Materials for the course

The course is based on book "Mathematical Modeling and Computation in Finance: With Exercises and Python and MATLAB Computer Codes", by C.W. Oosterlee and L.A. Grzelak, World Scientific Publishing Europe Ltd, 2019. For more details go here.

- Youtube Channel with courses can be found here.
- Slides and the codes can be found here.

List of content

- 3.1. Equilibrium vs. Term-Structure Models
- 3.2. The HJM Framework
- 3.3. The Instantaneous Forward Rate
- 3.4. Arbitrage Free Conditions under HJM
- 3.5. Ho-Lee Model and Python Simulation
- 3.6. Hull-White Model
- 3.7. Hull-White Model and Simulation in Python
- 3.8. Summary of the Lecture + Homework

Equilibrium vs. Term-Structure Models

- ► A no-arbitrage model is a model designed to be consistent with today's term structure of interest rates.
- ► The difference between equilibrium (endogenous) and non-arbitrage models (exogenous) is that today's term structure of interest rates is an output in an equilibrium model.
- ▶ In a no-arbitrage model, today's term structure of interest rates is an input. This means that we take the observed actual rates while constructing the model and estimate the unobserved rates.
- ► The HJM framework described a clear path from the equilibrium towards term-structure models.

Equilibrium vs. Term-Structure Models¹

- Historically, equilibrium models start with assumptions about economic variables and derive a process for the short rate, which means that the current term structure of interest rates hence is an output rather than input in the model.
- Such models are also called <u>endogenous</u> term-structure models. The (instantaneous) short rate at time t is the rate that applies to an infinitesimally short period at time t.
- Some popular equilibrium models. Namely, the Vasicek:

$$dr(t) = \lambda (\theta - r(t)) dt + \eta dW(t),$$

and the Cox, Ingersoll and Ross (CIR) model:

$$dr(t) = \lambda (\theta - r(t)) dt + \gamma \sqrt{r(t)} dW(t).$$

These models are one-factor models, which have several shortcomings, e.g., the interest rates are perfectly correlated between different maturities.

¹Great overview of the short-rate model can be found in book of Brigo-Mercurio: Interest Rate Models- Theory and Practice.

Equilibrium vs. Term-Structure Models

Figure: Within the Vasicek Model model context, the impact of variation of mean-reversion λ , and of the volatility parameter η on the Monte Carlo paths.

Equilibrium vs. Term-Structure Models

Figure: For the CIR model, the impact of variation of mean-reversion λ , and of the volatility parameter γ on the Monte Carlo paths.

The HJM framework

- The Heath-Jarrow-Morton framework represents a class of models that are derived by directly modeling the dynamics of instantaneous forward-rates.
- ► The framework constitutes the fundament for interest rate models as it provides an explicit relation between the volatility of the instantaneous forward rates and arbitrate-free drift.
- ▶ Both the standard short-rate and Libor Market models can be derived in the HJM framework however, in general.
- ► The HJM models are non-Markovian so only a number of models with a closed-form solution exists.

The HJM framework

- ▶ 1. Equilibrium models.
- ▶ 2. Short-rate models in the HJM Framework.
- ▶ 3. Market Models models in the HJM Framework.

Instantaneous Forward Rate

Definition (Forward and instantaneous forward rates)

Suppose that at time t we enter into a forward contract to deliver at time S a bond that will mature at time T. Let the forward price of the bond be denoted by P(t,S,T). At the same time, a zero-coupon bond, P(t,S), that matures at time S is purchased. Further, a bond, P(t,T), that matures at time T is also bought. Assuming no-arbitrate and market completeness the following equality has to hold:

$$P(t,T) = P(t,S)P(t,S,T).$$

Now, we define the implied forward rate, R(t, S, T), at time t for the period [S, T] as:

$$P(t,S,T) = \exp\left(-(T-S)R(t,S,T)\right).$$

Instantaneous Forward Rate

Definition (Forward and instantaneous forward rates cont.)

