α) Καθώς η υπερβολή έχει εξίσωση της μορφής $\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1$, θα είναι $\alpha^2 = 16$ και $\beta^2 = 9$, οπότε $\gamma^2 = \alpha^2 + \beta^2 = 25$, άρα $\gamma = 5$. Έτσι, οι εστίες είναι τα σημεία E'(-5,0) και E(5,0).

β) Από τον ορισμό της υπερβολής γνωρίζουμε ότι η απόλυτη τιμή της διαφοράς των αποστάσεων ενός σημείου της υπερβολής από τις εστίες ισούται με 2α .

Έτσι, θα έχουμε ότι $|(NE') - (NE)| = 2 \cdot 4 = 8$.

γ) Γνωρίζουμε ότι η υπερβολή $\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1$ τέμνει τον άξονα x'x στα σημεία $(-\alpha,0)$ και $(\alpha,0)$, δηλαδή στα σημεία (-4,0) και (4,0).

Επίσης, δεν τέμνει τον άξονα y'y, αφού αν αυτό συνέβαινε θα είχαμε $0-\frac{y^2}{\beta^2}=1$, αδύνατο. Έτσι, έχουμε το παρακάτω σχήμα.

