Computer Architectures 02LSEOV

Delivery date: By 2:00 AM on October, 23 2024

Laboratory 3

Expected delivery of lab_03.zip must include:

- program_1_a.s, program_1_b.s, and program_1_c.s
- This file, filled with information and possibly compiled in a pdf format.

This lab will explore some of the concepts seen during the lessons, such as hazards, rescheduling, and loop unrolling. The first thing to do is to configure the WinMIPS64 simulator with the *Initial Configuration* provided below:

- Integer ALU: 1 clock cycle
- Data memory: 1 clock cycle
- Code address bus: 12
- Data address bus: 12
- FP arithmetic unit: pipelined, 4 clock cycles
- FP multiplier unit: pipelined, 6 clock cycles
- FP divider unit: not pipelined, 30 clock cycles
- Forwarding is enabled
- Branch prediction is disabled
- Branch delay slot is disabled
- 1) Enhance the assembly program you created in the previous lab called **program 1.s**:

- a. Manually detect the different data, structural, and control hazards that cause a pipeline stall.
- b. Optimize the program by re-scheduling the program instructions to eliminate as many hazards as possible. Manually calculate the number of clock cycles for the new program (program_1_a.s) to execute and compare the results with those obtained by the simulator.
- c. Starting from **program_1_a.s**, enable the *branch delay slot* and re-schedule some instructions to improve the previous program execution time. Manually

- calculate the number of clock cycles needed by the new program (program_1_b.s) to execute and compare the results obtained with those obtained by the simulator.
- d. Unroll the program (program_1_b.s) 3 times; if necessary, re-schedule some instructions and increase the number of registers used. Manually calculate the number of clock cycles to execute the new program (program_1_c.s) and compare the results obtained with those obtained by the simulator.

Complete the following table with the obtained results:

Program	program_1.s	program_1_a.s	program_1_b.s	program_1_c.s
Clock cycle				
computation				
By hand	3699	3699	3633	2714
By simulation	4402	4402	4197	<u>3686</u>

2) Collect the Cycles Per Instruction (CPI) from the simulator for different programs

	program_1.s	program_1_a.s	program_1_b.s	program_1_c.s
CPI	3.834	3.834	3.426	3.124

Compare the results obtained in 1) and provide some explanation if the results are different.

Eventual explanation:

Su carta si ottine che sono neccessari meno colpi di clock rispetto a quelli effettivi su winmips, ma osservando il simulatore si possono notare alcuni compartamenti diversi da quelli teorici. In ogni caso, all'incrementare delle ottimizzazioni si nota una riduzione dei valori di CPI. I data hazards sono presenti nel programma iniziale, ma quelli che potevano essere evitati erano già stati evitati nel programma originale involontariamente.