20 11.15

EE23BTECH11051-Rajnil Malviya

QUESTION

A train, standing at the outer signal of a railway station blows a whistle of frequency 400 Hz in still air. (i) What is the frequency of the whistle for a platform observer when the train (a) approaches the platform with a speed of $10ms^{-1}$, (b) recedes from the platform with a speed of $10ms^{-1}$? (ii) What is the speed of sound in each case? The speed of sound in still air can be taken as $340ms^{-1}$.

Solution :-

frequency of whistle, F = 400Hz speed of sound in air, $a = 340ms^{-1}$ speed of train, $u = 10ms^{-1}$

(i) a. When the train approaches the platform (i.e., the observer at rest),

 F'_a is frequency observed by observer when train is approaching platform ,

$$F'_a = F \times \frac{a}{a - u}$$

$$F'_a = 400 \times \frac{340}{340 - 10}$$

 $F'_a = 412.1212$

b. When the train recedes the platform (i.e., the observer at rest),

 F'_a is frequency observed by observer when train is receding platform,

$$F'_r = F \times \frac{a}{a+u}$$

$$F'_r = 400 \times \frac{340}{340+10}$$

$$F'_r = 388.5714$$

(ii) The speed of sound in each will be same. It is $340ms^{-1}$ in each case.