Algorithm Design & Analysis: Efficiency

Dr. Dave Parker

d.a.parker@cs.bham.ac.uk

Module overview

- Part 1 (lain Styles): numbers & computer organisation
 - number representations
 - computer architecture, instruction sets
- Part 2 (Ata Kaban): the Java Virtual Machine
 - compilation, interpretation, virtual machines
 - subroutines, stacks and expression evaluation
 - JVM: frames, variables, bytecode, methods, objects
- Part 3 (Dave Parker): algorithm design & analysis
 - efficiency: time and space complexity
 - correctness: errors, invariants, recursion

Module overview

- Continuous assessment remaining
- Assessed quiz 2 (on parts 2, 3)
 - week 11 (due 9 Dec)
- Reflection exercise (MSc only)
 - due Fri 2 Dec (week 10)

Overview: Efficiency

- Algorithm design and analysis
- Efficiency
- Time complexity
- Big-O notation
- Examples

(Books)

Algorithm design and analysis

- Multiple algorithms often exist for the same task
 - how do we select the best one?
- Many possible (and often conflicting) criteria
 - efficiency
 - simplicity, clarity
 - elegance, proofs of correctness
- We also need to ask
 - is my algorithm correct?
 - does my algorithm always terminate?
 - does an algorithm even exist?

Efficiency

- Resource usage of an algorithm
 - typically: time (runtime) and space (computer memory)
 - also: network usage, hardware requirements, ...
 - often, we consider trade-offs between resources
- How do we measure the runtime of an algorithm?
 - benchmarking on representative set of inputs
 - analyse the (time) complexity

Time complexity

Time complexity:

 the number of operations that an algorithm requires to execute, in terms of the size of the input or problem

Note:

- "algorithm", not implementation (so: pseudocode; no fixed programming language, computer architecture)
- "in terms of" complexity defined as a function T(n)

Questions:

- what do mean by "operations"?
- what do we mean by "size"?
- We focus on worst-case, not average-case, analysis

Example: Look up a value v in an array x of integers

1	4	17	3	90	79	4	6	81
---	---	----	---	----	----	---	---	----

- Algorithm: linear search
 - inputs: array x of size n, integer v
 - return: index of first occurrence of v in x, or -1 if none
- T(n) = n

```
for i=0...n-1:
    if x[i] == v:
        return i
return -1
```

- Example: matrix-vector multiplication: x = Ab
 - n x n matrix A, vector of b size n
- Algorithm:
 - inputs: matrix A, vector b
 - result stored in vector x (initially all 0)

```
for i=0...n-1:
    for j=0...n-1:
    x[i] = x[i] + A[i][j] * b[j]
```

• $T(n) = 2n^2$

Big-O notation

- Usually don't need exact complexity T(n)
 - it suffices to know the complexity class
 - we ignore constant factors/overheads, lower orders
 - focus on performance for large n ("asymptotic")
- Big-O notation
 - for example: $O(n^2)$ "O of n squared" "on the order of n^2 "
- Examples
 - $T(n) = n \implies complexity class = O(n)$
 - $T(n) = n+2 \implies complexity class = O(n)$
 - $T(n) = 2n^2 \implies complexity class = O(n^2)$

Big-O notation

More examples

```
- T(n) = 10n^3 + 1 ⇒ complexity class = O(n^3)

- T(n) = 5(n+2) ⇒ complexity class = O(n)

- T(n) = 1000 ⇒ complexity class = O(1)

- T(n) = n^2+n+1 ⇒ complexity class = O(n^2)
```

- Determining the complexity class
 - intuitively, it suffices to count the number of loops and the number of times they are executed

Big-O notation: Common classes

- Some common complexity classes:
 - O(1) = "constant"
 - $O(log_2 n) = "logarithmic"$
 - O(n) = "linear"
 - $O(n^2) = "quadratic"$
 - $O(n^3) = "cubic"$
 - $O(2^n) = "exponential"$
- Polynomial: O(n), O(n²), O(n³), ... "tractable"
- Exponential: O(2ⁿ), O(cⁿ) "intractable"

Some concrete numbers...

- How many operations needed for an algorithm?
 - with complexity T(n) = f(n) and input size n

f(n)	n=4	n = 16	n = 256	n = 1024	n = 1048576
1	1	1	1	1.00×10^{0}	1.00×10^{0}
$\log_2 \log_2 n$	1	2	3	3.32×10^{0}	4.32×10^{0}
$\log_2 n$	2	4	8	1.00×10^{1}	2.00×10^{1}
n	4	16	2.56×10^{2}	1.02×10^{3}	1.05×10^{6}
$n{\log_2 n}$	8	64	2.05×10^{3}	1.02×10^4	2.10×10^{7}
n^2	16	256	6.55×10^4	1.05×10^6	1.10×10^{12}
n^3	64	410	1.68×10^{7}	1.07×10^9	1.15×10^{18}
2^n	256	65536	1.16×10^{77}	1.80×10^{308}	6.74×10^{315652}

Some concrete numbers...

