Lecture 11. Neural Network Fundamentals

COMP90051 Statistical Machine Learning

Lecturer: Dr Christine de Kock

Deep learning topic (lects 11-14)

- Fundamentals
 - Networks, layers, activation functions
 - Training by gradient backpropagation
 - Regularisation
- Network architectures:
 - * Autoencoders
 - Convolutional networks (CNN)
 - Recurrent networks (RNNs)
 - * Attention and the Transformer

This lecture

- Deep learning
 - Multi-layer perceptron formulation
 - Deep models and representation learning
- Gradient backpropagation
 - Step-by-step derivation

Multilayer Perceptron

Modelling non-linearity via function composition

Recap: Perceptron model

A linear classifier

- x_1 , x_2 inputs
- w_1 , w_2 synaptic weights
- w_0 bias weight
- f activation function

Limitations of linear models

Some problems are linearly separable, but many are not

In/out value 1
In/out value 0

NOT

AND

OR

XOR

Possible solution: composition $x_1 \text{ XOR } x_2 = (x_1 \text{ OR } x_2) \text{ AND not}(x_1 \text{ AND } x_2)$

We are going to compose perceptrons ...

Perceptron is sort of a building block for ANN

- ANNs are not restricted to binary classification
- Nodes in ANN can have various activation functions

$$f(s) = \begin{cases} 1, & \text{if } s \ge 0 \\ 0, & \text{if } s < 0 \end{cases}$$

$$f(s) = \begin{cases} 1, & \text{if } s \ge 0 \\ -1, & \text{if } s < 0 \end{cases}$$

$$f(s) = \frac{1}{1 + e^{-s}}$$

$$f(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

Rectified linear unit

$$f(s) = \max\{0, s\}$$

...many others, many variations...

Feed-forward Artificial Neural Network

 x_i are inputs, i.e., attributes

note: here x_i are components of a single training instance x

a training dataset is a set of instances

z_i are outputs, i.e., predicted labels

note: ANNs naturally handle multidimensional output

e.g., for handwritten digits recognition, each output node can represent the probability of a digit

ANN as function composition

$$z_k = h(s_k)$$

$$s_k = w_{0k} + \sum_{j=1}^p u_j w_{jk}$$

note that z_k is a function composition (a function applied to the result of another function, etc.)

here g, h are activation functions. These can be either same (e.g., both sigmoid) or different

you can add bias node $x_0 = 1$ to simplify equations: $r_i = \sum_{i=0}^m x_i v_{ij}$

similarly you can add bias node $u_0 = 1$ to simplify equations: $s_k = \sum_{j=0}^p u_j w_{jk}$

ANN in supervised learning

- ANNs can be naturally adapted to various supervised learning setups. Requires setting: output layer dimension, output layer activations, appropriate loss
- Univariate regression y = f(x)
 - e.g., linear regression earlier in the course
- Multivariate regression y = f(x)
 - * predicting values for multiple continuous outcomes
- Binary classification
 - e.g., predict whether a patient has type II diabetes
- Multiclass classification
 - * e.g., handwritten digits recognition with labels "1", "2", etc.

The power of ANN as a non-linear model

- ANNs are capable of approximating plethora non-linear functions, e.g., $z(x) = x^2$ and $z(x) = \sin x$
- For example, consider the following network. In this example, hidden unit activation functions are tanh

The power of ANN as a non-linear model

• ANNs are capable of approximating various non-linear functions, e.g., $z(x) = x^2$ and $z(x) = \sin x$

Blue points are the function values evaluated at different x. Red lines are the predictions from the ANN.

Dashed lines are outputs of the hidden units

• Universal approximation theorem (Cybenko 1989): An ANN with a hidden layer with a finite number of units, and mild assumptions on the activation function, can approximate continuous functions on compact subsets of \mathbf{R}^n arbitrarily well

Mini Summary

- Multiple layer networks
 - * Model structure
 - * Universal approximation

Next: Representation learning perspective

Deep Learning and Representation Learning

Hidden layers viewed as feature space transformation

Representational capacity

- ANNs with a single hidden layer are universal approximators
- For example, such ANNs can represent any Boolean function

$$OR(x_1, x_2)$$
 $u = g(x_1 + x_2 - 0.5)$
 $AND(x_1, x_2)$ $u = g(x_1 + x_2 - 1.5)$
 $NOT(x_1)$ $u = g(-x_1)$
 $g(r) = 1 \text{ if } r \ge 0 \text{ and } g(r) = 0 \text{ otherwise}$

- Any Boolean function over m variables can be implemented using a hidden layer with up to 2^m elements
- More efficient to stack several hidden layers

"Depth" refers to number of hidden layers

Deep networks

$$s = \tanh(A'x)$$
 $t = \tanh(B's)$ $u = \tanh(C't)$ $z = \tanh(D'u)$

Deep ANNs as representation learning

- Consecutive layers form representations of the input of increasing complexity
- An ANN can have a simple linear output layer, but using complex non-linear representation

$$z = \tanh \left(D' \left(\tanh \left(C' \left(\tanh \left(B' \left(\tanh \left(A' x \right) \right) \right) \right) \right) \right) \right)$$

- Equivalently, a hidden layer can be thought of as the transformed feature space, e.g., $u = \varphi(x)$ compare to basis expansion / kernel learning
- Parameters of such a transformation are learned from data

