Taliban Terrorism: A Bayesian Network Analysis

Nicholas Bradley

26/06/2021

Discrete Bayesian Network Analysis of Taliban Terrorism

This project will provide two separate analyses. The first will explore a network comprising binary variables, while the second will examine the network based on categorical variables with several levels.

Libraries

Set Working Directory

```
setwd("C:/R Portfolio/Bayesian Network")
```

Load Raw Data Set

```
GTD <- read.csv("globalterrorismdb_0919dist.csv")</pre>
```

Data Filtering

This section removes all non terrorism incidents and terrorism incidents that have not been geographically certified. This geographic certification is important as otherwise specific attack locations aren't accurate. One final step involves selection of only data that features the Taliban

```
# Remove All Non Terrorist Incidents #

GTDDT <- GTD %>% dplyr::filter(doubtterr == 0)

# Remove all unverified geographic data

GTDDTS <- GTDDT %>% dplyr::filter(specificity == 1)

# Remove all non Taliban data

Taliban <- GTDDTS %>% dplyr::filter(gname == "Taliban")
```

Rename Columns

Here, columns are renamed, so they are tidier

```
setnames(Taliban, old = c("iyear",
                           "imonth",
                           "iday",
                           "provstate",
                           "city",
                           "multiple",
                           "success",
                           "suicide",
                           "attacktype1_txt",
                           "gname",
                           "targtype1_txt",
                           "weaptype1_txt",
                           "nkill",
                           "nwound"),
                  new = c("Year",
                           "Month",
                           "Day",
                           "Province",
                           "City",
                           "Multiple",
                           "Success",
                           "Suicide",
                           "Attack",
                           "Group",
                           "Target",
                           "Weapon",
                           "Dead",
                           "Wounded"))
```

Select Specific Columns

Remove NA Values

```
colSums(is.na(Taliban)) # count the NA's in each column
```

Year Month Province City Suicide Multiple Success Attack

```
0
                                                0
                                                          0
                                                                   0
                                                                             0
##
##
                                    Dead
     Target
               Group
                        Weapon
##
                             0
                                      93
Taliban <- na.omit(Taliban) # remove NA's
colSums(is.na(Taliban)) # No NA values remain
##
       Year
               Month Province
                                    City
                                          Suicide Multiple Success
                                                                        Attack
##
          0
                                       0
                                                0
                                                                             0
                    0
##
     Target
               Group
                        Weapon
                                    Dead
##
                    0
                             0
                                       0
Remove NA Values
colSums(is.na(Taliban)) # count the NA's in each column
##
       Year
               Month Province
                                    City Suicide Multiple Success
                                                                        Attack
##
          0
                    0
                                       0
                                                0
                                                          0
                                                                   0
                                                                             0
##
     Target
                                    Dead
               Group
                        Weapon
##
Taliban <- na.omit(Taliban) # remove NA's
colSums(is.na(Taliban)) # No NA values remain
##
       Year
               Month Province
                                    City
                                          Suicide Multiple Success
                                                                        Attack
##
          0
                    0
                                       0
                                                0
                                                          0
                                                                   0
                                                                             0
##
     Target
               Group
                        Weapon
                                    Dead
##
Save and Load Cleaned Data Set
setwd("C:/R Portfolio/Bayesian Network")
write.csv(Taliban, file = "Taliban.csv", row.names = F)
Taliban <- read.csv("Taliban.csv")</pre>
Collate together small count category levels
Target
Taliban <- Taliban %>%
 mutate(Target = fct_lump(fct_infreq(Target), n = 5)) %>%
 group_by(Target)
Recode Variable Levels
Attack
Taliban <- Taliban %>%
  mutate(Attack = recode(Attack,
```

"Facility/Infrastructure Attack" = "Infrastructure",

"Bombing/Explosion" = "Bomb",

```
"Hostage Taking (Kidnapping)" = "HostageKidnap",
"Hostage Taking (Barricade Incident)" = "HostageBarricade",
"Armed Assault" = "ArmedAssault",
"Unarmed Assault" = "UnarmedAssault",
"Unknown" = "UnknownAttack"))
```

Target

Provincial - Attack Network

Province and City variables are correlated with each, and so are separated Attack and Weapon are correlated with each other, and so are separated The analysis only concerns provincial and attack type variables. Weapon type and city variables could feature in a future analysis.

