cisco Módulo 5: Sistemas numéricos Introdução às redes v7.0 (ITN)

Objetivos do módulo

Título do módulo: Sistemas Numéricos

Objetivo do módulo: Calcular números entre sistemas decimais, binários e hexadecimais.

Título do Tópico	Objetivo do Tópico
Sistema Binário de Numeração	Calcular números entre sistemas decimal e binário.
Sistema de numeração hexadecimal	Calcular números entre sistemas decimal e hexadecimal.

5.1 Sistema de numeração binário

Sistema Binário de Numeração Endereços binários e IPv4

-11

- O sistema de numeração binária consiste em 1s e 0s, chamados bits
- Sistema de numeração decimal consiste em dígitos 0 a 9
- Hosts, servidores e equipamentos de rede usando endereçamento binário para identificar uns aos outros.
- Cada endereço é composto de uma sequência de 32 bits, dividida em quatro seções chamadas octetos.
- Cada octeto contém 8 bits (ou 1 byte) separados por um ponto.
- Para facilitar o uso por pessoas, esta notação pontilhada é convertida em decimal pontilhada.

Sistema Binário de Numeração Vídeo - Converter entre sistemas de numeração binária e decimal

Este vídeo aborda o seguinte:

- Revisão da notação posicional
- Revisão de Potências de 10
- Decimal revisão da numeração da base 10
- Binário revisão de numeração de base 2
- Converter um endereço IP em numeração binária para decimal

Sistema Binário de Numeração Notação posicional binária

- Notação posicional significa que um dígito representa valores diferentes, dependendo da posição que ocupa na sequência de números.
- O sistema de notação posicional decimal opera como mostrado nas tabelas abaixo.

Raiz	10	10	10	10
Posição no número	3	2	1	0
•	(4.02)	(4.02)	(4.01)	(4.00)
áculo	(10^3)	(10^2)	(10^1)	(10^{0})
alor da posição	1000	100	10	1

Notação de posiçãobinária do sistema de números binários (cont.)

O sistema de notação posicional binária opera como mostrado nas tabelas abaixo.

Raiz	2	2	2	2	2	2	2	2
Posição no número	7	6	5	4	3	2	1	0
Cáculo	(27)	(26)	(25)	(24)	(23)	(22)	(2 ¹)	(20)
Valor da posição	128	64	32	16	8	4	2	1

Valor Posicional	128	64	32	16	8	4	2	1
Número binário (11000000)	1	1	0	0	0	0	0	0
Cáculo	1x128	1x64	0x32	0x16	0x8	0x4	0x2	0x1
Adicioná-los	128	+ 64	+ 0	+ 0	+ 0	+ 0	+ 0	+ 0
Resultado	192							

Sistema Binário de Numeração Conterter Binário para Decimal

Converter 11000000.10101000.00001011.00001010 para decimais.

	,,,,,,,,		0000.	0 1 1 1 0	0001	0 . 0 P	ara a	0011110	
/alor Posicional	128	64	32	16	8	4	2	1	
lúmero binário (11000000)	1	1	0	0	0	0	0	0	
Cáculo	1x128	1x64	0x32	0x16	0x8	0x4	0x2	0x1	
dicioná-los	128	+ 64	+ 0	+ 0	+ 0	+ 0	+ 0	+ 0	192
úmero binário (10101000)	1	0	1	0	1	0	0	0	
áculo	1x128	0x64	1x32	0x16	1x8	0x4	0x2	0x1	
dicioná-los	128	+ 0	+ 32	+ 0	+ 8	+ 0	+ 0	+ 0	168
lúmero Binário 00001011)	0	0	0	0	1	0	1	1	
álculo	0x128	0x64	0x32	0x16	1x8	0x4	1x2	1x1	
dicioná-los	0	+ 0	+ 0	+ 0	+ 8	+ 0	+ 2	+ 1	11
lúmero Binário 00001010)	0	0	0	0	1	0	1	0	
Cáculo	0x128	0x64	0x32	0x16	1x8	0x4	1x2	0x1	10
Adicioná-los	0	+ 0	+ 0	+ 0	+ 8	+ 0	+ 2	+ 0	, -

CISCO

2016 Cisco e/ou suas afiliadas. Todos os direitos reservado onfidencial da Cisco

Sistema Binário de Numeração Conterter Binário para Decimal

A tabela de valores posicionais binários é útil na conversão de um endereço IPv4 decimal pontilhado em binário.

- Comece na posição 128 (o bit mais significativo). O número decimal do octeto (n) é igual ou superior a 128?
- Se não, registre um binário 0 no valor posicional 128 e mova para o valor posicional 64.
- Se sim, registre um 1 binário no valor posicional 128, subtraia 128 do número decimal e vá para o valor posicional 64.
- Repita estas etapas através do valor posicional 1.

Sistema Binário de Numeração Exemplo de Conversão de Decimal para Binário

Converter decimal 168 em binário

168 é > 128?

