Lecture 15 Logic Intro and PDCL

Lecture Overview

- Intro to Logic
 - Propositional Definite Clauses:
 - **Syntax**
 - **Semantics**
 - Proof procedures (time permitting)

Where Are We?

Sequential

STRIPS

Decision Nets Variable

Planning

Search

Elimination

First Part of *Markov Processes* Value the Course

Iteration

Where Are We?

Environment

Representation

Planning

Search

Elimination

Back to static

problems, but with Markov Processes richer Value

representation

Iteration

What you already know about logic...

Logic is the language of Mathematics. To define formal structures (e.g., sets, graphs) and to prove statements about those

$$\forall (x) triangle(x) \longrightarrow [A = B = C \longleftrightarrow \alpha = \beta = \gamma]$$

- From programming: Some logical operators
- If ((amount > 0) && (amount < 1000)) || !(age < 30) ...

You know what they mean in a "procedural" way

We use logic as a Representation and Reasoning System that can be used to formalize a domain and to reason about it Logic: a framework for representation & reasoning

 When we represent a domain about which we have only partial (but certain) information, we need to represent....

Logic: a framework for representation & reasoning

- When we represent a domain about which we have only partial (but certain) information, we need to represent....
- Objects, properties, sets, groups, actions, events, time, space, ...
- All these can be represented as
- Objects
- Relationships between objects
- Logic is the language to express knowledge about the world this way
- http://en.wikipedia.org/wiki/John McCarthy (1927 2011) Logic and AI "The Advice Taker"

Coined "Artificial Intelligence". Dartmouth W'shop (1956)

Why Logics?

"Natural" way to express knowledge about the world

```
e.g. "Every 101 student will pass the course" Course (c1)
Name-of (c1, 101)
```

```
\forall (z)student(z)&registered(z,c1) \Box \Box \rightarrow will \_pass(z,c1)
```

- It is easy to incrementally add knowledge
- It is easy to check and debug knowledge
- Provides language for asking complex queries

Well understood formal properties

1 1

Logic: A general framework for reasoning

General problem: Query answering

- tell the computer how the world works
- tell the computer some facts about the world
- ask a yes/no question about whether other facts must be true

Solving it with Logic

- Begin with a task domain.
- Distinguish those things you want to talk about (the ontology)

- 3. <u>Choose</u> symbols in the computer to denote elements of your ontology
- 4. <u>Tell</u> the system knowledge about the domain

Example: Electrical Circuit

light_l1.
light_l2.
ok_l1.
ok_l2.
ok_cb1.
ok_cb2.
live_outside.

live_l1 ←live_wo. live_wo ←live_w1 ∧up_52. live_wo ←live_w2 ∧down_52. live_w₁ \leftarrow live_w₃ \wedge up_s₁. live_w2 ←live_w3 ∧down_51. live_l2 ←live_w4. live_w4 ←live_w3 ∧up_53. live_p1 ←live_w3. live_w₃ \leftarrow live_w₅ \wedge ok_cb₁. live_p2 ←live_w6. live_w6 \leftarrow live_w5 \wedge ok_cb2. live_w5 ←live_outside. $lit_1 \leftarrow light_1 \land live_1 \land ok_1$. $lit_{l2} \leftarrow light_{l2} \land live_{l2} \land ok_{l2}$.

Logic: A general framework for reasoning

General problem: Query answering

- tell the computer how the world works
- tell the computer some facts about the world
- ask a yes/no question about whether other facts must be true

Solving it with Logic

- Begin with a task domain.
- Distinguish those things you want to talk about (the ontology)
- 3. <u>Choose</u> symbols in the computer to denote elements of your ontology
- 4. Tell the system knowledge about the domain

5. Ask the system whether new statements about the domain are true or false

light_l1.
light_l2.
ok_l1.
ok_l2.
ok_cb1.
ok_cb2.
live_outside.

live_l1 ←live_wo. live_wo ←live_w1 ∧up_52. live_wo ←live_w2 ∧down_52. live_w1 ←live_w3 ∧up_51. live_w2 ←live_w3 ∧down_51. live_l2 ←live_w4. live_w4 ←live_w3 ∧up_53. live_p1 ←live_w3. live_w₃ \leftarrow live_w₅ \wedge ok_cb₁. live_p2 ←live_w6. live_w6 \leftarrow live_w5 \wedge ok_cb2. live_ws ←live_outside. $lit_1 \leftarrow light_1 \land live_1 \land ok_1$. $lit_{l2} \leftarrow light_{l2} \land live_{l2} \land ok_{l2}$.

live_w₄? lit_l₂?

