

RECEIVED

AUG 3 0 2001

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

:	Leivan DeVeylder et al	Examiner
•	09/574 735	C. Collins
•)	Art Unit:
:	1507	1638
:	May 18, 2000)
:	CYCLIN-DEPENDENT KINASE INHIBITORS) AND USES THEREOF	
	: :	: 1507) : May 18, 2000) : CYCLIN-DEPENDENT KINASE INHIBITORS)

STATEMENT UNDER 37 C.F.R. § 1.825(a) AND (b)

Assistant Commissioner for Patents Washington, D.C. 20231

Dear Sir:

I hereby state that support for the substitute paper copy of the Sequence Listing exists in the above-captioned application as originally filed. The substitute paper copy of the Sequence Listing submitted herewith does not add new matter to the application as originally filed. In addition, the information recorded in the substitute computer readable form (CRF) of the Sequence Listing submitted herewith, is identical to the information contained in the substitute paper copy of the Sequence Listing.

Dated: August 24, 2001

Ann R. Pokalsky

Registration No. 34,697

Respectfully submitted,

Nixon Peabody LLP 990 Stewart Avenue Garden City, New York 11530-4838

Telephone: (516) 832-7572 Facsimile: (516) 832-7555

ARP/mm

G198835.1

CERTIFICATE OF MAILING UNDER 37 C.F.R. § 1.8(a)

n Signature attached correspondence is being deposited with the U.S. Postal Service as first class mail

under 37 C.F.R. § 1.8 and addressed to:

Assistant Commissioner for Patents, Washington, D.C. 20231.

NOTICE TO COMPLY WITH REQUIREMENTS FOR PATENT APPLICATIONS CONTAINING NUCLEOTIDES EQUENCE AND/OR AMINO ACID SEQUENCE DISCLOSURES

Applicant must file the items indicated below within the time period set the Office action to which the Notice is attached to avoid abandonment under 35 U.S.C. § 133 (extensions of time may be obtained under the provisions of 37 CFR 1.136(a)).

The nucleotide and/or amino acid sequence disclosure contained in this application does not comply with the requirements for such a disclosure as set forth in 37 C.F.R. 1.821 - 1.825 for the following reason(s):

	1. This application clearly fails to comply with the requirements of 37 C.F.R. 1.821-1.825. Application is directed to the final rulemaking notice published at 55 FR 18230 (May 1, 1990), ar OG 29 (May 15, 1990). If the effective filing date is on or after July 1, 1998, see the final rule notice published at 63 FR 29620 (June 1, 1998) and 1211 OG 82 (June 23, 1998).	nd 1114
	 This application does not contain, as a separate part of the disclosure on paper copy, a "Sequ Listing" as required by 37 C.F.R. 1.821(c). 	ence
	3. A copy of the "Sequence Listing" in computer readable form has not been submitted as requir 37 C.F.R. 1.821(e).	ed by
	4. A copy of the "Sequence Listing" in computer readable form has been submitted. However, the content of the computer readable form does not comply with the requirements of 37 C.F.R. 1.8 and/or 1.823, as indicated on the attached copy of the marked -up "Raw Sequence Listing."	ne 322
X	5. The computer readable form that has been filed with this application has been found to be dar and/or unreadable as indicated on the attached CRF Diskette Problem Report. A Substitute computer readable form must be submitted as required by 37 C.F.R. 1.825(d).	maged
	6. The paper copy of the "Sequence Listing" is not the same as the computer readable from of the "Sequence Listing" as required by 37 C.F.R. 1.821(e).	e
П	7. Other:	
Аp	plicant Must Provide:	7.2 P
X	An initial or <u>substitute</u> computer readable form (CRF) copy of the "Sequence Listing".	** **
Χ	An initial or <u>substitute</u> paper copy of the "Sequence Listing", as well as an amendment directing it into the specification.	s entry
X	A statement that the content of the paper and computer readable copies are the same and, when applicable, include no new matter, as required by 37 C.F.R. 1.821(e) or 1.821(f) or 1.821(g) or 1.825(b) or 1.825(d).	e
	1.023(b) 01 1.023(d).	贸
For	questions regarding compliance to these requirements, please contact:	HC HC
	Rules Interpretation, call (703) 308-4216	CENTER 1600/2
	CRF Submission Help, call (703) 308-4212	妥
rat	tentIn Software Program Support Technical Assistance703-287-0200	<u>66</u>
	To Purchase Patentin Software703-306-2600	<u>8</u>

