(Invariant) Variational Autoencoders

Sergei V. Kalinin

The VAE Story

- (Super-brief) introduction into Neural Networks
- What are (Variational) autoencoders?
- Key notions:
 - Encoding and decoding
 - Latent distribution
 - Latent representations
 - Disentanglement of the representations
- Why invariances: rotational, translational, and shear
- Other colors of VAEs:
 - Semi-supervised
 - Conditional
 - Joint
- VAEs for real-world examples
- From VAEs to encoder-decoders (VED)
- Further opportunities:
 - Physics constraints
 - Representation learning
- Active learning: DKL

- Supervised machine learning
- Unsupervised machine learning
- Semi-supervised machine learning
- Reinforcement learning

Autoencoders: Encoding

Latent distribution: Encoding the data via low dimensional vector

Autoencoders: Decoding

Latent space → **Image**

AE and Variational AE (VAE)

Geoffrey Hinton

Margarian Follow

Emeritus Prof. Comp Sci, U.Toronto & Engineering Fellow, Google Verified email at cs.toronto.edu - <u>Homepage</u>

machine learning psychology artificial intelligence cognitive science computer science

TITLE	CITED BY	YEAR
Imagenet classification with deep convolutional neural networks A Krizhevsky, I Sutskever, GE Hinton Communications of the ACM 60 (6), 84-90	130318	2017
Deep learning Y LeCun, Y Bengio, G Hinton Nature 521 (7553), 436-44	62790	2015
Dropout: a simple way to prevent neural networks from overfitting N Srivastava, G Hinton, A Krizhevsky, I Sutskever, R Salakhutdinov The journal of machine learning research 15 (1), 1929-1958	42078	2014
Visualizing data using t-SNE L van der Maaten, G Hinton Journal of Machine Learning Research 9 (Nov), 2579-2605	35035	2008
<u>Learning representations by back-propagating errors</u> DE Rumelhart, GE Hinton, RJ Williams Nature 323 (6088), 533-536	32239	1986
Learning internal representations by error-propagation DE Rumelhart, GE Hinton, RJ Williams Parallel Distributed Processing: Explorations in the Microstructure of	30711	1986
Schemata and sequential thought processes in PDP models. D Rumelhart, P Smolenksy, J McClelland, G Hinton Parallel distributed processing: Explorations in the microstructure of	28073 *	1986
Learning multiple layers of features from tiny images A Krizhevsky, G Hinton	21876	2009
Rectified linear units improve restricted boltzmann machines V Nair, GE Hinton Proceedings of the 27th international conference on machine learning (ICML	21050	2010
Reducing the dimensionality of data with neural networks GE Hinton, RR Salakhutdinov Science 313 (5786), 504-507	19930	2006

Reducing the dimensionality of data with neural networks

Authors Geoffrey E Hinton, Ruslan R Salakhutdinov

Publication date 2006/7/28

Journal Science

Volume 313

Issue 5786

Pages 504-507

Publisher American Association for the Advancement of Science

Description High-dimensional data can be converted to low-dimensional codes by training a

multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal

components analysis as a tool to reduce the dimensionality of data.

Total citations Cited by 19930

- Training: pairs of the high-noise and low-noise images
- Application: new high noise images (from the same distribution)
- Concern: has to be from the same distribution

Test color images (Ground Truth)

Test gray images (Input)

Colorized test images (Predicted)

- Training: pairs of the grayscale and color images
- Application: new grayscale images (from the same distribution)
- Concern: has to be from the same distribution

AE and Variational AE (VAE)

Diederik P. Kingma

Other names >

Research Scientist, Google Brain Verified email at google.com - Homepage

Machine Learning Deep Learning Neural Networks Generative Models Variational Inference

FOLLOW

TITLE	CITED BY	YEAR
Adam: A Method for Stochastic Optimization DP Kingma, J Ba Proceedings of the 3rd International Conference on Learning Representations	141306	2014
Auto-Encoding Variational Bayes DP Kingma, M Welling arXiv preprint arXiv:1312.6114	26540	2013
Semi-Supervised Learning with Deep Generative Models DP Kingma, S Mohamed, DJ Rezende, M Welling Advances in Neural Information Processing Systems, 3581-3589	2946	2014

- Variational Autoencoder (VAE): uses "reparameterization trick" to sample from the latent space
- Can be used for same tasks as AE
- Have a much better-behaved latent space: disentanglement of the representations

VAE Training

Latent manifold -> Image space

Image space -> Latent space

Note the trends in the latent representation for each digit: disentanglement of the representations

Introduce the cards data set:

- Classical 4 hands (diamonds, clubs, pikes, hearts)
- Interesting similarities (pikes and hearts)
- And invariances on affine transforms (e.g. diamonds)

Cards 1: Low R (12 deg) and low S (1 deg)

Cards 2: Low R (12 deg) and high S (20 deg)

Cards 3: High R (120 deg) and Low S (1 deg)

Cards 4: High R (120 deg) and high S (20 deg)

- Shear, rotations, and translations are known factors of variability (or traits) in data
- Can VAE disentangle representations and discover these factors of variability

Cards 1: Low rotation (12 deg) and low shear (1 deg)

Cards 1: Low rotation (12 deg) and low shear (1 deg)

Example of data

Cards 2: Low rotation (12 deg) and high shear (20 deg)

Cards 2: Low rotation (12 deg) and high shear (20 deg)

Cards 3: High rotation (120 deg) and low shear (1 deg)

Cards 3: High rotation (120 deg) and low shear (1 deg)

Cards 4: High rotation (120 deg) and high shear (20 deg)

Cards 4: High rotation (120 deg) and high shear (20 deg)

Latent representation * * * * * * * * * 0.5 -1.0 -1.0-0.5 0.0 0.5 1.0

Cards 1: Low rotation (12 deg) and low shear (1 deg)

Cards 1: Low rotation (12 deg) and low shear (1 deg)

Cards 2: Low rotation (12 deg) and high shear (20 deg)

Cards 2: Low rotation (12 deg) and high shear (20 deg)

Cards 3: High rotation (120 deg) and low shear (1 deg)

Cards 3: High rotation (120 deg) and low shear (1 deg)

Latent representation

Cards 4: High rotation (120 deg) and high shear (20 deg)

Cards 4: High rotation (120 deg) and high shear (20 deg)