

Dual/Quad Low Power Precision, Picoamp Input Op Amps

FEATURES

- Offset Voltage Prime Grade: 60µV Max
- Offset Voltage Low Cost Grade (Including Surface Mount Dual/Quad): 75μV Max
- Offset Voltage Drift: 0.5µV/°C Max
- Input Bias Current: 250pA Max
- 0.1Hz to 10Hz Noise: 0.3µV_{P-P}, 2.2pA_{P-P}
 Supply Current per Amplifier: 400µA Max
- CMRR: 120dB Min
- Voltage Gain: 1 Million Min
- Guaranteed Specs with ±1.0V Supplies
- Guaranteed Matching Specifications
- SO-8 Package Standard Pinout
- LT1114 in Narrow Surface Mount Package

APPLICATIONS

- Picoampere/Microvolt Instrumentation
- Two and Three Op Amp Instrumentation Amplifers
- Thermocouple and Bridge Amplifiers
- Low Frequency Active Filters
- Photo Current Amplifiers
- Battery-Powered Systems

DESCRIPTION

The LT®1112 dual and LT1114 quad op amps achieve a new standard in combining low cost and outstanding precision specifications.

The performance of the selected prime grades matches or exceeds competitive devices. In the design of the LT1112/LT1114 however, particular emphasis has been placed on optimizing performance in the low cost plastic and SO packages. For example, the $75\mu V$ maximum offset voltage in these low cost packages is the lowest on any dual or quad non-chopper op amp.

The LT1112/LT1114 also provide a full set of matching specifications, facilitating their use in such matching dependent applications as two and three op amp instrumentation amplifiers.

Another set of specifications is furnished at $\pm 1V$ supplies. This, combined with the low $320\mu A$ supply current per amplifier, allows the LT1112/LT1114 to be powered by two nearly discharged AA cells.

47, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. Protected by U.S. Patents 4,575,685; 4,775,884 and 4,837,496

TYPICAL APPLICATION

Dual Output, Buffered Reference (On Single 3V Supply)

TOTAL SUPPLY CURRENT = $700\mu A$ 2V REFERENCE: SOURCES 1.7mA, SINKS 5mA OPTIONAL R_X = 300Ω INCREASES SOURCE CURRENT TO 5mA 0.765V REFERENCE: SOURCES 5mA, SINKS 0.5mA

TEMPERATURE COEFFICIENT LIMITED BY REFERENCE = 20ppm/°C MINIMUM SUPPLY = 2.7V

Distribution of Input Offset Voltage (In All Packages)

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage ±20V

Differential Input Current (Note 2) ±10mA
Input Voltage (Equal to Supply Voltage) ±20V
Output Short-Circuit Duration Indefinite
Storage Temperature Range −65°C to 150°C
Lead Temperature (Soldering, 10 sec) 300°C
Operating Temperature Range (Note 11)
LT1112AM/LT1112M
LT1114AM/LT1114M (OBSOLETE)55°C to 125°C
LT1112AC/LT1112C/LT1112S8
LT1114AC/LT1114C/LT1114S40°C to 85°C
LT1112I/LT1114I40°C to 85°C
LT1112MPS8 –55°C to 125°C

Specified Temperature Range (Note 12)
LT1112AM/LT1112M
LT1114AM/LT1114M (OBSOLETE)55°C to 125°C
LT1112AC/LT1112C/LT1112S8
LT1114AC/LT1114C/LT1114S40°C to 85°C
LT1112I/LT1114I40°C to 85°C
LT1112MPS8 –55°C to 125°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

