$11a_{305} (K11a_{305})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 128458353823909u^{26} + 129748020078821u^{25} + \dots + 71455439122482b - 307532868153053, \\ &a - 1, \ u^{27} - 15u^{25} + \dots + 8u + 1 \rangle \\ I_2^u &= \langle 6.23874 \times 10^{124}u^{53} + 1.39776 \times 10^{125}u^{52} + \dots + 4.41978 \times 10^{127}b + 4.69540 \times 10^{127}, \\ &5.28258 \times 10^{127}u^{53} - 1.64275 \times 10^{127}u^{52} + \dots + 8.57438 \times 10^{129}a + 7.90543 \times 10^{128}, \\ &2u^{54} - 3u^{53} + \dots + 95u - 97 \rangle \\ I_3^u &= \langle 2u^7 - 3u^6 - 5u^5 + 6u^4 + 10u^3 - 12u^2 + b - u + 4, \ a + 1, \ u^8 - u^7 - 3u^6 + 2u^5 + 6u^4 - 4u^3 - 3u^2 + 2u + 1 \rangle \\ I_4^u &= \langle u^2 + b, \ a + 1, \ u^3 - u - 1 \rangle \\ I_5^u &= \langle b + 1, \ a - 2, \ 2u - 1 \rangle \\ I_6^u &= \langle b + 1, \ 2a - 1, \ u + 1 \rangle \end{split}$$

* 7 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 95 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 1.28 \times 10^{14} u^{26} + 1.30 \times 10^{14} u^{25} + \dots + 7.15 \times 10^{13} b - 3.08 \times 10^{14}, \ a-1, \ u^{27} - 15 u^{25} + \dots + 8 u + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1.79774u^{26} - 1.81579u^{25} + \dots + 35.4655u + 4.30384 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1.79774u^{26} + 1.81579u^{25} + \dots - 35.4655u - 3.30384 \\ -1.79774u^{26} - 1.81579u^{25} + \dots + 35.4655u + 4.30384 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2.79486u^{26} + 3.00477u^{25} + \dots - 62.0548u - 7.92538 \\ -0.997121u^{26} - 1.18898u^{25} + \dots + 26.5893u + 4.62154 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 3.74472u^{26} - 3.04658u^{25} + \dots + 45.3634u + 2.81681 \\ 0.625459u^{26} + 1.07598u^{25} + \dots - 25.4593u - 2.82772 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1.08283u^{26} + 1.65073u^{25} + \dots - 41.4105u - 5.52428 \\ -1.60344u^{26} - 1.67881u^{25} + \dots + 34.6892u + 5.66859 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1.81579u^{26} + 1.36688u^{25} + \dots + 17.6858u - 1.79774 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ -0.430865u^{26} - 0.712953u^{25} + \dots + 19.1414u + 2.48805 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ -0.430865u^{26} - 0.712953u^{25} + \dots + 19.1414u + 2.48805 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= \frac{110984790327346}{11909239853747}u^{26} + \frac{77302583361155}{11909239853747}u^{25} + \dots - \frac{911733716325243}{11909239853747}u - \frac{123671657013453}{11909239853747}u - \frac{123671657013453}{11909239853747}u^{25} + \dots$$

