EE 330 Homework 10

Fall 2018 Due Friday Nov 2

All problems are weighted equally. Characteristics for an SCR and for a Triac are appended at the end of this assignment. Use these characteristics when solving the problems involving Thyristors. Unless specified to the contrary, assume all n-channel MOS transistors have model parameters $\mu_n C_{OX} = 350 \mu A/V^2$, $V_{Tn} = 0.5 V$, and $\lambda = 0$, all p-channel transistors have model parameters $\mu_p C_{OX} = 70 \mu A/V^2$, $V_{Tp} = -0.5 V$, and $\lambda = 0$, and all JFET devices are from a process with $I_{DSSn0} = 100 \mu A$, $I_{DSSp0} = 30 \mu A$, $V_{Pp} = 1 V$, $V_{Pn} = 1 V$, and , $\lambda = 0$.

Problem 1 Consider the following circuit where $R_1=20K$. Size the device so that the amplifier has a voltage gain of -8 and a quiescent output voltage of 0V.

Problem 2 A circuit using an SCR that is rated at current levels of 10A is shown below. Relevant parameters from the datasheet for this device are appended at the end to this assignment. Assume the voltage V_{CC} is fixed at 80V and that the SCR is initially off.

- a) If V_{XX} is increased to 15V to turn on the SCR, what is the maximum value of R_{GG} that can be used if the SCR must turn on for 0C < T < 80C.
- b) What will be the static power dissipation in the Anode when it is ON?
- c) What will be the static power dissipation in the Gate if the gate signal V_{XX} remains at 15V and the value determined in part a) is used for R_{GG} ?

Problem 3 Assume the potentiometer in the following circuit has a full range value of $R=500\Omega$, that $R_L=20\Omega$ and $V_{AC}=80\sin(2\pi60t)$. Assume the device is operating at a temperature of 25C and that it is characterized by the parameters given at the end of this assignment.

- a) Determine $V_F(t)$ if $\theta=0.1$
- b) Determine the average power dissipation in the Triac for the value of θ given in part a)
- c) Which quadrant or quadrants are used to trigger the triac in this circuit?

Problem 4 Consider the following circuit. The waveforms V_{AC} is the 60Hz line voltage. Assume the SCR has a gate trigger voltage of 2Vand that the relationship between the gate current and the gate voltage of the SCR is as shown on the $I_G:V_G$ plot on the right. Size the resistor R_1 so that the SCR turns on at $T_S/8$, $T_S+T_S/8$, $2T_S+T_S/8$,.... as shown below for two periods of the V_{LOAD} waveform. The time T_S is the period of the 60 Hz AC line voltage.

Problem 5 Assume the JFET in the following circuit has parameters I_{DSS} =100uA and V_P =-1V. Determine the output voltage.

Problem 6 Assume the JFET in the following circuit has parameters I_{DSS} =100uA and V_P =-1V.

- a) If the input voltage is a 1KH square wave that varies between +20mV and -20mV, obtain the output waveform
- b) What is the maximum value of V_{IN} that can be applied to this circuit if the JFET is to operate normally (that is, the pn-junctions do not conduct significant current)

Problem 7 Assume the JFET in the following circuit has parameters I_{DSS} =100uA and V_{P} =-1V and the MOSFET is in a process that was characterized in the introduction to this HW assignment. If the length of the MOSFET is 12u, determine the width of the MOSFET so that the output voltage of the following circuit is 3V when V_{IN} =-0.5V.

Problem 8 Assume the drain current of a p-channel JFET is given by the expression

$$I_{D} = \begin{cases} 0 & V_{GS} > V_{P} \\ -\frac{2I_{DSSp0}W}{V_{P}^{2}L} \left(V_{GS} - V_{P} - \frac{V_{DS}}{2}\right)V_{DS} & -0.3 < V_{GS} < V_{P} \\ -\frac{I_{DSSp0}W}{L} \left(1 - \frac{V_{GS}}{V_{P}}\right)^{2} \left(1 - \lambda V_{DS}\right) & -0.3 < V_{GS} < V_{P} \end{cases} \qquad V_{DS} < V_{GS} - V_{P}$$

where the parameter I_{DDSp0} is related to the parameter I_{DDSp} that is often given in the model for a JFET by the expression

$$I_{DSSp} = \frac{W}{L} I_{DSSp0}$$

Develop a small-signal model of the JFET when operating in the saturation region.

