University of Southern California

Viterbi School of Engineering

EE577A VLSI System Design

Static Characteristics and Noise Margin

References: Syllabus textbooks, Professor Massoud Pedram's slides, online resources

Shahin Nazarian

Spring 2013

Ideal Inverter Threshold Voltage V_M

- For $0 \le V_{in} < V_M = V_{DD}/2$ $V_{out} = V_{DD}$ (logic "1") • For $V_M < V_{in} \le V_{DD}$ $V_{out} = 0$ (logic "0")
- $0 \le V_{in} < V_M$ input is interpreted as a logic "0"
- $V_M \cdot V_{in} \le V_{DD}$ input is interpreted as a logic "1"

VTC

• There are two critical voltage points for which:

$$dV_{out}/dV_{in} = -1$$

- V_{OH}: Max output voltage when output level is logic "1"
- V_{OL}: Min output voltage when output is level logic "0"
 - $V_{OH} = f(V_{OL}) = V_{OL}$
 - \cdot $V_{OL} = f(V_{OH}) = V_{OH}$
- V_{IL}: Maximum input voltage which can be interpreted as logic "O"
- V_{IH}: Minimum input voltage which can be interpreted as logic "1"
- Inverter threshold voltage (V_M) : defined as the point where $V_{in}=V_{out}$ (transition voltage)

Noise Margin (NM)

- Noise Margin for low signal levels: NM_L = V_{IL}-V_{OL}
- Noise Margin for high signal levels: NM_H = V_{OH}-V_{IH}
- A narrow transition (or uncertain) region would allow larger noise margins, therefore reducing the width of the uncertain region is (desirable and) an important design objective

Illustration of noise margins

Noise Immunity

Resistive-Load nMOS Inverter

Calculation of Voh

- $V_{out} = V_{DD} R_L.I_R$
- When $V_{in} < V_{TO}$
 - transistor is in cut off
 - \cdot $I_R = I_D = 0$
 - \cdot $V_{OH} = V_{DD}$

Calculation of Vol

- Assume $V_{in} = V_{OH} = V_{DD} \Rightarrow V_{in} V_{TO} > V_{out} \Rightarrow Linear region$
- $I_R = (V_{DD} V_{out})/R_L$
- Using KCL for output node $\Rightarrow I_R = I_D$

$$(V_{DD}-V_{OL})/R_L = (k_n/2) .[2.(V_{DD}-V_{TO}).V_{OL}-V_{OL}^2]$$

- V_{OL} can be numerically calculated from above
- Alternatively the above equation can be solved for V_{OL} which results in :

$$V_{OL} = V_{DD} - V_{T0} + \frac{1}{k_n R_L} - \sqrt{(V_{DD} - V_{T0} + \frac{1}{k_n R_L})^2 - \frac{2V_{DD}}{k_n R_L}}$$

Note: Instead of memorizing the noise margin related equations, one can use the definitions (e.g. here for V_{OL}) and write a KCL based on the transistor mode (e.g., here it is linear)

Calculation of V_{IL}

- $dV_{out}/dV_{in} = -1$ at $V_{in} = V_{IL}$
- V_{out} > V_{in} - V_{TO} \Rightarrow the transistor operates in saturation region
- KCL for the output node:

$$(V_{DD}-V_{out})/R_L = (k_n/2).(V_{in}-V_{TO})^2$$
 (1)

- Differentiate both sides $(-1/R_L).(dV_{out}/dV_{in}) = k_n.(V_{in}-V_{TO})$
- Substitute dV_{out}/dV_{in}=-1

$$(-1/R_L).(-1)=k_n.(V_{IL}-V_{TO})$$

 $V_{IL} = V_{TO} + 1/(k_n R_L)$ (2)

By substituting (2) into (1)

$$V_{out}(V_{in}=V_{IL}) = V_{DD}-(k_nR_L/2).(V_{TO}+1/k_nR_L-V_{TO})^2$$

= $V_{DD}-1/(2k_nR_L)$

Calculation of V_{IH}

- \cdot V_{IH} is the larger of the two points at which slope is equal to -1
- When $V_{in} = V_{IH}$, V_{out} is slightly larger than $V_{OL} \Rightarrow V_{out} < V_{in} V_{TO}$
 - ⇒ Linear mode, therefore KCL for the output node:

$$(V_{DD}-V_{out})/R_L = (k_n/2).[2.(V_{in}-V_{TO}).V_{out}-V_{out}^2]$$
 (3)

