PLAQUE PICKER Example

Load needed libraries

```
suppressPackageStartupMessages({
  library(PlaquePicker)
  library(MALDIquant)
                             # general MS functions
  library(MALDIquantForeign) # for import of imzML data
  library(tidyverse)
                             # general data science tools
  # for the plotting of Venn-Diagrams we will be using the package Vennerable
  # which is not in the CRAN repository and has some dependencies to the
  # BioConductor repository. To install Vennerable and its dependencies
  # use the following commands:
  # if (!requireNamespace("BiocManager", quietly = TRUE))
        install.packages("BiocManager")
  # BiocManager::install(version = "3.11")
  # BiocManager::install("RBGL")
  # BiocManager::install("graph")
  # devtools::install_github("js229/Vennerable")
  library(Vennerable)})
```

This package comes with a preprared set of ion images that can directly be used by the plaquePicker-function. Nevertheless, here we show how we prepared this example data:

Preprocess spectra using MALDIquant functions: Normalize, smooth, remove baseline. Compute average spectrum and plot it to get an overview of the dataset.

We observe a strong peak at m/z 4059 (Ab1-38Arc), and two smaller peaks at m/z 4159 (Ab1-39Arc) and 4442 (Ab1-42Arc). Note that as we computed the average spectrum for all spectra and the Abeta signals are only found in a small subset of spectra, this leads to underrepesentation of the signals in the average spectrum. Also, because of the lower resolution of the example data set, the peak maxima shifted slightly in comparision to those reported in the publication.

Next we extract ion images of interest.

When we take a look at these ion images we can observe distinct accumulations of Abeta as plaques. Ab1-

38Arc and Ab1-39Arc are highly co-localized wheras Ab1-42Arc seems to also accumulate at other locations then the other two masses. Note that we applied quantile correction to the 99.95%-quantile to remove hotspots for better visualization. As mentioned above, the signals of interest are only found in a small subset of spectra (-> sparse-signals).

```
par(mfrow = c(1, 3), mar = c(0,0,0,0))
image(qcor(ionImages[,,1], 0.9995),
      col = viridis::cividis(30),
      asp = 1,
      axes = FALSE)
title("Ab1-38Arc", line = -2)
image(qcor(ionImages[,,2], 0.9995),
      col = viridis::cividis(30),
      asp = 1,
      axes = FALSE)
title("Ab1-39Arc", line = -2)
image(qcor(ionImages[,,3], 0.9995),
      col = viridis::cividis(30),
      asp = 1,
      axes = FALSE)
title("Ab1-42Arc", line = -2)
```

Ab1-38Arc Ab1-39Arc Ab1-42Arc

Next we take a look at the histogram of intensities for Ab1-38Arc. We observe a unimodal distribution. Most of the pixels have a intensity at the level of noise and there are only a few above that. We use the tpoint method to find a threshold.

```
hist(ionImages[,,1],
    breaks = 300,
    xlab = "Intensity [a.u.]",
    main = "Histogram of Ab1-38Arc intensity")
thresh_Ab38 <- tpoint(ionImages[,,1])
abline(v=thresh_Ab38,</pre>
```


If we apply this threshold to the corresponding ion image we get a binized image.

```
bin <- ifelse(test = thresh_Ab38 < as.vector(ionImages[,,1]),</pre>
              yes = 1,
              no = ifelse(is.na(as.vector(ionImages[,,1])),
                           yes = NA,
                           no = 0))
# rebuild the matrix
binMat <- matrix(bin,</pre>
                 nrow = dim(ionImages[,,1])[1],
                 ncol = dim(ionImages[,,1])[2])
par(mfrow = c(1, 2), mar = c(0,0,0,0))
image(qcor(ionImages[,,1], 0.9999),
      col = viridis::cividis(30),
      asp = 1,
      axes = FALSE)
title("Ab1-38Arc intensities", line = -1)
image(binMat,
      col = c("black", "white"),
      asp = 1,
      axes = FALSE)
title("Ab1-38Arc binarized", line = -1)
```


Using this image we could apply raster::clump to perform connected component labeling and assign each individual plaque an ID. Or we could first compute the binary pictures of all ion images of interest, combine them and then apply connected component labeling. Following the same principle as shown above we now apply the plaquePicker-function to the ion images. In addition to the ion images this function also needs the coordinates of the dataset so we have to also extract them.

```
##
## threshold of mz 4059 based on t-point thresholding = 0.0285
## Loading required namespace: igraph
## extracting clump information...
##
## threshold of mz 4160 based on t-point thresholding = 0.02185
## extracting clump information...
##
## threshold of mz 4442 based on t-point thresholding = 0.0217
## extracting clump information...
## extracting unified clump information...
```

Now that we have the dataset structed in a way suitable for single-object analysis we can perform some basic tasks. For example, lets take all spectra assosiated with Abeta signals and caluclate an average spectrum of plaques and compare it to the average spectrum of the whole dataset we computed above.

```
plaqueAvg <- averageMassSpectra(spec[unlist(pp$unified$spectraIdx)])
# shorten filepath (for plotting reasons only)
plaqueAvg@metaData$file <- basename(plaqueAvg@metaData$file)

plot(plaqueAvg,
    ylab = "Intensity [a.u.]")</pre>
```


