Índice general

1.	Divi	isibilidad en los números enteros	1
	1.1.	División entera. Ideales	1
	1.2.	Mínimo común múltiplo y máximo común divisor	2
	1.3.	Números primos entre sí y números primos	4

Capítulo 1

Divisibilidad en los números enteros

1.1. División entera. Ideales

Designaremos por \mathbb{Z} el conjunto de los números enteros. La teoría de la divisibilidad en \mathbb{Z} es consecuencia de la siguiente importante propiedad.

Teorema 1.1 (de la división entera). Dados $a, b \in \mathbb{Z}$, $b \neq 0$, existen dos únicos números enteros q y r que cumplen a = bq + r, $0 \leq r < |b|$. Estos números q y r se llaman el cociente y el resto de la división entera de a por b.

Ejemplo 1.1.

$$-8 = 3 \cdot (-3) + 1$$
, $3 = (-8) \cdot 0 + 3$

Si el resto de la división entera de a por b es 0, se dice que a es un $m\'{u}ltiplo$ de b (escribiremos a=b), que b es un divisor de a (escribiremos $b\mid a$), o que a es divisible por b. Indicaremos por (b) el conjunto de los m\'{u}ltiplos de b. Observemos que (b) cumple las dos propiedades siguientes:

- es cerrado para la suma; es decir, $a, c \in (b) \Rightarrow a + c \in (b)$.
- si $a \in (b)$ y c es cualquier entero, entonces $ac \in (b)$.

Proposición 1.1. Si el subconjunto $I \subset \mathbb{Z}$ cumple

- (1) $a, b \in I \Rightarrow a + b \in I$
- (2) $a \in I, c \in \mathbb{Z} \Rightarrow ac \in I$

entonces existe un $b \in \mathbb{Z}$ tal que I = (b).

Demostración. Si $I = \{0\}$, entonces I = (0). Si I contiene un elemento no nulo a, también contiene $-a = a \cdot (-1)$, y o bien a o bien -a es positivo. Por tanto, I contiene enteros positivos. Sea b el menor de los enteros positivos contenidos en I. Por (2), I contiene todos los múltiplos de b: $(b) \subset I$. Vamos a ver que $I \subset (b)$, y por tanto, I = (b). En efecto, dado $a \in I$ cualquiera, por el teorema 1.1,

$$a = bq + r$$
, $0 \le r < |b| = b$

Por (1) y (2), $r = a - bq = a + b(-q) \in I$; pero $0 \le r < |b| = b$ y b es el menor de los enteros positivos de I; así pues, r = 0, y por tanto $a = bq \in (b)$.

Un subconjunto I que cumple las condiciones (1) y (2) de la proposición 1.1 se llama un *ideal* de \mathbb{Z} . El elemento b tal que I = (b) se denomina *base* del ideal.

Ejercicio 1.1. Demostrar que,

$$(b) = (c)$$
 si y sólo si $c = \pm b$

Obsérvese que $(a) \subset (b)$ si y sólo si $b \mid a$. Las cuestiones de divisibilidad equivalen, por tanto, a cuestiones sobre inclusiones entre ideales.

1.2. Mínimo común múltiplo y máximo común divisor

Dados números enteros a_1, \ldots, a_n , la intersección $(a_1) \cap \cdots \cap (a_n)$ es el conjunto de los números enteros múltiplos comunes de todos ellos de todos ellos. Este conjunto cumple las dos condiciones de la proposición 1.1, y por tanto, $(a_1) \cap \cdots \cap (a_n) = (m)$ para un m conveniente. Este m está carecterizado por las dos propiedades siguientes:

- m es múltiplo común de a_1, \ldots, a_n
- cualquier otro múltiplo común de a_1, \ldots, a_n es múltiplo de m.

Diremos que m es el mínimo común múltiplo de a_1, \ldots, a_n y escribiremos

$$m = \operatorname{mcm}(a_1, \dots, a_n)$$

Observemos que también -m es mínimo común múltiplo de a_1, \ldots, a_n .

