

Что не так с АЕ?

• Сточки зрения задачи генерации ~Всё

encoded data can be decoded without loss if the autoencoder has enough degrees of freedom

without explicit regularisation, some points of the latent space are "meaningless" once decoded

VAE (в чём смысОл?)

 Давайте как-то заставим сеть делать непрерывное латентное пространство

Standard Autoencoder (direct encoding coordinates)

Variational Autoencoder (μ and σ initialize a probability distribution)

Просто добавить μ и σ is not enough

Добавим метрику схожести распределений

Kullback-Leibler расходимость

$$\sum_{i=1}^{n} \sigma_i^2 + \mu_i^2 - \log(\sigma_i) - 1$$

Но При использовании КL потерь области кодирования расположены случайным образом в окрестности выделенной точки в скрытом пространстве со слабым учётом сходства между образцами входных данных. Поэтому декодер не способен извлечь что-либо значащее из этого пространства

Добавим метрику потерь восстановления из пространства как у АЕ

Как выглядит прво в идеале?

А вот так ->

Reparametrization Trick

no problem for backpropagation

---- backpropagation is not possible due to sampling

sampling without reparametrisation trick

sampling with reparametrisation trick

Итоговая схема архитектуры

loss =
$$C || x - x^2 ||^2 + KL[N(\mu_x, \sigma_x), N(0, I)] = C || x - f(z) ||^2 + KL[N(g(x), h(x)), N(0, I)]$$

Cycle GAN TL;DR

- Вводится G: X -> Y и F: Y -> X и D_x с D_y
- D_у учит переводить изображения X в Y, D_х обратно
- В итоге получаем обратимые преобразования

$$\bar{x} \to G(\bar{x}) \to F(G(\bar{x})) \approx \bar{x}$$

$$\bar{y} \to F(\bar{y}) \to G(F(\bar{y})) \approx \bar{y}$$

Функции потерь

Состязательная функция потерь

$$egin{aligned} \mathcal{L}_{GAN}(G,D_Y,X,Y) &= \mathbb{E}_{ar{y} \sim p_{data}(ar{y})}[\log D_Y(ar{y})] \ &+ \mathbb{E}_{ar{x} \sim p_{data}(ar{x})}[\log(1-D_Y(G(ar{x})))] \ \mathcal{L}_{GAN}(F,D_X,Y,X) &= \mathbb{E}_{ar{x} \sim p_{data}(ar{x})}[\log D_X(ar{x})] \ &+ \mathbb{E}_{ar{y} \sim p_{data}(ar{y})}[\log(1-D_X(F(ar{y})))] \end{aligned}$$

Циклическая

$$\mathcal{L}_{cyc}(G, F) = \mathbb{E}_{\bar{x} \sim p_{data}(\bar{x})}[\|F(G(\bar{x})) - \bar{x}\|_1] + \mathbb{E}_{\bar{y} \sim p_{data}(\bar{y})}[\|G(F(\bar{y})) - \bar{y}\|_1]$$

$$\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{GAN}(G, D_Y, X, Y) + \mathcal{L}_{GAN}(F, D_X, Y, X) + \lambda \mathcal{L}_{cyc}(G, F)$$

Спасаем цветовую палитру

$$L_{identity}(G,F) = \mathbb{E}_{y \sim p_{data}(y)}[\|G(y) - y\|_1] + \mathbb{E}_{x \sim p_{data}(x)}[\|F(x) - x\|_1]$$

igure 9: The effect of the *identity mapping loss* of lonet→ Photo. From left to right: input paintings, Cycle AN without identity mapping loss, CycleGAN with identity mapping loss. The identity mapping loss helps preserve color of the input paintings.