One Hot Encoding

All variables are converted into separate binary variables where each categorical level becomes such a binary variable. The purpose is to indicate Bayesian network association between specific variables, rather than attack and target variables which each comprise several levels.

Province

Target

Attack

Dead

Save Data File

```
setwd("C:/R Portfolio/Bayesian Network")
write.csv(Taliban, file = "Tbn.csv", row.names = F)
```

Load Data File

```
Tbn_Corrected <- read.csv("Tbn_Corrected.csv")</pre>
```

Selection of Variables with highest counts

To simplify the network construction, and to avoid situations where the total of pairwise counts between any two totals were less than ten, the five provinces with most attacks were selected, as was the five dead totals with the highest counts The five provinces are: Helmand, Kandahar, Kabul, Ghazni and Kunduz The five dead counts are zero, one, two, three and four The five targets with the highest attack counts are police, private, GovernmentGeneral, Military and Business The four attack types with the highest counts are Bomb, Armed Assault, Assassination and Hostage Kidnap. Unknown attack has a higher count than hostage kidnap, but it is overlooked as any attack could be an unknown attack.

```
Taliban4 <- dplyr::select(Tbn_Corrected,</pre>
                            Helmand,
                            Kandahar,
                            Kabul,
                            Ghazni,
                            Kunduz,
                            Police,
                            Private,
                            GovernmentGeneral,
                            Military,
                            Business,
                            Bomb,
                            ArmedAssault,
                            Assassination,
                            HostageKidnap,
                            ZeroDead,
```

```
OneDead,
TwoDead,
ThreeDead,
FourDead)
```

