Team optimal decentralized filtering with coupled cost

Aditya Mahajan McGill University

Joint work with Mohammad Afshari

Ninth Workshop on Dynamic Games in Management Science 13 October 2017

One-shot decentralized estimation with coupled cost

```
\label{eq:model} \mbox{Model} \qquad \mbox{State of the world} \qquad : \ \chi \sim \mathcal{N}(0, \Sigma_{\kappa})
```

Observation of agent i:
$$y_i = C_i x + w_i$$
, $w_i \sim \mathcal{N}(0, Q_i)$

Estimate of agent
$$\mathbf{i}$$
 : $\hat{\mathbf{x}}_i = g_i(y_i)$. Let $\hat{\mathbf{x}} = \text{vec}(\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_n)$

Objective Choose
$$(g_1, ..., g_n)$$
 to minimize $\mathbb{E}[c(x, \hat{x})]$ where ...

One-shot decentralized estimation with coupled cost

```
\label{eq:Model} \begin{tabular}{ll} \begin{
```

Objective Choose $(g_1, ..., g_n)$ to minimize $\mathbb{E}[c(x, \hat{x})]$ where ...

$$(x - \hat{x}_1)^2 + (x - \hat{x}_2)^2 + q(\hat{x}_1 - \hat{x}_2)^2$$

One-shot decentralized estimation with coupled cost

 $\label{eq:model} \mbox{Model} \qquad \mbox{State of the world} \qquad : \ \chi \sim \mathcal{N}(0, \Sigma_{x})$

Observation of agent i: $y_i = C_i x + w_i$, $w_i \sim \mathcal{N}(0, Q_i)$

Estimate of agent i : $\hat{x}_i = g_i(y_i)$. Let $\hat{x} = \text{vec}(\hat{x}_1, \dots, \hat{x}_n)$

Objective Choose $(g_1, ..., g_n)$ to minimize $\mathbb{E}[c(x, \hat{x})]$ where ...

$$(x - \hat{x}_1)^2 + (x - \hat{x}_2)^2 + q(\hat{x}_1 - \hat{x}_2)^2$$

One-shot decentralized estimation with coupled cost

```
Model State of the world : x \sim \mathcal{N}(0, \Sigma_x)
```

Observation of agent i: $y_i = C_i x + w_i$, $w_i \sim \mathcal{N}(0, Q_i)$

Estimate of agent i : $\hat{x}_i = g_i(y_i)$. Let $\hat{x} = \text{vec}(\hat{x}_1, \dots, \hat{x}_n)$

Objective Choose
$$(g_1, ..., g_n)$$
 to minimize $\mathbb{E}[c(x, \hat{x})]$ where ...

$$(x - \hat{x}_1)^2 + (x - \hat{x}_2)^2 + (x - \hat{x}_3)^2 + (x - \hat{x}_4)^2 + q(\hat{x}_1 - \hat{x}_2)^2 + q(\hat{x}_2 - \hat{x}_3)^2 + q(\hat{x}_3 - \hat{x}_4)^2 + q(\hat{x}_4 - \hat{x}_1)$$

$$(x - \hat{x}_1)^2 + (x - \hat{x}_2)^2 + q(\hat{x}_1 - \hat{x}_2)^2$$

One-shot decentralized estimation with coupled cost

Model State of the world : $x \sim \mathcal{N}(0, \Sigma_x)$

Observation of agent i: $y_i = C_i x + w_i$, $w_i \sim \mathcal{N}(0, Q_i)$

Estimate of agent i : $\hat{x}_i = g_i(y_i)$. Let $\hat{x} = \text{vec}(\hat{x}_1, \dots, \hat{x}_n)$

Objective Choose $(g_1, ..., g_n)$ to minimize $\mathbb{E}[c(x, \hat{x})]$ where ...

$$(x - \hat{x}_{1})^{2} + (x - \hat{x}_{2})^{2} + (x - \hat{x}_{3})^{2} + (x - \hat{x}_{4})^{2} + q(\hat{x}_{1} - \hat{x}_{2})^{2} + q(\hat{x}_{2} - \hat{x}_{3})^{2} + q(\hat{x}_{3} - \hat{x}_{4})^{2} + q(\hat{x}_{4} - \hat{x}_{1})$$

$$(x - \hat{x}_{1})^{2} + (x - \hat{x}_{2})^{2} + q(\hat{x}_{1} - \hat{x}_{2})^{2} + q(\hat{x}_{1} - \hat{x}_{2})^{2}$$

$$+ q(\hat{x}_{1} - \hat{x}_{2})^{2}$$

$$1 \qquad q \qquad 1$$

$$q \qquad q \qquad q$$

One-shot decentralized estimation with coupled cost

 $\label{eq:model} \mbox{Model} \qquad \mbox{State of the world} \qquad : \ \chi \sim \mathcal{N}(0, \Sigma_{x})$

Observation of agent i: $y_i = C_i x + w_i$, $w_i \sim \mathcal{N}(0, Q_i)$

Estimate of agent i : $\hat{\chi}_i = g_i(y_i)$. Let $\hat{\chi} = \text{vec}(\hat{\chi}_1, \dots, \hat{\chi}_n)$

Objective Choose $(g_1, ..., g_n)$ to minimize $\mathbb{E}[c(x, \hat{x})]$ where . . .

$$c(x, \hat{x}) = \sum_{i \in N} (x - \hat{x}_i)^{\mathsf{T}} M_{ii}(x - \hat{x}_i) + \frac{1}{2} \sum_{i, j \in N} (\hat{x}_i - \hat{x}_j)^{\mathsf{T}} M_{ij}(\hat{x}_i - \hat{x}_j)$$

$$+ q(\hat{x}_1 - \hat{x}_2)^2 + q(\hat{x}_2 - \hat{x}_3)^2 + q(\hat{x}_3 - \hat{x}_4)^2 + q(\hat{x}_4 - \hat{x}_1)^2$$

$$(x - \hat{x}_1)^2 + (x - \hat{x}_2)^2 + q(\hat{x}_1 - \hat{x}_2)^2$$

Multi-step decentralized estimation (basic version)

```
Model State of the world : x(t+1) = Ax(t) + w^{0}(t), w^{0}(t) \sim \mathcal{N}(0, Q_{0})
```

Observation of agent i:
$$y_i(t) = C_i x(t) + w_i(t)$$
, $w_i(t) \sim \mathcal{N}(0, Q_i)$

