

NIAC (NASA Innovative Advanced Concepts)

Phase 1 & 2 Studies (2011 – 2014)

An Innovative Solution to NASA's NEO Impact Threat Mitigation Grand Challenge and Flight Validation Mission Architecture Development

Bong Wie (PI)

Asteroid Deflection Research Center

Iowa State University

Brent Barbee (Co-I)

NASA Goddard Space Flight Center

Graduate Students: Alan Pitz, Brian Kaplinger,

Matt Hawkins, Tim Winkler, Pavithra Premaratne,

George Vardaxis, Joshua Lyzhoft, Ben Zimmerman

NIAC Study Objective (2011 – 2014)

To develop an innovative yet practically implementable mitigation technique for the most probable impact threat of an asteroid or comet with short warning time (i.e., when we don't have sufficient warning times for a deflection mission)

NIAC Phase 1 Proposal (2011)

- Late intercept missions, with short warning time < 1 yr, will result in a hypervelocity arrival closing (relative) velocity of 5 to 30 km/s.
- $\Delta V = 10$ km/s requires a 96% propellant mass (300-s Isp)
- $\Delta V = 30$ km/s requires a 99.99% propellant mass ratio
- Impact velocity of nuclear explosive devices (NEDs) is limited as 300 m/s max (2005 NRC Report on NEPWs)

Precision Terminal Intercept Guidance

Terminal Guidance Begins
Impact - 2 hrs
for 50- to 150-m target

Cameras identify target NEO

Target Acquisition

Deployment of 10-m boom with contact fuses and sensors

Leader S/C separates from Follower S/C

Sensors on boom detect NEO surface and Leader S/C sends a signal to initiate detonation sequence of NED

Leader S/C impacts and creates a shallow crater allowing more surface area to be exposed to NED

IPBM

Follower S/C with NED enters crater and detonates resulting in optimal disruption of target NEO

Launch Vehicles

- Delta IV Heavy
1500 kg NED
(≈ 2 Mt yield)
- Delta IV M+
1000 kg NED
(≈ 1 Mt yield)
- Delta II Class
300 kg NED
(≈ 300 kt yield)

Ready to Launch

Build and Launch

Ready to Launch

Build and Launch

2006 NEO Report by NASA
2010 NEO Report by NRC

Nuclear

Size (m)

10000

1000

NIAC Phase 1 & 2 Studies

Disruption

Pulverization/Vaporization

Deflection

Civil Defense

20

10

1

Warning Time (Years)

NIAC Project Outcomes (1/2)

- The Hypervelocity Asteroid Intercept Vehicle (HAIV) mission concept of blending a kinetic impactor with nuclear subsurface explosion
- 7 journal articles + 30 plus technical papers
- 3 Ph.D. (graduated) + 3 MS (graduated) + 3 Ph.D. (current)
- The HAIV mission concept should further exploit the ATLAS last alert system for active last-minute planetary defense (1 week – 3 weeks)

ATLAS Last Alert System

(Asteroid Terrestrial-Impact Last Alert System)

ATLAS project head Dr. John Tonry with a conceptual drawing for an ATLAS telescope. The project would use two of these 20-inch telescopes. *Credit: UH/IfA*

An early ATLAS design concept.

- A \$5M project started in 2013 (due to the Chelyabinsk event)
- The ATLAS is currently scanning the sky with a prototype camera and telescope, and will be fully operational in 2015-2016.
- So far, only for civil defense (evacuation)
- One-day alert for a 8-m, 30-kt “town killer”
- One-week alert for a 45-m, 5-Mt “city killer”
- Three-week alert for a 140-m “county killer”

NIAC Project Outcomes (2/2)

- If a HAIV/IPBM system ($\approx \$200M$ - $\$500M$) becomes ready to launch at anytime in the future,

- ✓ Given one-week warning from the ATLAS, an asteroid (> 45 m) can be intercepted/fragmented far outside the orbit of moon.
- ✓ Given three-week warning from the ATLAS, an asteroid (> 140 m) can be intercepted/fragmented far outside Earth's gravitational field.

- Note that ALL other “non-nuclear deflection” options will require much earlier warning of at least 10 to 20 years.

Suborbital Nuclear Intercept/Pulverization Mission Scenario

**AAS-2014-281
AIAA-2014-4460
PDC 2015**

HAIV Design by NASA GSFC

for a Flight Validation Mission (\$500M)

Atlas V

Acta Astronautica
Vol. 106, 2015, pp.139-159

HAIV Design by the Mission Design Lab (MDL) of NASA Goddard Space Flight Center

HAIV Flight Validation Mission Trajectory

2005 Deep Impact Mission Trajectory

Hypervelocity Asteroid Intercept Vehicle (HAI) Interplanetary Ballistic Missile (IPBM) Concept

Produced By Asteroid Deflection Research Center
at Iowa State University using Kerbal Space Program

Pulverization and Dispersion of a 300-m Asteroid with a 30-day Warning Time

Educational Use Only

14 Mar 2036 01:00:00.000

Time Step: 3600.00 sec

NIAC Study Summary

Early Warning (> 10 yrs)

“Build and Launch”
(Deflection)

> 2 yrs

“Build and Launch”
(Deflection vs. Disruption)

< 1 yr

“Ready to Launch” (Disruption)

ATLAS Last Alert

ATLAS project head Dr. John Tonry with a conceptual drawing for an ATLAS telescope. The project would use two of these 20-inch telescopes. Credit: UH/IIfA

3-week (> 140 m)

“Ready to Launch”
(Interplanetary)

1-week (> 45 m)

“Ready to Launch”
(inside/outside lunar
orbit)

1 day – 1 wk

IPBM/HAI
\$200M - \$500M

Thank You !