

Arquitetura e Organização de Computadores

Aula 4.1 – Memórias

Profa. Karina Buttignon

Memória Principal

■Objetivo

- □Armazenamento de programas e dados a serem manipulados pelo processador
- ■Memória que se referencia na especificação de um microcomputador
- □Consiste em um conjunto de localizações de armazenamento, cada uma com um identificador único, chamado de endereço.

- RAM (memória de leitura e escrita)
- Chips de memória que podem ser lidos e gravados pela CPU a qualquer instante
- Usados pela CPU para armazenar e executar programas vindos do disco
 - ler e gravar os dados que estão sendo processados
- ☐ É uma memória volátil
 - quando o computador é desligado, todos os seus dados são apagados
- É necessário que os programas e dados fiquem gravados no disco, que é uma memória permanente
- ☐ Tipos de RAM
 - Existem vários tipos de RAM com diversas características e para diversas aplicações
 - ☐ DRAM (dinâmica) e a SRAM (estática) e suas evoluções

ROM (acrônimo em inglês de read-only memory)
Memórias não voláteis
São chips de memória que podem ser lidos pela CPU a qualquer instante
BIOS (Sistema Básico de Entrada e Saída)
Programa armazenado em memória não volátil nos PCs
Realizar a "partida" do computador
realiza a contagem de memória
faz uma rápida checagem do funcionamento do computador
realiza a carga do Sistema Operacional
Tipos de Memórias não voláteis (ROM)
□ PROM
□ EPROM
■ EEPROM, etc

- São chips de memória que podem ser lidos pela CPU a qualquer instante mas não podem ser gravados pela CPU
- Sua gravação é feita apenas pelo fabricante do computador, ou pelo fabricante de memórias
- Dados armazenados nela já saem prontos de fábrica e são produzidas em larga escala na indústria
- ☐ É uma memória permanente
- Seu conteúdo nunca é perdido, mesmo com o computador desligado
- Usada para armazenar programas estáticos (que não alteram)
- Empregada para armazenar o BIOS, que se localiza na placa-mãe

PROM (**P**rogrammable **R**ead **O**nly **M**emory) - Tem sua gravação feita por aparelhos especiais. Os dados gravados na memória PROM não podem ser apagados ou alterados;

EPROM (Electrically Programmable Read Only Memory) - Usado para armazenar a BIOS do computador. A tecnologia EPROM permite a regravação do seu conteúdo, com o objetivo de aumentar a capacidade de leitura da placa-mãe (memória RAM, HD, processador, etc).

EEPROM ou E2PROM (Electrically Erasable Programmable Read-Only Memory) - Tipo similar à EPROM. Seu conteúdo pode ser apagado aplicando-se uma voltagem específica aos pinos de programação.

Memória ROM

Flash-ROM (Flash Read Only Memory) - Semelhante às EEPROMs. São mais rápidas e de menor custo. O apagamento pode ser feito eletricamente por meio de um disquete ou até mesmo pelo sistema operacional. Difere da EEPROM por que não é possível apagar somente um determinado endereço dentro da memória, é necessário reprogramar toda a memória, mesmo quando desejamos alterar apenas um único dado.

Mask-ROM (Mask Read Only Memory) - O programa é gravado durante o processo de fabricação do chip.

Memória Física

DIP (**D**ual **I**n Line **P**ackage)

Esse é um tipo de encapsulamento de memória antigo e que foi utilizado em computadores XT e 286, principalmente como módulos EPROM (que eram soldados na placa). Também foi muito utilizado em dispositivos com circuitos menos sofisticados;

SIPP (Single In-line Pin Package).

Um módulo nada mais era que uma pequena placa de circuito com vários chips de memória já instalados.

O padrão SIPP foi aplicado em placas-mãe de processadores 286 e 386;

SIMM (Single In-line Memory Module)

Módulos SIMM eram eletronicamente idênticos aos módulos SIPP. A única diferença era que não tinham "perninhas". Ambos tinham 30 contatos, portanto os módulos SIPP eram chamados também de SIPP/30 (módulo SIPP de 30 pinos), enquanto os módulos SIMM eram chamados também de SIMM/30 (módulos SIMM de 30 vias).