Network Creation

```
dag2 <- empty.graph(nodes = c("Helmand",</pre>
                                "Kandahar",
                                "Kabul",
                                "Ghazni",
                                "Kunduz",
                                "Police",
                                "Private",
                                "GovernmentGeneral",
                                "Military",
                                "Business",
                                "Bomb",
                                "ArmedAssault",
                                "Assassination",
                                "HostageKidnap",
                                "ZeroDead",
                                "OneDead",
                                "TwoDead",
                                "ThreeDead",
                                "FourDead"
))
arc.set = matrix(c("Bomb", "Business",
                    "Bomb", "GovernmentGeneral",
                    "Bomb", "Military",
                    "Bomb", "Police",
                    "Bomb", "Private",
                    "Bomb", "Helmand",
                    "Bomb", "Kandahar",
                    "Bomb", "Kabul",
                    "Bomb", "Ghazni",
"Bomb", "Kunduz",
                    "Bomb", "ZeroDead",
                    "Bomb", "OneDead", "Bomb", "TwoDead",
                    "Bomb", "ThreeDead",
                    "Bomb", "FourDead",
                    "ArmedAssault", "Business",
                    "ArmedAssault", "GovernmentGeneral",
                    "ArmedAssault", "Military",
                    "ArmedAssault", "Police",
                    "ArmedAssault", "Private",
                    "ArmedAssault", "Helmand",
                    "ArmedAssault", "Kandahar",
                    "ArmedAssault", "Kabul",
                    "ArmedAssault", "Ghazni",
                    "ArmedAssault", "Kunduz",
```

```
"ArmedAssault", "ZeroDead",
"ArmedAssault", "OneDead",
"ArmedAssault", "TwoDead",
"ArmedAssault", "ThreeDead",
"ArmedAssault", "FourDead",
"Assassination", "Business",
"Assassination", "GovernmentGeneral",
"Assassination", "Military",
"Assassination", "Police",
"Assassination", "Private",
"Assassination", "Helmand",
"Assassination", "Kandahar",
"Assassination", "Kabul",
"Assassination", "Ghazni",
"Assassination", "Kunduz",
"Assassination", "ZeroDead",
"Assassination", "OneDead",
"Assassination", "TwoDead", "Assassination", "ThreeDead",
"Assassination", "FourDead",
"HostageKidnap", "Business",
"HostageKidnap", "GovernmentGeneral",
"HostageKidnap", "Military",
"HostageKidnap", "Police",
"HostageKidnap", "Private",
"HostageKidnap", "Helmand",
"HostageKidnap", "Kandahar",
"HostageKidnap", "Kabul",
"HostageKidnap", "Ghazni",
"HostageKidnap", "Kunduz",
"HostageKidnap", "ZeroDead",
"HostageKidnap", "OneDead",
"HostageKidnap", "TwoDead", "HostageKidnap", "ThreeDead",
"HostageKidnap", "FourDead",
"Business", "Helmand",
"Business", "Kandahar",
"Business", "Kabul",
"Business", "Ghazni",
"Business", "Kunduz",
"Business", "ZeroDead",
"Business", "OneDead",
"Business", "TwoDead",
"Business", "ThreeDead",
"Business", "FourDead",
"GovernmentGeneral", "Helmand",
"GovernmentGeneral", "Kandahar",
"GovernmentGeneral", "Kabul",
"GovernmentGeneral", "Ghazni",
"GovernmentGeneral", "Kunduz",
"GovernmentGeneral", "ZeroDead",
"GovernmentGeneral", "OneDead",
"GovernmentGeneral", "TwoDead",
```

```
"GovernmentGeneral", "ThreeDead",
"GovernmentGeneral", "FourDead",
"Military", "Helmand",
"Military", "Kandahar",
"Military", "Kabul",
"Military", "Ghazni",
"Military", "Kunduz",
"Military", "ZeroDead",
"Military", "OneDead",
"Military", "TwoDead",
"Military", "ThreeDead",
"Military", "FourDead",
"Police", "Helmand",
"Police", "Kandahar",
"Police", "Kabul",
"Police", "Ghazni",
"Police", "Kunduz",
"Police", "ZeroDead",
"Police", "OneDead",
"Police", "TwoDead",
"Police", "ThreeDead",
"Police", "FourDead",
"Private", "Helmand",
"Private", "Kandahar",
"Private", "Kabul",
"Private", "Ghazni",
"Private", "Kunduz",
"Private", "ZeroDead",
"Private", "OneDead",
"Private", "TwoDead",
"Private", "ThreeDead",
"Private", "FourDead",
"Helmand", "ZeroDead", "Helmand", "OneDead",
"Helmand", "TwoDead",
"Helmand", "ThreeDead",
"Helmand", "FourDead",
"Kandahar", "ZeroDead",
"Kandahar", "OneDead",
"Kandahar", "TwoDead",
"Kandahar", "ThreeDead",
"Kandahar", "FourDead",
"Kabul", "ZeroDead",
"Kabul", "OneDead",
"Kabul", "TwoDead",
"Kabul", "ThreeDead",
"Kabul", "FourDead",
"Ghazni", "ZeroDead", "Ghazni", "OneDead",
"Ghazni", "TwoDead",
"Ghazni", "ThreeDead",
"Ghazni", "FourDead",
"Kunduz", "ZeroDead",
```

Convert variables into factors

```
names <- names(Taliban4)
Taliban4[names] <- lapply(Taliban4[names], factor)</pre>
```

