

Prof. Dr. A. Voisard, N. Lehmann

Datenbanksysteme, SoSo 20

 $\ddot{\mathrm{U}}\mathrm{bung}~07$

TutorIn: Gröling, Marc Tutorium 04

David Ly & Thore Brehmer

10. Juni 2020

4 Aufgabe: B^+ -Bäume

(30 Punkte)

1) Fügen Sie den Wert 25 in den oben gegebenen B⁺-Baum ein. Nehmen Sie n=4 für die Constraints in den Knoten und Blättern des B⁺-Baums an. . (15 P.)

2) Erklären Sie den Unterschied zwischen einem Dense- und einem Sparse-Index.

(10 P.)

Dense-Index: Für jeden search-key Wert gibt es einen index record.

Brighton	_	>	Λ-217	Brighton	750	+>
Downtown	-		A-101	Downtown	500	-5
Mianus	-		A-110	Downtown	600	
Perryridge	1		A-215	Mianus	700	\prec
Redwood	j	*	A-102	Perryridge	400	
Round Hill	-		A-201	Perryridge	900	=
			A-218	Perryridge	700	=
		1	A-222	Redwood	700	=
		-	A-305	Round Hill	350	~

Sparse-Index: Nur für einige search-key Werte gibt einen index record.

Brighton		A-217	Brighton	750	7
Mianus		A-101	Downtown	500	=5
Redwood		A-110	Downtown	600	\prec
	7	A-215	Mianus	700	- K
		A-102	Perryridge	400	$=$ \prec
		A-201	Perryridge	900	
		A-218	Perryridge	700	$=$ \prec
	1	A-222	Redwood	700	\equiv
		A-305	Round Hill	350	

Dense-Index bietet ein schnelleres finden und damit auch Zugriff auf die gewünschten Einträge. Jedoch verbrauchen sie mehr Speicher als Sparse-Index.

Sprase-Index verbraucht weniger Speicher als Dense-Index, jedoch sind sie dafür langsamer im finden der gesuchten Einträge.