Derived Categories and Localisation

Sascha Roggatz

January 20, 2021

Contents

1	Grundlagen		
	1.1	Wichtige Begriffe zu Kategorien	
		Was ist eine abelsche Kategorie?	
	1.3	Was sind Kettenkomplexe?	
2	Abgeleitete Kategorien		
	2.1	Definition	
	2.2	Beweisskizze zur Existenz eine Lokalisierung	
		Wie studiert man die Struktur abgeleiteter Kategorien?	
3	Lokalisierung		
	3.1	Definition	
	3.2	Wie stellen wir $B[S^{-1}]$ dar?	
		Wann ist $B[S^{-1}]$ eine volle Unterkategorie von $C[S^{-1}]$	

1 Grundlagen

1.1 Wichtige Begriffe zu Kategorien

Betrachte folgendes Setting

- C, D Kategorien,
$$F:C\mapsto D$$
 Funktor, $B\subset C,\ a,b,s,q,x,z\in Obj(C),$ $f:a\mapsto b$

Dann heisst

- B vollstaendige Unterkategorie von C, falls
- i) $Obj(B) \subset Obj(C)$
- ii) $\forall X, Y \in Obj(B) : Mor_B(X, Y) = Mor_C(X, Y)$
- Morphismus $m: a \mapsto b$ monomorph, falls
- i) fuer $g_1, g_2 : x \mapsto a \text{ folgt aus } m \circ g_1 = m \circ g_2 \Rightarrow g_1 = g_2$
- Morphismus $e: a \mapsto b$ epimorph, falls
- i) $fuer g_1, g_2 : b \mapsto x \ folgt \ aus \ g_1 \circ e = g_2 \circ e \Rightarrow g_1 = g_2$
- Morphismus $k:d\mapsto a$ Kern, falls
- $\mathbf{i)} \ f \circ k = 0$
- ii) $zu h : x \mapsto a \exists !h' : x \mapsto d : h = k \circ h'$
- Morphismus $k:b\mapsto d$ Kokern, falls
- **i)** $k \circ f = 0$
- ii) $zu h : b \mapsto x \exists !h' : d \mapsto x : h = h' \circ k$
- Funktor F volltreu, falls
- i) $Mor_C(a,b) \mapsto Mor_D(F(a),F(b)), f \mapsto F(f) \ bijektiv$
- Funktor F Aequivalenz von kategorien, falls
- i) $\exists G: D \mapsto C$, sodass $F \circ G \cong id_D \ und \ G \circ F \cong id_C$

1.2 Was ist eine abelsche Kategorie?

Sei A Kategorie. A heisst abelsch, falls $\forall X, Y, Z \in \text{Obj}(A)$:

i) $\forall f, f_1, f_2 \in Hom_A(X, Y), g, g_1, g_2 \in Hom_A(Y, Z)$:

$$g \circ (f_1 + f_2) = g \circ f_1 + g \circ f_2$$

$$(g_1 + g_2) \circ f = g_1 \circ f + g_2 \circ f$$

ii) $\forall X_1, X_2 \exists X_1 \otimes X_2 \ mit \ Morphismen \ p_v : X_1 \otimes X_2 \mapsto X_v \ und \ i_v : X_i \mapsto X_1 \otimes X_2 :$

$$p_v \circ i_v = id_{X_v}$$

$$i_1 \circ p_1 + i_2 \circ p_2 = id_{X_1 \otimes X_2}$$

- iii) ∃ Nullobjekte
- iv) $\exists Kerne, Kokerne$
- v) Jeder Monomorphismus ist Kern, jeder Epimorphismus ist Kokern

1.3 Was sind Kettenkomplexe?

Eine Familie C_n von Objekten aus abelschen Kategorie mit Morphismen $d_n: C_n \mapsto C_{n-1}$, sodass $d_n \circ d_{n+1}: C_{n+1} \mapsto C_{n-1} = 0$ heisst Kettenkomplex. Dazu definieren wir $H_n(C) := \ker(d_n)/\operatorname{im}(d_{n+1})$ und bezeichnen dieses als Homologieobjekt. Ein Kettenkomplex (C_*, d_*) heisst exakt, falls alle $H_n(C)$ verschwinden. Wir nennen $\operatorname{Kom}(A)$ die Kategorie der Kettenkomplexe abelscher Kategorien. Ein Morphismus $u: C \mapsto D$ von Kettenkomplexen ist eine Familie von Morphismen $u_n: C_n \mapsto D_n$. $u: C \mapsto D$ heisst quasi-Isomorphismus, falls alle $H_n(C) \mapsto H_n(D)$ Isomorphismen sind.

2 Abgeleitete Kategorien

2.1 Definition

Sei A abelsche Kategorie und Kom(A) die Kategorie der Komplexe über A. Dann \exists Kategorie D(A) und ein Funktor $Q: Kom(A) \mapsto D(A)$:

i) Q(f) ist Isomorphismus fuer jeden quasi – Isomorphismus $f:A\mapsto B$:

$$H_n(A_0) \mapsto H_n(B_0)$$
 ist Isomorphismus

ii) Fuer jeden Funktor $F: Kom(A) \mapsto D$ gilt:

$$\exists ! Funktor \ G : D(A) \mapsto D : F = G \circ D$$

D(A) heisst abgeleitete Kategorie von A. A heisst halbeinfach, falls jedes exakte Triple T in A isomorph zu $0 \mapsto X \mapsto X \oplus Y \mapsto 0$ ist.