LINEAR TECHNOLOGY

ELECTRICAL CHARACTERISTICS

 $V_S=\pm 15 V,~V_{CM}=0 V,~T_A=25^{\circ}C,~unless~otherwise~noted.$

		/AC /AC		1112M/ 1114M/					
SYMBOL	PARAMETER	CONDITIONS (Note 3)	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	V _S = ±1.0V		20 40	60 110		25 45	75 130	μV μV
$\frac{\Delta V_{OS}}{\Delta Time}$	Long Term Input Offset Voltage Stability			0.3			0.3		μV/Mo
I _{OS}	Input Offset Current	LT1114S/LT1114IS		50	180		60 75	230 330	pA pA
I _B	Input Bias Current	LT1114S/LT1114IS		±70	±250		±80 ±100	±280 ±450	pA pA
e _n	Input Noise Voltage	0.1Hz to 10Hz (Note 10)		0.3	0.9		0.3	0.9	μV_{P-P}
	Input Noise Voltage Density	f ₀ = 10Hz (Note 10) f ₀ = 1000Hz (Note 10)		16 14	28 18		16 14	28 18	nV/√Hz nV/√Hz
i _n	Input Noise Current	0.1Hz to 10Hz		2.2			2.2		pA _{P-P}
	Input Noise Current Density	f ₀ = 10Hz f ₀ = 1000Hz		0.030 0.008			0.030 0.008		pA/√Hz pA/√Hz
V_{CM}	Input Voltage Range		±13.5	±14.3		±13.5	±14.3		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 13.5V$	120	136		115	136		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.0 V \text{ to } \pm 20 V$	116	126		114	126		dB
	Minimum Supply Voltage	(Note 5)	±1.0			±1.0			V
R _{IN}	Input Resistance Differential Mode Common Mode	(Note 4)	20	50 800		15	40 700		MΩ $GΩ$
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 12V, R_L = 10k\Omega$ $V_0 = \pm 10V, R_L = 2k\Omega$	1000 800	5000 1500		800 600	5000 1300		V/mV V/mV
V _{OUT}	Output Voltage Swing	$R_{L} = 10k\Omega$ $R_{L} = 2k\Omega$	±13.0 ±11.0	±14.0 ±12.4		±13.0 ±11.0	±14.0 ±12.4		V
SR	Slew Rate		0.16	0.30		0.16	0.30		V/µs
GBW	Gain-Bandwidth Product	f ₀ = 10kHz	450	750		450	750		kHz
Is	Supply Current per Amplifier	V _S = ±1.0V		350 320	400 370		350 320	450 420	μA μA
	Channel Separation	f ₀ = 10Hz		150			150		dB
ΔV_{0S}	Offset Voltage Match	(Note 6)		35	100		40	130	μV
Δl_B^+	Noninverting Bias Current Match (Notes 6, 7)	LT1114S/LT1114IS		100	450		100 120	500 680	pA pA
ΔCMRR	Common Mode Rejection Match	(Notes 6, 8)	117	136		113	136		dB
ΔPSRR	Power Supply Rejection Match	(Notes 6, 8)	114	130		112	130		dB

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the full operating temperature range of $-55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 125^{\circ}\text{C}$, otherwise specifications are at $\text{T}_{\text{A}} = 25^{\circ}\text{C}$. $\text{V}_{\text{S}} = \pm 15\text{V}$, unless otherwise noted.

