Importing Necessary Libraries

```
In [2]:

1 import pandas as pd
import numpy as np
3 import math
4 import matplotlib.pyplot as plt
5 from sklearn.metrics import precision_recall_curve, roc_curve, confusion_matrix,auc
from sklearn.metrics import RocCurveDisplay
```

Performing data preprocessing to binarize the features present in the data.

```
fileInpTrain = "../Data/preProcess/car-data-train.csv"
In [3]:
            fileInpTest = "../Data/preProcess/car-data-test.csv"
            df = pd.read csv(fileInpTrain, header=None)
            df.iloc[:, 0] = df.iloc[:, 0].apply(lambda val: "low"
                                                 if val == "med"
                                                else "high" if val == "vhigh"
                                                else val)
            df.iloc[:, 1] = df.iloc[:, 1].apply(lambda val: "low"
                                                if val == "med"
                                                else "high" if val == "vhigh"
                                                else val)
            # Created >2 other doors into one bin and leave 2 doors as 1 bin #uneven feature binning
            # Check for other binning strategy
            df.iloc[:, 2] = df.iloc[:, 2].apply(lambda val: val
                                                if val == '2'
                                                else '>2')
            # Integer Division
            FirstHalfIdx = df.iloc[:, 3][df.iloc[:, 3] == "4"].index[:len(df.iloc[:, 3][df.iloc[:, 3] == "4"].index)//2 + 1]
            SecondHalfIdx = df.iloc[:, 3][df.iloc[:, 3] == "4"].index[len(df.iloc[:, 3][df.iloc[:, 3] == "4"].index)//2 + 1:]
            # Number of person. Half of 4 in 2 and other half in more
            df.iloc[:, 3] = df.apply(lambda row: "2" if row.name in FirstHalfIdx
                                                     else "more"
                                                     if row.name in SecondHalfIdx
                                                     else row[3], axis=1)
            FirstHalfIdx = df.iloc[:, 4][df.iloc[:, 4] == "med"].index[:len(df.iloc[:, 4][df.iloc[:, 4] == "med"].index)//2 + 1
            SecondHalfIdx = df.iloc[:, 4][df.iloc[:, 4] == "med"].index[len(df.iloc[:, 4][df.iloc[:, 4] == "med"].index)//2 + 1
            #Lug Boot. Half of med added to small and other half med in more
            df.iloc[:, 4] = df.apply(lambda row: "small" if row.name in FirstHalfIdx
                                                         else "big"
                                                         if row.name in SecondHalfIdx
                                                          else row[4], axis=1)
            # Integer Division
            FirstHalfIdx = df.iloc[:, 5][df.iloc[:, 5] == "med"].index[:len(df.iloc[:, 5][df.iloc[:, 5] == "med"].index)//2 + 1
            SecondHalfIdx = df.iloc[:, 5][df.iloc[:, 5] == "med"].index[len(df.iloc[:, 5][df.iloc[:, 5] == "med"].index)//2 + 1
            # Number of person. Half of 4 in 2 and other half in more
            df.iloc[:, 5] = df.apply(lambda row: "low" if row.name in FirstHalfIdx
                                                         else "high"
                                                          if row.name in SecondHalfIdx
                                                         else row[5], axis=1)
            # Count the binnings
            value counts = [df.iloc[:, i].value counts() for i in range(len(df.columns))]
            df.columns = ["buying", "maint", "doors", "persons", "lug_boot", "safety", "label"]
            fileOutTrain = "../Data/postProcess/train.csv"
            fileOutTest = "../Data/postProcess/test.csv"
            df.to_csv(fileOutTrain, index=None)
```

Creating the Decision tree class and a complimentary node class.

