1. Sieci Petriego

Narzędzie wprowadzone przez Carla A. Petriego w 1962 roku do pierwotnie modelowania komunikacji z automatami. Obecnie narzędzie stosowane jest w modelowaniu systemów współbieżnych, dyskretnych, synchronizacji procesów i wielu innych.

Rys. 1-1 Przykład sieci Petriego

1.1 Grafy skierowane

Definicja 1

Grafem skierowanym nazywamy uporządkowaną trójkę postaci G = (V,A,g) gdzie:

- 1. V jest zbiorem węzłów grafu
- 2. A jest zbiorem łuków grafu takim że $V \cap A = \emptyset$
- 3. γ : A \rightarrow V \times V jest funkcją zaczepienia która każdemu łukowi przyporządkowuje uporządkowaną parę węzłów.

Rys. 1-2 Przykład grafu skierowanego

$$V = \{n1, n2, n3, n4, n5\}$$

 $A = \{a1, a2, a3, a4, a5, a6, a7\}$
 $g(a1) = (n2,n1), g(a2) = (n1,n2), g(a3) = (n4,n5), g(a4) = (n4,n5),$
 $g(a5) = (n2,n3), g(a1) = (n1,n4), g(a7) = (n5,n2),$

Poprzedniki i następniki węzła.

Definicja 2

Niech G = (V,A, g) będzie grafem skierowanym.

Dla dowolnego węzła x zbiór <u>poprzedników</u> *In(x)* definiuje się następująco:

$$In(x) = \{ y \in V : \exists a \in A \land g(a) = (y, x) \}$$

Dla dowolnego węzła x zbiór <u>następników</u> *Out(x)* definiuje się następująco:

$$Out(x) = \{ y \in V : \exists a \in A \land g(a) = (x, y) \}$$

Przykład:

Dla grafu z Rys. 1-2 $ln(n2) = \{n1, n5\}, Out(n2) = \{n3\}$

Definicja 3

Niech G = (V,A, g) będzie grafem skierowanym.

- 1. Graf G nazywamy grafem acyklicznym gdy nie zawiera cykli.
- 2. Graf G nazywamy grafem spójnym gdy dla dowolnych węzłów x i y istnieje nieskierowana droga od x do y.
- 3. Graf G nazywamy grafem silnie spójnym gdy dla dowolnych węzłów x i y istnieje droga od x do y.

<u>Definicja 4</u>

Graf skierowany G = (V,A, g) nazywany jest grafem dwudzielnym gdy zbiór węzłów V jest sumą dwóch rozłącznych zbiorów V1 i V2 a dowolny łuk tego grafu łączy węzły należące do różnych zbiorów.

$$\forall a \in A : g(a) \in (V1 \times V2) \cup (V2 \times V1)$$

Rys. 1-3 Przykład grafu dwudzielnego

1.2 Struktura sieci Petriego

Definicja 5

Graf sieci Petriego to uporządkowana trójka postaci:

$$N = (P,T,A)$$

Gdzie:

P jest niepustym zbiorem miejsc (ang. Places)

- 1. T jest niepustym zbiorem przejść (ang. *Transitions*) takim że $(P \cap T) = \emptyset$
- 2. $A \subseteq (P \times T) \cup (T \times P)$ jest zbiorem łuków sieci

Sieć przedstawiana jest jako graf dwudzielny którego węzłami są elementy ze zbioru wierzchołków P i T a elementy relacji A przedstawiane są jako łuki.

Graf sieci Petriego przedstawia się graficznie w postaci diagramu:

Rys. 1-4 Graficzne przedstawienie miejsc, przejść i łuków grafu sieci Petriego

Rys. 1-5 Przykład grafu sieci Petriego

Symulacje i analiza wykonana za pomocą programu Pipe2 (http://pipe2.sourceforge.net)

$$P = \{ p0, p1,p2 \}$$

$$T = \{t0,t1,t2 \}$$

$$A = \{(p0,t0), (t0,p1), (p1,t1), (t1,p2), (p2,t0), (t2,p0) \}$$

Definicja 6

Sieć N nazywamy <u>maszyną stanową</u> gdy każde jej przejście posiada dokładnie jedno miejsce wejściowe i dokładnie jedno miejsce wyjściowe.

Rys. 1-5 jest maszyna stanową.

1.3 **Znakowane sieci Petriego**

Graf sieci Petriego pokazuje strukturę, ale nie pozwala na modelowanie dynamiki (zachowania) systemu. Aby to umożliwić wprowadza się znakowanie sieci. Znakowanie zmienia się w czasie wykonywania przejść.

