РАЗРАБОТКА МЕТОДОВ И ИНСТРУМЕНТОВ РАСЧЕТА НАБЛЮДАЕМЫХ ЭЛЕКТРОРОЖДЕНИЯ ОДИНОЧНОГО ПИОНА НА ПРОТОНЕ ИЗ ДАННЫХ ДЕТЕКТОРА CLAS

Докладчик: студент 213М группы Насртдинов Алмаз Газинурович

Научный руководитель: к.ф.-м.н., с.н.с. Исупов Евгений Леонидович

ВВЕДЕНИЕ: ЗАЧЕМ ЭТО НУЖНО?

Рассмотрение резонансной области

Дифференциальные сечения

Структурные функции

Амплитуды электровозбуждения

Динамика сильного взаимодействия

Эксперименты по изучению основного и возбужденных состояний нуклона открывают доступ к исследованию эволюции динамической массы и структуры одетых кварков и глюонов с расстоянием

ПОЛУЧЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Рассматриваемые

$$ep \rightarrow e'\pi^o p$$

 $ep \rightarrow e'\pi^+ n$

реакции

Рассматриваемый кинематический диапазон

$$Q^2 < 6 \ \Gamma$$
э B^2 $W < 1.8 \ \Gamma$ э B

База данных: clas.sinp.msu.ru

CLAS Physics Database

JLab | Search | Overview | Login | Edit | Register
Search form for the data related to the CLAS physics

Детектор CLAS (JLAB Experimental Hall B)

Сечение виртуального фотона

$$ep \to e'\pi N \longrightarrow \gamma_v p \to \pi N$$

$$\frac{d^4\sigma_e}{dWdQ^2d\Omega} = \Gamma_\gamma \frac{d\sigma_{\gamma_v}}{d\Omega} \tag{1}$$

$$\Gamma_{\gamma}(W,Q^2) = \frac{\alpha}{4\pi} \cdot \frac{1}{E_{beam}^2 m_p^2} \cdot \frac{W(W^2 - m_p^2)}{(1 - \varepsilon)Q^2} \quad (2)$$

$$\varepsilon = \varepsilon_T = \left(1 + 2\left(1 + \frac{\nu^2}{Q^2}\right) \tan\frac{\theta_e^2}{2}\right)^{-1} \tag{3}$$

$$arepsilon_L = rac{Q^2}{
u^2} arepsilon_T$$
 (4)

$$Q^2 = -q^2 = -(P_{e'} - P_e)^2$$
 $W = \sqrt{(P_p + q)^2}$

СЕЧЕНИЕ РОЖДЕНИЯ ПИОНА ПРИ РАССЕЯНИИ ФОТОНА НА ПРОТОНЕ

$$\frac{d\sigma_{\gamma_v}}{d\Omega_{\pi}} = \frac{d\sigma_u}{d\Omega_{\pi}} + \varepsilon \cdot \frac{d\sigma_{tt}}{d\Omega_{\pi}} \cdot \cos 2\varphi + \sqrt{2\varepsilon(1+\varepsilon)} \cdot \frac{d\sigma_{lt}}{d\Omega_{\pi}} \cdot \cos \varphi \tag{6}$$

$$\frac{d\sigma_u}{d\Omega_\pi} = \frac{d\sigma_t}{d\Omega_\pi} + \varepsilon \cdot \frac{d\sigma_l}{d\Omega_\pi}$$

Fit φ dependence:

 \triangle $A + B \cdot \cos(2\varphi) + C \cdot \cos(\varphi)$

$$\chi^2 = 0.7652$$
Value Uncert
A 4 2652 0 23116

- **A** 4.2652 0.23116 **B** -0.21331 0.3168
- **B** -0.21331 0.3168 **c** -1.5553 0.33412

 $\frac{u}{c}$ - неполяризованная структурная функция

 $\frac{d\sigma_t}{d\Omega_\pi}$ - поперечная структурная функция

 $\frac{d\sigma_l}{d\Omega}$ - продольная структурная функция

 $\frac{d\sigma_{lt}}{d\Omega_{\pi}}$ - продольно-поперечная структурная функция

от в поперечно-поперечная структурная функция

Parameter (X axis): φ_{π} , deg

КРИТЕРИИ ОТБОРА ЭКСПЕРИМЕНТАЛЬНЫХ ТОЧЕК

- 1) Были исключены точки с относительной погрешностью более 0.7.
- 2) Был выполнен фит измеренных дифференциальных сечений в каждом интервале по (W,Q^2,θ) в зависимости от угла согласно (5). Строились хи-квадрат распределения отклонений от фитированных значений.
- 3) Данные в интервалах по (W,Q^2,θ) , в которых содержится менее 4 точек по φ были исключены.

