

Fundamentals of Fluid Power – Pneumatics

Fourth Lecture - Applications

Outline

1	Vacuum Technology
2	Systems and Circuits
3	Exergy
4	Measures for Efficiency Optimization
5	Selected Applications

Vacuum Classification According to DIN 28400

P: absolute pressure

N: number of particles per space unit for air at 20° C

Ejector

Different Types of Suction Grippers

flat suction gripper

telescopic suction gripper

Suction Gripper with Ejector

Integrated Ejector

Source: Schmalz

Outline

1	Vacuum Technology
2	Systems and Circuits
3	Exergy
4	Measures for Efficiency Optimization
5	Selected Applications

Open and Closed Loop Control

Fig. 4-1

Selected Actuations of Pneumatic Valves According to DIN-ISO 1219-1

symbol	description	symbol	description
	pressurised, directly operated		roller plunger
	pressurised, small acting area		roller lever for actuation in one moving direction
	magnet coil with single winding		manual actuation
	spring force		plunger actuation
			manual actuation with detent

Tab. 4.1-2

Example Circuits for Controlling a Cylinder

Single Acting Cylinder

Controlled by an electromagnetically actuated spring returned 3/2-way valve

Controlled by two electromagnetically actuated spring returned 2/2-way valves

Tab. 4.1-3

Double Acting Cylinder

Controlled by an electromagnetically actuated spring returned 4/2-way valve

Controlled by two electromagnetically actuated spring returned 3/2-way valves

Controlled by an electromagnetically actuated spring centered 5/3-way valve

Controlled by four electromagnetically actuated spring returned 2/2-way valves

Fig. 4.1-4

Fig. 4.1-5

Fig. 4.1-6

Pressure-Depending Sequence Control

Example for Location Chart (top) and Function Chart (bottom)

Fig. 4.1-1

GRAFCET Function Chart

input				
cs	cylinder start			
c1e	cylinder 1 is extended			
c1r	cylinder 1 is retracted			
c2e	cylinder 2 is extended			
c2r	cylinder 2 is retracted			
output				
C1E	extending cylinder 1			
C1R	retracting cylinder 1			
C2E	extending cylinder 2			
C2R	retracting cylinder 2			

Circuit Diagram of a Sequence Control

Fig. 4.1-3

Sequence Control – Example Pressure Booster

- Component for local pressure increase
 - Double acting self controlled pressure transformer (position controlled)
 - Multiplication of inlet pressure

Source: Maximator

Sequence Control – Example Pressure Booster

- Component for local pressure increase
 - Double acting self controlled pressure transformer (position controlled)
 - Doubling of inlet Pressure
 - Integrated Control for outlet pressure (automatic start/stop)
 - Pilot "valves" on piston rod

Source: Festo

Programmable Logical Control (PLC) and System Components

PLC - Comparison of Different Types of Wirings and Connections

Fig. 4.1-12 Source: Norgren Herion

Fig. 4.1-13 Source: FESTO

Position Sensor – Magneto-Resistive Switch

- Anisotropic Magneto-Resistive Effect (AMR)
 - Anisotropic electrical Resistance of thin magnetically conducting layers
 (Direction of anisotropy controlled by magnetic flux direction)
- Evaluation of a magneto resistive wheatstone bridge
- Benefits:
 - No moving parts (Endurance)
 - Higher Sensitivity compared to Hall-Switches
 - → Standard solution for position switches on pneumatic cylinders

Source: FESTO

Soft-Stop Positioning Drive

Fig. 4.2-7

Outline

5

3	Exergy	
	_	
2	Systems and Circuits	
1	Vacuum Technology	

Selected Applications

Limitations of First Law of Thermodynamics

Complex Modelling of Heat Flows

- Mostly no reliable data available
- Consideration of simplified changes of state
 - Specification of pressure/volume-Correlation

Small Significance of Inner Energy

- Energy is only temperature dependent
 - Neglecting the potential of compressed air to provide mechanical energy while cooling down during decompression.

