# Endocrine function of Pancreas Insulin and Diabetes Mellitus

Dr. K Medagoda MD MRCP

### **Pancreas**

- Has endocrine and exocrine functions
- Islets of Langerhans secrete



intermediary metabolism

3. Somatostatin

regulates islet cell secretion

4. Pancreatic polypeptide concerned with GI function

## **Pancreas**

- Islet cell structure
  - Ovid structures, plentiful in tail
  - Has a copious blood supply
  - Drains into portal vein

Has 4 type of cells

– 20%A- Alpha -secrete glucagon

– 65-75%B - Beta - secrete insulin

D- Delta - secrete somatostatin

F- - secrete pancreatic polypeptide

# Islet cell structure



## **Pancreas**

- B cells
  - Granules are packets of insulin
  - Packet is bounded by membrane lined vesicle
  - Insulin molecules are polymers combined with Zinc

## Insulin

- Polypeptide with two chains of amino acids
- Two chains are linked by disulfide bridges
- There is species difference of amino acid
- The difference is not sufficient to affect the biologic activity
- But can induce immune reaction and antibodies against foreign insulin
- Antibodies inhibit the action of foreign insulin

## Insulin

- Pork insulin only differs by one amino acid
- Less immunogenic

## Insulin

- Biosynthesis and secretion
- Synthesized in the ER
- Transported to Golgi apparatus to make membrane bound granules
- Granules move to cell wall
- Membrane get fused with cell wall
- Secretes insulin to exterior by exocytosis
- Insulin then crosses the basal lamina
- Reaches the blood stream

## Insulin molecule

- Synthesized as a Larger preprohormone
- 23 amino acid peptide is removed from it
- The remainder folded, disulphide bonds are formed
- Results –proinsulin
- C peptide chain connecting A and B chains facilitates the folding
- This peptide chain is removed from the proinsulin to make insulin- the C peptide

## Insulin molecule

- 90-97% of beta cell secretion is insulin
- Also has equimolar amount of C peptide

- C peptide
  - Can be measured using RIA
  - Level provides index of
    - Beta cell function
    - Amount of endogenous insulin level

# Insulin molecule





## Metabolism of Insulin

- Half life is 5 minutes
- Insulin receptor complex is internalized
- Destroyed by insulin protease
  - A membrane enzyme
  - Get internalized with insulin
- 80% of insulin is degraded by liver and kidneys

- Rapid actions
- Increased transport of substances in to insulin sensitive cells
  - glucose
  - Amino acids
  - Potassium

- Intermediate actions
  - Stimulation of protein synthesis
  - Inhibition of protein degradation
  - Activation of glycogen synthase
  - Inhibition of gluconeogenic enzymes and phosphorylase

- Delayed actions
  - Increase in mRNAs for lipogenic enzymes

- A complex glycoprotein
- Found on many cells
- A tetramer -2 alpha and 2 beta subunits
- Alpha subunit
  - Extracellular
  - Binds with insulin
- Beta subunit
  - Span the membrane
  - The intracellular ends have tyrosine kinase activity

- Both alpha and beta subunits are glycosylated
- Sugar residues extends into the interstitial fluid
- Binding of insulin
  - Triggers tyrosine kinase activity of beta subunits
  - Results auto-phosphorylation of beta subunits on tyrosine residues
  - Auto-phosphorylation exerts biologic activity

- When insulin binds to its receptor
  - They aggregate on the cell membrane
  - Aggregated patches are taken into the cell by receptor mediated endocytosis
  - Finally receptor insulin complex enters into lysosomes and metabolized

- Number and affinity is affected by other hormones, exercise and foods
- Number of receptors
  - Increased in
    - Starvation
  - Decreased in
    - Exposure to increased amount of insulin-down regulation
    - Obesity
    - acromegaly

- Affinity
  - Increased in
    - Exposure to deceased insulin
    - Adrenal insufficiency
  - Decreased in
    - Excess glucocortocoids



# Glucose entry into cells and glucose transporters

#### Glucose

- Enters into all cells by facilitated diffusion
- But in some tissues insulin facilitates the glucose entry by increasing glucose transporters

### Glucose transporters

- Family of closely related proteins
- Responsible for glucose facilitated diffusion of glucose across cell membrane
- Five different glucose transporters have been identified

# glucose transporters

- Have no homology with sodium dependent glucose transporter
  - **–** SGLT 1
  - Secondary active co-transporter in
    - Intestine and renal tubules

