*** Applied Machine Learning Fundamentals *** Bayesian Decision Theory

Daniel Wehner, M.Sc.

SAPSE / DHBW Mannheim

Winter term 2022/2023

Lecture Overview

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Probability Density Estimation

Unit V Regression

Unit VI Classification I

Unit VII Evaluation

Unit VIII Classification II

Unit IX Clustering

Unit X Dimensionality Reduction

Agenda for this Unit

Bayesian Decision Theory

Introduction Class Conditional Probabilities Class Priors Bayes' Theorem Bayes' optimal Classifier

Naïve Bayes Classifier Assumptions and Algorithm An Example

Laplace Smoothing

8 Risk Minimization

Error ≠ Risk Loss Functions for Risk Minimization Handling of continuous Data

Wrap-Up

Summary
Self-Test Questions
Lecture Outlook
Recommended Literature and further Reading
Meme of the Day

Section: Bayesian Decision Theory

Statistical Methods

- Statistical methods assume that the process that 'generates' the data is governed by the rules of probability
- The data is understood to be a set of random samples from some underlying probability distribution
- This is the reason for the name statistical machine learning

The basic assumption about how the data is generated is always there, even if you don't see a single probability distribution!

Running Example: Optical Character Recognition (OCR)

Goal: Classify a new letter so that the probability of a wrong classification is minimized

Class Conditional Probabilities

- First concept: Class conditional probabilities
- Probability of x given a specific class \mathcal{C}_k is formally written as:

$$p(\mathbf{x}|\mathcal{C}_k) \in [0,1] \tag{1}$$

• $x \in \mathbb{R}^m$ is a feature vector, e.g. # black pixels, height-width ratio, ...

Class Conditional Probabilities (Ctd.)

If x = 15 we would predict class a, since p(15|a) > p(15|b).

If x = 25 we would output class b, since p(25|b) > p(25|a).

Class Conditional Probabilities (Ctd.)

- Which class should be chosen now?
- The conditional probabilities are the same...

Class Prior Probabilities

- Second concept: Class priors
- ullet The prior probability of a data point belonging to a particular class \mathcal{C}_k

$$C_1 \equiv a$$
 $p(C_1) = 0.75$
 $C_2 \equiv b$ $p(C_2) = 0.25$

• By definition:

How would you decide now?

- $0 \leqslant p(\mathcal{C}_k) \leqslant 1, \ \forall k$
- The sum of all probabilities equals one: $\sum_{k=1}^{|\mathcal{C}|} p(\mathcal{C}_k) = 1$
- The class prior is equivalent to a prior belief in the class label

How to get the Prior Probabilities?

Count Count's advice:

Simply count the number of instances in each class!

Introduction
Class Conditional Probabilities
Class Priors
Bayes' Theorem
Bayes' ontimal Classifier

Bayes' Theorem

- What we actually want to compute: $p(\mathcal{C}_k|\mathbf{x}) \Rightarrow \text{Posterior probability}$
- We can compute it by applying Bayes' theorem
- This is one of the most important formulas (!!!)

Class posterior
$$p(\mathcal{C}_{k}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_{k}) \cdot p(\mathcal{C}_{k})}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\mathcal{C}_{k}) \cdot p(\mathcal{C}_{k})}{\sum_{j=1}^{|\mathcal{C}|} p(\mathbf{x}|\mathcal{C}_{j}) \cdot p(\mathcal{C}_{j})}$$
(2)
Normalization term

Calculation of the Posterior Probability

- By applying Bayes' theorem we can compute the posterior
- Simply plug and into Bayes' theorem
 - Class prior probabilities
 - 2 Class conditional probabilities

We get the final decision boundary

a Priori vs. a Posteriori

a Priori

A belief or conclusion based on assumptions or reasoning of some sort rather than actual experience or empirical evidence. Before actually encountering, experiencing, or observing a fact.

a Posteriori

A fact, belief, or argument that is based on actual experience, experiment, or observation.