OVERDOL	DADAMETED	CONDITIONS (Note S)		L	1112AM T1114AN	ΛJ	I	12MJ8/ T1114W	IJ	LIMITO
SYMBOL	PARAMETER	CONDITIONS (Note 3)		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V_{OS}	Input Offset Voltage	LT1110MDC0	•		35	120		45	150	μV
		LT1112MPS8 $V_S = \pm 1.2V$			60	220		45 70	160 260	μV μV
ΔV _{OS}	Average Input Offset Voltage Drift	(Note 9)			0.15	0.5		0.20	0.75	μV/°C
$\Delta Temp$	Thorago input officer collage 21111	LT1112MPS8	•		00	0.0		0.4	1.3	μV/°C
I _{OS}	Input Offset Current		•		80	400		100	500	pA
I _B	Input Bias Current		•		±150	±600		±170	±700	pA
V _{CM}	Input Voltage Range		•	±13.5	±14.1		±13.5	±14.1		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 13.5V$	•	116	130		111	130		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.2 \text{V to } \pm 20 \text{V}$	•	112	124		110	124		dB
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 12V, R_L = 10k\Omega$ $V_0 = \pm 10V, R_L = 2k\Omega$	•	500 200	2500 600		400 170	2500 500		V/mV V/mV
V _{OUT}	Output Voltage Swing	$R_L = 10k\Omega$	•	±13.0	±13.85		±13.0	±13.85		V
SR	Slew Rate		•	0.12	0.22		0.12	0.22		V/µs
I _S	Supply Current per Amplifier		•		380	460		380	530	μА
ΔV_{0S}	Offset Voltage Match (Note 6)	LT1112MPS8	•		55	200		70 70	240 270	μV μV
	Offset Voltage Match Drift		•		0.2	0.7		0.3	1.0	μV/°C
	(Notes 6, 9)	LT1112MPS8	•					0.5	1.9	μV/°C
Δl_B^+	Noninverting Bias Current Match	(Notes 6, 7)	•		150	750		170	850	pA
ΔCMRR	Common Mode Rejection Ratio	(Notes 6, 8)	•	112	130		106	130		dB
ΔPSRR	Power Supply Rejection Ratio	(Notes 6, 8)	•	109	126		106	126		dB

The ullet denotes the specifications which apply over the full operating temperature range of 0°C \leq T_A \leq 70°C, otherwise specifications are at T_A = 25°C. V_S = \pm 15V, unless otherwise noted.

				1112AC Γ1114A(12CN8/\$ 114CN/			
${\bf SYMBOL}$	PARAMETER	CONDITIONS (Note 3)		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	LT1112CN8 LT1112S8, LT1114CN/S V _S = ±1.2V	•		27 35 50	100 125 175		30 45 65	125 150 210	μV μV μV
$\frac{\Delta V_{OS}}{\Delta Temp}$	Average Input Offset Voltage Drift (Note 9)	LT1112CN8 LT1112S8, LT1114CN/S	•		0.15 0.3	0.5 1.1		0.2 0.4	0.75 1.3	μV/°C μV/°C
I _{OS}	Input Offset Current	LT1114S	•		60	220		70 90	290 420	pA pA
I _B	Input Bias Current	LT1114S	•		±80	±300		±90 ±115	±350 ±550	pA pA
V _{CM}	Input Voltage Range		•	±13.5	±14.2		±13.5	±14.2		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 13.5V$	•	118	133		113	133		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.2V \text{ to } \pm 20V$	•	114	125		112	125		dB
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 12V, R_L = 10k\Omega$ $V_0 = \pm 10V, R_L = 2k\Omega$	•	800 500	4000 1300		650 400	4000 1000		V/mV V/mV
V _{OUT}	Output Voltage Swing	$R_L = 10k\Omega$	•	±13.0	±13.9		±13.0	±13.9		V
SR	Slew Rate		•	0.14	0.27	•	0.14	0.27		V/µs

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range of $0^{\circ}C \leq T_A \leq 70^{\circ}C$, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = \pm 15V$, unless otherwise noted.

		LT1112ACN8 LT1114ACN					12CN8/3 1114CN/			
SYMBOL	PARAMETER	CONDITIONS (Note 3)		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
I _S	Supply Current per Amplifier		•		370	440		370	500	μА
ΔV _{OS}	Offset Voltage Match (Note 6)	LT1112CN8 LT1112S8, LT1114CN/S	•		45 55	170 220		55 70	210 270	μV μV
	Offset Voltage Match Drift (Notes 6, 9)	LT1112N8 LT1112S8, LT1114CN/S	•		0.2 0.4	0.7 1.6		0.3 0.5	1.0 1.9	μV/°C μV/°C
Δl_B^+	Noninverting Bias Current Match (Notes 6, 7)	LT1114S	•		120	530		135 160	620 880	pA pA
ΔCMRR	Common Mode Rejection Ratio	(Notes 6, 8)	•	114	134		109	134		dB
ΔPSRR	Power Supply Rejection Ratio	(Notes 6, 8)	•	110	128		108	128		dB