Definicja 7

Sieć znakowana jest uporządkowaną czwórką postaci $N = (P,T,A,M_0)$ jeżeli spełnione są warunki:

- 1. (P,T,A) jest siecią
- 2. M_0 : $P \rightarrow Z_+$ jest funkcją określoną na zbiorze miejsc zwaną znakowaniem początkowym sieci N.

Definicia 8

Sieć znakowana uogólniona jest uporządkowaną piątką postaci N = (P,T,A,W,M₀) jeżeli spełnione są warunki:

- 1. (P,T,A) jest siecią
- 2. W: A→ N jest funkcja wag łuków. Funkcja przyporządkowuje każdemu łukowi sieci liczbę naturalną interpretowaną jako waga (krotność) łuku.
- 3. M_0 : $P \rightarrow Z_+$ jest funkcją określoną na zbiorze miejsc zwaną znakowaniem początkowym sieci N.

Znakowanie początkowe jest funkcją, która każdemu miejscu ze zbioru P przyporządkowuje całkowitą nieujemną liczbę znaczników (żetonów, tokenów) umieszczonych w tym miejscu.

Znaczniki prezentowane są graficznie w postaci kropek umieszczanych w kółkach reprezentujących miejsca.

Rys. 1-6 Przykład znakowanej sieci Petriego (Przyklad1)

Definicja 9

Znakowaniem sieci $N = (P,T,A,M_0)$ nazywamy dowolną funkcję M odwzorowującą miejsca P w liczbę całkowitą nieujemną (liczba p interpretowana jest jako liczba znaczników w miejscu $p \in P$).

 $M: P \rightarrow Z_+$

Znakowanie sieci ulega zmianie w wyniku wykonywania (odpalania) przejść.

Wykonanie przejścia polega na usunięciu znacznika z każdego miejsca wejściowego przejścia i dodaniu znacznika do każdego miejsca wyjściowego.

Definicja 10

Przejście t jest aktywne, jeżeli każde z jego miejsc wejściowych zawiera co najmniej jeden znacznik.

Wykonać się może tylko przejście aktywne.

Rys. 1-7 Przejście od znakowania M₀ do znakowania M₁.

Zapis znakowania:

M(p) – funkcja podająca ile znaczników znajduje się w miejscu p.

Przyjmując że miejsca są uporządkowane znakowanie może być zapisane za pomocą wektora.

$$M_0 = (1,1,0,0), \quad M_1 = (0,0,1,1)$$

Jeżeli dla znakowania M₁ przejście t jest aktywne to w jego wyniku otrzymujemy znakowanie M₂.

$$M_2(p) = M_1(p) - 1 \text{ gdy } p \in In(t) - Out(t)$$

$$M_2(p) = M_1(p) + 1 \text{ gdy } p \in Out(t) - In(t)$$

 $M_2(p) = M_1(p)$ w pozostałych przypadkach

Akcję tę zapisujemy następująco:

$$M_0 \xrightarrow{t} M_1$$

Od znakowania M_0 można przechodzić do kolejnych znakowań M_1 , M_2 , ..., M_k wykonując przejścia aktywne t_1 , t_2 ,... t_k .

$$M_0 \xrightarrow{t1} M_1 \xrightarrow{t2} M_2 \xrightarrow{t3} \dots \xrightarrow{tk} Mk$$

Mówimy że ciąg przejść α = t_1 , t_2 ,... t_k prowadzi od stanu M_0 do znakowania M_k co zapisujemy jako:

$$M_0 \xrightarrow{a} M_k$$

1.4 Własności sieci Petriego:

- Strukturalne niezależne od znakowania początkowego, zależne od struktury
- Behawioralne zależne od znakowania początkowego

Własności behawioralne:

- Osiągalność
- Ograniczoność
- Zachowawczość
- Żywotność
- Odwracalność

<u>Osiagalność</u>

W analizie programów i systemów współbieżnych ważne jest stwierdzenie czy pewien pożądany stan M_k może być osiągnięty ze stanu M_0 .

Definicja 11

Znakowanie M_k jest osiągalne ze stanu M_0 gdy istnieje ciąg przejść $\alpha = t_1, t_2,...t_k$ który prowadzi od znakowania M_0 do znakowania M_k .

Definicja 12

<u>Znakowanie osiągalne</u> dla sieci N ze znakowania M₀ jest to dowolne znakowanie jakie można otrzymać ze znakowania M₀ w wyniku wykonania skończonej liczby przejść.

Zbiór wszystkich znakowań osiągalnych ze stanu M_0 oznaczamy jako $R(M_0)$. Zbiór wszystkich przejść które wykonać można od znakowania M_0 oznaczmy jako $L(M_0)$.

