Equation différentielle,

MAT3

Equation différentielle

Résumé du document

Definition

Table des matières

1. Equation différentielle	2
1.1. Problème à condition initiale (problème de Cauchy)	
1.1.1. Exemple	
2. Equation différentielle d'ordre 1 à variables séparables	3
3. Equation différentielle linéaire	
3.1. EDO linéaire	4
3.1.1. Forme générale	4
3.1.1.1. Exemple	
3.2. EDO à coefficients constants	4
3.2.1. Forme générale	4
3.2.2. Exemple	4
3.3. EDO homogène	4

1. Equation différentielle

Une équation différentielle est une équation qui contient une fonction inconnue et une ou plusieurs de ses dérivées. L'**ordre** d'une équation différentielle est l'ordre de la plus haute dérivée présente dans l'équation. Dans le cas suivant on considère une équation différentielle d'ordre 1.

$$y'(x) = x \cdot y(x)$$

Pour un ordre 2, on aurait une équation de la forme

$$y''(x) + y'(x) - 6 \cdot y(x) = 0$$

Résoudre une équation différentielle consiste à trouver **toutes** ses solutions possibles. Cet ensemble de fonctions définit la solution générale de l'équation.

1.1. Problème à condition initiale (problème de Cauchy)

- Dans les applications, ce n'est pas tant la solution générale d'une équation différentielle qui est intéressante mais plutôt une solution spécifique vérifiant une ou plusieurs contraintes supplémentaires.
- Ces contraintes, appelées **condition initiale**, consistent le plus souvent à fixer la valeur de la solution et de ses premières dérivées à un instant donné (**il faut autant de conditions que l'ordre de l'équation différentielle**).

1.1.1. Exemple

$$\begin{cases} y'(x) = x^3 \\ y'(2) = 1 \end{cases}$$

$$y(x) = \frac{x^4}{4} + C$$

On remplace y(x) par la condition initiale 1 et x par 2

$$1 = \frac{2^4}{4} + C$$
$$1 = 4 + C$$
$$C = -3$$

La solution du problème de Cauchy sera donc

$$y(x) = \frac{x^4}{4} - 3$$

2. Equation différentielle d'ordre 1 à variables séparables

Une équation différentielle d'ordre 1 est dite à variables séparables si elle peut s'écrire sous la forme

$$h(y(x)) \cdot y'(x) = g(x)$$

ou de manière plus compacte

$$h(y)y'=g(x)$$

3. Equation différentielle linéaire

Une équation différentielle est dite **linéaire** si elle est linéaire en y (la fonction inconnue) et en ses dérivées. Donc pour être linéaire, toutes les dérivées de y incluant y elle-même doivent être de degré 1.

3.1. EDO linéaire

3.1.1. Forme générale

La forme générale d'une équation différentielle linéaire d'ordre n est

$$a_{n(x)}y^n + \ldots + a_2(x)y'' + a_1(x)y' + a_0(x)y = b(x)$$

où $a_{i(x)}$ et b(x) sont des fonctions données de x.

3.1.1.1. Exemple

$$y'' - (x+1)y' + 3y = x^2 + 1$$

est linéaire car toutes les dérivées de y sont de degré 1.

$$y'y = x$$

ne l'est pas car y est multipliée par y'.

3.2. EDO à coefficients constants

Une équation différentielle linéaire d'ordre n est dite à **coefficients constants** si les coefficients a_i sont des constantes donc $\in \mathbb{R}$.

3.2.1. Forme générale

$$a_n y^n + \dots + a_2 y'' + a_1 y' + a_0 y = b(x)$$

3.2.2. Exemple

$$y'' + y' - 6y = (x+1)e^{3x}$$

est une équation différentielle linéaire à coefficients constants d'ordre 2.

3.3. EDO homogène