Predicting Conversions: Click to Buy

Sarthak Jindal

Indraprastha Institute of Information Technology Email: sarthak15169@iiitd.ac.in

1. Motivation

The information of the probability of conversion of a click to a buy on an E-Commerce website can be used to intelligently display items that are more probable of being bought.

2. Problem Statement

Given for each click:

"item_price_level"

"item_sales_level",

"item_collected_level",

"item_pv_level",

"user_gender_id",

"user_age_level",

"user_star_level",

"context_page_id",

"shop_review_num_level",

"shop_review_positive_rate",

"shop_star_level",

"shop_score_service",

"shop score delivery",

"shop_score_description"

To predict whether the click converted to a buy or not.

3. Dataset

Taken from IJCAI-18 CVR Prediction Contest.

Total number of data points = 277000 Dimension of each data point = 14 Class Prior Ratio = 1:1

4. Data Visualization

4.1. Principal Component Analysis

Clearly, the projected data overlaps. Consequently, the classification accuracy using PCA

will be low as seen in the following section.

4.2. Linear Discriminant Analysis

Clearly, the projected data is separable. Consequently, the classification accuracy using LDA will be high as seen in the following section.

5. Feature Selection

Filter: For a given K, K- best features selected according to least mutual dependence.

Wrapper: For each K from 1 to 14, obtained accuracy on K- best features.

Result: 10- best features gave highest classification accuracy.

6. Feature Extraction

6.1. Principal Component Analysis

6.2. Linear Discriminant Analysis

7. Analysis

As is evident from the visualisations and ROCs, the data was best classified after feature extraction by LDA. Different classifiers used- Naive Bayes, Neural Networks, AdaBoost used- all give similar results due to simple data distribution.