MAT217 HW 1 Due Tues. Feb. 12, 2013

We will write $\mathbb{N} = \{1, 2, ...\}$ and $\mathbb{Z} = \{..., -1, 0, 1, ...\}$ for the natural numbers and integers, respectively. Let $\mathbb{N}^* = \mathbb{N} \cup \{0\}$. The rationals are $\mathbb{Q} = \{m/n : m, n \in \mathbb{Z}, n \neq 0\}$ and \mathbb{R} stands for the real numbers.

- 1. Read Section 1.2 in the Hoffman-Kunze handout and do exercises 3, 4.
- 2. If $a, b \in \mathbb{N}$ we say that a divides b, written $a \mid b$, if there is another natural number c such that b = ac. Fix $m, n \in \mathbb{N}$ and define

$$S = \{mp + nq : p, q \in \mathbb{Z}\} \cap \mathbb{N} .$$

(a) Let d be the smallest element of S. Show that $d \mid m$ and $d \mid n$.

Hint. You can use the statement of the division algorithm without proof; that is, if $a, b \in \mathbb{N}$ then there exist $r, s \in \mathbb{N}^*$ such that r < b and a = bs + r.

- (b) Show that if e is another element of \mathbb{N} that divides both m and n then $e \mid d$. This number d is called the greatest common divisor of m and n, written $d = \gcd(m, n)$.
- (c) For any nonzero integers m, n define gcd(m, n) = gcd(|m|, |n|). Show there exist $p, q \in \mathbb{Z}$ such that mp + nq = gcd(m, n).
- 3. Let p be a prime and \mathbb{Z}_p be the set $\{0,\ldots,p-1\}$. Show that \mathbb{Z}_p is a field using the operations

$$ab = (ab) \mod p \text{ and } a + b = (a+b) \mod p$$
.

Here we have defined $a \mod p$ for $a \in \mathbb{N}^*$ as the unique $r \in \mathbb{N}^*$ with r < p such that a = ps + r for some $s \in \mathbb{N}^*$.

4. Let S be a nonempty set and \mathbb{F} a field. Let V be the set of functions from S to \mathbb{F} and define addition and scalar multiplication on (V, \mathbb{F}) by

$$(f+g)(s) = f(s) + g(s)$$
 and $(cf)(s) = c(f(s))$.

Show V is a vector space over \mathbb{F} .

- 5. (From Axler) Show that the union of two subspaces of a vector space V is a subspace if and only if one of the subspaces is contained in the other.
- 6. (From Axler) Let U_1, U_2, W be subspaces of a vector space V. Prove or give a counterexample:
 - (a) If $U_1 + W = U_2 + W$ then $U_1 = U_2$.
 - (b) If $V = U_1 \oplus W$ and $V = U_2 \oplus W$ then $U_1 = U_2$.
- 7. (From Axler) For each of the following subsets of \mathbb{C}^3 , determine whether it is a subspace of \mathbb{C}^3 :

- (a) $\{(x_1, x_2, x_3) : x_1 + 2x_2 + 3x_3 = 0\}.$
- (b) $\{(x_1, x_2, x_3) : x_1x_2x_3 = 0\}.$
- 8. Let W be a subspace of an \mathbb{F} -vector space V and define the set

$$V/W = \{v + W : v \in V\} .$$

Here the notation v+W means the set $\{v+w:w\in W\}$, so V/W is a set whose elements are sets.

- (a) Show that two elements $v_1 + W$ and $v_2 + W$ of V/W are equal if and only if $v_1 v_2 \in W$. In this case we say that v_1 and v_2 are equivalent modulo W.
- (b) Show that the elements of V/W form a partition of V. That is, their union is V and distinct elements must have empty intersection.
- (c) In the case of $V = \mathbb{R}^2$ and $W = \{(x, y) : x + y = 0\}$, with $\mathbb{F} = \mathbb{R}$, give a geometric description of the elements of V/W.
- (d) Define addition and scalar multiplication on V/W as follows. For $C_1, C_2 \in V/W$, select $v_1, v_2 \in V$ such that $C_1 = v_1 + W$ and $C_2 = v_2 + W$. Define

$$C_1 + C_2 = (v_1 + v_2) + W$$
 and $cC_1 = (cv_1) + W$ for $c \in \mathbb{F}$.

Show that these definitions do not depend on the choice of v_1, v_2 .

- (e) Prove that the above operations turn V/W into an \mathbb{F} -vector space. It is called the *quotient space* of V over W.
- 9. If V is an \mathbb{F} -vector space, recall that V is *finitely generated* if there is a finite set $S \subset V$ such that $V = \operatorname{Span}(S)$.
 - (a) Is $\mathbb R$ finitely generated as a vector space over $\mathbb Q$?
 - (b) Is the space of functions from $\mathbb R$ to $\mathbb R$ finitely generated as a vector space over $\mathbb R$?