Consideremos ahora la unión $(a_1) \cup \cdots (a_n)$. Este conjunto, en general, no cumple las condiciones de la proposición 1.1. Por ejemplo, $(2) \cup (3)$ no contiene el 5 = 2 + 3. Formemos a partir de $(a_1) \cup \cdots \cup (a_n)$ un subconjunto I de \mathbb{Z} que cumpla las condiciones de la proposición 1.1, Por la condición (1), I debe contener todas las sumas de múltiplos de a_1, \ldots, a_n : $a_1c_1 + \cdots + a_nc_n$. No hace falta ampliar más, el conjunto

$$I = \{a_1c_1 + \dots + a_nc_n \mid c_1, \dots, c_n \in \mathbb{Z}\}\$$

cumple ya las condiciones de la proposición 1.1, y por tanto, existe un entero d tal que I=(d). Denotaremos I por (a_1, \ldots, a_n) . Así pues, $I=(a_1, \ldots, a_n)=(d)$. Este número d está caracterizado por las dos propiedades siguientes:

- d es divisor común de a_1, \ldots, a_n , ya que ello equivale a a firmar que $a_i \in (d)$ para $i = 1, \ldots, n$. $(a_i = a_1 \cdot 0 + \cdots + a_i \cdot 1 + \cdots + a_n \cdot 0 \in I)$.
- Cualquier otro divisor d' común a a_1, \ldots, a_n divide a d. En efecto, que d' sea divisor de a_1, \ldots, a_n significa que $a_i \in (d')$, $i = 1, \ldots, n$. Por tanto, $\{a_1c_1 + \cdots + a_nc_n \mid c_i \in \mathbb{Z}\} \subset (d')$, es decir, $(d) \subset (d')$, lo cual implica que d' es un divisor de d.

El recíproco también es cierto.

Diremos que d es el máximo común divisor de a_1, \ldots, a_n y escribiremos

$$d = \operatorname{mcd}(a_1, \dots, a_n)$$

También -d es máximo común divisor.

Observemos que el máximo común divisor d es una suma de múltiplos de a_1, \ldots, a_n

$$d = a_1 r_1 + \dots + a_n r_n$$

Esta expresión es conocida como identidad de Bézout.

Acabaremos este apartado con un método práctico de cálculo del máximo común divisor y de la identidad de Bézout. El método se basa en el siguiente resultado:

Proposición 1.2. Sea a = bq + r la división entera de a por b. Entonces,

$$mcd(a, b) = mcd(b, r)$$

Demostración. El resultado es consecuencia de que (a,b) = (b,r). En efecto, todo elemento $ac_1 + bc_2 \in (a,b)$, satisface $ac_1 + bc_2 = b(qc_1 + c_2) + rc_1 \in (b,r)$ y, recíprocamente, todo elemento $bn_1 + rn_2 \in (b,r)$ satisface $bn_1 + rn_2 = an_2 + b(n_1 - qn_2) \in (a,b)$.

Si aplicamos reiteradamente esta proposición, obtenemos

$$a = bq + r,$$
 $(a,b) = (b,r),$ $r < |b|$
 $b = rq_1 + r_1,$ $(b,r) = (r,r_1),$ $r_1 < r$
 $r = r_1q_2 + r_2,$ $(r,r_1) = (r_1,r_2),$ $r_2 < r_1$

Los sucesivos restos van disminuyendo y obtendremos, por tanto, en un momento dado resto cero:

$$r_{k-2} = r_{k-1}q_k + r_k, \quad (r_{k-2}, r_{k-1}) = (r_{k-1}, r_k), \quad r_k < r_{k-1}$$

 $r_{k-1} = r_k q_{k+1} + 0, \quad (r_{k-1}, r_k) = (r_k, 0) = (r_k)$

Así pues, $(a, b) = (r_k)$, es decir, $r_k = \text{mcd}(a, b)$.

Este método para hallar el máximo común divisor se llama algoritmo de Euclides.

Para calcular el máximo común divisor de más de dos enteros, aplicamos:

Ejercicio 1.2.

$$mcd(a_1, a_2, a_3) = mcd(mcd(a_1, a_2), a_3)$$

y, en general,

$$\operatorname{mcd}(a_1,\ldots,a_n)=\operatorname{mcd}(\operatorname{mcd}(a_1,\ldots,a_{n-1}),a_n)$$

Las divisiones enteras efectuadas en el algoritmo de Euclides nos permiten expresar $d = r_k = \text{mcd}(a, b)$ como suma de un múltiplo de a y un múltiplo de b. En efecto, en

$$d = r_k = r_{k-2} - r_{k-1}q_k$$

d se expresa como una suma de un múltiplo de r_{k-2} y un múltiplo de r_{k-1} . Ahora bien,

$$r_{k-1} = r_{k-3} - r_{k-2}q_{k-1}$$

y sustituyendo en la igualdad anterior obtenemos una expresión de d como una suma de un múltiplo de r_{k-3} y un múltiplo de r_{k-2} . Volviendo a sustituir convenientemente, podemos expresar d como suma de múltiplos de r_{k-4} y r_{k-3} ; y así sucesivamente hasta obtener la identidad de Bézout,

