Proposition: For all $n, m, p \in \mathbb{Z}$ where $n, m, p \geq 0$, it follows that $S_n: \sum_{i=0}^p {m \choose i} {n \choose p-i} = {m+n \choose p}.$

Proof. (Induction).

Basis step. Suppose n=0 and $m,p\in\mathbb{Z}$ where $m,p\geq 0$. Observe that $\sum_{i=0}^{p}\binom{m}{i}\binom{0}{p-i}=\binom{m}{p}\binom{0}{p-p}=\binom{m}{p}(1)=\binom{m+0}{p}$. Thus S_0 . **Inductive step.** Suppose S_n for any $n,m,p\in\mathbb{Z}$ where $n,m,p\geq 0$.

We now show S_n implies S_{n+1} . Observe that

$$\binom{m+n+1}{p} = \binom{m+n}{p} + \binom{m+n}{p-1}$$
 (Def. of Pascal's triangle) (1)
$$= \sum_{i=0}^{p} \binom{m}{i} \binom{n}{p-i} + \sum_{i=0}^{p-1} \binom{m}{i} \binom{n}{p-i-1}$$
 (Inductive hypothesis) (2)
$$= \sum_{i=0}^{p} \left[\binom{m}{i} \binom{n}{p-i} + \binom{n}{i} \binom{n}{p-i-1} \right] - \binom{m}{p} \binom{n}{p-p-1}$$
 (3)

$$=\sum_{i=0}^{p} \binom{m}{i} \left(\binom{n}{p-i} + \binom{n}{p-i-1} \right) - \binom{m}{p} (0) \tag{4}$$

$$=\sum_{i=0}^{p} \binom{m}{i} \binom{n+1}{p-i}.$$
 (5)

Thus S_{n+1} .

It follows by mathematical induction that S_n for all $n, m, p \in \mathbb{Z}$ where $n, m, p \geq 0$.