

Deutsche  
Demokratische  
Republik



Amt  
für Erfindungs-  
und Patentwesen

# PATENTSCHRIFT

63 648

## Wirtschaftspatent

Erteilt gemäß § 5 Absatz 1 des Änderungsgesetzes zum Patentgesetz

Zusatzpatent zum Patent: —

Anmeldetag: 25. VII. 1967 (WP 39 c / 126 199)

Priorität: —

Ausgabetag: 05. IX. 1968

Kl.: 39 c, 30

IPK.: C 08 g

DK.:

### Erfinder zugleich Inhaber:

Dipl.-Chem. Helfried Teichmann, Riesa

Günter Reinhold, Nünchritz/über Riesa

Dipl.-Ing. Bernd Köhler, Nünchritz/über Riesa

## Verfahren zum Hydrolyseren von Organochlorsilanen bei gleichzeitiger Chlorwasserstoffgewinnung

1

Die Erfindung betrifft ein kontinuierliches Verfahren zum Hydrolysieren von Organochlorsilanen bei gleichzeitiger Gewinnung von 100%igem HCl, wobei die Umsetzung in einem geschlossenen Reaktionssystem erfolgt, in dem ein der notwendigen Verweilzeit entsprechendes Volumen an konzentrierte Salzsäure vorgelegt wird und dessen Inhalt durch Turbulenzerzeuger und durch entstehenden Chlorwasserstoff durchmischt wird. Für die Durchführung des Verfahrens wird ein einziger Reaktor verwendet, der eine Reaktions- und Absetzzone enthält, wobei gleichzeitig der entstehende Chlorwasserstoff zur pneumatischen Förderung des Reaktionsgemisches in den Absetzbehälter und zum Zurückdrücken der im Absetzraum abgesetzten Säure in den Reaktionsraum benutzt wird.

Bisher wurde die Hydrolyse von Organochlorsilanen, insbesondere von Dimethyldichlorsilan, so durchgeführt, daß der Wasserüberschuß so bemessen wurde, daß der entstehende Chlorwasserstoff sofort vom Wasser zu einer 20- bis 36%igen Salzsäure absorbiert wurde. Zur Durchführung des Verfahrens ist aus der BRD-Patentschrift 954 198 ein Kreislaufsystem bekannt, welches auch eine kontinuierliche Hydrolyse gestattet. Über eine Dosierpumpe wurden in ein Reaktionsrohr, das direkt mit dem Saugstutzen einer Kreiselpumpe verbunden ist, Wasser und Chlorsilane eingespritzt.

Die Reaktionskomponenten werden in der Kreiselpumpe intensiv gemischt, reagieren und gelangen über Kühl器 und T-Stück zum Teil in ein statisch arbeitendes Trenngefäß und zum Teil in den Rücklauf. Damit soll erreicht

2

werden, daß die Teilchen mehrere Male den Kreislauf durchlaufen und vollständig hydrolysiert werden. Es ist weiter aus der BRD-Auslegeschrift 1 195 752 bekannt, daß T-Stück durch einen Vorabscheider zu modifizieren, um nicht die bereits entstandenen Hydrolyseprodukte wieder in den Kreislauf zu bringen, was sich nachteilig auf den Hydrolyseablauf auswirkt. Beide Verfahren haben den Nachteil, daß der Chlorwasserstoff in Form von 20- bis 36%iger Salzsäure anfällt, die noch siliziumorganische Verunreinigungen enthält und so nicht ohne weiteres verwendet werden kann. Bei einem anderen, in der österreichischen Patentschrift 174 921 beschriebenen Verfahren wird die Hydrolyse in einem von Wasser und Organochlorsilan berieselten Füllkörpertrum durchgeführt, wobei die entstehende Salzsäure teilweise auch im Kreislauf gefahren werden kann. Daneben ist es in Chemiebetrieben oft wichtig, gasförmigen Chlorwasserstoff zur Verfügung zu haben, um anderwärts anfallende Schwachsäure aufzustärken, was mit diesem Verfahren nicht möglich ist.

Da eine vollkommene Trennung des Hydrolyseproduktes von der Salzsäure im Absetzbehälter nicht erreicht werden kann, sind Verluste an Polysiloxan nicht zu vermeiden.

Für die Gewinnung von Chlorwasserstoff bei der Hydrolyse von Organochlorsilanen wird in der UdSSR-Patentschrift 123 529 ein Verfahren beschrieben, bei dem in einem kontinuierlich betriebenen Rührkessel die Hydrolyse durch die zugeführte Menge an Wasser so gesteuert wird, daß der Chlorwasserstoff vollständig oder

63 648

Deutsche  
Demokratische  
Republik



Amt  
für Erfindungs-  
und Patentwesen

# PATENTSCHRIFT 63 648

## Wirtschaftspatent

Erteilt gemäß § 5 Absatz 1 des Änderungsgesetzes zum Patentgesetz

Zusatzpatent zum Patent: —

Kl.: 39 c, 30

Anmeldetag: 25. VII. 1967 (WP 39 c / 126 199)

IPK.: C 08 g

Priorität: —

DK.:

Ausgabetag: 05. IX. 1968

Zur PS Nr. . 63 648 . . . . .

ist eine Zweischrift erschienen.