Province Node Blacklist

This blacklist informs R to avoid creating any arcs between these arcs. For instance, there is no point creating arcs between two provincial variables or two attack type variables. The blacklist is saved in an object called BA_BL

```
BA_BL <- matrix(c(
  "Helmand", "Kandahar",
  "Kandahar", "Helmand",
  "Helmand", "Kabul",
  "Kabul", "Helmand",
 "Helmand", "Ghazni",
  "Ghazni", "Helmand",
  "Helmand", "Kunduz",
  "Kunduz", "Helmand",
  "Kandahar", "Kabul",
  "Kabul", "Kandahar",
  "Kandahar", "Ghazni",
  "Ghazni", "Kandahar",
  "Kandahar", "Kunduz",
  "Kunduz", "Kandahar",
  "Kabul", "Ghazni",
  "Ghazni", "Kabul",
  "Kabul", "Kunduz",
  "Kunduz", "Kabul",
  "Ghazni", "Kunduz",
  "Kunduz", "Ghazni",
  "Business", "GovernmentGeneral",
  "GovernmentGeneral", "Business",
  "Business", "Military",
  "Military", "Business",
  "Business", "Police",
  "Police", "Business",
  "Business", "Private",
  "Private", "Business",
  "GovernmentGeneral", "Military",
  "Military", "GovernmentGeneral",
  "GovernmentGeneral", "Police",
```

```
"Police", "GovernmentGeneral",
  "GovernmentGeneral", "Private",
  "Private", "GovernmentGeneral",
  "Military", "Police",
  "Police", "Military",
  "Private", "Military",
  "Military", "Private",
  "Private", "Police",
  "Police", "Private",
  "Bomb", "ArmedAssault",
  "ArmedAssault", "Bomb",
  "Bomb", "Assassination",
  "Assassination", "Bomb",
  "Bomb", "HostageKidnap",
  "HostageKidnap", "Bomb",
  "ArmedAssault", "Assassination",
  "Assassination", "ArmedAssault",
  "ArmedAssault", "HostageKidnap",
  "HostageKidnap", "ArmedAssault",
  "Assassination", "HostageKidnap",
  "HostageKidnap", "Assassination",
  "ZeroDead", "OneDead",
  "OneDead", "ZeroDead",
  "ZeroDead", "TwoDead",
  "TwoDead", "ZeroDead",
  "ZeroDead", "ThreeDead",
  "ThreeDead", "ZeroDead",
  "ZeroDead", "FourDead",
 "FourDead", "ZeroDead",
  "OneDead", "TwoDead",
  "TwoDead", "OneDead",
  "OneDead", "ThreeDead",
  "ThreeDead", "OneDead",
  "OneDead", "FourDead",
  "FourDead", "OneDead",
  "TwoDead", "ThreeDead",
  "ThreeDead", "TwoDead",
  "TwoDead", "FourDead",
  "FourDead", "TwoDead",
  "ThreeDead", "FourDead",
  "FourDead", "ThreeDead"
),
ncol = 2,
byrow = TRUE,
dimnames = list(NULL, c("from", "to")))
```

Create Score Based Networks #

R features two score based networks, Tabu and Hill Climbing (HC)

Tabu

```
set.seed(226)
Tabu_BA <- tabu(Taliban4,</pre>
```

```
Tabu_BA
##
##
     Bayesian network learned via Score-based methods
##
##
     model:
##
      [Ghazni] [Kunduz] [OneDead] [TwoDead] [ThreeDead] [Bomb|Kunduz:OneDead]
      [Assassination|OneDead:TwoDead] [Kandahar|Bomb:OneDead]
##
##
      [Police|Bomb:Assassination] [Private|Bomb] [Business|Assassination]
      [Kabul|Police:Private:Bomb] [FourDead|Police]
##
##
      [GovernmentGeneral|Kabul:Assassination][Military|Kabul:Bomb]
      [ArmedAssault|Kabul:Police:OneDead]
##
##
      [ZeroDead|Police:ArmedAssault:Assassination][HostageKidnap|Police:ZeroDead]
##
      [Helmand|HostageKidnap]
##
     nodes:
                                              19
##
     arcs:
                                              27
##
       undirected arcs:
                                              0
##
       directed arcs:
                                              27
##
     average markov blanket size:
                                             3.68
     average neighbourhood size:
                                             2.84
##
##
     average branching factor:
                                              1.42
##
                                              Tabu Search
##
     learning algorithm:
##
     score:
                                              BIC (disc.)
     penalization coefficient:
                                              4.007664
##
##
     tests used in the learning procedure:
                                             1084
                                              TRUE
##
     optimized:
# Plot Tabu Network
graphviz.plot(Tabu_BA,
              layout = "dot",
```

blacklist = BA_BL)

shape = "ellipse")

