STT 861 Compendium

Kenyon Cavender

October 2, 2019

Definitions

<u>Def</u> Suppose A and B are two sets. $A \subset B$ (A is a **subset** of B) if $x \in A$ implies $x \in B$. If $A \subset B$ and $B \subset A$ then A = B.

<u>Def</u> A and B are **disjoint** if $A \cap B = \emptyset$

Remark Suppose for some set A, P(A) = 1 Does this imply A = S?

Does P(B) = 0 imply $B \neq \emptyset$?

Does $P(A \cap B) = 0$ imply A, B are disjoint?

Not necessarily for all above!

Properties of set theory

Commutative

$$A \cup B = B \cup A$$
 and $A \cap B = B \cap A$

Associative

$$(A \cup B) \cup C = A \cup (B \cup C) =: A \cup B \cup C$$

 $(A \cap B) \cap C = A \cap (B \cap C) =: A \cap B \cap C$

Distributive

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C) \\ (A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

De Morgan's Law

$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c$$

Def Set Difference

$$A \setminus B = \{x : x \in A, \text{ but } x \notin B\}$$

 $\underline{\mathbf{Def}}\ \mathscr{A}$ is a collection of subsets of $\mathbf{S}[\neq\emptyset]$ satisfying:

- i) **S** ∈ *A*
- ii) if $A \subset \mathscr{A}$, then $A^c \in \mathscr{A}$
- iii) if $A_1, A_2, ... \in \mathscr{A}$ then $\bigcup_{i=1}^{\infty} A_i \in \mathscr{A}$

We call \mathcal{A} a σ - algebra (or σ - field)

Any domain should be a σ - field

<u>Def</u> Given sample space $\mathbf{S}(\neq \emptyset)$, and the measurable space $(\mathbf{S}, \mathscr{A})$

A function $P: \mathscr{A} \mapsto \mathbb{R}$ is called probability if it satisfies:

- a. $P(A) \geq 0$ for any $A \in \mathcal{A}$
- b. P(S) = 1
- c. if A_1, A_2 ... are disjoint sets from \mathscr{A} , then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

Remark Desired Properties of P(.)

- a. $P(\emptyset) = 0$
- b. If A and B are disjoint then $P(A \cup B) = P(A) + P(B)$

c.
$$P(A^c) = 1 - P(A)$$

d. If $A \subset B$ then $P(A) \leq P(B)$

e.
$$P(A) \le 1$$

<u>Def</u> A collection of sets $\{E_1, E_2, ...\}$ is called a **partition** of event A if:

- i) $E_i \cap E_j = \emptyset$, $\forall i \neq j \ (pairwise \ disjoint)$
- ii) $\bigcup_{i=1}^{\infty} E_i = A \ (exhaustive)$
- a. Suppose A and B are two events. Then $\{A \cap B, A^c \cap B\}$ is a partition of B. Also, $P(A^c \cap B) = P(B) P(A \cap B)$ $Proof. \ (A \cap B) \cap (A^c \cap B) = (A \cap A^c) \cap (B \cap B) = 0 \ (pairwise \ disjoint)$ $(A \cap B) \cup (A^c \cap B) = (A \cup A^c) \cap B = B \ (exhaustive)$
- b. A and B are two events. $P(A \cup B) = P(A) + P(B) P(A \cap B)$ (This is the generalized version of b))
- c. if $\{C_1, C_2, ...\}$ is a partition of **S**, then $P(A) = \sum_{i=1}^{\infty} P(A \cap C_i)$
- d. Boole's Inequality $P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i)$
- e. Bonferroni's Inequality $P(\bigcap_{i=1}^{\infty} A_i) \ge 1 \sum_{i=1}^{\infty} P(A_i^c)$
- a. If $A_n \uparrow A$, then $P(A) = \lim_{n \to \infty} P(A_n)$
- b. If $B_n \downarrow B$ then $P(B) = \lim_{n \to \infty} P(B_n)$

<u>Def</u> A sequence of events $\{A_1, A_2...\}$ is **increasing to event** A if:

$$A_1 \subset A_2 \subset \dots$$

and $A = \bigcup_{n=1}^{\infty} A_n$
Notation: $A_n \uparrow A$

Notation: $A_n \uparrow A$

 $\underline{\mathbf{Def}}$ Similarly, $B_n\downarrow B$ if $B_1\supset B_2\supset \dots$ and $B=\cap_{n=1}^\infty B_n$

a.
$$P(A^c|B) = 1 - P(A|B)$$

b. If
$$A \subseteq B$$
 the $P(A|B) = \frac{P(A)}{P(B)}$ and $P(B|A) = 1$

c. If
$$E_1, E_2...E_n$$
 is partition of S then
$$P(E_i|A) = \frac{P(E_i)P(A|E_i)}{\sum_{j=1}^n P(E_j)P(A|E_j)}$$