Error Minimization

$$\begin{split} p(\textit{error}) &= p(x \in \mathcal{R}_1, \mathcal{C}_2) + p(x \in \mathcal{R}_2, \mathcal{C}_1) \\ &= \overbrace{\int_{\mathcal{R}_1} p(x|\mathcal{C}_2) \cdot p(\mathcal{C}_2) \, \mathrm{d}x}_{\text{Resont the error}} + \underbrace{\int_{\mathcal{R}_2} p(x|\mathcal{C}_1) \cdot p(\mathcal{C}_1) \, \mathrm{d}x}_{\text{blue area}} \end{split}$$

Introduction
Class Conditional Probabilitie
Class Priors
Bayes' Theorem
Bayes' optimal Classifier

Bayes' optimal Classifier

- Decision rule:
 - Decide \mathcal{C}_1 , if $p(\mathcal{C}_1|\mathbf{x}) > p(\mathcal{C}_2|\mathbf{x})$
 - This is equivalent to: (we don't need the normalization)

$$p(\mathbf{x}|\mathcal{C}_1) \cdot p(\mathcal{C}_1) > p(\mathbf{x}|\mathcal{C}_2) \cdot p(\mathcal{C}_2) \tag{3}$$

Which is in turn equivalent to:

$$\frac{p(\mathbf{x}|\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)} > \frac{p(\mathcal{C}_2)}{p(\mathcal{C}_1)} \tag{4}$$

• A classifier obeying this rule is called Bayes' optimal Classifier

Section: Naïve Bayes Classifier

A naïve Assumption

• We want to compute $p(\mathcal{C}_k|x)$. Recall Bayes' theorem:

Our first classification algorithm!

(5)

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k) \cdot p(\mathcal{C}_k)}{p(\mathbf{x})}$$

- Assumptions:
 - All features x_j are pairwise conditionally independent (\Rightarrow naïve)

$$p(\mathbf{x}|\mathcal{C}_k) = p(x_1|\mathcal{C}_k) \cdot p(x_2|\mathcal{C}_k, x_1) \cdot p(x_3|\mathcal{C}_k, x_1, x_2) \cdot \dots = \prod_{j=1}^{m} p(x_j|\mathcal{C}_k)$$
 (6)

• p(x) is constant w. r. t. class label \Rightarrow It is omitted

How to get the most probable Class?

- Given:
 - New instance $\mathbf{x} = \langle x_1, x_2, \dots, x_m \rangle$ to be classified
 - Finite set of κ classes $\{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_{\kappa}\}$
 - Labeled training data (⇒ supervised learning)
- Wanted: Most probable class \mathcal{C}_{MAP} (maximum aposteriori) for x:

$$\mathcal{C}_{MAP} = \underset{\mathcal{C}_k \in \{\mathcal{C}_1, \dots, \mathcal{C}_k\}}{\text{arg max}} \widehat{p}(\mathcal{C}_k | \boldsymbol{x})$$
(7)

$$\widehat{p}$$
 denotes an approximated probability

$$= \underset{\mathcal{C}_k \in \{\mathcal{C}_1, \dots, \mathcal{C}_\kappa\}}{\operatorname{arg max}} \widehat{p}(\mathcal{C}_k) \prod_{j=1}^m \widehat{p}(x_j | \mathcal{C}_k)$$
(8)

How to get the most probable Class? (Ctd.)

Example Data Set

Outlook	Temperature	Humidity	Wind	PlayGolf
sunny	hot	high	weak	no
sunny	hot	high	strong	no
overcast	hot	high	weak	yes
rainy	mild	high	weak	yes
rainy	cool	normal	weak	yes
rainy	cool	normal	strong	no
overcast	cool	normal	strong	yes
sunny	mild	high	weak	no
sunny	cool	normal	weak	yes
rainy	mild	normal	weak	yes
sunny	mild	normal	strong	yes
overcast	mild	high	strong	yes
overcast	hot	normal	weak	yes
rainy	mild	high	strong	no
sunny	cool	high	strong	???

How to estimate the Probabilities?

- How to estimate the probabilities $\widehat{p}(\mathcal{C}_k)$ and $\widehat{p}(x_j|\mathcal{C}_k)$?
- **Solution**: Simply count the occurrences

$$\widehat{p}(\mathcal{C}_k) = \frac{\sum_{i=1}^n \mathbb{1}\{y^{(i)} = \mathcal{C}_k\}}{n}$$
(9)

$$\widehat{p}(x_j = v | \mathcal{C}_k) = \frac{\sum_{i=1}^n \mathbb{1}\{x_j^{(i)} = v \land y^{(i)} = \mathcal{C}_k\}}{\sum_{i=1}^n \mathbb{1}\{y^{(i)} = \mathcal{C}_k\}}$$
(10)

• $\mathbb{1}\{bool\}$ is the indicator function (returns 1, if bool is true, 0 otherwise. E.g.: $\mathbb{1}\{1+1=2\}=1$, $\mathbb{1}\{3=2\}=0$)

