data=pd.read_csv('https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/428/original/bike_sharing.csv?1642089089')

data

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
0	2011-01-01 00:00:00	1	0	0	1	9.84	14.395	81	0.0000	3	13	16
1	2011-01-01 01:00:00	1	0	0	1	9.02	13.635	80	0.0000	8	32	40
2	2011-01-01 02:00:00	1	0	0	1	9.02	13.635	80	0.0000	5	27	32
3	2011-01-01 03:00:00	1	0	0	1	9.84	14.395	75	0.0000	3	10	13
4	2011-01-01 04:00:00	1	0	0	1	9.84	14.395	75	0.0000	0	1	1
10881	2012-12-19 19:00:00	4	0	1	1	15.58	19.695	50	26.0027	7	329	336
10882	2012-12-19 20:00:00	4	0	1	1	14.76	17.425	57	15.0013	10	231	241
10883	2012-12-19 21:00:00	4	0	1	1	13.94	15.910	61	15.0013	4	164	168
10884	2012-12-19 22:00:00	4	0	1	1	13.94	17.425	61	6.0032	12	117	129
10885	2012-12-19 23:00:00	4	0	1	1	13.12	16.665	66	8.9981	4	84	88
10886 rows × 12 columns												

data.head()

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
0	2011-01-01 00:00:00	1	0	0	1	9.84	14.395	81	0.0	3	13	16
1	2011-01-01 01:00:00	1	0	0	1	9.02	13.635	80	0.0	8	32	40
2	2011-01-01 02:00:00	1	0	0	1	9.02	13.635	80	0.0	5	27	32
3	2011-01-01 03:00:00	1	0	0	1	9.84	14.395	75	0.0	3	10	13
4	2011-01-01 04:00:00	1	0	0	1	9.84	14.395	75	0.0	0	1	1

finding missing values
data.isnull().sum()

datetime 0
season 0
holiday 0
workingday 0
weather 0
temp 0
atemp 0
humidity 0
windspeed 0
casual 0
registered 0
count 0
dtype: int64

data.duplicated().any()

False

sns.boxplot(y=data['count']) # it is useful outliers detection

Aver vlehel lesurtly

iqr=data['count'].quantile(0.75)-data['count'].quantile(0.25)
iqr

242.0

upper_limit=data['count'].quantile(0.75)+iqr
lower_limit=data['count'].quantile(0.25)-iqr

outliers=data[data['count']>upper_limit]

outliers

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
1819	2011-05-02 17:00:00	2	0	1	1	27.06	31.060	65	12.9980	65	472	537
1844	2011-05-03 18:00:00	2	0	1	1	28.70	32.575	48	27.9993	59	485	544
1891	2011-05-05 17:00:00	2	0	1	1	22.96	26.515	26	26.0027	66	467	533
1915	2011-05-06 17:00:00	2	0	1	1	23.78	27.275	40	23.9994	83	470	553
1987	2011-05-09 17:00:00	2	0	1	1	25.42	31.060	38	16.9979	59	539	598
10846	2012-12-18 08:00:00	4	0	1	1	15.58	19.695	94	0.0000	10	652	662
10855	2012-12-18 17:00:00	4	0	1	1	16.40	20.455	47	30.0026	39	533	572
10870	2012-12-19 08:00:00	4	0	1	1	9.84	12.880	87	7.0015	13	665	678
10879	2012-12-19 17:00:00	4	0	1	1	16.40	20.455	50	26.0027	26	536	562
10880	2012-12-19 18:00:00	4	0	1	1	15.58	19.695	50	23.9994	23	546	569

681 rows × 12 columns

data													
		datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
	0	2011-01-01 00:00:00	1	0	0	1	9.84	14.395	81	0.0000	3	13	16
	1	2011-01-01 01:00:00	1	0	0	1	9.02	13.635	80	0.0000	8	32	40
	2	2011-01-01 02:00:00	1	0	0	1	9.02	13.635	80	0.0000	5	27	32
	3	2011-01-01 03:00:00	1	0	0	1	9.84	14.395	75	0.0000	3	10	13
	4	2011-01-01 04:00:00	1	0	0	1	9.84	14.395	75	0.0000	0	1	1
	10881	2012-12-19 19:00:00	4	0	1	1	15.58	19.695	50	26.0027	7	329	336
	10882	2012-12-19 20:00:00	4	0	1	1	14.76	17.425	57	15.0013	10	231	241
	10883	2012-12-19 21:00:00	4	0	1	1	13.94	15.910	61	15.0013	4	164	168
	10884	2012-12-19 22:00:00	4	0	1	1	13.94	17.425	61	6.0032	12	117	129
	10885	2012-12-19 23:00:00	4	0	1	1	13.12	16.665	66	8.9981	4	84	88

