UNIVERSIDAD COMPLUTENSE DE MADRID

FACULTAD DE CIENCIAS FÍSICAS

DEPARTAMENTO DE ARQUITECTURA DE COMPUTADORES Y AUTOMÁTICA

TRABAJO DE FIN DE GRADO

Código TFG: [Código TFG]

[Desarrollo de sistemas de control cooperativos para USVs en tareas de bioinspección]

[Cooperative Control Systems for USVs in Bio-surveillance tasks]

[Ulises Alejandro Ardizzi Rodríguez]

Supervisor/es: [Nombre del/os supervisores]

Grado en Ingeniería Electrónica de Comunicaciones Curso académico 20[XX-XX] Convocatoria XXXX

Autorización de difusión

Apellidos, Nombre

Madrid, a XX de XX de XX

Los abajo firmantes, matriculados en el Grado de XX de la Facultad de XX, autorizan a la Universidad Complutense de Madrid (UCM) a difundir y utilizar con fines académicos, no comerciales y mencionando expresamente a su autor el presente Trabajo Fin de Grado: "Título", realizado durante el curso académico XX-XX bajo la dirección de XX y la co-dirección de XX en el Departamento de XX, y a la Biblioteca de la UCM a depositarlo en el Archivo Institucional E-Prints Complutense con el objeto de incrementar la difusión, uso e impacto del trabajo en Internet y garantizar su preservación y acceso a largo plazo.

Esta obra esta bajo una Licencia Creative Commons Atribución-NoComercial-Compartir[gual 4.0 Internacional.

 $"Dedicatoria, \ si \ es \ necesaria."$

Edward Tufte

Agradecimientos

 $A grade cimientos, \ si \ son \ necesarios.$

Índice general

In	dice			I		
Ín	Índice de figuras					
\mathbf{R}	esum	en		IV		
1.	Intr	oducci	ón	1		
	1.1.	Motiva	ación	1		
		1.1.1.	Robótica de enjambre	2		
		1.1.2.	Sistemas multiagentes	2		
	1.2.	Plante	amiento del problema	3		
	1.3.	Organ	ización de la memoria	4		
2.	Sist	ema d	e manera global	6		
	2.1.	Algori	tmo de estimación del gradiente	8		
		2.1.1.	Descripción general	8		
		2.1.2.	Algoritmos de consenso	8		
		2.1.3.	Función lipzchiana	8		
	2.2.	Algori	tmo de control de formación circular	9		
		2.2.1.	Descripción general	9		
		2.2.2.	Ventajas de uso	9		
	2.3.	Acción	a conjunta de ambos algoritmos	9		
		2.3.1.	Algoritmo de ascenso de gradiente	9		
3	Esti	maciói	n del gradiente	11		

4.	Coordinación	15
5.	Conclusiones	17
6.	Parrafor en sucio	19
Bi	bliografía	21
Α.	. Introduction	23
	A.1. Objectives	23
	A.2. Technologies of the System	23
В.	Conclusions	25

Índice de figuras

1.1. Curvas de nivel descritas por un incendio en Forsberg		- 3
--	--	-----

[Título extendido del TFG (si procede)]

[Nota: el título extendido (si procede), el resumen y abstract deben estar en una misma página y su extensión no debe superar la página. Tamaño mínimo 11 pto.

Extensión máxima 50 páginas sin contar portada ni resumen (sí se incluye índice, introducción, conclusiones y bibliografía)]

Introducción

1.1. Motivación

Actualmente los sistemas robóticos representan una ventaja al otorgar un mayor rango de acción, flexibilidad y operar en situaciones riesgosas.

Un robot realmente no posee una definición precisa y universal dado que existe bastante discrepancia entre los expertos. Por lo tanto, podrían considerarse como un sistema autónomo y programable capaz de realizar tareas. Además, están dotados por la integración de tres capacidades claves:

- 1. Sensores para reunir datos del entorno.
- 2. La toma de decisiones para convertir dichos datos en acciones.
- 3. Al ya tener definida su labor deben extenderlas al mundo real a través de sus efectores finales y/o actuadores.

Si juntas dichos aspectos con el comportamiento de los organismos sociales, en donde los individuos no han de tener un alto conocimiento para producir un comportamiento colectivo complejo, ni existir un líder que guía al resto para completar un objetivo, como en los bancos de peces, un panal de abejas o una bandada de pájaros, se tiene la **robótica de enjambre**.

