

ECE/CS 252 Intro to Computer Engineering

Week 07 Discussion

1

IR = 0001 0000 1000 0100

- Instruction:
- Initial Processor State:
 - PC = 0x3013
 - NZP = 010
 - Register File: R0 = 0x0001 R1 = 0x0010

 - R1 = 0x0010 R2 = 0x0005 R3 = 0x0001 R4 = 0xFFFE R5 = 0x0002 R6 = 0xFFFF R7 = 0x0008

2

		11 10		8 7				3			0	
	1	DR		5R1			0	٠	Г	582		ADD DM, SR1, SR2 ; Addition DM + SRI + SR2, Setcc()
	1	DR	П	SR1	П	1	П		1			ADD DR, SR1, imm5 ; Addition with immediate DR ← SRI + SEXT(imm5), setce()
0 1 0	1	DR		SR1		0	0	0		582		AND DR, SR2, SR2 ; Ditaise AND DR + SR1 AND SR2, setco()
0 1 0	1	DR		SRI		1			-			AND DR, SR1, imm5 ; Bitwise AND with immediate DR + SR1 AND SEXT((sm5), setcc()
1 0 0	1	DR		SR	П	1	1	1	1	1	1	NOT DW, SR ; Bitwise complement DR ← NOT(SR), setcc()

IR = 0101 0010 0011 1111

- Instruction:
- Initial Processor State:
 - PC = 0x3013
 - NZP = 010
 - NZP = 010
 Register File:
 R0 = 0x0003
 R1 = 0x0010
 R2 = 0x0005
 R3 = 0x0001
 R4 = 0xFFFE
 R5 = 0x0002
 R6 = 0xFFFF
 R7 = 0x0008

4

W

What Is The Instruction?

What Is The Instruction?

6

Sign Extension Hardware

Design the hardware to sign-extend a 3-bit 2's-complement number (K) to 5 bits (M)

8

W

Programming the LC-3

• Create a program to perform R4 \leftarrow R3 \times 10₁₀

Version 1

Version 2

c

W

Programming for LC-3

- Test it using PennSim for the following values:
 - Initial R3 = 1 Does it work?
 - Initial R3 = 0 Does it work?
 - Initial R3 = -1 Does it work?
 - Initial R3 = x2000 Does it work?

• What if it didn't work?

10

Wrapping Up

- Up Next:
 - LC-3 Data Movement Instructions
- Remember your videos and reading
 - Including the video quiz!
- Practice programming!
 - See post-exercise practices on Canvas
 - Remember programmers don't just write code they test and debug too!
- Questions?

