

IEEE Standard Performance Characteristics and Dimensions for Outdoor Apparatus Bushings

IEEE

Published by The Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street, New York, NY 10017, USA

June 6, 1984

SH08888

An American National Standard

IEEE Standard Performance Characteristics and Dimensions for Outdoor Apparatus Bushings

Secretariat Institute of Electrical and Electronics Engineers, Inc

Approved December 17, 1981
IEEE Standards Board

Approved August 5, 1983

American National Standards Institute

© Copyright 1984 by

The Institute of Electrical and Electronics Engineers, Inc 345 East 47th Street, New York, NY 10017, USA

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

IEEE Standards documents are developed within the Technical Committees of the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Board. Members of the committees serve voluntarily and without compensation. They are not necessarily members of the Institute. The standards developed within IEEE represent a consensus of the broad expertise on the subject within the Institute as well as those activities outside of IEEE which have expressed an interest in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least once every five years for revision or reaffirmation. When a document is more than five years old, and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of all concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason IEEE and the members of its technical committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board 345 East 47th Street New York, NY 10017 USA

Foreword

(This Foreword is not a part of ANSI/IEEE Std 24-1984, IEEE Standard Performance Characteristics and Dimensions for Outdoor Apparatus Bushings.)

In keeping with progress in the state of the art, The Bushing Subcommittee of the Transformers Committee revised Table 1, *Electrical Insulation Characteristics for Outdoor Power Apparatus Bushings*, and Table 9, *Partial Discharge* to make them compatible with the concepts of IEEE Std 262B-1977, IEEE Trial-Use Standard Dielectric Test Requirements for Power Transformers for Operation on Effectively Grounded Systems 345 kV and above.

The Bushing Subcommittee, of the Transformers Committee, had the following membership at the time this revision was developed and approved.

J. K. Easley, Chairman

L. C. Aicher	K. R. Highton	T. H. Orrock
J. P. Burkhart	G. W. Iliff	A. C. Parikh
D. J. Cash	D. C. Johnson	J. L. Puri
J. Corkran	H. B. Margolis	F. R. Stockum
D. O. Craghead	J. W. Matthews	R. A. Veitch
M. G. Daniels	N. J. Melton	L. B. Wagenaar
	H. E. Mills	<u> </u>

The American National Standards Committee on Apparatus Bushings Standardization, C76, had the following personnel at the time it approved this standard:

W. F. Giles, Jr, Chairman

C. R. Muller, Secretary

Organization Represented	Name of Representative
Electric Light and Power Group	D. O. Craghead J. R. Markey W. G. Patton
Institute of Electrical and Electronics Engineers	G. D. Waltz .N. J. Melton W. F. Giles, Jr J. Sabath
National Electrical Manufacturers Association	J. Sabath J. P. Burkhart E. J. Cham, (Alt) W. E. Harper
Port Authority of the State of New York Tennessee Valley Authority US Department of Energy Bonneville Power Administration Ohio Brass Company Lapp Insulator Division Interpace Corporation Independent	.M. Fischer .G. D. Birney .W. F. Rakel .F. R. Stockum .J. H. Moran

When the IEEE Standards Board approved this standard on December 17, 1981, it had the following membership:

I. N. Howell, Jr, Chairman

Len S. Corey

Sava I. Sherr, Secretary

G. Y. R. Allen Jay
J. J. Archambault Ku
J. H. Beall Loe
J. T. Boettger Joe
Edward Chelotti
Edward J. Cohen Don

Jay Forster Kurt Greene Loering M. Johnson Joseph L. Koepfinger J. E. May Donald T. Michael* J. P. Riganati Irving Kolodny, Vice Chairman

