

planetmath.org

Math for the people, by the people.

category with arbitrary products and pullbacks is complete

 ${\bf Canonical\ name} \quad {\bf Category With Arbitrary Products And Pullbacks Is Complete}$

Date of creation 2013-03-22 18:42:44 Last modified on 2013-03-22 18:42:44

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 4

Author CWoo (3771) Entry type Corollary Classification msc 18A35

 $Related\ topic \qquad Relation Between Pullbacks And Other Categorical Limits$

In the parent entry, it is stated that a complete category can be characterized as being a category with arbitrary products and equalizers. In this entry, we show, as a corollary, that every category with arbitrary products and pullbacks is complete. We begin with the following observation:

Lemma 1. If a category has finite products and pullbacks, it has equalizers.

Proof. Suppose we have a pair of morphisms $f, g: A \to B$. Given the product $A \times B$, there are unique morphisms $f', g': A \to A \times B$ with the following commutative diagrams

For the pair $f', g': A \to A \times B$, let

be the pullback diagram, which, after combining with the two small commutative triangles containing the edge π_A above, produces the following commutative diagram

This implies that p = q. This result, together with the pullback diagram combined with the remaining commutative triangles (containing the edge π_B)

we see that p equalizes f and g. Suppose now that $r: R \to A$ also equalizes f and g: $f \circ r = g \circ r$. Then we get two commutative diagrams

first of which comes from the equation $f \circ r = g \circ r$ and the second one is obvious. By the universality of the product $A \times B$, we have the commutative diagram

By the universality of the pullback diagram, there is a unique morphism $s: R \to P$ so that $r = p \circ s$, which implies that p is the equalizer of f and g.

The following corollary is now immediate:

Corollary 1. A category C with arbitrary products and pullbacks is a complete category.