

Universidad Nacional de Colombia Facultad de Ciencias Análisis Funcional

Ejercicio 9 Sea $(E, \|\cdot\|)$ un espacio vectorial normado. Dado r > 0, considere $C = B(0, r) = \{y \in E : \|y\| < r\}$. Determine el funcional de Minkowski de C. **Ejercicio 12** Sea E un espacio vectorial normado.

- (i) Sea $W \subset E$ un subespacio propio de E y $x_0 \in E \setminus W$, tal que $d := dist(x_0, W) > 0$. Demuestre que existe $f \in E^*$ tal que f = 0 restricto a W, $f(x_0) = d$ y $||f||_{E^*} = 1$.
- (ii) Sea $W \subset E$ un subespacio propio cerrado de E y $x_0 \in E \setminus W$. Demuestre que existe $f \in E^*$ tal que f = 0 restricto a W y $f(x_0) \neq 0$.

Ejercicio 13 Sean $(E, \|\cdot\|)$ y $(F, \|\cdot\|)$ espacios de Banach.

- (i) Sea $K \subset E$ un subespacio cerrado de E. Definimos la relacion sobre E dada por $x \sim_K y$ si y solo si $x y \in K$.
 - (a) Muestre que \sim_K es una relacion de equicalencia sobre E.
 - (b) Muestre que el espacio cociente E/K es un espacio de Banach con la norma

$$\|x + K\|_{E/K} = \inf \|x - k\|, \quad x \in E.$$

Es decir, debe verificar que el espacio cociente es un espacio vectorial, normado, cuya norma lo hace completo.

(ii) Sea $T \in L(E, F)$ tal que existe c > 0 para el cual

$$\|\mathsf{T}x\|_{\mathsf{F}} \geq c\|x\|_{\mathsf{E}},$$

para todo $x \in E$. Si K denota el espacio nulo de T y R(T) el rango de T, muestre que $\overline{T}: E/K \to R(T)$ dada por $\overline{T}(x+K) = T(x), x \in E$, esta bien definida y es un isomorfismo. Esto es $\overline{T} \in L(E/K, R(T))$ y $\overline{T}^{-1} \in L(R(T), E/K)$.

Ejercicio 15 Considere los espacios C([0,1]) y $C^1([0,1])$ ambos equipados con la norma del supremo $\|f\|_{L^\infty} = \sup_{x \in [0,1]} |f(x)|$. Definimos el operador derivada $D: C^1([0,1]) \to C([0,1])$ dado por $f \mapsto f'$.

Muestre que D es un operador no acotado, pero su grafico G(D) es cerrado.