Introduction : Le schéma cinématique, à quoi ça sert ?

Par définition, un mécanisme est composé de plusieurs sous ensembles reliés entre eux par une ou plusieurs liaisons.

Mais la lecture des plans d'ensemble n'est pas toujours aisée (cas de mécanismes existants) et il est utile d'en simplifier la représentation.

Lorsque le mécanisme n'existe pas (phase de conception), on a besoin d'un schéma illustrant le fonctionnement attendu sans toutefois limiter le concepteur dans les formes et dimensions à concevoir

Que faut-il donc représenter?

Le schéma cinématique doit présenter le plus fidèlement possible les relations entre les différents groupes de pièces. On trouvera donc :

- Des **groupes de pièces** représentés sous forme de « <u>fils de fer</u> ». On les appelle aussi « blocs cinématiques » ou aussi « classes d'équivalence »
- Des **liaisons normalisées** situées au niveau de chaque <u>contact</u> entre les groupes de pièces.

Peu-on avoir un exemple?

Voici par exemple un serre joint...

Peu-on avoir un exemple?

Autre exemple:

un étau de modéliste...

...MAIS COMMENT FAIT-ON TOUT CA?

Nom de la	Nom de la Degrés	Mouvements relatifs		Représentation normalisée		
liaison	de liberté			Vues planes	Perspective	
Encastrement	0	0	Translation			
	0	0	Rotation			

Nom de la	Degrés	Mouvements relatifs		Représentation normalisée		
liaison	de liberté			Vues planes	Perspective	
Pivot 1	0	Translation				
	1	1	Rotation	' T	X	

Nom de la	Degrés	Mouvements relatifs		Représentation normalisée		
liaison	de liberté			Vues planes		Perspective
Glissière 1	1	1	Translation	X		
	1	0	Rotation			

Avant de détailler la méthode, voyons d'abord quelles sont les liaisons normalisées, comment on les distingue et comment elles sont représentées :

Nom de la	Nom de la Degrés		louvements	Représentation normalisée		
liaison	de liberté	relatifs		Vues planes	Perspective	
Hélicoïdale	1	1	Translation	ou - M		
	1	1	Rotation			

Remarque : La liaison hélicoïdale ne permet qu'un seul degré de liberté puisque les 2 mouvements relatifs ne sont pas indépendants.

ON DIT QU'ILS SONT CONJUGUES

Nom de la	Nom de la Degrés		louvements	Représentation normalisée		
liaison	de liberté	relatifs		Vues planes	Perspective	
Pivot glissant 2	2	1	Translation	ou —		
	2	1	Rotation			

Nom de la	Degrés	Mouvements relatifs		Représentation normalisée		
liaison	de liberté			Vues planes	Perspective	
Sphérique à doigt	2	0	Translation			
		2	Rotations			

Nom de la	Degrés	Mouvements relatifs		Représentation normalisée		
liaison	de liberté			Vues planes	Perspective	
Appui plan 3	2	2	Translations			
	3	1	Rotation			

Nom de la	Degrés	Mouvements relatifs		Représentation normalisée		
liaison	de liberté			Vues planes	Perspective	
Potulo	Rotule 3	0	Translation	-0		
Rotule		3	Rotations			

Nom de la	Degrés	Mouvements relatifs		Représentation normalisée		
liaison	de liberté			Vues planes		Perspective
Linéaire	1	1	Translation		г ф -	ds
annulaire	4	3	Rotations	~		9

Nom de la	Degrés	Mouvements relatifs		Représentation normalisée		
liaison	de liberté			Vues planes		Perspective
Linéaire	1	2	Translations	<u></u>		
rectiligne	4	2	Rotations	ſ	7	V.

