

Hausaufgaben und Übungen zur Vorlesung

Analysis 2

Stefan Waldmann

Wintersemester 2023/2024

$Hausaufgabenblatt\ Nr.\ 2$ $_{\text{\tiny revision: (None)}}$

Last changes by (None) on (None) Git revision of ana2-ws2324: (None)

25. 10. 2023 (23 Punkte. Abzugeben am 02.11. 2023)

Hausaufgabe 2-1: Leibnizregel

Es seien $f, g: D \to \mathbb{R}$ n-mal differenzierbare Funktionen für $n \in \mathbb{N}_0$ und $D \subset \mathbb{K}$ offen. Zeigen Sie, dass $f \cdot g$ ebenfalls n-mal differenzierbar ist und weiterhin

$$(f \cdot g)^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x) g^{(n-k)}(x)$$

für jedes $x \in D$ gilt. (3 Punkte)

Hausaufgabe 2-2: Differenzierbarkeit und gleichmäßige Konvergenz

i.)Betrachten Sie die Funktionenfolge $f_n:\mathbb{R}\to\mathbb{R}$ definiert durch

$$f_n(x) = \frac{1}{n} \sqrt{n^2 x^2 + 1}.$$

Beweisen Sie, dass $(f_n)_{n\in\mathbb{N}}$ gegen eine zu bestimmende Grenzfunktion $f:\mathbb{R}\to\mathbb{R}$ gleichmäßig konvergiert, diese jedoch nicht differenzierbar auf \mathbb{R} ist. Warum ist das kein Widerspruch zu Proposition 5.5.2? (3 Punkte)

ii.) Untersuchen Sie

$$f(x) = \sum_{n=1}^{\infty} \frac{\cos(nx)}{n^3}, \ x \in \mathbb{R}$$

auf Differenzierbarkeit.

(3 Punkte)

Hausaufgabe 2-3: Gleichmäßige Approximation der Rampe

Zeigen Sie, dass die Funktion

$$f: [-1,1] \to \mathbb{R}, \qquad f(x) = \max\{x,0\}$$

gleichmäßig durch Polynome approximiert werden kann.

(2 Punkte)

Hinweis: Proposition 5.5.1

Hausaufgabe 2-4: Eine C^{∞} -Funktion

- i.) Es seien $f:(a,b)\to(c,d)$ und $g:(c,d)\to\mathbb{R}$ n-mal differenzierbare Funktionen mit $n\in\mathbb{N}_0$. Zeigen Sie, dass auch $g\circ f$ n-mal differenzierbar ist. (2 Punkte)
- ii.) Zeigen Sie, dass $f:\mathbb{R}\to\mathbb{R}$ mit

$$f(x) = \begin{cases} \exp(-\frac{1}{x^2}), & \text{für } x \neq 0, \\ 0, & \text{sonst} \end{cases}$$

eine unendlich oft differenzierbare Funktion definiert ist. Bestimmen Sie zudem $f^{(n)}(0)$ für alle $n \in \mathbb{N}$. (4 Punkte)

Hausaufgabe 2-5: Gleichmäßige Konvergenz von Verkettungen

Es seien $K_1, K_2 \subset \mathbb{K}$ nichtleere, kompakte Mengen und die Folgen stetiger Funktionen $f_n : K_1 \to K_2$ sowie $g_n : K_2 \to \mathbb{K}$ seien gleichmäßig konvergent gegen $f : K_1 \to K_2$ bzw. $g : K_2 \to \mathbb{K}$. Beweisen Sie, dass auch

$$g_n \circ f_n \quad \to \quad g \circ f$$

gleichmäßig auf K_1 gilt.

(6 Punkte)