1.1.1. Robótica de enjambre

Hoy en día, la robótica de enjambre conforma un grupo de investigación muy activo por su versatilidad en diferentes ámbitos, tales como militar o industrial. En contraposición de tener un único robot realizando una labor compleja se tiene la robótica de enjambre, en la que varios individuos simples forma un comportamiento colectivo para realizar la misma tarea traduciendo a su vez en una reducción de costes. Las características principales con las que se pueden definir los enjambres son:

- 1. El número optimo de agentes varia en función de la tarea asignada pudiendo ir desde tan pocos como una simple pareja hasta miles de unidades.
- 2. Presenta gran **diversidad**, es decir, en ocasiones se mezclan robots simples o complejos, sistemas tripulados o no tripulados, e incluso con dominio cruzado.
- 3. Para poder diferenciarlos de los sistemas multi-robots, en el que cada robot individualmente tiene una tarea asignada de antemano, los de tipo enjambre han de tener un comportamiento colectivo que involucre colaboración entre los propios agentes y estos con su entorno.
- 4. Se necesita establecer una forma de comunicación entre los agentes para permitir el intercambio de información, esta puede ser implícita o explícita
- 5. El hecho de que se puede definir su modo de operar no implica que se controle a cada robot individualmente, es decir, cada uno ellos han de poseer un comportamiento autónomo y descentralizado.

1.1.2. Sistemas multiagentes

Un agente se puede definir como una entidad software que es capaz de realizar una tarea definida de forma autónoma y con cierto grado de complejidad por el hecho de estar dotado de cierto grado de inteligencia. Los sistemas multiagentes como bien su nombre indica, se basan en un grupo de dos o más agentes que interaccionan entre si para lograr un objetivo común en un mismo entorno. Dicha comunicación puede darse entre vecinos sin necesidad de recurrir a una entidad central, es decir, cada uno de ellos va a poseer un comportamiento autónomo y aun así conocer la existencia del resto.

Por tal motivo, la información va a estar distribuida en cada uno de los agentes con una rol distinto, además, se añade la posibilidad de fallo en cualquiera de ellos. Esto se traduce en un sistema más eficaz, flexible y fiable.

1.2. Planteamiento del problema

Uno de los problemas principales es la coordinación de los agentes para que adopten una simetría concreta, en donde, se van a tener en cuenta la velocidad de cada uno de ellos, su posición con respecto al mundo y a los agentes vecinos o la posibilidad de colisión.

Figura 1.1: Curvas de nivel descritas por un incendio en Forsberg

Por otro lado, los agentes han de ser capaces de cumplir su rol asignado una vez dispuestos alrededor de la forma simétrica adoptada, dicha misión consiste en avanzar desde un punto cualquiera a uno de interés que puede ser descrito mediante las **curvas de nivel**.

En la figura 1.1 se aprecian las curvas de nivel de la intensidad de la flama en un incendio, esta información puede ser útil para indicarle al enjambre hacia donde debe moverse para realizar misiones de rescate. El modelado que posteriormente se hará para la resolución del problema se va a basar en dichas curvas.

En base a todo lo descrito anteriormente se va a desarrollar a lo largo de la memoria un sistema multiagente de tipo enjambre que sea capaz de estimar un gradiente a partir de 3 o más robots dispuestos en una formación circular, además de poder desplazarse a una zona de interés.

1.3. Organización de la memoria

En el capítulo dos se dará una idea general del problema global haciendo uso de un diagrama de bloques, además, de describir brevemente diferentes aspectos necesarios para el desarrollo del problema. En el tercero se realiza la estimación previamente descrita. En el cuarto se aporta un algoritmo de control para la coordinación de los agentes de manera simétrica a lo largo de una formación circular. Finalmente, en el quinto y ultimo capítulo se dan los diferentes resultados obtenidos mediante la acción conjunta de ambos algoritmos.

Sistema de manera global

Sea una función f(x) con $x \in \mathbb{R}^n$. Además de ser continua y derivable para todo n. Aplicando el desarrollo en serie de Taylor siendo n = 1.

$$f(x) = f(a) + f'(a)(x - a) + \frac{1}{2!} \cdot f''(a)(x - a)^{2}$$

Donde f'(a) y f''(a) se corresponden con la primera y segunda derivada de la función en torno a un punto cualquiera en el espacio "a", si en lugar de ello se hace con x_* , estando x lo suficientemente cerca de dicho punto.

$$f(x) = f(x_*) + f'(x_*)(x - x_*) + \frac{1}{2!} \cdot f''(x_*)(x - x_*)^2$$

Si $f'(x_*) = 0$ se tiene un máximo, mínimo o un punto de inflexión, teniendo esto en cuenta y despejando de la ecuación anterior.

$$f(x) - f(x_*) = \frac{1}{2!} \cdot f''(x_*) (x - x_*)^2$$

Se dan diferentes situaciones:

• Si
$$f''(x_*) < 0 \to f(x) - f(x_*) < 0 \to f(x) < f(x_*) \to f(x_*)$$
 es un máximo.