PLEASE RETURN A COPY OF THIS NOTICE WITH YOUR REPLY

SEQUENCE LISTING

<110> De Veylder, Lieven Beeckman, Tom Inzé, Dirk Van Camp, Wim Krols, Luc

\120 /	Cyclin-	-depend	dent k	kinase j	inhibi	tors am	nd us	es t	here	of		
<130>	2283/3	01										
<140> <141>	=	•	5									
<160>	48											
<170>	Patent:	In vers	sion 3	3.0								
<210> <211> <212> <213>	1 932 DNA Arabido	opsis t	chalia	ana								
<220> <221> <222>	CDS (86)	(712)										
<400>	1 agga gaa	20202		2002020	a taac	aaataa	++++	2020	an a	data	. ~ ~ ~ +	60
	agga ga		iu cuc	, q								คบ
ctggaa	ggtg acq			itt atg	gcg g		agg a	aga a	aga	gaa	cga	60 112
gat gt	ggtg acq g gtt ga l Val G	gtcgtag aa gag	gg aga aat g	Met 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	gcg ge Ala Ala acg ac	cg gtt la Val cg acg	agg a Arg 2 5 acg c	aga a Arg a	aga Arg aaa	gaa Glu cga	cga Arg agg	
gat gt Asp Va 10 aag at	g gtt ga	gtcgtag aa gag lu Glu ag gaa	gg aga aat g Asn G 15 gtg g	Met 1 gga gtt Gly Val	gcg ge Ala Alacg acg Thr Tl	cg gtt la Val cg acg hr Thr 20 aa tct lu Ser	agg a Arg a 5 acg a Thr b	aga a Arg a gtg a Val a	aga Arg aaa Lys att	gaa Glu cga Arg ctg	cga Arg agg Arg 25 tct	112
gat gt Asp Va 10 aag at Lys Me	g gtt ga l Val Gl g gag ga t Glu Gl t gta ca	gtcgtag aa gag lu Glu ag gaa lu Glu 30 ag gcg ln Ala	aat g Asn G 15 gtg g Val A	Met 1 gga gtt Gly Val gat tta Asp Leu aat cgc	gcg gg Ala Al acg ac Thr Th gtg gg Val G. 33 ggt gg Gly G	cg gtt la Val cg acg hr Thr 20 aa tct lu Ser 5 ga att	agg a Arg 2 5 acg 9 Thr 3 agg a Arg 2	aga a Arg a gtg a Val : ata a Ile : gcg a	aga Arg aaa Lys att Ile aga Arg	gaa Glu cga Arg ctg Leu 40 aat	cga Arg agg Arg 25 tct Ser	112 160
gat gt Asp Va 10 aag at Lys Me ccg tg Pro Cy gca gg	g gtt ga l Val Gi g gag ga t Glu Gi	gtcgtag aa gag lu Glu ag gaa lu Glu 30 ag gcg ln Ala cg gag	aat g Asn G 15 gtg g Val A acg a Thr A	Met 1 gga gtt Gly Val gat tta Asp Leu hat cgc Asn Arg	gcg gg Ala Ala acg ac Thr Th gtg gg Val Gl 33 ggt gg Gly Gl 50 gtt ac	cg gtt la Val cg acg hr Thr 20 aa tct lu Ser 5 ga att ly Ile ta gta	agg a Arg 2 Thr 1 agg a Arg 2 Val 2 Cga Arg 2	aga a Arg A a a a a a a a a a a a a a a a a a a	aga Arg aaa Lys att Ile aga Arg 55	gaa Glu cga Arg ctg Leu 40 aat Asn	cga Arg agg Arg 25 tct Ser tca Ser	112 160 208
gat gt Asp Va 10 aag at Lys Me ccg tg Pro Cy gca gg Ala Gl cct cc	g gtt ga l Val Gl g gag ga t Glu Gl t gta ca s Val Gl a gcg to y Ala Se 60 g gtt ga o Val Gl	gtcgtag aa gag lu Glu ag gaa lu Glu 30 ag gcg ln Ala 5 cg gag er Glu aa gaa	aat g Asn G 15 gtg g Val A acg a Thr A acg a Thr S	Met 1 gga gtt Gly Val gat tta Asp Leu aat cgc Asn Arg agt gtt Ger Val 65 cgt caa	gcg gg Ala Al acg ad Thr Th gtg gg Val Gl 33 ggt gg Gly Gl 50 gtt ad Val II	cg gtt la Val cg acg hr Thr 20 aa tct lu Ser 5 ga att ly Ile ta gta le Val aa gaa	agg a Arg 2 agg a	aga a Arg Arg	aga Arg aaa Lys att Ile aga Arg 55 cga Arg	gaa Glu cga Arg ctg Leu 40 aat Asn gat Asp	cga Arg agg Arg 25 tct Ser tca Ser tct Ser	112 160 208 256
gat gt Asp Va 10 aag at Lys Me ccg tg Pro Cy gca gg Ala Gl cct cc Pro Pr 75 tcg tg	g gtt ga l Val Gl g gag ga t Glu Gl t gta ca s Val Gl a gcg to y Ala Se 60 g gtt ga o Val Gl	aa gag lu Glu ag gaa lu Glu 30 ag gcg ln Ala 5 cg gag er Glu aa gaa lu Glu	aat g Asn G 15 gtg g Val A acg a Thr A acg a Thr S cag t Gln C tcg g	Met 1 gga gtt Gly Val gat tta Asp Leu at cgc Asn Arg ggt gtt Ger Val 65 cgt caa Cys Gln gaa gag	gcg gc Ala	cg gtt la Val cg acg hr Thr 20 aa tct lu Ser 5 ga att ly Ile ta gta le Val aa gaa lu Glu cg aaa	agg a Arg 2 Thr 2 agg a Arg 2 Cga a Arg 2 Arg 2 Cga a GGlu 2 85 cgg a Gglu 2 85 cgg a Gglu 2 6 Cgg a Gglu 2 Cgg a Gglu 2 Cgg a Gglu 2 Cgg a Cgg a Gglu 2 Cgg a	aga a Arg	aga Arg aaa Lys att Ile aga Arg 55 cga Arg tcg Ser	gaa Glu cga Arg ctg Leu 40 aat Asn gat Asp tcg Ser	cga Arg agg Arg 25 tct Ser tca Ser tct Ser tct ttt	112 160 208 256 304

```
tgg att tac gat gat ttg aat aag agt gag gaa tcg atg aac atg gat
                                                                      496
Trp Ile Tyr Asp Asp Leu Asn Lys Ser Glu Glu Ser Met Asn Met Asp
            125
tct tct tcg gtg gct gtt gaa gat gta gag tct cgc cgc agg tta agg
                                                                     544
Ser Ser Ser Val Ala Val Glu Asp Val Glu Ser Arg Arg Leu Arg
                            145
                                                                     592
aaq aqt ctc cat qaq acq qtq aaq qaa gct gag tta gaa gat ttt ttt
Lys Ser Leu His Glu Thr Val Lys Glu Ala Glu Leu Glu Asp Phe Phe
                        160
cag gtg gcg gag aaa gat ctt cgg aat aag ttg ttg gaa tgt tct atg
                                                                      640
Gln Val Ala Glu Lys Asp Leu Arg Asn Lys Leu Leu Glu Cys Ser Met
                    175
                                        180
                                                                      688
aag tat aac ttc gat ttc gag aaa gat gag cca ctt ggt gga gga aga
Lys Tyr Asn Phe Asp Phe Glu Lys Asp Glu Pro Leu Gly Gly Arg
                                    195
                190
tac gag tgg gtt aaa ttg aat cca tgaagaagac gatgatgata atgatgatca
                                                                     742
Tyr Glu Trp Val Lys Leu Asn Pro
            205
ttgttttcac caaagtactt attatttttc ttctgtaata atctttgctt tgatttttct
                                                                     802
tttaacaaaa tccaaatgta gatatctttc tctcgaataa tcaataacat gtaattcaac
                                                                     862
ttttgtttgt acttccttga ggtaattaat tagattcgtg tttttctcga ttaataaact
                                                                     922
ataagtttat
                                                                     932
       2
<210>
<211>
       209
<212>
       PRT
<213>
      Arabidopsis thaliana
Met Ala Ala Val Arg Arg Glu Arg Asp Val Val Glu Glu Asn Gly
```

