

Ubuntu Server 从入门到精通

苑房弘 fanghong.yuan@163.com

第四章:存储管理

存储

对存储空间的需求永无止境

- 硬盘是计算机中最主要的存储设备
- 传统磁盘分区与逻辑卷管理
- 事前合理规划很重要
- 对磁盘的所有操作都要小心小心再小心

磁盘空间用量

我的硬盘是不是快满了

- df -h
 - 文件系统
 - 存储空间
 - 使用量
 - 可用量
 - 使用率
 - 挂载点
- df -i

查看文件目录大小

是谁拿走了我的存储空间

- sudo du -h
- sudo du -hcs *
 - s:摘要
 - c:汇总
- sudo apt install ncdu
- ncdu

添加硬盘

扩充存储容量

- 磁盘设备名称
 - /dev/sda、/dev/xdb、/dev/vdc
- 硬盘分区
 - sudo fdisk -l
 - Isblk
- 文件系统格式
 - Ext4、XFS(适用于大空间、多文件、数据库)
- 挂载
 - /etc/fstab 自动挂载

....

硬盘分区

做好空间规划

- sudo fdisk /dev/sdb
 - m 帮助菜单
 - MBR分区
 - 传统分区格式、最大四个主分区、2T容量限制
 - GPT分区
 - 未来标准、128个分区、无容量限制、推荐使用

格式化分区

按照应用特性选择

- sudo mkfs.ext4 /dev/sdb1
- sudo mkfs.xfs /dev/sdb1

挂载分区

绑定访问路径

- /mnt 、/media
- mount /dev/sdb1 /mnt/db
- mount /dev/sdb1 -t ext4 /mnt/db
- umount /mnt/db

绑定访问路径

....

- 自动挂载 /etc/fstab
 - 第一列:设备ID #分区UUID、设备名也可,推荐选择终唯一ID
 - 第二列:挂载点 #swap无需挂载(none)
 - 第三列: 文件系统 # ext4 、swap
 - 第四列:options # defaults:rw、exec、auto、nouser、asynchronous
 - 第五列:dump #用于备份工具识别, 1 备份、0 不备
 - 第六列:pass#FS错误时fsck是否检查错误, 0 不查、1 优先、2 后查)
 - UUID=e51bcc9e-45dd-45c7 /mnt/ext_disk ext4 rw,noauto 0 0
- Isblk -fP , blkid
- mount -a

Swap管理

可能是你的救命稻草

- 关于swap的争论
 - 需要、不需要(Raspberry Pi)
 - 大小多少才合理(2-16G)
 - Swap分区、swap文件
- 理想状态下应该无事可做的swap
 - 大量的swap空间使用意味着服务器已疲于奔命
 - free-m查看内存及swap的
- 某些云主机默认没有swap

Swap管理

可能是你的救命稻草

- Swap文件
 - sudo fallocate -l 2G /swaptest
 - sudo mkswap /swaptest 记下UUID
 - sudo chmod 0600 /swaptest
 - sudo vi /etc/fstab
 - /swaptest none swap sw 0 0
 - swapon -a / swapoff -a

Swap管理

可能是你的救命稻草

• Swap分区

- fdisk /dev/sdb
- 新建主分区, t 修改分区表类型为 82, w 保存退出
- sudo mkswap /dev/sdb1
- sudo vi /etc/fstab
 - UUID=8d773e13-01 none swap sw 0 0
- swapon -a / swapoff -a

一项值得感谢的技术

- 无须重启计算机灵活调整硬盘空间大小
 - 硬盘分区太大浪费, 太小无法满足业务发展需要
 - 将传统的硬盘分区逻辑的组合为资源池,按需分配
- 概念
 - Volume Groups(池化)
 - Physical Volumes
 - Logical Volumes(基本分区、RAID)
- 安装包
 - sudo apt install lvm2

一项值得感谢的技术

• 物理卷

- sudo pvcreate /dev/sdb 创建物理卷
- sudo pvdisplay 查看物理卷
- pvscan / pvs

• 卷组

- sudo vgcreate vg01 /dev/sdb
- sudo vgextend vg01 /dev/sdc /dev/sdd
- vgscan / vgs