Problem osiągalności stanu M_k ze stanu M_0 polega na zbadaniu czy $M_k \in R(M_0)$.

1.5 Ograniczoność i bezpieczeństwo sieci

Nieformalna definicja bezpieczeństwa:

System bezpieczny – taki system który znajduje się w pożądanym stanie.

Pojęcie ograniczoności jest próbą ujęcia bezpieczeństwa w formalny sposób.

System używa ograniczonego zestawu zasobów reprezentowanych w sieci Petriego jako znaczniki. Nieograniczony wzrost liczby znaczników w miejscu odzwierciedla przekroczenie limitu zasobów.

Koncepcja ograniczoności sieci Petriego jest używana do odwzorowanie problemu zachowania limitu zasobów. Znaczniki w miejscu odwzorowują zasoby.

Definicja 13

Miejsce p nazywane jest \underline{k} ograniczonym gdy przy dowolnym znakowaniu osiągalnym ze znakowania początkowego M_0 liczba znaczników w miejscu p jest nie większa niż k.

$$\exists k \in N \quad \forall M \in R(M_0) : M(p) \le k$$

Sieć nazywamy <u>k-ograniczoną</u> jeżeli wszystkie jej miejsca są *k*-ograniczone.

Rys. 1-8 Przykład sieci nieograniczonej

Definicja 14

Sieć nazywamy <u>bezpieczna</u> gdy jest 1 ograniczona.

Rys. 1-9 Przykład sieci bezpiecznej (Przyklad2)

Zachowawczość sieci

Zasoby sytemu oznaczane są w sieci Petriego jako znaczniki. W rzeczywistych systemach liczba znaczników pozostaje stała.

Sieć Petriego jest siecią zachowawczą gdy liczba występujących w niej znaczników jest stała.

Definicja 15

Jeżeli dla każdego znakowania M osiągalnego ze znakowania początkowego M_0 liczba znaczników w sieci pozostaje stała to sieć N jest <u>siecią</u> zachowawczą.

$$\forall M \in R(M_0): \quad \sum_{p \in P} M(p) = \quad \sum_{p \in P} M_0(p)$$

Wniosek:

Jeżeli sieć N jest maszyną stanową to jest ona zachowawcza.

Rys. 1-10 Przykład sieci zachowawczej

Żywotność sieci

Żywotność programu – każde pożądane zdarzenie w końcu nastąpi.

Żywotność sieci Petriego – każde przejście ma szanse się wykonać.

Rys. 1-11 Sieć Petriego z przejściami o różnych stopniach żywotności

Definicja 16

Sieć nazywamy żywą, jeżeli dla każdego oznakowania osiągalnego ze znakowania początkowego, wychodząc od tego oznakowania można wykonać każde przejście w sieci.

Definicja pociąga za sobą własność braku możliwości zablokowania jakiejkolwiek części sieci.

Często wystarczą słabsze warunki – definiuje się żywotność L₀, L₁, L₂, L₃

Dla przykładu z Rys. 1-11

t₀ – przejście martwe

t₁ – może się wykonać najwyżej raz

t₂ – może się wykonać skończoną liczbę razy

t₃ – może się wykonywać w nieskończoność

Definicia 17

Miejsce $p \in P$ nazywamy żywym, jeżeli dla dowolnego znakowania $M \in R(M_0)$ istnieje znakowanie $M' \in R(M)$ takie, że M'(p) > 0.

Żywotność miejsca – miejsce ma szanse zawierać znaczniki.

Żywotność przejścia – przejście ma szanse się wykonać.

Twierdzenie 1-1

Jeżeli sieć znakowana N jest silnie spójną maszyną stanową, której zbiór miejsc jest znakowany, to jest to sieć żywa.

Zakleszczenie oznacza niemożliwość odpalenia jakiejkolwiek tranzycji.

Rys. 1-12 Sieć Petriego ilustrująca zakleszczenie - zastój meksykański

Petri net state space analysis results

Bounded true
Safe true
Deadlock true
Shortest path to deadlock: T2 T5

Analiza sieci Petriego dla przykładu z Rys. 1-12

Odwracalność

W rzeczywistych systemach ważną sprawą jest możliwość wycofania się z błędu – powrót do stanu początkowego.

W sieciach Petriego własność tę odwzorowuje odwracalność (ang. *Reversibility*) i stan własny (ang. *Home state*) sieci.

Definicja 18

Sieć Petriego N jest <u>odwracalna</u> dla znakowania początkowego M_0 jeżeli dla każdego znakowania $M \in R(M_0)$, M_0 jest osiągalny z M.