Differentiate both sides wrt V_{in}

-
$$(1/R_L).dV_{out}/dV_{in} = k_n/2.[2.(V_{in}-V_{TO}).dV_{out}/dV_{in}+2V_{out}-2V_{out}.dV_{out}/dV_{in}]$$

By substituting $dV_{out}/dV_{in} = -1$ at $V_{in} = V_{IH}$

$$(-1/R_L).(-1) = k_n.[(V_{IH}-V_{TO}).(-1)+2V_{out}]$$

$$V_{IH} = V_{TO} + 2V_{out} - 1/k_n R_L$$
 (4)

By substituting (4) into (3):

$$(V_{DD}-V_{out})/R_L = (k_n/2).[2.(V_{TO}+2V_{out}-1/k_nR_L-V_{TO}).V_{out}-V_{out}^2]$$

Positive solution:

$$V_{out}(V_{in}=V_{IH}) = [(2/3).V_{DD}/k_nR_L]^{1/2}$$
 (5)

Substitute (5) into (4):

$$V_{IH} = V_{T0} + \sqrt{\frac{8}{3} \cdot \frac{V_{DD}}{k_n R_L}} - \frac{1}{k_n R_L}$$

Calculation of V_{TH} (Cont.)

- k_nR_L plays an important role in determining the shape of the VTC
- V_{OH} is determined primarily by V_{DD}
- Adjustment of V_{OL} receives primary attention
- V_{IL} & V_{IH} are usually treated as secondary design variables
- For larger k_nR_L values, V_{OL} becomes smaller and shape of the VTC approaches that of the ideal inverter

VTC of the resistive-load inverter for different values of $k_n R_L$

Power Consumption and Gate Area

- DC power consumption of the resistive-load inverter circuit is found by considering two cases:
 - 1. $V_{in} = V_{OL}$ (low) \Rightarrow transistor is in cut-off $\Rightarrow I_D = I_R = 0$ $\Rightarrow P_{DC} = 0$
 - 2. $V_{in} = V_{OH}$ (high) \Rightarrow transistor is in linear region and $V_{out} = V_{OL}$

$$I_D = I_R = (V_{DD} - V_{OL})/R_L$$

 Assuming Voltage is "low" 50% of time and "high" 50% of time

$$P_{DC}(average) = (V_{DD}/2).(V_{DD}-V_{OL})/R_{L}$$

- The gate area depends on two parameters
 - 1. (W/L) ratio of the driver transistor. It can be approximated by the gate area (W \times L)
 - 2. R_L value. Resistor area depends on fabrication technology

Inverters with n-Type MOSFET Load

- Resistive-load inverter circuit is not suitable in most
 VLSI circuit designs because of large area occupied by
 the load resistor
- Use nMOS as the active resistor load
 - · Advantages: smaller area and better performance

Inverter with saturated enhancement-type NMOS load

Inverter with linear enhancement-type NMOS load

(b)

Depletion-Load nMOS Inverter

Advantages:

- Sharp VTC transition and better noise margins
- Single power supply
- · Smaller overall layout
- Downside: fabrication process is more complicated. DC power consumption
- Driver device: enhancement type nMOS transistor with $V_{T0,driver}$ > 0
- Load: depletion-type nMOS transistor with $V_{TO,load} < 0$
 - $V_{GS,load} = 0 \Rightarrow V_{GS,load} > V_{T,load}$
 - V_{SB,load} = V_{out}

(a) Inverter with depletion-type nMOS load

(a)

(b) Simplified equivalent circuit consisting of a nonlinear load resistor & a non-ideal switch controlled by input

(b)

Depletion-Load nMOS Inverter (Cont.)

