Summary: Lecture 10

Summary for the chapters 11.1 up to page 245 and 11.2 (page 258 optional). [5, 1]

Randomized algorithms

Algorithms based on randomization.

(The algorithm employs a degree of randomness as part of its logic or procedure.)

Bipartite matching

Bipartite Graph

A graph G = (U, V, E) is called bipartite if the vertices can be divided into two disjoint and independent sets U and V. (There are no edges between two elements of U or two elements of V).

Figure 1: Examples of bipartife graphs with U and V marked in red and blue [2]

Problem: BipartiteMatching

Given: Bipartite graph G = (U, V, E).

Is there a perfect matching $M \subseteq E$ such that for any two edges (u, v) and (u', v') in M $u \neq u'$ and $v \neq v'$.

I other words: A matching in a Bipartite Graph is a set of the edges chosen in such a way that no two edges share an endpoint. The matching M is called perfect if for every node in V there is some edge in M. [3, 5, 4]

- construct bipartite graph with n nodes as $n \times n$ matrix A
- the element $A_{i,j}$ is a variable $x_{i,j}$ if $(i,j) \in E$
- the element $A_{i,j}$ is 0 if $(i,j) \notin E$

Example:

$$A = \begin{pmatrix} 0 & x_{1,2} & 0 & x_{1,4} \\ x_{2,1} & 0 & x_{2,3} & 0 \\ 0 & x_{3,2} & 0 & x_{3,4} \\ x_{4,1} & 0 & x_{4,3} & 0 \end{pmatrix}$$

Questions:

Is EVERY node cotained in the subset M when it is a perfect matching? Does a perfect matching then only exist with an even number of vertices and |U| = |V|?

Determinant calculation

Leibniz-formula:

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \qquad |A| = a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h - g \cdot e \cdot c - h \cdot f \cdot a - i \cdot d \cdot b$$

$$B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

$$|B| = 1 \cdot 5 \cdot 9 + 2 \cdot 6 \cdot 7 + 3 \cdot 4 \cdot 8 - 7 \cdot 5 \cdot 3 - 8 \cdot 6 \cdot 1 - 9 \cdot 4 \cdot 2 = 0$$

$$|A| = \sum_{\pi} \sigma(\pi) \prod_{i=1}^{n} A_{i,\pi(i)}$$

- $\sigma(\pi)$ decides if + or -
- leads to n! summands
- Example: n = 3 3! = 6 summands 6 permutations for π

+1:
$$(1\ 2\ 3)$$
 $(2\ 3\ 1)$ $(3\ 1\ 2)$
-1: $(3\ 2\ 1)$ $(2\ 1\ 3)$ $(1\ 3\ 2)$
 $\rightarrow |A| = A_{1,1} \cdot A_{2,2} \cdot A_{3,3} + A_{2,1} \cdot A_{3,2} \cdot A_{1,3} + \dots$

Gaussian elimination:

- Gauß algorithm for solving LSE (linear systems of equations)
- allowed operations:
 - addition of rwos
 - subtraction of rows
 - multiply row with integer x
 - divide row by integer x
 - switch to rows
- wanted:

TODO

Questions:

Symbolic Determinants

TODO

Questions:

• some slides about stuff that is not in the book

• Satz von Rice

TODO Questions:

References

- [1] Martin Berglund. Lecture notes in Computational Complexity.
- [2] Bipartite graph image source. https://en.wikipedia.org/wiki/Bipartite_graph.
- [3] GeeksforGeeks. Maximum Bipartite Matching. https://www.geeksforgeeks.org/maximum-bipartite-matching/, last opened: 09.12.22.
- [4] Swastik Kopparty. Bipartite Graphs and Matchings. https://sites.math.rutgers.edu/~sk1233/courses/graphtheory-F11/matching.pdf, last opened 09.12.22. 2011.
- [5] Christos H. Papadimitriou. *Computational Complexity*. Addison-Wesley Publishing Company, 1994.