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{27} + 2u^{26} + \dots + 8u + 2$
c_2, c_6	$u^{27} + 7u^{25} + \dots - 3u + 1$
c_3, c_{11}	$u^{27} - 10u^{26} + \dots + 172u - 16$
c_4, c_7, c_8 c_{10}	$u^{27} - 15u^{25} + \dots + 8u + 1$
<i>C</i> 9	$u^{27} + 13u^{26} + \dots - 28u - 4$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{27} - 4y^{26} + \dots + 84y - 4$
c_2, c_6	$y^{27} + 14y^{26} + \dots - 15y - 1$
c_3, c_{11}	$y^{27} + 16y^{26} + \dots + 6320y - 256$
c_4, c_7, c_8 c_{10}	$y^{27} - 30y^{26} + \dots + 34y - 1$
<i>c</i> ₉	$y^{27} - 3y^{26} + \dots + 56y - 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.106573 + 0.849360I		
a = 1.00000	-0.11341 + 6.75527I	1.42209 - 7.76802I
b = 0.489173 - 0.963829I		
u = 0.106573 - 0.849360I		
a = 1.00000	-0.11341 - 6.75527I	1.42209 + 7.76802I
b = 0.489173 + 0.963829I		
u = -0.159654 + 0.781613I		
a = 1.00000	-1.77335 + 2.61294I	-2.81593 - 2.10661I
b = 0.591660 + 0.371074I		
u = -0.159654 - 0.781613I		
a = 1.00000	-1.77335 - 2.61294I	-2.81593 + 2.10661I
b = 0.591660 - 0.371074I		
u = 0.784543		
a = 1.00000	0.365696	11.8450
b = -0.832565		
u = 0.779651		
a = 1.00000	1.29249	7.75610
b = 0.197132		
u = 1.221600 + 0.595583I		
a = 1.00000	4.22227 + 1.28214I	0 2.91907I
b = 0.114881 - 1.150240I		
u = 1.221600 - 0.595583I		
a = 1.00000	4.22227 - 1.28214I	0. + 2.91907I
b = 0.114881 + 1.150240I		
u = 1.356240 + 0.153177I		
a = 1.00000	11.55650 - 2.44905I	8.88456 + 3.60972I
b = 0.57541 - 1.70357I		
u = 1.356240 - 0.153177I		
a = 1.00000	11.55650 + 2.44905I	8.88456 - 3.60972I
b = 0.57541 + 1.70357I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.39961 + 0.22669I		
a = 1.00000	6.25875 + 10.21720I	5.61375 - 6.77548I
b = 1.44138 - 0.06147I		
u = 1.39961 - 0.22669I		
a = 1.00000	6.25875 - 10.21720I	5.61375 + 6.77548I
b = 1.44138 + 0.06147I		
u = -1.40289 + 0.20762I		
a = 1.00000	7.68644 - 3.38302I	7.90859 + 3.21661I
b = 1.029610 + 0.112240I		
u = -1.40289 - 0.20762I		
a = 1.00000	7.68644 + 3.38302I	7.90859 - 3.21661I
b = 1.029610 - 0.112240I		
u = 0.096377 + 0.573318I		
a = 1.00000	2.31133 + 1.38881I	5.27810 - 4.63773I
b = 0.076636 + 0.947154I		
u = 0.096377 - 0.573318I		
a = 1.00000	2.31133 - 1.38881I	5.27810 + 4.63773I
b = 0.076636 - 0.947154I		
u = -1.48387 + 0.14705I		
a = 1.00000	10.94040 - 2.59348I	9.36617 + 2.06057I
b = 0.72466 + 1.31085I		
u = -1.48387 - 0.14705I		
a = 1.00000	10.94040 + 2.59348I	9.36617 - 2.06057I
b = 0.72466 - 1.31085I		
u = -1.52352 + 0.28324I		
a = 1.00000	10.59150 - 1.56799I	10.06893 + 0.I
b = 0.280011 + 1.186500I		
u = -1.52352 - 0.28324I		
a = 1.00000	10.59150 + 1.56799I	10.06893 + 0.I
b = 0.280011 - 1.186500I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.371492		
a = 1.00000	-1.55906	-7.62210
b = -0.808679		
u = 1.60437 + 0.47781I		
a = 1.00000	11.3568 + 17.2512I	6.49370 - 8.44917I
b = 0.59054 - 1.51467I		
u = 1.60437 - 0.47781I		
a = 1.00000	11.3568 - 17.2512I	6.49370 + 8.44917I
b = 0.59054 + 1.51467I		
u = -1.61375 + 0.50385I		
a = 1.00000	12.4277 - 8.7733I	10.26210 + 6.04290I
b = 0.47653 + 1.39767I		
u = -1.61375 - 0.50385I		
a = 1.00000	12.4277 + 8.7733I	10.26210 - 6.04290I
b = 0.47653 - 1.39767I		
u = -0.197438 + 0.089181I		
a = 1.00000	-0.67003 + 2.58307I	-5.46112 + 2.85660I
b = -0.668438 + 0.903987I		
u = -0.197438 - 0.089181I		
a = 1.00000	-0.67003 - 2.58307I	-5.46112 - 2.85660I
b = -0.668438 - 0.903987I		