Multi-step decentralized estimation (basic version)

Model State of the world :
$$x(t+1) = Ax(t) + w^{0}(t)$$
, $w^{0}(t) \sim \mathcal{N}(0, Q_{0})$

Observation of agent i:
$$y_i(t) = C_i x(t) + w_i(t)$$
, $w_i(t) \sim \mathcal{N}(0, Q_i)$

$$\text{Estimate of agent i} \quad : \ \hat{\chi}_i(t) = g_{i,t}(y_i(1:t)). \quad \ \text{Let} \ \hat{\chi}(t) = \text{vec}(\hat{\chi}_1(t),...\,,\hat{\chi}_n(t))$$

Objective Choose
$$(g_1, ..., g_n)$$
 to minimize $\mathbb{E}\left[\sum_{t=1}^{n} c(x(t), \hat{x}(t))\right]$ where

$$c(x(t), \hat{x}(t)) = \sum_{i \in N} (x(t) - \hat{x}_i(t))^\top M_{ii}(x(t) - \hat{x}_i(t)) + \frac{1}{2} \sum_{i,j \in N} (\hat{x}_i(t) - \hat{x}_j(t))^\top M_{ij}(\hat{x}_i(t) - \hat{x}_i(t))$$

Multi-step decentralized estimation (basic version)

Model State of the world :
$$x(t+1) = Ax(t) + w^{0}(t)$$
, $w^{0}(t) \sim \mathcal{N}(0, Q_{0})$

Observation of agent i:
$$y_i(t) = C_i x(t) + w_i(t)$$
, $w_i(t) \sim \mathcal{N}(0, Q_i)$

$$\text{Estimate of agent i} \quad : \ \hat{\chi}_i(t) = g_{i,t}(y_i(1:t)). \quad \ \text{Let} \ \hat{\chi}(t) = \text{vec}(\hat{\chi}_1(t),...\,,\hat{\chi}_n(t))$$

Objective Choose
$$(g_1, ..., g_n)$$
 to minimize $\mathbb{E}\left[\sum_{t=1}^{n} c(x(t), \hat{x}(t))\right]$ where

$$c(\mathbf{x}(\mathbf{t}), \hat{\mathbf{x}}(\mathbf{t})) = \sum_{i \in \mathbf{N}} (\mathbf{x}(\mathbf{t}) - \hat{\mathbf{x}}_i(\mathbf{t}))^{\mathsf{T}} M_{ii}(\mathbf{x}(\mathbf{t}) - \hat{\mathbf{x}}_i(\mathbf{t})) + \frac{1}{2} \sum_{i,j \in \mathbf{N}} (\hat{\mathbf{x}}_i(\mathbf{t}) - \hat{\mathbf{x}}_j(\mathbf{t}))^{\mathsf{T}} M_{ij}(\hat{\mathbf{x}}_i(\mathbf{t}) - \hat{\mathbf{x}}_i(\mathbf{t}))$$

General version Neighbors can communicate to one another over a communication graph.

$$\boldsymbol{\hat{x}_i(t)} = g_i(I_i(t)) \text{, where } I_i(t) = \big\{ y_i(0:t), \big\{ I_j(t-d_{ji} \big\}_{j \in N_i^c} \big\}.$$

Estimation graph

- ▶ Weighted undirected graph with self loops
- ▶ Weights are positive definite matrices and correspond to the weight given to the error between the estimates of the neighbors.

Estimation graph

- Weighted undirected graph with self loops
- ➤ Weights are positive definite matrices and correspond to the weight given to the error between the estimates of the neighbors.

Communication graph

- Weighted directed graph
- Weights are positive integers and correspond to the communication delay between neighbors.

Some representative graphs

- Completely connected graph with d-step delay along each link.
- Strongly connected graph with one-step delay along each link.

Problem Formulation

- Given ▶ The dimension of all system variables
 - ▶ The covariance of all noise variables
 - \triangleright A communication graph \mathcal{G}^c that determines the information structure
 - ightharpoonup An estimation graph $eals^e$ that determines the cost coupling between agents

Objective Choose
$$g = (g_1, ..., g_n)$$
 where $g_i = (g_{i,1}, ..., g_{i,T})$ and

$$\hat{x}_i(t) = g_{i,t}(I_i(t))$$

to minimize $\mathbb{E}\left[\left.\sum_{t=1}^{T}c(x(t),\hat{x}(t))\right]$ where

$$c(\mathbf{x}(t), \hat{\mathbf{x}}(t)) = \sum_{\mathbf{i} \in \mathbf{N}} (\mathbf{x}(t) - \hat{\mathbf{x}}_{\mathbf{i}}(t))^{\mathsf{T}} \mathbf{M}_{\mathbf{i}\mathbf{i}}(\mathbf{x}(t) - \hat{\mathbf{x}}_{\mathbf{i}}(t)) + \frac{1}{2} \sum_{\mathbf{i}, \mathbf{i} \in \mathbf{N}} (\hat{\mathbf{x}}_{\mathbf{i}}(t) - \hat{\mathbf{x}}_{\mathbf{j}}(t))^{\mathsf{T}} \mathbf{M}_{\mathbf{i}\mathbf{j}}(\hat{\mathbf{x}}_{\mathbf{i}}(t) - \hat{\mathbf{x}}_{\mathbf{i}}(t))$$

Motivation

Decentralized Does separation of estimation and control hold for decentralized control control systems?

Motivation

Decentralized Control Does separation of estimation and control hold for decentralized control systems?

Consensus in sensor networks

Lot of recent literature on ad-hoc iterative algorithms in which agents converge to a consensus solution. In the proposed model, the cost is chosen such that consensus will emerge naturally.

Motivation

Decentralized	Does separation	of	estimation	and	control	hold	for	decentralized	control
Control	systems?								

Consensus in
Sensor networks

Lot of recent literature on ad-hoc iterative algorithms in which agents converge to a consensus solution. In the proposed model, the cost is chosen such that consensus will emerge naturally.

Estimation in Each vehicle needs to estimate the location of all vehicles in a platoon.

vehicle patoons

Other potential ...

