Química Tabela e propriedades periódicas

Prof. Diego J. Raposo UPE – Poli 2025.2

Introdução

- A tabela periódica sistematiza padrões de propriedades físicas e químicas dos seus 118 elementos;
- Muito desses padrões remetem diretamente às configurações eletrônicas dos mesmos.

Ordenamento: átomos de cada elemento são ordenados em ordem crescente de Z, da esquerda para a

direita:

Períodos (linhas)

Indicam n de camada mais externa. Quando fecham 2 elétrons na camada K, ou 8 elétrons nas outras camadas, passa para a linha seguinte.

Camada

Note que assim que são completados 8 elétrons na camada mais externa, passa-se para outra linha

- Indicam qual é o subnível mais energético (logo seu valor de l).
- Se separarmos os orbitais com mesmo / (ou seja, s, p, d e f) e separarmos em colunas iguais:

1s											
		2s	3	2 p							
	3s	5	3p)							
			30		4	р					
	5	S	40	d	5	р					
	6s	41	f	50	ł	6р					
	7s	5 1	f	60	l	7р					

- Indicam qual é o subnível mais energético (logo seu valor de /).
- Se separarmos os orbitais com mesmo I (ou seja, s, p, d e f) e separarmos em colunas iguais:

1s			1s
2s			2p
3s			3р
4s		3d	4p
5s		4d	5p
6s	4f	5d	6р
7s	5f	6d	7p

- Indicam qual é o subnível mais energético (logo seu valor de *l*).
- Se separarmos os orbitais com mesmo I (ou seja, s, p, d e f) e separarmos em colunas iguais:

Embora o H e o He possam ser colocados no bloco s (acima do Li e do Be respectivamente), suas propriedades os mantém fora desses blocos. O hidrogênio é separado por possuir propriedades de diferentes grupos, e o hélio é um gás nobre. Eles são anômalos porque ambos tem seus elétrons na camada que possui menos elétrons que as outras, abaixo dos 8 necessários para a estabilidade: a camada K

• Essa forma da tabela reflete a sequência de preenchimento dos orbitais segundo a regra de Bohr:

Tabela na ordem do preenchimento dos blocos

• A forma condensada é a mais popular: o bloco f é removido para baixo da tabela.

Colunas

- As colunas/grupos refletem quantos elétrons há no subnível mais energético;
- Como elementos de uma coluna possuem propriedades físicas e químicas similares, são tipicamente chamadas de famílias;
- As colunas são numeradas de 1 a 18.
- Metais possuem propriedades similares, mesmo em colunas diferentes. São eles os metais de transição externa (bloco d) e interna (bloco f).

Note que no bloco p: número de elétrons no subnível mais energético = n° do grupo -12 (devido ao preenchimento dos orbitais s e d previamente realizado: 2 + 10)

Note que no bloco d: número de elétrons no subnível mais energético = n° do grupo -2 (devido ao preenchimento do orbital s previamente realizado)

Colunas

- Algumas famílias têm nomes especiais, como os metais alcalinos ou os halogênios;
- Embora elementos de uma mesma coluna compartilhem muitas propriedades químicas, eles ainda são diferentes, pois as interações dos elétrons mais externos (que são em mesmo número numa família) mudam com o aumento de Z (de cima para baixo).
- Por isso o Cl é gás, o Br é líquido e o I é sólido em condições ambientes, por exemplo. Mas ambos formam sais com o Na da mesma forma: NaCl, NaBr e Nal.

Resumo

Posição de elemento na tabela

- A partir da configuração eletrônica de um átomo podemos determinar sua posição (linha e coluna) na tabela periódica. Basta avaliar os subníveis mais energético e mais externo.
- O contrário também é possível: dada a posição na tabela, a configuração eletrônica pode ser determinada (próximo slide).
- Algumas exceções a regra de Bohr existem em elementos dos blocos d e f. Mas não vamos lidar com esses casos e focar mais nos blocos s e p.

Da posição a configuração

1s²

[He]

- Podemos observar a posição de um elemento na tabela e determinar sua configuração eletrônica, seguindo a regra de Bohr até chegar aos subníveis mais energético e mais externo desejados;
- Com a configuração pode-se calcular o Z e o número de elétrons desemparelhados, por exemplo.

