Plan

1. Large margin classification - Take a look at support vector machine supervised algorithm

a. Optimization objective

$$\min_{\theta} \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \left(-\log h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \left((-\log(1 - h_{\theta}(x^{(i)})) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

If
$$y = 0$$
 (want $\theta^T x \ll 0$):

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

b. Large margin intuition

Math behind LMC

$$\min_{\theta} \frac{1}{2} \sum_{j=1}^{n} \theta_{j}^{2} = \frac{1}{2} \|\theta\|^{2} \leq \frac{1}{2}$$

2. Kernels - Defining algorithms with non-linear decision boundaries

a. Gaussian kernel

b. Creating landmarks

3. Using an SVM

Questions:

- 1. In which type of ML problems we can apply SVM?
- 2. An alternative name for SVM?
- 3. What kind of kernel do you know? (This question isn't about Linux kernels btw)

Glossary

Kernel - point we use as a feature based on our learning datasets - *By default it's highly recommended to use Gaussian kernel*

Support Vector Machine - yet another learning algorithm used in classification problems - *Support Vector Machine aka Large Margin Classifier*

Large Margin Classifier - learning algorithm with an alternative approach on classification problem - *Support Vector Machine aka Large Margin Classifier*