	Te	25	+	1	-	-	In	- C	la	SS	(Re	i V	eu	ر	S	ol	+ی	ior	าร									
	1))	à) -) -	1		b.) 4	00	ć) ()))	E		K)	-) (1		e)	Uni	def	ined	4) (p		9)	-	00
	2)		X = X = X =				R	em em	000	able abl	e	I	Dis Dis Dis	000	10 + in + i	יחו הטו הטו	44												
	<i>b</i>)	>	(=	- (c - 3 - 1	3		D	SC	00.	tin	ui.	44			% : X : X :	-3		D	(in isc	00			1						
	3)		6	ver		Q:	n 1						ar	d	<u>Q</u>	īm. → 1	h	Cz) =	- L				Υ .				-	2
	۵)		im >1		2 hC		3	2	im ⇒ 1 m ⇒1	-	2			2 - 4	. =		2				<u></u>	~~			Sho r u				
	P)	li,		3	V a	CZ	5	=	3	li	~ >1	90	(20)	T)	o)(<u> </u>	8	-	-	-2									
	c)	li x=		L	50	SCO	9-	2.	RX	: [[5	lin x=		9 C	x)	<i>~</i>	2	lim 2>	,	(7	i) =	= 5	(-	8)	- '	3(-	4)=	= =
	d) ,	lin x->	1	9	Cx) ł	Cx)=	2	im 71	ç	3 Cx		[Q	m:	ho	20)	10	(-	8)	(-	1)		32	2				
4	1)	ε	Va	lo	ate	ಲ	#	ne	ç	jiv	er		lin	mī	ts														
	۵	Q ×	ī~		Sir	n (T 2	$\left(\frac{x}{3}\right)$	=	5	in	(1)		- 1															
	P)		m		\\ \(\gamma \)	Direction of	-	=	21	DN	E																		
	P	Vo	te	00	J	in	v u+	I	X+1 X-		-	+	00	а	md				X-X		-	5	-0	0					

h) $\lim_{x \to \infty} q = x + 3 = \lim_{x \to \infty} \frac{q}{e^x} + 3 = 3$ i) $\lim_{x \to 2^+} \frac{x - 3}{x - 2} = -\infty$ j) $\lim_{x \to 2^+} \frac{1 + \frac{1}{x}}{x - 2} = -\infty$ $\lim_{x \to 2^+} \frac{1 + \frac{1}{x}}{x - 2} = -\infty$ k) $\lim_{x \to 2^+} \frac{\sin(7x)}{x} = \lim_{x \to 0} \frac{\sin(7x)}{x} = 7$ l) $\lim_{x \to 0} \frac{1 - \cos(4x)}{x} = \lim_{x \to 0} \frac{1 - \cos(4x)}{x} = 4$ l) $\lim_{x \to 0} \frac{1 - \cos(4x)}{x} = \lim_{x \to 0} \frac{1 - \cos(4x)}{x} = 4$	hə	h^{-1}	= lim	(h-4)	4	1 h+5 +	3 1	= 1)Vn+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			χ>0						4)
h) $\lim_{x \to \infty} q = x + 3 = \lim_{x \to \infty} \frac{q}{e^x} + 3 = 3$ i) $\lim_{x \to 2^+} \frac{x - 3}{x - 2} = -\infty$ j) $\lim_{x \to 2^+} \frac{1 + \frac{1}{x}}{x - 2} = -\infty$ $\lim_{x \to 2^+} \frac{1 + \frac{1}{x}}{x - 2} = -\infty$ k) $\lim_{x \to 2^+} \frac{\sin(7x)}{x} = \lim_{x \to 0} \frac{\sin(7x)}{x} = 7$ l) $\lim_{x \to 0} \frac{1 - \cos(4x)}{x} = \lim_{x \to 0} \frac{1 - \cos(4x)}{x} = 4$ l) $\lim_{x \to 0} \frac{1 - \cos(4x)}{x} = \lim_{x \to 0} \frac{1 - \cos(4x)}{x} = 4$	V> 2	1 2 - 5 x 11	= lim x = 3	(x+4)	× +2) =	x→0 lim 3 x→3	4 (x+ x+2 =	4) 16 5 = 5	
i) $\lim_{x\to 2^{+}} \frac{x-3}{x-2} = -\infty$ $\lim_{x\to 2^{+}} \frac{1+\frac{1}{x}}{x-2} = -\infty$ $\lim_{x\to 0^{-}} \frac{1+\frac{1}{x}}{x-2} = -\infty$ K) $\lim_{x\to 0} \frac{\sin(7x)}{x} = \lim_{x\to 0} \frac{\sin(7x)}{x} = 7$ $\lim_{x\to 0} \frac{\sin(7x)}{x} = 7$ $\lim_{x\to 0} \frac{\sin(7x)}{x} = 7$ $\lim_{x\to 0} \frac{1-\cos(4x)}{x} = 9$	g) lim x→∞	$\frac{6x^2-2x}{2x^2+3x}$	-1 = lim +2 x>0		$(x-1) \div (x+2) -$	x2 _	1:m X-700	2 - 2 - 1 2 + 3 + 1	2 = 2 2 × 2 × 2