To Define a Logic We Need

- Syntax: specifies the symbols used, and how they can be combined to form legal sentences
- Knowledge base is a set of sentences in the language
- Semantics: specifies the meaning of symbols and sentences
- Reasoning theory or proof procedure: a specification of how an answer can be produced.

- Sound: only generates correct answers with respect to the semantics
- Complete: Guaranteed to find an answer if it exists 17
 Propositional Definite Clauses

We will start with a simple logic

 Primitive elements are propositions: Boolean variables that can be {true, false}

Two kinds of statements:

- that a proposition is true
- that a proposition is true if one or more other propositions are true

Why only propositions?

- We can exploit the Boolean nature for efficient reasoning
- Starting point for more complex logics

We need to specify: syntax, semantics, proof procedure Lecture Overview

- Intro to Logic
- Propositional Definite Clauses:
 - Syntax

- Semantics
- Proof Procedures

To Define a Logic We Need

- Syntax: specifies the symbols used, and how they can be combined to form legal sentences
 - Knowledge base is a set of sentences in the

language

- Semantics: specifies the meaning of symbols and sentences
- Reasoning theory or proof procedure: a specification of how an answer can be produced.

- Sound: only generates correct answers with respect to the semantics
- Complete: Guaranteed to find an answer if it exists 20

Propositional Definite Clauses: Syntax

Definition (atom)

An atom is a symbol starting with a lower case letter

Examples: p₁; live_l₁

Definition (body)

A **body** is an atom or is of the form $b_1 \land b_2$ where b_1 and b_2 are bodies.

Examples: $p_1 \wedge p_2$; ok_w₁ \wedge live_w₀

Definition (definite clause)

A definite clause is

- an atom or
- a rule of the form *h*←*b* where *h* is an atom ("head") and *b* is a body. (Read this as "*h* if *b*".)

Definition (KB)

A knowledge base (KB) is a set of definite clauses

atoms

definite clauses, KB

live_l1 ←live_wo. live_wo ←live_w1 ∧up_52. live_wo ←live_w2 ∧down_52. live_w1 ←live_w3 ∧up_51. live_w2 ←live_w3 ∧down_51. live 12 ←live W4. live_w4 ←live_w3 ∧up_53. live_p1 ←live_w3. live_w₃ \leftarrow live_w₅ \wedge ok_cb₁. live_p2 ←live_w6. live_w6 \leftarrow live_w5 \wedge ok_cb2. live_w5 ←live_outside. $lit_1 \leftarrow light_1 \land live_1 \land ok_1$. $lit_12 \leftarrow light_12 \land live_12 \land ok_12.$

rules

PDCL Syntax: more examples

Definition (definite clause)

A definite clause is

- an atom or
- a rule of the form h ← b where h is an atom ('head') and b is a body.
 (Read this as 'h if b.')

How many of the clauses below are legal PDCL clauses?

- a) Sunny_today
- b) sunny_today\cloudy_today
- c) vdjhsaekwrq
- d) $high_pressure_system \leftarrow sunny-today$
- e) $sunny_today \leftarrow high_pressure_system \land summer$

- f) $sunny_today \leftarrow high_pressure-system <math>\land \neg$ winter
- g) $ai_is_fun \leftarrow f(time_spent, material_learned)$
- h) $summer \leftarrow sunny_today \land high_pressure_system$

PDCL Syntax: more examples

Definition (definite clause)

A definite clause is

- an atom or
- a rule of the form *h* ← *b* where *h* is an atom ('head') and *b* is a body. (Read this as '*h* if *b*.')

How many of the clauses below are legal PDCL clauses?

