Package 'cmR'

July 19, 2023

Type Package
Title Analysis of Cardiac Magnetic Resonance Images
Version 1.1
Date 2023-07-12
Author Volker Schmid [aut, cre]
Maintainer Volker Schmid < volker.schmid@lmu.de>
Depends R (>= $3.5.0$)
Imports Matrix, splines, fields, graphics, parallel, plotrix
Description Computes maximum response from Cardiac Magnetic Resonance Images using spatial and voxel wise spline based Bayesian model. This is an implementation of the methods described in Schmid (2011) <doi:10.1109 tmi.2011.2109733=""> ``Voxel-Based Adaptive Spatio-Temporal Modelling of Perfusion Cardiovascular MRI". IEEE TMI 30(7) p. 1305 - 1313.</doi:10.1109>
License GPL-3
RoxygenNote 7.2.3
Encoding UTF-8
LazyData true
<pre>URL https://bioimaginggroup.github.io/cmr/</pre>
Suggests knitr, rmarkdown, codetools, testthat (>= 3.0.0), R.rsp
VignetteBuilder knitr, R.rsp
BugReports https://github.com/bioimaginggroup/cmR/issues
NeedsCompilation no
Repository CRAN
Date/Publication 2023-07-19 10:30:02 UTC
R topics documented:
bullseye

bullseye bullseye

nr.space	
nrdata_sim	
nageMBF	í
put_sim	í
axresp_sim	
eudobullseye	
nvnormcanon	

Index

bullseye

Bullseye plot

Description

Bullseye plot

Usage

```
bullseye(x, lim = NULL, reverse = TRUE, legend = TRUE, text = TRUE, cex = 1)
```

Arguments

x vector of length 16 or 17

lim limits of x values

reverse boolean, reverse colors?
legend boolean, add legend?

text boolean, should text legend be added?

cex cex for text legend

Value

plot

Examples

bullseye(1:16)

cmr 3

cmr

Bayesian analysis of cardiovascular magnetic resonance imaging

Description

Bayesian analysis of cardiovascular magnetic resonance imaging

Usage

```
cmr(
  data,
  input,
  mask = NULL,
  method = "spatial",
  quantiles = c(0.25, 0.75),
  cores = parallel::detectCores()
)
```

Arguments

data 3D or 4D array of CMR signal

input input function

mask 2d array of mask. Voxel with 0 or FALSE will be omitted from analysis. Default

NULL: use NA values in data as mask

method "spatial" or "local"

quantiles quantiles used for credible interval, default: c(0.25, 0.75)

cores number of cores for parallel computation. Spatial model only computes slices

parallel, local can be parallelized on voxel level

Value

list of mbf (point estimation) and ci (credible interval)

cmr.local

Spline analysis of cardiovascular magnetic resonance imaging

Description

Spline analysis of cardiovascular magnetic resonance imaging

Usage

```
cmr.local(data, mask, input, quantiles = c(0.25, 0.75), cores = 1)
```

4 cmr.space

Arguments

data 3d array of CMR signal

mask 2d array of mask. Voxel with 0 or FALSE will be omitted from analysis

input input function

quantiles quantiles used for credible interval, default: c(0.25, 0.75)

cores number of cores to use in parallel computing

Value

list of mbf (point estimation) and ci (credible interval)

Examples

```
oldpar <- par(no.readonly = TRUE)</pre>
library(cmR)
data(cmrsim)
local.mbf=local.ci=array(NA,c(30,30,3))
 for (i in 1:3){
 mask=array(NA,c(30,30))
 mask[cmrdata_sim[,,i,1]!=0]=1
 temp=cmr.local(cmrdata_sim[,,i,], mask, input_sim, cores=2)
 local.mbf[,,i]=t(as.matrix(temp$mbf))
 local.ci[,,i]=t(as.matrix(temp$ci))
}
par(mfrow=c(2,1))
 imageMBF(maxresp_sim, zlim=c(0,5))
 imageMBF(local.mbf, zlim=c(0,5))
 imageMBF(local.ci, zlim=c(0,0.8))
par(oldpar)
```

cmr.space

Spatial spline analysis of cardiovascular magnetic resonance imaging

Description

Spatial spline analysis of cardiovascular magnetic resonance imaging

Usage

```
cmr.space(data, mask, input, quantiles = c(0.25, 0.75))
```

cmrdata_sim 5

Arguments

data 3d array of CMR signal

mask 2d array of mask. Voxel with 0 or FALSE will be omitted from analysis

input input function

quantiles quantiles used for credible interval, default: c(0.25, 0.75)