- Sim, digite 1 na posição 128 e subtraia 128 (168-128=40)

 $40 \neq >= 64$?

- Não, digite 0 na posição 64 e siga em frente

£40 > 32?

- Sim, digite 1 na posição 32 e subtraia 32 (40-32=8)

É 8 > 16?

- Não, digite 0 na posição 16 e siga em frente

 $8 \, \acute{e} > 8$?

- Igual Digite 1 na posição 8 e subtraia 8 (8-8=0)

Nenhum valor restante. Insira 0 nas posições binárias restantes

128	64	32	16	8	4	2	1
1	0	1	0	1	0	0	0

Decimal 168 é escrito como 10101000 em binário

Sistema Binário de Numeração Enderecos IPv4

 Roteadores e computadores só entendem binários, enquanto humanos trabalham em decimal. É importante que você obtenha uma compreensão completa desses dois sistemas de numeração e como eles são usados na rede.

5.2 - Sistema de numeração hexadecimal

Sistema de numeração hexadecimal Endereços hexadecimais e IPv6

- Para entender endereços
 IPv6, você deve ser capaz de converter hexadecimal para decimal e vice-versa.
- Hexadecimal é um sistema de numeração de base dezesseis, usando os dígitos de 0 a 9 e as letras de A a F.
- É mais fácil expressar um valor como um único dígito hexadecimal do que como quatro bits binários.
- Hexadecimal é usado para representar endereços IPv6 e endereços MAC.

Decimal
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
1111

Hexadecimal
0
1
2
3
4
5
6
7
8
9
A
В
С
D
E
F

Sistema numérico hexadecimal Endereços hexadecimal e IPv6 (cont.)

- Endereços IPv6 têm 128 bits de comprimento. Cada 4 bits é representado por um único dígito hexadecimal Isso torna o endereço IPv6 um total de 32 valores hexadecimais.
- A figura mostra o método preferido de escrever um endereço IPv6, com cada X representando quatro valores hexadecimais.
- Cada grupo de caracteres hexadecimais de quatro é referido como um hextet.

Sistema de numeração hexadecimal Vídeo - Convertendo entre sistemas de numeração hexadecimal e decimal

Este vídeo aborda o seguinte:

- Características do Sistema Hexadecimal
- Converso de Hexadecimal para Decimal
- Converso de Decimal para Hexadecimal

Sistema de numeração hexadecimal Conversões decimal para hexadecimal

Siga as etapas listadas para converter números decimais em valores hexadecimais:

- Converta o número decimal para strings binárias de 8 bits.
- Divida as cadeias binárias em grupos de quatro a partir da posição mais à direita.
- Converta cada quatro números binários em seu dígito hexadecimal equivalente.

Por exemplo, 168 convertidos em hexadecimal usando o processo de três etapas.

- 168 em binário é 10101000.
- 10101000 em dois grupos de quatro dígitos binários é 1010 e 1000.
- 1010 é hexadecimal e 1000 é hexadecimal 8, então 168 é A8 em hexadecimal.

Sistema de numeração hexadecimal Conversões hexadecimais em decimais

Siga as etapas listadas para converter números hexadecimais em valores decimais:

- Converta o número hexadecimal em cadeias binárias de 4 bits.
- Criar agrupamento binário de 8 bits a partir da posição mais à direita.
- Converta cada agrupamento binário de 8 bits em seu dígito decimal equivalente.

Por exemplo, D2 convertido em decimal usando o processo de três etapas:

- D2 em cadeias binárias de 4 bits é 1110 e 0010.
- 1110 e 0010 é 11100010 em um agrupamento de 8 bits.
- 11100010 em binário é equivalente a 210 em decimal, então D2 é 210 é decimal

5.3 - Módulo Prática e Quiz

Módulo Prática e Quiz

O que aprendi neste módulo?

- Binário é um sistema de numeração de base dois que consiste nos números 0 e 1, chamados bits.
- Decimal é um sistema de numeração base dez que consiste nos números de 0 a 9.
- Binário é o que hosts, servidores e equipamentos de rede usam para se identificar.
- Hexadecimal é um sistema de numeração de base dezesseis que consiste nos números de 0 a 9 e nas letras A a F.
- Hexadecimal é usado para representar endereços IPv6 e endereços MAC.
- Os endereços IPv6 têm 128 bits e a cada 4 bits é representado por um dígito hexadecimal para um total de 32 dígitos hexadecimais.
- Para converter hexadecimal para decimal, você deve primeiro converter o hexadecimal para binário, depois converter o binário para decimal.
- Para converter decimal em hexadecimal, você deve primeiro converter o decimal em binário e depois o binário em hexadecimal.

Module 5: Number Systems

New Terms and Commands

- dotted decimal notation
- positional notation
- base 10
- base 16
- radix
- octet
- hextet

