Analysis 1

SemesterOne analysis at EPFL

1 Proofs and the reals

1.1 Some general proofs

A valid proof is set of lines where each line logically follows from the next. A most famous proof is that $\sqrt{2}$ is irrational.

Proof. Suppose that $\sqrt{2} = \frac{a}{b}$ where $a, b \in \mathbb{Z}$ and gcd(a, b) = 1Now we have that $\sqrt{2}b = a$ which means that $2b^2 = a^2$. As result, $2|a^2$ hence also 2|a. Thus we get that a = 2k which also means that $b^2 = 2k^2$ hence 2|b. As result, gcd(a, b) = 2 which is a contradiction. Therefore, $\sqrt{2}$ must be irrational.

Quite interestingly, we can also construct a 'wrong' proof just through one fallacious assumption and a set of correct steps.

Claim: 1 is the largest integer.

Proof:

Let n be the largest integer. Then we have $n \ge n^2$. Which also means $0 \ge n^2 - n = n(n-1)$. Now we have that either n < 0 or n-1 < 0. But we know that $n \not< 0$ as n is at least 1. Hence, n-1 < 0 giving us the result n < 1 proving our theorem. Note that the mistake here is solely the assumption we made at the start that there was a largest integer.

1.2 Proofs relating to infinite processes

Consider the claim that 0.999...=1. One way to prove this claim, rather naively is this.

$$9 \times 0.999...$$

= $(10-1) \times 0.999...$
= $9.999... - 0.999... = 1$

Now a more formal proof is to use an infinite sum and limits. Here it is.

Analysis proof of 0.999...=1

$$0.999... = 9 \lim_{k \to \infty} \sum_{i=1}^{k} (10^{-k})$$
$$\lim_{k \to \infty} \sum_{i=1}^{k} (10^{-k}) = \frac{10^{-1} - 10^{-(k+1)}}{1 - 10^{-1}}$$
$$= 9 \times \frac{1}{10} \times \frac{10}{9}$$
$$= 1$$

1.3 Basic notions of sets

The breakdown of sets used in 'standard' analysis are $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$. There are also some common set related notation that must be known.

- a subset $a \subseteq b$ is defined as $\{x \in b | \text{"condition"}\}\$
- a open interval is defined as $]a, b[; r \in A, a < r < b]$
- an open ball $B(a, \lambda) = |a \lambda, a + \lambda|$

1.4 The Reals

The reals, denoted R are an ordered field. Here is a more precise definition.

The reals are a set that have the 3 following axioms:

- R is an abelian group under (+) and R* is an abelian group under (×). In addition to this, multiplication distributes over addition.
- The order relation \leq holds $\forall x \in \mathbb{R}$ That is:

$$x \leq y \otimes y \leq x$$

$$x \leq y, y \leq x \implies x = y$$

$$x \leq y \implies \forall a \in \mathbb{R}, \ x + a \leq y + a$$

$$0 \leq x, 0 \leq y \implies 0 \leq xy$$

• The inf and sup axioms hold

We shall now come the **inf** and **sup** axioms. It should be intuitively clear that any subset of R

1.5 Bounds

Take some subset S in R. An element B is called an upper bound of S if $\forall x \in S, B \geq x$. Similarly, it is a lower bound of S if $\forall x \in S, B \leq x$.

The maximum B of a set S denoted max(S) is such that $B \in S, \forall x \in SB > x$.

The supremum of a set S(if it exists) is the lowest upper bound. That is sup(S) = b is such that,

$$\forall x \in S, b > x \tag{1.5.1}$$

$$\forall \epsilon > 0, \exists x_{\epsilon}, b - x_{\epsilon} \le \epsilon \tag{1.5.2}$$

Remark 1.1. In our above definition, b does not have to be in S.

Remark 1.2. Condition 1 states that b is an upper bound of S.

Remark 1.3. Given condition 1, b is the minimum of the upper bounds of S.

Some examples of sup and inf

Example 1.1.

$$Sup]a,b[=b$$

$$Inf]a,b[=a$$

$$Sup\{x\in\mathbb{R}|x=2k\} \implies Sup\ doesn't\ exist.$$

We now establish the infinimum axiom.

