## MATH 5531 Statistical Methods I HW 5

### Russell Land

#### November 12, 2018

Table 1 shows plasma inorganic phosphate levels (mg/dl) one hour after a standard glucose tolerance test for obese subjects, with or without hyperinsulinemia, and controls (data from Jones, 2017).

- (a) Perform a one-factor analysis of variance to test the hypotheses that there are no mean differences among the three groups. What conclusions can you draw?
- (b) Obtain a 95% confidence interval for the differences in means between the two obese groups.

| r                      |                            | - · · · · <b>J</b> |
|------------------------|----------------------------|--------------------|
| Hyperinsulinemic Obese | Non-hyperinsulinemic Obese | Control            |
| 2.3                    | 3.0                        | 3.0                |
| 4.1                    | 4.1                        | 2.6                |
| 4.2                    | 3.9                        | 3.1                |
| 4.6                    | 3.3                        | 2.1                |
| 3.8                    | 3.3                        | 2.8                |
| 5.2                    | 3.9                        | 3.4                |
| 3.1                    |                            | 2.9                |
| 3.7                    |                            | 2.6                |
| 3.8                    |                            | 3.1                |
|                        |                            | 3.2                |

Table 1: Plasma Phosphate Levels in Obese and Control Subjects

- (c) Apply Fisher's LSD and Tukey multiple comparison procedures to determine where the differences lie (if you reject the null hypothesis).
- (d) Using an appropriate model examine the standardized residuals for all the observations to look for any systematic effects and to check the Normality assumptions.

To answer part (a)—(d) we will be using the SAS Studio Software, University Edition. In this document we will implement a LATEX package named StatRep. This will allow us to display our SAS code in our TEX document neatly, and will also allow us to compile our SAS results straight into the LATEX document. Once we present our data below, I will follow up with an analysis of the data. We will begin by creating a data set in the program, and then run the actually procedures for each test. Below shows the data set PhosphateLevels being created:

```
title 'Inorganic Phosphate Levels';
data PhosphateLevels;
input IDNumber Levels;
datalines;
1 2.3
1 4.1
1 4.2
```

```
... more data lines ...
3 2.6
3 3.1
3 3.2;
/* IDNumber 1, 2, and 3 correspond to the following:
1 - Hyperinsulinemic Obese
2 - Non-hyperinsulinemic Obese
3 - Control */
run;
```

Now that our data set is stored as PhosphateLevels, we can run the appropriate procedures, including means, anova, and reg. We will use the means procedure to analyze the means and variance to determine an appropriate test. Since we will be using an anova procedure we have to check if our underlying assumptions hold. That is, we must make sure the samples have a normal distribution, have equal variance, and are independent random samples. Below is the SAS code for our analyses:

```
proc means;
by IDNumber;

proc anova;
class IDNumber;
model Levels = IDNumber;
means IDNumber/ lsd tukey;

proc reg;
id IDNumber;
model Levels=IDNumber/ cli;

proc print;
run;
```

Figure 1: Statistics for ANOVA, LSD, Tukey, and Residual Analysis

# Inorganic Phosphate Levels The MEANS Procedure

#### IDNumber=1

| Analysis Variable : Levels |           |           |           |           |  |
|----------------------------|-----------|-----------|-----------|-----------|--|
| N                          | Mean      | Std Dev   | Minimum   | Maximum   |  |
| 11                         | 3.9454545 | 0.7776421 | 2.3000000 | 5.2000000 |  |

#### IDNumber=2

|   | Analysis Variable : Levels |         |        |           |           |  |
|---|----------------------------|---------|--------|-----------|-----------|--|
| N | Ме                         | an S    | td Dev | Minimum   | Maximum   |  |
| 8 | 3.43750                    | 000 0.4 | 627171 | 2.9000000 | 4.1000000 |  |

#### IDNumber=3

|                              | Analysis Variable : Levels |           |           |           |  |  |
|------------------------------|----------------------------|-----------|-----------|-----------|--|--|
| N Mean Std Dev Minimum Maxim |                            |           |           | Maximum   |  |  |
| 12                           | 2.7833333                  | 0.4086193 | 2.1000000 | 3.4000000 |  |  |