The ullet denotes the specifications which apply over the full operating temperature range of $-40^{\circ}C \leq T_A \leq 85^{\circ}C$, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = \pm 15V$, unless otherwise noted. (Note 12)

					T1112AC T1114AC		LT1112 LT	2CN8/IN8 1114CN/	3/S8/IS8 S/IS	
SYMBOL	PARAMETER	CONDITIONS (Note 3)		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	LT1112CN8/IN8 LT1112S8/IS8, LT1114CN/S/IS V _S = ±1.2V	•		30 40 55	110 135 200		35 45 60	135 160 240	μV μV μV
$\frac{\Delta V_{OS}}{\Delta Temp}$	Average Input Offset Voltage Drift	LT1112CN8/IN8 LT1112S8/IS8, LT1114CN/S/IS	•		0.15 0.30	0.50 1.10		0.20 0.40	0.75 1.30	μV/°C μV/°C
I _{OS}	Input Offset Current	LT1114S/IS	•		70	330		85 110	400 600	pA pA
I _B	Input Bias Current	LT1114S/IS	•		±110	±500		±120 ±150	±550 ±800	pA pA
V _{CM}	Input Voltage Range		•	±13.5	±14.1		±13.5	±14.1		V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 13.5V$	•	117	132		112	132		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.2V \text{ to } \pm 20V$	•	113	125		111	125		dB
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 12V, R_L = 10k\Omega$ $V_0 = \pm 10V, R_L = 2k\Omega$	•	700 400	3300 1100		600 300	3300 900		V/mV V/mV
V _{OUT}	Output Voltage Swing	$R_L = 10k\Omega$	•	±13.0	±13.85		±13.0	±13.85		V
SR	Slew Rate		•	0.13	0.24		0.13	0.24		V/µs
Is	Supply Current per Amplifier		•		370	450		370	510	μΑ
ΔV _{OS}	Offset Voltage Match (Note 6)	LT1112CN8/IN8 LT1112S8/IS8, LT1114CN/S/IS	•		50 60	180 230		60 70	225 270	μV μV
	Offset Voltage Match Drift (Notes 6)	LT1112CN8/IN8 LT1112S8/IS8, LT1114CN/S/IS	•		0.2 0.4	0.7 1.6		0.3 0.5	1.0 1.9	μV/°C μV/°C
Δl_B^+	Noninverting Bias Current Match (Notes 6, 7)	LT1114S/IS	•		140	660		155 190	770 1300	pA pA
ΔCMRR	Common Mode Rejection Ratio	(Notes 6, 8)	•	113	133		109	133		dB
ΔPSRR	Power Supply Rejection Ratio	(Notes 6, 8)	•	110	127		107	127		dB

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: Differential input voltages greater than 1V will cause excessive current to flow through the input protection diodes unless limiting resistance is used.

Note 3: Typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers; i.e., out of 100 LT1114s (or 100 LT1112s) typically 240 op amps (or 120) will be better than the indicated specification.

Note 4: This parameter is guaranteed by design and is not tested.

ELECTRICAL CHARACTERISTICS

Note 5: Offset voltage, supply current and power supply rejection ratio are measured at the minimum supply voltage.

Note 6: Matching parameters are the difference between amplifiers A and D and between B and C on the LT1114; between the two amplifiers on the LT1112.

Note 7: This parameter is the difference between two noninverting input bias currents.

Note 8: Δ CMRR and Δ PSRR are defined as follows: (1) CMRR and PSRR are measured in μ V/V on the individual amplifiers. (2) The difference is calculated between the matching sides in μ V/V. (3) The result is converted to dR

Note 9: This parameter is not 100% tested.

Note 10: These parameters are not tested. More than 99% of the op amps tested during product characterization have passed the maximum limits. 100% passed at 1kHz.

Note 11: The LT1112AC/LT1112C/LT1112S8/LT1112I and LT1114AC/LT1114C/LT1114S/LT1114I are guaranteed functional over the temperature range of -40° C to 85° C.

