Importance Sampling

What, Why, and How

What?

- Monte Carlo technique for estimating $\mathbb{E}_{\pi}[\phi(X)]$
- ► Sample from proposal q instead of target π
- ► Reweight samples to correct bias

Why?

- ▶ Target π difficult to sample from
- ► Focus sampling in important regions
- Works with unnormalized distributions

How? The key identity:

$$I = \mathbb{E}_{\pi}[\phi(X)] = \int \phi(x)\pi(x)dx$$
$$= \int \phi(x)\frac{\pi(x)}{q(x)}q(x)dx$$
$$= \mathbb{E}_{q}[\phi(X)w(X)]$$

Algorithm

- 1. Sample $X_1, \ldots, X_n \sim q$
- 2. Compute $w(X_i) = \pi(X_i)/q(X_i)$
- 3. Estimate: $\hat{I}_n = \frac{1}{n} \sum_{i=1}^n \phi(X_i) w(X_i)$

Requirements, Properties and Unnormalized case

Requirements:

ightharpoonup q(x) > 0 whenever $\pi(x) > 0$

Properties of IS Estimator:

- ▶ Unbiased: $\mathbb{E}_q[\hat{I}_n] = \mathbb{E}_{\pi}[\phi(X)]$
- ► Consistent: $\lim_{n\to\infty} \hat{I}_n = I$ (LLN)
- ▶ Variance: $Var_q[\hat{I}_n] = \frac{1}{n} Var_q[\phi(X)w(X)]$ (CLT)

Unnormalized Distributions:

When $\pi(x) = \tilde{\pi}(x)/Z_{\pi}$ and $q(x) = \tilde{q}(x)/Z_{q}$:

Self-Normalized IS

- ▶ Weights: $\tilde{w}(x) = \tilde{\pi}(x)/\tilde{q}(x)$
- ► Estimator:

$$\hat{I}_{NIS} = \frac{\sum_{i=1}^{n} \phi(X_i) \tilde{w}(X_i)}{\sum_{i=1}^{n} \tilde{w}(X_i)}$$

▶ Biased but consistent

$$\mathbb{E}_{q}[\hat{I}_{n}] = \mathbb{E}_{q}\left[\frac{1}{N}\sum_{i=1}^{N}\phi(x_{i})w(x_{i})\right] = \frac{1}{N}N\mathbb{E}_{q}[\phi(X)w(X)] = \mathbb{E}_{q}[\phi(X)w(X)] = \int \phi(x)w(x)q(x) dx = \int \phi(x)\frac{\rho(x)}{q(x)}q(x) dx = \int \phi(x)\rho(x) dx = \mathbb{E}_{p}[\phi(X)]$$
3/7

Importance sampling diagnostics

In extreme settings, one of the w_i may be vastly larger than all the others and then we have effectively only got one observation.

▶ High Variance from Large Weights. If $\pi(x) \gg q(x)$ in some regions, you get huge weights $w(x) = \frac{\pi(x)}{q(x)}$. Even rare samples from these regions cause massive variance.

On the other end of the spectrum all the weights could be very small if q places too much mass in regions where π is negligible, i.e. $q(x) \gg \pi(x)$.

► Most weights \approx 0 (negligible contribution)

$$\operatorname{Var}_q[\hat{I}_n] = \frac{1}{N} \operatorname{Var}_q[\phi(X) w(X)] = \frac{1}{N} \Big(\mathbb{E}_q[\phi^2(X) w^2(X)] - (\mathbb{E}_p[\phi(X) w(X)])^2 \Big)$$

Effective Sample Size (ESS)

Definition

ESS =
$$\frac{(\sum_{i=1}^{n} w_i)^2}{\sum_{i=1}^{n} w_i^2}$$

Interpretation:

- ▶ Number of "equivalent" samples from π
- ▶ Range: $1 \le \mathsf{ESS} \le n$
- ightharpoonup ESS = n when all weights equal, ESS = 1 when one weight dominates

Note: If all weights are close to 0, ESS will still be close to n even though weights are not informative. One way to check for this $\sum_{i=1}^{N} w_i \approx N$ (since $\mathbb{E}_q[w(X)] = 1$).

What Makes a Good Proposal Distribution?

Ideal: $q(x) \propto |\phi(x)|\pi(x)$ (as it minimizes variance $V_q(\phi(X)w(X))$)

Practical guidelines:

- \blacktriangleright Heavy tails: q should have heavier tails than π (importance region coverage)
- ► Support: q(x) > 0 wherever $\phi(x)\pi(x) \neq 0$
- ▶ Similar shape: q should roughly match the shape of π , especially where $|\phi(x)|$ is large

Dimensional Scaling

Curse of Dimensionality:

Gaussian Example

For
$$\pi = \mathcal{N}(0, I_d)$$
, $q = \mathcal{N}(0, \sigma^2 I_d)$:

$$\operatorname{Var}_q[w(X)] = \left(\frac{\sigma^4}{2\sigma^2 - 1}\right)^{d/2} - 1$$

Numerical Example:

If we set d=100, $\sigma=1.2$, then $\mathrm{Var}_q[w(X)]$ is approximately 1.8×10^4 .