Laboratorium Metod Badania Własności Fizycznych	F	Podatność magnetyczna	Zespół w składzie:	
Wydział:	Kierunek:		Rok:	
Data wykonania:		Data oddania:	Ocena:	

Cel ćwiczenia

Pomiar podatności magnetycznej i jej zależności od temperatury dla różnych klas materiałów magnetycznych: paramagnetyków, ferromagnetyków, antyferromagnetyków i nadprzewodników. Zapoznanie się z woltomierzem fazoczułym – przyrządem do pomiaru słabych napięć przemiennych i metodyką pomiarów zmiennoprądowych.

Wymagane wiadomości teoretyczne

Prawo indukcji Faradaya. Definicja mementu magnetycznego, namagnesowania i podatności magnetycznej. Rodzaje uporządkowania magnetycznego i wynikająca z nich wielkość podatności magnetycznej. Magnetyczne przejścia fazowe – temperatury Curie i Neéla. Zależność temperaturowa podatności magnetycznej dla różnych klas związków (paramagnetyki, ferromagnetyki, antyferromagnetyki, diamagnetyki, nadprzewodniki). Prawo Curie-Waissa. Zasada pomiaru podatności magnetycznej przy użyciu woltomierza fazoczułego.

Literatura

- D. Halliday, R. Resnick, J. Walker, *Podstawy Fizyki, tom 3*, PWN (wydanie dowolne).
- C. Kittel, Wstęp do fizyki ciała stałego, PWN (wydanie dowolne).
- S. Blundell, Magnetism in Condensed Matter, Oxford University Press (wydanie dowolne).

Instrukcja wykonania ćwiczenia

- 1. Włączyć woltomierz fazoczuły w celu ustabilizowania jego warunków pracy (ok. 15 minut).
- **2.** Wyznaczyć parametry sondy do pomiaru pola zmierzyć średnicę i policzyć liczbę zwojów i umieścić ją we wnętrzu aparatury pomiarowej.
- 3. Zestawić układ pomiarowy według schematu umieszczonego w instrukcji do ćwiczenia znajdującej się w pracowni (rys. 2) i uruchomić obwód zasilania cewki wytwarzającej zmienne pole magnetyczne (generator mocy).
- 4. Ustalić warunki pracy generatora (niezmienne do końca ćwiczenia):
 - częstotliwość pracy między 110Hz a 390Hz (unikając wielokrotności 50Hz),
 - napięcie rzędu 1V.
- 5. Przygotować woltomierz fazoczuły ustalając częstotliwości dla filtrów dolno- i górno-przepustowego (w zależności od wybranej częstotliwości pracy), sensitivity z zakresu 0.1-3mV, stałą czasową 0,3 lub 1s. Sprawdzić działanie przesuwnika fazy znajdując wartość θ, dla której napięcie wyjściowe jest maksymalne. Zapisać tą wartość i nie zmieniać jej do końca ćwiczenia.
- **6.** Wykonać pomiar napięcia odczytując wartość ze wskaźnika cyfrowego woltomierza i przemnażając przez zakres pomiarowy. Wyznaczyć wartość *B*₀ pola magnesującego punkt *A* opracowania wyników.
- **7.** Usunąć sondę do pomiaru pola i podłaczyć wyjście cewek mierzących podatność na wejście przedwzmacniacza woltomierza.
- **8.** Wstawić do układu próbkę niklu (o najsilniejszym sygnale magnetycznym). Przesuwając w górę i w dół przy pomocy mosiężnego pokrętła. Notować (w funkcji pozycji) napięcie U_{Ni} (z próbką) oraz napięcie tła, U_{ba} , otrzymane każdorazowo po wysunięciu próbki na zewnątrz cewek. Zbadać

- zależność napięcia od położenia, punkt A opracowania wyników, i ustalić pozycję maksymalnego sygnału.
- 9. Wyznaczyć podatność magnetyczną próbki Ni, wynik zapisać w punkcie B opracowania.
- **10.** Powtórzyć pomiar dla silnych paramagnetyków (Gd₂O₃ i/lub Er₂O₃), odpowiednio dobierając zakres pomiarowy aby uzyskać optymalne wskazania woltomierza (maksymalna wartość poniżej nasycenia). Przy pomocy tych pomiarów wykonać cechowanie podatności punkt *B* opracowania wyników.
- **11.** Wykonać pomiar podatności w temperaturze pokojowej dla innych próbek. Wyniki zapisać w punkcie *B* opracowania i porównać z danymi literaturowymi.
- **12.** Następnie przygotować układ do wykonania pomiaru zależności podatności w funkcji temperatury dla kilku próbek. Uruchomić układ do pomiaru temperatury (patrz instrukcja w pracowni, rys.6). Wlać niewielką ilość azotu w celu schłodzenia próbki (umieszczając wcześniej w układzie grzejnik z ołowiem, jako balastem cieplnym). Odczekać do ustalenia temperatury w pobliżu 90K. Wykonać pomiar *U* oraz *U*_{bg} dla paramagnetyka. Wynik zapisać w punkcie *B* opracowania. Układ jest gotowy do pomiaru w funkcji rosnącej temperatury.
- **13.** W zależności od dostępnego czasu wykonać pomiary w funkcji temperatury dla próbki antyferromagnetycznego Dy (przejście Neéla w 179K) i/lub nadprzewodnika wysokotemperaturowego (gwałtowny skok podatności przy przejściu nadprzewodzącym). Wyniki pomiarów zapisywać sukcesywnie w punkcie *C* opracowania.
- 14. Na zakończenie wyłączyć wszystkie urządzenia elektryczne i uporządkować stanowisko pracy.
- **15.** Dokończyć opracowanie wyników i podsumować ćwiczenie.

