الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2015

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 سا و30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (04,5 نقطة)

في الفضاء المنسوب إلى المعلم المتعامد والمتجانس $(O; \vec{i}, \vec{j}, \vec{k})$ ؛

. $D\left(1;1;4
ight)$ و $C\left(3;3;1
ight)$ ، $B\left(1;2;2
ight)$ ، $A\left(2;1;0
ight)$ و نعتبر النقط

. تحقّق أنّ النقط A ، B و C تعيّن مستويا وأنّ z-y+z-1=0 معادلة ديكارتية له.

2) بيّن أنّ المثلث ABC متقايس الأضلاع ، ثمّ تحقّق أنّ مساحته هي $\frac{3\sqrt{3}}{2}$ وحدة مساحة.

. D عيّن تمثيلا وسيطيا للمستقيم (Δ) العمودي على المستوي (ABC) والذي يشمل النقطة (3

(ABC) النقطة D على المسقط العمودي للنقطة D النقطة E

أ) عين إحداثيات النقطة E ثمّ احسب المسافة بين النقطة D والمستوي E

 $\sqrt{3}$ مركزي سطحي الكرتين اللذين يمسان (ABC) في النقطة E ونصف قطر كل منهما

5) احسب حجم رباعي الوجوه ABCD .

التمرين الثاني: (04,5 نقطة)

. β عين العددين المركّبين α و α حيث : $\frac{2\alpha-\beta=-3}{2\overline{\alpha}+\overline{\beta}=-3-2i\sqrt{3}}$ عين العددين المركّبين α و α مرافق (I

المستوي منسوب إلى المعلم المتعامد والمتجانس B ، A . $(O; \vec{u}, \vec{v})$ النقط التي لاحقاتها على الترتيب:

$$z_A = z_C \cdot e^{i\frac{\pi}{3}}$$
 $z_B = \overline{z_A}$ $z_A = -\frac{3}{2} + i\frac{\sqrt{3}}{2}$

الباد. الطبيعي n حتى يكون $\left(\frac{z_A}{z_C}\right)^n$ حقيقيا سالبا. الأسي ثمّ عيّن قيم العدد الطبيعي الشكل الأسي ثمّ عيّن قيم العدد الطبيعي المتن z_A

. حقيق
$$2\left(\frac{z_A}{\sqrt{3}}\right)^{2015} + \left(\frac{z_B}{\sqrt{3}}\right)^{1962} - \left(\frac{z_C}{\sqrt{3}}\right)^{1435}$$
 بتحقق أنّ العدد المركّب

. $z_D = 1 + i$ النقطة ذات اللاحقة D (2

. A إلى D ويحوّل D الذي مركزه D ويحوّل D إلى D

صفحة 1 من 4

$$\cos\left(rac{7\pi}{12}
ight)$$
 على الشكل الجبري ثمّ استنتج القيمة المضبوطة لكل من: $\left(rac{z_A}{12}
ight)$ و $\left(rac{z_A}{z_D}
ight)$

$$\mathbb{R}^+$$
 يمسح k يمسح $z=k\left(1+i\right)e^{i\left(rac{7\pi}{12}
ight)}$ يمسح $z=k\left(1+i\right)e^{i\left(rac{7\pi}{12}
ight)}$ يمسح (3

التمرين الثالث: (04,5 نقطة)

.
$$u_{n+1} = (1+u_n)e^{-2}-1$$
 : المتتالية العددية المعرّفة ب $u_0 = e^2-1$: $u_0 = e^2-1$: المتتالية العددية المعرّفة ب

- $u_3 = u_2 \cdot u_1 + u_2$ (1)
- $1 + u_n > 0$: n غدد طبیعی (2
- . هل هي متقاربة ؟ علّل (u_n) علّل (3) بيّن أنّ المتتالية (u_n) متناقصة
 - . $v_n = 3(1 + u_n)$: منع من أجل كل عدد طبيعي (4
- أ) أثبت أنّ (v_n) منتالية هندسية يطلب تعيين أساسها وحدها الأول.
 - $\lim_{n\to\infty}u_n$ بدلالة u ، ثمّ احسب v_n و v_n بدلالة

التمرين الرابع: (6,50 نقطة)

 $(O; \vec{i}, \vec{j})$ المستوي منسوب إلى المعلم المتعامد والمتجانس

- . $]0;+\infty[$ على $]\infty;+\infty[$. $]0;+\infty[$ على $]\infty;+\infty[$.
- $g(x) = x 3 + \ln x$ الدالة المعرّفة على المجال $g(x) = x 3 + \ln x$ الدالة المعرّفة على المجال $g(x) = x 3 + \ln x$ السننتج حسب قيم x إشارة g(x) .
 - $. 2,2 < \alpha < 2,3$:ن قق أن

. و
$$f(x) = (1 - \frac{1}{x})(\ln x - 2)$$
 بياني. و $f(x) = (1 - \frac{1}{x})(\ln x - 2)$ بمثيلها البياني. و $f(x) = (1 - \frac{1}{x})(\ln x - 2)$

- . $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ احسب (1
- . f البيت أنّه من أجل كل x من $g(x) = \frac{g(x)}{x^2} :]0;+\infty$ من $f'(x) = \frac{g(x)}{x^2} :]0;+\infty$ الدالة (2
 - . $f(\alpha)$ بيّن أنّ: $f(\alpha) = \frac{-(\alpha-1)^2}{\alpha}$ ؛ ثمّ استنتج حصرا للعدد (3
- $[0;e^2]$ الدرس وضعية $[C_f]$ بالنسبة إلى حامل محور الفواصل ؛ ثمّ أنشئ $[C_f]$ على المجال $[C_f]$
 - . F(1)=-3 الدالة الأصلية للدالة f على المجال f=-3 والتي تحقّق: F(1)=-3
- 1) بيّن أنّ منحنى الدالة F يقبل مماسين موازيين لحامل محور الفواصل في نقطتين يُطلب تعيين فاصلتيهما.
 - F بيّن أنّ $x\mapsto x$ استنتج عبارة الدالة الدالة $x\mapsto \ln x$ على $x\mapsto x$ استنتج عبارة الدالة (2

الموضوع الثاني

التمرين الأول: (04 نقاط)

 $(O;\vec{i},\vec{j},\vec{k})$ في الفضاء المنسوب إلى المعلم المتعامد والمتجانس

. D(1;0;-2) و C(3;1;-3) ، B(0;4;-3) ، A(2;4;1) و نعتبر النقط

أجب بصحيح أو خطأ مع التعليل في كل حالة من الحالات الآتية:

- النقط A ، B و C ايست في استقامية.
- \cdot (ABC) معادلة ديكارتية للمستوي 2x+2y-z-11=0 (2
- \cdot (ABC) هي المسقط العمودي للنقطة D على المستوي $E\left(3;2;-1
 ight)$
 - لمستقيمان (AB) و (CD) من نفس المستوي.

$$x=2t-1$$
 . (CD) مثيل وسيطي للمستقيم $\begin{cases} x=2t-1 \\ y=t-1 \end{cases}$; $t\in\mathbb{R}$ (5 $z=-t-1$

 $\{(A;\alpha),(B;\beta)\}$ مرجح الجملة $I\left(\frac{3}{5};4;-\frac{9}{5}\right)$ مرجح الجملة α و α يوجد عددان حقيقيان α و α ديث النقطة (6

التمرين الثاني: (05 نقاط)

في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(O; \vec{u}, \vec{v})$ نعتبر النقط B ، B و C التي لاحقاتها على

$$z_A$$
 ، $z_A = -(z_A + z_B)$ ، $z_B = -\overline{z_A}$ ، $z_A = 2e^{i\frac{\pi}{6}}$: هو مرافق z_B ، z_A الترتيب: z_B ، z_A و z_B ، z_A الشكل الأسي .