Axiom 1. All non-empty subsets of \mathbb{R}_+^* have a highest lower boundary (aka.infinimum)

1.6 Q is dense in R

We claim that between every real number, one can find a rational number. Here's the proof,

Proof. Let $x < y \in \mathbb{R}$ Suppose now that $\exists a \in \mathbb{Q}$ such that x < a < y. By the Archimedean principle(there is always a greater natural number, $n > \frac{1}{y-x}$ which implies ny > nx + 1 Now since ny > nx + 1, there is guaranteed to be some integer in the open bound]nx, ny[which we denote P. Dividing by n, we get that $\frac{P}{n} \in]x, y[$ which proves the theorem.

1.7 Integer and fractional part

Any number $\in \mathbb{R}$ has a integer and fractional part(at least intuitively). Let's formally define these. For some $x \in \mathbb{R}$, let $S := \{n \in \mathbb{N} | n > x\}$ Now since S is bounded from below, letting N be the minimum of this set, we obtain that $N \notin S$. N-1 is thus called the integer part of x denoted [x]. ie. [6.4] = 6 Similarly, the fractional part of x denoted x is simply x = x - [x]

1.8 Pinning it down:Sup/Inf, bounds, max/min

Definition 1. for a given set $S \subseteq \mathbb{R}$, we have the following: $Sup \ s = b \iff \forall \epsilon > 0, \exists x_{\epsilon} \in S, s.t.b - x_{\epsilon} < \epsilon \ (resp. Inf s has the flipped argument)$ $Upper \ bound = b \iff \forall x \in S, b \geq x (resp. lower bound)$ $Max \ s = b \iff b \ is \ an \ upper \ bound \ and \ b \in S$

And for the sake of repeating the early axiom(but very important) the infimum axiom is:

Axiom 2. For all non-empty subsets of \mathbb{R} , inf S exists.

Now we make the first claim in this course that uses an epsilon proof.

[Proposition] 1. Whenever $S \subseteq \mathbb{N}$, then $\inf S = \min S$

Proof. Now, by our axiom, we have that $\mathbb{N} \subseteq \mathbb{R}$ hence we know that $\inf S$ exists. We now have to show that $\inf S = \min S$.

Suppose that $infS \neq minS$ and let infS = b. Now clearly, $b + \epsilon$ is not a lower bound of S. Now, let $\epsilon = \frac{1}{2}$. Because, $b + \epsilon$ is not a lower bound, we know that $\exists s_e < b + \epsilon$.

Now s_e is also not a lower bound, so let's pick $\epsilon'' = s_{\epsilon} - d$. Now again, $s_{\epsilon''}$ must exist. We obtain yet the following:

$$d < s_{\epsilon''} < s_{\epsilon} < d + 1/2$$

Now, two natural numbers clearly can not be in an interval which is only $\frac{1}{2}$ units long. Hence, contradiction which means that $d \in S$

Let's now prove that $\sqrt{2}$ belongs to the reals. For this, we need the following corollary and axiom.

Corollary 1. Every non-empty subset of R with an upper boundary admits a supremum.

Axiom 3. An ordered field F, which R is, has the Archimedean property if given any positive x and y in F, $\exists n \in \mathbb{Z} \ s.t. \ nx > y$

[Proposition] 2. $\sqrt{2} \in \mathbb{R}$

Proof. Suppose we define a set $S = \{r \in \mathbb{R} | r \geq 0, r^2 < 2\}$. Now, as S is a non-empty subset of \mathbb{R} bounded from above (i.e. 2 is an upper bound) we know that supS = x exists. Our goal is to show that both $x^2 < 2$ and $x^2 > 2$ lead to a contradiction.

Case 1: Suppose $x^2 < 2$. We want to find $x + \frac{1}{2} \in S$ which implies that x is not an upper bound as $x < x + \frac{1}{2}$

$$(x+\frac{1}{2})^2 = x^2 \frac{2}{x} + \frac{1}{n^2} \le x^2 + \frac{2}{x} + \frac{1}{n} = x^2 + \frac{1}{n}(2x+1)$$

Now, we want to show that we can pick an n s.t. $x^2 + \frac{1}{n}(2x+1) < 2$. If we can pick such an n, then we know by transitivity of < that $(x+\frac{1}{n})^2 < 2$ as $x^2 \frac{2}{x} + \frac{1}{n^2} \le x^2 + \frac{2}{x} + \frac{1}{n}$ Reordering the terms, we get $\frac{1}{n} < \frac{2-x^2}{2x+1}$ and clearly, $\frac{2-x^2}{2x+1}$ is positive as $x^2 < 2$ and $x \ge 0$. This way,