# glucose transporters

| Transporter |        | Function                                                                      | Site                                                            |
|-------------|--------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|
| •           | GLUT 1 | basal glucose uptake                                                          | brain, RBC, Kidneys, Colon, placenta                            |
| •           | GLUT 2 | B cell glucose sensor, transport out of intestinal and renal epithelial cells | B cells of islets, liver, epithelial cells of kidney, intestine |
| •           | GLUT 3 | Basal glucose uptake                                                          | brain, Kidneys, placenta                                        |
| •           | GLUT 4 | Insulin stimulated glucose uptake                                             | Skeletal and cardiac muscles, adipose tissue                    |
| •           | GLUT 5 | Dietary absorption                                                            | Jejunum                                                         |

- Hypoglycaemic action of insulin
  - Insulin facilitates glucose entry into
    - Muscle, fat
  - Once entered in these tissues the rate of phosphoryalation is regulated by other hormones
  - GH and cortisol inhibits phosphorylation
    - The process is rapid
    - Becomes a rate limiting step only when the glucose entry is high

Hypoglycaemic action of insulin

- Insulin facilitates the glucose entry into liver cells
- Increases hexokinase enzyme activity
- Increases phosphoryalation of glucose
- Keeps the intracellular glucose concentration low
- Facilitates the entry
- Not by action on GLUT 4

- Stimulates potassium entry into cells
- Lower the extracellular potassium
- Increases Na<sup>+</sup> K<sup>+</sup> ATPase activity
- Other actions of insulin
  - Increased glycogen synthase activity
  - Promotes lipogenesis
  - Stimulates protein synthesis
    - Increase amino acid entry into cells
  - Inhibits protein degradation

- Average basal insulin secretion -1U/h
- Control of secretion
  - By feedback inhibition on beta cells by plasma glucose

- Glucose in beta cells
  - Metabolized via glucokinase
  - A rate limiting step
  - ATP generation results closure of ATP sensitive K<sup>+</sup> channels
  - Decreases K⁺ efflux → depolarizes the membrane
  - Opens voltage gated Ca<sup>++</sup> channels → Ca<sup>++</sup> influx
  - Increase Ca<sup>++</sup> triggers Ca<sup>++</sup> dependent kinases
  - Releases the insulin by exocytosis

- This feedback operates with great precision
- Plasma glucose and insulin parallel with each other with remarkable consistency

- Amino aids stimulates insulin secretion
- Cyclic AMP
  - Increase in cyclic AMP increases insulin secretion
  - Possibly by increasing intracellular Ca<sup>++</sup>
- Catecholamines has a dual effect
  - Inhibits insulin secretion via alpha 2 receptors
  - Stimulates via beta receptors
  - The net effect is inhibition of secretion

- Vagal stimulation increases insulin secretion via M4 receptors
- Intestinal hormones stimulates insulin secretion
  - Glucagon and derivatives
  - Secretin
  - CCK
  - Gastrin
- K<sup>+</sup> depletion decreases insulin secretion

## Diabetes mellitus

- A group of metabolic disorder characterized by relative
  - Insulin deficiency
  - Insulin resistance
  - Chronic hyperglycemia
- Types of diabetes
  - Type-1
  - Type -2

## Diabetes mellitus

- In the absence of insulin
  - Glucose entry is reduced in
    - Skeletal muscles
    - Cardiac muscles
    - Smooth muscles
    - Other tissues
  - Liver
    - glucose uptake also reduced -Effect is indirect
    - Glycogen synthesis is inhibited/ gluconeogenesis → increased
  - Intestinal absorption and renal reabsorption- unaffected
  - Uptake of glucose by brain and red cells remain normal

## Diabetes mellitus

- Features of diabetes mellitus
  - Thirst
  - Polyuria
  - Polydypsia
  - Weght loss
  - Polyphagia
- Features due to complications
  - Macrovascular
  - Microvascular retinopathy, nephropathy, neuropathy

- Wide spread biochemical abnormalities
- Due to
  - Reduced entry of glucose into peripheral tissues
  - Increased release of hepatic glucose
    - Glycogenolysis
    - Gluconeogenesis
  - Decreased entry of amino acids
  - Increased lipolysis

- Glucose tolerance
  - After a glucose load the blood glucose rises and returns to base line within 2 hours normally
  - In diabetic patients the return is slow
  - Glucose tolerance test is used to diagnose people with abnormal glucose metabolism
- Glucose tolerance test
  - 75 g of glucose is given orally
  - 1hour and 2 hour plasma glucose levels are measured

1999 WHO Diabetes criteria - Interpretation of Oral Glucose Tolerance Test

| Glucose<br>levels | NORMAL  |      | impaired fasting<br>glycaemia (IFG) |      | impaired glucose<br>tolerance (IGT) |                 | <u>Diabetes Mellitus</u><br>(DM) |                 |
|-------------------|---------|------|-------------------------------------|------|-------------------------------------|-----------------|----------------------------------|-----------------|
| Venous<br>Plasma  | Fasting | 2hrs | Fasting                             | 2hrs | Fasting                             | 2hrs            | Fasting                          | 2hrs            |
| (mmol/l)          | <6.1    | <7.8 | ≥ 6.1 &<br><7.0                     | <7.8 | <7.0                                | <u>&gt;</u> 7.8 | <u>≥</u> 7.0                     | ≥11.1           |
| (mg/dl)           | <110    | <140 | ≥110 &<br><126                      | <140 | <126                                | <u>≥</u> 140    | <u>≥</u> 126                     | <u>&gt;</u> 200 |

