Disciplina: PCS 3335 – Laboratório Digital A

Prof.: Glauber De Bona

Data: 22/03

Turma: Glauber - T04

Bancada: 08

Membros:

11261531 - Enzo Bustos Da Silva

10379694 - Davi Augusto Bandeira

Experiência 06 Máquina de Estados em VHDL

1. Introdução

A experiência 6 do Laboratório Digital visa introduzir o aluno ao conceito de máquina de estados VHDL, com o fito de utilizá-la para sintetizar circuitos no FPGA.

Desta forma, será implementado uma nova entrada e saída do circuito da experiência anterior para simular a possibilidade da entrada/saída de um idoso, o qual deve ser tomado como prioridade para acesso ao estacionamento.

2. Objetivo

O objetivo a ser alcançado no final da experiência consiste no aprendizado da implementação de máquina de estados em VHDL.

3. Planejamento

3.1 Projeto de uma Máquina de Estados em VHDL

Observando o diagrama gerado pelo State Machine Viewer, em comparação com o diagrama de estados fornecido pelos professores, percebemos que não existem legendas que indicam satisfatoriamente quando ocorre uma mudança ou permanência de estados. Além disso, não se sabe qual é o valor da saída em cada dos estados apenas olhando para este diagrama. Contudo, fora essas diferenças estéticas, o diagrama é o mesmo.

```
def maquina_de_estados(tog_en, clk, clr):
   present state = "0"
   elif rising edge(clk) and tog en == "0" and present state == "0":
       present state = "0"
   elif rising_edge(clk) and tog_en == "1" and present_state == "0":
       present state = "1"
   elif rising_edge(clk) and tog_en == "0" and present_state == "1":
       present state = "1"
   elif rising edge(clk) and tog en == "1" and present state == "1":
       present state = "0"
   else:
       present state = "0"
   if present state == "0":
   elif present state == "1":
```

3.2 Projeto de Fluxo de dados em VHDL

a) Código

O Código em VHDL para o projeto com o Fluxo de dados do estacionamento que também comporta vagas para idosos segue abaixo:

```
library IEEE;
use IEEE.std_logic_1164.all;
    use IEEE.numeric_std.all;
∃entity projeto is
∃ port(
                   port(
                          clock, clear, entrada_saida, in_out_idosos: in std_logic;
vagas: in std_logic_vector (3 downto 0);
num_idosos: out std_logic_vector (3 downto 0);
cheio: out std_logic
   end projeto;
architecture behavior of projeto is

signal enable: std_logic;
signal contagem: std_logic_vector (3 downto 0); -- numero de carros r
signal lotacao: std_logic; -- alto em caso de lotacao do estacionamer
signal contagem_idosos: std_logic_vector (3 downto 0); -- numero de i
signal contagem_int, vagas_int: unsigned (3 downto 0); -- guarda valo
                   component contador_up_down is
port(
    clock, clear, entrada_saida, enable, in_out_idosos: in std_logic;
    vagas: in std_logic_vector (3 downto 0);
    contagem: out std_logic_vector (3 downto 0);
    fim: out std_logic
                   end component;
                   component sinalizador is
                   port(
                         vagas, carros: in std_logic_vector (3 downto 0);
cheio: out std_logic
                   end component;
                   component contador_idosos is
                  port(
    clock, clear, in_out_idosos, enable: in std_logic;
    vagas: in std_logic_vector (3 downto 0);
    contagem: out std_logic_vector (3 downto 0);
    fim: out std_logic
           );
end component;
begin
     enable <= '0' when (contagem = vagas and entrada_saida ='1' and in_out_idosos = '1') else '1';
num_idosos <= contagem_idosos;
contagem_int <= unsigned(contagem);
vagas_int <= unsigned(vagas);
num_idosos <= contagem_idosos;</pre>
      cont: contador_up_down port map(clock, clear, entrada_saida, enable, in_out_idosos, vagas, contagem, lotaca
cont_idosos: contador_idosos port map(clock, clear, in_out_idosos, enable, vagas, contagem_idosos, lotacao)
sinaliz: sinalizador port map(vagas, contagem, cheio);
end behavior:
```

```
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
∃entity contador_idosos is
         end contador_idosos;
architecture arc_cont of contador_idosos is signal IQ: integer range 0 to 15; signal limite: integer range 0 to 15;
∃begin
         limite <= to_integer(unsigned(vagas)); -- converte vagas para um numero inteiro a ser comparado no if process</pre>
         process(clock, clear, in_out_idosos, enable, IQ)
begin
if clear = '1' then IQ <= 0;
elsif rising_edge(clock) then
if in_out_idosos = '1' and (IQ < limite) and enable = '1' then -- existem vagas disponiveis e um carro entra, cas
IQ <= IQ + 1;
elsif in_out_idosos = '0' and (IQ > 0) and enable = '1' then -- algum carro sai, dado que existe algum carro
IQ <= IQ - 1;
end if;
end if;
end process;
         contagem <= std_logic_vector(to_unsigned(IQ, contagem'length));</pre>
         fim <= '1' when IQ = 15 else '0';
end arc_cont;
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
lentity contador_up_down is
          port(
    clock, clear, entrada_saida, enable, in_out_idosos: in std_logic;
    vagas: in std_logic_vector (3 downto 0);
    contagem: out std_logic_vector (3 downto 0);
    fim: out std_logic
 end contador_up_down;
Jarchitecture behavior of contador_up_down is
signal IQ: integer range 0 to 15;
signal limite: integer range 0 to 15;
           limite <= to_integer(unsigned(vagas)); -- converte vagas para um numero inteiro a ser comparado no in</pre>
          process(clock, clear, entrada_saida, enable, IQ)
begin
  if clear = '1' then IQ <= 0;
  elsif rising_edge(clock) then
  -- entrada de carro normal, saida de idoso (nada acontece)
   if entrada_saida = '1' and enable = '1' and in_out_idosos = '0' then
        IQ <= IQ;</pre>
               end if;
                      end if:
               end process;
               contagem <= std_logic_vector(to_unsigned(IQ, contagem'length));</pre>
               fim <= '1' when IQ = 15 else '0';
end behavior;
```

