n-структурах.

не было.

1991

PHYSICS AND TECHNICS OF SEMICONDUCTORS

РЕКОМБИНАЦИОННЫЕ ПРОЦЕССЫ В 6H-SiC p-n-CTРУКТУРАХ И ВЛИЯНИЕ НА НИХ ГЛУБОКИХ ЦЕНТРОВ

Аникин М. М., Зубрилов А. С., Лебедев А. А., Стрельчук А. П., Черенков А. Е.

в p-n-структурах, изготовленных на основе $6\hat{H}$ -SiC по различным технологиям. Методом DLTS исследованы концентрации и параметры имеющихся в этих структурах глубоких уровней (ГУ).

Исходя из статистики Шокли—Рида показано, что два обнаруженных ГУ [$S(E_c-0.35 \text{ >B})$ и $R(E_c-1.27 \text{ >B})$] могут определять рекомбинационные процессы в исследовавшихся p—

Проведено исследование времени жизни и диффузионных длин неосновных носителей тока

Веедение. Рекомбинационные характеристики полупроводниковых материалов определяют параметры большинства приборов. Поэтому исследования имеющихся в данном полупроводнике каналов рекомбинации являются актуальной исследовательской задачей.

Ранее $[^{1-3}]$ было обнаружено, что время жизни дырок в n-SiC находится в пределах $10^{-7}-10^{-9}$ с, а их диффузионная длина -0.01-1 мкм. Очевидно, что в SiC (как непрямозонном полупроводнике) основная рекомбинация идет с участием глубоких уровней (ГУ). Однако центров, которые могли бы определить столь малое время жизни, к настоящему времени в SiC обнаружено

Таким образом, основная задача настоящей работы — комплексное исследование рекомбинационных характеристик неосновных носителей тока (стационарного и релаксационного времени жизни и диффузионной длины) и параметров $\Gamma \coprod$ в 6H-SiC p—n-структурах, выполненных различными методами, на основе синтеза полученных результатов определение влияния обнаруженных $\Gamma У$ на процессы безызлучательной рекомбинации в исследовавшихся структурах.

1. Образцы

Были исследованы p^+ —n-структуры, n-база которых была получена бесконтейнерной жидкостной эпитаксией (БЖЭ структуры) [4] либо сублимационным сэндвич-методом в открытой системе (СЭ структуры) [5]. p—n-Переход был создан либо эпитаксиальным наращиванием p^+ -слоя, легированного в процессе роста алюминием, либо ионной имплатацией алюминия. Концентрация нескомпенсированных доноров в базе N_d — N_a составляла 10^{16} — 10^{18} см⁻³. Меза-структуры площадью $2 \cdot 10^{-3}$ — $1.6 \cdot 10^{-2}$ см² были сформированы плазмохимическим травлением.

2. Стационарное время жизни неосновных носителей заряда (HH3) τ_{st} определялось из стационарных прямых вольт-амперных характеристик (BAX) p-n-

структур

Ранее [6, 7] было показано, что в значительном интервале температур ($T=300-800~\mathrm{K}$) прямые BAX исследуемых p-n-структур, как правило, состоят из двух экспоненциальных участков вида $J=J_0\exp{(qU/\beta kT)};~\beta=\mathrm{const}~(T)$. На верхнем участке BAX ($J=10^{-4}-10^{0}~\mathrm{A/cm^2}$) были выделены термоинжекционные токи с дробными значениями β . Обнаружено соответствие данных токов

модели рекомбинации носителей заряда в слое объемного заряда (CO3) p—nперехода через многоуровневый центр с одним «глубоким» (вероятность термических выбросов с которого пренебрежимо мала) и одним или несколькими «мелкими» (вероятность выброса близка к вероятности обратного захвата из зоны) уровнями. Параметрами модели являются, в частности, концентрация центра и сечения захвата на глубокий и мелкий уровни [8]. Однако задача выделения стационарного времени жизни, определяемого рекомбинацией через многоуровневый центр, пока не решена. Задача определения т, может быть

1 — БЖЭ структуры, 2 — СЭ структуры.

