Sparse Temporal Spanners with Low Stretch

D. Bilò, G. D'Angelo, L. Gualà, S. Leucci and M. Rossi

University of Rome "Tor Vergata"

Gran Sasso Science
Institute

u-v temporal path: u-v path of non-decreasing time-labels

Temporal spanner:

a subgraph H of 6 that preserves pairwise temporal connectivity

Temporal spanner:

a subgraph H of 6 that preserves pairwise temporal connectivity

Kempe et al. [STOC'00]: find temporal spanners of small size (#of edges)

Lower Bound of $\Omega(n^2)$

Upper Bound of O(n log n) for temporal cliques

only preserves reachability

no guarantees on the distances

Upper Bound of O(n log n) for temporal cliques

Temporal spanner with stretch α :

a subgraph H of G such that for every pair of vertices u and v $dist_H(u,v) \leq \alpha \ dist_G(u,v)$

Our results I: cliques

Our results II: general graphs

Lower Bound of $\Omega(n^2)$

Our results II: single-source spanners for general graphs

a subgraph H of G such that for every vertex v dist_H(s,v) $\leq \alpha$ dist_G(s,v)

UB: stretch:
$$1+\epsilon$$
 size: $O\left(n \frac{\log^4 n}{\log (1+\epsilon)}\right)$

LB: Size $\Omega(n^2)$ for stretch 1

lifetime: number L of distinct time-labels

Axiotis and Fotakis
ICALP 2016

Lower Bound of $\Omega(n^2)$

Cliques

$$L=2$$
 O(n log n)

Cliques

$$\alpha=2$$
 $\alpha=3$

$$L=2$$
 O(n log n)

L=3
$$\Omega(n^2)$$
 $O(n \log n)$

Cliques

 $\alpha=2$ $\alpha=3$

L=2 O(n log n)

L=3 $\Omega(n^2)$ $O(n \log n)$

 $O(2^{L} n \log n)$

Cliques

$$\alpha=2$$
 $\alpha=3$

$$L=2$$
 O(n log n)

L=3
$$\Omega(n^2)$$
 $O(n \log n)$

 $O(2^{L} n \log n)$

General graphs

an α -spanner of an α -spanner of size size f(n) for O(Lf(n)) for temporal graphs of lifetime L

Cliques

$$\alpha=2$$
 $\alpha=3$

$$L=2$$
 O(n log n)

L=3
$$\Omega(n^2)$$
 $O(n \log n)$

General graphs

an α -spanner of an α -spanner of size size f(n) for \longrightarrow O(Lf(n)) for temporal graphs of lifetime L

temporal spanner of

stretch log n and size o(n²)

for any temporal graph o lifetime L=o(n)

Cliques

$$\alpha=2$$
 $\alpha=3$

$$L=2$$
 O(n log n)

L=3
$$\Omega(n^2)$$
 $O(n \log n)$

 $O(2^{L} n \log n)$

General graphs

an α -spanner of an α -spanner of size size f(n) for O(Lf(n)) for temporal graphs of lifetime L

temporal spanner of

stretch log n and size o(n²)
for any temporal graph o lifetime L=o(n)

size $\Omega(n^2)$ for general graph with $L=\Theta(n)$

Our results I: cliques

for every $\mathbf{u} \in V$

time-labels

H:= red edges

- # red edges $\tilde{O}(n^{3/2})$

compute a hitting set R of S_u 's

Lemma: $|R| = \widetilde{O}\left(\frac{n}{|S_u|}\right) = \widetilde{O}\left(\frac{n}{n^{1/2}}\right) = \widetilde{O}(n^{1/2})$

cluster the vertices around R

cluster the vertices around R

for any $v \in V$

case: v = z(x)

cluster the vertices around R

for any $v \in V$

case: v = z(x)

cluster the vertices around R

for any $v \in V$

case: $v \in S_{z(x)}$

cluster the vertices around R

for any $v \in V$

case: $v \in S_{z(x)}$

H= red edges + blue edges - # blue edges $\tilde{O}(n^{3/2})$

for every $u \in V$

cluster the vertices around R

for any $v \in V$

case: $v \in V \setminus S_{z(x)}$

H= red edges + blue edges - # blue edges $\tilde{O}(n^{3/2})$

for every $u \in V$

cluster the vertices around R

for any $v \in V$

case: $v \in V \setminus S_{z(x)}$

H= red edges + blue edges - # blue edges $\tilde{O}(n^{3/2})$

for any $v \in V$

case: $v \in V \setminus S_{z(x)}$

H= red edges + blue edges + green edges - # green edges $\tilde{O}(n^{3/2})$

H is a 3- spanner of size $\widetilde{O}(n^{3/2})$

Our results I: cliques

for every $\mathbf{u} \in V$

for every $u \in V$

H:= red edges

- # red edges $\tilde{O}(n^{4/3})$

compute a hitting set R_1 of $S_{1,u}$'s

Lemma: $|R_1| = \widetilde{O}\left(\frac{n}{|S_{1,u}|}\right) = \widetilde{O}\left(\frac{n}{n^{1/3}}\right) = \widetilde{O}(n^{2/3})$

compute a second-level hitting set R_2 of

- # red + #purple edges $\widetilde{O}(n^{4/3})$

for any $v \in V$

case: $v = z_1(x)$ or $v = z_2(y)$

for any $v \in V$

case: $v = z_1(x)$ or $v = z_2(y)$

for any $v \in V$

case: $v \in S_{1,z_1(x)}$

for any $v \in V$

case: $v \in S_{1,z_2(y)}$ or $v \in S_{2,z_2(y)}$

H= red edges + purple edges + blue edges

for any $v \in V$

case: $v \in S_{1,z_2(y)}$ or $v \in S_{2,z_2(y)}$

H= red edges + purple edges + blue edges + green edges

for any $v \in V$

case: $v \notin S_{1,z_2(y)}$ or $v \notin S_{2,z_2(y)}$

H is a 5-spanner of size $\tilde{O}(n^{4/3})$

Selected open problems

Cliques

3-spanner

$$\Omega(n^{1+\epsilon})$$
 vs $\widetilde{O}(n)$

Beyond Cliques

Thanks for your attention!