TD6: Effet Hall

1. Démonstration, pour le Ge N

- 1.1.1 Faire un schéma représentant un barreau parallélépipédique de Ge N de largeur L et d'épaisseur d, plongé dans un champ magnétique B perpendiculaire au barreau, et dans lequel circule un courant l dans le sens de la grande longueur. Faire apparaître les grandeurs nécessaires.
- 1.1.2 Donner l'expression du champ induit de Hall E_H en fonction de e, n, B et de la densité de courant d'électrons j_n
- 1.1.3 Donner l'expression de la densité de courant d'électrons j_n en fonction de l, d et L
- 1.1.4 Exprimer le potentiel de Hall U_H en fonction de I, B, n, e et d, en ne considérant comme charges mobiles que les électrons, dans un germanium dopé n. Faire apparaître la constante de Hall R_H.

2. Application au Ge N

On mesure V_H dans un montage comme décrit dans l'exercice précédent, pour différentes valeurs du champ magnétique B, et une valeur de I = 30,4 mA.

B / 10 ⁻⁴ T	V _H / mV
350	5.90
520	8.90
800	15.2
1040	20.0

- 2.1.1 Calculer la valeur moyenne de R_H.
- 2.1.2 En déduire la concentration volumique de porteurs n dans le matériau (en cm⁻³)
- 2.1.3 Calculer l'erreur commise sur n, sachant que les incertitudes sur l, d, L et V_H sont de 1 %, et l'incertitude sur B de 5 %