 \cdot $V_{SB,load} = V_{out} \Rightarrow$ threshold voltage is a function of V_{out}

$$V_{T,load} = V_{T0,load} + \gamma \left(\sqrt{\left|2\phi_F\right| + V_{out}} - \sqrt{\left|2\phi_F\right|}\right)$$

• When V_{out} is low V_{out} < V_{DD} + $V_{T,load}$ \Rightarrow depletion-type load transistor is in saturation

$$I_{D,load} = (k_{n,load}/2).[-V_{T,load}(V_{out})]^2 = (k_{n,load}/2).[V_{T,load}(V_{out})]^2$$

• When V_{out} is high V_{out} > $V_{DD} + V_{T,load} \Rightarrow$ load transistor is in the linear region

$$I_{D,load} = (k_{n,load}/2).[2|V_{T,load}(V_{out})|.(V_{DD}-V_{out})-(V_{DD}-V_{out})^2]$$

VTC can be constructed by setting:

$$I_{D,driver} = I_{D,load}$$
, $V_{GS,driver} = V_{in}$, $V_{DS,driver} = V_{out}$ and solving $V_{out} = f(V_{in})$

Depletion-Load nMOS Inverter (Cont.)

V _{in}	V _{out}	Driver Operating Region	Load Operating Region	
V _{OL}	V _{OH}	cut-off	linear	
V _{IL}	≈V _{oH}	saturation	linear	
V _{IH}	small	linear	saturation	
V _{OH}	V _{OL}	linear	saturation	

Typical VTC of a depletion-load inverter circuit

Calculation of Voh

• V_{in} < V_{T0} \Rightarrow driver transistor is in cut-off; load transistor is in linear region

•
$$V_{out} = V_{OH}$$
, $I_{D,load} = 0$
 $I_{D,load} = (k_{n,load}/2).[2|V_{T,load}(V_{OH})|.(V_{DD}-V_{OH})-(V_{DD}-V_{OH})^2] = 0$

• The only valid solution in the linear region is:

$$V_{OH} = V_{DD}$$

Calculation of Vol

• V_{in} = V_{OH} = V_{DD} \Rightarrow driver transistor is in linear region; and depletion-type load is in saturation

$$(k_{driver}/2).[2.(V_{OH}-V_{TO}).V_{OL}-V_{OL}^2] = (k_{load}/2).[-V_{T,load}(V_{OL})]^2$$

• Temporarily, neglect dependence of $V_{T,load}$ on V_{OL} resulting in:

$$V_{OL} = V_{OH} - V_{T0} - \sqrt{(V_{OH} - V_{T0})^2 - (\frac{k_{load}}{k_{driver}}) |V_{T,load}(V_{OL})|^2}$$

(I)

The actual value of V_{OL} is found by solving Eqns I and II (using numerical iterations.) The iterative method converges rapidly, because actual value of V_{OL} is relatively small

$$V_{T,load} = V_{T0,load} + \gamma (\sqrt{|2\phi_F| + V_{out}} - \sqrt{|2\phi_F|})$$
 (II)

Calculation of V_{II}

- $dV_{out}/dV_{in} = -1$ when $V_{in} = V_{IL}$
- Driver transistor in saturation, load transistor in linear region
- KCL at output node:

$$(k_{driver}/2).(V_{in}-V_{TO})^2 = (k_{load}/2).[2|V_{T,load}(V_{out})|.(V_{DD}-V_{out})-(V_{DD}-V_{out})^2]$$
(I)

After differentiation both sides with respect to V_{in}

$$k_{driver}.(V_{in}-V_{TO}) = (k_{load}/2).[2|V_{T,load}(V_{out})|(-dV_{out}/dV_{in})+2(V_{DD}-V_{out}).$$

$$(-dV_{T,load}/dV_{in})-2(V_{DD}-V_{out})(-dV_{out}/dV_{in})]$$

Assume $(dV_{T,load}/dV_{in})$ is negligible:

$$V_{IL} = V_{T0} + \frac{k_{load}}{k_{driver}} \cdot \left(V_{out} - V_{DD} + \left| V_{T,load} (V_{out}) \right| \right)$$
(II)

The actual value of V_{IL} is found by solving Eqn.s I, II, and III using numerical iterations

$$V_{T,load} = V_{T0,load} + \gamma (\sqrt{|2\phi_F| + V_{out}} - \sqrt{|2\phi_F|})$$
 (III)

Calculation of V_{IH}

- $dV_{out}/dV_{in} = -1$ when $V_{in} = V_{IH}$
- Driver transistor in linear region, load transistor in saturation

$$(k_{driver}/2).[2.(V_{in}-V_{TO}).V_{out}-V_{out}^2] = (k_{load}/2).[-V_{T,load}(V_{out})]^2$$
 (I)

Differentiating both sides with respect to V_{in}

$$k_{driver} \cdot [V_{out} + (V_{in} - V_{TO})(dV_{out}/dV_{in}) - V_{out}(dV_{out}/dV_{in})]$$