<u>Def</u> Counting Methods

$$egin{array}{|c|c|c|c|c|} \hline \mathbf{WOR} & \mathbf{WR} \\ \hline \mathbf{Ordered} & rac{n!}{(n-r)!} & n^r \\ \hline \mathbf{Unordered} & rac{n!}{r!(n-r)!} = inom{n}{r} & inom{n+r-1}{r} \\ \hline \end{array}$$

<u>Def</u> Conditional Probability - if two events A, B with P(B) >= 0, then the conditional probability of A|B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

2

If
$$P(B) = 0$$
, $P(A|B)$ is undefined $P(A \cap B) = P(A)P(A|B) = P(B)P(B|A)$

<u>Def</u> Multiplication Rule - If E_1 , E_2 , ... E_n are events, $P(E_1 \cap E_2 \cap ... \cap E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1 \cap E_2)... P(E_n|E_1 \cap ... \cap E_{n-1})$

Def Bayes' Rule

If $E_1, E_2...E_n$ is partition of S then

$$P(E_i|A) = \frac{P(E_i)P(A|E_i)}{\sum_{j=1}^{n} P(E_j)P(A|E_j)}$$

<u>Def</u> Two events A, B are **Independent** if $P(A \cap B) = P(A)P(B)$ This is equivalent to P(A) = P(A|B) and P(B) = P(B|A)

<u>Def</u> A collection of events $A_1, A_2, ..., A_n$ are **mutually independent** if for any subcollection $A_{i1}, ..., A_{ik}$, we have:

$$P(\cap_{j=1}^{k} A_{i_j}) = \prod_{j=1}^{k} P(A_{i_j})$$

Remark If A, B are disjoint, then A, B are independent if either P(A) = 0, P(B) = 0 or both.

Remark If A and B are independent events, then the following pairs are also independent:

- a. A and B^c
- b. A^c and B
- c. A^c and B^c

<u>Def</u> A random variable X is a measurable real valued function defined on the sample space $X: S \mapsto \mathbb{R}$

Def A function F is called the cumulative distribution function iff:

- a. $\lim_{x\to\infty} F(x) = 0$ and $\lim_{x\to\infty} = 1$
- b. F(x) is a nondecreasing fn of x
- c. F(x) is right-continuous; that is for every number x_0 , $\lim_{x\downarrow x_0} F(x) = F(x_0)$

<u>Def</u> A PMF of a discrete r.v. x is $f_X(x) = P_X(X = x)$:

- a. $0 \le f_X(x) \le 1 \ \forall x$
- b. $\sum_{X} f_{X}(x) = 1$

<u>Def</u> A PDF of a continuous r.v. x is $f_X(x) = \frac{d}{dx} F_X(x)$:

- a. $f_X(x) \ge 0 \ \forall x$
- b. $\int_{-\infty}^{\infty} f_X(x) dx = 1$
- c. $F_X(x) = \int_{-\infty}^x f_X(s) ds$

Remark Theorem 2.1.3 Let X have cdf $F_X(x)$, let Y = g(X), and let \mathscr{X} and \mathscr{Y} be defined.

- a. if g is an increasing fn on \mathcal{X} , $F_Y(y) = F_X(g^{-1}(y))$ for $y \in \mathcal{Y}$
- b. if g is a decreasing fn on $\mathscr X$ and X is a continuous r.v., $F_Y(y)=1-F_X(g^{-1}(y))$ for $y\in\mathscr Y$

Remark Theorem 2.1.5 Let X have pdf $f_X(x)$ and let Y = g(x), where g is a monotone fn. Let \mathscr{X} and \mathscr{Y} be defined. Suppose that $f_X(x)$ is continuous on \mathscr{X} and that $g^{-1}(y)$ has continuous derivative on \mathscr{Y} . Then the pdf of Y is given by:

$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right| & y \in \mathscr{Y} \\ 0 & otherwise \end{cases}$$

Remark Theorem 2.1.8 Let X have pdf $f_X(x)$ and let Y = g(x), and define sample space \mathscr{X} . Suppose there exists a partition $A_0, A_1, ..., A_k$ of \mathscr{X} such that $P(X \in A_0) = 0$ and $f_X(x)$ is continuous on each A_i . Further, suppose there exist functions $g_1(x), ..., g_k(x)$ defined on $A_1, ..., A_k$, respectively, satisfying

- a. $g(x) = g_i(x)$ for $x \in A_i$
- b. $g_i(x)$ is monotone on A_i
- c. the set $\mathscr{Y} = y : y = g_i(x) for some x \in A_i$ is the same for each i = 1, ..., k)
- d. $g_i^{-1}(y)$ has a continuous derivative on \mathscr{Y} , for each i=1,...,k

$$f_Y(y) = \begin{cases} \sum_{i=1}^k f_X(g_i^{-1}(y)) \left| \frac{d}{dy} g_i^{-1}(y) \right| & y \in \mathscr{Y} \\ 0 & otherwise \end{cases}$$