

INSA – Gaussian processes

Spectral representation and Bochner's theorem

Andrés F. López-Lopera

The French Aerospace Lab ONERA, France Information Processing and Systems Department (DTIS) Multidisciplinary Methods, Integrated Concepts (M2CI) Research Unit

- · Spectral methods are widely used for data analysis
- · Analysis in terms of a spectrum of frequencies, energies, eigenvalues, etc

Fourier analysis

- · Spectral analysis has its root in communications but it is also used in:
 - Electrical engineering

- Geophysics

- Acoustical engineering

- Atmospheric science & astronomy

- Materials science

- ...

Speech spectrum of patients with chronic pharyngitis

· Spectral analysis is a powerful tool to study complex-valued functions:

$$z(x) = u(x) + iv(x),$$

with $x \in \mathbb{R}^d$, $i = \sqrt{-1}$ (imaginary number), and u, v real-valued functions.

· Spectral analysis is a powerful tool to study complex-valued functions:

$$z(x) = u(x) + iv(x),$$

with $x \in \mathbb{R}^d$, $i = \sqrt{-1}$ (imaginary number), and u, v real-valued functions.

· An example of a complex-valued function is the **Euler's formula:**

$$z(\varphi) = \cos(\varphi) + i\sin(\varphi) = e^{i\varphi}, \text{ for } \varphi \in \mathbb{C}.$$

Euler's identity:

$$e^{i\varphi}-1=0.$$

Fourier analysis

In Fourier analysis, the spectral (frequency) representation of $z : \mathbb{R}^d \to \mathbb{C}$ is given by the **Fourier transform (FT)**:

$$S(\omega) := \mathcal{F}[f](\omega) = \int_{\mathbb{R}^d} \exp(-i\langle \omega, x \rangle) \, z(x) dx,$$

where $\langle \cdot, \cdot \rangle$ is the scalar product on \mathbb{R}^d .

· The **inverse Fourier transform** of $S(\omega)$ is given by

$$\mathcal{F}^{-1}[S](x) = rac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \exp(i\langle \omega, x \rangle) \ S(\omega) d\omega.$$

4

Fourier analysis

Fourier series (sine-cosine form):

$$z_{n_{\text{freq}}}(x) = \sum_{n=-n_{\text{freq}}}^{n_{\text{freq}}} c_n \exp(i\omega_n x) = \sum_{n=-n_{\text{freq}}}^{n_{\text{freq}}} c_n [\cos(\omega_n x) + i\sin(\omega_n x)]$$

with $x \in \mathbb{R}$ and $\omega_n = n\omega_0 = 2\pi n f_0$

Fourier representation of the square wave function

[square wave] [sawtooth wave]

Spectral representation of kernels

 \cdot Fourier analysis can also be applied to random fields and kernels.

Spectral representation of the exponential kernel

- · The spectral representation can be used for kernel design [Heinonen, 2017]:
 - All stationary kernels $k(\tau)$ have a spectral density $S(\omega)$
 - All spectral densities $S(\omega)$ define a covariance function

ONERA

Outline

- 1. Complex-valued random fields
- 2. Spectral representation of random fields
- 3. Bochner's theorem
- 4. Spectral kernel design

Outline

- · In the following, we consider:
 - Stationary (centred) random fields $\{Y(x); x \in \mathbb{R}^d\}$ (e.g. a GP)
 - Stationary kernels $k(\tau) := k(x + \tau, x)$ (abuse of notation)

Random fields

 \cdot A random field is a random function over an arbitrary domain, e.g. in \mathbb{R}^d :

Complex-valued random fields

· A random field $\{Z(x); x \in \mathbb{R}^d\}$ is complex-valued if:

$$Z(x) = U(x) + iV(x),$$

where $i = \sqrt{-1}$ and U, V are real-valued random fields.

