Assignment Project Exian Help

https://powcoder.com

Classification II: Margins and SVMs

Assignment Project Exam Help

https://powcoder.com

Outline

- Perceptron
- ► Margins
- Assignment Project Exam Help

https://powcoder.com

Perceptron (1)

- ► *Perceptron*: a variant of SGD
- Assignative by the property of the control of the
 - $\blacktriangleright \ \, \mathsf{Step \ size} \,\, \eta = 1$
 - Continues updating until all training examples correctly

https://powcoder.com

Figure 1: Comparing hinge loss and zero-one loss

Perceptron (2)

- ightharpoonup Start with $w^{(0)} = 0$.
- For t = 1, 2, ... until all training examples correctly classified ASSIGNATION TO SECTOR TO SECURITY OF THE PROPERTY OF T $w^{(t-1)}$
 - https://powcoder.com

Perceptron (3)

Note that whenever $y_t x_t^\mathsf{T} w^{(t-1)} \leq 0$,

Assignment Project Exam Help

So update is

$$w^{(t)} := w^{(t-1)} + y_t x_t.$$

https://powcoder.com

$$\hat{w} = \sum y_i x_i$$

Add We Chat powcoder

lacktriangle Possible to include same example index multiple times in S

Properties of Perceptron

▶ Suppose $(x_1, y_1), \dots, (x_n, y_n) \in \mathbb{R}^d \times \{-1, +1\}$ is linearly separable.

Assignment fine in the data set—how much wiggle room there is for linear separators.

https://powcoder.com
Add WeChat powcoder

**H

Figure 2: Linearly separable data

Margins (1)

Margin achieved by w on i-th training example is the distance

Assignment $\Pr_{\gamma_i(w)} = \frac{\sum_{i=1}^{Margin} \text{achieved } S_i, w}{\|w\|_2}$.

- Maximum marki/ achievable on all raining examples: $\gamma_{\star} := \max_{w \in \mathbb{R}^d} \min_i \gamma_i(w).$
- Theorem If the hing data is life and separable. Percepturent finds a linear separator after making at most $(L/\gamma_{\star})^2$ upda where $L = \max_i ||x_i||_2$.

 $y_1 x_1^{\intercal} w \ || w ||_2$ $y_1 x_1^{\intercal} y_1 x_2^{\intercal}$

Assignment Project Exam Help

https://powcoden.com

Margins (2)

ightharpoonup Let w be a linear separator:

Assignment $P_{\text{example}}^{y_i x_i^{\mathsf{T}} w > 0}$, $i = 1, \dots, E_n$.

- So x_1 is closest to decision boundary among all training
- ► Records We what powcoder
- ▶ Distance from y_1x_1 to decision boundary is $1/\|w\|_2$.
- ightharpoonup The shortest w satisfying

$$y_i x_i^\mathsf{T} w \ge 1, \quad i = 1, \dots, n$$

gives the linear separator with the <u>maximum margin</u> on all training examples.

Support vector machine

 Weight vector of maximum margin linear separator: defined as solution to optimization problem

Assignment $\Pr_{\substack{\min \\ w \in \mathbb{R}^d}} \Pr_{\substack{1 \ |w| 2}}$ Exam Help

subject to $y_i x_i^{\mathsf{T}} w \geq 1, \quad i = 1, \dots, n.$ The 12 prefactor is customary but inconsequential.)

- ► This is the <u>support vector machine (SVM)</u> optimization problem.
- ► FASIO When WE CIPA terpo WCOder
- Note: Preference for the weight vector achieving the maximum margin is another example of inductive bias.

Support vectors

▶ Just like least norm solution to normal equations (and ridge regression), solution \underline{w} to SVM problem can be written as

Assignment of the span of the

The examples (x_i,y_i) for which $\alpha_i \neq 0$ are called the property of the property of the constant of the c

Soft-margin SVM (1)

- ▶ What if not linearly separable? SVM problem has no solution.
- ▶ Introduce <u>slack variables</u> for constraints, and $C \ge 0$:

$Assign \underset{w \in \mathbb{R}^{d}, \xi_{1}, \dots, \xi_{n} \geq 0}{\operatorname{End}} \operatorname{Project}_{2}^{n} \operatorname{Exam} \operatorname{Help}$

- subject to $y_i x_i^\mathsf{T} w \ge 1 \xi_i$, $i = 1, \ldots, n$.
- https://powcoder.com
 - A constrained convex optimization problem
- lacktriangle For given w, $\xi_i/\|w\|_2$ is distance that x_i has to move to satisfy

"A" WeChat powcoder

Soft-margin SVM (2)

Equivalent unconstrained form:

Assignment Project Exam Help

- Rewriting using $\lambda = 1/(nC)$ and ℓ_{hinge} : $\frac{1}{n} \sum_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \ell_{\text{hinge}}(y_i x_i^{\mathsf{T}} w) + \frac{\lambda}{2} \|w\|_2^2.$
- ► SANCERIAN DESWOODER
 - Data fitting term (using a surrogate loss function)
 - Regularizer that promotes inductive bias
 - \triangleright λ controls trade-off of concerns
- Both SVM and soft-margin SVM can be kernelized