Problem 9 Using the small-signal model of the JFET developed in the previous problem and the model parameters given at the top of this assignment, determine the operating point and small-signal voltage gain of the following circuit if $W=10\mu m$ and $L=15\mu m$.

Problem 10 Assume two amplifiers are cascaded. The first amplifier has small-signal amplifier parameters of A_{V1} =-10, R_{IN1} =4K and R_{o1} =500Ω. The second amplifier has small-signal amplifier parameters of A_{V2} =-20, R_{IN2} =20K, and R_{o2} =5K. Assume a capacitor coupled load of 500 Ω is placed on the output and the input is driven by a voltage source with an output impedance of 2000Ω.

- a) Determine the voltage gain from the input to the output.
- b) Determine the voltage gain from the input to the output if the order of the two amplifiers in the cascade is reversed.

Problem 11 Consider the two amplifiers in the previous problem. Assume that they are connected in cascade as shown below,

- a) Determine the model for the cascade in terms of standard amplifier parameters A_V , A_{VR} , R_{IN} and R_O .
- b) Using your new model, verify that the results you obtain are the same as obtained in part a) of the previous problem.

Problem 12 Design a light dimmer circuit that will control a 100W 120V_{AC} incandescent lamp where the lamp is completely on when a dc control voltage is 5V, completely off when the dc control voltage is 0V, and that continuously varies in intensity from completely off to completely on as the control voltage is varied between 0V and 5V. You may assume Thyristors with the specifications given below are available for your design.

SCR Specifications:

IDRM and IRRM — Peak off-state current at VDRM and VRRM

I_{GT} — DC gate trigger current V_D = 6 V dc; R_L = 100 Ω

I_{GM} — Peak gate current

I_H — DC holding current; initial on-state current = 20 mA

IT — Maximum on-state current

V_{DRM} and V_{RRM} — Repetitive peak off-state forward and reverse voltage

V_{GRM} — Peak reverse gate voltage

 V_{GT} — DC gate trigger voltage; V_D = 6 V dc; R_L = 100 Ω

V_{TM} — Peak on-state voltage

Ι _Τ	-	V _{DRM} & V _{RRM}	I _{GT}	I _{DRM} & I _{RRM}		V _{TM}
Am	ps			μAr	nps	
I _{T(RMS)}	I _{T(AV)}	Volts	μAmps	T _C = 25 °C	T _C = 110 °C	Volts
MAX	MAX	MIN	MAX	MAX	MAX	MAX
10	6.4	400	200	5	250	1.6

	V _{GT}		lн	I _{GM}	V _{GRM}	P _{GM}
-	Volts					
T _C = -40 °C	T _C = 25 °C	T _C = 110 °C	mAmps	Amps	Volts	Watts
	MAX	,	MAX		MIN	
1	0.8	0.25	6	1	6	1

TRIAC Specifications

V _{DRM}	I _{GT}				I _{DRM}			
I	mAmps				mAmps			
Volts	QI	QII	QIII	QIV	QIV	T _C = 25 °C	T _C = 100 °C	T _C = 125 °C
MIN		MA	٩X		TYP	MAX		
400	50	50	50			0.05	0.5	2

	V _{TM}	V _{GT}	I _H	I _{GTM}	P _{GM}	P _{G(AV)}
	Volts	Volts				
	T _C = 25 °C	T _C = 25 °C	mAmps	Amps	Watts	Watts
	1.6	2.5	70	2	20	0.5

