Z nierówności $\log_2 n^{\alpha} < n$ dla $n > 4\alpha^2$ wynikają następujące fakty:

Dla dowolnej liczby dodatniej α zachodzą nierówności

$$n^{\alpha} < 2^n \qquad \text{oraz} \qquad \log_2 n < \sqrt[\alpha]{n}$$

dla dostatecznie dużych wartości n.

Reasumując:

- ullet 2^n rośnie szybciej niż jakakolwiek potęga z n
- ullet $\log_2 n$ rośnie wolniej niż jakikolwiek pierwiastek z n

Zatem dla dowolnego $\alpha>1$ mamy

$$\log_2 n < \sqrt[\alpha]{n} < n < n^{\alpha} < 2^n$$

dla dostatecznie dużych $\,n.\,$

7/20

B. Pawlik Notacja 🔿 19 czerwca 2024

W całym wykładzie przyjmujemy, że zbiór liczb naturalnych to zbiór liczb całkowitych dodatnich.

Jeżeli n jest liczbą naturalną, to

$$\dots \leqslant \sqrt[4]{n} \leqslant \sqrt[3]{n} \leqslant \sqrt{n} \leqslant n \leqslant n^2 \leqslant n^3 \leqslant n^4 \leqslant \dots$$

Dużo ogólniej:

Jeżeli n jest liczbą naturalną i α,β są liczbami rzeczywistymi takimi, że $0\leqslant \alpha\leqslant \beta$, to

$$n^{\alpha} \leqslant n^{\beta}$$
.

Zauważmy, że jeżeli założymy dodatkowo, że n>1, to powyższe nierówności będą ostre.

B. Pawlik Notacja O 19 czerwca 2024 2/20

Przykład 3 (1/2)

Rozpatrzmy ciąg $h_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$ dla $n \ge 1$. Pokażemy, że $h_n = \mathcal{O}(\log_2 n)$.

Zauważmy, że

$$h_2 = 1 + \frac{1}{2} < 2,$$

$$h_4 = h_2 + \left(\frac{1}{3} + \frac{1}{4}\right) < 2 + \left(\frac{1}{2} + \frac{1}{2}\right) = 2 + 1 = 3,$$

$$h_8 = h_4 + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) < 3 + \left(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}\right) = 3 + 1 = 4,$$

itd. Ogólnie mamy

$$h_{2k} < k + 1$$
.

co można łatwo uzasadnić indukcyjnie.

15 / 20

Notacia O

19 czerwca 2024

Przykład 1

Z prezentowanych wcześniej nierówności wynika, że

•
$$\sqrt{n} = \mathcal{O}(n)$$
,

•
$$n = \mathcal{O}(2^n)$$
,

•
$$200^n = \mathcal{O}(n!),$$

•
$$n = \mathcal{O}(n^2)$$
,

•
$$n^2 = \mathcal{O}(2^n)$$
,

$$\bullet \ n! = \mathcal{O}(n^n),$$

•
$$n = \mathcal{O}(2^{n-1}),$$

$$\bullet \ 2^n = \mathcal{O}(n!),$$

$$\bullet \ n\log_2 n = \mathcal{O}(n^2),$$

itp

Notacja O służy do szacowania szybkości wzrostu rozpatrywanego ciągu poprzez porównanie ją z szybkością wzrostu prostszego (dobrze znanego) ciągu.

Dowód (1/3).

• Jeżeli $f_n=\mathcal{O}(a_n)$, to istnieje stała C>0 taka, że $|f_n|\leqslant C\cdot |a_n|$ dla dostatecznie dużych n. Mamy

$$|c \cdot f_n| = |c| \cdot |f_n| \leqslant |c| \cdot C \cdot |a_n| = (|c| \cdot C) \cdot |a_n|$$

dla dostatecznie dużych n, więc $c \cdot f_n = \mathcal{O}(a_n)$.

f 2 Jeżeli $f_n=\mathcal O(a_n)$ oraz $g_n=\mathcal O(a_n)$, to istnieją dodatnie stałe C i D takie, że

$$|f_n| \leqslant C \cdot |a_n|$$
 oraz $|g_n| \leqslant D \cdot |a_n|$

dla dostatecznie dużych n. W poniższym szacowaniu skorzystamy z nierówności trójkąta $|x+y|\leqslant |x|+|y|$ dla dowonych $x,y\in\mathbb{R}.$ Mamy

$$|f_n + g_n| \leqslant |f_n| + |g_n| \leqslant C \cdot |a_n| + D \cdot |a_n| = (C + D) \cdot |a_n|,$$

wiec $f_n + g_n = \mathcal{O}(a_n)$.