F. Rosa R. W. Seelbach Jay A. Stewart W. E. Vannah Virginius N. Vaughan, Jr Art Wall Robert E. Weiler

^{*}Member emeritus

Contents

SECTION	V	PAGI
1. Scor	ре.	
2. Refe	rei	nces
3. Gene	era	Requirements
4. Deta	il l	Requirements
FIGURE	S	
Fig 1	Ī	Bushing Potential Tap Dimension
TABLES		
Table	1	
	_	(Insulation Class: 15 kV through 196 kV)
Table	2	
m-1-1-	,	(Maximum System Voltage: 362 kV and Above)
Table Table	_	
rabie	4	
Table	-	Transformers and Circuit Breakers (Insulation Class: 23/25 kV through 69 kV)15 Dimensions of Outdoor Power Apparatus Bushings for Outdoor Oil-Type
Lable	·	Transformers (Insulation Class: 23/25 kV through 69 kV)
		(not applicable to circuit breakers)12, 13
Table	ϵ	
1 able	•	and Circuit Breakers (Insulation Class: 15 kV through 196 kV)
Table	7	,
Tabic	•	(Maximum System Voltage: 362 kV and Above)
Table	۶	
Table		· · · · · · · · · · · · · · · · · · ·
Table	_	

An American National Standard

IEEE Standard Performance Characteristics and Dimensions for Outdoor Apparatus Bushings

1. Scope

This standard covers electrical, dimensional, and related requirements for outdoor power class apparatus bushings which have basic impulse insulation levels of 110 kV and higher. It provides specific values for dimensional and related requirements which are to be interpreted, measured, or tested in accordance with ANSI/IEEE Std 21-1976.

Bushings covered by this standard are intended for use as components of oil-filled transformers, oil-filled reactors, and oil circuit breakers.

2. References

The following standard forms a part of this standard to the extent specified herein:

ANSI/IEEE Std 21-1976, IEEE General Requirements and Test Procedure for Outdoor Apparatus Bushings.

3. General Requirements

See ANSI/IEEE Std 21-1976 for general requirements, definitions, and methods of measurement or test applying to the detail requirements given in Section 4 of this standard.

4. Detail Requirements

Outdoor apparatus bushings conforming to this standard shall meet the requirements of the following as applicable:

- (1) Electrical insulation characteristics of Tables 1 or 2
- (2) Dimensions of Fig 1 and Tables 3 through 7.
 - (3) Cantilever test of Table 8
 - (4) Radio influence voltage limits of Table 9
 - (5) Power factor limits of Table 10

A	2.250-12 UNF 2A	F	l in
В	0.375 MIN-0.750 MAX	G	2.940
С	0.310	Н	2.266 ± 0.003
D	0.313 ± 0.003	J	0.125 MIN-0.290 MAX
E	1.750	κ	3.030

NOTE: Bushing potential device conversion kits are not covered by this standard. They may be used to connect the potential device to either Type A or Type B potential tap. The manufacturer of the potential device should be consulted for details.

Fig 1
Bushing Potential Tap Dimensions
(A) Type A: Normally Grounded Tap (B) Type B: Normally Ungrounded Tap

Table 1
Electrical Insulation Characteristics for Outdoor Power Apparatus Bushings
(Insulation Class 15 kV through 196 kV)

							Wi	thstand Tests	
		Rated			60	Hz		Impuls	se
	Insula- tion	Maxi- mum Line-to- Ground		eep ance	1 Min Dry	10 s Wet	Full		ve — kV Crest ne to Sparkover
BIL (kV)	Class (kV)	Voltage (kV)		mum (cm)	rms (kV)	rms (kV)	Wave (kV)	2 μs Withstand	3 μs Withstand
110	15	10	11	28	50	45	110	142	126
150	25	16	17	43	60	50	150	194	175
200	34.5	22	26	6 6	80	75	200	258	230
250	46	29	35	89	105	95	250	322	290
350	69	44	48	122	160	140	350	452	402
450	92 TR	* 73	66	166	185	155	450	_	520
550	115	88	79	201	260	230	550	710	632
650	138	102	92	234	310	275	650	838	750
750	161	102	114	290	365	315	750	968	865
750	161TR*		140	356	365	315	750	_	865
900	196	146	140	356	425	350	900	1160	1040

^{*}For reduced BIL transformers only.

NOTES: (1) If flashover tests are required, a parallel test gap shall be used to limit the applied voltage to not more than 105% of the withstand voltage given in this Table.