решена для нижнего участка прямой ВАХ ($J \leqslant 10^{-4}~{\rm A/cm^2}$), где у части p-n-структур обнаруживается термоинжекционный ток с $\beta=2$, т. е. ток, удовлетво-ряющий модели Шокли—Нойса—Саа, рекомбинации в СОЗ p-n-переходы через глубокий уровень вблизи середины запрещенной зоны [9]. Согласно модели,

предэкспоненциальный множитель ${J}_{\scriptscriptstyle 0}$ для такого тока определяется как

 $J_0 = \frac{q n_i \alpha}{\tau_{st}},$ где n_i — собственная концентрация носителей заряда (n_i =10-6 см-3 при T=

(1)

 $=293~{
m K}\,{
m [^{1_0}]}$), $lpha=rac{kT}{qE}$ — эффективная ширина области рекомбинации, E — напряженность электрического поля в p - n-переходе.

На рис. 1 приведены экспериментально полученные при $T{=}293~{\rm K}$ величины J_0 и рассчитанные по формуле (1) значения τ_{st} для БЖЭ и СЭ структур.

Отметим в среднем на порядок большие значения J_0 и соответственно на порядок меньшие значения τ_{st} у СЭ структур (по сравнению с БЖЭ структурами) при выполнении условия одинаковой температурной зависимости J_0 , которая определяется шириной запрещенной зоны и температурной зависимостью сечений захвата, это свидетельствует о меньшей на порядок концентрации рекомбинационных центров в БЖЭ структурах. Отметим также, что ГУ вблизи середины запрещенной зоны обнаруживаются и по обратным ВАХ СЭ p—n-структур, которые при повышенных температурах демонстрируют наличие генерационного тока через такой уровень $[^{11}]$.

Рис. 2. Переходные характеристики переключения диода.

— при неизменном прямом токе, Б — при неизменном обратном токе.

3. Релаксационное время жизни HH3 (τ_{rel}) определялось по переходной характеристике переключения прямого тока на обратный при комнатной температуре. Для этого через p—n-структуру пропускался постоянный прямой ток I, прерываемый импульсами обратного напряжения длительностью 30-100 нс от генератора TP-0306. Длительность переднего фронта импульса обратного напряжения, определяющая временное разрешение установки, составляла 0.5 нс. Нагрузочным сопротивлением являлось входное сопротивление осциллографа (50 Om), включенное последовательно к p—n-структуре.

Наиболее «быстрые» из зарегистрированных (переходные характеристики) при различных соотношениях прямого и обратного токов приведены на рис. 2. Форма импульса обратного тока позволяет выделить две обычные фазы релаксации (фазу сохранения и фазу быстрого спада), подробно изученные при рекомбинации в квазинейтральной области [12]. Кроме того, в [13] экспериментально было показано, что такие же две фазы наблюдаются и при релаксации, обуслов-

ленной рекомбинацией неравновесных носителей в СОЗ [в (GaAl)As p-n-структурах]. Таким образом, проведенные нами эксперименты аналогичы представленным в работе [13]. Длительность фазы сохранения (t _c) в наших экспериментах (так же, как и в [13]) удовлетворительно описываются логарифмической зависимостью от отношения прямых токов I_c к обратным I_c:

$$t_c = \tau_{rel} \ln \left(1 + \frac{I_f}{I_r} \right). \tag{2}$$

Обработка экспериментальных данных по формуле (2) позволила установить, что τ_{rel} в СЭ структурах равно примерно 2 нс (измерения проведены для нескольких p-n-структур на одной подложке). В БЖЭ структурах $\tau_{rel}=20-30$ нс, т. е. соотношение значений τ_{rel} в СЭ и БЖЭ структурах такое же, как и соотношение значений τ_{rel} .

4. Диффузионная длина ННЗ

Диффузионная длина в БЖЭ и СЭ p—n-структурах исследовалась в диапазоне температур 300-800 К. Основные результаты получены при измерении зависимости фототока от ширины слоя объемного заряда p—n-перехода при облучении слабопоглощающимся собственным светом (аналогично [3]). При этом определялась сумма диффузионных длин электронов L_n в p-области и дырок L_p в n-области. В ряде случаев при комнатной температуре производилось раздельное определение L_n и L_p при измерении тока, индуцированного электронным зондом.

В [15] показано, что в БЖС структурах с N_d — N_a = 6·10¹⁶ —10¹⁸ см ⁻³ L_p + L_n \approx 1.5 —0.4 мкм; в СЭ структурах с N_d — N_a =10¹⁶ —3·10¹⁸ см ⁻³ L_p + L_n \approx 0.4 —0.05 мкм. Для обеих технологий в среднем наблюдается тенденция к уменьшению диффузионной длины с ростом (N_d — N_a). В БЖЭ структурах при комнатной температуре L_p \sim (3—7) L_n в зависимости от концентрации акцепторной примеси Al. В целом диффузионная длина растет с температурой и ее рост в диапазоне температур 350—800 К для СЭ структур и в диапазоне 650—800 К для БЖЭ структур происходит с энергией активации 120 мэВ, а в БЖЭ структурах в диапазоне температур 300—550 К — с энергией активации 50—60 мэВ (соответственно энергии активации времени жизни без учета температурной зависимости подвижности ННЗ составляют 240 и 80—120 мэВ).