$$\frac{d\sigma_{\gamma_v}}{d\Omega_{\pi}} = \frac{d\sigma_u}{d\Omega_{\pi}} + \varepsilon \frac{d\sigma_{tt}}{d\Omega_{\pi}} \cdot \cos 2\varphi + \sqrt{2\varepsilon(1+\varepsilon)} \frac{d\sigma_{lt}}{d\Omega_{\pi}} \cdot \cos \varphi$$

МЕТОДЫ ИЗВЛЕЧЕНИЯ СТРУКТУРНЫХ ФУНКЦИЙ

Отсутствие экспериментальных данных в областях из за наличия мертвых зон детектора

МЕТОД О

данные покрывают полный диапазон по углу $\varphi:[0,2\pi]$

$$\frac{d\sigma_{\gamma_v}}{d\Omega_{\pi}} = \frac{d\sigma_u}{d\Omega_{\pi}} + \varepsilon \frac{d\sigma_{tt}}{d\Omega_{\pi}} \cdot \cos 2\varphi + \sqrt{2\varepsilon(1+\varepsilon)} \frac{d\sigma_{lt}}{d\Omega_{\pi}} \cdot \cos \varphi$$

Observable quantity measured (Y axis): dσ/dΩ, mcbn/sterad

Parameter (X axis): φ_π, deg

МЕТОДЫ 1 И 2

$$\frac{d\sigma_{\gamma_v}}{d\Omega_{\pi}} = \frac{d\sigma_u}{d\Omega_{\pi}} + \varepsilon \frac{d\sigma_{tt}}{d\Omega_{\pi}} \cdot \cos 2\varphi + \sqrt{2\varepsilon(1+\varepsilon)} \frac{d\sigma_{lt}}{d\Omega_{\pi}} \cdot \cos \varphi$$
 (6)

частичное покрытие диапазона по углу $\varphi: [\varphi_{min}, \varphi_{max}]$

Method 1: интегрирование выражения (5) в интервале $[\varphi_{min}, \varphi_{max}]$ без экстраполяции

$$\frac{d\sigma_{u}}{d\Omega_{\pi method 1}} = \frac{1}{\varphi_{max} - \varphi_{min}} \times$$

$$\times \left[\int_{\varphi_{min}}^{\varphi_{max}} \frac{d\sigma_{\gamma_{v}}}{d\Omega_{\pi_{exp}}} d\varphi - \varepsilon \frac{d\sigma_{tt}}{d\Omega_{\pi_{0}}} \int_{\varphi_{min}}^{\varphi_{max}} \cos 2\varphi d\varphi - \sqrt{2\varepsilon(1+\varepsilon)} \frac{d\sigma_{lt}}{d\Omega_{\pi_{0}}} \int_{\varphi_{min}}^{\varphi_{max}} \cos \varphi d\varphi \right]$$

$$\frac{d\sigma_{u}}{d\Omega_{\pi \, method \, 2}} = (9)$$

$$= \frac{1}{2\pi} \cdot \left[\int_{\varphi_{min}}^{\varphi_{max}} \frac{d\sigma_{\gamma_{v}}}{d\Omega_{\pi_{exp}}} d\varphi + \int_{0}^{\varphi_{min}} \left[\frac{d\sigma_{u}}{d\Omega_{\pi_{0}}} + \varepsilon \frac{d\sigma_{tt}}{d\Omega_{\pi_{0}}} \cdot \cos 2\varphi + \sqrt{2\varepsilon(1+\varepsilon)} \frac{d\sigma_{lt}}{d\Omega_{\pi_{0}}} \cdot \cos \varphi \right] d\varphi + \int_{0}^{2\pi} \left[\frac{d\sigma_{u}}{d\Omega_{\pi_{0}}} + \varepsilon \frac{d\sigma_{tt}}{d\Omega_{\pi_{0}}} \cdot \cos 2\varphi + \sqrt{2\varepsilon(1+\varepsilon)} \frac{d\sigma_{lt}}{d\Omega_{\pi_{0}}} \cdot \cos \varphi \right] d\varphi \right]$$

