HOMEWORK #3

BY: BEN CRANE

Due 02/09

1. From the book

1.1. **1.8** Page 28: 6, 8, 14.

6)

- (a) $\bigcup_{i\in\mathbb{N}} [0,i+1] = [0,\infty)$ (b) $\bigcap_{i\in\mathbb{N}} [0,i+1] = [0,2]$

- (a) $\bigcup_{x} \{\alpha\} \times [0,1] = \{(x,y) \mid x \in \mathbb{R} \text{ and } y \in [0,1]\}$
- (b) $\bigcap_{\alpha \in \mathbb{R}} \{\alpha\} \times [0,1] = \emptyset$ the empty set is the only solution.

14) If $J \neq \emptyset$ and $J \subseteq I$, does it follow that $\bigcap_{\alpha \in I} A_{\alpha} \subseteq \bigcap_{\alpha \in I} A_{\alpha}$? Explain. Let J and I be two sets such that $J \neq \emptyset$ and $J \subseteq I$. So $I \neq \emptyset$. let $x \in \bigcap_{\alpha \in I} A_{\alpha}$, then $x \in A_{\alpha}$ for all $\alpha \in I$. Let $\alpha \in J$ be an arbitrary element and $\alpha \in J \subseteq I$, thus $\alpha \in I$ and then $x \in A_{\alpha}$. So $x \in A_{\alpha}$ for all $\alpha \in J$. So we can conclude that for each $x \in \bigcap_{\alpha \in I} A_{\alpha}$, then $x \in \bigcap_{\alpha \in J} A_{\alpha}$. So this is true when $J \neq \emptyset$ and $J \subseteq I$.

1.2. **2.1** Page 37: evens.

- (2) Every even integer is a real number. Is both a Statement, and is true.
- (4) Sets \mathbb{Z} and \mathbb{N}

This is not a sentence, there is no conclusion, thus it is not a statement.

(6) Sets \mathbb{Z} and \mathbb{N} are finite.

This sentence is a True Statement.

(8) $\mathbb{N} \notin \mathbb{P}(\mathbb{N})$

This is a Statement, however it is False.

 $(10) (\mathbb{R} \times \mathbb{N}) \cap (\mathbb{N} \times \mathbb{R}) = \mathbb{N} \times \mathbb{N}$

This is a Statement, and it is True. The intersection only contains pairs of natural numbers.

(12) If the integer x is a multiple of 7, then it is divisible by 7.

This is a Statement and it is True, By definition of how being a multiple of something works.

(14) Call me Ishmael.

Not a Statement, I might do it though...

1.3. **2.2** Page 41: 6,8,12.

6) There is a quiz scheduled for Wednesday or Friday.

P: There will be a quiz on Wednesday. Q: There will be a quiz on Friday. Either could be true depending on the intention of the english sentence.

 $P \vee Q$ could be either p or q, or both.

 $(P \,\vee\, Q) \,\wedge \sim (P \,\wedge\, Q)$ could be P or Q and not both.

8) At least one of the numbers x and y equals 0.

P: the number x is 0.

Q: the number y is 0. $P \vee Q$ So either X or y is equal to 0 or both are equal to 0.

12) Happy families are all alike, but each unhappy family is unhappy in its own way

P: Happy families are all alike

Q:each unhappy family is unhappy in its own way.

 $P \wedge Q$

2(A)

p	q	$p \lor q$	$p \wedge q$	$ ((\sim p) \land (\sim q)) $	$((\sim p) \lor (\sim q)\}$	$ \sim (p\vee q)$	$\sim (p \land q)$
\overline{T}	T	Т	Т	F	F	F	F
Τ	F	Т	F	F	${ m T}$	F	T
\mathbf{F}	$\mid T \mid$	Τ	F	F	${ m T}$	F	Т
F	F	F	F	T	${ m T}$	Γ	Τ

p, q, if p or q, if p and q, not p and not q, not p or not q, not p or q, not p and q Following the logic of the first and second column, the subsequent columns hold logically true.

2(B) (P \vee Q) \wedge (\sim (P \wedge Q)). This statement translates to: if P or Q, and if not P and Q. kind of like you can have this or that, and not this and that. Like a mother telling her kid they can choose one or the other toy, but decidely not both.

2(C) P
$$\rightarrow$$
 (Q \land (\sim Q)) and (\sim P)

P	Q	$(\sim Q)$	$(\sim P)$	$P \to (Q \land (\sim Q))$
\overline{T}	Т	F	F	F
Τ	F	Т	F	F
\mathbf{F}	Τ	F	Т	${ m T}$
F	F	Γ	T	${ m T}$

The reason that this holds true is because $P \to (Q \land (\sim Q))$ is vacuously true when P is false (ie. $\sim P$).