Depth vs width

- A single arbitrarily wide layer in theory gives a universal approximator
- However (empirically) depth yields more accurate models
 Biological inspiration from the eye:
 - first detect small edges and color patches;
 - compose these into smaller shapes;
 - building to more complex detectors, of e.g. textures, faces, etc.
- Seek to mimic layered complexity in a network
- However vanishing gradient problem affects learning with very deep models

Vs manual feature representation

- Standard pipeline
 - * input → feature engineering → classification algorithm
- Deep learning automates feature engineering
 - no need for expert analysis

	forehead_color	black	black	black
	breast_pattern	solid	solid	solid
	breast_color	white	white	white
	head_pattern	plain	capped	plain
	back_color	white	white	black
	wing_color	grey/white	grey	white
	leg_color	orange	orange	orange
	size	medium	large	medium
	bill_shape	needle	dagger	dagger
	wing_shape	pointed	tapered	long
	primary_color	white	white	white

Mini Summary

art: OpenClipartVectors at pixabay.com (CC0)

Deep models and representation learning

Next: Backpropagation learning algorithm

Backpropagation

= "backward propagation of errors"

Calculating the gradient of loss of a composition

Recap: Feed-forward Artificial Neural Network

 x_i are inputs, i.e., attributes

note: here x_i are components of a single training instance x

a training dataset is a set of instances

z_i are outputs, i.e., predicted labels

Loss function L used to compare outputs with gold, gradient used for training **v**, **w**

Backpropagation: start with the chain rule

• Recall that the output z of an ANN is a function composition, and hence L(z) is also a composition

*
$$L = 0.5(z - y)^2 = 0.5(h(s) - y)^2 = 0.5(s - y)^2$$

* =
$$0.5 \left(\sum_{j=0}^{p} u_j w_j - y \right)^2 = 0.5 \left(\sum_{j=0}^{p} g(r_j) w_j - y \right)^2 = \cdots$$

 Backpropagation makes use of this fact by applying the chain rule for derivatives

•
$$\frac{\partial L}{\partial w_j} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial w_j}$$

•
$$\frac{\partial L}{\partial v_{ij}} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial u_j} \frac{\partial u_j}{\partial r_j} \frac{\partial r_j}{\partial v_{ij}}$$

Backpropagation: intermediate step

- Apply the chain rule
- $\frac{\partial L}{\partial v_{ij}} = \left[\frac{\partial L}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial u_j} \frac{\partial u_j}{\partial r_j} \frac{\partial r_j}{\partial v_{ij}} \right]$

Now define

$$\delta \equiv \frac{\partial L}{\partial s} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial s}$$

$$\varepsilon_j \equiv \frac{\partial L}{\partial r_j} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial u_j} \frac{\partial u_j}{\partial r_j}$$

- Here $L = 0.5(z y)^2$ and z = sThus $\delta = (z - y)$
- Here $s = \sum_{j=0}^{p} u_j w_j$ and $u_j = g(r_j)$ Thus $\varepsilon_j = \delta w_j g'(r_j)$

Backpropagation equations

We have

$$* \frac{\partial L}{\partial w_j} = \delta \frac{\partial s}{\partial w_j}$$

*
$$\frac{\partial L}{\partial v_{ij}} = \varepsilon_j \frac{\partial r_j}{\partial v_{ij}}$$

... where

*
$$\varepsilon_{j} = \frac{\partial L}{\partial r_{i}} = \delta w_{j} g'(r_{j})$$

Recall that

$$* \quad s = \sum_{j=0}^{p} u_j w_j$$

$$* r_j = \sum_{i=0}^m x_i v_{ij}$$

• So
$$\frac{\partial s}{\partial w_j} = u_j$$
 and $\frac{\partial r_j}{\partial v_{ij}} = x_i$

We have

*
$$\frac{\partial L}{\partial v_{ij}} = \varepsilon_j x_i = \delta w_j g'(r_j) x_i$$

Modern DNN libraries have active derivatives precomputed; autodiff computes derivatives efficiently

Forward propagation

• Use current estimates of v_{ij} and w_j

• Calculate r_j , u_j , s and z

Backpropagation equations

*
$$\frac{\partial L}{\partial w_j} = \delta u_j = (z - y)u_j$$

*
$$\frac{\partial L}{\partial v_{ij}} = \varepsilon_j x_i = \delta w_j g'(r_j) x_i$$

Backward propagation of errors

$$\frac{\partial L}{\partial v_{ij}} = \varepsilon_j x_i \quad \bullet \quad \varepsilon_j = \delta w_j g'(r_j) \quad \bullet \quad \frac{\partial L}{\partial w_j} = \delta u_j \quad \delta = (z - y)$$

Notice how intermediate values get reused.

Backpropagation equations

*
$$\frac{\partial L}{\partial w_j} = \delta u_j = (z - y)u_j$$

*
$$\frac{\partial L}{\partial v_{ij}} = \varepsilon_j x_i = \delta w_j g'(r_j) x_i$$

This lecture

- Multi-layer perceptron
- Representation learning: learned bases
- Backpropagation
 - * derivative chain rule
 - algorithm to compute gradients in backwards pass over network graph

Next lecture: Deep net training, autoencoders