Devi Ahilya University, Indore, India				II Year B.E. (Computer Engineering)			
Institute of Engineering & Technology				(Full Time)			
Subject Code & Name	Instruc	tions Hou	ırs per	Credits			
	Week						
CER3C3	L	T	P	L	T	P	Total
DATA STRUCTURES	3	1	2	3	1	1	5
Duration of Theory]						
Paper: 3 Hours							

Learning Objectives:

- 1. To provide the knowledge of basic data structures and their implementations.
- 2. To understand importance of data structures in context of writing efficient programs.
- 3. To develop skills to apply appropriate data structures in problem solving.

Prerequisites: Computer Programming knowledge

COURSE CONTENTS

UNIT-I

Arrays and List: Array: Definition, Representation, Address Calculation; Searching: Linear search, Binary search; Sorting: Bubble sort, Insertion sort, Selection sort, Radix sort, Shell sort; List: Introduction, Implementation as Linked list, Circular linked List, Doubly linked list, Applications of linked list.

Unit-II

Stacks: Definition, Representations: static and dynamic, Implementation of stack, Applications of stack: Polish notation representation and conversion, Tower of Honoi problem, Implementation of recursion, Quick sort and Merge sort.

Unit-III

Queues and Hashing: Definition, Representations, Static and dynamic, Circular Queue, Double ended Queue, Priority Queue, applications of queues. Hash Structures: Representation, Search and Implementation and other issues.

Unit-IV

Trees: Definition, Basic terminology, Binary tree, Complete Binary Tree, representations: Static and dynamic, Traversal techniques in binary tree, Heap tree & its applications, Binary Search tree, AVL tree, M-way search trees, B-tree & its variations.

Unit-V

Graphs: Definition, Basic terminology, Graph Types, Representations: static, dynamic; Implementations, Searching in graphs – BFS, DFS, Shortest path in graphs, Applications.

Learning Outcomes:

Upon Completing the Course, Students will able to:

- 1. Learn the basic types for data structure, implementation and application.
- 2. Know the strength and weakness of different data structures.
- 3. Use the appropriate data structure in context of solution of given problem..
- 4. Develop programming skills which require to solve given problem.

BOOKS RECOMMENDED:

- [1] E. Horowitz & Sahni, Fundamental Data Structure, Galgotia Book Source, 1983.
- [2] A. Tannenbaum, Data Structure Using C, Pearson Education, 2003.
- [3] Kruz, Data Structure and Programming Design, 1987.
- [4] N. Wirth, Algorithms +Data Structure = Program, Prentice Hall of India, 1979.
- [5] Goodrich & Tamassia, Data Structures and Algorithms in C++, 2nd Edition, John Wiley & Sons, 2011.

List of Practical Assignments:

- 1. Implementation of searching and sorting techniques.
- 2. Implementation of list using array and linked list.
- 3. Implementation of push and pop operation on stack
- 4. Implementation of polish notation and its conversion
- 5. Write a program to solve the problems using iteration/recursion
- 6. Program for recursion removal using stack
- 7. Program for insertion /deletion operation on various queue & Implementation of priority queue for process scheduling
- 8. Program for storing data as tree structure and implementation of various traversal techniques
- 9. Program for storing data as graph structure and implementation of various traversal techniques
- 10. Program for finding shortest path in graph
