

Cursada 2011

Prof. Catalina Mostaccio Prof. Alejandra Schiavoni

Facultad de Informática - UNLP

Colas de prioridad

Agenda

- Aplicaciones
- Definición
- Distintas implementaciones
- Heap Binaria
 - Propiedad Estructural
 - Propiedad de Orden
 - Implementación
- Operaciones: Insert, DeleteMin, Operaciones adicionales
- Construcción de una Heap: operación BuildHeap
 - Tiempo de Ejecución
- HeapSort

Aplicaciones

✓ Cola de impresión

✓ Sistema Operativo

✓ Algoritmos de Ordenación

Definición

Una cola de prioridad es una estructura de datos que permite al menos dos operaciones:

Insert

Inserta un elemento en la estructura

DeleteMin

Encuentra, recupera y elimina el elemento mínimo

Implementaciones

- ✓ Lista ordenada
 - Insert tiene O(N)
 - DeleteMin tiene O(1)
- ✓ Lista no ordenada
 - Insert tiene O(1)
 - DeleteMin tiene O(N)
- ✓ Árbol Binario de Búsqueda
 - Insert y DeleteMin tienen en promedio O(log N)

- ➤ Es una implementación de colas de prioridad que no usa punteros y permite implementar ambas operaciones con un tiempo de O(log N) en el peor caso
- > Cumple con dos propiedades:
 - Propiedad estructural
 - ✓ Propiedad de orden

Una heap es un árbol binario completo

- \checkmark En un árbol binario lleno de altura h, los nodos internos tienen exactamente 2 hijos y las hojas tienen la misma profundidad
- ✓ Un árbol binario completo de altura h es un árbol binario lleno de altura h-l y en el nivel h, los nodos se completan de izquierda a derecha

Árbol binario lleno

Árbol binario completo

Ejemplo:

 \checkmark El número de nodos n de un árbol binario completo de altura h, satisface:

$$2^{h} \le n \le (2^{h+1}-1)$$

Demostración:

- Si el árbol es lleno, $n=2^{h+1}-1$
- Si no, el árbol es lleno en la altura *h-1* y tiene por lo menos un nodo en el nivel *h*:

$$n=2^{h-1+1}-1+1=2^h$$

La altura h del árbol es de $O(\log n)$

- Dado que un árbol binario completo es una estructura de datos regular, puede almacenarse en un arreglo, tal que:
 - ✓ La raíz está almacenada en la posición 1
 - ✓ Para un elemento que está en la posición i:
 - □ El hijo izquierdo está en la posición 2*i
 - □ El hijo derecho está en la posición 2*i + 1
 - □ El padre está en la posición Li/2 J

El árbol que vimos como ejemplo, puede almacenarse de la siguiente manera:

Propiedad de orden

> MinHeap

- El elemento mínimo está almacenado en la raíz
- El dato almacenado en cada nodo es menor o igual al de sus hijos

> MaxHeap

Se usa la propiedad inversa

Implementación de Heap

Una heap H consta de:

- Un arreglo que contiene los datos
- Un valor que me indica el número de elementos almacenados

Ventaja:

- ✓ No se necesita usar punteros
- ✓ Fácil implementación de las operaciones

Operación: Insert

- > El dato se inserta como último ítem en la heap
 - La propiedad de la heap puede ser violada
- Se debe hacer un filtrado hacia arriba para restaurar la propiedad de orden

Insert: Filtrado hacia arriba (Percolate Up)

- \triangleright El filtrado hacia arriba restaura la propiedad de orden intercambiando k a lo largo del camino hacia arriba desde el lugar de inserción
- \triangleright El filtrado termina cuando la clave k alcanza la raíz o un nodo cuyo padre tiene una clave menor
- Ya que el algoritmo recorre la altura de la heap, tiene tiempo de ejecución de $O(\log n)$

Operación: insert Version 1

```
insert ( var H : heap; x : elemtype) {
                                        Filtrado hacia arriba o
                                           Percolate_up
      H.tamaño = H.tamaño + 1;
      N = H.tamaño
      while (N/2 > 0 \& H.dato[N/2] > x) {
          H.dato[N] = H.dato[N/2]
          N = N/2
      H.dato[N] = x // ubicación correcta de "x"
} // end del insert
```

Operación: percolate_up

```
percolate_up ( var H : heap; i : integer) {
       temp = H.dato [ i ];
       while (i/2 > 0 \& H.dato[i/2] > temp) {
          H.dato[i] = H.dato[i/2]
          i = i / 2
       H.dato[i] = temp // ubicación correcta del elemento a filtrar
} // end del percolate_up
```

Operación: insert Version 2

```
insert ( var H : heap; x : elemtype) {
    H.tamaño = H.tamaño + 1;
    H.dato [H.tamaño] = x;
    percolate_up ( H , H.tamaño )
} // end del insert
```

Operación: DeleteMin

- > Guardo el dato de la raíz
- Elimino el último elemento y lo almaceno en la raíz
- > Se debe hacer un filtrado hacia abajo para restaurar la propiedad de orden

- > Es similar al filtrado hacia arriba
- El filtrado hacia abajo restaura la propiedad de orden intercambiando el dato de la raíz hacia abajo a lo largo del camino que contiene los hijos mínimos
- > El filtrado termina cuando se encuentra el lugar correcto dónde insertarlo
- > Ya que el algoritmo recorre la altura de la heap, tiene tiempo de ejecución de O(log n)