=
$$k_{load}$$
.[- $V_{T,load}$ (V_{out})].($dV_{T,load}$ / dV_{out}).(dV_{out} / dV_{in})

• Substitute $(dV_{out}/dV_{in})=-1$ and solve for $V_{in}=V_{IH}$, yielding:

$$V_{IH} = V_{T0} + 2V_{out} + \frac{k_{load}}{k_{driver}} \cdot \left(-V_{T,load}(V_{out})\right) \cdot \frac{dV_{T,load}}{dV_{out}} \quad \text{where} \quad \frac{dV_{T,load}}{dV_{out}} = \frac{\gamma}{2\sqrt{|2\phi_F| + V_{out}}}$$

 The actual value of V_{IH} is found by solving I, II, and III using numerical iterations

$$V_{T,load} = V_{T0,load} + \gamma \left(\sqrt{\left|2\phi_F\right| + V_{out}} - \sqrt{\left|2\phi_F\right|}\right)$$

(III)

Shape of the VTC

- The general shape of VTC and the noise margins are determined by the threshold voltages of the driver and the load devices, and by the driver-to-load ratio $k_R = k_{driver}/k_{load}$
- Threshold voltages are usually set by the fabrication process \Rightarrow k_R emerges as a primary design parameter
- Main advantage: sharp VTC transition and large noise margins is possible with relatively small k_R values (and needs much smaller area than those for resistive load or enhancement-load inverter)

VTC of depletion-load inverters, with different k_{R}

Design of Depletion-Load Inverter

- Inverter parameters that can be changed by designers:
 - 1. V_{DD} , dictated by external constraints and by fabrication process
 - 2. $V_{\text{T,driver}}$ and $V_{\text{T,load}}$ dictated by external constraints and by fabrication process
 - 3. (W/L) ratios of the driver and the load transistors (more specifically driver-to-load ratio, $k_{\rm R}$), are primary design parameters
- Since $V_{OH} = V_{DD}$, we have three critical voltages on the VTC
- $^{\bullet}$ V_{OL} is usually the most significant design constraint and aiming for a certain V_{OL} automatically sets V_{IL} and V_{IH}
- We can re-arrange the V_{OL} equation:

$$k_R = (k_{driver}/k_{load}) = |V_{T,load}(V_{OL})|^2 / [2(V_{OH}-V_{TO})V_{OL}-V_{OL}^2]$$

Design of Depletion-Load Inverter (Cont.)

- $k'_n = μ_n C_{ox}$. In general $k'_{n,driver}$ $≠ k'_{n,load}$
- But if $k'_{n,driver} \approx k'_{n,load} \Rightarrow k_R = (W/L)_{driver} / (W/L)_{load}$
- So this design procedure determines the ratio of the driver and the load transconductances, but not specific (W/L) ratio of each of the transistors
- Actual sizes of the driver and load transistors are usually determined by other design constraints such as:
 - Current-drive capability
 - Steady-state power dissipation
 - Transition switching speed

Power and Area considerations

- DC power consumption of the depletion-load inverter circuit is found by considering two cases:
- 1. V_{in} : low \Rightarrow driver transistor is in cut-off and $V_{out} = V_{OH} = V_{DD} \Rightarrow I_D = I_R = 0 \Rightarrow P_{DC-low} = 0$
- 2. $V_{in} \approx V_{DD}(high)$ and $V_{out} = V_{OL} \Rightarrow$ $I_{D}(V_{in} = V_{DD}) = (k_{load}/2).[-V_{T,load}(V_{OL})]^{2}$ $= (k_{driver}/2).[2.(V_{OH} V_{TO}).V_{OI} V_{OI}^{2}]$
- * Assume V_{in} is low during 50% of the operation time and high during the other 50% :

$$P_{DC} = (V_{DD}/2).(k_{load}/2).[-V_{T,load}(V_{OL})]^2$$

CMOS Inverter (Cont.)

- Both NMOS and PMOS contribute equally to circuit operation characteristics
- Advantages over the other inverters configurations:
 - · Steady-state power dissipation is virtually negligible
 - \cdot VTC exhibits a full output voltage swing between OV and V_{DD} and the VTC is usually sharp
 - VTC resembles those of an ideal inverter
- Disadvantages:
 - Higher process complexity
 - Close proximity of NMOS and PMOS may lead to the formation of two parasitic bipolar transistors, causing latch-up condition, so additional guard rings must be built around NMOS and PMOS transistors

Circuit Operation (Cont.)

