Gautam Buddha University; Greater Noida

School of Engineering (Mechanical Engineering)

Degree	Course Name	Course Code	Marks:100
M. Tech.	Modeling of Metal	MEM 518	SM+MT+ET
	Forming Processes		25+25+50
Semester	Credits	L-T-P	Exam.
I	3	3-0-0	3 Hours

Unit - I

Introduction and Process Modeling: Introduction; Uniform energy method; Slab method; Slip line field method; Upper bound method; Visioplasticity method; Finite Element method.

Plasticity Fundamentals: Introduction; Von Misses criterion; Tresca criterion; Experimental verification of yield criterion; Plastic anisotropic; Anisotropic yield criterion; Plastic instability; Generalized necking failure conditions.

(07 Hours)

Unit - II

Uniform Energy and Slab Methods: Introduction; Uniform energy method; Application - Comparison of flat plate between two parallel platten; Rolling of flats; Direct extrusion; Wire drawing; Tube drawing.

Slab Method: Introduction; The slab method; Open die forging – Low and high slipping friction conditions; Mixed friction conditions; Load calculations; Strip drawing; Wire and rod drawing; Tube drawing; Extrusion; Strip rolling.

(09 Hours)

Unit - III

Slip Line Field Technique: Introduction; Plane strain; Alpha and beta lines; Stress equation; Velocity equation; Hencky's first theorem; Hencky's second theorem; Velocity discontinuities; Stress discontinuities; Stress boundary conditions; Construction of slip line fields; Construction of Hodographs; Application of field line technique for rolling extrusion etc.

(08 Hours)

Unit - IV

Upper Bound Technique: Introduction; Principle of virtual work; Principle of maximum work; Upper bound theorem; Application of upper bound technique for frictionless square die; extrusion through a smooth circular die; roling of sheets; Axisymmetric extrusion; Axisymmetric deep drawing.

(07 Hours)

Unit - V

Visioplasiticity Technique: Introduction; Visioplasticity analysis – stress distribution under plane strain and in axial symmetry; Application.

(06 Hours)

Unit - VI

Finite Element Method: Introduction; Finite element method; Eulerian rigid plastic FEM formulation for plane strain rolling – governing equation; domain and boundary conditions; integral form; finite element approximation; finite element equation; solution procedure. **(08 Hours)**

Recommended Books:

- 1. Modeling Techniques for Metal Forming Processes; G K Lal; P M Dixit; N Venkata Reddy; Narosa Publisher
- 2. Manufacturing Science; Ghosh & Mallik; Affiliated East-West Press.
- 3. Technology of Metal Forming Processes; S. Kumar; Prentice Hall of India.
- 4. Handbook of Metal Forming; Kurt Lange; Society of Manufacturing Engineers. Michigan; USA; 1988.
- 5. An Introduction to the Principles of Metal Working; Rowe; Arnold.
- 6. Metal Forming Processes and Analysis; Avitzur; Tata McGraw-Hill Co.; New Delhi; 1977.
- 7. ASM Metals Handbook. Vol.14; Forming and Forging; Metals Park; Ohio; USA; 1990.
- 8. Metal Forming: Fundamentals and Applications; Taylor Altan; Soo I.K. Oh; Harold. L. Gegel; ASM; Metals Park; Ohio; USA; 1983.