Note 12: The LT1112AC/LT1112C/LT1112S8/LT1114AC/LT1114C/LT1114S are guaranteed to meet specified performance from 0°C to 70°C and are designed, characterized and expected to meet specified performance from -40°C to 85°C, but are not tested or QA sampled at these temperatures. The LT1112I/LT1114I are guaranteed to meet specified performance from -40°C to 85°C.

TYPICAL PERFORMANCE CHARACTERISTICS

Input Bias and Offset Current, Noninverting Bias Current Match vs Temperature

Input Bias Current Over Common Mode Range

Distribution of Input Bias Current (In All Packages Except LT1114S)

LT1112/14 • TPC03

Drift with Temperature LT1112N8/J8. LT1114J

Drift with Temperature LT1112S8. LT1114N/S

Distribution of Offset Voltage at $V_S = \pm 1.0V$ (In All Packages)

LT1112/14 • TPC06

TYPICAL PERFORMANCE CHARACTERISTICS

0.01Hz to 1Hz Noise

Warm-Up Drift

Long Term Stability of Three Representative Units

Supply Current per Amplifier vs Supply Voltage

TYPICAL PERFORMANCE CHARACTERISTICS

Common Mode Range and

111214fb

LINEAR

TYPICAL PERFORMANCE CHARACTERISTICS

Slew Rate, Gain-Bandwidth Product and Phase Margin vs Temperature

Closed-Loop Output Impedance

Capacitive Loading Handling

Small-Signal Transient Response

 $A_V = +1$ $C_L = 500pF$ $V_S = \pm 15V$

Large-Signal Transient Response

 $A_V = +1$ $R_F = 10k$ $C_F = 100pF$ $V_S = \pm 15V$

Undistorted Output Voltage vs Frequency

APPLICATIONS INFORMATION

The LT1112 dual and LT1114 quad in the plastic and ceramic DIP packages are pin compatible to and directly replace such precision op amps as the OP-200, OP-297, AD706 duals and OP-400, OP-497, AD704 quads with improved price/performance.

The LT1112 in the S8 surface mount package has the standard pin configuration, i.e., the same configuration as the plastic and ceramic DIP packages.

The LT1114 quad is offered in the narrow 16-pin surface mount package. All competitors are in the wide 16-pin package which occupies 1.8 times the area of the narrow package. The wide package is also 1.8 times thicker than the narrow package.

The inputs of the LT1112/1114 are protected with back-to-back diodes. In the voltage follower configuration, when the input is driven by a fast large-signal pulse (>1V), the input protection diodes effectively short the output to the input during slewing, and a current, limited only by the output short-circuit protection, will flow through the diodes.

The use of a feedback resistor is recommended because this resistor keeps the current below the short-circuit limit, resulting in faster recovery and settling of the output.

The input voltage of the LT1112/1114 should never exceed the supply voltages by more than a diode drop. However, the example below shows that as the input voltage exceeds the common mode range, the LT1112's

output clips cleanly, without any glitches or phase reversal. The OP-297 exhibits phase reversal. The photos also illustrate that both the input and output ranges of the LT1112 are within 800mV of the supplies. The effect of input and output overdrive on the other amplifiers in the LT1112 or LT1114 packages is negligible, as each amplifier is biased independently.

Advantages of Matched Dual and Quad Op Amps

In many applications the performance of a system depends on the matching between two operational amplifiers rather than the individual characteristics of the two op amps. Two or three op amp instrumentation amplifiers, tracking voltage references and low drift active filters are some of the circuits requiring matching between two op amps.

The well-known triple op amp configuration illustrates these concepts. Output offset is a function of the difference between the offsets of the two halves of the LT1112. This error cancellation principle holds for a considerable number of input referred parameters in addition to offset voltage and its drift with temperature. Input bias current will be the average of the two noninverting input currents (I_B^+). The difference between these two currents (ΔI_B^+) is the offset current of the instrumentation amplifier. Common mode and power supply rejections will be dependent only on the match between the two amplifiers (assuming perfect resistor matching).

