Congratulations! You passed!

Grade received 100%

To pass 80% or higher

Go to next item

Neural Network Basics

Latest Submission Grade 100%

1.	What does a neuron compute?	1 / 1 point
	A neuron computes an activation function followed by a linear function (z = Wx + b)	
	A neuron computes the mean of all features before applying the output to an activation function	
	A neuron computes a function g that scales the input x linearly (Wx + b)	
	\bullet A neuron computes a linear function (z = Wx + b) followed by an activation function	
	 Correct Correct, we generally say that the output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU,). 	

2. Which of these is the "Logistic Loss"?

1/1 point

- $igcap \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = max(0, y^{(i)} \hat{y}^{(i)})$
- $igcup \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = \mid y^{(i)} \hat{y}^{(i)} \mid$
- $igcap \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = \mid y^{(i)} \hat{y}^{(i)}\mid^2$
- $\bigcirc \hspace{0.5cm} \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = -(y^{(i)}\log(\hat{y}^{(i)}) + (1-y^{(i)})\log(1-\hat{y}^{(i)}))$
- **⊘** Correct

Correct, this is the logistic loss you've seen in lecture!

3. Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?

1/1 point

- x = img.reshape((1,32*32,*3))
- x = img.reshape((32*32*3,1))
- x = img.reshape((3,32*32))
- x = img.reshape((32*32,3))
- **⊘** Correct

4.	Consider	the two	following	random	arravs "	a" and "b	" :
┰.	Constact	CITE CVVO	101101111111111111111111111111111111111	Tarractii	arrays	a ana b	•

1/1 point

<pre>2 b = np.random.randn(2, 1) # b.shape = (2, 1) 3 c = a + b</pre>	3 C = a + b
---	--------------

What will be the shape of "c"?

- The computation cannot happen because the sizes don't match. It's going to be "Error"!
- c.shape = (3, 2)
- c.shape = (2, 1)
 - **⊘** Correct

Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.

5. Consider the two following random arrays "a" and "b":

1/1 point

```
1 a = np.random.randn(4, 3) # a.shape = (4, 3)
2 b = np.random.randn(3, 2) # b.shape = (3, 2)
3 c = a*b
```

What will be the shape of "c"?

- \bigcirc c.shape = (3, 3)
- c.shape = (4, 3)
- The computation cannot happen because the sizes don't match. It's going to be "Error"!
- c.shape = (4,2)
 - **⊘** Correct

Indeed! In numpy the "*" operator indicates element-wise multiplication. It is different from "np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape = (4, 2).

6. Suppose you have n_x input features per example. Recall that $X = [x^{(1)}x^{(2)}...x^{(m)}]$. What is the dimension of X?

1/1 point

\bigcap (m, n_x)	0	(m,	n_x	
----------------------	---	-----	-------	--

- \bigcirc (1,m)
- (n_x, m)
 - ✓ Correct

7. Recall that "np.dot(a,b)" performs a matrix multiplication on a and b, whereas "a*b" performs an element-wise multiplication.

1/1 point

Consider the two following random arrays "a" and "b":

```
1  a = np.random.randn(12288, 150) # a.shape = (12288, 150)
2  b = np.random.randn(150, 45) # b.shape = (150, 45)
3  c = np.dot(a,b)
```

What is the shape of c?

- The computation cannot happen because the sizes don't match. It's going to be "Error"!
- c.shape = (150,150)
- c.shape = (12288, 45)
- c.shape = (12288, 150)
 - **⊘** Correct

 $Correct, remember\ that\ a\ np.dot (a,\ b)\ has\ shape\ (number\ of\ rows\ of\ a,\ number\ of\ columns\ of\ b).\ The\ sizes\ match\ because:$

"number of columns of a = 150 = number of rows of b"

8. Consider the following code snippet:

1 / 1 point

```
1  # a.shape = (3,4)
2  # b.shape = (4,1)
3
4  for i in range(3):
5  for j in range(4):
6   c[i][j] = a[i][j] + b[j]
```

How do you vectorize this?

- \bigcirc c = a.T + b.T
- \bigcirc c = a + b
- C = a.T + b
- c = a + b.T
- **⊘** Correct

1 / 1 point

9. Consider the following code:

2	<pre>a = np.random.randn(3, 3) b = np.random.randn(3, 1) c = a*b</pre>	

What will be c? (If you're not sure, feel free to run this in python to find out).

- This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3, 3)
- This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)
- This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1).
- It will lead to an error since you cannot use "*" to operate on these two matrices. You need to instead use np.dot(a,b)
 - ✓ Correct
- 10. Consider the following computation graph.

1/1 point

What is the output J?

$$\int J = (c - 1)*(b + a)$$

$$\int J = a*b + b*c + a*c$$

$$\int J = (b - 1) * (c + a)$$

Yes.
$$J = u + v - w = a*b + a*c - (b + c) = a*(b + c) - (b + c) = (a - 1)*(b + c)$$
.