ENM 531: Data-driven modeling and probabilistic scientific computing

Lecture #3: Probability and Statistics primer

Correlation and linear dependence

The multivariate Gaussian

$$p(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{D}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})\right)$$

Notation	$\mathcal{N}(oldsymbol{\mu},~oldsymbol{\Sigma})$
Parameters	$\mathbf{s} \boldsymbol{\mu} \in \mathbf{R}^k - \text{location}$
	$\Sigma \in \mathbb{R}^{k \times k}$ — covariance (positive semi-
	definite matrix)
Support	$x \in \mu + \operatorname{span}(\Sigma) \subseteq \mathbf{R}^k$
PDF	$\det(2\pi\mathbf{\Sigma})^{-\frac{1}{2}}e^{-\frac{1}{2}(\mathbf{x}-oldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu})},$ exists only when $\mathbf{\Sigma}$ is positive-definite
Mean	μ
Mode	μ
Variance	Σ

Marginals and conditionals of a Gaussian

$$p(\boldsymbol{x}, \boldsymbol{y}) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{\mu}_{x} \\ \boldsymbol{\mu}_{y} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{xx} & \boldsymbol{\Sigma}_{xy} \\ \boldsymbol{\Sigma}_{yx} & \boldsymbol{\Sigma}_{yy} \end{bmatrix}\right)$$

Marginal distribution

$$p(\boldsymbol{x}) = \int p(\boldsymbol{x}, \boldsymbol{y}) d\boldsymbol{y} = \mathcal{N}(\boldsymbol{x} | \boldsymbol{\mu}_x, \boldsymbol{\Sigma}_{xx})$$

Conditional distribution
$$p(oldsymbol{x} \mid oldsymbol{y}) = \mathcal{N}ig(oldsymbol{\mu}_{x\mid y}, oldsymbol{\Sigma}_{x\mid y})$$
 $oldsymbol{\mu}_{x\mid y} = oldsymbol{\mu}_{x} + oldsymbol{\Sigma}_{xy}oldsymbol{\Sigma}_{yy}^{-1}(oldsymbol{y} - oldsymbol{\mu}_{y})$ $oldsymbol{\Sigma}_{x\mid y} = oldsymbol{\Sigma}_{xx} - oldsymbol{\Sigma}_{xy}oldsymbol{\Sigma}_{yy}^{-1}oldsymbol{\Sigma}_{yx}$.

These are unique properties that make the Gaussian distribution very simple and attractive to compute with! It is essentially our main building block for computing under uncertainty.

Transformations