Voltage Follower with Input Exceeding the Common Mode Range ($V_S = \pm 5V$)

INPUT: ±5.2V Sine Wave

LT1112 Output

OP-297 Output

LINEAR

APPLICATIONS INFORMATION

Three Op Amp Instrumentation Amplifier

The concepts of common mode and power supply rejection ratio match (Δ CMRR and Δ PSRR) are best demonstrated with a numerical example:

Assume CMRR_A = $+1\mu V/V$ or 120dB, and CMRR_B = $+0.75\mu V/V$ or 122.5dB, then Δ CMRR = $0.25\mu V/V$ or 132dB; if CMRR_B = $-0.75\mu V/V$ which is still 122.5dB, then Δ CMRR = $1.75\mu V/V$ or 115dB.

Clearly the LT1112/LT1114, by specifying and guaranteeing all of these matching parameters, can significantly improve the performance of matching-dependent circuits.

Typical performance of the instrumentation amplifier:

Input offset voltage = $35\mu V$ Offset voltage drift = $0.3\mu V/^{\circ}C$ Input bias current = 80pAInput offset current = 100pAInput resistance = $800G\Omega$ Input noise = $0.42\mu V_{P-P}$

When the instrumentation amplifier is used with high impedance sources, the LT1114 is recommended because its CMRR vs frequency performance is better than the LT1112's. For example, with two matched $1M\Omega$ source resistors, CMRR at 100Hz is 100dB with the LT1114, 76dB with the LT1112.

This difference is explained by the fact that capacitance between adjacent pins on an IC package is about 0.25pF (including package, socket and PC board trace capacitances).

On the dual op amp package, positive input A is next to the V⁻ pin (AC ground), while positive input B has no AC ground pin adjacent to it, resulting in a 0.25pF input capacitance mismatch. At 100Hz, 0.25pF represents a $6.4 \cdot 10^9$ input impedance mismatch, which is only 76dB higher than the $1M\Omega$ source resistors.

On the quad package, all four inputs are adjacent to a power supply terminal—therefore, there is no mismatch.

SCHEMATIC DIAGRAM (1/2 LT1112, 1/4 LT1114)

PACKAGE DESCRIPTION

PACKAGE DESCRIPTION

N8 Package 8-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510)

NOTE:

NOTE:
1. DIMENSIONS ARE MILLIMETERS

MILLIMETERS

N Package 14-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510)

^{*}THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

PACKAGE DESCRIPTION

\$8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610)

S Package 16-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610)

2. DRAWING NOT TO SCALE

^{3.} THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

TYPICAL APPLICATION

Dual Buffered $\pm 0.617V$ Reference Powered by Two AA Batteries

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1880	Rail-to-Rail Output, Picoamp Input Precision Op Amp	SOT-23
LT1881/LT1882	Dual/Quad Rail-to-Rail Output, Picoamp Input Precision Op Amp	C _{LOAD} Up to 1000pF
LT1884/LT1885	Dual/Quad Rail-to-Rail Output, Picoamp Input Precision Op Amp	9.5nV/√Hz Input Noise
LT6011/LT6012	Dual/Quad Rail-to-Rail Output, Picoamp Input Precision Op Amp	135μA Supply Current, 14nV/√Hz

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

LT1114S#TRPBF LT1114CN#PBF LT1112ACN8 LT1112MPS8#TR LT1112IS8#PBF LT1114IS

LT1112MPS8#PBF LT1112ACN8#PBF LT1114ACN LT1112S8#TR LT1114IN LT1112IN8 LT1114S

LT1112IS8#TR LT1112MPS8#TRPBF LT1112IN8#PBF LT1114S#PBF LT1112MJ8 LT1112S8#TRPBF

LT1112CN8#PBF LT1114ACN#PBF LT1114CN LT1114IS#TR LT1114IN#PBF LT1112MPS8 LT1112IS8

LT1112S8#PBF LT1112S8 LT1114IS#TRPBF LT1112IS8#TRPBF LT1114IS#PBF LT11112CN8 LT1114S#TR