Question: Acoustique

Un train se déplace sur une voie ferrée une vitesse de \vec{v} =(150,50,0) km/h. Il émet un son à une fréquence f_t =400 Hz lorsqu'il se trouve au point \vec{r}_{train} =(0,1500) m (voir figure ci-dessous). Le niveau d'intensité sonore de ce signal, mesuré à 1 m de la source, est de 150 dB. Un microphone situé dans un appartement et localisé tout près de la porte (position \vec{r}_{micro} =(-1,0,0) m) est utilisé pour enregistrer le signal.

Tableau 1 : Vitesse du son et masse volumique de l'air en fonction de la température.

T(C)	c (m/s)	$\rho(kg/m^3)$
-10	325.4	1.341
-5	328.5	1.316
0	331.5	1.293
+5	334.5	1.296
+10	337.5	1.247
+15	340.5	1.225
+20	343.4	1.204
+25	346.3	1.184
+30	349.2	1.164

L'information présentée au tableau 1 ainsi que le fait qu'une atténuation de $\alpha = 0.0025$ dB/m est observée pour des sons de fréquence autour de 400 Hz qui se déplacent dans l'air à -10 °C pourraient être utiles.

- (a) Déterminer le niveau d'intensité sonore à la position du microphone si la pièce et le train sont tous deux à la température extérieure ($\theta_e = -10^{-o}C$).
- (b) Déterminer la baisse additionnelle de l'intensité sonore à la position du microphone si l'appartement est à une température de $\theta_a = 20$ °C (la température extérieure demeure à $\theta_e = -10$ °C).
- (c) Quelle sera la fréquence perçue par le microphone?

Solution:

(a) (5 points) Déterminer le niveau d'intensité sonore à la position du microphone si la pièce et le train sont tous deux à la température extérieure ($\theta_e = -10^{\circ}$ C).

Le niveau d'intensité sonore d'un signal acoustique diminue en fonction de la distance à cause de deux effets : la dispersion du son et son atténuation dans l'air. On peut donc écrire

$$L_i(r) = L_i(r_0) - 20 \log\left(\frac{r}{r_0}\right) - \alpha(r - r_0)$$

 $où r_0 = 1$ m est le point où l'intensité du signal de référence est mesurée, r est la distance parcourue par le signal sonore en m. En utilisant les données du problème, on peut évaluer r=1501 m. On obtient alors

$$L_i(r) = 150 - 20 \log(1501) - 0.0025(1500) = 82.72 \, dB.$$

(b) (5 points) Déterminer la baisse additionnelle de l'intensité sonore à la position du microphone si l'appartement est à une température de $\theta_a = 20$ °C (la température extérieure demeure à $\theta_e = -10$ °C).

À l'interface de deux milieux d'impédance acoustique différente (deux températures différentes), le coefficient de transmission en puissance est donné par

$$T = \frac{4Z(\theta_e)Z(\theta_a)}{(Z(\theta_e) + Z(\theta_a))^2}$$

 $avecZ(\theta) = \rho c$ l'impédance d'un milieu de masse volumique ρ où la vitesse du son est c à la température θ . L'atténuation résultante de l'intensité sonore est alors

$$\Delta L(dB) = 10\log(T)$$

En utilisant les données du tableau 1, on obtient $Z(-10\ ^{\circ}C)=436.36$ et $Z(20\ ^{\circ}C)=413.45$ et la baisse additionnelle d'intensité sonore est de 0.0032 db.

(c) (10 points) Quelle sera la fréquence perçue par le microphone?

Ici nous évaluerons le changement de fréquence du son dû à l'effet Doppler. Pour ce faire, nous devons premièrement déterminer la direction du son qui atteindra le microphone qui est donnée par

$$\hat{u} = \frac{\vec{r}_{\text{micro}} - \vec{r}_{\text{train}}}{|\vec{r}_{\text{micro}} - \vec{r}_{\text{train}}|} = (0.1.0)$$

Ensuite nous évaluons le rapport entre la composante de la vitesse de la source ou du microphone dans la direction \hat{u} et la vitesse du son dans l'air à la température θ_e =qui est c=325.4 m/s. Nous obtenons

$$\beta_s = \frac{\hat{u}.\,\vec{v}_t}{c} = \frac{150000}{3600 \times 325.4} = 0.1280$$

$$\beta_r = \frac{\hat{u}.\,\vec{v}_t}{c} = 0$$

La fréquence perçue par le microphone sera alors

$$f_m = (1 - \beta_s)f_t = 348.8 \ Hz.$$