II.
$$I_2^u = \langle 6.24 \times 10^{124} u^{53} + 1.40 \times 10^{125} u^{52} + \cdots + 4.42 \times 10^{127} b + 4.70 \times 10^{127}, \ 5.28 \times 10^{127} u^{53} - 1.64 \times 10^{127} u^{52} + \cdots + 8.57 \times 10^{129} a + 7.91 \times 10^{128}, \ 2u^{54} - 3u^{53} + \cdots + 95u - 97 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.00616088u^{53} + 0.00191588u^{52} + \cdots - 2.54802u - 0.0921982^{2} \\ -0.00141155u^{53} - 0.00316251u^{52} + \cdots + 0.798062u - 1.06236 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.00474933u^{53} + 0.00507839u^{52} + \cdots - 3.34608u + 0.970161 \\ -0.00141155u^{53} - 0.00316251u^{52} + \cdots + 0.798062u - 1.06236 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.00820072u^{53} + 0.0152695u^{52} + \cdots - 2.12375u + 1.68293 \\ -0.0310592u^{53} + 0.0117199u^{52} + \cdots + 2.01862u - 1.67137 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.0459316u^{53} - 0.0258658u^{52} + \cdots - 2.27013u + 4.10710 \\ -0.0103985u^{53} - 0.000118880u^{52} + \cdots + 0.840301u - 0.133245 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.00436349u^{53} + 0.0140384u^{52} + \cdots + 1.70376u + 1.04810 \\ -0.0229988u^{53} + 0.0140384u^{52} + \cdots + 2.09429u - 1.33244 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0461208u^{53} + 0.0321142u^{52} + \cdots + 2.68247u - 3.34457 \\ -0.00729829u^{53} + 0.00864020u^{52} + \cdots + 1.09734u - 1.10864 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.0553985u^{53} + 0.0605537u^{52} + \cdots - 2.42681u - 3.14804 \\ -0.00141547u^{53} + 0.0605537u^{52} + \cdots - 2.42681u - 3.14804 \\ -0.00141547u^{53} + 0.0605537u^{52} + \cdots - 2.42681u - 3.14804 \\ -0.00141547u^{53} + 0.0605537u^{52} + \cdots - 2.42681u - 3.14804 \\ -0.00141547u^{53} + 0.0605537u^{52} + \cdots - 2.42681u - 3.14804 \\ -0.00141547u^{53} + 0.0605537u^{52} + \cdots + 1.29536u - 0.247003 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.0491216u^{53} 0.0253069u^{52} + \cdots + 8.86509u 1.04494$

