Contents

I	Preliminaries: Set theory and categories		
	1	Naive set theory	1
	2	Functions between sets	2
	3	Categories	4

I Preliminaries: Set theory and categories

1 Naive set theory

1.1. If there is a set *V* such that $\forall x, x \in V$, let $A = \{x \in V \mid x \notin x\}$.

Now, $A \in A \iff A \in V \land A \notin A \iff A \notin A$ and this is a contradiction. Finally, $\forall x, \exists y, y \notin x$.

1.2. $\mathscr{P}_{\sim} = \{ [a]_{\sim} \mid a \in S \}$

 \sim is symmetric, so given $a \in S$, $a \in [a]_{\sim}$ so $[a]_{\sim} \neq \emptyset$

As \sim is reflexive, $\bigcup_{a \in S} [a]_{\sim} = S$.

Finally, if $[a]_{\sim} \neq [b]_{\sim}$, let us prove that $[a]_{\sim} \cap [b]_{\sim} = \emptyset$.

Indeed, if $x \sim a$ and $x \sim b$ then by transitivity and symmetry, $a \sim b$ which is a contradiction.

1.3. If \mathscr{P} is a partition on S, let us define $a \sim b$ iff $\exists p \in P, a \in P \land b \in P$.

This relation is reflexive because $\forall p \in P, p \neq \emptyset$

It is obviously symmetric.

If $a \sim b$ and $b \sim c$ then there is $p \in P$ such that $a, b \in p$ and $p' \in P$ such that $b, c \in p$. $b \in p \cap p'$ so $p \cap p' \neq \emptyset$ so p = p' and $b \sim c$.

Remark. Let **Eq**(S) the set of all relations on S and \mathfrak{P} the set of all partitions of S.

$$\mathbf{Eq}(S) \to \mathfrak{P}$$

$$\sim \mapsto \mathscr{P}_{\sim}$$

is a bijection which has as inverse the 'operation' of the previous exercise.

1.4. An equivalence relation \sim on $\{1, 2, 3\}$ is a subset of $\{1, 2, 3\}^2$ which necessarily includes the diagonal $\{(1, 1), (2, 2), (3, 3)\}$.

Then we have three choices as far as distinct unordered couples are concerned:

- There is no distinct a and b such that $a \sim b$,
- There are distinct a, b, c such that $a \sim b$ and $b \sim c$, in which case, we necessarily have $a \sim c$,
- There is only two distinct a and b such that $a \sim b$. We have then $\binom{3}{2} = 3$ choices.

We can verify that in each case we indeed have an equivalence relation on $\{1,2,3\}$ so there are 5 equivalence relations on $\{1,2,3\}$.

1.5. Let R a relation on $\{1, 2, 3\}$ such that $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)\}$

We can verify that *R* is reflexive, symmetric, but not transitive.

Trying to define \mathscr{P}_R will not lead to a partition, as $[1]_R \neq [3]_R$ (because $(1,3) \notin R$) but $[1]_R \cap [3]_R \neq \emptyset$ (because $2 \in [1]_R \cap [3]_R$).

1.6. $a - a = 0 \in \mathbb{Z}$ so \sim is reflexive.

If $a - b \in \mathbb{Z}$ then $b - a \in \mathbb{Z}$, so it is symmetric.

If $a - b \in \mathbb{Z}$ and $b - c \in \mathbb{Z}$ then $a - c = a - b + (b - c) \in \mathbb{Z}$, so \sim is an equivalence relation.

$$f: \mathbb{R} \to [0,1[$$

 $x \mapsto \text{the only } y \in [0,1[\text{ such that } y - x \in \mathbb{Z}]$

f is clearly surjective.

We remark that $x \sim y$ iff f(x) = f(y).

We can thus define:

$$f': \mathbb{R}/\sim \to [0,1[$$
$$[x]_{\sim} \mapsto f(x)$$

f' is a bijection.

Because \sim is an equivalence relation, \approx is clearly an equivalence relation.

Let

$$g: \mathbb{R}^2 \to [0,1[^2 (x,y) \mapsto (f(x), f(y))$$

Because f is a bijection it is easy to prove that g is a bijection.

Remark. We could have factored f using Claim 5.5, page 34.

The situation for \mathbb{R}^2 can be represented by the following diagram:

$$[0,1[\longleftarrow]{[0,1[^2\longrightarrow]{[0,1[}^2]}]$$

$$f \uparrow \qquad \exists !f \& f \uparrow \qquad f$$

 $(f,g) \mapsto f \, \mathcal{P} g$ is bijective and $f \, \mathcal{P} f$ is bijective iff f is bijective.

2 Functions between sets

2.1. Let us prove on the set of bijections from a set S to a set S' has cardinality n! if |S| = |S'| = n. By induction on $n \in \mathbb{N}$:

If n = 0, $\emptyset : S \to S'$ is the only bijection. The statement is true.