Val Thr Thr Thr Val Lys Arg Arg Lys Met Glu Glu Val Asp Leu Val Glu Ser Arg Ile Ile Leu Ser Pro Cys Val Gln Ala Thr Asn Arg Gly Gly Ile Val Ala Arg Asn Ser Ala Gly Ala Ser Glu Thr Ser Val Val Ile Val Arg Arg Arg Asp Ser Pro Pro Val Glu Glu Cys Gln Ile Glu Glu Glu Asp Ser Ser Val Ser Cys Cys Ser Thr Ser Glu 90 Glu Lys Ser Lys Arg Arg Ile Glu Phe Val Asp Leu Glu Glu Asn Asn 100 105 Gly Asp Asp Arg Glu Thr Glu Thr Ser Trp Ile Tyr Asp Asp Leu Asn 115 120 125 Lys Ser Glu Glu Ser Met Asn Met Asp Ser Ser Ser Val Ala Val Glu 135 140 Asp Val Glu Ser Arg Arg Leu Arg Lys Ser Leu His Glu Thr Val 150 155 Lys Glu Ala Glu Leu Glu Asp Phe Phe Gln Val Ala Glu Lys Asp Leu 170 165 Arg Asn Lys Leu Leu Glu Cys Ser Met Lys Tyr Asn Phe Asp Phe Glu