We have shown how the two algorithms for making a decision tree work such as cart and Id3 which are the fundamental algorithms used for designing a decision tree.

```
In [4]:
             Node class acts as a supplimentary class
             which creates the most basic element for
             building a tree.
             111
             class Node:
                 def __init__(self, data, maxdepth):
                     self.data = data
                     self.maxdepth = maxdepth
                     self.key = None #splitting attribute
                     self.infogain = None
                     self.label = None #classifier
                     self.left = None
                     self.right = None
                     self.parent = None
                     self.value = None #attribute value (ex. 'y' or 'n')
             Gini Index is a concise way to measure income disparity.
             Incorporating the detailed share data into a single statistic,
             the Gini coefficient captures the income distribution over the
             full income distribution.
             def gini index(labels):
                 totalNumofLabels = len(labels)
                 classes, countOfClasses = np.unique(labels, return_counts=True)
                 if len(classes) <= 1:</pre>
                     return 0
                 ## computation
                 probs = countOfClasses/totalNumofLabels
                 gini_index = 0
                 for p in probs:
                     #calculation used to determine the gini index of the labels
                     gini_index += p**2
                 return 1 - gini_index
             1.1.1
             Entropy is a metric used in information theory to
             gauge how pure or uncertain a set of observations is.
             It controls the way a decision tree decides how to
             divide data.
             def entropy(labels):
                 totalNumofLabels = len(labels)
                 classes, countOfClasses = np.unique(labels, return_counts=True)
                 #if arity of the labels is 1 then the entropy is 1
                 if len(classes) <= 1:</pre>
                     return 0
                 ##computation
                 probs = countOfClasses/totalNumofLabels
                 ent = 0
                 for p in probs:
                     #calculation used to determine the entropy of the labels
                     ent += p*math.log2(p)
                 return -1 * ent
             These are helper functions. They are used to find mutual information value.
             def mutualInfo(data, position, switch):
                 if switch == "entropy":
                     ent = entropy(data[:,-1])
                     lengthOfValues = len(data[:, position])
                     classes, countOfClasses = np.unique(data[:, position], return_counts=True)
                     if len(classes) <= 1:</pre>
                         return 0
                     #calculate probabilities used in conditional entropy
                     probs = countOfClasses/lengthOfValues
                     #calculate specific conditional entropies
                     specCondEnts = []
                     for c in classes:
                         specCondEnt = 0
                         boolean = data[:, position] == c
                         subset = data[boolean]
                         lengthOfSubset = len(subset)
                         subsetClasses, subsetCountofClasses = np.unique(subset[:,-1], return_counts=True)
                         subsetClasses, subsetCountofClasses
                         probsOfSubset = subsetCountofClasses/lengthOfSubset
                         for p in probsOfSubset:
                             if p != 0:
```

```
specCondEnt += p*math.log2(p)
                else:
                    specCondEnt += 0
            specCondEnts.append(-1*specCondEnt)
        #calculate conditional entropy
        condEnt = sum(p*specCondEnts[idx] for idx, p in enumerate(probs))
        #calculate info gain
        infoGain = ent - condEnt
    elif switch == "gini" :
        ent = gini_index(data[:, -1])
        lengthOfValues = len(data[:, position])
        classes, countOfClasses = np.unique(data[:, position], return_counts=True)
        if len(classes) <= 1:</pre>
            return 0
        #calculate probabilities used in conditional entropy
        probs = countOfClasses/lengthOfValues
        #calculate specific conditional entropies
        specCondEnts = []
        for c in classes:
            specCondEnt = 0
            boolean = data[:, position] == c
            subset = data[boolean]
            lengthOfSubset = len(subset)
            subsetClasses, subsetCountofClasses = np.unique(subset[:,-1], return_counts=True)
            subsetClasses, subsetCountofClasses
            probsOfSubset = subsetCountofClasses/lengthOfSubset
            for p in probsOfSubset:
                if p != 0:
                    specCondEnt += p**2
                else:
                    specCondEnt += 0
            specCondEnts.append(1 - specCondEnt)
        #calculate conditional entropy
        condEnt = sum(p*specCondEnts[idx] for idx, p in enumerate(probs))
        #calculate info gain
        infoGain = ent - condEnt
    else:
        raise Exception("No other criterion. Only entropy or gini")
    return infoGain
These are helper functions. They are used to split the
data value at each Node.
def splitData(data, idx):
    classes = np.unique(data[:,idx])
    subsets = []
    for c in classes:
        boolean = data[:, idx] == c
        subset = data[boolean]
        subsets.append(subset)
    return subsets
These are helper functions. Function returns attribute that
obtains the highest mutual information at each node.
def bestMutualInfo(data, attributes, switch): #optimize this to work better
    if len(attributes) == 1: #unnecessary
        return attributes[0]
    elif len(attributes) == 0:
       return None
    else:
        atts = attributes.copy()[:len(attributes)-1]
        bestInfoGain = -np.inf
        bestatt = None
        for idx, att in enumerate(atts):
            if mutualInfo(data, idx, switch) >= bestInfoGain:
                bestInfoGain = mutualInfo(data, idx, switch=switch)
                bestatt = atts[idx]
        return bestInfoGain, bestatt
These are helper functions. Function need to pass last column
which is the target variable calculates the majority class
for the labels.
```

```
173 def maj classifer(data):
              labels = data.copy()
               classes, countOfClasses = np.unique(labels, return_counts=True)
               if len(classes) == 1:
                    return classes[0]
               counter = 0
               maxValue = -np.inf
               best_label = None
               while counter < len(classes):</pre>
                     for idx, count in enumerate(countOfClasses):
                             if count >= maxValue:
                                   maxValue = count
                                   best_label = classes[idx]
                             counter += 1
               return best label
       These are helper functions. Recursive Algorithm to build the tree
        def buildTree(traindata,feats, maxdepth, switch):
              if maxdepth == 0:
                     return maj_classifer(traindata[:,-1])
               #maxdepth is limited by number of features
               if maxdepth > len(feats) + 1:
                     maxdepth = len(feats) + 1
               #create the root node with all the training data and an initial max depth
               root = Node(traindata, maxdepth)
               #calculate the information gain at that node and the attribute that best splits the data at that node
               infoGainVal, bestAtt = bestMutualInfo(root.data, feats, switch=switch)
               #base case
               if infoGainVal <= 0:</pre>
                     root.key = 'leaf'
                     root.label = maj_classifer(root.data[:, -1])
                     return root
               root.kev = bestAtt
               root.label = maj_classifer(root.data[:,-1])
               root.infogain = infoGainVal
               #split the root node data
               rightData, leftData = splitData(root.data, feats.index(bestAtt))
               #recurse to the left subtree
               if maxdepth != 1 and root.left == None :
                      root.left = buildTree(leftData, feats, maxdepth - 1, switch=switch)
                     root.left.value = leftData[0,feats.index(bestAtt)]
                     root.left.parent = bestMutualInfo(root.data, feats, switch=switch)[1]
               #recurse to the right subtree
               if maxdepth != 1 and root.right == None :
                     root.right = buildTree(rightData, feats, maxdepth - 1, switch=switch)
                     root.right.value = rightData[0,feats.index(bestAtt)]
                     root.right.parent = bestMutualInfo(root.data, feats, switch=switch)[1]
               return root
        These are helper functions. Recursive Algorithm to print the tree
        def printPreorder(root, classOne, classTwo, counter = 0):
               if root:
                     classes = [classOne, classTwo]
                        , countOfClasses = np.unique(root.data[:,-1], return_counts=True)
                     if counter == 0:
                            print('[{} {} /{} {}}\n'.format(countOfClasses[0], classes[0], countOfClasses[1], classes[1]))
                     else:
                            if len(countOfClasses) == 2:
                                   print('|'* counter + '{} = {}: [{} {} /{} {}] \n'.format(root.parent, root.value, countOfClasses[0]) |
                             elif len(countOfClasses) == 1 and _ == classes[0]:
    print('|' * counter +'{} = {}: [{} {} /{} {}] \n'.format(root.parent, root.value, countOfClasses[0]);
                             else:
                                   print('|' * counter + '{} = {}: [{} {} /{} {}] \n'.format(root.parent, root.value, 0, classes[0], ro
                      # Then recur on left child
                     printPreorder(root.left, classes[0], classes[1], counter+1)
                      #Finally recur on right child
                     printPreorder(root.right, classes[0], classes[1], counter+1)
       These are helper functions. Recursive Algorithm to print the tree
        def printPreorder2(tree=None, indent=" "):
                  ' function to print the tree
```

```
if tree:
        print("X_"+str(tree.key), " ? ", str(tree.infogain))
print("%sleft:" % (indent), end="")
        printPreorder2(tree.left, indent + indent)
        print("%sright:" % (indent), end="")
        printPreorder2(tree.right, indent + indent)
These are helper functions. Recursive function that traverses the tree
and return the prediction of the query
def prediction(tree, feats, row, maxdepth, currentdepth=1):
    #base case
    if tree.key == 'leaf':
       return tree.label
    #base case
    if maxdepth == currentdepth:
        return tree.label
    #recurse
    if any(tree.key == feat for feat in feats):
        idx = feats.index(tree.key)
        if row[idx] == tree.left.value:
            left = prediction(tree.left,feats,row, maxdepth, currentdepth + 1)
            return left
        if row[idx] == tree.right.value:
            right = prediction(tree.right,feats,row, maxdepth, currentdepth + 1)
            return right
```