• Si
$$f''(x_*) > 0 \to f(x) - f(x_*) > 0 \to f(x) > f(x_*) \to f(x_*)$$
 es un mínimo.

• Si
$$f''(x_*) = 0 \rightarrow f(x) - f(x_*) = 0 \rightarrow f(x) = f(x_*) \rightarrow f(x_*)$$
 es un punto de inflexión.

Si se hace el mismo desarrollo y se expande el dominio para $n \geq 2$, se obtiene:

$$f(x) = f(x_*) + \nabla f(x_*)^T (x - x_*) + \frac{1}{2!} \cdot (x - x_*)^T \cdot H(f(x_*)) \cdot (x - x_*)$$

Donde:

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} \quad \text{y} \quad H(f) = \nabla^2 f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \cdot \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \cdot \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \cdot \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \cdot \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \cdot \partial x_1} & \frac{\partial^2 f}{\partial x_n \cdot \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

En este caso lo que interesa es que el gradiente de la función sea 0, es decir, que " $\nabla f(x_*) = 0$ ". Por lo tanto, los casos particulares previamente descritos adoptan un significado similar.

$$f(x) - f(x_*) = \frac{1}{2!} \cdot H(f) \cdot (x - x_*)^2$$

- \blacksquare Si $H\left(f\right)<0$ (definida negativa) $\rightarrow f\left(x\right)-f\left(x_{*}\right)<0 \rightarrow f\left(x_{*}\right)$ es un máximo.
- \blacksquare Si $H\left(f\right)>0$ (definida positiva) $\rightarrow f\left(x\right)-f\left(x_{*}\right)>0$ $\rightarrow f\left(x_{*}\right)$ es un mínimo.
- Si H(f) = 0 es indefinida es un punto silla.

En caso de las funciones para dos o más dimensiones, la condición necesaria para ser optimo es estar semidefinido, es decir, si $\nabla f(x_*) = 0$ y H(f) es semidefinida, se tiene:

- \blacksquare Es máximo si esta semidefinida negativa $\rightarrow y^{T}\cdot H\left(f\right) \cdot y\leq 0$
- \blacksquare Es mínimo si esta semidefinida positiva $\rightarrow y^{T}\cdot H\left(f\right) \cdot y\geq 0$

2.1. Algoritmo de estimación del gradiente

Aca describir consensus, funcion necesaria, poner la ecuacion para hacer referencia y decir que hay que definir aca.

2.1.1. Descripción general

hola

2.1.2. Algoritmos de consenso

hola

2.1.3. Función lipzchiana

hola

- 2.2. Algoritmo de control de formación circular
- 2.2.1. Descripción general
- 2.2.2. Ventajas de uso
- 2.3. Acción conjunta de ambos algoritmos
- 2.3.1. Algoritmo de ascenso de gradiente

hola

El diagrama de fluyo ira aca

Estimación del gradiente

Acá la idea es describir el algoritmo con su desarrollo matemático para que no salga nada de la nada (mas o menos 10-12 paginas en este capitulo).

Se pretende describir un procedimiento para estimar el gradiente de una función " $\widehat{\nabla} f(c)$ ", basándose en mediciones locales de múltiples robots situados de manera simétrica en un espacio de 2D. En dicho procedimiento, se consideran N robots distribuidos uniformemente a lo largo de una formación circular con un radio D y un punto central c definido en dos dimensiones.

Partiendo de la ecuación (Ecuación de la expasion de Taylor del inicio, poner el numero), pero haciendo la expansión únicamente hasta el termino de primer orden sobre cada una de las medidas r_i pertenecientes a la función " $f(r_i)$ ".

$$f(r_i) - f(c) = \nabla f(c)^T (r_i - c) + \varphi_i(D, c)$$

Me quede aca, desde aca para abajo es sucio.

En donde r_i = es la posición del robot i, $\phi_i = \frac{2 \cdot \pi \cdot i}{N}$ es el ángulo de rotación, R_{ϕ} es la matriz de rotación definida como $\begin{bmatrix} c_{\phi} & -s_{\phi} \\ s_{\phi} & c_{\phi} \end{bmatrix}$, finalmente $e = [1, 0]^T$, por simplicidad no se considera la dinámica de los robots.

La señal está definida según una función cuadrática $\sigma(r) = r^T \cdot S \cdot r + p^T \cdot r + q$ si se tiene una formación de más de 4 robots se asume que la estimación es el gradiente de la función.

$$\phi_i = \phi_o + \frac{2 \cdot \pi \cdot i}{N}$$

Con $\phi_o(t) = w_o \cdot t$ la formación propuesta es adecuada para robots que se mueven en formación circular como vehículos aéreos no tripulados de área.