Mniej restrykcyjny jest własność stanu własnego sieci.

Definicja 19

Stan M_i jest nazywany <u>stanem własnym</u> jeżeli dla każdego znakowania $M \in R(M_0)$, M_i jest osiągalny z M.

Rys. 1-13 Przykład sieci odwracalnej i nieodwracalnej

1.6 Charakterystyczne konstrukcje sieciowe

Rys. 1-14 Czynności sekwencyjne

Rys. 1-15 Wybór niedeterministyczny

Rys. 1-16 Podział na czynności wykonywane równolegle

Rys. 1-17 Przejścia T1 i T2 mogą być wykonywane równolegle

1.7 Przykłady sieci Petriego

Rys. 1-18 Synchroniczna wymiana komunikatów w systemie QNX pomiędzy procesami P1 i P2

Rys. 1-19 Synchroniczna wymiana komunikatów pomiędzy procesami P1 i P2

Rys. 1-20 Wzajemne wykluczanie procesów P1 i P2

Rys. 1-21 Problem producenta i konsumenta

<u>System Produkcyjny</u> – (wersja problemu Producenta Konsumenta)

System produkcyjny składający się z dwóch ramion robotów.

- Pierwszy R1 odbiera detal od maszyny M1 i umieszcza go w buforze.
- Drugi R2 pobiera detal z bufora i przekazuje go do maszyny M2.
- Pojemność bufora jest ograniczona 3 elementy
- Aby uniknąć kolizji tylko jeden robot może operować na buforze

Rys. 1-22 Model systemu produkcyjnego

Miejsca		Interpretacja							
P1 P4		Robot R1 (R2) wykonuje prace poza buforem							
P2	P5	Robot R1 (R2) czeka na dostęp do bufora							
P3	P6	Robot R1 (R2) wykonuje pracę na buforze							
P7		Wzajemne wykluczanie							
P8	P9	Liczba pustych (pełnych) pozycji w buforze							
Przejśc	ia	Interpretacja							
T1 T4		Robot R1 (R2) żąda dostępu do bufora							
T2 T5		Robot R1 (R2) wykonuje operację							
T3	T3 T6 Robot R1 (R2) opuszcza bufor								

Rys. 1-23 Przykład sieci Petriego dla systemu produkcyjnego

1.8 Metody analizy

Zbudowanie sieci Petriego na podstawie nieformalnej czy nawet formalnej specyfikacji programu jest trudnym zagadnieniem.

Powstaje pytanie – na ile uzyskana ze specyfikacji sieć Petriego odpowiada tej specyfikacji?

W wielu przypadkach proces budowy modelu w postaci sieci Petriego ujawnia niekompletność specyfikacji. Ma to znaczenie w systemach do zastosowań krytycznych (ang. *Mission Critical Systems*).

Metody analizy sieci Petriego:

- Grafy osiągalności
- Grafy pokrycia
- Metody algebraiczne (oparte na macierzowej reprezentacji sieci).

1.9 Drzewo osiągalności i graf pokrycia

Metoda bazuje na budowie <u>drzewa osiągalności</u>. Ze stanu M₀ odpala się wszystkie możliwe przejścia które prowadzą do osiągalnych znakowań tworzących węzły grafu, z nich kolejne, itd.

Drzewo osiągalności (ang. reachability tree):

- Węzeł początkowy stan M₀.
- Węzły stany osiągalne M∈R(M₀), ze stanu M₀. etykietowane wektorami stanu (p₀, p₁, p₂,...p_k).
- Łuki przejścia pomiędzy stanami etykietowane nazwami przejść.

Własności drzewa osiągalności:

- W drzewie osiągalności można w sposób jednoznaczny dojść od korzenia do dowolnego innego węzła.
- Drzewo osiągalności może być potencjalnie nieskończone gdyż:
 - a) zawiera powtarzające się stany
 - b) sieć jest nieograniczona.

Rys. 1-24 Sieć Petriego dla problemu producenta – konsumenta z nieograniczonym buforem. Znakowanie początkowe $M_0 = (1,0,1,0,0)$

Powtarzając przejścia t1,t2,t1,t2,... otrzymujemy znakowania postaci: (1,0,1,0,1), (1,0,1,0,2), ..., (1,0,1,0,n) które są podobne.

Istnienie węzłów podobnych nie wzbogaca znacząco wiedzy o systemie.