Region	Important V _{in} in the region	V _{out}	NMOS	PMOS
Α	< V _{To,n}	V _{OH}	cut-off	linear
В	V _{IL}	High ≈ V _{OH}	saturation	linear
С	V _M	V _M	saturation	saturation
D	V _{IH}	low ≈ V _{OL}	linear	saturation
E	$> V_{DD} + V_{T0,p}$	V _{OL}	linear	cut-off

$$V_{OH} = V_{DD}$$

$$V_{OL} = 0$$

Calculation of V_{IL}

NMOS transistor in saturation, PMOS transistor in linear region

$$I_{D,n} = I_{D,p} \Rightarrow (k_n/2).(V_{in}-V_{TO,n})^2 = (k_p/2).[2.(V_{in}-V_{DD}-V_{TO,p}).(V_{out}-V_{DD}) - (V_{out}-V_{DD})^2]$$

Differentiate both sides wrt Vi

$$k_{n}.(V_{in}-V_{TO,n}) = k_{p}.[(V_{in}-V_{DD}-V_{TO,p}).(dV_{out}/dV_{in})+(V_{out}-V_{DD}) - (V_{out}-V_{DD}).(dV_{out}/dV_{in})]$$

Substituting $V_{in} = V_{IL}$ and $(dV_{out}/dV_{in}) = -1$:

$$k_{n}.(V_{IL}-V_{TO,n}) = k_{p}.(2V_{out}-V_{IL}+V_{TO,p}-V_{DD})$$

Equations in red must be solved together to get V_{IL} and corresponding output

Solve by iteration

$$V_{IL} = \frac{2V_{out} + V_{T0,p} - V_{DD} + k_R \cdot V_{T0,n}}{1 + k_R}$$
 where $k_R = \frac{k_n}{k_p}$

Calculation of V_{IH}

- When $V_{in}=V_{IH} \Rightarrow$ nMOS in linear; pMOS in saturation
- KCL at the output node:

$$(k_n/2).[2.(V_{in}-V_{TO,n}).V_{out}-V_{out}^2] = (k_p/2).(V_{in}-V_{DD}-V_{TO,p})^2$$

Differentiate both sides with respect to Vin:

$$k_{n}.[(V_{in}-V_{TO,n}).(dV_{out}/dV_{in})+V_{out}-V_{out}.(dV_{out}/dV_{in})]$$

= $k_{p}.(V_{in}-V_{DD}-V_{TO,p})$

Substituting $V_{in}=V_{IH}$ and $(dV_{out}/dV_{in})=-1$

$$k_{n}.(-V_{IH}+V_{TO,n}+2V_{out}) = k_{p}.(V_{IH}-V_{DD}-V_{TO,p})$$

Solve by iteration

$$V_{IH} = \frac{V_{DD} + V_{T0,p} + k_R (2V_{out} + V_{T0,n})}{1 + k_R}$$

Calculation of V_M

- Definition: V_M = V_{in} = V_{out}
- For $V_{in} = V_{out}$ both transistors are in saturation

$$k_n/2.(V_{GS,n}-V_{TO,n})^2 = k_p/2.(V_{GS,p}-V_{TO,p})^2$$

$$\Rightarrow k_{n}.(V_{in}-V_{TO,n})^{2} = k_{p}.(V_{in}-V_{DD}-V_{TO,p})^{2}$$

$$\Rightarrow$$
 V_{in}.[1+(k_p/k_n)^{1/2}] =

$$V_{TO,n}+(k_p/k_n)^{1/2}.(V_{DD}+V_{TO,p})$$

$$V_{M} = \frac{V_{T0,n} + \frac{1}{\sqrt{k_{R}}}.(V_{DD} + V_{T0,p})}{1 + \frac{1}{\sqrt{k_{R}}}}$$

Variation of the inversion threshold voltage as a function of k_R

Calculation of V_M (Cont.)

