Ciprian M Crainiceanu

Table of contents

Outilile

Matched pa data

Dependence

Marginal homogeneity

McNemar's

Estimation

Relationship

Marginal odd

Conditional versus

Conditional

Lecture 25

Ciprian M Crainiceanu

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

December 13, 2013

Table of contents

Table of contents

Outline

data

Marginal homogeneity

McNemar' test

Estimation

Marginal odd

Conditional versus marginal

Conditional MI 1 Table of contents

2 Outline

3 Matched pairs data

4 Dependence

6 Marginal homogeneity

6 McNemar's test

Estimation

8 Relationship with CMH

Marginal odds ratios

Conditional versus marginal

Conditional ML

Outline

Matched pa data

Dependence

Marginal homogeneit

McNemar's

Estimation

Relationship

Marginal odds ratios

Conditional versus

Conditional

- 1 Hypothesis tests of marginal homgeneity
- 2 Estimating marginal risk differences
- 3 Estimating marginal odds ratios
- A brief note on the distinction between conditional and marginal odds ratios

data

Matched pairs

Matched pairs binary data

First	Secon		
survey	Approve	Disapprove	Total
Approve	794	150	944
Disapprove	86	570	656
Total	880	720	1600

	Ca		
Controls	Exposed	Unexposed	Total
Exposed	27	29	56
Unexposed	3	4	7
Total	30	33	63

1

¹Both data sets from Agresti, Categorical Data Analysis, second edition

Table of contents

Matched pa data

Dependence

Marginal homogeneity

McNemar's test

Estimation

with CMH

ratios

Conditiona versus marginal

Conditiona MI

- Matched binary can arise from
 - Measuring a response at two occasions
 - Matching on case status in a retrospective study
 - Matching on exposure status in a prospective or cross-sectional study
- The pairs on binary observations are dependent, so our existing methods do not apply
- We will discuss the process of making conclusions about the marginal probabilities and odds

Outline

Matched pa data

Dependence

Marginal homogeneity

McNemar'

Estimatio

Relationship with CMH

Marginal odds

Conditional versus marginal

Conditional MI

time 2			
time 1	Yes	No	Total
Yes	n_{11}	n_{12}	n_{1+}
no	n_{21}	n_{22}	n_{2+}
Total	n_{+1}	n_{+2}	n
	tim	e 2	
time 1	Yes	No	Total
Yes	π_{11}	π_{12}	T1+
no	π_{21}	π_{22}	π_{2+}
Total /	π_{+1}	τ_{+2}	1
(

- We assume that the $(n_{11}, n_{12}, n_{21}, n_{22})$ are multinomial with n trials and probabilities $(\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22})$
- π_{1+} and π_{+1} are the marginal probabilities of a yes response at the two occasions
- $\pi_{1+} = P(Yes \mid Time 1)$
- $\pi_{+1} = P(\text{Yes} \mid \text{Time 2})$

McNemar' test

Estimation

Relationship with CMH

Marginal odds ratios

Conditional versus marginal

Conditional ML

Marginal homogeneity

- Marginal homogeneity is the hypothesis H_0 : $\pi_{1+} = \pi_{+1}$
- Marginal homogeneity is equivalent to symmetry $H_0: \pi_{12} = \pi_{21}$
- The obvious estimate of $\pi_{12}-\pi_{21}$ is $n_{12}/n-n_{21}/n$
- Under H_0 a consistent estimate of the variance is $(n_{12} + n_{21})/n^2$
- Therefore

$$\frac{(n_{12}-n_{21})^2}{n_{12}+n_{21}}$$

follows an asymptotic χ^2 distribution with 1 degree of freedom

data

Dependent

homogeneity

McNemar's test

Estimation

Relationship with CMH

Marginal odds

Conditional versus

Conditional

- The test from the previous page is called McNemar's test
- Notice that only the discordant cells enter into the test
 - n_{12} and n_{21} carry the relevant information about whether or not π_{1+} and π_{+1} differ
 - n₁₁ and n₂₂ contribute information to estimating the magnitude of this difference