Таким образом, исследование рекомбинационных характеристик СЭ и БЖЭ p-n-структур показало, что в обоих типах структур существуют: a) глубокий центр с уровнем вблизи середины запрещенной зоны, отвечающий за рекомбинацию в слое объемного заряда при низком уровне инжекции, причем в БЖЭ структурах концентрация этого центра приблизительно на порядок меньше, чем в СЭ структурах; δ) многоуровневые центры, имеющие как глубокий, так и мелкие уровни и отвечающие за рекомбинацию в СОЗ при более высоких уровнях инжекции, причем τ_{rel} в БЖЭ структурах при комнатной температуре примерно на порядок больше, чем в СЭ структурах; ϵ) рекомбинация в квазинейтральной области определяется мелкими уровнями обычного или многоуровнего центра.

5. Параметры глубоких уровней

В БЖЭ и СЭ структурах было обнаружено пять типов ГУ, названных нами L-, i-, D-, S- и R-уровнями (рис. 3). Параметры и характерные концентрации этих уровней в обоих типах структур представлены в таблице. Поскольку из DLTS-спектров ГУ можно определить только одно сечение захвата, а для расчета времени жизни, обусловленного этим уровнем, нужно знать оба сечения, то необходимо было провести дополнительные измерения.

Ранее [16] для L-, i- и D-ГУ (уровни в нижней половине запрещенной зоны n-базы) второе сечение (сечение захвата электронов σ_n) определялось нами по зависимости амплитуды DLTS-пика (ΔC) от длительности задержки (t_3)

Параметры обнаруженных глубоких уровней

БЖЭ

1015

 $(1 \div 4) \cdot 10^{14}$ $(1 \div 4) \cdot 10^{14}$

 $5 \cdot 10^{13}$

 5.10^{13}

Расчетное значение т

при T = 300 K, с

ежа

10-5

 $(1 \div 3) \cdot 10^{-7}$

 $3 \cdot 10^{-2}$

 1.10^{-3}

1.10-8

cэ

5-10-6

 $3 \cdot 10^{-5}$

1.10-5

10-9

 $(1 \div 3) \cdot 10^{-8}$

Средняя концентрация, см⁻⁸

СЭ

 $\begin{array}{c} (3 \div 5) \cdot 10^{16} \\ (1 \div 3) \cdot 10^{16} \\ (1 \div 3) \cdot 10^{15} \\ (1 \div 3) \cdot 10^{15} \\ (1 \div 3) \cdot 10^{15} \end{array}$

между окончанием импульса инжекции и началом импульса обратного напря-

Для оценки второго сечения захвата на S- и R- Γ У (сечение захвата дырок σ_n) проводилось измерение амплитуд DLTS-пиков этих уровней при инжекции ды-

Тип уров-ня

L I D

S

R

жения.

Энергетиче-

ское поло-

жение, эВ

 $E_{v}+0.24$ $E_{v}+0.52$ $E_{v}+0.58$

 E_{c} -0.35

 $E_{c}-1.27$

10

Сечение

захвата элек-

тронов, см²

10-18

10-21

 $(1 \div 2) \cdot 10^{-15}$

3 - 10 - 20

3.10-13

Сечение

захвата ды-рок, см²

 10^{-15}

10-17

 $(1\div2)\cdot10^{-14}$

 5.10^{-16}

1 - 10 - 15

$oldsymbol{g}$				
$\ln(\sigma I^2)$				
7				
·	1.8 1.9 2.0	2.1 2.2 10 ³ /T, K ⁻¹	5.0 5.5	6.0
Рис. 3. Зависимости Аррениуса для S - и R - Γ У.				
рок и ее отсутствии. Концентрацию заполненных электронами $\Gamma \mathcal{Y}$ в верхней половине n -базы (m) можно записать как $[^{14}]$				
	• •	N_{T}		40)

(3)

существование одного двухуровневого R-S-центра. 10-7 10 -8 10⁻⁹ • 2 10 -9 10 15 10 16 10 N_{R-S} , cm^{-3} центрации S- и R-ГУ. 1 — БЖЭ структуры, 2 — СЭ структуры.

