EAiIB	Pęcak Tomasz		Rok	Grupa	Zespół
Informatyka	Bielech Maciej		II	3a	II
Pracownia FIZYCZNA WFiIS AGH	Temat:	*******	*****		nr ćwiczenia:
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:
11.11.2017	14.11.2017				

1 Wstęp

Celem ćwiczenia było wyznaczenie wartości modułu Younga dla stali i mosiądzu przy wykorzystaniu prawa Hooke'a.

Prawo Hooke'a definiuje, że odkształcenie sprężyste jest wprost proporcjonalne do przyłożonej siły.

W ćwiczeniu badaliśmy przypadek, gdy siła jest prostopadła do przekroju poprzecznego drutu. W skutek tej siły zmienia się jego długość, co można opisać wzorem:

$$\Delta l = \frac{Fl}{SE}.\tag{1}$$

Moduł Younga (E) to współczynniki sprężystości podłużnej. Określa on własności sprężyste ciała stałego, charakteryzując podatność materiału na odkształcenia podłużne: rozciąganie, ściskanie, zgniatanie. Jego jednostką jest pascal. Możemy go obliczyć znając naprężenie σ występujące w danym obszarze ciała oraz względne odształcenie liniowe ε , co opisuje wzór:

$$E = \frac{\sigma}{\varepsilon}.$$
 (2)

Wartość modułu Younga mówi nam jak duże naprężenie należaoby przyłożyć, aby zwiększyć dwukrotnie długość drutu. Taka zależność nie ma jednak odwzierciedlenia w praktyce, ponieważ już przy mniejszych naprężeniach ciało ulega nieodwracalnym zmianom. Tę charakterystykę dla metali przedstawia wykres (1). Jak widzimy początkowo wydłużenie zależy liniowo od przyłożonej siły. Po uzyskaniu naprężenia, zwanego

Wykres 1: Charakterystyka Modułu Younga. Źródło: pl.wikipedia.org

granicą sprężystości, ciało traci własności sprężyste i nie wraca do poprzedniego kształtu.

W naszym doświadczeniu badamy wydłużenia, które spełniają prawo Hooke'a. Ma to przełożenie na dobierane obciążenie w zależności od wybranego materiału, ponieważ dla ciał o niższym module Younga granica sprężystości jest mniejsza.

Zgodnie z prawem Hooke'a zależność $\Delta l(F)$ jest liniowa, dlatego można ją opisać jako: $\Delta l(F) = aF + b$. Współczynnik kierunkowy to tangens kąta nachylenia prostej do osi OX, co opisujemy jako $a = \frac{\Delta l}{mg}$. Jest to równoznaczne z $a = \frac{l}{ES}$ (na podstawie Prawa Hooke'a, wzór 1), więc $E = \frac{l}{aS}$. Podstawiając do równania $S = \frac{\pi d^2}{4}$ otrzymujemy wzór roboczy na moduł Younga:

$$E = \frac{4l}{\pi d^2 a}. (3)$$

Wartość współczynnika a oraz jego niepewność u(a) wyznaczymy korzystając z regresji liniowej.

2 Wykonanie ćwiczenia

Ćwiczenie wykonywaliśmy dla drutów: mosiężnego i stalowego. Dla każdego z nich wykonaliśmy nastepujące czynności:

- W pierwszym kroku dokonaliśmy pomiaru długości drutu przy użyciu przymiaru milimetrowego z dokładnością 1 mm.
- Następnie, po wcześniejszym obciążeniu drutu masą około 2kg, zmierzyliśmy średnicę drutu za pomocą śruby mikrometrycznej z dokładnością 0,01 mm. Pomiaru tego dokonaliśmy w pięciu miejscach, aby sprawdzić czy drut ma stałą średnicę.
- Kolejnym krokiem było opróżnienie szalki z odważników i wyzerowanie czujnika mikrometrycznego.
- Po tym obciążaliśmy szalkę przez dokładanie kolejnych odważników, notując w tabeli sumaryczną masę odważników i wydłużenie drutu. Dla lepszej dokładności pomiary wykonywaliśmy przy dokładaniu odważników (↑) i przy ich zdejmowaniu (↓).
- Wykonując ćwiczenie dbaliśmy o to, aby odkształcenie drutu było sprężyste, gdyż po przekroczeniu granicy sprężystości drut uległ by odkształceniu nieodwracalnemu.
- Wartosci odczytane z czujnika przenieśliśmy do tabel: (??, ??) dla mosiądzu i (??) dla stali. Dla mosiądzu
 wykonaliśmy dwie serie pomiarów ze względu na błąd systematyczny, o który podejrzewaliśmy wyniki
 pierwszych pomiarów po ich wstępnej analizie.

