                 0
                                          1.4
              4.6
7.1
                                                        0.3 setosa
                                                                                 0
                                                        0.2 setosa
                                          1.5
4.1
                                                                                 0
                                          1.7
                                                        0.3 setosa
19.1
              5.7
                                                                                 Ω
                                          1.4
                                                        0.2 setosa
                                                                                 0
8
                                          1.5
                                                        0.2 setosa
16
                                          1.5
                                                        0.4 setosa
Slot "test":
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species test_status
7
           4.6 3.4 1.4 0.3 setosa 1
12
            4.8
                         3.4
                                        1.6
                                                      0.2 setosa
            5.0
                                       1.5
8
                         3.4
                                                      0.2 setosa
14
            4.3
                         3.0
                                                      0.1 setosa
                                       1.1
            5.4
                         3.7
                                       1.5
11
                                                      0.2 setosa
                                                                              1
                         3.4
                                                                              1
25
            4.8
                                        1.9
                                                      0.2 setosa
23
             4.6
                          3.6
                                         1.0
                                                       0.2 setosa
Slot "train_ids":
 [1] 24 18 12 19 20 5 4 23 18 1 7 14 7 4 19 9 8 16
Slot "test_ids":
[1] 7 12 8 14 11 25 23
$sample2
An object of class "sample_Rmach"
Slot "train":
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species test_status
20
               5.1
                      3.8 1.5 0.3 setosa
8
               5.0
                            3.4
                                           1.5
                                                        0.2 setosa
                                                                                  0
```

```
2 4.9 3.0 1.4 0.2 setosa
11 5.4 3.7 1.5 0.2 setosa
22 5.1 3.7 1.5 0.4 setosa
13 4.8 3.0 1.4 0.1 setosa
24 5.1 3.3 1.7 0.5 setosa
2.1 4.9 3.0 1.4 0.2 setosa
7 4.6 3.4 1.4 0.3 setosa
2.2 4.9 3.0 1.4 0.2 setosa
2.2 2 5.1 3.7 1.5 0.4 setosa
2.2 2 5.1 3.7 1.5 0.4 setosa
2.2.1 5.1 3.7 1.5 0.4 setosa
2.2.2 5.1 3.7 1.5 0.4 setosa
2.2.3 5.1 3.7 1.5 0.4 setosa
3 4.7 3.2 1.3 0.2 setosa
3 1.7 3.2 1.3 0.2 setosa
3.1 4.7 3.2 1.3 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
                                                                                                  0.2 setosa
                                                                                                  0.3 setosa
                                                                                                  0.2 setosa
                                                                                                  0.4 setosa
                                                                                                  0.4 setosa
                                                                                                  0.5 setosa
                                                                                                                                              0
                                                                                                  0.4 setosa
                                                                                                                                              0
                                                                                                                                             0
                                                                                                  0.2 setosa
                                                                                                                                              0
                                                                                                  0.2 setosa
                                                                                                                                              0
                                                                                                  0.2 setosa
                                                                                                  0.4 setosa
 Slot "test":
 Sepal.Length Sepal.Width Petal.Length Petal.Width Species test_status
         5.0 3.4 1.5 0.2 setosa 1

    4.8
    3.4
    1.6

    5.1
    3.5
    1.4

    5.4
    3.7
    1.5

    4.9
    3.0
    1.4

    5.1
    3.5
    1.4

    5.1
    3.8
    1.5

                                                                                        0.2 setosa
0.2 setosa
0.2 setosa
0.2 setosa
0.2 setosa
 12
 11
 2
                                                                                             0.3 setosa
                                                                                                                                         1
 18
                                                                                             0.3 setosa
                                                                                                                                         1
 20
 Slot "train_ids":
  [1] 20 8 2 11 22 13 24 2 7 2 22 22 24 22 3 3 11 6
 Slot "test ids":
 [1] 8 12 1 11 2 18 20
 $sample3
 An object of class "sample_Rmach"
 Slot "train":
          Sepal.Length Sepal.Width Petal.Length Petal.Width Species test_status
                                                                 1.4
1.1
1.5
1.5
1.5
1.2
1.3
1.4
1.9
1.0
1.5
1.7

