NAME: SHUBHAM SHARMA

ROLL NO: 18i190002

MSC PHD (OR)

EX1:

part(a)(code file: ex1a.sce)

The Mean of the demand is 998.070000

The Standard Deviation of the demand is 155.527859

The distribution of the demand seems to be Normal Distribution.

part(b)

The Mean of the profit is 5498.848000.

part(c)

Dotted Plot b/w Quantity and Profit

Plot b/w Quantity and Profit

Quantity:950 Average Profit:5374.288000

Quantity:960 Average Profit:5403.488000

Quantity:970 Average Profit:5430.832000

Quantity:980	Average Profit:5455.504000
Quantity:990	Average Profit:5478.032000
Quantity:1000	Average Profit:5498.848000
Quantity:1010	Average Profit:5517.488000
Quantity:1020	Average Profit:5533.632000
Quantity:1030	Average Profit:5547.728000
Quantity:1040	Average Profit:5559.712000
Quantity:1050	Average Profit:5569.424000
Quantity:1060	Average Profit:5577.680000
Quantity:1070	Average Profit:5584.064000
Quantity:1080	Average Profit:5588.160000
Quantity:1090	Average Profit:5590.768000
Quantity:1100	Average Profit:5591.840000

part(d)

We are getting a concave curve if we take a plot of stock and average profit and the point on which we get the peak is the recommended stock level because we have maximum profit there

thus, stock level **1100** is the recommended stock level

EX3:

(Part c again with slight rectifications)

The fraction of values discarded is 0.391220

the histplot is as follows, we see that we get less then half values which are less than 0.5 and we decrease the values to 0.5 so the graph will not consider higher values.

EX3:

part(a)

The total cost of inventory is Rs151512200

The total cost of back-ordering is Rs34978020

part(b)

The best fixed order quantity is: 6000

We can see from the graph that the best fixed order quantity is: 6000

Quantity=4000	Total Cost=153115810
Quantity=4100	Total Cost=156312870
Quantity=4200	Total Cost=159500870
Quantity=4300	Total Cost=162710090
Quantity=4400	Total Cost=165920280
Quantity=4500	Total Cost=169135310
Quantity=4600	Total Cost=172432660
Quantity=4700	Total Cost=175872310
Quantity=4800	Total Cost=179299790
Quantity=4900	Total Cost=182808810
Quantity=5000	Total Cost=186490220
Quantity=5100	Total Cost=190407160
Quantity=5200	Total Cost=194487400
Quantity=5300	Total Cost=199288580

 Quantity=5400
 Total Cost=211838580

 Quantity=5500
 Total Cost=233205680

 Quantity=5600
 Total Cost=257063340

 Quantity=5700
 Total Cost=281413770

 Quantity=5800
 Total Cost=305815660

 Quantity=5900
 Total Cost=336950430

 Quantity=6000
 Total Cost=370202770

part(c)

part(d)

The total cost of inventory is Rs553604300

The total cost of back-ordering is Rs0

This policy or ordering is an month is less reasonable as the cost is more

what we can do is to take the average of demand each week and order that amount of stock that will minimize the cost

part(e)

We can make the order in every two weeks and we get the following results

The total cost of inventory is Rs597524700

The total cost of back-ordering is Rs0