Operación: delete_min Version 1

```
Delete_min ( var H : heap; var e : elemtype) {
if (not is_empty (H) ) {
        e := H.dato[1]
                                                        Filtrado hacia abajo o
        candidato := H.dato[ H.tamaño ]
                                                           Percolate_down
        H.tamaño := H.tamaño - 1:
        p := 1;
        stop_perc := false;
        while ( 2* p <= H.size ) and ( not stop_perc) {</pre>
            h_min := 2 * p; // buscar el hijo con clave menor
            if h_min <> H.size then //como existe el hijo derecho comparo a ambos
                 if (H.dato[h_min +1] < H.dato[h_min]) // then
                                            h min := h min + 1
            if candidato > H.dato [h_min] { // then percolate_down
                                            H.dato[p] := H.dato[h_min];
                                            p := h_min;
                                                 stop_perc := true;
                                          else
   H.dato[ p ] := candidato;
```

Operación: percolate_down

```
percolate_down ( var H : heap; var p : integer) {
    candidato := H.dato[p]
    stop perc := false;
    while ( 2* p <= H.tamaño ) and ( not stop_perc) {</pre>
         h_min := 2 * p; // buscar el hijo con clave menor
         if h min <> H.tamaño then
         if (H.dato[h_min +1] < H.dato[h_min]) then
                                             h_{min} := h_{min} + 1
         if candidato > H.dato [h_min] { // then
                                         H.dato [p] := H.dato[ h_min ]
                                         p := h \min
                                        else stop_perc := true;
     } // end { while }
    H.dato[p] := candidato;
   // end {percolate_down }
```

Operación: delete_min Version 2

```
Delete_min ( var H : heap; var e : elemtype) {
 if (H.tamaño > 0) then { // la heap no está vacía
   e := H.dato[1];
   H.dato[1] := H.dato[ H.tamaño ] ;
   H.tamaño := H.tamaño - 1;
   percolate_down ( H ; 1);
} // end del delete min
```

Otras operaciones

- \triangleright DecreaseKey(x, \triangle , H)
 - \triangleright Decrementa la clave que está en la posición x de la heap H, en una cantidad \triangle
- \triangleright IncreaseKey(x, \triangle , H)
 - \triangleright Incrementa la clave que está en la posición x de la heap H, en una cantidad Δ
- > DeleteKey(x)
 - Elimina la clave que está en la posición x
 - ▶ Puede realizarse:DecreaseKey(x,∞, H)DeleteMin(H)

Operación: BuildHeap

Para construir una heap a partir de una lista de *n* elementos:

- > Se pueden insertar los elementos de a uno
 - El tiempo de ejecución es de O(n logn)
- > Usar un algoritmo de orden lineal:
 - ➤ Insertar los elementos desordenados en un árbol binario completo
 - Filtrar hacia abajo cada uno de elementos

BuildHeap

- > Para filtrar:
 - >se elige el menor de los hijos
 - >se compara el menor de los hijos con el padre
- Se empieza filtrando desde el elemento que está en la posición (tamaño/2):
 - >se filtran los nodos que tienen hijos
 - > el resto de los nodos son hojas

BuildHeap

M

BuilHeap

filtramos el 9

М

BuildHeap

Algoritmos y Estructuras de Datos

Tiempo de ejecución

> En el filtrado de cada nodo recorremos su altura

Para acotar el tiempo de ejecución de la operación BuilHeap, debemos calcular la suma de las alturas de todos los nodos

Tiempo de ejecución

Teorema:

En un árbol binario lleno de altura h que contiene $2^{h+1} - 1$ nodos, la suma de las alturas de los nodos es: $2^{h+1} - 1 - (h+1)$

Demostración:

Un árbol tiene 2ⁱ nodos de altura h – i

$$S = \sum_{i=0}^{h} 2^{i} (h-i)$$

$$S = h + 2 (h-1) + 4 (h-2) + 8 (h-3) + \dots 2^{h-1} (1)$$

м

Tiempo de ejecución (cont.)

$$S = h + 2 (h-1) + 4 (h-2) + 8 (h-3) + \dots 2^{h-1} (1)$$
 (A)

$$2S = 2h + 4(h-1) + 8(h-2) + 16(h-3) + \dots 2^{h}(1)$$
 (B)

Restando las dos igualdades (B) - (A)

$$S = -h + 2 + 4 + 8 + 16 + \dots + 2^{h-1} + 2^h$$

$$S + 1 = -h + 1 + 2 + 4 + 8 + 16 + \dots + 2^{h-1} + 2^h$$

$$S + 1 = -h + (2^{h+1} - 1)$$

$$S = (2^{h+1} - 1) - (h+1)$$

Tiempo de ejecución (cont.)

- > Un árbol binario completo no es un árbol binario lleno, pero el resultado obtenido es una cota superior de la suma de las alturas de los nodos en un árbol binario completo
- ➤ Un árbol binario completo tiene entre 2^h y 2^{h+1} 1 nodos, el teorema implica que esta suma es de O(n) donde n es el número de nodos.
- > Este resultado muestra que la operación BuilHeap es lineal

Ordenación de vectores usando Heap

Dado un conjunto de N elementos se los quiere ordenar en forma creciente.

Existen dos alternativas:

- a) Algoritmo que usa una heap y es de O(n log n)
- > Construir una MinHeap, realizar N DeleteMin operaciones e ir guardando los elementos extraídos en otro arreglo.
 - > Desventaja: requiere el doble de espacio

Ordenación de vectores usando Heap

b) Algoritmo HeapSort de O(n log n)

Construir una MaxHeap, intercambiar el último elemento con el primero, decrementar el tamaño de la heap y filtrar hacia abajo. Usa sólo el espacio de almacenamiento de la heap.

Ejemplo:

Después de filtrar el **15** hacia abajo

Después de filtrar el **12** hacia abajo

Después de filtrar el **12** hacia abajo

Después de filtrar el **9** hacia abajo

Heap conceptual

HeapSort (fin)