Aby ograniczyć nieograniczony rozrost drzewa stosuje się następujące działania:

- Eliminacja węzłów zduplikowanych
- Wprowadzenie symbolu nieskończoności ¥

Eliminacja węzłów zduplikowanych:

Gdy na drodze od M₀ do bieżącego oznakowania M istnieje znakowanie M` które jest identyczne z M to znakowanie M oznaczamy jako węzeł końcowy (ang. *terminal node*).

Eliminacja przejść nieskończonych:

Wprowadza się symbol Υ będący reprezentacją nieskończoności. Dla każdego n zachodzi

- n + Y = Y,
- Y n = Y,
- n < ¥

Gdy na drodze od M0 do bieżącego oznakowania M istnieje znakowanie M` którego pozycje są mniejsze lub równe pozycjom M wtedy pozycje znakowania M które są ostro większe od odpowiadających pozycji M` oznaczane są jako Ψ .

Istnienie takich pozycji powoduje, że przejścia od M do M` mogą być wykonywane w nieskończoność. Za każdym takim przejściem liczba znaczników na pozycji gdzie jest symbol ¥ zwiększa się.

Rys. 1-25 Sieć Petriego i odpowiadające jej drzewo pokrycia

Algorytm konstruowania drzewa pokrycia:

- 1.0) Niech znakowanie M₀ będzie korzeniem drzewa i oznacz je jako "new".
- 2.0) Dopóki istnieją węzły oznaczone jako "new" wykonuj dalsze kroki.
- 3.0) Wybierz oznakowanie z etykietą "new".
- 3.1) Gdy M jest identyczne z innym oznakowaniem w drzewie oznacz go jako "*old*" i przejdź do innego węzła oznaczonego jako "new".
- 3.2) Gdy z M nie można wykonać żadnego przejścia oznacz węzeł jako końcowy.
- 4.0) Dla każdego przejścia t wykonywalnego z M wykonaj kroki następujące:
- 4.1) Utwórz M` węzeł odpowiadający wykonaniu przejścia t z M.
- 4.2) Gdy na ścieżce z korzenia M₀ do M` istnieje znakowanie M`` takie że M`(p) ≥ M``(p) dla każdego miejsca p i M` ≠ M`` wtedy zastąp M`(p) przez ¥ dla każdego p dla którego M`(p) > M``(p).
- 4.3) Dodaj M` jako węzeł i narysuj łuk od M do M` i oznacz M` etykietą "new".

Przykład - Problem producenta konsumenta z nieograniczonym buforem

Rys. 1-26 Sieć Petriego dla problemu producenta – konsumenta z nieograniczonym buforem. Znakowanie początkowe $M_0 = (1,0,1,0,0)$

Jedyne możliwe przejście z Mo to t1

Rys. 1-27 Przejście t1 ze stanu M_0 powoduje otrzymanie znakowania M_1 = (0,1,1,0,0)

Rys. 1-28 Przejście t1 ze znakowania M₀ do M₁ Jedyne możliwe przejście z M₁ to t2 które prowadzi do M₂.

Rys. 1-29 Przejście t2 ze znakowania M_1 powoduje otrzymanie znakowania $M_2 \! = (1,\!0,\!1,\!0,\!1)$

Sprawdzamy czy na ścieżce z korzenia M_0 do M_2 istnieje znakowanie M` takie, że $M_2(p) \ge M$ ` (p). Ponieważ $M_2 > M_0$ to na pozycji 5 znakowania M_2 wstawiamy znak Ψ co daje $M_2 = (1,0,1,0,\Psi)$.

Rys. 1-30 Zastąpienie znakowania M₂ przez M₂

Ze znakowania M₂ wykonać można przejścia t1 lub t3.

Rys. 1-31 Przejście t1 z M₂ daje M₃

Rys. 1-32 Przejście t3 z M₂ daje M₄

Rys. 1-33 Ze znakowania M₂ wykonać można przejście t1 które daje znakowanie M₃ lub przejście t3 które daje znakowanie M₄

Z M_3 możliwe są przejścia t2 lub t3 a z M_4 możliwe są przejścia t1 i t4. Które dają stany M_5 M_6 oraz M_7 M_8 .

Rys. 1-34 Możliwe przejścia ze stanu M₃ oraz M₄

Jedynie ze stanu M6 można wykonać jakieś przejścia co prowadzi do stanów M9 oraz M10.

Rys. 1-35 Drzewo pokrycia dla problemu producenta konsumenta z nieograniczonym buforem.

Graf pokrycia

Definicja 20

<u>Graf pokrycia</u> otrzymujemy z drzewa pokrycia przez scalenie duplikujących się wierzchołków.

