Influence of simulated risk group turnover in STI epidemics with assortative mixing

Jesse Knight, Sharmistha Mishra

Institute of Medical Science University of Toronto

Canadian Student Health Research Forum

2020 August 25

Disclosures

None

Acknowledgements

Stefan Baral, Sheree Schwartz, Linwei Wang, Huiting Ma, Katherine Young, Harry Hausler

Background

¹Rowley et al. 2019.

²UNAIDS 2020.

³Mishra et al. 2014.

Background

STI — Sexually Transmitted Infections

- ► 1+ million new STI infections per day¹
- ► 1.7 million new HIV infections per year²

¹Rowley et al. 2019.

²UNAIDS 2020.

³Mishra et al. 2014.

Background

- STI Sexually Transmitted Infections
- ► 1+ million new STI infections per day¹
- ► 1.7 million new HIV infections per year²
- tPAF Transmission Population Attributable Fraction³
- based on epidemic simulation models
- \blacktriangleright % onward infections from unmet needs of risk group \rightarrow inform interventions

¹Rowley et al. 2019.

²UNAIDS 2020.

³Mishra et al. 2014.

Introduction Methods Results Implications

Key Modelling Concepts

Turnover:

Turnover:

Turnover:

Turnover:

Turnover:

movement between risk groups

Assortative Mixing:

Turnover:

movement between risk groups

Assortative Mixing:

Turnover:

movement between risk groups

Assortative Mixing:

Turnover:

movement between risk groups

Assortative Mixing:

Research Questions

Influence of turnover on:

- 1. equilibrium STI prevalence
- 2. tPAF of High Risk group

...under random vs assortative mixing

Methods Results Implications

Methods

► Susceptible, Infectious, Recovered (SIR)

► Susceptible, Infectious, Recovered (SIR)

► Stable turnover in 3 risk groups

► Susceptible, Infectious, Recovered (SIR)

- ► Stable turnover in 3 risk groups
- ► STI prevalence vs turnover

► Susceptible, Infectious, Recovered (SIR)

- ► Stable turnover in 3 risk groups
- ► STI prevalence vs turnover

Calibrate risk group partners per year to reproduce the same STI prevalence

► Susceptible, Infectious, Recovered (SIR)

- ► Stable turnover in 3 risk groups
- ► STI prevalence vs turnover

- ► Calibrate risk group partners per year to reproduce the same STI prevalence
- 4 model variants:

Random No Turnover

VS × VS

Assortative Turnover

► Susceptible, Infectious, Recovered (SIR)

- ► Stable turnover in 3 risk groups
- ► STI prevalence vs turnover

- ► Calibrate risk group partners per year to reproduce the same STI prevalence
- ► 4 model variants:

Random		No Turnover
VS	\times	VS
Assortative		Turnover

► tPAF of High Risk for each variant

Random mix — turnover "homogenizes" STI prevalence

Random mix — turnover "homogenizes" STI prevalence

No Turnover (A)

Random mix — turnover "homogenizes" STI prevalence

No Turnover (A)

	No Turnover	Turnover
STI prevalence *		
Partners per year *		
10-year tPAF (Cal)		
* Ratios = (High:Low)	Risk; Pre → Post-0	Calibration

No Turnover (A)

	No Turnover	Turnover
STI prevalence *	9.2 → 6.7	6.7 → 6.7
Partners per year *		
10-year tPAF (Cal)		

^{*} Ratios = (High:Low) Risk; Pre → Post-Calibration

No Turnover (A)

	No Turnover	Turnover
STI prevalence *	9.2 → 6.7	6.7 → 6.7
Partners per year *	25.0 → 15.2	25.0 → 23.9
10-year tPAF (Cal)		

^{*} Ratios = (High:Low) Risk; Pre → Post-Calibration

No Turnover (A)

	No Turnover	Turnover
STI prevalence *	9.2 → 6.7	6.7 → 6.7
Partners per year *	25.0 → 15.2	25.0 → 23.9
10-year tPAF (Cal)	0.759	0.804

^{*} Ratios = (High:Low) Risk; Pre → Post-Calibration

No Turnover (A)

	No Turnover	Turnover
STI prevalence *	9.2 → 6.7	6.7 → 6.7
Partners per year *	25.0 → 15.2	25.0 → 23.9
10-year tPAF (Cal)	0.759	0.804

^{*} Ratios = (High:Low) Risk; $Pre \rightarrow Post-Calibration$

▶ Ignore turnover → underestimate tPAF (5.6%)

No Turnover (A)

Assort mix — turnover allows infections to "escape" sexual networks

Assort mix — turnover allows infections to "escape" sexual networks

No Turnover (A)

Assort mix — turnover allows infections to "escape" sexual networks

No Turnover (A)

Turnover (B)

High

Low

	No Turnover	Turnover
STI prevalence *		
Partners per year *		
10-year tPAF (Cal)		

* Ratios = (High:Low) Risk; Pre → Post-Calibration

No Turnover (A)

	No Turnover	Turnover
STI prevalence *	17.5 → 6.7	9.8 → 6.7
Partners per year *		
10-year tPAF (Cal)		

^{*} Ratios = (High:Low) Risk; Pre → Post-Calibration

No Turnover (A)

	No Turnover	Turnover
STI prevalence *	17.5 → 6.7	9.8 → 6.7
Partners per year *	25.0 → 6.0	25.0 → 10.1
10-year tPAF (Cal)		

^{*} Ratios = (High:Low) Risk; Pre → Post-Calibration

No Turnover (A)

	No Turnover	Turnover
STI prevalence *	17.5 → 6.7	9.8 → 6.7
Partners per year *	25.0 → 6.0	25.0 → 10.1
10-year tPAF (Cal)	0.505	0.643

^{*} Ratios = (High:Low) Risk; Pre → Post-Calibration

No Turnover (A)

No Turnover	Turnover
17.5 → 6.7	9.8 → 6.7
25.0 → 6.0	25.0 → 10.1
0.505	0.643
	$17.5 \rightarrow 6.7$ $25.0 \rightarrow 6.0$

^{*} Ratios = (High:Low) Risk; $Pre \rightarrow Post-Calibration$

▶ Ignore turnover → underestimate tPAF (21.5%)

No Turnover (A)

Introduction
Methods
Results
Implications

Implications

Implications

1. Influence of turnover on STI epidemics is larger under assortative mixing

Implications

- 1. Influence of turnover on STI epidemics is larger under assortative mixing
- 2. If turnover is **ignored**: we **underestimate** the impact of prioritizing and tailoring interventions to high risk groups

Implications

- 1. Influence of turnover on STI epidemics is larger under assortative mixing
- 2. If turnover is **ignored**: we **underestimate** the impact of prioritizing and tailoring interventions to **high risk** groups

May be relevant to some non-STI epidemics