Package 'RemixAutoML'

June 19, 2019

Title Remix Automated Machine Learning

Version 1.5.0

Date 2019-06-03

Maintainer Adrian Antico <adrianantico@gmail.com>

Description Automates and ensures high quality output for most of your machine learning and data science tasks. The package contains high quality functions that run at efficient speed with minimal memory constraints for supervised learning, unsupervised learning, feature engineering, model evaluation and interpretation, along with some helper functions for graphing. AutoCatBoostClassifier(), AutoCatBoostRegression(), and AutoCatBoostMultiClass() have a dependency to the catboost package which isn't part of the CRAN repository at the time of this writing. The link to the catboost URL to download the package for use is in the Additional_repositories field below, which has the installation instructions. You need to install that package to make use of the AutoCatBoost_functions.

License MPL-2.0

URL https://github.com/AdrianAntico/RemixAutoML

 $\mathbf{BugReports} \ \mathsf{https://github.com/AdrianAntico/RemixAutoML/issues}$

Depends R (i = 3.5.0)

Imports catboost, caTools, data.table, doParallel, foreach, forecast, ggplot2, grid, h2o, itertools, lubridate, magick, methods, monreg, parallel, pROC, RColorBrewer, recommenderlab, ROCR, scatterplot3d, stats, stringr, tm, tsoutliers, utils, wordcloud, xgboost, zoo

Suggests knitr, rmarkdown, sde, testthat

VignetteBuilder knitr

Additional_repositories

https://github.com/catboost/catboost/tree/master/catboost/R-package

Contact Adrian Antico

Encoding UTF-8

Language en-US

LazyData true

NeedsCompilation no

RoxygenNote 6.1.1

SystemRequirements Java ($\xi = 7.0$)

Author Adrian Antico [aut, cre], Douglas Pestana [aut]

R topics documented:

 $Apply_Asin$ 3

	GenTSAnomVars
	InvApply_Asin
	InvApply_Asinh
	InvApply_BoxCox
	InvApply_Logit
	InvApply_YeoJohnson
	ModelDataPrep
	multiplot
	ParDepCalPlots
	percRank
	PrintObjectsSize
	ProblematicFeatures
	ProblematicRecords
	RedYellowGreen
	RemixTheme
	ResidualOutliers
	Scoring_GDL_Feature_Engineering
	SimpleCap
	tempDatesFun
	threshOptim
	tokenizeH2O
Index	106
Apply	Asin Inverse Asin Transformation

Description

Inverse Asin Transformation

Usage

Apply_Asin(x)

Arguments

Х

The data in numerical vector form

Value

Asin results

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asin, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

4 Apply_BoxCox

Apply_Asinh

Inverse Asinh Transformation

Description

Inverse Asinh Transformation

Usage

Apply_Asinh(x)

Arguments

Χ

The data in numerical vector form

Value

Asinh results

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asin, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asin, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

Apply_BoxCox

Apply BoxCox Transformation

Description

Apply BoxCox Transformation

Usage

```
Apply_BoxCox(x, lambda, eps = 0.001)
```

Arguments

x The data in numerical vector form

lambda optimal lambda eps erorr tolerance

Value

BoxCox results

 $Apply_Logit$ 5

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_Asin, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asin, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

Apply_Logit

Apply Logit Transformation

Description

Apply Logit Transformation

Usage

Apply_Logit(x)

Arguments

Х

The data in numerical vector form

Value

Logit results

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_Asin, Apply_BoxCox, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asinh, InvApply_Asin, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

AutoCatBoostCARMA

Apply_YeoJohnson

 $Apply\ Yeo Johnson\ Transformation$

Description

Apply YeoJohnson Transformation

Usage

```
Apply_YeoJohnson(x, lambda, eps = 0.001)
```

Arguments

x The data in numerical vector form

lambda optimal lambda eps erorr tolerance

Value

YeoJohnson results

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_Asin, Apply_BoxCox, Apply_Logit, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asinh, InvApply_Asin, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

 $Auto Cat Boost CARMA \quad Automated \quad Cat Boost \quad Calendar \quad and \quad ARMA \quad Variables \quad Forecasting$

Description

AutoCatBoostCARMA Automated CatBoost Calendar and ARMA Variables Forecasting. Create hundreds of thousands of time series forecasts using this function.

AutoCatBoostCARMA 7

Usage

```
AutoCatBoostCARMA(data, TargetColumnName = "Target",
    DateColumnName = "DateTime", GroupVariables = NULL,
    FC_Periods = 30, TimeUnit = "week", Lags = c(1:5),
    MA_Periods = c(1:5), CalendarVariables = FALSE,
    TimeTrendVariable = FALSE, DataTruncate = FALSE,
    SplitRatios = c(0.7, 0.2, 0.1), TaskType = "GPU",
    EvalMetric = "MAPE", GridTune = FALSE, GridEvalMetric = "mape",
    ModelCount = 1, NTrees = 1000, PartitionType = "timeseries",
    Timer = TRUE)
```

Arguments

data Supply your full series data set here

TargetColumnName

List the column name of your target variables column. E.g. "Target"

DateColumnName List the column name of your date column. E.g. "DateTime"

GroupVariables Defaults to NULL. Use NULL when you have a single series. Add in

Group Variables when you have a series for every level of a group or mul-

tiple groups.

FC_Periods Set the number of periods you want to have forecasts for. E.g. 52 for

weekly data to forecast a year ahead

TimeUnit List the time unit your data is aggregated by. E.g. "hour", "day", "week",

'year'

Lags Select the periods for all lag variables you want to create. E.g. I use this

for weekly data c(1:5,52)

MA_Periods Select the periods for all moving average variables you want to create.

E.g. I use this for weekly data c(1:5,52)

CalendarVariables

Set to TRUE to have calendar variables created. The calendar variables are numeric representations of second, minute, hour, week day, month

day, year day, week, isoweek, quarter, and year

TimeTrendVariable

Set to TRUE to have a time trend variable added to the model. Time trend is numeric variable indicating the numeric value of each record in the time series (by group). Time trend starts at 1 for the earliest point

in time and increments by one for each success time point.

DataTruncate Set to TRUE to remove records with missing values from the lags and

moving average features created

 ${\tt SplitRatios} \qquad {\tt E.g} \ c(0.7, 0.2, 0.1) \ for \ train, \ validation, \ and \ test \ sets$

TaskType Default is "GPU" but you can also set it to "CPU"

EvalMetric Select from "RMSE", "MAE", "MAPE", "Poisson", "Quantile", "LogLin-

Quantile", "Lq", "NumErrors", "SMAPE", "R2", "MSLE", "MedianAb-

soluteError"

GridTune Set to TRUE to run a grid tune

GridEvalMetric This is the metric used to find the threshold 'poisson', 'mae', 'mape',

'mse', 'msle', 'kl', 'cs', 'r2'

ModelCount Set the number of models to try in the grid tune

8 AutoCatBoostClassifier

NTrees Select the number of trees you want to have built to train the model

PartitionType Select "random" for random data partitioning "time" for partitioning by

time frames

 $\mbox{Timer} \qquad = \mbox{TRUE}$

Value

Returns a data.table of original series and forecasts, the catboost model objects (everything returned from AutoCatBoostRegression()), and a time series forecast plot. The time series forecast plot will plot your single series or aggregate your data to a single series and create a plot from that.

See Also

Other Time Series: AutoTS

Examples

```
Results <- AutoCatBoostCARMA(data,</pre>
                              TargetColumnName = "Weekly_Sales",
                              DateColumnName = "Date",
                              GroupVariables = c("Store","Dept"),
                              FC_Periods = 52,
                              TimeUnit = "week",
                              Lags = c(1:5,52),
                              MA\_Periods = c(1:5,52),
                              CalendarVariables = TRUE,
                              TimeTrendVariable = TRUE,
                              DataTruncate = FALSE,
                              SplitRatios = c(1-2*30/143,30/143,30/143),
                              TaskType = "GPU",
                              EvalMetric = "MAE",
                              GridTune = FALSE,
                              GridEvalMetric = "mae",
                              ModelCount = 1,
                              NTrees = 1000,
                              PartitionType = "time")
Results$TimeSeriesPlot
Results$Forecast
Results$ModelInformation$...
```

AutoCatBoostClassifier

AutoCatBoostClassifier is an automated catboost model gridtuning classifier and evaluation system AutoCatBoostClassifier 9

Description

AutoCatBoostClassifier is an automated modeling function that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train, validation, and test sets (if not supplied). Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions (on test data), an ROC plot, evaluation plot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting. You can download the catboost package using devtools, via: devtools::install_github('catboost/catboost', subdir = 'catboost/R-package')

Usage

```
AutoCatBoostClassifier(data, ValidationData = NULL, TestData = NULL, TargetColumnName = NULL, FeatureColNames = NULL, PrimaryDateColumn = NULL, ClassWeights = NULL, IDcols = NULL, task_type = "GPU", eval_metric = "AUC", Trees = 50, GridTune = FALSE, grid_eval_metric = "f", MaxModelsInGrid = 10, model_path = NULL, ModelID = "FirstModel", NumOfParDepPlots = 3, ReturnModelObjects = TRUE, SaveModelObjects = FALSE, PassInGrid = NULL)
```

Arguments

data This is your data set for training and testing your model

ValidationData This is your holdout data set used in modeling either refine your hy-

perparameters. Catboost using both training and validation data in the training process so you should evaluate out of sample performance with

this data set.

TestData This is your holdout data set. Catboost using both training and valida-

tion data in the training process so you should evaluate out of sample

performance with this data set.

 ${\tt TargetColumnName}$

Either supply the target column name OR the column number where the target is located, but not mixed types. Note that the target column needs

to be a 0-1 numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where the target is located, but not mixed types. Also, not zero-indexed.

PrimaryDateColumn

Supply a date or datetime column for catboost to utilize time as its basis

for handling categorical features, instead of random shuffling

ClassWeights Supply a vector of weights for your target classes. E.g. c(0.25, 1) to

weight your 0 class by 0.25 and your 1 class by 1.

IDcols A vector of column names or column numbers to keep in your data but

not include in the modeling.

task_type Set to "GPU" to utilize your GPU for training. Default is "CPU".

eval_metric This is the metric used inside catboost to measure performance on vali-

dation data during a grid-tune. "AUC" is the default, but other options

10 AutoCatBoostClassifier

include "Logloss", "CrossEntropy", "Precision", "Recall", "F1", "BalancedAccuracy", "BalancedErrorRate", "MCC", "Accuracy", "CtrFactor", "AUC", "BrierScore", "HingeLoss", "HammingLoss", "ZeroOneLoss",

"Kappa", "WKappa", "LogLikelihoodOfPrediction"

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxMod-

elsInGrid to tell the procedure how many models you want to test.

grid_eval_metric

This is the metric used to find the threshold "f", "auc", "tpr", "fnr", "fpr", "tnr", "prbe", "f", "odds"

MaxModelsInGrid

Number of models to test from grid options. 1080 total possible options

model_path A character string of your path file to where you want your output saved

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical features (not dummy variables)

ReturnModelObjects

Set to TRUE to output all modeling objects. E.g. plots and evaluation metrics

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

PassInGrid Defaults to NULL. Pass in a single row of grid from a previous output as

a data.table (they are collected as data.tables)

Value

Saves to file and returned in list: VariableImportance.csv, Model (the model), ValidationData.csv, ROC_Plot.png, EvaluationPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoCatBoostMultiClass, AutoCatBoostRegression, AutoCatBoostScoring, AutoCatBoostdHurdleModel, AutoH2OMLScoring, AutoH2OModeler, AutoH2OScoring, AutoH2oDRFClassifier, AutoH2oDRFMultiClass, AutoH2oDRFRegression, AutoH2oGBMClassifier, AutoH2oGBMMultiClass, AutoH2oGBMRegression, AutoNLS, AutoXGBoostClassifier, AutoXGBoostMultiClass, AutoXGBoostRegression, AutoXGBoostScoring

```
Correl <- 0.85
N <- 1000
data <- data.table::data.table(Target = runif(N))
data[, x1 := qnorm(Target)]
data[, x2 := runif(N)]</pre>
```

```
data[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                             sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable2 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                             sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                                 sqrt(1-Correl^2) * qnorm(x2))))]
data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable6 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.10]
data[, Independent_Variable7 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.25
data[, Independent_Variable8 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.75
data[, Independent_Variable9 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^2]
data[, Independent_Variable10 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))^4]
data[, Independent_Variable11 := as.factor(
  ifelse(Independent_Variable2 < 0.20, "A",</pre>
         ifelse(Independent_Variable2 < 0.40, "B",
                                                      "C",
                ifelse(Independent_Variable2 < 0.6,</pre>
                       ifelse(Independent_Variable2 < 0.8, "D", "E")))))]</pre>
data[, ':=' (x1 = NULL, x2 = NULL)]
data[, Target := ifelse(Target < 0.5, 1, 0)]</pre>
TestModel <- AutoCatBoostClassifier(data,</pre>
                                     ValidationData = NULL,
                                     TestData = NULL,
                                     TargetColumnName = "Target",
                                     FeatureColNames = c(2:12),
                                     PrimaryDateColumn = NULL,
                                     ClassWeights = NULL,
                                     IDcols = NULL,
                                     MaxModelsInGrid = 3,
                                     task_type = "GPU",
                                     eval_metric = "AUC"
                                     grid_eval_metric = "auc",
                                     Trees = 50,
                                     GridTune = FALSE,
                                     model_path = NULL,
                                     ModelID = "ModelTest",
                                     NumOfParDepPlots = 15,
                                     ReturnModelObjects = TRUE,
                                     SaveModelObjects = FALSE,
                                     PassInGrid = NULL)
```

AutoCatBoostdHurdleModel

AutoCatBoostdHurdleModel is a Retrain Function for the Regression Models for the Subsetted Data in P6

Description

 ${\it AutoCatBoostdHurdleModel}$ is a Retrain Function for the Regression Models for the Subsetted Data in P6

AutoCatBoostdHurdleModel is a Retrain Function for the Regression Models for the Subsetted Data in P6

Usage

```
AutoCatBoostdHurdleModel(data, ValidationData = NULL, TestData = NULL,
Buckets = c(1, 5, 10, 20), TargetColumnName = "Target",
FeatureColNames = 4:ncol(data), PrimaryDateColumn = NULL,
IDcols = NULL, ClassWeights = NULL, SplitRatios = c(0.7, 0.2, 0.1),
task_type = "GPU", ModelID = "ModelTest", Paths = NULL,
SaveModelObjects = TRUE, Trees = 15000, GridTune = TRUE,
MaxModelsInGrid = 1, NumOfParDepPlots = 10, PassInGrid = NULL)
AutoCatBoostdHurdleModel(data, ValidationData = NULL, TestData = NULL,
Buckets = c(1, 5, 10, 20), TargetColumnName = "Target",
FeatureColNames = 4:ncol(data), PrimaryDateColumn = NULL,
IDcols = NULL, ClassWeights = NULL, SplitRatios = c(0.7, 0.2, 0.1),
task_type = "GPU", ModelID = "ModelTest", Paths = NULL,
SaveModelObjects = TRUE, Trees = 15000, GridTune = TRUE,
MaxModelsInGrid = 1, NumOfParDepPlots = 10, PassInGrid = NULL)
```

Arguments

data Source training data. Do not include a column that has the class labels

for the buckets as they are created internally.

ValidationData Source validation data. Do not include a column that has the class labels

for the buckets as they are created internally.

TestData Souce test data. Do not include a column that has the class labels for the

buckets as they are created internally.

Buckets A numeric vector of the buckets used for subsetting the data. NOTE: the

final Bucket value will first create a subset of data that is less than the value and a second one thereafter for data greater than the bucket value.

 ${\tt TargetColumnName}$

Supply the column name or number for the target variable

FeatureColNames

Supply the column names or number of the features (not included the

PrimaryDateColumn)

PrimaryDateColumn

Supply a date column if the data is functionally related to it

IDcols Includes PrimaryDateColumn and any other columns you want returned

in the validation data with predictions

ClassWeights Utilize these for the classifier model

SplitRatios Supply vector of partition ratios. For example, c(0.70,0.20,0,10).

task_type Set to "GPU" or "CPU"

ModelID Define a character name for your models

Paths A character vector of the path file strings. EITHER SUPPLY 1 file path

or N file paths for N models

SaveModelObjects

Set to TRUE to save the model objects to file in the folders listed in Paths

Trees Default 15000

GridTune Set to TRUE if you want to grid tune the models

NumOfParDepPlots

Set to pull back N number of partial dependence calibration plots.

PassInGrid Pass in a grid for changing up the parameter settings for catboost

RegressionModels

Set to the model of choice. Currently only catboost is available.

ClassificationModels

Set to the model of choice. Currently, only catboost is available.

NumberModelsInGrid

Set to a numeric value for the number of models to try in grid tune

data Source training data. Do not include a column that has the class labels

for the buckets as they are created internally.

ValidationData Source validation data. Do not include a column that has the class labels

for the buckets as they are created internally.

TestData Souce test data. Do not include a column that has the class labels for the

buckets as they are created internally.

Buckets A numeric vector of the buckets used for subsetting the data. NOTE: the

final Bucket value will first create a subset of data that is less than the value and a second one thereafter for data greater than the bucket value.

TargetColumnName

Supply the column name or number for the target variable

FeatureColNames

Supply the column names or number of the features (not included the PrimaryDateColumn)

PrimaryDateColumn

Supply a date column if the data is functionally related to it

IDcols Includes PrimaryDateColumn and any other columns you want returned

in the validation data with predictions

ClassWeights Utilize these for the classifier model

SplitRatios Supply vector of partition ratios. For example, c(0.70,0.20,0,10).

task_type Set to "GPU" or "CPU"

ModelID Define a character name for your models

Paths A character vector of the path file strings. EITHER SUPPLY 1 file path

or N file paths for N models

SaveModelObjects

Set to TRUE to save the model objects to file in the folders listed in Paths

Trees Default 15000

GridTune Set to TRUE if you want to grid tune the models

NumberModelsInGrid

Set to a numeric value for the number of models to try in grid tune

NumOfParDepPlots

Set to pull back N number of partial dependence calibration plots.

PassInGrid Pass in a grid for changing up the parameter settings for catboost

Value

Returns AutoCatBoostRegression() model objects: VariableImportance.csv, Model, ValidationData.csv, EvalutionPlot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDep-Plots.R a named list of features with partial dependence calibration plots, ParDepBox-Plots.R, GridCollect, and catboostgrid

Returns AutoCatBoostRegression() model objects: VariableImportance.csv, Model, ValidationData.csv, EvalutionPlot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDep-Plots.R a named list of features with partial dependence calibration plots, ParDepBox-Plots.R, GridCollect, and catboostgrid

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostMultiClass, AutoCatBoostRegression, AutoCatBoostScoring, AutoH20MLScoring, AutoH20Modeler, AutoH20Scoring, AutoH20DRFClassifier, AutoH20DRFMultiClass, AutoH20DRFRegression, AutoH20GBMClassifier, AutoH20GBMMultiClass, AutoH20GBMRegression, AutoNLS, AutoXGBoostClassifier, AutoXGBoostMultiClass, AutoXGBoostRegression, AutoXGBoostScoring

Examples

```
Output <- RemixAutoML::AutoCatBoostdHurdleModel(</pre>
  ValidationData = NULL,
  TestData = NULL,
  Buckets = c(1, 5, 10, 20),
  TargetColumnName = "PLND_LABOR_UNITS",
  FeatureColNames = 4:ncol(data),
  PrimaryDateColumn = "PLND_STRT_DT",
  IDcols = c(1,3),
  ClassWeights = NULL,
  SplitRatios = c(0.7, 0.2, 0.1),
  task_type = "GPU",
  ModelID = "P6",
  Paths = c(paste0(getwd(),"/P6_Buckets")),
  SaveModelObjects = TRUE,
  Trees = 5000.
  GridTune = FALSE,
  MaxModelsInGrid = 1,
  NumOfParDepPlots = 10,
  PassInGrid = grid)
```

AutoCatBoostMultiClass

AutoCatBoostMultiClass is an automated catboost model gridtuning multinomial classifier and evaluation system

Description

AutoCatBoostMultiClass is an automated modeling function that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets.

AutoCatBoostMultiClass 15

Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, variable importance, and column names used in model fitting. You can download the catboost package using devtools, via: devtools::install_github('catboost/catboost', subdir = 'catboost/R-package').

Usage

```
AutoCatBoostMultiClass(data, ValidationData = NULL, TestData = NULL,
   TargetColumnName = NULL, FeatureColNames = NULL,
   PrimaryDateColumn = NULL, ClassWeights = NULL, IDcols = NULL,
   task_type = "GPU", eval_metric = "MultiClassOneVsAll", Trees = 50,
   GridTune = FALSE, grid_eval_metric = "Accuracy",
   MaxModelsInGrid = 10, model_path = NULL, ModelID = "FirstModel",
   ReturnModelObjects = TRUE, SaveModelObjects = FALSE,
   PassInGrid = NULL)
```

Arguments

data This is your data set for training and testing your model

ValidationData This is your holdout data set used in modeling either refine your hy-

perparameters. Catboost using both training and validation data in the training process so you should evaluate out of sample performance with

this data set.

