SURFACE SHADING METHODS (Section 14-3 in *Computer Graphics*)

- Contrast Intensity
- Gouraud Shading
- Phong Shading
- Ray-tracing Algorithms
- Radiosity
- Octree Methods
- Fractal Surface
- Antialiasing Surface Boundaries

Constant Intensity

- in some cases, constant surface intensities produce realistic shading
 - ambient light, no surface patterns, texture or shadows
 - point source light and a view reference point far from the surface
 - sufficiently small planar polygons approximating a curved surface, especially with
 - gradual changes in surface curvature and
 - · distant light sources and view reference point
 - see figure 14-24 on page 290

Gouraud Shading

- linearly vary the intensity over each plane so that intensity values match at the plane boundaries
 - discontinuities between adjacent planes disappear
- technique
 - determine a normal for each surface
 - determine a normal for each vertex from the normals of the surfaces meeting at that vertex
 - calculate an intensity (monochrome or color) at the vertex, based on the normal
 - interpolate intensities along each edge
 - interpolate intensities across each surface (see figure 14-27 on page 291)

Phong Shading

- Gouraud shading introduces Mach bands which Phong shading overcomes
- technique
 - similar to Gouraud shading, except that normals rather than intensities are interpolated
 - intensities are calculated at each point along each scan line

Ray-tracing Algorithms

- an infinite number of intensity points could be generated over the surfaces of a scene
- ray tracing determines specular intensities at visible surface positions by tracing rays backwards from the viewing position to the light source(s)
- technique
 - start from the viewing position
 - pass a ray through each pixel in the view plane
 - attempt to trace each ray to a surface in the three-dimensional scene
 - reflect the ray from this surface as long as it encounters surfaces and until it encounters a point light source or exits the scene

Ray-tracing Algorithms, continued

• at transparent surfaces, divide the ray into two components

 after the ray has been processed, set the intensity of the pixel

Radiosity

- calculation of diffuse interreflection
 - surfaces are discretized into patches of roughly uniform size
 - energy exchange between patches is computed in a view-independent manner
- relationship between the radiosity of one patch and all other patches in the environment

$$B_i A_i = E_i A_i + \rho_i \sum_{j=1}^n B_j F_{ji} A_j$$

where

 $B_i = \text{radiosity of patch } i \text{ (energy/unit area/unit time)},$ $E_i = \text{emission of patch } i \text{ (energy/unit area/unit time)},$ $A_i = \text{area of patch } i, A_j = \text{area of patch } j,$ $F_{ji} = \text{form-factor from } j \text{ to } i \text{ (fraction of energy leaving patch } j \text{ which arrives at patch } i),$ $\rho_i = \text{reflectivity of patch } i, \text{ and } n = \text{number of discrete patches.}$

Radiosity, continued

- computing the form-factors requires determining the patches visible to each patch over the entire hemisphere of directions above the patch
- \leq n² form factors
- extendable to specular interreflection
 - add bidirectional refectance
 - use approximately pixel-size patches
 - approaches computational intractability

Octree Methods

- each octant contains information about the "material" at the position, but nothing about surface orientation
- examine the region around each octant
 - some void neighboring regions mean the octant is part of a surface
 - the surface normal is related to the positions of the void regions
- use a transmission coefficient to superimpose intensities for transparent octants in front of background octants

Fractal Surfaces

- represent fractal surfaces as several small planes, determining a surface normal for each plane
- unfortunately, fractal surfaces can contain infinite detail at each surface point
 - approximate normals can be calculated using coordinate differences between neighboring points

Antialiasing Surface Boundaries

- antialiasing smooths edges by adjusting pixel positions or pixel intensities
- boundaries between surfaces can be smoothed using similar techniques
 - combine intensities from all overlapping surfaces according to percentage overlap

 in the case of ray tracing, project rays through pixel corners rather than pixel centers, averaging the four intensities

- subdivide areas containing substantial detail

SURFACE SHADING METHODS

- Contrast Intensity
- Gouraud Shading
- Phong Shading
- Ray-tracing Algorithms
- Radiosity
- Octree Methods
- Fractal Surface
- Antialiasing Surface Boundaries