Лабораторная работа №2

Задача о погоне

Чемоданова Ангелина Александровна

Содержание

1	Цель работы	
2	Задание	5
3	Выполнение лабораторной работы 3.1 Построение модели	6 8
4	Выводы	14
Сг	писок литературы	15

Список иллюстраций

3.1	Траекория движения катера в 1 случае	10
3.2	График движения катера и траекторию движения лодки в 1 случае	11
3.3	Точка пересечения траекторий катера и лодки в 1 случае	11
3.4	Траекория движения катера во 2 случае	12
3.5	График движения катера и траекторию движения лодки во 2 случае	13
3.6	Точка пересечения траекторий катера и лодки во 2 случае	13

1 Цель работы

Построить математическую модель для выбора правильной стратегии при решении примера задаче о погоне.

2 Задание

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 25 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 5,1 раза больше скорости браконьерской лодки.

- 1. Записать уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Построить траекторию движения катера и лодки для двух случаев.
- 3. Найти точку пересечения траектории катера и лодки

3 Выполнение лабораторной работы

Формула для выбора варианта: (1132226443 % 70) + 1 = 34 вариант.

Запишем уравнение описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).

Принимем за $t_0 = 0$, $x_0 = 0$ – место нахождения лодки браконьеров в момент обнаружения, $x_{k0} = k$ - место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.

Введем полярные координаты. Считаем, что полюс - это точка обнаружения лодки браконьеров x_{k0} ($\theta=x_{k0}=0$), а полярная ось r проходит через точку нахождения катера береговой охраны.

Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса θ , только в этом случае траектория катера пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров.

Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии от полюса. За это время лодка пройдет x, а катер k-x (или k+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние,

вычисляется как $\frac{x}{v}$ или $\frac{k-x}{5.1v}$ (во втором случае $\frac{k+x}{5.1v}$). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояниех можно найти из следующего уравнения:

$$\frac{x}{v} = \frac{k-x}{5.1v} - в первом случае$$

$$\frac{x}{v} = \frac{k+x}{5.1v} - во втором$$

Отсюда мы найдем два значения $x_1=\frac{25}{6,1}$ и $x_2=\frac{25}{4,1}$, задачу будем решать для двух случаев.

После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса, удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и - v_τ тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса, $v_r = \frac{dr}{dt}$. Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $\frac{dr}{dt} = v$.

Тангенциальная скорость — это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $\frac{d\theta}{dt}$ на радиус $r, r \frac{d\theta}{dt}$.

Получаем:

$$v_{\tau} = \sqrt{26.01v^2 - v^2} = \sqrt{25.01}v$$

Из чего можно вывести:

$$r\frac{d\theta}{dt} = \sqrt{25.01}v$$

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений:

$$\begin{cases} \frac{dr}{dt} = v \\ r\frac{d\theta}{dt} = \sqrt{25.01}v \end{cases}$$

С начальными условиями для первого случая:

$$\begin{cases} \theta_0 = 0 \\ r_0 = \frac{25}{6.1} \end{cases} \tag{1}$$

Или для второго:

$$\begin{cases} \theta_0 = -\pi \\ r_0 = \frac{25}{41} \end{cases} \tag{2}$$

Исключая из полученной системы производную по t, можно перейти к следующему уравнению:

$$\frac{dr}{d\theta} = \frac{r}{\sqrt{25.01}}$$

Начальные условия остаются прежними. Решив это уравнение, мы получим траекторию движения катера в полярных координатах.

3.1 Построение модели

using DifferentialEquations, Plots

расстояние от лодки до катера

k = 25

начальные условия для 1 и 2 случаев

```
r0 = k/6.1
r0_2 = k/4.1
theta0 = (0.0, 2*pi)
theta0_2 = (-pi, pi)
# данные для движения лодки браконьеров
fi = 3*pi/4;
t = (0, 50);
# функция, описывающая движение лодки браконьеров
x(t) = tan(fi)*t;
# функция, описывающая движение катера береговой охраны
f(r, p, t) = r/sqrt(25.01)
# постановка проблемы и решение ДУ для 1 случая
prob = ODEProblem(f, r0, theta0)
sol = solve(prob, saveat = 0.01)
# отрисовка траектории движения катера
plot(sol.t, sol.u, proj=:polar, lims=(0, 15), label = "Траектория движения катера")
 Получим график движения катера в 1 случае. (рис. 3.1):
```


Рис. 3.1: Траекория движения катера в 1 случае

Добавим в код:

необходимые действия для построения траектории движения лодки

```
ugol = [fi for i in range(0,15)]
```

 $x_{lims} = [x(i) \text{ for } i \text{ in } range(0,15)]$

отрисовка траектории движения лодки вместе с катером

plot!(ugol, x_lims, proj=:polar, lims=(0, 15), label = "Траектория движения лодки")

Получим график движения катера и траекторию движения лодки в 1 случае. (рис. 3.2):

Рис. 3.2: График движения катера и траекторию движения лодки в 1 случае

Теперь рассчитаем точку пересечения траектории катера и лодки.

```
# точное решение ДУ, описывающего движение катера береговой охраны y(x) = (250 * exp((10 * x)/(sqrt(2501))))/(61)
```

подставим в точное решение угол, под которым движется лодка браконьеров для нахожден

y(fi + pi)

Получим следующее значение: 12.304002757914663. При оценки точки на глаз можно получить похожее значение. (рис. 3.3):

```
# точное решение ДУ, описывающего движение катера береговой охраны

y(x)=(250*exp((10*x)/(sqrt(2501))))/(61) | у (generic function with 1 method)

# подставим в точное решение угол, под которым движется лодка браконьеров для нахождения точки пересечения

y(fi + pi) | 12.384802757914663
```

Рис. 3.3: Точка пересечения траекторий катера и лодки в 1 случае

Перейдем к решению второго случая.

постановка проблемы и решение ДУ для 2 случая

prob_2 = ODEProblem(f, r0_2, theta0_2)

sol_2 = solve(prob_2, saveat = 0.01)

отрисовка траектории движения катера

plot(sol_2.t, sol_2.u, proj=:polar, lims=(0,15), label = "Траектория движения катера")

Получим график движения катера во 2 случае. (рис. 3.4):

Рис. 3.4: Траекория движения катера во 2 случае

Добавим в код:

отрисовка траектории движения лодки вместе с катером

plot!(ugol, x_lims, proj=:polar, lims=(0, 15), label = "Траекория движения лодки")

Получим график движения катера и траекторию движения лодки во 2 случае. (рис. 3.5):

Рис. 3.5: График движения катера и траекторию движения лодки во 2 случае

Теперь рассчитаем точку пересечения траектории катера и лодки.

```
# точное решение ДУ, описывающего движение катера береговой охраны для 2 случая y2(x)=(250*exp((10*x/sqrt(2501))+(10*pi/sqrt(2501))))/(41)
```

подставим в точное решение угол, под которым движется лодка браконьеров для нахожден

y2(fi-pi)

Получим следующее значение: 9.767236102657977. При оценки точки на глаз можно получить похожее значение. (рис. 3.6):

Рис. 3.6: Точка пересечения траекторий катера и лодки во 2 случае

4 Выводы

Мы построили математическую модель для выбора правильной стратегии при решении примера задаче о погоне.

Список литературы

Кулябов Д.С. Лабораторная работа N^2 2. Задача о погоне. [Электронный ресурс].