$$d = ar + bs$$

Veamos como definir una función recursiva para calcular los coeficientes de Bézout. Supongamos que $d = \alpha_i r_{k-i-1} + \beta_i r_{k-i}$, como $r_{k-i-2} = r_{k-i-1} q_{k-i} + r_{k-i}$, se obtiene que

$$d = \alpha_i r_{k-i-1} + \beta_i (r_{k-i-2} - r_{k-i-1} q_{k-i}) = \beta_i r_{k-i-2} + (\alpha_i - \beta_i q_{k-i}) r_{k-i-1}$$

para i = 0, ..., k (definiendo $r_0 = r, r_{-1} = b, r_{-2} = a y q_0 = q$). Por tanto,

$$(\alpha_{i+1}, \beta_{i+1}) = \begin{cases} (1, -q_k) & i = 0\\ (\beta_i, \alpha_i - \beta_i q_{k-i}) & i = 1, \dots, k \end{cases}$$

En el próximo apartado (proposición 1.3) demostraremos que si m = mcm(a, b) y d = mcd(a, b) entonces $md = \pm ab$. Esto permite calcular m si conocemos d. Para el cálculo de mínimo común múltiplo de más de números utilizaremos:

Ejercicio 1.3.

$$mcm(a_1, a_2, a_3) = mcm(mcm(a_1, a_2), a_3)$$

y, en general,

$$\operatorname{mcm}(a_1,\ldots,a_n) = \operatorname{mcm}(\operatorname{mcm}(a_1,\ldots,a_{n-1}),a_n)$$

1.3. Números primos entre sí y números primos

Se dice que a y b son primos entre sí si mcd(a, b) = 1.

Ejemplos 1.1.

- (1) mcd(3,8) = 1. Observemos que $1 = 3 \cdot 3 + 8 \cdot (-1)$
- (2) Si d = mcd(a, b) y a = da', b = db', entonces mcd(a', b') = 1. En efecto, si d' fuera un divisor común de a' y b', entonces dd' sería divisor común de a y b y, por tanto, un divisor de d. Esto sólo es posible si $d' = \pm 1$.

Teorema 1.2 (de Euclides). Si $a \mid bc \mid y \mod(a, b) = 1$ entonces $a \mid c$.

Demostración. Si 1 = mcd(a, b), podemos expresar 1 como 1 = ar + bs. Multiplicando por c obtenemos c = acr + bcs. Pero a divide a los dos sumandos y, por tanto $a \mid c$.

Proposición 1.3. Si m = mcm(a, b) y d = mcd(a, b), entonces se cumple $md = \pm ab$.

Demostración. Pongamos a=da' y b=db'. Se trata de ver que $m=\pm da'b'$ es un mínimo común múltiplo de a y b. Es evidente que da'b' es múltiplo común de a y b. Sea n otro múltiplo común de a y b; es decir, n=ar=bs. Entonces da'r=db's, de donde a'r=b's con a', b' primos entre sí, Entonces por el teorema 1.2, a' divide a s, es decir, s=a'h y n=bs=db'a'h. Así resulta que n es múltiplo de db'a'.

Cualquier número entero p es divisible por ± 1 y por $\pm p$. Diremos que p es primo si estos son sus únicos divisores. El 1 y el -1 no se consideran números primos.

Proposición 1.4. El conjunto de los números primos es infinito.

Demostración. Lo demostraremos viendo que, dado un conjunto finito de números primos $N = \{p_1, \ldots, p_m\}$, siempre hay un número primo fuera de N. En efecto, consideremos $a = p_1 \cdots p_m + 1$. Si $b \mid a$, también $-b \mid a$; por tanto, a tiene divisores positivos. Sea p el menor de los divisores positivos de a diferentes de 1. Claramente, p es primo. Si p fuera uno de los p_i , dividiría a $p_1 \cdots p_m$ y, por tanto, dividiría a $a - p_1 \cdots p_m = 1$. Esto es imposible, ya que $p \neq 1$. De ahí que $p \notin N$. \square

Proposición 1.5. Todo número entero a no nulo, $a \neq \pm 1$, es producto de números primos.

Demostración. Tal como hemos visto en la demostración de la proposición 1.4, a tiene siempre un divisor primo $p_1 \neq \pm 1$. Así pues, tenemos $a = p_1 a_1$. Si $a_1 \neq \pm 1$, eilijamos un divisor primo p_2 de a_1 , y tendremos $a_1 = p_2 a_2$. Luego $a = p_1 p_2 a_2$. Repitamos el mismo proceso si $a_2 \neq \pm 1$, y así sucesivamente. Ahora bien, $|a_1| > |a_2| > \cdots$. Llegará pues un momento en que tendremos $a = p_1 \cdots (p_n a_n)$ con $a_n = \pm 1$. Esto es una descomposición de a en números primos.