· We define \overline{Z} as the complex conjugate of Z:

$$\overline{Z(x)} = \overline{U(x) + iV(x)} = U(x) - iV(x)$$

 \cdot We denote Re $\{\cdot\}$ and Im $\{\cdot\}$ operators such that:

$$\operatorname{Re}\left\{Z(x)\right\} = U(x), \qquad \operatorname{Im}\left\{Z(x)\right\} = V(x).$$

Expectation of complex-valued random fields

· The expectation of a complex-valued random field Z is given by:

$$\mathbb{E}\left\{Z(x)\right\} = \mathbb{E}\left\{U(x) + iV(x)\right\} = \mathbb{E}\left\{U(x)\right\} + i\mathbb{E}\left\{V(x)\right\}.$$

- · Note that $\mathbb{E} \{Z(x)\}$ exists iif $\mathbb{E} \{U(x)\}$ and $\mathbb{E} \{V(x)\}$ exist.
- · If $\mathbb{E} \{Z(x)\}$ exists, then the complex conjugation of $\mathbb{E} \{Z(x)\}$ is given by

$$\overline{\mathbb{E}\left\{Z(x)\right\}} = \mathbb{E}\left\{\overline{Z(x)}\right\} = \mathbb{E}\left\{U(x)\right\} - i\mathbb{E}\left\{V(x)\right\}$$

Covariance operation of complex-valued random fields

· The covariance of a operation of complex-valued random field Z is given by:

$$\operatorname{cov}\left\{Z(x),\overline{Z(x')}\right\} = \mathbb{E}\left\{Z(x)\overline{Z(x')}\right\}$$

Exercise. Compute
$$k(\tau) = \text{cov}\left\{Z(x+\tau), \overline{Z(x)}\right\}$$
.

Exercise. Show that $k(-\tau) = \overline{k(\tau)}$.

Positive semidefiniteness condition

Definition (positive semidefiniteness for complex-valued functions)

A kernel $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$ is a p.s.d. complex function if for all $n \in \mathbb{N}$, and for all $c_1, \dots, c_n \in \mathbb{C}$, $\forall x_1, \dots, x_n \in \mathbb{R}^d$,

$$\sum_{\nu=1}^n \sum_{q=1}^n c_p \overline{c}_q k(\mathbf{x}_p - \mathbf{x}_q) \ge 0.$$

Definition (positive semidefiniteness for real-valued functions)

A kernel $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a p.s.d. function if for all $n \in \mathbb{N}$, and for all $a_1, \dots, a_n \in \mathbb{R}$, $\forall x_1, \dots, x_n \in \mathbb{R}^d$,

$$\sum_{p=1}^n \sum_{q=1}^n a_p a_q k(x_p - x_q) \ge 0.$$

 \cdot The spectral representation requires the following conditions:

Definition (Mean square continuity – see, e.g., [Stein, 1999])

A complex-valued random field Z is mean square continuous at x if:

$$\lim_{x'\to x} \mathbb{E}\left\{|Z(x)-Z(x')|^2\right\} = 0.$$

Definition (Weak stationarity – see, e.g., [Stein, 1999])

A complex-valued random field $\{Z(x); x \in \mathbb{R}^d\}$ is called *weakly stationary* if:

- $\mathbb{E}\{Z(x)\}$ is constant
- \mathbb{E} { $Z(x)\overline{Z(x)}$ } < ∞ (finite second-order moments)
- $cov{Z(x + \tau), \overline{Z(x)}} = k(\tau)$ (stationary kernel)

Note: a strictly stationary random field with finite second-order moments is also weakly stationary.

ONERA

Exercise. Suppose $\omega_1, \ldots, \omega_n \in \mathbb{R}^d$ and let Z_1, \ldots, Z_n be zero-mean complex random variables with $\mathbb{E}\left\{Z_p\overline{Z_q}\right\} = 0$ for $p \neq q$ and $\mathbb{E}\left\{|Z_p|^2\right\} = f_p < \infty$. Consider

$$\widetilde{Z}(x) = \sum_{p=1}^{n} Z_p \exp(i\langle \boldsymbol{\omega}_p, \boldsymbol{x} \rangle).$$

Show that \widetilde{Z} is weakly stationary.