- ب) استنتج أنّ النقط A ، B و C تنتمي إلى دائرة (γ) يطلب تعيين مركزها ونصف قطرها.
 - \cdot C و B ، A و النقط (γ) و النقط الدائرة

$$\frac{z_B - z_C}{z_R - z_A} = e^{-i\frac{\pi}{3}}$$
 : "i (1) (2)

ب) استنتج أنّ المثلث ABC متقايس الأضلاع وأنّ النقطة O مركز ثقل هذا المثلث.

$$|z|=|z-\sqrt{3}-i|$$
 عيّن وأنشئ (E) مجموعة النقط M ذات اللاحقة z حيث:

A الذي مركزه O ويحوّل C إلى A الذي مركزه O ويحوّل C الله A

[OB] بالدوران r هي محور القطعة الميان صورة (E) بالدوران

التمرين الثالث: (05 نقاط)

 $\cdot \left(O; \vec{i}, \vec{j}\right)$ المستوي منسوب إلى المعلم المتعامد والمتجانس

البياني.
$$f(x) = \frac{4x+1}{x+1} : -1$$
 بياني. $f(x) = \frac{4x+1}{x+1}$ بياني. الدالة المعرّفة على المجال

 $[0;+\infty[$ عين اتجاه تغير الدالة f على المجال عين اتجاه تغير الدالة f

- y=x ادرس وضعية (C_f) بالنسبة إلى المستقيم (D) ادرس وضعية
 - [0;6] على المجال ((C_f)) و ((C_f)) مثل (3

.
$$\begin{cases} v_0 = 5 \\ v_{n+1} = f\left(v_n\right) \end{cases} \quad \begin{cases} u_0 = 2 \\ u_{n+1} = f\left(u_n\right) \end{cases} \quad \text{ Sall in } \mathbb{N} \text{ (II)}$$
 نعتبر المتتاليتين (u_n) و (u_n) المعرّفتين على (u_n) كما يلي:

- أ) أنشئ على حامل محور الفواصل الحدود: u_1 ، u_2 ، u_1 ، u_3 و u_2 ، u_1 ، u_2 دون حسابها.
 - $\cdot (v_n)$ و (u_n) خمّن اتجاه تغیر وتقارب کل من المتتالیتین و بخمّن اتجاه تغیر وتقارب \cdot

$$\alpha = \frac{3+\sqrt{13}}{2}$$
 : عيث $\alpha < v_n \le 5$ و $2 \le u_n < \alpha$: N من n من n کل من أجل کل من المتتاليتين (v_n) و (v_n) و (v_n)

$$v_{n+1} - u_{n+1} \le \frac{1}{3} (v_n - u_n) : N$$
 من n کل n کل (1) اثبت أنّه من أجل کل n من

$$0 < v_n - u_n \le \left(\frac{1}{3}\right)^{n-1} : N$$
 من n کل من أنّه من أجل كل بيّن أنّه من أجل كل من n

$$(v_n)$$
 و (u_n) بثمّ حدّد نهایة کل من $\lim_{n\to +\infty}(v_n-u_n)=0$ و استنتج أنّ:

التمرين الرابع: (06 نقاط)

- . $g(x)=1-2x-e^{2x-2}:$ الدالة العددية المعرفة على $\mathbb R$ بــ الدالة العددية المعرفة على g(I)
 - . \mathbb{R} على على (1
- 0.36 < lpha < 0.37: بيّن أنّ المعادلة g(x) = 0 تقبل حلا وحيدا lpha في lpha ، ثمّ تحقّق أنّ
 - . \mathbb{R} على على (3

$$f(x) = xe^{2x+2} - x + 1:$$
 الدالة العددية المعرّفة على $\mathbb R$ بيا $f(II)$

. $\left(O; ec{i}\,, ec{j}\,
ight)$ سنثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_{f}\,
ight)$

.
$$f'(x) = e^{2x+2} g(-x)$$
 : \mathbb{R} من أجل كل x من أجل كل أ) (آ

ب) استنتج أنّ الدالة
$$f$$
 متناقصة تماما على $]-\infty;-lpha$ ومتزايدة تماما على الدالة ومتزايدة تماما على الدالة على الدالة الدالة على الدالة على الدالة الدالة الدالة على الدالة ال

- د الحسب نهایة f کمند $\infty +$ و عند $\infty -$ ، ثمّ شکّل جدولِ تغیرات الدالة f .
 - احسب $\lim_{x\to-\infty} [f(x)+x-1]$ مصب النتيجة هندسيا.
- . y=-x+1 الذي معادلته (Δ) النسبة إلى المستقيم (C_f) الذي معادلته (4
 - f(-lpha)pprox 0,1 . f(-lpha)pprox 0,1 . نأخذ C_f و A على المجال A
- . $2f(x)+f'(x)-f''(x)=1-2x-3e^{2x+2}:\mathbb{R}$ من أجل كل x من أجل كل (6) أنّه من أجل كل x من أجل كل أبل ك
 - \cdot استنتج دالة أصلية للدالة f على

الحل المفصل للموضوع الأوّل:

التمرين الأوّل:

L(3;3;1) ، B(1;2;2) ، A(2;1;0) و C(3;3;1) ، B(1;2;2)

التحقق أنّ النقط A، B و C تعیّن مستویا. (1

لدينا \overrightarrow{AC} و منه الشعاعان \overrightarrow{AC} و منه الشعاعان خطيا وبالتالي النقط \overrightarrow{AC} النقط وبالتالي النقط النقط وبالتالي النقط النقط النقط وبالتالي النقط النقط

 $x_B - y_B + z_B - 1 = 1 - 2 + 2 - 1 = 0$ ، $x_A - y_A + z_A - 1 = 2 - 1 - 1 = 0$ قين مستويا وبما أنّ B ، A . ABC فإن ABC

2) تبيان أن المثلث ABC متقايس الأضلاع.

 $AB = \sqrt{1+1+4} = \sqrt{6}$ لدينا \overrightarrow{AB} $\left(-1;1;2\right)$ لدينا

$$AC = \sqrt{1+4+1} = \sqrt{6}$$
 ومنه $\overrightarrow{AC}(1;2;1)$ و

و منه \overrightarrow{BC} ومنه $\overrightarrow{BC}=\sqrt{4+1+1}=\sqrt{6}$ ومنه \overrightarrow{BC} ومنه \overrightarrow{BC} ومنه عنه الأضلاع.

- التحقق أن مساحته $\frac{3\sqrt{3}}{2}$ وحدة مساحة.

 $CH = \sqrt{\frac{9}{4} + \frac{9}{4}} = \frac{3\sqrt{2}}{2}$ ومنه $H\left(\frac{3}{2}; \frac{3}{2}; 1\right)$ اِذَن AB اِذَن AB

 $.S(ABC) = \frac{AB \times CH}{2} = \frac{\sqrt{6} \times \frac{3\sqrt{2}}{2}}{2} = \frac{3\sqrt{2}}{2}ua$ وعليه عليه

طريقة ثانية:

 $S(ABC) = \frac{1}{2}AB \times AC \sin \frac{\pi}{3} = \frac{3\sqrt{3}}{2}ua$

. D الذي يعامد المستوي (ABC) ويشمل النقطة (Δ) الذي يعامد المستوي (3

لدينا $\vec{n}(1;-1;1)$ شعاع ناظمي للمستوي (ABC) وهو شعاع توجيه للمستقيم

من أجل كل نقطة $M\left(x\,;y\,;z\right)$ من المستقيم $M\left(x\,;y\,;z\right)$ من أجل كل نقطة من أجل كل من المستقيم

4) أ) تعيين إحداثيات النقطة A.