Table 2
Electrical Insulation Characteristics for Outdoor Power Transformer Bushings
(Maximum System Voltage: 362 kV and Above)

							Withsta	and Test	
						L	ightning I	mpulse	
			Rated				Chop	ped Wave	
Line No	BIL (kV)	Maximum System Voltage (kV)	Maximum Line-to- Ground Voltage (kV)	Creep Distance Minimum (in)	60 Hz 1 min Dry (kV)	Full Wave (kV)	Crest (kV)	Minimum Time to Flashover (μs)	Switching Impulse Wet (kV)
1	900	362	220	220	395	900	1035	3	700
2	1050	362	220	220	460	1050	1210	3	825
3	1175	362	220	220	520	1175	1350	3	825
4	1300	550	318	318	575	1300	1500	3	1050
5	1425	550	318	318	630	1425	1640	3	1110
6	1550	550	318	318	690	1550	1780	3	1175
7	1675	550	318	318	750	1675	1925	3	1175
8	1800	800	485	485	800	1800	2070	3	1360

NOTES: (1) If flashover tests are required, a parallel test gap shall be used to limit the applied voltage to not more than 105% of the withstand voltage given in this Table.

(2) Dry negative switching impulse withstand voltage of the bushing must be at least equal to the dry switching surge withstand voltage specified in IEEE Std 262B-1977, IEEE Trial-Use Standard Dielectric Test Requirements for Power Transformers for Operation on Effectively Grounded Systems 345 kV and Above, ANSI/IEEE C57.12.90-1980, IEEE Standard Test Code for Liquid-Immersed Distribution, Power, and Regulation Transformers and Guide for Short-Circuit Testing of Distribution and Power Transformers, and ANSI/IEEE C57.12.00-1980, IEEE Standard General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers.

⁽²⁾ The insulation class values given in this Table are used merely as reference numbers and do not necessarily imply a relation to specific operation voltages.

Table 3
Dimensions of 15 kV Transformer Cover-Mounted Bushings

							Pottom End	อนจ เ		1.1	riange		ļ	Ton End	Ton Fnd Torminal
;		Rated					Terminal	ınal			N		Bolt	one do i	1 emma
Insulation Class BIL (kV) (kV	BIL (kV)	on Continuous BIL Current (kV) (A)	1	T	W	D (max) T	Usable Thread Thread	Usable Thread	д	Ø	of Bolt Holes	Hole Size	Circle Diameter	Usable Thread	Usable Thread Thread
15	110	009	13½ 20 24½	10 161/2 21	10 16½ 21	3,1/8	See Di	See Diagram	33%	8/,9	4	8/8	9	62	$1\frac{1}{8}-12$
15	110	1200	$16^{1/2}$ 23 $27^{1/2}$	$\begin{array}{c} 10 \\ 16\% \\ 21 \end{array}$	$10 \\ 16\% \\ 21$	3,1%	11/8-12	11/2	3%	5 1/8	4	5/8	9	63	11/8-12
15	110	2000	17 23½ 28	$\begin{array}{c} 10 \\ 16\% \\ 21 \end{array}$	$\begin{array}{c} 10 \\ 16\% \\ 21 \end{array}$	4	1% - 12	63	41/4	61/4	4	°2′8	4,7	73	$1\frac{1}{2}$ -12

NOTE: All dimensions are given in inches.

Dimensions of Outdoor Power Apparatus Bushings for Outdoor Oil-Type Transformers and Circuit Breakers (Insulation Class: 23/25 through 69 kV) Table 4

	r Bolts	Bolt	Diameter	71/4	V ₁ ,	7 ,00	9.14	
	Provision for Bolts	Bolt	Size	%; %;	,e ;	. %;	8/,	
Flange	Pro		No.	4	4	4,	و:	
E	Space	Minimum Outside	1	61/4	6.1/4	7.7	81/4	
	Gasket Space	Maximum Inside	P	4	4	വ	9	
		of Lower Washer Maximum	z	31/8	31/2	4	4	
	Diameter from 1 in below Flange to	Lower End of Bushing Maximum	D	31/8	$3^{1/2}$	4	51/4	
		હ	Ŀ	21	21	21	21	
Lower End	V) of Cu rmer Po nce (T) Basket S num Oil	For Use in Transforme	W	161/2	16%	16%	16%	
Low	Depth (W) of Current Transformer Pocket and Distance (T) from Bushing Gasket Surface to Minimum Oil Level	n Circuit kers	W and T	161/2	16%	16%	$16\frac{1}{2}$	
	Minimum Insula- tion Length	For Use in Circuit Breakers	×	91/2	111/2	13%	171/2	
	Length of Bushing from Flange	Seat to Lower End	* 1	291/2	$31^{1/2}$	33%	371/2	
		Rated Continous	Current (A)*	400/1200	400/1200	400/1200	400/1200	
Rating		Basic Impulse		150	200	250	350	
		Insulation	Class (kV)	23/25	34.5	46	69	
			Line No.	-	2	ı co	4	