185

Lys Asp Glu Pro Leu Gly Gly Gly Arg Tyr Glu Trp Val Lys Leu Asn 200

190

205

Pro

180

<210> 3 <211> 875 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (11)..(658)<400> 3 ggcacgagag aaa tca aag ata act ggc gat atc agc gtc atg gaa gtc 49 Lys Ser Lys Ile Thr Gly Asp Ile Ser Val Met Glu Val tct aaa gca aca gct cca agt cca ggt gtt cga acc aga gcc gct aaa 97 Ser Lys Ala Thr Ala Pro Ser Pro Gly Val Arg Thr Arg Ala Ala Lys 15 20 25 acc cta gcc ttg aag cgg ctt aat tcc tcc gcc gct gat tca gct cta 145 Thr Leu Ala Leu Lys Arg Leu Asn Ser Ser Ala Ala Asp Ser Ala Leu 35 40 cct aac gac tot tot tgc tat ctt cag ctc cgt agc cgc cgt ctc gag 193 Pro Asn Asp Ser Ser Cys Tyr Leu Gln Leu Arg Ser Arg Arg Leu Glu 55 aaa ccc tct tcg ctg att gaa ccg aaa cag ccg ccg aga gtt cac aga 241 Lys Pro Ser Ser Leu Ile Glu Pro Lys Gln Pro Pro Arg Val His Arg 70 65 tcg gga att aaa gag tct ggt tcc agg tct cgc gtt gac tcg gtt aac 289 Ser Gly Ile Lys Glu Ser Gly Ser Arg Ser Arg Val Asp Ser Val Asn 85 tcg gtt cct gta gct cag agc tct aat gaa gat gaa tgt ttt gac aat 337 Ser Val Pro Val Ala Gln Ser Ser Asn Glu Asp Glu Cys Phe Asp Asn 100 105 ttc gtg agt gtc caa gtt tct tgt ggt gaa aac agt ctc ggt ttt gaa 385 Phe Val Ser Val Gln Val Ser Cys Gly Glu Asn Ser Leu Gly Phe Glu 115 120 tca aga cac agc aca agg gag agc acg cct tgt aac ttt gtt gag gat 433 Ser Arg His Ser Thr Arg Glu Ser Thr Pro Cys Asn Phe Val Glu Asp 130 135 atg gag atc atg gtt aca cca ggg tct agc acg agg tcg atg tgc aga 481 Met Glu Ile Met Val Thr Pro Gly Ser Ser Thr Arg Ser Met Cys Arg 145 150 gca acc aaa gag tac aca agg gaa caa gat aac gtg atc ccg acc act 529 Ala Thr Lys Glu Tyr Thr Arg Glu Gln Asp Asn Val Ile Pro Thr Thr 165 577 agt gaa atg gag gag ttc ttt gca tat gca gag cag cag caa cag agg Ser Glu Met Glu Glu Phe Phe Ala Tyr Ala Glu Gln Gln Gln Arg 180 185 cta ttc atg gag aag tac aac ttc gac att gtg aat gat atc ccc ctc 625 Leu Phe Met Glu Lys Tyr Asn Phe Asp Ile Val Asn Asp Ile Pro Leu 195 200 agc gga cgt tac gaa tgg gtg caa gtc aaa cca tgaagttcaa aaggaaacag 678 Ser Gly Arg Tyr Glu Trp Val Gln Val Lys Pro 210 215 ctccaaaaga catggtgtga agttagagaa tgtgatggag ttaacagact aaccaaacat 738 798 cagaaatcgt gtaatcttaa gtaataatgt ggttagagaa caagtttgag agtagcttag 858 ggaccttaaa acctcacacc atttgtaata ctaatcttct tcagatgctt agtgaaattt 875 tctcatctgt ttctttc

