Electronic Devices

Final Term Lecture - 06

Reference book:

Electronic Devices and Circuit Theory (Chapter-7)

Robert L. Boylestad and L. Nashelsky, (11th Edition)

OBJECTIVES

- Be able to perform a dc analysis of JFET, MOSFET, and MESFET networks.
- Become proficient in the use of load-line analysis to examine FET networks.
- Develop confidence in the dc analysis of networks with both FETs and BJTs.
- Understand how to use the Universal JFET Bias Curve to analyze the various FET configurations.

GENERAL RELATIONSHIPS

• For all FETs: $I_C \approx 0$

$$I_G \approx 0A$$
 $I_D = I_S$

For JFETs and Depletion-Type MOSFETs:

$$I_D = I_{DSS} (1 - \frac{V_{GS}}{V_P})^2$$

• For Enhancement-Type MOSFETs:

$$I_D = k(V_{GS} - V_T)^2$$

- BJT: Linear Relationship between I_B and I_C
- FET: Non-linear Relationship between V_{GS} and I_D.

COMMON FET BIASING CIRCUITS

- JFET
 - Fixed Bias
 - Self-Bias
 - Voltage-Divider Bias
- Depletion-Type MOSFET
 - Self-Bias
 - Voltage-Divider Bias
- Enhancement-Type MOSFET
 - Feedback Configuration
 - Voltage-Divider Bias

FIXED-BIAS JFET

The simplest biasing arrangements:

$$I_G \approx 0A$$
 $I_D = I_S$

$$I_D = I_{DSS} (1 - \frac{V_{GS}}{V_P})^2$$

- For the DC analysis,
 - Capacitors are open circuits

$$I_G \cong 0A$$
 $V_{RG} = I_G R_G = (0A)R_G = 0V$

 The zero-volt drop across R_G permits replacing R_G by a short-circuit.

FIG. 7.1
Fixed-bias configuration.

FIXED-BIAS JFET

• Can be solved using either Mathematical Approach or Graphical Approach:

FIG. 7.2

Network for dc analysis.

Mathematical Approach

$$egin{aligned} V_{GS} &= -V_{GG} \ V_{DS} &= V_{DD} - I_D R_D \ V_S &= 0 \ V_D &= V_{DS} \ V_G &= V_{GS} \ \end{pmatrix}$$

$$I_D = I_{DSS} (1 - \frac{V_{GS}}{V_P})^2$$

FIG. 7.4

Finding the solution for the fixed-bias configuration.

FIXED-BIAS JFET EXAMPLE

• Determine V_{GSQ} , I_{DQ} , V_{DS} , V_{D} , V_{G} , V_{S} .

Mathematical Approach

a.
$$V_{GS_O} = -V_{GG} = -2 \text{ V}$$

b.
$$I_{D_Q} = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 = 10 \text{ mA} \left(1 - \frac{-2 \text{ V}}{-8 \text{ V}} \right)^2$$

= $10 \text{ mA} (1 - 0.25)^2 = 10 \text{ mA} (0.75)^2 = 10 \text{ mA} (0.5625)$
= $\mathbf{5.625 \text{ mA}}$

c.
$$V_{DS} = V_{DD} - I_D R_D = 16 \text{ V} - (5.625 \text{ mA})(2 \text{ k}\Omega)$$

= $16 \text{ V} - 11.25 \text{ V} = 4.75 \text{ V}$

d.
$$V_D = V_{DS} = 4.75 \text{ V}$$

e.
$$V_G = V_{GS} = -2 \text{ V}$$

f.
$$V_S = \mathbf{0} \mathbf{V}$$

FIG. 7.6 Example 7.1.

FIXED-BIAS JFET EXAMPLE

$$V_{GS_Q} = -V_{GG} = -2 \mathrm{V}$$

$$I_{D_0} = 5.6 \,\mathrm{mA}$$

$$V_{DS} = V_{DD} - I_D R_D = 16 \text{ V} - (5.6 \text{ mA})(2 \text{ k}\Omega)$$

= 16 V - 11.2 V = **4.8 V**

$$V_D = V_{DS} = 4.8 \text{ V}$$

$$V_G = V_{GS} = -2 \text{ V}$$

$$V_{\rm S} = 0 \, {\rm V}$$

	_
V _{GS}	I _D
0	I _{DSS}
0.3V _P	I _{DSS} /2
0.5V _P	I _{DSS} /4
V _P	0mA

FIG. 7.6 Example 7.1.

FIG. 7.7
Graphical solution for the network of Fig. 7.6.

JFET: SELF-BIAS CONFIGURATION

• The self-bias configuration *eliminates the need for two dc supplies*.

FIG. 7.8

JFET self-bias configuration.

FIG. 7.9

DC analysis of the self-bias configuration.

SELF-BIAS CONFIGURATION

Can be solved using either Mathematical Approach or Graphical Approach:

Mathematical Approach

$$V_{GS} = -I_D R_S$$

$$V_{DS} = V_{DD} - I_D (R_S + R_D)$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

$$I_D = I_{DSS} \left(1 + \frac{I_D R_S}{V_P} \right)^2$$

FIG. 7.9

DC analysis of the self-bias configuration.

SELF-BIAS CONFIGURATION

- Draw the device transfer characteristic using shorthand method.
- Draw the network load line
 - Use $V_{GS} = -I_D R_S$ to draw straight line.
 - First point, $I_D = 0$, $V_{GS} = 0$
 - Second point, any point from $I_D = 0$ to $I_D = I_{DSS}$. Choose

$$I_D = \frac{I_{DSS}}{2} then$$

$$V_{GS} = -\frac{I_{DSS}R_S}{2}$$

- The Q-point obtained at the intersection of the straight line plot and the device characteristic curve.
- The quiescent value for I_D and V_{GS} can then be determined and used to find the other quantities of interest.

SELF-BIAS CONFIGURATION

FIG. 7.11
Sketching the self-bias line.

SELF-BIAS EXAMPLE

• Determine V_{GSQ} , I_{DQ} , V_{DS} , V_{S} , V_{G} and V_{D} .

$$V_{GS} = -I_D R_S$$

$$V_{DS} = V_{DD} - I_D (R_S + R_D)$$

$$V_{GS_Q} = -2.6 \text{ V} \qquad V_{DS} = V_{DD} - I_D (R_S + R_D)$$

$$= 20 \text{ V} - (2.6 \text{ mA})(1 \text{ k}\Omega + 3.3 \text{ k}\Omega)$$

$$V_S = I_D R_S \qquad = 20 \text{ V} - 11.18 \text{ V}$$

$$= (2.6 \text{ mA})(1 \text{ k}\Omega) \qquad = 8.82 \text{ V}$$

$$= 2.6 \text{ V}$$

$$V_G = 0 \text{ V}$$

$$V_D = V_{DS} + V_S = 8.82 \text{ V} + 2.6 \text{ V} = 11.42 \text{ V}$$

 $V_D = V_{DD} - I_D R_D = 20 \text{ V} - (2.6 \text{ mA})(3.3 \text{ k}\Omega) = 11.42 \text{ V}$

FIG. 7.12 *Example 7.2.*

SELF-BIAS EXAMPLE Contd.

Plot I_D vs V_{GS} and draw a line from the origin of the axis.

FIG. 7.13

Sketching the self-bias line for the network of Fig. 7.12.

FIG. 7.12 *Example 7.2.*

End of Lecture-6