

Varianta 78

Subiectul I.

- a) $\vec{v} \cdot \vec{w} 1$.
- **b**) $2\sqrt{3}$.
- c) Tangenta prin P la hiperbolă are ecuația 2x-3y-1=0.
- **d**) Punctele L, M, N sunt coliniare, deoarece $\overrightarrow{LN} = 2 \cdot \overrightarrow{LM}$.
- **e**) $V_{ABCD} = 3$.
- **f**) $a = -\frac{1}{2}$ și $b = -\frac{1}{2}$

Subjectul II.

1.

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 0.$$

- **b)** Probabilitatea căutată este $p = \frac{2}{5}$
- c) $\begin{pmatrix} 0 & 1 \\ 4 & 0 \end{pmatrix}$.
- d) Rangul matricei este egal cu 1.
- $\mathbf{e)} \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{10} = I_2.$

2

a)
$$f''(x) = e^x + 2\frac{1 - x^2}{(x^2 + 1)^2}, \forall x \in \mathbf{R}$$
.

b)
$$\int_{0}^{1} f'(x) dx = e - 1 + \ln 2$$
.

- c) f'(x) > 0, $\forall x \ge 0$, deci f este strict crescătoare pe $[0, \infty)$.
- **d**) $\lim_{x \to 1} \frac{f(x) f(1)}{x 1} = e + 1$.

e)
$$\int_{0}^{1} \frac{x^{2}}{3x^{3} + 4} dx = \frac{1}{9} \cdot \ln \frac{7}{4}.$$

Subjectul III.

$$\mathbf{a)} \quad z + \overline{z} = 2a \; .$$

b)
$$z \cdot \overline{z} = a^2 + b^2 = |z|^2$$
.

- c) Se verifică prin calcul direct.
- **d**) Pentru $c, d \in \mathbb{R}$, numărul x = 3 + 4i este o soluție a ecuației $x^2 + cx + d = 0$ $\Leftrightarrow \begin{cases} d = 25 \\ c = -6 \end{cases}$
- e) Se folosește primul principiu de inducție și punctul c).
- **f**) Considerăm $w \in \mathbf{C}$. Din **e**) rezultă că pentru orice $n \in \mathbf{N}$, $n \ge 2$, există $a_n, b_n \in \mathbf{R}$, astfel încât $w^n = a_n w + b_n$.

Pentru $p = -a_n \in \mathbf{R}$ și $q = -b_n \in \mathbf{R}$, alegem $f \in \mathbf{R}[X]$, $f = X^n + pX + q$.

g) Demonstrăm, mai general, că $\forall n \in \mathbb{N}$, $n \ge 2$, numărul x = 3 + 4i nu este rădăcină pentru nici un polinom de forma $g(X) = X^n + r \in \mathbb{R}[X]$.

Din **e**) știm că pentru orice $n \in \mathbf{N}$, $n \ge 2$, există $a_n, b_n \in \mathbf{R}$, astfel încât $x^n = a_n x + b_n$. Mai mult, șirurile $(a_n)_{n \in \mathbf{N}^*}$ și $(b_n)_{n \in \mathbf{N}^*}$ verifică relațiile de recurență:

$$\begin{cases} a_{n+1} = a_n a_2 + b_n \\ b_{n+1} = a_n b_2 \end{cases} \iff \begin{cases} a_{n+1} = 6 \cdot a_n + b_n \\ b_{n+1} = -25 \cdot a_n \end{cases}, \forall n \in \mathbf{N}, n \ge 2.$$

Din relațiile anterioare se demonstrează imediat, prin inducție, că

 $\forall n \in \mathbb{N}, n \ge 2, a_n, b_n \in \mathbb{Z} \text{ si } a_n \equiv 1 \pmod{5}.$

Rezultă că $\forall n \in \mathbb{N}^*$, $a_n \neq 0$, de unde deducem concluzia.

Subjectul IV.

a)
$$f'(x) = \frac{1}{\sqrt{x}}, \forall x \in (0, \infty).$$

- **b)** f''(x) < 0, $\forall x \in (0, \infty)$, deci funcția f' este strict descrescătoare pe $x \in (0, \infty)$.
- c) Pentru $k \in (0, \infty)$, funcția f este o funcție Rolle pe [k, k+1] și din teorema lui

Lagrange și din **a**) deducem că există $c \in (k, k+1)$ astfel încât $f(k+1) - f(k) = \frac{1}{\sqrt{c}}$.

- d) Folosind succesiv punctele b), c) și a), obținem concluzia.
- e) Pentru $n \in \mathbb{N}^*$, avem

$$b_{n+1} - b_n = \frac{1}{\sqrt{n+1}} - \left(2\sqrt{n+1} - 2\sqrt{n}\right)^{\text{d}} = 0 \quad \text{si} \quad c_{n+1} - c_n = \frac{1}{\sqrt{n+1}} - \left(2\sqrt{n+2} - 2\sqrt{n+1}\right)^{\text{d}} = 0$$

deci șirul $(b_n)_{n\geq 1}$ este strict descrescător iar șirul $(c_n)_{n\geq 1}$ este strict crescător.

f) Pentru $n \in \mathbb{N}^*$ avem $b_n - c_n = f(n+1) - f(n) > 0$ și folosind monotonia celor două șiruri deducem: $\forall n \in \mathbb{N}^*$, $c_1 < c_n < b_n < b_1$.

Obținem că șirurile $(b_n)_{n\geq 1}$ și $(c_n)_{n\geq 1}$ sunt convergente, fiind monotone și mărginite. Mai mult, $\lim b_n = \lim c_n$.

- **g**) Deoarece şirul $(b_n)_{n\geq 1}$ este convergent, obținem: $\lim_{n\to\infty} a_n = \lim_{n\to\infty} (b_n + 2\sqrt{x}) = +\infty$.
- **h**) Şirul $(b_n)_{n\geq 1}$ este convergent, şi:

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \dots + \frac{1}{\sqrt{2n}} \right) \cdot \frac{1}{\sqrt{n}} = \lim_{n \to \infty} \left[\frac{b_{2n} - b_n}{\sqrt{n}} + \frac{2\sqrt{n}(\sqrt{2} - 1)}{\sqrt{n}} \right] = 2(\sqrt{2} - 1).$$