- $\widetilde{Z}(x) = \sum_{p=1}^{n} Z_p \exp(i\langle \omega_p, x \rangle)$ is an example of a spectral representation.
- · Generally, spectral representations of mean square continuous weakly stationary random fields can be obtained [Stein, 1999]:

$$Z(x) = \int_{\mathbb{R}^d} \exp(i\langle \omega, x \rangle) M(d\omega)$$
 (1)

where M is a *complex random measure* on \mathbb{R}^d .

· The integral in (1) can be seen as a limit in L^2 of the sums used for \tilde{Z} .

Exercise. Suppose that for some positive finite measure μ :

$$\mathbb{E}\left\{M(\Delta)\right\} = 0$$

$$\mathbb{E}\left\{\left|M(\Delta)\right|^2\right\} = \mu(\Delta)$$

$$\mathbb{E}\left\{M(\Delta_1), \overline{M(\Delta_2)}\right\} = 0, \quad \text{for disjoint Borel sets } \Delta_1, \Delta_2$$

Compute
$$k(\tau) = \operatorname{cov} \left\{ Z(x + \tau), \overline{Z(x)} \right\}$$
.

Bochner's theorem

Theorem (Bochner's theorem – see, e.g., [Stein, 1999])

A complex-valued function k on \mathbb{R}^d is the covariance function of a weakly stationary mean square continuous complex-valued random process on \mathbb{R}^d if it can be represented as

$$k(oldsymbol{ au}) = \int_{\mathbb{R}^d} \exp(i\langle oldsymbol{\omega}, oldsymbol{ au}
angle) \mu(doldsymbol{\omega}),$$

where the positive finite measure μ is known as the **spectral measure**.

Proof. See previous exercise.

Bochner's theorem

• **Exercise.** Let k be a real function on \mathbb{R}^d . Verify that the kernels of the form

$$k(x,x') = \int_{\mathbb{R}^d} \cos(2\pi \langle s, x - x' \rangle) \ \mu(ds),$$

are positive semidefinite (p.s.d.).

Wiener-Khintchine theorem

Theorem (Wiener-Khintchine theorem – see, e.g., [Chatfield, 2016])

· If μ has a density S (known as the spectral density of k), then:

$$k(oldsymbol{ au}) = \int_{\mathbb{R}^d} \exp(i\langle oldsymbol{\omega}, oldsymbol{ au}
angle) S(oldsymbol{\omega}) doldsymbol{\omega}.$$

 \cdot *If S exists, we have the inversion formula:*

$$S(\boldsymbol{\omega}) = \int_{\mathbb{R}^d} \exp(-i\langle \boldsymbol{\omega}, \boldsymbol{ au}
angle) k(\boldsymbol{ au}) d \boldsymbol{ au}.$$

Proof. Apply Bochner's theorem and Fourier's formulas.

Exercise. Consider the spectral density:

$$S(\omega) = \delta(\omega - \omega_0),$$

with $\omega \in \mathbb{R}$. Compute the corresponding valid kernel $k(\tau)$.

Example. Compute the spectral density of the kernel:

$$k(au) = \exp\left(-rac{| au|}{\ell}
ight),$$

with $\tau \in \mathbb{R}$ and $\ell > 0$.

Solution.

· The Fourier transform (FT) of $f(x) = \exp(-\alpha |x|)$, with $\alpha > 0$, is given by

$$\mathcal{F}(f)(\omega) = \frac{2\alpha}{\alpha^2 + \omega^2}.$$

· Using the FT above, we have that

$$S(\omega) = \mathcal{F}(k)(\omega) = \frac{2/\ell}{(1/\ell)^2 + \omega^2} = \frac{2}{\frac{1}{\ell} + \ell\omega^2}.$$

$$S(\omega) = \frac{2}{\frac{1}{\ell} + \ell \omega^2}$$

Spectral representation of the exponential kernel

Examples of spectral density functions [Heinonen, 2017]

- · Bochner's theorem can be used to prove p.s.d. of usual stationary kernels
 - The SE is the FT of a Gaussian function, i.e. it is p.s.d.
 - Matérn kernels are FT of Student *t* functions, i.e. they are p.s.d.

