Inequality Logic

Real numbers x and y satisfy the inequalities:

$$x^2 + y^2 \le 50$$
 and $2x + y \ge 15$.

Determine whether the following statements necessarily follow from these conditions:

- (a) x < 5,
- (b) $x^2 + y^2 \ge 45$,
- (c) $x + y \le 10$,
- (d) $y \le 5$.

Solution

Step 1: Analyzing the inequalities

- 1. $x^2 + y^2 \le 50$: This inequality defines a disk (or circle) of radius $\sqrt{50}$ centered at the origin (0,0).
- 2. $2x+y \ge 15$: This inequality represents a half-plane. The boundary line 2x+y=15 has a slope of -2 and intercept y=15 when x=0. The solution set is the intersection of the disk $x^2+y^2 \le 50$ and the half-plane $2x+y \ge 15$.

Step 2: Checking each statement

(a) $x \le 5$: The largest possible value of x occurs along the line 2x + y = 15 where it intersects the boundary of the circle $x^2 + y^2 = 50$. Substituting y = 15 - 2x into the circle equation:

$$x^2 + (15 - 2x)^2 = 50.$$

Expanding:

$$x^{2} + 225 - 60x + 4x^{2} = 50 \implies 5x^{2} - 60x + 225 = 50.$$

Simplify:

$$5x^2 - 60x + 175 = 0 \implies x^2 - 12x + 35 = 0.$$

Factoring:

$$(x-7)(x-5) = 0.$$

The solutions are x = 7 and x = 5. To determine if x = 7 is valid, calculate y = 15 - 2(7) = 1. Substituting x = 7, y = 1 into the circle equation:

$$x^2 + y^2 = 7^2 + 1^2 = 49 + 1 = 50,$$

which satisfies both inequalities. Hence, x=7 is valid, and $x\leq 5$ does not necessarily follow. **Answer: False.**

(b) $x^2 + y^2 \ge 45$: The minimum value of $x^2 + y^2$ occurs at the intersection of 2x + y = 15 and $x^2 + y^2 = 50$. From the solution to (a), all valid points lie on the circle boundary, where $x^2 + y^2 = 50$, which is always greater than or equal to 45. **Answer: True.**

1

(c) $x + y \le 10$: The maximum value of x + y occurs at the boundary points. From (a), the valid points are:

- At x = 5, y = 5: x + y = 5 + 5 = 10,
- At x = 7, y = 1: x + y = 7 + 1 = 8.

The maximum x+y=10, so $x+y\leq 10$ holds for all points in the region. **Answer:** True.

(d) $y \le 5$: The maximum value of y occurs along the line 2x + y = 15. At x = 5, y = 15 - 2(5) = 5. Since no point in the solution region has y > 5, the statement $y \le 5$ is valid. **Answer: True.**