

IMPLEMENTING EDF SCHEDULER

Amira Magdy Abdel Kader

Embedded System Advanced Track FWD|Udacity

OCTOBER 20, 2022 amiramagdy618@gmail.com

System Validation

- 1. HyperPeriod
- 2. Offline Simulator Simso
- 3. CPU Load/Utilization
- 4. system schedulability using URM technique.
- 5. system schedulability Time Demand analysis technique.

1. HyperPeriod

Assuming both period and deadline are the same.

Task Lists:

Task	Period	Deadline	Execution (ms)
B1	50	50	0.014767
B2	50	50	0.015033
Tx	100	100	0.029333
Rx	20	20	0.3528
L1	10	10	5
L2	100	100	12

2. Offline Simulator Simso

Tasks:

	Name	Task type	Abort on miss	Act. Date (ms)	Period (ms)	List of Act. dates (ms)	Deadline (ms)	WCET (ms)	Followed by
1	TASK T1	Periodic •	□No	0	50	-	50	0.014767	•
2	TASK T2	Periodic •	□No	0	50	-	50	0.015033	•
3	TASK T3	Periodic •	□ No	0	100	-	100	0.02933	-
4	TASK T4	Periodic •	□ No	0	20	-	20	0.3528	-
5	TASK T5	Periodic •	□No	0	10	-	10	5	-
6	TASK T6	Periodic •	□No	0	100	-	100	12	-

Results:

Zoom In:

CPU Load: 63%

3. CPU Load/Utilization

Using Trace hooks and timer:

U = Total Execution time / Hyperperiod

$$U = 63.85/100 = 0.6385 = 63.85 \%$$

4. system schedulability using URM technique.

(Assuming the given set of tasks are scheduled using a fixed priority rate -monotonic scheduler)

$$\sum_{k=1}^{n} \frac{Ci}{Ti} \leq U = n \left(2^{1/n} - 1 \right)$$

$$U = 63.85 \%$$

N "Number of tasks" = 6

Then the system is schedulable.

5. system schedulability Time Demand analysis technique:

$$w_i(t) = C_i + \sum_{k=1}^{i-1} \left\lceil \frac{t}{p_k} \right\rceil C_k$$

• Ci : Execution time of ith task

• P : Periodicity

• Ui: Utilization of ith task

• wi : worst response time • t : Current time point

The system is scheduable if the time demand for each task is less than the deadline of said task.

According to their priority,

Load 1 Task: T5(10,5,10)

W1(10) = 5 < 10

Then its Schedulable

Rx Task: T4(20, 0.3528,20)

$$W2(20) = 0.3528 + 5 = 5.3528 < 20$$

Then its Schedulable

Button 2 Task : T2(50,0.015033,50)

$$W3(50) = 5 + 5.3528 + 0.015033 = 10.367833 < 50$$

Button 1 Task: T1(50, 0.014767,50)

$$W4(5) = 10.367833 + 0.014767 + 5 + 5.3528 = 20.735 < 50$$

Tx Task: T3(100, 0.029333,100)

$$W5(100) = 20.735 + 10.368 + 5.353 + 5 = 41.456 < 50$$

Load 2 Task: T6(100,12,100)

$$W6(100) = 41.456 + 20.735 + 10.368 + 5.352 + 5 = 82.911 < 100$$

Thus, the system is schedulable.