МЕТОДЫ З И 4

Метод 3: одна область без данных

Метод 4: две области без данных

МЕТОДЫ З И 4
$$\frac{d\sigma_{\gamma_v}}{d\Omega_{\pi}} = \frac{d\sigma_u}{d\Omega_{\pi}} + \varepsilon \frac{d\sigma_{tt}}{d\Omega_{\pi}} \cdot \cos 2\varphi + \sqrt{2\varepsilon(1+\varepsilon)} \frac{d\sigma_{lt}}{d\Omega_{\pi}} \cdot \cos \varphi$$
 (6)

Интегрирование по углу φ без экстраполяции в области без экспериментальных данных

Observable quantity measured (Y axis): do/dΩ, mcbn/sterad

$$\frac{d\sigma_{u}}{d\Omega_{method 3}} = \frac{\left[\int_{\varphi_{1min}}^{\infty} \frac{d\sigma_{\gamma_{v}}}{d\Omega_{\pi_{exp}}} d\varphi + \int_{\varphi_{2min}}^{\infty} \frac{d\sigma_{\gamma_{v}}}{d\Omega_{\pi_{exp}}} d\varphi\right]}{\left[\left[(\varphi_{1max} - \varphi_{1min}) + (\varphi_{2max} - \varphi_{2min})\right] + r_{tt} \cdot \left[\int_{\varphi_{1min}}^{\varphi_{1max}} \cos 2\varphi d\varphi + \int_{\varphi_{2min}}^{\varphi_{2max}} \cos 2\varphi d\varphi\right] + r_{lt} \cdot \left[\int_{\varphi_{1min}}^{\varphi_{1max}} \cos \varphi d\varphi\right]\right]} \tag{10}$$

clas.sinp.msu.ru/~almaz/

a clas.sinp.msu.ru/~almaz/

Evaluation methods Evaluated exclusive Definition of the Evaluated exclusive structure functions exclusive structure cross sections functions **Evaluation of the** p(e,e')X E=4GeV N(1520) exclusive $\pi^0 p$ and $\pi^+ n$ electroproduction cross section from the CLAS Data N'(1720)3/2+ 2 2.2 2.4 2.6 W(GeV)

900

0.382683

0.130526

-0.130526

-0.382683

0.23907

0.254742

0.46397

2.29354

5.48274

5.36754

5.37701

7.15894

-0.608761 9.26655 3.06061

5.42103

5.35776

5.23737

7.41596

8.30121

0.347104

0.340658

0.463738

2.37266

1.73596

5.43646

5.3602

5.27228

7.28745

8.54254

0.267101

0.263311

0.366635

1.64999

1.51016

0.382683

0.130526

-0.130526

-0.382683

0.257114

0.260958

0.441254

2.06943

2.09536

-1.62473

-1.34063

-1.02361

-0.423997

-1.49114

0.249067

0.255406

0.440638

2.14984

2	-0.6	-0.4 -C	0.2 0	0.2 0.4	0.6 0.	.8 1 cos(θ)	-2 -4 -0.8	-0.6 -	0.4 -0.2	0 0.2	0.4	0.6 0.8 cos	1 1 s(θ)	0 -0.8	B -0.6 -	-0.4 -0.2	0 0.2	0.4 0.6	0.8 cos(0	1 (θ)
	$d\sigma_U$	$d\sigma_U$	$d\sigma_U$	$d\sigma_U$	$d\sigma_U$	$d\sigma_U$		$d\sigma_{tt}$	$\int_{\Lambda} d\sigma_{tt}$	$d\sigma_{tt}$	$\int_{\Lambda} d\sigma_{tt}$	$d\sigma_{tt}$	$d\sigma_{tt}$		$d\sigma_{lt}$	$\int_{\Lambda} d\sigma_{lt}$	$d\sigma_{lt}$	$\int_{\Lambda} d\sigma_{lt}$	$d\sigma_{lt}$	