TestData This is your holdout data set. Catboost using both training and valida-

tion data in the training process so you should evaluate out of sample

performance with this data set.

 ${\tt TargetColumnName}$

Either supply the target column name OR the column number where the target is located, but not mixed types.

FeatureColNames

Either supply the feature column names OR the column number where the target is located, but not mixed types. Also, not zero-indexed.

PrimaryDateColumn

Supply a date or datetime column for catboost to utilize time as its basis

for handling categorical features, instead of random shuffling

ClassWeights Supply a vector of weights for your target classes. E.g. c(0.25, 1) to

weight your 0 class by 0.25 and your 1 class by 1.

IDcols A vector of column names or column numbers to keep in your data but

not include in the modeling.

task_type Set to "GPU" to utilize your GPU for training. Default is "CPU".

eval_metric This is the metric used inside catboost to measure performance on vali-

dation data during a grid-tune. "MultiClass" or "MultiClassOneVsAll"

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxMod-

elsInGrid to tell the procedure how many models you want to test.

grid_eval_metric

This is the metric used to find the threshold "auc", "accuracy"

AutoCatBoostMultiClass

MaxModelsInGrid

Number of models to test from grid options. 1080 total possible options

model_path A character string of your path file to where you want your output saved

ModelID A character string to name your model and output

ReturnModelObjects

Set to TRUE to output all modeling objects. E.g. plots and evaluation

metrics

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

PassInGrid Defaults to NULL. Pass in a single row of grid from a previous output as

a data.table (they are collected as data.tables)

Value

Saves to file and returned in list: VariableImportance.csv, Model (the model), Validation-Data.csv, EvaluationMetrics.csv, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostRegression, AutoCatBoostScoring, AutoCatBoostdHurdleModel, AutoH2OMLScoring, AutoH2OModeler, AutoH2OScoring, AutoH2oDRFClassifier, AutoH2oDRFMultiClass, AutoH2oDRFRegression, AutoH2oGBMClassifier, AutoH2oGBMMultiClass, AutoH2oGBMRegression, AutoNLS, AutoXGBoostClassifier, AutoXGBoostMultiClass, AutoXGBoostRegression, AutoXGBoostScoring

```
Correl <- 0.85
N <- 1000
data <- data.table::data.table(Target = runif(N))</pre>
data[, x1 := qnorm(Target)]
data[, x2 := runif(N)]
{\tt data[, Independent\_Variable1 := log(pnorm(Correl * x1 +}
                                             sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable2 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                             sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                                 sqrt(1-Correl^2) * qnorm(x2))))]
data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable6 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.10]
data[, Independent_Variable7 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.25
data[, Independent_Variable8 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.75
data[, Independent_Variable9 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^2]
```

```
data[, Independent_Variable10 := (pnorm(Correl * x1 +
                                            sqrt(1-Correl^2) * qnorm(x2)))^4]
data[, Target := as.factor(
  ifelse(Independent_Variable2 < 0.20, "A",</pre>
         ifelse(Independent_Variable2 < 0.40, "B",</pre>
                 ifelse(Independent_Variable2 < 0.6, "C",</pre>
                        ifelse(Independent_Variable2 < 0.8, "D", "E")))))]</pre>
data[, ':=' (x1 = NULL, x2 = NULL)]
TestModel <- AutoCatBoostMultiClass(data,</pre>
                                      ValidationData = NULL,
                                      TestData = NULL,
                                      TargetColumnName = "Target",
                                      FeatureColNames = c(2:11),
                                      PrimaryDateColumn = NULL,
                                      ClassWeights = NULL,
                                      IDcols = NULL,
                                      MaxModelsInGrid = 1,
                                      task_type = "GPU",
                                      eval_metric = "MultiClass".
                                      grid_eval_metric = "Accuracy",
                                      Trees = 50,
                                      GridTune = FALSE,
                                      model_path = NULL,
                                      ModelID = "ModelTest",
                                      ReturnModelObjects = TRUE,
                                      SaveModelObjects = FALSE,
                                      PassInGrid = NULL)
```

AutoCatBoostRegression

AutoCatBoostRegression is an automated catboost model gridtuning classifier and evaluation system

Description

AutoCatBoostRegression is an automated modeling function that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting. You can download the catboost package using devtools, via: devtools::install_github('catboost/catboost', subdir = 'catboost/R-package')

Usage

```
AutoCatBoostRegression(data, ValidationData = NULL, TestData = NULL,
   TargetColumnName = NULL, FeatureColNames = NULL,
   PrimaryDateColumn = NULL, IDcols = NULL,
   TransformNumericColumns = NULL, task_type = "GPU",
   eval_metric = "RMSE", Alpha = NULL, Trees = 50, GridTune = FALSE,
   grid_eval_metric = "mae", MaxModelsInGrid = 10, model_path = NULL,
```

ModelID = "FirstModel", NumOfParDepPlots = 3,
ReturnModelObjects = TRUE, SaveModelObjects = FALSE,
PassInGrid = NULL)

Arguments

data This is your data set for training and testing your model

ValidationData This is your holdout data set used in modeling either refine your hy-

perparameters. Catboost using both training and validation data in the training process so you should evaluate out of sample performance with

this data set.

TestData This is your holdout data set. Catboost using both training and valida-

tion data in the training process so you should evaluate out of sample

performance with this data set.

TargetColumnName

Either supply the target column name OR the column number where the

target is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where

the target is located (but not mixed types)

PrimaryDateColumn

Supply a date or datetime column for catboost to utilize time as its basis

for handling categorical features, instead of random shuffling

IDcols A vector of column names or column numbers to keep in your data but

not include in the modeling.

task_type Set to "GPU" to utilize your GPU for training. Default is "CPU".

eval_metric This is the metric used inside catboost to measure performance on vali-

dation data during a grid-tune. "RMSE" is the default, but other options include: "MAE", "MAPE", "Poisson", "Quantile", "LogLinQuantile", "Lq", "NumErrors", "SMAPE", "R2", "MSLE", "MedianAbsoluteEr-

ror".

Alpha This is the quantile value you want to use for quantile regression. Must

be a decimal between 0 and 1.

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxMod-

elsInGrid to tell the procedure how many models you want to test.

grid_eval_metric

This is the metric used to find the threshold 'poisson', 'mae', 'mape',

'mse', 'msle', 'kl', 'cs', 'r2'

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical

features (not dummy variables)

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

PassInGrid Defaults to NULL. Pass in a single row of grid from a previous output as a data.table (they are collected as data.tables)

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, EvalutionPlot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, and catboostgrid

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostMultiClass, AutoCatBoostScoring, AutoCatBoostdHurdleModel, AutoH2OMLScoring, AutoH2OModeler, AutoH2OScoring, AutoH2oDRFClassifier, AutoH2oDRFMultiClass, AutoH2oDRFRegression, AutoH2oGBMClassifier, AutoH2oGBMMultiClass, AutoH2oGBMRegression, AutoNLS, AutoXGBoostClassifier, AutoXGBoostMultiClass, AutoXGBoostRegression, AutoXGBoostScoring

```
Correl <- 0.85
N <- 1000
data <- data.table::data.table(Target = runif(N))</pre>
data[, x1 := qnorm(Target)]
data[, x2 := runif(N)]
data[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                            sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable2 := (pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                            sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                                 sqrt(1-Correl^2) * qnorm(x2))))]
data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                             sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable6 := (pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))^0.10]
data[, Independent_Variable7 := (pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))^0.25
data[, Independent_Variable8 := (pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))^0.75
data[, Independent_Variable9 := (pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))^2]
data[, Independent_Variable10 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^4]
data[, Independent_Variable11 := as.factor(
```

```
ifelse(Independent_Variable2 < 0.20, "A",</pre>
         ifelse(Independent_Variable2 < 0.40, "B",
                 ifelse(Independent_Variable2 < 0.6, "C",</pre>
                        ifelse(Independent_Variable2 < 0.8, "D", "E")))))]</pre>
data[, ':=' (x1 = NULL, x2 = NULL)]
TestModel <- AutoCatBoostRegression(data,</pre>
                                      ValidationData = NULL,
                                      TestData = NULL.
                                      TargetColumnName = "Target",
                                      FeatureColNames = c(2:12),
                                      PrimaryDateColumn = NULL,
                                      IDcols = NULL,
                                      MaxModelsInGrid = 1,
                                      task_type = "GPU",
                                      eval_metric = "RMSE",
                                      Alpha = NULL,
                                      grid_eval_metric = "r2",
                                      Trees = 50,
                                      GridTune = FALSE.
                                      model_path = NULL,
                                      ModelID = "ModelTest",
                                      NumOfParDepPlots = 3,
                                      ReturnModelObjects = TRUE,
                                      SaveModelObjects = FALSE,
                                      PassInGrid = NULL)
```

AutoCatBoostScoring

AutoCatBoostScoring is an automated scoring function that compliments the AutoCatBoost model training functions.

Description

AutoCatBoostScoring is an automated scoring function that compliments the AutoCatBoost model training functions. This function requires you to supply features for scoring. It will run ModelDataPrep() to prepare your features for catboost data conversion and scoring.

Usage

```
AutoCatBoostScoring(TargetType = NULL, ScoringData = NULL, FeatureColumnNames = NULL, IDcols = NULL, ModelObject = NULL, ModelPath = NULL, ModelID = NULL, ReturnFeatures = TRUE, MDP_Impute = TRUE, MDP_CharToFactor = TRUE, MDP_RemoveDates = TRUE, MDP_MissFactor = "0", MDP_MissNum = -1)
```

Arguments

TargetType Set this value to "regression", "classification", or "multiclass" to score

 $models\ built\ using\ AutoCatBoostRegression(),\ AutoCatBoostClassify()$

or AutoCatBoostMultiClass().

ScoringData This is your data.table of features for scoring. Can be a single row or

batch.

FeatureColumnNames

Supply either column names or column numbers used in the AutoCat-

BoostRegression() function

IDcols Supply ID column numbers for any metadata you want returned with

your predicted values

ModelObject Supply the model object directly for scoring instead of loading it from

file. If you supply this, ModelID and ModelPath will be ignored.

ModelPath Supply your path file used in the AutoCatBoost__() function

ModelID Supply the model ID used in the AutoCatBoost__() function

ReturnFeatures Set to TRUE to return your features with the predicted values.

MDP_Impute Set to TRUE if you did so for modeling and didn't do so before supplying

ScoringData in this function

MDP_CharToFactor

Set to TRUE to turn your character columns to factors if you didn't do

so to your ScoringData that you are supplying to this function

MDP_RemoveDates

Set to TRUE if you have date of timestamp columns in your ScoringData

MDP_MissFactor If you set MDP_Impute to TRUE, supply the character values to replace

missing values with

MDP_MissNum If you set MDP_Impute to TRUE, supply a numeric value to replace

missing values with

Value

A data.table of predicted values with the option to return model features as well.

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostMultiClass, AutoCatBoostRegression, AutoCatBoostdHurdleModel, AutoH2OMLScoring, AutoH2OModeler, AutoH2OScoring, AutoH2oDRFClassifier, AutoH2oDRFMultiClass, AutoH2oDRFRegression, AutoH2oGBMClassifier, AutoH2oGBMMultiClass, AutoH2oGBMRegression, AutoNLS, AutoXGBoostClassifier, AutoXGBoostMultiClass, AutoXGBoostRegression, AutoXGBoostScoring

22 AutoDataPartition

AutoDataPartition

The AutoDataPartition function

Description

This function will take your ratings matrix and model and score your data in parallel.

Usage

```
AutoDataPartition(data, NumDataSets = 3, Ratios = c(0.7, 0.2, 0.1),
 PartitionType = "random", StratifyColumnNames = NULL,
 StratifyNumericTarget = NULL, StratTargetPrecision = 3,
 TimeColumnName = NULL)
```

Arguments

data Source data to do your partitioning on

NumDataSets The number of total data sets you want built

A vector of values for how much data each data set should get in each Ratios

split. E.g. c(0.70, 0.20, 0.10)

Set to either "random", "timeseries", or "time". With "random", your PartitionType

data will be paritioned randomly (with stratified sampling if column names are supplied). With "timeseries", you can partition by time with a stratify option (so long as you have an equal number of records for each strata). With "time" you will have data sets generated so that the training data contains the earliest records in time, validation data the second

earliest, test data the third earliest, etc.

StratifyColumnNames

Supply column names of categorical features to use in a stratified sampling procedure for partitioning the data. Partition type must be "random" to use this option

StratifyNumericTarget

Supply a column name that is numeric. Use for "random" PartitionType, you can stratify your numeric variable by splitting up based on percRank to ensure a proper allocation of extreme values in your created data sets.

StratTargetPrecision

For "random" PartitionType and when StratifyNumericTarget is not null, precision will be the number of decimals used in the percentile calculation. If you supply a value of 1, deciles will be used. For a value of 2, percentiles will be used. Larger values are supported.

TimeColumnName Supply a date column name or a name of a column with an ID for sorting by time such that the smallest number is the earliest in time.

Value

Returns a list of data.tables

Author(s)

Adrian Antico and Douglas Pestana

AutoH2oDRFClassifier 23

See Also

Other Feature Engineering: Apply_Asinh, Apply_Asin, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asinh, InvApply_Asin, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

Examples

AutoH2oDRFClassifier

AutoH2oDRFClassifier is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oDRFClassifier is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation metrics, variable importance, partial dependence calibration plots, and column names used in model fitting.

Usage

```
AutoH2oDRFClassifier(data, ValidationData = NULL, TestData = NULL,
   TargetColumnName = NULL, FeatureColNames = NULL,
   eval_metric = "auc", Trees = 50, GridTune = FALSE,
   MaxMem = "32G", MaxModelsInGrid = 2, model_path = NULL,
   ModelID = "FirstModel", NumOfParDepPlots = 3,
   ReturnModelObjects = TRUE, SaveModelObjects = FALSE,
   IfSaveModel = "mojo")
```

Arguments

data This is your data set for training and testing your model

ValidationData This is your holdout data set used in modeling either refine your hyper-

parameters.

TestData This is your holdout data set. Catboost using both training and valida-

tion data in the training process so you should evaluate out of sample

performance with this data set.

24 AutoH2oDRFClassifier

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types). Note that the target column needs to be a 0-1 numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where the target is located (but not mixed types)

eval_metric This is the metric used to identify best grid tuned model. Choose from

"AUC" or "logloss"

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxMod-

elsInGrid to tell the procedure how many models you want to test.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model

run. E.g. "32G"

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create.

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular

H2O model object

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, EvalutionPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostMultiClass, AutoCatBoostRegression, AutoCatBoostScoring, AutoCatBoostdHurdleModel, AutoH20MLScoring, AutoH20Modeler, AutoH20Scoring, AutoH20DRFMultiClass, AutoH20DRFRegression, AutoH2oGBMClassifier, AutoH2oGBMMultiClass, AutoH2oGBMRegression, AutoXGBoostClassifier, AutoXGBoostMultiClass, AutoXGBoostRegression, AutoXGBoostScoring

AutoH2oDRFMultiClass 25

Examples

```
Correl <- 0.85
N <- 1000
data <- data.table::data.table(Target = runif(N))</pre>
data[, x1 := qnorm(Target)]
data[, x2 := runif(N)]
data[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable2 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                             sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                                  sqrt(1-Correl^2) * qnorm(x2))))]
data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable6 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.10]
data[, Independent_Variable7 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.25
data[, Independent_Variable8 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.75
data[, Independent_Variable9 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^2]
data[, Independent_Variable10 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))^4]
data[, Independent_Variable11 := as.factor(
  ifelse(Independent_Variable2 < 0.20, "A",</pre>
         ifelse(Independent_Variable2 < 0.40, "B",</pre>
                ifelse(Independent_Variable2 < 0.6, "C",</pre>
                       ifelse(Independent_Variable2 < 0.8, "D", "E")))))]</pre>
data[, ':=' (x1 = NULL, x2 = NULL)]
data[, Target := as.factor(ifelse(Independent_Variable2 < 0.5, 1, 0))]</pre>
TestModel <- AutoH2oDRFClassifier(data,</pre>
                                   ValidationData = NULL,
                                   TestData = NULL,
                                   TargetColumnName = "Target",
                                   FeatureColNames = 2:ncol(data),
                                   eval_metric = "auc",
                                   Trees = 50,
                                   GridTune = FALSE,
                                   MaxMem = "32G",
                                   MaxModelsInGrid = 10,
                                   model_path = NULL,
                                   ModelID = "FirstModel",
                                   NumOfParDepPlots = 3,
                                   ReturnModelObjects = TRUE,
                                   SaveModelObjects = FALSE,
                                   IfSaveModel = "mojo")
```

AutoH2oDRFMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation

26 AutoH2oDRFMultiClass

Description

AutoH2oDRFMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, confusion matrix, and variable importance.

Usage

```
AutoH2oDRFMultiClass(data, ValidationData = NULL, TestData = NULL,
   TargetColumnName = NULL, FeatureColNames = NULL,
   eval_metric = "logloss", Trees = 50, GridTune = FALSE,
   MaxMem = "32G", MaxModelsInGrid = 2, model_path = NULL,
   ModelID = "FirstModel", ReturnModelObjects = TRUE,
   SaveModelObjects = FALSE, IfSaveModel = "mojo")
```

Arguments

data This is your data set for training and testing your model

ValidationData This is your holdout data set used in modeling either refine your hyper-

parameters.

TestData This is your holdout data set. Catboost using both training and valida-

tion data in the training process so you should evaluate out of sample

performance with this data set.

TargetColumnName

Either supply the target column name OR the column number where the

target is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where

the target is located (but not mixed types)

eval_metric This is the metric used to identify best grid tuned model. Choose from

"logloss", "r2", "RMSE", "MSE"

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxMod-

elsInGrid to tell the procedure how many models you want to test.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model

run. E.g. "32G"

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

ModelID A character string to name your model and output

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation

metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular

H2O model object

AutoH2oDRFMultiClass 27

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, EvaluationMetrics.csv, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostMultiClass, AutoCatBoostRegression, AutoCatBoostScoring, AutoCatBoostdHurdleModel, AutoH20MLScoring, AutoH20Modeler, AutoH20Scoring, AutoH20DRFClassifier, AutoH2oDRFRegression, AutoH2oGBMClassifier, AutoH2oGBMMultiClass, AutoH2oGBMRegression, AutoNLS, AutoXGBoostClassifier, AutoXGBoostMultiClass, AutoXGBoostRegression, AutoXGBoostScoring

```
Correl <- 0.85
N <- 1000
data <- data.table::data.table(Target = runif(N))</pre>
data[, x1 := qnorm(Target)]
data[, x2 := runif(N)]
data[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable2 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                                  sqrt(1-Correl^2) * qnorm(x2))))]
data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                               sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable6 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))^0.10]
data[, Independent_Variable7 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))^0.25
data[, Independent_Variable8 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))^0.75
data[, Independent_Variable9 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))^2]
data[, Independent_Variable10 := (pnorm(Correl * x1 +
                                            sqrt(1-Correl^2) * qnorm(x2)))^4]
data[, Independent_Variable11 := as.factor(
  ifelse(Independent_Variable2 < 0.20, "A",</pre>
         ifelse(Independent_Variable2 < 0.40, "B",</pre>
                 ifelse(Independent_Variable2 < 0.6, "C",</pre>
                        ifelse(Independent_Variable2 < 0.8, "D", "E")))))]</pre>
data[, Target :=
ifelse(Independent_Variable2 < 0.25, "A",</pre>
       ifelse(Independent_Variable2 < 0.45, "B",</pre>
              ifelse(Independent_Variable2 < 0.65, "C",</pre>
                      ifelse(Independent_Variable2 < 0.85, "D", "E"))))]</pre>
data[, ':=' (x1 = NULL, x2 = NULL)]
TestModel <- AutoH2oDRFMultiClass(data,</pre>
```

```
ValidationData = NULL,
TestData = NULL,
TargetColumnName = "Target",
FeatureColNames = 2:ncol(data),
eval_metric = "logloss",
Trees = 50,
GridTune = FALSE,
MaxMem = "32G",
MaxModelsInGrid = 10,
model_path = NULL,
ModelID = "FirstModel",
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
IfSaveModel = "mojo")
```

AutoH2oDRFRegression

AutoH2oDRFRegression is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oDRFRegression is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

Usage

```
AutoH2oDRFRegression(data, ValidationData = NULL, TestData = NULL,
   TargetColumnName = NULL, FeatureColNames = NULL,
   eval_metric = "RMSE", Trees = 50, GridTune = FALSE,
   MaxMem = "32G", MaxModelsInGrid = 2, model_path = NULL,
   ModelID = "FirstModel", NumOfParDepPlots = 3,
   ReturnModelObjects = TRUE, SaveModelObjects = FALSE,
   IfSaveModel = "mojo")
```

Arguments

data This is your data set for training and testing your model

ValidationData This is your holdout data set used in modeling either refine your hyper-

parameters.

TestData This is your holdout data set. Catboost using both training and valida-

tion data in the training process so you should evaluate out of sample

performance with this data set.

