习题 1.1 作业参考解答

数学科学系 朱浩然 2017311249

3(3). 证明: 任意多个开集之并为开集; 有限个开集之交为开集.

证明. 一方面,设 $\{G_{\alpha}\}$ 是一个开集族,其中指标 α 属于指标集 $\mathrm{I}(\mathrm{I}$ 中元素可以有任意多个),考虑 $\bigcup_{\alpha\in I}G_{\alpha}$.

任取 $\mathbf{x} \in \bigcup_{\alpha \in I} G_{\alpha}, \exists \beta \in I, s.t. \mathbf{x} \in G_{\beta}.$

由 G_{β} 是开集知 \mathbf{x} 是 G_{β} 的内点, 即 $\exists r > 0, s.t. B(\mathbf{x}, r) \subset G_{\beta}$.

从而有 $B(\mathbf{x},r) \subset \bigcup_{\alpha \in I} G_{\alpha}$,所以 \mathbf{x} 是 $\bigcup_{\alpha \in I} G_{\alpha}$ 的内点.

故 $\bigcup_{\alpha \in I} G_{\alpha}$ 是开集.

另一方面,设 G_1, G_2, \ldots, G_m 为有限个开集,考虑 $\bigcap_{i=1}^m G_i$.

任取 $\mathbf{x} \in \bigcap_{i=1}^{m} G_i$,有 $x \in G_i$, $i = 1, 2, \dots, m$.

由 G_i 是开集知 \mathbf{x} 是 G_i 的内点,即 $\exists r_i > 0, s.t. B(\mathbf{x}, r_i) \subset G_i, i = 1, 2, \ldots, m.$

取 $r = \min\{r_1, r_2, \dots, r_m\}$,则有 $B(\mathbf{x}, r) \subset B(\mathbf{x}, r_i), i = 1, 2, \dots, m$. 从而 $B(\mathbf{x}, r) \subset G_i$,所以 $B(\mathbf{x}, r) \subset \bigcap_{i=1}^m G_i$,所以 $\mathbf{x} \not\in \bigcap_{i=1}^m G_i$ 的内点.

故
$$\bigcap_{i=1}^m G_i$$
 是开集.

4(4). 证明: 任意多个闭集之交为闭集; 有限个闭集之并为闭集.

证明. 一方面,设 $\{F_{\alpha}\}$ 是一个闭集族,其中指标 α 属于指标集 I,考虑 $\bigcap_{\alpha \in I} F_{\alpha}.$

对 $\forall \alpha \in I$, F_{α} 是闭集, 故 F_{α}^{c} 是开集.

由习题 1.1/3(3) 的证明知 $\bigcup_{\alpha\in I}F_{\alpha}^{c}$ 是开集,从而 $(\bigcup_{\alpha\in I}F_{\alpha}^{c})^{c}$ 是闭集,即 $\bigcap_{\alpha\in I}F_{\alpha}$ 是闭集.

另一方面,设 F_1, F_2, \ldots, F_m 为有限个闭集,考虑 $\bigcup_{i=1}^m F_i$. 对 $\forall i \in \{1, 2, \ldots, m\}$,均有 F_i 为闭集,故 F_i^c 为开集.

由习题 1.1/3(3) 的证明知 $\bigcap_{i=1}^m F_i^c$ 为开集,从而 $(\bigcap_{i=1}^m F_i^c)^c$ 为闭集,即 $\bigcup_{i=1}^m F_i$ 为闭集. \square

5(4). 证明: 若 $A, B \subset \mathbb{R}^n$, 则 $\partial (A \cup B) \subset \partial A \cup \partial B$.

证明. 任取 $\mathbf{x} \in \partial (A \cup B)$.

则对 $\forall r > 0$,有

$$B(\mathbf{x},r) \cap (A \cup B) \neq \phi \perp B(\mathbf{x},r) \cap (A \cup B)^c \neq \phi,$$

即

$$\exists \mathbf{y}, \mathbf{z} \in B(\mathbf{x}, r), s.t. \mathbf{y} \in A \cup B, \mathbf{z} \in (A \cup B)^c.$$

从而有

$$\mathbf{y} \in A \otimes \mathbf{y} \in B$$
,

 $\mathbf{z} \in A^c \cap B^c \Rightarrow \mathbf{z} \in A^c \perp \mathbf{z} \in B^c.$

若 $\mathbf{y} \in A$,则

 $B(\mathbf{x},r) \cap A \neq \phi \coprod B(\mathbf{x},r) \cap A^c \neq \phi.$

从而 $\mathbf{x} \in \partial A$.

同理, 若 $\mathbf{y} \in B$, 则 $\mathbf{x} \in \partial B$.

故 $\mathbf{x} \in \partial A \cup \partial B$.

由 x 的任意性有 $\partial(A \cup B) \subset \partial A \cup \partial B$.