ΦΩΤΟΝΙΚΗ ΤΕΧΝΟΛΟΓΙΑ

Προαιρετικά Θέματα 1ου Κεφαλαίου

ΟΠΤΙΚΕΣ ΔΙΑΤΑΞΕΙΣ ΔΙΗΛΕΚΤΡΙΚΩΝ ΣΤΡΩΜΑΤΩΝ

1.1 Στο σχήμα 1.1 φαίνεται ένα συντονιζόμενο οπτικό φίλτρο υγρών κρυστάλλων τύπου Fabry-Perot (FP-LC filter). Φίλτρα αυτής της τεχνολογίας είναι εμπορικά διαθέσιμα και πολύ διαδεδομένα. Οι δύο ανακλαστήρες είναι τύπου Bragg 2N+1=9 στρωμάτων με εναλλαγή στρωμάτων λ / 4 στο κεντρικό μήκος κύματος $\lambda_0=1550\,\mathrm{nm}$, υψηλού και χαμηλού δείκτη $n_\mathrm{H}=2.32$ και $n_\mathrm{L}=1.45$, αντίστοιχα, τοποθετημένοι πάνω σε πλάκες γυαλιού με δείκτη διάθλασης $n_\mathrm{SiO2}=1.5$. Μεταξύ των ανακλαστήρων βρίσκεται ένα στρώμα υγρού κρυστάλλου (Liquid Crystal, LC), πάχους d , στο οποίο μπορεί να εφαρμοσθεί μία τάση V , η οποία οδηγεί σε αναπροσανατολισμό των μορίων του LC και τελικά μεταβάλλει το δείκτη διάθλασης που αντιλαμβάνεται το οπτικό κύμα. Ο υγρός κρύσταλλος είναι ανισοτροπικό υλικό και χαρακτηρίζεται από τον τακτικό δείκτη διάθλασης $n_o=1.5$ και τον έκτακτο $n_e=1.7$. Όταν τα μόρια του είναι προσανατολισμένα στη γωνία θ (όπως στο σχήμα 1.1), τότε το φως που προσπίπτει κάθετα και είναι πολωμένο στο επίπεδο του σχήματος (επίπεδο των μορίων) αντιλαμβάνεται τον ενεργό δείκτη διάθλασης 1

$$n_{\text{eff}} = \frac{n_o n_e}{\sqrt{n_o^2 \cos^2 \theta + n_e^2 \sin^2 \theta}}.$$

Σχήμα 1.1 Συντονιζόμενο φίλτρο Fabry-Perot υγρών κρυστάλλων. Ο συντονισμός γίνεται μέσω της τάσης V που εφαρμόζεται στα ηλεκτρόδια που σημειώνονται. Τα τελευταία δεν επηρεάζουν την οπτική απόκριση καθώς είναι διάφανα και απειροστά μικρού πάχους.

Α. Καταρχήν θεωρείστε ότι ο υγρός κρύσταλλος μπορεί να αναπαρασταθεί προσεγγιστικά ως ομογενές στρώμα αποδίδοντας του το μέσο δείκτη διάθλασης $n_{\rm av}=\left(n_o+n_e\right)/2$.

(i) Υπολογίστε και απεικονίστε (σε dB) στο φασματικό εύρος $[1000,2000\,\mathrm{nm}]$ το συντελεστή ανάκλασης μόνο της δομής Bragg 9-στρωμάτων κοιτώντας από την πλευρά του υγρού κρυστάλλου (εσωτερικό του συντονιστή).

¹ Η σχέση που παρατίθεται έχει προκύψει από το πρόβλημα της διάδοσης επίπεδου κύματος μέσα σε ανισοτροπικό μονοαξονικό υλικό και η ίδια η απόδειξη της δεν θα μας απασχολήσει.

- (ii) Υπολογίστε και απεικονίστε (σε dB) στο παραπάνω φασματικό εύρος το συντελεστή μετάδοσης $T(\lambda)$ κάνοντας χρήση των κλειστών εξισώσεων της ενότητας 1.1.1 [εξ. (1.13)], αντιστοιχώντας σωστά τα διάφορα μεγέθη². Το πάχος του υγρού κρυστάλλου είναι $d=2\lambda_0 \ / \ n_{\rm av}$.
- (iii) Επιβεβαιώστε την ορθότητα των αποτελεσμάτων του (ii) αναλύοντας τη συνολική πολυστρωματική δομή (Bragg+LC+Bragg), όπως στην ενότητα 1.2.1, απεικονίζοντας τους συντελεστές μετάδοσης (σε dB) σε κοινό διάγραμμα. Η συμφωνία πρέπει να είναι τέλεια [επιλέξτε συνεχή γραμμή για τον υπολογισμό του (ii) και markers για τον υπολογισμό του τρέχοντος ερωτήματος].
- **Β.** Θα θεωρήσουμε ακολούθως την πιο ρεαλιστική περίπτωση στην οποία το στρώμα του υγρού κρυστάλλου είναι ανομοιογενές. Ο προσανατολισμός του υγρού κρυστάλλου κατά το πάχος του στρώματος δίνεται από τη σχέση

$$\theta(z) = \theta_{\text{max}} \sin\left(\frac{\pi z}{d}\right),$$

με τη μέγιστη γωνία θ_{\max} που λαμβάνεται στο μέσο του στρώματος να εξαρτάται από την επιβαλλόμενη τάση V . Η σχέση $\theta_{\max} - V$ δίνεται προσεγγιστικά από τα 3 ζεύγη τιμών:

$$(V,\theta_{\rm max}) \rightarrow (1.5\,{\rm V},\!30^{\rm o}), (3.0\,{\rm V},\!50^{\rm o}), (4.5\,{\rm V},\!70^{\rm o})\,.$$

Το πάχος του στρώματος είναι $\,d=1.9\,\mu\mathrm{m}$.

- (iv) Προσομοιώστε το συνεχές στρώμα του υγρού κρυστάλλου με έναν ικανοποιητικό αριθμό τεχνητών λεπτών υπο-στρωμάτων, σε καθένα από τα οποία θα αποδώσετε τον κατάλληλο ενεργό δείκτη διάθλασης 3 . Ακολούθως, αναλύστε τη συνολική δομή (Bragg+LC+Bragg) και απεικονίστε το συντελεστή μετάδοσης (σε dB) στο φασματικό εύρος $[1450,1700\,\mathrm{nm}]$ για τις τρείς παραπάνω τάσεις (σε ένα διάγραμμα).
- (v) Βρείτε για τις τρεις περιπτώσεις του ερωτήματος (iv) τα μήκη κύματος συντονισμού και το εύρος ζώνης 3 και 10~dB, μετρημένο σε nm.
- (vi) Εκτιμήστε τις τάσεις για τις οποίες το φίλτρο συντονίζει στα 1530 και 1560 nm .
- (vii) Προτείνετε τις κατάλληλες αλλαγές στους ανακλαστήρες Bragg για να μειωθεί το εύρος ζώνης 3-dB κάτω από το $1~\mathrm{nm}$.

² Σημειώνεται ότι οι εξισώσεις της ενότητας 1.1.1 έχουν προκύψει με την αντίθετη σύμβαση αρμονικής μεταβολή σε σχέση με την ανάλυση πολυστρωματικών δομών της ενότητας 1.2.1.

³ Ο ικανοποιητικός αριθμός στρωμάτων εξασφαλίζει τη σύγκλιση των αποτελεσμάτων, δηλαδή θα πρέπει η φασματική απόκριση που θα απεικονίσετε να μην μεταβάλλεται με περαιτέρω αύξηση των τεχνητών αυτών στρωμάτων.