Rys. 1-36 Graf pokrycia dla problemu producenta konsumenta z nieograniczonym buforem

Rys. 1-37 Graf pokrycia dla problemu producenta konsumenta z nieograniczonym buforem otrzymany za pomocą programu Pipe

Twierdzenie 1-1

Graf pokrycia uogólnionej sieci N jest grafem skończonym.

Twierdzenie to jest ważne gdyż pokazuje że można badać sieci o nieskończonym zbiorze znakowań na podstawie skończonego grafu pokrycia.

Z drzewa pokrycia można uzyskać wiele własności sieci Petriego.

- Gdy węzeł drzewa pokrycia zawiera symbol $\mbox{\ensuremath{\$}}$ to sieć jest nieograniczona.
- Gdy każdy z węzłów drzewa pokrycia zawiera tylko 0 i 1 to sieć jest bezpieczna.
- Tranzycja jest martwa jeżeli nie pojawia się jako łuk w drzewie pokrycia.

Dla ograniczonej sieci Petriego drzewo pokrycia zawiera (jako węzły) wszystkie znakowania osiągalne ze znakowania M₀. W tym przypadku drzewo pokrycia jest drzewem osiągalności.

Przykład analizy

Rys. 1-38 Przykład sieci Petriego dla systemu produkcyjnego

Rys. 1-39 Drzewo pokrycia sieci przykładowej –wersja z jednoelementowym buforem

Ograniczoność i bezpieczeństwo:

- Sieć jest ograniczona gdyż drzewo pokrycia nie zawiera symbolu nieskończoności.
- Dla każdego znakowania liczba znaczników jest nie większa od 1 a więc sieć jest bezpieczna.

Rys. 1-40 Graf osiągalności sieci przykładowej

Żywotność:

Sieć przykładowa jest żywa gdyż w grafie osiągalności wychodząc od znakowania początkowego można wykonać dowolne przejście przez wykonanie pewnej sekwencji przejść.

Odwracalność:

Sieć jest odwracalna gdyż jak widać z grafu osiągalności znakowanie początkowe M_0 jest osiągalne z dowolnego znakowania $M \in R(M_0)$

1.10 Macierz incydencji i równania stanu

Dynamika sieci Petriego może być opisana przy pomocy macierzy incydencji.

S - uogólniona sieć Petriego $S = (P,T,A,W,M_0)$

- A funkcja opisująca łuki sieci,
- W wagi łuków,
- M₀ znakowanie początkowe
- $P = \{p_1, p_2, ..., p_n\}$ miejsca
- $T = \{t_1, t_2, ..., t_n\}$ przejścia

Rys. 1-41 Przykład sieci Petriego

Macierz incydencji N_{nxm} gdzie:

- n liczba wierszy miejsca
- m liczba kolumn przejścia

Definicja 1-1

<u>Macierzą wejść</u> nazywamy macierz $N^+ = (a_{ij})_{nxm}$ której współczynniki definiowane są jak poniżej:

 $a_{ij}^{^{+}}$ - liczba łuków wyjściowych wychodzących od przejścia $\mathbf{t_i}$ i dochodzących do miejsca $\mathbf{p_j}$

$$a_{ij}^{+} = W(t_{j}, p_{i}), gdy \ t_{j} \in In(p_{i})$$

$$0 \ gdy \ nie$$

Gdy tranzycja t $_{\mathbf{j}}$ ulega odpaleniu a_{ij}^{+} reprezentuje liczbę znaczników pojawiających się w miejscu p $_{\mathbf{i}}$.

Rys. 1-42 Macierz wejść N⁺

Definicja 1-2

<u>Macierzą wyjść</u> nazywamy macierz $N^- = (a_{ij})_{nxm}$ której współczynniki definiowane są jak poniżej:

 $a_{\it ij}^{-}$ - liczba łuków wejściowych wychodzących od miejsca p $_{\it i}$ i dochodzących do przejścia t $_{\it j}$

$$a_{ij}^{-} = W(p_i, t_j), gdy \ t_j \in Out(p_i)$$

$$0 \ gdy \ nie$$

Gdy tranzycja t $_{\mathbf{j}}$ ulega odpaleniu a_{ij}^{-} reprezentuje liczbę znaczników usuwanych z miejsca p $_{\mathbf{i}}$.

Rys. 1-43 Macierz wyjść N

Macierz wyjść pozwala na sprawdzenie która tranzycja jest możliwa przy znakowaniu M. Tranzycja t_i jest możliwa gdy :

$$a_{ij}^{-} \leq M(p_j), \quad i = 1, 2, ..., m$$

W powyższym przykładzie tranzycja t₁ jest możliwa dla znakowania (0,1,1,0) gdyż zachodzi powyższa nierówność.