k) $\lim_{x\to 0} \frac{\sin(7x)}{x} = \lim_{x\to 0} \frac{\sin(7x)}{x} = 7$ $\lim_{x\to 0} \frac{1-\cos(4x)}{x} = 4$									
1) $\lim_{x\to 0} \frac{1-\cos(4x)}{x} = \lim_{x\to 0} \frac{1-\cos(4x)}{x} = \frac{4\lim_{x\to 0} \frac{1-\cos(4x)}{x}}{x} = \frac{4\cdot 0}{x}$			-00	j) lim x>0	1+	1 = -	00		
x > 0 x x > 0 x 4 x > 0 4x	2>0	× ×	% > 0	2 7	K.	70 7	7		
	x->0	x	х⇒о						.0=
	n) lim x→ T		$\cos^2 x = 0$	$\begin{array}{ccc} 1 & = & \\ - & T & \\ 2 & & \end{array}$					

	o) h(x) = 1x + 2x + 2x + 3x + 3x + 3x + 3x + 3x + 3	and the same of th							
		(x+8	8 %>	-8						
	h (x)	=) 2(x			→ h	(x) =	(1/2	2>	-8	
		- (x	(+8) x «	(-8			[-1/2	χ<	-8	
	i) lim	h(x) =	1/2 ii)	lim 27-8		-1/2		1:m h	(x) = DN	E
			2 V)			L				
	2→1			× >-11						
		f(x) 3	f(x) = }	X+2 2	x≤3					
	x →3	0		3	x>3	1				
Since	2 lim x>3-	f(x) = kin	$\frac{x+2}{3} = \frac{2}{3}$	2	and s	lim X>3 [†]	3	3	2	
	there for		m. f(x) =	DNE						
			€3							
	5) Sque									
		in fix	given.	that	$4-x^2 \leq$	f(x)	≤4+2°			
			x2 = 4 av	nd lin	1 4+x	2 = 4	then	lim	f(x) =	4
		tion f is	continu	ous at	a if +	the fo	lavino	three	e condi	tions
		a) is de								
		m f(x)								
	3 lin	n f(x) =	f(a)							
				20 - 20 -						

① $g(x) = 13$ ② $g(x) = 13$ ③ $g(x) = 13$ ③ $g(x) = 1$ ③ $g(x) = 1$ ③ $g(x) = 1$ ③ $g(x) = 1$ ⑤ $g(x) = 1$ ⑤ $g(x) = 1$ ⑥ $g(x) = 1$ Ø	7)	a)		9	Cz	()	=	¥	x	2	- 5	3 2	3	+	4	χ	+	5		a	.=	1															
(a) $g(x) = h_{1} h_{1} g(x)$ (b) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (c) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (d) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (e) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (e) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (f) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (g) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (e) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (f) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (g) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (h) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (h) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (h) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (h) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (e) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (f) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (g) $h(x) = h_{1}x^{2} + 3x - 1}$ (h) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (h) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (h) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (g) $h(x) = h_{1}x^{2} + 3x - 1$ (h) $h(x) = \frac{h_{1}x^{2} + 3x - 1}{h_{1}x - 1}$ (h) $h(x) = \frac{h_{1}x^{2} + 3x - 1}$		(3))	9	(1 m	.)	