Nom:		DS3				
Prénom:	APP	ANA	REA	VAL	СОМ	RCO
Exercice 1 – Chasse au plomb						
1. $m\frac{d\overrightarrow{v}}{dt} = -mg\overrightarrow{e_z} - \frac{1}{2}\rho_a\pi R^2C_D v\overrightarrow{v}$	•		•			
2. $v_0 \ll v_\infty$, avec $v_\infty = \sqrt{\frac{2mg}{\rho_\alpha \pi R^2 C_D}}$		•				
3. $\ddot{x}=0$ et $\ddot{z}=-q$.			••			
4. $\dot{x}(t) = v_0 \cos \theta_0$ et $\dot{z}(t) = v_0 \sin \theta_0 - gt$.			•••			
$x(t) = v_0 \cos \theta_0 \times t \text{ et } z(t) = v_0 \sin \theta_0 \times t - \frac{1}{2}gt^2.$						
5. $z(x) = x(\tan \theta_0 - \frac{gx}{2v_0^2 \cos^2 \theta_0})$: parabole.			••		•	
6. $X_M = \frac{v_0^2 \sin(2\theta_0)}{a}$ et $H_M = \frac{v_0^2 \sin^2 \theta_0}{2a}$.			••			
7. $\theta_0 = \frac{\pi}{4}$			•			
8. Cf. Ann. 1.			•••			
9. Doc. 1 : portée $\sim 300 \mathrm{m} \ll X_M$ et $v_0 \gg v_{\infty}$.	•			•		
10. $v_0 \gg v_\infty$ donc, d'après la question 2, $ \overrightarrow{P} \ll \overrightarrow{F_D} $.		•				
11. $\frac{\mathrm{d}\overrightarrow{v}}{\mathrm{d}X} = -\frac{g}{v_{-}^2}\overrightarrow{v} = -\frac{1}{D}\overrightarrow{v}.$		••				
12. [D] = L.				•		
13. $\overrightarrow{v}(X) = v_0 e^{-\frac{X}{D}} \overrightarrow{e_X}$. D : distance caractéristique telle que $v(D) = \frac{v_0}{e}$.		•	••			
14. Cf. Ann. 1.			•			
15. Soit par rapport à D soit avec l'énergie cinétique (questions suivantes)					•	
16. 6 plombs n°5, 60 plombs n°10.	•	•				
$d_u \approx \frac{D}{2} \ln \frac{m v_0^2}{2\mathcal{E}}$ avec $\mathcal{E} = 14 \mathrm{J}$, soit $\sim 37 \mathrm{m}$ pour des plombs n°1.						
17. Doc. 1 : portée utile au plus de 40 m.		•		•		
$d_u \approx \frac{D}{2} \ln \frac{m v_0^2}{2\mathcal{E}}$: d_u augmente avec m (on suppose $\frac{1}{2} m v_0^2 > \mathcal{E}$): il faut						
augmenter R si ρ diminue; m augmente si agglutination donc danger!						
18. \overrightarrow{P} et $\overrightarrow{F_D}$.		•				
19. $\overrightarrow{v_{\infty}} = -\sqrt{\frac{2mg}{\rho_a \pi R^2 C_D}} \overrightarrow{e_z}$		•			•	
20. $X_{M1} = 340 \mathrm{m}, X_{M5} = 270 \mathrm{m}, X_{M10} = 190 \mathrm{m}$, cohérent avec la « formule »	••			•		
du Doc. 1.						
EXERCICE 2 – Manège pendulaire						
1. Principe d'inertie et durée du mouvement $\ll 24 \mathrm{h}$.		•				••
2. $\overrightarrow{OM} = r\overrightarrow{e_r} + z\overrightarrow{e_z} = (L + d\sin\alpha)\overrightarrow{e_r} + (h - d\cos\alpha)\overrightarrow{e_z}$.			•			•
3. Trajectoire circulaire uniforme.			•		•	
$r = \operatorname{cste} = L + d \sin \alpha, \ \theta = \omega t \text{ et } z = \operatorname{cste} = h - d \cos \alpha.$						
4. $\overrightarrow{v} = r\omega \overrightarrow{e_{\theta}} = (L + d\sin\alpha)\omega \overrightarrow{e_{\theta}}$			•			••
$\overrightarrow{d} = -r\omega^2 \overrightarrow{e_r} = -(L + d\sin\alpha)\omega^2 \overrightarrow{e_r}$						
5. \overrightarrow{P} et \overrightarrow{T} + schéma. $\overrightarrow{P} = -mg\overrightarrow{e_z}$ et $\overrightarrow{T} = T(\cos\alpha\overrightarrow{e_z} - \sin\alpha\overrightarrow{e_r})$.			•		•	
6. $ \overrightarrow{T} = T = \frac{mg}{\cos \alpha}$			•			
7. $a(1+b\sin\alpha) = \tan\alpha$, avec $a = \frac{L\omega^2}{g}$ et $b = \frac{d}{L}$.		•				
8. Graphe avec α_1 et α_2 .					••	
9. Schéma + stabilité.		•			•	
10. $\omega = \sqrt{\frac{g \tan \alpha}{L + d \sin \alpha}} = 0.69 \text{rad} \cdot \text{s}^{-1} = 6.6 \text{tr/min}.$		•	•			
EXERCICE 3 – Partie immergée d'un iceberg						
1. $\frac{v}{V} = 10\%$: 90% de l'iceberg est immergé.	•	•	•	•	•	•
Présentation de la copie					••	
Total	APP	ANA	REA	VAL	сом	RCO
Nombre total de points	6	14	25	5	11	6
Nombre de points obtenus						
Commentaires:	$\eta =$	%;	$\tau =$	%;		/67

Annexe 1

Valeurs numériques pour les questions 8 et 14 de l'exercice 1

n° du plomb	1	5	10
rayon (mm)	2,0	1,5	0,875
$\mathbf{masse}\ m\ (\mathbf{g})$	0,38	0,16	0,031
portée X_M (km)	15	15	15
hauteur H_M (km)	3,7	3,7	3,7
$v_{\infty} (\mathbf{m} \cdot \mathbf{s}^{-1})$	33	29	22

n° du plomb	1	5	10
<i>D</i> (m)	110	86	50
v_0/v_{∞}	11	13	17
d (m)	15,5	23	27
$v_u \; (\mathbf{m} \cdot \mathbf{s}^{-1})$	270	240	170
\mathcal{E}_{c} (J)	13,5	4,6	$0,\!45$