Value

list of mbf (point estimation) and ci (credible interval)

Examples

```
oldpar <- par(no.readonly = TRUE)
library(cmR)
data(cmrsim)
mask=array(NA,c(30,30))
space.mbf=space.ci=array(NA,c(30,30,3))
for (i in 1:3){
 mask=array(NA,c(30,30))
 mask[cmrdata_sim[,,i,1]!=0]=1
 temp=cmr.space(cmrdata_sim[,,i,], mask, input_sim)
 space.mbf[,,i]=t(as.matrix(temp$mbf))
 space.ci[,,i]=t(as.matrix(temp$ci))
par(mfrow=c(2,1))
imageMBF(maxresp_sim, zlim=c(0,5))
imageMBF(space.mbf, zlim=c(0,5))
imageMBF(space.ci, zlim=c(0,0.8))
par(oldpar)
```

cmrdata_sim

Simulated data for CMR package.

Description

This data set is provided as example for the usage of the cmR package. cmrdata_sim is a simulated CMR image.

Usage

cmrdata_sim

Format

A 4D array, 30x30 pixels for 3 slices at 30 time points.

6 input_sim

imageMBF

Plotting of (voxelwise) cardiac MBF

Description

Plotting of (voxelwise) cardiac MBF

Usage

```
imageMBF(img, zlim = NULL, reverse = TRUE)
```

Arguments

img 3d array ob MBF values

zlim limits of MBF, default: NULL means zlim=c(0,max(img,na.rm=TRUE))

reverse reverse color scheme

Value

plots

Examples

```
data(cmrsim)
imageMBF(maxresp_sim)
```

input_sim

Simulated data for CMR package.

Description

This data set is provided as example for the usage of the cmR package. input_sim is the simulated input function.

Usage

```
input_sim
```

Format

Vector for 30 time points.

7 maxresp_sim

maxresp_sim

Simulated data for CMR package.

Description

This data set is provided as example for the usage of the cmR package. maxresp_sim is the true maximum response used in the simulation.

Usage

```
maxresp_sim
```

Format

A 3D array, 30x30 pixels for 3 slices.

pseudobullseye

Pseudo bullseye plot

Description

Pseudo bullseye plot

Usage

```
pseudobullseye(
 lim = range(x, na.rm = TRUE),
  legend = FALSE,
  text = TRUE,
  reverse = FALSE,
  center = TRUE,
  cex = 1,
  legend.width = 1
)
```

Arguments

X	3D array
lim	limits of x values
legend	boolean, add legend?
text	boolean, should text legend be added?

reverse boolean, reverse colors?

center boolean, should input x be centered before plotting

cex cex for text legend

legend.width Width in characters of the legend strip. 8 rmvnormcanon

Value

plots

Examples

```
data(cmrsim)
pseudobullseye(maxresp_sim)
```

rmvnormcanon

Draw random vectors from multivariate Gaussian in canonical form

Description

Draw random vectors from multivariate Gaussian in canonical form

Usage

```
rmvnormcanon(n, b, P)
```

Arguments

```
Number of drawsb b parameterP Precision matrix
```

Value

matrix with n columns, vector if n=1

Examples

```
P<-matrix(c(1,.5,.5,1),ncol=2)
b=c(2,0)
# expected value and covariance matrix
Sigma = solve(P)
mu = b%*%Sigma
# sample
x<-rmvnormcanon(1000,b,P)
mu.hat=apply(x,1,mean)
print(mu.hat-mu)
Sigma.hat=var(t(x))
print(Sigma.hat-Sigma)</pre>
```

Index