What every data scientist should know about data anonymization

Katharina Rasch

Data scientist | PhD Computer Science kat@krasch.io | www.krasch.io

New York City taxi drop offs 2009 - 2015 [1]

Medical Data Released as Anonymous

SSN	Name	Race	DateOfBirth	Sex	ZIP	Marital Status	HealthProblem
-		asian	09/27/64	female	94139	divorced	hypertension
		asian	09/30/64	female	94139	divorced	obesity
		asian	04/18/64	male	94139	married	chest pain
		asian	04/15/64	male	94139	married	obesity
		black	03/13/63	male	94138	married	hypertension
		black	03/18/63	male	94138	married	shortness of breath
		black	09/13/64	female	94141	married	shortness of breath
		black	09/07/64	female	94141	married	obesity
		white	05/14/61	male	94138	single	chest pain
		white	05/08/61	male	94138	single	obesity
		white	09/15/61	female	94142	widow	shortness of breath

Voter List

Name	Address	City	ZIP	DOB	Sex	Party	
Sue J. Carlson	900 Market St.	San Francisco	94142	9/15/61	female	democrat	

Figure 1: Re-identifying anonymous data by linking to external data

- 1. introduction
- 2. let's anonymize a dataset
- 3. utility of anonymized data
- 4. alternative: the interactive model
 - 5. practical tips and standards

sensitive information?

assumptions [4]

- a) publish raw data, not statistics
- b) want to minimize the risk for privacy breaches
 - c) all record owners have equal right to privacy
- d) adversaries are determined, resourceful and technically competent
- e) the de-anonymization algorithms that attackers will use are unknown

assume adversary has access to additional data whether target is/is not in the dataset external data sets (public or closed) personal knowledge about target

in the US, 63% of inhabitants are likely to be uniquely identifiable by birthdate, sex, zip code [5]

age, sex, zip code, ethnicity, education, etc are called quasi identifiers

sex	age	location	profession	party affiliation
M	22	Dresden	sales	С
F	51	Heidelberg	software engineer	Α
M	27	Leipzig	sales	Α
F	23	Potsdam	nurse	В
F	54	Heidelberg	data scientist	Α
F	62	Cologne	chef	С
M	43	Cologne	plumber	Α

sex	age	location	profession	party affiliation
M	22	Dresden	sales	С
F	51	Heidelberg	software engineer	Α
M	27	Leipzig	sales	Α
F	23	Potsdam	nurse	В
F	54	Heidelberg	data scientist	Α
F	62	Cologne	chef	С
M	43	Cologne	plumber	Α

record linkage

target can be linked to one or very few records in the dataset

k-anonymity [2]

there must always be at least k records for each equivalence group present in the dataset

(equivalence group = all records with same combination of quasi-identifiers)

sex	age	location	profession	party affiliation
М	22	Dresden	sales	С
F	51	Heidelberg	software engineer	Α
M	27	Leipzig	sales	Α
F	23	Potsdam	nurse	В
F	54	Heidelberg	data scientist	Α
F	62	Cologne	chef	С
M	43	Cologne	plumber	Α

sex	age	location	profession	party affiliation
M	22	Dresden	sales	С
F	51	Heidelberg	software engineer	Α
M	27	Leipzig	K₃a īē s 1	Α
F	23	Potsdam	nurse	В
F	54	Het's anony	Α	
F	62	Cologne	chef	С
M	43	Cologne	plumber	А

increase k through

generalization suppression

sex	age	location	profession	party affiliation
M	21	Dresden	sales	С
F	51	Heidelberg	software engineer	Α
M	26	Leipzig	sales	Α
F	23	Potsdam	nurse	В
F	54	Heidelberg	data scientist	Α
F	62	Cologne	electrician	С
M	43	Cologne	plumber	Α

sex	age	location	profession	party affiliation
M	20-29	Saxony	sales	С
F	51	Heidelberg	software engineer	Α
M	20-29	Saxony	sales	Α
F	23	Potsdam	nurse	В
F	54	Heidelberg	data scientist	Α
F	62	Cologne	electrician	С
M	43	Cologne	plumber	Α

sex	age	location	profession	party affiliation
M	20-29	Saxony	sales	С
F	51	Heidelberg	software engineer	Α
M	20-29	Saxony	sales	Α
F	23	Potsdam	nurse	В
F	54	Heidelberg	data scientist	Α
F	62	Cologne	electrician	С
M	43	Cologne	plumber	Α

sex	age	location	profession	party affiliation
M	20-29	Saxony	sales	С
F	50-59	Heidelberg	engineer	Α
M	20-29	Saxony	sales	Α
F	23	Potsdam	nurse	В
F	50-59	Heidelberg	engineer	Α
F	62	Cologne	electrician	С
M	43	Cologne	plumber	Α