где N_T — полная концентрация ГУ, Δp — концентрация инжектированных дырок, n_0 — концентрация электронов в n-базе. Для S-уровня при подаче импульсов инжекции было обнаружено изменение амплитуды $\mathrm{DLTS} ext{-}\mathrm{n}$ ика (ΔC) в 3—5 раз. Для R-ГУ аналогичное изменение ΔC составляло \sim 1 %. В соответствии с формулой (3) и величиной о, для этих уровней минимальное значение о (т. е. при условии $\Delta p > n_0$) можно оценить как $(1 \div 8) \cdot 10^{-15}$ см² (R-уровень) и $1\cdot 10^{-14}$ (S-уровень). Отметим, что измеренные величины концентраций R-и S-ГУ совпали с точностью 10-20 % и в БЖЭ структурах были в среднем на порядок меньше, чем в СЭ структурах. Это дает основание предположить

Рис. 4. Зависимость квадрата диффузионной длины ННЗ (А) и их времени жизни (Б) от кон-

Заключение

Исходя из параметров обнаруженных уровней был сделан расчет предполагаемого времени жизни исследовавшихся структур. Известно (см., например, $[^{17}]$) выражение для времени жизни ННЗ в базовой области p-n-структур

 $\tau = \frac{n_0 + n_1 + \Delta n}{v_T N_T \sigma_p(n_0 + p_0 + \Delta n)} + \frac{p_0 + p_1 + \Delta n}{v_T N_T \sigma_n(p_0 + n_0 + \Delta n)},$ (4)

где v_T — тепловая скорость носителей, $\sigma_{\pi(p)}$ — сечение захвата электрона (дырки) на уровень n_1 (p_1)= N_c (N_s) $e^{-E_i/kT}$, E_i — энергия нонизации уровня,

k — постоянная Больцмана, $N_{c(v)}$ — плотность состояний в c (v)-зоне, p_0 (n_0) равновесная концентрация дырок (электронов), Δn — концентрация неравновесных носителей.

Результаты расчета времени жизни по формуле (4) с учетом параметров обнаруженных уровней представлены в таблице. Как видно из таблицы, единственным уровнем, исходя из параметров которого можно объяснить наблюдаемое время жизни, является S- $\Gamma \dot{\mathcal{Y}}$. Отмеченная ранее большая величина времени жизни ННЗ в БЖЭ структурах по сравнению с СЭ структурами находит объяснение в меньшей концентрации S-ГУ (см. таблицу) в БЖЭ структурах. Исследовапие зависимости величин τ_{rel} и L_n^2 при комнатной температуре от концентрации S-уровня показало, что эти величины находятся в обратно пропорциональной зависимости (рис. 4).

Рис. 5. Зависимость диффузионной длины дырок от температуры в БЖЭ структурах (1, 2) и СЭ структурах (3—5), сплошные линии — расчет при условии $n_0=3\cdot 10^{18}$ д $n\leqslant n_0,\ N_c/g\ T^{3/2}=2.5\cdot 10^{16}$ см⁻³.

Измерение времени жизни и диффузионной длины в одних и тех же структурах позволило оценить величину подвижности дырок и. Эта величина составляла 8—10 см²/В·с для СЭ структур и 30 см²/В·с для БЖЭ структур.

Полученные величины близки к значениям холловской подвижности μ_{n}^{p} (18— $50~{
m cm^2/B \cdot c}$) при $T\!=\!300~{
m K}$, представленным в работе [18]. Исходя из определен-

ной в [18] температурной зависимости подвижности, а также параметров и концентраций S-уровня в БЖЭ и СЭ структурах был сделан теоретический расчет температурного хода L_p и сопоставлен с ранее полученным экспериментально [15]

(рис. 5). Расчет зависимости $L_p = f(T)$ исходя из двухуровневой модели (рекомбинационного центра $R \! - \! S \, {}^{[17]})$ практически не отличается от представленного на рис. 5 в рассмотренном диапазопе температур ($T \leqslant 900$ K). Как видно из рисунка, наблюдается хорошее совпадение экспериментальных и теоретических кривых для СЭ диодов. Для БЖЭ структур увеличение энергии $E_{\mathtt{art}}$ в СЭ структурах, а также наличие R- и S-ГУ в обоих типах образцов позволяют предположить, что эти ГУ оказывают влияние на рекомбинационные процессы и в БЖЭ структурах при высоких температурах. Температурный ход L_n в БЖЭ структурах в области низких температур.