(Teilweise aufgehoben gem. § 6 Abs. 1 d. Änd. Ges. z. Pat. Ges.)

### Verfahren zum Hydrolisieren von Organochlorsilanen bei gleichzeitiger Chlorwasserstoffgewinnung

1

Die Erfindung betrifft ein kontinuierliches Verfahren zum Hydrolisieren von Organochlorsilanen bei gleichzeitiger Gewinnung von 100%igem HCl, wobei die Umsetzung in einem geschlossenen Reaktionssystem erfolgt, in dem ein der notwendigen Verweilzeit entsprechendes Volumen an konzentrierte Salzsäure vorgelegt wird und dessen Inhalt durch Turbulenzerzeuger und durch entstehenden Chlorwasserstoff durchmischt wird.

Für die Durchführung des Verfahrens wird ein einziger Reaktor verwendet, der eine Reaktions- und Absetzzone enthält, wobei gleichzeitig der entstehende Chlorwasserstoff zur pneumatischen Förderung des Reaktionsgemisches in den Absetzbehälter und zum Zurückdrücken der im Absetzraum abgesetzten Säure in den Reaktionsraum benutzt wird.

Bisher wurde die Hydrolyse von Organochlorsilanen, insbesondere von Dimethyldichlorsilan, so durchgeführt, daß der Wasserüberschuß so bemessen wurde, daß der entstehende Chlorwasserstoff sofort vom Wasser zu einer 20- bis 36%igen Salzsäure absorbiert wurde. Zur Durchführung des Verfahrens ist aus der BRD-Patentschrift 954 198 ein Kreislaufsystem bekannt, welches auch eine kontinuierliche Hydrolyse gestattet. Über eine Dosierpumpe wurden in ein Reaktionsrohr, das direkt mit dem Saugstutzen einer Kreiselpumpe verbunden ist, Wasser und Chlorsilane eingespritzt.

Die Reaktionskomponenten werden in der Kreiselpumpe intensiv gemischt, reagieren und gelangen über Kühler und T-Stück zum Teil in ein statisch arbeitendes Trenngefäß und zum Teil in den Rücklauf. Damit soll erreicht

2

werden, daß die Teildurchläufe mehrere Male den Kreislauf durchlaufen und vollständig hydrolysiert werden. Es ist weiter aus der BRD-Auslegeschrift 1 195 752 bekannt, daß T-Stück durch einen Vorabscheider zu modifizieren, um nicht die bereits entstandenen Hydrolyseprodukte wieder in den Kreislauf zu bringen, was sich nachteilig auf den Hydrolyseablauf auswirkt.

Beide Verfahren haben den Nachteil, daß der Chlorwasserstoff in Form von 20- bis 36%iger Salzsäure anfällt, die noch siliziumorganische Verunreinigungen enthält und so nicht ohne Weiteres verwendet werden kann. Bei einem anderen, in der österreichischen Patentschrift 174 921 beschriebenen Verfahren wird die Hydrolyse in einem von Wasser und Organochlorsilan berieselten Füllkörperturn durchgeführt, wobei die entstehende Salzsäure teilweise auch im Kreislauf gefahren werden kann. Daneben ist es in Chemiebetrieben oft wichtig, gasförmigen Chlorwasserstoff zur Verfügung zu haben, um anderwärts anfallende Schwachsäure aufzustärken, was mit diesem Verfahren nicht möglich ist.

Da eine vollkommene Trennung des Hydrolyseproduktes von der Salzsäure im Absetzbehälter nicht erreicht werden kann, sind Verluste an Polysiloxan nicht zu vermeiden.

Für die Gewinnung von Chlorwasserstoff bei der Hydrolyse von Organochlorsilanen wird in der UdSSR-Patentschrift 123 529 ein Verfahren beschrieben, bei dem in einem kontinuierlich betriebenen Rührkessel die Hydrolyse durch die zugeführte Menge an Wasser so gesteuert wird, daß der Chlorwasserstoff vollständig oder

63 648

teilweise gasförmig anfällt. Dieses wird aus dem Rührkessel abgeführt, während das Gemisch aus Salzsäure und Hydrolyseprodukt in einen kontinuierlich arbeitenden Absetzbehälter gelangt. Die abgesetzte Salzsäure, die noch geringe Mengen des wertvollen Hydrolyseproduktes enthält, wird entweder verworfen oder durch ein Förderorgan wieder in den Rührkessel gedrückt.

Dieses Verfahren hat den Nachteil, daß durch die räumliche Trennung von Reaktions-Absetzbehälter ein zusätzliches Förderorgan benötigt wird, um die abgesetzte Salzsäure wieder in den Reaktionsraum zu fördern. Wenn andererseits die Säure verworfen oder für andere Zwecke weiter verwendet wird, entstehen Verluste an Hydrolyseprodukten. Ein weiterer Nachteil ist die geringe Raumzeit-Ausbeute, bedingt durch die niedrige Rührdrehzahl.

Es wurde nun gefunden, daß diese Nachteile vermieden werden und die kontinuierlich betriebene Hydrolyse technisch wesentlich verbessert werden kann, wenn das Organochlorsilan und Wasser gleichzeitig und kontinuierlich mit geregelter Zulaufgeschwindigkeit in ein Reaktionssystem, in dem eine bestimmte Menge konzentrierter Salzsäure vorgelegt ist, geliefert wird, daß in einer Einheit den Reaktions- und Absetzraum enthält, wobei der entstehende Chlorwasserstoff gleichzeitig mit zur Durchmischung der Reaktionskomponenten, zum Fördern der Reaktionsprodukte aus dem Reaktions- in den Absetzraum und zur Rückführung der im Absetzraum abgesetzten Salzsäure in den Reaktionsraum dient. Die Erfindung wird an Hand eines Ausführungsbeispieles näher erläutert.

Die Fig. 1 und 2 der Zeichnung veranschaulichen die zur Durchführung des Verfahrens gemäß der Erfindung verwendeten Vorrichtungen.

In einem entsprechend Fig. 1 ausgebildeten turmartigen Gefäß 1 werden kontinuierlich am unteren Ende Organochlorsilan 2 und Wasser 3 in den von einem Rührer 4 durchmischt Reaktionsraum 5, der durch Siebplatten 6 in mehrere Abschnitte geteilt und in dem konzentrierte Salzsäure vorgelegt ist, zugeführt. Die vorgelegte Menge an konzentrierter Salzsäure wird so bemessen, daß die daraus resultierende Verweilzeit ausreicht, um eine vollständige Umsetzung zu bewirken. Der entstehende Chlorwasserstoff wird durch die Siebplatten verteilt und bewirkt eine zusätzliche Durchmischung der Reaktionspartner. Das gleichzeitig anfallende Öl steigt auf Grund seiner geringen Dichte nach oben und wird durch den Chlorwasserstoff über das Förderrohr 7 in den Absetzraum 8 gefördert, der wiederum durch ein Rücklaufrohr 9 mit dem Reaktionsraum verbunden ist. Der dadurch erreichte Kreislauf bewirkt, daß sich die auf dem Boden des Absetzraumes ansammelnde Salzsäure

kontinuierlich wieder in die Reaktionszone gelangt. Das klare Öl wird bei 13 kontinuierlich abgeführt. Bevor der Chlorwasserstoff bei 10 das System verläßt, wird er in einer Fullkörperschicht 11 von den mitgerissenen Oltröpfchen befreit, die sich am Boden ansammeln und über die mit Löchern versehene Platte 12 in den Absetzraum gelangen.

Fig. 2 zeigt einen modifizierten Reaktionsraum. Danach wird bei 2; 3 kontinuierlich Organochlorsilan und Wasser dem mit konzentrierter Salzsäure gefüllten Reaktionsraum 5 zugeführt, der im unteren Teil durch eine im Umlauf fahrende Pumpe 14 durchmischt wird, während im oberen Teil des Reaktionsraumes 5, der mit Fullkörpern gefüllt ist, der entstehende Chlorwasserstoff die Turbulenz bewirkt. Die Pumpe hat die Aufgabe, den Reaktionsraum zu durchmischen, während in den bereits bekannten Verfahren fast die gesamte Umsetzung in der Pumpe selbst stattfindet. Zum Einstellen bestimmter Reaktionstemperaturen kann der Reaktionsraum durch eine geeignete Vorrichtung gekühlt oder beheizt werden.

#### Patentansprüche:

- 25 1. Verfahren zum Hydrolysieren von Organochlorsilanen bei gleichzeitiger Gewinnung von Chlorwasserstoff, dadurch gekennzeichnet, daß die Organochlorsilane und Wasser gleichzeitig und kontinuierlich einem aus Reaktions- und Absetzraum bestehenden geschlossenen Reaktionssystem, in dem konzentrierte Salzsäure vorgelegt wird, zugeführt und in ihm unter Einwirkungen von Turbulenzezeugern und dem entstehenden Chlorwasserstoff durchmischt und das entstehende Organopolysiloxan und der entstehende Chlorwasserstoff kontinuierlich abgeführt werden.
- 30 2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der entstehende Chlorwasserstoff zur Förderung der gebildeten Organopolysiloxane vom Reaktionsraum in den Absetzraum und zum Zurückdrücken der abgesetzten Salzsäure vom Absetz- in den Reaktionsraum benutzt wird.
- 35 3. Verfahren gemäß Anspruch 1 und 2, dadurch gekennzeichnet, daß die Durchmischung des Reaktionsraumes durch eine außerhalb des Reaktionsraumes befindliche, im Umlauf fahrende Kreiselpumpe geschieht.
- 40 4. Verfahren gemäß Anspruch 1 bis 3, dadurch gekennzeichnet, daß der obere Teil des Reaktionsraumes mit Fullkörpern gefüllt ist.

Hierzu 1 Blatt Zeichnungen

Fig. 1



Fig. 2

