Nat
Fun nyelv operációs szemantikájának determinisztikussága (Nyelvek típus
rendszere beadandó)

Abonyi-Tóth Ádám atadi96@gmail.com

2017. december 21.

A feladat leírása: https://akaposi.github.io/tipusrendszerek/natfun.pdf 7. Determinisztikusság

0.1. Tétel. Ha $t \mapsto t'$ és $t \mapsto t''$, akkor t' = t''.

 $Bizonyitás. \ t \longmapsto t'$ levezetése szerinti indukció. 6 esetet írunk ki.

- A (13) szabály használata esetén $t = \operatorname{suc} t_1$ és $t' = \operatorname{suc} t_2$, ha $t_1 \longmapsto t_2$. Más levezetési szabály baloldalán nem fordul elő a $\operatorname{suc} t$, tehát t''-re az egyetlen lehetséges levezetés, ha $t'' = \operatorname{suc} t_3$, ahol $t_1 \longmapsto t_3$. Viszont az indukciós feltevésből tudjuk, hogy $t_2 = t_3$, így t' = t''.
- A rec átírási szabályai egymást kölcsönösen kizárják, tehát elég lesz a tételt egyenként bizonyítani rájuk. Ezt a következőképpen láthatjuk be: (15) és (16) kizárják egymást, mert $\mathsf{suc}\,t \neq \mathsf{zero}$ minden t-re. A (16)-os szabály feltételéből és a (12) szabályból következik, hogy a (16)-os szabályban $\mathsf{suc}\,t\,\mathsf{val}$, tehát a 6. tétel alapján nincs olyan t', amire $\mathsf{suc}\,t \longmapsto t'$, így ahol (14) alkalmazható, ott (16) nem alkalmazható, és fordítva. (11) szerint $\mathsf{zero}\,\mathsf{val}$, tehát a 6. tétel alapján ő sem redukálható, tehát a kölcsönös kizárás (14)-gyel megint megvan.
 - (14): (13)-hoz hasonlóan látjuk, hogy akkor vezethető le két különböző term, hat két különböző termre vezethető le, ezt pedig az indukciós feltétel megtiltja.
 - (15): $\operatorname{rec} t_0 x. t_1 t_2 \longmapsto t'$ és $\operatorname{rec} t_0 x. t_1 t_2 \longmapsto t''$ esetén látjuk, hogy t' és t'' is $\operatorname{rec} t_0 x. t_1 t'''$ alakú, ahol t'''-ről tudjuk, hogy $t_2 \longmapsto t'''$. Az indukciós feltevés biztosítja, hogy csak egy ilyen t''' létezik, tehát t' = t''
 - (16): a levezetés jobboldala egy behelyettesítés, ami determinisztikus, feltéve, hogy minden term, amit a behelyettesítéskor használunk, determinisztikusan levezethető. Ezt az indukciós feltétel biztosítja, tehát az állítás erre az ágra is teljesül.
- Az applikáció átírási szabályainak kölcsönös kizárását az előbbihez hasonlóan láthatjuk be, így elég belátni egyesével az eseteket.
 - (18): $t_1t_2 \longmapsto t'$ és $t_1t_2 \longmapsto t''$ esetén látjuk, hogy t' és t'' is t'_1t_2 alakú, ahol $t_1 \longmapsto t'_1$. Itt az indukciós feltételből tudjuk, hogy csak egy ilyen t'_1 van, tehát t' = t''.
 - (19): $t_1t_2 \mapsto t'$ és $t_1t_2 \mapsto t''$ esetén látjuk, hogy t' és t'' is t_1t_2' alakú, ahol $t_2 \mapsto t_2'$. Itt az indukciós feltételből tudjuk, hogy csak egy ilyen t_2' van, t_1 pedig nem írható át, tehát t' = t''.