Date Page

Supervised Machine Learning

Input Output

Examples

Application Input (x) Output (Y) Span filtering email > Spam? (0/1) speech recognition audio > text transcripts machine translation English > Spanish online advertising ad, userinfo -> click (011) self-driving cars image, radar into -> position of other cars visual inspection. image of phone -> defect? (0/1)

Linear Regression with one variable House Sizes & Prices 5007 400 price \$100 013 1000 2000 Size in feet 2 Supervised Learning Model Terminology Data used to train the model. Training Set price Notation in \$1000's size infect x = "input variable 2104 400 tatur 1416 y = " output " variable 315 1534 "terget" variable 17 8 852 m = number of training examples 3210 (x, y) = single training chample. x0)=2104) Y=400 (x⁶), yⁱ) =; th training example. (x, y) = (2104, 400)

$$J(\omega,b) = \frac{1}{2m} \sum_{i=1}^{m} \left(\hat{y}_{i}^{(i)} - y^{(i)}\right)^{2}$$

m = number of training examples

$$J(\omega_{1b}) = \frac{1}{2m} \sum_{i=1}^{m} \left(f(\omega_{1b}) \left(\gamma_{i}^{(i)} - y_{i}^{(i)} \right)^{2} \right)$$

model:
$$= \omega x + b$$

parameters: $\omega = \omega x + b$

simplified

 $= \omega x + b$
 $= \omega x + b$

parameters:
$$\rightarrow \omega$$

goal:

minimalize
$$J(\omega, 6)$$
 — minimize $J(\omega)$
 $\omega, 6$

Conta O

Linear regression model.

fcw, 6) (FC) = wx + 6

 $J(\omega,b) = \frac{1}{2m} \sum_{i=1}^{m} f_{\omega,b} \left[x^{i} - y^{i}\right]^{2}$

Gradient Descent Algorithm
repeat until convergence }

 $\omega = \omega - \lambda \left(\frac{3}{3}\omega J(\omega, 6)\right) \rightarrow \frac{1}{m} \left(\frac{1}{3}(\omega, b) - \frac{1}{3}(\omega, b)\right)$ $b = b - \lambda \left(\frac{3}{3}\omega J(\omega, b)\right) \rightarrow \frac{1}{m} \left(\frac{1}{3}(\omega, b) - \frac{1}{3}(\omega, b)\right)$