<210> 4 <211> 222

```
<212> PRT
<213> Arabidopsis thaliana
Met Gly Lys Tyr Met Lys Lys Ser Lys Ile Thr Gly Asp Ile Ser Val
Met Glu Val Ser Lys Ala Thr Ala Pro Ser Pro Gly Val Arg Thr Arg
Ala Ala Lys Thr Leu Ala Leu Lys Arg Leu Asn Ser Ser Ala Ala Asp
Ser Ala Leu Pro Asn Asp Ser Ser Cys Tyr Leu Gln Leu Arg Ser Arg
Arg Leu Glu Lys Pro Ser Ser Leu Ile Glu Pro Lys Gln Pro Pro Arg
                   70
                                       75
Val His Arg Ser Gly Ile Lys Glu Ser Gly Ser Arg Ser Arg Val Asp
                                   90
Ser Val Asn Ser Val Pro Val Ala Gln Ser Ser Asn Glu Asp Glu Cys
           100
                               105
Phe Asp Asn Phe Val Ser Val Gln Val Ser Cys Gly Glu Asn Ser Leu
                           120
                                               125
Gly Phe Glu Ser Arg His Ser Thr Arg Glu Ser Thr Pro Cys Asn Phe
                       135
                                           140
Val Glu Asp Met Glu Ile Met Val Thr Pro Gly Ser Ser Thr Arg Ser
                   150
                                       155
Met Cys Arg Ala Thr Lys Glu Tyr Thr Arg Glu Gln Asp Asn Val Ile
               165
                                   170
Pro Thr Thr Ser Glu Met Glu Glu Phe Phe Ala Tyr Ala Glu Gln Gln
           180
                               185
Gln Gln Arg Leu Phe Met Glu Lys Tyr Asn Phe Asp Ile Val Asn Asp
                           200
Ile Pro Leu Ser Gly Arg Tyr Glu Trp Val Gln Val Lys Pro
   210
                       215
<210> 5
<211>
      1193
<212>
      DNA
<213> Arabidopsis thaliana
<220>
<221>
      CDS
<222>
      (92)..(763)
<400>
                                                                    60
aaaccactct tcaaatcaaa cactttctta cataagattc ctctgttttt ctgtgtgctt
cttcaaattc ttcccctgtt tttcaacttc a atg ggg aag tac atg aag aaa
                                                                   112
                                  Met Gly Lys Tyr Met Lys Lys
ctc aaa tcc aaa tca gaa tct cct tca ccc aat tca aca cca aca cca
                                                                   160
Leu Lys Ser Lys Ser Glu Ser Pro Ser Pro Asn Ser Thr Pro Thr Pro
                           15
                                               20
                                                                   208
Ser Pro Ser Pro Ser Pro Thr Pro Ile Thr Thr Asn Ser Pro Pro Pro
                       30
                                           35
                                                                   256
aca aca ccc aat tcc tct gat ggt gtt cga act cgt gct aga acc cta
Thr Thr Pro Asn Ser Ser Asp Gly Val Arg Thr Arg Ala Arg Thr Leu
                   45
                                       50
gct ttg gag aat tcc aac aat cag aat cag aat ctt tct gtt tct tct
                                                                   304
Ala Leu Glu Asn Ser Asn Asn Gln Asn Gln Asn Leu Ser Val Ser Ser
```

```
gat tot tac ott cag otg agg aac ogt ogc ott aag aga occ ota att
                                                                     352
Asp Ser Tyr Leu Gln Leu Arg Asn Arg Arg Leu Lys Arg Pro Leu Ile
            75
agg caa cat tcc gct aag agg aat aag ggg cat gat gga aac cct aaa
                                                                     400
Arg Gln His Ser Ala Lys Arg Asn Lys Gly His Asp Gly Asn Pro Lys
                            95
tcc cca att ggg gat tca att gct gaa gag aaa act gtt cag aag agt
                                                                     448
Ser Pro Ile Gly Asp Ser Ile Ala Glu Glu Lys Thr Val Gln Lys Ser
                        110
                                                                     496
cct gag cct gaa aat gct gaa ttc aag gag aat gct gag gat act gag
Pro Glu Pro Glu Asn Ala Glu Phe Lys Glu Asn Ala Glu Asp Thr Glu
                                        130
                    125
aga agc gct agg gaa act aca ccc gtc cat ttg ata atg cga gca gac
                                                                     544
Arg Ser Ala Arg Glu Thr Thr Pro Val His Leu Ile Met Arg Ala Asp
                140
                                    145
gtt ctc agg cct cct agg cca att acc agg cgt act ttt cca act gaa
                                                                     592
Val Leu Arg Pro Pro Arg Pro Ile Thr Arg Arg Thr Phe Pro Thr Glu
            155
                                160
gct aat ccc aaa acg gag cag cca act atc cca att tca cgc gaa ttt
                                                                     640
Ala Asn Pro Lys Thr Glu Gln Pro Thr Ile Pro Ile Ser Arg Glu Phe
        170
                            175
                                                180
gag gaa ttc tgt gct aaa cat gaa gcc gag cag caa agg gag ttc atg
                                                                     688
Glu Glu Phe Cys Ala Lys His Glu Ala Glu Gln Gln Arg Glu Phe Met
                       190
                                            195
gag aag tac aac ttt gat cct gtg aca gag cag cca ctc cca ggg cgt
                                                                     736
Glu Lys Tyr Asn Phe Asp Pro Val Thr Glu Gln Pro Leu Pro Gly Arg
                   205
                                        210
tac qaa tqq qaa áaa qtq tcq ccc taq aaqqcaqqct aqtattaaqt
                                                                     783
Tyr Glu Trp Glu Lys Val Ser Pro
                220
gttccatcaa tacatcttta aagtagcagc agggttagaa tttgttgaaa agggtggtgg
                                                                     843
tgctatttcc attttccatc actttctatt tacttgtaaa gaaagtagga ctttcaacat
                                                                     903
atgtagacta atgatetgta actttacaga ggtgttgatt acacaacaat acaaagteet
                                                                     963
ttgtctagca gatcattaaa gaagggtttg agggaataag ggtctctagt tgtagggttt
                                                                    1023
agggtataaa atcaaagtag ggtatgtaag agaggtttta caagaatttc cttttgttct
                                                                    1083
tgtgttttac tcttgttttg tctatacttg tactcatgga acttcaacaa actcttaaga
                                                                    1143
                                                                    1193
<210>
       6
<211>
       223
<212>
<213>
      Arabidopsis thaliana
<400>
Met Gly Lys Tyr Met Lys Lys Leu Lys Ser Lys Ser Glu Ser Pro Ser
                                    10
Pro Asn Ser Thr Pro Thr Pro Ser Pro Ser Pro Ser Pro Thr Pro Ile
           20
                                25
Thr Thr Asn Ser Pro Pro Pro Thr Thr Pro Asn Ser Ser Asp Gly Val
                            40
Arg Thr Arg Ala Arg Thr Leu Ala Leu Glu Asn Ser Asn Asn Gln Asn
                        55
Gln Asn Leu Ser Val Ser Ser Asp Ser Tyr Leu Gln Leu Arg Asn Arg
                   70
                                        75
Arg Leu Lys Arg Pro Leu Ile Arg Gln His Ser Ala Lys Arg Asn Lys
               85
                                    90
Gly His Asp Gly Asn Pro Lys Ser Pro Ile Gly Asp Ser Ile Ala Glu
                                105
Glu Lys Thr Val Gln Lys Ser Pro Glu Pro Glu Asn Ala Glu Phe Lys
```