b) RTL viewer do circuito

Através da plataforma RTL Viewer do Quartus, pudemos gerar a seguinte imagem das interconexões que ocorrem no nosso circuito lógico, podemos confirmar que as conexões estão corretamente feitas.

c) Carta de Tempos

Através da simulação do circuito gerando um arquivo de Waveform, conseguimos obter a carta de tempos mostrada a seguir, essa carta de tempos foi convertida na tabela de testes do nosso circuito que será utilizada no dia do experimento.

d) Tabela de Testes

Segue a tabela de testes que foi gerada a partir da carta de tempos do circuito, essa tabela será utilizada para validação da implementação feita quando passarmos o circuito para a placa de FPGA:

Número de vagas = "0011" (3 Vagas)						
Clock	Clear	Entrada_Saída	In_Out_Idosos	Número de Idosos	Cheio	
1↑	0	1	1	0	0	
2↑	0	1	1	1	1	

3↑	0	1	1	2	1
4↑	0	1	1	2	1
5↑	1	1	1	0	0
6↑	1	1	1	0	0
7↑	0	0	1	1	0
8↑	0	0	1	2	0
9↑	0	1	0	1	0
10↑	0	1	0	0	0
11↑	0	1	1	1	0

3.3 Projeto de uma Unidade de Controle em VHDL

O projeto da Unidade de Controle (UC) não foi necessário de ser implementado, pois a UC já estava implementada no Fluxo de Dados (FD), isso foi conversado e concordado com o professor, pois todo o circuito da FD já implementou todo o circuito necessário

4. Relatório

A implementação do circuito durante o experimento 6 em laboratório teve que ser adaptada minimamente para adequação à placa FPGA, a mudança foi basicamente que aumentamos o número de chave, tendo 4 chaves: 1 para entrada de carros normais, 1 para saída de carros normais, 1 para entrada de carros de idosos e 1 para saída de carros de idoso; essa mudança foi comentada e explicada com o professor Glauber que aprovou a mudança para uma melhor execução do projeto. Além da placa FPGA, foi utilizado o software WaveForms e o dispositivo Analog Discovery.

A designação de pinos na placa FPGA, pode ser conferida na tabela abaixo:

1	Node Name	Location
ch	neio	PIN_AA2
💠 cle	ear	PIN_U13
💠 cl	ock	PIN_A12
💠 va	agas[3]	PIN_AB12
💠 va	igas[2]	PIN_AB13
💠 va	igas[1]	PIN_AA13
💠 va	igas[0]	PIN_AA14
💠 nı	um_idosos[0]	PIN_U2
💠 nı	um_idosos[1]	PIN_U1
💠 nı	um_idosos[2]	PIN_L2
💠 nı	um_idosos[3]	PIN_L1
💠 aı	ux_contagem[3]	PIN_N2
💠 aı	ux_contagem[2]	PIN_Y3
💠 aı	ux_contagem[1]	PIN_W2
💠 aı	ux_contagem[0]	PIN_AA1
💠 er	ntrada	PIN_V13
💠 saida		PIN_T13
💠 in	_idosos	PIN_T12
💠 οι	ut_idosos	PIN_AA15

Seguem os códigos adaptados dos módulos utilizados no projeto em laboratório.

