

Comprehensive Exploratory Data Analysis Report

EXECUTIVE SUMMARY

DATASET OVERVIEW

FEATURE	MISSING VALUES	MISSING %	DATA QUALITY
Age	177	19.9%	⚠ Significant missing data
Cabin	687	77.1%	X Mostly missing
Embarked	2	0.2%	Excellent
Other Features	0	0.0%	✓ Complete

Key Insight: The dataset is generally high quality with manageable missing data. Age imputation will be crucial for modeling, while Cabin data may need to be dropped or heavily engineered.

SURVIVAL PATTERN ANALYSIS

Gender-Based Survival

GENDER	TOTAL	SURVIVED	SURVIVAL RATE HISTORICAL CONTEXT		
Female	314	233	74.2%	"Women and children first" policy	
Male	577	109	18.9%	Last priority in evacuation	

Class-Based Survival

CLASS	TOTAL	SURVIVED	SURVIVAL RATE	SOCIOECONOMIC FACTOR
1st Class	216	136	62.9%	Upper deck access, priority boarding
2nd Class	184	87	47.3%	Middle deck, moderate access
3rd Class	491	119	24.2%	Lower deck, restricted access

FAMILY STRUCTURE IMPACT

Q Key Family Patterns:

- **Solo Travelers:** 60.1% of passengers traveled alone with ~30% survival
- Small Families (2-4 members): Optimal survival rates of 50-70%
- Large Families (7+ members): Poor survival rates due to coordination challenges
- Family Advantage: Having 1-3 family members improved survival chances significantly

STATISTICAL SIGNIFICANCE

FACTOR	STATISTICAL TEST	P- VALUE	SIGNIFICANCE	EFFECT SIZE
Gender	Chi-square	< 0.001	✓ Highly Significant	Very Large
Passenger Class	Chi-square	< 0.001	✓ Highly Significant	Large
Age	T-test	< 0.001	Significant	Medium
Fare	T-test	< 0.001	✓ Significant	Medium

OBJECT OF THE O INSIGHTS

Premium Passenger Analysis

1st Class Women

perfect)

3rd Class Women

50.0% survival rate (Still advantaged)

1st Class Men

36.9% survival rate (Above average)

3rd Class Men

13.5% survival rate (Lowest group)

Title-Based Analysis

- Master (Young Boys): 57.5% survival Clear priority for male children
- Miss (Unmarried Women): 69.7% survival High female priority
- Mrs (Married Women): 79.2% survival Highest survival rate
- Mr (Adult Men): 15.7% survival Lowest priority group
- Rare Titles (Dr, Rev, etc.): Variable rates based on gender and class

MACHINE LEARNING **RECOMMENDATIONS**

Feature Engineering Strategy

Primary Features

Sex, Pclass, Age, Fare, FamilySize

Preprocessing

Age imputation, Fare log transform, One-hot encoding

Engineered Features

Title groups, Age categories, Family categories

Model Selection

Ensemble methods, Handle class imbalance

Class Imbalance Handling

Challenge: 61% died vs 39% survived creates class imbalance **Solutions:**

- Use stratified sampling for train/validation splits
- Consider SMOTE or class weighting techniques
- Evaluate using precision, recall, F1-score, and AUC-ROC
- Focus on recall for positive class (survivors) in emergency contexts

MISTORICAL VALIDATION

E Data Science Meets History

Our analysis strongly validates historical accounts of the Titanic disaster:

Social Hierarchy

Clear wealth-based survival advantages reflect 1912 class structures

Physical Access

Upper deck passengers had better lifeboat access

Maritime Protocol

"Women and children first" policy clearly implemented

Family Dynamics

Small families helped each other, large families struggled

6 Key Takeaways for Data Scientists

- 1. **Domain Knowledge Matters:** Understanding historical context validates our findings
- 2. **Multiple Factor Interactions:** Gender, class, and age created complex survival patterns
- 3. **Feature Engineering Opportunities:** Rich text data (names, cabins) offers additional insights
- 4. **Ethical Considerations:** Model interpretability is crucial when analyzing human disasters
- 5. **Real-World Validation:** Statistical patterns align with documented historical events

Next Steps

- Build ensemble models with recommended feature engineering
- Implement proper cross-validation with stratification
- Create model interpretability analysis
- Deploy with appropriate ethical considerations
- Document lessons learned for emergency response modeling

Generated by Senior Data Analyst Approach | Comprehensive EDA Report

This analysis combines statistical rigor with historical context to provide actionable insights for machine learning applications.