120

```
Glu Asn Ala Glu Asp Thr Glu Arg Ser Ala Arg Glu Thr Thr Pro Val
                        135
                                            140
His Leu Ile Met Arg Ala Asp Val Leu Arg Pro Pro Arg Pro Ile Thr
                   150
                                        155
Arg Arg Thr Phe Pro Thr Glu Ala Asn Pro Lys Thr Glu Gln Pro Thr
                                    170
Ile Pro Ile Ser Arg Glu Phe Glu Glu Phe Cys Ala Lys His Glu Ala
                                185
Glu Gln Gln Arg Glu Phe Met Glu Lys Tyr Asn Phe Asp Pro Val Thr
                            200
                                                205
Glu Gln Pro Leu Pro Gly Arg Tyr Glu Trp Glu Lys Val Ser Pro
<210> 7
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Probe or
      Primer
<400> 7
                                                                   25
cgagatctga attcatggat cagta
<210> 8
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Probe or
<400> 8
                                                                   26
cgagatctga attcctaagg catgcc
<210> 9
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Probe or
      Primer
<400> 9
                                                                   29
gggaatccat gggcggcggt taggagaag
<210> 10
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Probe or
      Primer
```

<400> ggcgga		27
<210> <211> : <212> : <213> :	29	
	Description of Artificial Sequence: Probe or Primer	
<400> : ggcgaa		29
<210> 1<211> 1<212> 1<213> 2	30	
	Description of Artificial Sequence: Probe or Primer	
<400> : ggcgga		30
<210> 2 <211> 2 <212> 1 <213> 2	26	
	Description of Artificial Sequence: Probe or Primer	
<400> :		26
<210> 1 <211> 2 <212> 1 <213> 2	27	
,	Description of Artificial Sequence: Probe or Primer	
<400> : cgaaact		27
<210> 3 <211> 2 <212> 1	26 ,	