- sinalizador.vhd:

contador_up_down.vhd:

```
use IEEE.std logic 1164.all;
use IEEE.numeric std.all;
entity contador up down is
            vagas: in std logic vector (3 downto 0);
            contagem, contagem idosos, contagem normal: out std logic vector (3 downto 0);
            fim: out std logic
end contador up down;
architecture behavior of contador up down is
        signal IQ IDOSO, IQ NORMAL, IQ: integer range 0 to 15;
begin
        limite <= to_integer(unsigned(vagas)); -- converte vagas para um numero inteiro a ser</pre>
        process(clock, clear, entrada, saida, in_idosos, out_idosos, enable, IQ)
            if clear = '1' then
                IQ <= 0;
                IQ IDOSO <= 0;
                IQ NORMAL <= 0;
```

```
elsif rising edge(clock) and enable = '1' then
                     IQ <= IQ;
                     IQ IDOSO <= IQ IDOSO;
                     IQ NORMAL <= IQ NORMAL;</pre>
and (IQ IDOSO > 0) then
                     IQ <= IQ - 1;
                     IQ IDOSO <= IQ IDOSO - 1;</pre>
                     IQ NORMAL <= IQ NORMAL;
                  elsif entrada = '0' and saida = '0' and in idosos = '1' and out idosos = '0'
and (IQ < limite) then
                     IQ <= IQ + 1;
                     IQ_IDOSO <= IQ IDOSO + 1;</pre>
                     IQ NORMAL <= IQ NORMAL;</pre>
                  elsif entrada = '0' and saida = '0' and in idosos = '1' and out idosos = '1'
                     IQ <= IQ;
                     IQ_IDOSO <= IQ_IDOSO;</pre>
                     IQ NORMAL <= IQ NORMAL;</pre>
                  elsif entrada = '0' and saida = '1' and in idosos = '0' and out idosos = '0'
and (IQ NORMAL > 0) then
```

```
IQ IDOSO <= IQ IDOSO;
                     IQ NORMAL <= IQ NORMAL - 1;</pre>
and (IQ NORMAL > 0) and (IQ IDOSO > 0) then
                     IQ <= IQ - 2;
                     IQ IDOSO <= IQ IDOSO - 1;</pre>
                     IQ NORMAL <= IQ NORMAL - 1;
                  elsif entrada = '0' and saida = '1' and in idosos = '1' and out idosos = '0'
and (IQ NORMAL > 0) then
                     IQ <= IQ;</pre>
                     IQ IDOSO <= IQ IDOSO + 1;</pre>
                     IQ NORMAL <= IQ NORMAL - 1;
and (IQ NORMAL > 0) then
                     IQ <= IQ - 1;
                     IQ IDOSO <= IQ IDOSO;
                     IQ NORMAL <= IQ NORMAL - 1;
and (IQ < limite) then
                     IQ <= IQ + 1;
                     IQ IDOSO <= IQ IDOSO;
                     IQ NORMAL <= IQ NORMAL + 1;</pre>
and (IQ_IDOSO > 0)then
```

```
IQ <= IQ;
                     IQ IDOSO <= IQ IDOSO - 1;</pre>
                      IQ NORMAL <= IQ NORMAL + 1;</pre>
                  elsif entrada = '1' and saida = '0' and in idosos = '1' and out idosos = '0'
and (IQ < limite - 1) then
                     IQ <= IQ + 2;
                     IQ IDOSO <= IQ IDOSO + 1;
                     IQ NORMAL <= IQ NORMAL + 1;
and (IQ = limite - 1) then
                     IQ <= IQ + 1;
                     IQ IDOSO <= IQ IDOSO + 1;</pre>
                     IQ NORMAL <= IQ NORMAL;
and (IQ < limite) then
                     IQ <= IQ + 1;
                     IQ IDOSO <= IQ IDOSO;
                     IQ NORMAL <= IQ NORMAL + 1;</pre>
                     IQ <= IQ;
                     IQ_IDOSO <= IQ_IDOSO;</pre>
                     IQ NORMAL <= IQ NORMAL;</pre>
```

```
elsif entrada = '1' and saida = '1' and in_idosos = '0' and out_idosos = '1'
and (IQ_IDOSO > 0) then
                      IQ <= IQ - 1;
                      IQ_IDOSO <= IQ_IDOSO - 1;</pre>
                      IQ NORMAL <= IQ NORMAL;</pre>
                      IQ <= IQ;</pre>
                      IQ_IDOSO <= IQ_IDOSO;</pre>
                      IQ NORMAL <= IQ NORMAL;
        contagem <= std_logic_vector(to_unsigned(IQ, contagem'length));</pre>
        contagem idosos <= std logic vector(to unsigned(IQ IDOSO, contagem'length));</pre>
        contagem normal <= std logic vector(to unsigned(IQ NORMAL, contagem'length));</pre>
        fim <= '1' when IQ = 15 else '0';</pre>
```