Key Observation

The decentralized filtering problem is a static team

Brief literature overview

Research on static teams started in Economics in the context of organizational behavior

▶ Marschack(1950's), Radnar (1962), Marschack and Radnar (1972)

Dynamic teams have been studied in Systems and Control since late 60's

- ▶ Witensenhausen (1969): A two-step LQG system with two controllers. Non-linear controllers outperform linear control strategies. Finding the optimal controller for this model is still an open problem.
- ▶ Whittle and Rudge (1974): Infinite horizon LQG model with two symmetric controllers. A priori restrict attention to linear controllers. Best linear controllers cannot be represented by recursions of finite order.
- ▶ Some positive results: Witsenhausen (1971), Ho and Chu (1972), Krainak Speyer Marcus (1982), Aicardi Davoli Minciardi (1987), Nayyar Mahajan Teneketzis (2013).

A simplified version of Radner's model

- Model \triangleright Decentralized system with n agents.
 - $\blacktriangleright \ (x,y_1,...,y_n) \ \text{jointly Gaussian.} \ \text{cov}(x,y_i) = \Theta_i, \ \text{cov}(y_i,y_j) = \Sigma_{ij}.$
 - ▶ Agent i observes y_i and chooses $u_i = g_i(y_i)$.

A simplified version of Radner's model

- Model \triangleright Decentralized system with n agents.
 - \triangleright $(x, y_1, ..., y_n)$ jointly Gaussian. $cov(x, y_i) = \Theta_i$, $cov(y_i, y_j) = \Sigma_{ij}$.
 - ▶ Agent i observes y_i and chooses $u_i = g_i(y_i)$.
- **Objective** Choose $g = (g_1, ..., g_n)$ to minimize $\mathbb{E}[c(x, u)]$ where

$$c(\mathbf{x}, \mathbf{u}) = \mathbb{E}\left[\sum_{\mathbf{i}, \mathbf{j} \in \mathbf{N}} (\mathbf{u}_{\mathbf{i}})^{\mathsf{T}} \mathbf{R}_{\mathbf{i} \mathbf{j}} \mathbf{u}_{\mathbf{j}} + 2 \sum_{\mathbf{i} \in \mathbf{N}} (\mathbf{u}_{\mathbf{i}})^{\mathsf{T}} \mathbf{P}_{\mathbf{i}} \mathbf{x}\right]$$

The idea of Radner's solution

Necessary condition for optimality $\begin{array}{ll} \text{Necessary condition} & \text{A strategy } g = (g_1, \ldots, g_n) \text{ is optimal only if for any other strategy } \tilde{g} = \\ & (\tilde{g}_1, \ldots, \tilde{g}_n) \\ & J(\tilde{g}_i, q_{-i}) - J(q) \geqslant 0 \\ \end{array}$

This also implies that the strategy g is person by person optimal.

Sufficient condition $\text{for optimality} \qquad \text{A strategy } g = (g_1, \dots, g_n) \text{ is optimal if for any other strategy } \tilde{g} = (\tilde{g}_1, \dots, \tilde{g}_n)$ $\text{for optimality} \qquad \qquad J(\tilde{g}) - J(g) \geqslant 0$

The idea of Radner's solution

Necessary condition for optimality

A strategy
$$g=(g_1,...,g_n)$$
 is optimal only if for any other strategy $\tilde{g}=(\tilde{g}_1,...,\tilde{g}_n)$
$$J(\tilde{g}_i,q_{-i})-J(q)\geqslant 0$$

This also implies that the strategy g is person by person optimal.

Sufficient condition for optimality

A strategy
$$g=(g_1,\ldots,g_n)$$
 is optimal if for any other strategy $\tilde{g}=(\tilde{g}_1,\ldots,\tilde{g}_n)$ $J(\tilde{g})-J(g)\geqslant 0$

Radner's key result was to show that PBPO implies team optimality.

The idea of Radner's solution

Necessary condition A strategy $g=(g_1,...,g_n)$ is optimal only if for any other strategy $\tilde{g}=$ for optimality $(\tilde{g}_1,...,\tilde{g}_n)$ $J(\tilde{g}_i,q_{-i})-J(q)\geqslant 0$

This also implies that the strategy g is person by person optimal.

 $\begin{array}{ll} \text{Sufficient condition} & \text{A strategy } g = (g_1, \ldots, g_n) \text{ is optimal if for any other strategy } \tilde{g} = (\tilde{g}_1, \ldots, \tilde{g}_n) \\ & \text{for optimality} & J(\tilde{g}) - J(g) \geqslant 0 \end{array}$

Radner's key result was to show that PBPO implies team optimality.

Necessary and sufficient condition

$$g_i(y_i) = u_i$$
 such that $\frac{\partial}{\partial u_i} \mathbb{E}[c(x, g_{-i}(y_{-i}), u_i)) | y_i] = 0$

Radner's solution (cont.)

Main result Optimal control law is linear and is given by

$$u^i = F^i(y^i - \mathbb{E}[y^i]) + H^i \, \mathbb{E}[x],$$

where

$$F = -\Gamma^{-1}\eta, \qquad H = -R^{-1}P,$$

and

$$\blacktriangleright H = rows(H^1, H^2, \cdots, H^n).$$

$$ightharpoonup \Gamma = [\Gamma^{ij}], \text{ where } \Gamma^{ij} = \Sigma^{ij} \otimes R^{ij}.$$

$$ightharpoonup \eta = \text{vec}(P^1\Theta^1, P^2\Theta^2, \dots, P^n\Theta^n).$$

One-step decentralized estimation as a static team

In the decentralized estimation problem, we have

$$c(x, \hat{x}) = \sum_{i \in \mathbb{N}} (x - \hat{x}_i)^{\mathsf{T}} M_{ii}(x - \hat{x}_i) + \frac{1}{2} \sum_{i, j \in \mathbb{N}} (\hat{x}_i - \hat{x}_j)^{\mathsf{T}} M_{ij}(\hat{x}_i - \hat{x}_j)$$

One-step decentralized estimation as a static team

In the decentralized estimation problem, we have

$$c(x, \hat{x}) = \sum_{i \in N} (x - \hat{x}_i)^{\mathsf{T}} M_{ii}(x - \hat{x}_i) + \frac{1}{2} \sum_{i, j \in N} (\hat{x}_i - \hat{x}_j)^{\mathsf{T}} M_{ij}(\hat{x}_i - \hat{x}_j)$$

This can be written as
$$x^{\top}Qx + \hat{x}^{\top}R\hat{x} + 2\hat{x}^{\top}Px$$
 , where

$$ightharpoonup Q = \sum_{i \in \mathbb{N}} M_{ii}$$
,

 \triangleright P = rows $(-M_{ii}, ..., -M_{nn})$

$$\triangleright \ \Sigma_{i,i} = C_i \Sigma_x (C_i)^{\top}$$

 $\Sigma_{ii} = C_i \Sigma_x (C_i)^T + \text{var}(w_i)$

$$R = [R..]$$
 where

$$\triangleright \Theta_i = \Sigma_x(C_i)^{\top}$$
.

$$ightharpoonup R = [R_{ij}], \text{ where}$$

$$R_{ij} = \begin{cases} M_{ii} + \sum_{j \in N_j} M_{ij}, & \text{if } i = j \\ -M_{ij}, & \text{if } j \in N_i \\ 0, & \text{otherwise} \end{cases} \tag{Graph Laplacian}$$

Optimal solution for one-shot decentralized estimation

Translating Radner's result

Since the model is a static team, from Radner's result we can say that the optimal estimates are

$$\hat{\chi}_i = F_i y_i$$

However, this form of the solution does not work well for the multi-step case.

