

UNIVERSIDAD TECNOLÓGICA DE PANAMÁ

INFORME GERENCIAL ORGANIZACIÓN Y PRESENTACIÓN DE DATOS ESTADÍSTICOS

ESTADÍSTICA DESCRIPTIVA

NOMBRE DEL ANALÍSTA: SOLIS, MICHAEL

FECHA DE ENTREGA: 23/09/21

El responsable de los cálculos para realizar la Tabla de Frecuencia Relativa y así Graficar, Tomar Decisiones con las mismas especificaciones, se basa en datos estadísticos fieles y confiables para realizar el análisis.

El mismo se concluye con una producción de bienes eficiente y efectivo.

1.Una compañía fabricante de productos manufactureros, necesita de un analista para aplicar la Técnica de la Tabla de Frecuencia Relativa. Los datos son fieles y confiables: 12 datos.

49.8	53.4	56.8	41.4	28.9	44.5	27.1
76.3	53.9	33.6	11.3	54.8	21.4	30.1
17.8	33.7	65.7	63.2	25.7	24.7	73.2
46.9	12.8	42.5	28.7	33.6	18.6	28.8
28.8	33.7	44.3	55.8	71.2	13.8	29.7
29.1	32.5	42.3	55.5	70.3	12.5	26.9

Moda 1: 33.7.

Por lo tanto; vo como responsable del presente informe presento lo siguiente:

Paso #1: Cálculos para el Diseño de la Tabla de Frecuencias Relativas.

Paso 1.1: Cálculo de las clases.

Iniciamos el cálculo de las clases aplicando regla de 3 simple. Recordando que tenemos 12 datos.

30 datos......8 clases 12 datos......X ???

$$X = \frac{12(8)}{30}$$

$$X = 3.2$$

Al redondear queda como resultado final

X = 3

Paso 1.2: Cálculo de los límites de clase.

Paso 1.2.1: Cálculo del primer límite de clase.

Datos:

Cantidad de datos =
$$12$$

Dato mayor = 76.3

Dato menor = 11.3

Se utiliza la siguiente fórmula:

Primer límite de clase = Dato menor -
$$\frac{\text{Dato mayor-Dato menor}}{\text{Cantidad de datos}}$$

Primer límite de clase = 12.8 -
$$\frac{76.3-12.8}{12}$$

Primer límite de clase =
$$12.8 - \frac{63.5}{12}$$

Primer límite de clase = 12.8 - 5.29166666666667

Primer límite de clase = 7.5083333333333333

Por último, se redondea a 2 decimales.

Primer límite de clase = 7.51

Paso 1.2.2: Cálculo del segundo límite de clase.

Para calcular el segundo límite de clase primero debemos calcular el primer número puente.

Paso 1.2.2.1: Cálculo del primer número puente.

El cálculo del número puente es obtenido por la aplicación de regla de tres simple. Recordando que tenemos 12 datos.

$$X = \frac{12(0.20)}{30}$$

$$X = \frac{2.4}{30}$$

Primer número puente

$$X = 0.08$$

Luego, se utiliza la siguiente fórmula:

Segundo límite de clase = Primer número puente + Primer límite de clase.

Cuando se termina el cálculo del segundo límite de clase, el mismo bajará a ser el primer límite de clase de la segunda clase y así sucesivamente hasta llegar a la última clase.

Al finalizar, no se llegó a utilizar todos los datos de la tabla de datos, por ende, se busca calcular los límites de la clase 2.

Paso 1.2.3 Calcular los límites de la clase 2.

Primer límite de clase 2 = Primer límite de clase 1Primer límite de clase 2 = 7.51

Ahora, para el último límite de la clase 2

Último límite de clase
$$2 = Dato mayor + \frac{Dato mayor - Dato menor}{Cantidad de datos}$$

Último límite de clase 2 = 81.5916666666667

Al redondear queda como

Último límite de clase 2 = 81.59

Paso 1.2.3.1 Calcular el segundo número puente.

Conocemos la cantidad de clases que son 3.

Para calcular el segundo número puente se utiliza la siguiente fórmula:

$$X1 = \frac{\text{\'Ultimo l\'imite de clase 2 - Primer l\'imite de clase 2}}{\text{Cantidad de clases}}$$

$$X1 = \frac{81.59 - 7.51}{3}$$

$$X1 = \frac{74.08}{3}$$

Redondeado a 2 decimales da como resultado:

segundo número puente

$$X1 = 24.69$$

Paso 1.2.4 Calcular todos los valores del Límite de clase 2

Se aplica la siguiente fórmula:

Primer límite de clase 2 + Segundo número puente.

Por ejemplo

$$7.51+24.69 = 32.20$$

Cuando se termina el cálculo del segundo límite de clase 2, el mismo bajará a ser el primer límite de clase 2 de la segunda clase y así sucesivamente hasta llegar a el último límite de clase 2.

Paso 1.2.5 Calcular Conteo

En la tabla se busca la cantidad de datos que están de rango a rango y se representa colocando con l (raya vertical) cada dato encontrado de rango a rango.

Paso 1.2.6 Calcular la Frecuencia de clase

Se observa el conteo y se transforma en número.

Paso 1.2.7 Calcular Frecuencias relativas

Se toma la frecuencia de clase y se divide entre la cantidad de datos que se esté analizando. la suma total debe dar 1.000 o 0.999.

Paso #2: Tabla de Frecuencias Relativas.

TABLA DE FRECUENCIAS RELATIVAS								
CLASE	LIMITE DE CLASE 1	LÍMITE DE CLASE	CONTEO	FRECUENCIA DE CLASE	FRECUENCIAS RELATIVAS			
1	7.51-7.59	7.51-32.20	1111	4	0.333			
2	7.59-7.67	32.20-56.90	1111111	7	0.583			
3	7.67-7.75	56.90-81.59	l	1	0.083			
				n = 12	0.999			

Moda 2: 7.

Paso #3: Gráficas Estadísticas.

*Histograma Distribución sesgada a la izquierda. Especialidad: curva leptocúrtica.

Fórmula:

$$M_0 = L_{MD} + \frac{d_1}{d_1 + d_2} \omega$$

Donde:

 $L_{MD} = L$ ímite inferior de la clase modal.

 $L_{MD} = 32.20.$

 $oldsymbol{d_1} = Frecuencia\ de\ clase\ modal\ inmediantamente\ debajo\ de\ ella.$

 $d_1 = 0.583 - 0.333$

 $d_1 = 0.25$

 d_2 = Frecuencia de clase modal inmediantamente encima de ella.

 $d_2 = 0.583 - 0.083$

 $d_2 = 0.5$

 ω = Amplitud del intervalo de la clase.

 $\omega = 56.89 - 32.20$

 $\omega = 24.69$

$$M_0 = 32.20 + \frac{0.25}{0.25 + 0.5} (24.69)$$

$$M_0 = 32.20 + \frac{0.25}{0.75} (24.69)$$

$$M_0 = 40.43 Moda$$

Paso #4: Toma de decisiones.

El objetivo de las Organizaciones de datos es establecer la minimización de los costos o la maximización de la ganancia; por lo tanto en el Histograma: con un asterisco (*) cuya distribución es sesgada a la izquierda con especialidad leptocúrtica, es la que nos dará la mejor producción dentro del estudio.

FIRMA DEL ANALÍSTA: _