cos(theta)	ase	$\Delta \frac{d\sigma_U}{d\Omega}$	$rac{d\sigma_U}{d\Omega}$	$\Delta \frac{d\sigma_U}{d\Omega}$	$rac{d\sigma_U}{d\Omega}$	$\Delta rac{d\sigma_U}{d\Omega}$	cos(theta)	ase	$\Delta \frac{d\sigma_{tt}}{d\Omega}$	$\frac{d\sigma_{tt}}{d\Omega}$	$\Delta \frac{d\sigma_{tt}}{d\Omega}$	$\frac{d\sigma_{tt}}{d\Omega}$	$\Delta \frac{d\sigma_{tt}}{d\Omega}$	cos(theta)	$d\Omega$	$\Delta \frac{d\sigma_{lt}}{d\Omega}$	$\frac{d\sigma_{lt}}{d\Omega}$	$\Delta \frac{d\sigma_{lt}}{d\Omega}$	$\frac{d\sigma_{lt}}{d\Omega}$	$\Delta \frac{d\sigma_{lt}}{d\Omega}$
	(fit)	(fit)	(method 1)	(method 1)	(method 2)	(method 2)		(fit)	(fit)	(method 1)	(method 1)	(method 2)	(method 2)		(fit)	(fit)	(method 1)	(method 1)	(method 2)	(method 2)
0.991445	5.90899	0.504156	6.17353	0.58412	6.15149	0.537089	0.991445	-0.0703649	0.708317	-0.073515	0.740087	-0.0732526	0.73744	0.991445	-0.630375	0.372759	-0.658596	0.398384	-0.656245	0.39624

30 11 126	Cour		Cour	tea s	445		100000000000000000000000000000000000000		a a		Cour		Cou.	111.122.111.0			au s	
	(fit)	(fit)	(method 1)	(method 1)	(method 2)	(method 2)		(fit)	(fit)	(method 1)	(method 1)	(method 2)	(method 2)		(fit)	(fit)	(method 1)	(met
0.991445	5.90899	0.504156	6.17353	0.58412	6.15149	0.537089	0.991445	-0.0703649	0.708317	-0.073515	0.740087	-0.0732526	0.73744	0.991445	-0.6303	75 0.372759	-0.658596	0.398
0.02200	5.02217	0.241501	5.00072	0.257120	5 07677	0.226550	0.02200	0.101574	0.201762	0.102200	0.204071	0.10222	0.204612	0.02200	1 1 4 0 2	4 0.101560	1.15754	0.20

-1.89221

-2.28648

-2.2093

-1.43686

-0.608761 0.716146

	(fit)	(fit)	(method 1)	(method 1)	(method 2)	(method 2)		(fit)	(fit)	(method 1)	(method 1)	(method 2)	(method 2)		(fit)	(fit)	(method 1)	(method 1)	(method 2)	(method 2)
0.991445	5.90899	0.504156	6.17353	0.58412	6.15149	0.537089	0.991445	-0.0703649	0.708317	-0.073515	0.740087	-0.0732526	0.73744	0.991445	-0.630375	0.372759	-0.658596	0.398384	-0.656245	0.39624
0.92388	5.93317	0.241591	5.98073	0.257128	5.97677	0.236559	0.92388	-0.101574	0.381763	-0.102388	0.384871	-0.10232	0.384612	0.92388	-1.14834	0.191569	-1.15754	0.204909	-1.15678	0.20385
0.702252	E C 1201	0.244102	C 0170C	0.570101	5.00506	0.500461	0.702262	0.046400	0.551060	1 00007	0.500,500	1.00205	0.504207	0.702262	1 20047	0.100001	1 40000	0.000001	1 40222	0.061076

0.991445	5.90899	0.504156	6.17353	0.58412	6.15149	0.537089	0.991445	-0.0703649	0.708317	-0.073515	0.740087	-0.0732526	0.73744	0.991445	-0.630375	0.372759	-0.658596	0.398384	-0.656245	0.39624
0.92388	5.93317	0.241591	5.98073	0.257128	5.97677	0.236559	0.92388	-0.101574	0.381763	-0.102388	0.384871	-0.10232	0.384612	0.92388	-1.14834	0.191569	-1.15754	0.204909	-1.15678	0.20385
0.793353	5.64391	0.344192	6.01706	0.570191	5.98596	0.523461	0.793353	-0.946492	0.551263	-1.00907	0.598609	-1.00385	0.594387	0.793353	-1.39847	0.196934	-1.49093	0.268904	-1.48323	0.261976

