

Raios Cósmicos: Fundamentos e técnicas de detecção

Carla Bonifazi Instituto de Física - UFRJ

Conteúdo do Curso

- ✓ Introdução: historia e primeiros detectores
- √ Medições diretas e indiretas
- √ Chuveiros atmosféricos extensos
- √ Mecanismos de aceleração (conceitos básicos)
- ✓ Propagação (conceitos básicos)
- Detecção e de reconstrução de chuveiros atmosféricos extensos
- Raios cósmicos de alta energia
- Raios cósmicos de ultra alta energia

Bibliografia

- Bruno Rossi, Cosmic Rays, Mc Graw-Hill
- Michael W. Friedlander, Cosmic Rays, Harvard University Press
- Yataro Sekido and Harry Elliot, Early History of Cosmic Ray Studies, Reidel Publishing Company
- Malcolm S. Longair, High Energy Astrophysics, Cambridge University Press
- William.R.Leo: Techniques for Nuclear and Particle Physics Experiments, Springer
- Todor Stanev, High Energy Cosmic Rays, Springer
- Thomas K. Gaisser, Cosmic Rays and Particle Physics, Cambrdge University Press
- Glenn Knoll, Radiation Detection and Measurement, Wiley

Espectro de raios cósmicos

Detecção de chuveiros atmosféricos extensos

Detecção indireta de raios cósmicos

Chuveiros Atmosféricos Extensos

Reconstrução do evento com um detector de superfície

"pegada" do chuveiro no solo

Para cada i-ésima estação:

 t_i = tempo de disparo

 $S_i = sinal$

Reconstrução geométrica

$$r_i^2 = \mid p_i \mid^2 - \mid \vec{p_i} \cdot \vec{g} \mid^2$$

Frente plano:

tempo de disparo da i-ésima estação na posição (x_i, y_i) com respeito à posição do ponto de impacto do chuveiro (x_C, y_C)

$$t_{i} = T_{0} - \frac{\vec{p_{i}} \cdot \vec{g}}{c}$$
$$t_{i} = T_{0} - \frac{\Delta x_{i} u + \Delta y_{i} v}{c}$$

cossenos diretores

$$u = \sin\theta \, \cos\phi$$

$$v = \sin\theta \, \sin\phi$$

Reconstrução geométrica

Frente plano:
$$t_i = T_0 - \frac{(x_i - x_C)u + (y_i - y_C)v}{c}$$

Minimização de chi2: $\chi^2 = \sum_{i=1}^N \left(\frac{t_i^m - t_i}{\sigma_i}\right)^2$ $w_i = 1/\sigma_i^2$

$$\Longrightarrow \frac{\partial \chi^2}{\partial T_0} = \frac{\partial \chi^2}{\partial u} = \frac{\partial \chi^2}{\partial v} = 0 \qquad (u', v') = (-u/c, -v/c)$$

Resolver o sistema: Ax = b invertendo a matriz A ($x = A^{-1}b$). As estações não podem estar alinhadas pois neste caso o det(A) = 0 (sistema singular)

Reconstrução geométrica

Frente curvo:

modelização mais realista da frente do chuveiro.

$$t_{i} = T_{0} - \frac{\vec{p_{i}} \cdot \vec{g}}{c} + \frac{\Delta r_{i}}{c}$$

$$\Delta r_{i} = R - r'_{i} = R - \sqrt{R^{2} - r_{i}^{2}} = R \left(1 - \sqrt{1 - \frac{r_{i}^{2}}{R^{2}}} \right) \qquad \Longrightarrow \qquad \Delta r_{i} \simeq \frac{r_{i}^{2}}{2R}$$

$$t_{i} = T_{0} - \frac{\Delta x_{i} u + \Delta y_{i} v}{c} + \frac{r_{i}^{2}}{2Rc}$$

Reconstrução geométrica

Frente curvo:

modelização mais realista da frente do chuveiro.