Definicja 1-3

Macierzą incydencji nazywamy macierz $N=(a_{ij})_{nxm}$ taką że $N=N^+-N^-$

$$a_{ij} = a_{ij}^+ - a_{ij}^-$$

Rys. 1-44 Macierz incydencji N

Macierz incydencji reprezentuje zmianę znakowania miejsca P_i gdy wykonane zostaje przejście t_i

Przedstawienie sieci za pomocą macierzy incydencji nazywa się <u>liniowo</u> <u>algebraiczną</u> reprezentacją sieci.

Równanie stanu dla sieci Petriego:

$$M_k = M_{k-1} + N^T u_k, k = 1, 2, ...$$

Gdzie:

 M_k - wektor kolumnowy wymiaru m reprezentujący znakowanie M_k otrzymane ze znakowania M_{k-1} po wykonaniu tranzycji t_i . Wektor u_k jest wektorem kolumnowym wymiaru n w którym tylko jedna pozycja jest niezerowa. Posiada 1 na pozycji i reprezentującej tranzycję t_i .

Przykład dla systemu produkcyjnego

Rys. 1-45 Przykład sieci Petriego dla systemu produkcyjnego

	T1	T2	тз	Т4	T5	Т6		T1	T2	тз	T4	T5	T6		T1	T2	тз	T4	T5	Т6
P1	0	0	1	0	0	0	P	1 1	0	0	0	0	0	P1	-1	0	1	0	0	0
РЗ	0	1	0	0	0	0	P	3 0	0	1	0	0	0	Р3	0	1	-1	0	0	0
P2	1	0	0	0	0	0	P	2 0	1	0	0	0	0	P2	1	-1	0	0	0	0
P4	0	0	0	0	0	1	P	4 0	0	0	1	0	0	P4	0	0	0	-1	0	1
P5	0	0	0	1	0	0	P	5 0	0	0	0	1	0	P5	0	0	0	1	-1	0
P6	0	0	0	0	1	0	P	0	0	0	0	0	1	P6	0	0	0	0	1	-1
P7	0	0	1	0	0	1	P.	7 0	1	0	0	1	0	Р7	0	-1	1	0	-1	1
P8	0	0	0	0	1	0	P	0	1	0	0	0	0	P8	0	-1	0	0	1	0
P9	0	1	0	0	0	0	P	0	0	0	0	1	0	Р9	0	1	0	0	-1	0

Tab. 1-1 Macierz wejść, wyjść i incydencji dla systemu produkcyjnego

1.11 Niezmienniki sieci Petriego

W teorii sieci Petriego definiuje się dwie ważne własności sieci Petriego:

- Niezmiennik przejść T (ang. T-invariant)
- Niezmiennik miejsc P (ang. P-invariant).

Niezmienniki przejść

Definicja 1-4

Niech wektor \mathcal{X} będzie wektorem o współrzędnych całkowitych których liczba jest równa liczbie przejść w sieci S. Rozwiązanie równania:

$$N x = 0$$

nazywane jest niezmiennikiem przejść S (wektor x odpowiada przejściom).

Pozycje wektora x podają liczbę odpaleń tranzycji $t_1,t_2,...t_n$ przekształcających znakowanie M_0 z powrotem do M_0 . Wektor x zawiera tylko liczbę tranzycji nie podając ich kolejności.

Powyższe równanie może posiadać wiele rozwiązań.

Zbiór przejść odpowiadających niezerowym elementom rozwiązania nazywamy przejściami bazowymi i oznaczamy jako ||x||.

Baza nazywana jest <u>bazą minimalną</u> gdy rozwiązanie nie zawiera niepustego podzbioru który jest także bazą.

Niezmienniki przejść stosowane są do badania:

- Żywotności sieci
- Odwracalności

Przykład dla systemu produkcyjnego

Wektor niezmienników przejść:

T1	T2	T3	T4	T5	T6
1	1	1	1	1	1

Sieć jest żywa gdyż wszystkie przejścia mogą być wykonane. Sieć jest odwracalna gdyż można dojść ponownie powrotem do stanu początkowego.

Niezmienniki miejsc

Niezmienniki miejsc wyrażają pewne stałe własności znakowań osiągalnych w danej sieci. Opisują one zbiory miejsc w sieci w których łączna lub ważona liczba znaczników pozostaje stała.

Definicja 1-5

Niech wektor y będzie wektorem o współrzędnych całkowitych których liczba jest równa liczbie miejsc. Rozwiązanie równania:

$$N^T y = 0$$

gdzie:

- N transponowana macierz incydencji
- y wektor (y₁,y₂,...,y_n) odpowiadający miejscom

nazywane jest niezmiennikiem miejsc P.

