

Uji Hipotesis

Muhammad Afif Hendrawan, S.Kom., M.T.

Outlines

Langkah-langkah uji hipotesis

Uji hipotesis untuk rata-rata

Uji hipotesis untuk varians

Intuisi Uji Hipotesis

Apa itu uji hipotesis? Mari kita pahami dengan contoh

Anda pergi ke supermarket dan ingin membeli minuman kaleng. Pramuniaga toko mengklaim bahwa berat minuman tersebut adalah 10kg/karton.

Berdasarkan klaim dari praminiaga, Anda memiliki 4 pandangan terhadap klaim tersebut,

- 1. Pramuniaga berkata benar, dan mean dari bobot minuman adalah 10kg/karton ($\mu=10kg$)
- 2. Pramuniaga seorang konservatif, sehingga bobot dari minuman lebih dari 10kg/karton $(\mu>10kg)$
- 3. Pramuniaga curang, sehingga bobot minuman kurang dari 10kg ($\mu < 10kg$)
- 4. Pramnuiaga adalah karyawan baru, sehingga tidak dapat memprediksi bobot minuman dengan tepat, sehingga bobot bisa jadi lebih rendah atau lebih tinggi ($\mu \neq 10kg$)

Sumber: Modul Statistika Komputasi, I Wayan Sumarjaya

Permasalahan

Jika kita percaya dengan praminiaga, maka kita akan langsung membeli. Bagaimana jika yang terjadi adalah anggapan kita seperti dugaan ke-2 hingga ke-4?

Kita mungkin akan menduga praminiaga adalah orang yang konservatif, melakukan kecurangan, atau belum punya pengalaman.

JANGAN SUUDZON! BUKTIKAN SETIAP DUGAAN

Pembuktian 1

Uji jika pramuniaga konservatif

- Pada pembuktian ini kita menduga bahwa pramuniaga konservatif, sehingga bobot minuman lebih dari $10 {\rm kg} \to \mu > 10 kg$
- Berdasarkan dugaan kita, maka kondisi yang berlawanan adalah, pramuniaga tidak konservatif, artinya $\mu \leq 10 kg$. Kondisi ini kita sebut sebagai hipotesis null atau H_0
- Sedangkan karena kita mau menguji kepercayaan kita bahwa pramuniaga memang benar konservatif, maka kondisi ini kita sebut sebagai hipotesis alternatif atau hipotesis riset → Biasa disimbolkan sebagai H_a atau H₁

Sehingga,

 $H_0: \mu \le 10kg$

 H_1 : $\mu > 10kg$

- Kondisi mutulally exclusive (saling hindar) dan termasuk semua/terangkum (all-inclusive)
 - Artinya, salah satu nilai dari H_0 atau H_a adalah benar, namun tidak bisa keduanya

Pembuktian 1

Uji jika pramuniaga konservatif

Maka,

- Jika $m{H_0}$ benar, maka $m{H_1}$ akan salah. Jika kita menerima fakta bahwa $m{H_0}$ benar, maka tindakan kita benar. Jika tidak, maka kita melakukan kesalahan.
- Kesalahan tersebut disebut sebagai kesalahan tipe I
- Peluang kesalahan tipe I \rightarrow Disimbolkan sebagai $\alpha \rightarrow$ disebut sebagai taraf (level) uji
- Jika H_0 salah, maka H_1 akan benar. Jika kita menerima fakta bahwa H_0 salah, maka kita melakukan kesalahan. Jika tidak, maka kita melakukan hal yang benar.
- Kesalahan pada kondisi ini → Kesalahan tipe II
- Peluang kesalahan tipe II \rightarrow Disimbolkan sebagai β

Pembuktian 1

Uji jika pramuniaga konservatif

Tipe Kesalahan

Vanutusan	Hipotesis Nol				
Keputusan	H ₀ Benar	H ₀ Salah			
Menolak	Kekeliruan Tipe I (α)	Keputusan Benar (1 - β)			
Menerima	Keputusan Benar (1 – α)	Kekeliruan Tipe II (β)			

Sumber: Statistika Terapan, Mikha Agus Widiyanto

Pembuktian 1

Uji jika pramuniaga konservatif

Penyelesaian

- Kita dapat menggunakan sampling!
- Misal kita sampling dengan jumlah sampel
 25 karton
- Diperoleh $\bar{x} = 10.36 \ kg$
- Asumsi $\sigma = 1kg$
- Maka, sebaran normal baku (z score) adalah,

$$Z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{10.36 - 10}{\frac{1}{\sqrt{25}}} = \frac{0.36}{0.20} = 1.8$$

