Advanced Numerical Analysis Homework 2

Michael Nelson

Throughout this homework, $\|\cdot\|$ denotes the ℓ_2 -norm. Also if x and y are two column vectors in \mathbb{R}^n , then we write $\langle x,y\rangle:=x^\top y$.

1 Problem 1

Exercise 1. Let a_0, a_1, \ldots, a_n be n+1 equispaced points on [-1,1], where $a_0 = -1$ and $a_n = 1$. Assemble these n+1 values into a column vector \boldsymbol{u} , and use MATLAB's vander to generate Vandermonde matrices A from vector \boldsymbol{u} for n=9,19,29,39. Let $\boldsymbol{x}=(1,1,\ldots,1)^{\top}$ and $\boldsymbol{b}=A\boldsymbol{x}$. Pretend that we do not know \boldsymbol{x} and use numerical algorithms to solve this linear system for \boldsymbol{x} . Let $\widehat{\boldsymbol{x}}$ be the computed solution. Compute the relative forward errors $\|\widehat{\boldsymbol{x}}-\boldsymbol{x}\|/\|\boldsymbol{x}\|$ and the smallest relative backward errors

$$\frac{\|\boldsymbol{b} - A\widehat{\boldsymbol{x}}\|}{\|A\|\|\widehat{\boldsymbol{x}}\|} = \min\left\{\frac{\|\delta A\|}{\|A\|} \mid (A + \delta A)\widehat{\boldsymbol{x}} = \boldsymbol{b}\right\},\,$$

where $\|\cdot\|$ denotes the ℓ_2 -norm, for the following:

- 1. GEPP (MATLAB's backslash);
- 2. QR factorization of *A*;
- 3. Cramer's rule;
- 4. A^{-1} multiplied by b;
- 5. GE without pivoting.

Comment on the forward/backward stability of these methods.

Solution 1. 1. We work in MATLAB below:

```
n = [9,19,29,39];
ForwardErrors = zeros(4,4);
BackwardErrors = zeros(4,4);
for k = 1:4
  u=(-1:2/n(k):1)';
  x = ones(n(k)+1,1);
  A = vander(u);
  b = A*x;
  [Q,R] = qr(A);
  xh = zeros(n(k)+1,4);
  xh(:,1) = A b;
  xh(:,2) = R\setminus(Q'*b);
  for j = 1: length(A)
      C = A;
      C(:,j) = b;
      xh(j,3) = det(C)/det(A);
  end
```

```
xh(:,4) = inv(A)*b;
for j = 1:4
    ForwardErrors(k,j) = norm(xh(:,j)-x)/norm(x);
    BackwardErrors(k,j) = norm(b-A*xh(:,j))/(norm(A)*norm(xh(:,j)));
end;
end;
```

We see that GEPP and QR factorization are backward stable, however the other three algorithms are not.

2 Problem 2

Exercise 2. Consider the eigenvalue problem $Av = \lambda v$. Let $(\widehat{\lambda}, \widehat{v})$ be a computed eigenpair, which is assumed to be the exact eigenpair of a perturbed matrix $A + \delta A$. Show that the minimum ℓ_2 -norm of all such δA is

$$\frac{\|A\widehat{v} - \widehat{\lambda}\widehat{v}\|}{\|\widehat{v}\|},\tag{1}$$

and find a particular δA whose ℓ_2 -norm is the minimum. (Note that this result can help us experimentally determine if an eigenvalue algorithm is backward stable).

Solution 2. Given such δA , we have $\delta A \hat{v} = \hat{\lambda} \hat{v} - A \hat{v}$. Therefore since $\|\delta A\| \|\hat{v}\| \ge \|\delta A \hat{v}\|$, we see that

$$\|\delta A\| \geq rac{\|A\widehat{v} - \widehat{\lambda}\widehat{v}\|}{\|\widehat{v}\|}.$$

The norm is minimized when

$$\delta A = \frac{(\widehat{\lambda}\widehat{v} - A\widehat{v})\widehat{v}^{\top}}{\|v\|^2}.$$

3 Problem 3

Exercise 3. Give a proof that the worst-case growth factor $\rho_n = 2^{n-1}$ for GEPP. Compared to $\rho_n \leq C n^{\frac{1}{2} + \frac{1}{4} \ln n}$ with complete pivoting and $\rho_n \leq 1.5 n^{\frac{3}{4} \ln n}$ with rook pivoting, this is much larger. However, we construct matrices with random elements, each are independent samples from the normal distribution of mean 0 and standard deviation $\frac{1}{\sqrt{n}}$ (A = randn(n,n)/sqrt(n)). Let $n = 32,64,\ldots,512$, and for each n, repeat the experiment 1000 times. Find the percentage of experiments when $\rho_n > \sqrt{n}$. Make brief comments on the chance of having a large ρ_n .

4 Problem 4

Exercise 4. Though pivoting is needed for factorizing general matrices, it is not needed for symmetric positive definite and diagonally dominant matrices.