Marginal homogeneity

McNemar's test

Estimation

Relationship with CMH

Marginal odds ratios

Conditional versus marginal

Conditional MI • Test statistic $\frac{(80-150)^2}{86+150} = 17.36$

- P-value = 3×10^{-5}
- Hence we reject the null hypothesis and conclude that there is evidence to suggest a change in opinion between the two polls
- In R

mcnemar.test(matrix(c(794, 86, 150, 570), 2), correct = FALSE)

The correct option applies a continuity correction

Outline

Dependence

Marginal homogeneity

McNemar's test

Estimation

Relationship with CMH

ratios Conditional

Conditional ML • Let $\hat{\pi}_{ij} = n_{ij}/n$ be the sample proportions

- $d = \hat{\pi}_{1+} \hat{\pi}_{+1} = (n_{12} n_{21})/n$ estimates the difference in the marginal proportions
- The variance of d is

$$\sigma_d^2 = \{\pi_{1+}(1-\pi_{1+}) + \pi_{+1}(1-\pi_{+1}) - 2(\pi_{11}\pi_{22} - \pi_{12}\pi_{21})\}/n$$

- $\frac{d-(\pi_{1+}-\pi_{+1})}{\hat{\sigma}_d}$ follows an asymptotic normal distribution
- Compare σ_d^2 with what we would use if the proportions were independent

Matched p

Matched pa data

Dependenc

homogeneity

McNemar's test

Estimation

Relationship with CMH

Marginal odds ratios

Conditiona versus marginal

Conditiona MI

•
$$d = 944/1600 - 880/1600 = .59 - .55 = .04$$

•
$$\hat{\pi}_{11} = .50$$
, $\hat{\pi}_{12} = .09$, $\hat{\pi}_{21} = .05$, $\hat{\pi}_{22} = .36$

•
$$\hat{\sigma}_d^2 = \{.59(1 - .59) + .55(1 - .55) - 2(.50 \times .36 - .09 \times .05)\}/1600$$

•
$$\hat{\sigma}_d = .0095$$

• 95% CI -
$$.04 \pm 1.96 \times .0095 = [.06, .02]$$

• Note ignoring the dependence yields $\hat{\sigma}_d = .0175$

Marginal homogeneit

McNemar's test

Estimation

Relationship with CMH

Marginal odd

Conditiona versus marginal

Conditiona MI

Relationship with CMH test

Each subject's (or matched pair's) responses can be represented as one of four tables.

	Response		Response		
Time	Yes	No	Time	Yes	No
First	1	0	First	1	0
Second	1	0	Second	0	1
Response		Resp	onse		
Time	Yes	No	Time	Yes	No
First	0	1	First	0	1
Second	1	0	Second	0	1

Outline

Matched pa data

Dependend

Marginal homogeneity

McNemar's

Estimation

Relationship with CMH

Marginal odds

Conditional versus

Conditiona MI

- McNemar's test is equivalent to the CMH test where subject is the stratifying variable and each 2×2 table is the observed zero-one table for that subject
- This representation is only useful for conceptual purposes

data

Dependenc

Marginal homogeneity

McNemar's test

Estimation

Relationship with CMH

Marginal odds ratios

Conditional versus

Conditional MI

- Consider the cells n_{12} and n_{21}
- Under H_0 , $\pi_{12}/(\pi_{12}+\pi_{21})=.5$
- Therefore, under H_0 , $n_{21} \mid n_{21} + n_{12}$ is binomial with success probability .5 and $n_{21} + n_{12}$ trials
- We can use this result to come up with an exact P-value for matched pairs data

Dependence

Marginal homogeneity

McNemar's test

Estimation

Relationship with CMH

Marginal odd: ratios

Condition versus

Conditional MI

- Consider the approval rating data
- $H_0: \pi_{21} = \pi_{12}$ versus $H_a: \pi_{21} < \pi_{12}$ $(\pi_{+1} < \pi_{1+})$
- $P(X \le 86 \mid 86 + 150) = .000$ where X is binomial with 236 trials and success probability p = .5
- For two sided tests, double the smaller of the two one-sided tests