Definition of Exergy

Definition – Exergy

The exergy e_x describes the quality of an energy in form of its maximum working capacity.

$$e_{ex} = e_a + (h_1 - h_U) - T_U \cdot (s_1 - s_U)$$

It can exclusively be defined in relation to an (ambient) condition. In contrast to the energy, exergy can be destroyed in real energy conversions.

Exergy of Ideal Gases

$$e = e_a + c_p(T_1 - T_U) - T_U \cdot \left(R \cdot ln\left(\frac{p_1}{p_U}\right) - c_p \cdot ln\left(\frac{T_1}{T_U}\right)\right)$$

ATTENTION: In case that a heat flow occurs at a temperature unequal to ambient temperature, the heat flow contains exergy.

Exergy Flow Diagramm

Data Source: Krichel, 2012

Heat Recovery

- Large amount of recoverable heat due to heat pump effect
- High benefit of recoverable heat
 - For domestic warm water, heating, etc.
- Exergy of heat is comparatively low
 - Heat recovery at ca. 60 °C
 - Small difference to ambient temperature

Data Source: Krichel, 2012

Exergy Usage of Cylinder Drives

Data Source: Krichel, 2012

Outline

1	Vacuum Technology
2	Systems and Circuits
3	Exergy

- 4 Measures for Efficiency Optimization
- 5 Selected Applications

Measures for Efficiency Improvements

- Heat recovery at compressors
 - Up to 95% of the input power can be recovered
 - Usually at ca. 60-70 °C → Heating, domestic warm water, process heat?
- Dimensioning
 - Air consumption of cylinders is proportional to cylinder volume (and dead volume!)
 - Reduction of dead volumes in hoses etc.
- Pressure Adjustment
 - Reduction of the pressure of the entire compressed air network

Specific Energy for Compression and at Hydrostatic Usage (Cylinders)

Specific Energy for Compression and at Hydrostatic Usage (Cylinders)

Measures for Efficiency Improvements

- Heat recovery at compressors
 - Up to 95% of the input power can be recovered
 - Usually at ca. 60-70 °C → Heating, domestic warm water, process heat?
- Dimensioning
 - Air consumption of cylinders is proportional to cylinder volume (and dead volume!)
 - Reduction of dead volumes in hoses etc.
- Pressure Adjustment
 - Reduction of the pressure of the entire compressed air network
 - → partially local pressure amplification required?
 - Pressure reducing valves for local pressure reduction of oversized drives (usually economically viable at differential pressures of only 0.5 bar)

Effect of Local Pressure Reduction at Hydrostatic Usage (Cylinders)

Circuits for Local Pressure Reduction – Both Directions

Circuits for Local Pressure Reduction – Back Stroke

Measures for Efficiency Improvements

- Maintenance
 - Leakage Reduction
 - Ultra sound sensors for leakage localization and mass flow sensors at main lines for leakage detection and trend observation
 - Shut-off valves for unused (parts of) machines
 - Regular filter replacements (especially suction filters of the compressors)

Energy efficiency-Module

Smart Pneumatics Analyser

Sources: Festo, Aventics

Outline

gy	gy	ogy	nolog	echno	ım -	/acuu	Va	1
----	----	-----	-------	-------	------	-------	----	---

- 2 Systems and Circuits
- 3 Exergy
- 4 Measures for Efficiency Optimization
- 5 Selected Applications

Parallel Gripper

Source: Festo

Parallel Gripper

Source: Festo

Servo-Pneumatic Parallel Gripper

Source: Festo

Pneumatic Braking System with ABS in a Motor Vehicle

Source: Wabco

Jacobs-Bogie of the Local Passenger Train "Desiro City" with Pneumatic Brakes and Spring Bellows

Source: Siemens Rail Systems ©JB2011

Simplified Pneumatic Diagram of an Artificial Respiration Device

Source: Dräger Medizintechnik

View into the Intensive Ventilation Device "Evita"

Source: Dräger Medizintechnik

Thank you for your attention.

Dr.-Ing. Olivier Reinertz
Olivier.reinertz@ifas.rwth-aachen.de