NOTES: (1) All dimensions are given in inches. (2) The oil gage and test tap when supplied shall be in line and midway between two adjacent flange bolt holes. *Bushing design provides for 400 A maximum in draw lead or 1200 A bottom connected.

Dimensions of Outdoor Power Apparatus Bushings for Outdoor Oil-Type Transformers (Insulation Class: 23/25 through 69 kV) (Not Applicable to Circuit Breakers) Table 5

Dimensions of Outdoor Power Apparatus Bushings for Outdoor Oil-Type Transformers (Insulation Class: 23/25 through 69 kV) (Not Applicable to Circuit Breakers) Table 5 (continued)

		<u>.</u>	Polts	Bolt Circle Diameter	È	*			71%			81/4			č	**		
			Provision for bolts	Bolt Hole Size	,,	, e			7/8			%			ř	*		
	Flange		Frovis	Z o	•	4			4			4			,	٥		
	FI	Gasket Space	Outside	Diameter Minimum Q	è	7 ,0			% 9			71 <i>Y</i>			ì	8,7	·	
		Gasket	Inside	Diameter Maximum P	,	4	ļ		4			ស			,	စ		
				Thread Class UNF-2A			$1\frac{1}{2}-12$			11/2-12			11/2-12				11/2-12	
				Usable Thread			2 1/8			21/8			21/8				2,%	
			Inside	Diameter Tube Minimum	3/6			*/_	<u>.</u>		,,	8/		į	,/8 //8			
End		Diamotor	of Lower	Washer Maximum N	;	%			31/2			4				4		
Lower End	Maximum Diemoter	from	I in below Flange to	Lower End of Bushing D	į	3,%			31/2			4				21/		
	Depth of Current Transformer Pocket and Distance	Bushing	Gasket Surface to	Minimum Oil Level W and T	10 16½	21	27	10	21	21	10	16% 21	21 27	161/2	21	27	21 27	
	Length of Bushing	from		4	$\frac{16^{1/2}}{23}$	271/2	36%	181/2	2912	32½ 38½	201/2	311/2	34½ 40½	301/2	35	41	38 44	
			0	Kated Continuous Current (A)	400	400	(1200	400	400	$\binom{1200}{1200}$	400	400 400 400	$\binom{1200}{1200}$	400	400	400	$\binom{1200}{1200}$	
	;	Rating				150			200		•	250				350		
	1	E	7	tion tion Class Level (kV) (kV)		23/25			34.5			46				69		
				Line No.	12	€ 8	5.	6	8	10	11)	$\frac{12}{13}$	$\frac{14}{15}$	16)	17	18	$\frac{19}{20}$	

NOTES: (1) All dimensions given in inches.
(2) See Table 4 for bushings interchangeable with circuit breakers.
(3) The oil gage and test tap when supplied shall be in line midway between two adjacent flange bolt holes.
*Draw lead bushings.

Dimensions of Outdoor Power Apparatus Bushings for Outdoor Oil Transformers and Circuit Breakers (Insulation Class: 115 kV through 196 kV) Table 6