Figure 1: continued

### **Inorganic Phosphate Levels**

### The ANOVA Procedure

| Class Level Information |   |     |  |  |
|-------------------------|---|-----|--|--|
| Class Levels Valu       |   |     |  |  |
| IDNumber                | 3 | 123 |  |  |

| Number of Observations Read | 31 |
|-----------------------------|----|
| Number of Observations Used | 31 |

# Inorganic Phosphate Levels The ANOVA Procedure

### Dependent Variable: Levels

| Source          | DF | Sum of Squares | Mean Square | F Value | Pr > F |
|-----------------|----|----------------|-------------|---------|--------|
| Model           | 2  | 7.80827835     | 3.90413917  | 11.65   | 0.0002 |
| Error           | 28 | 9.38268939     | 0.33509605  |         |        |
| Corrected Total | 30 | 17.19096774    |             |         |        |

| R-Square | Coeff Var | Root MSE | Levels Mean |
|----------|-----------|----------|-------------|
| 0.454208 | 17.20529  | 0.578875 | 3.364516    |

| Source   | DF | Anova SS   | Mean Square | F Value | Pr > F |
|----------|----|------------|-------------|---------|--------|
| IDNumber | 2  | 7.80827835 | 3.90413917  | 11.65   | 0.0002 |

# Inorganic Phosphate Levels The ANOVA Procedure

### t Tests (LSD) for Levels

| note | This test controls the Type I comparisonwise error rate, not the experimentwise error rate. |
|------|---------------------------------------------------------------------------------------------|
|      |                                                                                             |

| Alpha                    | 0.05     |
|--------------------------|----------|
| Error Degrees of Freedom | 28       |
| Error Mean Square        | 0.335096 |
| Critical Value of t      | 2.04841  |

| Comparisons significant at the 0.05 level are indicated by ***. |                                                |         |         |     |  |
|-----------------------------------------------------------------|------------------------------------------------|---------|---------|-----|--|
| IDNumber Comparison                                             | Difference Between Means 95% Confidence Limits |         |         |     |  |
| 1 - 2                                                           | 0.5080                                         | -0.0430 | 1.0589  |     |  |
| 1 - 3                                                           | 1.1621                                         | 0.6672  | 1.6571  | *** |  |
| 2 - 1                                                           | -0.5080                                        | -1.0589 | 0.0430  |     |  |
| 2 - 3                                                           | 0.6542                                         | 0.1129  | 1.1954  | *** |  |
| 3 - 1                                                           | -1.1621                                        | -1.6571 | -0.6672 | *** |  |
| 3 - 2                                                           | -0.6542                                        | -1.1954 | -0.1129 | *** |  |

## Figure 1: continued

# Inorganic Phosphate Levels The ANOVA Procedure

### Tukey's Studentized Range (HSD) Test for Levels

| note | This test controls the Type I experimentwise error rate. |
|------|----------------------------------------------------------|
|      |                                                          |

| Alpha                               | 0.05     |
|-------------------------------------|----------|
| Error Degrees of Freedom            | 28       |
| Error Mean Square                   | 0.335096 |
| Critical Value of Studentized Range | 3.49918  |

| Comparisons significant at the 0.05 level are indicated by ***. |                          |                                    |         |     |  |  |
|-----------------------------------------------------------------|--------------------------|------------------------------------|---------|-----|--|--|
| IDNumber Comparison                                             | Difference Between Means | Simultaneous 95% Confidence Limits |         |     |  |  |
| 1 - 2                                                           | 0.5080                   | -0.1576                            | 1.1735  |     |  |  |
| 1 - 3                                                           | 1.1621                   | 0.5642                             | 1.7600  | *** |  |  |
| 2 - 1                                                           | -0.5080                  | -1.1735                            | 0.1576  |     |  |  |
| 2 - 3                                                           | 0.6542                   | 0.0004                             | 1.3079  | *** |  |  |
| 3 - 1                                                           | -1.1621                  | -1.7600                            | -0.5642 | *** |  |  |
| 3 - 2                                                           | -0.6542                  | -1.3079                            | -0.0004 | *** |  |  |

