LM 741 Op-Amp Circuit

LM 741 Op-Amp Circuit (Continued ...)

Current Source: Q_8 , Q_9 , Q_{10} , Q_{11} , Q_{12} , and Q_{13}

Gain Stage: Q_{13B}^* , Q_{16} , and Q_{17}

Input Stage: Q₁, Q₂, Q₃, Q₄, Q₅, Q₆, and Q₇

Output Stage: Q_{14} , Q_{18} , Q_{19} , Q_{20} , and Q_{23}

Short Circuit Protection Network: Q₁₅, Q₂₁, Q₂₂, Q₂₄, R₆, R₇, and R₁₁

The Input Stage of LM 741 Op-Amp Circuit

- Q1 and Q2 are emitter follower high input resistance.
- Q3 and Q4 are differential common base amplifier.
- Input stage is differential version of the CC-CB configuration.
- Lateral pnp transistors (Q3 and Q4) in CB configuration have high frequency response.
- Q3 and Q4 protect the input stage transistors Q1 and Q2 against emitter-base junction breakdown. Reverse breakdown voltage of an npn transistor is about 7 V. The same for a lateral pnp transistor is about 50 V.
- Q5, Q6, and Q7 [also R1, R2, and R3] form the load circuit.
- The output is taken single endedly at the collector of Q6.

The Gain Stage of LM 741 Op-Amp Circuit

- Q13B, Q16, Q17, R8 and R9 form the gain stage.
- Q16 is an emitter follower.
 - Current gain (but no voltage gain).
 - High input resistance.
 - Minimized loading effect.
- Q13B is an active load and current source.
- Q17 is a common emitter amplifier voltage and current gain.
- The load of Q17 is an effective high resistor provided by Q13B (cheap) and the input resistance of Q23 in parallel.
- C_C is a frequency compensation capacitor.

The Output Stage of LM 741 Op-Amp Circuit

- Design objectives:
- Low output resistance.
- Relatively large load current.
- Class AB output stage. This will be covered later in this course.
- Q23 is an emitter follower (minimized loading effect).
- Q15 and Q21 are providing short circuit protection. They are biased by R6 and R7.

LM 741 Op-Amp Circuit – National Semiconductor/Texas Instruments

DC Analysis of LM 741 Op-Amp Circuit

- Resistor R5 is the reference resistor
- I_{Ref}, the current in R5 is

$$I_{Ref} = \frac{V_{CC} - 0.7 - 0.7 - (-V_{EE})}{R_5}$$
 or, $I_{Ref} = 0.73 \text{ mA}$

- Q10 and Q11 form a Widlar current source
- Using the current equation

$$I_o R_E = V_T \ln \left(\frac{I_{Ref}}{I_o} \right)$$

- We have, $I_{10} = 19 \mu A$
- None of your exam questions will require solving this equation

DC Analysis of LM 741 Op-Amp Circuit (Continued ...)

- Here, $I_{C1} = I_{C2}$
- Assume, $I_{C1} = I_{C2} = I$, and $I_{B1} = I_{B2} \approx 0$
- Thus, $I_{E3} = I_{E4} \approx I$

- Here, $I_{B3} = I_{B4} = \frac{I}{\beta+1} \approx \frac{I}{\beta}$
- By KCL, $I_{C10} = I_{C9} + \frac{2I}{\beta}$
- In practice, the term $(2I/\beta)$ is negligible compared to I_{C9}
- Thus, $I_{C10} \approx I_{C9}$
- Which yields, $2I = I_9 \approx I_{10} = 19 \mu A$
- Thus, $I = 9.5 \mu A$

DC Analysis of LM 741 Op-Amp Circuit (Continued ...)

- Assume, the base currents $I_{B7} = I_{B16} \approx 0$
- Thus, $I_{C5} = I_{C6} \approx I = 9.5 \,\mu\text{A}$
- By KCL, $I_{C7} \approx I_{E7} = \frac{V_{BE6} + IR_2}{R_3} + \frac{2I}{\beta}$
- Again, neglecting the last term $(2I/\beta)$, we have,

$$I_{C7} \approx I_{E7} = \frac{V_{BE6} + IR_2}{R_3}$$

- But, $V_{BE6} = V_T ln\left(\frac{I}{I_S}\right)$, where I = 9.5 μ A
- Assuming $I_S = 10^{-14}$ A, we have,
- $V_{BF6} = 0.517 \text{ V}$

•
$$I_{E7} = \frac{0.517 + 9.5 \times 10^{-6} \times 1 \times 10^{3}}{50 \times 10^{3}}$$

•
$$I_{E7} = 10.5 \, \mu A$$

Current Stabilization in Q1 and Q2

- If I increases, I_{C8} will increase
- If I_{C8} increases, I_{C9} will increase
- If I_{C9} increases, I_{B3} and I_{B4} will decrease
- Reduced I_{B3} and I_{B4} will drop the current I

Upper and Lower Limits of Common-Mode Input Voltage

is there any upper limit?

- Assume $v_{cm,in} = 100 \text{ V}$
- Do you see any problem?

Is there any lower limit?

- Assume $v_{cm,in} = -100 \text{ V}$
- Do you see any problem?

So, there are both upper and lower limits

Determining Upper Limit

We know the transistors forming differential pair and current source including current steering circuits must remain in active region.

$$\begin{aligned} & \mathsf{V}_{\mathsf{cm},\mathsf{in}(\mathsf{max})} = \mathsf{V}_{\mathsf{C1}} - \mathsf{V}_{\mathsf{CB1}(\mathsf{min})} \\ \mathsf{By} \; \mathsf{KVL,} \\ & \mathsf{V}_{\mathsf{CE1}} = \mathsf{V}_{\mathsf{CB1}} + \mathsf{V}_{\mathsf{BE1}} \end{aligned}$$

For the upper limit,

$$V_{CE1(sat)} = V_{CB1(min)} + V_{BE1(on)}$$
or,
$$V_{CB1(min)} = 0.2 - 0.7 = -0.5 \text{ V}$$

Thus,

$$V_{cm,in(max)} = 5 - (-0.5)$$

or, $V_{cm,in(max)} = 5.5 V$

Determining Lower Limit

We know the transistors forming differential pair and current source including current steering circuits must remain in active region.

$$V_{cm,in(min)} = V_{BE(on)} + V_{CE5(min)} - V_{CC}$$

or,
$$V_{cm,in(min)} = V_{BE(on)} + V_{CE5(sat)} - V_{CC}$$

or,
$$V_{cm,in(min)} = 0.7 + 0.2 - 5$$

or,
$$V_{cm,in(min)} = -4.1 \text{ V}$$