end behavior;

- projeto.vhd:

```
use IEEE.std logic 1164.all;
use IEEE.numeric std.all;
entity projeto is
            vagas: in std logic vector (3 downto 0);
            num idosos: out std logic vector (3 downto 0);
            aux contagem: out std logic vector (3 downto 0)
end projeto;
architecture behavior of projeto is
        signal sig saida hex: std logic vector (6 downto 0);
         signal contagem, contagem_idosos, contagem_normal: std_logic_vector (3 downto 0); --
            vagas: in std_logic_vector (3 downto 0);
```

```
contagem, contagem idosos, contagem normal: out std logic vector (3 downto 0);
        );
            vagas, carros: in std logic vector (3 downto 0);
        );
            clock, clear, in idosos, out idosos, enable: in std logic;
            vagas: in std logic vector (3 downto 0);
            contagem: out std logic vector (3 downto 0);
            fim: out std logic
        );
begin
    enable <= '0' when (contagem = vagas and ((entrada = '1' and saida ='0') or (in idosos =
'1' and out idosos = '0'))) else '1';
    num_idosos <= contagem_idosos;</pre>
out_idosos, vagas, contagem,
```

```
contagem idosos, contagem normal, lotacao);
sinaliz: sinalizador port map(vagas, contagem, cheio);
aux contagem <= contagem;</pre>
process (sig saida hex, contagem normal) begin
    if (contagem normal = "0000") then
        sig saida hex <= "1000000";</pre>
    elsif (contagem normal = "0001") then
        sig saida hex <= "1111001";</pre>
    elsif (contagem normal = "0010") then
        sig saida hex <= "0100100";</pre>
    elsif (contagem normal = "0011") then
        sig saida hex <= "0110000";</pre>
    elsif (contagem normal = "0100") then
        sig saida hex <= "0011001";</pre>
    elsif (contagem normal = "0101") then
        sig saida hex <= "0010010";</pre>
    elsif (contagem normal = "0110") then
        sig saida hex <= "0000010";</pre>
    elsif (contagem_normal = "0111") then
        sig saida hex <= "1111000";</pre>
    elsif (contagem normal = "1000") then
        sig saida hex <= "0000000";</pre>
    elsif (contagem normal = "1001") then
        sig saida hex <= "0010000";</pre>
    end if;
```

```
saida_hex <= sig_saida_hex;
end behavior;</pre>
```

5. Desafio

Para o desafio era necessário utilizar o display de 7 segmentos para mostrar o número de carros normais que estavam utilizando o estacionamento, no código acima já está com essa implementação, mas basicamente já tínhamos o controle desse sinal com a variável contagem_normal, então basicamente precisamos adicionar um pedaço de código que convertia a contagem para o display de 7 segmentos, fizemos isso com o seguinte código:

```
process (sig_saida_hex, contagem_normal) begin
    if (contagem_normal = "0000") then
        sig saida hex <= "1000000";</pre>
    elsif (contagem normal = "0001") then
        sig saida hex <= "1111001";
    elsif (contagem normal = "0010") then
        sig saida hex <= "0100100";</pre>
    elsif (contagem normal = "0011") then
        sig saida hex <= "0110000";</pre>
    elsif (contagem normal = "0100") then
        sig saida hex <= "0011001";</pre>
    elsif (contagem_normal = "0101") then
        sig saida hex <= "0010010";</pre>
    elsif (contagem normal = "0110") then
        sig saida hex <= "0000010";
    elsif (contagem normal = "0111") then
        sig_saida_hex <= "1111000";</pre>
```

```
elsif (contagem_normal = "1000") then
    sig_saida_hex <= "00000000";

elsif (contagem_normal = "1001") then
    sig_saida_hex <= "00100000";

end if;

end process;

saida_hex <= sig_saida_hex;</pre>
```