Suppose the statement is true for any set S, S' such that |S| = |S'| = n. Let T, T' be such that |T| = |T'| = n + 1.

Pick $x \in T$. A bijection from T to T' is the datum of an image $x' \in T'$ for x and a bijection from $T \setminus \{x\} \to T' \setminus x'$. There are n! such bijections.

Finally, there are (n+1)n! = (n+1)! bijections from $T \to T'$

Remark. The previous situation is represented by the following diagram:

 $f \Re g$ is bijective iff f and g are bijective.

2.2. If *f* has a right inverse *g*, $f \circ g = id_B$.

 $f(g(B)) = (f \circ g)(B) = \mathrm{id}_B(B) = B$, but $g(B) \subseteq A$ so f(A) = B. Hence f is surjective.

If *f* is surjective, let $\alpha : \mathcal{P}(A) \setminus \{\emptyset\} \to A$ be a choice function.

 $\forall x \in B, \exists z \in A, f(z) = x. \text{ Let } g(x) = \alpha(\{z \in A \mid f(z) = x\}).$

It is clear that $f \circ g = id_B$.

2.3. If $f: A \to B$ is a bijection, $f \circ f^{-1} = \mathrm{id}_B$ and $f^{-1} \circ f = \mathrm{id}_A$ but Corollary 2.2 tells us that if a function has a two-sided inverse, then it is a bijection so f^{-1} is a bijection.

If $f: A \to B$ and $g: B \to C$ are bijections, $g \circ f: A \to C$ is also a bijection.

Indeed, $(g \circ f) \circ (f^{-1} \circ g^{-1}) = id_C$ and $(f^{-1} \circ g^{-1}) \circ (g \circ f) = id_A$.

2.4. Let \sim be the relation 'isomorphism'. $X \sim X$ because $id_X : X \to X$ and id_X is clearly a bijection.

 $X \sim Y$ implies that $Y \sim X$ because the inverse of a bijection is a bijection.

~ is transitive because the composition of two bijections is a bijection.

2.5. $f: A \to B$ is an epimorphism iff $\forall g, g': B \to C, g \circ f = g' \circ f \implies g = g'$.

Let us prove that f is an epimorphism iff it is surjective.

If f is surjective. Let $y \in B$, there is $x \in A$ such that y = f(x).

 $g(y) = g \circ f(x) = g' \circ f(x) = g'(y)$. Hence g = g'.

If f is not surjective then, there is $y \in B \setminus f(A)$. Let $g, g' : B \to \{0, 1\}$ such that $\forall x \in B, g(x) = 0$, $\forall x \in B \setminus \{y\}, g'(x) = 1$ and g'(y) = 0.

 $g \circ f = g' \circ f$ but $g \neq g'$ so f is not an epimorphism.

2.6. If $f:A\to B$. Define $\gamma:A\to A\times B$ such that $\gamma(a)=(a,f(a))$. It is obvious that $f\circ\gamma=\mathrm{id}_A$.

Remark. The situation is represented by the following commutative diagram:

2.7. Let $\Gamma_f \subseteq A \times B$. Let $i: \Gamma_f \to A \times B$ the inclusion map.

 $\pi_A \circ i : \Gamma_f \to A$ is a bijection.

Indeed, $\forall a \in A, \exists ! y \in B, (a, y) \in \Gamma_f$

That is: $\forall a \in A, \exists ! z \in \Gamma_f, \pi_A(z) = a \text{ (this } z \text{ is } (a, y))$

2.8.

$$f: \mathbb{R} \to \mathbb{C}$$

$$r \mapsto e^{2\pi i r}$$

The canonical decomposition of f gives:

$$\alpha: \mathbb{R}/\sim \to S_2$$
$$[r]_{\sim} \mapsto e^{2\pi i r}$$

where S_2 is the circle with radius 1 in \mathbb{C} is well defined and is a bijection.

An alternative decomposition would have been:

$$\mathbb{R} \xrightarrow{\alpha \circ \pi} S_2 \xrightarrow{\tilde{f} \circ \alpha^{-1}} \operatorname{im} f \hookrightarrow \mathbb{C}$$

This exercise matches Exercise 1.6.

2.9. Suppose $A' \xrightarrow{\alpha} A''$, $B' \xrightarrow{\beta} B''$, $A' \cap B' \neq \emptyset$ and $A'' \cap B'' \neq \emptyset$. Let

$$\gamma: A \cup B \to A'' \cup B''$$

 $x \mapsto \alpha(x) \text{ if } x \in A$
 $y \mapsto \beta(y) \text{ if } x \in B$

 γ is well defined because $A \cap B = \emptyset$, surjective because α and β are surjective, and injective because α and β are injective and because $A'' \cap B'' = \emptyset$.

