INDUSTRIAL SOLVENTS HANDBOOK

Fifth Edition

Edited by

Ernest W. Flick

NOYES DATA CORPORATION
Westwood, New Jersey, U.S.A.

Copyright © 1998 by Ernest W. Flick

No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without permission in writing from the Publisher.

Library of Congress Catalog Card Number: 98-5137

ISBN: 0-8155-1413-1 Printed in the United States

Published in the United States of America by Noyes Data Corporation Fairview Avenue, Westwood, New Jersey 07675

10 9 8 7 6 5 4 3 2 1

Industrial solvents handbook / edited by Ernest W. Flick. -- 5th ed.

p. cm.

Includes bibliographical references and index.

ISBN 0-8155-1413-1

1. Solvents--Handbook, manuals, etc. I. Flick, Ernest W.

TP247.5.I53 1998

661'.807--dc21

98-5137

CIP

NOTICE

To the best of our knowledge the information in this publication is accurate; however, the Publisher does not assume any responsibility or liability for the accuracy or completeness of, or consequences arising from, such information. This book does not purport to contain detailed user instructions, and by its range and scope could not possibly do so. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the Author or Publisher.

Industrial solvents could be toxic, and therefore due caution should always be exercised in the use of these potentially hazardous materials. Final determination of the suitability of any information or product for use contemplated by any user, and the manner of that use, is the sole responsibility of the user. We strongly recommend that users seek and adhere to a manufacturer's or supplier's current instructions for handling each material they use. The reader is cautioned to consult the supplier in case of questions regarding current availability.

Contents and Subject Index

	SOLVENTS
araffins	
2.1	Methane
2.2	Ethane
2.3	Propane
2.4	Isobutane
2.5	n-Butane
2.6	2.2-Dimethylpropane
2.7	Isopentane
2.7	n-Pentane
	The state of the s
2.9	2,2-Dimethylbutane
2.10	2,3-Dimethylbutane
2.11	2-Methylpentane
2.12	3-Methylpentane
2.13	n-Hexane
2.14	2,4-Dimethylpentane
2.15	2,3-Dimethylpentane
2.16	3-Methylhexane
2.17	n-Heptane
2.18	2,2,4-Trimethylpentane
2.19	2,3,4-Trimethylpentane
2.20	Mixed Trimethylpentanes
	Mixed Dimethylhexanes
2.21	
2.22	n-Oxtane
2.23	2,2,5-Trimethylhexane
2.24	n-Nonane
2.25	n-Decane
2.26	n-Undecane
2.27	n-Dodecane
2.28	n-Tridecane
2.29	n-Tetradecane
2.30	n-Pentadecane
2.31	n-Hexadecane
2.32	n-Heptadecane
2.33	n-Octadecane
2.34	n-Nonadecane
2.35	n-Elcosane
	ns
•	Cyclopentane
2.36	
2.37	Methylcyclopentane
2.38	Cyclohexane
2.39	1,1-Dimethylcyclopentane
2.40	1,2- and 1,3-Dimethylcyclopentane
2.41	Methylcyclohexane
2.42	trans-1,4-Dimethylcyclohexane
2.43	cis-1,4-Dimethylcyclohexane
2.44	Mixed 1,4-Dimethylcyclohexanes
2.45	trans-1,2-Dimethylcyclohexane
2.46	cis-1,2-Dimethylcyclohexane
2.47	Mixed 1,2-Dimethylcyclohexane
2.47 2.48	Ethylcyclohexane
2.48 2.49	Isopropylcyclohexane

x Contents and Subject Index

	Propylene	
2.52	Isobutylene	27
2.53	Butene-1	28
	trans-Butene-2	
2.54	cis-Butene-2	20
	Mixed 2-Butenes	
2.57	3-Methylbutene-1	29
2.58	2-Methylbutene-1	30
2.59	Methylbutene-2	31
2.60	Pentene-1	
	Pentene-1	01
2.61	cis-Pentene-2	32
2.62	trans-Pentene-2	32
2.63	Mixed 2-Pentenes	32
2.64	3,3-Dimethylbutene-1	33
2.65	Mixed 2,3-Dimethylbutenes	33
2.66	4-Methylpentene-1	30
2.67	cis-4-Methylpentene-2	
2.68	trans-4-Methylpentene-2	35
2.69	Mixed 4-Methyl-2-Pentenes	35
2.70	2-Methylpentene-1	36
2.70 2.71	2-Methylpentene-2	2/
2.72	Hexene-1	
2.73	cis-Hexene-2	
2.74	Mixed 2-Hexenes	37
2.75	Mixed 2- and 3-Hexenes	
2.76	Heptene-1	31
	nepene-1	00
2.77	cis-Heptene-2	
2.78	Mixed 2-Heptenes	39
2.79	Mixed 3-Heptenes	39
2.80	2.4.4-Trimethylpentene-1	39
2.81	2,4,4–Trimethylpentene–2	
	Mixed Diisobutylenes	
2.82		
2.83	Octene-1	
2.84	cis-Octene-2	
2.85	Mixed 2-Octenes	4
2.86	Mixed Octenes	
2.87	Nonene-1	
2.88	Decene-1	
2.89	Undecene-1	42
2.90	Dodecene-1	42
2.91	Tridecene-1	
2.92	Tetradecene-1	
	Butadiene-1,3	
2.93		
2.94	Isoprene	
2.95	Piperylene	4
Cyclooletins .		4
2.96	Cyclopentene	
2.97	Cyclohexene	
	•	
2.98	4-Vinylcyclohexene-1	
2.99	Mixed Methylcyclohexenes	
2.100	Cyclooctadiene-1,5	4
Aromatics		4
2.101	Benzene	
2.102		
	Toluene	
2.103	Ethylbenzene	
2.104	p-Xylene	
2.105	m-Xylene	4
2.106	o-Xylene	
2.107	Cumene	
2.108	n-Propylbenzene	
2.109	Pseudocumene	
2.110	n-Butylbenzene	5
2.111	Isobutylbenzene	5
2.112	sec-Butylbenvene	
2.112	tert-Butylbenzene	
£.110	tota buty in one of the control of t	•

		I-Phenylbutene-2 5	- 4
-	.114	-Phenyibutene-2	24
2	.115 s	sec-Amylbenzene5	54
2	.116 I	Mixed Amylbenzenes	54
Terpe			
•	1163	STORY AND ADD TO A STORY OF THE	
2	.117 I	DIPENTENE No. 122 Terpene Solvent 5	00
2	.118	SOLVENOL 2 Terpene Solvent 5	55
2	.119	SOLVENOL 226 Terpene Solvent 5	56
_	.120	HERCULES Steam-Distilled Wood Turpentine	36
2	.121 1	HERCULES alpha-Pinene 5	٥/
2	.122	Selected Properties of Some Common Terpene Solvents	57
		Arizona Terpene Products	
	. 120 /	Autoria respense Froducio	24
Comp	arative D	ata	וכ
2	.124	Amoco PANASOL Solvents	31
9	.125	Ashland Aliphatic and Aromatic Solvents	62
	100	Chemcentral Solvents (Aliphatic and Aromatic)	53
_			
2	.127	Crowley Solvents 6	64
2	.128	Dynaloy Solvents	65
-		Eastman Solvents and Diluents	
_			
2		Exxon Hydrocarbon Solvents	
2	.131	Fina Aromatic Solvents	74
_		Hoechst Celanese Methyl Isobutyl Ketone	
· -			
_	1.133	Kendall/Amalie, Witco Special Solvents	/5
2		Mobil Oil Aliphatic and Aromatic Solvents	
9	.135	Penreco Hydrocarbon Solvents	81
_		Phillips 66 Hibh Purity Hydrocarbon	
_			
2		Shell Chemical Solvents	
2	2.138	Sunoco Chemicals Solvents	90
		3M SCOTCH-GRIP Solvents No. 2 and No. 3	
_			
2		Total Petroleum Special Solvent 5	
2	2.141	UCAR Solvents	96
_		Unocal Aliphatic and Aromatic Hydrocarbons	
_			
2	2.143	Vista LPA Solvents	UI
		/DROCARBONS 10	
Chlor	inated Hy	rdrocarbons	03
Chlor 3	inated Hy 3.1	rdrocarbons	03 03
Chlor 3	inated Hy 3.1 3.2	rdrocarbons 10 Allyl Chlorice 10 n-Amyl Chloride 10	03 03 03
Chlor 3 3	inated Hy 3.1 3.2	rdrocarbons 10 Allyl Chlorice 10 n-Amyl Chloride 10	03 03 03
Chlor 3 3 3	inated Hy 3.1 3.2 3.3	rdrocarbons 10 Allyl Chlorice 10 n-Amyl Chloride 10 Mixed Amyl Chlorides 10	03 03 03 03
Chlor 3 3 3	inated Hy 3.1 3.2 3.3 3.4	rdrocarbons 10 Allyl Chlorice 10 n-Amyl Chloride 10 Mixed Amyl Chlorides 10 Benzyl Chloride 10	03 03 03 03 04
Chior 3 3 3 3	inated Hy 3.1 3.2 3.3 3.4 3.5	rdrocarbons 10 Allyl Chlorice 10 n-Amyl Chloride 11 Mixed Amyl Chlorides 10 Benzyl Chloride 11 n-Butyl Chloride 11	03 03 03 03 04 04
Chior 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6	rdrocarbons 10 Allyl Chlorice 10 n-Amyl Chloride 11 Mixed Amyl Chlorides 10 Benzyl Chloride 11 n-Butyl Chloride 11 sec-Butyl Chloride 11 sec-Butyl Chloride 11	03 03 03 04 04 04
Chior 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6	rdrocarbons 10 Allyl Chlorice 10 n-Amyl Chloride 11 Mixed Amyl Chlorides 10 Benzyl Chloride 11 n-Butyl Chloride 11 sec-Butyl Chloride 11 sec-Butyl Chloride 11	03 03 03 04 04 04
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7	rdrocarbons 10 Allyl Chlorice 10 n-Amyl Chloride 11 Mixed Amyl Chlorides 10 Benzyl Chloride 11 n-Butyl Chloride 11 sec-Butyl Chloride 11 Butyryl Chloride 11 Butyryl Chloride 11	03 03 03 04 04 04 05
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7	rdrocarbons 10 Allyl Chlorice 10 n-Amyl Chloride 11 Mixed Amyl Chlorides 10 Benzyl Chloride 11 n-Butyl Chloride 11 sec-Butyl Chloride 11 Butyryl Chloride 11 Caprylyl Chloride 11 Caprylyl Chloride 11	03 03 03 04 04 04 05
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	rdrocarbons 10 Allyl Chlorice 10 n-Amyl Chloride 11 Mixed Amyl Chlorides 10 Benzyl Chloride 11 n-Butyl Chloride 11 sec-Butyl Chloride 11 Butyryl Chloride 11 Caprylyl Chloride 11 Carbon Tetrachloride 11	03 03 03 04 04 05 05 06
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Intercease 10 Allyl Chlorice 10 In-Amyl Chloride 10 Mixed Amyl Chlorides 10 Benzyl Chloride 11 In-Butyl Chloride 10 Sec-Butyl Chloride 10 Butyryl Chloride 11 Caprylyl Chloride 11 Carbon Tetrachloride 11 Chlorinated Butane Derivatives 11	03 03 03 04 04 05 05 06 07
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Intercease 10 Allyl Chlorice 10 In-Amyl Chloride 10 Mixed Amyl Chlorides 10 Benzyl Chloride 11 In-Butyl Chloride 10 Sec-Butyl Chloride 10 Butyryl Chloride 11 Caprylyl Chloride 11 Carbon Tetrachloride 11 Chlorinated Butane Derivatives 11	03 03 03 04 04 05 05 06 07
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Intercease 10 Allyl Chlorice 10 In-Amyl Chloride 11 Mixed Amyl Chlorides 11 Benzyl Chloride 11 In-Butyl Chloride 11 Sec-Butyl Chloride 11 Butyryl Chloride 11 Caprylyl Chloride 11 Carbon Tetrachloride 11 Chlorinated Butane Derivatives 11 Chlorinated Hydrocarbons 11	03 03 03 04 04 05 05 06 07
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11	Intercease 10 Allyl Chlorice 10 In-Amyl Chloride 10 Mixed Amyl Chlorides 10 Benzyl Chloride 11 In-Butyl Chloride 10 Sec-Butyl Chloride 10 Caprylyl Chloride 11 Caprylyl Chloride 11 Carbon Tetrachloride 11 Chlorinated Butane Derivatives 11 Chlorinated Hydrocarbons 11 Chlorinated Organic Solvents 11	03 03 03 04 04 05 06 07 07
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12	Allyl Chlorice	03 03 03 04 04 05 05 07 07 07
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12	Allyl Chlorice	03 03 03 04 04 05 05 07 07 08
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14	Independence 10 Allyl Chlorice 10 In-Amyl Chloride 10 Mixed Amyl Chlorides 11 Benzyl Chloride 11 In-Butyl Chloride 11 Sec-Butyl Chloride 11 Caprylyl Chloride 11 Carbon Tetrachloride 11 Chlorinated Butane Derivatives 11 Chlorinated Hydrocarbons 11 Chlorinated Organic Solvents 12 CHLOROWAX Liquid Chlorinated Paraffins, Waxes and Alpha Olefins 13 Chlorobenzenes—Vapor Pressures 14	03 03 04 04 05 05 07 07 07
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14	Allyl Chlorice	03 03 04 04 05 05 07 07 08 11
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.10 3.11 3.12 3.13 3.14 3.16	Allyl Chlorice 10 Allyl Chloride 11 Mixed Amyl Chlorides 11 Benzyl Chloride 11 Benzyl Chloride 11 Benzyl Chloride 11 Bez-Butyl Chloride 11 Butyryl Chloride 11 Caprylyl Chloride 11 Caprylyl Chloride 11 Carbon Tetrachloride 11 Chlorinated Butane Derivatives 11 Chlorinated Hydrocarbons 11 Chlorinated Organic Solvents 11 CHLOROWAX Liquid Chlorinated Paraffins, Waxes and Alpha Olefins 11 Chlorobenzenes—Vapor Pressures 11 Chloromethylene Compounds 11 o- and p-Chlorotoluenes 11	03 03 04 04 05 05 07 07 08 11 13
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.10 3.11 3.12 3.13 3.14 3.16	Allyl Chlorice 10 Allyl Chloride 11 Mixed Amyl Chlorides 11 Benzyl Chloride 11 Benzyl Chloride 11 Benzyl Chloride 11 Bez-Butyl Chloride 11 Butyryl Chloride 11 Caprylyl Chloride 11 Caprylyl Chloride 11 Carbon Tetrachloride 11 Chlorinated Butane Derivatives 11 Chlorinated Hydrocarbons 11 Chlorinated Organic Solvents 11 CHLOROWAX Liquid Chlorinated Paraffins, Waxes and Alpha Olefins 11 Chlorobenzenes—Vapor Pressures 11 Chloromethylene Compounds 11 o- and p-Chlorotoluenes 11	03 03 04 04 05 05 07 07 08 11 13
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.10 3.11 3.12 3.13 3.14 3.16 3.17	Allyl Chlorice	03 03 04 04 05 05 07 07 07 11 14
Chlor	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.10 3.11 3.12 3.13 3.14 3.16 3.17 3.18 3.19	Allyl Chlorice	03 03 04 04 05 05 07 07 07 11 14 14 15
Chlor	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.10 3.11 3.12 3.13 3.14 3.16 3.17 3.18 3.19 3.20	Indicated Properties 10 Allyl Chlorice 11 In-Amyl Chloride 11 Mixed Amyl Chlorides 11 Benzyl Chloride 11 In-Butyl Chloride 12 Sec-Butyl Chloride 12 Caprylyl Chloride 12 Carbon Tetrachloride 12 Chlorinated Butane Derivatives 12 Chlorinated Hydrocarbons 13 Chlorinated Organic Solvents 14 CHLOROWAX Liquid Chlorinated Paraffins, Waxes and Alpha Olefins 13 Chlorobenzenes—Vapor Pressures 14 Chloromethylene Compounds 15 O- and p—Chlorotoluenes 15 In-Chlorotoluene 14 In-Chlorotoluene 15 In-Chlorotoluene 16 In-Chlorotoluene 17 In-Chlorotoluene 17 In-Chlorotoluene 17 In-Chlorotoluene 17 In-Chlorotoluene 17 In-Chlorotoluene 18 In-Chlorotoluene 18 In-Chlorotoluene 18 In-Chlorotoluene	03 03 04 04 05 05 07 07 07 11 14 15 15
Chlor	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.10 3.11 3.12 3.13 3.14 3.16 3.17 3.18 3.19 3.20	Allyl Chlorice	03 03 04 04 05 05 07 07 07 11 14 15 15
Chlor	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.10 3.11 3.12 3.13 3.14 3.16 3.17 3.18 3.19 3.20 3.21	Indicated Poly Chlorides 10 Allyl Chloride 11 Mixed Amyl Chlorides 11 Benzyl Chloride 11 n-Butyl Chloride 11 sec-Butyl Chloride 12 Caprylyl Chloride 12 Carbon Tetrachloride 12 Chlorinated Butane Derivatives 13 Chlorinated Hydrocarbons 14 Chlorinated Organic Solvents 15 CHLOROWAX Liquid Chlorinated Paraffins, Waxes and Alpha Olefins 15 Chlorobenzenes—Vapor Pressures 16 Chloromethylene Compounds 17 O- and p-Chlorotoluenes 17 p-Chlorotoluenes 17 HALSO 99 17 HALSO AG 125 15 O-Dichlorobenzene 16	03 03 04 04 05 06 07 07 08 11 14 15 16
Chlor	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.10 3.11 3.12 3.13 3.14 3.16 3.17 3.18 3.19 3.20 3.21	Indicated Derivatives 10 Allyl Chlorice 11 Mixed Amyl Chlorides 11 Benzyl Chloride 11 n-Butyl Chloride 11 Berzyl Chloride 11 Butyryl Chloride 11 Caprylyl Chloride 11 Carbon Tetrachloride 11 Chlorinated Butane Derivatives 12 Chlorinated Hydrocarbons 13 Chlorinated Organic Solvents 14 CHLOROWAX Liquid Chlorinated Paraffins, Waxes and Alpha Olefins 13 Chlorobenzenes—Vapor Pressures 14 Chloromethylene Compounds 15 0- and p-Chlorotoluenes 15 p-Chlorotoluene 14 HALSO 99 14 HALSO AG 125 15 0-Dichlorobenzene 15 P-Dichlorobenzene 16	03 03 04 04 05 06 07 07 08 11 14 15 16 16
Chlor	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23	Indicated Derivatives 10 Allyl Chlorice 11 Mixed Amyl Chlorides 11 Benzyl Chloride 11 Benzyl Chloride 11 Besc-Butyl Chloride 12 Butyryl Chloride 13 Butyryl Chloride 14 Caprylyl Chloride 15 Carbon Tetrachloride 16 Chlorinated Butane Derivatives 16 Chlorinated Hydrocarbons 16 Chlorinated Organic Solvents 17 CHLOROWAX Liquid Chlorinated Paraffins, Waxes and Alpha Olefins 17 Chlorobenzenes—Vapor Pressures 17 Chloromethylene Compounds 17 O- and p-Chlorotoluenes 17 P-Chlorotoluene 17 HALSO AG 125 17 O-Dichlorobenzene 17 Dichlorobenzene 18 Dichlorobenzene 19 Dichlorobenzene 19 Dichlorobenzene 19 Dichlorobenzene 19 Dichlorobenzene 19 Dichlorobenzene 19 Dichlorobenzene 10	03 03 04 04 05 06 07 07 08 11 14 15 16 16 17
Chlor	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.10 3.11 3.12 3.13 3.14 3.16 3.17 3.18 3.19 3.20 3.21	Indicated Section 10 Allyl Chlorice 11 N-Amyl Chloride 11 Mixed Amyl Chlorides 11 Benzyl Chloride 11 n-Butyl Chloride 11 sec-Butyl Chloride 12 Caprylyl Chloride 14 Carbon Tetrachloride 15 Chlorinated Butane Derivatives 16 Chlorinated Hydrocarbons 17 Chlorinated Organic Solvents 18 CHLOROWAX Liquid Chlorinated Paraffins, Waxes and Alpha Olefins 18 Chloromethylene Compounds 19 0- and p-Chlorotoluenes 1 p-Chlorotoluene 1 HALSO 99 1 HALSO AG 125 1 0-Dichlorobenzene 1 p-Dichlorobenzene 1 p-Dichlorobenzene 1 Dichlorodiisopropyl Ether 1 Dichlorothylene 1	03 03 04 04 05 06 07 07 07 11 14 15 16 17 17
Chlor	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24	Indicated Section 10 Allyl Chlorice 11 N-Amyl Chloride 11 Mixed Amyl Chlorides 11 Benzyl Chloride 11 n-Butyl Chloride 11 sec-Butyl Chloride 12 Caprylyl Chloride 14 Carbon Tetrachloride 15 Chlorinated Butane Derivatives 16 Chlorinated Hydrocarbons 17 Chlorinated Organic Solvents 18 CHLOROWAX Liquid Chlorinated Paraffins, Waxes and Alpha Olefins 18 Chloromethylene Compounds 19 0- and p-Chlorotoluenes 1 p-Chlorotoluene 1 HALSO 99 1 HALSO AG 125 1 0-Dichlorobenzene 1 p-Dichlorobenzene 1 p-Dichlorobenzene 1 Dichlorodiisopropyl Ether 1 Dichlorothylene 1	03 03 04 04 05 06 07 07 07 11 14 15 16 17 17
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25	Allyl Chlorice	03 03 04 04 05 05 06 07 07 08 11 14 15 16 16 17 17
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26	Allyl Chlorice	03 03 03 04 04 05 06 07 07 07 07 07 11 11 15 16 17 17 18
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25	Allyl Chlorice	03 03 04 04 05 06 07 07 07 08 11 14 15 16 17 17 18 18
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26	Allyl Chlorice	03 03 04 04 05 06 07 07 07 08 11 14 15 16 17 17 18 18
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.12 3.13 3.14 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28	Allyl Chlorice	03 03 04 04 05 06 07 07 07 08 11 11 11 11 11 11 11 11 11 11 11 11 11
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29	Allyl Chlorice	03 03 04 04 05 05 06 07 07 08 11 14 15 16 17 17 18 19 20 20
Chlor 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Inated Hy 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.12 3.13 3.14 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28	Allyl Chlorice	03 03 04 04 05 05 06 07 07 08 11 14 15 16 17 17 18 19 20 21

3.32		
4.02	Ethylene Chlorohydrin	123
3.33	Ethylene Dichloride	123
3.34	2-Ethylhexyl Chloride	124
3.34	2-Eurymexy Chioride	127
	Glycerol α-Monochlorohydrin	
3.36	Hexachloroethane	125
	n-Hexyl Chloride	
	Methylene Chloride 1	
3.39	Isopropyl Chloride	127
3.40	Methyl Chloride	127
	Monochlorohydrin	
3.41	Monochioronyarin	130
3.42	Pentachloroethane	130
3,43	Perchloroethylene	130
	Propylene Chlorohydrin	
3.45	Propylene Dichloride	132
3.46	1,1,2,2-Tetrachloroethane	133
	Tetrachloroethylene 1	
3.48	Trichlorobenzenes 1	
3.49	1,1,1-Trichloroethane	136
3.50	1,1,2-Trichloroethane	
3.51	Trichloroethylene 1	
3.52	Density of Chlorinated Solvents	145
3.53	Vapor Pressure of Chlorinated Solvents	
	Trichloropropane	
3.55	Triglycol Dichloride	146
3.56	Vinyl Chloride	147
	Vinylidene Chloride	
Comparative I		
3.58	Alpha Cleaning Solvents	149
	Ashland Chlorinated Solvents	
3.60	Chemcentral Chlorinated Solvents	
3.61	Dow Chemical Chlorinated Solvents	151
3.62	Vertrel Cleaning Agents	160
3.63	Occidental Chemical (OXSOL Solvents)	
3.64	3M Hydrofluorether	195
NITROPARAFFINS		211
4.1	Angus Nitroparaffins	
4.2	Angus Nitro Alcohols	212
4.3	Angus Primary Amino Alcohols	
4.4	Angus DMAP-80	
4.5		
4.5	Industrial Amines Ranked in Order of Decreasing Base Strength	215
4.5 4.6	Industrial Amines Ranked in Order of Decreasing Base Strength	215 215
4.5 4.6 4.7	Industrial Amines Ranked in Order of Decreasing Base Strength	215 215 216
4.5 4.6	Industrial Amines Ranked in Order of Decreasing Base Strength	215 215 216
4.5 4.6 4.7	Industrial Amines Ranked in Order of Decreasing Base Strength	215 215 216 218
4.5 4.6 4.7 4.8 4.9	Industrial Amines Ranked in Order of Decreasing Base Strength	215 215 216 218 220
4.5 4.6 4.7 4.8	Industrial Amines Ranked in Order of Decreasing Base Strength	215 215 216 218 220
4.5 4.6 4.7 4.8 4.9 4.10	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820	215 215 216 218 220 221
4.5 4.6 4.7 4.8 4.9 4.10	Industrial Amines Ranked in Order of Decreasing Base Strength	215 215 216 218 220 221
4.5 4.6 4.7 4.8 4.9 4.10	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820	215 215 216 218 220 221
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUE 5.1	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 COMPOUNDS Carbon Disulfide	215 215 216 218 220 221 222
4.5 4.6 4.7 4.8 4.9 4.10	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 COMPOUNDS Carbon Disulfide Typical DMSO Properties	215 216 218 220 221 222 222
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUE 5.1	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 COMPOUNDS Carbon Disulfide	215 216 218 220 221 222 222
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO	215 215 216 218 220 221 222 222 223 224
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3 5.4	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO Specific Gravity of DMSO as a Function of Temperature	215 215 216 218 220 221 222 223 224 224
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3 5.4 5.5	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO Specific Gravity of DMSO as a Function of Temperature DMSO Viscosity as a Function of Temperature	215 215 216 218 220 221 222 222 223 224 224 224
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3 5.4	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO Specific Gravity of DMSO as a Function of Temperature	215 215 216 218 220 221 222 222 223 224 224 224
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3 5.4 5.5	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 COMSOL 820 COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO Specific Gravity of DMSO as a Function of Temperature DMSO Viscosity as a Function of Temperature Comparative Hygroscopicities of DMSO at Various Relative Humidities at 22°C	215 215 216 218 220 221 222 223 224 224 224 225
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3 5.4 5.5 5.6 5.7	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 COMSOL 820 COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO Specific Gravity of DMSO as a Function of Temperature DMSO Viscosity as a Function of Temperature Comparative Hygroscopicities of DMSO at Various Relative Humidities at 22°C Initial Sorption Rates of DMSO at Various Relative Humidities at 22°C	215 215 216 218 220 221 222 223 224 224 224 225 225
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 COMSOL 820 COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO Specific Gravity of DMSO as a Function of Temperature DMSO Viscosity as a Function of Temperature Comparative Hygroscopicities of DMSO at Various Relative Humidities at 22°C Initial Sorption Rates of DMSO—Solvent Binary System	215 215 216 218 220 221 222 223 224 224 225 225 225
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 COMSOL 820 COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO Specific Gravity of DMSO as a Function of Temperature DMSO Viscosity as a Function of Temperature Comparative Hygroscopicities of DMSO at Various Relative Humidities at 22°C Initial Sorption Rates of DMSO at Various Relative Humidities at 22°C Freezing Temperatures for DMSO—Solvent Binary System Freezing Point for DMSO—Water Solutions	215 215 216 218 220 221 222 223 224 224 225 225 225
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 COMSOL 820 COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO Specific Gravity of DMSO as a Function of Temperature DMSO Viscosity as a Function of Temperature Comparative Hygroscopicities of DMSO at Various Relative Humidities at 22°C Initial Sorption Rates of DMSO—Solvent Binary System	215 215 216 218 220 221 222 223 224 224 225 225 225
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 COMSOL 820 COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO Specific Gravity of DMSO as a Function of Temperature DMSO Viscosity as a Function of Temperature Comparative Hygroscopicities of DMSO at Various Relative Humidities at 22°C Initial Sorption Rates of DMSO at Various Relative Humidities at 22°C Freezing Temperatures for DMSO—Solvent Binary System Freezing Point Curves for DMSO—Water Solutions Freezing Point Curves for DMSO—Water Solutions	215 215 216 218 220 221 222 223 224 224 225 225 225 225 225
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 COMSOL 820 COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO Specific Gravity of DMSO as a Function of Temperature DMSO Viscosity as a Function of Temperature Comparative Hygroscopicities of DMSO at Various Relative Humidities at 22°C Initial Sorption Rates of DMSO at Various Relative Humidities at 22°C Freezing Temperatures for DMSO—Solvent Binary System Freezing Point for DMSO—Water Solutions Freezing Point Curves for DMSO—Water Solutions Heat of Mixing of DMSO—H ₂ O System at 22°C	215 215 216 218 220 221 222 223 224 224 225 225 225 225 226
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO Specific Gravity of DMSO as a Function of Temperature DMSO Viscosity as a Function of Temperature Comparative Hygroscopicities of DMSO at Various Relative Humidities at 22°C Initial Sorption Rates of DMSO—Solvent Binary System Freezing Point for DMSO—Water Solutions Freezing Point Curves for DMSO—Water Solutions Heat of Mixing of DMSO—H ₂ O System at 22°C Specific Gravity of DMSO—Water Solutions	215 215 216 218 220 221 222 223 224 224 225 225 225 226 226
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 COMSOL 820 COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO Specific Gravity of DMSO as a Function of Temperature DMSO Viscosity as a Function of Temperature Comparative Hygroscopicities of DMSO at Various Relative Humidities at 22°C Initial Sorption Rates of DMSO at Various Relative Humidities at 22°C Freezing Temperatures for DMSO—Solvent Binary System Freezing Point for DMSO—Water Solutions Freezing Point Curves for DMSO—Water Solutions Heat of Mixing of DMSO—H ₂ O System at 22°C	215 215 216 218 220 221 222 223 224 224 225 225 225 226 226
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO Specific Gravity of DMSO as a Function of Temperature DMSO Viscosity as a Function of Temperature Comparative Hygroscopicities of DMSO at Various Relative Humidities at 22°C Initial Sorption Rates of DMSO at Various Relative Humidities at 22°C Freezing Temperatures for DMSO—Solvent Binary System Freezing Point for DMSO—Water Solutions Freezing Point Curves for DMSO—Water Solutions Heat of Mixing of DMSO—Water Solutions Viscosity of DMSO—Water Solutions Viscosity of DMSO—Water Solutions	215 215 216 218 220 221 222 223 224 224 225 225 225 226 227 227
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 I COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO Specific Gravity of DMSO as a Function of Temperature DMSO Viscosity as a Function of Temperature Comparative Hygroscopicities of DMSO at Various Relative Humidities at 22°C Initial Sorption Rates of DMSO at Various Relative Humidities at 22°C Freezing Temperatures for DMSO—Solvent Binary System Freezing Point for DMSO—Water Solutions Freezing Point Curves for DMSO—Water Solutions Heat of Mixing of DMSO—Water Solutions Heat of Mixing of DMSO—Water Solutions Viscosity of DMSO—Water Solutions Viscosity of DMSO—Water Solutions Nesults of Reflux of DMSO for 24 Hours with Various Compounds	215 215 216 218 220 221 222 223 224 224 225 225 225 226 226 227 227
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 I COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO Specific Gravity of DMSO as a Function of Temperature DMSO Viscosity as a Function of Temperature Comparative Hygroscopicities of DMSO at Various Relative Humidities at 22°C Initial Sorption Rates of DMSO—Solvent Binary System Freezing Temperatures for DMSO—Solvent Binary System Freezing Point Curves for DMSO—Water Solutions Freezing Point Curves for DMSO—Water Solutions Freezing Gravity of DMSO—Water Solutions Viscosity of DMSO—Water Solutions Viscosity of DMSO—Water Solutions Viscosity of DMSO—Water Solutions Results of Reflux of DMSO for 24 Hours with Various Compounds Thermal Stability of DMSO	215 216 216 218 220 221 222 223 224 224 225 225 226 226 227 227 227
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 I COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO Specific Gravity of DMSO as a Function of Temperature DMSO Viscosity as a Function of Temperature Comparative Hygroscopicities of DMSO at Various Relative Humidities at 22°C Initial Sorption Rates of DMSO at Various Relative Humidities at 22°C Freezing Temperatures for DMSO—Solvent Binary System Freezing Point for DMSO—Water Solutions Freezing Point Curves for DMSO—Water Solutions Heat of Mixing of DMSO—Water Solutions Heat of Mixing of DMSO—Water Solutions Viscosity of DMSO—Water Solutions Viscosity of DMSO—Water Solutions Nesults of Reflux of DMSO for 24 Hours with Various Compounds	215 216 216 218 220 221 222 223 224 224 225 225 226 226 227 227 227
4.5 4.6 4.7 4.8 4.9 4.10 ORGANIC SULFUF 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15	Industrial Amines Ranked in Order of Decreasing Base Strength Comparing Amines for Safety NIPAR 640 COMSOL 101-X COMSOL 280 COMSOL 820 I COMPOUNDS Carbon Disulfide Typical DMSO Properties Vapor Pressure vs Temperature for DMSO Specific Gravity of DMSO as a Function of Temperature DMSO Viscosity as a Function of Temperature Comparative Hygroscopicities of DMSO at Various Relative Humidities at 22°C Initial Sorption Rates of DMSO—Solvent Binary System Freezing Temperatures for DMSO—Solvent Binary System Freezing Point Curves for DMSO—Water Solutions Freezing Point Curves for DMSO—Water Solutions Freezing Gravity of DMSO—Water Solutions Viscosity of DMSO—Water Solutions Viscosity of DMSO—Water Solutions Viscosity of DMSO—Water Solutions Results of Reflux of DMSO for 24 Hours with Various Compounds Thermal Stability of DMSO	215 216 216 218 220 221 222 223 224 224 225 225 226 227 227 227 227 228

5.18	Solubility of Organic Materials in DMSO	229
5.19	Solubility of Resins and Polymers in DMSO	230
5.20	Solubility of Inorganic Materials in DMSO	232
	Solubility of Gases in DMSO at Atmospheric Pressure and 20°C	
	Solubility Parameters of Strong Solvents	
	DMSO as a Solvent Replacement	
	Hansen Solubility Parameters of Polymer Envelopes	
	Polymer Solvency of DMSO/Tetralin Mixtures	
	Polymer Solvency of DMSO/MIKE Mixtures	
	Solvent Viscosities	
5.28	Solvent Evaporation Times	
Sulfolane		
	Properties of Sulfolane	
	Solubility of Sulfolane in Various Chemical Compounds	
	Solubility of Various Chemical Compounds in Sulfolane	
	Thermal Stability of Sulfolane	
	Comparative Freezing Point Depression	
5.34	Specific Gravity	237
	201010	000
	COHOLS	
Methanol		
6.1 6.2	Physical Properties of Methanol	
6.3	Freezing Points of Methanol-Water Solutions	
6.4	Density and Specific Gravity of Methanol-Water Solutions at 15°C	
6.5	Resultant Volume When Methanol and Water are Mixed	
6.6 6.7	Solubility of Methanol in Gasoline from 15° to 30°C	
	Liquid Density of Methanol	
6.9	Liquid Heat Capacity of Methanol	240
6.10	Vapor Heat Capacity of Methanol	
6.11	Heat of Vaporization of Methanol	
6.12	Surface Tension of Methanol	
6.13	Liquid Thermal Conductivity of Methanol	
6.14	Vapor Thermal Conductivity of Methanol	
6.15	Vapor Pressure of Methanol	
6.16	Vapor Viscosity of Methanol	
6.17	Liquid Viscosity of Methanol	
6.18	Azeotropes of Methanol	
Ethyi Alcohol	***************************************	
6.19	Physical Properties of Anhydrous Ethyl Alcohol	
6.20	Physical Properties of 95% Ethanol	
6.21	Properties and Specifications of Ethyl Alcohol	
6.22	Conversion Table—Weight and Volume Percent of Ethyl Alcohol in Ethyl Alcohol-Water	
	Mixtures	250
6.23	Index of Refraction of Ethyl Alcohol-Water Mixtures at 60°F	
6.24	Heat of Solution of Ethyl Alcohol in Water	
6.25	Resultant Volume When Ethyl Alcohol and Water are Mixed	
6.26	Boiling Points of Ethyl Alcohol-Water Solutions	
6.27	Permanganate Time Test	
6.28	Freezing Points of Ethyl Alcohol-Water Mixture	
6.29	Viscosity of Ethyl Alcohol-Water Mixtures	
6.30	Flash Point of Aqueous Ethyl Alcohol Solutions °C and °F vs Vol % Ethanol	
6.31	Specific Heat of Aqueous Solutions of Ethanol	
6.32	Surface Tension of Pure Ethanol at Various Temperatures	
6.33	Latent Heat of Vaporization of Ethyl Alcohol	
6.34	Heat Capacity of Ethyl Alcohol at Various Temperatures	
6.35	Volumetric Equivalents	
6.36	Ethyl Alcohol-Water Mixtures	
6.37	Specially Denatures Alcohols	
6.38	Authorized Denaturants for SDA 38B	2/7
6.39	Denaturants Authorized for Completely Denatured Alcohol (CDA) and Specially Denatured Alcohol (SDA)	071
6.40	· ·	
6.40 6.41	Uses of Specially Denatured Alcohol	
0,41	Filmex Special Industrial Solvent Formulations	20

6.42	Completely Denatured Alcohol (CDA) Formulations	281
6.43	Proprietary Solvent Formulations	
6.44	Punctilious Specially Denatured Alcohol (SDA) Formulations	282
6.45	Composition and Typical End Uses of Specially Denatured Alcohols	283
6.46	Composition of Completely Denatured Alcohol (CDA)	284
6.47	Composition of Synasol Proprietary Solvents, Anhydrol Special Industrial Solvents,	
	and Inksolv Ink Solvents	294
6.48	Typical Physical Properties	285
6.49	Densities of Pure Ethanol-Water Mixtures at Various Temperatures	
6.50	Vapor Pressure of Pure Ethanol at Various Temperatures	
6.51	Constant Boiling Mixtures	287
6.52	Proof Definitions and Conversion Factors	
6.53	Proof Conversion Tables	289
6.54	Azeotropes of Ethanoi	
n-PROP	/L ALCOHOL	292
6.55	Physical Properties of n-Propyl Alcohol	202
6.56	Azeotropes of n-Propyl Alcohol	293
6.57	n-Propanol-Water-Benzene	294
6.58	n-Propanol-Water-n-Butanol	
6.59	n-Propanol-Water-Heptane	294
6.60	n-Propanol-Water-Hexane	
•		
ISOPROP	YL ALCOHOL	
6.61	Physical Properties of Anhydrous Isopropyl Alcohol	295
6.62	Physical Properties of 91% Isopropyl Alcohol	
6.63	Specific Gravity of Isopropyl Alcohol-Water Mixtures	296
6.64	Vapor-Liquid Compositions of Isopropyl Alcohol-Water Mixtures and Their Boiling Points	
6.65	Refractive Index vs Composition of Isopropyl Alcohol-Water Mixtures at 25°C	297
6.66	Isopropyl Alcohol-Water: Kinematic Viscosity vs Composition at 25°C	297
6.67	Azeotropes of Isopropyl Alcohol	
6.68	The Effect of Isopropyl Alcohol on the Dilution Ratio of Solvents	299
6.69	Viscosity of RS ½ Sec. Nitrocellulose in Mixtures of Toluene, Isopropyl Alcohol and	
0.09		
	Methyl Isobutyl Ketone	299
6 70	Methanol-Isonronyl Alcohol: Roiling Point vs Composition at 760 mm Hg	200
6.70	Methanol-Isopropyl Alcohol: Boiling Point vs Composition at 760 mm Hg	
6.70 6.71	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure	
6.71	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure	
	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure	299
6.71 6.72	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure	299 300
6.71	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure	299 300
6.71 6.72 6.73	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure	299 300 300
6.71 6.72 6.73 n-Butyl /	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure	300 300 301
6.71 6.72 6.73	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure	300 300 301
6.71 6.72 6.73 n-Butyl /	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol	300 300 301 301
6.71 6.72 6.73 n-Butyl A 6.74 6.75	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures	300 300 301 301 302
6.71 6.72 6.73 n-Butyl /	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures	300 300 301 301 302 302
6.71 6.72 6.73 n-Butyl A 6.74 6.75	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures	300 300 301 301 302 302
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures	300 300 301 301 302 302 303
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.78	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol	300 300 301 301 302 302 303 303
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.78	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures	300 300 301 301 302 302 303 303
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.78 isobutyl A	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Alcohol	300 300 301 301 302 302 303 303 304
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.78 isobutyl A 6.79	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Alcohol Physical Properties of Isobutyl Alcohol	300 300 301 301 302 302 303 304 304
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.78 isobutyl A 6.79 6.80	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol	300 300 301 301 302 303 303 304 304 304
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.78 isobutyl A 6.79	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Alcohol Physical Properties of Isobutyl Alcohol	300 300 301 301 302 303 303 304 304 304
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.78 isobutyl A 6.79 6.80 6.81	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates	300 300 301 301 302 302 303 303 304 304 304 305
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.78 Isobutyl A 6.79 6.80 6.81	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates	300 300 301 301 302 303 303 304 304 305 305
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.78 isobutyl A 6.79 6.80 6.81	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates	300 300 301 301 302 303 303 304 304 305 305
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.78 Isobutyl A 6.79 6.80 6.81 sec-Buty 6.82	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Alcohol Physical Properties of sec-Butyl Alcohol Physical Properties of sec-Butyl Alcohol	299 300 301 301 302 303 303 304 304 305 305 305
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.78 Isobutyl A 6.80 6.81 sec-Buty 6.82 6.83	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Azeotropes of sec-Butyl Alcohol Physical Properties of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol	299 300 301 301 302 303 303 304 304 305 305 305 305 305
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.78 Isobutyl A 6.80 6.81 sec-Buty 6.82 6.83	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol	299 300 301 301 302 302 303 304 304 305 305 305 305 305 305
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.78 Isobutyl A 6.80 6.81 sec-Buty 6.82 6.83	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol	299 300 301 301 302 302 303 304 304 305 305 305 305 305 305
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.80 6.81 sec-Buty 6.82 6.83 tert-Buty 6.84	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Alcohol Physical Properties of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Physical Properties of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Physical Properties of tert-Butyl Alcohol	299 300 301 301 302 302 303 304 304 305 305 305 305 306 306 306
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.80 6.81 sec-Buty 6.82 6.83 tert-Buty 6.84 6.85	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Alcohol Physical Properties of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Physical Properties of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Physical Properties of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol	300 300 301 301 302 303 303 304 304 305 305 305 306 306 306 306
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.80 6.81 sec-Buty 6.82 6.83 tert-Buty 6.84 6.85	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Alcohol Physical Properties of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Physical Properties of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol	300 300 301 302 302 303 304 304 305 305 305 306 306 306 306 307
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.79 6.80 6.81 sec-Buty 6.82 6.83 tert-Buty 6.84 6.85	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Alcohol Physical Properties of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Physical Properties of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol	300 300 301 302 302 303 304 304 305 305 305 306 306 306 306 307
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.80 6.81 sec-Buty 6.82 6.83 tert-Buty 6.85 Primary A	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Alcohol Physical Properties of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Physical Properties of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Physical Properties of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Physical Properties of Primary Amyl Alcohol	300 301 301 302 303 303 304 304 305 305 305 306 306 306 307 307
6.71 6.72 6.73 n-Butyl / 6.74 6.75 6.76 6.77 6.80 6.81 sec-Buty 6.82 6.83 tert-Buty 6.85 Primary / 6.86	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Al Alcohol Physical Properties of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of Primary Amyl Alcohol Physical Properties of Primary Amyl Alcohol	2999 3000 3011 3011 3022 3033 3043 3043 3053 3053 3053 3063 3063 3063 3073 3073 3073 3073 307
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.80 6.81 sec-Buty 6.82 6.83 tert-Buty 6.85 Primary A	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Alcohol Physical Properties of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Physical Properties of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Physical Properties of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Physical Properties of Primary Amyl Alcohol	2999 3000 3011 3011 3022 3033 3043 3043 3053 3053 3053 3063 3063 3063 3073 3073 3073 3073 307
6.71 6.72 6.73 n-Butyl / 6.74 6.75 6.76 6.77 6.80 6.81 sec-Buty 6.82 6.83 tert-Buty 6.85 Primary / 6.86	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Al Alcohol Physical Properties of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Physical Properties of Primary Amyl Alcohol Physical Properties of Primary Amyl Alcohol Physical Properties of Primary Amyl Alcohol	2999 3000 3011 3011 3022 3033 3043 3043 3053 3053 3053 3063 3063 3073 3073 3073 3073 3073
6.71 6.72 6.73 n-Butyl / 6.74 6.75 6.76 6.77 6.80 6.81 sec-Buty 6.82 6.83 tert-Buty 6.85 Primary / 6.86 Primary i	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Al Alcohol Physical Properties of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of set-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Physical Properties of Primary Amyl Alcohol Physical Properties of Primary Amyl Alcohol Physical Properties of Primary n-Amyl Alcohol	299 300 301 301 302 302 303 304 304 305 305 305 306 306 307 307 307 307 307 307
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.80 6.81 sec-Buty 6.82 6.83 tert-Buty 6.85 Primary A 6.86 Primary A	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Alcohol Physical Properties of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Physical Properties of Primary Amyl Alcohol Physical Properties of Primary Amyl Alcohol Physical Properties of Primary n-Amyl Alcohol	299 300 301 301 302 302 303 304 304 305 305 305 306 306 307 307 307 307 307 307
6.71 6.72 6.73 n-Butyl / 6.74 6.75 6.76 6.77 6.80 6.81 sec-Buty 6.82 6.83 tert-Buty 6.85 Primary / 6.86 Primary i	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Alcohol Physical Properties of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Physical Properties of Primary Amyl Alcohol Physical Properties of Primary Amyl Alcohol Physical Properties of Primary n-Amyl Alcohol	299 300 301 301 302 302 303 304 304 305 305 306 306 307 307 307 308 308
6.71 6.72 6.73 n-Butyl / 6.74 6.75 6.76 6.77 6.80 6.81 sec-Buty 6.82 6.83 tert-Buty 6.85 Primary / 6.86 Primary / 6.87 8.86	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Physical Properties of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Physical Properties of Primary Amyl Alcohol Physical Properties of Primary Amyl Alcohol Physical Properties of Primary n-Amyl Alcohol Physical Properties of Sec-Amyl Alcohol Physical Properties of Sec-Amyl Alcohol Areotropes of sec-Amyl Alcohol Areotropes of sec-Amyl Alcohol Azeotropes of sec-Amyl Alcohol	299 300 301 301 302 303 303 304 304 305 305 305 306 306 307 307 307 307 307 307 308 308 308
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.80 6.81 sec-Butyl A 6.83 tert-Butyl 6.83 tert-Butyl 6.84 6.85 Primary A 6.86 Primary B 6.87 8.87 8.88 Primary B 6.88 8.89	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Alalcohol Physical Properties of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Physical Properties of Primary Amyl Alcohol Physical Properties of Primary Amyl Alcohol Physical Properties of Primary n-Amyl Alcohol Physical Properties of Primary n-Amyl Alcohol Physical Properties of Primary n-Amyl Alcohol Physical Properties of Sec-Amyl Alcohol Azeotropes of sec-Amyl Alcohol	300 301 301 302 303 303 304 304 305 305 306 306 307 307 307 307 308 308 309 309 309 309 309 309 309 309 309 309
6.71 6.72 6.73 n-Butyl / 6.74 6.75 6.76 6.77 6.80 6.81 sec-Buty 6.82 6.83 tert-Buty 6.85 Primary / 6.86 Primary / 6.87 8.86	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Alalcohol Physical Properties of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Physical Properties of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Physical Properties of Primary Amyl Alcohol Physical Properties of Primary Amyl Alcohol Physical Properties of Primary n-Amyl Alcohol Physical Properties of Primary n-Amyl Alcohol Physical Properties of Sec-Amyl Alcohol Azeotropes of sec-Amyl Alcohol	300 301 301 302 303 303 304 304 305 305 306 306 307 307 307 307 308 308 309 309 309 309 309 309 309 309 309 309
6.71 6.72 6.73 n-Butyl A 6.74 6.75 6.76 6.77 6.80 6.81 sec-Butyl A 6.83 tert-Butyl 6.83 tert-Butyl 6.84 6.85 Primary A 6.86 Primary B 6.87 8.87 8.88 Primary B 6.88 8.89 8.80 8.80 8.80 8.81	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Physical Properties of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Amyl Alcohol Physical Properties of Primary Amyl Alcohol Amyl Alcohol Physical Properties of Primary n-Amyl Alcohol Alcohol Physical Properties of sec-Amyl Alcohol Azeotropes of sec-Amyl Alcohol Physical Properties of sec-Amyl Alcohol Azeotropes of sec-Amyl Alcohol Physical Properties of sec-Amyl Alcohol Azeotropes of sec-Amyl Alcohol Physical Properties of sec-Amyl Alcohol Physical Properties of sec-Amyl Alcohol	300 301 301 302 303 303 304 304 305 305 305 306 306 307 307 307 307 308 308 309 309 309 309 309 309 309 309 309 309
6.71 6.72 6.73 n-Butyl / 6.74 6.75 6.76 6.77 6.80 6.81 sec-Buty 6.82 6.83 tert-Buty 6.85 Primary / 6.86 Primary i 6.87 sec-Amy 6.88 8.89 8.89 9.89 9.89 9.89 9.89 9.89	Methanol-Isopropyl Alcohol: Liquid-Vapor Equilibria at Atmospheric Pressure Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures Specific Gravities of Alcohols vs Temperature Alcohol Physical Properties of n-Butyl Alcohol Vapor Pressure of Butyl Alcohol at Various Temperatures Solubility of Water in Butyl Alcohol at Various Temperatures Solubility of Butyl Alcohol in Water at Various Temperatures Azeotropes of n-Butyl Alcohol Alcohol Physical Properties of Isobutyl Alcohol Azeotropes of Isobutyl Alcohol Relative Evaporation Rates of Various Butyl Alcohols and Acetates Alalcohol Physical Properties of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of sec-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Azeotropes of tert-Butyl Alcohol Physical Properties of Primary Amyl Alcohol Physical Properties of Primary Amyl Alcohol Physical Properties of Primary n-Amyl Alcohol Physical Properties of Primary n-Amyl Alcohol Physical Properties of Primary n-Amyl Alcohol Physical Properties of Sec-Amyl Alcohol Azeotropes of sec-Amyl Alcohol	300 301 301 302 303 303 304 304 305 305 306 306 307 307 307 307 308 308 309 309 309 309 309 309 309 309 309 309

	Physical Properties of Refined tert-Amyl Alcoho	
6.93	Azeotropes of tert-Amyl Alcohol	
Isoamyi Alcoh		311
	Physical Properties of Isoamyl Alcohol	
	Azeotropes of Isoamyl Alcohol	
	icohol	
	Physical Properties of Active Amyl Alcohol	
	ined	
	Physical Properties of Refined Fusel Oil	
Methylamyl Al	cohol	313
	Physical Properties of Methylamyl Alcohols	
	Alcohol	
6.99	Physical Properties of 2-Ethylbutyl Alcohol	
-	nol	
6.100	Physical Properties of n-Hexyl Alcohol	
6.101	Solubility of Water in n-Hexyl Alcohol	
	Azeotropes of exyl Alcohol	
•	cohol	
6.103	Physical Properties of Cyclohexyl Alcohol	
	Azeotropes of Cyclohexyl Alcohol	
Heptyl Alcoho		
6.105	Physical Properties of Heptyl Alcohol	
	Azeotropes of Heptyl Alcohol	
• •	hol	316
6.107	Physical Properties of 2-Heptyl Alcohol	
	hol	
6.108	Physical Properties of 3-Heptyl Alcohol	
	Alcohol	
6.109	Physical Properties of 2-Ethylhexyl Alcohol	
•		
6.110	Physical Properties of n-Octyl Alcohol	
6.111	Azeotropes of n-Octyl Alcohol	
•	ohol	
6.112	Physical Properties of sec-Octyl Alcohol	
6.113	Azeotropes of sec-Octyl Alcohol	
•	101	
6.114	Physical Properties of Isooctyl Alcohol	
•	L	319
6.115	Physical Properties of Nonyl Alxoholx319	000
	ylhexyl Alcohol	
6.116	Physical Properties of 3,5,5–Trimethylhexyl Alcohol	
•	Physical Properties of Decyl Alcohol	
6.117		
6.118	hol	
=	Physical Properties of Isodecyl Alcohol	321
Tridecyl Alcol	hol	
6.119		
6.120	Is and Aicohol Blends	
		322 322
6.121	ALFOL Alcohol Pure Homologs C_8 - C_{18}	
6.122 6.123		324
Comparative	ALFOL Typical Properties Data	325
6.124	Ashland Alcohols	
6.125	Chemcentral Alcohols	
6.126	CPS Chemical Alcohol 99%	326
6.127	Eastman Latent Solvents	
6.128	Hoechst Celanese Alcohols	329
6.129	Procter and Gamble Fatty Alcohols	330
6.130	Shell Chemical Alcohols	
6.131	Union Carbide Alcohols	
Aliyi Alcohol	Chion Carpide Alcohols	
6.132	Physical Properties of Allyl Alcohol	
6.133	Azeotropes of Alkyl Alcohol	
0.100		~~

Crobal Aleeba	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	334
Crotyl Alcono	Control Provide of Oracle Market	224
6.134	Physical Properties of Crotyl Alcohol	334
	Alcohol	
	Physical Properties of Methylbutynyl Alcohol	
Methylpentyny	yl Alcohol	335
6.136	Physical Properties of Methylpentynyl Alcohol	335
Higher Lineati	irated Alcohois	335
6.137	Unsaturated Aliphatic Alcohols	225
	ohol	
6.138	Physical Properties of Diacetone Alcohol	
2-Mercaptoet	hyl Alcohol	336
6.139	Physical Properties of 2-Mercaptoethyl Alcohol	336
	ylethyl Alcohol	336
6.140	Physical Properties of 2-Ethylsulfonylethyl Alcohol	336
	Filysidal Filopeties of 2-Lulyisullollyletily According	226
	pethyl Alcohol	330
6.141	Trifluoroethanol Physical Properties	
6.142	Polymer Solubilities in Trifluoroethanol	337
6.143	Salt Solubility (wt %) in Trifluoroethanol at 25°C	337
6.144	Solubility of Gases in Trifluoroethanol at 27°C	337
6.145	Vapor Pressure vs Temperature	
6.146	Freezing Point: Trifluoroethanol-Water 338	
	Infrared Spectrum	220
6.147		
	rafluoro-1-Propyl Alcohol	
6.148	Physical Properties of 1H,1H,3H-Tetrafluoro-1-Propyl Alcohol	338
1H,1H,5H-Oct	afluoro-1-Pentyl Alcohol	339
6.149	Physical Properties of 1H,1H,5H-Octafluoro-1-Pentyl Alcohol	339
Benzyl Alcoho	ol (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
6.150	Physical Properties of Benzyl Alcohol	
6.151	VELSICOL Benzyl Alcohol	
	hol	
6.152	Physical Properties of Furfuryl Alcohol	
6.153	Vapor Pressure of Furfuryl Alcohol	
6.154	Pounds per Gallon of Furfuryl Alcohol at Various Temperatures	
6.155	Density of Furfuryl Alcohol-Water Solutions as a Function of Composition (at 25°C, 77°F)	342
6.156	Vapor Pressure of Furfuryl Alcohol as a Function of Temperature	
6.157	Solubility of Liquid Organic Compounds in Furfuryl Alcohol (at 25°C, 77°F)	
6.158	Solubility of Solid Organic Compounds in Furfuryl Alcohol (at 25 °C, 77°F)	
6.159	Solubility of Thermoplastic Resins in Furfuryl Alcohol (at Room Temperature)	344
6.160	Effect of Time at Elevated Temperature on Certain Characteristics of Furfuryl Alcohol	
	(Under Neutral Conditions)	
6.161	Stabilization of Furfuryl Alcohol With an Amine (at 150°C in Glass)	345
6.162	Antoxidation of Furfuryl Alcohol	345
	riuryi Alcohoi	
6.163	Physical Properties of Tetrahydrofurfuryl Alcohol	
	Solubility of Various Substances in Tetrahydrofurfuryl Alcohol	
6.164		
6.165	Vapor-Liquid Equilibria in the Tetrahydrofurfuryl Alcohol-Water System	
6.166	Specific Gravity and Pounds per Gallon of Tetrahydrofurfuryl Alcohol at Various Temperatures	
6.167	Vapor Pressure of Tetrahydrofurfuryl Alcohol	347
6.168	Vapor-Liquid Equilibria Curve of the THFA-Water System at the Boiling Point	348
6.169	The System THFA-Water Composition Curve	
6,170	Specific Gravity and Pounds per Gallon	
6.171	Vapor Pressure (Boiling Point Method)	
6.172	HERCO and YARMOR Pine Oil	
6.173	Hercules TERPINEOL	
6.174	Solubility Data for Alcohols	
6.175	Melting Points of Saturated Monohydric Alcohols	355
6.176	Rate of Evaporation of Various Solvents at Room Temperature	355
6,177	Comparative Evaporation Rates of Alcohols	355
6.178	Vapor Pressure of Alcohols at Various Temperatures	
6.179	Freezing Points (Initial Crystallization) of Aqueous Solution of Alcohols	
6.180	Specific Gravity of Aqueous Solution of Alcohols at 20°C	
6.181	Viscosity of Ethyl Cellulose in Alcohol-Hydrocarbon Mixtures	
6.182	Evaporation Data for Various Solvents	358

COHOLS	
reol	
· · · · · · · · · · · · · · · · · · ·	
1101	
diol	
Physical Properties of 2,3-Butanediol	. 380
Physical Properties of 2,3-Butanediol	. 380 . 380
Physical Properties of 2,3-Butanediol	. 380 . 380 . 381
Physical Properties of 2,3-Butanediol	. 380 . 380 . 381 . 381

7.57	Effect of meso-2,3-Butanediol on the Freezing Point of Aqueous levo-2,3-Butanediol Solutions	382
7.58	Freezing Points of Aqueous levo-2,3-Butanediol-Ethanol Solutions	383
7.59	Freezing Points of Aqueous levo-2,3-Butanediol-Ethylene Glycol Solutions	383
7.60	Freezing Points of Aqueous levo-2,3-Butanediol-Methanol Solutions	383
7.61	Freezing Points of Aqueous levo-2,3-Butanediol-Tetrahydrofurfuryl Alcohol Solutions	
7.62	Kinematic Viscosity of Aqueous levo-2,3-Butanediol Solutions, Expressed Logarithmically, as a	
		384
7.63	Kinematic Viscosity of Aqueous levo-2,3-Butanediol Solutions in Relation to Concentration	001
7.03		384
- 0.		304
7.64	Kinematic Viscosity of 60% levo-2,3-Butanediol, Glycerol and Ethylene Glycol Solutions at Low	
_		384
7.65	Kinematic Viscosity of Aqueous levo-2,3-Butanediol-Ethanol Solutions at 20°C, Expressed in	
	Centistokes	384
7.66	Kinematic Viscosity of Aqueous levo-2,3-Butanediol-Methanol Solutions at 20°C, Expressed in	
		385
7.67	Kinematic Viscosity of Aqueous levo-2,3-Butanediol-Ethylene Glycol Solutions in 20°C	
	Expressed in Centistokes	385
7.68	Kinematic Viscosity of Aqueous levo-2,3-Butanediol-Tetrahydrofurfuryl Alcohol Solutions at	
		385
7.69	Absolute Viscosity of Aqueous Solutions of Ethylene Glycol, levo-2,3-Butanediol, meso-dextro-	
7.00	2,3-Butanediol and Glycerol at 20°C	385
7.70	Optical Rotatory Power of Aqueous levo-2,3-Butanediol Solutions at 20°C	
	Effects of Concentration and Temperature on the Specific Rotatory Power of Aqueous levo-2,3-	300
7.71		200
	Butanediol Solutions	
7.72	Refractive Indices of Aqueous levo-2,3-Butanediol Solutions at Different Temperatures	
7.73	Refractive Indices of Aqueous Solutions of meso- and levo-2,3-Butanediol at 25°C	
7.74	Specific Gravity of Aqueous levo-2,3-Butanediol Solutions at 20°, 30°, and 40°C	
7.75	Specific Gravity of Aqueous meso-2,3-Butanediol Solutions at 20°, 30°, and 40°C	387
7.76	Surface Tension of Aqueous Solutions of levo-2,3-Butanediol and Ethylene Glycol	
Butanediols		388
7.77	Refractive Indices of Aqueous Butanediol Solutions at 20°, 30°, and 40°C	388
7.78	Kinematic Viscosity of Aqueous Butanediol Solutions at 20° and 40°C, in Centistokes	388
2-Butene-1,4	1-diol	388
7.79	Physical Properties of 2-Butene-1,4-diol	
2-Butvne-1.4	I–diól	
7.80	Physical Properties of 2-Butyne-1,4-diol	
1.5-Pentaneo	iioi	
7.81	Physical Properties of 1,5-Pentanediol	
7.82	Absolute Viscosity of Aqueous 1,5-Pentanediol Solutions at 20° and 40°C	
7.83	Specific Gravity of Aqueous 1.5-Pentanediol Solutions at 20° and 40°C	
	Specific Gravity of Aqueous 1.5-Fernameuror Solutions at 20° and 40° 0°	
-		
7.84	Physical Properties of 2,4-Pentanediol	
	ycol	
7.85	Physical Properties of Neopentyl Glycol	
7.86	· · · · · · · · · · · · · · · · · · ·	39
7.87	Refractive Indices of Aqueous Pentanediol Solutions at 20° and 40°C	39
1,6-Hexaned		
7.88	Physical Properties of 1,6-Hexanediol	392
2,5-Hexaned	iol	392
7.89	Physical Properties of 1,5-Hexanediol	392
Hexvlene Giv	reol	392
7.90	Dhysical Burnetics and Oncollinations of Hendens Obert	392
7.91	Privical Properties and Specifications of Hexviene Givcoi	
7.92	Physical Properties and Specifications of Hexylene Glycol	
1.06	Freezing Points of Hexylene Glycol-Water Mixtures	393
Dinacol	Freezing Points of Hexylene Glycol-Water Mixtures	390 390
	Freezing Points of Hexylene Glycol-Water Mixtures	393 393 394
7.93	Freezing Points of Hexylene Glycol-Water Mixtures Specific Gravity and Freezing Point of Hexylene Glycol-Water Mixtures Physical Properties of Pinacol	393 394 394
7.93 2,2-Diethyl -1	Freezing Points of Hexylene Glycol-Water Mixtures Specific Gravity and Freezing Point of Hexylene Glycol-Water Mixtures Physical Properties of Pinacol 1,3-Propanediol	393 394 394 394
7.93 2,2-Diethyl -1 7.94	Freezing Points of Hexylene Glycol-Water Mixtures Specific Gravity and Freezing Point of Hexylene Glycol-Water Mixtures Physical Properties of Pinacol 1,3-Propanediol Physical Properties of 2,2-Diethyl-1,3-Propanediol	39: 39: 39: 39: 39:
7.93 2,2-Diethyl -1 7.94 2-Ethyl-1,3 -	Freezing Points of Hexylene Glycol-Water Mixtures Specific Gravity and Freezing Point of Hexylene Glycol-Water Mixtures Physical Properties of Pinacol 1,3-Propanediol Physical Properties of 2,2-Diethyl-1,3-Propanediol Hexanediol	393 394 394 394 394 394
7.93 2,2-Diethyl- 1 7.94 2-Ethyl-1,3 - 7.95	Freezing Points of Hexylene Glycol-Water Mixtures Specific Gravity and Freezing Point of Hexylene Glycol-Water Mixtures Physical Properties of Pinacol 1,3-Propanediol Physical Properties of 2,2-Diethyl-1,3-Propanediol Hexanediol Physical Properties of 2-Ethyl-1,3-Hexanediol	39: 39: 39: 39: 39: 39: 39:
7.93 2,2-Diethyl-1 7.94 2-Ethyl-1,3- 7.95 2,5-Dimethyl	Freezing Points of Hexylene Glycol-Water Mixtures Specific Gravity and Freezing Point of Hexylene Glycol-Water Mixtures Physical Properties of Pinacol 1,3-Propanediol Physical Properties of 2,2-Diethyl-1,3-Propanediol Hexanediol Physical Properties of 2-Ethyl-1,3-Hexanediol -3-Hexyne-2,5-diol	39: 39: 39: 39: 39: 39: 39: 39:
7.93 2,2-Diethyl-1 7.94 2-Ethyl-1,3- 7.95 2,5-Dimethyl 7.96	Freezing Points of Hexylene Glycol-Water Mixtures Specific Gravity and Freezing Point of Hexylene Glycol-Water Mixtures Physical Properties of Pinacol 1,3-Propanediol Physical Properties of 2,2-Diethyl-1,3-Propanediol Hexanediol Physical Properties of 2-Ethyl-1,3-Hexanediol	39: 39: 39: 39: 39: 39: 39: 39:

	7.97	Properties of 1,4-Cyclohexanedimethanol	395
p-X	ylylene Gi	ycol	397
	7.98	Physical Properties of p-Xylylene Glycol	397
2-E	thyl-2-Bu	ityl-1,3-Propanediol	397
	7.99	Physical Properties of 2-Ethyl-2-Butyl-1,3-Propanediol	
3,6-	-Dimethyl-	-4-Octyne-3,6-diol	
	7.100	Physical Properties of 3,6-Dimethyl-4-Octyne-3,6-diol	
Thi	odiglycol .		398
	7.101	Physical Properties of Thiodiglycol	398
	7.102	Vapor Pressure of Thiodiglycol at Various Temperatures	
Mis	cellaneous	s Glycols	
	7.103	Hydrates of Aliphatic Glycols	
	7.104	Hydrates of Cyclic Glycols	
	7.105	Freezing Points of Aqueous Ethylene Glycol and Propylene Glycol Solutions	
	7.106	Freezing Points of Various Aqueous Glycol Solutions, °C	
	7.107	Freezing Points of Various Aqueous Alcohols, Glycols and Glycerol	
	7.108	Compatibility of Coupling Solvents with Carbon Tetrachloride and Water	
	7.109	Key Hygroscopicity Curve	
	7.110	Surface Tension of Glycol-Water Systems	
	7.111	Vapor Pressure of Glycols	
	7.112	Viscosity of Glycols	
	7.112	Water Absorption by Glycols as a Function of Time	
	7.114	Water Absorption by Glycols as a Function of Relative Humidity	
	7.115	Refractive Index, Specific Gravity, and Boiling Point Measurements of Various Glycols	
	7.115 7.116	Relative Solvent Properties of Glycols	
	7.110	Effect of Various Glycols on Synthetic Rubber Samples—Results Reported as % Volume and	400
	7.117	% Weight Increase	405
	7 110		
	7.118	Solubility of Cellulose Derivatives in Glycols	
	7.119	Compatibility of Film Cast from 80/20 Toluene/Alcohol	
	7.120	Relative Humectant Values	
	7.121	Water Vapor Dew Points Over Aqueous Ethylene Glycol Solutions	
	7.122	Water Vapor Dew Points Over Aqueous Diethylene Glycol Solutions	
	7.123	Water Vapor Dew Points Over Aqueous Triethylene Glycol Solutions	
	7.124	Water Vapor Dew Points Over Aqueous Propylene Glycol Solutions	
	7.125	Water Vapor Dew Points Over Aqueous Dipropylene Glycol Solutions	
	7.126	Boiling Points of Glycols at 50 mm Hg	
	7.127	Total Pressure Over Aqueous Ethylene Glycol Solutions vs Temperature	
	7.128	Total Pressure Over Aqueous Diethylene Glycol Solutions vs Temperature	
	7.129	Total Pressure Over Aqueous Triethylene Glycol Solutions vs Temperature	
	7.130	Total Pressure Over Aqueous Propylene Glycol Solutions vs Temperature	
	7.131	Total Pressure Over Aqueous Dipropylene Glycol Solutions vs Temperature	
	7.132	Vapor-Liquid Composition Curves for Aqueous Ethylene Glycol Solutions	
	7.133	Vapor-Liquid Composition Curves for Aqueous Diethylene Glycol Solutions	
	7.134	Vapor-Liquid Composition Curves for Aqueous Triethylene Glycol Solutions	
	7.135	Vapor-Liquid Composition Curves for Aqueous Propylene Glycol Solutions	
	7.136	Vapor-Liquid Composition Curves for Aqueous Dipropylene Glycol Solutions	412
	7.137	Pour Points of Glycols	
	7.138	Viscosities of Anhydrous Glycols	412
	7.139	Viscosities of Aqueous Ethylene Glycol Solutions	
	7.140	Viscosities of Aqueous Diethylene Glycol Solutions	413
	7.141	Viscosities of Aqueous Triethylene Glycol Solutions	414
	7.142	Viscosities of Aqueous Tetraethylene Glycol Solutions	
	7.143	Viscosities of Aqueous Propylene Glycol Solutions	
	7.144	Viscosities of Aqueous Dipropylene Glycol Solutions	
	7.145	Viscosities of Aqueous Tripropylene Glycol Solutions	
	7.146	Freezing Points of Aqueous Glycol Solutions	
	7.147	Specific Heat of Anhydrous Glycols	
	7.148	Specific Heats of Aqueous Glycol Solutions (Btu/lb/°F)	416
	7.149	Densities of Aqueous Ethylene Glycol Solutions (% by wt)	
	7.150	Densities of Aqueous Diethylene Glycol Solutions (% by wt)	
	7.151	Densities of Aqueous Triethylene Glycol Solutions (% by wt)	
	7.152	Densities of Aqueous Tetraethylene Glycol Solutions (% by wt)	
	7.152	Densities of Aqueous Propylene Glycol Solutions (% by wt)	
	7.153 7.154	Densities of Aqueous Dipropylene Glycol Solutions (% by wt)	
	7.15 4 7.155	Densities of Aqueous Tripropylene Glycol Solutions (% by wt)	
		Bollering of Addition fliphopicing diffusi Coletions (/V bf fit)	716

7.156	Surface Tensions of Aqueous Solutions of Glycols at 77°F	
7.157	Flammability of Glycols	420
7.158	Refractive Indices of Aqueous Glycol Solutions at 77°F (25°C)	420
7.159	Conversion Chart for Aqueous Ethylene Glycol Solutions	
7.160	Conversion Chart for Aqueous Diethylene Glycol Solutions	
7.161	Conversion Chart for Aqueous Triethylene Glycol Solutions	
7.162	Conversion Chart for Aqueous Tetraethylene Glycol Solutions	
7.163	Conversion Chart for Aqueous Propylene Glycol Solutions	421
7.164	Conversion Chart for Aqueous Dipropylene Glycol Solutions	
7.165	Conversion Chart for Aqueous Tripropylene Glycol Solutions	
7.166	Freeze Points and Burst Points of Aqueous Solutions	
7.167	Solubility of Various Compounds in Glycols	
7.168	Viscosity of Anhydrous Glycols	
7.169	Specific Heat of Anhydrous Glycols	424
7.170	Technical Data: Ethylene Glycol Products	
7.171	Ethylene Glycol Compatibility	
7.172	Weight per Gallon at Various Temperatures	
7.173	Weight Percent vs Volume Percent Aq. Monoethylene Glycol Solutions, 20°C	
7.174	Specific Gravity vs Composition @ Various Temperatures of Aqueous MEG Solutions	
7.175	Specific Gravity vs Composition @ Various Temperatures of Aqueous DEG Solutions	
7.176	Specific Gravity vs Composition @ Various Temperatures of Aqueous TEG Solutions	
7.177	Boiling Point @ 760 mm Hg vs Composition of Aqueous Glycol Solutions	428
7.178	Freezing Point vs Composition of Aqueous Glycol Solutions	
7.179	Vapor Pressure vs Temperature of the Glycols	
7.180	Viscosity vs Temperature of the Glycols	
7.181	Fire Hazard Information	
7.182	Acute Oral Toxicity	
7.183	Environmental Considerations, Biodegradation	
7.184	Ethylene Glycols: Products, Grades and Specifications	
7.185	Ashland Glycols	
7.186	Chemcentral Polyols	
7.187	Hoechst Celanese 1,3-Butylene Glycoi	
7.188	Occidental Ethylene Glycol	
Giycerol (Gly	cerine)	434
7.189	Physical Properties and Specifications of Glycerol	
7.190	Boiling Points and Specific Gravities of Aqueous Glycerol Solutions	
7.191	Conversion Chart for Aqueous Glycerol Solutions (25°C)	434
7.192	Density of Glycerol-Water	
7.193	Freezing Points of Glycerol-Water Solutions	
7.194	Freezing Points of Glycerol-Water Solutions	
7.195	Viscosity of Aqueous Glycerol Solutions, Centipoises	
7.196	Hygroscopicity Curves for Glycerol and 1,3-Butylene Glycol	
7.197	Hygroscopicity Curves for Glycerol and 2,3-Butylene Glycol	
7.198	Relative Humidities Over Aqueous Glycerol Solutions, 20° to 100°C	
7.199	Solubility of Sucrose and Dextrose in Aqueous Glycerol at 15°, 24°, and 35°C	
7.200	Solubility of Various Compounds in Glycerol	
7.201	Specific Gravity and Percent Glycerol	
7.202	Specific Gravities of Glycerol and Glycol Mixtures	
7.203	Specific Heat of Glycerol	
7.204	Vapor Pressure of Glycerol	
7.205	Vapor Pressure of Glycerol-Water Solutions	
7.206	Viscosity of Glycerol Solutions in Centipoises	
-	Data	
7.207	Emery CP/USP Glycerines	
7.208	Procter & Gamble Glycerine	
7.209	Witco Refined Glycerine	
	triol	
7.210	Physical Properties of 1,2,4-Butanetriol	
	triol	
7.211	Physical Properties of 1,2,6-Hexanetriol	
7.212	Freezing Points of 1,2,6-Hexanetriol-Water Mixtures	
7.213	Vapor Pressure of 1,2,6-Hexanetriol	
7.214 7.01 <i>5</i>	Solubility of 1,2,6-Hexanetriol in Organic Solvents	
7.215		441
7.216	Viscosities and Freezing Points of 1,2,6-Hexanetriol	

T	rimethyolpr	opane	447
	7.217	Physical Properties of Trimethylolpropane	
P	entaerythrit	ol	
	7.218	Physical Properties of Pentaerythritol	
S	orbitol		448
	7.219	Physical Properties of Sorbitol	
	7.220	Boiling Point of Sorbitol Solutions	448
	7.221	Hydrogenolysis of Sorbitol and Glycerol at a Hydrogen Pressure of 2,000 psi	449
	7.222	Hydrogenolysis of Sorbitol at 215°C and a Hydrogen Pressure of 2,000 psi	
	7.223	Phase Diagram of Sorbitol Solubility in Hydroalcoholic Liquids at 35°C	450
	7.224	Solubility of Sorbitol in Hydroalcoholic Liquids at 25°C	
	7.225	Viscosity Curve for Pure d-Sorbitol Solutions of Various Concentrations	
e		Dis	
	7.226	Physical Properties of the Sugar Alcohols	
		Is Polyhydric Alcohols	
N			
	7.227	Hydrates of Polyhydric Alcohols	452
B. 1244	0.0		454
PHEN			
	8.1	Phenol	454
F			
	9.1	Properties of Pure Furfural	
	9.2	Typical Properties and Specifications of Furtural	
	9.3	Solubility of Various Substances in Furtural	
	9.4	Solubility of Selected Thermoplastic Resins in Furfural	
	9.5	Specific Gravity and Pounds per Gallon of Furfural	
	9.6	Composition/Density of Furfural-Water Solutions	458
	9.7	Vapor Pressure of Furfural	459
	9.8	Solution Temperature of Furfural-Water System	
	9.9	Temperature-Composition Diagram of Furfural-Water System	
	9.10	Vapor-Liquid Equilibrium in the Furfural-Water System	
	9.11	Vapor-Liquid Composition of Furfural-Water System	
c		ydes	
•	9.12	Vapor Pressures of Various Aldehydes	
	9.12	Physical Properties of Various Aldehydes	
	9.13	Filysical Floperies of Validus Auditydes	+02
ETHE	DC		460
CINE	RS 10.1	Dimethyl Ether	
	10.2	Chlorodimethyl Ether	
	10.3	Chloromethyl Ethyl Ether	
	10.4	Ethyl Ether	
	10.5	Flammability of Ethyl Ether-Oxygen-Helium Mixture	
	10.6	Dichloroethyl Ether	
k	sopropyl Et		
	10.7	Properties of Pure Isopropyl Ether	
	10.8	Vapor Pressure of Isopropyl Ether	. 467
	10.9	Isopropyl Ether-Water Solubility	
	10.10	Mutual Solubility for the System: Isopropyl Ether-Isopropyl Alcohol-Water at 25°C, % wt	
	10.11	Conjugate Solutions in the System: Isopropyl Ether-Isopropyl Alcohol-Water at 25°C, % wt	. 469
	10.12	Miscibility of Isopropyl Ether-Isopropyl Alcohol-Water at 25°C	. 469
	10.13	Azeotropic Information-Isopropyl Ether	
	10.14	Vapor Pressure of Isopropyl Ether at Various Temperatures	
	10.15	Specific Gravity of sopropyl Ether vs Temperature	
	10.16	Mutual Solubility and Specific Gravity of Isopropyl Ether, Water and Isopropyl Alcohol at 25°C	
	10.17	n-Butvi Ether	
	10.17	Diamyl Ether	
	10.19	n-Hexyl Ether	
	10.19	Solubility Data for Various Ethers	
	10.20	Comparative Evaporation Rates of Various Ethers	. 414 A7
	10.22	Specific Gravities of Various Ethers	
	10.23	Vapor Pressure of Various Ethers	
	10.24	Ethylene Oxide	
	10.25	Enthalpy and Entropy of Ethylene Oxide	. 478

10.26 10.27		
	Propylene Oxide	479
	Freezing Points of Solutions of Ethylene Oxide and Propylene Oxide	479
10.28	1,2-Butylene Oxide	480
	1,2-Dutyleie Oxide	400
10.29	CARDOLITE NC-513	
10.30	1,4-Dioxane	
10.31	Trioxane	481
10.32	Vinyl Methyl Ether	482
10.33	Vinyl Ethyl Ether	
10.34	Vinyl 2-Chloroethyl Ether	
· - · -		
10.35	Vinyl Butyl Ether	
10.36	Vinyl Isobutyl Ether	
10.37	Vinyl 2-Ethylhexyl Ether	
10.38	Typical Properties of the Vinyl Ethers	483
10.39	Phenyl Methyl Ether	484
10.40	Dibenzyl Ether	
10.41	Diphenyl Oxide	105
	Diprienyi Oxide	400
10.42	Miscellaneous Alkyl Aryl Ethers	
10.43	Furan	
10.44	2-Methylfuran	486
10.45	Tetrahydrofuran	
10.46	2,3-Dihydropyran	
10.47	Tetrahydropyran	
10.48	Tetrahydropyran-2-Methanol	
10.49	Terpinyl Methyl Ether	494
GLYCOL ETHERS		496
11.1	ARCOSOLV Ethylene and Propylene Glycol Ethers	496
11.2	Ashland Glycol Ethers	
· · · · -	Chemcentral Glycol Ethers	
11.3		
11.4	DOWANOL Glycol Ethers and Acetates	
11.5	Eastman Chemicals Glycol Ethers	
11.6	Grant Chemical Glycol Diethers (GLYMES)	504
11.7	Occidental Ethylene Glycol Ethers and Glycol Ether Acetates	
11.8	Olin Chemicals Poly-Solv Propylene Glycol Ethers	
11.9	Union Carbide Glycol Ethers	
11.9	Union Carpide Glycol Ethers	่อเง
54-46-4-4	•	
Methylai		514
11.10	Physical Properties of Methylal	514 514
11.10	Physical Properties of Methylal	514 514 514
11.10	Physical Properties of Methylal	514 514 514
11.10 Ethylene Glyd 11.11	Physical Properties of Methylal	514 514 514 514
11.10 Ethylene Gly 11.11 11.12	Physical Properties of Methylal	514 514 514 514 515
11.10 Ethylene Glyd 11.11 11.12 11.13	Physical Properties of Methylal	514 514 514 514 515 515
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14	Physical Properties of Methylal	514 514 514 514 515 515 516
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether	514 514 514 515 515 516 516
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether	514 514 514 515 515 516 516 516
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether	514 514 514 515 515 516 516 516 517
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15 11.16	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether	514 514 514 515 515 516 516 516 517
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Ethylene Glycol Monobutyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Monoisobutyl Ether	514 514 514 515 515 516 516 517 517
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Dibutyl Ether	514 514 514 515 515 516 516 517 517 518
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monophenyl Ether	514 514 514 515 515 516 516 516 517 518 519
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monobenzyl Ether	514 514 514 515 516 516 516 517 517 518 519
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monobenzyl Ether Terpinyl Ethylene Glycol Ether	514 514 514 515 515 516 516 517 517 518 519 520 520
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monobenzyl Ether Ethylene Glycol Monobenzyl Ether Ethylene Glycol Butylphenyl Ethers	514 514 514 515 515 516 516 517 517 518 519 520 520 521
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monobenzyl Ether Terpinyl Ethylene Glycol Ether	514 514 514 515 515 516 516 517 517 518 519 520 520 521
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monobenzyl Ether Ethylene Glycol Monobenzyl Ether Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Monohexyl Ether	514 514 514 515 515 516 516 517 517 518 520 520 521 521
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monobenzyl Ether Terpinyl Ethylene Glycol Ether Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Monohexyl Ether Ethylene Glycol Monohexyl Ether	514 514 514 515 515 516 516 517 517 518 519 520 520 521 521
11.10 Ethylene Gly(11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 11.26	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monobenzyl Ether Ethylene Glycol Monobenzyl Ether Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Monohexyl Ether Ethylene Glycol Monohexyl Ether Ethylene Glycol Ethyl Hexyl Ether Diethylene Glycol	514 514 514 515 515 516 516 517 517 518 519 520 521 521 521
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 11.26 11.27	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monobenzyl Ether Terpinyl Ethylene Glycol Ether Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Monohexyl Ether Ethylene Glycol Monohexyl Ether Ethylene Glycol Monohexyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monomethyl Ether	514 514 514 515 515 516 516 517 517 518 520 520 521 521 522 523
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 11.26 11.27 11.28	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n–Butyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monobenzyl Ether Ethylene Glycol Butyliphenyl Ethers Ethylene Glycol Butyliphenyl Ethers Ethylene Glycol Monohexyl Ether Ethylene Glycol Monohexyl Ether Ethylene Glycol Monohexyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monomethyl Ether	514 514 514 515 515 516 516 517 517 518 520 520 521 521 522 523 523
11.10 Ethylene Gly(11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 11.26 11.27 11.28 11.29	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monopenyl Ether Ethylene Glycol Monobenzyl Ether Ethylene Glycol Monobenzyl Ether Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Monohexyl Ether Ethylene Glycol Monohexyl Ether Diethylene Glycol Monomethyl Ether	514 514 514 515 515 516 516 517 517 518 520 520 521 521 522 523 523 523
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 11.26 11.27 11.28	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n–Butyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monobenzyl Ether Ethylene Glycol Butyliphenyl Ethers Ethylene Glycol Butyliphenyl Ethers Ethylene Glycol Monohexyl Ether Ethylene Glycol Monohexyl Ether Ethylene Glycol Monohexyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monomethyl Ether	514 514 514 515 515 516 516 517 517 518 520 520 521 521 522 523 523 523
11.10 Ethylene Gly(11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 11.26 11.27 11.28 11.29	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monopenyl Ether Ethylene Glycol Monobenzyl Ether Ethylene Glycol Monobenzyl Ether Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Monohexyl Ether Ethylene Glycol Monohexyl Ether Diethylene Glycol Monomethyl Ether	514 514 514 515 515 516 516 517 517 518 520 520 521 521 522 523 523 523 524
11.10 Ethylene Gly(11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 11.26 11.27 11.28 11.29 11.30 11.31	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monobenzyl Ether Terpinyl Ethylene Glycol Ether Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Monohexyl Ether Ethylene Glycol Ethyl Hexyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monobutyl Ether Diethylene Glycol Monobutyl Ether Diethylene Glycol Monobutyl Ether Diethylene Glycol Monobutyl Ether	514 514 514 515 515 516 516 517 517 518 520 520 521 521 522 523 523 524 524
11.10 Ethylene Gly(11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 11.26 11.27 11.28 11.29 11.30 11.31 11.32	Physical Properties of Methylal Ethylene Glycol Monomethyl Ether Ethylene Glycol Monoethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monobenzyl Ether Ethylene Glycol Butylphenyl Ether Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Monohexyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monobutyl Ether Diethylene Glycol Monobutyl Ether Diethylene Glycol Monopropyl Ether Diethylene Glycol Monopropyl Ether Diethylene Glycol Monopropyl Ether Diethylene Glycol Monopropyl Ether	514 514 514 515 515 516 516 517 517 518 520 521 521 521 522 523 523 524 524 524 524
11.10 Ethylene Gly(11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 11.26 11.27 11.28 11.29 11.30 11.31 11.32 11.33	Physical Properties of Methylal Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Ethylene Glycol Monobutyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monobenzyl Ether Terpinyl Ethylene Glycol Ether Ethylene Glycol Monobenzyl Ether Ethylene Glycol Monobenzyl Ether Ethylene Glycol Monohexyl Ether Ethylene Glycol Monohexyl Ether Diethylene Glycol Monoethyl Ether Diethylene Glycol Monobutyl Ether Diethylene Glycol Monobutyl Ether Diethylene Glycol Monopropyl Ether Diethylene Glycol Dimethyl Ether Diethylene Glycol Dimethyl Ether Diethylene Glycol Dimethyl Ether Diethylene Glycol Monopropyl Ether	514 514 514 515 515 516 516 517 517 518 520 521 521 521 522 523 523 524 524 524 525
11.10 Ethylene Glyo 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 11.26 11.27 11.28 11.29 11.30 11.31 11.32 11.33 11.34	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Monoisobutyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monobenzyl Ether Terpinyl Ethylene Glycol Ether Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Monobexyl Ether Ethylene Glycol Monobexyl Ether Ethylene Glycol Monobexyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monobethyl Ether Diethylene Glycol Monobethyl Ether Diethylene Glycol Monobethyl Ether Diethylene Glycol Monobethyl Ether Diethylene Glycol Monobothyl Ether Diethylene Glycol Monopropyl Ether Diethylene Glycol Monopropyl Ether Diethylene Glycol Dimethyl Ether Diethylene Glycol Dimethyl Ether Diethylene Glycol Dimethyl Ether Diethylene Glycol Monopropyl Ether	514 514 514 515 515 516 516 517 517 518 520 521 521 521 522 523 523 524 524 524 525 525 525
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 11.26 11.27 11.28 11.29 11.30 11.31 11.32 11.33 11.34 11.35	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monopenzyl Ether Terpinyl Ethylene Glycol Monopenzyl Ether Tethylene Glycol Butylphenyl Ethers Ethylene Glycol Monohexyl Ether Ethylene Glycol Monohexyl Ether Diethylene Glycol Ethyl Hexyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monopopyl Ether	514 514 514 515 515 516 516 517 517 518 520 521 521 521 522 523 523 524 524 525 525 525 525 525
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 11.26 11.27 11.28 11.29 11.30 11.31 11.32 11.33 11.34 11.35 11.36	Physical Properties of Methylal cols Ethylene Glycol Monoethyl Ether Ethylene Glycol Monoethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monophenyl Ether Ethylene Glycol Monophenyl Ether Terpinyl Ethylene Glycol Ether Ethylene Glycol Butylphenyl Ethers Ethylene Glycol Butylphenyl Ether Ethylene Glycol Butylphenyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monophyl Ether	514 514 514 515 515 516 516 517 517 518 520 521 521 521 523 523 523 524 524 525 525 525 525 526
11.10 Ethylene Glyc 11.11 11.12 11.13 11.14 11.15 11.16 11.17 11.18 11.19 11.20 11.21 11.22 11.23 11.24 11.25 11.26 11.27 11.28 11.29 11.30 11.31 11.32 11.33 11.34 11.35	Physical Properties of Methylal cols Ethylene Glycol Monomethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Dimethyl Ether Ethylene Glycol Diethyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monopropyl Ether Ethylene Glycol Monobutyl Ether Water Solubility of Ethylene Glycol n-Butyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Dibutyl Ether Ethylene Glycol Monopenzyl Ether Terpinyl Ethylene Glycol Monopenzyl Ether Tethylene Glycol Butylphenyl Ethers Ethylene Glycol Monohexyl Ether Ethylene Glycol Monohexyl Ether Diethylene Glycol Ethyl Hexyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monomethyl Ether Diethylene Glycol Monopopyl Ether	514 514 514 515 515 516 516 517 517 518 520 521 521 521 523 523 523 524 524 525 525 525 525 526

11.38	Triethylene Glycol Monomethyl Ether	527
11.39	Triethylene Glycol Monoethyl Ether	527
11.40	Triethylene Glycol Dimethyl Ether	
11.41	Triethylene Glycol Monomethyl Ether/Highers	528
11.42	Triethylene Glycol Monobutyl Ether/Highers	528
	Thethylene divole Monobutyi Ethel/nigheis	520
11.43	Tetraethylene Glycol	529
11.44	Triethylene Glycol Dimethyl Ether	529
Propylene G	lycols	530
11.45	Propylene Glycol Monomethyl Ether	
11.46	Propylene Glycol Monophenyl Ether	530
11.47	Propylene Glycol Monopropyl Ether	531
11.48	Propylene Glycol Monobutyl Ether	531
11.49	Propylene Glycol tert-Butyl Ether	532
11.50	Propylene Glycol Monobutoxyethyl Ether	532
11.51	Propylene Glycol Isobutyl Ether and Higher Homologs	
11.52	Propylene Based Glycol Ether Blends	533
	Propylene based discol Etner Definds	500
11.53	Propylene Based Glycol Ether Blend	533
11.54	Dipropylene Glycol Monomethyl Ether	533
11.55	Dipropylene Glycol Monopropyl Ether	534
11.56	Dipropylene Glycol Monobutyl Ether	
11.57	Dipropylene Glycol Tertiary Butyl Ether	534
11,58	Tripropylene Glycol	535
11.59	Tripropylene Giycol Monomethyl Ether	536
11.60	Aromatic Based Glycol Ether	
		536
	Methoxytriglycol	536
11.61	Ethoxytriglycol	
11.62		
11.63	Butoxytriglycol	537
	us Glycol Data	537
11.64	ARCOSOLV Evaporation Characteristics, Resin Compatibility and Other Data	537
11.65	DOWANOL Miscibility, Solubility, Evaporation Rates, Vapor Pressure, Density, Surface Tension and	
	Other Data	
11.66	GLYME Azeotropic Vapor Pressure and Solubility Data	574
11.66 11.67	GLYME Azeotropic Vapor Pressure and Solubility Data	
11.67	Union Carbide Glycol Ethers	576
11.67 Polyethylen	Union Carbide Glycol Ethers	576 581
11.67 Polyethylen 11.68	Union Carbide Glycol Ethers	576 581 581
11.67 Polyethylen 11.68 11.69	Union Carbide Glycol Ethers	576 581 581 581
11.67 Polyethylen 11.68 11.69 11.70	Union Carbide Glycol Ethers Bigcols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols	576 581 581 581 582
11.67 Polyethylen 11.68 11.69 11.70 11.71	Union Carbide Glycol Ethers B Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols	576 581 581 581 582 599
11.67 Polyethylen: 11.68 11.69 11.70 11.71 Polypropyle	Union Carbide Glycol Ethers Biggols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols	576 581 581 581 582 599 611
11.67 Polyethylen: 11.68 11.69 11.70 11.71 Polypropyle	Union Carbide Glycol Ethers Biggols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols	576 581 581 582 599 611 611
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73	Union Carbide Glycol Ethers B Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers	576 581 581 582 599 611 612
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73	Union Carbide Glycol Ethers B Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers	576 581 581 582 599 611 611 612 622
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73	Union Carbide Glycol Ethers B Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers	576 581 581 582 599 611 611 612 622
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols	Union Carbide Glycol Ethers B Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants	576 581 581 582 599 611 612 622 622
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols	Union Carbide Glycol Ethers B Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers	576 581 581 582 599 611 612 622 623
11.67 Polyethylen: 11.68 11.69 11.70 11.71 Polypropyle: 11.72 11.73 Polyols 11.74 Glycerine E: 11.75	Union Carbide Glycol Ethers B Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl α-Monomethyl Ether	576 581 581 582 599 611 612 622 623 623 623
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols 11.74 Glycerine E 11.75 11.76	Union Carbide Glycol Ethers a Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl α-Monomethyl Ether Glyceryl α,γ-Dimethyl Ether	576 581 581 582 599 611 612 622 623 623 623
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols 11.74 Glycerine E 11.75 11.76 11.77	Union Carbide Glycol Ethers e Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl α-Monomethyl Ether Glyceryl α-Mono-n-Butyl Ether Glyceryl α-Mono-n-Butyl Ether	576 581 581 582 599 611 612 622 623 623 623 623
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols . 11.74 Glycerine E 11.75 11.76 11.77 11.78	Union Carbide Glycol Ethers e Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl α-Monomethyl Ether Glyceryl α-Mono-n-Butyl Ether Glyceryl α-Mono-n-Butyl Ether Glyceryl α-Monoisoamyl Ether	576 581 581 582 599 611 612 622 623 623 623 623 623
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols . 11.74 Glycerine E 11.75 11.76 11.77 11.78 11.79	Union Carbide Glycol Ethers a Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl α-Monomethyl Ether Glyceryl α-Mono-n-Butyl Ether Glyceryl α-Mono-n-Butyl Ether Glyceryl α-Monoisoamyl Ether Glyceryl α-Monoisoamyl Ether Glyceryl α-Monoisoamyl Ether Glyceryl α-Monoisoamyl Ether	576 581 581 582 599 611 612 622 623 623 623 623 623 623
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols . 11.74 Glycerine E 11.75 11.76 11.77 11.78	Union Carbide Glycol Ethers e Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl α-Monomethyl Ether Glyceryl α-Mono-n-Butyl Ether Glyceryl α-Mono-n-Butyl Ether Glyceryl α-Monoisoamyl Ether	576 581 581 582 599 611 612 622 623 623 623 623 623 623
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols 11.74 Glycerine E 11.75 11.76 11.77 11.78 11.79 11.80	Union Carbide Glycol Ethers a Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl α-Monomethyl Ether Glyceryl α-Monon-n-Butyl Ether Glyceryl α-Mono-n-Butyl Ether Glyceryl α-Monoisoamyl Ether Miscellaneous Glycerine Ethers	576 581 581 582 599 611 612 622 623 623 623 624 624
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols 11.74 Glycerine E 11.75 11.76 11.77 11.78 11.79 11.80 KETONES	Union Carbide Glycol Ethers e Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl α-Monomethyl Ether Glyceryl α-Mono-n-Butyl Ether Glyceryl α-Mono-n-Butyl Ether Glyceryl α-Monoisoamyl Ether Miscellaneous Glycerine Ethers	576 581 581 582 599 611 612 622 623 623 623 623 624 624 624
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols . 11.74 Glycerine E 11.75 11.76 11.77 11.78 11.79 11.80 KETONES	Union Carbide Glycol Ethers B Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl \(\alpha \)—Monomethyl Ether Glyceryl \(\alpha \)—Dimethyl Ether Glyceryl \(\alpha \)—Dimethyl Ether Glyceryl \(\alpha \)—Mononosoamyl Ether Glyceryl \(\alpha \)—Monoisoamyl Ether Glyceryl \(\alpha \)—Diisoamyl Ether Miscellaneous Glycerine Ethers	576 581 581 582 599 611 612 622 623 623 623 624 624 624 626
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols 11.74 Glycerine E 11.75 11.76 11.77 11.78 11.79 11.80 KETONES	Union Carbide Glycol Ethers B Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl \(\alpha \), \(\parallel \) Dimethyl Ether Glyceryl \(\alpha \), \(\parallel \) Dimethyl Ether Glyceryl \(\alpha \), \(\parallel \) Dimethyl Ether Glyceryl \(\alpha \), \(\parallel \) Diisoamyl Ether Glyceryl \(\alpha \), \(\parallel \) Diisoamyl Ether Glyceryl \(\alpha \), \(\parallel \) Diisoamyl Ether Miscellaneous Glycerine Ethers	576 581 581 582 599 611 612 623 623 623 623 623 624 624 625 625 626 626 626 626 626 626 626 627 627 627
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols . 11.74 Glycerine E 11.75 11.76 11.77 11.78 11.79 11.80 KETONES	Union Carbide Glycol Ethers B Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl \(\alpha \)-Dimethyl Ether Glyceryl \(\alpha \)-Dimethyl Ether Glyceryl \(\alpha \)-Dimethyl Ether Glyceryl \(\alpha \)-Dimothyl Ether Glyceryl \(\alpha \)-Dimothyl Ether Glyceryl \(\alpha \)-Dimothyl Ether Miscellaneous Glycerine Ethers Physical Properties of Acetone Low Temperature Characteristics of Aqueous Solutions of Acetone	576 581 581 582 599 611 612 622 623 623 623 623 624 625 626 626 626 626 626 626 626 626 626
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols 11.74 Glycerine E 11.75 11.76 11.77 11.78 11.79 11.80 KETONES Acetone 12.1	Union Carbide Glycol Ethers B Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl \(\alpha \), \(\parallel \) Dimethyl Ether Glyceryl \(\alpha \), \(\parallel \) Dimethyl Ether Glyceryl \(\alpha \), \(\parallel \) Dimethyl Ether Glyceryl \(\alpha \), \(\parallel \) Diisoamyl Ether Glyceryl \(\alpha \), \(\parallel \) Diisoamyl Ether Glyceryl \(\alpha \), \(\parallel \) Diisoamyl Ether Miscellaneous Glycerine Ethers	576 581 581 582 599 611 612 622 623 623 623 623 624 625 626 626 626 626 626 626 626 626 626
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols 11.74 Glycerine E 11.75 11.76 11.77 11.78 11.79 11.80 KETONES Acetone 12.1 12.2	Union Carbide Glycol Ethers B Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl \(\alpha \)-Dimethyl Ether Glyceryl \(\alpha \)-Dimethyl Ether Glyceryl \(\alpha \)-Dimethyl Ether Glyceryl \(\alpha \)-Dimothyl Ether Glyceryl \(\alpha \)-Dimothyl Ether Glyceryl \(\alpha \)-Dimothyl Ether Miscellaneous Glycerine Ethers Physical Properties of Acetone Low Temperature Characteristics of Aqueous Solutions of Acetone	576 581 581 582 599 611 612 623 623 623 623 624 624 625 626 626 626 626 626 626 626 626 626
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols 11.74 Glycerine E 11.75 11.76 11.77 11.78 11.79 11.80 KETONES Acetone 12.1 12.2 12.3	Union Carbide Glycol Ethers a Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl α-Monomethyl Ether Glyceryl α-Monon-Butyl Ether Glyceryl α-Monon-Butyl Ether Glyceryl α-Monoisoamyl Ether Glyceryl α-Monoisoamyl Ether Miscellaneous Glycerine Ethers Physical Properties of Acetone Low Temperature Characteristics of Aqueous Solutions of Acetone Solubility of Various Materials in Acetone Specific Gravity of Aqueous Solutions of Acetone at Different Temperatures	576 581 581 582 599 611 612 623 623 623 623 624 625 626 626 626 626 626 626 626 626 626
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols 11.74 Glycerine E 11.75 11.76 11.77 11.78 11.79 11.80 KETONES Acetone 12.1 12.2 12.3 12.4 12.5	Union Carbide Glycol Ethers B Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl α-Monomethyl Ether Glyceryl α-Mono-n-Butyl Ether Glyceryl α-Mono-n-Butyl Ether Glyceryl α-Monoisoamyl Ether Glyceryl α-Monoisoamyl Ether Miscellaneous Glycerine Ethers Physical Properties of Acetone Low Temperature Characteristics of Aqueous Solutions of Acetone Solubility of Various Materials in Acetone Specific Gravity of Aqueous Solutions of Acetone at Different Temperatures Surface Tension of Aqueous Solutions of Acetone at 25°C	576 581 581 582 599 611 612 622 623 623 623 624 624 626 626 626 626 626 626 626 626
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols 11.74 Glycerine E 11.75 11.76 11.77 11.78 11.79 11.80 KETONES Acetone 12.1 12.2 12.3 12.4 12.5 12.6	Union Carbide Glycol Ethers e Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl α-Monomethyl Ether Glyceryl α-Monon-n-Butyl Ether Glyceryl α-Monoisoamyl Ether Glyceryl α-Monoisoamyl Ether Glyceryl α-Monoisoamyl Ether Miscellaneous Glycerine Ethers Physical Properties of Acetone Low Temperature Characteristics of Aqueous Solutions of Acetone Solubility of Various Materials in Acetone Specific Gravity of Aqueous Solutions of Acetone at Different Temperatures Surface Tension of Aqueous Solutions of Acetone at 25°C Viscosity of Aqueous Acetone Solutions of Acetone at 25°C	576 581 581 582 599 611 612 622 623 623 623 624 624 626 626 626 626 626 627 626 627 627 628 629 629 629 620 620 620 620 620 620 620 620 620 620
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols 11.74 Glycerine E 11.75 11.76 11.77 11.78 11.79 11.80 KETONES Acetone 12.1 12.2 12.3 12.4 12.5 12.6 12.7	Union Carbide Glycol Ethers e Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl α-Monomethyl Ether Glyceryl α-Mono-n-Butyl Ether Glyceryl α-Monoisoamyl Ether Glyceryl α-Monoisoamyl Ether Glyceryl α-Monoisoamyl Ether Miscellaneous Glycerine Ethers Physical Properties of Acetone Low Temperature Characteristics of Aqueous Solutions of Acetone Solubility of Various Materials in Acetone Specific Gravity of Aqueous Solutions of Acetone at Different Temperatures Surface Tension of Aqueous Solutions at 25°C Viscosity of Aqueous Acetone Solutions of Acetone at 25°C Refractive Index of Aqueous Solutions of Acetone at 25°C	576 581 581 581 582 599 611 612 622 623 623 623 624 625 625 626 626 626 626 627 627 628 629 629 629 629 629 629 629 629 629 629
11.67 Polyethylen 11.68 11.69 11.70 11.71 Polypropyle 11.72 11.73 Polyols	Union Carbide Glycol Ethers e Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl α-Monomethyl Ether Glyceryl α-Mono-n-Butyl Ether Glyceryl α-Mono-n-Butyl Ether Glyceryl α-Monoisoamyl Ether Glyceryl α-Monoisoamyl Ether Glyceryl α-Monoisoamyl Ether Miscellaneous Glycerine Ethers Physical Properties of Acetone Low Temperature Characteristics of Aqueous Solutions of Acetone Solubility of Various Materials in Acetone Specific Gravity of Aqueous Solutions of Acetone at 25°C Viscosity of Aqueous Acetone Solutions of Acetone at 25°C Liquid-Vapor Equilibria for Aqueous Solutions of Acetone at Different Pressures	576 581 581 581 582 599 611 612 622 623 623 623 623 624 625 625 626 626 626 626 626 626 626 626
11.67 Polyethylen: 11.68 11.69 11.70 11.71 Polypropyle: 11.72 11.73 Polyols	Union Carbide Glycol Ethers e Glycols Ashland Polyethylene Glycols BASF Pluracol E Polyethylene Glycols CARBOWAX Polyethylene Glycols Dow Polyglycols ne Glycols Ashland Polypropylene Glycols Dow Polypropylene Glycols Dow Polypropylene Glycols and Polyglycol Copolymers Properties of PLURONIC and TETRONIC Block Copolymer Surfactants thers Glyceryl α-Monomethyl Ether Glyceryl α-Mono-n-Butyl Ether Glyceryl α-Monoisoamyl Ether Glyceryl α-Monoisoamyl Ether Glyceryl α-Monoisoamyl Ether Miscellaneous Glycerine Ethers Physical Properties of Acetone Low Temperature Characteristics of Aqueous Solutions of Acetone Solubility of Various Materials in Acetone Specific Gravity of Aqueous Solutions of Acetone at Different Temperatures Surface Tension of Aqueous Solutions at 25°C Viscosity of Aqueous Acetone Solutions of Acetone at 25°C Refractive Index of Aqueous Solutions of Acetone at 25°C	576 581 581 581 582 599 611 612 622 623 623 623 623 624 625 625 626 626 626 626 626 626 626 626

	12.10	Physical Properties of Methyl Ethyl Ketone	629
		Methyl Ethyl Ketone and Water	
		by Ketone	
	12.12	Properties of Methyl n-Propyl Ketone	
		/I Ketone	031
	12.13 12.14	Solubility of Dry Half-Second R.S. Nitrocellulose in a System of Methyl Butyl Ketone-sec-	001
	12.14	Butanol-Toluene	633
8.0.A.L.	ul laabus	/ Ketone	622
	12.15	Properties of Methyl Isobutyl Ketone	632
	12.15	Solubility of Miscellaneous Materials in Methyl Isobutyl Ketone at 20° to 25°C	
		d Ketone	
	12.17	Properties of Methyl n-Amyl Ketone	634
		/ Ketone	
	12.18	Properties of Methyl Isoamyl Ketone	
	12.19	Properties of Methyl Isoamyl Ketone vs Other Solvents	635
	12.20	Butyrate-Acrylic Wood Lacquer—Substituting Isoamyl Ketone for 2-Ethoxyethyl Acetate	635
		Ketone	636
	12.21	Properties of Methyl Hexyl Ketone	636
		Ketone	
	12.22	Properties of Methyl Heptyl Ketone	636
		cone	
	12.23	Properties of Ethylbutyl Ketone	637
		ptone	
	12.24	Properties of Ethyl Amyl Ketone	
Di-n	-Propyl I	· · · · · · · · · · · · · · · · · · ·	
	12.25	Properties of Di-n-Propyl Ketone	638
Diiso	butyl Ke	tone	
	12.26	Properties of Diisobutyl Ketone	638
Cycl	ohexanoi	ne	639
•	12.27	Properties of Cyclohexanone	639
	12.28	Resin Solubility in Cyclohexanone	640
84-81			
Metr	ıyı Cyclor	nexanone	641
	12.29	Properties of Methyl Cyclohexanone	641
Meth	12.29 nyi Acetoi	Properties of Methyl Cyclohexanone	641 641
Meth	12.29 nyi Acetoi	Properties of Methyl Cyclohexanone	641 641 642
Meti Diac	12.29 nyi Acetor etone Alc 12.30	Properties of Methyl Cyclohexanone	641 641 642 642
Meti Diac	12.29 nyi Acetor etone Alc 12.30	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol tone	641 642 642 642
Meth Diac	12.29 nyl Acetor etone Alc 12.30 tonyl Acetor 12.31	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol tone Properties of Acetonyl Acetone	641 642 642 642 643
Meth Diac	12.29 nyi Acetor etone Alc 12.30 tonyi Acet 12.31 ityi Oxide	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol tone Properties of Acetonyl Acetone	641 642 642 642 643 643
Meth Diac Acel Mes	12.29 nyl Acetor etone Alc 12.30 tonyl Acet 12.31 ityl Oxide 12.32	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol tone Properties of Acetonyl Acetone Properties of Mesityl Oxide	641 642 642 642 643 643
Meth Diac Acel Mes	12.29 nyl Acetor etone Alc 12.30 tonyl Acetor 12.31 ityl Oxide 12.32 horone	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol tone Properties of Acetonyl Acetone Properties of Mesityl Oxide	641 642 642 642 643 643 643
Meth Diac Acei Mesi	12.29 nyl Acetor etone Ald 12.30 tonyl Acetor 12.31 ityl Oxide 12.32 horone 12.33	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol tone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone	641 642 642 642 643 643 644 644
Meth Diac Acei Mesi	12.29 nyl Acetone Alc 12.30 tonyl Acet 12.31 ityl Oxide 12.32 horone 12.33	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol tone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone	641 642 642 643 643 643 644 644
Meth Diac Acet Mesi Isop	12.29 nyl Acetor etone Alc 12.30 conyl Acet 12.31 ityl Oxide 12.32 horone 12.33 chone 12.34	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol tone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone Properties of Fenchone	641 642 642 642 643 643 644 644 644
Meth Diac Acet Mesi Isop	12.29 nyl Acetor etone Ald 12.30 tonyl Acetor 12.31 ityl Oxide 12.32 horone 12.33 chone 12.34 i—Propiologi	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol tone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone Properties of Fenchone actone	641 642 642 642 643 643 644 644 644 644
Meth Diac Acei Mesi Isop Fend Beta	12.29 nyl Acetor etone Ald 12.30 conyl Acetor 12.31 ityl Oxide 12.32 horone 12.33 chone 12.34 a-Propioid 12.35	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol cone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone Properties of Fenchone actone Physical Properties of Beta–Propiolactone	641 642 642 643 643 644 644 644 645
Meth Diac Acei Mesi Isop Fend Beta	12.29 nyl Acetor etone Ald 12.30 tonyl Acetor 12.31 ityl Oxide 12.32 horone 12.33 chone 12.34 n-Propiolo 12.35 nma-Buty	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol cone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone Properties of Fenchone actone Physical Properties of Beta–Propiolactone rolactone	641 642 642 643 643 643 644 644 645 645
Meth Diac Acet Mesi Isop Fend Beta	12.29 nyl Acetor etone Alc 12.30 conyl Acet 12.31 ityl Oxide 12.32 horone 12.33 chone 12.34 a-Propiolo 12.35 nma-Buty 12.36	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol cone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone Properties of Fenchone actone Physical Properties of Beta–Propiolactone rolactone Properties of Gamma–Butyrolactone	641 642 642 643 643 644 644 645 645 645
Meth Diac Acet Mesi Isop Fend Beta	12.29 nyl Acetor etone Ald 12.30 conyl Acetor 12.31 ityl Oxide 12.32 horone 12.33 chone 12.34 n-Propiolo 12.35 nma-Buty 12.36 nparative	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol cone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone Properties of Fenchone actone Physical Properties of Beta–Propiolactone rolactone Properties of Gamma–Butyrolactone Data	641 642 642 643 643 644 644 645 645 645 645
Meth Diac Acet Mesi Isop Fend Beta	12.29 nyl Acetor etone Alc 12.30 conyl Acet 12.31 ityl Oxide 12.32 horone 12.33 chone 12.34 n-Propiolo 12.35 nma-Buty 12.36 nparative 12.37	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol cone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone Properties of Fenchone actone Physical Properties of Beta–Propiolactone rolactone Properties of Gamma–Butyrolactone Data Ashland Ketones	641 642 642 643 643 644 644 645 645 645 648
Meth Diac Acet Mesi Isop Fend Beta	12.29 nyl Acetor etone Alc 12.30 conyl Acetor 12.31 ityl Oxide 12.32 horone 12.33 chone 12.34 a-Propiolo 12.35 nma-Buty 12.36 aparative 12.37 12.38	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol cone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone Properties of Fenchone actone Physical Properties of Beta–Propiolactone rolactone Properties of Gamma–Butyrolactone Data Ashland Ketones Chemcentral Ketones and Miscellaneous Active Solvents	641 642 642 643 643 644 644 645 645 645 648 648
Meth Diac Acet Mesi Isop Fend Beta	12.29 nyl Acetor etone Alc 12.30 conyl Acetor 12.31 ityl Oxide 12.32 horone 12.33 chone 12.34 a-Propiolo 12.35 nma-Buty 12.36 aparative 12.37 12.38 12.39	Properties of Methyl Cyclohexanone cohol Physical Properties of Acetone–Free Diacetone Alcohol cone Properties of Acetonyl Acetone Properties of Isophorone Properties of Fenchone actone Physical Properties of Beta–Propiolactone rolactone Properties of Gamma–Butyrolactone Data Ashland Ketones Chemcentral Ketones and Miscellaneous Active Solvents Eastman Chemical Ketones	641 642 642 643 643 644 644 645 645 645 648 649
Meth Diac Acet Mesi Isop Fend Beta	12.29 nyl Acetor etone Alc 12.30 conyl Acetor 12.31 ityl Oxide 12.32 horone 12.33 chone 12.34 a-Propiolo 12.35 nma-Buty 12.36 nparative 12.37 12.38 12.39 12.40	Properties of Methyl Cyclohexanone cohol Physical Properties of Acetone–Free Diacetone Alcohol cone Properties of Acetonyl Acetone Properties of Isophorone Properties of Fenchone actone Physical Properties of Beta–Propiolactone rolactone Properties of Gamma–Butyrolactone Data Ashland Ketones Chemicentral Ketones and Miscellaneous Active Solvents Eastman Chemical Ketones Exxon Ketones	641 642 642 643 643 644 644 645 645 645 645 645 646 646
Meth Diac Acet Mesi Isop Fend Beta	12.29 nyl Acetor etone Alc 12.30 conyl Acetor 12.31 ityl Oxide 12.32 horone 12.33 chone 12.34 a-Propiolo 12.35 nma-Buty 12.36 aparative 12.37 12.38 12.39 12.40 12.41	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol cone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone Properties of Fenchone actone Physical Properties of Beta–Propiolactone rolactone Properties of Gamma–Butyrolactone Data Ashland Ketones Chemicentral Ketones and Miscellaneous Active Solvents Eastman Chemical Ketones Exxon Ketones Hoechst–Celanese Ketones	641 642 642 642 643 643 644 644 645 645 645 645 648 649 650 650
Meth Diac Acet Mesi Isop Fend Beta	12.29 nyl Acetor etone Alc 12.30 lonyl Acetor 12.31 ityl Oxide 12.32 horone 12.33 chone 12.34 n-Propiolo 12.35 nma-Buty 12.36 nparative 12.37 12.38 12.39 12.40 12.41 12.42	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol tone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone Properties of Fenchone actone Physical Properties of Beta–Propiolactone rolactone Properties of Gamma–Butyrolactone Data Ashland Ketones Chemcentral Ketones and Miscellaneous Active Solvents Eastman Chemical Ketones Exxon Ketones Hoechst–Celanese Ketones Shell Chemical Ketones Shell Chemical Ketones	641 642 642 643 643 644 644 645 645 645 645 645 646 646 646
Meth Diac Acet Mesi Isop Fend Beta	12.29 nyl Acetor etone Alc 12.30 lonyl Acetor 12.31 ityl Oxide 12.32 horone 12.33 chone 12.34 n-Propiolo 12.35 nma-Buty 12.36 nparative 12.37 12.38 12.39 12.40 12.41 12.42 12.43	Properties of Methyl Cyclohexanone ne cohol Physical Properties of Acetone–Free Diacetone Alcohol cone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone Properties of Fenchone actone Physical Properties of Beta–Propiolactone rolactone Properties of Gamma–Butyrolactone Data Ashland Ketones Chemcentral Ketones and Miscellaneous Active Solvents Eastman Chemical Ketones Exxon Ketones Hoechst–Celanese Ketones Shell Chemical Ketones Union Carbide Ketones Union Carbide Ketones	641 642 642 643 643 644 644 645 645 645 645 650 651 652
Meth Diac Acet Mesi Isop Fend Beta	12.29 nyl Acetor etone Alc 12.30 lonyl Acetor 12.31 ityl Oxide 12.32 horone 12.33 chone 12.34 n-Propiola 12.36 nma-Buty 12.36 nparative 12.37 12.38 12.39 12.40 12.41 12.42 12.43 12.44	Properties of Methyl Cyclohexanone ne nohol Physical Properties of Acetone—Free Diacetone Alcohol cone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone Properties of Fenchone actone Prysical Properties of Beta—Propiolactone rolactone Properties of Gamma—Butyrolactone Data Ashland Ketones Chemcentral Ketones and Miscellaneous Active Solvents Eastman Chemical Ketones Exxon Ketones Hoechst—Celanese Ketones Shell Chemical Ketones Union Carbide Ketones Vapor Pressure of Various Ketones at Different Temperatures	641 642 642 643 643 644 644 645 645 645 645 645 645 645 645
Meth Diac Acet Mesi Isop Fend Beta	12.29 nyl Acetor etone Alc 12.30 lonyl Acetor 12.31 ityl Oxide 12.32 horone 12.33 chone 12.34 n-Propiolo 12.35 nma-Buty 12.36 nparative 12.37 12.38 12.39 12.40 12.41 12.42 12.43	Properties of Methyl Cyclohexanone ne nohol Physical Properties of Acetone–Free Diacetone Alcohol tone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone Properties of Fenchone actone Physical Properties of Beta–Propiolactone rolactone Properties of Gamma–Butyrolactone Data Ashland Ketones Chemcentral Ketones and Miscellaneous Active Solvents Eastman Chemical Ketones Exxon Ketones Hoechst–Celanese Ketones Shell Chemical Ketones Union Carbide Ketones Vapor Pressure of Various Ketones at Different Temperatures Specific Gravities of etones	641 642 642 643 643 644 644 645 645 645 645 645 645 645 650 651 651
Meth Diac Acet Mesi Isop Fend Beta	12.29 hyl Acetone Ald 12.30 tonyl Acetone 12.31 ltyl Oxide 12.32 horone 12.33 chone 12.35 hma-Buty 12.36 hparative 12.38 12.39 12.40 12.41 12.42 12.43 12.44 12.45	Properties of Methyl Cyclohexanone ne nohol Physical Properties of Acetone—Free Diacetone Alcohol tone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone Properties of Fenchone actone Physical Properties of Beta—Propiolactone rolactone Properties of Gamma—Butyrolactone Properties of Gamma—Butyrolactone Data Ashland Ketones Chemcentral Ketones and Miscellaneous Active Solvents Eastman Chemical Ketones Exxon Ketones Hoechst—Celanese Ketones Shell Chemical Ketones Union Carbide Ketones Vapor Pressure of Various Ketones at Different Temperatures Specific Gravities of etones Solubility of Ketones in Water	641 642 642 643 644 644 644 645 645 645 645 645 645 645
Meth Diac Acet Mesi Isop Fend Beta	12.29 hyl Acetone Alc 12.30 tonyl Acetone 12.31 ityl Oxide 12.32 horone 12.33 chone 12.35 hma-Buty 12.36 hparative 12.38 12.39 12.40 12.41 12.42 12.43 12.44 12.45 12.46	Properties of Methyl Cyclohexanone ne nohol Physical Properties of Acetone–Free Diacetone Alcohol tone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone Properties of Fenchone actone Physical Properties of Beta–Propiolactone rolactone Properties of Gamma–Butyrolactone Properties of Gamma–Butyrolactone Data Ashland Ketones Chemcentral Ketones and Miscellaneous Active Solvents Eastman Chemical Ketones Exxon Ketones Hoechst–Celanese Ketones Shell Chemical Ketones Union Carbide Ketones Vapor Pressure of Various Ketones at Different Temperatures Specific Gravities of etones Solubility of Ketones in Water Solubility of Water in Ketones	641 642 642 643 643 644 644 645 645 645 645 645 645 650 651 651 652 653
Meth Diac Acet Mesi Isop Fend Beta	12.29 hyl Acetone Alc 12.30 tonyl Acetone 12.31 ityl Oxide 12.32 horone 12.33 chone 12.35 hma-Buty 12.36 hparative 12.38 12.39 12.40 12.41 12.42 12.43 12.44 12.45 12.46 12.47	Properties of Methyl Cyclohexanone ne nohol Physical Properties of Acetone—Free Diacetone Alcohol tone Properties of Acetonyl Acetone Properties of Mesityl Oxide Properties of Isophorone Properties of Fenchone actone Physical Properties of Beta—Propiolactone rolactone Properties of Gamma—Butyrolactone Properties of Gamma—Butyrolactone Data Ashland Ketones Chemcentral Ketones and Miscellaneous Active Solvents Eastman Chemical Ketones Exxon Ketones Hoechst—Celanese Ketones Shell Chemical Ketones Union Carbide Ketones Vapor Pressure of Various Ketones at Different Temperatures Specific Gravities of etones Solubility of Ketones in Water	641 642 642 643 643 644 644 645 645 645 645 645 645 650 651 652 653 653

ACIDS	***************************************	662
	Acetic Acid	
13.2	Viscosity of Acetic Acid and Acetic Anhydride Mixtures at 15° and 76.5°C	662
13.3	Butyric Acid	663
	Viscosity of Aqueous Butyric Acid Solution at 25°C	663
13.5	Butyric Anhydride	
13.6	Solubility of Water in Caproic Acid at Various Temperatures	
13.7	2-Ethylbutyric Acid	
13.8	2-Ethylhexoic Acid	
13.9	Solubility of Water in Ethylhexoic Acid, Ethylbutyraldehyde and Ethylpropylacrolein	004
13.10	Lactic Acid	665
13.11	Trifluoroacetic Acid	
13.12	Vapor Pressure of Organic Acids and Anhydrides at Various Temperatures	668
13.13	Fatty Acid Composition of Various Fats and Oils	
13.14	Arizona Chemical ACTINOL Tall Oil Fatty Acids	
13.15	Eastman Chemicals Acids and Anhydrides	671
13.16	Halocarbon Products BIOGRADE Trifluoroacetic Acid	671
13.17	EMERY Fatty and Dibasic Acids	672
13.18	INDUSTRENE and HYSTRENE Fatty and Dibasic Acids	
13.19	NEO-FAT Fatty Acids	
13.20	Procter & Gamble Fatty Acids	
13.21	Union Carbide Acids	
10.21	SHOT Subdo Adds	-
AMINES		686
•	Monomethylamine	
14.1		
14.2	Dimethylamine	
14.3	Trimethylamine	68/
14.4	Freezing Points of Aqueous Methylamine Solutions	688
14.5	Binary Azeotropes of Methylamines	688
14.6	Solubility Data for Methylamines	
14.7	Monoethylamine	
14.8	Diethylamine	
14.9	Triethylamine	691
14.10	n-Propylamine	691
14.11	Di-nPropylamine	
14.12	Mutual Solubility of Di-n-Propylamine and Water at Various Temperatures	692
14.13	Solubility Curve at 25° for the System Di-n-Propylamine-Water-Ethanol	
14.14	Isopropylamine	692
14,15	Di-Isopropylamine	
14.16	n-Butvlamine	
14.17	n-Dibutylamine	
14.18	n–Tributylamine	
14.19	Isobutylamine	
14.20	Diisobutylamine	
14.21	sec-Butylamine	
14.22	Mono-n-Butyl Diamylamine	
14.22	n-Amylamine	
· · · · - ·	sec-Amylaminesec-Amylamine	
14.24		
14.25	Diamylamine (Mixed Isomers)	
14.26	Triamylamine (Mixed Isomers)	
14.27	sec-Hexylamine	
14.28	2-Ethylbutylamine	
14.29	n-Heptylamine	
14.30	2-Ethylhexylamine	
14.31	Di-2-Ethylhexylamine	
14.32	Cyclohexylamine	
14.33	Dicyclohexylamine	
14.34	ALIQUAT Fatty Quaternary Ammonium Chloride	
14.35	KEMAMINE Fatty Quaternary Ammonium Chlorides	
14,36	High Molecular Weight Aliphatic Amines	700
14.37	Solubilities of Pure Dodecyl- and Octadecyl-Trimethylammonium Chlorides in Grams per 100 grams	
	of Solvent	
14.38	Solubilities of Organic Compounds in Aliphatic Amines at 25° ± 5°C	
14.39	Vapor Pressure of Various Amines	705

14.40	Vapor Pressure of Sharples Amines	705
	vapor Pressure of Straiples Admites	706
•	mines	700
14.41	Ethylene Diamine	706
14.42	Boiling Point Composition Curves for Aqueous Ethylenediamine Solutions	
14.43	Diethylenetriamine	706
14.44	Boiling Point Composition Curves for Aqueous Diethylenetriamine Solutions	707
14.45	Tetraethylenepentamine	
	Tetratetry/eneperitainine	707
14.46	Propylenediamine	707
14.47	Solvent Properties of Alkylene Diamines	708
14.48	Vapor Pressures of Alkylene Diamines and Other Amines	708
14.49	Density of Ethylenediamine Solutions	709
14.50	Density of Higher Ethylene Amines	709
	Viscosity of Ethylenediamine Solutions	710
14.51	Viscosity of Ethylenediamine Solutions	710
14.52	Viscosity of Higher Ethylene Amines	710
Comparative	Data	711
14.53	Akzo ARMEEN, DUOMEEN, TRIAMEEN, ETHOMEEN, Ethoxylated Diamines, Propoxylated Amines	711
14.54	ANGUS Amines	
14.55	Ashland Amines	718
	Asharu Amines	710
14.56	Chemcentral Amines	
14.57	Dow Commercial Alkanolamines	
14.58	Humko Amines	735
14.59	Procter & Gamble Tertiary Amines	736
14.60	Occidental Ethanolamines	737
	Union Carbide Ethyleneamines	
14.61		
14.62	Union Carbide Ethanolamines	
Alkanol Amii	198	
14.63	Monoethanolamine	760
14.64	Boiling Point Composition Curves for Aqueous Monoethanolamine Solutions	760
14.65	Viscosity of Monoethanolamine at Various Temperatures	760
14.66	Diethanolamine	
14.67	Viscosity of Diethanolamine at Various Temperatures	
14.68	Triethanolamine	761
14.69	Viscosity of Triethanolamine at Various Temperatures	762
14.70	Specific Heats of Aqueous Triethanolamine Solutions at 21°C	
	Surface Tension of Aqueous Ethanolamine Solutions at 20°C	760
14.71		
14.72	Viscosity of Aqueous Ethanolamine Solutions at 20°C	
14.73	Isopropanolamines Mixed	
14.74	Triisopropanolamine	763
14.75	2-Amino-2-Methyl-1-Propanol	
14.76	2-Amino-2-Methyl-1,2-Propanediol	
14.77	2-Amino-2-Ethyl-1,3-Propanediol	
14.78	2-Amino-1-Butanol	764
14.79	Tris(Hydroxymethyl)Aminomethane	. 764
14.80	2-Aminoethylethanolamine	
14.81	1-Diethylamino-2,3-Propanediol	
	Aminohydroxy Compounds	
14.82		
14.83	2-Diethylamino-2-Methyl-1-Propanol	
Alkylalkanol	Amines	. 766
14.84	Properties of Various Alkylalkanol Amines	. 766
Giveol Ether	Amines	
14.85	Properties of Various Glycol Ether Amines	
•		
14.86	Aniline	
14.87	Dimethylaniline	. 769
14.88		
	Diethylaniline	. / 02
1 <i>4</i> 20		
14.89	N-Mono-n-Butyl Aniline	. 770
14.90	N-Mono-n-Butyl Aniline	. 770 . 770
14.90 14.91	N-Mono-n-Butyl Aniline N,N-Di-n-Butyl Aniline n-Monoamyl Aniline (Mixed Isomers)	. 770 . 770 . 770
14.90	N-Mono-n-Butyl Aniline N,N-Di-n-Butyl Aniline n-Monoamyl Aniline (Mixed Isomers) p-tert-Amyl Aniline	. 770 . 770 . 770
14.90 14.91	N-Mono-n-Butyl Aniline N,N-Di-n-Butyl Aniline n-Monoamyl Aniline (Mixed Isomers)	. 770 . 770 . 770
14.90 14.91 14.92 14.93	N-Mono-n-Butyl Aniline N,N-Di-n-Butyl Aniline n-Monoamyl Aniline (Mixed Isomers) p-tert-Amyl Aniline Di-tert-Amyl Aniline	. 770 . 770 . 770 . 770
14.90 14.91 14.92 14.93 14.94	N-Mono-n-Butyl Aniline N,N-Di-n-Butyl Aniline n-Monoamyl Aniline (Mixed Isomers) p-tert-Amyl Aniline Di-tert-Amyl Aniline N,N-Diamyl Aniline (Mixed Isomers)	. 770 . 770 . 770 . 770 . 771
14.90 14.91 14.92 14.93 14.94 14.95	N-Mono-n-Butyl Aniline N,N-Di-n-Butyl Aniline n-Monoamyl Aniline (Mixed Isomers) p-tert-Amyl Aniline Di-tert-Amyl Aniline N,N-Diamyl Aniline (Mixed Isomers) Diethylbenzylamine	. 770 . 770 . 770 . 770 . 771 . 771
14.90 14.91 14.92 14.93 14.94 14.95 14.96	N-Mono-n-Butyl Aniline N,N-Di-n-Butyl Aniline n-Monoamyl Aniline (Mixed Isomers) p-tert-Amyl Aniline Di-tert-Amyl Aniline N,N-Diamyl Aniline (Mixed Isomers)	. 770 . 770 . 770 . 770 . 771 . 771

14.97 14.98	Ethylene Imine	
	Formamide	
14.99		
14.100	Dimethylformamide	
14.101	Surface Tension and Density of DMF-Water Mixtures	
14.102	Semi-Quantitative Solubilities of Inorganic Materials in DMF at 25°C	
14.103	Dimethylacetamide	
14.104	Viscosities of Resins in DMAC	
14.105	1-Formylpiperdine	
14.106	n-Butyronitrile	
Heterocyclic •	Compounds	
14.107	Pyrrole	
14.108	2-Pyrrolidone	
14.109	Phase Diagram for 2-Pyrrolidone-Water	781
14.110	N-Methyl-2-Pyrrolidone	
14.111	Acute Oral Toxicity	783
14,112	Acute Dermal Toxicity	783
14.113	Injection Toxicity	
14,114	Toxicity to Aqueous Organisms	
14.115	Infrared Absorption Spectrum	
14.116	Specific Heat	
14.117	Thermal Conductivity	
14.118	Vapor Pressure	
14.119	Comparison of Vapor Pressures of M-Pyrol and Other Aprotic Solvents	
14.120	Surface Tension	
	Freezing Point Curve	
14,121		
14.122	Viscosity of Anhydrous M-Pyrol	
14.123	Viscosity of Aqueous M-Pyrol	
14.124	Vapor/Liquid Equilibrium Data for M-Pyrol-Water System at Atmospheric and 400 mg Pressures	
14.125	Vapor/Liquid Equilibrium of M-Pyrol-Water Systems	
14.126	Hydrolytic Stability of M-Pyrol	
14.127	Comparison of Hydrolysis of M-Pyrol and DMF	
14.128	Hydrolysis of M-Pyrol in Alkaline Salt Solutions	
14.129	Hygroscopicity Data	
14.130	Hygroscopicity Data	
14.131	Hygroscopicity Data	
14.132	Effect of Temperature on Hygroscopicity	
14.133	Correlation of M-Pyrol and Water Vapor Data	
14.134	Vapor/Liquid Equilibrium of M-Pyrol Containing 1% Water	
14.135	Solubility of Acetylene in Various Solvents	
14.136	Solubility of Sulfur Compounds and Carbon Dioxide in M-Pyrol Solvent	792
14.137	Solubility of Paraffin Hydrocarbons in M-Pyrol Solvent	792
14.138	Vapor-Liquid Equilibrium Distribution Coefficients for Sulfur Compounds and Carbon Dioxide in	
	M-Pyrol Solvent	
14.139	Vapor-Liquid Equilibrium Distribution Coefficients for Paraffin Hydrocarbons in M-Pyrol Solvent	793
14.140	Correlation of Equilibrium Distribution Coefficients for Ethane and Heavier Paraffin Hydrocarbons	
	in M-Pyrol Solvent	794
14.141	Classification of Equilibria in M-Pyrol Showing Relationship Between Equilibrium Distribution	
	Coefficients (K) and Solute Vapor Pressures	794
14.142	Solubilities of Carbon Monoxide and Olefins in Anhydrous M-Pyrol Solvent	795
14.143	Solubilities of Diolefins in Anhydrous M-Pyrol Solvent	795
14.144	Solubilities of Acetylenes in Anhydrous M-Pyrol Solvent	
14,145	Vapor-Liquid Equilibrium Distribution Coefficients for Olefins and Carbon Monoxide in M-Pyrol	
	Solvent	796
14,146	Vapor-Liquid Equilibrium Distribution Coefficients for Diolefins in Anhydrous M-Pyrol Solvent	
14.147	Vapor-Liquid Equilibrium Distribution Coefficients for Acetylenes in Anhydrous M-Pyrol Solvent	
14.148	Effect of Water (5 wt %) in M-Pyrol Solvent on Equilibrium Distribution Coefficients for Olefins	
14.146	Effect of Water (5 wt %) in M-Pyrol Solvent on Equilibrium Distribution Coefficients for Olefins	
	· · · · · · · · · · · · · · · · · · ·	
14.150	Effect of Water (5 wt %) in M-Pyrol Solvent on Equilibrium Distribution Coefficient for Methylacetylene .	
14.151	Effect of Water (5 wt %) in M-Pyrol Solvent on Equilibrium Distribution Coefficient for Acetylene	7 93
14.152	Classification and Correlation of Equilibria of Unsaturated Hydrocarbons in Anhydrous M-Pyrol	200
44.450	Solvent 92–10 atm, 25°–150°C range)	
14.153	Effect of Water and Elevated Pressure on Solubility of Hydrogen Sulfide in M-Pyrol Solvent	out

7.57	Effect of meso-2,3-Butanediol on the Freezing Point of Aqueous levo-2,3-Butanediol Solutions	382
7.58	Freezing Points of Aqueous levo-2,3-Butanediol-Ethanol Solutions	383
7.59	Freezing Points of Aqueous levo-2,3-Butanediol-Ethylene Glycol Solutions	383
7.60	Freezing Points of Aqueous levo-2,3-Butanediol-Methanol Solutions	383
7.61	Freezing Points of Aqueous levo-2,3-Butanediol-Tetrahydrofurfuryl Alcohol Solutions	383
7.62	Kinematic Viscosity of Aqueous levo-2,3-Butanediol Solutions, Expressed Logarithmically, as a	
	Function of Concentration and Temperature	384
7.63	Kinematic Viscosity of Aqueous levo-2,3-Butanediol Solutions in Relation to Concentration and Temperature	
7.64	Kinematic Viscosity of 60% levo-2,3-Butanediol, Glycerol and Ethylene Glycol Solutions at Low Temperatures	
7.65	Kinematic Viscosity of Aqueous levo-2,3-Butanediol-Ethanol Solutions at 20°C, Expressed in	
7.66	Centistokes	
7.67	Centistokes	
7.68	Expressed in Centistokes	
	20°C, Expressed in Centistokes	385
7.69	Absolute Viscosity of Aqueous Solutions of Ethylene Glycol, levo-2,3-Butanediol, meso-dextro-2,3-Butanediol and Glycerol at 20°C	385
7.70	Optical Rotatory Power of Aqueous levo-2,3-Butanediol Solutions at 20°C	386
7.71	Effects of Concentration and Temperature on the Specific Rotatory Power of Aqueous levo-2,3-Butanediol Solutions	386
7.72	Refractive Indices of Aqueous levo-2,3-Butanediol Solutions at Different Temperatures	
7.73	Refractive Indices of Aqueous Solutions of meso- and levo-2,3-Butanediol at 25°C	
7.74	Specific Gravity of Aqueous levo-2,3-Butanediol Solutions at 20°, 30°, and 40°C	
7.75	Specific Gravity of Aqueous meso-2,3-Butanediol Solutions at 20°, 30°, and 40°C	
7.76	Surface Tension of Aqueous Solutions of levo-2,3-Butanediol and Ethylene Glycol	387
7.77	Refractive Indices of Aqueous Butanediol Solutions at 20°, 30°, and 40°C	
7.78	Kinematic Viscosity of Aqueous Butanediol Solutions at 20° and 40°C, in Centistokes	
	-diol	
7.79	Physical Properties of 2-Butene-1,4-diol	
	-diol	
7.80	Physical Properties of 2-Butyne-1,4-diol	
1.5-Pentaned	lol	
7.81	Physical Properties of 1,5-Pentanediol	
7.82	Absolute Viscosity of Aqueous 1,5-Pentanediol Solutions at 20° and 40°C	
7.83	Specific Gravity of Aqueous 1.5-Pentanediol Solutions at 20° and 40°C	
2.4-Pentaned	iol	
7.84	Physical Properties of 2.4-Pentanediol	
	ycol	
7.85	Physical Properties of Neopentyl Glycol	
	Triyotaa Topontoo of Noopontyi Giyaar Tiirii Ti	
7.86	Kinematic Viscosity of Aqueous Pentanediol Solutions at 20° and 40°C, in Centistokes	
7.87	Refractive Indices of Aqueous Pentanediol Solutions at 20° and 40°C	
1.6-Hexanedi	·	
7.88	Physical Properties of 1,6-Hexanediol	
	ol	
7.89	Physical Properties of 1.5-Hexanediol	
	col	
7.90	Physical Properties and Specifications of Hexylene Glycol	
7.91	Freezing Points of Hexylene Glycol-Water Mixtures	
7.92	Specific Gravity and Freezing Point of Hexylene Glycol-Water Mixtures	
- -	Specific Gravity and Treezing Fork of Flexylone Grycon-Trace mixtures	
7.93	Physical Properties of Pinacol	
	,3-Propanedioi	
7.94	Physical Properties of 2,2-Diethyl-1,3-Propanediol	
	Hexanediol	
7.95	Physical Properties of 2-Ethyl-1,3-Hexanediol	
	-3-Hexyne-2,5-diol	
7.96	Physical Properties of 2,5-Dimethyl-3-Hexyne-2,5-diol	
	anedimethanol	
.,,		

4= 00	Ent. In the Observed Management of the Control of t	000
15.20	Ethylene Glycol Monoacetate	020
15.21	Ethylene Glycol Diacetate	
15.22	Ethylene Glycol Monomethyl Ether Acetate	
15.23	Ethylene Glycol Monoethyl Ether Acetate	827
15.24	Ethylene Glycol Monobutyl Ether Acetate	828
15.25	Diethylene Glycol Monoethyl Ether Acetate	
15.26	Diethylene Glycol Monobutyl Ether Acetate	
	Propylene Glycol Monomethyl Ether Acetate	
15.27		
15.28	Propylene Glycol Monoethyl Ether Acetate	
15.29	Dipropylene Glycol Monomethyl Ether Acetate (DPMA)	
15.30	Propylene-Based Glycol Ether Acetate	
Propionates .		832
15.31	Methyl Propionate	832
15.32	Ethyl Propionate	
15.33	N-Butyl Propionate	
	Amyl Propionate	022
15.34		
15.35	Ethyl 3Ethoxypropionate	
Butyrates		834
15.36	Methyl Butyrate	
15.37	Ethyl Butyrate	834
15.38	n-Butyl Butyrate	
15.39	Ethyl Hydroxy-Isobutyrate	
15.40	Isobutyl Isobutyrate	
	2,2,4-Trimethylpentanediol-1,3-Monoisobutyrate	
15.41		
•	Data	
15.42	ARCOSOLV PM Acetate and ARCOSOLV PE Acetate	
15,43	Ashland Ester Solvents	
15.44	Chemcentral Esters	838
15.45	CPS Chemical Esters	839
15.46	Eastman Glycol Ether Esters	
15.47	Hoechst Celanese Esters	
15.48	Mobil Oil Esters	
13.40	INIODII OII ESIGIS	072
45.40	Hatter Castida France	040
15.49	Union Carbide Esaters	
Higher Fatty	Acid Esters	850
	Acid Esters	850 850
Higher Fatty	Acid Esters	850 850
Higher Fatty A	Acid Esters	850 850 851
15.50 15.51 15.52	Acid Esters Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters	850 850 851 852
15.50 15.51 15.52 Adipates	Acid Esters Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters	850 850 851 852 854
Higher Fatty A 15.50 15.51 15.52 Adipates 15.53	Acid Esters Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate	850 850 851 852 854 854
Higher Fatty A 15.50 15.51 15.52 Adipates 15.53 15.54	Acid Esters Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate	850 850 851 852 854 854
Higher Fatty / 15.50	Acid Esters Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate	850 850 851 852 854 854 854
Higher Fatty 15.50 15.51 15.52 Adipates 15.53 15.54 15.55 15.56	Acid Esters Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate	850 850 851 852 854 854 854 855 856
Higher Fatty / 15.50	Acid Esters Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate	850 850 851 852 854 854 854 855 856
Higher Fatty 15.50 15.51 15.52 Adipates 15.53 15.54 15.55 15.56	Acid Esters Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Dietyl Oxalate	850 850 851 852 854 854 854 855 856 857
Higher Fatty 15.50 15.51 15.52 Adipates 15.53 15.54 15.55 15.56 Oxalates	Acid Esters Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate	850 850 851 852 854 854 854 855 856 857
Higher Fatty 15.50 15.51 15.52 Adipates	Acid Esters Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Dietyl Oxalate	850 850 851 852 854 854 855 856 857 857
Higher Fatty 15.50 15.51 15.52 Adipates	Acid Esters Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Dietyl Oxalate Dibutyl Oxalate Diamyl Oxalate	850 850 851 852 854 854 855 856 857 857 857
Higher Fatty 15.50 15.51 15.52 Adipates	Acid Esters Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Dietyl Oxalate Dibutyl Oxalate Diamyl Oxalate	850 850 851 852 854 854 855 856 857 857 858 858
Higher Fatty 15.50 15.51 15.52 Adipates	Acid Esters Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Dietyl Oxalate Dibutyl Oxalate Diamyl Oxalate Diamyl Oxalate Methyl Lactate	850 850 851 852 854 854 855 856 857 857 858 858 858
Higher Fatty 15.50 15.51 15.52 Adipates	Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Diotyl Oxalate Dibutyl Oxalate Diamyl Oxalate Diamyl Oxalate Ethyl Lactate Ethyl Lactate	850 850 851 852 854 854 855 856 857 857 858 858 858
Higher Fatty 15.50 15.51 15.52 Adipates	Acid Esters Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Giutarate Mixture of Dimethyl Adipate, Dimethyl Giutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Dietyl Oxalate Dibutyl Oxalate Diamyl Oxalate Diamyl Oxalate Ethyl Lactate Ethyl Lactate Butyl Lactate	850 851 852 854 854 854 855 856 857 857 858 858 858 858 858
Higher Fatty 15.50 15.51 15.52 Adipates 15.53 15.54 15.55 15.56 Oxalates 15.57 15.58 15.59 Lactates	Acid Esters Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Diotyl Oxalate Dibutyl Oxalate Diamyl Oxalate Diamyl Oxalate Ethyl Lactate Ethyl Lactate Butyl Lactate Amyl Lactate Amyl Lactate	850 851 852 854 854 855 856 857 857 857 858 858 858 858 858 858 858
Higher Fatty 15.50 15.51 15.52 Adipates	Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Dioctyl Adipate Dibutyl Oxalate Dibutyl Oxalate Diamyl Oxalate Diamyl Oxalate Ethyl Lactate Ethyl Lactate Butyl Lactate Butyl Lactate Physical Properties of ctates	850 851 852 854 854 855 856 857 857 858 858 858 858 858 858 858 858
Higher Fatty 15.50 15.51 15.52 Adipates	Acid Esters Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Diotyl Oxalate Dibutyl Oxalate Diamyl Oxalate Diamyl Oxalate Ethyl Lactate Ethyl Lactate Butyl Lactate Amyl Lactate Amyl Lactate	850 850 851 852 854 854 854 855 857 857 857 858 858 858 858 858 858
Higher Fatty 15.50 15.51 15.52 Adipates	Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Dioctyl Adipate Dibutyl Oxalate Dibutyl Oxalate Diamyl Oxalate Diamyl Oxalate Ethyl Lactate Ethyl Lactate Butyl Lactate Butyl Lactate Physical Properties of ctates	850 850 851 852 854 854 855 856 857 857 858 858 858 858 858 859 860 860
Higher Fatty 15.50 15.51 15.52 Adipates 15.53 15.54 15.55 15.56 Oxalates 15.57 15.58 15.59 Lactates 15.60 15.61 15.62 15.63 15.64 Carbonates	Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Dioctyl Adipate Dietyl Oxalate Dibutyl Oxalate Diamyl Oxalate Ethyl Lactate Ethyl Lactate Butyl Lactate Butyl Lactate Physical Properties of ctates	850 850 851 852 854 854 855 856 857 857 858 858 858 858 858 859 860 860 860
Higher Fatty 15.50 15.51 15.52 Adipates 15.53 15.54 15.55 15.56 Oxalates 15.57 15.58 15.59 Lactates 15.60 15.61 15.62 15.63 15.64 Carbonates 15.65	Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Diotyl Oxalate Dibutyl Oxalate Diamyl Oxalate Ethyl Lactate Ethyl Lactate Butyl Lactate Butyl Lactate Physical Properties of ctates Diethyl Carbonate	850 850 851 852 854 854 854 855 857 857 858 858 858 858 858 860 860 860 861
Higher Fatty / 15.50	Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Dioctyl Adipate Dietyl Oxalate Dibutyl Oxalate Diamyl Oxalate Ethyl Lactate Ethyl Lactate Butyl Lactate Butyl Lactate Arnyl Lactate Physical Properties of ctates Diethyl Carbonate JEFFSOL Carbonates	850 850 851 852 854 854 854 855 857 857 857 858 858 858 858 860 860 860 861 867
Higher Fatty / 15.50	Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Dioctyl Adipate Dibutyl Oxalate Dibutyl Oxalate Diamyl Oxalate Ethyl Lactate Ethyl Lactate Butyl Lactate Butyl Lactate Physical Properties of ctates Diethyl Carbonate JEFFSOL Carbonates Alkyl Benzyl Phthalates	850 850 851 852 854 854 855 856 857 857 858 858 858 858 860 860 860 861 867 867
Higher Fatty / 15.50	Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Dietyl Oxalate Dibutyl Oxalate Diamyl Oxalate Diamyl Oxalate Ethyl Lactate Ethyl Lactate Butyl Lactate Butyl Lactate Physical Properties of ctates Diethyl Carbonate JEFFSOL Carbonates Alkyl Benzyl Phthalates Butyl Benzyl Phthalates Butyl Benzyl Phthalates Butyl Benzyl Phthalates	850 850 851 852 854 854 855 856 857 857 858 858 858 860 860 860 861 867 871
Higher Fatty 15.50 15.51 15.52 Adipates	Acid Esters Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Diotyl Oxalate Dibutyl Oxalate Diamyl Oxalate Diamyl Oxalate Butyl Lactate Ethyl Lactate Butyl Lactate Physical Properties of ctates Diethyl Carbonate JEFFSOL Carbonates Alkyl Benzyl Phthalates Butyl Benzyl Phthalate Dibutyl Phthalate Dibutyl Phthalate	850 850 851 852 854 854 855 856 857 857 858 858 858 860 860 861 867 871 873
Higher Fatty 15.50 15.51 15.52 Adipates	Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Diotyl Oxalate Dibutyl Oxalate Dibutyl Oxalate Diamyl Oxalate Ethyl Lactate Ethyl Lactate Butyl Lactate Butyl Lactate Physical Properties of ctates Diethyl Carbonate JEFFSOL Carbonates Alkyl Benzyl Phthalates Butyl Benzyl Phthalate Dibutyl Phthalate	850 850 851 852 854 854 855 856 857 857 858 858 858 860 860 861 867 871 873 874
Higher Fatty 15.50 15.51 15.52 Adipates 15.53 15.54 15.55 15.56 Oxalates 15.60 15.61 15.62 15.63 15.64 Carbonates 15.65 15.66 Phthalates 15.67 15.68 15.69 15.70 Phosphates	Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Diotyl Oxalate Dibutyl Oxalate Dibutyl Oxalate Diamyl Oxalate Ethyl Lactate Ethyl Lactate Butyl Lactate Physical Properties of ctates Diethyl Carbonate JEFFSOL Carbonates Alkyl Benzyl Phthalates Butyl Phthalate Dibutyl Phthalate	850 850 851 852 854 854 855 856 857 857 858 858 858 860 860 861 867 871 873 874 875
Higher Fatty 15.50 15.51 15.52 Adipates	Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Dioctyl Adipate Dibutyl Oxalate Dibutyl Oxalate Diamyl Oxalate Diamyl Oxalate Ethyl Lactate Ethyl Lactate Butyl Lactate Butyl Lactate Physical Properties of ctates Diethyl Carbonate JEFFSOL Carbonates Alkyl Benzyl Phthalate Butyl Phthalate Dibutyl Phthalate Di-2-Ethylhexyl Phthalate (Dioctyl Phthalate) t-Butylphenyl Diphenyl Phosphate	850 850 851 852 854 854 855 856 857 857 858 858 858 860 860 860 861 871 873 874 875 875
Higher Fatty 15.50 15.51 15.52 Adipates 15.53 15.54 15.55 15.56 Oxalates 15.60 15.61 15.62 15.63 15.64 Carbonates 15.65 15.66 Phthalates 15.67 15.68 15.69 15.70 Phosphates	Emery Methyl Esters Procter & Gamble Methyl Esters Stepan Esters Mixture of Dimethyl Adipate and Dimethyl Glutarate Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate Dialkyl Adipate Dioctyl Adipate Diotyl Oxalate Dibutyl Oxalate Dibutyl Oxalate Diamyl Oxalate Ethyl Lactate Ethyl Lactate Butyl Lactate Physical Properties of ctates Diethyl Carbonate JEFFSOL Carbonates Alkyl Benzyl Phthalates Butyl Phthalate Dibutyl Phthalate	850 850 851 852 854 854 855 856 857 857 858 858 858 860 860 860 861 871 873 874 875 875

	15.74	Emulsifiable Triaryl Phosphate	
	15.75	Proprietary Triaryl Phosphate Ester	881
	15.76	Tributoxyethyl Phosphate	
	15.77	Tributyl PHosphate	
		Triphenyl Phosphate	883
	•	Dialkyl Hydrogen Phosphites	
	15.79	Diality Dispersion	000
	15.80	Trialkyl Phosphites	
	15.81	Tertiary Phosphites	
	15.82	Organophosphites	
	15.83	Ethyl Silicate	
	Plasticizers .		
	15.84	Summary of Typical Properties of Plasticizers	890
HPL		TA	
	GC-FID Chro	matograms	
	16.1	Methylane Chloride	891
	HPLC Gradier	nt Chromatograms	892
	16.2	Water vs Methanol	
	16.3	Water vs Acetonitrile	
	16.4	Water vs 2-Propanol	
	16.5	Water vs Tetrahydrofuran	
		Water-01% Trifluoroacetic Acid vs Acetonitrile-0.1% Trifluoroacetic Acid	
	16.6		
	16.7	0.1 M Potassium Phosphate vs Acetonitrile	
	16.8	0.1 M Potassium Phosphate vs Methanol	
	16.9	0.05 M Potassium Phosphate vs Acetonitrile	
	16.10	0.05 M Potassium Phosphate vs Methanol	
	16.11	0.01 M Potassium Phosphate vs 0.5 M Potassium Phosphate pH 6.8/6.4	
	16.12	Hexane vs Chloroform	
	16.13	Hexane vs Chloroform	900
	16.14	Hexane vs Ethyl Acetate	
	16.15	Hexane vs 2-Propanol	
	16.16	Hexane vs Ether (Anhydrous)	
	16.17	2,2,4-Trimethylpentane vs Chloroform	
	16.18	2,2,4-Trimethylpentane vs Methylene Chloride	903
	16.19	2,2,4-Trimethylpentane vs Ethyl Acetate	
	16.20	2,2,4-Trimethylpentane vs 2-Propanol	904
	16.21	Methylene Chloride vs Methanol	905
	16.22	Methylene Chloride vs 2-Propanol	905
	16.23	Methylene Chloride vs Ethyl Acetate	906
	16.24	Methylene Chloride vs Ether (Anhydrous)	906
	Ultraviolet Sp	ectra	907
	16.25	Acetic Acid, Glacial	
	16.26	Acetone	907
	16.27	Acetonitrile	908
	16.28	Benzene	
	16.29	2-Butanol	
	16.30	n-Butyl Acetate	
	16.31	n-Buty Alcohol	
	16.32	n-Butyl Chloride	911
	16.33	tert-Butyl Methyl Ether	
	16.34	Carbon Tetrachloride	
	16.35	Chlorobenzene	
	16.36	Chloroform	
	16.37	Cyclohexane	
		Cyclopentane	
	16.38		
	16.39	Decahydronaphthalene (Decalin)	
	16.40	o-Dichlorobenzene	
	16.41	Diethyl Carbonate	
	16.42	Dimethyl Acetamide	
	16.43	Dimethyl Formamide	
	16.44	Dimethyl Sulfoxide	
	16.45	1,4-Dioxane	. 917

Contents and Subject Index

	16.46	Ether, Anhydrous 91	17
	16.47	2-Ethoxyethanol 91	
	16.48	Ethyl Acetate 91	
	16.49	Ethylene Dichloride	١ę
	16.50	Ethyl Ether	19
	16.51	GLÝME	
	16.52	n-Heptane	2(
	16.53	Hexadecane 92	21
	16.54	Hexane	21
	16,55	Isobutyl Alcohol	23
	16.56	iso-Octane (2,2,4-Trimethylpentane)	
	16.57	Isopropyl Alcohol	24
	16.58	Isopropyl Myristate	
	16.59	Methanol	
	16.60	2-Methoxyethanol 92	
	16.61	2-Methoxyethyl Acetate	2(
	16.62	Methyl t-Butyl Ether	
	16.63	Methylene Chloride 9/	
	16.64	Methyl Ethyl Ketone 9/	
	16.65	Methyl Isoamyl Ketone	
	16.66	Methyl Isobutyl Ketone	
	16.67	Methyl n-Propyl Ketone	
	16.68	N-Methylpyrrolidone 9/	
	16.69	Pentane	
	16.70	Petroleum Ether	
	16.71	beta-Phenethylamine 93	
	16.72	2-Propanol	
	16.73	n-Propyl Alcohol 94	
	16.74	Propylene Carbonate 94	
	16.75	Pyridine 94	
	16.76	Tetrahydrofuran 9	
	16.77	Toluene 9	
	16.78	1,2,4-Trichlorobenzene 9	
	16.79	Trichloroethylene	
	16.80	1,1,2-Trichlorotrifluoroethane	
	16.81	Trifluoroacetic Acid	
	16.82	Trimethylpentane 9	
	16.83	Water 9	
	16.84	ortho-Xylene 9	3
			_
PPE	ADIX—CO	MPARATIVE DATA FOR VARIOUS SOLVENTS9	3
		_	_
ErEf	iences .	9	0

Introduction

A solution may be defined as a mixture of two or more substances which has uniform chemical and physical properties throughout. It may also be defined as a system whose component parts are two or more molecular species, there being no boundary surfaces between these parts larger than molecules. There are two components to every solution—the solvent and the solute. As a matter of convenience, the part of a solution which is in excess is designated as the solvent; the solute is the component which is in smaller proportion. Solvents, once used, may be recycled, reused, or discarded in an environmentally safe manner.

The purpose of solvents is to convert substances into a form suitable for a particular use. The importance of the role of solvents is brought out most clearly by the fact that many substances exhibit their greatest usefulness when in solution. Lacquer solvents, for example, are selected to produce homogeneous combinations and so selected as to impart the most desirable mechanical properties. The physical properties of a fabricated solution can be regulated at will by the proper choice of solvents, thus adapting them to the most varied uses and methods of applications. Some of the more important uses for solvents are in the adhesives, coatings, electronics, ink, pesticide, pharmaceutical, photographic reproduction, and textile industries. Large quantities of solvents are also involved in dry cleaning, metal degreasing, oil refining and recovery, and as fuel additives.

Solvents vary in their dissolving power, so that the line of demarcation between solvents, latent solvents and non-solvents is difficult to define. Some of the factors which influence solvency are atmospheric conditions, purity and molecular association. Molecular aggregation is the explanation for increased, attenuated, or decreased solvent power or, more concisely, eccentric solvency. Any substance that will dissolve another is called a solvent. Thus, we have a gaseous solution when a liquid or a solid is dissolved in a gas; a liquid solution when any one of these is dissolved in a liquid, and a solid solution when any one of them is dissolved in a solid.

Mixing of solvents, diluents and thinners often results in change of solvent properties. Some chlorinated compounds become good solvents for cellulose esters when mixed with an alcohol. On the other hand, some active solvents for esters of cellulose lose some of their solvent power when mixed with hydrocarbons. Alcohols are added to lacquers to improve flow and to prevent blushing, although they vary considerably in these respects. Alcohols are not true or active solvents for nitrocellulose as are the active dissolvents like ethyl lactate or n-butyl acetate. The alcohol group, however, cannot be classed as nonsolvents like toluene or naphtha. When an alcohol is added to a true solvent, the solvent power of the latter is not reduced but, on the contrary, this active solvent activates the alcohol to such an extent that it too becomes a solvent. Therefore, alcohols are referred to as latent solvents, whose hidden solvent qualities are brought out by the addition of an active solvent. The presence of a latent solvent increases the tolerance of an active solvent for a nonsolvent. This group of latent solvents is also called extenders, because they increase the volume of a mixture without decreasing the solvent power.

In general, simple esters and ketones activate alcohols so that they too become solvents and are capable of tolerating various proportions of diluents. This is due to the molecular aggregates formed. Two-type solvents containing both an alcohol and an active solvent group, such as an ester, ether or ketone, activate alcohol to a lesser degree. Unit volumes of a solvent will activate only a limited amount of alcohol, indicating that definite molecular aggregates are formed. A mixture of 50% n-butyl acetate and 50% n-butyl alcohol will not lose its solvent power until 85 to 95% of the volume is evaporated, contributing further evidence of the validity of the theory of molecular aggregates. Plasticizers, which are the high-boiling solvents, also activate alcohols.

Liquids vary in their rate of evaporation. Naturally, in a mixture of liquids, some evaporate more rapidly than others. For example, if the solvent constituent of a lacquer evaporates more rapidly than the diluent, the limit of tolerance of the residual mixture is exceeded and gelling or precipitation occurs. As evaporation goes on, gigantic molecular reactions take place. Vast numbers of molecules change places as the new aggregates are formed. Some are

2 Industrial Solvents Handbook

replaced and some are repelled, causing immiscibility, precipitation, blushing, or one or more of the many lacquer faults. It follows that dilution ratios do not indicate tolerance during the change of solvent-nonsolvent balance which occurs during drying.

In the theory of molecular aggregation, higher concentrations of cellulose derivatives contain fewer secondary-valence bonds. Consequently, smaller amounts of diluent can be tolerated. This condition occurs during film drying. Hydroxyl-containing solvents show greater tolerance for toluene than do the simpler esters. In the case of naphtha the condition is reversed. There are, however, exceptions to this statement, among which are butyl lactate and Butyl CELLOSOLVE, which have very high naphtha tolerance. Simple esters will tolerate 50 to 100% more naphtha than will such materials as ethyl lactate, ethyl ether, ethylene glycol, diacetone alcohol, and so forth. Ethers of glycols generally have higher dilution ratios than do the butyl esters with respect to benzene, toluene, and xylene.

Solutions of nitrocellulose tolerate larger quantities of nonsolvents than solutions of cellulose acetate. The "solvent-power number" is influenced by both the nature of the diluent and the mixing of two or more solvents. Frequently, when two or more nonsolvents are mixed, they may exhibit the qualities of a good solvent. This is especially true when one of the ingredients is an alcohol. The ether-alcohol solvent mixture for collodion is a familiar example. Another example of acquired solubility is the mixing of butyl acetate with amyl or ethyl alcohol for the less highly polymerized forms of glyceryl phthalate resins. Some of the chlorinated hydrocarbons will dissolve nitrocellulose when mixed with an alcohol. A mixture of benzene and alcohol will dissolve nitrocellulose containing up to 11% nitrogen. A toluene-ethyl alcohol solution of alkyd resin will dissolve nitrocellulose. In many cases the solvent property of esters for resins and nitrocellulose is increased by the addition of an alcohol. On the other hand, when active solvents for cellulose esters are mixed with aliphatic or aromatic hydrocarbons, the solvent power of these active solvents is decreased.

These facts bring to light reasons why many of the old-type solvents have been valued for their impurities. For example, methyl acetone, made from the distillation of wood, had particularly valuable solvent properties. Actually, it is a mixed solvent which consists of methanol, acetone, esters and higher ketones. This mixture has certain desirable properties not obtained by any of its component ingredients when used separately. For this reason the "synthetic methyl acetone" is made to simulate it. For this same reason commercial grades of butyl and amyl acetate contain 85% ester and the remaining portion is the corresponding alcohol. Amyl acetate, containing its characteristic impurities when manufactured from fusel oil, is also valued for its solvent properties. The synthetic product is different because it lacks these impurities. It is made from the pentane fraction of gasoline by chlorination; the chloropentane is hydrolyzed to form amyl alcohol, and is finally esterified to the acetate.

Because of today's concern with environmental pollution, chemical composition limitations of solvent formulations have been adopted by many state and local governmental agencies in the more highly industrialized areas of the country. These rules and regulations seriously affect the use of many solvents, and solvent blends must be reformulated to conform to the maximum allowable concentrations of the restricted solvents. It is necessary for the solvent user to acquaint himself with the governmental regulations of solvent use in his particular locale.

Hydrocarbon Solvents

PARAFFINS

Table 2.1: Methane (4)

	CH ₄	
PROPERTIES	RESEARCH GRADE	PURE GRADE
Composition, mol per cent		
Nitrogen	0.01	0.61
Carbon Dioxide		0.24
Methane	99.98	99.08
Ethylene		
Ethane	0.01	0.06
Propylene		
Propane		0.01
Freezing point, triple point, F	-296.46*	
Boiling point, F	-258.68*	
Specific gravity of liquid at 60/60 F		
at 20/4 C		
Density of liquid at 60 F, lb/gal	I	
Vapor pressure at 70 F, psia	· ·	
Specific gravity of real gas at		
60 F and 14.7 psia (Air = 1)	0.55491*	
Specific volume of real gas et	1	
60 F and 14.7 psia, cu ft/lb	23.6113*	
Density of real gas at 60 F and	İ	
14.7 psia, lbs/cu ft	0.04235	
Liquid volume, cu ft/lb at -260 F		
and 13.8 psia	0.03766*	
Critical temperature, F	-115.78*	
Critical pressure, psia	673.1*	
Flash point, approximate, F	-306*	
Flemmability limits, volume % in air		
Lower	5.0*	
Higher	15.0*	
Heating value for real gas at 60 F and		
30 in Hg, saturated basis BTU/ cu ft		994
Heating value for ideal gas at		
60 F and 14.7 psia, BTU/cu ft,		
Ory basis Saturated basis	1010*	985

^{*}Litereture values.

Table 2.2: Ethane (4)

PROPERTIES	RESEARCH	
	GRADE	PURE GRADE
Composition, mal per cent		
Nitrogen		
Carbon Dioxide		
Methane		trace
Ethylene	trace	0.05
Ethane	99.97	99.35
Propylene	0.01	0.25
Propane	0.02	0.35
Freezing point, triple point, F	-297.89*	
Boiling point, F	-127.53*	
Specific gravity of liquid at 60/60 F	0.3771*	
at 20/4 C	0.362°	
Density of liquid at 60 F, lb/gal	3.144*	
Vapor pressure at 70 F, psia	560*	
Specific gravity of real gas at		
60 F and 14.7 psia (Air = 1)	1.0469*	
Specific volume of real gas at		
60 F and 14.7 psia, cu ft/lb	12.515*	
Density of real was at 60 F and	1	
14.7 psia, lbs/cu ft	į	
Liquid volume, cu ft/lb at -260 F		
and 13.8 psia	0.04252 (60 F)	
Critical temperature, F	90.32*	
Critical pressure, psia	707.8*	
Flash point, approximate, F	-211°	
Flammability limits, volume % in air	· · · · · · · · · · · · · · · · · · ·	
Lower	2.9*	
Higher	13.0*	
Heating value for real gas at 60 F and		
- 30 in Hg, saturated basis BTU/ cu ft		
Heating value for ideal gas at		
60 F and 14.7 psia, BTU/cu ft,	į	
Dry basis	1769°	

^{*}Literature values.

Table 2.3: Propane (4)

FORMULA PROPERTIES	сн ₃ -сн ₃ -сн ₃		
	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight per cent			
Ethane		0.07	0.01
Propylene		0.01	0.01
Propane	99.98	99.35	97.50
Isobutane	0.02	0.52	2.38
Normal Butane		0.05	0.10
Butene-2			
Neopentane			
Isopentane			
Normal Pentane			
Purity by freezing point, mol percent			
Freezing point, F	-305.84* (triple point)		
Boiling point, F	-43.73°		
Specific gravity of liquid at 60/60 F	0.5077*	0.508	0.510
20/4 C	0.5005*	0.501	
API gravity at 60 F		147.0	145.9
Density of liquid at 60 F, lb/gal		4.22	4.24
Vapor pressure at 70 F, psia		123	123
100 F, psia		189	189
130 F, psia		271	271
Sulfur content, weight per cent		< 0.0005	< 0.0005
Specific gravity of real gas at			
60 F and 14.7 psia (Air = 1)	1.5503°		
Specific volume of real gas at	1		1
60 F and 14.7 psia, cu ft /lb	6.4515°		
Flash point, approximate, F	-156*		
Flammability limits, volume % in air			
Lower	2.1*		
Higher	9.5*		
Heating value for ideal gas at 60 F and 14.7 psia, dry basis BTU/cu ft	2517*		

^{*}Literature

Table 2.4: Isobutane (4)

FORMULA	сн _э -сн-сн _э		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight per cent		1	
Ethane		1	
Propylene			L
Propane		0.1	0.4
Isobutane	99.98	99.5	96.8
Normal Butane	0.02	0.4	2.8
Butene-2		I	
Neopentane			
Isopentane			1
Normal Pentane			
Purity by freezing point, mol percent	99.96	99.5	1
Freezing point, F	255.28*		
Boiling point, F	10.89*		
Specific gravity of liquid at 60/60 F	0.5631*	0.563	0.563
20/4 C	0.5572*	0.557	0.557
API gravity at 60 F		119.8	119.8
Density of liquid at 60 F, lb/gal		4.68	4.68
Vapor pressure at 70 F, psia		45.8	45.4
100 F, psia		72.2	72.2
130 F, psia		111.5	111.5
Sulfur content, weight per cent		< 0.0005	< 0.0005
Specific gravity of real gas at 60 F and 14.7 psia (Air = 1)	2.06805*		
Specific volume of real gas at	2.00003		
60 F and 14.7 psia, cu ft /lb	6.3355*		1
Flash point, approximate, F	0.3300	-117	-117
Flammability limits, volume % in air		 	
Lower	1.8*		
Higher	8.4*	 	
Heating value for ideal gas at 60 F and 14.7 usia, dry basis BTU/cu ft	3253*		
and 14.7 psia, dry basis BTU/CU Tt	3253*	_1	

^{*}Literature values.

Table 2.5: n-Butane (4)

FORMULA	сн _э -сн _э -сн _э -сн _э			
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE	
Composition, weight per cent				
Ethane				
Propylene			L	
Propane			0.6	
iso <u>butane</u>	0.05	0.3	1.0	
Normal Butane	99,95	99.4	97.6 95.0 mi	
Butene-2	<u> </u>	<u> </u>	0.1	
Neopentane		I	0.2	
Isopentane		0.2	0.3	
Normal Pentene		0.1	0.2	
Purity by freezing point, mol percent	99.95	99,4 99.0 min		
Freezing point, F	-217.03*			
Bailing paint, F	31,10°			
Specific gravity of liquid at 60/60 F	0.5844*	0.584	0.584	
20/4 C	0.57881	0.579	0.579	
API gravity at 60 F		110.8	110.8	
Density of liquid at 60 F, lb/gal		4.86	4.86	
Vapor pressure at 70 F, psia		31.6	32.0	
100 F, psia		51.6	52.0	
130 F, psia		82.2	83.0	
Sulfur content, weight per cent		< 0.0005	< 0.0005	
Specific gravity of real gas at		1	1	
60 F and 14.7 psia (Air = 1)	2.0757*			
Specific volume of real gas at	I		ł	
60 F and 14.7 psia, cv ft /lb	6.3120*	<u> </u>	<u> </u>	
Flash point, approximate, F		-100	-100	
Flammability limits, volume % in air				
Lower	1.8*			
Higher	8.4*	1	L	
Heating value for ideal gas at 60 F and 14.7 psia, dry basis BTU/cu ft	3262*			

^{*}Literature values,

Table 2.6: 2,2-Dimethylpropane (4)

Neapentane

FDRMULA PROPERTIES	сн _э -с-си _э сн _э -с-си _э		
	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight per cent			
Normal Butane	trace	0.1	1.7
cis-Butene-2		trace	0.1
2,2,-Dimethylpropane	99.99+	99.6	97.8
Isopentane			
Normal Pentane			0.4
Pentene-2			L
Cyclopentane			
Purity by freezing point, mol per cent	99.99	99.3	
Freezing point, F	2.21*		
Boiling point, F	49.10*		
Distillation range, F			
Initial boiling point			<u> </u>
10% Condensed			
50% Condensed			
90% Condensed	<u> </u>		<u> </u>
Dry point	<u> </u>		
Specific gravity of liquid at 60/60 F	0.5967*	0.597	0.597
at 20/4 C	0.5910°	0.591	0,591

Table 2.6: (continued)

PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAI GRADE
API gravity at 60 F		105.5	105.5
Density of liquid at 60 F, lb/gal		4.96	4.96
Vapor pressure at 70 F, psia	21.9*	21.9	22.0
100 F, psia		35.9	36.7
130 F, psia		57.4	57.7
Refrective index, 20/ D			
Color, Saybolt (unless indicated)	+30	+30	+30
Acidity, distillation residue	T in the second	neutral	netural
Nonvolatile matter, grams/100 ml	1	0.0005	0.0005
Sulfur content, weight per cent		0.005	0.005
Copper corrosion		1	11
Doctor test		negative	negative
Kinematic viscosity, cs at 32 F	0.532*		İ
Specific gravity of real gas at 60 F and 14.7 psia (Air = 1)	2.622*		
Specific volume of real gas at	2,022		
60 F and 14.7 psia, cu ft/lb	4.997*		1
Flash point, approximate, F		-85	-85
Flammability limits, volume % in air			1
Loyer	1.4*		.
Higher	8.3*	-	

^{*}Literature values.

Table 2.7: Isopentane (4)

FDRMULA	сн ₃ -сн-сн ₃ -сн ₃		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight per cent			
Normal Butane		0.1	0.2
cis-Butene-2			
2,2,-Dimethylpropane	I	0.1	0.1
Isopentane	99.99	99.4	97.1
Normal Pentane	0.01	0.4	2.6
Pentene-2			
Cyclopentane			
Purity by freezing point, mol per cent	99,99	99.4	
Freezing point, F	-255.82°		L
Boiling point, F	82.13°	***	
Distillation range, F			<u> </u>
Initial boiling point	1		82
10% Condensed			83
50% Condensed			83
90% Condensed			84
Dry point			86
Specific gravity of liquid at 60/60 F	0.6248*	0.625	0.625
at 20/4 C	0.61967*	0.620	0.620
API gravity at 60 F		94.9	94.9
Density of liquid at 60 F, lb/gal		5.20	5.20
Vapor pressure at 70 F, psia	11,57*	11.5	11,4
100 F, psia	20.44*	20.4	20,2
130 F, psia			33.5
Refractive index, 20/ D	1.35373*	+30	+30
Color, Saybolt (unless indicated)	+30	neutral	neutral
Acidity, distillation residue			0.0005
Nonvolatile matter, grams/100 ml	-	0.0005 0.005	0.0005
Sulfur content, weight per cent	1	1	1 1
Copper corrosion		negative	negative
Doctor test	0.433*	Indianive	Hermitive
Kinematic viscosity, cs at 32 F	U.433		+
Specific gravity of real gas at	2.6269*		
60 F and 14.7 psia (Air = 1) Specific volume of real gas at	2.0203		+
60 F and 14,7 psia, cu ft/lb	4,9876*		1
Flash point, approximate, F	4,30/0	-70	-70
Flammability limits, volume % in air		-14	+
	14*		+
			+
Lower Higher	1,4* 8.3*		

^{*}Literature values.

Table 2.8: n-Pentane (4)

PROPERTIES	CH ₃ -CH ₂ -CH ₂ -CH ₃ -CH ₃		
	RESEARCH GRADE	PURE GRADE	TECHNICAI GRADE
Composition, weight per cent			
Normal Butane			
cis-Butene-2	L		
2,2,-Dimethylpropane			
Isopentane	0.01	0.2	0.5
Normal Pentane	99.99	99.4	98.8
Pentene-2		<u> </u>	0.2
Cyclopentane	}	0.3	0.5
Purity by freezing point, mol per cent	99.98	99.2	
Freezing point, F	-201.50*		
Bailing point, F	96.93*		
Distillation range, F			
Initial boiling point			96
10% Condensed			97
50% Condensed			97
90% Condensed			97
Dry point			99
Specific gravity of liquid at 60/60 F	0.6312*	0.631	0.633
at 20/4 C	0.62624*	0.626	
API gravity et 60 F		92.7	92.0
Density of liquid at 60 F, lb/gal		5.25	5.27
Vapor pressure at 70 F, psia	8.56*	8.6	
100 F, psia	15.57*	15.6	ļ
130 F, psia	26.4*	26.3	ļ
Refractive index, 20/ D	1,35748*	+30	+30
Color, Saybolt (unless indicated)	+30	+30 neutral	neutral
Acidity, distillation residue		0.0005	0.000
Nonvolatile matter, grams/100 ml	<u> </u>	0.005	0.005
Sulfur content, weight per cent	· 	1	1
Copper corrosion			negative
Doctor test	0.431*	negative	nogetive
Kinematic viscosity, cs at 32 F	0.431		
Specific gravity of real gas at	2.6400*		
60 F and 14.7 psia (Air = 1) Specific volume of real gas at	2,0400		1
60 F and 14.7 psia, cu ft/lb	4.9629*		1
Flash point, approximate, F	7.0020	-57	50
Flammability limits, volume % in air			1
Lower	1,4*		
Higher	8.3*		

^{*}Literature values.