TargetColumnName

Either supply the target column name OR the column number where the

target is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where

the target is located (but not mixed types)

eval_metric This is the metric used to identify best grid tuned model. Choose from

"MSE", "RMSE", "MAE", "RMSLE"

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxMod-

elsInGrid to tell the procedure how many models you want to test.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model

run. E.g. "32G"

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical

features (not dummy variables)

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation

metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular

H2O model object

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, EvalutionPlot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostMultiClass, AutoCatBoostRegression, AutoCatBoostScoring, AutoCatBoostdHurdleModel, AutoH2OMLScoring, AutoH2OModeler, AutoH2OScoring, AutoH2oDRFClassifier, AutoH2oDRFMultiClass, AutoH2oGBMClassifier, AutoH2oGBMMultiClass, AutoH2oGBMRegression, AutoNLS, AutoXGBoostClassifier, AutoXGBoostMultiClass, AutoXGBoostRegression, AutoXGBoostScoring

```
Correl <- 0.85
N <- 1000
data <- data.table::data.table(Target = runif(N))</pre>
```

30 AutoH2oGBMClassifier

```
data[, x1 := qnorm(Target)]
data[, x2 := runif(N)]
data[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                             sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable2 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                             sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                                 sqrt(1-Correl^2) * qnorm(x2))))]
data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable6 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.10]
data[, Independent_Variable7 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.25
data[, Independent_Variable8 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.75
data[, Independent_Variable9 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^2]
data[, Independent_Variable10 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))^4]
data[, Independent_Variable11 := as.factor(
  ifelse(Independent_Variable2 < 0.20, "A",
         ifelse(Independent_Variable2 < 0.40, "B",</pre>
                                                      "C".
                ifelse(Independent_Variable2 < 0.6,
                       ifelse(Independent_Variable2 < 0.8, "D", "E")))))]</pre>
data[, ':=' (x1 = NULL, x2 = NULL)]
TestModel <- AutoH2oDRFRegression(data,</pre>
                                   ValidationData = NULL,
                                   TestData = NULL,
                                   TargetColumnName = "Target",
                                   FeatureColNames = 2:ncol(data),
                                   eval_metric = "RMSE",
                                   Trees = 50,
                                   GridTune = FALSE,
                                   MaxMem = "32G",
                                   MaxModelsInGrid = 10,
                                   model_path = NULL,
                                   ModelID = "FirstModel",
                                   NumOfParDepPlots = 3,
                                   ReturnModelObjects = TRUE,
                                   SaveModelObjects = FALSE,
                                   IfSaveModel = "mojo")
```

AutoH2oGBMClassifier AutoH2oGBMClassifier is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oGBMClassifier is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random

AutoH2oGBMClassifier 31

grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation metrics, variable importance, partial dependence calibration plots, and column names used in model fitting.

Usage

```
AutoH2oGBMClassifier(data, ValidationData = NULL, TestData = NULL,
   TargetColumnName = NULL, FeatureColNames = NULL,
   eval_metric = "auc", Trees = 50, GridTune = FALSE,
   MaxMem = "32G", MaxModelsInGrid = 2, model_path = NULL,
   ModelID = "FirstModel", NumOfParDepPlots = 3,
   ReturnModelObjects = TRUE, SaveModelObjects = FALSE,
   IfSaveModel = "mojo")
```

Arguments

data This is your data set for training and testing your model

ValidationData This is your holdout data set used in modeling either refine your hyper-

parameters.

TestData This is your holdout data set. Catboost using both training and valida-

tion data in the training process so you should evaluate out of sample

performance with this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types). Note that the target column

needs to be a 0 - 1 numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where

the target is located (but not mixed types)

eval_metric This is the metric used to identify best grid tuned model. Choose from

"AUC" or "logloss"

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxMod-

elsInGrid to tell the procedure how many models you want to test.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model

run. E.g. "32G"

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create.

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular

H2O model object

32 AutoH2oGBMClassifier

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, EvalutionPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostMultiClass, AutoCatBoostRegression, AutoCatBoostScoring, AutoCatBoostdHurdleModel, AutoH2OMLScoring, AutoH2OModeler, AutoH2OScoring, AutoH2oDRFClassifier, AutoH2oDRFMultiClass, AutoH2oDRFRegression, AutoH2oGBMMultiClass, AutoH2oGBMRegression, AutoNLS, AutoXGBoostClassifier, AutoXGBoostMultiClass, AutoXGBoostRegression, AutoXGBoostScoring

```
Correl <- 0.85
N <- 1000
data <- data.table::data.table(Target = runif(N))</pre>
data[, x1 := qnorm(Target)]
data[, x2 := runif(N)]
data[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable2 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                                  sqrt(1-Correl^2) * qnorm(x2))))]
data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable6 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.10]
data[, Independent_Variable7 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.25
data[, Independent_Variable8 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.75
data[, Independent_Variable9 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^2]
data[, Independent_Variable10 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))^4]
data[, Independent_Variable11 := as.factor(
  ifelse(Independent_Variable2 < 0.20, "A",</pre>
         ifelse(Independent_Variable2 < 0.40, "B",</pre>
                                                       "C",
                ifelse(Independent_Variable2 < 0.6,</pre>
                        ifelse(Independent_Variable2 < 0.8, "D", "E")))))]</pre>
data[, ':=' (x1 = NULL, x2 = NULL)]
data[, Target := as.factor(ifelse(Independent_Variable2 < 0.5, 1, 0))]</pre>
TestModel <- AutoH2oGBMClassifier(data,</pre>
                                   ValidationData = NULL,
                                   TestData = NULL,
                                   TargetColumnName = "Target",
```

AutoH2oGBMMultiClass

```
FeatureColNames = 2:ncol(data),
eval_metric = "auc",
Trees = 50,
GridTune = FALSE,
MaxMem = "32G",
MaxModelsInGrid = 10,
model_path = NULL,
ModelID = "FirstModel",
NumOfParDepPlots = 3,
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
IfSaveModel = "mojo")
```

AutoH2oGBMMultiClass

AutoH2oGBMMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation

Description

AutoH2oGBMMultiClass is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, confusion matrix, and variable importance.

Usage

```
AutoH2oGBMMultiClass(data, ValidationData = NULL, TestData = NULL,
   TargetColumnName = NULL, FeatureColNames = NULL,
   eval_metric = "logloss", Trees = 50, GridTune = FALSE,
   MaxMem = "32G", MaxModelsInGrid = 2, model_path = NULL,
   ModelID = "FirstModel", ReturnModelObjects = TRUE,
   SaveModelObjects = FALSE, IfSaveModel = "mojo")
```

Arguments

data This is your data set for training and testing your model

ValidationData This is your holdout data set used in modeling either refine your hyper-

parameters.

TestData This is your holdout data set. Catboost using both training and valida-

tion data in the training process so you should evaluate out of sample

performance with this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where the target is located (but not mixed types) 34 AutoH2oGBMMultiClass

eval_metric This is the metric used to identify best grid tuned model. Choose from

"logloss", "r2", "RMSE", "MSE"

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxMod-

elsInGrid to tell the procedure how many models you want to test.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model

run. E.g. "32G"

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

ModelID A character string to name your model and output

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation

metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular

H2O model object

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, EvaluationMetrics.csv, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostMultiClass, AutoCatBoostRegression, AutoCatBoostScoring, AutoCatBoostdHurdleModel, AutoH2OMLScoring, AutoH2OModeler, AutoH2OScoring, AutoH2oDRFClassifier, AutoH2oDRFMultiClass, AutoH2oDRFRegression, AutoH2oGBMClassifier, AutoH2oGBMRegression, AutoNLS, AutoXGBoostClassifier, AutoXGBoostMultiClass, AutoXGBoostRegression, AutoXGBoostScoring

```
data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                               sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable6 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))^0.10
data[, Independent_Variable7 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))^0.25
data[, Independent_Variable8 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))^0.75
data[, Independent_Variable9 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))^2]
data[, Independent_Variable10 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))^4]
data[, Independent_Variable11 := as.factor(
  ifelse(Independent_Variable2 < 0.20, "A",
         ifelse(Independent_Variable2 < 0.40, "B",
                ifelse(Independent_Variable2 < 0.6, "C",</pre>
                        ifelse(Independent_Variable2 < 0.8, "D", "E")))))]</pre>
data[, Target :=
ifelse(Independent_Variable2 < 0.25, "A",</pre>
       ifelse(Independent_Variable2 < 0.45, "B",</pre>
              ifelse(Independent_Variable2 < 0.65, "C",</pre>
                      ifelse(Independent_Variable2 < 0.85, "D", "E"))))]</pre>
data[, ':=' (x1 = NULL, x2 = NULL)]
TestModel <- AutoH2oGBMMultiClass(data,</pre>
                                   ValidationData = NULL,
                                   TestData = NULL,
                                   TargetColumnName = "Target",
                                   FeatureColNames = 2:ncol(data),
                                   eval_metric = "logloss",
                                   Trees = 50.
                                   GridTune = FALSE,
                                   MaxMem = "32G",
                                   MaxModelsInGrid = 10,
                                   model_path = NULL,
                                   ModelID = "FirstModel",
                                   ReturnModelObjects = TRUE,
                                   SaveModelObjects = FALSE,
                                   IfSaveModel = "mojo")
```

 $Auto H2o GBM Regression \ \ an \ automated \ H2O \ modeling \ framework \ with \ grid-tuning \ and \ model \ evaluation$

Description

AutoH2oGBMRegression is an automated H2O modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

Usage

```
AutoH2oGBMRegression(data, ValidationData, TestData = NULL,
   TargetColumnName = NULL, FeatureColNames = NULL, Alpha = NULL,
   Distribution = "poisson", eval_metric = "RMSE",
   TrainSplitRatio = 0.8, Trees = 50, GridTune = FALSE,
   MaxMem = "32G", MaxModelsInGrid = 2, model_path = NULL,
   ModelID = "FirstModel", NumOfParDepPlots = 3,
   ReturnModelObjects = TRUE, SaveModelObjects = FALSE,
   IfSaveModel = "mojo")
```

Arguments

data This is your data set for training and testing your model

ValidationData This is your holdout data set used in modeling either refine your hyper-

parameters.

TestData This is your holdout data set. Catboost using both training and valida-

tion data in the training process so you should evaluate out of sample

performance with this data set.

TargetColumnName

Either supply the target column name OR the column number where the

target is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where

the target is located (but not mixed types)

Alpha This is the quantile value you want to use for quantile regression. Must

be a decimal between 0 and 1.

Distribution Choose from gaussian", "poisson", "gamma", "tweedie", "laplace", "quan-

tile", "huber"

eval_metric This is the metric used to identify best grid tuned model. Choose from

"MSE", "RMSE", "MAE", "RMSLE"

TrainSplitRatio

A decimal between 0.01 and 0.99 that tells the function how much data

to keep for training and validation.

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxMod-

elsInGrid to tell the procedure how many models you want to test.

MaxMem Set the maximum amount of memory you'd like to dedicate to the model

run. E.g. "32G"

MaxModelsInGrid

Number of models to test from grid options (1080 total possible options)

model_path A character string of your path file to where you want your output saved

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you want to create. Calibration boxplots will only be created for numerical

features (not dummy variables)

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation

metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

IfSaveModel Set to "mojo" to save a mojo file, otherwise "standard" to save a regular

H2O model object

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, EvalutionPlot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostMultiClass, AutoCatBoostRegression, AutoCatBoostScoring, AutoCatBoostdHurdleModel, AutoH2OMLScoring, AutoH2OModeler, AutoH2OScoring, AutoH2oDRFClassifier, AutoH2oDRFMultiClass, AutoH2oDRFRegression, AutoH2oGBMClassifier, AutoH2oGBMMultiClass, AutoXGBoostClassifier, AutoXGBoostMultiClass, AutoXGBoostRegression, AutoXGBoostScoring

```
Correl <- 0.85
N <- 1000
data <- data.table::data.table(Target = runif(N))</pre>
data[, x1 := qnorm(Target)]
data[, x2 := runif(N)]
data[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                             sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable2 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                             sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                                 sqrt(1-Correl^2) * qnorm(x2))))]
data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable6 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.10]
data[, Independent_Variable7 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.25
data[, Independent_Variable8 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.75
data[, Independent_Variable9 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^2]
data[, Independent_Variable10 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))^4]
data[, Independent_Variable11 := as.factor(
  ifelse(Independent_Variable2 < 0.20, "A",</pre>
         ifelse(Independent_Variable2 < 0.40, "B",
                ifelse(Independent_Variable2 < 0.6,</pre>
                                                     "C",
```

AutoH2OMLScoring

```
ifelse(Independent_Variable2 < 0.8, "D", "E")))))]</pre>
data[, ':=' (x1 = NULL, x2 = NULL)]
TestModel <- AutoH2oGBMRegression(data,</pre>
                                   ValidationData = NULL,
                                   TestData = NULL,
                                   TargetColumnName = "Target",
                                   FeatureColNames = 2:ncol(data),
                                   Alpha = NULL,
                                   Distribution = "poisson".
                                   eval_metric = "RMSE",
                                   Trees = 50,
                                   GridTune = FALSE,
                                   MaxMem = "32G",
                                   MaxModelsInGrid = 10,
                                   model_path = NULL,
                                   ModelID = "FirstModel",
                                   NumOfParDepPlots = 3,
                                   ReturnModelObjects = TRUE,
                                   SaveModelObjects = FALSE,
                                   IfSaveModel = "mojo")
```

AutoH2OMLScoring

AutoH2OMLScoring is an automated scoring function that compliments the AutoH2o model training functions.

Description

AutoH2OMLS coring is an automated scoring function that compliments the AutoH2oGBM $_{--}$ () and AutoH2oDRF $_{--}$ () models training functions. This function requires you to supply features for scoring. It will run ModelDataPrep() to prepare your features for H2O data conversion and scoring.

Usage

```
AutoH2OMLScoring(ScoringData = NULL, FeatureColumnNames = NULL,
  ModelType = "mojo", H2OShutdown = TRUE, MaxMem = "28G",
  JavaOptions = "-Xmx1g -XX:ReservedCodeCacheSize=256m",
  ModelPath = NULL, ModelID = NULL, ReturnFeatures = TRUE,
  MDP_Impute = TRUE, MDP_CharToFactor = TRUE, MDP_RemoveDates = TRUE,
  MDP_MissFactor = "0", MDP_MissNum = -1)
```

Arguments

ScoringData This is your data.table of features for scoring. Can be a single row or

batch.

FeatureColumnNames

Supply either column names or column numbers used in the AutoH2o__()

function

ModelType Set to either "mojo" or "standard" depending on which version you saved

H2OShutdown Set to TRUE is you are scoring a "standard" model file and you aren't

planning on continuing to score.

AutoH2OMLScoring 39

MaxMem Set to you dedicated amount of memory. E.g. "28G"

JavaOptions Change the default to your machines specification if needed. Default is

'-Xmx1g -XX:ReservedCodeCacheSize=256m',

ModelPath Supply your path file used in the AutoH2o__() function

ModelID Supply the model ID used in the AutoH2o__() function

ReturnFeatures Set to TRUE to return your features with the predicted values.

MDP_Impute Set to TRUE if you did so for modeling and didn't do so before supplying

ScoringData in this function

MDP_CharToFactor

Set to TRUE to turn your character columns to factors if you didn't do

so to your ScoringData that you are supplying to this function

MDP_RemoveDates

Set to TRUE if you have date of timestamp columns in your ScoringData

MDP_MissFactor If you set MDP_Impute to TRUE, supply the character values to replace

missing values with

MDP_MissNum If you set MDP_Impute to TRUE, supply a numeric value to replace

missing values with

Value

A data.table of predicted values with the option to return model features as well.

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostMultiClass, AutoCatBoostRegression, AutoCatBoostScoring, AutoCatBoostdHurdleModel, AutoH2OModeler, AutoH2OScoring, AutoH2oDRFClassifier, AutoH2oDRFMultiClass, AutoH2oDRFRegression, AutoH2oGBMClassifier, AutoH2oGBMMultiClass, AutoH2oGBMRegression, AutoNLS, AutoXGBoostClassifier, AutoXGBoostMultiClass, AutoXGBoostRegression, AutoXGBoostScoring

AutoH2OModeler	An Automated	Machine Learning	Framework using H2C)
Autorizorioueter	1111 11 acomaca	Machine Dearming	Trunicatin asing 1120	,

Description

Steps in the function include: See details below for information on using this function.

Usage

```
AutoH2OModeler(Construct, max_memory = "28G", ratios = 0.8,
BL_Trees = 500, nthreads = 1, model_path = NULL,
MaxRuntimeSeconds = 3600, MaxModels = 30, TrainData = NULL,
TestData = NULL, SaveToFile = FALSE, ReturnObjects = TRUE)
```

Arguments

Construct Core instruction file for automation (see Details below for more informa-

tion on this)

max_memory The ceiling amount of memory H2O will utilize

ratios The percentage of train samples from source data (remainder goes to

validation set)

BL_Trees The number of trees to build in baseline GBM or RandomForest

nthreads Set the number of threads to run function

model_path Directory path for where you want your models saved

 ${\tt MaxRuntimeSeconds}$

Number of seconds of run time for grid tuning

MaxModels Number of models you'd like to have returned

TrainData Set to NULL or supply a data.table for training data

TestData Set to NULL or supply a data.table for validation data

SaveToFile Set to TRUE to save models and output to model_path

ReturnObjects Set to TRUE to return objects from functioin

Details

- 1. Logic: Error checking in the modeling arguments from your Construction file
- 2. ML: Build grid-tuned models and baseline models for comparison and checks which one performs better on validation data
- 3. Evaluation: Collects the performance metrics for both
- 4. Evaluation: Generates calibration plots (and boxplots for regression) for the winning model
- 5. Evaluation: Generates partial dependence calibration plots (and boxplots for regression) for the winning model
- 6. Evaluation: Generates variable importance tables and a table of non-important features
- 7. Production: Creates a storage file containing: model name, model path, grid tune performance, baseline performance, and threshold (if classification) and stores that file in your model_path location

The Construct file must be a data.table and the columns need to be in the correct order (see examples). Character columns must be converted to type "Factor". You must remove date columns or convert them to "Factor". For classification models, your target variable needs to be a (0,1) of type "Factor." See the examples below for help with setting up the Construct file for various modeling target variable types. There are examples for regression, classification, multinomial, and quantile regression. For help on which parameters to use, look up the r/h2o documentation. If you misspecify the construct file, it will produce an error and outputfile of what was wrong and suggestions for fixing the error.

Let's go over the construct file, column by column. The Targets column is where you specify the column number of your target variable (in quotes, e.g. "c(1)").

The Distribution column is where you specify the distribution type for the modeling task. For classification use bernoulli, for multilabel use multinomial, for quantile use quantile, and for regression, you can choose from the list available in the H2O docs, such as gaussian, poisson, gamma, etc. It's not set up to handle tweedie distributions currently but I can add support if there is demand.

The Loss column tells H2O which metric to use for the loss metrics. For regression, I typically use "mse", quantile regression, "mae", classification "auc", and multinomial "logloss". For deeplearning models, you need to use "quadratic", "absolute", and "crossentropy".

The Quantile column tells H2O which quantile to use for quantile regression (in decimal form).

The ModelName column is the name you wish to give your model as a prefix.

The Algorithm column is the model you wish to use: gbm, randomForest, deeplearning, AutoML, XGBoost, LightGBM.

The dataName column is the name of your data.

The TargetCol column is the column number of your target variable.

The FeatureCols column is the column numbers of your features.

The CreateDate column is for tracking your model build dates.

The GridTune column is a TRUE / FALSE column for whether you want to run a grid tune model for comparison.

The ExportValidData column is a TRUE / FALSE column indicating if you want to export the validation data.

The ParDep column is where you put the number of partial dependence calibration plots you wish to generate.

The PD_Data column is where you specify if you want to generate the partial dependence plots on "All" data, "Validate" data, or "Train" data.

The ThreshType column is for classification models. You can specify "f1", "f2", "f0point5", or "CS" for cost sentitive.

The FSC column is the feature selection column. Specify the percentage importance cutoff to create a table of "unimportant" features.

The tpProfit column is for when you specify "CS" in the ThreshType column. This is your true positive profit.

The tnProfit column is for when you specify "CS" in the ThreshType column. This is your true negative profit.

The fpProfit column is for when you specify "CS" in the ThreshType column. This is your false positive profit.

The fnProfit column is for when you specify "CS" in the ThreshType column. This is your false negative profit.

The SaveModel column is a TRUE / FALSE indicator. If you are just testing out models, set this to FALSE.

The SaveModelType column is where you specify if you want a "standard" model object saved or a "mojo" model object saved.

The PredsAllData column is a TRUE / FALSE column. Set to TRUE if you want all the predicted values returns (for all data).

The TargetEncoding column let's you specify the column number of features you wish to run target encoding on. Set to NA to not run this feature.

The SupplyData column lets you supply the data names for training and validation data. Set to NULL if you want the data partitioning to be done internally.

Value

Returns saved models, corrected Construct file, variable importance tables, evaluation and partial dependence calibration plots, model performance measure, and a file called grid_tuned_paths.Rdata which contains paths to your saved models for operationalization.