Let's compute some Probabilities

- New instance $x = \langle sunny, cool, high, strong \rangle$
- What is its class?
- Let's compute some of the probabilities needed:

$$\widehat{p}(\textit{Golf} = \textit{yes}) = ^{9}/_{14} = 0.64$$

$$\widehat{p}(\textit{Golf} = \textit{no}) = ^{5}/_{14} = 0.36$$

$$\widehat{p}(\textit{Outlook} = \textit{sunny}|\textit{Golf} = \textit{yes}) = ^{2}/_{9} = 0.22$$

$$\widehat{p}(\textit{Outlook} = \textit{sunny}|\textit{Golf} = \textit{no}) = ^{3}/_{5} = 0.60$$

Class Prediction

$$\widehat{p}(yes|\mathbf{x}) = \widehat{p}(sunny|yes) \cdot \widehat{p}(cool|yes) \cdot \widehat{p}(high|yes) \cdot \widehat{p}(strong|yes) \cdot \widehat{p}(yes)$$

$$= 0.0053$$

$$\widehat{p}(no|\mathbf{x}) = \widehat{p}(sunny|no) \cdot \widehat{p}(cool|no) \cdot \widehat{p}(high|no) \cdot \widehat{p}(strong|no) \cdot \widehat{p}(no)$$

$$= 0.0206$$

$$= 0.0206$$

Classification: $C_{MAP} = no$ (no golf today...)

Scaling the Output

- But wait! These probabilities don't sum up to one!?!?
 - This is because we dropped the normalization term p(x)
 - Scaling can fix this:

$$\widehat{p}(yes|\mathbf{x})_{norm} = \frac{0.0053}{0.0053 + 0.0206} = 0.205$$

$$\widehat{p}(no|\mathbf{x})_{norm} = \frac{0.0206}{0.0053 + 0.0206} = 0.795$$

Scaling does not change the prediction

Laplace Smoothing

- **Problem:** A feature value v^* in the test data not seen during training
- $\widehat{p}(v^{\star}|\mathcal{C}_k) = 0$: The whole product becomes zero...
- Solution: Laplace smoothing

$$\widehat{\rho}(\mathcal{C}_k) = \frac{\sum_{i=1}^n \mathbb{1}\{y^{(i)} = \mathcal{C}_k\} + 1}{n + \kappa}$$
(11)

$$\widehat{p}(x_j = v | \mathcal{C}_k) = \frac{\sum_{i=1}^n \mathbb{1}\{x_j^{(i)} = v \land y^{(i)} = \mathcal{C}_k\} + 1}{\sum_{i=1}^n \mathbb{1}\{y^{(i)} = \mathcal{C}_k\} + \kappa}$$
(12)

Section: Risk Minimization

$Error \neq Risk$

- So far, we have tried to minimize the misclassification rate
- Nevertheless, there are cases where not every misclassification is equally bad
- Some classical examples:
 - Smoke detector
 - If there is a fire, we must make sure to detect it
 - If there is not, an occasional false alarm may be acceptable
 - Medical diagnosis
 - If the patient is sick, we have to detect the disease
 - If they are healthy, it can be okay to classify them as sick (order further tests)
- Minimizing the error is not necessarily equal to minimizing the risk

Loss Functions

• **Key idea:** We have to create a loss function which expresses what we want:

$$loss(decision = healthy \mid patient = sick) \gg \\ loss(decision = sick \mid patient = healthy)$$

- We can decide for one of the κ possible classes...
- ...and we have a loss function $\ell(\mathcal{C}_i|\mathcal{C}_k)$ which returns the cost for deciding for \mathcal{C}_i given \mathcal{C}_k (depends on the weighting of false positives and false negatives)
- Expected loss (risk) of making a decision for class C_i :

$$R(\mathcal{C}_i|\mathbf{x}) = \sum_{k} \ell(\mathcal{C}_i|\mathcal{C}_k) p(\mathcal{C}_k|\mathbf{x})$$
(13)

Risk Minimization

- Consider two classes: C_1 and C_2
- Therefore, we have two possibilities: Deciding for class C_1 or class C_2
- Let ℓ_{ik} be a shorthand notation for $\ell(\mathcal{C}_i|\mathcal{C}_k)$
- Risk of both decisions:

$$R(\mathcal{C}_1|\mathbf{x}) = \ell_{11}p(\mathcal{C}_1|\mathbf{x}) + \ell_{12}p(\mathcal{C}_2|\mathbf{x})$$

$$R(\mathcal{C}_2|\mathbf{x}) = \ell_{21}p(\mathcal{C}_1|\mathbf{x}) + \ell_{22}p(\mathcal{C}_2|\mathbf{x})$$

- Goal: Create a decision rule so that the overall risk is minimized
- Decide for C_1 , iff $R(C_2|\mathbf{x}) > R(C_1|\mathbf{x})$