Hill Climbing

Network Goodness of Fit Scores

Hill Climbing

```
score(HC_BA, Taliban4, type = "bde")
```

[1] -21566.79

```
score(HC_BA, Taliban4, type = "aic")
```

[1] -21394.66

```
score(HC_BA, Taliban4, type = "bic")
```

[1] -21578.13

```
score(HC_BA, Taliban4, type = "loglik")
```

[1] -21333.66

Tabu

```
score(Tabu_BA, Taliban4, type = "bde")
## [1] -21537.62
score(Tabu_BA, Taliban4, type = "aic")
## [1] -21360.17
score(Tabu_BA, Taliban4, type = "bic")
## [1] -21555.67
score(Tabu_BA, Taliban4, type = "loglik")
## [1] -21295.17
For bde, aic, bic and loglik scores, Tabu is lower (closer to zero), so it is a better model
Using the Discrete Bayesian Network
Using the Bayesian Network Structure
To determine if there is any conditional dependence, the dsep funcion ca be used. Where two variables are
connected to each other through a third, then of the dsep is false, this indicates that there is conditional
dependence if the path through the third variable is not blocked. The path only becomes blocked if the two
variables condition on the third
dsep(Tabu_BA, x = "GovernmentGeneral", y = "Business")
## [1] FALSE
dsep(Tabu_BA, x = "GovernmentGeneral", y = "OneDead")
## [1] FALSE
The false output indicates the variables are not deseparated and so are conditionally dependant on each
other
path(Tabu_BA, from = "GovernmentGeneral", to = "Business")
## [1] FALSE
dsep(Tabu_BA, x = "GovernmentGeneral", y = "Business", z = "Assassination")
```

[1] TRUE

When assassination is conditioned on, the path is blocked and they become desparated.

Probabilistic Representation

Because Tabu is a better fitting model according to all scoring metrics, it will be used rather than HC to represent the probabilities

Estimating the parameters: Conditional Probability Tables

Maximum Likelihood Estimates

```
bn.mle <- bn.fit(Tabu_BA, Taliban4, method = "mle")</pre>
```

Bayesian Estimation

```
bn.bayes <- bn.fit(Tabu_BA, Taliban4, method = "bayes", iss = 10)</pre>
```

Conditional Probability Tables

Maximum Likelihood Estimates

```
bn.mle$Bomb
```

```
##
     Parameters of node Bomb (multinomial distribution)
##
##
## Conditional probability table:
##
   , , OneDead = 0
##
##
##
       Kunduz
                0
## Bomb
      0 0.4984575 0.6846154
##
##
      1 0.5015425 0.3153846
##
##
   , , OneDead = 1
##
##
       Kunduz
## Bomb
                0
##
      0 0.6744574 0.4827586
      1 0.3255426 0.5172414
```

```
bn.mle$Target
```

NULL

```
bn.mle$Province
```

NULL

```
bn.mle$Dead
```

NULL

Bayesian Setting

```
bn.bayes$Attack
## NULL
bn.bayes$Target
## NULL
bn.bayes$Province
## NULL
bn.bayes$Dead
## NULL
Exact Inference
To install RGBL - needed for gRain:
if (!requireNamespace("BiocManager", quietly = TRUE))
  install.packages("BiocManager")
BiocManager::install("RBGL")
## Warning: package(s) not installed when version(s) same as current; use 'force = TRUE' to
     re-install: 'RBGL'
library(gRain)
library(gRbase)
junction <- compile(as.grain(bn.bayes))</pre>
# The probability of bomb attack considering data as a whole
querygrain(junction, nodes = "Bomb")$Bomb
## Bomb
##
## 0.5406656 0.4593344
# The probability of actual Bomb attack (indicated by 1) in Helmand
group <- setEvidence(junction, nodes = "Bomb", states = "1")</pre>
querygrain(group, nodes = "Helmand")$Helmand
## Helmand
           0
## 0.8941306 0.1058694
```

```
# The probability of actual Bomb attack (indicated by 1) against Government General Target
group <- setEvidence(junction, nodes = "Bomb", states = "1")</pre>
querygrain(group, nodes = "GovernmentGeneral") $GovernmentGeneral
## GovernmentGeneral
##
           0
## 0.8098622 0.1901378
# The probability of actual Bomb attack with one dead (indicated by 1) against Government General Targe
# The probability of attack against Governmental General Target per province and per attack
BT <- setEvidence(junction, nodes = "OneDead", states = "1")
GPA <- querygrain(BT, nodes = c("Bomb", "Helmand"),
                  type = "joint")
GPA
##
          Bomb
## Helmand
                    0
         0 0.59302963 0.30082127
##
         1 0.07046389 0.03568521
SxT <- cpdist(bn.bayes, nodes = c("Bomb", "Helmand"),</pre>
               evidence = (OneDead == "1"))
```