### **Inorganic Phosphate Levels**

### The REG Procedure

Model: MODEL1

**Dependent Variable: Levels** 

| Number of Observations Read | 31 |
|-----------------------------|----|
| Number of Observations Used | 31 |

| Analysis of Variance |    |                |             |         |        |
|----------------------|----|----------------|-------------|---------|--------|
| Source               | DF | Sum of Squares | Mean Square | F Value | Pr > F |
| Model                | 1  | 7.77657        | 7.77657     | 23.95   | <.0001 |
| Error                | 29 | 9.41440        | 0.32463     |         |        |
| Corrected Total      | 30 | 17.19097       |             |         |        |

| Root MSE       | 0.56977  | R-Square | 0.4524 |
|----------------|----------|----------|--------|
| Dependent Mean | 3.36452  | Adj R-Sq | 0.4335 |
| Coeff Var      | 16.93459 |          |        |

| Parameter Estimates                                        |   |          |         |         |        |
|------------------------------------------------------------|---|----------|---------|---------|--------|
| Variable DF Parameter Estimate Standard Error t Value Pr > |   |          |         | Pr >  t |        |
| Intercept                                                  | 1 | 4.54705  | 0.26239 | 17.33   | <.0001 |
| IDNumber                                                   | 1 | -0.58188 | 0.11889 | -4.89   | <.0001 |

Figure 1: continued

## **Inorganic Phosphate Levels**

## The REG Procedure

Model: MODEL1
Dependent Variable: Levels

|     | Output Statistics |                    |                 |                        |        |         |           |
|-----|-------------------|--------------------|-----------------|------------------------|--------|---------|-----------|
| Obs | IDNumber          | Dependent Variable | Predicted Value | Std Error Mean Predict | 95% CL | Predict | Residual  |
| 1   | 1                 | 2.3                | 3.9652          | 0.1598                 | 2.7549 | 5.1754  | -1.6652   |
| 2   | 1                 | 4.1                | 3.9652          | 0.1598                 | 2.7549 | 5.1754  | 0.1348    |
| 3   | 1                 | 4.2                | 3.9652          | 0.1598                 | 2.7549 | 5.1754  | 0.2348    |
| 4   | 1                 | 4.0                | 3.9652          | 0.1598                 | 2.7549 | 5.1754  | 0.0348    |
| 5   | 1                 | 4.6                | 3.9652          | 0.1598                 | 2.7549 | 5.1754  | 0.6348    |
| 6   | 1                 | 4.6                | 3.9652          | 0.1598                 | 2.7549 | 5.1754  | 0.6348    |
| 7   | 1                 | 3.8                | 3.9652          | 0.1598                 | 2.7549 | 5.1754  | -0.1652   |
| 8   | 1                 | 5.2                | 3.9652          | 0.1598                 | 2.7549 | 5.1754  | 1.2348    |
| 9   | 1                 | 3.1                | 3.9652          | 0.1598                 | 2.7549 | 5.1754  | -0.8652   |
| 10  | 1                 | 3.7                | 3.9652          | 0.1598                 | 2.7549 | 5.1754  | -0.2652   |
| 11  | 1                 | 3.8                | 3.9652          | 0.1598                 | 2.7549 | 5.1754  | -0.1652   |
| 12  | 2                 | 3.0                | 3.3833          | 0.1024                 | 2.1993 | 4.5673  | -0.3833   |
| 13  | 2                 | 4.1                | 3.3833          | 0.1024                 | 2.1993 | 4.5673  | 0.7167    |
| 14  | 2                 | 3.9                | 3.3833          | 0.1024                 | 2.1993 | 4.5673  | 0.5167    |
| 15  | 2                 | 3.1                | 3.3833          | 0.1024                 | 2.1993 | 4.5673  | -0.2833   |
| 16  | 2                 | 3.3                | 3.3833          | 0.1024                 | 2.1993 | 4.5673  | -0.0833   |
| 17  | 2                 | 2.9                | 3.3833          | 0.1024                 | 2.1993 | 4.5673  | -0.4833   |
| 18  | 2                 | 3.3                | 3.3833          | 0.1024                 | 2.1993 | 4.5673  | -0.0833   |
| 19  | 2                 | 3.9                | 3.3833          | 0.1024                 | 2.1993 | 4.5673  | 0.5167    |
| 20  | 3                 | 3.0                | 2.8014          | 0.1540                 | 1.5943 | 4.0085  | 0.1986    |
| 21  | 3                 | 2.6                | 2.8014          | 0.1540                 | 1.5943 | 4.0085  | -0.2014   |
| 22  | 3                 | 3.1                | 2.8014          | 0.1540                 | 1.5943 | 4.0085  | 0.2986    |
| 23  | 3                 | 2.2                | 2.8014          | 0.1540                 | 1.5943 | 4.0085  | -0.6014   |
| 24  | 3                 | 2.1                | 2.8014          | 0.1540                 | 1.5943 | 4.0085  | -0.7014   |
| 25  | 3                 | 2.4                | 2.8014          | 0.1540                 | 1.5943 | 4.0085  | -0.4014   |
| 26  | 3                 | 2.8                | 2.8014          | 0.1540                 | 1.5943 | 4.0085  | -0.001404 |
| 27  | 3                 | 3.4                | 2.8014          | 0.1540                 | 1.5943 | 4.0085  | 0.5986    |
| 28  | 3                 | 2.9                | 2.8014          | 0.1540                 | 1.5943 | 4.0085  | 0.0986    |
| 29  | 3                 | 2.6                | 2.8014          | 0.1540                 | 1.5943 | 4.0085  | -0.2014   |
| 30  | 3                 | 3.1                | 2.8014          | 0.1540                 | 1.5943 | 4.0085  | 0.2986    |
| 31  | 3                 | 3.2                | 2.8014          | 0.1540                 | 1.5943 | 4.0085  | 0.3986    |