Bipolar Process Characteristics

Parameter	Typical	$Tolerance^b$	Units			
Resistance and resistivity						
Substrate resistivity	16	±25%	$\Omega \cdot cm$			
n ⁺ buried collector diffusion	17	±35%	Ω / \square			
Epitaxial layer	1.6	±20%	Ω - cm			
p-base diffusion	160	±20%	$\Omega \setminus \square$			
p-resistive diffusion (optional)	1500	$\pm 40\%$	Ω / \square			
n ⁺ emitter diffusion	4.5	±30%	Ω / \square			
Metal	0.003		$\Omega \setminus \square$			
Contacts $(3\mu \times 3\mu)$	<4		Ω			
Metal-n+ emitter (contact plus	<1		Ω			
series resistance to BE junction)						
Metal-p-base ^c (contact plus	70		Ω			
series resistance)	100					
Metal-Epitaxial ^d (contact plus series resistance to BC junction)	120		Ω			
Breakdown voltages, leakage c	urrents, mig	ration currents, an	d operating conditions			
Reverse breakdown voltages						
n+ emitter to p-base	6.9	±50 mV	V			
p-base to epitaxial	70	±10	V			
Epitaxial to substrate	>80		V			
Maximum operating voltage	40		V			
Substrate leakage current	0.16		fA/μ^2			
Maximum metal current density	0.8		mA/μ width			
Maximum device operating	125		°C			
temperature (design)						
Maximum device operating	225		°C			
temperature (physical)						
	Capaci	tances				
Metal to epitaxial	0.022	±30%	fF/μ^2			
Metal to p-base diffusion	0.045	±30%	fF/μ^2			
Metal to n+ emitter diffusion	0.078	±30%	fF/μ^2			
n ⁺ buried collector to substrate (junction, bottom)	0.062	±30%	fF/μ^2			
Epitaxial to substrate (junction, bottom)	0.062	±30%	fF/μ^2			
Epitaxial to substrate (junction, sidewall)	1.6	±30%	fF/ μ perimeter			
Epitaxial to p-base diffusion (junction, bottom)	0.14	±30%	${ m fF}/\mu^2$			
Epitaxial to p-base diffusion (junction, sidewall)	7.9	±30%	fF/ μ perimeter			
p-base diffusion to n ⁺ emitter diffusion (junction, bottom)	0.78	±30%	fF/μ^2			
p-base diffusion to n + emitter diffusion (junction, sidewall)	3.1	±30%	fF/μ perimeter			

·	Dimension
1. n ⁺ buried collector diffusion (Yellow, Mask #1)	-
1.1 Width	3λ
1.2 Overlap of p-base diffusion (for vertical npn)	2λ
1.3 Overlap of n ⁺ emitter diffusion (for collector contact of	
vertical npn)	2λ
1.4 Overlap of p-base diffusion (for collector and emitter of late	
1.5 Overlap of n ⁺ emitter diffusion (for base contact of lateral p	pnp) 2λ
Isolation diffusion (Orange, Mask #2)	
2.1 Width	4λ
2.2 Spacing	24λ
2.3 Distance to n+ buried collector	14λ
p-base diffusion (Brown, Mask #3)	
3.1 Width	3λ -
3.2 Spacing	5λ
3.3 Distance to isolation diffusion	14λ
3.4 Width (resistor)	3λ
3.5 Spacing (as resistor)	3λ .
n+ emitter diffusion (Green, Mask #4)	
4.1 Width	3λ
4.2 Spacing	3λ
4.3 p-base diffusion overlap of n+ emitter diffusion (emitter in	base) 2λ
4.4 Spacing to isolation diffusion (for collector contact)	12λ
4.5 Spacing to p-base diffusion (for base contact of lateral pnp)	- 6λ
4.6 Spacing to p-base diffusion (for collector contact of vertical	npn) 6λ
	-
Contact (Black, Mask #5)	11 × 11
5.1 Size (exactly)	$4\lambda \times 4\lambda$ 2λ
5.2 Spacing	
5.3 Metal overlap of contact	λ
5.4 n ⁺ emitter diffusion overlap of contact	2λ
5.5 p-base diffusion overlap of contact	2λ
5.6 p-base to n+ emitter	3λ
5.7 Spacing to isolation diffusion	4λ