      5.0
      3.6
      1.4

      4.3
      3.0
      1.1

      5.7
      4.4
      1.5

      4.6
      3.1
      1.5

      5.8
      4.0
      1.2

      4.7
      3.2
      1.3

      5.1
      3.5
      1.4

      4.8
      3.4
      1.9

      4.6
      3.1
      1.5

      5.1
      3.3
      1.7

      5.1
      3.8
      1.5

      4.6
      3.4
      1.4

      5.7
      3.8
      1.7

      5.4
      3.4
      1.7

      4.6
      3.6
      1.0

      5.4
      3.7
      1.5

           5.0 3.6 1.4 0.2 setosa 0
 5
 14
                                                                                                   0.1 setosa
                                                                                                  0.1 setosa
0.4 setosa
0.2 setosa
0.2 setosa
0.2 setosa
0.2 setosa
0.3 setosa
 16
 4
 15
                                                                                                                                              0
 3
 18
                                                                                                                                              0
                                                                                                  0.2 setosa
0.2 setosa
 25
                                                                                                                                               0
 23
                                                                                                  0.2 setosa
 4.1
                                                                                                  0.5 setosa
 24
                                                                                                  0.3 setosa
 20
                                                                                                  0.3 setosa
 7
 19
                                                                                                  0.3 setosa
 21
                                                                                                  0.2 setosa
                                                                                                                                              0
 23.1
                                                                                                  0.2 setosa
                                                                                                                                              0
                                                                          1.5
```

11

0

0.2 setosa

```
Slot "test":
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species test_status
                      5.1 3.5 1.4 0.3 setosa 1
5.4 3.4 1.7 0.2 setosa 1
21
                                               3.6
5
                       5.0
                                                                          1.4
                                                                                                    0.2 setosa
                                                3.4
                                                                          1.6
                                                                                                    0.2 setosa
12
                      4.8
                                                                         1.1
                                               3.0
                                                                                                   0.1 setosa
14
                      4.3
                                               3.0
                                                                                                    0.2 setosa
2
                       4.9
                                               3.4
                                                                          1.5
                                                                                                    0.2 setosa
                       5.0
Slot "train_ids":
 [1] 5 14 16 4 16 15 3 18 25 23 4 24 20 7 19 21 23 11
Slot "test_ids":
[1] 18 21 5 12 14 2 8
$sample4
An object of class "sample_Rmach"
Slot "train":

        pal.Length
        Sepal.Width
        Petal.Length
        Petal.Width
        Species
        test_status

        5.1
        3.5
        1.4
        0.3
        setosa
        0

        5.1
        3.5
        1.4
        0.3
        setosa
        0

        4.8
        3.0
        1.4
        0.1
        setosa
        0

        4.6
        3.4
        1.4
        0.3
        setosa
        0

        5.1
        3.5
        1.4
        0.3
        setosa
        0

        4.9
        3.0
        1.4
        0.2
        setosa
        0

        5.7
        3.8
        1.7
        0.3
        setosa
        0

        5.7
        3.8
        1.7
        0.3
        setosa
        0

        4.4
        2.9
        1.4
        0.2
        setosa
        0

        5.8
        4.0
        1.2
        0.2
        setosa
        0

        5.8
        4.0
        1.2
        0.2
        setosa
        0

        5.8
        4.0
        1.2
        0.2
        setosa
        0

        5.0
        3.4
        1.5
        0.2
        <t
         Sepal.Length Sepal.Width Petal.Length Petal.Width Species test_status
18.1
13
18.2
2
19
23
15
16
15.1
8
9.1
10
14
11
12
Slot "test":
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species test_status

      4.4
      2.9
      1.4
      0.2 setosa
      1

      4.8
      3.0
      1.4
      0.1 setosa
      1

      4.6
      3.1
      1.5
      0.2 setosa
      1

      5.7
      3.8
      1.7
      0.3 setosa
      1

13
                                               3.1
3.8
19
                                              3.6 1.7
3.7 1.5
3.7 1.5
3.6 1.4
                                                                                                    0.4 setosa
                      5.1
22
                      5.4
                                                                                                   0.2 setosa
11
                                                                                                   0.2 setosa
                      5.0
Slot "train ids":
 [1] 18 18 13 7 18 2 19 9 23 15 16 15 8 9 10 14 11 12
Slot "test_ids":
```

[1] 9 13 4 19 22 11 5

Index

```
best_model, 1

calcall, 3
calcall_var, 4

datf_folder, 5

individual_cloning, 8
individual_equalizer_max, 11
individual_equalizer_min, 12
individual_route, 19

knn_Rmach, 20
knn_Rmach_cross_validation_k, 21
knn_Rmach_cross_validation_train, 22

poly_model, 23

sample_Rmach-class, 25
```