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostMultiClass, AutoCatBoostRegression, AutoCatBoostScoring, AutoCatBoostdHurdleModel, AutoH2OMLScoring, AutoH2OScoring, AutoH2oDRFClassifie AutoH2oDRFMultiClass, AutoH2oDRFRegression, AutoH2oGBMClassifier, AutoH2oGBMMultiClass, AutoH2oGBMRegression, AutoNLS, AutoXGBoostClassifier, AutoXGBoostMultiClass, AutoXGBoostRegression, AutoXGBoostScoring

```
# Classification Example
Correl <- 0.85
aa <- data.table::data.table(target = runif(1000))</pre>
aa[, x1 := qnorm(target)]
aa[, x2 := runif(1000)]
aa[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable2 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                               sqrt(1-Correl^2) * qnorm(x2))))]
aa[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                            sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable6 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^0.10]
aa[, Independent_Variable7 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^0.25
aa[, Independent_Variable8 := (pnorm(Correl * x1 +
```

```
sqrt(1-Correl^2) * qnorm(x2)))^0.75
aa[, Independent_Variable9 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^2]
aa[, Independent_Variable10 := (pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))^4]
aa[, ':=' (x1 = NULL, x2 = NULL)]
aa[, target := as.factor(ifelse(target > 0.5,1,0))]
Construct <- data.table::data.table(Targets = rep("target",3),</pre>
                                   Distribution
                                                   = c("bernoulli".
                                                        "bernoulli",
                                                        "bernoulli"),
                                                   = c("AUC", "AUC", "CrossEntropy"),
                                   Loss
                                    Quantile
                                                   = rep(NA,3),
                                                   = c("GBM","DRF","DL"),
                                   ModelName
                                                   = c("gbm",
                                   Algorithm
                                                        "randomForest",
                                                       "deeplearning"),
                                                   = rep("aa",3),
                                    dataName
                                    TargetCol
                                                   = rep(c("1"),3),
                                    FeatureCols
                                                   = rep(c("2:11"),3),
                                    CreateDate
                                                   = rep(Sys.time(),3),
                                    GridTune
                                                   = rep(FALSE,3),
                                    ExportValidData = rep(TRUE,3),
                                   ParDep
                                                   = rep(2,3),
                                                   = rep("All",3),
                                   PD_Data
                                    ThreshType = rep("f1",3),
                                                 = rep(0.001,3),
                                    FSC
                                                 = rep(NA,3),
                                    tpProfit
                                                 = rep(NA,3),
                                    tnProfit
                                    fpProfit
                                                   = rep(NA,3),
                                    fnProfit
                                                   = rep(NA,3),
                                    SaveModel
                                                   = rep(FALSE,3),
                                    SaveModelType = c("Mojo", "standard", "mojo"),
                                    PredsAllData = rep(TRUE,3),
                                    TargetEncoding = rep(NA,3),
                                    SupplyData
                                                   = rep(FALSE,3))
AutoH2OModeler(Construct,
              max\_memory = "28G",
               ratios = 0.75,
               BL Trees = 500.
               nthreads = 5,
               model_path = NULL,
               MaxRuntimeSeconds = 3600,
               MaxModels = 30,
               TrainData = NULL,
               TestData = NULL,
               SaveToFile = FALSE,
               ReturnObjects = TRUE)
# Multinomial Example
Correl <- 0.85
aa <- data.table::data.table(target = runif(1000))</pre>
aa[, x1 := qnorm(target)]
aa[, x2 := runif(1000)]
aa[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable2 := (pnorm(Correl * x1 +
```

```
sqrt(1-Correl^2) * qnorm(x2)))
aa[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                               sqrt(1-Correl^2) * qnorm(x2))))]
aa[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                            sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable6 := (pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))^0.10
aa[, Independent_Variable7 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^0.25
aa[, Independent_Variable8 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^0.75
aa[, Independent_Variable9 := (pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))^2]
aa[, Independent_Variable10 := (pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))^4]
aa[, ':=' (x1 = NULL, x2 = NULL)]
aa[, target := as.factor(ifelse(target < 0.33,"A",ifelse(target < 0.66, "B","C")))]</pre>
Construct <- data.table::data.table(Targets = rep("target",3),</pre>
                                    Distribution
                                                    = c("multinomial",
                                                         "multinomial",
                                                         "multinomial"),
                                                     = c("auc", "logloss", "accuracy"),
                                    Loss
                                    Ouantile
                                                     = rep(NA,3),
                                                     = c("GBM", "DRF", "DL"),
                                    ModelName
                                                     = c("gbm",
                                    Algorithm
                                                         "randomForest",
                                                         "deeplearning"),
                                    dataName
                                                    = rep("aa",3),
                                                    = rep(c("1"),3),
                                    TargetCol
                                    FeatureCols
                                                    = rep(c("2:11"),3),
                                    CreateDate
                                                    = rep(Sys.time(),3),
                                    GridTune
                                                    = rep(FALSE, 3),
                                    ExportValidData = rep(TRUE,3),
                                    ParDep
                                                    = rep(NA,3),
                                    PD Data
                                                    = rep("All", 3),
                                    ThreshType
                                                    = rep("f1",3),
                                    FSC
                                                    = rep(0.001,3),
                                                    = rep(NA,3),
                                    tpProfit
                                                    = rep(NA,3),
                                    tnProfit
                                    fpProfit
                                                    = rep(NA,3),
                                    fnProfit
                                                    = rep(NA,3),
                                    SaveModel
                                                    = rep(FALSE, 3),
                                    SaveModelType = c("Mojo", "standard", "mojo"),
                                    PredsAllData
                                                    = rep(TRUE,3),
                                    TargetEncoding = rep(NA,3),
                                    SupplyData
                                                     = rep(FALSE,3))
AutoH2OModeler(Construct,
               max\_memory = "28G",
               ratios = 0.75,
               BL\_Trees = 500,
               nthreads = 5,
               model_path = NULL,
               MaxRuntimeSeconds = 3600,
               MaxModels = 30,
```

```
TrainData = NULL,
               TestData = NULL,
               SaveToFile = FALSE,
               ReturnObjects = TRUE)
# Regression Example
Correl <- 0.85
aa <- data.table::data.table(target = runif(1000))</pre>
aa[, x1 := qnorm(target)]
aa[, x2 := runif(1000)]
aa[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable2 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2))))]
aa[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable6 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^0.10
aa[, Independent_Variable7 := (pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))^0.25
aa[, Independent_Variable8 := (pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))^0.75
aa[, Independent_Variable9 := (pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))^2]
aa[, Independent_Variable10 := (pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))^4]
aa[, ':=' (x1 = NULL, x2 = NULL)]
Construct <- data.table::data.table(Targets = rep("target",3),</pre>
                                    Distribution
                                                     = c("gaussian",
                                                         "gaussian",
                                                         "gaussian"),
                                                     = c("MSE", "MSE", "Quadratic"),
                                    Loss
                                    Quantile
                                                    = rep(NA,3),
                                                    = c("GBM","DRF","DL"),
                                    ModelName
                                    Algorithm
                                                     = c("gbm",
                                                         "randomForest",
                                                         "deeplearning"),
                                    dataName
                                                     = rep("aa",3),
                                                    = rep(c("1"),3),
                                    TargetCol
                                    FeatureCols
                                                    = rep(c("2:11"),3),
                                    CreateDate
                                                    = rep(Sys.time(),3),
                                    GridTune
                                                    = rep(FALSE, 3),
                                    ExportValidData = rep(TRUE,3),
                                    ParDep
                                                    = rep(2,3)
                                                    = rep("All", 3),
                                    PD_Data
                                                    = rep("f1",3),
                                    ThreshType
                                    FSC
                                                    = rep(0.001,3),
                                                    = rep(NA,3),
                                    tpProfit
                                    tnProfit
                                                    = rep(NA,3),
                                    fpProfit
                                                    = rep(NA,3),
                                    fnProfit
                                                    = rep(NA,3),
                                    SaveModel
                                                    = rep(FALSE, 3),
                                    SaveModelType = c("Mojo", "standard", "mojo"),
```

```
PredsAllData
                                                    = rep(TRUE,3),
                                    TargetEncoding = rep(NA,3),
                                    SupplyData
                                                    = rep(FALSE,3))
AutoH2OModeler(Construct,
               max\_memory = "28G",
               ratios = 0.75,
               BL\_Trees = 500,
               nthreads = 5,
               model_path = NULL,
               MaxRuntimeSeconds = 3600,
               MaxModels = 30,
               TrainData = NULL,
               TestData = NULL,
               SaveToFile = FALSE,
               ReturnObjects = TRUE)
# Quantile Regression Example
Correl <- 0.85
aa <- data.table::data.table(target = runif(1000))</pre>
aa[, x1 := qnorm(target)]
aa[, x2 := runif(1000)]
aa[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable2 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2))))]
aa[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable6 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^0.10]
aa[, Independent_Variable7 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^0.25
aa[, Independent_Variable8 := (pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))^0.75
aa[, Independent_Variable9 := (pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))^2]
aa[, Independent_Variable10 := (pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))^4]
aa[, ':=' (x1 = NULL, x2 = NULL)]
Construct <- data.table::data.table(Targets = rep("target",3),</pre>
                                    Distribution
                                                     = c("quantile",
                                                         "quantile"),
                                                     = c("MAE", "Absolute"),
                                    Loss
                                    Quantile
                                                    = rep(0.75, 2),
                                                     = c("GBM", "DL"),
                                    ModelName
                                    Algorithm
                                                     = c("gbm",
                                                         "deeplearning"),
                                    dataName
                                                    = rep("aa",2),
                                                    = rep(c("1"),2),
                                    TargetCol
                                                    = rep(c("2:11"),2),
                                    FeatureCols
                                    CreateDate
                                                    = rep(Sys.time(),2),
                                    GridTune
                                                    = rep(FALSE,2),
                                    ExportValidData = rep(TRUE,2),
                                    ParDep
                                                    = rep(4,2),
```

AutoH2OScoring 47

```
PD_Data
                                                    = rep("All", 2),
                                    ThreshType
                                                    = rep("f1", 2),
                                    FSC
                                                    = rep(0.001, 2),
                                    tpProfit
                                                    = rep(NA, 2),
                                                    = rep(NA, 2),
                                    tnProfit
                                    fpProfit
                                                    = rep(NA, 2),
                                    fnProfit
                                                    = rep(NA, 2),
                                    SaveModel
                                                    = rep(FALSE,2),
                                    SaveModelType = c("Mojo", "mojo"),
                                    PredsAllData = rep(TRUE, 2),
                                    TargetEncoding = rep(NA, 2),
                                    SupplyData
                                                    = rep(FALSE,2))
AutoH2OModeler(Construct,
               max_memory = "28G",
               ratios = 0.75,
               BL\_Trees = 500,
               nthreads = 5,
               model_path = NULL,
               MaxRuntimeSeconds = 3600.
               MaxModels = 30,
               TrainData = NULL,
               TestData = NULL,
               SaveToFile = FALSE,
               ReturnObjects = TRUE)
```

AutoH2OScoring

AutoH2OScoring is the complement of AutoH2OModeler.

Description

AutoH2OScoring is the complement of AutoH20Modeler. Use this for scoring models. You can score regression, quantile regression, classification, multinomial, clustering, and text models (built with the Word2VecModel function). You can also use this to score multioutcome models so long as the there are two models: one for predicting the count of outcomes (a count outcome in character form) and a multinomial model on the label data. You will want to ensure you have a record for each label in your training data in (0,1) as factor form.

Usage

```
AutoH2OScoring(Features = data, GridTuneRow = c(1:3),
  ScoreMethod = "Standard", TargetType = rep("multinomial", 3),
  ClassVals = rep("probs", 3), NThreads = 6, MaxMem = "28G",
  JavaOptions = "-Xmx1g -XX:ReservedCodeCacheSize=256m",
  SaveToFile = FALSE, FilesPath = NULL, H2OShutDown = rep(FALSE, 3))
```

Arguments

Features This is a data.table of features for scoring.

GridTuneRow Numeric. The row numbers of grid_tuned_paths, KMeansModelFile, or

StoreFile containing the model you wish to score

48 AutoH2OScoring

ScoreMethod	"Standard" or "Mojo": Mojo is available for supervised models; use standard for all others $$
TargetType	"Regression", "Classification", "Multinomial", "MultiOutcome", "Text", "Clustering". MultiOutcome must be two multinomial models, a count model (the count of outcomes, as a character value), and the multinomial model predicting the labels.
ClassVals	Choose from "p1", "Probs", "Label", or "All" for classification and multinomial models.
NThreads	Number of available threads for H2O
MaxMem	Amount of memory to dedicate to H2O
JavaOptions	Modify to your machine if the default doesn't work
SaveToFile	Set to TRUE if you want your model scores saved to file.
FilesPath	Set this to the folder where your models and model files are saved
H20ShutDown	TRUE to shutdown H2O after the run. Use FALSE if you will be repeatedly scoring and shutdown somewhere else in your environment.

Value

Returns a list of predicted values. Each list element contains the predicted values from a single model predict call.

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostMultiClass, AutoCatBoostRegression, AutoCatBoostScoring, AutoCatBoostdHurdleModel, AutoH2OMLScoring, AutoH2OMOdeler, AutoH2oDRFClassifie AutoH2oDRFMultiClass, AutoH2oDRFRegression, AutoH2oGBMClassifier, AutoH2oGBMMultiClass, AutoH2oGBMRegression, AutoNLS, AutoXGBoostClassifier, AutoXGBoostMultiClass, AutoXGBoostRegression, AutoXGBoostScoring

```
# Multinomial Example
Correl <- 0.85
aa <- data.table::data.table(target = runif(1000))</pre>
aa[, x1 := qnorm(target)]
aa[, x2 := runif(1000)]
aa[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable2 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2))))]
aa[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))]
aa[, Independent_Variable6 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^0.10]
```

AutoH2OScoring 49

```
aa[, Independent_Variable7 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^0.25
aa[, Independent_Variable8 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^0.75
aa[, Independent_Variable9 := (pnorm(Correl * x1 +
                                       sqrt(1-Correl^2) * qnorm(x2)))^2]
aa[, Independent_Variable10 := (pnorm(Correl * x1 +
                                        sqrt(1-Correl^2) * qnorm(x2)))^4]
aa[, ':=' (x1 = NULL, x2 = NULL)]
aa[, target := as.factor(ifelse(target < 0.33,"A",ifelse(target < 0.66, "B","C")))]</pre>
Construct <- data.table::data.table(Targets = rep("target",3),</pre>
                                    Distribution
                                                    = c("multinomial",
                                                         "multinomial",
                                                         "multinomial"),
                                                = c("logloss","logloss","CrossEntropy"),
                                 Loss
                                    Quantile
                                                    = rep(NA,3),
                                    ModelName
                                                    = c("GBM","DRF","DL"),
                                                    = c("gbm",
                                    Algorithm
                                                         "randomForest",
                                                        "deeplearning"),
                                    dataName
                                                    = rep("aa",3),
                                    TargetCol
                                                    = rep(c("1"),3),
                                    FeatureCols
                                                    = rep(c("2:11"),3),
                                    CreateDate
                                                    = rep(Sys.time(),3),
                                    GridTune
                                                    = rep(FALSE,3),
                                    ExportValidData = rep(TRUE,3),
                                    ParDep
                                                    = rep(NA,3),
                                                    = rep("All", 3),
                                    PD_Data
                                    ThreshType
                                                    = rep("f1",3),
                                    FSC
                                                    = rep(0.001,3),
                                    tpProfit
                                                    = rep(NA,3),
                                    tnProfit
                                                    = rep(NA,3),
                                    fpProfit
                                                    = rep(NA,3),
                                    fnProfit
                                                    = rep(NA,3),
                                    SaveModel
                                                    = rep(FALSE, 3),
                                    SaveModelType = c("Mojo","mojo","mojo"),
                                    PredsAllData
                                                    = rep(TRUE,3),
                                    TargetEncoding = rep(NA,3),
                                    SupplyData
                                                    = rep(FALSE,3))
AutoH2OModeler(Construct,
               max\_memory = "28G",
               ratios = 0.75,
               BL\_Trees = 500,
               nthreads = 5,
               model_path = NULL,
               MaxRuntimeSeconds = 3600,
               MaxModels = 30,
               TrainData = NULL,
               TestData = NULL.
               SaveToFile = FALSE,
               ReturnObjects = TRUE)
N <- 3
data <- AutoH2OScoring(Features</pre>
                       GridTuneRow = c(1:N),
                       ScoreMethod = "standard",
```

AutoH2OTextPrepScoring

AutoH2OTextPrepScoring is for NLP scoring

Description

This function returns prepared tokenized data for H2O Word2VecModeler scoring

Usage

```
AutoH2OTextPrepScoring(data, string, MaxMem, NThreads)
```

Arguments

data The text data

string The name of the string column to prepare

MaxMem Amount of memory you want to let H2O utilize

NThreads The number of threads you want to let H2O utilize

Author(s)

Adrian Antico

See Also

 $Other\ Misc:\ Chart Theme, \ Print Objects Size, \ Remix Theme, \ Simple Cap, \ multiplot, \ perc Rank, \ temp Dates Fun, \ tokenize H2O$

AutoKMeans 51

AutoKMeans	AutoKMeans	Automated	row	clustering	for	mixed	column	types
------------	------------	-----------	-----	------------	-----	-------	--------	-------

Description

AutoKMeans adds a column to your original data with a cluster number identifier. Uses glrm (grid tune-able) and then k-means to find optimal k.

Usage

```
AutoKMeans(data, nthreads = 8, MaxMem = "28G", SaveModels = NULL, PathFile = NULL, GridTuneGLRM = TRUE, GridTuneKMeans = TRUE, glrmCols = c(1:5), IgnoreConstCols = TRUE, glrmFactors = 5, Loss = "Absolute", glrmMaxIters = 1000, SVDMethod = "Randomized", MaxRunTimeSecs = 3600, KMeansK = 50, KMeansMetric = "totss")
```

Arguments

data is the source time series data.table

nthreads set based on number of threads your machine has available

MaxMem set based on the amount of memory your machine has available

SaveModels Set to "standard", "mojo", or NULL (default)

PathFile Set to folder where you will keep the models

GridTuneGLRM If you want to grid tune the glrm model, set to TRUE, FALSE otherwise GridTuneKMeans If you want to grid tuen the KMeans model, set to TRUE, FALSE other-

wise

glrmCols the column numbers for the glrm

 ${\tt IgnoreConstCols}$

tell H2O to ignore any columns that have zero variance

glrmFactors similar to the number of factors to return from PCA

Loss set to one of "Quadratic", "Absolute", "Huber", "Poisson", "Hinge", "Lo-

gistic", "Periodic"

glrmMaxIters max number of iterations

SVDMethod choose from "Randomized", "GramSVD", "Power"

MaxRunTimeSecs set the timeout for max run time

KMeansK number of factors to test out in k-means to find the optimal number

 $\label{eq:KMeansMetric} \textbf{KMeansMetric} \qquad \text{pick the metric to identify top model in grid tune } c("totss", "betweenss", "withinss")$

Value

Original data.table with added column with cluster number identifier

Author(s)

Adrian Antico

See Also

Other Unsupervised Learning: GenTSAnomVars, ResidualOutliers

Examples

```
data <- data.table::as.data.table(iris)</pre>
data <- AutoKMeans(data,</pre>
                    nthreads = 8,
                    MaxMem = "28G",
                    SaveModels = NULL,
                    PathFile = NULL,
                    GridTuneGLRM = TRUE,
                    GridTuneKMeans = TRUE,
                    glrmCols = 1:(ncol(data)-1),
                    IgnoreConstCols = TRUE,
                    glrmFactors = 2,
                    Loss = "Absolute"
                    glrmMaxIters = 1000,
                    SVDMethod = "Randomized",
                    MaxRunTimeSecs = 3600,
                    KMeansK = 5,
                    KMeansMetric = "totss")
unique(data[["Species"]])
unique(data[["ClusterID"]])
temp <- data[, mean(ClusterID), by = "Species"]</pre>
Setosa <- round(temp[Species == "setosa", V1][[1]],0)</pre>
Versicolor <- round(temp[Species == "versicolor", V1][[1]],0)</pre>
Virginica <- round(temp[Species == "virginica", V1][[1]],0)</pre>
data[, Check := "a"]
data[ClusterID == eval(Setosa), Check := "setosa"]
data[ClusterID == eval(Virginica), Check := "virginica"]
data[ClusterID == eval(Versicolor), Check := "versicolor"]
data[, Acc := as.numeric(ifelse(Check == Species, 1, 0))]
data[, mean(Acc)][[1]]
```

 $\begin{tabular}{ll} AutoMarketBasketModel & AutoMarketBasketModel & function & runs & a market & basket & analysis \\ & & automatically \\ \end{tabular}$

Description

AutoMarketBasketModel function runs a market basket analysis automatically. It will convert your data, run the algorithm, and add on additional significance values not originally contained within.

Usage

```
AutoMarketBasketModel(data, OrderIDColumnName, ItemIDColumnName,
  LHS_Delimeter = ",", Support = 0.001, Confidence = 0.1,
  MaxLength = 2, MinLength = 2, MaxTime = 5)
```

AutoNLS 53

Arguments

data This is your transactions data set

OrderIDColumnName

Supply your column name for the Order ID Values

ItemIDColumnName

Supply your column name for the Item ID Values

LHS_Delimeter Default delimeter for separating multiple ItemID's is a comma.

