Devoir Final 2

Les exercices sont indépendants. Les documents, calculatrices et téléphones sont interdits. Prenez soin de rédiger correctement les questions que vous savez faire!

L'épreuve dure 2 heure.

Exercice 1. Pour $t \in \mathbb{R}$, on considére la matrice $M_t = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2-t & t-2 & t \end{pmatrix}$.

- 1. Calculer le polynôme caractéristique.
- 2. Pour quelles valeurs de t la matrice M_t est elle diagonalisable ?
- 3. On suppose t=2. Calculer M_2^n pour tout $n \in \mathbb{N}^*$.
- 4. On suppose t=1. Montrer que M_1 est semblable à

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Exercice 2. Les matrices
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 0 \\ 2 & 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}$ sont elles semblables ?

Indication: on pourra commencer par montrer que le polynôme caractéristique des matrices A et B peut s'écrire $-(X+2)(X^2-2X-1)$.

Problème. Autour du groupe de Heisenberg. On considère le sous-ensemble de $M_3(\mathbb{R})$ défini par :

$$H_3(\mathbb{R}) := \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}, x, y, z \in \mathbb{R} \right\}.$$

- 1. Montrer que $H_3(\mathbb{R})$ est un sous-groupe de $GL_3(\mathbb{R})$.
- 2. Montrer que $H_3(\mathbb{R})$ n'est pas commutatif.
- 3. Montrer que tous ses éléments sont d'ordre infini.

4. Considérons l'application

$$\pi:\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \in H_3(\mathbb{R}) \mapsto (x,y) \in (\mathbb{R}^2,+).$$

- (a) Montrer que π est un morphisme de groupes.
- (b) Montrer que π est surjective.
- (c) Calculer le noyau de π .
- 5. Le centre d'un groupe G, noté Z(G), est défini comme

$$Z(G) = \{g \in G | gh = hg, \forall h \in G\}.$$

- (a) Montrer que Z(G) est un sous-groupe de G.
- (b) Calculer Z(G) pour $G = H_3(\mathbb{R})$.
- 6. On définit pour $t \in \mathbb{R}^*$, l'application

$$\delta_t: \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \in H_3(\mathbb{R}) \mapsto \begin{pmatrix} 1 & tx & t^2z \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{pmatrix} \in H_3(\mathbb{R}).$$

- (a) Montrer que pour tout $t \in \mathbb{R}^*$, l'application δ_t est un automorphisme du groupe $H_3(\mathbb{R})$.
- (b) Montrer que pour tout $t \in \mathbb{R}^*$, il existe un automorphisme θ_t du groupe $(\mathbb{R}^2, +)$ tel que

$$\pi \circ \delta_t = \theta_t \circ \pi.$$

Exercice Bonus. Notons $C^{\infty}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des fonctions définies sur \mathbb{R} à valeurs dans \mathbb{R} , indéfiniment dérivables. Soit $d: f \in C^{\infty}(\mathbb{R}) \mapsto f' \in C^{\infty}(\mathbb{R})$, l'endomorphisme de dérivation sur $C^{\infty}(\mathbb{R})$. Montrer qu'il n'existe pas de polynôme non-nul annulateur de d.