data['season'].unique()
data['season']=data['season'].map({1:'spring',2:'summer',3:'fall',4:'winter'})
#sumpy

data['season']=data
#sunny
#cloudy
#mist

10886 rows × 12 columns

#rainy
data['weather']=data['weather'].map({1:'sunny',2:'cloudy',3:'mist',4:'rainy'})

data['holiday'].unique()
data['holiday']=data['holiday'].map({0:'No',1:'yes'})
data['workingday']=data['workingday'].map({0:'No',1:'yes'})

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
0	2011-01-01 00:00:00	spring	No	No	sunny	9.84	14.395	81	0.0000	3	13	16
1	2011-01-01 01:00:00	spring	No	No	sunny	9.02	13.635	80	0.0000	8	32	40
2	2011-01-01 02:00:00	spring	No	No	sunny	9.02	13.635	80	0.0000	5	27	32
3	2011-01-01 03:00:00	spring	No	No	sunny	9.84	14.395	75	0.0000	3	10	13
4	2011-01-01 04:00:00	spring	No	No	sunny	9.84	14.395	75	0.0000	0	1	1
10881	2012-12-19 19:00:00	winter	No	yes	sunny	15.58	19.695	50	26.0027	7	329	336
10882	2012-12-19 20:00:00	winter	No	yes	sunny	14.76	17.425	57	15.0013	10	231	241
10883	2012-12-19 21:00:00	winter	No	yes	sunny	13.94	15.910	61	15.0013	4	164	168
10884	2012-12-19 22:00:00	winter	No	yes	sunny	13.94	17.425	61	6.0032	12	117	129
10885	2012-12-19 23:00:00	winter	No	yes	sunny	13.12	16.665	66	8.9981	4	84	88
10886 rc	ows × 12 columns											

data

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
0	2011-01-01 00:00:00	spring	No	No	sunny	9.84	14.395	81	0.0000	3	13	16
1	2011-01-01 01:00:00	spring	No	No	sunny	9.02	13.635	80	0.0000	8	32	40
2	2011-01-01 02:00:00	spring	No	No	sunny	9.02	13.635	80	0.0000	5	27	32
3	2011-01-01 03:00:00	spring	No	No	sunny	9.84	14.395	75	0.0000	3	10	13
4	2011-01-01 04:00:00	spring	No	No	sunny	9.84	14.395	75	0.0000	0	1	1
10881	2012-12-19 19:00:00	winter	No	yes	sunny	15.58	19.695	50	26.0027	7	329	336
10882	2012-12-19 20:00:00	winter	No	yes	sunny	14.76	17.425	57	15.0013	10	231	241
10883	2012-12-19 21:00:00	winter	No	yes	sunny	13.94	15.910	61	15.0013	4	164	168
10884	2012-12-19 22:00:00	winter	No	yes	sunny	13.94	17.425	61	6.0032	12	117	129
10885	2012-12-19 23:00:00	winter	No	yes	sunny	13.12	16.665	66	8.9981	4	84	88
10886 rd	ows × 12 columns											

		datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
	0	2011-01-01 00:00:00	spring	No	No	sunny	9.84	14.395	81	0.0000	3	13	16
	1	2011-01-01 01:00:00	spring	No	No	sunny	9.02	13.635	80	0.0000	8	32	40
	2	2011-01-01 02:00:00	spring	No	No	sunny	9.02	13.635	80	0.0000	5	27	32
	3	2011-01-01 03:00:00	spring	No	No	sunny	9.84	14.395	75	0.0000	3	10	13
	4	2011-01-01 04:00:00	spring	No	No	sunny	9.84	14.395	75	0.0000	0	1	1
1	0881	2012-12-19 19:00:00	winter	No	yes	sunny	15.58	19.695	50	26.0027	7	329	336
1	0882	2012-12-19 20:00:00	winter	No	yes	sunny	14.76	17.425	57	15.0013	10	231	241
1	0883	2012-12-19 21:00:00	winter	No	yes	sunny	13.94	15.910	61	15.0013	4	164	168
1	0884	2012-12-19 22:00:00	winter	No	yes	sunny	13.94	17.425	61	6.0032	12	117	129
1	በደደፍ	2012-12-10 23:00:00	winter	No	VAC	elinnv	12 12	16 665	66	ହ ଉଉହୀ	Λ	QΛ	QΩ
	- 7 2 4 -												

data['holiday'].value_counts() sns.countplot(x='holiday',hue='weather',data=data)

in sunny weather more holidays are there compared to cloudy and mist weather

sns.countplot(x='workingday',hue='weather',data=data)