Table 2.9: 2,2-Dimethylbutane (4)

Neohexane

FORMULA PROPERTIES	CH ₃ -C-CH ₃ -CH ₃ -CH ₃		
	RE S EARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight per cent			
Isopentane			
Cyclopentane		0.2	0.1
2,2-Dimethylbutane	99.98	99.5	96.4 95.0 min.
2,3-Dimethylbutane	0.01	0.2	2.2
2-Methylpentane	0.01	0.1	0.3
3-Methylpentane			
Purity by freezing point, mol per cent	99.97	99.4 99.0 min.	
Freezing point, F	-147,77*		
Boiling point, F	121.53°		
Distillation range, F			
Initial boiling point	†		120.5
Dry point	†	1	122.2

Table 2.9: (continued)

PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Specific gravity of liquid at 60/60 F	0.6540°	0.655	0.659
at 20/4 C	0.64916*	0.650	0.654
API gravity at 60 F		84.5	83.2
Density of liquid at 60 F, lbs/gel		5.45	5.49
Vapor pressure at 70 F, psia	5.30°	5.3	5.3
100 F, psia	9.86*	9,9	9.9
130 F, psia	17.04*	16.8	16.8
Refractive index, 20/D	1.36876°	1.369	1.369
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Sulfur content, weight per cent		0.005	0.005
Copper corrosion		1	1
Doctor test		negative	negative
Flash point, approximate, F		-25	-25
Flammability limits, volume % in air		1	
Lower	1.2*	T	
Higher	7.7*		

^{*}Literature values.

Table 2.10: 2,3-Dimethylbutane (4)

Diisopropyl

FORMULA	сн ₃ -сн-сн- сн ₃ -сн-сн ₃		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight per cent			
Isopentane			0.6
Cyclopentane		1	
2.2-Dimethylbutane	0.07	0.2	1.1
2,3-Dimethylbutane	99.88	99.7	98.0 95.0 min
2-Methylpentane	0.04	0,1	0.2
3-Methylpentane	0.01		0.1
Purity by freezing point, mol per cent	99.88	99.3 99.0 min.	
Freezing point, F	-199.37*	1	
Bailing point, F	136.37*	<u> </u>	
Distillation range, F	1		1
Initial boiling point	<u> </u>		135
Dry point		1	136
Specific gravity of liquid at 60/60 F	0.6664*	0.666	0.666
at 20/4 C	0.66164*	0.662	0.861
API gravity at 60 F	0.00.07	81.0	81.0
Density of liquid at 60 F, lbs/gal	†	5.54	5.54
Vapor pressure at 70 F, psia	3.87*	3.8	3.8
100 F, psie	7.40*	7.3	7.3
130 F, psia	13.12*	12.9	12.9
Refractive index, 20/D	1.37495*	1,375	1,375
Color, Saybolt	+30	+30	+30
Acidity, distillation residue	 	neutral	neutral
Norwolatile metter, grams/100 ml	t	0.0005	0.0005
Sulfur content, weight per cent	†	0.005	0.006
Copper corrosion	1	T	
Doctor test	 	negative	negative
Flash point, approximate, F		-20	-20
Flammability limits, volume % in air	1	† 	
Lower	1,2°	1	t
Higher	7.7*	† ————	1

^{*}Literature values.

Table 2.11: 2-Methylpentane (4)

FORMULA PROPERTIES	сн ₃ -сн-сн ₂ -сн ₃ -сн ₃		
	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight per cent			
isopentane			
Cyclopentane			0.2
2.2-Dimethylbutane		<u></u>	
2,3-Dimethylbutane	0.01	0.5	3.8
2-Methylpentane	99.98	99.3	95.4 95.0 min
3-Methylpentane	0,01	0.2	0.6
Purity by freezing point, mol per cent	99,98	99,2 99,0 min.	
Freezing point, F	-244.61°		
Boiling point, F	140.49°		
Distillation range, F			
Initial boiling point			140
Dry point			141
Specific gravity of liquid et 60/60 F	0.6579°	0.658	0,658
at 20/4 C	0.65315*	0.653	0.653
API gravity at 60 F		85.2	85.2
Density of liquid at 60 F, Ibs/gel		5.44	5.44
Vapor pressure at 70 F, psia	3.48°	3.5	3.5
100 F. psia	6.77*	6.8	6.8
130 F, psie	13.32*	13.0	13.0
Refractive index, 20/D	1.37145*	1.371	1.371
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutrai	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Sulfur content, weight per cent		0.005	0.005
Copper corrosion		1 1	1
Doctor test	·	negative	negative
Flash point, approximate, F		-10	-10
Flammability limits, volume % in air	t	1	1
Lower	1.2*		T
Higher	7.7*		

^{*}Literature values.

Table 2.12: 3-Methylpentane (4)

FORMULA PROPERTIES	сн _з -сн-сн _з -сн _з		
	RESEARCH GRADE	PURE GRADE	TECHNICA GRADE
Composition, weight per cent			
2,3-Dimethylbutane			0.1
2-Methylpentane	0.01	0.6	3.8
3-Methylpentane	99.99	99.4 99.0 min	0.02
Normal Hexane			
Methylcyclopentane			
2,2-Dimethylpentane			
2,4-Dimethylpentane			
Cyclohexane			
2,3-Dimethylpentane			
2-Methylhexane			
3-Methylhexane			
Purity by freezing point, mol per cent	••		
Freezing point, F			
Boiling point, F	145.91*		
Distillation range, F			
Initial boiling point			145
10% Condensed			
50% Condensed			
90% Condensed			
Dry point			146

Table 2.12: (continued)

PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICA GRACE
Specific gravity of liquid at 60/60F	0.6690*	0.669	0.669
at 20/4 C	0.66431	0.664	0.664
API gravity at 60 F		80.0	80.0
Density of liquid at 60 F, lbs/gal	1	5.57	5.57
Vapor pressure at 70 F, psia	3,11*	3.1	3.1
100 F, psia	6,10°	6.1	6.0
130 F, psia	11.03°	11.0	10.9
Refractive index, 20/0	1.37652*	1.376	1.376
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Sulfur content, weight per cent		0.005	0.005
Copper corrosion	···· I	1	1 1
Doctor test	1	negative	negative
Flash point, approximate, F	1	_ 25	25
Flammability limits, volume % in air	· • • • • • • • • • • • • • • • • • • •	I	1
Lower	1.2*	1	Ī
Higher	Ĩ <i>ĩ ị</i> •	1	1

^{*}Literature values. **Forms a glass.

Table 2.13: n-Hexane (4)

FORMULA PROPERTIES	сн ₃ -сн ₂ -сн ₂ -сн ₂ -сн ₃		
	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight per cent			
2,3-Dimethylbutane	• • • • • • • • • • • • • • • • • • • •	***************************************	
2-Methylpentane	trace	trace	trace
3-Methylpentane	0.02	0.1	0.2
Normal Hexane	99.98	99.5	97.7 95.0 mi
Methylcyclopentane	trace	0.4	2.1
2,2-Dimethylpentane	1	· -	
2,4-Dimethylpentane	· • · · · · · · · · · · · · · · · · · ·		
Cyclohexane	1		-
2,3-Dimethylpentane		T	
2-Methylhexane			
3-Methylhexane			
Purity by freezing point, mol per cent	99.98	99.4	
Freezing point, F	-139.63°		
Boiling point, F	155.73*		
Distillation range, F			
Initial boiling point			155.1
10% Condensed			155.3
50% Condensed			155.3
90% Condensed	-t		155.7
Dry point			156.4
Specific gravity of liquid at 60/60F	0.6640*	0.664	0.666
at 20/4 C	0.65937*	0.660	0.661
API gravity at 60 F	0.00007	81.6	81.0
Density of liquid at 60 F, lbs/gal		5.53	5,54
Vapor pressure at 70 F, psia	2.46*	2.5	2.5
100 F, psia	4.96*	5.0	4.9
130 F, psia	9.17*	9.2	9.1
Refractive index, 20/D	1.37486*	1.375	1.375
Color, Saybolt	+30	+30	+30
Acidity, distillation residue	- 	neutral	neutral
Nonvolatile matter, grams/100 ml	-	0.0005	0.0005
Sulfur content, weight per cent		0.005	0.005
Copper corrosion		-t- i	-
Doctor test		negative	negative
Flash point, approximate, F	***************************************	-10	-10
Flemmability limits, volume % in air		- 	
Lower	1.2*	- 	
Higher	7.7*		

^{*}Literature values, **Forms a glass,

Table 2.14: 2,4-Dimethylpentane (4)

FORMULA PROPERTIES	CH ₃ CH ₃ CH ₃ CH ₃		
	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight per cent			
2,3-Dimethylbutane			
2-Methylpentane			
3-Methylpentane	T		
Normal Hexane	<u> </u>	trace	0,1
Methylcyclopentane			
2,2-Dimethylpentane	0.01	0.1	2.9
2,4-Dimethylpentane	99.99	99.7	96.0 95.0 mi
Cyclohexane		0.1	0.5
2,3-Dimethylpentane		0.1	0.5
2-Methylhexene			
3-Methylhexane		1	
Purity by freezing point, mol per cent	99.77	99,2 99.0 min	
Freezing point, F	-182.64°		T
Boiling point, F	176.90°		
Distillation range, F		1	
Initial boiling point			175
10% Condensed			1.22
50% Condensed	<u> </u>		
90% Condensed	-		
Ory point			176
Specific gravity of liquid at 60/60F	0.6772*	0.677	0.678
at 20/4 C	0.67270*	0.673	0.673
API gravity at 60 F		77.4	77.2
Density of liquid at 60 F, lbs/gal		5.64	5.64
Vapor pressure at 70 F, psia	1.59*	1.6	1.6
100 F, psia	3.29*	3.3	3.3
130 F, psia	6.24*	6.2	6.2
Refractive index, 20/D	1.38145*	1.381	1.381
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Sulfur content, weight per cent		0.005	0.005
Copper corrosion		- t - i	1 - 1
Doctor test	†	negative	negative
Flash point, approximate, F		10	10
Flammability limits, volume % in air		— ————	
Lower	1.0*		
Higher	7.0*	-	

^{*}Literature values.

Table 2.15: 2,3-Dimethylpentane (4)

FORMULA	сн ₃ -сн-сн-сн ₂ -сн ₃
PROPERTIES	90% GRAOE
Composition, weight per cent	
2,3-Dimethylbutane	
2-Methylpentane	
3-Methylpentane	
Normal Hexane	
Methylcyclopentane	
2,2-Dimethylpentane	
2,4-Dimethylpentane	
Cyclohexane	
2,3-Dimethylpentane	90,4 90.0 mir
2-Methylhexane	3.4
3-Methylhexane	6.2
Purity by freezing point, mol per cent	
Freezing point, F	-T
Boiling paint, F	
Distillation range, F	1
Initial boiling point	193
10% Condensed	<u> </u>

PROPERTIES	90% Grade
50% Condensed	1
90% Condensed	1
Dry point	194
Specific gravity of liquid at 60/60F	0.6990
at 20/4 C	0.6943
API gravity at 60 F	70.9
Density of liquid at 60 F, lbs/gal	5.82
Vapor pressure at 70 F, psia	1.2
100 F, psia	3.6
130 F, psia	
Refractive index, 20/D	1.3922
Color, Saybolt	+30
Acidity, distillation residue	neutral
Vonvolatile matter, grams/100 ml	0.0005
oulfur content, weight per cent	
Copper corrosion	
Doctor test	negative
Flash point, approximate, F	< 10
Flammability limits, volume % in air	
Lower	
Higher	

Table 2.16: 3-Methylhexane (4)

FORMULA	сн ₃ -сн ₂ -сн-(сн ₂) ₂ -сн
PROPERTIES	TECHNICAL GRADE
Composition, weight percent	
2,3-Dimethylpentane	0.1
2-Methylhexane	1.4
3-Methylhexane	97.2 95.0 min
3-Ethylpentane	0.8
Normal Heptane	
Dimethylcyclopentane	0.5
Methylcyclohexane	
2,2-Dimethylhexane	
2,4-Dimethylhexane	
2,5-Dimethylhexane	
Other Dimethylhexanes	
2.2.4-Trimethylpentane	- 1
2.2.3-Trimethylpentane	<u> </u>
2,3,4-Trimethylpentane	-1
2,3,3-Trimethylpentane	·

Table 2.17: n-Heptane (4)

FORMULA	сн ₃ -ксн ₂)8-сн ³		
PROPERTIES	RESEARCH GRADE	PURE GRADE	
Composition, weight percent			
2,3-Dimethylpentane			
2-Methylhexane			
3-Methylhexane			
3-Ethylpentane		trace	
Normal Heptane	99.99	99.8	
Dimethylcyclopentane	0.01	0.2	
Methylcyclohexane		trace	
2,2-Dimethylhexane			
2,4-Dimethylhexane			
2,5-Dimethylhexane			
Other Dimethylhexanes			
2,2,4-Trimethylpentane			
2,2,3-Trimethylpentane			
2,3,4-Trimethylpentane			
2,3,3-Trimethylpentane		I	
Purity by freezing point, mo! %	99.92	99.7 99.0 mi	
Freezing point, F	-131.10*		
Bailing point, F	209.17*		
Distillation range, F			
Initial boiling point			
Dry point			
Specific gravity of liquid at 60/60 F	0.6882*	0.688	
20/4 C	0.68376*	0.684	
API gravity at 60 F		74.1	
Density of liquid at 60 F, lbs/gel		5.73	
Vapor pressure at 70 F, psia			
100 F, psia	1.62*	1.6	
130 F, psia			
Refractive index, 20/D	1.38764*	1.388	
Color, Saybolt	+30	+30	
Acidity, distillation residue		neutral	
Nonvolatile matter, grams/100 ml		0.0005	
Sulfur content, weight percent		0.005	
Copper corrosion		1	
Doctor test		regative	
Flash point, approximate, F		25	
Flammabilty limits, volume % in air	***		
Lower		1.0*	
Higher		7.0*	

^{*}Literature values.

PROPERTIES	TECHNICAL GRADE	
Boiling point, F		
Distillation range, F		
Initial boiling point	195	
Dry point	196	
Specific gravity of liquid at 60/60 F	0.692	
20/4 C	0.688	
API gravity at 60 F	73.0	
Density of liquid at 60 F, lbs/gal	5.76	
Vapor pressure at 70 F, psia		
100 F, psia	2.1	
130 F, psia		
Refractive index, 20/D	1.388	
Color, Saybolt	+30	
Acidity, distillation residue	neutral	
Nonvolatile matter, grams/100 ml	0.0005	
Sulfur content, weight percent	0.005	
Copper corrosion	1	
Doctor test	negative	
Flash point, approximate, F	25 Estimated	
Flammabilty limits, volume % in air		
Lower	1	
Higher	7	

Table 2.18: 2,2,4-Trimethylpentane (4)

Isooctane

FORMULA	сн _з сн _з сн _з -с-сн ₂ -сн-сн _з сн _з	
PROPERTIES	RESEARCH GRADE	PURE GRADE
Composition, weight percent		
2,3-Dimethylpentane	1	
2-Methylhexane		
3-Methylhexane		
3-Ethylpentane		
Normal Heptane		trace
Dimethylcyclopentane		
Mathylcyclohexane		
2,2-Dimethylhexane	0.01	0.2
2,4-Dimethylhexane		
2,5-Dimethylhexane		
Other Dimethylhexanes		
2,2,4-Trimethylpentane	99.99	99,8
2,2,3-Trimethylpentane		
2,3,4-Trimethylpentane		
2,3,3-Trimethylpentane		
Purity by freezing point, mol %	99.98	99.7 99.0 mi
Freezing point, F	-161.28*	•
Boiling point, F	210.63*	
Distillation range, F		
Initial boiling point		
Dry point		
Specific gravity of liquid at 60/60 F	0.6963*	0.696
20/4 C	0.69193*	0.692
API gravity at 60 F		71.7
Density of liquid at 60 F, lbs/gel		5.80
Vapor pressure at 70 F, psia	0.79*	0.8
100 F, psia	1.71*	1.7
130 F, psia	3.37*	3.3
Refractive index, 20/D	1.39145*	1.391
Color, Saybolt	+30	+30
Acidity, distillation residue		neutral
Nonvolatile matter, grams/100 ml		0,0005
Sulfur content, weight percent		0,005
Copper corrosion		1
Doctor test		negative
Flash point, approximate, F		18
Flammabilty limits, volume % in air		
Lower		
Higher		

^{*}Literature values.

Table 2.19: 2,3,4-Trimethylpentane (4)

сн₃-сн-сн-сн-сн₃ FORMULA RESEARCH PURE PROPERTIES **TECHNICAL** GRADE GRADE GRADE Composition, weight percent 2,3-Dimethylpentane 2-Methylhexane 3-Methylhexane 3-Ethylpentane Normal Heptane Dimethylcyclopentane Methylcyclohexane 2,2-Dimethylhexana 2,4-Dimethylhexane 2,5-Dimethylhexane Other Dimethylhexanes 2,2,4-Trimethylpentane 2,2,3-Trimethylpentane 2,3,4-Trimethylpentane 99.99+ 99.8 98.0 95.0 min 2,3,3-Trimethylpentane 0.2 trace 1.4 Purity by freezing point, mol % 99.1 99.0 min Freezing point, F 164.58* Boiling point, F 236.24* Distillation range, F Initial boiling point Dry point Specific gravity of liquid at 60/60 F 0.7233* 0.723 0.723 20/4 C 0.71906* 0.719 0.719 API gravity at 60 F 64.1 64.1 Density of liquid at 60 F, lbs/gal 6.02 6.02 Vapor pressure at 70 F, psia 100 F, psia 130 F, psia 0.98* 1.0 1.0 Refractive index, 20/D 1.40422* 1.404 1.404 Color, Saybolt +30 130 +30 Acidity, distillation residue neutral neutra Nonvolatile matter, grams/100 ml Sulfur content, weight percent 0.0005 0.0005 0.005 0.005 Copper corrosion Doctor test negative Flash point, approximate, F 41 (D 56) 41 (D 56) 41 (D 56) Flammabilty limits, volume % in air Lower Higher

Table 2.21: Mixed Dimethylhexanes (4)

FORMULA	с _в н ₁₈
PROPERTIES	TECHNICAL GRADE
composition, weight percent	
2,3-Dimethylpentene	
2-Methylhexane	
3-Methylhexane	
3-Ethylpentane	
Normal Heptane	
Dimethylcyclopentane	
Methylcyclohexane	
2,2-Dimethylhexane	4.3
2,4-Dimethylhexane	36.7 \95.0 min
2,5-Dimethylhexane	53.9
Other Dimethylhexanes	
2,2,4-Trimethylpentane	1.6
2,2,3-Trimethylpentane	3.5
2,3,4-Trimethylpentane	
2,3,3-Trimethylpentane	
urity by freezing point, mol %	
Freezing point, F	
Bailing point, F	

Table 2.20: Mixed Trimethylpentanes (4)

FORMULA	C _B H ₁₈	
PROPERTIES	TECHNICAL GRADE	
Composition, weight percent		
2,3-Dimethylpentane		
2-Methylhexane		
3-Methylhexane		
3-Ethylpentane		
Normal Heptane		
Dimethylcyclopentane		
Methylcyclohexane		
2,2 Dimethylhexane	0.3	
2,4-Dimethylhexane	0.1	
2,5-Dimethylhexane	0.1	
Other Dimethylhexanes	3.5	
2,2,4-Trimethylpentane		
2,2,3-Trimethylpentane	0.1	
2,3,4-Trimethylpentane 2,3,3-Trimethylpentane	80.9 \ 95.0 min	
	15.07	
Purity by freezing point, mol %		
Freezing point, F		
Boiling point, F	er remains a resourcement a remain community of the commu	
Distillation range, F		
Initial boiling point	235	
Dry point	236	
Specific gravity of liquid at 60/60 F	0.723	
20/4 C	0.719	
API gravity at 60 F	64.2	
Density of liquid at 60 F, lbs/gal	6.02	
Vapor pressure at 70 F, psia		
100 F, psie	1.0	
130 F, psia		
Refractive index, 20/D	1,404	
Color, Saybolt	+30	
Acidity, distillation residue	neutral	
Nonvolatile matter, grams/190 ml Sulfur content, weight percent	0.0005	
Copper corrosion	0.005	
Doctor test		
Flash point, approximate, F	negative 50	
Flammabilty limits, volume % in air	<u> </u>	
Lower		

PROPERTIES	TECHNICAL GRADE
Distillation range, F	
Initial boiling point	228.6
Dry point	228.8
Specific gravity of liquid at 60/60 F	0.704
20/4 C	0.700
API gravity at 60 F	69.4
Density of liquid at 60 F, lbs/gal	5.86
Vapor pressure at 70 F, psie	
100 F, psia	1.0
130 F, psia	
Refractive index, 20/D	1.394
Color, Saybolt	+30
Acidity, distillation residue	neutral
Nonvolatile matter, grams/100 ml	0.0005
Sulfur content, weight percent	0.005
Copper corrosion	1
Doctor test	negative
Flash point, approximate, F	50
Flammabilty limits, volume % in air	
Lower	
Higher	

^{*}Literature values.

^{*}Literature values.

Table 2.22: n-Oxtane (4)

FORMULA	· CH ₃ -(CH ₂) ₆ -CH ₃		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight per cent			
Isooctanes	0.02	0.3	0.7
Normal Octane	99.92	99.6	98.7
2,2,5-Trimethylhexane			
2,2,4-Trimethylhexane			
Isononanes	0.06	0.1	0.6
Isoparaffins			
Normal Nonane			
Purity by freezing point, mol %	99.88	99.2 99.0 min	96.2 99.0 mi
Freezing point, F	-70.23*		
Boiling point, F	258.20*		
Distillation range, F			
Initial boiling point			
Dry point			
Specific gravity of liquid at 60/60 F	0.7068*	0.707	0.707
at 20/4 C	0.70252*	0.702	0.702
API gravity at 60 F		68.ti	68,2
Density of liquid at 60 F, lbs/gal		5.89	5.89
Vapor pressure at 70 F, psia			
100 F, psia	0.54*	0.5	0.5
130 F, psia			
Refractive index, 20/D	1.39743*	1.397	1.397
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Sulfur content, weight percent		0.005	0.005
Copper corrosion		1	1
Doctor test		negative	negative
Flash point, approximate, F		72	72

^{*}Literature values.

Table 2.23: 2,2,5-Trimethylhexane (4)

FORMULA	сн ₃ сн ₃ сн ₃ -¢-сн ₂ -сн ₂ -сн-сн ₃ сн ₃		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight per cent			
Isooctanes			
Normal Octane			
2,2,5-Trimethylhexane	99.99	99.6	97.2 95.0 min
2,2,4-Trimethylhexane	0.01	0.4	2.8
Isononanes			
Isoparaffins			
Normal Nonane			
Purity by freezing point, mol %	99.80	99.3 99.0 min	
Freezing point, F	-158.40°		
Boiling point, F	255.35		
Distillation range, F			
Initial boiling point			
Dry point			
Specific gravity of liquid at 60/60 F	0.7174*	0.717	0.717
at 20/4 C	0.70721*	0.707	0.707
API gravity at 60 F		65.7	65.7
Density of liquid at 60 F, lbs/gal		5.97	5.97
Vapor pressure at 70 F, psia	0.26*	0.3	0.3
100 F, psia	0.62*	0.6	0.6
130 F, psia	1.34*	1.3	1.3
Refractive index, 20/D	1,39972*	1,400	1.400
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	netural
Nonvolatile matter, grams/100 ml	1	0.0005	0.0005
Sulfur content, weight percent		0.005	0.005
Copper corrosion		1	1
Doctor test		negative	negative
Flash point, approximate, F		55	55

^{*}Literature values.

Table 2.24: n-Nonane (4)

FORMULA	FORMULA CH3-(CH2)7-CH3		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight per cent			
isooctanes			
Normal Octane			
2,2,5-Trimethylhexane			
2,2,4-Trimethylhexane			
Isononanes			
fsoparaffins	0.1	0.4	0.5
Mormal Nonane	99.9	99.6	99.5
Purity by freezing point, mol %	99.67	99.2 99.0 min	95.9 95.0 mi
Freezing point, F	-64.33*	<u> </u>	
Boiling point, F	303.44		
Distillation range, F			
Initial boiling point			303.4
Dry point			304.0
Specific gravity of liquid at 60/60 F	0.7217*	0.722	0.722
at 20/4 C	0.71763*	0.718	0.718
API gravity at 60 F		64.4	64.4
Density of liquid at 60 F, lbs/gal		6.01	6.01
Vapor pressure at 70 F, psia			******
100 F, psia	0.18*	0.2	0.2
130 F, psia			
Refractive index, 20/D	1.40542*	1.405	1.397
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutraí
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Sulfur content, weight percent			
Copper corrosion			
Doctor test			
Flash point, approximate, F		86	86

^{*}Literature values.

Table 2.25: n-Decane (4)

FORMULA	сн ₃ -(сн ₃) ₈ -сн ₃		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight per cent			
Normal Nonane	0.05		
Normal Decane	99.94	99.5	99.0
Normal Undecane			
Normal Dodecane		<u> </u>	
Normal Tridecane			
Isoparaffins	0.01	0.5	1
Purity by freezing point, mol %	99.55	99.1 99.0 min	96.5 95.0 mi
Freezing point, F	-21.39°		
Boiling point, F	345.42*		
Distillation range, F			
Initial boiling point			344.9
Dry Point			345.4
Specific gravity of liquid at 60/60 F	0.7341*	0.734	0.734
at 20/4 C	0.73005*	0.730	0.730
API gravity at 60 F		61.3	61.3
Density of liquid at 60 F, lbs/gal		6.11	6.11
Vapor pressure at 100 F, psia		0.1	0.1
Refractive index, 20/D	1.41189*	1.412	1.412
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutrai	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Flash point, approximate, F		111	111

^{*}Literature values.

Table 2.26: n-Undecane (4)

FORMULA	сн ₃ -(сн ₂) ₉ -сн ₃		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight per cent			
Normal Nonane			1
Normal Decane			
Normal Undecane	99.8	99.6	99.1
Normal Dodecane			
Normal Tridecane]	1
Isoparaffins	0.2	0.4	0.9
Purity by freezing point, mol %	99.64	99.1 99.0 min	96,7 95.0 mir
Freezing point, F	-14.07°		
Boiling point, F	384.60°		L
Distillation range, F			1
Initial boiling point			384
Dry Paint			385
Specific gravity of liquid at 60/60 F	0.7443*	0.744	0.744
at 20/4 C	0.74024*	0.740	0.739
API gravity at 60 F		58.7	58.7
Density of liquid at 60 F, lbs/gal		6.19	6.19
Vapor pressure at 100 F, psia		I	
Refractive index, 20/D	1.41725*	1,417	1.419
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Flash point, approximate, F		149	149

^{*}Literature values.

Table 2.27: n-Dodecane (4)

FORMULA	сн ₃ -(сн ₂) ₁₀ -сн ₃		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight per cent			
Normal Nonana		I	
Normal Decane			
Normal Undecane	0.05	0.1	0.3
Normal Dodecane	99.95	99.9	99.7
Normal Tridecane			trace
Isoparaffins			
Purity by freezing point, mol %	99.70	99.3 99.0 min	95,5 95.0 mi
Freezing point, F	14,74*		
Boiling point, F	421.30°	L	<u></u>
Distillation range, F			
Initial boiling point		419	418
Dry Point		424	424
Specific gravity of liquid at 60/60 F	0.7526°	0.753	0.753
at 20/4 C	0.74869*	0.749	
API gravity at 60 F		56.4	56.4
Density of liquid at 60 F, lbs/gal		6.27	6.26
Vapor pressure at 100 F, psis			
Refractive index, 20/D	1.42160*	1.422	1.422
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Flash point, approximate, F		160	160

^{*}Literature values.

Table 2.28: n-Tridecane (4)

FORMULA	сн ₃ -(сн ₂) ₁₁ -сн ₃		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL Grade
Composition, weight percent			
Normal Tridecane	99.9	99.8	99.2
Normal Tetradecane			
Normal Pentadecane			
Normal Hexadecane			
Normal Heptadecane	1		
Isoparaffins	0.1	0.2	0.8
Purity by freezing point, mol %	99.80	99.49 99.0 min	96.81 95.0 mi
Freezing point, F	22.29*		
Boiling point, F	455.78°		
Distillation range, F			
Initial boiling point	1		452
10% Condensed			
50% Condensed			
90% Condensed			
Dry point			458
Specific gravity of liquid at 60/60 F	0.7601*	0.760	0.762
at 20/4 C	0.75622*	0.756	0.758
API gravity at 80 F			
API gravity at 60 F		54.7	54.2
Density of liquid at 60 F, lbs/gal		6.33	6.34
Refractive index, 20/D	1.42560*	1.426	1,427
Color, Gardner			
Acidity, distillation residue		neutral	neutral
Sulfur content, weight percent		0.005	0.005
Bromine number			
Kinematic viscosity, cs at 77 F			2.25
Flash point, approximate, F		175 (0-56)	175 (D-56)

^{*}Literature values

Table 2.29: n-Tetradecane (4)

PROPERTIES Composition, weight percent Normal Tridecane	PURE GRADE	TECHNICAL GRADE
		1
Normal Tridecane		1
Normal Tetradecane	99.6	99
Normai Pentadecane		
Normal Hexadecane		1
Normal Heptadecane		
Isoparaffins	0.4	1
Purity by freezing point, mol %	99.14	95.8 95.0 min
Freezing point, F	42.55°	
Boiling point, F	488.33*	
Distillation range, F		
Initial boiling point		485
10% Condensed		1
50% Condensed		
90% Condensed		
Dry point		492
Specific gravity of liquid at 60/60 F	0.7667*	0.769
at 20/4 C	0.76276*	0.765
API gravity at 80 F	.	
API gravity at 60 F		52.5
Density of liquid at 60 F, lbs/gal	l	6.40
Refractive index, 20/D	1.42892°	1.430
Color, Gardner	1	1
Acidity, distillation residue	ļ <u> </u>	
Sulfur content, weight percent	ļ	-
Bromine number		+
Kinematic viscosity, cs at 77 F Flash point, approximate, F	250**	250**

^{*}Literature values

Table 2.30: n-Pentadecane (4)

FORMULA	CH3-(CH3)13-CH3
PROPERTIES	TECHNICAL GRADE
Composition, weight percent	
Normal Tridecane	
Normal Tetradecane	
Normal Pentadecane	99.7
Normal Hexadecane	
Normal Heptadecane	
Isoparaffins	0.3
Purity by freezing point, mol %	96.80 95.0 min
Freezing point, F	48.74
Boiling point, F	
Distillation range, F	
Initial boiling point	502
10% Condensed	512
50% Condensed	514
90% Condensed	516
Ory point	
Specific gravity of liquid at 60/60 F	0.7721*
at 20/4 C	0.76830*
API gravity at 80 F	
API gravity at 50 F	51.77*
Density of liquid at 60 F, lbs/gal	6.43°
Refractive index, 20/D	1.4332
Color, Gardner	<1
Acidity, distillation residue	
Sulfur content, weight percent	
Bromine number	0.10
Kinematic viscosity, cs at 77 F	
Flash point, approximate, F	270

^{*}Literature values

Table 2.31: n-Hexadecane (4)

FORMULA	CH3-(CH2)14-CH3
PROPERTIES	TECHNICAL Grade
Composition, weight percent	
Normal Tridecane	
Normal Tetradecane	
Normal Pentadecane	0.2
Normal Hexadecane	99.6
Normal Heptadecane	
Isoparaffins	0.2
Purity by freezing point, mol %	96.35 95.0 min
Freezing point, F	63.79
Boiling point, F	
Distillation range, F	
Initial boiling point	521
10% Condensed	531
50% Condensed	531
90% Condensed	533
Dry point	540
Specific gravity of liquid at 60/60 F	
at 20/4 C	
API gravity at 80 F	51.8
API gravity at 60 F	49.9†
Density of liquid at 60 F, lbs/gal	6.49
Refractive index, 20/D	1.4352
Color, Gardner	<1
Acidity, distillation residue	
Sulfur content, weight percent	
Bromine number	0.21
Kinematic viscosity, cs at 77 F	
Flash point, approximate, F	275

^{*}Literature values

Table 2.33: n-Octadecane (4)

FORMULA	сн ₃ -(сн ₂) ₁₈ -сн ₃
PROPERTIES	TECHNICAL Grade
Composition, weight percent	
Normal Hexadecane	0.1
Normal Heptadecane	0.3
Normal Octadecane	99.2
Normal Nonadecane	
Normal Eicosane	
Isoparaffins	0.4
Purity by freezing point, mal %	95.95 95.0 min
Freezing point, F	81.82
Distillation range, F	5 mm Hg
Initial boiling point	302
10% Condensed	310
50% Condensed	312
90% Condensed	312
95% Condensed	313
API gravity at 100 F	51.8
API gravity at 60 F	48.0†
Density of liquid at 60 F, lbs/gal	6.56
Color, Gradner	1
Bromine number	0.48
Flash point, approximate, F	330

[†]API gravity at 60 F is corrected from 100F.

Table 2.32: n-Heptadecane (4)

FORMULA	сн ₃ -(сн ₃) ₁₆ -сн ₃
PROPERTIES	TECHNICAL GRADE
Composition, weight percent	
Normal Tridecane	
Normal Tetradecane	
Normal Pentadecane	
Normal Hexadecane	0.3
Normal Heptadecane	99.4
Isoparaffins	0.3
Purity by freezing point, mal %	96.60 95.0 min
Freezing point, F	70.47
Boiling point, F	
Distillation range, F	5 mm Hg
Initial boiling point	289
10% Condensed	291
50% Condensed	292
90% Condensed	292
Dry paint	
Specific gravity of liquid at 60/60 F	
at 20/4 C	
API gravity at 80 F	50.8
API gravity at 60 F	48.9†
Density of liquid at 60 F, lbs/gal	6.53
Refractive index, 20/D	
Color, Gardner	< 1
Acidity, distillation residue	
Sulfur content, weight percent	
Bromine number	0.43
Kinematic viscosity, cs at 77 F	
Flash point, approximate, F	300

^{*}Literature values

Table 2.34: n-Nonadecane (4)

FORMULA	CH3-(CH2)17-CH3
PROPERTIES	TECHNICAL GRADE
Composition, weight percent	
Normal Hexadecane	
Normal Heptadecane	
Normal Octadecane	0,5
Normal Nonadecane	99.3
Normal Eicosane	
Isoparattins	0.2
Purity by freezing point, mal %	95.37 95.0 min
Freezing point, F	87.98
Distillation range, F	5 mm Hg
Initial boiling point	320
10% Condensed	333
50% Condensed	336
90% Condensed	336
95% Condensed	336
API gravity at 100 F	51.0
API gravity at 60 F	47.3t
Density of liquid at 60 F, lbs/gal	6.59
Color, Gradner	1
Bromine number	0.53
Flash point, approximate, F	335

[†]API gravity at 60 F is corrected from 100F.

Table 2.35: n-Eicosane (4)

FORMULA	сн ₃ (сн ₂) ₁₈ сн ₃
PROPERTIES	90% GRADE
Composition, weight percent	
Normal Hexadecane	
Normal Heptadecane	
Normal Octadecane	
Normal Nonadecane	1,25
Normal Eicosane	98.75
Isoparaffins	
Purity by freezing point, mol %	91.83 90.0 min
Freezing point, F	95.83

PROPERTIES	90% Grade
Distillation range, F	5 mm Hg
Initial boiling point	340
10% Condensed	352
50% Condensed	354
90% Condensed	355
95% Condensed	356
API gravity at 100 F	49.7
API gravity at 60 F	46.1t
Density of liquid at 60 F, lbs/gal	6.63
Color, Gradner	1
Bromine number	0.74
Flash point, approximate, F	360

[†]API gravity at 60 F is corrected from 100F.

CYCLOPARAFFINS

Table 2.36: Cyclopentane (4)

FORMULA	$^{\mathrm{CH_{2}-CH_{2}}}_{\mathrm{CH_{2}-CH_{2}}} > \mathrm{cH_{2}}$			
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE	90% Grade
Composition, weight percent				
Normal Pentane		0.2	2.0	
Cyclopentane	99.97	99.5	97.4 95.0 min	93 90 mir
2,2-Dimethylbutane	0.03	0.1	0.1	**
Normal Hexane			0.2	
Methylcyclopentane		0.2	0.3	
Purity by freezing point, mol %	99.97	99.5 99.0 min		
Freezing point, F	-136,96°	1		
Boiling point, F	120.67°			
Distillation range, F				
Initial boiling point			120.6	120.4
10% Condensed			1	120.9
50% Condensed				120.9
90% Condensed .				121.1
Dry point			120.8	121.5
Specific gravity of liquid at 60/60 F	0.7505*	0.750	0.749	0.744
at 20/4 C	0.74538*	0.745	0.745	
API gravity at 60 F		57.2	57.2	58.8
Density of liquid at 60 F, lbs/gal		6.24	6.24	6.19
Vapor pressure at 70 F, psia	5,25*	5.3	5.3	
100 F, psia	9.91*	9.9	9.9	10,0
130 F, psia	17.37*	17.4	17.4	
Refractive index, 20/D	1.40645*	1.406	1,405	1,404
Color, Saybolt	+30	+30	+30	
Acidity, distillation residue	·	neutral	neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005	0.0005
Sulfur content, weight percent				0.006
Kauri Butanol value				53.4
Aniline point, F				70.5
Copper corrosion				1
Doctor test		negative	negative	negative
Flash point, approximate, F		-35	-35	-35

^{*}Literature values.

^{**}Major impurities are 2,2-Dimethylbutane and 2,3-Dimethylbutane.

Table 2.37: Methylcyclopentane (4)

FORMULA		CH ₂ CH ₂ CHCH ₃	
PROPERTIES	RESEARCH GRADE	PURE Grade	TECHNICAL GRADE
Composition, weight percent			
Normal Hexane	0.06	0.4	2.0
Methylcyclopentane	99.94	99.5	96.5 95.0 n
2,4-Dimethylpentane		0.1	
Cyclohexane			1.5
Isoheptanes	-1	1	
3,3-Dimethylpentane			
Benzene & Toluene, ppm			
1,1-Dimethylcyclopentane			
1,2 & 1,3-Dimethylcyclopentane			
Purity by freezing point, mol %	99.94	99.3 99.0 min	
Freezing point, F	-224.42*		
Boiling point, F	161.26*		
Distillation range, F		-	
Initial boiling point			161
10% Condensed			
50% Condensed			
90% Condensed			
Dry point			162
Specific gravity of liquid at 60/60 F	0.7535*	0.754	0.754
at 20/4 C	0.74864*	0.749	0.749
API gravity at 60 F		56.2	56.2
Density of liquid at 60 F, lbs/gal	1	6.28	6.28
Vapor pressure at 70 F, psia	2.24*	2.2	2.3
100 F, psia	4.50*	4.5	4.5
130 F, psia	8.33*	8.3	8.3
Refractive index, 20/D	1.40970*	1,410	1,410
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Sulfur content, weight percent		0.005	0.005
Aniline point, F			
Kauri Butanol value			
Copper corrosion		1	1
Doctor test	1	negative	negative
Kinematic viscosity, cs at 32 F	1		
Flash point, approximate, F	1	-17	-17

^{*}Literature values.

Table 2.38: Cyclohexane (4)

FORMULA	CH ₂ CH ₂		
PROPERTIES	RESEARCH GRADE	99.5% GRADE	98.0% GRADE
Composition, weight percent			
Normal Hexane			
Methylcyclopentane			0.5
2,4-Dimethylpentane	0.01	0.1	0.1
Cyclohexane	99.98	99.8 99.5 min	98.8 98.0 mi
Isoheptanes		0.1	0.4
3,3-Dimethylpentane	0.01		0.2
Benzene & Toluene, ppm	1	193 500 max	200 500 max
1,1-Dimethylcyclopentane			
1,2 & 1,3-Dimethylcyclopentane			
Purity by freezing point, mol %	99.98		98.8
Freezing point, F	43.80*		

Table 2.38: (continued)

PROPERTIES	RESEARCH GRADE	99.5% GRADE	98.0% GRADE
Boiling point, F	177.33*		
Distillation range, F	1		
Initial boiling point		177.3 175.1 min	177.3 175.1 min
10% Condensed			
50% Condensed			
90% Condensed			
Dry point		177.8 179.6 max	177.8 179.6 max
Specific gravity of liquid at 60/60 F	0.7834*	0.783	0.781
at 20/4 C	0.77855*	0,779	0.778
API gravity at 60 F	49.1*	49.3	49.6
Density of liquid at 60° F, lbs/gal	6.53*	6.52	6.51
Vapor pressure at 70 F, psia			
100 F, psia	3.26*	3.3 3.5 max	3.3 3.5 max
130 F, psia			
Refractive index, 20/D	1.42623*	1.426	1,424
Color, Saybolt	+30	+30 +30 min	+30 +30 min
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0007 0.0010 max	0.0007 0.0010 max
Sulfur content, weight percent		1 ppm 5 ppm max	1 ppm 5 ppm max
Aniline point, F			
Kauri Butanol value		56	55.1
Copper corrosion		1 1 max	1 1 max
Doctor test		neg. neg.	neg, neg,
Kinematic viscosity, cs at 32 F			0.94
Flash point, approximate, F		10	-1

^{*}Literature values.

Table 2.39: 1,1-Dimethylcyclopentane (4)

FORMULA	CH2-CH2 C-(CH3)3
PROPERTIES	90% GRADE
Composition, weight percent	
Normal Hexane	
Methylcyclopentane	
2,4-Dimethylpentane	
Cyclohexane	
isoheptanes	
3,3-Dimethylpentane	
Benzene & Toluene, ppm	
1,1-Dimethylcyclopentane	92*
1,2 & 1,3-Dimethylcyclopentane	
Purity by freezing point, mol %	
reezing point, F	
colling point, F	
istillation range, F	
Initial boiling point	189
10% Condensed	190
50% Condensed	190
90% Condensed	190
Dry point	190

PROPERTIES	90% Grade	
Specific gravity of liquid at 60/60 F	0.754	
at 20/4 C	0.749	
API gravity at 60 F		
Density of liquid at 60 F, lbs/gal		
Vapor pressure at 70 F, psia		
100 F, psia		
130 F, psia		
Refractive index, 20/D		
Color, Saybolt		
Acidity, distillation residue		
Nonvolatile matter, grams/100 ml		
Sulfur content, weight percent		
Aniline point, F	117	
Kauri Butanol value	42.9	
Capper carrasion		
Doctor test		
Kinematic viscosity, cs at 32 F		
Flash point, approximate, F	< 70	

^{*}Major impurities are: Cyclohexane, 3,3-Dimethylpentane and 2-Methylhexane.

Table 2.40: 1,2- and 1,3-Dimethylcyclopentane (4)

FORMULA	CH ₃ CH CH CH-CH ₃ CH ₂ —CH ₂
PROPERTIES	90% Grade
Composition, weight percent	
Normal Hexane	
Methylcyclopentane	
2,4-Dimethylpentane	
Cyclohexane	
Isoheptanes	
3,3-Dimethylpentane	
Benzene & Toluene, ppm	
1,1-Dimethylcyclopentane	
1,2 & 1,3-Dimethylcyclopentane	921
Purity by freezing point, mol %	
Freezing point, F	
Boiling point, F	
Distillation range, F	
Initial boiling point	196
10% Condensed	197
50% Condensed	197
90% Condensed	197
Dry point	197

PROPERTIES	90% Grade
Specific gravity of liquid at 60/60 F	0.748
at 20/4 C	0.744
API gravity at 60 F	
Density of liquid at 60 F, lbs/gal	
Vapor pressure at 70 F, psia	
100 F, psia	
130 F, psia	
Refractive index, 20/D	
Color, Saybolt	
Acidity, distillation residue	
Nonvolatile matter, grams/100 ml	
Sulfur content, weight percent	
Aniline point, F	120
Kauri Butanol value	40.5
Copper corrosion	
Doctor test	
Kinematic viscosity, cs at 32 F	
Flash point, approximate, F	< 70

[†]Major impurity is 3-Methylhexane.

Table 2.41: Methylcyclohexane (4)

FORMULA	сн ₃ -сн ₂ -сн ₂ сн ₂ -сн ₂ >сн ₂		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight percent			
1,2-Dimethylcyclopentane	0.08	0.4	1.1
Normal Heptane		trace	0.4
Methylcyclohexane	99.90	99.4	97.9 95.0 min
Ethylcyclopentane		trace	0.1
Toluene	0.02	0.2	0.5
trans-1,4-Dimethylcyclohexane			
cis-1,4-Dimethylcyclohexane			
Other Dimethylcyclohexanes			
trans-1,2-Dimethylcyclohexane			
cis-1,2-Dimethylcyclohexane			
ortho-Xylene			
Unidentified Impurities			
Purity by freezing point, mol %	99.86	99.3 99.0 min	
Freezing point, F	-195.87*	-196.20	
Boiling point, F	213.68*		
Distillation range, F			
Initial boiling point			211
50% Condensed			
Dry point			213
Specific gravity of liquid at 60/60 F	0.7740*	0.774	0.774
at 20/4 C	0.76939*	0.769	0.769
API gravity at 60 F		51.3	51.3
Density of liquid at 60 F, lbs/gal		6.44	6.44
Vapor pressure at 70 F, psia			
100 F, psia	1.61*	1,6	1.6
Refractive index, 20/D	1.42312*	1.423	1.423
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Sulfur content, weight percent		0.005	0.005
Copper corrosion		1	1
Doctor test		negative	negative
Flash point, approximate, F		22	22

^{*}Literature values.

Table 2.42: trans-1,4-Dimethylcyclohexane (4) Table 2.43: cis-1,4-Dimethylcyclohexane (4)

FORMULA	CH ₃ -CH CH ₂ CH ₂ CH ₂ CH ₂ CH-CH ₃
PROPERTIES	TECHNICAL Grade
Composition, weight percent	
1,2.0 imethylcyclopentane	
Normal Heptane	
Methylcyclohexane	
Ethylcyclopentane	
Toluene	
trans-1,4-Dimethylcyclohexane	99.6
cis-1,4-Dimethylcyclohexane	
Other Dimethylcyclohexanes	
trans - 1,2-Dimethylcyclohexane	
cis-1,2-Dimethylcyclohexane	
ortho-Xylene	
Unidentified Impurities	0.4
Purity by freezing point, mal %	95.03 95.0 min
Freezing point, F	-37.97
Boiling point, F	
Distillation range, F	
Initial boiling point	245
50% Condensed	
Dry paint	248
Specific gravity of liquid at 60/60 F	0.7704
at 20/4 C	0.7661
API gravity at 60 F	52.2
Density of liquid at 60 F, lbs/gal	6.41
Vapor pressure at 70 F, psia	0.4
100 F, psia	2.0
Refractive index, 20/D	1,4229
Color, Saybolt	+28
Acidity, distillation residue	neutral
Nonvolatile matter, grams/100 ml	0.0005
Sulfur content, weight percent	
Copper corrosion	
Doctor test	negative
DOCIOLIES.	40 (D 56)

FORMULA	CH ₃ -CH CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ -CH
PROPERTIES	TECHNICAL GRAOE
Composition, weight percent	
1,2-Dimethylcyclopentane	1
Normal Heptane	
Methylcyclohexane	
Ethylcyclopentane	
Toluene	
trans-1,4-Dimethylcyclohexane	0.11
cis-1,4-Dimethylcyclohexane	99.89
Other Dimethylcyclohexanes	
trans-1,2-Dimethylcyclohexane	
cis-1,2-Dimethylcyclohexane	
ortho-Xylene	
Unidentified Impurities	
Purity by freezing point, mol %	97.4 95.0 min
Freezing point, F	-125.38*
Boiling point, F	255.78*
Distillation range, F	
Initial boiling point	255
50% Candensed	
Dry point	256
Specific gravity of liquid at 60/60 F	0.7872
at 20/4 C	0.7825
API gravity at 60 F	48.2
Density of liquid at 60 F, lbs/gal	6.56
Vapor pressure at 70 F, psia	
100 F, psia	0.7
Refractive index, 20/D	1.4297
Color, Saybolt	+30
Acidity, distillation residue	netural
Nonvolatile matter, grams/100 ml	0.0005
Sulfur content, weight percent	
Capper carrosian	l
Doctor test	
Flash point, approximate, F	60

^{*}Literature values.

Table 2.44: Mixed 1,4-Dimethylcyclohexanes (4)

FORMULA	с _в н ₁₆
PROPERTIES	TECHNICAL GRADE
Composition, weight percent	
1,2-Dimethylcyclopentane	
Normal Heptane	
Methylcyclohexane	
Ethylcyclopentane	
Toluene	
trans-1,4-Dimethylcyclohexane	44.0 } 95.0 min
cis-1,4-Dimethylcyclohexane	54.9 } 95.0 min
Other Dimethylcyclohexanes	1.1
trans - 1,2-Dimethylcyclohexane	
cis-1,2-Dimethylcyclohexane	
ortho-Xylene	
Unidentified Impurities	

PROPERTIES	TECHNICAL GRADE	
Freezing point, F	i	
Boiling point, F	1	
Distillation range, F		
Initial boiling point	250	
50% Condensed	252	
Dry point	253	
Specific gravity of liquid at 60/60 F	0.7784	
at 20/4 C	0.7739	
API gravity at 60 F	50.3	
Density of liquid at 60 F, lbs/gal	6.48	
Vapor pressure at 70 F, psia	0.4	
100 F, psia	2.0	
Refractive index, 20/D	1.4257	
Color, Saybolt	+30	
Acidity, distillation residue	neutral	
Nonvolatile matter, grams/100 ml	0.0005	
Sulfur content, weight percent		
Copper corrosion		
Doctor test	negative	
Flash point, approximate, F	45 (D 56)	

Table 2.45: trans-1,2-Dimethylcyclohexane (4)

FORMULA	CH ₂ CH-CH ₃ CH ₃ -CH		
PROPERTIES	RESEARCH GRAOE	PURE GRADE	TECHNICAL GRADE
Composition, weight percent			
1,2-Dimethylcyclopentane			
Normal Heptane			
Methylcyclohexane			0.7
Ethylcyclopentane			
Toluene			
trans-1,4-Dimethylcyclohexane			
cis-1,4-Dimethylcyclohexane			
Other Dimethylcyclohexanes	0.02	0.2	0.2
trans - 1,2-Dimethylcyclohexane	99.90	99.6	96.9 95.0 mir
cis-1,2-Dimethylcyclohexane	0.08	0.2	2.0
ortho-Xylene			0.2
Unidentified Impurities			
Purity by freezing point, mol %	99.73	99.3 99.0 min	
Freezing point, F	-126.75°		
Boiling point, F	254.15*		
Distillation range, F			
Initial boiling point			252
50% Condensed			
Dry point			253
Specific gravity of liquid at 60/60 F	0.7803*	0.780	0.780
at 20/4 C	0.77601*	0.776	0.776
API gravity at 60 F		49.9	49.9
Density of liquid at 60 F, lbs/gal		6.49	6.49
Vapor pressure at 70 F, psia			
100 F, psia	0.71*	0.7	0.7
Refractive index, 20/D	1.42695*	1.427	1.427
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml	_ L	0.0005	0.0005
Sulfur content, weight percent		0.005	0.005
Copper corrosion		11	1
Doctor test		negative	negative
Flash point, approximate, F		51 (D 56)	51 (D 56)

^{*}Literature values.

Table 2.46: cis-1,2-Dimethylcyclohexane (4)

FORMULA	сн ₃ -сн сн ₃ -сн сн3-сн	сн ₂ сн ₂
PROPERTIES	RESEARCH GRADE	PURE GRADE
Composition, weight percent		
Methylcyclohexane		
trans-1,2-Dimethylcyclohexane	0.03	0,1
cis-1,2-Dimethylcyclohexane	99.96	99.7
Ethylcyclohexane		
Ethylbenzene		
Xylenes	0.01	0.2
Isopropylbenzene		
Isopropylcyclohexane		
Unidentified		
Purity by freezing point, mol %	99.91	99.5 99.0 mi
Freezing point, F	-58.04*	
Boiling point, F	265.51*	
Distillation range, F		
Initial boiling point		

(continued)

Table 2.46: (continued)

PROPERTIES	RESEARCH GRAOE	PURE Grade
Dry point	1	
Specific gravity of liquid at 60/60 F	0.8006*	0.801
at 20/4 C	0.79627*	0.796
API gravity at 60 F		45.2
Density of liquid at 60 F, lbs/gal		6.67
Vapor pressure at 70 F, psia	0.23*	0.2
100 F, psia	0.54*	0.5
Refractive index, 20/D	1.43596*	1,436
Color, Saybolt	+30	+30
Acidity, distillation residue		neu trai
Nonvolatile matter, grams/100 ml		0.0005
Sulfur content, weight percent		0.005
Copper corrosion		1
Doctor test		negative
Flash point, approximate, F		60 (D 56)

^{*}Literature values.

Table 2.47: Mixed 1,2-Dimethylcyclohexane (4)

FORMULA	^С в ^Н 16	
PROPERTIES	PURE Grade	
Composition, weight percent		
Methylcyclohexane	trace	
trans-1,2-Dimethylcyclohexane	34 Log 0 min —	
cis-1,2-Dimethylcyclohexane		
Ethylcyclohexane		
Ethylbenzene		
Xylenes	trace	
Isopropylbenzene		
Isopropylcyclohexane		
Unidentified		
Purity by freezing point, mol %		
Freezing point, F		
Boiling point, F	260	

PROPERTIES	PURE Grade	
Distillation range, F		
Initial boiling point		
Dry point		
Specific gravity of liquid at 60/60 F	0.792	
at 20/4 C	0.789	
API gravity at 60 F	47.2	
Density of liquid at 60 F, lbs/gal	6.59	
Vapor pressure at 70 F, psia		
100 F, psia	0.6	
Refractive index, 20/D	1.432	
Color, Saybolt	+30	
Acidity, distillation residue	neutral	
Nonvolatile matter, grams/100 ml	0.0005	
Sulfur content, weight percent	0.005	
Copper corrosion	1	
Doctor test	negative	
Flash point, approximate. F	55 (D 56)	

^{*}Literature values.

Table 2.48: Ethylcyclohexane (4)

FORMULA	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃		1
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAI GRADE
Composition, weight percent			
Methylcyclohexane			
trans-1,2-Dimethylcyclohexane			
cis-1,2-Dimethylcyclohexane			2.0
Ethylcyclohexane	99.98	99.5	96.9
Ethylbenzene	0.02	0.4	0.8
Xylenes			7
Isopropylbenzene			T
Isopropylcyclohexane			
Unidentified	trace	0.1	0.3

Table 2.48: (continued)

PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE	
Purity by freezing point, mol %	99.66	99.19 99.0 min	96.06 95.0 mi	
Freezing point, F	-168.38°			
Boiling point, F	269.21*			
Distillation range, F				
Initial boiling point			266	
Dry point			269	
Specific gravity of liquid at 60/60 F	0.7922*	0.793	0.793	
at 20/4 C	0.78792*	0.788	0.788	
API gravity at 60 F		46.9	46.9	
Density of liquid at 60 F, lbs/gal	_	6.60	6.60	
Vapor pressure at 70 F, psia	- [
100 F, psia	0.48*	0.5	0.5	
Refractive index, 20/D	1.43304*	1.433	1.433	
Color, Saybolt	+30	+30	+30	
Acidity, distillation residue		neutral	neutral	
Nonvolatile matter, grams/100 ml		0.0005	0.0005	
Sulfur content, weight percent				
Copper corrosion	1			
Doctor test				
Flash point, approximate, F	66	66	66	

^{*}Literature values,

Table 2.49: Isopropylcyclohexane (4)

FORMULA	CH2 CH2 CH3			
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE	
Composition, weight percent				
Methylcyclohexane		·		
trans 1,2-Dimethylcyclohexane				
cis-1,2-Dimethylcyclohexane		1		
Ethylcyclohexane				
Ethylbenzene				
Xylenes	1	0.02		
Isopropyibenzene	0.03	0.02	0.79	
Isopropylcyclohexane	99.97	99.90	99.05	
Unidentified		0.06	0.16	
Purity by freezing point, mol %	99.67	99.4 99.0 min	95.2 95.0 mi	
Freezing point, F	-128.9°			
Boiling point, F	310.57*			
Distillation range, F		1		
Initial boiling point			307	
Dry point			310	
Specific gravity of liquid at 60/60 F	0.8064*	0.807	0.807	
at 20/4 C	0.8024*	0.803	0.803	
API gravity at 60 F	1	43.8	43.8	
Density of liquid at 60 F, lbs/gal		6.72	6.72	
Vapor pressure at 70 F, psia				
100 F, psia		1		
Refractive index, 20/D	1.44087*	1.441	1.441	
Color, Saybolt	+30	+30	+30	
Acidity, distillation residue		neutral	neutral	
Nonvolatile matter, grams/100 ml		0.0005	0.0005	
Sulfur content, weight percent				
Copper corrosion				
Doctor test	1			
Flash point, approximate, F	96	96	96	

^{*}Literature values.

OLEFINS

Table 2.50: Ethylene (4)

FORMULA	CH ₂ - CH ₂		
PROPERTIES	RESEARCH GRADE	99.8% GRADE	
Composition, weight percent			
Propane			
Propylene			
Ethylene	99.97	99.88 99.8 mir	
Ethene	0.01	0.04	
Methane	0.02	0.08	
Carbon Dioxide, ppm		1 15 max	
Acetylene, ppm (liquid)		1 5 max	
Carbonyl, ppm (liquid)			
Carbon Monoxide, ppm		1 5 max	
Oxygen, ppm		20	
Hydrogen, ppm		1 5 max	
Freezing point, triple point, F	-272. 4 7*		
Boiling point, F	-154.68°		
Specific gravity of liquid at 60/80 F			
at 20/4 C			
API gravity at 60 F			
Density of liquid at 60 F, lbs/gal			
Vapor pressure at 70 F, psia			
100 F, psia			
130 F, psia			
Sulfur content, ppm		3 10 max	
Specific gravity of real gas at			
60 F and 14.7 psia (Air ≈ 1)	0.9740*		
Specific volume of real gas at			
60 F and 14.7 psia, cu ft/lb	13.4524*		
Critical temperatura, F	49.82°		
Critical pressure, psia	742.1*		
Density of real gas at 60 F			
and 14.7 psia, lbs/cu ft		0.0743	
Flash point, approximate, F		-213	
Flammability limits, volume % in air			
Lower	2.7*		
Higher	34*		
Heating value for ideal gas at 60 F			
and 14.7 osia, BTU/cu ft, dry basis	1599*		

^{*}Literature values.

Table 2.52: Isobutylene (4)

FORMULA	сн ₃ сн ₃ –с - сн ₂		
PROPERTIES	RESEARCH GRAOE	PURE GRAOE	
Composition, weight percent			
Isobutane	0.06	0.1	
Isobutylene	99.81	99.3 99.0 mi	
Butene-1	0.09	0.4	
Butadiene-1,3			
Normal Butane	0.04	0.2	
Butene-2	trace	trace	
Acetylene (as Methylacetylene) ppm, wt.			
Water, ppm, weight		177	
Carbonyl (as Acetaldehyde) ppm, weight		nil	
Propadiene, ppm, weight		1	

Table 2.51: Propylene (4)

FORMULA	СН	₂ = CH-CH ₃	
PROPERTIES	RESEARCH GRADE	POLYMERIZATION GRADE	
Composition, weight percent			
Propane	0.01	0.5	
Propylene	99.99	99.5 99.0 min	
Ethylene			
Ethane	L	trace	
Methane			
Carbon Dioxide, ppm			
Acetylene, ppm (liquid)		10	
Carbonyl, ppm (liquid)		20	
Carbon Monoxide, ppm			
Oxygen, ppm			
Hydrogen, ppm			
Freezing point, triple point, F	-301,45*		
Boiling point, F	-53.86*		
Specific gravity of liquid at 60/60 F	0.5220°	0.522	
at 20/4 C	0.5139*	0.514	
API gravity at 60 F		139.6	
Density of liquid at 60 F, lbs/gal		4.35	
Vapor pressure at 70 F, psia		151	
100 F, psia		242	
130 F. psia		328	
Sulfur content, ppm		4	
Specific gravity of real gas at			
60 F and 14.7 psia (Air = 1)	1.4765*		
Specific volume of real gas at			
60 F and 14.7 psia, cu ft/lb	8.8736*	1	
Critical temperature, F	197.4*	T	
Critical pressure, psia	667*		
Density of real gas at 60 F			
and 14,7 psia, lbs/cu ft		0.1127	
Flash point, approximate, F		-162	
Flammability limits, volume % in air			
Lower	2.0*		
Higher	10*		
Heating value for ideal gas at 60 F			
and 14.7 psia, BTU/cu ft, dry basis	2334*	· ·	

^{*}Literature values.

T

PROPERTIES	RESEARCH GRADE	PURE GRADE
Freezing point, F	-220.63°	1
Boiling point, F	19.58*	
Specific gravity of liquid at 60/60 F	0.6004*	0.600
at 20/4 C	0.5942*	
API gravity at 60 F		104.3
Density of liquid at 60 F, lbs/gal		4.99
Vapor pressure at 70 F, psia		1
100 F, psia		63.4
130 F, psia		
Sulfur content, ppm		8
Specific gravity of real gas at		Ī
60 F and 14.7 psia (Air ≠ 1)		1.997
Specific volume of real gas at		
60 F and 14.7 psia, cu ft/lb		6.561
Flash point, approximate, F		-105/
Flammability limits, volume % in air		
Lower		
Higher		

^{*}Literature values.

Table 2.53: Butene-1 (4)

FORMULA	сн _з сн _з сн - сн _з			
PROPERTIES	RESEARCH GRADE	POLYMERIZATION GRADE		
Composition, weight percent				
Isobutane		0.1		
Isobutylene	0.2	0.3		
Butene-1	99.8	99.4 99.0 min		
Butadiene-1,3		trace		
Normal Butane		0.2		
Butene-2		trace		
Acetylene (as Methylacetylene) ppm, wt.		15 25 max		
Water, opm, weight				
Carbonyl (as Acetaldehyde) ppm, weight		10 20 max		
Propadiene, ppm, weight		4		

PROPERTIES	RESEARCH GRADE	POLYMERIZATION GRADE
Freezing point, F	-301.63*	
Boiling point, F	20.73*	
Specific gravity of liquid at 60/60 F	0.6013*	0.601
at 20/4 C	0.5951*	
API gravity at 60 F		103.9
Density of liquid at 60 F, lbs/gal		5.00
Vapor pressure at 70 F, psia		37.5
100 F, psia		67.5 (105F)
130 F, psia		99.7
Sulfur content, ppm		1 10 max
Specific gravity of real gas at 60 F and 14.7 psia (Air = 1)		
Specific volume of real gas at 60 F and 14.7 psia, cu ft/lb		
Flash point, approximate, F		-112
Flammability limits, volume % in air		†
Lower	1.6*	<u> </u>
Higher	9.3*	†

^{*}Literature values.

Table 2.54: trans-Butene-2 (4)

FORMULA	сн _э -с-с-с-с-с-			
PROPERTIES	RESEARCH GRADE	PURE GRAOE	TECHNICAL GRADE	
Composition, weight percent				
Butene-1	0.03		trace	
Normal Butane	0.07	0.2	1.3	
trans-Butene-2	99.80	99.6	97.7 95.0 mi	
cis-Butene-2	0.10	0.2	1.0	
Purity by freezing point, mol %	99.76	99.2 99.0 min		
Freezing paint, F	-157.99*	1		
Boiling point, F	33.58*			
Specific gravity of liquid at 60/60 F	0.6100*	0.610	0.609	
at 20/4 C	0.6042*			
API gravity at 60 F		100.5	100.8	
Density of liquid at 60 F, lbs/gal		5.07	5.07	
Vapor pressure at 70 F, psia	29.94*	29.9	30	
105 F, psia		52.2	52	
130 F, psia		76.4	76	
Flash point, approximate, F		-100	-100	

^{*}Literature values.

Table 2.55: cis-Butene-2 (4)

FORMULA	н н сн ₃ -с - с-сн ₃		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRACE
Composition, weight percent			
Butene-1			
Normal Butane			1
trans-Butene-2	0.03	0.5	4.3
cis-Butene-2	99.97	99.5	95.7 95.0 n

Table 2.55: (continued)

PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAI GRADE
Purity by freezing point, mol %	99.92	99,4 99.0 min	
Freezing point, F	-218.04*		"
Boiling point, F	38.70*	1	
Specific gravity of liquid at 60/60 F	0.6271*	0.627	0.632
at 20/4 C	0.6213*		
API gravity at 60 F		94.2	92.4
Density of liquid at 60 F, lbs/gal		5.22	5.26
Vapor pressure at 70 F, psia	27.29*	27.3	27.8
105 F, psia		49.8	50.8
130 F, psia		73.2	74.8
Flash point, approximate, F		-100	-100

^{*}Literature values.

Table 2.56: Mixed 2-Butenes (4)

FORMULA	сн _э -сн - сн-сн _э		сн _а -сн - сн-сн _а
PROPERTIES	PURE GRADE	TECHNICAL GRADE	
Composition, weight percent			
Butene-1		0.3	
Normal Butane		2.7	
trans-Butene-2	45.0 } 99.0 min -	52.0 }95.0 mir	
cis-Butene-2	55.0 (55.0 11111	45.0 }95.0 mil	
Purity by freezing point, mal %			
Freezing point, F			
Boiling point, F			
Specific gravity of liquid at 60/60 F	0.619	0.618	
at 20/4 C	0.615	0.614	
API gravity at 60 F	97.1	97.5	
Density of liquid at 60 F, lbs/gal	5,15	5,14	
Vapor pressure at 70 F, psia	28.0	28.1	
105 F, psia	51.0	51.2	
130 F, psia	76.5	76.7	
Flash point, approximate, F	-95	100	

^{*}Literature values.

Table 2.57: 3-Methylbutene-1 (4)

FORMULA		сн ₂ - сн-сн-сн ₃	
PROPERTIES	RESEARCH Grade	PURE GRADE	TECHNICAL GRADE
Composition, weight percent			
3-Methylbutene-1	99.97	99.8	96.3 95.0 mi
2-Methylbutene-1		0.1	2.0
2-Methylbutene-2			
Pentene-1		Ĭ	0.2
Pentenes-2	0.02	0.1	1.0
Isopentane	0.01	trace	0,5
Normal Pentane			

Table 2.57: (continued)

PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL Grade
Purity by freezing paint, mal %	99.93	99.4 99.0 min	
Freezing point, F	-271.29°		
Bailing point, F	68.11°		
Distillation range, F			
Initial boiling point			
Dry point			
Specific gravity of liquid at 60/60 F	0.6325*	0,633	0.633
at 20/4 C	0.6272*	0.628	0.628
API gravity at 60 F		91.9	91.9
Density of liquid at 60 F, lbs/gal		5.27	5.27
Vapor pressure at 70 F, psia	15.25*	15,2	15.0
100 F, psia	26.41*	26.4	26.0
130 F, psia			
Refractive index, 20/D	1.3643°	1.364	1.364
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		1	
Nonvolatile matter, grams/100 ml			
Flash point, approximate, F		-70	-70

^{*}Literature values.

Table 2.58: 2-Methylbutene-1 (4)

FORMULA	CH ₂ -C-CH ₂ -CH ₃			
PROPERTIES	RESEARCH PURE GRADE GRADE		TECHNICAL GRADE	
Composition, weight percent				
3-Methylbutene-1		trace	0.3	
2-Methylbutene-1	99.99	99.8	97.3 95.0 mir	
2-Methylbutene-2		trace	0.1	
Pentene-1	0.01	0.1	1.9	
Pentenes-2		trace	0.2	
Isopentane				
Normai Pentane		0.1	0.2	
Purity by freezing point, mol %	99.85	99,5 99.0 min		
Freezing point, F	-215.61*			
Boiling point, F	88.09*			
Distillation range, F				
Initial boiling point			87	
Dry point			88	
Specific gravity of liquid at 60/60 F	0.6557*	0.656	0.656	
at 20/4 C	0.6504*	0.650	0.650	
API gravity at 60 F		84.2	84.2	
Density of liquid at 60 F, lbs/gal		5.46	5.46	
Vapor pressure at 70 F, psia	10.21*	10.3	10.3	
100 F, psia	18.40*	18.8	18.8	
130 F, psia		32.0	32.0	
Refractive index, 20/D	1.3778*	1.378	1.378	
Color, Saybolt	+30	+30	+30	
Acidity, distillation residue		neutral	neutral	
Nonvolatile matter, grams/100 ml		0.0005	0.0005	
Flash point, approximate, F		-55	-55	

^{*}Literature values.

Table 2.59: Methylbutene-2 (4)

FORMULA	сн _э -с=сн-сн _э			
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE	COMMERCIAL GRADE
Composition, weight percent				
3-Methylbutene-1			<u> </u>	· · · · · · · · · · · · · · · · · · ·
2-Methylbutene-1	trace	0.2	0.2	10.3
2-Methylbutene-2	99.99	99.5	97.4 95.0 min	87.8
Pentene-1	trace		0.1	
Pentenes-2	0.01	0.3	2.3	0.8
Isopentane				1.1
Normal Pentane				
Purity by freezing point, mol %	99.78	99.3 99.0 min		
Freezing paint, F	-208.78*			
Bailing point, F	101.42*			
Distillation range, F				
Initial boiling point			101	100.7
Dry point			102	101.3
Specific gravity of liquid at 60/60 F	0.6676*	0.668	0.667	0.668
at 20/4 C	0.6623*	0.662	0.662	0.663
API gravity at 60 F		80.3	80.6	
Density of liquid at 60 F, lbs/gal		5.56	5.55	5.56
Vapor pressure at 70 F, psia	7.76*	7.8	7.8	
100 F, psia	14.30*	14.3	14.3	
130 F, psia	24.56*	24.6	24.6	
Refractive index, 20/D	1.3874*	1.387	1.387	1.387
Color, Saybolt	+30	+30	+30	
Acidity, distillation residue		neutral	neutral	
Nonvolatile matter, grams/100 ml		0.0005	0.0005	
Flash point, approximate, F		-50	-50	-60

^{*}Literature values.

Table 2.60: Pentene-1 (4)

FORMULA	CH ₂ = CH - CH ₂ - CH ₂ - CH ₃		н ₃
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight percent			
Isopentane		trace	0.1
Pentene-1	99.9	99.4 99.0 min	97.0 95.0 min
2-Methylbutane-1		0.3	1.4
Normal Pentane		0.1	0.5
trans-Pentene-2	0.1	0.2	0.5
cis-Pentene-2			
2-Methylbutene-2		trace	0.5
Purity by freezing point, mol %			
Freezing point, F	-265.40°		
Boiling point, F	85.94*		
Distillation range, F			
Initial boiling point			85
Dry Point			87
Specific gravity of liquid at 60/60 F	0.6457*	0.646	0.646
at 20/4 C	0.64050*	0.641	0.641
API gravity at 60 F		87.5	87.5
Density of liquid at 60 F, lbs/gal		5.38	5.38
Vapor pressure at 70 F, psia	10.70*	10,7	10.6
100 F, psia	19.12*	19.1	19.0
130 F, psia		33.0	32.8
Refractive index, 20/D	1.37148*	1.372	1.372
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Flash point, approximate, F		- 60	-60
Flammability limits, volume % in air			
Lower	1,4*		
Higher	8.7*		

Literature values.

Table 2.61: cis-Pentene-2 (4)

FORMULA	сн ₃ – с • с – сн ₂ – сн ₃		
PROPERTIES	RESEARCH GRADE	TECHNICAL GRADE	
Composition, weight percent			
Isopentana		T	
Pentene-1		† · · · · · · · · · · · · · · · · · · ·	
2-Methylbutene-1		T	
Normal Pentane	* * * * * * *	† · · · · · · · ·	
trans-Pentene-2	0.1	3.2	
cis-Pentene-2	99.9	96.8 95.0 mir	
2-Methylbutene-2			
Purity by freezing point, mol %	99.8		
Freezing point, F	-240.50°	T	
Boiling point, F	98.50*	1	
Distillation range, F		Ī	
Initial boiling point		I	
Dry Point		l	
Specific gravity of liquid at 60/60 F	0.6608*	0.660	
at 20/4 C	0.6556*	0.655	
API gravity at 60 F		82.9	
Density of liquid at 60 F, lbs/gal		5.49	
Vagor pressure at 70 F, psia	8.24*	8.3	
100 F, psia	15,12	15.1	
130 F, psia	25.84*	26.6	
Refractive index, 20/D	1.3830*	1.383	
Color, Saybolt		+30	
Acidity, distillation residue		neutral	
Nonvolatile matter, grams/100 ml		0.0005	
Flash point, approximate, F		-50	
Flammability limits, volume % in air			
Lower			
Higher		1	

[•] Literature values.

Table 2.63: Mixed 2-Pentenes (4)

FORMULA	сн ₃ – сн = с	сн ₃ – сн = сн – сн ₂ – сн ₃		
PROPERTIES	PURE GRADE	TECHNICAL GRADE		
Composition, weight percent				
Isopentane				
Pentene-1	0.1	0.1		
2-Methylbutene-1	0.1	0.3		
Normal Pentane	0.1	1.6		
trans-Pentene-2	46.6	48.8		
cis-Pentene-2	53.0 99.0 min	48.8 95.0 mir		
2-Methylbutana-2	0.1	1.0		
Purity by freezing point, mol %				
Freezing point, F				
Boiling point, F				
Distillation range, F	<u> </u>			
Initial boiling point	·	97		
Dry Point		99		

Table 2.62: trans-Pentene-2 (4)

FORMULA	CH ³ - C - C - CH ³ - CH ³
PROPERTIES	RESEARCH GRADE
Composition, weight percent Isopentane Pentene-1 2-Methylbutene-1	
Normal Pentane trans-Pentene-2 cis-Pentene-2	0.02 99.63 0.35
2-Methylbutene-2	
Purity by freezing point, mol %	99.53
Freezing point, F	-220.44*
Boiling point, F Distillation range, F Initial boiling point Dry Point	97.44*
Specific gravity of liquid at 60/60 F at 20/4 C	0.6533° 0.6482°
API gravity at 60 F	•
Density of liquid at 60 F, lbs/gal	5.447*
Vapor pressure at 70 F, psia	10.2*
100 F, psia	15.4*
130 F, psia	26.3*
Refractive index, 20/D Color, Saybolt	1.3793*
Acidity, distillation residue	+30
Nonvolatile matter, grams/100 ml	
Flash point, approximate, F	
Flammability limits, volume % in air Lower Higher	

[•] Literature values,

PROPERTIES	PURE GRADE	TECHNICAI GRADE
Specific gravity of liquid at 60/60 F at 20/4 C	0.656 0.652	0.658 0.654
API gravity at 60 F	84.2	83.5
Density of liquid at 60 F, lbs/gel	5.46	5.48
Vapor pressure at 70 F. psia	8.4	8.3
100 F, psia	15.4	15.2
130 F, psia	27.0	26.7
Refractive index, 20/D	1.380	1.381
Color, Saybolt	+30	+30
Acidity, distillation residue	neutral	neutral
Nonvolatile matter, grams/100 ml	0.0005	0.0005
Flash point, approximate, F	-50	-50
Flammability limits, volume % in air		1
Lawer		1
Higher		T

Table 2.64: 3,3-Dimethylbutene-1 (4)

Neohexene

FORMULA	CH ₃ CH ₂ = CH-CH ₃ CH ₃
PROPERTIES	TECHNICAL Grade
Composition, weight percent	
3,3-Dimethylbutene-1	98.9
2,3-Dimethylbutane	
4-Methylpentene-1	
3-Methylpentene-1	
2,3-Dimethylbutene-1	
2,3-Dimethylbutene-2	I
cis-4-Methylpentene-2	
trans-4-Methylpentene-2	
2-Methylpentene-2	
Other Diefins	1.1
Boiling point, F Distillation range, F	- -
Initial boiling point	106
10% Condensed	106
50% Condensed	107
90% Condensed	
Dry point	114
Specific gravity of liquid at 60/60 F	0.6582
at 20/4 C	0.6533
API gravity at 60 F Density of liquid at 60 F, lbs/gal	83.5
Vapor pressure at 70 F, psia	5.48
100 F, psia	7.2
130 F, psia	14.6
Refractive index, 20/D	1 2700
Color, Saybolt	1.3766
Acidity, distillation residue	+30
Nonvolatile matter, grams/100 ml	neutral 0.0005
Doctor test	negative
Flash point, approximate, F	45
	43

^{*}Literature values.

Table 2.66: 4-Methylpentene-1 (4)

FORMULA PROPERTIES		сн ₃ сн ₂ - сн-сн ₂ -сн-сн ₃		
	RESEARCH GRADE	PURE Grade	TECHNICAL Grade	
Composition, weight percent				
3,3-Dimethylbutene-1	1			
2,3-Dimethylbutane				
4-Methylpentene-1	99.94	99.6	99.1	
3-Methylpentene-1	0.02	0.1	0.2	
2,3-Dimethylbutene-1				
2,3-Dimethylbutene-2				
cis-4-Methylpentene-2	0.02	0.3	0.6	
trans-4-Methylpentene-2	0.02	T	0.1	
2-Methylpentene-2				
Other Olefins				
Purity by freezing point, mol %	99.81	99.3 99,0 min	97.5 95.0 min	
Freezing point, F		-244.53°		
Boiling point, F		128.96*		
Distillation range, F	I			
Initial boiling point	I		129	
10% Condensed				
50% Condensed	L			
90% Condensed				
Dry point		l	130	
Specific gravity of liquid at 60/60 F	0.6686*	0.669	0,669	
at 20/4 C	0.66370*	0.664	0.664	

Table 2.65: Mixed 2,3-Dimethylbutenes (4)

FORMULA	С ₆ Н ₁₂
PROPERTIES	TECHNICAL Grade
Composition, weight percent	
3,3-Dimethylbutene-1	1
2,3-Dimethylbutane	2.0
4-Methylpentene-1	
3-Methylpentene-1	
2,3-Dimethylbutene-1	32.0
2,3-Dimethylbutene-2	63.9 95.0 min
cis-4-Methylpentene-2	
trans-4-Methylpentene-2	1
2-Methylpentene-2	2.1
Other Diefins	
Purity by freezing point, mol %	
Freezing point, F	1
Boiling point, F	
Distillation range, F	1
Initial boiling point	140
10% Condensed	
50% Condensed	·
90% Condensed	
Dry point	169
Specific gravity of liquid at 60/60 F	0.703
at 20/4 C	
API gravity at 60 F	69.8
Density of liquid at 60 F, lbs/gal	5.85
Vapor pressure at 70 F, psia	_
100 F, psia 130 F, psia	5.7
	ļ
Refractive index, 20/D	
Color, Saybolt	+30
Acidity, distillation residue Nonvolatile matter, grams/100 ml	neutral
Doctor test	0.0005
Flash point, approximate, F	}
i iomi point, appioximate, r	-35

^{*}Literature values.

Table 2.66: (continued)

PROPERTIES	RESEARCH Grade	PURE GRADE	TECHNICAL Grade
API gravity at 60 F		80.0	80.0
Density of liquid at 60 F, lbs/gal		5.57	5.57
Vapor pressure at 70 F, psia	4.48*	4.5	4.5
100 F, psia	8.50*	8.5	8.5
130 F, psia	14.97*	15.0	15.0
Refractive index, 20/D	1,38267*	1.383	1.383
Color, Saybolt	+30	+30	+30
Acidity, distillation residue	1 1	neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Doctor test			
Flash point, approximate, F		-25	-25

^{*}Literature values.

Table 2.67: cis-4-Methylpentene-2 (4)

FORMULA PROPERTIES	н н сн _э сн _э -с - с-сн-сн _э		
	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight percent			
3,3-Dimethy/butene-1		<u> </u>	
2,3-Dimethylbutane		<u> </u>	
4-Methylpentene-1	0.06	0.1	0.2
3-Methylpentene-1		<u> </u>	
2,3-Dimethylbutene-1		ļi	
2,3-Dimethylbutene-2		<u> </u>	
cis-4-Methylpentene-2	99.87	99.8	97.1
trans-4-Methylpentene-2	0.07	0,1	2.4
2-Methylpentene-2			
Other Olefins			0.3
Purity by freezing point, mol %	99.71	99.52 99.0 min	96.2 95.0 min
Freezing point, F	-209.97*	L	
Bailing point, F	133.50*	1	
Distillation range, F			
Initial boiling point			130
10% Condensed		<u></u>	
50% Candensed			
90% Condensed			
Dry point		L	133
Specific gravity of liquid at 60/60 F	0.6741*	0.674	0.674
at 20/4 C	0,66918*	0.669	0.669
API gravity at 60 F		78.4	78.4
Density of liquid at 60 F, lbs/gal		5.61	5.61
Vapor pressure at 70 F, psia	4.01*	4.0	4.0
100 F, psia	7.73*	7.7	7.7
130 F, psia	13.80*	13.8	13.8
Refractive index, 20/D	1.38793*	1.388	1,388
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutrai
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Doctor test		1	
Flash point, approximate, F		-25	-25

^{*}Literature values.

Table 2.68: trans-4-Methylpentene-2 (4)

FORMULA	н сн ₃ -с-с-сн-сн ₃		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight percent			
4-Methylpentene-1			<u> </u>
cis-4-Methylpentene-2	trace	0.1	0.6
trans-4-Methylpentene-2	99.98	99.9	96.5
2-Methylpentene-1			1
2-Methylpentene-2			
Isoolefins	0.02	trace	2.9
Purity by freezing point, mol %	99.94	99.2 99.0 min	95,6 95,0 mir
Freezing point, F	-221.46°		
Boiling point, F	137.50*		
Distillation range, F			
Initial boiling point			137.1
Dry point			137.8
Specific gravity of liquid at 60/60F	0.6736*	0.673	0.674
at 20/4 C	0.66862*	0.669	0.670
API gravity at 60 F		78.7	78.4
Density of liquid at 60 F, lbs/gal		5.60	5.61
Vapor pressure at 70 F, psia	3.66*	3.7	3.7
100 F, psia	7.12*	7.1	7.1
130 F, psia	12.82*	12.8	12.8
Refractive index, 20/D	1.38878*	1.389	1.389
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Flash point, approximate, F		-20	-20

^{*}Literature values.

Table 2.69: Mixed 4-Methyl-2-Pentenes (4)

FORMULA	сн _з -сн - сн-сн-сн _з		
PROPERTIES	PURE Grade	TECHNICAL GRADE	
Composition, weight percent			
4-Methylpentene-1	0,1	2.8	
cis-4-Methylpentene-2	76.5 } 00.0	76.2) or o	
trans-4-Methylpentene-2	23.4 99.0 min	76.2 20.8 } 95.0 min	
2-Methylpentene-1			
2-Methylpentene-2			
Isoolefins		0.2	
Purity by freezing point, mol %			
Freezing point, F			
Boiling point, F	135.0		
Distillation range, F	,		
Initial boiling point		136.0	
Dry point		137.2	
Specific gravity of liquid at 60/60F	0.673	0.673	
at 20/4 C	0.669	0.669	
API gravity at 60 F	78.8	78.8	
Density of liquid at 60 F, lbs/gal	5.60	5.60	
Vapor pressure at 70 F, psia	3.8	3.8	
100 F, psia	7.5	7.5	
130 F, psia	13.0	13.0	
Refractive index, 20/D	1.388	1.388	
Color, Saybolt	+30	+30	
Acidity, distillation residue	neutral	neutral	
Nonvolatile matter, grams/100 ml	0.0005	0.0005	
Flash point, approximate, F	-20	-20	

Table 2.70: 2-Methylpentene-1 (4)

FORMULA	сн _а сн ₂ • с-сн ₂ -сн ₂ -сн ₃		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL Grade
Composition, weight percent			
4-Methylpentene-1			0.6
cis-4-Methylpentene-2			0.5
trans-4-Methylpentene-2		0.1	0.2
2-Methylpentene-1	99.90	99.8	95.8 95.0 mir
2-Methylpentene-2			
Isoolefins	0.10	0.1	2.9
Purity by freezing point, mol %	99.84	99.65 99.0 min	
Freezing point, F	-212.30°		
Boiling point, F	143.80*	1	
Distillation range, F			
Initial boiling point			142.8
Dry point			143.6
Specific gravity of liquid at 60/60F	0.6848*	0.685	0.685
at 20/4 C	0.67987*	0.680	0.680
API gravity at 60 F		75.4	75.4
Density of liquid at 60 F, lbs/gal		5.69	5.69
Vapor pressure at 70 F, psia	3.20*	3.2	3.2
100 F, psia	6.30*	6.3	6.3
130 F, psia	11.43*	11.4	11,4
Refractive index, 20/D	1.39200*	1.392	1.392
Color, Saybolt		+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Flash point, approximate, F		-15	-15

^{*}Literature values.

Table 2.71: 2-Methylpentene-2 (4)

FORMULA	сн _з -с - сн-сн ₂ -сн ₃		
PROPERTIES	PURE Grade	TECHNICAL GRADE	
Composition, weight percent			
4-Methylpentene-1		1	
cis-4-Mathylpentene-2			
trans-4-Methylpentene-2			
2-Methylpentene-1	0.1	1.6	
2-Methylpentene-2	99.8	96.0 95.0 min	
Isoolefins	0.1	2.4	
Purity by freezing point, mol %			
Freezing point, F	-211.13*		
Boiling point, F	153.15*		
Distillation range, F			
Initial boiling point		152	
Dry point		158	
Specific gravity of liquid at 60/60F	0.6913*	0.692	
at 20/4 C	0.68650*	0.687	
API gravity at 60 F		73.1	
Density of liquid at 60 F, lbs/gal		5.76	
Vapor pressure at 70 F, psia	2.57*	2.6	
100 F, psia	5.17°	5,1	
130 F, psia	9.58*	9.6	
Refractive index, 20/D	1.40030*	1.400	
Color, Saybolt	+30	+30	
Acidity, distillation residue	neutral	neutrai	
Nonvolatile matter, grams/100 ml	0.0005	0.0005	
Flash point, approximate, F	-10	-10	

^{*}Literature values.

Table 2.72: Hexene-1 (4)

FORMULA	CH ₂ = CH-CH ₂ -CH ₂ -CH ₂ -CH ₃		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL Grade
Composition, weight percent			
Hexene-1	99.98	99.7	96.8
trans-Hexene-2	} 0.02	↓ } 0.2	
cis-Hexene-2	, u.uz	, 0.2	,
Hexenes-3			0.3
Normal Hexane		0.1	1.2
Isoolefins			1.6
Heptene-1			
trans-Heptene-3			
cis-Heptene-3			
trans-Heptene-2			
cis-Heptene-2			
Purity by freezing point, mal %	99.97	99.14 99.0 min	95.8 95.0 min
Freezing point, F	-219.67*		
Boiling point, F	146.27*		
Distillation range, F			
Initial boiling point			146.2
Dry point			146.3
Specific gravity of liquid at 60/60 F	0.6780*	0.678	0.677
at 20/4 C	0.67317*	0.673	0.674
API gravity at 60 F		77.2	77.5
Density of liquid at 60 F, lbs/gal		5.64	5.64
Vapor pressure at 70 F, psia	3.04*	3.0	3.0
100 F, psia	6.01*	6.0	6.0
130 F, psia	10.93*	10.9	10.9
Refractive index, 20/D	1.38788*	1.388	1.388
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Flash point, approximate, F		-15	-15

^{*}Literature values.

Table 2.73: cis-Hexene-2 (4)

FORMULA	сн ₃ -с = с-сн ₂ -сн ₂ -сн ₃	
PROPERTIES	RESEARCH GRADE	
Composition, weight percent		
Hexene-1	0.1	
trans-Hexene-2	0.2	
cis-Hexene-2	99.6	
Hexenes-3		
Normal Hexane		
Isoolefins	0.1	
Heptene-1		
trans-Heptene-3		
cis-Heptene-3		
trans-Heptene-2		
cis-Heptene-2		
Purity by freezing point, mol %	99.28	
Freezing point, F	-222,04 *	
Boiling point, F	156.00*	
Distillation range, F		
Initial boiling point		
Dry point		
Specific gravity of liquid at 60/60 F	0.6920*	
at 20/4 C	0.68720*	
API gravity at 60 F		
Density of liquid at 60 F, lbs/gal	5.760*	
Vapor pressure at 70 F, psia	2.4*	
100 F, psia	4.9*	
130 F, psia	9.1*	
Refractive index, 20/0	1.39761*	
Color, Saybolt	+30	
Acidity, distillation residue		
Nonvolatile matter, grams/100 ml		
Flash point, approximate, F	<u> </u>	

^{*}Literature values.

Table 2.74: Mixed 2-Hexenes (4)

FORMULA	сн ₃ -сн * снсн ₂ сн ₂ сн ₃	
PROPERTIES	PURE GRADE	TECHNICAL Grade
Composition, weight percent		
Hexene-1	trace	0.3
trans-Hexene-2	35.6 } 99.0 min —	34.1 63.5 } 95.0 min
cis-Hexene-2	63.6 { 99.0 11111	
Hexenes-3	0.8	2.1
Normal Hexane		
Isoolefins		
Heptene-1		
trans-Heptene-3		
cis-Heptene-3		
trans-Heptene-2		
cis-Heptene-2		
Purity by freezing point, mal %		
Freezing point, F		
Boiling point, F		
Distillation range, F		
Initial boiling point	155.0	155.0
Dry point	155.1	155.1
Specific gravity of liquid at 60/60 F	0.684	0.686
at 20/4 C		
API gravity at 60 F	75.4	74.8
Density of liquid at 60 F, lbs/gal	5.69	5.71
Vapor pressure at 70 F, psia	2.4	2.4
100 F, psia	5.0	5.0
130 F, psia	9.2	9,2
Refractive index, 20/D	1.396	1.396
Color, Saybolt	+30	+30
Acidity, distillation residue	neutral	neutral
Nonvolatile matter, grams/100 ml	0.0005	0.0005
Flash point, approximate, F	-5	-5

Table 2.75: Mixed 2- and 3-Hexenes (4)

FORMULA	С ₆ Н ₁₂
PROPERTIES	TECHNICAL Grade
Composition, weight percent	
Hexene-1	2.3
trans-Hexene-2	71.1)
cis-Hexene-2	15.8 \ 95.0 mir
Hexenes-3	10.8)
Normal Hexane	
Isoalefins	
Heptene-1	
trans-Heptene-3	
cis-Heptene-3	
trans-Heptene-2	
cis-Heptene-2	
Dura to Assessment and W	
Purity by freezing point, mol %	
Freezing point, F	
Boiling point, F Distillation range, F	
Initial boiling point	152.2
Dry point	155.4
Specific gravity of liquid at 60/60 F	0.685
at 20/4 C	U,000
API gravity at 60 F	75.1
Density of liquid at 60 F, lbs/gal	5.70
	2.5
Vapor pressure at 70 F, psia	5.2
100 F, psia 130 F, psia	9.6
	1.396
	1.396
Refractive index, 20/D	. 20
Refractive index, 20/D Color, Saybolt	+30
Refractive index, 20/D	+30 neutral 0.0005

Table 2.77: cis-Heptene-2 (4)

FORMULA	H H CH3-C = C-(CH2)3-CH3
PROPERTIES	TECHNICAL Grade
Composition, weight percent	
Hexene-1	
trans-Hexene-2	
cis-Hexene-2	
Hexenes-3	
Normal Hexane	1
Isoolefins	
Heptene-1	
trans-Heptena-3	
cis-Heptene-3	
trans-Heptene-2	4.0
cis-Heptene-2	96.0 95.0 min

Table 2.76: Heptene-1 (4)

FORMULA	CH ₂ = CH-(CH ₂) ₄ -CH
PROPERTIES	TECHNICAL Grade
Composition, weight percent	
Hexene-1	
trans-Hexene-2	
cis-Hexene-2	
Hexenes-3	***
Normal Hexane	
Isoolefins	1.3
Heptene-1	97.6
trans-Heptene-3	0.5
cis-Heptene-3	0.5
trans-Heptene-2	0.1
cis-Heptene-2	
Purity by freezing point, mol %	95.4 95.0 min
Freezing point, F	- 183.0
Bailing point, F	
Distillation range, F	
Initial boiling point	199
Dry point	202
Specific gravity of liquid at 60/60 F	0.7032
at 20/4 C	0.6982
API gravity at 60 F	70.0
Density of liquid at 60 F, lbs/gal	5.85
Vapor pressure at 70 F, psia	0.9
100 F, psia	2.0
130 F, psia	3.9
Refractive index, 20/D	1.4003
Color, Saybolt	+30
	neutral
Acidity, distillation residue	
Acidity, distillation residue Nonvolatile matter, grams/100 ml Flash point, approximate, F	25 (D 56)

PROPERTIES	TECHNICAL GRADE
Freezing point, F	
Boiling point, F	209.3
Distillation range, F	
Initial boiling point	
Dry point	
Specific gravity of liquid at 60/60 F	0.717
at 20/4 C	
API gravity at 60 F	67.3
Density of liquid at 60 F, lbs/gal	5.94
Vapor pressure at 70 F, psia	
100 F, psia	
130 F, psia	
Refractive index, 20/D	1.406
Color, Saybolt	+30
Acidity, distillation residue	neutral
Nonvolatile matter, grams/100 ml	0,0005
Flash point, approximate, F	0

Table 2.78: Mixed 2-Heptenes (4)

Table 2.79: Mixed 3-Heptenes (4)

FORMULA	сн ₃ -сн = сн-(сн ₂) ₃ -сн ₃	
PROPERTIES	PURE GRADE	TECHNICAL GRADE
Composition, weight percent		
Heptene-1	trace	1.2
trans-Heptene-3	{ 0.5	} 1.4
cis-Heptene-3	} U.5	/ 1.4
trans-Heptene-2	35.0	52.1 t or o -:-
cis-Heptene-2	35.0 64.5 99.0 min	52.1 45.0 } 95.0 min
2,4,4-Trimethylpentene-1		
2,4,4-Trimethylpentene-2		
2,3,3-Trimethylpentene-1		
Isoolefins	trace	0.3
Purity by freezing point, mol %		
Freezing point, F		
Boiling point, F		
Distillation range, F		
Initial boiling point	208.4	208.6
10% Condensed		
50% Candensed		
90% Condensed		
Dry point	212.0	217.1
Specific gravity of liquid at 60/60 F	0.711	0.709
at 20/4 C		
API gravity at 60 F	67.5	68.0
Density of liquid at 60 F, lbs/gal	5.92	5.91
Vapor pressure at 100 F, psia		
Refractive index, 20/D	1.406	1.405
Color, Saybolt	+30	+30
Acidity, distillation residue	neutral	neutral
Nonvolatile matter, grams/100 ml	0.0005	0.0005
Bromine number		
Kauri Butanol value		
Copper corrosion		
Doctor test		
Flash point, approximate, F	28	28

FORMULA	CH3-CH2-CH - CH-(CH2)2-CH3
PROPERTIES	TECHNICAL Grade
Composition, weight percent	
Heptene-1	2.0
trans-Heptene-3	66.5 ,
cis-Heptene-3	29.3 95.0 min
trans-Heptene-2	0.5
cis-Heptene-2	1.7
2.4.4-Trimethylpentene-1	
2,4,4-Trimethylpentene-2	
2.3.3-Trimethylpentene-1	
Isoolefins	
Purity by freezing point, mol %	
Freezing point, F	
Boiling point, F	
Distillation range, F	
Initial boiling point	204.0
10% Condensed	
50% Condensed	
90% Condensed	
Dry paint	204.4
Specific gravity of liquid at 60/60 F	0.705
at 20/4 C	
API gravity at 60 F	69.2
Density of liquid at 60 F, lbs/gal	5.87
Vapor pressure at 100 F, psia	
Refractive index, 20/0	1.405
Color, Saybolt	+30
Acidity, distillation residue	neutral
Nonvolatile matter, grams/100 ml	0.0005
Bromine number	
Kauri Butanol value	
Copper corrosion	
Doctor test	
Flash point, approximate, F	21

Table 2.80: 2,4,4-Trimethylpentene-1 (4)

 α - Diisobutylene

FORMULA		CH ₃ CH ₃ CH ₂ = C-CH ₂ -C-CH ₃ CH ₃	
PROPERTIES	RESEARCH GRADE	PURE GRAOE	TECHNICAL Grade
Composition, weight percent			
Heptene-1			
trans-Heptene-3			
cis-Heptene-3			
trans-Heptene-2			
cis-Heptene-2			
2,4,4-Trimethylpentene-1	99.86	99.39	98.7
2,4,4-Trimethylpentene-2	0.05	0.08	0,1
2,3,3-Trimethylpentene-1			
Isoolefins	0.09	0.53	1.2
Purity by freezing point, mol %	99.58	99.0 99.0 min	97.6 95.0 min
Freezing point, F	-136.26*		
Boiling point, F	214.59*		

Table 2.80: (continued)

PROPERTIES	RESEARCH GRADE	PURE Grade	TECHNICAI Grade
Distillation range, F			
Initial boiling point			214.3
10% Condensed			
50% Condensed			
90% Condensed			
Dry point			214.6
Specific gravity of liquid at 60/60 F	0.7194*	0.719	0.720
at 20/4 C	0.7150°	0.715	0.716
API gravity at 60 F		65.3	65.0
Density of liquid at 60 F, lbs/gal		5.98	5.99
Vapor pressure at 100 F, psia		1.6	1.6
Refractive index, 20/D	1.4086*	1,409	1,409
Color, Saybolt		+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Bromine number			
Kauri Butanol value			
Copper corrosion			
Doctor test			I
Flash point, approximate, F		< 20 (Est.)	< 20 (Est.)

^{*}Literature values.

Table 2.81: 2,4,4-Trimethylpentene-2 (4)

 β -Diisobutylene

FORMULA	сн ₃ — с - сн-с-сн ₃ сн ₃ — с - сн-с-сн ₃ сн ₃
PROPERTIES	TECHNICAL GRADE
Composition, weight percent Heptene-1	
trans-Heptene-3	
cis-Heptene-3	
trans-Heptene-2	
cis-Heptene-2	
2,4,4-Trimethylpentene-1	1.9
2,4,4-Trimethylpentene-2	97.1
2,3,3-Trimethylpentene-1	
Isoolefins	1.0
Purity by freezing point, mol %	95.1 95.0 min
Freezing point, F	
Boiling point, F	
Distillation range, F	
Initial boiling point	219
10% Condensed	
50% Condensed	
90% Condensed	
Dry point	230
Specific gravity of liquid at 60/60 F	0.724
at 20/4 C	
API gravity at 60 F	64.0
Density of liquid at 60 F, lbs/gal	6.03
Vapor pressure at 100 F, psia	1.5
Refractive index, 20/D	1.416
Color, Saybolt	+30
Acidity, distillation residue	neutral
Nonvolatile matter, grams/100 ml	0.0005
Bromine number	
Kauri Butanol value	
Copper corrosion	
Doctor test	
Flash point, approximate, F	35 (D 1310)

Table 2.82: Mixed Disobutylenes (4)

FORMULA	С ₈ Н ₁₆	
PROPERTIES	90% GRADE	
Composition, weight percent		
Heptene-1		
trans-Heptene-3		
cis-Heptene-3		
trans-Heptene-2		
cis-Heptene-2		
2,4,4-Trimethylpentene-1	73.2	
2,4,4-Trimethylpentene-2	17.0	
2,3,3-Trimethylpentene-1	2.9	
isoolefins	6.9	
Purity by freezing point, mol %	<u> </u>	
Freezing point, F		
Boiling point, F		
Distillation range, F		
Initial boiling point	216 200 min	
10% Condensed	217	
50% Condensed	218	
90% Condensed	220	
Dry point	224 260 max	
Specific gravity of liquid at 60/60 F	0.723	
at 20/4 C		
API gravity at 60 F	64.2	
Density of liquid at 60 F, lbs/gal	6.02	
Vapor pressure at 100 F, psia	2.0	
Refractive index, 20/D		
Calor, Saybolt	+30	
Acidity, distillation residue	neutrai	
Nonvolatile matter, grams/100 ml	0.0005	
Bromine number	140.3 130 min	
Kauri Butanol value	38.3	
Copper corrosion	1 1 max	
Doctor test	neg. neg.	
Flash point, approximate, F	35 (Est.)	

Table 2.83: Octene-1 (4)

FORMULA	сн ₂ - сн-(сн ₂) ₈ -сн ₃		
PROPERTIES	RESEARCH GRADE	PURE Grade	TECHNICAL GRADE
Composition, weight percent			
Octene-1	99.95	99.8	98.0
trans-Octene-2			
cis-Octene-2			
mixed-Octenes-3	0.01	0,1	0.5
trans-Octene-4			
Nonene-1			
Decene-1			
Ispolefins	0.04	0.1	1.5
Purity by freezing point, mo! %	99.73	99.3 99.0 min	95.6 95.0 min
Freezing point, F	-151.12 *		
Boiling point, F	250.30*		
Distillation range, F			
Initial boiling point			250.0
Dry point		I	250.3
Specific gravity of liquid at 60/60 F	0.7194*	0,719	0.718
at 20/4 C	0.71492*	0,715	0.714
API gravity at 60 F		65.3	65.6
Density of liquid at 60 F, lbs/gal		5.98;	5.98
Vapor pressure at 70 F, psia	0.23*	0.2	0.2
100 F, psia	0.66*	0.7	0.7
130 F, psia	1,42*	1,4	1,4
Refractive index, 20/D	1.40870*	1,409	1,409
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Flash point, approximate, F		70	70

^{*}Literature values.

Table 2.84: cis-Octene-2 (4)

FORMULA	CH3-C = C(CH2)4-CH3
PROPERTIES	TECHNICAL GRADE
Composition, weight percent	
Octene-1	trace
trans-Octene-2	3.6
cis-Octene-2	95.6
mixed-Octenes-3	0,1
trans-Octene-4	0,1
Nonene-1	
Decene-1	
Isoolefins	0.6
Purity by freezing point, mol %	95.0 95.0 min
Freezing point, F	35.0 35.0 Milli
Boiling point, F	
Distillation range, F	
Initial boiling point	257
Dry point	259
Specific gravity of liquid at 60/60 F	0.728
at 20/4 C	1
API gravity at 60 F	62.4
Density of liquid at 60 F, lbs/gal	6.07
Vapor pressure at 70 F, psia	
100 F, psia	
130 F, psia	
Refractive index, 20/D	1,414
Color, Saybolt	1
Acidity, distillation residue	neutral
Nonvolatile matter, grams/100 ml	0.0005
Flash point, approximate, F	1

Table 2.85: Mixed 2-Octenes (4)

FORMULA	сн ₃ -сн - сн-(СН ₂ 1 ₄ —СН ₃
PROPERTIES	PURE GRADE	TECHNICAL GRADE
Composition, weight percent		
Octene-1		
trans-Octene-2	50.3 49.2 99.0 min	61,41 05 0
cis-Octene-2	49.2 99.0 min	36.5 95.0 mir
mixed-Octenes-3	0.4	1.8
trans-Octene-4		
Nonene-1		
Decene-1		
Isoolefins	0,1	0.3
Purity by freezing point, mol %		
Freezing point, F		
Bailing point, F		
Distillation range, F		
Initial boiling point	257.0	256.9
Dry point	258.0	257.5
Specific gravity of liquid at 60/60 F	0.731	0.730
at 20/4 C		
API gravity at 60 F	62.1	62.3
Density of liquid at 60 F, lbs/gal	6.08	6.08
Vapor pressure at 70 F, psia		
100 F, psia		
130 F, psia		
Refractive index, 20/D	1,414	1.414
Color, Saybolt	+30	+30
Acidity, distillation residue	neutral	neutral
Nonvolatile matter, grams/100 ml	0.0005	0.0005
Flash point, approximate, F	70	70

Table 2.86: Mixed Octenes (4) Table 2.87: Nonene-1 (4)

Table 2.88: [Decene-1 (4)
---------------	--------------

FORMULA	С ₈ Н ₁₆
PROPERTIES	TECHNICAL GRADE
Composition, weight percent Octene-1 trans-Octene-2 cis-Octene-2 mixed-Octenes-3 trans-Octene-4 Nonene-1 Decene-1 Isoolefins	34.6 20.7 42.3 2.3
Purity by freezing point, mol % Freezing point, F Boiling point, F Distillation range, F Initial boiling point Dry point	250.0 255.0
Specific gravity of liquid at 60/60 F at 20/4 C API gravity at 60 F Density of liquid at 60 F, lbs/gal Vapor pressure at 70 F, psia 100 F, psia	0.724 0.720 63.8 6.08
130 F, psia Refractive index, 20/0 Color, Saybolt Acidity, distillation residue Nonvolatile matter, grams/100 ml Flash point, approximate, F	1.412 +30 neutral 0.0005 70

FORMULA	CH ₂ = CH - (CH ₂) ₆ -CH ₃
PROPERTIES	TECHNICAL Grade
Composition, weight percent	
Octene-1	0.7
trans-Octene-2	
cis-Octene-2	
mixed-Octenes-3	
trans-Octene-4	
Nonene-1	98.7
Decene-1	
Isoolefins	0.6
Freezing point, F Roiling point, F	97.1 95.0 min -115.04
Bailing paint, F	er, manuar, oraș și în în în în în în în în în în în în în
Distillation range, F	
Initial boiling point	293
Dry point	297
Specific gravity of liquid at 60/60 F	0.7352
at 20/4 C	0.7306
API gravity at 60 F	61.2
Density of liquid at 60 F, lbs/gal	6.12
Vapor pressure at 70 F, psia	
100 F, psia	
130 F, psia	····
Refractive index, 20/D	1.4161
Color, Saybolt	+30
Acidity, distillation residue	neutral
Nonvolatile matter, grams/100 ml	0.0005
Flash point, approximate, F 🤝	115 (Est.)

FORMULA	сн ₂ = сн-(сн ₂) ₇ -сн ₃
PROPERTIES	TECHNICAL Grade
Composition, weight percent	
Octene-1	
trans-Octene-2	
cis-Octene-2	
mixed-Octenes-3	
trans-Octene-4	
Nonene-1	
Decene-1	98.9
Isoalefins	1.1
Freezing point, F Boiling point, F	-89,25
Purity by freezing point, mol %	96.0 95.0 mi
Distillation range, F	
Initial boiling point	336
Dry point	342
Specific gravity of liquid at 60/60 F	0.7452
at 20/4 C	0.7408
API gravity at 60 F	59.70
Density of liquid at 60 F, lbs/gal	6.16
Vapor pressure at 70 F, psia	
100 F, psia	
130 F, psia	
Refractive index, 20/D	1.4216
Color, Saybolt	+30
Acidity, distillation residue	neutral
Nonvolatile matter, grams/100 ml	
Flash point, approximate, F	120 (Est.)

Table 2.89: Undecene-1 (4)

FORMULA	СН ₂ = СН — (СН ₂) ₈ —
PROPERTIES	TECHNICAL Grade
Composition, weight percent	
Undecene-1	99.0
Dodecene-1	
Tridecene-1	
Tetradecene-1	
Pentadecene-1	
Hexadecene-1	
Isooletins	1.0
Purity by freezing point, mol %	95.7 95.0 min
Freezing point, F	-58.27
Distillation range, F	
Initial boiling point	372
Dry point	377
Specific gravity of liquid at 60/60 F	0.7563
at 20/4 C	0.7519
API gravity at 60 F	56.0
Density of liquid at 60 F, lbs/gal	6.31
Refractive index, 20/D	1,4266
Color, Saybelt	+30
Acidity, distillation residue	neutrai
Flash point, approximate, F	160

Table 2.90: Dodecene-1 (4)

FORMULA	CH2 = CH - (CH2)
PROPERTIES	TECHNICAL GRAOE
Composition, weight percent	
Undecene-1	
Dadecene-1	99.2
Tridecene-1	
Tetradecene-1	0.1
Pentadecene-1	
Hexadecene-1	0.2
Isoolefins	0.5
Purity by freezing point, mol %	95,4 95,0 min
Freezing point, F	-33,39
Distillation range, F	
Initial boiling point	410
Dry point	416
Specific gravity of liquid at 60/60 F	0,7624
at 20/4 C	0.7584
API gravity at 60 F	54,10
Density of liquid at 60 F, lbs/gal	6.347
Refractive index, 20/D	1,4300
Color, Saybolt	+30
Acidity, distillation residue	neutral
Flash point, approximate, F	174

Table 2.91: Tridecene-1 (4)

FORMULA	CH ₂ = CH (CH ₂) ₁₀ -
PROPERTIES	TECHNICAL GRADE
Composition, weight percent	
Undecene-1	
Dodecene-1	0,1
Tridecene-1	99.7
Tetradecene-1	
Pentadecene-1	
Hexadecene-1	
Isopletins	0.2
Purity by freezing point, mol %	96.6 95.0 min
Freezing point, F	-10.95
Distillation range, F	
Initial boiling point	442.6
Dry point	450.7
Specific gravity of liquid at 60/60 F	0.7704
at 20/4 C	0,7662
API gravity at 60 F	52.7
Density of liquid at 60 F, Ibs/gal	6.41
Refractive index, 20/D	1,4336
Color, Saybolt	+30
Acidity, distillation residue	neutral

Table 2.92: Tetradecene-1 (4)

FORMULA	CH ₂ = CH - (CH ₂) ₁₁ - CH
PROPERTIES	TECHNICAL GRADE
Composition, weight percent	
Undecene 1	
Dodecene-1	0.1
Tridecene-1	0.3
Tetradecene-1	99.6
Pentedecene-1 Hexadecene-1 Isooletins	trace
Purity by freezing point, mol %	95,5 95,0 min
Freezing point, F	7.05
Distillation range, F	
Initial boiling point	474
Dry point	485
Specific gravity of liquid at 60/60 F	0.7779
at 20/4 C	0.7737
API gravity at 60 F	50.4
Density of liquid at 60 F, Ibs/gal	6.48
Refractive index, 20/D	1,4373
Color, Saybolt	+30
Acidity, distillation residue	neutrai
Flash point, approximate, F	240

Table 2.93: Butadiene-1,3 (4)

FDRMULA		CH ₂ = CH—CH = CH ₂	
PROPERTIES	RESEARCH GRADE	SPECIAL PURITY	RUBBER GRADE
Composition, weight percent			
Isobutylene	0.02	0.05	0.1
Butene-1	0.02	0.10	0.2
Butadiene-1,3	99.95	99.70	99.5
trans-Butene-2	0.01	0.10	0,1
Butadiene Dimer		0.05	0.1
Purity by freezing point, mol %	99.89	99.6 99.5 min	99.4 99.0 min
Freezing point, F	-164.05*		
Boiling point, F	24.06*		
Specific gravity of liquid at 60/60 F	0.6272*	0.627	0.627
at 20/4 C	0.6211*	0.621	0.621
API gravity at 60 F		94.2	94.2
Density of liquid at 60 F, lbs/gal		5.22	5.22
Vapor pressure at 70 F, psia		35.6	35.6
100 F, psia		64.0	64.0
130 F, psia		92.2	92.2
Specific gravity of real gas at		T	
60 F and 14.7 psia (Air = 1)	1.9153°		<u> </u>
Specific volume of real gas at			
60 F and 14.7 psia, cu ft/lb	6.841*	1	
Flash point, approximate, F		-105	-105
Flammability limits, volume % in air			
Lower	2.0*		
Higher	11.5*	1	

^{*}Literature values.

Table 2.94: isoprene (4)

FORMULA CH2 - C-CH - CH2 POLYMERIZATION RESEARCH PROPERTIES GRADE GRADE Composition, weight percent 0.1 2-Methylbutene-1 99.99 2-Methylbutadiene-1,3 99.8 Pentenes-2 0.01 0.1 2-Methybutene-2 trace trace trans-Pentadiene-1.3 cis-Pentadiene-1,3 Cyclopentene Cycluoctadiene-1,5 4-Vinylcyclohexene-1 1-Methylcyclohexene-1 3-Methylcyclohexene-1 4-Methylcyclohexane-1 Unidentified Purity hy freezing point, mol % 99.98 99.6 99.0 min Freezing point, F 230,71* Boiling point, F 93.32* Distillation range, F Initial boiling point 10% Condensed 50% Condensed 90% Condensed Dry point Specific gravity of liquid at 60/60 F 0.6861* 0.686 0.681 at 20/4 C 0.68095* API gravity at 60 F 74.8 Density of Liquid at 60 F, lbs/gal 5.71 Vapor pressure at 70 F, psia 9.19* 9.2 100 F, psia 16.67* 16.7 130 F, psia 28.2 28.23* Refractive index, 20/D 1.422 1.42194* +30 Color, Saybolt +30 Acidity, distillation residue Nonvolatile matter, grams/100 ml Doctor test Flash point, approximate, F - 55 (Est.)

Table 2.95: Piperylene (4)

FORMULA	сн ₂ - сн-сн - сн- с
PROPERTIES	90% GRADE
Composition, weight percent	
2-Methylbutene-1	
2-Methylbutadiene-1,3	A p. 1 Marie
Pentenes-2	0.1
2-Methybutene-2	0.7
trans-Pentadiene-1,3	57)
cis-Pentadiene-1,3	34 90.0 mir
Cyclopentene	8.2
Cyclooctadiene-1,5	515
4-Vinylcyclohexene-1	
1 Methylcyclohexene-1	
3 Methylcyclohexene-1	
4 Methylcyclohexane-1	
Unidentified	
Purity by freezing point, mal % Freezing point, F	
Boiling point, F Distillation range, F Initial boiling point 10% Condensed 50% Condensed 90% Condensed Dry point Specific gravity of liquid at 60/60 F at 20/4 C API gravity at 60 F Density of Liquid at 60 F, lbs/gal Vapor pressure at 70 F, psia	107 108 108 109 113 0.690 73.5 5.75
Distillation range, F Initial boiling point 10% Condensed 50% Condensed 90% Condensed Dry point Specific gravity of liquid at 60/60 F at 20/4 C API gravity at 60 F Density of Liquid at 60 F, lbs/gal Vapor pressure at 70 F, psia 100 F, psia 130 F, psia	108 108 109 113 0.690
Distillation range, F Initial boiling point 10% Condensed 50% Condensed 90% Condensed Dry point Specific gravity of liquid at 60/60 F at 20/4 C API gravity at 60 F Density of Liquid at 60 F, lbs/gal Vapor pressure at 70 F, psia 100 F, psia 130 F, psia Refractive index, 20/D	108 108 109 113 0.690 73.5 5.75
Distillation range, F Initial boiling point 10% Condensed 50% Condensed 90% Condensed Dry point Specific gravity of liquid at 60/60 F at 20/4 C API gravity at 60 F Density of Liquid at 60 F, Ibs/gal Vapor pressure at 70 F, psia 100 F, psia 130 F, psia Refractive index, 20/D Color, Saybolt	108 108 109 113 0.690 73.5 5.75
Distillation range, F Initial boiling point 10% Condensed 50% Condensed 90% Condensed Dry point Specific gravity of liquid at 60/60 F at 20/4 C API gravity at 60 F Density of Liquid at 60 F, Ibs/gal Vapor pressure at 70 F, psia 100 F, psia 130 F, psia Refractive index, 20/D Color, Saybolt Acidity, distillation residue	108 108 109 113 0.690 73.5 5.75
Distillation range, F Initial boiling point 10% Condensed 50% Condensed 90% Condensed Dry point Specific gravity of liquid at 60/60 F at 20/4 C API gravity at 60 F Density of Liquid at 60 F, Ibs/gal Vapor pressure at 70 F, psia 100 F, psia 130 F, psia Refractive index, 20/D Color, Saybolt	108 108 109 113 0.690 73.5 5.75

^{*}Literature values.

CYCLOOLEFINS

Table 2.96: Cyclopentene (4)

FORMULA	FORMULA CH ₂ - CH ₂ CH ₂ CH ₂ CH ₂		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight percent		·	
Pentenes-2	0.02	0.2	3.6
2-Methylbutene-2	0.03	0.2	0.2
Cyclopentene	99.95	99.6	95.7 95.0 min
2-Methylbutene-1			0.1
Pentene-1	1		0.1
Cyclopentane			0.4
Cyclohexene			
Cyclohexane			

^{*}Literature values.

^{**}Distribution of isomer content varies.

Table 2.96: (continued)

PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICA GRADE
Unidentified		L	
Benzene		<u> </u>	
Toluene			
Ethylbenzene			
Xylenes		<u> </u>	
Purity by freezing point, mol %	99.93	99.5 99.0 min	
Freezing point, F	-211.14°		
Boiling point, F	111.64*		
Distillation range, F			
Initial boiling point			111
Dry point			112
Specific gravity of liquid at 60/60 F	0.7775*	0.778	0.778
at 20/4 C	0.77199*	0.772	0.772
API gravity at 60 F		50.4	50.4
Density of liquid at 60 F, lbs/gal		6.48	6.48
Vapor pressure at 70 F, psia			
100 F, psia			
130 F, psia			4 400
Refractive index, 20/D	1,42246*	1.422	1.422
Color, Saybolt	+30	+30	+30 neutral
Acidity, distillation residue		neutral	0.0005
Nonvolatile matter, grams/100 ml		0.0005	0.0000
Copper corrosion			
Doctor test		<u> </u>	
Flash point, approximate, F		- 35	
Flammability limits, volume % in air			ļ
Lower			_
Higher	1	_l	L

^{*}Literature values.

Table 2.97: Cyclohexene (4)

FORMULA	CH ₂ - CH ₂ CH - CH	
PROPERTIES	RESEARCH GRADE	PURE GRADE
Composition, weight percent		
Pentenes-2		
2-Methylbutene-2		
Cyclopentene		
2-Methylbutene-1		
Pentene-1	T	I
Cyclopentane		
Cyclohexene	99.99	99.5
Cyclohexane	0.01	0.2
Unidentified		0.3
Benzene		
Toluene		T
Ethylbenzene		
Xylenes		
Purity by freezing point, mol %	99.92	99.4 99.0 m
Freezing point, F	-154.32°	
Boiling point, F	181.36*	

PROPERTIES	RESEARCH GRADE	PURE GRADE
Distillation range, F		
Initial boiling point		181
Dry point		182 .
Specific gravity of liquid at 60/60 F	0.8159*	0.816
at 20/4 C	0.81096*	0.811
API gravity at 60 F		41.9
Density of liquid at 60 F, lbs/gal		6.79
Vapor pressure at 70 F, psia	1	
100 F, psia		3.1
130 F, psia		1
Refractive index, 20/D	1.44654*	1.446
Color, Saybolt	+30	+30
Acidity, distillation residue		neutral
Nonvolatile matter, grams/100 ml	1	0.0005
Copper corrosion	T	
Doctor test		
Flash point, approximate, F	ľ	10
Flammability limits, volume % in air		
Lower		
Higher		T

^{*}Literature values,

Cyclopentene and Cyclohexene are sometimes inhibited with 2,6-ditertiarybutyl-4-methylphenol which can be removed by distillation.

Cyclopentene and Cyclohexene are sometimes inhibited with 2,6-ditertiarybutyl-4-methylphenol which can be removed by distillation.

Table 2.98: 4-Vinylcyclohexene-1 (4)

FORMULA		CH2 CH CH2 CH2 CH2 CH2	
PROPERTIES	RESEARCH GRADE	PURE Grade	TECHNICAL GRADE
Composition, weight percent			
2-Methylbutene-1			
2-Methylbutadiene-1,3			
Pentenes-2			
2-Methybutene-2			
trans-Pentadiene-1,3			
cis-Pentadiene-1,3			
Cyclopentene			
Cyclooctadiene-1,5	0.01	0.1	1.5
4-Vinylcyclohexene-1	99.99	99.9	98.5
1-Methylcyclohexene-1			
3-Methylcyclohexene-1 4-Methylcyclohexane-1			
Unidentified			
Unidentined			
Purity by freezing point, mol %	99.88	99.3 99.0 min	97.0 95.0 min
Freezing point, F	-164.07*		
Boiling point, F	262.4*		
Distillation range, F			
Initial boiling point			262
10% Condensed		<u> </u>	
50% Condensed			
90% Condensed			265
Dry point Specific gravity of liquid at 60/60 F	0.834*	0.836	0.836
at 20/4 C	0.8303*	0.830	0.833
API gravity at 60 F	0.0303	37.8	37.8
Density of Liquid at 60 F, lbs/gal		6.96	6,96
Vapor pressure at 70 F, psia			
100 F, psia	0.5*	0.5	0.5
130 F, psia			
Refractive index, 20/D		1.464	1.464
Color, Saybolt		+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Doctor test			
Flash point, approximate, F		70	70

^{*}Literature values.

Table 2.99: Mixed Methylcyclohexenes (4)

FORMULA	C ₇ H ₁₂	
PROPERTIES	TECHNICAL GRADE	
Composition, weight percent		
2-Methylbutene-1		
2-Methylbutadiene-1,3		
Pentenes-2		
2-Methybutene-2		
trans-Pentadiene-1,3		
cis-Pentadiene-1,3		
Cyclopentene		
Cyclooctadiene-1,5		
4-Vinylcyclohexene-1		
1-Methylcyclohexene-1	0.4)	
3-Methylcyclohexene-1	45.5 \$ 95.0 mir	
4-Methylcyclohexane-1	52.5)	
Unidentified	1.6	
Purity by freezing point, mol %		
Freezing point, F		
Boiling point, F		
Distillation range, F		
Initial boiling point	215	

PROPERTIES	TECHNICAL Grade
10% Condensed	
50% Condensed	218
90% Condensed	
Dry point	222
Specific gravity of liquid at 60/60 F	0.8086
at 20/4 C	0.8041
API gravity at 60 F	43.5
Density of Liquid at 60 F, lbs/gal	6.73
Vapor pressure at 70 F, psia	0.6
100 F, psia	2.6
130 F, psia	
Refractive index, 20/D	1.4431
Color, Saybolt	+30
Acidity, distillation residue	neutral
Nonvolatile matter, grams/100 ml	
Doctor test	negative
Flash point, approximate, F	30

Table 2.100: Cyclooctadiene-1,5 (4)

FORMULA Properties	CH = CH CH ₂		
	PURE GRADE	TECHNICAL GRADE	
Composition, weight percent			
2-Methylbutene-1			
2-Methylbutadiene-1,3	Î		
Pentenes-2			
2-Methybutene-2	.		
trans-Pentadiene-1,3	1		
cis-Pe adiene-1,3			
Cyclopentene	1		
Cyclooctadiene-1,5	99.8	96.4 95.0 min	
4-Vinylcyclohexene-1	0.2	3,6	
1-Methylcyclohexene-1			
3-Methylcyclohexene-1	1		
4-Methylcyclohexane-1			
Unidentified			
Purity by freezing point, mal %	99,5 99,0 min		
reezing point, F Boiling point, F	-69.53*		

PROPERTIES	PURE Grade	TECHNICAL GRADE
Distillation range, F		
Initial boiling point		298
10% Condensed		1
50% Condensed	,	1
90% Condensed		İ
Dry point		304
Specific gravity of liquid at 60/60 F	0.8865*	0.886
at 20/4 C	0.8833*	0.883
API gravity at 60 F		28.2
Density of Liquid at 60 F, lbs/gal		7.38
Vapor pressure at 70 F, psia		
100 F, psia	0.5*	0.5
130 F, psia		
Refractive index, 20/D	1.4933*	1.493
Color, Saybolt	+30	+30
Acidity, distillation residue		
Nonvolatile matter, grams/100 ml		
Doctor test		
Flash point, approximate, F	100	96

^{*}Literature values.

AROMATICS

Table 2.101: Benzene (4)

CH - CH CH CH CH CH CH CH CH CH CH CH CH CH		
RESEARCH GRADE	PURE GRADE	
	T	
	1	
	T	
99.99	99.8	
0.01	0.1	
	0,1	
99.90	99.7 99.0 mir	
41.96*		
176.18*		
	175	
	177	
0.8845*	0.884	
0.87901*	0.879	
	28.6	
	7.36	
1.53*	1.5	
	3.2	
6.20*	6.2	
1.50112*	1.501	
+30	+30	
	99.99 99.99 0.01 99.90 41.96° 176.18° 0.8845° 0.87901°	

PROPERTIES	RESEARCH GRADE	PURE GRADE
Acidity, distillation residue		neutral
Nonvolatile matter, grams/100 ml		0.0005
Copper corrosion		
Doctor test		negative
Flash point, approximate, F		10
Flammability limits, volume % in air		
Lower	1.3*	
Higher	7.9*	

^{*}Literature values.

Table 2.102: Toluene (4)

FORMULA PROPERTIES	CH = CH C - CH3		
	RESEARCH GRADE	PURE GRADE	
Composition, weight percent			
Penteries-2		L	
2-Methylbutene-2		I	
Cyclopentene	1	1	
2-Methylbutene-1	I	I	
Pentene-1	1		
Cyclopentane	1		
Cyclohexana			
Cyclohexane	1	l	
Unidentified			
Benzene	0.01	0.1	
Taluene	99.99	99.8	
Ethylbenzene		Ī	
Xylenes		0.1	
Purity by freezing point, mol %	99.90	99.7 99.0 mi	
Freezing point, F	-138.98°	Ī	
Boiling point, F	231.12*	I	
Distillation range, F	1	I	
Initial boiling point		230	
Dry point		231	

PROPERTIES	RESEARCH GRADE	PURE GRADE
Specific gravity of liquid at 60/60 F	0.8719*	0.872
at 20/4 C	0.86696*	0.867
API gravity at 60 F		30.8
Density of liquid at 60 F, lbs/gal		7.26
Vapor pressure at 70 F, psia	0.45*	0.4
100 F, psia	1.03*	1.0
130 F, psia	2.15*	2.2
Refractive index, 20/D	1.49693*	1,497
Color, Saybolt	+30	+30
Acidity, distillation residue		neutral
Nonvolatile matter, grams/100 ml		0.0005
Copper corrosion Doctor test		1
Flash point, approximate, F		40 (D 56)
Flammability limits, volume % in air		
Lower	1.2° 212F	
Higher	7.1* 212F	

^{*}Literature values.

Table 2.103: Ethylbenzene (4)

FORMULA	C - CH ₂ - CH ₃ CH		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight percent			
8enzene	0.01	0,3	0.6
Toluene	0.01	0.2	0.4
Ethylbenzene	99.98	99.5	99.0
para-Xylene			1
meta-Xylene			I
ortho-Xylene			
Purity by freezing point, mol %	99.92	99.2 99.0 min	98,5 95.0 min
Freezing point, F	-138.96*	T	
Boiling point, F	277.13*		
Distillation range, F			
Initial boiling point			277
Dry point			278
Specific gravity of liquid at 60/60 F	0.8717*	0.872	0.872
at 20/4 C	0.86702*	0.867	0.867
API gravity at 60 F		30.8	30.8
Density of liquid at 60 F, lbs/gal		7.26	7.26
Vapor pressure at 100 F, psia	0.37*	0.4	0.4
130 F, psia	0.84*	0.8	0.8
Refractive index, 20/D	1.49588*	1.496	1.496
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Acid wash color			
Color			
Doctor test			
Flash point, approximate, F		59 (D1310)	59 (D 1319)
Flammability limits, volume % in air			
Lower	1.0*		
Higher	6.7*]	

^{*}Literature values

Ethylbenzene is sometimes stabilized with 2,6-ditertiary butyl-4-methylphenol which can be removed by distillation.

Table 2.104: p-Xylene (4)

FORMULA	ch			
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE	
Composition, weight percent		1]	
Benzene				
Toluene		1		
Ethylbenzene		1		
para-Xylene	99,99	99.8	99.0	
meta-Xylene	0.01	0.2	0.6	
ortho-Xylene		trace	0.4	
Purity by freezing point, mol %	99.94	99.5 99.0 min	98.0 95.0 min	
Freezing point, F	55.87*			
Boiling point, F	281,03*			
Distillation range, F		T		
Initial boiling point			280	
Dry point			281	
Specific gravity of liquid at 60/60 F	0.8657*	0.866	0.866	
at 20/4 C	0.86105*	0,861	0.861	
API gravity at 60 F		31.9	31.9	
Density of liquid at 60 F, lbs/gal		7.21	7.21	
Vapor pressure at 100 F, psia	0.34*	0.3	0.3	
130 F, psia	0.77*	0.8	8.0	
Refractive index, 20/D	1.49582*	1.496	1.496	
Color, Saybolt	+30	+30	+30	
Acidity, distillation residue		neutral	neutral	
Nonvolatile matter, grams/100 ml		0.0005	0.0005	
Acid wash color		1	1	
Color		Pass	Pass	
Doctor test				
Flash point, approximate, F		81	81	
Flammability limits, volume % in air	-	i		
Lower	1,1*			
Higher	6.6*	T		

^{*}Literature values,

Table 2.105: m-Xylene (4)

FORMULA		CH C - CH3		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE	
Composition, weight percent				
Benzene				
Toluene				
Ethylbenzene		I	0.1	
para-Xylene	0.01	0.1	0.4	
meta-Xylene	99.99	99.9	99.2	
ortho-Xylene			0.3	
Purity by freezing point, mol %	99.94	99.2 99.0 min	98.2 95.0 min	
Freezing point, F	-54.17*			
Boiling point, F	282.39°			
Distillation range, F				
Initial boiling point			280	
Dry point		1	281	
Specific gravity of liquid at 60/60 F	0.8687*	0.869	0.869	
at 20/4 C	0.86417*	0.864	0.864	
API gravity at 60 F		31.3	31.3	

(continued)

Table 2.105: (continued)

PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Density of liquid at 60 F, lbs/gal		7.24	7.24
Vapor pressure at 100 F, psia	0.33*	0.3	0.3
130 F, psia	0.74*	0.7	0.7
Refractive index, 20/D	1.49722*	1,497	1.497
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Acid wash color			
Color		1	
Doctor test		negative	negative
Flash point, approximate, F		84	84
Flammability limits, volume % in air			
Lower	1.1*		
Higher	6.4*		

^{*}Literature values.

Table 2.106: o-Xylene (4)

FORMULA PURE RESEARCH PROPERTIES GRADE GRADE Composition, weight percent meta-Xylene 0.01 0.3 99.99 99.7 ortho-Xylene Ethylbenzene isopropyibenzene Normal Propylbenzene Methylethylbenzenes 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 1,2,3-Trimethylbenzene Purity by freezing point, mol % 99.96 99.4 99.0 min Freezing point, F -13.33° Boiling point, F 291.94* Distillation range, F 289 Initial boiling point 291 Dry point Specific gravity of liquid at 60/60 F 0.8848* 0.885 0.88020* 0.880 at 20/4 C 28.4 API gravity at 60 F 7.37 Density of liquid at 60 F, lbs/gal 0.26* 0.3 Vapor pressure at 100 F, psia 130 F, psia 0.61* 0.6 1.50545* 1.505 Refractive index, 20/D +30 Color, Saybolt Acidity, distillation residue neutral 0.0005 Nonvolatile matter, grams/100 ml 88 (D 56) Flash point, approximate, F Flammability limits, volume % in air Lower 6.4* Higher

Table 2.107: Cumene (4)

FORMULA	ch ₃ – ch – ch ₃ ch ^c ch ch _{ch}		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight percent			
meta-Xylene			
ortho-Xylene	0.01	0.1	0.2
Ethylbenzene	0.03	0.3	0.6
isopropyibenzene	99.96	99.6	99.2
Normal Propylbenzene			
Methylethylbenzenes		1	
1,2,4-Trimethylbenzene			
1,3,5-Trimethylbenzene			
1,2,3-Trimethylbenzene			
Purity by freezing point, mol %	99.92	99,3 99,0 min	98.5 95.0 m
Freezing point, F	-140.86#		
Boiling point, F	306.31*		
Distillation range, F			Ī
Initial boiling point		306	
Dry point		307	f
Specific gravity of liquid et 60/60 F	0.8663*	0.866	0.866
at 20/4 C	0.86179*	0.862	0.862
API gravity at 60 F		31.9	31.9
Density of liquid at 60 F, lbs/gal		7.21	7.21
Vapor pressure at 100 F, psia	0.19*	0.2	0.2
130 F, psia	0.45*	0.4	0.4
Refractive index, 20/D	1.49145*	1.491	1,491
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvoletile matter, grams/100 ml		0.0005	0.0005
Flash point, approximate, F		111	111
Flammability limits, volume % in air		†	
Lower	0.9*	1	
Higher	6.5°		

^{*}Literature values.

^{*}Literature values.

Isopropylbenzene and 1,2,4-Trimethylbenzene are sometimes stabilized with 2,6-ditertiary butyl-4-methylphenol which cen be removed by distillation.

Table 2.108: n-Propylbenzene (4)

FORMULA	CH ₂ - CH ₂ - CH ₃ CH CH CH CH CH CH
PROPERTIES	TECHNICAL Grade
Composition, weight percent	
meta-Xylene	
ortho-Xylene	
Ethylbenzene	
Isopropylbenzene	1.5
Normal Propylbenzene	96.6 95.0 min
Methylethylbenzenes	1.9
1,2,4-Trimethylbenzene	
1,3,5-Trimethylbenzene	
1,2,3-Trimethylbenzene	
Purity by freezing point, mol %	
Freezing point, F	
Boiling point, F	
Distillation range, F	
Initial boiling point	315
Dry point	319
Specific gravity of liquid at 60/60 F	0.8669
at 20/4 C	0.8621
API gravity at 60 F	31.7
Density of liquid at 60 F, lbs/gal	7.22
Vapor pressure at 100 F, psia	
130 F, psia	
Refractive index, 20/D	1.4915
Color, Saybolt	+30
Acidity, distillation residue	
Nonvolatile matter, grams/100 ml	0.0005
Flash point, approximate, F	114
Flammability limits, volume % in air	
Lower	L
Higher	

Table 2.109: Pseudocumene (4)

FORMULA PROPERTIES	сн, с, сн, сн, сн, сн, сн, сн, сн, сн, с		
	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight percent			
meta-Xylene		†	
ortho-Xylene			1
Ethylbenzene			
l sopropylbenzene			
Normal Propylbenzene			T
Methylethylbenzenes		0.2	1.6
1,2,4-Trimethylbenzene	99,99	99.7	96.1
1,3,5-Trimethylbenzene	0.01	0.1	1,4
1,2,3-Trimethylbenzene			0.9
Purity by freezing point, mol %	99.90	99.5 99.0 min	95.5 95.0 mi
Freezing point, F	-46.84°		
Boiling point, F	336.83*		1
Distillation range, F			
Initial boiling point		336	
Dry point		337	
Specific gravity of liquid at 60/60 F	0.8802*	0.880	0.880
at 20/4 C	0.87582*	0.876	0.876
API gravity at 60 F		29.3	29.3
Density of liquid at 60 F, lbs/gal		7.33	7.33
Vapor pressure at 100 F, psia			I
130 F, psia	0.22*	0.2	0.2
Refractive index, 20/D	1.50484*	1.505	1.505
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Flash point, approximate, F		130	130
Flammability limits, volume % in air			1
Lower		L	
Higher I			

^{*}Literature values.

Isopropylbenzene and 1,2,4-Trimethylbenzene are sometimes stabilized with 2,6-ditertiary butyl-4-mathylphenol which can be removed by distillation.

Table 2.110: n-Butylbenzene (4)

FDRMULA	GH ₂ − GH ₂ − GH ₃ − CH ₃ CH		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL GRADE
Composition, weight percent			
secondary-Butylbenzene		0.2	3.8
normal-Butylbenzene	99.8	99.4	95.6 95.0 min
1-Phenylbutene-2			0.6
other Alkylbenzenes	0.2	0.4	
other Phenylbutenes		}	
secondary-Amylbenzene	<u> </u>		
3-Phenylpentane			
2-Phenyl-2-methylbutane	<u> </u>		
Light Amylbenzenes			
Alkylbenzenes			
secondary-Butyl Chloride			
Butenes			
Purity by freezing point, mol %	99.50	99.2 99.0 min	
Freezing point, F	-12 6.35°		
Boiling point, F	361.89*		
Distillation range, F			
Initial boiling point			
10% Condensed			
50% Condensed			
90% Condensed			
Dry point			

(continued)

Table 2.110: (continued)

PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAI GRADE
Specific gravity of liquid at 60/60 F	0.8646*	0.865	0.865
at 20/4 C	0.86013*	0,860	0.860
API gravity at 60 F		32.1	32.1
Density of liquid at 60 F, lbs/gal		7.20	7.20
Refractive index, 20/D	1.48979*	1,490	1.490
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Color Alpha			
Flash point, approximate, F		160	160
Flammability limits, volume % in air			
Lower	0.8		
Higher	5.8		1

^{*}Literature values.

Table 2.111: Isobutylbenzene (4)

FDRMULA	CH ₂ - CH CH ₃ CH CH CH ₃		
PROPERTIES	RESEARCH GRAOE	PURE GRADE	TECHNICAL GRADE
Composition, weight percent			
Toluene	0.01	0.2	0.5
Isopropyibenzene			
tertiary-Butylbenzene			
isobutyibenzene	99.97	99.6	99,1
secondary-Butylbenzene			
normal-Butylbenzene	0.02	0.2	0.4
Water, ppm, weight		< 100	<100
Purity by freezing point, mol %	99.80	99,3 99.0 min	98,5 95.0 min
Freezing point, F	-60.66°		
Boiling point, F	342.97*		.,
Distillation range, F			
Initial boiling point		340	337
Dry point		343	344
Specific gravity of liquid at 60/60 F	0.8576*	0.858	0.858
at 20/4 C	0.85321*	0.853	0.853
API gravity at 60 F		33.4	33.4
Density of liquid at 60 F, lbs/gal		7,14	7.14
Vapor pressure at 130 F, psia	0.21	0.2	0.2
Refractive index, 20/D	1.48646*	1.486	1.486
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml			
Aniline point, F			
Bromine number			
Flash point, approximate, F		140	140

^{*}Literature values,

Normal Butylbenzene is sometimes stablized with tertiary-butylcatechol (TBC) which can be removed by distillation.

Table 2.112: sec-Butylbenzene (4)

FORMULA	сн ₃ - сн - сн ₂ - сн ₃ сн ^{* С} сн сн сн сн		
PROPERTIES	RESEARCH GRADE	PURE GRAOE	TECHNICAL GRADE
Composition, weight percent			
Toluene			
Isopropyibenzene			
tertiary-Butylbenzene	0.02	0.6	0.9
Isobutylbenzene			0.1
secondary-Butylbenzene	99.98	99.4	98.9
normal-Butylbenzene			0.1
Water, ppm, weight			
Purity by freezing point, mol %	99.93	99.2 99.0 min	96.7 95.0 mir
Freezing point, F	-103.85°		
Boiling point, F	343.95*		
Distillation range, F			
Initial boiling point			338
Dry point			343
Specific gravity of liquid at 60/60 F	0.8664*	0.866	0.866
at 20/4 C	0.86207°	0.862	0,862
API gravity at 60 F		31.9	31,9
Density of liquid at 60 F, lbs/gal		7.21	7.21
Vapor pressure at 130 F, psia	0.20	0.2	0.2
Refractive index, 20/D	1.49020*	1.490	1.490
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Aniline point, F		-20	
Bromine number		0.5	
Flash point, approximate, F		126	126

^{*}Literature values.

Table 2.113: tert-Butylbenzene (4)

FORMULA	сн _э - сн _э сн - с - сн сн - с - сн с - с - с - с - с - с - с - с - с - с -		
PROPERTIES	RESEARCH GRADE	PURE GRADE	TECHNICAL Grade
Composition, weight percent			
Toluene			
Isopropylbenzene		0.1	0.5
tertiary-Butylbenzene	99.99	99.8	98.2
Isobutylbenzene			
secondary-Butylbenzene	0.01	0.1	1.1
normal-Butylbenzene			0.2
Water, ppm, weight]	
Purity by freezing point, mol %	99.82	99,4 99.0 min	97.0 95.0 min
Freezing point, F	−72.13 *		
Boiling point, F	336.41*		
Distillation range, F			
Initial boiling point		336	331
Dry point		337	336
Specific gravity of liquid at 60/60 F	0.8710*	0.871	0.871
at 20/4 C	0.86650*	0.866	0.866
API gravity at 60 F		31.0	31.0
Density of liquid at 60 F, lbs/gal		7.25	7.25
Vapor pressure at 130 F, psia	0.23	0.2	0.2
Refractive index, 20/D	1.49266*	1.493	1.493
Color, Saybolt	+30	+30	+30
Acidity, distillation residue		neutral	neutral
Nonvolatile matter, grams/100 ml		0.0005	0.0005
Aniline point, F			
Bromine number			
Flash point, approximate, F		140	140

^{*}Literature values.

Secondary-Butylbenzene is sometimes stablized with tertiary-butylcatechol (TBC) which can be removed by distillation.

Table 2.114: 1-Phenylbutene-2 (4)

PROPERTIES Composition, weight percent secondary-Butylbenzene normal-Butylbenzene 1-Phenylbutene-2 other Alkylbenzenes other Phenylbutenes secondary-Amylbenzene 3-Phenyl-2-methylbutene Light Amylbenzenes Alkylbenzenes	TECHNICAL GRADE 96.4 95.0 min 3.6
secondary-Butylbenzene normal-Butylbenzene 1-Phenylbutene-2 other Alkylbenzenes other Phenylbutenes secondary-Amylbenzene 3-Phenylpentane 2-Phenyl-2-methylbutane Light Amylbenzenes Alkylbenzenes	
normal-Butylbenzene 1-Phenylbutene-2 other Alkylbenzenes other Phenylbutenes secondary-Amylbenzene 3-Phenylpentane 2-Phenyl-2-methylbutane Light Amylbenzenes Alkylbenzenes	
1-Phenylbutene-2 other Alkylbenzenes other Phenylbutenes secondary-Amylbenzene 3-Phenylpentane 2-Phenyl-2-methylbutane Light Amylbenzenes Alkylbenzenes	
other Alkylbenzenes other Phenylbutenes secondary-Amylbenzene 3-Phenylpentane 2-Phenyl-2-methylbutene Light Amylbenzenes Alkylbenzenes	
other Phenyibutenes secondary-Amylbenzene 3-Phenylpentane 2-Phenyl-2-methylbutane Light Amylbenzenes Alkylbenzenes	3.6
secondary-Amylbenzene 3-Phenylpentane 2-Phenyl-2-methylbutane Light Amylbenzenes Alkylbenzenes	3.6
3-Phenylpentane 2-Phenyl-2-methylbutane Light Amylbenzenes Alkylbenzenes	
3-Phenylpentane 2-Phenyl-2-methylbutane Light Amylbenzenes Alkylbenzenes	
Light Amylbenzenes Alkylbenzenes	
Alkylbenzenes	
annual de la Contraction	
secondary-Butyl Chloride	
Butenes	
Purity by freezing point, mol %	
Freezing point, F	
Boiling point, F	
Distillation range, F	
Initial boiling point	360
10% Condensed	
50% Condensed	
90% Condensed	
Ory point	367
Specific gravity of liquid at 60/60 F	0.888
at 20/4 C	
API gravity at 60 F	27.8
Density of liquid at 60 F, lbs/gal	7.40
Refractive index, 20/D	1,511
Color, Saybolt	+30
Acidity, distillation residue	neutral
Nonvolatile matter, grams/100 ml	0.0005
Color Alpha	
Flash point, approximate, F	160
Flammability limits, volume % in air	
Lower	

^{*}Literature values.

Table 2.116: Mixed Amylbenzenes (4)

FORMULA	Ç ₈ H ₁₁ CH ^{≠C} CH -H CH CH
PROPERTIES	PURE GRADE
Composition, weight percent	
secondary-Butylbenzene	1
normal-Butylbenzene	1
1-Phenylbutene-2	
other Alkylbenzenes	
other Phenylbutenes	
secondary-Amylbenzene	38.8)
3-Phenylpentane	39.2 } 99.0 min
2-Phenyl-2-methylbutane	21.7
Light Amylbenzenes	0.2
Alkylbenzenes	0.1
secondary-Butyl Chloride	T
Butenes	

Table 2.115: sec-Amylbenzene (4)

FORMULA	CH ₃ - CH - CH ₂ - CH ₃ - CH ₃ CH - C - CH CH - CH CH - CH		
PROPERTIES	PURE Grade	TECHNICAL GRADE	
Composition, weight percent			
secondary-Butylbenzene			
normal-Butylbenzene			
1-Phenylbutene-2			
other Alkylbenzenes			
other Phenylbutenes			
secondary-Amylbenzene	99.5 99.0 min	97.3 95.0 mi	
3-Phenylpentane	0.1	0.8	
2-Phenyl-2-methylbutane	0.4	1.9	
Light Amylbenzenes			
Alkylbenzenes			
secondary-Butyl Chloride			
Butenes			
Purity by freezing point, mol %			
Freezing point, F	1		
Boiling point, F	379.4*		
Distillation range, F			
Initial boiling point	374	370	
10% Condensed			
50% Condensed			
90% Condensed			
Dry point	380	380	
Specific gravity of liquid at 60/60 F	0.8628*	0.863	
at 20/4 C	0.8585	0.858	
API gravity at 60 F		32.5	
Density of liquid at 60 F, lbs/gal		7.18	
Refractive index, 20/D	1.4876*	1.488	
Color, Saybolt	+30	+30	
Acidity, distillation residue	neutral	neutral	
Nonvolatile matter, grams/100 ml			
Cotor Alpha			
Flash point, approximate, F	155	155	
Flammability limits, volume % in air			
Lower			
Higher			

^{*}Literature values,

PROPERTIES	PURE Grade
Distillation range, F	~
Initial boiling point	369.6
10% Condensed	370.4
50% Condensed	371.6
90% Condensed	372.0
Dry point	372.4
Specific gravity of liquid at 60/60 F	
at 20/4 C	0.864
API gravity at 60 F	
Density of liquid at 60 F, lbs/gal	7.25
Refractive index, 20/D	1.490
Color, Saybolt	+30
Acidity, distillation residue	neutral
Nonvolatile matter, grams/100 ml	
Color Alpha	A
Flash point, approximate, F	155
Flammability limits, volume % in air	
Lower	
Higher	

^{*}Literature values,

¹⁻Phenylbutene-2 is sometimes stabilized with tertiary-butylcatechol (TBC) which can be removed by distillation.

Table 2.117: DIPENTENE No. 122 Terpene Solvent (28)

DIPENTENE NO. 122® a terpene solvent with a pleasant terpene odor obtained by fractionation of oils extracted from pinewood, meets the Federal specification for commercial dipentene. It can be used as a component in solvent systems for oleoresin-based coatings, and as an antiskinning agent. Other uses include the production of dipping finishes and various chemical specialties.

General Sales Specifications Color, Hazen (APHA)4, max 0.5 Specific gravity at 15.6/15.6°C 0.845-0.865 Refractive index at 20°C 1.472-1.477 ASTM Distillation, °C 1st cc - 95% 168 min - 188 max (a)American Public Health Association Typical Properties Specific gravity at 15.6/15.6°C 0.853 Refractive index at 20°C 1.475 Distillation range, ℃, 5% 175 183 Freezing point, °C < -40 Flashpoint, TCC, °C (°F) 49 (120) Aniline point, °C < 0 Unpolymerized residue, % 1.5 Monocyclic terpenes, % 91

Outstanding Characteristics

Dipentene, %

Kauri-butanol value

High clarity; near colorlessness; pleasant odor; high solvency; good antiskinning properties; good wetting and dispersing properties for pigments.

Solvent for synthetic and natural resins, rubber, waxes, raw and polymerized oils, and metallic driers.

Table 2.118: SOLVENOL 2 Terpene Solvent (28)

A High-Solvency Terpene Hydrocarbon

37

62

SOLVENOL® 2 terpene solvent is a pale yellow to near colorless liquid that has high solvency for resins, waxes, and greases. It is exceptionally effective as a softening and swelling agent for rubber. Of pine-wood origin, it is a mixture of monocyclic terpenes with a stronger solvency than turpentine for waxes and resins.

General Sales Specifications

Heroules Test Methods are evallable on request	
Specific gravity at 15.6/15.6°C	0.845-0.870
Distillation range, °C, first cm³, min	165
95%, max	195
Typical Properties	
Specific gravity at 15.6/15.6°C	0.860
Distillation range, °C, 5%	166
95%	183
Color, Hazen	45
Hercules terpene	0.3
Freezing point, *C	<-40
Flashpoint, TCC, *F (*°C)	115 (46)
Kauri-butanol value	80
Aniline point, F (C)	<23 (<-5)
Density at 60°F (15.6°C), lbs/gal (kg/l)	7.17 (.86)

Outstanding Characteristics

Clear, near colorless liquid; high solvent power; highly effective softening and swelling agent for natural and synthetic rubbers.

Table 2.119: SOLVENOL 226 Terpene Solvent (28)

SOLVENOL® 226 terpene solvent is a pale yellow to near colorless liquid that has high solvency for resins, waxes, and greases. Of pinewood origin, it is a mixture of monocyclic terpenes rich in para—menthane. It is used as a solvent in the manufacture of cleaning compounds; textile dyes; waxes and polishes for floor, furniture, leather, and shoes; and in other chemical specialties.

General Sales Specifications

0.829-0.840
158
180
0.838
1.460
165
172
45
-40
108 (42)
62
73 (23)
7 (0.84)
30

Outstanding Characteristics

Clear, near colorless liquid; high solvent power; excellent wetting and penetrating properties.

Table 2.120: HERCULES Steam-Distilled Wood Turpentine (28)

HERCULES® SDW TURPENTINE is a clear, water-white liquid that complies with all requirements of Federal and ASTM specifications for pure spirits of turpentine.

General Sales Specifications

Specific gravity at 15.6/15.6°C	0.860-0.866
Refractive index at 20°C	1.465-1.469
ASTM distillation range, °C, 5%	154.0
95%	170.0
Typical Properties	
Specific gravity at 15.6/15.6°C	0.861
Refractive index at 20°C	1.468
Unpolymerized residue, %	1.3
Initial boiling point, °C	150
ASTM distillation below 170°C, %	98
Freezing point, °C	<-40
Aniline point, °C	21
Kauri-butanol value	56
Moisture	trace
Flashpoint, TCC, *C(F)	36 (97)
Color (Hercules terpene)	0.1
Density at 60°F (15.6°C), lbs/gal (kg/l)	7.18 (.86)

Outstanding Characteristics

Clarity; water-white color; typical turpentine odor; high solvency power; excellent wetting and penetrating properties; uniform purity.

Solvent for raw and bodied drying oils, and for natural and synthetic resins and waxes.

Table 2.121: HERCULES alpha-Pinene (28)

HERCULES® alpha-pinene is a clear, water-white product obtained by fractional distillation of steam-distilled wood turpentine. It consists predominantly of the bicyclic terpene hydrocarbon, alpha-pinene. Hercules alpha-pinene can be used wherever a high-purity-grade alpha-pinene is required.

General Sales Specifications	
Specific gravity at 15.6°C/15.6°C	0,8620-0,8645
Refractive index at 20°C	1,4655-1,4670
Distillationrange, °C,5% min-95% max	155-159
Typical Properties	
Specific gravity at 15.6°C/15.6°C	0.863
Refractive index at 20°C	1.466
Components, %	
alpha-pinene	84.7
Camphene	13.9
beta-pinene	0.5
Distillation range, *C, 5%-95%	156-158
Color, Hercules terpene	0.1
Freezing point, *C	<-40
Flashpoint, Tag closed up, *F (*C)	91 (33)
Kauri-butanol value	52
Density at 60°F (15.6°C), lbs,/gal (kg/l)	7.2 (0.86)

Outstanding Characteristics

Clear, water-white, high purity, chemically reactive, excellent solvent, narrow distallation range.

Table 2.122: Selected Properties of Some Common Terpene Solvents (43)

SOLVENT	KAURI BUTANOL	BOIL. RI		SPEED OF EVAPOR., MINUTES	FLASH PT. TCC ^O F	Solubility Pararameter (Cal/cc) 1/2
Dipentenes	62	175	188	33.0	125ª	
Gum Turpentine	65	155	183	16.0	93 ⁸	8.2
Limonene 125	58	162	179		112	
Pine Oil	>500	204	227	500.0	188ª	8.61
Terpene SW	>500	209	234	500.0	180	

[&]quot;Organic Solvents," Central Solvents & Chemical Co.

Table 2.123: Arizona Terpene Products (5)

ACINTENE® A ALPHA-PINENE

ACINTENE® A is a clear, colorless liquid with a mild turpentine-like odor which is very high in alpha-pinene content. ACINTENE® A is miscible in alcohols and insoluble in water.

PRODUCT PROPERTIES

	Specifications	Typical Analysis
Color, APHA ¹	20 max.	5
Distillation Range, °C ² First Drop 97%	,	156.3 157.4
Moisture, % ³	< 0.1	<0.1
Kauri-butanol Value ⁴		68
Composition: ⁵		
Alpha-pinene, % Camphene, % Beta-pinene, % Other Terpenes, %	91 min.	93.0 2.5 2.5 2.0
Specific Gravity, 15.5°/15.5°C ²		0.8636
Weight Per Gallon, 15°C, lb		7.19
Refractive Index, 20°C ²		1.4661
Flash Point, Closed Cup, °C(°F)6		33(91)

Methods of Analysis:

- 1. ASTM D 1209-79
- ASTM D 802-82
 Arizona Method
- ASTM D 1133-86
- By Gas Chromatography. Arizona Chemical Company method furnished upon request
 - ASTM D 93-85 by tag-closed tester

ACINTENE® B Beta Pinene

6.

ACINTENE B Beta Pinene is obtained by fractional distillation of sulfate turpentine. It is used as an intermediate in the manufacture of synthetic resins.

Product Characteristics	Specification	Typical Analysis	Method of Analysis
Color, APHA	20 max.	5	ASTM D1209-62
Distillation Range, °C:			ASTM D233-65
First Drop	165-167	166	
90%	167-169	169	
97%	169-173	172	
Specific Gravity, 15.5°C/15.5°C	0.8685 min. 0.8715 max.	0.8708	ASTM D233-65
25°C/25°C		0.8654	
Refractive Index, 20°C	1.4760 min. 1.4780 max.	1.4774	ASTM D233-65
Flash Point, Closed Cup, OF		100	ASTM D56-64
Moisture, %	0.0	0.0	Arizona Method
Composition by GLC:			
a-Pinene, %		7.5	
₿-Pinene, %		76.3	
Dipentene, %		11.0	
Camphene, %		1.7	
p-Cymene, %		0.5	
Others, %		3.0	
Pounds Per Gallon, 15°C		7 .2 5	
25°C		7.19	

(continued)

Table 2.123: (continued)

ACINTENE® DP DIPENTENE

ACINTENE® DP is a clear, yellowish liquid with a lemon-pine-like odor. It is obtained by several fractional distillations of crude sulfate turpentine. ACINTENE DP is not a co-product of any process and is sometimes referred to as a "natural" dipentene. ACINTENE DP is miscible in alcohols and insoluble in water.

PRODUCT PROPERTIES

	Specifications	Typical Analysis
Color, Gardner 1	2 max.	<1
Distillation Range, °C 2		
First Drop	•	177
95%		187
Kauri-Butanol Value 3		90
Composition: 4		
Alpha-Pinene, %		<1
Beta-Pinene, %		5
Camphene, %		<1
Myrcene/Carene, %		1
Dipentene, % *		73
Para-Cymene/Terpinolene, %		10
Terpene Alcohols, %		<1
Other Terpenes, %		10
Specific Gravity, 15.5°/15.5°C 2		0.8558
Weight Per Gallon, 15°C, lb		7.13
Refractive Index, 20°C 2		1.4779
Flash Point, Closed Cup, °C(°F) 5		54 (130)
Includes some beta-phellandrene.		

Methods of Analysis:

- ASTM D 1544-86; Using Gardner color disks 1963 standard, 50% in heptane.
- 2. ASTM D 802-82
- By Gas-Liquid Chromatography. Arizona Chemical Company method furnished on request.
- 3. ASTM D 1133-86
- 5. ASTM D 93-85 by tag-closed tester

ACINTENE® CRDB TERPENE

PRODUCT PROPERTIES

	Specification	Typical Analysis
Color, Gardner ¹		15
AN		<0.5
Moisture, % ²		0
Composition: ³		
Total Terpene Alcohols, %		36
Alpha-Terpineol, %		21
Cis-Anethole, %		4
Trans-Anethole, %	15 min.	19
Methyl Chavicol, %	10 min.	15
Other Terpene Alcohols, %		15
Other, %		26
Specific Gravity, 15.5°/15.5°C2		0.959
Weight Per Gallon, 15°C, lb		7.8
EPA 24 Volitals		99.8
Flash Point, Closed Cup, °C(°F)4		91(195)

METHODS OF ANALYSIS:

- 1. ASTM D 1544-86
- 2. ASTM D 803-93
- By Gas-Liquid Chromatography. Arizona Chemical Company method furnished on request.
- 4. ASTM D 93-85 by Tag-Closed Tester

Table 2.123: (continued)

ACINTENE® N LIQUID TERPENE POLYMER

ACINTENE® N is a dark brown, very viscous fiquid obtained from the fractional distillation of sulfate turpentine it is composed of terpene dimers and polymers. ACINTENE N is soluble in turpentine, aromatic solvents, and mineral spirits.

PRODUCT PROPERTIES

	Specifications	Typical Analysis		
Color, Gardner 1	18 max.	17		
Moisture, % 2	0.2 max.	0.05		
Specific Gravity, 15.5°/15.5°C 2		0.963		
Weight Per Gallon, 15°C, lb		8.02		
Viscosity, Gardner-Holdt, 25°C 2	Ze min.	Z ₈ +		
Viscosity, cps, 25°C		3400		
Flash Point, Closed Cup, °C(°F) 3	150 (300) min.	163 (325)		

Methods of Analysis:

- ASTM D 1544-86; Using Gardner color disks 1963 standard, 50% in heptane
- 2. ASTM D 802-82
- 3. ASTM D 93-85 by tag-closed tester

ACINTENE® L TURPENTINE BOTTOMS FRACTION

ACINTENE® L is a dark brown, viscous liquid obtained from the fractional distillation of sulfate turpentine. It is composed of diterpenes, triterpenes, and higher molecular-weight terpene polymers. ACINTENE L is soluble in turpentine, aromatic solvents, and mineral spirits.

PRODUCT PROPERTIES

	Typical Analysis
Color, Gardner 1	13+
Specific Gravity, 15.5°/15.5°C ²	0.96
Weight Per Gallon, 15°C, lb	8.00
Viscosity, Gardner-Holdt, 25°C 2	Z ₂
Viscosity, cps, 25°C	3400
Flash Point, Closed Cup, °C(°F) 3	163 (325)

Methods of Analysis

- ASTM D 1544-86; Using Gardner color disks 1963 standard, 50% in heptane
- 2. ASTM D 802-82
- 3. ASTM D 93-85 by tag-closed tester

COMPARATIVE DATA

Table 2.124: Amoco PANASOL Solvents (20)

Panasol solvents sales specifications*				
	Panasol AB-130	Panasol AN-2K	Panasol AN-3N	Panasol AN-3S
Specific gravity				
at 16°C(61°F), ASTM D4052	0.860 - 0.890	0.934 - 0.947	0.979 - 1.007	0.979 - 1.007
at 25°C/25°C, ASTM D4052		_	-	_
Distillation point, ASTM D86				
Initial boiling point, °C (°F), min.	149(300)	177 (350)	210 (410)	232 (450)
95% boiling point, °C (°F)	202(395)	-		
End point, °C (°F), max.		2 8 8 (5 5 0)	288 (550)	2 88 (550)
Flash point, ASTM D56, TCC,				
°C (°F), min.	38(100)	63(145)	_	-
°C (°F), max.	57(135)		_	
Flash point, ASTM D93, PMCC				
°C (°F), min.			95(203)	95(203)
Color, ASTM D1500, max.	1.0	2.0	2.0	2.0
Appearance at 16°C(61°F), visual test	clear, no free suspended	clear, no free suspended	clear, no free suspended	clear, no free suspended
	matter	matter	matter	matter
Aromatics, ASTM D1319, vol %, min.	98	78	95	95
Copper corrosion, ASTM D849	_	Pass	Pass	Pass

Panasol Solvents non-specific	Panasol Solvents non-specification properties						
Inspection Tests	AN-2K	AN-3N	AN-3S	HAB-500	AB-130		
API Gravity @ 60°F	20.3	11.8	10.9	13.2	30.4		
Specific Gravity @ 60°F	0.932	0.987	0.994	0.978	0.874		
Lbs./Gal. @ 60°F	7.762	8.224	8.276	8.110	7.278		
ASTM Color	0.5	0.5	<1.0	3.5	< 0.5		
TCC Flash Point,°F	151	208	>212	207	127		
Mixed Aniline Point,°F	76.5	53.8	52.7	57.4	60.4		
Kauri-Butanol Value	-	98.0	89.0	65.0	85.0		
Aromatics, Weight %	86.0	99.5	99.2	99.8	98.6		
Mono-aromatics	31.6	13.9	5.1	8.5	96.6		
Di-aromatics	54.4	85.6	94.1	91.3	2.0		
Molecular Weight by VPO	175	164	157	196	215		
Crystallization Point,°F	-48	-8	+5	-45	-48		
Pour Point,°F	-54	-17	-11	<-76	-71		
Distillation,°F							
Initial Boiling Point	354	436	470	412	328		
5	376	450	482	466	340		
10	386	456	488	516	344		
20	404	464	492	532	347		
30	418	470	496	546	350		
40	430	474	498	556	351		
50	444	478	501	565	352		
60	456	484	504	572	354		
70	468	490	506	578	356		
80	480	498	510	584	360		
90	494	510	518	594	364		
95	508	522	526	610	369		
End Point	532	540	543	649	422		
XRF Sulfur Content, ppm	*ND	*ND	*ND	*ND	*ND		
XRF Chloride Content, ppm	68	*ND	9	*ND	*ND		

^{*}ND= None detected

Table 2.125: Ashland Aliphatic and Aromatic Solvents (69)

Aliphatic Solvents

	LB./GAL	SP. GR.	BOILING	RANGE	FL. PT.		ANILINE	0 0	EVAP
PRODUCT	60° F	60°/60° F	°C	°F	°F TCC	KB	PT. °F	ARO	RATE
Pentane	5.26	0.631	34-40	94-104	<0	26		0	8.1
Hexane	5.61	0.675	65-70	149-158	<0	29	151	< 0.1	6.3
Cyclohexane	6.53	0.784	80-82	176-180	0	55	6 5 ²	0	5.5
LACOLENE™	6.04	0.725	91-109	195-229	18	33	150	<1	2.4
Super LACOLENE™	6.31	0.758	91-110	195-230	18	47	105	20	2.2
Heptane	5.79	0.695	92-100	198-212	15	30	146	0.1	4.5
VM & P Naphtha	6.20	0.744	119-141	246-285	50	32	153	<1	1.6
90 Solvent	6.35	0.762	140-163	285-325	8 6	34	150	<1	0.33
KWIK DRI™	6.44	0.772	154-182	310-360	105	32	154	<1	0.20
Rule 66 Mineral Spirits	6.44	0.773	154-196	31 0-38 5	105	32	155	<1	0.12
Mineral Spirits, NE	6.50	0.780	154-205	310-400	105	36	139	14	0.12
Odorless Mineral Spirits	6.32	0.759	174-213	345-415	125	28	185	<1	0.11
Low Odor Base Solvent	6.61	0.793	182-201	370-550	150	30	166	4	< 0.01
140 Solvent	6.54	0.785	188-288	360-394	142	31	160	1	0.08
Mineral Seal Oil	6.79	0.816	254-318	490-605	265³	22	187	8	< 0.01

Aromatic Solvents

	LB./GAL.	SP. GR.	BOILING	RANGE	FL. PT.			EVAP.
PRODUCT	60° F	60°/60° F	°C	°F	°F TCC	KB	MAP	RATE
Toluene	7.27	0.873	110-111	230-233	45	105	50	1.8
Ethyl Benzene	7.26	0.871	135-137	275-278	59	96	50	0.90
Xylene	7.23	0.866	138-143	280-289	81	98	52	0.86
HI-SOL® 10	7.29	0.876	152-177	306-350	105	90	55	0.15
HI-SOL 70	7.14	0.857	163-202	325-395	105	70	95	0.10
HI-SOL 15	7.43	0.893	177-216	350-420	142	89	61	0.06

¹n-Butyl Acetate = 1

Table 2.126: Chemcentral Solvents (Aliphatic and Aromatic) (67)

ALIPHATIC PETROLEUM	A.P.I. Gravity	H,0 = 1 Specific Gravity	Pounds Per Gal. ®	Coeff. of Expen. Per °C	∆ Spec. Gravity Per	Refrac- tive Index	Distillati 6 760	Vapor Press. Ø 88°F	
NAPHTHAS*	60/60°F	60/60°F	60°F		°C	@ 20°C	°C °F		(mm Hg)
HE PTANE	71	0.69	5.81	0.0011	00066	1.3912	936984	200.5 209	45 0
HE KANE	783	0.675	5.61	0.0015	00077	1.3812	66 70 5	151 159	140.0
KEROSENE	41.4	0.8184	6814	0.0009	00080	1.4485	177 272	350 522	04
LACQUER DIEUENT	57.1	0.7495	6 239	0.0011	99990	1.4154	97 107	206 225	60.0
#360 SOLVENT	51.7	0.772	6.423	0.0008	.00048	1.4258	157-179	315-353	2.9
MINERAL SEAL OIL	17 4	0.8383	6.98	0.0009	00059	1 4665	278 316	532 600	0.01
MINERAL SPIRITS	19 1	0.787	6.55	0.0009	00057	1.4347	153 198	307 389	3.4
DDORLESS MINERAL SPIRITS	54.2	0.7620	6.344	0.0011	00070	1 4240	179 198	354 388	0.5
HUBBER SOLVENT	716	0.700	5.83	0.0013	00077	1 3908	42 135	107 275	1800
STODDARD SOLVENT	51.8	0.7720	8.427	0.0009	.00055	1.4278	156-198	312-387	2.0
IF XSQLV	16.0	0.682	5 68	0.0013	00075	1.3829	64 80	146 176	1550
VM & P NAPHTHA	59.9	0.739	6 15	0.0011	00068	1.4273	118 142	244 287	2.0
#460 SQLVENT	477	0.79	685	0.0009	00059	1 4404	179 254	355-490	0.23
VM & P NAPHTHA 66	56.0	0.7547	6 283	0.0011	00069		126-142	260 288	5.2
MINERAL SPIRITS 66	52.0	0.7724	6.430	0.0009	.00055	1,4277	159-194	318-380	2.6
#140 SOLVENT 66	48 A	0.785	6.541	0.0009	.00055	1 4340	191-203	376-397	0.5

	Evaporation	Kauri	Anlline	Flash		ve Limits	Compo	sition % By	Volume		Solu-
ALIPHATIC PETROLEUM	Pate	Butanoi Value	Point	Point Tag C.C.	% by Vol. In Air		FiA Satu-	Ole-	Arometics	C,+	bility Param-
NAPHTHAS*	But. Ace ≈ 1	CC.	Straight		Lower	Upper	rates	fins	(Tol Eth. Benz)	matic	ater
HEPTANE	4.5	30	153	20	1.2	6.7	99.4	0	01	0	7.4
HEXANE	8 (30.5	147	0	12	7.5	100	0	0	0	7.3
KEROSENE	l	34	144	148	1.0	80	80	1	0	19	7.2
LACQUER DILUENT	3.9	43	109	20	12	6.6	85	1	15	a	7.7
#360 SOLVENT	0.21	33	152	105	1.0	6.0	99.8+	<1	0	< 1	7.5
MINERAL SEAL OIL	- 0.1	27.4	189	265	1	1	97	0	0	3	1.2
MINERAL SPIRITS	0.12	37	132	104	0.7	60	93.1	0	0	6.9	7.5
ODORLESS MINERAL SPIRITS	0.2	27	185	129	10	6.0	98:	1	0	1 1	7.1
RUBBER SOLVENT	6.10	74	142	. 0	1.3	7.4	96	0	4	n	14
STODDARD SOLVENT	0.21	33	156	108	0.7	6.0	99.7	0	0	0.3	7.6
HEXSOLV	8.8	31	146	O	12	6.7	99	0	. 1	0	7.2
VM & P NAPHTHA	0.45	34	140	52	1,	5.0	90.5	0	18	17	7.8
#460 SOLVENT	0.01	32	155	140	14	6.8	92	1	Ō	8	
VM & P NAPHTHA 66	10	35	143	40	0.9	60	99:	0	7 1	0	7.6
MINERAL SPIRITS 66	0.13	32	155	108	0.7	6.0	99.8+	< 1	0	<1	7.6
#140 SOLVENT 66	0.08	30	162	144	1.0	7.0	99.7	. 1	0	1 1	7.6

^{*}The properties tisted above for aliphatic petroleum naphthas and aromatic hydrocarbon solvents are typical only. Because these properties may vary by geographic area if may be necessary to contact your CHEMCENTRAL representative for exact specifications of the specific product you purchase

[&]quot;Open Cup

	1	Specific Gravity 60/60°F	Pounds Per Gal. « 60°F	Coeff. of Expen. Per °C	∆Spec Gravity Per °C	Refrac-	Distiliatio		Vapor	Evaporati	on Rate
AROMATIC HYDROCARBON	A.P.I. Gravity					live Index © 20°C	@ 760 mm Hg		Press.		n-Butyl
SOLVENTS	60/60°F						°C	۰F	mm Hg	Minutes	Ace. = 1
BENZENL	28.5	0.884	7 36	0.0012	00091	1 5003	80-80 6	176-177	74	1.2	4.8
TOLUENE	30.8	Ö.872	7 26	0.0011	90980	1 4973	110-111	230 232	38	2.7	1.5
XYLENE	31.0	0.871	7.25	0.0010	00073	1 4970	138-140	281-284	9.5	:0.8	0.75
SC #1	38.1	0.834	6.947	0.0009	00059	1 4670	101 1-116	214 240	27.5		1.0
6C #2	36.2	0.8438	7.026	0.0009	.00059	1.4768	137.8-153	280-308	5.2		0.12
SC #3	33 0	0.860	7 158	0.0008	00055	1 4897	180-199	356-390	20		0 12
SC #28	33.3	0.859	7.15	0.0009	00061	1 4882	162-201	324-394			
SC #100	30 3	0.875	7.28	0.0008	⇒0055	1 4982	155-173	311 344	. 1	210	0.19
SC #150	25 9	0.899	7 49	0.0008	00059	1 5020	183-210	362-410	1	98.0	0.04
H.A.N. SOLVENT	26.9	0.893	7.44	0.0008	.00059		160-293	320-560	<1		

	Keuri	Aniline Point °F		Absolute Viscosity cps	Flash Point Tag C.C.	Explosive Limits % by Vol. in Air		C	ompositio	on % By Volume)	Solu-
AROMATIC HYDROCARBON SOLVENTS	Butanol							FIA Satu-	Ole-	Aromatics (Tol-	C,+ Aro-	bility Param-
	CC.	Straight	Mixed	€ 25°C	°F.	Lower	Upper	rates	fins	Eth. Benz)	matic	eters
BENZENE	107	44	52.0	0.60	10	1 7	7.1	0.1	0	0	0	9.2
TOLUEN	105		48.0	0.567	45	1.2	70	0.02	υ	99.98	0	8.9
CYLLINE	98	1 -	51.0	0.616	80	1.0	7.0	0.1	0	25.7	74.2	8.9
SC #1	86.4	1 .	79.0	1	20	1.2	7.0	27.51	0	72.5	0	8.5
SC #2	80		78.0	l	81	1.0	7.0	17.9	0	9.9	78.9	8.5
SC # 3	72.7		810	1	142	1.1	7.0	19.8	17	0	77.5	8.5
5C #28	75	1	86.0	•	119	1.0	6.0	25.0	0.9	0	75	8.5
SC #100	92	1	56.0	0.779	110	1.0	6.5	2.0	0	0	98	8.8
Sc. #150	92	1	597	1 20	150	0.9	6.5	20	Ō	O	98	8.7
H.A.N. SOLVENT	78		82.4		140	†	6.5	19.0	1	0	80	8.7

Table 2.127: Crowley Solvents (60)

METHYL NAPHTHALENE NO. 5

	<u>Specifi</u>	cations	T	ypical
Specific Gravity 60°/60°F	0.975	/1.010		0.988
Distillation Range:	<u>• F</u>	<u>•c</u>	<u>• F</u>	<u>°C</u>
IBP, Min. FBP, Max.	400 600	204 315	440 550	227 288
Flash Point, PMCC, Min. (Non-Combustible)	200	93	215	102
Aromatic Content, Min.		95%		98%
Mixed Aniline Point, ASTM, Max	. 61	16.1		11.8
Color, ASTM, Max.		-2		1.0
Color, Visual				Pale Straw
Pour Point			15	-10

AROMATIC SOLVENT 58

SAF-T-SOL 200

Specific Gravity @ 60°F.	.9279/.9465	Specific Gravity @ 60/60°F	0.987
Distillation Range °F.		Distillation Range (ASTM D-850) 5%	430°F
IBP	375	50%	555°F
5%	449	90%	590°F
10%	465	30%	330 I
50%	523	Aniline Point, Mixed ASTM	15°C
		Aniiine Point, Mixed ASIM	13 C
70%	564		W-11
90%	634	Color	Yellow
95%	666		
EP	689	SSU Viscosity @ 100°F	40 secs
Flash Point °F.	240	Pour Point	-60°F
\romatic Content	74%	Flash Point, COC	250°F
Color	2.0	Aromatics	98%
SSU Viscosity @ 100°F.	46.3		
Pour Point °F.	~25		

Table 2.128: Dynaloy Solvents (37)

DESCRIPTION

Dynasolve 210 was developed to fill a widespread need for a solvent that would dissolve RTV silicones and silicone conformal coatings effectively at room temperature. Dynasolve 210 dissolves silicones quickly and effectively, but it contains methylene chloride, and may attack other polymers or coatings, such as epoxies and urethanes. Dynasolve 220, 225, and 230, while not quite as fast as Dynasolve 210, contain no chlorinated solvents and are more selective. In most cases, Dynasolve 230 is fastest, followed by Dynasolve 225, and then Dynasolve 220.

Dynasolve 210, 220, 225 and 230, when not contaminated by water, will not attack metal or metal components, with the exception of aluminum. However, aluminum may be etched after extended immersion in these Dynasolves. Contamination of these Dynasolves with water will result in the formation of acids that can attack most metals and other substrates. Test data shows that mu-metal was untouched after a 24 hour immersion in Dynasolve 210. Dynasolve 220, 225, and 230 will not attack acrylic or polycarbonate.