1. For a symmetric positive definite matrix $A = (a_{ij})$, with the one-step Cholesky factorization

$$A = \begin{pmatrix} a_{11} & \boldsymbol{w}^\top \\ \boldsymbol{w} & K \end{pmatrix} = \begin{pmatrix} \sqrt{a_{11}} & 0 \\ \frac{\boldsymbol{w}}{\sqrt{a_{11}}} & I \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & K - \frac{\boldsymbol{w}\boldsymbol{w}^\top}{a_{11}} \end{pmatrix} \begin{pmatrix} \sqrt{a_{11}} & \frac{\boldsymbol{w}^\top}{\sqrt{a_{11}}} \\ 0 & I \end{pmatrix} = R_1^\top A_1 R_1,$$

show that the submatrix $K - (ww^\top)/a_{11}$ is symmetric positive definite. Consequently, the factorization can be completed without break-down. Then, show that $||R|| = ||A||^{1/2}$, which means the element in R are uniformly bounded by that of ||A||. Explain why this observation leads to the backward stability of Cholesky factorization.

2. Suppose that $A = \begin{pmatrix} \alpha & w^\top \\ v & C \end{pmatrix}$ is column diagonally dominant, with one-step LU factorization

$$A = \begin{pmatrix} 1 & 0 \\ \frac{v}{\alpha} & I \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & C - \frac{vw^{\top}}{\alpha} \end{pmatrix} \begin{pmatrix} \alpha & w^{\top} \\ 0 & I \end{pmatrix}.$$

Show that the sub-matrix $C - (vw^{\top})/\alpha$ is also column diagonally dominant, and no pivoting is needed.

Solution 3. 1. Clearly both K and $-(ww^\top)/a_{11}$ are symmetric, so their sum $K - (ww^\top)/a_{11}$ is symmetric also. To see that it is positive-definite, observe that for nonzero $x \in \mathbb{R}^{n-1}$ where $x = (x_2, \dots, x_n)^\top$, positive-definiteness of A implies

$$0 \le (x_1, \mathbf{x}^\top) \begin{pmatrix} a_{11} & \mathbf{w}^\top \\ \mathbf{w} & K \end{pmatrix} \begin{pmatrix} x_1 \\ \mathbf{x} \end{pmatrix}$$
$$= a_{11}x_1^2 + x_12\langle \mathbf{w}, \mathbf{x} \rangle + \mathbf{x}^\top K \mathbf{x}.$$

In particular, setting $x_1 = -\langle w, x \rangle / a_{11}$ gives us

$$x^{\top}\left(K - \frac{w^{\top}w}{a_{11}}\right)x = x^{\top}Kx - \frac{\langle w, x \rangle^2}{a_{11}} \geq 0,$$

which implies $K - (ww^{\top})/a_{11}$ is positive-definite.

Now we show that $||R||^2 = ||A|| = ||R^T R||$. On the one hand we have $||R^T R|| \le ||R^T|| ||R|| = ||R||^2$. For the reverse inequality, let $x \in \mathbb{R}^n$ such that ||x|| = 1. Then

$$||Rx||^2 = \langle Rx, Rx \rangle$$

$$= \langle x, R^{\top}Rx \rangle$$

$$\leq ||x|| ||R^{\top}Rx||$$

$$= ||R^{\top}Rx||,$$

where we used Cauchy-Schwarz to get from the second line to the third line. In particular, this implies

$$||R||^2 = \sup\{||Rx||^2 \mid ||x|| = 1\}$$

$$\leq \sup\{||R^\top Rx|| \mid ||x|| = 1\}$$

$$= ||R^\top R||.$$

Thus we have $||R||^2 = ||A|| = ||R^T R||$. Now recall from class that as long as the growth factor

$$e_n = \frac{\max_{1 \le i, j, k \le n} |a_{ij}^{(k)}|}{\max_{1 \le i, i, k \le n} |a_{ij}|}$$

does not approach ∞ as $\varepsilon \to 0$, we will have backward stability. Thus since the element in R are uniformly bounded by that of ||A||, we know that the growth factor is bounded above as $\varepsilon \to 0$, thus we have backward stability.

2. Let $2 \le i \le n$. Since A is diagonally dominant, we obtain the inequalities (corresponding to first row and ith row of A):

$$1 - \sum_{j \neq i} \left| \frac{a_{1j}}{\alpha} \right| \ge \left| \frac{a_{1i}}{\alpha} \right|$$
 and $|a_{ii}| - |a_{i1}| \ge \sum_{j \neq i} |a_{ij}|$.

Therefore we have

$$\begin{vmatrix} a_{ii} - \frac{a_{i1}a_{1i}}{\alpha} \end{vmatrix} \ge |a_{ii}| - |a_{i1}| \left| \frac{a_{1i}}{\alpha} \right|$$

$$\ge |a_{ii}| - |a_{i1}| \left(1 - \sum_{j \neq i} \left| \frac{a_{1j}}{\alpha} \right| \right)$$

$$= |a_{ii}| - |a_{i1}| + \sum_{j \neq i} \left| \frac{a_{i1}a_{1j}}{\alpha} \right|$$

$$\ge \sum_{j \neq i} |a_{ij}| + \sum_{j \neq i} \left| \frac{a_{i1}a_{1j}}{\alpha} \right|$$

$$\ge \sum_{j \neq i} \left| a_{ij} - \frac{a_{i1}a_{1j}}{\alpha} \right|.$$

It follows that $C - (vw^\top)/\alpha$ is also diagonally dominant.