Optimal solution for one-shot decentralized estimation

Translating Radner's result

Since the model is a static team, from Radner's result we can say that the optimal estimates are

$$\hat{x}_i = F_i y_i$$

However, this form of the solution does not work well for the multi-step case.

An alternative form of the solution

Let $\hat{x}_i^{loc} = \mathbb{E}[x \, | \, y_i]$. Then, the optimal estimates are given by

$$\hat{\mathbf{x}}_i = \mathbf{L}_i \, \hat{\mathbf{x}}_i^{\text{loc}}, \quad \mathbf{L} = -\Gamma^{-1} \mathbf{\eta}$$

$$ightharpoonup L = \text{vec}(L^1, ..., L^n)$$

$$\triangleright \hat{\Sigma}_{ij} = \text{cov}(\hat{\chi}_i, \hat{\chi}_j) = \Theta_i(\Sigma_{ij})^{-1} \Sigma_{ij}(\Sigma_{jj})^{-1} (\Theta_i)^{\top}$$

$$ightharpoonup \Gamma = [\Gamma_{ij}], \text{ where } \Gamma_{ij} = \widehat{\Sigma}_{ij} \otimes R_{ij}$$

$$\triangleright \eta = \text{vec}(P_1 \hat{\Sigma}_{11}, ..., P_n \hat{\Sigma}_{nn})$$

1 Suppose
$$x \sim \mathcal{N}(0, \sigma_0^2)$$
 and $y_i = x + w_i$ where $w_i \sim \mathcal{N}(0, \sigma^2)$. Then,

$$\Gamma = \begin{bmatrix} 1+q & -\alpha q \\ -\alpha q & 1+q \end{bmatrix}, \quad \text{where } \alpha = \frac{\sigma_0^2}{\sigma_0^2 + \sigma^2}.$$

1 Suppose
$$x \sim \mathcal{N}(0, \sigma_0^2)$$
 and $y_i = x + w_i$ where $w_i \sim \mathcal{N}(0, \sigma^2)$. Then,

$$\Gamma = \begin{bmatrix} 1+q & -\alpha q \\ -\alpha q & 1+q \end{bmatrix}, \quad \text{where } \alpha = \frac{\sigma_0^2}{\sigma_0^2 + \sigma^2}.$$

$$\Gamma^{-1} = \frac{1}{(1+q)^2 - (\alpha q)^2} \begin{bmatrix} 1+q & \alpha q \\ \alpha q & 1+q \end{bmatrix}.$$

$$1 \qquad \qquad 1 \qquad \hat{\chi}_i = \frac{1}{1 + \bar{\alpha} q} \, \hat{\chi}_i^{loc}, \quad \text{where } \bar{\alpha} = \frac{\sigma^2}{\sigma_0^2 + \sigma^2}.$$

$$1 \ \ \, \widehat{\chi}_i = \frac{1}{1+\bar{\alpha}q}\,\widehat{\chi}_i^{loc} \text{,} \quad \text{where } \bar{\alpha} = \frac{\sigma^2}{\sigma_0^2+\sigma^2}.$$

$$\widehat{x}_i = \frac{1}{1+2\bar{\alpha}q}\,\widehat{x}_i^{loc}.$$

Examples of one-shot estimation

$$1 \qquad \qquad 1 \qquad \hat{\chi}_i = \frac{1}{1 + \bar{\alpha} q} \, \hat{\chi}_i^{\text{loc}}, \quad \text{where } \bar{\alpha} = \frac{\sigma^2}{\sigma_0^2 + \sigma^2}.$$

$$\hat{\chi}_i = \frac{1}{1+2\bar{\alpha}q}\,\hat{\chi}_i^{loc}.$$

 $d\text{-regular graph} \qquad \hat{x}_i = \frac{1}{1+ \frac{d\bar{\alpha}q}{1}} \hat{x}_i^{\text{loc}}. \qquad \text{Proof: Show that } \Gamma \, L = -\eta$

Key observation The problem at time t is a one-shot optimization problem

Key observation The problem at time t is a one-shot optimization problem

Optimal estimator

Let
$$\hat{x}_i^{\text{loc}}(t) = \mathbb{E}[x(t) \,|\, I_i(t)]$$
 and $\hat{\Sigma}_{ij}(t) = \text{cov}(\hat{x}_i^{\text{loc}}(t), \hat{x}_j^{\text{loc}}(t))$. Then,

$$\begin{split} \hat{\chi}_i(t) &= L_i(t)\,\hat{\chi}_i^{\text{loc}}(t),\\ \text{vec}(L_i(t)) &= -\big[\hat{\Sigma}_{ij}(t)\otimes R_{ij}\big]^{-1}\,\text{vec}(P_i\hat{\Sigma}_{ii}(t)) \end{split}$$

Key observation The problem at time t is a one-shot optimization problem

Optimal estimator

Let
$$\hat{x}_i^{\text{loc}}(t) = \mathbb{E}[x(t) \,|\, I_i(t)]$$
 and $\hat{\Sigma}_{ij}(t) = \text{cov}(\hat{x}_i^{\text{loc}}(t), \hat{x}_j^{\text{loc}}(t))$. Then,

$$\begin{split} \hat{\chi}_i(t) &= L_i(t) \, \hat{\chi}_i^{\text{loc}}(t), \\ \text{vec}(L_i(t)) &= - \big[\hat{\Sigma}_{ij}(t) \otimes R_{ij} \big]^{-1} \, \text{vec}(P_i \hat{\Sigma}_{ii}(t)) \end{split}$$

Remarks

To compute the optimal solution, we only need to compute $\hat{\chi}_i^{loc}(t)$ and $\hat{\Sigma}_{ij}(t).$

Recall, all random variables are jointly Gaussian. Pre-computing $\hat{\Sigma}_{ij}(t)$ and keeping track of $\hat{\chi}_i^{loc}(t)$ is trivial but for computational complexity.