<220> <223>	Description of Artificial Primer	Sequence:	Probe or	
<400> gatcc	15 cgggc gatatcagcg tcatgg			26
<210><211><211><212><213>	25			
<220> <223>	Description of Artificial Primer	Sequence:	Probe or	
<400> gatcc	16 cgggt tagtctgtta actcc			25
<210><211><212><212><213>	24			
<220> <223>	Description of Artificial Primer	Sequence:	Probe or	
<400> gcagc	17 tacgg agccggagaa ttgt			24
<210> <211> <212> <213>	27			
<220> <223>	Description of Artificial Primer	Sequence:	Probe or	
<400> tctcct	18 ttctc gaaatcgaaa ttgtact			27
<210> <211> <212> <213>	26			
<220> <223>	Description of Artificial Primer	Sequence:	Probe or	
<400>	19 cgagg agaaccacaa acacgc			26

```
<210> 20
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Probe or
      Primer
<400> 20
cgaaactagt taattacctc aaggaag
                                                                   27
<210> 21
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Probe or
      Primer
<400> 21
gatcccgggc gatatcagcg tcatgg
                                                                   26
<210> 22
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Probe or
      Primer
<400> 22
                                                                   25
gatcccgggt tagtctgtta actcc
<210> 23
<211> 69
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Probe or
      Primer
<400> 23
cccgctcgag atggtgagaa aatatagaaa agctaaagga tttgtagaag ctggagtttc 60
gtcaacgta
<210> 24
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Probe or
      Primer
```

<400> 24 ggactagttc actctaactt tacccattcg	30
<210> 25 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Probe or Primer	
<400> 25 gatcatctta agcatcatcg tcttcttcat gg	32
<210> 26 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Probe or Primer	
<400> 26 taggagcata tggcggcgg	19
<210> 27 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Probe or Primer	
<400> 27 atatcagcgc catggaagtc	. 20
<210> 28 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Probe or Primer	
<400> 28 ggagctggat ccttttggaa ttcatgg	27
<210> 29 <211> 19 <212> DNA <213> Artificial Sequence	

```
<220>
 <223> Description of Artificial Sequence: Probe or
       Primer
 <400> 29
                                                                     19
 taggagcata tggcggcgg
 <210> 30
. <211> 23
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Probe or
       Primer
 <400> 30
 atcatcgaat tcttcatgga ttc
                                                                     23
 <210> 31
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Probe or
       Primer
 <400> 31
                                                                     20
 atatcagcgc catggaagtc
 <210> 32
 <211> 27
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Probe or
       Primer
 <400> 32
                                                                    2.7
 ggagctggat ccttttggaa ttcatgg
 <210> 33
 <211> 11
 <212> PRT
 <213> Arabidopsis thaliana
 <220>
 <221> UNSURE
 <222> (5)
 <223> Xaa at postiion 5 may be Asp or Glu
 <220>
 <221> UNSURE
 <222> (6)..(8)
```

```
<223> Xaa at any of positions 6, 7 or 8 may be any amino
<400> 33
Val Arg Arg Xaa Xaa Xaa Xaa Val Glu Glu
<210> 34
<211> 8
<212> PRT
<213> Arabidopsis thaliana
<220>
<221> UNSURE
<222> (2)..(3)
<223> Xaa at positions 2 and 3 may be any amino acid
<400> 34
Phe Xaa Xaa Lys Tyr Asn Phe Asp
<210> 35
<211> 8
<212> PRT
<213> Arabidopsis thaliana
<220>
<221> UNSURE
<222> (1)
<223> Xaa at position 1 may be Pro or Leu
<220>
<221> UNSURE
<222> (3)
<223> Xaa at position 3 may be any amino acid
<400> 35
Xaa Leu Xaa Gly Arg Tyr Glu Trp
<210> 36
<211> 10
<212> PRT
<213> Arabidopsis thaliana
<220>
<221> UNSURE
<222> (2)
<223> Xaa at position 2 may be any amino acid
<220>
<221> UNSURE
<222> (4)
<223> Xaa at position 4 may be Asp or Glu
<220>
<221> UNSURE
<222> (7)..(9)
```

```
<223> Xaa at positions 7, 8 or 9 may be any amino acid
<400> 36
Glu Xaa Glu Xaa Phe Phe Xaa Xaa Xaa Glu
          5
<210> 37
<211> 8
<212> PRT
<213> Arabidopsis thaliana
<220>
<221> UNSURE
<222> (2)
<223> Xaa at position 2 may be any amino acid
<400> 37
Tyr Xaa Gln Leu Arg Ser Arg Arg
<210> 38
<211> 9
<212> PRT
<213> Arabidopsis thaliana
<220>
<221> UNSURE
<222> (5)
<223> Xaa at position 5 may be Met or Ile
<220>
<221> UNSURE
<222> (6)
<223> Xaa at position 6 may be Lys or Arg
<220>
<221> UNSURE
<222> (8)
<223> Xaa at position 8 may be any amino acid
<220>
<221> UNSURE
<222> (9)
<223> Xaa at position 9 may be Lys or Arg
<400> 38
Met Gly Lys Tyr Xaa Xaa Lys Xaa Xaa
                  5
<210> 39
<211> 8
<212> PRT
<213> Arabidopsis thaliana
<220>
<221> UNSURE
<222> (2)
<223> Xaa at position 2 may be any amino acid
```