. (ABC) والمستوي (Δ) هي نقطة تقاطع E

$$t=-1$$
 نحل الجملة
$$\begin{cases} x=1+t \\ y=1-t \\ z=4+t \\ x-y+z-1=0 \end{cases}$$
 نحل الجملة $t=-1$ وعليه $t=-1$ وعليه $t=-1$ ومنه $t=-1$

إذن (0;2;3) .E

(ABC) والمستوي (D

$$d(D;(ABC)) = DE = \sqrt{(0-1)^2 + (2-1)^2 + (3-4)^2} = \sqrt{3}$$

1

سر النجاج أن تكون مخلصاً لأمداهك

الحل المفصل لموضوع الرياضيات بكالوريا علوم تجريبية 2015

ب) تعيين مركزي سطحي الكرتين اللذين يمسان (ABC) في النقطة E ونصف قطر كل منهما $\sqrt{3}$.

E فإن إحدى الكرتين مركزها D فيكون مركز الكرة الثانية D فإن إحدى الكرتين مركزها D فيكون مركز الكرة الثانية .

[DD'] منتصف ا

 \overrightarrow{OD} ' = $2\overrightarrow{OE}$ $-\overrightarrow{OD}$ أي \overrightarrow{EO} $+\overrightarrow{OD}$ ' = $-\overrightarrow{EO}$ أي \overrightarrow{EO} الدينا إذن \overrightarrow{EO} ' = $-\overrightarrow{EO}$ معناه \overrightarrow{EO} ' = $-\overrightarrow{EO}$ ومنه \overrightarrow{EO} ' = $-\overrightarrow{EO}$ أي \overrightarrow{EO} ' = $-\overrightarrow{EO}$ الدينا إذن \overrightarrow{EO} ' = $-\overrightarrow{EO}$ معناه \overrightarrow{EO} ' = $-\overrightarrow{EO}$ معناه \overrightarrow{EO} ' = $-\overrightarrow{EO}$ الدينا إذن \overrightarrow{EO} ' = $-\overrightarrow{EO}$ معناه \overrightarrow{EO} ' = $-\overrightarrow{EO}$ الدينا إذن \overrightarrow{EO} ' = $-\overrightarrow{EO}$ ' \overrightarrow{EO} ' \overrightarrow{EO} ' = $-\overrightarrow{EO}$ ' \overrightarrow{EO} ' $\overrightarrow{$

التمرين الثاني:

$$2\overline{\alpha} + \overline{2\alpha + 3} = -3 - 2i\sqrt{3} \text{ نجد } (2) \text{ i.s.} \beta = 2\alpha + 3 \text{} (1) \text{ i.s.} \begin{cases} 2\alpha - \beta = -3.....(1) \\ 2\overline{\alpha} + \overline{\beta} = -3 - 2i\sqrt{3}....(2) \end{cases}$$
 (I)

$$\alpha = \frac{-3}{2} + i \frac{\sqrt{3}}{2}$$
 وعليه $\alpha = \frac{-3}{2} - i \frac{\sqrt{3}}{2}$ وعليه $\alpha = -3 - 2i \sqrt{3}$

.
$$\beta = i\sqrt{3}$$
 وعليه 3 $\beta = 2\left(\frac{-3}{2} + i\frac{\sqrt{3}}{2}\right) + 3$ وعليه 3

اً) كتابة z_{C} و z_{C} على الشكل الأسي.

$$z_A = \sqrt{3} \left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i \right) = \sqrt{3} \left(\cos \left(\frac{5\pi}{6} \right) + i \sin \left(\frac{5\pi}{6} \right) \right) = \sqrt{3}e^{i\left(\frac{5\pi}{6} \right)}$$

$$z_B = \overline{z_A} = \sqrt{3}e^{i\left(\frac{-5\pi}{6}\right)}$$

$$.\,z_{C}=e^{-i\frac{\pi}{3}}\Bigg(\sqrt{3}e^{i\left(\frac{5\pi}{6}\right)}\Bigg)=\sqrt{3}e^{i\left(\frac{5\pi}{6}-\frac{\pi}{3}\right)}=\sqrt{3}e^{i\frac{\pi}{2}}\,\,\text{ also }\,\,z_{C}=z_{A}e^{-i\frac{\pi}{3}}\,\,\text{ olso }\,\,z_{A}=z_{C}e^{i\frac{\pi}{3}}$$

تعيين قيم العدد الطبيعي n، حتى يكون $\left(rac{z_A}{z_C}
ight)^n$ حقيقيا سالبا.

$$k\in\mathbb{N}$$
 حيث $n=3+6k$ ومنه $\frac{n\pi}{3}=\pi+2k$ ومنه $\arg\left(rac{z_A}{z_C}
ight)^n=\pi+2k$ حيث $\left(rac{z_A}{z_C}
ight)^n=\pi+2k$

ب) التحقق أن العدد المركب
$$2\left(\frac{z_A}{\sqrt{3}}\right)^{2015} + \left(\frac{z_B}{\sqrt{3}}\right)^{1962} - \left(\frac{z_C}{\sqrt{3}}\right)^{1435}$$
 حقيقي.

$$2\left(\frac{z_A}{\sqrt{3}}\right)^{2015} = 2e^{i\left(\frac{2015\times5\pi}{6}\right)} = 2e^{i\left(1679\pi + \frac{\pi}{6}\right)} = 2e^{i\left(\pi + \frac{\pi}{6}\right)} = -\sqrt{3} - i$$

$$\left(\frac{z_B}{\sqrt{3}}\right)^{1962} = e^{i\left(\frac{1962\times(-5\pi)}{6}\right)} = e^{-i(1635\pi)} = -1$$

$$\left(\frac{z_C}{\sqrt{3}}\right)^{1435} = e^{i\left(\frac{1435\pi}{2}\right)} = e^{i\left(\pi + \frac{\pi}{2}\right)} = -i$$

.
$$2\left(\frac{z_A}{\sqrt{3}}\right)^{2015} + \left(\frac{z_B}{\sqrt{3}}\right)^{1962} - \left(\frac{z_C}{\sqrt{3}}\right)^{1435} = -\sqrt{3} - i - 1 + i = -\sqrt{3} - 1 \in \mathbb{R}$$
 وعليه

سر النجاج أن تكون مخلصاً لأهدافك

الحل المفصّل لموضوع الرياضيات بكالوريا علوم تجريبية 2015 (2) أ) تحديد النسبة والزاوية للتشابه المباشر S الذي مركزه O ويحول D إلى D (2)

$$\frac{z_A}{z_D} = \frac{\sqrt{3}e^{i\left(\frac{5\pi}{6}\right)}}{\sqrt{2}e^{i\frac{\pi}{4}}} = \frac{\sqrt{3}}{\sqrt{2}}e^{i\left(\frac{5\pi}{6} - \frac{\pi}{4}\right)} = \frac{\sqrt{6}}{2}e^{i\left(\frac{7\pi}{6}\right)}$$

ومنه نسبة التشابه
$$S$$
 هي $\frac{\sqrt{6}}{2}$ و زاويته $\frac{7\pi}{6}$.

ب) كتابة $\frac{Z_A}{Z_D}$ على الشكل الجبري.

$$\frac{z_A}{z_D} = \frac{-\frac{3}{2} + i\frac{\sqrt{3}}{2}}{1 + i} = \frac{-3 + i\sqrt{3}}{2 + 2i} = \frac{\left(-3 + i\sqrt{3}\right)\left(2 - 2i\right)}{\left(2 + 2i\right)\left(2 - 2i\right)} = \frac{-6 + 2\sqrt{3}}{8} + i\frac{6 + 2\sqrt{3}}{8}$$

