

Cat Following Mobile Robot

ELEC 845 Project Yuning Lei

Motivation

- Objective:
 - Capable of following and interacting with Jojo
 - Avoid Collision* (If time allowed)

Robot Setup

Framework

Object Detection

Image Classification
Output: y

Object Detection
Output $y = \begin{bmatrix} p_c \\ bbox \\ class \end{bmatrix}$

Single Shot detector

Prediction for the bounding boxes and confidence for different objects in

Pateropalis about Marchant Common and Desp Lourning

shiect in the images as shown belowed

Features:

- Multiple feature maps with different sizes and number of channel
- Various anchor box sizes for different feature maps

Transfer Learning and Convolutional Neural

Non-max suppression

Before non-max suppression

Each output prediction is : b

Remove all boxes with p_c < 0.6 While there are any remaining boxes:

- Pick the box with the largest p_c as a prediction
- Remove any remaining box with IoU >or= 0.5 with the box prediction in previous step

Figure Source: https://towardsdatascience.com/nonmaximum-suppression-nms-93ce178e177c

PID Controller

- Input: information (area and center position) of bounding box from SSD
- Controller:
 - Desired Output:
 - 1. 0.5m distance between cat and robot
 - 2. Cat always in the front of the robot (center of bounding box close to the center of image)
 - Calculate the area and center of the bounding box when the cat sits at the desired position