Causality 2022, Assignment 1

Jonas Peters, TA: Sorawit (James) Saengkyongam

handed out: 27 April 2022 at 15:00 hand in until: 4 May 2022 at 09:00

Exercise 1 (*d*-separation). Prove that one can *d*-separate any two nodes in a DAG \mathcal{G} that are not directly connected by an edge.

(Hint: you may start with the following: "Let A and B be nodes of \mathcal{G} that are not directly connected by an edge. We wish to find a set $S \subseteq V$ such that $A \perp_{\mathcal{G}} B \mid S$, where $\perp_{\mathcal{G}}$ denotes d-separation with respect to \mathcal{G} . Since \mathcal{G} is acyclic, at least one of the following two statements holds true i) $A \in \mathbf{ND}_B$ or ii) $B \in \mathbf{ND}_A$. Without loss of generality, ...")

Exercise 2 (*d*-separation). Find all DAGs over nodes $V = \{A, B, C, D\}$ that satisfies the following (and only that) *d*-separation statement:

$$A$$
 d-sep. C ,

which is short-hand for A d-sep. $C \mid \emptyset$. That is, we are looking for all DAGs over V, such that U d-sep. $W \mid Z$ if and only if $\{U, W\} = \{A, C\}$ and $Z = \emptyset$. Prove that your answer is correct.

Exercise 3 (Observations and Interventions). Consider the following SCM \mathfrak{C} .

$$X := N_X$$

$$Y := -X + N_Y$$

$$Z := X + 2Y + N_Z$$

with $N_X, N_Y, N_Z \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$.

- a) Draw the graph corresponding to the SCM.
- b) Compute the joint (observational) distribution $P_{X,Y,Z}^{\mathfrak{C}}$ entailed by the SCM.
- c) We now consider an intervention, where the variable Y is intervened on. It is set to a random variable $M \sim \mathcal{N}(0,2)$ that is independent of N_X, N_Y, N_Z . Compute the joint intervention distribution $P_{X,Y,Z}^{\mathfrak{C};do(Y:=M)}$. Which of the three marginal distributions are different compared to b)?

Exercise 4 (prediction). a) Consider a random vector $\mathbf{X} = (X_1, \dots, X_d)^t \in \mathbb{R}^d$ and a target random variable $Y \in \mathbb{R}$. Assume that all these random variables have mean zero and finite variance. Prove that

$$\beta^0 := \operatorname{cov}(\mathbf{X})^{-1} \operatorname{cov}(\mathbf{X}, Y)$$

solves the optimization problem

$$\beta^0 = \operatorname*{argmin}_{\beta} \mathbb{E}(Y - \beta^t \mathbf{X})^2.$$

It is thus the "population" version of the least squares regression problem. Here, the $d \times d$ -matrix $cov(\mathbf{X})$ is assumed to be invertible, and the jth entry of $cov(\mathbf{X}, Y) \in \mathbb{R}^d$ is $cov(X_j, Y)$.

b) Consider the example from Exercise 3 (the observational distribution) and compute β^0 for $\mathbf{X} = (X, Z)$. One can show (you do not need to do that) that even though Z is an effect and not a cause of Y, it can be a better predictor than X (e.g., in terms of reduction of the mean squared error).

^{**}Please specify which 2 exercises should count for passing the assignment sheet**