SEGUNDO PARCIAL (T1)

ANÁLISIS MATEMÁTICO II

Julio 5 de 2017

Tiempo máximo para la realización de la evaluación: 2hs.

- P1) **Hallar** las coordenadas del baricentro de $\frac{x^2}{4} + y^2 \le 1$ tal que $y \ge 0$
- P2) Calcular el volumen de la región definida por las siguientes inecuaciones: $(x-1)^2 + (y-1)^2 \le 1$, $z \le xy$, $z \ge 0$
- P3) Calcular la longitud de la curva parametrizada por $\vec{\lambda}(t) = (2\cos(t), 2\sin(t), 2t)$ entre los puntos (2,0,0) y $(-2,0,2\pi)$
- P4) Dado el campo $\overline{f}(x,y,z) = (y^2, z^2 + x^2, x^2)$, calcular el flujo de \overline{f} a través de la superficie de ecuación y = x tal que $x^2 + y^2 + 2z^2 \le 2$.
- T1) Enunciar y demostrar la condición necesaria para la existencia de función potencial de un campo vectorial en \Re^2 .
- T2) Demostrar que si y_1 es solución de la ecuación $y'' + p \cdot y' + q \cdot y = f_1(x)$ e
- y_2 es solución de la ecuación $y'' + p \cdot y' + q \cdot y = f_2(x)$ entonces
- $y_1 + y_2$ es solución de la ecuación $y'' + p \cdot y' + q \cdot y = f_1(x) + f_2(x)$