Source code documentation of APPM

Roman Fuchs

December 2, 2019

Contents

1	Introduction	1
2	Mesh construction2.1 Primal mesh2.2 Dual mesh	2 2 2
3	Data output 3.1 Mesh 3.2 Data	2 3 3
4	Visualization	3
5	Testcases 5.1 Uniform current, determine magnetic fields	3
6	TODO	3
${f T}$	odo list	
	As of now, Paraview supports EITHER a spatial collection of grids OR a temporal grid of a single mesh. It does not support multiple grids AND time variations. – No, it does! (the time value tag was at wrong place)	3
	apfrog scheme	3 3
ıιċ	Wart-Thomas interpolation of magnetic flux D	0

APPM: asymptotic preserving plasma model.

1 Introduction

Aim of the code: show the feasibility of a plasma model that is based on the Maxwell Grid Equations (see Finite Integration Technique) for electromagnetism and the Navier-Stokes equations for the fluid.

Maxwell equations:

$$\partial_t \vec{B} + \nabla \times \vec{E} = 0 \tag{1a}$$

$$\partial_t \vec{D} - \nabla \times \vec{H} = -\vec{J} \tag{1b}$$

$$\nabla \cdot \vec{B} = 0 \tag{1c}$$

$$\nabla \cdot \vec{D} = \rho \tag{1d}$$

(ρ : space charge density)

$$\vec{D} = \varepsilon \vec{E} \tag{1e}$$

$$\vec{B} = \frac{1}{\mu}\vec{H} \tag{1f}$$

2 Mesh construction

Why a primal and dual mesh?

2.1 Primal mesh

How it is defined.

2.2 Dual mesh

How it is defined.

3 Data output

The data is visualized in ParaView¹ or VisIT, using XDMF² for data description and HDF5³ for the heavy data.

Remarks:

- Use ParaView, because VisIT does not support polyhedral cells.
- ParaView has three readers for *.xdmf-files: XMDF Reader, Xdmf3ReaderS, and Xdmf3ReaderT.
- XDMF Reader supports the GridType="Tree" tag (i.e., grid of grids), but does not support polyhedrals.

¹version 5.6.0, 64-bit

 $^{^2}$ xdmf.org/index.php/XDMF_Model_and_Format, version 3.

 $^{^3\}mathrm{version}$ 1.10, 64-bit

- Xdmf3ReaderS supports polyhedrals, but does not support GridType="Tree".
- Therefore, the mesh data is split into two xdmf files: one that has vertex, edge, and surface data (that can be read with XDMF Reader); and a separate one for volume data (that can be read with Xdmf3ReaderS).

3.1 Mesh

Definition of cells and faces as given in the XDMF format.

For each face: facetype + list of vertex indices. Except for a polygon: facetype + number of vertices + list of vertex indices.

For each cell: celltype + list of vertex indices. Except for a polyhedral: celltype + number of faces + description of each face.

3.2 Data

4 Visualization

- Use ParaView
- Open file appm.xdmf
- Select Reader XDMF Reader (other options: XMDF Reader S, XDMF Reader T; they do not work)
- To visualize data on a given mesh: add Filter, extract Block.

Vectors:

- Add Filter -> Glyphs
- Orientation array $= \dots$
- Scale array $= \dots$
- Masking / Glyph mode = All points

5 Testcases

5.1 Uniform current, determine magnetic fields

Define current density in z-direction, at radius $r < r_0$.

6 TODO

Leapfrog scheme

Raviart-Thomas interpolation of magnetic flux B

Flow states