 $\sin\left(\frac{7\pi}{6}\right)$ و $\cos\left(\frac{7\pi}{6}\right)$ استنتاج القيمة المضبوطة لـ

$$\frac{z_A}{z_D} = \frac{-6 + 2\sqrt{3}}{8} + i \frac{6 + 2\sqrt{3}}{8}$$
 لدينا $\frac{z_A}{z_D} = \frac{\sqrt{6}}{2} e^{i\left(\frac{7\pi}{6}\right)}$ لدينا

$$e^{i\left(\frac{7\pi}{6}\right)} = \frac{-6 + 2\sqrt{3}}{4\sqrt{6}} + i \frac{6 + 2\sqrt{3}}{4\sqrt{6}}$$
 ومنه
$$\frac{\sqrt{6}}{2}e^{i\left(\frac{7\pi}{6}\right)} = \frac{-6 + 2\sqrt{3}}{8} + i \frac{6 + 2\sqrt{3}}{8}$$
 إذن

$$. \sin \left(\frac{7\pi}{6} \right) = \frac{3 + \sqrt{3}}{2\sqrt{6}} \quad \text{occ} \left(\frac{7\pi}{6} \right) = \frac{-3 + \sqrt{3}}{2\sqrt{6}} \quad \text{occ} \left(\frac{7\pi}{6} \right) + i \sin \left(\frac{7\pi}{6} \right) = \frac{-3 + \sqrt{3}}{2\sqrt{6}} + i \frac{3 + \sqrt{3}}{2\sqrt{6}} \quad \text{occ} \left(\frac{7\pi}{6} \right) = \frac{-3 + \sqrt{3}}{2\sqrt{6}} + i \frac{3 + \sqrt{3}}{2\sqrt{6}}$$

 $k\in\mathbb{R}^+$ عيين مجموعة النقط M ذات اللاحقة z=k بحيث z=k (1+i) $e^{i\left(rac{7\pi}{12}
ight)}$ عيين مجموعة النقط (3

 $k\in\mathbb{R}^+$ و $\overrightarrow{OM}=k$ و Z=k و یکافی $z=kz_A$ و یکافی $z=kz_De^{i\left(rac{7\pi}{12}
ight)}$ و $z=k\left(1+i\right)e^{i\left(rac{7\pi}{12}
ight)}$

[OA] وبالتالى مجموعة النقط M هي نصف المستقيم

 $u_{n+1} = (1+u_n)e^{-2} - 1$ ، $u_n = e^{-2} - 1$ ومن أجل كل عدد طبيعي $u_0 = e^{-2} - 1$ المتتالية العددية المعرّفة ب

 $u_3 \ \ u_2 \ \ u_1 \ \ (1$

$$u_2 = (1+u_1)e^{-2} - 1 = e^{-2} - 1$$
 $u_1 = (1+u_0)e^{-2} - 1 = e^2 \times e^{-2} - 1 = 0$

$$u_3 = (1 + u_2)e^{-2} - 1 = (e^{-2})e^{-2} - 1 = e^{-4} - 1$$

 $1+u_n > 0$ ، n عدد طبیعی (2

n=0 لدينا $u_0=e^2$ لدينا $u_0=0$ ومنه $u_0=0$ أي الخاصية صحيحة من أجل

 $1+u_{n+1}>0$ نفرض أنّ $1+u_n>0$ ونبر هن أنّ

 $1+u_{n+1}>0$ ومنه $1+u_n>0$ لدينا حسب الفرضية $1+u_{n+1}=(1+u_n)e^{-2}$ لدينا

 $1+u_n>0$ ، الاستدلال بالتراجع فإنه من أجل كل n من الستدلال بالتراجع فإنه من أجل كل

تبيين أن المتتالية (u_n) متناقصة.

$$u_{n+1} - u_n = (1 + u_n)e^{-2} - 1 - u_n = (1 + u_n)e^{-2} - (1 + u_n) = (1 + u_n)(e^{-2} - 1)$$
 لدينا

 $u_n < 0$ وبما أنه من أجل كل عدد طبيعي $n \cdot n = u_n > 0$ و بما أنه من أجل كل عدد طبيعي $u_n < 0$ وبما أنه من أجل كل عدد طبيعي والمساهم المساهم المساهم والمساهم المساهم المساهم والمساهم والمس

3

وبالتالي المتتالية (u_n) متناقصة.

يمكن استعمال البرهان بالتراجع.

 $u_{n+1} < u_n$: النبر هن بالتراجع أنه من أجل كلّ عدد طبيعي التراجع أنه من أجل

 $u_1 = 0$ لدينا $u_0 = e^2 - 1$ ومنه $u_1 = 0$ ومنه $u_1 = 0$ و $u_0 = e^2 - 1$ لدينا

 $.u_{k+2} < u_{k+1}$ نفرض أن $u_{k+1} < u_k$ ونبر هن أن

لدينا $(1+u_{k+1})e^{-2} < (1+u_k)e^{-2}$ يكافئ $(1+u_{k+1})e^{-2} < (1+u_k)e^{-2}$ يكافئ

وعليه نستنتج حسب مبدأ الاستدلال بالتراجع أنه من أجل كل $u_{k+2}^{-} < u_{k+1}$ أي $u_{k+2}^{-} < u_{k+1}$ وعليه نستنتج حسب مبدأ الاستدلال بالتراجع أنه من أجل كل عدد طبيعي $u_{n+1} < u_n : n$ وبالتالي المتتالية $u_{n+1} < u_n$ متناقصة.

لدينا من أجل كل عدد طبيعي n:n>1 أي $1+u_n>0$ أي $u_n>-1$ ومنه المتتالية $u_n>0$ محدودة من الأسفل بالعدد $u_n>0$ أنها متناقصة فهي متقاربة.

الأوّل. (v_n) متتالية هندسية يطلب تعيين أساسها وحدّها الأوّل.

وحدها الأوّل e^{-2} متتالية هندسية أساسها e^{-2} وحدها الأوّل $v_{n+1} = 3(1+u_{n+1}) = 3((1+u_n)e^{-2}) = e^{-2}v_n$

 $v_0 = 3(1+u_0) = 3e^2$

 u_n و u_n بدلالة v_n

$$v_n = 3e^2(e^{-2})^n = 3e^{-2n+2}$$

 $u_n = e^{-2n+2} - 1$ لدينا $u_n = \frac{1}{3}v_n - 1$ ومنه $v_n = 3(1+u_n)$ لدينا

. $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} e^{-2n+2} - 1 = -1$ ومنه $\lim_{n \to +\infty} e^{-2n+2} = 0$

 $v_n = 3e^2(e^{-2})^n$: الدينا من أجل كل عدد طبيعي

 $v_0 \times v_1 \times ... \times v_n = 3e^2(e^{-2})^0 \times 3e^2(e^{-2})^1 \times ... \times 3e^2(e^{-2})^n$ إذن

 $v_0 \times v_1 \times ... \times v_n = (3e^2)^{n+1} (e^{-2})^{0+1+...+n} = (3e^2)^{n+1} (e^{-2})^{\frac{n(n+1)}{2}}$

 $v_0 \times v_1 \times ... \times v_n = (3e^2)^{n+1} \times e^{-n(n+1)} = (3e^2 \times e^{-n})^{n+1} = (3e^{2-n})^{n+1}$

 $\ln(v_0 \times v_1 \times ... \times v_n) = \ln(3e^{2-n})^{n+1} = (n+1)\ln(3e^{2-n})$ ومنه

 $\ln v_0 + \ln v_n + ... + \ln v_n = (n+1)(-n+2+\ln 3)$

طريقة ثانية:

 $\ln v_n = \ln \left(3e^{-2n+2}\right) = \ln 3 + \ln e^{-2n+2}$ معناه $v_n = 3e^{-2n+2}$ ، n عدد طبیعی . $\ln v_n = \ln 3 + 2 - 2n$

 $\ln v_0 + \ln v_1 + ... + \ln v_n = (\ln 3 + 2 - 2 \times 0) + (\ln 3 + 2 - 2 \times 1) + ... + (\ln 3 + 2 - 2n)$

 $\ln v_0 + \ln v_1 + ... + \ln v_n = (n+1)(\ln 3 + 2) - 2(0+1+...+n)$

 $\ln v_0 + \ln v_1 + \dots + \ln v_n = (n+1)(\ln 3 + 2) - 2\frac{n(n+1)}{2}$

 $\ln v_0 + \ln v_1 + \dots + \ln v_n = (n+1)(\ln 3 + 2) - n(n+1)$

 $\ln v_0 + \ln v_1 + ... + \ln v_n = (n+1)(\ln 3 + 2 - n)$

كما أنه يمكن الإستدلال على الخاصية بالتراجع.