Using the ID3 Algorithm

```
In [5]:
             # Setting up the train and test data.
             train = pd.read_csv("../Data/postProcess/train.csv")
test = pd.read_csv("../Data/postProcess/test.csv")
             train = train.to_numpy()
             test = test.to_numpy()
             XTrain_Id3, yTrain_Id3 = train[: , :train.shape[1] - 1], train[:, -1]
            XTest Id3, yTest Id3 = test[: , :test.shape[1] - 1], test[:, -1]
             features = ["buying", "maint", "doors", "persons", "lug_boot", "safety", "label"]
             maxDepth = 4
             root = buildTree(train, features, maxDepth, switch="entropy")
             #printout of trained tree
             classes = np.unique(root.data[:,-1])
             printPreorder(root, classes[0], classes[1])
             # print()
             # print(printPreorder2(root))
             #Train on train and predict on Train
             yTrainPred Id3 = []
             for row in XTrain_Id3:
                 yTrainPred_Id3.append(prediction(root, features, row, maxDepth))
             #Train on train and predict on Test
             yTestPred_Id3 = []
             for row in XTest Id3:
                 yTestPred_Id3.append(prediction(root, features, row, maxDepth))
            yTrainPred_Id3 = np.array(yTrainPred_Id3)
             yTestPred_Id3 = np.array(yTestPred_Id3)
         [386 acc /910 unacc]
```

```
|safety = low: [83 acc /571 unacc]
||buying = low: [59 acc /272 unacc]
||doors = >2: [48 acc /200 unacc]
||doors = 2: [11 acc /72 unacc]
||buying = high: [24 acc /299 unacc]
||maint = low: [20 acc /140 unacc]
||maint = high: [4 acc /159 unacc]
||safety = high: [303 acc /339 unacc]
||persons = more: [239 acc /111 unacc]
||buying = low: [160 acc /20 unacc]
||buying = high: [79 acc /91 unacc]
||persons = 2: [64 acc /228 unacc]
||lug_boot = small: [45 acc /103 unacc]
||lug_boot = big: [19 acc /125 unacc]
```

