DM1: Optique géométrique - corrigé

Exercice 1 : DEUX PRISMES ACCOLÉS

- 1. En I_1 on a : $N\sin(45^\circ)=n\sin(r)$, soit $N\frac{\sqrt{2}}{2}=n\sin(r)$. En I_3 on a $n\sin(\beta)=\sin(i)$
- 2. On a $r + \alpha = \frac{\pi}{2}$ et $\alpha + \beta + \frac{3\pi}{4} = \pi$ soit $\alpha + \beta = \frac{\pi}{4}$.
- 3. On est à la limite de la réflexion totale en I_2 lorsque $n\sin(\alpha) = 1$ soit $n\cos(r) = 1$ donc $r = \arccos\left(\frac{1}{n}\right)$. On a donc $N\frac{\sqrt{2}}{2} = n\sin\left(\arccos\left(\frac{1}{n}\right)\right)$ On obtient alors $N^2 = 2(n^2 1)$.
- 4. Pour que la réflexion soit totale en I_2 il faut que l'angle d'incidence soit plus grand que l'angle d'incidence limite, donc le rayon doit être moins dévié en I_1 et donc on doit avoir $N < N_0$. (Sur le schéma, on a n < N)
- 5. Si i=0 alors $\beta=0$ et $\alpha=\frac{\pi}{4}$ et donc $r=\frac{\pi}{4}=45^\circ$. Ce qui signifie que le rayon n'est pas dévié en I_1 . Pour cela on doit avoir n=N.

Problème 1 : RÉFRACTOMÈTRES

1 Questions préliminaires

- 1. Dans un milieu d'indice n, la célérité de la lumière est $v=\frac{c}{n}$
- 2. **réflexion :** Le rayon réfléchi est dans le plan d'incidence et i = r (angle d'incidence=angle réflechi)
 - **réfraction :** Le rayon réfracté est dans le plan d'incidence et $n_1 \sin(i_1) = n_2 \sin(i_2)$ (faire un petit schéma pour indiquer ce que sont i_1 , i_2 , n_1 et n_2)

2 - Le réfractomètre de Pulfrich

- 3. $n\sin(\pi/2) = N\sin(r)$ donc $r = \arcsin\left(\frac{n}{N}\right)$
- 4. $r' + r = \pi/2$
- 5. D'après les lois de Snell-Descartes, on a

$$N\sin(\pi/2 - r) = \sin(\theta) \quad \text{donc} \quad N\cos(r) = \sin(\theta)$$
 (1)

Soit en élevant les deux membres au carré

$$N^{2}(1-\sin^{2}(r)) = \sin^{2}(\theta) \Leftrightarrow N^{2}\left(1-\left(\frac{n}{N}\right)^{2}\right) = \sin^{2}(\theta)$$
 (2)

et finalement

$$\sin(\theta) = \sqrt{N^2 - n^2} \tag{3}$$

page 1/2

- 6. On trouve $\theta = 62.80^{\circ}$
- 7. Les valeurs extrêmes de l'indice sont celles pour lesquelles $\theta = 0$ ou $\theta = \pi/2$. Pour $\theta = 0$ On a $n_{\text{max}} = N$ et pour $\theta = \pi/2$ on a $n_{\text{min}} = \sqrt{N^2 1} = 1.25$

3 - Le réfractomètre d'Abbe

2021-2022

- 8. La somme des angles du triangle de sommet A vaut π . Donc $\pi/2 r_0 + \pi/2 r_0' + \theta = \pi$ d'où $r_0 + r_0' = \theta$
- 9. La seconde loi de Descartes donne : $n \sin(\pi/2) = N \sin(r_0)$ donc $\sin(r_0) = \frac{n}{N}$.
- 10. $\sin(i_0') = N \sin(r_0')$ donc $r_0' = \arcsin(\sin(i_0')/N).$ Or

$$n = N\sin(r_0) = N\sin(\theta - r_0') = N\sin(\theta - \arcsin(\sin(i_0')/N))$$

11. A.N. : n = 1,238

2021-2022 page 2/2