Approximate inference

Approximate probabilistic inference of attack against Police Target in Helmand Province based on maximum likelihood estimate

Conditional Independence Tests

Conditional independence tests focus on the presence of individual arcs. As each arc indicates a probabilistic dependence, conditional independence tests assess whether that probabilistic dependence is supported by the data. If the null hypothesis (of conditional independence) is rejected, the arc can be considered for inclusion in the DAG.

```
ci.test("Kabul", "ZeroDead", c("ArmedAssault", "Police"), test = "mi", data = Taliban4)
##
##
   Mutual Information (disc.)
##
## data: Kabul ~ ZeroDead | ArmedAssault + Police
## mi = 8.1864, df = 4, p-value = 0.08498
## alternative hypothesis: true value is greater than 0
ci.test("Kabul", "ZeroDead", c("ArmedAssault", "Police"), test = "x2", data = Taliban4)
##
   Pearson's X^2
##
##
## data: Kabul ~ ZeroDead | ArmedAssault + Police
## x2 = 8.5442, df = 4, p-value = 0.07356
## alternative hypothesis: true value is greater than 0
```

Both tests generate insignificant p-values, thus indicating that dependent relationship encoded by kabul and ZeroDead is not significant given its parents.

Arc Strengths

```
arc.strength(Tabu_BA, Taliban4, criterion = "x2")
```

```
##
               from
                                    to
                                            strength
## 1
       ArmedAssault
                              ZeroDead 3.923041e-23
## 2
             Police
                          ArmedAssault 1.215932e-34
## 3
               Bomb
                                Police 2.218513e-24
## 4
             Police
                              ZeroDead 3.776835e-15
## 5
            OneDead
                          ArmedAssault 8.521654e-13
## 6
               Bomb
                              Military 9.039176e-09
## 7
            OneDead
                                  Bomb 1.847538e-14
## 8
               Bomb
                                 Kabul 4.758968e-27
## 9
               Bomb
                               Private 9.770827e-05
                         HostageKidnap 4.991236e-07
## 10
           ZeroDead
## 11
      Assassination
                              ZeroDead 1.521059e-07
## 12
             Police
                              FourDead 5.647585e-05
## 13
              Kabul
                              Military 4.406766e-06
## 14 HostageKidnap
                               Helmand 1.061238e-03
## 15
                          ArmedAssault 5.033607e-06
              Kabul
## 16 Assassination
                                Police 6.594900e-08
## 17
             Police
                         HostageKidnap 5.979880e-04
## 18
            OneDead
                              Kandahar 2.447607e-06
## 19
               Bomb
                              Kandahar 4.365210e-06
                                  Bomb 2.023788e-05
## 20
             Kunduz
## 21 Assassination GovernmentGeneral 7.280116e-58
## 22
              Kabul GovernmentGeneral 1.717077e-08
## 23
             Police
                                 Kabul 8.151419e-13
## 24
            Private
                                 Kabul 1.448677e-13
## 25
                              Business 4.558389e-04
      Assassination
## 26
            OneDead
                         Assassination 4.620351e-30
## 27
            TwoDead
                         Assassination 4.847019e-06
```

All arcs have very significant p-values, which means they are well supported by the data

```
dag4 <- set.arc(dag2, from = "ZeroDead", to = "Kabul")
nparams(dag4, Taliban4)

## [1] 76884

score(dag4, data = Taliban4, type = "bic")

## [1] -328850.5

score(dag2, data = Taliban4, type = "bic")</pre>
```

[1] -359629.4

The bic score for the Bayesian Network that features the new arc, has a lower score than the network without it, which suggests adding this arc is actually beneficial to the network

```
score(Tabu_BA, data = Taliban4, type = "bic")
```

[1] -21555.67

The bic score for the learned network via Tabu algorithm, has a much lower score.

```
arc.strength(Tabu_BA, Taliban4, criterion = "bic")
```