	erminal	i	Thread Class UNF-2A	22	11/2-12	2-12	3-12	11/2-12	2-12	3-12	11/2-12	2-12	3-12	11/2-12	2-12	3-12
	Top End Terminal		ment Length Minimum		2	$2^{1/2}$	က	2	$2^{1/2}$	က	2	$2^{1/2}$	က	2	$\frac{2^{1/3}}{2^{1/3}}$	3
			Bolt Circle	Diameter	131/4	13%	13%	141/4	141/4	141/4	15%	15%	15%	21	21	21
		Provision for Bolts‡	Bolt		114	11/4	11/4	11/4	11/4	11/4	11/4	11/4	11/4	11/4	11/4	11/4
				No	9	9	9	9	9	9	œ	œ	œ	12	12	12
	Flange	Space	Diameter Minimum	ტ	11%	11%	$11\frac{7}{8}$	12%	12%	12%	143%	143/8	$14\frac{3}{8}$	191/2	19%	191/2
		Gasket Space	Diameter Maximum	Ь	9%6	%6	9%	10%	10%	10%	$12^{3/8}$	12%	$12^{3/_{8}}$	17 1/8	17 1/8	17 1/8
	7	end al‡	Detail D Fig	No.	(2)	(3)	(3)	(5)	(3)	(3)	(5)	(3)	(3)	(3)	(3)	(3)
þ	, i	Doutom End Terminal	Inside Diameter Tube	Minimum	11/2	+-	+-	$1^{5/8}$	+-	4-	15%	+-	+	2	+-	 -
Lower End	Maximum Diameter from 1 in	below Flange	to Lower End of Bushing	Q	83%	93%	93%	93%	9%	10%	12	12	12	14%	145/8	14%
	Depth of Current Transformer Pocket and	Distance from Bushing Gasket	Surface to Minimum Oil Level	Μ	23	23	23	23	23	23	23	23	23	2634	263%	26%
	İ	ing from Flange	Seal to Lower End $\pm \frac{1}{4}$	'n	43	43	43	4634	4634	46%	501/4	501/4	501/4	591/2	591/2	261%
		Rated Continuous	Current §	r Breaker	1600	2000	1	1600	2000	1	1600	2000	1	1600	2000	1
	Rating	Rat	Currel (A)	Transformer Breaker	1200	1600	2500	1200	1600	2500	1200	1600	2500	1200	1600	2500
			RIL	(kV)	550	550	550	650	650	650	750	750	750	900	900	006
			Insula- tion	(kV)	115*	115*	115	138*	138*	138	161*	161*	161	196*	196*	196
			ino 1	No.	-	2	က	4	, rc	9	7	- oc	6	10	11	12

NOTE: All dimensions are given in inches.

*These bushings are dimensionally interchangeable between circuit breakers and transformers. Dimensional interchangeability does not necessarily imply mechanical or electrical interchangeability on apparatus of different manufacturers.

†Not designed for use with draw lead.

§ For draw lead application, the continuous current rating is limited to the current rating of the draw lead application, the continuous current rating is limited to the current flange bolt holes and between two adjacent bottom end tapped holes.

4 When furnished, oil gage and potential tap are in line midway between two adjacent flange bolt holes and between two adjacent bottom end tapped holes.

4 Table 6 Detail D Fig 2 bottom terminal may be converted to Table 6 Detail D Fig 3 bottom terminal by threading on a proper adapter.

Dimensions of Outdoor Power Transformer Bushings (Maximum System Voltage: 362 kV and above)

								I)	ΕE	E	ST	'A	NI)A	R	D P
	Towns	L'ETITINGI L'ETITINGI	Thread	Class UNF-2A	В	1	l	2 - 12	$^{2-12}$	l	l	,	2 - 12	1		
	Ton Rud Towning	Usable	Thread	Length Minimum	A	1	l	$2^{1/2}$	21/2	I	I	1	% 7,7	l	١	
		for			Diameter	1	1	21	21	i	1	1 3	25	ļ	l	
		Provision for	200	Bolt	Size	1	١	11/4	$1^{1/4}$	l	I	1	14	1	I	,
	Flange				No	I	ļ	12	12	ı	1	1	12	ļ	1	1
	Ē	Space	Outside	Diameter Diameter	ď	I	1	191/2	191/2	١	ı	ı	23	ļ	I	1
		Gasket Space	Inside	Diameter Maximum	Ь	1	j	171%	171/8	ļ	1	1	21	J	1	,
	m End	ninai g 4	Washer	Tube Diameter	Z	l	ı	814	81/4	I	1	1	12	I	I	1
	Botto	Fig 4	Incido	Tube Diameter	Minimum	1	ı	2	ı +-	. 1	i	I	+-	1	l	
pug	Diameter from 1 in	Flange to Lower	Find of	Bushing	D	l	I	153/4	15%	- 1	I	1	20	ì	I	1
Lower End	Depth of Current Transformer Pocket and	Distance from Bushing	Caskel	Minimum	M M		I	93	23	1	ı	ı	27	ı	ı	1
	Length of	from	Cost to	Lower End	u 7 L			1 7	1 12	; 1	ı	1	65	١	I	1
		Rating		Rated Continuous	Current (A)	*	000	1000	1600	*	1600	1600	1600	1600	1600	1600
 		Rai			BIL (kV)	006		900	1050	1175	1175	1300	1425	1550	1675	1800
					Line No	-	4 (27 0	o <	יי יי	တ	-1	- 00	6	10	11

