```
import numpy as np
import pandas as pd
df=pd.read_csv('/Iris.csv')
df
```

→		Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	
	0	1	5.1	3.5	1.4	0.2	Iris-setosa	īl.
	1	2	4.9	3.0	1.4	0.2	Iris-setosa	+/
	2	3	4.7	3.2	1.3	0.2	Iris-setosa	
	3	4	4.6	3.1	1.5	0.2	Iris-setosa	
	4	5	5.0	3.6	1.4	0.2	Iris-setosa	
	•••	•••						
	145	146	6.7	3.0	5.2	2.3	Iris-virginica	
	146	147	6.3	2.5	5.0	1.9	Iris-virginica	
	147	148	6.5	3.0	5.2	2.0	Iris-virginica	
	148	149	6.2	3.4	5.4	2.3	Iris-virginica	
	149	150	5.9	3.0	5.1	1.8	Iris-virginica	
	150 ro	Me x F	Scolumne					

4

Next steps: (Generate code with df)

View recommended plots

New interactive sheet

```
df.head()
df.tail()
df.isna().sum()
df.dtypes
df.drop(['Id'],axis=1, inplace=True)
```

→ ▼	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	\blacksquare		
0	5.1	3.5	1.4	0.2	Iris-setosa	11.		
1	4.9	3.0	1.4	0.2	Iris-setosa	+/		
2	4.7	3.2	1.3	0.2	Iris-setosa			
3	4.6	3.1	1.5	0.2	Iris-setosa			
4	5.0	3.6	1.4	0.2	Iris-setosa			
•••								
14	5 6.7	3.0	5.2	2.3	Iris-virginica			
14	6 6.3	2.5	5.0	1.9	Iris-virginica			
14	7 6.5	3.0	5.2	2.0	Iris-virginica			
14	8 6.2	3.4	5.4	2.3	Iris-virginica			
14	9 5.9	3.0	5.1	1.8	Iris-virginica			
150 rowe x 5 columns								

Generate code with df New interactive sheet Next steps: View recommended plots x=df.iloc[:,:-1].values y=df.iloc[:,-1].values array(['Iris-setosa', 'Iris-setosa', 'Iris-setosa' 'Iris-setosa', 'Iris-versicolor', $\hbox{'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor',}\\$ 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor' 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor 'Iris-versicolor', 'Iris-versico 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor', 'Iris-versicolor' 'Iris-versicolor', 'Iris-versico 'Iris-virginica', 'Iris-virginica', 'Iris-virginica',

```
'Iris-virginica', 'Iris-virginica', 'Iris-virginica',
'Iris-virginica', 'Iris-virginica'], dtype=object)
```

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=1)
x train

₹

```
[5./, 2.9, 4.2, 1.3],
[6.2, 2.2, 4.5, 1.5],
[7., 3.2, 4.7, 1.4],
[5.8, 2.7, 5.1, 1.9],
[5.4, 3.4, 1.7, 0.2],
[6.1, 2.6, 5.6, 1.4],
[6.1, 2.8, 4., 1.3],
[7.2, 3., 5.8, 1.6],
[5.7, 2.6, 3.5, 1.],
[6.3, 2.8, 5.1, 1.5],
[6.4, 3.1, 5.5, 1.8],
[6.3, 2.5, 4.9, 1.5],
[6.7, 3.1, 5.6, 2.4],
[4.9, 3.1, 1.5, 0.1]])
```

from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaler.fit(x_train)
x_train=scaler.transform(x_train)
x_test=scaler.transform(x_test)
x train


```
[ 3.56921319e-01, -5.64600066e-01, 1.46693344e-01,
               1.41529311e-01],
             [ 1.66563282e+00, -8.06571522e-02, 1.15855619e+00,
               5.25854597e-01],
             [-1.18973773e-01, -1.04854298e+00, -1.34379669e-01,
             -2.42795974e-01],
             [ 5.94868866e-01, -5.64600066e-01, 7.65053975e-01,
               3.97746168e-01],
             [ 7.13842639e-01, 1.61314304e-01, 9.89912386e-01,
              7.82071454e-01],
             [ 5.94868866e-01, -1.29051444e+00, 6.52624769e-01,
              3.97746168e-01],
             [ 1.07076396e+00, 1.61314304e-01, 1.04612699e+00,
              1.55072202e+00],
             [-1.07076396e+00, 1.61314304e-01, -1.25867172e+00,
              -1.39577183e+00]])
from sklearn.neighbors import KNeighborsClassifier
model=KNeighborsClassifier(n_neighbors=7)
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
y_pred
y_test
    array(['Iris-setosa', 'Iris-versicolor', 'Iris-versicolor', 'Iris-setosa',
             'Iris-virginica', 'Iris-versicolor', 'Iris-virginica',
             'Iris-setosa', 'Iris-setosa', 'Iris-virginica', 'Iris-versicolor',
             'Iris-setosa', 'Iris-virginica', 'Iris-versicolor',
             'Iris-versicolor', 'Iris-setosa', 'Iris-versicolor', 'Iris-versicolor', 'Iris-setosa', 'Iris-setosa', 'Iris-versicolor',
             'Iris-versicolor', 'Iris-versicolor', 'Iris-setosa', 'Iris-virginica', 'Iris-versicolor', 'Iris-setosa', 'Iris-setosa',
             'Iris-versicolor', 'Iris-virginica', 'Iris-versicolor',
             'Iris-virginica', 'Iris-versicolor', 'Iris-virginica',
             'Iris-virginica', 'Iris-setosa', 'Iris-versicolor', 'Iris-setosa',
             'Iris-versicolor', 'Iris-virginica', 'Iris-virginica',
             'Iris-setosa', 'Iris-virginica', 'Iris-virginica',
             'Iris-versicolor'], dtype=object)
data=scaler.transform([[5.3,2.8,1.6,0.3]])
print(model.predict(data))
→ ['Iris-setosa']
from sklearn.metrics import confusion matrix, accuracy score
cm=confusion_matrix(y_test,y_pred)
score=accuracy_score(y_test,y_pred)
score
from sklearn.metrics import ConfusionMatrixDisplay
label=['Iris-virginica','Iris-setosa','Iris-versicolor']
cmd=ConfusionMatrixDisplay(cm,display labels=label)
cmd.plot()
```

2.6963//40e-01],

</pr