##		from	to	strength
##	1	ArmedAssault	ZeroDead	-47.050470
##	2	Police	ArmedAssault	-64.551324
##	3	Bomb	Police	-46.871487
##	4	Police	ZeroDead	-22.637740
##	5	OneDead	ArmedAssault	-12.254906
##	6	Bomb	Military	-14.237108
##	7	OneDead	Bomb	-24.156475
##	8	Bomb	Kabul	-50.655514
##	9	Bomb	Private	-3.559579
##	10	ZeroDead	${\tt HostageKidnap}$	-6.047642
##	11	${\tt Assassination}$	ZeroDead	-4.605559
##	12	Police	FourDead	-3.798552
##	13	Kabul	Military	-3.467926
##	14	${\tt Hostage Kidnap}$	Helmand	-2.574372
##	15	Kabul	ArmedAssault	-2.044631
##	16	${\tt Assassination}$	Police	-9.154775
##	17	Police	HostageKidnap	-1.496101
##	18	OneDead	Kandahar	-3.614687
##	19	Bomb	Kandahar	-4.494981
##	20	Kunduz	Bomb	-2.872054
##	21	${\tt Assassination}$	${\tt GovernmentGeneral}$	-93.882662
##	22	Kabul	${\tt GovernmentGeneral}$	-7.786207
##	23	Police	Kabul	-17.802465
##	24	Private	Kabul	-23.574014
##	25	${\tt Assassination}$	Business	-5.821328
##	26	OneDead	Assassination	-49.659518
##	27	TwoDead	Assassination	-2.389990

The results indicate that removal of any arc learned by Tabu would worsen the bic score, thus reducing the goodness of fit to the data. Therefore, the network learned by the Tabu algorithm is a good fit to the data

```
arc.strength(dag2, data = Taliban4, criterion = "bic")
```

```
##
                     from
                                           to
                                                  strength
## 1
                     Bomb
                                     Business
                                                  32.05995
## 2
                                                  26.49841
                     Bomb GovernmentGeneral
## 3
                     Bomb
                                     Military
                                                  26.53013
## 4
                     {\tt Bomb}
                                       Police
                                                  13.74986
## 5
                     Bomb
                                      Private
                                                  24.78964
## 6
                                      Helmand 1019.01046
                     Bomb
```

##	7	Bomb	Kandahar	1010.48561
##		Bomb	Kabul	
##	9	Bomb	Ghazni	
##	10	Bomb	Kunduz	1021.73188
##	11	Bomb		32792.91007
##	12	Bomb	OneDead	32814.45966
##	13	Bomb	TwoDead	32815.28642
##	14	Bomb	ThreeDead	32818.32068
##	15	Bomb	FourDead	32810.52647
##	16	${\tt ArmedAssault}$	Business	
##	17	${\tt ArmedAssault}$	${\tt GovernmentGeneral}$	31.15268
##	18	${\tt ArmedAssault}$	Military	
##	19	${\tt ArmedAssault}$	Police	
##	20	${\tt ArmedAssault}$	Private	
##	21	${\tt ArmedAssault}$	Helmand	
##	22	${\tt ArmedAssault}$	Kandahar	
##	23	${\tt ArmedAssault}$	Kabul	1022.43003
##	24	${\tt ArmedAssault}$	Ghazni	
##	25	ArmedAssault	Kunduz	
##	26	ArmedAssault		32766.31760
##	27	ArmedAssault		32785.92072
##	28	${\tt ArmedAssault}$	TwoDead	32820.91767
##	29	${\tt ArmedAssault}$	${ t ThreeDead}$	32821.74856
##	30	${\tt ArmedAssault}$	FourDead	32811.87531
##	31	Assassination	Business	
##	32	Assassination	${\tt GovernmentGeneral}$	
##	33	Assassination	Military	25.69020
##	34	Assassination	Police	23.39538
##	35	Assassination	Private	
	36	Assassination	Helmand	
	37	Assassination	Kandahar	
	38	Assassination	Kabul	
	39	Assassination	Ghazni	
	40	Assassination	Kunduz	
	41	Assassination		32795.61969
	42	Assassination		32777.55125
	43	Assassination		32817.48012
	44	Assassination		32825.51259
	45	Assassination		32821.86089
	46	HostageKidnap	Business	31.38130
	47	-	GovernmentGeneral	
	48	HostageKidnap	Military	
	49	HostageKidnap	Police	
	50	HostageKidnap	Private	
	51	HostageKidnap	Helmand	
	52	HostageKidnap	Kandahar	
	53	HostageKidnap	Kabul	
	54	HostageKidnap	Ghazni	
	55	HostageKidnap	Kunduz	
	56	HostageKidnap		32809.58890
	57	HostageKidnap		32817.31822
	58	HostageKidnap		32822.57258
	59	HostageKidnap		32822.76753
##	60	HostageKidnap	FourDead	32821.82598