<400> 39 Ser Xaa Gly Val Arg Thr Arg Ala 1 5

<210> 40 <211> 327 <212> PRT <213> Arabidopsis thaliana

<400> 40

Met Gly Lys Tyr Ile Arg Lys Ser Lys Ile Asp Gly Ala Gly Ala Gly 10 Ala Gly Gly Gly Gly Gly Gly Gly Gly Glu Ser Ser Ile Ala 25 Leu Met Asp Val Val Ser Pro Ser Ser Ser Ser Leu Gly Val Leu 40 Thr Arg Ala Lys Ser Leu Ala Leu Gln Gln Gln Gln Arg Cys Leu 55 Leu Gln Lys Pro Ser Ser Pro Ser Ser Leu Pro Pro Thr Ser Ala Ser 70 75 Pro Asn Pro Pro Ser Lys Gln Lys Met Lys Lys Lys Gln Gln Met 90 Asn Asp Cys Gly Ser Tyr Leu Gln Leu Arg Ser Arg Arg Leu Gln Lys 100 105 Lys Pro Pro Ile Val Val Ile Arg Ser Thr Lys Arg Arg Lys Gln Gln 120 Arg Arg Asn Glu Thr Cys Gly Arg Asn Pro Asn Pro Arg Ser Asn Leu 135 140 Asp Ser Ile Arg Gly Asp Gly Ser Arg Ser Asp Ser Val Ser Glu Ser 150 Val Val Phe Gly Lys Asp Lys Asp Leu Ile Ser Glu Ile Asn Lys Asp 170 Pro Thr Phe Gly Gln Asn Phe Phe Asp Leu Glu Glu His Thr Gln 180 185 Ser Phe Asn Arg Thr Thr Arg Glu Ser Thr Pro Cys Ser Leu Ile Arg 200 Arg Pro Glu Ile Met Thr Thr Pro Gly Ser Ser Thr Lys Leu Asn Ile 215 220 Cys Val Ser Glu Ser Asn Gln Arg Glu Asp Ser Leu Ser Arg Ser His 230 235 Arg Arg Pro Thr Thr Pro Glu Met Asp Glu Phe Phe Ser Gly Ala 245 250 Glu Glu Gln Gln Lys Gln Phe Ile Glu Lys Tyr Val Phe Pro Arg 265 270 Phe Ile Cys Ser Val Leu Leu Val Met Ser Phe Gln Phe Val Leu Phe 280 275 285 Phe Ser Phe Gly Leu Val Ser Leu Met Val Ser Val Asn Ser Phe Phe 295 300 Arg Tyr Asn Phe Asp Pro Val Asn Glu Gln Pro Leu Pro Gly Arg Phe 310 315 Glu Trp Thr Lys Val Asp Asp 325

<210> 41 <211> 22 <212> DNA <213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: Probe or
<400> 41
agaccatggc ggcggttagg ag
                                                                22
<210> 42
<211>
      12
<212> PRT
<213> Tag·100 epitope
<400> 42
Glu Glu Thr Ala Arg Phe Gln Pro Gly Tyr Arg Ser
<210> 43
<211>
      10
<212> PRT
<213> c-myc epitope
<400> 43
Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu
     . 5
<210> 44
      7
<211>
<212> PRT
<213> FLAG-epitope
<400> 44
Asp Tyr Lys Asp Asp Lys
<210> 45
<211>
<212>
      PRT
<213> HA-epitope
<400> 45
Tyr Pro Tyr Asp Val Pro Asp Tyr Ala
<210> 46
<211> 12
<212> PRT
<213> protein C epitope
<400> 46
Glu Asp Gln Val Asp Pro Arg Leu Ile Asp Gly Lys
<210> 47
<211> 11
```

G198628.1

<212> PRT
<213> VSV epitope

<400> 47
Tyr Thr Asp Ile Glu Met Asn Arg Leu Gly Lys
1 5 10

<210> 48
<211> 9
<212> DNA

<400> 48
agg aga aga
Arg Arg Arg