2.2 Beweisskizze zur Existenz eine Lokalisierung

Sei B eine Kategorie und S eine Klasse von Morphismen in B. Wir wollen eine Kategorie $B[S^{-1}] =: B_S$ und einen Funktor $Q: B \mapsto B_S$ konstruieren. Dazu setzen wir $Obj(B_S) = Obj(B)$ und gehen wir folgt vor:

- Konstruiere Morphismen in B_S
- i) Variable x_s fuer jedes $s \in S$
- ii) $qerichteten\ Graph\ \Gamma$:
- iii) $Pfad in \Gamma endliche Folge von Kanten$
- iv) Morphismus in B_S ist Aequivalenzklasse von P faden in Γ
- \mathbf{v}) Komposition von Morphismen \rightarrow entsprechende Pfade verbinden
- Zum Funktor $Q: B \mapsto B_S$
- i) Q bildet $Morphismus X \mapsto Y$ in $Klasse der Pfade X \mapsto Y$ ab
- ii) $\forall s \in S : Q(s) \text{ ist Isomorphismus in } B_S$

iii) Funktor $F: B \mapsto B'.Definiere \ G: B_S \mapsto B' \ mit \ F = G \circ Q \ durch$

$$G(X) = F(X), X \in Obj(B_S) = Obj(B)$$

$$G(f) = F(f), f \in Mor(B)$$

$$G(x_s) = F(s^{-1}), s \in S$$

Damit haben wir die Objekte der Kategorie B_S und deren Morphismen angegeben.

2.3 Wie studiert man die Struktur abgeleiteter Kategorien?

Idee: Studiere zyklische Komplexe. Dazu geben wir skizzenhaft eine Aequivalenz von Kategorien an:

- i) Komplex ZK heisst zyklisch, falls alle Differentiale null sind
- ii) Es gilt: $Kom_0(A) \subset Kom(A)$ ist vollstaendige Unterkategorie
- iii) $Kom_o(A) \cong \prod_{n=-\infty}^{\infty} A_n$
- iv) $i: Kom(A) \mapsto Kom_0(A), h: Kom(A) \mapsto Kom_0(A)$:

$$h((K^n,d^n)=(H^n(K',0)))$$

$$h(f:K'\mapsto L')=H^n(f)$$

- v) h kann ueber D(A) faktorisiert werden:
- vi) Abelsche Kategorie A heisst halbeinfach, falls fuer jedes exakte Triple T:

$$T \cong 0 \mapsto X \mapsto X \oplus Y \mapsto Y \mapsto 0$$

 $Funktor\ D(A)\mapsto Kom_0(A)\ ist\ Aequivalenz\ von\ Kategorien$

Diese gilt nur fuer halbeinfache Kategorien. Allgemein ist ersichtlich, dass wir deren Struktur ueber Morphismen zu Kategorien, deren Struktur einfacher zu verstehen und untersuchen ist, studieren.

3 Lokalisierung

3.1 Definition

Sei B beliebige Kategorie. $S \in Mor(B)$ Klasse von Morphismen heisst Lokalisierung, falls gilt:

i) S ist abgeschlossen:

$$X \in Obj(B) \Rightarrow id_X \in S$$

$$s, t \in S \Rightarrow s \circ t \in S$$

- ii) $\forall f \in Mor(B), s \in S \exists g \in Mor(B), t \in S$:
- iii) Seien $f, g: X \mapsto Y$:

$$\exists s \in S: sf = sg \equiv \exists t \in S: ft = gt$$

3.2 Wie stellen wir $B[S^{-1}]$ dar?

Sei S Lokalisierungsklasse von Kategorie B. Dann kann $B[S^{-1}]=:B_S$ beschrieben werden durch:

- $i) Obj(B_S) = Obj(B)$
- ii) $X \mapsto Y \in B_S \text{ ist } z.B. \text{ Diagramm } (s, f) \text{ in } B$:

$$(s, f) \sim (t, g) falls$$

kommutiert.

iii) Komposition von Morphismen durch (s, f), (t, g) ist Klasse von (st', gf'):

3.3 Wann ist $B[S^{-1}]$ eine volle Unterkategorie von $C[S^{-1}]$

Sei $B\subset C$ vollstaendige Unterkategorie, S
 Lokalisierungsklasse von C. Betrachte:

- i) $S_B = S \cap Mor(B)$ Lokalisierungssystem in B
- ii) $\forall s \in S : X' \mapsto X \in Obj(B) \exists f : X'' \mapsto X'$:

$$sf \in S, X'' \in Ob(B)$$

iii) wie ii) Pfeile umgekehrt

Gilt i) und ii) oder iii), dann ist $B[S^{-1}] < C[S^{-1}]$ eine volle Unterkategorie und der kanonische Funktor $k:B[S^{-1}]\mapsto C[S^{-1}]$ ist volltreu.