Accuracy

Calculating the accuracy for Train Data on ID3 Algorithm

Calculating the accuracy for Test Data on ID3

Confusion Matrix

A Confusion Matrix is a table called a confusion matrix is used to describe how well a classification system performs. the output of a classification algorithm is shown and summarized in a confusion matrix.

Confusion Matrix for ID3 Train data

ROC Curve for ID3 Train

```
binaryTransformation = lambda val: 0 if val == 'unacc' else 1
 In [9]:
             fn = np.vectorize(binaryTransformation)
             yTrain_Id3 = fn(yTrain_Id3)
             yTrainPred_Id3 = fn(yTrainPred_Id3)
In [10]:
             rocCurve_ID3 = roc_curve(yTrain_Id3, yTrainPred_Id3, pos_label=1)
             fpr, tpr, threshold = rocCurve_ID3
In [11]:
             RocCurveDisplay.from_predictions(
                 yTrain_Id3,
                 yTrainPred_Id3,
                 color="darkorange"
             plt.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)")
             plt.axis("square")
             plt.xlabel("False Positive Rate")
             plt.ylabel("True Positive Rate")
             plt.title("DT ID3 (Using Entropy)")
             plt.legend()
             plt.show()
```

DT ID3 (Using Entropy)

ROC Curve for ID3 Test

```
In [12]:
             binaryTransformation = lambda val: 0 if val == 'unacc' else 1
             fn = np.vectorize(binaryTransformation)
             yTest_Id3 = fn(yTest_Id3)
             yTestPred_Id3 = fn(yTestPred_Id3)
In [13]:
             rocCurve_ID3Test = roc_curve(yTest_Id3, yTestPred_Id3, pos_label=1)
             fpr, tpr, threshold = rocCurve_ID3Test
In [14]:
             RocCurveDisplay.from_predictions(
                 yTest_Id3,
                 yTestPred_Id3,
                 color="darkorange"
             plt.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)")
             plt.axis("square")
             plt.xlabel("False Positive Rate")
             plt.ylabel("True Positive Rate")
             plt.title("DT ID3 Test (Using Entropy)")
             plt.legend()
             plt.show()
```