Almost same as standard Kalman filtering! Relatively straight forward to come up with recursive equations (but for notation!).

Recursive computation of $\widehat{x}_i^{loc}(t)$ and $\widehat{\Sigma}_{ij}(t)$

Recursive computation of $\hat{\chi}_{i}^{loc}(t)$ and $\hat{\Sigma}_{ii}(t)$ Proof by examples ... Decentralized Kalman Filtering-(Mahajan)

Recursive computation of $\hat{\chi}_{:}^{loc}(t)$ and $\hat{\Sigma}_{i:}(t)$ Proof by examples . . .

Recursive computation of $\hat{\chi}_{i}^{loc}(t)$ and $\hat{\Sigma}_{ii}(t)$ Proof by examples . . .

One step Complete communication graph with one unit communication delay. delay sharing $I_i(t) = \{ y_i(t), y(1:t-1) \}$

d-step delay Complete communication graph with d units communication delay. Sharing $I_i(t) = \{y_i(t-d+1:t), y(1:t-d)\}$

Recursive computation of $\hat{\chi}_{i}^{loc}(t)$ and $\hat{\Sigma}_{ii}(t)$ Proof by examples . . .

d-step delay Complete communication graph with d units communication delay. Sharing
$$I_i(t) = \{y_i(t-d+1:t), y(1:t-d)\}$$

General comm.

graph

Can be effectively viewed as a d-step delay sharing, where d is the diameter of the graph.

One-step delay sharing

Recursion for Recall $\hat{x}_i^{\text{loc}}(t) = \mathbb{E}[x(t) | y_i(t), y(1:t-1)]$. Define $\hat{x}^{\text{com}}(t) = \mathbb{E}[x(t) | y(1:t-1)]$. Then,

$$\hat{x}_i^{\text{loc}}(t) = \hat{x}^{\text{com}}(t) + K_i(t) \big[y_i(t) - C_i(t) \hat{x}^{\text{com}}(t) \big]$$

One-step delay sharing

```
Recursion for Recall \hat{x}_i^{\text{loc}}(t) = \mathbb{E}[x(t) | y_i(t), y(1:t-1)]. Define \hat{x}^{\text{com}}(t) = \mathbb{E}[x(t) | y(1:t-1)]. Then,
```

$$\hat{\chi}_{i}^{\text{loc}}(t) = \hat{\chi}^{\text{com}}(t) + K_{i}(t) \big[y_{i}(t) - C_{i}(t) \hat{\chi}^{\text{com}}(t) \big]$$

$$\hat{x}^{com}(t+1) = A\hat{x}^{com}(t) + AK(t)\big[y(t) - C\hat{x}^{com}(t)\big]$$

One-step delay sharing

Recursion for Recall $\hat{x}_i^{\text{loc}}(t) = \mathbb{E}[x(t) | y_i(t), y(1:t-1)]$. Define $\hat{x}^{\text{com}}(t) = \mathbb{E}[x(t) | y(1:t-1)]$. Then,

$$\hat{x}_i^{loc}(t) = \hat{x}^{com}(t) + K_i(t) \big[y_i(t) - C_i(t) \hat{x}^{com}(t) \big]$$

$$\hat{\boldsymbol{\chi}}^{\text{com}}(t+1) = A\hat{\boldsymbol{\chi}}^{\text{com}}(t) + AK(t)\big[\boldsymbol{y}(t) - C\hat{\boldsymbol{\chi}}^{\text{com}}(t)\big]$$

Recursion for conditional covariance

Let
$$\Sigma(t) = \text{var}(x(t) - \hat{\chi}^{\text{com}}(t))$$
. The gains are given by
$$K_i(t) = \Sigma(t)(C_i(t))^{\top} [C_i\Sigma(t)(C_i)^{\top} + \text{var}(w_i)]^{-1}$$

$$\mathbf{K}(\mathbf{t}) = \mathbf{\Sigma}(\mathbf{t})\mathbf{C}^{\intercal} \big[\mathbf{C}\mathbf{\Sigma}(\mathbf{t})\mathbf{C}^{\intercal} + \mathbf{var}(w_1, \dots, w_n) \big]$$

Define
$$\Lambda(t) = I - K(t)C$$
.

$$\Sigma(t) = A\Lambda(t)\Sigma(t)\Lambda(t)^{\top}A^{\top} + \text{var}(w_0) + AK(t)\,\text{var}(w_1,...,w_n)K(t)^{\top}A^{\top}$$

One-step delay sharing

Recursion for Recall $\hat{x}_i^{\text{loc}}(t) = \mathbb{E}[x(t) | y_i(t), y(1:t-1)]$. Define $\hat{x}^{\text{com}}(t) = \mathbb{E}[x(t) | y(1:t-1)]$. Then,

$$\hat{x}_{i}^{\text{loc}}(t) = \hat{x}^{\text{com}}(t) + K_{i}(t) \big[y_{i}(t) - C_{i}(t) \hat{x}^{\text{com}}(t) \big]$$

$$\hat{x}^{com}(t+1) = A\hat{x}^{com}(t) + AK(t)\big[y(t) - C\hat{x}^{com}(t)\big]$$

Recursion for Let $\Sigma(t) = \text{var}(x(t) - \hat{\chi}^{\text{com}}(t))$. The gains are given by conditional covariance $K_i(t) = \Sigma(t)(C_i(t))^\top [C_i\Sigma(t)(C_i)^\top + \text{var}(w_i)]^{-1}$

$$\mathbf{K}(\mathbf{t}) = \mathbf{\Sigma}(\mathbf{t})\mathbf{C}^{\mathsf{T}}\big[\mathbf{C}\mathbf{\Sigma}(\mathbf{t})\mathbf{C}^{\mathsf{T}} + \mathsf{var}(w_1, \dots, w_n)\big]$$

Standard Kalman filter Define $\Lambda(t) = I - K(t)C$. $\Sigma(t) = A \Lambda(t) \Sigma(t) \Lambda(t)$

$$\Sigma(t) = A\Lambda(t)\Sigma(t)\Lambda(t)^{\top}A^{\top} + \text{var}(w_0) + AK(t)\,\text{var}(w_1,...,w_n)K(t)^{\top}A^{\top}$$