Crossings	u-Polynomials at each crossing
c_1, c_5	$2(2u^{54} + 15u^{53} + \dots + 95u + 8)$
c_2, c_6	$u^{54} + 2u^{53} + \dots + 59u - 58$
c_3, c_{11}	$(u^{27} + 7u^{26} + \dots - 9u + 1)^2$
c_4, c_7, c_8 c_{10}	$2(2u^{54} - 3u^{53} + \dots + 95u - 97)$
<i>C</i> 9	$4(2u^{27} - 15u^{26} + \dots + 13u^2 - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$4(4y^{54} - 45y^{53} + \dots - 3041y + 64)$
c_{2}, c_{6}	$y^{54} - 2y^{53} + \dots + 49299y + 3364$
c_3, c_{11}	$(y^{27} + 21y^{26} + \dots + 79y - 1)^2$
c_4, c_7, c_8 c_{10}	$4(4y^{54} - 169y^{53} + \dots - 117277y + 9409)$
<i>c</i> ₉	$16(4y^{27} - 9y^{26} + \dots + 26y - 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.191553 + 1.007580I		
a = 0.197325 - 1.352280I	4.62049 - 3.14366I	4.20111 + 7.48213I
b = -0.254804 - 1.313870I		
u = 0.191553 - 1.007580I		
a = 0.197325 + 1.352280I	4.62049 + 3.14366I	4.20111 - 7.48213I
b = -0.254804 + 1.313870I		
u = 0.386921 + 0.863120I		
a = -0.593875 + 1.093790I	2.31398 + 4.08168I	2.22183 - 6.73318I
b = -0.336359 + 1.256870I		
u = 0.386921 - 0.863120I		
a = -0.593875 - 1.093790I	2.31398 - 4.08168I	2.22183 + 6.73318I
b = -0.336359 - 1.256870I		
u = 1.064480 + 0.283281I		
a = 0.376709 + 0.499540I	2.28814 + 0.50538I	2.42708 - 2.42335I
b = 0.1247450 - 0.0513806I		
u = 1.064480 - 0.283281I		
a = 0.376709 - 0.499540I	2.28814 - 0.50538I	2.42708 + 2.42335I
b = 0.1247450 + 0.0513806I		
u = -1.173860 + 0.089375I		
a = -0.383376 + 0.706097I	2.31398 - 4.08168I	0. + 6.73318I
b = -0.336359 - 1.256870I		
u = -1.173860 - 0.089375I		
a = -0.383376 - 0.706097I	2.31398 + 4.08168I	0 6.73318I
b = -0.336359 + 1.256870I		
u = 0.776371 + 0.247739I		
a = 0.815173 - 0.579218I	0.430797	5.42999 + 0.I
b = -0.614397		
u = 0.776371 - 0.247739I		
a = 0.815173 + 0.579218I	0.430797	5.42999 + 0.I
b = -0.614397		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.238460 + 0.091746I		
a = -0.24657 + 1.71220I	5.57978 + 0.76639I	0
b = -0.030026 - 1.195930I		
u = 1.238460 - 0.091746I		
a = -0.24657 - 1.71220I	5.57978 - 0.76639I	0
b = -0.030026 + 1.195930I		
u = 1.24296		
a = -1.09764	2.63016	-3.15490
b = -1.76258		
u = -1.145500 + 0.484216I		
a = 0.315197 - 0.415169I	1.17342 - 7.19207I	0
b = 0.680724 - 0.185869I		
u = -1.145500 - 0.484216I		
a = 0.315197 + 0.415169I	1.17342 + 7.19207I	0
b = 0.680724 + 0.185869I		
u = -0.670966 + 0.279530I		
a = -0.565660 + 0.309098I	-1.04925 - 2.68015I	-5.53151 + 8.74674I
b = -0.773490 - 0.664465I		
u = -0.670966 - 0.279530I		
a = -0.565660 - 0.309098I	-1.04925 + 2.68015I	-5.53151 - 8.74674I
b = -0.773490 + 0.664465I		
u = 1.280920 + 0.236843I		
a = -1.127380 + 0.336604I	5.60462 + 2.74876I	0
b = -0.866120 + 0.477522I		
u = 1.280920 - 0.236843I		
a = -1.127380 - 0.336604I	5.60462 - 2.74876I	0
b = -0.866120 - 0.477522I		
u = 0.259489 + 0.638464I		
a = 0.96234 - 1.27613I	2.28814 + 0.50538I	2.42708 - 2.42335I
b = 0.1247450 - 0.0513806I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.259489 - 0.638464I		
a = 0.96234 + 1.27613I	2.28814 - 0.50538I	2.42708 + 2.42335I
b = 0.1247450 + 0.0513806I		
u = 0.567756 + 0.331092I		
a = 2.53793 - 1.74586I	4.26736 + 0.63431I	12.1339 + 9.7135I
b = 0.166726 - 1.050750I		
u = 0.567756 - 0.331092I		
a = 2.53793 + 1.74586I	4.26736 - 0.63431I	12.1339 - 9.7135I
b = 0.166726 + 1.050750I		
u = -0.160026 + 0.628199I		
a = 1.16003 + 1.52796I	1.17342 - 7.19207I	0.11287 + 4.65345I
b = 0.680724 - 0.185869I		
u = -0.160026 - 0.628199I		
a = 1.16003 - 1.52796I	1.17342 + 7.19207I	0.11287 - 4.65345I
b = 0.680724 + 0.185869I		
u = -1.36432		
a = -0.911050	2.63016	0
b = -1.76258		
u = -1.371770 + 0.220283I		
a = -1.232130 + 0.224114I	11.82420 - 7.32230I	0
b = -0.37076 - 1.49197I		
u = -1.371770 - 0.220283I		
a = -1.232130 - 0.224114I	11.82420 + 7.32230I	0
b = -0.37076 + 1.49197I		
u = 1.332520 + 0.426923I		
a = -1.082420 + 0.112700I	8.39486 + 8.30805I	0
b = -0.59674 + 1.64916I		
u = 1.332520 - 0.426923I		
a = -1.082420 - 0.112700I	8.39486 - 8.30805I	0
b = -0.59674 - 1.64916I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.400330 + 0.060212I		
a = 0.105658 - 0.724076I	4.62049 + 3.14366I	0
b = -0.254804 + 1.313870I		
u = 1.400330 - 0.060212I		
a = 0.105658 + 0.724076I	4.62049 - 3.14366I	0
b = -0.254804 - 1.313870I		
u = -1.374310 + 0.307061I		
a = 0.588248 - 0.864299I	4.62741 - 10.78550I	0
b = 0.301099 + 1.258580I		
u = -1.374310 - 0.307061I		
a = 0.588248 + 0.864299I	4.62741 + 10.78550I	0
b = 0.301099 - 1.258580I		
u = -1.39386 + 0.25453I		
a = -0.086561 + 0.330904I	7.17653 - 4.66079I	0
b = 0.04157 - 1.44995I		
u = -1.39386 - 0.25453I		
a = -0.086561 - 0.330904I	7.17653 + 4.66079I	0
b = 0.04157 + 1.44995I		
u = -0.54304 + 1.36844I		
a = 0.538172 + 0.790723I	4.62741 - 10.78550I	0
b = 0.301099 + 1.258580I		
u = -0.54304 - 1.36844I		
a = 0.538172 - 0.790723I	4.62741 + 10.78550I	0
b = 0.301099 - 1.258580I		
u = 0.036428 + 0.483267I		
a = -0.73990 + 2.82847I	7.17653 + 4.66079I	8.04120 - 5.42805I
b = 0.04157 + 1.44995I		
u = 0.036428 - 0.483267I		
a = -0.73990 - 2.82847I	7.17653 - 4.66079I	8.04120 + 5.42805I
b = 0.04157 - 1.44995I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.49047 + 0.31194I		
a = -0.913945 + 0.095159I	8.39486 - 8.30805I	0
b = -0.59674 - 1.64916I		
u = -1.49047 - 0.31194I		
a = -0.913945 - 0.095159I	8.39486 + 8.30805I	0
b = -0.59674 + 1.64916I		
u = 0.293137 + 0.365513I		
a = -1.36135 + 0.74389I	-1.04925 + 2.68015I	-5.53151 - 8.74674I
b = -0.773490 + 0.664465I		
u = 0.293137 - 0.365513I		
a = -1.36135 - 0.74389I	-1.04925 - 2.68015I	-5.53151 + 8.74674I
b = -0.773490 - 0.664465I		
u = -1.52380 + 0.16415I		
a = -0.814414 - 0.243162I	5.60462 + 2.74876I	0
b = -0.866120 + 0.477522I		
u = -1.52380 - 0.16415I		
a = -0.814414 + 0.243162I	5.60462 - 2.74876I	0
b = -0.866120 - 0.477522I		
u = -0.367419 + 0.090723I		
a = 0.885070 + 0.465459I	-1.55865	-7.50405 + 0.I
b = -0.796175		
u = -0.367419 - 0.090723I		
a = 0.885070 - 0.465459I	-1.55865	-7.50405 + 0.I
b = -0.796175		
u = 1.64083 + 0.57885I		
a = -0.785614 + 0.142897I	11.82420 + 7.32230I	0
b = -0.37076 + 1.49197I		
u = 1.64083 - 0.57885I		
a = -0.785614 - 0.142897I	11.82420 - 7.32230I	0
b = -0.37076 - 1.49197I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 2.01897 + 0.15093I		
a = 0.267457 - 0.183985I	4.26736 - 0.63431I	0
b = 0.166726 + 1.050750I		
u = 2.01897 - 0.15093I		
a = 0.267457 + 0.183985I	4.26736 + 0.63431I	0
b = 0.166726 - 1.050750I		
u = -0.46246 + 2.09787I		
a = -0.082399 - 0.572177I	5.57978 + 0.76639I	0
b = -0.030026 - 1.195930I		
u = -0.46246 - 2.09787I		
a = -0.082399 + 0.572177I	5.57978 - 0.76639I	0
b = -0.030026 + 1.195930I		