- a) Sunny_today
- b) sunny_today\cloudy_today

- vdjhsaekwrg
- $high_pressure_system \leftarrow sunny-today B. 4$
- $sunny today \leftarrow high_pressure_system \land summer$

- sunny today \leftarrow high pressure-system $\land \neg$ winter
- $ai_is_fun \leftarrow f(time_spent, material learned)$
- summer ← sunny_today \high_pressure_system

PDC Syntax: more examples

Legal PDC clause Not a legal PDC clause

- b) sunny_today\cloudy_today
- c) vdjhsaekwrq
- d) high_pressure_system \leftarrow sunny-today B.4
- e) $sunny_today \leftarrow high_pressure_system \land summer$
- f) $sunny_today \leftarrow high_pressure$ -system $\land \neg$ winter
- g) $ai_is_fun \leftarrow f(time_spent, material_learned)$
- h) summer \leftarrow sunny_today \land high_pressure_system

Do any of these statements mean anything? Syntax doesn't answer this question!

To Define a Logic We Need

- Syntax: specifies the symbols used, and how they can be combined to form legal sentences
- Knowledge base is a set of sentences in the language
- Semantics: specifies the meaning of symbols and sentences
- Reasoning theory or proof procedure: a specification of how an answer can be produced.

Propositional Definite Clauses: Semantics

- Sound: only generates correct answers with respect to the semantics
- Complete: Guaranteed to find an answer if it exists 26

Lecture Overview

- Intro to Logic
- Propositional Definite Clauses:
- Syntax

- Proof Procedures
- Semantics allows one to relate the symbols in the logic to the domain to be modeled.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

 If our domain has 8 atoms, how many interpretations are there?

Propositional Definite Clauses: Semantics

A. 8+2

B. 8*2

C. 8²

D. 28

Propositional Definite Clauses: Semantics

 Semantics allows one to relate the symbols in the logic to the domain to be modeled.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

- If our domain has 8 atoms, how many interpretations are there?
- 2 values for each atom, so 2⁸ combinations

Propositional Definite Clauses: Semantics

- Similar to possible worlds in CSPs
- Semantics allows one to relate the symbols in the logic to the domain to be modeled.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

We can use the interpretation to determine the truth value of clauses

Definition (truth values of statements)

- A body b₁∧ b₂ is true in I if and only if b₁ is true in I and b₂ is true in I.
- A rule h ←b is false in I if and only if b is true in I and h is false in I.

PDC Semantics: Example

Truth values under different interpretations F=false, T=true

 a_1 a_2 $a_1 \wedge a_2$

h b $h \leftarrow b$

Propositional Definite Clauses:

Semantics____

I_1	F	F	F		F	F	Т
I_2	F	Т	F	I_2	F	Т	F
I ₃	Т	F	F	I_3	Т	F	Т
. ₃ I⊿	Т	Т	Т	I ₄	Т	Т	Т

PDC Semantics: Example

Truth values under different interpretations

	F	=false	, T=true	Э			
	h	b	h ← b	_h ←			
I ₁	F	F	Т	b is			
l ₂	F	Т	F	-false _only			
l ₃	Т	F	Т	_			
1 4	Т	Т	Т	_			
whe	when b is true and h is false						

	h	a ₁	a_2	$h \leftarrow a_1 \wedge a_2$
I ₁	F	F	F	
I ₂	F	F	Т	
I ₃	F	Т	F	
I ₄	F	Т	Т	
l ₅	Т	F	F	
I ₆	Т	F	Т	
I ₇	Т	Т	F	
I ₈	Т	Т	Т	

PDC Semantics: Example for truth values

Truth values under different interpretations

	F=false, T=true						a ₁	a_2	$h \leftarrow a_1 \wedge a_2$
	h	b	h ←	b h ←	I ₁	F	F	F	Т
I_1	F	F	Т	a₁∧	l ₂	F	F	Т	Т
I ₂	F	Т	F	a ₂	I_3	F	Т	F	Т
I ₃	Т	F	Т	——Body of	I ₄	F	Т	Т	F
I ₄	Т	Т	Т	the	l ₅	Т	F	F	Т
clause is $a_1 \wedge a_2$ Body is I_6					l ₆	Т	F	Т	Т
	true only if both a_1 and a_2 are true in I					Т	Т	F	Т
					I ₈	Т	Т	Т	Т

Propositional Definite Clauses: Semantics

Semantics allows you to relate the symbols in the logic to the domain you're trying to model.

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

We can use the interpretation to determine the truth value of clauses

Definition (truth values of statements)

- A body b₁∧ b₂ is true in I if and only if b₁ is true in I and b₂ is true in I.
- A rule h ← b is false in I if and only if b is true in I and h is false in I.

Propositional Definite Clauses: Semantics

Definition (interpretation)

An interpretation I assigns a truth value to each atom.