0.92388	5.93317	0.241591	5 98073	0.257128	5.97677	0.236559	0.92388	-0.101574	0.381763	-0.102388	0.384871	-0.10232	0.384612	0.92388	-1.14834	0.191569	-1 15754	0.204909	-1.15678	0.20385
0.72500	5.75511	0.2 11331	5.50075	0.237120	3.57017	0.250555	0.72500	0.1015/1	0.501705	0.102500	0.501071	0.10232	0.501012	0.52500	1.11051	0.131303	1.15/51	0.201505	1.15070	0.20505
0.793353	5.64391	0.344192	6.01706	0.570191	5.98596	0.523461	0.793353	-0.946492	0.551263	-1.00907	0.598609	-1.00385	0.594387	0.793353	-1.39847	0.196934	-1.49093	0.268904	-1.48323	0.261976
0.608761	5 16123	0.303817	4 90601	0.335636	4 04855	0.284243	0.608761	1 35743	0.447725	1 20031	0.44123	1 30140	0.44242	0.608761	1 56658	0.101503	1 48011	0.22627	1 50203	0.221301

0.500314

0.493513

0.658329

2.31115

4.33227

-1.87624

-2.28335

-2.16627

-1.46266

0.660193

0.495789

0.485057

0.651994

2.24691

4.4576

0.382683

0.130526

-0.130526

-0.382683

-0.608761

-1.63856

-1.34247

-1.04394

-0.41652

-1.61752

0.226956 -1.62012

0.238753 -1.34002

0.434244 -1.01683

2.25194 -1.44901

-0.431474

.98878

	(fit)	(fit)	(method 1)	(method 1)	(method 2)	(method 2)		(fit)	(fit)	(method 1)	(method 1)	(method 2)	(method 2)		(fit)	(fit)	(method 1)	(method 1)	(method 2)	(method
.991445	5.90899	0.504156	6.17353	0.58412	6.15149	0.537089	0.991445	-0.0703649	0.708317	-0.073515	0.740087	-0.0732526	0.73744	0.99144	-0.6303	0.372759	-0.658596	0.398384	-0.656245	0.39624
.92388	5.93317	0.241591	5.98073	0.257128	5.97677	0.236559	0.92388	-0.101574	0.381763	-0.102388	0.384871	-0.10232	0.384612	0.92388	-1.1483	0.191569	-1.15754	0.204909	-1.15678	0.20385
.793353	5.64391	0.344192	6.01706	0.570191	5.98596	0.523461	0.793353	-0.946492	0.551263	-1.00907	0.598609	-1.00385	0.594387	0.79335	-1.3984	0.196934	-1.49093	0.268904	-1.48323	0.26197

0.92388	5.93317	0.241591	5.98073	0.257128	5.97677	0.236559	0.92388	-0.101574	0.381763	-0.102388	0.384871	-0.10232	0.384612	0.92388	-1.14834	0.191569	-1.15754	0.204909	-1.15678	0.20385
0.793353	5.64391	0.344192	6.01706	0.570191	5.98596	0.523461	0.793353	-0.946492	0.551263	-1.00907	0.598609	-1.00385	0.594387	0.793353	-1.39847	0.196934	-1.49093	0.268904	-1.48323	0.261976
0.608761	5 16123	0.303817	4 90601	0.335636	4 94855	0.284243	0.608761	-1.35743	0.447725	-1 29031	0.44123	-1 30149	0.44242	0.608761	-1 56658	0 191503	-1 48911	0.22627	-1.50203	0.221301

0.484313 -1.87091

0.459928 -2.28231

0.618228 -2.15193

4.82795 0.641542

2.13409

-1.48845

	(fit)	(fit)	(method 1)	(method 1)	(method 2)	(method 2)		(fit)	(fit)	(method 1)	(method 1)	(method 2)	(method 2)		(fit)	(fit)	(method 1)	(method 1)	(method 2)	(method
991445	5.90899	0.504156	6.17353	0.58412	6.15149	0.537089	0.991445	-0.0703649	0.708317	-0.073515	0.740087	-0.0732526	0.73744	0.991445	-0.630375	0.372759	-0.658596	0.398384	-0.656245	0.39624
92388	5.93317	0.241591	5.98073	0.257128	5.97677	0.236559	0.92388	-0.101574	0.381763	-0.102388	0.384871	-0.10232	0.384612	0.92388	-1.14834	0.191569	-1.15754	0.204909	-1.15678	0.20385
793353	5.64391	0.344192	6.01706	0.570191	5.98596	0.523461	0.793353	-0.946492	0.551263	-1.00907	0.598609	-1.00385	0.594387	0.793353	-1.39847	0.196934	-1.49093	0.268904	-1.48323	0.261976

