MATHS FOR COMPUTING

COMP1210

Tutorial 6

Question 1. Let S be the set of rationals which differ from -1. A binary operation \otimes is defined on S by

$$x \otimes y = x + y + xy, \forall x, y \in S.$$

- (i) Determine whether \otimes is commutative.
- (ii) Determine whether \otimes is associative.
- (iii) Show that S has an identity with respect to \otimes .
- (iv) Determine which elements of S have inverses with respect to \otimes .
- (v) Solve the equation $5 \otimes x = 4$.

Question 2. Let * be a binary operation on $\mathbb{R} \times \mathbb{R}$ given by

$$(a,b)*(c,d) = (ad+bc,bd) \forall a,b,c,d \in \mathbb{R}$$

- (i) Determine if * is commutative and associative.
- (ii) Find the identity of $\mathbb{R} \times \mathbb{R}$ with respect to *.
- (iii) Determine which elements have inverses and give the inverse of such elements.

Question 3. Let S be the set of ordered pairs (a, b) of real numbers, with the second element of the ordered pair being non-zero. A binary operation \boxplus is defined on S, such that

 $(a,b) \boxplus (c,d) = (a+c,bd)$ for all ordered pairs in S.

- (i) Show that \boxplus is commutative and associative.
- (ii) Find the identity element in S for \square .
- (iii) Find the inverse of the element $(a, b) \in S$ under \boxplus .

Question 4. A binary operation \heartsuit is defined on the set of positive reals \mathbb{R}^+ by

$$x \heartsuit y = \frac{xy}{x+y+1} \ \forall x, y \in \mathbb{R}^+.$$

- (i) Determine whether \heartsuit is commutative and associative.
- (ii) Is there an identity with respect to \heartsuit on \mathbb{R}^+ ? Give reasons for your answer.