

Parallel Design Pattern for Computational Biology and Scientific Computing

Weiguo Liu and Bertil Schmidt

1. Abstract

Dynamic programming is an important algorithm design technique in computational biology and scientific computing. Typical applications using this technique are very computing-intensive and suffer from long runtimes on sequential architectures. Parallel program design patterns provide a new tool to semi automatically generate parallel programs. In this paper we present a new parallel pattern called the "block-cyclic based wavefront" to parallelize typical dynamic programming algorithms in computational biology and scientific computing. We show how this technique leads to significant runtime savings on PC clusters.

2. Dynamic Programming Algorithm: Regular and **Irregular Wavefront Computation**

3. Block-Cyclic Based Partition for Distributed Memory **Parallel Computers**

The parameter division is used to implement a cyclic distribution of columns to processors.

4. Implementation

```
onstructor method uses the user-specified parameters to initialize the framework */
Wavefront (int my_rank, int processornumber, int matrixwidth, int matrixheight, int division, int blocksize);
                                                                                         prepare1 ();
```

5. Results

Speedup for Smith-Waterman algorithm Speedup for Skyline matrix algorithm

Speedup for Nussinov algorithm

6. Conclusions

Speedup for Viterbi algorithm 1

Semi-automatic generation of parallel programs

Substantial performance gains for irregular dynamic programming applications