Elementary Linear Algebra - MATH 2250 - Day 20

Name:

1. Let us repeat a problem from previous worksheet: Using the cofactor formula evaluate the determinant of

$$A = \left[\begin{array}{rrr} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right].$$

Find A^{-1} .

Recall that the cofactor $C_{ij} = (-1)^{i+j} \det M_{ij}$. Find all the cofactors of the matrix A and put them in a matrix C.

Find AC^T .

Compare C^T with A^{-1} .

AC= det(A) I

$$C^{T} = \frac{1}{\det A} A^{-1}$$

3. Is any row of C in the null space of A? Why?

if row i of C is in
$$N(A)$$
 then $A(C_i)^T = 0$
But $A(C_i)^T = \begin{bmatrix} 0 \\ def(A) \end{bmatrix}$ ith row.

4. Using Cramer's rule find the solution to $A\mathbf{x} = \mathbf{b}$, for $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$, and $\mathbf{b} = (1,0,0)$.

5. Recall the formula for the cross product of $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ which is $\mathbf{u} \times \mathbf{v} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$.

Show that
$$\mathbf{w} = \mathbf{u} \times \mathbf{v}$$
 is perpendicular to \mathbf{u} by calculating $\mathbf{w} \cdot \mathbf{u}$.

$$\mathbf{w} \cdot \mathbf{u} = \left(\mathbf{u}_{1} \mathbf{v}_{2} \mathbf{v} \right) \cdot \mathbf{u} = \left(\mathbf{u}_{2} \mathbf{v}_{3} - \mathbf{u}_{3} \mathbf{v}_{2} \right) \cdot \mathbf{u}_{3} \mathbf{v}_{1} - \mathbf{u}_{1} \mathbf{v}_{3} \quad \mathbf{u}_{1} \mathbf{v}_{2} - \mathbf{u}_{2} \mathbf{v}_{1} \right) \cdot \mathbf{u}_{2}$$

$$= \left(\mathbf{u}_{1} \mathbf{u}_{2} \mathbf{v}_{3} - \mathbf{u}_{1} \mathbf{u}_{3} \mathbf{v}_{2} \right) + \left(\mathbf{u}_{2} \mathbf{u}_{3} \mathbf{v}_{1} - \mathbf{u}_{2} \mathbf{u}_{1} \mathbf{v}_{3} \right) + \left(\mathbf{u}_{3} \mathbf{u}_{1} \mathbf{v}_{2} - \mathbf{u}_{3} \mathbf{u}_{2} \mathbf{v}_{1} \right) = 0$$

Is w perpendicular to v, too? How do you know? (Explain using the properties of determinant)

Yes,
$$UxV = -(vxu) \implies (UxV) \cdot V = -(vxu) \cdot V = -0 = 0$$

exchange the last two rows

exchange the last two rows

6. Recall that $||u \times v|| = ||u|| ||v|| |\sin \theta|$. What is θ in terms of u and v? The angle between ||u|| + |Explain clearly when $||u \times v|| = 0$. When $\mathcal{U} = \mathcal{O}$ or $\mathbf{v} = \mathbf{0}$, or when $\mathbf{sin} \, \mathbf{0} = \mathbf{0}$,

when
$$U=0$$
 or $V=0$, or when $\sin\theta=0$, that is when $\theta=0$, or π \Rightarrow i.e. when U and V are parallel.