Scientific Computing MATH 5340

Lecture 25

$$(C^{2}(\Omega) = \{10: SN - SNR\}$$

$$2x_{1}^{2}u \text{ each } i$$

$$2^{2}u \text{ each } i$$

$$3x_{1}^{2}u \text{ each } i$$

$$4x_{1}^{2}x_{2}^{2}u \text{ each } i$$

$$4x_{2}^{2}u \text{ each } i$$

$$4x_{1}^{2}u \text{ each } i$$

$$4x_{2}^{2}u \text{ each } i$$

Last time: For $u \in C^2(\Omega)$, the equation

$$\Delta u = f \text{ in } \Omega$$

holds if and only if

$$-\int_{\Omega} \nabla u \cdot \nabla \phi \ dx = \int_{\Omega} f \phi \ dx \quad \forall \ \phi \in C^2(\Omega)$$
Supported supported to

This can be used to pose the equation at the level of say, piecewise linear functions.

Divergence formulation of elliptic PDE

The same can be done with more general equations, such as

$$\operatorname{div}(a(x)\nabla u) + (b(x), \nabla u) + c(x)u = f$$
(this is the general linear alleptic operator in divergence form, a(x) is a dxe symmetrix, positive sendifinite at each x, l(x) is a vector field, ((x)) is a scalar field).

If us (2(s)), $A(x), b(x), c(x)$ are continuous, a(x) is (', then the bolds if and only of - $\int a(x) \nabla u \cdot \nabla \phi(x) dx + \int (b(x) \cdot \nabla u(x)) \phi(x) dx + c(x) u(x) \phi(x) dx$

$$= \int f(x) \phi(x) dx$$

$$= \int f(x) \phi(x) dx$$

$$= \int f(x) \phi(x) dx$$

Divergence formulation of elliptic PDE

Motivated by this, we introduce the bilinear functional,

$$B(u,v) = -\int_{\Omega} \nabla u \cdot \nabla v dx \qquad (fr Lu = Lu)$$

$$B(u,v) = -\int_{S} a \nabla u \cdot \nabla v dz + \int_{S} (b \cdot \nabla u + cu) \phi dz$$

$$for Lu = dv(a \nabla u) + cu$$

$$+ (b \cdot \partial u) + cu$$

Is equivalent to $B_L(u, \phi) = \int_{\Omega} f \, d \, dx \quad \forall \quad \phi \in C_c(\Omega)$ $u = g \quad o \quad \partial \Omega.$

Divergence formulation of elliptic PDE

Analytical problem

$$B(u,\phi) = \int_{\Omega} f\phi \, dx \, \forall \phi \in C_c^2(\Omega) , \quad u \in \mathcal{C}(\Omega)$$
and $u - g = 0$ on $\partial \Omega$

$$Some \text{ finite dimensional subspace of a function space (e.s. piecewise linear functions)}$$

$$Finite \text{ element problem}$$

$$B(u,\phi) = \int_{D} f\phi \, dx \, \forall \phi \in S_0 \quad \text{fu } \in S_0$$
These star and $u - g = 0$.

(here, $B(u, \phi)$ is the problem's bilinear form just introduced)

Finite element methods: overview

Assum function in So number on
$$\partial\Omega$$
, and bet $d_1,...,d_N\in S_0$ be a basis, then every use S_0 for this in this is in S_0 from the represented thus,
$$B(g,\phi_j)+\sum_{i=1}^N z_i B(\phi_i,\phi_j)=\int_D f\phi_j\ dx\ \forall\ j$$

$$A_{ij} = B(\phi_i, \phi_j)$$

$$b_j = \int_D f \phi_j \ dx - B(g, \phi_j)$$
 The whole (approximate) Dirichlet problem is now
$$Az = b$$

Finite element methods: overview

Elements and finite elements

- Decompose Ω into smaller and simpler shapes ("elements").
- Use this decomposition to make a respective decomposition of functions in a certain class ("finite elements").

Finite element methods: overview

Elements and finite elements

From This Overview, There are 3 ideas
I have how to copy.
we need to tearn to choose out represent Most delicate on a computer The function challenging part. Space So Those space So The bairs for So The bairs for So
Most delicate, on a computer The Kunchan Challenging part.
space so
$(2) \qquad (2) \qquad (3) \qquad (3) \qquad (4) \qquad (5) $
How to compute the mattrix
coefficients B(41,45).

A triangular mesh in Ω , denoted \mathcal{T} , is a partition of Ω made out of a finite number of triangles

$$\Omega = \tau_1 \cup \tau_2 \cup \ldots \cup \tau_M$$

where the triangles meet only at a single vertex or along a common side. Often, these triangles are referred to as elements.

Another term used for triangular mesh is triangulation.

Why we care about triangular meshes

A finite element space S is a finite dimensional space of functions associated to a triangular mesh T, concretely, it is the set of functions ϕ satisfying the two properties

- 1. ϕ is continuous in $\overline{\Omega}$.
- 2. ϕ is an affine function in each triangle of \mathcal{T} .

Q: Why do we care about triangular meshes?

A: Convenient representation of piecewise linear functions!

For a triangular mesh \mathcal{T} we denote the set of vertices of its triangles as $V(\mathcal{T})$.

Proposition

Every finite element is determined by its values in $V(\mathcal{T})$.

Conversely, any function in $V(\mathcal{T})$ defines, in a unique manner, a finite element.

(this follows from what we said last weath about affer functions in triangles)

To any finite set $V \subset \mathbb{R}^2$ one can associate triangulations:

A triangulation for the finite set V is a triangulation T of $\Omega = \text{hull}(V)$ where the set of vertices of the triangulation, $\mathcal{V}(T)$, is equal to V.

In particular, this means that a point in V only meets a triangle of T when this point is one of the triangle's vertices.

Delaunay triangulations

These are a special class of triangulations commonly used in graphics and finite elements.

If $x, y \in V$, draw an edge between them if the following property holds:

There is a circle passing through both x and y containing no other points of V in its interior

Surprisingly –at least at first thought– this simple rule always produces a triangulation!

Triangulations and Delaunay triangulations

Delaunay triangulations: extremal property

Among all triangulations of a vertex set V, the Delauney triangulation will maximize the value of the smallest angles among all its triangles.