الحل المفصل لموضوع الرياضيات بكالوريا علوم تجريبية 2015

لتمرين الرابع

الم بقراءة بيانية تحديد وضعية (γ) بالنسبة إلى (Δ) .

 (Δ) في المجال α [، α] في المجال في المجال عند أن المجال أن

 (Δ) وفي المجال $[\alpha;+\infty[$ وفي المجال

 $(\alpha; \ln \alpha)$ يتقاطعان في النقطة ذات الإحداثيتين ((Δ)) و (γ)

. $g(x) = x - 3 + \ln x$:ب $g(x) = x - 3 + \ln x$ بالدالة المعرّفة على المجال g(2)

g(x) استنتاج حسب قیم x اشارة

g(x) < 0 أي $\ln x - (-x+3) < 0$ $(x \in]0; \alpha[$ أي السابق من أجل كل الدينا حسب السؤال السابق من أجل كل

g(x) > 0 أي $\ln x - (-x + 3) > 0$ $\exists x \in [\alpha; +\infty]$

 $g(\alpha) = 0$ أي $\ln \alpha - (-\alpha + 3) = 0$: $x = \alpha$

 $2,2 < \alpha < 2,3$ التحقق أنّ (3

 $g(2,2)\approx -0.01$ الدالة g مستمرة ومتزايدة تماما على المجال $g(2,2)\approx -0.01$ وبالخصوص على المجال $g(2,2)\approx -0.01$ ولدينا $g(2,3)\approx g(2,3)\approx 0.13$ و $g(2,3)\approx g(2,3)\approx 0.13$ و $g(2,3)\approx g(2,3)\approx 0.13$ و $g(2,3)\approx 0.13$

$$f(x) = \left(1 - \frac{1}{x}\right) \left(\ln(x) - 2\right)$$
 :ب $g(x) = \int_{0}^{1} (1 - \frac{1}{x}) \left(\ln(x) - 2\right)$:ب $g(x) = \int_{0}^{1} (1 - \frac{1}{x}) \left(\ln(x) - 2\right)$

. $\lim_{x \to +\infty} f(x)$ e $\lim_{x \to \infty} f(x)$

$$\lim_{x \xrightarrow{>} 0} f\left(x\right) = \lim_{x \xrightarrow{>} 0} \left(1 - \frac{1}{x}\right) \left(\ln\left(x\right) - 2\right) = +\infty \quad \lim_{x \xrightarrow{>} 0} \ln\left(x\right) - 2 = -\infty \quad \lim_{x \xrightarrow{>} 0} \left(1 - \frac{1}{x}\right) = -\infty$$

$$\lim_{x \to +\infty} f\left(x\right) = \lim_{x \to +\infty} \left(1 - \frac{1}{x}\right) \left(\ln\left(x\right) - 2\right) = +\infty \quad \lim_{x \to +\infty} \ln\left(x\right) - 2 = +\infty \quad \lim_{x \to +\infty} \left(1 - \frac{1}{x}\right) = 1$$

$$(x) = \frac{g(x)}{x^2}$$
:]0;+ ∞ [من أجل كل $(x) = \frac{g(x)}{x^2}$

$$f'(x) = \frac{1}{x^2} (\ln x - 2) + \frac{1}{x} \left(1 - \frac{1}{x} \right) = \frac{1}{x^2} (\ln x - 2) + \frac{1}{x} \left(\frac{x - 1}{x} \right) = \frac{\ln x - 2}{x^2} + \frac{x - 1}{x^2} = \frac{g(x)}{x^2}$$

f الدالة جدول تغيّرات الدالة

			•.,				
	X	0		α		$+\infty$	
f	(x)		-	0	+		
j	f(x)	+∞				≠ +∞	
		$f(\alpha)$					

 $\ln \alpha = -\alpha + 3$ لدينا

$$.f\left(\alpha\right) = \left(1 - \frac{1}{\alpha}\right) \left(\ln \alpha - 2\right) = \left(1 - \frac{1}{\alpha}\right) \left(-\alpha + 3 - 2\right) = \left(\frac{\alpha - 1}{\alpha}\right) \left(-\alpha + 1\right) = \frac{-\left(\alpha - 1\right)^2}{\alpha}$$
 ومنه $f\left(\alpha\right)$. $f\left(\alpha\right)$

لدينا
$$2,2 < \alpha < 1$$
 يكافئ $1,44 < \left(\alpha - 1\right)^2 < 1,69$ يكافئ $1,2 < \alpha - 1 < 1,3$ يكافئ $1,44 < \left(\alpha - 1\right)^2 < 1,69$ يكافئ $1,2 < \alpha - 1 < 1,3$ لدينا

(Cf)

الحل المفصل لموضوع الرياضيات بكالوريا علوم تجريبية 2015

 $-0.77 < f(\alpha) < -0.62$ وعليه $0.62 < \frac{(\alpha - 1)^2}{\alpha} < 0.77$ واليه

دراسة وضعية $\binom{C_f}{f}$ بالنسبة إلى حامل محور الفواصل.

f(x) من أجل ذلك ندرس إشارة

$$f(x) = \left(1 - \frac{1}{x}\right) \left(\ln(x) - 2\right) = \frac{1}{x}(x - 1)(\ln x - 2)$$

X	0	1	e^2		+∞
x-1	_	0	+	+	
$\ln x - 2$	_		- () +	
f(x)	+		- 4	+	

.] $1;e^2$ و الفواصل في المجالين]0;1 و $]e^2;+\infty$ و]0;1 تحت محور الفواصل في المجال $[C_f]$

 e^2 و الفواصل في النقطتين اللتين فاصلتيهما و $\left(C_f
ight)$

الرسم

 $F\left(1\right)=-3$:والتي تحقق والمجال]0;+ ∞ الدالة الأصلية للدالة f على المجال $F\left(\mathrm{III}\right)$

تبيين أن منحنى الدالة F يقبل مماسين موازيين لمحور الفواصل.

F'(x)=f(x) :]0;+ ∞ ر من المجال عدد حقیقی من عدد عدد من المجال

$$x = e^2$$
 أو $x = 1$ ومنه $x = 1$ ومنه $f(x) = 0$

وبالتالي منحنى الدالة F يقبل مماسين موازيين لمحور الفواصل عند النقطتين اللتين فاصلتيهما e^2 و e^2 .

 $[0;+\infty[$ على $x\mapsto \ln x$ على أن $x\mapsto x \ln x -x$ هي دالة أصلية للذالة $x\mapsto \ln x -x$

$$h'(x) = \ln x + \frac{1}{x} \times x - 1 = \ln x + 1 - 1 = \ln x$$
 نضع $h(x) = x \ln x - x$

 $[0;+\infty[$ على] $0;+\infty[$ على] $0;+\infty[$ وعليه الدالة $x\mapsto \ln x$ على

F عبارة

$$f(x) = \left(1 - \frac{1}{x}\right) \left(\ln x - 2\right) = \ln x - 2 - \frac{1}{x} \ln x + 2\frac{1}{x}$$
 لدينا

$$\lambda \in \mathbb{R}$$
 حیث $F(x) = x \ln x - x - 2x - \frac{1}{2} (\ln x)^2 + 2 \ln x + \lambda$ ومنه

$$F(x) = x \ln x - 3x - \frac{1}{2} (\ln x)^2 + 2 \ln x + \lambda$$

$$F(x) = x \ln x - 3x - \frac{1}{2} (\ln x)^2 + 2 \ln x$$
 بما أنّ $F(1) = x \ln x - 3x - \frac{1}{2} (\ln x)^2 + 2 \ln x$ بما أنّ $F(1) = x \ln x - 3x - \frac{1}{2} (\ln x)^2 + 2 \ln x$ بما أنّ

الحل المفصل للموضوع الثاني:

التمرين الأوّل:

LD(1;0;-2) و C(3;1;-3) ، B(0;4;-3) ، A(2;4;1) لدينا

الإجابة بصحيح أو خطأ.