 4° Período: subnível mais externo com n = 4

Grupo 7: bloco d, subnível mais energético d⁵

Exercícios

1) Recorrendo a tabela periódica como guia, escreva *a*) o número atômico, *b*) a configuração condensada e *c*) determine o número de elétrons desemparelhados para o estado fundamental de:

```
a) Br (4.ª linha, coluna 17);
```

- **b)** Ga (4.a. linha, coluna 13);
- **c)** Bi (6.a. linha, coluna 15).
- 2) Localize os elementos na tabela periódica:
 - a) elementos com configuração eletrônica na camada de valência ns² np5;
 - **b)** elementos com três elétrons *n*p desemparelhados;
 - c) um elemento cujos elétrons de valência são 4s² 4p¹;
 - d) elementos do bloco d.

Elétrons de valência

- Como vimos, há dois tipos de elétrons:
 - Elétrons do caroço (configuração de gás nobre);
 - Elétrons de valência (todos os outros).
- A força de atração entre elétrons de valência e o núcleo determina muitas das propriedades dos elementos, inclusive o grau e o tipo de reatividade;
- Sendo uma força eletrostática, ela depende de dois fatores:
 - Da distância média dos elétrons de valência ao núcleo;
 - Da carga que efetivamente os elétrons de valência sentem ao interagir com o núcleo.
- Através desses dois fatores também podemos entender e fazer previsões com os padrões evidenciados pela tabela periódica: as chamadas propriedades periódicas.

Carga nuclear efetiva

• Em átomos com um elétron a energia só depende de n e de Z, o número de prótons (cargas positivas) no núcleo:

$$E = -\frac{13,6 \text{ eV}}{n^2} Z^2 \xrightarrow{Z=1} E = -\frac{13,6 \text{ eV}}{n^2}$$

$$Z_{\rm ef} = Z - S$$

A energia desse elétron depende agora deste Z_{ef} :

$$E = -\frac{13,6 \text{ eV}}{n^2} Z_{\text{ef}}^2$$

Carga nuclear efetiva

- Essa blindagem se deve a penetração de subníveis em um mesmo nível, e a elétrons em orbitais com menor energia que a do elétron no orbital mais distante;
- Elétrons do caroço (C) blindam fortemente o núcleo dos elétrons de valência (V). Em certo nível de aproximação podemos dizer que a carga nuclear, para os elétrons de valência, é subtraída da carga dos elétrons do caroço: ou seja, equivale a um átomo hidrogenóide (de um elétron) com carga nuclear Z_{ef} ao invés de Z:

$$Z_{\rm ef} \cong Z - C$$

Carga nuclear efetiva

Configurações eletrônicas de íons

Para adquirir configuração eletrônica de gás nobre, alguns elementos tendem a perder ou ganhar elétrons,
 dependendo do que é mais fácil:

Ametais: tendência a formar *ânions* (elétrons acrescentados no subnível + energético)

Metais: tendência a formar *cátions* (elétrons retirados do subnível + externo)

Propriedades periódicas

Propriedade não-periódica:

independe do período

Propriedade periódica:

depende do período

- Obtido a partir da distância entre os núcleos, a depender da presença de ligação entre eles, e do tipo de ligação.
- Átomos neutros:
 - a) N\(\tilde{a}\) o ligados (gases nobres): raios de van der Waals;
 - b) Ligados:
 - Covalente;
 - Metálico.

$$r_{\rm cov} < r_{
m met} < r_{
m vdw}$$

- Obtido a partir da distância entre os núcleos, a depender da presença de ligação entre eles, e do tipo de ligação.
- <u>Íons:</u>
 - a) Ligados:
 - Iônico.

• <u>Periodicidade:</u> diminui com o aumento da força entre elétron

• <u>Periodicidade:</u> diminui com o aumento da força entre elétron

Figure 7.9 Ionic Radii (in Picometers) of the Most Common Oxidation States of the s-, p-, and d-Block Elements

Energia de ionização (/)

Energia para retirar elétrons do átomo na fase gasosa;

átomo
$$\longrightarrow$$
 cátion $+e^-$ ___ 1.ª energia de ionização

- Positiva;
- Associada a formação de cátions;
- Periodicidade: aumenta com a força.

