Optimized and secure pairing-friendly elliptic curve suitable for one layer proof composition

Youssef El Housni¹ Aurore Guillevic²

¹Ernst & Young, Inria and École polytechnique, Paris, France youssef.el.housni@fr.ey.com

²Université de Lorraine, CNRS, Inria, LORIA, Nancy, France aurore.guillevic@inria.fr

ZKProof Lightning talks, April 2020

Overview

- Proof composition
 - Notations
- Our work
 - Theory
 - Implementation
- 3 Applications

Notations

Pairing-based zkSNARK for NP-language

- $E: y^2 = x^3 + ax + b$ elliptic curve defined over \mathbb{F}_q , q a prime power.
- r prime divisor of $\#E(\mathbb{F}_q) = q+1-t$, t Frobenius trace.
- k embedding degree, smallest integer $k \in \mathbb{N}^*$ s.t. $r \mid q^k 1$.
- pairing $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ where:
 - $\mathbb{G}_1 \subset E(\mathbb{F}_q)$ and $\mathbb{G}_2 \subset E(\mathbb{F}_{q^k})$ two groups of order r.
 - $\mathbb{G}_T \subset \mathbb{F}_{q^k}^*$ group of r-th roots of unity.

Proof composition

A proof of a proof

The verification algorithm V is a NP program \implies generate a new proof that verifies the correctness the old proof.

For pairing-based SNARKs, V is in \mathbb{F}_{q^k} and P in \mathbb{F}_r , where q is the field size of an elliptic curve E and r its prime subgroup order.

- 1st attempt: choose a curve for which q = r (impossible)
- 2^{nd} attempt: simulate \mathbb{F}_q operations via \mathbb{F}_r operations ($\times \log q$ blowup)
- 3rd attempt: use a cycle/chain of pairing-friendly elliptic curves [BCTV14, BCG⁺20]

Proof composition

cycles and chains of pairing-friendly elliptic curves

Figure: Examples of pairing-friendly amicable cycles and chains.

Proof composition

cycles and chains of pairing-friendly elliptic curves

E/\mathbb{F}_q	q	r	k	d	a, b	λ
MNT4	$q_4 = r_6 \text{ (298b)}$	$r_4 = q_6 \ (298b)$	4	2	a = 2, b = *	32
MNT6	$q_6 = r_4 (298b)$	$r_6 = q_4 \ (298b)$	6	2	a = 11, b = *	50
MNT4-753	$q_4' = r_6' \text{ (753b)}$	$r_4' = q_6' \ (753b)$	4	2	a = 2, b = *	128
MNT6-753	$q_6' = r_4' $ (753b)	$r_6' = q_4' \ (753b)$	6	2	a = 11, b = *	128
BLS12-377	<i>q_{BLS}</i> (377b)	r _{BLS} (253b)	12	6	a = 0, b = 1	128
SW6	q _{SW6} (782b)	$r_{SW6} = q_{BLS} (377b)$	6	2	a = 5, b = *	128
This work	q (761b)	$r = q_{BLS} (377b)$	6	6	a = 0, b = -1	128

Table: 2-cycle and 2-chain examples.

Recall that E/\mathbb{F}_q : $y^2=x^3+ax+b$ has a subgroup of order r, an embedding degree k, a twist of order d and an approximate security of λ -bit.

ZK-curves

- SNARK
 - E/\mathbb{F}_q
 - pairing-friendly
 - r-1 highly 2-adic
- Recursive SNARK (2-cycle)
 - ullet E_1/\mathbb{F}_{q_1} and E_2/\mathbb{F}_{q_2}
 - both pairing-friendly
 - $r_2 = q_1$ and $r_1 = q_2$
 - $r_{\{1,2\}} 1$ highly 2-adic
 - $q_{\{1,2\}} 1$ highly 2-adic
- Recursive SNARK (2-chain)
 - E_1/\mathbb{F}_{q_1}
 - pairing-friendly
 - $r_1 1$ highly 2-adic
 - $q_1 1$ highly 2-adic
 - E_2/\mathbb{F}_{q_2}
 - pairing-friendly
 - $r_2 = q_1$

BN, BLS12, BW12?, KSS16? ... [FST10]

MNT4/MNT6 [FST10, Sec.5], ? [CCW19]

BLS12 ($seed \equiv 1 \mod 3.2^{adicity}$) [BCG⁺20], ?

Cocks-Pinch algorithm

The suggested curve: BW6-761

We found the following curve $E: y^2 = x^3 - 1$ over \mathbb{F}_q of 761-bit. The parameters are expressed in polynomial forms and evaluated at the seed $x_0 = 0x8508c00000000$. For pairing computation we use the M-twist curve $E': y^2 = x^3 + 4$ over \mathbb{F}_q to represent \mathbb{G}_2 coordinates.

Our curve,
$$k = 6$$
, $D = 3$, $r = q_{BLS12-377}$

$$r(x) = (x^6 - 2x^5 + 2x^3 + x + 1)/3 = q_{BLS12-377}(x)$$

$$t(x) = x^5 - 3x^4 + 3x^3 - x + 3 + h_t r(x)$$

$$y(x) = (x^5 - 3x^4 + 3x^3 - x + 3)/3 + h_y r(x)$$

$$q(x) = (t^2 + 3y^2)/4$$

$$q_{h_t=13,h_y=9}(x) = (103x^{12} - 379x^{11} + 250x^{10} + 691x^9 - 911x^8 - 79x^7 + 623x^6 - 640x^5 + 274x^4 + 763x^3 + 73x^2 + 254x + 229)/9$$

Features

- The curve is over 761-bit instead of 782-bit, we save one machine-word of 64 bits.
- The curve has an embedding degree k=6 and a twist of order d=6, allowing \mathbb{G}_2 coordinates to be in \mathbb{F}_q (factor 6 compression).
- The curve parameters have polynomial expressions, allowing fast implementation.
- The curve has a very efficient optimal ate pairing.
- The curve has CM discriminant -D=-3, allowing fast GLV multiplication on both \mathbb{G}_1 and \mathbb{G}_2 .
- The curve has fast subgroup checks and fast cofactor multiplication on \mathbb{G}_1 and \mathbb{G}_2 via endomorphisms.
- The curve has fast and secure hash-to-curve methods for both \mathbb{G}_1 and \mathbb{G}_2 .