Risk Minimization (Ctd.)

$$R(\mathcal{C}_{2}|\mathbf{x}) > R(\mathcal{C}_{1}|\mathbf{x})$$
 $\ell_{21}\rho(\mathcal{C}_{1}|\mathbf{x}) + \ell_{22}\rho(\mathcal{C}_{2}|\mathbf{x}) > \ell_{11}\rho(\mathcal{C}_{1}|\mathbf{x}) + \ell_{12}\rho(\mathcal{C}_{2}|\mathbf{x})$
 $(\ell_{21} - \ell_{11})\rho(\mathcal{C}_{1}|\mathbf{x}) > (\ell_{12} - \ell_{22})\rho(\mathcal{C}_{2}|\mathbf{x})$

$$\frac{\ell_{21} - \ell_{11}}{\ell_{12} - \ell_{22}} > \frac{p(\mathcal{C}_{2}|\mathbf{x})}{p(\mathcal{C}_{1}|\mathbf{x})} = \frac{p(\mathbf{x}|\mathcal{C}_{2})p(\mathcal{C}_{2})}{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1})}$$

$$\frac{p(\mathbf{x}|\mathcal{C}_{1})}{p(\mathbf{x}|\mathcal{C}_{2})} > \frac{\ell_{12} - \ell_{22}}{\ell_{21} - \ell_{11}} \frac{p(\mathcal{C}_{2})}{p(\mathcal{C}_{1})}$$

It is reasonable to assume that the loss of a correct decision is smaller than that of a wrong decision:

$$\ell_{ik} > \ell_{ii} \quad \forall k \neq i$$

Risk Minimization 0-1 Loss

$$\frac{p(\boldsymbol{x}|\mathcal{C}_1)}{p(\boldsymbol{x}|\mathcal{C}_2)} > \frac{\ell_{12} - \ell_{22}}{\ell_{21} - \ell_{11}} \frac{p(\mathcal{C}_2)}{p(\mathcal{C}_1)}$$

• 0-1 loss: Decide for \mathcal{C}_1 , if:

$$\frac{p(\mathbf{x}|\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)} > \frac{p(\mathcal{C}_2)}{p(\mathcal{C}_1)} \quad \text{with} \quad \ell(\mathcal{C}_i|\mathcal{C}_k) = \begin{cases} 0 & i = k \\ 1 & i \neq k \end{cases}$$
 (14)

 0-1 loss leads to the same decision rule which minimizes the misclassification rate

Are we done?

- Question: Are we done with classification?
 - We have decision rules for simple and general loss functions
 - They are even Bayes' optimal
 - We can deal with two or more classes
 - We can deal with high dimensional feature vectors
 - We can incorporate prior knowledge about the class distribution
- We have seen how to get the probabilities for the discrete case (cf. naïve Bayes classifier)
- But: What about continuous data?

Continuous Data

Section: Wrap-Up

Summary

- Statistical methods assume that the process that 'generates' the data is governed by the rules of probability
- We need class conditional probabilities and class priors
- Use Bayes' theorem to get the class posteriors
- Bayes' optimal classifier: Decide for the most probable class
- Naïve Bayes assumes all features to be pairwise conditionally independent
- Error minimization is not equal to risk minimization

Self-Test Questions

- What are class conditional probabilities?
- 2 What does Bayes optimal mean?
- 4 How can we incorporate prior knowledge about the class distribution into the classification?
- What is the naïve assumption which naïve Bayes makes? When is this a problem?
- 5 Explain what maximum aposteriori is!
- 6 What is misclassification and risk? Are they the same?

Summary Self-Test Questions **Lecture Outlook** Recommended Literature and further Readin Meme of the Day

What's next...?

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Probability Density Estimation

Unit V Regression

Unit VI Classification I

Unit VII Evaluation

Unit VIII Classification II

Unit IX Clustering

Unit X Dimensionality Reduction

Summary Self-Test Questions Lecture Outlook Recommended Literature and further Reading Meme of the Day

Recommended Literature and further Reading I

[1] Pattern Recognition and Machine Learning

Christopher Bishop. Springer. 2006.

 \rightarrow Link, cf. chapter 1.5

Summary
Self-Test Questions
Lecture Outlook
Recommended Literature and further Reading
Meme of the Day

Meme of the Day

Thank you very much for the attention!

Topic: *** Applied Machine Learning Fundamentals *** Bayesian Decision Theory

Term: Winter term 2022/2023

Contact:

Daniel Wehner, M.Sc.
SAPSE / DHBW Mannheim
daniel.wehner@sap.com

Do you have any questions?