Definition (truth values of statements)

- A body b₁∧ b₂ is true in I if and only if b₁ is true in I and b₂ is true in I.
- A rule h ← b is false in I if and only if b is true in I and h is false in I.

Definition (model)

A **model** of a knowledge base KB is an interpretation in which KB is true.

Similar to CSPs: a model of a set of clauses is an interpretation that makes all of the clauses true

PDC Semantics: Knowledge Base (KB)

$$r$$

$$s \leftarrow p \ q$$

$$\leftarrow p \ \land s$$

Which of the three KB above is True in I₁
PDC Semantics: Knowledge Base (KB)

	p	q	r	S
I ₁	false ti	rue	true	false

$$r$$

$$s \leftarrow p \ q$$

$$\leftarrow p \ \land s$$

Which of the three KB above is True in I₁

PDC Semantics: Example for models

Definition (model)

A model of a knowledge base KB is an interpretation in which every clause in KB is true.

	p	q	r	S	$B. I_1, I_2$
I ₁	Т	Т	Т	Т	$-$ C. I_1 , I_2 , I_5
I ₂	F	F	F	Т	
I ₃	Т	Т	F	F	D. All of them
I ₄	Т	Т	Т	F	_ _PDC Semantics:
15	Т	Т	F	Т	Example for models

Definition (model)

A model of a knowledge base KB is an interpretation in which every clause in KB is true.

Which of the interpretations below are models of KB? All interpretations where KB is true

	p	q	r	S	p ← q	s	s ←r	KB
I ₁	Т	Т	Т	Т				
I ₂	F	F	F	Т				
I_3	Т	Т	F	F				
I ₄	Т	Т	Т	F				
I ₅	Т	Т	F	Т				
p ←q								

$$s \leftarrow r$$

PDC Semantics: Example for models

Definition (model)

A model of a knowledge base KB is an interpretation in which every clause in KB is true.

$$KB = \begin{cases} s & \text{All interpretations where KB is true: } I_1, \ I_2, \ \text{and } I_5 \\ s \leftarrow r & & C. & I_1, I_2, I_5 \\ \hline p & q & r & s & p \leftarrow q & s & s \leftarrow r & KB \\ \hline I_1 & T & T & T & T & T & T & T \\ \hline I_2 & F & F & F & T & T & T & T \\ \hline I_3 & T & T & F & F & T & F & T \\ \hline I_4 & T & T & T & F & T & F \\ \hline I_5 & T & T & F & T & T & T \\ \hline p \leftarrow q & & & \end{cases}$$

Which of the interpretations below are models of KB?

OK but....

.... Who cares? Where are we going with this?

Remember what we want to do with Logic

- Tell the system knowledge about a task domain.
 - This is your KB
 - which expresses true statements about the world
- Ask the system whether new statements about the domain are true or false.
 - We want the system responses to be
 - Sound: only generates correct answers with respect to the semantics

Complete: Guaranteed to find an answer if it exists

For Instance,...

1) Tell the system knowledge about a task domain.

$$KB = \Box q.$$

$$\Box q.$$

$$\Box r \leftarrow s.$$

2) Ask the system whether new statements about the domain are true or false

```
p? r?s?Or, More Interestingly
```

1) Tell the system knowledge about a task domain.

live I1 ←live wo. light_l1. live_wo +live_w1 \up_52. light_l2. live_wo ←live_w2 ∧down_52. ok /1. live_w1 ←live_w3 ∧up_51. ok 12. live w2 ←live w3 ∧down 51. ok_cbi. live 12 ←live W4. ok cb2. live outsic live_w4 ←live_w3 ∧ up_53. live_p1 ←live_w3. live_w3 ←live_w5 ∧ok_cb1. live_p2 ←live_w6. live_w6 ←live_w5 ∧ok_cb2. live_ws ←live_outside. $lit_1 \leftarrow light_1 \land live_1 \land \land ok_1$. $lit_{l2} \leftarrow light_{l2} \land live_{l2} \land ok_{l2}$.

2) Ask the system whether new statements about the domain are true or false

live_w₄?

lit_l₂?

To Obtain This We Need One More Definition

To Obtain This We Need One More Definition

Definition (logical consequence)

If KB is a set of clauses and G is a conjunction of atoms, G is a logical consequence of KB, written KB ⊧G, if G is true in every model of KB.

we also say that G logically follows from

KB, or that KB entails G.