One-step delay sharing

Recursion for Recall $\hat{x}_i^{loc}(t) = \mathbb{E}[x(t)|y_i(t),y(1:t-1)]$. Define $\hat{x}^{com}(t) = \mathbb{E}[x(t)|y(1:t-1)]$. local estimates Then.

$$\begin{split} \hat{x}_i^{loc}(t) &= \hat{x}^{com}(t) + K_i(t) \big[y_i(t) - C_i(t) \hat{x}^{com}(t) \big] \\ \hat{x}^{com}(t+1) &= A \hat{x}^{com}(t) + A K(t) \big[y(t) - C \hat{x}^{com}(t) \big] \end{split}$$

Recursion for Let $\Sigma(t) = \text{var}(x(t) - \hat{x}^{\text{com}}(t))$. The gains are given by conditional covariance $K_i(t) = \Sigma(t)(C_i(t))^{\mathsf{T}} [C_i\Sigma(t)(C_i)^{\mathsf{T}} + \mathsf{var}(w_i)]^{-1}$

$$\mathbf{K}(\mathbf{t}) = \mathbf{\Sigma}(\mathbf{t})\mathbf{C}^{\mathsf{T}} \left[\mathbf{C}\mathbf{\Sigma}(\mathbf{t})\mathbf{C}^{\mathsf{T}} + \mathbf{var}(w_1, \dots, w_n)\right]$$

Define $\Lambda(t) = I - K(t)C$. Standard Kalman filter $\Sigma(t) = A\Lambda(t)\Sigma(t)\Lambda(t)^{\mathsf{T}}A^{\mathsf{T}} + \mathsf{var}(w_0) + AK(t)\,\mathsf{var}(w_1,...,w_n)K(t)^{\mathsf{T}}A^{\mathsf{T}}$

e
$$\hat{\Sigma}_{ij}(t) = K_i C_i \Sigma(t) (C_j)^T (K_j)^T$$

Covariance across agents

d-step delay sharing

```
\begin{array}{ll} \text{Recursion for} & \text{Recall } \hat{x}_i^{\text{loc}}(t) = \mathbb{E}[x(t) \, | \, y_i(t-d+1:t), y(1:t-d)]. \\ \text{local estimates} & \text{Define } \hat{x}^{\text{com}}(t-d+1) = \mathbb{E}[x(t-d+1) \, | \, y(1:t-d)]. \end{array}
```

$$\hat{x}_{i}^{\text{loc}}(t) = A^{d-1}\hat{x}^{\text{com}}(t-d+1) + K_{i}(t) \left\{ \begin{bmatrix} y_{i}(t) \\ y_{i}(t-1) \\ \vdots \\ y_{i}(t-d+1) \end{bmatrix} - \underbrace{\begin{bmatrix} C_{i}(t)A^{d-1} \\ C_{i}(t)A^{d-2} \\ \vdots \\ C_{i}(t) \end{bmatrix}}_{\bar{C}_{i}(t)} \hat{x}^{\text{com}}(t-d+1) \right\}$$

d-step delay sharing

Recursion for Recall
$$\hat{x}_i^{\text{loc}}(t) = \mathbb{E}[x(t) | y_i(t-d+1:t), y(1:t-d)].$$
 local estimates Define $\hat{x}^{\text{com}}(t-d+1) = \mathbb{E}[x(t-d+1) | y(1:t-d)].$

$$\hat{x}_i^{\text{loc}}(t) = A^{d-1}\hat{x}^{\text{com}}(t-d+1) + K_i(t) \left\{ \begin{bmatrix} y_i(t) \\ y_i(t-1) \\ \vdots \\ y_i(t-d+1) \end{bmatrix} - \underbrace{\begin{bmatrix} C_i(t)A^{d-1} \\ C_i(t)A^{d-2} \\ \vdots \\ C_i(t) \end{bmatrix}}_{\bar{C}_i(t)} \hat{x}^{\text{com}}(t-d+1) \right\}$$

 $\hat{\mathbf{x}}^{\mathsf{com}}(t+1) = A\hat{\mathbf{x}}^{\mathsf{com}}(t) + AK_{\mathsf{t}}[y_{\mathsf{t}} - C\hat{\mathbf{x}}^{\mathsf{com}}(t)]$

Standard Kalman filter
$$\begin{array}{l} \text{and} \\ \Sigma(t) = A\Lambda(t)\Sigma(t-1)\Lambda(t)^{\top}A^{\top} + \text{var}(w_0) + AK(t)\,\text{var}(w_1,\dots,w_n)K(t)^{\top}A^{\top} \end{array}$$

d-step delay sharing

Recursion for Recall
$$\hat{x}_i^{loc}(t) = \mathbb{E}[x(t) | y_i(t-d+1:t), y(1:t-d)].$$
 local estimates Define $\hat{x}^{com}(t-d+1) = \mathbb{E}[x(t-d+1) | y(1:t-d)].$

$$\hat{x}_i^{\text{loc}}(t) = A^{d-1}\hat{x}^{\text{com}}(t-d+1) + K_i(t) \left\{ \begin{bmatrix} y_i(t) \\ y_i(t-1) \\ \vdots \\ y_i(t-d+1) \end{bmatrix} - \underbrace{\begin{bmatrix} C_i(t)A^{d-1} \\ C_i(t)A^{d-2} \\ \vdots \\ C_i(t) \end{bmatrix}}_{\bar{C}_i(t)} \hat{x}^{\text{com}}(t-d+1) \right\}$$

where
$$\bar{w}_i(t-d+1)=W_i \operatorname{vec}(w_i(t),...,w_i(t-d+1))$$
 and $\bar{\Sigma}_{ii}(t)=\operatorname{cov}(\bar{w}_i(t),\bar{w}_i(t)).$