III.
$$I_3^u = \langle 2u^7 - 3u^6 + \dots + b + 4, a + 1, u^8 - u^7 + \dots + 2u + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2u^{7} + 3u^{6} + 5u^{5} - 6u^{4} - 10u^{3} + 12u^{2} + u - 4 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 2u^{7} - 3u^{6} - 5u^{5} + 6u^{4} + 10u^{3} - 12u^{2} - u + 3 \\ -2u^{7} + 3u^{6} + 5u^{5} - 6u^{4} - 10u^{3} + 12u^{2} + u - 4 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{7} - u^{6} - 2u^{5} + 2u^{4} + 3u^{3} - 5u^{2} + u + 2 \\ -3u^{7} + 4u^{6} + 7u^{5} - 8u^{4} - 13u^{3} + 17u^{2} - 5 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{7} - 2u^{6} - 2u^{5} + 5u^{4} + 5u^{3} - 10u^{2} + 4 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -3u^{7} + 5u^{6} + 6u^{5} - 11u^{4} - 12u^{3} + 22u^{2} - 2u - 7 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{7} - u^{6} - 2u^{5} + 2u^{4} + 4u^{3} - 5u^{2} + u + 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^{7} + 2u^{6} + 5u^{5} - 4u^{4} - 9u^{3} + 8u^{2} + u - 3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2u^{7} + 2u^{6} + 5u^{5} - 4u^{4} - 9u^{3} + 8u^{2} + u - 3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $16u^7 28u^6 34u^5 + 61u^4 + 69u^3 119u^2 + 4u + 48$

