October 6th, 2022

Introduction to Machine Learning Part #2

Yusen He, PhD - DASIL Data Scientist
Prof. Julia Bauder - Director of DASIL
Martin Pollack - DASIL Post-Bac Fellow

Intro to Machine Learning Part #2 AGENDA

Bagging & Boosting

Model Evaluation

- Bagging: A set of weak decision trees
 - Randomly sampled subset
 - With replacement
 - One tree per set

Dataset

		Predictor variable			Target
		Country	Candar	Λ σο	Lagya
		Country	Gender	Age	Leave
Subset #1	1	Scottland	Male	Old	No
	2	Scottland	Male	Old	No
Subset #2	3	England	Male	Young	Yes
	4	Wales	Male	Old	Yes
Subset #N	5	Wales	Female	Old	Yes
	6	Wales	Female	Young	No

- Boosting: Stacked strong decision trees
 - Focus on one dataset
 - Focus more on errors
 - Overfitting

• Step 1: Fit a decision tree

• Step 2: Compute prediction errors

• Step 3: Stacked with another decision tree

Focus on error only

Tree # 2

Step N: Stack trees iteratively

Pop Quiz!

Talk to your neighbor about the difference between <u>bagging</u> and <u>boosting</u>.

Which one is more likely to overfitting?

Which one is likely to underfitting?

Which one has higher computational complexity?

Intro to Machine Learning Part #2 AGENDA

Bagging & Boosting

Model Evaluation

Training dataset versus test dataset

Independent of each other

No overlap

Training dataset versus test dataset

Single train-test split

Single train-test split with validation dataset

Cross-validation

Confusion Matrix:

Confusion Matrix:

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

$$Sensitivity = \frac{TP}{Actual positive} = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{Actual negative} = \frac{TN}{TN + FP}$$

$$n'$$

$$True Positive Positive Positive Primary Prim$$

• Discuss:

If I am designing a COVID-19 test, is having a higher sensitivity or specificity more important?

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

$$Sensitivity = \frac{TP}{Actual positive} = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{Actual negative} = \frac{TN}{TN + FP}$$

Area Under the ROC Curve (AUC)

Area Under the ROC Curve

- Measures how well the model can separate the groups

 Shows sensitivity/specificity for each decision boundary between 0 and 1

Higher AUC -> better model