##	61	Business	Helmand	1021.09975
##		Business	Kandahar	
##		Business	Kabul	
	64	Business	Ghazni	
##	65	Business	Kunduz	1024.38781
	66	Business		32806.75796
##	67	Business	OneDead	32819.45454
##	68	Business	TwoDead	32818.54247
##	69	Business	ThreeDead	32820.86361
##	70	Business	FourDead	32822.33742
##	71	GovernmentGeneral	Helmand	1018.65401
##	72	GovernmentGeneral	Kandahar	1022.40451
##	73	GovernmentGeneral	Kabul	1016.56135
##	74	${\tt GovernmentGeneral}$	Ghazni	1025.29880
##	75	${\tt GovernmentGeneral}$	Kunduz	1023.10859
##	76	${\tt GovernmentGeneral}$	ZeroDead	32791.43225
##	77	${\tt GovernmentGeneral}$	OneDead	32818.44003
##	78	${\tt GovernmentGeneral}$	TwoDead	32818.33376
##	79	${\tt GovernmentGeneral}$	ThreeDead	32822.78089
##	80	${\tt GovernmentGeneral}$	FourDead	32815.25959
##	81	Military	Helmand	1023.42430
##	82	Military	Kandahar	1021.47046
##	83	Military	Kabul	1017.42133
##	84	Military	Ghazni	1023.21352
##	85	Military	Kunduz	1022.40070
##	86	Military	ZeroDead	32796.19985
##	87	Military	OneDead	32814.36686
	88	Military		32817.81122
	89	Military		32825.05768
	90	Military		32819.47093
	91	Police	Helmand	1021.58293
	92	Police	Kandahar	
	93	Police	Kabul	
##		Police	Ghazni	1020.06989
	95	Police	Kunduz	1024.47580
##	96	Police		32714.89198
##		Police		32794.30306
##	98	Police		32815.79228
##	99	Police		32817.19186
##	100	Police		32816.79226
##	101	Private	Helmand	
##	102	Private Private	Kandahar	
## ##	103 104	Private	Kabul Ghazni	
##	104	Private	Kunduz	
##	105	Private		32780.67328
##	107	Private		32805.02419
##	108	Private		32814.44742
##	109	Private		32822.40373
##	110	Private		32826.13858
##	111	Helmand		32806.53954
	112	Helmand		32810.27757
	113	Helmand		32814.17095
##	114	Helmand		32816.09495

##	115	Helmand	FourDead	32821.54070
##	116	Kandahar	ZeroDead	32815.34936
##	117	Kandahar	OneDead	32807.86462
##	118	Kandahar	TwoDead	32818.66447
##	119	Kandahar	ThreeDead	32818.10422
##	120	Kandahar	FourDead	32821.29514
##	121	Kabul	ZeroDead	32818.31607
##	122	Kabul	OneDead	32817.36817
##	123	Kabul	TwoDead	32821.15930
##	124	Kabul	${\tt ThreeDead}$	32822.06037
##	125	Kabul	FourDead	32820.11516
##	126	Ghazni	ZeroDead	32818.93771
##	127	Ghazni	OneDead	32809.55852
##	128	Ghazni	TwoDead	32819.98844
##	129	Ghazni	${\tt ThreeDead}$	32821.10594
##	130	Ghazni	FourDead	32825.67299
##	131	Kunduz	ZeroDead	32809.25576
##	132	Kunduz	OneDead	32814.12474
##	133	Kunduz	TwoDead	32817.12298
##	134	Kunduz	${\tt ThreeDead}$	32821.84093
##	135	Kunduz	FourDead	32823.48895

All the arcs apart from Assassination Government General would worsen the bic score, thus indicating it is not a good fit to the data.