

SECOND SEMESTER 2021-22 Course Handout (Part II)

Date: 13.01.2022

In addition to Part-I (General Handout for all courses appended to the Timetable) this portion gives further specific details regarding the course.

Course No. : CHEM G552

Course Title : Advanced Inorganic Chemistry

Instructor-in-charge: Himanshu Aggarwal

Instructors : Himanshu Aggarwal and Sounak Roy

Course Description : Advanced coordination chemistry, reactions, kinetics and mechanism; advanced organometallic chemistry, bonding models in inorganic chemistry, inorganic chains, rings, cages and clusters; group theory and its applications to crystal field theory, molecular orbital theory and spectroscopy (electronic and vibrational); inorganic chemistry in biological systems

- **1. Scope and Objective of the Course:** Theories of coordination chemistry, electronic spectroscopy and magnetism of complexes, organometallic chemistry and chemistry of lanthanides and actinides.
- **2. Text Book:** T1. "Inorganic Chemistry" Huheey J. E., Keiter, Ellen A., Keiter, Richard L., Medhi, O.K.; 4th ed., Pearson.

Reference Books: R1. "Concise Inorganic Chemistry", Lee, J.D. 5th Edition, Wiley, India Edition.

R2 "Inorganic Chemistry", Shriver, D.F.; Atkins, P.W.; Overton T. L., Rourke, J. P., Weller, M. T., Armstrong, F. A. 4th edition, Oxford.

R3 "Concepts & Models of Inorganic Chemistry" B. Douglas, D. McDaniel and J. Alexander 3rd Edn, wiley India.

3. Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Chapter in the Text Book
1-2	Coordination chemistry	Coordination chemistry: Bonding VB theory applied to coordination compounds	T1:Chapter14: 424- 428
3-5	Crystal Field Theory (CFT)	Crystal Field Theory (CFT):	T1:Chapter 14:

		Crystal field splitting; d orbitals in different crystal fields; applications of CFT	428-444	
6-8	Molecular orbital theory	Molecular orbital theory	T1:Chapter 14: 444-459	
9-12	Electronic spectra of complexes, Magnetic properties of complexes	Electronic spectra of complexes, Magnetic properties of complexes	T1:Chapter 15: 461-492	
13-15	Structure Nomenclature	Structure – Nomenclature, Coordination numbers 1, 2, 3, 4, 5, 6, 7 Generalization about coordination numbers Isomerism: Linkage and other types of isomerism Chelate effect	T1:Chapter 16: 495-539 Lecture notes	
16-20	Reactions of coordinated complexes	Reactions – Nucleophilic substitution reactions, Kinetics, Mechanisms	T1:Chapter 17 (542-569) and Lecture notes	
21-30	Organometallic chemistry	The 18-electron rule Metal-carbonyl complexes Nitrosyl complexes Dinitrogens Alkyls Carbenes, Carbynes, Carbides Alkenes Alkynes Metallocenes	T1:Chapter 18 and Lecture notes	
31-38	Catalysis and reaction mechanisms.	Catalysis by organometallic compounds Stereo chemically non-rigid molecules	T1:Chapter 19 (634-661) T1:Chapter 6 (196-202)	
39-40	Lanthanide and actinide chemistry	Descriptive chemistry of metals - The Lanthanides and Actinides	T1:Chapter 13 (407- 419) Lecture notes	

4. Evaluation Schedule:

Component	Duration	Weighting	Date and Time	Nature of
		(%)		Component
Class tests,	-	40	Continuous	Open Book
Assignments and				
presentations				
Mid Semester Test	90 min	25	As announced	Closed Book
			by Time Table	
Comprehensive	120 min	35	As announced	Closed Book
Examination			by Time Table	

- **5. Chamber consultation hour:** To be announced in the class.
- **6. Make-up for tests:** May be granted only for genuine cases.
- 7. **Notices:** All notices for this course will be displayed in the Chemistry Notice Board.
- **8. Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable

Instructor-in-charge

CHEM G552