Metalization (Blue, Mask #6)	
6.1 Width	2λ
6.2 Spacing	2λ
6.3 Bonding pad size	$100 \ \mu \times 100 \ \mu$
6.4 Probe pad size	$75 \mu \times 75 \mu$
6.5 Bonding pad separation	50 μ
6.6 Bonding to probe pad	30 µ
6.7 Probe pad separation	30 μ
6.8 Pad to circuitry	40 μ
6.9 Maximum current density	$0.8 \mathrm{mA}/\mu \mathrm{widtl}$
Passivation (Purple, Mask #7)	
7.1 Minimum bonding pad opening	$90 \ \mu \times 90 \ \mu$
7.2 Minimum probe pad opening	$65 \mu \times 65 \mu$
	6.1 Width 6.2 Spacing 6.3 Bonding pad size 6.4 Probe pad size 6.5 Bonding pad separation 6.6 Bonding to probe pad 6.7 Probe pad separation 6.8 Pad to circuitry 6.9 Maximum current density Passivation (Purple, Mask #7) 7.1 Minimum bonding pad opening

CMOS Process Characteristics

Process parameters for a typical^a p-well CMOS process

	Typical	Tolerance b	Units
Square law m	odel parameters		
V _{T0} (threshold voltage)			
n-channel (V _{TN0})	0.75	± 0.25	v
p-channel (V _{TP0})	-0.75	± 0.25	v
K'(conduction factor)			
n-channel	24	± 6	$\mu A/V^2$
p-channel	8	± 1.5	μΑ/V ² μΑ/V ²
y(body effect)			
n-channel	0.8	± 0.4	$V^{1/2}$
p-channel	0.4	± 0.2	$V^{1/2}$
λ(channel length modulation)			
n-channel	0.01	± 50%	V^{-1}
p-channel	0.02	± 50%	V^{-1}
ϕ (surface potential)			
n- and p-channel	0.6	± 0.1	v
Process	parameters		
μ (channel mobility)			
n-channel	710		cm ² /(V · s
p-channel	230		cm ² /(V·s
Do	ping ^c		
n ⁺ active	5	±4	10 ¹⁸ /cm ³
p ⁺ active	5	±4	10 ¹⁷ /cm ³
p-well	5	±2	10 ¹⁶ /cm ³
n-substrate	1	±0.1	10 ¹⁶ /cm ³

Physical feature sizes

Tox (gate oxide thickness)	500	± 100	Å
Total lateral diffusion			
n-channel	0.45	± 0.15	μ
p-channel	0.6	± 0.3	μ
Diffusion depth			
n ⁺ diffusion	0.45	± 0.15	μ
p ⁺ diffusion	0.6	± 0.3	μ
p-well	3.0	± 30%	μ
Insulating layer se	paration		
POLY I to POLY II	800	± 100	Å
Metal 1 to Substrate	1.55	± 0.15	μ
Metal 1 to Diffusion	0.925	± 0.25	μ
POLY I to Substrate (POLY I on field oxide)	0.75	± 0.1	μ
Metal 1 to POLY I	0.87	± 0.7	μ
Metal 2 to Substrate	2.7	± 0.25	μ
Metal 2 to Metal I	1.2	± 0.1	μ
Metal 2 to POLY I	2.0	± 0.07	μ
Capacitano	es d		
Cox (gate oxide capacitance, n- and p-channel)	0.7	±0.1	fF/μ²
POLY I to substrate, poly in field	0.045	±0.01	fF/μ^2
POLY II to substrate, poly in field	0.045	±0.01	fF/μ^2
Metal 1 to substrate, metal in field	0.025	±0.005	fF/μ^2
Metal 2 to substrate, metal in field	0.014	±0.002	fF/μ^2
POLY I to POLY II	0.44	±0.05	fF/μ^2
POLY I to Metal 1	0.04	±0.01	fF/μ^2
POLY I to Metal 2	0.039	±0.003	fF/μ^2
Metal 1 to Metal 2	0.035	±0.01	fF/μ^2
Metal 1 to diffusion	0.04	±0.01	fF/μ^2
Metal 2 to diffusion	0.02	±0.005	fF/μ^2
n+ diffusion to p-well (junction, bottom)	0.33	±0.17	fF/μ^2
n+ diffusion sidewall (junction, sidewall)	2.6	±0.6	fF/μ
p ⁺ diffusion to substrate (junction, bottom)	0.38	±0.12	fF/μ^2
p+ diffusion sidewall (junction, sidewall)	3.5	±2.0	fF/μ
p-well to substrate (junction, bottom)	0.2	±0.1	fF/μ^2
p-well sidewall (junction, sidewall)	1.6	±1.0	fF/μ
Resistance	es		
Substrate	25	±20%	Ω-cm
p-well	5000	±2500	Ω/\square
n ⁺ diffusion	35	±25	Ω/□
p ⁺ diffusion	80	±55	Ω/□
Metal	0.003	±25%	Ω/\Box
Poly	25	±25%	Ω / \square
Metal 1-Metal 2 via (3 $\mu \times 3 \mu$ contact)	<0.1		Ω
Metal 1 contact to POLY I (3 $\mu \times 3 \mu$ contact)	<10		Ω
Metal 1 contact to n ⁺ or p ⁺ diffusion	<5		0
$(3 \mu \times 3 \mu \text{ contact})$	< 3		Ω