TYPICAL PROPERTIES

CAL PROPERTIES	DYNASOLVE 210	DYNASOLVE 220	DYNASOLVE 225	DYNASOLVE 230
Color	Amber	Amber	Amber	Amber
Specific Gravity	1.272	0.828	0.806	0.707
Boiling Point	104 ⁻ F	311-348 F	235-290 F	202-222 F
Flash Point	None	110 F	52°F	16°F
pH	2.14	1.70	1.60	1.30

DYNASOLVE CU-5

SAFFTY CLEANING SOLVENT FOR URETHANES

DESCRIPTION

Dynasolve CU-5 is a unique solvent that was developed for use in cleaning urethane residues and crystallized isocyanates from various types of polyurethane processing equipment.

TYPICAL PROPERTIES

Color:	Clear
Specific Gravity:	1.060
Boiling Point:	202°C
Flash Point:	191°F CC
pH:	4 - 6

DYNASOLVE CU-6

SAFETY CLEANING SOLVENT FOR URETHANES

DESCRIPTION

Dynasolve CU-6 is a unique solvent that was developed as a non-gelling, higher flash point version of Dynasolve CU-5.

TYPICAL PROPERTIES

Color:	Clear
Specific Gravity:	1.055
Boiling Point:	202°C
Flash Point:	210°F CC
pH:	4 - 6

(continued)

Table 2.128: (continued)

DYNASOLVE XD 16-4

SAFETY SOLVENT FOR REMOVAL OF SILICONE OILS AND UNCURED SILICONE POLYMERS

DESCRIPTION

Dynasolve XD 16-4 is an experimental solvent that was developed for removal of silicone oils and uncured silicone polymers from molds. molded parts, and processing equipment.

TYPICAL PROPERTIES

Color: Light Amber Specific Gravity: 1.032 Boiling Point: >300° F Flash Point: 262°F :Ha N/A

DYNASOLVE XD 22-1

SAFETY SOLVENT FOR CLEANING AND DEGREASING

DESCRIPTION

Dynasolve XD 22-1 is an experimental solvent that was developed for use in cleaning and degreasing applications. Dynasolve XD 22-1 is a non-chlorinated, non-flammable*, non-carcinogenic, non-ozone depleting solvent

TYPICAL PROPERTIES

Color: Clear Specific Gravity: 0.780 Boiling Point: 360°F Flash Point: 143°F CC :Ha N/A

DYNASOLVE XD 27-2

SAFETY SOLVENT FOR CIRCUIT BOARD CLEANING AND DEFLUXING

DESCRIPTION

Dynasolve XD 27-2 is an experimental solvent that was developed for cleaning and defluxing of printed circuit boards. Dynasolve XD 27-2 is a non-chlorinated, non-flammable*, non-carcinogenic, non-ozone depleting solvent designed as a replacement for CFCs.

TYPICAL PROPERTIES

Color: Transparent Yellow Specific Gravity: 1.000 Boiling Point: 363° F Flash Point: 191°F CC : Ha 8 - 9

DYNASOLVE XD 16-3

Hydrocarbon Solvents

SOLVENT GUIDE UPDATE

DYNASOLVE DF-1	A replenisher concentrate for Dynaflush. When added to
	vacuum distilled or spent Dynaflush, will restore its
	efficiency and loading capacity to original levels.

DYNASOLVE M-35

A low-toxicity, low volatility solvent for general cleaning applications. Especially suited for use in cleaning of uncured polymers, such as epoxies, urethanes, and silicones. Also very effective for dissolving cured cyanoacrylate instant glues.

An experimental aqueous solution for use in the removal of silicone oils and uncured silicone polymers from molds, molded parts, and processing equipment. Especially effective for cleaning mold release residue from plastic molded parts, as it will not harm the surface of the parts.

ACTIVE SOLVENTS	Evapora nBuOAc ± 1	tion Rate Ether = 1	Formula	Viscosity, cP 8% RS ½-s NC @25°C	Viscosity, cP 8% CAB-381-0 5 @ 25°C	Neat Via cP	cosity °C	Dilutio Toluene	on Ratio ^b VM&P Naphtha	Blush Resistance % RH @ 60°F	Specific Gravity @ 20"/20°C	Weight @ 2 Lb/Gs!	Volume 0°C Kg/L	Flash Point TCC, *F	Freezing Point, °F
METHYLENE CHLORIDE	14.5	0.6	CH₂CI₂	Ins ⁻¹	22	0.33	25	7.2			1.320 ^{ft}	10.98 ⁱ	1.31	None	-142
TETRAHYDPOPURAN	63	19	COCH2CH2CH2CH2-	16	13	0.48	20	2.8	1.6	50	0.889	7,41	98.0	6	-163
ACE TONE	a .	2.1	си,соси.		8	0.13	26	44.	6 ·	20	0.792	6 60	0.79	4	138
METHYL ALLIAN	5.3	2.3	CH3COOCH3	1.1	14	041	20	2.9	6.1	20	0.940	7.70	0.94	.,	144
ETHVL ACETATE, 85%-68%	4.2	2.9	CH₃COOC₂H₅	17	15	0.49	25	3.3	1.2	38	0.884	7.36	0.88	27	-118
ETHYL ACETATE, 99%	4.1	3.0	CH3COOC2H5	20	15	0.45	25	3.1	1.1	39	0.901	7.51	0.90	24	-118
$\{ (h(x), x_1) \in \mathbb{R}^{n} \mid (x, y) \in \mathbb{R}^{n} : \mathbb{R}^{n} $			1.00	'	12	.;			1	1	7,805		0.00		-110
PSOPROPS - ACCUATE	3.6	4.0	сидооосиси,		17	0.60	20	3.0	4.5	62	0.873	7.26	0 H :	15	99
METHYL n-PROPYL KETONE	2.3	5.3	СН ₃ СОС ₃ Н ₇	14	13	0.68	25	3.9	1.0	70	0.807	6.74	0.81	46	-123
n-PROPYL ACETATE	2.3	5.3	CH3COOC3H7	27	18	0.58	20	3.2	1.5	65	0.889	7.39	0.89	55	-134
METHYL ISOBUTYCIKE TONE	1.6	7.6	CH3COCH, CHICH 31,	15	15	0.60	20	, .	1.0	78	0.802	6.67	0.80	66	119
ISOBUTYL ACETAT:	1.4	8.6	С Н 3СООСН7СНЮН	3.7	28	9 70	20	27		80	0.870	7.25	0.07	69	146
2-NITROPROPANE	1.1	11.0	CH ₃ CHNO ₂ CH ₃	60	27	0.77	20	1.2	0.4	82	0.988	8.23	0.99	62	-132
n-BUTYL ACETATE	1.0	12.1	CH3COOC4H9	30	28	0.73	20	2.7	1.2	83	0.883	7.35	0.88	81	-101
EASTMANPM	0.7	17.3	CH ₂ OCH ₂ CH ₃ CH ₃ OH	96	49	1.90	20	5.2	0.9	56	0.923	7.69	0.97	91	139
METHYL ISOAMYL KETONE	0.5	24.2	CH ₃ COC ₂ H ₄ CH(CH ₃),	25	20	0.73	25	4.1	1.2	89	0.813	6.76	0.81	96	-101
METHYL AMYL ACETATE	0.5	24.2	CH3COOCH(CH3)C4H9	54	0	0.98	25	1.7	10	92	0.858	7.14	0.86	96	- 101
EASTMAN PM ACETATE	0.4	30.2	CH3COOCH(CH3)CH2OCH3	65	43	1.07	25	2.6	0.8	92	0.970	8.06	0.97	114k	<-89
AMYE A HE ASSESSMENT	1.2	27	ALMA CAST RESTA		3.	3.4			,	1.2	0.876	7.29	0.07		1,1/2
METHYL IN AMYL KETONE	0.4	30 2	CHaCOCsH-	25	20	0.77	25	3.9	1.2	93	0.818	6.80	0.82	102	- 27
ISOBUTYL ISOBUTYRATE	0.4	30.2	(CH ₃) ₂ CHCOOCH ₂ CH(CH ₃) ₂	100	Insg	0.85	25	1.5	0.0	92	0.855	7.13	0.86	104	-112
ETHYLENE GLYCOL ETHYL ETHER	0.3	40.3	C₂H₅OC₂H₄OH	73	53	2.10	20	5.0	1.1	59	0.931	7.75	0.93	110	-137
CYCLOPE WE WA	7	43.4	-снуси у							-10	0.948	89	0.50	110	-13/
PROPERTY OF THE STATE OF THE ST	1.4	40.3	grade and a		dh	.,					0.872	1.25			
PROPYLENE GLYCOL PROPYL ETHER	0.2	60.5	CaH-OCHaCH(CHaiOF	95	Ins	2.80	20	i	1. 55		0.886	7.38	0.68	119	112
ETHYLENE GLYCOL ETHYL ETHER ACETATE	0.2	60.5	CH₃COOC -H₄OC JH≤	66	45	1.30	20	2.5	0.9	94	0.973	8.11	0.98	130	- 78
MIXECUME OF ACCUMANT AND ARTHUR	.,	712	Mar.	\$+c	48	104					0.874	36	3 4	130	- 78
DIISOBUTYI, KETONE	0.2	60.5	(CH _{3/2} CHCH ₀ COCh if Highler	46	Ins	0.95	20	. 5	9.6	95	0.811	6.76	0.81	120	43

		apor Pri	200	Surface Ter	alan	Boiling Range @ 760 Torr.		y @ 20°C 1 %	Azer	otrope	Autoignition	Refrac		Electrical	Ha	nsen Solubi	Itty Parem		Gram	TLV
ACTIVE SOLVENTS	Tan		KPa 6 55°C°		°C	*C	In Water	Water in	BP, C	Wt % Water ^d	Temperature, °C	Inde Value	, C	Resistance,e Megohms	Total	Nonpolar	Polar	Hydrogen Bonding	Molecular Weight	PPM 1992
METHYLENE CHLORIDE	340.6	20	1	26.5	20	39-41	14	0.1	36.1	3 4	662	1 4242	20	1.5	6.~	89	3	3.0	84.90	50
TETRAHYDROFURAN	143.0	50		26.4	25	65-67	Complete	Complex	15 F	4.€	321	1 4073	20	2.6	9.5		∠£	3.9	72,11	200
ACETONE	DH5 is	· "(i	9. 1	22.3	20	55 5 57 1	Companie	Longuese	t factoria		538	1.3591	20	0.01	91.80			3.4	58.08	750
METHYL ACETATE	1/1 :	æ	44.1	25.8	20	55 8-58 2	12.0		t sec	5.0	501	3600	20	0.4	9.2	,	,	3.7	74.09	200
ETHYL ACETATE, 85%-88%	75.0	20	i	24.2	20	71-79	7.4	3.1	70.4	. 8.5	466	1.3693	20	0.3	_	: -	<u> </u>	1 _	88.11	
ETHYL ACETATE, 99%	75.0	20	45.9	23.9	20	75.5~78	7,4	3.3	70.4	8.5	485	1.3718	20	20.0	8.6	77	2.6	3.5	88.11	400
Million Charles to the				510	١		i i		1			7	,	20.0					30.11	100
ISOPHOPYL ACETATE	1 1 7	30	1U	22.1	20	85-90	2 -	1.8		-06	479	1 3772	20	×26	5 t	:	2.	4.0	102 13	250
METHYL n-PROPYL KETONE	27.8	20	19.2	26.6	20	101-105	3.1	4.2	83.3	19.5	449	1.3902	20	0.3	8.9	7.8	3.7	2.3	86.13	200
n-PROPYL ACETATE	23.0	20	18,9	24.3	20	99–10:	2.3	2.6	82.4	14.0	457	1.3847	20	>20	8.6	7.5	2.1	3.7	102,14	200
METHYL ISOBUTYL KEYONE	15.1	.39		23.6	20	114-117	24	• 44	10.25	24.3	449	1 3958	20	0.4	0.0	*.5	3.6	2.0	100.16	50
ISOBUTYL ACETATE	12.5	.40	10.7	23.7	20	112-119	11.	1.6	57.4	16.5	427	1.3895	20	-26	4.		1.6	3.1	116.20	150
2-NITROPROPANE	18.0	20		29.9	20	119-122	1.7	0.6	88.6	29.4	428	1.3944	20	<0.1	10.1	7.9	5.9	2.0	89.09	10
n-BUTYL ACETATE	10.0	20	7.4	25.1	20	122-129	0.7	1.6	90.2	28.7	407	1.3941	20	>20	8.5	7.7	1.8	3.1	116.16	150
EASTMAN PM	8.0	- 20	8.1	28.3	25	121	Gamplete	Company		20.7		: 4036	20	0.4	10.0	7.5	j 1.0	5.7	90.12	100
METHYL ISOAMYL KETONE	4 5	70	3.7	25.8	20	141-148	0.5	1.2	34.7	44.0	124	1 4078	20	0.5	h.3	2.6	2.8	2.0	114.19	50
METHYL AMYL ACETATE	3.8	: 20		22.6	20	146-15)	ų -	: 0.6	94.8	36.7	1	1.4008	20	>20		1	1	2.0	144.21	30
EASTMAN PM ACETATE	3.7	20	3.0	26.4	20	140-150	20.0	5.9	_	_	354	1.3995	20	5.0	9.4	7.6	2.7	4.8		
AMYL ACETATE PREMARE				28.5	20	3	-5.0	, 0.5	!		3.5	4.3333	20	3.0	3.4	7.0	2.7	4.0	132.20 130.19	-
METHYL n-AMYL KETONE	2 14	20	2.8	26.1	20	147-153	41.54	1.3	95.e	48.0	393	1.4080	20	0.1	St.	. 9	3.7	2.0		50
ISOBUTYL ISOBUTYRATE	3.2	20	3.3	23.2	20	144-151	<0.1	<0.2	95.5	39.4	432	1.3987	20	>20	8.1		2.6	2.0	114.19	
ETHYLENE GLYCOL ETHYL ETHER	3.8	1.20		29.3	20	134 - 136	a siete	Complete	98.2	87.0	238	1.4076	20	.0	11.5	7.9	1.4	7.0	144.22	-
CYCLOHEXANOR			•	27.7	20			44.4		. 07.0	1.5	1.4070	1 20	1	-13	1 4 8	1 4.5	2.5	90.12	5
PROPYLENE SUN ON THE ARREST OF A				24.2	95						150.								98 14	
PROPYLENE GLYCOL PROPYL ETHER		26	-	27.0	25	149.8	Canglet-	- Camples		i _		1 4121	20	70.1	6.7	7.7		4.5	132.20	
ETHYLENE GLYCOL ETHYL ETHER ACETATE		20		28.2	20	150-160	23 P	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	97.4	45.0	382	1 4030	20	40	9.5		3.4		118.18	-
MIXED HEXT, ACT 14 THE THE		,	I	25.0	20	100-100	7			. 43.0	382	1 4030	20	1 40	9.7	7.8	2.3	5.2	132 16	5
DIISOBUTYL KETONE	1.4	20	1.4	24.6	20	163-175	0.04			£1.0	1	i i						29	044.0.	
DISOUGH LE RETURE	1 :-	20	. 1.4	24.6	20	163-1/5	0.05	37	970	51.9	396	1.4150	. 20	3.4	3.0	7.6	1.8	2.0	142.23	25

ACTIVE SOLVENTS	Evapora nBuOAc = 1	tion Rate Ether = 1	Formula	Viscosity, cP 8% RS 1/4-s NC @25°C	Viscosity, cP 8% CAB-381-05 @ 25°C	Neat Vis	*C	Dilutk	n Ratio ^b VM&P Naphtha	Blush Resistance % RH @ 80°F	Specific Gravity @ 20°/20°C		Volume 10°C Kg/L	Flash Point TCC, °F	Freezing Point, "F
DIMETHYL FORMAMIDE	0.2	60.5	CHCON(CH ₃) ₂	17	33	G 8 0	25		-		0.951	7.92	0 95	136	- 78
EASTMAN EP	0.2	60.5	C₃H₁OC₂H₄OH	86	ins	2.42	25	4.0	2.0	90	0.913	7.59	0.91	120	<-130
DIACETUNE A	0.12	1008	,CH ₃) ₂ C(OH)CH, COCi+	-28	160			;		76	0 940	82	. ** :		
EEP (ETHYL 3-ETHOXYPROPIONATE	0.12	100.8	C ₂ H ₅ OC ₃ H ₄ O ₂ C ₂ H ₅	62	54	20	25	: 6	0.6	94	0.950	7.91	0.95	136*	< -58
PROPYLENE GLYCOL BUTYL ETHER	0.08	151.3	C ₄ H ₉ OCH ₂ CH(CH ₃)OH	124	Ins	3.40	20	19	0.9	96	0.884	7.37	0.88	138	-148
EASTMAN EB	0.09	136.0	C₄H ₉ OC₂H₄OH	101	Ins	6.40	20	3.4	2.1	96	0.902	7.51	0.90	143	-103
NIMETRONIC INVESTIGATION	0.04	302.5	C ₅ H ₉ NO	48	-11.	1136			'		1.027	8 55	1.575	1 11	
MIXED COTHE ALBERTA A RELEASE	0.03	403.4	Mixture			٠,	, c		1.0		0.875	- 3C	0.6"		1
EASTMAN EB ACETATE	0.03	403.4	CH3COOC2H4OC4H9	88	65	1.80	20	1.8	1.2	95	0.941	7,84	0.94	160	- 83
2-ETHYLHEXYL ACETATE	0.04	403.4	CH₃COOCH₂CH(C₂H₅)C₄H₃	90	Ins	1.50	20	1.4	0.9	94	0.873	7.27	0.87	160	-135
DIPROPYLENE (ACVITATION OF HERE	0.02	605.1	CH₃O[CH₃CH⊕C, +-	225	-30	. 10			1 1	90	0.951	17.91	3.46		112
EASTMAN C-11 KETONE	0.02	605.1	Mixture	65	Ins	2.12	25	2.3	10	96	0.840	7.02	0.84	184	11
ISOPHORONE	0.02	605.1	OCHC:C(CH3)CH2C(CH3)2CH2	110	110	2.60	20	6.2	1.2	97	0.922	7.67	0.92	179	17
ETHYLENE GLYCOL DIACETATE	0.02	605.1	(CH ₃ COOCH ₂) ₂	220	160	2.90	20	1.4	_	96	1.107	9.22	1.11	191	- 43
EASTMAN DM	0.02	605.1	CH ₃ (OC ₂ H ₄) ₂ OH	174	160	3.90	20	2.3	imm ^m	76	1.023	8.51	1.02	191	-121
EASTMAN DE	0.02	605.1	C ₂ H ₅ (O C ₂ H ₄) ₂ OH	180	140	4.50	20	1.9	imm ^m	76	0.990	8.25	0.99	195	-130
EASTMAN DP	0.01	1,210.2	C ₃ H ₇ (OC ₂ H ₄) ₂ OH	190	ins	4.12	25	4.6	1.6	_	0.963	8.04	0.96	200	<-90
ETHYLENE GLYCOL HEXYL FTHER	0.01	1,210.2	C ₆ H ₁₃ OC ₂ H ₄ OH	120	ins	5.20	20	24	1.5	96	0.889	7.40	0.89	179	- 58
EASTMAN DE ACETATE	0.008	1,512.7	CH3COO(C2H4O)2C2H5	162	110	2.80	20	2.2	0.6	92	1.012	8.42	1.01	225°	- 13
DIBASIC BATHIS	0.007	1.728.9	CH3COO(CH);#COO(Z1) . 34	200	43	- 1					1.092	9.06	1.0%		1
EASTMAN DB	0.004	4,034.0	C ₄ H ₉ (OC ₂ H ₄) ₂ OH	205	ins	4.74	25	3.9	1.9	85	0.955	7.94	0.96	232 ⁿ	-105
EASTMAN EEH	0.003	4,034.0	C4H9CH(C2H5)CH2OC2H4OH	ins	ins	7.01	25	_	_	_	0.892	7.42	0.89	208 ^k	<~50
EASTMAN DB ACETATO	0.002	6,051.0	CH₃COO(C₂H₄O\;C₄H₄	186	140	1.20	25	1.8	0.9	96	0.980	8.16	0.98	240°	26
PROPYLEIS	0 002	5.051.0	G _E H _E OC :H _E Or		1110						1.063	5.51	-	į .	
TEXANOL ESTER-ALCOHOL	0.002	6,051.0	(CH ₃) ₂ CHCOOCH ₂ C(CH ₃) ₂ CHOHCH(CH ₃) ₂	1,115	Ins	18.30	20	_	-	_ :	0.950	7.90	0.95	248 ⁿ	- 58
MIXED TRIDECY: ACETATE ESTERS	0.001	12,100.0	Mixture			4.63	25			_	0.880	7.30	0.88	261	<-60

	Va	por Pre	ėcura.	Surface Ten	sion	Boiling Range		y @ 20°C	Azec	trope	Autoignition Temperature,	Retract		Electrical Resistance.*	He	nsen Solubi	ilty Param		Gram	TLV
ACTIVE SOLVENTS	Torr		KPa @ 55°C°	Dyne/Cm	°c	*c	in Water	Water In	BP, *C	Waterd	°C	Value	, c	Megohms	Total	Nonpolar	Polar	Hydrogen Bonding	Motecular Weight	1992
DIMETHYL FORMAMIDE	3.7	20	-	35.2	25	153′	Complete	Complete	741		445	1.4282	25	-	12.1	85	6.7	5.5	73.09	10
EASTMAN EP	1.3	20	2.2	27.9	25	149.5-153.5	Complete	Complete	98.5	73.0	235	1.4136	20	0.1	11 1	7.9	4.2	6.6	104.15	
DIACETONE ALCOHOL	41					-45 Hz	Complete	Gemples			7.00	+ 4234	50	9.1			1	5.3	116.16	50
EEP (ETHYL 3-ETHOXYPROPIONATE)	1.5	25	1.2	37.6	23	165-172	2.9	2.2	97.0	63.0	377	1.4074	20	20	9.	7.9	1.6	4.3	146.19	_
PROPYLENE GLYCOL BUTYL ETHER	0.6	20		27.4	25	170.2 ^j	6.4	15.5				1.4173	20	0.4	9.6	7.5	2.2	4.5	132.20	_
EASTMAN EB	0.6	20	0.97	26.6	20	169-172:5	Complete	Complete	98.8	79.2	238	1.4193	20	<0.2	10.2	7.8	2.5	6.0	118.17	25
1. METHYU 2 PHRROUDDNE					-5	5.50	Complete	n'a rigare.		•	. 'A"	1.4690	25				9.0	3.5	99.10	
MARCO DUTHS ACETATE ESTERS	50.	,		4	20	186 215	: 02	5.35			298	1.4200	20	·// 0					172.00	1
EASTMAN EB ACETATE	0.29	20	0.77	30.3	20	186-194	1.1	1.6	98.8	71.9	340	1,4142	20	>20	8.9	7.5	2.2	4.3	160.21	_
2-ETHYLHEXYL ACETATE	0.40	20	0.36	25.8	20	199-205	0.03	0.6	99.0	73.5	268	1.4201	20	>20	8.2	7.7	1.4	2.5	172.27	_
PROPYLENE BLYCH, METHYLIETHER	55			. 67	25	188.4	Complete	Complet				:.4205	25	1)	0.2	1	2.8	5.5	148.20	100
EASTMAN C-11 KETONE			0.17	27.5	24	200 -246	0.2	0.9			238	1.4355	20	1.5	8.2	7.9	1.0	2.0		"
ISOPHORONE	0.18	20		32.3	20	210 -218	1.2	4.3	99.5	83.5	460	1.4781	20	<0.1	9.5	8.1	4.0	3.6	138.20	5
ETHYLENE GLYCOL DIACETATE	0.2	2 0	0.18	33.7	20	187193	16.4	7.6	99.7	84.6	482	1.4159	20	5.0	9.5	7.9	2.3	4.8	146.15	
EASTMAN DM	0.2	20	1.4	34.8	25	191-198	Complete	Complete		,	240	1.4268	20	<0.2	10.7	7.9	3.8	6.2	120.15	_
EASTMAN DE	0.12	20	0.49	32.2	20	198~204	Complete	Complete	None		205	1.4260	20	<0.2	10.0	7.9	3.8	6.2	134.17	_
EASTMAN OP	0.05	20	0.11	32.3	20	202-21€	Complete	Complete	_	· _	204	1,4290	20	0.1	10.2	7.8	3.5	5.5	148.20	_
ETHYLENE GLYCOL HEXYL ETHER	<10	20	_	_	_	208.1	1.0	18.8	99.7	91.0		1,4290	20	0.3	10.2	7.0	-	3.3	146.23	_
EASTMAN DE ACETATE	0.05	20	3.16	31.7	25	214-22	Complete	Complete	99.2	76.0	360	1.4220	20	3.0	3.6	7.9	2.5	4.5	176.21	
DIBASIC ESTERS				76.0	10	10e 32e				, 6.0		1.4220	50	3.5			2.3	4.1	159.00	
EASTMAN DB	0.02	20	0.04	30.0	20	230-235	Complete	Complete	None	l –	205	1.4316	20	<0.3	10.0	7.8	3.4	5.2	162.23	_
EASTMAN EEH	0.08	20	0.06	27.6	20	224-275	0.2	6.2	~			1.4361	20	1.5	8.4	7.8	2.0	2.5	102.23	_
EASTMAN DB ACETATE	0.04	20	0.02	30.0	20	235250	6.5	3.7	99.8	92.0	349	1.4239	20	>20	9.0	7.8	2.0	4.0	204.27	1
PROPRIENE G. KNOL PHENYL ETHER				/ 11	- 24	342.7			.,,,,,		1	1.4235	20	120	7.1		2.0	5.6	152 20	_
TEXANOL ESTER-ALCOHOL	0.01	20	0.02	28.9	20	255~260 5	insg	0.9	-	_	393	1.4423	20	>20	6.2	7.4				l
MIXED TRIDECYL ACETATE ESTERS	0.03	20		28.0	20	240-285	0.0	0.2	_	_	302	1.4380	20	>20	9.3 8.0	7.7	3.0 1.2	4.8 2.0	216.30 242.00	

LATENT SOLVENTS	Evapora nBuOAc = 1	tion Rate Ether = 1	Formula	Viscosity, cP 8% RS 1/2-s NC @25°C	Viscosity, cP 8% CAB-381-0.5 @ 25°C	Neet Vie	coaity *C	Dilutio Toluene	n Retio ^b <i>VM&P</i> Naphthe	Blush Resistance % RH @ 80°F	Specific Gravity @ 20*/20*C		Volume IOTC Kg/L	Flash Point TCC, *F	Freezing Point, °F
METHYL ALCOHOL	3.5	3.5	CH₃OH	20		0.60	20	2.2	0.5		0.792	6.60	0.79	50	_
TECSOL INDUS. AND PROPRIETARY SOLVENTS	1.7-1.9	-	C₂H₅OH			1.2-1.5	20	1			0.789-0.820	6.57-6.83	0.79-0.82	50	-173
ISOPROPYL ALCOHOL, 99%	1.7	7.1	(CH ₃)₂CHOH			2.40	20	1		ł	0.786	6.54	0.78	55	-127
n-PROPYL ALCOHOL	1.0	12.1	C₃H ₇ OH			2.00	25				0.804	6.71	0.80	74	-197
SECONDARY BUTYL ALCOHOL	0.9	13.4	СН₃СН₂СН О НСН₃	}]	2.90	25	l i		}	0.810	6.73	0.81	72	_
ISOBUTYL ALCOHOL	0.6	20.2	сн₃сн(сн₃)сн₂он		ı	4.00	20	ĺ			0.803	6.68	0.80	85	-162
n-BUTYL ALCOHOL	0.5	24.2	С₄Н₃ОН]	3.00	20	1			0.811	6.75	0.81	97	-129
METHYL ISOBUTYL CARBINOL	0.3	40.3	СньСНОНСн-СНіСНэі;		Ì	3.80	25				0.805	6 69	u 80	103	-130
AMYL ALCOHOL (MIXED PRIMARY ISOMERS)	9.3	40.3	C ₅ H ₁₁ C ^L		1	4.30	20				0.814 ^h	6.77 ⁱ	0.81	_	-130
CYCLOHEXANOL	0.05	242.0	CH ₂ (CH ₂) ₄ CHOH			52.70	25		!		0.9476	7.87	0.94	١ -	_
2-ETHYLHEXANOL	0.01	1,210.2	C ₄ H ₉ CH(C ₂ H ₅)CH ₂ OH			7.70	25				0.833	6.94	0.83	164	- 94

	l					Boiling Range		y @ 20°C	Azec	rirope	Autoignition	Refrect		Electrical	Ha	nsen Solubi	ity Param	eters!	Gram	TLV
LATENT SOLVENTS	Torr	por Pre	KPa @ 55°C°	Surface Ter Dyne 'Cm	°C	@ 760 Torr, *C	in Water	Water in	BP, 'C	Wt % Water ^d	Temperature, "C	Inde: Value	, .c	Resistance,* Megohms	Total	Nonpoler	Polar	Hydrogen Bonding	Malecular Welght	PPN 1992
METHYL ALCOHOL	100.0	21.2	69.0	22.6	20	64-65	Complete	Complete	None		463	1.3286	20	<0.1	14.5	7.4	6.0	10.9	32.04	200
TECSOL INDUS. AND PROPRIETARY SOLVENTS®	-	_	37.6P	22.4	20	74-82	Complete ^q	Complete	78.1	4,0	419	1.3614	20	<0.1	13.0	7.7	4.3	9.5	46.07	1 200
ISOPROPYL ALCOHOL, 99%	32.8	20	30.8	21.3	20	80.8-83.3	Complete	Complete	80.3	12.6	360	1.3776	20	<0.2	11.5	7.7	3.0	8.0	60.10	400
n-PROPYL ALCOHOL	14.5	20	15.7	23.8	20	96-98	Complete	Complete	87.0	28.3	413	1.3856	20	√ 0.2	12.0	7.8	3.3	8.5	60.10	200
SECONDARY BUTYL ALCOHOL	12.0	20	- 1	24.0	20	98-101	20.6	30.7	87.0	26.8	406	1.3972	20	<0.2	10.8	7.7	2.8	7.1	74.12	100
ISOBUTYL ALCOHOL	9.0	20	9.5	22.8	20	106109	9.5	14.3	89.8	33.0	416	1.3955	20	<0.2	11.1	7.4	2.8	7.8	74.12	50
II-BUTYL ALCOHOL	5.5	20	6.1	24.6	20	116-111	7.9	20.8	92.7	42.5	355	1.3993	20	<0.2	11.3	7.8	2.8	7.7	74.12	50
METHYL ISOBUTYL CARBINOL		20,		22.8	20	136 120	1 - 2	, .	94.3	43.3		1.4110	211	0.2	9.7	7.5	16	6.0	102.18	1
AMYL ALCOHOL (MIXED PRIMARY ISOMERS)	2.9	20	- '	23.8	20	127-137	1.7	9.2	95.8	54.4	_	1,4014	20	0.2	_			-	88.15	
CYCLOHEXANOL	0.9	20		35.1	20	160-162	0.1	11.8	97.8	80.0	300	1.4656	20	0.4	11.0	8.5	2.0	6.6	100.16	50
2-ETHYLHEXANOL	0.05	20	0.26	28.7	20	182-166	0.1	2.6	99.1	80.0	288	1.4316	20	>20	9.9	7.8	1.6	5.8	130.20	1

Product	Source	Distill Ran °C		Flash P TCC *C		Specific Gravity, @ 15.6/15.6°C	Density @ 60°F lb/gal		te Pt., ID 611 *F	KB Value	Evaporation Rate, n-BuAc=108	Surface Tension, Dynes/cm	Hildebrand Solubility Parameter	Cor Cyclo parattin	npostion, W Parattin		OEL, ppm	EAS Registry Number
LUPHATICS																		
520 Naphtha*	SA	64-94	147-201	√-18	<0	0.67	5.61	·8	155	28	560	18.2	75	2.5	98	<0.5	100	61/1/46
IS Naphtha"	SA	66-102	151-216	<-18	<0	0.69	5.75	8	137	34	460	19 1		2 "	89	g	100 *	191742 45 1
2024 Naphtha*	SA	97-117	207-243	3	26	0.74	6.15	<u>3</u>	127	39	260	213	75	42	52	6	400	64/4: 18
2429 Nachtha*	SA	115-143	239-289	10	51	0.76	6.29	3	125	39	120	22.2	18	30	58	12	400	64/4; 19
1135 Naphtha	SA	159-176	318-349	42	108	0.79	6.56	: 3	126	39	22	23.7	7.9	35	45	20	200	9057-41
/arsol® 1 Solvent	BT/SA	160-205	320-401	44	111	0.80	6.67	55	131	39	10	26.6	7.9	46	37	17	100:	80% 11
/arsol® 18 Solvent	BT/SA	160-205	320-401	43	110	0,79	6.62	62	144	36	10	26.3	7.6	53	40	7	100-3	8052-41
40 Naphtha"	SA	187-209	369-408	65	149	0.80	6.67	58	137	36	6	25.0	7.6	34	46	20	200 5	6474, 4
DX 3841 Naphtha*	SA	187-210	369-410	64	147	0.79	6.60	67	152	33	6	25 1	7.5	45	49	6	200-	6474.1.1
ARDMATICS				·			i Committee and a second										water of the section	
l'al uane	BT/SA	110-111	230-232	7	45	0.87	7.27	(3)	48	105	240	29.5	8.9	-	<0.1	99.9	50	108-8h
Kylens	BT/SA	139-141	282-286	26	79	0.87	7.26	1:4°	50	98	80	30.0	88		<0.1	99.9	100	1330 j. d 8 196 41
Aromatic 100 Solvent	BT	160-171	320-340	47	117	0.87	7.29	13 ^(c)	55	94	30	30.1	5,6	⊲0.2		99.8	50°	ij4742-iib
Aromatic 150 Solvent	BT	184-204	363-399	66	151	0.90	7.49	150	59	97	6	31.4		<0.2		99.8	100 ⁻ⁱⁿ	64742/94
Aromatic 200 Solvent	BT/SA	231-276	448-530	10416	219	1.00	8.34	12.3	54	98	<1	38 :	7×17	<0.2	•	99.8	100%	6424/ «id
DEAROMATIZED ALIPHATIC			N/A			0.00	E 04	11.4	11/A	NUA	2000	446	\$1.i		100	⊲0.01	600	/b-/8-4
Exxsol® Isopentane Solvent		N/A	N/A	-18	<0	0.62	5.21 5.50	<u>N:A</u> 6	N/A 147	N/A 28		14.5 17.0	<u>N.A</u>	1	99	<0.01	3(%)	64742 45
Exxsol ^e Methylpentane Haphtha	SA	59-62	138-144	18	. <0	0.66								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Except Hexane Solvent	BTASA	66-69	151-156	18	<u> </u>	0.67	5.59	6.	151	29		194	7 :	8	92	<0.01	50	04742 49
Excessio 0 75/100 Naphtha	<u>SA</u>	76-97	169-207	<-18	<0	0.72	5.99	56	132	36	4.3	20.4		19	81	0.01	1(h):	54742 45
Exist Heptane Solvent	BT	94-98	201-208	-8	18	0.70	5.79	68	154	29	99	21.2	21	1	96	<0.01	4(0)	64 (4) 45
Except 0 115/145 Naphtha		116-144	241-291	10	50	0,75	6.22	61	141	35	110	22.1	7.3	41	59	0.01	300%	64742-4
Existol® D 3135 Naphtha	SA	157-177	315-351	-11	105	0.77	6.43	<u>6</u> .i	151	34	24	23.7	7.5	48	52	0.02	300-5	64742 47
Exxsol® D 40 Solvent	BT/SA	159-204	318-399	43	109	0.79	6.49	6.7	152	34	12	26.0	7.4	57	42	0.4	300 :	64742.4
Exxsol® D 60 Solvent	BT/SA	187-210	369-410	63	146	0.79	6.54	71	159	32	66	25.1	7.4	51	49	0.4	300	1/4/42-4
Except D 80 Solvent	BT	207-234	405-454	82	180	0.80	6.65	7€	169	29	AND THE RESERVE THE PERSON NAMED IN COLUMN TWO	27.6	7.4	47	53	<0.2	300	5474,7-1
Except D 110 Solvent Except D 130 Solvent**	BT	251-269 276-316	483-516 538-585	114:-	238 279		6.99	84	183	25 24		28.6 29.7	7.2 7.2	41	59 57	<0.5 <0.5	300≃	64742-4 34.742-1
	υ,	210010	000 000	,,,,	,,	3,4.			1011		-						,	
ISOPARAFFINS	BI	98-104	208-219	-8	18	0.70	5.83	78	173	27	560	20.3	7.2		100	<0.01	400-1	64/41 o
isupar* E Solveni	61	118-137	244-279	7	45	0.72	6.02	75	167	29	160	22.1	7.3	1	99	<û.01	4000	ti4/41-ti
tsoper® G Solvent	BT	160-176	320-349	41	106	0.75	6.23	1	181	27	30	23.8	7.3	5	95	<0.01	300 %	64742-4
Isopar® & Naphtha	SA	156-172	313-342	39	103	0.74	3.18	77	171	28	35	22.2	7.3	1	99	0.03	300:01	64742-4
Isopar® H Solvent	BI	. 178-188	352-370	54	129	0.76	6.32	34	183	26		241	7.3	5	95	<0.01	3004	64742-4
Isopar® K Solvent	ı. BT	178-197	351-387	57	135	0.76	6.34	80	181	27	8	24.2	7.3	6	94	<0.01	300'2	64742-4
trouge K Nachtha	SA	182-204	360-399	60	140	0.76	6.35	8;	178	28	7	23.3	7.3	3	97	<0.01	300:	64742-4
Isopar® L Solvent	BT	189-207	372-405	64	147	0.77	6.40	85	185	27	4	25.1	7.3	11	89	<0.01	300×n	64742-4
Isopar® M Solvent	BT/SA	223-254	433-489	93(6)	199	0.79	6.57	91	196	25	<1	26.4	7.2	21	80	<0.05	300-3	64742-4
Isspar* V Solvent	BT	273-312	523-594	129 ⁽⁰⁾	265		6.82	92	198	23	<1	26.9	7.2	34	66	<0.5	300°	64742-4
HORMAL PARAFFINS				-	4	Water to the same of the same			-	,	AND THE PROPERTY OF THE PROPER						000	
Norper* 12 Solvent	βT	188-220	370-428	69	156		6.24	12	180	23		26.9	7.3		100	<0.01	300%	64771-7
Morpar® 13 Setvent	BŢ	222-243	432-469	95b)	203		6.35	38	190	21		26.7	7.2	-	100	<0.01	300	64771
Horpar* 15 Solvent	RŢ	255-279	491-534	1200	248	0.77	6.44	93	199	20	1 4	28.9	7.1	-	100	0.01	300	64771-2

⁽b) Thig Classis Cup, ASTM 0.56 (b) ASTM 0.93 (c) ASTM 0.611 (Mixed Antiine Point)

" Preproduction data - Commercially available first quarter 1995

 ⁽d) Occupational Exposure Limits - Recommended by Exxon.
 TUY's have not been established for these compounds by ACGIH.
 (e) TUY - A registered trademark of the ACGIH. Threshold Limit Value (TLY) Try - Ingiscence calculate to the router. Trespond Latin value (and of Occupational Exposure Limit, is the time weighted average concentration for a normal 8-hour workday, 40-hour workweek, to which hearly all workers may be exposed repeatedly with adverse effect.

ruc:
All hydrocarbon solvents test +30 Sayboll Color except for Aromatic 150 20 * ?8

& Aromatic 200 & ASTM 1 by ASTM D 1500.

BY - Baybonn SA - Savnia (RR - King Ranch

Marketed as local* of Varsol** Solvents in Canada

Table 2.131: Fina Aromatic Solvents (6)

Typical Properties

Solvent Name	Flash <u>Deg. F</u>	API <u>Gravity</u>	Specific Gravity	Distillation Deg. F	Common Applications
FAS 70	180	20	0.9340	150 - 645	Warmer climate oil well applications Wood treating preservative
FAS 104	115	30	0.8762	300 - 495	Down hole oil well applications Wash oil Reaction solvent in chemical processing Carrier solvent for specialty chemicals High octane gasoline blendstock
FAS 150	155	22	0.9218	370 - 630	Very similar to FAS 104 except higher flash. Used in the same applications as FAS 104.
FAS TX-150	155	26	0.8984	360 - 400	Water white (Saybolt +30) solvent Paint blendstock/solvent Reaction solvent in chemical processing for specialty paint and oilfield chemicals Oilfield chemical solvent High quality wash oil
FAS TX-200	219	11	0.9930	450 - 527	Carrier for agricultural products High flash solvent applications in coatings Used in manufacturing specialty chemicals
Toluene (90% Puri	ty)	31	0.8708	232 - 253	High octane, low RVP gasoline blendstock
Xylene		31	0.8708	281 - 285	Many uses in solvents, gasoline, chemical processing

Table 2.132: Hoechst Celanese Methyl Isobutyl Ketone (42)

Methyl Isobutyl Ketone (MIBK; Isobutyl methyl ketone; Hexone; Isopropylacetone; 4-Methyl-2-pentanone)

Physical Prope	rties				
Autoignition Temperatur	re:		84	0°F (4	49°C)
Critical Compressibility	Factor:		0.2	254	
Critical Pressure:			32	.3 atm	ı
Critical Temperature:			29	8.3°C	
Critical Volume:			0.3	369 m ²	3/kmol
Dipole Moment:			9.0	X 10	-30 cm
Evaporation Rate (n-Bu	Ac = 1):		1,5	54	
Flammability Limit (vol 9 Upper Limit: Lower Limit:	% in air):		8.0 1.2		
Flash Point (Tag Closed	d Cup):		60	°F (16	°C)
Freezing Point:			<-!	50°C (<-58°F)
Heat of Vaporization: (BTU/lb) Temperature (°F)	182 26	177 61.9	172 98.1	167 134	136 315
Liquid Density: (tb/gal) Temperature (°F)	6.86 25.7	6.71 61.9	6.55 98.1	6.24 171	5.90 243
Liquid Heat Capacity: (BTU/lb/°F) Temperature (°F)	0.514 77.0	0.5° 85.7).521)4.4	0.546 155
	tivity: 2.45 X 10 [.] 5.03	⁵ 2.32 54.7		2.06 154	X 10 ⁻⁵
Liquid Viscosity: (cp) Temperature (°F)	0.774 32.8	0.57 70.7	-	.436 09	0.345 147
Normal Boiling Point (76	60 mm Hg):	11	6°C (2	41°F)
Solubility (grams/100 gran	rns of wate	r at 20°	C): 1.9	95	
Specific Gravity (20°C/4	°C):		0.8	801	
Surface Tension: (dynes Temperature (°F)	s/cm)	_		22.3 98.1	16.3 207
Vapor Density (Air = 1, a	at 20°C):		3.4	6	
Vapor Pressure: (mm H Temperature (°F)	g) 3.15 25.7	12.1 61.9	14.9 68.0	37.1 98.1	42.3 207

KENSOL 8

C.A.S. #68410-98-0

PROPERTIES	SPECIFICATION
GRAVITY, API FLASH POINT, (T.C.C.)	69.0 MIN 76.0 MAX -4°F / -20°C MAX
	TYPICAL VALUE
GRAVITY, API	72.0
LBS./GAL.	5.79
COLOR, SAYBOLT	+30
ODOR	TYPICAL SOLVENT
DOCTOR TEST	SWEET
DISTILLATION,	<u>°F</u> <u>°C</u>
IBP	109 43
5%	129 54
50%	167 75
95%	209 98
EBP	247 119
	6.52 LBS/IN ²
	2.85%
BENZENE	1.15%
TOLUENE	1.70%
	GRAVITY, API FLASH POINT, (T.C.C.) GRAVITY, API LBS./GAL. COLOR, SAYBOLT ODOR DOCTOR TEST DISTILLATION, IBP 5% 50% 95% EBP REID VAPOR PRESSURE TOTAL AROMATICS

KENSOL 10

C.A.S. 68410-97-9

ASTM Method	<u>PROPERTIES</u>	SPECIFICAT	<u> ION</u>
D-287*	GRAVITY, API	65 MIN	
D-323	REID VAPOR PRESSURE	4.0 MIN / 6.3 N	IAX
D-97	POUR POINT	-40°F / -40°C N	IAX
D-86*	DISTILLATION °F	MIN	MAX
		°F °C °F	°C
	IBP	100 38 1	34 57
	10%	135 57 1	70 77
	50%	200 93 2	35 113
	90%	275 135 3	10 154
	EBP	315 157 3	50 177
		TYPICAL VA	LUE
D-287*	GRAVITY, API	68	
	LBS./GAL.	5.9	
D-323	REID VAPOR PRESSURE	4.6	
D-156	COLOR, SAYBOLT (BEFORE DYE)	+30	
D-56	FLASH POINT, (T.C.C.)	-10°F/-23°C /	

Table 2.133: (continued)

KENSOL 17

C.A.S. 64742-48-9

ASTM METHOD	PROPERTIES	SPECIFI	CATION
D-287* D-86*	GRAVITY, API DISTILLATION, °F	58 MIN / 6	1 MAX
	IBP .	170°F MIN	
	EBP	400°F MAX	•
		TYPICAL	VALUE
D-287*	GRAVITY, API	61	
	LBS./GAL.	6.12	
D-86*	DISTILLATION	°F	<u>°C</u>
	IBP .	175	79
	5%	210	99
	10%	217	103
	50%	244	118
	90%	291	144
	95%	30 3	151
	EBP	3 58 .	181
D-1319	FLORESCENT INDICATOR AN	•	.A.)
	AROMATICS, VCLUME %	6.5%	
	OLEFINS, VOLUME %	.5%	
	SATURATES VOLUME %	93	
D-156	COLOR, SAYBOLT	+30	
D-56	FLASH POINT, (T.C.C.)	+25°F / -4°	С

KENSOL 30

REGULAR MINERAL SPIRITS, C.A.S. 8052-41-3

SPECIFICATION

PROPERTIES

AST M	
METHOD	

D-287*	GRAVITY, API	50.8 MI	N / 52.7 MAX	
D-56	FLASH POINT, (T.C.C.)	105°F /	40°C MIN	
D-86*	DISTILLATION, °F			
	5%	310°F N	AIN	
	95%	390°F N	RAX	
	EBP	410°F N	RAX	
		TYPIC	AL VALUE	
D-287*	GRAVITY, API	52		
	LBS./GAL.	6.42		
D-156	COLOR, SAYBOLT	+30		
	ODOR	MILD P	ETROLEUM :	SOLVENT
D-611	ANILINE POINT	149°F /	65°C	
D-1133	KAURI BUTANOL VALUE	32.5		
D-97	POUR POINT	-40°F/-	-40°C	
D-1319	FLORESCENT INDICATOR A	NALYSIS		
	AROMATICS, VOLUME %	9.4		
	OLEFINS, VOLUME %	.7		
	SATURATES, VOLUME	89.9		
D-86	DISTILLATION	<u>°F</u>	<u>°C</u>	
	IBP	306	152	
	5%	322	162	
	50%	341	170	
	95%	375	190	
	EBP	393	201	

Table 2.133: (continued)

KENSOL 33

RULE 66 MINERAL SPIRITS, C.A.S. 8052-41-3

ASTM			
METHOD	PROPERTIES	SPECI	FICATION
D-287*	GRAVITY, API	51 MIN	/ 54 MAX
D-56	FLASH POINT, (T.C.C.)	105°F /	40°C MIN
D-86*	DISTILLATION, °F		
	5%	310°F N	IIN
	95%	390°F N	1AX
	EBP	410°F N	IAX
	UV ANALYSIS, VOL % AROM	ATICS 7.2	MIN / 7.8 MA
		TYPIC	AL VALUE
D-287*	GRAVITY, API	52	
	LBS./GAL.	6.42	
D-156	COLOR, SAYBOLT	+30	
D-611	ANILINE POINT	65	
D-1133	KAURI BUTANOL VALUE	32.5	
D-97	POUR POINT	-40°F / ⋅	-40°C
D-1319	FLORESCENT INDICATOR A	NALYSIS	
	AROMATICS, VOLUME %	7.5	
	OLEFINS, VOLUME %	0.5	
	SATURATES, VOLUME	92	
D-86	DISTILLATION	<u>°F</u>	<u>°C</u>
	IBP	318	137
	5%	3 2 5	161
	50%	339	169
	95%	368	185
	€BP	391	197

KENSOL 48T

NARROW CUT PETROLEUM DISTILLATE, C.A.S. #64741-86-2

ASTM <u>METHOD</u> D-92 D-287* D-86*	PROPERTIES FLASH POINT °F, COC GRAVITY, °API DISTILLATION, °F IBP EBP	SPECIFICATION 170 / 77°C MIN 46.8 MIN - 48.0 MAX 380 MIN / 193°C MIN 475 MAX / 246°C MAX
		TYPICAL VALUE
D-287*	GRAVITY °API LBS./GAL.	47.4 6.5
D-92	FLASH POINT °F, COC	185 / 85°C
D-156	COLOR, SAYBOLT	+30
D-1611	ANILINE POINT. °C	72.5 / 162°F
D-1133	KAURI BUTANOL VALUE	28.3
D-86	DISTILLATION	°F °C
D-00	IBP	391 199
	10%	409 209
	50%	422 217
	90%	443 228
	EBP	465 241
D-97	POUR POINT, °F	-40 / -40°C
D-88	VISCOSITY @ 100°F, SUS	31.2
D-445	VISCOSITY @ 40°C, CST	1,56
2	DOCTOR TEST	SLIGHTLY SOUR
	COPPER STRIP CORROSION	1b
D-1319	F.I.A. ANALYSIS, VOLUME %	
	AROMATICS	11.4
	OLEFINS	3.1
	SATURATES	85.5

Table 2.134: Mobil Oil Aliphatic and Aromatic Solvents (64)

Te	Toluene, Nitration Grade				
Property	Method	<u>Specification</u>	Typical		
Acidity	ASTM D 847	No Free Acid	Negative		
Acid Wash Color	ASTM D 848	2 max	< 1		
Appearance at 65 to 78 °F (18.3 to 25.6 °C)	Visual	Clear Liquid Free of Sediment & Haze	Clear		
Color, Platinum-Cobalt	ASTM D 1209	20 max	0		
Copper Corrosion	ASTM D 849	Negative	Pass 1A		
Distiliation Range including 110.6°C at 760mm Hg Pressure, °C	ASTM D 850	1 max	0.7		
Non-Aromatics, Volume %	Gas Chromatograph	1.5 max	0.02		
Specific Gravity, 60/60 °F (15.6/15.6 °C)	ASTM D 891	0.869 - 0.873	0.872		
Sulfur Compounds	ASTM D 853	Free of H ₂ S & SO ₂	Negative		
Complies with ASTM D 841 Pounds per Gallon, 60 °F (15.6 °C		Number: 871004 (lbs), 868: ation Date: August 1, 1996	224 (gals)		

Solvent Xylene				
Property	Method		<u>Specification</u>	<u>Typical</u>
Acidity	ASTM D 847		No Free Acid	Negative
Acid Wash Color	ASTM D 848		6 max	3
Color, Platinum-Cobalt	ASTM D 120	9	20 max	0
Copper Corrosion	ASTM D 849		Negative	Pass 1A
Distillation, °C Initial Bolling Point Dry Point Range including 139.3 °C at 760 mm Hg Pressure	ASTM D 850		137 min 143 max 5 max	138 140 2
Specific Gravity, 60/60 °F (15.6/15.6 °C)	ASTM D 891		0.860 - 0.875	0.871
Sulfur Compounds	ASTM D 85 3		Free of H ₂ S & SO ₂	Negative
Complies with ASTM D 843 Pounds per Gallon, 60 °F (15.6 °C) Production Point: Chalmette, LA	7.26		mber: 870808 (lbs), 86818 on Date: August 1, 19 9 6	32 (gals)

Table 2.134: (continued)

Pegasol R-100 Aromatic Sol	lvent
----------------------------	-------

Property	Method	Specification	Typical
Appearance	Visual	Report	Clear & Bright
Aromatics, Volume %	Gas Chromatograph	95 min	99.3
Benzene, Volume %	Gas Chromatograph	0.1 max	< 0.01
Distiliation, °F Initial Boiling Point Dry Point	ASTM D 86	300 min 350 max	310 340
Flash Point, TCC, °F	ASTM D 56	105 min	109
Kauri-Butanol Value	ASTM D 1133	Report	91
Specific Gravity, 60/60 °F (15.6/15.6 °C)	ASTM D 891	0.865 - 0.885	0.875

Pounds per Gallon, 60 °F (15.6 °C): 7.30	Product Number: 870204 (lbs), 868331 (gals)
Production Point: Chalmette, LA	Specification Date: August 1, 1996

T-400 Aromatic Solvent

Property	Method	Specification	<u>Typical</u>
Appearance	Visual	Report	Clear & Bright
Aromatics, Volume %	Gas Chromatograph	95 min	99.3
Distillation, °F Initial Boiling Point Dry Point	ASTM D 86	300 min 400 max	310 340
Flash Point, TCC, °F	ASTM D 56	105 min	109
Kauri-Butanol Value	ASTM D 1133	Report	91
Specific Gravity, 60/60 °F (15.6/15.6 °C)	ASTM D 891	0.865 - 0.885	0.875

Pounds per Gallon, 60 °F (15.6 °C): 7.30	Product Number: 870915 (lbs), 860916 (gals)
Production Point: Chalmette, LA	Specification Date: August 1, 1996

Table 2.134: (continued

	T-500)-100	Aromatic	Solvent
--	-------	-------	----------	---------

Property	Method	<u>Specification</u>	Typical
Acidity	ASTM D 847	No Free Acid	Negative
Aromatics, Volume %	Gas Chromatograph	94 min	99.4
Copper Corrosion	ASTM D 849	Negative	Pass 1A
Distillation, °F Initial Boiling Point Dry Point	ASTM D 850	290 min 345 max	300 340
Doctor	ASTM D 4952	Sweet	Negative
Flash Point, TCC, °F	ASTM D 56	100 min	102
Kauri-Butanol Value	ASTM D 1133	Report	92
Specific Gravity, 60/60 °F (15.6/15.6 °C)	ASTM D 891	0.860 - 0.875	0.874
Sulfur Compounds	ASTM D 853	Free of H ₂ S & SO ₂	Negative

Pounds per Gallon, 60 °F (15.6 °C): 7.29	Product Number: 870923 (lbs), 860924 (gals)
Production Point: Chalmette, LA	Specification Date: August 1, 1996

Pegasol R-150 Aromatic Solvent

Property	<u>Method</u>	<u>Specification</u>	Typical		
Appearance	Visual	Clear & Bright	Clear & Bright		
Aromatics, Volume %	Gas Chromatograph	95 min	99.7		
Color, Saybolt	ASTM D 156	+ 25 min	30		
Distillation, °F Initial Boiling Point Dry Point	ASTM D 86	350 min 420 max	360 380		
Flash Point, TCC, °F	ASTM D 56	142 min	145		
Kauri-Butanol Value	ASTM D 1133	89 min	90		
Specific Gravity, 60/60 °F (15.6/15.6 °C)	ASTM D 891	0.890 - 0.910	0.892		

Pounds per Gallon, 60 °F (15.6 °C): 7.50 Product Number: 870212 (lbs), 868323 (gals)
Production Point: Chalmette, LA Specification Date: August 1, 1996

Table 2.135: Penreco Hydrocarbon Solvents (18)

Specifications	2251 OII	2263 Oil	2257 Oli	2289 011	2260 OII		
CAS Na.	64742-14-9	64742-47-8	84742-48-7	6042-47-5	6042-47-5		
API Gravity, 60°F	46/50	46/50	44/47	43/47	4 (¥44		
Specific Gravity, 60/60°F	779/.797	.7797.7 9 7	.793/.806	793/.811	.806/.825		
Olstifiction, ASTM D 66 (BP, °F, min (°C, min)	375 (191)	375 (191	430 (221)	445 (235)	510 (266)		
End Point, °F, max (°C, max)	460 (238)	460 (238	500) (260)	.540 (282)	595 (313		
Physical Properties (Typical)							
Specific Gravity, 60/60°F	.786	.786	.795	.804	.812		
Pounds/Gallon, 60°F	6.56	6.56	6.64	6.69	6.76		
Viscosity, 100°F, SUS	32.0	32.0	33.2	34.5	38.0		
Viscosity, 100°F, CST	1.66	1.68	2.18	2.28	4.30		
Aniline Point, ASTM 0 611, °F	170	168	175	181	192		
KB Values, ASTM D 1133	28	29	26.5	24.5	22.6		
Flash Point, ASTM D 92, °F (°C)	165 (74)	165 (74)	210 (99)	215 (102)	260 (127)		
Pour Point, ASTM D 97, °F (°C)	-40 (-40)	-40 (-40)	-15 (-26)	4) (-18)	25 (-4)		
Chemical Properties (Typical)							
Aromatics by UV, Wt%	<1	<1	<1	ef	<1		
Carbon Number, by GC	C_{10} C_{12}	C ₁₀ -C ₁₄	C11-C16	c_1, c_1	C_{13} - C_{18}		

Table 2.136: Phillips 66 High Purity Hydrocarbon (4)

Hydrocarbon Liqui	DS
-------------------	----

PRODUCT GRADE	CATALOG NO.	MINIMUM PURITY MOL %
n-Butylbenzene Pure	A63400	99.0
IsobulyIbenzene Pure	A65400	99.0
Cyclohexane Pure 98%	N24400 N24900	99.0 98.0
Cyclopentane Pure 70%	N22400 N22800	99.0
n-Decane Pure	P10400	-
2, 2-Dimethylbutane, (Neohexane) Pure	134400	99.0
3, 3-Dimethylbutene-1 (Neohexene)	O20300	95.0
n-Dodecane Technical	P12300	95.0
n-Heptane Pure Commercial ASTM	P07400 P07200 P07444	99.0
n-Hexane Pure Technical High Purity	P06400 P06300 P06200	99.0 95.0 85.0
Hexene-1 Technical	O21300	95.0
Îsohexanes Commercial	136200	

HYDROCARBON LIQUIDS

PRODUCT GRADE	CATALOG NO.	MINIMUM PURITY MOL %
Isopentane Pure	126400	99.0
Commercial	126200	****
2-Methylbutene-2 Commercial	O17800	
Methylcyclohexane Pure	N29400	
2-Methylpentane Pure	130400	99.0
3-Methylpentane Pure	132400	99.0
n-Octane Technical	P08700	97.0
n-Pentane Pure Commercial	P05400 P05392	99.0 98.0
Toluene Pure Reference Fuel	A42400 A42444	99.0
2,2,4-Trimethylpentane (see Isooctane)	
ortho-Xylene Pure Technical	A47400 A47300	99.0 95.0
meta-Xylene Technical	A44300	95.0
para-Xylene Pure	A48400	99.0

OXYGENATED SOLVENTS

		Boiling Point (or Range)		Flash Point °F±5° Vano		V	D. Č.	Surface	of	Average Pounds Per Gallon @ (VOC Content)		Average Specific Gravity		
		Molecular Weight	•C	°F	Freezing Point, °C¹		Vapor Pressure mmHg @ 20°C¹	Refractive Index n 20 ¹ D	Dynes/ CM 20°C ¹	Expansion © 20°C $\left(\frac{\Delta V}{V\Delta T}\right)$	25°C	60°F	25/25°C	60/60°F
Fast Evaporating—Relative Eva	poration Rate)3.0													
ACETONE6	CH ₃ COCH ₃	58.08	56.1	133.0	- 94.9	-15	185.46	1.3590	22.32	0.00143	6.55	6.64	0.788	0.797
ETHYL ACETATE (85-88%) ⁷	CH3COOC2H2	88.10	70-85	158-185	_	24	_	_		0.00134	7.33	7.42	0.881	0.890
ETHYL ACETATE (95-98%)	CH ₃ COOC ₂ H ₅	88.10	73-80	163-176	_			_		0.00134	7.43	7.51	0.894	0.902
ETHYL ACETATE (99%)	CH ₃ COOC ₂ H ₅	88.10	77.1	170.8	- 83.6	_	73.8	1.3725	23.9	0.00134	7.46	7.55	0.897	0.906
METHYL ACETATE (80%)	СН,СООСН,	74.08	57.1	134.8	- 98.1	14	172.3	1.3594		_	7.48	7.58	0.900	0.910
METHYL ETHYL KETONE	CH3COC2H5	72.11	79.64	175.35	~ 86.69	23	70.92	1.3788	24.6	0.00131	6.67	6.75	0.802	0.812
iso-PROPYL ACETATE (95-97%)	CH ₃ COOCH(CH ₃) ₂	102.13	88.7	191.7	- 73.1	40	46.9	1.3770	21.2	0.00131	7.19	· 7.28	0.866	0.875
iso-PROPYL ETHER	(CH ₃) ₂ CHOCH(CH ₃) ₂	102.18	68.5	155.3	- 85.5	-18	119.5	1.3682	17.3	0.0015	5.99	6.07	0.720	0.729
TETRAHYDROFURAN	OCH2CH2CH2CH2	72.10	66.0	150.8	- 108.5	6	130.0	1.4073	26.4 ⁹	- !	7.35	7.42	0.884	0.891
Medium Evaporating—Relative	Evaporation Rate 0.8-	-3.0												
iso-BUTYL ACETATE (90%)	CH,COOCH,CH(CH,),	116.16	117.2	243.0	- 99.85	68	15.0	1.3880	23.3	0.00119	7.19	7.26	0.865	0.872
n-BUTYL ACETATE (90-92%)	CH ₂ COOC ₄ H ₄	116.16	118-128	244-262	- 73.5	80	8.9	1.3951	24.0	0.00117	7.25	7.32	0.872	0.879
n-BUTYL ACETATE (99%)	CH3COOC4H	116.16	126.1	259.0	_	82	8.5		27.6	0.00121	7.30	7.37	0.878	0.885
sec-BUTYL ACETATE (90%)	CH ₃ COOCH(CH ₃)C ₂ H ₅	116.16	112.2	234.0	- 98.9	88	16.2	1.3915	22.8	0.00118	7.15	7.23	0.860	0.868
sec-BUTYL ALCOHOL	СН,СН,СНОНСН,	74.12	99.5	211.1	- 114.7	72	11.4	1.3969	23.0	0.00101	6.69	6.75	0.805	0.811
tert-BUTYL ALCOHOL	C(CH ₃) ₃ OH	74.12	82.6	180.7	25.66	52	29.6 ⁹	1.3841 10	20.7	0.00133	6.50		0.782 ^{ft}	_
1,1,1,-TRICHLOROETHANE	CH ₃ CCL ₃	133.0	165.2	74.0	38	none	100.00	1.438	25.6		10.91	_	1.319	1.321
DIETHYL KETONE	C ₂ H ₅ COC ₂ H ₅	86.13	101.5	214.7	- 42.0	55 ¹³	26.9	1.3905	_	_	6.76	6.82	0.814	0.819
ETHYL ALCOHOL 200 PRF. ANHYD	C₂H₅OH	46.07	78.32	173.0	- 114.1	56	43.9	1.36143	22.27	0.0011	6.53	6.60	0.786	0.793
ETHYL ALCOHOL 190 PRF. (95%)	C₂H₅OH	46.07	_		_	61	_	_	_	0.0011	6.73	6.79	0.809	0.816
METHYL ALCOHOL	СН₃ОН	32.04	64.5	148.1	- 97.8	51	97.5	1.329	22.6	0.00119	6.56	6.63	0.789	0.796
METHYL ISOBUTYL KETONE	CH3COCH2CH(CH3)2	100.16	116.2	241.2	- 83 .5	60	14.5	1.3957	23.64	0.00115	6.64	6.71	0.799	0.806
METHYL ISOPROPYL KETONE	CH ₃ COCH(CH ₃) ₂	86.13	93.9	201.0	- 92.0	_	39.8	1.3862	_	0.001	6.65	6.71	0.801	0.806
METHYL n-PROPYL KETONE	CH ₃ COC ₃ H ₇	86.13	102.3	216.1	- 77.5	45	27.0	1.3902	26.6 ⁹	0.0012	6.69	6.75	0.805	0.810
2-NITROPROPANE	CH3CHNO3CH3	89.09	120.3	248.5	- 93.0	82	12.9	1.3941	30.0	0.00104	8.20	8.26	0.987	0.992
n-PROPYL ACETATE (90-92%)	CH ₃ COOC ₃ H ₇	102.13	101.6	214.9	- 92.5	58	24.8	1.3844	23.9	0.00126	7.29	7.37	0.877	0.885
iso-PROPYL ALCOHOL	(CH ₃) ₂ CHOH	60.09	8 2.33		- 88.43	53	32.0	1.3772	21.35	0.00104	6.51	6.57	0.783	0.790
n-PROPYL ALCOHOL	C ₃ H ₇ OH	60.09	97.15	206.9	- 127.0	77	14.2	1.385	23.8	0.00096	6.67	6.74	0.803	0.809

		•	oration cteristics	Viscor cps @	sities 25°C	Blush	Diluti	ion Ratio ⁴	Solubi Pu Comp @ 20	re ound	Ph	ysical Cher		rameters Lydrogen
		Seconds to 90% Evap. ²	Relative Rate nBuOAc =1.0	Neat Compound	8gm N.C. ³ I Solution	Resist % Rel. Hum. @ 80°F ³	Tolucne	Aliphatic Naphtha ⁵	by W In Water	Ü	Solubility Parameter		I	Bonding Characteristics
Fast Evaporating—Relative Eva	poration Rate >3.0							•				,		
ACETONE ⁶ ETHYL ACETATE (85-88%) ⁷ ETHYL ACETATE (95-98%) ETHYL ACETATE (99%)	CH ₃ COCH ₃ CH ₃ COOC ₂ H ₅ CH ₃ COOC ₂ H ₅ CH ₃ COOC ₂ H ₅	82 115 117 117	5.59 3.98 3.91 3.91	0.31 0.47 0.46 0.45	10 18 19 20	<20 37 44	4.4 3.3 3.1 3.1	0.8 1.3 1.1 1.1	Com 7.9 8.7 2.9	plete 3.3 3.3 3.0	10.0 9.6 9.3 9.1	0.623 0.171 0.156 0.151	12.5 4.9 — 8.9	Acceptor Acceptor Acceptor Acceptor
METHYL ACETATE (80%) METHYL ETHYL KETONE iso-PROPYL ACETATE (95-97%) iso-PROPYL ETHER TETRAHYDROFURAN	CH ₃ COOCH ₃ CH ₃ COC ₂ H ₃ CH ₃ COOCH(CH ₃) ₂ (CH ₃) ₂ CHOCH(CH ₃) ₂ OCH ₂ CH ₂ CH ₂ CH ₂ CH ₂	93 121 134 57 97	4.92 3.79 3.42 8.04 4.72	0.42 0.41 0.52 0.35 0.50	16 15 27 COSOLV 21	<35 36 62 ENT FO 50	2.9 4.3 2.8 R NITRO 2.9	0.9 0.9 1.3 CELLULOSE 1.1	24.5 27.1 2.9	8.2 12.5 1.9 0.5	10.5 9.3 8.6 7.0 9.9	0.101 0.514 0.131 0.021 0.135	10.5 8.5 15.6 16.5	Acceptor Acceptor Acceptor D-A ⁸ Acceptor
Medium Evaporating—Relative E	Evaporation Rate 0	.8-3.0										•		
iso-BUTYL ACETATE (90%) n-BUTYL ACETATE (90-92%) n-BUTYL ACETATE (99%) sec-BUTYL ACETATE (90%)	CH ₃ COOCH ₂ CH(CH ₃) ₂ CH ₃ COOC ₄ H ₉ CH ₃ COOCH(CH ₃)C ₂ H ₅	458 468	1.50 1.00 0.98 1.78	0.68 0.71 0.68 0.65	37 35 44 33	78 82 — 76	2.2 2.7 2.7 2.6	1.1 1.4 1.3 1.3	0.67 1.0 — 0.74	1.65 1.37 2.1	8.3 9.0 8.6 8.2	0.093 0.096 0.095 0.090	8.7 5.7 10.8 8.3	Acceptor Acceptor Acceptor Acceptor
sec-BUTYL ALCOHOL tert-BUTYL ALCOHOL 1,1,1,-TRICHLOROETHANE DIETHYL KETONE	CH ₃ CH ₂ CHOHCH ₃ C(CH ₃) ₃ OH CH ₃ CCL ₃ C ₂ H ₅ COC ₂ H ₅	563 (430) 76 205	0.81 (1.05) 6.0 2.23	2.9 3.35 ¹² 0.79 0.47				CELLULOSE CELLULOSE - 0.7		65.1	10.8 10.2 8.7 9.9	0.111 0.116 0.0 0.403	-17.5 -17.0 4.2 7.7	D-A D-A Acceptor Acceptor
ETHYL ALCOHOL 200 PRF. ANHYD ETHYL ALCOHOL 190 PRF. (95%) METHYL ALCOHOL METHYL ISOBUTYL KETONE	C ₂ H ₃ OH C ₂ H ₃ OH CH ₃ OH CH ₃ COCH ₂ CH(CH ₃) ₂	278 328 221 295	1.60 1.40 2.07 1.61	1.1 1.4 0.56 0.55	COSOLV		R NITRO	CELLULOSE CELLULOSE 0.5 1.0	Com	plete plete	12.7 13.2 14.5 8.4	0.299 0.326 0.484 0.317	-17.7 -19.8 10.5	D-A D-A D-A Acceptor
METHYL ISOPROPYL KETONE METHYL n-PROPYL KETONE 2-NITROPROPANE n-PROPYL ACCIDATE DEPORTS ALCOHOL	CH ₃ COCH(CH ₃) ₂ CH ₃ COC ₃ H ₇ CH ₃ CHOO ₃ CH ₃ CH ₃ COOC ₃ H ₇	164 201 415 220	2.79 2.28 1.10 2.08	0.48 0.68 0.75 0.59	19 20 63 26	70 82 65	3.8 4.0 1.2 3.2	0.9 1.1 0.4 1.5	2.3 4.3 1.7 2.3	2.0 3.3 0.6 2.6	8.9 8.7 9.9 8.75	0.437 0.415 0.627 0.102	10.5 11.0 4.0 8.5	Acceptor Acceptor D-A Acceptor
iso-PROPYL ALCOHOL n-PROPYL ALCOHOL	С³Н [:] ОН (СН³) ³ СНОН	319 530	1. 4 4 0.86	2.4 2.0				CELLULOSE CELLULOSE		plete plete	11.5 11.9	0.170 0.199	-16.7 -16.5	D-A D-A

			Boilin _i (or R			Flash Point °F ± 5°			Surface Tension,	Coefficient of Expansion	Pot			rage c Gravity
		Molecular Weight	•°C	۰F	Freezing Point, °C1	(Tag Closed Cup)	Pressure mmHg @ 20°C¹	Index n 20 ¹ D	Dynes/ CM 20°C¹	$ \frac{\text{@ 20°C}}{\left(\frac{\Delta V}{V\Delta T}\right)} $	25°C	60°F	25/25°C	60/60°F
Slow Evaporating—Relative Evapo	ration Rate (0.8													
AMYI. ACETATE (ex Fusel Oil) (85-88%) AMYI. ACETATE, PRIMARY (Mixed Isomers) (95%)	CH ₃ COOC ₃ H ₁₁	130.18 130.18	146.0 146.0	294.8 294.8	100.0 100%	93 ¹³ 101	5.2 3.8	1.401 1.4013	24.3 28.5	0.00104 0.00115	7.14 7.26	7.21 7.34	0.859 0.874	0.866 0.881
AMYL ALCOHOL, PRIMARY (Mixed Isomers) tert-AMYL ALCOHOL iso-BUTYL ALCOHOL n-BUTYL ALCOHOL	C ₅ H ₁₁ OH (CH ₃) ₂ COHC ₂ H ₅ CH ₃ CH(CH ₃)CH ₂ OH C ₄ H ₉ OH	88.15 88.15 74.12 74.12	133.1 102.2 107.8 117.7	271.6 216.0 226.0 243.9	- 90.0 8.4 108.0 89.0	 86 98	2.9 8.8 4.1	1.4014 1.4048 1.3859 1.3993	23.8 — 22.8 24.6	0.00092 0.00133 0.00096 0.00090	6.77 5.71 6.65 6.72	6.83 6.77 6.71 6.78	0.814 0.807 0.801 0.808	0.820 0.814 0.806 0.814
BUTYL DIOXITOL® GLYCOL ETHER BUTYL OXITOL® GLYCOL ETHER m-CRESOL CYCLOHEXANOL	C ₄ H ₄ O(C ₂ H ₄ O) ₂ H C ₄ H ₅ OC ₂ H ₄ OH CH ₃ C ₄ H ₄ OH CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CHOH	162.22 118.17 108.141 100.16	230.4 171.2 202.0 160.65	446.7 340.2 396.0 321.2	- 68.1 - 75.0 - 12.2 - 25.15	220 143 187 ¹⁶ 154	<0.01 0.8 0.14 ⁹ 1.1	1.4316 1.4193 1.5414 1.4656	30.0° 27.3 38.0117 35.1	0.00085 0.00092 	7.95 7.49 8.58 7.87	8.01 7.55 — 7.94	0.956 0.901 1.030 0.947	0.962 0.907 0.953
CYCLOHEXANONE DIACETONE ALCOHOL	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CO (CH ₃) ₂ C(OH)CH ₂ COCH ₃	98.14 116.16	156.7 169.2	314.1 362.8	- 47.0 - 44.0	111 133	3.4 0.95	1.4507 1.4234	27.7 28.9	0.00094 0.00094	7.86 7.79	7.93 7.86	0.946 0.937	0.952 0.944
DIBASIC ESTER DIETHYLENE GLYCOL DIETHYLENE GLYCOL MONOBUTYL ETHER ACETATE (95%)	$CH_3OCO(CH_2)_nCOOCH_3_{(n-2)}$ $HO(C_2H_4O)_2H$ $CH_3COO(C_2H_4O)_2C_4H_9$	106.12 204.27	196-225 245.0 246.0	385-437 473.0 475.0	- 20.0 - 7.8 - 32.2	212 300 ²⁰ 240 ¹³	0.24 0.02 <0.01	1.4213 1.4472 1.4262	35.1 48.5 	0.0010 0.000635 0.00101	9.13 9.28 8.15	9.23 9.33 8.19	1.097 1.116 0.981	1.1075 1.120 0.984
DIISOBUTYL KETONE DIMETHYL FORMAMIDE DIETHYLENE GLYCOL MONOETHYL	(CH₃)CHCH₃COCH₂CH(CH₃ CHON(CH₃)₂ C₂H₅O(C₂H₄O)₂H) ₂ 142.23 73.09 134.18	169.3 153.0 201.9	336.7 307.4 395.4	- 41.5 - 61.0 - 76.0	140 135 192	1.4 2.7 0.2	1.4230 1.4269 ⁹ 1.4273	22.5 35.2 35.5	0.00102 — 0.00090	6.70 7.79 8.21	6.76 7.87 8.28	0.806 0.938 0.988	0.811 0.945 0.994
ETHER-low gravity DIETHYLENE GLYCOL MONOETHYL ETHER-high gravity	C ₂ H ₅ O(C ₂ H ₄ O) ₂ H	_	190-205	374-401		201	0.1	1.4286		0.00090	8.51	8.58	1.024	1.030
DIPROPYLENE GLYCOL MONOMETHYL ETHER	СН,ОСН,СНСН,ОСН, СНСН,ОН	148.2	188.3	371.0	- 80.0	167	0.4	1.4198	28.8	0.00091	7.91	7.98	0.951	0.957
DIPROPYLENE GLYCOL MONOMETHYL ETHER ACETATE	СН,ОСН,СНСН,ОСН, СНСН,ООССН,	190.2	205.0	401.0	_	187	0.2	1.4140	28.3		8.09	8.18	0.972	0.983
ETHYL BUTYL KETONE	C ₂ H ₅ COC ₄ H ₉	114.18	147.6	297.7	- 39.0	115 ¹³	10.2	1.4085	_	0.00106	6.79	6.85	0.816	0.822

		Evape	oration	Visco			Dilutio	on Katio ⁴	Solubi Pu Comp	ıre	Ph	ysical Chem	ic al Par	ameiers
		Chara	cteristics	cps @	25°C	Blush Resist			Ø 20° hy ₩					Iydrogen Bonding
		Seconds to	Relative Rate		8gm	% Rel. Hum.								-
		90% Evap.²	πBuO A c	Neat Compound	N.C.3	© 80°F³	Toluene	Aliphatic Naphtha ⁵	In Water	Water In	Solubility Parameter		Index	Characteristics
Slow Evaporating—Relative Evapo	oration Rate ⟨0.8										· L· ume (c.	1 marity	TIRK.X	VIIII acti Istica
AMYL ACETATE (ex Fuset Oil) (85-88%)	CH-COOC-H11	689	0.67	0.83	39	88	2.5	1.7	0.17	1.15	8.9	0.068	8.2	A
AMYL ACETATE, PRIMARY (Mixed Isomers) (95%)	CH3COOC4H11	1203	0.38	0.83	55	92	2.3	1.4	0.20	0.90	8.45	0.077	8.2	Acceptor Acceptor
AMYL ALCOHOL, PRIMARY (Mixed Isomers)	C ₅ II ₁₁ OH	2305	0.20	3.7	COSOLV	ENT FO	R NITROC	ELLULOSE	1.7	9.2	10.9	0.074		D-A
tert-AMYL ALCOHOL	(CH ₃) ₂ COHC ₂ H ₅	505	0.91	3.5	COSOLV	ENT FO	R NITROC	ELLULOSE	13.7	20.9	10.0	0.093	_	D-A
iso-BUTYL ALCOHOL	СН3СП(СН3)СН4ОП	740	0.62	1.8	COSOLV	ENT FO	R NITROC	ELLULOSE	8.7	15.0	10.7	0.125	-17.9	D-A
n-BUTYL ALCOHOL	C ₄ H ₉ OH	1076	0.43	2.6	COSOLV	ENT FO	R NITROG	CELLULOSE	7.7	20.1	11.4	0.102	-18.0	D-A
BUTYL DIOXITOL® GLYCOL ETHER	C ₄ H ₉ O(C ₂ H ₄ O) ₂ H	150390	<0.01	5.3	215	85	3.9	1.9	Com	plete	8.9	0.060	0.0	D-A
BUTYL OXITOL® GLYCOL ETHER	C ₄ II ₉ OC ₂ II ₄ OH	6750	0.07	2.9	107	96	3.3	1.8	Com	plete	8.9	0.128	0.0	D-A
m-CRESOL	CII3C4II4OII		<0.1	9.812					2.5118		11.7	0.047	-15.0	D-A
CYCLOHEXANOL	СН₂СН₂СН₂СН₂СН₂СНОП	9160	0.05	52.7	COSOLV	ENT FO	R NITROC	CELLULOSE	0.13	11.8	11.4	0.082	-14.8	D-A
CYCLOHEXANONE	CH2CH2CH2CH2CH2CO	1566	0.29	2.0	74	92	5.8	1.3	2.3	8.0	9.9	0.469	13.7	Acceptor
DIACETONE ALCOHOL	(CH ₃) ₂ C(OH)CH ₂ COCH ₃	3840	0.12	2.9	137	82 ¹⁹	2.3	0.6	Com	plete	9.2	0.459	0.0	D-A
DIBASIC ESTER	CH ₃ OCO(CH ₂) _n COOCH _{3 (n-2 (n 4)}	56700	<0.01	2.39		-	_	_	5.3	3.1	9.7	0.140	8.2	Acceptor
DIETHYLENE GLYCOL	HO(C₂H₄O)₂II	_	<0.001	28.9	_	-			Com	plete	12.1	0.602	0.0	D-A
DIETHYLENE GLYCOL MONOBUTYL ETHER ACETATE (95%)	CH ₃ COO(C ₂ H ₄ O) ₂ C ₄ H ₉	327780	<0.01	3.1	_	-	1.8	0.9	6.5	3.7	8.8	0.093		Acceptor
DIISOBUTYL KETONE	(CII3)CIICII2COCII2CII(CII3)2	2437	0.19	0.95	126	95	1.5	0.8	<0.05	0.75	7.8	0.157	9.8	Acceptor
DIMETHYL FORMAMIDE	CHON(CH ₃) ₂	2280	0.20	0.82	14		7.7	0.2	Com	plete	12.1	0.796	18.9	D-A
DIETHYLENE GLYCOL MONOETHYL ETHER-low gravity	$C_2H_5O(C_2H_4O)_2H$	27800	0.02	4.0	135	<50 ¹⁹	4.8	lmm.	Com	plete	9.7	0.092	0.0	D-A
DIETHYLENE GLYCOL MONOETHYL ETHER-high gravity	$C_2H_5O(C_2H_4O)_2H$	36300	0.01	7.0	320	_	2.0	lmm.	Com	plete	11.0	0.045	3.4	D-A
DIPROPYLENE GLYCOL MONOMETHYL ETHER	CH3OCH2CHCH3OCH2 CHCH4OH	22900	0.02	3.4		_	4.4	0.8	Com	plete	9.6	0.175	0.0	D-A
DIPROPYLENE GLYCOL MONOMETHYL ETHER ACETATE	CH3OCH2CHCH3OCH2 CHCH3OOCCH3	42200	<0.01	2.1			_		12.3		8.2	0.107	_	Acceptor
ETHYL BUTYL KETONE	C ₂ H ₅ COC ₄ H ₉	1075	0.43	0.70	49	94	2.6	8.0	1.43	0.78	8.4	0.361	10.0	Acceptor

				g Point lange)		Flash Point °F ± 5°	Vapor	Referentivo	Surface	Coefficient of Expansion	Pou	llon @	Avei Specifie	rage : Gravity
	1	Molecular Weight	°C	۰F	Freezing Point, °C¹		Pressure mmHg @ 20°C¹	Index n 20 ¹ D	Dynes/ CM 20°C ¹	$ \begin{array}{c} \mathbf{\hat{Q}} \ 20^{\circ} \mathbf{C} \\ \left(\frac{\Delta \mathbf{V}}{\mathbf{V} \Delta \mathbf{T}} \right) \end{array} $	25°C	60°F	25/25°C	60/60°F
Slow Evaporating—Relative Evapo	ration Rate (0.8													
ETHYL 3-ETHOXY PROPIONATE	C2H2OCOC2H4OC2H2	146.2	165-172	329-342	<- 50.0	136	1.11	1.4050	24.2	0.001176	7.82	7.95	0.946	0.954
ETHYLENE GLYCOL	HOC₂H₄OH	62.07	197.3	387.1	- 12.7	250 ²⁰	0.06	1.4318	48.4	0.000566	9.26	9.31	1.114	1.118
2 ETHYL HEXANOL	C4H9CH(C2H5)CH2OH	130.23	184.8	364.6	- 76.0	166	0.09	1.4328	_	88000.0	6.91	6.96	0.831	0.836
2 ETHYL HEXYL ACETATE (95%)	CH ₃ COOCH ₂ CH(C ₂ H ₅)C ₄ H ₉	172.27	199.0	390.2	- 80.0	160	0.4	1.4103	_		7.23	7.30	0.870	0.876
ETHYLENE GLYCOL MONOETHYL ETHER ACETATE (95%)	CH2COOC3H4OC3H2	132.16	150-160	302-320		126	_	_		0.00112	8.06	8.15	0.970	0.978
ETHYLENE GLYCOL MONOETHYL ETHER ACETATE (99%)	CH3COOC2H4OC2H2	132.16	156.3	313.3	- 61.7	126	2.0	1.4030	28.2	0.00112	8.06	8.15	0.970	0.978
ETHYLENE GLYCOL MONOBUTYL ETHER ACETATE	CH3COOC2H4OC4H9	160.21	191.6	376.9	- 64.6	165	0.25	1.4200	30.3	0.00104	7.79	7.88	0.938	0.946
HEXYLENE GLYCOL	CH ₃ CH(OH)CH ₂ C(OH)(CH ₃) ₂	118.17	198.27	388.9	- 50 ¹⁵	211 ²⁰	<0.1	1.4276	33.1	0.00072	7.65	7.71	0.921	0.926
ISOBUTYL ISOBUTYRATE	(CH ₃) ₂ CHCOOCH ₂ CH(CH ₃) ₂	144.21	147.3	297.1	- 81.0	101	3.0	1.3999	_	_	7.07	7.15	0.851	0.859
ISOPHORONE	COCH:C(CH ₃)CH ₂ C(CH ₃) ₂ CH	, 138.2	215.2	419.4	- 8.1	184	0.3	1.4775	32.3	0.00085	7.64	7.70	0.919	0.925
METHYL n-AMYL KETONE	CH ₃ COC ₅ H ₁₁	114.18	150.5	302.9	- 35.0	102	1.0	1.4110	_	0.00104	6.77	6.83	0.814	0.820
DIETHYLENE GLYCOL MONOMETHYL ETHER	CH ₃ O(C ₂ H ₄ O) ₂ H	120.15	194.2	381.6	- 85.0	189	0.2	1.4263	34.8 ⁹	0.00088	8.49	8.56	1.021	1.028
METHYL ISOAMYL KETONE	CH ₃ COC ₂ H ₄ CH(CH ₃) ₂	114.18	145.4	293.7	- 74.21	96	4.0	1.4069	28.5	0.00107	6.79	6.85	0.817	0.822
METHYL ISOBUTYL CARBINOL	CH ₃ CH(OH)CH ₂ CH(CH ₃) ₂	102.18	131.8	269.2	- 90 ¹⁵	103	4.6	1.4110	22.8	0.00103	6.69	6.75	0.805	0.811
ETHYLENE GLYCOL MONOMETHYL ETHER	CH3OC3H4OH	76.09	124.5	256.1	- 85.1	102	7.3	1.4021	30.6	0.00095	8.00	8.08	0.963	0.970
N-METHYL-2-PYRROLIDONE	CH ₂ CH ₂ N(CH ₃)COCH ₂	99.133	202.0	396.0	- 24.4	204 ²¹	0.329	1.469 ⁹	40.7 ⁹		8.59		1.031	_
ETHYLENE GLYCOL MONOETHYL ETHER	C ₂ H ₅ OC ₂ H ₄ OH	90.12	135.1	275.2	- 100.0	110	4.1	1.4076	27.9	0.00097	7.72	7.79	0.928	0.935
PROPYLENE GLYCOL	CH3CH(OH)CH2OH	76.10	187.3	369.1	- 60.0 ¹⁵	210	0.15	1.43110	36.0	0.000695	8.61	8.66	1.036	1.040
PROYLENE GLYCOL MONOMETHYL ETHER	СН ₃ ОСН ₂ СНСН ₃ ОН	90.1	120.1	248.0	- 95.0	90	10.9	1.4011	27.7	0.00099	7.65	7.72	0.919	0.927
PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE	CH3OCH2CH3CHOOCCH3	132.2	141.0	286.0	<- 67.0	117	3.7	1.3995	27.4	0.00096	8.03	8.10	0.964	0.969
PROPYLENE GLYCOL MONO TERTYARY BUT') I. ETHER	(CH ₃) ₃ COCH ₂ CHCH ₃ OH	132.2	151.0	304.0	- 56.0	113	4.7	1.4116	24.2		7.26	7.31	0.872	0.878
TRIETHYLENE GLYCOL	HO(C ₂ H ₄ O) ₃ H	150.17	287.4	549.3	- 7.2	30520	<0.01	1.4559	45.2	0.00171	9.34	9.39	1.123	1.128
WATER	нон	18.02	100.0	212.0	- 0.0		17.535	1.33299	72.75		8.31	8.33	1.000	1.000

			oration ecteristics	Visco eps @	sities) 25°C	Blush	Diluti	on Ratio ⁴	Pı Comj	ility of are pound °C, %	Ph	ysical Chen		rametera Tydrogen
		Seconds to	Relative Rate	·	0	Resist % Rel. Hum.			by W	Veight				Bonding
		90% Evap.²	nBuOAc	Neat Compound	8gm N.C. ³ I Solution	80°F ³	Toluenc	Aliphatic Naphtha ⁵	ln Water		Solubility Parameter		Index	Characteristics
Slow Evaporating—Relative Evap	oration Rate ⟨0.8													
ETHYL 3-ETHOXY PROPIONATE	C2H5OCOC2H4OC2H5	3900	0.12	1.2	_		1.8	0.6	2.9	2.9	8.7	0.094	11.5	Acceptor
ETHYLENE GLYCOL	нос₂н₄он	_	<0.01	17.4	_				Com	plete	14.7	0.476	-13.2	D-A
2 ETHYL HEXANOL	C ₄ H ₉ CH(C ₂ H ₅)CH ₂ OH	25730	0.02	7.7	COSOLV	ENT FO	R NITRO	ELLULOSE	0.07	2.6	9.5	0.045	-18.7	D-A
2 ETHYL HEXYL ACETATE (95%)	CH3COOCH2CH(C2H5)C4H9	13750	0.03	1.4	140	94	1.3	0.9	0.03	0.55	8.5	0.020	8.8	Acceptor
ETHYLENE GLYCOL MONOETHYL ETHER ACETATE (95%)	CH3COOC2H4OC2H5	2706	0.17	1.2	57	91	2.5	0.9	22.9	6.5	8.8	0.163	_	Acceptor
ETHYLENE GLYCOL MONOETHYL ETHER ACETATE (99%)	CH3COOC2H4OC2H5	2533	0.18	1.2	60	_	2.4	0.9	_	_	8.7	0.160	10.1	Acceptor
ETHYLENE GLYCOL MONOBUTYL ETHER ACETATE	CH ₃ COOC ₂ H ₄ OC ₄ H ₉	14310	0.03	1.7	102	96	1.8	1.2	1.1	1.6	8.2	0.060	10.3	Acceptor
HEXYLENE GLYCOL	CH ₃ CH(OH)CH ₂ C(OH)(CH ₃) ₂		<0.01	29.8			_	_	Com	plete	9.7	0.599	-12.3	Acceptor
ISOBUTYL ISOBUTYRATE	(CH ₃) ₂ CHCOOCH ₂ CH(CH ₃) ₂	965	0.47	0.83	87	_	1.3	0.8	<0.1	<0.2	7.7	0.091	8.0	Acceptor
ISOPHORONE	COCH:C(CH ₃)CH ₂ C(CH ₃) ₂ CH ₂	20000	0.02	2.3	97	97	6.2		1.2	4.3	9.1	0.521	14.9	Acceptor
METHYL n-AMYL KETONE	CH3COC3H11	1376	0.33	0.77	42	93	3.9	1.2	0.43	1.5	8.5	0.236	9.0	Acceptor
DIETHYLENE GLYCOL MONOMETHYL ETHER	CH ₃ O(C ₂ H ₄ O) ₂ H	26260	0.02	3.8	122	57 ¹⁹	2.3	lmm.		plete	10.2	0.108	0.0	D-A
METHYL ISOAMYL KETONE	CH ₃ COC ₂ H ₄ CH(CH ₃) ₂	1016	0.45	0.73	40	89	3.8	1.1	0.55	1.4	8.3	0.240	10.9	Acceptor
METHYL ISOBUTYL CARBINOL	CH,CH(OH)CH,CH(CH,),	1711	0.27	3.8	COSOLV	ENT FO	R NITROC	ELLULOSE	1.64	6.35	10.0	0.071	-18.7	D-A
ETHYLENE GLYCOL MONOMETHYL ETHER	CH3OC3H4OH	884	0.52	1.6	50	45 ¹⁹	3.4	0.2	Com	plete	10.8	0.281	0.0	D-A
N-METHYL-2-PYRROLIDONE	CH ₂ CH ₂ N(CH ₃)COCH ₂	_	<0.1	1.7		_		_		plete	11.3	0.727	23.0	D-A
ETHYLENE GLYCOL MONOETHYL ETHER	C ₂ H ₅ OC ₂ H ₄ OH	1213	0.38	1.9	59	67 ¹⁹	4.9	1,1	Com	plete	9.9	0.216	0.0	D-A
PROPYLENE GLYCOL	CH,CH(OH)CH,OH		0.01	43.0		_		_		plete	12.6	0.773	-10.9	D-A
PROYLENE GLYCOL MONOMETHYL ETHER	СН,ОСН,СНСН,ОН	600	0.76	1.7		_	5.2	0.9		plete	10.2	0.217	0.0	D-A
PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE	R СН₃ОСН₂СН₃СНООССН₃	1410	0.32	1.14	60	_	2.5	0.43	18.5	5.6	9.2	0.153	10.7	Acceptor
PROPYLENE GLYCOL MONO TERTIARY BUTYL ETHER	(CH ₃) ₃ COCH ₂ CHCH ₃ OH	1830	0.25	3.3	_		2.3	1.2	14.5	20.1	8.1	0.128	0.0	D-A
TRIETHYLENE GLYCOL	HO(C ₂ H ₄ O) ₃ H	_	<0.01	38.2	_	_		_	Com	plete	11.0	0.656	0.0	D-A
WATER	нон	1376	0.33	0.92				_	_	_	23.4	0.835	-30.0	D-A

HYDROCARBON SOLVENTS (Typical Properties*)

Please Note: Shell Sol 71 has changed to Shell Odorless Mineral Spirits (OMS).		Distillat	ion Range						Po Per G	erage unds allon @ Content)		erage lic Gravity
	Calculated Average Molecular Weight ¹⁴	°C	۰F	Flash Point °F TCC ²³ or SFCC ²⁴	Vapor Pressure mmHg @ 20°C	Aniline Cloud Pt. °F	Mixed Aniline Cloud Pt. °F	Kauri Butanol Value	25°C	60°F ²⁵	25/25°C	60/60°F ²⁵
Aliphatic Hydrocarbons												
SHELL SOL B HT	88	61-77	142-170		140.0	152		29	5.53	5.61	0.666	0.675
SHELL TOLU-SOL® A HT SOLVENT	100	90-97	194-206	7	47.8	155		29	5.71	5.79	0.688	0.696
SHELL TOLU-SOL W HT SOLVENT	100	98-110	209-230	20	41.4	129	_	36	6.17	6.23	0.741	0.749
SHELL TOLU-SOL 3 SOLVENT	100	91-97	195-207		47.2	150		30	5.74	5.82	0.691	0.699
SHELL TOLU-SOL 5 SOLVENT	100	91-98	195-209	10	46.8	146	_	30	5.77	5.85	0.695	0.703
SHELL TOLU-SOL 6 W SOLVENT	100	99-108	211-227	20	40.7	113	_	43	6.23	6.29	0.748	0.755
SHELL TOLU-SOL 10 SOLVENT	99	91-105	196-221	_	45.8	133	_	34	5.87	5.95	0.706	0.714
SHELL TOLU-SOL 19 EC SOLVENT	98	91-104	195-220	14	44.0	116		39	6.00	6.08	0.722	0.730
SHELL TOLU-SOL 25 SOLVENT	. 96	92-107	198-225		42.7	105		42	6.09	6.17	0.733	0.741
SHELL RUBBER SOLVENT	90	64-114	147-238		125.3	135		34	5.65	5.79	0.680	0.689
SHELL VM&P NAPHTHA HT	118	119-139	247-282	55	9.8	142	_	35	6.19	6.27	0.745	0.753
SHELL VM&P NAPHTHA EC	117	121-134	249-273	57	9.7	128		38	6.24	6.31	0.751	0.758
SHELL MINERAL SPIRITS 135	138	164-202	327-395	112	1.1	138		37	6.56	6.63	0.789	0.796
SHELL MINERAL SPIRITS 145 EC	131	162-201	323-393	113	1.2	145	_	35	6.44	6.52	0.776	0.783
SHELL MINERAL SPIRITS 150 EC	132	162-200	323-392	109	1.1	151		33	6.40	6.47	0.771	0.778
SHELL MINERAL SPIRITS 200 HT	132	162-206	324-402	111	1.1	154	_	32	6.40	6.47	0.770	0.777
SHELL SOL 340 HT	143	159-176	319-349	103	1.4	152		32	6.37	6.44	0.766	0.773
SHELL SOL 142 HT	161	190-207	374-405	145	0.4	159		30	6.52	6.58	0.784	0.791
SHELL SOL 71	149	179-204	355-400	125	0.5	184	_	26	6.24	6.32	0.752	0.759
Aromatic Hydrocarbons										0.02	052	0.700
SHELL TOLUENE	92	110-111	231-232	43	21.8	_	50	105	7.16	7.25	0.862	0.871
SHELL XYLENE	106	139-142	283-287	79	6.1		53	95	7.10 7.17	7.25 7.25	0.863	0.871
SHELL CYCLO-SOL® 53 AROMATIC SOLVENT	120	160-176	320-349	111	1.6		56	92				
SHELL CYCLO-SOL 63 AROMATIC SOLVENT	134	173-208	343-407	128	0.5	_	57	92 89	7.19 7.35	7.27 7.43	0.866 0.884	0.874 0.852

Saturates

	Seconds to 90% Evap.	Relative Rate nBuOAc =1.0	Nest Viscosity cps @ 25°C	Paraffins	Cycloparaffins	Tol & EB ²⁶	C ₈ & Higher (excluding EB)	Benzene	Total	Solubility Parameter
Aliphatic Hydrocarbons										
SHELL SOL B HT	49	9.4	0.37	94.7	5.3			0.002	< 0.01	7.3
SHELL TOLU-SOL® A HT SOLVENT	96	4.8	0.43	91.2	8.8		_	< 0.001	< 0.01	7.2
SHELL TOLU-SOL W HT SOLVENT	121	- 3.8	0.54	43	57	< 0.01	_	< 0.001	< 0.01	7.6
SHELL TOLU-SOL 3 SOLVENT	97	4.7	0.43	88.4	8.6	3.0		< 0.001	3.0	7.3
SHELL TOLU-SOL 5 SOLVENT	98	4.7	0.44	86.6	8.4	5.0		< 0.001	5.0	7.3
SHELL TOLU-SOL 6 W SOLVENT	123	3.7	0.55	26.1	67.9	6.0		< 0.001	6.0	7.7
SHELL TOLU-SOL 10 SOLVENT	101	4.5	0.45	82.0	8.0	10.0		< 0.001	10.0	7.4
SHELL TOLU-SOL 19 EC SOLVENT	107	4.3	0.46	73.9	7.1	19.0	_	< 0.001	19.0	7.5
SHELL TOLU-SOL 25 SOLVENT	112	4.1	0.47	68.4	6.6	25.0		< 0.001	25.0	7.6
SHELL RUBBER SOLVENT	55	8.3	0.41	84.6	6.4	9.0	_	< 0.004	8.0	7.4
SHELL VM&P NAPHTHA HT	305	1.5	0.68	54.0	46.0	_		< 0.003	<0.1	7.6
SHELL VM&P NAPHTHA EC	316	1.4	0.68	50.1	42.8	1.5	5.5	< 0.003	7.0	7.7
SHELL MINERAL SPIRITS 135	4660	0.10	1.10	41.9	43.1	_	15.0	<0.0001	15.0	7.6
SHELL MINERAL SPIRITS 145 EC	3250	0.14	1.02	44.5	48.4	_	7.1	< 0.0001	7.1	7.5
SHELL MINERAL SPIRITS 150 EC	3415	0.13	1.13	46.5	50.4		3.1	< 0.0001	3.1	7.5
SHELL MINERAL SPIRITS 200 HT	3420	0.13	1.12	47.9	52.0	_	<0.1	<0.0001	<0.1	7.4
SHELL SOL 340 HT	1725	0.27	0.95	46.0	53.9		_	<0.0001	<0.1	7.4
SHELL SOL 142 HT	9250	<0.1	1.44	53.0	47.0			< 0.0001	<0.2	7.4
SHELL SOL 71	5140	<0.1	1.50	_	_	_		< 0.0001	<0.1	7.4
Aromatic Hydrocarbons										
SHELL TOLUENE	226	2.0	0.62		_	_		0.005	99.97	8.9
SHELL XYLENE	628	0.73	0.87		_	19.0	80.5	< 0.005	99.5	8.8
SHELL CYCLO-SOL® 53 AROMATIC SOLVENT										
SHELL CYCLO-SOL 53 AROMATIC SOLVENT SHELL CYCLO-SOL 63 AROMATIC SOLVENT	2215	0.21	0.88			_	99.4	<0.0001	99.4	8.8
SHEED GIGEO-SOL 05 AROMATIC SOLVENT	5000	<0.1	1.08		****	_	97.5	<0.0001	97.5	8.8

NOTES

- 3. 8 gms. R.S. 1/2" N.C. (dry)/100 mls solvent.
- 4. At final concentration of 8 gms. R.S. 1/2" N.C. (dry)/100 mls combined solvent and diluent.
- 5. Tolu-Sol 17 or similar.
- 6. Shell Chemical Company products are shown in blue. Selected physical properties of all other products have been obtained wherever possible from published literature of their commercial producers.
- 7. % ester.
- 8. Donor Acceptor.
- 9 25°C.
- 10. 26°C.
- 11. 78°F.
- 12. 30°C.
- 13. Tag open cup.
- 14. Calculated from average compositional data.
- 15. Sets to glass below this temperature.
- 16. Closed cup.
- 17. 15°C.
- 18. 40°C.

- 19. Nitrocellulose blush.
- 20. Pensky-Martens closed cup.
- 21. Open cup.
- 22. Calculated from distillation data using Shell "Evapo-rator."
- 23. The closed cup.

- 24. Setaflash closed cup.
- 25. Calculated from ASTM-IP Petroloum Measurment Tables.
- 26. Toluene and Ethylbenzene.
- 27. NHB=Non-Hydrogen Bonding.
- 28. Wh Acc-Very weak acceptor.

Hydrocarbon Solvents

^{*}Typical properties are to be considered as representative of current production and should not be treated as specifications. Data shown are subject to minor variations in normal manufacturing.

1. Determined on pure material.

2. Shell Thin Film Evaporometer, 25°C and 0% R.H.

Table 2.138: Sunoco Chemicals Solvents (12)

Mineral Spirits - Toledo Refinery

	Sales		Test
Tests	Specs	Typicals	Method
Composition, Vol. %			Sun GC-MS
Paraffins		48.0	
Olefins		0.2	
Napthenes		34.4	
Aromatics		17.4	
Benzene		<0.01	
Specific Gravity 60F/60F	0.782 Min - 0.799 Max	0.791	D891
Gravity, API		47.4	D287
Distillation, F			D86
IBP	300 Min - 330 Max	320	
End Point	395 Max	387	
Residue, Vol.%	1.5 Ma x	1.0	
Color, Saybolt	25 Min	30	D156
Appearance @,65 - 78F	Clear	Clear	Visual
Flash Point, F	105 Min	110	D56
Kauri-Butanol Value	29.0 Min - 42.0 Max	39	D1133
Aniline Point, F	120 Min	126	D611
Total Sulfur, Wt. ppm	100 Max	4	D4045
Copper Corrosion		lA	D130
Bromine Number		<1	D1159

Meets ASTM D235 Type I Mineral Spirits (Stoddard Solvent).

Toluene (Nitration) - Toledo Refinery

	Sales		Test
Tests	Specs	Typicals	Method
Composition, Vol. %			D2360 or Equivalent
Toluene		99.95	
Benzene	0.03 Max	<0.01	
C8 Aromatics		0.03	
Non-Aromatics	0.3 Max	0.02	
Specific Gravity 15.56C/15.56C	0.869 Min - 0.873 Max	0.872	D4052 or Equivalent
Distillation Range, C including 110.6 C)	1.0 Max	0.6	D850 or Equivalent
Color, Pt-Co Scale	20 Max	5	D1209
Acid Wash Color	2 Max	0	D848
Appearance @ 65 - 78F	Clear	Clear	Visual
Total Sulfur, Wt. ppm	1.0 Max	<0.5	D4045
Sulfur Compounds (H2S and SO2)	None Detected	None Detected	D853
Copper Corrosion	Pass (1A or 1B)	Pass	D849
Acidity	None Detected	None Detected	D847
Bromine Index		<1	D1492
Vater, Wt. ppm		60	D1744

Meets ASTM D841 specifications for Nitration Grade Toluene.

Table 2.138: (continued)

Benzene - Toledo Refinery

	Sales		Test
Tests	Specs	Typicals	Method
Composition, WL %			D4492 or Equivalent
Benzene		99.95	
Toluene	-	0.015	
Non-Aromatics	0.15 Max	0.035	
Specific Gravity 15.56C/15.56C	0.882 Min - 0.886 Max	0.883	D4052 or Equivalent
Distillation Range, C (including 80.1 C)	1.0 Max	0.6	D850 or Equivalent
Solidification Point, C	5.35 Min	5.49	D852
Color, Pt-Co Scale	20 Max	5	D1209
Acid Wash Color	l Max	0	D848
Appearance (a) 65 - 78F	Clear	Clear	Visual
Total Sulfur, Wt. ppm	1.0 Ma x	<0.1	D4045
Sulfur Compounds (H2S and SO2)	None Detected	None Detected	D853
Thiophene, Wt. ppm	1.0 Max	<1.0	D1685
Copper Corrosion	Pass (1A or 1B)	Pass	D849
Acidity	None Detected	None Detected	D847

Meets ASTM D2359 specifications for Refined Benzene - 535.

Sun does not test for Thiophene. However, we can conclude that chemically if sulfur is not greater than 0.4 ppm on a weight basis, then Thiophene cannot be greater than 1ppm.

CYCLOHEXANE - MARCUS HOOK, PA

Tests	Sales Specs	Typical •	Test Method
Composition			D3054
Cyclohexane, Wt. %	99.9 Min		
Benzene, Wt. ppm Total Aromatics, Wt. ppm Methylcyclopentane, Wt ppm Methylcyclohexane, Wt ppm	20 Max 150 Max 200 Max 200 Max		
Color, Saybolt	30 M in		D156
Total Sulfur, Wt ppm	1 M ax		D4045
Total Chlorides, Wt ppm	1 Max		UOP 395-90
Non-Volatile Matter, mg/100 ml	1 Max		D1353
Free Water	None		Visual

Table 2.138: (continued)

CUMENE - PHILADELPHIA, PA

	Sa	les		Test
Tests	Sp	ecs	Typicai •	Method
Cumene, Wt %	99.9	Max	99.95	D3760
Ethylbenzene, Wt ppm	50	Max	<5	D3760
N-Propylbenzene, Wt ppm Butylbenzene, Wt ppm Benzene, Wt ppm Diisopropylbenzene, Wt ppm Toluene, Wt ppm C8 - C9 Saturates, Wt ppm	250 200 20 15 5	Max Max Max Max Max Max	166 93 5 2 3 52	D3760 D3760 D3760 D3760 D3760 D3760
Methylstyrene, Wt ppm	Report	IVICA	60	D3760
Cumene Hydroperoxide, Wt ppm	100	Max	43	D3703
Phenois, Wt ppm	5	Max	0.5	H952
Specific Gravity, 60º/60ºF	0.864 - 0.867		0.865	D891
Color, Pt-Co Scale	15	Max	5	D1209
Acid Wash Color	2	Мах	1	D848
Toltal Sulfur, Wt ppm	0.1	Max	0.03	D4045
Bromine Index	75	Max	44	D1492
Appearance	Clear		Clear	Visual

Meets ASTM D4077 specifications.

XYLENE - MARCUS HOOK, PA

	Sales		Test
Tests	Specs	Typical •	Method
Composition, Vol %			D2360 or Equivalent
Total C _a Aromatics		99.8	
Paraxylene		23-26	
Metaxylene		51-57	
Orthoxylene		12-15	
Ethylbenzene		2-14	
Benzene	0.01 Max	<0.005	
Toluene	0.5 Max	0.07	
C9+ Aromatics	1.0 Max	<0.2	
Non-Aromatics	0.3 Max	0.02	
Specific Gravity,	0.865 Min	0.872	D4052
15.56C/15.56C	0.875 Max		
Color (Pt-Co Scale)	20 Max	5	D1209
Distillation, ° C			D850 or Equivalent
Range(including 139.3° C)	5 Max	2.0	
IBP	137 Min	139.0	
Dry Point	143 Max	141.0	
Acid Wash Color	2 Max	0	D848
Acidity	Pass	Pass	D847
Total Sulfur, Wt ppm	1 M ax	<0.1	D4045
Sulfur Compounds	Pass	Pass	D853
(H ₂ S and SO ₂)			
Copper Corrosion	Pass	Pass	D849
Bromine Index	8 Max	1	D1492
Appearance, @ 65-78 °F	Clear	Clear	Visual
Water, Wt ppm		100	D1744
Non-volatile Matter, mg/100 ml		<1	D1353
Non-volatile Matter, mg/100 ml Meets ASTM D843, nitration grade s	 pecifications.	<1	D1353

Table 2.139: 3M SCOTCH-GRIP Solvents No. 2 and No. 3 (54)

Typical Physical Properties

	Solvent No. 2 Petroleum Distillate	Solvent No. 3 MEK
Solvent or Blend Flash Point Net Weight (Approx.) (lbs./gal.)	N-Hexane and Toluene -14°F. (TCC) 6.3-6.7	(Methyl Ethyl Ketone) 20°F. (TCC) 6.65-6.75

Table 2.140: Total Petroleum Special Solvent (52)

HDF-201

Property	Test Method(1)	Typical	Requirement
Gravity, *API	D-1298	42	40.0 Min/44.0Max
Pounds per gallon @ 60°F			6.71 Min/6.87Max
Visual	Appearance @ 70°F		Clear & Bright
Haze	D-4176		1 Max.
Color Saybolt	D-156	+30	+24 Minimum
Flash PM °F	D-93	206	201 Min/211 Max.
Viscosity, 104°F, cst	D-445	2.0	1.6 Min/2.4 Max.
Aniline Point, °F.	D-611	Report	
Kauri-Butanol Value	D-1133	Report	
Distillation, °F	D-86		
Initial Boiling Point		425	405 Min/445Max
50% Recovered		460	435 Min/485 Max.
Final Boiling Point		480	450 Min/510 Max.
Pour, °F	D-97		-10 Max.
Sulfur, wt.%	D-4294		.005 Max.
Mutation Assay	Ames Test ₍₂₎	Pass (negat	ive)
Ultraviolet absorbance	21CFR 178.3620(c)	Pass	
U.S. Dept. of Agriculture Authori	zation	Pass	

⁽¹⁾ ASTM Standard Test Methods

⁽²⁾ Modified Salmonella/Microsome

Table 2.140: (continued)

HDF 300

Property	Test Method(1)	Typical	Requirement
Gravity, API	D-1298	40	37.0 Min/41.0 Max
Pounds per gallon @ 60F			6.83 Min/6.992 Max
Visual	Appearance @ 70F		Clear & Bright
Haze	D-4176		1 Ma x
Color Saybolt	D-156	28	+20 Minimum
Flash COC F	D-92	275	265 Minimum
Viscosity, SUS @ 104F	D-2161	41	37 Min/44 Max
Aniline Point, F.	D-611	189	
Kauri-Butanol Value	D-1133	23	
Distillation, F	D-86		
Initial Boiling Point 50% Recovered Final Boiling Point		530 560 605	480 Min/550 Max 540 Min/580 Max 580 Min/630 Max
Benzene	GC	N.D.(2)	
Mutation Assay	Ames Test®		Pass (negative)
Ultraviolet absorbance	21CFR 178.3620(c)		Pass
U.S. Dept. of Agriculture Authori	zation		Acceptable

- (1) ASTM Standard Test Methods
 (2) Non-detectable with detection limit of 0.5 ppmw
 (3) Modified Salmonella/Microsome

HEXENES

Property	Test Method(1)	Requirement
Gravity, API	D-1298	70 Min/80 Max
Olefin Content, Vol. %	D-1319	85 Minimum
C ₆ Hydrocarbons, Wt. %	D-5134 ⁽²⁾	97 Minimum
Total Sulfur, ppmw	D-4045	20 Maximum
Total Chlorides	UOP 395-79	5 Ma ximum
Uniroyal Naugard (TM) BHT, ptb		10

This product contains no other gasoline components or gasoline additives.

- (1) ASTM Standard Test Methods, unless otherwise specified.
- (2) Modified for carbon number separation of olefinic material.

(continued)

Table 2.140: (continued)

P-P MIX (Refinery Grade)

Property	Test Method(1) T	ypical	Requirement
Vapor Pressure @ 100°F., psig	D-2598	206	213 Maximum
Volatile Residue: Evaporated Temperature, 95% or	D-1837	-40	-37 Maximum
Butane and Heavier Percent	D-2163	0 - 1.0	2.0 Maximum
Residual Matter: Residue on Evaporation of 100 ml Oil Stain Observation	D-2158 D-2158	<.05 Pass	0.05 Maximum Pass
Total Sulfur, ppmw	D-4045	0 - 2	10 Maximum
Hydrogen Sulfide	D-2420	Pass	Pass
Corrosion Copper Strip	D~1838	1	No. 1 Maximum
Moisture Content	D-2713	Pass	Pass
Composition (Mole Percent): Propylene Propane Ethane and lighter	D-2163	80 19	70 Minimum 30 Maximum 1.0 Maximum

(1) ASTM Standard Test Methods

220 FLASH SOLVENT

Property	Test Method(1)	<u>Typical</u>	Requirement
Gravity, °API	D-1298	41	40.0 Min/44.0 Max
Pounds per gallon @ 60°F			6.71 Min/6.87 Max
Visual	Appearance @ 70°F		Clear & Bright
Haze	D-4176		1 Max
Color Saybolt	D-156	+30	+20 Minimum
Flash COC °F	D-92	230	220 Minimum
Flash PM °F	D-93	214	210 Minimum
Viscosity, 104°F, cst	D-445	2.7	1.6 Min/2.8 Max
Aniline Point, °F.	D-611	174	
Kauri-Butanol Value	D-1133	28	
Distillation, °F	D-86		
Initial Boiling Point		460	450 Min/490 Max
50% Recovered		490	465 Min/515 Max
95% Recovered		515	470 Min/520 Max
Final Boiling Point		530	500 Min/560 Max
Benzene	GC	N.D. ₍₂₎	
Mutation Assay	Ames Test(3)	Pass (negat	ive)
Ultraviolet absorbance	21CFR 178.3620(c)	Pass	
U.S. Dept. of Agriculture Authori	zation	Acceptable	

- (1) ASTM Standard Test Methods
- (2) Non-detectable with detection limit of 0.5 ppmw
- (3) Modified Salmonella/Microsome

Typical Physical Properties of UCAR Solvents

***	Solvent	Molecular Weight	Oensity at 20°C. lb/gal	Boiling Point, °C	Relative Evaporation Rate (BuAc=100)	Vapor Pressure at 20 °C, mm Hg	Heat of Vaporization at 760 mm Hg, BTU/lb	Flash Point. Closed Cup. *F	Total Solubility Parameters	Heat of Combustion at 25°C. Kcal/Mole	Viscosity at 20°C, cP
	Ethanol	46.07	6.76	78.3	333	45	361	58	12.78	- 326.85	1.2
	1-Propanol	60.10	6.71	97.2	133	15	297	74	12.18	- 482.75	2.2
<u></u>	Isopropanol	60.10	6.55	82.3	288	33	295	53	11.44	479.44	2.4
Alcohois	Butanel	74.12	6.75	117.7	44	4	254	95	11.60	~639.60	3.0
•	Isobutanol	74.12	6.68	107.9	74	7	248	82	11.24	- 637.93	4.0
	1-Pentanol	88.15	6.79	137.8	18	2	218	119	10.83	- 795.10	3.9
	2-Ethylhexanol	130.23	6.94	184.6	<1	<1	153	162	10.15	- 693.37	10.3
	Ethyl Acetate	88.11	7.51	77.2	747	76	155	30	8.91	537.50	0.5
	n-Propyi Acetate	102.13	7.39	101.5	279	26	144	58	8.80	693.37	0.6
	Isopropyl Acetate	102.13	7.26	88.9	501	47	142	42	8.58	- 691.10	0.5
şo.	Butyl Acetate	116.16	7.34	126.2	100	15	135	84	8.69	828.60	0.7
캺	Isobutyl Acetate	116.16	7.24	118.0	172	4	131	62	8.43	-	0.7
	Primary Amyl Acetate	130.19	7.29	146.0	49	2	211	101	8.34	- 1058.00	0.9
	Methyl PROPASOL® Acetate	132.16	8.09	145.7	34	3	_	116	8.43	_	1.2
	Butyl CELLOSOLVE® Acetate	160.21	7.84	192.3	3	<1	118	165	8.91	1122.38	1.8
	UCAR® Ester EEP	146.19	7.91	169.7	11	<1	_	136	9.00	-	1.3
	Butyl CELLOSOLVE® Solvent	118.18	7.51	171.2	6	<1	158	150	9.87	- 914.25	6.4
	Methyl CARBITOL® Solvent	120.16	8.51	194.0	<1	<1	170	188	11.15		3.9
	CARBITOL® Solvent	134.18	8.25	202.7	<1	<1	151	182	10.34	878.84	4.5
-	Butyl CARBITOL® Solvent	162.23	7.96	230.6	<1	<1	132	214	9.79	- 1190.58	6.5
	Acetone	58.08	6.59	56.3	1440	185	219	0	9.62	427.77	0.3
Kranes (Bycol Ethers B) W W W B B W B R S S S S S S S S S S S S S S S S S S	Methyl Ethyl Ketone	72.11	6.71	79.6	631	71	187	24	9,45	- 582 80	0.4
=	Methyl Isobutyl Ketone	100.16	6.67	116.1	162	15	147	61	8.58	735.60	0.6
Keton	Methyl n-Amyl Ketone	114.19	6.81	151.5	40	2	148	102	8.98	985.19	0.8
_	Diacetone Alcohol	116.16	7.82	169.2	12	<1	154	117	9.78	84740	3.2
	Isophorone *	138.21	7.67	215.3	2	<1	135	179	9.36	1234.35	2.6
	Oiisobutyl Ketone	142.24	6.72	169.4	17	1	119	118	8.06	1359.20	1.0

Table 2.141: (continued)

UCAR Solvents for Electrostatic Coatings* Resistivity (Megohms)

Alcohols		Esters	
Ethanol (200 proof)	0.03	Butyl CELLOSOLVE* Acetate	3.00
Primary Amyl Alcohol	0.10	Butyl Acetate	3.50
1-Propanol	0.18	Isobutyl Acetate	5.00
Butanol	0.18	Isopropyl Acetate	7.00
Isobutanol	0.18	n-Propyl Acetate	10.00
Isopropanol (anhydrous)	0.35	Ethyl Acetate	18.00
2-Ethylhexanol	8.00	Primary Amyl Acetate	>20.00
Glycol Ethers		Kelones	
CARBITOL® Solvent (low gravity)	0.03	Acetone	0.04
Methyl CARBITOL® Solvent	0.03	Diacetone Alcohol	0.06
Butyl CELLOSOLVE® Solvent	0.06	Isophorone	0.08
Butyl CARBITOL® Solvent	0.13	Methyl Ethyl Ketone	0.13
		Methyl Isobutyl Ketone	0.45
		Methyl n-Amyl Ketone	0.75
		Methyr hampi Netone	0.75

Surface Tension Reduction of a Higher Solids Acrylic Resin (19)

(continued)

Table 2.141: (continued)

Surface Tension of UCAR Solvents (19)

	Solvent	Surface Tension. dynes/cm
	Diisobutyl Ketone	22.2
	Methyl Isobutyl Ketone	23.6
nes	Methyl Ethyl Ketone	24.6
Ketones	Methyl n-Amyl Ketone	26.1
_	Diacetone Alcohol	31.0
	Isophorone	32.0
	Isopropyl Acetate	22.3
	Isobutyl Acetate	23.6
ø	Ethyl Acetate	23.7
Esters	n-Propyl Acetate	24.3
ш	Primary Amyl Acetate	25.2
	Butyl Acetate	25.4
	Butyl CELLOSOLVE® Acetate	27.4
- 0	Butyl CELLOSOLVE® Solvent	28.6
Glycol Ethers	Butyl CARBITOL® Solvent	31.0
	Methyl CARBITOL® Solvent	35.9

Influence of Letdown Solvents¹ (19)

Solvent	Coating Surface Tension. dynes/cm	Solvent Surface Tension. dynes/cm
Diisobutyl Ketone	39.0	22.5
Diacetone Alcohol	44.0	31.0
Isopropanol	46.5	21.4
Ethylene Glycol	55.5	48.4

Industrial Higher-Solids Coatings, Present and Future, A. Heitkamp, et al, High Solids Coatings, December 1980.

Aliphatic Hydrocarbons

Preduct Name		Gravity 60°F (15.56°C)		Distillation F	lange, °F (°C)				-				% Hy	% Hydrocarbon Composition		
	Chemical Abstract Service Number	API	SpecHic	ib/gal	18P	OP		Vapor Pressure @ 20°C mmHg	Coefficient of Expansion (Per *C)	Relative Evap. Rate n-BuAç = 1	Aniline Cloud Pt., "F ("C")	Kauri-Bulanoi Value	Flash Point, TCC, "F	Aromatics	Parattins	Cycloparattins
Rubber Solvent	64742-89-8	71.8	0.696	5.79	118 (47.8)	275 (135.0)	1	180	0.0013	6.1	141 (60.6)	34	<0	4	75	21
Textile® Spirits	64741-84-0	77.6	0.677	5.63	149 (65.0)	183 (79.8)		115	0.0013	8.8	147 (63.9)	29	<0	<1	89	11
Hexane	110-54-3	77.8	0.676	5.63	151 (66.1)	158 (70.0)		140	0.0015	8.1	151 (66.1)	30	<0	Nil	89	11
Heptane	142-82-5	71.9	0.696	5.79	199 (93)	210 (98.9)		45	0.0011	4.5	155 (68.3)	30	15	Nil	89	11
Lactol® Spirits	64742-89-8	57.9	0.747	6.22	202 (94.4)	222 (105.6)		40	0.0011	3.9	109 (42.8)	42	20	12	42	46
Roto Solv	8032-32-4	61.8	0.732	6.09	241 (116.1)	249 (120.6)		17	0.0011	1.7	145 (62.8)	34	45	5	60	35
Special Naphtholite® 66/3 (VM&P)	8032-32-4	54.9	0.759	6.32	265 (126.7)	291 (143.9)		5.2	0.0011	1.0	143 (61.7)	35	65	<1	42	57
Naphthol Spirits 66/3*	8052-41-3	50.9	0.776	6.46	318 (158.9)	355 (179.4)		2.9	0.0008	0.21	152 (66.7)	33	105	<1	44	55
Regular Mineral Spirits	8052-41-3	48.1	0.788	6.56	315 (157.2)	385 (196.1)		3.1	0.0009	0.12	133 (56.1)	37	108	16	46	38
Mineral Spirits 75*	8052-41-3	49.0	0.784	6.53	315 (157.2)	395 (201.7)		3.0	0.0009	0.13	148 (64.4)	34	107	<8	48	44
Mineral Spirits 66/3*	8052-41-3	50.4	0.778	6.48	321 (160.6)	382 (194.4)		2.6	0.0009	0.13	155 (68.3)	33	108	<1	47	52
1-K Kerosine	8008-20-6	41.2	0.819	6.82	345 (173.9)	525 (273.9)		1.8	0.0010	0.01	144 (62.2)	34	145	18	41	41
Odorless Mineral Spirits	8052-41-3	54.3	0.762	6.34	358 (181.0)	407 (208.0)		1.2	0.0011	0.17	188 (87.0)	26	125	Nil	99+	Nil
460 Solvent	_	43.8	0.807	6.72	372 (188.9)	503 (261.7)		. <1	0.0009	0.02	153 (67.2)	33	140	8	56	36
142 Solvent 66/3‡	8052-41-3	46.7	0.794	6.61	378 (192.2)	401 (205.0)		<1	0.0009	0.08	162 (72.2)	31	145	<1	45	54
Mineral Spirits 150 66/3‡	8052-41-3	46.4	0.795	6.62	384 (195.6)	408 (208.9)		<1	0.0009	0.07	161 (71.7)	32	154		44	55
® Registered Trademark of Lincol	• • • • • • • • • • • • • • • • • • • •	•				~~·					(/ •.//					

[®] Registered Trademark of Unocal

Mineral Spirits (Stoddard Solvent) type per ASTM D 235-96

Product Nome
Nophthol Spirits 66/3
Regular Mineral Spirits
Mineral Spirits 66/3
Mineral Spirits 66/3
I I C
II C
Ida Solvent 66/3
II C
Mineral Spirits 150 66/3
II C

The following products meet, at a minimum, the UV requirements of FDA regulation (21 CFR):

Hexane 175.105 Heptane 172.882, 175.105, 178.3530 Special Naphtholite 66/3 (VM&P) 172

Special Naphtholite 66/3 (VM&P) 172.882, 175.105, 178.3530 Naphthol Spirits 66/3 175.105, 178.3620, 178.3910 Mineral Spirits 66/3 172.882, 172.884, 175.105, 178.3910 Odortess Mineral Spirits 172.882, 175.105, 178.3650, 178.3910 142 Solvent 66/3 175.105, 178.3620, 178.3910

Mineral Spirits 150 66/3 175.105, 178.3620, 178.3910

Aromatic Hydrocarbons

		Gran	vity 60°F (15.	56°C)	Distillation f	lange, °F (°C)						% Hydrocarbon Composition			
Product Name	Chemical Abstract Service Humber	API	Specific	lb/gal	IB P	DP	Vapor Pressure	Coefficient of Expansion (Per *C)	Relative Evap. Rate n-BeAc = 1	Aniline Cloud Pt., "F ("C)	Kapri-Butanci Value	Flash Point, TCC, "F	Aromatics	Paraffins	Cycloparaffin
Toluene	108-88-3	30.8	0.872	7.26	230 (110.3)	231 (110.8)	23.8	0.0011	1.90	48 (8.9)	105	45	100	Nil	Nil
Xylene	1330-20-7	30.9	0.871	7.25	280 (137.7)	285 (140.7)	6.6	0.0010	0.80	50 (10.0)	98	81	100	Nil	Nil
Super Hi-Flash Naphtha	64742-95-6	30.6	0.873	7.27	315 (157.2)	347 (175.0)	2.7	0.0008	0.37	56 (13.3)	91	112	100	Na	Nil
Solv G	64742-94-5	26.2	0.897	7.47	363 (183.9)	413 (211.7)	<1	0.0008	0.13	60 (15.6)	94	149	100	Nil	Nil

^{*} Meets Dry Cleaning Fluid Specification PD680, Type I.

Meets Dry Cleaning Fluid Specification PD680, Type II.

Table 2.142: (continued)

MINERAL SEAL OIL

PRODUCT DESCRIPTION

Unocal Hydrocarbon Sales Mineral Seal Oil is a highly refined, hydrotreated paraffinic light oil that is water-white in appearance. Properties include a very low odor, low aromatic content and low pour point. This product meets 21CFR178.3620(c).

	,	Specifications	Typical Properties	ASTM Test
PRODUCT CODE		2540		
API GRAVITY (60/60 F)	DEGF		35.7	D-287
DISTILLATION, IBP	DEGF		493	D-86
DISTILLATION, 50%	DEGF		516	D-86
DISTILLATION, END POINT	DEGF		563	D-86
SPECIFIC GRAVITY (60/60 F)		0.830-0.860	0.845	D-1298
DENSITY @ 60 F (15.6 C)	LB/GAL	6.93-7.18	7.05	CALC'D
VISCOSITY, 40C	cst	3.0-4.0	3.40	
VISCOSITY, 100C	cst		1.31	D445/216
VISCOSITY, 100F	SUS	36-40	37.8	D445/216
ANILINE POINT	DEGF		170	D-611
FLASH POINT (COC)	DEGF	248 MIN	259	D-92
COLOR, SAYBOLT	SAYBOLT	+20 MIN	30	D-156
AROMATIC CONTENT	WT%		<3	GC
SULFUR CONTENT	PPM		<1	D-4084
CLOUD POINT	DEGF	-4 MAX	-22	D-2500
APPEARANCE @ 70 DEGF		Clear & Bright	C & B	
POUR POINT	DEGF	-6 MAX	-27	D-97

RETARDSOL

PRODUCT DESCRIPTION

Unocal Hydrocarbon Sales Retardsol is a water-white kerosine that meets ASTM 2-K specifications. Kerosine consists primarily of C10-C16 aliphatic and aromatic hydrocarbons and is widely used as heating oil and diesel fuel. Because of its high solvency and high flash point Unocal Hydrocarbon Sales Retardsol finds many commercial applications in general cleaning solvents and in agricultural sprays. Specifications and typical properties are listed below.

		Specifications	Typical * Properties	ASTM Test
MANUFACTURER PRODUCT CODE		LEMONT REFINRY		
API GRAVITY (60/60 F)		39-51	40.7	D-287
DISTILLATION, IBP	DEGF		320	D-86
DISTILLATION, 10%	DEGF	347-400	390	D-85
DISTILLATION, 50%	DEGF	450 MAX	430	D-86
DISTILLATION, DP	DEGF	550 MAX	510	D-86
SPECIFIC GRAVITY (60/60 F)			0.8215	D-1298
DENSITY @ 60 F (15.6 C)	LB/GAL		6.84	CALC'D
VAPOR PRESSURE @ 20 C	nm Hg		0.1	
VISCOSITY @ 20 C	cst		2.117	D-445
KAURI-BUTANOL VALUE (KB)			34	D-1133
ANILINE POINT	DEGF		141	D-611
FLASH POINT (TCC)	DEGF	110 MIN	123	D-56
COLOR, SAYBOLT		+22 MIN	27	D-156
DCCTOR TEST			NEGATIVE	
CORROSION, 3 HRS @ 212 F			1A	D-130
PARAFFINS	AOT\$		42	GC-MS
CYCLOPARAFFINS	VOL*		38	GC-MS
AROMATIC CONTENT	VOL*	20 MAX	19	GC
BENZENE CONTENT	VOL*		0.01	D-2600
OLEFINS	VOL*		0.5	D-1159
SULFUR CONTENT	WT%	0.20 MAX	0.03	D-4084
REFRACTIVE INDEX @ 20 C			1.4952	D-1218
SOLUBILITY PARAMETER	(cal/cc)1/2		7.9	

Table 2.143: Vista LPA Solvents (40)

Typical Properties of Vista LPA Solver
--

Typical Properties	Vista LPA	Vista LPA-110*	Vista LPA-142	Vista LPA-170	Vista LPA-210	Vista-47
Distillation Range, °F,						
IBP	362	335	368	413	465	464
10%	388	340	372	420	474	472
20%	392	341	373	422	475	474
50%	412	345	377	424	479	479
90%	460	355	386	431	495	497
95%	476	360	389	434	506	508
EP	516	385	405	458	539	531
Flash Point,			•			
Tag Closed Cup, °F	148	112	146	178	_	_
Pensky Martens, °F	_	_			226	228
Freeze Point, °F	-90	<-103	<-103	-81	-43	0
Pour Point, °F	-95	<-112	<-112	-92	-45	0
Specific Gravity 60°/60°F	.809	.794	.809	.811	.823	.812
Density, lbs/gal. @ 60°F	6.75	6.63	6.75	6.77	6.87	6.78
Average Molecular Weight Average Composition	167	141	152	171	194	197
% Paraffinic	46	25	27	58	65	72
	46 54	75	73	38 42	35	28
% Naphthenic	0.2	0.1	0.2	0.5	0.6	28 0.7
% Aromatic	0.2	0.1	0.2	0.5	0.0	0.7
Color, Saybolt Universal	+30	+30	+30	+30	+20	+20
Relative Evaporation Rate	0.02	0.19	0.09	0.03	0.004	< 0.004
(n-Butyl Acetate=1)						
Vapor Pressure, mm Hg						
100°F	1.0	2.0	1.1	0.37	0.10	0.10**
Viscosity, cSt						
70°F	2.2	1.4	1.8	2.4	3.8	3.8
100°F	1.6	1.1	1.4	1.8	2.6	2.6
Aniline Point, °F	160	137**	142**	160	170	180
Kauri Butanol Value	32	36	35	32	29	27
Solubility parameters**,						
(Cal/cm ³) 0.5	8.1	8.0	8.1	8.1	7.9	7.8
Bromine Number	<.2	<.2	<.2	<.2	<.2	<.2
Carbonyl, as C=O ppm	<10	<10	<10	<10	0</td <td><10</td>	<10
Nitrogen, ppm	</td <td><1</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td>	<1	<1	<1	<1	<1
Sulfur, ppm	<1	<l< td=""><td><1</td><td><1</td><td><1</td><td><1</td></l<>	<1	<1	<1	<1
Water, ppm	<50	<50	<50	<50	<50	<50

Vista MR Solvent (40)

Description

Vista MR Solvent is a highly refined hydrocarbon in the kerosene boiling range. It is colorless, has a mild odor, low viscosity, and a typical aromatics content of 15%. MR Solvent has an extremely low sulfur and nitrogen content. The unique process used to produce MR Solvent yields low levels of normal paraffins. Consequently, MR Solvent has a higher solvent strength and lower freeze point than competitive solvents with equivalent boiling ranges.

	t
Distillation Range, °F, (ASTM D-86)	
IBP	370
10%	390
20%	400
50%	420
90%	475
95%	480
EP	510
Flash Point,	
Tag Closed Cup, °F	148
Pensky Martens, °F	154
Freeze Point, °F	<-90
Pour Point, °F	<-95
Specific Gravity 60°/60°F	0.817
Density, Ibs/gal. @ 60°F	6.82
Average Molecular Weight	170
Average Composition	
% Paraffinic	45
% Naphthenic	40
% Aromatic	15
	1 1

Color, Saybolt Universal	+30
Relative Evaporation Rate	
(n-Butyl Acetate=1)	0.02
Vapor Pressure, mm Hg	
100°F	1.2
Viscosity, cSt	
70°F	2.1
100°F	1.6
Aniline Point, °F	145
Kauri Butanot Value	33
Solubility parameter*(Cat/cm3) 05	8.1
Cetane Number	43
Bromine Number	<0.2
Carbonyl, as C=O ppm	<10
Nitrogen, ppm	<1
Sulfur, ppm	<1
Water, ppm	<50

(continued)

Table 2.143: (continued)

Vista C14 Normal Paraffin

Description:

Vista C₁₄ n-paraffin is a high purity, linear saturated paraffin. It is a clear, low odor, low viscosity liquid.

Properties	Specification	Typical
Total n-paraffin, Wt.%	96.5	96.5-98.0
Hydrocarbon Distribution (Wt.%)		
≤c ₁₃	· 11 max	6-10
C ₁₄	87 min	87-90
≥C ₁₅	2.5 max	1-2
Average Molecular Weight		197-201
Aromatics, Wt.%	1.5 max	0.9
Bromine Number	0.04 max	0.025
Color Saybolt	+20 min	+25 - +30
Specific Gravity, 15° C/15° C		0.768
Density at 60° F, lb/gal	-	6.40
Flash Point, (PM) °C/°F	93/200 min	109-114° C/229-237° F
Melting Point, °C/°F		4/40
Viscosity cSt @ 40° C/104° F	-	2.1
Distillation Range, °C/°F		
IBP		244/472
EP		251/484
Appearance		Clear Liquid

Vista C1416 n-Paraffin Solvent

Description:

Vista C1416 n-paraffin is a high purity, linear saturated paraffin blend of various molecular weights in the C13-C17 carbon range. It is a clear, straw colored, low odor, low viscosity liquid.

Properties	Specification	Typical
Total n-Paratfin, wt. %	96.5	97.0
C13 and Lower	5.0 max	1.0
C14	_	26.5
C13 + C14	_	_
C15		53.5
C16	_	14.0
C17+	6.0 max	5.0
Average molecular weight		211
Aromatics, wt. %	1.5 max	0.9
Bromine Number	0.04 max	0.025
Color, Saybolt	– 16 min	+ 10
Specific Gravity, 25°C		0.775
Flash point, °F		250
Melting Range, °C	_	8
Viscosity @ 100°F cSt	_	2.7
Distillation range, °F		
IBP	-	487
50%	-	493 511
95% EP		547
Appearance	-	Clear
rppearance		Straw
	Marine.	Liquid

Halogenated Hydrocarbons

CHLORINATED HYDROCARBONS

Table 3.1: Allyl Chloride (7)

3-Chloropropene-1

CH₂=CHCH₂CI

1-Chloropentane

Acidity as HCl

Amylene

Table 3.2: n-Amyl Chloride (7)

CH3CH2CH2CH2CH2CI

0,025% max.

1% max.

PHYSICAL PROPERTIES

Boiling point	45°C
Fire point	4°C
Flash point	4°C
Latent heat of vaporization	84.6 cal/g
Specific gravity @25/25°C	0.933
Specific heat	0.31 cal/g/°C
Refractive index @25°C	1.412
Viscosity @25°C	0.33 centipoise
Weight per galion @25°C	7. 8 1ь

PHYSICAL PROPERTIES

105-109°C
95% between 104.9-108.9°C
54 °F
None
None
Insoluble
0.885
7. 38 lb

Table 3.3: Mixed Amyl Chlorides (7)

C₅H₁₁Cl

PHYSICAL PROPERTIES

Distillation range	95% between 85-109°C
Evaporation rate @108*F:Minutes 1.30 1.67 4.30 6.58 Flash point (O.C.) Kauri-butanol value Solubility in water Specific gravity @20*C Vapor pressure @20* Water azeotrope @77-82*C	25% 50% 75% 100% 34°F 71 cc Negligible 0.88 42.8 mm 90% C ₉ H ₁₁ C1 (approx.) 7.33 lb
	1.30 1.67 4.30 6.58 Flash point (O.C.) Kauri-butanol value Solubility in water Specific gravity @20°C Vapor pressure @20°

Table 3.4: Benzyl Chloride (7)

α-Chlorotoluene

 $C_6H_5-CH_2-CI$

PHYSICAL PROPERTIES

Distillation range	Not more than 2° including 179.4°C
Freezing point	-43°C
Molecular weight	126. 58
Refractive index N _D ²⁵	1.5365
Specific gravity @15.5°/15.5°C	1.107
Weight per gallon @15.5°C	9, 23 lb

Table 3.5: n-Butyl Chloride (7)

PHYSICAL PROPERTIES

n-BUTYL CHLORIDE FORMS AZEOTROPES WITH:

Acidity	0.01% max.	%		B. P. C of Azeotrope
Boiling point @760 mm	78 °C			
Distillation range	Not less than 95%	80	Acetone	55. 8
21251121011011	between 76, 0-79, 5°C	1.9	n-Butyl alcohol	77.7
Flash point (O.C.)	20 °F	57	n-Butyl nitrite	76.5
Latent heat of vaporization @76.5°C	79.8 cal/g	35	Ethyl acetate	76.0
Melting point	-123.1°C	20.	Ethyl alcohol	65.7
Refractive index @20°C	1.4004	4	Isobutyl alcohol	77.7
Solubility in water	Negligible	62	Isobutyl nitrite	66. 2
Specific gravity @20/4°C	0.884	23	Isopropyl alcohol	70.8
Specific heat @ 20 °C	0.451 cal/g	29	Methyl alcohol	57.0
Surface tension @ 20 °C	23.66 dynes/cm	38	Methyl propionate	76.8
Water content	None	40	Methyl propyl ketone	77.0
Weight per gallon	7. 37 lb	16	Nitromethane	75.0
		18	n-Propyl alcohol	74.8
		38	n-Propyl formate	76. 1
		6.6	Water	68, 1

Table 3.6: sec-Butyl Chloride (7)

FORMULA	сн ₃ – сн – сн ₂ – сн
PROPERTIES	98.0% GRADE
Composition, weight percent	
secondary-Butyl Chloride	99.5
Butenes	0.5
Purity by freezing point, mol %	
Freezing point, F	
Boiling point, F	
Distillation range, F	
Initial boiling point	151
10% Condensed	
50% Condensed	154
90% Condensed	
Dry point	156

PROPERTIE S	98.0% Grade
Specific gravity of liquid at 60/60 F	0.879
at 20/4 C	0.875
API gravity at 60 F	29.5
Density of liquid at 60 F, lbs/gal	7.32
Refractive index, 20/D	1.396
Color, Saybolt	
Acidity, distillation residue	
Nonvolatile matter, grams/100 ml	
Color Alpha	10
Flash point, approximate, F	< 80
Flammability limits, volume % in air	
Lower	
Higher	

^{*}Literature values.

Table 3.7: Butyryl Chloride (27)

Butanoyl Chloride

C₃H₇COCI

Butanoyl chloride is a clear colorless liquid with a characteristic pungent odor. It reacts with water and alcohol and is infinitely soluble in ether. It is used for organic synthesis to introduce the butyryl group.

PHYSICAL PROPERTIES

Molecular Weight	106.5
Freezing Point	-89°C
Boiling Point	102°C
Distillation Range	100° to 110°C
Refractive Index n20/D	1.4121
Specific Gravity, 15.5°/15.5°C	1.028
Pounds per Gallon at 15.5°C	8.56

Table 3.8: Caprylyl Chloride (27)

Octanovi	Chl	lori	ide

CH3(CH2)6COCI

Caprylyl chloride is a water-white to straw-colored liquid with a pungent odor. It usually contains small quantities of hexanoyl and decanoyl chlorides.

PHYSICAL PROPERTIES

Molecular Weight	162.7
Chlorine Content (typical)	21 .8%
Freezing Point	<- 70°C
Pour Point	<- 70°C
Distillation Range(1)	183° to 212°C
Refractive Index, n20/D	1.4357
Flash Point (Cleveland open cup)	82 °C
Fire Point (Cleveland open cup)	87°C
Specific Gravity, 15.5°/15.5°C	0.955
Pounds per Gallon at 15.5°C	7. 96
Density Correction Factor, gm/cc/l °C	0.00085
Coefficient of Cubical Expansion at 15.5 °C/1 °C	0.00096

⁽¹⁾ Typical ASTM distillation to 90%. Decomposition occurs beyond this point.

Industrial Solvents Handbook

CCI₄

None

0.00127

2. 24

-23°C

0.057%

1.4607

1.5845

4.2 cal/kg

46.5 cal/g

99.99% min.

0.08% by wt

0.008 % by wt

0.1995 cal/g/°C 0.2157 cal/g/°C

5.37 g/liter

0.96 centipoise

140 mm

13.22 lb

3.8 x 1012 ohms/cm

0.0010% by wt, max.

76. 7°C (170. 1°F) Within 1°C

4 x 10⁻¹⁸ recip. ohm

Nonflammable

Nonflammable

Acidity	as HCl
Boiling	point @ 760 mm
Boiling	range

Coefficient of cubical expansion Av./°C, liquid

Dielectric constant, 1000 cycle

Electrical conductivity Fire point Flash point

Freezing point Heat of fusion Heat of vaporization Power factor, 1000 cycle

Purity

Refractive index @20°C

Residue

Solubility in water @ 20 °C

Solubility of water in solvent

@ 20 °C

Specific gravity @25/4°C

Specific heat

Liquid, 25° 76.8°C

Specific resistivity

Thermal expansion per °C

Vapor density (B. P., 760 mm)

Vapor pressure @ 30°C

Viscosity liquid @ 20 °C

Weight per gallon @25°C

Tetrachloromethane

Temperature-Vapor Pressure Curve for Carbon Tetrachloride

CARBON TETRACHLORIDE FORMS AZEOTROPES WITH:

%		B. P. *C of Ageotrope
88.5	Acetone	56.4
	Acetonitrile	71
3	Acetic acid	76.55
21	Acrylonitrile	66. Z
11.5	Allyl alcohol	72.3
71	2-Butanone	73.8
4.5	tert-Amyl alcohol	76.6
2.5	Butyl alcohol	76.6
7.6	sec-Butyl alcohol	74.6
24	tert-Butyl alcohol	70.5
35	Butyl nitrite	74.8
21	1,2-Dichloroethane	75. 6
43	Ethyl acetate	74. 8
15.85	Ethyl alcohol	61.1
15.5	Ethyl nitrate	75
81.5	Formic acid	66.65
5. 5	Isobutyl alcohol	75, 8
12	Isopropyl alcohol	69
20.56	Methanol	55.7
2.5	Methyl propionate	76
17	Nitromethane	71.3
11.5	Propyl alcohol	73.1
31	Propyl formate	74.6
4. 1	Water	66

Table 3.10: Chlorinated Butane Derivatives (73)

Physical	Properties	of	Intermediates	and	Products

Compound	B. P.,	Press.,	Density	Refractive	Chlor	ine, %
Compound	*C., corr.	mm.	d25	Index, ND	Found	Calcd
1-Chlorobutane	77, 5-78, 5	745		1, 3995		
1, 1-Dichlorobutane	114.8-115.1	752	1.0797	1.4305		
1, 2-Dichlorobutane	122, 9-123, 3	743	1.1118	1. 4425		
1, 3-Dichlorobutane	133, 0-133, 2	744	1.1083	1.4414		
1, 4-Dichlorobutane	154, 1-154, 2	749	1.1324	1.4522		
1, 1, 1-Trichlorobutane	133, 1-133, 3	750	1.2242	1.4483	65.76	65.88
1, 1, 2-Trichlorobutane	156.3-156.8	746	1.2787	1.4667	65.95	65.88
1, 1, 3-Trichlorobutane	153, 2-153, 8	750	1.2514	1.4593	65. 9Z	65.88
1, 1, 4-Trichlorobutane	183, 6-183, 8	754	1.2967	1.4753	65. 92	65, 88
1. 1. 1. 2. Tetrachlorobutane	69.1-69.4	20.0	1.3952	1.4812	72.63	72, 39
1.1.1.3-Tetrachlorobutane	69. 5-69. B	20.0	1, 3747	1.4772	72, 18	72. 39
1, 1, 1, 4-Tetrachlorobutane	86.8-87.1	20.0	1.4001	1.4858	72. 81	72. 39
1, 1-Dichloro-1-butene	103, 3-103, 5	747		1.4465	56. 212	56.74
a-Chlorobutyraldehyde	106-1083	740		1.441	35, 38	33.28
n-Butyryl chloride	101-101.53	745		1.4098		
a-Chlorobutyryl chloride	51, 5-51, 7	40.0		1,4410		
B-Chlorobutyryl chloride	53, 0-53, 3	20.0		1.4477		
y-Chlorobutyryl chloride	71.0-71.2	20, 0		1.4597		
Ethyl g-chlorobutyrate	64, 2-64, 43	20.0		1.4202		
Ethyl β chlorobutyrate	69. 9-70. 13	20.0		1.4222		
n-Propyl acetate	101-102	745		1, 3823		
1-Chloropropyl acetate	48, 6-48, 8	20.0		1.4143		
2-Chloropropyl acetate	57.1-57.6	20.0		1.4205		
3-Chloropropyl acetate	58, 4-58, 8	10.0		1.4275		
n-Propyl chloroacetate	52.6-52.8	10.0		1.4233		

¹ Chlorine analysis by reaction with sodium diphenyl in dimethyl Cellosolve [L. M. Liggett, Anal. Chem., 26, 748(1954)].

Table 3.11: Chlorinated Hydrocarbons (13)

	*Detdat 25°C	*Detd. at 25"C				*Detd. at 100"C				*Detd at 25/20 C	*Detd. at 25/20*C	*Detd. at 75/20*C
Trichloroethylene	1.459*	12.14*	188	190	4.46	59.0		_	_	0.110*	0.032*	1.4780
Trichlorobenzene	1.454*	12.10*	418	427	0.06	22.0*	260	_		_		1.5690*
Propylene Dichloride	1.159*	9.64*	204	208	3.22	43.0	63CC		_		-	1.4371*
Perchloroethylene	1.618*	13.46*	250	254	2.10	14.0		_		0.015*	0.010*	1.5044
Orthodichlorobenzene	1.303*	10.84*	355	362	0.15	62.0*	155	_	_	0.014	Insoluble	1.5482
Monochlorobenzene	1.105*	9.19*	267	270	1.07	8.8	105		_	0.048	Insoluble	1.5215
Methylene Chloride	1.320*	10.98*	103	104	14.50	350.0	_	_	_	1.320*	0.198*	1.4210
Ethylene Dichloride	1.252*	10.42*	179	186	4.46	61.6	5 9CC		_	0.810	0.150	1.4427
Chloroform Tech	1.478*	12.31*	142		11.60	160.0		_		0.800*	0.097	1.4455
1,1,1. Trichloroethane	1.319*	10.97*	162	190	6.00	100.0			_		-	1.4350*
Carbon Tetrachloride	1.589*	13.22*	170	172	6.00	90.0	_		-	0.080*	0.013*	1.4598

Table 3.12: Chlorinated Organic Solvents (69)

_	Specific	Dist. R	Dist. Range °F	
	Gravity 20°/20° C	IBP	DP	Pt. °F TOC
Carbon Tetrachloride	1.584	169	171	None
Chloroform	1.485	140	143	None
Ethylene Dichloride	1.255	181	183	70
Methylene Chloride	1.366	103	105	None
Monochlorobenzene	1.113	268	271	841
Orthodichlorobenzene	1.313	355	361	170
Perchlorethylene	1.627	247	251	None
Trichlorethylene	1.455	187	190	None
1,1,1-Trichloroethane	1.316	162	190	None

² Av. of three analyses (56.17, 56.22 and 56.25%),

Uncorrected.

Table 3.13: CHLOROWAX Liquid Chlorinated Paraffins, Waxes, and Alpha Olefins (27)

CHLOROWAX Liquid	SP.GR.	STOKES	POISE	SUS	SUS*	Color	Water	Wt.%Cl ₂	JQD	HCI	Mol. Wt.
Grades	@25°C	@25°C	@25°C	210°F	100°F	Max.	% Max.		Wt.%HCI	ppm	· •
. LV	1.110-1.128	5.4-9.0	6.0-10.0	50-100	1,350	4	0,1	35.0-39.5	0.50 max	10	545
100	1.113-1.131	1.8-2.6	2.0-3.0	50-60	450	4	0.1	39.2-41.0	0.50 max	10	454.5
40	1,16-1,185	19-27	22-32	120-160	4,000	4	0.1	41.0-44.5	0.50 max	10	579.5
41SW	1.60-1.175	14-28	16-33	115-145	3,200	5	0.1	41-43	0.50 max	15	579.5
42-170	1.170-1.180	28-37	32-44	150-185	5,200	8	0.1	41-42.5	0.50 max	10	578.5
45-225	1.210-1.23	55-90	66-111	205-245	11,000	8	0.1	45-46.5	0.50 max	10	596
45LV	1.08-1.115	.1020	.1122	33	58	2	0.1	40-44	0.25 max	10	273.5
S-45	1.155-1.175	1.3-1.9	1.5-2.2	45-52	NA	2	0.1	43-45	0.25 max	10	360
S-52	1.255-1.267	9-15	11-20.	63-80	NA	2	0.1	51.5-52.5	0.25 max	10	440
50	1.22-1.24	70-135	85-168	235-300	10,000-16,000	4	0.1	46-50	0.50 max	10	648.5
50LV	1.196-1.224	.5590	.66-1.1	39-41	135-190	2	0.1	49-51	0.25 max	10	334
51-225	1.270-1.285	95-150	120-195	200-240	10,000-14,000	8	0.1	50.0-51.5	0.50 max	10	558
50-410HV	1.266-1.272	NA	NA	550-610	NA	8	0.1	49-53	0.50 max	10	648.5
57-60	1.31-1.33	12-20	16-27	55-70	1,500-2,000	4	0.1	55-58.5	0.25 max	5	391
500C**	1.345-1.375	1218	17-25	55-68	1,500-2,100	2	0.1	58.3-60.0	0.25 max	5	377.7
60-70	1.374-1.390	26-40	36-55	65-80	2,700-3,700	4	0.1	60.2-60.7	0.25 max	10	411.5
63-85	1.40-1.42	38-66	53-94	75-92	3,700-5,500	4	0.1	61.5-63.3	0.25 max	10	446
70-200	1.45-1.51	NA	NA	180-230	48,000-61,000	4	0.1	63-66	0.50 max	10	511
53-45	1.28-1.31	4-8	5.5-12	44-56	700-850	2	0.1	53-56	0.50 max	10	342
60-350	1.395-1.42	NA	NA	300-350	NA	4	0.1	59-62	0.50 max	10	600
65	1.445-1.465	150-320	220-470	100-140	17,500-24,000	4	0.1	64-65	0.25 max	10	446
LOROWAX Alpha Olefins					·					. <u>.</u>	1
100AO	1.100-1.133	2.0-2.6	2.2-2.9	58-70	500	2	0.1	38-40.5	0.25 max	5	475
45AO	1.090-1.120	.1320	.1423	NA	NA	2	0.1	40-43	0.25 max	10	273.5
500AO	1.345-1.370	1224	16-33	64-78	2,000-2,400	2	0.1	57-60	0.25 max	5	377
54-120AO	1.285-1.325	31-68	40-90	105-135	4,500-6,500	2	0.1	53-55	0.25 max	5	467
52AO	1.240-1.270	1.4-2.7	1.7-3.4	40-50	275	2	0.1	51.0-53.5	0.25 max	5	342
51-225AO	1.27-1.285	95-150	120-195	200-250	NA	4	0.1	50-52	0.50 max	4	558

Table 3.13: (continued)

Compatibility of Liquid Chlorowax with Other Materials

Alkyd Resins	
Phthalic-Drying Oil Modified Solution Phthalic-Non-Drying Oil Modified Resin Modified Styrene Modified Rosin Modified	Solution Solution Solution Solution
	Hot Melt
Asphalt, Petroleum	Hot Melt
Butyl Oleate	Hot Melt
Carbowax	Hot Melt
Cellulose Acetate	Solution
Cellulose Acetate Butyrate	Solution
Chlorinated Rubber	Solution
Coumarone-Indene Resins	Solution
Dibenzyl Sebacate	Solution
Dibutyl Phthalate Dicapryl Phthalate	Solution
Di-iso-butyl Adipate	Solution
Dioctyl Adipate	Solution
Dioctyl Phthalate	Solution
Di-iso-octyl Phthalate	Solution
Diocytl Sebacate	Solution
Epoxy Resins	Solution
Maleic Resins	Solution
Methyl Methacrylate	Solution
Petroleum Resins	Solution
Paraplex G-60	Solution
Paraplex G-62	Solution
Phenolic Resin, Non-heat Hardening	Solution
Pliolite Resins	Solution
Polydichlorstyrene	Solution
Polyester Resins .	Solution
Polyethylene Resins	Solution
Polystyrene Resins	Solution Solution
Polývinyl Chloride Resins	Solution
Rosin Rosin Ester Resins	Solution
Rubber	Coldion
Natural	Solution
Nitrile	Solution
SBR	Solution
Neoprene	Solution
Butyl	Solution
Santicizer 141	Solution
Santicizer 160	Solution
Terpene Resins	Solution
Tetrahydrofurfural Oleate	Solution
Triaryl Phosphate	Solution
Tricresyl Phosphate	Solution
Triphenyl Phosphate	Solution
Urea Formaldehyde Resins	Solution
Waxes	Hot Molt
Mineral Natural	Hot Melt Hot Melt
Natural Paraffin	Hot Melt
гаанн	

Table 3.13: (continued)

Miscibility of OxyChem Chlorowax Grade

CHLOROWAX is miscible with many organic solvents, including aliphatic, aromatic and terpene hydrocarbons; chlorinated aliphatic and aromatic hydrocarbons; hydrogenated naphthas; ketones, esters and drying oils. They are insoluble in water, glycerine and glycols. With a few exceptions, the liquid grades are insoluble in the lower alcohols.

SOLVENT	MISCIBLE WITH				
	CHLOROWAX	OTHER			
	45LV, 500-C,	GRADES			
	50 LV & 65				
Acetone	Yes	Yes			
Amyl Acetate	Yes	Yes			
Benzene	Yes	Yes			
Butanol, Normal	Yes	No			
Butanol, Tertiary	Yes	No			
Carbon Tetrachloride	Yes	Yes			
Dioxane	Yes	Yes			
Ethanol	Yes	No			
Ethylene Acetate	Yes	Yes			
Ethylene Dichloride	Yes	Yes			
Ethylene Glycol	No	No			
Glycerine	No	No			
Isopropanol	No	No			
Linseed Oil	Yes	Yes			
Methanol	Yes	No			
Methyl Ethyl Ketone	Yes	Yes			
Methylene Chloride	Yes	Yes			
Mineral Spirits	Yes	Yes			
Monochlorobenzene	Yes	Yes			
Orthodichlorobenzen		Yes			
Perchloroethylene Perilla Oil	Yes	Yes			
Propanol	Yes Yes	Yes No			
Solvesso 100	Yes	Yes			
Soy Bean Oil	Yes	Yes			
Toluene	Yes	Yes			
Turpentine	Yes	Yes			
Xylene	Yes	Yes			

Table 3.15: Chloroform (7)

Trichloromethane

CHCl₃

PHYSICAL PROPERTIES

Acidity as HCl	0.001% by wt, max.
Boiling point	61. 2°C
Boiling range @760 mm	60.0-61.5°C
Coefficient of cubical expansion Av./°C, liquid	0.001399
Color (Saybolt)	24 max.
Dielectric constant, 1000 cycle	4. 90
Fire point	Nonflammable
Flash point	Nonflammable
Freezing point	63°C
Heat of evaporation @B, P,	59.0 cal/g
Latent heat of evaporation @B.P.	106. 4 Btu/lb
Refractive index @20°C @25°C	1. 4467 1. 4422
Solubility in water @20°C	0.82
Solubility of water in solvent @10°C	0.06 g/water/100 g
Specific gravity 25/25°C	1.477
Specific heat Liquid, 20°	0.234 cal/g/°C
Specific resistivity	4.0 x 10 ⁹ ohms/cm
Thermal conductivity Liquid	0.080 Btu/hr (sq ft) (°F/ft)
Vapor density (B.P., 760 mm)	4.36 g/liter
Vapor pressure @ 30°C	243 mm
Viscosity @ Z0 °C @ 30 °C	5.63 millipoises 5.10 millipoises
Water: no cloud @-10°C	0.021% by wt, max.
Weight per gallon @25°C	12.29 1b

CHLOROFORM FORMS AZEOTROPES WITH:

%		B. P. *C of Azeotrope
20. 5	Acetone	64.5
35	2-Bromopropane	62, 2
96	2-Butanone	79.7
6.8	Ethanol	59.3
13	Ethyl formate	62.7
15	Formic acid	59. 2
2.8	n-Hexane	60
4.5	Isopropanol	60,8
12.5	Methanol	53, 5
23	Methyl acetate	64.8
2.8	Water	5 6. 1

Table 3.16: Chloromethylene Compounds (24)

İ			PHYSI	CAL CONS	TANTS		
PRODUCT	EMPIRICAL FORMULA	MOL. WT.	BOILING RANGE °C	SPECIFIC GRAVITY 25°C.	REF. INDEX	ASSAY (Method)	ISOMER CONTENT (Prox.)
COMMERCIAL			,				
BENZYL CHLORIDE	C,H,CI	126.6	95% in 3° range incl. 179°C	1.040— 1.111	1.5360— 1.5370	99% min. (1)	
para-METHYLBENZYL CHLORIDE	C₅H₅CI	140.6	199 204°		1.535— 1.540	98% (1)	
METHYLBENZYL CHLORIDES	C ₈ H ₉ CI	140.6	199— 204°	1.070— 1.080 (15.5°)	1.5360— 1.5370	98% (2)	55% (p·) 45% (o·)
ETHYLBENZYL CHLORIDES	C ₉ H ₁₁ Cl	154.7	217— 222°	1.046— 1.047	1.5293 1.5305	99 % (2)	70% (p-) 30% (o-)
ISOPROPYLBENZYL CHLORIDES	C10H13CI	168.7	109 112° @ 15mm.	1.01— 1.03	1.520— 1.530	98.5% (1)	85% (ρ·) 15% (ο·)
2,4-DIMETHYLBENZYL CHLORIDES	C ₉ H ₁₁ Cl	154.7	221- 226°	1.050— 1.06 5	1.5375— 1.5385	98.5% (2)	86% (2,4-) 14% (2,6-)
3,4-DIMETHYLBENZYL CHLORIDES	C ₉ H ₁₁ Cl	154.7	225— 232°	1.059— 1.062	1.5370— 1.5390	99% (2)	64% (3,4·) 34% (2,3·) 2% (2,4·; 2,5·; 2,6·)
DICHLOROBENZYL CHLORIDES	C ₇ H ₅ Cl ₃	195.5	245— 253°	1.410— 1.418	1.5755 1.5765	94 % (2)	80% (2,4-; 2,5-; 2,6-) 20% other isomers
DEVELOPMENT							
2,5-DIMETHYLBENZYL CHLORIDE	C ₉ H ₁₁ Cl	154.7	221— 226°	1.035— 1.045	1.5350— 1.5360	98% (2)	
meta-CHLOROBENZYL CHLORIDE	C,H ₆ Cl₂	161.1	98-104° @ 15mm.	1.25— 1.27	1.5532— 1.5542	97.5% (1)	
α,α'-DICHLORO- XYLENES	C ₈ H ₈ Cl ₂	175.1	prox.133°C @ 15mm.			95% (1)	70-80% (p·) 20-30% (o·)
Bis-CHLOROMETHYL- DURENE	C ₁₂ H ₁₆ Cl ₂	231.2	190— 196° dec. (3)			98 % (2)	
RESEARCH							
ortho-METHYLBENZYL CHLORIDE	C _a H ₉ CI	140.6				98% (1)	
meta-METHYLBENZYL CHLORIDE	C₅H ₉ CI	140.6				98%	
CHLOROMETHYL- TETRALINS	C₁₃H₁₃CI	180.5	135— 145° @ 7mm.			98% (2)	60% (β·) 40% (α·)
α-CHLOROMETHYL-β- METHYLNAPHTHALENE	C₁₂H₁₁Cl	190.7	58- 62° (3)			95% min. (2)	

Gas-Liquid Partition Chromatography
 Alcoholic potassium hydroxide hydrolysis
 Melting range

Table 3.17: o- and p-Chlorotoluenes (7)

Table 3.18: p-Chlorotoluene (7)

	C ₆ H ₄ (CI)CH ₃	
HY	SICAL	PROPE	RTES

	Ortho	Para	
Boiling point	159.4°C	162.5°C	
Coefficient of cubical expansion @ 30 °C	0.00092		
Distillation range Start 100%	158, 3°C min. 165, 1°C max.		
Flash point	46°C		
Freezing point	-34°C	7.5°C	
Latent heat of vaporization	77	cal/g	
Purity	60% approx.	40% approx.	
Solubility of water @25°C	0.037	g/100 g	
Solubility of water in solvent @25°C	0.014	g/100 g	
Refractive index @20°C	1. 5238	1.5199	
Specific gravity @20/4°C	1.0817	1.0697	
Surface tension @25°C	32.9 dynes/cm		
Vapor pressure @100°C	132 mm		
Viscosity @100°F	0.707 centistoke 0.747 centipoise		
@210*F	0. 707 centistoke 0. 747 centipoise 0. 328 centistoke 0. 327 centipoise		

9. 1 lb

Weight per gallon @25°C

C6H4(CI)CH3

PHYSICAL PROPERTIES

Acidity as acetic acid	Nil
Boiling point @760 mm Hg @50 mm Hg @10 mm Hg	162.3°C 78.4°C 43.8°C
Congealing point	6. 8°C
Distillation range @760 mm Hg	162-166°C
Flash point (Cleveland O.C.)	140°F
Moisture content	Nil
Molecular weight	126.59
Pounds per gallon	8. 85
Purity	98.0%
Refractive index N ₂₂	1.5184
Side chain chlorine	None
Solidifies	Below 45°F
Specific gravity @25/25°C	1.067 min 1.071 max.
Surface tension (in air) DuNouy @25°C	34.60 dynes/cm
Vapor pressure @96.6°C	100 mm Hg

Specifications:

Appearance Color Monochiorotoluene Toluene Clear liquid 30 APHA Max. 99.6% Min. 0.4% Max.

Physical Properties:		Monochiorotoluene		
Formula Molecular Weight	<u>Ortho</u> C ₇ H ₇ C 126.5		Toluene C ₇ H ₈ 92.14	
CAS Registry Number	95-49-8	106-43-4	108-88-3	
Specific Gravity @ 25°C/15.5°C Specific Gravity Correction Factor	1.079 -0.00088/°C	1.067 -0.00097/°C	0.863	
Density (lb/gal)	9.0	8.9	7.2	
Freeze Point, °C (°F)	-35.6 (-32)	7.5 (45.5)	-95 (-139)	
Boiling Point, °C (°F)	159 (318)	162 (324)	111 (231)	
Flash Point (TCC), °C (°F)	50.6 (123)	52.8 (127)	4.4 (40)	
Fire Point (COC), °C (°F)	85 (185)	87.7 (190)	-` ′	
Vapor Pressure, 10 mm Hg	43.2°C	43.8°C	6.4°C	
100 mm Hg	94.7°C	96.6°C	51.9°C	
760 mm Hg Refractive Index (n _p 20)	159.2°C 1.5268	161.7°C 1.5150	110.6°C 1.4961	
Heat of Vaporization (cal/gm)	81.2	80.2	93.1	
Specific Heat @ 20°C (cal/gm/°C)	0.355	0.355	0.392	
Viscosity (Centistokes) @ 100°F	0.75	-	_	
@ 210°F	0.44	-	-	
Kaun-Butanol Value	110		105	
Solubility in Water @ 23°C (ppm)	72	74	-	

Specifications:

Appearance Color Monochlorotoluene Toluene Clear liquid 25 APHA Max. 99.5% Min. 0.4% Max.

Physical Properties:	Monochloro		
Formula Molecular Weight	Ortho C ₇ H ₇ O 126.5	9	Toluene C ₇ H ₈ 92.14
CAS Registry Number	95-49-8	106-43-4	108-88-3
Specific Gravity @ 25°C/15.5°C Specific Gravity Correction Factor	1.079 -0.00088/°C	1.067 -0.00097/°C	0.863
Density (lb/gal)	9.0	8.9	7.2
Freeze Point, °C (°F)	-35.6 (-32)	7.5 (45.5)	-95 (-139)
Boiling Point, °C (°F)	159 (318)	162 (324)	111 (231)
Flash Point (TCC), °C (°F)	50.6 (123)	52.8 (127)	4.4 (40)
Fire Point (COC), °C (°F)	85 (185)	87.7 (190)	-
Vapor Pressure, 10 mm Hg	43.2°C	43.8°C	6.4°C
100 mm Hg	94.7°C	96.6°C	51.9°C
760 mm Hg	159.2°C	161.7°C	110.6°C
Refractive Index (n p 20)	1.5268	1.5150	1.4961
Heat of Vaporization (cal/gm)	81.2	80.2	93.1
Specific Heat @ 20°C (cal/gm/°C)	0.355	0.355	0.392
Viscosity (Centistokes) @ 100°F	0.75	-	-
@ 210°F	0.44	-	-
Kauri-Butanol Value	110		105
Solubility in Water @ 23°C (ppm)	72	74	-

1,2-Dichlorobenzene

C6H4-Cl2

PHYSICAL PROPERTIES

	Purified	Technical	
Boiling point	180. 2°C	179.6°C	
Boiling range (within)	3, 0 °C	4.0°C	
Dielectric constant 1000 cycles	9. 82		
Electrical conductivity @0°C	10 ⁻⁹ recip. ohm		
Fire point	103 °C	103°C	
Flash point	68°C	68°C	
Freezing point	-18.3°C	-22.5°C	
Heat of combustion	671.8 kg cal/mol.		
Heat of fusion	88 joules/g		
Impurities (p-dichloro- benzene, trichloroben- zene)	Not over 4%	Not over 12%	
Latent heat of vaporisa- tion @B.P.		65 cal/g at.	
Refractive index @22°C		1.5518	
Solubility in water @25°C		Less than 0.01%	
Specific gravity @20/4°C		1,3048	
Specific heat		0.271 cal/g/°C	
Specific resistivity		2.0×10^8 ohms/cm	
Weight per gailon @25°C		10.85 lb	

Table 3.22: p-Dichlorobenzene (7)

p-DICHLOROBENZENE FORMS AZEOTROPES WITH:

%		B. P. *C of Assotrope
20	Cineole	173. 5
33.5	Cyclohexanol	153.6
37	Z-Ethoxyethyl acetate	155. 5
34	n-Hexyl alcohol	151.6
46	Camphene	155.0
63.5	Isoamyl ether	172.4
27	Isoamyl propionate	155.2
14	d-Limonene	174. 2
50	a-Pinene	153.4
2	Phenol	156.0
43	Propyl isovalerate	154.5

Table 3.23: Dichlorodiisopropyl Ether (7)

CICH2CH(CH3)-O-CH(CH3)CH2CI

PHYSICAL PROPERTIES

Acidity as HCl 0.01% by wt, max. Boiling point @760 mm 187, 3°C Not more than 5% distills below 180°C Not less than 95% distills below 190°C Boiling range @760 mm Color (Pt-Co scale) 25 max. Flash point (O.C.) 185°F 0.17% by wt Solubility in water @20°C 0.11% by wt Solubility of water in solvent @20°C Specific gravity @20/20°C 1.1122 Vapor pressure @20°C 0,85 mm 9.26 lb Weight per gallon @20°C

Table 3.24: Dichloroethylene (7)

cis-Acetylene Dichloride

trans-Acetylene Dichloride

PHYSICAL PROPERTIES

H CI

PHYSICAL PROPERTIES

cis isomer

trans isomer

Acidity as HCl	0,0005% by wt, max.	Acidity as HC1	0.0005% by wt, max.
Boiling point @760 mm	60.3°C	Boiling point @760 mm	48.0-48.5°C
Coefficient of cubical expansion Av. / C, liquid	0.00127	Boiling range @760 mm	47.0-48.5°C
Color (Saybolt)	24 max.	Coefficient of cubical expansion Av. / C, liquid	0.00136
Flash point	6 ° C	Color (Saybolt)	24 max.
Freezing point	-80.5°C	Flash point	4°C
Latent heat of vaporization @B.P.	73.0 cal/g	Freezing point	50 °C
Refractive index @15°C	1. 4519	Latent heat of vaporization @B.P.	73.7 cal/g
Residue on evaporation	0.007% by wt, max.	Refractive index @15°C	1.4490
Solubility in water @25°C	0.77 g/100 g	Residue on evaporation	0.0007% by wt, max.
Solubility of water in solvent	G. C	Solubility in water @25°C	0.63 g/100 g
@10°C Specific gravity @20/4°C	0.04 g water/100 g 1.282	Solubility of water in solvent @10°C	0.03 g water/100 g
Specific heat		Specific gravity @20/4°C	1.257
Liquid, 20°C	0.270 cal/g/°C	Specific heat	
Vapor density (B. P., 760 mm)	3. 54 g/liter	Liquid, 20°C	0.270 cal/g/°C
Vapor pressure @30°C	273 mm	Vapor density (B. P., 760 mm)	3.67 g/liter
Viscosity liquid @20°C	0.48 centipoise	Vapor pressure @30°C	395 mm
Water: no cloud @-15°C	0.001% by wt, max.	Viscosity liquid @20°C	0.41 centipoise
Weight per gallon @20°C	10.70 1ь	Water: no cloud @-15°C	0.004% by wt, max.
		Weight per gallon @20°C	10.49 lb

2,2'-Dichloroethyl Ether sym- or β,β' -Dichloroethyl Ether

CICH2CH2OCH2CH2CI

PHYSICAL PROPERTIES

Acidity as HCl	0.005% max.
Apparent ignition temperature in air	396 °C
Boiling point	178 ° C
Boiling range @760 mm	Not more than 5% dis- tills below 173°C Not less than 95% dis- tills below 179°C
Color (500 mm tube)	Not more than 2 yellow Lovibond
Ethylene dichloride	1.0% max.
Flash point (C.C.)	55 ° C
Latent heat of vaporization @178°C	64.1 cal/g
Refractive index @20°C	1.457
Specific gravity @20/20°C	1,219-1,224
Specific heat @20-30°C	0.369 cal
Surface tension @25°C	41.8 dynes/ sq cm
Vapor pressure @20°C	1.2 mm
Viscosity @25°C	2.0653 centipoises
Weight per gallon @20°C	10, 17 16

Table 3.26: Dichlorohydrin (7)

Glycerol Dichlorohydrin

Dichloroisopropyi Alcohol

1,3-Dichloropropanol-2

q-Propenyldichlorohydrin

PHYSICAL PROPERTIES

1, 3-DICHLORO-Z-PROPANOL FORMS AZEOTROPES WITH:

CICH2CH(OH)CH2CI

Boiling poin	nt	(1,3-) 174°C (1,2-) 183°C	%		B. P. C of Azeotrope
Boiling ran		174-176°C (95%)	91	Bromobenzene	155.5
Flash point	•	74°C	39	o-Bromotoluene	170.5
Refractive		1.47-1.48	32	p-Bromotoluene	172.8
		1. 36-1. 39	62	Camphene	152.8
Specific gravity 1.36-1.39 Vapor pressure 7 mm			43	a-Chlorotoluene	168. 9
		• • • • • • • • • • • • • • • • • • • •	85	o-Chlorotolene	158.0
			78	p-Chlorotoluene	160.0
1,2-DICHLO	DRO-3-PROPANOL FORMS	AZEOTROPES WITH:	45	Cymene	165.5
%	B. P. C of Azeotrope	55	p-Dichlorobenzene	162.2	
		62	2,7-Dimethyllactane	155.0	
55	o-Bromotoluene	171.6	85	Dimethyl oxalate	162.0
75	Camphene	156.0	33.5	Indene	173.5
60	a-Chlorotoluene	171.0	30	Iodobenzene	173.0
68	Indene	160.0	10	lsoamyl butyrate	178.6
60	q-Limonene	169.3	52	Isoamyl ether	165.9
43	2-Octanol	172.5	43	d-Limonene	166.8
80	a-Pinene	153,0	50	Mesitylene	156.0
50	Thymene	170.8	41	p-Methylanisole	173.1
			35	Methylheptenone	178.5
			57	α -Phellandrene	163.0
			63.5	a-Pinene	150.4
			63	Pseudocumene	164.4
			85	Styrene	142, 5
			38	a-Terpinolene	166.8
			40	Thymene	166. 5

Table 3.27: Dichloromethane (22)

Methylene Chloride Methylene Dichloride

CH₂Cl₂

Methylene chloride is a clear, waterwhite liquid at ordinary temperatures, with a pleasant, ethereal odor. It is highly volatile and mobile. Methylene chloride is completely miscible with most organic liquids.