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^8 + u^7 + 2u^5 + 3u^4 + 2u^3 + 5u^2 + 6u + 3$
c_2, c_6	$u^8 + u^7 + u^6 + 3u^5 + 4u^4 + 3u^3 + 4u^2 + u + 1$
<i>c</i> ₃	$u^8 + 2u^7 + 6u^6 + 6u^5 + 8u^4 + 3u^3 + 3u^2 - u + 1$
c_4, c_7	$u^8 - u^7 - 3u^6 + 2u^5 + 6u^4 - 4u^3 - 3u^2 + 2u + 1$
c_8,c_{10}	$u^8 + u^7 - 3u^6 - 2u^5 + 6u^4 + 4u^3 - 3u^2 - 2u + 1$
c_9	$u^8 - 5u^7 + 11u^6 - 11u^5 + 4u^4 + 2u^3 + 1$
c_{11}	$u^8 - 2u^7 + 6u^6 - 6u^5 + 8u^4 - 3u^3 + 3u^2 + u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^8 - y^7 + 2y^6 + 2y^5 - 5y^4 + 2y^3 + 19y^2 - 6y + 9$
c_2, c_6	$y^8 + y^7 + 3y^6 + y^5 + 6y^4 + 19y^3 + 18y^2 + 7y + 1$
c_3, c_{11}	$y^8 + 8y^7 + 28y^6 + 54y^5 + 70y^4 + 63y^3 + 31y^2 + 5y + 1$
c_4, c_7, c_8 c_{10}	$y^8 - 7y^7 + 25y^6 - 54y^5 + 76y^4 - 66y^3 + 37y^2 - 10y + 1$
<i>C</i> 9	$y^8 - 3y^7 + 19y^6 - 13y^5 + 62y^4 + 18y^3 + 8y^2 + 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.830521 + 0.472642I		
a = -1.00000	2.51723 + 7.95538I	6.62650 - 7.10591I
b = 0.278585 - 0.369009I		
u = 0.830521 - 0.472642I		
a = -1.00000	2.51723 - 7.95538I	6.62650 + 7.10591I
b = 0.278585 + 0.369009I		
u = -1.22650 + 0.71722I		
a = -1.00000	4.68125 - 1.07313I	14.8263 - 3.4130I
b = -0.111561 - 1.113420I		
u = -1.22650 - 0.71722I		
a = -1.00000	4.68125 + 1.07313I	14.8263 + 3.4130I
b = -0.111561 + 1.113420I		
u = 1.39864 + 0.40204I		
a = -1.00000	9.60260 + 7.88243I	8.54857 - 6.07539I
b = -0.43221 + 1.63582I		
u = 1.39864 - 0.40204I		
a = -1.00000	9.60260 - 7.88243I	8.54857 + 6.07539I
b = -0.43221 - 1.63582I		
u = -0.502656 + 0.059050I		
a = -1.00000	-0.35174 - 2.79718I	11.9986 + 8.3500I
b = -0.734811 - 0.874667I		
u = -0.502656 - 0.059050I		
a = -1.00000	-0.35174 + 2.79718I	11.9986 - 8.3500I
b = -0.734811 + 0.874667I		