Reordering the terms, we get $\frac{1}{n} < \frac{2-x^2}{2x+1}$ and clearly, $\frac{2-x^2}{2x+1}$ is positive as $x^2 < 2$ and $x \ge 0$. This way, we apply the archimedean property to know that n exists s.t. $\frac{1}{n} < \frac{2-x^2}{2x+1}$. Given this, we now know that $x^2 + \frac{1}{n}(2x+1) < 2$ which in turn implies $x + \frac{1}{n} \in S$ This contradicts that $x = \sup S$ hence $x^2 \not< 2$

Case 2: In turn, we consider the case where $x^2 > 2$ and try to derive a contradiction. We want to show that $\exists m \in \mathbb{N}$ s.t. $x - \frac{1}{m}$ is also an upper bound of S which would mean that $x \neq inf S$. Now:

$$(x - \frac{1}{m})^2 = x^2 - \frac{2x}{m} + \frac{1}{m^2} > x^2 - \frac{2x}{m}$$

We want to choose m s.t. $x^2 - \frac{2x}{m} > 2$. This way, if $x^2 - \frac{2x}{m} > 2$ holds, then since $(x - \frac{1}{m})^2 > x^2 - \frac{2x}{m}$, we will have that $x - \frac{1}{m}$ is an upper bound. We obtain:

$$\frac{x^2 - 2}{2x} > \frac{1}{m}$$

Now as $\frac{x^2-2}{2x}$ is positive, 1m does exist. Hence, $x-\frac{1}{m}$ is also an upper bound that implies $x \neq \sup S$ if $x^2 > 2$.

Therefore, $supS = x = \sqrt{2}$ and since every $supS \in \mathbb{R}, \sqrt{2} \in \mathbb{R}$

1.9 More theorems about R

[Proposition] 3. If a < b are real numbers, then $\exists c \in \mathbb{Q}, a < c < b$

Proof. Now our goal is to show that for any real number a,b we can always find such a c. Now take some arbitrary n and set it to $n=\left[\frac{1}{b-a}\right]+1$ Now clearly, $n>\frac{1}{b-a}$ and hence $\frac{1}{n}< b-a$. We will now use this result. Realize that $a=\frac{an}{n}<\frac{[an+1]}{n}\leq \frac{an+1}{n}=a+\frac{1}{n}< a+b-a=b$ Therefore, we have found that $a<\frac{[an]+1}{n}< b$ where $c=\frac{[an]+1}{n}$

L

[Proposition] 4. If a < b are real numbers, then $\exists c \in \mathbb{R} \setminus \mathbb{Q}, a < c < b$

Proof. Using the above proposition, we know that $\exists c$ for any $\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}}$ and now we get that $a < \sqrt{2}c < b$ where $\sqrt{2}c$ is irrational as whenever one term in $x \times y = z$ is rational and the other irrational, we have (supposing x is irrational) $x = \frac{z}{y}$ and if also z were rational, it would make x rational which is a contradiction.

Definition 2. The absolute value function x is a function $f: \mathbb{R} \to \mathbb{R}^+$ such that:

$$\begin{cases} f(x) = x, x \ge 0 \\ f(x) = -x, x < 0 \end{cases}$$

Absolute value respects multiplication and division, that is:

$$|a||b| = |ab|$$
$$\frac{|a|}{|b|} = |\frac{a}{b}|$$

But this doesn't hold for addition. For addition we have the triangle inequality:

$$|x+y| \le |x| + |y|$$

To prove the above:

Proof. Take
$$|x+y| < 0$$
. Then $|x+y| = -(x+y) = -x - y \le |x| + |y|$ Take $|x+y| \ge 0$. Then $|x+y| = x + y \le |x| + |y|$

2 Sequences

2.1 Basics

Let's begin by formally defining sequences. A sequence is a function $f: \mathbb{N} \to \mathbb{R}$ generally denoted $(x_n)_{n \geq 0}$ And here are some more definitions on sequences: A sequence is:

- constant if $\exists C \in \mathbb{R}; \ x_n = C \ \forall \ n \in \mathbb{N}$
- bounded from below(resp. above) if $\exists m \in \mathbb{R} ; m \leq x_n \forall n \in \mathbb{N}$
- bounded if bounded from both directions
- increasing(resp. decreasing) if $x_{n+1} \ge x_n \forall n \in \mathbb{N}$
- strictly increasing (resp. decreasing) if $x_{n+1} \leq x_n \forall n \in \mathbb{N}$
- monotonous if it is increasing or decreasing (resp. strictly)

Let's now consider a proof on the following proposition:

Define $x_n = \sqrt{4 + x_{n-1}}$, $x_0 = 1$. We claim that x_n is bounded and more precisely that $1 \le x \le 3$.