TYPICAL PROPERTIES

Molecular Weight	84.93	g water/100 g methylene	:
Boiling Point, °F	103.6	chloride at 25 °C	0.2
°C	39.8	Azeotrope with Water,	
Freezing Point, °F	-142.1	Boiling Point, °F	100.6
°C	- 96 .7	°C	38.1
Flash Point (Tag open cup)	none	Azeotropic Water	
Ignition Temperature, °F	1224	Content, wt %	1.5
°C	662		
Specific Gravity of Vapor		Specification for sta	andard grade
(air = 1.00)	2.94	Appearance	Clear, free of
Density at 20°C,	_,,	su	spended matter
pounds per gallon	11.15	Color, APHA, maximun	10
Viscosity at 20°C,		O d or	Characteristic;
centipoises	0.425		no residual
Specific Heat at 20°C,	0.125	Specific Gravity,	
cal/(g)(°C)	0.29	25°C/25°C	1.319 to 1.323
Vapor Pressure at 20 °C, mm	348.9	Acidity, ppm, maximum	5
Evaporation Rate at 25 °C	3-0.9	Nonvolatile Residue, ppi	m.
(ether = 100)	71	maximum	10
Heat of Vaporization, cal/g	75.3	Free Halogen	none
Btu/lb	135.5	Distillation Range	
Solubility	133.3	(100%), °C	39.5 to 40.5
g methylene chloride/100 g wat	A.F	°F	103.1 to 104.9
at 20°C	2.0	Water, ppm, maximum	100
at 20 C	2.0	··· ···· , pp···· , ·········	100

Flammability of Methylene Chloride-Oxygen-Nitrogen Mixtures

Table 3.27: (continued)

1,1-DICHLOROMETHANE FORMS AZEOTROPES WITH:

%	B. P	C of Azeotrope
30	Acetone	57.6
23	Biallyl	56.5
94. 8	1, 3-Butadiene	-5.0
20	Chloromethyl methyl ether	54
30	Cyclopentane	38.0
55	Diethylamine	52. 0
11.5	Ethanol	54. 6
21	Iodomethane	39.8
8	Isopropanol	56. 6
51	Pentane	35.5
23	Propylene oxide	40.6
6	tert-Butanol	57.1
1.5	Water	38. 1

Table 3.28: Dichloropentanes (7)

C₅H₁₀Cl₂

PHYSICAL PROPERTIES

Table 3.29: 2,4-Dichlorotoluene (7)

C6H3(CI)2CH3

PHYSICAL P	ROPERTIES
------------	-----------

Acidity as HCl	0.025% max.	Acidity as acetic acid	Nil
Average chlorine content	48%	Boiling point @760 mm Hg	200. 5°C
Distillation	95% between 130-200°C	@ 50 mm Hg	113.0°C 77.0°C
Evaporation rate @109°F:Minutes		@10 mm Hg	
3. 83	25%	Congealing point	-13°C
8.00 14.20	50% 75%	Distillation Range @760 mm Hg	199-202°C
90.00	100%	Fire point (Cleveland O. C.)	383 °F
Flash point (O.C.)	9 7° F	Flash point (Cleveland O. C.)	19 9°F
Heat of vaporization	68.5 cal/g	Moisture content	Nil
Kauri-butanol value	67 cc	Molecular weight	161.04
Solubility in water	Negligible	Pounds per gallon	10.34
Specific gravity @20°C	1.07-1.08	Purity	99.0%
Specific heat	0.369 cal/g	Refractive index N ₂₂	1.5480
Surface tension @25°C	31.8 dynes/cm	Side chain chlorine	None
Viscosity @25°C	0.016 poise	Specific gravity @25/25°C	1.247 min1.251 max.
Water azeotrope @80-97°C	66% C ₅ H ₁₈ Cl ₂ (approx.)	Surface tension, DuNouy @25°C	38. 29 dynes/cm
Water content	None	Vapor pressure @130°C	100 mm Hg
Weight per gailon	8. 94 lb		

Table 3.30: Epichlorohydrin (7)

Epichlorohydrin is a colorless, mobile, highly reactive liquid. It is completely miscible with many organic liquids such as acetone, carbon tetrachloride, alcohols, benzene, ethers, halogenated hydrocarbons, fixed oils, etc. It is not miscible with glycerin and water. The two reactive functional groups make it a very useful chemical intermediate. In the presence of a catalyst, its epoxy group enters into an exothermic reaction with the active hydrogen atoms of alcohols, amines, carboxylic acids, phenols, mercaptans, etc. The atom in the molecule reacts with acid salts, alkali metal phenolates, and alcoholates, amines, etc.

Epichlorohydrin is used to a large extent as a raw material in the manufacture of epoxy resins. When condensed with dihydric phenols or phenolic resins, epoxy resins are obtained which range from liquids to solids. It is also used in the manufacture of ion exchange resins, adhesion resins and a large number of other chemicals.

Absolute viscosity at 20°C., cps.	1.1
Δ BP/ Δ P., at 740 to 760 mm. Hg, °C. per mm.	0.044
Boiling point, °C., 760 mm. 50 mm. 10 mm.	115.2 45 16
Freezing point, °C.	- 58.1
Heat of vaporization at 1 atm., Btu/lb.	174
Molecular weight	92.53
Refractive index, nD at 20°C.	1.4359
Solubility, % by weight at 20°C., in water water in	5.9 1.2
ΔSG/Δ T. at 20° to 30°C.	0.00120
Specific gravity at 20/20°C.	1.1761
Vapor pressure at 20°C., mm. Hg	12.7
Flash point (open cup), °F.	105

Table 3.31: Ethyl Chloride (22) (23)

Monochloroethane Muriatic Ether

	TYPICAL P	ROPERTIES	
Molecular Weight:	64.52	Refractive Index of Vapor, n _D ²⁵	1.001
Description:	Ethyl chloride is a	Vapor Pressure, mm Hg	
colorless mobile liqu	id at 1 atmosphere	0°C (32°F)	464
below 12.4°C (54°F)		10°C (50°F)	692
point, it is a colorles	s gas. Ethyl chloride	20°C (68°F)	1011
has an ethereal odor	and is highly volatile	Specific Gravity of Vapor (air=1)	2.23
and flammable.		Solubility at 0°C,	
		g ethyl chloride/100 g water	0.447
Freezing Point, °C	-138.3	g water/100 g ethyl chloride	0.07
°F	-217	Solubility:	
•	21,	Ethyl chloride is soluble in most solvents.	organic

C2H5CI

Table 3.31: (continued)

Flash Point, Tag open cup,	°C	-43
	°F	-45
Explosive Limits,		
volume % in air		3.16 to 15
Autoignition Temperature,	°C	519
	°F	966
Specific Heat at 0°C,		
cal/ (g) (°C) or Btu/ (lb) (°F)	0.37
Heat of Vaporization at Boi	ling	Point ·
cal/g		92.5
Btu/lb		165.6
Viscosity at 10°C, cps		0.279
Density at 20°C, pounds/gal	lon	7.461

Reactivity:

At ordinary temperatures the oxidation and hydrolysis of ethyl chloride take place slowly. In the absence of air and water, it can be used with most common metals up to 200°C (392°F). Ethyl chloride burns with a green-edged flame, producing hydrogen chloride, carbon dioxide and water. It is thermally stable to 400°C (752°F); thermal splitting yields ethylene and hydrogen chloride. The reactivity of ethyl chloride as an intermediate is often based on the affinity of alkali metal atoms for its chlorine atom.

Specification and Typical Analysis:

Specification	Typical Analysis
99.5 minimum	99.97
20 maximum	< 5
clear, free of suspended matter	clear, free of suspended matter
0.002 maximum	<0.0001
0.02 maximum	0.0010
0.01 maximum	< 0.0001
0.5 maximum	0.03
12 to 13 0.922 to 0.925	12.2 to 12.4 0.922
	99.5 minimum 20 maximum clear, free of suspended matter 0.002 maximum 0.02 maximum 0.01 maximum 0.5 maximum 12 to 13

Ethyl Chloride Vapor Pressure vs Temperature

Solubility, Approximate, g/100 g Solvent at 25°C

Acetone	103
Benzene	110
n-Heptane	87
Ethanol (21°C)	48
Methanol	37
Water (20°C)	0.6

Table 3.32: Ethylene Chlorohydrin (7)

Glycol Chlorohydrin 2-Chlorethyl Alcohol CICH2CH2OH

PHYSICAL PROPERTIES

Absolute viscosity @ 20 °C 3.4 centipoises 1.2040 Apparent specific gravity @20/20°C 128.7°C Boiling point @760 mm Hg @ 50 mm Hg @ 10 mm Hg 60°C Coefficient of expansion @ 55°C 0.00092 Flash point (Cleveland O. C.) 140°F Freezing point -62.6°C Molecular weight 80,52 Pounds per gallon @20°C 10.03 Solubility in water @20°C Complete Solubility of water in solvent @20°C Complete Vapor pressure @20°C 4.9 mm Hg

Table 3.33: Ethylene Dichloride (7)

1,2-Dichloroethane sym-Dichloroethane Ethylene Chloride Dutch Oil Elayl Chloride

CICH2-CH2CI

PHYSICAL PROPERTIES

Not more than 0.001%	Purity
	Refractive index
449 °C	Solubility in wat
83.6°C	Solubility of wat
Below 82, 5°C none	@20°C
Above 84.0°C none	Specific gravity
0.00116	Specific heat
Not more than 1.0 yellow	Specific resistiv
10.5±0.3	Surface tension
3 x 10 ⁻⁸	Thermal conduct
6. 2-15. 9% by vol.	Vapor density (E
28 °C	Vapor pressure
21 °C	Viceite @ 350C
-35°C	Viscosity @25°C
2720 cal/g	Water content
77.3 cal/g	Weight per gallo
Not more than 0.001 g/100 cc	
	449 °C 83.6 °C Below 82.5 °C none Above 84.0 °C none 0.00116 Not more than 1.0 yellow 10.5±0.3 3 x 10-8 6.2-15.9% by vol. 28 °C 21 °C -35 °C 2720 cal/g 77.3 cal/g Not more than 0.001

Purity	Not less than 99.0%
Refractive index	1,4443
Solubility in water @20°C	0.87% by wt
Solubility of water in solvent @20°C	0.16% by wt
Specific gravity @20/20°C	1, 2550
Specific heat	0.31 cal/g/°C
Specific resistivity	9.0 x 10 ⁶ ohms/cm
Surface tension @25°C	37.5 dynes/cm
Thermal conductivity @ 20 °C	0.0038 cal/cm/sec/°C
Vapor density (B. P., 760 mm)	3. 88 g/liter
Vapor pressure @20°C @30°C	63 mm 99 mm
Viscosity @25°C	0.0078 poise
Water content	Not more than 0.02%
Weight per gallon @25°C	10.38 lb

Table 3.33: (continued)

ETHYLENE DICHLORIDE FORMS AZEOTROPES WITH:

%		B. P. *C of Azeotrope
18	Allyl alcohol	79.9
6	tert-Amyl alcohol	83
79	Carbon tetrachloride	75.6
19.5	1, 1-Dichloroethane	72
37	Ethanol	70.3
38	Formic acid	77.4
6. 5	Isobutanol	83.5
43.5	Isopropyl alcohol	74.7
19	Propanol	80.7
10	n-Propyl formate	84, 1
18	Trichloroethylene	82. 9
32	Methanol	61
8, Z	Water	70.5

Water Content vs. Cloud Point (53)

Limits of Flammability of Ethylene Dichloride in Air and Carbon Dioxide

Table 3.34: 2-Ethylhexyl Chloride (7)

 $\mathsf{CH_3CH_2CH_2CH(C_2H_5)CH_2Cl}$

PHYSICAL PROPERTIES

Average weight @20 °C	7.33 lb/gal
Boiling point @760 mm Hg	172.9°C
Flash point (O.C.)	140°F
Molecular weight	148.67
Solubility in water @20°C	0.1% by wt
Solubility of water in solvent @20°C	0.1% by wt
Specific gravity @20/20°C	0.8833
Vapor pressure @20°C	1.3 mm Hg

Table 3.35: Glycerol α -Monochlorohydrin (7)

CICH2CHOHCH2OH

PHYSICAL PROPERTIES

Boiling point	213°C
Boiling range (ASTM)	90% between 136-142°C @40 mm
Flash point (O.C.)	280 °F
Refractive index @25°C	1,4781
Solubility in water	100%
Specific gravity @20/4°C	1,320
Weight per gallon	10.98 lb

Perchloroethane

Carbon Trichloride

Tetrachloroethylene Dichloride

CCI3CCI3

PHYSICAL PROPERTIES

HEXACHLOROETHANE FORMS AZEOTROPES WITH:

Acidity as HCl	Less than 0.05%	%		B. P. *C of Azeotrope
Boiling point @760 mm	Sublimes @185°C			
Latent heat of vaporization @ B. P.	46.4 cal/g	34	Aniline	176.8
	83. 5 Btu/1b	12	Benzyl alcohol	182.0
Melting point in sealed tube	188. Z*C	30	p-Bromotoluene	183.5
Nonvolatile matter	Less than 0.15%	25	Chloroacetic acid	171.2
Purity	98.0% min.	28	o-Cresol	181.3
Specific gravity @20/4°C	Ž, 091	43	Diethyl oxalate	178.6
Specific heat @25°C	0.174 cal/g/°C or Btu/lb/°F	20	Diisobutyl carbonate	184.0
75 1 1 1 1 1 1 N N N N N N N N N N N N N		55	Dimethyl malonate	176.0
Vapor density (B. P., 760 mm)	6.30 g/liter	49.5	Ethyl acetoacetate	172.5
• •	apor pressure @30°C 2 mm	37	Isovaleric acid	172.6
Water	0.2% by wt, max.	30	Phenol	173.7
		15	Trichloroacetic acid	181.0

Table 3.37: n-Hexyl Chloride (7)

C6H13CI

Boiling range 133-135°C
Flash point 95°F
Specific gravity @20/20°C 0.877

Table 3.38: Methylene Chloride (53)

Product Description

Methylene chloride is a clear, colorless, heavy, nonflammable liquid with a pleasant ethereal odor. It is the least toxic of the chloromethanes and is not photochemically reactive. As one of the most powerful solvents in the chlorinated group, it has found a wide range of applications where superior solvency is important. Vulcan's methylene chloride is available in Technical, Aerosol, Degreasing, Special and Decaffeination grades. The Technical and Decaffeination grades meet the requirements of the American Chemical Society Reagent Chemical Specifications, 7th Edition, 1987, the Food Chemicals Codex, 3rd Edition, the National Formulary XVI and Military Specification MIL-D-6998D.

Physical Properties

i iiyaicai	Tioperaes
Formula	CH ₂ Cl ₂
Molecular Weight	84.94
Boiling Point	40.1°C; 104.2°F
Density	10.98 lbs./gal. @ 25°C
Specific Gravity @ 25/25°C	1.320
Freezing Point	-96.7°C; -142.1°F
Viscosity @ 25°C	0.430 cP
Flash Point	None
Latent Heat	
of Vaporization @ b.p.	78.7 cal/g; 141.7 BTU/lb
Specific Heat,	
liquid @ 20℃	0.276 cal/g/°C
Solubility @ 25°C	
water in solvent	0.170g/100g solvent
solvent in water	1.32g/100g water

CH₃CI

Table 3.39: Isopropyl Chloride (7)

CH3CHCICH3

Boiling point	35. 4° C
Freezing point	-117°C
Refractive index	1.3811
Solubility in water @12.5°C	0.344
Specific gravity @20/4°C	0.8590 g/100 g
Viscosity @22.5°C	0.2962 centipoise
Weight per gallon	7. 5 l b

Table 3.40: Methyl Chioride (23)

Monochloromethane

Specific Heat, cal./gm. ° C. Liquid at 20° C.

 Critical Density, gm./cc.
 0.353

 Refractive Index, liquid at - 23.7°C.
 1.3712

 Vapor at 25°C.
 1.000703

 Solubility, cc/100 cc. solvent at 20°C.
 303

 Benzene.
 4723

 Carbon Tetrachloride
 3756

 Acetic Acid
 3679

 Ethyl Alcohol
 3740

 Vapor at 25° C. and 1.021 atmos.
 0.199

 Critical Temperature
 143.1° C. (289.4° F.)

 Critical Pressure, atmos.
 65.9 (968.7 psia.)

Table 3.40: (continued)

Thermodynamic !	Properties o	f Methyl	Chloride	(Ideal G	as State)

			F°-H°298.15		FORM	ATION FROM ELEM	ENTS
T TEMP °K	C% HEAT CAPACITY CAL /DEG / MOLE	H °1 - H °298 15 HEAT CONTENT CAL / MOLE	S°1 ENTROPY CAL /DEG / MOLE	T FREE ENERGY FUNCTION CAL /DEG / MOLE	HEAT & H°s, CAL /MOLE	FREE ENERGY & F % .CAL /MOLE	LOG10Kp
298	9.73		55.80	55.80	-20630	-14952	10.960
300	9.76	18	55.86	55 80	-20642	14918	10.868
400	11.50	1080	58.91	56.21	-21283	·12907	7.052
500	13.28	2332	61.70	57.04	-21825	10750	4.699
600	14.64	3707	64.19	58.02	-22313	- 8495	3.094
700	15.92	5236	66.55	59.07	-22699	- 6144	1.918
800	17 03	6885	68.75	60.15	-23012	3764	1.028
900	17.76	8400	70.30	60.97	-23494	- 1111	.269
1000	18.86	10480	71.75	61.27	-23444	2086	- 455
1100	19.60-	12400	74.58	63.31	-23586	3551	- 705
1200	20.26	14400	76.32	64.32	-23673	6027	- 1.097
1300	20 82	16450	77.97	65.32	-23747	8493	· 1.427
1400	21.32	18560	79.52	66.27	-23789	10987	- 1.715
1500	21.75	20720	81.01	67.20	-23803	13502	- 1.967

ACTUALLY IS 298 15° K

Density of Liquid Methyl Chloride

Density of Saturated Methyl Chloride Vapor

Vapor Pressure of Methyl Chloride

ref. D. B. Stull, Ind. Eng. Chem. 39, 517 (April, 1947)

Viscosity of Liquid Methyl Chloride

Table 3.40: (continued)

Table 3.41: Monochlorohydrin (7)

CICH2CH(OH)CH2OH PHYSICAL PROPERTIES

Boiling point

213°C

Boiling range

213-228°C (decomposes)

Specific gravity @18°C

1.326

Table 3.42: Pentachloroethane (7)

CHCl2-CCl3

PHYSICAL PROPERTIES		PENTACHLO	ROETHANE FORMS AZEOTI	OPES WITH:
Acidity as HCl	0.001% by wt, max.	%	v	B. P. *C of Azeotrope
Boiling point @760 mm	161.9°C			•
Coefficient of cubical expansion		3	Acetamide	160.5
Av./°C, liquid	0.0009097	26	Butyric acid	1 56. 8
Color (Saybolt)	18 max.	97	Camphene	159.3
Explosion limits	None	9.9	Chloroacetic acid	158.7
Flash point	Nonflammable	36	Cyclohexanol	157, 9
Free halogen	None	28	Cyclohexanone	165.4
Freezing point	-22.0°C	22, 5	1, 3-Dichloro-2-Propano	1 159.7
Latent heat of vaporization @B.P.	43.6 cal/g	32	Dimethyl oxalate	157.6
	78, 4 Btu/lb	65	Ethyl lactate	153, 5
Nonvolatile matter	0.0007% by wt, max.	50	2-Furaldehyde	155. 2
Refractive index	1.5035	15	Glycol	154, 5
Solubility in water @25°C	0.05 g/100 g	46	Hexyl alcohol	155, 8
Solubility of water in solvent @20°C	0. 24 g water/100 g	50	Isoamyl propionate	158.7
Specific gravity @20.4°C	1.678	43	Isobutyric acid	152, 9
Specific heat		9	Isovaleric acid	160. 3
Liquid, 20°C	0.215 cal/g/°C	56	Mesitylene	166.0
Vapor density (B.P. and 760 mm)	568 g/liter	97	Methylheptenone	173.3
Vapor pressure @30°C	6 mm	9.5	Phenol	160.9
Viscosity liquid @20°C	2.45 centipoises	89	a-Pinene	155. 6
Weight per gallon @ 20 °C	14.00 lb			

Table 3.43: Perchloroethylene (22)

PERCHLOR

TYPICAL PROPERTIES

Perchlorethylene is a clear, water-white liquid at ordinary temperatures. It is completely miscible with most organic liquids. The stabilized product, Perchlor, can be used with any of the common construction metals.

Chemical Names: Tetrachloroethylene:	Heat of Vaporization	
perchloroethylene	at 760 mm Hg. cal/g	50.1
Chemical Formula: CCl ₂ CCl ₂ ;	Btu/lb	90.2
	Vapor Density at 121.1°C	
	and 760 mm Hg. g/l	5.22
CL CI	lb/ft ³	0.326
)C=C(Specific Gravity of Vapor	
Cl Cl	(air = 1)	5.83
	Vapor Pressure at 20°C.	
	mm Hg	14.2

Table 3.43: (continued)

TYPICAL PROPERTIES

Molecular Weight	165.85	Evaporation Rate at 77°F	
Boiling Point, °F	250.0	$(25^{\circ}C)$ (ether = 100)	9
° ('	121.1	gal/(f(2))(day)	0.15
Freezing Point, °F	-8.2	Flammability Nonflamn	nable
°C	-22.3	Viscosity at 20°C, cps	0.88
Pounds per Gallon at		Solubility at 25°C,	
68°F (20°C)	13.57	g Perchlor/100 g water 0	0.015
Kilograms per Liter		g water/100 g Perchlor 0.0	0105
at 20°C	1.63	Azeotrope with Water,	
Refractive Index, nD	1.5053	Boiling Point, °F	89.2
Dielectric Constant at		°C	87.7
1000 cps and 25°C	2.365	Azeotropic Water Content, wt %	15.8
Specific Heat at 20°C		•	
cal/(g) (°C) or Btu/(lb) (°F)	0.205	Permissible Exposure Limit	
Flash Point (Tag open cup)	None	(8-hour TWA) ppm	100
Fire Point (Tag open cup)	None		

Specification and Typical Analysis, PPG Perchlor, All Grades:

PPG Perchlor, All Grades:		Typical
	Specification	Analysis
Appearance	Clear, free of	Clear, free of
	suspended matter	suspended matter
Color, APHA	15 maximum	8
Odor	Characteristic;	Characteristic;
	no residual	no residual
Spot Test	No spot or stain	No spot or stain
Specific Gravity, 20°C/20°C	1.623 to 1.628	1.624
Nonvolatile Residue, wt %	0.0025 maximum	0.0003
Free Chlorine	None	None
Moisture	No cloud at 0°C	No cloud at -5°C
Distillation Range (100%), °C	120.0 to 122.0	120.8 to 121.6
°F	248.0 to 251.6	249.4 to 250.9
pH		Drycleaning, 6.8
		Degreasing, 8.4

Perchloroethylene (53)

Table 3.44: Propylene Chlorohydrin (7)

Chloroisopropyl Alcohol

CH3CHOHCH2CI

Propylene chlorohydrin is a colorless liquid with a milk odor; it is freely soluble in water. It is largely used in organic syntheses, for the purpose of introducing the hydroxypropyl group.

PHYSICAL PROPERTIES

Acidity as HCl	0.02% by wt
Absolute viscosity @ 20 °C	4.7 centipoises
Apparent specific gravity @20/20°C	1.1128
Boiling point @760 mm Hg @ 50 mm Hg @ 10 mm Hg	127. 4°C 59°C 31°C
Coefficient of expansion @ 55°C	0.00097
Constant-boiling mixture @760 mm: Chlorhydrin approx. 46% Water 54%	B.P. 95.4°C
Flash point (Cleveland O.C.)	125 °F
Molecular weight	94. 54
Solubility in water	Miscible in all proportions
Vapor pressure @20°C	4.9 mm Hg
Weight per gallon @20°C	9. 29 lb

Table 3.45: Propylene Dichloride (7)

1,2-Dichloropropane

CH3CHCICH2CI

Propylene Chloride

PHYSICAL PROPERTIES

Acidity as HCl	0.005% max.
Boiling point	95.9°C
Boiling range @760 mm	93-99 ° C
Coefficient of expansion per *C	0.001108-20°C 0.001153-55°C
Dielectric constant, 85.8 kilocycles	8,925 recip. ohms @26°
Explosive limits in air	Lower = 3.14% by vol. @25°C Upper = 14.5% by vol. @100°C
Flash point (ASTM O.C.)	21 °C
Free halogen	None
Freezing point	-70°C
Ignition temperature in air	557 ° C
Latent heat of vaporization @B.P.	72.2 cal/g
Nonvolatile matter	0.005 g/100 cc, max.
Refractive index	1.4418
Solubility in water @20°C	0. 26% by wt
Solubility of water in solvent @ 20°C	0.07% by wt
Specific gravity @20/20°C	1.157-1.163
Specific heat Liquid, 20°C	0.31 cal/g/°C or Btu/lb/°F
Surface tension @25°C	31.4 dynes/cm
Vapor density (B.P., 760 mm)	3.72 g/liter
Vapor pressure @20°C	35, 8 mm
Viscosity @20°C	0.00865 poise
Weight per gallon @20°C	9. 65 lb

Table 3.46: 1,1,2,2-Tetrachloroethane (7)

Acetylene Tetrachloride Bonoform

$\mathsf{CHCl}_2\mathsf{-}\mathsf{CHCl}_2$

Acidity as HCl	0.0027% by wt, max.
Boiling point	146.5°C
Coefficient of cubical expansion Av. / °C, liquid	0.000998 (15-99°C)
Fire point	Nonflammable
Flash point	Nonflammable
Free halogen	None
Freezing point	-43°C
Heat of vaporization @B.P.	55.1 cal/g
Refractive index	1.4942
Residue on evaporation	0.00062% by wt
Solubility in water @ 25°C	0.32% by wt
Solubility of water in solvent @20°C	0.03% by wt
Vapor pressure @ 30°C	9 mm
Viscosity liquid @20°C	1.7 centipoises
Water: no cloud @ -10°C	0. 032% by wt
Weight per gallon @25°C	13. 25 lb

1, 1, 2, 2-TETRACHLOROETHANE FORMS AZEOTROPES WITH:

%		B. P. *C of Ageotrope
45	Butyl propionate	152.5
3, 8	Butyric acid	145.7
1.8	Chloroacetic acid	146.3
55	Cyclohexanone	159.1
74	2-Ethoxyethyl acetate	158.2
27	Ethyl chloroacetate	147.5
39	Ethyl orthoformate	151.5
97	2-Furaldehyde	161.6
9	Glycol	145.1
32	Isoamyl acetate	150.1
98	Isoamyl alcohol	131.3
37	Isobutyl isobutyrate	144.9
7	Isobutyric acid	144.8
15	Mesityl oxide	147.5
52	Methyl lactate	143.3
60	Propionic acid	140.4
34	Propyl butyrate	150.2
45	Styrene	143.5

Perchloroethylene

Tetrachloroethene

CCI2=CCI2

PHYSICAL PROPERTIES

0.001% by wt, max.
121.0°C
120-122°C
0.001079 (15-90°C)
22
2. 20
30,000 volts
None
Nonflammable
Nonflammable
-22.4°C
50.1 cal/g
0,0007% by wt, max.
0.02%
1.5055
0.0106% by wt, max.
0.04% by wt
0. 02% by wt
1.618
0. 21 cal/g/°C
1.8 x 10 ¹³ ohms/cm
28 mm
0.90 centipoise
0.008% by wt
13.46 lb

TETRACHLOROETHYLENE FORMS AZEOTROPES WITH:

%	В	. P.	*C of Azeotro	pe
2. (Acetamide		120, 5	
38. 5	Acetic acid		107.4	
46	Allyl alcohol		93.4	
52	l-Bromo-3-Methylbutane		119.3	
29	Butanol		109.0	
24. 3	2-Chloroethanol		110.0	
26	Diethyl carbonate		118.6	
51.5	Epichlorohydrin		110.1	
63	Ethanol		76. 8	
43	Ethyl butyrate		119.5	
6	Glycol		119.1	
20	Isoamyl alcohol		116.1	
35	Isoamyl formate		117.9	
40	Isobutanol		103.1	
70	Isopropanol		81.7	
3	Isobutyric acid		120.5	
53	Isobutyl acetate		115.5	
35	Isobutyl ether		119.5	
55	Isopropyl isobutyrate		119.0	
24. 5	2-Methoxyethanol		109.7	
42	Isobutyl nitrate		117.0	
52	4-Methyl-2-Pentanone		113.9	
32	Paraldehyde		118.8	
48	Propanol		94. 1	
8. 5	Propionic acid		119.2	
19.5	Pyrrol		113.4	
43	l, l, 2-Trichloroethane		112.0	
52	Triethyl borate		117.5	

Table 3.47: (continued)

Specific Gravity vs Temperature of Hooker Perchlorethylene

Vapor Pressure vs Temperature of Hooker Perchlorethylene

Table 3.48: Trichlorobenzenes (7)

	1, 2, 3-	1,2,4-	1,3,5-
	TRICHLOROBENZENE	TRICHLOROBENZENE	TRICHLOROBENZENE
	C1 C1	Çı Cı	CI CI
Synonym:	vic-Trichloro-	une-Trichloro-	sym-Trichloro-
	benzene	benzene	benzene
Physical state	White crystals	Colorless líquid	White crystals
Boiling point:	221 °C	213°C	208.5°C
@760 mm	(429. 8 °F)	(415.4°F)	(407.3°F)
Density: 25/25°C	1.69 (solid)	1. 451 (liquid)	
Flash point:	113°C	110°C	107°C
(Tag C.C.)	(235, 4°F)	(230.0°F)	(224.6°F)
Index (19) of Refraction:	1. 5776	1. 5732	1.5662

Table 3.49: 1,1,1-Trichloroethane (53)

TLV-TWA Values

SOLVENT	TLV-TWA* (ppm in air)	
Solvent 111® (1,1,1-trichloroethane)	350	
Trichloroethylene	50	
Perchloroethylene	50	
Methylene Chloride	100	
Chloroform	10	
1,1,2-trichloroethane	10	
Stoddard Solvent	100	
Toluene	100	
Xylene	100	
Turpentine	100	
Methyl Alcohol (Methanol)	200	
Benzene	10	

^{*1985-86} values

Table 3.49: (continued)

Specifications for SOLVENT 111

General Purpose Grade

COMPONENT	SPECIFICATIONS
Appearance	Clear, free from
	suspended matter
Color, APHA	15 max.
Specific Gravity @ 25/25°C.	1.318 - 1.324
Distillation Range, °C.	
760 mm. IBP to DP	72 - 88
Free Halogens	None
Acidity, as HCl	0.001% by wt. max.
Nonvolatile Matter	0.001% by wt. max.
Water	0.0100% by wt. max.
Purity:	
1,1,1-trichloroethane content	96.0% by wt. min.
1,1,1-trichlorethane content	95.0% by vol. min.
Individual halogenated impurities	0.5% by wt. max.
Total halogenated impurities	1.0% by wt, max.
Acid Acceptance, as NaOH (ASTM D-2942)	0.20% by wt. min.
Aluminum Corrosion Test	Passes O-T-620c
Metals Corrosion Test	Passes MIL-T-81533A
Stability (accelerated oxidation test)	Passes MIL-T-81533A

Solvent 111®, General Purpose Grade meets requirements of Federal Specification O-T-620c (1,1,1-trichloroethane, technical) and Military Specification MIL-T-81533A (1,1,1-trichloroethane, vapor degreasing.)

Aerosol Grade

COMPONENT	SPECIFICATIONS
Appearance	Clear, free from suspended matter
Color, APHA	15 max.
Specific Gravity @ 25/25°C.	1.295 - 1.303
Distillation Range, °C.	
760 mm. IBP to DP	68 - 78
Free Halogens	None
Acidity, HCl	0.001% by wt. max.
Nonvolatile Matter	0.001% by wt. max.
Water	0.0100% by wt. max.
Purity:	
1,1,1-trichloroethane content	95.0% by wt. min.
1,1,1-trichloroethane content	95.0% by vol. min.
Individual halogenated impurities	0.5% by wt. max.
Total halogenated impurities	1.0% by wt. max.
Acid Acceptance as NaOH	0.20% by wt. min.

Physical Properties of SOLVENT 111

Chemical Formula
Molecular.Weight
Freezing Point, °C37.9
Boiling Point at 1 atm, °C
Heat of Vaporization at Boiling Point, cal/g
Specific Heat, Liquid at 20°C, cal/g/°C (Btu/lb/°F)
Critical Temperature, °C
Critical Pressure, atm
Thermal conductivity, Liquid at 20°C, Btu/hr/ft²/°F/ft
Specific Gravity of Liquid, 25/25°C
Liquid Density, pounds per gallon at 25°C
Average Coefficient of Cubical Expansion, Liquid, per °C, (0 to 40°C)
Specific Gravity of Vapor at 1 atm at bp (air = 1)
Viscosity, Liquid at 20°C, cP
Surface Tension at 25°C, Dynes/cm
Solubility at 25°C, g Solvent 111® in 100 g water 0.07 g Water in 100 g Solvent 111® 0.04
Refractive Index nD, Liquid at 20°C 1.4374* Liquid at 25°C 1.435
Dielectric Strength, Liquid at 25°C, kV, (ASTM D 877)
Dielectric Constant, Liquid, 100 kHz, at 25°C (ASTM D 924)
Vapor Pressure
Density of Liquid6
Flash Point (ASTM D 1310)
Explosion Point (ASTM D 1310)
Autoignition Temperature, °C
Flammable Range, %v in Air at 25°C
Evaporation Rate (Ether = 100)
Binary Azeotropes:

Binary Azeotropes:

Component	% by wt	Boiling Point	
Water	4.3	65.0°C (149°F)	
Methanol	23.0	55.5°C (132°F)	
Ethanol	17.4	64.4°C (148°F)	
Isopropanol	18.2	68.7°C (155.6°F)	
n-Propanol	7.1	72.3°C (162°F)	
Hexane	28.9	60.0°C (140°F)	

^{*}Values for unstabilized 1,1,1-trichloroethane

Vapor Pressure of SOLVENT 111

Density of SOLVENT 111

Table 3.49: (continued)

Properties of Mixtures of SOLVENT 111 and Oil

Table 3.49: (continued)

Comparative Physical Properties—Chlorinated Solvents

Properties	Solvent 111®	Trichloro- ethylene	Perchloro- ethylene	Methylene Chloride
Boiling Point				
(760mm Hg), °F (°C)	165 (74)	188 (86.7)	250 (121)	104 (39.8)
Freezing Point, °F (°C)	-36(-38)	-122(-85.5)	-9(-22)	-142(-97)
Liquid Specific				
Gravity, 25/25°C	1.319	1.456	1.620	1.320
Specific Heat of Liquid at 20°C,				
(cal/g/°C) or (Btu/lb/°F)	0.25	0.23	0.21	0.28
Of (Bluffor-F)	0.23	0.23	0.21	0.20
Heat of Vaporization,		F7.2	50.0	
cal/g Btu/lb	54.4 98.0	57.2 103	50.8 91.4	78.7 141.7
•	30.0	103	71.4	141.7
Refractive Index at 25°C	1.435	1.473	1.503	1.424
at 25°C	1.433	1.473	1.303	1.424
Viscosity at 20°C,				
cP	0.86	0.58	0.88	0.42
Density at 25°C,				
(lbs./gal)	10.97	12.10	13.47	10.98
Flash Point	None	None	None	None
Fire Point	None	None	None	None
Vapor Density at bp,				
lb/ft¹	0.279	0.278	0.326	0.206
Vapor Specific				
Gravity (air = 1.0)	4.55	4.54	5.73	2.93
Kauri-butanol value				
(ASTM D 1133)	124	129	90	135
Evaporation Rate, Ether=100	35	28	9	71
Carbon Tetra-	33	20	•	, ,
chloride = 100	100	84	39	147
Energy required to convert 1 lb. liquid				
at 70°F to vapor at				
bp and 1 atm, (Btu)	127	124	125	151
Energy required to convert 1 gal. liquid				
at 70°F to vapor at	1.410	4000	4600	4665
bp and 1 atm, (Btu)	1410	1500	1690	1660

Table 3.50: 1,1,2-Trichloroethane (7)

beta-Trichloroethane

Vinyl Trichloride CI-CH₂CH-Cl₂

Ethylene Trichloride

PHYSICAL PROPERTIES

Acidity as HCl	0.0001%	by wt, max.	Specific gravity @20/4°C	I. 441
Boiling point @760 mm Boiling range @760 mm	113.5°C	13.3°C (5-95%)	Specific heat Liquid, 20°C	0. 266 cal/g/°C
Fire point	Nonflammable Nonflammable	Specific resistivity	5.2 x 10 ⁸ ohms/cm 4.21 g/liter	
Flash point		Vapor density (B. P., 760 mm)		
Free halogen Freezing point Latent heat of evaporation	None -36.7°C		Vapor pressure @ 30°C @ 90°C (194°F) @ 100°C (212°F) @ 110°C (230°F) @ 114°C (237°F)	36 mm 369 mm 505 mm 680 mm 764 mm
Nonvolatile matter		None	Water	0.007% by wt, max.
Refractive index		1, 4711	Weight per gallon @20°C	12.04 lb
Solubility in water @25°C		0.48 g/100 g		
Solubility of water in solve @ 20°C	ent	0.03 g water/10	00 g	

Table 3.51: Trichioroethylene (7)(27)

1,2,2-Trichloroethylene

PHYSICAL PROPERTIES

Acidity as HC1	Not more than 0.001%
Boiling point	86.7°C
Boiling range @760 mm	95% or better distills from 86.0-87.5°C
Coefficient of expansion per °C	0.00115-20°C
Color (Saybolt)	24 max.
Dielectric constant, 1000 cycle	3. 2 7
Fire point	Nonflammable
Flash point (ASTM O. C.)	None @B.P.
Free chlorine Freezing point	None -86.4°C
Latent heat of vaporization @B.P.	57.3 cal/g
Nonvolatile matter	0.00067% by wt, max.
Power factor, 1000 cycle	2. 2%
•	1.4735
Refractive index @27*C	
Solubility in water @25°C	0.10% by wt
Solubility of water in solvent @25°C	0.02% by wt
Specific gravity @20/20°C	1.4655
Surface tension @25°C	32.0 dynes/cm
Vapor pressure @ -20°C @ - 9°C @ 0°C @ 20°C @ 40°C @ 50°C @ 65°C @ 77°C	4.5 mm 9.0 mm 17.4 mm 56.0 mm 145 mm 230 mm 385 mm 562 mm
Viscosity @25°C	0.00550 poise
Water content	0.002% by wt
Weight per gallon @20°C	12. 20 lb

Table 3.51: (continued)

Typical Boiling Point Curve of Trichloroethylene-Mineral Oil Mixture

Table 3.51: (continued)

CHCI=CCI₂

TRICHLOROETHYLENE FORMS AZEOTROPES WITH:

	B.P. *C of Azeotrope
Acetic acid	87.0
Allyl alcohol	81.0
tert-Amyl alcohol	86.7
Butanol	86. 9
tert-Butanol	75.8
1,2-Dichloroethane	82.9
Diethoxymethane	89. 29
Isobutanol	85.4
Isopropanol	75, 5
Propanol	81.8
Propyl formate	79. 5
Ethanol	70.9
	Allyl alcohol tert-Amyl alcohol Butanol tert-Butanol 1, 2-Dichloroethane Diethoxymethane Isobutanol Isopropanol Propanol Propyl formate

Trichioroethylene (53)

Water Content vs. Cloud Pt.

14.5 14.0 Perchloroeth ylene 13.5 Carbon Tetrachloride 13.0 -pounds per gallon Trichlorpethylene Density-Methylene Chloride (1,1,1-lijchloroethane) 11.0 Ethylene Dichloride 10.5 10.0 50 122 °C °F -10 10 20 30 0 32 86 104 14

Temperature

Table 3.53: Vapor Pressure of Chlorinated Solvents (53)

Temperature

Table 3.54: Trichloropropane (7)

CH2CICHCICH2CI

PHYSICAL PROPERTIES

Analysis, % W Trichloropropane Epichlorohydrin Glycerol dichlorohydrin	97.0 1.5 1.5
Color, Pt-Co	15
Distillation range, IBP 90% 95% DP	150°C 156.1°C 156.1°C 156.6°C
Flash point	165°F
Molecular weight	147, 44
Refractive index	1.4832
Specific gravity @20/20°C	1.385

1, 2, 3-TRICHLOROPROPANE FORMS AZEOTROPES WITH

%		B. P. *C of Azeotrope
35	Camphene	152.9
30	2, 7-Dimethyloctane	155. 5
15	a-Pinene	150.0

Table 3.55: Triglycoi Dichloride (7)

$CI(CH_2CH_2O)_2CH_2CH_2CI$

PHYSICAL PROPERTIES

Acidity as HC1	0.01% by wt, max.
Boiling point @760 mm	241.3°C
Boiling range @760 mm	Not more than 5% dis- tills below 235°C Not less than 95% dis- tills below 242°C
Color (Pt-Co scale)	25 max.
Dryness @20°C	Miscible with 19 vol. 60°Bé gasoline
Flash point (O.C.)	250 °F
Solubility in water @ 20 °C	1.89% by wt
Solubility of water in solvent @20°C	0.83% by wt
Specific gravity @20/20°C	1.1950-1.2000
Vapor pressure @ 20°C	0.06 mm
Weight per gallon @ 20 °C	9. 97 1Ь

Table 3.56: Vinyl Chloride (7)

Monochloroethylene

Weight per gallon @20°C

CH2=CHCI

PHYSICAL PROPERTIES

Acetaldehyde Not more than 0.5% by wt Boiling point @760 mm -13.9°C Boiling range @760 mm Not less than 95% distills over before the temperature of the liquid reaches 10°C Color Water-white Freezing point -159.7°C Heat of evaporization 81.6 cal/g Residue Not more than 0.5% by vol. Specific gravity @B.P. 0.97 Specific heat 0.27 cal/g/°C Solubility in water @25°C Slightly soluble

7. 59 lb

Table 3.57: Vinylidene Chloride (23)

Molecular Weight (theoretical)	96.95
Odor	Pleasant, Sweet
Appearance	Clear liquid
Color	10-15 APHA
Solubility of monomer in H ₂ O at 25°C, weight %	0.021
Solubility of H ₂ O in monomer at 25°C, weight %	0.035
Boiling Point (760 mm Hg), °C	+ 31.56
Freezing Point, °C	– 122.5

Vapor Pressure

 $log P_{mm} = 6.98200 \cdot 1104.29/(t + 237.697)$ Temperatures calculated at selected pressure

Pressure (mm	•
760	
400	
200	
100	
60	
40	
20	
10	
5	

Table 3.57: (continued)

Liquid density Temperature (°C) -20 0 +20 Pounds/gallon Temperature (°C) -20 0

20

Flash Point (Tag closed cup), °F		0
Explosive limits in air (28°C), %		7.3 - 16.0
Auto-ignition temperature, °F		1058
Q Value	=	0.22
e Value		0.36
Latent Heat of Vaporization, ▲ Hy cal/mole at 25°C at Boiling Point		
Latent Heat of Fusion, ▲ Hm cal/mole	=	1,557
Heat of Polymerization, ▲ Hp k cal/mole at 25°C ▲ Hp BTU/Ib at 77°F		
Heat of Combustion, Liquid Monomer ▲ Hc k cal/mole	=	261.93 ± 0,3
Heat of Formation, Liquid Monomer, ▲ Hr k cal/mole Gaseous Monomer, ▲ Hr k cal/mole		_
Heat Capacity, Liquid Monomer, C, cal/mole deg at 25.15°C	=	26.745
Heat Capacity, Ideal Gas State Co. cal/mole deg at 25.15°C	=	16.04
Critical Temperature, T. °C	=	222
Critical Pressure, P. Atmospheres	=	51.3
Critical Volume, V _c cm³/mole	=	219

COMPARATIVE DATA

Table 3.58: Alpha Cleaning Solvents (62)

Alpha 564M and 565

Alpha 564M and 565 are functionally azeotropic blends of a chlorinated solvent and a polar component, designed for effective cleaning of post-soldering flux residues from pcb's and other electronic assemblies. Both formulations have no flash points. Compared to the fluorocarbons, they are more aggressive, more effective cleaners, yet lower in cost.

564M

Perchlorethylene and propylene glycol monomethyl ether.

565*

1,1,1,-Trichloroethane and n-propyl alcohol.

PHYSICAL PROPERTIES¹

	_	
Property	564M	<u>565</u>
Specific Gravity Lb./Gal.	1.540 ± 0.010 12.81	1.285 ± 0.005 10.69
Residue on Evaporation (ppm max.)	25	10
Alkalinity (calc. as ppm NaOH) Acidity (calc. as	50 (max.)	_
ppm HCI)		10 (max.)
Acid Acceptance (calc. as Wt. % NaOH) Appearance	0.07, Min.	0.15, M in.
clarity	Cle	
color (Max. A.P.H.A.)	40	15
Boiling Point	118°C (244°F)	74°C
Freezing Point	<0°C (<32°F)	(165°F) 34 C (30°F)
Vapor Density at Boiling Point (lb./	(<321)	(-301)
cu. ft) ²	0.307	0.272
Latent Heat of Vaporization at Boiling		
Point (Btu/lb.) ² Specific Heat	100	133
(Btu/lb./°F)²	0.244	0.268
Vapor Pressure (mm Hg)² @ 20°C	14.0	92.8
Surface Tension		
(dyne/cm.) @ 20°C²	31.9	25.0
Kauri-Butanol		
Value	182	206
Evaporating Rate (relative) ³	0.21	0.55
Solubility of Water in Solvent (grams/100cc)	< 0.1	0.2
Toxicity (TLV) ²	100	345
Flash Point* Tag Open Cup Tag Closed Cup Fire Point	NONE NONE NONE	

NOTES:

- Unless specified, properties are at room temperature (25°C; 77°F) and 1 atmosphere (760 mm Hg).
- Calculated values.
- Relative evaporation rate calculated with a value of 1.00 assigned to FC113.
- As per OSHA recommendations.

Alpha 1001 and 1003

Alpha 1001 and 1003 are azeotropes of Fluorocarbon 112 (tetrachlorodifluoroethane) and polar alcohols formulated for effective cleaning of postsoldering flux residues from pcb's and other electronic assemblies. Compared to chlorinated solvents, they are less aggressive and can be used on normally solvent-sensitive plastic materials. They are more effective solvents than Fluorocarbon 113 (trichlorotrifluoroethane)-based products, because of the extra chlorine atom.

1001

Contains 28% isopropyl alcohol and has a Tag Open Cup Flash Point of 85°F.

1003

Contains 15% n-propyl alcohol and has no TOC Flash Point below its boiling point of 180°F.

SPECIFICATIONS1

Property	1001	1003		
Specific Gravity Lb./Gal. Residue on Evaporation	1.254 ± 0.020 10.42	1.423 ± 0.020 11.83		
(ppm max.)	5			
pH of Water Extract Min. Acid Acceptance	Ne	utral		
(cal. as Wt.				
% NaOH) Appearance	0.50	0.22		
clarity	Cle	ar		
color (Max. A.P.H.A.)	15	5		
Boiling Point Freezing Point Vapor Density at	76°C (168°F) - 14°C (6°F)	82 °C (180 °F) 6 °C (43 °F)		
Boiling Point (lb./cu. ft.) ²	0.268	0.323		
Latent Heat of Vaporization at				
Boiling Point (Btu/lb.) ²	128	100		
Specific Heat (Btu/lb./°F) ² Vapor Pressure	0.323	0.271		
(mm Hg)²	42.0	39.7		
Kauri-Butanol Value ³ Evaporation Rate	71			
(relative) ⁴ Solubility of Water	0.5	53		
in Solvent (grams/ 100 cc)	5.6	1.8		
Toxicity (TLV)² Flash Points⁵	470	455		
Tag Open Cup	29°C (85°F)	None to Boiling		
Tag Closed Cup Fire Point	None 29 °C (85 °F)	None None		

Notes:

¹Unless specified, properties are room temperature (25°C; 77°F) and 1 atmosphere (760 mm Hg). ²Calculated values.

³Major constituent only.

Relative evaporation rate calculated with a value of 1.00 assigned to F113.

⁵As per OSHA recommendations. Use of Cleveland Open Cup Test yields values significantly higher.

Table 3.59: Ashland Chlorinated Solvents (69)

25°/25°C					
	25°/25° C	°C	°F	°F TCC	RATE!
11.0	1.321	39.4-40.4	103-105	None	14.5
12.3	1.481	60-62	140-143	None	
10.9	1.312	72-88	162-190	None	4.6
13.2	1.582	76-77	169-171	None	6.0
10.5	1.260	83-85	180-184	70	4.5
12.1	1.456	86-88	187-190	None	2.6
9.6	1.157	92-99	198-210	64	3.2
13.5	1.619	120-122	248-252	None	2.1
9.2	1.101	131-133	268-271	82	1.07
10.9	1.308	180-183	356-361	155	0.15
	12.3 10.9 13.2 10.5 12.1 9.6 13.5 9.2	12.3 1.481 10.9 1.312 13.2 1.582 10.5 1.260 12.1 1.456 9.6 1.157 13.5 1.619 9.2 1.101	12.3 1.481 60-62 10.9 1.312 72-88 13.2 1.582 76-77 10.5 1.260 83-85 12.1 1.456 86-88 9.6 1.157 92-99 13.5 1.619 120-122 9.2 1.101 131-133	12.3 1.481 60-62 140-143 10.9 1.312 72-88 162-190 13.2 1.582 76-77 169-171 10.5 1.260 83-85 180-184 12.1 1.456 86-88 187-190 9.6 1.157 92-99 198-210 13.5 1.619 120-122 248-252 9.2 1.101 131-133 268-271	12.3 1.481 60-62 140-143 None 10.9 1.312 72-88 162-190 None 13.2 1.582 76-77 169-171 None 10.5 1.260 83-85 180-184 70 12.1 1.456 86-88 187-190 None 9.6 1.157 92-99 198-210 64 13.5 1.619 120-122 248-252 None 9.2 1.101 131-133 268-271 82

Table 3.60: Chemcentral Chlorinated Solvents (67)

CHLORINATED SOLVENTS	CAS Mole Weight		Specific Gravity	Pounds Per Gallon	Coeff. of Expan.	△ Spec. Gravity Per	Refrac- tive	Distillation Range # 760 mm Hg	
	Weight	Worgin	25/25°C	⊕ 25°C	Per °C	°č	@ 25°C	°C	°F
1.1 1. TRICHLOROETHANE	71 55-6	133.4	1.320	10.97	0.00125	0014	1.434	74-90	165-194
ETHYLENE DICHLORIDE	107-06-2	99.0	1 252	10.42	0.00117	0012	1.4427	81.5-85.5	179 186
METHYLENE CHLORIDE TECH.	75-09-2	849	1.320	10 98	0.0014	0016	1 421	40.0-40.8	104-105 5
MONOCHLOROBENZENE	108-90-7	112.6	1.105	9.19			1.5215	131.7-132	269 270
ORTHODICHLOROBENZENE	95-50-1	147.0	1.303	10.84	0.00083	.0006	1.5482 ⁸	180-183	356-362
PERCHLORETHYLENE	127-18-4	165.8	1.619	13.47	0.00102	0012	1.5029	121-123	250-254
TRICHLORETHYLENE - Extract n	79-01-6	131.4	1.459	12.14	0.00117	00006	1.478 b	87-88	188-190
TRICHLORETHYLENE - Degrig	79-01-6	1314	1 456	12.11	0.00117	00006	1.478 b	87-88	188-190
CC #49			1 370	11.41	0.0013	0015	1.44	39-123	103-254
SC #49 COLD DEGREASER			0.939	7.82				42-201	108-386
SC #149 COLD DEGREASER			0.947	7.89				42-160	108-320

CHLORINATED SOLVENTS	Vapor Evaporation Rate Press.		Kauri Freeze Butanoi Palet		Flash Point	Explosive Limits % by Vol. in Air		Solu- bility		
	@ 20°C mm Hg	Minutes	Carbon Tet = 1	n-Butyl Ace. = 1	Value cc.	Point °C	Tag O.C.	Lower	Upper	Param- eter
1.1.1. TRICHLOROETHANE	100 0	1.0	10	6.0	124	- 37 9	NONE	8.0	10.5	8 5
ETHYLENE DICHLORIDE	616	13	0.77	4.46	84	35 /	56 e	6.2	159	98
METHYLENE CHLORIDE TECH	340	0.4	2.5	14.5	136	97	NONE	NONE	NONE	9.7
MONOCHLOROBENZENE	300 d	5.4	0.19	1.07	133	45.6	82 e	13	7.1	9.5
ORTHODICHLOROBENZENE	0.348	38.0	0.03	0.15	240	-22	160	2.2	9.2	10.0
PERCHLORETHYLENE	13.0	2.8	0.34	21	92	22 4	NONE	NONE	NONE	9.3
TRICHLORETHYLENE - Extract o	59.0	13	0.77	4.46	t l	86-4	NONE	8.0	105	9.3
TRICHLORETHYLENE - Degra	59.0	13	077	4 46	129	86 4	NONE	80	10.5	9.3
CC #49	345 0	13	0.77	4.46	1		NONE	NONE	NONE	96
SC #49 COLD DEGREASER		30.0	0.03	0.17						8.0
SC #149 COLD DEGREASER	† <u>-</u>	10.0	0.1	0.5						8.3

Table 3.61: Dow Chemical Chlorinated Solvents (23)

Physical Properties of Chlorinated Solvents

	SOLVENTS						
PROPERTIES	METHYLENE Chloride	INHIBITED 1,1,1- Trichloroethane	TRICHLORO- ethyl en e	PERCHLORO- ETHYLENE			
Chemical Formula	CH ₂ CI ₂	C ₂ H ₃ CI ₃	C₂HCI₃	C ₂ CI ₄			
Molecular Weight	84.9	133.4	131.4	165.8			
Boiling Pt. @ 760 mm Hg	103.5°F (39.7°C)	165°F (74°C)	189°F (87°C)	250°F (121.1°C)			
Freezing Point	-139°F (-95°C)	-34°F (-37°C)	-124°F (-86.7°C)	-9°F (-22.8°C)			
Specific Gravity @ 25/25°C	1.32	1.32	1.456	1.619			
Pounds per Gallon @ 25°C	10.98	10.97	12.11	13.47			
Vapor Density (air = 1.00)	2.93	4.60	4.53	5.76			
Specific Heat @ 25°C cal/g°C	0.283	0.259	0.226	0.209			
Heat of Vaporization @ Boiling Point cal/g BTU/lb	78.9 142	56.7 102	56.4 101.6	50.1 90.2			
Refractive Index @ 25°C	1.421	1.434	1.474	1.503			
Viscosity @ 25°C centipoises	0.41	0.79	0.54	0.84			
Flash Point Tag Open Cup ASTM, Method D-1310 Tag Closed Cup ASTM,	none	none	none	none			
Method D-56	none	none	none	none			
Solubility (g/100g) @ 25°C H ₂ 0 in solvent solvent in H ₂ 0	0.17 1.70	0.05 0.07	0.04 0.10	0.0105 0.015			
Surface Tension (dynes/cm @ 25°C)	27.1	25.1	28.7	31.8			
Kauri Butanol Value	136	124	129	90			
Solvent-Water Azeotropic Boiling Point	100.6°F (38.1°C)	149°F (65°C)	164°F (73.3°C)	190°F (87.8°C)			
Flammable Limits (volume % of solvent in air) @ 25°C Lower Limit	14	7.5	8.0	none			
Upper Limit	22	12.5	9.2 (saturation)	none			

Table 3.61: (continued)

Relative Evaporation Rates†

1.0
1.4
1.5
2.1
3.9
4.6
5.7
7.0

^{*95%} Et OH, 5% H₂0

Methylene Chloride Compatibility with Plastics, Elastomers and Rubbers

	% Linear Swell	
Plastics	Initial	After Drying
Polypropylene (General Purpose Grade)	3.5	0
Polyethylene 3300 (High Density)	1.0	0
Polyethylene (Linear)	3.0	-0.5
Polyallomer (Ethylene Propylene Copolymer)	4.0	0
Acetate (Cellulose Acetate)	A.B	0
Butyrate (Cellulose Acetate Butyrate)	С	_
Propionate (Cellulose Acetate Propionate)	С	
Brand of Elastomers and Rubbers		
Chardon 15093 ^a	56.0	-0.5
Chardon 15096-2 ^a	80.5	-3.0
Chardon 15120 ^a	76.5	-2.5
Hycar 1000 x 132 ^c	44.5	-3.0
(Acrylonitrile/butadiene high acrylonitrile content)		
Hycar 1014 ^c (Buna N low acrylonitrile content)	55.0	-4 .5
Thiokol 3000 FA ^d (Polysulfide Rubber)	52.5	-1.5
Thiokol 3600 ST-C ^a	50.0	-0.5
Thiokol E455 ^d	64.0	-4.5
Dow Corning 94-002 ^b (Fluorosilicone Rubber)	16.0	-2.0
Silastic LS-63 ^b (Fluorosilicone Rubber)	16.5	0
Silastic S-6526 ^b (Silicone Rubber)	34.5	-
Silastic 80 ^b (Silicone Rubber)	24.0	-0.5
Silastic 675 ^b	38.5	– 0.5

Key: (Negative sign indicates sample decreased in size. Data to nearest 0.5%.)

- a. Chardon Rubber Company
- b. Dow Coming Corporation
 c. B.F. Goodrich Chemical Company
- d. Thiokol Chemical Company

- A. Distorted and softened
- B. Partially dissolved or disintegrated
 C. Totally dissolved or disintegrated

[†] Evaporation rates measured with respect to n-butyl acetate. Larger numbers reflect faster evaporation. As measured by ASTM D3539-76.

Table 3.61: (continued)

Solubilities of Resins, Waxes and Fats in Methylene Chloride

Material or Brand	Solubility†	Material or Brand	Solubility†
Resins		Rosin (wood)	>100
ABALYN – Resin esterified		SARAN** F-120 Vinylide	ne
with glycerine		chloride-acrylonitrile	< 1
ACRYLOID B-82 - Acrylic est	er >100	SARAN F-220 - Vinylidene	
AMBEROL 801-XLT - Phenolic	c >100	chloride-acrylonitrile	
AMBEROL ST-137-X - Phenol		VELSICOL AE9 – ETO addi	
formaldehyde	>100	VERSAMIDE 940 – Polyami	
BAKELITE CKR-5254 - Phenol	ic < 20	VINYLITE AYAA – Vinyl ac	
BECKACITE 1001 – Phenolic		VINYLITE VYHH – Vinyl ch	
BECKACITE 1112 - Phenolic		acetate	
CUMAR W-1 – Paracumarone		acetale	> 30
indene		Oils & Resins	
D.E.N.* 438 – Epoxy novolac		ALINCO Z2 – Linseed oil	>100
D.E.R.* 331 – Epoxy		Lanolin anhydrous	
D.E.R. 332 – Epoxy		OKO S-70 - Soybean oil .	>100
D.E.R. 661 – Epoxy		Waxes	
D.E.R. 664 – Epoxy		Beeswax	· < 5
D.E.R. 667 – Epoxy		Candelilla wax	
DOW Resin PS-3 - Polystyre		Carnauba wax	
EPON 812 – Epoxy		Ceresin wax	
EPON 836 – Epoxy		Japan wax	
EPON 1004 – Epoxy		Montan wax	
		Paraffin 47-49°C	
EPON 1109 – Epoxy GENEPOXY 175 – Epoxy		White petrolatum	
GENEPOXY M-180 – Epoxy			> 20
• •		Fatty Acids & Derivatives	
GENEPOXY 190 – Epoxy		Calcium Stearate	
GENEPOXY 525 – Epoxy		Potassium Oleate	
GENEPOXY 925 - Epoxy		Sodium Oleate	
GENEPOXY 1800 – Epoxy		Stearic Acid	< 35
HERCOLYN – Resin esterified		Miscellaneous	
glycerine		D.C.R5061 – Silicone	>100
Polymethyl methacrylate	>100	D.C.R5581 – Silicone	
NEVINDENE RS – Cumarin		PARLON S-5 – Chlorinated	
indene		rubber	
Orange Shellac		PARLON S-20 – Chlorinate	
PICCO 420 ES – Indene poly			
PICCOLASTIC A-75 – Polysty		rubber PARLON S-300 – Chlorinat	
PICCOLYTE S-85 – Polyterper			
PICCOPALE 100 - Hydrocarb	on >100	rubber	> 60
Polyvinyl Chloride			
Resin 276-V9 – Polyalkyl styre	ene >100		
¹ Too viscous for further addition	n.	*Trademark of The Dow Che	emical Company
**Trademark of The Dow Chem	nical Company o	overseas	
†Solubilities were determined	by the incremer	ntal addition of solute to 100 g	grams of
methylene chloride at room to			
gram, 5 grams, 10 grams and			
notation of <5 indicates that a dissolved in 100 grams of met	nore man i gra hvlene chloride	in out less than 5 grams of 50. . Similarly, a notation of <40.	indicates that
more than 25 but loss than 40	,.ciic cinoride	will dissolve Whore 100 gran	me of colute

more than 35 but less than 40 grams of solute will dissolve. Where 100 grams of solute dissolve, the result is reported as >100. Resin solubilities were obtained on uncured material suitable for use in paints, adhesives, and coatings.

Table 3.61: (continued)

Thermodynamic Properties of Methylene Chloride in the Ideal Gas State

Temperature ℃	Heat Capacity cal/(mol °C)	Enthalpy cal/mol	Entropy cal/(mol °C)
25	12.17	0	64.61
50	12.70	311	65.61
100	13.71	972	67.51
150	14.65	1,681	69.29
200	15.49	2,435	70.97
250	16.26	3,229	72.57
300	16.95	4,060	74.08
350	17.57	4,923	75.53
400	18.13	5,815	76.90
450	18.64	6,735	78.22
500	19.10	7,679	79.48
550	19.52	8,645	80.69
600	19.91	9,631	81.86
650	20.26	10,635	82.98
700	20.58	11,656	84.05
750	20.88	12,693	85.09

Thermodynamic Properties of Perchloroethylene

Temperature °C	Heat Capacity @ 1 atm cal/(mol °C)	Enthalpy 25°C = 0 cal/mol	Entropy cal/(mol °C)
27	22.9	46	76.8
77	24.3	1,226	80. 5
127	25.4	2,466	83.8
177	26.3	3,756	86.8
227	27.0	5,086	89.6
277	27.6	6,451	92.2
327	28.1	7,841	94.7
377	28.5	9,256	96.9
427	28.9	10,691	99.1
477	29.2	12,141	101.1
527	29.5	13,611	103.0
577	29.7	15,091	104.0
627	29.9	16,581	106.4
677	30.1	18,081	108.1

Heat of formation @ 25°C = 17,700 cal/mol Critical temperature = 352.1°C Critical pressure = 45.5 atm

Critical density = 0.492 g/cc

Vapor Pressure of Chlorinated Solvents

Boiling Temperatures of Chlorinated Solvents and Oil

Density of Chlorinated Solvents as a Function of Temperature

Dew Point of Methylene Chloride

Methylene Chloride Flammability Data

Flash point (Tag Open Cup ASTM D-1310)	one
Fire point (Tag Open Cup ASTM D-1310) No	one
Initial thermal degradation 250 °F (120	°C)
Autoignition temperature	°C)
Flammable range % volume in air (25 °C) 10 kilowatt spark 14 % volume in oxygen (25 °C) 10 kilowatt spark 14	-22 -66

Specific Gravity Data

Halogenated Hydrocarbons

Thermal Conductivity vs Temperature of Methylene Chloride

Solvency Power

Kauri butanol value	136
Solubility parameter (Cal/cc 25°C)	. 9.9
Hydrogen bonding parameter	2.2
Dipole moment (Debyes)	1.61

Relative Evaporation Ratest

n-Butyl acetate	1.0
Ethanol	1.6
Perchloroethylene	1.5
Methyl alcohol	
Heptane	
Trichloroethylene	3.1
Methyl ethyl ketone	3.9
1,1,1-Trichloroethane	
Acetone	5.6
Methylene chloride	

TEvaporation rates measured with respect to n-butyl acetate. Larger numbers reflect evaporation

Thermal Conductivity vs Temperature of Perchloroethylene

Table 3.61: (continued)

Blending Solvénts to Eliminate Flash Points

Flash Points (°F) – Tag Closed Tester Volume % Chlorinated Solvent

	Flammable Constituent						
Family	Data Source	_0_	10	20	30	40	50
Alcohol	Ethanol	60	54	48	NF		
	n-Butanol	106	94	NF			
Ester	Butyl Acetate	84	81	76	NF		
	Ethyl Acetate	25	32	34	39	41	NF
Hydrocarbon	Heptane	21	23	21	22	NF	
	Octane	59	49	NF			
Ketone	Methyl Isobutyl Ketone	64	64	64	62	NF	

Thermal Conductivity vs. Temperature for Methylene Chloride

Vapor Pressure vs. Temperature for Methylene Chloride

Density vs. Temperature for Methylene Chloride

Table 3.61: (continued)

Viscosity Curves for Common Secondary Refrigerants

Glycerol = 64.8% Wt. (Aqueous Solution)
Ethanol = 56.8% Wt. (Aqueous Solution)
Calcium Chloride = 29.0% Wt. (Aqueous Solution)
Methanol = 38.4% Wt. (Aqueous Solution)
Sodium Chloride = 21.0% Wt. (Aqueous Solution)
Trichlorofluoromethane = 100% Wt.

Trichlorofluoromethane = 100% Wt. Methylene Chloride = 100% Wt.

Table 3.62: Vertrel Cleaning Agents (11)

Vertrei KCD-9547 Cleaning Agent

Introduction

Vertrel KCD-9547 is a proprietary azeotrope-like blend of Vertrel XF hydrofluorocarbon with trans-1,2-dichloro-ethylene and cyclopentane. It is ideally suited for use in vapor degreasing equipment to remove light oils, fingerprints, and particulate contaminants. Vertrel KCD-9547 is specially formulated to provide a high degree of compatibility with plastics, elastomers, and other nonferrous metals, such as in aerospace parts. Vertrel KCD-9547 is nonflammable, has "zero" ozone depletion potential, and has low global warming potential. It can replace CFC-113, 1,1,1-trichloroethane (1,1,1-TCA), hydrochlorofluorocarbons (HCFC), and perfluorocarbons (PFC) in many applications.

Physical	l Properties
----------	--------------

Property*	Units	Vertrei® KCD- 9547	CFC-113
Boiling Point	°C	37.2	47.6
	°F	99.0	117.6
Liquid Density	g/cc	1.29	1. 5 6
	lb/gal	10.8	13.1
Vapor Pressure	mmHg	414	334
	psi	8.0	6.5
Surface Tension	dyn/cm	15.3	17.3
Freezing Point	°C	<-50	-35
	°F	<-58	-31
Heat of Vaporization at boiling point	cal/g	47	35
	Btu/lb	85	63
Heat Capacity	cal/ g °C	0.21	0.21
at 20°C (68°F)	Btu/lb °F	0.21	0.21
Viscosity	cps	0.65	0.68

^{*}At 25°C (77°F) except where indicated.

Preliminary Plastic Compatibility Immersion: 15 min at boiling point (37°C [99°F])

Compatible			
Acetal	Polyimides		
Epoxy	Polypropylene		
HD Polyethylene	Polysulfone		
Nylon	PVA		
Phenolic	PVC		
Polyester, PET and PBT	Teflon® TFE, FEP, PFA		
Polyethylene			

Exposure Limits

Component	Limit, ppm	Туре
Vertrel® XF	AEL 200 400	8- and 12-hr TWA Ceiling*
trans-1,2- dichloroethylene	TLV 200	8-hr TWA
Cyclopentane	TLV 600	8-hr TWA

AEL-DuPont's acceptable exposure limit.

Density and Vapor Pressure Change with Temperature

Temperature,		De	ensity,	Vap Press	
°C	(°F)	g/cc	(lb/gal)	mmHg	(psi)
0	(32)	1.34	(11.2)	129	(2.5
10	(50)	1.32	(11.1)	228	(4.4)
20	(68)	1.30	(10.9)	336	(6.5)
25	(77)	1.29	(10.8)	414	(8.1
30	(86)	1.27	(10.6)	517	(10.0)
40	(104)	1.25	(10.5)	776	(15.0)
50	(122)	1.23	(10.3)	1034	(20.0)
60	(140)	1.21	(10.1)	1396	(27.0)

Soils Cleaned with Vertrel® KCD-9547

Fingerprints	Other Synthetic Oils
Hydraulic Oils	Particulates Particulates
Light Mineral Oils	Vegetable Oils

Preliminary Elastomer Compatibility Immersion: 15 min at boiling point (37°C [99°F])

Compatible		
Buna-S*	Fluoroelastomers	
Buna-N	Natural Rubber*	
Butyl Rubber*	Neoprene	
Chlorosulfonated PE	Polysulfide (e.g., Thiokol's FA)	
EPDM (e.g., Nordel®)	Urethane	

^{*}Swelling, but with low extractables

Vertrel® KCD-9547 Specifications

Vertrel® XF, %	65.0 ± 1.0
trans-1,2-dichloroethylene, %	20.0 ± 1.0
Cyclopentane, %	15.0 ± 2.0
Appearance	Clear, colorless
Nonvolatile Residue, ppm	10.0 max.
Moisture, ppm	<200

TLV —Threshold limit value established by the American Conference of Government & Industrial Hygienists (ACGIH).

TWA—Time weighted average.

^{*}A ceiling limit is the concentration that should not be exceeded during any part of the working day.

Vertrel KCD-9548 and KCD-9550 Wipe Solvents

Introduction

Vertrel KCD-9548 and Vertrel KCD-9550 are two proprietary blends formulated as wipe solvents. Vertrel KCD-9548 is an azeotrope-like blend of Vertrel XF hydrofluorocarbon with cyclohexane and acetone, whereas Vertrel KCD-9550 is an azeotrope-like blend of Vertrel XF hydrofluorocarbon and acetone. Both solvents are ideally suited for use as a gross wipe solvent; however, Vertrel KCD-9548 has a slight VOC compared with zero VOC for Vertrel KCD-9550.

Physica	I Properties
---------	--------------

Property*	Units	Vertrel® KCD- 9548	Vertrel® KCD- 9550
Boiling Point	°C	52.0	60.6
	°F	125.6	141.1
Liquid Density	g/cc	1.37	1.37
	lb/gal	11.5	11.5
Vapor Pressure	mmHg	186	191
	psi	3.6	3.7
Surface Tension	dyn/cm	15.6	15.6
Freezing Point	°C	<-50	<-50
	°F	<-80	<-80
Heat of Vaporization at boiling point	cal/g	43	46
	Btu/lb	77	83
Heat Capacity	cal/g °C	0.30	0.30
at 20°C (68°F)	Btu/lb °F	0.30	0.30
Viscosity	cps	0.64	0.62

^{*}At 25°C (77°F) except where indicated.

∨ertrel® KCD-9548 Density and Vapor Pressure Change with Temperature

Tem	perature,	De	Density,		or ure,
°С	(°F)	g/cc	(lb/gal)	mmHg	(psi)
0	(32)	1.42	(11.9)	52	(1.1)
10	(50)	1.40	(11.8)	98	(1.9)
20	(68)	1.38	(11.6)	155	(2.9)
25	(77)	1.37	(11.5)	186	(3.6)
30	(86)	1.36	(11.4)	248	(4.8)
40	(104)	1.34	(11.3)	362	(6.9)
50	(122)	1.32	(11.1)	569	(11.0)
60	(140)	1.30	(10.9)	776	(15.0)

Preliminary Elastomer Compatibility Immersion: 5 Minutes at Room Temperature 25°C (77°F)

Compatible		
Polysulfide (Thiokol's FA)	EPDM (Nordel®)	
Silicone	Butyl Rubber	
Chlorosulfonated PE	Natural Rubber	
Urethane	Neoprene	
Buna-S	Adiprene	
Buna-N	Viton® A and Viton® B	
Vertrel® KCD-955	0 Specifications	
Vertrel® XF, % 85.0 :		
Acetone, %	15.0 ± 1.0	
Appearance	Clear, Colorless	
Nonvolatile Residue, ppm	10.0 max.	
Moisture, ppm	<200	

Vertrel® KCD-9548 Specifications

	-
Vertrel® XF, %	85.0 ± 1.0
Acetone, %	10.0 ± 1.0
Cyclohexane, %	5.0 ± 1.0
Appearance	Clear, Colorless
Nonvolatile Residue, ppm	10.0 max.
Moisture, ppm	<200

Exposure Limits

Component	Limit, ppm	Type
Vertrel® XF	AEL 200	8- and 12-hr TWA
	400	Ceiling*
Acetone	TLV 750	8-hr TWA
Cyclohexane	TLV 300	8-hr TWA

TLV —Threshold limit value established by the American Conference of Government & Industrial Hygienists (ACGIH).

Vertrel® KCD-9550 Density and Vapor Pressure Change with Temperature

Tem	perature,	Density,		Vap Press	
°C	(°F)	g/cc	(lb/gal)	mmHg	(psi)
0	(32)	1.42	(11.9)	52	(1,1)
10	(50)	1.40	(11.8)	98	(1.8)
20	(68)	1.38	(11.6)	155	(2.8)
25	(77)	1.37	(11.5)	186	(3.7)
30	(86)	1.36	(11.4)	248	(4.5)
40	(104)	1.34	(11.3)	362	(6.9)
50	(122)	1.32	(11.1)	569	(10.0)
60	(140)	1.30	(10.9)	776	(15.0)

Preliminary Plastic Compatibility Immersion: 5 Minutes at Room Temperature 25°C (77°F)

Compatible	
Acrylic	HD Polyethylene
Polyethylene	Epoxy
Polypropylene	Phenolic
Polycarbonate	Teflon® TFE, FEP, PFA
Polystyrene	Polyester, PET, PBT
PVA, PVC	Acetal
Polyimides	Polysulfone
Nylon	·

TWA-Time weighted average.

^{*}A ceiling limit is the concentration that should not be exceeded during any part of the working day.

Vertrel MCA Cleaning Agent

Introduction

Vertrel MCA is a proprietary azeotrope of Vertrel XF hydrofluorocarbon with trans-1,2-dichloroethylene. It is ideally suited for use in vapor degreasing equipment. Its enhanced solvency power, compared to Vertrel XF alone, makes it particularly effective for precision and specialty cleaning applications in difficult soil situations. Vertrel MCA is nonflammable, has "zero" ozone depletion, and has low global warming potential. It can replace CFC-113, 1,1,1-trichloroethane (1,1,1-TCA), hydrochlorofluorocarbons (HCFCs), and perfluorocarbons (PFCs) in many applications.

Physical Properties

Property*	Unit	Vertrel* MCA	CFC-113
Boiling Point	°C (°F)	39 (102)	47.6 (117.6)
Liquid Density	g/cc lb/gal	1.41 11.8	1.56 13.1
Vapor Pressure	mmHg psia	464 9.0	334 6.5
Surface Tension	dyn/cm	15.2	17.3
Freezing Point	°C (°F)	<-50 (<-58)	-35 (-31)
Solubility of Water	wt%	0.065	0.011
Heat of Vaporization at Boiling Point	cal/g Btu/lb	43.3 77 <i>.</i> 9	35.1 63.1
Heat Capacity at 20°C (68°F)	cal/g-°C Btu/lb-°F	0.27 0.27	0.21 0.21
Viscosity	cPs	0.49	0.68

^{*}At 25°C (77°F), except where indicated

Density and Vapor Pressure Change with Temperature

Temperature, °C (°F)	Density, g/cc (lb/g)	Vapor Pressure, mmHg (psia)
0 (32)	1.47 (12,3)	162 (3.1)
10 (50)	1.44 (12.0)	258 (5.0)
20 (68)	1.42 (11.8)	375 (7.3)
25 (77)	1.41 (11.8)	446 (9.0)
30 (86)	1.39 (11.6)	552 (10.7)
40 (104)	1.37 (11.4)	795 (15.4)
50 (122)	1.35 (11.3)	1111 (21.5)
60 (140)	1.33 (11.1)	1509 (29.2)

Soils Cleaned with Vertrel® MCA

Mineral Oils	Cutting Oils
Vacuum Oils	Stamping Oils
Waxes	Hydraulic Oils
Heavy Greases	Gear Oils

Preliminary Plastic Compatibility Immersion: 1 Week at 55°C (131°F)

Compatible			
Polyethylene Polypropylene Nylon Polyester, PET, and PBT Acetal	HD Polyethylene Epoxy Phenolic Teflon [®] TFE, FEP, PFA Polyimides		
Require Add	itional Testing		
ABS Acrylic Polyvinyl Chloride Polysulfone	Polycarbonate Polystyrene Polyphenylene Oxide		

Exposure Limits

Component	Limit,	ppm	Туре
Vertrel® XF	AEL•	200 400	8- and 12-hr TWA Ceiling ^b
trans-1,2- dichloroethylene	TLV°	200	8-hr TWA

AEL is the DuPont Acceptable Exposure Limit. Where governmentally imposed occupational exposure limits that are lower than the AEL are in effect, such limits shall take precedence.

Preliminary Elastomer Compatibility Immersion: 1 Week at 55°C (131°F)

patible
EPDM (Nordei [®]) Butyl Rubber* Natural Rubber*
itional Testing
Polychloroprene Silicone

^{*}Swelling, but with low extractables

Vertrel® MCA Specifications

Vertrel® XF	62.0% ± 1.0*
trans-1,2-dichloroethylene	38.0% ± 1.0*
Appearance	Clear, Colorless
Nonvolatile Residue	10.0 ppm max.
Moisture	< 200 ppm

^{*}Wt%

^b A ceiling limit is the concentration that should not be exceeded during any part of the working day.

^c TLV is the Threshold Limit Value established by the American Conference of Government Industrial Hygienists (ACGIH).

Vertrel MCA Plus Cleaning Agent

Introduction

Vertrel MCA Plus is a proprietary azeotrope of Vertrel XF hydrofluorocarbon with trans-1,2-dichloroethylene and cyclopentane. It is ideally suited for use in vapor degreasing equipment for precision cleaning and specialty applications. Its enhanced solvency power makes it particularly effective in difficult soil situations. Vertrel MCA Plus is nonflammable, has "zero" ozone depletion, and has low global warming potential. It can replace CFC-113, 1,1,1-trichloroethane (1,1,1-TCA), hydrochlorofluorocarbons (HCFC), and perfluorocarbons (PFC) in many applications.

Physical Properties

Property*	Unit	Vertrei® MCA Plus	HCFC- 141b	1,1,1 TCA	Freon• TF
Boiling Point	°C °F	37 99	32 90	74 165	48 118
Liquid Density	g/cc lb/gal	1.28 10.7	1.24 10.3	1.31 11.0	1.56 13.1
Vapor Pressure	mmHg psi	440 8.5	594 11.5	140 2.7	226 4 .4
Surface Tension	dyne/cm	15.9	19.3	25.9	17.3
Freezing Point	°C °F	<-50 <-58	-103 -154	<-50 <-58	-35 -31
Heat of Vaporization at boiling point	cal/g Btu/lb	55 98	53 94	57 102	35 63
Heat Capacity	cal/g °C	0.22	0.25	0.26	0.22
at 20°C (68°F)	Btu/lb °F	0.22	0.25	0.26	0.22
Viscosity	сР	0.61	0.43	0.45	0.67
Flash Point ,		None	None	None	None

^{*}At 25°C (77°F) except where indicated.

Plastic Compatibility Immersion: 15 min at 37°C (99°F)

Comp	atible
Acetal	Polyimides
Ероху	Polypropylene
HD Polyethylene Nylon	Polysulfone (e.g., GE's Ultem)
Phenolic	PVA
Polyester, PET and PBT	PVC
Polyethylene	Teflon® TFE, FEP, PFA

Exposure Limits

Component	Limit, ppm	Туре
Vertrel® XF	AEL 200 400	8- and 12-hr TWA Ceiling*
trans-1,2- dichloroethylene	TLV 200	8-hr TWA
Cyclopentane	TLV 600	8-hr TWA
Vertrel® MCA Plus	AEL 221 400	Calculated ** Ceiling*

AEL—DuPont's acceptable exposure limit.

TWA—Time weighted average.

Density and Vapor Pressure Change with Temperature

			Vor	
perature,	De	ensity,		
(°F)	g/cc	(lb/gal)	mmHg	(psi)
(32)	1.33	(11.1)	124	(2.4
(50)	1.31	(10.9)	222	(4.3)
(68)	1.29	(10.8)	321	(6.2
(77)	1.28	(10.7)	440	(8.5
(86)	1.26	(10.5)	517	(10.1
(104)	1.24	(10.3)	776	(14.9
(122)	1.21	(10.8)	1034	(19.9
(140)	1.18	(9.83)	1396	(27.1
	(°F) (32) (50) (68) (77) (86) (104) (122)	perature, (°F) g/cc (°F) g/cc (32) 1.33 (50) 1.31 (68) 1.29 (77) 1.28 (86) 1.26 (104) 1.24 (122) 1.21	perature, (°F) g/cc (lb/gal) (32) 1.33 (11.1) (50) 1.31 (10.9) (68) 1.29 (10.8) (77) 1.28 (10.7) (86) 1.26 (10.5) (104) 1.24 (10.3) (122) 1.21 (10.8)	(°F) g/cc (lb/gal) mmHg (32) 1.33 (11.1) 124 (50) 1.31 (10.9) 222 (68) 1.29 (10.8) 321 (77) 1.28 (10.7) 440 (86) 1.26 (10.5) 517 (104) 1.24 (10.3) 776 (122) 1.21 (10.8) 1034

Soils Cleaned with Vertrel® MCA Plus

Cutting Oils	Stamping Oils
Drawing Oils	Synthetic Oils
Gear Oils	(POE, POG, etc.)
Heavy Greases	Vacuum Oils
Hydraulic Oils	Waxes
Mineral Oils	

Elastomer Compatibility Immersion: 15 min at 37°C (99°F)

	Compatible
Buna-S*	Neoprene
Butyl Rubber*	Polysulfide (e.g., Thiokol's FA)
Chlorosulfonated PE	Polyurethane
EPDM (e.g., Nordel®)	Viton® A
Natural Rubber*	Viton® B

^{*}Swelling, but with low extractables

Vertrel® MCA Plus Specifications

Vertrel® XF, %	46.0 ± 1.0
trans-1,2-dichloroethylene, %	40.0 ± 1.0
Cyclopentane, %	14.0 ± 2.0
Appearance	Clear, colorless
Nonvolatile Residue, ppm	10.0 max.
Moisture, ppm	<200

(continued)

TLV —Threshold limit value established by the American Conference of Government & Industrial Hygienists (ACGIH).

^{*}A ceiling limit is the concentration that should not be exceeded during any part of the working day.

^{**}Calculated in accordance with ACGIH Formula for TLVs for mixtures.

Vertrel SMT Cleaning Agent

Introduction

Vertrel SMT is a proprietary azeotrope-like blend of Vertrel XF hydrofluorocarbon with trans-1,2-dichloroethylene and methanol. It is ideally suited for use in vapor degreasing equipment with solvency power for cleaning ionic soils and flux residues from electronic assemblies. It can also be used for precision and general industrial cleaning where this enhanced solvency is required. Vertrel SMT is nonflammable, has zero ozone depletion potential, and has low global warming potential. It can replace CFC-113, 1,1,1-trichloroethane (1,1,1-TCA), hydrochlorofluorocarbon (HCFC), and perfluorocarbon (PFC) fluids in many applications.

Physical Properties

Property*	Vertrel [€] SMT	Freon® TMS
Boiling Point, °C (°F)	37 (99)	39.7 (103.5)
Liquid Density, g/cc (lb/gal)	1.35 (11.3)	1.48 (12.3)
Vapor Pressure, mmHg (psia)	486 (9.4)	429 (8.3)
Surface Tension, dyn/cm	15.5	17.4
Freezing Point, °C (°F)	<-50 (<-58)	<i>–</i> 55 (–66)
Solubility of Water, wt%	0.34	0.27
Heat of Vaporization at Boiling Point, cal/g (Btu/lb)	49.5 (89.1)	50.4 (90.7)
Heat Capacity at 20°C (68°F), cal/g.°C (Btu/lb.°F)	0.27 (0.27)	0.24 (0.24)
Viscosity, cPs	0.49	0.70

^{*}At 25°C (77°F), except where indicated.

Preliminary Elastomer Compatibility Immersion: One Week at 55°C (131°F)

Compatible		
Polysulfide (Thiokol FA)	EPDM (Nordel®)	
Chlorosulfonated PE	Butyl Rubber*	
Buna-S*	Natural Rubber*	
Require Ad	ditional Testing	
Buna-N	Polychloroprene	
Urethane	Silicone	
Fluoroelastomers		

^{*}Swelling, but with low extractables

Exposure Limits

Component	Limit, ppm		Type	
Vertrel® XF	AEL*	200 400	8- and 12-hr TWA Ceiling ^d	
trans-1,2- dichloroethylene	TLV♭	200	8-hr TWA	
Methanol	TLV	200	8-hr TWA	
	STEL	250		
Stabilizer	TLV	20	8-hr TWA	

AEL is the DuPont Acceptable Exposure Limit. Where governmentally imposed occupational exposure limits that are lower than the AEL are in effect, such limits shall take precedence.

Density and Vapor Pressure Change with Temperature

Temperature, °C (°F)	Density, g/cc (lb/g)	Vapor Pressure, mmHg (psia)	
0 (32)	1.41 (11.7)	169 (3.3)	
10 (50)	1.38 (11.5)	265 (5.1)	
20 (68)	1.36 (11.4)	397 (7.7)	
25 (77)	1.35 (11.3)	486 (9.4)	
30 (86)	1.34 (11.2)	581 (11.2)	
40 (104)	1.31 (11.0)	839 (16.2)	
50 (122)	1.29 (10.8)	1,192 (23.1)	
60 (140)	1.27 (10.6)	1,627 (31.5)	

Preliminary Plastic Compatibility Immersion: One Week at 55°C (131°F)

Compatible			
Polyethylene	HD Polyethylene		
Polypropylene	Ероху		
Nylon	Phenolic		
Polyester, PET, and PBT	Teflon® TFE, FEP, PFA		
Acetal	Polyimides		
Require Add	ditional Testing		
ABS	Polycarbonate		
Acrylic	Polystyrene		
Polyvinyl Chloride	Polyphenylene Oxide		

Vertrel® SMT Specifications

50.5% ± 1.0*
43.0% ± 1.0
$6.0\% \pm 0.3$
0.5% ± 0.1
Clear, Coloriess
10.0 ppm max.
<200 ppm

^{*}Wt%

Polysulfone

^bTLV is the Threshold Limit Value established by the American Conference of Government Industrial Hygienists (ACGIH).

STEL is short-term exposure limit. A STEL is the concentration to which workers can be exposed continuously for a short period of time, usually 15 min, without suffering from acute effects, e.g., irritation.

^d A ceiling limit is the concentration that should not be exceeded during any part of the working day.

Vertrei XMS Cleaning Agent

Introduction

Vertrel XMS is a proprietary azeotrope-like blend of Vertrel XF hydrofluorocarbon with trans-1,2-dichloroethylene, cyclopentane, and methanol. It is ideally suited for use in vapor degreasing equipment with solvency power for cleaning ionic soils and flux residues from electronic assemblies.

νh	ひらいころ	I Pre	pperties

Property (at 25°C)	Unit	Vertrel® XMS	Freon® TMS	HCFC- 141b with MeOH
Boiling Point	°C °F	36 96	40 104	29 85
Liquid Density	g/cc lb/gal	1.22 10.2	1.48 12.3	1.22 10.1
Vapor Pressure	mmHg psi	465 9.0	429 8.3	527 10.2
Surface Tension	dyne/cm	15.9	17.4	18.5
Freezing Point	°C °F	<-50 <-58	-55 -67	<-103 <-154
Heat of Vaporization	cal/g	61	50	62
at boiling point	Btu/lb	110	91	111
Heat Capacity	cal/g °C	0.24	0.24	0.26
at 20°C (68°F)	Btu/lb °F	0.24	0.24	0.26
Viscosity	сР	0.65	0.7	0.45
Flash Point		None	None	None

^{*}At 25°C (77°F) except where indicated.

Exposure Limits

Component	Limit, ppm	Туре	
Vertrel® XF	AEL 200 400	8- and 12-hr TWA Ceiling*	
trans-1,2-	_		
dichloroethylene	TLV 200	8-hr TWA	
Cyclopentane	TLV 600	8-hr TWA	
Methanol	TLV200	8-hr TWA	
Vertrel® XMS	AEL 210 400	Calculated** Ceiling*	

AEL-DuPont's acceptable exposure limit.

TLV —Threshold limit value established by the American Conference of Government & Industrial Hygienists (ACGIH).

TWA—Time weighted average.

- *A ceiling limit is the concentration that should not be exceeded during any part of the working day.
- **Calculated in accordance with ACGIH Formula for TLVs for mixtures.

Vertrel® XMS Specifications

Vertrel® XF, %	54.5 ± 1.0
trans-1,2-dichloroethylene, %	25.0 ± 1.0
Cyclopentane, %	14.0 ± 2.0
Methanol, %	6.0 ± 0.3
Inerting Agent, %	0.5 ± 0.1
Appearance	Clear, colorless
Nonvolatile Residue, ppm	10.0 max.
Moisture, ppm	<200

Density and Vapor Pressure Change with Temperature

Temperature,		perature, Density,		Vapor Pressure,	
°C	(°F)	g/cc	(lb/gal)	mmHg	(psi)
0	(32)	1.27	(10.6)	155	(3.1)
10	(50)	1.25	(10.4)	259	(4.9
20	(68)	1.23	(10.3)	414	(8.1
25	(77)	1.22	(10.2)	465	(9.2
30	(86)	1.21	(10.1)	620	(12.1)
40	(104)	1.19	(9.9)	931	(17.9
50	(122)	1.17	(9.8)	1241	(23.7
60	(140)	1.15	(9.6)	1706	(33.1

Plastic Compatibility Immersion: 15 min at boiling point of Vertrel® XMS (35.5°C [96°F])

Compatible			
Acetal	Polyimides		
Ероху	Polypropylene		
HD polyethylene Nylon	Polysulfone (e.g., GE's Ultem)		
Phenolic	PVA		
Polyester, PET and PBT	PVC		
Polyethylene	Teflon® TFE, FEP, PFA		

Elastomer Compatibility Immersion: 15 min at boiling point of Vertrel® XMS (35.5°C [96°F])

Compatible				
Buna-S*	Neoprene			
Butyl Rubber*	Polysulfide (e.g., Thiokol's FA)			
Chlorosulfonated PE	Polyurethane			
EPDM (e.g., Nordel®)	Viton® A			
Natural Rubber*	Viton® B			

^{*}Swelling, but with low extractables

(continued)

Vertrel XF Specialty Fluid

Introduction

Vertrel XF is a proprietary hydrofluorocarbon fluid with "zero" ozone depletion and a low global warming potential ideally suited for use in vapor degreasing equipment for cleaning, rinsing, and drying. It can replace current hydrochlorofluorocarbon (HCFC) and perfluorocarbon (PFC) fluids in most applications. Unique physical properties include a higher boiling point and lower surface tension compared to CFC-113. This combined with non-flammability, chemical and thermal stability, low toxicity, and ease of recovery by distillation make Vertrel XF ideal for a broad range of applications. Solvency is more selective than CFC-113, but can be enhanced by use of appropriate azeotropes and blends with alcohols.

Phys	ical	Pro	pert	ies
------	------	-----	------	-----

	Vertrei*	
Property*	XF	CFC-113
Molecular Weight	252	187
Boiling Point, °C (°F)	55 (130)	47.6 (117.6)
Surface Tension, dyn/cm	14.1	17.3
Liquid Density, g/cc (lb/gal)	1.58 (13.2)	1.56 (13.1)
Freezing Point, °C (°F)	-80 (-112)	-35 (-31)
Solubility in Water, ppm of Water, ppm	140 490	170 110
Critical Temperature, °C (°F)	181 (357)	214 (417)
Critical Pressure, psia (atm)	331.9 (22.6)	495 (33.7)
Critical Volume, cc/mol	433	325

^{*}At 25°C (77°F), except where indicated.

Environmental Properties

Class:	HFC	CFC
Property	Vertrel ^e XF	CFC-113
Formula	C,H,F,	C,CI,F,
Flash Point	None	None
Flammable Range in Air	None	None
Atmospheric Lifetime, yr	20.8	100
Ozone Depletion Potential (ODP)	0.0	8.0
Global Warming Potential (HGWP)	0.25	1.35

Heat Transfer Properties

Property*	Vertrel* XF	
Heat of Vaporization (at boiling point), cal/g (Btu/lb)	31.0 (55.7)	
Specific Heat at 20°C (68°F), cal/g.°C (Btu/lb.°F)	0.27 (0.27)	
Vapor Pressure, mmHg (psia)	226 (4.4)	
Viscosity, cPs	0.67	

^{*}At 25°C (77°F), except where indicated.

Density and Vapor Pressure Change with Temperature

Temperature, °C (°F)	Density, g/cc (lb/g)	Vapor Pressure, mmHg (psia)
-20 (-4)	1.70 (14.2)	16 (0.3)
-10 (14)	1.68 (14.0)	36 (0.7)
0 (32)	1.66 (13.8)	62 (1.2)
10 (50)	1.62 (13.5)	109 (2.1)
20 (68)	1.60 (13.3)	176 (3.4)
30 (86)	1.57 (13.1)	284 (5.5)
40 (104)	1.55 (12.9)	434 (8.4)
50 (122)	1.51 (12.6)	641 (12.4)
60 (140)	1.49 (12.4)	921 (17.8)
70 (158)	1.46 (12.2)	1288 (24.9)
80 (176)	1.43 (11.9)	1753 (33.9)
90 (194)	1.40 (11.7)	2343 (45.3)
100 (212)	1.38 (11.5)	3072 (59.4)
110 (230)	1.34 (11.2)	3961 (76.6)
120 (248)	1.32 (11.0)	5032 (97.3)
130 (266)	1.30 (10.8)	6309 (122.0)

Vertrel® XF Azeotropes

Vertrei*	XF With	Boiling Point, °C (°F)
XM	Methanol	46 (115)
XE	Ethanol	52 (126)
MCA	trans-1,2-dichloroethylene	39 (102)
SMT	trans-1,2-dichloroethylene and Methanol	37 (99)

Vertrel® XF Solvating Agents

Dibasic Esters (DBE)	_
Diisobutyl DBE	
Methyl Decanoate	
Isopropyl Myristate	
N-Methyl-2-Pyrrolidone (NMP)	
Tetrahydrofurfuryl Alcohol (THFA)	
Aliphatic Hydrocarbons	
Aliphatic Alcohols	

Plastic Compatibility Immersion: Two Weeks at 50°C (122°F)

Common				
Plastic	Brand Name	Rating	Weight Gain, %	
HDPE	"Alathon"	0	0.3	
PP	"Tenite"	0	0.5	
PS	"Styron"	0	0.3	
PVC		0	0.1	
CPVC		0	0.1	
PTFE	Teflon*	14	3.5	
ETFE	Tefzel•	1	1.4	
PVDF	"Kynar"	0	0.4	
lonomer	Surlyn ^e	0	0.5	
Acrylic	Lucite*	2		
ABS	"Kralastic"	0	0.0	
Phenolic		0	0.0	
Cellulosic	"Ethocel"	1°	4.7	
Ероху		0	0.0	
Acetal	Delrin*	0	0.2	
PPO	"Noryl"	0	0.2	
PEK	"Ultrapek"	0	-0.1	
PEEK	"Victrex"	0	-0.1	
PET	Rynite*	0	0.2	
PBT	"Valox"	0	0.0	
Polyarylate	Arylon•	0	0.0	
LCP		0	0.1	
Polyimide				
A PB	Vespel ^e	0	0.0	
PAI	"Ultem" "Torlon"	0 0	0.1 0.0	
PPS	"Rython"	1	2.7	
Polysulfone	"Udel"	0	-0.1	
Polyaryl Sulfone	"Rydel"	0	-0.1	

Rating Physical Change
0—Compatible •More Flexible
1—Borderline •Sample Dissolved
2—Incompatible •Some Extraction

Vertrel® XF Specifications

·	
Fluoropentanes	99.9% min.
Appearance	Clear, Colorless
Nonvolatile Residue (NVR)	2.0 ppm max.
Moisture	<50 ppm
Acidity, mg KOH/g	0.01 max.

Elastomer Compatibility Immersion, Sealed Tubes: Two Weeks at 50°C (122°F)

			Units
Elastomer	Rating	Linear Swell, %	Hardness Change
Natural Rubber	0	-0.6	-1
Butyl Rubber	0	1.0	-1
Nordel® RPDM	0	-1.0	-2
Neoprene CR	0	0.2	1
SBR	0	0.7	0
Nitrile Rubber NBR NHBR	0 0	-0.6 3.9	2 -8
Vamac ^e EA	2*	13.9	-12
Hypaion ^e CSM	0	1.3	0
Fluoroelastomer Viton® A Viton® B Zalak® Kalrez® Fluorinated Silicone	2 2 2* 2	17.3 22.8 13.7 21.6	-14 -34 -13 -20
Silicone	0	0.5	-4
Epichlorohydrin Homopolymer Copolymer	0 0	-0.5 0.0	1 2
"Adiprene" U	1*	2.7	-2
FA Polysulfide	0	1.5	0
Thermoplastic Alcryn® "Santoprene" "Geoplast" Hytrel® Polyeste	2* 0 1*	-1.2 0.1 -0.5 0.3	13 0 -3 0

Rating: 0—Compatible; 1—Borderline; 2—Incompatible

Exposure Limits

Component	Limit, ppm		Туре
Vertrel® XF	AEL*	200 400	8- and 12-hr TWA Ceiling ^b

^{*}AEL is the DuPont Acceptable Exposure Limit. Where governmentally imposed occupational exposure limits that are lower than the AEL are in effect, such limits shall take precedence.

^{*}Noticeable extraction affecting rating

^b A ceiling limit is the concentration that should not be exceeded during any part of the working day.

Vertrel XSi Cleaning Agent

introduction

Vertrel XSi is a proprietary blend of Vertrel XF hydrofluorocarbon and hexamethyldisiloxane. It is ideally suited for use in medical applications as a solvent for cleaning or depositing of silicone oil-based lubricants. It is also used as a swelling media for silicone rubber tubing.

Phy	/sical	Prop	erties

	,, -, -, -, -, -, -, -, -, -, -, -, -, -	PO: 1.00		
Property	Unit	Vertrel*	Freon®	HCFC-
(at 25°C)		XSi	TF	141b
Boiling Point	°C	57	48	32
	°F	134	118	90
Liquid Density	g/cc	1.17	1.56	1.24
	lb/gal	9.8	13.1	10.3
Vapor Pressure	mmHg	135	226	594
	psi	2.6	4.4	11.5
Surface Tension	dyne/cm	14.0	17.3	19.3
Freezing Point	°C	<-50	-35	-103
	°F	<-80	-31	-154
Heat of Vaporization at boiling point	cal/g Btu/lb	38 69	35 63	53 94
Heat Capacity	cal/g °C	N/A	0.22	0.25
at 20°C (68°F)	Btu/lb °F	N/A	0.22	0.25
Viscosity	сР	0.60	0.67	0.43
Flash Point		None	None	None

^{*}At 25°C (77°F) except where indicated.

Swelling of Polysilicone Tubing

Test	Vertrel® XSi	Freon® TF	Hexane
At Room Temperature			
% Change in Width	15	16	23
% Change in Weight	60	133	83
At Boiling Point*			
% Change in Width	20	20	24
% Change in Weight	64	144	63

^{*47°}C (117°F) for Freon® TF; 54°C (129°F) for Vertrel® KCD-XSi; 68°C (154°F) for Hexane

Plastic Compatibility Immersion: 15 min in Vertrel® XSi at Boiling Point 56.6°C (133.9°F)

20mig 1 ont 55.5 5 (155.5 1 /		
Compatible		
Polyethylene	HD polyethylene	
Polypropylene	Epoxy	
Nylon	Phenolic	
Polyester, PET and PBT	Teflon® TFE, FEP, PFA	
Acetal	Polyimides	
PVC	Polysulfone (e.g., GE's Ultem)	
Polycarbonate	Polyurethane	

Vertrel® XSi Specifications

57.0 ± 1.0
43.0 ± 1.0
Clear, Colorless
10.0 max.
<200

Solubility of Typical Silicone Fluids in Vertrel® XSi at Room Temperature (% Oil Loading in Solvent)

Oil	Vertrel● XSi	Freon® TF	Hexane
DC-200*	14	19	25
DC-360*	21	24	46
DC-550*	33	39	58
DC-1107*	45	51	65
NuSil Med 4159	28	29	31

^{*}As manufactured by Dow Corning.

Solubility of Silicone Fluid (DC-360) in a Blend of Vertrel® XF + Hexamethyldisiloxane

Elastomer Compatibility Immersion: 15 min in Vertrel® XSi at Boiling Point 56.6°C (133.9°F)

Compatible		
Polysulfide (e.g., Thiokol's FA)	EPDM (Nordel®)	
Chlorosulfonated PE	Butyl Rubber*	
Buna-S*	Natural Rubber*	
Polyurethane	Neoprene	
Viton® A	Viton® B	

^{*}Swelling, but with low extractable

Exposure Limits

Component	Limit, ppm	Туре
Vertrel® XF	AEL 200	8- and 12-hr TWA
Hexamethyl-	400	Ceiling*
disiloxane	IHG 200	8-hr TWA
Vertrel® XSi	AEL 200	Calculated**
	400	Ceiling*

AEL-DuPont's acceptable exposure limit.

IHG —Industrial Hygiene Guidelines.

TWA-Time weighted average.

- *A ceiling limit is the concentration that should not be exceeded during any part of the working day.
- **Calculated in accordance with ACGIH Formula for TLVs for mixtures.

Halogenated Hydrocarbons

Pure OXSOL Products (27)

OXSOL PRODUCT

OXSOL 100 100% Parachlorobenzotrifluoride (PCBTF)

· To clean metal, plastics, electronics, and glass.

HOW WILL YOU USE IT?

- To dissolve resins in paints. coatings, inks, adhesives, and other resin applications.
- To dilute for viscosity adjustment, for easy application.

- To carry active ingredients in aerosols.
- As a reaction medium in the chemical, agricultural, and pharmaceutical industries.
- As a drying agent for metals and plastics.

- To reduce or eliminate VOCs*. To reduce or eliminate HAPs**
- For selective solvency.
- For its moderate evaporation rates.
- · For its high stability.
- It is recyclable.

WHY?

- · For high purity, low residue.
- For classical solvent performance.
- It is not miscible with water.

OXSOL 10

100% Monochlorotoluene (MCT)

- As an aggressive solvent in formulations designed to remove paint and polymeric coatings.
- As a cleanup solvent in the painting, coating, and printing industries.
- · As an additive to dissolve sludge in heavy fuels, asphalt, and coke applications.
- To carry inks and dyes in printing and textile production.
- In heavy duty industrial and consumer cleaning products.
- · As an inert carrier for FIFRA*** regulated applications.

- For its low cost.
- To reduce or eliminate HAPs.
- For its aggressive solvency.
- · When a slow evaporation rate is needed.
- · No stabilizers are required.
- · It is recyclable.
- · It is approved as FIFRA*** inert.

OXSOL 1000

100% 3,4-Dichlorobenzotrifluoride (3,4-DCBTF)

- · In precision cleaning applications, when a high flashpoint is required.
- · As a stable solvent where contact with oxidizing media may occur.
- . As a stable high flash heat transfer medium.

- As a stable reaction medium.
- · As an adsorption medium for chlorine and oxygen.
- In agricultural and pharmaceutical applications, as an extraction medium.
- · For its high flashpoint (1707).
- · For its slow evaporation rate
- · For its low reactivity.
- For selective solvency.
- It is exceptionally stable.
- . Where high purity and low residue are required.
- To reduce or eliminate HAPs
- * Volatile Organic Compounds are regulated by Title I of the Clean Air Act of 1990.
- ** Hazardous Air Pollutants are regulated by Title III of the Clean Air Act of 1990.
- *** Federal Insecticide Fungicide Rodenticide Act.

Blended OXSOL Products (27)

Property Comparison

Product	Evaporation Rate*	Flash Point (°F)	Kauri Butanol Value	Solubility Parameter (cal/cm²) ^{1/3}	Boiling Point (°C)	Density (lbs/gal 20°C)
OXSOL 100	0.9	109	64	8.63	139	11.2
OXSOL 1000	0.2	170	69	8.89	174	12.3
OXSOL 10	0.4 - 0.8	123	110	9.6	159 - 162	9
OXSOL 550	0.7	113	92	8.93	142 - 159	10.0
OXSOL 73	0.6	None ^r	114	9.11	129 - 158	10.3
OXSOL 253	0.6	None*	109	9.94	127 - 159	10.7
OXSOL 325	1.2	None	100	8.81	121 - 155	11.8
Methylene chloride	14.5	None	136	9.9	40	11
Perchloroethytene	1.5 - 2.59	None	90	9.8	121	13.5
Trichloroethylene	6.39	None	130	9.3	87	12.1
1,1,1-Trichloroethane	6	None	124	8.9	74	11
CFC 113 ^{d,e}	21	None	31	7.2	48	13.1
Dibasic ester	0.009	212	na ^c	9.2	210 - 215	7.3
d-Limonene	0.1	118	60	_	178	7.0
Toluene	2.0	40 - 45	105	8.9	111	7.2
Xylene	0.77 - 0.9	85	98	9.9	135 - 143	7.2
Acetone	6.1	0	na	9.8	56	6.6

^{*} N-butyl acetate = 1 @ 25°C

Regulatory Features Comparison (as of 1/1/96)

Product	Exempt from VOC Regulations	SARA Title iii Reportable	Suspected Animal Carcinogen	Hazardous Air Pollutant
OXSOL 100	Yes	No	No	No
OXSOL 1000	No	No	No	No
OXSOL 10	No	No	No	No
OXSOL 550	Partial	No	No	No
OXSOL 73	No	Yes	les	Partial
OXSOL 253	Partial	Yes	Yes	Partial
OXSOL 325	Partial	Yes	Yes	Partial
Methylene chloride	Yes	Yes	Yes	Yes
Perchloroethylene	No	Yes	. Yes	Yes
Trichloroethylene	No	Yes	No	Yes
1,1,1-Trichloroethane	Yes	Yes	No	Yes
CFC 11312	Yes	Yes	No	No
Dibasic ester	No	No	No	No
d-Limonene	No	No	Yes	No
Toluene	No	Yes	No	Yes
Xylene	No	Yes	No	Yes
Acetone	Yes	No	No	No

Ozone depleting chemical

No flash to boiling using Cleveland closed cup apparatus
Not applicable for oxygen containing compounds

1,1,2-trichloro-1,2,2-trifluoroethane

Ozone depleting chemical

² 1,1,2-trichloro-1,2,2-trifluoroethane

Sales Specification

OXSOL° 10

Monochlorotoluenes

Specifications

Appearance Clear, Free of suspended matter

Color, APHA 25 Max.

Monochlorotoluene 99.5% Min.

Toluene 0.4% Max.

Typical Physical Properties

Formula C7H7Cl Molecular weight 126.59 Specific gravity @ 25°C/25°C 1.07 Density, lb/gal (g/l) 9 (1070) Freeze point, °C (°F) -25 (-13) Boiling point, °C (°F) 159 (318) Flash point (TCC), °C (°F) 50.6 (123) Vapor pressure @ 20°C, mm Hg 2.6 Kauri-butanol value 110 Water, ppm <100

Oxsol 10 Liquid Density

Table 3.63: (continued)

Oxsol 10 Liquid Thermal Conductivity

(continued)

Oxsol 10 Vapor Thermal Conductivity

Oxsol 10 Liquid Viscosity

Table 3.63: (continued)

Oxsol 10 Liquid Heat of Vaporization

(continued)

Table 3.63: (continued)

Oxsol 10 Liquid Vapor Pressure

Oxsol 10 Liquid Surface Tension

OXSOL 100

OXSOL 100 is a purified grade of p-chlorobenzotrifluoride (PCBTF) with the characteristic odor of chlorinated aromatic solvents. OXSOL 100 is a clear water-white liquid with solvency characteristics similar to the classical chlorinated and fluorinated solvents. PCBTF has been commercially produced for over thirty years as a chemical intermediate. OXSOL 100 has been used as a solvent since 1992 as a replacement for solvents with Ozone Depletion Potential (ODP), Volatile Organic Compounds (VOC) and Hazardous Air Pollutants (HAP).

OXSOL 100 is not regulated as an ozone depleter. OXSOL 100 is not regulated as a Hazardous Air Pollutant. And on October 5, 1994, the EPA published in the Federal Register, a revised definition of VOC which specifically exempted OXSOL 100 from VOC regulations. The exemption was based on the very favorable atmospheric profile of the molecule.

The use of OXSOL 100 or other PCBTF based OXSOLs will allow many solvent users to eliminate or reduce their use and emissions of VOCs without giving up the many benefits received from organic solvents. OXSOL can be used to extend or replace many organic solvents, including toluene, xylene, mineral spirits, acetone, methyl ethyl ketone (MEK), trichloroethylene, perchloroethylene, 1,1,1-trichloroethane and n-methyl pyrrolidone (NMP)>

Physical Properties of OXSOL 100	
Freezing Point, °C	-36
Boiling Point, °C	139
Flash Point, TCC, °F	109
Evaporation Rate at 25°C, n-BuAc = 1	0.9
Solubility Parameter (cal/cm ³) ^{1/2}	7.3
Density @ 25°C, lb/gal	11.2
Kauri-Butanol Value	64
Solubility of water in OXSOL @ 25°C, ppm	240
Solubility of OXSOL in water @ 25°C, ppm	35
Surface Tension @ 25°C, dynes/cm ²	25
Heat of Combustion, BTU/lb	7100
Viscosity @ 25°C, cp	0.79
CAS#	98-56-6

Sales Specifications	
Appearance	CFOSM
Color, APHA	20 Max
Acidity, ppm (by specific ion probe)	3 Max
Alkalinity, ppm as NaOH	10 Max
Water content, ppm	150 Max
Specific Gravity @ 25°C/25°C	1.33-1.35
Non Volatile Residue, Wt. %	0.0020 Max

Vapor Pressure vs. Temperature - OXSOL 100

Temperature,°C

Specific Heat vs. Temperature - OXSOL 100

Temperature, °C

Vapor Viscosity vs. Temperature - OXSOL 100

Liquid Thermal Conductivity vs. Temperature - OXSOL 100

OXSOL 2000

Chemically, OXSOL 2000 is alpha, alpha, alpha, alpha-trifluorotoluene, an HFC. OXSOL 2000 has a number of desirable properties for precision cleaning, electronics cleaning, aerosol applications, and wipe cleaning. It is a pure compound, with a relatively fast evaporation rate and toluene-like odor. In its pure form, OXSOL 2000 is a good replacement for hexane, toluene, and VM&P naphtha where a rapid evaporation rate is desirable and a flammable solvent can be used safely. In addition, OXSOL 2000 can be blended with classical solvents like trichloroethylene yielding non-flammable, very fast evaporating compositions.

Physical and Chemical Properties of OXSOL 2000:

Property

Chemical Formula Molecular Weight	C ₇ H ₅ F ₃ 146.11
Boiling Point: °C (°F)	102 (216)
Dielectric Constant, 25°C Flash Point, TCC °C (°F)	11.5 12 (54)
Fire Point, TOC °C (°F)	23 (74)
Kauri Butanol Value	49 `
Evaporation Rate, n-BuAc = 1	2.8
Latent Heat of Vaporization (B.P.), BTU/lb	97
Specific Heat, Liquid 20°C (BTU/lb/°F)	0.306
Density, 20°C, gm/cc	1.185
Density, 20°C, lbs/gal	9.88
Vapor Pressure (20°C), mm Hg	30
Vapor Density (Air = 1)	5.0
Surface Tension in Air: Dynes/cm:20°C	23
Viscosity (Cp), Liquid, 20°C	0.56

Density of OXSOL 2000

(continued)

Table 3.63: (continued)

Liquid Heat Capacity of OXSOL 2000

OXSOL 2000 Liquid Thermal Conductivity

OXSOL 2000 Vapor Thermal Conductivity

OXSOL 2000 Liquid Viscosity

(continued)

Table 3.63: (continued)

OXSOL 2000 Vapor Viscosity

OXSOL 2000 Heat of Vaporization

OXSOL 2000 Liquid Vapor Pressure

OXSOL 2000 Liquid Surface Tension

Sales Specification

OXSOL® 550

Test	Specifications		
Appearance	Clear, Free of Suspended Matter		
Color, APHA	30 Max.		
Acidity, ppm as Total Inorganic Acidity	3 Max.		
(by Specific Ion Probe)			
Alkalinity, ppm as NaOH	10 Max.		
Water Content, ppm	150 Max.		
Specific Gravity @ 25°C/25°C	1.20-1.22		
Residue on Evaporation, Wt. %	0.0025 Max.		

Physical Properties

OXSOL 550 is a clear, colorless blend of Halogenated Aromatic solvents with a characteristic chloroaromatic odor and the following physical characteristics:

Distillation Range, @ 760 mm Hg 142-159°C
Flash Point, (TCC) 113°F
Freezing Point <-60°C
Evaporation Rate (n-BuAc=1.0) 0.7

Kauri-Butanol Value 92

Sales Specification

OXSOL®73

Specifications

Specifications		
Clear, Free of Suspended Matter		
30 Max.		
3 Max.		
15 Max.		
100 Max.		
1.22-1.26		
0.0025 Max.		

Physical Properties

Toot

OXSOL 73 is a clear, colorless, non-flammable blend of Monochlorotoluenes and Perchloroethylene with a characteristic chloroaromatic odor and the following physical characteristics:

Distillation Range, @ 760 mm Hg 129-158°C
Flash Point, (TCC) NFTB *
Freezing Point -33°C
Evaporation Rate (n-BuAc=1.0) 0.6

Solubility, @ 25°C <150 ppm in H₂O
Density, @ 25°C 10.35 lbs/gal
Vapor Pressure, @ 20°C 8-10 mm Hg
Heat of Combustion 8,300 BTU/lb
Kauri-Butanol Value 114

* NFTB - No Flash to Boiling

Sales Specification

OXSOL®253

Test	Specifications		
Appearance	Clear, Free of Suspended Matter		
Color, APHA	30 Max.		
Acidity, ppm as Total Inorganic Acidity (by Specific Ion Probe)	3 Max.		
Alkalinity, ppm as NaOH	. 15 Max.		
Water Content, ppm	100 Max.		
Specific Gravity @ 25°C/25°C	1.27-1.32		
Residue on Evaporation, Wt. %	0.0025 Max.		

Physical Properties

OXSOL 253 is a clear, colorless, non-flammable blend of Halogenated Aromatics and Perchloroethylene with a characteristic chloroaromatic odor and the following physical characteristics:

Distillation Range, @ 760 mm Hg 127-159°C
Flash Point, (TCC) NFTB *
Freezing Point <-60°C
Evaporation Rate (n-BuAc=1.0) 0.6

Solubility, @ 25°C <150 ppm in H₂O
Density, @ 25°C 10.81 lbs/gal
Vapor Pressure, @ 20°C 10 mm Hg
Heat of Combustion 7,600 BTU/lb
Kauri-Butanol Value 109

Sales Specification

OXSOL® 325

Test	Specifications
Appearance	Clear, Free of Suspended Matter
Color, APHA	30 Max.
Acidity, ppm as Total Inorganic Acidity (by Specific Ion Probe)	3 Max.
Alkalinity, ppm as NaOH	15 Max.
Water Content, ppm	100 Max.
Specific Gravity @ 25°C/25°C	1.40-1.46
Residue on Evaporation, Wt. %	0.0025 Max.

Physical Properties

OXSOL 325 is a clear, colorless, non-flammable blend of Halogenated Aromatics and Perchloroethylene with a characteristic chloroaromatic odor and the following physical characteristics:

Distillation Range, @ 760 mm Hg 121-155°C
Flash Point, (TCC) NFTB *
Freezing Point <-50°C
Evaporation Rate (n-BuAc=1.0) 1.2

Solubility, @ 25°C <150 ppm in H_2O Density, @ 25°C 11.95 lbs/gal Vapor Pressure, @ 20°C 13 mm Hg Heat of Combustion 5,100 BTU/lb Kauri-Butanol Value 100

* NFTB - No Flash to Boiling

^{*} NFTB - No Flash to Boiling

OXSOL SA

OXSOL SAs are based on parachlorobenzotrifluoride (PCBTF or OXSOL 100), an "environmentally friendly" solvent alternative. PCBTF has a unique atmospheric profile, making it one of the few volatile organic solvents not suspected of causing stratospheric ozone depletion or tropospheric ozone and smog. PCBTF is not an ozone depleting product (ODP). It is exempt from USEPA Volatile Organic Compounds (VOC) regulations. It is not a hazardous air pollutant (HAP). It is not on the SARA Title III, Section 313 list of toxic chemicals. It is not a carcinogen and is considered only "mildly toxic" (from Federal Register 50 FR 42216–4221 10/18/85.

As a result of its favorable regulatory status and excellent properties, PCBTF is an ideal candidate for formulating environmentally friendly solutions without giving up the excellent physical and chemical properties of organic solvents.

OXSOL® Dielectric Breakdown*

Product	Test #1 (kv)	<u>Test #2 (kv)</u>
OXSOL 73	30	38
OXSOL 253	50+	50+
OXSOL 325	50+	50+
OXSOL 550	35	40
OXSOL 100	48	50
OXSOL 1000	40	50

^{*} ASTM Test Method D-877; Reported in thousands of volts.

Sales Specification

OXSOL® 1000

Test	Specifications
Appearance	Clear, Free of Suspended Matter
Color, APHA	20 Max.
Acidity, ppm as Total Inorganic Acidity (by Specific Ion Probe)	3 Max.
Alkalinity, ppm as NaOH	10 Max.
Water Content, ppm	150 Max.
Specific Gravity @ 25°C/25°C	1.47-1.49
Residue on Evaporation, Wt. %	0.0020 Max.

Physical Properties

OXSOL 1000 (3,4-Dichlorobenzotrifluoride) is a clear, colorless solvent with the following physical characteristics:

Boiling Point, @ 760 mm Hg	174°C
Flash Point, (TCC)	170°F
Freezing Point	-12.4°C
Evaporation Rate (n-BuAc=1.0)	0.2
Solubility, @ 25°C	11.6 ppm in H ₂ O

Density, @ 25°C 12.36 lbs/gal
Vapor Pressure, @ 20°C 1.6 mm Hg
Heat of Combustion 4,830 BTU/lb

Kauri-Butanol Value 69

Table 3.64: 3M Hydrofluoroether

3M[™] HFE-7100, methoxy-nonafluorobutane (C₄F₉OCH₃), is a clear, colorless and low-odor fluid intended to replace ozone-depleting materials. This proprietary fluid has zero ozone depletion potential and other favorable environmental properties. It has one of the lowest toxicological profiles of the new CFC replace materials, with a time-weighted average exposure guideline of 600 ppm (eight hour average).

The high boiling point, increased solvency and low surface tension of 3M HFE-7100 make it suitable for use in vapor degreasing applications as a neat (pure), azeotropic or co-solvent parts cleaner. In addition, its chemical and thermal stability, non-flammability and low toxicity make it useful for other industrial applications such as specialty solvent and heat transfer applications.

Typical 3M HFE-7100 Applications

· Cleaning and Rinsing Agent

Heavy-duty (co-solvent) cleaning - heavy oils, greases, fluxes Medium-duty cleaning (azeotrope) - oils, greases, waxes Light-duty cleaning (neat) - particulates, fluorolubes, light oils, fluoropolymers

· Lubricant Carrier Fluorocarbons

> Hydrocarbons Silicones

· Spot-Free Water Drying Agent

- (with surfactants added) · Specialty Solvents, Dispersion Medium
- · Heat Transfer Medium
- · Spray Contact Cleaner
- · CFC, HCFC, HFC and PFC Replacement Agent

Heat Transfer Properties

Properties	3M HFE-7100	CFC-113	HCFC-141b	HCFC-225 ca/cb	HFC-4310
Vapor Pressure	210	331	569	290	226
Viscosity ²	0.61	0.68	0.43	0.59	0.67
Heat of Vaporization ³	30	35	53.3	34.6	31
Specific Hear	0.28	0.22	0.30	0.24	0.27

¹ mmHg @ 25°C

Environmental Properties

Property	3M HFE-7100	CFC-113	HCFC-141b	HCFC-225 ca/cb	HFC-4310
Ozone Depletion Potential'-ODP	0.00	0.80	0.10	0.03	0.00
Global Warming Potential ² -GWP	500	5000	630	170/530	1300
Atmospheric Lifetime-ALT (yrs)	4.1	85	9.4	2.5/6.6	17.1

 $^{^{\}circ}$ CFC-11 = 1.0

NOTE: HCFC-225 calcb ratio is 45/55

Data compiled from published information.

Data compiled from published information

² cps @ 25°C

³ cal/g @ boiling point

¹ cal/g °C @ 25°C

² GWP - 100 year Integration Time Horizon (ITH)

196

Comparison Guide

Property	C ₄ F ₉ OCH ₃ HFE-7100	C ₂ Cl ₃ F ₃ * CFC-113	CCI₂FCH₃* HCFC-141b	CH ₃ CCl ₃ * 1,1,1 TCA	C ₃ Cl ₂ HF ₅ * HCFC-225 ca/cb	C ₅ H ₂ F ₁₀ * HFC-4310
Boiling Point (°C)	60	48	32	74	54	54
Surface Tension (dynes/cm @ 25°C)	13.6	17.3	19.3	25.1	16.2	14.1
Heat of Vaporization (Cal/g) @ Boiling Point	30	35	53.3	58	35	31
Viscosity (cps @ 25°C)	0.61	0.68	0.43	0.77	0.59	0.67
Vapor Pressure (mmHg @ 25°C)	210	331	569	128	137-175	226
Specific Heat (Cal/g/°C @ 25°C)	0.28	0.22	0.30	0.25	0.24	0.27
Flash Point (°C)	NONE	NONE	NONE	NONE	NONE	NONE
Liquid Density (g/ml) @ 25°C	1.52	1.56	1.23	1.30	1.55	1.58
Freezing Point (°C)	-135	-35	-103	-39	-131	-80
Solubility for H ₂ O (ppm by wt.)	95	110	420	266	370	490
Solubility in H ₂ O (ppm by wt.)	<20	170	210	700	210	140
ODP (CFC-11 = 1.0)	0	0.8	0.10	0.1	0.03	0
Atmospheric Lifetime (Years)	4.1	85	9.4	5.4	2.5-6.6	17.1
GWP (100 Year ITH)	480	5000	630	110	170/530	1300
Toxicity Data						
Acute Inhalation (ppm) (4 hr. LC ₅₀) 8 hr. Exposure Guideline (ppm)	>100M 600	ca50M 1000	62M 500	1 6M 350	37M 50	10M 200

3M HFE-7100 Toxicological Test Results

Acute Lethal Inhalation Concentration	>100,000 ppm (4 hr)
Oral	Practically non-toxic (>5g/kg)
Eye Irritation	Practically non-irritating
Skin Irritation	Minimally irritating
Skin Sensitization	Not a Skin Sensitizer
Inhalation Range Finding (28 day)	600 ppm Exposure Guideline ¹
Developmental Toxicity	No abnormal effects observed
Mutagenicity	Not a mutagen
Cardiac Sensitization	No signs of sensitization at exposures up to 100,000 ppm
Ecotoxicity	In Progress
90 Day Inhalation	In Progress
30 Day iiiiaiation	1111051033

¹ Exposure Guideline set by the 3M Medical Department

3M HFE-7100 Materials Compatibility

Metals	Plastics	Elastomers	
Aluminum Copper Carbon Steel 302 Stainless Steel Brass Molybdenum Tantalum Tungsten Cu/Be Alloy C172 Mg Alloy AZ32B	Acrylic Polyethylene Polypropylene Polycarbonate Polyester Epoxy PMMA PET ABS	Butyl Rubber* Natural Rubber Nitrile Rubber EPDM	

Compatible after one hour exposure at boiling temperature.

Exceptions: some swelling of PTFE and Silicone Rubber.

Some surface oxidation of copper during heat aging.

3M HFE-71DE Hydrofluoroether Azeotrope

 $3M^{TM}$ HFE-71DE is a hydrofluoroether, Methyl Nonafluorobutyl Ethers ($C_4F_9OCH_3$), in an azeotrope formulation with trans-1,2-dichloroethylene. This mixture is a true azeotrope, with constant vapor and liquid composition at its boiling point. This fluid is suited to medium duty cleaning and degreasing tasks, as well as specialty solvent applications, and is intended to replace ozone-depleting materials. It has zero ozone depletion potential and other favorable environmental properties. 3M HFE-71DE has a time-weighted average exposure guideline of 600 ppm for the $3M^{TM}$ HFE-7100 component, and 200 ppm for trans-1,2-dichloroethylene (8 hr average).

The increased solvency and low surface tension, nonflammability and constant composition during boiling of 3M HFE-71DE make it suitable for immersion and vapor degreasing applications. These properties also may make the azeotrope suitable for certain coating and lubricant deposition applications where increased solvency is required.

3M HFE-71DE Typical Applications

Cleaning, Rinsing and Drying Agent
Cleaning of oils, greases, waxes
Specialty solvent applications
For information on other applications, contact your 3M representative or 3M authorized distributor.

^{*}Butyl Rubber best for extended exposure >1 month.

General Properties

Properties	3M HFE-71DE	CFC-113	HCFC-141b	HCFC-225 ca/cb	HFC-4310
Formulation	Azeotrope ¹	C ₂ Cl ₃ F ₃	CCl₂FCH₃	C ₃ Cl ₂ HF ₅	Azeotrope ²
Boiling Pt °C	41	48	32	54	39
Freeze Pt °C	-243	-35	-103	-131	not avail.
Liquid Density ⁴	1.37	1.56	1.23	1.55	1.41
Surface Tension ⁵	16.6	17.3	19.3	16.2	15.2
Kauri-Butanol Value	27	31	56	31	N/A
Flash Point	None	None	None	None	None
Flammability Range in Air	None	None	7.1-18.66	None	N/A

- ¹ 50% 3M HFE-7100 (C₄F₉OCH₃), 50% trans-1, 2-dichloroethylene
- ² 61.7% HFC-4310 (C₅H₂F₁₀), 38% trans-1, 2-dichloroethylene (Dupont Vertrel MCA)
- ³ Critical Solution Temperature
- 4 g/mil @ 25°C
- ⁵ dynes/cm @ 25°C
- Vol % by ASTM E681-94 @ 100°C

Physical Properties

Properties	3M™ HFE-71DE	CFC-113	HCFC-141b	HCFC-225 ca/cb	HFC-4310 ¹
Vapor Pressure ²	473	331	569	290	464
Viscosity ³	0.45	0.68	0.43	0.59	0.49
Heat of Vaporization ⁴	48	35	53.3	34.6	43.3
Ozone Depletion Potential-ODP ^s	0.00	0.80	0.10	0.03	0.00
Global Warming Potential ⁶	250	5000	630	170/530	N/A
Atmospheric Lifetime (yrs)	4.17	85	9.4	2.5/6.6	N/A

- ¹ 61.7% HFC-4310 (C₅H₂F₁₀), 38% trans-1, 2-dichloroethylene (Dupont Vertrel MCA)
- ² mmHg @ 25°C
- ³ cps @ 25°C
- ' cal/g @ boiling point
- ⁵ CFC-11 = 1.0
- " GWP 100 year ITH, $CO_2 = 1.0$
- ⁷ 4.1 3M HFE-7100, 0.01 trans-1, 2-dichloroethylene

3M HFE-71DE Material Specifications

Methyl Nonafluorobutyl Ethers¹ Trans-1,2-dichloroethylene 50% by weight 50% by weight Clear, colorless

Appearance Clear, co

¹ 3M HFE-7100 (C₄F₉OCH₃) consists of two inseparable isomers with essentially identical properties. These are (CF₃)₂CFCF₂OCH₃ (CAS No. 163702-08-7) and CF₃CF₂CF₂CF₂OCH₃ (CAS No. 163702-07-6).

Regulatory Status

The U.S. Environmental Protection Agency (EPA) has completed its Pre-Manufacturing Notification (PMN) review and has permitted 3M to commercialize 3M[™] HFEs immediately. Both components of 3M HFE-71DE are TSCA listed. 3M is pursuing an "Acceptable" listing for Methyl Nonafluorobutyl Ethers under the EPA's Significant New Alternative Policy (SNAP) program. Trans-1,2-dichloroethylene is approved under SNAP for use as a cleaning solvent.

As a result of its lower toxicity, trans-1,2-dichloroethylene is far less regulated in its use compared to "chlorinated solvents." The only regulations affecting 3M HFE-71DE due to the presence of trans are VOC emissions and reporting requirements if it is emitted into water or if a spill of 2000 lb or more occurs. Trans is not considered a Hazardous Air Pollutant and is not subject to annual reporting requirements. The following table lists the regulations covering trans compared to chlorinated solvents.

Regulations on Chlorine-Containing Solvents

Regulation	Trans-1,2-dichloro ethylene	Trichloro ethylene	Perchloro ethylene	Methylene Chloride
VOC Designation	Yes	Yes	Yes	No
Hazardous Waste	Yes for pure trans (no for 3M™ HFE-71DE)	Yes	Yes	Yes
Reportable Qty for Accidental Release	1,000 lbs (2,000 lbs in 3M HFE-71DE)	100 lbs	100 lbs	1,000 lbs
Regulated if Emitted into Water	Yes	Yes	Yes	Yes
Hazardous Air Pollutant	No	Yes	Yes	Yes
Annual Reporting (EPCRA 313) (SARA)	No	Yes	Yes	Yes
OSHA List of toxins/carcinogens	No	Yes	Yes	Yes
NJ or CA Hazardous Lists	No	Yes	Yes	Yes

Typical Physical Properties of HFE L-13938

Boiling Point (°C)	60
Freezing Point (°C)	-135
Flash Point (°C)	None
Solubility for water (ppm)	95
Solubility in water (ppm)	<10

Thermal Transport Properties of HFE L-13938

	<u>@ 0°C</u>	<u>@ -40°C</u>
Density (gm/ml)	1.54	1.63
Specific Heat (J/Kg °C)	1133	1053
Viscosity (cSt)	.60	1.07
Thermal Conductivity (W/m °C)	.074	.082

Environmental Properties of HFE L-13938

Ozone Depletion Potential (ODP) 0 (CFC11 = 1)
Volatile Organic Compound (VOC) No

Volatile Organic Compound (VOC)
Atmospheric Lifetime

No
4.0 years

GWP (IPCC 1994) 500 (CO₂ = 1, 100th year)

HGWP 0.09 (CFC11 = 1)

Toxicological Properties of HFE L-13938

Oral Practically non-toxic orally

Eye IrritationNo irritationSkin IrritationNo Irritation

Skin Sensitization Not a Skin Sensitizer

Inhalation No observable effects at 10,000 ppm

ALC >100,000 ppm (4hrs)

Chronic Toxicity In Progress

Table 3.64: (continued)

Table 3.64: (continued)

Physical Properties of HFEs				
Property	C4F9OCHb (HFE A)	C ₄ F ₉ OC ₂ H ₅ (HFE B)	CF2CICFCb (CFC-113)	CH ₂ CCI (TCA)
Boiling Point (°C)	60	73	48	74
Freezing Point (°C)	-135	-117	-35	-39
Flash Point (°C)	None	None	None	None
Solubility for Water (ppm)*	95	92	170	266
Solubility in Water (ppm)*	< 10**	< 10**	110	700
• @ 25°C •• detection limit for mate	rual			

Physical Properties of HFEs				
Property (@23°C)	C4F4OCH3 (HFE A)	C4F9OC2Hs (HFE B)	CF:ClCFCb (CFC-113) (@25°C)	CH ₂ CCb (TCA)
Liquid Density (g/ml)	1.50	1.43	1.56	1.32
Viscosity (cp)	0.61	0.61	0.68	0.83
Surface Tension (dynes/cm)	13.6	13.6	17.3	25.1
Heat of Vaporization (cal/g)	30	30	35	58
Specific Heat (cal/g/℃)	0.28	0.29	0.22	0.24

Environmental Properties of HFEs					
Property	C ₄ F ₉ OCH ₃ (HFE A)	C4F9OC2Hs (HFE B)	CF:CICFCl ₂ (CFC-113)	CH5CCb (TCA)	
ODP (CFC-11 = 1)	0	0	0.8	0.1	
VOC	No	No	No	No	
Atmospheric Lifetime (years)	5.5	1.2	110	6.1	
GWP (CO2=1, 100 Year F[H)	500	110	4500	100	
HGWP (CFC-F1 = 1)	0.12	0.03	1.4	0.02	

Phase 1 - (Acute) Tests	
Oral Inhalation ALC of C 4F9-O-CH 4 ALC of C 4F9-O-C H5 Skin Irritation Skin Sensitization Eye Irritation Ames Assay	Practically non-toxic orally No observable effects at 10,000 ppm > 100,000 ppm (4 hr) > 50,000 ppm (4 hr) No Irritation Test In Progress No Irritation In Preparation
Phase 2 - (Advanced) Tests Ecotoxicity	All In Preparation
Cardiac Sensitization Inhalation Range Finding & Develo 90 Day Inhalation	pmental Toxicity

Key Material Compatibilities with HFEs Compatible with: Metals **Plastics** Aluminum Acrylic Copper* Polyethylene Carbon Steel Polypropylene 302 Stainless Steel PVC **PMMA** Elastomers Polycarbonate Natural Neoprene Exceptions: Urethane Some swelling of PTFE EPDM Significant swelling of Silicone Rubber SBR *Some surface oxidation during heat aging Nitrile One week exposures at boiling temperature

*Trans = Trans 1,2-dichloroethylene

Hr Es vs. Hr Higher Hydrolyti	
HF Generation Rate @ Boiling Point (μg/g/-hr)	HF Generation Rate (a Boiling Point + 50 °C (µg/g/-hr)
0.46	0.67
0.07	0.22
1.31	18.9
	HF Generation Rate @ Boiling Point (μg/g/-hr) 0.46

Stability of HFEs Hydrolytic Stability C4FOCH3 C4F5OC2H5 CF2CICFC12 CaFia (HFE A) (HFE B) (CFC-113) **HF** Generation Rate 0.46 0.07 0.02 < 0.01@ Boiling Point (µg/g-hr) HI' Generation Rate 0.67 0.22 0.44< 0.01 € 110°C (µg/g-hr) Samples heated for 16 hours in sealed tubes containing 0.1 M aqueous sodium acetate Analyzed using coulometric titration employing fluoride ion specific electrode

HFEs vs. HFCs

♦ Shorter Atmospheric Lifetimes

HFE vs HFC	Ratio of Estimated Lifetimes* (HFE/HFC)
CF3-O-CH3 vs CF3CH3	0.03
C2F5-O-CH3 vs C2F5CH3	0.13
C3F7-O-CH3 vs C3F7CH3	0.20
C4F9-O-CH3 vs C4F9CH3	0.25
*From calculated reaction rates with hydroxyl radica	al

HFEs vs. HFCs ◆ Lower Global Warming Potentials Compound Global Warming Potential (CO2 = 1, 100 year ITH) C4F9OC2H5 (HFE B) 110 C4F9OCH3 (HFE A) 500 CF3CFHCFHC2F5 (HFC-43-10mee) 1000 CF3CH2F (HFC-134a) 1200 CF5CFHCF3 (HFC-227ea) 2050

Cleaning Performance Results - As An AVDTM Rinsing Agent

Percent Soil Removal

	C4F9OCH3	C4F9OC2H5	CFC-113	
Heavy Oil	99.9	100.0	100.0	
Flux	100.0	100.0	80.8	

All materials except CFC-113 employed a 1 \pm 1 minute immersion in Petroferm Solvating Agent 24 with sonication followed by 30 seconds immersion rinsing at the boiling point

Heavy Oil - Duo Seal Pump Oil (Sargent-Welch Scientific Co.) Solder Flux - Alpha 611

AVD is a trademark of Petroferm Inc.

Solvency of HFEs				
Compound	Kauri-Butanol Value*			
CFC-113	32			
1,1,1-trichoroethane	123			
C ₆ F ₁₄	0			
C ₄ F ₉ OCH ₃	10			
C ₄ F ₉ OCH ₃ Azeotrope	27			
Solvating Agent 24	>150			
* per ASTM D 1133-86				

1	HFE Cleaning Sp	ectrum
,	in L Cleaning op	CCHUIII
leaning System :		
Neat HFE →	► HFE Azeotrope →	HFE Co-Solvent Cleaning
ioils:		
Light Oils Halogenated Compounds Particulates	Medium Weight Oile Silicone Oile Lubricante Release Agente Hydraulic Fluids	Heavy Oila Hydrocarbea Greases Silicone Greases Buffing Compounds Polishing Agents Flux Residue

Neat HFE Cleaning Performance α - Site Testing Results

Examples of Components Successfully Cleaned using Neat HFEs

Customer Part	Soil Removed	Result
Medical Device	Light Hydrocarbon Oil	Meets Customer Requirements
Gyroscope	Brominated Flotation Fluid	Meets Customer Requirements
Diskette Shutter	Light Silicone Oil*	Meets Customer Requirements

Cleaning Performance Using an HFE Azeotrope

Test conditions: one minute immersion in boiling solvent with sonication Hydrocarbon Oil: Metalub 525 $\,$

Cleaning Performance as a Co-Solvent Rinsing Agent

Soil Removal (Percent by Weight)

	C ₄ F ₉ OCH ₃	CFC-113	CFC-113/ EtOH
Heavy Oil	9 9.9	100.0	
RMA Flux	100.0	80.8	100.0

Use of HFE employed a 1 minute immersion in Petroferm Solvating Agent 24 with sonication followed by 30 seconds immersion rinsing at the boiling point CFC-113 used a 1 minute immersion with sonication at the boiling point.

Heavy Oil - Duo Seal Pump Oil (Sargent-Welch Scientific Co.) Solder Flux - Alpha 611 (Alpha Metals, Inc.)

HFE Azeotrope Cleaning Performance α - Site Testing Results

Examples of Components Successfully Cleaned using an HFE Azeotrope:

Customer Part	Soil Removed	Results	
Optical Component	Medium Hydrocarbon Oils*	Meets Customer Requirements	
Medical Component	High MW Silicone Oil	Meets Customer Requirements	
Metal Component	Hydraulic Oit	Meets Customer Requirements	
* Cleaned in Vapor Ph	ase	,	

Co-Solvent Cleaning Process Equipment

HFE Co-Solvent Cleaning Performance α - Site Testing Results

Examples of Components Successfully Cleaned using an HFE Co-Solvent System:

Customer Part	Soil Removed	Results	
Aerospace	Hydrocarbon and	Meets Customer	
Component	Fluorinated Greases	Requirements	
Assembled	High MW Hydrocarbon	Meets Customer	
Bearing	Greasc	Requirements	
Electrical	RMA Flux	Meets Customer	
Connector		Requirements	

Summary: Performance of Hydrofluoroethers in Cleaning Applications

- Physical Properties Which Closely Match ODSs
- ◆ Very Good Environmental Profile
 Not Precursors to Photochemical Smog (VOCs)

 Zero Ozone Depletion Potential
 Short Atmospheric Lifetimes
 Low Global Warming Potentials
- Solvency for a Number of Soils
- ◆ Effective Cleaning Agents in a Variety of Processes

Solubility (at 25°C) of Various Solutes in PFC, HFC, and HFE

<u>Solute</u>		Solu	ıbility (perc ent) ir	ı
	PFC ^w	HFC(2)	Methyl HFE®	Ethyl HFE
IPA	<1	Miscible	Miscible	Miscible
Kerosene	<1	2	5	Miscible
Mineral oil	<1	<1	<1	<1
Limonene	<1	3.5	20	Miscible
AVD 19	<1	Miscible	Miscible	Miscible
(1) C ₆ F ₁₄ (Pe	erfluoroh	exane)		

(2) C₆F₁₃H ("1-H Perfluorohexane")

(3) F,C,OCH,

(4) F,C,OC,H,

Selected Parts and Soils Cleaned

Parts

Ball bearings

Ball bearing assemblies

Contact lens mounts

Fuel injector components

Graduated capillary spacing test assembly

Heat exchangers

Printed circuit assemblies

Table 3.64: (continued)

HFE Toxicity Evaluation - Status

◆ Phase 1 - Acute Tests

Inhalation

ALC of C_4F_9 -O-CH₃ ALC of C_4F_9 -O-C₂H₅

Oral

Eye Irritation Skin Irritation Skin Sensitization

◆ Phase 2 - Advanced Tests

Ecotoxicity Inhalation R

Inhalation Range Finding (28 day)

Developmental Toxicity Cardiac Sensitization 90 Day Inhalation No observable effects at 10,000 ppm

> 100,000 ppm (4 hr)

> 50,000 ppm (4 hr) Practically non-toxic orally

No Irritation
No Irritation

Not a Skin Sensitizer

In Progress

Key Material Compatibilities with HFEs

Plastics

Compatible after one hour exposure at boiling temperature:

Metals
Aluminum
Copper
Carbon Steel
302 Stainless Steel
Brass

Brass
Zinc
Molybdenum
Tantalum
Titanium
Tungsten
Cu/Be Alloy C172
Magnesium Alloy AZ31B

Acrylic Polyethylene Polypropylene Polycarbonate Polyester Nylon Epoxy PMMA Elastomers Natural

Natural Rubber Butyl Rubber Nitrile Rubber EPDM

Exceptions: Some swelling of PTFE and Silicone Rubber.

Some surface oxidation of copper during heat aging.

PVC

PET

ABS

Applications for HFEs

• Cleaning Solvents

Metals & Precision Cleaning Electronics Cleaning

- Carrier Solvents
- Drying Fluid
- Heat Transfer Fluid
- Clean Extinguishing Agents

Cleaning Performance Using Pure HFE

Test conditions: one minute immersion in boiling solvent with sonication followed by one minute vapor rinse.

Halogenated Oil: Krytox 157FSM (DuPont) Silicone Oil: AK 350 (Wacker Chemie) Hydrocarbon Oil: Mobilmet Omicron

Hydrofluoroethers

A Family of New Fluorinated Solvents

- Cover a Range of Boiling Points
- Effective Cleaning Agents
- Good Materials Compatibility and High Stability
- Are Not Precursors to Photochemical Smog (VOCs)
- Have Zero Ozone Depletion Potential
- Short Atmospheric Lifetimes
- Low Global Warming Potentials
- With Favorable Toxicity Results
- Additional New Materials Under Development

Nitroparaffins

Table 4.1: Angus Nitroparaffins (34)

Specifications

Nitromethane CH₃NO₂ CAS Registry No. 75-52-5 Nitroethane CH₃CH₂NO₂ CAS Registry No. 79-24-3 1-Nitropropane CH₃CH₂CH₂NO₂ CAS Registry No. 108-03-2
 2-Nitropropane CH₃CH(NO₂)CH₃ CAS Registry No. 79-46-9

Purity, % by wt (min.)* Total nitroparaffins, % by wt (min.)* Specific gravity at 25/25°C Acidity as acetic acid, % by wt (max.) Water, % by wt (max.) Color, APHA (max.) Determined by gas chromatography	Nitromethane 98.0 99.0 1.124-1.135 0.1 0.1 20	Nitroethane 98.0 99.0 0.2 20	1-Nitropropane 98.5 99.0 — 0.2 0.1 20	2-Nitropropane 96.0 99.0 — 0.1 0.1 20
Typical Properties of Commercial-Gra	de Nitroparaffi	ns		
	Nitromethane	Nitroethane	1-Nitropropane	2-Nitropropane
Distillation range at 1 atm (90% min.), °C	100-103	112-116	129-133	119-122
Vapor density (air=1)	2.11	2.58	3.06	3.06
Change of density with temperature, 0-50°C,				
g/(ml·°C)	0.0014	0.0012	0.0011	0.0011
Weight per U.S. gallon at 68°F, lb	9.4	8.75	8.35	8.24
Flash point, Tag open cup, °F	112	106	120	100
Tag closed cup, °F	96	87	96	82
Lower limit of flammability, % by vol (at °C)	7.3 ⁽³³⁾	3.4 ⁽³⁰⁾	2.2 ⁽³⁴⁾	2.5 ⁽²⁷⁾
ignition temperature, °C	418	414	420	428
Evaporation rate (n-butyl acetate = 100)	139	121	88	110 10
Evaporation number (diethyl ether=1)	9	11	16	
Physical Properties of the Nitroparaffi	Nitromethane	Nitroethane	1-Nitropropane	2-Nitropropane
Molecular weight (calcd.)	61.041	75.068	89.095	89.095
Boiling point at 760 mmHg, °C	101.20	114.07	131.18	120.25
/apor pressure at 25°C, mmHg	36.66	20.93	10.23	18.0
reezing point, °C	28.55	-89.52	103.99	-91.32
Density at 20°C, g/ml	1.138	1.051	1.001	0.988
at 30°C, g/ml	1.124	1.039	0.991	0.977
Coefficient of expansion per °C	0.00122	0.00112	0.00101	0.00104
per °F	0.00068	0.00062	0.00056	0.00058
Refractive index, n _D , at 20°C	1.38188	1.39193	1.40160	1.39439
at 30°C	1.37738	1.38754	1.39755	1.39028
Surface tension at 20°C, dynes/cm	37.48	32.66	30.64	29.87
f 14 1 0000				0.770
/iscosity at 20°C, cp	0.647 0.576	0.677 0.602	0.844 0.740	0.770 0.677

Table 4.1: (continued)

Physical Properties of the Nitroparaffins

Host of combustion (iia) at 95°C (call/_ala	Nitromethane —169.3	Nitroethane —325.6	1-Nitropropane —481.9	2-Nitropropane —478.0
Heat of combustion (liq.) at 25°C, kcal/mole				
Heat of vaporization (liq.) at 25°C, kcal/mole	9.147	9.94	10.37	9.88
at bp, kcal/mole	8.23	9.08	9.19	8.79
Heat of formation (liq.) at 25°C, kcal/mole	—27.03	-33.9	4 0.15	-4 3.2
Specific heat at 25°C, cal/(mole·°C)	25.33	33.10	41.96	41.87
at 25°C, cal/(g⋅°C)	0.415	0.441	0.471	0.470
Dielectric constant at 30°C	35.87	28.06	23.24	25.52
Dipole moment, µ, gas, Debye units	3.50	3.58	3.72	3.73
liquid, Debye units	3.17	3.19	_	
Aqueous azeotrope, bp, °C	83.59	87.22	91.63	88.55
% NP by wt	76.4	71.0	63.5	70.6
pH of 0.01M aqueous solution	6.4	6.0	6.0	6.2
Solubility in water at 20°C, % by wt	10.5	4.6	1.5	1.7
at 25°C, % by wt	11.1	4.7	1.5	1.7
at 70°C, % by wt	19.3	6.6	2.2	2.3
Solubility of water in NP at 20°C, % by wt	1.8	0.9	0.6	0.5
at 25°C, % by wt	2.1	1.1	0.6	0.5
at 70°C, % by wt	7.6	3.0	1.7	1.6
Hydrogen bonding parameter, y	2.5	2.5	2.5	2.5
Solubility parameter, 8	12.7	11.1	10.7	10.7

Table 4.2: Angus Nitro Alcohols (34)

2-Nitro-2-hydroxymethyl-1,3-propanediol or Tris (hydroxymethyl)nitromethane [CAS Reg. No. 126-11-4]

2-Nitro-2-ethyl-1,3-propanediol [CAS Reg. No. 597-09-1]

[CAS Reg. No. 77-49-6]

(NB[™]) H | CH₃CH₂—C—CH₂OH | NO₂ 2-Nitro-1-butanol [CAS Reg. No. 609-31-4]

Table 4.2: (continued)

Product Specifications*

	Melting	Water %	Free Formaldehyde	19	6 by wt.
	Pt., °C	By wt.	% by wt.	Aq.	Solution
Solid Form	(Min.)	(Max.)	(Max.)	pН	Color (max.)
NMP (pellets) †	86-90	0.5	0.06	-	-
TRIS NITRO (solid)	_	-	**	2.0-5.0	5 Gardner

^{† 23.50% (}min.) by wt. of bound formaldehyde, 1.5% (max.) by wt. of stearic acid.

	Assay, % by	Free Formaldehyde	pH, 20% by wt.	Color,
Aqueous Solutions	wt. (min.)	% by wt. (max.)	Aq. Solution	Gardner, (max.)
TRIS NITRO 25%	25.0	1.0	2.0 - 5.0	5
TRIS NITRO 37.5%	37.5	1.0		_
TRIS NITRO 50%	50.0	1.0	2.0 - 4.5	5
NEPD Aqueous	55.0	1.0	2.0 - 5.0	5
NMP Concentrate	60.0	0.5	2.5 - 5.1	1

[·] Test methods available upon request

Physical Properties of Purified Materials

	NMP	NMPD	NEPD	NB	TRIS NITRO
Molecular weight (calc.)	119.12	135.12	149.15	119.12	151.12
Melting point, °C	90	~160	∿150	-4748	175-176 decomp
Boiling pt., °C at 10 mmHg	_	decomp.	decomp.	105	
at 15 mmHg	94	_	_	_	
pH of 0.1 M soln at 20°C	5.1	5.4	5.5	4.5	5.0
Density at 25°C, g/mL	-	-	_	1.129	
Wt. per gallon, lb at 68°F	_	-		9.43	-
Coefficient of expansion		-	-	0.00076	_
per °C					
Refractive index, nd			_	1.444	-
at 20°C					
Surface tension at	_			37.7	_
20°C dynes/cm					
Solubility in 100 mL	350	80	400	54	220
of water at 20°C (g)					

Table 4.3: Angus Primary Amino Alcohols (34)

AB®

2-Amino-1-butanol

CAS Registry No. 96-20-8

(continued)

AMPD™

2-Amino-2-methyl-1,3-propanediol

CAS Registry No. 115-69-5

Table 4.3: (continued)

	2-Amino-	2-methyl-	2-Amino-	2-Amino-2-ethyl-	2-Amino-2-methyl-	Tris(hydroxymethyl)
	1-pro	panol	1-butanoi	1,3-propanediol	1,3-propanedioi	aminomethane
	AMP	AMP-95*	AB	AEPD	AMPD	TRIS AMINO
	Regular®					Crystals
Neutral Equivalent	88.5-91	93-97	88.5-91	124 (max.)	103-107	121-122
Water, % by wt. (max.)	0.8	5.8	0.5	3.8	0.5	0.5
Melting point, °C (min.)			-	_	100	160
Color (max.)	20 APHA	20 APHA	100 APHA	_		-
Color of 20% aqueous solution (max.)	_			2 Gardner	50 APHA	40 APHA

	2-Amino-2-methyl-	2-Amino-	2-Amino-2-ethyl-	2-Amino-2-methyl-	Tris(hydroxymethyl)
	1-propanol	1-butanol	1,3-propanediol	1,3-propanediol	aminomethane
Molecular weight (calcd.)	89.14	89.14	119.17	105.14	121.14
Boiling point at 760 mm Hg, °C	165	178		_	
Boiling point at 10 mm Hg, °C	-		152-153	151-152	219-220
Melting point, °C	30-31	-2	37.5-38.5	109-111	171-172
Specific gravity at 40/40°C	0.928		1.101	-	
pH of 0.1M aqueous solution at 20°C	11.3	11.1	10.8	10.8	10.4
Solubility in water at 20°C, g/100 mL	miscible	miscible	miscible	250	80
Weight per gallon at 20°C, lb	7.78	7.86	9.15		
pK, at 25°C	9.72	9.52	8.80	8.76	8.03

	AMP Regular	AMP-95
Viscosity at 10°C, cps		561
25°C, cps		147
30°C, cps	102	
50°C, cps	24	
70°C, cps	9	_
90°C, cps	4	•••
Vapor pressure at 100°C, mm Hg	59	
150°C, mm Hg	457	-
Specific gravity at 25/25°C		0.942
Coefficient of expansion per °C	0.00095	0.00096
Refractive index, n _o , at 20°C	1.449	
Heat of vaporization at 110°C, kcal/mole	13.2	_
130°C, kcal/mole	12.5	_
150°C, kcal/mole	12.3	
165°C, kcal/mole	12.1	
Heat of dissociation at 25°C, kcal/mole	1.29	

Table 4.4: Angus DMAMP-80 (34)

80% 2-Dimethylamino-2-Methyl-1-Propanol Solution CAS Reg. No. 7005-47-2

2-Dimethylamino-2-methyl-1-propanol, a member of the family of Angus amino alcohols, is the tertiary-amine homolog of 2-amino-2-methyl-1-propanol (AMP). 2-Dimethylamino-2-methyl-1-propanol is available as DMAMP-80 which contains about 20% by weight water.

Table 4.4: (continued)

Typical Properties

The following are typical properties of DMAMP-80; they are not to be considered product specifications.

Neutral Equivalent~148
Specific Gravity @ 25/25°C
Weight per Gallon @ 25°C
Flash Point, Tag Open Cup150°F/66°C
Tag Closed Cup153°F/67°C
Freezing Point
Boiling point @ 760 mm Hg
Viscosity @ 25°C, Gardner
pH of 0.1 N Aqueous Solution

Table 4.5: Industrial Amines Ranked in Order of Decreasing Base Strength (34)

Amine	pKa (20° C)	Moiecular Weight	Vapor Pressure (mm Hg)	Boiling Point °C (1 atm.)	Flash Point (°F COC')
Cyclohexylamine	10.79	99	95	135	90
Triethylamine	10.74	101	57	90	20
Diethylaminoethanol (DEAE)	9.87	117	1.0	163	140
→ AMINOMETHYLPROPANOL (AMP-95™)	9.82	89	0.7	165	172
→ AMINOBUTANOL (AB™)	9.52	89	1.0	178	193²
Monoethanolamine (MEA)	9.44	61	0.36	171	195
Monoisopropanolamine (MIPA)	9.40	75	0.6	160	165
Dimethylethanolamine (DMEA)	9.31	89	4.0	134	105
Ammonia (29.4%)	9.24	17	357	N/A	
Diethanolamine (DEA)	8.88	105	<0.01	269	300
→ AMINOETHYLPROPANEDIOL (AEPD®)	8.80	119	<0.01	153°	>200
→ AMINOMETHYLPROPANEDIOL (AMPD™)	8.76	105	<0.01	152°	N/A
Diisopropanolamine (DIPA)	8.70	133	0.02	250	250
Morpholine	8.43	87	10.08	129	100
→ TRIS(HYDROXYMETHYL)AMINO- METHANE (TRIS AMINO*)	8.03	121	<0.01	2203	N/A
Triisopropanolamine (TIPA)	7.86	191	0.0008	305	320
Triethanolamine (TEA)	7.7 7	149	<0.01	335	365

¹ Cleveland Open Cup

Table 4.6: Comparing Amines for Safety (34)

	Acute Oral LD _{so}	Acute Skin Penetration LD _{so} (Rabbits)	Eye Injury Rabbits	Primary Skin Irritation	Threshold Limit	Flash Point (Tag Closed Cup)	DOT Hazard Label Required
AMP	2.9 g/kg (Rats)	No deaths at 2 g/kg	Severe	Severe	None Est.	172°F	None (Combustible)*
Monoethanolamine (MEA)	2.1 g/kg (Rats)	1.0 g/kg	Severe	Corrosive	3 PPM	185°F	Corrosive
Diethylaminoethanol (DEAE)	1.4 g/kg (Rats)	1.26 g/kg	Severe	Severe	10 PPM	140°F	None (Combustible)*
Dimethylaminoethano (DMAE)	1.3 g/kg (Rats)	1.37 g/kg	Severe	Severe	None Est.	105°F	None (Combustible)*
Morpholine	1.0 g/kg (Rats)	0.5 g/kg	Severe	Corrosive	20 PPM	95°F	Flammable
Triethylamine	0.46 g/kg (Rats)	0.42 g/kg	Sever e	Trace	25 PP M	17°F	Flammable
Triethanolamine	8.7 g/kg (Rats)	22.5 g/kg Killed 0 of 5	Sever e	Minor	None Est.	>200°F	None

^{*} Combustible Materials Require Placarding Only For Bulk Shipments.

² Tag Closed Cup

^{3 10} mm Hg

Table 4.7: NIPAR 640 (34)

Typical Properties of NIPAR 640		Specifications
Distillation range at 760 mmHg (90% min.), °C Freezing point, °C Vapor pressure at 20°C, mmHg Density of Vapors (air=1) (calcd.) Specific gravity at 20/20°C Weight per U.S. gallon at 20°C, lb Coefficient of expansion per °C Flash point, Tag closed cup, °F Evaporation rate, by vol (n-butyl acetate=100) Solubility in water at 20°C, % by wt	∼-100 13 2.6-3.0 ∼ 1.01 ∼ 8.4 0.001 94 100	Nitroethane, % by wt

	Azeotrope with Nitroethane		Azeotrope with 1-Nitropro		
Component "A"	Boiling Point, °C	Weight % Component "A"	Boiling Point, °C	Weight % Component "A"	Boiling Point, °C
Water	100.0	28.5	87.2	36.5	91.63
Ethyl Alcohol	78.3	87.4	78.0		
n-Propyl alcohol	97.2	68.2	94.5	91.2	96.95
Isopropyl alcohol	82.4	89.4	81.8		
n-Butyl alcohol	117.8	45	107.7	67.8	115.3
sec-Butyl alcohol	99.5	72.4	97.2	95.9	99.4
Isobutyl alcohol	108.0	60	102.5	84.8	105.28
t-Butyl alcohol	82.4	95.5	82.2		_
Amyl alcohol	138.2	17	137.8		-
Isoamyl alcohol Ethylene glycol	131.9	22	112.0	_	_
monoethyl ether	135.1	_		36.1	128.3
n-Heptane	98.4	72	89.2	85.8	94.6
n-Nonane	150.8			36.4	126.2
Toluene	110.8	75	106.2	_	_
Ethylbenzene	136.2			41.0	127.5
o-Xylene	143.6		_	15.0	130.9
Ethyl butyrate	121.5	27	113.7		
Ethyl isobutyrate	110.1	73	108.5		
Isobutyl acetate Ethylene glycol	117.4	40	112.5		
monomethyl ether	124.5			58.7	121.4

It is desirable that the optimum quantity of NIPAR 640 be used for each particular system. This optimum will vary from system to system, but normally it will fall in the range of 8% to 25% of the solvent blend.

	Resistivity, megohm	Relative Evaporation Rate*
Dimethylformamide	0.02	17
Ektasolve EM+	0.02	50
NiPar 640	0.03	100
Ektasolve EE+	0.04	38
Ektasolve EB+	0.05	10
Isopropyl alcohol, 99%	0.07	258
Isophorone	0.07	4
Methyl ethyl ketone	0.07	568
n-Butyl alcohol	0.08	48
Methyl isobutyl ketone	0.13	186
Isobutyl alcohol	0.15	90
Cyclohexanone	0.20	23
*n-Butyl acetate = 100	⁺ Trademark of	Eastman Kodak Company

Table 4.7: (continued)

This significant improvement in cure time and film performance is best achieved when 3–6% (by weight) of the total solvent blend is replaced with NiPAR 640.

NIPAR 640 will provide the benefits of superior wetting, improved film integrity and improved cure time while enhancing electrostatic spray performance through its contribution to optimum resistivity of the coating.

Specific Gravities of Nitromethane-Methanol Fuel Mixtures (34)

Table 4.8: COMSOL 101-X (34)

12-116
– 89.5
2.58
1.045
. 0.0012
31
3.4
414
121
11
11
2.5
4.6

Table 4.8: (continued)

VISCOSITY OF VINYL RESIN SOLUTIONS

VISCOSITY; CENTIPOISE

15 g of Bakelite VYHH (D) in 100 ml solvent

A = methyl ethyl ketone B = COMSOL 101-X

C = NiPar S-20TM D = methyl isobutyl ketone

TOLUENE; PERCENT BY VOLUME

VISCOSITY OF ACRYLIC RESIN SOLUTIONS

50 g Acryloid B-66 in 100 ml solvent

50 g Acryloid B-72 (A) in 100 ml solvent

TOLUENE; PERCENT BY VOLUME

Table 4.9: COMSOL 280 (34)

SPECIFICATIONS

Nitromethane, % wt	75 - 85
1-Nitropropane, % wt	15 - 25
2-Nitropropane, % wt. (max.)	0.1
Total nitroparaffins, % wt. (min.)	99
Water, % wt. (max.)	0.2
Colour, APHA (max.)	

AZEOTROPES OF COMSOL 280 COMPONENTS

		Azeoptro with Nitroet		Azeotrope with 1-Nitropropane	
COMPONENT "A"	B. P. (°C)	Wt. % Comp. "A"	B. P. (°C)	Wt. % Comp. "A"	B. P. (°C)
Water	100.0	28.5	87.2	36.5	91.63
Ethyl alcohol	78.3	87.4	78.0	-	-
n-Propyl alcohol	97.2	68.2	94.5	91.2	96.95
Isoproyl alcohol	82.4	89.4	81.8	-	-
n-Butyl alcohol	117.8	45.0	107.7	67.8	115.30
sec-Butyl alcohol	99.5	72.4	97.2	95.9	99.40
Isobutyl alcohol	108.0	60.0	102.5	84.8	105.28
tButyl alcohol	82.4	95.5	82.2	-	-
Amyl alcohol	138.2	< 17.0	< 37.8	-	-
Isoamyl alcohol	131.9	22.0	112.0	-	-
Ethylene glycol monoethyl ether	135.1	-	-	26.1	128.30
n-Heptane	98.4	72.0	89.2	85.8	94.60
n-Nonane	150.8	_	-	36.4	126.20
Toluene	110.8	75.0	106.2	_	-
Ethylbenzene	136.2	-	-	41.0	127.50
o-Xylene	143.6	-	-	15.0	130.90
Ethyl butyrate	121.5	< 27.0	113.7	-	-
Etyl isobutyrate	110.1	73.0	108.5	-	-
Isobutyl acetate	117.4	40.0	112.5	÷	-
Ethylene glycol monomethyl ether	124.5	-	-	58.7	121.40

B.P. = Boiling Point

PRODUCT SPECIFICATIONS

Total Nitroparaffins, % wt.	99.0 min.
Specific gravity, 25/25 °C	1.001 - 1.009
Water, % wt.	0.2 max.
Colour, APHA	80 max.

TOXICITY DATA

Skin irritation, Draize test : non-irritating
Eye irritation, Draize test : non-irritating

Mutagenicity : due to the composition of the product no

mutagenic effects must be expected.

Sensitization,

LANDSTEINER & JACOBS (guinea pig): non-sensitizing

Lower limits of flammability of some solvents (% by volume in air)

Methyl isobutyl ketone	0.9
Xylene	1.0
Toluene	1.27
n-Butyl acetate	1.7
Methyl ethyl ketone	1.7
Acetone	2.15
Ethylene glycol monoethyl ether	2.6

Flash point, °C (TCC)

Acetone	-19
Ethyl acetate	- 4
Methyl ethyl ketone	-14
Toluene	6
Methyl isobutyl ketone	14
Isobutyl acetate	18
Xylene	25
COMSOL 820	30.5
Cyclohexanone	

Organic Sulfur Compounds

Table 5.1: Carbon Disulfide (2)

Chemical Names: Carbon Disulfide, Carbon Bisulfide Common Names: Carbon Disulfide, Carbon Bisulfide

Formula: CS₂

PROPERTIES

Grades: Commercial or Technical, and USP Important Physical and Chemical Properties

Physical State: Liquid. Color: Clear, colorless liquid.

Odor: Almost odorless when pure; the commercial grade has a strong

disagreeable odor, due to presence of sulfur compounds.

Specific Gravity at 20° C/4° C (68° F/39° F) (Water = 1): 1.263

Vapor Density (Air = 1): 2.63

Boiling Point (760 mm): 46.3° C (115° F) Melting Point: -108.6° C (-163° F) Flash Point (closed cup): -30° C (-22° F)

Explosive Limits (per cent by volume in air): 1 to 50

Ignition Temperature: 100° C (212° F)

Corrosive: Commercial grade slightly corrosive to some metals due to

impurities.

Dangerously Reactive: No. However, it has an extremely low ignition temperature.

Hygroscopic: No.

Light Sensitive: Turns yellow when exposed to sunlight.

VAPOR PRESSURE OF CARBON DISULFIDE

TEMPERATURE		VAPOR PRESSURE
°C	*F	MM MERCURY
-78.2	109	0.68
-42.6	-45	11.81
-25.35	-14	34.3
-21.5	-7	12.7
0	+32	127.0
11.54	53	211.3
19.7	67	294.3
46.3	115	760.0

Table 5.2: Typical DMSO Properties (36)

Auto ignition temperature in air	300-302°C (572-575°F)
Boiling point (1 atmosphere)	189°C (372°F)
Coefficient of expansion	0.00088∕°C
Conductivity (Electrical)	
20°C	3x10 ^{-a} (ohm ⁻¹ cm ⁻¹)
80°C	7x10-4 (ohm-1 cm-1)
Critical heat flux	1.3x10° Btu/hr x ft-²
	(4.10×10 ⁵ J/s/m²)
Critical molar volume	2.38x10⁴m³
Critical Pressure	56.3 atm, abs.
Critical temperature	447°C (837°F)
Density, at 25°C (see Figure 3)	1.0955 g/cm³
Dielectric constant, 1MHz	
@ 20°C	48.9
@ 40°C	45.5
Diffusion coefficient	9.0x10 ⁴ cm ² /sec.
Dipole moment, D	4.3
Evaporation rate index @ 25°C	
Relative to n-butyl acetate	0.026
Relative to diethylether	0.0005
Flammability limits in air	
lower (100°C)	3-3.5% by volume
upper	42-63% by volume
Flash point (open cup)	95°C (203°F)
Flash point (closed cup)	89°C (192°F)
Freezing point	18.55°C (65.4°F)

Heat capacity (liq.), 25°C	0.47 cal/g/°C)
Heat capacity (ideal gas)	$Cp(T^{\circ}K) = 6.94 + 5.6 \times 10^{-7}T$
	-0.227x10-T²
Heat of combustion	6054 cal/g
Heat of fusion	41.3 cal/g
Heat of solution in water at 25°C	54 cal/g@∞ dilution
Heat of vaporization at 70°C	11.3 kcal/moi (260 Btu/lb)
Henry's constant @ 21°C	991000
Molar freezing point constant	4.07°C/mol
Molar volume	71.2 cm³/gm
Molecular weight	78.13
pKa	35.1
pK BH+	-2.7
Refactive index №@25°C	1.4768
Solubility parameters	
Hansen's	
Dispersion	9.0 (cal/cm³) ^{1/2}
Polar	8.0 (cal/cm³) ^{1/2}
Hydrogen bonding	5.0 (cal/cm³)¹²
Hildebrand's	13.0 (cal/cm³) ^{1/2}
Specific heat at 29.5°C	0.47 ± 0.015 cal/g/°C
Surface tension at 20°C	43.53 dynes/cm
√apor pressure at 25°C (see Figure 2)	0.600 mm Hg
/iscosity, cP, at 25°C (See Figure 4)	2.0
og octanol-water partition coefficient	-1.35

Table 5.3: Vapor Pressure vs. Temperature for DMSO (36)

Table 5.4: Specific Gravity of DMSO as a Function of Temperature (36)

Temperature (°C)	Specific gravity (g/cm³)
15.6	1.1047
21	1.0993
25	1.0955
30	1.0904
40	1.0803
50	1.0702
75	1.0454
100	1.0200
125	0.9946
150	0.974

Table 5.5: DMSO Viscosity as a Function of Temperature (36)

Temperature (°C)	Viscosity (cP)
25	1.991
30	1.808
40	1.511
50	1.286
75	0.916
100	0.691
125	0.546

Table 5.6: Comparative Hygroscopicities of DMSO at Various Relative Humidities at 22°C (36)

Table 5.7: Initial Sorption Rates of DMSO at Various Relative Humidities at 22°C (36)

Table 5.8: Freezing Temperatures for DMSO—Solvent Binary System (36)

- 1 DMSO-METHYL ETHYL KETONE
- 2 DMSO-ETHANOL
- 3 DMSO-MONOETHYLENEGLYCOL
- 4 DMSO-CHLOROFORM
- 5 DMSO-PARAXYLENE

Table 5.9: Freezing Point for DMSO-Water Solutions (36)

Table 5.10: Freezing Point Curves for DMSO—Water Solutions (36)

Table 5.11: Heat of Mixing of DMSO—H₂O System at 22°C (36)

Table 5.12: Specific Gravity of DMSO—Water Solutions (35)

Table 5.13: Viscosity of DMSO—Water Solutions (36)

Table 5.14: Results of Reflux of DMSO for 24 Hours with Various Compounds (35)

COMPOUND (100g)	REFLUX	DMSO RECOVERED	% DECOMPOSITION PRODUCTS,				
IN 300g DMSO	TEMP.,°C	% OF ORIGINAL	DMS ^(a)	DMDS(b)	BMTM©	нсно	MM ^(d)
NaOH	185-140 ^(e)	93.7	63	31			_
Na ₂ CO ₃	190	96.3	_	14		_	
NaCl	190	98.7	_	15	_		_
NaCN	148-164 ⁽¹⁾	100.0					
NaOAc	182-187	97.0	22	33	8	20	
Na ₂ SO ₄	181-148 ^(g)	85.4	66	_		_	11
DMSO ONLY	189	98.0	15	30	30		

⁽a) Dimethyl sulfide

⁽b) Dimethyl disulfide

⁽c) Bis(methylthio) methane

⁽d) Methyl mercaptan

⁽e) Reflux temperature decreased from 185°C to 140°C over the first 16 hours.

⁽f) Reflux temperature was 148°C for 20 hours; increased to 164°C during the last 4 hours.

⁽g) Reflux temperature decreased gradually from 181°C to 148°C.