Dimensions

	Microns	Scalable
l. p-well (CIF Brown, Mask #1a)		
1.1 Width	5	4λ
1.2 Spacing (different potential)	15	10λ
1.3 Spacing (same potential)	9	6λ
2. Active (CIF Green, Mask #2)		
2.1 Width	4	2λ
2.2 Spacing	4	2λ
2.3 p+ active in n-subs to p-well edge	8	6λ
2.4 n+ active in n-subs to p-well edge	7	5λ
2.5 n ⁺ active in p-well to p-well edge	4	2λ
2.6 p ⁺ active in p-well to p-well edge	1	λ
3. Poly (POLY I) (CIF Red, Mask #3)		
3.1 Width	3	2λ
3.2 Spacing	3	2λ
3.3 Field poly to active	2	λ
3.4 Poly overlap of active	3	2λ
3.5 Active overlap of poly	4	2λ
 p⁺ select (CIF Orange, Mask #4) 		
4.1 Overlap of active	2	λ
4.2 Space to n ⁺ active	2	λ
4.3 Overlap of channel ^b	3.3	2λ
4.4 Space to channel ^b	3.5	2λ
4.5 Space to p+ select	3	2λ .
4.6 Width	3	2λ

7.	Via e	(CIF Purple Hatched, Mask #C1)		
	7.1	Size, exactly	3×3	$2\lambda \times 2\lambda$
	7.2	Separation	3	2λ
	7.3	Space to poly edge	4	2λ
	7.4	Space to contact	3	2λ
	7.5	Overlap by metal 1	2	λ
	7.6	Overlap by metal 2	2	λ
	7.7	Space to active edge	3	2λ
8.	Meta	1 2 (CIF Orange Hatched, Mask #C2)		
	8.1	Width	5	3λ
	8.2	Spacing	5	3λ
	8.3	Bonding pad size	100×100	$100 \ \mu \times 100 \ \mu$
	8.4	Probe pad size	75×75	$75 \mu \times 75 \mu$
	8.5	Bonding pad separation	50	50 μ
	8.6	Bonding to probe pad	30	30 μ
	8.7	Probe pad separation	30	30 μ
	8.8	Pad to circuitry	40	40 μ
	8.9	Maximum current density	$0.8 \text{ mA/}\mu$	$0.8~\mathrm{mA}/\mu$
9.	Passi	vation (CIF Purple Dashed, Mask #8)		
	9.1	Bonding pad opening	90×90	$90 \ \mu \times 90 \ \mu$
	9.2	Probe pad opening	65 × 65	$65 \mu \times 65 \mu$
10.	Meta	1 2 crossing coincident metal 1 and poly	3	
	10.1		,	
		when crossing metal 2	2	λ
	10.2	Rule domain	2	λ
11.	Elect	rode (POLY II)h (CIF Purple Hatched, M	fask #A1)	
	11.1		3	2λ
	11.2		3	2λ
	11.3		2	λ
	11.4	Space to contact	3	2λ