Proof. Base case: $x_0 = 1$ hence holds.

Now supposing proposition is true for all n-1 we get

$$1 \le x_{n-1} \le 3$$
$$5 \le x_{n-1} + 4 \le 7$$

Now we get:

$$\sqrt{5} \le \sqrt{x_{n-1} + 4} \le \sqrt{7}$$

 $1 \le \sqrt{5} \le \sqrt{x_{n-1} + 4} \le \sqrt{7} \le 3$

Definition 3. A sequence x_n conveges to x if $\forall \epsilon > 0$ we can find $n_0 \in \mathbb{N}$ such that $n \geq n_0 \to |x_n - x| \leq \epsilon$

Now in an intuitive sense, suppose the sequence converges to x from both the right and the left. x being our central point, we move a distance ϵ away from this x. Now, if we can pick some n_0 such that for another $n \geq n_0$ we have that $|x_n - x| \leq \epsilon$ this means that no matter how small we make epsilon we are able to find some x_n in this region.

Having established convergence, any sequence that is not convergent is said to be **divergent**. Let's now prove that a sequence is divergent.

Proof. Take $x_n = (-1)^n$ Now suppose that x_n converges to x. Then for $\epsilon = \frac{1}{2}$, $\exists n_{\frac{1}{2}} \in \mathbb{N}$ s.t. $\forall n \geq n_{\frac{1}{2}}$ we would have $|x_n - x| \leq \frac{1}{2}$. In particular if n' is any other integer $n' > n_{\frac{1}{2}}$ then we would have $x_n - x_{n'} \leq |x_n - x| + |x - x_{n'}| \leq \frac{1}{2} + \frac{1}{2}$ which implies a contradiction as $|x_n - x_{n+1}| = 2 > 1$

2.2 Limits and their algebra

Definition 4. If a sequence x_n converges to some x, we say that x is the **limit** of the sequence and is denoted $\lim_{n\to\infty} x_n = x$

Here are some properties of limits:

For sequences x_n and y_n with limits x, y we have:

•

$$\lim_{n \to \infty} x_n \cdot y_n = x \cdot y$$

•

$$\lim_{n \to \infty} x_n + y_n = x + y$$

•

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{x}{y}; y \neq 0$$

• if $\exists n_0 \in \mathbb{N}, x_n \leq y_n \ \forall n \geq n_0 \text{ then } x \leq y$

We now introduce the famous **squeeze theorem** and prove it.

Theorem 2.1. Squeeze theorem

Let a_n and b_n be both sequences that converge to a. In addition, let c_n be such that $\exists n_0 \in \mathbb{N}, \ \forall n \geq n_0, \ a_n \leq c_n \leq b_n$ Then we clearly have the following:

Proof.

$$\forall \epsilon > 0, \ \exists N_1, \ n \ge N_1 \to |a_n - a| < \epsilon \equiv a - \epsilon < a_n < a + \epsilon$$
 (2.2.1)

Similarly, for b_n we have that:

$$\forall \epsilon > 0, \ \exists N_2, \ n \ge N_2 \to |b_n - a| < \epsilon \equiv b - \epsilon < b_n < a + \epsilon$$
 (2.2.2)

Now set $N = \max\{N_1, N_2, n_0\}$. Now since $N \ge N_1, N_2, n_0$ we have that both 2.2.1 and 2.2.2 hold $\forall n > N$ This further gives us the result that:

$$a - \epsilon < a_n \le c_n \le b_N < a + \epsilon$$

 $|c_n - a| < \epsilon$

We now list some useful inequalities that may be used along with the squeeze theorem and also a sample limit problem and a solution to it:

 $0 \le \sin(x) \le x \le \operatorname{tg}(x) \qquad \Rightarrow \qquad 1 \le \frac{x}{\sin(x)} \le \frac{1}{\cos(x)} \qquad \Rightarrow \qquad \cos(x) \le \frac{\sin(x)}{x} \le 1$ $\Rightarrow \qquad \cos(x)^2 \le \left(\frac{\sin(x)}{x}\right)^2 \le 1 \qquad \Rightarrow \qquad 1 - \sin(x)^2 \le \left(\frac{\sin(x)}{x}\right)^2 \le 1$ $\Rightarrow \qquad 1 - x^2 \le \left(\frac{\sin(x)}{x}\right)^2 \le 1 \qquad \Rightarrow \qquad \sqrt{1 - x^2} \le \frac{\sin(x)}{x} \le 1.$

