Problem Set 1

Problem 1. Determine the values of the labelled currents.

Answer. $I_1 = 2 \text{ A}, I_2 = 1 \text{ A}, I_3 = 2 \text{ A}, I_4 = 3 \text{ A}, I_5 = 0 \text{ A}, I_6 = -1 \text{ A},$

Problem 2. Determine the values of the labelled voltages.

Answer. $U_a = 3 \text{ V}, U_b = -8 \text{ V}, U_c = -7 \text{ V}, U_d = 4 \text{ V}.$

Problem 3. For the following subcircuit:

- a. Find electric potential e_x as a function of potentials: e_1 , e_2 , and resistances: R_1 , R_2 ,
- b. Express voltages U_{x1} and U_{x2} in terms of voltage U_{21} and the resitances.

What would be the above quantities for $R_1 = R_2$?

Answer. $e_x=e_1\frac{R_2}{R_1+R_2}+e_2\frac{R_1}{R_1+R_2};\ U_{x1}=U_{21}\frac{R_1}{R_1+R_2};\ U_{x2}=-U_{21}\frac{R_2}{R_1+R_2}.$ For $R_1=R_2$: $e_x=\frac{e_1+e_2}{2},\ U_{x1}=\frac{U_{21}}{2},\ U_{x2}=-\frac{U_{21}}{2}.$

Problem 4. For $R_1 = 1 \,\mathrm{k}\Omega,\, R_2 = 2 \,\mathrm{k}\Omega,\, R_3 = 3 \,\mathrm{k}\Omega$:

- a. Find electric potential e_x as a function of potentials e_1 , e_2 and e_3 ,
- b. Express voltages U_{x3} in terms of voltages U_{13} and U_{23} .

What would be the above quantities for $R_1 = R_2 = R_3$?

Answer. $e_x = \frac{G_1}{G_1 + G_2 + G_3} e_1 + \frac{G_2}{G_1 + G_2 + G_3} e_2 + \frac{G_3}{G_1 + G_2 + G_3} e_3$ and $U_{x3} = \frac{G_1}{G_1 + G_2 + G_3} U_{13} + \frac{G_2}{G_1 + G_2 + G_3} U_{23}$, where $G_1 = \frac{1}{R_1}$, $G_2 = \frac{1}{R_2}$, $G_3 = \frac{1}{R_3}$, $e_x = \frac{6}{11} e_1 + \frac{3}{11} e_2 + \frac{2}{11} e_3$ and $U_{x3} = \frac{6}{11} U_{13} + \frac{3}{11} U_{23}$ for given values of R_1 , R_2 , R_3 .