- Nilai Z merupakan statistik uji

 Untuk membuktikan hipotesis
- H_0 ditolak, apabila $Z>Z_{lpha}$
- Ingat α adalah confidence level atau significance level → Kita yang menentukan
- $Z > Z_{\alpha} \rightarrow$ Daerah kritis
- Jika kita menggunakan $\alpha = 90\%$, maka,

$$Z = 1.8 > Z_{\alpha} = 1.648$$

Sehingga, kita menolak H_0 dan menerima $H_1 \rightarrow \mathbf{Pramuniaga\ konservatif}$

Pembuktian 2

Uji jika pramuniaga curang ($\mu < 10kg$)

Maka,

$$H_0$$
: $\mu \ge 10kg$
 H_1 : $\mu < 10kg$

$$H_1$$
: $\mu < 10kg$

- jumlah sampel 25 karton
- Diperoleh $\bar{x} = 10.36 \, kg$
- Sampel sama Asumsi $\sigma = 1kg$
 - Nilai z = 1.8
 - $\alpha = 90\%/0.05$

$Z \leq -Z_{\alpha}$ Daerah kritis

Sehingga,

- H_0 akan ditolak jika Z < -1.648
- $Z = 1.8 \rightarrow Z > -Z_{\alpha}$
- Maka kita menerima $H_0 \rightarrow$ Pramuniaga tidak curang

Pembuktian 3

Uji jika pramuniaga tidak tahu ($\mu \neq 10kg$)

Maka,

$$H_0$$
: $\mu = 10kg$
 H_1 : $\mu \neq 10kg$

$$H_1$$
: $\mu \neq 10kg$

- jumlah sampel 25 karton
- Diperoleh $\bar{x} = 10.36 \, kg$
- Sampel sama Asumsi $\sigma = 1kg$
 - Nilai z = 1.8
 - $\alpha = 90\%/0.05$

$$|Z| \ge Z_{\alpha/2}$$

Sehingga,

- $Z_{\alpha/2} = 95\%$ at $\alpha = 0.025$ ingat $\alpha = 0.025$ dipilih adalah 90% at $\alpha = 0.05$
- H_0 akan ditolak jika $Z \ge 1.960$
- $Z = 1.8 \rightarrow |Z| < Z_{\alpha/2}$
- Maka kita menerima $H_0 \rightarrow \mu = 10kg$

Langkah-langkah Uji Hipotesis

Melakukan uji hipotesis dengan benar

jti.polinema.ac.id Statistika 12

Langkah-langkah Uji Hipotesis

- Menyatakan masalah penelitian → Haruskan kita membeli minuman kaleng?
- 2. Merumusukan H_0 dan H_1/H_a
- 3. Memilih tingkat confidence level / significance level $\rightarrow \alpha$
- 4. Memilih uji statistik → Misal uji Z
- 5. Menghitung nilai uji statistik
- 6. Menghitung nilai kritis
- 7. Membandingkan nilai uji statisitik dengan nilai kritis

Dearah Kritis – Uji Statistik Z

H_0	H_1	Daerah kritis			
$\mu \leq \mu_0$ $\mu \geq \mu_0$		$Z \ge Z_{\alpha}$ $Z \le -Z_{\alpha}$			
		$ Z \geq Z_{\alpha/2}$			

Sumber: Modul Statistika Terapan, I Wayan Sumarjaya

Uji Hipotesis untuk Rata-rata

Bagaimana jika parameter populasi tidak diketahui?

jti.polinema.ac.id Statistika 15

Uji Hipotesis untuk Rata-rata

Jika parameter populasi tidak diketahui, maka kita dapat menggunakan nilai statistik sampel -> CLT

Sebagai contoh, pada kasus sebelumnya, jika varians dari populasi tidak diketahui, maka kita gunakan nilai S

Sehingga,

$$T = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$$

Maka nilai daerah kritisnya

$\overline{H_0}$	H_1	Daerah kritis
$\mu \leq \mu_0$	$\mu > \mu_0$	$T \ge t_{\alpha;n-1}$
$\mu \ge \mu_0$	$\mu < \mu_0$	$T \leq -t_{\alpha;n-1}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ T \ge t_{\alpha/2;n-1}$