Figure 1: Useful inequalities

(c) We have

$$\sqrt{1 - \left(\frac{2n+3}{n^3}\right)^2} \le \frac{\sin\left(\frac{2n+3}{n^3}\right)}{\frac{2n+3}{n^3}} \le 1 \ .$$

Like part ii) we show that

$$\lim_{n\to\infty}\sqrt{1-\left(\frac{2n+3}{n^3}\right)^2}=1\ ,$$

According to the two policemen theorem

$$\lim_{n\to\infty} \frac{\sin\left(\frac{2n+3}{n^3}\right)}{\frac{2n+3}{n^3}} = 1 \ .$$

So

$$\begin{split} \lim_{n\to\infty} \left(n\,\sin\left(\frac{2n+3}{n^3}\right)\right) &= \lim_{n\to\infty} \left(\frac{2n+3}{n^2} \cdot \frac{\sin\left(\frac{2n+3}{n^3}\right)}{\frac{2n+3}{n^3}}\right) \\ &= \left(\lim_{n\to\infty} \frac{2n+3}{n^2}\right) \cdot \left(\lim_{n\to\infty} \frac{\sin\left(\frac{2n+3}{n^3}\right)}{\frac{2n+3}{n^3}}\right) = 0 \cdot 1 = 0 \ . \end{split}$$

Note that we can split the limits because one is bounded and the other one converges to zero.

Figure 2: Solution to hard limit problem

2.3 More on sequences

Suppose we want to show that some geometric sequence does not have a limit, simply that it is not converging.

We first establish the *Bernoulli inequality* which we shall prove later. We will use this result immediately.

$$q^n \ge 1 + n(q-1) \tag{2.3.1}$$

Take $x_n = 4^n$. Now we claim that x_n is not bounded.

Proof. It is not bounded if we can show that it increasing in increments that do not decrease. Suppose now that b is some upper bound to x_n . Now by Bernoulli, we have that $4^n \ge 1 + n \cdot 3$. If we can show that $4^n \ge 1 + n \cdot 3 > b$ we indeed get that there can be no upper bound b. We have that $n > \frac{b-1}{3}$ and such an $\in \mathbb{N}$ exists if we set it to $n := \left[\frac{b-1}{3} + 1\right]$ Now since $4^n \ge 1 + n \cdot 3$ we have that x_n is not bounded.

Theorem 2.2. Every converging sequence is bounded(a lower or upper bound exists obviously and if convergent the latter also exists.)

Let's now get on to proving the rules we established for limit arithmetic.

Proof. (Proof to sum rule) Now we are given that x_n converges to x and that y_n converges to y. We want to show that $x_n + y_n$ converges to x + y. By definition, this is true if we can show that

$$|(x_n + y_n) - (x + y)| \le \epsilon, \ \forall \epsilon \in \mathbb{R}$$

Now luckily we have that $|(x_y+y_n)-(x+y)|=|(x_n-x)+(y_n-y)|$ And by the triangle inequality we know that $|(x_n-x)+(y_n-y)|\leq |x_n-x|+|y_n-y|$ Thus if we can show that $|x_n-x|+|y_n-y|<\epsilon$ we are guaranteed that $|(x_n-x)+(y_n-y)|<\epsilon$ We will succeed with the latter part if we can show that both parts (x_n-x) and (y_n-y) are smaller than $\frac{\epsilon}{2}$. Now we have by definition of convergence that:

$$\exists n \ge n_{\frac{\epsilon}{2}}^x \to |x_n - x| \le \frac{\epsilon}{2}$$

Similarly:

$$\exists n \ge n^y_{\frac{\epsilon}{2}} \to |y_n - y| \le \frac{\epsilon}{2}$$

Now fixing $n_{\epsilon} := \max n_{\frac{\epsilon}{2}}^x, n_{\frac{\epsilon}{2}}^y$ (we do this since it assures both conditions to hold we have that because each of $(x_n - x)$ and $(y_n - x)$ are smaller than ϵ , so must $|x_n - x| + |y_n - y|$ by the triangle inequality. \square

Let's now do more applications of the squeeze theorem to show limits.