4日 → 4団 → 4 三 → 4 三 → 9 0 ○

18 / 20

B. Pawlik Notacja 🗸

Niech f i g będą ciągami liczb rzeczywistych. Przyjmujemy, że

$$f_n = \mathcal{O}(g_n)$$

gdy istnieje dodatnia stała C taka, że

$$|f_n| < C \cdot |g_n|$$

dla dostatecznie dużych n.

Wyrażenie "
$$f_n=\mathcal{O}(g_n)$$
" czytamy " f_n jest O od g_n ".

12 / 20

B. Pawlik Notacja $\mathcal O$

ia O 19 czerwca 2024

Notacja \mathcal{O} — własności

• Jeżeli $f_n = \mathcal{O}(a_n)$ i c jest stałą, to

$$c \cdot f_n = \mathcal{O}(a_n).$$

2 Jeżeli $f_n = \mathcal{O}(a_n)$ i $q_n = \mathcal{O}(a_n)$, to

$$f_n + g_n = \mathcal{O}(a_n).$$

3 Jeżeli $f_n = \mathcal{O}(a_n)$ i $g_n = \mathcal{O}(b_n)$, to

$$f_n + g_n = \mathcal{O}(\max\{|a_n|, |b_n|\})$$
 oraz $f_n \cdot g_n = \mathcal{O}(a_n \cdot b_n)$.

4 Jeżeli $a_n = \mathcal{O}(b_n)$ i $b_n = \mathcal{O}(c_n)$, to

$$a_n = \mathcal{O}(c_n).$$

(Zauważmy, że powyższe własności pozwalają nam szybko ustalić szacowanie w przykładzie 2: mamy $2n^5 + 9n^3 + 2024 = \mathcal{O}(n^5)$.)

◆□▶ ◆□▶ ◆三▶ ◆三 ◆○○○

$$100^n < n!$$

zachodzi dla każdej dostatecznie dużej liczby naturalnej n.

Powyższą nierówność można udowodnić podobnie jak poprzednią $(2^n < n!)$, znajdując najmniejszą liczbę k taką, że $100^k < k!$ i przeprowadzić szacowanie lub indukcję. Poniżej pokażemy dowód nie odwołujący się do poszukiwania tej najmniejszej liczby.

Dowód.

Zauważmy, że dla $n>200\ \mathrm{mamy}$

$$n! > \underbrace{201 \cdot 202 \cdot \dots \cdot (n-1) \cdot n}_{n-200} > \underbrace{200 \cdot 200 \cdot \dots \cdot 200 \cdot 200}_{n-200} = 200^{n-200} = 100^n \cdot 2^n \cdot \frac{1}{200^{200}} = 100^n \cdot \frac{2^n}{200^{200}}.$$

Oczywiście 2^n jest funkcją rosną i nieograniczoną z góry, więc począwszy od pewnego n mamy $2^n > 200^{200}$, więc $100^n \cdot \frac{2^n}{200^{200}} > 100^n$, co kończy dowód.

Przykład 3 (2/2)

Niech n będzie liczbą ograniczoną kolejnymi potęgami dwójki: $2^k < n \leq 2^{k+1}$. Zauważmy, że pierwsza z tych nierówność daje nam $k < \log_2 n$. Mamy zatem

$$h_n \leqslant h_{2^{k+1}} < (k+1) + 1 = k+2 < \log_2 n + 2.$$

Dla dostatecznie dużych n mamy

$$\log_2 n + 2 < \log_2 n + \log_2 n = 2\log_2 n,$$

więc ostatecznie

$$h_n = \mathcal{O}(\log_2 n).$$

Nierówność

$$2^n < n!$$

zachodzi dla każdej liczby naturalnej n>3.

Dowód.