Problema en cuestión:

Se puede poner de tres formas:

Primera forma:

$$\hat{\nabla}f(c) := \frac{2}{D^2 \cdot N} \cdot \sum_{i=1}^{N} f(r_i) \cdot (r_i - c)$$

Donde:

$$\hat{\nabla}f\left(c\right) = \nabla f\left(c\right) + \varphi\left(D,c\right)$$

Segunda forma:

$$\frac{2}{D^2 \cdot N} \cdot \sum_{i=1}^{N} f(r_i) \cdot (r_i - c) = \nabla f(c) + \varphi(D, c)$$

Tercera forma:

$$\frac{2}{D^2 \cdot N} \cdot \sum_{i=1}^{N} f(r_i) \cdot (r_i - c) = \underbrace{\nabla f(c) + \varphi(D, c)}_{:=\hat{\nabla} f(c)}$$

Se tiene una función f(r), donde r definida en 2 dimensiones, que el gradiente en el punto máximo es 0 ($\nabla f(r^*) = 0$), pero en el punto del campo escalar será distinto de 0 (($\nabla \sigma(r) \neq 0$), obviamente se ha de dar con "situaciones espaciales" diferentes lugares ($\forall r \neq r^*$) y finalmente el hessiano estará definido negativamente dado que es un máximo local, es decir, $H_{\sigma(r^*)} < -a \cdot I_p$ (con a > 0 e I_p es una matriz identidad perteneciente al espacio R^{pxp} .

Parrafos que me pueden servir en algun momento:

Se tienen dos casos $[A]_{\alpha} = A$ si $A \leq -\alpha \cdot I_p$ sino seria $[A]_{\alpha} = -I_p$, el primero de los casos se utilizará si el centro de formación c está muy alejado de la fuente así se evita que la matriz se defina como semipositiva y tienda a alejar a los robots del punto de interés, además, cuando dicho punto "c" está cerca de la fuente se asume entonces que $A < -\alpha \cdot I_p$

Coordinación

Acá la idea es explicar de manera breve el algoritmo de control de Hector, por ejemplo poner una figura del paper y decir que influiría en el calculo del gradiente estimado (mas o menos 5-6 paginas acá).

En la actualidad, uno de los principales problemas de los sistemas multiagente

El objetivo principal de este algoritmo consiste en mantener a los agentes alrededor de un circulos, es decir,

Conclusiones

Acá irían las gráficas de las simulaciones que estoy haciendo actualmente (llevaría de momento 1 de indice + 3-4 introducción + 18-20 (en dos capítulos), 6-8 el capitulo 4 y 6-8 el capitulo de conclusiones, mas la bibliográfica, darían en torno a 40-48).

Parrafor en sucio

Introducción:

En base a todo lo descrito anteriormente se va a desarrollar a lo largo de los siguientes capítulos un sistema multiagente de tipo enjambre que sea capaz de estimar un gradiente a partir de 3 o más robots dispuestos en una formación circular y estos sean capaces de desplazarse a una zona de interés definido como un máximo de una determinada función.

Capitulo 2: Según lo dicho en la charla de diciembre y en el pdf del campus aca va todo lo explicativo, tipo el optimo de una funcion, las funciones, bases de algoritmos....

Acá habría que definir los consensus algorithms e introducciones generales a varios aspectos (no se si meter lo de abajo al inicio acá), también un diagrama de flujo del control+estimador (este capitulo y el siguiente osea el 2+3 me deberían llevar como 18-20 paginas, llevaría de momento 1 de indice + 3-4 introducción + 18-20 (en dos capítulos))

Definir breves conceptos, problemas en la coordinación, descripción de las curvas de nivel para usar la estimación de gradiente.

Bibliografía

- [1] INA219 DataSheet. http://www.ti.com/lit/ds/symlink/ina219.pdf.
- [2] NodeMCU Documentación. https://nodemcu.readthedocs.io/en/dev/.
- [3] MQTT Documentación. http://mqtt.org/documentation.
- [4] Mosquitto Broker. http://mosquitto.org/.
- [5] Mosca Broker. https://github.com/mcollina/mosca.
- [6] Node-Red. http://nodered.org/.
- [7] I^2C Module. https://nodemcu.readthedocs.io/en/dev/en/modules/i2c/.
- [8] MQTT Module. https://nodemcu.readthedocs.io/en/dev/en/modules/mqtt/.
- [9] Emoncms Dashboard. https://emoncms.org/.
- [10] Freeboard Dashboard. https://freeboard.io/.

Apéndice A

Introduction

- A.1. Objectives
- A.2. Technologies of the System

Apéndice B

Conclusions