- How much time needed for an algorithm?
 - assuming 1 million operations per second

f(n)	n=4	n=16	n=256	n = 1024	n = 1048576
1	$1~\mu { m sec}$	$1 \mu \text{sec}$	$1 \mu sec$	$1 \mu sec$	$1 \mu sec$
$\log_2 \log_2 n$	$1~\mu{ m sec}$	$2~\mu{ m sec}$	$3~\mu{ m sec}$	$3.32~\mu\mathrm{sec}$	$4.32~\mu\mathrm{sec}$
$\log_2 n$	$2~\mu{ m sec}$	$4 \mu \text{sec}$	$8 \mu sec$	$10~\mu\mathrm{sec}$	$20~\mu\mathrm{sec}$
n	$4~\mu{ m sec}$	$16 \ \mu \mathrm{sec}$	$256~\mu{ m sec}$	$1.02~\mathrm{msec}$	$1.05 \mathrm{sec}$
$n{\log_2 n}$	$8~\mu{ m sec}$	$64~\mu{ m sec}$	$2.05~\mathrm{msec}$	$1.02~\mathrm{msec}$	$21 \mathrm{\ sec}$
n^2	$16~\mu{ m sec}$	$256~\mu{ m sec}$	$65.5~\mathrm{msec}$	$1.05 \sec$	1.8 wk
n^3	$64~\mu{ m sec}$	$4.1 \mathrm{\ msec}$	$16.8 \sec$	$17.9 \min$	36,559 yr
2^n	$256~\mu{ m sec}$	$65.5 \mathrm{\ msec}$	$3.7 \times 10^{63} \text{ yr}$	$5.7 \times 10^{294} \text{ yr}$	$2.1 \times 10^{315639} \text{ yr}$

Plots

Example: Look up a value v in an array x

1 4 17 3 90 79 4 6 8

Example: Look up a value v in a sorted array x

1	3	4	4	6	17	79	81	90
---	---	---	---	---	----	----	----	----

Example: Look up a value v in a sorted array x

1	3	4	4	6	17	79	81	90	
---	---	---	---	---	----	----	----	----	--

- Algorithm: binary search
 - inputs: sorted array xof size n, integer v
 - return: index of first occurrence of v in x, or -1 if none
- Complexity = $O(log_2n)$

```
left = 0; right = n-1
while left < right:
   mid = (left+right)/2
   if x[mid] < v:
      left = mid+1
   else:
      right = mid
if x[left] == v:
   return left
else:
   return -1
```

Computing complexity classes

- Determine total algorithm complexity
 - from the complexities of its components
- 1. Sequential algorithm phases
- 2. Function/method calls

Sequential phases

- Example: matrix-vector multiplication: x = Ab
 - matrix-vector multiplication x = Ab
 - initialise vector x (all 0), then add values to x

```
for i=0...n-1:
    x[i] = 0
for i=0...n-1:
    for j=0...n-1:
    x[i] = x[i] + A[i][j] * b[j]
```

- Complexity: $O(n) + O(n^2) = O(n^2)$
- In general: "maximum" of complexities

Functions/methods

Example: n array look-ups

```
for i=0...n-1:
   binary_search(x, v<sub>i</sub>)
```

- Complexity = $O(n) \times O(\log n) = O(n \log n)$
- In general: "multiply" complexities

Computing complexity classes

- Determine total algorithm complexity
 - from the complexities of its components
- Sequential algorithm phases: "maximum"
 - e.g. $O(n) + O(n^2) = O(n^2)$
 - e.g. O(n) + O(log n) = O(n)
- Function/method calls: "multiply"
 - e.g. $O(n) \times O(\log n) = O(n \log n)$
 - $e.g. O(n^2) \times O(1) = O(n^2)$

Some harder problems

- Travelling salesman problem (TSP)
 - given n cities and the distances between them, what is the shortest possible route that visits each city exactly once and then returns to the first city?
- Boolean satisfiability problem (SAT)
 - given a formula f in propositional logic over n variables, is there a valuation of the variables that makes f true?
- In both cases:
 - lots of practical applications
 - also important problems in theoretical computer science

Algorithms vs. problems

Algorithm complexity

- worst-case run-time of algorithm "efficiency"
- actually an upper bound: algorithm A is in O(f(n)) if the worst-case run-time is at most f(n)
- usually use tightest (most informative) complexity

Problem complexity

- complexity class = set of problems
- problem X is in complexity class O(f(n)) if there exists an algorithm to solve it in O(f(n)) – "difficulty"
- again: this is an upper bound (and use tightest possible)
- sometimes consider lower bounds: e.g. sorting: O(n log n)

P, NP, ...

Complexity classes

- $O(1) \subseteq O(\log n) \subseteq O(n) \subseteq O(n \log n) \subseteq O(n^2) \subseteq O(2^n) \dots$
- polynomial time (PTIME or P) assumed to be "tractable"

Another famous class: NP

if we can "guess" a solution, it can be checked efficiently (efficiently = in polynomial time)

NP-hard problems

- e.g. travelling salesman problem, SAT, ...
- only exponential time algorithms are known
- but some efficient heuristics exist in practice
- P=NP? Nobody knows...

Summary

- Algorithm design and analysis:
 - efficiency
- Time complexity
 - (worst-case) number of operations an algorithm needs to execute, in terms of the size of the input or problem: T(n)
- Big-O notation
 - complexity classes: O(n), (n²), O(2ⁿ), ...
 - focus on large values of n (i.e. asymptotic behaviour)
 - ignore constants, lower factors
 - count loops/iterations, decompose algorithm
 - complexities for algorithms/problems

Books

- Goldschlager and Lister: Computer Science: a Modern Introduction (Prentice Hall, 2nd edition 1988)
 - chapter 3
 - copy in School library
- Aho & Ullman: Foundations of Computer Science (Freeman, 1992)
 - chapter 3
 - copy in School library & freely available online:
 http://infolab.stanford.edu/~ullman/focs.html
- Credits: Some material here taken from "Foundations of Computer Science" notes, by John Bullinaria, Manfred Kerber & Martin Escardo