sex	age	location	profession	party affiliation
M	20-29	Saxony	sales	С
F	50-59	Heidelberg	engineer	А
M	20-29	Saxony	sales	Α
F	23	Potsdam	nurse	В
F	50-59	Heidelberg	engineer	Α
F	62	Cologne	electrician	С
M	43	Cologne	plumber	Α

sex	age	location	profession	party affiliation
M	20-29	Saxony	sales	С
F	50-59	Heidelberg	engineer	Α
M	20-29	Saxony	sales	Α
F	23	Potsdam	nurse	В
F	50-59	Heidelberg	engineer	Α
any	40-60	Cologne	craftsperson	С
any	40-60	Cologne	craftsperson	Α

sex	age	location	profession	party affiliation
M	20-29	Saxony	sales	С
F	50-59	Heidelberg	engineer	Α
M	20-29	Saxony	sales	Α
F	23	Potsdam	nurse	В
F	50-59	Heidelberg	engineer	Α
any	40-60	Cologne	craftsperson	С
any	40-60	Cologne	craftsperson	Α

sex	age	location	profession	party affiliation
M	20-29	Saxony	sales	С
F	50-59	Heidelberg	engineer	Α
M	20-29	Saxony	sales	Α
_	_	-	_	-
F	50-59	Heidelberg	engineer	Α
any	40-60	Cologne	craftsperson	С
any	40-60	Cologne	craftsperson	Α

sex	age	location	profession	party affiliation
M	20-29	Saxony	sales	С
F	50-59	Heidelberg	engineer	Α
M	20-29	Saxony	Ksa ≡ s2	Α
_	-	-	-	_
F	50-59	Heidelberg _S	uccess!	Α
any	40-60	Cologne	blue collar	С
any	40-60	Cologne	blue collar	Α

sex	age	location	profession	party affiliation
M	20-29	Saxony	sales	С
F	50-59	Heidelberg	engineer	Α
M	20-29	Saxony	sales	Α
-	-	-	-	-
F	50-59	Heidelberg	engineer	Α
any	40-60	Cologne	craftsperson	С
any	40-60	Cologne	craftsperson	Α

attribute linkage

target is vulnerable because some sensitive values dominate target's equivalence group

I-diversity [6]

there must always be at least I distinct values for each sensitive attribute and equivalence group

(includes k-anonymity with $k \ge 1$)

sex	age	location	profession	party affiliation
M	20-29	Saxony	sales	С
F	50-59	Heidelberg	engineer	А
M	20-29	Saxony	sales	Α
-	-	_	-	-
F	50-59	Heidelberg	engineer	Α
any	40-60	Cologne	craftsperson	С
any	40-60	Cologne	craftsperson	Α

sex	age	location	profession	party affiliation
M	20-29	Saxony	sales	С
F	50-59	Heidelberg	engineer	Α
M	20-29	Saxony	sales	Α
-	-	-	-	-
F	50-59	Heidelberg	engineer	Α
any	40-60	Cologne	craftsperson	С
any	40-60	Cologne	craftsperson	Α

sex	age	location	profession	party affiliation
M	20-29	Saxony	sales	С
F	50-59	Heidelberg	engineer	А
M	20-29	Saxony	sa le s1	Α
_	-	-	_	_
F	50-59	Het's anony	mize so that I=2	Α
any	40-60	Cologne	blue collar	С
any	40-60	Cologne	blue collar	Α

sex	age	location	profession	party affiliation
M	20-29	Saxony	sales	С
F	50-59	Heidelberg	engineer	Α
M	20-29	Saxony	sales	Α
_	_	_	-	-
F	50-59	Heidelberg	engineer	Α
any	40-60	Cologne	craftsperson	С
any	40-60	Cologne	craftsperson	Α

sex	age	location	profession	party affiliation
М	20-29	Saxony	sales	С
any	40-60	Germany	any	Α
M	20-29	Saxony	sales	Α
_	_	_	-	-
any	40-60	Germany	any	Α
any	40-60	Germany	any	С
any	40-60	Germany	any	Α

sex	age	location	profession	party affiliation
M	20-29	Saxony	sales	С
any	40-60	Germany	any	Α
M	20-29	Saxony	s al es2	Α
_	_	_	_	_
any	40-60	Germany S	uccess!	А
any	40-60	Germany	any	С
any	40-60	Germany	any	Α

sex	age	location	profession	party affiliation
М	20-29	Saxony	sales	С
any	40-60	Germany	any	Α
M	20-29	Saxony	sales	Α
_	_	_	-	-
any	40-60	Germany	any	Α
any	40-60	Germany	any	С
any	40-60	Germany	any	Α

t-closeness [7]

distribution of a sensitive attribute in any equivalence group must be close to this attribute's distribution in whole dataset

experiment: anonymization vs data utility 'adult' dataset arx de-identification software [8] standard settings (minimize information loss) logistic regression