#sunny weather more workingdays are there # but in mist less working days are there

sns.heatmap(data.corr())

<ipython-input-16-8b96879b4d02>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning. sns.heatmap(data.corr())

data.head(2)

sns.barplot(x='season',y='count',data=data)

in fall season more number of rentals are there compared to winter, suumer, spring, summer means more number of people are likely to take rentals in fall season

p1=data['casual'].sum() p2=data['registered'].sum()

it gives sum of all casual users

it gives sum of all registered users

1693341

difference=p2-p1 difference

392135

it gives difference between registered and casual users # registered users are 1301206 greater than casual users

1301206

sns.scatterplot(x='casual',y='registered',data=data) # for example totally 400 users are indulged in rentals booking in that register type users are 170-180

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
0	2011-01-01 00:00:00	spring	No	No	sunny	9.84	14.395	81	0.0000	3	13	16
1	2011-01-01 01:00:00	spring	No	No	sunny	9.02	13.635	80	0.0000	8	32	40
2	2011-01-01 02:00:00	spring	No	No	sunny	9.02	13.635	80	0.0000	5	27	32
3	2011-01-01 03:00:00	spring	No	No	sunny	9.84	14.395	75	0.0000	3	10	13
4	2011-01-01 04:00:00	spring	No	No	sunny	9.84	14.395	75	0.0000	0	1	1
10881	2012-12-19 19:00:00	winter	No	yes	sunny	15.58	19.695	50	26.0027	7	329	336
10882	2012-12-19 20:00:00	winter	No	yes	sunny	14.76	17.425	57	15.0013	10	231	241
10883	2012-12-19 21:00:00	winter	No	yes	sunny	13.94	15.910	61	15.0013	4	164	168
10884	2012-12-19 22:00:00	winter	No	yes	sunny	13.94	17.425	61	6.0032	12	117	129
10885	2012-12-19 23:00:00	winter	No	yes	sunny	13.12	16.665	66	8.9981	4	84	88
10886 rc	ws × 12 columns											

```
p=data[data['workingday']=='yes']['count'] # we should have to take two groups from based on working day count of people who are taking
q=data[data['workingday']=='No']['count']
              13
     10809
     10810
     10811
     10812 89
     10813 33
     Name: count, Length: 3474, dtype: int64
from scipy.stats import ttest_ind
#h0:both the groups will have same mean values
#h1:both groups will have different mean values
l=ttest_ind(p,q, alternative='two-sided')
     TtestResult(statistic=-1.0833361748914772, pvalue=0.27873443811874504, df=3473.0)
p=l[1] # i have taken significant level alpha as 5 percent
data['weather'].unique()
     array(['sunny', 'cloudy', 'mist', 'rainy'], dtype=object)
if p>0.05:
 print("null hypothesis will be accepted")
 print("null hypothesis will be rejected")
# null is accepted means both will have same mean values if both of them are having same mean values
# then this working days and non working days will not effect the count of rentals of it
     null hypothesis will be accepted
# for different weather categories the number of rentals are different
# anova test is useful for finding the difference in variance or spread of data among different groups if there is a considerable difference
# then null will be rejected hypothesis because null assumes that in each group the variance will be same means no of rentals for each season will be same
# based on data only we should have to use anova or kruskal we have to decide it based on if all categories are having
# same variance then anova test is applicable otherwise if different variances are observed for different categories then kruskhal test will
#be appllicable
             32
             13
     6780
            549
     6781 330
     6782 223
     6783 148
     6784 54
     Name: count, Length: 2686, dtype: int64
# levene test is useful for finding equal variances are there or not for each and every category
# when variance is equal means spread of data will be same
# h0:null hypothesis assumes that all categories are having equal variances
#h1:alternative hypothesis is quite opposite to null hypothesis assumption such that all the categories will not have equal spread of data
from scipy.stats import levene
d,p8=levene(r,s,v,w)
if p8>0.05:
 print("null hypothesis will be accepted")
 print("null hypothesis will be rejected")
     null hypothesis will be rejected
# if null hypothesis is rejected means anova test will not be applicable krushkal test should be applied to it
from scipy.stats import kruskal
jl,p10=kruskal(r,s,v,w)
if p10>0.05:
 print("null hypothesis will be accepted ")
 print("null hypothesis will be rejected")
     null hypothesis will be rejected
# if null hypothesis is rejected means for different seasons different means will be there it indicates that for different seasons
# the count of rentals will be different means in one season number of rentals will be more
# in another season it will be less
# for weather also we are going to find out for different weather conditions the number of rentals are same or not
data['weather'].unique()