By equating the two equations we find:

$$e^{-(T-S)R(t,S,T)} = \frac{P(t,T)}{P(t,S)},$$

which reads the forward rate R(t, S, T) to be given by:

$$R(t,S,T) = -\frac{\log P(t,T) - \log P(t,S)}{T - S}.$$

By setting the limit $T - S \rightarrow 0$ we arrive at the definition of the instantaneous forward rate

$$f(t,T) \stackrel{\text{def}}{=} \lim_{S \to T} R(t,S,T) = -\frac{\partial}{\partial T} \log P(t,T).$$

Instantaneous Forward Rate

- In the HJM framework the dynamics of the instantaneous forward rates, f(t, T), is analyzed.
- We start with an assumption that for a certain, fixed, maturity $T \ge 0$, the instantaneous forward rate f(t, T) under real-world measure \mathbb{P} is driven by the following dynamics:

$$\mathrm{d}f(t,T)=\alpha^{\mathbb{P}}(t,T)\mathrm{d}t+\sigma(t,T)\mathrm{d}W^{\mathbb{P}}(t),\quad f(0,T)=f_0(T),$$

for any time t < T, with a corresponding drift $\alpha^{\mathbb{P}}(t, T)$.

▶ Under this model we also define a money-savings account as:

$$M(t) = \exp\left(\int_0^t r(s)\mathrm{d}s\right) \equiv \exp\left(\int_0^t f(s,s)\mathrm{d}s\right).$$

Arbitrage-free HJM

As we see, under the HJM framework the short rate r(t), is defined as the limit of the instantaneous forward rate $r(t) \equiv f(t, t)$. The zero-coupon bond, P(t, T), with maturity T, follows:

$$P(t,T) = M(t)\mathbb{E}^{\mathbb{Q}} \left[\frac{1}{M(T)} \cdot 1 \middle| \mathcal{F}(t) \right]$$
$$= \mathbb{E}^{\mathbb{Q}} \left[\exp \left(- \int_{t}^{T} r(s) ds \right) \cdot 1 \middle| \mathcal{F}(t) \right].$$

- What are the tradables in this market and what quantities are the martingales?
- ▶ How to find $\alpha^{\mathbb{Q}}(t,T)$ in

$$\mathrm{d}f(t,T) = \alpha^{\mathbb{Q}}(t,T)\mathrm{d}t + \sigma(t,T)\mathrm{d}W^{\mathbb{Q}}(t), \quad f(0,T) = f_0(T),?$$

Arbitrage-free HJM cont.

Although the ZCB P(t, T) can be priced as an expectation its value can be directly related to today's yield curve via:

$$f(t,T) = -\frac{\partial}{\partial T} \log P(t,T).$$

From above we can easily determine the following relation:

$$P(t,T) = \exp\left(-\int_t^T f(t,s)ds\right),$$

Let us start with deriving the dynamics of discounted ZCB:

$$d\left(\frac{P(t,T)}{M(t)}\right) = d\left[\exp\left(-\int_t^T f(t,s)ds - \int_0^t r(s)ds\right)\right] \stackrel{\text{def}}{=} dZ(t).$$

▶ After a lot of derivations for dZ(t) and setting the drift to zero we find.

Arbitrage-free HJM cont.

Lemma (HJM no arbitrage drift condition)

For the instantaneous forward rates given by following SDE:

$$\mathrm{d}f(t,T) = \alpha^{\mathbb{Q}}(t,T)\mathrm{d}t + \sigma(t,T)\mathrm{d}W^{\mathbb{Q}}(t),$$

the no-arbitrage drift condition is given by

$$\alpha^{\mathbb{Q}}(t,T) = \sigma(t,T) \int_t^T \sigma(t,s) \mathrm{d}s.$$

Proof.

The proof easily follows by deriving the dynamics of Z(t) and equating all the drift terms to zero.

Short-Rate dynamics under HJM

▶ By using the relation that f(t,t) = r(t) and by integrating the SDEs we obtain the short rate dynamics under the HJM framework of the form:

$$f(t,T) = f(0,T) + \int_0^t \alpha^{\mathbb{Q}}(s,T) ds + \int_0^t \sigma(s,T) dW^{\mathbb{Q}}(s),$$

which for time T = t simply becomes:

$$r(t) \equiv f(t,t) = f(0,t) + \int_0^t \alpha^{\mathbb{Q}}(s,t) ds + \int_0^t \sigma(s,t) dW^{\mathbb{Q}}(s),$$

