Solving Binary Optimisation Problems using a Binary Genetic Algorithm

Shan He

School for Computational Science University of Birmingham

Module 06-27818 and 27819: Advanced Aspects of Nature-Inspired Search and Optimisation (Ext)

Outline of Topics

- Application of binary integer optimisation problems
 - Capital budgeting/project selection problems

2 Binary Genetic Algorithm

Capital budgeting/project selection problem

 A company is evaluating 4 projects which each run for 3 years and have the following characteristics.

		Capital requirements (m)			
Project	Return (\pounds m)	Year	1	2	3
1	0.2		0.5	0.3	0.2
2	0.3		1.0	8.0	0.2
3	0.5		1.5	1.5	0.3
4	0.1		0.1	0.4	0.1
Available capital $(\pounds m)$			3.1	2.5	0.4

 Decision problem: Which projects should be selected to maximize the total profits?

Capital budgeting/project selection problem

Explanation:

- Once a project has been selected, all yearly capital requirement (investments) must be met in full
- There is a capital (budget) available for each year, that should not be exceeded

Problem formulation

- Decision variables $\mathbf{x} = [x_1, x_2, x_3, x_4]$: which project to select
 - $\mathbf{x} \in \{0, 1\}$
 - $x_i = 0$: project i is not selected
 - $x_i = 1$: project i is selected
 - It is essentially a 0-1 (binary) integer programming problem
- **Objective**: Maximize the expected returns

maximise
$$0.2x_1 + 0.3x_2 + 0.5x_3 + 0.1x_4$$

Constraints: Yearly budget cannot be exceeded

$$0.5x_1 + 1.0x_2 + 1.5x_3 + 0.1x_4 \le 3.1$$

$$0.3x_1 + 0.8x_2 + 1.5x_3 + 0.4x_4 \le 2.5$$

$$0.2x_1 + 0.2x_2 + 0.3x_3 + 0.1x_4 \le 0.4$$

0-1 integer programming problems

0-1 integer programming is NP-complete

Imaging we have a simple decision making problem with a yes or no answer.

- P vs NP vs NP-complete vs NP-hard
 - P: a complexity class that represents the set of all decision problems that can be solved in polynomial time (efficiently).
 - NP: a complexity class that represents the set of all decision problems for which the instances where the answer is "yes" have proofs that can be verified in polynomial time.
 - NP-complete: NP-Complete is a complexity class which represents the set of all problems X in NP for which it is possible to reduce any other NP problem Y to X in polynomial time.
 - Intuition: NP-complete means we can solve Y quickly if we know how to solve X quickly.

0-1 integer programming problems

0-1 integer programming is NP-complete

- P vs NP vs NP-complete vs NP-hard
 - P versus NP problem: an 1-million dollar open question to ask whether "polynomial time algorithms actually exist for solving NP-Complete, or NP problems? Current answer is NO.
 - "NP-complete this is widely regarded as a sign that a polynomial algorithm for this problem is **unlikely** to exist"
 - What if we can proof P = NP: "What we would gain from P = NP will make the whole Internet look like a footnote in history."
 - Richard Karp's 21 NP-complete problems
 - NP-Hard: the problems that are at least as hard as the NP-complete problems.
 - Note: NP-hard problems do not have to be in NP, and they do not have to be decision problems.

How to solve the problem

Figure: Euler diagram for P, NP, NP-complete, and NP-hard set of problems. From Wikipedia

How to solve the problem

- Deterministic (Exact) methods:
 - The Branch & Bound Method: Relax the problem as a continuous problem
 - The Branch & Bound Method: Relax the problem as a continuous problem
- Heuristic methods:
 - Local search (hill climbing)
 - Simulated annealing
 - Genetic Algorithm

Generic Genetic Algorithm

Generic Genetic Algorithm

```
X_0 := generate initial population of solutions
terminationflag := false
t := 0
```

Evaluate the fitness of each individual in X_0 .

while (terminationflag != true)

Select parents from X_t based on their fitness.

Breed new individuals by applying crossover and mutation to parents

Evaluate the fitness of new individuals.

Generate population X_{t+1} by replacing least-fit individuals

t := t + 1

If a termination criterion is met: terminationflag := true

Output x_{best}

Building blocks of Evolutionary Algorithms

- An Evolutionary Algorithms consists of:
 - representation: each solution is called an individual
 - fitness (objective) function: to evaluate solutions
 - variation operators: mutation and crossover
 - selection and reproduction : survival of the fittest

Genetic Representation: general principle

- The selection of representation depends on the problem
- We have the following choices:
 - Binary representation
 - Real number representation
 - Random key representation
 - Other problem specific representations

Exercise: BGA for project selection problem

- Open my BGA_template.m file
- Understand the fitness calculation function
- Complete the following sections:
 - Initialisation
 - Crossover
 - Mutation
- Run you algorithm 30 times and record the average results and standard deviation.

Exercise: Project selection problem extensions

- A new scenario:
 - If the company select project 4, the return will be realised and can be reinvested in year 3.
 - Projects 1 and 2 are mutually exclusive
- How to model this problem?

Binary Genetic Algorithm

Exercise: Project selection problem extensions

- Solution:
 - If the company select project 4, the return will be realised and can be reinvest in year 3.

maximise
$$0.2x_1 + 0.3x_2 + 0.5x_3$$

and for year 3, the constraint becomes

$$0.2x_1 + 0.2x_2 + 0.3x_3 \le 0.4 + 0.1x_4$$

or

$$0.2x_1 + 0.2x_2 + 0.3x_3 - 0.1x_4 \le 0.4$$

Projects 1 and 2 are mutually exclusive:

$$x_1 + x_2 <= 1$$

 Please read Prof. J E Beasley's OR-Notes on Integer Programming

Extra exercise

Use your implemented Binary GA to solve the office assignment problem