Uji Hipotesis untuk Rata-rata - Contoh

Seorang ahli ekologi hutan mempelajari regenerasi komunitas hutan hujan dalam lubang yang disebabkan oleh jatuhnya pohon besar pada saat hujan. Kemudian dia mencatat Dendrocnide excelsa akan tumbuh 1.5m/tahun dengan sinar matahari langsung pada lubang tersebut. Dalam studinya, ahli ekologi mengambil 9 spesimen, kemudian mengukurnya pada tahun 1998 dan akan mengukurnya lagi 1 tahun kemudian. Data perubahan tinggi 9 spesimen adalah,

> 1.5 1.9 1.6 2.0 2.7 1.0 2.0

Apakah benar jika spesies Dendrocnide excelsa akan tumbuh 1.5m/tahun dengan sinar matahari langsung?

Penyelesaian,

$$H_0$$
: $\mu = 1.5m/th$
 H_1 : $\mu \neq 1.5m/th$ Cek nilai • $\bar{x} = 1.9m/th$
• $S = 0.51$
• $\alpha = 90\%/0.05$

• n = 9

 $\alpha = 90\%/0.05$ (dipilih)

S darimana? $S^{2} = \frac{\sum (x_{i} - \bar{x})}{n - 1}$ $S = \sqrt{S^{2}}$

Uji Hipotesis untuk Rata-rata - Contoh

Solusi

- n = 9
- $\bar{x} = 1.9m/th$
- S = 0.51
- $\alpha = 90\%/0.05 \rightarrow \alpha = 95\%/0.025$
- Sehingga $t_{0.025;8} = 2.306$ -> Ingat df = n 1

H_0	H_1	Daerah kritis
$\mu \le \mu_0$	$\mu > \mu_0$	$T \ge t_{\alpha;n-1}$
$\mu \ge \mu_0$	$\mu < \mu_0$	$T \leq -t_{\alpha;n-1}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ T \ge t_{\alpha/2;n-1}$

Maka,

$$T = \frac{1.9 - 1.5}{\frac{0.51}{\sqrt{9}}} = 2.35$$

$$T = 2.35 > 2.306$$

Sehingga, H_0 ditolak Artinya spesies tidak tumbuh 1.5m/th

Uji Hipotesis untuk Varians

Bagaimana jika kita tertarik selain pada nilai pemusatan data?

Uji Hipotesis untuk Varians

Penelitian juga dapat dilakukan untuk mengetahui informasi tentang variabilitas atau penyebaran data, sehingga . . .

Contoh hipotesisnya adalah,

$$H_0: \sigma^2 \ge 16kg^2$$

 $H_1: \sigma^2 < 16kg^2$

$$H_1$$
: $\sigma^2 < 16kg^2$

Uji Statistikanya
$$U = \frac{(n-1)S^2}{\sigma^2} o Distribusi \ chi^2$$

Daerah kritis,

$\overline{H_0}$	H_1	Daerah kritis
$\sigma^2 \leq \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$U \ge \chi^2_{\alpha;n-1}$
$\sigma^2 \geq \sigma_0^2$	$\sigma^2 < \sigma_0^2$	$U \leq \chi_{1-\alpha;n-1}^{2}$
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$U \geq \chi^2_{\alpha/2;n-1}$
		atau $U \leq \chi^2_{1-\alpha/2;n-1}$

df	0.995	0.99	0.975	0.95	0.90	0.10	0.05	0.025	0.01	0.005
1			0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672

jti.polinema.ac.id Statistika 21

Uji Hipotesis untuk Varians — Contoh

Populasi ikan duyung (dugong) memiliki berat rata-rata 350kg dengan varians $900kg^2$. Suatu sampel 25 ikan duyung di Moreton Bay memiliki varians $1600kg^2$. Apakah populasi ikan duyung di Moreton Bay lebih bervariasi dibanding dengan populasi pada umumnya?

Hipotesis,

$$H_0: \sigma^2 \leq 900kg^2$$
 $H_1: \sigma^2 > 900kg^2$ Cek informasi $S^2 = 1600kg^2$ Nilai α $\alpha = 5\%$ $\chi^2_{0.025;24} = 12.4$

$$n = 25$$

$$S^2 = 1600kg^2$$

Maka,

$$U = \frac{(n-1)S^2}{\sigma^2} = \frac{(25-1)1600}{900} = 42.67$$
 Sehingga

 $U = 42.67 > \chi^2 = 12.4$ Maka, H_0 diterima Artinya, dugong Moreton Bay tidak lebih bervariasi

jti.polinema.ac.id Statistika 23