Les réseaux WAN - Activité 10

LAN vs WAN

Critère	LAN (Local Area Network)	WAN (Wide Area Network)
Etendue	Limité à un bâtiment ou un	Etendue mondiale (villes, pays,
géographique	campus	continents, etc)
Débit	Elevé et stable (1 Gbps ou	Variable selon la technologie (fibre,
	+)	satellite, MPLS)
Technologies	Ethernet, Wi-Fi	MPLS, VPN, SD-WAN, fibre optique,
supportées		4G/5G, satellite
Coût	Faible (matériel local	Elevé (infrastructure, maintenance,
	uniquement)	opérateurs)
Exemple	Réseau interne d'une école	Connexion entre plusieurs filiales d'une
d'utilisation	ou d'un bureau	entreprise internationale

2. Exemples d'entreprises qui ont besoin d'un WAN

- Exemple 1 : BNP Paribas
 - Pourquoi un WAN ? BNP Paribas possède des agences dans plusieurs pays. Un
 WAN permet de connecter les serveurs centraux aux agences locales pour :
 - Accéder aux bases de données clients
 - Synchroniser les opérations bancaires
 - Assurer la sécurité des transactions via des VPN
- Exemple 2 : Airbus
 - Pourquoi un WAN ? Airbus a des sites de production en France, Allemagne,
 Espagne, etc. Un WAN est indispensable pour :
 - Partager des fichiers de conception (CAO) volumineux
 - Coordonner les équipes d'ingénierie à distance
 - Gérer la chaîne logistique mondiale en temps réel

Objectifs et services des WAN

Les objectifs du WAN sont :

- Communiquez en utilisant la voix et la vidéo.
- Partagez les ressources entre les employés et les clients.
- Accédez au stockage de données et sauvegardez-les à distance.
- Se connecter aux applications fonctionnant dans le cloud.
- Exécuter et héberger des applications internes.

Les services que peut fournir un WAN sont :

• Services fonctionnels:

- Communication voix et vidéo
 - Appels, visioconférences, réunions virtuelles
- Partage de ressources
 - Fichiers, imprimantes, bases de données entre employés et clients
- Accès et sauvegarde des données à distance
 - Stockage cloud, sauvegardes automatiques, accès aux serveurs distants
- Connexions aux applications cloud
 - Utilisation de logiciels SaaS (ex : Salesforce, Microsoft 365)
- Exécution et hébergement d'applications internes
 - ERP, CRM, Intranet, systèmes de réservation ou de gestion

• <u>Services d'infrastructure et de connectivité</u> :

- Lignes louées
 - Connexions réseaux dédiées entre deux points, physiques ou virtuelles
- Tunneling / VPN
 - Création de réseaux privés sécurisés sur Internet public
- Multiprotocol Label Switching (MPLS)
 - Acheminement intelligent du trafic selon des étiquettes pour optimiser les performances
- SD-WAN (Software Defined WAN)
 - Gestion logicielle du WAN pour plus de flexibilité et réduction des coûts

• Services de sécurité et de fiabilité :

- Chiffrement des données
 - Protection contre les cyberattaques (couche préventive)
- Gestion des sessions
 - Ouverture/fermeture de connexions entre utilisateurs et serveurs
- Routage et équilibrage de charge
 - Optimisation du chemin des paquets pour éviter les congestions
- Protocoles WAN
 - TCP/IP, Frame Relay, ATM, POS, utilisés pour structurer et transmettre les données

• <u>Service d'optimisation</u> :

- Gestion des flux de trafic
 - Mise en cache locale
 - Stockage temporaire des données fréquemment utilisées pour éviter les transferts répétés
 - Déduplication des données
 - Suppression des copies redondantes (utile pour les sauvegardes et la reprise après sinistre)

- Compression des fichiers
 - Réduction de la taille des données avant transmission (zippage)
- Accélération des protocoles
 - Regroupement des communications
 - Moins de paquets envoyés, meilleure efficacité pour les protocoles « bavards » comme TCP
- Limitation des taux et connexions
 - Restriction du nombre de connexions internet ouvertes
 - Contrôle de la bande passante par l'utilisateur
 - Blocage ou limitation de certains usages (ex : streaming vidéo)
- Segmentation du réseau (mise en forme du trafic)
 - Répartition intelligente de la bande passante
 - Priorité donnée aux applications critiques (ex : ERP, visioconférence)

