2017 Fall - Math 355 - Homework 10

Due: Friday, November 10 in class.¹

Unless specified otherwise, you must always show your work and justify your answers.

(1) Compute the determinant of the matrix below in two different ways: first by expanding along a column of your choice; second by expanding along a row of your choice. Show your work.

$$\begin{pmatrix}
1 & -2 & 0 & 4 \\
0 & 3 & 1 & 1 \\
-1 & 0 & 0 & -2 \\
1 & -1 & 3 & 1
\end{pmatrix}$$

(2) Let $\gamma \colon \mathbb{C} \to \mathbb{C}$ be the map which sends a complex number to its conjugate

$$z \mapsto \gamma(z) = \bar{z}$$

explicitly, if z = a + ib, with $a, b \in \mathbb{R}$, we have

$$a + ib \mapsto \gamma(a + ib) = a - ib.$$

- (a) Is γ \mathbb{R} -linear?
- (b) Is γ C-linear?
- (3) Consider the set of complex numbers \mathbb{C} as a vector space over \mathbb{R} .
 - (a) Write an \mathbb{R} -basis for \mathbb{C} .
 - (b) Show that \mathbb{C} is isomorphic to \mathbb{R}^2 , as real vector spaces. [In particular, $\dim_{\mathbb{R}} \mathbb{C} = 2$.]
- (4) Consider now $\mathbb C$ as a $\mathbb C$ -vector space.
 - (a) Write down a \mathbb{C} -basis for \mathbb{C} and show that $\dim_{\mathbb{C}} \mathbb{C} = 1$.
 - (b) From the basis you chose, how do you extract an \mathbb{R} -basis for \mathbb{C} ?
- (5) Consider now \mathbb{C}^2 as a complex vector space.
 - (a) Show that \mathbb{C}^2 can be seen as a real vector space (by restricting the multiplication by scalars).
 - (b) Pick a \mathbb{C} -basis for \mathbb{C}^2 and show that $\dim_{\mathbb{C}} \mathbb{C}^2 = 2$.
 - (c) How do you extract an \mathbb{R} -basis for \mathbb{C}^2 , from the \mathbb{C} -basis you just chose?
 - (d) Show that \mathbb{C}^2 is isomorphic to \mathbb{R}^4 as real vector spaces, in particular $\dim_{\mathbb{R}} \mathbb{C}^2 = 4$.
- (6) Finally, consider V an arbitrary $\mathbb{C}\text{-vector space}$.
 - (a) Show that V is also an \mathbb{R} -vector space, by restricting the scalar multiplication.
 - (b) If $\{\vec{v}_1, \ldots, \vec{v}_n\}$ is a \mathbb{C} -basis for V, how can we extract an \mathbb{R} -basis for V?
 - (c) Show that $\dim_{\mathbb{R}} V = 2 \dim_{\mathbb{C}} V$.

 $^{^1{\}rm This}$ file was last updated at 08:51 on Sunday $5^{\rm th}$ November, 2017.