NOTE: Dashes indicated data under consideration.
Letters in dimension column headings refer to diagram Table 6.
*Continuous current rating limited by size of transformer draw lead.
†Not designed for use with draw lead.

Table 8
Cantilever Test Requirements for Outdoor Power Apparatus Bushings

		Design	n Test*
Insulation Class (kV)	Rated Continuous Current Application (A)	Top Transverse Force Static Values (lb)	Bottom Transverse Force Static Values (lb)
23/25	400 Transformer	150	-
	1200 Transformer	150	300
	1200 Interchangeable	300	600
	2000 Circuit breaker	400	800
	3000 Circuit breaker	500	1000
	4000 Circuit breaker	500	1000
34.5	400 Transformer	150	
	1200 Transformer	150	300
	1200 Interchangeable	300	600
	2000 Circuit breaker	400	800
	3000 Circuit breaker	500	1000
46	400 Transformer	150	
	1200 Transformer	150	300
	1200 Interchangeable	300	600
	2000 Circuit breaker	400	800
69	400 Transformer	150	—
	1200 Transformer	150	300
	1200 Interchangeable	300	800
	2000 Circuit breaker	400	1200
115	1200/1600 Interchangeable	700	1400
	1600/2000 Interchangeable	700	1400
	2500/3000 Interchangeable	900	1800
138	1200/1600 Interchangeable	700	1400
	1600/2000 Interchangeable	700	1400
	2500/3000 Interchangeable	900	1800
161	1600/2000 Interchangeable	900	1800
	2500/3000 Interchangeable	1000	2000
	4000 Circuit breaker	1200	2400
196	1600/2000 Interchangeable	900	1800
	2500/3000 Interchangeable	1200	2400
230	1600 Transformer	900	1800
345	1600 Transformer	900	1800

^{*}These are design test requirements only and are not associated with permissible loads that can be applied to the top end terminal of bushings in service.

Table 9
Partial Discharge
(Radio Influence Voltage) Limits*

Type of Construction**	Application	
	General Purpose	Power Transformers†
	At Maximum Line to Ground Voltage	At 1.5 · Maximum Line to Ground Voltage (1 h max)
Solid bushings		
General purpose	No limit established	Not applicable
Special partial discharge limits	Not applicable	50 μV
Resin bonded paper	50 μV	100 μV
Oil impregnated paper 550 kV system and below Above 550 kV system	25 μV 50 μV	25 μV 50 μV
Resin impregnated paper	25 μV	25 μV
Cast insulation	25 μV	25 μV

^{*}These allowable radio influence voltage limits include background level. Since these measurements are related to partial discharges within the major insulation, external shielding may be used to reduce air corona which may occur at the bushing terminals or grounded projections.

†For application to power transformers which require partial discharge acceptance tests at 1.5 per unit of maximum line to ground voltage, bushings may be selected from appropriate types of construction and voltage ratings.

Table 10 Power Factor Limits

Bushing Type	Power Factor Limit (percent)
Resin-bonded paper-insulated	2
Oil-impregnated paper-insulated	1*

NOTES: (1) Power factor limits shall be referred to 25° C.

^{**}See ANSI/IEEE Std 21-1976, IEEE General Requirements and Test Procedure for Outdoor Apparatus Bushings, for definitions of types of construction.

 $^{(2)\,}Power\,factor\,measurements\,shall\,be\,made\,at\,10\,kV$ and the measured values shall not exceed the values listed.

^{*}For oil-impregnated, paper-insulated bushings, the percent power factor after the 1 min dry withstand test shall not increase more than 0.02 over the initial value when measured at 10 kV and corrected to 25°C; for example, 0.50 percent power factor before, 0.52 percent power factor after.