《微积分A1》第十五讲

教师 杨利军

清华大学数学科学系

2020年11月02日

填空题

- 1. 极限 $\lim_{x \to +\infty} \left(\cos \frac{1}{x}\right)^x = \underline{\hspace{1cm}}$.
- 2. 设 f(x) 在 x = a > 0 处可导,则极限

$$\lim_{x\to a}\frac{f(x)-f(a)}{\sqrt{x}-\sqrt{a}}=\underline{\hspace{1cm}}.$$

- 3. 极限 $\lim_{x\to 0^+} (1-\cos x)^{\frac{1}{\ln x}} =$ _____.
- 4. 当 $x \rightarrow 0$ 时, $\sqrt{1 + \tan x} \sqrt{1 \sin x}$ 的无穷小的阶为

填空题,续一

5. 定义函数

$$f(x) = \begin{cases} \frac{|x^2 - 1|}{x - 1}, & x \neq 1, \\ 2, & x = 1, \end{cases}$$

则函数 f(x) 在点 x=1 处的间断点类型为 _____.

6. 定义函数

$$f(x) = \begin{cases} \frac{1-e^x}{x}, & x \neq 0, \\ -1, & x = 0, \end{cases}$$

则 f'(0) =_____.

7. 设函数 f(u) 可导, 且函数 y = f(sin x) 存在可导的反函数

$$x = x(y)$$
, 则反函数的导数 $\frac{dx}{dy} =$ _____.

填空题,续二

- 8. 函数 $y = e^{\sin(2x+1)}$ 的微分为 $dy = ____.$
- 9. 设函数 y = y(x) 由参数方程 x = t + sint, y = t cost 确定, 则函数 y(x) 的微分为 dy =
- 10. 设 $f(x) = x(x+1)(x+2)\cdots(x+100)$, 则 f'(0) =_____.
- 11. 设 f(x) = x(x-1)(x-2)(x-3), 则 f'(x) 在开区间 (0,2) 上有且仅有 _____ 个零点.

填空题,续三

12. 设
$$f(x)$$
 可导. 若 $\frac{d}{dx}[f(2x)] = x^2$, 则 $f'(x) =$ _____.

13.

$$\lim_{x\to +\infty} \frac{2x^2+1}{4x-3} \sin \frac{1}{x+1} = \underline{\hspace{1cm}}.$$

14.

$$\lim_{n\to +\infty} \left(\sqrt{n+4\sqrt{n}} - \sqrt{n-2\sqrt{n}} \right) = \underline{\hspace{1cm}}.$$

15.

$$\lim_{x\to 0^+}\frac{1-\cos(2\sqrt{x})-2x}{x^2}=\underline{\hspace{1cm}}.$$

填空题,续四

16.

$$\lim_{x \to 0} (1 + x^2 e^x)^{\frac{1}{1 - \cos x}} = \underline{\hspace{1cm}}$$

17. 读
$$f(x) \neq 0$$
 且 $\lim_{x \to 0} \frac{\ln\left(1 + \frac{f(x)}{\sin x}\right)}{e^x - 1} = 1$,则 $\lim_{x \to 0} \frac{f(x)}{x^2} =$ _____.

18.

$$\lim_{n\to+\infty}\left(\frac{1+3^{\frac{1}{n}}}{2}\right)^n=\underline{\hspace{1cm}}.$$

19. 若函数

$$f(x) = \begin{cases} \frac{1 - \cos\sqrt{x}}{ax}, & x > 0, \\ 1, & x \le 0, \end{cases}$$

在点x = 0 处连续, 则 $a = ____$.

填空题,续五

20. 设
$$f(x) = x^{\sin x}$$
, 则 $f'(\pi) =$.

- 21. 设 $y = e^{-3x} \sin(2x)$, 则 $dy = ____$.
- 22. 函数 $f(x) = \frac{1+x}{1-x}$ 在点 x = 0 处带有 Peano 余项的 n 阶 Taylor 展式为 ______.

填空题,续六

24. 设
$$f(x) = x^6|x|$$
 在 $x = 0$ 处存在最高阶导数的阶数为

25. 设 f(x) 在 x_0 的一个邻域上有定义. 若极限

$$\lim_{\delta \to 0} \frac{f(x_0 - \delta) - f(x_0)}{\sin \delta}$$

存在, 那么函数 f(x) 在 x_0 处可导, _____ (填是或否).

计算题

- 1. 设二阶可导函数 y = y(x) 由方程 $\sin(x + y) = x y$ 确定, 求二阶导数 $\frac{d^2y}{dx^2}$.
- 2. 设数列 $\{a_n\}$ 满足 $\lim_{n\to +\infty}a_{2n}=a$, $\lim_{n\to +\infty}a_{2n+1}=b$, 求极限

$$\lim_{n\to +\infty} \frac{a_1+a_2+\cdots +a_n}{n}.$$

3. 求极限

$$\lim_{x\to 0^+}\frac{1-\left(\frac{\sin x}{x}\right)^x}{x^3}.$$

4. 设 $y = 2x + \sin x$, 求其反函数 x = x(y) 的二阶导数 $\frac{d^2x}{dy^2}$.

计算题,续一

5. 设

$$f(x)=\lim_{t\rightarrow +\infty}\frac{xe^{(1-x)t}+x^{2t}}{e^{(1-x)t}+x^{2t+1}},\quad x\in [0,+\infty),$$

求函数 f(x) 的表达式, 讨论 f(x) 的连续性和可微性, 并在可微点处计算其导函数.

6. 设函数 y = f(x) 为三次可导,并且 $f'(x) \neq 0$,其反函数记作 x = g(y). 试用函数 f(x) 的前三阶导数来表示反函数 g(y) 的前三阶导数. (课本第89页第三章总复习题题15)

证明题

1. 中间点的极限位置(课本第125 页第4 章总复习题题10). 设 f(x) 在 (-1,1) 内二阶可导且 $f''(x) \neq 0$, $\forall x \in (-1,1)$. 证明 (1) 对 $\forall x \in (-1,1)$, 存在唯一的 $\theta(x) \in (0,1)$, 使得

$$f(x) = f(0) + f'(\theta(x)x)x;$$

(2) $\lim_{x\to 0} \theta(x) = \frac{1}{2}$.

 $\underline{\text{推广}}$: 设 f(x) 在 (-1,1) 内 n+1 阶可导, 且 $f^{(n+1)}(x) \neq 0$, $\forall x \in (-1,1)$,

则(1)对 $\forall x \in (-1,1)$,存在唯一 $\theta(x) \in (0,1)$,使得 f(x) = f(0) + f'(0)x + f'(0)

$$\label{eq:formula} \tfrac{1}{2}f''(0)x^2+\dots+\tfrac{1}{(n-1)!}f^{(n-1)}(0)+\tfrac{1}{n!}f^n(\theta(x)x)x^n. \ \ \textbf{(2)} \ \ \text{lim}_{x\to 0}\,\theta(x)=\tfrac{1}{n+1}.$$

证明题,续一

- 2. 设 f(x) 于闭区间 [0,1] 上可导, f(0)=0, f(1)=1, 且 f(x) 不恒等于 x. 证明存在 $\xi\in(0,1)$, 使得 $f'(\xi)>1$.
- 3. 设 $a_1=0$, $a_{n+1}=\frac{1+2a_n}{1+a_n}$, $\forall n\geq 1$. 证明极限 $\lim_{n\to +\infty}a_n$ 存在, 并求出极限值.
- 4. 设函数 f(x) 在区间 [0,1] 上二阶可导,且 f(1)>0,极限 $\lim_{x\to 0^+} \frac{f(x)}{x}$ 存在且小于零. 求证方程 $f(x)f''(x)+[f'(x)]^2=0$ 在区间 (0,1) 内至少存在两个不同实根.

证明题,续二

5. 设函数 f(x) 在闭区间 [0,1] 上二阶可导,且 f(0)=0=f(1). 进一步假设 $min\{f(x),x\in[0,1]\}=-1$. 证明存在 $\xi\in[0,1]$, 使得 $f''(\xi)\geq 8$. (课本第125 页第4 章总复习题题11)
6. 证明不等式 $4x\ln x>x^2+2x-3$, $\forall x\in(0,2)$.

证明题7

- 7. 设 f(x) 在 [a, b] 上一阶可导, 在 (a, b) 上二阶可导, 且
- $f(a) = 0 = f(b), f'_{+}(a)f'_{-}(b) > 0$, 证明下列结论:
- (1) 存在 $\xi \in (a,b)$, 使得 $f''(\xi) + 2f'(\xi) + f(\xi) = 0$;
- (2) 存在 $\theta \in (a,b)$, 使得 $f''(\theta) + 2f'(\theta) + f(\theta) = 0$;
- (3) 存在 $\eta \in (a,b)$, 使得 $f''(\eta) = f'(\eta)$;
- (4) 存在 $\zeta \in (a,b)$, 使得 $f''(\zeta) = f(\zeta)$.
- 注: 这是课本第95页第14题