Now by applying Leibniz integral rule ² we obtain following short rate dynamics:

$$dr(t) = \left[\frac{\partial}{\partial t}f(0,t) + \alpha^{\mathbb{Q}}(t,t) + \int_{0}^{t} \frac{\partial}{\partial t}\alpha^{\mathbb{Q}}(s,t)ds + \int_{0}^{t} \frac{\partial}{\partial t}\sigma(s,t)dW^{\mathbb{Q}}(s)\right]dt + \sigma(t,t)dW^{\mathbb{Q}}(t).$$

2

$$\frac{\mathrm{d}}{\mathrm{d}\alpha} \int_{a(\alpha)}^{b(\alpha)} f(x,\alpha) \mathrm{d}x = f(b,\alpha) \frac{\partial}{\partial \alpha} b(\alpha) - f(a,\alpha) \frac{\partial}{\partial \alpha} a(\alpha) + \int_{a(\alpha)}^{b(\alpha)} \frac{\partial}{\partial \alpha} f(x,\alpha) \mathrm{d}x$$

Ho-Lee Model

We specify a certain form of a volatility $\sigma(t,T)$ for the instantaneous forward rate f(t,T) and determine the resulting short-rate dynamics. The first, and the simplest possibility is to consider $\sigma(t,T)$ to be constant, i.e.:

$$\sigma(t,T)=\sigma.$$

From previous derivations we find:

$$\alpha^{\mathbb{Q}}(t,T) = \sigma \int_{t}^{T} \sigma \mathrm{d}s = \sigma^{2}(T-t).$$

▶ This can be used in Equation for the short-rate dynamics, i.e.:

$$\begin{split} \mathrm{d} r(t) &= \left[\frac{\partial}{\partial t} f(0,t) + \alpha^{\mathbb{Q}}(t,t) + \int_0^t \frac{\partial}{\partial t} \alpha^{\mathbb{Q}}(s,t) \mathrm{d} s \right. \\ &+ \int_0^t \frac{\partial}{\partial t} \sigma(s,t) \mathrm{d} W^{\mathbb{Q}}(s) \right] \mathrm{d} t + \sigma(t,t) \mathrm{d} W^{\mathbb{Q}}(t). \end{split}$$

Ho-Lee Model

Therefore the short-rate dynamics under the HJM model with $\sigma(t,T) = \sigma$ is given by:

$$\mathrm{d}r(t) = \left(\frac{\partial}{\partial t}f(0,t) + \sigma^2 t\right)\mathrm{d}t + \sigma\mathrm{d}W^{\mathbb{Q}}(t).$$

▶ By setting $\theta(t) = \frac{\partial}{\partial t} f(0, t) + \sigma^2 t$, we arrive at:

$$\mathrm{d}r(t) = \theta(t)\mathrm{d}t + \sigma\mathrm{d}W^{\mathbb{Q}}(t),$$

which is well-recognized as the Ho-Lee short-rate model.

Now we can compute ZCBs P(t, T) using this model

$$P(t,T) = \mathbb{E}\left[e^{-\int_t^T r(s)ds}\middle|\mathcal{F}(t)\right] = e^{A(t,T)+B(t,T)r(t)}.$$

▶ Functions A(t, T) and B(t, T) will be presented later.

Ho-Lee Model: Python Exercise

Python Exercise:

- Define $P_{mrkt}(t, T) = \exp(-r(T t))$ (it can be much more involved or implied from the market), for some r, calculate f(t, T) and use it for simulating r(t).
- \triangleright Consider the Ho-Lee model with a freely chosen parameter σ .
- It is important to properly choose the initial value for the process r(t):

$$r(0) = f(0,0) \approx -\frac{\partial \log P_{mrkt}(0,\epsilon)}{\partial \epsilon}, \text{ for } \epsilon \to 0.$$

Using Monte Carlo Paths calculate

$$P_{model}(t,T) = \mathbb{E}^{\mathbb{Q}} \left[\mathrm{e}^{-\int_t^T r(s) \mathrm{d}s} \middle| \mathcal{F}(t) \right].$$

Are $P_{mrkt}(0, T)$ and $P_{model}(0, T)$ the same for all T?

Ho-Lee Model: Python Exercise

Figure: Comparison of the ZCBs from the Ho-Lee model vs. Market P(0, T) for different T.