Figure 1: continued

| Sum of Residuals              | 0        |
|-------------------------------|----------|
| Sum of Squared Residuals      | 9.41440  |
| Predicted Residual SS (PRESS) | 10.89647 |

## **Inorganic Phosphate Levels**

| Obs | IDNumber | Levels |
|-----|----------|--------|
| 1   | 1        | 2.3    |
| 2   | 1        | 4.1    |
| 3   | 1        | 4.2    |
| 4   | 1        | 4.0    |
| 5   | 1        | 4.6    |
| 6   | 1        | 4.6    |
| 7   | 1        | 3.8    |
| 8   | 1        | 5.2    |
| 9   | 1        | 3.1    |
| 10  | 1        | 3.7    |
| 11  | 1        | 3.8    |
| 12  | 2        | 3.0    |
| 13  | 2        | 4.1    |
| 14  | 2        | 3.9    |
| 15  | 2        | 3.1    |
| 16  | 2        | 3.3    |
| 17  | 2        | 2.9    |
| 18  | 2        | 3.3    |
| 19  | 2        | 3.9    |
| 20  | 3        | 3.0    |
| 21  | 3        | 2.6    |
| 22  | 3        | 3.1    |
| 23  | 3        | 2.2    |
| 24  | 3        | 2.1    |
| 25  | 3        | 2.4    |
| 26  | 3        | 2.8    |
| 27  | 3        | 3.4    |
| 28  | 3        | 2.9    |
| 29  | 3        | 2.6    |
| 30  | 3        | 3.1    |
| 31  | 3        | 3.2    |

Figure 2: Comparative Box Plots for Normality





Figure 2: continued



Figure 2: continued





(a) We are trying to test the hypothesis that there are no mean differences among the three groups, Hyperinsulinemic Obese, Non-hyperinsulinemic Obese, and Control. We can define our hypotheses:

$$H_0: \mu_1 = \mu_2 = \mu_3$$

 $H_A$ : At least one of the three sample means is different from the rest

From our SAS results, we can see that the anova procedure ran the test for us and returned a final *p*-value of 0.0002. Hence, we have significant evidence to reject the null hypothesis. Thus, there is significant evidence that at least one of the sample means differs from the rest.