- When $V_{in} < V_{TO,n}$ or $V_{in} > (V_{DD} V_{TO,p})$ the CMOS inverter does not draw any significant current from power supply except for reverse leakage current of pn-junctions and subthreshold current
- The transistors conduct a nonzero current during low-tohigh and high-to-low transitions, i.e., in region B, C, and D
- Current from power supply reaches its peak value when $V_{in}=V_{M}$ (when both devices are in saturation)

Typical VTC and the power supply current of a CMOS inverter circuit

Design of CMOS Inverters

- V_M is one of the most important parameters that characterize the steady-state input-output behavior of the CMOS inverter circuit
- The CMOS inverter can provide a full output voltage swing between 0 and $V_{DD} \Rightarrow$ noise margins are relatively wide
- Therefore, the problem of designing a CMOS inverter can be reduced to setting the inverter threshold to a desired voltage value
- Given V_{DD} , $V_{TO,n}$, $V_{TO,p}$ and inverter threshold voltage V_M $(1/k_R)^{1/2} = (V_M V_{TO,n})/(V_{DD} + V_{TO,p} V_M)$ $k_R = k_n/k_p = [(V_{DD} + V_{TO,p} V_M)/(V_M V_{TO,n})]^2$ for an Ideal inverter: $V_{M,ideal} = V_{DD}/2 \Rightarrow (k_n/k_p)_{ideal} = [(0.5V_{DD} + V_{TO,p})/(0.5V_{DD} V_{TO,n})]^2$

Design of CMOS Inverters (Cont.)

For completely symmetric input-output characteristics :

$$V_{TO} = V_{TO,n} = |V_{TO,p}| \Rightarrow (k_n/k_p)_{symmetric inverter} = 1$$

$$\frac{k_n}{k_p} = \frac{\mu_n C_{ox}.(\frac{W}{L})_n}{\mu_p C_{ox}.(\frac{W}{L})_p} = \frac{\mu_n.(\frac{W}{L})_n}{\mu_p.(\frac{W}{L})_p} = 1$$

The above result is based on the assumption that t_{ox} , and hence, C_{ox} have the same values for both transistors

• For ideal symmetric inverter:

$$\frac{\left(\frac{W}{L}\right)_{p}}{\left(\frac{W}{L}\right)_{n}} = \frac{\mu_{n}}{\mu_{p}} = \frac{230cm^{2}/V \cdot s}{580cm^{2}/V \cdot s} \Longrightarrow \left(\frac{W}{L}\right)_{p} \approx 2.52 \left(\frac{W}{L}\right)_{n}$$

The numerical μ values are typical and they change with surface doping concentration of the substrate and tub

Design of CMOS Inverters (Cont.)

For a symmetric CMOS inverter with $V_{TO,n} =$ $|V_{T0,p}|$ and $k_R = 1$

$$\nabla_{IL} = (1/8).(3V_{DD} + 2V_{TO,n})$$

$$V_{IH} = (1/8).(5V_{DD} - 2V_{TO,n})$$

$$V_{IL} + V_{IH} = V_{DD}$$

$$NM_{L} = V_{IL} - V_{OL} = V_{IL}$$

$$NM_{H} = V_{OH} - V_{IH} = V_{DD} - V_{IH}$$

$$NM_{L} = NM_{LL} = V_{TL}$$

$$NM_L = NM_H = V_{IL}$$

VTC of three CMOS inverters, with different NMOS-topMOS ratios.

NOR2: Calculation of Vol.

Calculation of V_{OL}

- To calculate the output low voltage V_{OL} , we must consider three different cases as follows:

(i)
$$V_A = V_{OH}$$
, $V_B = V_{OL}$

(ii)
$$V_A = V_{OL}$$
, $V_B = V_{OH}$

(iii)
$$V_A = V_{OH}$$
, $V_B = V_{OH}$

V_{OL} Calculation

 Assuming that the threshold voltages of the two enhancementtype driver transistors are identical, the driver-to-load ratio of the corresponding inverter can be found as follows

$$k_{R} = \frac{k_{driver,A}}{k_{load}} = \frac{k_{n,driver}^{'}\left(\frac{W}{L}\right)_{A}}{k_{n,load}^{'}\left(\frac{W}{L}\right)_{load}} \qquad k_{R} = \frac{k_{driver,B}}{k_{load}} = \frac{k_{n,driver}^{'}\left(\frac{W}{L}\right)_{B}}{k_{n,load}^{'}\left(\frac{W}{L}\right)_{load}}$$

In case (ii)

$$k_{R} = \frac{k_{driver,B}}{k_{load}} = \frac{k_{n,driver}^{'}\left(\frac{W}{L}\right)_{B}}{k_{n,load}^{'}\left(\frac{W}{L}\right)_{load}}$$

The output low voltage level V_{OL} in <u>SIS cases</u> is found as:

$$V_{OL} = V_{OH} - V_{T0} - \sqrt{(V_{OH} - V_{T0})^2 - \left(\frac{k_{load}}{k_{driver}}\right) \cdot |V_{T,load}(V_{OL})|^2}$$

V_{OL} Calculation (Cont.)