Mamy $2^4 < 4!$ oraz

$$2^n = 2^4 \cdot \underbrace{2 \cdot 2 \cdot \ldots \cdot 2 \cdot 2}_{n-4} < 4! \cdot \underbrace{2 \cdot 2 \cdot \ldots \cdot 2 \cdot 2}_{n-4} < 4! \cdot \underbrace{5 \cdot 6 \cdot \ldots \cdot (n-1) \cdot n}_{n-4} = n!$$

Ш

Twierdzenie (postać rozwiązania równania (1))

Niech ciąg (a_n) spełnia zależność rekurencyjną (1).

ullet Jeżeli równanie charakterystyczne dla (1) ma dwa różne rozwiązania r_1 i r_2 , to

$$a_n = C \cdot r_1^n + D \cdot r_2^n. \tag{2}$$

ullet Jeżeli równanie charakterystyczne dla (1) ma jedno rozwiązanie r_0 , to

$$a_n = (C + Dn) \cdot r_0^n. (3)$$

W powyższym twierdzeniu wartości C,D są wyznaczalne przy pomocy warunków początkowych (np. $a_0,\,a_1$) lub - ogólniej - przy pomocy wartości dowolnej pary $a_k,\,a_l$.

Znając pierwiastki wielomianu charakterystycznego oraz dwie wartości ciągu, z równania (2) lub (3) można utworzyć układ dwóch równań liniowych z dwiema niewiadomymi (C,D).

B. Pawlik Rekurencja

Ciąg Fibonacciego

$$F_0 = 0, F_1 = 1,$$

 $F_n = F_{n-2} + F_{n-1}$

Początkowe wyrazy: $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$

$$F_0 = 0$$

$$F_1 = 1$$

$$F_2 = F_0 + F_1 = 0 + 1 = 1$$

$$F_3 = F_1 + F_2 = 1 + 1 = 2$$

$$F_4 = F_2 + F_3 = 1 + 2 = 3$$

B. Pawlik Rekurencja

Wybrane własności ciągu Fibonacciego

•
$$F_0 + F_1 + \ldots + F_n = F_{n+2} - 1$$

•
$$F_0^2 + F_1^2 + \ldots + F_n^2 = F_n \cdot F_{n+1}$$

•
$$F_{n+1}F_{n-1} = F_n^2 + (-1)^n$$

$$F_n^2 + F_{n-1}^2 = F_{2n-1}$$

$$\bullet F_{n+1}F_m + F_nF_{m-1} = F_{m+n}$$

•
$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \varphi$$
, gdzie $\varphi = \frac{1+\sqrt{5}}{2}$

←□ → ←□ → ← = → → = → へ ○

6 / 17

B. Pawlik Rekurencja 26 marca 2024

Funkcja McCarthy'ego

$$M(n) = \left\{ \begin{array}{ll} M\big(M(n+11)\big) & \text{dla } 1 \leqslant n \leqslant 100 \\ n-10 & \text{dla } n > 100 \end{array} \right.$$

Początkowe wyrazy: $\underbrace{91,91,\ldots,91},92,93,94,95,96,97,98,99,100,101,\ldots$

101

B. Pawlik Rekurencja 26 marca 2024 8 / 1

Funkcja jest zdefiniowana rekurencyjnie, jeżeli

- określono (jawnie) wartości dla pewnego zbioru argumentów funkcji (warunki początkowe)
- pozostałe wartości są zdefiniowane za pomocą innych wartości tej funkcji poprzez zależność rekurencyjną (co najmniej jedną).

Funkcje rekurencyjne o co najwyżej przeliczalnym zbiorze warunków początkowych oraz przeliczalnej liczbie zależności rekurencyjnych mają przeliczalną dziedzinę (więc są ciągami).

Twierdzenie (postać rozwiązania równania (4))

Niech ciąg (a_n) spełnia zależność rekurencyjną (4) i niech

$$f(r) = (r - r_1)^{m_1} (r - r_2)^{m_2} \dots (r - r_s)^{m_s}$$

będzie jego wielomianem charakterystycznym. Wówczas

$$a_n = (A_{1,1} + A_{1,2} \cdot n + \dots + A_{1,m_1} \cdot n^{m_1 - 1}) \cdot r_1^n +$$

$$+ (A_{2,1} + A_{2,2} \cdot n + \dots + A_{2,m_2} \cdot n^{m_2 - 1}) \cdot r_2^n +$$

$$+ \dots +$$

$$+ (A_{s,1} + A_{s,2} \cdot n + \dots + A_{s,m_s} \cdot n^{m_s - 1}) \cdot r_s^n$$

W powyższym twierdzeniu współczynniki $A_{i,j}$ są wyznaczalne przy pomocy np. wartości początkowych.