'Higher education', 'spouse not present', 'United-States', 'White', 'Female'	<=50K	3367
'Higher education', 'spouse not present', 'United-States', 'White', 'Male'	<=50K	2754
'Higher education', 'spouse present', 'United-States', 'White', 'Male'	>50K	3725
	<=50K	2448
'Secondary education', 'spouse not present', 'United-States', 'White', 'Female'	<=50K	2494
'Secondary education', 'spouse not present', 'United-States', 'White', 'Male'	<=50K	2752
'Secondary education', 'spouse present', 'United-States', 'White', 'Male'	<=50K	3199
	>50K	1298

most anonymization methods fail for high-dimensional, sparse datasets [9] e.g. purchase histories

(curse of dimensionality, everything is a quasi-identifier)

netflix prize privacy breach [10]

68% of records can be uniquely identified based on rating + date (±3 days) of two movies

mobile phone location data [11]

four random spatio-temporal points are enough to uniquely characterize 95% of the traces amongst 1.5 million users

differential privacy [12]

the risk to one's privacy should not substantially increase as a result of participating in a statistical database

interactive query model instead of releasing data what is the average age of people voting for 'B'? how many people in Potsdam vote for 'B'?

answer = actual result plus appropriate amount of noise

rephrase machine learning for interactive queries [13] PCA, k-means, perceptron, ID3 classifiers

there is no one-size-fits-all manual
what data do you want to protect?
what is impact if you fail to protect?
what kind of knowledge / methods could adversary use?
what is the use case of the people using dataset?
is enough utility retained after anonymization?

some red flags [14]

names, addresses, phone numbers locations (coordinates, references to home/work) members of small populations untranslated text, slang

HIPAA Safe Harbour (US, medical data) [15] at most first three digits of zip (fewer if less than 20k people) for all dates use only years, group ages 90+ no names, phone numbers, social security numbers etc

(unique for approximately 0.04% of US residents)

SAFE (Germany, census 2011, statistics) [16]

there must always be at least three records for each equivalence group present in the dataset, suppress smaller groups

- [1] http://toddwschneider.com/posts/analyzing-1-1-billion-nyc-taxi-and-uber-trips-with-a-vengeance
- [2] L. Sweeney. k-anonymity: a model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10 (5), 2002: 557-570
- [3] P. Samarati. Protecting Respondents' Identities in Microdata Release. IEEE Transactions on Knowledge and Data Engineering, 13 (6), 2001: 1010-1027
- [4] M. Jändel. Decision support for releasing anonymised data, Computers and security, 46, 2014: 48-61
- [5] P. Golle. Revisiting the Uniqueness of Simple Demographics in the US Population. 5th ACM workshop on Privacy in electronic society, 2006: 77-80
- [6] A. Machanavajjhala et al. L-diversity: Privacy beyond k-anonymity. ACM Transactions of Knowledge Discovery from Data, 1 (1), 2007
- [7] N. Li, T. Li. t-Closeness: Privacy Beyond k-Anonymity and ℓ-Diversity. 23rd International Conference on Data Engineering, 2007
- [7] F. Prasser et al. ARX A Comprehensive Tool for Anonymizing Biomedical Data, AMIA Annu Symp Proc. 2014: 984–993. http://arx.deidentifier.org/
- [8] C. Aggarwal. On k-anonymity and the curse of dimensionality. 31st international conference on Very large data bases, 2005: 901 909
- [9] A. Narayanan and V. Shmatikov. Robust De-anonymization of Large Sparse Datasets. IEEE Symposium on Security and Privacy, 2008: 111-125
- [10] YA. de Montjoye. Unique in the Crowd: The privacy bounds of human mobility. Scientific Reports 3, 2013
- [11] C. Dwork. Differential Privacy. International Colloquium on Automata, Languages and Programming, 2006: 1-12
- [12] A. Blum et al. Practical privacy: the SuLQ framework. ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, 2005: 128-138
- [13] https://responsibledata.io/summary-of-our-discussion-on-the-risks-and-mitigations-of-releasing-data/ (in video)
- [14] http://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
- [15] https://www.statistik-berlin-brandenburg.de/zensus/themenblaetter/07_Geheimhaltungsverfahren_SAFE.pdf

insensitive for you ≠ insensitive for everybody else best method dependent on your use case and threat model there is a tradeoff between anonymity and utility many methods break down for high-dimensional data get expert help if necessary