- Effects of hyperglycemia
  - Glycosuria due to hyperglycaemia exceeding renal threshold
  - Polyuria due to osmotically active glucose in urine
  - Polyuria resulting dehydration and thirst
  - Muscle and adipose tissue breakdown→ weight loss
  - Chronically elevated glucose leads to non enzymetic glycosylation of
    - Haemoglobin

- Glycosylated haemoglobin HbA<sub>1</sub>C
  - Red cells have about 120days life span
  - HbA₁C shows glycaemic control for past 3 months
  - An integrated index of diabetes control
  - Level reduces with good glycaemic control

- Effects of intracellular glucose deficiency
- In diabetes there is
  - Extracellular hyperglycaemia
  - Intracellular glucose deficit
  - Reduces major source of energy
- Energy requirements met by
  - Protein and fat catabolism

- Changes in protein metabolism
  - Catabolism is increased → negative nitrogen balance
  - Amino acids are converted to glucose
- Gluconeogenesis is increased due to
  - Glucagon
  - Cortisol

- Fat metabolism
  - Acceleration of lipid catabolism
  - Increased formation of ketone bodies
  - Decreased synthesis of fatty acids and TG
- Insulin
  - Inhibits hormone sensitive lipase
  - Results rise in free fatty acids in plasma
- Glucagon increases the mobilization of FFA
- FFA are catabolised to acetyl Co-A

- Ketosis
  - Acetyl-CoA converted to ketone bodies
- Ketone bodies
  - Important source of energy
- Acidosis
  - Most H<sup>+</sup> from ketone bodies are buffered
  - Un- buffered ones lead to severe acidosis
  - Results Kussumaul breathing
  - Can depress the consciousness → coma

- Cholesterol metabolism
  - Elevated cholesterol
  - Increase in LDL and VLDL
  - Results atherosclerosis

## **Insulin Excess**

- Results hypoglycemia
- Features are due to effects on CNS
- Glucose reserves on nerve cells are very little
- Function depends on continuous supply of glucose
- In Hypoglycaemia neuroglycopaenic symptoms appears

## **Insulin Excess**

- neuroglycopaenic symptoms
  - Hunger
  - Palpitations
  - Sweating
  - Nervousness
  - Confusion
  - Coma
- Prolonged hypoglycaemia results permanent brain damage

## Hypoglycaemia

- Compensatory mechanisms
- Cessation of insulin secretion
- Increased secretion of
  - Glucagon
  - GH
  - Epinephrine
  - Cortisol
- Increase the hepatic output of glucose
- Reduces the peripheral utilization

- Linear polypeptide produced by
  - A cells
  - Upper gastrointestinal tract
- Actions
  - Glycogenolytic
  - Gluconeogenic
  - Lipolytic
  - Ketogenic

- When glucagon binds to receptor
  - Acts via cyclic AMP
  - Activates protein kinase A
  - Increases glycogen breakdown
    - Activation of phosphorylase
- Increases
  - gluconeogenesis in muscle
  - Ketone body formation

- Metabolism
  - Half life is 5-10 mins
  - Degraded by liver
- Regulation of secretion
- Increased by
  - Hypoglycaemia
  - Sympathetic stimulation
  - Vagal stimulation
  - Protein rich meal
  - Starvation
  - CCK,gastrin

- Secretion is inhibited by
  - Increased GABA

#### Other islet cell hormones

- Somatostatin
  - From D cells
  - Has a paracrine function
  - Inhibits secretion of
    - Insulin, glucagon, pancreatic polypeptide
- Pancreatic polypeptide
  - a linear polypeptide
  - Secretion increased by fasting, exercise
  - Secretion is decreased by somatostatin and glucose

## Glucose metabolism

- Exercise
  - Increases the
    - Glucose entry into muscles
    - Insulin sensitivity by increasing GLUT 4
- Catecholamines
  - Increases glucose out put from liver
  - Liberates FFA
  - Decreases the peripheral utilization of glucose

## Glucose metabolism

- Thyroid hormones
  - Increases the blood glucose level
- Adrenal glucocorticoids
  - Increase plasma glucose level
    - Protein catabolism and gluconeogenesis
    - Ketogenesis
    - Decreased peripheral utilisation
- Growth hormone
  - Mobilizes FFA and increases ketogenesis
  - Decreased utilization
  - increases hepatic glucose output