 In case (iii), the saturated load current is the sum of the two linear-mode driver currents

$$I_{D,load} = I_{D,driverA} + I_{D,driverB}$$

$$\frac{k_{load}}{2} |V_{T,load}(V_{OL})|^2 = \frac{k_{driver,A}}{2} [2(V_A - V_{T0})V_{OL} - V_{OL}^2] + \frac{k_{driver,B}}{2} [2(V_B - V_{T0})V_{OL} - V_{OL}^2]$$

 Since the gate voltages of both driver transistors are equal we can devise equivalent driver-to-load ratio for the NOR structure

$$k_{R} = \frac{k_{driver,A} + k_{driver,B}}{k_{load}} = \frac{k_{n,driver}^{'} \left[\left(\frac{W}{L} \right)_{A} + \left(\frac{W}{L} \right)_{B} \right]}{k_{n,load}^{'} \left(\frac{W}{L} \right)_{load}}$$

Output Voltage for MIS Case

· In the case iii, the output voltage level is

$$V_{OL} = V_{OH} - V_{T0} - \sqrt{(V_{OH} - V_{T0})^2 - \left(\frac{k_{load}}{k_{driver,A} + k_{driver,B}}\right) \cdot |V_{T,load}(V_{OL})|^2}$$

• This result suggests a simple design strategy for designing NOR2 gates – achieve a certain max V_{OL} for case i and ii:

$$k_{driver,A} = k_{driver,B} = k_R k_{load}$$

- · This design choice yields two identical driver transistors, which guarantee the required value of V_{OL} in the worst case
- · Note that the V_{OL} for the case iii is lower than that obtained for cases i and ii

Analysis of NAND2

Consider NAND2 gate with its inputs set to V_{OH}

• The drain currents of all transistors in the circuits are equal to each other

$$\begin{split} I_{D,load} &= I_{D,driverA} = I_{D,driverB} \\ &\frac{k_{load}}{2} \left| V_{T,load} (V_{OL}) \right|^2 = \frac{k_{driver,A}}{2} [2(V_{GS,A} - V_{T,A})V_{DS,A} - V_{DS,A}^{2}] \\ &= \frac{k_{driver,B}}{2} [2(V_{GS,B} - V_{T,B})V_{DS,B} - V_{DS,B}^{2}] \end{split}$$

- The gate-to-source voltages of both driver transistors can be assumed to be approximately equal to V_{OH}
- We may neglect the substrate-bias effect for driver transistor A, and assume $V_{T,A}=V_{T,B}=V_{T,0}$ since the source-to-substrate voltage of driver A is low

 $V_A = V_{OH}$ $(W/L)_A$ $V_B = V_{OH}$ $(W/L)_B$

Analysis of NAND2 (Cont.)

 (From the previous page equations) the drainto-source voltages of both driver transistors can be obtained as follows:

$$\begin{split} V_{DS,A} &= V_{OH} - V_{T0} - \sqrt{(V_{OH} - V_{TO})^2 - (\frac{k_{load}}{k_{driver,A}}) |V_{T,load}(V_{OL})|^2} \\ V_{DS,B} &= V_{OH} - V_{T0} - \sqrt{(V_{OH} - V_{TO})^2 - (\frac{k_{load}}{k_{driver,B}}) |V_{T,load}(V_{OL})|^2} \end{split}$$

The output voltage V_{OL} is equal to the sum of the drain-to-source voltages of both drivers. Assuming $k_{driver,A} = k_{driver,B} = k_{driver}$ we obtain:

$$V_{OL} \approx 2 \left(V_{OH} - V_{T0} - \sqrt{(V_{OH} - V_{T0})^2 - (\frac{k_{load}}{k_{driver}}) \cdot \left| V_{T,load}(V_{OL}) \right|^2} \right)$$