McNemar's

Estimation

with CMH
Marginal odds

ratios Conditional

versus marginal

Conditional ML

Estimating the marginal odds ratio

• The marginal odds ratio is

$$\frac{\pi_{1+}/\pi_{2+}}{\pi_{+1}/\pi_{+2}} = \frac{\pi_{1+}\pi_{+2}}{\pi_{+1}\pi_{2+}}$$

The maximum likelihood estimate of the margina log odds
 ratio is

$$\hat{ heta} = \log\{\hat{\pi}_{1+}\hat{\pi}_{+2}/\hat{\pi}_{+1}\hat{\pi}_{2+}\}$$

The asymptotic variance of this estimator is

$$\{(\pi_{1+}\pi_{2+})^{-1} + (\pi_{+1}\pi_{+2})^{-1} \\ - 2(\pi_{11}\pi_{22} - \pi_{12}\pi_{21})/(\pi_{1+}\pi_{2+}\pi_{+1}\pi_{+2})\}/n$$

Outille

Matched padata

Dependen

Marginal homogeneity

McNemar's

Estimatio

with CMH
Marginal odds

ratios Conditional

Conditional versus marginal

Conditiona ML • In the approval rating example the marginal OR compares the odds of approval at time 1 to that at time 2

 $\hat{\theta} = \log(944 \times 720/880 \times 656) = .16$

Estimated standard error = .039

• CI for the log odds ratio $= 16 + 1.96 \times .039 = [.084, .236]$

Dependence

Marginal homogeneity

McNemar's

Estimatio

Relationship with CMH

Marginal odd

Conditional versus marginal

Conditiona MI

Conditional versus marginal odds

First	Secon		
survey	Approve	Disapprove	Total
Approve	794	150	944
Disapprove	86	570	656
Total	880	720	1600

Conditional ML Conditional versus marginal odds

- n_{ii} cell counts
- n total sample size
- π_{ij} the multinomial probabilities
- The ML estimate of the marginal *log* odds ratio is

$$\hat{\theta} = \log\{\hat{\pi}_{1+}\hat{\pi}_{+2}/\hat{\pi}_{+1}\hat{\pi}_{2+}\}$$

• The asymptotic variance of this estimator is

$$\{(\pi_{1+}\pi_{2+})^{-1} + (\pi_{+1}\pi_{+2})^{-1}$$

$$- 2(\pi_{11}\pi_{22} - \pi_{12}\pi_{21})/(\pi_{1+}\pi_{2+}\pi_{+1}\pi_{+2})\}/n$$

Estimation

Relationship with CMH

Conditional versus

Conditional ML

Conditional ML

• Consider the following model

$$\operatorname{logit}\{P(\operatorname{Person}\ i \text{ says Yes at Time 1})\} = \alpha + U_i$$

 $\operatorname{logit}\{P(\operatorname{Person}\ i \text{ says Yes at Time 2})\} = \alpha + \gamma + U_i$

- Each U_i contains person-specific effects. A person with a large U_i is likely to answer Yes at both occasions.
- γ is the \log odds ratio comparing a response of Yes at Time 1 to a response of Yes at Time 2.
- γ is **subject specific effect**. If you subtract the log odds of a yes response for two different people, the U_i terms would not cancel

Marginal homogeneity

McNemar's

Estimation

Relationship with CMH

Marginal odds ratios

Conditional versus marginal

Conditional MI

Conditional ML cont'd

- One way to eliminate the U_i and get a good estimate of γ is to condition on the total number of Yes responses for each person
 - If they answered Yes or No on both occasions then you know both responses
 - Therefore, only discordant pairs have any relevant information after conditioning
- \bullet The conditional ML estimate for γ and its SE turn out to be

$$\log\{n_{21}/n_{12}\} \qquad \sqrt{1/n_{21}+1/n_{12}}$$

Marginal homogeneity

McNemar's

Estimatio

Relationship with CMH

Marginal odds ratios

Conditional versus marginal

Conditional MI

Distinctions in interpretations

- The marginal ML has a marginal interpretation. The effect is averaged over all of the values of U_i .
- The conditional ML estimate has a subject specific interpretation.
- Marginal interpretations are more useful for policy type statements. Policy makers tend to be interested in how factors influence populations.
- Subject specific interpretations are more useful in clinical applications. Physicians are interested in how factors influence individuals.