Задання групи твірними і співвідношеннями

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

26 жовтня 2022

FACULTY OF MECHANICS AND MATHEMATICS

G — група з системою твірних $S = \{s_1, \ldots, s_n\}$.

За універсальною властивістю вільної групи G є гомоморфним образом вільної групи F(X) з системою твірних $X = \{x_1, \ldots, x_n\}$.

Іншими словами відображення

$$\varphi: X \to S, \quad x_i \mapsto s_i$$

продовжується до гомоморфізму

$$\varphi: F(X) \to G$$

Нехай H — ядро цього гомоморфізму, R — така множина елементів з H, що H — це найменша нормальна підгрупа, що містить R, тобто

$$H = \langle w^{-1} w_i w \mid w_i \in R, w \in F(X) \rangle.$$

За основною теоремою про гомоморфізм

$$G \simeq F(X)/H$$
.

Задання групи твірними і співвідношеннями

Група G повністю визначається заданням алфавіту X та множини R.

- ⟨X | R⟩ зображення Діка групи G;
- *X* множина твірних елементів;
- R множина визначальних співвідношень.

Якщо $|X| < \infty$, то група $\langle X \mid R \rangle$ називається *скінченно породженою*.

Якщо $|X|<\infty$ та $|R|<\infty$, то група $\langle X\,|\,R\rangle$ називається *скінченно заданою*.

Проблеми Дена

- Проблема рівності двох слів у скінченно заданій групі $G = (X \mid R)$: чи задають два слова один і той самий елементи групи G.
- Проблема спряженості двох слів у скінченно заданій групі $G = \langle X | R \rangle$: для двох слів u та v з'ясувати, чи існує таке слово w, що $u = w^{-1}vw$.
- ullet Проблема ізоморфізму двох груп $G = \langle X \mid R \rangle$ та $G' = \langle X' \mid R' \rangle$.

Макс Ден (1878-1952)

- - $S_3 = \langle (12), (13) \rangle$. Розглянемо гомоморфізм

$$\varphi: F(x,y) \to \mathcal{S}_3, \quad x \mapsto (12), y \mapsto (13).$$

Тоді $\varphi(xy) = (12)(13) = (123)$. Отже, $x^2, y^2, (xy)^3 \in \operatorname{Ker} \varphi$. $x^2 = 1, y^2 = 1, (xy)^3 = 1 \Rightarrow yx = (xy)^2, xyxyx = y, yxyxy = x$. Тому кожний клас суміжності групи F(x, y) за підгрупою $H = \langle x^2, y^2, (xy)^3 \rangle$ містить хоча б один з елементів

Отже, $|F(x, y)/H| \le 6 \Rightarrow H = \text{Ker } \varphi$. Таким чином, $S_3 \simeq \langle x, y | x^2, y^2, (xy)^3 \rangle$.

- - \blacksquare Позначимо $G = \langle x, y | x^n, y^2, yxyx \rangle$.

Нехай r — поворот на кут $\frac{2\pi}{n}$, s — симетрія.

Оскільки $D_n = \langle r, s \rangle$, то відображення

$$\{x,y\}\to D_n, x\mapsto r,y\mapsto s$$

продовжується до гомоморфізму $G \to D_n$. З рівностей

$$x^n = 1, y^2 = 1, yx = x^{n-1}y$$

випливає, що кожен з елементів групи G зображується одним з елементів

$$1, x, \ldots, x^{n-1}, y, xy, \ldots, x^{n-1}y.$$

Отже, $|G| \le 2n$. Таким чином, ϕ — бієкція і вказані символи задають різні елементи групи G.

⑤
$$D_4 \simeq \langle x, y | x^4, y^2, yxyx \rangle$$
.
♣ $x \leftrightarrow \frac{\pi}{2}, y \leftrightarrow s$,
 $s \frac{\pi}{2} s \frac{\pi}{2} = 0 \Rightarrow s \frac{\pi}{2} s = (\frac{\pi}{2})^{-1} = \frac{3\pi}{2}$. ♠
⑥ $D_4 \simeq \langle x, y | x^2, y^2, (xy)^4 \rangle$.

- $Q_8 \simeq \langle x, y | x^4, x^2y^{-2}, yxy^{-1}x \rangle.$
 - \blacksquare Позначимо $G = \langle x, y | x^4, x^2y^{-2}, yxy^{-1}x \rangle$.

Оскільки $yx = x^{-1}y = x^3y$ та $x^2 = y^2$, то кожний елемент групи G можна подати у вигляді

$$x^k y^l$$
, $k = 0, ..., 3$, $l = 0, 1$.

Отже, |G| ≤ 8.

Для $i, j \in Q_8$: $i^4 = 1, i^2 j^{-2} = 1, j i j^{-1} i = 1$ та $Q_8 = \langle i, j \rangle$.

Відображення

$$\varphi: G \to Q_8, x^k y^l \mapsto i^k j^l$$

є ізоморфізмом. Отже,

$$G \simeq Q_8. \spadesuit$$

③ Узагальнена група кватерніонів Q_{2^n} , $n \ge 3$.

$$Q_{2^n} = \langle x, y | x^{2^{n-1}}, x^{2^{n-2}}y^{-2}, yxy^{-1}x \rangle.$$