Support Threshold for inclusion using support
Confidence Threshold for inclusion using confidence

MaxLength Maximum combinations of Item ID (number of items in basket to con-

sider)

Minimum length of combinations of ItemID (number of items in basket

to consider)

Max run time per iteration (default is 5 seconds)

Author(s)

Adrian Antico and Douglas Pestana

See Also

Chi-sq statistics and p-values based on this paper: http://www.cs.bc.edu/~alvarez/ChiSquare/chi2tr.pdf Other Marketing Modeling: AutoRecomDataCreate, AutoRecommenderScoring, AutoRecommender

Examples

```
rules_data <- AutoMarketBasketModel(
  data,
  OrderIDColumnName = "OrderNumber",
  ItemIDColumnName = "ItemNumber",
  LHS_Delimeter = ",",
  Support = 0.001,
  Confidence = 0.1,
  MaxLength = 2,
  MinLength = 2,
  MaxTime = 5)</pre>
```

AutoNLS

AutoNLS is a function for automatically building nls models

Description

This function will build models for 9 different nls models, along with a non-parametric monotonic regression and a polynomial regression. The models are evaluated, a winner is picked, and the predicted values are stored in your data table.

Usage

```
AutoNLS(data, y, x, monotonic = TRUE)
```

54 AutoNLS

Arguments

data
Data is the data table you are building the modeling on

Y is the target variable name in quotes

X X is the independent variable name in quotes

This is a TRUE/FALSE indicator - choose TRUE if you want monotonic regression over polynomial regression

Value

A list containing "PredictionData" which is a data table with your original column replaced by the nls model predictions; "ModelName" the model name; "ModelObject" The winning model to later use; "EvaluationMetrics" Model metrics for models with ability to build.

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostMultiClass, AutoCatBoostRegression, AutoCatBoostScoring, AutoCatBoostdHurdleModel, AutoH2OMLScoring, AutoH2OModeler, AutoH2OScoring, AutoH2oDRFClassifier, AutoH2oDRFMultiClass, AutoH2oDRFRegression, AutoH2oGBMClassifier, AutoH2oGBMMultiClass, AutoH2oGBMRegression, AutoXGBoostClassifier, AutoXGBoostMultiClass, AutoXGBoostRegression, AutoXGBoostScoring

```
# Create Growth Data
data <-
  data.table::data.table(Target = seq(1, 500, 1),
                          Variable = rep(1, 500)
for (i in as.integer(1:500)) {
  if (i == 1) {
    var <- data[i, "Target"][[1]]</pre>
    data.table::set(data,
                     i = i,
                     j = 2L,
                     value = var * (1 + runif(1) / 100))
  } else {
    var <- data[i - 1, "Variable"][[1]]</pre>
    data.table::set(data,
                     i = i,
                     j = 2L,
                     value = var * (1 + runif(1) / 100))
  }
# Add jitter to Target
data[, Target := jitter(Target,
                         factor = 0.25)]
# To keep original values
data1 <- data.table::copy(data)</pre>
# Merge and Model data
```

AutoRecomDataCreate 55

```
data11 <- AutoNLS(</pre>
  data = data,
  y = "Target"
  x = "Variable"
  monotonic = TRUE
# Join predictions to source data
data2 <- merge(</pre>
  data1,
  data11$PredictionData,
 by = "Variable",
  all = FALSE
# Plot output
ggplot2::ggplot(data2, ggplot2::aes(x = Variable)) +
  ggplot2::geom_line(ggplot2::aes(y = data2[["Target.x"]],
                                   color = "Target")) +
  ggplot2::geom_line(ggplot2::aes(y = data2[["Target.y"]],
                                   color = "Predicted")) +
 RemixAutoML::ChartTheme(Size = 12) +
  ggplot2::ggtitle(paste0("Growth Models AutoNLS: ",
                           data11$ModelName)) +
  ggplot2::ylab("Target Variable") +
  ggplot2::xlab("Independent Variable") +
  ggplot2::scale_colour_manual("Values",
                                breaks = c("Target",
                                            "Predicted"),
                                values = c("red",
                                            "blue"))
summary(data11$ModelObject)
data11$EvaluationMetrics
```

AutoRecomDataCreate Convert transa

Convert transactional data.table to a binary ratings matrix

Description

Convert transactional data.table to a binary ratings matrix

Usage

```
AutoRecomDataCreate(data, EntityColName = "CustomerID",
   ProductColName = "StockCode", MetricColName = "TotalSales",
   ReturnMatrix = FALSE)
```

Arguments

data

This is your transactional data.table. Must include an Entity (typically customer), ProductCode (such as SKU), and a sales metric (such as total sales).

EntityColName

This is the column name in quotes that represents the column name for the Entity, such as customer 56 AutoRecommender

ProductColName This is the column name in quotes that represents the column name for

the product, such as SKU

MetricColName This is the column name in quotes that represents the column name for

the metric, such as total sales

ReturnMatrix Set to FALSE to coerce the object (desired route) or TRUE to return a

matrix

Value

A BinaryRatingsMatrix

Author(s)

Adrian Antico and Douglas Pestana

See Also

Other Marketing Modeling: AutoMarketBasketModel, AutoRecommenderScoring, AutoRecommender

Examples

AutoRecommender

Automatically build the best recommendere model among models available.

Description

This function returns the winning model that you pass onto AutoRecommenderScoring

Usage

```
AutoRecommender(data, Partition = "Split", KFolds = 2, Ratio = 0.75,
RatingType = "TopN", RatingsKeep = 20,
SkipModels = "AssociationRules", ModelMetric = "TPR")
```

Arguments

data This is your BinaryRatingsMatrix. See function RecomDataCreate

Partition Choose from "split", "cross-validation", "bootstrap". See evaluation-

Scheme in recommenderlab for details.

KFolds Choose 2 for traditional train and test. Choose greater than 2 for the

number of cross validations

Ratio The ratio for train and test. E.g. 0.75 for 75 percent data allocated to

training

RatingType Choose from "TopN", "ratings", "ratingMatrix"

RatingsKeep The total ratings you wish to return. Default is 20.

SkipModels AssociationRules runs the slowest and may crash your system. Choose

from: "AssociationRules", "ItemBasedCF", "UserBasedCF", "PopularItems", "RandomItems"

ModelMetric Choose from "Precision", "Recall", "TPR", or "FPR"

Value

The winning model used for scoring in the AutoRecommenderScoring function

Author(s)

Adrian Antico and Douglas Pestana

See Also

Other Marketing Modeling: AutoMarketBasketModel, AutoRecomDataCreate, AutoRecommenderScoring

Examples

AutoRecommenderScoring

The AutoRecomScoring function scores recommender models from AutoRecommender()

Description

This function will take your ratings matrix and model and score your data in parallel.

Usage

```
AutoRecommenderScoring(data, WinningModel, EntityColName = "CustomerID",
    ProductColName = "StockCode")
```

Arguments

data The binary ratings matrix from RecomDataCreate()
WinningModel The winning model returned from AutoRecommender()

EntityColName Typically your customer ID ProductColName Something like "StockCode"

Value

Returns the prediction data

Author(s)

Adrian Antico and Douglas Pestana

See Also

Other Marketing Modeling: AutoMarketBasketModel, AutoRecomDataCreate, AutoRecommender

Examples

```
\# F(G(Z(x))): AutoRecommenderScoring(AutoRecommender(RecomDataCreate(TransactionData)))
Results <- AutoRecommenderScoring(</pre>
  data = AutoRecomDataCreate(
      data,
      EntityColName = "CustomerID",
      ProductColName = "StockCode",
      MetricColName = "TotalSales"),
  WinningModel = AutoRecommender(
      AutoRecomDataCreate(
        EntityColName = "CustomerID",
        ProductColName = "StockCode",
        MetricColName = "TotalSales"),
      Partition = "Split",
      KFolds = 2,
      Ratio = 0.75,
      RatingType = "TopN",
      RatingsKeep = 20,
      SkipModels = "AssociationRules",
      ModelMetric = "TPR"),
  EntityColName = "CustomerID",
  ProductColName = "StockCode")
```

AutoTransformationCreate

Test Identity Transformation

Description

Test Identity Transformation

Usage

```
AutoTransformationCreate(data, ColumnNames = NULL,
  Methods = c("BoxCox", "YeoJohnson", "Asinh", "Asin", "Logit"),
  Path = NULL, TransID = "ModelID", SaveOutput = FALSE)
```

Arguments

data This is your source dat	ta
------------------------------	----

ColumnNames List your columns names in a vector, for example, c("Target", "IV1")

Methods Choose from "YeoJohnson", "BoxCox", "Asinh", "Asin", and "Logit".

"Identity" is always run.

Path Set to the directly where you want to save all of your modeling files

TransID Set to a character value that corresponds with your modeling project

SaveOutput Set to TRUE to save necessary file to run AutoTransformationScore()

Value

Returns AutoCatBoostRegression() model objects: VariableImportance.csv, Model, ValidationData.csv, EvalutionPlot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDep-Plots.R a named list of features with partial dependence calibration plots, ParDepBox-Plots.R, GridCollect, and catboostgrid

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_Asin, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asinh, InvApply_Asin, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

Examples

AutoTransformationScore

Test Identity Transformation

Description

Test Identity Transformation

Usage

```
AutoTransformationScore(ScoringData, FinalResults, Type = "Inverse",
   TransID = "TestModel", Path = NULL)
```

Arguments

ScoringData This is your source data

FinalResults This is the FinalResults output object from AutoTransformationCreate().

Type Set to "Inverse" to back-transfrom or "Apply" for applying the transfor-

mation.

TransID Set to a character value that corresponds with your modeling project

Path Set to the directly where you want to save all of your modeling files

Value

Returns AutoCatBoostRegression() model objects: VariableImportance.csv, Model, ValidationData.csv, EvalutionPlot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDep-Plots.R a named list of features with partial dependence calibration plots, ParDepBox-Plots.R, GridCollect, and catboostgrid

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_Asin, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asinh, InvApply_Asin, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

AutoTS 61

AutoTS is an automated time series modeling function
--

Description

Step 1 is to build all the models and evaluate them on the number of HoldOutPeriods periods you specify. Step 2 is to pick the winner and rebuild the winning model on the full data set. Step 3 is to generate forecasts with the final model for FCPeriods that you specify. AutoTS builds the best time series models for each type, using optimized box-cox transformations and using a user-supplied frequency for the ts data conversion along with a model-based frequency for the ts data conversion, compares all types, selects the winner, and generates a forecast. Models include:

Usage

```
AutoTS(data, TargetName = "Target", DateName = "DateTime",
  FCPeriods = 30, HoldOutPeriods = 30, EvaluationMetric = "MAPE",
  TimeUnit = "day", Lags = 25, SLags = 2, NumCores = 4,
  SkipModels = NULL, StepWise = TRUE, TSClean = TRUE,
  ModelFreq = TRUE, PrintUpdates = FALSE)
```

Arguments

data is the source time series data as a data.table - or a data structure that

can be converted to a data.table

TargetName is the name of the target variable in your data.table

DateName is the name of the date column in your data.table

FCPeriods is the number of periods into the future you wish to forecast

HoldOutPeriods is the number of periods to use for validation testing

EvaluationMetric

Set this to either "MAPE", "MSE", or "MAE". Default is "MAPE"

TimeUnit is the level of aggregation your dataset comes in

Lags is the number of lags you wish to test in various models (same as moving

averages)

SLags is the number of seasonal lags you wish to test in various models (same

as moving averages)

NumCores is the number of cores available on your computer

SkipModels Don't run specified models - e.g. exclude all models "DSHW" "ARFIMA"

"ARIMA" "ETS" "NNET" "TBATS" "TSLM"

StepWise Set to TRUE to have ARIMA and ARFIMA run a stepwise selection

process. Otherwise, all models will be generated in parallel execution,

but still run much slower.

TSClean Set to TRUE to have missing values interpolated and outliers replaced

with interpolated values: creates separate models for a larger comparison

set

ModelFreq Set to TRUE to run a separate version of all models where the time series

frequency is chosen algorithmically

PrintUpdates Set to TRUE for a print to console of function progress

62 AutoTS

Details

DSHW: Double Seasonal Holt Winters

ARFIMA: Auto Regressive Fractional Integrated Moving Average

ARIMIA: Stepwise Auto Regressive Integrated Moving Average with specified max lags, seasonal lags, moving averages, and seasonal moving averages

ETS: Additive and Multiplicitive Exponential Smoothing and Holt Winters

NNetar: Auto Regressive Neural Network models automatically compares models with 1 lag or 1 seasonal lag compared to models with up to N lags and N seasonal lags

TBATS: Exponential smoothing state space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components

TSLM: Time Series Linear Model - builds a linear model with trend and season components extracted from the data

Value

Returns a list containing 1: A data table object with a date column and the forecasted values; 2: The model evaluation results; 3: The champion model for later use if desired; 4: The name of the champion model; 5. A time series ggplot with historical values and forecasted values.

Author(s)

Adrian Antico and Douglas Pestana

See Also

Other Time Series: AutoCatBoostCARMA

```
data <- data.table::data.table(DateTime = as.Date(Sys.time()),</pre>
  Target = stats::filter(rnorm(100,
                                 mean = 50,
                                 sd = 20),
                          filter=rep(1,10),
                          circular=TRUE))
data[, temp := seq(1:100)][, DateTime := DateTime - temp][, temp := NULL]
data <- data[order(DateTime)]</pre>
output <- AutoTS(data,</pre>
                    TargetName
                                      = "Target",
                    DateName
                                      = "DateTime",
                    FCPeriods
                                      = 1,
                    HoldOutPeriods = 1,
                    EvaluationMetric = "MAPE",
                                      = "day",
                    TimeUnit
                                      = 1,
                    Lags
                                      = 1,
                    SLags
                                      = 4,
                    NumCores
                    SkipModels
                                      = c("NNET", "TBATS", "ETS", "TSLM", "ARFIMA", "DSHW"),
                    StepWise
                                      = TRUE,
                    TSClean
                                      = FALSE,
                    ModelFreq
                                      = TRUE,
                    {\tt PrintUpdates}
                                      = FALSE)
```

AutoWord2VecModeler 63

```
ForecastData <- output$Forecast
ModelEval <- output$EvaluationMetrics
WinningModel <- output$TimeSeriesModel
```

AutoWord2VecModeler

Automated word2vec data generation via H2O

Description

This function allows you to automatically build a word2vec model and merge the data onto your supplied dataset

Usage

```
AutoWord2VecModeler(data, stringCol = c("Text_Col1", "Text_Col2"),
  KeepStringCol = FALSE, model_path = NULL, vects = 100,
  SaveStopWords = FALSE, MinWords = 1, WindowSize = 12,
  Epochs = 25, StopWords = NULL, SaveModel = "standard",
  Threads = max(1, parallel::detectCores() - 2), MaxMemory = "28G",
  SaveOutput = FALSE)
```

Arguments

data Source data table to merge vects onto

stringCol A string name for the column to convert via word2vec

KeepStringCol Set to TRUE if you want to keep the original string column that you

convert via word2vec

model_path A string path to the location where you want the model and metadata

stored

vects The number of vectors to retain from the word2vec model

SaveStopWords Set to TRUE to save the stop words used

MinWords For H2O word2vec model
WindowSize For H2O word2vec model
Epochs For H2O word2vec model
StopWords For H2O word2vec model

SaveModel Set to "standard" to save normally; set to "mojo" to save as mojo. NOTE:

while you can save a mojo, I haven't figured out how to score it in the

AutoH20Scoring function.

Threads Number of available threads you want to dedicate to model building

MaxMemory Amount of memory you want to dedicate to model building

SaveOutput Set to TRUE to save your models to file

Author(s)

Adrian Antico

64 AutoWordFreq

See Also

Other Feature Engineering: Apply_Asinh, Apply_Asin, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asinh, InvApply_Asin, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

Examples

AutoWordFreq

Automated Word Frequency and Word Cloud Creation

Description

This function builds a word frequency table and a word cloud. It prepares data, cleans text, and generates output.

Usage

```
AutoWordFreq(data, TextColName = "DESCR",
   GroupColName = "ClusterAllNoTarget", GroupLevel = 0,
   RemoveEnglishStopwords = TRUE, Stemming = TRUE,
   StopWords = c("bla", "bla2"))
```

Arguments

data Source data table

TextColName A string name for the column

GroupColName Set to NULL to ignore, otherwise set to Cluster column name (or factor

 ${\rm column\ name})$

GroupLevel Must be set if GroupColName is defined. Set to cluster ID (or factor

level)

 ${\tt RemoveEnglishStopwords}$

Set to TRUE to remove English stop words, FALSE to ignore

AutoXGBoostClassifier 65

Stemming Set to TRUE to run stemming on your text data

StopWords Add your own stopwords, in vector format

Author(s)

Adrian Antico

See Also

Other EDA: ProblematicFeatures, ProblematicRecords

Examples

```
data <- data.table::data.table(</pre>
Urkle, Urkle, Urkle, Urkle, Urkle, Urkle, Gru, Gru, Gru,
         bears, bears, bears, bears, bears, smug, smug, smug, smug,
         smug, smug, smug, smug, smug, smug, smug, smug, smug, smug, smug,
         eats, eats, eats, eats, beats, beats, beats, beats,
         beats, beats, beats, beats, beats, beats, science, science,
         Dwigt, Dwigt, Dwigt, Dwigt, Dwigt, Dwigt, Dwigt, Dwigt, Dwigt,
         Schrute, Schrute, Schrute, Schrute, Schrute, Schrute,
         James, James, James, James, James, James, James, James, James, James,
         Halpert, Halpert, Halpert, Halpert, Halpert, Halpert, Halpert, Halpert"))
data <- AutoWordFreq(data,
                  TextColName = "DESCR",
                  GroupColName = NULL,
                  GroupLevel = NULL,
                  RemoveEnglishStopwords = FALSE,
                  Stemming = FALSE,
                  StopWords = c("Bla"))
```

 $\begin{tabular}{lll} AutoXGBoostClassifier & an automated & XGBoost & modeling \\ & framework & with & grid-tuning & and & model & evaluation \\ \end{tabular}$

Description

AutoXGBoostClassifier is an automated XGBoost modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

Usage

```
AutoXGBoostClassifier(data, ValidationData = NULL, TestData = NULL,
   TargetColumnName = NULL, FeatureColNames = NULL, IDcols = NULL,
   eval_metric = "auc", Trees = 50, GridTune = FALSE,
   grid_eval_metric = "auc", TreeMethod = "hist",
```

66 AutoXGBoostClassifier

```
MaxModelsInGrid = 10, NThreads = 8, model_path = NULL,
ModelID = "FirstModel", NumOfParDepPlots = 3, Verbose = 0,
ReturnModelObjects = TRUE, SaveModelObjects = FALSE,
PassInGrid = NULL)
```

Arguments

data This is your data set for training and testing your model

ValidationData This is your holdout data set used in modeling either refine your hyper-

parameters.

TestData This is your holdout data set. Catboost using both training and valida-

tion data in the training process so you should evaluate out of sample

performance with this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types). Note that the target column

needs to be a 0 - 1 numeric variable.

FeatureColNames

Either supply the feature column names OR the column number where

the target is located (but not mixed types)

IDcols A vector of column names or column numbers to keep in your data but

not include in the modeling.

eval_metric This is the metric used to identify best grid tuned model. Choose from

"logloss", "error", "aucpr", "auc"

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxMod-

elsInGrid to tell the procedure how many models you want to test.

grid_eval_metric

Set to "f", "auc", "tpr", "fnr", "fpr", "tnr", "prbe", "f", "odds"

TreeMethod Choose from "hist", "gpu_hist"

 ${\tt MaxModelsInGrid}$

Number of models to test from grid options (243 total possible options)

NThreads Set the maximum number of threads you'd like to dedicate to the model

run. E.g. 8

model_path A character string of your path file to where you want your output saved

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you

want to create.

Verbose Set to 0 if you want to suppress model evaluation updates in training

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation

metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

PassInGrid Default is NULL. Provide a data.table of grid options from a previous

run.

AutoXGBoostClassifier 67

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, EvalutionPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostMultiClass, AutoCatBoostRegression, AutoCatBoostScoring, AutoCatBoostdHurdleModel, AutoH2OMLScoring, AutoH2OModeler, AutoH2OScoring, AutoH2oDRFClassifier, AutoH2oDRFMultiClass, AutoH2oDRFRegression, AutoH2oGBMClassifier, AutoH2oGBMMultiClass, AutoH2oGBMRegression, AutoNLS, AutoXGBoostMultiClass, AutoXGBoostRegression, AutoXGBoostScoring

```
Correl <- 0.85
N <- 10000
data <- data.table::data.table(Target = runif(N))</pre>
data[, x1 := qnorm(Target)]
data[, x2 := runif(N)]
data[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable2 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                             sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                                  sqrt(1-Correl^2) * qnorm(x2))))]
data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable6 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.10]
data[, Independent_Variable7 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.25
data[, Independent_Variable8 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.75
data[, Independent_Variable9 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^2]
data[, Independent_Variable10 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))^4]
data[, Independent_Variable11 := as.factor(
  ifelse(Independent_Variable2 < 0.20, "A",</pre>
         ifelse(Independent_Variable2 < 0.40, "B",</pre>
                                                       "C",
                ifelse(Independent_Variable2 < 0.6,</pre>
                       ifelse(Independent_Variable2 < 0.8, "D", "E"))))]</pre>
data[, ':=' (x1 = NULL, x2 = NULL)]
data[, Target := ifelse(Target > 0.5, 1, 0)]
TestModel <- AutoXGBoostClassifier(data,</pre>
                                    ValidationData = NULL,
                                    TestData = NULL,
                                    TargetColumnName = 1,
```

AutoXGBoostMultiClass

```
FeatureColNames = 2:12,
IDcols = NULL,
eval_metric = "auc",
Trees = 50,
GridTune = TRUE,
grid_eval_metric = "auc",
MaxModelsInGrid = 10,
NThreads = 8,
TreeMethod = "hist",
model_path = getwd(),
ModelID = "FirstModel",
NumOfParDepPlots = 3,
ReturnModelObjects = TRUE,
SaveModelObjects = FALSE,
PassInGrid = NULL)
```

 $AutoXGBoostMultiClass \ is \ an \ automated \ XGBoost \ modeling \\ framework \ with \ grid-tuning \ and \ model \ evaluation$

Description

AutoXGBoostMultiClass is an automated XGBoost modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, a stratified sampling (by the target variable) is done to create train and validation sets. Then, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation metrics, variable importance, and column names used in model fitting.

