Holt-Winters

Abigail Asare

Forecasting Exercise 5

Learning Objectives

- Holt-Winters with trend and no seasonality
- Holt-Winters with trend and seasonality

Holt-Winters Components

Double exponential smoothing is also known as Holt's Linear trend model. Here we assume that trend can change over time.

- Here we assume that trend can change over time
- It is suitable for time series with trend but without seasonality.

$$\hat{x}_{t+h|t} = g_t + b_t h....(1)$$

- \mathbf{g}_t is the level estimate at time t
- $lackbox{b}_t$ is the slope of the trend h
- h is the trend estimate at time t which we assumed as additive.

Updating Equations

NB: The level and Trend are updated as more data become available through a pair of updating equations:

$$g_t = \alpha y_t + (1 - \alpha)(g_{t-1} + b_{t-1})....(2)$$

$$b_t = \beta(g_t - g_{t-1}) + (1 - \beta)b_{t-1}....(3)$$

- g_t is the smoothed level, simply weighted average of the actual values at time t and the level in the previous adjusting for trend.
- \bullet b_t estimate of trend at time t
- lacksquare α is the smoothing parameter of the data.
- lacksquare eta is the trend smoothing parameter.
- lacktriangledown lpha and eta determine the rate of learning, higher values faster learning and more weight to recent information.
- \bullet 0 < α/β < 1

Starting Values

- What are the starting values for g_t and b_t . Very important
- \blacksquare g_t and b_t

$$\hat{x}_{t+h|t} = g_t + b_t h$$

- lacksquare β_0 start value for g_t
- lacksquare eta_1 start value for b_t

h-step Forecast

■ For h-step forecasts:

$$x_{T+h} \leftarrow \hat{x}_{h|T} = g_T + b_T h$$

■ Forecast Error

$$\hat{u}_{h|T} = x_{T+h} - \hat{x}_{h|T}$$

Holt-Winters with Additive Seasonal Fluctuations

It is suitable for time series with trend but with additive seasonality.

$$\hat{x}_{t+h|t} = g_t + b_t h + s_{t+h-m}$$
(4)

Updating equations:

$$g_{t} = \alpha(x_{t} - s_{t-m}) + (1 - \alpha)(g_{t-1} + b_{t-1}) \dots (5)$$

$$b_{t} = \beta(g_{t} - g_{t-1}) + (1 - \beta)b_{t-1} \dots (6)$$

$$s_{t} = \gamma(x_{t} - g_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m} \dots (7)$$

m which indicates seasonal indices used for forecasting is from the final year of the sample.

Holt-Winters with Additive Seasonal Fluctuations

- m is the length of the seasonality.
- We assume seasonality with m to be the number of the seasons in the first half of the sample.
- $flue{lpha}$ is the smoothing constant, eta is the slope parameter and γ is the parameter for adjusting seasonal fluctuations.
- We need *m* start values for the seasonal factors.
- We also need start values for g_t and b_t .

Holt-Winters with Multiplicative Seasonal Fluctuations

It is suitable for time series with trend but with multiplicative seasonality.

$$\hat{x}_{t+h|t} = (g_t + b_t h) s_{t+h-m}$$
(8)

Updating equations:

$$g_{t} = \alpha \frac{x_{t}}{s_{t-m}} + (1 - \alpha)(g_{t-1} + b_{t-1}) \dots (9)$$

$$b_{t} = \beta(g_{t} - g_{t-1}) + (1 - \beta)b_{t-1} \dots (10)$$

$$s_{t} = \gamma \frac{x_{t}}{(g_{t-1} + b_{t-1})} + (1 - \gamma)s_{t-m} \dots (11)$$

 In multiplicative seasonality, values in different seasons differ by percentage amount