1D stationary kernel functions

· Some classic kernels for stationary processes:

Stationary kernel name	$k(\tau) := k(x + \tau, x)$	Spectral density
Cosine Sinc	$\sigma^2 \cos(2\pi\tau)$ $\sigma^2 \frac{\sin(\pi\tau)}{\pi\tau}$	Dirac delta Uniform
Squared Exponential	$\sigma^2 \exp\left\{-\frac{1}{2}\frac{\tau^2}{\ell^2}\right\}$	Gaussian
Exponential	$\sigma^2 \exp\left\{-\frac{ \tau }{\ell}\right\}$	Student $t_{1/2}$
Matérn 3/2	$\sigma^2 \left(1 + \sqrt{3} \frac{ \tau }{\ell} \right) \exp \left\{ -\sqrt{3} \frac{ \tau }{\ell} \right\}$	Student $t_{3/2}$
Matérn 5/2	$\sigma^2 \left(1 + \sqrt{5} \frac{ \tau }{\ell} + \frac{5}{3} \frac{\tau^2}{\ell^2} \right) \exp \left\{ -\sqrt{5} \frac{ \tau }{\ell} \right\}$	Student $t_{5/2}$

Exercise. Compute the spectral density $S(\omega)$ for the previous kernels.

Extension to non-stationary kernels

- · Non-stationary assumptions imply: $k(x, x') \neq k(x x')$
- · Examples of non-stationary kernels are [Heinonen et al., 2016]

$$k(x, x') = \langle x, x \rangle^d$$
 (polynomial kernel)

$$k(x, x') = w(x)w(x')\sqrt{\frac{2\ell(x)\ell(x')}{\ell^2(x) + \ell^2(x')}} \exp\left(\frac{\|x - x'\|^2}{\ell^2(x) + \ell^2(x')}\right)$$
 (Gibbs kernel)

Definition (Bochner's theorem for non-stationary kernels [Heinonen, 2017])

· If μ has a spectral density S of k, then:

$$k(x,x') = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \exp(i[\langle \omega, x \rangle - \langle \omega', x' \rangle]) S(\omega, \omega') d\omega d\omega'.$$

· If *S* exists, we have the inversion formula:

$$S(\boldsymbol{\omega}, \boldsymbol{\omega}') = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \exp(-i[\langle \boldsymbol{\omega}, \boldsymbol{x} \rangle - \langle \boldsymbol{\omega}', \boldsymbol{x}' \rangle]) k(\boldsymbol{x}, \boldsymbol{x}') d\boldsymbol{x} d\boldsymbol{x}'.$$

Spectral kernel design

- · Remember that all the spectral densities $S(\omega)$ define a covariance function
- · Then one can use $S(\omega)$ for the design of stationary kernels $k(\tau)$

Example of a spectral density [Heinonen, 2017]

Spectral kernel design

Sparse-spectrum kernel [Lázaro-Gredilla et al., 2010]:

· One can consider the spectral density given by

$$S(\omega) = rac{1}{Q} \sum_{q=1}^{Q} \delta(\omega - \omega_q),$$

with real frequencies $\omega_1, \ldots, \omega_Q \in \mathbb{R}$

· By applying the Wiener-Khintchine theorem, and using the Fourier dual

$$\widetilde{S}(\omega) = \delta(\omega - \omega_0), \qquad \widetilde{k}(\tau) = \cos(\omega_0 \tau),$$

we have that

$$k(\tau) = \frac{1}{Q} \sum_{q=1}^{Q} \cos(\omega_q \tau),$$

with $\tau \in \mathbb{R}$.

Sparse-spectrum kernel [Lázaro-Gredilla et al., 2010]

Spectral mixture kernel [Heinonen, 2017]

Note. Highly structured covariance (prone to overfitting) [Heinonen, 2017].

Spectral kernel design

Spectral mixture kernel [Wilson and Adams, 2013]:

· Define the real frequencies $\omega_1, \dots, \omega_Q \in \mathbb{R}$ as Gaussian r.v's:

$$\omega_q \sim \mathcal{N}\left(m_q, \sigma_q^2\right), \quad \text{for } q = 1, \dots, Q,$$

with mean m_q and variance σ_q^2 .