=	13	3		13							•	0	õ	3 C	K)	ù	٥	ec	00	4:1	nu	ರಿಲ	2.	a	t	a	, 5 ;	1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2	67	1		2	lir	n.																													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P)		h	C	x)	=	-					χ-	-1			a	=	= 1/	4																			
3 $h(1/4) \neq \lim_{x \to 1/4} h(x)$ • $h(x)$ is discontinuous at $a = 1/4$ • Removable discontinuity o) $f(x) = \int \frac{x^2 - 25}{x - 5} x \neq 5$ 0 $x = 5$ 1 $f(x) = \lim_{x \to 1/4} \frac{x^2 - 25}{x - 5} = \lim_{x \to 1/4} \frac{(x + 5)(x + 5)}{(x + 5)(x + 5)} = \lim_{x \to 1/4} \frac{x + 5}{x + 5} = 10$ 1 $f(x) = \lim_{x \to 1/4} f(x)$ • $f(x) = \lim_{x \to 1/4} f(x)$ • $f(x) = \lim_{x \to 1/4} f(x)$ • $f(x) = \lim_{x \to 1/4} f(x)$ 1 $f(x) = \lim_{x \to 1/4} f(x)$ •	0)	h li	(m	1/2	()	= 4	X	ار ا	37	e-1	in	20	1); x:	mi	10		(ı	1 7		1)	(x	+	Ž)	5) x-	im.		χ-	+1	2	14	+	=	5	/4
o) $f(x) = \begin{cases} \frac{x^2 - 25}{x - 5} & x \neq 5 \\ 0 & x = 5 \end{cases}$ o) $x = 5$ o) $x = 5$ d) $f(5) = 0$ 2 $\lim_{x \to 5} f(x) = \lim_{x \to 5} \frac{x^2 - 25}{x - 5} = \lim_{x \to 5} \frac{(x + 5)(x + 5)}{(x - 8)} = \lim_{x \to 5} \frac{x + 5}{x + 5} = 10$ 3) $f(6) \neq \lim_{x \to 5} f(x)$ c) $f(x) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 a = 0 c) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ b) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ c) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ x \lefta 0 d) $f(6) = \begin{cases} e^$									l	im	,	1									h	Cx)	is	8	lis	>C0	>n-	\ir	١٠٠	00	2	to		a	5		
① $f(s) = 0$ ② $\lim_{x \to 5} f(x) = \lim_{x \to 5} \frac{x^2 - 25}{x - 5} = \lim_{x \to 5} \frac{(x + 5)(x - 5)}{(x - 8)} = \lim_{x \to 5} \frac{x + 5}{x + 5} = 10$ ② $f(s) \neq \lim_{x \to 5} f(x)$ ∴ $f(x)$ is discontinuous at $a = 5$ Removable discontinuity ① $f(x) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ $f(x) = \begin{cases} e^x \\ e^x + 1 \end{cases}$ ② $f(s) = \begin{cases} e^x \\ e^x + 1$	c)		P(Cxi)	= _				25									a	.=							-									,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	1	}(<u>.</u>	5)	100	0				0						0.5				0.			1.	× 1	n,	\(\lambda\)	×-	6			2	. 00		~ _			10	
$\begin{array}{c} x \to 5 \\ 0 \end{array} \begin{array}{c} x \to 5 \\ 0 \end{array} \begin{array}{c}$		2	()	5						χ	→!	5	_	2	د_	5			2	⟨ →	5			(X	-5	3)				×	>5	5					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							2	(-)	5	1	Cx	(:)				0 0		4	÷ ()	K) Re	m	0	al	ole	2	0	tis	n	00	105	s I U	aite	201	a	5	5		
