

Introduction to Algorithms 12. Skip Lists

Hyungsoo Jung

- Simple randomized dynamic search structure
 - Invented by William Pugh in 1989
 - Easy to implement
- Maintains a dynamic set of n elements in
 O(lg n) time per operation in expectation and with high
 probability
 - Strong guarantee on tail of distribution of T(n)
 - O(lg n) "almost always"

One linked list

Start from simplest data structure: (sorted) linked list

- Searches take $\Theta(n)$ time in worst case
- How can we speed up searches?

$$14 + 23 + 34 + 42 + 50 + 59 + 66 + 72 + 79 + 66$$

Two linked lists

Suppose we had *two* sorted linked lists (on subsets of the elements)

- Each element can appear in one or both lists
- How can we speed up searches?

$$14 + 23 + 34 + 42 + 50 + 59 + 66 + 72 + 79 + 66$$

Two linked lists as a subway

IDEA: Express and local subway lines (à la New York City 7th Avenue Line)

- Express line connects a few of the stations
- Local line connects all stations
- Links between lines at common stations

Searching in two linked lists

SEARCH(x):

- Walk right in top linked list (L_1) until going right would go too far
- Walk down to bottom linked list (L₂)
- Walk right in L₂ until element found (or not)

Searching in two linked lists

EXAMPLE: SEARCH(59)

Design of two linked lists

QUESTION: Which nodes should be in L_1 ?

- In a subway, the "popular stations"
- Here we care about worst-case performance
- Best approach: Evenly space the nodes in L_1
- But how many nodes should be in L_1 ?

Analysis of two linked lists

- ANALYSIS: • Search cost is roughly $|L_1| + \frac{|L_2|}{|L_1|}$
- Minimized (up to constant factors) when terms are equal

•
$$|L_1|^2 = |L_2| = n \Longrightarrow |L_1| = \sqrt{n}$$

Analysis of two linked lists

ANALYSIS:

•
$$|L_1| = \sqrt{n}$$
 , $|L_2| = n$

Search cost is roughly

한양대학교

More linked lists

What if we had more sorted linked lists?

- 2 sorted lists $\Rightarrow 2 \cdot \sqrt{n}$
- 3 sorted lists $\Rightarrow 3 \cdot \sqrt[3]{n}$
- k sorted lists $\Rightarrow k \cdot \sqrt[k]{n}$
- $\lg n$ sorted lists $\Rightarrow \lg n \cdot \sqrt[\lg n]{n} = 2 \lg n$

lg *n* linked lists

lg *n* sorted linked lists are like a binary tree (in fact, level-linked B+-tree; see Problem Set 5)

Searching in lg *n* linked lists

EXAMPLE: SEARCH(72)

Ideal skip list is this $\lg n$ linked list structure

Skip list data structure maintains roughly this structure subject to updates (insert/delete)

Hanyang University

INSERT(x)

To insert an element x into a skip list:

- SEARCH(x) to see where x fits in bottom list
- Always insert into bottom list

INVARIANT: Bottom list contains all elements

Insert into some of the lists above...

QUESTION: To which other lists should we add x?

INSERT(x)

QUESTION: To which other lists should we add x?

IDEA: Flip a (fair) coin; if HEADS,

promote x to next level up and flip again

- Probability of promotion to next level = 1/2
- On average:
 - 1/2 of the elements promoted 0 levels
 - 1/4 of the elements promoted 1 level
 - 1/8 of the elements promoted 2 levels
 - etc.

Example of skip list

EXERCISE: Try building a skip list from scratch by repeated insertion using a real coin

Small change:

Add special -∞ value to every list
 ⇒ can search with the same algorithm

A *skip list* is the result of insertions (and deletions) from an initially empty structure (containing just $-\infty$)

- INSERT(x) uses random coin flips to decide promotion level
- DELETE(x) removes x from all lists containing it

A *skip list* is the result of insertions (and deletions) from an initially empty structure (containing just $-\infty$)

- INSERT(x) uses random coin flips to decide promotion level
- DELETE(x) removes x from all lists containing it

How good are skip lists? (speed/balance)

- INTUITIVELY: Pretty good on average
- CLAIM: Really, really good, almost always

Thank You