Table 5.15: Thermal Stability of DMSO (36)

Table 5.16: Refluxing of DMSO and Mixtures for Shorter Periods (36)

COMPOSITION OF	REFLUX	TIME	. с	RGANIC PRODU	JCT COMPOSITIO	N %
SAMPLE PARTS	TEMP,°C	HR.	DMSO	DMS	DMDS	вмтм
10 DMSO:1 H ₂ O	152	5 15	100 99.7	0 0.15	0 0	0 0.15
60 DMSO: 5H ₂ O:1 NaOH	155	5 8	99.8 99.3	0.1 0.6	0.1 0.1	0
60 DMSO:12 H ₂ O: 1 NaHCO ₃	131	6 12	99.9 99.8	0.1 0.2	0	0
DMSO ONLY	191	5 9 16	99.8 99.1 99.0	0.1 0.2 0.2	0.1 0.2 0.2	0 0.5 0.6

Table 5.17: Effect of Heating DMSO with Concentrated Acids (36)

(200g DMSO WITH 20g OF CONCENTRATED ACID)

ACID	CONC.	ONC. TEMP.,	TIME,	DMSO	% OF	DECOMPOSITIO	N PRO
		°C	MIN.	LEFT %	DMS™	DMDS ^(h)	HCHO
H,SO,	36N	100	15	99	100		
			30	99	100		
			120	98	100		
 ,50 <u>,</u>	36N	125	15	86	7	93	
			150	86	7	93	
			210	80	10	90	
H,PO	85%	100	15	92	25	75	
•			30	89	45	55	
			45	89	45	55	
		60	87	46	54		
		120	87	46	54		
		150	86	50	50	SOME	
1,PO,	85%	125	15	84	25	75	
			60	82	33	67	
			150	82	33	67	
ICI	12N	95	15	99	100		
			30	99	100		
			60	99	100		
			120	98	100		
ICI	12N	115	15	93	100		
			30	92	100		
			45	87	100		
			60	87	100		
			120	87	100		50ME

⁽a) Dimethyl Sulfide (b) Dimethyl Disulfide

Table 5.18: Solubility of Organic Materials in DMSO (36)

	Solub	•		Solubility Grams/100 cc DMS0		
Material	Grams/100 20-30°C	90-100°C	Material	Grams/10 20-30°C	0 cc DMS0 90-100°C	
Acetic acid	Miscible	-	Dyes			
Acetone	Miscible	-	Burnt Sugar	Soluble		
Acrawax	< 1	> 1	FD&C Blue	Soluble		
Acrawax B	Insol.	4	Pistachio Green B	Soluble		
Aniline	Miscible	-	1-Eicosanol	Insol.		
Anthracene	2	-	Ethyl benzoate	Miscible		
Beeswax	-	< 1	Ethyl alcohol	Miscible		
Benzene	Miscible	-	Ethyl bromide	Miscible	Reacts	
Benzidine Benzidine methane	Soluble	-	Ethyl ether	Miscible		
sulfonate	Insol.		Ethylene dichloride	Miscible		
Bromoethane	Miscible	•	Formalin (37%) Formamide	Miscible Miscible		
Butenes	2.1		Formic acid	Miscible		
n-Butyl acetate	Miscible		Glucose	54		
Butly carbitol	Miscible		Glycerine	Miscible		
Calcium methyl			Glycine	< 0.05	0.1	
sulfonate	Soluble		Héxane	2.9		
Camphor	Soluble	Soluble	4-Hydroxy benzoic			
Candelilla wax		< 1	acid	24		
Carbon	Insol.		Hy-Wax 120		< 1	
Carbon disulfide	90		lmidazole	80		
Carbon tetrachloride	Miscible		Isophthalic acid	68	76	
Carbowax 600	Miscible	_	Isoprene	Miscible		
Carbowax 6000	Insol.	8	Kerosene	0.5		
Carnauba wax	Missible	< 1	Lanolin, hydrated			
Castor oil Ceresin wax	Miscible	< 1	(Lanette 0)		11 (gets	
Chloroform	Miscible	`'	Laurel amido		cold)	
Chlorosulfonic acid	Reacts		Lauryl amide (Armid 12)	10	> 20	
Citric acid	> 70		Linear alcohols	Miscible	> 20	
Coconut oil	0.3	1.3	Lorol 5	Miscible		
		Misc160°C	Lubricating oil	0.4		
Cresylic acid	Miscible		Methionine	0.1	0.3	
Cumene	Miscible		Methyl borate	Miscible		
Cyclohexane	4.67		Methyl caprate		Miscible	
Cyclohexene	Miscible		Methyl iodide	Miscible	Reacts	
Cyclohexylamine	Miscible		Methyl isobutyl			
Decalin	4.5		ketone	Miscible		
n-Decane	0.7		Methyl laurate	7	Miscible	
Di-n-butylamine	11		Methyl mercaptan	40 (Reacts)		
o-Dichlorobenzene	Miscible		N-methyl morpholine	Miscible		
p-Dichlorobenzene	Very Soluble		Methyl palmitate	Immiscible	Misc. 130-	
SDichlorodiphenyl-	_		Methyl salicylate	Miscible	180°C	
trichloroethane	4	100	Methyl sulfonic acid	Miscible		
Dicyandiamide	40		Methylene chloride	Miscible		
Dicyclohexylamine Diethanolamine	4.5		Microcrystalline wax	WIIIGIDIE	< 1	
Diethylamine	Miscible Miscible		Morpholine	Miscible		
Diethyl ether	Miscible		Naphthalene	40	Miscible	
bis-(2-ethylhexyl)amin			Neoprene	Insol.	Inso!	
Diethyl sulfide	Miscible		Nitrobenzene	Miscible		
Di-isobutyl carbinol	Miscible		Oleic acid	Miscible		
Di-isobutylene	3.3 (0.6% DMS	0 soluble in	Ouricuri wax		1	
•	di-isobutyler		Oxalic acid	3 8		
Disopropyl ether	11	,	Palmitic acid	100		
Dimethyl ether	4.4		Paraffin	Insoluble		
Dimethyl formamide	Miscible		Paraformaldehyde	Insoluble	Slightly	
Dimethyl sulfide	Miscible		Dana dialah 1 1	5.5	soluble	
Dimethyl sulfone	33.9	Miscible	Paradichlorobenzene	56		
Dioxane	Miscible		Pentaerythritol	5-10	30	
Diphenyl	Very soluble		n-Pentane	0.35		
Dipentene	10		Pentene 1&2	7.1		
Dodecanol n Dodecanol	>100		Perchloric acid Petroleum ether	Reacts violent	ily	
n-Dodecane	0.38		renoieum emer	3 (DMSO solul		
Dodecylbenzene (Neolene 400)	2 5			in petroleum	eruat)	
(Neolene 400)	3. 5	•	-			

(antinued)

Table 5.18: (continued)

	Solubility Grams/100 cc DMS0			Solubility Grams/100 cc DMS0	
Material	20-30°C	90-100°C	Material	20-30°C	90-100°C
Phenol	>100		Tallow	Insol.	1.9
Phosphoric acid	Miscible		Tallow amide,		
Phosphorus trichloride Phthalic acid	Reacts vigor 90	rously	hydrogenated (Armour Armide HT)	Insol.	> 40
Picric acid Pyridine	Soluble Miscible		Terephthalic acid Tetrahydrophthalic	26	33
Pyrogalloi	50		anhydride	50	
Rosin	> 100		Tetralin	Miscible	
Rosin soap (Hercules Dresinate X)	Slightly solu	ıble 0.9	Tetrapropylene Thiourea	1 40	85
Sevin	50		Toluene	Miscible	
Silicon tetrachloride	Reacts vigo	rously	Toluene di-isocyanate	Miscible	
Sorbitan sesquioleate Sorbitan trioleate	2.5	Miscible	Tributylamine Tricresyl phosphate	0.9 Miscible	
Sorbitol	60	> 180	Triethanolamine	Wilserbic	
Soybean oil	0.6		laurylsulfate	Soluble	
Starch, soluble	> 2		Triethanolamine	Miscible	
Stearic acid	2	Miscible	Triethylamine	10	
Succinic acid	30		Trinitrotoluene	Soluble	
Sugar (sucrose)	30	100	Turpentine	10	
Sulfamic acid	40		Urea	40	110
Sulfuric acid	Miscible		Xylene	Miscible	

Table 5.19: Solubility of Resins and Polymers in DMSO (36)

	Solul	oility, Grams/100	cc DMSO
Material	20-30°C	90-100°C	Comments
Aminoplasts			
Melamine Formol	Soluble		
Urea formol	Soluble		
Polyacrylics			
Orion (DuPont)	-	20	Viscous soln.
Acrilan (Monsanto)	>25		
Verel (Eastman)	> 5		25 at 130°C
, , , , , , , , , , , , , , , , , , , ,			with some decomposition
Creslan (Am. Cyanamid)	5		25 at 130°C
Polyamides			
Nylon 6	-	Insol.	40 at 130°C
Nylon 6/6	-	Insol.	25 at 150°C
Nýlon 6/10	-	Insol.	40 at 150°C
Nylon 11 Rilsan(Elf Ato)	-	Insol.	-
Nylon 12 Oryasol(Elf Ato)	-	Insol.	Soluble @ 140°C
Polyimides			
Bismaleimide copolymers			
Kermid 353 (Rhone-Poulenc)	Swells		
Kermid 711 (Rhone-Poulenc)	Soluble		
Polyamino bis maleimide			
Kermid 601(Rhone poulenc) I	-	Insol.	
Polyamideimide			
Torlon 4203L (Amoco)		Insol.	
Polyetherimide			
Ultem 100 (G.E.)	Swells		
Cellulose			
Cellulose triacetate	10	20	
Viscose rayon	-	<1	
Cellophane	-	Insol.	
Carboxymethyl cellulose	-	Insol.	
Nitrocellulose	-	10	

Table 5.19: (continued)

		ility, Grams/100d	
Material	20-30°C	90-100°C	Comments
Cellulose			
Cellulose triacetate	10	20	
Viscose rayon	*	<1	
Cellophane	~	Insol.	
Carboxymethyl cellulose	•	Insol.	
Nitrocellulose	~	10	
hlorinated Resins			
Butaclor MC30 (Distugil)	Swells		
CM3630 (Bayer)	Swells		
Hypalon DH70 (DuPont)	Swells		
	JAAGIIJ		
poxies	6 1 11-		
Epikote 1004 (Shell)	Soluble		
Epon 1001 (Shell)	50		
Epon 1004 (Shell)	50		
Epon 1007 (Shell)	50		
uorinated Resins			
Polyvinylidene floride			
Foraflon (Atochem)	Swells		
Elastomers			
Viton DF801 (DuPont)	Swells		
Viton DF809 (DuPont)	Swells		
Kalrez 4079 (DuPont)	Insol.		
Teflon (DuPont)	Insol.	Insol.	
lethacrylates		J1	
Lucite 41, 45 (DuPont)	-	<1	
Plexiglas (Rohm & Haas)		<1	
nenoplasts			
Modified Novalac			
R7522 (Ceca)	Soluble		
R7550 (Ceca)	Soluble		
Norsophen Resin PH 13 (CDF Chime)	Soluble		
olycarbonates			
Lexan (General Electric)		>5	
lyesters			
Dacron (DuPont)	-	>1	Dissolves at 160°C;
		- 1	ppts at 130°C
CX 1037 (Goodyear)	-	7	pp 00 130 C
Atlac (ICI-America)	-	50	
Poly(ethylene terephthalate)	-	-	-
Poly(butylene terephthalate)	.	-	-
Hytrel (DuPont)	-	-	-
icones			
Dow Corning 803 soln.	Missible		
	Miscible Miscible	-	
Dow Corning 805 soln.	Miscible	-	
Dow Corning 805 soln. Dow Corning "Sylkyd 50"		- - -	
Dow Corning 805 soln. Dow Corning "Sylkyd 50" Dow Corning Z6018 (flake)	Miscible Miscible	-	
Dow Corning 805 soln. Dow Corning "Sylkyd 50" Dow Corning Z6018 (flake) Iffur Resins	Miscible Miscible	- - -	
Dow Corning 805 soln. Dow Corning "Sylkyd 50" Dow Corning Z6018 (flake) Ifur Resins Polyphenylene sulfide	Miscible Miscible 70	- - - -	
Dow Corning 805 soln. Dow Corning "Sylkyd 50" Dow Corning Z6018 (flake) Ifur Resins Polyphenylene sulfide Ryton V107 (Philips)	Miscible Miscible	- - - -	
Dow Corning 805 soln. Dow Corning "Sylkyd 50" Dow Corning Z6018 (flake) Ifur Resins Polyphenylene sulfide Ryton V107 (Philips) Polyethersulfone	Miscible Miscible 70 Swells	- - - -	
Dow Corning 805 soln. Dow Corning "Sylkyd 50" Dow Corning Z6018 (flake) Ifur Resins Polyphenylene sulfide Ryton V107 (Philips) Polyethersulfone Victrex 660P (ICI)	Miscible Miscible 70 Swells Soluble	- - - -	
Dow Corning 805 soln. Dow Corning "Sylkyd 50" Dow Corning Z6018 (flake) Ifur Resins Polyphenylene sulfide Ryton V107 (Philips) Polyethersulfone Victrex 660P (ICI) Ultrason E3000 (BASF)	Miscible Miscible 70 Swells Soluble Soluble	-	
Dow Corning 805 soln. Dow Corning "Sylkyd 50" Dow Corning Z6018 (flake) Ifur Resins Polyphenylene sulfide Ryton V107 (Philips) Polyethersulfone Victrex 660P (ICI)	Miscible Miscible 70 Swells Soluble	-	
Dow Corning 805 soln. Dow Corning "Sylkyd 50" Dow Corning Z6018 (flake) Iffur Resins Polyphenylene sulfide Ryton V107 (Philips) Polyethersulfone Victrex 660P (ICI) Ultrason E3000 (BASF) Udel (Amoco)	Miscible Miscible 70 Swells Soluble Soluble	-	
Dow Corning 805 soln. Dow Corning "Sylkyd 50" Dow Corning Z6018 (flake) Ifur Resins Polyphenylene sulfide Ryton V107 (Philips) Polyethersulfone Victrex 660P (ICI) Ultrason E3000 (BASF) Udel (Amoco) ethanes	Miscible Miscible 70 Swells Soluble Soluble	100	
Dow Corning 805 soln. Dow Corning "Sylkyd 50" Dow Corning Z6018 (flake) Iffur Resins Polyphenylene sulfide Ryton V107 (Philips) Polyethersulfone Victrex 660P (ICI) Ultrason E3000 (BASF) Udel (Amoco) rethanes Vithane (Goodyear) nyle-Polymers & Co-polymers	Miscible Miscible 70 Swells Soluble Soluble	······	
Dow Corning 805 soln. Dow Corning "Sylkyd 50" Dow Corning Z6018 (flake) Iffur Resins Polyphenylene sulfide Ryton V107 (Philips) Polyethersulfone Victrex 660P (ICI) Ultrason E3000 (BASF) Udel (Amoco) rethanes Vithane (Goodyear) nyle-Polymers & Co-polymers Butvar B-76 (Monsanto)	Miscible Miscible 70 Swells Soluble Soluble	20	Very viscous
Dow Corning 805 soln. Dow Corning "Sylkyd 50" Dow Corning Z6018 (flake) Iffur Resins Polyphenylene sulfide Ryton V107 (Philips) Polyethersulfone Victrex 660P (ICI) Ultrason E3000 (BASF) Udel (Amoco) Tethanes Vithane (Goodyear) nyle-Polymers & Co-polymers Butvar B-76 (Monsanto) Formvar 7/70 E Monsanto)	Miscible Miscible 70 Swells Soluble Soluble	20 42	Very viscous Very viscous
Dow Corning 805 soln. Dow Corning "Sylkyd 50" Dow Corning Z6018 (flake) Iffur Resins Polyphenylene sulfide Ryton V107 (Philips) Polyethersulfone Victrex 660P (ICI) Ultrason E3000 (BASF) Udel (Amoco) rethanes Vithane (Goodyear) Inyle—Polymers & Co-polymers Butvar B-76 (Monsanto) Formvar 7/70 E Monsanto) Elvanol 51-05 (DuPont)	Miscible Miscible 70 Swells Soluble Soluble	20 42 90	Very viscous Viscous
Dow Corning 805 soln. Dow Corning "Sylkyd 50" Dow Corning Z6018 (flake) Iffur Resins Polyphenylene sulfide Ryton V107 (Philips) Polyethersulfone Victrex 660P (ICI) Ultrason E3000 (BASF) Udel (Amoco) Tethanes Vithane (Goodyear) nyle-Polymers & Co-polymers Butvar B-76 (Monsanto) Formvar 7/70 E Monsanto)	Miscible Miscible 70 Swells Soluble Soluble	20 42	Very viscous

Table 5.19: (continued)

	Solul	bility, Grams/100e	cc DMSO
Material	20-30°C	90-100°C	Comments
Polyvinyl pyrrolidone (GAF)	30	>100	
Geon 101 (PVC Goodrich)	-	10	
Vinylite WHH (Union Carbide)	2	30	
Teslar (DuPont)	-	-	Partially sol. at 160-170°C
Vinylidenes			
Darvan (Goodrich)	5	4	Soln. cloudy and viscous
Saran film (Dow)		30	
Geon 200 x 20 (Goodrich)	=	20	
DNA (Goodrich)	>5	-	25 at 130℃
Other Resinous Materials		4	
Melmac 405 (Am. Cyanamid)	70	-	
Neoprene	Insol.	Insol	
Polyetherether ketone (PEEK) (ICI)	Insol.		
Polyethylene	Insol.	Insol.	
Polypropylene	Insol.	Insol.	
Polystyrene	-	_	Sol. at 150°C; ppts at 130°C
Rosin (Hercules)	>100	_	
Penton (chlorinated polyether)(Hercules)	-	5	
Vinsol (Hercules)	50	>100	

Table 5.20: Solubility of Inorganic Materials in DMSO (36)

Sol	ubility, Grams 25°C	/100cc DMSO 90-100°C	Solubility, G 2		Occ DMSO)-100°C
Aluminum sulfate (18H20)	Insol.	5	Magnesium nitrate (6H₂0)	40	
Aluminum chloride	Reacts		Manganous chloride (4H ₂ 0)	20	
Ammonium borate (3H ₂ 0)	10		Mercuric acetate	100	
Ammonium carbonate(H ₂ 0)	1		Mercuric bromide	90	
Ammonium chloride	insol.	10	Mercuric iodide	100	
Ammonium chromate	1	· -	Mercuric sulfate	< 0.01	
Ammonium dichromate	50		Molybdenum bromide	1	Reacts
Ammonium nitrate	80		Nickel chloride(6Hz0)	60	
Ammonium thiocyanate	30		Nickel nitrate (6H20)	60	
Barium nitrate	1		Potassium bromide	6.5	
Beryllium nitrate(4H ₂ 0)	10		Potassium chloride	0.2	
Bismuth trichloride	1		Potassium cyanide	1	2
Boric acid	45*		Potassium hydroxide	0.013	
Bromine	Reacts		Potassium iodide	20	20
Cadmium chloride	20°		Potassium nitrate	12	
admium iodide	30		Potassium nitrite	2	
Calcium chloride	Insol.		Potassium perchlorate ^c	38	
Calcium dichromate(3H20)	50		Potassium thiocyanate	20	50
Calcium nitrate(4H ₂ 0)	30		Silver chloride	<0.01	
eric ammonium nitrate	1		Silver iodide	<0.01	
Cobaltous chloride (6H ₂ 0)	30	Misc m.p.	Silver nitrate	130	180
, , , , , , , , , , , , , , , , , , , ,		86°C	Sodium Sulfate	<0.01	
		***	Sodium azide	<1.0	1.6
Cupric acetate(H±0)	Insol.	6	Sodium chloride	0.4	
Cupric bromide ^b	1	20	Sodium cyanide	1	10
•		150°C	Sodium dichromate(2H ₂ 0) ^c	12	
Cupric chloride(2H ₂ 0)	Insol.	27	Sodium hydroxide	0.035	
Cupric sulfate(SH ₂)	< 0.01		Sodium iódide	30	
Suprous iodide	1 at 30°C		Sodium nitrate	20	
erric ammonium sulfate			Sodium nitrite	20	
12H ₂ 0)	Insol.	Misc. m.p.	Sodium perchlorate ^c	24.2	
•		40°C	Sodium thiocyanate	1	
erric chloride(6H20)	30	90	Stannic chloride	25	
errous chloride(4H ₂)	30	90	Stannous chloride(2H20)	40	
Gold chloride	5		Strontium bromide(6H ₂ 0)	5	
odine	>100		Strontium chloride(2H ₂ 0)	10	
.ead chloride ⁶	10		Sulfur dichloride	Reacts	violently
ead nitrate	20	60	Sulfur monochloride		violently
ithium bromide	31.4		Tungsten hexachloride	5	,
ithium chloride	10.2	1	Uranyl nitrate (6H ₂ 0)	30	
ithium dichromate(2H ₂ 0) ^c	10		Vanadium chloride		1
ithium iodide	41.1	1	Zinc acetate	>100	
ithium nitrate	10	1	Zinc chloride	30°	
ithium perchlorate ^c	31.5		Zinc nitrate(6H20)	55	
Magnesium chloride(6H₂0)	1.0		Zinc sulfate	<0.01	

a) @20.3°C b) possible reaction c) not recommended due to safety considerations

Table 5.21: Solubility of Gases in DMSO at Atmospheric Pressure and 20°C (36)

(FROM PURE GASES IN EACH CASE)

	Grams Gas/ 100 Grams Solution	Gas Volume/ Volume of DMSO
Acetylene	2.99	28.1
Ammonia	2.6	40.0
Butadiene	4.35	31.0
Butane		4.8
Butylenes (mixed)	2.05	
Carbon dioxide	.05	2.86
Carbon monoxide	<0.01	
Ethane	6.85 x 10 ⁻²	0.56
Ethylene	.32	2.8
Ethylene oxide	60.0	306.0
Freon 12	1.8	3.7
Helium	1.46 x 10 ⁻¹	0.89 x 10⁻²
Hydrogen	1.95 x 10 ⁻⁴	2.39 x 10⁻²
Hydrogen sulfide	0.5 (reacts)	
Isobutylene	2.5-3.0	
Methane	7.92 x 10 ⁻³	
Nitric oxide (NO)	0.00	
Nitrogen	2.99 x 10 ⁻³	0.6
Nitrogen dioxide(NO2,N204)	Miscible (possible reaction)	
Oxygen	6.44 x 10 ⁻³	0.049
Ozone	Reacts	
Propane		1.8
Propyne		58.2
Sulfur dioxide	57.4 (reacts)	

Table 5.22: Solubility Parameters of Strong Solvents (36)

Solvent	$\delta_{\sf d}$	$\delta_{\mathbf{p}}$	δ _h	δ_{t}
DIMETHYL SULFOXIDE (DMSO)	9.0	8.0	5.0	13.0
8utyrolactone	9.3	8.1	3.6	12.8
Dimethylacetamide (DMAC)	8.2	5.6	5.0	11,1
Dimethylformamide (DMF)	8.5	6.7	5.5	12.1
N-Methyl-2-pyrrolidone (NMP)	8.8	6.0	3.5	11.2
Propylene Carbonate	9.8	8.8	2.0	13.3
Sulfolane	9.0	7.4	5.3	12.8

Table 5.23: DMSO as a Solvent Replacement (36)

Solvents to be Replac	ed			Replacement Mixture			
	δ_d	δ_p	δ _h	Weight %	$\delta_{\sf d}$	δ_{p}	δ,
Acetone	7.6	5.1	3.4	65% DM50 35% Aromatic 150	8.8	5.0	3.6
Butyl cellosolve	7.8	2.5	6.0	10% DMSO 30% Aromatic 150 60% Isopropyl alcohol	8.0	2.7	5.9
Butyrolactone	9.3	8.1	3.6	100% DMSO	9.0	8.0	5.0
Cellosolve	7.9	4.5	7.0	33% D MS O 67% Butyl alcohol	8.1	4.2	7.0
Cyclohexanone	8.7	3.1	2.5	40% DMSO 60%, Aromatic 100	8.9	3.2	2.4
Dimethyl acetamide	8.2	5.6	5.0	67% DMSO 33% Amyl acetate	8.6	5.3	5.0
Dimethyl formamide	8.5	6.7	5.5	80% DMSO 20% 2-methyl butanol	8.6	6.6	5.4
Ethyl amyl ketone	8.0	2.5	2.1	30% DMSO 70% Aromatic 100	8.9	2.5	2.0
Ethylene glycol butyl ether acetate	8.1	2.8	6.7	20% DMSO 60% Butyl alcohol 20% Amyl acetate	8.0	3.3	6.6
Isophorone	8.1	4.0	3.6	50% DMSO 40% Aromatic 100 10% n-Butanol	8.9	4.1	3.5
Methyl ethyl Ketone	7.8	4.4	2.5	20% DM5O 80% MIBK	7.8	3.8	2.5

Table 5.23: (continued)

Solvents to be Replac	ed			Replacement Mixture					
Methylene chforide	8.9	3.1	3.0	40% DMSO 60% Aromatic 150	8.7	3.1	2.7		
Nitrobenzene	9.8	4.2	2.0	45% DMSO 55% Toluene	8.9	3.6	2.6		
NMP	8.8	6.0	3.5	70% DMSO 30% Aromatic 100	8.9	5.4	3.6		
Pentoxone (discontinued)	7.3	4.2	2.8	50% DMSO 50% Aromatic 100	8.9	3.9	2.8		
Propylene carbonate	9.8	8.8	2.0	100% DMSO	9.0	8.0	5.0		
Sulfolane	9.0	8.1	3.6	100% DMSO	9.0	8.0	5.0		

Table 5.24: Hansen Solubility Parameters of Polymer Envelopes (36)

Polymer	$\delta_{_{f d}}$	$\delta_{\mathbf{p}}$	$\delta_{\mathbf{h}}$	Radius
Polymethyłmethacrylate Rohm & Haas	9.1	5.1	3.7	4.2
Epoxy - "Epicote" 1001 Shell Chemical	10.0	5.9	5.6	6.2
Polystyrene BASF	10.4	2.8	2.1	6.2
Polyvinyl acetate "Mowilith" 50 Farbwerke Hoechst	10.2	5.5	4.7	6.7
Nitrocellulose 1/2 sec. H 23 A. Hagedorn	7.5	7.2	4.3	5.6
Cellulose acetate "Cellidora" A. Bayer A.G.	9.1	6.2	5.4	3.7
Polyester "Desmophen" 850 A. 8ayer A.G.	10.5	7.3	6.0	8.2
Polyvinyl chloride "Vipla" KR Montecatini	8.9	3.7	4.1	1.7

Table 5.25: Polymer Solvency of DMSO/Tetralin Mixtures (36)

Polymer	Solvency ⁽¹⁾ Versus Mixture Composition							
	DMSO, % Tetralin, %	100 0	80 20	60 40	50 50	40 60	20 80	0 100
Polymethylmethacrylate Rohm & Haas		42	87	99	93	80	38	ns
Epoxy - "Epicote" 1001 Shell Chemical		77	85	81	-	60	32	ns
Polystyrene BASF		ns	35	70	-	87	91	84
Polyvinyl acetate "Mowilith" 50 Farbwerke Hoechst		73	86	89	84	77	57	28
Nitrocellulose 1/2 sec. H 23 A. Hagedorn		67	65	65	-	4	ns	ns
Cellulose acetate "Cellidora A. Bayer A.G.		74	89	61	-	0	ns	ns
Polyester "Desmophen" 850 A. Bayer A.G.		85	83	74	-	57	35	5
Polyvinyl chloride "Vipla" KR Montecatini		ns	ns	ns	68	ns	ns	ns

⁽i) Solvency = 100[1-(Δδ / R)²] See appendix, equation 5 for explanation. If Solvency < 0, rating is "ns" indicating not soluble.

Table 5.26: Polymer Solvency of DMSO/MIKB Mixtures (36)

Polymer	Solvency ⁽²⁾ Versus Mixture Composition						
	DMSO, % MIBK, %	100 0	80 20	60 40	40 60	20 80	100
Polymethylmethacrylate Rohm & Haas		42	77	84	67	38	0
Epoxy - "Epicote" 1001 Shell Chemical		77	73	58	38	9	ns
Polystyrene BASF		ns	15	27	30	21	12
Polyvinyl acetate "Mowilith" 50 Farbwerke Hoechst		73	72	64	43	28	6
Nitrocellulose I/2 sec. H 23 A. Hagedorn		67	83	82	69	51	27
Cellulose acetate "Cellidora" A. Bayer A.G.		74	81	54	0	ns	ns
Polyester "Desmophen" 850 A. Bayer A.G.	1	85	74	58	39	16	ns
Polyvinyl chloride "Vipla" KR Montecatini		ns	ns	ns	ns	ns	ns

⁽¹⁾ MIBK- methyl isobutyl ketone

Table 5.27: Solvent Viscosities (36)

Solvent	Viscosity, cps @25°C		
DIMETHYL SULFOXIDE (DMSO)	2.0		
Dimethylformamide (DMF)	0.8		
N-Methyl-2-pyrrolidone (NMP)	1.6		
Butyrolactone	1.7		
Cyclohexanone	2.1		
Isophorone	2.5		
Diacetone alcohol	3.0		
Propylene Carbonate	4.0		
Sulfolane	10.3 @ 30°C		

Table 5.28: Solvent Evaporation Times (36)

Solvent	90% Evaporation Times, seconds				
 DIMETHYL SULFOXIDE (DMSO)	17,600				
Cyclohexanone	1,570				
Dimethylformamide (DMF)	2,280				
Diacetone alcohol	3,840				
N-Methyl-2-pyrrolidone (NMP)	15,400				
Isophorone	20,000				
Butyrolactone	23,700				
Propylene carbonate	119,660				
Sulfolane	>1.000.000				

 $^{^{\}wp}$ Solvency = 100[1-($\delta \delta IR^{\wp}$) See appendix, equation 5 for explanation If Solvency < 0, rating is "ns" indicating not soluble.

SULFOLANE

Table 5.29: Properties of Sulfolane (4)

Property	Typical Value	Specification	Test Method
Distillation, Range, °C, 760 mm			ASTM D 1078
5%	284.8	282 Min.	
50%	285.2		
95%	285.6	288 Max.	
Specific Gravity, 30/4°C	1.264		ASTM D 891
100/4°C	1.201		
Flash Point, °F	330		Literature Value
Freezing Point, °F	79		PPCo-6518-CH
Composition, wt. %			Gas Chromatography
Sulfolane (Water-free)	99.9	99.0 Min.	PPCo-6517-CG-1
Ash Content, wt. %	0.006	0.1 Max.	PPCo-7505-CF
Water Content, wt %	0.06	0.25 Max.	ASTM D 1744
SO ₂ Stability, mg SO ₂ /250 ml/hr	4	20 Max.	PPCo-6533-CZ
Molecular Weight	120.17		Literature Value
Boiling Point, °C	287.3		Literature Value
Melting Point, °C	28.5		Literature Value
Density, 15°C	1.276 g/cm ³		Literature Value
Viscosity, mPa.s (=cP), 30°C	10.3		Literature Value
100°C	2.5		Literature Value
200°C	1.0		Literature Value
Refractive Index, np, 30°C	1.48		Literature Value
Heat of Fusion, kJ/kg*	11.44		Literature Value
Dielectric Constant	43.3		Literature Value
Surface Tension, 30°C mN/m (=dyn/cm)	35.5		Literature Value
*To convert J to cal, divide by 4.184.			

This product is also sold as Sulfolane-W, which is 3.0 wt. % water added to Sulfolane, Anhydrous. Phillips Chemical's Sulfolane-W meets all specifications for the Sulfolane process licensed by UOP, Inc.

Table 5.30: Solubility of Sulfolane in Various Chemical Compounds (4)

Chemical Compound	Tempe °C	rature °F	Grams Sulfolane/ 100 gms Chemical
Benzene	25.0	77	Miscible
Cyclohexane	25.0	77	0.4
2,3, Dimethylbutane	25.0	77	0.3
Hexene-1	2 5.0	77	1.0
Normal Hexane	25.0	77	0.3
Perchloroethylene	24.4	76	1.6
Toluene	25.0	77	Miscible
Mixed Xylenes	25.0	77	Miscible

Table 5.31: Solubility of Various Chemical Compounds in Sulfolane (4)

Chemical Compound	Temperature °C °F		Grams Chemical/ 100 gms Sulfolane		
Hydrogen Chloride (gas)	2 5.0	77	9.3		
Ethyl Mercaptan	26.6	80	Miscible		
Methyl Mercaptan	0.0	32	Miscible		
Methyl Mercaptan	25.0	77	21.7*		
Tertiary Dodecyl					
Mercaptan	25.0	77	2.0		
Perchloroethylene	24.4	76	37.5		
Polystyrene	199.8	392	0.02		
Trichloroethylene	24.4	76	Miscible		
•					

*Test performed at atmospheric pressure, approx. 34° F above the normal boiling point (42.6° F) of methyl mercaptan.

Table 5.32: Thermal Stability of Suifolane (4)

The tests summarized below were made with Sulfolane containing 10 mg of SO₂ per 250 ml. Phillips Test Method PPCo-6533-CZ.*

Tempe °C	erature °F	SO ₂ (mg.) Liberated Per Hour From 250ml Sulfolane
180	356	0.6
200	392	2.8
220	428	3.3
240	464	24.1

FINDINGS: Sulfolanc has good thermal stability up to and including 428° F, but has a rather sharp decomposition rate beyond this temperature. Excessive temperatures will cause Sulfolane to "crack" to a dark polymer and SO₂.

*Description of test method available on request.

Table 5.33: Comparative Freezing Point Depression (4)

Freezing point curve for Sulfolane — water mixtures

Mol. % Impurity Required to Lower Freezing Point 1°F

Normal Butylbenzene 2-Phenylpentane 0.103
Sulfolene 0.228
3-Methylsulfolane 0.189
Water 0.163

Table 5.34: Specific Gravity (4)

Monohydric Alcohols

METHANOL

Table 6.1: Physical Properties of Methanol (70)

Chemical Family	Alcohoi	Critical Temperature, °C (°F)	240 (464)
Chemical Formula	CH₃OH	• •	2.0 (.0.)
Chemical Structure	H₃-C-OH	Critical Volume, cc/g (cu ft/lb)	3.6829 (.05899)
Chemical Abstract Service Number	67-56-1	Density, lb/gal @ 15.6°C (60°F)	6.63
Molecular Weight	32.04	Explosive Limits,	
Synonyms	Methyl Alcohol Carbinol Wood Alcohol	% Volume in Air, Lower Upper	6.0 36.5
Auto Ignition Temperature, @ 760 mm Hg, °C (°F)	385 (725)	Flash Point, Tag Closed Cup, °C (°F)	11 (52)
Boiling Point, @ 760 mm Hg, °C (°F)	64.7 (148.4)	Heat of Formation, Liquid, @ 25°C, K cal/g mol @ 77°F, BTU/lb mol	57.021 102.6x10 ³
Freezing Point, °C (°F)	- 97.7 (- 143.8)	Heat of Formation, Vapor,	102.0010
Coefficient of Expansion, per °C @ 20°C per °F @ 68°F	0.00119 0.00066	@ 25°C, K cal/g mol @ 77°F, BTU/lb mol Heat of Fusion.	- 48.08 - 86.5x10 ³
Critical Compressibility	0.224	@ -97°C, K cal/g mol	16.4
Critical Density,		@ -142.6°F, BTU/lb mol	29.5
g/cc (lb/cu ft)	0.272 (16.952)	Refractive Index, N _D ²⁰	1.3286
Critical Pressure, Kg/cm² (PSIA)	81.12 (1153.95)	Solubility in Water, @ 20°C (68°F)	Completely Miscible

Table 6.2: Properties of Aqueous Solutions of Methanol (31)

METHANOL (FREEZING	BOILING	FLASH		DEMSITY	f (g./ml.)			VISCOSITY (MILLIPOISES)		
WT.	VOL.	POINT	POINT	POINT		AT VARIOUS 1		-		T VARIOUS 1		
%	%	*F.	*F.	Closed Cup)	0°C.	10°C.	15°C.	20°C	25°C.	35°C.	45°C.	55°C
0	0	32	212		.9999	.9997	.9993	.9982	8.9	7.2	5.9	5.1
10	12.35	21.7	197.2	130	.9842	.9834	.9824	.9815	8.11	9.2	7.4	6.2
20	24.33	5.9	187.3	107	.9725	.9700	.9681	.9666	14.1	10.9	8.6	7.1
30	35.95	-14.6	180.0	94	.9604	.9560	.9537	.9515	15.5	11.9	9.4	7.7
40	47.11	_39.1	174.2	84	.9459	.9403	.9372	.9345	15.8	12.3	9.7	7.9
50	57.71	-65.7	169.5	76	.9287	.9221	.9185	.9156	15.7	12.2	9.7	7.9
60	67.69	-101.2	165.6	69	.9090	.9018	.8978	.8946	14.0	10.9	8.8	7.2
70	76.98	-156.1	161.6	63	.8869	.8794	.8751	.8715	12.2	9.6	7.8	6.4
80	85.50	-175.0*	157.5	58	.8634	.8551	.8505	.8469	10.1	8.1	6.7	5.6
90	93.19	-171.4	153.0	53	.8374	.8287	.8240	.8202	7.9	6.5	5.5	4.6
100	100.0	-142.6	148.3	49	.8102	.8009	.7958	.7917	5.5	4.8	4.1	3.6

			SSURE (mm.H		WT. % METHANOL	(CAI	MAL CONDUCT L/SEC/CM */°C	/CM)	SPECIFIC HEAT				
₩1. %	20°C.	AT VARIOUS	TEMPERATUR	140°C.	IN VAPOR AT 760 mm.	AT VA 10°C	RIOUS TEMPER 40°C.	ATURES 70°C.	30°C.	AT VARIOUS 1 50°C.	TEMPERATURES 80°C.	100°C.	
0	17.5	149	760	2700	0	.00138	.00149	.00160	0.990	0.994	1.000	1,004	
10	28.0	206	1030	3640	43.4	.00126	.00135	.00145	1.015	1.022	1.032	1.039	
20	35.5	258	1260	4300	61.2	.00115	.00122	.00129	1.000	1.014	1.035	1.049	
30	41.5	307	1450	4780	70.5	.00105	.00110	.00115	0.974	0.997	1.031	1.054	
40	46.5	350	1600	5200	76.5	.00096	.00098	.00100	0.947	0.979	1.026	1.057	
50	52.0	390	1710	5620	81.0	.00088	.00088	.00088	0.888	0.928	0.988	1.028	
60	59.0	427	1880	6040	84.8	.00079	.00078	.00076	0.821	0.869	0.941	0.990	
70	66.5	462	2020	6470	88.5	.00072	.00069	.00066	0.764	0.820	0.905	0.961	
80	75.5	503	2190	6970	92.2	.00065	10000.	.00057	0.726	0.790	0.886	0.951	
90	87.0	557	2380	7550	96.0	.00059	.00054	.00049	0.665	0.737	0.846	0.918	
00	99.0	620	2600	8150	100.0	.00053	.00048	.00043	0.626	0.706	0.826	0.887	

^{*}The eutectic point or minimum freezing temperature is approximately -128.7°C. (-199.7°F.) at a composition of 82.9% Wt. methanol (87.8%

Vol.). In the vicinity of the eutectic, the solutions become vitreous and direct determinations of the freezing point are difficult to make.

Table 6.3: Freezing Points of Methanol-Water Solutions (34)

Table 6.4: Density and Specific Gravity of Methanol-Water Solutions at 15°C (34)

Meti	Namel		Specific	Me	thanol			Specific
% by Weight	% by Yatume	Density, 15/4°C	Gravity, 15/15°C	% by Weight	% by Valume		Density, 15/4°C	Gravity. 15/15 C
0	0	0.99913	1.00000	50	57.712		 . 0.91852	0.91931
1		0.99727	0.99613	51	58.739		 . 0.91653	0.91732
2	2.502	0.99543	0.99629	52	59.759		 0.91451	0.91530
3	3.746	0.99370	0.99456	53	60.773		 0.91248	0.91327
4	4.986	0.99198	0.99284	54	61 781		 0.91044	0.91123
5	6.222		0.99115	55	62.783		. 0.90839	0.90914
6	7.454		0.98950	56	63.778		 . 0.90631	0.90709
7	8.602	0.98701	0.98786	57	64.767		 0.90421	0.90499
	9.906		0.98632	58	65.750		 0.90210	0.90268
9	11.128	0.98394	0.98479	59	66.725		 . 0.89996	0.90074
10	12.345		0.98326	60	67.693		 . 0.89781	0.89859
11	13.559	0.98093	0.98178	61	68.654		 0.89563	0.89640
12	14.779	0.97945	0.98030	62	69.607		 0.89341	0.89418
13	15.977 `	0.97802	0.97887	63	70.552		 . 0.89117	0.89194
14	17.181	0.97660	0.97745	64	71.490		 0.88890	0.88967
15	18.382		0.97602	65	72.420		 0.88662	0.88739
16	19.579	0.97377	0.97461	66	73.344		 0.88433	0.88510
17	20.773	0.97237	0.97321	67	74.252		 0.88203	0.88279
18	21.963	0.97096	0.97180	68	75.172		 0.87971	0.88047
19	23.149	0.96955	0.97039	69	76.077		 0.87739	0.87815
20	24.322	0.96814	0.96898	70	76.976		 0.87507	0.87583
21	25.512	0.96673	0.96757	71	77.864		 0.87271	0.87346
22	26.688	. 0.96533	0.96614	72	78.746		 0.87033	0.87108
23	27.860	0.96392	0.96475	73	79.618		0.86792	0.86867
24	29.029	0.96251	0.96334	74	80.480		 0.86546	0.86621
25	30.193	0.96108	0.96191	75	81.336			0.86375
26	31.354	0.95963	0.96046	76	82.182		 0.86051	0.86125
27	32.510	0.95817	0.95900	77	83.022		 	0.85875
28	33.662	. 0.95668	0.95751	78	83.855		 0.85551	0.85625
29	34.809		0.95601	79	84.580		 0.85300	0.85374
30	35.952	0.95366	0.95499	80	85.499		 0.85048	0.85122
31	37.091	0.95213	0.95295	81	86 .310		 0.84794	0.84867
32	38.224		0.95138	82	87.110		 0.84536	0.84609
33	39.352	. 0.94896	0.94978	83	87.899		 0.84274	0.84347
34	40.476	0.94734	0.94816	84	88.677	•	 0.84009	0.84082
35	41.594	0.94570	0.94652	85	89.448		 0.83742	0.83814
×	42.708	0.94404	0.94486	86	90.212		 0.83475	0.83547
37	43.816	0.94237	0.94319	87	90.968		 0.83207	0.83279
38	44.919		0.94148	88	91.716		 0.82937	0.83009
39	46.016	0.93894	0.93975	89	92.456		 0.82667	0.82738
40	47.109		0.93801	90	93.118		 0.82396	0.82467
41	48.195	0.93543	0.93624	91	93.912		0.82124	0.82195
42	49.277	0.93365	0.93446	92	94.627		 0.81849	0.81920
43	50.353	0.93185	0.93266	93	95.326		 0.81568	0.81639
4	51.422	0.93001	0.93081	94	96.017		 0.81285	0.81365
45	52.486	0.92815	0.92895	95	96.697		 0.80999	0.81069
46	\$3.544	0.92627	0.92707	96	97.370		 . 0.80713	0.80783
47	54.595	0.92436	0.92516	97	98.036		 0.80428	0.80498
48	55.639	0.92242	0.92322	98	98.696		. 0.80143	0.80212
49	56.678	0.92048	0.92128	99	99.351		 0.79859	0.7 9928
				100	100.000		 0.79577	0.79646

Table 6.5: Density and Specific Gravity of Methanol-Water Solutions at 30°C (34)

	hanol						Specific		hanol					Specific
% by Weight	% by Volume					Density, 30/4°C	Gravity, 30/30°C	% by Weight	% by Volume				Density, 30/4°C	Gravity, 30/30°C
0	0.000					0.9957	1.0000	. 50	58.089				0.9084	0.9123
1	1.271					0.9939	0.9982	51	59.121	 			0.9064	0.9103
2	2.538	 Ċ				0.9921	0.9964	52	60.140		i		0.9043	0.9082
3	3.800					0.9903	0.9946	53	61.148				0.9021	0.9060
4	5.057					0.9886	0.9929	. 54	62.149		ì		0.8999	0.9038
5	6.310					0.9868	0.9911	55	63.146				 0.8977	0.9016
6	7.559					0.9850	0.9893	56	64.136				 0.8955	0.8994
7	8.802					0.9832	0.9874	57	65.114				 0.8932	0.8971
8	10.042					0.9815	0.9857	58	66.093				 0.8910	0.8948
9	11.278					0.9798	0.9840	59	67.059				0.8887	0.8925
10	12.511					0.9782	0.9824	60	68.019				 0.8864	0.8902
11	13.738					0.9765	0.9807	61	68.981				 0.8842	0.8880
12	14.962		٠.			0.9749	0.9791	62	69.929	 -			 	0.8857
13	16.182					0.9733	0.9775	63	70.872				 0.8796	0.8834
14	17.398	 ,				0.97.17	0.9759	64	71.809				 0.8773	0.8811
15	18.610					0.9701	0.9743	65	72.731				 0.8749	0.8787
16	19.820					0.9686	0.9728	66	73.656				 0.8726	0.8764
17	21.024					0.9670	0.9712	67	74.566				 0.8702	0.8740
18	22.224					0.9654	0.9696	68	75.471				 0.8678	0.8715
19	23.420		,			0.9638	0.9680	69	76.36 9				 0.8654	0.8691
20	24.612					0.9622	0.9664	70	77.261				 0.8630	0.8667
21	25.799					0.9606	0.9647	71	78.146				 0.8606	0.8643
22	26.983					0.9590	0.9631	72	79.017				 0.8581	0.8618
23	28.162					0.9574	0.9615	73	79.881				 0.8556	0.8593
24	29.338					0.9558	0.9599	74	80.729				 0.8530	0.8567
25	30.509					0.9542	0.9583	75	81.580				 0.8505	0.8542
26	31.676					0.9526	0.9567	76	82.425				0.8480	0.8517
27	32.839			 	-	0.9510	0.9551	77	83.253				 0.8454	0.8491
28	33. 99 8					. 0.9494	0.9535	78	84.085				0.8429	0.8465
29	35.149			 		0.9477	0.9518	79	84.900				 0.8403	0.8439
30	36.296					0.9460	0.9501	80	85.719				0.8378	0.8414
31	37.439					0.9443	0.9484	81	86.522				0.8352	0.8388
32	38.577					0.9426	0.9467	82	87.317				0.8326	0.8362
33	39.706			 		0.9408	0.9449	83	88.095				0.8299	0.8335
34	40.831			 		0.9390	0.9431	84	88.867				0.8272	0.8308
35	41.952			 		0.9372	0.9412	85	89.631			 	0.8245	0.8281
36	43.067					0.9354	0.9394	86	90.389				0.8218	0.8253
37	44.179	 ,		 		0.9336	0.9376	87	91.139			 	0.8191	0.8226
38	45,285					0.9318	0.9358	88	91.883			 	0.8164	0.8199
39	46.387					0.9300	0.9340	89	92.608			 	0.8136	0.8171
40	47.479					0.9281	0.9321	90	93.327			 	0.8108	0.8143
41	48.572					0.9263	0.9303	91	94.038			 	0.808.0	0.8115
42	49,654					0.9244	0.9284	92	94.730			 	0.8051	0.8086
43	50.732			 		0.9225	0.9265	93	95.415			 	0.8022	0.8057
44	51.805					0.9206	0.9246	94	96.080			 	0.7 992	0.8027
45	52.867					0.9186	0.9226	95	96.737				0.7962	0.7996
46	53.925					0.9166	0.9206	96	97.400				0.7933	0.7967
47	54.977					0.9146	0.9185	97	98.054				0.7904	0.7938
48	56.024					0.9126	0.9165	98	98.702				0.7875	0.7909
49	57.0 59					0.9105	0.9144	99	99.355				0.7847	0.7881
								100	100.000				0.7819	0.7853

Table 6.6: Resultant Volume When Methanol and Water are Mixed (31)

Table 6.7: Solubility of Methanol in Gasoline from 15° to 30°C (31)

Table 6.8: Liquid Density of Methanol (70)

Table 6.9: Liquid Heat Capacity of Methanol (70)

Table 6.10: Vapor Heat Capacity of Methanol (70)

Table 6.11: Heat of Vaporization of Methanol (70)

Table 6.12: Surface Tension of Methanol (70)

Table 6.13: Liquid Thermal Conductivity of Methanol (70)

Table 6.14: Vapor Thermal Conductivity of Methanol (70)

Table 6.15: Vapor Pressure of Methanol (70)

Table 6.16: Vapor Viscosity of Methanol (70)

Table 6.17: Liquid Viscosity of Methanol (70)

Table 6.18: Azeotropes of Methanol (31)

METHAN	OL FORMS BINARY AZEOTROPES	WITH:	<u>%</u>	B.P. of Azeot	rope °C.	<u>%</u>	B.P. of Azeo	trope °C.
<u>%</u>	B.P. of Azeotro	ope °C.	88.5	1,1-Dichloroethane	59.0	77.7	2-Methylfuran	51.5
88	Acetone	55.5	68	1,2-Dichloroethane	61.0	25	Methyl isobutyrate	64.0
81	Acetonitrile	63.5	87	cis-1,2-Dichloroethylene	51.5	52.5	Methyl propionate	62.5
38.7	Acrylonitrile	61.4	47	1,2-Dichloropropane	62.9	88	Methyl propyl ether	38.0
50	tert-Amylmethyl ether	62.3	79	2,2-Dichloropropane	55.5	87	Methyl sulfide	34.5
60.5	Benzene	58.3	75	l, 2-Dichloro-l-propene	56.5	91	n-Pentane	30.8
77.5	Biallyl	47.1	35	Diethoxymethane	63.2	9.3	α-Pinene	64.6
41	l-Bromobutane	63.7	10	1,2-Dimethoxyethylene	63.5	28	Propyl ether	63.8
58.5	2-Bromobutane	61.5	75.8	Dimethyl acetal	57.5	49.8	Propyl formate	61.9
95	Bromoethane	35	80	2,3-Dimethylbutane	45.0	28	Octane	63.0
58	l-Bromo-2-methylpropane	61.6	40	2,5-Dimethylhexane	61.0	36.5	Tetrachloroethylene	63.8
76	2-Bromo-2-methylpropane	55.6	54	Ethyl acetate	77.1	45	Thiophene	59.6
79	l-Bromopropane	54.5	44	Ethyl butyl ether	62.6	31	Toluene	63.8
85.5	2-Bromopropane	49.0	65	Ethylene dichloride	59.5	78.3	l, l, l-Trichloroethane	56.0
88	cis-1-Bromopropene	48	79	Ethylene sulfide	47.0	3	1,1,2-Trichloroethane	64.5
85	trans-1-Bromopropene	50.8	84	Ethyl formate	51.0	62	Trichloroethylene	59.3
89	2-Bromopropene	42.7	43	Ethyl nitrate	61.8	47	2, 2, 4-Trimethylpentane	59.4
79.5	3-Bromopropene	54.0	76	Ethyl propyl ether	55.5	METHAN	OL FORMS TERNARY AZEOTRO	DEC WYDL
30	2-Butanone	63.5	38	Ethyl sulfide	61.2	%		
64.6	Butyl methyl ether	56.3	68	Fluorobenzene	59.7		B.P. of Azeot	rope C.
86	Carbon disulfide	37.7	93	Furan	30.5	43.5	Acetone	.
79.4	Carbon tetrachloride	55.7	48.5	n-Heptane	59.1	40.5	Cyclohexane	51.1
71.5	1-Chlorobutane	57.2	83	Iodoethane	55.0	5.8	Acetone	
80	2-Chlorobutane	52.7	50	l-lodopropane	63.1	76.8	Methyl acetate	53.7
87	Chloroform	53.5	62	2-lodopropane	61.0	40	Carbon disulfide	
43	1-Chloro-3-methylbutane	62.0	38	3-lodopropene	63.5	50	Bromoethane	33,9
65	Chloromethyl methyl ether	56.0	60	lsobutyraldehyde	62.7		Dromoetnane	
77	l-Chloro-2-methylpropane	53.1	20	Isopropyl acetate	64.5	55	Carbon disulfide	35.6
90	2-Chloro-2-methylpropane	43.8	67	lsopropyl formate	57.2	38	Methylal	
90	l-Chloropropane	40.6	92.1	Methylal	41.8	47	Chloroform	47.0
94	2-Chloropropane	33.4	80.5	Methyl acetate	54.0	30	Acetone	47.0
97	2-Chloropropene	22.0	46	Methyl acrylate	62.5	57.2	Methyl acetate	
90	3-Chloropropene	39.9	68	Methyl borate	54.6	46.5	Carbon disulfide	37.0
61.2	1,3-Cyclohexadiene	56.4	93	2-Methyl-2-butene	31.8		Carbon disuffide	
57.5	1,4-Cyclohexadiene	58.0	97	3-Methyl-1-butene	19.8	48.6	Methyl acetate	50.0
6 0	Cyclohexane	55,9	85	Methyl tert-butyl ether	51.6	33.6	Cyclohexane	50.8
86	Cyclopentane	38.8	30	Methyl carbonate	62.7	27	Methyl acetate	
18	1, 1-Dibromoethane	64.2	46	Methylcyclohexane	59.2	59	Hexane	45.0
38	trans-1,2-Dibromoethylene	64.1	68	Methylcyclopentane	51,3	5,3	Water	
50	2,3-Dichloro-1,3-butadiene	61.5	65	Methylcyclopentene	53.0	3.3 13.5	=	67.9
				, re , eropement	22.0	13.5	Methyl chloroacetate	J.,,

ETHYL ALCOHOL

Table 6.19: Physical Properties of Anhydrous Ethyl Alcohol (31)

Acidity as acetic acid	0.0015% by wt. max.	Latent heat of fusion	24.9 cal/g
Boiling point at 760 mm Hg dt/dp at 760 mm Hg	78.32°C 0.0334°C/mm Hg	Latent heat of vaporization at 78.3°C	204.3 cal/g
Coefficient of cubical expansion Color. Pt-Co scale	0.00060 per 1°F	MAC Melting point	1000 ppm in air -114.4°C
Critical pressure Critical temperature Density at 25°C Dielectric constant at 20°C	63.1 atm 243.1°C 0.7851 g/ml 25.7	Molecular weight Non-volatile matter	46.07 Not more than 0.0025 gram when 100 ml are evaporated and heated to constant weight at 100°C to 110°C
Dipole moment, $\mu \times 10^{18}$ Electrical conductivity at 25°C Explosive range Fire hazard	1.70 µ 1.35 x 10 ⁻⁹ ohm ⁻¹ cm ⁻¹ 3.28 - 19% Dangerous when exposed to heat or flame	Reducing substances Refractive index at 25°C, nD	At least 25 minutes permanganate time at 15°C 1.3596
Flash point. Tag open cup Free energy of formation,	61 °F	Specific gravity at 15.56°C (60/60°F)	0.7937
ΔF° at 25°C	-40.2 kcal/mole	Specific heat at 20°C	0.61 cal/g
Freezing point	-114.1°C	Specific tension at 25°C	22.1 dynes/cm
Heat capacity. Cp, Liquid at 25°C Cp, Vapor, 90°C,1 atm	0.581 cal/g 0.406 cal/(g) (°C)	Thermal conductivity, k, at 68°F	0.105 (Btu) (ft) (sq ft) (°F)
Cv. Vapor, 90°C,1 atn Heat of combustion	0.359 cal/(g) (°C) 328 kcal/mole	Toxicity	Moderately toxic by ingestion and in- halation
Heat of formation, Liquid, ΔH at 25°C	-64.7 kcal/mole	Vapor pressure at 20°C	44.0 mm Hg
Heat of solution in Water at 13°C	2.54 kcal/mole solute	Viscosity at 20°C	1.22 centipoises
Heat of solution of Water in Ethyl Alcohol, mole fraction of Water 0.640 at 77°C 0.843 at 79.2°C	-0.018 -0.038	Weight per gallon at 20°C	6.61 lbs

Table 6.20: Physical Properties of 95% Ethanol (31)

Acidity as acetic acid 0.0025 g/100 ml, max. Color, Pt-Co scale 10 max. Distillation range at 760 mm Hg 77°C - 80°C Not more than 0,0025 gram when 100 ml are evaporated and heated to constant weight at 100°C to 110°C Non-volatile matter Permanganate time 30 minutes, min. At least 25 minutes Reducing substances permanganate time at 15°C Relative evaporation rate, n-Butyl Acetate = 100 230 Specific gravity at 15.56 (60/60°F) 0.8160 Weight per gallon at 20°C 6.76 lbs

Table 6.21: Properties and Specifications of Ethyl Alcohol (30)

	Units	190°	200°	Test Method
Ethyl Alcohol,				
minimum strength	v ol %	95	99.9	IRS Gauging Manual
Acidity as Acetic				
Acid, maximum	a/100 ml	.0.0025	0.0025	ASTM D 1613
Non-Volatile				
Matter, maximum	n/100 ml	0.0025	0.0025	ASTM D 1353
Permanganate Time,		. 0.0020	0.0020	
minimum	minutes	50	30	Quantum test
Specific Gravity @ 60°F				
(15.56°C), maximum		0.816	0.794	ASTM D 891
Color, maximum				
Odor				

	Units	199°	200°
Bolling Point	℃	78.3	78.4
***************************************	° F	172.9	173.1
Coefficient of Expansion			
Per °C	•••••	0.0011 .	0.0011
Per °F		0.00062	0.00062
Flash Point			
ASTM D 1310	°C	21	18
(Tag Open Cup)	°F	69	65
ASTM D 56			
(Tag Closed Cup)	°F	62	57
Weight per Gallon @			
60°F (15.56 °C)	1bs	6.794	6.610
Water Solubility			

Table 6.22: Conversion Table—Weight and Volume Percent of Ethyl Alcohol in Ethyl Alcohol-Water Mixtures (30)

% Alcohol By Volume at 60°F	% to be Converted	% Alcohol By Weight	% Alcohol By Volume at 60F	% to be Converted	% Alcohol By Weight	% Alcohol By Volume at 60°F	% to be Converted	% Alcohol By Weight	% Alcohol By Volume at 60°F	% to be Converted	% Alcohol By Weight
1.257	1	0.795	31.555	26	21.285	58.844	51 52 53	43.428	82.121	76	68.982
2.510	2	1.593	32.719	27	22.127	59.852	52	44.374	82.967	77	70.10 2
3.758	3	2.392	33.879	28	22.973	60.854	53	45.326	83.805	78	71.234
5.002	2 3 4 5	3.194	35.033	29	23.820	61.850	54	46.283	84.636	79	72.375
6.243	5	3.998	36.181	30	24.670	62.837	54 55	47.245	85.459	80	73.5 2 6
7.479	6 7	4.804	37.323	31 32	25.524	63.820	56 57	48.214	86.275	81 82 83	74. 68 6
8.712		5.612	38.459	32	26.382	64.798	57	49.187	87.083	82	75.8 58
9.943	8	6.422	39.590	33	27.242	65.768	58	50.167	87.885	83	77.039
11.169	9	7.234	40.716	34	28.104	66.732	58 59 60	51.154	88.678	84 85	78.233
12.393	10	8.047	41.832	35	28.971	67.690	60	52.147	89.464	85	79. 44 1
13.613	11	8.862	42.944	36	29.842	68.641	61 62	53.146	90.240	86 87	80.662
14.832	12	9.679	44.050	37	30.717	69.586	62	54.152	91.008	87	81.897
16.047	13	10.497	45.149	38	31.596	70.523	63	55.165	91.766	88	83.144
16.047 17.259	14	11.317	46.242	39	32.478	71.455	64	56.184	92.517	89	84.408
18.469	15	12.138	47.328	40	33.364	72.380	63 64 65	57.208	93.254	90	85. 68 9
19.676	16	12.961	48.407	41	34.254	73.299	66 67	58.241	93.982	91 92	86.989
20.880	17	13.786	49.480	42	35.150	74.211	67	59.279	94.700	92	88.310
22.081	18	14.612	50.545	43	36.050	75.117	68	60.325	95.407	93	89.652
23.278	19 20	15.440	51.605	44	36.955	76.016	69	61.379	96.103	94	91.025
24.472	20	16.269	52.658	45	37.865	76.909	68 69 70	62.441	96.787	95	92.423
25.662	21	17.100	53.705	46	38.778	77.794	71	63.511	97.459	96	93.851
26.849	2 2	17.933	54.746	47	39.697	78.672	72	64.588	98.117	97	95.315
28.032	23	18.768	55.780	48	40.622	79.544	73	65.674	98.759	98	96.820
29.210	24	19.604	56.808	49	41.551	80.410	74	66.768	99.386	99	98.381
30.388	25	20.443	57.830	50	42.487	81.269	75	67.870	100.000	100	100.000

Values from Tables 5 and 6, Bureau of Standards Circular No. 19 -

Table 6.23: Index of Refraction of Ethyl Alcohol-Water Mixtures at 60°F (30)

Data from International Critical Tables

Table 6.24: Heat of Solution of Ethyl Alcohol in Water (30)

Data from International Critical Tables BTU/lb mole = 1.8 cal/g mole

Table 6.26: Boiling Points of Ethyl Alcohol-Water Solutions (34)

Calculated from mole per cent data given in International Critical Tables

Table 6.25: Resultant Volume When Ethyl Alcohol and Water are Mixed (30)

Ibert Mellan, 'Industrial Solvents Handbook', 2nd Edition, Noyes Data Corporation (1977)

Table 6.27: Permanganate Time Test (30)

Ref. U.S. Industrial Chemicals Company, Tuscola, IL.

Table 6.28: Freezing Points of Ethyl Alcohol-Water Mixtures (30)

Ibert Mellan, 'Industrial Solvents Handbook', 2nd Ed., Noyes Data Corporation (1977)

Table 6.30: Flash Point of Aqueous Ethyl Alcohol Solutions °C and °F vs Vol % Ethanol (30)

Table 6.31: Specific Heat of Aqueous Solutions of Ethanol (30)

Ibert Mellan, Industrial Solvents', 2nd Edition, Reinhold Publishing Corp. (1950)

Table 6.32: Surface Tension of Pure Ethanol at Various Temperatures (30)

Ibert Mellan, 'Industrial Solvents', 2nd Edition, Reinhold Publishing Corp. (1950)

Table 6.33: Latent Heat of Vaporization of Ethyl Alcohol (34)

Table 6.34: Heat Capacity of Ethyl Alcohol at Various Temperatures (30)

Table 6.35: Volumetric Equivalents (30)

The following table will be helpful in the preparation of reports showing disposition of 190 proof and anhydrous (200 proof) tax-free and specially denatured alcohol.

Fluid		Wine	Proof	Gallons
Ounces	Milliliters	Gallons	190 proof	200 proof
1	30.	0.008	0.015	0.016
2	59.	.016	.030	.031
3	89.	.023	.045	.047
4	118.	.031	.059	.062
5	148.	.039	.074	.078
6	177.	.047	.088	.094
7	207.	.055	.103	.109
8	237.	.063	.119	.125
9	266.	.070	.134	.140
10	296.	.078	.149	.156
11	325.	.086	.164	.172
12	355.	.094	.179	.187
13	385.	.102	.194	.203
14	414.	.109	.209	.218
15	444.	.117	.224	.234
16 (1 pint)	473.	.125	.238	.250
32 (1 quart)	946.	250	.475	.500
64 (2 quarts)	1892	.500	.950	1.000
96	2839	.750	1.425	1.500
128 (1 U.S. gallon)	3785	1.000	1.900	2.000
		5.000	9.500	10.000
		30.000	57.000	60.000
		54.000	102.600	108.000
		55.000	104.500	110.000

Table 6.36: Ethyl Alcohol-Water Mixtures (30)

Corresponding values for proof, parts by vo ume of water and alcohol, weight % alcohol and specific gravity in air.

U.S. PROOF	PARTS	BY VOLUME* OF	WEIGHT %	SPECIFIC GRAVITY				
degrees at 60°F	WATER	ETHYL ALCOHOL	ALCOHOL	at 60°/60°F (15.56°/15.56°C)	at 68°/68°F (20°/20°C)	at 77°/77°F (25°/25°C)		
0	100.00	0.0	0.00	1.0000	1.0000	1.0000		
1	99.53	0.5	0.40	.9992	.9992	.9992		
2	99.06	1.0	0.80	.9985	.9985	.9985		
3	98.58	1.5	1.19	.9978	.9978	.9978		
4	98.12	2.0	1.59	.9970	.9970	.9970		
5	97.65	2.5	1.99	.9963	.9963	.9963		

^{*}The parts by volume of water and the parts by volume of ethyl alcohol do not add to unity (100) at any one proof reading, because of the shrinkage in volume which occurs when ethyl alcohol and water are mixed. The parts by volume of ethyl alcohol are the same as percent by volume of ethyl alcohol used to determine proof for tax purposes. Ethyl alcohol proof, by legal definition, is twice the percent by volume.

Table 6.36: (continued)

U.S. PROOF	PARTS	BY VOLUME* OF	WEIGHT %	SPE	CIFIC GRAVITY	
degrees at 60°F	WATER	ETHYL ALCOHOL	ETHYL ALCOHOL	at 60°/60°F (15.56°/15.56°C)	at 68°/68°F (20°/20°C)	at 77°/77°F (25°/25°C)
6	97.18	3.0	2.39	.9956	.9956	.9956
7	96.71	3.5	2.79	.9949	.9949	.9948
8	96.24	4.0	3.19	.9942	.9942	.9941
9	95.78	4.5	3.60	.9935	.9935	.9934
10	95.31	5.0	4.00	.9928	.9928	.9927
11	94.85	5.5	4.40	.9921	.9921	.9921
12	94.39	6.0	4.80	.9915	.9914	.9914
13	93.93	6.5	5.21	.9908	.9908	.9907
14	93.46	7.0	5.61	.9902	.9902	.9901
15	93.01	7.5	6.02	.9896	.9895	.9894
16	92.55	8.0	6.42	.9890	.9889	.9888
17	92.09	8.5	6.83	.9884	.9883	.9882
18	91.63	9.0	7.23	.9878	.9876	.9875
19	91.18	9.5	7.64	.9872	.9870	.9869
20	90.72	10.0	8.05	.9866	.9864	.9863
21	90.27	10.5	8.46	.9860	.9858	.9856
22	89.81	11.0	8.86	.9854	.9852	.9850
23	89.36	11.5	9.27	.9848	.9846	.9844
24	88.90	12.0	9.68	.9843	.9840	.9838
25	88.45	12.5	10.09	.9837	.9835	.9832
26	88.00	13.0	10.50	.9832	.9829	.9826
27	87.55	13.5	10.91	.9826	.9823	.9820
28	87.10	14.0	11.32	.9821	.9817	.9814
29	86.65	14.5	11.73	.9816	.9812	.9808
30	86.20	15.0	12.14	.9810	.9806	.9802
31	85.75	15.5	12.55	.9805	.9801	.9796
32	85.30	16.0	12.96	.9800	.9797	.9790
33	84.85	16.5	13.37	.9794	.9790	.9784
34	84.40	17.0	13.79	.9789	.9784	.9778
35	83.95	17.5	14.20	.9784	.9779	.9773
36	83.50	18.0	14.61	.9779	.9773	.9767
37	83.06	18.5	15.03	.9774	.9768	.9761
38	82.61	19.0	15.44	.9769	.9763	.9756
39	82.16	19.5	15.85	.9764	.9757	.9750
40	81.72	20.0	16.27	.9759	.9752	.9744
41	81.27	20.5	16.68	.9754	.9747	.9739
42	80.82	21.0	17.10	.9749	.9741	.9733
43	80.38	21.5	17.52	.9744	.9736	.9727
44	79.93	22.0	17.93	.9739	.9731	.9721

^{*}The parts by volume of water and the parts by volume of ethyl alcohol do not add to unity (100) at any one proof reading, because of the shrinkage in volume which occurs when ethyl alcohol and water are mixed. The parts by volume of ethyl alcohol are the same as percent by volume of ethyl alcohol used to determine proof for tax purposes. Ethyl alcohol proof, by legal definition, is twice the percent by volume.

Table 6.36: (continued)

U.S. PROOF degrees at 60°F	PARTS	BY VOLUME* OF	WEIGHT %		ECIFIC GRAVITY	
	WATER	ETHYL ALCOHOL	ALCOHOL	at 60°/60°F (15.56°/15.56°C)	at 68°/68°F (20°/20°C)	at 77°/77°F (25°/25°C)
45	79.48	22.5	18.35	.9734	.9725	.9715
46	79.03	23.0	18.77	.9729	.9720	.9710
47	78.58	23.5	19.19	.9724	.9714	.9704
48	78.14	24.0	19.60	.9718	.9708	.9698
49	77 69	24.5	20.02	.9713	.9703	.9692
50	77.24	25.0	20.44	.9708	.9697	.9686
51	76.79	25.5	20.86	.9703	.9691	.9679
52	76.34	26.0	21.28	.9697	.9686	.9673
53	75.89	26.5	21.71	.9692	.9680	.9667
54	75.44	27.0	22.13	.9687	.9674	.9661
55	74.98	27.5	22.55	.9681	.9668	.9654
56	74.53	28.0	22.97	.9676	.9662	.9648
57	74.08	28.5	23.40	.9670	.9656	.9642
58	73.62	29.0	23.82	.9664	.9650	.9635
59	73.17	29.5	24.24	.9659	.9644	.9629
60	72.72	30.0	24.67	.9653	.9638	.9622
61	72.26	30.5	25.10	.9647	.9632	.9616
62	71.81	31.0	25.52	.9641	.9626	.9609
63	71.35	31.5	25.95	.9635	.9619	.9602
64	70.89	32.0	26.38	.9629	.9613	.9595
65	70.13	32.5	26.81	.9623	9606	.9588
66	66.97	33.0	27.24	.9616	.9599	.9581
67	69.51	33.5	27.67	.9610	.9593	.9574
68	69.05	34.0	28.10	.9604	.9586	.9567
69	68.59	34.5	28.54	.9597	.9579	.9559
70	68.12	35.0	28.97	.9590	.9572	.9552
71	67.66	35.5	29.41	.9584	.9565	.9544
72	67.19	36.0	29.84	.9576	.9557	.9537
73	66.72	36.5	30.28	.9570	.9550	.9529
74	66.25	37.0	30.72	.9562	.9542	.9521
75	65.78	37.5	31.16	.9555	.9535	.9513
76	65.31	38.0	31.60	.9548	.9527	.9505
77	64.84	38.5	32.04	.9540	.9519	.9497
78	64.37	39.0	32.48	.9533	.9512	.9489
79	63.90	39.5	32.92	.9525	.9504	.9481
80	63.42	40.0	33.36	.9517	.9496	.9473
81	62.95	40.5	33.81	.9509	.9488	.9464
82	62.47	41.0	34.25	.9501	.9479	.9456
83	61.99	41.5	34.70	.9493	.9471	.9447

^{*}The parts by volume of water and the parts by volume of ethyl alcohol do not add to unity (100) at any one proof reading, because of the shrinkage in volume which occurs when ethyl alcohol and water are mixed. The parts by volume of ethyl alcohol are the same as percent by volume of ethyl alcohol used to determine proof for tax purposes. Ethyl alcohol proof, by legal definition, is twice the percent by volume.

Table 6.36: (continued)

U.S. PROOF	PARTS	BY VOLUME* OF	WEIGHT %	SPECIFIC GRAVITY					
degrees at 60°F	WATER	ETHYL ALCOHOL	ALCOHOL	at 60°/60°F (15.56°/15.56°C)	at 68°/68°F (20°/20°C)	at 77°/77°F (25°/25°C)			
84	61.52	42.0	35.15	.9485	.9463	.9439			
8 5	61.04	42.5	35.60	.9477	.9454	.9430			
86	60.56	43.0	36.05	.9469	9446	.9421			
87	60.08	43.5	36.50	.9460	.9437	.9412			
88	59.59	44.0	36.96	.9452	.9428	.9403			
89	59.11	44.5	37.41	.9443	.9419	.9394			
90	58.63	45.0	37.86	.9434	.9410	.9385			
91	58.14	45.5	38.32	.9426	.9402	.9376			
92	57.66	46.0	38.78	.9417	.9292	.9366			
93	57.17	46.5	39.24	.9408	.9383	.9357			
94	56.68	47.0	39.70	.9399	.9374	.9348			
95	56.19	47.5	40.16	.9389	.9364	.9338			
96	55.70	48.0	40.62	.9380	.9355	.9328			
97	55.21	48.5	41.09	.9371	.9345	.9319			
98	54.72	49.0	41.55	.9361	.9336	.9309			
99	54.22	49.5	42.02	.9352	.9326	.9299			
100	53.73	50.0	42.49	.9342	.9316	.9289			
101	53.24	50.5	42.96	.9332	.9306	.9279			
102	52.74	51.0	43.43	.9322	.9296	.9269			
103	52.25	51.5	43.90	.9312	.9286	.9258			
104	51.75	52.0	44.37	.9302	.9276	.9248			
105	51.25	52.5	44.85	.9292	.9266	.9238			
106	50.75	53.0	45.33	.9282	.9256	.9228			
107	50.26	53.5	45.80	.9272	.9245	.9217			
108	49.76	54.0	46.28	.9262	.9235	.9207			
109	49.26	54.5	46.76	.9252	.9225	.9196			
110	48.76	55.0	47.24	.9241	.9214	.9185			
111	48.25	55.5	47.73	.9230	.9204	.9175			
112	47.75	56.0	48.21	.9220	.9193	.9164			
113	47.25	56.5	48.70	.9210	.9182	.9153			
114	46.75	57.0	49.19	.9199	.9171	.9142			
115	46.24	57.5	49.68	.9188	.9161	.9131			
116	45.74	58.0	50.17	.9177	.9150	.9120			
117	45.23	58.5	50.66	.9166	.9139	.9109			
118	44.72	59.0	51.15	.9156	.9128	.9098			
119	44.22	59.5	51.65	.9144	.9116	.9087			
120	43.71	60.0	52.15	.9133	.9105	.9076			
121	43.20	60.5	52.65	.9122	.9094	.9064			
122	42.69	61.0	53.15	.9111	.9083	.9053			

^{*}The parts by volume of water and the parts by volume of ethyl alcohol do not add to unity (100) at any one proof reading, because of the shrinkage in volume which occurs when ethyl alcohol and water are mixed. The parts by volume of ethyl alcohol are the same as percent by volume of ethyl alcohol used to determine proof for tax purposes. Ethyl alcohol proof, by legal definition, is twice the percent by volume.

Table 6.36: (continued)

U.S. PROOF	PARTS	BY VOLUME* OF	WEIGHT %	SPE			
degrees at 60 F	WATER	ETHYL ALCOHOL	ETHYL ALCOHOL	at 60°/60°F (15.56°/15.56°C)	at 68°/68°F (20°/20°C)	at 77°/77°F (25°/25°C)	
123	42.18	61.5	53.65	.9100	.9071	.9041	
124	41.67	62.0	54.15	.9088	.9060	.9030	
125	41.16	62.5	54.66 .9077 .9048		.9018		
126	40.65	63.0	55.16	.9065	.9037	.9006	
127	40.14	63.5	55.67	.9054	.9025	.8995	
128	39.62	64.0	56.18	.9042	.9014	.8983	
129	39.11	64.5	56.70	.9031	.9002	.8971	
130	38.60	65.0	57.21	.9019	.8990	.8959	
131	38.08	65.5	57.72	.9007	.8978	.8948	
132	37.57	66.0	58.24	.8996	.8966	.8936	
133	37.05	66.5	58.76	.8984	.8954	.8924	
134	36.54	67.0	59.28	.8972	.8942	.8912	
135	36.02	67.5	59.80	.8960	.8930	8899	
136	35.50	68.0	60.32	.8948	.8918	.8887	
137	34.99	68.5	60.85	.8936	.8906	.8875	
138	34.47	69.0	61.38	.8923	.8894	.8862	
139	33.95	69.5	61.91	.8911	.8882	.8850	
140	33.43	70.0	62.44	.8899	.8869	.8838	
141	32.91	70.5	62.98	.8886	.8856	.8825	
142	32.38	71.0	63.51 .8874 .88		.8844	.8812	
143	31.86	71.5	64.05	.8861	.8831	.8800	
144	31.34	72.0	64.59	.8848	.8819	.8787	
145	30.82	72.5	65.13	.8836	.8806	.8774	
146	30.29	73.0	65.67	.8823	.8793	.8761	
147	29.76	73.5	66.22	.8810	.8780	.8748	
148	29.24	74.0	66.77	.8797	.8767	.8735	
149	28.71	74.5	67.32	.8784	.8754	.8722	
150	28.19	75.0	67.87	.8771	.8741	.8709	
151	27.66	75.5	68.43	.8758	.8728	.8696	
152	27.13	76.0	68.98	.8745	.8715	.8682	
153	26.60	76.5	69.54	.8732	.8702	.8669	
154	26.07	77.0	70.10	.8718	.8688	.8655	
155	25.54	77.5	70.67	70.67 .8705 .8		.8642	
156	25.01	78.0	71.23	.8691	.8661	.8628	
157	24.47	78.5	71.80	.8678 .8647		.8614	
158	23.94	79.0	72.38	.8664	.8633	.8600	
159	23.40	79.5	72.95	.8650	.8620	.8586	
160	22.87	80.0	73.53	.8636	.8606	.8572	
161	22.33	80.5	74.11	.8622	.8592	.8558	

^{*}The parts by volume of water and the parts by volume of ethyl alcohol do not add to unity (100) at any one proof reading, because of the shrinkage in volume which occurs when ethyl alcohol and water are mixed. The parts by volume of ethyl alcohol are the same as percent by volume of ethyl alcohol used to determine proof for tax purposes. Ethyl alcohol proof, by legal definition, is twice the percent by volume.

Table 6.36: (continued)

U.S. PROOF	PARTS	BY VOLUME* OF	WEIGHT %	SPECIFIC GRAVITY					
degrees at 60°F	WATER	ETHYL ALCOHOL	ETHYL ALCOHOL	at 60°/60°F (15.56°/15.56°C)	at 68°/68°F (20°/20°C)	at 77°/77°F (25°/25°C)			
162	21.80	81.0	74.69	.8608	.8577	.8544			
163	21.26	81.5	75.27	.8594	.8563	.8530			
164	20.72	82.0	75.86	.8580	. 854 9	.8516			
165	20.18	82.5	76.45	.8566	. 853 5	.8501			
166	19.64	83.0	77.04	.8552	.8520	.8487			
167	19.10	83.5	77.64	.8537	.8506	.8472			
168	18.55	84.0	78.23	.8522	.8491	.8458			
169	18.01	84.5	78.84	.8508	.8476	.8443			
170	17.46	85.0	79.44	.8493	.8461	.8428			
171	16.92	85.5	80.05	.8478	.8446	.8413			
172	16.37	86.0	80.66	.8462	.8431	.8398			
173	15.82	86.5	81.28	.8447	.8416	.8382			
174	15.27	87.0	81.90	.8432	.8400	.8367			
175	14.72	87.5	82.52	.8416	.8385	.8351			
176	14.16	88.0	83.14	.8401	.8369	.8335			
177	13.61	88.5	83.78	.8385	.8353	.8319			
178	13.05	89.0	84.41	.8369	.8337	.8303			
179	12.49	89.5	85.05	.8353	.8321	.8287			
180	11.93	90.0	85.69	.8336	.8305	.8271			
181	11.37	90.5	86.34	.8320	.8288	.8254			
182	10.80	91.0	86.99	.8303	.8271	.8237			
183	10.24	91.5	87.65	.8286	.8254	.8220			
184	9.67	92.0	88.31	.8268	.8237	.8203			
185	9.09	92.5	88.98	.8251	.8219	.8185			
186	8.52	93.0	89.65	.8233	.8201	.8167			
187	7.94	93.5	90.34	.8215	.8183	.8149			
188	7.36	94.0	91.02	.8196	.8164	.8130			
189	6.77	94.5	91.72	.8178	.8146	.8111			
190	6.18	95.0	92.42	.8158	.8126	.8092			
191	5.59	95.5	93.14	.8138	.8107	.8072			
192	4.99	96.0	93.85	.8118	.8087	.8052			
193	4.39	96.5	94.58	.8098	.8066	.8032			
194	3.78	97.0	95.32	.8077	.8045	.8011			
195	3.17	97.5	96.07	.8056	.8024	.7990			
196	2.55	98.0	96.82	.8033	.8002	.7968			
197	1.93	98.5	97.60	.8010	.7978	.7944			
198	1.29	99.0	98.38	.7987	.7955	.7921			
199	.65	99.5	99.19	.7962	.7930	.7896			
200	.00	100.0	100.00	.7936	.7905	.7871			

U.S. Department of Commerce, STANDARD DENSITY AND VOLUMETRIC TABLES, CIRCULAR OF THE BUREAU OF STANDARDS NO. 19 (Washington: U.S. Government Printing Office, 1924) pp. 8, 9 & 18

U.S. Treasury Department, GAUGING MANUAL EMBRACING INSTRUCTIONS AND TABLES FOR DETERMINING THE QUANTITY OF DISTILLED SPIRITS BY PROOF AND WEIGHT (Washington: U.S. Government Printing Office, 1970).

Specific Gravity at 20°/20°C and 25°/20°C from Table 52 003, OFFICIAL METHODS OF ANALYSIS OF THE ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS, Twelfth Edition, 1975.

The parts by volume of water and the parts by volume of ethyl alcohol do not add to unity (100) at any one proof reading, because of the shrinkage in volume which occurs when ethyl alcohol and water are mixed. The parts by volume of ethyl alcohol are the same as percent by volume of ethyl alcohol used to determine proof for tax purposes. Ethyl alcohol proof, by legal definition, is twice the percent by volume.

AUTHORIZED COMPOSITION:

	SDA 1-1 (1) 4 1/8			SDA 1-2 ⁽²⁾ 4 1			SDA 2B-1				Test Method		
To every 100 gallons of alcohol add: Methyl Alcohol, gallons Denatonium Benzoate, N.F. avdp. oz. Methyl Isobutyl Ketone. gallons Benzene, gallons Rubber Hydrocarbon Solvent. gailons Toluene, gallons Metallic Sodium, pounds							 0.5 						
FORMULATION:	190 Min. Max.		Anhydrous Min. Max.		190° Min. Max.		Anhydrous Min. Max.		190° Min. Max.		Anhydrous Min. Max.		
SPECIFICATIONS: Specific gravity @ 15.56°C/15.56°C (60°F, 60°F) @ 20°C 20°C @ 25°C 25°C Acidity, wt/wt% as acetic acid Non-volatile matter, grams 100 ml Color, Pt-Co Water content, vol/vol % Odor	0.8144 0.8113 0.8078	0.8156 0.8124 0.8090 0.0025 0.0025 10	0.7934 0.7902 0.7868 — — — ical	0.7944 0.7912 0.7879 0.0025 0.0025 10 0.10	0.8142 0.8111 0.8076 — — —	0.8154 0.8122 0.8088 0.0025 0.0025 10 —	0.7934 0.7902 0.7868 — — —	0.7944 0.7912 0.7879 0.0025 0.0025 10 0.10	0.8154 0.8122 0.8088 	0.8166 0.8134 0.8100 0.0025 0.0025 10	0.7939 0.7908 0.7874 — — —	0.7949 0.7918 0.7884 0.0025 0.0025 10 0.10	ASTM D-1613
TYPICAL PROPERTIES: Apparent proof at 60°F Composition w/wt% Ethyl Alcohol Methyl Alcohol Denatonium Benzoate Methyl Isobutyl Ketone Benzene Rubber Hydrocarbon Solvent Toluene Metallic sodium Water Coefficient of expansion Per 1°C Per 1°F Flash point	190.4 88.95 3.76 0.001 — — — — — — 7.29 0.0010 0.0006		199 9 96 14 3 86 0 001 — — — — — 0 0011 0 0006		190.5 88.12 3.72 — 0.94 — — — 7.22 0.0010 0.0006		95.22 3.82 	189.9 91.92 — — 0.54 — — 7,54 0.0010 0.0006		199.7 99.45 — — 0.55 — — — 0.0010 0.0006		I.R.S. Gauging Manual	
Tag closed cup C Tag open cup C F: Pounds per gallon @ 60 F. per 27 CFR 212.115 Shipping containers Tank cars Tank trucks Drums Pails	13 12 53 23 22 73 6 788 6 6 612		14 11 52 18 16 65 6.788 6.611 3		18		12 54 16 60 6.	612	ASTM D-56 ASTM D-1310				

Comments:

^{1.} Wood alcohol is an authorized denaturant for SDA 1 (27 CFR 212.16) but it is of no present commercial importance.

^{2.} This formula must be used in a closed end continuous system unless it is shown that it is not practical to do so.

^{3.} Determined by U.S.I.

^{4. 27} CFR 212.18 authorizes the use of one-half gallon rubber hydrocarbon solvent or toluene in lieu of benzene. Metallic sodium in excess of 33 pounds is also authorized. SDA 2C is only supplied in the anhydrous formulation. It must be used in a closed and continuous system unless it is shown that it is not practical to do so.

Table 6.37: (continued)

AUTHORIZED COMPOSITION:

SDA 2B-2(2)		SDA 2B-3(2)		304	SDA 2C-1 (4) SDA 3A				Test Method					
oz. — — — — — — — — — — — — — — — — — — —			0.5											
19 M in.	0° Max.	Anhy Min.	drous Max.	19 M in.	90° Max.	Anhy Min.	drous Max.	Anhy Min.	drous Max.	19 M in.	00° Max.	Anhy Min.	drous Max.	
0 8144 0 8113 0 8078	0.8156 0.8124 0.8090 0.0025 0.0025 10 	0.7926 0.7895 0.7862 lcal	0.7936 0.7905 0.7871 0.0025 0.0025 10 0.10	0.8154 0.8122 0.8088 — — —	0.8166 0.8134 0.8100 0.0025 0.0025 10 	0.7936 0.7905 0.7871 — — ———————————————————————————————	0.7946 0.7915 0.7882 0.0025 0.0025 10 0.10			0.8144 0.8113 0.8078 — — —	0.8156 0.8124 0.8090 0.0025 0.0025 10	0.7934 0.7902 0.7869 — — —	0.7944 0.7912 0.7879 0.0025 0.0025 10 0.10	ASTM D-891 ASTM D-1613 ASTM D-1353 ASTM D-1209 ASTM D-1364 Organoleptic
92.	03 42 55	99	56 	91 0 7	93 53 54	0	45 55 0011	0	.0010	88 4 7	12 65 23	95	22 78 — — — — — — — —	I.R S. Gauging Manual
16 60		56 13 55		16 61 21 69 6		57 19 66	613 ⁻³¹	60 6 N	.959 lo	60 48 65		16 60		ASTM D-56 ASTM D-1310
	190. 92. 1559	190° Min. Max. 0.8144 0.8156 0.8113 0.8124 0.8078 0.8090	190° Max. Min. 0 8144 0 8156 0 7926 0 8113 0 8124 0 7895 0 .7862 0 .7862 0 .7862 0 .79662 0 .7862 0 .7862 0 .79662 0 .7862 0	190° Min. Max. Min. Max. 0 8144 0 8156 0.7926 0.7936 0 8113 0.8124 0.7895 0.7905 0.70	190° Anhydrous Min. Max. Min. Max. Min. Max. Min. Max. Min. Min. Max. Min. Mi	190° Anhydrous 190° Min. Max. Min. Max. Min. Max. Min. Max.	190° Anhydrous 190° Anhydrous Min. Max. Min. Min. Max. Min. Min. Min. Min. Max. Min. Min. Min. Min. Min. Min. Min. Min. Max. Min. 190° Anhydrous 190° Anhydrous Min. Max. Min. Min. Min. Max. Min. 190° Anhydrous 190° Anhydrous Min. Max. Min. Min. Max. Min. Min.	190° Anhydrous 190° Anhydrous Min. Max. Min. Min. Max. Min. Max. Min. Max. Min. Max.	190	No. No.	190° Anhydrous 190° Anhydrous Min. Max. Min.	190° Anhydrous 190° Min. Max. Mi		

^{1.} Wood alcohol is an authorized denaturant for SDA 1 (27 CFR 212.16) but it is of no present commercial importance

² This formula must be used in a closed end continuous system unless it is shown that it is not practical to do so

^{3.} Determined by U.S.I.

^{4. 27} CFR 212 18 authorizes the use of one-half gallon rubber hydrocarbon solvent or toluene in lieu of benzene. Metallic sodium in excess of 33 pounds is also authorized. SDA 2C is only supplied in the anhydrous formulation. It must be used in a closed and continuous system unless it is shown that it is not practical to do so.

Table 6.37: (continued)

	SDA 4 ⁽³⁾	SDA	√ 6B	SDA 1	2A-1	Test Method
To every 100 gallons of alcohol add: Nicotine, solution ⁽²⁾ gallons Pyridine Bases, gallons Benzene, gallons Rubber Hydrocarbon Solvent, gallons Toluene, gallons Ethyl Ether, gallons	1 - - - -	0		5		
FORMULATION:	190° Min. Max.	190 ¹ Min. Max.	Anhydrous Min. Max.	190° Min. Max.	Anhydrous Min. Max.	
SPECIFICATIONS: Specific gravity @ 15.56°C/15.56°C (60°F 60°F)	0.8181 0.8193 0.8149 0.8161 0.8115 0.8126 0.0025 0.01 Blue Typical	0.0025 30 	0.7939 0.7949 0.7907 0.7918 0.7873 0.7884 bline	0.8183 0.8194 0.8151 0.8162 0.8117 0.8128 — 0.0025 — 0.0025 — 10 — Typ	0.7972 0.7986 0.7940 0.7955 0.7907 0.7921 0.0025 10 0.10	ASTM D-891 ASTM D-1613 ASTM D-1353 ASTM D-1209 ASTM D-1364 Organoleptic
TYPICAL PROPERTIES: Apparent proof at 60°F Composition, w/,wt% Ethyl Alcohol Nicotine Methylene Blue Pyridine Bases Benzene Rubber Hydrocarbon Solvent Toluene Ethyl Ether Water Coefficient of expansion Per 1°C Per 1°F Flash point Tag closed cup C° F° Tag open cup C° F° Pounds per gallon @ 60°F. per 27 CFR 212 115 Shipping containers Tank cars Tank trucks Drums	188.5 91.30 0.024 0.0003 8.68 0.0010 0.0006 17 63 18 65 6.823	189 6 91.88 0.59 7.53 0.0010 0.0006 18 64 18 65 6 801	199.7 99.38 — — 0.62 — — — 0.0010 0.0006 17 62 16 60 6.618	188.4 87.69 5.12 7.19 0.0011 0.0006 6 42 10 50 6.820	198 3 94.73 ————————————————————————————————————	I.R.S. Gauging Manual ASTM D-56 ASTM D-1310

^{1.} SDA 3B, prepared by the addition of one gallon pine tar N F, to every 100 gallons alcohol, is an ATF authorized formulation. Because of very limited use, it is not discussed in this book.

² Nicotine Solution Composition: Five gallons of an aqueous solution containing 40 percent nicotine and 3.6 avi ounces of methylene blue N.F., plus sufficient water to make 100 gallons.

^{3.} Available in 190 formulation only.

^{4.} Determined by U.S.I.

^{5.} SDA 17, prepared by the addition of 0.05 gallon (6.4 fluid ounces) of bone oil (Dipple's Oil) to every 100 gallons alcohol, is an ATF authorized formulation. Because of very limited use it is not discussed in this book.

Table 6.37: (continued)

AUTHORIZED COMPOSITION:

	SDA 1	2A-3	SDA	13A	Test Method
To every 100 gallons of alcohol add: Nicotine, solution ¹² , gallons Pyridine Bases, gallons Benzene, gallons Rubber Hydrocarbon Solvent, gallons Toluene, gallons Ethyl Ether, gallons	- - - - - - -	6	-		
FORMULATION:	190° Min. Ma x.	Anhydrous Min. Max.	190° Min. Max.	Anhydrous Min. Max.	
SPECIFICATIONS: Specific gravity @ 15.56°C/15.56°C (60°F/60°F) @ 20°C/20°C @ 25°C/25°C Acidity, wt/wt% as acetic acid Non-volatile matter, grams/100 ml Color, Pt-Co Water content, vol/vol % Odor	0.8077 0.8189 0.8146 0.8157 0.8111 0.8123 	0.7972 0.7986 0.7940 0.7955 0.7907 0.7921 0.0025 10 0.10 cical	0.8087 0.8100 0.8056 0.8068 0.8022 0.8034 0.0025 10 Tyl	0.7883	ASTM D-891 ASTM D-1613 ASTM D-1353 ASTM D-1209 ASTM D-1364 Organoleptic
TYPICAL PROPERTIES: Apparent proof at 60°F Composition, wi/wt% Ethyl Alcohol Nicotine Methylene Blue Pyridine Bases Benzene Rubber Hydrocarbon Solvent Toluene Ethyl Ether Water Coefficient of expansion Per 1°C Per 1°F Flash point Tag closed cup C F° Tag open cup C° F° Pounds per gallon @ 60°F, per 27 CFR 212 115 Shipping containers Tank cars Tank trucks Drums	188.7 87.74 5.07 7.19 0.0011 0.0006 11 52 18 65 6.815 ⁴	198.3 94.78 	193.2 85.07 — — — 7.92 7.01 0.0011 0.0006 -14 6 -12 10 6.740	200 91.81 8.15 0.04 0.0012 0.0006 -16 4 -12 10 6.572	I.R.S. Gauging Manual ASTM D-56 ASTM D-1310

- 1. SDA 3B, prepared by the addition of one gallon pine tar N.F. to every 100 gallons alcohol, is an ATF authorized formulation. Because of very limited use, it is not discussed in
- 2 Nicotine Solution Composition. Five gailons of an aqueous solution containing 40 percent nicotine and 3 6 avi ounces of methylene blue N.F., plus sufficient water to make 100 gallons.
- 3. Available in 190° formulation only.
- 4. Determined by U.S.I.
- 5. SDA 17, prepared by the addition of 0.05 gallon (6.4 fluid ounces) of bone oil (Dipple's Oil) to every 100 gallons alcohol, is an ATF authorized formulation. Because of very limited use it is not discussed in this book.

Table 6.37: (continued)

	SDA	20 ⁽³⁾	SDA	22(4)		SDA	23A		Test Method
To every 100 gallons of alcohol add: Chloroform, gallons Formaldehyde, Solution U.S.P., gallons Acetone, N.F., gallons Salicylic Acid, N.F., pounds Resorcin, U.S.P. pounds Bergamot Oil, N.F., gallons Methyl Isobutyl Ketone, gallons	5 		10 			- - - - -	B 		
FORMULATION:	Anhy Minimum	drous Maximum	19 M inimum	90° Maximum	1: Minimum	90° Maximum	Anhy Minimum	drous Maximum	
SPECIFICATIONS: Specific gravity @ 15.56°C:15.56°C (60°F 60°F) @ 20°C:20°C @ 25°C:25°C Acidity. wt:wt% as acetic acid Non-volatile matter. grams:100 ml Color, Pt-Co Water content, vol·vol % Odor	0.8265 0.8233 0.8199 Typ	0.8282 0.8251 0.8216 0.0050 0.0025 10 0.10	0.8444 0.8413 0.8379 — — — —	0.8462 0.8431 0.8398 0.010 0.0025 10	0 8144 0 8113 0 8078 	0.8156 0.8124 0.8090 0.0025 0.0025 10	0 7939 0 7908 0 7974 ———————————————————————————————————	0.7949 0.7918 0.7884 0.0025 0.0025 10 0.10	ASTM D-891 ASTM D-1613 ASTM D-1353 ASTM D-1209 ASTM D-1364 Organoleptic
TYPICAL PROPERTIES: Apparent proof at 60 °F Composition, wt. wt° c Ethyl Alcohol Chloroform Formaldehyde Acetone Salicylic Acid Resorcin Bergamot Oil Methyl Isobutyl Ketone Water Coefficient of expansion Per 1 °C Per 1 °F	-	50	1.42-M 12 0	.50 37 tethanol	7		7		I.R.S. Gauging Manual
Flash point Tag closed cup C F Tag open cup C F Pounds per gallon @ 60 F. per 27 CFR 212 115 Shipping containers Tank cars	,	886 Io		037 No	6 43 16 60 6		4 40 16 60 6		ASTM D-1310
Tank trucks Drums Pails		10 • •		10 V			v v		

- 1 SDA 18, prepared by the addition of 100 gallons of vinegar of not less than 90-grain strength or 150 gallons of vinegar of not less than 60-grain strength to every 100 gallons of alcohol is an authorized formula. It is not discussed in this book because of limited commercial importance
- 2 SDA 19 prepared by the addition of 100 gallons of ethyl ether to every 100 gallons of alcohol is an authorized formula. Because of very limited use it is not discussed in this book.
- 3. Available in anhydrous formulation only
- 4 The 190 formulation is typically used
- 5 27 CFR 212.31 also authorizes the use of 1 gallon bay oil N.F., in lieu of the 1 gallon bergamot oil N.F.

		SDA 2	3F-1 ⁽⁵⁾			SDA	23H		Test Method
To every 100 gallons of alcohol add Chloroform, gallons Formaldehyde, Solution U.S.P., gallons Acetone, N.F., gallons Salicylic Acid. N.F., pounds Resorcin, U.S.P. pounds Bergamot Oil, N.F., gallons Methyl Isobutyl Ketone, gallons	3 1 1 1 -					8 - - -	.5		
FORMULATION:	19 Minimum	90° Maximum	Anhy Minimum	drous Maximum	1 Minimum	90° Maximum	Anhy Minimum	rdrous Maximum	
SPECIFICATIONS: Specific gravity @ 15 56 C 15 56 C (60 F 60 F)		0 8204 0 8172 0 8138 0 20 .A Green		0 7979 0.7948 0.7914 0.20 0.40 Green 0.40	0 8140 0 8109 0 8074 — — — —	0 8152 0 8120 0 8086 0 0025 0 0025 10	0 7942 0 7910 0 7876 — — — — —	0.7952 0.7920 0.7886 0.0025 0.0025 10 0.10	ASTM D-891 ASTM D-1613 ASTM D-1353 ASTM D-1209 ASTM D-1364 Organoleptic
TYPICAL PROPERTIES: Apparent proof at 60 F Composition, wt wto Ethyl Alcohol Chloroform Formaldehyde Abetone Salicylic Acid Resorcin Bergamot Oil Methyl Isobutyl Ketone Water Coefficient of expansion Per 1 C Per 1 F	0 0 1 7 7 0 0		0 0 1	6 26 	7 1 6	.58 	7	.6 29	I.R.S. Gauging Manual
Flash point Tag closed cup C F Tag open cup C F Pounds per gallon @ 60 F per 27 CFR 212 115 Shipping containers	16 60 18 65 6	808	13 56 18 65 6		6 43 10 50	1	2 36 2 35 6	i !	ASTM D-56 ASTM D-1310
Tank cars Tank trucks Drums Pails	No No No , —Polyethylene lined					\ \ \			

- t SDA 18 prepared by the addition of 100 gallons of vinegar of not ress than 90-grain strength or 150 gailons of vinegar of not less than 60-grain strength to every 100 gallons of alcohol is an authorized formula. It is not discussed in this book because of limited commercial importance.
- 2 SDA 19 prepared by the addition of 100 gallons of ethyl ether to every 100 gallons of alcohol is an authorized formula. Because of very limited use it is not discussed in this book.
- 3. Available in anhydrous formulation only.
- 4 The 190 formulation is typically used
- 5 27 CFR 212 31 also authorizes the use of 1 gallon bay oil N.F. in lieu of the 1 gallon bergamet 5/l N.F.

Table 6.37: (continued)

	SDA 2	5-1 (1)	SDA 2	25-2 ⁽¹⁾	SDA	25A-1 (1)	SDA 2	5A-2 (1)	Test Method
To every 100 gallons of alcohol add: lodine, U.S.P., pounds Potassium lodide, U.S.P., pounds Sodium lodide, U.S.P., pounds Water, pounds Rosemary Oil, N.F., gallons Camphor, U.S.P., pounds Clove Oil, U.S.P., gallons Lavender Oil, U.S.P., gallons Medicinal Soft Soap, U.S.P. pounds:21	20 15 		20 — 15 — — — — —		20 15 15 		20 		
FORMULATION:	19 Minimum)° Maximum	190° Minimum Maximum		190° Minimum Maximum		190° Minimum Maximum		•
SPECIFICATIONS: Specific gravity @ 15.56°C/15.56°C (60°F/60°F) @ 20°C/20°C @ 25°C/25°C Acidity, wt/wt% as acetic acid	0.8491 0.8460 0.8426	0.8521 0.8490 0.8456	0.8494 0.8463 0.8429	0.8523 0.8492 0.8459	0.8535 0.8504 0.8471	0.8564 0.8533 0.8500	0.8541 0.8510 0.8476	0.8571 0.8539 0.8506	ASTM D-891
Non-volatile matter, grams/100 ml Color, Pt-Co Water content, vol/vol % Odor	— — — — — — — — — — — — — — — — — — —		Deep Red-Brown Typical		Deep Red-Brown Typical		Deep Red-Brown Typical		ASTM D-1353 ASTM D-1209 ASTM D-1364 Organoleptic
TYPICAL PROPERTIES: Apparent proof at 60°F Composition, wt/wt%	169.1	169.1		9	166	5.1	165.7		I.R.S. Gauging Manual
Ethyl Alcohol Iodine Potassium Iodide Sodium Iodide	87.9 2.8 2.1	0 0	87.90 2.80 — 2.10		86.09 2.74 2.06		86.09 2.74 — 2.06		
Rosemary Oil Camphor Clove Oil Lavender Oil		-			_ _ _ _		=		
Soft Soap Water Coefficient of expansion Per 1 C		0 0010	0.	20 0010	9.11		9.11 0.0010		
Per 1°F Flash Point Tag closed cup	0.0006		0.	0006	16	0.0006	16	.0006	ASTM D-56
Tag open cup	60 18 65		60 18		16 65	3	60		ASTM D-1310
Pounds per gallon @ 60°F, per 27 CFR 212.115 Shipping containers Tank cars Tank trucks	65 7.080 No No		65 7.083 No		7.119 No		65 7.117 No		
Drums Pails		n, polyethylene	No Interpretation in the Property No No Interpretation in the Property No		No 50 gallon, polyethylene No		e returnable dr	No ums only No	

^{1.} These SDA's typically supplied only in the 190° formulation

^{2.} The requirements of this formula may be met by adding 66.5 pounds of U.S.P. quality soap concentrate containing 25 percent water to 100 gallons of alcohol and, after mixing, by adding thereto 33.5 pounds of water and mixing again.

	SDA	A 27	SDA 27A(1)	SDA 278 (1)	Test Method
To every 100 gallons of alcohol add: lodine, U.S.P., pounds Potassium lodide, U.S.P., pounds Sodium lodide, U.S.P., pounds Water, pounds Rosemary Oil, N.F., gallons Camphor, U.S.P., pounds Clove Oil, U.S.P., gallons Lavender Oil, U.S.P., gallons Medicinal Soft Soap, U.S.P. pounds ¹²¹	 1 30 		 35 1		
FORMULATION:	190° Anhydrous Minimum Maximum Minimum Maximum		190° Minimum Maximum	190° Minimum Maximum	
SPECIFICATIONS: Specific gravity @ 15.56°C/15.56°C (60°F-60°F) @ 20°C/20°C @ 25°C/25°C Acidity, wt/wt% as acetic acid Non-volatile matter, grams/100 ml Color, Pt-Co Water content, vol/vol % Odor	0.8202 0.8240 0.8170 0.8207 0.8136 0.8172 	0.7996 0.8020 0.7964 0.7988 0.7930 0.7954 — 0.010 — N/A — 40 — 0.10	0.8238	0.8408	ASTM D-891 ASTM D-1613 ASTM D-1353 ASTM D-1269 ASTM D-1364 Organoleptic
TYPICAL PROPERTIES: Apparent proof at 60°F Composition, w/iwt°o Ethyl Alcohol lodine Potassium lodide Sodium lodide Rosemary Oil Camphor Clove Oil Lavender Oil Soft Soap Water Coefficient of expansion Per 1°C Per 1°F Fish Point Tag closed cup C° F° Tag open cup C° F°	186.7 87.58 — — 1 06 4.18 — — 7.18 0.0010 0.0006	197.1 94.62 1.08 4.30 0.0010 0.0006	185.2 86.83 4.84 1.21 7.12 0.0010 0.0006	174 2 79.79 0.96 6.35 12.90 0.0010 0.0006	I.R.S. Gauging Manual ASTM D-56 ASTM D-1310
Pounds per gallon @ 60°F, per 27 CFR 212.115 Shipping containers Tank cars Tank trucks Drums Pails	N.	6.670 do do //	6.867 No No X X	7.027 No No V	

X = resin lined containers only.

¹ These SDA's typically supplied only in the 190° formulation

² The requirements of this formula may be met by adding 66.5 pounds of U.S.P. quality soap concentrate containing 25 percent water to 100 gallons of alcohol and, after mixing, by adding thereto 33.5 pounds of water and mixing again.

Table 6.37: (continued)

	SDA	28A ⁽¹⁾		SDA	29-3 ^{ca}		SD/	N 30	Test Method
To every 100 gallons of alcohol add: Gasoline, gallons Ethyl Acetate, gallons Methyl Alcohol, gallons Ethyl Ether, gallons	1 - -		1 - -				<u></u>		
FORMULATION:	Anhy Minimum	drous Maximum	1! Minimum	90° Maximum	Anhy Minimum	drous Maximum	19 Minimum	0° Maximum	
SPECIFICATIONS: Specific gravity @ 15.56°C/15.56°C (60°F/60°F) @ 20°C/20°C @ 25°C/25°C Acidity, wt/wt% as acetic acid Non-volatile matter, grams/100 ml Color, Pt-Co Water content, vol/vol % Odor	0.7923 0.7891 0.7857 — — — —	0.7933 0.7901 0.7867 0.0025 0.0025 10 0.20	0.8160 0.8128 0.8094 — — —	0.8172 0.8140 0.8105 0.0025 0.0025 10 —	0.7944 0.7912 0.7879 — — — — —	0.7954 0.7922 0.7889 0.0025 0.0025 10 0.10	0.8132 0.8101 0.8066 — — —	0.8146 0.8115 0.8080 0.0025 0.0025 10	ASTM D-891 ASTM D-1613 ASTM D-1353 ASTM D-1209 ASTM D-1364 Organoleptic
TYPICAL PROPERTIES: Apparent Proof at 60°F Composition wt/wt% Ethyl Alcohol Gasoline Ethyl Acetate Methyl Alcohol Ethyl Ether Water Coefficient of expansion Per 1°C Per 1°F Flash point Tag closed cup C° F° Tag open cup C° F° Pounds per gallon @ 60°F, per 27 CFR 212.115 Shipping containers Tank cars Tank trucks Drums Pails	99. 0. 0. 0. 0. 7 45	200 13 87 0011 0006	7 7 0 0 0 17 62 16 60	.6 .41 .10 .49 .0010	199 98. 1. 0. 0. 15 69 21 69	87 	191. 84. 8. 6. 0. 0. 16. 60	0	I.R.S. Gauging Manual ASTM D-56 ASTM D-1310

- 1 This SDA typically supplied only in the anhydrous formulation.
- This formulation, typically used for vinegar manufacture, is but one of many which is of commercial importance. Other denaturants may be approved by the ATF director, provided the proposed denaturant be not less than 6.8 pounds of solid, or 1 gallon of liquid to 100 gallons alcohol. This formula is restricted to processes in which the alcohol losses its identity by being converted to other chemicals.
- SDA 31A, prepared by the addition of 100 pounds of glycerol, U.S.P. and 20 pounds of hard soap, N.F. to 100 gallons alcohol is an ATF authorized formulation. Because
 of very limited use it is not discussed in this book.
- 4. SDA 33, prepared by the addition of 30 pounds of methyl violet or methyl violet U.S.P. to 100 gallons alcohol is an ATF authorized formulation. Because of very limited use it is not discussed in this book.
- 5. SDA 35, prepared by the addition of 29.75 gallons of ethyl acetate having an ester content of 100 percent by weight or the equivalent thereof not to exceed 35 gallons of ethyl acetate with an ester content of not less than 85 percent by weight to 100 gallons alcohol is an ATF authorized formulation. Because of very limited use it is not discussed within this book.
- 6. Determined by U.S.I.

Table 6.37: (continued)

AUTHORIZED COMPOSITION:

-	SO	A 30		SD	A 32			SDA	35A		Test Method
To every 100 gallons of alcohol add: Gasoline, gallons Ethyl Acetate, gallons Methyl Alcohol, gallons Ethyl Ether, gallons	ľ	10					4.25 —				
FORMULATION:	Anhy Minimum	drous Maximum	1: Minimum	90° Maximum	Anhy Minimum	drous Maximum	19 Minimum	90° Maximum	Anhy Minimum	drous Maximum	
SPECIFICATIONS: Specific gravity @ 15.56°C/15.56°C (60°F/60°F) @ 20°C/20°C @ 25°C/25°C Acidity, wt.wt% as acetic acid Non-volatile matter, grams/100 ml Color, Pt-Co Water content, vol/vol % Odor	0.7934 0.7902 0.7868 ———————————————————————————————————	0.7944 0.7912 0.7879 0.0025 0.0025 10 0.20	0.8122 0.8091 0.8056 — — —	0.8134 0.8103 0.8068 0.0025 0.0025 10	0.7911 0.7879 0.7845 — — —	0.7921 0.7889 0.7855 0.0025 0.0025 10 0.20	0.8185 0.8153 0.8119 	0.8196 0.8164 0.8130 0.0025 0.0025 10	0.7974 0.7942 0.7909 — — — — —	0.7989 0.7957 0.7923 0.0025 0.0025 10 0.10	ASTM D-891 ASTM D-1613 ASTM D-1353 ASTM D-1209 ASTM D-1364 Organoleptic
TYPICAL PROPERTIES: Apparent Proof at 60°F Composition wt/wt% Ethyl Alcohol Gasoline Ethyl Acetate Methyl Alcohol Ethyl Ether Water Coefficient of expansion Per 1°C Per 1°F Flash point Tag closed cup C° F° Tag open cup C° F° Pounds per gallon @ 60°F, per 27 CFR 212.115 Shipping containers Tank cars Tank trucks Drums Pails	199. 90. 9. 0. 0. 13 53 13 55	9	4 7 0 0 - 4 25 - 4	.5 .59 .13 .28 .0011	> 95 4 0 0 0 - 9 15 - 9		14 58 21	.3 .26 .50 .24 .0011	198. 95 4 0 0 10 50	_	I.R.S. Gauging Manual ASTM D-56 ASTM D-1310

- 1. This SDA typically supplied only in the anhydrous formulation.
- This formulation, typically used for vinegar manufacture, is but one of many which is of commercial importance. Other denaturants may be approved by the ATE director, provided the proposed denaturant be not less than 6.8 pounds of solid, or 1 gallon of liquid to 100 gallons alcohol. This formula is restricted to processes in which the alcohol loses its identity by being converted to other chemicals.
- SDA 31A, prepared by the addition of 100 pounds of glycerol, U.S.P. and 20 pounds of hard soap, N.F. to 100 gallons alcohol is an ATF authorized formulation. Because
 of very limited use it is not discussed in this book.
- SDA 33, prepared by the addition of 30 pounds of methyl violet or methyl violet U.S.P. to 100 gallons alcohol is an ATF authorized formulation. Because of very limited use it is not discussed in this book.
- 5. SDA 35, prepared by the addition of 29.75 gallons of ethyl acetate having an ester content of 100 percent by weight or the equivalent thereof not to exceed 35 gallons of ethyl acetate with an ester content of not less than 85 percent by weight to 100 gallons alcohol is an ATF authorized formulation. Because of very limited use it is not discussed within this book.
- 6. Determined by U.S.I.

Table 6.37: (continued)

	SDA 3	36 (1, 2)	SDA 3	7(1)	TYPICAL SD	A 38B	Test Method
To every 100 gallons of alcohol add: Ammonia, aqueous, 27 to 30 percent by weight, gallons Eucalyptol, U.S.P., fluid ounces Thymol N.F. avdp. ounce Menthol, U.S.P., avdp. ounce Formaldehyde Solution, U.S.P., gallons Boric Acid. (6) U.S.P., pounds Chlorothymol, N.F., pounds	3 		45 30 20 — —		Denaturant 1	0 lbs.	
FORMULATION:	190° Minimum Maximum		190° Minimum Maximum		190°	200°	
SPECIFICATIONS: Specific gravity @ 15.56°C/15.56°C (60°F·60°F) @ 20°C/20°C @ 25°C/25°C Acidity, wt/w1% as a cetic acid Non-volatile matter, grams/100 ml Color, Pt-Co Water content, vol/vol % Odor	0.8189 0.8157 0.8123 Alka — — — — — Typi	0.0025 10 —	0.8162 0.8130 0.8097 — N/A — Typic	20	See Table	6.37	ASTM D-891 ASTM D-1613 ASTM D-1353 ASTM D-1209 ASTM D-1364 Organoleptic
TYPICAL PROPERTIES: Apparent proof at 60°F Composition, wt/wt% Ethyl Alcohol Ammonia Eucalyptol Thymol Menthol Formaldehyde	187.9 89.46 0.91		189.5 91.64 0.40 0.27 0.18		189.4 91.08	199.3 98.51	I.R.S. Gauging Manual
Boric Acid Chlorothymol Water Coefficient of expansion Per 1°C Per 1°F		63 0011 0006	7.5 0.00 0.00	010	Denaturant 1.45 7.47 0.0010 0.0006	0.0010 0.0006	
Flash point Tag closed cup C° Tag open cup C° F° Pounds per gallon @ 60°F, per 27 CFR 212.115	15 59 20 68 6.837		13 55 21 70 6.75		6.804	6.622	ASTM D-56 ASTM D-1310
Shipping containers Tank cars Tank trucks Drums Pails			, , , , , , , , , , , , , , , , , , ,		√ √ & <u>\</u> √ & <u>\</u>		

- 1. This SDA typically supplied only in the 190° proof formulation
- Afternate denaturants include: 3 gallons of strong ammonia solution, U.S.P.; 17.5 pounds of caustic soda, liquid grade, containing 50 percent sodium hydroxide by weight; or 12.0 pounds of caustic soda, liquid grade containing 73 percent sodium hydroxide by weight to 100 gallons alcohol.
- 3. 27 CFR 212.51 also authorizes the use of 7 pounds of boric acid U.S.P. and a total of 3 pounds of any two or more denaturing materials listed under Formula No. 38-B.
- 4. The use of Polysorbate 8 80 is an authorized replacement for boric acid.

	SDA 38C(1)	SDA 38D(1)	SDA 38F (1.3)	Test Method
To every 100 gallons of alcohol add: Ammonia, aqueous, 27 to 30 percent by weight, gallons Eucalyptol, U.S.P., fluid ounces Thymol N.F. avdp. ounce Menthol, U.S.P., avdp. ounce Formaldehyde Solution, U.S.P., gallons Boric Acid, (4) U.S.P., pounds Chlorothymol, N.F., pounds	10 lbs 1.25	2.5 lbs 2.5 	11/3 lbs 11/3 lbs 	
FORMULATION:	190° Minimum Maximum			
SPECIFICATIONS: Specific gravity @ 15.56°C/15.56°C (60°F/60°F) @ 20°C/25°C @ 25°C/25°C Acidity, wt/wt° as acetic acid Non-volatile matter, grams/100 ml Color, Pt-Co Water content, vol/vol % Odor	0.8202 0.8217 0.8170 0.8185 0.8136 0.8151 	0.8231 0.8252 0.8200 0.8221 0.8165 0.8187 - 0.005 N/A - 10 - Typical	0.8194	ASTM D-891 ASTM D-1613 ASTM D-1353 ASTM D-1209 ASTM D-1364 Organoleptic
TYPICAL PROPERTIES: Apparent proof at 60°F Composition, wt/wt% Ethyl Alcohol Ammonia Eucalyptol	187.3 89.60	185.5 89.11	187.8 91.09 0.19	I.R.S. Gauging Manual
Thymol Menthol Formaldehyde Boric Acid Chlorothymol Water Coefficient of expansion Per 1 °C Per 1 °F	1 43 0 60 0.19 Methanol 8.18 0.0010 0.0006	0.35 1.20 0.39 Methanol 8.95 0.0010 0.0006	0.87 0.19 7.47 0.0010 0.0006	
Flash point Tag closed cup F° Tag open cup	17 62 19	17 63 22	16 61 19	ASTM D-56 ASTM D-1310
F° Pounds per gallon @ 60°F, per 27 CFR 212.115 Shipping containers Tank cars Tank trucks Drums Pails	67 6.832 No No No X	71 6.863 ✓ X X	66 6.828	

Comments:

1. This SDA typically supplied only in the 190° proof formulation

^{2.} Alternate denaturants include: 3 gallons of strong ammonia solution, U.S.P.; 17.5 pounds of caustic soda, liquid grade, containing 50 percent sodium hydroxide by weight; or 12.0 pounds of caustic soda, liquid grade containing 73 percent sodium hydroxide by weight to 100 gallons alcohol.

^{3. 27} CFR 212.51 also authorizes the use of 7 pounds of boric acid U.S.P. and a total of 3 pounds of any two or more denaturing materials listed under Formula No. 38-8.

^{4.} The use of Polysorbate 8 80 is an authorized replacement for boric acid.

Table 6.37: (continued)

AUTHORIZED COMPOSITION:	SDA	39B	SDA	39C	SDA	40-1	Test Method	
To every 100 gallons of alcohol add: Diethyl Phthalate, gallons tert-Butyl Alcohol, gallons Brucine Alkaloid, avdp ounces Brucine Sulfate N.F. IX, avdp ozs. Sucrose Octaacetate, pounds Denatonium Benzoate, N.F., avdp ounces		.5 % _ _ _	-	1	- 1 -			
FORMULATION:	190° Min. Max.	Anhydrous Min. Max.				190° Anhydrous Min. Max. Min. Max.		
SPECIFICATIONS: Specific gravity @ 15.56°C/15.56°C(60°F/60°F) @ 20°C/20°C @ 25°C'25°C Acidity, wt:wt% as acetic acid Non-volatile matter, grams/100 ml Color, Pt-Co Water content, vol/vol % Odor	0.8228 0.8238 0.8196 0.8207 0.8162 0.8172 — 0.0050 N/A — 20 — Typ	0.8028 0.8038 0.7997 0.8007 0.7963 0.7972 — 0.0050 N/A — 20 — 0.10	0.8182 0.8192 0.8149 0.8161 0.8155 0.8126 — 0.0050 N/A — 10 — Tyj	0.7964 0.7979 0.7932 0.7948 0.7899 0.7914 — 0.0050 N/A — 10 — 0.10 Dical	0.8150 0.8164 0.8122 0.8132 0.8088 0.8098 — 0.0025 — 0.020 — 10 — Typ	0.7934 0.7944 0.7902 0.7912 0.7868 0.7879 — 0.0025 — 0.020 — 10 — 0.10	ASTM D-891 ASTM D-1613 ASTM D-1353 ASTM D-1209 ASTM D-1364 Organoleptic	
TYPICAL PROPERTIES: Apparent Proof at 60°F	186.0	196.0	188.5	198.6	190.0	199.9	I.R.S. Gauging Manual	
Composition wt/wt% Ethyl Alcohol Diethyl Phthalate tert-Butyl Alcohol Brucine Alkaloid Brucine Sulfate Sucrose Octaacetate Denatonium Benzoate Water Coefficient of expansion Per 1 °C Per 1 °F Flash point	89.25 3.32 0.12 — — — 7.31 0.0010 0.0006	96.47 3.41 0.12 — — — — — — 0.0011 0.0006	91.17 1.36 7.47 0.0010 0.0006	98.61 1.39 0.0011 0.0006	92.30 	99.87 	Walla	
Tag closed cup C° F° Tag open cup C° F°	14 58 18 65	13 55 16 60	16 60 18 65	13 55 16 60	16 61 18 65	13 56 16 60	ASTM D-1310	
Pounds per gallon @ 60°F, per 27 CFR 212.115 Shipping containers Tank cars Tank trucks Drums Pails	6.857	6.677	6.819	6.642	6.795	6.611		

- SDA 39, prepared by the addition of 9 pounds of sodium salicylate or salicylic acid U.S.P., 1.25 gallons fluid extract of quassia, N.F. VII and 1/8 gallon of tert-butyl alcohol to every 100 gallons alcohol, is an ATF authorized formulation. Because of very limited use it is not discussed in this book.
- SDA 39A, prepared by the addition of 60 avdp. ounces of any of the following alkaloids or salts together with ½ gallon of tert-butyl alcohol: quinine N.F., quinine bisulfate N.F., quinine hydrochloride, U.S.P. cinchonidine, cinchonidine sulfate, N.F. IX to every 100 gallons alcohol, is an ATF authorized formulation. Because of very limited use it is not discussed in this book.
- SDA 39D, prepared by the addition of one gallon bay oil N.F. and either 50 avdp ounces of quinine sulfate, U.S.P., 50 avdp ounces of quinine bisulfate,
 N.F., or 200 avdp. ounces sodium salicylate, U.S.P. to every 100 gallons alcohol, is an ATF authorized formulation. Because of very limited use it is not
 discussed in this book.
- 4. Determined by U.S.I.
- 5. This formula shall be used only in the manufacture of products which will be packaged in pressurized containers in which the liquid contents are in intimate contact with the propellant and from which the contents are not easily removable in liquid form.

Table 6.37: (continued)

AUTHORIZED COMPOSITION:	SDA	40-2	SDA	40A	SDA	40B	SDA	40C (5)	Test Method
To every 100 gallons of alcohol add: Diethyl Phthalate, gallons tert-Butyl Alcohol, gallons Brucine Alkaloid, avdp ounces Brucine Sulfate N.F. IX, avdp ozs. Sucrose Octaacetate, pounds Denatonium Benzoate, N.F., avdp ounces	- - 11 -	- -	-	⁄a _ _ 1	-	//e 	- -	3	
FORMULATION:	190° Min. Max.	Anhydrous Min. Max.	190° Min. Max.	Anhydrous Min. Max.	190° Min. Max.	Anhydrous Min. Max.	190° Min. Max.	Anhydrous Min. Max.	
SPECIFICATIONS: Specific gravity @ 15.56°C/15.56°C(60°F/60°F) @ 20°C/20°C @ 25°C/25°C Acidity, wt/wt% as acetic acid Non-volatile matter, grams/100 ml Color, Pt-Co Water content, vol/vol % Odor	0.8154 0.8164 0.8122 0.8132 0.8088 0.8098 — 0.0050 — 0.020 — 10 — Typ	0.7902 0.7912 0.7868 0.7879 — 0.0050 — 0.020 — 10 — 0.10	0.8158 0.8170 0.8126 0.8138 0.8192 0.8104 0.0025 0.16 10 Typ	0.7908 0.7918 0.7874 0.7884 0.0025 0.16 10 0.10	- 0.0025 - 10 	0.7934 0.7944 0.7902 0.7912 0.7868 0.7879 — 0.0025 — 0.0025 — 10 — 0.10	0.8082 0.8094 0.0025 0.0025 10 	0.7829 0.7939 0.7898 0.7908 0.7864 0.7874 — 0.0025 — 0.0025 — 10 — 0.10	ASTM D-891 ASTM D-1613 ASTM D-1353 ASTM D-1209 ASTM D-1364 Organoleptic
TYPICAL PROPERTIES: Apparent Proof at 60°F	190 0	199.9	189.7	199.7	190.0	199.9	190.2	200.1	I.R.S. Gauging
Composition wt/wto. Ethyl Alcohol Diethyl Phthalate tert-Butyl Alcohol Brucine Alkaloid Brucine Sulfate Sucrose Octaacetate Denatonium Benzoate Water Coefficient of expansion Per 1°C Per 1°F Flash point Tag closed cup C° F° Tag open cup C° F° Pounds per gallon @ 60°F, per 27 CFR 212.115 Shipping containers Tank cars Tank trucks Drums	92 30 0 12 0 014 — 7 57 0 0010 0 0006 16 61 18 65 6 795 ⁴	99.87 0.12 0.014 0.0010 0.0006 13 56 16 60 6.611 41	92.18 0.12 	99 73 0 12 0.15 - 0 0011 0 0006 12 53 17 62 6 613	92.31 0.12 0.0006 7.57 0.0010 0.0006 17 63 18 65 6.794	99.88 	89.84 2 79 	97.13 2.87 — — — — 0.0011 0.0006 13 55 16 60 6.609	ASTM D-56 ASTM D-1310

- SDA 39, prepared by the addition of 9 pounds of sodium salicylate or salicylic acid U.S.P., 1.25 gallons fluid extract of quassia, N.F. VII and ½ gallon of tent-butyl alcohol to every 100 gallons alcohol, is an ATF authorized formulation. Because of very limited use it is not discussed in this book.
- SDA 39A, prepared by the addition of 60 avdp, ounces of any of the following alkaloids or salts together with ½ gallon of tert-butyl alcohol: quinine N.F., quinne bisulfate N.F., uninne hydrochloride, U.S.P. onchonidine, cinchonidine sulfate, N.F. IX to every 100 gallons alcohol, is an ATF authorized formulation. Because of very limited use it is not discussed in this book.
- SDA 39D, prepared by the addition of one gallon bay oil N.F. and either 50 avdp ounces of quinine sulfate, U.S.P., 50 avdp ounces of quinine bisulfate, N.F., or 200 avdp. ounces sodium salicylate, U.S.P. to every 100 gallons alcohol, is an ATF authorized formulation. Because of very limited use it is not discussed in this book.
- 4. Determined by U.S.I.
- 5. This formula shall be used only in the manufacture of products which will be packaged in pressurized containers in which the liquid contents are in intimate contact with the propellant and from which the contents are not easily removable in liquid form.

	SD/	\ 45	SDA	46(4)	Test Method
To every 100 gallons of alcohol add: Refined Shellac, pounds Phenol, U.S.P., fl. ounces Methyl Salicylate, U.S.P., fl. ounces	30		2:		
FORMULATION:	190° Minimum Maximum	Anhydrous Minimum Maximum	190° Minimum Maximum	Anhydrous Minimum Maximum	
SPECIFICATIONS: Specific gravity @ 15.56℃/15.56℃ (60°F/60°F) @ 20°C/20°C @ 25℃/25℃ Acidity as acetic acid	0.9036 0.9071 0.9008 0.9043 0.8977 0.9012 N/A	0.8868 0.8905 0.8838 0.8875 0.8806 0.8844 N/A	0.8166 0.8178 0.8134 0.8146 0.8100 0.8112 — 0.02	0.7946 0.7954 0.7915 0.7925 0.7882 0.7892 0.02	ASTM D-891
Non-volatile matter, grams/100 ml Color, Pt-Co Water content, vol/vol % Odor	N/A N/A N/A Typ	N/A N/A N/A	— N/A — 10 — Тур	N/A 10	ASTM D-1353 ASTM D-1209 ASTM D-1364 Organoleptic
TYPICAL PROPERTIES: Apparent Proof at 60°F	127.0	141.0	189.3	199.4	I.R.S. Gauging Manual
Composition, wt/wt % Ethyl Alcohol	64.11	68.78	92.18	99.73	
Shéilac Phenol Methyl Salicylate Water	30.63 5.26	31.22 — — — —	 0.23 0. 04 7.55	0.23 0.04	
Coefficient of expansion Per 1°C Per 1°F Flash point	0.0009 0.0005	0.0009 0.0005	0.0011 0.0006	0.0010 0.0006	
Tag closed cup C° F°			17 63	12 54	ASTM D-56
Tag open cup C° F° C0075	21 70	18 65	21 70	16 6 0	ASTM D-1310
Pounds per gallon @ 60°F, per 27 CFR 212.115 Shipping containers Tank cars Tank trucks Drums Pails	7.545 No No So 50 gallon open load drums		6.805 Ni Ni	o i	

- SDA 42, prepared by addition of (1) 80 grams of potassium iodide, U.S.P. and 109 grams of red mercuric iodide, N.F.; (2) 95 grams thirmerosal, N.F.; or (3) 76 grams of any of the following: phenyl mercuric nitrate, N.F.; phenyl mercuric chloride, N.F. IX or phenyl mercuric benzoate, to every 100 gallons alcohol is an ATF authorized formulation. Because of very limited use it is not discussed in this book.
- SDA 44, prepared by the addition of 10 gallons of n-butyl alcohol is an ATF authorized formulation. Because of very limited use it is not discussed in this book. Specific information may be obtained by contacting any U.S.I. sales office.
 This formula may be used only by institutions and organizations which are of a semipublic character and engaged in
- charitable work.

 4. This formula may be used only by organizations or institutions which are of a semipublic character and engaged in charitable work.

Table 6.38: Authorized Denaturants for SDA 38B (30)

The properties of SDA 38B are as diverse as are the denaturants used in this formula and the products formulated with it.

The authorized composition of SDA 38B requires that 10 pounds of any one, or a total of 10 pounds of two or more, of the oils and substances listed below are to be added to 100 gallons of alcohol. The authorized denaturants include:

Anethole, U.S.P.

Anise oil, U.S.P.

Bay oil (myrcia oil), N.F.

Benzaldehyde, N.F.

Bergamot oil, N.F.

Bitter Almond oil, N.F.

Camphor, U.S.P.

Cedar leaf oil, U.S.P. XIII

Chlorothymol, N.F.

Cinnamic Aldehyde, N.F. IX

Cinnamon oil (Cassia oil), U.S.P.

Citronella oil, Natural

Clove oil, U.S.P.

Coal tar, U.S.P.

Eucalyptol, U.S.P.

Eucalyptus oil, N.F.

Eugenol, U.S.P.

Guaiacol, N.F.

Lavender oil, N.F.

Menthol, U.S.P.

Mustard oil, volatile (allyl isothiocyanate) U.S.P.

Peppermint oil, U.S.P.

Phenol, U.S.P.

Phenyl salicylate (Salol), N.F.

Pine oil, N.F.

Pine needle oil, dwarf, N.F.

Rosemary oil, N.F.

Spearmint oil, N.F.

Spearmint oil, terpeneless

Spike lavender oil, natural

Storax, U.S.P.

Thyme oil, N.F.

Thymol, N.F.

Tolu balsam, U.S.P.

Turpentine oil, N.F.

Wintergreen oil (methyl salicylate) U.S.P.

Because of the virtually infinite number of authorized denaturants and denaturant combinations, only a typical set of properties for SDA 38B have been listed

Table 6.39: Denaturants Authorized for Completely Denatured Alcohol (CDA) and Specially Denatured Alcohol (SDA) (30)

Alcohol (Si	JA) (30)		
DENATURANT	USED IN	DENATURANT	USED IN
Acetaldehyde Acetone N.F. Acetaldol Almond oil, bitter N.F. Ammonia, aqueous Anethole U.S.P. Anise oil U.S.P.	S.D.A. 29 S.D.A. 23A; 23-H C.D.A. 18 S.D.A. 38-B S.D.A. 36 S.D.A. 38-B S.D.A. 38-B	Methyl isobutyl ketone C.D.A. Methyl normal-butyl ketone Methyl violet (methylrosaniline chloride) Methyl violet (methylrosaniline chloride) t Mustard oil, volatile (allyl isothiocyanate) Nicotine solution	J.S.P. S.D.A. 33
Camphor U.S.P. Caustic soda, liquid	S.D.A. 23-F; 38-B; 39-D S.D.A. 38-B S.D.A. 2-B; 2-C; 12-A S.D.A. 23-F; 38-B S.D.A. 38-F S.D.A. 40 S.D.A. 40 S.D.A. 40 S.D.A. 44 39, 39-A; 39-B; 40; 40-A; 40-B; 40-C S.D.A. 27; 27-A; 38-B S.D.A. 36	Peppermint oil U.S.P. Phenol U.S.P. Phenyl mercuric benzoate Phenyl mercuric chloride N.F. IX Phenyl mercuric ritrate N.F. Phenyl salicylate (salol) N.F. Pine needle oil, dwarf N.F. Pine oil N.F. Pine tar N.F. Polysorbate 80 U.S.P. Potassium iodide U.S.P. Pyridine bases Pyronate	S.D.A. 38-B S.D.A. 38-B; 46 S.D.A. 42 S.D.A. 42 S.D.A. 38-B S.D.A. 38-B S.D.A. 38-B S.D.A. 38-B S.D.A. 38-B S.D.A. 38-B S.D.A. 38-F S.D.A. 38-F S.D.A. 6-B C.D.A. 18
Cedar leaf oil U.S.P. XIII Chloroform Chlorothymol N.F. Cinchonidine Cinchonidine sulfate N.F. IX Cinnamic aldehyde (cinnamalde Cinnamon oil (cassia oil) U.S.P.	S.D.A. 38-B	Quassia, fluid extract of N.F. VII Quassin Quinine N.F. Quinine bisulfate N.F. Quinine hydrochloride U.S.P. Quinine sulfate U.S.P.	S.D.A. 39 S.D.A. 40 S.D.A. 39-A S.D.A. 39-A; 39-D S.D.A. 39-A S.D.A. 39-D
Citronella oil, natural Clove oil U.S.P. Coal tar U.S.P.	S.D.A. 38-B S.D.A. 27-A; 38-B S.D.A. 38-B	Resorcin U.S.P. Rosemary oil N.F. Rubber hydrocarbon solvent	S.D.A. 23-F S.D.A. 27; 38-B S.D.A. 2-B; 2-C
Denatonium benzoate N.F. (Bitre Diethyl phthalate Ethyl acetate Ethyl ether Eucalyptol U.S.P. Eucalyptus oil N.F. Eugenol U.S.P.	S.D.A. 1; 40-8 S.D.A. 39-B; 39-C S.D.A. 29; 35; 35-A S.D.A. 13-A; 19; 32 S.D.A. 37; 38-B S.D.A. 38-B S.D.A. 38-B	Salicylic acid U.S.P. Shellac (refined) Soap, hard N.F. Soap, medicinal soft U.S.P. Sodium iodide U.S.P. Sodium, metallic Sodium salicylate U.S.P. Spearmint oil N.F.	S.D.A. 23-F; 39 S.D.A. 45 S.D.A. 31-A S.D.A. 27-B S.D.A. 25; 25-A S.D.A. 2-C S.D.A. 39; 39-D S.D.A. 38-B
Formaldehyde solution U.S.P. Gasoline Glycerol U.S.P.	S.D.A. 22; 38-C; 38-D C.D.A. 18; 19; 20; S.D.A. 28-A S.D.A. 31-A	Spearmint oil, terpeneless Spike lavender oil, natural Storax U.S.P. Sucrose octa-acetate	S.D.A. 38-B S.D.A. 38-B S.D.A. 38-B S.D.A. 40-A
Guaiacol N.F. Iodine U.S.P.	S.D.A. 38-B S.D.A. 25; 25-A	Thimerosal, N.F. Thyme oil N.F. Thymol N.F.	S.D.A. 42 S.D.A. 38-B S.D.A. 37; 38-B; 38-F
Kerosene Lavender oil U.S.P.	C.D.A. 18; 19; 20 S.D.A. 27-B; 38-B	Tolu balsam U.S.P. Toluene Turpentine oil N.F.	S.D.A. 38-B S.D.A. 2-B; 2-C; 12-A S.D.A. 38-B
Menthol U.S.P.	S.D.A. 37; 38-B; 38-C; 38-D; 38-F	Vinegar	S.D.A. 18
Mercuric iodide, red N.F. Methyl alcohol Methylene blue N.F.	S.D.A. 42 S.D.A. 3-A; 30 S.D.A. 4	Wintergreen (Methyl salicylate) U.S.P.	S.D.A. 38-B; 46

Primary Denaturants Authorized for Denatured Spirits—Title 27 Code of Federal Regulations 212.110

Table 6.40: Uses of Specially Denatured Alcohol* (30)

PRODUCT OR PROCESS	CODE NO.	FORMULAS AUTHORIZED
Acetaldehyde		1, 2-B, 29
Acetic acid		1, 2-B, 29, 35-A 1, 3-A, 12-A, 23-A, 30
Aldehydes, miscellaneous		1, 2-B, 29
Alkaloids (processing)		1, 2-B, 2-C, 3-A, 12-A, 13-A, 17, 23-A, 30, 32, 35-A
Animal feed supplement		35-A 1, 2-B, 3-A, 12-A, 13-A, 23-A, 30, 32, 35-A
Antifreeze, proprietary		1
Antiseptic, bathing solution (restricted)		46
Antiseptic solutions, U.S.P. or N.F.		23-A, 37, 38-B, 38-F
Bath preparations		1, 3-A, 3-B, 23-A, 30, 36, 38-B, 39-B, 39-C, 40, 40-A, 40-B, 40-C
Bay rum		23-A, 37, 38-B, 39, 39-B, 39-D, 40, 40-A, 40-B, 40-C 1, 3-A, 3-B, 23-A, 23-H, 27-A, 27-B, 30, 37, 38-B, 39B, 40, 40-A, 40-B, 40-C
Blood and blood products (processing)		1, 3-A, 12-A, 13-A, 23-A, 30
Brake fluids		1, 3-A
Candy glazes		13-A, 23-A, 35, 35-A, 45
Cellulose coatings		1, 23-A, 30
Cellulose compounds (dehydration)		1, 2-B, 3-A, 32
Cellulose intermediates		1, 3-A, 12-A, 13-A, 19, 23-A, 32 1, 2-B, 2-C, 3-A, 6-B, 12-A, 13-A, 17, 20, 29, 30, 32, 36
Cleaning solutions		1, 3-A, 23-A, 23-H, 30, 36, 39-B, 40, 40A, 40-B, 40-C
Coatings, miscellaneous		1, 23-A
Collodions, industrial		1, 3-A, 12-A, 13-A, 19, 23-A, 32 13-A, 19, 32
Colognes		38-B, 39, 39-A, 39-B, 39-C, 40, 40-A, 40-B, 40-C
Crude drugs (processing)		1, 2-B, 3-A, 23-A, 30
Cutting oils		1, 3-A, 12-A
Dehydration products, miscellaneous		1, 2-B, 3-A
Dentifrices		31-A, 37, 38-B, 38-C, 38-D 23-A, 38-B, 39-B, 39-C, 40, 40-A, 40-B, 40-C
Detergents, household		1, 3-A, 23-A, 23-H, 30, 36, 39-B, 40, 40-A, 40-B, 40-C
Detergents, industrial		1, 3-A, 23-A, 30
Detonators		1, 6-B
Disinfectants Drugs and medicinal chemicals		1, 3-A, 3-B, 23-A, 23-H, 27-A, 27-B, 30, 37, 38-B, 39-B, 40, 40-A, 40-B, 40-C 1, 2-B, 2-C, 3-A, 6-B, 12-A, 13-A, 17, 29, 30, 32
Drugs, miscellaneous (processing)	349	1, 2-B, 3-A, 13-A, 23-A, 30, 35-A, 38-B
Duplicating fluids		1, 3-A, 30
Dyes and intermediates		1, 2-B, 2-C, 3-A, 12-A, 29, 36 1, 2-B, 3-A, 12-A
Dye solutions, miscellaneous		1, 3-A, 23-A, 30, 39-C, 40, 40-A, 40-B, 40-C
Embalming fluids, etc	420	1, 3-A, 22, 23-A
Esters, ethyl (miscellaneous)		1, 2-B, 2-C, 3-A, 6-B, 12-A, 13-A, 17, 29, 32, 35-A
Ether, ethyl		1, 2-B, 13-A, 29, 32
Ethers, miscellaneous		1, 2-B, 13-A, 29, 32 1, 2-B, 29, 35-A
Ethylamines		1, 2-B, 2-C, 3-A, 12-A, 29, 36
Ethyl chloride		1, 2-B, 29, 32
Ethylene dibromide		1, 2-B, 29, 32 1, 2-B, 29, 32
Explosives		1, 2-B, 3-A
External pharmaceuticals (not U.S.P. or N.F.		23-A, 23-F, 23-H, 27-A, 27-B, 36, 37, 38-B, 38-F, 39-B, 40, 40-A, 40-B, 40-C
External pharmaceuticals, miscellaneous (U.S.P. or N.F.)	249	23-A, 25, 25-A, 38-B
Fluid uses, miscellaneous	750	1, 3-A, 23-A, 30 1, 2-B, 3-A, 13-A, 23-A, 30, 32, 35-A
Fuel uses, miscellaneous	630	1, 3-A, 28-A
Fuels, airplane and supplementary		1, 3-A, 28-A
Fuels, automobile and supplementary	611	1, 3-A, 28-A 1, 3-A, 28-A
Fuels, proprietary heating		1. 3-A 28-A
Fungicides		1, 3-A, 3-B, 23-A, 23-H, 27-A, 27-B, 30, 37, 38-B, 39-B, 40, 40-A, 40-B, 40-C
Glandular products (processing)		1, 2-B, 3-A, 12-A, 13-A, 23-A, 30, 32, 35-A
Hair and scalp preparations		3-B, 23-A, 23-F, 23-H, 37, 38-B, 39, 39-A, 39-B, 39-C, 39-D, 40, 40-A, 40-B, 40-C
Hormones (processing)	342	1, 2-B, 3-A, 12-A, 13-A, 23-A, 30, 32, 35-A

^{*}Other products or processes may be authorized by the Director of the Bureau of Alcohol, Tobacco and Firearms, Department of the Treasury, Washington, D.C. Uses of Specially Denatured Alcohol—27 CFR 212.105

(continued)

Table 6.40: (continued)

PRODUCT OR PROCESS	CODE NO.	FORMULAS AUTHORIZED
Incense		3-A, 22, 37, 38-B, 39-B, 39-C, 40, 40-A, 40-B, 40-C 1, 3-A, 13-A, 23-A, 30, 32, 33 23-A, 32
Inks (including meat branding)	410	1, 3-A, 3-B, 23-A, 23-H, 27-A, 27-B, 30, 37, 38-B, 39-B, 40, 40-A, 40-B, 40-C 25, 25-A
Laboratory reagents (for sale)Laboratory uses		3-A, 30 3-A, 30
Lacquer thinners Liniments (U.S.P. or N.F.) Lotions and creams (body, face, and hand)	243	1, 23-A 27, 27-B, 38-B 23-A, 23-H, 31-A, 37, 38-B, 39, 39-B, 39-C, 40, 40-A, 40-B, 40-C
Medicinal chemicals (processing)	344	1, 2-B, 2-C, 3-A, 12-A, 13-A, 17, 23-A, 30, 32, 35-A
Miscellaneous chemicals (processing) Miscellaneous products (processing)	. <i>.</i>	1, 2-B, 2-C, 3-A, 12-A, 13-A, 17, 23-A, 30, 35-A 1, 2-B, 2-C, 3-A, 12-A, 13-A, 17, 23-A, 30, 35-A 37, 38-B, 38-C, 38-D, 38-F
Organo-silicone products	576	2-B, 3-A
Pectin (processing)		1, 2-B, 3-A, 13-A, 23-A, 30, 35-A
Perfume materials (processing)		1, 2-B, 3-A, 12-A, 13-A, 30 38-B, 39, 39-B, 39-C, 40, 40-A, 40-B, 40-C
Petroleum products Photoengraving dyes and solutions	320	1, 2-B, 3-A 1, 3-A, 13-A, 30, 32
Photographic chemicals (processing)		1, 2-B, 3-A, 13-A, 30
Photographic film and emulsions Pill and tablet manufacture		1, 2-B, 3-A, 13-A, 19, 30, 32 1, 2-B, 3-A, 13-A, 23-A, 30, 35-A, 38-B
Plastics, cellulose		1, 2-B, 3-A, 13-A, 23-A, 30, 33-A, 30-B
Plastics, non-cellulose (including resins) Polishes		1, 2-B, 3-A, 12-A, 13-A, 30 1, 3-A, 30, 40, 40-A, 40-B, 40-C
Preserving solutions		1, 3-A, 12-A, 13-A, 22, 23-A, 30, 32, 37, 38-B, 42, 44
Proprietary solvents (standard formulas)		1
Refrigerating uses		1, 3-A, 23-A, 30
Resin coatings, natural		1, 23-A 1, 23-A, 30
Resins, synthetic		3-A, 29, 30, 35-A
Room deodorants	470	3-A, 22, 37, 38-B, 39-B, 39-C, 40, 40-A, 40-B, 40-C
Rosin (processing)		1, 3-A, 12-A 1, 3-A, 13-A, 30, 32
Rubber (latex) (processing)		1, 3-A
Rubber, synthetic		29, 32 23-H
Scientific instruments		1, 3-A
Shampoos		1, 3-A, 3-B, 23-A, 27-B, 31-A, 36, 38-B, 39-A, 39-B, 40, 40-A, 40-B, 40-C
Shellac coatings	013	1, 23-A 1, 3-A, 23-A, 30
Soaps, toilet		1, 3-A, 23-A, 30 1, 3-A, 3-B, 23-A, 30, 36, 38-B, 39-B, 39-C, 40, 40-A, 40-B, 40-C
Sodium ethylate, anhydrous (restricted) Sodium hydrosulfite (dehydration)	524	2-B
Soldering flux		1, 2-B, 3-A 1, 3-A, 23-A, 30
Solutions, miscellaneous		1, 3-A, 23-A, 30, 39-B, 40, 40-A, 40-B, 40-C
Solvents and thinners, miscellaneous Solvents, special (restricted sale)		1, 23-A 1, 3-A
Stains (wood)		1, 3-A, 23-A, 30
•		1, 3-A, 12-A, 13-A, 22, 23-A, 30, 32, 37, 38-B, 42, 44
Theater sprays Tobacco sprays and flavors		3-A, 22, 37, 38-B, 39-B, 39-C, 40, 40-A, 40-B, 40-C
Toilet waters		38-B, 39, 39-A, 39-B, 39-C, 40, 40-A, 40-B, 40-C
Transparent sheetings		1, 2-B, 3-A, 13-A, 23-A
Unclassified uses		1, 3-A
Vaccine (processing)		1, 2-B, 3-A, 12-A, 13-A, 23-A, 30, 32, 35-A
VinegarVitamins (processing)	342	18, 29, 35-A 1, 2-B, 3-A, 12-A, 13-A, 23-A, 30, 32, 35-A
Xanthates		1, 2-B, 2-C, 29
Yeast (processing)		1, 2-B, 3-A, 12-A, 13-A, 23-A, 30, 32, 35-A
· · · · · · · · · · · · · · · · · · ·		, = -, - , - , - , - , - , - , - , - , -

^{*}Other products or processes may be authorized by the Director of the Bureau of Alcohol, Tobacco and Firearms, Department of the Treasury, Washington, D.C. Uses of Specially Denatured Alcohol—27 CFR 212.105

Table 6.41: Filmex Special Industrial Solvent Formulations (30)

Quantum's Filmex Solvents are typically used in flexographic printing for cleaning equipment, formulating and thinning inks and in producing rotogravure etchings; in the textile industry to promote adhesion, improve dye penetration and to soften fibers; in chemical and pharmaceutical processing; and in chemical specialties production, such as latex coagulants and lacquers, among others.

Code #	Proof	Formulation
		To every 100 gallons of ethyl alcohol, add:
Filmex A-1	190	5.0 gal. methyl alcohol
	4	1.05 gal, methyl isobutyl ketone
		10.5 lbs isopropyl alcohol, 99%
Filmex A-2	190	15.5 gal. methyl alcohol
		1.05 gal. methyl isobutyl ketone
Filmex B	190	10.25 gal. methyl alcohol
		1.05 gal. methyl isobutyl ketone
		5.25 lbs isobutyl alcohol, 99%
Filmex C	190	5.0 gal. methyl alcohol
		4.46 gal. ethyl acetate, 99%
		1.05 gal. methyl isobutyl ketone
Filmex D-1.	190	5.0 gal. methyl alcohol
		1.05 gal. methyl isobutyl ketone
		15.75 lb isopropyl alcohol, 99%
Eilmay D 2	190	20.75 gal. methyl alcohol
FHILIEX U"Z .		1.05 gal. methyl isobutyl ketone

Table 6.42: Completely Denatured Alcohol (CDA) Formulations (30)

CDA	Proof	Formulation	Applications
		To every 100 gallons of ethyl alcohol, add:	
CDA 19-	1190	4.0 gal. methyl isobutyl ketone 1.0 gal. kerosene, odorless	Cleaning fluids, antifreeze, thinners, detergents, brake fluids
CDA 19-	3190	. 4.0 gal. methyl isobutyl ketone 1.0 gal. rubber hydrocarbon solvent	Cleaning fluids, antifreeze, thinner, detergents, brake fluids
CDA 19-	3200	4.0 gal. methyl isobutyl ketone 1.0 gal. rubber hydrocarbon solvent	Cleaning fluids, detergents, antifreeze, thinners, brake fluids

Table 6.43: Proprietary Solvent Formulations (30)

Code #	Formulation	Applications
Propsolv I-1	100 gal. SDA 1-1 (190° or 200°) . 1.0 gal. rubber hydrocarbon solvent 4.25 gal. ethyl acetate	Shellac, chemical specialties latex coagulants
Propsolv I-2		Shellac, chemical specialties latex coagulants
Propsolv III-1	100 gal. SDA 1-1 (190° or 200°) 1.0 gal. methyl isobutyl ketone 1.0 gal. rubber hydrocarbon solvent 0.87 gal. ethyl acetate	chemical specialties
Propsolv III-2	100 gal. SDA 1-2 (190° or 200°) 1.0 gal. methyl isobutyl ketone 0.87 gal. ethyl acetate 1.0 gal. rubber hydrocarbon solvel	chemical specialties latex coagulants

Table 6.44: Punctilious Specially Denatured Alcohol (SDA) Formulations (30)

SDA	Formulation	Applications
	To 100 gallons of 190° ethyl alcohol o products, 200°, add:	or, for anhydrous
	0.125 oz. Bitrex	•
SDA 1-2	4.0 gal. methanol 1.0 gal. methyl isobutył ketone	Miscellaneous chemical manufacture
SDA 2B-2	0.50 gal. rubber hydrocarbonsolvent	Pharmaceuticals, agricultural chemicals
SDA 2B-3	0.50 gal. toluene	Cosmetics and toiletries
SDA 2B-4	0.50 gal. Shell Solvent B	Plastics
SDA 3A SDA 3C	5.0 gal. methanol 5.0 lb. isopropyl alcohol	Chemical specialties Chemical intermediates
	0.0022 lb. methylene blue 0.05 lb. nicotine, 40% soln 0.95 gal. water	
SDA 12A-3 . SDA 13A	5.0 gal. toluene	Miscellaneous chemical
S DA 19	100 gal. ethyl ether, USP	manufacture Miscellaneous chemical manufacture
	8.0 gal. acetone	External
	8.0 gal. acetone 1.5 gal. methyl isobutyl ketone 20.0 lb. iodine	
	15.0 lb. potassium iodide 20.0 lb. iodine	
SDA 25A-1 .	15.0 lb. sodium iodide 20.0 lb. iodine 15.0 lb. potassium iodide	Pharmaceuticals
SDA 25A-2 .	15.0 lb. water 20.0 lb. iodine 15.0 lb. sodium iodide 15.0 lb. water	Pharmaceuticals
SDA 29-3		Vinegar and other products
	10.0 gal. methanol	chemicals, solvents and drugs
SDA 32	5.0 gal. ethyl ether	Solvents, extractants chemical specialties

SDA	Formulation	Applications
	To 100 gallons of 190° ethyl alcohol products, 200°, add:	or, for anhydrous
SDA 35A-1	.4.25 gal. ethyl acetate, 99%	Animal feed supplement, pill and tablet manufacturing
SDA 37	.1.25 lb. menthol, natural	Pharmaceuticals, mouthwashes, antiseptic solutions
	.10.0 lb. of any denaturant approved by the ATF for SDA 38B or any combination of approved denaturants adding up to 10.0 lbs.	Fragrances, toiletries, disinfectants, pharmaceuticals
	.10.0 lb. of any denaturant approved by the ATF for SDA 38F or any combination of approved denaturants adding up to 10.0 lbs.	mouthwashes
	2.5 gal. diethyl phthalate, odorless 0.125 gal. t-butyl alcohol	coatings, fungicides
	.1.0 gal. diethyl phthalate, odorless or 1.0 gal. diethyl phthalate, regular	Fragrances
	1.5 oz. brucine alkaloid 0.125 gal. t-butył alcohol	fragrances, hair sprays, disinfectants insecticides, dye solutions
	1.5 oz. brucine sulfate 0.125 gal. t-butyl alcohol	fragrances, hau sprays, disinfectants insecticides, dye solutions
	1.0 lb. sucrose octa-acetate 0.125 gal. t-butyl alcohol	
	0.0625 oz. Bitrex 0.125 gal. t-butyl alcohol	solutions, household detergents, funcicides, polishes
SDA 40C	3.0 gal. t-butyl alcohol	Fragrances
Reagent Alcohol	300.0 lb. shellac	Chemical reagents
Alcohol Base	0.27 oz. Bitrex	-
Rubbing Alcohol	0.27 oz. Bitrex	Rubbing alcohol

Table 6.45: Composition and Typical End Uses of Specially Denatured Alcohols (30)

Specially Denatured Alcohol (SDA)	Ethanol ⁽¹⁾	Acctone N.F.	Methanol	Methyl Isobutyl Ketone	Isopropanol	t-Butanol	Ethyl Acetate	Tolucne ⁽⁴⁾									
SDA 1	100 gal		4 gal	1 gal													
SDA 2B	100 gal							0.5 gal									
SDA 3A	100 gal		5 gal														
SDA 3C	100 gal				5 gal												
SDA 23A	100 gal	8 gal															
SDA 2311	100 gal	8 gal	V. V	1.5 gal				State of the state									
SDA 29 ⁽²⁾	100 gal						1 gal										
SDA 30	100 gal		10 gal														
SDA 35A	100 gal						4.25 gal										
SDA 37 ⁽³⁾	100 gal																
SDA 38B ⁽³⁾	100 gal					,											
SDA 38F ⁽³⁾	100 gal																
SDA 39C	100 gal																
SDA 40-2	100 gal				and the second second	0.125 gal											
	100 gal			e en la compania compa	I II de al constant	0.125 gal		· · · · · · · · · · · · · · · · · · ·									
SDA 40B Specially	100 gal					0.125 gal											
	Diethyi Phthalate	Oils a Subst		Brucine Sulfate	Bitrex	Application	S ⁽⁶⁾	1100 CO 100	Specially Denatured Alcohol	Diethyl				Bitrex	Application		nesives, thinner, polishe
Specially Denatured Alcohol (SDA)	Diethyl				Bitrex	Application Solvent for o	oatings, adl	od products.									
Specially Denatured Alcohol (SDA) SDA 1 SDA 2B	Diethyl				Bitrex	Application Solvent for c Solvent for p antibiotics a	coatings, add processing fo and vaccines soap and bat	ood products, and dyes. th preparations, latex									
Specially Denatured Alcohol (SDA) SDA 1 SDA 2B	Diethyl				Bitrex	Application Solvent for antibiotics a Solvent for sprocessing,	coatings, add processing fo and vaccines soap and bat proprietary shampoos, s	ood products, and dyes. th preparations, latex solvents. tains, processing food									
Specially Denatured Alcohol (SDA) SDA 1 SDA 2B SDA 3A	Diethyl				Bitrex	Application Solvent for antibiotics a Solvent for processing. Solvent for sproducts, at Solvent for l	coatings, additional coatings, additional coatings and bat proprietary shampoos, sind cleaning outlons and coatings and coating and coatin	ood products, and dyes. th preparations, latex solvents. tains, processing food									
Specially Denatured Alcohol (SDA) SDA 1 SDA 2B SDA 3A SDA 3C	Diethyl				Bitrex	Application Solvent for antibiotics a Solvent for sprocessing. Solvent for sproducts, au Solvent for lantiseptic se	coatings, add processing found vaccines soap and bat proprietary shampoos, si d cleaning so otions and colutions, pro- external pha	and dyes. th preparations, latex solvents. tains, processing food solutions. reams, soaps, cossing foods. rmacouticals,									
Specially Denatured Alcohol (SDA) SDA 1 SDA 2B SDA 3A SDA 3C SDA 23A	Diethyl				Bitrex	Application Solvent for antibiotics a Solvent for sprocessing, Solvent for sproducts, at Solvent for distribution of the solve	oatings, add processing fo and vaccines soap and bat proprietary shampoos, si d cleaning so otions and co obtions, pro external phas, cleaning s	ood products, and dyes. th preparations, latex solvents tains, processing food solutions. reams, soaps, cessing foods, rmaceuticals, olutions. thyl ether and									
Specially Denatured Alcohol (SDA)	Diethyl				Bitrex	Application Solvent for antibiotics a Solvent for sprocessing, Solvent for sproducts, at Solvent for antiseptic se Solvent for disinfectant Vinegar maethylamines	oatings, add processing found vaccines soap and bat proprietary shampoos, si d cleaning so otions and colutions, pro external phas, cleaning so nufacture, e production, ndustrial de	ood products, and dyes. th preparations, latex solvents tains, processing food solutions. reams, soaps, cessing foods, rmaceuticals, olutions. thyl ether and									
Specially Denatured Alcohol (SDA) SDA 1 SDA 2B SDA 3A SDA 3C SDA 23A SDA 23H SDA 29 ⁽²⁾ SDA 30	Diethyl				Bitrex	Application Solvent for antibiotics a Solvent for processing, Solvent for products, ar Solvent for lantiseptic se Solvent for disinfectant Vinegar maethylamines Solvent for of the Solvent for lantiseptic se Solvent for loss of the Solvent for lantiseptic se Solvent for loss of the Solvent for lantiseptic se Solvent f	coatings, add processing found vaccines soap and bat proprietary shampoos, so d cleaning so didions, pro- external plas, scleaning so mufacture, e production, and strial de s. andy glazes	ood products, and dyes. th preparations, latex solvents. tains, processing food solutions. reams, soaps, cessing foods, rmaceuticals, olutions. thyl ether and									
Specially Denatured Alcohol (SDA) SDA 1 SDA 2B SDA 3A SDA 3C SDA 23A SDA 23H SDA 29 ⁽²⁾ SDA 30 SDA 35A	Diethyl				Bitrex	Application Solvent for antibiotics a Solvent for processing, Solvent for sproducts, at Solvent for antiseptic se Solvent for disinfectant Vinegar maethylamines Solvent for cantibiotics, at	coatings, additional continues and bat proprietary shampoos, side deaning a otions and colutions, provided in the colutions of the colutions of the colutions of the colutions of the colutions of the colutions of the colutions of the colutions of the colutions of the column of the c	ood products, and dyes. In preparations, latex solvents. Itains, processing food solutions. reams, soaps, cessing foods. rranceuticals, olutions. thyl ether and tergents and soaps, processing									
Specially Denatured Alcohol (SDA) SDA 1 SDA 2B SDA 3A SDA 3C SDA 3C SDA 23H SDA 29 ⁽²⁾ SDA 30	Diethyl	Subst			Bitrex	Application Solvent for antibiotics a Solvent for processing, Solvent for sproducts, au Solvent for characteristic solvent for disinfectant Vinegar matchylamines Solvent for dye solution Solvent for antibiotics, Mouthwash NF, room de	coatings, add processing found vaccines soap and bat proprietary shampoos, sid- cleaning, otions and colutions, pro- systemal plass, cleaning s- sucternal plass, cleaning s- mufacture, e- production, and strial des, and glazes unimal feed ps, antisepti- codorants, es, deodoran	sod products, and dyes, the preparations, latex solvents. Tains, processing food solutions. Teams, soaps, cessing foods, rrmaceuticals, olutions. The the processing foods of the control of the processing foods. The control of the processing soaps, as processing supplements. The processing supplements of the processing supplements of the processing supplements.									
Specially Denatured Alcohol (SDA) SDA 1 SDA 2B SDA 3A SDA 3C SDA 23A SDA 23H SDA 29 ⁽²⁾ SDA 30 SDA 35A	Diethyl	Subst			Bitrex	Application Solvent for antibiotics a Solvent for sprocessing. Solvent for products, at Solvent for disinfectant Vinegar maethylamines Solvent for disinfectant Vinegar maethylamines Mouthwash Mouthwash Mouthwash Mouthwash	coatings, additrocessing four vaccines of and vaccines of a detailed of the coating of the coati	ood products, and dyes. In preparations, latex solvents. Itains, processing food solutions. reams, soaps, ecessing foods. rrmaceuticals, olutions. thyl ether and tergents and soaps, processing supplements. c solutions, USP or onts, perfumes, soap and									
Specially Denatured Alcohol (SDA) SDA 1 SDA 2B SDA 3A SDA 3C SDA 23A SDA 23H SDA 29 ⁽²⁾ SDA 30 SDA 35A SDA 35A SDA 37 ⁽³⁾	Diethyl	Subst (3)			Bitrex	Application Solvent for antibiotics a Solvent for processing, Solvent for products, at Solvent for antiseptic se Solvent for disinfectant Vinegar maethylamines Solvent for cantibiotics, Mouthwash by Froom de Mouthwash bath prepar	coatings, additrocessing four accines soap and bat proportiests, so and cleaning standard coating standard c	ood products, and dyes. In preparations, latex solvents. Itains, processing food solutions. reams, soaps, ecessing foods. rrmaceuticals, olutions. thyl ether and tergents and soaps, processing supplements. c solutions, USP or onts, perfumes, soap and									
Specially Denatured Alcohol (SDA) SDA 1 SDA 2B SDA 3A SDA 3C SDA 23A SDA 23H SDA 29 ⁽²⁾ SDA 30 SDA 35A SDA 37 ⁽³⁾ SDA 38B ⁽³⁾	Diethyl Phthalate	Subst (3)			Bitrex	Application Solvent for antibiotics a Solvent for processing, Solvent for products, at Solvent for children in the solvent for children in the solvent for disinfectant Vinegar matchylamines Solvent for dye solution Solvent for children in the solution Solvent for children in the solution of the solution Solvent for children in the solution of the solution Solvent for children in the solution of	coatings, additrocessing four accinesson and batter proprietary shampoos, sind cleaning sind cleaning sources and cleaning sources are consistent and continuous and colutions, processing sources are consistent and continuous and column and continuous and column and continuous and column and colum	ood products, and dyes. In preparations, latex solvents. Itains, processing food solutions. reams, soaps, ecessing foods. rrmacouticals, olutions. thyl ether and tergents and soaps, processing supplements. colutions, USP or onts, perfumes, soap and colutions.									

^{(1) 190} and 200 proof formulations available
(2) Or permissible materials approved by BATF
(3) Denaturants may need to be supplied by customer
(4) Or rubber hydrocarbon solvent
(5) 45 fl oz cucalyptol, NF; 30 av oz thymol, NF; and 20 av oz menthol, USP
(6) For a more complete listing, see Codes of Federal Regulations, Vol 27, Part 21

Table 6.46: Composition of Completely Denatured Alcohol (CDA) (19)

Completely Denatured		Methyl Isobutyl	Rubber Hydrocarbon
Alcohol (CDA)	Ethanol ⁽¹⁾	Ketone	Solvent
CDA 19	100 gal	4 gal	1 gal

Table 6.47: Composition of Synasol Proprietary Solvents, Anhydrol Special Industrial Solvents, and Inksolv ink Solvents (19)

SYNASOL® Solvents	Ethanol	Methanol	isopropanol	Methyl Isobutyl Ketone	Ethyl Acetate	n-Propyi Acetate	Approved Hydrocarbon
PM-41 PM-100	SDA 1, 190 Proof, 100 gal SDA 1, 200 Proof, 100 gal	***			5 gal 5 gal		i gal i gai
PM-3224 PM-509	SDA 1, 190 Proof, 100 gal SDA 1, 200 Proof, 100 gal			1 gai 1 gai	1 gal 1 gal		l gal l gal
ANHYDROL® Solvents							
PM-4079 PM-4083	SDA 3A, 190 Proof, 100 gal SDA 3A, 200 Proof, 100 gal	10 gai 10 gai		l gal l gal			
PM-4078 PM-4217	SDA 3A, 190 Proof, 100 gal SDA 3A, 200 Proof, 100 gal	15 gal 15 gal		l gal l gal		A CONTRACTOR OF THE PARTY OF TH	
PM-4081 PM-4082	SDA 3A, 190 Proof, 100 gal SDA 3A, 200 Proof, 100 gal	annestern trigit. In the fight, is also have not the back the fighter treatment of the back of the fighter treatment.	10 gal 10 gal	i gal i gal			
PM-4080 PM-4176	SDA 3A, 190 Proof, 100 gal SDA 3A, 200 Proof, 100 gal	handere en en en en en en en en en en en en en	15 gal 15 gal	1 gal 1 gal			
PM-4085 PM-4084	SDA 3A, 190 Proof, 100 gal SDA 3A, 200 Proof, 100 gal	A Law and the Company of the Company		1 gal 1 gal	5 gal 5 gal		
PM-4157 PM-4135	SDA 3A, 190 Proof, 100 gal SDA 3A, 200 Proof, 100 gal	5 gal 5 gal	5 gal 5 gal	1 gal 1 gal			was districted as the con-
INKSOLV® Solvents(1)							
PM-6127 PM-6129	SDA 3A, 190 Proof, 85 gal SDA 3A, 200 Proof, 85 gal	14 gal 14 gal				1 gal 1 gal	
PM-6118	SDA 3A, 200 Proof, 89 gal	10 gal				1 gai	
PM-6193 PM-6264	SDA 3C, 200 Proof, 89 gal SDA 3C, 200 Proof, 95 gal	not the the figure and friend response since in the high side of the second	10 gal	The second secon		1 gai 5 gai	

⁽¹⁾ Additional non-methanol-containing formulas may be available on request

Table 6.48: Typical Physical Properties (19)

	Relative Evaporation Rate	Average Wt/gal at 60°F,	Δ lb/gal /Δ°F at	Coefficien Expansion	n, per °C	Close	Point,	ASTM Distillation at 760 nm Hg,
Product	(BuAc=100)	lb	50-86°F	at 20°C	at 55°C	۰F	°C	℃
INKSOLV® Solvents PM-6118 PM-6127	380 390	6.62 6.77	0.00399 0.00401	0.00109 0.00107	0.00113 0.00111	57 62	14 17	=
PM-6129	400	6.62	0.00403	0.00110	0.00114	59	15	_
PM-6193 PM-6264	280 330	6.62 6.65	0.00393 0.00401	0.00107 0.00109	0.00112 0.00113	58 55	14 13	
ANHYDROL® Solven PM-1473 PM-1474	ts 210 210	6.77 6.62	0.00402 0.00402	0.00107 0.00110	0.00112 0.00114	61 55	16 13	75.5-80.5 75.5-80.5
PM-4081 PM-4082	320 200	6.76 6.60	0.00402 0.00398	0.00108 0.00109	0.00112 0.00113	61 57	16 14	77.0-80.5 77.0-80.5
PM-4079 PM-4083	360 380	6.77 6.62	0.00402 0.00402	0.00107 0.00110	$\begin{array}{c} 0.00111 \\ 0.00114 \end{array}$	60 58	16 14	75.0-80.0 74.0-80.0
PM-4157 PM-4135	330 350	6.74 6.61	0.00402 0.00402	0.00108 0.00110	0.00112 0.00114	60 56	16 13	76.0-81.0 76.0-80.0
PM-4085 PM-4084	370 360	6.81 6.66	0.00412 0.00412	0.00109 0.00112	0.00113 0.00116	55 53	13 12	76.0-80.0 75.0-79.0
PM-4080 PM-4176	330 350	6.75 6.63	0.00402 0.00398	0.00107 0.00108	0.00112 0.00113	62 58	17 14	76.5-80.5 77.0-82.0
PM-4078 PM-4217	370 380	6.76 6.62	0.00407 0.00407	0.00109 0.00111	0.00113 0.00116	58 55	14 13	74.0-79.0 74.0-79.0
SYNASOL® Solvents PM-0041 PM-0100	350 410	6.80 6.66	0.00413 0.00410	0.00110 0.00111	0.00114 0.00116	53 47	12 8	74.5-79.5 74.5-79.5
PM-3224 PM-0509	360 360	6.78 6.62	0.00406 0.00406	0.00108 0.00111	0.00118 0.00120	57 51	14 11	74.5-79.5 74.5-79.5
Completely Denature	ed Alcohol (CDA	A)						
Ethanol CD-19 190 Proof 200 Proof	290 330	6.79 6.61	0.00407 0.00402	0.00109 0.00110	0.00113 0.00114	54 51	12 11	76.0-82.0 76.0-82.0
Specially Denatured Ethanol SDA-2B	Alcohol (SDA)							
190 Proof 200 proof	300 330	6.80 6.61	0.00394 0.00395	0.00105 0.00107	0.00109 0.00113	58 55	14 13	77.0-80.0 77.0-80.0
Ethanol SDA-3A 190 Proof 200 Proof	320 360	6.78 6.62	0.00403 0.00398	0.00107 0.00110	0.00112 0.00111	62 56	17 13	76.0-80.0 76.0-80.0
Ethanol SD-4 190 Proof	290	6.82	0.00403	0.00107	0.00111	63	17	_
Ethanol SD-23A 190 Proof 200 Proof	370 410	6.78 6.63	0.00412 0.00416	0.00111 0.00113	0.00115 0.00121	44 37	7 3	=
Ethanol SD-23H 190 Proof	390	6.78	0.00416	0.00111	0.00115	55	13	
Ethanol SD-29H 190 Proof 200 Proof	290 340	6.80 6.62	0.00401 0.00396	0.00107 0.00108	0.00111 0.00112	63 57	17 14	<u>-</u>
Ethanol SD-29E 190 Proof	290	6.79	0.00402	0.00107	0.00111	60	16	76.0-79.0
Ethanol SD-30 190 Proof 200 Proof	330 370	6.78 6.62	0.00403 0.00398	0.00107 0.00109	0.00112 0.00113	60 59	16 15	76.0-80.0 76.0-80.0
Ethanol SD-35A 190 Proof 200 Proof	310 340	6.83 6.66	0.00410 0.00407	0.00109 0.00111	0.00113 0.00115	57 52	14 11	76.0-79.0 76.0-79.0

Table 6.48: (continued)

Product	Relative Evaporation Rate (BuAc=100)	Average Wt/gal at 60°F, lb	Δ lb/gal /Δ°F at 50-86°F	Coefficien Expansio at 20°C			Point, d Cup, °C	ASTM Distillation at 760 mm Hg, °C
Ethanol SD-37 190 Proof	280	6.79	0.00402	0.00107	0.00111	61	16	_
Ethanol SD-38B 190 Proof	300	6.80	0.00399	0.00106	0.00110	63	17	_
Ethanol SD-38F 190 Proof	280	6.83	0.00402	0.00107	0.00111	63	17	
Ethanol SD-39C 190 Proof 200 Proof	300 330	6.81 6.62	0.00403 0.00398	0.00107 0.00107	0.00111 0.00111	61 57	16 14	76.0-80.0 76.0-80.0
Ethanol SD-40 190 Proof 200 Proof	290 330	6.79 6.62	0.00401 0.00402	0.00107 0.00110	0.00111 0.00114	61 58	16 14	77.0-80.0 77.0-80.0
Ethanol SD-40A 190 Proof 200 Proof	290 310	6.79 6.62	0.00402 0.00397	0.00107 0.00109	0.00111 0.00113	62 58	17 14	_
Ethanol SD-40B 190 Proof 200 Proof	300 330	6.79 6.61	0.00400 0.00396	0.00107 0.00108	0.00111 0.00116	62 57	17 14	77.0-80.0 77.0-80.0
Ethanol SD-40C 200 Proof	330	6.61	0.00395	0.00108	0.00112	59	15	77.0-80.0
Pure Alcohols 190 Proof 200 Proof	300 330	6.79 6.61	0.00403 0.00398	0.00107 0.00109	0.00111 0.00113	62 58	17 14	78.2 78.3

Table 6.49: Densities of Pure Ethanol-Water Mixtures at Various Temperatures (19)

Table 6.50: Vapor Pressure of Pure Ethanoi at Various Temperatures (19)

Table 6.51: Constant Boiling Mixtures (19)

COV	MPONENTS		AZEOTROPE			
Compound ⁽¹⁾	Specific Gravity at 20/20°C	Boiling point at 760 mm Hg, °C	Boiling Point at 760 mm Hg, °C	Composition in Azeotrope, % by wt	Sp Gr of Azeotrope or Layers at 20/20°C	
Ethanol Carbon Disulfide	0.7905 1.2657	78.3 46.5	42.4	9.0 91.0	1.197	
Ethanol Carbon Disulfide Water	0.7905 1.2657 1.0000	78.3 46.5 100.0	41.3	5.0 93.4 1.6	Homogeneous	
Ethanol Carbon Tetrachloride	0.7905 1.5875	78.3 76.5	65.0	15.8 84.2	1.377	
Ethanol Carbon Tetrachloride Water	0.7905 1.5875 1.0000	78.3 76.5 100.0	61.8	10.3 86.3 3.4	U 0.935 L 1.519	
Ethanol Chloroform	0.7905 1.4756	78.3 61.2	59.4	7.0 93.0	1.403	
Ethanol Chloroform Water	0.7905 1.4756 1.0000	78.3 61.2 100.0	55.5	4.0 92.5 3.5	U 0.976 L 1.519	

(continued)

Table 6.51: (continued)

CO	MPONENTS			AZEOTROPE	
Compound ⁽¹⁾	Specific Gravity at 20/20°C	Boiling point at 760 mm Hg. °C	Boiling Point at 760 mm Hg.°C	Composition in Azeotrope, % by wt	Sp Gr of Azeotrope or Layers at 20/20°C
Ethanol Cyclohexane Water	0.7905 0.7797 1.0000	78.3 80.7 100.0	62.6	19.7 75.5 4.8	Homogeneous
Ethanol Ethyl Acetate	0.7905 0.9018	78.3 77.2	71.8	31.0 69.0	0.863
Ethanol Ethyl Acetate Water	0.7905 0.9018 1.0000	78.3 77.2 100.0	70.2	8.4 82.6 9.0	0.901 ⁽²⁾
Ethanol Ethylene Dichloride	0.7905 1.2556	78.3 83.5	71.0	33.5 66.5	1.049
Ithanol Ithylene Dichloride Vater	0.7905 1.2556 1.0000	78.3 83.5 100.0	67.8	15.7 77.1 7.2	U 0.941 1. 1.167
Ethanol Teptane	0.7905 0.6845	78.3 98.4	72	48.0 52.0	0.729
Ethanol leptane Vater	0.7905 0.6845 1.0000	78.3 98.4 100.0	68.8	33.0 60.9 6.1	U 0.686 1. 0.801
Ethanol Iexane	0.7905 0.6601	78.3 68.7	58.7	21.0 79.0	0.687
Ethanol leptane Vater	0.7905 0.6601 1.0000	78.3 68.7 100.0	56	12.0 85.0 3.0	U 0.672 L 0.833
Ethanol sopropyl Acetate Vater	0.7905 0.8737 1.0000	78.3 88.5 100.0	74.8	19.4 70.8 9.8	0.874
Ethanol Isopropyl Ether	0.7905 0.7245	78.3 68.5	64.0	17.1 82.9	0.741
Ethanol sopropyl Ether Vater	0.7905 0.7245 1.0000	78.3 68.5 100.0	61.0	6.5 89.5 4.0	U 0.737 L 0.967
Ethanol Methyl Ethyl Ketone	$0.7905 \\ 0.8061$	78.3 79.6	74.8	34.0 66.0	0.802
Ethanol Methyl Ethyl Ketone Nater	0.7905° 0.8061 1.0000	78.3 79.6 100.0	73.2	14.0 75.0 11.0	0.832
Ethanol Pentane	0.7905 0.6269	78.3 36.1	34.3	5.0 95.0	
Ethanol Foluene	0.7905 0.8683	78.3 110.6	76.7	68.0 32.0	0.815
Ethanol Foluene Nater	0.7905 0.8683 1.0000	78.3 110.6 100.0	74.4	37.0 51.0 12.0	U 0.849 L 0.855
Ethanol Frichloroethylene	0.7905 1.4655	78.3 87.1	70.9	27.0 73.0	1.197
Ethanol Friethylamine	0.7905 0.7290	78.3 89.5	76.9	51.0 49.0	0.775
Ethanol Friethylamine Vater	0.7905 0.7290 1.0000	78.3 89.5 100.0	74.7	15.0 75.0 10.0	0.774
Ethanol (95 mm) Vater	0.7905 1.0000	$33.5^{(3)}$ $51.0^{(3)}$	33.4 ⁽³⁾	99.5 0.5	0.792
Ethanol Vater	0.7905 1.0000	78.3 100.0	78.2	95.6 4.4	0.804
Ethanol (3 atm) Vater	0.7905 1.0000	$109.0^{(3)} \\ 134.0^{(3)}$	109.0 ⁽³⁾	95.2 4.8	0.805

⁽¹⁾ The ethanol listed as a compound in this table is pure. Azeotropes vary with the addition of denaturants.
(2) At 25/20°C
(3) At the pressure investigated
NONAZEOTROPES: In binary systems with ethanol and ternary systems with ethanol and water, these materials do not form azeotropes: Acetone, Butanol, 1.4-Dioxane, Ethyl Ether, Methanol, m-Xylene, o-Xylene, p-Xylene, Water-Methanol

Table 6.52: Proof Definitions and Conversion Factors (19)

Proof: The ethanol content of a liquid at 60°F (15.56°C) stated as twice the percent of ethanol by volume. Proof = 2 x volume percent ethanol in a liquid (at 60°F)

Apparent Proof: The equivalent of proof for ethanol solutions containing ingredients other than water (i.e., denatured alcohol). Apparent proof is determined by specific gravity readings for ethanol-water mixtures at 60/60°F.

Proof Gallon: Amount of ethanol in one wine gallon of 100 proof alcohol at 60°F.

Proof gallons = wine gallons at 60°F x 100/proof

Wine Gallon: A United States gallon of liquid measure equivalent to the volume of 231.2 cubic inches. 1 Wine gallon = 231.2 cubic inches

Tax Gallon: The unit measure of spirits for the imposition of tax under section 5001, IRC. For spirits that are 100 degrees of proof or more when withdrawn from bond, the tax is determined on a proof gallon basis. When less than 100 degrees of proof, the tax is determined on a wine gallon basis. Table 6.53 covers ethanol—water compositions from 0 to 200 proof. Keep in mind that, because of the contraction that occurs when ethanol and water are mixed, 100 volumes of ethanol of the designated proof result from mixing the volumes of ethanol and water given in columns 2 and 4.