الدينا $\overrightarrow{AB}(-2;0;-4)$ و $\overrightarrow{AC}(1;-3;-4)$ و $\overrightarrow{AC}(1;-3;-4)$ و $\overrightarrow{AB}(-2;0;-4)$ الدينا (1

6

سر النجاح أن تكون مخلصاً لأهدافك

الحل المفصل لموضوع الرياضيات بكالوريا علوم تجريبية 2015

تعيّن مستويا وعليه العبارة 1) صحيحة.

(ABC) معادلة ديكارتية للمستوي 2x + 2y - z - 11 = 0 (2

$$2x_{B}+2y_{B}-z_{B}-11=0+8+3-11=0$$
 ، $2x_{A}+2y_{A}-z_{A}-11=4+8-1-11=0$ لدينا

و 0 = 11 = 6 + 2 + 3 - 11 = 0 ومنه إحداثيات النقط A، B و C تحقق المعادلة المعطاة وعليه العبارة $2x_C + 2y_C - z_C - 11 = 6 + 2 + 3 - 11 = 0$ صحيحة.

. (ABC) هي المسقط العمودي للنقطة D على المستوي $E\left(3;2;-1\right)$ النقطة (3

لدينا \overrightarrow{DE} و \overrightarrow{DE} و \overrightarrow{DE} الدينا (2;2;1) و (ABC) و (2;2;1) الدينا (2;2;1) الدينا و عليه العبارة المعطاة خاطئة.

المستقيمان (AB) و (CD) من نفس المستوي.

بما أنه يوجد مستو وحيد يشمل النقط A، B و C والنقطة D خارجة عن هذا المستوي فإن المستقيمان (AB) و (CD) ليسا من نفس المستوي و عليه العبارة المعطاة خاطئة.

. (CD) تمثيل وسيطي للمستقيم
$$\begin{cases} x=2t-1 \\ y=t-1 \end{cases}; t\in \mathbb{R}$$
 (5 $z=-t-1$

.(CD) أ شعاع توجيه للمستقيم $\overrightarrow{DC}(2;1;-1)$ لدينا

 $\overrightarrow{DM} = \lambda \overrightarrow{DC}$ بحیث λ بحیث $M(x;y;z) \in (CD)$

$$\begin{cases} x = 2t - 1 \\ y = t - 1 \end{cases}; t \in \mathbb{R}$$
 وبأخذ $\lambda = t - 1$ نجد $\lambda = t - 1$ أي $\lambda = 2\lambda + 1$ وبأخذ $\lambda = t - 1$ نجد $\lambda = t - 1$ أي $\lambda = 2\lambda + 1$ ومنه $\lambda = t - 1$ ومنه $\lambda = t - 1$ وبأخذ $\lambda = t - 1$

وعليه العبارة صحيحة.

. $\{(A;\alpha);(B;\beta)\}$ مرجح الجملة $I\left(\frac{3}{5};4;-\frac{9}{5}\right)$ مرجح الجملة α و α عددان حقیقیان α و α عددان حقیقیان α و α حیث النقطة α

$$.3\overrightarrow{IA} + 7\overrightarrow{IB} = \overrightarrow{0}$$
 الدينا $\overrightarrow{A} = -7\overrightarrow{B}$ و عليه $\overrightarrow{A} = -7\overrightarrow{B}$ الدينا $\overrightarrow{A} = -7\overrightarrow{B}$ و عليه $\overrightarrow{A} = -7\overrightarrow{B}$ و عليه $\overrightarrow{A} = -7\overrightarrow{B}$ و عليه $\overrightarrow{A} = -7\overrightarrow{B}$

إذن $(\alpha; \beta) = (3;7)$ وعليه العبارة صحيحة.

التمرين الثاني:

 $z_{C} = -(z_{A} + z_{B})$ g $z_{B} = -\overline{z_{A}}$, $z_{A} = 2e^{i\frac{\pi}{6}}$

أ) أ) كتابة z_B و z_C على الشكل الأسي.

$$z_{R} = -\overline{z}_{A} = -2e^{-i\frac{\pi}{6}} = 2e^{i\pi} \times e^{-i\frac{\pi}{6}} = 2e^{i\left(\pi - \frac{\pi}{6}\right)} = 2e^{i\frac{5\pi}{6}}$$

$$z_C = -(z_A - \overline{z_A}) = -2i = 2e^{-i\frac{\pi}{2}}$$

ب) استنتاج أن النقط A، B و C تنتمي إلى دائرة (γ) يطلب تعيين مركز ها ونصف قطر ها.

لدينا $z_A = |z_B| = |z_C| = 0$ التي مركزها $|z_A| = |z_B| = |z_C| = 0$ التي مركزها $|z_A| = |z_B| = |z_C| = 0$ التي مركزها $|z_A| = |z_B| = |z_C| = 0$ و نصف قطر ها 2.

C و B ، A و النقط A و النقط A

$$\frac{z_B - z_C}{z_B - z_A} = e^{-i\frac{\pi}{3}}$$
 التحقق أن (2

$$\frac{z_B - z_C}{z_B - z_A} = \frac{-\sqrt{3} + i + 2i}{-\sqrt{3} + i - \sqrt{3} - i} = \frac{-\sqrt{3} + 3i}{-2\sqrt{3}} = \frac{1}{2} - i \frac{\sqrt{3}}{2} = e^{-i\frac{\pi}{3}}$$

ب) استنتاج أن المثلث ABC متقايس الأضلاع وأن النقطة O مركز ثقل هذا المثلث.

$$\arg\left(\frac{z_{C}-z_{B}}{z_{A}-z_{B}}\right)=-\frac{\pi}{3} \int \frac{|z_{C}-z_{B}|}{|z_{A}-z_{B}|} = 1 \text{ exist} \int \frac{z_{C}-z_{B}}{|z_{A}-z_{B}|} = e^{-i\frac{\pi}{3}} \text{ otherwise} \int \frac{z_{B}-z_{C}}{|z_{B}-z_{A}|} = e^{-i\frac{\pi}{3}}$$

وهذا يعني أنّ BC=BA و $BC=\overline{BA}$ وبالتالي المثلث ABC متقايس الأضلاع فيكون مركز الدائرة $\left(\overline{BA};\overline{BC}\right)=\frac{-\pi}{3}$ المحيطة به هي مركز ثقله أي O هي مركز ثقله.

 $|z|=|z-\sqrt{3}-i|$ جـ) تعيين وإنشاء (E) مجموعة النقط M ذات اللاحقة حيث

.
$$[OA]$$
 قعني $|z| = |z - (\sqrt{3} + i)|$ قي محور القطعة $|z| = |z - (\sqrt{3} + i)|$ قي محور القطعة . $|z| = |z - \sqrt{3} - i|$

A الذي مركزه O ويحول C إلى C الذي مركزه O ويحول C إلى C

$$\frac{2\pi}{3}$$
 هي $\frac{z_A}{z_C} = \frac{2e^{i\frac{\pi}{6}}}{2e^{-i\frac{\pi}{2}}} = e^{i\left(\frac{\pi}{6} + \frac{\pi}{2}\right)} = e^{i\frac{2\pi}{3}}$

$$(\overrightarrow{OC}; \overrightarrow{OA}) = (\overrightarrow{OC}; \overrightarrow{u}) + (\overrightarrow{u}; \overrightarrow{OA}) = (\overrightarrow{u}; \overrightarrow{OA}) - (\overrightarrow{u}; \overrightarrow{OC}) = \arg(z_A) - \arg(z_C) = \frac{\pi}{6} + \frac{\pi}{2} = \frac{2\pi}{3}$$

ولدينا OA=OC ومنه زاوية الدوران r هي $\frac{2\pi}{2}$.