Example 2.1. We want to show that aq^n converges to 0 for $a \neq 0$ and |q| < 1. Now as a property we use that $\lim_{n\to\infty} x_n = 0 \to \lim_{n\to\infty} |x_n| = 0$ It is clear that we have an inequality of the form $0 \le |aq^n| \le ?$ Doing more algebra (our goal is to find another sequence of form $\frac{1}{x}$ converging to 0 to get:

$$\frac{1}{?} \le \frac{1}{|a \cdot q^n|} = \frac{1}{|a|} \cdot (\frac{1}{|q|})^n$$

Now using Bernoulli we have:

$$(\frac{1}{|q|})^n \ge 1 + n(\frac{1}{|q|} - 1)$$

which happily means:

$$(\frac{1}{a} \cdot \frac{1}{|q|})^n \ge (\frac{1}{a} \cdot (1 + n(\frac{1}{|q|} - 1)))$$

And finally taking the reciprocal all to get back to aqⁿ we are left with

$$0 \le |aq^n| \le \frac{1}{\frac{1}{a} \cdot (1 + n(\frac{1}{|a|} - 1))}$$

and clearly we see that the RHS is also a sequence that converges to 0 since all terms in the denominator but n are constants. Hence, we have **squeezed** our sequence. The key here was that we found a RHS sequence which we wanted to be of form $\frac{1}{x}$ And in addition, we took the reciprocal of the inequality at the start simply to be able to use the bernoulli inequality.

Let's now consider a harder example.

Example 2.2. Consider the sequence $x_n = \sqrt[n]{n}$ Now is this sequence converging? Well we know that $1 \le \sqrt[n]{n}$ and now another sequence we know which approaches to 1 is $1 + \frac{1}{\sqrt{n}}$. Now we only need to show that:

$$\sqrt[n]{n} \le 1 + \frac{1}{\sqrt{n}}$$

holds and if we can show this, we'll have that our sequence converges to 1.

Now we get:

$$n \le (1 + \frac{1}{\sqrt{n}})^n$$

And notice how $(1+\frac{1}{\sqrt{n}})^n$ is simply a binomial hence if any one of the terms in the binomial expansion is greater than n our inequality will hold(this works as all n are positive). Well for $\sum_{i=0}^{n} {n \choose i} (\frac{1}{\sqrt{n})^i}$ when observe that for i=4 we get:

$$\frac{(n-1)(n-2)(n-3)}{24n} \ge n$$

further reducing to:

$$\frac{24n^2}{(n-1)(n-2)(n-3)} \le 1$$

and we know this is valid as

$$\lim_{n \to \infty} \frac{24n^2}{(n-1)(n-2)(n-3)} = 0$$

Hence we get that

$$\sqrt[n]{n} \le 1 + \frac{1}{\sqrt{n}}$$

meaning that $\sqrt[n]{n}$ converges to 1.

Let's do one last example:

Example 2.3. Consider $x_n = \frac{2^n}{x!}$ Now clearly $0 \le \frac{2^n}{x!}$ and observing that $\frac{2^n}{x!} = \frac{2}{1} \cdot \frac{2}{2} \cdot \frac{2}{3} \dots$ it is obvious that $\frac{2^n}{x!} \le 2 \cdot (\frac{2}{3})^{n-2}$ But we know that $\lim_{n \to \infty} 2 \cdot (\frac{2}{3})^{n-2} = 0$ hence we have again squeezed our sequence!

Theorem 2.3. If $\lim_{n\to\infty} x_n = 0$ and y_n is bounded, then $\lim_{n\to\infty} x_n \cdot y_n = 0$

Proof. Now because y_n is bounded, we have that $\exists M \text{ s.t. } M \geq y_n \forall n$. Hence we obtain that $x_n y_n \leq M x_n$ and clearly since $M x_n$ converges to 0 we have squeezed $x_n y_n$ and have that it also converges to 0.

Example 2.4. And let's now look at the limit of a recursive sequence. Let $x_{n+1} = \frac{\sin x_n}{2}$ with $x_0 = 0$. Now using the fact that $0 \le \sin x \le x$ we get that

$$|x_n| = \frac{|\sin x_{n-1}|}{2} \le \frac{|x_{n-1}|}{2} \le \frac{|x_{n-2}|}{2 \cdot 2} \le \dots \le \frac{|x_0|}{2^n} \le \frac{1}{2^n}$$

Hence we have squeezed our sequence between 0 and 0 giving us that it also approaches 0.

Theorem 2.4. (Quotient criterion) Let x_n be a sequence s.t. $q = \lim_{n \to \infty} \frac{|x_{n+1}|}{|x_n|}$ If q < 1, x_n converges to 0, otherwise (excluding q = 1) it diverges.