Table 6.53: Proof Conversion Tables (19)

	Pure 2	00 Proof			1	Pure 2	00 Proof		
Proof at 60°F	Ethanol, Parts by Volume at 60°F	Ethanol, % by Weight at 60°F	Water, Parts by Volume at 60°F	Specific Gravity at 60/60°F	Proof at 60°F	Ethanol, Parts by Volume at 60°F	Ethanol, % by Weight at 60°F	Water, Parts by Volume at 60°F	Specific Gravity at 60/60°F
0 1 2 3	0.0 0.5 1.0 1.5	0.00 0.39 0.80 1.19	100.00 99.53 99.06 98.58	1.0000 0.9993 0.9985 0.9978	40 41 42 43	20.0 20.5 21.0 21.5	16.27 16.68 17.10 17.52	81.72 81.27 80.82 80.38	0.9759 0.9754 0.9749 0.9744
4	2.0	1.59	98.38 98.12	0.9978	43	22.0	17.93	79.93	0.9739
5 6 7 8 9	2.5 3.0 3.5 4.0 4.5	1.99 2.39 3.79 3.19 3.60	97.65 97.18 96.71 96.24 95.78	0.9963 0.9956 0.9949 0.9942 0.9935	45 46 47 48 49	22.5 23.0 23.5 24.0 24.5	18.35 18.77 19.19 19.60 20.02	79.48 79.03 78.58 77.14 77.69	0.9734 0.9729 0.9724 0.9719 0.9713
10 11 12 13	5.0 5.5 6.0 6.5 7.0	4.00 4.40 4.80 5.21 5.61	95.31 94.85 94.39 93.93 93.46	0.9928 0.9921 0.9915 0.9908 0.9902	50 51 52 53 54	25.0 25.5 26.0 26.5 27.0	20.44 20.86 21.29 21.71 22.13	77.24 76.79 76.34 75.89 75.44	0.9708 0.9703 0.9697 0.9692 0.9687
15 16 17 18	7.5 8.0 8.5 9.0 9.5	6.02 6.42 6.83 7.23 7.64	93.01 92.55 92.09 91.63 91.18	0.9896 0.9890 0.9884 0.9878 0.9872	55 56 57 58 59	27.5 28.0 28.5 29.0 29.5	22.50 22.97 23.40 23.82 24.24	74.98 74.53 74.08 73.62 73.17	0.9681 0.9676 0.9670 0.9664 0.9659
20 21 22 23 24	10.0 10.5 11.0 11.5 12.0	8.05 8.45 8.86 9.27 9.68	90.72 90.27 89.81 89.36 88.90	0.9866 0.9860 0.9854 0.9849 0.9843	60 61 62 63 64	30.0 30.5 31.0 31.5 32.0	24.67 25.10 25.52 25.95 26.38	72.72 72.26 71.81 71.35 70.89	0.9653 0.9647 0.9641 0.9635 0.9629
25 26 27 28 29	12.5 13.0 13.5 14.0 14.5	10.09 10.50 10.91 11.32 11.73	88.45 88.00 87.55 87.10 86.65	0.9837 0.9832 0.9826 0.9821 0.9816	65 66 67 68 69	32.5 33.0 33.5 34.0 34.5	26.81 27.24 27.67 28.10 28.53	70.43 69.97 69.51 69.05 68.59	0.9623 0.9617 0.9619 0.9604 0.9597
30 31 32 33 34	15.0 15.5 16.0 16.5 17.0	12.14 12.55 32.96 13.37 13.79	86.20 85.75 85.30 84.85 84.40	0.9810 0.9805 0.9800 0.9794 0.9789	70 71 72 73 74	35.0 35.5 36.0 36.5 37.0	28.97 29.41 29.84 30.28 30.72	68.12 67.66 67.19 66.72 66.25	0.9590 0.9584 0.9577 0.9570 0.9652
35 36 37 38	17.5 18.0 18.5 19.0	14.20 14.61 15.03 15.44 15.85	83.95 83.50 83.06 82.61 82.16	0.9784 0.9779 0.9774 0.9769 0.9764	75 76 77 78 79	37.5 38.0 38.5 39.0 39.5	31.16 31.60 32.04 32.48 32.92	65.78 65.31 64.84 64.37 63.90	0.9555 0.9548 0.9540 0.9533 0.9525

Table 6.53: (continued)

	Puro S	200 Proof				Puno	200 Proof		
Proof at 60°F	Ethanol, Parts by Volume at 60°F	Ethanol, % by Weight at 60°F	Water, Parts by Volume at 60°F	Specific Gravity at 60/60°F	Proof at _60°F	Ethanol, Parts by Volume at 60°F	Ethanol, % by Weight at 60°F	Water, Parts by Volume at 60°F	Specific Gravity at 60/60°F
80	40.0	33.36	63.42	0.9517	140	70.0	62.44	33.43	0.8899
81	40.5	33.81	62.95	0.9509	141	70.5	62.98	32.91	0.8886
82	41.0	34.25	62.47	0.9501	142	71.0	63.51	32.38	0.8874
83	41.5	34.70	61.99	0.9493	143	71.5	64.05	31.86	0.8861
84	42.0	35.15	61.52	0.9485	144	72.0	64.59	31.34	0.8849
85	42.5	35.60	610.04	0.9474	145	72.5	65.13	30.82	0.8836
86	43.0	36.05	60.56	0.9469	146	73.0	65.67	30.29	0.8823
87	43.5	36.50	60.08	0.9460	147	73.5	66.22	29.76	0.8810
88	44.0	36.96	59.59	0.9452	148	74.0	66.77	29.24	0.8797
89	44.5	37.41	59.11	0.9443	149	74.5	67.32	28.71	0.8784
90	45.0	37.87	58.63	0.9434	150	75.0	67.87	28.19	0.8771
91	45.5	38.32	58.14	0.9426	151	75.5	68.43	27.66	0.8758
92	46.0	38.78	57.66	0.9417	152	76.0	68.98	27.13	0.8745
93	46.5	39.24	57.17	0.9408	153	76.5	69.54	26.60	0.8732
94	47.0	39.70	56.68	0.9399	154	77.0	70.10	26.07	0.8718
95	47.5	40.16	56.19	0.9389	155	77.5	70.67	25.54	0.8705
96	48.0	40.62	55.70	0.9380	156	78.0	71.23	25.01	0.8691
97	48.5	41.09	55.21	0.9371	157	78.5	71.80	24.47	0.8678
98	49.0	41.55	54.72	0.9361	158	79.0	72.38	23.94	0.8664
99	49.5	42.02	54.22	0.9352	159	79.5	72.95	23.40	0.8650
100	50.0	42.49	53.73	0.9342	160	80.0	73.53	22.87	0.8636
101	50.5	42.96	53.24	0.9332	161	80.5	74.11	22.33	0.8623
102	51.0	43.43	52.74	0.9322	162	81.0	74.69	21.80	0.8608
103	51.5	43.90	52.25	0.9312	163	81.5	75.27	21.26	0.8594
104	52.0	44.37	51.75	0.9302	164	82.0	75.86	20.72	0.8580
105	52.5	44.85	51.25	0.9292	165	82.5	76.45	20.18	0.8566
106	53.0	45.33	50.75	0.9282	166	83.0	77.04	19.64	0.8552
107	53.5	45.80	50.26	0.9272	167	83.5	77.64	19.10	0.8537
108	54.0	46.28	49.76	0.9262	168	84.0	78.23	18.55	0.8522
109	54.5	46.76	49.26	0.9252	169	84.5	78.84	18.01	0.8508
110	55.0	47.25	48.76	0.9241	170	85.0	79.44	17.46	0.8493
111	55.5	47.73	48.25	0.9231	171	85.5	80.05	16.92	0.8478
112	56.0	48.21	47.75	0.9220	172	86.0	80.62	16.37	0.8463
113	56.5	48.70	47.25	0.9210	173	86.5	81.28	15.82	0.8447
114	57.0	49.19	46.75	0.9199	174	87.0	81.90	15.27	0.8432
115	57.5	49.68	46.24	0.9188	175	87.5	82.52	14.72	0.8416
116	58.0	50.17	45.74	0.9177	176	88.0	83.14	14.16	0.8401
117	58.5	50.66	45.23	0.9167	177	88.5	83.78	13.61	0.8385
118	59.0	51.15	44.72	0.9156	178	89.0	84.41	13.05	0.8369
119	59.5	51.65	44.22	0.9144	179	89.5	85.05	12.49	0.8353
120	60.0	52.15	43.71	0.9133	180	90.0	85.69	11.93	0.8336
121	60.5	52.65	43.20	0.9122	181	90.5	86.34	11.37	0.8320
122	61.0	53.15	42.69	0.9111	182	91.0	86.99	10.80	0.8303
123	61.5	53.65	42.18	0.9100	183	91.5	87.65	10.24	0.8286
124	62.0	54.15	41.67	0.9088	184	92.0	88.31	9.67	0.8269
125	62.5	54.66	41.16	0.9077	185	92.5	88.98	9.09	0.8251
126	63.0	55.17	40.65	0.9065	186	93.0	89.65	8.52	0.8233
127	63.5	55.67	40.14	0.9054	187	93.5	90.34	7.94	0.8215
128	64.0	56.18	39.62	0.9042	188	94.0	91.03	7.36	0.8196
129	64.5	56.70	39.11	0.9031	189	94.5	91.72	6.77	0.8178
130	65.0	57.21	38.60	0.9019	190	95.0	92,42	6.18	0.8158
131	65.5	57.72	38.08	0.9007	191	95.5	93,14	5.59	0.8139
132	66.0	58.24	37.57	0.8996	192	96.0	93,85	4.99	0.8118
133	66.5	58.76	37.05	0.8984	193	96.5	94,58	4.39	0.8098
134	67.0	59.28	36.54	0.8972	194	97.0	95,32	3.78	0.8077
135	67.5	59.80	36.02	0.8969	195	97.5	96.07	3.17	0.8056
136	68.0	60.33	35.50	0.8948	197	98.5	97.60	1.93	0.8010
137	68.5	60.85	34.99	0.8936	198	99.0	98.38	1.29	0.7987
138	69.0	61.38	34.47	0.8923	199	99.5	99.19	0.65	0.7962
139	69.5	61.91	33.95	0.8911	200	100.0	100.0	0.00	0.7937

Table 6.54: Azeotropes of Ethanol (31)

	LCOHOL FORMS BINARY AZEO		%	B.P. of Aze	otrope °C	%	B.P. of Azeo	strone °C
%	B.P. of Azeot	-	27.3	Ethyl acrylate	77.5	7.4	Water	Krope C
79	tert-Amyl ethyl ether	66.6	25	Ethyl propionate	78.0	7 0	Bromodichloromethane	72.0
67.6	Benzene	68.3	75	Ethyl propyl ether	61.2	8	Water	
57	l-Bromobutane	75.0	44	Ethyl sulfide	72.6	65		6 9. 5
67	2-Bromobutane	72.5	75	Fluorobenzene	70.0		1-Bromo-2-methylpropane	
22.5	cis -1 -Bromo -1 -butene	69.6	51	n-Heptane	70.9	3	Water	
64.3	trans-1-Bromo-1-butene	72.8	79	n-Hexane	58.6	91	cis-l-Bromopropane	54.0
66.3	cis-2-Bromo-2-butene	72.3	30	2-lodobutane	77.2	4	Water	
73.3	trans +2 - Brom o - 2 - butene	69.1	30	l-lodo-2-methylpropane	77.0	7.5	trans-Bromopropane	54.5
77.8	2-Bromo-1-butene	67.4	56	l-lodopropane	75.4			
18	l-Bromo-3-methylbutane	77.3	75	2-lodopropane	70.2	5	Water	60.0
59	l-Bromo-l-methylpropane	71.4	58	3-Iodopropene	75.4	83	1-Bromopropane	00.0
85	2-Bromo-2-methylpropane	63.8	33	lsobutyl formate	77.0	1	Water	
83.7	1-Bromopropane	63.6	97	Isoprene	32.7	95	2-Bromopropane	43.3
88.5	2-Bromopropane	55,5	47	lsopropyl acetate	76.8	1.6	Water	
94	2-Bromopropene	46.2	97	Methyl acetate	56.9	3.4	Carbon disulfide	41.3
89	trans - l - Bromopropene	5 8. 7	57.6	Methyl acrylate	73.5		our son disamue	
91	cis-l-Bromopropene	56.4	75	Methyl borate	63.0	3.5	Water	
79	tert-Butyl ethyl ether	66.6	96.5	2-Methylbutane	26.8	92.5	Chloroform	55.4
91	Carbon disulfide	42.4	17	Methyl butyrate	78.0	4.5	Water	
84.2	Carbon tetrachloride	64.9	55	Methyl carbonate	73.5	82.5	1-Chloro-2-methylpropane	58.6
79.7	1-Chlorobutane	65.7	72	Methylcyclopentene	63.3	7		
84.2	2-Chlorobutane	61.2	75	Methylcyclopentene	60.3	73	Water	64.1
85.2	cis-l-Chloro-l-butene	57.0	66	Methyl ethyl ketone	74.8		Cyclohexene	• • • •
79.8	trans -1 -Chloro-1 -butene	61.2	67	Methyl propionate	72.0	5	Water	
88.5	2-Chloro-1-butene	53.6	22	Octane	77.0	78	1,2-Dichloroethane	66.7
84.6	cis-2-Chloro-2-butene	56.8	95	Pentane	34,3	2.85	Water	
93.0	Chloroform	59.4	8.8	2-Pentanone	77.7	90.5	cis-1,2-Dichloroethylene	53.8
59	1-Chloro-3-methylbutane	74.8	19	Perchloroethylene	78.0	1.1	,	
83.7	l-Chloro-2-methylpropane	61.5	81	Propanediol	63,5	94.5	Water	44.4
94	I-Chloropropane	46.7	15	Propyl acetate	78.2	74.5	trans-1,2-Dichloroethylene	
97.2	2-Chloropropane	36.6	56	Propyl ether	74.4	12.8	Water	
96	trans-1-Chloropropene	36.7	55	Thiophene	70.0	69.5	Dimethoxymethane	73.2
95	3-Chloropropene	44.0	32	Toluene	76.7	9	Water	
66	1,3-Cyclohexadiene	60.7	73	Trichloroethylene	70.9	82.6	Ethyl acetate	70.2
69.5	Cyclohexane	64.9		•		17.5	,	
66	Cyclohexene	66.7	ETHYL ALCOHO	OL FORMS TERNARY AZEOTI	ROPES WITH:	17.5	Water	81.4
92.5	Cyclopentane	44.7	%	B.P. of Aze	otrope °C	20.8	Ethyl chloroacetate	~.,.
47.2	l, l-Dichloropropane	74.7	11.4	Water	- <u>r</u>	5.5	Water	
85.5	2,2-Dichloropropane	63.2			77.8	78.4	Trichloroethylene	67.0
41	2,5-Dimethylhexane	73.6	61	Acetal		9	Water	
58	Diethoxymethane	74.2	74	Water	44.0	78	Triethylamine	74.7
69	Ethyl acetate	71.8	74.1	Benzene	64.9		, -	

n-PROPYL ALCOHOL

n-Propanol

 $\mathsf{CH_3CH_2CH_2OH}$

n-Propyl alcohol is a colorless, volatile liquid.

Table 6.55: Physical Properties of n-Propyl Alcohol (31)

Acidity as acetic acid	0.003% by wt, max.
Alkalinity as ammonia	0,003% by wt, max.
Autoignition temperature	540°C
Boiling point at 760 mm	97.15°C
Coefficient of cubical expansion, 0 - 94°C	0.000956 x 10 ⁻³
Color, APHA	5 max.
Critical density	0.2734
Critical pressure	49.9 atm
Critical temperature	263.7°C
Distillation range at 760 mm	2°C including 97.15°C
Electrical conductivity, mhos per cm at 25°C	2 x 10 ⁻⁴
Explosive limits, Lower Upper	2.6% by vol. in air 13.5% by vol. in air
Fire hazard	Dangerous when exposed to heat or flame.
Flash point (open cup) (closed cup)	90°F 59°F
Freezing point	-127°C (-196°F)
Heat of combustion	8020 ca√g
Heat of vaporization at 97.15°C	162.6 cal/g
Limits of flammability (in air	2.59 (*)
by volume)	2.5% (Lower) -127.0°C
Melanda weight	60.09
Molecular weight Non-volatile material	
	0.001 gm/100 ml sample, max.
Odor	Alcohol-like
Refractive index at 20°C	1.3845
Reid vapor pressure at 100°F	0.1 psi
Relative evaporation rate (butyl acetate = 1)	1.3
Specific gravity at 20/4°C at 20/20°C	0.8036 0.8050
Specific heat at 25°C	0.586 cal/g/°C
Surface tension in air, -5°C	25.9 dynes/cm
20°C 60°C	23.8 dynes/cm
Toxicity	20.5 dynes/cm Slight
Vapor pressure	mm Hg
•C •F	-
0 32 10 50	3,44 7,26
20 68	14.5
30 86	27.6
40 104	50.2
50 122 60 140	87.2 147.0
70 15 8	239.0
80 176	376.0
90 194 97.19 206.9	574.0 760.0
Viscosity, 0°C	3.8827 centipoises
20°C	2.2563 centipoises
40°C 90°C	1.4050 centipoises
Water content	0.5310 centipoises 0.2% by wt, max.
	U. Z. W Dy WE, Max.
Weight per gallon at 20°C (68°F)	6.7 lbs

Table 6.56: Azeotropes of n-Propyl Alcohol (31)

%	В. І	of Azeotrope °C	%	В.Р.	of Azeotrope *	
63	Acetal	92.4	27.4	Water		
83.1	Benzene	77.1	21	Acetaldehyde dipropylacetal	87.6	
75	Biacetyl	85.0	7.6	Water		
31	1 - Bromobutane	89.5	82.3	Benzene	67.0	
89.5	2-Bromobutane	85.3	5	Water		
82	n-Butyl chloride	74.8	84	Carbon tetrachloride	65.4	
36	Butyl formate	95.5				
38.5	Carbon tetrachloride	73.1	9	Water	67.8	
17	Chlorobenzene	96.9	79	1,3-Cyclohexadiene	07.0	
32	1-Chlorobutane	74.8	8.5	Water		
91	2-Chlorobutane	67.2	81.5	Cyclohexane	66.6	
69	1-Chloro-3-methylbutane	89.4	9	Water		
18	1-Chloro-2-methylpropane	67.7	79.5	Cyclohexene	63.2	
39	Diethoxymethane	86.2		-,		
15	Dioxane	95.3	8	Water	86.4	
70	Di-n-propyl ether	85.7	47.2	Dipropoxymethane	00.1	
19	Ethyl propionate	93,4	17.6	Water		
72	Ethyl sulfide	85.5	59.5	Ethoxypropoxymethane	83.8	
31	Ethylene chloride	80.7	8	Water		
32	Fluorobenzene	80.2	72	3-Iodopropene	78.2	
96	n-Hexane	65.7		•		
34	1-Iodobutane	96.2	17.5	Water	82,3	
17	2-Iodobutane	94.2	55.9	Nitromethane		
55	1-Iodo-2-methylpropane	93.0	20	Water		
50	Isobutyl formate	93.2	60	3-Pentanone	81.2	
30	Isobutyronitrile	95.0	21	Water		
94.6	Methyl acrylate	70.9	59.5	Propyl acetate	82.2	
55	3-Methyl-2-butanol	93.5		••		
53	Methyl butyrate	94.4	25.3	Water	88.6	
74	Methyl isobutyrate	89.5	16.5	Propyl chloroacetate	00.0	
32	2-Pentanone	96.0	11.7	Water		
37	3-Pentanone	96.0	68.1	Propyl ether	74.8	
1.5	α-Pinene	97.1	13	Water		
60	Propyl acetate	94.2	82	Propyl formate	70.8	
91	n-Propyl bromide	69.7		••		
90.2	Propyl formate	80.6	7	Water	71.6	
47.5	Toluene	92.4	81	Trichloroethylene	,,,,	
28.3	Water	87.7				

Table 6.57: n-Propanol-Water-Benzene (19) Table 6.58: n-Propanol-Water-n-Butanol (19)

Table 6.59: n-Propanol-Water-Heptane (19)

Table 6.60: n-Propanol-Water-Hexane (19)

ISOPROPYL ALCOHOL

Isopropanol, Dimethyl Carbinol, 2-Propanol

 $(CH_3)_2CHOH$

Table 6.61: Physical Properties of Anhydrous Isopropyl Alcohol (31)

Acidity, as acetic acid	0.002% by wt, max.	Heat of fusion	21.08 cal/g
Boiling point at 760 mm	82.3°C	Heat of vaporization	287 Btu/1b
50 mm 10 mm	27°C 2°C	Lower limit of flammability in air	2.65% vol.
Coefficient of expansion at 55°C	0.00111	MAC	400 ppm in air
Color, Pt-Co scale	10 max.	Molecular weight	60.09
Critical pressure	53 atm.	Non-volatile matter	0.002 g/100 ml, max.
Critical temperature	234.9°C	Odor	Non-residual
Dielectric constant at 20°C 40°C	18.62 16.24	Purity	99.5% - 99.9% by vol.
80°C	11.91	Refractive index at 20°C	1.3772
Distillation at 760 mm	Distills entirely within	Specific gravity at 20/20°C	0.7862 - 0.7867
	1.0°C range which in- cludes 82.3°C	Specific heat at 20 °C	0.596 cal/g/°C
Fire hazard	Dangerous when exposed to	Surface tension at 25°C	20.8 dynes/cm
	heat or open flame	Toxicity	Moderate by ingestion; otherwise slight
Flash point (open cup)	70°F	Vapor pressure at 20°C	33.0 mm Hg
Freezing point	-87.8°C	Viscosity at 20°C	2.4 cps.
Heat of combustion	7970 cal/g	Water content	0.5% by wt, max.
	7942 cal/g	Weight per gallon at 20°C 60°F	6.55 lb 6.58 lb

Table 6.62: Physical Properties of 91% isopropyl Alcohol (31)

Acidity, as acetic acid	0.0024% by wt, max.
Color, Pt-Co scale	15 max.
Distillation at 760 mm	Distills entirely within a 1.0°C range which in- cludes 80.4°C
Fire hazard	Dangerous when exposed to heat or open flame
Flash point (open cup)	75 ° F
Non-volatile matter	0.005 g/100 ml, max.
Odor	Non-residual
Permanganate time	30 minutes, minimum, at 15°C when using the Barbet end point
Purity	91.09% by volume, min- imum, at 15.56°C.
Specific gravity at 20/20°C	0.8175 - 0.8185
Toxicity	Moderate by ingestion; otherwise slight
Water content	9% by volume, max.
Weight per gallon at 20°C 60°F	6.81 lb 6.84 lb

Table 6.63: Specific Gravity of Isopropyl Alcohol-Water Mixtures (8)

Specific	20/20°C		Specific 20/20°C					
Gravity	% Vol.	% Wt.	Specific Gravity	% Vol.	% Wt,	Specific Gravity	20/ % Vol.	20°C % Wt.
1.000	0.0	0.0						
0.9990	0,8	0, 6	0, 9240	50,7	43.3	0.8490	но. 60	74. 95
0.9980	1.6	1.3	0.9230	51.2	43.7	0.8160	80.96	75.37
0.9970	2.4	1.9	0.9220	51.6	44.2	0.8470	81.32	75, 79
0. 9960 0. 9950	3. Z 4. 0	2.6	0.9210	52.0	44.6	0.8160	81.68	76.21
		3.3	0.9200	52.5	45.0	0.8450	82.04	76.63
0.9940 0.9930	4, 8 5, 6	3. 9 4. 5	0.9190 0.9180	52.9	45.5	0, 8440	82.40	77.04
0. 9920	6.5	5. 2	0.9170	53.4 53.8	45.9 46.3	0. 8430 0. 8420	82.76 83.12	77, 45 77, 86
0.9910	7.3	5. 8	0.9160	54. 2	46.7	0.8410	83.48	78, 27
0.9900	8. 1	6. 5	0.9150	54.7	47.2	0.8400	83.84	78.68
0.9890	8. 9	7.1	0.9140	55.1	47.6	0.8390	84.20	79.09
0.9880	9.8	7.8	0.9130	55.5	48.0	0, 8380	84.55	79.50
0.9870 0.9860	10.6 11.5	8. 4 9. 1	0.9120 0.9110	56.0 56.4	48.5 48.9	0.8370 0.8360	84.90 85.25	79. 91 80, 32
0.9850	12.3	9. 8	0.9100	56.4	48.9	0.8350	85.60	80.73
0.9840	13.2	10,5	0.9090	57.3	49.7	0. 8340	85. 95	81,14
0.9830	14.0	11.2	0.9080	57.7	50, 2	0.8330	86.30	81.55
0,9820	14.9	11.9	0.9070	58.1	50.6	0.8320	86.65	81.96
0.9810	15.7	12.6	0.9060	58.6	51.0	0.8310	87.00	82.37
0.9800	16,6	13.3	0.9050	59.0	51.4	0.8300	87.33	82.78
0.9790	17, 4	14.1	0.9040	59. 4	51.8	0.8290	87.69	83.19
0.9780 0.9770	18.3 19.1	14.8 15.5	0.9030 0.9020	59. 8 60. 3	52. 3 52. 7	0.8280 0.8270	88. 03 88. 36	83,60 84,01
0.9760	19.9	16. 2	0. 9010	60.7	53.1	0.8260	88.69	84, 42
0.9750	20, 8	16.9	0.9000	61.1	53.5	0.8250	89.02	84. 83
0.9740	21.7	17.5	0. 8990	61.5	53.9	0. 8240	89. 35	85. 24
0.9730 0.9720	22, 5 23, 4	18.2 18.8	0.8980 0.8970	62.0 62.4	54. 4	0, 8230 0, 8220	89.68 90.01	85.65 86.06
0.9710	24, 2	19.4	0.8960	62.8	54, 8 55, 2	0.8210	90.34	86.47
0.9700	25, 1	20.1	0.8950	63.2	55.6	0. 8200	90.67	86.88
0.9690	25. 8	20.7	0.8940	63.6	56.0	0.8190	91.00	87.29
0.9680	26.6	21.3	0. 8930	64. 1	56, 5	0.8180	91.32	87.70
0.9670	27.3	22.0	0.8920	64, 5	56.9	0.8170	91.63	88.10
0.9660 0.9650	28.0 28.7	22.6 23.2	0. 8910 0. 8900	64, 9 65, 3	57.3	0.8160 0.8150	91.93 92.23	88, 50 88, 90
					57, 7			89. 30
0. 9640 0. 9630	29. 4 30. 1	23. 8 24. 4	0.8890 0.8880	65.7 66.1	58. 1 58. 6	0, 8140 0, 8130	92, 53 92, 83	89.70
0.9620	30.8	25.0	0, 8870	66.5	59. 0	0.8120	93.13	90.10
0.9610	31.4	25, 6	0.8860	66.9	59. 4	0.8110	93.43	90.50
0.9600	32. 1	26. 2	0.8850	67.3	59.8	0.8100	93.72	90.90
0,9590	32.7	26.7	0.8840	67.7	60.2	0.8090	94.01	91.30
0.9580	33.3	27.2	0.8830	68.0	60,7	0.8080	94.30	91.70
0.9570	33.9	27.7	0.8820 0.8810	68.4	61.1	0, 8070 0, 8060	94. 58 94. 86	92.10 92.49
0, 9560 0, 9550	34. 5 35. 1	28. 2 28. 7	0.8800	68.8 69.2	61.5 61.9	0, 8050	95.14	92.88
			0.8790	69.6		0, 8040	95, 42	93,27
0.9540 0.9530	35. 7 36. 3	29. 2 29. 7	0.8780	69. 9	62. 3 62. 8	0.8030	95.69	93.66
0.9520	36.8	30. 3	0.8770	70.3	63.2	0.8020	95. 96	94.04
0.9510	37. 4	30, 8	0, 8760	70.7	63.6	0.8010	96.23	94, 42
0.9500	38.0	31.3	0.8750	71.1	64.0	0.8000	96.50	94.80
0.9490 0.9480	38. 5 39. 0	31.8	0, 8740 0, 8730	71.4 71.8	64. 4 64. 9	0.7990 0.7980	96.77 97.04	95.18 95.56
0.9470	39.6	32.3 32.8	0, 8720	72.2	65, 3	0.7970	97.31	95, 94
0.9460	40.1	33.3	0.8710	72.6	65.7	0. 7960	97. 57	96.32
0.9450	40.6	33.8	0.8700	72. 9	66. 1	0.7950	97.83	96.70
0.9440	41.1	34, 3	0.8690	73.3	66.5	0.7940	98.08	97, 08
0.9430	41.6	34. 8	0.8680	73.7	67.0	0.7930	98.33	97.46
0.9420	42.1	35.2	0.8670 0.8660	74. 0 74. 4	67. 4 67. 8	0, 7920 0, 7910	98. 58 98. 83	97. 84 98, 22
0.9410 0.9400	42.7 43.2	35. 7 36. 1	0.8650	74. 8	68.2	0, 7900	99.08	98.60
			0.8640	75, 2	68.6	0. 7890	99. 33	98.98
0.9390 0.9380	43.7 44.2	36.6 37.0	0, 8630	75,5	69.1	0.7880	99. 58	99.36
0.9370	44.7	37.5	0.8620	75.9	69. 5	0.7870	99.83	99.74
0.9360	45.2	38,0	0.8610	76. 3	69. 9	0.7863	100.00	100.00
0,9350	45.6	38. 4	0.8600	76.6	70.3			
0.9340	46. 1	38. 8	0.8590	77.00	70.75			
0.9330	46.6	39. 3	0.8580	77.36	71.17			
0.9320	47.1	39. 7	0.8570 0.8560	77.72 78.08	71.59 72.01			
0.9310 0.9300	47.5 48.0	40. 2 40. 6	0. 8550	78.44	72.43			
			0, 8540	78.80	72. 85			
0.9290 0.9280	48. 5 48. 9	41.1 41.5	0, 8530	79. 16	73.27			
0.9270	49. 4	42.0	0. 852 0	79.52	73.69			
0.9260	49. 8	42. 4	0.8510 0.8500	79. 88 80. 24	74.11 74.54	Gravity-temp	erature c	oefficient of
0, 9250	50. 3	42. 9	0. 6300	ov. 47	17. 27	100 % alcohol	20-22	00086/°C

Table 6.64: Vapor-Liquid Compositions of Isopropyl Alcohol-Water Mixtures and Their Boiling Points (8)

Table 6.65: Refractive Index vs Composition of Isopropyl Alcohol-Water Mixtures at 25°C (19)

Table 6.66: Isopropyl Alcohol-Water: Kinematic Viscosity vs Composition at 25°C (19)

Table 6.67: Azeotropes of isopropyl Alcohol (31)

ISOPROPYL ALCOHOL FORMS BINARY AZEOTROPES WITH:	ISOPROPYL ALCOHOL FORMS TERNARY AZEOTROPES WITH:
-DOT NOT TE TECONOE I CHANG SHAME THE BOT NOT ES WITH.	BOT KOTTE ABCOMOETORMS TERMART ABBOTROTES WITH.

•c

OPROPYL A	LCOHOL FORMS BINARY AZE	OTROPES WITH:	ISOPROPYL ALCOHOL FORMS TERNARY AZEOTROPES WI				
%	В.Р	of Azeotrope °C	%		B.P. of Azeotrope		
56	Acrylonitrile	71.7	7.5	Water			
66.7	Benzene	71.9	73.8	Benzene	66.5		
66	2-Bromobutane	77.5	7.5	Water			
68	2-Butanone	77.9	74	Cyclohexane	64.8		
40	n-Butylamine	84.7		•			
28.1	Butyl isopropyl ether	79.0	7.5	Water	61.1		
92	Carbon disulfide	44.6	71	Cyclohexene	• • • • • • • • • • • • • • • • • • • •		
82	Carbon tetrachloride	67.0	10	Water			
77	I-Chlorobutane	70.8	9.3	$m{D}$ iisobutylen $m{e}$	72.3		
82	2-Chlorobutane	64.0	10.4	Water			
5 7	1-Chloro-3-methylbutane	79.2	67.7	Ethyl butyl ether	73.4		
64	1,3-Cyclohexadiene	70.4	7.7	Water			
67	Cyclohexane	68.6	7.7		69.7		
73	Cyclohexene	70.5		Ethylene dichloride			
48	Diethoxymethane	79.6	11	Water	36.6		
45.5	Diisobutylene	77.8	76	lsopropyl acetate	75.5		
91	2,3-Dimethylbutane	53.8	4.7	Water			
22	1,3-Dimethylcyclohexane	81.0	88	Isopropyl ether	61.6		
38	2,5-Dimethylhexane	79.0	6	Water			
74	Ethyl acetate	74.0	32	Water Nitromethane	78.0		
90	Ethyl propyl ether	62.0					
48	Ethyl sulfide	78.0	13.1	Water	76.3		
60.8	Ethylene dichloride	72.7	48.7	Toluene	10.3		
70	Fluorobenzene	74.5					
49.5	n-Hep ta ne	76.4					
77	Hexane	62.7					
30	l-Iodo-2-methylpropane	81.5					
81	Isobutyl chloride	63.8					
47.7	Isopropyl acetate	80.1					
83.7	Isopropyl ether	66.2					
53.5	Methyl acrylate	76.0					
47	Methylcyclohexane	77.6					
75	Methylcyclopentane	63.3					
70	Methyl ethyl ketone	77.3					
35	Methyl isobutyrate	81.4					
62	Methyl propionate	76.4					
16	Octane	81.8					
94	Pentane	35.5					
48	Propyl ether	78.2					
64	Propyl formate	76.9					
19	Tetrachloroethylene	81.7					
57	Thiophene	76.0					
31	Toluene	80.6					
72	Trichloroethylene	74.0					
77.6	Vinyl acetate	70.8					
12.2	Water	79.5					

Table 6.68: The Effect of Isopropyl Alcohol on the Dilution Ratio of Solvents (14)

DILUENT: TOLUENE

1.5

A. DILUENT: TOLUENE

1.5

A. BUTYL ACETATE. 65%.

ISOPROPYL ACETATE. 35%.

DILUENT: AROMATIC PETROLEUM NAPHTHA

1.5

A. BUTYL ACETATE. 55%.

ISOPROPYL ACETATE. 55%.

DILUENT: AROMATIC PETROLEUM NAPHTHA

1.0

METHYL ISOBUTYL KETONE

DILUENT: ALIPHATIC PETROLEUM NAPHTHA

DILUENT: ALIPHATIC PETROLEUM NAPHTHA

Table 6.69: Viscosity of RS ½ Sec. Nitrocellulose in Mixtures of Toluene, Isopropyl Alcohol and Methyl Isobutyl Ketone (14)

Table 6.70: Methanol-Isopropyl Alcohol: Boiling
Point vs Composition at 760 mm Hg (19)

PER CENT ISOPROPYL ALCOHOL BY WEIGHT

Table 6.71: Methanol-Isopropyl Alcohol:Liquid-Vapor Equilibria at Atmospheric Pressure (19)

Composition at 200 mm. Hg: 43.9 mal per cent in liquid, 60.9 mol per cent in vapor. Isopropanal-Water azeotrope contains 68.3 mal per cent isopropanal.

Table 6.72: Vapor Pressure of Isopropyl Alcohol (Anhydrous) and sec-Butyl Alcohol at Various Temperatures (8)

800 ISOPROPYL ALCOHOL Vapor Pressure, mm Hg SEC-BUTYL ALCOHOL Temperature, °C

Table 6.73: Specific Gravities of Alcohols vs Temperature (8)

n-BUTYL ALCOHOL

n-Butanol, Butanol-1, Butyric Alcohol

$\mathsf{CH_3CH_2CH_2CH_2OH}$

Table 6.74: Physical Properties of n-Butyl Alcohol (31)

PHYSICAL PROPERTIES OF n-BUTYL ALCOHOL

THE STATE OF THE S	BOTTE ALCOHOL
Acidity as acetic acid	0.005% by wt, max.
Aldehydes	None
Boiling point at 760 mm	117.7°C
Chlorides	None
Coefficient of cubical expansion	
per °C per °F	0.00093 0.00052
Color, Pt-Co	10 max.
Critical pressure	48.4 atm
Critical temperature	287°C
Dielectric constant at 25°C	16,1
Distillation range (including 117.7°C)	1.5°C max.
Electrical conductivity at 25°C	9.12 x 10 ⁻⁹ reciprocal ohms
Explosive limits in air, Lower Upper	1.45% by vol. 11.25% by vol.
Fire hazard	Moderate
Flash point, Tag open cup	115 °F
Freezing point	-89.0°C
Heat of combustion	8626 cal/g
Heat of fusion	29.9 cal/g
Heat of vaporization at boiling	141 11/-
point	141.3 cal/g
Ignition temperature	367°C
Iron	None
MAC	100 ppm in air
Melting point	-89.8°C
Molecular weight	74.12 calculated
Non-volatile matter	0.005 g/100 ml, max.
Odor	Characteristic, non- residual
Refractive index at 20°C, nD	1.3992
Relative evaporation rate, n-butyl acetate = 1	0.45
Solubility in water at 20°C	7.8% by wt
Solubility of water in n-Butanol at 20°C	20.1% by wt
Specific gravity at 20/20°C	0.8109
Specific heat of liquid at 20°C	0.563 cal/g
Sulfuric acid test (Pt-Co)	25 max.
Surface tension at 20°C	24.6 dynes/cm
Suspended matter	Substantially free
Toxicity	Moderately toxic by inhalation, ingestion and skin absorption
Vapor pressure at 20°C 40°C 60°C 75°C 100.8°C	4,39 mm Hg 18.6 mm Hg 59.2 mm Hg 131.3 mm Hg 400.0 mm Hg
Viscosity at 20°C	2,948 centipoises
Water content	0.10% by wt, max.
Weight per gallon at 20°C	6.756 lbs

Table 6.75: Vapor Pressure of Butyl Alcohol at Various Temperatures (19)

Table 6.76: Solubility of Water in Butyl Alcohol at Various Temperatures (19)

Table 6.77: Solubility of Butyl Alcohol in Water at Various Temperatures (19)

Table 6.78: Azeotropes of n-Butyl Alcohol (31)

n-BUTYL ALCOHOL FORMS BINARY AZEOTROPES WITH:

%		B.P. of Azeotrope *C	%		B.P. of Azeotrope *C
87	Acetal	101.0	60	Methyl isovalerate	116.3
68.5	1-Bromo-3-methylbutane	110.7	70	4-Methyl-2-pentanon	e 114,4
32.8	Butyl acetate	117.6	50	Octane	110.2
12	Butyl ether	117.3	48	Paraldehyde	115.8
76.4	Butyl formate	105.8	12	α-Pinene	117.4
92.2	Butyl vinyl ether	93.3	29	Pyridine	118.7
2	Camphene	117.8	21	Styrene	116.5
44	Chlorobenzene	115.3	68	Tetrachloroethylene	110.0
88	l-Chloro-3-methylbutan	97.0	73	Toluene	105.6
90	Cyclohexane	79.8	25	o-Xylene	116.8
95	Cyclohexene	82.0	32	p-Xylene	115.7
17.5	Dibutyl ether	117.6		· .	
57	l, 3-Dimethylcyclohexan	108.5			
72	2,5-Dimethylhexane	101.9			
48	Ethyl borate	113.0			
36	Ethyl butyrate	115.7	D	could. Book a manually	A RECORD COME WINE
37	Ethyl carbonate	116.5		COHOL FORMS TERNARY	AZEOTROPES WITH:
83	Ethyl isobutyrate	109.2	%		B.P. of Azeotrope *C
82	Heptane	93.3	37,3	Water	
97	Hexane	67.0	35,3	Butyl acetate	89.4
18.2	2-Hexanone	116.5	41.8	Water	
26	3-Hexanone	117.2	7.9	Water Butyl chloroacetate	93.1
22	l-Iodo-3-methylbutane	117.3	7.9	Butyl Chloroacetate	
31	Isoamyl formate	115.9	29.3	Water	91.0
50	Isobutyl acetate	114.5	27,7	Butyl ether	71.0
52	Isobutyl ether	113.5	21.3	Water	
46	Isopropyl isobutyrate	115.5	68.7	Butyl formate	83.6
55	Isopropyl sulfide	112.0	3.1	Water	
86	Methylcyclohexane	95.3	85.0	water Carbon tetrachloride	64.7
92	Methylcyclopentane	71.8	00.V	Caruon tetrachioride	

ISOBUTYL ALCOHOL

Isobutanol, 2-Methyl Propanol-1, Isopropyl Carbinol

$(CH_3)_2CHCH_2OH$

Table 6.79: Physical Properties of Isobutyl Alcohol (31)

Table 6.80: Azeotropes of Isobutyl Alcohol (31)

Alkalinity	0.003% by wt, max.	ISOBUTYL A	LCOHOL FORMS BINARY AZE	OTROPES WITH:
Boiling point at 760 mm	107.9°C	%	В.	P. of Azeotrope °C
Coefficient of cubical expansion at 10 to 30°C	0.95 x 10 ⁻³	90.7	Benzene	79.9
Color, APHA	10 max.	36.4	1-Bromo-3-methylbutane	103.4
Critical pressure	48 atm	60	Butyl formate	103.0
Critical temperature	265°C	37	Chlorobenzene	107.1
Distillation range (including		78	l-Chloro-3-methylbutane	94.5
107.9°C)	2°C max.	88	1,3-Cyclohexadiene	79.4
Electrical conductivity at 25°C	8×10^{-3} mho per cm.	86	Cyclohexane	78.1
Evaporation rate (n-Butyl Acetate = 1.0)	0.8	85.8	Cyclohexene	80.5
Explosive limits in air.	0.0	44	1,3-Dimethylcyclohexane	102.2
lower limit	1.68% by volume	48	Ethyl isobutyrate	105.5
Fire hazard	Moderate	87	Ethyl propionate	98.9
Flash point, Tag open cup	103 °F	91	Fluorobenzene	84.0
Heat of combustion	6382 cal/g	73	Heptane	90.8
Heat of vaporization at boil-		97.5	Hexane	68.3
ing point 138 cal/g/mole	45	lsobutyl acetate	107.4	
Ignition temperature	440 ° C	79.4	lsobutyl formate	97.8
Melting point	-10 8° C	93.8	Isobutyl vinyl ether	82.7
Molecular weight	74.12 calculated	27	Isopropyl sulfide	105.8
Non-volatile matter	0.001 g/100 ml, max.	75	Methyl butyrate	101.3
Refractive index at 20°C, nD	1.3959	68	Methylcyclohexane	92.6
Solubility in water at 25°C	8.8 ml per 100 ml	95	Methylcyclopentane	71.0
Solubility of water in isobutyl alcohol at 25°C	20.0 ml per 100 ml	10	Methyl isovalerate	107.5
Specific gravity at 20/20°C	0.8034	9	4-Methyl-2-pentanone	107.9
Specific heat at 15°C	0,716 cal/g/°C	81	2-Pentanone	101.8
Surface tension at 20°C	22.8 dynes/cm	80	3-Pentanone	101.7
Toxicity	Highly toxic by in-	68	Pinacolone	105.5
,	halation or ingestion	83	Propyl acetate	101.0
Vapor density (Air = 1.0)	2.55	90	Propyl ether	89.5
Vapor pressure at 20°C	8,8 mm	55	Toluene	101.2
Viscosity at 20°C	6.68 centipoises	73	2,2,4-Trimethylpentane	92.0
Water content	0.2% by wt, max.		· -	
Weight per gallon at 20°C	6.68 lbs			

ISOBUTYL ALCOHOL FORMS TERNARY AZEOTROPES WITH:

30.4	Water	
46.5	Isobutyl acetate	86.8
33.6	Water	
13,3	Isobutyl chloroacetate	90.2
17.3	Water	
76	Isobutyl formate	80.2

Table 6.81: Relative Evaporation Rates of Various Butyl Alcohols and Acetates (41)

sec-BUTYL ALCOHOL

sec-Butanol, Butanol-2, Methyl Ethyl Carbinol

Table 6.82: Physical Properties of sec-Butyl Alcohol (31) CH3CHOHCH2CH3

Table 6.83: Azeotropes of sec-Butyl Alcohol (31)

Acidity as acetic acid	0.003% by wt, max.	sec-BUTYL A	ALCOHOL FORMS BINARY AZE	OTROPES WITH:
Boiling point at 760 mm	99.5°C	%	В.Р	. of Azeotrope *C
Coefficient of cubical expansion at 20°C	0.00101°C	61	tert-Amyl ethyl ether	94.5
Color, Pt-Co (Hazen)	10 max.	93	tert-Amyl methyl ether	86.0
Critical pressure	46.9 atm	84.6	Benzene	78.6
Critical temperature	265.19°C	13.7	sec-Butyl acetate	99.6
Distillation range	98.0-101.0°C	32	Butyl formate	98.0
Fire hazard	Dangerous when exposed	71	1-Chloro-3-methylbutane	91.5
	to heat or flame	79	Cyclohexene	78.7
Flash Point, Tag open cup Tag closed cup	80°F 75°F	46	2,5-Dimethylhexene	93.0
Freezing point	-114.7°C	53	Ethyl propionate	95.7
Heat of vaporization at 1 atm.	134.4 g cal/g	68	Ethyl sulfide	89.0
Molecular weight	74.12	62	Heptane	89.0
Non-volatile matter	0.002 ml. max.	92	Hexane	67.2
Purity	99.0% min.	60	Isobutyl formate	94.7
•	1.39719	41	Methyl butyrate	97.7
Refractive index at 20°C np	1.37/17	59	Methylcyclohexane	89.9
Relative evaporation rate, n-Butyl acetate = 100	120	88.5	Methylcyclopentane	69.7
Solubility in water at 20°C	22.5% by wt	77	Methyl isobutyrate	92.0
Solubility of water in, at 20°C	60.0% by wt	42	3-Pentanone	98.0
Specific gravity at 20/20°C	0.8079	16	Pinacolone	99.1
Specific heat at 8.5°C	0.596	48	Propyl acetate	96.5
Surface tension at 20°C	23.0 dynes/cm	78	Propyl ether	87.0
Toxicity	Moderate	45	Toluene	95.3
Vapor pressure at 20°C	12.1 mm	.,	10.00.0	,
Viscosity at 20°C	3.78 cps.			
Water, presence of	Miscible without tur- bidity with 19 vol. of n-heptane at 20°C			
Weight per gallon at 20°C	6.73 lb			

tert-BUTYL ALCOHOL

tert-Butanol, 2-Methyl Propanol-2

(CH₃)₃COH

Table 6.84: Physical Properties of tert-Butyl Alcohol (31)

Table 6.85: Azeotropes of tert-Butyl Alcohol (31)

Acidity as acetic acid	0.003% by wt, max.	tert-BUTYL A	ALCOHOL FORMS BINARY AZE	OTROPES WITH:
Boiling point at 760 mm	82.36°C	%	B.F	of Azeotrope °C
Coefficient of cubical expansion at 26°C	0.00132°C	63.4	Benzene	74.0
Color, Pt-Co (Hazen) max.	10 max.	94	Carbon disulfide	45.7
Compressibility at 20°C.		76	Carbon tetrachloride	29.5
between 100-500 megabars	79.6 x 10 ⁻⁶ megadynes/cm	41	1-Chloro-3-methylbutane	81.2
Critical pressure	46 atm	61.5	1,3-Cyclohexadiene	73.4
Critical temperature	234.9°C	63	Cyclohexane	71.3
Dielectric constant at 19°C (audio)	11.4 cgs units	60	Cyclohexene	73.2
Distillation range	81.5-83.0°C	93	Cyclopentane	48.2
Dipole moment	1.65 x 10 ¹⁸	65	Dibromodichloromethane	79.0
Fire hazard	Dangerous when exposed	94	1, 1-Dichloroethane	57.1
Flash point, Tag open cup	to heat or flame	33	Diisobutyl alcohol	81.5
Tag closed cup	60°F (approx.) 48°F (approx.)	87	2, 3-Dimethylbutane	55.3
Freezing point	25.57°C	10	1,3-Dimethylcyclohexane	82.2
Heat of combustion		23	2,5-Dimethylhexane	81.5
Liquid at constant volume constant pressure	6290 cal/g	75	Ethyl acetate	76.0
Vapor at constant pressure	6302 cal/g 6426 cal/g	38	Ethyl nitrate	78.0
Heat of fusion at 25.5°C	21.88 cal/g	30	Ethyl sulfide	79.8
Heat of solution at 15°C.	21.00 Cai/g	69	Fluorobenzene	76.0
of the solid alcohol in water	3.23 kg cal	38	Heptane	78.0
Heat of vaporization at 1 atm.	130.6 g cal/g	78	Hexane	63.7
Melting point	25.57°C	83	Isobutyl chloride	65.5
Molecular weight	74.12	34	Methylcyclohexane	78.8
Molecular volume, $20/V_{M}$	94.3 cc	74	Methylcyclopentane	66.6
Non-volatile matter	0.002 g/100 ml, max.	70	Methylcyclopentene	69.5
Purity	99.0% by wt, min.			
Refractive index at 20°C, np	1.3841			
Solubility at 20°C, in water water in	Complete Complete			
Specific heat at 26°C	0.726 g cal/g			
Specific gravity at 26/4°C	0.7793			
Surface tension at 20°C 34.5°C 80°C	20.7 dynes 19.45 dynes 14.6 dynes			
Toxicity	Moderate			
Vapor pressure at 30°C	57.3 mm			
Viscosity at 30°C	3.316 срв.			
Water	Miscible without turbid- ity with 19 vol, of n-heptane at 20°C			
Weight per gallon at 26°C	6.50 lb			

PRIMARY AMYL ALCOHOL

Primary amyl alcohol, a mixture of isomers all of which are primary alcohols, is composed of approximately 60% pentanol–1 (CH3CH2CH2CH2CH2CH3); 35% 2-methyl butanol–1 (CH3CH2CH(CH3)CH2OH); and 5% 3-methyl butanol–1 (CH3CH(CH3)CH2CH2OH).

Table 6.86: Physical Properties of Primary Amyl Alcohol (19)

Acidity as acetic acid 0.01% by wt, max. 133.1°C Boiling point at 760 mm 68°C 50 mm 10 mm Carbonyl, as C₅ aldehyde 0.20% by wt, max. Coefficient of expansion at 20°C 0.00092 per °C Color, Pt-Co 15.max. Distillation at 760 mm Ibp 127.5°C 139.0°C, max. Fire hazard Moderate Flash point (open cup) 118°F Freezing point Sets to glass below -90°C Heat of vaporization at 133°C 242 Btu/1b 98.0% by wt, min. Purity, as primary amyl alcohols Refractive index at 20°C, nD 1.4084 Solubility in water at 20°C 1.7% by wt Solubility of water in, at 20°C 9.2% by wt Specific gravity at 20/20°C 0.8134

PRIMARY n-AMYL ALCOHOL

Table 6.87: Physical Properties of Primary n-Amyl Alcohol (31)

Acidity (mg KOH/g)	0.06 max.
Boiling point	137.8°C
Clarity	No turbidity or sus- pended matter
Coefficient of expansion per °C	0.00092
Distillation, initial final	Not below 134.8°C Not above 140.0°C
Fire point	140°F
Fire hazard	Moderate
Flash point (open cup)	135°F
Heat of vaporization	120.6 cal/g (cal- culated)
Melting point	-78.5°C
Molecular weight	88.15 (calculated)
Non-volatile matter at 100°C	5.0 mg/100 ml, max.
Refractive index at 20°C	1.4099
Specific gravity at 20/20°C	0.82
Specific heat	0.712 cal/g
Toxicity	Highly toxic by inhal- ation and ingestion
Viscosity at 25°C 60°C	3.31 centipoises 1.33 centipoises
Weight per gallon	6.82 lbs

Table 6.88: Physical Properties of sec-Amyl Alcohol (31)

Acidity as acetic acid	0.02% max.
Boiling point	119.3°C
Coefficient of expansion per 1°F 1°C	0.00053 0.00095
Distillation range	105° - 125°C
Evaporation rate at 90°F in minutes: 5% 25% 50% 75% 90% 95%	2.25 11.75 24.25 38.25 50.25 56.50
Flash point, Open cup	105°F
Fire hazard	Moderate
Heat of vaporization	97.8 cal/g (cal- culated)
Non-volatile at 100°C	0.003 g/100 cc max.
Purity	99% by wt, min.
Refractive index at 25°C, np	1.4041
Solubility of water in	8.2% by vol.
Specific gravity at 20°C	0.811
Toxicity	Highly toxic by ingestion and inhalation
Weight per gallon at 20°C	6.75 lbs

Table 6.89: Azeotropes of sec-Amyl Alcohol (31)

sec-AMYL ALCOHOL FORMS BINARY AZEOTROPES WITH:

%	В.Р	. of Azeotrope *C
45	Chlorobenzene	118.2
62	1, 3-Dimethylcyclohexane	113.0
33	Ethylbenzene	118.0
53	Ethyl butyrate	118.5
85	Heptane	96.0
68	Isobutyl acetate	116.5
5 9	Isobutyl ether	115.0
82	Methylcyclohexane	98.6
80	Methyl isovalerate	115.8
44	Octane	114.8
72	Toluene	107.0
30	m-Xylene	118.3

sec-n-AMYL ALCOHOL

Table 6.90: Physical Properties of sec-n-Amyl Alcohol (31)

Acidity as acetic acid	0.06% max.
Boiling point	115.6°C
Coefficient of expansion per °C	0.00149
Distillation, 95%	Between 113.6 - 117.6°C
Fire hazard	Moderate
Flash point	100°F
Freezing point	Less than -75°C
Heat of vaporization	96.8 cal/g (calculated)
Non-volatile at 100°C	0.003 g / 100 cc max.
Refractive index at 20°C	1.4098
Specific gravity at 20°C	0.82
Toxicity	Highly toxic by inhalation and ingestion
Viscosity at 25°C 60°C	4.12 centipoises 1.09 centipoises
Weight per gallon at 20°C	6.81 lbs

Table 6.91: Azeotropes of sec-n-Amyl Alcohol (31)

sec-n-AMYL ALCOHOL FORMS BINARY AZEOTROPES WITH:

%		B.P. of Azeotrope °C
97	Cyclohexane	80.0
80	Heptane	96.0
77	Methylcyclohexane	97. 4
65	4-Methyl-2-pentanone	115.0
65	Toluene	106.0

tert-AMYL ALCOHOL, REFINED

2-Methyl Butanol-2, Dimethylethyl Carbinol, Amylene Hydrate, tert-Pentanol (CH₃)₂COHCH₂CH₃

Table 6.92: Physical Properties of Refined tert-Amyl Alcohol (31)

Acidity as acetic acid	0,15% max.
Boiling point	101.8°C
Clarity	No turbidity or sus- pended matter
Coefficient of expansion	
per °C	.0.00133 (calculated)
Distillation, 95% between	98.8 - 103.8°C
Fire hazard	Dangerous when exposed to heat or flame
Flash point, Open cup	70°F
Freezing point	-11.9°C
Heat of vaporization	93.4 cal/g
Molecular weight	88.15 (calculated)
Neutralization value, mg KOH/g	0.06 max.
Non-volatile matter	0.003 g/100 cc, max.
Odor	Camphor-like
Refractive index at 20°C	1.4052
Specific gravity at 20/20°C	0.81 - 0.82
Specific heat	0.753 cal/g
Toxicity	Moderate
Viscosity at 25°C at 63°C	3.70 centipoises
	0.99 centipoises
Water content	None
Water tolerance, water	
per 100 cc alcohol	18.0 min.
Weight per gallon	6.75 lbs

Table 6.93: Azeotropes of tert-Amyl Alcohol (31)

tert-AMYL ALCOHOL FORMS BINARY AZEOTROPES WITH:

%		B.P. of Azeotrope *C
85	Bensene	80.0
85	1,3-Cyclohexadiene	79.7
84	Cyclohexane	78.5
83	Cyclohexene	80.8
32	1,3-Dimethylcyclohexan	e 101.1
50	2,5-Dirnethylhexane	97.0
73.5	Heptane	92.2
96	Hexane	68.3
60	Methylcyclohexane	92.0
95	Methylcyclopentane	71.5
25	Octane	101.1
80	Propyl ether	88.8
44	Toluene	100.5

ISOAMYL ALCOHOL

3-Methyl-1-Butanol, Primary Isoamyl Alcohol, Isobutyl Carbinol

 $(CH_3)_2CHCH_2CH_2OH$

Table 6.94: Physical Properties of isoamyl Alcohol (31)

Table 6.95: Azeotropes of Isoamyi Alcohol (31)

Acidity as acetic acid	0.01% max.	ISOAMYL ALC	COHOL FORMS BINARY AZEO	TROPES WITH:
Boiling point at 760 mm	131.4°C	%	В.	P. of Azeotrope *C
Coefficient of expansion per °C	0.00090	15	Bromobenzene	131.7
per °F	0.00050	82.5	Butyl acetate	125.9
Color, APHA	No. 10 max.	35	Butyl ether	129.8
Critical temperature	307°C	76	Camphene	130.9
Distillation range, below 128°C above 132°C	None None	66	Chlorobenzene	124.4
Dryness	A 5 ml, sample is clearly	6	Cumene	131.6
 ,	miscible with at least 19 parts of 60 Be gas- oline at 60°F	73	1,3-Dimethylcyclohexane	116.6
		85	2,5-Dimethylhexane	107.6
Esters	Not more than 0.060% as	42	Ethyl isovalerate	130.5
	amyl acetate	93	Heptane	97.7
Fire hazard	Moderate	2.6	Isoamyl acetate	129.1
Flash point, Open cup	125 °F	74.5	Isoamyl formate	123.6
Heat of combustion	794.5 gram calories	88	Isoamyl vinyl ether	112.1
	per gram	78	Isobutyl ether	119.8
Latent heat of vaporization	105.4 gram calories per gram	28	Isobutyl propionate	131.2
MAC	100 ppm in air	76	Mesityl oxide	129.2
Melting point	-117,2°C	87	Methylcyclohexane	98.2
Molecular weight	88.15	65	Octane	120.0
Non-volatile matter	0.003% max.	78	Paraldehyde	123.5
Odor	Alcoholic, non-residual	26	a-Pinene	137.7
Refractive index at 20°C	1.4014	47	Propyl is obutyrate	130.2
Solubility in water at 14°C	2.0% by wt	21	Propyl sulfide	130.5
Specific gravity at 20/20°C	0.810 - 0.813	95	2, 2, 4-T rimethylpentane	99.0
Specific heat at 20°C	0.544 gram calories per gram per °C	48	o-, m-, or p-Xylene	125-126
Surface tension at 20°C	23.8 dynes per cm	ISOAMYL AL	COHOL FORMS TERNARY AZ	EOTROPES WITH:
Toxicity	Highly toxic by ingestion and inhalation	%	В	.P. of Azeotrope °C
Vapor pressure at 20°C	2.8 mm Hg	44.8	Water	
Viscosity (absolute) at 23.8°C	3.86 centipoises	24.0	Isoamyl acetate	93.6
Weight per gallon at 20°C	6.76 lbs approx.	44.3	•	
		46.2	Water	95.4
		6.5	Isoamyl chloroacetate	
		32.4	Water	00.0
		48	Isoamyl formate	89.8

ACTIVE AMYL ALCOHOL

Table 6.96: Physical Properties of Active Amyl Alcohol (31)

128°C
0.00078
Between 125 - 131°C min. Above 130°C max.
120 °F
Less than -70°C
100.0 cal/g (calculated)
1.4097
0.003 g/100 cc
0.816
5.09 centipoises 1.44 centipoises
6.80 lbs

FUSEL OIL, REFINED

Refined fusel oil is a volatile, poisonous, oily mixture consisting largely of amyl alcohols.

Table 6.97: Physical Properties of Refined Fusel Oil (31)

Acidity as acetic acid	0.01% max.	
Coefficient of expansion per 1°C 1°F	0.00051-0.0006 0.00092-0.0011	
Color, APHA	No. 10 max.	
Distillation range (ASTM) below 110°C below 120°C below 130°C below 130°C Above 135°C None None None None None None None		
Dryness	A 5 ml. sample is clearly miscible with at least 19 parts of 60° Bé gas- oline at 60°F	
Evaporation rate at 95°F	% Minutes 5 3.5 25 17.0 50 36.5 75 64.75 90 90.25 95 103.5	
Fire hazard	Moderate	
Flash point, Open cup Closed cup	123°F, approx. 106°F, approx.	
Specific gravity at 20/20°C	0.810-0.815	
Toxicity	Highly toxic by ingestion and inhalation	
Water solubility at 25°C, 100 cc solvent dissolves	9.9 cc water	
Weight per gallon at 20°C	6.76 - 6.77 lbs	

METHYLAMYL ALCOHOL

Methyl Isobutyl Carbinol, 4-Methylpentanol-2, MIBC

 $(CH_3)_2$ CHCH2CHOHCH3

Methylamyl alcohol is a secondary alcohol.

Table 6.98: Physical Properties of Methylamyl Alcohol (31)

Acidity as acetic acid	0.005% by wt, max.	Heat of vaporization at 1 atm.	98.6 g cal/g
Azeotrope with water:		MAC	25 ppm in air
boiling point, 760 mm, *C methyl amyl alcohol, %w	94.3 55.6	Molecular weight	102,17
Boiling point at 760 mm	131.63 - 131.8°C	Non-volatile matter	0.005 g/100 ml max.
Coefficient of cubical expansion		Odor	Mild and nonresidual
at 20°C/°C	0.00103	Purity, minimum	97.5% by wt
Color, Pt-Co scale	10 max,	Refractive index at 20°C, nD	1.4081 - 1.4113
Critical pressure, atm.	42.4	Solubility in water at 20°C	1.7 - 1.8% by wt
Critical temperature	312°C	Solubility of water in, at 20°C	5.8 - 6.2% by wt
Distillation range, 760 mm	130.0 - 133.0°C	Specific gravity at 20/20°C	0.8079 - 0.8080
Fire hazard	Moderate	Specific heat at 20°C	0.52 g cal/g-°C
Flash point, Tag open cup	131 °F	Surface tension at 20°C	22.8 dynes/cm
Tag closed cup	106 °F	Suspended matter	Substantially free
Freezing point	-90°C, sets to a glass below	•	,

2-ETHYLBUTYL ALCOHOL

Table 6.99: Physical Properties of 2-Ethylbutyl Alcohol (31)

Acidity as acetic acid	0.02% max.	Solubility in water at 20°C	0.43% by wt
Boiling point at 760 mm Boiling range at 760 mm	147.0°C	Solubility of water in, at 20°C	4.6% by wt
below 140°C	None	Specific gravity at 20/20°C	0.8328
below 145°C below 155°C	Not more than 5% Not less than 95%	Specific heat at 25°C	0.586 cal/g
above 160°C	None	Surface tension at 28°C	28.05 dynes/cm
Coefficient of expansion	0.000803 +- 3086	Vapor pressure at 20°C	1.2 mm
per *C	0.000892 to 20°C 0.000921 to 55°C	Viscosity at 20°C	5.63 cps.
Dryness at 20°C	Miscible with 19 vol. of 60° Bé gasoline	Weight per gallon at 20°C	6.93 lbs
Flash point (ASTM open cup)	58°C (137°F)		
Heat of vaporization, 1 atm.	196 Btu/1b		
Molecular weight	102.17		
Non-volatile matter	0.005% max.		
Refractive index at 20°C	1.4229		

n-Hexanol, Hexanol-1, Amyl Carbinol

CH₃(CH₂)₄CH₂OH

Table 6.100: Physical Properties of n-Hexyl Alcohol (31)

Acidity as acetic acid	0.01% by wt	Refractive index at 20°C, nD	1.4181
Boiling point at 760 mm	157,1°C	Solubility in water at 20°C	0.58% by wt
50 mm 10 mm	89°C 60°C	Solubility of water in, at 20°C	7.2% by wt
Boiling range at 760 mm	153 to 160°C	Specific gravity at 20/20°C	0.8203 - 0.8208
Color (Pt-Co Scale)	15 max.	Specific heat at 16.9°C at 13°C	0.544 Cal/gm/°C 0.500 Cal/gm/°C
Fire hazard	Moderate	Surface tension at 30°C	23.6 dynes/cm
Flash point (Open cup)	165°F	Suspended matter	Substantially free
Freezing point	-44.6°C	Vapor pressure at 20°C	0.43 mm
Heat of vaporization at 1 atm.	213 Btu/1b	Viscosity (absolute) at 20°C	5,4 cps
Hydroxyl number	530 min.	Water content	Miscible without turbid-
Iodine number	1.2 min.	water content	ity with 19 vol. of 60*
Molecular weight	102.17		API gasoline at 20°C
Odor	Mild	Weight per gallon at 20°C	6.83 lbs

Table 6.101: Solubility of Water In n-Hexyl Alcohol (31)

Table 6.102: Azeotropes of Hexyl Alcohol (31)

HEXYL ALCOHOL FORMS BINARY AZEOTROPES WITH:

DAIL ALCOI.	OL TORMO BINART MEDOTR	01 20 "1111.
%	B.P. of	Azeotrope °C
63.5	Anisole	151.0
27	Benzyl methyl ether	156.7
52	Camphene	150.8
56	o-Chlorotoluene	153.5
46	p-Chlorotoluene	154.0
65	Cumeme	149.5
53	2, 7-Dimethyloctane	152.5
11	Isoamyl ether	157.0
40	Isoamyl propionate	156.7
50	Isobutyl butyrate	155.0
45	Mesitylene	153.5
19	Phenetole	157.7
60	α-Pinene	150.8
55	Propylbenzene	152.5
32	Pseudocumene	156.3
77	Styrene	144.0
85	m-Xylene	138.3
82	o-Xylene	143.6
87	p- Xylene	137.0

CYCLOHEXYL ALCOHOL

Table 6.103: Physical Properties of Cyclohexyl Alcohol (31)

Boiling point at 760 mm Boiling range at 760 mm, 5-95% Color, APHA Crystallization point Dielectric constant at 25°C Evaporation rate at 45°C (toluene = 100) Fire hazard Flash point (Closed cup) (Open cup) Freezing point Heat of combustion, liquid Heat of fusion Heat of vaporization Ketone as cyclohexanone Phenol Refractive index at 20°C Solubility in water at 20°C	161.1°C (322°F) 156-163°C 10 max10°C min. 15.0 8 approx. Moderate 145°F 18-25.15°C 8893 cal/g 4.9 cal/g 108 cal/g 0.5% max. 0.05% max. 1.4656 3.6% by wt.	Toxicity Vapor density (air = 1.00) Vapor pressure at 20 °C 70 80 100 120 140 150 161.1 Viscosity at 25 °C 39.1°C 65.9°C 90 °C Water Weight per gallon at 20°C (68°F)	Moderate by ingestion and inhalation 3.45 0.8 mm 15 27 78 187 398 554 760 49.8 centipoises 20.3 cps. 5.8 cps. 2.45 cps. 0.5% max. 7.91 lbs.
Heat of fusion Heat of vaporization Ketone as cyclohexanone Phenol	108 cal/g 0.5% max. 0.05% max.	65.9°C 5 90 °C 2 Water 0.9	5.8 cps. 2.45 cps. 0.5% max.
Solubility in water at 20°C Solubility of water in at 20°C Specific gravity at 20/4°C Specific heat at 15-18°C Surface tension at 16.2°C	3.6% by wt. 20% by wt. 0.9493 0.417 cal/gm 34.23 dynes/cm		

Table 6.104: Azeotropes of Cyclohexyl Alcohol (31)

CYCLOHEXYL ALCOHOL FORMS BINARY AZEOTROPES WITH

%		B. P. of Azeotrope °C
70	Anisole	152.5
38	Benzyl methyl ether	159.0
59	Camphene	151.9
85	Chloroacetal	155.6
62	o-Chlorotoluene	155.5
45	p-Chlorotoluene	156.5
8	Cineole	160.55
72	Cumene	150.0
28	Cymene	159.5
25	Indene	160.0
22	Isoamyl ether	158.8
37	Isoamyl propionate	157.7
80	Isobutyl butyrate	156.0
35	α -Phellandrene	158.0
60	Propylbenzene	153.8
83	Propyl isovalerate	155.1
40	Pseudocumene	158.0
35	a-Terpene	158.3
22	Thymene	159.8
95	m-Xylene	138.9
86	o-Xylene	143.0

HEPTYL ALCOHOL

Heptanol-1, Alcohol C-7

C7H15OH

Table 6.105: Physical Properties of Heptyl Alcohol (31)

Boiling point at 765 mm	175°C
Freezing point	-34.6°C
Refractive index at 20°C, n	1.4233
Specific gravity at 20/4°C	0.824

Table 6.106: Azeotropes of Heptyl Alcohol (31)

HEPTYL ALCOHOL FORMS BINARY AZEOTROPES WITH:

%		B.P. of Azeotrope *C
80	Benzyl methyl ether	167.0
90 .	Camphene	159.3
53	Cymene	172.5
50	Dipentene	171.7
63	lsoamyl ether	170.4
92	Isobutyl isovalerate	171.0
48	p-Methylanisole	173.0
72	Phenetole	169.0
60	α-Terpinene	169.7

2-HEPTYL ALCOHOL

Heptanol-2, Methylamyl Carbinol

 $CH_3(CH_2)_4CHOHCH_3$

2-Heptyl alcohol is a secondary alcohol.

Table 6.107: Physical Properties of 2-Heptyl Alcohol (31)

Acidity as acetic acid	0.03% by wt., max.
Boiling point at 760 mm	160.4°C
Boiling range at 760 mm, below 155°C below 158°C below 162°C above 165°C	None Not more than 5% Not less than 95% None
Color (Pt-Co scale)	15, max.
Dryness at 20°C	Miscible with 19 vols. 60° Bé gasoline
Fire hazard	Moderate
Flash point (Open cup)	160°F
Solubility in water at 20°C	0.35% by wt.
Solubility of water in at 20°C	5.80% by wt.
Specific gravity at 20/20°C	0.8187
Vapor pressure at 20°C	1.0 mm
Weight per gallon at 20°C	6.81 lbs.

3-HEPTYL ALCOHOL

Heptanol-3

CH3CH2CH(OH)C4H9

Table 6.108: Physical Properties of 3-Heptyl Alcohol (31)

Acidity as acetic acid 0.02% by wt. Boiling point at 760 mm 156.2 °C
Boiling range 153-158°C
Color, APHA (Pt-Co scale) 5
Fire hazard Moderate

Fire hazard Moderate

Flash point 140°F

Freezing point -70°C sets to glass below

Specific gravity at 20/20°C 0.8224
Vapor pressure at 20°C 0.58 mm
Weight per gallon at 20°C 6.84 lbs.

2-ETHYLHEXYL ALCOHOL

2-Ethylhexanol, Octyl Alcohol

CH2CH2CH(C2H5)CH2OH

Table 6.109: Physical Properties of 2-Ethylhexyl Alcohol (31)

Acidity as acetic acid	0.01%, max.	Heat of vaporization, 1 atm.	167 Btu/lb
Aldehydes	None	Molecular weight	130.22
Boiling point at 760 mm	184.8°C	Refractive index at 20°C, nD	1.4316
Boiling range, below 180°C	None	Solubility in water at 20°C	0.10% by wt
above 192°C	None	Solubility of water in, at 20°C	2.6% by wt
Coefficient of expansion per *C	0.000875 to 20°C	Specific gravity at 20/20°C	0.8339
	0.000902 to 55°C	Specific heat at 25°C	0.564 cal/gm/°C
Color, APHA	5 max.	Surface tension at 22°C	30.0 dynes/cm
Constant-boiling mixture,	b.p. 99.1°C	Unsaturates, as ethyl hexanol	0.2% max.
solvent 20% water 80%		Vapor pressure at 20°C	0.05 mm
Fire hazard	Slight	Viscosity at 20°C	9.8 cps.
Flash point, Open cup	185°F	Weight per gallon at 20°C	6.94 lbs
Freezing point	-70°C sets to glass below		

n-OCTYL ALCOHOL

Iodine number

n-Octanol, Octanol-1

 $CH_3(CH_2)_6CH_2OH$

Table 6.110: Physical Properties of n-Octyl Alcohol (31)

Acid number	0.2 max.	Molecular weight	130.22
Boiling point at 760 mm	195°C (383°F)	Refractive index at 20°C, nD	1.42920
Boiling range at 760 mm	194 - 197°C	Solubility in water at 25°C	0.059 g per 100
Color, dichromate	0.002 max.		g water
Ester number	1.3 max.	Specific gravity at 20/4°C	0.827
Fire hazard	Slight	Viscosity at 20°C	8.925 centipoise
Flash point (Open cup)	195°F	Water	0.25% max.
Freezing point	-15°C (5°F)		
Heat of combustion	9690 cal/g		
Hydroxyl number	415 - 440		

1.3 max.

Table 6.111: Azeotropes of n-Octyl Alcohol (31)

		AZEOTROPES	

%	B.F	P. of Azeotrope *C
80	N, N-Dimethyl-o-toluidine	184.8
88	Indene	182.4
85	Isoamyl isovalerate	192.6
70	Isobornyl methyl ether	191.9
80	Isobutyl carbonate	189.5
92	d-Limonene	177,5
20	Phorone	193.5
90	γ-Terpinene	182.5
93	Thymene	179.6

sec-OCTYL ALCOHOL

Table 6.112: Physical Properties of sec-Octyl Alcohol (31)

	85% Grade	95% Grade
Boiling range first 5% 90%	174 - 181.5°C	173 - 178°C 178 - 182.5°C
Density, lbs per gallon	6.8	6.8
Fire hazard	Moderate	Slight
Flash point	164°F	185°F
Hydroxyl number	376 - 388	408 - 414
Melting point		-38°C
Methyl hexyl ketone content	10 - 15%	Less than 5%
Molecular weight	130.23	130.23
Refractive index at 20°C	1.4244 - 1.4252	1.4258 - 1.4262
Specific gravity at 20°C	0.814 - 0.820	0.818 at 25°C
Water content	1.0 - 1.2%	0.3 - 0.5%

Table 6.113: Azeotropes of sec-Octyl Alcohol (31)

sec-OCTYL ALCOHOL FORMS BINARY AZEOTROPES WITH:

%		B.P. of Azeotrope *C
14	Amyl ether	179.8
50	Butylbenzene	178.2
89	Butyl isovalerate	177.4
73.5	Cineole	175.9
56	Cymene	174.0
40	Indene	176.0
28	Isoamyl butyrate	180.3
83	Isoamyl ether	172.7
55	d-Limonene	174.5
73	a-Terpinene	171.8
43	Terpinolene	179.0
48	Thymene	176.0

ISOOCTYL ALCOHOL

Table 6.114: Physical Properties of Isooctyl Alcohol (31)

Acidity as acetic acid	0.001% by wt	Surface tension at 20°C	29.5 dynes/cm
Carbonyl number Coefficient of expansion per *C	0.10 mg KOH/g 0.000814	Vapor pressure, °C °F 50 122 75 167 100 212	mm 1.95 8.4 30
Color (Hazen, Pt-Co) Fire hazard Flash point (Tag open cup)	5 Slight 180°F	125 257 150 302 175 347 180 356	94 250 600 700
Pour point Purity Refractive index at 20°C, np Solubility in water at 25°C at 50°C	-95°F 99.5% by wt 1.4308 0.06 g/100g 0.08 g/100g	Viscosity, *C *F 37.8 100 20.0 68 -9.4 15 -17.8 0 -31.7 -25	Gentistokes 6.4 12.7 51.3 84.4 224.2
Solubility of water in, at 5°C 20°C 40°C Specific gravity at 20/20°C	3.4 g/100g 3.8 g/100g 4.1 g/100g 0.832	Water Weight per gallon at 60°F	0.02% by wt 6.95 lbs, approx.
60/60°F Specific heat, 50 - 150°C	0.834 0.79 cal/g/°C		

NONYL ALCOHOL

Table 6.115: Physical Properties of Nonyi Alcohol (31)

Aldehyde content	0.30% by wt
Boiling point at 760 mm	173.3°C
Color, Saybolt	30
Distillation (ASTM), initial 5% 50% 95% max.	193°C 196°C 198°C 201°C 206°C
Fire hazard	Moderate
Flash point (Open cup)	80°C (176°F)
Freezing point	-65°C
Heat of vaporization (Lv), 100°F 300°F 400°F	22,000 Btu/lb mole 19,000 Btu/lb mole 17,400 Btu/lb mole
Mixed aniline point	-15°C
Neutralization number	0.02 mg KOH/g
Refractive index at 20°C, nD	1.4390
Solubility in water at 20°C	0.06% by wt
Solubility of water in, at 20°C	0.99% by wt
Specific gravity at 20/20°C	0.8121
Vapor pressure at 20°C	0.3 mm
Viscosity at 0°C at 20°C	56.0 cps. 14.3 cps.
Weight per gallon at 20°C	6.75 lbs

3,5,5-TRIMETHYLHEXYL ALCOHOL

Table 6.116: Physical Properties of 3,5,5-Trimethylhexyl Alcohol (31)

Boiling point at 10 mm 760 mm	83°C (181°F) 194°C (381°F)
Boiling range at 760 mm, first drop 90% dry	190°C 194 ± 1°C 195.5°C
Color (APHA)	25 max.
Flash point (Open cup)	200°F
Freezing point	Below -70°C
Molecular weight	144.25
Purity (by hydroxyl number)	97.5% min.
Refractive index at 25°C, nD	1.4300
Specific gravity at 25/4°C	0.8236
Viscosity at 25°C	11.06 centipoises
Water content	0.15% max.
Weight per gallon at 25°C	6.86 lbs

DECYL ALCOHOL

Table 6.117: Physical Properties of Decyl Alcohol (31)

	Oxo Process Fat	ty acid Process		Oxo Process	Fatty Acid Process
Acidity Acid number	0.0015% by wt.	0.2 max.	Solubility in water at 20°C	Less than 0.01% by wt.	
Aldehydes, as decanal	0.20%, max.		Solubility of water in at 20°C	2.3% by wt.	
Boiling point at 760 mm	217.3°C	231°C (448°F)	Specific gravity at 20/20°C	0.837-0.840	0.829 at 20/4°C
Boiling range at 760 mm	219-221,5℃	90% between 229-233°C	Sulfur	4 ppm, max.	
Coefficient of expansion			Suspended matter	Substantially free	•
at 55°C	0.00086		Vapor pressure, *C *F	mm	
Color, Hazen Pt-Co	5	0.003 max., Dichromate	75 167 100 212	2.1 8.4	
Ester, as decyl formate	Less than 0.1%		125 257 150 302	28.2 82	
Ester number		1.3 max.	175 347	225	
Fire hazard	Slight	Slight	200 392	500	
Flash point (Open cup)	225°F	220°F	Viscosity, °C °F	Centistokes	
Freezing point	Sets to a glass below -60°C	6.9°C (44°F)	99 210 20 68 - 9.4 15	1.76 21 115	13.83 centipoises
Heat of combustion		9963 cal/g	-17.8 0	209	
Hydroxyl number		345-365	-31.7 -25 -40.0 -40	701 16 4 9	
Iodine number		0.5 max.	-53.9 -65	8826	
Molecular weight	158.28	158.28	Water content	0.03-0.07% by wt.	0.25%
Pour point	-95°F		Weight per gallon at 20°C	7.03 lbs.	
Purity	99.7%-99.9% by wt.		60°F	6.96 lbs. approx.	
Refractive index at 20°C, nD	1.4388-1.4390	1.43682			

ISODECYL ALCOHOL

Table 6.118: Physical Properties of Isodecyl Alcohol (31)

Acidity as acetic acid 0.002% by wt., max. Aldehydes, as decanal 0.05% by wt., max. Boiling point at 760 mm 220.1°C 215°C, min. 225°C, max. Boiling range at 760 mm, Ibp Dp Coefficient of expansion at 55°C 0.00083 Color, (Pt-Co scale) 10, max. Fire hazard Slight Flash point (Open cup) 220°F Freezing point Sets to a glass below -60°C Molecular weight 158.29 Odor Characteristic, non-petroleum Purity, as decanol 98.5% by wt., min. Refractive index at 20°C, nD 1.4408 Solubility in water at 20°C Less than 0.01% by wt. Solubility of water in at 20°C 2.4% by wt. Specific gravity at 20/20 0.8423 Sulfuric acid test (Pt-Co scale) 50, max. Suspended matter Substantially free Vapor pressure at 20°C Less than 0.01 mm Viscosity at 20°C 18.9 cps. Water content 0.10% by wt., max. Weight per gallon at 20°C 7.01 lbs.

TRIDECYL ALCOHOL

Table 6.119: Physical Properties of Tridecyl Alcohol (31)

Acidity as acetic	acid		0.002% by wt	Viscosity,	• c	• F	Centipoises	
Carbonyl number			0.7 mg KOH/g		99	210	2.61	
Color, Hazen, Pt	-Co		5		20	68	47.5	
Distillation: initial 252°C		252°C 269°C		- 9.4 -17.8 -31.7	15 0 -25	382.2 808.3 3,692		
Fire hazard		Slight		-40.0	-40	11,081		
Flash point (Tag	ash point (Tag open cup) 180°F			-53.9	-65	95,433		
		278 mg KOH/g	Water			0.10% by wt.		
Odor			Characteristic, non-petroleum	Weight per gallo	n at 60°F		7.0 lbs.	
Pour point			-95°F	•				
Purity			99.6% by wt					
Refractive index	at 20°C	, n _D	1.4475					
Specific gravity a	t 20°C	_	0.8454					
Sulfur			2 ppm					
Vapor pressure,	°C 90 100 125 150 175 200 225 250	°F 194 212 257 311 347 401 437	1.3 2.2 7.8 24 64 155 340 685					

OTHER ALCOHOLS AND ALCOHOL BLENDS

Table 6.120: ALFOL Alcohol Low Range Blends C_6 — C_{10} (40)

Typical Properties	610	610 AFC	610 ADE	810	810 AI	810 EE
Total alcohol, Wt. % Molecular weight distribution (100% alcohol basis)	99.8	99.8	99.6	99.8	99.7	99.6
C4						
C6	4.8	4.8	9.0	0.6	0.1	0.6
	43.2	54.4	42.7	45.7	10.5	49.4
C10	51.3	40.1	47.8	53.2	89.1	49.5
C12	0.7	0.7	0.5	0.5	0.3	0.5
C14	trace	-	-	-	trace	-
Average alcohol MW	140	135	138	145	153	141
Color, APHA	0	0	0	0	0	0
Water, Wt. %	0.03	0.03	0.02	0.02	0.02	0.03
lodine number	0.05	0.05	0.05	0.02	0.02	0.02
Hydroxyl number	401	415	407	387	367	397
Carbonyl, as ppm C=0	30	30	30	30	30	30
Acidity, as acetic acid, %	0.002	0.002	0.002	0.003	0.003	0.003
Acid Heat Color, APHA	10	_	10		-	_
Specific gravity	0.824	0.830	0.829	0.831	0.831	0.831
at ° F/ ° F	77/77	60/60	60/60	60/60	60/60	60/60
Flash point, (PM) ° F	175	175	167	188	203	200
Melting range, ° F	1-5	1-5	1-5	3-7	3-7	3-7
Boiling range, ° F	351-459	350-460	350-460	401-459	400-460	400-460
Saponification number	0.19	0.27	0.19	0.4	-	_
Viscosity, cSt 70° F	11	11	11	13.4	16.3	13.5
100° F	6.4	6.6	7.7	7.4	8.7	7.2
Coefficient of thermal						
expansion lb/gal/° F	0.00334	0.00334	0.00334	0.00325	0.00334	0.00317

Table 6.121: ALFOL Alcohol Pure Homologs C_6-C_{18} (40)

Typical Properties	6	8	10		
Total alcohol, Wt.%	99.4	99.9	99.8		
Molecular weight distribution					
(100% alcohol basis)					
C6	99.4	trace	-		
C8	0.6	99.9	0.5		
C10	trace	0.1	99.3		
C12	trace	-	0.2		
C14	_	_	-		
C16	-	-	_		
C18	-	<u>-</u>	-		
C20	-	_			
Average Molecular Weight	102	130	158		
Color, APHA	0	0	0		
Water, Wt.%	0.04	0.03	0.02		
Iodine number	0.05	0.03	0.05		
Hydroxyl number	545	430	351		
Carbonyl, as ppm C=O	28	12	7		
Acidity, as acetic acid, %	0.001	0.001	0.001		
Specific gravity,	0.8232	0.8293	0.8335		
at ° F/° F	60/60	60/60	60/60		
Flash point, (PM) ° F	130	180	235		
Melting range, ° F	-49	1–3	43-45		
Boiling range, ° F	313-316	381-385	448-453		
Saponification number	<0.04	<0.04	<0.04		
Viscosity, cSt 70° F	5.5	10.5	14.5		
100° F	3.5	6	9		
Coefficient of thermal					
expansion lb/gal/F	0.00376	0.00351	0.00334		

(continued)

Table 6.121: (continued)

Typical Properties	12	14	16	16NF	18	18NF
Total alcohol, Wt.%	99.8	99.8	99.8	99.8	99.6	99.6
Molecular weight distribution (100% alcohol basis)						
C6	-	_	_	_	_	_
C8	-	_	_	_	_	
C10	0.1	trace	_	_	_	_
C12	99.6	0.4	trace	trace	_	_
C14	0.3	99.4	0.3	0.3	0.1	0.1
C16	_	0.3	98.7	98.7	0.3	0.3
C18	-	-	0.7	0.7	98.4	98.4
C20	-	_	-	-	0.9	0.9
Average Molecular Weight	187	214	242	242	271	271
Color, APHA	5	5	5	5	5	5
Water, W1.%	0.01	0.02	0.02	0.02	0.02	0.02
lodine number	0.05	0.03	0.18	0.18	0.33	0.33
Hydroxyl number	299	258	227	227	207	207
Carbonyl, as ppm C=O	8	29	64	64	241	241
Acidity, as acetic acid, %	0.005	0.003	0.011	0.011	0.008	0.008
Specific gravity,	0.83	0.815	0.813	0.813	0.811	0.811
at ° F/ ° F	60/60	120/120	125/125	125/125	140/140	140/140
Flash point, (PM) ° F	265	290	300	300	355	355
Melting range, ° F	73–76	98-102	118-121	113–122	132-136	131-140
Boiling range, ° F	490-498	567-573	626-631	626-631	662670	662-670
Saponification number	0.04	0.07	0.06	0.06	0.1	0.1
Viscosity, cSt 70° F	80F/19	-	-	-	_	-
100° F	12.3	15	120F/18	120F/18	160F/13.5	160F/13.5
Coefficient of thermal						
expansion lb/gal/F	0.00325	0.00317	0.00317	0.00317	0.00309	0.00309

Table 6.122: ALFOL Alcohol High Range Blends C_{10} — C_{20+} (40)

Typical Properties	1012 HA	1014 CDC	1214	1214 GC	1216	1216 CO
Total Alcohol, Wt. %	99.8	99	99.5	99	99	99.7
Homolog Distribution, Wt. %						
C8	0,6	-	0.1	trace	_	0.1
C10	87.5	31	0.6	0.8	0.3	0.4
Cl2	6.8	36.6	56.5	68.2	64.3	67.2
C14	5	31.2	42.2	30.3	24	25.3
C16	0.1	-	0.6	0.7	11.4	6.8
C18	-	-	-	-	trace	0.2
C20	***	-	_	-	_	-
C22	-	-	-	-	-	
C24	+	-	-	_	-	_
C26	-	-	-	-	-	-
C28	-	-	-	-		-
C30	-	-	-	-	-	-
Avg. Molecular Weight	164	186	198	195	203	198
Color, APHA	0	0	0	0	5	5
Water, Wt. %	0.02	0.05	0.08	0.06	0.05	0.04
lodine number	0.04	0.07	0.05	0.05	0.1	0.08
Hydroxyl number	343	302	284	287	276	284
Carbonyl, ppm C=0	31	123	45	21	40	47
Specific Gravity	0.834	0.836	0.838	0.838	0.84	0.84
°F/°F	72/72	72/72	72/72	72/72	72/72	72/72
Flash Point (PM) ° F	237	250	265	265	265	265
Melting Range, ° F	35-40	41-45	70-75	70-75	63-70	63–70
Boiling Range, ° F	425-525	450-545	518-575	518-575	514-592	529-590
Viscosity, cSt	10.4	12.5	14.3	14.3	14.5	14.5
Temperature, ° F	100	100	100	100	100	100
Coefficient of Thermal						
Expansion, lb/gal/F	0.00321	0.003	0.00316	0.00316	0.00316	0.00316
Saponification number	0.1	0.1	0.1	0.18	0.5	0.18
Appearance	clear color-	clear color-	clear color-	clear color-	clear color-	clear color
	less liquid	less liquid	less liquid	less liquid	less liquid	less liquid

(continued)

Table 6.122: (continued)

Typical Properties	1218 DCBA	1412	1416 GC	1418 DDB	1418 GBA	1618	1618 CG	1618 GC	20+
Total Alcohol, Wt. %	99.6	99.7	99.8	99.9	99.8	99.6	99.6	98.5	88.5
Homolog Distribution, Wt. 4	¥								
C8	trace	trace	_	_	-		_	-	-
C10	0.5	0.5	0.1	_	trace	-	-	-	_
C12	38.3	37.7	6.3	0.7	0.6	trace	trace	_	-
C14	30	60.6	63.4	39.5	66.4	1.3	0.6	0.6	-
C16	19.8	1.2	29.8	38.7	25.6	61	31.9	66.2	trace
C18	10.8	_	0.4	19.6	7	35.7	66.1	31.4	1.2
C20	0.6	-	-	1.5/>C20	0.4	2	1.4	1.6/>C20	54.3
C22	_	-	-	-			-	-	25.8
C24	_	-	-	-	_	-	-	_	11.1
C26	-	-	-	_	_	-	-	-	4.6
C28	-	_	-	_	-	-	-	-	2.1
C30	-	_	_	-	-	-	_	-	1
Avg. Molecular Weight	214	205	222	243	227	256	266	263	431
Color, APHA	5	5	10	10	5	5	5	5	848
Water, Wt. %	0.06	0.06	0.03	0.03	0.05	0.04	0.03	0.04	0.03
lodine number	0.11	0.1	<0.4	0.6	<0.7	0.15	0.15	0.8	8.7
Hydroxyl number	262	274	253	231	247	219	211	213	157
Carbonyl, ppm C=0	48	48	110	-	77	180	155	150	1930
Specific Gravity	0.84	0.839	0.822	0.819	0.835	0.840	0.820	0.820	0.817
°F/°F	7 2/ 72	<i>72/</i> 72	100/100	110/110	100/100	60/60	120/120	140/140	140/140
Flash Point (PM) ° F	275	270	305	290	305	325	340	325	390
Melting Range, ° F	68-73	72-75	95 -9 9	97-102	97-102	110-120	110-120	110-120	113-129
Boiling Range, ° F	525-660	525-585	582-638	598659	598-660	628-662	630-670	630-670	>650
Viscosity, cSt	15.0	14.4	11.5	14.6	-	15.0	13.7	-	5.3
Temperature, ° F	100	100	100	110	-	122	140	_	210
Coefficient of Thermal									
Expansion, lb/gal/F	0.00313	0.00314	0.0028	0.0028	0.0028	0.00303	0.00310	0.003	0.00313
Saponification number	0.18	<1	</td <td>0.5</td> <td><1.0</td> <td>0.07</td> <td>0.07</td> <td>0.5</td> <td>5.7</td>	0.5	<1.0	0.07	0.07	0.5	5.7
Appearance	clear color- less liquid	white solid	white solid	white solid	white solid	white solid	white solid	white solid	off-white solid

Table 6.123: ALFOL Typical Properties (40)

Typical Properties	ALFOL® 6	ALFOL® 8	ALFOL® 10	ALFOL® 610	ALFOL® 810	ISOFOL® 12
Total Alcohol, wt %	99.4	99.9	99.8	99.6	99.8	min. 95
Molecular Weight Distribution (100% alcohol basis)	1					
C6	99.4	trace	•	9	0.6	
C8	0.6	99.9	0.5	42.7	45.7	
C10	trace	0.1	99,3	47.8	53.2	
C12	trace	•	0.2	0.5	0.5	
2-Butyloctanol						min. 95
Average Molecule weight	102	130	158	138	145	186 approx.
Color, ALPHA	0	0	0	0	0	20 max
Water, wt%	0.04	0.03	0.02	0.02	0.02	0.1 max
lodine Number	0.05	0.03	0.05	0.05	0.02	1.0 max
Hydroxyl Number	545	430	351	407	387	286-305
Carbonyl, as C=O ppm	28	12	7	30	30	150
Specific gravity	0.8232	0.8293	0.8335	0.829	0.831	
at F/°F	60/60	60/60	60/60	60/60	60/60	
Flash point, (PM)° F	130	180	235	167	188	248 (ISO 2592)
Melting Range, °F	-49	3-Jan	43-45	1-5	3-7	<22
Boiling Range, °F	313-316	381-385	448-453	350-460	401-460	291-300
Saponification Number	<0.04	<0.04	<0.04	0.19	0.4	1.0 max.
Viscosity, cSt at 70° F	5.5	10.5	14.5	11	13.4	
at 100°F	3.5	6	9	7.7	7.4	
Coefficient of thermal						
expansion lb/gal/°F	0.00376	0.00351	0.00334	0.00334	0.00325	

COMPARATIVE DATA

Table 6.124: Ashland Alcohols (69)

	LB./GAL.	SP. GR.	BOILIN	G RANGE	FL PT.	EVAP.
PRODUCT	20°.C	20°/20° C	°C	op:	°F TCC	RATE
Methanol	6.60	0.791	64-65	147-149	54	, 2.1
Ethanol, Anhydrous	6.58	0.790	74-80	165-176	53	1.7
Ethanol, 95%	6.76	0.811	75-80	167-176	55	1.7
Isopropanol 91%	6.81	0.816	80-81	176-178	63	1.3
Isopropanol, Anhydrous	6.55	0.786	82-83	180-182	53	1.6
n-Propanol	6.71	0.806	96-98	205-208	74	1.3
2-Butanol	6.72	0.808	98-101	208-214	72	1.2
Isobutanol	6.68	0.803	107-109	225-228	86	0.6
n-Butanol	6.75	0.811	116-119	241-246	97	0.42
Amyl Alcohol (primary)	6.79	0.815	127-139	261-282	113	0.27
Methyl Amyl Alcohol	6.72	0.808	130-133	266-271	103	0.27
Cyclohexanol	7.91	0.9464	160-163	320-325	140³	0.05
2-Ethylhexanol	6.94	0.834	182-186	360-367	164	< 0.01

¹n-Butyl Acetate = 1 ³COC 4At 30°C

Table 6.125: Chemcentral Alcohols (67)

ALCOHOL8	CAS	Mole Weight	% Purity Comm. Prod.	Spec. Grev. 20/20°C	Lbs./ Gel. 6 20°C	Coeff. of Expen.	∆Sp. Gr. Per °C	Refrec- tive	Digitilation & 760 m	n Range nm Hg
	l	1,0.0				Per °C	٠.	e zo C	*C	°F
AMYL ALCOHOL (Mixed Isomers)		88 15	99.6	0.813	6.79	0.00093	00056	1.409	127-137	261-279
iso BUTYL ALCOHOL	78 83 1	74 13	99	0.803	6.69	0.00099	00060	1.398	106-109	223-229
n BUTYL ALCOHOL	71 36 3	74 12	99.8	0.811	6.75	0 00093	00056	1.3992	117-118	243-245
SEC BUTYL ALCOHOL	78 92 2	74 12	99 7	0.808	6.73	0.00091	00054	1.3971	98-101	208 214
CYCLOHEXANOL	108-93-1	100.16	99	0.946	7.91	0.00077	.00050	1.4626	160-161.2	320-322
ETHANOL, ANHYDROUS PROPRIETARY	84-17-5	46.07	99	0.792	6.62	0.00120	00076	1.3638	74-80	165-176
ETHANOL, 95% PROPRIETARY	84-17-5	46.07	95	0.812	6.74	0.00118	00078		74-80	185-176
FURFURAL ALCOHOL	98-00-0	98 1	98.0	1.135	9.44	[1.4868	170-BP	338-BP
METHYL ALCOHOL (Methanol)	67-56-1	32.04	99.98	0.793	6.60	0.00120	00080	1.3284	64-65	147-149
METHYL AMYL ALCOHOL (MIBC)	108-11-2	102.17	98	0.808	6.73	0.00103	.00064	1.4113	130-133	266-271
ISO PROPYL ALCOHOL, ANHYDROUS	67 63 0	60 09	99 9	0.787	6.57	0 00111	00068	1.3766	82-83	180-181
iso PROPYL ALCOHOL, 91%	67 63-0	60 09	91.3	0.818	6.84	0.00111	00072		79.7-80.7	175-177
n - PROPYL ALCOHOL	71 23-8	60.09	99.8	0.805	6 70	0 00095	00058	1.3854	96-98	204-208
TETRAHYDROFURFURAL ALCOHOL	1	102.13	98.0	1.054	6.79	0.00074	00075	1.4520	178-BP	353-BP
TEXANOL*	25265-77-4	216.3		0.950	7.90				244-247	l
TRIDECYL ALCOHOL	112-70-9		99.0	0.845	7.04				252-263	485-506

ALCOHOL8	Vapor Presa. e 20°C	Evap. Rate vs. B. Acel. = 1	Viec. cps eg 20°C		ity % by 20°C	Dilution Ratio	Freeze Point *C	Flash Point T.C.C.	Limit	osive s % by in Air	Bolu- bility Param- eter
	mm Hg			In H ₂ 0	O1 H,0	Tol. Lac.	*0	er.	Lower	Upper	
AMYL ALCOHOL (Mixed Isomers)	2.0	0.3	4.6	17	9.2	Lateni	90	110	1.2	10.03	11.1
iso BUTYL ALCOHOL	8.8	0.63	3.9	9.5	169	Latent	108	85	1.45	11 25	11.6
n BUTYL ALCOHOL	4.39	0.46	2 95	79	20.1	Latent	89.8	97	1 2°	10.9	11.2
sec - BUTYL ALCOHOL	12.7	0.9	3 65	225	60.0	Latent	- 114.7	74	1.7	9.8	11.1
CYCLOHEXANOL	1.0	0.08		4.2	11.2	Latent	25.3	138			11.4
ETHANOL, ANHYDROUS PROPRIETARY	44 0	1.9	1.19	(x)	œ	Latent	-114.4	54	3.3	19.0	12.8
ETHANOL, 95% PROPRIETARY		1.7	ł	-00	-00	Latent		58	3.3	19.0	12.8
FURFURAL ALCOHOL	1 1		4.5	00	on			1672	1.8	16.3	12.5
METHYL ALCOHOL (Methanol)	96.0	3.5	2.0	00	00	2.2:0.5	-97	54	6.7	36.0	14.5
METHYL AMYL ALCOHOL (MIBC)	2.2	0.3		1.64	6.35	Latent	-90	106	1.0	5.5	10.0
iso - PROPYL ALCOHOL, ANHYDROUS	31.2	1.7	1	90	∞	Lalent	89.5	53	2.0	12.0	11.4
iso - PROPYI. ALCOHOL, 91%	1	1.6	1	60	∞	Latent		61	2.0	12.0	10.0
n - PROPYL ALCOHOL	14.5	0.89	I	οú	∞	Latent	-127	71	1.5	13.5	11.9
TETRAHYDROFURFURAL ALCOHOL	2.0	0.07	1	(x)	00		80	183'	2.6	9.7	10.8
TEXANOL*	1	< 0.01	6.2	0.0	0.9			248*			8.2
TRIDECYL ALCOHOL	1							259			

^{*}Trade Mark Eastman Chemical Products Inc.

^{@ 15.6°}C

^{*}Open Cup

Table 6.126: CPS Chemical Alcohol 99% (15)

TRADE NAME	TYPICAL PROPERTIES									
	CHEMICAL NAME	CAS NUMBER	PURITY WT. %	COLOR APHA	MOISTURE KF, WT. %	MOLECULAR WEIGHT	SPECIFIC GRAVITY 20/20 °C			
ALCOHOLS										
Isoamył Alcohol 99% (Natural)	Same	123-51-3	99.0	20	0.2	. 88	0.811			
Isoamyi Alcohol 95% (Natural)	Same	123-51-3	95.0	50	0.5	88	0.811			

Kosher available upon request

CPS SALES SPECIFICATIONS

ISOAMYL ALCOHOL 95%

	TEST	SPECIFICATION
1071	PURITY, WT%, GC	95.0 min.
1013	MOISTURE, KF, WT%	0.50 max.
1011	COLOR, APHA	50 max.
1082	ACIDITY AS ACETIC ACID, WT%	0.01 max.
1097	SPECIFIC GRAVITY @20/20C	0.810 ~ 0.813
1096-B	DISTILLATION RANGE, IBP, C	126.0 - 500
1096-A	DISTILLATION RANGE, DP, C	132.0 max.
1017	APPEARANCE-CLEAR LIQUID/FFSM	

LATENT SOLVENTS	Evepora nBuOAc = 1	etion Rate Ether = 1	Formula	Viscosity, cP 8% RS 1/2-s NC @25°C	Viscosity, cP 8% CAB-381-0.5 @ 25°C	Neat Vis	cosity C	Dilutio Toivene	n Ratio ^b <i>VM&P</i> Naphtha	Blush Resistance % RH @ 80°F	Specific Gravity @ 20°/20°C		Volume 0°C Kg/L	Flash Point TCC, *F	Freezing Point, *F
METHYL ALCOHOL	3.5	3.5	сн₃он	905		0.60	20	2.2	0.5		0.792	6.60	0.79	50	
TECSOL INDUS. AND PROPRIETARY SOLVENTSO	1.7-1.9	-	C₂H₅OH			1.21.5	20				0.789-0.820	6.57-6.83	0.79-0.82	50	-173
ISOPROPYL ALCOHOL, 99%	17	71	(CH ₃) ₂ CHOH	1	İ	2 40	26				0 786	6.54	0.78	55	127
n-PROPYL ALCOHOL	10	12.1	C ₃ H ₇ OH		İ	2.00	25				0.804	6.71	0.80	74	-197
SECONDARY BUTYL ALCOHOL	0.9	13.4	СН₃СН₂СНОНСН₃		1	2.90	25				0.810	6.73	0.81	72	-
ISOBUTYL ALCOHOL	0.6	20.2	СН₃СН(СН₃)СН₂ОН			4.00	20				0.803	6.68	0.80	85	-162
n-BUTYL ALCOHOL	0.5	24.2	C₄H ₉ OH			3.00	20			:	0.811	6.75	0.81	97	-129
METHYLISOBUTYC CARPINOL		16.1	т наслоновренена		1	€ J#C.					0 805!	6.69 ¹	0.80	1	
AMYL ALCOHOL (MIXED PRIMARY ISOMERS)	0.3	40.3	C ₅ H ₁₁ OH			4.30	20				0.814 ^h	6.77 ⁱ	0.81 ⁱ	-	-130
CYCLOHEXANOL	0.05	242.0	CH₂(CH₂)₄CHOH			52.70	25				0.947 ^h	7.87 ⁱ	0.94 ⁱ	-	-
2-ETHYLHEXANOL	0.01	1,210.2	C ₄ H ₉ CH(C ₂ H ₅)CH ₂ OH			7.70	25		1		0.833	6.94	0.83	164	- 94

LATENT SOLVENTS	Va Torr	por Pre	ssure KPs @ 55°Ç°∙	Surface Ten Dyne/Cm	sion C	Boiling Range @ 760 Terr, °C	Solubitity Wi In Water	7 @ 20°C % Water In	Azeo BP, °C	trope Wt % Water ^d	Autoignition Temperature, °C	Refract Inde: Value		Electrical Resistance, ^e Megohms	Ha Total	nsen Solubli Nonpolar	Polar	eters ¹ Hydrogen Bonding	Gram Molecular Weight	TLV PPM 1992
METHYL ALCOHOL	100.0	21.2	69.0	22.6	20	64-65	Complete	Complete	None	-	463	1.3286	20	<0.1	14.5	7.4	6.0	10.9	32.04	200
TECSOL INDUS, AND PROPRIETARY SOLVENTS	_		37.6 ^p	22.4	20	74-82	Complete ⁴	Completeq	78.1	4.0	419	1.3614	20	<0.1	13.0	7.7	4.3	9.5	46.07	-
ISOPROPYL ALCOHOL, 99%	32.8	20	30.11	21.3	20	80.8-83.5	complete	: omplete	90%	12.6	360	1 3776	20	+4.7	1 %	11	3.0	8.0	60 (0	400
n PROPYL ALCOHOL	14.5	26	15.7	23.8	20	96-98	Complete	Compacts	87.0	28.3	413	1.3856	20	· (r .	12.0	7.8	3.3	8.5	60.10	200
SECONDARY BUTYL ALCOHOL	12.0	20	-	24.0	20	98-101	20.6	30.7	87.0	26.8	406	1.3972	20	<0.2 °	10.8	7.7	2.8	7.1	74.12	100
ISOBUTYL ALCOHOL	9.0	20	9.5	22.8	20	106–109	9.5	14.3	89.8	33.0	416	1.3955	20	<0.2	11.1	7.4	2.8	7.8	74.12	50
11-BUTYL ALCOHOL	5.5	20	6,	24.6	20	116-119	7.99	Za.K	92.1	42.5	355	1.3993	20	- tr .	11.3	7 н	2.8	7.7	74.32	50
METHYLISOBUTYL CARBINGE				27.6	.30	1.61 1.7				13.1		141 -	1		′		1	****		1
AMYL ALCOHOL (MIXED PRIMARY ISOMERS)	2.9	20	i - i	23.8	20	127-13	1.7	9.2	95.8	54.4	-	1.4014	20	0.2	-		-	-	88 15	
CYCLOHEXANOL	0.9	20		35.1	20	1 60 -162	0.1	31.8	97.8	80.0	300	1.4656	20	0.4	11.0	8.5	2.0	6.6	100.16	50
2-ETHYLHEXANOL	0.05	20	0.26	28.7	20	182 166	0.1	7.6	99.1	80.0	288	1.4316	20	-20	9.9	7.8	1.6	5.8	130.20	<u> </u>

Denatured Alcohols Marketed by Eastman (41)

			Tec Propr Solve	Completely Denatured Alcohol ^a						
Composition	A	A-2	В	С	D	D-2	н	1	3	CDA-19
SDA-3A	100	100	100	100	100	100	100	-	1	-
SDA-1	i –	_	-		F -	-	-	100	100	-
Ethyl alcohol	_	-		_	-	_	-	_	- ;	100
MIBK	1 1	1	1 1	1	1	1		-	1	4
Isopropyl alcohol	10	1 –	5		15	_	100	-		
Methyl alcohol		10	5	i	-	15	-	-	-	
Ethyl acetate	-	_		5		_		5	1	
Heptane				ļ		_		1	1	1

Base for special industrial alcohol and proprietary alcohor

SDA-3A-100 gallons ethyl alcohol with 5 gallons synthetic methanol

SDA-1---100 gallons ethyl alcohol with 4 gallons synthetic methanol and 1 gallon MIBK

*Available as 95% (190 proof) or anhydrous (200 proof); in gallons

Table 6.127: (continued)

Denatured Alcohol Nomenclature (41)

Eastman	Union Carbide	Quantum	Grain Processing
Tecsol 1, 95%	Synasol PM 41	Solox-1	GPC 190 Gov't Form I (1-1)
Tecsol 1, Anhydrous	Synasol PM 100	Solox-1, Anhydrous	Anhydrous GPC Gov't Form I (1-1)
Tecsol 3. 95%	Synasol PM 3224	Solox	GPC 190 Gov't Form III (1-1)
Tecsol 3, Anhydrous	Synasol PM 509	Solox, Anhydrous	Anhydrous GPC Gov't Form III (1-1)
,			,
Tecsol A, 95%	Anhydrol PM 4081	Filmex A-1	GPC 190 Gov't Form A (3A)
Tecsol A, Anhydrous	Anhydrol PM 4082	Filmex A-1, Anhydrous	Anhydrous GPC Gov't Form A (3A)
Tecsol A-2, 95%	Anhydrol PM 4079	Filmex A-2	GPC 190 Gov't Form A2 (3A)
Tecsol A-2, Anhydrous	Anhydrol PM 4083	Filmex A-2, Anhydrous	Anhydrous GPC Gov't Form A2 (3A)
Tecsol B, 95% Tecsol B, Anhydrous	Anhydrol PM 4157 Anhydrol PM 4135	Filmex B Filmex B, Anhydrous	GPC 190 Gov't Form B (3A) Anhydrous GPC Gov't Form B (3A)
Tecsol C, 95%	Anhydrol PM 4085	Filmex C	GPC 190 Gov't Form C (3A)
Tecsol C, Anhydrous	Anhydrol PM 4084	Filmex C, Anhydrous	Anhydrous GPC Gov't Form C (3A)
Tecsol D, 95%	Anhydrol PM 4080	Filmex D-1	GPC 190 Gov't Form D (3A)
Tecsol D, Anhydrous	Anhydrol PM 4176	Filmex D-1, Anhydrous	Anhydrous GPC Gov't Form D (3A)
Tecsol D-2, 95%	Anhydrol PM 4078	Filmex D-2	GPC 190 Gov't Form D2 (3A)
Tecsol D-2, Anhydrous	Anhydrol PM 4217	Filmex D-2, Anhydrous	Anhydrous GPC Gov't Form D2 (3A)
Tecsol H			

Methanol

n-Butanol

(Normal Butyl Alcohol, 1-Butanol, Butyric Alcohol, Propyl Carbinol, 1-Hydroxybutane)

Isobutanol

(Isobutyl Alcohol, Isopropylcarbinol, 2-Methyl-1-Propanol)

n-Propanol

(Propylic Alcohol, Ethylcarbinol, Normal Propyl Alcohol)

Physical Properties

Autoignition Temperature, "C Boiling Point at 760 mm Hg, "C Boiling Point at 760 mm Hg, "F Boiling Point at 760 mm Hg, "F Boiling Point at 760 mm Hg, "F Boiling Point at 760 mm Hg, "F Boiling Point at 760 mm Hg, "F Boiling Point at 760 mm Hg, "F Boiling Point at 760 mm Hg, "F Boiling Point at 760 mm Hg, "F Boiling Point at 760 mm Hg, "C Boiling Point at 760 mm Hg, "C Boiling Point at 760 mm Hg, "C Boiling Point at 760 mm Hg, "C Boiling Point at 760 mm Hg Boiling Point at 80 m Hg, "C Boiling Point at 80 m	,	
Boiling Point at 760 mm Hg, °C Boiling Point at 760 mm Hg, °F 148.4	Autoinnition Temperature. "C	386
Boiling Point at 760 mm Hg, °F 148.4	Boiling Point at 760 mm Hg. °C	64.65
Coefficient of Thermal Expansion per °C 20°C Critical Pressure, atmospheres Critical Temperature, °C Dielectric Constant, 25°C, mhos/cm Electrical Conductivity at 25°C, mhos/cm Evaporation Rate (BuAc = 1) Flammable Limits in Air (lower limit, vol %) (upper limit, vol %) (upper limit, vol %) Flash Point, Tag Open Cup, °F Tag Closed Cup. °F Tag Closed Cup. °F Tag Closed Cup. °F Freezing Point, °C Heat of Combustion, gas, 25°C, cal/gm Heat of Combustion liquid, 25°C, cal/gm Heat of Vaporization, cal/gm (at normat boiling point) Molecular Weight Refractive Index. n²0 Reid Vapor Pressure, pounds per square inch Solubility at 20°C, wt. %, in water water in Solubility in alcohol, ether or water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C cal/gm/°C at 0°C Surface Tension in Air at 20°C, dynes/cm Vapor Density (air = 1) Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centlipoise 1.19 x 13°3 78.7 78.7 78.7 78.7 79.7 60 60 60 79.8 64 60 79.8 64 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8	Boiling Point at 760 mm Hg. °F	148.4
Expansion per °C 20°C Critical Pressure, atmospheres Critical Temperature, °C Dielectric Constant, 25°C Electrical Conductivity at 25°C, mhos/cm Evaporation Rate (BuAc = 1) Flammable Limits in Air (lower limit, vol %) (upper limit, vol %) Flash Point, Tag Open Cup. °F Tag Closed Cup. °F Tag Closed Cup. °F Tag Cosed Cup. °F Terezing Point, °C Heat of Combustion, gas, 25°C, cal/gm Heat of Combustion liquid, 25°C, cal/gm Heat of Vaporization, cal/gm (at normat boiling point) Molecular Weight Refractive Index, n ₀ ° Reid Vapor Pressure, pounds per square inch Solubility at 20°C, wt. %, in water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C cal/gm/°C at 0°C Surface Tension in Air at 20°C, dynes/cm Vapor Perssure, 20°C, mm Hg Viscosity at 20°C, centlipoise		
Critical Pressure, atmospheres Critical Temperature, °C Dielectric Constant, 25°C Electrical Conductivity at 25°C, mhos/cm Evaporation Rate (BuAc = 1) Flammable Limits in Air (lower limit, vol %) (upper limit, vol %) (upper limit, vol %) Flash Point, Tag Open Cup, °F Tag Closed Cup, °F Tag Closed Cup, °F Tag Closed Cup, °F Terezing Point, °C Heat of Combustion, gas, 25°C, cal/gm Heat of Combustion liquid, 25°C, cal/gm Heat of Vaporization, cal/gm (at normat boiling point) Molecular Weight Refractive Index, n° Reid Vapor Pressure, pounds per square inch Solubility at 20°C, wt. %, in water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C cal/gm/°C at 20°C cytynes/cm Vapor Density (air = 1) Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centlipoise		1.19 x 13 ⁻³
Critical Temperature, °C Dielectric Constant, 25°C Dielectrical Conductivity at 25°C, mhos/cm Evaporation Rate (BuAc = 1) Flammable Limits in Air (lower limit, vol %) Cupper limit, vol %) Flash Point, Tag Open Cup, °F Tag Closed Cup. °F Tag Closed Cup. °F Tag Closed Cup. °F Tag Combustion, gas, 25°C, cal/gm Heat of Combustion liquid, 25°C, cal/gm Heat of Vaporization, cal/gm (at normal boiling point) Molecular Weight Refractive Index. n°0 Reid Vapor Pressure, pounds per square inch Solubility at 20°C, wt. %, in water water in Solubility in alcohol, ether or water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C cal/gm/°C at 20°C Cyrase Tension in Air at 20°C, dynes/cm Vapor Density (air = 1) Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centlipoise Valor Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centlipoise	Critical Pressure atmospheres	78.7
Dielectric Constant, 25°C 32.63 Electrical Conductivity at 25°C, mhos/cm 1.5 x 10° Evaporation Rate (BuAc = 1) 2.0 Flammable Limits in Air ((wer limit, vol %) 5.5 (upper limit, vol %) 36.0 Flash Point, 7 60 Tag Open Cup, 'F 54 Tag Closed Cup, "F 54 Freezing Point, "C -97.8 Heat of Combustion, gas, 25°C, cal/gm 5683 Heat of Combustion liquid, 25°C, cal/gm 5420 Heat of Vaporization, cal/gm (at normal boiling point) 262.8 Molecular Weight 32.04 Refractive Index, n₀ nother of the complete complete square inch 1.3285 Solubility at 20°C, wt. %, in water water in solubility in alcohol, ether or water specific Gravity, 20/20°C Complete	Critical Temperature °C	240.0
Electrical Conductivity at 25°C, mhos/cm	Dielectric Constant 25°C	32.63
Evaporation Rate (BuAc = 1) Flammable Limits in Air (lower limit, vol %) (upper limit, vol %) Flash Point, Tag Open Cup, 'F Tag Closed Cup. 'F Tag Closed Cup. 'F Freezing Point, 'C Heat of Combustion, gas, 25°C, cal/gm Heat of Vaporization, cal/gm (at normal boiling point) Molecular Weight Refractive Index, n Solubility at 20°C, wt. %, in water pounds per square inch Solubility in alcohol, ether or water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C cal/gm/°C at 20°C cytrace Tension in Air at 20°C, dynes/cm Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centipoise 2.0 2.1 2.2 2.2 2.2 2.2 2.3 3.04 1.3285 2.2 2.2 2.2 2.3 3.04 1.3285 3.05 3.06 3.06 5.5 4.07 5.683 4.20 4.20 4.20 4.20 4.20 4.20 4.20 4.20 4.20 6.20		m 1.5 x 10 ⁻⁹
Flammable Limits in Air (lower limit, vol %) 5.5 (upper limit, vol %) 36.0 Flash Point, Tag Open Cup, 'F 60 Tag Closed Cup, "F 54 Freezing Point, "C 97.8 Heat of Combustion, gas, 25°C, cal/gm 5683 Heat of Combustion liquid, 25°C, cal/gm 5420 Heat of Vaporization, cal/gm (at normat boiling point) 32.04 Refractive Index, n ₂ ° 1.3285 Reid Vapor Pressure, pounds per square inch Solubility at 20°C, wt. %, in water water in Solubility in alcohol, ether or water Specific Gravity, 20/20°C Specific Gravity, 20/20°C Specific Tession in Air at 20°C, dynes/cm 22.55 Vapor Density (air = 1) 1.11 Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centipoise 96.0	Evaporation Rate (BuAc = 1)	2.0
(lower limit, vol %) (upper limit, vol %) (upper limit, vol %) Flash Point, Tag Open Cup, 'F Tag Closed Cup, 'F Tag Closed Cup, 'F Freezing Point, 'C Heat of Combustion, gas, 25°C, cal/gm Heat of Combustion liquid, 25°C, cal/gm Heat of Vaporization, cal/gm (at normal boiling point) Molecular Weight Refractive Index, n Reid Vapor Pressure, pounds per square inch Solubility at 20°C, wt. %, in water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C cal/gm/°C at 20°C cytynes/cm Vapor Density (air = 1) Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centipoise 5.5 60 5.5 60 5.5 60 542 62.8 32.04 1.3285 62.8 32.04 1.3285 62.8 32.04 1.3285 62.8 32.04 1.3285 62.8 32.04 1.3285 62.8 32.04 1.3285 62.8 32.04 1.3285 62.8 32.04 1.3285 62.8 32.04 1.3285 62.8 32.04 1.3285 62.8 32.04 1.3285 62.8 32.04 1.3285 62.8 32.04 1.3285 62.8 32.04 1.3285 62.8 32.04 1.3285 62.8 32.04 1.3285 62.8 5.6 6.8 5.5 6.8 5.5 6.8 5.5 6.8 5.5 6.8 5.5 6.8 5.5 6.8 5.6 6.8 5.5 6.8 5.5 6.8 5.6 6.8 5.6 6.8 5.5 6.8 5.6 6.8 5.6 6.8 5.6 6.8 5.5 6.8 5.6 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6		
(upper limit, vol %) Flash Point, Tag Open Cup, 'F Tag Closed Cup, 'F Tag Closed Cup, 'F Freezing Point, 'C Heat of Combustion, gas, 25°C, cal/gm Heat of Cormbustion liquid, 25°C, cal/gm Heat of Vaporization, cal/gm (at normal boiling point) Molecular Weight Refractive Index, n₀ 20 Reid Vapor Pressure, pounds per square inch Solubility at 20°C, wt. %, in water water in Solubility in alcohol, ether or water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C cal/gm/°C at 20°C cylrace Tension in Air at 20°C, dynes/cm Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centipoise 36.0 60 60 5420 5420 5420 5420 5420 5420 5420 5420 5420 5420 5420 5420 5420 5420 5420 652.8 32.04 1.3285 60 60 60 7925 60 7925 60 7925 60 7925 60 7925 60 7925 60 7925 7925 7926 7926 7926 7927 7927 7928 7930 7940 7950 7960 7960 7960 7960 7960 7961		5.5
Flash Point, Tag Open Cup, 'F Tag Closed Cup. "F Freezing Point, "C Heat of Combustion, gas, 25°C, cal/gm Heat of Combustion liquid, 25°C, cal/gm Heat of Vaporization, cal/gm (at normal boiling point) Molecular Weight Refractive Index. n ₂ ° Reid Vapor Pressure, pounds per square inch Solubility at 20°C, wt. %, in water water in Solubility in alcohol, ether or water Specific Gravity, 20/20°C Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C cul/gm/°C at 20°C Cufface Tension in Air at 20°C, dynes/cm Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centipoise 0.614		3 6.0
Tag Open Cup, F Tag Closed Cup. F Tag Closed Cup. F Tag Closed Cup. F Terezing Point, "C Heat of Combustion, gas, 25°C, cal/gm 5683 Heat of Combustion liquid, 25°C, cal/gm 5420 Heat of Vaporization, cal/gm (at normal boiling point) 262.8 Molecular Weight 32.04 Refractive Index, ng 28.8 Reid Vapor Pressure, pounds per square inch Solubility at 20°C, wt. %, in water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C 0.599 Cal/gm/°C at 20°C Cypres/cm 22.55 Vapor Density (air = 1) 1.11 Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centipoise 96.6		
Tag Closed Cup. "F Freezing Point, "C Heat of Combustion, gas, 25°C, cal/gm Heat of Combustion liquid, 25°C, cal/gm Heat of Vaporization, cal/gm (at normal boiling point) Molecular Weight Refractive Index. no 20 Reid Vapor Pressure, pounds per square inch Solubility at 20°C, wt. %, in water water in Solubility in alcohol, ether or water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C cal/gm/°C at 20°C culygm/°C at 20°C Surface Tension in Air at 20°C, dynes/cm Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centipoise 548 962.8 962.8 962.8 962.8 962.8 962.8 962.8 962.8 962.8 962.8 962.8 962.8 962.8 962.8 963.9 963.		60
Freezing Point, "C Heat of Combustion, gas, 25°C, cal/gm Heat of Combustion liquid, 25°C, cal/gm Heat of Vaporization, cal/gm (at normal boiling point) Molecular Weight Hefractive Index, n ₂ ° Reid Vapor Pressure, pounds per square inch Solubility at 20°C, wt. %, in water water in Solubility in alcohol, ether or water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C cal/gm/°C at 20°C Surface Tension in Air at 20°C, dynes/cm Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centipoise 96.0 Viscosity at 20°C, centipoise		54
Heat of Combustion, gas, 25°C, cal/gm 5420 Heat of Combustion liquid, 25°C, cal/gm 5420 Heat of Vaporization, cal/gm (at normat boiling point) 262.8 Molecular Weight 32.04 Refractive Index, n ₀ ²⁰ 1.3285 Reid Vapor Pressure, pounds per square inch Solubility at 20°C, wt. %, in water in Solubility in alcohol, ether or water Specific Gravity, 20/20°C 20.7925 Specific Heat of Liquid, cal/gm/°C at 20°C 0.599 0.566 Surface Tension in Air at 20°C, dynes/cm 22.55 1.11 Vapor Pressure, 20°C, mm Hg 96.0 Viscosity at 20°C, centipoise 0.614		-97.8
gas, 25°C, cal/gm Heat of Combustion liquid, 25°C, cal/gm Heat of Vaporization, cal/gm (at normal boiling point) Molecular Weight Hefractive Index. no Solubility at 20°C, wt. %, in water water in Solubility in alcohol, ether or water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C cal/gm/°C at 0°C Surface Tension in Air at 20°C, dynes/cm Vapor Penssity (air = 1) Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centipoise 5420 262.8 32.04 1.3285 1.3285 2.2 Complete Com		
Heat of Combustion liquid, 25°C, cal/gm 5420 262.8 32.04 1.3285 32.04 1.3285 32.04 1.3285 32.04 1.3285 32.04 1.3285 32.04 1.3285 32.04 1.3285 32.04 1.3285 32.04 1.3285 32.04 1.3285 32.04 1.3285 32.04 3.285 32.04 32.04 32.04 32.04 32.04 32.04 32.04 3		5683
liquid, 25°C, cal/gm Heat of Vaporization, cal/gm (at normat boiling point) Molecular Weight Refractive Index, n ₀ , and the street of the st		
Heat of Vaporization, cal/gm (at normat boiling point) All All All All All All All All All Al		5420
(at normal boiling point) Molecular Weight Molecular Weight Refractive Index. no Reid Vapor Pressure, pounds per square inch Solubility at 20°C, wt. %, in water water in Solubility in alcohol, ether or water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C cal/gm/°C at 0°C Surface Tension in Air at 20°C, dynes/cm Vapor Density (air = 1) Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centipoise 22.2 Complete Co		
Molecular Weight Refractive Index. n ₀ ²⁰ Reid Vapor Pressure, pounds per square inch Solubility at 20°C, wt. %, in water Solubility in alcohol, ether or water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C cal/gm/°C at 0°C Surface Tension in Air at 20°C, dynes/cm Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centipoise 32.04 1.3285 2.2 2.2 Complete Complete Complete 0.7925 0.599 0.566 22.55 1.11 96.0 0.506		262.8
Refractive Index, n [∞] ₁ 1.3285 Reid Vapor Pressure, pounds per square inch Solubility at 20°C, wt. %, in water water in Solubility in alcohol, ether or water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C cal/gm/°C at 0°C Surface Tension in Air at 20°C, dynes/cm Vapor Density (air = 1) Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centipoise 1.3285 2.2 Complete		32.04
Reid Vapor Pressure, pounds per square inch Solubility at 20°C, wt. %, in water water in Solubility in alcohol, ether or water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C cal/gm/°C at 0°C Surface Tension in Air at 20°C, dynes/cm Vapor Density (air = 1) Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centipoise 2.2 Complete Compl		1.3285
pounds per square inch Solubility at 20°C, wt. %, in water water in Solubility in alcohol, ether or water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C cal/gm/°C at 0°C Surface Tension in Air at 20°C, dynes/cm Vapor Density (air = 1) Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centipoise 2.2 Complete Complete 0.7925 0.599 0.596 0.566 22.55 1.11 96.0 0.614	Reid Vanor Pressure.	
Solubility at 20°C, wt. %, in water water in Solubility in alcohol, ether or water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C 0.599 0.566 Surface Tension in Air at 20°C, dynes/cm 22.55 Vapor Density (air = 1) Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centipoise Complete 0.7925 0.7925 0.7925 0.599 0.566 Surface Tension in Air at 20°C, dynes/cm 22.55 1.11 Vapor Pressure, 20°C, mm Hg 96.0 Viscosity at 20°C, centipoise 0.614		2.2
water in Solubility in alcohol, ether or water Specific Gravity, 20/20°C Specific Heat of Liquid, cal/gm/°C at 20°C cal/gm/°C at 0°C Surface Tension in Air at 20°C, dynes/cm Vapor Density (air = 1) Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centipoise Oonplete Complete C		Complete
Specific Gravity, 20/20°C 0.7925 Specific Heat of Liquid, cal/gm/°C at 20°C 0.599 cal/gm/°C at 0°C 0.566 Surface Tension in Air at 20°C, dynes/cm 22.55 Vapor Density (air = 1) 1.11 Vapor Pressure, 20°C, mm Hg 96.0 Viscosity at 20°C, centipoise 0.614		Complete
Specific Gravity, 20/20°C 0.7925 Specific Heat of Liquid, cal/gm/°C at 20°C 0.599 cal/gm/°C at 0°C 0.566 Surface Tension in Air at 20°C, dynes/cm 22.55 Vapor Density (air = 1) 1.11 Viscosity at 20°C, centipoise 0.614	Solubility in alcohol, ether or water	Complete
Specific Heat of Liquid, cal/gm/°C at 20°C 0.599 cal/gm/°C at 0°C 0.566 Surface Tension in Air at 20°C, dynes/cm 22.55 Vapor Density (air = 1) Vapor Pressure, 20°C, mm Hg 96.0 Viscosity at 20°C, centipoise 0.614	Specific Gravity, 20/20°C	0.7925
cal/gm/°C at 20°C 0.599 cal/gm/°C at 0°C 0.566 Surface Tension in Air at 20°C, dynes/cm 22.55 Vapor Density (air = 1) 1.11 Vapor Pressure, 20°C, mm Hg 96.0 Viscosity at 20°C, centipoise 0.614		
cal/gm/°C at 0°C 0.566 Surface Tension in Air at 20°C, dynes/cm 22.55 Vapor Density (air = 1) 1.11 Vapor Pressure, 20°C, mm Hg Viscosity at 20°C, centipoise 0.614		0.599
Surface Tension in Air at 20°C, dynes/cm 22.55 Vapor Density (air = 1) 1.11 Vapor Pressure, 20°C, mm Hg 96.0 Viscosity at 20°C, centipoise 0.614	cal/om/°C at 0°C	0.566
dynes/cm 22.55 Vapor Density (air = 1) 1.11 Vapor Pressure, 20°C, mm Hg 96.0 Viscosity at 20°C, centipoise 0.614	Surface Tension in Air at 20°C.	
Vapor Density (air = 1) 1.11 Vapor Pressure, 20°C, mm Hg 96.0 Viscosity at 20°C, centipoise 0.614		22.55
Vapor Pressure, 20°C, mm Hg 96.0 Viscosity at 20°C, centipoise 0.614		1.11
Viscosity at 20°C, centipoise 0.614		96.0
Weight pounds per gallon at 20°C (68°F) 6.59	Viscosity at 20°C, centipoise	0.614
	Weight, pounds per gallon at 20°C (6	8°F) 6.59

Physical Properties

•	
Autoignition Temperature, °C	367
Boiling Point at 760 mm Hg, °C	117.7
Boiling Point at 760 mm Hg, °F	243.9
Coefficient of Thermal Expansion per °C (20°C-40°C)	0.93 x 10 ⁻³
Critical Pressure, atmospheres	43.6
Critical Temperature, °C	287
Dielectric Constant, at 25°C	16.1
Evaporation Rate (BuAc = 1)	0.45
Flammable Limits (lower limit, vol %) (upper limiti, vol %)	1.4 11.2
FlashPoint Tag Open Cup, °F Tag Closed Cup, °F	97 84
Freezing Point, °C	89.9
Heat of Combustion, cal/gm	8610
Heat of Formation, kcal/mole (liquid, 25°C)	-79.61
Heat of Fusion, cal/gm	29.9
Heat of Vaporization, cal/gm at normal boiling point	141.3
Molecular Weight	74.12
Refractive Index n ²⁰	1.3992
Solubility at 20°C, wt % in water water in	7.8 20.1
Specific Gravity, 20/20°C	0.8109
Specific Heat of Liquid, cal/gm°C at 20°C	0.563
Surface Tension in Air at 20°C dynes/cm	24.6
Vapor Density (air = 1)	2.57
Vapor Pressure, 20°C, mm Hg	4.4
Viscosity at 20°C, centipoise	2.9
Weight, pounds per gallon at 20°C (68°F)	6.75

Physical Properties	
Autoignition Temperature, °C	440
Boiling Point, 760 mm Hg, °C 760 mm Hg, °F	108.0 226.4
Coefficient Thermal Expansion per °C at 20°C, (10°-30°C)	0.95 x 10 ⁻³
Critical Pressure, atmospheres	42.4
Critical Temperature, °C	227
Electrical Conductivity, mhos/cm, 25°C	8 x 10 ⁻³
Evaporation Rate (n-BuAc = 1.0)	0.82
Flammable Limits (lower limit, vol %) in Air @ 212°F (upper limit, vol %)	1.2 10.9
Flash Point, Tag Open Cup, °F Tag Closed Cup, °F	100 82
Freezing Point, °C	-108
Heat of Combustion, cal/g	8610
Heat of Vaporization, cal/g at normal boiling point	138
Molecular Weight	74.12
Refractive Index, n _D ²⁰	1.3959
Solubility, 20°C, wt % in water water in	8.5 15.0
Specific Gravity, 20/20°C	0.8030
Specific Heat of Liquid, cal/gm/°C at 20°C	0.585
Surface Tension at 20°C, dynes/cm	22.94
Vapor Density (air = 1.0)	2.6
Vapor Pressure at 20°C, mm Hg	8.8
Viscosity, 20°C, centipoise	3.95
Weight, pounds per gallon at 20°C	6.68

Physical Properties

Autoignition Temperature, °C	371.1
Boiling Point at 760 mm Hg, °C	97.2
Boiling Point at 760 mm Hg, °F	207.0
Coefficient of Thermal	
Expansion per °C (0-94°C)	0.956 x 10
Critical Pressure, atmospheres	49.9
Critical Temperature, °C	263.7
Distillation Range, °C	97.15 ± 1
Electrical Conductivity,	2 x 10-8
mho/cm at 25°C	
Evaporation Rate (BuAc = 1)	1.3
Flammable Limits (lower limit, vol %)	2.2
(upper limit, vol %)	14.0
Flash Point, Tag Open Cup, °F	84
Tag Closed Cup, °F	71
Freezing Point, °C	-127.0
Heat of Combustion, cal/gm	8089.3
Heat of Formation, kcal/mole	
(vapor, 25°C)	-60.87
Heat of Fusion, cal/gm at -126.6°C	86,6
Heat of Vaponization, cal/gm at	
normal boiling point	188.0
Molecular Weight	60.10
Refractive Index, n ²⁰	1.3854
Solubility at 20°C,	
in alcohol, ether, water	Complete
Specific Gravity, 20/20°C	0.8044
Specific Heat of Liquid,	0.526
cal/gm/°C at 0°C	0.526
Surface Tension in Air at 20°C, dynes/cm	23.75
Vapor Density (air = 1)	2.07
Vapor Pressure, 20°C, mm Hg	13
Viscosity at 20°C, Centipoise	2.2
Weight, pounds per gallon at 20°C	6.70
•	

Table 6.129: Proctor and Gamble Fatty Alcohols (39)

Chemical Properties	CO-1214	CO-1270	CO-1695	CO-1895	CO-189 7	CO-1898	TA-1618
Hydroxyl Value	280-290 (285)	285-295 (289)	220-235 (228)	200-215 (204)	200-215 (206)	200-215 (207)	208-218 (211)
Acid Value	0.1 mgx (0.0)	0.10 max (0.0)	0.5 max (0.19)	0.5 max (0.1)	0.5 max (0.1)	0.5 max (0.1)	1.0 max (0.0)
Saponification Value	0.5 max (0.1)	0.5 max (0.1)	1.0 max (0.4)	2.0 mox (0.6)	1.0 max (0.3)	1.0 max (0.3)	2.0 max (1.0)
odine Value	0.3 max {0.1}	0.2 max (0.04)	2.0 max (0.8)	2.0 max (0.8)	2.0 max (0.4)	2.0 max (0.25)	1.0 max (0.3)
Moisture (%)	0.10 max (0.04)	0.10 max (0.04)	0.10 max (0.05)	0.10 max (0.04)	0.10 max (0.03)	0.10 max (0.02)	0.10 max (0.03)
P&G Acid Heat Stability % Transmittance @ 450 nm)	90 min (97)	90 min (99)					
Physical Properties							
Color-APHA	10 max (4)	10 max (3)	25 max (3-6)	25 max (8)	25 max (9)	25 max (10)	25 max (11)
Melting Point, (C)	(22)		47-50 (49)	56-60 (57)	56-60 (58)	56-60 (58)	(50)
Appearance	water white mobile liquid	water white mobile liquid	waxy white solid	waxy white solid	waxy white solid	waxy white solid	waxy white solid
Composition (% by GC)							
C8	0.3 max (0.1)						
C10	1.0 max (0.5)	1.5 max (0.7)					
C12	65.0 min (68.0)	68.0-74.0 (71.2)					(0.1)
(14	21.0-28.0 (26)	24.0-30.0 (27)	2.5 max (0.3)	(0.1)		(0.1)	1.5 max (0.6)
C16	4.0-8.0 (5.6)	1.5 max (0.6)	95.0 min (96.5)	2.5 max (0.8)	(0.5)	1.5 max (0.6)	23.0-33.0 (30)
C18	0.5 max (0.0)		(2.5)	95.0-98.0 (96.6)	97.5 min (98.2)	98.0-99.0 (98.6)	65.0 min (69)
720				0.2-1.4 (0.6)	2.0 max (0.3)	0.5 max (0.1)	1.5 max (0.1)
l yd rocarbon	1.0 max (0.3)	1.0 max (0.4)	1.5 max (0.2)	1.5 max (0.3)	1.5 max (0.2)	1.5 max (0.1)	1.5 max (0.1)
AS No.	67762-41-8	67762-41-8	36653-82-4	112-92-5	112-92-5	112-92-5	67762-30-5

Table 6.130: Shell Chemica! Alcohols (14)

Typical	Properties	of the	Alcohols
---------	-------------------	--------	----------

	Isopropyl Alcohol	Isobutyl Alcohol	Normal Butyl Alcohol	Secondary Butyl Alcohol	Methyl Isobutyl Carbinol	Diacetone Alcohol	2-Ethyl Hexano
Molecular Weight	60.096	74.124	74.124	74.124	102.178	116.162	130.231
Specific Gravity (Apparent)							
60/60 °F	0.7893	0.8060	0.8135	0.8109	0.8107	0.9441	0.8362
20/20 °C	0.7864	0.8033	0.8109	0.8080	0.8078	0.9409	0.8338
25/25 °C	0.7832	0.8006	0.8082	0.8050	0.8048	0.9374	0.8312
Wt. per U.S. Gallon (in air)							
60 °F	6.574	6.712	6.775	6.753	6.751	7.863	6.964
20 °C	6.544	6.685	6.748	6.724	6.722	7.830	6.938
25 °C (VOC content)	6.510	6.654	6.718	6.691	6.689	7.792	6.909
Boiling Point at 760 mm							
°C	82.33	107.89	117.73	99.50	131.8	169.2	184.8
°F	180.19	226.20	243.91	211.10	269.24	336.6	3 6 4.64
Boiling Point Change							
°C/mm at 760 mm	0.0325	0.0360	0.0370	0.0349	0.0407	0.075	0.049
Vapor Pressure at 20 °C, mm	32.8	8.77	4.3	12.5	2.2	0.81	0.20
Freezing Point at 760 mm, °C	-88.43	-108	-89.3	-114.7	-90	-44	< -75
Refractive Index, n ²⁰	1.37720	1.3959	1.3993	1.3969	1.4110	1.4234	1.4328
Heat of Vaporization cal/g at 760 mm	450.00	100	444.5	404.44	00.07	00	00
-	159.23	139	141.5	134.41	99.87	90	93
Heat of Fusion at Melting Pt. cal/g	21.37		_	_		_	_
Specific Heat (liquid) cal/g °C	0.541	0.581	0.564	0.540	0.52	0.62	0.564
Flash Point, Tag Open Cup °F, Approx.	60	100	110	80	131	135	185
Flash Point, Tag Closed Cup °F, Approx.	53	86	98	72	103	126	1 6 6
Autoignition Temp. °F, Approx.	750	800	650	761	_	_	
Flammable Limits in Air %v of Compound	, 55	333	333				
Upper .	12	10.9	11.2	9.0	5.5		
Lower	2.0	1.7	1.4	1.7	1.0	_	
Solubility, %wt	2.0	•••					
in water at 20 °C	complete	8.7	7.7	15.4	1.6	complete	0.07
water in at 20 °C	complete	15	20.1	65.1	6.3	complete	2.6
Azeotrope with Water	Compicte		20.1	00.1	0.0	complete	
% w compound	87.70	67	57.5	72.7	55.6	12.7	20
Boil Pt. at 760 mm, °C	80.16	89.8	92.7	87.5	94.3	98.8	99.1
Viscosity, cps				U	J		
at 15 °C	2.859	_		_	_		_
at 20 °C		3.98	2.96	3.78			8.14
at 25 °C	2.4	3.4	2.50	2.9	3.8	2.9	7.7
at 30 °C	2.4	3.4	<u> </u>	<u> </u>	3.0 —	2.9	1.1
Surface Tension,			_	_	_	_	
dyne/cm at 20 °C	21.35	22.8	24.6	23.0	22.8	28.9	_

Table 6.131: Union Carbide Alcohols (19)

			Relative Evaporation	Vapor Pressure	Density			Specific Hoy Sol	neters	
Product	Formula	Molecular Weight	Rate nBuAc = 1	at 20°C, mm Hg	at 20°C, Ib/gal	Gravity at 20/20°C	Total	Hydrogen Bonding	Polar	Non-Polar
Alcohols		<u>.</u>				1.100				
Amyl Alcohol, Primary	C ₅ H ₁₁ OH (Mixed Isomers)	88.15	0.18	1.6	6.79	0.816	11.1	7.2	4.4	7.3
n-Butanol	С₄Н₀ОН	74.12	0.44	4.2	6.75	0.811	11.6	7.6	4.9	7.3
Diisobutyl Carbinol	C _p H ₁₉ OH (Mixed Isomers)	144.26	0.02	. 0.1	6.76	0.812	9.0	4.5	3.3	7.0
Ethanol, 95% ^(d)	C₂H₅OH	46.07	3.00	41.4	6.75	0.811	12.8	9.8	5.5	6.2
2-Ethylhexonol	C ₄ H ₉ CH(C ₂ H ₅)CH ₂ OH	130.23	-:(0,10)	0.1	6.94	0.834	10.2	5.9	3.8	7.4
Isobutanol	CH ₃ CH(CH ₃)CH ₂ OH	74.12	0.74	7.2	6.68	0.803	11.2	7.3	4.8	7.1
Isapropanol, Anhydrous	CH3CH(CH3)OH	60.10	2.90	33.0	6.55	0.786	11.5	7.8	4.8	6.9
Methyl Amyl Alcohol	CH3CH(CH3)CH2CH(CH3)OH	102.18	0.43	3.7	6.72	0.808	9.0	5.1	3.7	6.4
2-Methyl Butanol	CH ₃ CH ₂ CH(CH ₃)CH ₂ OH	88.15	0.24	2.0	6.81	0.816	11.1	5.9	4.5	7.4
n-Pentanol	C₅H ₁₁ OH	88.15	0.18	1.6	6.79	0.816	10.8	7.0	4.4	7.0
n-Propanol	C ₃ H ₇ OH	60.10	1.30 ^t	14.9	6.71	, 0.805	12.2	8.6	5.2	6.9

	Viscosity at 20°C, cP	Surface Tension at 20°C, dynes/cm	Boiling Point at 760 mm Hg, °C	Solubility at 20°C, Percent by Wt		Flash Point, Tag Closed	Electrical Resistance ^(a) ,	Odor Detection Threshold ^(b)	Title III Listed Hazardous Air	CAS Registration
				in Water	Water in	Cup, °F	Megohms	ED50, ppm	Pollutant ^(c)	Number
Amyl Alcohol, Primary	4.0	25.7	137.9	1.7	9.2	113			No	Mixture
n-Butanol	2.9	24.8	117.7	7.7	20.0	95	0.18	2.28	No	71.36-3
Diisobutyl Carbinol	13.9	26 .0	178.0	0.06	1	149			No	Mixture
Ethanol, 95% ⁵⁶	1.2	22.5	80.0	Complete		62			No	64 17:5
2-Ethyllickanol	9.Q	26.8	184.6	0.07	26	162		***	No	104 76 7
Isobutanol	3.9	23 .0	107.9	8.5	15.0	82	0.18		No	28 83 1
Isopropanol, Anhydroi	us 2.4	21.4	82.3	Complete		53			No	6.1 63. 0
Methyl Amyl Alcohol	5.1	23 1	131,7	1.7	5.8	102			Мo	108 11 2
2-Methyl Butanol	5.0	25 .5	128.7	2.2	8.3	110			No	137-32-6
n-Pentanol	4.0	2 5.7	137.9	2.6	9.5	119			No	71. 41 :0
n-Propanal	2.2	23.8	97.2	Con	nplete	76	0.18		No	71-23-8

ALLYL ALCOHOL

Table 6.132: Physical Properties of Allyl Alcohol (31)

96.90°C Boiling point at 760 mm Coefficient of expansion at 20°C 0.00101 per °C Color (Pt-Co, Hazen) 15 max. Critical temperature 271.9°C 95°C, min. Distillation range, IBP 98°C, min. Fire hazard Dangerous when exposed to heat or flame Flash point (Open cup) (Closed cup) 90°F 72°F Freezing point Becomes a glass at -190°C Heat of combustion (vapor) 442.4 kg cal/gm mole 443°C Ignition temperature in air 348°C in oxygen Latent heat of vaporization at 760 mm 9550 cal/mole (295 BTU/lb) MAC 5 ppm in air -129°C Melting point 58.078 Molecular weight Purity 98.0% by wt., min. Refractive index at 20°C, n_D 1,4134 Specific gravity at 25/25°C 0.8501

Specific heat, Cp for liquid, 20-95°C 0.665 g cal/g-°C

Surface tension at 20°C 25.68 dynes/cm

Toxicity Highly toxic by inhalation and ingestion

Vapor pressure at 20°C 17.3 mm

Viscosity at 30°C 0.01072 poises

Water 0.3% by wt., max.

Weight per gallon at 20°C 7.11 lbs.

Table 6.133: Azeotropes of Alkyl Alcohol (31)

ALLYL ALCOHOL FORMS BINARY AZEOTROPES WITH

CROTYL ALCOHOL

Crotyl alcohol is a clear, stable liquid with a straight-chain, bifunctional molecular structure, CH3—CH—CH2OH. A highly reactive compound, crotyl alcohol should find use in the manufacture of agricultural chemicals, plastics and polymer additives, vornish ingredients, and pharmaceuticals.

The bifunctionality or two reactive points — hydroxy group and point of unsaturation — account for the high degree of chemical reactivity of crotyl alcohol. The hydroxy group undergoes such reactions as esterification and etherification; whereas the double bond enters into polymerization and addition reactions.

Table 6.134: Physical Properties of Crotyl Alcohol (41)

Empirical formula	C ₄ H ₈ O		
Molecular weight (theoretical)	72.10		
Physical form	Clear liquid		
Color, APHA, ppm.	15		
Purity, by gas chromatography, %	97-98		
Acidity, as crotonic acid, %	0.049		
Boiling range, 760 mm., °C. Initial boiling point Dry point	121 126		
Specific gravity, 20°/20°C.	0.8550		
Bulk density, lb./gal., 20°C.	7.12		
Flash point, Tag Open Cup, °F.	113 (45° C.)		
Fire point, Tag Open Cup, °F.	113 (45° C.)		
Isomer concentration (approximate)	3:1 trans:cis		
Viscosity, 75° F. (23.9° C.), cs.	32.7		
Solubility, 25°C., wt. % in water water in ethyl alcohol acetone	Completely miscible with water in all proportions miscible miscible		

METHYLBUTYNYL ALCOHOL

Methylbutynol, 2-Methyl-3-Butyn-2-ol

HCCCOH(CH₃)₂

Methylbutynyl alcohol is a tertiary acetylenic alcohol with an isoprenoid structure.

Table 6.135: Physical Properties of Methylbutynyl Alcohol (31)

Boiling point	104 - 105°C			
Fire hazard	Dangerous when exposed to heat or flame			
Flash point, Tag open cup	87.4°F			
Freezing point	2.6°C			
Refractive index at 20°C, nD	1.4211			
Specific gravity, 20/20°C	0.8672			
Surface tension at 25°C	23.8 dynes/cm (pure) 41.7 dynes/cm (5% in water)			
Vapor pressure at 20°C at 52°C	12 mm 80 mm			
Weight per gallon	7.24 lbs			

METHYLPENTYNYL ALCOHOL

Table 6.136: Physical Properties of Methylpentynyl Alcohol (31)

121 - 122°C
Moderate
101.3°F
-30.6°C
1.4318
12.8 g (100 g)
0.8721
23.8 dynes/cm (pure) 34.1 dynes/cm (5% in water)
4 mm 90 mm
7.28 lbs

HIGHER UNSATURATED ALCOHOLS

Table 6.137: Unsaturated Aliphatic Alcohols (69)

Systematic Name	Common Name	Empirical Formula	Mol. Wt.	Double Bonds	* Boiling Pt. oC.
9:10-Dodecenol	Lauroleyl	С ₁₂ Н ₂₃ ОН	184.31	1	157/15 mm
9:10-Tetradecenol	Myristoleyl	С ₁₄ Н ₂₇ ОН	212.36	1	
9:10-Hexadecenol	Palmitoleyl	С ₁₆ Н ₃₁ ОН	240.41	1	
9:10-Octadecenol	Oleyl	С ₁₈ Н ₃₅ ОН	268.46	1	208-209/15 mm
9:10-Eiscosenol	Gadoleyl	С ₂₀ н ₃₉ Он	296.51	1	
13:14-Docosenol	Erucyl	С ₂₂ Н ₄₃ ОН	324.57	1	240.5-241.5/10 mm
9:10, 12:13-Octadecadienol	Linoleyl	С ₁₈ Н ₃₃ ОН	266.45	2	148-150/1 mm
9:10, 12:13, 15:16-Octadecatrienol	Linolenyl	С ₁₈ Н ₃₁ ОН	264.43	3	
9:10, 11:12, 13:14-Octadecatrienol	Elaeostearyl	С ₁₈ Н ₃₁ ОН	264.43	3	
9:10-Octadecen-1,12-diol	Ricinoleyl	C ₁₈ H ₃₄ (OH) ₂	284.47	1	
5:6, 8:9, 11:12, 14:15-Eicosatetraenol	Arachidonyl	С ₂₀ Н ₃₃ ОН	290.31	4	
4:5, 8:9, 12:13, 15:16, 19:20-Docosapentenol	Clupanodonyl	С ₂₂ Н ₃₅ ОН	316.0	5	

DIACETONE ALCOHOL

Table 6.138: Physical Properties of Diacetone Alcohol (31)

Acidity as acetic acid	0.01% by wt, max.	Molecular weight	116.16
Azeotrope with water:		Refractive index at 20°C, nD	1.4232
boiling point, 760 mm diacetone	98.8°C 12.7% by wt	Relative evaporation rate (n-butyl acetate = 100)	14
Boiling point, 760 mm	169.2°C	Specific gravity at 20°C	0.9406
Coefficient of expansion at 55°C	0.00100	Specific heat at 15°C	0.500 cal/gm/°C
Fire hazard	Moderate	Toxicity	Slight
Flash point, Open cup	155°F	Vapor pressure at 20°C	0.97 mm
Freezing point	-42.8°C	Viscosity at 20°C	3.2 cps
Heat of vaporization, l atm.	162 Btu/1b	Water at 20°C	Miscible without turbid- ity with 19 vol. of
Hydrocarbon solubility	Complete		60° Bé gasoline
MAC	50 ppm in air	Weight per gallon at 20°C	7.82 lbs

^{*} Ralston, A. W., "Fatty Acids and Their Derivatives", p. 733.

* Hilditch, T. A., "The Chemical Constitution of Natural Fats".

* Brockelsby, H. P., "The Chemistry and Technology of Marine Oils with Particular Reference to Those of Canada". p. 90.

2-MERCAPTOETHYL ALCOHOL

Table 6.139: Physical Properties of 2-Mercaptoethyl Alcohol (31)

Boiling point at 760 mm	156.9°C
50 mm	83°C
10 mm	53°C
Coefficient of expansion	
at 55°C	0.00080
Fire hazard	Moderate
Flash point, Open cup	170°F
Heat of vaporization	257 Btu/1b
Molecular weight	78.13
Refractive index at 20°C, np	1.5011
Relative evaporation rate	
(n-butyl acetate = 100)	13
Solubility in water at 20°C	Complete
Solubility of water in, at 20°C	Complete
Specific gravity at 20/20°C	1.1168
Vapor pressure at 20°C	1.2 mm
Viscosity (absolute) at 20°C	3.4 cps.
Toxicity	Moderate (acute local)
Weight per gallon at 20°C	9.30 lbs

2-ETHYLSULFONYLETHYL ALCOHOL

Table 6.140: Physical Properties of 2-Ethylsulfonylethyl Alcohol (37)

Acidity as acetic acid	0.25% max.
Boiling range at 2.5 mm	155 to 156°C
Fire hazard	Slight
Fire point	406°F
Flash point, Tag open cup	370°F
Moisture content	1.5% max.
Molecular weight	138.19
Refractive index at 26°C, n	1.4679
Set point	40.5 to 42.5°C
Specific gravity at 45/20°C	1.252 to 1.258 g/ml
Toxicity	Slight
Viscosity at 60°C	12.8 cps.

1,1,1-TRIFLUOROETHYL ALCOHOL

Table 6.141: Trifluoroethanol Physical Properties (25)

Molecular Weight (CF,CH,OH)100.04	Heat of Vaporization, Btu/lb149
Boiling Point, °C73.6	Heat of combustion ¹⁶ , kcal./mol
Melting Point, °C	Vapor Pressure vs. Temperature, $log P = -\frac{1910}{T} + 8.39$
Flash Point (Open Cup), *F	(mm. Hg., °K)
(Closed Cup), *F	Thermal Conductivity, Btu/hr, ft.
Fire PointNone	@ 104°F0.071
Density, 25 °C/4 °C	Viscosity, centistokes, 100 °F
Refractive index, n20	Ionization Constant K_a^2
	Dipole Moment ¹⁷ , μ(D)25 °C
Critical Temperature, °C227	Dielectric Constant ¹⁸ , £(25 °C)
Critical Pressure, psia	Dielectric Constant (2025 C)

Table 6.142: Polymer Solubilities in Trifluoroethanol (25)

POLYMER SOLUBILITIES IN TRIFLUOROETHANOL

solubility	nylon 6/6	nylon 6	nylon 6/10	Zytel 61*
g./100 g. solution at b.p. (ca 80 °C)	13	>20	14	>26
g./100 g. solution at 24 °C	3	11	3	>26
Insoluble Polymers at b.p.:	Delrin®, Lexan® Polypropylene,		ne (high and low dens	sity).
Other Soluble Polymers:			°C): Cellulose Acetate tate (>24 wt. % at 24°	
Slightly soluble:	Nylon 11 (0.2 w	t. %)		
*a duPont "soluble" nylon				

Table 6.143: Salt Solubility (wt. %) in Trifluoroethanol at 25°C (25)

Salts

Inorganic salts are slightly soluble trifluoroethanol containing 0.2% water. The same salts are bout 2 to 3 times more soluble in the alcohol containing 5% water. This combination of alcohol and water is convenient for conductometric titrations and organic ionic reactions.

SOLUBILITY (WT.%) IN TRIFLUOROETHANOL AT 25°C

Water Content	LiCI	NaCl	NaF	KI	KBr	CaCl,
0.2%	2.3	0.03	0.007	0.9	0.3	0.04
5.0%	4.2	0.08	0.02	2.1	0.6	0.12

Table 6.144: Solubility of Gases in Trifluoroethanol at 27°C (25)

Gases

The simple gases have solubilities in trifluoroethanol which are similar to their solubilities in water.

SOLUBILITY OF GASES IN TRIFLUOROETHANOL AT 27°C

(ml. of gas/ml. of liquid)						
N ₂ O ₂ CO ₂						
0.06	0.13	1.8				

Table 6.145: Vapor Pressure vs. Temperature (25)

Table 6.146: Freezing Point: Trifluoroethanol-Water (25)

Table 6.147: Infrared Spectrum (25)

1H,1H,3H-TETRAFLUORO-1-PROPYL ALCOHOL

Table 6.148: Physical Properties of 1H,1H,3H-Tetrafluoro-1-Propyl Alcohol (31)

0.82
109 - 110°C
1.4853 g/mi
90% between 99.5° and 108.5°C
57.5%
132.06
398
-15°C
0.40%
> 95%
1.3197
27.6 dynes/cm

1H,1H,5H-OCTAFLUORO-1-PENTYL ALCOHOL

Table 6.149: Physical Properties of 1H,1H,5H-Octafluoro-1-Pentyl Alcohol (31)

Acid number	0.70
Boiling point at 760 mm	140 - 141°C
Density at 20°C	1.6647 g/ml
Distillation range, ASTM, at 760 mm	90% between 133.0° and 141.0°C
Fluorine content	65.5%
Formula weight	232.08
Hydroxyl number	224
Moisture content	0.08%
Purity	> 95%
Refractive index at 20°C, np	1.3190
Surface tension at 20°C	24.5 dynes/cm

BENZYL ALCOHOL

Table 6.150: Physical Properties of Benzyl Alcohol (31)

Acidity as benzoic acid	0.15% max.	Latent heat of evaporation at 204.25°C	111.58 gm cal/gm
Aldehyde as benzaldehyde	0,50% max.	Molecular weight	108.13
Boiling point	205.3°C	Refractive index at 20°C, n	1.5334-1.5397
Chlorine as benzyl chloride	0.15% max.	Solubility in water	I part in 30 parts
Dielectric constant	1.66		of water
Distillation range, Ibp	195°C min.	Specific gravity at 25/25°C	1.044-1.058
5%	204°C	Specific heat at 15-20°C	0.5402 cal/gm
90%	207°C	Surface tension (c.g.s. units)	39.71
95%	210°C max.	Toxicity	Slight
Electrical conductivity at 25°C	18 x 10 ⁻⁷ recip. chms.	Vapor pressure at 30°C	0.100 mm
Fire hazard	Slight	Viscosity at 20°C	0,05582 cps.
Flash point (Open cup)	213°F	Weight per gallon at 20°C	9.78 lbs.
Freezing point	-15.3°C		
Heat of combustion	893 kg cal/mole		

Table 6.151: VELSICOL Benzyl Alcohol (59)

CRECIETO ATTONIC

Benzyl Alcohol, Reagent Grade

Benzyl Alcohol is a clear, colorless liquid with a mild, pleasant aromatic odor. It is a primary alcohol with reactive methylene and nuclear hydrogen. The reagent grade is a high purity material with analytical utility.

SPECIFICATIONS	
Assay, (G.C.), % minimum	99.0
Solubility, in 25 ml water at 25°C, g	1
Benzaldehyde content (U.V. determination), % maximum	0.03
Halogen (Beilstein Test)	Negative
Tanogen (pension 700)	riegative
TYPICAL PROPERTIES	
Boiling Point,	
5 mm Hg, "F/"C	177.8°/81°
760 mm Hg, °F/°C ————————————————————————————————————	401°/205°
Vapor Pressure, mm Hg	
at 86°F/30°C	0.1
at 86°F/30°C at 212°F/100°C	13.3
Melting Point, °F/°C	-5°/-15°
Specific Gravity, 25°/25°C	
Refractive Index, 25°C	
Vapor Density (air=1)	

FURFURYL ALCOHOL

Table 6.152: Physical Properties of Furfuryl Alcohol (46)

PHYSICAL PROPERTIES

General Properties		Other Properties	
Molecular Weight	98.10	Physical State	Liquid
Boiling Point (at 760 mm Hg)		Color	Colorless
°C °F	170 338	Odor	to Yellow
Freezing Point, metastable crystalline form	330	Odor	Mild & Characteristic
°C ,	- 29	Chemical Oxygen Demand, lb/lb FA	1.75
°Ē	-20.2	Biochemical Oxygen Demand	0.81
Freezing Point, stable crystalline form		(5 days, 20°C), lb/lb FA	0.01
°C °F	14.63 5.7	Dipole Moment, e.s.u.	1.92 x 101
Density (at 20°C, 68°F), g/cm³	1.1285	Solubility Parameter, (cal/cm³)1/2	12.5
Specific Gravity, 20/20°C	1.1351	Solubility in	
Refractive Index	1.1001	Water	∞
n_ ²⁰	1.4868-1.4870	Alcohol Ether	∞
n _D ²⁵	1.4843-1.4845		
Vapor Density (air = 1)	3.38	Flammability Properties of Commercial	
Vapor Pressure (at 31.8°C, 89.2°F), mm Hg	1	QO® FA® Furfuryl Alcohol	
Also see	Table I & Figure B	Flash Point Tagliabus, closed cup	
Thermodynamic Properties		Tagliabue, closed cup °C	7 7
Heat of Vaporization, cal/g	122	°F	170
Heat Capacity, cal/g-°C		Pensky-Martens, closed cup °C	00
liquid at - 20°C	0.450	°F	83 182
liquid at 0°C	0.472	(Based on flash point, furturyl alcohol is classified	.02
liquid at 25°C stable crystalline form at -40°C	0.502 0.256	as a Combustible Liquid Class IIIA.*)	
stable crystalline form at -20°C	0.278	Flammability Limits (in dry air at 72.5-122°C)	
Thermal Conductivity, kcal/m-hr-°C	0.154	% by volume	
Heat of Combustion, kcal/gmole		Lower limit Upper limit	1.8 16.3
at constant volume	608.9	Ignition Temperature	10.5
at constant pressure	609.2	In air	
Heat of Formation, liquid, kcal/gmole	- 66.06	°C	391
Heat of Fusion, stable crystalline form, cal/g	31.8	°F	736
Thermal Expansion Coefficient* β/°C (17.8 to 37.8°C)	0 E0 v 10-4	In oxygen °C	364
β/°F (0 to 100°F)	8.52 x 10 ⁻⁴ 4.53 x 10 ⁻⁴	°Ĕ	687
		DOT Label Required	
${}^*\beta = \frac{\rho_1^2 - \rho_2^2}{2(t_2 - t_1) p_1 p_2}$ (Note: p = specific gravity t = temperature)		U.S.	none**
$2 (t_2 - t_1) p_1 p_2 \qquad i = temperature)$		International	See IMCO regulations
Fluid Properties		*Refers to Code 29 CFR 1910.106 of Federal Regulation	ū
Viscosity (at 25°C, 77°F), cps	5	**When shipping via UPS, consult their Guide For Shippin	
Surface Tension (at 25°C, 77°F), dynes/cm	38.2	Materials Via UPS.	•
Furfuryl Alcohol-Water Azeotrope			
(at 760 mm Hg)		QO® FA® Furfuryl Alcohol Specification	nne*
Boiling Point of Vapor	00	Furfuryl Alcohol, Assay, wt %, Minimum	98.0
*F	9 9 210.2	•	
Composition, wt %	210.2	Moisture, wt %, Maximum	0.3
Furfuryl Alcohol	ca 9	Furfural, wt %, Maximum	0.7
Water	ca 91	Cloud Point, °C, Maximum**	10.0
		*Methods available upon request. **The cloud point of furfuryl alcohol is determined by dilut alcohol with 30 ml of water and cooling the clear solution definitely cloudy. The solution is then allowed to warm u until it is just clear. At this point, cooling produces an imi	n until it becomes p with stirring

Table 6.153: Vapor Pressure of Furfuryl Alcohol (46)

Temperature Pressure °C mm Hg 31.8 89.2 1 Δ 1.8 0 40 104 55.5 131.9 5.5 5 132.8 Δ 56.0 6.3 0 140 60 68.0 154.4 10 Δ 75.5 167.9 16 20.3 0 80 176 20 177.8 Δ 81.0 44 203.9 95.5 40 95.7 204.3 Δ 100 212 53.5 0 104.0 219.2 60 Δ 227.3 78 108.5 240.6 100 115.9 Δ 127.4 0 120 248 129.5 265.1 194 271.6 200 133.1 Δ 140 284 271.0 0 144.0 291.2 343 151.8 305.3 400 Δ 314.6 522 157.0 170.0 338 760 Δ

Table 6.154: Pounds per Gallon of Furfuryi Alcohol at Various Temperatures (46)

T, °F	T, °C	ibs/gai	T, °F	T, °C	lbs/gal
0	<i></i> 17.78	9.7380	51	10.56	9.5182
1	- 17.22	9.7337	52	11.11	9.5139
2	- 16.67	9.7294	53	11.67	9.5096
3	- 16.11	9.7251	54	12.22	9.5053
4	- 15.56	9.7208	55	12.78	9.5010
5	– 15	9.7165	56	13.33	9.4967
6	- 14.44	9.7122	57	13.89	9.4924
7	-13.89	9.7079	58	14.44	9.4881
8	- 13.33	9.7036	59	15	9.4838
9	-12.78	9.6992	60	15.56	9.4795
10	- 12.22	9.6949	61	16.11	9.4752
11	- 11.67	9.6906	62	16.67	9.4708
12	-11.11	9.6863	63	17.22	9.4665
13	10.56	9.6820	64	17.78	9.4622
14	-10	9.6777	65	18.33	9.4579
15	- 9.44	9.6734	66	18.89	9.4536
16	- 8.89	9.6691	67	19.44	9.4493
17	- 8.33	9.6648	68	20	9.4450
18	- 7.78	9.6605	69	20.56	9.4407
19	- 7.22	9.6562	70	21.11	9.4364
20	- 6.67	9.6518	71	21.67	9.4321
21	- 6.11	9.6475	72	22.22	9.4278
22	- 5.56	9.6432	73	22.78	9.4234
23	- 5	9.6389	74	23.33	9.4191
24	- 4.44	9.6346	75	23.89	9.4148
25	- 3.89	9.6303	76	24.44	9.4105
26	- 3.33	9.6260	77	25	9.4062
27	- 2.78	9.6217	78	25.56	9.4019
28	- 2.22	9.6174	79	26.11	9.3976
29	- 1.67	9.6131	80	26.67	9.3933
30	- 1.11	9.6087	81	27.22	9.3890
31	- 0.56	9.6044	82	27.78	9.3847
32	0	9.6001	83	28.33	9.3803
33	0.56	9.5958	84	28.89	9.3760
34	1.11	9.5915	85	29.44	9.3717
35	1.67	9.5872	86	30	9.3674
36	2.22	9.5829	87	30.56	9.3631
37	2.78	9.5786	88	31.11	9.3588
38	3.33	9.5743	89	31.67	9.3545
39	3.89	9.5700	90	32.22	9.3502
40	4.44	9.5657	91	32.78	9.3459
41	5	9.5613	92	33.33	9.3416
42	5.56	9.5570	93	33.89	9.3373
43	6.11	9.5527	94	34.44	9.3329
44	6.67	9.5484	95	35	9.3286
45	7.22	9.5441	96	35.56	9.3243
46	7.78	9.5398	97	36.11	9.3200
47	8.33	9.5355	98	36.67	9.3157
48	8.89	9.5312	99	37.22	9.3114
49	9.44	9.5269	100	37.78	9.3071
50	10	9.5226			

Quaker Oats Chemicals, Inc., Research

Laboratory, unpublished data. D.R. Stull, Ind. & Eng. Chem., 39,517, 1947

G.S. Parks, private communication

Table 6.155: Density of Furfuryl Alcohol-Water Solutions as a Function of Composition (at 25°C, 77°F) (46)

Table 6.156: Vapor Pressure of Furfuryl Alcohol as a Function of Temperature (46)

Table 6.157: Solubility of Liquid Organic Compounds in Furfuryl Alcohol (at 25°C, 77°F) (46)

Table 6.158: Solubility of Solid Organic Compounds in Furfuryl Alcohol (at 25°C, 77°F) (46)

Compound	5 cc/5 cc Furturyl Alcohol	5 cc/10 cc Furtury! Alcohol	Compound	1 g/5 cc Furturyi Alcohol	1 g/10 cc Furfuryi Alcohol
Acid, dichloroacetic, C.P.	R		Acid, acetylsalicylic, U.S.P.	S	
Acid, lactic, U.S.P.	S		Acid, anthranilic	Š	
Acid, valeric	S		Acid, benzoic, U.S.P.	S	
Alcohol, amyl	S		Acid, citric, U.S.P.	SS	s
Alcohol, benzyl, tech.	S		Acid, monochloroacetic	S	•
Alcohol, ethyl	S		Acid, naphthionic, tech.	Ĭ	I (R at 115°C)
Alcohol, isoamyl, tech.	S		Acid, oxalic, tech.		R
Alcohol, isobutyl, C.P.	S		Acid, stearic	SS	SS (S at 95°C)
Alcohol, isopropyl, tech.	S		Acid, sulfanilic	I	I (R at 115°C)
Alcohol, propyl	S		Acid, tannic	SS	SS (SS at 125°C
Aniline	S		Acid, tartaric, U.S.P.	1	I (SS at 125°C)
1,2-Butanediol	S		Acid, trichloroacetic	R	1 (00 at 120 0)
Chloroform, U.S.P.	S		Anthracene, tech.	1	SS (S at 110°C)
Crotonaldehyde, tech.	S		Anthraguinone	1	I (S at 130°C)
o-Dichlorobenzene	S		Benzidine	SS	S-R
Dichloroethyl ether, tech.	S		3-Bromo-d-camphor	S	J−n
Diethylaniline, tech.	S !		Carbazole	ı	I (S at 120°C)
Diethyl carbonate	S		Casein	1	I (I at 125°C)
Diethylene glycol	S		Chioral hydrate. U.S.P.	S	1 (1 at 125 C)
Diethylene glycol dioleate	S		o-Chloronitrobenzene, tech.	S	
	-		Dextrose	ı	I (SS at 125°C)
Diethylene glycol monobutyl ether, tech.			Dianisidine, tech.	S	1 (33 at 123 G)
Diethyl phthalate, C.P. Diethyl sulfate, tech.	S		p-Dichlorobenzene	S	
·	R		Digiycol stearate	SS	1 (C at 100°C)
N,N-Dimethylaniline, tech.	S		N,N-Dimethyl-para-nitrosoaniline	S	I (S at 100°C)
Dimethyl sulfate	R S		Dinitrochlorobenzene, tech.	\$ \$	
Ether, ethyl	S		Dinitrochlorobenzene, tech.	1	I (S at 120°C)
Ether, isopropyl	_		Dinitrophenol	S	1 (3 at 120 C)
Ethyl acetate, tech.	S		Diphenyl	S	
Ethyl acetoacetate	S	0	1 ' '	S	
N-Ethyl-N-benzylaniline	SS	S	Diphenylamine Diphenylayanidina	S	
Ethyl bromide	S		Diphenylguanidine Hexamethylenetetramine, U.S.P.	=	
Ethylchlorocarbonate	R	00	lodoform, U.S.P.	S	1 (C at 00°C)
Ethylene chlorohydrin	SS	SS	: 1	1	I (S at 92°C)
Ethylene dichloride	S		Naphthalene	C	I (S at 92°C)
Ethylene glycol monobutyl ether, tech.	S		alpha-Naphthol, tech.	S	
Glycerol, U.S.P.	S		beta-Naphthol, tech.	S	L (C -+ 000C)
Methyl acetate, tech.	S		beta-Naphthylamine, tech.	D (violant recetion)	I (S at 92°C)
Methyl ethyl ketone	S		alpha-Naphthylamine hydrochloride	R (violent reaction)	
Nitrobenzene	S		m-Nitroaniline	5	
o-Nitrotoluene, tech.	S	1.40 -1.40500	p-Nitroaniline	S	
Oil, lard	1	I (S at 125°C)	p-Nitrophenol, tech.	S	
Oil, linseed	SS	SS (S at 120°C)	p-Nitrotoluene	S	
Oil, neatsfoot	1	i (S at 120°C)	m-Phenylenediamine	S	
Oil, peanut	1	I (S at 125°C)	Resorcinol, white, U.S.P.	S	1.(00 -4.40500)
Oil, rapeseed	ı	I (S at 120°C)	Saccharin, U.S.P.	1	! (SS at 125°C)
Oil, Turkey red	S	1/0 -/ 400-5	Sodium acetate	1	I (S at 115°C)
Oil, whale	1	I (S at 125°C)	Sodium benzoate, U.S.P.	1	1 (I at 125°C)
Paraidehyde, U.S.P.	S		Sodium naphthionate, tech.	1	I (R at 112°C)
Pyridine, tech.	S	1	Sodium picramate, tech.	1	1 (0 -1 0000)
1,1,2,2-Tetrachloroethane, tech.	S		Thiocarbanilide	1	I (S at 92°C)
o-Toluidine, tech.	S		2,4,6-Tribromophenol, tech.	S	
Xylene	S		Triphenylguanidine, tech.	S	

S = Soluble SS = Slightly soluble I = Insoluble R = Reacts*

^{*}Reactions of furfuryl alcohol in the presence of acid or acid generators may be violent; use caution.

Table 6.159: Solubility of Thermoplastic Resins In Furfuryl Alcohol (at Room Temperature) (46)

Resin Type	Tradename (Manufacturer)	Solubility
Cellulose acetate butyrate	CAB-500-1 (Tennessee Eastman)	VS
Cellulose nitrate	RS (Hercules)	VS
Ethylcellulose	N-50 (Hercules)	vs
Methyl methacrylate	Plexiglass ^e V(052)100 (Rohm & Haas)	S*
Methyl methacrylate	Plexiglass* VM100 (Rohm & Haas)	S*
Nylon	Elvamide® 8023 (DuPont)	vs
Nylon	Elvamide* 8061 (DuPont)	S*
Nylon	Elvamide [®] 8061M (DuPont)	vs•
Nylon	Elvamide* 8064 (DuPont)	S*
Nylon	Elvamide® 80625 (DuPont)	s
Nylon	Elvamide* PB8066 (DuPont)	s
Nylon	Rilsan® BMNO (Rilsan Corp.)	1
Polyethylene	Dowlex* 2045 (Dow Chemical)	1
Polyethylene	Dowlex® 2598TB (Dow Chemical)	į i
Vinyl acetate	Bakelite ^e AYAT (Union Carbide)	vs
Vinyl acetate- chloride	Bakelite® VYHH (Union Carbide)	l
Vinyl butyral	Bakelite [®] XYHL (Union Carbide)	vs
Vinylidene chloride	Saran F-310 (Dow Chemical)	1

S = Soluble from 1 g to 10 g per 100 g solvent VS = Soluble 10 g or more per 100 g solvent I = Less than 1 g per 100 g solvent = Slowly

= Slowly

Table 6.160: Effect of Time at Elevated Temperature on Certain Characteristics of Furfuryi Alcohol (Under Neutral Conditions) (46)

Rate of Change of Specific Gravity

Rate of Change of Refractive Index

Legend: x — At 100°C O — At 150°C A — At 200°C

A.P. Dunlop and F.N. Peters, Jr., Ind. & Eng. Chem., 34, 814 (1942).

Table 6.161: Stabilization of Furfuryl Alcohol With an Amine (at 150°C in Glass) (46)

Stabilization of Furfuryl Alcohol with an Amine (at 150°C in glass)

Stabilizer	Time, Hours	Refractive Index, n 20/D	Density, d 25/25	Cloud Point, °C	Water, %
None	0.0	1.4870	1.1322	5.5	0.03
	1.5	1.4875	1.1333	13.5	0.18
	5.5	1.4890	1.1356	36.0	0.67
	10.5	1.4944	1.1428	insot. @ 100°C	3.05
n-butyl amine, 0.3%	0.0	1.4868	1.1308	8.5	0.09
	1.5	1.4870	1.1309	8.5	0.06
	5.5	1.4869	1.1310	8.5	0.16
	10.5	1.4871	1.1311	9.0	0.19

A.P. Dunlop and F.N. Peters, Jr., Ind. Eng. Chem., 34, 814 (1942).