Cost estimation of a pairing

$$e(P,Q) = f_{t-1,Q}(P)^{(q^6-1)/r}$$
 $(t-1)$ of 388 bits, $Q \in \mathbb{F}_{q^3}$ $e(P,Q) = (f_{x_0+1,Q}(P)f_{x_0^3-x_0^2-x_0,Q}^q(P))^{(q^6-1)/r}$ $(t-1)$ of 388 bits, $Q \in \mathbb{F}_q$ x_0 of 64 bits, $Q \in \mathbb{F}_q$

$$(q^6-1)/r = \underbrace{(q^3-1)(q+1)}_{\text{easy part}} \underbrace{(q^2-q+1)/r}_{\text{hard part}} = \left\{ \begin{array}{l} \text{easy part} \times (w_0+qw_1) \\ \text{easy part} \times f(x_0,q^i) \end{array} \right.$$

Curve	Prime	Pairing	Miller loop	Exponentiation	Total
BLS12	377-bit	ate	6705 m ₃₈₄	7063 m ₃₈₄	13768 m ₃₈₄
SW6	782-bit	ate	47298 m ₈₃₂	10521 m ₈₃₂	57819 m ₈₃₂
This	761-bit	opt. ate	7911 m ₇₆₈	5081 m ₇₆₈	12992 m ₇₆₈

 m_b base field multiplication, b bitsize in Montgomery domain on a 64-bit platform

x4.5 less operations in a smaller field by one machine-word

C++ implementation timings

Implemented in libff library [sl18] (with GMP 6.1.2.2) and tested on a 2.2 GHz Intel Core i7 $\times 86_64$ processor with 16 Go 2400 MHz DDR4 memory running macOS Mojave 10.14.6. C++ compiler is clang 10.0.1. Profiling routines use clock_gettime and readproc calls.

url: https://github.com/EYBlockchain/zk-swap-libff/tree/ey/libff/algebra/curves/bw6_761

Curve	Pairing	Miller loop	Exponentiation	Total	Eq. ??
BLS12	ate	0.0025s	0.0049s	0.0074s	0.0149s
SW6	ate (proj.)	0.0388s	0.0110s	0.0499s	0.1274s
SW6	ate (aff.)	0.0249s	0.0110s	0.0361s	0.0875s
This	opt. ate	0.0053s	0.0044s	0.0097s	0.0203s

x5 faster to compute a pairing (in projective coordinates)
 x6.27 faster to verify a Groth16 proof (in projective coordinates)
 x3.7 faster to compute a pairing (in affine coordinates)
 x4.22 faster to verify a Groth16 proof (in affine coordinates)

Applications

Blockchain projects

- Zexe: user-defined assets, decentralized exchanges and policy-enforcing stablecoins
- Celo: batched verification of BLS signatures
- Filecoin: circuit splitting
- Baseline protocol (EY, Consensys) [ECM20]: batching zkSNARK proofs

Thank you

- Paper: https://eprint.iacr.org/2020/351.pdf
- C++ (libff): https://github.com/EYBlockchain/ zk-swap-libff/tree/ey/libff/algebra/curves/bw6_761
- SageMath and Magma: https://gitlab.inria.fr/zk-curves/bw6-761/
- Rust WIP
 (zexe): https://github.com/scipr-lab/zexe/issues/152

e-mail: youssef.el.housni@fr.ey.com twitter: @YoussefElHousn3 telegram: @ElMarroqui

References I

Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu.

Zexe: Enabling decentralized private computation.

In 2020 IEEE Symposium on Security and Privacy (SP), pages 1059–1076, Los Alamitos, CA, USA, may 2020. IEEE Computer Society.

https://ia.cr/2018/962.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via cycles of elliptic curves.

In Juan A. Garay and Rosario Gennaro, editors, *CRYPTO 2014*, *Part II*, volume 8617 of *LNCS*, pages 276–294. Springer, Heidelberg, August 2014.

References II

Alessandro Chiesa, Lynn Chua, and Matthew Weidner.

On cycles of pairing-friendly elliptic curves.

SIAM Journal on Applied Algebra and Geometry, 3(2):175–192, 2019.

EY, Consensys, and Microsoft.

Baseline protocol, 2020.

https://github.com/ethereum-oasis/baseline.

Youssef El Housni and Aurore Guillevic.

Optimized and secure pairing-friendly elliptic curves suitable for one layer proof composition.

Cryptology ePrint Archive, Report 2020/351, 2020. https://eprint.iacr.org/2020/351.

Y. El Housni, A. Guillevic

References III

David Freeman, Michael Scott, and Edlyn Teske.

A taxonomy of pairing-friendly elliptic curves.

Journal of Cryptology, 23(2):224-280, April 2010.

Izaak Meckler and Evan Shapiro.

Coda: Decentralized cryptocurrency at scale.

O(1) Labs whitepaper, 2018.

https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf.

scipr lab.

libff: C++ library for finite fields and elliptic curves., 2018.

https://github.com/scipr-lab/libff.