DT ID3 Test (Using Entropy)

Cart Algorithm on Car Evaluation

```
In [15]:
             XTrain_Cart, yTrain_Cart = train[: , :train.shape[1] - 1], train[:, -1]
             XTest_Cart, yTest_Cart = test[: , :test.shape[1] - 1], test[:, -1]
             features = ["buying", "maint", "doors", "persons", "lug_boot", "safety", "label"]
             maxDepth = 4
             root = buildTree(train, features, maxDepth, switch="gini")
             #printout of trained tree
             classes = np.unique(root.data[:,-1])
             printPreorder(root, classes[0], classes[1])
             # printPreorder2(root)
             #Train on train and predict on Train
             yTrainPred_Cart = []
             for row in XTrain Cart:
                 yTrainPred_Cart.append(prediction(root, features, row, maxDepth))
             #Train on train and predict on Test
             yTestPred_Cart = []
             for row in XTest Cart:
                 yTestPred_Cart.append(prediction(root, features, row, maxDepth))
             yTrainPred_Cart = np.array(yTrainPred_Cart)
             yTestPred Cart = np.array(yTestPred Cart)
         [386 acc /910 unacc]
         |safety = low: [83 acc /571 unacc]
         ||buying = low: [59 acc /272 unacc]
```

```
|safety = low: [83 acc /571 unacc]
||buying = low: [59 acc /272 unacc]
||doors = >2: [48 acc /200 unacc]
||doors = 2: [11 acc /72 unacc]
||buying = high: [24 acc /299 unacc]
||lug_boot = small: [5 acc /173 unacc]
||lug_boot = big: [19 acc /126 unacc]
|safety = high: [303 acc /339 unacc]
||persons = more: [239 acc /111 unacc]
||buying = low: [160 acc /20 unacc]
||buying = high: [79 acc /91 unacc]
||persons = 2: [64 acc /228 unacc]
||lug_boot = small: [45 acc /103 unacc]
||lug_boot = big: [19 acc /125 unacc]
```

Calculating the accuracy for Train Data on CART Algorithm

Calculating the accuracy for Test Data on CART Algorithm

In [18]:

```
Out[18]:
                 buying
                         maint doors
                                        persons lug_boot safety
                                                                     label
                   high
                            low
                                     2
                                            more
                                                      small
                                                              high
                                                                    unacc
                    low
                            low
                                    >2
                                               2
                                                      small
                                                              high
                           high
                                    >2
                                            more
                                                      small
                    high
                            low
                                    >2
                                                        big
                                                              high
                                                                      acc
                    low
                            low
                                    >2
                                            more
                                                      small
                                                              high
                                                                      acc
```

Confusion Matrix

df.head()

A Confusion Matrix is a table called a confusion matrix is used to describe how well a classification system performs. the output of a classification algorithm is shown and summarized in a confusion matrix.

ROC Curve for CART Train

```
In [20]:
             binaryTransformation = lambda val: 0 if val == 'unacc' else 1
             fn = np.vectorize(binaryTransformation)
             yTrain_Cart = fn(yTrain_Cart)
             yTrainPred_Cart = fn(yTrainPred_Cart)
In [21]:
             rocCurve Cart = roc curve(yTrain Cart, yTrainPred Cart, pos label=1)
             fpr, tpr, threshold = rocCurve Cart
In [22]:
             RocCurveDisplay.from_predictions(
                 yTrain_Cart,
                 yTrainPred_Cart,
                 color="darkorange"
             plt.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)")
             plt.axis("square")
             plt.xlabel("False Positive Rate")
             plt.ylabel("True Positive Rate")
             plt.title("DT Cart Train (Using gini index)")
             plt.legend()
             plt.show()
```

DT Cart Train (Using gini index) 1.0 Classifier (AUC = 0.70) chance level (AUC = 0.5) 0.8 True Positive Rate 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate

ROC for CART Test

```
In [23]:
             binaryTransformation = lambda val: 0 if val == 'unacc' else 1
             fn = np.vectorize(binaryTransformation)
             yTest_Cart = fn(yTest_Cart)
             yTestPred_Cart = fn(yTestPred_Cart)
In [24]:
             rocCurve_CartTest = roc_curve(yTest_Id3, yTestPred_Id3, pos_label=1)
             fpr, tpr, threshold = rocCurve_CartTest
In [25]:
             RocCurveDisplay.from predictions(
                 yTest_Cart,
                 yTestPred_Cart,
                 color="darkorange"
             plt.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)")
             plt.axis("square")
             plt.xlabel("False Positive Rate")
             plt.ylabel("True Positive Rate")
             plt.title("DT Test Cart (Using gini index)")
             plt.legend()
             plt.show()
```

DT Test Cart (Using gini index)

Helper function for converting the values into binary

```
In [26]:
             def conversion(XTrain_):
                 for i in range(len(XTrain )):
                     for j in range(len(XTrain_[i])):
                         if XTrain_[i][j] == 'high':
                             XTrain_[i][j] = 1
                          elif XTrain_[i][j] == 'low':
                             XTrain_[i][j] = 0
                          elif XTrain_[i][j] == '2':
                             XTrain_[i][j] = 1
                          elif XTrain_[i][j] == '>2':
                             XTrain_[i][j] = 0
                         elif XTrain_[i][j] == 'more':
                             XTrain_[i][j] = 0
                          elif XTrain_[i][j] == 'small':
                             XTrain_[i][j] = 0
                         elif XTrain_[i][j] == 'big':
                             XTrain_[i][j] = 1
                          elif XTrain_[i][j] == 'high':
                             XTrain_[i][j] = 1
                          elif XTrain_[i][j] == 'low':
                             XTrain_[i][j] = 0
                 return XTrain_
```

Decision tree using library of sklearn

Train ID3 data

plt.axis("square")

plt.legend()

plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")

DT using the sklearn library ld3 Train (Using entropy)

plt.title("DT using the sklearn library Id3 Train (Using entropy)")

Test ID3 data

```
In [29]: dt = DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_samples_split=2)
    xt1 = conversion(XTest_Id3)
    dt.fit(xt1,yTest_Id3)
    # xtt = conversion(XTest_Id3)
    yTestPred_Id3 = dt.predict(XTest_Id3)
```

```
In [30]: RocCurveDisplay.from_predictions(
    yTest_Id3,yTestPred_Id3,
    color="darkorange"
)
    plt.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)")
    plt.axis("square")
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive Rate")
    plt.title("DT using the sklearn library Id3 Test (Using entropy)")
    plt.legend()
    plt.show()
```

DT using the sklearn library Id3 Test (Using entropy)

Train data for Cart

```
In [31]: dt = DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_samples_split=2)
# xt2 = conversion(XTr_Cart)
dt.fit(XTrain_Cart,yTrain_Cart)
yTrainPred_Cart = dt.predict(XTrain_Cart)
```

```
In [32]: RocCurveDisplay.from_predictions(
    yTrain_Cart,yTrainPred_Cart,
    color="darkorange"
)
    plt.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)")
    plt.axis("square")
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive Rate")
    plt.title("DT using the sklearn library Cart Train (Using gini index)")
    plt.legend()
    plt.show()
```

DT using the sklearn library Cart Train (Using gini index)

Test data for Cart

```
In [33]: dt = DecisionTreeClassifier(criterion='gini', splitter='best', max_depth=None, min_samples_split=2)
# xt2 = conversion(XTr_Cart)
dt.fit(XTest_Cart,yTest_Cart)
yTestPred_Cart = dt.predict(XTest_Cart)
```

```
In [34]:
    RocCurveDisplay.from_predictions(
        yTest_Cart,yTestPred_Cart,
        color="darkorange"
    )
    plt.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)")
    plt.axis("square")
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive Rate")
    plt.title("DT using the sklearn library Cart Test (Using gini index)")
    plt.legend()
    plt.show()
```

DT using the sklearn library Cart Test (Using gini index)


```
In [35]:
              value_counts
Out[35]: [low
                   660
           high
                   636
           Name: 0, dtype: int64,
                   648
           low
           high
                   648
           Name: 1, dtype: int64,
           >2
                 963
                 333
           Name: 2, dtype: int64,
           2
                   655
           more
                   641
           Name: 3, dtype: int64,
                    657
          big
           small
                    639
           Name: 4, dtype: int64,
                   654
           high
                   642
           Name: 5, dtype: int64,
                    910
           unacc
                    386
           Name: 6, dtype: int64]
```