IV.
$$I_4^u = \langle u^2 + b, \ a + 1, \ u^3 - u - 1 \rangle$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} - 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u + 1 \\ -u^{2} - u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} - 1 \\ -u^{2} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} - 1 \\ -u^{2} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing
c_1,c_5	$(u-1)^3$
c_2, c_6, c_{11}	$u^3 - 2u^2 + u - 1$
c_3	$u^3 + 2u^2 + u + 1$
c_4, c_7	u^3-u-1
c_{8}, c_{10}	$u^3 - u + 1$
<i>c</i> 9	$u^3 - 2u^2 + 3u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y-1)^3$
c_2, c_3, c_6 c_{11}	$y^3 - 2y^2 - 3y - 1$
c_4, c_7, c_8 c_{10}	$y^3 - 2y^2 + y - 1$
<i>c</i> ₉	$y^3 + 2y^2 + 5y - 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.662359 + 0.562280I		
a = -1.00000	3.28987	12.0000
b = -0.122561 + 0.744862I		
u = -0.662359 - 0.562280I		
a = -1.00000	3.28987	12.0000
b = -0.122561 - 0.744862I		
u = 1.32472		
a = -1.00000	3.28987	12.0000
b = -1.75488		

V.
$$I_5^u = \langle b+1, \ a-2, \ 2u-1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 0.5 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -0.25 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0.5 \\ 0.375 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -0.25 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 3 \\ -1.75 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -2\\1.5 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 0.5 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 0.5 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -14.0625

Crossings	u-Polynomials at each crossing
c_1	2(2u-3)
c_2	u-2
c_3, c_6, c_7	u+1
c_4	2(2u-1)
<i>C</i> ₅	u
c_8, c_9	2(2u+1)
c_{10}, c_{11}	u-1

Crossings	Riley Polynomials at each crossing
c_1	4(4y-9)
c_2	y-4
c_3, c_6, c_7 c_{10}, c_{11}	y-1
c_4, c_8, c_9	4(4y-1)
	y

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000		
a = 2.00000	0	-14.0620
b = -1.00000		

VI.
$$I_6^u = \langle b+1, \ 2a-1, \ u+1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.5 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1.5 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 2.5 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 2.5 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -2.75 \\ 0.5 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1.5 \\ -1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1.5 \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.25 \\ -1.5 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.375 \\ -0.25 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -14.0625

Crossings	u-Polynomials at each crossing
c_1	u
c_2, c_3, c_4	u+1
c_5	2(2u-3)
c_6	u-2
	2(2u-1)
c_8, c_{11}	u-1
c_9, c_{10}	2(2u+1)

Crossings	Riley Polynomials at each crossing
c_1	y
c_2, c_3, c_4 c_8, c_{11}	y-1
<i>C</i> ₅	4(4y-9)
<i>C</i> ₆	y-4
c_7, c_9, c_{10}	4(4y-1)

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0.500000	0	-14.0620
b = -1.00000		

VII.
$$I_7^u = \langle b+1, a+1, u+1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1,c_5	u
c_2, c_3, c_4 c_6, c_7	u+1
c_8, c_9, c_{10} c_{11}	u-1

Crossings	Riley Polynomials at each crossing
c_1, c_5	y
c_2, c_3, c_4 c_6, c_7, c_8 c_9, c_{10}, c_{11}	y-1

