2025 年新高考数学 I 卷模拟试题

2025年6月7日

注意事项:

- 1. 答卷前,考生务必用黑色签字笔填写姓名和准考证号
- 2. 选择题用 2B 铅笔填涂, 非选择题用签字笔作答
- 3. 考试时间 120 分钟, 满分 150 分

一、单选题(共8小题,每题5分,共40分)

1. 已知复数
$$z = \frac{3-i}{1+2i}$$
,则 $|z| =$
A. $\sqrt{2}$
B. $\frac{\sqrt{10}}{2}$
C. $\frac{3\sqrt{2}}{2}$
D. $\sqrt{5}$

- 2. 样本数据 2,8,14,16,20 的平均数为 ()
 - A. 8
 - B. 9
 - C. 12
 - D. 15

3. 己知集合
$$A = \{x | \ln(x-1) < 0\}, B = \{x | x^2 - 3x < 0\}, 则 A \cap B =$$
 ()

- A. (1,2)
- B. (1,3)
- C. (0,3)
- D. (2,3)

- 4. 抛物线 $y^2 = 4x$ 的焦点为 F,点 A 在抛物线上且 |AF| = 5,则点 A 到 y 轴距离为()
 - A. 3
 - B. 4
 - C. 5
 - D. 6

二、多选题(共3小题,每题6分,共18分)

1. 己知函数
$$f(x) = \sin\left(2x + \frac{\pi}{3}\right)$$
,则 ()

- $\bigcirc f(x)$ 周期为 π
- $\bigcirc x = \frac{\pi}{12}$ 是函数对称轴
- \bigcirc $\left[-\frac{\pi}{3},0\right]$ 上单调递增
- 值域为 $[-1,\sqrt{3}]$

2. 在
$$\triangle ABC$$
 中, $\overrightarrow{AB} \cdot \overrightarrow{AC} = 6$, $|\overrightarrow{AB}| = 3$, $|\overrightarrow{AC}| = 4$,则

- $\bigcirc \angle BAC = 60^{\circ}$
- $\bigcirc S_{\triangle ABC} = 3\sqrt{3}$
- $\bigcirc |\overrightarrow{BC}| = \sqrt{13}$
- \bigcirc \overrightarrow{BA} 在 \overrightarrow{BC} 投影为 $-\frac{9}{\sqrt{13}}$

三、填空题(共3小题,每题5分,共15分)

1.
$$\int_0^{\pi/2} \cos^3 x \, dx = \underline{\hspace{1cm}}$$

- 2. 三棱锥 P-ABC 体积为 12,若点 Q 满足 $\overrightarrow{PQ}=\frac{3}{4}\overrightarrow{PA}$,则四面体 Q-ABC 体积为_____
- 3. 已知数列 $\{a_n\}$ 满足 $a_1=1$, $a_{n+1}=\frac{2a_n}{a_n+3}$,则 $a_{2025}=$ _______

四、解答题(共 5 小题, 共 77 分)

- 1. (13 分) 在 $\triangle ABC$ 中,a,b,c 分别为角 A,B,C 对边,且 $b\cos C + c\cos B = 2a\cos A$
 - (a) 证明: $2\cos A = 1$
 - (b) 若 a=2, c-b=1, 求 $\triangle ABC$ 面积
- 2. (15 分) 如图,四棱锥 P-ABCD 底面为正方形, $PD \perp$ 底面 ABCD, PD=AD=2

- (a) 证明: *BD* ⊥ *PC*
- (b) 求二面角 A PB C 的正弦值
- (c) 在线段 PB 上是否存在点 M 使 $AM \parallel$ 平面 PCD? 说明理由
- 3. (15 分) 已知函数 $f(x) = e^x ax \cos x$ 。
 - (a) 当 a=1 时,求 f(x) 的极值点个数
 - (b) 若 $f(x) \ge 0$ 恒成立,求整数 a 的最大值
- 4. (17 分) 双曲线 $C: \frac{y^2}{4} x^2 = 1$, 过点 P(0,3) 的直线 l 交 C 于 M,N 两点.
 - (a) 当 l 斜率不存在时,求 $\triangle OMN$ 面积 (O 为原点)
 - (b) 记 Q 为 MN 中点,证明: $k_{OQ} \cdot k_l = \frac{1}{2}$
 - (c) 是否存在 l 使得 $\angle MON = 90^{\circ}$? 若存在求 l 方程, 否则说明理由
- 5. (17 分) 投掷一枚均匀硬币 n 次,X 表示正面向上次数.
 - (a) 求 P(X = 2k) 关于 k 的表达式
 - (b) 证明: $\sum_{k=0}^{\lfloor n/2 \rfloor} P(X=2k) = \frac{1}{2}$
 - (c) 设 $Y = |X \frac{n}{2}|$, 求 E(Y) 表达式

(试卷结束)