Table 6.162: Antoxidation of Furfuryl Alcohol (46)

Oxygen Absorption, Moles O₂/Liter Furfuryl Alcohol (Under Accelerated Laboratory Conditions)

Time, Hours	Furfuryl Alcohol	Furfuryl Alcohol plus 0.5% H₂O	Furturyt Alcohol plus 0.5% Tripropylamine	Furturyl Alcohol plus 0.5% Hydroquinone
42	0.075	0.139	_	_
74	0.250	0.377	_	_
127	0.636	0.672		_
162	0.840	0.852	_	_
215	0.972	_	- ,	
264	1.084	_	-	0.074
330	1.229		0.019	0.117
		Acidity, equiv/liter Furfuryl	Alcohol	
O (initial)	0.004	0.004	0.012	0.005
330 (final)	0.365	0.395	0.003	0.041

TETRAHYDROFURFURYL ALCOHOL (46)

Table 6.163: Physical Properties of Tetrahydrofurfuryl Alcohol (46)

Physical Properties of THFA®					
Molecular weight	102.13	Specific heat, liquid at 20℃, cal/g℃	0.424		
Appearance	colorless liquid	Heat of vaporization, cal/g	120.6		
		Heat of combustion, kcal/mol	709.5		
Boiling point at 760 mm, °C	178	at constant pressure			
Vapor pressure	see pg. 6	Flash point (Tag closed-cup),			
		° C	74		
Freezing point, °C	below -80	op`	165		
Specific gravity at 20/20°C	1.054	Auto-ignition temperature, ℃	282		
Pounds per gal. at 20°C	8.79	Flammability limits in air			
		lower, vol %	. 1.5		
Refractive index n ₀ ²⁰	1.452	upper, vol %	9.7		
Surface tension at 25°C, dynes/cm	37	Dielectric constant at 23°C	13.6		
Viscosity at 20°C, cps absolute	6.24	Solubility parameter (est.)	12-13		
		Relative evaporation rate			
		(n-butyl acetate=1.00)	.03		

QO® THFA® Specifications			
THFA*, Assay, wt. % min.	98.0		
Furfuryl alcohol, wt. % max.	0.1		
1,2-Pentanediol, wt. % max.	1.6		
Moisture, wt.% max.	0.3		
Color, APHA, max.	50		
Inhibitor			
Polygard, wt. %	0.025		
Sodium borohydride, wt. %	0.005		

Table 6.164: Solubility of Various Substances in Tetrahydrofurfuryl Alcohol (46)

	20 wt. % 10 wt. %		20 wt. % 10 wt. %
Acids:	solute solute	Esters:	solute solute
Acetylsalicylic	s	Amyl acetate	s
Anthranilic	Š	Butyl acetate	S
Benzoic	S	Celiulose acetate	S
		Diethyl acetate	S
Butyric	s	Diethyl phthalata	S
Chric	SSS	Ethyl acetate	Š
Cresylic	S	Ethyl acetoacetate	š
Lactic	SS (8 at 120")	Methyl acetate	š
Naphthionic	sss	menty, accure	· ·
Oxalic	sss	Ethers:	
Stearic	(S at 100°)	Dichloroethyl	S
Sulfanilic Tannic	() et 1307)	Diethlylene glycol monobutyl	s s
rannic Tartaric	(99 at 1307) SS	Diethlyene glycol monoethyl	Š
rararic Trichloroacetic	55 S	Ethyl	Š
Valeric	S S	Ethylene glycol monobutyl	S
Valeric	3	Ethylene glycol monoethyl	s
Alcohols:		Halldes:	
Benzyl alcohol	S		s
Chloral hydrate	s	Benzyl chloride Bromobenzene	S
Dinitrophenol	S	Bromoberizene	\$ \$
Ethanol	S	Chloroform	Š
Ethylene glycol	S	o-Dichlorobenzene	Š
Glycerol	S	p-Dichiorobenzene	šs s
Isobutanoi	Š	Dinitrochlorobenzene	ss s
Isopropanol	S	Ethyl bromide	s
α-Naphthol	S	Ethylene chloride	Š
β–Naphthol	S	lodoform	š
Pentanol	S	o-Nitrochiorobenzene	ss s
Propanol	s	Tetrachloroethane	S
Aldehydes:		Ketones:	
Benzaldehyde	S	Acetone	s
Crotonaldehyde	S	Anthraguinone	l la m 1305
Paraldehyde	S	Methyl ethyl ketone	S
Amines:		Olia:	
Aniline	s	Aniline	s
Benzidine	S	Castor	ĭ
Dianisidine	SSS	Chinawood	i
Diethyl aniline	s	Coconut	i
Dimethyl aniline	S	Cottonseed	i
Diphenylamine	s	Lard	[(S at 1207)
Hexamethylenetetramine	l l (SS at 130°)	Linseed	l (8 or 1207)
β-Naphthylamine	SSS	Menhaden	(8 at 1207)
m-Phenylenediamine	S	Neat's-foot	l (S at 1207)
Pyridine	S	Peanut	l (8 at 120°)
o-Toluidine	S	Rape-seed	[(S at 1207)
Triphenyiguanidine	SSS	Sperm	l (S at 1207)
Xylldine	S	Turkey Red	S
Aromatics:		Whale	l (S at 120°)
Aromatics: Anthracene	I I (5 at 100%	Miscellaneous Compounds:	
Anthracene Benzene	II (5 at 100°) S	Caffeine Compounds:	
Dinitronaphthalene	J [(8 m) 1207)	Cameine Camphor, monobromo	:
Diphenyl	SS S	Campnor, monopromo	- 1
Naphthalene	SS	Chioramine	
p-Nitrophenoi	Š	Dextrose	(SS at 130°)
o-Nitrotoluene	š	Sodium acetate	SS S 100°)
p-Nitrotoluene	i s	Sodium benzoate	SS S
Xylol	'	1	
	•	Key: S=Soluble l=Insoluble	SS=Slightly Soluble temp= Fahrenheit

Table 6.165: Vapor-Liquid Equilibria in the Tetrahydrofurfuryl Alcohol-Water System (46)

Liquid Phase		e Vapor Phase			Boiling Point		
		rection	T	Mole F		Temperature	Pressure mm HG
Weight %	THFA	Water	Weight %	THFA	Water		749.5
1.0	0.0018	0.9982	1 -	_		100.0	
2.6	0.0048	0.9952	1.0	0.0018	0.9982	100.4	749.5
5.7	0.0106	0.9894	2.0	0.0036	0.9964	100.5	747.8
6.1	0.0113	0.9887	2.3	0.0041	0.9959	100.6	747.8
9.7	0.0166	0.9814	3.4	0.0062	0.9938	100.6	749.5
13.5	0.0267	0.9733	4.3	0.0079	0.9921	101.0	749.2
17.2	0.0354	0.9646	4.9	0.0090	0.9910	101.0	747.8
20.3	0.0430	0.9570	5.7	0.0106	0.9894	101.0	749.0
24.6	0.0544	0.9456	6.2	0.0115	0.9885	101.0	747.8
30.2	0.0709	0.9291	7.2	0.0135	0.9865	102.0	749.5
30.8	0.0728	0.9272	7.3	0.0137	0.9863	101.0	749.0
36.9	0.0936	0.9064	8.0	0.0151	0.9849	101.0	748.9
44.8	0.125	0.875	9.6	0.0185	0.9815	102.0	752.5
44.9	0.126	0.874	9.7	0.0186	0.9814	102.0	753.7
49.3	0.146	0.854	10.5	0.0202	0.9798	102.1	755.9
53.4	0.168	0.832	11.3	0.0220	0.9780	102.5	754.1
58.9	0.202	0.798	11.8	0.0231	0.9769	103.0	754.6
63.6	0.234	0.766	13.3	0.0262	0.9738	103.0	754.9
70.4	0.296	0.704	14.5	0.0290	0.9710	104.0	755.2
77.3	0.375	0.825	18.5	0.0384	0.9816	105.5	755.2
79.3	0.403	0.597	18.5	0.0384	0.9616	106.0	747.8
B1.1	0.431	0.569	18.9	0.0394	0.9606	106.0	748.4
62.3	0.451	0.549	20.4	0.0432	0.9568	107.0	741.1
84.9	0.496	0.504	20.3	0.0430	0.9570	107.0	748.4
86.1	0.522	0.478	24.7	0.0547	0.9453	108.0	745.9
67.1	0.546	0.454	27.4	0.0625	0.9375	1 0 7.0	741.9
92.6	0.688	0.312	40.1	0.106	0.894	119.0	745.6
95.4	0.785	0.215	65.3	0.249	0.751	139.5	745.8
98.0	0.896	0.104	87.5	0.553	0.447	148.0	750.9

Table 6.166: Specific Gravity and Pounds per Gallon of Tetrahydrofurfuryl Alcohol at Various Temperatures (46)

		Specific	Density
		Gravity	(lb/gal)
٠.	4	`	
	122.0	1,026	8.566
50 48	118.4	1,028	8.561
46	114.8	1.030	8.596
44	111.2	1.032	8.610
42	107.6	1,034	8.626
40	104.0	1,035	8.641
38	100.4	1.037	8.656
36	96.8	960.1	8.671
34	93.2	1.041	8.686
32	89.6	1.043	8.701
30	86.0	1.044	8.716
28	82.4	1.046	8,731
26	70.8	1.048	8.746
24	75.2	1.049	8.761
22	71.6	1.052	8.776
20	68.O	1.053	8.791
18	64.4	1.055	8.806
16	60.0	1.057	8.821
14	57.2	1,059	8.836
12	53.6	1.061	8.851
10	50.0	1.062	8.866
Ä	46.4	1,064	8.681
Ā	42.8	1.066	8.896
1	39.2	860.1	4.911
2	35.6	1.070	8.926
8 6 4 2 0	32.0	1.071	8.931
		G	
		Change per *C : Sp. Gr. —0.0009 Lbs./Gal. —0.00751	

Table 6.167: Vapor Pressure of Tetrahydrofurfuryl Alcohol (46)

Table 6.168: Vapor-Liquid Equilibria Curve of the THFA-Water System at the Boiling Point (46)

Table 6.169: The System THFA-Water Composition Curve (46)

Table 6.170: Specific Gravity and Pounds per Gallon (46)

Ten	nperature	Sp. Gr.*	Lbs./Gal.
٥С	٥F		
50	122.0	1.031	8.588
40	104.0	1.039	8.656
30	86.0	1.047	8.724
20	68.0	1.055	8.792
10	50.0	1.064	8.859
0	32.0	1.072	8.927
	e per ^c C: Sp. Gr.—0.000815 red to water at 20°C	Lbs./Gal0.00679	÷

Table 6.171: Vapor Pressure (Boiling Point Method) (46)

Pressure (mm)	°C	٥K	1/ºK
2.3	41.6	314.6	0.00318
5.2	53.6	326.6	0.00306
45.5	96.5	369.5	0.00271
73.3	108.5	381.5	0.00262
83.3	111.3	384.3	0.00260
120.0	120.5	393.5	0.00254
196.0	137.5	410.5	0.00244
303.0	146.0	419.0	0.00239
400.0	155.0	428.0	0.00234
495.9	162.5	435.5	0.00230
598.0	168.2	441.2	0.00227
747.0	177.8	450.8	0.00222

Table 6.172: HERCO and YARMOR Pine Oil (28)

HERCO® PINE OIL

A High-Quality, General-Purpose-Grade Pine Oil

HERCO® pine oil® is a clear, pale yellow to near-water-white, oily liquid with a distinct pinelike odor. Derived from terpene oils of pinewood origin, it is a blend of related compounds, largely terpene alcohols. Herco pine oil meets requirements of Federal Specification LLL-P-400a for Type 1 pine oil. It is especially indicated for manufacture of high-performance cleaners and disinfectants, and for all other uses where a pine oil of uniform, high-terpene-alcohol content is required.

(a) Herco pine oil is registered with the Office of Pesticide Program of the U.S. Environmental Protection Agency under EPA Registration Number 891-175.

0.930-0.938

General Sales Specifications Heroules Test Methods are available on request Specific gravity at 15.6/15.6°C

Total terpene alconois, % min	80
Moisture, % max	0.5
Color, APHA, max	70
Typical Properties	
Specific gravity at 15.6/15.6°C	0.933
Total terpene alcohols, %	85
Moisture, %	0.4
Distillation range, °C, (5% to 95%)	206 - 220
Refractive index at 20°C	1.481
Color, APHA	25
Kauri-butanol value	> 500
Flashpoint, TCC *F (*C)	150 (66)
Density at 60°F (15.6°C), lbs/gal (kg,l)	7.78 (.93)
Freezing point, *F (*C)	39 (4)

Outstanding Characteristics

Clear, pale color; high terpene alcohol content; piney odor; high solvent activity; excellent wetting, penetrating, and dispersing properties, high bactericidal activity when properly formulated; uniform

Table 6.172: (continued)

YARMOR® F PINE OIL

Flotation-Grade Pine Oil

YARMOR® F pine oil is a frothing agent designed for flotation processes, particularly for benefication of metallic sulfide ores. Derived chiefly from oils extracted from pinewood, it is a mixture of terpenes, predominantly alcohols with lesser amounts of related terpenes.

Yarmor F produces a strong froth of good volume, satisfactory texture, and excellent cell life stability. Although normally used as a frother, it is also an effective collector for certain minerals.

General Sales Specifications

Hercules Test Methods are available on request	
Specific gravity at 15.6/15.6 °C	0.930-0.950
Total alcohols, % min	. 70
Moisture, % max	1.8
Typical Properties	
Specific gravity at 15.6/15.6 °C	0.938
Total alcohols, %	75
Moisture, %	1.1
Refractive index at 20 °C	1.484
Color, Gardner	3
Distillation range, *C	
5%	205
95%	227
Flashpoint, COC, *F(*C)	169(76)
Weight/gal, lbs (kg/l), 60 °F (15.6 °C)	7.8(.94)
Viscosity, Ubbelohde, at 77 °F (25 °C), cps	10
Freezing point, "F (C)	32(0)
(a)Variance Equity represents and can be hearded astificated to the second	

(a) Yarmor F will supecool and can be handled satisfactorily at lower temperatures

Outstanding Characteristics

Strong froth; excellent cell life stability; excellent wetting properties; low freezing point; low volatility

YARMOR® 60 PINE OIL

Terpene Alcohol

YARMOR® 60 pine oil® is a clear, pale yellow to near water-white oily liquid with a distinct pinelike odor. Derived from terpene oils of pinewood origin, it is a blend of related compounds, principally terpene alcohols. It is intended for manufacture of cleaners and disinfectants, and for other uses where a good-quality pine oil is required.

(a)Yarmor 60 pine oil is registered with the Office of Pesticide Programs of the U. S. Environmental Protection Agency under EPA Registration Number 891-181.

General Sales Specifications

Horcules Test Methods are available on request	
Specific gravity at 15.6/15.6 °C	0.909-0.919
Total terpene alcohols, % min	60
Moisture, % max	0.5
Color APHA, max	70
Typical Properties	
Total terpene alcohols, %	62.7
Moisture, %	0.3
Distillation range, *C	
5%	196.6
95%	224.9
Color, Hazen	20
Color, (Hercules terpene)	0.2
Kauri-butanol value	500
Flashpoint, TOC, *C (*F)	60(140)
Weight, lbs/gal (kg/l), 60 °F, (15.6 °C)	7.75(.91)

Specific gravity at 15.6/15.6 °C Outstanding Characteristics

Clear, pale color; high terpene alcohol content; piney odor; high solvent activity; excellent wetting, penetrating, and dispersing properties

0.91

(continued)

Table 6.172: (continued)

YARMOR® 302 PINE OIL

Highest Quality, All Purpose-Grade Pine Oil

YARMOR® 302 pine oil⁶⁰ is a clear, pale yellow to near-water-white, oily liquid with a distinct pinelike odor. Derived from terpene oils of pinewood origin, it is a blend of related compounds, mainly terpene alcohols. Yarmor 302 meets requirements of Federal Specification LLL-P-400a for Type 1 pine oil.

(a)Yarmor 302 pine oil is registered with the Office of Pesticide Programs of the U.S. Environmental Protection Agency under EPA Registration Number 891-174

General Sales Specifications

Hercules Test Methods are available on request	
Specific gravity at 15.6/15.6 °C	0.938-0.946
Total terpene alcohols, % min	85
Moisture, % max	0.5
Color, APHA, max	70
Typical Properties	
Specific gravity at 15.6/15.6 °C	0.941
Secondary alcohols, %	16
Tertiary alcohols, %	76
Total terpene alcohols, %	92
Moisture, %	0.35
Refractive index at 20 °C	1.481
Color, APHA	25
Kauri-butanol value	> 500
Flashpoint, TCC, °F (°C)	172(78)
Freezing Point, F (C)	41 (5)
Weight/gal, lbs (kg/l), 60°F (15.6°C)	7.85 (0.94)

Outstanding Characteristics

Clear, pale color; high terpene alcohol content; piney odor; high solvent activity; excellent wetting, penetrating, and dispersing properties; high bactericidal activity when properly formulated.

YARMOR® 302W PINE OIL

A General-Purpose-Grade Pine Oil

YARMOR® 302W pine oil® is a clear, pale yellow to near-white-water, oily liquid with a distinct pinelike odor. Derived from terpene oils of pinewood origin, it is a blend of related compounds, predominantly terpene alcohols with minor amounts of terpene hydrocarbons. It is suitable for all uses where a general-purpose grade of pine oil is required.

(a)Yarmor 302W pine oil is registered with the Office of Pesticide Programs of the U.S. Environmental Protection Agency under EPA Registration Number 891-176

General Sales Specifications

Specific gravity at 15.6/15.6 ℃	0.920-0.930
Total alcohols, % min	70
Moisture, % max	0.5
Color, APHA, max	70
Typical Properties	
Specific gravity at 15.6/15.6 °C	0.923
Secondary alcohols, %	8
Tertiary alcohols, %	65
Total terpene alcohols, %	73
Monocyclic terpenes, %	27
Moisture, %	0.35
Refractive index at 20 °C	1.480
Color, APHA	25
Kauri-butanol value	> 500
Flashpoint, TCC, *F(*C)	130(54)
Weight/gal, lbs (kg/l), 60 °F (15.6 °C)	7.67(.92)

Outstanding Characteristics

Clear, pale color; piney odor; high solvent activity; excellent wetting, penetrating, and dispersing properties; high bactericidal activity when properly formulated; uniform.

Table 6.173: Hercules TERPINEOL (28)

TERPINEOL[™] 101

Natural Tertiary Terpene Alcohol .

TERPINEOL™ 101 is a natural, high-purity grade of the tertiary terpene alcohol *alpha*-terpineol. Derived by fractional distillation of oils extracted from pinewood, it is a water-white, oily liquid at normal temperatures with an odor suggestive of lilacs. Its chemical nature, pleasant floral odor, and surface-active properties account for its usefulness to the essential-oil industry and to manufacturers of disinfectants, household and industrial soaps, detergents, cleaners, and other chemical specialties.

General Sales Specifications

•	
Specific gravity at 15.6/15.6°C, min	0.935
Tertiary alcohols, min, %	94
Moisture, max, %	0.6
Color, Hazen (APHA), max	70
Appearance	EFFM ^(a)

(a) Essesentially Free of Foreign Matter

Typical Properties

Specific gravity at 15.6/15.6°C	0.9410
Tertiary alcohols, %	96
Moisture, %	0.2
Distillation range, °C (°F)	
5%	219 (426)
95%	220 (428)
Color, Hazen (APHA)	20
Flashpoint, COC, °C (°F)	90 (194)
Freezing point, °C (°F)	<25 (<77)
Weight/gal, lbs (kg/l)	7.85 (0.94)

Outstanding Characteristics

High purity; natural origin; light color; pleasant floral odor; strong masking agent; excellent solvent; promotes surface activity; antibacterial activity when properly formulated.

TERPINEOL[™] 200

Synthetic Tertiary Terpene Alcohol

TERPINEOL™ 200 is a high-purity grade of the tertiary terpene alcohol *alpha*-terpineol. Derived synthetically by hydrating *alpha*-pinene, it is a water-white, oily liquid at normal temperatures. Its chemical nature, pleasant floral odor, and surface-active properties account for its usefulness to the essential-oil industry and to manufacturers of disinfectants, household and industrial soaps, detergents, cleaners, and other chemical specialties.

General Sales Specifications

Heroules Test Methods are available on request	
Specific gravity at 15.6/15.6°C, min	0.935
Tertiary alcohols, %, min	95
alpha/gamma-Terpineol, %, min	93.5
Moisture, max, %	0.6
Color, Hazen (APHA), max	70
Typical Properties	
Specific gravity at 15.6/15.6°C	0.941
T C .1.1.1.0/	0.7

Specific gravity at 15.6/15.6°C	0.941
Tertiary alcohols, %	97
Moisture, %	0.2
alpha/gamma-Terpineol, %	96.2
Distillation range, °C (°F)	
5%	217 (422)
95%	220 (428)
Color, Hazen (APHA)	20
Flashpoint, COC, °C (°F)	88 (190)
Freezing point, °C (°F)	<25 (<77)
Weight/gal, lbs (kg/l)	7.85 (0.94)

Outstanding Characteristics

High purity; light color; pleasant floral odor; strong masking agent; excellent solvent; promotes surface activity; antibacterial activity when properly formulated.

TERPINEOL[™] 318 PRIME

Mixed Tertiary Terpene Alcohols

TERPINEOLTM 318 Prime is a mixture of isomeric terpineols obtained by dehydration of terpine hydrate. It is composed predominantly of *alpha*-terpineol, with lesser amounts of beta and gamma-terpineols. At normal temperatures, Terpineol 318 Prime is a water-white, oily liquid with a hyacinth-like odor. Terpineol 318 Prime is used by chemical specialties manufacturers for its odor, and by the essential-oils industry to produce perfume ingredients, particularly for soaps.

General Sales Specifications

USIGERICS 1 GR. WIGHTOOD WE WARRINGS ON LECTURET	
Color, Hazen (APHA), max	70
Specific gravity, at 15.6/15.6°C, min	0.935
Moisture, max %	0.6
beta/delta-Terpineol, %	8 to 20
alpha/gamma-Terpineol, %	80 to 90
Tertiary alcohols, min, %	98
Typical Properties	
Color, Hazen (APHA)	30
Specific gravity at 15.6/15.6°C	0.938
Moisture, %	0.2
Freezing point, *C (*F)	<-10 (+14)
Flashpoint, COC, *C (*F)	88 (190)
Weight/gal, lbs (kg/l)	7.8 (0.94)
	, , ,

Outstanding Characteristics

High purity; light color; pleasant floral odor; excellent solvent; promotes surface activity; resistant to alkalies.

Table 6.174: Solubility Data for Alcohols (57)

			ilose tate rate	Ace	ulose tate ionate					elite* V Resins .									
	Cellulose Acetate (LL-1)	17% Butyryl	37% Butyryl	13-15% Propionyl	31% Propionyl	Ethyl Cellulose	Polystyrene	Methyl Methacrylate	У УНН	АУАЕ	ХУНГ	Hydrocarbons	Linseed Oil (Raw)	Rosin	Ester Gum	Shellac	Unvulcanized Rubber	Relative Evap. Rate (n-Butyl Acetate = 100)	Density (Ib gal) at 20 C
					,	s	,	1		s	s	PS	SS	PS	ı	s	ı	610	6.60
Methanol	1		!	1	- !	S	;	i		S	S	s	SS	s	i	s	i	340	6.76
Ethanol	!		!			S PS**	1	1	1	SS	S**	S	SS	s	i	s	i	300	6.55
Isopropanol	1		1	1	1	S	;	1	1	SS	S**	S	S	s	i	S	i	_	_
n-Propanol	1	1	1	1	J.	S	i	i		SS	S**	S	S	Š	S	Š	i	45	6.75
n-Butyl alcohol	1	1	1	1	1	S	i	i	i	SS	S**	S	S	S	PS	s	1	80	6.68
Isobutanol	1	i E	i I	;	i	S	i	i	i	ı	S**	S	S	s	S	S	ı	_	_
Mixed amyl alcohols	-		s	i	1 .	S	i	i	i	S	S	S	S	S	S	S	ı	12	7.68
3-Methoxy butanol	1	1	1	i		S	1	i	i	SS	s	S	S	S	S	S	ı	54	6.84
Pentanol-3	,	1	i i	i	i	S**	i	i	i	SW	S**	S	S	S	S	SS	1	33	6.72
Methyl amyl alcohol 2-Ethylbutanol	1	i	i	i	i	S**	í	ì	i	SW	S**	S	S	S	S	S	1	8	6.92
•	- ;	- ;	i	i	i	S**	i	i	i	ı	S**	S	S	S	S	S	- 1	5	6.83
n-Hexanol Heptanol-3	1	i	i	i	i	S**	i	ı	1	SW	S**	S	S	S	S	SS	- 1	6	6.84
2-Ethylhexanol	i	i	i	i	i	S**	i	1	1	1	S**	S	S	S	S	S	1	<1	6.94
Dijsobutyl carbinol	i	i	i	i	1	PS**	ı	i	1	ı	SW	S	S	S	S	I	.I	2	6.75
Trimethyl nonyl alcohol	i	i	i	i	ì	PS**	ı	1	1	1	SW	S	S	S	S	1	1	< 1	6.83
Undecanol	1	i	i	i	1	S**	ı	1	1	SW	G	S	S	S	S	PS	PS	<1	6.97
Tetradecanol	i	í	i	i	i	SS**	1	ı	1	i	ł	S	S	S	s	ı	PS	<1	6.95
Heptadecanol	i	i	i	ı	i	1	1	1	1	i	i	S	S	S	S	1	PS	< 1	7.05
Trimethyl cyclohexanol	i	i	SS	ı	1	S	1	I	ı	1	S-G	S	S	S	S	i	SW	<1	8.21***
Tetrahydropyran-2-	•	•														_		_	
methanol	1	ı	s	1	s	S	s	1	S	S	S	S	S	s	S	S	ı	3	_
2-Mercaptoethanol	s S	S**	S	s	S	S	SS	S	SS	S	S	PSt	lmm	S	S	S	I	13	9.30
Phenyl methyl carbinol	SW	sw	S	SW	s	S	s	SS	1	S	S	S	S	S	S	S	ı	<1	8.45
Diacetone alcohol	S	PS	S	S	S	S	İ	S	S	S	S	S	S	S	S	PS	ı	14	7.82
*UCC trademark.	**0.5	g resin	to 9,5 r	ni solvei	nt.		***	At 55°C	•		† Mis	cible wi	th toluen	e and	xylene,	immis	cible w	ith Apcot	:hinner.
Legend:	s	Solu	ble					G	Gel										
Legena.	PS		y solub	le				1	inso	luble									
	SS		itly solu					SW	Swe	lling									
	S-G	_		dency to	o ael			lmm	lmm	iscible									
	J-U	0014	0, .011		- 5														

Table 6.175: Melting Points of Saturated Monohydric Alcohols (69)

Table 6.176: Rate of Evaporation of Various
Solvents at Room Temperature (19)

Table 6.177: Comparative Evaporation Rates of Alcohols (19)

(Relative Values on 5 cc Samples at 21°C, and 734.4 mm, Hg)

Table 6.178: Vapor Pressure of Alcohols at Various Temperatures (19)

Table 6.179: Freezing Points (Initial Crystallization) of Aqueous Solution of Alcohols (19)

Table 6.180: Specific Gravity of Aqueous Solution of Alcohols at 20°C (19)

Table 6.181: Viscosity of Ethyl Cellulose in Alcohol-Hydrocarbon Mixtures (14)

Table 6.182: Evaporation Data for Various Solvents (14)

Active Solvents	Rate of Evaporation (Normal Butyl Acetate—1.00)
Acetone	7.7
Methyl Ethyl Ketone	4.6
Ethyl Acetate (85-90%)	4,6
Isopropyl Acetate 95%	3.9
Secondary Butyl Acetate	1,8
Methyl Isobutyl Ketone	1.6
Methyl Isobutyl Ketone (82.5% w) Methyl Isobutyl Carbinol (17.5% w)	1.0
	1.0
Normal Butyl Acetate Mesityl Oxide	0.9
Secondary Amyl Acetate	0.8
Amyl Acetate (mixed isomers)	0.6
Methyl Amyl Acetate	0.5
CELLOSOLVE Acetate	0.3
Diacetone Alcohol	0.2
Butyl CELLOSOLVE	0.1
Butyl CELEOSOEVE	0.1
Latent Solvents	
Ethyl Alcohol (anhydrous)	1.9
Isopropyl Alcohol (anhydrous)	1.7
Ethyl* Alcohol (190 proof)	1.7
Normal Butyl Alcohol (50% v)-	
Anhydrous Ethyl* Alcohol (50% v)	0.7
Methyl Isobutyl Carbinol (30% v)—	
Anhydrous Ethyl* Alcohol (70% v)	0.7
Methyl Isobutyl Carbinol (30% v)-	
Anhydrous Isopropyl Alcohol (70% v)	0.7
Normal Propyl Alcohol	1.1
Secondary Butyl Alcohol	1.0
Normal Butyl Alcohol	0.5
Methyl Isobutyl Carbinol (60% v)—	
Anhydrous Isopropyl Alcohol (40% v)	0.5
Secondary Amyl Alcohol	0.5
Amyl Alcohol (mixed isomers)	0.3
Methyl Isobutyl Carbinol	0,3
*Proprietary grade.	
Diluents	
Toluene	2,1
Xylene	0.8

Polyhydric Alcohols

ETHYLENE GLYCOL

Glycol 1,2-Ethanediol

 $\mathsf{HOCH}_2\mathsf{CH}_2\mathsf{OH}$

Table 7.1: Physical Properties and Specifications of Ethylene Glycol (32)

			Dina saist (1) sustain	1 4	0508 7
Acidity as acetic acid	0.01% by wt., max.		Fire point, Clevelan ASTM, o		250° F 245° F
Ash	0.005 g./100 ml., max.		Flash point (open cu	ın)	245° F
Boiling point at 760 mm. Hg	197.2-197.6° C			open cup	240° F
Coefficient of expansion at 20° C	0.00062/°C 0.0006375/°C		Free energy of form		-80.2 kcal./mole
Color, APHA	10-15 max.		Heat of combustion pressure) at 20°		-283.3 kcal./mole
Density (true) at 20° C	1.1134 g./ml.		Heat of dilution [C ₂]	H ₄ (OH) ₂ x 2 H ₂ O]	0.06 cal./g.
			Heat of formation at	20° C	-108.1 kcal./mole
Dielectric constant, 20° C	38.66 esu		Heat of fusion		44.7 cal./g.
Distillation at 760 mm. Hg Ibp	193° C, min.		Heat of vaporization	at 760 mm. Hg	191 cal./g. 344 Btu/lb.
5 ml.	194° C, min.				344 Btu/10.
95 ml. Dp	200° C, min. 205-208° C		Inorganic chlorides,	as CI	0.1 ppm, max.
Electric conductivity at 25° C	1.07 x 10 frecip. ohms	(mhos) cm.	Iron		0.15 ppm, max.
Molecular weight	62.07	Viscosity at	t 10° C (50° F) 25° C (77° F)	33.6 cp. 17.4 cp.	
Odor	Mild		35° C (95° F) 60° C (140° F)	12.3 cp. 5.2 cp.	
Pour point	-75° F		, ,	•	
- C - C - C - C - C - C - C - C - C - C	1 4000	Water conte	ent	0.3% by wt.,	max.
Refractive index n _D 25° C n _D 20° C	1.4306 1.4316	Weight per	gallon at 20° C	9,28 lb.	
Specific gravity (apparent), 25/25° C 20/20° C	1,1133 1,1155		Eth	ylene Glycol	
Specific heat at 20° C	0,561	Glycol %	% by	Flash Point °F	Fire Point °F
at 0° C	0.544	by Wt.	Vol.	Cleveland, Tag	Cleveland
Spontaneous ignition temperature	398.9° C	100	100	245	250
	4i2.8° C	95 90	94.7 89.4	260 270	270 280
Sulfates	Not detectable	•	00.1	2,0	200
Surface tension at 20° C	48.4 dynes/cm.				
Suspended matter	Substantially free				
Vapor at 20° C (68° F) 25° C (77° F) 93° C (200° F) 132.2° C (270° F)	0.06 mm. Hg 0.12 mm. Hg 11.0 mm. Hg 75.0 mm. Hg				

Table 7.2: Boiling Points of Aqueous Ethylene Glycol Solutions (32)

Glycol, % by Wt.	% by Vol.	Boiling Point °F	Glycol, % by Wt.	% by Vol.	Boiling Point °F	Glycol, % by Wt.	% by Vol.	Boiling Point °F
0	0.0	212	70	68.4	238	90	89.4	279
10	9.1	214	72	70.5	240	91	90.5	284
20	18.4	216	74	72.6	243	92	91.5	289
25	23.2	217	76	74.7	245	93	92.6	294
30	28.0	218	78	76.8	248	94	93.6	301
35	32.8	219	80	78.9	252	95	94.7	309
40	37.8	221	81	79.9	254	96	95.8	319
45	42.8	223	82	81.0	256	97	96.8	330
50	47.8	225	83	82.0	258	98	97.9	345
55	52.9	227	84	83.1	260	99	98.9	363
60	58.0	230	85	84.1	262	100	100	388
62	60.1	232	86	85.2	265			
64	62.2	233	87	86.2	268			
66	64.2	235	88	87.3	271			
68	66.3	236	89	88.4	275			

Table 7.3: Density of Aqueous Ethylene Glycol Solutions (32)

				Ethylene Glycol Percentage										
By Wt. By Vol.	0 0	10 9.1	20 18.4	30 28.0	46 37.8	50 47.8	60 58. 0	70 68. 4	80 78, 9	90 89. 4	100 100			
Temp. °F					Den	sity in g.	/ml.							
-50							1.110	1.125	1.137					
-40							1.108	1.123	1.134					
-30						1.087	1.105	1.122	1, 134					
-20						1.086	1.103	1.117	1, 128	1 120				
-10					1.068	1.084	1.103	1.114		1. 138				
-10					1.000	1.004	1.100	1.114	1.125	1.135				
0					1.066	1.082	1.097	1, 111	1, 122	1.131				
10				1.048	1.064	1.080	1.095	1.107	1.118	1.128	1.136			
20			1.031	1.147	1.063	1.077	1.092	1.104	1.115	1.124	1.132			
30		1,015	1.030	1.045	1.061	1.075	1.089	1.101	1.111	1.121	1.128			
40	1.000	1.014	1.029	1.044	1.059	1.073	1.086	1.098	1.108	1. 117	1.124			
50	1.000	1,013	1.027	1.042	1.056	1 070	1 000	1 004						
60	0.999	1.013	1.027	1.042		1.070	1.083	1.094	1.105	1.113	1.120			
70	0.998	1.012	1.026		1.054	1.067	1.080	1.091	1.101	1.109	1.116			
80	0.997	1.009	1.024	1.038	1.051	1.064	1.076	1.087	1.097	1.105	1.113			
90	0.995	1.009		1.035	1.049	1.061	1.073	1.084	1.093	1.101	1.109			
90	0. 995	1.007	1.020	1.033	1.046	1.058	1.069	1.080	1.088	1.097	1.105			
100	0.993	1.005	1.018	1.030	1.043	1.054	1.066	1.076	1.085	1.094	1.101			
110	0.991	1.003	1.015	1.027	1.039	1.051	1.062	1.072	1.882	1.090	1.097			
120	0.989	1.000	1.012	1.024	1.036	1.047	1.058	1.068	1.078	1.186	1.093			
130	0.986	0.997	1.009	1.021	1.033	1.044	1.055	1.064	1.074	1.082	1.089			
140	0.983	0.994	1.006	1.018	1.029	1.040	1.051	1.060	1.069	1.078	1.085			
150	0.980	0.991	1.003	1.014	1.026	1.036	1.047	1.056	1.065	1.074	1.081			
160	0.977	0.988	0.999	1.011	1.022	1.032	1.043	1.052	1.061	1.069	1.077			
170	0.974	0.985	0.996	1.007	1.018	1.028	1.039	1.048	1.057	1.065	1.073			
180	0,970	0.981	0.992	1.003	1.014	1.024	1.034	1.044	1.053	1,061	1.068			
190	0.967	0.977	0.988	0.999	1.009	1.020	1.030	1.040	1.048	1.057	1.064			
200	0.963	0.974	0.984	0.995	1.006	1.016	1.026	1.035	1.044	1,052	1.060			
210	0.959	0.970	0.980	0.991	1.001	1.011	1.021	1.031	1.040	1.048	1.056			
220	0.995	0.965	0.976	0.987	0.997	1.007	1.017	1.026	1.035	1.044	1.051			
230	0.951	0.961	0.972	0.982	0.992	1.003	1.012	1.022	1.031	1.039	1.047			
240	0.947	0.957	0.967	0.978	0.988	0.998	1.008	1.017	1.026	1.034	1.042			
250	0.942	0.952	0.963	0.973	0.983	0.993	1.003	1.012	1.021	1.030	1.038			
260	0.938	0.948	0,958	0.968	0.978	0.988	0.998	1.008	1,017	1.025	1.033			
270	0.933	0.943	0.953	0.963	0.973	0.983	0.993	1.003	1.012	1.020	1.029			
280	0.928	0.938	0.948	0.958	0.968	0.978	0.988	0.998	1.007	1.016	1.024			
290	0.923	0.933	0.943	0.953	0.963	0.973	0.983	0.993	1.002	1.011	1.019			
						0.00:								
300	0.918	0.928	0.938	0.948	0.958	0.968	0.978	0.988	0.977	1.006	1.014			
310	0.913	0.923	0.933	0.943	0.953	0.963	0.973	9.983	0.992	1.001	1.010			
320	0.907	0.917	0.928	0.938	0.948	0.958	0.968	0.977	0.987	0.996	1.005			
330	0.902	0.912	0.922	0.932	0.942	0.952	0.962	0.972	0.982	0.991	1.000			
340	0.896	0.906	0.917	0.927	0.937	0.947	0.957	0.967	0.976	0.985	0.994			
350	0.890	0.900	0.911	0.921	0.931	0.941	0.951	0.961	0.971	0.980	0.989			

Table 7.4: Specific Gravity at 60°F of Aqueous Ethylene Glycol Solution vs Composition (19)

Table 7.5: Freezing Points of Aqueous Ethylene Glycol Solutions (11)

	ylene ycol	Free Poi		Ethylene Glycol			zing int
Wt. %	Vol. %	°C -	°F	Wt. %	Vol. %	•c	٠F
0	0.0	0.0	32.0	40	37.8	-24	-11
2	1.8	-0.6	30.9	42	39.8	-26	-15
4	3.6	-1.3	29.7	44	41.8	-28	-18
6	5.4	-2.0	28.4	46	43.8	-31	-23
8	7.2	-2.7	27.0	48	45.8	-33	-27
10	9.1	-3.5	25.6	50	47.8	-36	-32
12	10.9	-4.4	24.0	52	49.8	-38	~37
14	12.8	-5.3	22.4	54	51.9	-41	-42
16	14.6	-6.3	20.6	56	53.9	-44	-48
18	16.5	-7.3	18.8	58	56.0	-48	~54
20	18.4	-8	17	80	78.9	-47	-52
22	20.3	-9	15	82	81.0	-43	-4€
24	22.2	~11	12	84	83.1	-40	-40
26	24.1	-12	10	86	85.2	-36	-33
28	26.0	-13	8	88	87.3	-33	-27
30	28.0	~15	5	90	89.4	-29	~21
32	29.9	-17	2	92	91.5	-26	-15
34	31.9	-18	-1	94	93.6	-23	-9
36	33.8	~20	-4	96	95.8	-19	-3
38	35.8	~22	-7	98	97.9	-16	+3
				100	100.0	-13	+9

Ethylene Clycol Percentage

Ethylene Glycol Percentage												
By Wt. By Vol.	0 0	10 9.1	20 18.4	30 28.0	40 37.8	50 47.8	60 58.0	70 68.4	80 78.9	90 89. 4	100 100	
Temp. °F					Specific H	leat in Bt	u/lb. °F					
60	0.9996	0.968	0.928	0.882	0.835	0.785	0.734	0.687	0.642	0.599	0.556	
70	0.9987	0.968	0.930	0.887	0.841	0.792	0.742	0.695	0.650	0.606	0.563	
80	0.9982	0.969	0.933	0.892	0.847	0.799	0.750	0.703	0.658	0.613	0.570	
90	0.9980	0.970	0.935	0.896	0.852	0.822	0.758	0.711	0.665	0.620	0.575	
100	0.9980	0.971	0.938	0.900	0.858	0.813	0.766	0.719	0.672	0.627	0.581	
110	0.9982	0.972	0.940	0.904	0.863	0.819	0.773	0.727	0.680	0.634	0.588	
120	0.9985	0.973	0.942	0.'907	0.868	0.825	0.780	0.734	0.687	0.640	0.594	
130	0.9989	0.974	0.944	0.910	0.872	0.851	0.787	0.740	0.694	0.647	0.600	
140	0.9994	0.975	0.947	0.914	0.877	0.837	0.794	0.747	0.700	0.653	0.606	
150	1.0001	0.977	0.949	0.917	0.881	0.842	0.800	0.753	0.707	0.659	0.612	
160	1.0008	0.978	0.951	0.921	0.886	0.847	0.805	0.759	0.713	0.666	0.619	
170	1.0017	0.980	0.954	0.924	0.890	0.852	0.810	0.765	0.720	0.673	0.625	
180	1.0027	0.981	0.956	0.927	0.894	0.857	0.816	0.771	0.726	0.679	0.631	
190	1.0039	0.983	0.959	0.931	0.898	0.861	0.821	0.777	0.733	0.686	0.637	
200	1.0052	0.985	0.961	0.934	0.902	0.866	0.826	0.783	0.739	0.692	0.644	
210	1.0067	0.987	0.964	0.937	0.905	0.870	0.831	0.789	0.745	0.698	0.650	
220	1.008	0.989	0.966	0.940	0.909	0.875	0.836	0.794	0.750	0.704	0.656	
230	1.010	0.992	0.969	0.943	0.913	0.879	0.841	0.799	0.756	0.710	0.662	
240	1.013	0.994	0.972	0.947	0.917	0.884	0.846	0.805	0.762	0.716	0.668	
250	1.015	0.997	0.976	0.951	0.922	0.889	0.852	0.811	0.768	0.723	0.675	
260	1.018	1.000	0.979	0.954	0.926	0.893	0.857	0.817	0.774	0.729	0.681	
270	1.021	1.003	0.983	0.958	0.930	0.898	0.862	0.822	0.780	0.735	0.687	
280	1.024	1,006	0.986	0.962	0.935	0.903	0.867	0.828	0.786	0.741	0.693	
290	1.027	1.010	0.990	0.966	0.939	0.908	0.873	0.834	0.792	0.747	0.700	
300	1.030	1.014	0.994	0.970	0.943	0.913	0.878	0.840	0.798	0.754	0.706	
310	1.034	1.018	0.998	0.975	0.948	0.918	0.883	0.845	0.804	0.760	0.712	
320	1.039	1.023	1.003	0.980	0.953	0.923	0.889	0.851	0.810	0.766	0.718	
330	1.044	1.028	1.008	0.985	0.958	0.928	0.894	0.857	0.816	0.772	0.724	
340	1.050	1.033	1.013	0.990	0.963	0.933	0.900	0.863	0.822	0.778	0.731	
350	1.056	1.038	1.018	0.995	0.968	0.939	0.906	0.869	0.828	0.784	0.737	

Table 7.7: Vapor-Liquid Composition Curves for

Aqueous Ethylene Glycol Solutions (23)

Table 7.8: Vapor Pressure of Aqueous Ethylene Glycol Solutions (11)

Ethylene Glycol Percentage

By Wt. By Vol.	70 68. 4	75 73.6	80 78.9	85 84.1	90 89. 4	95 94.7	97 96.8	100 100
Temp. °F			Abso	lute Pro	essure i	n psi		
150	2.2	2.0	1.7	1.4	1.1	0.6	0.4	0.04
160	2.9	2.6	2.2	1.8	1.4	0.8	. 5.	. 06
170	3.6	3.2	2.8	2.3	1.7	1.0	. 7	.08
180	4.5	4. 1	3.5	2.9	2.2	1.3	. 8	. 12
190	5.6	5.1	4. 4	3.6	2.7	1.6	1.0	. 16
200	7.0	6.3	5. 5	4.5	3.4	2.0	1,3	0.2
210	8.5	7.7	6.7	5.5	4. 1	2.4	1.6	. 3
220	10.4	9.4	8. 2	6.7	5.0	3.0	2.0	. 4
230	12.6	11.4	9.9	8.2	6.1	3.6	2.5	. 5
240	15.2	13.7	11.9	9.9	7.4	4.4	3.0	. 7
250	18. 1	16.4	14.3	11.8	8.9	5.3	3.7	0.9
260	21.6	19.5	17.0	14.1	10.6	6.4	4.4	1.1
270	25.5	23.0	20.1	16.7	12.6	7.6	5.3	1.4
280	30.1	27.1	23.7	19.7	14.9	9.1	6.4	1.8
290	35.2	31.8	27.9	23.2	17.6	10.8	7.6	2.3
	4	37.1	32.5	27.1	20.6	12.7	9.0	2.8
300	41.1		37.8	31.5	24.0	14.9	10.6	3.5
310	47.7	43.1	43.8	36.6	27.9	17.4	12.5	4.3
320	55.2	49.9			32.3	20.2	14.6	5.2
330	63.5	57.5	50.5	42.2	37.2	23.5	17.1	6.3
340	72.9	66.0	58.0	48.5	42.7	27.1	19.8	7.6
350	83. 3	75.5	66.4	55.6	42,7	41.1	19.0	

Table 7.9: Viscosity of Aqueous Ethylene Glycol Solutions (19)

Polyhydric Alcohols

Table 7.10: Relative Humectant Values of Aqueous Solutions of Ethylene Glycol (17)

Table 7.11: Water Vapor Dew Points Over Aqueous Ethylene Glycol Solutions (23)

Table 7.12: Key Hygroscopicity Curve for Ethylene Glycol (55)

Key hygroscopicity curve for ethylene glycol showing influence of vapor pressure of water at test temperature on amounts of moisture absorbed by ethylene glycol for system equilibrium at various temperatures and various absolute humidities.

Table 7.13: Moisture Absorption of Ethylene Glycol at Various Relative Humidities (55)

The effect of temperature on the moisture absorption of ethylene glycol for system equilibrium at various relative humidities. Values plotted were calculated from those of the key hygroscopicity curve for ethylene glycol.

Table 7.14: Moisture Absorption of Ethylene Glycol at Various Absolute Humiditles (55)

The effect of temperature on the moisture absorption of ethylene glycol for system equilibrium at various absolute humidities. Values used were calculated from those in key hydroscopicity curve for ethylene glycol.

The effect of temperature on the moisture absorption of ethylene glycol for system equilibrium of various absolute humidities. Values plotted were from experimentally obtained data.

Table 7.15: Kinematic Viscosity of Anhydrous Ethylene Glycol and Trimethylene Glycol Solutions (32)

Table 7.16: Freezing Points of Anhydrous
Ethylene Glycol and Trimethylene
Glycol Solutions (32)

Table 7.17: Azeotropes of Ethylene Glycol (19)

Temperature, ℃

Compon	ents				,	Azeotrope		
	Specific	Boiling	Boiling	Compo	sition, %	by wt.	Relative	Sp. Gr.
Compound	Gravity at 20/20° C	Point, °C at 760 mm.	Point, °C at 760 mm.	In Azeo- trope	In Upper Layer	In Lower Layer	Volume of Layers at 20° C	20/20°C of Azeotrope or Layers
Ethylene Glycol Butyl Carbitol	1.1155 0.9536	197.5 230.6	196.2	72.5 27.5				1.074
Ethylene Glycol Dibutyl Ether	1.1155 0.7694	197.5 142.1	139.5	6.4 93.6	2 98	99 1	U 95 L 5	U 0.777 L 1.114
Ethylene Glycol Dichlorethyl Ether	1.1155 1.2220	123† 96†	92.7†				U 9.9 L 90.1	
Ethylene Glycol Diethyl Carbitol	1.1155 0.9082	197.5 188.4	178.0	26.1 73.9				0.959
Ethylene Glycol Di(2-ethylhexyl) Ether)	1.1155 0.8121	91‡ 135‡	87‡				U 50 L 50	
Ethylene Glycol Di-N-hexyl Ether	1.1155 0.7942	123† 137†	112.8†	35.6 64.4	0. 1 99. 9	99.9 0.1	U71.8 L28.2	U 0.795 L 1.115
Ethylene Glycol Diphenyl Ether	1.1155 1.0677#	123† 161†	120. 4†	62.3 37.7	0.2 99.8	98.5 1.5	U 37.6 L 62.4	U 1.076 L 1.114
Ethylene Glycol Diphenyl Ether	1.1155 1.0677#	197.5 257.4	192.3	64.5 35.5	0.22 99.78	98.28 1.72	U 35.3• L 64.7•	U 1.068# L 1.108#

(continued)

Table 7.17: (continued)

Com	ponents				,	Azeotrope		
	Specific	Boiling	Boiling	Composition, % by wt.			Relative	Sp. Gr.
Compound	Gravity at 20/20° C	Point, °C at 760 mm.	Point, °C at 760 mm.	In Azeo- trope	In Upper Layer	In Lower Layer	Volume of Layers at 20° C	20/20° C of Azeotrope or Layers
Ethylene Glycol Exthoxydiglycol	1, 1155 0, 9898	197.5 208.8	192	45.5 54.5				1.050
Ethylene Glycol Methyl Carbitol	1.1155 1.0211	123† 115†	114	4 96	*			1.025
Ethylene Glycol Methyl Carbitol	1.1155 1.0211	157.1▲ 151.2▲	149▲	12 88				1.033
Ethylene Glycol Methyl Carbitol	1.1155 1.0211	197.5 193.6	192	30 70				1.051

†At 50 mm. Hg ‡At 10 mm. Hg Heterogeneous at 20° C #At 30/20° C •At 30° C AAt 200 mm. Hg

PROPYLENE GLYCOL

1,2-Propanediol

СН3СНОНСН2ОН

Table 7.18: Physical Properties of Propylene Glycol (32)

Boiling point at 10 mm. Hg 50 mm. Hg 760 mm. Hg	85° C 116° C 187.4° C
ΔBoiling point/Δpressure	0.042° C/mm.Hg
Coefficient of expansion to 20° C to 55° C	0.695 x 10 ⁻³ 0.743 x 10 ⁻³
Evaporation rate (n-butyl acetate-1.0)	0.01
Fire point, ASTM open cup	225° F
Flash point, Cleveland open cup	210° F
Freezing point	-60 (sets to glass below this temperature)
Heat of combustion at 25° C	5728 cal./g. 10,312 Btu/lb.
Heat of vaporization at boiling point at 1 atm.	168.9 cal./g. 304 Btu/lb.
Ignition temperature	421° C
Molecular weight, ealculated	76.094
Pour point	-59.5° C
Refractive index, n _D 20° C	1.4326
Specific heat at 20° C	0.593 cal./g./°C
Specific gravity, 20/20° C	1.0381
Δ Specific gravity/ $\!\Delta temperature,~0~to~40°$ C	0.00073/°C
Vapor density (air-1.0)	2.52
Vapor pressure at 20° C	0.05 mm. Hg 0.08 mm. Hg
Viscosity at 0° C 20° C 40° C	243 cp. 56 cp. 18 cp.
Weight per gallon at 25° C	8.64 lb.

Table 7.19: Propylene Glycol Specifications (19)

	Standard Grade	U.S.P. Grade	Air-Treatment Grade	Special Grade
Specific gravity at 20/20° C	1.0370 to 1.0390	1.0375 to 1.0400	1.0375 to 1.0400	1.0380 to 1.0390
Distillation at 760 mm. Hg	Lbp, 185° C, max. 95 ml. 109° C, max. Dp, 194° C, max.	t	†	ţ
Propylene glycol, min.	Dp, 194 C, max.	97.5% by wt.	97.5% by wt.	99.0% by wt.
Acidity, max.	0.005% by wt.§	0.005% by wt.	0.005% by wt.	0.005% by wt. #
Refractive Index at 20° C, nn			1. 4316 to 1. 4335	
Solubility	_	•	A 1010 to 1, 1000	_
Chlorides, max. (as Cl)	0.001% by wt.	0.001% by wt.	0.001% by wt.	0.001% by wt.
Oxidizing substances	_	-	_	none
Carbonyl groups			_	shall pass test
Sulfates		none	_	· _
Heavy metals, max. (as Pb)	_	5 ppm	_	_
Lead, max. (as Pb)	-	"	_	0.0003% by wt. **
Arsenic, max. (As ₂ O ₃)	-	l ppm	-	0.001% by wt. ††
Water, max.	0.5% by wt.	0.2% by wt.	0.5% by wt.	
Ash, max.	0.005% by wt.	0.005% by wt.	0.007% by wt.	-
Color, max. (Pt-Co Scale)	10	10	15	15
Odor	-	mild	-	mild
Suspended matter	substantially free	substantially free	substantially free	substantially fre-

Table 7.20: Boiling Points of Aqueous Propylene Glycol Solutions (19)

[†]Shall entirely distill within a 5° C range which shall include 187.3° C. ‡Shall entirely distill within a 5° C range, and 90 ml. shall distill within a 2.2° C range. §Calculated as acetic acid. This is equivalent to 0.047 mg. KOH per g. sample. #Calculated as hydrochloric acid. This is equivalent to 0.077 mg. KOH per g. sample. •Miscible in all proportions with water, acetone, and chlorform at 25° C. •Completely miscible in all proportions with water at 20° C. •This is equivalent to 3 ppm. ††This is equivalent to 10 ppm.

Table 7.21: Conversion Chart for Aqueous Propylene Glycol Solutions (23)

Table 7.22: Density of Aqueous Propylene Glycol Solutions (Percent by Weight) (23)

Table 7.23: Effect of Aqueous Propylene Glycol Solutions on Dew Points at Various Contact Temperatures (19)

Table 7.24: Freezing Points of Aqueous Propylene Glycol Solutions (2)

- (I) Observed;
- (II) Theoretical, without hydration;
- (III) Theoretical, with complete hydration.

Table 7.25: Heat of Vaporization of Propylene Glycol at Various Temperatures (19)

Table 7.26: Refractive Indices of Aqueous Propanediol Solutions at 20°, 30°, and 40°C (32)

1,2-Propanediol					1,3-Pro	panediol	
Glycol,	n 20	n}°	n _D 40	Glycol,	n 20	n 30	n _D 40
9,94	1.3435	1.3422	1.3411	10.98	1.3433	1.3430	1.3410
20,03	1.3552	1.3540	1.3522	19.96	1.3540	1.3528	1.3511
30,23	1.3670	1.3650	1.3630	30.21	1.3654	1.3640	1.3623
40.01	1.3780	1.3758	1.3732	40.34	1.3770	1.3755	1.3735
49.41	1.3887	1.3863	1.3833	49.94	1.3880	1.3861	1.3839
60.04	1.3995	1.3970	1.3940	60.32	1.3997	1.3975	1.3951
69.50	1.4082	1.4055	1.4028	70.24	1.4103	1,4080	1.4065
79.43	1.4174	1.4144	1.4111	79.87	1.4205	1.4183	1, 4155
89.74	1.4252	1.4221	1.4190	89.68	1.4300	1, 4276	1.4250
100	1.4324	1.4295	1.4255	100	1.4389	1.4364	1.4332

Table 7.27: Relative Humectant Values of Propylene Glycol, N.F. (23)

values are given as the per cent by weight of glycol in water solutions that will be in equilibrium with air of various temperatures and humidities

Temperature		RELATIVE HUMIDITIES						
of Air	20%	30%	40%	50%	60%	70%	80%	90%
0° F	93.0	88.0	78.0	73.7	70.0	62.5	45.0	
10° F	93.5	87.5	78.0	73.7	70.5	63.0	46.0	30.0
20° F	93.0	87.5	78.5	73.7	71.0	63.0	47.0	30.0
30° F	92.7	88.0	79.5	74.0	71.0	62.0	48.0	30.0
40° F	93.0	89.5	81.0	76.0	71.5	64.0	50.0	30.0
50° F	93.5	90.5	83.0	77.5	72.0	66.0	51.0	31.0
60° F	93.7	90.8	84.0	78.0	72.0	66.0	52.0	32.0
70° F	94.0	91.0	85.0	78.5	73.0	66.5	52.5	33.0
80° F	94.3	91.2	85.0	79.0	73.0	66.0	52.5	34.0
90° F	94.4	91.2	85.5	79.5	73.5	67.0	53.0	35.0
100° F	94.4	91.25	85.8	80.5	74.0	67.0	53.0	35.0
110° F	94.4	91.26	86.0	81.0	75.0	67.5	53.0	33.0
120° F	94.4	91.27	86.5	81.3	75.0	68.0	54.0	33.0

Table 7.28: Specific Gravity of Aqueous Propylene Glycol Solutions at Various Temperatures (19)

Table 7.29: Specific Heat of Aqueous Propylene Glycol Solutions (19)

Table 7.30: Thermal Conductivity of Aqueous Propylene Glycol Solutions at Various Temperatures (19)

Table 7.31: Total Pressure over Aqueous
Propylene Glycol Solutions
Versus Temperatures (23)

Table 7.32: Vapor-Liquid Composition Curves for Aqueous Propylene Glycol Solutions (23)

Table 7.33: Vapor Pressures of Aqueous Propylene Glycol Solutions (19)

WATER, PER CENT BY VOLUME 50 30 20 VAPOR PRESSURE, mm. Mg PROPYLENE —GLYCOL 90 100 110 120

Table 7.34: Viscosities of Aqueous
Propylene Glycol
Solutions (23)

Table 7.35: Azeotropes of Propylene Glycol (19)

Con	ponents			Azeotrope	
Compound	Specific Gravity at 20/20° C	Boiling Point, °C at 760 mm. Hg	Boiling Point, °C at 760 mm. Hg.	Relative Volume of Layers at 20° C	Specific Gravity at 20/20° C
Propylene glycol dibutyl ether	1.0381 0.7694	187. 4 142. 1	136	Upper layer 93 Lower layer 7	
Propylene glycol di-(2-ethylhexy) ether	1.0381 0.8121	85† 135†	84†		
Propylene glycol toluene	1.0381 0.8683	187.4 110.6	108	Upper layer 98 Lower layer 2	

†At 10 mm. Hg. ‡Heterogeneous at 20° C.

1,3-PROPANEDIOL

Trimethylene Glycol 1,3-Dihydroxypropane Beta-Propylene Glycol

CH2OHCH2CH2OH

Table 7.36: Physical Properties of 1,3-Propanediol (32)

Boiling point at 760 mm. Hg	214°	°C (210-211	° C)
D	~~ °C		
Freezing points of aqueous solutio	ns, C -2.8	c	
20%	-2.0 -6.5		
30%	-11.		
40%	-18.		
50%	-27.		
60%	-21. -40.		
60%	-40.	U	
Molecular weight	78.1		
Refractive indices of aqueous solu	tions n _D ²⁰	n_0^{30}	\tilde{n}_0^{40}
at 20, 30, and 40° C	1.04	100 10400	1,3410
11.0%	1.34 1.35		
20.0%		540 1.3526 554 1.3640	
30.2%		770 1.3755	
40.3%		380 1,3861	
50.0%		997 1.3975	
60.3% 70.2%		1.3913	
79.9% 89.7%		205 1.4183 300 1.4276	
100.0%		300 1.4276 389 1.4364	
100.0%	1.4.	389 1.4304	1.4332
Specific gravity at 20/20° C	1.05	554	
at 0° C	1.06		
at 214° C	0.90		
Thermal expansion of aqueous sol between 20 and 40° C (\alpha x 103)			
20%	0.39	9	
40%	0.4	7	
60%	0.5	5	
80%	0.60	0	
100%	0.6	1	
Isothermal contraction in volume with water between 20 and 40° (ml. contraction per 100 ml. or initial volume)	С	C 40°C	
20%	0.3	7 0.29	
40%	0.9		
60%	1.1		
80%	1.0		
80 <i>X</i> 0	1.0	- 0.50	

Table 7.37: Freezing Points of Aqueous Solutions of 1,3-Propanediol (32)

Freezing Points of Propylene Glycol (1,3)-Water Mixtures. (1) Observed; (II) Theoretical, without hydration; (III) Theoretical, with complete hydration.

Table 7.38: Specific Gravity of Aqueous Solutions of 1,3-Propanediol at 20° and 40°C (32)

1,2-BUTANEDIOL

Table 7.39: Physical Properties of 1,2-Butanediol (32)

Freezing points of aqueous solutions, *C						
10%	-2.6					
20%	-6.0					
30%	-11.0					
40%	-16.5					
	-10.5					
50%						
60%	-29.0					
Refractive indices of aqueous solutions	n _D 20	n _D 30	n _D 40	Thermal expansion of aqueous solutions		
at 20, 30, and 40° C	0	u		between 20 and 40° C (\alpha x 103)		
10.13%	1.3452	1.3436	1.3420	20%	0.454	
19.69%	1.3572	1.3553	1.3534	40%	0.654	
29.72%	1.3693	1.3672	1.3650	60%	0.726	
39.79%	1.3813	1.3788	1.3760	80%	0.765	
49.68%	1.3920	1.3892	1.3865	100%		
		1.4000	1.3966	100%	0.775	
59.88%	1.4027					
69.37%	1.4120	1.4090	1.4058	Isothermal concentration in volume on mixing	20° C	40°C
79.73%	1.4211	1.4185	1.4165	with water between 20 and 40° C		
69.40%	1.4297	1.4265	1.4230	(ml. contraction per 100 ml. of		
100.0%	1.4375	1.4347	1.4310	initial volume)		
				20%	1.12	1.01
Viscosity of aqueous solutions at	20° C	40° C		40%	1.96	1.67
20 and 40° C, in centistokes				60%	1.92	1.65
10.125%	1.520	0.910		80%	1.27	1.10
19.7%	2.187	1.243				
29.7%	3.310	1.690				
39.8%	4.802	2.311				
49.7%	6.739	3.088				
59.9%	9.72	4.227				
36.4%	13.82	5.744				
79.7%	21.37	8.372				
89.4%	35.54	12.59				
100.0%	68.0	21.25				
100.00	55.0	20				

Table 7.40: Specific Gravity of Aqueous 1,2-Butanediol Solutions at 20° and 40°C (32)

Table 7.41: Absolute Viscosity of Aqueous 1,2-Butanediol Solutions at 20° and 40°C (32)

1,3-BUTANEDIOL

1,3-Butylene Glycol

CH3CH(OH)CH2CH2OH

Table 7.42: Physical Properties of 1,3-Butanediol (32)

Acid as acetic	0.005% by wt., max.	Refractive index at 20 ° C/D	1.4401
Boiling point	207.5 ° C	Solubility (% by weight) in castor oil	18%
Color, APHA	15, max.	in ether either in	7% 9%
Distillation range	200-215° C	in ethyl acetate ethyl acetate in	32% 41%
Flash point, tag open cup	250° F	in dibutyl phthalate	2%
Freezing point	Below -50 ° C	Specific gravity at 20/20° C	1.0062
Heat of vaporization	155 cal./g.	Surface tension at 25° C	37.8 dynes/cm.
Hygroscopicity, weight % water absorbed in 144 hours at:		Vapor pressure at 20 ° C	0.06 mm. Hg
25-28°C and 81% relative humidity 25-28°C and 47% relative humidity 25-28°C and 20% relative humidity	38.5 12.5 4.3	Viscosity at 25° C at 35° C	104 cp. 89 cp.
Molecular weight, calculated	90.12	Water	0.5% by wt., max. 8.38 lb.
Purity	95% by wt., min.	Weight per gallon at 20° C	0.90 tu.

Table 7.43: Freezing Point of Aqueous Solutions of 1,3-Butanediol (32)

Table 7.44: Refractive Index and Freezing Point of Aqueous Solutions of 1,3-Butanediol (32)

Content of 1,3-Butanediol,	n 25 ° C	Freezing Point		
% by Weight	D	°c	°F	
19.4	1.3561	-4	+25	
39.4	1.3806	-15.5	+4	
49.3	1.3922	-25	-13	
58.5	1.4032	-37	-35	
64.5	1.4093	-42	-44	
69.0	1.4138	-51	-60	
79.5	1.4237	Visc	ous	
89.0	1.4319	liqu	id	

Table 7.45: Specific Gravity of Aqueous 1,3-Butanediol solutions at 20° and 40°C (32)

Table 7.46: Viscosity of Aqueous Solutions of 1,3-Butanediol (32)

Content of	•	Viscosity, centipo	ises
1,3-Butanediol, % by Weight	25.0° C	-171° ± C	-37 ± 1° C
19.4	2.1		
39.4	4.7		
49.3	6.7	95	
58.5	10.2	172	
69.0	16.7	304	
79.5	27.7	620	7,000
89.0	50.8	1,360	18,500
100.0	98.3	3,150	35,000

Table 7.47: Absolute Viscosity of Aqueous 1,3-Butanediol Solutions at 20° and 40°C (32)

20.9°C

1,4-BUTANEDIOL

Tetramethylene Glycol

$\mathsf{HOCH_2CH_2CH_2CH_2OH}$

Table 7.48: Physical Properties of 1,4-Butanedioi (32)

Acetals (as CH ₂ O)	Less than 0.8%	Freezing point		20.9 ° C
Acidity (as HCO ₂ H)	Less than 1%	Refractive index, ng		1.4446
Boiling range	221-231° C	Solubility at 25° C (g./100 ml	. solvent)	
-	Less than 0.5%	in water	, 200, 111.,	Infinite
1-Butanol	More than 250° F	in methanol		Infinite
Flash point (ASTM open cup)	Less than 0.1%	in ethanol		Infinite
Free aldehyde as CH ₂ O	18-19.5° C	in acetone		Infinite
Freezing point range		benzene		0.3
Purity	Over 96%	carbon tetrachloride		0.4
Refractive index, np 25	1.4435-1.4445	chlorobenzene		0.4
Specific gravity, d	1.012-1.016	ethyl acetate		14.1
Unsaturation (as butendiol)	Less than 1%	ethyl ether		3.1
Viscosity, 25° C	65-70 cp.	petroleum ether (35-60	°C)	0.9
Water content	Less than 0.8%	Specific gravity, d ₄ ²⁵		1.0154
Pure 1,4-Butanediol		% Water in	Freezing Point	Viscosity
Dellies exist at 10 mm. He	118° C	1,4-Butanediol		
Boiling point at 10 mm. Hg	133° C	1,4-Butanedioi	(°C)	(cp. at 25° C)
20 mm. Hg	170° C	0.0	20.0	71.5
100 mm. Hg	187° C		19.8	71.3
200 mm. Hg	228° C	0.1		70.2
760 mm. Hg	448 C	0.5	19.0	
		1.0	18.1	68.9

Freezing point

Table 7.49: Absolute Viscosity of Aqueous 1,4-Butanediol Solutions at 20° and 40°C (32)

2,3-BUTANEDIOL

2,3-Butylene Glycol 2,3-Dihydroxybutane

CH3CH(OH) · CH(OH)CH3

Table 7.51: Physical Properties of 2,3-Butanediol (32)

0.005% by wt., max. Acidity as acetic Boiling point at 760 mm. Hg 182.5° C Color, APHA 15 max. Density of liquid 1.048 Distillation range 175-195° C Flash point, tag open cup 185° F 19° C (5% water lowers F. P. to +10° C) Freezing point Hygroscopicity (% water pickup-400 hrs.) 25° C and 50% rel. hum. 25° C and 75% rel. hum. 24 33 Molecular weight 90.12 Purity 95% by wt., min. Refractive index, n_{D}^{20} 1.4377 Solubility (1% by weight) 78% in castor oil 5% 5% 14% 9% 2% in ether ether in in ethyl acetate ethyl acetate in in dibutyl phthalate Specific gravity at 20/20° C 1.0093 Specific heat at 30° C 0.60 cal./g. Specific tension at 25° C 36 dynes/cm. Vapor pressure at 20° C 17 mm. Hg Viscosity at 25° C 121 cp. at 35° C 90 ср. 0.5% by wt., max. Water content 8.41 lb. Weight per gallon

Table 7.52: Boiling Points of Aqueous levo-2,3-Butanediol Solutions at Atmospheric Pressure (32)

Table 7.53: Boiling Points of Aqueous levo-2,3-Butanedioi-Ethanol Solutions (32)

Table 7.54: Boiling Points of Aqueous levo-2,3-Butanediol-Methanol Solutions (32)

Table 7.55: Freezing Points of Aqueous levo-2,3-Butanediol Solutions (32)

Table 7.56: Freezing Points of Aqueous meso-dextro-2,3-Butanediol Solutions (32)

Table 7.57: Effect of meso-2,3-Butanediol on the Freezing Point of Aqueous levo-2,3-Butanediol Solutions (32)

Composition of Diol	40% Water	60% Water	
100% levo	-40.4° C	-19.4° C	
95% levo	-37.0	-21.0	
5% meso			
90% levo	-28.2	-21.0	
10% meso			
85% levo	-18.6	-17.2	
15% meso			
80% levo	-14.0	-12.4	
20% meso			
50% levo	+1.55	+1,55	
50% meso			

Table 7.58: Freezing Points of Aqueous levo-2,3-Butanediol-Ethanol Solutions (32)

Table 7.59: Freezing Points of Aqueous levo-2,3-Butanediol-Ethylene Glycol Solutions (32)

Table 7.60: Freezing Points of Aqueous levo-2,3-Butanediol-Methanol Solutions (32)

Table 7.61: Freezing Points of Aqueous levo-2,3-Butanedioi-Tetrahydrofurfuryl Alcohol Solutions (32)

Table 7.62: Kinematic Viscosity of Aqueous levo-2,3-Butanediol Solutions, Expressed Logarithmically, as a Function of Concentration and Temperature (32)

Table 7.64: Kinematic Viscosity of 60% levo-2,3-Butanediol, Glycerol and Ethylene Glycol Solutions at Low Temperatures (32)

Table 7.63: Kinematic Viscosity of Aqueous levo-2,3-Butanediol Solutions in Relation to Concentration and Temperature (32)

Table 7.65: Kinematic Viscosity of Aqueous levo-2,3-Butanediol-Ethanol Solutions at 20°C, Expressed in Centistokes (32)

Table 7.66: Kinematic Viscosity of Aqueous levo-2,3-Butanediol-Methanol Solutions at 20°C, Expressed in Centistokes (32)

Table 7.67: Kinematic Viscosity of Aqueous levo-2,3-Butanediol-Ethylene Glycol Solutions in 20°C, Expressed in Centistokes (32)

Table 7.68: Kinematic Viscosity of Aqueous levo-2,3-Butanediol-Tetrahydrofurfuryl Alcohol Solutions at 20°C, Expressed in Centistokes (32)

Table 7.69: Absolute Viscosity of Aqueous Solutions of Ethylene Glycol, levo-2,3-Butanediol, meso-dextro-2,3-Butanediol and Glycerol at 20°C (32)

Table 7.70: Optical Rotatory Power of Aqueous levo-2,3-Butanediol Solutions at 20°C (32)

Table 7.71: Effects of Concentration and
Temperature on the Specific
Rotatory Power of Aqueous levo2,3-Butanediol Solutions (32)

Table 7.72: Refractive Indices of Aqueous levo-2,3-Butanediol Solutions at Different Temperatures (32)

Dial Of		Tempera	iture, °C	
Diol, %	20	25	30	35
0	1.3330	1,3325	1,3319	1,3312
10.0	1.3450	1.3445	1.3437	1.3429
19.9	1.3574	1.3566	1.3557	1.3549
29.9	1.3700	1.3689	1.3677	1.3666
39.9	1.3820	1.3807	1.3793	1.3779
49.9	1.3930	1.3915	1.3900	1.3885
59.6	1.4027	1.4012	1.3997	1.3982
70.0	1.4115	1.4098	1.4082	1.4065
79.7	1.4197	1.4180	1,4162	1.4146
89.7	1.4264	1.4247	1.4229	1.4212
99.5	1.4322	1.4302	1.4283	1.4264

Table 7.73: Refractive indices of Aqueous Solutions of meso- and levo- 2,3-Butanediol at 25°C (32)

Table 7.74: Specific Gravity of Aqueous levo-2,3-Butanediol Solutions at 20°, 30°, and 40°C (32)

Table 7.75: Specific Gravity of Aqueous meso-2,3-Butanediol Solutions at 20°, 30°, and 40°C (32)

Table 7.76: Surface Tension of Aqueous Solutions of levo-2,3-Butanedioi and Ethylene Glycol (32)

BUTANEDIOLS

Table 7.77: Refractive Indices of Aqueous Butanediol Solutions at 20°, 30°, and 40°C (32)

1,2-Butanediol				1,3-Butanediof				1,4~Butanediol			
Glycol, %	n _D ²⁰	n _D ³⁰	n _D 40	Glycol,	n ₀ 20	n _D ³⁰	n _D ⁴⁰	Glycol,	n _D ²⁶	n _D 30	n _D 40
10.13	1.3452	1.3436	1.3420	9.51	1.3442	1.3430	1.3417	10.51	1.3444	1.3432	1.3420
19.69	1.3572	1,3553	1.3534	19.18	1.3552	1.3548	1.3520	20.01	1.3563	1.3550	1.3532
29.72	1.3693	1.3672	1.3650	30.20	1.3688	1.3670	1.3649	30.02	1.3682	1.3671	1.3659
39.79	1,3813	1.3788	1.3760	39.94	1.3800	1,3778	1.3755	39.86	1.3802	1.3790	1.3768
49.68	1.3920	1.3892	1.3865	49.45	1.3920	1.3895	1.3870	49.70	1.3935	1.3918	1.3898
59.88	1,4027	1.4000	1.3966	60.02	1.4040	1.4012	1.3983	59.95	1.4052	1.4042	1.4020
69.37	1.4120	1.4090	1.4058	70.10	1.4145	1.4118	1.4090	70.15	1.4183	1.4167	1.4140
79.73	1.4212	1.4185	1.4165	80.20	1.4242	1.4215	1.4185	79.85	1.4283	1.4258	1.4236
89.40	1.4297	1.4265	1.4230	89.67	1.4323	1.4295	1.4264	90.10	1, 4370	1.4349	1.4318
100	1.4375	1.4347	1.4310	100	1.4398	1.4370	1.4331	100	1.4451	1.4425	1.4395

Table 7.78: Kinematic Viscosity of Aqueous Butanediol Solutions at 20° and 40°C, in Centistokes (32)

l, 2-Butanediol		1,3-Butanediol			1, 4-Butanediol			
Glycol,	Viscosity		Glycol,	Viscosity		Glycol,	Viscosity	
%	20°C	40°C	- %	% 20°C	40°C	%	20°C	4 0° C
10.125	1.520	0.910	9.505	1.51	0.91	10.51	1.446	0.89
19.69	2.187	1.243	19.175	2.295	1.291	20.01	2.109	1.218
29.72	3.310	1.690	30.20	3.529	1.818	30.02	2.867	1.660
39.79	4.802	2.311	39.94	5, 419	2.593	39.86	4.258	2.382
49.685	6.739	3.088	49.45	8.313	3.695	49.70	6.57	3.202
59.88	9.72	4,227	60.02	13.44	5.600	59.95	10.20	4.707
69.37	13.82	5.744	70.1	21.57	8.413	70.15	18.48	7.982
79.73	21.37	8.372	80.20	35.36	12.88	79.85	30.63	12,62
89.40	35.54	12.57	89.67	63.43	21.21	90.1	54.35	21,40
100	68.0	21.25	100	129.8	39.70	100	87.62	33.8

2-BUTENE-1,4-DIOL

HOCH2CH=CHCH2OH

Table 7.79: Physical Properties of 2-Butene-1,4-diol (32)

Physical Properties of Technical Cis-2-Butene-1,4-Dioi		Purified Cis-2-Butene-1,4-Dioi	
Boiling point range	232-235° C	Boiling point at 760 mm. Hg	234° C 177° C
Fire point (Cleveland open cup)	270° F	100 mm. Hg 20 mm. Hg	140° C
Flash point (Cleveland open cup)	263° F	10 mm. Hg 5 mm. Hg	122° C 109° C
Freezing point range	4.0-7.0° C	Freezing point	12.5° C
Molecular weight	88.1	Refractive index, n _D ²⁵	1.4768-1.4773
Refractive index, n ₀ ²⁵	1,476-1,478	Specific gravity at 25/15° C	1.070
Specific gravity at 25/15° C	1.067-1.074		
Viscosity at 68° F 100° F 210° F	22 cp. 10.8 cp. 2.5 cp.		

HOCH2C≡CCH2OH

Table 7.80: Physical Properties of 2-Butyne-1,4-Diol (32)

Physical Properties of Commercial 2-Butyne-1,4-Diol

Acetals (as CH₂O) Less than 0.6% Aldehydes (as CH₂O) Less than 0.5% Butynediol content 35 ± 1% Less than -7° C Freezing point Methanol (by distillation) 0.0% 4 to 6 pН Propargyl alcohol Less than 0.5% Saponification No. (as mg. KOH/g. product) Less than 6 Specific gravity, d4 1.04 to 1 Weight per gallon 8.7 lb.

Purified 2-Butyne-1,4-Diol

Boiling point at 10 mm. Hg 140° C 100 mm. Hg 194° C

Crystal structure

system Orthorhombic
principal forms Basal pinacoids and prisms with
crystals flattened parallel to

the basal pinacoids

Melting point 57.5° C

Refractive indices n $_0^{25}$ $\alpha \pm 1.450 - 0.002$ $\beta \pm 1.528 - 0.002$

Solubility (g./100 ml. solvent) in water at 0° C

in water at 0° C 121
in water at 25° C 374
in ethyl alcohol at 25° C 83
in acetone at 25° C 70
in ethyl ether at 25° C 2.6
in benzene at 25° C 0.04

1,5-PENTANEDIOL

Pentamethylene Glycol

 $\mathsf{HOCH_2CH_2CH_2CH_2CH_2OH}$

Table 7.81: Physical Properties of 1,5-Pentanediol (32)

Boiling point at 760 mm. Hg 50 mm. Hg 10 mm. Hg	242.5° C 166° C 134° C
Coefficient of expansion at 55° C	0.00061/°C
Flash point (open cup)	265° F
Freezing point	-15.6° C
Molecular weight	104.16
Refractive index at 20° C	1,4489
Specific gravity at 20/20° C	0.9921
Surface tension at 20° C	43.2 dynes/cm.
Vapor pressure at 20° C	Less than 0.01
Viscosity at 0° C (absolute) 20° C 40° C	415 cp. 128 cp. 48 cp.
Weight per gallon at 20° C (average)	8.23 lb.

Table 7.82: Absolute Viscosity of Aqueous 1,5-Pentanediol Solutions at 20° and 40°C (32)

Table 7.83: Specific Gravity of Aqueous 1,5-Pentanediol Solutions at 20° and 40°C (32)

2,4-PENTANEDIOL

Amylene Glycol

 $CH_3CHOHCH_2CHOHCH_3$

Table 7.84: Physical Properties of 2,4-Pentanediol (32)

Boiling point at 760 mm. Hg	199° C
Flash point, Cleveland open cup	210° F
Melting point	45° C
Molecular weight	104.15
Specific gravity (apparent), 20/20° C	0.964 (supercooled liquid)

NEOPENTYL GLYCOL

"NPG" Glycol 2,2-Dimethyl-1,3-Propanediol

(continued)

Table 7.85: Physical Properties of Neopentyl Glycol (41)

Empirical Formula	C,H,2O2	Bulk Density, 21°C., g./cc.	1.06
Molecular Weight (calcd.)	104.15	lb./cu. ft.	66.4
Equivalent Weight (theor.)	52.08	Color, APHA, ppm., max.	25•
Acid Number	0.01	Critical Pressure, atm. (estd.)	36
Hydroxyl Number (average)	1075	Critical Temp., °K. (estd.)	653
Saponification Number	0.14	Critical Volume, cu. ft./lb. (estd.)	0.059
Acid, as acetic acid, wt. %	0.05 max.	cc./g. (estd.)	3.683
Aldehyde, as hydroxypivaldehyde, w	rt. % 0.70 max.	Crystal Density, 25°C., g./cc.	1.11
Ester, as neopentyl hydroxypivaldel	nyde,	lb./cu. ft.	69.3
wt.%	1.50 max.	Crystallization Point, °C. 128 (san	ne as m.p.)
Water, wt. %	1.00 max.	Effect on Metals: No corrosive effect on	mild steel,
Appearance White,	crystalline solid	galvanized steel or	tinplate.
Autoignition Temp. (ASTM D286-3	0), °F. 750	Slightly corrosive to	aluminum.
	,°C. 399	Fire Point (Cleveland Open Cup), °F.	305
Boiling Range, °C., at 3.35 mm.	Hg 93-94	°C.	151.6
25 mm.	Hg 121-123	Flash Point (Cleveland Open Cup), °F.	305
760 mm.	Hg 210	°C.	151.6
	-		((

Table 7.85: (continued)

			lity, g./10 olvent, at	
	Solvent	<u>5°C.</u>	<u>15°C.</u>	60°C.
Heat Capacity, Solid, B.t.u./lb./°F. (estd.) 0.383 cal., g./g./°C. (estd.) 0.383 Heat of Combustion, B.t.u./lb. (estd.) -12,917 cal., g./g. (estd.) -7,176 B.t.u./lb. mole -1,345,306 cal., g./g. mole -747,391 Heat of Fusion, B.t.u./lb. (estd.) 90 cal., g./g. (estd.) 50	Water Acetone Benzene Cyclohexane Hexane Isobutyl alcohol Methyl ethyl ketone Methyl isobutyl ketone Toluene Trichloroethylene	173 23 0.6 0.0 0.5 87.5 25 7.9 0	181 60 12 <1 — 41 14 <1 <1	400 439 199 0.4 1.8 — >309 76 39 117
	Specific Gravity, 25°/4°	C.	1	.066

Solubility

PENTANEDIOLS

Table 7.86: Kinematic Viscosity of Aqueous Pentanediol Solutions at 20° and 40°C, in Centistokes (32)

1,2-Pentanediol			1,5-Pentanediol		
a //	Viscosity			Viscosity	
Glycol, %	20° C	40° C	Glycol, %	20° C	40° C
10.36	1.5475	0.9275	10.17	1.516	0.9210
19.97	2.264	1.258	20.09	2.246	1.277
30.18	2.88	1.538	30.42	3.300	1.795
40.13	4.06	2.08	39.82	4.735	2.331
50.02	5.73	2.82	50.04	7.08	3.350
59.96	8.02	3.742	60.12	11.30	5.250
69.97	13.03	5.725	70.45	20.9	8.842
79.85	19.85	8.138	80.20	36.22	14.46
90.05	38.20	13.62	89.75	66.25	25.70
100	68.55	20.82	100	115.65	43.58

Table 7.87: Refractive Indices of Aqueous Pentanediol Solutions at 20° and 40°C (32)

1, 2-Pentanediol			1,5-Pentanediol		
Glycol,	n _D ²⁰	n _p 40	Glycol,	n _D ²⁰	n _D
10.36	1.3452	1.3430	10.17	1.3444	1.3420
19.97	1.3585		20.29		1.3543
20.64		1.3500	20.59	1.3572	
30.94	1.3705	1.3682	30.42	1.3700	1.3682
41.26	1.3830	1.3800	40.43	1.3833	1.3800
51.05	1.3930	1.3895	50.45	1.3960	1.3910
61.28	1.4050	1.3990	60.51	1.4080	1.4033
70.00	1.4120	1.4068	70.73	1.4198	1.4159
80.04	1, 4223	1.4182	80.08	1.4304	1.4260
90.05	1.4320	1.4254	90.15	1,4417	1.4367
100	1.4390	1.4326	100	1.4500	1.4448

1,6-HEXANEDIOL

$CH_2OHCH_2CH_2CH_2CH_2OH$

Table 7.88: Physical Properties of 1,6-Hexanediol (32)

This glycol is very soluble in water.

Boiling point at 760 mm. Hg	243° C
Flash point, Cleveland open cup	265° F
Melting point	42° C
Molecular weight	118.17
Specific gravity (apparent)	0.958

2,5-HEXANEDIOL

$CH_3CHOHCH_2CH_2CHOHCH_3$

Table 7.89: Physical Properties of 2,5-Hexanediol (32)

This six-carbon glycol is the most viscous of the family. It is completely miscible with water.

Boiling point at 760 mm. Hg	220.8° C
Flash point, Cleveland open cup	220° F
Freezing point	Sets to a glass below -50° C
Molecular weight	118.17
Refractive index at 20° C, n _D	1.4474
Specific gravity (apparent) at 45/15.6° C	0.9617
Viscosity at 20° C	37 ср.

HEXYLENE GLYCOL

2-Methyl-2,4-Pentanediol Methyl Amylene Glycol Diacetone Glycol

CH3COH(CH3)CH2CHOHCH3

Table 7.90: Physical Properties and Specifications of Hexylene Glycol (32)

Acidity as acetic acid	0.005% by wt., max.		
•	•	Density (in vacuo) at 0 ° C	0.9360 g./cc.
Boiling point at 760 mm. Hg	198.27° C	20° C	0.0216 g./cc.
	197.1 ° C	30° C	0.9145 g./cc.
at 50 mm. Hg	125° C		_
at 10 mm. Hg	94° C	dt/dp at the boiling point	0.045° C/mm.
Color, Pt-Co (Hazen) standard	15, max.	Flash point, Cleveland open cup	210° F 215° F
Critical properties, P.	499 psia		
	1221° R	Freezing point	Becomes semisolid at -40° C
T _e V _e	6.78 ft./mole	•	without crystalline formation Sets to glass below -50° C
Density (in air) at 760 mm. Hg	0. 92 8 g./cc.	Distillation range (ASTM D-1078)	195 to 200° C
Density in air at any temp. may be obtained from equation:	D _t ~ 0.952 - 4.02 x 10 ⁴ t	(95% will distill between 196° C and 199° C)	

Table 7.90: (continued)

12.3 x 13 ³ cal./gmole 104.1 gcal./g. 208 Btu/lb.
118.17
-37.2° C (35° F)
72.5
1.4276
1.4243
0.9216 0.9234
0.00097
33.1 dynes/cm.
0.05 mm. Hg
34.4 ср.
Miscible without turbidity with 19 vols. of n-heptane
7.69 lb.

Table 7.91: Freezing Points of Hexylene Glycol-Water Mixtures (32)

Freezing Points of Hexylene Glycoi (2-Methyl-2,4-pentanediol)-Water Mixtures. (I) Observed; (II) Theoretical, without hydration; (III) Theoretical, with complete hydration.

Table 7.92: Specific Gravity and Freezing
Point of Hexylene GlycolWater Mixtures (14)

PINACOL

Pinacone

2,3-Dimethyl-2,3-Butanedial Tetramethylethylene Glycol

 $HOC(CH_3)_2 \cdot C(CH_3)_2OH$

Table 7.93: Physical Properties of Pinacol (32)

Boiling point at 760 mm. Hg 174.4° C
Melting point 41.1° C
Molecular weight 118.17

The Hexahydrate

Melting point

45.4° C

Specific gravity, d¹⁵ 0.967 (supercooled liquid)

2,2-DIETHYL-1,3-PROPANEDIOL

HOCH2C(C2H5)2CH2OH

Table 7.94: Physical Properties of 2,2-Diethyl-1,3-Propanediol (32)

Boiling point at 10 mm. Hg 125° C
Freezing point 61.3° C
Molecular weight 132.20
Solubility in water at 20° C 25% by wt.
Specific gravity (apparent) at 20° C 1.052

2-ETHYL-1,3-HEXANEDIOL

Ethohexadial Octanedial

 $HOCH_2CH(C_2H_5)CHOHC_3H_7$

Table 7.95: Physical Properties of 2-Ethyl-1,3-Hexanediol (32)

Acidity as acetic acid
Boiling point at 760 mm. Hg
Color, Pt-Co
Distillation range
Flash point, open cup
Freezing point
Molecular weight
Refractive index, 20° C, n_b
Solubility in water, 20° C
Solubility of water in, 20° C
Specific gravity, 20/20° C
Suspended matter
Vapor pressure, 20° C
Viscosity, 20° C
Weight per gallon (average), 20° C

0.01% by wt., max. 243.1° C 15, max. 241 to 249° C 265° F Sets to glass below -40° C 146.22 1.4511 4.2% by wt. 11.7% by wt. 0.9422 Substantially free

Less than 0.01 mm. Hg 323 cp. 7.83 lb.

2,5-DIMETHYL-3-HEXYNE-2,5-DIOL

Dimethyl Hexynediol
$$\begin{array}{c} CH_3 & CH_3 \\ \vdots & \vdots \\ CH_3 - C - C = C - CH_3 \\ \hline OH & OH \end{array}$$

Table 7.96: Physical Properties of 2,5-Dimethyl-3-Hexyne-2,5-diol (32)

 Boiling point
 205-6° C

 Freezing point
 94-5° C

 Surface tension at 25° C
 **

 5% in water
 41.2 dynes/cm.

 0.1% in water
 60.9 dynes/cm.

 0.01% in water
 66.9 dynes/cm.

1,4-CYCLOHEXANEDIMETHANOL

Table 7.97: Properties of 1,4-Cyclohexanedimethanol

(approx. 70% trans-, 30% cis-isomers)

Empirical formula	C ₈ H ₁₈ O ₂	Specific gravity	
Molecular weight (calcd.)	144,21	Liquid:	
Equivalent weight	72.1	25°/4°C. (super-cooled)	1.026
Crystallization point, *C.	35	50°/4°C. (super-cooled)	1,010
Pour point, *C. (super-cooled)	10	100°/4°C. (molten)	0.978
Melting point, *C.	41-61	150°/4°C.	0.946
cis isomer	43	200°/4°C.	0.914
trans isomer	70	Solid:	
Boiling point, °C.		27°/4°C.	1.069
760 mm.	285	Density	
100 mm.	216	Liquid, lb./gal.:	
10 mm.	160	70°F. (super-cooled)	8, 59
1 mm.	118	100°F. (super-cooled)	8. 49
cis isomer	288	200°F.	8. 20
trans isomer	284	300°F.	7, 90
		400°F.	7. 60
		Solid, 70°F., lb./cu. ft.	66.74

Table 7.97: (continued)

Acid number	<0.03
Hydroxyl number	22.89
Saponification number	0.91
Refractive index, n20° (super-cooled)	1. 4893
Flash point, Cleveland Open Cup, °F.	165
Fire point, Cleveland Open Cup, *F.	255
Solubility, 25°C., wt. %	
in water	miscible
water in	miscible
in methanol	miscible
in ethanol	miscible
in diethyl ether	2.5
in VM & P naphtha	<1
in benzene	<1
in acetone	56.4

Heat capacity, (estd.)

Liquid:	Temp., °C.	C _v , B. t. u. /lb. *F.	Cp, B. t. u. /lb. *F.
	50	0, 505	0.648
	100	0.553	0.716
	150	0.609	0,794
	200	0.669	0,877
Solid: Cp	B. t. u. /lb. °F.	(estd.)	0.410

Thermal Conductivity (estd.)

Va	por:	Temp., C.		K, B.t.u./hr. It. F.
		50		0.00602
		100		0.00772
		150		0.00960
		200		0.01229
Lie	quid:	Temp., °C.		k, B. t. u. /hr. ft. *F.
		50		0.1118
		100		0.1229
		150		0.1280
		200		0.1311
Critical temper	ature, T _c , *C.	(estd.)		
cia	sisomer			457
tra	ans isomer			451
Critical pressu	re, P _c , atm. (e	std.)		34 . 85
Critical volume	, v _c , cu. ft./lb	. (estd.)		0.0506
Viscosity:	Temp	., •F.	CS.	8. U.S.
	75	•	1421.6	6568
	100)	478.1	2209
	125	i	183.4	847

p-XYLYLENE GLYCOL

 ω , ω '-Dihydroxy-p-Xylene

Table 7.98: Physical Properties of p-Xylylene Glycol (32)

Chlorine (total)
Flash point (Cleveland open cup)
Molecular weight
Purity
Set point
Specific gravity at 117° C
Toluene insolubles

0.6% max. 370° F 138.16 95% min. 115-117.6° C 1.100 0.5% max.

2-ETHYL-2-BUTYL-1,3-PROPANEDIOL

HOCH₂C(C₂H₅)(C₄H₉)CH₂OH

Table 7.99: Physical Properties of 2-Ethyl-2-Butyl-1,3-Propanediol (32)

Boiling point at 100 mm. Hg 195° C

Melting point 41.4° C

Molecular weight 160.25

Solubility in water at 20° C 0.8% by wt.

Specific gravity (apparent) at 50/20° C 0.931

3,6-DIMETHYL-4-OCTYNE-3,6-DIOL

CH₃ CH₃
Dimethyl Octynediol

CH₃ - CH₂ - C - C - CH₂ - CH₃
OH
OH

Table 7.100: Physical Properties of 3,6-Dimethyl-4-Octyne-3,6-diol (32)

THIODIGLYCOL

Thiodiethylene Glycol β , β '-Dihydroxyethyl Sulfide

HOCH2CH2-S-CH2CH2OH

Table 7.101: Physical Properties of Thiodiglycol (32)

Acidity	1.0 mg. KOH/g. sample, max.	Heat of vaporization at 1 atm.	235 Btu/lb.
Boiling point at 760 mm. Hg 50 mm. Hg	283° C 194° C	Molecular weight	122.19
Δ Boiling point/Δ p	0.055° C/mm. Hg	Refractive index at 20° C n ₀	1.5217
Color (Pt-Co)	200 max.	Specific gravity	1.1847
Coefficient of expansion at 55° C	0.00061/°C	Δ Sp. Gr./Δ t	0.00072
Flash point (open cup)	320° F	Vapor pressure at 20° C	Less than 0.01 mm. Hg
Freezing point	-10° C	Viscosity at 20° C	65.2 cp.
		Weight per gallin at 20° C	9.85 lb.
		at 15.56° C	9.88 lb.

Table 7.102: Vapor Pressure of Thiodiglycol at Various Temperatures (19)

MISCELLANEOUS GLYCOLS

Table 7.103: Hydrates of Aliphatic Glycols (32)

	G	lycol			Hydrate
Number of C Atoms	Skeletal Name Structural Formula		М.р. (°С)	M.p. (°C)	n in R (OH) ₂ × nH ₂ O
2	Ethylene glycol	но-с-с-он	-12.9	-49.6 (cong.)	2
2	Ethylene glycol	но-с-с-он	-12.9	-40.7	0.67
4	meso-2,3-Butane- diol	HO OH C-C-C-C	34.4	16.8	6(5)†
4	±2,3-Butanediol	HO OH C-C-C-C	7.6		0
5	2-Methyl-2,3- butanediol	HO OH C-C-C-C C	liq.	23.5-4	6
6	Pinacol	HO OH C-C-C-C C C	41.4	41.25°	1
6	Plnacol	но он С-С-С-С С С	41.4	46.5	6
8	2,5-Dimethyl-2,5- hexanediol	HO OH C-C-C-C-C C C	92	41 -2	6
9	2,6-Dimethyl-2,6- heptanediol	HO OH C-C-C-C-C-C C C	76-77	60-61	1
10	2,7-Dimethyl-2,7- octanediol	HO OH C-C-C-C-C-C C C	92	59	2
13	2,10-Dimethyl- 2,10-undecanediol	HO OH C-C-CCCCCC-C-C C C	81		?
14	2,11-Dimethyl- 2,11-dodecanediol	но он c-c-ссссссс-с-с с с	67.5		?

 $[\]dagger 5H_1O$ (50% H_2O) has been assigned. The maximum of the very flat freezing point curve has been found at 55% H_2O , no formula being assigned. This composition agrees excellently with $6H_2O$ which requires 54.5% H_2O .

		Glycol			Hydrate
Number of C Atoms	Name	Skeletal Structural Formula	М.р. (°С)	M.p. (° C)	n in R(OH) ₂ × nH ₂ O
9	trans-Octa- hydroindan-8,9- diol	OH	73-4		0.5 to 1.0
10	trans-Decahydro- naphthalene-9,10- diol	OH	96	80-5	1.0?
10	cis-Decahydro- naphthalene-9,10- ciol	OH	89.5		Unknown
10	trans-p-Menth- 8 (9) -ene-1,2-diol] c	73	60	3
10	cis-p-Menth- 8 (9) -ene- 1,2-diol	HO HO	71-2		0
10	cis(?)-p-Menth- 1 (2) -ene-3,6-diol	c———	53-4	27	3?
10	cis-Terpin†	, он	105	121	1
10	trans-Terpin‡) HO HO	156-8		0
10	p-Menthane-2,5- diol	С	88-9	58-9	3
10	p-Menthane-1,2- diol	HO C	89	52	3 & 1
10	p-Menthane-2,8- diol (neoiso- dihydrocarveol hydrate)	c HO	93-4	65-75	Unknown.

[†]Subject of crystallographic studies. ‡Stelzner's Literatur Register 1919-21 reports the formation of a hydrate and cites O. Aschan, "Bidrag till kännedon af Finlands natur ochfolk," 77, No. 1 (1918). The report appears to be without foundation.

Table 7.104: (continued)

		Glycol		1	Hydrate
Number of C Atoms	Name	Skeletal Structural Formula	M.p. (°C)	M.p. (°C)	n in R(OH) ₂ × nH ₂ O
10	(+)-Carene-\$-glycol or 3,4- Carane-diol (trang-2,3- dihydroxy-3,7,7- trimethyl- bicyclo-0,1,4- heptane)	Me CMe ₂	90-91	75	1
11	Homoterpin	C-C HO HO	75-6		1
14	iso (±)-Hydro- benzoin	РЬСНОНСНОНРЬ	121	96	Unknown
20	Dihydrodi- carveol	C 20 H 26 O 2	166	100	2
29	3,3'-Dihydroxy- 3,3'-diphenyl- 2,2'- <u>spiro</u> - biindan	Ph OH HO Ph	164	125-30	1 & 3
31	3,3'-Dihydroxy- 3,3'-dibenzyl- 2,2'- <u>spiro</u> - biindan	PhH ₂ C OH HO CH ₂ Ph	169	134	3
38	α - <u>s</u> -2,2¹- Diphenylbenzo- pinacol	Ph Ph	175		1
38	β -s-2,2'- DiphenyI- benzopinacol	HO HO Ph	152-8		1

Table 7.105: Freezing Points of Aqueous Ethylene Glycol and Propylene Glycol Solutions (42)

Table 7.106: Freezing Points of Various Aqueous Glycol Solutions, °C (32)

Glycol, %	1,2- Pro- pane- diol	1,3- Pro- pane- diol	l, 2- Bu- tane- diol	l,3- Bu- tane- diol	levo- 2,3- Bu- tane- diol	l, 4- Bu- tane- diol	1,2- Pen- tane- diol	1,5- Pen- tane- diol
10	-3.12	-2.86	-2.60	-2.34	-3.1	-2.30	-2.3	-2.3
20	-7.6	-6.5	-6.0	-5.2	-7.1	-5.48	-4.8	-4.9
30	-14.0	-11.8	-11.0	-10.5	-12.4	-10.0	-6.8	-8.4
40	-22.7	-18.8	-16.5	-16.8	-19.4	-14.8	-8.4	-11.3
50	-34.5	-27.7	-22.4	-25.2	-29.6	-22.0	-10.2	-15.3
60	-48.2	-40.0	-29.0	-35.3	-40.4	-31.3	-12.6	-21.0

Table 7.107: Freezing Points of Various Aqueous Alcohols, Glycols and Glycerol (32)

Solute by Weight, %	Methanol		Ethanol		Ethylene Glycol		Glycerol		levo- 2,3-Butanediol	
	F.p. Ob- served, °C	F.p. Calcu- lated, °C	F.p. Ob- served, °C	F.p. Calcu- lated, °C	F.p. Ob- served, °C	F.p. Calcu- lated, °C	F.p. Ob- served, °C	F.p. Calcu- lated, °C	F.p. Ob- served, °C	F.p. Calcu- lated, °C
10	-6.3	-6.46	-4.5	-4.49	-3.6	-3.33	-2.0	-2.25	-3.1	-2.30
20	-15.3	-14.5	-10.5	-10.1	-8.3	-8.27	-5.2	-5.05	-7.1	-5.17
30	-26.3	-24.9	-20.0	-17.3	-14.7	-12.9	-9.9	-8.67	-12.4	-8.85
40	-39.7	~38.8	-29.4	-27.0	-23.5	-20.0	-15.9	-12.0	-19.4	-14.3
50	-55.2	-58.1	-37.0	-40.4	-35.0	-30.0	-24.6	-20.2	-29.6	-20.7
60			-43.8	-60.7	-50	-45.0	-37.9	-30.3	-40.4	-31.0

Table 7.108: Compatibility of Coupling Solvents with Carbon Tetrachloride and Water (14)

Table 7.109: Key Hygroscopicity Curve (55)

Key hygroscopicity curves for the various glycols: (a) ethylene glycol; (b) diethylene glycol; and (c) dipropylene glycol.

Table 7.110: Surface Tension of Glycol-Water Systems (14)

Table 7.111: Vapor Pressure of Glycols (14)

Table 7.112: Viscosity of Glycols (32)

Table 7.113: Water Absorption by Glycols as a Function of Time (14)

Table 7.114: Water Absorption by Glycols as a **Function of Relative** Humidity (14)

Table 7.115: Refractive Index, Specific Gravity, and Boiling Point Measurements of Various Glycois (32)

Compound	Refractive Index	Specific Gravity,	Boiling Point, °C., 760 mm.	
1,2-Propanediol	25°C. 1.4316 (17) 1.4313 [†]	23°C. 1.0354 (17)	187 (17)	
	20°C. 1.4331 (14) 1.4324 [†]	20 °C. 1.0364 (14) 1.0361 [†]	186 [†]	
1,3-Propanediol	25°C. 1.4385 (17)	20°C. 1.0538 (17)	215 (17)	
	21°C. 1.4394 (17) 20°C. 1.4389 [†]	1.0025	213.5 [†]	
1,2-Butanediol	20°C. 1.4378 [†]	20°C. 1.0024 [†]	190.5 [†]	
1,3-Butanediol	25°C. 1.4410 (17) 1.4391 (12) 1.4388 [†] 20°C. 1.4404 (2) 1.4398 [†]	20°C. 1.0053 (17) 1.0035 (12) 1.002 (2) 1.0037 [†]	207.5 (17) 208 (2) 207 [†]	
1, 4-Butanediol	20° C. 1.4467 (10) 1.4459 (2) 1.4460 [†]	20°C. 1.0171 (10) 1.0160 (2) 1.0185 [†]	230 (2) 228 [†]	
1,2-Pentanediol	24° C, 1.4390 (16) 25° C, 1.4380 [†]	24°C. 0.9691 (16)	210 (16)	
	20° C. 1. 4390 [†]	20°C. 0.9723 [†]	206†	
1,5-Pentanediol	26° C. 1.4480 (16) 25° C. 1.4484 [†]	26°C. 0.9890	239 (16)	
	20°C. 1.4500 [†]	20°C. 0.9914 [†]	238 [†]	

 $^{^\}dagger Authors'$ observations. $^\S As$ cited in the fifth and earlier editions of Getman and Daniels' Outlines of Physical Chemistry, John Wiley and Sons Inc., New York, 1931.

Table 7.116: Relative Solvent Properties of Glycols (23)

S = Completely Soluble I = Insoluble < = Less Than > = Greater Than	Ethylene Glycol	Diethyl- ene Glycol	Tri- ethyl- ene Glycol	Tetra- ethylene Glycol	Propyl- ene Glycol	Di- propyl- ene Glycol	Tri- propyl- ene Glycol
Benzene Carbon Tetrachloride' Dibutyl Phthalate Dichloroethyl Ether' Diethanolamine'	5.7 6.2 0.5 10.6 S	31.3 26.2 10.6 S	S 33.6 16.5 S S	S 62 S S S	19.2 23.4 8.1 37.1 S	s s s s s	\$ s s s
DOWANOL* PM Glycol Ether¹ DOWANOL* DPM Glycol Ether¹ Ethyl Alcohol Ethyl Ether Methyl Alcohol	S S S 8.2 S	S S S 16.3 S	S S S 16.9 S	S S S 20 S	s s s s s	s s s s s s	s s s s
Methyl Isobutyl Carbinol Methyl Isobutyl Ketone Monochlorobenzene¹ ortho-Dichlorobenzene¹	S 12 5.7 S 4.5	S S S 48.4	s s s s	S S S S S S	S S 22.5 S 19.4	s s s s s	s s s
Perchloroethylene¹ Phenol¹ Styrene¹ Toluene Urea		10.7 S 36 17.2 30	15.0 S S 24.8 37	19.0 S S 89 28	14.5 S 15 12.3 29	S S S 12	S S S 10
Castor Oil	1 1 1 <0.5	<0.5 1 1 <0.5 1	<0.5 1 1 <0.5 1	<1 <1 <1 <1 <1	0.8 1 1 <0.5 1	S 1 1 <0.5	S 3 <1 <1 <1
Linseed Oil Oiticica Oil Oive Oil Pine Oil Soya Bean Oil	1 <1 1 S 1	1 <1 1 S 1	1 <1 1 S 1	<1 <1 <1 \$ <1	1 <1 1 S 1	1.4 <1 0.7 S 1	2.5 <1 1.5 S <1
Sperm Oil Tall Oil Tung Oil Turkey Red Oil	1 <1 1 <1	1 <1 1 <1²	1 <1 1 1²	<1 <1 <1 1 ²	1 <1 1 <1²	1 S 1 3 ²	<1 S <1 42
Paraffin Oil SAE No. 10 Oil VMP Naphtha	1 1 <1	1 1 <1	1 1 <1	<1 <1 1	1 1 1	1 1 10	<1 <1 14
Animal Glue (Dry) Dextrin Gum Damar Kauri Gum Sudan III Shellac	<0.5 <1 <0.5 <0.5 <0.5 <0.5	<0.5 <1 <0.5 <0.5 <0.5 <0.5	<0.5 <1 <0.5 <0.5 <0.5 <0.5	<1 <1 <1 >16 ³ <1 <1	<0.5 <1 <0.5 <5 <0.5 <0.5	<0.5 <1 <0.5 < 5 <0.5 <0.5	<1 <1 <1 >16 ³ <1 <1

Table 7.117: Effect of Various Glycols on Synthetic Rubber Samples—Results Reported as % Volume and % Weight Increase (23)

	GN-427T1		GR\$-53115T		FA-T	hiokol	Gum Rubber				
Glycol	*	*	%	*	*	*	*	*			
	Vol	Wt	Vol	₩t	Vol	Wt	Vol	₩t			
			3 Days Immersion								
Ethylene	2	2	1	~ .5	.5	.2	.2	.2			
Diethylene	12	2	1	5	.3	.0	.1	.0			
Triethylene	1	1	1	5	.5	.1	.3	.1			
Propylene	2	2	.1	3	.3	.0	.2	.0			
Dipropylene	1	2	.0	5	.3	1	.1	.1			
	10 Days Immersion										
Ethylene	2	2	3	7	.3	.2	.3	.5			
Diethylene	3	3	2	8	.3	.0	2	.0			
Triethylene	.0	1	1	6	.6	.3	.0	.1			
Propylene	- .1	1	– .3	7	.0	1	1	.0			
Dipropylene	.1	2	1	6	.1	2	.0	.1			

¹Product of The Dow Chemical Company ²Forms stable emulsion from this concentration to 100%. ³Becomes too viscous to atir beyond 16%. *Trademark of The Dow Chemical Company

Table 7.118: Solubility of Cellulose Derivatives in Glycols (23)

Glycol	50 CPS, ST. E/C	¼ Second Celluloss Nitrate	Cellulose Acetate FM 3		
Ethylene	insolubie	Swelled	insoluble		
	Insolubie	>20% Soluble	insoluble		
	Insolubie	>20% Soluble	Insoluble		
	Insolubie	Swelled	Insoluble		
	Insolubie	>20% Soluble	Insoluble		

Table 7.119: Compatibility of Film Cast from 80/20 Toluene/Alcohol (23)

. .	50 CPS. ST. E/C			% S	econd C Nitrat		Cellulose Acetate FM 3		
Glycol	Clear	Haze	Opeque	Clear	Haze	Opeque	Clear	Haze	Opeque
Ethylene	1%	3%	10%	3%	5%	10%	>10	20	_
Diethylene		3%	10%	1%	5%	10%	>20	30	
Triethylene		1%	3%	1%	3%	15%	>20	30	_
Propylene	1%	3%	10%	1%	3%	10%	>10	20	_
Dipropylene	20%	25%	30%	>50%	_	_	>40	50	_

Note: Table shows % glycol in film with the properties shown.

Table 7.120: Relative Humectant Values (23)

		Relative Humidities								
Temperature of Air °F	Glycol	10%	20%	30%	40%	50%	60%	70%	80%	90%
	Ethylene Diethylene	97.5 97.8	93.4 95.1	89.3 92.0	85.7 89.0	82 86	78 83	72 78	63 68	48 52
20 (-6.7°C)	Triethylene Propylene	98.5 96.8	96.8 91.4	94.0 90.0	91.1 84.6	89 77	83 73	78 68	66 55	51 40
	Dipropylene	98.5	97.0	95.1	92.6	89	85	79	67	51
	Ethylene Diethylene	97.3 97.7	93.2 95.0	89.1 92.0	85.4 89.0	82 86	76 82	69 77	60 67	42 50
40	Triethylene	98.4	96.5	93.8	91.0	88	83	77	65	51
	Propylene Dipropylene	97.0 98.4	92.3 96.9	90.2 95.0	85.2 92.5	78 89	74 85	68 79	55 67	40 51
	Ethylene	97.1	93.0	88.9	85.0	81 86	75	66	57 68	37 48
60	Diethylene Triethylene	97.7 98.2	95.0 96.2	92.0 93.6	89.0 90.8	86	82 82	76 77	65	50
	Propylene Dipropylene	97.1 98.4	92.9 96.8	90.4 94.8	85.8 92.4	80 89	74 85	68 79	55 67	40 51
	Ethylene	96.8	92.8	88.6	84.7	80	73	84	55	36
60	Diethylene Triethylene	97.6 98.1	94.9 96.0	92.0 93.4	89.0 90.7	85 85	81 82	75 76	65 64	47 50
(26.7°C)	Propylene Dipropylene	97.1 98.3	93.5 96.7	90.5 94.7	86.3 92.3	81 89	75 85	68 79	55 67	40 51
	Ethylene	96.6 97.6	92.7	88.4 92.0	84.3 89.0	79 85	72 81	83 74	53 64	35 48
100	Diethylene Triethylene	98.0	94.8 95.7	93.2	90.6	84	82	7 6	64	49
	Propylene Dipropylene	97.2 98.3	93.9 96.6	90.6 94.6	86.6 92.1	82 89	75 85	88 79	55 67	40 51
	Ethylene	96.4	92.5	88.2	84.0	78	71	62	51	34
120	Diethylene Triethylene	97.6 97.8	94.8 95.4	92.0 93.0	89.0 90.5	85 83	60 82	73 75	83 63	45 49
(48.9°C)	Propylene	97.2	94.3	90.7	86.7	83	78	66	55	40
	Dipropylene	98.2	96.5	94.5	92.0	89	85	79	67	51

Note: Values are given as the percent by weight of glycol in water solution required to maintain equilibrium in contact with air of various temperatures and humidities.

Table 7.123: Water Vapor Dew Points Over Aqueous Triethylene Glycol Solutions (23)

Table 7.122: Water Vapor Dew Points Over Aqueous Diethylene Giycol Solutions (23)

Table 7.124: Water Vapor Dew Points Over Aqueous Propylene Glycol Solutions (23)

Table 7.125: Water Vapor Dew Points Over Aqueous Dipropylene Glycol Solutions (23)

Table 7.127: Total Pressure Over Aqueous Ethylene Glycol Solutions vs Temperature (23)

Table 7.126: Boiling Points of Glycols at 50 mm Hg (23)

Water 100°	F (37.8°C)
Ethylene Glycol 258°	F (125.5°C)
Diethylene Glycol 338°	F (170°C)
Triethylene Glycol 387°	F (197.2°C)
Tetraethylene Glycol 453°	F (233.9°C)
Propylene Glycol 240°	F (115.6°C)
Dipropylene Glycol 307°	F (152.8°C)
Tripropylene Glycol 356°	F (180°C)

Table 7.128: Total Pressure Over Aqueous Diethylene Glycol Solutions vs Temperature (23)

Table 7.130: Total Pressure Over Aqueous Propylene Glycol Solutions vs Temperature (23)

Table 7.131: Total Pressure Over Aqueous Dipropylene Glycol Solutions vs Temperature (23)

Table 7.132: Vapor-Liquid Composition Curves for Aqueous Ethylene Glycol Solutions (23)

Table 7.133: Vapor-Liquid Composition Curves for Aqueous Diethylene Glycol Solutions (23)

Table 7.134: Vapor-Liquid Composition Curves for Aqueous Triethylene Glycol Solutions (23)

Table 7.135: Vapor-Liquid Composition Curves for Aqueous Propylene Glycol Solutions (23)

Table 7.136: Vapor-Liquid Composition Curves for Aqueous Dipropylene Glycol Solutions (23)

Table 7.137: Pour Points of Glycols (23)

Ethylene Glycol <-75° F (-59° C)

Diethylene Glycol −65° F (-54° C)

Triethylene Glycol ... −73° F (-58° C)

Tetraethylene Glycol ... −42° F (−41° C)

Propylene Glycol ... −38° F (−39° C)

Tripropylene Glycol ... −42° F (−41° C)

Table 7.138: Viscosities of Anhydrous Glycols (23)

Table 7.139: Viscosities of Aqueous Ethylene Glycol Solutions (23)

Table 7.140: Viscosities of Aqueous Diethylene Glycol Solutions (23)

- 100

Table 7.141: Viscosities of Aqueous Triethylene Glycol

Solutions (23)

Table 7.142: Viscosities of Aqueous Tetraethylene Glycol Solutions (23)

Table 7.143: Viscosities of Aqueous Propylene Glycol Solutions (23)

Temperature, Degrees Fahrenheit

Table 7.144: Viscosities of Aqueous Dipropylene Glycol Solutions (23)

200

Table 7.145: Viscosities of Aqueous Tripropylene Glycol Solutions (23)

Table 7.146: Freezing Points of Aqueous Glycol Solutions (23)

Table 7.147: Specific Heat of Anhydrous Glycols (23)

Table 7.148: Specific Heats of Aqueous Glycol Solutions (Btu/lb/°F) (23)

Temp. °F	Glycol, % by Weight Temp. °C						
remp. r	100	80	60	40	20	10	10p. 0
			ETHYLENE	GLYCOL			
60 80 100 120 140 160 180 200 220 240	563 576 590 604 618 632 646 660 674 688	.660 .673 .685 .697 .710 .722 .735 .748 .761	.757 .769 .780 .792 .803 .814 .825 .837 .849	855 864 872 880 888 896 905 914 922	.940 .942 .944 .946 .948 .950 .952 .954 .956	.976 .977 .978 .979 .980 .981 .982 .982 .983	15 6 26 7 37 8 48 9 60 0 71 1 82 2 93 3 104 4 115 5
240	.000		DIETHYLENE		.550	.504	113.3
60	542	631	.736	849	.922	.949	15.6
60 80 100 120 140 160 180 200 220 240	.543 .555 .565 .575 .583 .593 .603 .613 .623 .623	645 645 672 686 700 714 728 742 756	749 749 762 774 787 800 813 826 839 852	.849 .855 .861 .868 .874 .880 .886 .893 .900	.927 .932 .937 .943 .948 .954 .960 .965	.954 .960 .965 .970 .975 .980 .985 .990	26 7 37 8 48 9 60 0 71 1 82 2 93 3 104 4 115 5
		1	RIETHYLEN	E GLYCOL			
60 80 100 120 140 160 180 200 220 240	525 534 540 550 562 569 577 586 595 605	.637 .648 .659 .669 .680 .701 .711 .722 .782	.749 .758 .768 .777 .787 .796 .806 .815 .825	.866 .872 .878 .884 .890 .895 .901 .907 .913 .919	.935 .938 .941 .944 .946 .949 .952 .955 .957	.979 .980 .981 .981 .982 .983 .984 .985 .985	15 6 26 7 37 8 48 9 60 0 71 1 82 2 93 3 104 4 115 5
			PROPYLENE				
60 80 100 120 140 160 180 200 220 240	.587 .603 .619 .635 .651 .667 .683 .699 .715	.687 .702 .717 .733 .748 .763 .778 .794 .809 .824	.795 .808 .821 .833 .846 .857 .871 .882 .895	.900 .907 .913 .919 .925 .930 .936 .944 .949	.970 .972 .975 .977 .980 .983 .984 .987 .990	.985 .986 .988 .990 .991 .992 .994 .995 .996 .998	15 6 26 7 37.8 48 9 60 0 71.1 82.2 93.3 104.4 115.5
		D	IPROPYLEN	E GLYCOL			
60 80 100 120 140 160 180 200 220 240	570 582 594 606 618 631 644 656 668 680	.687 .698 .708 .718 .728 .739 .749 .760 .770	.801 .810 .819 .828 .836 .845 .854 .863 .872	.900 .905 .910 .915 .920 .924 .929 .934 .939	.967 .970 .972 .974 .976 .978 .980 .983 .985 .988	.985 .986 .988 .990 .991 .993 .995 .997 .998	15.6 26.7 37.8 48.9 60.0 71.1 82.2 93.3 104.4 115.5

Table 7.149: Densities of Aqueous Ethylene Glycol Solutions (% by wt) (23)

Polyhydric Alcohols

Table 7.152: Densities of Aqueous Tetraethylene Glycol Solutions (% by wt) (23)

Table 7.153: Densities of Aqueous Propylene Glycol Solutions (% by wt) (23)

Table 7.155: Densities of Aqueous Tripropylene Glycol Solutions (% by wt) (23)

Polyhydric Alcohols

Table 7.157: Flammability of Glycols (23)

Charat	Flash	Point	Fire Point		
Glycol	°F	°c	°F	°c	
Ethylene Glycol	240	116	245	119	
Diethylene Glycol	255	124	290	142	
Triethylene Glycol	350	17 7	330	166	
Tetraethylene Glycol	400	204	375	191	
Propylene Glycol	220	104	220	104	
Dipropylene Glycol	260	127	260	127	
Tripropylene Glycol	285	141	310	154	

Note: Flash points are determined by the ASTM Pensky-Martens Closed Cup Method and fire points by the ASTM Cleveland Open Cup Method.

Table 7.159: Conversion Chart for Aqueous Ethylene Glycol Solutions (23)

Table 7.158: Refractive Indices of Aqueous Glycol Solutions at 77°F (25°C) (23)

Table 7.160: Conversion Chart for Aqueous Diethylene Glycol Solutions (23)

Table 7.161: Conversion Chart for Aqueous Triethylene Givcol Solutions (23)

Table 7.163: Conversion Chart for Aqueous Propylene Glycol Solutions (23)

Table 7.162: Conversion Chart for Aqueous Tetraethylene Glycol Solutions (23)

Table 7.164: Conversion Chart for Aqueous Dipropylene Glycol Solutions (23)

Table 7.165: Conversion Chart for Aqueous Tripropylene Glycol Solutions (23)

Table 7.166: Freeze Points and Burst Points of Aqueous Solutions (23)

Note: It should be remembered that the freezing points are the temperatures at which the first crystals form, and that even below these temperatures, a slushy solution exists which will still flow.

Table 7.167: Solubility of Various Compounds in Glycols (23)

S = Completely Soluble I = Insoluble < = Less Than > = Greater Than	Ethylene Glycol	Diethylene Glycol	Triethylene Glycol	Tetraethylene Glycol	Propylene Glycol	Glycol	Glycol
Benzene Carbon Tetrachloride' Dibutyl Phthalate Dichloroethyl Ether Diethanolamine'	5.7 6.2 0.5 10.6 S	31.3 26.2 10.6 S	S 33.6 16.5 S S	S 62 S S S	19.2 23.4 8.1 37.1 S	S S S S	S S S S
DOWANOL* PM Glycol Ether' DOWANOL* DPM Glycol Ether' Ethyl Alcohol Ethyl Ether Methyl Alcohol	S S S 8.2 S	S S S 16.3 S	S S S 16.9 S	S S S 20 S	S S S S	\$ \$ \$ \$	S S S S
Methyl Isobutyl Carbinol	S 12 5.7 S 4.5	S S S S 48.4	\$ \$ \$ \$ \$	S S S S S	S S 22.5 S 19.4	S S S S S	\$ \$ \$ \$
Perchloroethylene¹Phenol¹Styrene¹Toluene Urea	0.7	10.7	15.0	19.0	14.5	S	\$
	S	S	S	S	S	S	\$
	3.4	36	S	S	15	S	\$
	2.9	17.2	24.8	89	12.3	S	\$
	48	30	37	28	29	12	10
Castor Oil	1	<0.5	<0.5	<1	0.8	S	\$
	1	1	1	<1	1	1	3
	1	1	1	<1	1	1	<1
	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1
	1	1	1	<1	1	1	<1
Linseed Oil Oiticica Oil Olive Oil Pine Oil Soya Bean Oil	1	1	1	<1	1	1.4	2.5
	<1	<1	<1	<1	<1	<1	<1
	1	1	1	<1	1	0.7	1.5
	S	S	S	S	S	S	S
	1	1	1	<1	1	1	<1
Sperm Oil	1	1	1	<1	1	1	<1
	<1	<1	<1	<1	<1	S	S
	1	1	1	<1	1	1	<1
	<1	<1²	1²	1²	<1²	3 ²	4²
Paraffin Oil	1	1	1	<1	1	1	<1
SAE No. 10 Oil	1	1	1	<1	1	1	<1
VMP Naphtha	<1	<1	<1	1	1	10	14
Animal Glue (Dry) Dextrin Gum Damar Kauri Gum Sudan III Shellac	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1
	<1	<1	<1	<1	<1	<1	<1
	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1
	<0.5	<0.5	<0.5	>16³	<5	<5	>16°
	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1
	<0.5	<0.5	<0.5	<1	<0.5	<0.5	<1

¹ Product of The Dow Chemical Company

² Forms stable emulsion from this concentration to 100%

³ Becomes too viscous to stir beyond 16%.

Table 7.170: Technical Data: Ethylene Glycol Products (27)

Parameters		MEG	DEG	TEG
Chemical formul	a	C ₂ H ₆ O ₂	C₄H₁₀O₃	C ₆ H ₁₄ O ₄
CAS#		107-21-1	111-46-6	112-27-6
HMIS rating:	Health hazard	1*	1	1
	Fire hazard	1	1	1 1
	Reactivity	0	0	0
Molecular weigh	t	62.07	106.1	150.17
Specific gravity a	at 20/20°C	1.1154	1.118	1.125
Weight/gal (US)	in lbs at 20°C	9.28	9.31	9.36
Refractive index	at 20°C	1.4316	1.447	1.4559
Viscosity at 20°C	C, cP	21	54	64
Flash point (PMC	CC), °F (°C)	244 (118)	280 (138)	340 (171)
Boiling point, °C	(°F)	197.6 (387.1)	245 (473)	287.4 (549.5)
Freezing point, 9	C (°F)	-13 (8.6)	-8 (17.6)	-7.2 (19)
Vapor density		2.1	2.14	5.2
Explosive limits:	Lower (%)	3.2	1.6	0.9
-	Upper (%)	15.3	10.8	9.2
Autoignition tem	perature, °F (°C)	752 (399)	442 (227)	699 (370)
Vapor pressure a	at 20°C, mm Hg	0.06	< 0.01	< 0.01
Surface tension	at 20°C, dyne/cm	48.4	44.7	45.2
Specific heat at :	20°C, cal/g/°C	0.56	0.50	0.53
Coefficient of exp (10° - 40°C)	pansion, per °C	0.00062	0.00064	0.00068

Table 7.171: Ethylene Glycol Compatibility (27)

Acceptable Metals	Acceptable Non-Metals
Aluminum (to 100°F)	Butyl GR-1 (IIR)
Brass (to 80°F)	Carbon graphite resin impregnated
Bronze	Chlorinated Polyether
Carbon steel (to 100°F)	CPVC
Hastelloy B•	Ethylene Propylene Diene (EPDM)
Hastelloy C●	Epoxy Compounds
High silicon iron	Ethylene-Terefluoroethylene (ETFE, Tefzel®)
Inconel®	Fluorinated Ethylene Propylene (FEP)
Lead (to 90°F)	Fluoroelastomers (FKM, Viton A®, Fluorel®)
Monel*	Furfural Alcohol (Furans)
Nickel	Modified Phenylene oxide (Noryl®)
Nickel resist	Natural Rubber
304/347 Stainless steel	Perfluoroalkoxy (PFA)
316 Stainless steel	Perfluoroelastomers (FPM, Kalrez*, Chemraz*, Kel-F*)
20Cb3 Stainless steel	Phenolics
Tantalum (to 90°F)	Polyamides (Nylon* 12, Nylon* 66)
Titanium	Polybutadiene (Isoprene)
Zirconlum	Polychloroprene (Neoprene®)
	Polyester Terephthalate (PET)
	Polyethylene
	Polypropylene
	Polystyrenes
	Polysulfones
	Polyphenylene Sulfides (Ryton ^e)
1	Polyvinylidene fluoride (PVDF, Kynar*)
	Silicone Rubbers
	Vinyl Ester
	·

Registered Trademarks	
reflon®, Kalrez®, Nylon®	Registered trademark of E. I. du Pont de Neumols
Neoprene®, Tefzel®, Viton A®	Registered trademark of E. I. du Pont de Neumois
Chemraz*	Registered trademark of Green, Tweed & Co., Inc.
Buna-N®	Registered trademark of Mobay Corporation
Hastelloy B®, Hastelloy C®	Registered trademark of Cabot Corporation
Inconel®, Monel®	Registered trademark of Inco Alloys International
Fluorel®, Kel-F®	Registered trademark of 3-M Corporation
Norvl®	Registered trademark of General Electric Co.
Ryton®	Registered trademark of Phillips Petroleum Corp.
Kynar®	Registered trademark of Pennwalt Corporation

Table 7.172: Weight per Gallon at Various Temperatures (lb) (27)

Temperature, °F	MEG	DEG	TEG
40	9.383	9.410	9.480
45	9.366	9.394	9.461
50	9.349	9.379	9.444
55	9.334	9.361	9.424
60	9.318	9.344	9.405
65	9.301	9.328	9.389
70	9.286	9.312	9.370
75	9.268	9.294	9.352
80	9.253	9.278	9.334
85	9.235	9.261	9.315
90	9.218	9.245	9.297
95	9.202	9.228	9.278
100	9.185	9.211	9.261

Table 7.173: Weight Percent vs Volume Percent Aq. Monoethylene Glycol Solutions, 20°C (27)

Wt. %	Vol. %	Wt. %	Vol. %	Wt. %	Vol. %
0	0	34	31.6	68	65.6
2	1.8	36	33.5	70	67.7
4	3.6	38	35.5	72	69.7
6	5.4	40	37.4	74	71.8
8	7.2	42	39.4	76	74.0
10	9.1	44	41.3	78	76.1
12	10.9	46	43.3	80	78.2
14	12.7	48	45.3	82	80.3
16	14.6	50	47.3	84	82.5
18	16.4	52	49.3	86	84.6
20	18.3	54	51.3	88	86.8
22	20.2	56	53.3	90	89.0
24	22.1	58	55.3	92	91.2
26	24.0	60	57.4	94	93.4
28	25.9	62	59.4	96	95.6
30	27.8	64	61.4	98	97.8
32	29.7	66	63.5	100	100

Table 7.174: Specific Gravity vs Composition @ Various
Temperatures of Aqueous MEG Solutions (27)

Table 7.175: Specific Gravity vs Composition @ Various
Temperatures of Aqueous DEG Solutions (27)

Table 7.176: Specific Gravity vs Composition @ Various
Temperatures of Aqueous TEG Solutions (27)

Table 7.177: Boiling Point @ 760 mm Hg vs Composition of Aqueous Glycol Solutions (27)

Table 7.178: Freezing Point vs Composition of Aqueous Glycol Solutions (27)

Table 7.181: Fire Hazard Information (23)

		Flammable Limits Vol %		NFPA ² Hazard Identification			Flash Point	
Glycol	Lower	Upper	Ignition Temp°F¹	Health	Flam.	Reactivity	F°	C°
Ethylene Glycol	3.2	-	748	1	1	0	247	119
Diethylene Glycol	-	-	435	1	1	0	281	138
Triethylene Glycol	0.9	9.2	700	1	1	0	325	163
Tetraethylene Glycol	-	-	-	1	1	0	400	204
Propylene Glycol	2.6	12.5	700	0	1	0	218	103
Dipropylene Glycol	-	•	-	0	1	0	250	121
Tripropylene Glycol	-		-	0	1	0	285	141

Table 7.182: Acute Oral Toxicity (23)

LD₅₀ Values for Various Glycols **Single Doses to Rats**

Glycol	LD ₅₀ gm/kg
Ethylene	6.1
Diethylene	16.6
Triethylene	22.0
Tetraethylene	32.8
Propylene	33.7
Dipropylene	14.8
Tripropylene	3.0†

tLargest dose survived by all rats tested: 10.0 gm/kg resulted in the death of all the rats tested.

Table 7.183: Environmental Considerations, Biodegradation (23)

Biodegradation							
Glycol	ThOD ²	BOD ³ - 20 Day					
Ethylene Glycol	1.29p/p⁴	1.15p/p					
Diethylene Glycol	1.51	0.88					
Triethylene Glycol	1.60	0.27					
Tetraethylene Glycol	1.65	0.71					
Propylene Glycol	1.68	1.45					
Dipropylene Glycol	1.91	0.71					
Tripropylene Glycol	1.38	_					

Table 7.184: Ethylene Glycois: Products, Grades and Specifications (27)

Specification	MEG High Purity	MEG Fiber	MEG Industrial	MEG Antifreeze
MEG, wt % min	99.9	99.9	99.0	95.0
DEG, wt % max	0.05	0.05	0.5	5.0
Other glycols, wt % max			0.1	
Color, APHA max	5	5	10	15
Acidity, wt % as Acetic Acid, max	0.003	0.003	0.005	0.005
Ash, wt % max	0.003	0.003	0.005	0.005
Chlorides (as Cl), ppm max	0.1	0.1		i
Iron, ppm max	0.07	0.07		
Water, wt % max	0.05	0.05	0.2	0.5
Specific resistivity, ohm-cm, min	3 x 106			
UV transmittance, 1/cm				
350 mu %T min	98	98	1	
275 mu %T min	93	93		
220 mu %T min	70	70		
Distillation range, °C(°F)			1	
Initial boiling point			1 9 3(379)	190(374)
Dry point			201(394)	250(482)

Specifications	DEG Polyester	DEG Industrial	TEG Industrial	TEG Gas Treat.
MEG, wt %	0.2 max	0.5 max		5.0 max
DEG, wt %	99.3 min	99.0 min		1.0 max
TEG, wt %	0.3 max	0.5 max	99.0 min	95.0 min
Other glycols			1.0	
Color, APHA max	10	15	25	25
Color, sulfuric test APHA	30			
Acidity, wt % as Acetic Acid, max	0.003	0.005	0.005	0.01
Ash, wt % max	0.003	0.005	0.005	0.005
Water, wt % max	0.1	0.2	0.1	0.1
Distillation range, °C(°F)				
Initial boiling point		242(468)	278(532)	
Dry point		250(482)	300(572)	

Specifications are subject to change. This section is intended for comparison use only. Please contact your sales representative or Technical Service for the current sales specification.

Table 7.185: Ashland Glycols (69)

	LB./GAL.	SP. GR.	BOILING	RANGE	FL. PT.	
PRODUCT	20° C	20°/20° C	°C	۰F	°F COC	
Propylene Glycol	8.64	1.038	186-190	367-374	225	
Ethylene Glycol	9.28	1.115	193-204	379-399	240	
Hexylene Glycol	7.68	0.923	196-199	385-390	215	
Dipropylene Glycol	8.51	1.023	228-236	442-457	280	
Diethylene Glycol	9.31	1.119	240-250	464-482	290	
Tripropylene Glycol	8.52 ,	1.023	263-280	505-536	310	
Triethylene Glycol	9.36	1.125	278-300	532-572	330	

Table 7.186: Chemcentral Polyols (67)

POLYOLS	CAS	Mole Weight	% Purity Comm	Spec. Grav.	Lbs./ Gal. வ	Coeff. of Expan.	∴Sp.Gr Per	Refrac- tive Index	Distillati @ 760	on Range mm Hg
	1		Prod.	25/25°C	25°C	Per °C	°C	% 25°C	°C	°F
ETHYLENE GLYCOL	107-21-1	62.1		1 1 10	9 26	.00064	.00046	1.430	197-204	387-399
DIETHYLENE GLYCOL	111-46-6	106.1		1.113	9.29	.00065	.00046	1.446	245 255	473-491
TRIETHYLENE GLYCOL	112-27-6	150.2	T	1 119	9.34	.00071	.00052	1 454	286-300	546-572
PROPYLENE GLYCOL	57-55-6	76.1		1 033	8.62	.00072	.00050	1 431	187-190	369-374
DIPROPYLENE GLYCOL	25265-71-8	134.2		1.023	8.54	.00075	.00052	1.439	231-238	448-460
TRIPROPYLENE GLYCOL	1638-16-0	192.3		1.016	851	.00070	.00046	1.442	268 275	514-527
1-3 BUTYLENE GLYCOL	107-88-00	90.12	95	1.006*	8 38*			1 440	200 215	392-419
HEXYLENE GLYCOL	107-41-5	118.18		923	7.68	.00078	.00052	1.4263	196-199	385-390
GLYCERINE SYNTHETIC	56-81-5	92.1	99.5	1 262	10.50	.000612	.000615	1.472	290	554
GLYCERINE SYNTHETIC U.S.P.	56-81-5	92.1	96.0	1.2517	10.41	.000612	.000615	1.468	175	347
GLYCERINE SYN. 99.5% U.S.P.	56-81-5	92.1	99.5	1.266	10.50	.000612	.000615	1 472	290	554
POLYGLYCOL E200		200		1,124	9.35			1.459		4
POLYGLYCOL E300	I I	300		1 125	9.36			1 463		
POLYGLYCOL E400 & E400 NF		400	-	1 125	9 36			1 465		Q5
POLYGLYCOL E600	T I	600		1.126	9.37			1.466		48
POLYGLYCOL E 1000		1000		1 117	Solid			Sond		V
POLYGLYCOL E 1450		1450		1 210	Solid			Solid	-	
POLYGLYCOL E4500	T T	4500	Ī	1 212	Solid	00072	1	Solid		
POLYGLYCOL P 425	1	425	1	1 007	8 38	1		1.445	Ç	5
POLYGLYCOL P-1200		1200	T	1.003	8.35			1.448	NOW	İ
POLYGLYCOL P-2000		2000	T	1.002	8.34			1 450		
POLYGLYCOL P-4000	1	4000	T	1 001	8 33	Ī		1 449	~	1
POLYGLYCOL 15-200	1	2600	Ī .	1.053	8 76	1	İ	1 459	S	T
POLYGLYCOL 112 2	I			1 023	8.51	1	T	1.454	4	†

POLYOLS	Vapor Press. 25°C	Visc.	cs Wt. @ 25°C		Spec. Heat @ 25°C B.T.U./	Freeze Point °F	Flash Point O. Cup	Limit	losive s % by In Air	Solu- bility Param-
	mm Hg	25°C	In H ₂ 0	Of H ₂ 0	ib./°F	l °F	°F	Lower	Upper	eter
ETHYLENE GLYCOI	0 12	14.9	∞	∞	0.58	. 8	240	3.2	15.3	17 1
DIETHYLENE GLYCOL	0.01	25.3	∞	∞	0.55	8	290	1.7	10.6	14.2
TRIETHYLENE GLYCOL	0.01	33.3	∞		0.53	1	320	0.9	9.2	107
PROPYLENE GLYCOL	0 22	42.6	∞		0.60	Supercools	215	2.6	12.5	15.0
DIPROPYLENE GLYCOL	0.03	72.5	∞	~	0.58	Supercools	260	1.3	8.5	11.5
TRIPROPYLENE GLYCOL	- 0 01	55.1	∞	∞	0.51	Supercools	285			9.2
1.3 BUTYLENE GLYCOL	0.06		∞	∞		50	250	1.2	8.1	11.6
HEXYLENE GLYCOL	0.05		∞	∞		50	215	1.2	8.1	11.6
GLYCERINE SYNTHETIC	0.01		∞	∞	0.577	17.9	350			17.7
GLYCERINE SYNTHETIC U.S.P.		435	~	∞		9.5	375			17.7
GLYCERINE SYN. 99 5% U.S.P.	0.01		∞	∞	0.577	17.9	350			177
POLYGLYCOL E200	0.01	39.9	∞	∞	0.52	Supercools	360			Ī
POLYGLYCOL E300	0.01	68.8	∞	- 00	0.51	15	415			
POLYGLYCOL E400 & E400 NF	0.01	90.0		∞	0.50	43	460			T
POLYGLYCOL E600	< 0.01	131	∞	∞	0.49	73	480		ļ	
POLYGLYCOL E1000	0.01	Solid	∞	∞		100	490			
POLYGLYCOL E1450	001	Solid	∞	∞		113	490			
POLYGLYCOL E4500	0.01	Solid	- 00	∞	0 37	133	515			
POLYGLYCOL P-425	0.01	70	00	∞	0.476	58	390			
POLYGLYCOL P-1200	< 0.01	160	2	8	0.449	-40	460			
POLYGLYCOL P-2000	- 0.61	230	- 0.1	4	0 432	24	445			
POLYGLYCOL P-4000	0.01	1114	< 0.1			20	445			
POLYGLYCOL 15-200	0.01	360	∞	6 0		40	345 ⁸			
POLYGLYCOL 112-2	- 001	659	< 0.1			18	520			

Table 7.187: Hoechst Celanese 1,3-Butylene Glycol (42)

Physical Properties	
Autoignition Temperature, °C	393.9
Boiling Point at 760 mm Hg, °C	207.5
Boiling Point at 760 mm Hg, °F	405.5
Critical Pressure, atmospheres	49.4
Critical Temperature, °C	370.0
Evaporation Rate (BuAc = 1)	Nil
Flash Point, Tag Open Cup, °F Tag Closed Cup, °F	250 228
Freezing Point, ℃	-50
Heat of Combustion, kcal/mole at constant volume	594.7
Heat of Vaporization, btu/lb at normal boiling point	279
Hygroscopicity, water absorbed in 144 hours, 25-28°C at 81 percent relative humdity,wt%	38.5
at 47 percent relative humidity,wt% at 20 percent relative	12.5
humidity,wt%	4.3
Molecular Weight	90.12
Refractive Index n ²⁰	1.4412
Solubility at 20°C, wt % in alcohol, ether, water	Complete
Specific Gravity, 20/20°C	1.005
Specific Heat of Liquid, btu/lb/°F at 68°F	0.505
Surface Tension in Air at 25℃, dynes/cm	37.80
Vapor Density (air = 1)	3.20
Vapor Pressure, 20°C, mm Hg	0.06
Viscosity at 25°C, centipoise	103.9
Weight, pounds per gallon at 20°C (68°F)	8.37

Table 7.188: Occidental Ethylene Glycol

• Monoethylene Glycol (MEG or EG)

Synonyms for monoethylene glycol include: ethylene glycol, 1,2-ethanediol, dihydroxyethane, ethylene alcohol, glycol alcohol, ethylene dihydrate, and glycol.

• Diethylene Glycol (DEG)

Synonyms for diethylene glycol include: 2,2'-oxybisethanol, 2,2'-oxydiethanol, bis(2-hydroxyethyl ether, diglycol,and 2,2'-dihydroxydiethyl ether.

• Triethylene Glycol (TEG)

Synonyms for triethylene glycol include: 1,2-bis (hydroxyethoxy) ethane, 3,6-dioxaoctane-1,8-diol, triglycol, and 2,2'-ethylenedioxydiethanol.

GLYCEROL (GLYCERINE)

1, 2, 3-Propanetriol

CH2OH·CHOH·CH2OH

Table 7.189: Physical Properties and Specifications of Glycerol (32)

Acidity	Neutral to litmus	Heat of fusion	47.5 cal./g.
Ash Auto ignition point (on glass)	0.01% by wt., max. 804° F†	Latent heat of vaporization at 56° C at 196° C	228.7 gcal./g. 197.3 gcal./g.
Boiling point at 760 mm. Hg	290° C*	Melting point	17.9° C*
Boiling points at low pressures: at 1 mm. 5 mm.	125.0° C 153.8° C	Molecular weight Refractive index at 26° F	92.094 1.4722†
10 mm. 20 mm. 40 mm.	167.2° C 182.2° C 198.0° C	Specific gravity at 25/25° C Specific heat at 25° C	1,262† 0,577 cal./g. °C†
Color, Pt-Co (Hazen) standards Fatty acids, mez/100 g.	0.0005% by wt., max. 20 max. 1 max.	Surface tension at 20° C 90° C 150° C	63.3 dynes/cm. 58.6 dynes/cm. 51.9 dynes/cm.
Fire point	400° F†	Vapor pressure at 20° C 200° C	0.0016 mm. Hg 42 mm. Hg
Flash point, tag open cup tag closed cup	350° F† 320° F†	Viscosity at 25° C Weight per gallon at 25° C	945 cp.† 10.50 lb.
Freezing point Glycerol	17.9° C* 99.5% by wt., min. (sp. gr. at 20° C, in air 1.2626)*		

^{*}D. R. Stull, Ind. Engl. Chem., 39, 517 (1947). †ACS Monograph, No. 117.

Table 7.190: Bolling Points and Specific Gravities of Aqueous Glycerol Solutions (23)

Table 7.191: Conversion Chart for Aqueous Glycerol Solutions (25°C) (23)

Table 7.192: Density of Glycerol-Water (23)

Glycerol		<u></u>	Density at Glycerol Density at								
(%)	15°C	15.5°C	20°C	25°C	30°C	(%)	15°C	15.5℃	20°C	25°C	30°C
100 99	1.26415	1.26381 1.26125	1.26108	1.25802 1.25545	1.25495	50 49	1.12870 1.12600	1.12845 1.12575	1.12630 1.12360	1.12375 1.12110	1.12110
	1.26160		1.25850		1.25235		1 1		1.12090	1.11840	1.11580
98	1.25900	1.25865	1.25590	1.25290	1.24975	48	1.12325	1.12305	1.11820	1.11575	1.11320
97 06	1.25645	1.25610	1.25335	1.25030	1.24710	47 46	1.12055	1.12030			
96	1.25385	1.25350	1.25080	1.24770	1.24450		1.11780	1.11760	1.11550	1.11310	1.11055
95	1.25130	1.25095	1.24825	1.24515	1.24190	45	1.11510	1.11490	1.11280	1.11040	1.10795
94	1.24865	1.24830	1.24560	1.24250	1.23930	44	1.11235	1.11215	1.11010	1.10775	1.10530
93	1.24600	1.24565	1.24300	1.23985	1.23670	43	1.10960	1.10945	1.10740	1.10510	1.10265
92	1.24340	1.24305	1.24035	1.23725	1.23410	42	1.10690	1.10670	1.10470	1.10240	1.10005
91	1.24075	1.24040	1.23770	1.23460	1.23150	41	1.10415	1.10400	1.10200	1.09975	1.09740
90	1.23810	1.23775	1.23510	1.23200	1.22890	40	1.10145	1.10130	1.09930	1.09710	1.09475
89	1.23545	1.23510	1.23245	1.22935	1.22625	39	1.09875	1.09860	1.09665	1.09445	1.09215
88	1.23280	1.23245	1.22975	1.22665	1.22360	38	1.09605	1.09590	1.09400	1.09180	1.08955
87	1.23015	1.22980	1.22710	1.22400	1.22095	37	1.09340	1.09320	1.09135	1.08915	1.08690
86	1.22750	1.22710	1.22445	1.22135	1.21830	36	1.09070	1.09050	1.08865	1.08655	1.08430
85	1.22485	1.22445	1.22180	1.21870	1.21565	35	1.08800	1.08780	1.08600	1.08390	1.08165
84	1.22220	1.22180	1.21915	1.21605	1.21300	34	1.08530	1.08515	1.08335	1.08125	1.07905
83	1.21955	1.21915	1.21650	1.21340	1.21035	33	1.08265	1.08245	1.08070	1.07860	1.07645
82	1.21690	1.21650	1.21380	1.21075	1.20770	32	1.07995	1.07975	1.07800	1.07600	1.07380
81	1.21425	1.21385	1.21115	1.20810	1.20505	31	1.07725	1.07705	1.07535	1.07335	1.07120
80	1.21160	1.21120	1.20850	1.20545	1.20240	30	1.07455	1.07435	1.07270	1.07070	1.06855
79	1.20885	1.20845	1.20575	1.20275	1.19970	29	1.07195	1.07175	1.07010	1.06815	1.06605
7 9 78	1.20610	1.20570	1.20305	1.20005	1.19705	28	1.06935	1.06915	1.06755	1.06560	1.06355
76 77	1.20335	1.20300	1.20030	1.19735	1.19435	27	1.06670	1.06655	1.06495	1.06305	1.06105
76	1.20060	1.20025	1.19760	1.19465	1.19433	26	1.06410	1.06390	1.06240	1.06055	1.05855
75	1.19785	1.19750	1.19485	1.19195	1.18900	25	1.06150	1.06130	1.05980	1.05800	1.05605
74	1.19765	1.19480	1.19465	1.18925	1.18635	24	1.05885	1.05870	1.05720	1.05545	1.05350
	1.19310	1.19480	1.18940	1.18650	1.18365	23	1.05625	1.05610	1.05465	1.05290	1.05100
73 72	1.19255	1.19205	1.18670	1.18380	1.18100	22	1.05365	1.05350	1.05205	1.05035	1.04850
71	1.18690	1.18655	1.18395	1.18110	1.17830	21	1.05100	1.05090	1.04950	1.04780	1.04600
	1		1	l		1	i	ł	l .	Į.	
70 60	1.18415	1.18385	1.18125	1.17840	1.17565	20	1.04840	1.04825	1.04690	1.04525	1.04350
69	1.18135	1.18105	1.17850	1.17565	1.17290	19	1.04590	1.04575	1.04440	1.04280	1.04105
68	1.17860	1.17830	1.17575	1.17295	1.17020	18	1.04335	1.04325	1.04195	1.04035	1.03860
67	1.17585	1.17555	1.17300	1.17020	1.16745	17	1.04085	1.04075	1.03945	1.03790	1.03615
66	1.17305	1.17275	1.17025	1.16745	1.16470	16	1.03835	1.03825	1.03695	1.03545	1.03370
65	1.17030	1.17000	1.16750	1.16475	1.16195	15	1.03580	1.03570	1.03450	1.03300	1.03130
64	1.16755	1.16725	1.16475	1.16200	1.15925	14	1.03330	1.03320	1.03200	1.03055	1.02885
63	1.16480	1.16445	1.16205	1.15925	1.15650	13	1.03080	1.03070	1.02955	1.02805	1.02640
62	1.16200	1.16170	1.15930	1.15655	1.15375	12	1.02830	1.02820	1.02705	1.02560	1.02395
61	1.15925	1.15895	1.15655	1.15380	1.15100	11	1.02575	1.02565	1.02455	1.02315	1.02150
60	1.15650	1.15615	1.15380	1.15105	1.14830	10	1.02325	1.02315	1.02210	1.02070	1.01905
59	1.15370	1.15340	1.15105	1.14835	1.14555	9	1.02085	1.02075	1.01970	1.01835	1.01670
58	1.15095	1.15065	1.14830	1.14560	1.14285	8	1.01840	1.01835	1.01730	1.01600	1.01440
57	1.14815	1.14785	1.14555	1.14285	1.14010	7	1.01600	1.01590	1.01495	1.01360	1.01205
56	1.14535	1.14510	1.14280	1.14015	1.13740	6	1.01360	1.01350	1.01255	1.01125	1.00970
55	1.14260	1.14230	1.14005	1.13740	1.13470	5	1.01120	1.01110	1.01015	1.00890	1.00735
54	1.13980	1.13955	1.13730	1.13465	1.13195	4	1.00875	1.00870	1.00780	1.00655	1.00505
53	1.13705	1.13680	1.13455	1.13195	1.12925	3	1.00635	1.00630	1.00540	1.00415	1.00270
52	1.13425	1.13400	1.13180	1.12920	1.12650	2	1.00395	1.00385	1.00300	1.00180	1.00035
51	1.13150	1.13125	1.12905	1.12650	1.12380	1	1.00155	1.00145	1.00060	0.99945	0.99800
						0	0.99913	0.99905	0.99823	0.99708	0.99568

Table 7.193: Freezing Points of Glycerol-Water Solutions (23)

Table 7.194: Freezing Points of Glycerol-Water Solutions (23)

Glycerol by Wt. (%)	Water (%)	Freezing Points (°C)	Glycerol by Wt. (%)	Water (%)	Freezing Points (°C)
0.04	100.0	0	65.0	35.0	- 43.0
5.0	95.0	-0.6	65.6h	34.4	- 44.5
10.0	90.0	1.6	66.0h	34.0	- 44.7
11.5 ^b	88.5	- 2.0	66.7b	33.3	- 46.5
15.0	85.0	- 3.1	67.1b	32.9	-45.5
20.0	80.0	- 4.8	67.3h	32.7	- 44.5
22.6h	77.4	-6.0	68.0h	32.0	- 44.0
25.0	75.0	- 7.0	70.0	30.0	- 38.9
30.0	70.0	-9.5	70.9b	29.1	- 37.5
33.3h	67.0	-11.0	75.0	25.0	- 29.8
35.0	65.0	- 12.2	75.4b	24.6	- 28.5
40.0	60.0	-15.4	79.0b	21.0	- 22.0
44.5b	55.5	-18.5	80	20.0	- 20.3
45.0	55.0	- 18.8	84.8 ^b	15.2	- 10.5
50.0	50.0	- 23.0	85.0	15.0	- 10.9
53.0h	47.0	- 26.0	90.0	10.0	- 1.6
55.0	45.0	- 28.2	90.3h	9.7	- 1.0
60.0	40.0	- 34.7	95.0	5.0	7.7
60.4 ^b	39.6	- 35.0	95.3h	4.7	7.5
64.0b	36.0	-41.5	98.2h	1.8	13.5
64.7b	35.3	-42.5	100.04	0.0	17.0

^{*}Taken from literature.

Remaining values were interpolated from curve.

Table 7.195: Viscosity of Aqueous Glycerol Solutions Centipoises (23)

Glycerol					Ten	nperature (°C)		· · · · · · · · · · · · · · · · · · ·		
% Wt.	0	10	20	30	40	50	60	70	80	90	100
0*	1.792	1.308	1.005	0.8007	0.6560	0.5494	0.4688	0.4061	0.3565	0.3165	0.2838
10	2.44	1.74	1.31	1.03	0.826	0.680	0.575	0.500		-	-
20	3.44	2.41	1.76	1.35	1.07	0.879	0.731	0.635	-	-	-
30	5.14	3.49	2.50	1.87	1.46	1.16	0.956	0.816	0.690	-	-
40	8.25	5.37	3.72	2.72	2.07	1.62	1.30	1.09	0.918	0.763	0.668
50	14.6	9.01	6.00	4.21	3.10	2.37	1.86	1.53	1.25	1.05	0.910
60	29.9	17.4	10.8	7.19	5.08	3.76	2.85	2.29	1.84	1.52	1.28
65	45.7	25.3	15.2	9.85	6.80	4.89	3.66	2.91	2.28	1.86	1.55
67	55.5	29.9	17.7	11.3	7.73	5.50	4.09	3.23	2.50	2.03	1.68
70	76	38.8	22.5	14.1	9.40	6.61	4.86	3.78	2.90	2.34	1.93
75	132	65.2	35.5	21.2	13.6	9.25	6.61	5.01	3.80	3.00	2.43
80	255	116	60.1	33.9	20.8	13.6	9.42	6.94	5.13	4.03	3.18
85	540	223	109	58	33.5	21.2	14.2	10.0	7.28	5.52	4.24
90	1310	498	219	109	60.0	35.5	22.5	15.5	11.0	7.93	6.00
91	1590	592	259	127	68.1	39.8	25.1	17.1	11.9	8.62	6.40
92	1950	729	310	147	78.3	44.8	28.0	19.0	13.1	9.46	6.82
93	2400	860	367	172	89	51.5	31.6	21.2	14.4	10.3	7.54
94	2930	1040	437	202	105	58.4	35.4	23.6	15.8	11.2	8.19
95	3690	1270	523	237	121	67.0	39.9	26.4	17.5	12.4	9.08
96	4600	1580	624	281	142	77.8	45.4	29.7	19.6	13.6	10.1
97	5770	1950	765	340	166	88.9	51.9	33.6	21.9	15.1	10.9
98	7370	2460	939	409	196	104	59.8	38.5	24.8	17.0	12.2
99	9420	3090	1150	500	235	122	69.1	43.6	27.8	19.0	13.3
100	12070	3900	1410	612	284	142	81.3	50.6	31.9	21.3	14.8

^{*}Viscosity of water taken from "Properties of Ordinary Water-Substance," N.E. Dorsey, p. 184. New York (1940)

^hActual determination.

Table 7.196: Hygroscopicity Curves for Glycerol and 1,3-Butylene Glycol (42)

Table 7.197: Hygroscopicity Curves for Glycerol and 2,3-Butylene Glycol (42)

CP GLYCERINE

2,3-BUTYLENE GLYCOL

450

300 350

Table 7.198: Relative Humidities Over Aqueous Glycerol Solutions, 20° to 100°C (23)

Table 7.199: Solubility of Sucrose and Dextrose in Aqueous Glycerol at 15°, 24°, and 35°C (32)

Table 7.200: Solubility of Various Compounds in Glycerol (32)

Substance	Glycerol Concentration % Weight	Temperature °C	Solubility in Parts per 100 Parts of Solvent
Alum	†	15	40
Ammonium carbonate	Ť	15	20
Ammonium chloride	Ť	15	20.06
Atropine	†	15	. 3
Benzoic acid	98.5		2
Boric acid	98.5	20	24.80
Calcium hydroxide	35	25	1.3
Calcium hypophosphite	99.04	20	2.5
Calcium sulfate	t	15	5.17
Codeine hydrochloride	99.04	20	11.1
Ethyl ether	99.04	20	0.65
Ferrous sulfate	t	15	25
Guaiacol	99.04	20	13.1
Iodine	†	15	2
lodoform	95	15	0.12
Iron and potassium tartrate	†	15	8
Iron lactate	†	15	16
Morphine acetate	t	15	20
Novocaine	99.04	20	11.2
Phenacetin	99.04	20	0.47
Phenol	99.04	20	276.4
Potassium iodide	t	15	39.72
Quinlne sulfate	98.5		1.32
Salicin	t	15	12.5
Sodium bicarbonate	† *	15	8.06
Sodium carbonate (crystals)	†	15	98.3
Sodium tetraborate (borax)	†	15	60
Tannic acid	†	15	48.8
Tartar emetic	†	15	5.5
Urea	t	15	50
Zinc chloride	Ť	15	49.87
Zinc iodide	<u> </u>	15	39.78

 $[\]dagger$ Glycerol concentration not specified, probably 95 to 100 per cent.

Table 7.201: Specific Gravity and Percent Glycerol (32)

		Apparent Spec	ific Gravity				Apparent Spec	eific Gravity	
Glycerol	15/15° C	15.5/15.5° C	20/20° C	25/25° C	Glycerol	15/15° C	15.5/15.5° C	20/20° C	25/25° C
Per Cent					Per Cent				
100	1.26557	1.26532	1.26362	1.26201	50	1.12985	1,12970	1.12845	1.12720
99	1.26300	1.26275	1.26105	1.25945	49	1.12710	1.12695	1.12570	1.12450
98	1.26045	1.26020	1.25845	1.25685	48	1.12440	1.12425	1.12300	1,12185
97	1.25785	1.25760	1.25585	1.25425	47	1.12165	1.12150	1.12030	1.11915
96	1.25525	1.25500	1.25330	1.25165	46	1.11890	1.11880	1.11760	1.11650
95	1.25270	1.25245	1.25075	1.24910	45	1.11620	1.11605	1.11490	1.11380
94	1.25005	1.24980	1.24810	1.24645	44	1.11345	1.11335	1.11220	1.11115
93	1.24740	1.24715	1.24545	1.24380	43	1.11075	1.11060	1.10950	1.10845
92	1.24475	1.24450	1.24280	1.24115	42	1.10800	1.10790	1.10680	1.10575
91	1,24210	1.24185	1.24020	1.23850	41	1.10525	1.10515	1.10410	1.10310
90	1.23950	1.23920	1.23755	1.23585	40	1.10255	1.10245	1.10135	1,10040
89	1.23680	1.23655	1.23490	1.23320	39	1.09985	1.09975	1.09870	1.09775
88	1.23415	1.23390	1.23220	1.23055	38	1.09715	1.09705	1.09605	1.09510
87	1.23150	1.23120	1.22955	1.22790	37	1.09445	1.09435	1.09335	1.09245
86	1.22885	1.22855	1.22690	1.22520	36	1.09175	1.09165	1.09070	1.08980
85	1.22620	1.22590	1.22420	1.22255	35	1.08905	1,08895	1.08805	1.08715
84	1.22355	1.22325	1.22155	1.21990	34	1.08635	1.08625	1.08535	1.08455
83	1.22090	1.22055	1.21890	1.21720	33	1.08365	1.08355	1.08270	1.08190
82	1.21820	1.21790	1.21620	1.21455	32	1.08100	1.08085	1,08005	1.07925
81	1.21555	1.21525	1.21355	1.21190	31	1.07830	1.07815	1.07735	1.07660
80	1.21290	1.21260	1.21090	1.20925	30	1.07560	1.07545	1.07470	1.07395
79	1.21015	1.20985	1.20815	1.20655	29	1.07295	1.07285	1.07210	1.07135
78	1.20740	1.20710	1.20540	1.20380	28	1.07035	1.07025	1.06950	1.06880
77	1.20465	1.20440	1.20270	1.20110	27	1.06770	1.06760	1.06690	1.06625
76	1.20190	1.20165	1.19995	1.19840	26	1.06510	1.06500	1.06435	1.06370
75	1.19915	1.19890	1.19720	1.19565	25	1.06250	1.06240	1.06175	1.06115
74	1.19640	1.19615	1.19450	1.19295	24	1.05985	1.05980	1,05915	1.05860
73	1.19365	1.19340	1.19175	1.19025	23	1.05725	1.05715	1.05655	1.05605
72	1.19090	1.19070	1.18900	1.18755	22	1.05460	1.05455	1.05400	1.05350
71	1.18815	1.18795	1.18630	1.18480	21	1.05200	1.05195	1.05140	1.05095
70	1.18540	1.18520	1,18355	1.18210	20	1.04935	1.04935	1.04880	1.04840
69	1.18260	1.18240	1,18080	1,17935	19	1.04685	1.04680	1.04630	1.04590
68	1,17985	1.17965	1.17805	1.17660	18	1.04435	1.04430	1.04380	1.04345
67	1.17705	1,17685	1.17530	1.17385	17	1.04180	1.04180	1.04135	1.04100
66	1.17430	1.17410	1.17255	1.17110	16	1.03930	1.03925	1.03885	1.03850
65	1.17155	1.17130	1.16980	1.16835	15	1.03675	1.03675	1.03635	1.03605
64	1.17155	1.17130	1.16980	1.16835	15	1.03675	1.03675	1.03635	1.03605
63	1.16600	1.16575	1.16430	1.16285	13	1.03425	1.03420	1.03390	1.03360
62	1.16320	1.16300	1.16430	1.16285	13	1.03175	1.02920	1.02890	1.02865
61	1.16045	1.16020	1.15155	1.15735	11	1.02520	1.02520	1.02640	1.02620
60	1.15770	1.15745	1.15605	1.15460	10	1.02415	1.02415	1.02395	1.02370
59	1.15490	1.15465	1.15325	1.15185	9	1.02175	1.02175	1.02155	1.02135
58	1.15210	1.15190	1.15050	1.14915	8	1.01935	1.01930	1.01915	1.01900
57 56	1.14935	1.14910	1.14775	1.14640	7	1.01690	1.01690	1.01675	1.01660
96	1.14655	1.14635	1.14500	1.14365	6	1.01450	1.01450	1.01435	1.01425
55	1.14375	1.14355	1.14220	1.14090	5	1.01210	1.01205	1.01195	1.01185
54	1,14100	1.14080	1.13945	1,13815	4	1.00965	1.00965	1.00955	1.00950
53	1.13820	1.13800	1.13670	1.13540	3	1.00725	1.00725	1.00720	1.00710
52	1,13540	1.13525	1,13395	1.13265	2	1.00485	1.00485	1.00480	1.00475
51	1.13265	1,13245	1.13120	1.12995	1	1.00240	1.00240	1.00240	1.00235

Table 7.202: Specific Gravities of Glycerol and Glycol Mixtures (23)

Table 7.203: Specific Heat of Glycerol (23)

Table 7.204: Vapor Pressure of Glycerol (23)

Temperature, °C	V. P. mm. Hg.	Temperature, °C	V. P. mm. Hg.		
120		210	63.8		
130	1.47	220	91.9		
140	2.61	230	130		
150	4.48	240	181		
160	7.44	250	248		
170	12.0	260	334		
180	18.9	270	445		
190	29.0	280	586		
200	43.4	290	760		

Table 7.205: Vapor Pressure of Glycerol-Water Solutions (23)

Temperature		-5°	-10°	-20°	-30°	-40 °
Glycerol %	F.p.	-3				
10	-1.6°					
20	-4.8°					
30	-9.5°	6.5				
40	~15.4°	10.3	14.4			
50	-23.0°	18.8	24.4	48.1		
60	-34.7°	41.6	59.1	108.0	244.0	
66.7	-46.5°	74.7	113.0	289.0	631.0	1398.0
70	-38.5°	110.0	151.0	394.0	1046.0	
80	-20.3°	419.0	683.0	1600.0		
90	-1.6°					•

<u> </u>		Temperature °C.									
Glycerol % Wt.	0	10	20	30	40	50	60	70	80	90	100
	1,792	1.308	1.005	0.8007	0.6560	0.5494	0.4688	0.4061	0.3565	0.3165	0.2838
0†	2.44	1.74	1.31	1.03	0.826	0.680	0.575	0,500			
10		2.41	1.76	1.35	1.07	0.879	0.731	0.635			
20	3.44	3.49	2.50	1.87	1.46	1.16	0.956	0.816	0.690		
30	5.14	5.37	3.72	2.72	2.07	1.62	1.30	1.09	0.918	0.763	0.668
40	8.25		6.00	4.21	3.10	2.37	1.86	1.53	1.25	1.05	0.910
50	14.6	9.01 17.4	10.8	7.19	5.08	3.76	2.85	2.29	1.84	1.52	1.28
60	29.9	25.3	15.2	9.85	6,80	4.89	3.66	2.91	2.28	1.86	1.55
65	45.7		17.7	11.3	7.73	5.50	4.09	3.23	2.50	2.03	1.68
67	55.5	29.9	22.5	14.1	9.40	6.61	4.86	3.78	2.90	2.34	1.93
70	76.0	38.8 65.2	35.5	21.2	13.6	9.25	6.61	5.01	3.80	3.00	2.43
75	132.		60.1	33.9	20.8	13.6	9.42	6.94	5.13	4.03	3.18
80	255.	116.	109.	58.0	33.5	21.2	14.2	10.0	7.28	5.52	4.24
85	540.	223.		109.	60.0	35.5	22.5	15.5	11.0	7.93	6.00
90	1310.	498.	219. 259.	127.	68.1	39.8	25.1	17.1	11.9	8.62	6.40
91	1590.	592.		147.	78.3	44.8	28.0	19.0	13.1	9.46	6.82
92	1950.	729.	310.	172.	89.0	51.5	31.6	21.2	14.4	10.3	7.54
93	2400.	860.	367.	202.	105.	58.4	35.4	23.6	15.8	11.2	8.19
94	2930.	1040.	437.	202. 237.	121.	67.0	39.9	26.4	17.5	12.4	9.08
95	3690.	1270.	523.		142.	77.8	45.4	29.7	19.6	13.6	10.1
96	4600.	1580.	624.	281.	166.	88.9	51.9	33.6	21.9	15.1	10.9
97	5770.	1950.	765.	340.	196.	104.	59.8	38.5	24.8	17.0	12.2
98	7370.	2460.	939.	409.		122.	69.1	43.6	27.8	19.0	13.3
99	9420.	3090.	1150.	500.	235. 284.	142.	81.3	50.6	31.9	21.3	14.8
100	12070.	3900.	1410.	612.	40%.	TAG.	02.0				

†Viscosity of water taken from Properties of Ordinary Water-Substances by N. E. Dorsey, New York, publisher 1940, p. 184.

COMPARATIVE DATA

Table 7.207: Emery CP/USP Glycerines (63)

SPECIFICATIONS											
	Glycerol %, min.	Specific Gravity 25/25°C min.	Color APHA max.	Residue on Ignition PPM, max.	Chloride PPM max.	Sulfate PPM max.	Arsenic PPM max	Heavy Metals PPM max.	Chlorinated Compounds PPM max.	Fatty Acids and Esters ²	Readily Carbon- izable
EMERY® 912 96% CP/USP Glycerine	96.0	1.2517	201	100	10	20	1.5	5	30	1.0	_3
EMERY® 916 99.7% CP/USP Glycerine	99.7	12612	10'	100	10	20	1.5	5	30	1.0	3
EMERY® 917 99.7% CP/USP Kosher Glycerine	99.7	12612	10¹	100	10	20	1.5	5	30	1.0	_3 ,
EMERY® 918 99.8% CP/USP Ultra Glycerine	99.8	1.2615	10	100	- 5	20	1.5	5	30	0.18	ب

¹ Meets USP specification which is equivalent to 20 APHA.

Table 7.208: Proctor & Gambie Glycerine (39)

Glycerine (Ivorydale Production)

	Superol™ Glycerine-U.S.P. Food Grade	Star™ Glycerine-U.S.P. Food Grade
Glycerol (Bosart & Snoddy tables)	99.7% minimum (99.9)	96% minimum (96.3)
Specific Gravity, by density meter: at 25°/25°C (77°/77°F)	1.2613 minimum (1.2618)	1.2517 minimum (1.2524)
Color, APHA Pt-Co (Hazen) scole	10 maximum (6)	10 maximum (5)
Residue on ignition	0.007% or 70 ppm max	0.007% or 70 ppm max
Chlorides (as chlorine)	0.001 % or 10 ppm mox	0.001% or 10 ppm max
Sulfates	0.002% or 20 ppm max	0.002% or 20 ppm mox
Arsenic (as As ₁)	0.00015% or 1.5 ppm max	0.00015% or 1.5 ppm max
Heavy Metals (as Pb)	0.0005% or 5 ppm max	0.0005% or 5 ppm max
Chlorinated Compounds (as Cl)	0.003% or 30 ppm max	0.003% or 30 ppm max
Fatty Acids and Esters	Not more than 0.3 ml. N/2 NaOH is absorbed by 50 g of glycerine, which is equivalent to 0.009% as Na ₂ O,	Not more than 0.3 ml. N/2 NaOH is absorbed by 50 g of glycerine, which is equivalent to 0.009% as Na ₂ 0,
	(0.13) maximum	(0.12) maximum

Superol is also available in Kosher grade. CAS No. 56-81-5, for both brands.

Nieds OSF specification which is eq
 MI 0.5N NaOH per 50 g of glycerine.
 Lighter than matching H fluid

Table 7.209: Witco Refined Glycerine (26)

		l		SPECIFICA	TIONS			<u></u>	TYPI	CAL C	ARBO	N CH	AIN COMPOSITIO	N
PRODUCT	DESCRIPTION (CTFA ADOPTED NAME) CAS NUMBER	IOOINE VALUE	ACID VALUE	SAP VALUE	% UNSAP MAX	COLOR MAX	MELTING POINT °C (TYPICAL)	C14		TURA C18		C22	UNSATURATED C18:1	OTHERS
Neustrene 045	Hydrogenated Marine Triglycerides (Hydrogenated Menhaden Oil) 68424–59-9	18-30	6	188-201	1	3 Gardner	47	8	34	18	11	5	17	7
Neustrene 053	Hydrogenated Marine Triglycerides (Hydrogenated Menhaden Otl) 68002 –7 2-2	5	5	186-201	1	3 Gardner	55	9	38	20	17	10		6
Neustrene 059	Hydrogenated Tallow Triglycerides (Hydrogenated Tallow Glycerides) 67701-27-3	5	10	193-205	1	5 Gardner	61	2	28	67				3
Neustrene 060	Refined Hydrogenated Tallow Triglycerides (Hydrogenated Tallow Glycerides) 67701–27-3	1	2.5	193-205	1	5.0Y-0.5R Lovibond	62	2	28	67				3
Neustrene 064*	Hydrogenated Soya Triglycerides (Hydrogenated Soybean Oil) 68002-71-1	2	4	188-200	1	3 Gardner	66		11	88				1

				REFINE	GLYCE	RINE					
		l				SPECIFIC	ATIONS**				
PRODUCT**	GLYCERINE DESCRIPTION (CTFA ADOPTED NAME) CAS NUMBER	SPECIFIC GRAVITY 25/25°C, MIN	COLOR MAX	RESIDUE ON IGNITION PPM MAX	CHLORIDE 10 ppm MAX	SULFATE 20 ppm MAX	ARSENIC 1.5 ppm MAX	HEAVY METALS S ppm MAX	CHLORINATED COMPOUNDS 30 ppm MAX	% SAP EQUIVALENT MAX	FATTY ACIDS AND ESTERS***
Kemstrene 99.7% USP	99.7% USP (Glycerine) 56-61-5	1.2612	10 АРНА	70	Pass	Pass	Pass	Pass	Pass		Pass
Kemstrene 96.0% USP	96.0% USP (Glycerine) 56-81-5	1.25165		70	Pass	Pass	Pass	Pass	Pass		Pass
Kemstrene High Gravi	High Gravity ty* (Glycerine) 56-81-5	1.2587		700	100 ppm					0.05	Pass

^{&#}x27; USP glycerine meets USP standard for volatile organic compounds.

1,2,4-BUTANETRIOL

Weight per gallon at 25° C

$\mathsf{HOCH}_2\mathsf{CHOHCH}_2\mathsf{CH}_2\mathsf{OH}$

Table 7.210: Physical Properties of 1,2,4-Butanetriol (32)

Boiling point at 760 mm. Hg 0.17 mm. Hg	312° C* 116° C	Purified 1,2,4-Butanet	riol
Fire point, Cleveland open cup	393° F	Fire point, Cleveland open	387° F
Flash point	343° F	Flash point, Cleveland open cup	332° F
Freezing point	Supercools (resistance to	Heat of combustion	555 kcal./mole
Refractive index at 25° C, n ₀	crystallization)	Heat of formation	165.1 kcal./mole (liquid) 157 kcal./mole (gas)
Specific gravity, d/4	1.182	Heat of vaporization	14.0 kcal./mole
Viscosity at 25° C	1038 cs. (kinematic) 1227 cp.	Specific gravity, d/4	1.184

^{*}Decomposes before reaching boiling point at atmospheric pressure. This is an extrapolated value.

9.86 lb.

Witco only provides USP glycerine. Witco does not offer CP.

*As per Federal Specification O-G-491c

*Al lests run per U.S. Pharmacopoeta 22, 1995 edition

**1.0 ml of 0.5N NaOH maximum is required to neutralize 50 grams of glycerine.

1,2,6-HEXANETRIOL

HOCH2CHOH(CH2)3CH2OH

Table 7.211: Physical Properties of 1,2,6-Hexanetriol (32)

Boiling point at 5 mm. Hg 178° C Specific gravity at 20/20° C 1.1063 Coefficient of expansion at 20° C 0.00054/°C Δ Sp. Gr./Δ t at 10 to 40° C 0.00059/°C Flash point, open cup 375° F Vapor pressure at 20° C Less than 0.01 mm. Hg Freezing point -32.8° C (freezes under controlled Viscosity at 20° C 2584 cp. conditions; usually sets to glass at below -20° C) Weight per gallon at 20° C 9.19 lb. 0.00499° C Δlb./gal./Δt Molecular weight 134.17

Refractive index

Table 7.212: Freezing Points of 1,2,6-Hexanetriol-Water Mixtures (32)

1.4771

Table 7.213: Vapor Pressure of 1,2,6-Hexanetriol (19)

Table 7.214: Solubility of 1,2,6-Hexanetriol in Organic Solvents (32)

4cc. solvent	and l	cc. triol at 20°C.	
Acetone	M	Ethyl Acetate	I
Benzene	I	Ethyl Alcohol (Absolute)	M
Butamol	M	Ethyl Ether	I
Butyl Acetate	I	Heptane	I
Butyl Cellosolve	M	Isophorone	M
Castor Oil	I	Methyl Isobutyl Ketone	I
CELLOSOLVE Acetate	I	Mineral Oil	I
CELLOSOLVE Solvent	M	Pine Oil	M
Diacetone Alcohol	M	Toluene	I
Dibutyl Phthalate	I	Trichlorethylene	I
Dichlorethyl Ether	I	M = Miscible $I = Immiscible$	

Table 7.215: Compatibility of 1,2,6-Hexanetriol (32)

4 pc	ırts material i	to 1 part triol
Animal Glue	C	Gelatin PC
Beeswax	I	Nitrocellulose
Carnauba Wax No. 3		Paraffin Wax
Casein	C	Rosin
Ester Gum C	I	Shellac PC
Ethyl Cellulose	I	Zein C
C == Compatible	I == Incompatible	PC == Partly Compatible

Table 7.216: Viscosities and Freezing Points of 1,2,6-Hexanetriol (32)

1.2,8-Hexanetriol, % by wt. in H ₂ O	Viscosity, in cps. at 100°F.	Freezing Point. °C.
10	0.977	-2.5
20	1.37	-4.5
30	2.01	-7.0
50	5.06	-15.5

TRIMETHYLOLPROPANE

2,2-Dihydroxymethyl-1-Butanol

Ethyl Trimethylolmethane

 $C_2H_5C(CH_2OH)_3$

TMP

Table 7.217: Physical Properties of Trimethylolpropane (32)

Acidity as formic acid	0.002% by wt., max.
Ash	0.01% by wt., min.
Boiling point at 5 mm. Hg abs. 50 mm. Hg abs. 760 mm. Hg (extrapolated)	160° C 210° C 295° C
Bulk density (free-flowing)	35.5 lb/ft ³
Color of 10% aqueous solution	5 Pt-Co units, max.
Combining weight	44.72
Fire point, Cleveland open cup	380° F
Flash point, Cleveland open cup	355° F
Freezing point	59° C
Hydroxyl content	37.5% by wt., min.
Hygroscopicity (water absorbed in 68 hrs.): at 27° C and 18 to 26% RH at 25° C and 29 to 44% RH at 27° C and 70 to 80% RH	0.00% by wt. 0.06% by wt. 0.23% by wt.
Melting point range	57 to 59° C
Molecular weight	134.18
Phthalic color, Gardner	1 max.
Water content as packaged	0.05% by wt., max.