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000	0	0
b = -1.00000		

VIII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_5	$4u^{2}(u-1)^{3}(2u-3)(u^{8}+u^{7}+2u^{5}+3u^{4}+2u^{3}+5u^{2}+6u+3)$ $\cdot (u^{27}+2u^{26}+\cdots+8u+2)(2u^{54}+15u^{53}+\cdots+95u+8)$
c_2, c_6	$(u-2)(u+1)^{2}(u^{3}-2u^{2}+u-1)$ $\cdot (u^{8}+u^{7}+\cdots+u+1)(u^{27}+7u^{25}+\cdots-3u+1)$ $\cdot (u^{54}+2u^{53}+\cdots+59u-58)$
c_3	$(u+1)^{3}(u^{3}+2u^{2}+u+1)$ $\cdot (u^{8}+2u^{7}+6u^{6}+6u^{5}+8u^{4}+3u^{3}+3u^{2}-u+1)$ $\cdot (u^{27}-10u^{26}+\cdots+172u-16)(u^{27}+7u^{26}+\cdots-9u+1)^{2}$
c_4, c_7	$4(u+1)^{2}(2u-1)(u^{3}-u-1)$ $\cdot (u^{8}-u^{7}-3u^{6}+2u^{5}+6u^{4}-4u^{3}-3u^{2}+2u+1)$ $\cdot (u^{27}-15u^{25}+\cdots+8u+1)(2u^{54}-3u^{53}+\cdots+95u-97)$
c_8, c_{10}	$4(u-1)^{2}(2u+1)(u^{3}-u+1)$ $\cdot (u^{8}+u^{7}-3u^{6}-2u^{5}+6u^{4}+4u^{3}-3u^{2}-2u+1)$ $\cdot (u^{27}-15u^{25}+\cdots+8u+1)(2u^{54}-3u^{53}+\cdots+95u-97)$
<i>c</i> ₉	$16(u-1)(2u+1)^{2}(u^{3}-2u^{2}+3u-1)$ $\cdot (u^{8}-5u^{7}+\cdots+2u^{3}+1)(u^{27}+13u^{26}+\cdots-28u-4)$ $\cdot (2u^{27}-15u^{26}+\cdots+13u^{2}-1)^{2}$
c_{11}	$(u-1)^{3}(u^{3}-2u^{2}+u-1)$ $\cdot (u^{8}-2u^{7}+6u^{6}-6u^{5}+8u^{4}-3u^{3}+3u^{2}+u+1)$ $\cdot (u^{27}-10u^{26}+\cdots+172u-16)(u^{27}+7u^{26}+\cdots-9u+1)^{2}$

IX. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$16y^{2}(y-1)^{3}(4y-9)(y^{8}-y^{7}+\cdots-6y+9)$ $\cdot (y^{27}-4y^{26}+\cdots+84y-4)(4y^{54}-45y^{53}+\cdots-3041y+64)$
c_2, c_6	$(y-4)(y-1)^{2}(y^{3}-2y^{2}-3y-1)$ $\cdot (y^{8}+y^{7}+3y^{6}+y^{5}+6y^{4}+19y^{3}+18y^{2}+7y+1)$ $\cdot (y^{27}+14y^{26}+\cdots-15y-1)(y^{54}-2y^{53}+\cdots+49299y+3364)$
c_3,c_{11}	$(y-1)^{3}(y^{3}-2y^{2}-3y-1)$ $\cdot (y^{8}+8y^{7}+28y^{6}+54y^{5}+70y^{4}+63y^{3}+31y^{2}+5y+1)$ $\cdot (y^{27}+16y^{26}+\cdots+6320y-256)(y^{27}+21y^{26}+\cdots+79y-1)^{2}$
c_4, c_7, c_8 c_{10}	$16(y-1)^{2}(4y-1)(y^{3}-2y^{2}+y-1)$ $\cdot (y^{8}-7y^{7}+25y^{6}-54y^{5}+76y^{4}-66y^{3}+37y^{2}-10y+1)$ $\cdot (y^{27}-30y^{26}+\cdots+34y-1)(4y^{54}-169y^{53}+\cdots-117277y+9409)$
c_9	$256(y-1)(4y-1)^{2}(y^{3}+2y^{2}+5y-1)$ $\cdot (y^{8}-3y^{7}+19y^{6}-13y^{5}+62y^{4}+18y^{3}+8y^{2}+1)$ $\cdot (y^{27}-3y^{26}+\cdots+56y-16)(4y^{27}-9y^{26}+\cdots+26y-1)^{2}$