$$\begin{split} t_i &= T_0 - \frac{\vec{p_i} \cdot \vec{g}}{c} + \frac{\Delta r_i}{c} \\ t_i &= T_0 - \frac{\Delta x_i u + \Delta y_i v}{c} + \frac{r_i^2}{2Rc} \\ \text{com } r_i &= \sqrt{\Delta x_i^2 + \Delta y_i^2 - (\Delta x_i u + \Delta y_i v)^2} \end{split}$$

Para ajustar R precisamos de um mínimo de 4 estações disparadas

Ao final do processo, teremos os seguintes parâmetros, T0, θ , ϕ e R

Posição do ponto de impacto determinado pelo baricentro

Distribuição lateral de partículas da cascata

Distribuição lateral (LDF)

Função de distribuição lateral:

definida empiricamente, depende das caraterísticas do detector de superfície utilizado

1) Tipo NKG (Volcano Ranch, Yakutsk, AGASA)

baseada na solução das equações de difusão das partículas nos chuveiros atmosféricos extensos.

$$\rho(r) = C \left(\frac{r}{R_M}\right)^{-1,2} \left(1 + \frac{r}{R_M}\right)^{-\eta + 1,2} \left[1 + \left(\frac{r(m)}{1000}\right)^2\right]^{-0,6}$$

$$C = \text{constante}$$

 $\eta = \eta(\cos\theta)$
 $R_M = \text{radio de Moliere}$

Distribuição lateral (LDF)

Função de distribuição lateral:

definida empiricamente, depende das caraterísticas do detector de superfície utilizado

2) Utilizada em Haverah Park

$$\rho(r) = k \ r^{-(\eta + \frac{r(m)}{4000})}$$

k = parámetro de normalização

 $\eta = \text{pendente}, \text{ onde } \eta(\cos\theta)$

r = distância ao eixo do chuveiro

3) Log-Log (Auger)

$$S(r) = S_{ref} \left(\frac{r}{r_{ref}}\right)^{\beta + \gamma \log\left(\frac{r}{r_{ref}}\right)}$$

 $S_{ref} = \text{normalização}$

 $r_{ref} = \text{distância de referência}$

Minimização de chi2:

$$\chi_{sinal}^2 = \sum_{j=1}^m \frac{(S_i^m - S_i)^2}{\sigma_{sinal}^2}$$

Ao final do processo, teremos os seguintes parâmetros, (x_C,y_C) , Sref e a pendente se possível

Reconstrução geométrica híbrida

Informação do desenvolvimento do chuveiro

+ estação do detector de superfície

Tempo de disparo do i-ésimo pixel da câmera do telescópio

$$t_i = t_0 + \frac{R_p}{c} \tan\left(\frac{\chi_0 - \chi_i}{2}\right)$$

$$t_{SD} = \frac{ux_{SD} + vy_{SD}}{c}$$

$$u = sin\theta \cos\phi$$

$$v = \sin\theta \sin\phi$$

Ótima resolução na posição do ponto de impacto do chuveiro

x [km]

Shower Delector Plane (SDP)

 $\chi_0 - \chi_i$

Perfil longitudinal híbrido

Uma reconstrução geométrica precisa permite que o perfil longitudinal também seja obtido com boa precisão!

Perfil de Gaisser-Hillas
$$N_e(X) = N_{e_{max}} \left(\frac{X - X_0}{X_{max} - X_0} \right)^{\frac{X_{max} - X_0}{\lambda}} e^{\frac{X_{max} - X_0}{\lambda}}$$

 X_0 = profundidade da primeira interação $N_{e_{max}} = \#$ de e^- no máximo do chuveiro $\lambda = \text{escala típica de perda de energia na cascata}$

$$E = (7,1 \pm 0,2) \ 10^{19} \text{ eV}$$

 $X_{\text{max}} = (752 \pm 7) \text{ g/cm}^2$

Perfil longitudinal híbrido

Todas as contribuições

Perfil longitudinal híbrido

Mas a vida não é tão fácil assim ...