Hence, however we take 'copies' of *A* and *B* such that their copies are disjoint, we always obtain isomophic sets.

2.10. Let us prove by induction on *n* that if |A| = n, we have $|B^A| = |B|^{|A|}$.

$$|B^{\emptyset}| = \{\emptyset\} = |B|^{\emptyset}$$
 so the statement is true for $n = 0$

If
$$|A| = n + 1$$
, pick $x \in A$

A function from $A \to B$ is the datum of a function of $A \to B \setminus \{x\}$ and image $x' \in B$ for x. There are $|B|^{|A \setminus \{x\}|} = |B|^{|A|-1}$ such functions.

Hence
$$|B|^{|A|} = |B||B|^{|A|-1} = |B|^{|A|}$$
.

Remark. The previous situation is represented by the following diagram:

$$\{x'\} \longrightarrow B \cong \{x'\} \coprod B \setminus \{x'\} \longleftarrow B \setminus \{x'\}$$

$$f \uparrow \qquad \exists! f^{2g} g \uparrow \qquad g \uparrow$$

$$\{x\} \longrightarrow A \cong \{x\} \coprod A \setminus \{x\} \longleftarrow A \setminus \{x\}$$

$$(f,g) \mapsto f \Re g$$
 is a bijection.

2.11. Let

$$f: \mathcal{P}(A) \to 2^A$$

 $X \mapsto x \mapsto 1 \text{ if } x \in X$
 $x \mapsto 0 \text{ otherwise}$

f(X) is called the characteristic function of X. It is easy to prove that f is a bijection.

3 Categories

- **3.1.** Let \circ' be the operation of \mathbb{C}^{op} . If $f: A \to B$ and $g: B \to C$ in \mathbb{C} , $f \circ' g = g \circ f$. $(f \circ' g) \circ' h = h \circ (g \circ f) = (h \circ g) \circ f = f \circ' (g \circ' h)$ If $f: A \to B$ in \mathbb{C} : $f \circ' \mathrm{id}_B = \mathrm{id}_B \circ f = f$ and $\mathrm{id}_A \circ' f = f \circ A = f$ Finally, it is clear that $\mathrm{Hom}_{\mathbb{C}^{op}}(A, B) = \mathrm{Hom}_{\mathbb{C}^{op}}(A', B')$ iff A = A' and B = B'.
- **3.2.** If *A* is finite, as $\operatorname{End}_{\mathbf{Set}}(A) = A^A$, $|\operatorname{End}_{\mathbf{Set}}(A)| = |A|^{|A|}$ (see Exercise 2.10).
- **3.3.** $1_a = (a, a)$ is the identity of a. Indeed, let $f : a \to b$, Necessarily, if f exists, f = (a, b). $f \circ 1_a = (a, b) \circ (a, a) = (a, b) = f$ Similarly, if $f : b \to a$, $1_a \circ f = f$.

4

- **3.4.** < is not reflexive, so for example, (3,3) would not be in the category. But, necessarily, it should be as the only possible choice for 1_3 (think about it).
- **3.5.** For every preorder, we can define a category in the style of Example 3.3.

Remark. In fact, writing **Proset** \upharpoonright_A the set of all categories whose set of objects is A, whose set of morphisms is a subset of A^2 and such that $\forall a, b \in A, \exists^{\leq 1} f : a \to b$, there is a bijection :

$$\phi:$$
 Preorders on $A \to \mathbf{Proset} \upharpoonright_A$ $R \mapsto$ The category such that $\mathrm{Hom}(a,b) = \{(a,b)\} \text{ if } aRb$ $\mathrm{Hom}(a,b) = \emptyset \text{ otherwise}$ $(b,c) \circ (a,b) = (a,c)$

R is an order iff $\phi(R)$ is skeletal.

R is an equivalence relation iff $\phi(R)$ is a groupoid.

3.6. The set of matrices with n rows and m columns is $\mathbb{R}^{m \times n}$ where $m = \{0, ..., m-1\}$ and $n = \{0, ..., n-1\}$ and $n = \{0, ..., n-1\}$

Hence, $\mathbb{R}^{0\times n} = \mathbb{R}^{0\times n} = \mathbb{R}^{0} = \{\emptyset\}$. There is only one matrix with 0 lines is \emptyset , and, similarly, it is the only matrix with 0 columns.

If $A: m \to n$ (A has n lines and m columns) and $B: n \to p$ (B has p lines and n columns), then $B \circ A = B \times A$.

The product of matrices is associative and $I_n = id_n$.

It feels familiar. If we define the category \mathbb{N} with $\mathrm{Obj}(\mathbb{N}) = \mathbb{N}$ and with $\mathrm{Hom}_{\mathbb{N}}(n,m) = m^n$. In both of the categories, it is true that if $\mathrm{dom}(f) = \mathrm{im}(f)$ then f is a monomorphism iff it is an epimorphism.