активации $(E_{a_{x,y}})$ в области высоких температур и приближение ее к значению

очевидно, определяется другими причинами, например наличием мелкого рекомбинационного центра с $E_{\rm c}\sim 0.1~{
m pB}$. Такую энергию ионизации в 6H-SiC имеют атомы азота, и, возможно, в БЖЭ структурах при низких температурах рекомбинация идет через донорно-акцепторные пары, включающие в себя этот центр. Могут быть предложены и другие объяснения. Таким образом, можно сделать следующие заключения.

1. За рекомбинационно-генерационные процессы по механизму Шокли-Нойса — Саа через глубокий уровень вблизи середины запрещенной зоны может быть ответствен R- Γ У.

2. Рекомбинацию в квазинейтральной области СЭ структур во всем исследовавшемся диапазоне температур и в БЖЭ структурах при высоких температурах можно связать с S-ГУ.

3. Совпадение концентраций R- и S-уровней и анализ ВАХ в обоих типах структур позволяют предположить существование одного двухуровневого ре-

комбинационного центра R-S. В заключение авторы благодарят В. В. Евстропова, Н. И. Кузнецова и А. А. Лебедева за помощь в работе и ценные обсуждения.

Список литературы

- [1] Балландович В. С., Виолина Г. Н. // ФТП. 1981. Т. 15. В. 8. С. 1650—1652.
 [2] Наумов А. В., Санкин В. И. // ФТП. 1989. Т. 23. В. 6. С. 1009—1014.
 [3] Санкин В. И. и др. // ФТП. 1982. Т. 16. В. 7. С. 1325—1327.
 [4] Дмитриев В. А. и др. // Письма ЖТФ. 1985. Т. 11. В. 4. С. 238—241.
 [5] Аникин М. М. и др. // Письма ЖТФ. 1984. Т. 10. В. 17. С. 1053—1056.
 [6] Аникин М. М. и др. // ФТП. 1989. Т. 23. В. 10. С. 1813—1818.
 [7] Аникин М. М., Евстропов В. В., Попов И. В., Растегаев В. П., Стрельчук А. М., Сыркин А. Л. // ФТП. 1989. Т. 23. В. 4. С. 647—651.
 [8] Евстропов В. В., Киселев К. В., Петрович И. Л., Царенков Б. В. // ФТП. 1984. Т. 18. В. 10. С. 1852—1858.
 [9] Sah C. Т., Novce R. N., Shockelev W. // Proc. IRE, 1957. V. 45. N.9. P. 1228—1243. [9] Sah C. T., Noyce R. N., Shockeley W. // Proc. IRE. 1957. V. 45. N 9. P. 1228—1243.
 [10] Водаков Ю. А. и др. // Проблемы физики технологии широковонных полупроводников. Л., 1979. С. 164—184.
- [11] Аникин М. М. и др. // ФТП. 1986. Т. 20. В. 5. С. 844—847.
- [12] Носов Ю. Р. Физические основы работы полупроводникового диода в импульсном режиме. М., 1968. 263 с. [13] Евстропов В. В., Петрович И. Л., Царенков Б. В. // ФТП. 1981. Т. 15. В. 12. С. 2347—
 - 2351.
- [14] Аникин М. М., Лебедев А. А., Лебедев А. А., Сыркин А. Л., Суворов А. В. // ФТП.
- 1986. T. 20. B. 12. C. 2169-2172.
- [15] Anikin M. M., Lebedev A. A., Pyatko S. N., Soloviev V. A., Strelchuk A. M. // Abst. of III Int. Conf. on amorphous and crystalline SiC and other grop. IV—IV materials. Wa-
- shington, 1990. P. 6.
- [16] Аникин М. М., Лебедев А. А., Кузнецов Н. И., Сыркин А. Л., Стрельчук А. М. // ФТП. 1990. T. 24. B. 8. C. 1384—1390. [17] Рывкин С. М. Фотоэлектрические явления в полупроводниках. М., 1963. 494 с.
- [18] Van Daal H. J., Knippenberg W. F., Wasschek J. D. // J. Phys. Chem. Sol. 1963. V. 24. P. 109-127.
- Физико-технический институт Получена 23.07.1990 им. А. Ф. Иоффе АН СССР Принята к печати 15.11.1990

Ленинград