(EMS)

A técnica de imagem atmosférica Cherenkov

1º Interação:

 $X_0 \sim 40 \text{ g/cm}^2$ $\lambda_{par} \sim 50 \text{ g/cm}^2$

Cascata:

Para $E = 1 \text{ TeV} (E_C \sim 80 \text{ MeV})$ $X_{max} \sim X_0 \text{ In } (E/E_C) / \text{In } 2$

 $h_{max} = h_0 \ln(X_A/X_{max}) \sim 5 \text{ km}$

Cherenkov light:

 $\theta_{\rm C}({\rm max}) = {\rm acos} (1/{\rm n}) \sim 1.4^{\rm o}$

 $r_l \sim \theta_C(max) h_{max} \sim 100 m$

A técnica de imagem atmosférica Cherenkov

A técnica de imagem atmosférica Cherenkov

A técnica de imagem atmosférica Cherenkov

Distribuição de fótons no chão

A técnica de imagem atmosférica Cherenkov

Identificando o ruído de fundo

A técnica de imagem atmosférica Cherenkov

Reconstrução

Caminho tradicional

- Parâmetros de Hillas
- Interseção dos eixos das imagens

Caminho padrão moderno

- Modelos e máxima verossimilhança

Parâmetros de Hillas

- comprimento L e largura w da elipse
- Tamanho: amplitude total da imagem
- d = distância angular entre o centro da câmera e o centro de gravidade da imagem
- ϕ = ângulo azimutal do eixo principal da imagem
- ângulo de orientação α

Espectro de raios cósmicos

Detecção de chuveiros atmosféricos extensos

Detecção de chuveiros atmosféricos extensos Detectores de superfície (recentes e atuais)

AGASA [Akeno Giant Air Shower Array]

ARGO-YBJ: in Tibet

BAKSAN (Mt. Caucasus, Russia)

Buckland Park Extensive Air Shower Array (Australia) (operational 1971-1998)

CASA [Chicago Air Shower Array] (operational 1990-1998)

EAS-TOP (Italy, above the Gran Sasso laboratory, 1990-2000)

Haverah Park (Leeds University, operational until 1993)

GRAND [Gamma Ray Astrophysics at Notre Dame] (an array of tracking detectors)

GRAPES, India

HEGRA (operational 1988-2002)

ICETOP (South Pole, over ICECUBE)

KASCADE [KArlsruhe Shower Core and Array DEtector]

KASCADE-GRANDE

MILAGRO (Water Cherenkov experiment near Los Alamos)

Mt. Norikura Observatory in Japan

Pierre Auger Observatory

SPASE 2 [South Pole Air Shower Array]

SUGAR [Sydney University Giant Air shower Recorder] (operational from 1968 to 1979)

Telescope Array

Tian-Shan Mountain Cosmic Ray Station

Tibet AS-gamma experiment: scintillation counter array

Yakutsk (Russia)

clique nos nomes para acessar a página web

Detecção de chuveiros atmosféricos extensos Detectores de radiação (recentes e atuais)

AIROBICC (non-imaging counters in the HEGRA array)

ASHRA [All-sky Survey High Resolution Air-shower detector]

BLANCA [Broad LAteral Non-imaging C(h)erenkov Array] (at CASA))

H.E.S.S. [High Energy Stereoscopic System]

HiRes The High Resolution - Fly's Eye Cosmic Ray Detector

MACE [Major Atmospheric Cerenkov Telescope Experiment] (India)

MAGIC (a 17 m telescope on La Palma, Canary Islands, operational since 2003)

Narrabri, Australia: Mark 6 telescopes of the University of Durham (operational until March 2000)

PACT [Pachmarhi Array of C(h)erenkov telescopes] at the High Energy Gamma Ray Observatory at

Pachmarhi, India.

Pierre Auger Observatory

Telescope Array

TUNKA (array of non-imaging counters near Lake Baikal)

VERITAS [Very Energetic Radiation Imaging Telescope Array System] (operational since 2007)

Whipple Gamma-Ray Telescope on Mt. Hopkins, Arizona (operational 1968-2008)