[OB] ب) تبيان أن صورة (E) بالدوران r هي محور القطعة

A لدينا ABC مضلع منتظم مركزه O إذن $\frac{2\pi}{3}=(\overrightarrow{OA};\overrightarrow{OB})=(\overrightarrow{OA};\overrightarrow{OB})$ وهذا يعني أن B هي صورة النقطة لتكن M نقطة من (E)؛ M صورتها بالدوران.

AM=BM ' و ' r(M)=M و ' الإن حسب الخاصية المميزة للدوران فإن ' r(M)=M و ' لدينا ولدينا OM = AM ومنه ' OM = BM وهذا يعنى أن ' M تنتمى لمحور القطعة [OB].

وعليه صورة (E) بالدوران r هي محور القطعة [OB].

التمرین الثالث: f تغیر الدالة f.

$$f'(x) = \frac{4(x+1)-4x-1}{(x+1)^2} = \frac{3}{(x+1)^2}$$
 ولدينا $f'(x) = \frac{4(x+1)-4x-1}{(x+1)^2}$ ولدينا والدالة $f'(x) = \frac{4(x+1)-4x-1}{(x+1)^2}$

من أجل كل عدد حقيقي x من المجال $[0;+\infty]$ لدينا $[0;+\infty]$ وبالتالي الدالة f متزايدة تماما على $[0;+\infty]$.

(D) دراسة وضعية (C_f) بالنسبة إلى المستقيم (2

 $[0;+\infty]$ عددا حقيقيا من المجال عددا

الحل المفصل لموضوع الرياضيات بكالوريا علوم تجريبية 2015

$$f(x) - x = \frac{4x+1}{x+1} - x = \frac{4x+1-x^2-x}{x+1} = \frac{-x^2+3x+1}{(x+1)^2} = \frac{\left(-x + \frac{3+\sqrt{13}}{2}\right)\left(x + \frac{-3+\sqrt{13}}{2}\right)}{x+1}$$

من أجل كل عدد حقيقي
$$x$$
 من المجال $f(x)-x$ من المجال $f(x)-x$ من أجل كل عدد حقيقي x من المجال $f(x)-x$ مثل إشارة

$$\left(-x + \frac{3 + \sqrt{13}}{2}\right)$$

$$egin{array}{c|ccccc} x & 0 & \dfrac{3+\sqrt{13}}{2} & +\infty \\ \hline f(x)-x & + & 0 & - \\ \hline (D) & (C_f) & (D) & (C_f) \\ \hline (D) & (C_f) & (D) & (C_f) \\ \hline (D) & (D) & (D) & (D) & (D) \\ \hline (D) & (D) & (D) & (D) \\ \hline (D) & (D) & (D) & (D) & (D) \\ \hline (D) & (D) & (D) \\ \hline (D) & (D) & (D) & (D) \\ \hline (D) & (D) & (D) & (D) \\ \hline (D) & (D) & (D) & (D) \\ \hline (D) & (D) & (D) & (D) \\ \hline ($$

$$\begin{cases} v_0 = 5 \\ v_{n+1} = f(v_n) \end{cases}$$
 و $\begin{cases} u_0 = 2 \\ u_{n+1} = f(u_n) \end{cases}$ المعرفتين كما يلي: (II) نعتبر المتتاليتين $\begin{cases} u_0 = 5 \\ u_{n+1} = f(u_n) \end{cases}$

 $.v_{3}$ و v_{2} ، v_{1} ، v_{0} ، u_{3} ، u_{2} ، u_{1} ، u_{0} المحدود والفواصل الحدود (1

 (v_n) و (u_n) ب (u_n) بخمین اتجاه تغیر وتقارب کل من المتتالیتین

 $\frac{3+\sqrt{13}}{2}$ حسب الشكل يبدو أن المتتالية (u_n) متزايدة و (v_n) متزايدة و (u_n) متزايدة عند المتعالية المتعالية المتتالية المتالية المتتالية المتالية المتتالية المتالية المتتالية المتالية المتتالية المتالية المتالية

. $\alpha < v_n \le 5$ و $2 \le u_n < \alpha$ ، n عدد طبيعي (1) (2) أيثبات أنه من أجل كل عدد طبيعي

n=0 لدينا $2 \le u_0 < \alpha$ لدينا

 $.\,2 \leq u_{n+1} < \alpha$ نفرض أن $\alpha \leq u_{n+1} < \alpha$ من أجل عدد طبيعي α ونبر هن صحة الخاصية

. $[0;+\infty[$ معناه على المجال f (2) f (2) f (u_n) f (α) معناه $2 \le u_n < \alpha$

 $2 \le u_{n+1} < \alpha$ بما أن $u_{n+1} < \alpha$ و $u_{n+1} < \alpha$ إذن $u_{n+1} = f(u_n)$ بما أن $u_{n+1} = f(u_n)$ و $u_{n+1} = f(u_n)$ و منه حسب مبدأ الاستدلال بالتراجع يكون من أجل عدد طبيعي $u_{n+1} = f(u_n)$.

وكذلك لدينا $\alpha < v_0 \le 5$ ومنه الخاصية صحيحة من أجل $\alpha < v_0 \le 5$

 $\alpha < v_{n+1} \le 5$ من أجل عدد طبيعي α ونبر هن صحة الخاصية $\alpha < v_n \le 5$ نفرض

. $[0;+\infty[$ معناه $\alpha< v_n\leq f$ لأن الدالة $\alpha< v_n\leq f$ لأن الدالة متزايدة تماما على المجال $\alpha< v_n\leq 5$

. $\alpha < v_{n+1} \le 5$ این $\alpha < u_{n+1} \le \frac{7}{2}$ این $f(5) = \frac{7}{2}$ و $f(\alpha) = \alpha$ این $v_{n+1} = f(v_n)$ این $v_{n+1} = f(v_n)$ بما أن $v_{n+1} = f(v_n)$ این $v_{n+1} = f(v_n)$ بما أن $v_{n+1} = f(v_n)$

. $\alpha < v_n \le 5$ ، n عدد طبیعي مبدأ الاستدلال بالتراجع یکون من أجل عدد طبیعي

الحل المفصّل لموضوع الرياضيات بكالوريا علوم تجريبية 2015 ب) استنتاج اتجاه تغيّر المتتاليتين (v_n) و (v_n) .

f(x)-x>0 دينا من أجل كل عدد حقيقي x من المجال g(x)-x>0 ، لدينا من أجل كل عدد طبيعي متزايدة. u_n فإن $u_n>0$ فإن $u_n>0$ أي $f\left(u_n\right)-u_n>0$ فإن $2\leq u_n<\alpha$

ومن أجل كل عدد حقيقي x من المجال $lpha;+\infty$ لدينا $lpha;+\infty$ وبما أنه من أجل كل عدد طبيعي lpha

متناقصة. (v_n) فإن $(v_n) - v_n < 0$ أي $(v_n) - v_n < 0$ وعليه المتتالية $(v_n) - v_n < 0$ فإن $(v_n) - v_n < 0$

 $v_{n+1} - u_{n+1} \le \frac{1}{3} (v_n - u_n)$ ، n عند طبيعي () (3

 $v_{n+1} - u_{n+1} = \frac{4v_n + 1}{v_n + 1} - \frac{4u_n + 1}{u_n + 1} = \frac{4v_n u_n + 4v_n + u_n + 1 - 4v_n u_n - v_n - 4u_n - 1}{(v_n + 1)(u_n + 1)}$

 $v_{n+1} - u_{n+1} = \frac{3v_n - 3u_n}{(v_n + 1)(u_n + 1)} = \frac{3(v_n - u_n)}{(v_n + 1)(u_n + 1)}$

 $v_n+1 \geq 3$ معناه $\alpha < v_n \leq 5$ لأن $v_n \geq 2$ و $u_n+1 \geq 3$ معناه $u_n \geq 2$ ، $u_n \geq 2$ معناه کل عدد طبیعي

 $|v_n>u_n|$ ، $|v_n>u_n|$ یکافئ $|v_n>u_n|$ یکافئ $|v_n>u_n|$ یکافئ $|v_n>u_n|$ یکافئ $|v_n>u_n|$ یکافئ $|v_n>u_n|$ یکافئ $|v_n>u_n|$

 $v_{n+1} - u_{n+1} \le \frac{1}{3} (v_n - u_n)$ فإنّ $\frac{3(v_n - u_n)}{(v_n + 1)(u_n + 1)} \le \frac{1}{3} (v_n - u_n)$ فإنّ

 $0 < v_n - u_n < \left(\frac{1}{3}\right)^{n-1}$, n set description with n is a set of n and n is a set of n.