Tabela 1: Pomiary oporu pierwszego rezystora

Opór wzorcowy	12,6	15	17	19	21	11	9	7	5	3
a [mm]	500	456	424	399	373	532	580	642	715	809
$R_{x}[\Omega]$	12,6	12,57353	12,51389	12,61398	12,49282	12,50427	12,42857	12,55307	12,54386	12,70681

6

Tabela 2: Pomiary oporu drugiego rezystora

Opór wzorcowy	35	40	45	50	55	30	25	20	15	10
a [mm]	500	463	430	403	382	534	577	630	698	779
$R_{x}[\Omega]$	35	34,4879	33,94737	33,75209	33,99676	34,37768	34,10165	34,05405	34,66887	35,24887

Tabela 3: Pomiary oporu trzeciego rezystora

Opór wzorcowy	70	80	90	100	110	60	50	40	30	20
<i>a</i> [mm]	500	467	437	412	388	541	585	638	704	785
$R_{x}[\Omega]$	70	70,09381	69,8579	70,06803	69,73856	70,71895	70,48193	70,49724	71,35135	73,02326

Tabela 4: Pomiary oporu czwartego rezystora

Opór wzorcowy	41	46	51	56	61	66	36	31	26	21
a [mm]	500	458	429	401	386	362	512	550	594	645
$R_{x}[\Omega]$	41	38,87085	38,31699	37,48915	38,34853	37,44828	37,77049	37,88889	38,03941	38,15493

Tabela 5: Pomiary oporu piątego rezystora

Opór wzorcowy	105	120	135	150	165	90	75	60	45	30
<i>a</i> [mm]	500	465	435	409	386	537	583	636	701	783
$R_{x}[\Omega]$	105	104,2991	103,9381	103,8071	103,7296	104,3844	104,8561	104,8352	105,5017	108,2488

Tabela 6: Pomiary oporu szeregowo podłączonych rezystorów 1 i 2

Opór wzorcowy	47	52	57	62	67	42	37	32	27	22
a [mm]	500	472	449	428	409	528	557	595	641	696
$R_{x}[\Omega]$	47	46,48485	46,44828	46,39161	46,36717	46,98305	46,52144	47,01235	48,20891	50,36842

Tabela 7: Pomiary oporu równolegle podłączonych rezystorów 1 i 2

Opór wzo	orcowy	9,5	11,5	13,5	15,5	17,5	19,5	7,5	5,5	3,5	1,5
<i>a</i> [m	ım]	500	454	416	381	356	332	557	632	731	866
R _x [[Ω]	9,5	9,562271	9,616438	9,540388	9,673913	9,691617	9,430023	9,445652	9,511152	9,69403

3 Opracowanie danych pomiarowych

3.1 Pomiary i ich niepewności.

Wszystkie wielkości mierzyliśmy niewielką ilość razy, dlatego dla każdej z nich przyjmujemy ocenę niepewności typu B, co w naszym przypadku będzie odpowiadać dokładności przyrządu pomiarowego.

Tabela 8: Pomiary oporu mieszanego (rezystory 1 i 2 są połączone równolegle,a rezystor 3 połączony jest względem nich szeregowo)

Opór wzorcowy	80	90	100	110	120	70	60	50	40	30
a [mm]	500	469	441	416	397	535	574	616	668	731
$R_{x}[\Omega]$	80	79,49153	78,89088	78,35616	79,00498	80,53763	80,84507	80,20833	80,48193	81,52416

1. Długość drutu: u(l) = 1 mm.

• mosiężny: l = 1,073 m

• stalowy: l = 1,069 m

2. Wydłużenie drutu: $u(\Delta l) = 0.01$ mm.

3. Średnica drutu: u(d) = 0.01 mm.