Wstęp teoretyczny

Powinien zostać przygotowany przed zajęciami i zawierać zestawienie informacji z punktu "Wymagane wiadomości teoretyczne". Jego długość nie powinna przekraczać dwóch stron.

Opracowanie wyników

Studenci wykonują opracowanie wyników podczas zajęć. Ocena z ćwiczenia jest wypadkową przygotowania teoretycznego, staranności wykonania pomiarów oraz jakości i ilości wykonanych punktów opracowania.

Aby obliczyć napięcie *U*, które posłuży do obliczenia podatności magnetycznej należy posłużyć się wzorem:

$$U = \frac{U_{voltmeter}[V]}{Voltmeter range[V]} \cdot sensitivity[mV]$$
(1)

gdzie $U_{voltmeter}$ jest odczytywane z cyfrowego miernika podłączonego do woltomierza fazoczułego, zakres miernika cyfrowego powinien być ustawiony na 10V i nie zmieniany podczas całego ćwiczenia, czułość jest ustawiana na woltomierzu fazoczułym i powinna być zmieniana w zależności od wielkości sygnału z próbki.

A. Charakterystyka układu pomiarowego

Z prawa indukcji Faradaya napięcie powstające na skutek umieszczenia cewki w przemiennym polu magnetycznym $B_0(t)$ wyraża się wzorem:

gdzie S to pole przekroju cewki (sondy), N_H to ilość jej zwojów, ω to częstość kątowa gdzie $\omega=2\pi f$, a f to częstotliwość ustawiona na generatorze mocy na początku ćwiczenia. Znając napięcie U_H można policzyć maksymalną wartość pola magnetycznego $B_{0,max}$, w którym znajduje się cewka. Pole to można obliczyć ze wzoru:

$$B_{0, max} = \sqrt{2} \cdot \frac{U_H}{N_H S \omega} , \qquad (3)$$

gdzie czynnik $\sqrt{2}$ pojawia się ze względu na to, że woltomierz mierzy wartość skuteczną przemiennego napiecia.

Następnie narysować na poniższym wykres zależność indukowanego napięcia w funkcji pozycji próbki Ni w układzie detekcyjnym. Zaznaczyć punkty pomiarowe symetrycznie względem maksimum w zakresie ok. ±10 obrotów śruby mikrometrycznej .

B. Podatność magnetyczna

W poniższej tabeli zapisać wyniki pomiarów maksymalnego napięcia indukcji i tła oraz wyznaczonej podatności dla wybranych próbek, obliczonej przez porównanie do próbki wzorcowej przy użyciu zależności:

Próbka	<i>m</i> [mg]	U _x [mV]	U_{bg} [mV]	χpomiar	Xteoria []

C. Zależność podatności od temperatury

Mierzone napięcia należy zapisywać w poniższych tabelach: napięcie termopary U_t i napięcie $U_{voltmeter}$ z miernika cyfrowego podłączonego do woltomierza fazoczułego. Następnie obliczyć:

- temperaturę T znając U_t , (użyć tabel kalibracyjnych)
- napięcie (*U_x U_{bg}*) znając *U_{voltmeter}* (wzór (1))
- podatność magnetyczną χ (wzór (4)).

Nadprzewodnik

Nadprzewodnik							
U_t [mV]		T [K]		U _{voltmeter} [V]	U_{x} - U_{bg} $[mV]$	χ	

Gadolin (Gd)

Gadolin (Gd)					
U_t [mV]		T [K]	U _{voltmeter} [V]	$U_{x} \cdot U_{bg}$ [mV]	χ
					•••••

Dla nadprzewodnika

sporządzić wykres podatności w funkcji temperatury, określić wartość temperatury przejścia w stan nadprzewodzący T_c w mierzonej próbce, porównać otrzymaną wartość z temperaturami przejścia dla innych znanych nadprzewodników.

Dla gadolinu

sporządzić wykresy podatności χ oraz 1/ χ w funkcji temperatury (samemu wybrać zakres danych na obu osiach). Dla zależności $1/\chi(T)$ wyznaczona zależność powinna być linią prostą, określić ile wynosi temperatura Curie θ (punkt przecięcia prostej z osią x) oraz jej błąd. Czy otrzymana wartość zgadza się z wartością teoretyczną? Wyznaczyć stałą Curie (C).

Podsumowanie

Należy zwięźle opisać przebieg ćwiczenia i jego najważniejsze wyniki.