① $f(0) = e^{0} = \frac{1}{2}$ ② $\lim_{x \to 0} f(x) = DNE$ (Note: $\lim_{x \to 0^{+}} e^{x} = \frac{1}{2}$ and $\lim_{x \to 0^{+}} x^{2} + 1 = 1$ ③ $f(0) \neq \lim_{x \to 0^{+}} f(x)$	d)		fc	X.) =	{				•		χ	S C	>			a	_	0																			
② $\lim_{x\to 0} f(x) = \Delta NE$ (Note: $\lim_{x\to 0^+} \frac{e^x}{e^x+1} = \frac{1}{2}$ and $\lim_{x\to 0^+} x^2+1 = 1$) ③ $f(0) \neq \lim_{x\to 0^+} f(x)$	0	L	20	c)	=	(e	D		-			>C)																			:					
3 f(0) \(\psi \) \(\lambda \) \(\lambda \)	②									171				1	, Jo	łe	00		Q 2	im (>)	0		e ^x	+1	est est	2	12		6	um	d	Q x-	im.	2	K ² .	+1	Tona.	1
	3	7	200	2)	7	<u>L</u>	Q:			ŧ(*)			/																								/

8) a) f($(x) = \begin{cases} e^{2x+c} \\ x+2 \end{cases}$	x≥0 x<0		
0		0.2	st. Then,	
Piace	extracted s $x \to 0$ $2x + c$ $2x + c$ $x \to 0$ $x \to 0$ $x \to 0$	24 + 2,		
x → 0 ⁺	x→0	- 7 ~		
	e = 0+2			
	lnec = ln2			
	c lne = ln2 $(c = ln2)$			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
P) t(x)	$= \begin{cases} Sin(x+c) \\ x^2-1 \end{cases}$	χ<1 χ≥1		
By con	tinuity, lim	f(x) must exis	1. Then,	
lim	Sin (x+c) = lim	22-1	D C= 9	510-1(0)-1
χ → 1⁻	$\sin(1+c) = 1^{3}$		C=/TI + D	TT)-1 for n=0,1,
	Sin (1+c) = 0			,
	sin" (sin (1+ c) = s		$C = \left(\frac{\pi}{2}\right)^{-1}$)+nT for n=0,1,
9)0) f(x)	$= 4 - 3x^3 + 4x^5$	Continuous	00,00)
6 000	= 10 =	10	Caolaca u O	(-00 ₅ -2)U(-2,
2) 900	$= 10$ $-3x^2 - 5x + 2$	-(3x-1)(x+2)	COVERIDOOS	(1/3, ∞)
c) h(x) -	15-9x No	te: 5-9x >0	Continuous	20 (-0.5/97
		$-9x \ge -5$		
		$\begin{array}{cccc} -q & -q \\ x \le 5/q \end{array}$		
d) y = 0	cos(x) Confi	10000 00 (-0	0100)	

		2=			1	0)																					
12))	h (4	; (;	-	16	وع	-6	46	+8	30																	
a)	1	160) =	8	٠ .	6+	s																				
b)	A	ver	مع	e 1	iel	oc	itc	5																			
(ن	L	0,	1]		A	ıg.	Ve	eloc	<u>ا</u> ز ل	બુ :	<u> </u>	nci 1)-\ 	n (c		gas earth	13	28	-8	30	=	48	7 +	1/5			
(15	Γ	0,0	0.0	oi	1	t	lua		Vel	oc	140	<u>)</u> :				001			0)	8	80	The second name of		-8 00		= 6	44
c)	I	nst	m	æn	eo	೮ಶ	V	elo	cid	9	ad	f	;=0														
	Zı	154.	Ve	loci	ty	<u>a</u>		n. t→		h	(0		Δŧ		h	(0)	>										
						-	lm At	v →c		-10	o (I	<u>5</u> +)	»+	64	C	Dt)	+8	86	_	8/0	2						
						= \(\)	lin St=	\ ₹0		2	£ (.	-16 A	οt t	+6	04)) =	= ,	lin Dt	~ → c	-	16((At)+	64	8	64	\$ \
13)	-	The	d	eri	va-	tiv	e	of	1) c a	£	7L .	is	90	ver	· 6	3										
		210	(X)	= l	im	,	PC	74	h)	h	P C:	x)_		Pr	ou'i	de	d	th	0	lo	4in	e	KIE.	2+	•		
	ļ	vot	2 0		xìs:		2	lu	مط	ion	6	B	X	Pe	M	all	. 7	2	01	w	hi	ch	th	is	10	tim	5