 $v_0 - u_0 \le \left(\frac{1}{3}\right)^{0-1}$ و منه الخاصية صحيحة من أجل $v_0 - u_0 \le \left(\frac{1}{3}\right)^{0-1}$ الدينا

 $v_{n+1} - u_{n+1} < \left(\frac{1}{3}\right)^n$ نفرض أنّ $v_{n+1} - u_{n+1} < \left(\frac{1}{3}\right)^{n+1-1}$ نفرض أنّ $v_n - u_n < \left(\frac{1}{3}\right)^{n-1}$ نفرض أنّ

لدينا السابق $\frac{1}{3}(v_n - u_n) < \left(\frac{1}{3}\right)^n$ السابق $\frac{1}{3}(v_n - u_n) < \frac{1}{3}\left(\frac{1}{3}\right)^{n-1}$ السابق السابق

 $v_{n+1} - u_{n+1} < \left(\frac{1}{3}\right)^n$ من أجل كل عدد طبيعي n ، n $v_{n+1} - u_{n+1} \le \frac{1}{3}(v_n - u_n)$ ، n عدد طبيعي

 $v_n - u_n < \left(\frac{1}{3}\right)^{n-1}$ ، n وعليه من أجل كل عدد طبيعي

 $v_n - u_n > 0$ و أ $v_n > u_n$ و من جهة أخرى لدينا من أجل كل عدد طُبيعي $u_n < \alpha$ ، n و من جهة أخرى لدينا من أجل كل عدد طُبيعي

 $0 < v_n - u_n < \left(\frac{1}{3}\right)^{n-1}$: من أجل كل عدد طبيعي أ : $n < v_n - u_n$

 $\lim_{n\to+\infty} (v_n - u_n) = 0$ في استنتاج أن

. $\lim_{n\to +\infty} (v_n-u_n)=0$ ان $\lim_{n\to +\infty} (v_n-u_n)=0$ حسب النهايات بالمقارنة نستنتج أن $\lim_{n\to +\infty} (v_n-u_n)=0$

الحل المفصّل لموضوع الرياضيات بكالوريا علوم تجريبية 2015 تحديد نهاية كل من (u_n) و (u_n) .

لدينا المتتالية (u_n) متزايدة والمتتالية (v_n) متناقصة و (v_n) متناقصة و المتتالية (u_n) متجاورتان فهما متقاربتان ولهما نفس النهاية ℓ

.
$$\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}v_n=\frac{3+\sqrt{13}}{2}$$
 و وحسب ماسبق $\ell=\frac{3+\sqrt{13}}{2}$

التمرين الرابع:

$$g(x) = 1 - 2x - e^{2x-2}$$
 بـ \mathbb{R} بـ والدالة المعرفة على $g(I)$

1) دراسة اتجاه تغيّر الدالة و.

. $g'(x) = -2 - 2e^{2x-2} = -2(1+e^{2x-2})$ الدالة g تقبل الاشتقاق على $\mathbb R$ ولدينا

من أجل كل عدد حقيقي x لدينا g'(x) < 0 ومنه الدالة g متناقصة تماما على \mathbb{R} .

 \mathbb{R} في α تبيين أن المعادلة g(x) = 0 تقبل حلا وحيدا (2

 $\lim_{x \to \infty} g(x) = \lim_{x \to \infty} 1 - 2x - e^{2x-2} = +\infty$ لدينا

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} 1 - 2x - e^{2x-2} = \lim_{x \to +\infty} (2x - 2) \left(\frac{1 - 2x}{2x - 2} - \frac{e^{2x-2}}{2x - 2} \right) = -\infty$$

ومنه الدالة ho مستمرة ومتناقصة تماما على ho وتأخذ قيمها في ho إذن من أجل كل عدد حقيقي k المعادلة \mathbb{R} . \mathbb{R} قبل حلا وحيدا في \mathbb{R} وبالأخص المعادلة g(x)=0 تقبل حلا وحيدا في \mathbb{R}

 $0.36 < \alpha < 0.37$ التحقق أنّ

 $0.036 < \alpha < 0.37$ ومنه $g(0.36) \times g(0.37) < 0$ يانن $g(0.37) \approx -0.02$ ومنه $g(0.36) \approx 0.002$

 \mathbb{R} استنتاج إشارة g(x) على (3

 \mathbb{R} لدينا الدالة g متناقصة تماما على

g(x) > 0 اَي $g(x) > g(\alpha)$ فإن $x < \alpha$

 $g\left(lpha
ight)=0$ اِذَا کَان lpha>lpha فإن $g\left(lpha
ight)< g\left(lpha
ight)$ أي $g\left(lpha
ight)< g\left(lpha
ight)$ ؛ کما أنّ

 $f(x) = xe^{2x+2} - x + 1$ بالدالة العددية المعرفة على $f(x) = xe^{2x+2} - x + 1$

 $f'(x) = e^{2x+2}g(-x)$ أي تبيين أنّ (1)

$$f'(x) = e^{2x+2} + 2xe^{2x+2} - 1 = e^{2x+2} \left(1 + 2x - e^{-2x-2}\right) = e^{2x+2}g(-x)$$

g(-x) ب) إشارة f'(x) مثل إشارة

f'(x) < 0 أي g(-x) < 0 ومنه $-x > \alpha$ فإن $x < -\alpha$ إذا كان

f'(x) > 0 أي g(-x) > 0 ومنه $-x < \alpha$ فإن $x > -\alpha$ إذا كان

وبالتالي الدالة g متناقصة تماما على $-\infty; -\alpha$ ومتزايدة تماما على $-\alpha; +\infty$ وبالتالي الدالة ومتزايدة تماما على

 $-\infty$ و $+\infty$ عند $+\infty$ و $+\infty$ (2

.
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} xe^{2x+2} - x + 1 = +\infty$$
 ومنه $\lim_{x \to -\infty} xe^{2x+2} = \lim_{x \to -\infty} \frac{1}{2}e^2 \times 2xe^{2x} = 0$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \left(e^{2x+2} - 1 + \frac{1}{x} \right) = +\infty$$

الحل المفصل لموضوع الرياضيات بكالوريا علوم تجريبية 2015 حده ل تغدّ ات الدالة ع

		•	<u>., </u>	<u> حير '</u>		
x	8		$-\alpha$		8	
f'(x)		_	0	+		
f(x)	+8/				∡ +	
	$f(-\alpha)$					

 $\lim_{x\to\infty} \left[f(x) + x - 1 \right] \xrightarrow{\text{(3)}}$

$$\lim_{x \to -\infty} [f(x) + x - 1] = \lim_{x \to -\infty} xe^{2x+2} = \lim_{x \to -\infty} \frac{1}{2}e^2 \times 2xe^{2x} = 0$$

y=-x+1 بحوار مستقیم مقارب مائل معادلته y=-x+1 بحوار

. (Δ) دراسة وضعية المنحنى (C_f) بالنسبة إلى المستقيم (4

 $e^{2x+2} > 0$ هي نفس إشارة f(x) + x - 1 ومنه إشارة $e^{2x+2} > 0$ هي نفس إشارة $f(x) + x - 1 = xe^{2x+2}$

 $\overline{(C_f)}$ و $\overline{(\Delta)}$ انشاء $\overline{(\Delta)}$