一项值得感谢的技术

• 逻辑卷

- sudo lvcreate -n lv01 -L 1G vg01
 - sudo lvdisplay
 - sudo lvscan / lvs
- sudo mkfs.ext4 /dev/vg01/lv01
 - sudo mount /dev/vg01/lv01 /mnt/lv01
 - df -h
- sudo lvextend /dev/vg01/lv01 -l +256 # 增加256个PE(无+表示最终值)
- sudo lvextend /dev/vg01/lv01 -l +10%FREE # 曾加剩余空间的10%
- sudo lvextend /dev/vg01/lv01 -L +1G
- sudo resize2fs /dev/vg01/lv01

一项值得感谢的技术

- 逻辑卷缩小
 - umount /dev/vg01/lv01 #必须下线
 - e2fsck -f /dev/vg01/lv01 # 检查文件系统
 - resize2fs /dev/vg01/lv01 1G #缩小文件系统
 - Ivresize /dev/vg01/lv01 -L 1G # 缩小逻辑卷
 - 重新挂载查看

- 一项值得感谢的技术
- 快照(snapshot)
 - 故障时可回退
 - 临时机制,不可视为备份
 - 本地保存, 安全性无法保证
 - 系统根目录使用快照可用于测试补丁更新
 - 测试完成合并并删除快照
 - 创建快照等同创建一个新的LV
 - 初始不占空间, 但文件发生修改时原块数据被拷贝到快照LV中
 - 回退时将快照中原始数据覆盖当前快照已被修改的 块

一项值得感谢的技术

- 快照(snapshot)
 - sudo lvcreate -s -n s01 -L 2G vg01/lv01 创建快照
 - 快照LV可被直接挂载,用于恢复单个文件
- 恢复快照(恢复后快照被删除)
 - sudo lvconvert --merge vg01/s01
 - sudo umount /mnt/lv01
 - sudo lvchange -an vg01/lv01
 - sudo lvchange -ay vg01/lv01
 - sudo mount /dev/vg01/lv01 /mnt/lv01

一项值得感谢的技术

- 移动物理卷数据
 - 当磁盘性能或老旧等因素需要更换硬盘, 提前转移其中数据
 - sudo pvmove -n lv1 /dev/sdb /dev/sdc -i 1 # 每1秒刷新进度

RAID管理

与LVM结合将达到完美

- 软RAID基于mdadm驱动实现
 - sudo apt install mdadm
 - sudo mdadm -C -v /dev/md0 -l1 -n2 /dev/sdb /dev/sdc -z100M -x1 /dev/sdd
 - -C 创建
 - -v 详细信息
 - -I RAID类型(0、1、5、6、10)
 - -n RAID盘数量
 - · -z 从每个硬盘占用多少空间创建RAID
 - -x Spare盘

....

RAID管理

与LVM结合将达到完美

• 常用管理命令

– watch -n1 cat /proc/mdstat

sudo mdadm -D /dev/md0

sudo mdadm -E /dev/sda

sudo mdadm -r /dev/md0 /dev/sda

sudo mdadm -a /dev/md0 /dev/sda

sudo mdadm -A /dev/md0

sudo mdadm -f /dev/md0 /dev/sdb

sudo mdadm --re-add /dev/md0 /dev/sbc

查RAID盘状态

查物理盘状态

删除物理硬盘

增加物理硬盘

将磁盘置为失效

回复阵列内磁盘

RAID管理

与LVM结合将达到完美

- 替换硬盘后安装Grub
 - sudo grub-install /dev/md0
- 格式化和加载
 - sudo mkfs.ext4 /dev/md0

链接

....

硬链接不能跨设备

- 符号链接(软链接)和硬链接
 - Is -li
 - inode: 存放文件元数据的数据对象, 表现为一个数值编号
- 创建硬链接
 - In fileS fileD
 - 目录不能创建硬链接
 - 不能移动硬链接到不同分区(inode改变)
- 软链接
 - 不共用inode
 - In -s fileS fileD(相对路径和绝对路径)

数据保密

数据最值钱

• 清除所有数据

sudo dd if=/dev/zero of=/dev/sdc

• 磁盘加密

sudo apt-get install cryptsetup
安装软件包

- sudo cryptsetup luksFormat /dev/sdc1 加密分区(需提前分区)

sudo cryptsetup luksOpen /dev/sdc1 crypt1
打开加密分区(随意命名)

- sudo mkfs.ext4 /dev/mapper/crypt1 格式化加密分区

- sudo mount /dev/mapper/crypt1 /mnt/crypt1 挂载加密分区

- sudo chown yuanfh:yuanfh /mnt/crypt1 更改所有者

sudo cryptsetup luksClose crypt1 关闭加密分区(umount先)

Questions?

