Використання глибокого навчання для обернених задач

Середович Віктор

Львівський національний університет імені Івана Франка Факультет прикладної математики та інформатики

11 травня 2021 р.

Зміст

- 1 Постановка задачі
- 2 Структура обернених задач
- 3 Автоенкодер для розв'язування обернених задач
 - Автоенкодер
 - Автоенкодер для видалення шуму
- 4 Реалізація моделі для автоенкодера
 - Оцінка реконструкції
 - Оцінка зображень
 - Архітектура моделі для автоенкодера
 - Тренування
- 5 Аналіз результатів
- 6 Висновок

Постановка задачі

Оберненими задачами будемо вважати такі задачі, в яких невідомим є n- піксельне зображення ${\pmb x} \in {\mathbb R}^n$ яке було отримане з m вимірювань ${\pmb y} \in {\mathbb R}^m$ відповідно до рівняння 1.1.

Загальне подання оберненої задачі

$$\mathbf{y} = \mathcal{A}\left(\mathbf{x}\right) + \boldsymbol{\varepsilon} \tag{1.1}$$

де \mathcal{A} - це прямий оператор вимірювання та ε є певним вектором шуму.

Структура обернених задач

Задача максимальної ймовірності (maximum likelihood)

$$\hat{\mathbf{x}}_{\mathrm{ML}} = \arg\max_{\mathbf{x}} p(\mathbf{y}|\mathbf{x}) = \arg\min_{\mathbf{x}} -\log p(\mathbf{y}|\mathbf{x})$$
 (2.1)

де $p(y \mid x)$ це ймовірність спостереження y за умови якщо x є справжнім зображенням.

Задача для випадку білого гаусівського шуму

$$\hat{x} = \arg\min_{x} \frac{1}{2} \|\mathcal{A}(x) - y\|_{2}^{2} + \lambda R(x)$$
 (2.2)

де, $\mathrm{R}(\mathbf{x})$ - член регуляризації, а λ є параметром регуляризації.

Автоенкодер

Рис.: Загальна структура автоенкодера, що відображає "оригінальне зображення" на "відтворене зображення" через внутрішнє представлення "код".

Автоенкодер для видалення шуму

Рис.: Структура функції витрат для автоенкодера який навчається реконструювати оригінальні зображення x з пошкоджених деяким випадковим шумом.

Оцінка реконструкції

MSE штрафна функція

$$J(\omega, b) = \frac{1}{m} \sum_{i=1}^{m} L(a^{(L,i)}, y^{(i)})$$
 (4.1)

Функція втрати для одного набору елементів за L_2 нормою

$$L(a^{(l,i)}, y^{(i)}) = \frac{1}{2} ||a^{(l,i)} - y^{(i)}||_{L_2}^2 = \frac{1}{2} \sum_{j=1}^n (a_j^{(l,i)} - y_j^{(i)})^2$$
 (4.2)

Оцінка зображень

SSIM (structural similarity index measure) оцінка зображень.

SSIM
$$(x, y) = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$
 (4.3)

де

- μ_{x} , μ_{y} середнє значення x, y
- σ_x^2 , σ_y^2 дисперсія x, y
- lacksquare σ_{xy} коваріація x та y
- $c_1 = (k_1 L)^2, c_2 = (k_2 L)^2$
- L динамічний діапазон пікселів
- $\mathbf{k}_1 = 0.01$ та $k_2 = 0.03$ константи.

Архітектура моделі для автоенкодера

Була побудована модель автоенкодера, яка задана таблицею 1.

Шар мережі (активаційна функція)	Розмірність
Енкодер	
Dense (Relu)	784 × 64
Dense (Relu)	64 × 32
Декодер	
Dense (Sigmoid)	32 × 784

Табл.: Архітектура щільної нейронної мережі для автоенкодера.

Тренування

Рис.: Графік залежності усередненої SSIM оцінки для тестового датасету від кількості ітерацій тренування. σ відповідає стандартному відхиленню гаусівського шуму.

Результати роботи автоенкодера для видалення

Рис.: Порівняння точності реконструкції зображень автоенкодером для різної величини стандартного відхилення σ білого шуму.

Порівняння роботи автоенкодера з регуляризацією

Рис.: Порівняння видалення шуму за допомогою автоенкодера з класичним методом основаним на регуляризації.

Висновок

За результатами експериментів можна сказати, що побудована модель глибокого навчання є досить ефективною у розв'язанні розглянутої оберненої задачі. Вона успішно впоралась з видаленням шуму при його низьких показниках та дала прийнятні результати для його надмірної кількості. Варто зазначити, що автоенкодер продемонстрував себе значно краще в порівнянні з методом регуляризації. Можна стверджувати що використання глибокого навчання для розв'язання поставленої обернених задачі по видаленню шуму є ефективним підходом.

- Gregory Ongie та ін. Deep Learning Techniques for Inverse Problems in Imaging. 2020. arXiv: 2005.06001 [eess.IV].
- Ian Goodfellow, Yoshua Bengio τα Aaron Courville. *Deep Learning*. http://www.deeplearningbook.org. MIT Press, 2016.
- Jonas Adler τα Ozan Öktem. "Solving ill-posed inverse problems using iterative deep neural networks". Β: Inverse Problems 33.12 (πματοπ. 2017), c. 124007. ISSN: 1361-6420. DOI: 10.1088/1361-6420/aa9581. URL: http://dx.doi.org/10.1088/1361-6420/aa9581.
- Junyuan Xie, Linli Xu та Enhong Chen. "Image Denoising and Inpainting with Deep Neural Networks". в: Advances in Neural Information Processing Systems. за ред. F. Pereira та ін. т. 25. Curran Associates, Inc., 2012.