CMOS NOR2 Gate

- As expected: $V_{OH} = V_{DD}$; $V_{OL} = 0$
- For circuit design purposes, the switching threshold voltage V_M (or V_{th}) of the CMOS gate emerges as a key design criterion
- Assuming both input voltages switch simultaneously, i.e., $V_A = V_R$. $(W/L)_{n,A} = (W/L)_{n,B}$ and $(W/L)_{n,A} = (W/L)_{n,B}$ Furthermore:
- By definition, the output voltage is equal to the input voltage at the switching threshold:

$$V_A = V_B = V_{out} = V_{th}$$

- The combined drain current of the two NMOS transistors is, $I_{D} = k_{n} (V_{th} - V_{T,n})^{2}$

- Thus, we obtain the first equation for the switching threshold:

 $V_{th} = V_{T,n} + \sqrt{\frac{I_D}{k}}$

CMOS NOR2 Gate (Cont.)

The pMOS transistor, M3, operates in the linear region, while the other transistor, M4, is in saturation for $V_{in}=V_{out}$

$$I_{D3} = \frac{k_p}{2} \left[2(V_{th} - V_{DD} + |V_{T,p}|) V_{DS3} - V_{DS3}^{2} \right] \qquad I_{D4} = \frac{k_p}{2} (V_{th} - V_{DD} - V_{DS3} + |V_{T,p}|)^{2}$$

- The drain current of both pMOS transistors are identical: $I_{D3} = I_{D4} = I_D$ this yields the second equation of the switching threshold:

 $V_{DD} - V_{th} - |V_{T,p}| = 2\sqrt{\frac{I_D}{k_p}}$

- Combining these two equations, we obtain:

$$V_{th}(NOR2) = \frac{V_{T,n} + \frac{1}{2}\sqrt{\frac{k_p}{k_n}}(V_{DD} - |V_{T,p}|)}{1 + \frac{1}{2}\sqrt{\frac{k_p}{k_n}}}$$

CMOS NOR2 Gate (Cont.)

Compare this with the switching threshold voltage of a CMOS inverter:

$$V_{th}(NOR2) = \frac{V_{T,n} + \frac{1}{2}\sqrt{\frac{k_p}{k_n}}(V_{DD} - |V_{T,p}|)}{1 + \frac{1}{2}\sqrt{\frac{k_p}{k_n}}}$$

$$V_{th}(INV) = \frac{V_{T,n} + \sqrt{\frac{k_p}{k_n}}(V_{DD} - |V_{T,p}|)}{1 + \sqrt{\frac{k_p}{k_n}}}$$

$$V_{th}(INV) = \frac{V_{T,n} + \sqrt{\frac{k_p}{k_n}}(V_{DD} - |V_{T,p}|)}{1 + \sqrt{\frac{k_p}{k_n}}}$$

• If $k_n = k_p$ and $V_{T,n} = /V_{T,p}/$, the switching threshold of the CMOS inverter is equal to $V_{DD}/2$, whereas the switching threshold of the CMOS inverter is equal to

$$V_{th}(NOR2) = \frac{V_{DD} + V_{T,n}}{3}$$

Alternative Derivation (Equivalent Inverter)

- The switching threshold of the NOR2 gate can be obtained by using the equivalent-inverter approach
 - When both inputs are identical, the parallel-connected NMOS transistors can be represented by a single NMOS transistor with $2k_n$
 - The series-connected pMOS transistors are represented by a single pMOS transistor with $k_p/2$

 Using the inverter switching threshold expression for the equivalent inverter circuit, we obtain:

$$V_{th}(NOR2) = \frac{V_{T,n} + \sqrt{\frac{k_p}{4k_n}}(V_{DD} - |V_{T,p}|)}{1 + \sqrt{\frac{k_p}{4k_n}}}$$

Note: $V_{T,n} = |V_{T,p}|$ and $k_p = 4k_n \Rightarrow V_{th} = V_{DD}/2$

Alternative Derivation (Cont.)

- Using the inverter switching threshold expression for the equivalent inverter circuit, we obtain:

$$V_{th}(NOR2) = \frac{V_{T,n} + \sqrt{\frac{k_p}{4k_n}}(V_{DD} - |V_{T,p}|)}{1 + \sqrt{\frac{k_p}{4k_n}}}$$

Note:
$$V_{T,n} = |V_{T,p}|$$
 and $k_p = 4k_n \Rightarrow V_{th} = V_{DD}/2$