TABLE 6-1 First Ionization Energies (kJ/mol of atoms) of Some Elements

Н																	Не
1312																	2372
Li	Be											В	C	N	O	F	Ne
520	899											801	1086	1402	1314	1681	2081
Na	Mg											Al	Si	P	S	Cl	Ar
496	738											578	786	1012	1000	1251	1521
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
419	599	631	658	650	652	717	759	758	757	745	906	579	762	947	941	1140	1351
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
403	550	617	661	664	685	702	711	720	804	731	868	558	709	834	869	1008	1170
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
377	503	538	681	761	770	760	840	880	870	890	1007	589	715	703	812	890	1037

Afinidade eletrônica (A_e)

Energia associada a adição de um elétron a um átomo:

átomo
$$+e^{-} \longrightarrow \hat{a}nion$$

- Normalmente negativa (processo espontâneo), mas nem sempre: podem ser nula;
- Associada a formação de ânions;
- Periodicidade (aprox.): módulo aumenta com a força.

Figure 7.13 Electron Affinities (in kJ/mol) of the s-, p-, and d-Block Elements

	1																	18
1	H -72.8	2			≥0 kJ	/mol		13	14	15	16	17	He ≥0					
2	Li -59.6	Be ≥0		B C N O F -27.0 -121.8 ≥0 -141.0 -328.												F -328.2	Ne ≥0	
3	Na -52.9	Mg ≥0	3	Al Si P S Cl -41.8 -134.1 -72.0 -200.4 -348.6												Ar ≥0		
4	K -48.4	Ca –2.4	Sc –18	Ti -8	V -51	Cr -65.2	Mn ≥0	Fe -15	Co -64.0	Ni -111.7	Cu -119.2	Zn ≥0	Ga -40	Ge -118.9	As -78	Se -195.0	Br -324.5	Kr ≥0
5	Rb -46.9	Sr -5.0	Y -30	Zr -41	Nb -86	Mo -72.1	Tc -60	Ru -101.0	Rh -110.3	Pd -54.2	Ag -125.9	Cd ≥0	In -39	Sn -107.3	Sb -101.1	Te -190.2	I -295.2	Xe ≥0
6	Cs -45.5	Ba -14.0	La -45	Hf ≥0	Ta -31	W -79	Re -20	Os -104.0	Ir -150.9	Pt -205.0	Au -222.7	Hg ≥0	TI -37	Pb -35	Bi -90.9	Po -180	At -270	Rn ≥0
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
	Lanthanides				Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			Actinides 7	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Metais, não-metais e metaloides

Propriedades periódicas indicam comportamento de átomos. Grupos de átomos podem se comportar como metais, não-metais ou metaloides

Metais

- Brilho muitas vezes prateado;
- Bons condutores de eletricidade e calor;
- Maleáveis (folhas finas);
- Flexíveis (fios);
- Sólidos (pontos de fusão elevados);
- Energias de ionização baixas --> formam cátions;
- Metais + ametais = sal;
- Metal + O = óxido de metal; Perdem elétrons s
- Óxido de metal é básico;
- Óxido de metal + ácido = sal + água.

Figura 7.15 Estados de oxidação representativos dos elementos. Observe que o hidrogênio apresenta números de oxidação positivo e negativo, sendo 1 e −1.

Não-metais

- Não são brilhantes;
- Maus condutores de calor e eletricidade;
- Sólidos, líquidos ou gases;
- Temperaturas de fusão relativamente baixas;
- Afinidades eletrônicas muito negativas --> formar ânions;
- Preenche camada p --> conf. de gás nobre;
- Formam substâncias moleculares;
- Óxido de não-metal + água --> ácido;
- Óxido de não-metal + base --> sal + água.

Carbon dioxide in breath acts as an acid to neutralize base

C. Ophardt, c. 2003

Metaloides

- Propriedades intermediárias (metais e ametais);
- Algumas propriedades metálicas, mas não todas;
- Si: brilho, quebradiço, não conduz calor ou eletricidade como metais;
- Semicondutores --> chips
- Si: isolante --> dopagem (adição de impurezas)
 - --> condutor

Bons estudos!