

Ordinary least squares regression

Steven Kerr

- Let's say we have data consisting of n observations, y_i , x_i , $i = 1 \dots n$.
- Example:
 - y_i = height of individual i.
 - x_i = weight of individual i.
- We wish to model the relationship between height and weight.
- Ordinary least squares is just about the simplest modelling strategy there is.

- $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$.
- β_0 , β_1 are unknown parameters that we wish to estimate.
- ϵ_i is sometimes called the 'error'.
- Let $\hat{\beta}_0$, $\hat{\beta}_1$ be possible values for β_0 , β_1 . Then we can estimate values for y_i too,

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

 The difference between the estimated values and the predicted values is called the residual,

$$\hat{\epsilon}_i = y_i - \hat{y}_i$$
.

 Roughly speaking, we wish to minimise the residuals across all observations.

• Let's say we try to minimise the sum of the residuals,

$$\Sigma_{i}(y_{i} - \hat{y}_{i}) = (y_{1} - \hat{y}_{1}) + (y_{2} - \hat{y}_{2}) + \dots (y_{n} - \hat{y}_{n}).$$

- The problem is that we could have some predicted values that are too large, and others too small, and they 'cancel each other out'.
- For example, let's say
 - Observation 1: $y_1 = 1.85m$, $\hat{y}_1 = 1.80m$.
 - Observation 2: $y_2 = 1.70m$, $\hat{y}_2 = 1.75m$.
 - $(y_1 \hat{y}_1) + (y_2 \hat{y}_2) = 5 5 = 0.$

• Instead, we choose $\hat{\beta}_0$, $\hat{\beta}_1$ to minimise the sum of the square of the residuals

$$\Sigma_i (y_i - \hat{y}_i)^2 = (y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + \dots (y_n - \hat{y}_n)^2.$$

- Hence the name least squares.
- We don't need to limit ourselves to just one predictor, or linear functions of the predictors.
- E.g. Let $z_i = 1$ if individual i is female, and 0 if they are male. We could fit the model

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 z_i + \epsilon_i$$

or any other model we think is sensible.

The dot product

We often use a more compact notation.

• Let
$$\beta=\begin{pmatrix} \beta_0\\ \beta_1\\ \beta_2\\ \vdots\\ \beta_k \end{pmatrix}$$
 and $x_i=\begin{pmatrix} x_{i0}\\ x_{i1}\\ x_{i2}\\ \vdots\\ x_{ik} \end{pmatrix}$. These are called *vectors*.

· We can write the model in terms of the dot product,

$$y_i = \beta \cdot x_i + \epsilon_i = x_{i0}\beta_0 + x_{i1}\beta_1 + \dots x_{ik}\beta_k + \epsilon_i.$$

- It is possible to show that under some reasonable assumptions (beyond the scope of this course), when the sample is large the OLS estimator $\hat{\beta}$ converges in probability to β , and $\hat{\beta}$ is approximately normally distributed (central limit theorem).
- This means, roughly speaking, that as the dataset that we use to make our estimates gets bigger, our estimates get closer and closer to the 'true' values.
- Many models have theoretical results like this.
- In sparklyr, use the following command to fit a model using OLS:
 ml_linear_regression(data, formula)