In other words, KB ⊧Gif there is no

interpretation in which KB is true and G is

false.

when KB is TRUE, then G must be TRUE

 We want a reasoning procedure that can find all and only the logical consequences of a knowledge base

$$KB = \Box \Box p \leftarrow q \wedge r.$$
$$\Box q.$$

$$KB = \Box \Box p \leftarrow q \wedge r.$$

$$\Box q.$$

E. 5

Interpretations

Interpretations

We want a reasoning procedure that can find all and only the 49

Interpretations

logical consequences of a knowledge base

Which atoms are logically entailed?

Which atoms are logically entailed?

q

 We want a reasoning procedure that can find all and only the logical consequences of a knowledge base

50

	р	q	r	S				
I_1	true t	rue tru	ie true					
I_2	true t	rue tru	ie false)				
l ₃	true t	rue fal	se fals	е				
l 4	true t	rue fal	se true	9				
l 5	false	true tr	ue true)				
l 6	false	true tr	ue fals	е				
I ₇	false	false true false false						
l ₈	false true false true							
l 9	true f	true false true true						
I 10	true f	true false true false						
I 11	true f	alse fa	alse fal	se				

D. KB ⊧r, KB ⊧s,

Which of the following is true?

- A. KB ⊧q and KB ⊧r
- B. KB ⊧q, and KB ⊧s
- C. KB ⊧q, and KB ⊧p

E. None of the above⁵¹

	p q	r	S
I ₁	true true	true	true
l ₂	true true	true	false
l ₃	true true	false	false
l 4	true true	false	true
I ₅	false true	true	true
l 6	false true	true	false
I ₇	false true	false	false
l ₈	false true	false	true
l 9	true false	true	true
	1		

1 10	true false	true	false	$\Box p \leftarrow q. \ KB = \Box \Box q.$
I 11	true false	false	false	
1 12	true false true false	false	false	$\neg \sqcup r \leftarrow s$.

Which of the following is true?

•KB ⊧r

	p q	r	S
I ₁	true true	true	true
l ₂	true true	true	false
I ₃	true true	false	false
l 4	true true	false	true
I ₅	false true	true	true
l 6	false true	true	false
I ₇	false true	false	false
I 8	false true	false	true
l 9	true false	true	true

In true false true false true false true false true false true false $RB = \Box q$. The false false false true false false false true false false

Which of the following is true?

- •KB ⊧q,
- •KB ⊧p,
- •KB ⊧s,

•KB ⊧r

	p q	r	S
I ₁	true true	true	true
l ₂	true true	true	false
I ₃	true true	false	false
l 4	true true	false	true
l 5	false true	true	true
l 6	false true	true	false
I ₇	false true	false	false
I 8	false true	false	true
l 9	true false	true	true
I 10	true false	true	false

I 11	true false	false	false		$\Box p \leftarrow q$.
l 12	true false	false	false		
				models	$KB = \Box \Box \Box \Box r \leftarrow q. s.$

Which of the following is true?

•KB ⊧r <mark>F</mark>

C. KB Fq, and KB Fp User's View of Semantics

- Choose a task domain: intended interpretation.
- For each proposition you want to represent, associate a proposition symbol in the language.
- Tell the system clauses that are true in the intended interpretation: axiomatize the domain.
- Ask questions about the intended interpretation.

• If KB |= g , then g must be true in the intended interpretation.

- The computer doesn't have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB.
- If KB |= g then g must be true in the intended interpretation.
- Otherwise, there is a model of KB in which g is false.

This could be the intended interpretation.

The computer wouldn't know!

 Otherwise, there is a model of KB in which g is false. This could be the intended interpretation.
 The computer wouldn't know

	р	q	r	S	$\Box p \leftarrow q. \ KB = \Box^{\Box} \ q. \ \Box r \leftarrow s.$
<u>l</u> 1	true	true	true	true	
2	true	true	true	false	

 Otherwise, there is a model of KB in which g is false. This could be the intended interpretation.