Critère	WAN public (Ex : Internet)	WAN privé (Ex : MPLS, SD-WAN dédié)
Accessibilité	Ouvert à tous, accessible via un FAI	Réservé à une organisation ou un groupe d'utilisateurs
Sécurité	Mois sécurisé par défaut, nécessite des VPN ou chiffrement	Haut niveau de sécurité intégré, souvent sur les lignes dédiées
Coût	Moins cher, car basé sur des infrastructures partagées	Plus coûteux, car nécessite des connexions dédiées
Performance	Variable selon la congestion du réseau public	Stable et optimisée pour les besoins de l'entreprise
Contrôle	Contrôle limité sur le routage et la qualité de service	Contrôle total sur le trafic, les priorités et la bande passante
Flexibilité	Très flexible, facile à déployer	Moins flexible, mais plus fiable et personnalisable
Exemples d'usages	Accès aux services cloud, navigation web, VPN	Connexions entre sites d'entreprise, applications critiques

Mise en situation:

Une entreprise possède un siège à Paris et une filiale à Lyon.

Quels services WAN seraient nécessaires pour que les deux sites puissent travailler comme s'ils étaient sur le même LAN ?

Dans ce cas, il faut utiliser un WAN privé.

Notion de circuit virtuel

C'est une connexion logique établie entre deux équipements réseau pour permettre le transfert de données. Contrairement à un circuit physique, il n'emprunte pas un chemin fixe, mais utilise la commutation de paquets pour transmettre les données sur un réseau partagé.

Caractéristiques :

- Fonctionne comme une liaison dédiée, mais sur un réseau partagé
- Les paquets suivent un chemin prédéfini
- Permet une communication orientée connexion
- Utilisé dans les réseaux à commutation de paquets (ex. : X.25, Frame Relay, ATM, MPLS)

La différence entre le <u>PVC et le SVC</u>:

Type de circuit	PVC (Permanent Virtual Circuit)	SVC (Switched Virtual Circuit)
virtuel		
Durée de vie	Permanente	Temporaire
Etablissement	Préconfiguré, actif en continu	Etabli à la demande, puis
Ltabiissement		supprimé
Usage	Connexions fréquentes et stables	Connexions ponctuelles
Coût	Plus élevé (ressources réservées)	Moins cher (ressources
		partagées)
Evennele d'usego	Liaison entre deux sites	Transfert de fichiers
Exemple d'usage	d'entreprise	occasionnel

Quelques exemples de protocole WAN avec un circuit virtuel :

- Frame Relay
 - Utilise des PVC et SVC pour relier des équipements distants via des identifiants DLCI
- ATM (Asynchronous Transfer Mode)
 - Utilise des circuits virtuels pour transmettre des cellules de données à débit constant ou variable
- MPLS (Multiprotocol Label Switching)
 - Utilise des circuits virtuels unidirectionnels appelés Label Switching Paths (LSP), qui fonctionnent comme des circuits virtuels pour acheminer les paquets IP

Bonus!

Le concept virtuel est encore important de nos jours car :

• Sécurité et isolation

 Les VPN IP et MPLS créent des tunnels logiques entre sites, isolant le trafic des autres utilisateurs.

Performance

 MPLS permet un acheminement rapide et optimisé des paquets grâce à des chemins prédéfinies.

Fiabilité

 Les circuits virtuels garantissent que les paquets suivent le même chemin, ce qui évite les désordres d'ordre et facilite la gestion des flux.

Flexibilité

 Les SD-WAN modernes utilisent des circuits virtuels dynamiques pour s'adapter aux conditions du réseau en temps réel.

Panorama des WAN et protocoles historiques

Protocol e	Années d' utilisation principale s	Débit possible	Principe de fonctionnemen t	Avantages	Limites	Usage actuel
RNIS (ISDN)	Fin 80 – début 2000	64 kbit/s par canal B, ≤ 2 Mbit/s en accès primair e	Commutation de circuits numériques	Connexion rapide, voix + données sur une seule ligne	Débit limité, coûteux, remplacé par l'IP	Obsolète depuis 2019 en France
ATM	90 – début 2000	De 10 Mbit/s à 622 Mbit/s	Commutation de cellules fixes (53 octets)	Qualité de service (QoS), faible latence, support voix/vidéo	Complexité , coût élevé, peu adapté à IP	Obsolète, remplacé par MPLS
Frame Relay	90 – début 2010	≤ 2 Mbit/s (souven t avec CIR + burst)	Commutation de paquets, circuits virtuels PVC/SVC	Faible surcharge, flexible, économiqu e	Pas de correction d'erreur, congestion possible	Obsolète, remplacé par VPN/MPL S

Bonus!