Let us now consider a short-rate model generated by the HJM volatility given by:

$$\sigma(t, T) = \sigma \cdot e^{-\lambda(T-t)}$$
 with $\lambda > 0$.

As before, the short-rate dynamics under HJM arbitrage free assumptions is given by:

$$dr(t) = \left[\frac{\partial}{\partial t}f(0,t) + \alpha^{\mathbb{Q}}(t,t) + \int_{0}^{t} \frac{\partial}{\partial t}\alpha^{\mathbb{Q}}(s,t)ds + \int_{0}^{t} \frac{\partial}{\partial t}\sigma(s,t)dW^{\mathbb{Q}}(s)\right]dt + \sigma(t,t)dW^{\mathbb{Q}}(t).$$

▶ By Lemma we find:

$$lpha^{\mathbb{Q}}(\mathbf{s},t) = \sigma \mathrm{e}^{-\lambda(t-\mathbf{s})} \int_{\mathbf{s}}^{t} \sigma \mathrm{e}^{-\lambda(u-t)} \mathrm{d}u = -\frac{\sigma^{2}}{\lambda} \mathrm{e}^{-\lambda(t-\mathbf{s})} \left(\mathrm{e}^{-\lambda(t-\mathbf{s})} - 1 \right),$$

which implies that $\alpha^{\mathbb{Q}}(t,t) = 0$.

► The remaining terms are as follows:

$$\int_0^t \frac{\partial}{\partial t} \alpha^{\mathbb{Q}}(s,t) \mathrm{d}s = \frac{\sigma^2}{\lambda} \mathrm{e}^{-2\lambda t} (\mathrm{e}^{\lambda t} - 1),$$

and

$$\frac{\partial}{\partial t}\sigma(s,t) = -\lambda\sigma e^{-\lambda(t-s)} = -\lambda\sigma(s,t),$$

with $\sigma(t,t) = \sigma$.

▶ The dynamics for r(t) is therefore given by:

$$\mathrm{d}r(t) = \frac{\partial}{\partial t} f(0,t) + \int_0^t \frac{\partial}{\partial t} \alpha^{\mathbb{Q}}(s,t) \mathrm{d}s - \lambda \sqrt{\int_0^t \sigma(s,t) \mathrm{d}W^{\mathbb{Q}}(s)} + \sigma \mathrm{d}W^{\mathbb{Q}}(t).$$

We see that Brownian motion $dW^{\mathbb{Q}}(t)$ is present in two terms. In order to find explicitly the solution for the integral $\int_0^t \sigma(s,t) dW^{\mathbb{Q}}(s)$ we can use definition of the short-rate which yields:

$$r(t) = f(0,t) + \int_0^t \alpha^{\mathbb{Q}}(s,t) \mathrm{d}s + \int_0^t \sigma(s,t) \mathrm{d}W^{\mathbb{Q}}(s),$$

therefore the first integral can be determined via:

$$\int_0^t \sigma(s,t) \mathrm{d} W^{\mathbb{Q}}(s) = r(t) - f(0,t) - \int_0^t \alpha^{\mathbb{Q}}(s,t) \mathrm{d} s.$$

As:

$$\int_0^t \alpha^{\mathbb{Q}}(s,t) \mathrm{d}s = \frac{\sigma^2}{2\lambda^2} \mathrm{e}^{-2\lambda t} \left(\mathrm{e}^{\lambda t} - 1 \right)^2,$$

we obtain the following dynamics for process r(t):

$$dr(t) = \lambda \left(\frac{1}{\lambda} \frac{\partial}{\partial t} f(0, t) + f(0, t) + \frac{\sigma^2}{2\lambda^2} \left(1 - e^{-2\lambda t} \right) - r(t) \right) dt + \sigma dW^{\mathbb{Q}}(t).$$

So finally, by taking:

$$heta(t) = rac{1}{\lambda} rac{\partial}{\partial t} f(0,t) + f(0,t) + rac{\sigma^2}{2\lambda^2} \left(1 - \mathrm{e}^{-2\lambda t}\right),$$

the dynamics of the process r(t) yields:

$$\mathrm{d}r(t) = \lambda(\theta(t) - r(t))dt + \sigma\mathrm{d}W^{\mathbb{Q}}(t),$$

which can be easily recognized as the Hull-White short rate process.

It is important to properly choose the initial value for the process r(t):

$$r(0) = f(0,0) \approx -\frac{\partial \log P(0,\epsilon)}{\partial \epsilon}, \text{ for } \epsilon \to 0.$$

Simulation of the Hull-White Model

Figure: Within the HW model context, the impact of variation of mean-reversion λ , and of the volatility parameter η on the Monte Carlo paths.

Hull-White Model: Python Exercise

Python Exercise:

- ▶ Define $P_{mrkt}(t, T) = \exp(-r(T t))$ (it can be much more involved or implied from the market), for some r, calculate f(t, T) and use it for simulating r(t).
- ▶ Consider the Hull-White model with a freely chosen parameters λ and σ .
- lt is important to properly choose the initial value for the process r(t):

$$r(0) = f(0,0) \approx -\frac{\partial \log P_{mrkt}(0,\epsilon)}{\partial \epsilon}, \text{ for } \epsilon \to 0.$$

Using Monte Carlo Paths calculate

$$P_{model}(t,T) = \mathbb{E}^{\mathbb{Q}} \left[\mathrm{e}^{-\int_t^T r(s) \mathrm{d}s} \middle| \mathcal{F}(t) \right].$$

Are $P_{mrkt}(0, T)$ and $P_{model}(0, T)$ the same for all T?

Hull-White Model: Python Exercise

Figure: Comparison of the ZCBs from the Hull-White model vs. Market P(0, T) for different T.

Summary

- ► Equilibrium vs. Term-Structure Models
- ► The HJM Framework
- Arbitrage Free Conditions under HJM
- ► Ho-Lee Model and Python Simulation
- Hull-White Model
- ► Hull-White Model and Simulation in Python
- Summary of the Lecture + Homework

Homework Exercises

The solutions for the homework can be find at https://github.com/LechGrzelak/QuantFinanceBook

Exercise

Consider the "exponential-Vasicek" model given by the following system of equations:

$$r(t) = e^{y(t)},$$

$$dy(t) = (\theta - ay(t))dt + \sigma dW(t) \quad y(t_0) = y_0.$$

 \triangleright Show that the dynamics for r(t) yields:

$$dr(t) = r(t) \left(\theta + \frac{\sigma^2}{2} - a \log r(t)\right) dt + \sigma r(t) dW(t).$$

Show that

$$\lim_{t\to\infty} \mathbb{E}[r(t)] = e^{\frac{\theta}{a} + \frac{\sigma^2}{4a}}.$$

Summary of the Lecture + Homework

Exercise 11.9

Consider the Vašiček short-rate model,

$$dr(t) = \lambda (\theta - r(t)) dt + \eta dW(t),$$

with parameters $\lambda=0.05$, $\theta=0.02$ and $\eta=0.1$ and initial rate $r(t_0)=0$. At time t_0 , we wish to hedge a position in a 10y zero-coupon bond, $P(t_0,10y)$, using two other bonds, $P(t_0,1y)$ and $P(t_0,20y)$.

- a. Determine two weights, ω_1 and ω_2 , such that $\omega_1 + \omega_2 = 1$ and $\omega_1 P(t_0, 1y) + \omega_2 P(t_0, 20y) = P(t_0, 10y)$.
- b. Perform a minimum variance hedge and determine the weights ω_1 and ω_2 , such that

$$\mathbb{V}\mathsf{ar}\left[\int_0^{10y} \omega_1 P(t,1y) + \omega_2 P(t,20y) \mathrm{d}t\right] = \mathbb{V}\mathsf{ar}\left[\int_0^{10y} P(t,10y) \mathrm{d}t\right],$$

while $\omega_1 + \omega_2 = 1$. What can be said about this type of hedge compared to the point addressed?

c. Change the measure, to the T=10y-forward measure, and, for the given weights determined earlier, check whether the variance of the estimator increases.

Summary of the Lecture + Homework

- Exercise
- The "exponential-Vasicek" model does not allow for negative interest rates. In order to "fix" that problem we introduce a so-called shift parameter ζ ,

$$\tilde{r}(t) = r(t) - \zeta, \quad \zeta \in \mathbb{R}^+.$$

- Find the dynamics for $\tilde{r}(t)$, simulate Monte Carlo paths and compare to r(t).
- ▶ Discuss the impact of shift on ZCBs, $P(t_0, T)$.