(b) For our model it is best to use Tukey's simultaneous confidence intervals. Since we have different sample sizes we had to adjust our value of W to:

$$W^* = \frac{q_{\alpha}(t, v)}{\sqrt{2}} \sqrt{s_w^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

However, using the SAS software we did not have to do any computations ourselves. We obtain a 95% confidence interval for the difference in means between the two obese groups to be (-0.1576, 1.1735). Again, this was computed using the adjusted W value and the formula for the simultaneous confidence interval:

$$(\bar{y}_i - \bar{y}_j) \pm W^*$$

(c) From the data we obtained from running the lsd and tukey under the means options we were able to conclude the following results:

Fisher's Confidence Intervals

| Difference in Means | 95% C.I. for Difference | Conclusion      |
|---------------------|-------------------------|-----------------|
| $\mu_2 - \mu_1$     | (-1.0589,0.0430)        | Not Significant |
| $\mu_3 - \mu_1$     | (-1.6571,-0.6672)       | Significant     |
| $\mu_3 - \mu_2$     | (-1.1954,-0.1129)       | Significant     |

Tukey Confidence Intervals

| Difference in Means | 95% C.I. for Difference | Conclusion      |
|---------------------|-------------------------|-----------------|
| $\mu_2 - \mu_1$     | (-1.1735,0.1576)        | Not Significant |
| $\mu_3 - \mu_1$     | (-1.7600,-0.5642)       | Significant     |
| $\mu_3 - \mu_2$     | (-1.3079,-0.0004)       | Significant     |

From these results we can see that between both the lsd and tukey results the difference between  $\mu_2$  and  $\mu_1$  are not significant enough to reject the null, because 0 is contained in the intervals. However, pairwise with the rest of the results, the data is significant enough to reject the null because 0 is not contained in the intervals of the other mean differences. Thus, we can conclude that when using Fisher's LSD and Tukey's LSD test, the majority of difference lies when means are pairwise with the control group, or  $\mu_3$ . This leads us to believe that  $\mu_3$  may have a significant difference from the rest.

(d) To check our normality assumptions we can always analyze the box-plots that were printed when we ran our anova test. However, we can also check using the standardized residuals. These can be computed with the following formula:

$$e_{ij} = y_{ij} - \bar{y}_i$$

After applying this formula we obtain the following results for our data set:

Residuals for Phosphate Levels

| r                      |                            |         |
|------------------------|----------------------------|---------|
| Hyperinsulinemic Obese | Non-hyperinsulinemic Obese | Control |
| -1.6455                | -0.4375                    | 0.2167  |
| 0.1545                 | 0.6625                     | -0.1833 |
| 0.2545                 | 0.4625                     | 0.3167  |
| 0.0545                 | -0.3375                    | -0.5833 |
| 0.6545                 | -0.1375                    | -0.6833 |
| 0.6545                 | -0.5375                    | -0.3833 |
| -0.1455                | -0.1375                    | 0.0167  |
| 1.2545                 | 0.4625                     | 0.6167  |
| -0.8455                |                            | 0.1167  |
| -0.2455                |                            | -0.1833 |
| -0.1455                |                            | 0.3167  |
|                        |                            | 0.4167  |



From the resulting table and graph we can conclude that our data is approximately normal. The median is just about the mean and the box-plot has a considerable symmetric shape. Thus, our normality assumptions were correct for the procedures we ran. Furthermore, along with the other SAS procedures we ran, we can add in the proc reg procedure with the cli option. This will give us similar results as above, but will support our argument more. The corresponding tables and graph will be shown with the rest of the SAS results above.