Nom de la	Degrés	Mouvements relatifs		Représentation normalisée		
liaison	de liberté			Vues planes	Perspective	
Ponetuelle	Ponctuelle 5	2	Translations	ou — 🔘		
Ponctuelle		3	Rotations		XJ	

METHODE D'ELABORATION

Les principales étapes de réalisation d'un schéma cinématique sont présentées ci-dessous

ETAPE 1: REPERER LES GROUPES CINEMATIQUES

Colorier les classes d'équivalence sur le plan d'ensemble

Recenser les pièces composant chaque groupe (les pièces élastiques à exclure)

ETAPE 2 : ETABLIR LE GRAPHE DES LIAISONS

Relier par un trait les groupes ayant des contacts quels qu'ils soient.

ETAPE 3: IDENTIFIER LES LIAISONS ENTRE LES GROUPES

Déterminer la nature du ou des contacts entre les classes d'équivalence.

et/ou observer les degrés de liberté entre les groupes concernés.

En déduire la liaison normalisée correspondante (centre et axe)

ETAPE 4 : CONSTRUIRE LE SCHEMA CINEMATIQUE MINIMAL

NON

...Vous voulez un exemple?

OUI

Je vous trouve bien prétentieux...

...tant pis, j'vous l'fais quand même...

...HOP!

(ouf!)...

METHODE D'ELABORATION

ETAPE 1: REPERER LES GROUPES CINÉMATIQUES

Colorier les classes d'équivalence sur le plan d'ensemble

METHODE D'ELABORATION

ETAPE 1: REPERER LES GROUPES CINÉMATIQUES

Colorier les classes d'équivalence sur le plan d'ensemble

Recenser les pièces composant chaque groupe (les pièces élastiques à exclure)

Groupe 1: {1;2;3;4;5}

Groupe 2: {6;8;9}

Groupe 3: {7; 10}

Groupe 4: { 11; 12 }

METHODE D'ELABORATION

ETAPE 1 : REPERER LES GROUPES CINÉMATIQUES

ETAPE 2 : ETABLIR LE GRAPHE DES LIAISONS

Relier par un trait les groupes ayant des contacts quels qu'ils soient, où qu'ils soient.

METHODE D'ELABORATION

ETAPE 1 : REPERER LES GROUPES CINEMATIQUES

ETAPE 2 : ETABLIR LE GRAPHE DES LIAISONS

ETAPE 3: IDENTIFIER LES LIAISONS ENTRE CES GROUPES

- Déterminer la nature du ou des contacts entre les classes d'équivalence.
- et / ou observer les degrés de liberté entre les groupes concernés.
- Identifier la liaison normalisée correspondante (centre et axe)
- Recommencer cette démarche pour chaque trait

METHODE D'ELABORATION

ETAPE 1: REPERER LES GROUPES CINÉMATIQUES

ETAPE 2 : ETABLIR LE GRAPHE DES LIAISONS

ETAPE 3 : IDENTIFIER LES LIAISONS ENTRE LES GROUPES

ETAPE 4 : CONSTRUIRE LE SCHEMA CINEMATIQUE MINIMAL

- Choisir un point de vue de représentation (plan x,y)

- Repérer la position relative des liaisons (au centre du contact réel)

Maintenant, vous n'avez plus besoin du plan...

Glissière

Hélicoïdale

Pivot

Pivot

glissant

METHODE D'ELABORATION

ETAPE 1 : REPERER LES GROUPES CINEMATIQUES

ETAPE 2 : ETABLIR LE GRAPHE DES LIAISONS

ETAPE 3 : IDENTIFIER LES LIAISONS ENTRE LES GROUPES

ETAPE 4: CONSTRUIRE LE SCHEMA CINEMATIQUE MINIMAL

- Choisir un point de vue de représentation (plan x,y)

- Repérer la position relative des liaisons (au centre du contact réel)

Maintenant, vous n'avez plus besoin du plan...

- Placer les liaisons sur les points identifiés précédemment
- Relier les liaisons entre elles en respectant les blocs (couleurs)
- Terminer l'habillage du schéma

Glissière

Hélicoïdale

Pivot

Pivot

glissant