Les protocoles modernes ayant remplacé ces technologies :

- VPN (Virtual Private Network)
 - o Remplace RNIS et Frame Relay pour la sécurité et la connectivité sur Internet.
- MPLS (Multiprotocol Label Switching)
 - Successeur d'ATM et Frame Relay, offre des circuits virtuels avec QoS et routage rapide.
- SD-WAN (Software Defined WAN)
 - Remplace MPLS et VPN dans les architectures modernes. Permet une gestion centralisée, une flexibilité multi-opérateurs et une réduction des coûts.

ADSL et ses dérivés

L'<u>ADSL</u> (<u>Asymmetric Digital Subscriber Line</u>) est une technologie d'accès à Internet haut débit qui utilise les lignes téléphoniques en cuivre existantes. Elle est dite *asymétrique* car le débit descendant (download) est plus élevé que le débit montant (upload).

Son principe de fonctionnement :

- La ligne téléphonique transporte simultanément la voix (basse fréquence) et les données (haute fréquence).
- Un filtre ADSL sépare les signaux voix et données.
- Les données sont transmises via un **modem ADSL** vers un **DSLAM** (Digital Subscriber Line Access Multiplexer) situé au central téléphonique.
- Le DSLAM regroupe les connexions des abonnés et les envoie vers le réseau du fournisseur d'accès.

Schéma simplifié d'architecture ADSL

Les principaux dérivés de l'ADSL :

Technologie	Débit descendant	Débit montant	Usages
ADSL classique	1 à 15 Mbit/s	128 kbit/s à 1 Mbit/s	Navigation, streaming léger
ADSL2+	≤ 25 Mbit/s	≤ 3 Mbit/s	TV HD, visioconférence
VDSL	≤ 50 Mbit/s	≤ 8 Mbit/s	Télétravail, jeux en ligne
VDSL2	≤ 100 Mbit/s	≤ 30 Mbit/s	Usage intensif, cloud, 4K

L'encapsulation PPPoE dans le cadre de l'ADSL :

Le PPPoE c'est le <u>Point-to-Protocol over Ethernet</u>, c'est une méthode d'encapsulation utilisée pour :

- Authentifier l'utilisateur via identifiant/mot de passe (protocole PAP ou CHAP)
- Créer une session PPP sur une liaison Ethernet
- Transporter les données IP sur le réseau ADSL

En situation, le télétravaille en ADSL vs fibre optique :

Critère	ADSL	Fibre optique
Débit	1 à 25 Mbit/s (variable)	≤ 8 Gbit/s (symétrique)
Stabilité	Sensible aux interférences	Très stable, peu de pertes
Latence	Moyenne à élevée	Très faible, idéale pour visio/jeux
Installation	Simple, via ligne téléphonique	Plus complexe, nécessite
		raccordement
Disponibilité	Très répandue, même en zones	Encore limitée dans certaines zones
	rurales	
Usage	Suffisant pour mails, visio légère	Optimal pour cloud, visio HD,
télétravail		multitâche

Les avantages et limites de l'ADSL :

	Avantages	Limites
	Facile à installer	Débit limité
ADSL	Suffisant pour des tâches bureautiques simples	Latence élevée
		Moins adapté aux usages intensifs (visioconf HD, cloud, etc)

Synthèse finale

1. Quelle technologie utiliseriez-vous pour relier les sites entre eux ?

C'est le SD-WAN (Software Defined WAN), qui offre :

- Connexion sécurisée et flexible entre les sites distants
- Optimisation automatique du trafic selon les priorités (visioconférence, ERP, etc.)
- Utilisation simultanée de plusieurs liens WAN (fibre, 4G/5G, MPLS)
- Réduction des coûts par rapport aux lignes MPLS traditionnelles
- 2. Quels services doivent être mis en place pour les télétravailleurs ?

Pour les collaborateurs à distance, il faut mettre en place :

- VPN sécurisé (IPSec ou SSL) pour accéder aux ressources internes
- Authentification forte (MFA: mot de passe + code temporaire)
- Accès distant via SD-WAN pour une meilleure performance et sécurité
- Outils collaboratifs (Teams, Zoom, SharePoint, etc.)
- Surveillance réseau pour détecter les anomalies ou intrusions
- 3. Quels protocoles ou solutions historiques ne seraient plus adaptés aujourd'hui ? Pourquoi ?

Technologie	Obsolète ou plus adaptée	
Frame Relay	Débit limité, pas adapté aux flux IP modernes	
ATM	Complexe, coûteux, peu compatible avec le cloud	
RNIS (ISDN)	Très faible débit, abandonné en France depuis 2019	
MPLS pur	Trop rigide pour les architectures cloud et mobiles	

Schéma avec SD-WAN:

