DATA SCIENCE n(B∩C) = 22 n(B) = 68- n (C)-n (B∩ C) R for **Data Science I Tomas Karpati MD** tc.datascience@gmail.com 054-2002430

מבוא ל-R במדעי הנתונים

מה נלמד?

- R למה
- R-תכנות בסיסית ב
- תכנות מתקדמת ב-R, יצירת פונקציות
 - R ניהול ומניפולציה של נתונים עם
 - R-ויזואליזציה של נתונים ב

ספר מומלץ ללימוד

R Programming for Data Science (https://bookdown.org/rdpeng/rprogdatascience/)

? R למה

- 1. קוד פתוח אפשר להשתמש בחינם וניתן לשנות את הקוד מתי שרוצים
 - 2. תמיכה רחבה של קהילת R סביב לעולם
- 3. כל תכנות הסטטיסטיקה של החברות הגדולות (SAS, IBM/SPSS, וכו') תומכות בריצת קוד R בתוך הסביבה שלהם
 - ML-היא הסטנדרט (יחד עם פייטון) בעולם ה-4
 - 5. יותר מ-15,208 ספריות רשמיות שונות במחסן ה-CRAN
 - 6. ניתן להשתמש בה בפיתוח מוצרים בכל מערכות הפעלה (כולל אנדרואיד!)

R CRAN

? R-איפה לקבל עזרה ב

75 = E n(B∩C) = 22

- ?ggplot2 או help(ggplot2) .1
 - <mark>2. גוגל</mark>
 - Quick-R .3
 - **StackOverflow** .4
 - **StackExchange .5**
- R-help / R-devel <u>רשימות תפוצה</u>
 - Kaggle .7

RStudio: ממשק העבודה ב-R

RStudio IDE Functionality

Vector

Matrix

Array

List

Dataframe

ומרי (character). מחרוזות (character). מחרוזות (factor). כ כ קטגוריות (Date). תאריכים (TRUE/FALSE). פ

$\frac{d}{db} = \frac{dC}{b}$ n(B∩C) = 22

<u>תרגיל:</u>

- 1. לפתוח את ה-RStudio
- "R-class-exercise.R" ליצור פרוייקט חדש בשם.2
 - 3. לפתוח R-script חדש
 - 4. ליצור משתנה 'a' הכולל מספרים מ-10 עד 20
 - .m עד d. ליצור משתנה 'b' הכולל אותיות מ-5
- 6. ליצור משתנה בשם 'f' ולהוסיף בו שלושה 1 וחמישה 0
 - 7. להפוך 'f' לפקטור ולהגדיר 0 כ-"YES" ו-1 כ-"NO"
 - "objects" לחפש עזרה עבור.
 - 9. להשתמש בפקודה המתוארת בעזרה. מה מקבלים?
 - 10. לשמור את הקובץ
 - 11. לסגור את הפרויקט

Vector

Matrix

Array

List

og "x – log "

Dataframe

Define a 3x4 matrix matrix(x, nrow=3, ncol=4)

[10, 15, 20, 25, 20, 20, 20, 18, 17, 16, 15]

Define a 1x3 matrix matrix(x, nrow=1, ncol=3)

[3, 5, 8]

Addition of matrices

Subtraction of matrices: same way

Multiplication of matrices

Multiplication of matrices

A.B≠B.A

Multiplication of matrices

$$(3 \times 2) \times (3 \times 2) = \text{non-conformable}$$

$$(3 \times 4) \times (4 \times 2) = (3 \times 2)$$

$$(4 \times 1) \times (4 \times 1) = \text{non-conformable}$$

$$(2 \times 5) \times (5 \times 5) = ?$$

$$(4 \times 6) \times (3 \times 6) = ?$$

$$(3 \times 2) \times (2 \times 1) = ?$$

Vector

Matrix

Array

List

og "x – **109** "y

Dataframe

מערכים (Arrays) הם כמו מטריצות, רק שמכילים יותר משני-מימדים

array(data=c(x,y,z), dim=c(5,6,4))

Array

元 = 管 n(B∩C) = 22

<u>תרגיל:</u>

- 1. לפתוח את ב-RStudio את הפרויקט בשם: "R-class-exercise.R"
 - 2. ליצור מטריצה עם שלוש שורות ושמונה עמודות.
- ליצור מטריצה עם שתי שורות וחמש עמודות. מריים מרייצה עם שתי שורות וחמש עמודות.
- 4. ליצור array עם 16 שורות, 16 עמודות ושלושה מימדים.

Vector

Matrix

Array

List

x – log,

Dataframe

רשימות הם עצמים שבהם ניתן לאחסן כל סוג של עצמים אחרים, כולל גם רשימות.

```
n <- list(a=c(1,2,3,4,5), b=c("a","b","c","d"),
q=matrix(1:6,ncol=2),z=FALSE)
```

n\$a n[[1]] n[["a"]]

 $\frac{\partial}{\partial b} = \frac{\partial C}{\partial b}$ n(B∩C) = 22

<u>תרגיל:</u>

1. ליצור רשימה לפי הטבלה הבאה:

Rank +	Peak ¢	Title +	Worldwide gross +	Year +
1	1	Avatar	\$2,787,965,087	2009
2	1	Titanic	\$2,187,463,944	1997
3	3	Star Wars: The Force Awakens	\$2,068,223,624	2015
4	4	Avengers: Infinity War †	\$1,844,894,638	2018
5	3	Jurassic World	\$1,671,713,208	2015

- 1. לחלץ את השם של סרט השני ברשימה שיצרתם לפי 1. השם של הפרמטר של הכותרת
 - 2. המיקום (רמה) של הפרמטר ברשימה

Vector

Matrix

Array

List

Dataframe

מסגרת נתונים (Data frame) הינה טבלה עם סוגים שונים של וקטורים מסודרים בעמודות (משתנים). כל שורה הינה רשומה עם ערכים עבור כל אחד של המשתנים.

1 100 30 37 400	mpg =	cyl ‡	disp ÷	hp ÷	drat ‡	wt ÷	qsec ÷	vs ÷	am ÷	gear ‡	carb
	100000000	-50	шэр		120000			1888	aiii	gcui	Carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	3
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	1
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	2
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3

 $\frac{d}{dh} = \frac{dc}{h}$ n(B∩C) = 22

<u>תרגיל:</u>

1. לבנות מסגרת נתונים (data frame) מבוססת על הטבלה הבאה:

name ÷	age ÷	is.married	city	has.pet
Avi	31	FALSE	Jerusalem	TRUE
Ben	25	FALSE	Jerusalem	FALSE
Gad	28	TRUE	Haifa	FALSE
Dan	28	FALSE	Jerusalem	FALSE
Harel	33	TRUE	Haifa	TRUE
Vered	27	TRUE	Tel Aviv	FALSE
Zelig	32	FALSE	Tel Aviv	TRUE

1. מה הגיל של המקרה השלישי?

?. כמה אנשים נשואים?

3. מה ממוצע הגיל של הקבוצה?

4. לכמה אנשים שאינם גרים בירושלים יש חיית מחמד?

5. תמחקו מהטבלה כל מי שמעל גיל 30.