• mosieżny: d = 0.77 mm

• stalowy: d = 0,69 mm

Opracowanie danych dla drutu mosiężnego. 3.2

Wykres 2: Wykres zależności wydłużenia od siły dla drutu mosiężnego.

a) Analiza błędów.

Nie stwierdziliśmy wystąpienia błędów grubych, gdyż na wykresie (2) nie zauważamy pomiarów odstających.

b) Prawo przenoszenia niepewności.

Wykorzystując regresję liniową, obliczamy wartość współczynnika a prostej i jej dokładność u(a):

$$a = 1,86 \cdot 10^{-5} \, \frac{\text{m}}{\text{N}},\tag{4}$$

$$a = 1,86 \cdot 10^{-5} \frac{\text{m}}{\text{N}},$$

$$u(a) = 3,91 \cdot 10^{-7} \frac{\text{m}}{\text{N}},$$
(4)

Następnie wyznaczamy moduł Younga ze wzoru roboczego (3).

$$E = 124 \text{ GPa}$$

Obliczając niepewność złożoną (6) oraz rozszerzoną (7) dochodzimy do wyników:

$$u_c(E) = \sqrt{\left[\frac{4}{\pi d^2 a} u(l)\right]^2 + \left[-\frac{8l}{\pi d^3 a} u(d)\right]^2 + \left[-\frac{4l}{\pi d^2 a^2} u(a)\right]^2}$$
 (6)

$$u_c(E) = 4{,}13 \text{ GPa},$$

$$U(E) = k \cdot u_c(E)$$
 (7)
$$U(E) = 2 \cdot 4{,}13 \text{ GPa} = 8{,}26 \text{ GPa}$$

Niepewość względna złożona (8) jest równa:

$$\frac{u_c(E)}{E} = \sqrt{\left[\frac{u(l)}{l}\right]^2 + \left[-2\frac{u(d)}{d}\right]^2 + \left[-\frac{u(a)}{a}\right]^2}$$

$$\frac{u_c(E)}{E} = 3,34\%$$
(8)

c) Zastosowanie niepewności rozszerzonej do oceny zgodności z wartością dokładną.

Różnica pomiedzy obliczoną wartością modułu Younga ($E=123,58~\mathrm{GPa}$), a wartością tabelaryczną wynosi:

$$|E - E_0| = |124 \text{ GPa} - 100 \text{ GPa}| = 24 \text{ GPa}.$$
 (9)
 $|E - E_0| > U(E)$

Wyniki pomiarów w przybliżeniu liniowe i niezgodny wynik mogą świadczyć o błędzie systematycznym. Było to złe wyzerowanie czujnika, dlatego każdy z pomiarów wskazuje niższą wartość wydłużenia drutu niż spodziewana. Błąd ten zauważyliśmy podczas wstępnej analizy pomiarów, dlatego wykonaliśmy kolejną serię pomiarów dla drutu mosiężnego.

3.3 Opracowanie danych dla drutu mosiężnego. Wyniki drugiej serii pomiarów.

Wykres 3: Wykres zależności wydłużenia od siły dla drugiej serii pomiarów drutu mosiężnego.

a) Analiza błędów.

Nie stwierdziliśmy wystąpienia błędów grubych, gdyż na wykresie (3) nie zauważamy pomiarów odstających.

b) Prawo przenoszenia niepewności.

Analogicznie jak w podsekcji 3.2 wyznaczamy współczynnik a i wartość modułu Younga:

$$a = 2,00 \cdot 10^{-5} \, \frac{\mathrm{m}}{\mathrm{N}},\tag{10}$$

$$u(a) = 3,50 \cdot 10^{-7} \, \frac{\mathrm{m}}{\mathrm{N}},\tag{11}$$

$$E = 116 \text{ GPa}$$

Obliczając niepewność złożoną (6) oraz rozszerzoną (7) dochodzimy do wyników:

$$u_c(E) = 3{,}01 \text{ GPa},$$

$$U(E) = 2 \cdot 3,01 \text{ GPa} = 6,02 \text{ GPa}$$

Niepewość względna złożona (8) jest równa:

$$\frac{u_c(E)}{F} = 2,6\%$$

c) Zastosowanie niepewności rozszerzonej do oceny zgodności z wartością dokładną.