In addition to the unified results, the pp object has an entry containing the spectra indices of each individual object. Using the unified connected component labeled matrix (uniComp) in conjunction with the binary images for each ion image of interest we extract the plaques that co-localize with each other. This enables as to assess the plaques regarding their composition.

```
# extract matrix of unified plaque IDs
unified <- pp$unified$uniComp</pre>
# get mzValues of IonImages
mzVal <- attr(ionImages, "center")</pre>
PlaqueIDs_venn <- vector("list",
                           length = length(mzVal))
for(i in 1:length(mzVal)) {
  PlaqueIDs_venn[[i]] <- pp[[i]]$binMat * unified</pre>
  PlaqueIDs_venn[[i]] <- PlaqueIDs_venn[[i]] %>%
    as.vector() %>%
    unique() %>%
    na.omit() %>%
    sort() %>%
    .[-1]
}
names(PlaqueIDs_venn) <- c("Ab1-38Arc",</pre>
                             "Ab1-39Arc",
```

```
"Ab1-42Arc")
```

We can use this data to analysis the general qualitative composition of plaques using a venn diagramm. Instead of using the number of plaques as labels we could also use relative values:

```
v <- Venn(PlaqueIDs_venn)
plot(v)</pre>
```



```
# calculate relative values
v_rel <- v
v_rel@IndicatorWeight[,4] <-
   round(v_rel@IndicatorWeight[,4]/sum(v_rel@IndicatorWeight[,4]),3) * 100
plot(v_rel)</pre>
```


Now we can quantify the visual impression we had when we took a look at the ion images above: Ab1-38Arc and Ab1-39Arc are highly co-localized but there is also a large number of plaques composed only of Ab1-38Arc. Also for Ab1-42 we find a large population that is only composed of Ab1-42Arc.

sessionInfo()

```
## R version 3.6.3 (2020-02-29)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 18363)
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=German_Germany.1252 LC_CTYPE=German_Germany.1252
## [3] LC_MONETARY=German_Germany.1252 LC_NUMERIC=C
  [5] LC_TIME=German_Germany.1252
## attached base packages:
##
  [1] stats
                 graphics grDevices utils
                                                datasets
                                                          methods
                                                                    base
##
## other attached packages:
    [1] Vennerable_3.1.0.9000 forcats_0.5.0
##
                                                       stringr_1.4.0
##
   [4] dplyr_0.8.5
                               purrr_0.3.3
                                                       readr_1.3.1
   [7] tidyr_1.0.2
                               tibble_2.1.3
                                                       ggplot2_3.3.0
## [10] tidyverse_1.3.0
                               MALDIquantForeign_0.12 MALDIquant_1.99.1
##
   [13] PlaquePicker_0.1.0
##
## loaded via a namespace (and not attached):
   [1] viridis_0.5.1
                                 httr_1.4.1
                                                           jsonlite_1.6.1
    [4] viridisLite_0.3.0
                                 modelr_0.1.6
                                                           assertthat_0.2.1
##
   [7] sp_1.4-1
                                 stats4_3.6.3
                                                           RBGL_1.62.1
## [10] cellranger_1.1.0
                                 yaml_2.2.1
                                                           pillar_1.4.3
## [13] backports_1.1.5
                                 lattice_0.20-40
                                                           glue_1.3.2
```

##	[16]	digest_0.6.25	RColorBrewer_1.1-2	rvest_0.3.5
##	[19]	colorspace_1.4-1	htmltools_0.4.0	plyr_1.8.6
##	[22]	XML_3.99-0.3	pkgconfig_2.0.3	broom_0.5.5
##	[25]	raster_3.0-12	haven_2.2.0	scales_1.1.0
##	[28]	generics_0.0.2	withr_2.1.2	BiocGenerics_0.32.0
##	[31]	cli_2.0.2	magrittr_1.5	crayon_1.3.4
##	[34]	readxl_1.3.1	evaluate_0.14	fs_1.3.2
##	[37]	fansi_0.4.1	nlme_3.1-145	xml2_1.2.5
##	[40]	graph_1.64.0	tools_3.6.3	hms_0.5.3
##	[43]	lifecycle_0.2.0	munsell_0.5.0	reprex_0.3.0
##	[46]	compiler_3.6.3	rlang_0.4.5	grid_3.6.3
##	[49]	rstudioapi_0.11	igraph_1.2.4.2	base64enc_0.1-3
##	[52]	rmarkdown_2.1	codetools_0.2-16	gtable_0.3.0
##	[55]	DBI_1.1.0	reshape2_1.4.3	R6_2.4.1
##	[58]	gridExtra_2.3	lubridate_1.7.4	knitr_1.28
##	[61]	stringi_1.4.6	readMzXmlData_2.8.1	parallel_3.6.3
##	[64]	Rcpp_1.0.3	vctrs_0.2.4	<pre>readBrukerFlexData_1.8.5</pre>
##	[67]	dbplyr_1.4.2	tidyselect_1.0.0	xfun_0.12