 $K_{i}(t) = \left\lceil A^{d-1} \Sigma(t-d) (\bar{C}_{i})^{\top} + \bar{\Sigma}_{i0}(t-k+1) \right\rceil \left\lceil \bar{C}_{i} \Sigma(t-d) (\bar{C}_{i})^{\top} + \bar{\Sigma}_{ii}(t-d+1) \right\rceil^{-1}$

d-step delay sharing

Recursion for Recall
$$\hat{x}_i^{\text{loc}}(t) = \mathbb{E}[x(t) | y_i(t-d+1:t), y(1:t-d)].$$
local estimates Define $\hat{x}^{\text{com}}(t-d+1) = \mathbb{E}[x(t-d+1) | y(1:t-d)].$

$$\hat{\chi}_{i}^{\text{loc}}(t) = A^{d-1}\hat{\chi}^{\text{com}}(t-d+1) + K_{i}(t) \left\{ \begin{bmatrix} y_{i}(t) \\ y_{i}(t-1) \\ \vdots \\ y_{i}(t-d+1) \end{bmatrix} - \underbrace{\begin{bmatrix} C_{i}(t)A^{d-1} \\ C_{i}(t)A^{d-2} \\ \vdots \\ C_{i}(t) \end{bmatrix}}_{\tilde{C}_{i}(t)} \hat{\chi}^{\text{com}}(t-d+1) \right\}$$

$$\begin{array}{ll} \text{Recursion for} & \text{K}_i(t) = \left[A^{d-1}\Sigma(t-d)(\bar{C}_i)^\top + \bar{\Sigma}_{i0}(t-k+1)\right] \left[\bar{C}_i\Sigma(t-d)(\bar{C}_i)^\top + \bar{\Sigma}_{ii}(t-d+1)\right]^{-1} \\ \text{conditional covariance} & \text{where } \bar{w}_i(t-d+1) = W_i \, \text{vec}(w_i(t),...,w_i(t-d+1)) \\ & \text{and } \bar{\Sigma}_{ii}(t) = \text{cov}(\bar{w}_i(t),\bar{w}_i(t)). \end{array}$$

$$\begin{array}{ll} \text{Covariance} & \hat{\Sigma}_{ij}(t) = K_i(t) \big[\bar{C}_i \Sigma(t-d) (\bar{C}_j)^\top + \text{cov}(\bar{w}_i, \bar{w}_j) \big] (K_j(t))^\top \\ \text{across agents} & \end{array}$$

General graph

Information $I_1(t) = \{y_1(1:t), y_2(1:t-1), y_3(1:t-2), y_4(1:t-1)\}$ structure

General graph

$$\begin{array}{ll} \text{Information} & I_1(t) = \{y_1(1:t), y_2(1:t-1), y_3(1:t-2), y_4(1:t-1)\} \\ & = \{\underbrace{y_1(t), y_1(t-1), y_2(t-1), y_4(t-1)}_{\text{local info}}, \underbrace{y(1:t-2)}_{\text{common info}} \} \\ \end{array}$$

General graph

$$\begin{array}{ll} \text{Information} & I_1(t) = \{y_1(1:t), y_2(1:t-1), y_3(1:t-2), y_4(1:t-1)\} \\ = \{\underline{y_1(t)}, y_1(t-1), y_2(t-1), y_4(t-1), \underline{y(1:t-2)}\} \\ & \text{local info} \end{array}$$

Local estimates $\text{Recall } \hat{x}_i^{\text{loc}}(t) = \mathbb{E}[x(t) \,|\, I_i(t)]. \text{ Then,}$

$$\hat{x}_{1}^{loc}(t) = A\hat{x}^{com}(t-1) + K_{1}(t) \left\{ \begin{bmatrix} y_{1}(t) \\ y_{1}(t-1) \\ y_{2}(t-1) \\ y_{4}(t-1) \end{bmatrix} - \begin{bmatrix} C_{1}A \\ C_{1} \\ C_{2} \\ C_{4} \end{bmatrix} \hat{x}^{com}(t-1) \right\}$$

General graph

$$\begin{array}{ll} \text{Information} & I_1(t) = \{y_1(1:t), y_2(1:t-1), y_3(1:t-2), y_4(1:t-1)\} \\ & = \{\underline{y_1(t)}, y_1(t-1), y_2(t-1), y_4(t-1), \underline{y(1:t-2)}\} \\ & = \{\underline{y_1(t)}, y_1(t-1), y_2(t-1), y_4(t-1), \underline{y(1:t-2)}\} \\ & = \{\underline{y_1(t)}, \underline{y_1(t-1)}, \underline{y_2(t-1)}, \underline{y_2(t-1)}, \underline{y_3(1:t-2)}\} \\ & = \{\underline{y_1(t)}, \underline{y_1(t-1)}, \underline{y_2(t-1)}, \underline{y_3(1:t-2)}, \underline{y_3(1:t-2)}\} \\ & = \{\underline{y_1(t)}, \underline{y_1(t-1)}, \underline{y_2(t-1)}, \underline{y_3(t-1)}, \underline{y_3(1:t-2)}\} \\ & = \{\underline{y_1(t)}, \underline{y_1(t-1)}, \underline{y_2(t-1)}, \underline{y_3(t-1)}, \underline{y_3(1:t-2)}\} \\ & = \{\underline{y_1(t)}, \underline{y_1(t-1)}, \underline{y_2(t-1)}, \underline{y_3(t-1)}, \underline{y_3(1:t-2)}, \underline{y_3(1:t-2)}\} \\ & = \{\underline{y_1(t)}, \underline{y_1(t-1)}, \underline{y_2(t-1)}, \underline{y_3(t-1)}, \underline{y_3(1:t-2)}, \underline{y_3(1:t-2)}\} \\ & = \{\underline{y_1(t)}, \underline{y_1(t-1)}, \underline{y_2(t-1)}, \underline{y_3(t-1)}, \underline{y_3(t-1)}, \underline{y_3(1:t-2)}\} \\ & = \{\underline{y_1(t)}, \underline{y_1(t-1)}, \underline{y_2(t-1)}, \underline{y_3(t-1)}, \underline{y_3(t-1)}, \underline{y_3(1:t-2)}\} \\ & = \{\underline{y_1(t)}, \underline{y_1(t-1)}, \underline{y_2(t-1)}, \underline{y_3(t-1)}, \underline{y_3(t$$

Local estimates $\text{Recall } \hat{x}_i^{\text{loc}}(t) = \mathbb{E}[x(t) \,|\, I_i(t)]. \text{ Then,}$

$$\hat{x}_{1}^{loc}(t) = A\hat{x}^{com}(t-1) + K_{1}(t) \left\{ \begin{bmatrix} y_{1}(t) \\ y_{1}(t-1) \\ y_{2}(t-1) \\ y_{4}(t-1) \end{bmatrix} - \begin{bmatrix} C_{1}A \\ C_{1} \\ C_{2} \\ C_{4} \end{bmatrix} \hat{x}^{com}(t-1) \right\}$$

▶ Effectively equivalent to d-step delayed sharing.