The computer wouldn't know

I₁ and I₂ above are both models for KB, each could be the intended interpretation. The computer cannot know, thus it cannot say anything about the truth value of s

Learning Goals for Logic Up To Here

- PDCL syntax & semantics
 - Verify whether a logical statement belongs to the language of propositional definite clauses
 - Verify whether an interpretation is a model of a PDCL KB.
 - Verify when a conjunction of atoms is a logical consequence of a knowledge base

Next: Proof Procedures (5.2.2)

Lecture Overview

- Intro to Logic
- Propositional Definite Clauses:
- Syntax
- Semantics

59

Proof Procedures

To Define a Logic We Need

- Syntax: specifies the symbols used, and how they can be combined to form legal sentences
- Knowledge base is a set of sentences in the language Reasoning theory or proof procedure: a specification of how an answer can be produced (sound and complete)

Semantics: specifies the meaning of symbols and sentences

 Bottom-up and Top-Down Proof Procedure for Finding Logical Consequence

Slide 61

Proof Procedures

 A proof procedure is a mechanically derivable demonstration that a formula logically follows from a knowledge base.

- Given a proof procedure P, KB +pg means g can be derived from knowledge base KB with the proof procedure.
- If I tell you I have a proof procedure for PDCL What do I need to show you in order for you to trust my procedure?

That is sound and complete

Soundness and Completeness

Definition (soundness)

A proof procedure P is sound if KB \vdash_P g implies KB \models g.

sound: every atom derived by P follows logically from KB (i.e. is true in every model)

Soundness of proof procedure P: need to prove that

If g can be derived by the procedure (KB \vdash_P g) then g is true in all models of KB (KB \models g)

Definition (completeness)

A proof procedure P is complete if KB ⊧ g implies KB ⊦ p g.

complete: every atom that logically follows from KB is derived by P

Completeness of proof procedure P: need to prove that

If g is true in all models of KB (KB ⊧ g) then g is derived by the procedure (KB ⊦ g)

Slide 63

Simple Proof Procedure

Simple proof procedure S

- Enumerate all interpretations
- For each interpretation I, check whether it is a model of KB
 √i.e., check whether all clauses in KB are true in I
- KB +s g if g holds in all such models
 Simple proof procedure S
 - Enumerate all interpretations
 - For each interpretation I, check whether it is a model of KB
 √i.e., check whether all clauses in KB are true in I
 - KB ⊢s g if g holds in all such models

Simple Proof Procedure

Simple proof procedure S

- Enumerate all interpretations
- For each interpretation I, check whether it is a model of KB
 √i.e., check whether all clauses in KB are true in I
- KB +s g if g holds in all such models
 problem with this approach? problem with this approach?
- If there are n propositions in the KB, must check all the interpretations!
 - problem with this approach?

Simple Proof Procedure

 If there are n propositions in the KB, must check all the 2ⁿ interpretations!

Goal of proof theory

 find sound and complete proof procedures that allow us to prove that a logical formula follows from a KB avoiding to do the above

Bottom-up proof procedure

- One rule of derivation, a generalized form of modus ponens:
- If "h← b₁ ∧ ... ∧ b_m" is a clause in the knowledge base, and each b_i has been derived,
 then h can be derived.

This rule also covers the case when m = 0.

Bottom-up (BU) proof procedure

```
    C :={};
    repeat
    select clause "h ←b<sub>1</sub>∧... ∧b<sub>m</sub>" in KBsuch that b<sub>i</sub>∈Cfor all i, and h ∉C;
    C:= C ∪{ h } until no more clauses can be selected.
```

KB_{BU} G if G⊆Cat the end of this procedure

The C at the end of BU procedure is a fixed point:

 Further applications of the rule of derivation will not change C!

Bottom-up proof procedure: example

```
C := \{\}; repeat select \ clause \ h \leftarrow b_1 \wedge ... \wedge b_m \ in \ KB \ such that \ b_i \in C \ for \ all \ i, \ and \ h \notin C; C := C \cup \{h\} \ until \ no \ more clauses \ can \ be \ selected.
```

```
a \leftarrow b \wedge c {}
a \leftarrow e \wedge f
b \leftarrow f \wedge k
c \leftarrow e d \leftarrow
k
e.
```

```
f \leftarrow j \land
e f \leftarrow c
j \leftarrow c
```

Bottom-up proof procedure: example

```
C := \{\}; repeat select \ clause \ h \leftarrow b_1 \land ... \land b_m \ in \ KB \ such that \ b_i \in C \ for \ all \ i, \ and \ h \notin C; C := C \cup \{h\} \ until \ no \ more clauses \ can \ be \ selected.
```