◆ロト ◆御 ト ◆ 重 ト ◆ 重 ・ 夕久 ◎

B. Pawlik Rekurencja 26 marca 2024 16 / 17

Przykład z *HAKMEM*

Niech a_0 będzie dowolną liczbą i niech a_{n+1} będzie liczbą liter potrzebnych do zapisu liczby a_n w języku angielskim.

Na przykład, jeżeli $a_0 = 33$, to otrzymujemy

$$33 \, (thirty \, three) \rightarrow 11 \, (eleven) \rightarrow 6 \, (six) \rightarrow 3 \, (three) \rightarrow$$

$$\rightarrow 5 \, (five) \rightarrow 4 \, (four) \rightarrow 4 \, (four) \rightarrow \dots$$

Przykład: Problem Collatza

Niech a_0 będzie dowoloną liczbą całkowitą dodatnią i niech

$$a_{n+1} = \left\{ \begin{array}{ll} \frac{1}{2}a_n, & \text{gdy } a_n \text{ jest liczbą parzystą,} \\ 3a_n+1, & \text{gdy } a_n \text{ jest liczbą nieparzystą} \end{array} \right.$$

Przykładowy ciąg Collatza: $12, 6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, \ldots$

←□ → ←□ → ← □ → □ → へ○ ○

9 / 17

B. Pawlik Rekurencja

Równaniem charakterystycznym dla

$$a_n = Aa_{n-1} + Ba_{n-2}$$

nazywamy równanie $r^2 - Ar - B = 0$. Wielomian $r^2 - Ar - B$ nazywamy wielomianem charakterystycznym zależności (1).

Przykład: ciąg Fibonacciego

$$F_0 = 0$$
, $F_1 = 1$, $F_n = F_{n-1} + F_{n-2}$

Zatem A=B=1. Równanie charakterystyczne ciągu Fibonacciego to $r^2-r-1=0$.

4日 → 4団 → 4 三 → 4 三 → 9 0 ○

11 / 17

B. Pawlik Rekurencja 26 marca 2024

Przykład

Wyznaczyć wzór jawny ciągu a_n , jeżeli $a_1=0$, $a_2=2$ i $a_n=4a_{n-1}-4a_{n-2}$ dla $n\geqslant 3$.

Zauważmy, że równanie charakterystyczne ma postać $r^2-4r+4=0,$ więc jego jedynym pierwiastkiem jest liczba $r_0=2.$ Zatem

$$a_n = (A + Bn) \cdot 2^n.$$

Podstawiając do powyższego wzoru wartości a_1 i a_2 otrzymujemy układ równań

$$\left\{ \begin{array}{l} 0=(A+B)\cdot 2 \\ 2=(A+2B)\cdot 4 \end{array} \right. , \quad \text{wiec} \quad \left\{ \begin{array}{l} A=-\frac{1}{2} \\ B=\frac{1}{2} \end{array} \right. .$$

Ostatecznie

$$a_n = \left(-\frac{1}{2} + \frac{1}{2}n\right) \cdot 2^n$$
, wiec $a_n = (n-1) \cdot 2^{n-1}$.

←ロト ←団ト ← 重ト を重 りへで

B. Pawlik Rekurencja

Jednorodną liniową zależnością rekurencyjną II rzędu o stałych współczynnikach nazywamy zależność postaci

$$a_n = Aa_{n-1} + Ba_{n-2}, (1)$$

gdzie $n \geqslant n_0$, $A, B \in \mathbb{C}$ i $B \neq 0$.

Szczególne przypadki

Jak wygląda postać ogólna równania (1) z danymi $a_0,a_1\in\mathbb{C}$ przy założeniu, że $A\cdot B=0$?

10 / 17

B. Pawlik Rekurencja 26 marca 2024