Corrigé du CC1

Exercice 1. a) En utilisant l'équivalence (pour $r \ge 0$) $|a| > r \iff a > r$ ou a < -r, on trouve

$$|x-2| > 3 \iff x-2 > 3 \text{ ou } x-2 < -3 \iff x > 5 \text{ ou } x < -1.$$

L'ensemble cherché est $]-\infty,-1[\cup]5,+\infty[$.

b) Il faut d'abord avoir $x \geq 3$ pour que $\sqrt{x-3}$ soit défini. Comme la fonction carré est strictement croissante sur \mathbb{R}_+ , on a, pour $x \geq 3$, les équivalences suivantes.

$$\sqrt{x-3} < 3 \iff (\sqrt{x-3})^2 < 3^2 \iff x-3 < 9 \iff x < 12$$
.

L'ensemble cherché est [3, 12].

Exercice 2. a) f(x) est défini si $(x-2)x^2 \neq 0$, c'est-à-dire si $x \neq 0$ et $x \neq 2$: l'ensemble de définition de f est $\mathbb{R}\setminus\{0,2\}$

b) On a

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^3 \left(1 - \frac{8}{x^3}\right)}{x^3 \left(1 - \frac{2}{x}\right)} = \lim_{x \to -\infty} \frac{1 - \frac{8}{x^3}}{1 - \frac{2}{x}} = 1.$$

On a $\lim_{x\to 0} x^3 - 8 = -8$ et $\lim_{x\to 0, x\neq 0} (x-2)x^2 = 0_-$ (" 0_- " signifie que lorsque x tend vers 0, $(x-2)x^2$ tend vers 0 en restant négatif). Donc $\lim_{x\to 0} f(x) = +\infty$.

c) Posons $P(x) = x^3 - 8$; P(2) = 0 donc P(x) se factorise par (x - 2): $x^3 - 2 = (x - 2)(x^2 + 2)$ ax + b). En développant $(x - 2)(x^2 + ax + b)$, et en identifiant les coefficients, on trouve a = 2 et b = 4. On a donc, pour tout $x \in \mathbb{R} \setminus \{0, 2\}$,

$$f(x) = \frac{(x-2)(x^2+2x+4)}{(x-2)x^2} = \frac{(x^2+2x+4)}{x^2}.$$

Donc

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{(x^2 + 2x + 4)}{x^2} = \frac{12}{4} = 3.$$

Exercice 3. a) $D_f = \mathbb{R}$ et $D_g =]-\infty, 1]$ (g(x)) est défini si $1-x \geq 0$, c'est-à-dire si $x \leq 1$). b) Pour tout $x \in \mathbb{R}$, $\sin(x/2) \le 1$ dont $g(\sin(x/2))$ est bien défini. L'ensemble de définition de $g \circ f$ est \mathbb{R} . De plus $\forall x \in \mathbb{R}$, $f(x+4\pi) = \sin(\frac{x+4\pi}{2}) = \sin(\frac{x}{2}+2\pi) = \sin(\frac{x}{2})$, car la fonction sinus est 2π -périodique. Donc

$$\forall x \in \mathbb{R}, \ (g \circ f)(x + 4\pi) = g(f(x + 4\pi)) = g(f(x)) = (g \circ f)(x).$$

La fonction $g \circ f$ est donc 4π -périodique.

Exercice 4. 1 a) On a

$$\cos(2a) = \cos(a+a) = (\cos a)^2 - (\sin a)^2 = (\cos a)^2 - (1 - (\cos a)^2) = 2(\cos a)^2 - 1.$$

b) Pour $x \in [-1, 1]$, d'après a),

$$\cos(2\arccos(x)) = 2(\cos(\arccos(x)))^2 - 1 = 2x^2 - 1$$

car, par définition de $\arccos(x)$, $\begin{cases} \cos(\arccos(x)) = 1\\ \arccos(x) \in [0,\pi] \end{cases}$

2. La condition est : $x \in [0, \pi]$, car la fonction arccos est la bijection réciproque de $cos_{[0,\pi]}$: $[0,\pi] \to [-1,1]$.

Exercice 5. a) $f(x) = u(x)^3$, avec $u(x) = \sqrt{x} + 1$, f est continue sur $[0, +\infty[$, dérivable sur $]0, +\infty[$ et

$$f'(x) = 3u(x)^2 u'(x) = 3(\sqrt{x} + 1)^2 \cdot \frac{1}{2\sqrt{x}} = \frac{3(\sqrt{x} + 1)^2}{2\sqrt{x}}$$

 $\forall x \in]0, +\infty[, f'(x) > 0 \text{ dont } f \text{ est strictement croissante sur } [0, +\infty[.$

b) $f = \frac{u}{v}$ avec $u(x) = 2 - x^2$ et v(x) = x - 1; f est dérivable sur $]1, +\infty[$ et

$$f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2} = \frac{(-2x)(x-1) - (2-x^2)}{(x-1)^2} = \frac{-x^2 + 2x - 2}{(x-1)^2}.$$

La fonction $x \to -x^2 + 2x - 2$ est une fonction polynomiale de degré 2, de discriminant -4, donc cette fonction est de signe constant négatif. Par ailleurs $(x-1)^2 > 0$ sur $]1, +\infty[$, donc

$$\forall x \in]1, +\infty[, f'(x) < 0$$

La fonction f est strictement décroissante sur $]1, +\infty[$.