SIMM (Single In-line Memory Module)

 Módulos SIMM/30 foram muito usados em PCs equipados com processadores 80286, 80386 e 80486 (1990 a 1994). Cada um desses módulo fornecia 8 bits simultaneamente. Processadores 286 e 386SX operavam com memórias de 16 bits, portanto precisavam de 2 módulos SIMM/30 para formarem um banco de memória. Processadores 386DX e 486 operavam com memórias de 32 bits, portanto precisavam de 4 módulos SIMM para formarem um banco de memória

SIMM/72

- Em meados dos anos 90 surgiu um novo tipo de módulo SIMM, com 32 bits e 72 vias
- Era usado principalmente nas placas de CPU Pentium.

DIMM (Dual In-line Memory Module).

- DIMM/168 têm um total de 168 terminais, sendo 84 na face frontal e 84 na face posterior.
- Módulos DIMM/168 operam com 64 bits simultâneos, portanto um único módulo forma um banco de memória.

DIMM (Dual In-line Memory Module).

Os pentes de memória DIMM empregam um recurso chamado ECC (Error Checking and Correction - detecção e correção de erros) e tem capacidades mais altas que o padrão anterior: de 16 a 512 MB

Curiosidade:

- A DIMM/168 passou a ser muito usada a partir de 1997, já depois que o Pentium foi popularizado. Praticamente todos os módulos DIMM/168 usavam chips SDRAM, por isso essas duas palavras passaram a ser usadas como sinônimos – o que é errado.
- O termo DIMM/168 é o nome do módulo, enquanto SDRAM é o nome dos chips que formam o módulo.
- Foram usados até o início de 2000.

DDR (Double Data Rate)

 Atinge taxas de transferência de dados de duas vezes o ciclo de clock, podendo chegar a 2,4 GB por segundo na transmissão de dados.

Velocidade das memórias DDR

 DDR200: operam com 200 MHz DDR266: operam com 266 MHz DDR333: operam com 333 MHz DDR400: operam com 400 MHz

- Além de usar esses nomes para os chips de memória, os fabricantes criaram também nomes que indicam as velocidades dos módulos. Por exemplo, um módulo que tem chips DDR200, como opera com 64 bits (8 bytes), fornece uma taxa de transferência de 200 x 8 = 1600 Megabytes por segundo. Por isso esses módulos receberam o nome de PC1600. Da mesma forma:
- Módulos PC1600 usam chips DDR200 Módulos PC2100 usam chips DDR266 Módulos PC2700 usam chips DDR333 Módulos PC3200 usam chips DDR400

Comparativo / Velocidade

SDRAM PC-100

SDRAM PC-133

DDR-200 ou PC-1600

DDR-266 ou PC-2100

DDR-333 ou PC-2700

DDR-400 ou PC-3200

Dual DDR-226

Dual DDR-333

Dual DDR-400

800 MB/s

1.064 MB/s

1.600 MB/s

2.100 MB/s

2.700 MB/s

3.200 MB/s

4.200 MB/s

5.400 MB/s

6.400 MB/s

DDR-2 é a evolução das memórias DDR, muito mais rápida, e precisa, preparada para atingir os mais altos níveis de desempenho e velocidade, seu novo formato padrão FBGA, permite que ela trabalhe com voltagem e temperatura menor.