Powyższe równanie może posiadać wiele rozwiązań.

Zbiór miejsc odpowiadających niezerowym elementom rozwiązania nazywamy miejscami bazowymi i oznaczamy jako ||y||.

Baza nazywana jest <u>bazą minimalną</u> gdy rozwiązanie nie zawiera niepustego podzbioru który jest także bazą.

Niezmienniki miejsc stosowane są do badania:

- Ograniczoności miejsc
- Zachowawczości sieci

	p 1	p2	р3	р4	р5	р6	р7	р8	р9
y1	1	1	1						
y2				1	1	1			
у3			1			1	1		
y4								1	1

Tab. 1-2 Niezmienniki miejsc dla sieci przykładowej systemu produkcyjnego. Bazowe niezmienniki miejsc:

$$||y_1|| = \{p_1, p_2, p_3\}, \ ||y_2|| = \{p_4, p_5, p_6\}, \ ||y_3|| = \{p_3, p_6, p_7\}, \ ||y_4|| = \{p_8, p_9\}$$

Z niezmienników miejsca można wnioskować o ograniczoności i bezpieczeństwie sieci:

- Jeżeli każde miejsce w sieci należy do jakiegoś rozwiązania bazowego i stan początkowy jest ograniczony to sieć jest ograniczona.
- Jeżeli liczba znaczników w każdym rozwiązaniu bazowym jest równa 1 to sieć jest bezpieczna.

Zachowawczość:

- Sieć jest zachowawcza względem wektora wagowego w = [1,1,2,1,1,2,1,1,1]
- Suma ważona liczby znaczników dla dowolnego znakowania osiągalnego ze znakowania początkowego jest stała i wynosi 4.

Wychodząc z rozwiązania bazowego:

- liczba znaczników w każdym rozwiązaniu bazowym wynosi 1,
- miejsca w ||y₁||,||y₂|| i ||y₄|| wykluczają się wzajemnie,
- rozwiązania bazowe ||y₁|| i ||y₃|| zawierają wspólne miejsce p₃ ,
- rozwiązania bazowe ||y₂|| i ||y₃|| zawierają wspólne miejsce p₆.
- Stąd waga miejsc p₃ i p₆ powinna być 2 aby sieć była zachowawcza.

1.12 Inne rodzaje sieci Petriego

Sieć z łukami wstrzymującymi

W sieci z łukami wstrzymującymi występują trzy rodzaje łuków:

- wejściowe
- wyjściowe
- wstrzymujące

Przejście T0 nie wykona się gdy w miejscu P1 znajduje się znacznik mimo że w P0 znacznik się znajduje.

Przejście jest dozwolone jeżeli w każdym miejscu wejściowym jest tyle znaczników ile wynosi waga łuku i jeżeli każde miejsce wstrzymujące zawiera mniej znaczników niż wynosi waga łuku wstrzymującego.

Rys. 1-46 Przykład sieci Petriego z łukiem wstrzymującym

Czasowe sieci Petriego

Definicja 21

Prosta sieć czasowa jest uporządkowaną piątką postaci $N = (P,T,A,M_0,\sigma)$ jeżeli spełnione są warunki:

- (P,T,A) jest siecią
- M₀: P→Z₊ jest funkcją określoną na zbiorze miejsc zwaną znakowaniem początkowym sieći N.
- σ:T→Q₊ jest funkcją opóźnień przypisującą każdemu przejściu liczbę wymierną nieujemną σ(t) nazywaną opóźnieniem statycznym

Jeżeli przejście t staje się aktywne to wykona się po $\sigma(t)$ jednostkach czasu chyba że przestanie być aktywne na skutek wykonania innego przejścia.

Kolorowane sieci Petriego

Sieci złożone – dopuszcza się istnienie wielu rodzajów znaczników różniących się kolorem. Przejścia maja przypisane wyrażenia które umożliwiają manewrowanie kolorami.

1.13 Literatura

- [1] Szpyrka Marcin, Sieci Petriego w modelowaniu i analizie systemów współbieznych, WNT Warszawa 2008.
- [2] Zurawski R., Zhou MengChu, Petri Nets and Industrial Applications: A tutorial, IEEE Transactions on Industrial Electronics, Vol. 41, No. 6, December 1994.
- [3] Pere Bonet, Catalina M. Llado, Ramon Puigjaner, PIPE v2.5: a Petri Net Tool for Performance ModelingProgram pipe2 http://pipe2.sourceforge.net