· Then, one can define the spectral density as a mixture of Gaussians:

$$S(\boldsymbol{\omega}) = \sum_{q=1}^{Q} \alpha_q \mathcal{N}\left(m_q, \sigma_q^2\right).$$

· By applying the Wiener-Khintchine theorem, we have that

$$k(\tau) = \sum_{q=1}^{Q} \alpha_q \underbrace{\exp(-\sigma_q^2 \tau^2)}_{\text{smooth decay}} \underbrace{\cos(m_q \tau)}_{\text{periodic}},$$

with $\tau \in \mathbb{R}$.

Spectral mixture kernel [Wilson and Adams, 2013]

Spectral mixture kernel [Heinonen, 2017]

Spectral mixture kernel [Wilson and Adams, 2013]

■ SE kernel vs ■ Spectral Mixture kernel with Q = 5 [Heinonen, 2017]

Generalised spectral mixture kernel [Heinonen et al., 2016]

· A non-stationary version of the spectral mixture kernel is given by

$$k(x,x') = \sum_{q=1}^{Q} \overline{w_q}(x) \overline{w_q}(x') \underbrace{\exp(-[x\rho_q^2(x) + x'\rho_q^2(x')]}_{\text{smooth decay}} \underbrace{\langle \psi_q(x), \psi_q(x') \rangle}_{\text{periodic}},$$

with
$$\psi_q(x) = [\cos(x\nu_q(x)), \sin(x\nu_q(x))]^\top$$
, and

$$\log w_q \sim \mathcal{GP}(0, k_w), \quad \log \rho_q \sim \mathcal{GP}(0, k_\rho) \quad \log \nu_q \sim \mathcal{GP}(0, k_\nu)$$

Generalised spectral mixture (GSM) kernel [Heinonen et al., 2016]

Generalised spectral mixture kernel [Heinonen et al., 2016]

texture image examples [Heinonen et al., 2016]

Conclusions

 \cdot Spectral analysis is a powerful tool to study complex-valued random fields

$$Z(x) = U(x) + iV(x).$$

- · An example of a spectral representation is the Fourier transform
- · All stationary kernels $k(\tau)$ have a spectral density $S(\omega)$

$$S(\boldsymbol{\omega}) = \int_{\mathbb{R}^d} \exp(-i\langle \boldsymbol{\omega}, \boldsymbol{ au} \rangle) k(\boldsymbol{ au}) d \boldsymbol{ au}.$$

· All spectral densities $S(\omega)$ define a covariance function (Bochner's theorem)

$$k(au) = \int_{\mathbb{R}^d} \exp(i\langle \omega, au \rangle) S(\omega) d\omega.$$

· Spectral densities can be used for kernel design

References

- Jorge Buescu and A. C. Paixão. Real and complex variable positive definite functions. São Paulo Journal of Mathematical Sciences, 2012.
- Chris Chatfield. *The Analysis of Time Series: An Introduction*. Chapman & Hall/CRC Texts in Statistical Science. CRC Press, 2016.
- Marc G. Genton. Classes of kernels for machine learning: A statistics perspective. *Journal of Machine Learning Research*, 2001.
- Markus Heinonen. Learning with spectral kernels. Aalto University, 2017.
- Markus Heinonen, Henrik Mannerström, Juho Rousu, Samuel Kaski, and Harri Lähdesmäki. Non-stationary Gaussian process regression with Hamiltonian Monte Carlo. *Proceedings of Machine Learning Research*, 2016.
- Miguel Lázaro-Gredilla, Joaquin Quiñonero-Candela, Carl E. Rasmussen, and Aníbal Figueiras-Vidal. Sparse spectrum Gaussian process regression. *Journal of Machine Learning Research*, 2010.
- Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2021.
- Carl E. Rasmussen and Christopher K. I. Williams. *Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)*. MIT Press, 2005.
- Arno Solin. Machine learning with signal processing. ICML TUTORIAL, 2020.
- Michael L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer, 1999.
- Andrew Gordon Wilson and Ryan Prescott Adams. Gaussian process kernels for pattern discovery and extrapolation. *Proceedings of Machine Learning Research*, 2013. ONERA

THE PRENCH AEROSPACE LAB