Duplicam a taxa de transferência, realizando agora 4 operações por ciclo;

Módulos de até 4GB; Possui 240 vias

Frequência de trabalho

- 400, 533, 667 e 800 Mhz (clock nominal)
- Corresponde à metade da frequência, pois assim como a DDR, realiza duas operações por ciclo de clock (transfere dois dados por ciclo)
- Memórias DDR2 com dissipador
- Módulos de frequência de maior desempenho, destinadas a overclock (frequência mais alta)
- Diferente da DDR seus componentes de controle estão no próprio CHIP

Comparação Velocidade

 Atualmente temos chips de memória de até 300 MHz que, combinados com as 4 leituras por ciclo, resultam em módulos com transferência teórica de até 9.6 MB/s

```
DDR2-533 (133 MHz) = PC2-4200
```

DDR2-667 (166 MHz) = PC2-5300

DDR2-800 (200 MHz) = PC2-6400

DDR2-933 (233 MHz) = PC2-7500

DDR2-1066 (266 MHz) = PC2-8500

DDR2-1300 (300 MHz) = PC2-9600

Clocks (frequência)

Nome padrão	Clock dos chips	Ciclo de tempo	Clock real	Dados por segundos	Nome do módulo	Taxa de transferência
DDR2-400	100 MHz	10 ns	200 MHz	400 Milhões	PC2-3200	3200 MB/s
DDR2-533	133 MHz	7.5 ns	266 MHz	533 Milhões	PC2-4200 PC2-4300	4266 MB/s
DDR2-667	166 MHz	6 ns	333 MHz	667 Milhões	PC2-5300 PC2-5400	5333 MB/s
DDR2-800	200 MHz	5 ns	400 MHz	800 Milhões	PC2-6400	6400 MB/s
DDR2-1066	266 MHz	3.75 ns	533 MHz	1066 Milhões	PC2-8500 PC2-8600	8533 MB/s
DDR2-1300	325 MHz	3.1 ns	650 MHz	1300 Milhões	PC2-10400	10400 MB/s

DUAL CHANNEL (canal duplo)

Funciona com um duplo acesso aos dados da memória DRAM, com isso, mais informações circulam da memória para o processador, elevando a velocidade geral de processamento Ao adquirir esta memórias, deve-se comprar uma placa-mãe do mesmo tipo.

6.400 MB/seg

DDR3 SDRAM

 Reduziu em 20% o consumo de energia comparadas aos módulos de memórias DDR2 comercializadas atualmente, devido à sua tecnologia de fabricação de 90 nanômetros (90nm), permite baixas taxas de operação de consumo e baixas voltagens (1.5 Volt, comparado com as DDR2 que consomem 1.8V até 2.1V, ou as DDR's comuns de 2.5V). Possui 240 vias

Tipos de memória DDDR3

	Frequência real	Frequência DDR	Nome do módulo	Pico de taxa de transferência
DDR3-800	400 MHz	800 MHz	PC3-6400	6.400 MB/s
DDR3-1066	533 MHz	1.066 MHz	PC3-8500	8.533 MB/s
DDR3-1333	666 MHz	1.333 MHz	PC3-10600	10.666 MB/s
DDR3-1600	800 MHz	1.600 MHz	PC3-12800	12.800 MB/s
DDR3-1866	933 MHz	1.866 MHz	PC3-14900	14.933 MB/s
DDR3-2133	1.066 MHz	2.133 MHz	PC3-17000	17.066 MB/s
DDR3-2400	1.200 MHz	2.400 MHz	PC3-19200	19.200 MB/s
DDR3-2600	1.300 MHz	2.600 MHz	PC3-20800	20.800 MB/s
DDR3-2800	1.400 MHz	2.800 MHz	PC3-22400	22.400 MB/s

Diferenças entre DDR2 e DDR3 x SDR e DDR

- Os chips DDR2 e DDR3 utilizam o encapsulamento BGA (Ball Grid Array), no lugar do encapsulamento TSOP (Thin Small-Outline Package), usado nos chips SDR e DDR. A grande diferença é que no BGA os pontos de solda são posicionados diretamente na parte inferior dos chips, em vez de serem usadas as "perninhas" laterais.
- Isso reduz a distância que o sinal elétrico precisa percorrer, além de reduzir o nível de interferências, permitindo que os módulos sejam capazes de operar a frequências mais altas.