► Each node keeps track of a delayed centralized estimator and innovation wrt common information.

One-shot decentralized estimation with coupled cost

 $\label{eq:model} \mbox{Model} \qquad \mbox{State of the world} \qquad : \ \chi \sim \mathcal{N}(0, \Sigma_{x})$

Observation of agent i: $y_i = C_i x + w_i$, $w_i \sim \mathcal{N}(0, Q_i)$

Estimate of agent i : $\hat{\chi}_i = g_i(y_i)$. Let $\hat{\chi} = \text{vec}(\hat{\chi}_1, \dots, \hat{\chi}_n)$

Objective Choose $(g_1, ..., g_n)$ to minimize $\mathbb{E}[c(x, \hat{x})]$ where ...

$$c(x, \hat{x}) = \sum_{i \in N} (x - \hat{x}_i)^\top M_{ii}(x - \hat{x}_i) + \frac{1}{2} \sum_{i, j \in N} (\hat{x}_i - \hat{x}_j)^\top M_{ij}(\hat{x}_i - \hat{x}_j)$$

$$+ q(\hat{x}_1 - \hat{x}_2)^2 + q(\hat{x}_2 - \hat{x}_3)^2 + q(\hat{x}_3 - \hat{x}_4)^2 + q(\hat{x}_4 - \hat{x}_1)^2$$

$$(x - \hat{x}_1)^2 + (x - \hat{x}_2)^2 + q(\hat{x}_1 - \hat{x}_2)^2$$

Multi-step decentralized estimation (basic version)

Model State of the world :
$$x(t+1) = Ax(t) + w^{0}(t)$$
, $w^{0}(t) \sim \mathcal{N}(0, Q_{0})$

Observation of agent i:
$$y_i(t) = C_i x(t) + w_i(t)$$
, $w_i(t) \sim \mathcal{N}(0, Q_i)$

Objective Choose
$$(g_1, ..., g_n)$$
 to minimize $\mathbb{E}\left[\sum_{t=1}^{1} c(x(t), \hat{x}(t))\right]$ where

$$c(x(t), \hat{x}(t)) = \sum_{i \in N} (x(t) - \hat{x}_i(t))^\top M_{ii}(x(t) - \hat{x}_i(t)) + \frac{1}{2} \sum_{i,j \in N} (\hat{x}_i(t) - \hat{x}_j(t))^\top M_{ij}(\hat{x}_i(t) - \hat{x}_i(t))$$

General version Neighbors can communicate to one another over a communication graph.

$$\hat{\chi}_i(t) = g_i(I_i(t)) \text{, where } I_i(t) = \big\{ y_i(0:t), \big\{ I_j(t-d_{ji} \big\}_{j \in N_i^c} \big\}.$$

Optimal solution for one-shot decentralized estimation

Translating Radner's result

Since the model is a static team, from Radner's result we can say that the optimal estimates are

$$\hat{x}_i = F_i y_i$$

However, this form of the solution does not work well for the multi-step case.

An alternative form of the solution

Let $\hat{\chi}_i^{loc} = \mathbb{E}[x \, | \, y_i].$ Then, the optimal estimates are given by

$$\hat{\mathbf{x}}_{\mathbf{i}} = \mathbf{L}_{\mathbf{i}} \, \hat{\mathbf{x}}_{\mathbf{i}}^{\mathsf{loc}}, \quad \mathbf{L} = -\Gamma^{-1} \mathbf{\eta}$$

$$ightharpoonup L = \text{vec}(L^1, ..., L^n)$$

$$\triangleright \hat{\Sigma}_{ij} = \text{cov}(\hat{\chi}_i, \hat{\chi}_j) = \Theta_i(\Sigma_{ij})^{-1} \Sigma_{ij}(\Sigma_{jj})^{-1} (\Theta_i)^{\top}$$

$$ightharpoonup \Gamma = [\Gamma_{ij}], \text{ where } \Gamma_{ij} = \widehat{\Sigma}_{ij} \otimes R_{ij}$$

$$\triangleright \eta = \text{vec}(P_1 \hat{\Sigma}_{11}, ..., P_n \hat{\Sigma}_{nn})$$

Key observation The problem at time t is a one-shot optimization problem

Optimal estimator Let $\hat{\chi}_i^{\text{loc}}(t) = \mathbb{E}[x(t) \,|\, I_i(t)]$ and $\hat{\Sigma}_{ij}(t) = \text{cov}(\hat{\chi}_i^{\text{loc}}(t), \hat{\chi}_j^{\text{loc}}(t))$. Then,

$$\begin{split} \hat{\chi}_i(t) &= L_i(t) \, \hat{\chi}_i^{\text{loc}}(t), \\ \text{vec}(L_i(t)) &= - \big[\hat{\Sigma}_{ij}(t) \otimes R_{ij} \big]^{-1} \, \text{vec}(P_i \hat{\Sigma}_{ii}(t)) \end{split}$$

Remarks To compute the optimal solution, we only need to compute $\hat{\chi}_i^{loc}(t)$ and $\hat{\Sigma}_{ij}(t)$.

Recall, all random variables are jointly Gaussian. Pre-computing $\hat{\Sigma}_{ij}(t)$ and keeping track of $\hat{\chi}_i^{\text{loc}}(t)$ is trivial but for computational complexity.

Almost same as standard Kalman filtering! Relatively straight forward to come up with recursive equations (but for notation!).

Key observation The problem at time t is a one-shot optimization problem

$$\begin{split} \hat{\chi}_i(t) &= L_i(t) \, \hat{\chi}_i^{\text{loc}}(t), \\ \text{vec}(L_i(t)) &= - \big[\hat{\Sigma}_{ij}(t) \otimes R_{ij} \big]^{-1} \, \text{vec}(P_i \hat{\Sigma}_{ii}(t)) \end{split}$$

Remarks To compute the optimal solution, we only need to compute $\hat{\chi}_i^{loc}(t)$ and $\hat{\Sigma}_{ij}(t)$.

Recall, all random variables are jointly Gaussian. Pre-computing $\hat{\Sigma}_{ij}(t)$ and keeping track of $\hat{\chi}_i^{\text{loc}}(t)$ is trivial but for computational complexity.

Almost same as standard Kalman filtering! Relatively straight forward to come up with recursive equations (but for notation!).