10 The stand of the stand of the stand of the stand

1

2

WHAT IS CLAIMED IS:

1 1. A method of image compression, comprising the steps of	1 1.	. A	method of image	compression,	comprising	the steps of
---	------	-----	-----------------	--------------	------------	--------------

- 2 recursively transforming an image using Discrete Wavelet Transform to create a plurality of 3 levels including at least a first level, multiple n levels, and a low-low pass subband of level n, 4 wherein n is the number of levels;
- 5 quantizing the transformed image at each level; and
- 6 datapacking the quantized image, wherein the datapacking step further comprises:
- 7 encoding of the first level using adaptive run length of zero coefficients;
- 8 encoding of the multiple n levels using run-length coding of zero coefficients and a
- 9 predetermined two-knob huffman table for non-zero coefficients; and
- encoding of the low-low pass subband of level n using a low frequency packing
- 11 algorithm.
 - 2. The method of claim 1, wherein the step of encoding of the first level further comprises the steps of:
 - 3 scanning the quantized image to find largest coefficient magnitude;
- 4 storing the largest non-zero coefficient magnitude in a header;
- 5 run-length coding of the zero coefficients in the quantized image; and
- encoding the non-zero coefficients using a predetermined huffman table.
- 1 3. The method of claim 2, wherein the step of encoding of the first level further comprises the
- 2 steps of: if a non-zero coefficient is not found in the predetermined huffman table, encoding an
- 3 escape code and encoding the non-zero coefficient in signed bit representation.
- 1 4. The method of claim 3, wherein the step of encoding of the first level further comprises the
- 2 steps of: encoding a run in the quantized image by using three bits; and

- 3 if three bits are not enough to write the run, encoding a zero codeword.
- 1 5. The method of claim 1, wherein the step of encoding of the multiple n levels, further
- 2 comprises the steps of: scanning the quantized image after run-length coding of the zero coefficients
- 3 to find the longest run; and storing the longest run.
- 1 6. The method of claim 5, wherein the step of encoding of the multiple n levels, further
- 2 comprises the step of: determining a long run or a short run based on the magnitude of the longest
- 3 run.
- 1 7. The method of claim 1, wherein in low frequency algorithm further comprises the step of:
- 2 calculating a difference between a plurality of DC coefficients and a plurality of AC coefficients,
- 3 thereby defining a plurality of DC difference values.
- 1 8. The method of claim 7, wherein in low frequency algorithm further comprises the steps of:
- writing the DC coefficients and the DC difference values to an encoded data stream in
- 3 unsigned bit representation in a rowwise manner.
- 1 9. A method of image compression, comprising the steps of:
- 2 recursively transforming an image using Discrete Wavelet Transform to create a plurality of
- 3 levels;
- 4 quantizing the transformed image at each level; and
- 5 encoding of the quantized image at each level using run-length coding of a plurality of zero
- 6 coefficients and a predetermined two-knob huffman table for a plurality of non-zero coefficients.
- 1 10. An encoder of compressing image data, comprising:
- 2 a two-dimensional discrete wavelet filter for transforming the input data into plurality
- of coefficients forming a first level, intermediate levels, and a low-low subband of a highest

4	level	•
7	10 4 01	- 5

5

6

7

8

9

10

a quantizer for mapping the coefficients into discrete regions by a predetermined compression parameter; and

a datapacker for compressing the mapped coefficients wherein the datapacker encodes a plurality of zero coefficients at the first level by adaptive run length coding, a plurality of non-zero coefficients at the intermediate levels by a two-knob Huffman coding and the low-low subband at the highest level by low frequency coding.

- 1 11. The encoder of claim 10, wherein the datapacker at the first level the adaptive run length
- 2 coding further comprises scanning the mapped coefficients to find largest coefficient magnitude,
- 3 storing the largest non-zero coefficient magnitude in a header, and run-length coding of the zero
- 4 coefficients.
- 1 12. The encoder of claim 11, wherein the datapacker at the first level encodes the non-zero coefficients using a predetermined huffman table after run length coding of the zero coefficients.
- 1 13. The encoder of claim 12, wherein the datapacker at the first level encodes a run of zero coefficients by writing a zero indicator followed by a predetermined number of data elements,
- 1 14. The encoder of claim 13, wherein the datapacker at the first level encodes an additional 2 zero indicator if the predetermined number of data elements are not enough to write the run.
- 1 15. The encoder of claim 10, wherein the datapacker at the low-low subband at the highest
- 2 level encodes a difference between a plurality of DC coefficients and a plurality of AC
- 3 coefficients.
- 1 16. A computer readable medium having a program for performing image compression,
- 2 comprising the steps of:

recursively transforming an image using Discrete Wavelet Transform to create a plurality of						
levels including at least a first level, multiple n levels, and a low-low pass subband of level 1						
wherein n is the number of levels;						
	quantizing the transformed image at each level; and					
	datapacking the quantized image, wherein the datapacking step further comprises:					
	encoding of the first level using adaptive run length of zero coefficients;					
	encoding of the multiple n levels using run-length coding of zero coefficients and a					
	predetermined two-knob huffman table for non-zero coefficients; and					
	encoding of the low-low pass subband of level n using a low frequency packing					
	algorithm.					
17.	A method of compressing a digital image data set, comprising the steps of:					
	performing a plurality of two-dimension discrete wavelet transformations on the data set,					
where	in the plurality of transformations includes a first level, a plurality of intermediate levels, a last					
low-p	ass subband of a last level;					
	quantizing the plurality of transformations;					
	datapacking the quantized first level using a first packing algorithm;					
	datapacking the plurality of quantized intermediate levels using a second packing algorithm:					
and						
	datapacking the low pass subband of the last level using a third packing algorithm.					
18.	The method of claim 17, wherein the first packing algorithm includes the step of:					
	adaptive run-length coding of a plurality of zero coefficients.					
19.	The method of claim 17, wherein the second packing algorithm includes the steps of:					
	run-length coding of a plurality of zero coefficients; and					
	two-knob huffman coding of a plurality of non-zero coefficients.					
	where low-p and 18.					

10.00
7
ang ra
E
ļak.
12

1	20.	The method of claim 13, wherein the third packing algorithm includes the steps of:			
2		low-frequency differential datapacking of a plurality of coefficients on a row-wise fashion			
3	including a DC coefficient.				
1	21.	A method compressing image data, comprising the steps of:			
2		encoding using a first packing algorithm for a first level of a transformation; and			
3		encoding using a second packing algorithm for a second level of the transformation			
4					
5	22.	The method of claim 21, wherein the first packing algorithm includes the step of:			
6		adaptive run-length coding of a plurality of zero coefficients.			
1	23.	The method of claim 21, wherein the second packing algorithm includes the steps of:			
2		run-length coding of a plurality of zero coefficients; and			
3		two-knob huffman coding of a plurality of non-zero coefficients.			
1	24.	The method of claim 21, further comprising the step of encoding using a third packing			
2	algori	thm for a third level of transformation.			
1	25.	The method of claim 24, wherein the third packing algorithm includes the steps of:			
2		low-frequency differential datapacking of a plurality of coefficients on a row-wise fashion,			
3	includ	including a DC coefficient.			