Usage

```
AutoXGBoostMultiClass(data, ValidationData = NULL, TestData = NULL, TargetColumnName = NULL, FeatureColNames = NULL, IDcols = NULL, eval_metric = "merror", Trees = 50, GridTune = FALSE, grid_eval_metric = "merror", TreeMethod = "hist", MaxModelsInGrid = 10, NThreads = 8, model_path = NULL, ModelID = "FirstModel", Verbose = 0, ReturnModelObjects = TRUE, SaveModelObjects = FALSE, PassInGrid = NULL)
```

Arguments

data This is your data set for training and testing your model

ValidationData This is your holdout data set used in modeling either refine your hyper-

parameters.

TestData This is your holdout data set. Catboost using both training and valida-

tion data in the training process so you should evaluate out of sample

performance with this data set.

TargetColumnName

Either supply the target column name OR the column number where the target is located (but not mixed types). Target should be in factor or character form.

AutoXGBoostMultiClass 69

FeatureColNames

Either supply the feature column names OR the column number where

the target is located (but not mixed types)

IDcols A vector of column names or column numbers to keep in your data but

not include in the modeling.

eval_metric This is the metric used to identify best grid tuned model. Choose from

"merror", "mlogloss"

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxMod-

elsInGrid to tell the procedure how many models you want to test.

grid_eval_metric

Set to "accuracy" (only option currently)

TreeMethod Choose from "hist", "gpu_hist"

MaxModelsInGrid

Number of models to test from grid options (243 total possible options)

NThreads Set the maximum number of threads you'd like to dedicate to the model

run. E.g. 8

model_path A character string of your path file to where you want your output saved

ModelID A character string to name your model and output

Verbose Set to 0 if you want to suppress model evaluation updates in training

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation

metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

PassInGrid Default is NULL. Provide a data.table of grid options from a previous

run.

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, EvaluationMetrics.csv, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostMultiClass, AutoCatBoostRegression, AutoCatBoostScoring, AutoCatBoostdHurdleModel, AutoH2OMLScoring, AutoH2OModeler, AutoH2OScoring, AutoH2oDRFClassifier, AutoH2oDRFMultiClass, AutoH2oDRFRegression, AutoH2oGBMClassifier, AutoH2oGBMMultiClass, AutoH2oGBMRegression, AutoNLS, AutoXGBoostClassifier, AutoXGBoostRegression, AutoXGBoostScoring

```
Correl <- 0.85
N <- 10000
data <- data.table::data.table(Target = runif(N))</pre>
data[, x1 := qnorm(Target)]
data[, x2 := runif(N)]
data[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable2 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                                  sqrt(1-Correl^2) * qnorm(x2))))]
data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable6 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.10]
data[, Independent_Variable7 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.25
data[, Independent_Variable8 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.75
data[, Independent_Variable9 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^2]
data[, Independent_Variable10 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))^4]
data[, Target := as.factor(
  ifelse(Independent_Variable2 < 0.20, "A",</pre>
         ifelse(Independent_Variable2 < 0.40, "B",</pre>
                ifelse(Independent_Variable2 < 0.6, "C",</pre>
                        ifelse(Independent_Variable2 < 0.8, "D", "E")))))]</pre>
data[, Independent_Variable11 := as.factor(
ifelse(Independent_Variable2 < 0.25, "A",</pre>
       ifelse(Independent_Variable2 < 0.35, "B",</pre>
              ifelse(Independent_Variable2 < 0.65, "C",</pre>
                     ifelse(Independent_Variable2 < 0.75, "D", "E")))))]</pre>
data[, ':=' (x1 = NULL, x2 = NULL)]
TestModel <- AutoXGBoostMultiClass(data,</pre>
                                    ValidationData = NULL,
                                    TestData = NULL,
                                    TargetColumnName = 1,
                                    FeatureColNames = 2:12,
                                    IDcols = NULL,
                                    eval_metric = "merror",
                                    Trees = 50,
                                    GridTune = TRUE,
                                    grid_eval_metric = "accuracy",
                                    MaxModelsInGrid = 10,
                                    NThreads = 8,
                                    TreeMethod = "hist",
                                    model_path = getwd(),
                                    ModelID = "FirstModel",
                                    ReturnModelObjects = TRUE,
                                    SaveModelObjects = FALSE,
                                    PassInGrid = NULL)
```

 $AutoXGBoostRegression \ \ an \ \ automated \ \ XGBoost \ \ modeling \\ framework \ with \ grid-tuning \ and \ \ model \ evaluation$

Description

AutoXGBoostRegression is an automated XGBoost modeling framework with grid-tuning and model evaluation that runs a variety of steps. First, the function will run a random grid tune over N number of models and find which model is the best (a default model is always included in that set). Once the model is identified and built, several other outputs are generated: validation data with predictions, evaluation plot, evaluation boxplot, evaluation metrics, variable importance, partial dependence calibration plots, partial dependence calibration box plots, and column names used in model fitting.

Usage

```
AutoXGBoostRegression(data, ValidationData = NULL, TestData = NULL, TargetColumnName = NULL, FeatureColNames = NULL, IDcols = NULL, eval_metric = "RMSE", Trees = 50, GridTune = FALSE, grid_eval_metric = "mae", TreeMethod = "hist", MaxModelsInGrid = 10, NThreads = 8, model_path = NULL, ModelID = "FirstModel", NumOfParDepPlots = 3, Verbose = 0, ReturnModelObjects = TRUE, SaveModelObjects = FALSE, PassInGrid = NULL)
```

Arguments

data This is your data set for training and testing your model

ValidationData This is your holdout data set used in modeling either refine your hyper-

parameters.

TestData This is your holdout data set. Catboost using both training and valida-

tion data in the training process so you should evaluate out of sample

performance with this data set.

TargetColumnName

Either supply the target column name OR the column number where the

target is located (but not mixed types).

FeatureColNames

Either supply the feature column names OR the column number where

the target is located (but not mixed types)

IDcols A vector of column names or column numbers to keep in your data but

not include in the modeling.

eval_metric This is the metric used to identify best grid tuned model. Choose from

"r2", "RMSE", "MSE", "MAE"

Trees The maximum number of trees you want in your models

GridTune Set to TRUE to run a grid tuning procedure. Set a number in MaxMod-

elsInGrid to tell the procedure how many models you want to test.

grid_eval_metric

Choose from "poisson", "mae", "mape", "mse", "msle", "kl", "cs", "r2"

TreeMethod Choose from "hist", "gpu_hist"

MaxModelsInGrid

Number of models to test from grid options (243 total possible options)

NThreads Set the maximum number of threads you'd like to dedicate to the model

run. E.g. 8

model_path A character string of your path file to where you want your output saved

ModelID A character string to name your model and output

NumOfParDepPlots

Tell the function the number of partial dependence calibration plots you

want to create.

Verbose Set to 0 if you want to suppress model evaluation updates in training

ReturnModelObjects

Set to TRUE to output all modeling objects (E.g. plots and evaluation

metrics)

SaveModelObjects

Set to TRUE to return all modeling objects to your environment

PassInGrid Default is NULL. Provide a data.table of grid options from a previous

run.

Value

Saves to file and returned in list: VariableImportance.csv, Model, ValidationData.csv, EvalutionPlot.png, EvalutionBoxPlot.png, EvaluationMetrics.csv, ParDepPlots.R a named list of features with partial dependence calibration plots, ParDepBoxPlots.R, GridCollect, and GridList

Author(s)

Adrian Antico

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostMultiClass, AutoCatBoostRegression, AutoCatBoostScoring, AutoCatBoostdHurdleModel, AutoH2OMLScoring, AutoH2OModeler, AutoH2OScoring, AutoH2oDRFClassifier, AutoH2oDRFMultiClass, AutoH2oDRFRegression, AutoH2oGBMClassifier, AutoH2oGBMMultiClass, AutoH2oGBMRegression, AutoNLS, AutoXGBoostClassifier, AutoXGBoostMultiClass, AutoXGBoostScoring

AutoXGBoostScoring 73

```
data[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                             sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                                 sqrt(1-Correl^2) * qnorm(x2))))]
data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable6 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.10]
data[, Independent_Variable7 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.25
data[, Independent_Variable8 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^0.75
data[, Independent_Variable9 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^2]
data[, Independent_Variable10 := (pnorm(Correl * x1 +
                                           sqrt(1-Correl^2) * qnorm(x2)))^4]
data[, Independent_Variable11 := as.factor(
  ifelse(Independent_Variable2 < 0.20, "A",</pre>
         ifelse(Independent_Variable2 < 0.40, "B",</pre>
                ifelse(Independent_Variable2 < 0.6,</pre>
                                                       "C",
                       ifelse(Independent_Variable2 < 0.8, "D", "E")))))]</pre>
data[, ':=' (x1 = NULL, x2 = NULL)]
TestModel <- AutoXGBoostRegression(data,</pre>
                                    ValidationData = NULL,
                                    TestData = NULL,
                                    TargetColumnName = 1,
                                    FeatureColNames = 2:12,
                                    IDcols = NULL,
                                    eval_metric = "RMSE",
                                    Trees = 50,
                                    GridTune = TRUE,
                                    grid_eval_metric = "mae",
                                    MaxModelsInGrid = 10,
                                    NThreads = 8,
                                    TreeMethod = "hist",
                                    model_path = getwd(),
                                    ModelID = "FirstModel",
                                    NumOfParDepPlots = 3,
                                    ReturnModelObjects = TRUE,
                                    SaveModelObjects = FALSE,
                                    PassInGrid = NULL)
```

 ${\tt AutoXGBoostScoring}$

 $AutoXGBoostScoring\ is\ an\ automated\ scoring\ function\ that\ compliments\ the\ AutoCatBoost\ model\ training\ functions.$

Description

AutoXGBoostScoring is an automated scoring function that compliments the AutoCatBoost model training functions. This function requires you to supply features for scoring. It will run ModelDataPrep() and the DummifyDT() function to prepare your features for xgboost data conversion and scoring.

Usage

```
AutoXGBoostScoring(TargetType = NULL, ScoringData = NULL, FeatureColumnNames = NULL, IDcols = NULL, ModelPath = NULL, ModelID = NULL, ReturnFeatures = TRUE, MDP_Impute = TRUE, MDP_CharToFactor = TRUE, MDP_RemoveDates = TRUE, MDP_MissFactor = "0", MDP_MissNum = -1)
```

Arguments

TargetType Set this value to "regression", "classification", or "multiclass" to score

models built using AutoCatBoostRegression(), AutoCatBoostClassify()

or AutoCatBoostMultiClass().

ScoringData This is your data.table of features for scoring. Can be a single row or

batch.

FeatureColumnNames

Supply either column names or column numbers used in the AutoXG-

Boost__() function

IDcols Supply ID column numbers for any metadata you want returned with

your predicted values

ModelPath Supply your path file used in the AutoXGBoost__() function

ModelID Supply the model ID used in the AutoXGBoost__() function

ReturnFeatures Set to TRUE to return your features with the predicted values.

MDP_Impute Set to TRUE if you did so for modeling and didn't do so before supplying

ScoringData in this function

MDP_CharToFactor

Set to TRUE to turn your character columns to factors if you didn't do

so to your ScoringData that you are supplying to this function

MDP_RemoveDates

Set to TRUE if you have date of timestamp columns in your ScoringData

MDP_MissFactor If you set MDP_Impute to TRUE, supply the character values to replace

missing values with

MDP_MissNum If you set MDP_Impute to TRUE, supply a numeric value to replace

missing values with

Value

A data.table of predicted values with the option to return model features as well.

See Also

Other Supervised Learning: AutoCatBoostClassifier, AutoCatBoostMultiClass, AutoCatBoostRegression, AutoCatBoostScoring, AutoCatBoostdHurdleModel, AutoH2OMLScoring, AutoH2OModeler, AutoH2OScoring, AutoH2oDRFClassifier, AutoH2oDRFMultiClass, AutoH2oDRFRegression, AutoH2oGBMClassifier, AutoH2oGBMMultiClass, AutoH2oGBMRegression, AutoNLS, AutoXGBoostClassifier, AutoXGBoostMultiClass, AutoXGBoostRegression

Chart Theme 75

Examples

ChartTheme

Chart Theme function is a ggplot theme generator for ggplots

Description

This function helps your ggplots look professional with the choice of the two main colors that will dominate the theme

Usage

```
ChartTheme(Size = 12)
```

Arguments

Size

The size of the axis labels and title

Value

An object to pass along to ggplot objects following the "+" sign

Author(s)

Adrian Antico

See Also

Other Misc: AutoH2OTextPrepScoring, PrintObjectsSize, RemixTheme, SimpleCap, multiplot, percRank, tempDatesFun, tokenizeH2O

Create Calendar Variables

```
data <- data[order(DateTime)]
p <- ggplot2::ggplot(data, ggplot2::aes(x = DateTime, y = Target)) + ggplot2::geom_line()
p <- p + ChartTheme(Size = 12)</pre>
```

CreateCalendarVariables

Create Calendar Variables Create Caledar Variables

Description

CreateCalendarVariables Rapidly creates calendar variables based on the date column you provide

Usage

```
CreateCalendarVariables(data, DateCols = c("Date", "Date2"),
   AsFactor = FALSE, TimeUnits = "wday")
```

Arguments

data This is your data

DateCols Supply either column names or column numbers of your date columns

you want to use for creating calendar variables

AsFactor Set to TRUE if you want factor type columns returned; otherwise integer

type columns will be returned

TimeUnits Supply a character vector of time units for creating calendar variables.

Options include: "second", "minute", "hour", "wday", "mday", "yday",

"week", "isoweek", "month", "quarter", "year"

Value

Returns your data.table with the added calendar variables at the end

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_Asin, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asinh, InvApply_Asin, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

DT_GDL_Feature_Engineering

 $An \ Automated \ Feature \ Engineering \ Function \ Using \ data.table \\ frollmean$

Description

Builds autoregressive and moving average from target columns and distributed lags and distributed moving average for independent features distributed across time. On top of that, you can also create time between instances along with their associated lags and moving averages. This function works for data with groups and without groups.

Usage

```
DT_GDL_Feature_Engineering(data, lags = c(seq(1, 50, 1)),
  periods = c(seq(5, 95, 5)), statsNames = c("MA"),
  targets = c("qty"), groupingVars = c("Group1", "Group2"),
  sortDateName = c("date"), timeDiffTarget = c("TimeDiffName"),
  timeAgg = c("days"), WindowingLag = 0, Type = c("Lag"),
  Timer = TRUE, SimpleImpute = TRUE)
```

Arguments

SimpleImpute

of -1

1 3	rguments		
	data	A data.table you want to run the function on	
	lags	A numeric vector of the specific lags you want to have generated. You must include 1 if Windowing Lag $=$ 1.	
	periods	A numeric vector of the specific rolling statistics window sizes you want to utilize in the calculations.	
	statsNames	A character vector of the corresponding names to create for the rollings stats variables.	
	targets	A character vector of the column names for the reference column in which you will build your lags and rolling stats	
	groupingVars	A character vector of categorical variable names you will build your lags and rolling stats by	
	sortDateName	The column name of your date column used to sort events over time	
	timeDiffTarget	Specify a desired name for features created for time between events. Set to NULL if you don't want time between events features created.	
	timeAgg	List the time aggregation level for the time between events features, such as "hour", "day", "week", "month", "quarter", or "year"	
	WindowingLag	Set to 0 to build rolling stats off of target columns directly or set to 1 to build the rolling stats off of the lag-1 target	
	Туре	List either "Lag" if you want features built on historical values or "Lead" if you want features built on future values	
	Timer	Set to TRUE if you percentage complete tracker printout	

Set to TRUE for factor level imputation of "0" and numeric imputation

78 DummifyDT

Value

data.table of original data plus created lags, rolling stats, and time between event lags and rolling stats

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_Asin, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asinh, InvApply_Asin, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

Examples

```
N = 25116
data <- data.table::data.table(DateTime = as.Date(Sys.time()),</pre>
                                Target = stats::filter(rnorm(N,
                                                              mean = 50.
                                                              sd = 20),
                                                        filter=rep(1,10),
                                                        circular=TRUE))
data[, temp := seq(1:N)][, DateTime := DateTime - temp][, temp := NULL]
data <- data[order(DateTime)]</pre>
data <- DT_GDL_Feature_Engineering(data,</pre>
                                                   = c(seq(1,5,1)),
                                    lags
                                                   = c(3,5,10,15,20,25),
                                    periods
                                                   = c("MA"),
                                    statsNames
                                                   = c("Target"),
                                    targets
                                    groupingVars = NULL,
                                    sortDateName = "DateTime",
                                    timeDiffTarget = c("Time_Gap"),
                                                   = c("days"),
                                    timeAgg
                                    WindowingLag
                                                   = 1,
                                                   = "Lag",
                                    Type
                                    Timer
                                                    = TRUE,
                                                   = TRUE)
                                    SimpleImpute
```

DummifyDT

DummifyDT creates dummy variables for the selected columns.

Description

DummifyDT creates dummy variables for the selected columns. Either one-hot encoding, N+1 columns for N levels, or N columns for N levels.

Usage

```
DummifyDT(data, cols, KeepFactorCols = FALSE, OneHot = FALSE,
    SaveFactorLevels = FALSE, SavePath = NULL,
    ImportFactorLevels = FALSE, ClustScore = FALSE)
```

DummifyDT 79

Arguments

data The data set to run the micro auc on

cols A vector with the names of the columns you wish to dichotomize

KeepFactorCols Set to TRUE to keep the original columns used in the dichotomization

process

OneHot Set to TRUE to run one hot encoding, FALSE to generate N columns for

N levels

SaveFactorLevels

Set to TRUE to save unique levels of each factor column to file as a csv

SavePath Provide a file path to save your factor levels. Use this for models that

you have to create dummy variables for.

ImportFactorLevels

Instead of using the data you provide, import the factor levels csv to ensure you build out all of the columns you trained with in modeling.

ClustScore This is for scoring AutoKMeans. Set to FALSE for all other applications.

Value

data table with new dummy variables columns and optionally removes base columns

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_Asin, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asinh, InvApply_Asin, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

80 EvalPlot

EvalPlot	EvalPlot automatically builds calibration plots for model evalua-
	tion

Description

This function automatically builds calibration plots and calibration boxplots for model evaluation using regression, quantile regression, and binary and multinomial classification

Usage

```
EvalPlot(data, PredictionColName = c("PredictedValues"),
  TargetColName = c("ActualValues"), GraphType = c("calibration"),
  PercentileBucket = 0.05, aggrfun = function(x) mean(x, na.rm = TRUE))
```

Arguments

data Data containing predicted values and actual values for comparison

 ${\tt PredictionColName}$

String representation of column name with predicted values from model

 ${\tt TargetColName} \quad {\tt String} \ {\tt representation} \ {\tt of} \ {\tt column} \ {\tt name} \ {\tt with} \ {\tt target} \ {\tt values} \ {\tt from} \ {\tt model}$

GraphType Calibration or boxplot - calibration aggregated data based on summary

statistic; boxplot shows variation

PercentileBucket

Number of buckets to partition the space on (0,1) for evaluation

aggrfun The statistics function used in aggregation, listed as a function

Value

Calibration plot or boxplot

Author(s)

Adrian Antico

See Also

Other Model Evaluation and Interpretation: ParDepCalPlots, RedYellowGreen, threshOptim

```
GraphType = "calibration",
PercentileBucket = 0.05,
aggrfun = function(x) quantile(x, probs = 0.50, na.rm = TRUE))
```

FAST_GDL_Feature_Engineering

An Fast Automated Feature Engineering Function

Description

For models with target variables within the realm of the current time frame but not too far back in time, this function creates autoregressive and rolling stats from target columns and distributed lags and distributed rolling stats for independent features distributed across time. On top of that, you can also create time between instances along with their associated lags and rolling stats. This function works for data with groups and without groups.

