Software Testing Assignment 2

Submitted by:
Shiv Kumar
2016UIT2563
Semester 8
IT2

Experiment 7: Write any program with the following conditions:

- 1. LOC should be at-least 30.
- 2. There should be use of at-least 1 conditional statements (if-else, switch case).
- 3. There should be use of at-least 1 looping structure (do while, while, for).

Perform data flow testing for the above program showing all the steps.

CODE:

```
int main() {
long int N;
long int s = 0;
long int p = 0;
cin>>N;
long int a[N];
long int i=0;
while(i>a[i]){
       cin>>a[i];
       if(a[i] < 0 || a[i] > 100) {
              continue;
       i++;
i=0;
while(i<N){
       int X = a[i];
       int count = 0;
       while(X) {
              if(X\%2==1) {
              count++;
       X/=2:
       }
       s+= count;
       p*= count;
       i++;
}
cout<<s<<endl;
cout<<p<<endl;
}
```

CONTROL FLOW GRAPH

DEFINITION AND USE OF ALL VARIABLES

S.NO	VARIABLE	DEFINE	USE
1	S	3,25	25, 29
2	р	4,26	26, 30
3	N	5	6, 8, 16
4	i	7, 13, 15, 27	8, 9, 10, 13, 16, 17, 27
5	Х	17, 23	19, 20, 23
6	count	18, 21	21, 25, 26

DEFINING ALL DU PATHS

S.NO	VARIABLE	PATHS
1	S	1. (3, 25, s) 2. (3, 29, s) 3. (25,25,s) 4. (25,29,s)
2	p	1. (4,26,p) 2. (4,30,p) 3. (26,26,p) 4. (26,30,p)
3	N	1. (5,6,N) 2. (5,8,N) 3. (5,16,N)
4	į	1. (7,8,i) 2. (7,9,i) 3. (7,10,i) 4. (7,13,i) 5. (13,8,i) 6. (13,9,i) 7. (13,10,i) 8. (13,13,i) 9. (15,16,i) 10. (15,17,i) 11. (15,27,i) 12. (27,16,i) 13. (27,17,i) 14. (27,27,i)
5	X	1. (17,19,X) 2. (17,20,X) 3. (17,23,X) 4. (23,19,X) 5. (23,20,X) 6. (23,23,X)

S.NO	VARIABLE	PATHS
6	count	1. (18,21,count) 2. (18,25,count) 3. (18,26,count) 4. (21,21,count) 5. (21,25,count) 6. (21,26,count)

TESTING

i) FIND ALL DEFINITION COVERAGE:

- 1. (3, 25, sumOfSetBits)
- 2. (4,26,productOfSetBits)
- 3. (5,6,N)
- 4. (7,(8,f),i)
- 5. (13,(8,f),i)
- 6. (15,(16,f),i)
- 7. (17,(19,f),X)
- 8. (21,21,count)
- 9. (23,(19,f),X)
- 10.(25,29,sumOfSetBits)
- 11.(26,30,productOfSetBits)
- 12.(27,(16,f),i)

ii) FIND ALL C-USE COVERAGE:

- 1. (3, 25, sumOfSetBits)
- 2. (3, 29, sumOfSetBits)
- 3. (4,26,productOfSetBits)
- 4. (4,30,productOfSetBits)
- 5. (5,6,N)
- 6. (5,8,N)
- 7. (5,16,N)
- 8. (7,9,i)
- 9. (7,13,i)
- 10.(13,9,i)
- 11.(13,13,i)
- 12.(15,17,i)
- 13.(15,27,i)
- 14.(17,23,X)
- 15.(18,21,count)
- 16.(18,25,count)
- 17.(18,26,count)
- 18.(21,21,count)
- 19.(21,25,count)
- 20.(21,26,count)
- 21.(23,23,X)
- 22.(25,25,sumOfSetBits)
- 23.(25,29,sumOfSetBits)

```
24.(26,26,productOfSetBits)
25.(26,30,productOfSetBits)
26.(27,17,i) 27.(27,27,i)
```

iii) FIND ALL C-USE SOME P-USE COVERAGE:

- 1. (3, 25, sumOfSetBits)
- 2. (3, 29, sumOfSetBits)
- 3. (4,26,productOfSetBits)
- 4. (4,30,productOfSetBits)
- 5. (5,6,N)
- 6. (5,8,N)
- 7. (5,16,N)
- 8. (7,9,i)
- 9. (7,13,i)
- 10.(13,9,i)
- 11.(13,13,i)
- 12.(15,17,i)
- 13.(15,27,i)
- 14.(17,23,X)
- 15.(18,21,count)
- 16.(18,25,count)
- 17.(18,26,count)
- 18.(21,21,count)
- 19.(21,25,count)
- 20.(21,26,count)
- 21.(23,23,X)
- 22.(25,25,sumOfSetBits)
- 23.(25,29,sumOfSetBits)
- 24.(26,26,productOfSetBits)
- 25.(26,30,productOfSetBits)
- 26.(27,17,i)
- 27.(27,27,i)

iv) FIND ALL P-USE SOME C-USE COVERAGE:

- 1. (3, 25, sumOfSetBits)
- 2. (4,26,productOfSetBits)
- 3. (5,6,N)
- 4. (7,(8,f),i)
- 5. (7,(8,t),i)
- 6. (7,(10,f),i)
- 7. (7,(10,t),i)
- 8. (13,(8,f),i)
- 9. (13,(8,t),i)
- 10.(13,(10,f),i)
- 11.(13,(10,t),i)
- 12.(15,(16,f),i)
- 13.(15,(16,t),i)
- 14.(17,(19,f),X)
- 15.(17,(19,t),X)

16.(17,(20,f),X) 17.(17,(20,t),X) 18.(18,21,count) 19.(21,21,count) 20.(23,(19,f),X) 21.(23,(19,t),X) 22.(23,(20,f),X) 23.(23,(20,t),X) 24.(25,29,sumOfSetBits) 25.(26,30,productOfSetBits) 26.(27,(16,f),i) 27.(27,(16,t),i)

v) DESIGN THE TEST-CASE

Let the possible input be: 1 101 6.

Path:

This covers all the DU Paths and all the Definitions.

Experiment 8 : Write any program with the following conditions:

- 1. LOC should be at-least 30.
- 2. There should be use of at-least 1 conditional statements (if-else, switch case).
- 3. There should be use of at-least 1 looping structure (do while, while, for).

Perform slice based testing for the above program showing all the steps.

CODE:

```
int main() {
long int N;
long int s = 0;
long int p = 0;
cin>>N;
long int a[N];
long int i=0;
while(i>a[i]){
       cin>>a[i];
       if(a[i] < 0 || a[i] > 100) {
              continue:
       i++;
i=0;
while(i<N){
       int X = a[i];
       int count = 0;
       while(X) {
              if(X\%2==1) {
              count++;
       X/=2;
       s+= count;
       p*= count;
       i++;
}
cout<<s<<endl;
cout<<p<<endl;
}
```

CONTROL FLOW GRAPH

MAKE THE POSSIBLE SLICES FOR EACH VARIABLE

S.NO.	VARIABLE	SLICES
1	N	1. S(N,5) = [1-2, 5, 31] 2. S(N,31) = [1-2, 5-8, 13-14, 15-16, 27-28, 31]
2	S	1. S(sumOfSetBits,3) = [1, 3, 31] 2. S(sumOfSetBits,25) = [1-3, 5-9, 13-25, 27-28, 31] 3. S(sumOfSetBits,29) = [1-3, 5-9, 13-25, 27-29, 31] 4. S(sumOfSetBits,31) = [1-3, 5-9, 13-25, 27-29, 31]
3	р	1. S(productOfSetBits,4) = [1, 4, 31] 2. S(productOfSetBits,26) = [1-2, 4-9, 13-24, 26-28, 31] 3. S(productOfSetBits,30) = [1-2, 4-9, 13-24, 26-28, 30-31] 4. S(sumOfSetBits,31) = [1-2, 4-9, 13-24, 26-28, 30-31]
4	arr	1. S(arr,9) = [1-2, 5-9, 13-14, 31] 2. S(arr,31) = [1-2, 5-17, 28, 31]
5	i	1. $S(i,7) = [1,7,31]$ 2. $S(i,13) = [1,7-10,12-14,31]$ 3. $S(i,15) = [1,7-10,12-14,15,31]$ 4. $S(i,27) = [1,7-10,12-14,15-17,27-28,31]$ 5. $S(i,31) = [1,7-10,12-14,15-17,27-28,31]$
6	X	1. $S(X,17) = [1-2, 5-9, 13-17, 27-28, 31]$ 2. $S(X,23) = [1-2, 5-9, 13-17, 19-20, 22-24, 27-28, 31]$ 3. $S(X,31) = [1-2, 5-9, 13-17, 19-20, 22-24, 27-28, 31]$
7	count	1. S(count,18) = [1-2, 5-9, 13-18, 27-28, 31] 2. S(count,21) = [1-2, 5-9, 13-22, 24, 27-28, 31] 3. S(count,31) = [1-2, 5-9, 13-22, 24-28, 31]

DESIGN THE TEST CASES FOR EACH SLICE

S.NO.	SLICE COVERED	N	arr	EXPECTED O/P
1	S(N, 5)	1	-	-
2	S(N, 31)	1	-	-
3	S(s,3)	-	-	-
4	S(s,25)	2	[6,4]	-
5	S(s,29)	2	[6,4]	3
6	S(s,31)	2	[6,4]	3
7	S(p,4)	-	-	-
8	S(p,26)	2	[6,4]	-
9	S(p,30)	2	[6,4]	2
10	S(p,31)	2	[6,4]	2

S.NO.	SLICE COVERED	N	arr	EXPECTED O/P
11	S(arr,9)	2	[6,4]	-
12	S(arr,31)	2	[6,4]	-
13	S(i,7)	-	-	-
14	S(i,13)	2	[6,4]	-
15	S(i,15)	2	[6,4]	-
16	S(i,27)	2	[6,4]	-
17	S(i,31)	2	[6,4]	-
18	S(X,17)	2	[6,4]	-
19	S(X,23)	2	[6,4]	-
20	S(X,31)	2	[6,4]	-
21	S(count,18)	2	[6,4]	-
22	S(count, 21)	2	[6,4]	-
23	S(count, 31)	2	[6,4]	-