Семинар 7

Общая информация:

ullet Напомню, что запись $X=(X_1\mid\ldots\mid X_n)\in \mathrm{M}_n(\mathbb{R})$ означает, что матрица X состоит из столбцов $X_i\in\mathbb{R}^n.$

Задачи:

- 1. Задачник. §12, задача 12.2.
- 2. Задачник. §13, задача 13.2 (б).
- 3. Найти определитель матрицы

$$\begin{pmatrix}
5 & 1 & 7 & 3 \\
1 & 0 & 2 & 0 \\
-2 & 2 & 5 & 4 \\
3 & 0 & 4 & 0
\end{pmatrix}$$

- 4. Пусть $X=(X_1\mid \ldots\mid X_n)\in \mathrm{M}_n(\mathbb{R})$ и $Y=(Y_1\mid \ldots\mid Y_n)\in \mathrm{M}_n(\mathbb{R})$ некоторые матрицы. Показать, что $\sum_{i=1}^n X_iY_i^t=XY^t.$
- 5. Пусть $X=(X_1\mid\ldots\mid X_n)\in \mathrm{M}_n(\mathbb{R})$ и $A\in\mathrm{M}_n(\mathbb{R})$. Показать, что $\sum_{i=1}^n X_i^tAX_i=\mathrm{tr}(X^tAX)$.
- 6. Пусть $X = (X_1 \mid \ldots \mid X_n) \in M_n(\mathbb{R})$ и $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$.
 - (a) Найти $\det(\lambda_1 X_1 X_1^t + \ldots + \lambda_n X_n X_n^t)$.
 - (b) При каких λ_i определитель из предыдущего пункта не меньше нуля?
- 7. Пусть $A \in M_n(\mathbb{R})$. Показать, что $\det(AA^t) \geqslant 0$ и если A невырожденная, то $\det(AA^t) > 0$.
- 8. Пусть $f(t) = a_0 + a_1 t + \ldots + a_n t^n$ многочлен с вещественными коэффициентами такой, что $a_0 \neq 0$. Пусть $A \in \mathcal{M}_m(\mathbb{R})$ такая, что f(A) = 0.
 - (a) Показать, что A обратима.
 - (b) Доказать, что A^{-1} представляется в виде p(A), где p некоторый многочлен с вещественными коэффициентами. Найти явно этот многочлен p.
- 9. Пусть $A \in \mathcal{M}_n(\mathbb{R})$, E единичная матрица размера n и $\lambda \in \mathbb{R}$. Пусть $R(\lambda) = \widehat{A \lambda E}$ присоедененная матрица.
 - (а) Показать, что выполнено следующее равенство

$$(A - \lambda E)R(\lambda) = R(\lambda)(A - \lambda E) = \det(A - \lambda E)E.$$

- (b) Показать, что $R(\lambda)=A_0+A_1\lambda+\ldots+(-1)^{n-1}\lambda^{n-1}$, где $A_i\in \mathrm{M}_n(\mathbb{R})$ некоторые матрицы
- (c) Показать, что матрицы A_i коммутируют с A.
- 10. Пусть $X \in M_3(\mathbb{R})$. Найти все решения уравнения $X^t X = -E$, где E единичная матрица размера 3.