Usage

```
FAST_GDL_Feature_Engineering(data, lags = c(1:5), periods = c(seq(10, 50, 10)), statsFUNs = c("mean", "median", "sd", "quantile85", "quantile95"), statsNames = c("mean", "median", "sd", "quantile85", "quantile95"), targets = c("Target"), groupingVars = c("GroupVariable"), sortDateName = c("DateTime"), timeDiffTarget = NULL, timeAgg = c("hours"), WindowingLag = 1, Type = c("Lag"), Timer = FALSE, SkipCols = FALSE, SimpleImpute = TRUE, AscRowByGroup = c("temp"), RecordsKeep = 1)
```

Arguments

G	
data	A data.table you want to run the function on
lags	A numeric vector of the specific lags you want to have generated. You must include 1 if Windowing Lag $=$ 1.
periods	A numeric vector of the specific rolling statistics window sizes you want to utilize in the calculations.
statsFUNs	Vector of functions for your rolling windows, such as mean, sd, min, max, quantile $$
statsNames	A character vector of the corresponding names to create for the rollings stats variables.
targets	A character vector of the column names for the reference column in which you will build your lags and rolling stats
groupingVars	A character vector of categorical variable names you will build your lags and rolling stats by
sortDateName	The column name of your date column used to sort events over time
timeDiffTarget	Specify a desired name for features created for time between events. Set to NULL if you don't want time between events features created.
timeAgg	List the time aggregation level for the time between events features, such as "hour", "day", "week", "month", "quarter", or "year"
WindowingLag	Set to 0 to build rolling stats off of target columns directly or set to 1 to build the rolling stats off of the lag-1 target

Type List either "Lag" if you want features built on historical values or "Lead"

if you want features built on future values

Timer Set to TRUE if you percentage complete tracker printout

SkipCols Defaults to NULL; otherwise supply a character vector of the names of

columns to skip

SimpleImpute Set to TRUE for factor level imputation of "0" and numeric imputation

of -1

AscRowByGroup Required to have a column with a Row Number by group (if grouping)

with 1 being the record for scoring (typically the most current in time)

RecordsKeep List the number of records to retain (1 for last record, 2 for last 2 records,

etc.)

Value

data.table of original data plus created lags, rolling stats, and time between event lags and rolling stats

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_Asin, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, GDL_Feature_Engineering, InvApply_Asinh, InvApply_Asin, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

```
N = 25116
data <- data.table::data.table(DateTime = as.Date(Sys.time()),</pre>
  Target = stats::filter(rnorm(N,
                                 mean = 50,
                                 sd = 20),
                           filter=rep(1,10),
                           circular=TRUE))
data[, temp := seq(1:N)][, DateTime := DateTime - temp]
data <- data[order(DateTime)]</pre>
data <- FAST_GDL_Feature_Engineering(data,</pre>
                                                        = c(1:5),
                                        periods
                                                        = c(seq(10,50,10)),
                                        statsFUNs
                                                        = c("mean",
                                                            "median",
                                                            "sd",
                                                            "quantile85",
                                                            "quantile95"),
                                                        = c("mean",
                                        statsNames
                                                            "median",
                                                            "sd",
                                                            "quantile85",
                                                            "quantile95"),
                                        targets
                                                        = c("Target"),
```

```
groupingVars
             = NULL,
sortDateName = "DateTime",
timeDiffTarget = c("Time_Gap"),
             = "days",
timeAgg
             = 1,
WindowingLag
              = "Lag",
Type
Timer
              = TRUE,
SkipCols
              = FALSE.
SimpleImpute = TRUE,
AscRowByGroup = "temp")
```

GDL_Feature_Engineering

An Automated Feature Engineering Function

Description

Builds autoregressive and rolling stats from target columns and distributed lags and distributed rolling stats for independent features distributed across time. On top of that, you can also create time between instances along with their associated lags and rolling stats. This function works for data with groups and without groups.

Usage

```
GDL_Feature_Engineering(data, lags = c(seq(1, 5, 1)), periods = c(3, 5, 10, 15, 20, 25), statsFUNs = c(function(x) quantile(x, probs = 0.1, na.rm = TRUE), function(x) quantile(x, probs = 0.9, na.rm = TRUE), function(x) base::mean(x, na.rm = TRUE), function(x) sd(x, na.rm = TRUE), function(x) quantile(x, probs = 0.25, na.rm = TRUE), function(x) quantile(x, probs = 0.75, na.rm = TRUE)), statsNames = c("q10", "q90", "mean", "sd", "q25", "q75"), targets = c("qty"), groupingVars = c("Group1", "Group2"), sortDateName = c("date"), timeDiffTarget = c("TimeDiffName"), timeAgg = c("days"), WindowingLag = 0, Type = c("Lag"), Timer = TRUE, SkipCols = NULL, SimpleImpute = TRUE)
```

Arguments

data	A data.table you want to run the function on
lags	A numeric vector of the specific lags you want to have generated. You must include 1 if WindowingLag $= 1$.
periods	A numeric vector of the specific rolling statistics window sizes you want to utilize in the calculations.
statsFUNs	Vector that holds functions for your rolling stats, such as $function(x) mean(x)$, $function(x) sd(x)$, or $function(x) quantile(x)$
statsNames	A character vector of the corresponding names to create for the rollings stats variables.
targets	A character vector of the column names for the reference column in which you will build your lags and rolling stats
groupingVars	A character vector of categorical variable names you will build your lags and rolling stats by

sortDateName The column name of your date column used to sort events over time timeDiffTarget Specify a desired name for features created for time between events. Set

to NULL if you don't want time between events features created.

timeAgg List the time aggregation level for the time between events features, such

as "hour", "day", "week", "month", "quarter", or "year"

WindowingLag Set to 0 to build rolling stats off of target columns directly or set to 1 to

build the rolling stats off of the lag-1 target

Type List either "Lag" if you want features built on historical values or "Lead"

if you want features built on future values

Timer Set to TRUE if you percentage complete tracker printout

SkipCols Defaults to NULL; otherwise supply a character vector of the names of

columns to skip

SimpleImpute Set to TRUE for factor level imputation of "0" and numeric imputation

of -1

Value

data.table of original data plus created lags, rolling stats, and time between event lags and rolling stats

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_Asin, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, InvApply_Asinh, InvApply_Asin, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

```
N = 25116
data <- data.table::data.table(DateTime = as.Date(Sys.time()),</pre>
  Target = stats::filter(rnorm(N,
                                mean = 50,
                                sd = 20),
                          filter=rep(1,10),
                          circular=TRUE))
data[, temp := seq(1:N)][, DateTime := DateTime - temp][, temp := NULL]
data <- data[order(DateTime)]</pre>
data <- GDL_Feature_Engineering(data,</pre>
           lags
                          = c(seq(1,1,1)),
           periods
                          = c(3),
                          = c(function(x) quantile(x, probs = 0.20, na.rm = TRUE)),
           statsFUNs
                          = c("q20"),
           statsNames
                          = c("Target"),
           targets
           groupingVars = NULL,
           sortDateName = "DateTime",
           timeDiffTarget = NULL,
           timeAgg
                          = "days",
```

GenTSAnomVars 85

```
WindowingLag = 1,
Type = "Lag",
Timer = TRUE,
SkipCols = FALSE,
SimpleImpute = TRUE)
```

GenTSAnomVars

GenTSAnomVars is an automated z-score anomaly detection via GLM-like procedure

Description

GenTSAnomVars is an automated z-score anomaly detection via GLM-like procedure. Data is z-scaled and grouped by factors and time periods to determine which points are above and below the control limits in a cumulative time fashion. Then a cumulative rate is created as the final variable. Set KeepAllCols to FALSE to utilize the intermediate features to create rolling stats from them. The anomalies are separated into those that are extreme on the positive end versus those that are on the negative end.

Usage

```
GenTSAnomVars(data, ValueCol = "Value", GroupVar1 = "SKU",
GroupVar2 = NULL, DateVar = "DATE", HighThreshold = 1.96,
LowThreshold = -1.96, KeepAllCols = FALSE, IsDataScaled = TRUE)
```

Arguments

data the source residuals data.table

ValueCol the numeric column to run anomaly detection over

GroupVar1 this is a group by variable

GroupVar2 this is another group by variable

DateVar this is a time variable for grouping

HighThreshold this is the threshold on the high end

LowThreshold this is the threshold on the low end

KeepAllCols set to TRUE to remove the intermediate features

IsDataScaled set to TRUE if you already scaled your data

Value

The original data.table with the added columns merged in. When KeepAllCols is set to FALSE, you will get back two columns: AnomHighRate and AnomLowRate - these are the cumulative anomaly rates over time for when you get anomalies from above the thresholds (e.g. 1.96) and below the thresholds.

Author(s)

Adrian Antico

See Also

Other Unsupervised Learning: AutoKMeans, ResidualOutliers

86 InvApply_Asin

Examples

```
data <- data.table::data.table(DateTime = as.Date(Sys.time()),</pre>
  Target = stats::filter(rnorm(10000,
                                  mean = 50,
                                  sd = 20),
                            filter=rep(1,10),
                            circular=TRUE))
\label{eq:data_seq} \texttt{data[, temp := seq(1:10000)][, DateTime := DateTime - temp][, temp := NULL]}
data <- data[order(DateTime)]</pre>
x <- data.table::as.data.table(sde::GBM(N=10000)*1000)</pre>
data[, predicted := x[-1,]]
stuff <- GenTSAnomVars(data,</pre>
                         ValueCol = "Target",
                         GroupVar1 = NULL,
                         GroupVar2 = NULL,
                         DateVar = "DateTime",
                         HighThreshold = 1.96,
                         LowThreshold = -1.96,
                         KeepAllCols = TRUE,
                         IsDataScaled = FALSE)
```

InvApply_Asin

 $Inverse\ Asin\ Transformation$

Description

Inverse Asin Transformation

Usage

InvApply_Asin(x)

Arguments

Х

The data in numerical vector form

Value

Asin results

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_Asin, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asinh, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

InvApply_Asinh 87

InvApply_Asinh

Inverse Asinh Transformation

Description

Inverse Asinh Transformation

Usage

InvApply_Asinh(x)

Arguments

Х

The data in numerical vector form

Value

Asinh results

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_Asin, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

InvApply_BoxCox

 $Inverse\ BoxCox\ Transformation$

Description

Inverse BoxCox Transformation

Usage

```
InvApply_BoxCox(x, lambda, eps = 0.001)
```

Arguments

x The data in numerical vector form

lambda optimal lambda eps erorr tolerance

Value

BoxCox results

88 InvApply_Logit

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_Asin, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asinh, InvApply_Asin, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

InvApply_Logit

Inverse Logit Transformation

Description

Inverse Logit Transformation

Usage

InvApply_Logit(x)

Arguments

х

The data in numerical vector form

Value

Logit results

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_Asin, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asin, InvApply_BoxCox, InvApply_YeoJohnson, ModelDataPrep, Scoring_GDL_Feature_Engineering

InvApply_YeoJohnson

 $Inverse\ Yeo Johnson\ Transformation$

Description

Inverse YeoJohnson Transformation

Usage

```
InvApply_YeoJohnson(x, lambda, eps = 0.001)
```

Arguments

x The data in numerical vector form

lambda optimal lambda eps erorr tolerance

Value

YeoJohnson results

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asinh, InvApply_Asin, InvApply_BoxCox, InvApply_Logit, ModelDataPrep, Scoring_GDL_Feature_Engineering

ModelDataPrep

Final Data Preparation Function

Description

This function replaces inf values with NA, converts characters to factors, and imputes with constants

Usage

```
ModelDataPrep(data, Impute = TRUE, CharToFactor = TRUE,
  RemoveDates = FALSE, MissFactor = "0", MissNum = -1,
  IgnoreCols = NULL)
```

90 multiplot

Arguments

data This is your source data you'd like to modify

Impute Defaults to TRUE which tells the function to impute the data

CharToFactor Defaults to TRUE which tells the function to convert characters to factors

RemoveDates Defaults to FALSE. Set to TRUE to remove date columns from your

data.table

MissFactor Supply the value to impute missing factor levels

MissNum Supply the value to impute missing numeric values

IgnoreCols Supply column numbers for columns you want the function to ignore

Value

Returns the original data table with corrected values

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asin, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, Scoring_GDL_Feature_Engineering

Examples

multiplot

Multiplot is a function for combining multiple plots

Description

Sick of copying this one into your code? Well, not anymore.

multiplot 91

Usage

```
multiplot(..., plotlist = NULL, cols = 2, layout = NULL)
```

Arguments

... Passthrough arguments

plotlist This is the list of your charts

cols This is the number of columns in your multiplot

layout Leave NULL

Value

Multiple ggplots on a single image

Author(s)

Adrian Antico

See Also

 $Other\ Misc:\ AutoH20TextPrepScoring, ChartTheme, PrintObjectsSize, RemixTheme, SimpleCap, percRank, tempDatesFun, tokenizeH20$

```
Correl <- 0.85
data <- data.table::data.table(Target = runif(100))</pre>
data[, x1 := qnorm(Target)]
data[, x2 := runif(100)]
data[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                             sqrt(1-Correl^2) * qnorm(x2)))]
data[, Predict := (pnorm(Correl * x1 +
                            sqrt(1-Correl^2) * qnorm(x2)))]
p1 <- RemixAutoML::ParDepCalPlots(data,</pre>
                                   PredictionColName = "Predict",
                                   TargetColName = "Target",
                                   IndepVar = "Independent_Variable1",
                                   GraphType = "calibration",
                                   PercentileBucket = 0.20,
                                   FactLevels = 10,
                                   Function = function(x) mean(x, na.rm = TRUE))
p2 <- RemixAutoML::ParDepCalPlots(data,</pre>
                                   PredictionColName = "Predict",
                                   TargetColName = "Target",
                                   IndepVar = "Independent_Variable1",
                                   GraphType = "boxplot",
                                   PercentileBucket = 0.20,
                                   FactLevels = 10,
                                   Function = function(x) mean(x, na.rm = TRUE))
RemixAutoML::multiplot(plotlist = list(p1,p2), cols = 2)
```

92 ParDepCalPlots

ParDepCalPlots	ParDepCalPlots automatically builds partial dependence calibration plots for model evaluation

Description

This function automatically builds partial dependence calibration plots and partial dependence calibration boxplots for model evaluation using regression, quantile regression, and binary and multinomial classification

Usage

```
ParDepCalPlots(data, PredictionColName = c("PredictedValues"),
   TargetColName = c("ActualValues"),
   IndepVar = c("Independent_Variable_Name"),
   GraphType = c("calibration"), PercentileBucket = 0.05,
   FactLevels = 10, Function = function(x) base::mean(x, na.rm = TRUE))
```

Arguments

data Data containing predicted values and actual values for comparison

PredictionColName

Predicted values column names

 ${\tt Target\,ColName} \quad {\tt Target\,\,value\,\,column\,\,names}$

IndepVar Independent variable column names

GraphType calibration or boxplot - calibration aggregated data based on summary

statistic; boxplot shows variation

PercentileBucket

Number of buckets to partition the space on (0,1) for evaluation

FactLevels The number of levels to show on the chart (1. Levels are chosen based on

frequency; 2. all other levels grouped and labeled as "Other")

Function Supply the function you wish to use for aggregation.

Value

Partial dependence calibration plot or boxplot

Author(s)

Adrian Antico

See Also

Other Model Evaluation and Interpretation: EvalPlot, RedYellowGreen, threshOptim

percRank 93

Examples

```
Correl <- 0.85
data <- data.table::data.table(Target = runif(100))</pre>
data[, x1 := qnorm(Target)]
data[, x2 := runif(100)]
data[, Independent_Variable1 := log(pnorm(Correl * x1 +
                                             sqrt(1-Correl^2) * qnorm(x2)))]
data[, Predict := (pnorm(Correl * x1 +
                            sqrt(1-Correl^2) * qnorm(x2)))]
p1 <- RemixAutoML::ParDepCalPlots(data,</pre>
                                   PredictionColName = "Predict",
                                   TargetColName = "Target",
                                   IndepVar = "Independent_Variable1",
                                   GraphType = "calibration",
                                   PercentileBucket = 0.20,
                                   FactLevels = 10,
                                   Function = function(x) mean(x, na.rm = TRUE))
р1
```

percRank

Percentile rank function

Description

This function computes percentile ranks for each row in your data like Excel's PERCENT_RANK

Usage

```
percRank(x)
```

Arguments

Х

X is your variable of interest

Value

vector of percentile ranks

Author(s)

Adrian Antico

See Also

 $Other\ Misc:\ AutoH20TextPrepScoring, ChartTheme, PrintObjectsSize, RemixTheme, SimpleCap, multiplot, tempDatesFun, tokenizeH20$

```
data <- data.table::data.table(A = runif(100))
data[, Rank := percRank(A)]
data <- data.table::data.table(A = runif(100))
data[, Percentile := percRank(A)]</pre>
```

94 ProblematicFeatures

PrintObjectsSize

 $PrintObjectsSize\ prints\ out\ the\ top\ N\ objects\ and\ their\ associated\ sizes,\ sorted\ by\ size$

Description

PrintObjectsSize prints out the top N objects and their associated sizes, sorted by size

Usage

```
PrintObjectsSize(N = 10)
```

Arguments

Ν

The number of objects to display

Value

A print to your console of the sizes of the objects in your environment

Author(s)

Adrian Antico

See Also

Other Misc: AutoH2OTextPrepScoring, ChartTheme, RemixTheme, SimpleCap, multiplot, percRank, tempDatesFun, tokenizeH2O

Examples

```
PrintObjectsSize(N = 10)
```

ProblematicFeatures

Problematic Features identifies problematic features for machine learning

Description

ProblematicFeatures identifies problematic features for machine learning and outputs a data.table of the feature names in the first column and the metrics they failed to pass in the columns.

Usage

```
ProblematicFeatures(data, ColumnNumbers = c(1:ncol(data)),
  NearZeroVarThresh = 0.05, CharUniqThresh = 0.5, NA_Rate = 0.2,
  Zero_Rate = 0.2, HighSkewThresh = 10)
```

ProblematicFeatures 95

Arguments

data The data.table with the columns you wish to have analyzed

ColumnNumbers A vector with the column numbers you wish to analyze

NearZeroVarThresh

Set to NULL to not run NearZeroVar(). Checks to see if the percentage of values in your numeric columns that are not constant are greater than the value you set here. If not, the feature is collects and returned with the percentage unique value.

CharUniqThresh Set to NULL to not run CharUniqthresh(). Checks to see if the percentage

of unique levels / groups in your categorical feature is greater than the value you supply. If it is, the feature name is returned with the percentage

unique value.

NA_Rate Set to NULL to not run NA_Rate(). Checks to see if the percentage of

NA's in your features is greater than the value you supply. If it is, the

feature name is returned with the percentage of NA values.

Zero_Rate Set to NULL to not run Zero_Rate(). Checks to see if the percentage of

zero's in your features is greater than the value you supply. If it is, the

feature name is returned with the percentage of zero values.

 $\label{thm:high-Skew} \mbox{High-Skew}(). \ \ \mbox{Checks for numeric columns whose}$

ratio of the sum of the top 5th percentile of values to the bottom 95th percentile of values is greater than the value you supply. If true, the

column name and value is returned.