y=data[data['weather']=='sunny']['count']
c=data[data['weather']=='cloudy']['count']
m=data[data['weather']=='mist']['count']
gh=data[data['weather']=='rainy']['count']
from scipy.stats import levene
#h0: null assumes equal variance
#h1:alternate opposes the null hypothesis
jk,p34=levene(y,c,m,gh)
if p34>0.05:
 print('null will be accepted ')
 print("alternate hypothesis will be accepted ")
    alternate hypothesis will be accepted
# null hypothesis is rejected so we shoul have to use kruskall test here
# because for anova test all categories should have equal variances
#if unequal variances are there means krushkall test should be used
from scipy.stats import kruskal
df,p45=kruskal(y,c,m,gh)
if p45>0.05:
 print('null hypothesis will be accepted')
 print("null hypothesis will be rejected")
     null hypothesis will be rejected
# for different weather conditions count of rentals will vary
type(s.values)
     numpy.ndarray
if p>0.05:
 print('both groups are having same mean values')
 print('both groups are having different mean values')
     both groups are having same mean values
# here p value is greater than significantlevel so both will have same mean values null hypothesis is failed to reject
# for each and every category of weather the count of rentals are same
#chi square
#(null hypothesis)h0:there is no relation between weather and season
#(alternative hypothesis)h1:there is a relation between weather and season
# assumptions regarding null hypothesis
# null hypothesis says that the it is a default assumption that there is no relationship between two variables
# but there is a relationship between two variables here season and weather based on season weather will change automatically
# here in this case if p value means probability that null hypothesis to be true
# if p value is greater than significant level then null will be accepted otherwise null will be rejected
from scipy.stats import chi2_contingency
o=pd.crosstab(data['weather'],data['season'])
       season fall spring summer winter
      weather
       cloudy 604
                    715 708 807
                     211 224 225
                      1 0 0
       sunny 1930 1759 1801 1702
stat,p,dof,expected=chi2_contingency(o)
print(stat,p,dof,expected)
     49.15865559689363 1.5499250736864862e-07 9 [[7.11493845e+02 6.99258130e+02 7.11493845e+02 7.11754180e+02]
      [2.15657450e+02 2.11948742e+02 2.15657450e+02 2.15736359e+02]
      [2.51056403e-01 2.46738931e-01 2.51056403e-01 2.51148264e-01]
      [1.80559765e+03 1.77454639e+03 1.80559765e+03 1.80625831e+03]]
alpha=0.05 # i have taken significant level as 0.05
if p>alpha:
 print('there is no relation between weather and season')
else:
    print("there is a relation between weather and season")
     there is a relation between weather and season
# here null hypothesis is rejected there is a relationship between weather and season
```

hypothesis testing

we are going to find out weather working day has an effect on number of working days effected

business insights

in fall season more number of rentals and in spring season less no of rentals i have observed so far

in working days during sunny weather conditions more no of rentals and less no of rentals in mist weather condition # in nonworking days the same thing repeated less number in mist and more in sunny season are observed through visualizations

the mean values of number of rentals for working and nonworking days both are same

so working days and nonworking days atre not showing effect on the number of rentals of it

weather and seasons will show effect on the number of rentals # weather and seasons are corelated to each other

#reccommendations

a detailed analysis should be there why in some weather conditions and seasons the count of rentals are decreasing # the root cause analysis is required for it

a new system is required in order to increase the rate of bookings where rebates in booking and offers will increase the count of it

advertisements and referral programmes regarding yulu app will show drastic impact on bookings

#i will suggest yulu team to implement new thing that is whenever booking is completed with payment there should be an option to # select the vehicle that is comfortable to the user and the yulu driver should pick the vehicle and deliver that vehicle to customer # if the vehicle is not comfortable means there should be exchange of vehicle policy also should be there because of providing

these features to the user which he will also feel comfortable to use the services of yulu