0.92388	5.93317	0.241591	5.98073	0.257128	5.97677	0.236559	0.92388	-0.101574	0.381763	-0.102388	0.384871	-0.10232	0.384612	0.92388	-1.14834	0.191569	-1.15754	0.204909	-1.15678	0.20385
0.793353	5.64391	0.344192	6.01706	0.570191	5.98596	0.523461	0.793353	-0.946492	0.551263	-1.00907	0.598609	-1.00385	0.594387	0.793353	-1.39847	0.196934	-1.49093	0.268904	-1.48323	0.261976
0.608761	5.16123	0.303817	4.90601	0.335636	4.94855	0.284243	0.608761	-1.35743	0.447725	-1.29031	0.44123	-1.30149	0.44242	0.608761	-1.56658	0.191503	-1.48911	0.22627	-1.50203	0.221301

0.991445	5.90899	0.504156	6.17353	0.58412	6.15149	0.537089	0.991445	-0.0703649	0.708317	-0.073515	0.740087	-0.0732526	0.73744	0.991445	-0.630375	0.372759	-0.658596	0.398384	-0.656245	0.39624
0.92388	5.93317	0.241591	5.98073	0.257128	5.97677	0.236559	0.92388	-0.101574	0.381763	-0.102388	0.384871	-0.10232	0.384612	0.92388	-1.14834	0.191569	-1.15754	0.204909	-1.15678	0.20385
0.793353	5.64391	0.344192	6.01706	0.570191	5.98596	0.523461	0.793353	-0.946492	0.551263	-1.00907	0.598609	-1.00385	0.594387	0.793353	-1.39847	0.196934	-1.49093	0.268904	-1.48323	0.261976

 $gvp--->\pi^+n$, W=1.51 GeV, Q² = 0.4 GeV², E_beam = 1.515 GeV

Cos(theta)

Cos(theta)

Waverage(GeV)

выполнение интерполяции

- Interpolation

--- maid 2007

Longitudinal structure function (mcbn/sterad)

 $g_v p \longrightarrow \pi^o p$ $Q^2 = 0.3 \ \Gamma \ni B^2$ cos(theta) = 0.1

Longitudinal structure function (mcbn/sterad)

ВКЛАДЫ ЭКСКЛЮЗИВНЫХ КАНАЛОВ

Результаты работы

- 1) Были разработаны и реализованы методы извлечения структурных функций
- Структурные функции, полученные различными методами, согласуются между собой
- 3) Разработаны веб-сайт, представляющий собой базу данных со всеми полученными результатами, позволяющий быстро получить доступ к необходимой реакции в выбранной кинематической области по W и Q²
- 4) Рассмотрены вклады эксклюзивных каналов электророждения одиночных пионов на протоне в инклюзивные сечения
- 5) Подготовлен доклад на конференции Ядро, опубликована статья в Известиях РАН

Спасибо за внимание!!!

РАЗДЕЛЕНИЕ СТРУКТУРНЫХ ФУНКЦИЙ

$$\frac{d\sigma_{u}}{d\Omega_{\pi}} = \frac{d\sigma_{t}}{d\Omega_{\pi}} + \varepsilon \frac{d\sigma_{l}}{d\Omega_{\pi}} \quad (11)$$

$$r_{tt} = \frac{\frac{d\sigma_{tt}}{d\Omega}}{\frac{d\sigma_{u}}{d\Omega}}, r_{lt} = \frac{\frac{d\sigma_{lt}}{d\Omega}}{\frac{d\sigma_{u}}{d\Omega}} \quad (12)$$

$$\frac{d\sigma_{l}}{d\Omega} = \frac{R\frac{d\sigma_{u}}{d\Omega}}{1 + \varepsilon R} \quad (13)$$

$$\frac{d\sigma_{t}}{d\Omega} = \frac{\frac{d\sigma_{u}}{d\Omega}}{1 + \varepsilon R} \quad (14)$$