Value

data table with new dummy variables columns and optionally removes base columns

Author(s)

Adrian Antico

See Also

Other EDA: AutoWordFreq, ProblematicRecords

96 ProblematicRecords

ProblematicRecords	$Problematic Records\ identifies\ problematic\ records\ for\ further\ in-$
	vestigation

Description

Problematic Records identifies problematic records for further investigation and data. table with 3 additional columns at the beginning of the data. table: PredictedOutlier (0 = no outlier), predict (raw H2O predicted value from Isolation Forest), and mean_length (mean length of number of splits)

Usage

```
ProblematicRecords(data, ColumnNumbers = NULL, Threshold = 0.975,
MaxMem = "28G", NThreads = -1, NTrees = 100,
SampleRate = (sqrt(5) - 1)/2)
```

Arguments

The data table with the columns you wish to have analyzed

ColumnNumbers A vector with the column numbers you wish to analyze

Threshold Quantile value to find the cutoff value for classifying outliers

MaxMem Specify the amount of memory to allocate to H2O. E.g. "28G"

NThreads Specify the number of threads (E.g. cores * 2)

NTrees Specify the number of decision trees to build

SampleRate Specify the row sample rate per tree

Value

A data.table

Author(s)

Adrian Antico

See Also

Other EDA: AutoWordFreq, ProblematicFeatures

RedYellowGreen 97

```
data[, Independent_Variable3 := exp(pnorm(Correl * x1 +
                                            sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable4 := exp(exp(pnorm(Correl * x1 +
                                                 sqrt(1-Correl^2) * qnorm(x2))))]
data[, Independent_Variable5 := sqrt(pnorm(Correl * x1 +
                                              sqrt(1-Correl^2) * qnorm(x2)))]
data[, Independent_Variable6 := (pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))^0.10]
data[, Independent_Variable7 := (pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))^0.25
data[, Independent_Variable8 := (pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))^0.75
data[, Independent_Variable9 := (pnorm(Correl * x1 +
                                         sqrt(1-Correl^2) * qnorm(x2)))^2]
data[, Independent_Variable10 := (pnorm(Correl * x1 +
                                          sqrt(1-Correl^2) * qnorm(x2)))^4]
data[, Target := as.factor(
 ifelse(Independent_Variable2 < 0.20, "A",</pre>
        ifelse(Independent_Variable2 < 0.40, "B",
               ifelse(Independent_Variable2 < 0.6,</pre>
                                                      "C".
                       ifelse(Independent_Variable2 < 0.8, "D", "E")))))]</pre>
data[, Independent_Variable11 := as.factor(
 ifelse(Independent_Variable2 < 0.15, "A",
        ifelse(Independent_Variable2 < 0.45, "B",</pre>
                                                       "C",
               ifelse(Independent_Variable2 < 0.65,</pre>
                       ifelse(Independent_Variable2 < 0.85, "D", "E")))))]</pre>
data[, ':=' (x1 = NULL, x2 = NULL)]
Outliers <- ProblematicRecords(data,
                               ColumnNumbers = NULL.
                               Threshold = 0.95,
                               MaxMem = "28G",
                               NThreads = -1)
```

RedYellowGreen

RedYellowGreen is for determining the optimal thresholds for binary classification when do-nothing is an option

Description

This function will find the optimial thresholds for applying the main label and for finding the optimial range for doing nothing when you can quantity the cost of doing nothing

Usage

```
RedYellowGreen(data, PredictColNumber = 2, ActualColNumber = 1,
   TruePositiveCost = 0, TrueNegativeCost = 0,
   FalsePositiveCost = -10, FalseNegativeCost = -50, MidTierCost = -2,
   Cores = 8, Precision = 0.01, Boundaries = c(0.05, 0.75))
```

Arguments

data

data is the data table with your predicted and actual values from a classification model

98 RedYellowGreen

PredictColNumber

The column number where the prediction variable is located (in binary form)

ActualColNumber

The column number where the target variable is located

TruePositiveCost

This is the utility for generating a true positive prediction

TrueNegativeCost

This is the utility for generating a true negative prediction

FalsePositiveCost

This is the cost of generating a false positive prediction

FalseNegativeCost

This is the cost of generating a false negative prediction

MidTierCost This is the cost of doing nothing (or whatever it means to not classify in

your case)

Cores Number of cores on your machine

Precision Set the decimal number to increment by between 0 and 1

Boundaries Supply a vector of two values c(lower bound, upper bound) where the first

value is the smallest threshold you want to test and the second value is the largest value you want to test. Note, if your results are at the boundaries you supplied, you should extent the boundary that was reached until the

values is within both revised boundaries.

Value

A data table with all evaluated strategies, parameters, and utilities, along with a 3d scatterplot of the results

Author(s)

Adrian Antico

See Also

Other Model Evaluation and Interpretation: EvalPlot, ParDepCalPlots, threshOptim

RemixTheme 99

```
Cores = 1,
Boundaries = c(0.05, 0.75))
```

RemixTheme

RemixTheme function is a ggplot theme generator for ggplots

Description

This function adds the Remix Theme to ggplots

Usage

RemixTheme()

Value

An object to pass along to ggplot objects following the "+" sign

Author(s)

Douglas Pestana

See Also

Other Misc: AutoH20TextPrepScoring, ChartTheme, PrintObjectsSize, SimpleCap, multiplot, percRank, tempDatesFun, tokenizeH20

Examples

ResidualOutliers

 $Residual Outliers \ is \ an \ automated \ time \ series \ outlier \ detection \\ function$

Description

ResidualOutliers is an automated time series outlier detection function that utilizes tsoutliers and auto.arima. It looks for five types of outliers: "AO" Additive outliter - a singular extreme outlier that surrounding values aren't affected by; "IO" Innovational outlier - Initial outlier with subsequent anomalous values; "LS" Level shift - An initial outlier with subsequent observations being shifted by some constant on average; "TC" Transient change - initial outlier with lingering effects that dissapate exponentially over time; "SLS" Seasonal level shift - similar to level shift but on a seasonal scale.

100 ResidualOutliers

Usage

```
ResidualOutliers(data, DateColName = "DateTime",
   TargetColName = "Target", PredictedColName = NULL,
   TimeUnit = "day", maxN = 5, tstat = 2)
```

Arguments

data the source residuals data.table

DateColName The name of your data column to use in reference to the target variable

TargetColName The name of your target variable column

PredictedColName

The name of your predicted value column. If you supply this, you will run anomaly detection of the difference between the target variable and your predicted value. If you leave PredictedColName NULL then you will

run anomaly detection over the target variable.

TimeUnit The time unit of your date column: hour, day, week, month, quarter, year maxN the largest lag or moving average (seasonal too) values for the arima fit

tstat the t-stat value for tsoutliers

Value

A named list containing FullData = original data.table with outliers data and ARIMA_MODEL = the arima model.

Author(s)

Adrian Antico

See Also

Other Unsupervised Learning: AutoKMeans, GenTSAnomVars

```
data <- data.table::data.table(DateTime = as.Date(Sys.time()),</pre>
                                 Target = as.numeric(stats::filter(rnorm(1000,
                                                                           mean = 50,
                                                                           sd = 20),
                                                                     filter=rep(1,10),
                                                                     circular=TRUE)))
data[, temp := seq(1:1000)][, DateTime := DateTime - temp][, temp := NULL]
data <- data[order(DateTime)]</pre>
data[, Predicted := as.numeric(stats::filter(rnorm(1000,
                                                      mean = 50,
                                                      sd = 20),
                                                filter=rep(1,10),
                                                circular=TRUE))]
stuff <- ResidualOutliers(data = data,</pre>
                           DateColName = "DateTime",
                           TargetColName = "Target",
                           PredictedColName = NULL,
                           TimeUnit = "day",
                           \max N = 5,
```

```
tstat = 4)
data <- stuff[[1]]
model <- stuff[[2]]
outliers <- data[type != "<NA>"]
```

Scoring_GDL_Feature_Engineering

An Automated Scoring Feature Engineering Function

Description

For scoring purposes (brings back a single row by group), this function creates autoregressive and rolling stats from target columns and distributed lags and distributed rolling stats for independent features distributed across time. On top of that, you can also create time between instances along with their associated lags and rolling stats. This function works for data with groups and without groups.

Usage

```
Scoring_GDL_Feature_Engineering(data, lags = c(seq(1, 5, 1)),
  periods = c(3, 5, 10, 15, 20, 25), statsNames = c("MA"),
  targets = c("Target"), groupingVars = NULL,
  sortDateName = c("DateTime"), timeDiffTarget = c("Time_Gap"),
  timeAgg = "days", WindowingLag = 1, Type = "Lag", Timer = TRUE,
  SimpleImpute = TRUE, AscRowByGroup = "temp", RecordsKeep = 1)
```

Arguments

rguments		
	data	A data.table you want to run the function on
	lags	A numeric vector of the specific lags you want to have generated. You must include 1 if Windowing Lag $=1.$
	periods	A numeric vector of the specific rolling statistics window sizes you want to utilize in the calculations.
	statsNames	A character vector of the corresponding names to create for the rollings stats variables.
	targets	A character vector of the column names for the reference column in which you will build your lags and rolling stats
	groupingVars	A character vector of categorical variable names you will build your lags and rolling stats by
	sortDateName	The column name of your date column used to sort events over time
	timeDiffTarget	Specify a desired name for features created for time between events. Set to NULL if you don't want time between events features created.
	timeAgg	List the time aggregation level for the time between events features, such as "hour", "day", "week", "month", "quarter", or "year"
	WindowingLag	Set to 0 to build rolling stats off of target columns directly or set to 1 to build the rolling stats off of the lag-1 target
	Type	List either "Lag" if you want features built on historical values or "Lead"

if you want features built on future values

Timer Set to TRUE if you percentage complete tracker printout

SimpleImpute Set to TRUE for factor level imputation of "0" and numeric imputation

of -1

AscRowByGroup Required to have a column with a Row Number by group (if grouping)

with 1 being the record for scoring (typically the most current in time)

RecordsKeep List the number of records to retain (1 for last record, 2 for last 2 records,

etc.)

Value

data.table of original data plus created lags, rolling stats, and time between event lags and rolling stats

Author(s)

Adrian Antico

See Also

Other Feature Engineering: Apply_Asinh, Apply_Asin, Apply_BoxCox, Apply_Logit, Apply_YeoJohnson, AutoDataPartition, AutoTransformationCreate, AutoTransformationScore, AutoWord2VecModeler, CreateCalendarVariables, DT_GDL_Feature_Engineering, DummifyDT, FAST_GDL_Feature_Engineering, GDL_Feature_Engineering, InvApply_Asinh, InvApply_Asin, InvApply_BoxCox, InvApply_Logit, InvApply_YeoJohnson, ModelDataPrep

```
N = 25116
data1 <- data.table::data.table(DateTime = as.Date(Sys.time()),</pre>
                                 Target = stats::filter(rnorm(N,
                                                               mean = 50,
                                                               sd = 20),
                                                         filter=rep(1,10),
                                                         circular=TRUE))
data1[, temp := seq(1:N)][, DateTime := DateTime - temp]
data1 <- data1[order(DateTime)]</pre>
data1 <- Scoring_GDL_Feature_Engineering(data1,</pre>
                                                          = c(seq(1,5,1)),
                                           lags
                                                          = c(3,5,10,15,20,25),
                                          periods
                                           statsNames
                                                          = c("MA"),
                                                          = c("Target"),
                                           targets
                                           groupingVars
                                                         = NULL,
                                           sortDateName = c("DateTime"),
                                           timeDiffTarget = c("Time_Gap"),
                                                          = "days",
                                           timeAgg
                                           WindowingLag
                                                         = 1,
                                                          = "Lag",
                                           Type
                                                          = TRUE,
                                           Timer
                                                          = TRUE,
                                           SimpleImpute
                                           AscRowByGroup = "temp",
                                           RecordsKeep
                                                          = 1)
```

SimpleCap 103

SimpleCap

SimpleCap function is for capitalizing the first letter of words

Description

SimpleCap function is for capitalizing the first letter of words (need I say more?)

Usage

```
SimpleCap(x)
```

Arguments

Χ

Column of interest

Value

An object to pass along to ggplot objects following the "+" sign

Author(s)

Adrian Antico

See Also

Other Misc: AutoH2OTextPrepScoring, ChartTheme, PrintObjectsSize, RemixTheme, multiplot, percRank, tempDatesFun, tokenizeH2O

Examples

```
x <- "adrian"
x <- SimpleCap(x)</pre>
```

tempDatesFun

 $temp Dates Fun \ \ Convert \ \ Excel \ \ date time \ \ char \ \ columns \ \ to \ \ Date \\ columns$

Description

temp Dates
Fun takes the Excel date
time column, which imports as character, and converts it into a date type
 $\,$

Usage

```
tempDatesFun(x)
```

Arguments

Х

The column of interest

104 threshOptim

Value

An object to pass along to ggplot objects following the "+" sign

Author(s)

Adrian Antico

See Also

 $Other\ Misc:\ AutoH20TextPrepScoring, ChartTheme, PrintObjectsSize, RemixTheme, SimpleCap, multiplot, percRank, tokenizeH2O$

Examples

```
Cdata <- data.table::data.table(DAY_DATE = "2018-01-01 8:53")
Cdata[, DAY_DATE := tempDatesFun(DAY_DATE)]</pre>
```

threshOptim

Utility maximizing thresholds for binary classification

Description

This function will return the utility maximizing threshold for future predictions along with the data generated to estimate the threshold

Usage

```
threshOptim(data, actTar = "target", predTar = "p1", tpProfit = 0,
  tnProfit = 0, fpProfit = -1, fnProfit = -2)
```

Arguments

data	data is the data table you are building the modeling on
actTar	The column name where the actual target variable is located (in binary form)
predTar	The column name where the predicted values are located
tpProfit	This is the utility for generating a true positive prediction
tnProfit	This is the utility for generating a true negative prediction
fpProfit	This is the cost of generating a false positive prediction
fnProfit	This is the cost of generating a false negative prediction

Value

Optimal threshold and corresponding utilities for the range of thresholds tested

Author(s)

Adrian Antico

See Also

Other Model Evaluation and Interpretation: EvalPlot, ParDepCalPlots, RedYellowGreen

tokenizeH2O 105

Examples

```
data <- data.table::data.table(Target = runif(10))</pre>
data[, x1 := qnorm(Target)]
data[, x2 := runif(10)]
data[, Predict := log(pnorm(0.85 * x1 +
                               sqrt(1-0.85^2) * qnorm(x2)))]
data[, ':=' (x1 = NULL, x2 = NULL)]
data <- threshOptim(data
                             = data,
                    actTar = "Target",
                    predTar = "Predict",
                    tpProfit = 0,
                    tnProfit = 0,
                    fpProfit = -1,
                    fnProfit = -2)
optimalThreshold <- data$Thresholds</pre>
allResults <- data$EvaluationTable</pre>
```

tokenizeH2O

For NLP work

Description

This function tokenizes text data

Usage

tokenizeH2O(data)

Arguments

data

The text data

Author(s)

Adrian Antico

See Also

 $Other\ Misc:\ AutoH20TextPrepScoring, ChartTheme, PrintObjectsSize, RemixTheme, SimpleCap, multiplot, percRank, tempDatesFun$

```
data <- tokenizeH2O(data = data[["StringColumn"]])</pre>
```

Index

```
Apply_Asin, 3, 4-6, 23, 59, 60, 64, 76, 78,
                                                    AutoH2oGBMRegression, 10, 14, 16, 19, 21,
         79, 82, 84, 86-90, 102
                                                              24, 27, 29, 32, 34, 35, 39, 42, 48,
                                                              54, 67, 69, 72, 74
Apply_Asinh, 3, 4, 5, 6, 23, 59, 60, 64, 76,
         78, 79, 82, 84, 86-90, 102
                                                    AutoH20MLScoring, 10, 14, 16, 19, 21, 24,
Apply_BoxCox, 3, 4, 4, 5, 6, 23, 59, 60, 64,
                                                              27, 29, 32, 34, 37, 38, 42, 48, 54,
                                                              67, 69, 72, 74
         76, 78, 79, 82, 84, 86–90, 102
                                                    AutoH2OModeler, 10, 14, 16, 19, 21, 24, 27,
Apply_Logit, 3-5, 5, 6, 23, 59, 60, 64, 76,
                                                              29, 32, 34, 37, 39, 40, 48, 54, 67,
         78, 79, 82, 84, 86–90, 102
Apply_YeoJohnson, 3-5, 6, 23, 59, 60, 64,
                                                              69, 72, 74
                                                    AutoH2OScoring, 10, 14, 16, 19, 21, 24, 27,
         76, 78, 79, 82, 84, 86–90, 102
                                                              29, 32, 34, 37, 39, 42, 47, 54, 67,
AutoCatBoostCARMA, 6, 62
                                                              69, 72, 74
AutoCatBoostClassifier, 8, 14, 16, 19, 21,
                                                    AutoH2OTextPrepScoring, 50, 75, 91, 93,
         24, 27, 29, 32, 34, 37, 39, 42, 48,
                                                              94, 99, 103–105
         54, 67, 69, 72, 74
                                                    AutoKMeans, 51, 85, 100
AutoCatBoostdHurdleModel, 10, 11, 16, 19,
                                                    AutoMarketBasketModel, 52, 56-58
         21, 24, 27, 29, 32, 34, 37, 39, 42,
                                                    AutoNLS, 10, 14, 16, 19, 21, 24, 27, 29, 32,
         48, 54, 67, 69, 72, 74
AutoCatBoostMultiClass, 10, 14, 14, 19,
                                                              34, 37, 39, 42, 48, 53, 67, 69, 72,
                                                              74
         21, 24, 27, 29, 32, 34, 37, 39, 42,
                                                    AutoRecomDataCreate, 53, 55, 57, 58
         48, 54, 67, 69, 72, 74
                                                    AutoRecommender, 53, 56, 56, 58
AutoCatBoostRegression, 10, 14, 16, 17,
                                                    AutoRecommenderScoring, 53, 56, 57, 57
         21, 24, 27, 29, 32, 34, 37, 39, 42,
         48, 54, 67, 69, 72, 74
                                                    AutoTransformationCreate, 3-6, 23, 58,
                                                              60, 64, 76, 78, 79, 82, 84, 86–90,
AutoCatBoostScoring, 10, 14, 16, 19, 20,
         24, 27, 29, 32, 34, 37, 39, 42, 48,
         54, 67, 69, 72, 74
                                                    AutoTransformationScore, 3-6, 23, 59, 59,
AutoDataPartition, 3-6, 22, 59, 60, 64,
                                                              64, 76, 78, 79, 82, 84, 86-90, 102
         76, 78, 79, 82, 84, 86-90, 102
                                                    AutoTS, 8, 61
AutoH2oDRFClassifier, 10, 14, 16, 19, 21,
                                                    AutoWord2VecModeler, 3-6, 23, 59, 60, 63,
         23, 27, 29, 32, 34, 37, 39, 42, 48,
                                                              76, 78, 79, 82, 84, 86–90, 102
         54, 67, 69, 72, 74
                                                    AutoWordFreq, 64, 95, 96
AutoH2oDRFMultiClass, 10, 14, 16, 19, 21,
                                                    AutoXGBoostClassifier, 10, 14, 16, 19, 21,
         24, 25, 29, 32, 34, 37, 39, 42, 48,
                                                              24, 27, 29, 32, 34, 37, 39, 42, 48,
         54, 67, 69, 72, 74
                                                              54, 65, 69, 72, 74
                                                    AutoXGBoostMultiClass, 10, 14, 16, 19, 21,
AutoH2oDRFRegression, 10, 14, 16, 19, 21,
         24, 27, 28, 32, 34, 37, 39, 42, 48,
                                                              24, 27, 29, 32, 34, 37, 39, 42, 48,
         54, 67, 69, 72, 74
                                                              54, 67, 68, 72, 74
AutoH2oGBMClassifier, 10, 14, 16, 19, 21,
                                                    AutoXGBoostRegression, 10, 14, 16, 19, 21,
         24, 27, 29, 30, 34, 37, 39, 42, 48,
                                                              24, 27, 29, 32, 34, 37, 39, 42, 48,
         54, 67, 69, 72, 74
                                                              54, 67, 69, 71, 74
AutoH2oGBMMultiClass, 10, 14, 16, 19, 21,
                                                    AutoXGBoostScoring, 10, 14, 16, 19, 21,
         24, 27, 29, 32, 33, 37, 39, 42, 48,
                                                              24, 27, 29, 32, 34, 37, 39, 42, 48,
         54, 67, 69, 72, 74
                                                              54, 67, 69, 72, 73
```

INDEX 107

```
ChartTheme, 50, 75, 91, 93, 94, 99, 103-105
CreateCalendarVariables, 3-6, 23, 59, 60,
         64, 76, 78, 79, 82, 84, 86-90, 102
DT_GDL_Feature_Engineering, 3-6, 23, 59,
         60, 64, 76, 77, 79, 82, 84, 86-90,
DummifyDT, 3-6, 23, 59, 60, 64, 76, 78, 78,
         82, 84, 86-90, 102
EvalPlot, 80, 92, 98, 104
FAST_GDL_Feature_Engineering, 3-6, 23,
         59, 60, 64, 76, 78, 79, 81, 84,
         86-90, 102
GDL_Feature_Engineering, 3-6, 23, 59, 60,
         64, 76, 78, 79, 82, 83, 86-90, 102
GenTSAnomVars, 52, 85, 100
InvApply_Asin, 3-6, 23, 59, 60, 64, 76, 78,
         79, 82, 84, 86, 87-90, 102
InvApply_Asinh, 3-6, 23, 59, 60, 64, 76,
         78, 79, 82, 84, 86, 87, 88–90, 102
InvApply_BoxCox, 3-6, 23, 59, 60, 64, 76,
         78, 79, 82, 84, 86, 87, 87, 88–90,
         102
InvApply_Logit, 3-6, 23, 59, 60, 64, 76,
         78, 79, 82, 84, 86-88, 88, 89, 90,
InvApply_YeoJohnson, 3-6, 23, 59, 60, 64,
         76, 78, 79, 82, 84, 86-88, 89, 90,
ModelDataPrep, 3-6, 23, 59, 60, 64, 76, 78,
         79, 82, 84, 86–89, 89, 102
multiplot, 50, 75, 90, 93, 94, 99, 103-105
ParDepCalPlots, 80, 92, 98, 104
percRank, 50, 75, 91, 93, 94, 99, 103-105
PrintObjectsSize, 50, 75, 91, 93, 94, 99,
         103-105
ProblematicFeatures, 65, 94, 96
ProblematicRecords, 65, 95, 96
RedYellowGreen, 80, 92, 97, 104
RemixTheme, 50, 75, 91, 93, 94, 99, 103-105
ResidualOutliers, 52, 85, 99
Scoring_GDL_Feature_Engineering, 3-6,
         23, 59, 60, 64, 76, 78, 79, 82, 84,
         86–90, 101
```

SimpleCap, 50, 75, 91, 93, 94, 99, 103, 104,

105

 $\begin{array}{c} \text{tempDatesFun, } 50, \ 75, \ 91, \ 93, \ 94, \ 99, \ 103, \\ 103, \ 105 \\ \text{threshOptim, } 80, \ 92, \ 98, \ 104 \\ \text{tokenizeH2O, } 50, \ 75, \ 91, \ 93, \ 94, \ 99, \ 103, \\ 104, \ 105 \end{array}$