Różnica pomiedzy obliczoną wartością modułu Younga (E = 116 GPa), a wartością tabelaryczną wynosi:

$$|E - E_0| = |116 \text{ GPa} - 100 \text{ GPa}| = 16 \text{ GPa}.$$
 (12)
 $|E - E_0| > U(E)$

3.4 Opracowanie danych dla drutu stalowego.

Wykres 4: Wykres zależności wydłużenia od siły dla drutu stalowego.

a) Analiza błędów.

Stwierdziliśmy wystąpienie dwóch pomiarów odstających, które możemy utożsamiać z błędami grubymi. Błędy te zaznaczylismy na wykresie (4). Mogły one zostać spowodowane niewystarczającym wydłużeniem dla pierwszego pomiaru, a dla ostatniego pomiaru zbyt dużym naprężeniem, zbliżonym do granicy sprężystości, lub błędnym odczytem pomiaru z czujnika.

b) Prawo przenoszenia niepewności.

Podobnie jak dla drutu mosiężnego w podsekcji 3.2 wyznaczamy współczynnik *a* i wartość modułu Younga:

$$a = 1,60 \cdot 10^{-5} \, \frac{\mathrm{m}}{\mathrm{N}},\tag{13}$$

$$u(a) = 4,55 \cdot 10^{-7} \, \frac{\mathrm{m}}{\mathrm{N}},\tag{14}$$

$$E = 176 \text{ GPa}$$

Obliczając niepewność złożoną (6) oraz rozszerzoną (7) dochodzimy do wyników:

$$u_c(E) = 7,13 \text{ GPa},$$

$$U(E) = 2.7, 13 \text{ GPa} = 14, 26 \text{ GPa}$$

Niepewość względna złożona jest równa:

$$\frac{u_c(E)}{E} = 4,03\%$$

c) Zastosowanie niepewności rozszerzonej do oceny zgodności z wartością dokładną.

Różnica pomiedzy obliczoną wartością modułu Younga ($E=176,47~\mathrm{GPa}$), a wartością tabelaryczną wynosi:

$$|E - E_0| = |176 \text{ GPa} - 215 \text{ GPa}| = 39 \text{ GPa}.$$
 (15)
 $|E - E_0| > U(E)$

4 Podsumowanie

Opis wielkości	E_0 [GPa]	E [GPa]	U(E) [GPa]	$\frac{u(E)}{E}$	$(0,9E_0-U(E);1,1E_0+U(E))$
Pomiary drutu mosiężnego I	100	124	8	3,34 %	(82;118)
Pomiary drutu mosiężnego II	100	116	6	2,6 %	(84; 116)
Pomiary drutu stalowego	210-220	176	14	4,03 %	(175; 256)

- Określenie poprawności wyników naszych doświadczeń jest trudne, ponieważ nie da się jednoznacznie określić wartości tabelarycznej dla danego metalu. Wynika to z nieznajomości dokładnego składu metalu (stopu), a także ze zużycia drutu. W naszych badaniach przyjmujemy rozrzut rzędu ±10% dla wartości odczytanych z tabel fizycznych.
- Zarówno dla pierwszych jak i drugich pomiarów dla mosiądzu obliczona wartość modułu wykracza poza przedział $(E_0 U(E), E_0 + U(E))$. Po uwzględnieniu dziesięcioprocentowego rozrzutu drugą serię pomiarów możemy uznać za poprawną w zakresie wyznaczonej niepewności. Pierwsza seria pomiarów nadal daje wynik niepoprawny, co potwierdza nasze obawy co do błędu systematycznego.
- Podobnie jak w przypadku drugiej serii pomiarów dla mosiądzu wartość modułu Younga dla stali wykracza poza $E_0 \pm U(E)$, lecz po uwzględnieniu dziesięcioprocentowego rozrzutu od wartości tablicowej możemy uznać obliczoną wartość za poprawną w zakresie wyznaczonej niepewności.