Triple-Channel Architeture DDR3

- Uma arquitetura de memória utilizada na família de processadores Core i7 Intel
- Qual o diferencial dessa arquitetura?
- Aumento da taxa de transferencia em relação ao seu antecessor, o dual channel.
- Redução da latência de memória, visto que cada módulo é acessado sequencialmente e os dados são repartidos entre os módulos em um padrão alternado
- Só funciona se três módulos idênticos são encaixados nos slots triple-channels
- Caso contrário, a arquitetura trabalhará em modo Dual-Channel

Comparativo Memórias

módulo de memória do tipo DDR/184 pinos

módulo de memória do tipo DDR2/240 pinos

módulo de memória do tipo DDR3/240 pinos

12GB Triple Channel DDR3 Memory

DDR 4

Memórias DDR4 foram ajustadas para trabalhar com tensões menores do que as que vemos nos módulos DDR3. Os componentes comuns trabalham com 1,2 volt, o que representa uma redução de 0,3 volt, já que o DDR3 rodava com a tensão de 1,5 volt.

Fonte: tecmundo

Características

- Quanto aos clocks, existem grandes chances de que os novos módulos possam ir além dos 3.200 MHz.
- Capacidade: 4GB a 128GB
- 284 pinos

Fonte: tecmundo

Figure 2. DDR4 higher performance compared with DDR3L and DDR2

Fonte: tecmundo

	Memória	Clock externo	Largura de banda	Módulo de memória
tin Jo	DDR200	100 MHz	1.600 MB/s	PC-1600
	DDR266	133 MHz	2.133 MB/s	PC-2100
	DDR333	166 MHz	2.666 MB/s	PC-2700
	DDR400	200 MHz	3.200 MB/s	PC-3200
	DDR2-400	200 1011 12	3.200 MD/3	PC2-3200
	DDR2-533	266 MHz	4.266 MB/s	PC2-4200
	DDR2-667	333 MHz	5.333 MB/s	PC2-5300
	DDR2-800	400 MHz	6.400 MB/s	PC2-6400
	DDR3-800	400 1011 12	0.400 MD/3	PC3-6400
	DDR2-1066	533 MHz	533 MHz 8.533 MB/s	PC2-8500
	DDR3-1066	000 1811 12	0.000 MB/3	PC3-8500
	DDR3-1333	666 MHz	10.666 MB/s	PC3-10600
	DDR3-1600	800 MHz	12.800 MB/s	PC3-12800
	DDR4-1600	000 111112	12.000 MB/3	PC4-12800
	DDR3-1866	933 MHz	14.900 MB/s	PC3-14900
	DDR4-1866	000 1111 12	14.555 115/5	PC4-14900
	DDR3-2133 1.067 MHz 17.067 MB/s	PC3-17000		
	DDR4-2133	1.557 11112	17.557 11.57	PC4-17000
	DDR4-2400	1.200 MHz	19.200 MB/s	PC4-19200
	DDR4-2666	1.333 MHz	21.328 MB/s	PC4-21300
	DDR4-3200	1.600 MHz	25.600 MB/s	PC4-25600

DDR3 x DDR4

DDR1 184 PIN

DDR2 240 PIN

DDR3 240 PIN

DDR4 284 PIN

- Destinados a notebooks. Eles são basicamente versões miniaturizadas dos módulos destinados a desktops, que utilizam os mesmos tipos de chips de memória.
- Os módulos SODIMM SDR possuem 144 pinos, os módulos SODIMM DDR e DDR2 possuem 200 pinos e os módulos SODIMM DDR3 possuem 204 pinos. Nos módulos SDR o chanfro fica próximo ao centro do módulo, enquanto nos DDR e DDR2 ele fica à esquerda.
- Assim como nos módulos para desktops, existe uma pequena diferença no posicionamento do chanfro entre os módulos DDR e DDR2, que impede o encaixe incorreto, já que ambos são incompatíveis:

Fatec

Tec Comparativos entre as memorias são paulo Comparativos entre as memorias

SDRAM

DDR-SDRAM