PENTAERYTHRITOL

 $\begin{array}{c} CH_2OH \\ \\ \text{Tetramethy lol methane} \\ \text{PE} \\ \end{array} \\ \begin{array}{c} CH_2OH \\ \\ \text{C} - CH_2OH \\ \\ \\ CH_2OH \\ \end{array}$

Table 7.218: Physical Properties of Pentaerythritol (32)

Ash
Bulk density
Dipentaerythritol (combined)
Hydroxyl content

Melting point (capillary final)

Melting point range
Melting point range
Moisture

Molecular weight
Monopentaerythritol

Nonvolatile
Nonvolatile
Specific gravity at 25/4° C

49 10.03%
Hydroxyl content

49.5% (pure)

49.5% (pure)

250° C initial (pure)

185-245° C (technical)

0.10% by wt. (technical)

136.1

88.0% by wt. (technical)

97.0% by wt. (pure)

136.1

136.1

SORBITOL

d-Sorbitol Sorbit Sorbol d-Glucitol

CH2OH(CHOH)4CH2OH

Table 7.219: Physical Properties of Sorbitol (38)

Density at ~5° C
Heat of combustion
Negative heat of solution
Molecular weight
Melting point, metastable form
stable form
Refractive index at 25° C, in 10%
aqueous solution
Rotation, 25

1.472 3994 cal./gm. -26.5 cal./gm. 182.17 93° C 97.7° C

1.3477 -0.985° C

Table 7.220: Boiling Point of Sorbitol Solutions (38)

Table 7.221: Hydrogenolysis of Sorbitol and Glycerol at a Hydrogen Pressure of 2,000 psi (32)

Table 7.222: Hydrogenolysis of Sorbitol at 215°C and a Hydrogen Pressure of 2,000 psi (32)

Table 7.223: Phase Diagram of Sorbitol Solubility in Hydroalcoholic Liquids at 25°C (38)

Table 7.224: Solubility of Sorbitol in Hydroalcoholic Liquids at 25°C (38)

Table 7.225: Viscosity Curve for Pure d-Sorbitol Solutions of Various Concentrations (38)

SUGAR ALCOHOLS

Table 7.226: Physical Properties of the Sugar Alcohols (38)

Sugar alcohol	Melting point, °C	Optical activity in H ₂ O,	Solubility, g/100 g H ₇ 0*	Heat of combustion, constant volume, kcal/mole
tetritols				
erythritol	120	meso	61.5	499.9 (94)
p-threitol	88.5-90	+4.3	very soluble	
L-threitol	88 5-90	-4.3	•	
D,L-threitol	69-70			
pentitols				
ribitol	102	meso	very soluble	
xylitol	61-61.5	meso	179	
	(meta-			
	stable)			
	93-94.5			
	(stable)			
p-arabitol	103	+131•	very soluble	
ı_arabitol	102-103	-130°	y	611.7 (124)
hexitols				, , , , , , , , ,
allitol	155	meso	very soluble	
dulcitol	189	meso	3.2(15°C)	720.3 (94)
sorbitol (p-glucitol)	90.4-91.8 (meta- stable)		(
	96.7-97.7 (stable)	- 1.98	235	723.5(6)
L-glucitol	89-91	+1.7		
D, L-glucitol	135-137			
p-mannitol	166	-0.2	21.3	722.1(6)
L-mannitol	162-163			
D,L-mannitol	168			
n-talitol	88-89	+3.2	very soluble	
L-talitol	87-89	-2.9	·	
p,r-talitol	95-96			
p-iditol	73.5	+3.5		
ı∽iditol	75.7-76.7	-3.5		
heptitols				
glycero-gulo-heptitol	129	meso	very soluble	
p-glycero-p-ido-heptitol	129	+0.7	very soluble	
perseitol	187	-1.1	7.4(18°C)	835.8 (124)
volemitol	153	+2.15	22.2(14°C)	, ,
octitol		•	, ,	
D-erythro-D-galacto-				
octitol	169-170	-11 ⁶		

<sup>In aqueous molybdic acid (46).
In 5% aqueous ammonium molybdate (27).
At 25°C unless otherwise indicated.</sup>

Table 7.227: Hydrates of Polyhydric Alcohols (32)

	Al	cohol		Ну	drate
Number of C Atoms	Name	Skeletal Structural Formula	M. p. (°C)	M. p. (°C)	n in K(OH)∎ nH2O
A. <u>Trihyd</u> i	ric Alcohols				
6	<u>α</u> (or <u>cis</u>)-Phloro- glucitol	но	185	115	2
9	4(1,2-Dihydroxy- n-propyl)- <u>cyclo</u> - hexanol	но	63	31	3
10	p-Menthane- 1,4,8-triol	HO OH OH	110-112	96	1
10	p-Menthane- 1,2,4-triol	C HO HO OH	129	115	
10	Glycol (a dihydroxyether?)	C ₁₀ H ₁₈ O ₃	103-105		1
13	2(2,3-Dihydroxy- <u>n</u> -propyl)-2- hydroxy camphane	он он с—с—с с——————————————————————————————			
B. Tetral	nydric Alcohols				
6	cycloHexane-1,2, 4,5-tetrol	но он		195	1
6	cycloHexane-1,2, 4,5-tetrol	HO OH	242		2
8	A dimethylether of an inositol	OH C ₄ H ₄ (OH) ₄ (OCH ₃) ₂ HO,	230		3
10	trans(?)-p- Menthane-1,2,6,8- tetrol	C HO HO	156	100-105	2

		Alcohol	}	н	ydrate
Number of C Atoms	Name	Skeletal Structural Formula	М.р. (°С)	М.р. (°С)	n in R(OH)_ nH2O
10	p-Menthane-1,2, 4,8-tetrol	HO OH OH	149	100	1
10	p-Menthane-1,2, 3 , 4-tetrol	HO OH OH	130		1
38	2,2'-Dihydroxy- 6,6'-bis (a- hydroxybenz- hydryl)-diphenyl	Ph ₂ COH HOC Ph ₂ OH OH	308	141-145	2
C. Pentah	ydric Alcohols				
6	Viburnitol (cyclohexane- $2.3.5/4.6$ -pentol)	но он	181		1
6	Inositol bromo- hydrin	C ₆ H ₆ (OH) ₅ Br	170-5		1
6	Inositol chloro- hydrin	C ₆ H ₆ (OH) ₅ Cl	180-5		2
6	Scyllitol chloro- hydrin	C6 H6 (OH)5 C1			2
7	1-Methylene- <u>cyclo</u> hexane-2,4, 6/3,5-pentol	$CH_2 = OH$ OH OH OH	205		2
D. Hexahy	dric Alcohols				
6	(+)-Sorbitol	HOH ₂ C (CHOH) ₄ CH ₂ OH	111	55 75	1 0.5
6	meso-Inositol (1,2,3,5/4,6- cyclohexane- hexol)	HO OH OH	225		2
6	d- and 1-Inositols (active) $(1,3,4/2,5,6-cyclohexane-hexol)$	он он	248		2

Phenois

Table 8.1: Phenol (2)

Carbolic Acid

С₆Н₅ОН

PHYSICAL PROPERTIES OF PHENOL

Boiling point	181.6°C
Distillation range	95% distills within a range of 1.5°C
Flash point (Open cup)	175°F
Freezing point	Not less than 40°C
MAC	5 ppm in air
Odor	Characteristic
Purity	98%, min.
Solidifying point	Not less than 40.7°C
Solubility in water, above 68°C at 20°C	In all proportions 8.3%
Specific gravity at 41/4°C	1.058
Toxicity	Highly toxic

PHENOL FORMS BINARY AZEOTROPES WITH

%		B.P. of Azeotrope ^O C.	%		B.P. of Azeotrope ^o C.
92.2	Acetophenone	202.0	28	Heptyl alcohol	185.0
22	Amyl ether	180.2	55	Indene	173.2
58	Aniline	186.2	85	Isoamyl ether	172.2
49	Benzaldehyde	185.5	74	Isobutyl carbonate	192.5
55	Benzylamine	196.8	17	Isopropyl lactate	184.8
57	m-Bromotoluene	175.7	79	Mesitylene	163.5
60	o-Bromotoluene	174.4	20	2-Methylcyclohexanol	183.1
37	2-Butoxyethanol	186.4	77	Methyl furnarate	194.9
54	Butylbenzene	175.0	33	Methylheptenone	184.6
30	Butyl isovalerate	184.0	32	2-Octanone	184.5
78	Camphene	156.1	87	n-Octyl alcohol	195.4
97	o-Chlorotoluene	159.0	50	sec-Octyl alcohol	184.5
28	Cineole	182.9	65	α-Phellandrene	165.0
13	Cyclohexanol	183.0	82	Phorone	198.8
28	Cyclohexanone	184.5	29	Pinacol	185.5
65	Decane	168.0	81	α-Pinene	152.8
59	Ethyl oxalate	189.5	75	Pseudocumene	166.0
75	Fenchone	196.2	55	Terpinene	171.5
60	Glycol diacetate	189.9	60	Thymene	172.3

Aldehydes

FURFURAL

Furfuraldehyde
Furol
Pyromucic Aldehyde

CH — CH
II
II
CH C-CH=0

Table 9.1: Properties of Pure Furfural (46)

Furfural (2-furaldehyde), C₄H₃OCHO, is a liquid aldehyde with a pungent almond-like odor. Colorless when freshly distilled, it darkens on contact with air. Industrial furfural is light yellow to brown in color.

General

Molecular weight Boiling point (at 760 mm), °C (°F) Freezing point, °C (°F) Refractive index (n t/D) at 20° C (68° F)	96.08 161.7 (323.06) -36.5 (-33.7) 1.5261					
at 25° C (77° F)	1.5235					
Density (d t/4) at 20° C (68° F)	1,1598					
at 25° C (77° F)	1.1545					
Vapor pressure	See Table 9.7					
Vapor density (air=1)	3.3					
Thermodynamic properties						
Heat of vaporization, ΔH_v g cal/g mole Specific heat (liquid), cal/g/deg	11,614.6					
14 to 80° C (57.2 to 176° F)	0.401					
20 to 100° C (68 to 212° F)	0.416					
Thermal conductivity,						
	0.1525					
meat of combustion (liquid), Δ H _{298.2} Kcal/mo	ie –560.3					
Fluid properties						
Specific heat (liquid), cal/g/deg 14 to 80° C (57.2 to 176° F) 0.401 20 to 100° C (68 to 212° F) 0.416 Thermal conductivity, Btu/(hr) (ft²) (°F/ft) at 100° F 0.1525 cal/(sec) (cm²) (°C/cm) at 38° C 6.3 × 10 ⁻⁴ Heat of combustion (liquid), Δ H _{298.2} kcal/mole Fluid properties Viscosity, cps, at 0° C (32° F) 2.48 at 25° C (77° F) 1.49 at 38° C (100.4° F) 1.35						
	·					
at 54° C (129.2° F)	1.09					
at 99° C (210.2° F)	0.68					
Surface tension, dynes/cm	40.5					
at 0° C (32° F)	43.5 40.7					
at 29.9° C (85.9° F) at 30.0° C (86° F)	40.7 41. 1					
Vapor diffusion coefficient, cm²/sec	41.1					
at 17° C (62.6° F)	0.076					
at 25° C (77° F)	0.087					
at 50° C (122° F)	0.107					
,						

(continued)

Table 9.1: (continued)

_					
	locti	rical	nro	nor	ties
_	CUL	1001	טוט	5	uco

Dielectric constant	
at 1° C (33.8° F)	46.9
at 20° C (68° F)	41.9
at 25° C (77° F)	38
at 50° C (122° F)	34.9
Specific conductivity, mho	
Minimum	0.26×10^{-5}
Maximum	0.37×10^{-5}
Other properties	
Critical pressure, psia	798
kg/cm²	56.1
Critical temperature, ° C (° F)	397 (746.6)
Molar volume, 25° C, ml/mole	`83.19
Molecular association	1,11
Solubility in	
water, wt. % at 20° C (68° F)	8.3
alcohol	∞

Note: Furfural is miscible with most common organic solvents except saturated aliphatic hydrocarbons.

Flammability properties

Explosive limits (% by vol.)
Lower limit (at 125° C [257° F] and 740 mm Hg)
2.1
Flash point
Tag closed cup, °C (°F)
Pensky-Martens, °C (°F)
61.7 (143)
(Based on flash point, furfural is classified as Class III A.*)
Ignition temperature, °C (°F)
393 (739)

Note:

ether

Furfural has a high order of thermal stability in the absence of oxygen. At temperatures as high as 230° C (446° F), exposure for many hours is required to produce detectable changes in the physical properties of furfural, with the exception of color (29).

Table 9.2: Typical Properties and Specifications of Furfural (2)

Acidity, as acetic	Technical 0.3% Refined 0.1%	Refractive index at 68°F Solubility in water at 20°C Specific gravity at 20/20°C	1.5261 8.3% 1.161
Boiling point	158-162°C	Special gravity at 20/20 C	1.151 1.158-1.160 Technical
Density at 60°F	1.164		
100°	1.140		1.59-1.161 Refined
150°	1.110	Surface tension	49 dynes/cm.
175°	1.095	Vapor pressure at 60°F	0.035 lbs./sq. in. abs.
200°	1,080	100°	0.130 lbs./sq. in. abs.
250°	1.049	150°	0.540 lbs./sq. in. abs.
300°	1.019	175°	0.950 lbs./sq. in. abs.
Distillation range (Engler)	1.010	200°	1.650 lbs./sq. in. abs.
1%, °F (min.)	300	250°	4.40 lbs./sq. in. abs.
End point, °F (max.)	335	300°	11.50 lbs./sq. in. abs.
	98.5	350°	22.50 lbs./sq. in. abs.
Recovery, % (min.)		400°	43.5 lbs./sq. in. abs.
Residue, % (max.)	0.9	450°	77.0 lbs./sq. in. abs.
Loss, % (max.)	0.9	Viscosity at 100°F	1.35 centipoises
Explosive limit, lower	2.1% at 257°F	130°	1.09 centipoises
Flash Point (Cleveland Open Cup)	131- 5°F	210°	-
Freezing point	-34°F		0.68 centipoises
Heat of Vaporization	107.51 cal./g	Weight per gallon (20°C)	9 lbs.
Purity	98.5% Technical		
	99.0-99.5% Refined		

^{*}Refers to Code of Federal Regulations: 29CFR 1910.106.

Table 9.3: Solubility of Various Substances in Furfural (46)

Acetone	S	Isobutyi	S S
Acids:		n-Octyl	S
Abietic (technical)	9.4	Amyl acetate	М
Acetic	S	Benzene	S
Benzoic	14.8	Butyl acetate	М
Butyric (technical)	S	Carbon tetrachloride	S M S
Cinnamic	4.1	Castor oil	M
Citric	3.6	Chinawood oil	
Formic	S	Chloroform	M S
Lactic	S	Diethylene glycol monobutyl ether	M
Maleic	R	Diethylene glycol monoethyl ether	M
Naphthenic acids (practical)	S R S S	Diethyl phthalate	M
Oleic (U.S.P.)	S	Ethyl acetate	Š
Oxalic	4.8	Ethylene glycol	S
Oxalic (anhydrous)	3.6	Ethylene glycol monobutyl ether	й
Palmitic (technical)	1.6	Ethylene glycol monoethyl ether	M
Phthalic	17.6	Ferric chloride	0.55
Propionic (technical)	S	Ferric chloride hexahydrate	20.0
Salicylic	11.0	Hydrogen cyanide	M
Sebacic (mp 132-133° C		Linseed oil	M
[269.6-271.4° F])	0.8	Nitrobenzene	M
Stearic (U.S.P.)	2.1	Nitrotoluene	· M
Succinic	3.0	Paraldehyde	M
Tartaric	10.9	Pyridine	141
Alcohols:		Quinoline	Ş
Amyl	М	Toluene	S S
n-Butyl			M
	S S	Xylol Zina ablarida	20 E
Ethylene glycol	2.1-2.8	Zinc chloride	20.6
Glycerol	2.1-2.0		

S=infinitely soluble
M=miscible in equal volume at room temperature
R=reaction

Table 9.4: Solubility of Selected Thermoplastic Resins in Furfural (46)

(At 23°C [73.4° F])

RESIN TYPE	MANUFACTURER	SOLVENT ACTION	RESINTYPE	MANUFACTURER	SOLVENT ACTION
Nitrocellulose	Hercules (RS) Hercules (N-50)	VS VS	PVC	Goodrich (Geon [®] 2 22)	SH
Ethylcellulose Cellulose acetate butyrate	Eastman	VS	Nylon Nylon	Du Pont (Zytel® 31) Du Pont (Elvamide)	1 (B) 1 (B)
Polyvinyl butyral	Union Carbide (Bakelite [®])	S;VSH	Polyethylene Acrylic	Du Pont (Alathon®) Du Pont (Lucite®	1 (B)
Vinyl acetate	Ùnion Carbide (Bakelite®)	SH(B)	Acrylic	140) Du Pont (Lucite®	S H (B)
Vinyl acetate chloride	Union Carbide (Bakelite [®])	SH(B)	Polystyrene	130) Dow (PS-3)	VS SH
PVC	Üniroyal (Marvinol [®] VR-10)	1	•		

S=Soluble from 1 g to 10 g per 100 g solvent VS=Soluble 10 g or more per 100 g solvent H=Temperature, 70-75° C (158-167° F); time one hour B=Cloudy 1=Less than 1 g per 100 g solvent

Table 9.5: Specific Gravity and Pounds per Gallon of Furfural (46)

(Change per °C: Sp. Gr. -0.00110; lbs./gal. -0.00917)

TEMPERA	TURE *C	\$P. GR. ¹	LBS./GAL.	TEMPER °F	ATURE	SP. GR.1	LBS./GAL.
122.0	50	1.127	9.403	57.2	14	1.167	9.733
118.4	48	1.129	9.421	53.6	12	1.169	9.752
114.8	46	1.131	9.440	50.0	10	1.171	9.770
111.2	44	1.134	9.458	46.4	8	1.173	9.788
107.6	42	1.136	9.476	42.8	6	1.175	9.807
104.0	40	1.138	9.494	39.2	4	1.178	9.825
100.4	38	1.140	9.502	35.6	2	1.180	9.833
96.8	3 6	1.142	9.531	32.0	ō	1.182	9.861
93.2	34	1.145	9.549	28.4	- 2	1.184	9.879
89.6	32	1.147	9.568	24.8	- 4	1.186	9.898
86.0	30	1.149	9.586	21.2	- 6	1.189	9.916
82.4	28	1.151	9.604	17.6	- 8	1.191	9.935
78.8	26	1.153	9.623	14.0	-10	1.193	9.953
75.2	24	1.156	9.631	10.4	-12	1.195	9.971
71.6	22	1.158	9.660	6.8	-14	1.197	9.990
68 .0	20	1.160	9.678	3.2	-16	1,200	10.008
64.4	18	1.162	9.696	-1.6	-18	1.202	10.027
60.8	16	1.164	9.715	-4.0	-20	1.204	10.045

¹Referred to water at 4°C.

Table 9.6: Composition/Density of Furfural-Water Solutions (46)

	DI	ENSITY t°	FURFURAL	DENSITY $\frac{t^o}{4}$		
FURFURAL (% BY WEIGHT)	20° C	25° C	(% BY WEIGHT)	20° C	25° C	
0	0.9982	0.9971	4.6	1.0068	1.0054	
0.2	0.9986	0.9974	4.8	1.0072	1.0058	
0.4	0.9990	0.9978	5.0	1.0075	1.0062	
0.6	0.9993	0.9982	5.2	1.0079	1.0065	
0.8	0.9997	0.9985	5.4	1.0083	1.0069	
1.0	1.0001	0.9989	5.6	1.0086	1.0073	
1.2	1.0005	0.9993	5.8	1.0090	1.0076	
1.4	1.0008	0.9996	6.0	1.0094	1.0080	
1.6	1.0012	1.0000	6.2	1.0098	1.0084	
1.8	1.0016	1.0003	6.4	1.0101	1.0087	
2.0	1.0020	1.0007	6.6	1.0105	1.0091	
2 .2	1.0023	1.0011	6.8	1.0109	1.0094	
2.4	1.0027	1.0014	7.0	1.0113	1.0098	
2.6	1.0031	1.0018	7.2	1.0116	1.0102	
2.8	1.0034	1.0022	7.4	1.0120	1.0105	
3.0	1.0038	1.0025	7.6	1.0124	1.0109	
3 .2	1.0042	1.0029	7.8	1.0127	1.0113	
3.4	1.0046	1.0033	8.0	1.0131	1.0116	
3 .6	1.0049	1.0036	8.2	1.0135	1.0120	
3 .8	1.0053	1.0040	8.3 ²	1.0137	1.0122	
4.0	1.0057	1.0044	8.4	_	1.0124	
4.2	1.0060	1.0047	8.6 ³		1.0127	
4.4	1.0064	1.0051				

¹ Mains, G.H., Chem. & Met. Eng., 26,779 (1922). ³ Saturated solution of furfural in water at 20°C (68°F). ³ Saturated solution of furfural in water at 25°C (77°F).

LEGEND:

O. Mains, G. H., Chem. & Met. Eng., 26, 779 (1922) X. Evans, W. V. and Aylesworth, M.B., Ind. Eng. Chem. 18, 24 (1926).

Table 9.9: Temperature-Composition Diagram of Furfural-Water System* (46)

*Mains, G.H., Chem. & Met. Eng., 26, 779(1922)

Table 9.10: Vapor-Liquid Equilibrium in the Furfural-Water System¹ (46)

(PRESSURE =	= 760 mm Hg)		
% FURFURAL	BY WEIGHT	BOILING	POINT
COMPOSITION OF LIQUID	COMPOSITION OF VAPOR	•c	*F
0.2	1.5	99.90	211.8
0.4	3.0	99.82	211.68
0.6	4.4	99.74	211.53
0.8	5.8	99.67	211.41
1.0	7.0	99.60	211.28
1.5	10.0	99.42	210.96
2.0	12.7	99.25	210.65
2.5	15.0	99.11	210.40
3.0	17.1	98.99	210.18
3.5	19.0	98.87	209.97
4.0	20.7	98.76	209.77
4.5	22.2	98.66	209.59
5.0	23.6	98.58	209.44
5.5	24.8	98.50	209.30
6.0	25.8	98.43	209.17
6.5	26.8	98.37	209.07
7.0	27.7	98.31	208.96
7.5	28.5	98.26	208.87
8.0	29.2	98.21	208.78
8.3 ²	29.6	98.19	208.74
8.5	29.9	98.17	208.71
9.0	30.5	98.13	208.63
10.0	31.7	98.07	208.53
11.0	32.6	98.02	208.44
12.0	33.3	97.98	208.36
13.0	33.9	97.95	208.31
14.0	34.4	97.93	208.27
15.0	34.7	97.92	208.26
16.0	34.8	97.91	208.24
17.0	34.9	97.91	208.24
18.0	35.0	97.90	208.22
18.4 ³	35.0	97.90	208.22
18.4-84.14	35.0	97.90	208.22

¹Mains, G.H., Chem. & Met. Eng., 26, 779 (1922).

²Saturated solution of furfural in water at 20° C (68° F).

³Saturated solution of furfural in water at the boiling point.

^{*}Range over which both furfural and water layers are present.

Table 9.11: Vapor-Liquid Composition of Furfural-Water System (46)

OTHER ALDEHYDES

Table 9.12: Vapor Pressures of Various Aldehydes (19)

Table 9.13: Physical Properties of Various Aldehydes (19)

Product		Formula	Purity of Tested	Apparent Specific	Boiling	Vapor Pressure,	Freezing	Solubility, % by weight at 20° C.		Pounds Per Gal.	Flash
	Formula	Molecular Weight	Sample, % by wt.	Gravity, 20/20°C.	Point, °C., 760 mm.	mm. Hg at 20°C.	Point, *C.	in Water	Water in		Point, *F. (a)
Formaldehyde, 37% (uninhibited)	нсно	30.03	(c)	0.816(g)	-19.1	3284	-117	Comp	plete	9.24(h)	None
Paraldehyde	[CH ₃ CHO] ₃	132.16	(c)	0.9961	124	26	12.6	10.5	1.1	8.27	96
Propionaldehyde Butyraldehyde Isobutyraldehyde	C₂H₃CHO C₃H₃CHO CH₃CH(CH₃)CHO	58.08 72.11 72.11	(c) (c) (c)	0.7982 0.8028 0.7905	48.0 74.8 64.1	258 88.5 138	80 96.4	22 7.1 ₂₅ -c. 6.5	35 3.0 ₂₅ ·c. 2.9	6.72 6.69 6.58	<0 15 13
Valeraldehyde 2-Methylpentaldehyde 2,3-Dimethyl Pentaldehyde	C ₄ H ₉ CHO C ₃ H ₇ CH(CH ₃)CHO C ₂ H ₅ CH(CH ₃)CH(CH ₃)CHO	86.13 100.16 114.19	(c) (c)	0.8109 0.8102 0.8293	103.0 118 140.5	26 14 5	-91 -100(d) -110	1.35 0.42 0.21	1.35 0.83 0.60	6.75 6.74 6.91	54 72 94
Acrolein	СН2:СНСНО	56.06	99	0.8427	53	220	87.0	20.6	6.8	7.02(i)	<0(
Tetrahydrobenzaidehyde	çн₂сн:снсн₂сн₂снсно	110.16	99.8	0.9721	165	2	-100(d)	0.5	1.0	8.08	135
UCAR Giyoxai 40 (aq. sol.) UCAR Giyoxai LV	онссно	58.04	(e) (e)	1.2798 1.2851			15 15	Complete Complete		10.65 10.69	None None
Giutaraldehyde, 25% aq. sol. Giutaraldehyde, 50% aq. sol.	OHCC3H6CHO OHCC3H6CHO	100.12 100.12	(e) (e)	1.062 1.124		17 17	-7.0 -14.0	Comp Comp		8.83 9.38	None None

⁽a) All flash points were determined by either ASTM method D 1310 using Tag open cup or ASTM method D 92 using Cleveland open cup.

⁽c) 99+ mol per cent material.

⁽d) Sets to glass below this temperature.

⁽e) Typical commercial material.

⁽f) Made from anhydrous isopropanol diluted with demineralized water.

⁽g) True density at-19°C.

⁽h) 37% Solution.

⁽i) Inhibited material.

Ethers

Table 10.1: Dimethyl Ether (34)

Methyl Ether

CH3-O-CH3

Physical Properities

Molecular weight (calc.) 46.07	Viscosity of gas at 0 °C, η x 10 ² 825
Boiling point at 760 mm 24.9°C	20 855
Vapor pressure at 20°C 5.24 atm	Dielectric constant at 25°C 5.02 e.s.u.
Freezing point141.5°C	Flash point, Tag closed cup 42°F
Density at 20°C 0.661 g/ml	Autoignition temperature
Vapor density (air = 1.0) 1.59	Explosive limits, % by vol. in air 3.45-26.7%
Critical pressure 52.5 atm	Solubility* in water at 24°C 35.3% by wt.
temperature	Solubility* of water in methyl ether at 24°C
Free energy of formation, 25°C27.3 kcal/mole Entropy at 25°C 63.72 cal/°C—mole Specific heat at -27.68°C 0.5351 cal/g	acetone
Surface tension, liquid-vapor interface, at −40°C	methyl acetate

SOME PHYSICAL AND THERMODYNAMIC PROPERTIES OF DIMETHYL ETHER AT VARIOUS TEMPERATURES

	Vapor	De	nsity	Dielec- Vapori-				Entropy		
Tem- perature °C	pressure atm.	liquid g/ml	vapor g/ml	tric constant	vapori- zation kcal/kg	liquid kcal/kg	vapor kcal/kg	liquid cal/(g)(°K)	vapor cal/(g)(°K)	
- 40	0.392		_	-	116.13	77.58	193.71	0.9109	1.4090	
30	0.741		_	i	113.17	83.08	196.25	0.9342	1.3996	
- 20	1.35	0.7174	0.0027		110.12	88,64	198.76	0.9568	1.3918	
- 10	1.97	.7040	.0039	_	106.95	94.23	201.23	0.9787	1.3851	
0	2.80	.6905	.0055	. –	103.64	100.00	203.64	1.0000	1.3794	
10	3.86	.6759	.0076	· '	100.17	105.79	205.96	1.0206	1.3744	
20	5.24	.6610	.0104	5.15	96.44	111.75	208.19	1.0410	1.3700	
30	7.00	.6455	.0142	4.90	92.64	117.60	210.24	1.0604	1.3660	
40	9.06	.6292	.0188	4.67	88.48	123.63	212.11	1.0795	1.3620	
50	11.6	.6116	.0241	4.41					i	
60	14.7	.5932	.0306	4.18			_	_		
70	18.4	.5735	.0385	3.93		-	_		l —	
80	22.7	.5517	.0484	3.70		_	_	i —	l —	
90	27.4	.5257	.0623	3.48	l —	. –	_	l —	l –	
100	33.0	.4950	.0810	3.25	<u> </u>	-	_	_	1 –	
110	39.5	.4575	.1060	3.00	l —	-		l –	_	
120	46.6	.4040	.1465	_	-	_			-	

(continued)

Table 10.1: (continued)

Some Properties of (CH₃)₂O·BF₃

Molecular weight (calc.) .	113.89
Melting point	−12°C
Boiling point	128°C
Density at 20°C	1.241 g/ml
Vapor pressure at 30°C .	6.1 torr
at 70°C .	52.7 torr
Surface tension at 20.5°C	33.03 dynes/cm
Dissociation constant	$\log K = (-2983)/$
	T + 7.228

Binary Azeotropes Containing Dimethyl Ether

Component A	Azeotrope			
		point,	Compo- nent A, % by wt	
Boron trifluoride		127	60	
Hydrogen chloride		-2	38	
Ammonia at 1 atm		-37	42.5	
at 11 atm		25	56	
Sulfur dioxide at 1 atm		0	6 5	
at 56.1 atm .		6.6	60	
at 77.1 atm		12.1	60	
at 108.7 atm .		26.7	6 0	
Dichlorodifluoromethane				
at 3 atm		0	90	

Solubility of Methyl Ether at Various Pressures

Temperature = 25°C

Carbon to	trachloride	Λο	tone	Ben	zene	Chlore	Chlorobenzene Methy		yl acetate	
ք,ուու	Methyl ether, Mole %	p,mm	Methyl ether, Mole %	p,mm	Methyl ether, Mole %	p,nim	Methyl ether, Mole %	p,mm	Methyl ether, Mole %	
112.4	U.000	229.2	0.0	93.7	0.0	11.6	0.0	213.4	0.0	
237.6	3.0	311.7	1.79	196.9	2.30	120.4	6.21	293.2	1.75	
360.1	5.96	403.1	3.78	372.6	6.32	310.5	7.20	440.6	5.08	
464.8	8.52	548.2	7.01	503.0	9.32	423.3	9.74	576.0	8.17	
612.8	12.17	650.8	9.33	6,34.8	12.29	550.8	12.78	7(14.4	11.17	
782.4	16.33	762.3	11.83	761.4	15.29	795.3	18.55	812.3	13.65	
932.7	19.93	9,19,1	15.77	913.0	18.84	957.9	22.14	923.5	16.27	
1072.9	23.30	1075.0	18.93	1006.7	21.00	1072.1	24.71	1039.7	19.50	

Table 10.2: Chlorodimethyl Ether (2)

CH3-O-CH2CI

Chlorodimethyl ether is a colorless liquid which decomposes in water and in hot ethyl alcohol. It is soluble in acetone, carbon disulfide and concentrated hydrochloric acid.

Physical Properties

Boiling Point (760 mm. Hg), °C.	59
Dipole Moment	
In Carbon Tetrachloride D	1.88
In Benzene D	1.82 - 1.85
Melting Point, °C.	-103.5
Molecular Weight	80.52
Purity	90% min.
Refractive Index nD	1.39737
Specific Gravity D $_{4}^{20}$	1.0703

Table 10.3: Chloromethyl Ethyl Ether (2)

CICH2-O-CH2-CH3

This ether is a colorless liquid which is an irritant to the mucous membranes. It is used as a raw material in organic syntheses.

Physical Properties

Assay (chlorine)	App. 98%
Boiling Range, 760 mm. Hg, °C.	79 - 83
Density D $_4^{20}$	1.03 - 1.05
Refractive Index n	1.40 - 1.41

Table 10.4: Ethyl Ether (1)(19)(23)(49)

Ether Ethyl oxide Sulfuric ether

C₂H₅-O-C₂H₅

Typical Properties and Specifications

Apparent ignition temperature in air	190°C.
Boiling point at 760 mm.	34.5°C.
Coefficient of expansion	0.00164 per 1°C.
Constant-boiling mixtures (% by wt.) Ethyl ether 99% Carbon disulfide 1.0% Ethyl ether 44.5% Methyl formate 55.5% Ethyl ether 98.9% Water 1.1%	B.P. at 760 mm. 34.5°C. B.P. at 760 mm. 28.2°C. B.P. at 760 mm. 34.1°C.
Electrical conductivity at 25°C.	4×10^{-13} recip. ohm
Explosive limits	2.34 - 6.15%
Flash point	-40°F.
Freezing point	-116.2°C.
Heat of combustion	651 Cal./mol
Heat of vaporization	83.96 cal./g at B.P.
Refractive index at 17°C.	1.3542
Specific gravity at 20/20°C.	0.7146
Specific heat at 30°C.	0.5476 cal./g.
Surface tension at 20°C.	17.0 dynes/sq.cm.
Solubility in water at 20°C.	6.9% by wt.
Solubility of water in solvent at 20°C.	1.3% by wt.
Viscosity at 20°C.	0.00233 poise
Vapor pressure at 20°C.	442.0 mm. Hg
Weight per gallon at 20°C.	5.95 lbs.
Weight per gallon at 17°C.	5.3542 lbs.
Acidity (as acetic)	0.002% by wt., max.

Table 10.5: Flammability of Ethyl Ether-Oxygen-Helium Mixture (1)

Table 10.6: Dichloroethyl Ether (2)

2,2'-Dichlorethyl Ether β,β'-Dichlorodiethyl Ether

 $CI-CH_2-CH_2-O-CH_2-CH_2-CI$

396°C. 178.5°C. 170-180°C. 0.00097 (per °C.) 0.00100 (per °C.)	
34.4	
55.6	
97.7°C.	
70°C	

55°C.

0.005% by wt. max.

Heat of vaporization at 178°C.
Refractive index at 20°C.
Specific gravity at 20/20°C.
Specific heat (at 20-30°C.)
Surface tension at 25°C.
Solubility in water at 20°C.
Solubility of water in dichlorethyl ether at 20°C.
Viscosity at 25°C.
Vapor pressure at 20°C.
Water content
Weight per gal. at 20°C.

8.04

Table 10.7: Properties of Pure Isopropyl Ether (14)

Molecular Formula	C ₆ H ₁₄ O
Molecular Weight	102.172
Boiling Point, °C	68.5
Boiling Point Change, °C/mm at 760 mm	0.042
Freezing Point, °C	-85.5
Density at 20°C, g/ml (in vacuo)	0.7235
at 60°F, lb/US gal (in air)	6.07
Specific Gravity, 20/20°C (in air)	0.7244
Coefficient of Expansion (1) at 20°C, per °C	0.00143
Refractive Index, n0/D	1.3784
n20/D	1.36820
n30/D	1.36301
Critical Temperature, °C	288
Critical Pressure, atm	27.5
Critical Volume, cc/g	3.80
Heat of Vaporization (2,3), 760mm, cal/g	68.16
Heat of Fusion at Melting Point (4), cal/g	25.79
Heat of Formation (5) (vapor at 25°C)	
k-cal/mole	-77
Free Energy of Formation (4) (vapor at	
25°C) k-cal/mole	-31

Specific Heat (Liquid), cal/g°C (at 20°C) Thermal Conductivity (Vapor at 100°C)	0.506
cai/(sec) (cm²) (°C/cm)	0.0000483
Viscosity, cps at -20°C	0.545
0° C	0.419
20° C	0.333
50° C	0.255
Surface Tension (6), 25°C, dynes/cm	17.28
Dielectric Constant (7), 85.8 kHz, 25°C	4.449
Other Properties of Commercial IPE	
Autoignition Temp., °F	830
Flash Point (8), Tag Open Cup, °F (appro	x.)+15
Tag Closed Cup, °F (approx.)	-18
Flammable Limits of Vapor with Air	
% vol. of Compound, Upper	21
Lower	1.4

Relative Evaporation Rate at 25°C and 0% R.H.; Shell Thin Film Evaporometer

(n-BuOAc = 1.0)

- 1. Calculated from density measurements as .7242 .7139
- 2. Calculated via Clapeyron Equation Z = 0.95.

- 2. Calculated via Lapeyron Equation Z = 0.95.
 3. File & Reid, Ind. Eng. Chem. 22. 513 (1930)
 4. Parks, et. al., J. Am. Chem. Soc. 55, 2735 (1933)
 5. Kharasch, M. S., J. Research, Naf'l Bur. Stds. 2, 359 (1929)
 6. Vogel, A. J., Chem. Soc. Parl I, 816 (1948)
 7. Kirk-Othmer, "Ency. of Chem. Tech." 5, 870 (1950)
 8. Petroleum Engineer, June 1945, 219.

Table 10.8: Vapor Pressure of Isopropyl Ether (14)

t° C	mm Hg	t° C	mm Hg	t°C	mm Hg
-20	13.4	15	94.4	50	406.6
-15	18.4	20	119.4	55	485.8
-10	24.9	25	149.5	60	576.7
-5	33.3	30	185.6	65	6 80.3
0	44.0	35	228.4	70	797.8
5	57.3	40	278.9	75	930.1
10	74.0	45	338.0	80	1078.7

^{&#}x27;Log VP mm Hg = 23.16817 - 2382.7/T - 5.2545Log T $T = 273.15 + t^{\circ}C$

Table 10.9: Isopropyl Ether-Water Solubility (14)

%wt				%wt		
t°C	IPE in H ₂ O	H₂O in IPE	1°C	IPE In H ₂ O	H ₂ O in IPE	
-10		0.41	50	0.73	0.82	
0	_	0.43	60	0.73	0.93	
10	1.43	0.47	70	0.76	1.06	
20	1.07	0.53	80	0.83	1.20	
30	0.88	0.62	90	0.92	1.34	
40	0.78	0.72	100	1.04	1.49	

Table 10.10: Mutual Solubility for the System: Isopropyl Ether-Isopropyl Alcohol-Water at 25°C, % wt (14)

IPE	н₂о	IPA	Sp. Gr.25/4° C
99.5	0.5		0.7210
93.4	1.1	5.5	0.7274
89.0	1.5	9.5	0.7326
84.4	2.2	13.4	0.7380
79.9	3.2	16.9	0.7427
	5.2		S., . <u>_</u> .
74.4	4.6	21.0	0.7490
72.8	4.7	22.5	0.7509
70.3	5.2	24.5	0.7547
68.7	5.8	25.5	0.7564
65.3	6.7	28.0	0.7605
64.0	7.1	28.9	0.7620
61.5	7.8	30.7	0.7641
58.3	8.9	32.8	0.7698
56.4	9.6	34.0	0.7726
50.8	11.6	37.6	0.7812
47.6	13.0	39.4	0.7864
42.6	15.5	41.9	0.7958
38.6	17.8	43.6	0.8029
35.7	19.7	44.6	0.8091
31.5	23.0	45.5	0.8189
01.0	20.0		
28.3	26.0	45.7	0.8275
24.8	29.7	45.5	0.8379
22.6	32.4	45.0	0.8450
18.9	37.6	43.5	0.8590
16.3	41.9	41.8	0.8707
14.5	45.0	40.5	0.8789
12.6	48.4	39.0	0.8884
12.2	49.0	38.8	0.8897
10.6	52.1	37.3	0.8982
8.6	55.6	35.8	0.9084
6.6	60.2	33.2	0.9200
5.9	61.8	32.3	0.9245
5.2	63.6	31.2	0.9293
4.7	65.0	30.3	0.9334
3.4	69.6	27.0	0.9437
2.2	74.8	23.0	0.9568
1.6	78.3	20.1	0. 96 34
1.3	83.3	15.4	0.9716
1.2	89.4	9.4	0.9796
1.0	93.8	5.2	0.9864
0.9	99.1		0.9928

Reference: Frere, F. J., Ind. Eng. Chem. 41, 2365 (1949)

Table 10.11: Conjugate Solutions in the System: Isopropyl Ether-Isopropyl Alcohol-Water at 25°C, % wt (14)

Upper Layer				Lower Layer		
IPE	H₂O	IPA	Tie Line¹	IPE	H₂O	IPA
96.4	0.8	2.8	1	1.0	92.1	6.9
93.0	1.2	5.8	2	1.2	89.0	9.8
90.1	1.5	8.4	3	1.2	86.9	11.9
86.1	2.0	11.9	4	1.2	85.4	13.4
82.8	2.7	14.5	5	1.2	83.8	15.0
76.3	4.0	19.7	6	1.3	82.4	16.3
72.1	5.0	22.9	7	1.4	81.6	17.0
64.2	7.0	28.8	8	1.4	80.3	18.3
54.2	10.2	35.6	9	1.7	77.8	20.5
45.4	14.0	40.6	10	2.3	74.1	23.6
36.9	18.7	44.4	11	2.9	71.2	25.9
31.5	23.0	45.5	12	3.7	68.3	28.0
25.3	29.0	45.7	13	4.7	64.6	30.7
Ε	stimated plait poi	nt²		9.8	53.3	36.9

Reference: Frere, F.J., Ind. Eng. Chem. 41, 2365 (1949).

Table 10.12: Miscibility of Isopropyl Ether-Isopropyl Alcohol-Water at 25°C (14)

¹ See Table 10.12 ² Point at which two layers converge into one phase.

Table 10.13: Azeotropic Information-Isopropyl Ether (14)

Ternary Azeotrope: IPA — IPE — Water (Boiling Point 61.7°C)

Component	Azeotrope	Upper Layer	Lower Layer	
IPA (Isopropyl Alc.)	6.0	5.8	10.0	
IPE	89.0	93.1	1.0	
Water	5.0	1.1	89.0	
%w	100	95.6	4.4	

Other Azeotropic Information

Binary Azeotropes

B.P. °C	Other Components	%wt Other Component
6 1.	Boron Triflouride	40
62.2	Water	4.5
70.5	Chloroform	36
< 67.5	Propronitrile	> 4
74.0	2, 2-Dichloropropane	60
54.2	Acetone	61
66.2	Isopropyl Alcohol	16.3
66.0	1-Propanethiol	65
>69.0	1-chloro-2-methylpropane	_
<68.0	Methylocyclopentane	< 20
67.5	Hexane	47

Ternary Azeotropes

B.P. °C Components and %wt

66 H_2O , 7.0%; Ethyl alcohol 14.7%; IPE 78.3% Min B.P. H_2O — %; Acetone — %; IPE — %

Nonazeotrope H₂O - Sec. Butyl alcohol - IPE

IPE does not form azeotropes with

Trichloroethylene 2-Bromo-2-methylpropane

1,1-Dichloroethane1-Chlorobutane1,2-DichloroethaneEthyl sulfide2-ChloroethanolDiethoxymethaneIodoethaneBenzene2-BromopropaneHexyl Alcohol

Thiophene

Table 10.14: Vapor Pressure of Isopropyl Ether at Various Temperatures (8)

Table 10.15: Specific Gravity of Isopropyl Ether vs Temperature (8)

Table 10.16: Mutual Solubility and Specific Gravity of Isopropyl Ether, Water and Isopropyl Alcohol at 25°C (2)

Isopropyl Ether	Water	Isopropyl Alcohol	sG d ^{25°C} .
99.5	0.5		0.7210
93.4	1.1	5.5	0.7274
89.0	1.5	9.5	0.7326
84.4	2.2	13.4	0.7380
79.9	3.2	16.9	0.7427
74.4	4.6	21.0	0.7490
72.8	4.7	22.5	0.7509
70.3	5.2	24.5	0.7547
68.7	5.8	25.5	0.7564
65.3	6.7	28.0	0.7605
64.0	7.1	28.9	0.7620
61.5	7.8	30.7	0.7641
58.3	8.9	32.8	0.7698

(continued)

Table 10.16: (continued)

Isopropyl Ether	Water	Isopropyl Alcohol	SG d ^{25°} C.
56.4	9.6	34.0	0.7726
50.8	11.6	37.6	0.7812
47.6	13.0	39.4	0.7864
42.6	15.5	41.9	0.7958
38.6	17.8	43.6	0.8029
35.7	19.7	44.6	0.8091
31.5	23.0	45.5	0.8189
28.3	26.0	45,7	0.8275
24.8	29.7	45.5	0.8379
22.6	32.4	45.0	0.8450
18.9	37.6	43.5	0.8590
16.3	41.9	41.8	0.8707
14.5	45.0	40.5	0.8789
12.6	48.4	39.0	0.8884
12.2	49.0	38.8	0.8897
10.6	52.1	37.3	0.8982
8.6	55.6	35.8	0.9084
6.6	60.2	33.2	0.9200
5.9	61.8	32.3	0.9245
5.2	63.6	31.2	0.9293
4.7	65.0	30.3	0.9334
3.4	69.6	27.0	0.9437
2.2	74.8	23.0	0.9568
1.6	78.3	20.1	0.9634
1.3	83.3	15.4	0.9716
1.2	89.4	9.4	0.9796
1.0	93.8	5. 2	0.9864
0.9	99.1	• •	0.9928

Table 10.17: n-Butyl Ether (2)

$$C_4H_9OC_4H_9$$

n-Butyl ether is a colorless, stable liquid, soluble in water. Having two butyl groups, this ether is an excellent solvent for many natural and synthetic resins, gums, oils, fats, organic acids, esters, and alkaloids. Beeswax and carnauba wax have limited solubility in butyl ether at room temperature, but become quite soluble at higher temperatures. n-Butyl ether will not dissolve cellulose acetate, benzyl cellulose, or cellulose nitrate, but when it is mixed with ethyl or butyl alcohol it becomes a solvent for ethylcellulose. Butyl ether is used as a reaction medium in organic synthesis and in the extraction and purification of essential oils, organic acids, waxes and resins.

$Typical\ Properties\ and\ Specifications$

Boiling point at 760 mm	142.4°C
50	63
10	28
Color	Water-white
Flash point	30.6°C
Heat of vaporization	68.8 cal./g
Freezing point	Approx96°C
Specific gravity at 20/20°C	0.769-0.771
Refractive index at 20°C	1.3992
Surface tension at 20°C	22.9 dynes per sq cm
Solubility in water at 20°C	0.03%
Solubility of water in solvent at 20°C	0.19%
Vapor pressure at 20°C	4.8 mm Hg
Weight per gallon at 20°C	6.4 lbs
Acidity (as butyric)	0.05% by wt., max.
Distillation range	137-143°C
Water content	0.10% by wt., max.

C5H11OC5H11

Commercial diamyl ether consists principally of di-n-amyl ether and di-isoamyl ether, with small percentages of isomeric amyl ethers and diamylene. It is a colorless to light yellow liquid which is quite stable. It is insoluble in water but soluble in methanol, ethyl ether, ethyl acetate, acetone, aliphatic and aromatic hydrocarbons, fixed oils, oleic and hot stearic acids, hot paraffin and carnauba waxes, the latter two solidifying when cooled. Unlike the lower aliphatic ethers, it will not dissolve nitrocellulose when admixed with ethanol. However, a mixture of diamyl ether and 20% ethanol will dissolve ethylcellulose.

Typical Properties and Specifications

Dielectric constant Flash point (open cup) 146°F Heat of vaporization 65.9 cal./g (calc'd) Specific gravity at 20/20°C 0.78-0.80 0.513 cal/g Specific heat Refractive index at 20°C 1.4198 Surface tension at 20°C 24.8 dynes/sq cm Below -75°C Freezing point Vapor pressure at 20°C 0.67 mm Water azeotrope at 96-98°C 41% amyl ether (approx.) 6.61 lbs Weight per gauon at 20°C Acidity (mg. KOH per g) 0.4, max. Distillation Initial boiling point Not below 170°C Not less than 95% Below 200 Final boiling point Not above 210

0.2% by wt., max.

Water content

Table 10.19: n-Hexyl Ether (2)

C6H13OC6H13

n-Hexyl ether is a colorless, stable liquid with a mild odor. It is less volatile than the lower members of the aliphatic ether group and its solubility in water is very slight. It is miscible with most organic solvents and can replace butyl ether for many similar applications. It is used as a solvent medium in chemical reactions and is a foam breaker for certain processes.

> 226.2°C. Boiling point at 760 mm. 136°C. Boiling point at 50 mm. 100°C. Boiling point at 10 mm. Flash Point 170°F. 0.7942 Specific gravity at 20/20°C. Solubility in water at 20°C. 0.01% by wt. 0.12% by wt. Solubility of water in solvent at 20°C. Vapor pressure at 20°C. 0.07 mm. Hg Weight per gallon at 20°C. 6.61 lbs. 0.01% by wt., max. Acidity (as acetic) 205 - 235°C. Distillation range at 760 mm. 15 max. Color (A.P.H.A.) 0.10% by wt. Water content

Table 10.20: Solubility Data for Various Ethers (19)

		Ţ	ypes of Ethe	ers as Solvent	·s	
Substance	Ethyl	Isopropyl	Butyl	Dioxane	Dichlor - ethyl	Dichlor- isoprapyl
"Bakelite" vinyl resin AYAF	1	ı	SW-G	S	S	S
"Bakelite" vinyl resin VYHH	1	l	1	S	S	SW
Cellulose nitrate (dry)	SA	SA	1	SA	SA	1
Cellulose acetate	1	1	i	S	SA	1
Buna S		-	_	_	_	
Neoprene GN	_	_	_	-	_	_
Carnauba wax	_	SS		SW	SW	
Paraffin wax	_	S	· -	SW	S	
Beeswax	_	SW	-	SW	SW	S
Rosin	S	S		S	Į.	S
Dewaxed dammar	S	SS	S	S	1	S
Zein	_	_			_	_
Soluble starch	_		-	_		
Gelatin	_	_	_	_	_	-
Hydrocarbons	S	S	S	S	S	S
Linseed oil (raw)	S	S	S	S	S	S
Shellac	1	1	SSW	S	1	SSW
Kauri gum	1	1	S	S	1	SW
Ester gum	S	S	S	S	S	S
Unvulcanized rubber	S	S	S-G	SS	ŧ	SS-G
S: soluble G: tendency to gel		lightly soluble soluble with al		-	oluble nen warm	

Table 10.21: Comparative Evaporation Rates of Various Ethers (19)

- (A) Ethyl ether
- (B) Acetone
- (C) Isopropyl ether
- (D) Ethyl acetate
- (E) Dioxane

- (F) Butyl acetate (90%)
- (G) "Cellosolve" solvent
- (H) "Cellosolve" acetate
- (I) Dichlorethyl ether
- (J) Diethyl "Carbitol"

Table 10.22: Specific Gravities of Various Ethers (19)

Table 10.23: Vapor Pressure of Various Ethers (19)

Table 10.24: Ethylene Oxide (2)

Epoxyethane Dimethylene Oxide	CH2-CH2
Acidity (as acetic acid), % by wt.	0.005 (max.)
Boiling point, °C. 760 mm.	10.4
50 mm.	-44
10 mm.	-44 -66
Δ bp/ Δ p, °C./mm. Hg	0.033
Coefficient of expansion at 55°C.	0.033
	below 0
Flash point (open cup), °F. Freezing point, °C.	-112.5
Heat of vaporization (Btu/lb. at 1 atm.)	245
Molecular weight	44.05
Refractive index (np at 7°C.)	1.3597
Solubility, % by wt. at 20°C.	1.3377
in water	infinite
water in	infinite
Specific gravity, 20/20°C.	0.8711
Δ SG/ Δ T	0.00140
•	0.8763
Specific heat at 20°C.	7.30
lb./gal. at 60°F.	1120
Vapor pressure, mm. Hg at 20°C.	
Viscosity (absolute) in centipoises, 0°C.	0.3

Table 10.25: Enthalpy and Entropy of Ethylene Oxide (19)

1,2-Epoxypropane

Propylene oxide is soluble in water and miscible with most organic solvents. It is found to be an excellent low-boiling solvent for cellulose acetate, nitrocellulose, adhesive compositions and vinyl chloride-acetate resins. It is also a solvent for hydrocarbons, gums and shellac. Some of its uses are as a solvent and stabilizer in DDT aerosol-type insecticides, and as a fumigant and food preservative. Since it is an acid acceptor, it is also used as a stabilizer for vinyl chloride resins and other chlorinated systems.

Acidity (as acetic acid), % by wt. (max.)	0.01
Boiling point, °C.:	
760 mm. Hg	34.0
50 mm . Hg	-26
10 mm . Hg	-52
Δ BP/ Δ P., °C./mm. Hg	0.037
Coefficient of expansion at 55°C.	0.00157
Distillation at 760 mm., °C.:	0.00137
Initial BP/min.	33.0
DP, max.	
·	37.0
Flash point (open cup), °F.	- 35
Freezing point, °C.	-104.4
Heat of vaporization (Btu/lb. at 1 atm.)	160
Molecular weight	58.08
Refractive index (np at 20°C.)	1.3657
Solubility, % by wt. at 20°C .:	
in water	40.5
water in	12.8
Specific gravity, 20/20°C.	0.8304
SG/T.	0.00125
Specific heat at 15°C.	0.465
lb./gal. at 60°F.	
	6.96
Vapor pressure, mm. Hg at 20°C.	449
Viscosity (absolute) in centipoises, 20°C.	0.4

Table 10.27: Freezing Points of Solutions of Ethylene Oxide and Propylene Oxide (19)

Table 10.28: 1,2-Butylene Oxide (2)

1,2-Epoxybutane

1,2-Butylene oxide is a colorless mobile liquid. This low boiling liquid has but limited water solubility, yet is miscible with most common organic solvents. It undergoes the usual reactions of epoxides with compounds having labile hydrogen atoms. Some of these are acids, amines, ammonia, alcohols, phenols, polyols, thiols, etc. Butylene oxide can be polymerized or copolymerized with other alkylene oxides to yield polyethers. The resulting polymers are less water soluble than the polymers made from ethylene and propylene oxide, of equivalent chain length.

Boiling point, °C. at 760 mm. Coefficient of expansion at 20°C. Freezing point, °C.	63.2 0.00132 -150	Surface tension at 20°C., dynes/cm. Vapor pressure, mm. Hg at 20°C. Viscosity (absolute) in centipoises:	23.9 141
Heat of combusion (Btu/lb. at 25°C.)	14,665	0°C.	0.54
Heat of vaporization (Btu/lb. at 1 atm.)	•	20°C.	0.41
and 63.2°C.	181	40°C.	0.33
Molecular weight	<i>7</i> 2.11		
Refractive index (nD at 20°C.)	1.3840		
Solubility, % by wt. at 20°C.:			
in water	5.91		
water in	2.65		

Table 10.29: CARDOLITE NC-513: (71)

CHEMICAL STRUCTURE:

TYPICAL PROPERTIES:

THE CLEAN THE CONTRACT OF THE		
	Typical value	Specification
Viscosity @ 25°C [cPs]	50	40-70
Epoxy equivalent weight { EEW }	490	424-575
Flash point (closed cup)	400°F/205°C	-
Density @ 25 °C [lbs/gal (kg/l)]	8.17 (0.97)	-
Color [Gardner]	<13	-
Appearance	reddish brown liquid	-
Hydrolyzable Chlorine	-	< 2 %
Recommended PHR (liquid epoxy resins, EEW = 190)	2-20	-

DESCRIPTION:

Cardolite NC-513 is a unique reactive epoxy flexibilizer and diluent. This low viscosity fluid has predominantly one reactive epoxy group per molecule which combines chemically into the epoxy system.

APPLICATIONS:

- · Flexibilization of solvent free and high solids surface tolerant marine and industrial coatings.
- Industrial flooring requiring excellent chemical-, water- and abrasion resistance.
- Preparation of amine adducts.
- Coatings in contact with potable water (NSF approval)

ADVANTAGES:

- · Excellent chemical and water resistance
- Increased thermal shock resistance
- Maintains electrical properties
- Low volatility
- · Aids in Bis-Phenol F resin and Curing Agent compatibility

REGULATIONS:

- United States Department of Agriculture acceptance.
- National Sanitation Foundation (NSF), coatings for use with potable water; NC-513 is being used in coatings that have NSF approval.
- Ozone Depleting Chemicals-certification that products are not classified as / are not manufactured with Class I or Class II ozone depleting chemicals.

Table 10.30: 1,4-Dioxane (2)

1,4-Dioxan 1,4-Diethylene Oxide Dioxyethylene Ether Diethylene Ether Diethylene Dioxide

1,4-Dioxane is a colorless, stable liquid with a faint, pleasant odor. Although it has been known as far back as 1863, it was not until 1929 that is became commercially available. It is chemically a di-ether obtained by the loss of water from two molecules of ethylene glycol. It is completely soluble in water, as well as most organic solvents. It is freely soluble in mineral, vegetable, blown and heat-bodied oils, and oil soluble dyes. Most waxes are more readily soluble in dioxane when heated and examples of these are beeswax, carnauba, montan, paraffin, gilsonite, and Japan wax.

Acidity (as acetic) Boiling point 760 mm Distillation range at 760 mm Coefficient of expansion

Flectrical conductivity at 25°C Flash point Freezing point Heat of combustion Heat of fusion Heat of vaporization Refractive index at 20°C Specific gravity at 20/20°C

Specific heat at 20°C
Surface tension at 25°C
Solubility in water at 20°C
Solubility of water in dioxane at 20°C
Viscosity at 25°C
Vapor pressure at 20°C
Water content at 20°C

Weight per gal at 20°C

0.010% by wt, max 101.3°C 95-103°C 0.001030 (per °C) to 20°C 0.001070 (per °C) to 55°C 2 × 10⁻⁸ recip. ohms 65°F 11.7°C 581 kg cal/mol 33.8 cal/g 98.6 cal/g 1 4221 1.0356 1 0353 0.420 cal/g36.9 dynes/cm Complete Complete 0.0120 poise

29.0 mm Hg Miscible without turbidity with 19 vol. 60° Be gasoline

8.61 lbs

Table 10.31: Trioxane (2)

Cyclic Trimeric Polymer of Formaldehyde

Trioxane is a most unusual chemical. It is an excellent solvent for many classes of materials. Concentrated aqueous solutions of trioxane have solvent properties which are not possessed by trioxane itself. Molten trioxane dissolves numerous organic compounds, such as naphthalene, urea, camphor, dichlorobenzene, etc. It is stable in alkaline or neutral solutions, yet it is depolymerized to formaldehyde by small amounts of strong acid or acid-forming materials, and the rate of depolymerization can be readily controlled.

	Pr	operties	
Colorless, crystalline compound		Solubility:	
Molecular weight	90.05	Water	Readily soluble
Odor	Mild, pleasant	Alcohols	Readily soluble
Melting point	61°C	Ketones	Readily soluble
Boiling point	115°C	Ethers	Readily soluble
Vapor Pressure:		Esters	Readily soluble
25°C	13 mm	Chlorinated hydrocarbons	Readily soluble
86°C	283 mm	Aromatic hydrocarbons	Readily soluble
114.5°C	759 mm	Vegetable oils	Readily soluble
129°C	1212 mm	Naphthalene	Readily soluble
Flash point	45°C	Phenol	Readily soluble
Density (molten) at 65°C	1.170	Petroleum ether	Slightly soluble

Table 10.32: Vinyl Methyl Ether (2)

CH2=CHOCH3

Vinyl methyl ether is a gas at ordinary temperature and pressure. When condensed it is a colorless, mobile liquid having a vapor pressure at 760 mm. at 5.5°C. It is miscible with most organic solvents, but only slightly soluble in water or polyhydroxy organic compounds such as glycols. In volatility and flammability it resembles liquefied petroleum gases.

Boiling point, 760 mm.	5.5°C.	Solubility of water in ether at 25°C.	0.51% by wt.
Flash point (Cleveland open cup)	-69°F. (-56°C.)	Specific gravity at 5.7/4°C.	0.7694
Freezing point	-122°C.	Specific gravity at 20/4°C.	0.7511
Molecular weight	58.08	Vapor pressure at 25°C.	1550 mm . Hg
Odor	Śweet, pleasant	Vapor pressure at 70°F.	28 psi abs.
Refractive Index	1.3947	Weight per gallon at 25°C.	6.17 lbs.
Solubility in water at 25°C.	0.82% by wt.		

Table 10.33: Vinyl Ethyl Ether (2)

CH2=CHOCH2CH3

Boiling point, °C.:		Molecular weight	72.10
760 mm.	35.5	Refractive index (np at 20°C.)	1.3774
50 mm.	-24	Solubility, % by wt. at 20°C.:	
10 mm.	-49	in water	0.9
Δ BP/ Δ P., °C./mm. Hg	0.038	water in	0.2
Coefficient of expansion at 55°C.	0.00165	Specific gravity, 20/20°C.	0.7541
Flash point (open cup), °F.	belaw 0	$\Delta SG/\Delta T$.	0.00117
Freezing point, °C.	-115.3	Vapor pressure, mm. Hg at 20°C.	428
Heat of vaporization (Btu/lb. at 1 atm.)	161	Viscosity (abs.) in centipoises, at 20°C.	0.2

Table 10.34: Vinyl 2-Chloroethyl Ether (2)

CH2=CHOCH2CH2CI

Boiling point, °C.:		Solubility, % by wt. at 20°C.:	
760 mm.	109.1	in water	0.6
50 mm.	39	water in	0.4
10 mm.	10	Specific gravity, 20/20°C.	1.0498
Δ BP/ Δ P., °C./mm. Hg	0.044	ΔSG/ΔT.	0.00123
Coefficient of expansion at 55°C.	0.00118	Vapor pressure, mm. Hg at 20°C.	18.6
Flash point (open cup), °F.	90	Viscosity (abs.) in centipoises:	
Freezing point, °C.	-69.7	0°C.	1.1
Heat of vaporization (Btu/lb. at 1 atm.)	154	20°C.	0.8
Molecular weight	106.55	40°C.	0.6
Refractive index (np at 20°C.)	1.4381		

Table 10.35: Vinyl Butyl Ether (2)

CH2=CHOC4H9

Boiling point, °C.:		Molecular weight	100.16
760 mm.	94.2	Refractive index (np at 20°C.)	1.4007
50 mm.	24	Solubility, % by wt. at 20°C.:	
10 mm.	-4	in water	0.30
Δ BP/ Δ P., °C./mm. Hg	0.044	water in	0.09
Coefficient of expansion at 55°C.	0.00133	Specific gravity, 20/20°C.	0.7803
Flash point (open cup), °F.	15	$\Delta SG/\Delta T$.	0.00100
Freezing point, °C.	-112.7	Vapor pressure, mm. Hg at 20°C.	40.4
Heat of vaporization (Btu/lb. at 1 atm.)	137	Viscosity (abs.) in centipoises, 20°C.	0.5

(continued)

CH ₂ =	CHOC	Hoch	(CH ₃)2

Boiling point, °C.:		Refractive index (n _D at 20°C.)	1.3961
760 mm.	83.4	Solubility, % by wt. at 20°C.:	
50 mm.	17	in water	0.2
10 mm.	- 7	water in	0.08
Δ BP/ Δ P., °C./mm. Hg	0.045	Specific gravity, 20/20°C.	0.7706
Coefficient of expansion at 55°C.	0.00140	ΔSG/ΔT.	0.00104
Flash point (open cup), °F.	15	Specific heat at 15°C.	0.512
Freezing point, °C.	-132.3	Vapor pressure, mm. Hg at 20°C.	59.5
Heat of vaporization (Btu/lb. at 1 atm.)	144	Viscosity (abs.) in centipoises, at 20°C.	0.4
Molecular weight	100.16	•	

Table 10.37: Vinyl 2-Ethylhexyl Ether (2)

CH ₂ =CHO	CH ₂ CH(C	2H5)C	_ν Η _ο
4			

Boiling point, °C.:		Refractive index (np at 20°C.)	1.4273
760 mm.	177.7	Solubility, % by wt. at 20°C.:	
50 mm.	95	in water	0.01
10 mm.	62	water in	0.05
Δ BP/ Δ P., °C./mm. Hg	0.053	Specific gravity, 20/20°C.	0.8102
Coefficient of expansion at 55°C.	0.00107	$\Delta SG/\Delta T$.	0.00084
Flash point (open cup), °F.	135	Vapor pressure, mm. Hg at 20°C.	0.60
Freezing point, °C.	100*	Viscosity (abs.) in centipoises:	
Heat of vaporization (Btu/lb. at 1 atm.)	129	0°C.	1.5
Molecular weight	156.26	20°C.	1.0

^{*}Sets to a glass below this temperature

Table 10.38: Typical Properties of the Vinyl Ethers (49)

Vinyl Ether	Point OC	Boiling P Temp. OC at mm		Flanmabi Op	lity
Methyl	-122°	5-6°	760	-69°	(a)
Isopropyl	-1400	55-560	760	•	
Isobutyl	-112°	25° 83°	77 760	200	(a)
2-Ethylhexyl	-100°	62-64 ⁰ 178 ⁰	18 760	•	
Isooctyl	-80°	80° 175-6°	25 760	1400	(a)
Decyl	-410	60 -98 º	5	1850	(a)
Cetyl	16°	142° 173°	1 5	325°	(a)
Octadecy1	28°	124-168° 147-187°	2 5	350°	(a)
Dimethylaminoethyl	= point - open cu	42-44 ⁰ p method. (b) Fire poi	30 nt - ASTM D-92.	1100	(b)

Table 10.38: (continued)

Vinyl Ether	Refractive Index	Pounds Specific per Gallon Gravity @ 25°C	Typical Vinyl Ether Content
Methyl	1.3947-25 D	$0.7694 \frac{5.7}{4} 6.17$	997
Isopropyl	1.3849 <u>20</u>	$0.753 \frac{20}{4} 6.28$	98%
Isobutyl	1.3965 $\frac{20}{D}$	$0.768 \frac{20}{4} 6.40$	98%
2-Ethylhexyl	1.4273 <u>20</u>	$0.810 \frac{20}{20} \qquad 6.74$	95%
Isooctyl	1.4256 <u>25</u>	$0.802 \frac{20}{4} 6.66$	98%
Decyl	1.4278 <u>25</u>	0.812 <u>20</u> 6.75	98%
Cetyl	1.4444 $\frac{25}{\bar{D}}$	$0.822 \frac{27}{15} 6.85$	97 %
Octadecyl	1.4440 <u>30</u>	0.80 cast solid 0:821 30 1iquid 6.84	95%
Dimethylaminoethyl	1.4225 <u>25</u>	$0.830 \frac{20}{20} 6.85$	99%

Table 10.39: Phenyl Methyl Ether (2)

Anisole

Anisole is a high-boiling, mobile, straw-colored liquid with excellent thermal stability. It is immiscible in water and glycols but completely miscible with most common solvents. It is useful as a solvent for many organic compounds and it has unusual solvency for asphalts and pitches.

Boiling point at 760 mm. Hg, °C.	153.8
Flash point (Cleveland open cup), °F.	125
Heat of combustion, kcal./g. mol	905.2
Heat of vaporization at boiling point, cal./g. mol	8.8
Refractive index (nD at 20°C.)	1.5165
Molecular weight	108.13
Specific gravity, 18°/4°C.	0.996
Specific heat:	
24°C.	0.422
31.6°C.	0.462
Vapor pressure, mm. Hg:	
40°C.	8.4
60°C.	25
80°C.	63
100°C.	140
120°C.	275

Table 10.40: Dibenzyl Ether (2)

Dibenzyl ether is a clear, almost colorless liquid. It is miscible with alcohols and ethers, but insoluble in water. Dibenzyl ether is used as special solvent and delustering agent for textiles.

Boiling point, °C.:		Flash point (open cup) °F.	275
760 mm.	298	Melting point, °C.	5 (approx.)
15 mm.	165-168	Molecular weight	198.3
Distilling range, °C.:		Specific gravity, 25°/25°C.	1.041-1.045
5%	220 (min.)	Solidifying temperature, °F.	below 45
50%	300	, ,	
dry point	308		

Table 10.41: Diphenyl Oxide (77)

Diphenyl Ether

Diphenyl oxide is a practically colorless crystalline solid with a strong geranium-like odor. It is almost completely insoluble in water, but dissolves in most of the common organic solvents. Its high thermal stability at temperatures as high as 350° to 400°C, together with its noncorrosiveness and general chemical inertness make it eminently suitable as a component of high-boiling heat transfer media.

TYPICAL PROPERTIES

Molecular weight			170
Diphenyi oxide		•••	>99% by weight
Crystallising point			26.6°C
Distillation range at 760 m	m Hg :	:	
initial boiling point			253·0°C
5% by volume			254·0°C
95% by volume		• • • •	256·0°C
final boiling point			260 [.] 0°C
Flash point (Pensky Mar	tens c	losed	
cup)			240°F (115°C)
Ash			0.001% by weight
Acidity (as hydrochioric	acid)		0.001% by weight
Water content			0.02% by weight
Phenol content			0.02% by weight

PHYSICAL PROPERTIES

The following are values for pure diphenyl oxide :

Density at 30/4°C			1:066 g/ml
Latent heat of fusion	•••		22-9 cal/g
Specific heat at 30°C		• • •	0-40
Vapour pressure at 25°C			0-02 mm Hg
Viscosity at 25°C			3.86 cP
Refractive index n 25			1.57870

Table 10.42: Miscellaneous Alkyl Aryl Ethers (2)

These ethers are generally high-boiling, water insoluble liquids of pleasant odor, miscible with a variety of organic solvents and commercial oils, fats, waxes and resins.

	Physical Properti	es		
	Formula	Boiling Flash Range °C Point °F	Sp. Gravity 20/20	Molecular Wt.
Methyl Phenyl Ether (Anisole)	CH,OC,H,	150-160 120	0.993	
n-Butyl Phenyl Ether	C ₄ H ₂ OC ₄ H ₅	202-212 180	0.929	
Amyl Phenyl Ether	$C_sH_{11}OC_sH_s$	214-229 185	0.924	164.1
p-tert-Amylphenyl Methyl Ether	C ₅ H ₁₁ C ₆ H ₄ OCH ₃	239-243 210	0.942	
p-tert-Amylphenyl-n-Amyl Ether	C ₅ H ₁₁ C ₆ H ₄ OC ₅ H ₁₁	285-295 260	0.905	234.2
Amyl Benzyl Ether	C ₅ H ₁₁ OCH ₂ C ₄ H ₅	224-239 175	0.912	
Amyl Tolyl Ether	C ₅ H ₁₁ OC ₆ H ₄ CH ₂	240-264 195	0.916	
Amyl beta Naphthyl Ether	C ₅ H ₁₁ OC ₁₀ H ₇	320-350 310	1.01	
Amyl Xylyl Ether	$C_5H_{11}OC_6H_3(CH_3)_2$	250-263 205	0.907	

Table 10.43: Furan (11)

Furan is a cyclic dienic ether stabilized by benzene-like resonance. Because of its conjugated unsaturation and heterocyclic atom, furan will undergo many types of reactions. It is, therefore, of interest as a chemical intermediate for pharmaceuticals, insecticides and fine chemicals. The heterocyclic oxygen atom in a ring with conjugated unsaturation gives furan a combination of ether, aromatic and olefinic characteristics. This polyfunctionality permits it to undergo a variety of reactions. Compared to benzene, the furan ring has greater reactivity, and is more susceptible to cleavage, thus resembling the vinyl ethers. Like the vinyl ethers, the furan ring is cleaved by aqueous acids. This reaction is accompanied by resinification.

PHYSICAL PROPERTIES

Physical State Liquid Color Colorless Odor Characteristic ethereal Specific Gravity at 20°/4°C. 0.937 -85.61°C. (-122.10°F.) Freezing Point 0.170 lb./cu. ft. 31.3°C. (88.45°F.) Vapor Density Boiling Point (760 mm.) -32°F. Flash Point (Tag. closed cup) Refractive Index n20/D 1.4214 Molecular Weight 68.07 Flammability or Explosive Limits 2.3-14.3 vol. % in air Heat of Vaporization at 31.2°C. 95.5 cal./gram Heat of Combustion at constant vol. 500.1 kg.-cal./gram-mole Critical Temperature 214°C. Heat of Formation at 25°C. -14.9 kcal./mole Solubility in:

> Water (wt. % at 25°C.) 1 Most organic solvents ∞

Table 10.44: 2-Methylfuran (2)

Sylvan

2-Methylfuran is a cyclic diene possessing ether-like properties. It is highly reactive with many inorganic and organic compounds yielding a variety of new derivatives which await exploration for the development of commercial applications.

(continued)

Appearance Colorless, mobile liquid Odor Ether-like Molecular weight 82.098 Boiling point at 760 mm 62-64°C (144-47°F) -88°C (-126.4°F) Freezing point Specific gravity, 20°C./4°C. 0.915 Index of refraction, N20/D 1.434 -30°C (-22°F) Flash point Vapor pressure at 15°C. (59°F) 110.5 mm 20°C. (68°F) 139 mm 25°C. (77°F) 174 mm 30°C. (96°F) 216 mm Solubility in water at 25°C Less than 0.3 gm/100 gm.

Table 10.45: Tetrahydrofuran (11)(49)

Product Information

Tetrahydrofuran (THF, tetramethylene oxide, diethylene oxide, 1,4-epoxybutane, tetrahydrofurane, oxolane) is an industrial solvent widely recognized for its unique combination of useful properties. DuPont THF is better than 99.9% pure with a small (0.025-0.040 wt %) amount of butylated hydroxytoluene (BHT, 4-methyl-2,6-di-tert-butyl phenol) added as an antioxidant. Tetrahydrofuran is a cycloaliphatic ether and is not "photochemically reactive" as defined in Section k of Los Angeles County's Rule 66 (equivalent to Rule 442 of the Southern California Air Pollution Control District). THF has an ethereal odor.

Physical Properties of Tetrahydrofuran

Molecular Weight		72.108	Coefficient of Thermal Expansion,	
Boiling Point (760 mm	Hg), °C (°F)	66 (151)	10–20°C, av/°C 50–68°F, av/°F	0.00126 0.00070
Freezing Point, °C (°F)	1	-108.5 (-163)	Flash Point (TCC),°C (°F)	-14.4 (6)
Vapor Pressure, 20°C mm Hg (kPa)	(68°F),	143 (19.1)	Autoignition Temperature, °C (°F)	321 (610)
Density, Liquid, 20°C (68°F), g/mL (mg/m³) lb/gal	0.888 7.41	Flammability Limits in Air, 25°C (77°F), lower upper	2 11.8
Vapor (air = 1	1)	2.49	Critical Temperature, °C (°F)	268 (514)
Evaporation Rate (n-b	outyl acetate = 1)	8.0	Critical Pressure, atm (MPa)	51.2 (5.19)
Viscosity, 20°C (68°F), Surface Tension in Ai	•	0.48	Dielectric Constant, ε, 20°C (68°F) 30°C (86°F)	7.54 7.25
dyn/cm (mN/m)	1,23 6 (77 1),	26.4	Conductivity, 25°C (77°F), µ mhos/cm	0.015
Refractive Index, n 20			μ S/m	1.5
Heat of Vaporization (1.4073 95	Dipole Moment, µ, 25–50°C (77–122°F), Debye Units	1.6
	Btu/lb kJ/kg	171 398	Solubility Parameter, δ	9.1
Hand of Camburdian (330	Hydrogen-Bonding Index, γ	5.3
Heat of Combustion (- at 25°C (77°F) liq	kcal/mol Btu/lb kJ/q	598.4 14938 34.72	Miscibility: water, esters, ketones, alcohols, diethyl ether; aliphatic, aromatic and chlorinated hydrocarbons	Infinite
Specific Heat, Liquid, 20°C (68°F), cal/g-C kJ/kg-l	(Btu/lb·F)	0.469 1.97		
50°C (122°F), cal/g- kJ/kg		0.496 2.090		
Vapor, 66°C (151°F), cal/g·C (Btu/lb·F) kJ/kg·K	0.37 1.55		

Table 10.45: (continued)

Tetrahydrofuran-Soluble Plastics, Resins, and Elastomers

Acrylic Resins

Methyl methacrylate polymers Ethyl, butyl, and other methacrylate polymers Acrylic polymers and copolymers

Alkyd and Amino Resins

Alkyd resins

Urea formaldehyde resins (uncured) Phenol formaldehyde resins (uncured)

Cellulosics

Cellulose acetate
Cellulose acetate butyrate
Cellulose acetate stearate
Ethyl cellulose
Nitrocellulose

Miscellaneous Resins

Acrylonitrile-butadiene-styrene copolymers
Styrene-acrylonitrile copolymers
Chlorinated polyethylene
Polycarbonates
Polysulfones
Epoxy (uncured)
Silicones (uncured)
Polyesters (low molecular weight)
Polyamides (low molecular weight)
Polystyrene

Styrene-butadiene copolymers (some)

Elastomers

Butadiene-acrylonitrile copolymers (some) Chlorinated rubbers Chlorosulfonated polyethylenes Polysulfides

Polyurethanes (uncured) Rubber (natural, unvulcanized) Chloroprene elastomers

Vinyl Resins

Polyvinyl acetate
Polyvinyl butyrate
Polyvinyl butyrals
Polyvinyl chloride
Vinyl chloride copolymers
Vinylidene chloride copolymers
Vinylidene (some)

Natural Resins

Congo ester
Coumarone-indene
Raw dammar
Ester gum
Manila copal
Pentaerythritol ester gum
Rosin
Shellac (many)

Chemical Structure (49)

H₂O—CH₃

Tetrahydrofuran (mol. wt. = 72.1)

C.A. No. 109999*

Other common names are: Diethylene Oxide 1,4-Epoxybutane Oxacyclopentane Oxolane

The GAF product assays better than 99.8% and is stabilized with 0.025% of the antioxidant BHT (4-methyl-2,6-di-tert.-butyl phenol).

"SOCMA "Handbook Commercial Organic Chemical Names" Chemical Abstracts Registry Number (ACS publ.)

Typical Properties (49)

Physical Form	liquid
Color (APHA)	20 max
THF Assay (%)	99.8 min
Total Impurities (wt%)	0.135 max
Water Content (wt%)	0.03 max
Peroxides (as THF-hydroperoxide, wt%)	0.015 max
Stabilizer (wt%)	0.025-0.04
Other Impurities	0.05 max
Boiling Point	66°C™ _{inm} (151"F)
Freezing Point	-108.5°C (-163°F)
Liquid Density (20°C)	0.888 g/cc (7.41 lb/gal)
Vapor Density (air = 1)	2.56 calc.
Specific Gravity (20/4°C)	0.886-0.889
Viscosity (20°C)	0.53 cps
Surface Tension (25°C)	26.4 dynes/cm
Refractive Index (n _D ²⁰)	1,4073
Coefficient of Cubical Expansion (10-20°C)	0.00129 Av/°C (0.00070 Av/°F)
Flash Point (Tag closed cup)	-14.4°C (6°F)
Flammability Limits (%/vol in air, 25°C)	2 (lower); 11.8 (upper)
Ignition Temperature	321°C (610°F)
Specific Heat (cal/g/°C) for Liquid	0.469 calc. at 20°C;
·	0.496 calc. at 50°C
Specific Heat (cal/g/°C) for Vapor	0.37 calc. at 66°C
Latent Heat of Vaporization (cal/g, 66°C)	98.1 calc.
Critical Temperature	268°C (514°F)
Critical Pressure	51.2 atm
Heat of Combustion (kg-cal/mole)	597 calc.
Heat of Formation (kg-cal/mole)	52.7 calc.
*Dipole Moment (25-50°C)	1.7 Debye
Dielectric Constant (20°C)	7.58
Conductivity (mhos/cm, 25°C)	1.5 x 10 ^{-a}
Evaporation Rate (n-butyl acetate = 1)	8.0
Solubility Parameter	9.1 calc.
Hydrogen-Bonding Index	5.3
Miscibility with water, alcohols, diethyl ether, esters,	
ketones, aliphatic, aromatic, and chlorinated	1-41-14-
hydrocarbons	infinite

These data are typical of current production but are not necessarily specifications.

High Solvent Capacity for Resins

Many THF applications are based on its solvent capacity for resins, including high-molecular-weight vinyls. For example THF is the solvent-of-choice for:

- PVC pipe welding and bonding of other molded items
- Vinyl topcoating formulations, e.g. for automobile roofs and upholstery
- Magnetic tape binder systems
- Thermoplastic polyurethane coatings
- Printing inks for plastics
- Polyurethane adhesives for shoes
- Polyester laminating adhesives
- Polymer reactor cleaning

PVC, CPVC, polyvinylidene, and vinyl chloride copolymers dissolve readily in THF at room temperature. Solutions with high solids content and workable viscosities can be prepared. Many other resins, elastomers, and uncured polyurethanes and epoxies are soluble. The list includes:

Extraction Solvent

THF is an excellent extraction solvent for many natural products, including alkaloids, fats, waxes, rubbers, and resins. The following natural resins are soluble in THF: congo ester coumarone-indene ester aum dammar manila copal pentaerythritol ester gum rosin shellac A 66° boiling point allows refluxing in normal water-cooled systems without loss of THF; it also simplifies separation and recovery of the desired product.

Mixtures of THF and water are especially effective solvents for alkaloids, such as caffeine.

Typical Range of Resin Solubilities in THF vs MEK

Resin Type	Wt% Resin	for 2500 cps, 25°C MEK
Polyvinyl Chloride'	13-20	<3-5
Chlorinated Polyvinyl Chloride ²	16	<5
Poly (Vinyl Chloride/Vinyl Acetate)3	27-40	17-22
Polyurethane ⁴	17	<3
Polyvinylidene Chloride ⁵	44	<3
"Exon" 654 (Firestone) "Geon" 121, 101, 103EP (Goodrich)	*Hi-Temp "Ge	on'' (Goodrich)
PVC-71 Dispersion (Diamond Shamrock)	3"'Vinylite" VYI	NS, VMCH,
PVC Pearls 2200, 2250 (Escambia)	VYHH, VAGH	(Union Carbide)
"Marvinoi" 10 (Uniroval)		
"Marvinol" 10 (Uniroyal) "Vinylite" QYNV (Union Carbide)	4"Estane" 570	1 F-1 (Goodrich)

Typical

Rapid Evaporation and Diffusion Rates

When used in topcoating, printing, or other continuous operations, THF has a distinct advantage over many other solvents due to its rapid evaporation and diffusion through plastic films. This can substantially reduce costs by permitting increased machine speeds.

Solvent	Comparative Evaporation Rate	
THF	800	
DMF	30	
1,4-Dioxane	310	
Ethyl Ether	3300	
MEK	570	
Toluene	240	
Butyl Acetate	100	

The rate of diffusion of THF through PVC or polyvinylidene films is about twice that of MEK.

i ypicai Resin-Sovent Applications	Advantages of THF		
Welding PVC pipe and bonding molded plastic articles.	Gives rapid, uniform bite into substrate. Can be used uncompounded as primer coat for cement. Has short set time or can be used with cosolvent to control set time. Compatible with inorganic fillers. Contributes excellent bond strength. Can be used with highest molecular weight resins for toughness. Low viscosity solutions simplify application by machine or hand. Stabilizes adhesive solutions and minimizes gelling. Redisperses accidentally gelled formulation. Rapid evaporation increases production rates.		
Topcoating formulations for vinyl fabric and sheeting	Exceptional capacity for high-molecular- weight resins. Coatings are dielectric heat sealable, resistant to plasticizer migration, have good strength and durability. Can be used in solvent mixtures to stabilize the cosolvent and reduce viscosity.		
Magnetic tape manufacture	Promotes uniform coating thickness when used in the binder system or in prime coats on polyester or cellulose acetate. Rapid drying. Increases production rates.		
Pigmented polyurethane coatings	No effect on colors. In solutions with coalescents, produces good films for transfer coating fabric laminates employing urethanebased adhesive tie coats.		
Shrink and blister packaging	Produces films with strength, clarity and uniformity; more impermeable to moisture and air than many calendered or organosol-cast films. Requires minimum amount of solvent which is easily recovered for low cost. Rapid evaporation and diffusion reduce solvent retention and bubble formation.		

Typical Resin-Sovent Applications

Advantages of THF

mount of the replications	Automos v. v
Cellophane coating	Minimizes gelling of coating formulation. Gives high coating speeds. Improves clarity and functional properties of cast film.
Printing inks	Permits use of high-molecular-weight resins for ink toughness. Can be used in flexographic and gravure inks and for printing PVC wire insulation and vinyl sheeting or fabrics. Quick bite and rapid evaporation reduces smears.
Cleaning polymer reactors, engines, machinery; paint removers	Water flushable. Removes vinyl, polyurethane, ABS, polystyrene, and other resin deposits. Residues usually dissolve with mild agitation. Easily recovered. Can be used to improve formulations for paint removers based on nonflammable solvents. Has synergistic effect in cold cleaners.

Table 10.46: 2,3-Dihydropyran (2)

Physical Properties

Colorless liquid with characteristic odor

 Molecular weight
 84.11

 Boiling point
 85-86°C

 Sp., g. 4°C
 0.923

Table 10.47: Tetrahydropyran (2)

Pentamethylene Oxide

Tetrahydropyran reacts with chlorine to form mono-, di-, tri- and tetrachlorotetrahydropyrans. Reaction with acid chlorides yields omega-haloamyl esters. Conversion to dihalides such as 1,5-dibromopentane and 1,5-dichloropentane can be effected. Ammonia and aliphatic and aromatic amines yield piperidine and substituted piperidines. It is used as a solvent for resins, plastics and rubbers. Lacquers can be made by dissolving certain organic film-forming substances in tetrahydropyran. Solutions of high solids content at a working viscosity can be obtained. A solution of nitrocellulose in tetrahydropyran gives clear, nonblushing films. Tetrahydropyran is miscible with water, drying oils and most common organic solvents. The ether-like structure and ability of tetrahydropyran to dissolve a wide range of nonresinous materials suggest its use as a reaction medium for chemical processes such as Grignard reactions.

Appearance Colorless, mobile, liquid Odor Ether-like
Molecular weight 86.13
Boiling point 88°C at 760 mm
Specific gravity, 20°C/4°C 0.8814

Index of refraction, N20/D 1.420 Flash point -4°F

Solubility—Miscible with water; less soluble in hot than cold water. Miscible with alcohol, ether, and most common organic solvents.

Table 10.48: Tetrahydropyran-2-Methanol (19)

PHYSICAL PROPERTIES

Determined on specially purified sample

Molecular Weight	116.16
Apparent Specific Gravity at 20/20°C	1.0272
Δ Sp.Gr./Δ t., 10 to 40°C	0.00083 per °C.
True Density at 20°C	.1.0254 g. per ml.
Boiling Point	
at 760 mm. Hg	186.8°C.
at 300 mm. Hg	154°C.
ot 10 mm. Hg	72°C.
Vapor Pressure at 20°C	< 0,1 mm. Hg
Δ b.p./Δ p., 750 to 770 mm. Hg	0.051 °C. per mm. Hg
Absolute Viscosity	
at 0°C	29.3 cps.
at 20°C	11.0 cps.
ot 40°C	5.4 cps.
Surface Tension at 25°C	34.1 dynes per cm.
Freezing Point	–70°C. (a)
Heat of Vaporization at 1 atm	164 Btu per lb.
at 300 mm. Hg	173 Btu per lb.
Refractive Index, n _D 20°C	1.4581
Λ n _D /Λ t., 20 to 40°C	
Solubility	
In Water at 20°C.	Complete
Water In at 20°C	Complete
Solubility in Organic Solvents at 25°C.	
acetone, benzene, ethyl ether, heptane,	
methanal, carbon tetrachloride	Complete
Flash Point, Cleveland open cup (ASTM Method D92)	200° F. (b)

⁽a) Sets to a glass below this temperature
(b) Commercial material

Table 10.49: Terpinyl Methyl Ether (2)

This terpine ether known as terpinyl methyl ether is a light, colored liquid with a pleasant odor, which contains some impurities. It is a strong solvent for resins and is used in alkyd enamels to the extent of 2 per cent to which it imparts flow.

Aniline point	Below -20°C
Color (Lovibond 500 Amber Series Glasses)	1.0
Distillation range (ASTM)	
5%	215.0°C
80%	216.5°C
90%	217.5°C
95%	218.°C
Flash point (Cleveland open cup)	178°F
Freezing point	Below - 10°C
Kauri-Butanol solvency value	Approx. 500
Moisture	0.10%
Refractive index at 20°C	1.4712
Specific gravity at 15.5/15.5°C	0.9192
Viscosity at 25°C (Ubbelohde)	31.8 cp

Glycol Ethers

Table 11.1: ARCOSOLV Ethylene and Propylene Glycol Ethers (70)

Physical Properties

	ARCO TRADENAME	CHEMICAL NAME	CHEMICAL STRUCTURE	CASI	MOL. WT.	BOILING PT. *C 760mm	8PECIFIC GRAVITY 20/20	L88/GAL 20°C	GETA FLASH*F	EVAPORATION RATE (n-BuAs=100)
	PM	Propylene Glycol Methyl Ether	СН₃ОСН₂СНОНСН₃	107-98-2	90.1	120	0.923	7.65	89 TCC2	66
	PE	Propylene Glycol Ethyl Ether	СН₃СН₂ОСН₂СНОНСН₃	52125-53-8	104.1	133	0.902	7.50	95	47
	PNP	Propylene Glycol n-Propyl Ether	CH ₃ (CH ₂) ₂ OCH ₂ CHOHCH ₃	1569-01-3	118.2	150	0.887	7.38	119 TCC2	21
1	РТВ	Propylene Glycol t-Butyl Ether	(CH3)3COCH2CHOHCH3	57018-52-7	132.2	153	0.870	7.25	113	25
	PNB	Propylene Glycol n-Butyl Ether	CH3(CH2)3OCH2CHOHCH3	5131-66-8	132.2	170	0.880	7.30	136	7
	DPM	Dipropylene Glycol Methyl Ether	CH3(OCH2CHCH3)2OH	34590-94-8	148.2	188	0.951	7.90	167	2
	DPNP ·	Dipropylene Glycol n-Propyl Ether	CH3(CH2)2(OCH2CHCH3)2OH	29911-27-1	176.3	212	0.922	7.70	190 CG3	1.3
ile at	DPTB	Dipropylene Glycol t-Butyl Ether	(CH3/3C(OCH2CHCH3/2OH	132739-31-2	190.3	212	0.907	7.54	188	1.5
	DPNB	Dipropylene Glycol n-Butyl Ether	CH3(CH2)3(OCH2CHCH3)2OH	29911-28-2	190.3	229	0.912	7.58	214	0.4
	ТРМ	Tripropylene Glycol Methyl Ether	CH³(OCH⁵CHCH³)³OH	25498-49-1	206.3	242	0.962	8.03	232	0.2
	TPNB	Tripropylene Glycol n-Butyl Ether	СН³(СН³)³(ОСН²СНСН³)³ОН	55934-93-5	248.4	278	0.934	7.80	255 PMCC4	<.1
	EM	Ethylene Glycol Methyl Ether	CH₃OC₂H₄OH	109-86-4	76.10	124	0.966	8.04	105 TCC ²	53
	EE	Ethylene Glycol Ethyl Ether	C ₂ H ₅ OC ₂ H ₄ OH	110-80-5	90.12	134	0.931	7.75	110 TCC2	35
	EP	Ethylene Glycol Propyl Ether	C ₃ H ₇ OC ₂ H ₄ OH	2807-30-9	104.15	149	0.913	7.59	120 TCC2	22
۱ "	EB	Ethylene Glycol Butyl Ether	CH ₃ (CH ₂) ₃ OC ₂ H ₄ OH	111-76-2	118.17	169	0.902	7.51	143 TCC ²	6
E-Series	EH	Ethylene Glycol Hexyl Ether	C ₆ H ₁₃ OC ₂ H ₄ OH	112-25-4	146.23	208	0.889	7.40	179 TCC ²	1
<u>۾</u> ا	EEH	Ethylene Glycol Ethyl Hexyl Ether	C4H9CH(C2H5)CH2OC2H4OH	1559-35-9	174.29	224	0.892	7.42	208	0.3
	DM	Diethylene Glycol Methyl Ether	CH3(OC2H4)2OH	111-77-3	120.15	191	1.023	8.51	191 TCC2	2
	DE	Diethylene Glycol Ethyl Ether	C ₂ H ₅ (OC ₂ H ₄) ₂ OH	111-90-0	134.17	198	0.990	8.25	195 TCC2	2
j	DP	Diethylene Glycot Propyl Ether	C ₃ H ₇ (OC ₂ H ₄) ₂ OH	6881-94-3	148.20	202	0.963	8.04	200 TCC ²	1
	DB	Diethylene Glycol Butyl Ether	C ₄ H ₉ (OC ₂ H ₄) ₂ OH	112-34-5	162.23	230	0.955	7.94	232 COC5	0.3

(continued)

Developmental Product
 Tag Closed Cup
 Closed Cup
 Pensky-Martens Closed Cup
 Cleveland Open Cup

Table 11.1: (continued)

able	11.1: (C	ontinu	ea)				HANS	EN SOLUBILI	TY PARAMET	ERS			
and the state of t	ARCO TRADENAME	%80L. IN H ₂ 0 20°C	REF. IMDEX 25°C	SURF. TENSION DYNER/CM 25°C	VAPOR PRESS mailig 20°C	Visc. cps. 25°C	CGS HAMSEN D	COS Hansen P	CGS HAMSEN H	CG8 TOTAL HANSEN	HEAT OF VAPORIZ. CAL/°C	SPECIFIC HEAT Cal/g°C 25°C	HLS DAVIES
	PM	100	1.402	27.0	8.1	1.7	7.5	3.2	7.5	11.1	107	0.58	8.3
	PE	100	1.405	29.7	4.4	1.8	7.4	2.7	6.9	10.5	98.5	0.55	7.8
	PNP [.]	100	1.410	27.0	1.8	2.3	7.6	2.4	6.5	10.3	93	0.55	7.4
	РТВ	17	1.410	24.4	1.9	3.4	7.3	2.1	6.0	9.7	81.0	0.55	6.9
-74	PNB:	6	1,416	26.3	0.62	3.1	7.5	2.1	6.0	9.8	78.5	0.63	6.9
夏 皇	DPM	100	1.420	29.0	0.17	3.4	7.4	3.0	6.3	10.2	73.4	0.53	8.2
	DPNP	18	1.422	25.8	0.05	4.4	7.4	2.4	5.7	9.6	74.9	0.51	7.2
	ОРТВ	12	1.421	26.0	0.04	4.9	7.3	2.2	5.4	9.3	.67.7	0.59	6.8
	DPNB	5	1.425	28.8	0.02	4.4	7.4	2.2	5.5	9.5	61.1	0.49	6.8
	ТРМ	100	1.428	29.0	0.03	5.6	7.4	3.0	5.7	9.8	74.0	0.51	8.1
	TPNB	3	1.433	29.9	<0.01	8.0	7.4	2.4	5.1	9.3	59.7	0.48	6.6
	EM	100	1.4021	30.8	6.2	1.5	7.9	4.5	8.0	12.1	123.9	0.53	8.8
	EE	100	1.4076	29.3	3.8	2.1	7.9	4.5	7.0	11.5	107.5	0.56	8.3
	EP.	100	1,4136	27.9	1.3	2.4	7.9	4.2	6.6	11.1			7.8
	EB	100	1.4193	26.6	0.6	6.4	7.8	2.5	6.0	10.2	88.4	0.56	7.4
E-Series	EH.	1	1.4290	30.3	<1.0	5.2	9.0	2.4	7.2	11.7			6.4
F-S	EEH	0.2	1.4361	27.6	0.08	7.0	7.8	2.0	2.5	8.4			5.4
	DM	100	1.4268	34.8	0.2	3.9	7.9	3.8	6.2	10.7	92.7	0.54	9.2
	DE	100	1.4260	32.2	0.12	4.5	7.9	3.8	6.2	10.7	84.5	0.55	8.6
	DP	100	1.4290	32.3	0.03*	4.1	7.8	3.5	5.5	10.2			8.2
	ОВ	100	1.4316	30.0	0.02	4.7	7.8	3.4	5.2	10.0	74.3	0.54	7.7

Regulatory Information

I		HMIB	CODES		[3	FPA COD	8	1990	SARA
I	HEALTH	FLAMM.	REACT.	PERS. PROT.	HEALTH	FLAMM.	REACT.	CAAA HAP	TITLE III BEC. 313'
	1	3	0	В	0	3	0	no	no
	2	3	0	x	1	3	n	no	no
-	2	2	0	x	1	2	υ	no	no
	2	2	0	В	1	2	0	no	no
	2	2	0	х	1	2	0	по	no
	1	2	0	В	0	5	0	no	no
	1	2	0	. х	0	2	o o	no	no
	1	2	0	×	0	2	0	по	no
	1	1	0	×	0	1	0	no	no
	1	1	0	В	0	1	0	no	no
	1	1	0	x	0	1	e	no	no
					2	2	0	yes	yes
					2	2	0	yes	yes
								yes	yes
	}	1	1	1	2	2	0	yes	yes
								yes	yes
								yes	no .
	1				2	2	0	yes	yes
					1	1	0	yes	yes
								yes	yes
					1	1	0	yes	yes

Developmental Product
 Tag Closed Cup
 Closed Cup
 Pensky-Martens Closed Cup
 Cleveland Open Cup

Table 11.2: Ashland Glycol Ethers (69)

PRODUCT	LB./GAL. 20° C	SP. GR. 20°/20° C	BOILING	RANGE °F	FL. PT. °F TCC	EVAP.
Glycol Ether PM	7.65	0.918	117-125	243-257	91	0.66
Glycol Ether EP	7.59	0.910	149-153	301-308	120	0.22
Glycol Ether PP	7.36	0.882	150-	302-	119	0.21
Glycol Ether PTB	7.30	0.870	151-	304-	113	_
Glycol Ether EB	7.51	0.903	169-173	336-343	150	0.06
Glycol Ether PB	7.32	0.880	170-	338-	138	0.08
Glycol Ether DPM	7.92	0.851	180-193	356-379	172	0.03
Glycol Ether DM	8.51	1.023	192-196	378-385	192	0.02
Glycol Ether DE	8.25	0.991	198-205	388-401	196	< 0.01
Glycol Ether DP	8.04	0.969	202-216	396-421	200	< 0.01
Glycol Ether DPP	7.67	0.922	212-	414-	190	< 0.01
Glycol Ether DB	7.94	0.954	227-235	441-455	220	< 0.01
Glycol Ether DPB	7.63	0.915	229-	444-	212 ¹²	< 0.01
Glycol Ether TPM	8.06	0.966	236-251	457-484	240	0.01
Glycol Ether TPB	7.7811	0.93511	276-	529-	27712	< 0.01
¹n-Butyl Acetate = 1	¹¹ 25°C ¹² Setaflash					

Table 11.3: Chemcentral Glycol Ethers (67)

GLYCOL ETHERS	GLYCOL ETHERS		Mole Weight	% Purity Comm.	Purity Grav.	Lhs./ Gal.	Coeff. of Expan.	∆8p.Gr.	Refrec- tive index	initial Bolling Point # 760 mm Hg		Press. @ 25°C	Evap. Rate vs.
				Prod.	25/25°C	25°C	Per °C	"	€ 25°C	*	•F	mm Hg	B. Acel. = 1
ETHYLENE GLYCOL METHYL ETHER	I M	109 86 4	76.1		0.963	801	.00100	.00078	1.400	124.6	255.6	97	0.5
ETHYLENE GLYCOL ETHYL ETHER	E.E.	110 80 5	90.1	99	0.928	7.73	.00099	.00070	1.406	135.5	275.9	5.3	0.2
ETHYLENE GLYCOL n-BUTYL FTHE R	F-B	111 76 2	118.2	99	0.900	7.49	00097	.00066	1.417	171.1	340.0	0.88	0.1
DIETHYLENE GLYCOL METHYL ETHLA	DMCI	111 77-3	120.1		1.018	8.47	1 6000	.00068	1.424	194.1	351.4	0.18	< 0.01
DIETHYLENE GLYCOL ETHYL ETHER	DE	111-90-0	134.2		0.988	8.22	.00088	.00064	1.425	202.0	395.8	0.13	< 0.01
DIETHYLENE GLYCOL ETHYL ETHER	DE SG		Mixt.		1.026	8.55			1.427	185.0	365.0	0.10	< 0.01
DIETHYLENE GLYCOL IN BUTYL ETHER	DB:	112 34-5	162.2	96	0.952	7.92	00086	.00060	1.430	230.0	446.0	0.023	< 0.01
PROPYLENE GLYCOL METHYL ETHER	PM	107-98-2	90.1		0.919	7.65	.00107	.00076	1.402	120.1	248.2	10.9	0.66
DIPROPYLENE GLYCOL METHYL ETHER	DPM	J459-94-8	148.2	I	0.951	791	00100	.00072	1.419	188.3	370.9	0.36	0.02
TRIPROPYLENE GLYCOL METHYL ETHER	TPM	25498-48-1	206.3		0.965	8.03	.00090	.00064	1.428	242.4	468.3	0.022	< 0.01

a T.C.C

GLYCOL ETHERS	GLYCOL ETHERS			Dilution Ratio		Blush Res. % Ref. Humid.	Visc. 8% RS ½ Sec. NC @ 25°C	Pour Point	Flash Point Open Cup	Solu- bility Param-
		In H,O	O,H 10	Totuol	Lector	€ 82°F	cps	°F	obali out	oter
ETHYLENE GLYCOL METHYL ETHER	EM	00	∞	5.3	immiscible	40	61.06	- 124	120	10.B
1 THYLLNE GLYCOL ETHYL ETHER	£ F	00	œ	6.6	1.1	61	56.09	- 148	110 ⁸	99
LINYLENE GLYCOL INBUTYL ETHER	EB	∞ ∞	ω	5.2	2.2	90	105.96	103	165	89
DIETHYLENE GLYCOL METHYL ETHER	DM	00	œ	4.6	immiscible	56	123.77	121	200	9.6
DIETHYLENE GLYCOL ETHYL ETHER	DE	00	00	6.4	0.6	75	144.40	-130	205	9.6
DIL THYLENE GLYCOL ETHYL ETHER	DE SG	00	000	2.7	immiscible	76	167.17		215	9.6
OH THYLENE GLYCOL IN BUTYL ETHER	DB	00	00	6.5	19	95	242.35	- 105	230	8.9
PROPYLENE GLYCOL METHYL ETHER	PM	- 00	∞	5.2	0.9	56	67.86	142	94#	9.5
DIPROPYLENE GLYCOL METHYL ETHER	DPM	∞	œ	4.2	0.8	85	168.38	-117	185	8.7
TRIPROPYLENE GLYCOL METHYL ETHER	TPM	- 00	- 00	3.1	0.7	90	363.67	-108	250	7.9

a 1 C C

Table 11.4: DOWANOL Glycol Ethers and Acetates (23)

Nomenclature of DOWANOL Products

DOWANOL PRODUCT	CHEMICAL NAME	FORMULA	CA1 INDEX NAME	CAS2NO.3
P-Series				
PM	Propylene Glycol Methyl Ether	CH ₃ OC ₃ H ₆ OH	2-Propanol, 1-methoxy-	107-98-2
DPM	Dipropylene Glycol Methyl Ether	CH ₃ O(C ₃ H ₆ O) ₂ H	Propanol, (2-methoxy- methylethoxy)-	34590-94-8
TPM	Tripropylene Glycol Methyl Ether	CH ₃ O(C ₃ H ₆ O) ₃ H	2-Propanol, 1-[2-(methoxy- 1-methylethoxy)- 1-methylethoxy]-	25498-49-1
PMA	Propylene Glycol Methyl Ether Acetate	CH ₃ OC ₃ H ₆ OOCCH ₃	2-Propanol, 1-methoxy, -Acetate	108-65-6
DPMA	Dipropylene Glycol Methyl Ether Acetate	CH ₃ O(C ₃ H ₆ O) ₂ OCCH ₃	Propanol, (2-methoxy- methylethoxy),-Acetate	88917-22-0
PPh	Propylene Glycol Phenyl Ether	C ₆ H ₅ OC ₃ H ₆ OH	2-Propanol, 1-phenoxy-	770-35-4
BC-100	Propylene-based Glycol Ether Blend			107-98-2 34590-94-8
BC-200	Propylene-based Glycol Ether Blend			107-98-2 34590-94-8
BC-300	Propylene-based Glycol Ether Acetate Blend			108-65-6 88917-22-0
E-Series				
ЕВ	Ethylene Glycol n-Butyl Ether	C ₄ H ₉ OC ₂ H ₄ OH	Ethanol, 2-butoxy-	111-76-2
DB	Diethylene Glycol n-Butyl Ether	C ₄ H ₉ O(C ₂ H ₄ O) ₂ H	Ethanol, 2-(2-butoxy- ethoxy)-	112-34-5
ТВН	Triethylene Glycol n-Butyl Ether and Higher Homologs	$C_4H_9O(C_2H_4O)_nH$ (n = 3,4,5)	Ethanol, 2-[2-(2-butoxy- ethoxy) ethoxy]-	143-22-6
DM	Diethylene Glycol Methyl Ether	CH ₃ O(C ₂ H ₄ O) ₂ H	Ethanol, 2-(2-methoxy- ethoxy)-	111-77-3
ТМН	Triethylene Glycol Methyl Ether and Higher Homologs	$CH_3O(C_2H_4O)_nH$ (n = 3,4,5)	Ethanol, 2-[2-(2-methoxy- ethoxy) ethoxy]-	112-35-6
EPh	Ethylene Glycol Phenyl Ether	C ₆ H ₅ OC ₂ H ₄ OH	Ethanol, 2-phenoxy-	122-99-6
DALPAD A	Aromatic-Based Glycol Ether	C ₆ H ₅ OC ₂ H ₄ OH	Ethanol, 2-phenoxy-	122-99-6

¹ Chemical Abstract Index (American Chemical Society).

² Chemical Abstract Service (American Chemical Society).

³ CAS No. for major component. Refer to MSDS for detailed CAS No. listing.

Table 11.4: (continued)

Specification Limits and Analytical Methods for DOWANOL Products

DOWANOL	Dow Method tor Gas Chromatography (GC)	Assay, Wt.% (GC)	Glycol Ether, Wt.% (GC)	Distillation Range, °C at 760 mm Hg IBP-DP (ASTM D-1078)	Specific Gravity, 25/25°C (ASTM D-891)	Color, APHA, max. (ASTM D-1209)	Water, Wt.%, max. (ASTM D-1364)	% Acidity, (as Acetic Acid), max. (ASTM D-1613)
PM	ML-AM-85-1	Note 1		117-125†	0.918-0.921†	10	0.1	0.01
DPM	22345A	99		184-193†	0.945-0.957†	15	0.15	0.01
TPM				236-251	0.962-0.965	15		0.01
PMA	22477A	99	0.5	140-150†		15	0.05	0.02
DPMA	ML-AM-83-55	98	0.5			15	0.05	0.05
BC-100	22036	98.0				15	0.15	0.01
BC-200	22037	98.0				15	0.15	0.01
BC-300	09987A	98.0	0.5			15	0.05	0.02
EB				169-173	0.898-0.901	10	0.10	0.01
DB				227-235	0.950-0.954	10	0.10	0.01
DM				191-198	1.017-1.021	10	0.10	0.01

	Dow Method (for GC)	Di-Adduct Wt.%, max.	Tri-Adduct Wt.%, min.	Tetra-Adduct Wt. %, max.	Penta-Adduct Wt.%, max.	Hexa-Adduct Wt.%, max.	Total Glycol Wt.%, max.	Water, Wt.%, max.
тмн	22560A	5.0	65.0	24.0	6.0	1.0	6.0	0.2
ТВН	22523A	10	53	32	8	1.5	5	0.2

	Dow Method (for GC)	Assay, Wt. %, min.	Retated Compounds, Wt.%, max.	Specific Gravity, 25/25°C	Color, APHA, max.	Phenol, Wt.%, max. (Note 2)
PPh	22484	93	7		50	0.1
EPh	22399C	90	10		50	0.5
DALPAD A				1.106-1.110	25	

[†] Typical Property

Note 1: DOWANDL PM assay includes 1-methoxy-2-propanol, 97%, minimum, and 2-methoxy-1-propanol, 3%, maximum.

Note 2: Dow Method 22399C is used to determine phenol using 4-aminoantipyrine reagent in DOWANOL EPh.

Dow Method 22484 is used to determine phenol in DOWANOL PPh.

-														(BOLVENT	CONST	NTS	
							Evap-			VIs-	Vapor		Hans		ility Paran cm³mol -1		Solul (mi/1	bility COmi)
	DOWANOL	CHEMICAL NAME	STRUCTURAL FORMULA	Molec- ular Wt.	Boiling Point (°C @ 760 mm Hg)	Flash Point (°F)	oration Rate (nBuAc = 1.00)	Specific Gravity (25/25°C)	Lb/Gal (25°C)	cosity (Centi- stokes 25°C)	Pres- sure at 25°C (mm Hg)	Surface Tension (dynes/ cm)	δ ₄ (non- potar)	δ, (polar)	δ _h (hydro- gen bonding)	δ _τ (Total)	Solvent In Water	Water In Solvent
Γ	PM	Propylene Glycol Methyl Ether	сңосн,снонсн,	90.1	120.1	90²	0.71	0.917	7.65	1.9	12.5	27.7	15.6	7.2	13.6	21.9	00	œ
	DPM	Dipropylene Glycol Methyl Ether	CH30(CH2CH(CH3)0)2H	148.2	184.0	167 ²	0.02	0.950	7.91	3.6	0.55	28.8	15.1	6.8	12.6	20.8	8	∞
	TPM	Tripropylene Glycol Methyl Ether	CH30(CH2CH(CH3)0)3H	206.3	242.4	232²	<0.01	0.965	8.03	5.8	0.02	30.0	14.9	6.8	10.4	19.4	∞	∞
	PMA	Propylene Glycol Methyl Ether Acetale	СН,ОСН,СН(СН,)ООССН,	132.2	145.8	1142	0.34	0.966	8.03	1,1	3.7 ³	26.4	16.1	6.1	6.6	18.4	19.8	3.2
	DPMA	Dipropylene Glycol Methyl Ether Acetate	CH3O(CH3CH(CH3)O)2OCCH3	190.2	209.3	186 ⁴	<0.01	0.976	8.12	3.0	<1.0 ³	28.6	15.1	5.3	4.3	16.6	19.4	3.5
ERIES	PnB	Propylene Glycol n-Bulyl Ether	C,H,OCH,CH(CH,)OH	132.2	170.0	1384	0.08	0.884	7.37	3.5	0.63	26.3	15.6	5.8	11.2	20.1	6.4	16.0
S-G	DPnB	Dipropylene Glycol n-Butyl Ether	C1H°0(CH°CH(CH°)0)°H	190.3	229.0	212 ²	0.01	0.906	7.55	5.4	0.063	28.8	15.4	5.6	9.0	18.7	5.0	12.5
	TPnB	Tripropylene Glycol n-Butyl Ether	C4H°0(CH°CH(CH°)0)³H	248.4	276.0	255 ⁵	<<0.01	0.932	7.77	7.3	<0.01 ³	29.9 ⁸	15.2	5.8	6.8	17.6	3.0	8.0
	PPh	Propylene Glycol Phenyl Ether	C ₆ H ₅ OC ₃ H ₆ OH	152.2	242.7	240 ⁴	<0.01	1.063	8.80	23.2	<0.01	38.1	18.7	5.7	11.3	22.6	1.1	7.0
	PnP	Propylene Glycol n-Propyl Ether	C ₃ H,0CH,CH(CH ₃)0H	118.2	149.8	119 ²	0.21	0.885	7.38	2.2	1.7	25.9	15.5	6.2	12.4	20.8	∞	∞
	DPnP	Dipropylene Glycol n-Propyl Ether	C ₃ H,0(CH,(CH)CH ₃ 0) ₂ H	176.2	212.0	190²	0.015	0.922	7.70	4.3	0.12	27.6	15.3	5.9	10.2	19.3	19	20.5
Γ	EB	Ethylene Glycol n-Butyl Ether	C ₄ H ₉ OC ₂ H ₄ OH	118.2	171.1	150 ⁴	0.07	0.897	7.49	3.2	0.88	27.4	16.0	6.2	11,4	20.6	∞	∞
	DB	Diethylene Glycol n-Butyl Ether	C4H°0C'H'0C'H'0H	162.2	230.0	226 ⁵	0.003	0.952	7.94	5.2	0.06	30.0	16.0	7.0	10.6	20.4	∞	∞
8	TBH	Triethylene Glycol Butyl Ether/Highers	$C_4H_9O(C_2H_4O)_nH$ (n=3,4,5)	231.2 Av	283.0	285 ⁵	<<0.01	0.996	8.30	9.2	<0.01	31.4	-	-		-	∞	-
E-SERIES	DM	Diethylene Glycol Methyl Ether	CH30C2H40C2H40H	120.1	194.1	197²	0.02	1.021	8.47	3.4	0.25	34.8	16.2	7.8	12.6	22.0	∞	∞
Ш	TMH	Triethylene Glycol Methyl Ether/Highers	CH ₃ O(C ₂ H ₄ O) _n H (n=3,4,5)	173.0 Av	232.0	255 ⁵	<<0.01	1.054	8.80	7.0	<0.01	39.1	-	-	-	-	∞	-
	EPh	Ethylene Glycol Phenyl Ether	C*H*OC*H*OH	138.2	245.6	250²	<0.01	1.104	9.20	20.5	0.007	42.0	17.8	5.3	12.3	22.3	2.3	10.8
Ĺ	DALPAD A	Aromatic-Based Glycol Ether	C ₆ H ₅ OC ₂ H ₄ OH	138.2	245.6	250²	<0.01	1.104	9.20	20.5	0.007	42.0	17.8	5.3	12.3	22.3	2.3	10.8

^{*} Trademark of The Dow Chemical Company

Regulatory Information on Glycol Ethers as of August, 1993

	E-Series	P-Series
CERCLA' spill reporting requirements		
SARA ² Title III release reporting required		
VOC3 per Title I, Clean Air Act Amendments of 1990		
HAP* compound per Title III, Clean Air Act Amendments of 1	1990 . Yes	N o

Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Supertund Amendment and Reauthorization Act Volatile Organic Compound, per Federal Register, Vol. 57, No. 22, 1/3/92

¹ Solubility Parameters are useful as a guide in determining the ability of a solvent or a solvent mixture to dissolve resins. A discussion of solubility parameters and the basis for these values are contained in an article by C.M. Hansen, I and EC Product Res Devel., 8, No. 1, 2-11, March 1969. Another useful reference is a book by A.F.M. Barton entitled Handbook of Solubility Parameters and Other Proporties, CRC Press, Boca Raton, Florida, 1991.

² Setaflash

³ Vapor pressure determined at 20°C

⁴ Tag Closed Cup (TCC)

⁵ Pensky-Martens Closed Cup (PMCC) Surface tension determined at 20°C

Hazardous Air Pollutant

Table 11.5: Eastman Chemicals Glycol Ethers (41)

R	vaporation ate -BuOAc = 1	Lb/ Gal @ 20°C	Color Pt-Co Max	Specific Gravity @ 20°/20°C	Acidity, as Acetic Acid Max Wt %	Boiling Range °C	Freezing Point °C	Flash Point TCC °C (°F)	Assay Min Wi %
EE Solvent ⁸ 0. (Ethylene Glycol Monoethyl Ether) C ₂ H ₅ OC ₂ H ₄ OH	.30	7.75	10	0.931	0.005	134-136	-94	43 (110)	99.9
EKTASOLVE® EP Solvent 0. (Ethylene Glycol Monopropyl Ether C ₃ H ₇ OC ₂ H ₄ OH	.20	7.59	10	0.913	0.01	149-154	<-90	49 (120)	99.6
EKTASOLVE EB Solvent 0. (Ethylene Glycol Monobutyl Ether) C ₄ H ₉ OC ₂ H ₄ OH	.06	7.51	10	0.902	0.01	169-173	-75	62 (143)	99.6
EKTASOLVE DM Solvent 0. (Diethylene Glycol Monomethyl Eth CH ₃ (OC ₂ H ₄) ₂ OH	.02 ner)	8.51	10	1.023	0.01	191-198	-85	88 (191)	-
EKTASOLVE DE Solvent 0. (Diethylene Glycol Monoethyl Ether C ₂ H ₅ (OC ₂ H ₄) ₂ OH	.02 r)	8.25	10	0.990	0.01	198-204	-90	91 (195)	99.3
EKTASOLVE DE-HG Solvent ^b <(Diethylene Glycol Monoethyl Ether [C ₂ H ₅ (OC ₂ H ₄) ₂ OH][HOCH ₂ CH ₂ OH]	0.01 r/Ethylene Gl	8.56 lycol)	10	1.027	0.01	190-205	-70	96 (205)	
EKTASOLVE DP Solvent 0. (Diethylene Glycol Monopropyl Eth. C ₃ H ₇ (OC ₂ H ₄) ₂ OH	.01 er)	8.04	10	0.963	0.01	202-216	<-90	93 (200)	99.4
EKTASOLVE DB Solvent 0. (Diethylene Glycol Monobutyl Ether C ₄ H ₉ (OC ₂ H ₄) ₂ OH	003 r)	7.94	10	0. 95 5	0.01	230-235	-76	111 (232) COC	99.6
EKTASOLVE EEH Solvent 0. (Ethylene/Diethylene Glycol 2-Ethyl C ₄ H ₉ CH(C ₂ H ₅)CH ₂ OC ₂ H ₄ OH	003 hexyl Ether)	7.42	50	0.892	0.01	224-275	<-60	98 (208)	

^aFor sale outside USA only ^bHigh gravity solvent

				GLYCOL ETHER	\$				
Company Name	Ethylene Glycti Propyl Ether	Ethylene Glycol Butyt Ether	Ethylene Glycol 2-Ethylhexyl Ether	Distinylana Glycol Methyl Ether	Diethylene Glycol Ethyl Ether	Disthylene Glycol Propyl Ether	Distrytone Glycol Butyl Ethur	Propylene Circul Buthyl Eller	
Eastman	Eastmen EP	Eastman EB	Eastman EEH	Eastman DM	Eastman DE	Eastmen DP	Eastman DB	Easuman FM	
Union Carbide	Propyl Cellosofre	Butyl Cellosolve	_	Methyl Carbitol	Carbitol (flow gravity)	Propyl Carbitol	Butyl Carbitol	Methyl Propasol	
Dow	_	Dowanol EB		Downersol DM	Dowanol DE	-	Downsol DB	Dows, 10/PM	
Shell	-	Butyl Oxital	-	_	_	~	Butyl Dioxitol	-	
Occidental	_	EB	_	-	DE	~	08	_	
Arco	-		_	-	-		-	Arcasolv PM	
			GLY	COL ETHER ES	TERS				
Company Name	Etmylene Brayl Ethe	e Glycol er Acetete		ne Glycol er Acetate	Diethylen Butyl Ethe			ne Glycol her Acetate	
Eastman	Ea y man E	EB acetate	Eastman	DE acetate	Eastman 0	OB acetate	Eastman PM acetale		
Union Carbide	Butyl Cellos	olve acetate	-		Butyl Carbi	tol acetate	Methyl Prop	basor acetate	
Arco	-	-		_	_	-	Arcosotve	PM acetate	
Dow	Dow				-	-	Dowanoi PM acetate		
Occidental	EB ac	cetate			DB ac	etate	PM acetate		

Table 11.6: Grant Chemical Glycol Diethers (GLYMES) (21)

Table 11.6: (continued)

Physical and Thermodynamic Properties

		. /	BOILME WEIGHT	i / LMIG	Solw ?	RAWITY.	WOOR PER CALLON	SSUME	, , ,		ENSION .		Mou	HEAT OF MADRICATION	HEAT OF COMBUSTION	PANATO.	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	E MOET	ų /		SOLL at	IBILITY 25°C
	FORMICAL	Molfe	100	FREE OF TOWN	SPECIFIC	WEIGHT	7 200 M	VOLATIII		SURFACE SON	SPECIFIC	4UTO 10	HEAT OF .	HEAT OF	HEALOR COMBUSTION	T. Salling.	REFERENCE C.	APEARANGE WOOD	*000	IN WATER	WATER IN	ORGAMICS
MONOGLYME	C4H10O2	90.12	85.2	-69.0	0.8683	7.24	54	499	1.1	22.9	0.438	205	6.7	602	118	-6		CLEAD	ETHEREAL Non-Residual	COMPLETE	COMPLETE	ALL
ETHYL GLYME	CeH14O2	118.18	121	-74.0	0.8417	7.00	9	105	0.7							27	1.3922	CLEAR COLORLESS	MILD ETHEREAL NON-RESIDUAL	20.4%	3.3%	GLYMES ARE
DIGLYME	C6H14O3	134.17	162	-64.0	0.9451	7.88	2	36	2.0	27.0	0.403	190	10.0	902	143	57	1.4078	CLEAR COLORLESS	MILD ETHEREAL Non-residual	COMPLETE	COMPLETE	MISCIBLE IN ALL
ETHYL DIGLYME	CaH1aO3	162.23	189	-44.3	0.9082	7.56	0.5	4	1.4	27.2			10.5	1199	152	90	1.4115	CLEAR COLORLESS	MILD Non-residual	COMPLETE	COMPLETE	T T
TRIGLYME	CeH18O4	178.22	216	-45.0	0.9862	8.23	0.02	<0.1	3.8	29.4	0.424	195	14.3	1191	179	111	1.4224	CLEAR COLORLESS	MILD Non-residual	COMPLETE	COMPLETE	
BUTYL DIGLYME	C12H26O3	218.34	256	-60.2	0.8814	7.36	<0.01	<0.1	2.4	27.0	0.495	190	12.0	1823	175	118	1.4235	CLEAR COLORLESS	VERY MILD NON-RESIDUAL	0.3%	1.4%	ACETONE, BENZENE,
TETRAGLYME	C10H22O5	222.28	275	-29.7	1.0132	8.45	<0.01	<0.1	4.1	33.8	0.427	215	18.7	1480	217	141	1.4330	CLEAR COLORLESS	VERY MILD NON-RESIDUAL	COMPLETE	COMPLETE	DIETHYL ETHER
POLYGLYME	CnH2n+2On/2	275			1.04	8.6	<0.01	<0.1	12			215				>130		CLEAR SLIGHTLY YELLOW	VERY MILD NON-RESIDUAL	COMPLETE	COMPLETE	AND OCTANE

Specifications

	PURITY (by G.C.), wt %		(as ac	IDITY etic acid) opm	CO	TER ITENT	PEROXIDE CONTENT ppm	
	MIN	TYPICAL	MAX	TYPICAL	MAX	TYPICAL	MAX	TYPICAL
MONOGLYME	99.90	99.97	150	25	350	175	15	5
ETHYL GLYME	97.0	98.5	150	25	1000	300	15	5
DIGLYME	99.90	99.94	150	25	250	150	15	5
ETHYL DIGLYME	98.0	99.0	150	25	2000	500	15	5
TRIGLYME	98.0	99.0	150	25	500	100	15	5
BUTYL DIGLYME	98.5	99.0	100	25	500	250	15	5
TETRAGLYME	98.0	99.0	150	25	500	100	15	5

Table 11.7: Occidental Ethylene Glycol Ethers and Glycol Ether Acetates (27)

Products, Grades and Specifications: Glycol Ethers and Acetates

SPECIFICATION*	EM	EM-J	DM	DM-J	тм	EE
Purity, weight % min	99.5				98	
Color, APHA max	10	15	10	10	50	10
Acidity (as acetic acid). wt% max	0.01		0.01		0.01	0.005
Specific gravity, 20/20°C	0.964 - 0.967	0.963 - 0.967	1.021 1.027	1.020- 1.025	1.038- 1.058	0.929- 0.932
Distillation range, IBP, min DP, °C max	123.5 125	123.5 125.5	191.0 198.0	191.0 198.0	235.0 255.0	134 136
Water, weight % max	0.10	0.15	0.10	0.10	0.2	0.10
Acid no., mgKOH/gm, max		0.09		0.09		
Ethylene glycol, wt % max		0.025		0.5		
pH, 25% solution at 25°C		5.0 - 7.0		5.0 - 8.5	5.0 - 9.0	
Refractive index at 20°C		1.4015-1.4025				
Antioxidant (BHT), ppm		50 - 150		50 - 150		
Flash point (PMCC), °C				85		

SPECIFICATION*	DE	EB	DB	EEA	EBA	DBA
Purity, weight % min				99.0	98.0	98.0
Color, APHA max	10	10	10	15	15	15
Acidity (as acetic acid), wt% max	0.01	0.01	0.01	0.02	0.02	0.02
Specific gravity, 20/20°C	0.989 - 0.994	0.901- 0.904	0.953- 0.956	0.971- 0.976	0.940- 0.944	0.975- 0.985

Products, Grades and Specifications: Heavy Glycol Ethers

SPECIFICATION.	HM	ннм	HE	HB
Triethylene Glycol Monomethyl Ether and higher molecular wt. Monomethyl Ethers, wt % min	55.0	55.0		
Diethylene Glycol Monomethyl Ether, wt % max	10.0	2.0		
Triethylene Glycol Monoethyl Ether and higher molecular wt. Monoethyl Ethers, wt % min			70.0	
Diethylene Glycol Monoethyl Ether, wt % max			10.0	
Triethylene Glycol Monobuthyl Ether and higher molecular wt. Monobuthyl Ethers, wt % min				88.0
Diethylene Glycol Monobuthyl Ether, wt % max				12
Water, weight % max	0.1	0.1	0.1	0.1
pH, alcoholic (50/50)	7.5-11.0	7.5-11.0	7.5-11.0	7.5-11.0
Color, APHA max	100	100	100	200
Specific gravity at 20/20°C (typical)	1.03-1.06	1.04-1.06	0.99-1.06	0.984-1.002
Minimum Boiling Point °C	238	249	220	250

(continued)

Table 11.7: (continued)

Occidental Glycol Ethers and Glycol Ether Acetates

TYPICAL PROPERTIES	EM	EM-J	DM	DM-J	тм	EE
Molecular weight	76.1	76.1	120.15	120.15	164.2	90.1
Auto-ignition temp., °C	285	285	-	-	-	235
Boiling point, °C	124.2	124.5	194.0	194.0	249.0	135.5
Freezing point, °C	-85	-85	-68.9	-68.9	-44.0	-90
Flash point (TCC), °F	105	105	192	192	238	110
Surface tension @ 25°C, dynes/cm²	30.9	30.9	35.9	35.9	38.7	28.2
Refractive index at 20°C	1.4021	1.4021	1.4263	1.4263	1.4381	1.4076
Vapor pressure at 20°C, mm Hg	6.2	6.2	0.2	0.2	<0.01	3.8
Viscosity at 20°C, cP	2.05	2.05	3.87	3.87	7.5	2.1
Coeff. of expansion at 20°C	0.00095	0.00095	0.00088	0.00088	0.00088	0.00097
Weight/gal. in lbs. at 20°C	8.04	8.04	8.51	8.51	8.74	7.75

TYPICAL PROPERTIES	DE	EB	DB	EEA	EBA	DBA
Molecular weight	134.17	118.2	162.2	132.2	160.2	204.3
Auto-ignition temp., °C	204	244	228	379	340	200
Boiling point, °C	202	171	230	156.4	-	-
Freezing point, °C	-76	-70	-68	-62	-	-
Flash point (TCC), °F	196	150	214	126	165	240
Surface tension @ 25°C, dynes/cm ²	31.8	27.4	30.0	-	-	-
Refractive index at 20°C	1.4297	1.4193	1.4316	1.4030	1.4200	1.4200
Vapor pressure at 20°C, mm Hg	0.1	< 1	< 0.1	2.0	0.25	0.04
Viscosity at 20°C, cP	4.5	6.4	6.5	1.3	1.8	3.6
Coeff. of expansion at 20°C	0.00090	0.00092	0.00085	0.00109	0.00100	0.00097
Weight/gal. in lbs. at 20°C	8.25	7.52	7.95	8.11	7.85	8.16

Specific Gravity vs Temperature of the Glycol Ethers

Density vs Composition of Aqueous Glycol Ether Solutions

Table 11.7: (continued)

Viscosity vs Temperature of the Glycol Ethers

Vapor Pressure vs Temperature of the Glycol Ethers

Table 11.8: Olin Chemicals Poly-Solv Propylene Glycol Ethers (66)

Olin produces five ethylene glycol ethers:

Poly-Solv®* EM, ethylene glycol monomethyl ether
(CH₃OCH₂CH₂OH)

Poly-Solv DM, diethylene glycol monomethyl ether
(CH₃OCH₂CH₂OCH₂CH₂OH)

Poly-Solv DE, diethylene glycol monoethyl ether (CH₃CH₂OCH₂CH₂OCH₂CH₂OH)
Poly-Solv TM, triethylene glycol monomethyl ether CH₃(OCH₂CH₂)₃ OH
Poly-Solv TE, triethylene glycol monoethyl ether CH₃CH₂(OCH₂CH₂)₃OH

	Typical Physical Properties				
	EM ·	DM	DE	TM	TE
Boiling Point (°C)					
@ 760 mm Hg	124	194	202	249	256
@ 50 mm Hg	55	115	121	152	158
@ 10 mm Hg	27	82	87	126	130
Coefficient of Expansion					
@ 20°C	0.00095	_			
@ 55°C	0.00099	0.00088	0.00084		
Density @ 25°C (lb/gal)	8.05	8.51	8.24	8.71	8.50
Flash Point, TCC (°C)	41	87	85		
(°F)	106	188	185		
Flash Point, COC (°C)		-		118	124
(°F)				245	255
Freezing Point (°C)	-85	-85	-76	-55	-21
(°F)	-121	-121	-105	-67	-5.8
Heat of Vaporization @ 760 mm Hg					
(joules/g)	555.9	379.1	402.4	327.6	299.8
Molecular Weight	76.09	120.15	134.17	164.20	178.23
Refractive Index @ 20°C	1.4021	1.4263	1.4273	1.4381	1.4376
Solubility @ 20°C					
Poly-Solv in water	Complete	Complete	Complete	Complete	Complete
water in Poly-Solv	Complete	Complete	Complete	Complete	Complete
Specific Gravity, apparent @ 20/20°C	0.966	1.021	0.989	1.048	1.022
Specific Heat @ 20°C (joules/g-°C)	2.233	2.149	2.308	_	
Vapor Pressure @ 20°C (mm Hg)	6.2	0.2	0.1	<0.01	< 0.01
Viscosity, absolute @ 20°C (cp)	1.7	3.9	4.5	7.5	7.8

	Specifications					
	ЕМ	DM	DE (regular)	DE (low gravity)	TM	TE
Water, max						
(% by weight)	0.01	0.1	0.2	0.1	0.1	0.1
Acidity, as acetic acid						
(% by weight)	0.01	0.01	0.01	0.01	0.01	0.01
Specific Gravity @ 20/20°C	0.964-	1.019-	1.024-	0.989-	1.037-	1.020
	0.967	1.025	1.030	0.993	1.055	1.035
Color, max (APHA)	10	15	10	10	50	50
Odor	M	M	M	M	С	С
Suspended Matter	F	F	F	F	F	F
Boiling Range (°C)						
Initial boiling point, min	123.5	191	190	198	220	225
5%, min	_				230	235
95%, max			200		_	
Dry point, max	125.5	198	205	205	-	-

M = Mild N = Substantially none C = Characteristic F = Substantially Free

Table 11.8: (continued)

Olin offers three propylene glycol monomethyl ethers: Poly-Solv®* MPM, propylene glycol monomethyl ether $CH_3(OC_3H_6)OH$

Specifications **MPM DPM TPM** Acidity, as acetic acid, 0.01 0.01 max (% by weight) 0.01 Water, max (% by weight) 0.1 0.1 Specific Gravity @ 20/20°C 0.964-0.922 -0.953 - 0.976^{a} 0.925 0.957 Color, max (APHA) 10 15 15 Suspended Matter Sp S S **Boiling Range** @ 760 mm Hg (°C) Initial Boiling Point, min 119 180 236 Dry Point, max 196 251 125 ® 25/25°C b= Substantially free

Poly-Solv DPM, dipropylene glycol monomethyl ether CH₃ (OC₃H₆)₂OH Poly-Solv TPM, tripropylene glycol monomethyl ether $CH_3 (OC_3H_6)_3OH$

VI	hysical Prop MPM	DPM	TPM
Boiling Point			
@ 760 mm Hg (°C)	120	187	242
Flash Point ^c (°C)	32	78	107
(°F)	89	172	225
Molecular Weight	90.1	148.2	206.3
Pour Point (°C)	-97	-83	78
Refractive Index, n _D			
@ 25°C	1.4036 ^d	1.419	1.428
Solubility in Water	Complete	Complete	Complete
Specific Gravity	-	-	-
@ 20/20	0.923	0.954	0.969
Vapor Pressure			
@ 20°C (mm Hg)	12.5	0.4	0.02
Viscosity @ 20°C (cs)	1.9	3.9	6.1
^c Pensky Martin Closed Flask Test		₫@ 20°C	

Pensky Martin Closed Flask Test ¹@ 20°C

Table 11.9: Union Carbide Glycol Ethers (19)

Ethylene Oxide, moles	Methanol	Ethanol	Propanol	Butanol	Hexanol
1	Methyl CELLOSOLVE Solvent	CELLOSOLVE Solvent	Propyl CELLOSOLVE Solvent	Butyl CELLOSOLVE Solvent	Hexyl CELLOSOLVE Solvent
	(Ethylene Glycol Monomethyl Ether)	(Ethylene Glycol Monoethyl Ether)	(Ethylene Glycol Monopropyl Ether)	(Ethylene Glycol Monobutyl Ether)	(Ethylene Glycol Monohexyl Ether)
	CAS* 109-86-4	CAS 110-80-5	CAS 2807-30-9	CAS 111-76-2	CAS 112-25-4
2	Methyl CARBITOL Solvent	CARBITOL Solvent		Butyl CARBITOL Solvent	Hexyl CARBITOL Solvent
	(Diethylene Glycol Monomethyl Ether)	(Diethylene Glycol Monoethyl Ether)		(Diethylene Glycol Monobutyl Ether)	(Diethylene Glycol Monohexyl Ether)
	CAS 111-77-3	CAS 111-90-0		CAS 112-34-5	CAS 112-59-4
3	Methoxytriglycol	Ethoxytriglycol		Butoxytriglycol	
	(Triethylene Glycol Monomethyl Ether)	(Triethylene Glycol Monoethyl Ether)		(Triethylene Glycol Monobutyl Ether)	
	CAS 112-35-6	CAS 112-50-5		CAS 143-22-6	
	*Chemical Abstract Servi	ce (CAS) Number			

Chemical Abstract Service (CAS) Number

METHYLAL

Dimethoxymethane CH3OCH2OCH3

Methylal is a low-boiling solvent, stable in the presence of alkalis and mild acids, and to high temperatures and pressures. It differs from other ethers in that it forms only minute amounts of peroxides. It will dissolve such synthetic resins as nitrocellulose, cellulose acetate and propionate, ethyl cellulose, vinyl, "Epons" and polystyrene, and also many of the natural gums and waxes. Methylal as a latent solvent is activated by the addition of esters, ketones or olcohols. Its evaporation rate, twice that of acetone, places this ether in a class with such solvents as acetone, methyl acetate and ethyl acetate in resin formulations.

Table 11.10: Physical Properties of Methylai (2)

Acidity (as acetic acid), % by wt. (max.) Aldehydes, % by wt. (max.) Appearance Boiling point at 760 mm. Hg, °C. Boiling range, °C. Flash point (Cleveland open cup), °F. Freezing range, °C. Heat of combustion (Btu/lb.) at 20°C. Refractive index (np at 25°C.) Melting point, °C. Methylal content, % (min.) Molecular weight Specific gravity, 20/20°C. Surface tension at 25°, dynes/cm. Vapor pressure at 20°C., mm. Hg Viscosity at 20°C., centipoises	0.1 water-white 42.3 42.0 to 43.5 0 -104.8 10.97 1.35335 -104.8 97 76.1 0.8601 21.1 330 0.325
--	---

ETHYLENE GLYCOLS

Table 11.11: Ethylene Glycol Monomethyl Ether (2)

METHYL CELLOSOLVE Solvent POLY-SOLV EM ARCOSOLV EM Glycol Ether EM

$${\rm HO-CH_2CH_2-O-CH_3}$$

Ethylene glycol monomethyl ether is a colorless, limpid liquid of mild odor. It is miscible with water and with aliphatic and aromatic hydrocarbons. It is a solvent for essential oils, lignin, dammar, elemi, ester gum, kauri, mastic, rosin, sandarac, shellac, Zanzibar, nitrocellulose, cellulose acetate, alcohol-soluble dyes and many synthetic resins. Its solvency for cellulose esters is augmented when a ketone or a halogenated hydrocarbon is added. The uses for methyl "Cellosolve" are as a solvent in quick-drying varnishes and enamels, in conjunction with aliphatic, aromatic and halogenated hydrocarbons, alcohols and ketones; in solvent mixtures and thinners for lacquers and dopes; in the manufacture of synthetic resin plasticizers and as a penetrating and leveling agent in dyeing processes, especially in the dyeing of leather, animal and vegetable fibers. Other uses are as a fixative in perfumes and as a solvent in odorless nail-polish lacquers. "Dowanol EM" should not be added to nitrocellulose lacquers containing coumarone resins or ester gum because it will cause incompatibility between these substances.

(continued)

Table 11.11: (continued)

Acidity (as acetic acid) % by wt. (max.) Boiling point at 760 mm. Hg, °C. Color (APHA, max.) Coefficient of expansion at:	0.01 124.2 15
20°C.	0.00095
55°C.	0.00099
Flash point (Cleveland open cup), °F.	115
Freezing range, °C.	-85.1
Heat of vaporization (Btu/lb.)	239
Refractive index (np at 25°C.)	1.4021
Molecular weight	76.09
Specific gravity, 20/20°C.	0.9663
Specific heat (average) cal./°C.	0.534
Surface tension at 25°C., dynes/cm.	30.8
Solubility:	
in water at 20°C.	complete
water in at 20°C.	comp lete
Vapor pressure at 20°C., mm. Hg	9.7
Viscosity:	
at 25°F., centipoises	1.53
at 60°F., centipoises	0.85
Weight per gal. at 20°C., lb.	8.01

Table 11.12: Ethylene Glycol Monoethyl Ether (2)

CELLOSOLVE Solvent ARCOSOLV EE	носн ₂ сн ₂ ос ₂ н ₅
Glycol Ether EE	

This colorless liquid has a mild and agreeable odor and combines a low evaporation rate with a strong solvent action. It is miscible in all proportions with acetone, benzene, carbon tetrachloride, ethyl ether, methanol and water. It has a powerful solvent action on nitrocellulose and alkyd resins and an extremely high dilution ratio with coal-tar hydrocarbons. This solvent will tolerate 4.9 times its own volume of toluene before the mixture will cease to dissolve nitracellulose, while butyl acetate will tolerate only 2.9 times its volume.

Acidity (as acetic acid), % by wt. (max.)	10.0	Specific gravity, 25/25°C.	0.9311
Appearance	water-white	Specific heat (average) cal./°C.	0.53
Boiling point at 760 mm. Hg, °C.	134.7	Surface tension at 25°C., dynes/cm.	28.2
Fire point (open cup), °F.	115	Vapor pressure at 25°C., mm. Hg	5 .3
Flash point (Cleveland open cut), °F.	115	Viscosity:	
Freezing range, °C.	- 59	at 25°C., centipoises	1.84
Refractive index (np at 20°C.)	1.4076	at 60°C., centipoises	0.94
Molecular weight	90.1	Weight per gol. at 20°C., lb.	7.72

Table 11.13: Ethylene Glycol Dimethyl Ether (21)

MONOGLYME	$C_2H_{10}O_2$

Molecular Weight	90.12	Surface Tension, dynes/cm 20°	°C 22.9
Boiling Point, °C, 760 mm Hg	85.2	Specific Heat, cal/g/°C	0.438
Freezing Point, °C	-69.0	Auto Ignition, °C	205
Specific Gravity, 20°/20°C	0.8683	Vaporization Heat, Kcal/mol	6.7
Weight per Gallon, lb 20°C	7.24	Combustion Heat, Kcal/mol	602
Vapor Pressure, mm Hg/20°C	54	Formation Heat, Kcal/mol	118
Volatility, n-Butylacetate = 100	499	Flash Point, °C, closed cup	-6
Viscosity, cp 20°C	1.1	Refractive Index, at 20°C	1.3792

Table 11.14: Ethylene Glycol Diethyl Ether (2)

ETHYL GLYME

$\mathsf{C_2H_5OCH_2CH_2OC_2H_5}$

Boiling point at 760 mm. Hg, °C.	121.4	Specific gravity, 20/20°C.	0.8417
Flash point (Cleveland open cup), °F.	80	Vapor pressure at 20°C., mm. Hg	9.4
Freezing range, °C.	-74	Viscosity at 20°C., centipoises	0.65
Refractive index (np at 25°C.)	1.3922	Weight per gal. at 20°C., lb.	7.01
Molecular weight	118.2	•	

Table 11.15:Ethylene Glycol Monopropyl Ether (19)

Propyl CELLOSOLVE Solvent ARCOSOLV EP

Glycol Ether EP EKTASOLVE EP

Solvent			Formula Molecular Weight	Bolling Point, °C	Freezing Point, °C	Fiash Point, °F(a)	Vapor Pressure, mm Hg
Propyl CELL(OSOLVE Solvent		104.15	151.1	-90(c)	135	1.71
		Coefficient		ubility at C, % by wt	Relative		urlace Tension 25°C, dynas/cm
Specific Gravity, 20/20°C	Pounds Per Gallon	of Expansion at 20°C	In Water	Water In	Evaporation Rate (nBuAc = 100	Neat Product	25% Aq. Solution ^(b)
0.913	7.60	0.00095	Complete	Complete	21	26.3	32.3

⁽a) Tag Closed Cup

Table 11.16: Ethylene Glycol Monobutyl Ether (2)

Butyl CELLOSOLVE DOWANOL EB EKTASOLVE E ARCISIKV EB Glycol Ether EB

HOCH2CH2OC4H9

Ethylene glycol monobutyl ether is colorless liquid, miscible in all proportions with many ketones, ethers, alcohols, aromatic paraffin and halogenated hydrocarbons. More specifically, it mixes in all proportions with acetone, benzene, carbon tetrachloride, ethyl ether, n-heptane and water. Because of its excellent solvency, low evaporation rate and high dilution ratios, it is used as a solvent in the manufacture and formulation of lacquers, enamels, inks and varnishes, employing such resins as alkyd, phenolic, nitrocellulose, maleic modified, styrene and epoxy. In lacquers butyl "Cellosolve" imparts a slow evaporation rate, strengthens blush resistance, heightens gloss, improves flow-out and helps prevent orange peel. Hot spray lacquers usually contain about 10% of "Dowanol" EB based on the solvent-diluent weight.

Acidity (as acetic acid), % by wt. (max.) Appearance Boiling point at 760 mm. Hg, °C. Fire point (open cup), °F. Flash point (Cleveland open cup), °F. Freezing range, °C. Heat of vaporization, Btu/lb.	0.01 water-white 170.6 165 165 -40 88.4	Molecular weight Specific gravity, 25/25°C. Specific heat (average), cal./°C. Surface tension at 25°C., dynes/cm. Vapor pressure at 75°C., mm. Hg Viscosity at 25°C., centistokes Weight per gal. at 20°C., lb.	118.2 0.899 0.54 27.4 0.88 2.83 7.48
Refractive index (np at 25°C.)	1.417	weight per gai. at 20°C., ib.	7.40

⁽b) All solutions are percent by volume

⁽c) Sets to glass below this temperature

Table 11.17: Water Solubility of Ethylene Glycol n-Butyl Ether (23)

Table 11.18: Ethylene Glycol Monoisobutyl Ether (41)

$$\begin{array}{c} \mathsf{CH_3-CH-CH_2-O-CH_2-CH_2OH} \\ \mathsf{I} \\ \mathsf{CH_3} \end{array}$$

Ethylene glycol monoisobutyl ether is a high boiling ether solvent for alkyd phenolic, malic, epoxy, alcohol-soluble butyrate, and ethyl cellulose nitrate resins.

Specifications

Color (Pt-Co Scale), ppm, max	10	Water, wt %, max	0.20
Specific Gravity, 20°/20°C	0.891-0.894	Appearance	Free from insoluble matter or haze
Boiling Range, 760 mm, °C			matter or naze
Initial boiling point, min	158.0	Odor	Mild, characteristic,
Dry point, max	162.0		nonresidual
Acidity, as acetic acid, wt %, max	0.01		(continued)

Table 11.18: (continued)

Typical Properties

Molecular Weight $(C_6H_{14}O_2)$	118.17
Evaporation Rate (n-butyl acetate = 1)	0.1
Weight/Vol, 20°C, lb/gal. (U.S.) kg/liter lb/gal. (Imperial)	7.40 0.89 8.88
Solubility, 20°C, wt % In water Water in	Complete Complete
Dilution Ratio, toluene VM & P naphtha	3.1 1.6
Refractive Index, 20°C	1.4168
Vapor Pressure, 163°C, mm Hg	752
Flash Point, Tag Closed Cup, °F (°C) Tag Open Cup, °F (°C)	136 (58) 145 (63)
Fire Point, °F (°C)	146 (63)
Flammable Limits in Air, % by volume Lower Upper	1.21 9.4
Autoignition Temperature (ASTM D-2155), °F (°C)	540 (282)
NFPA Classification 30:	Flammable Liquid, Class 11
ICC Labels Required	None
Bureau of Explosives Classification	Nonhazardous Liquid

Table 11.19: Ethylene Glycol Dibutyl Ether (2)

$$C_4H_9OCH_2CH_2OC_4H_9$$

This glycol diether is a colorless liquid. It is completely miscible with acetone, ethyl alcohol, ethyl acetate, isopropyl ether, heptane, ethylene dichloride and costor oil. Becouse of its being a good solvent for metallic reagents, it is porticularly suitable for the Grignard type of reaction. It is also a solvent for inorganic halides and chlorosilanes, and is therefore used in silicone rubber formulations and in the extraction of aliphatic acids from dilute aqueous solutions.

Acidity (as acetic acid), % by wt.	0.01
Boiling point, °C.	
760 mm.	203.6
50 mm.	117
10 mm .	83
ΔΒΡ/ΔΡ, °C./mm. Hg	0.056
Coefficient of expansion at 55°C.	0.00105
Distillation at 760 mm., °C.	
Initial BP, min.	195
DP, max.	208
Flash point (open cut), °F.	185
Freezing point, °C.	-69.1

Table 11.19: (continued)

Heat of vaporization (Btu/lb. at 1 atm.) Molecular weight Refractive index (nD at 20°C.)	118 174.28 1.4131
Solubility, % by wt. at 20°C.	
in water	0.2
water in	0.6
Specific gravity, 20/20°C.	0.8374
Δ SG/Δ T.	0.00085
Specific heat at 20°C.	0.480
lb./gal. at 60°F.	7.0
Vapor pressure, mm. Hg at 20°C.	0.09

Table 11.20: Ethylene Glycol Monophenyl Ether (23)

DOWANOL EPh

Ethylene glycol monophenyl ether is a colorless, high-boiling, nonhygroscopic, water-immiscible liquid with a faint roselike odor.

Molecular Weight	138.2
Freezing Point, °F	51
Boiling Point, 760 mm Hg, °C	245 131.3
Vapor Pressure @ 20°C, mm Hg	0.03
Specific Gravity @ 25/25°C	1.104
Viscosity, centistokes, 25°C	20.5 4.3
Flash Point, °F (TCC)	260
Specific Heat, (cal/g/°C) @ 25°C	0.52
Surface Tension, (dynes/cm) 25°C 75°C	42 38
Heat of Vaporization, (cal/g) @ 760 mm Hg	90.2
Thermal Conductivity, K x 10 ⁴ (cal/cm ² sec °C/cm) @ 60°C .	3.86
Pounds/ Gallon @ 25°C	9.20
Phenol content, max. %	0.5

Table 11.21: Ethylene Glycol Monobenzyl Ether (2)

$$HOCH_2CH_2OCH_2C_6H_5$$

Ethylene glycol monobenzyl ether is a water-white liquid which will dissolve a large number of organic substances among which are oils, fats, greases, some vinyl resins, dewaxed damar, rosin, ester gum, etc. It is used principally as a high boiling solvent in lacquers, inks, and textile dyeing.

Acidity (as acetic acid), % by wt. (max.)	0.010
Boiling point at 760 mm. Hg, °C.	2 55 . 9
Distillation range at 760 mm. Hg, °C.	248 to 260
Flash point, °F.	265
Specific gravity at 20/20°C.	1.0670 to 1.0720
Solubility in water at 20°C., % by wt.	0.4
Solubility of water in benzyl "Cellosolve"	
20°C., % by wt.	18
Vapor pressure at 20°C., mm. Hg	0.02
Weight per gal. at 20°C., lb.	8.90

Table 11.22: Terpinyl Ethylene Glycol Ether (2)

Terpinyl ethylene glycol ether is a light-colored liquid used in enamels, inks, paints, and varnish.

Aniline point Color (Lovibond 500 Amber Series Glasses) Distillation range (ASTM) 5% 10% 30% 50% 70%	Below -20°C 3.0 248.0°C 252.0°C 295.0°C 263.5°C 268.0°C
90%	278.0°C
95%	284.0°C
Flash point (Cleveland open cup)	284°F
Freezing point	Below ~10°C
Kauri butane solvency value	Infinite
Moisture	0.05%
Refractive index at 20°C	1.4786
Specific gravity at 15.5/15.5°C	0.9813
Viscosity at 25°C (Ubbelohde)	44.6 cp

Table 11.23: Ethylene Glycol Butylphenyl Ethers (2)

 Ethylene Glycol p-sec-Bu 	utylphenyl Ether	C ₁₂ H ₁₈ O ₂
II Ethylene Glycol p-tert-Bu	utylphenyl Ether	C ₁₂ H ₁₈ O ₂
	1	<u>II</u>
Boiling point, °F.	313 to 322/10	311 to 350/10
Flash point (Cleveland open cup), °F.	300	315
Freezing range, °F.	below -4	54
Fire point, °F.	320	325
Molecular weight	194.3	194.3
Specific gravity, 77/77°F.	1.008	1.016
Solubility (g./100 grams water)	0.1	0.1
Viscosity at 77°F., centistokes	64.6	120 <i>.7</i>
140°F.	8.8	11.6

Table 11.24: Ethylene Glycol Monohexyl Ether (19)

Hexyl CELLOSOLVE Solvent ARCOSOLV EH

Solvent			Formula Molecul Weight	-	Beiling Point, °C	Freezing Point, °C	Flash Point, °F(a)	Vaper Pressure, mm Hg	
Hexyl CELLOSOLVE Solvent		146.23		208.1	-50	179	0.051		
		Coefficient				Relative	Surface Tension at 25°C, dynes/cm		
	Specific Gravity, 20/20°C	Pounds Per Gallon	of Expansion at 20°C	in Water	Wa In	ler	Evaporation Rate (nBuAc = 100)	Neat Product	25% Aq. Solution (b)
	0.889	7.40	0.00086	0.99	18.	8	0.82	30.3	28.5 ^(c)

⁽a) Tag Closed Cup

Table 11.25: Ethylene Glycol Ethyl Hexyl Ether (13)

SOLV EEH ARCOSOLV EEH EKTASOLVE EEH

	,						Dilut	tion Ratio	
Product Name	Chemical Abstract Service Number	Evaporation Rate n-BuAcs1	Specific Gravity, @20/20° C	@20°C	Distillation Range, °C	Viscosity cP 8% RS 1/2 sec N.C. @ 25°C	Toluene	Special Naphtholite (VM&P)	Flash Point, TCC; F
Solv EEH	Mixture	0.003	0.892	7.42	224-275	Ins.			208*

								@20°C	Solubility	ts	Solvent Constan	
RQ (ibs.)	HMIS Ratings H-F-R	NFPA Ratings H-F-R	DOT Hazard Class	Coefficient of Expansion (Per ° C)	Vapor Pressure mm Hg @20° C	Electrical Resistance Megohms	Blush Resistance %RH @ 80°F	Weight % In Water	Weight % In Water	Dipole Moment	Hydrogen Bonding	Solubility Parameter
	1*-1-0	0-1-0	N-HL	0.0009	0.08	<0.3	_	6.2	0.2	1.2	16.3	9.2

⁽b) All solutions are percent by volume

⁽c) 1% solution

Table 11.26: Diethylene Glycol (2)

Diglycol

HOCH2CH2OCH2CH2OH

This hygroscopic glycol is a clear colorless, odorless and stable liquid. It is also slightly viscous, noncorrosive and nonvolatile. Because of its ether and alcohol group, diethylene glycol exhibits chemical properties characteristic of both primary alcohols and ethers. Its boiling point is considerably higher than that of ethylene glycol, and its solvent is greater. Diethylene glycol is miscible with water, ethers, lower aliphatic alcohols, aldehydes and ketones and is partially soluble in benzene, carbon tetrachloride, monobenzene, orthodichlorobenzene and toluene. It dissolves many dyes, resins, oils, nitrocellulose and many organic substances. Because of its solvent power, low volatility and hygroscopicity, it is used in textile lubricants, cutting oils, dry cleaning soap, printing inks, steam-set inks, and nongrain wood stains. In the textile industry diethylene glycol is used as a conditioning agent for wool, rayon, and cotton. As a solvent for dyes it makes a valuable assistant in dyeing and printing. The high hygroscopicity of diethylene glycol makes it an efficient softening agent for tobacco, paper, synthetic sponges, glues and casein. Diethylene glycol is especially useful in the dehydration of natural gas. A mixture of diethylene glycol and monoethanolamine will remove moisture, hydrogen sulfide and carbon dioxide from natural gas.

```
Acidity (as acetic acid), % by wt. (max.)
                                                         0.02
Boiling point at 760 mm. Hg, °C.
                                                         244.5
Coefficient of expansion at 20°C.
                                                         0.000635/°C.
Density (true) at 20°C., g./°C.
                                                         1.1161
Distillation range at 760 mm. Ha
  Below 320°C.
                                                        Done
  Below 240°C.
                                                        not over 20%
  Below 250°C.
                                                        not less than 85%
  Below 270°C.
                                                        not less than 95%
Electrical conductivity (reciprocal ohms)
                                                        0.586 \times 10^{-6}
Fire point, °C.
                                                        146 (approx.)
Flash paint (Cleveland open cup), °C.
                                                        143.3 (approx.)
Freezing point, °C.
                                                        -8
Heat of combustion (constant pressure) at 20°C.,
                                                        567
                                                        148.42
Heat of formation (constant pressure), kcal/mol
Heat of vaporization at 760 mm. Hg and
      244.5°C.
  Btu/lb.
                                                        270
  cal./g.
                                                        150
                                                        351
Ignition temperature in air, °C.
                                                        412.8
Spontaneous ignition temperature
                                                        106.12
Molecular weight
                                                        1.4475
Refractive index (n<sub>D</sub> at 20°C.)
Specific gravity at 20/20°C.
                                                        1.1185
Specific heat at 20°C., cal./g./°C.
                                                        0.5509
Surface tension at 25°C., dynes/cm.
                                                        48.5
Vapor pressure, mm. Hg
  20°C.
                                                        0.015
  130°C
                                                        8.0
  180°C.
                                                      96.0
Viscosity (absolute), in centipoises
                                                        50.0
  15°C.
  20°C.
                                                        38.0
                                                        30.0
  25°C.
Water, % by wt. (max.)
                                                        0.30
                                                        9.308
Weight per gal. at 20°C., lb.
```

Table 11.27: Diethylene Glycol Monomethyl Ether (2)

DOWANOL DM EKTASOLVE DM Methyl CARBITOL POLY-SOLV DM SOLV DM ARCOSOLV DM Givcol Ether DM

HOCH2CH2OCH2CH2OCH3

Diethylene glycol monomethyl ether is a colorless, stable hygroscopic liquid with an agreeable odor. It is completely miscible with water, ketones, alcohal, ethers, aromatic hydrocarbons and halogenated hydrocarbons. More specifically, it is miscible with acetone, benzene, carbon tetrachloride, ethyl ether, methanol and water. It is a solvent for dyes, oils, fats, waxes, many natural and synthetic resins, nitrocellulose and cellulose acetate. It is used as a high-boiling solvent in such formulations as printing inks and pastes, stamp pad inks, textile dye pastes, facquers, and synthetic resin coatings. Its presence in lacquers eases brushability and flow—out, and minimizes lifting of undercoats.

Acidity (as acetic acid), % by wt. (max.) Appearance Boiling point at 760 mm. Hg, °C. Fire point (open cup), °F.	0.02 water-white 194.1 200	Specific gravity, 25/25°C. Specific heat (average), cal./°C. Surface tension at 25°C., dynes/cm. Vapor pressure at 75°C., mm. Hg	1.018 0.54 34.8 0.18
Flash point (Cleveland open cup), °F.	200	Viscosity at 20°C., centistokes	3.87
Freezing range, °C.	- 50	25°C.	3.47
Heat of vaporization, Btu/lb.	163	60°C.	1.64
Refractive index (np at 20°C.)	1.424	Weight per gal. at 20°C., lb.	8.47
Molecular weight	120.2		

Table 11.28: Diethylene Glycol Monoethyl Ether (2)

CARBITOL Solvent
EKTASOLVE DE
POLY-SOLV DE Low Gravity
SOLV DE

 $\mathsf{HOCH_2CH_2OCH_2CH_2OC_2H_5}$

Diethylene glycol monoethyl ether is a colorless, stable, hygroscopic liquid of a mild, pleasant odor. It is completely miscible with water, alcohols, ethers, ketones, aromatic and aliphatic hydrocarbons, and halogenated hydrocarbons. Owing to the fact that it contains an ether-alcohol-hydrocarbon group in the molecule, it has the power to dissolve a wide variety of substances such as oils, fats, waxes, dyes, camphor and natural resins like copal, kauri, mastic, rosin, sandarac, shellac, as well as several types of synthetic resins. It is used as a solvent in synthetic resin coating compositions, and in lacquers, where high-boiling solvents are desired.

Acidity (as acetic acid), % by wt. (max.)	0.02	Molecular weight	134.2
Boiling point at 760 mm. Hg, °C.	202.0	Specific gravity, 25/25°C.	0.986
Fire point (open cup), °F.	210	Specific heat (average), cal./°C.	0.54
Flash point (Cleveland open cup), °F.	205	Surface tension at 25°C., dynes/cm.	31.8
Freezing range, °C.	- 55	Vapor pressure at 75°C., mm. Hg	0.13
Heat of vaporization, Btu/lb.	84. 5	Viscosity at 20°C., centistokes	3.78
Refractive index (nD at 25°C.)	1.425	Weight per gal. at 20°C., lb.	8.20

Table 11.29: Diethylene Glycol Monoethyl Ether/Ethylene Glycol (41)

EKTASOLVE DE-HG

	Evaporation Rate n-BuOAc = 1	Lb/ Gal @ 20°C	Color Pt-Co Max	Specific Gravity @ 20°/20°C	Acidity, as Acetic Acid Max Wt %	Boiling Range °C	Freezing Point *C	Flash Point TCC *C (*F)	Assay Min Wt %
EKTASOLVE DE-HG Solvent	* <0.01	8.56	10	1.027	0.01	190-20	5 -70	96 (205)	
(Diethylene Glycol Monoethy	Ether/Ethylene	e Glycol)							
[C ₂ H ₅ (OC ₂ H ₄) ₂ OH][HOCH ₂ CH		- •							

^{*} High gravity solvent

Table 11.30: Diethylene Glycol Monobutyl Ether (2)

ARCOSOLV DB Glycol Ether DB

 $HOCH_2CH_2OCH_2CH_2OC_4H_9$

Diethylene glycol monobutyl ether is a colorless, high-boiling liquid. It is miscible in proportions with water, alcohol (methanol), ketones (acetone), ethers (ethyl ether), aromatic hydrocarbons (benzene), paraffinic hydrocarbons (n-heptane), and halogenated hydrocarbons (carbon tetrachloride). As it is an ether-alcohol type compound it possesses solvent action for many substances such as oils, dyes, gums, and natural and synthetic resins. It is used as a high-boiling solvent in nitrocellulose lacquers and other synthetic coatings, baking lacquers, flash-dry printing inks, and dye baths.

Acidity (as acetic acid), % by wt. (max.) Appearance Boiling point at 760 mm. Hg, °C. Fire point (open cup), °F. Flash point (Cleveland open cup), °F. Freezing range, °C. Heat of vaporization, Btu/lb. Refractive index (np at 25°C.) 0.01 water—wt 230 Fr. 240 74.3 1.430	Molecular weight Specific gravity, 25/25°C. Specific heat (average), cal./°C. Surface tension at 25°C., dynes/cm. Vapor pressure at 25°C., mm. Hg Viscosity at 25°C., centistokes Weight per gal. at 20°C., lb. 162.2 0.952 0.952 4.92 7.92
--	--

Table 11.31: Diethylene Glycol Monopropyl Ether (19)

EKTASOLV DP SOLV DP ARCOSOLV DP Glycol Ether DP

Selvent Propyl CARBITOL Solvent				Freezing Point, °C	Flash Point, °F(a)	Vapor Pressure, mm Hg	
		148.20 216.0		-53	210	0.02	
	Coefficient			ubility at , % by wt	Relative	Surface Tensio at 25°C, dynes/o	
Specific Gravity, 20/20°C	Pounds Per Gallon	of Expansion at 20°C	in Water	Water in	Evaporation Rate (nBuAc = 100)	Neat Product	25% Aq. Solution(b)
0.969	8.06	0.00089	Complete	Complete	0.49	29.6	37.8

⁽a) Tag Closed Cup

Table 11.32: Diethylene Glycol Dimethyl Ether (2)

DIGLYME

 $\mathsf{CH_3}\mathsf{OCH_2}\mathsf{CH_2}\mathsf{OCH_2}\mathsf{CH_2}\mathsf{OCH_3}$

Diethylene glycol dimethyl ether is a clear, water-white neutral liquid of faint, pleasant odor. This ether may be used as a solvent for alkali metal hydrides for use in such reactions as reduction, alkylation and condensation. It may also be used as a lacquer solvent.

Acidity (as acetic acid), % by wt. (max.) Appearance Flash point (Cleveland open cup), °F.	0.015 water–white 168	Specific gravity, 20/20°C. Surface tension at 25°C., dynes/cm. Vapor pressure at 100°C., mm. Hg	0.9451 27.0 3.0
Freezing range, °C.	-68	Viscosity at 20°C., centistokes	2.0
Refractive index (np at 20°C.)	1.40778	Weight per gal. at 20°C., lb.	7.87
Molecular weight	134.2		

⁽b) All solutions are percent by volume

Table 11.33: Diethylene Glycol Monoethyl Ether (Special Grade) (23)

CARBITOL Solvent POLY-SOLV DE Glycol Ether DE

Boiling point, °C Flash point (TCC), °F Evaporation rate Bu Ac = 1.0 Specific gravity 25°/25°C Pounds per gallon 25°C Viscosity, cs 25°C	190-205 198 0.01 1.025 8.52 6.9
Surface tension (dynes/cm) Solvent constants	33.5
Solubility parameter	11,4
Hydrogen bonding	16,6
Dipole moment (Debye)	2,05
Solubility in water ml/100 ml	∞0

Table 11.34: Diethylene Glycol Monohexyl Ether (19)

Hexyl CARBITOL Solvent

Solvent Hexyl CARBITOL Solvent		Formula Molecul: Weight	ar	Boiling Point, °C	Freezing Point, °C	Flash Point, °F(*)	Vapor Pressure, mm Hg		
		190.28		259.1	-40	271	< 0.01		
A seller Bread		Coefficient of		Solubility 20°C, % by		Relative		ace Tension °C, dynes/cm	
	Specific Gravity, 20/20°C	Pounds Per Gallon	Expansion at 20°C	in Water	Wat	er	Evaporation Rato (nBuAc = 100)	Neat Product	25% Aq. Solution(b)
	0.935	7.78	0.00084	1.7	56.3	3	0.03	29.6(c)	_

⁽a) Tag Closed Cup

Table 11.35: Diethylene Glycol Divinyl Ether (19)

1,5-Bis(Vinyloxy)-3-Oxapentane

$$\mathsf{CH_2}\!\!=\!\!\mathsf{CHOCH_2}\!\mathsf{CH_2}\!\mathsf{OCH_2}\!\mathsf{CH_2}\!\mathsf{OCH}\!\!=\!\!\mathsf{CH_2}$$

This vinyl ether is monomeric in character and is used as a chemical intermediate or as a crosslinking agent. Addition of isocyanic acid produces secondary diisocyanates. Divinyl ethers hydrolyze to the glycol and acetaldehyde. Chlorine or bromine add to the double bonds. Reaction with an alcohol in the presence of water produces a diacetal. Polymerization of divinyl ether of diethylene glycol with acidic catalysts produce crosslinked gels. Unsaturated polyesters, crosslinked with styrene, have been made noncorrosive to metals through use of divinyl ethers to reduce hydroxyl and acid numbers.

Boiling point, °C::	
10 mm. Hg	81-82
12 mm . Hg	85
50 mm. Hg	115-116
Density, 29°C.	0.975
Physical form	colorless liquid
Purity	95%
Refractive index	1.4441-1.4452
Stabilizer	0.01%

⁽b) All solutions are percent by volume

⁽c) at 20°C

Table 11.36: Diethylene Glycol Monoisobutyl Ether (41)

(CH₃)₂CHCH₂OCH₂CH₂OCH₂CH₂OH

Specifications

Color (Pt-Co Scale), ppm, maximum Acidity, as acetic acid, weight percent, maximum Boiling Range, 760 millimeters, °C	10 0.01	Specific gravity, 20°/20°C Water, weight percent, maximum Appearance	0.945-0.949 0.10 Free from
Initial boiling point, minimum	217.0		insoluble
Dry point, maximum	225.0		matter or haze

Table 11.37: Triethylene Glycol (2)

Triglycol	CH2OCH2·CH2OH
rrigiyedi	ĊH2OCH2*CH2OH

Triethylene glycol is a clear, colorless, viscous, stable liquid with a slightly sweetish odor. Because it has two ether and two hydroxyl groups its chemical properties are closely related to ethers and primary alcohols. It is a good solvent for gums, resins, nitrocellulose, steam-set printing inks and wood stains. With a low vapor pressure and a high boiling point, its uses and properties are similar to those of ethylene glycol and diethylene glycol. Because it is an efficient hygroscopic agent it serves as a liquid desiccant for removing water from natural gas. It is also used in air conditioning systems designed to dehumidify air.

Acidity (as acetic acid), % by wt.	0.01
Boiling point at 760 mm. Hg, °C.	287.4
Coefficient of expansion at 20°C.	0.00069
Density (true) at 20°C., g./°C.	1.1242
Fire point, °C. (approx.)	1 <i>7</i> 3.9
Flash point (Cleveland open cup), °C. (approx.)	330.0
Freezing point, °C.	- 72
Heat of combustion (constant pressure) at 20°C.,	
kcal/mol	850
Heat for formation (constant pressure), kcal/mol	192.9
Heat of vaporization at 760 mm. Hg and	
244.5°C., cal./g.	179
Spontaneous ignition temperature, °F.	206
Surface tension at 25°C., dynes/cm.	45.2
Vapor pressure, mm. Hg:	
20°C.	0.01
101°C.	0.4
159°C.	10
202°C.	60
Water	miscible in
	all propor=
	tions
Weight per gal. at 20°C., lb.	7.37

Table 11.38: Triethylene Glycol Monomethyl Ether (66)

POLY-SOLV TM

CH₃OCH₂CH₂)₃OH

Physical Properties	Specifications	Specifications			
Boiling Point (°C)		Water, max			
@ 760 mm Hg	249	(% by weight)	0.1		
@ 50 mm Hg	152	Acidity, as acetic acid			
@ 10 mm Hg	126	(% by weight)	0.01		
Coefficient of Expansion		Specific Gravity @ 20/20°C	1.037-		
@ 20°C			1.055		
@ 55°C		Color, max (APHA)	50		
Density @ 25°C (lb/gal)	8.71	Odor	С		
Flash Point, TCC (°C)		Suspended Matter	F		
(°F)		Boiling Range (°C)			
Flash Point, COC (°C)	118	Initial boiling point, min	220		
(°F)	245	5%, min	230		
Freezing Point (°C)	-55	95%, max			
(°F)	-67	Dry point, max			
Heat of Vaporization @ 760 mm Hg		C = Characteristic F = Substantially Free			
(joules/g)	327.6				
Molecular Weight	164.20				
Refractive Index @ 20°C	1.4381				
Solubility @ 20°C					
Poly-Solv in water	Complete				
water in Poly-Solv	Complete				
Specific Gravity, apparent @ 20/20°C	1.048				
Specific Heat @ 20°C (joules/g-°C)					
Vapor Pressure @ 20°C (mm Hg)	< 0.01				
Viscosity, absolute @ 20°C (cp)	7.5				

Table 11.39: Triethylene Glycol Monoethyl Ether (66)

POLY-SOLV TE	CH ₃ CH ₂	(OCH ₂ CH ₂) ₃ OH	
Physical Properties		Specificaltons	
Boiling Point (°C)		Water, max	
@ 760 mm Hg	256	(% by weight)	0.1
@ 50 mm Hg	158	Acidity, as acetic acid	
@ 10 mm Hg	130	(% by weight)	0.01
Coefficient of Expansion		Specific Gravity @ 20/20°C	1.020
@ 20°C			1.035
@ 55°C		Color, max (APHA)	50
Density @ 25°C (lb/gal)	8.50	Odor	C
Flash Point, TCC (°C)		Suspended Matter	F
(°F)	_	Boiling Range (°C)	
Flash Point, COC (°C)	124	Initial boiling point, min	225
(°F)	255	5%, min	235
Freezing Point (°C)	-21	95%, max	_
(°F)	-5.8	Dry point, max	
Heat of Vaporization @ 760 mm Hg		C = Characteristic F = Substantially Free	
(joules/g)	2 99. 8	C Communication I - Substantially Free	
Molecular Weight	178.23		
Refractive Index @ 20°C	1.4376		
Solubility @ 20°C			
Poly-Solv in water	Complete		
water in Poly-Solv	Complete		
Specific Gravity, apparent @ 20/20°C	1.022		
Specific Heat @ 20°C (joules/g-°C)			
Vapor Pressure @ 20°C (mm Hg)	<0.01		
Viscosity, absolute @ 20°C (cp)	7.8		

Table 11.40: Triethylene Glycol Dimethyl Ether (21)

TRIGLYME	C ₈ H ₁₈ O ₄
Molecular Weight	178.22
Boiling Point, °C 760 mm Hg	216
Freezing Point, °C	-45.0
Specific Gravity, 20°/20°C	0.9862
Weight per Gallon, lb 20°C	8.23
Vapor Pressure, mm Hg/20°C	0.02
Volatility, n-butylacetate = 100	⟨0.1
Viscosity, cp 20°C	3.8
Surface Tension, dynes/cm 20°C	29.4
Specific Heat, cal/g/°C	0.424
Auto Ignition, °C	195
Heat of Vaporization, K cal/mol	14.3
Heat of Combustion, K cal/mol	1191
Heat of Formation, K cal/mol	179
Flash Point, °C closed cup	111
Refractive Index n _p at 20°C	1.4224
Appearance	Clear, colorless
Odor	Mild, non-residual
Solubility at 25°C	
in water	Complete
Water in	Complete
Organics*	

^{*}All glymes are miscible in all proportions in ethanol, acetone, benzene, diethyl ether and octane.

Table 11.41: Triethylene Glycol Monomethyl Ether/Highers (23)

DOWANOL TMH

DOWANOL	NAME FORMULA		Molecular Weight	Boiling Pt. °C 760 mm Hg	Flash Point °F	Evap. Rate BuAc = 1.00	Specific Gravity 25/25°C
TMH	Triethylene Glycol Methyl Ether/Highers	$CH_3, O(C_2H_4O)_nH$ (n = 3,4,5)	173.0 (aver.)	242.0	2553	<<0.01	1.054

	Viscosity	Vapor	Surface	DILUTIO	N RATIO		SOLVENT C	ONSTANTS	
Lb/Bai 25°C	Centi- stokes 25°C	Pressure at 25°C (mm Hg)	Tension (dynes/ cm)	Toluene	Naphtha	Solubility Peremeters ¹	Hydrogen Bonding ²	Dipole Moment (Debye)	Solubility in Water mi/198 mi
8.80	7.0	<0.01	39.1	3.9	0.1	10.5	11.0		80

Solubility Parameters are useful as a guide in determining the ability of a solvent or solvent mixture to dissolve resins. A discussion of solubility parameters and the basis for these values are contained in an article by H.S. Burrell in the Spring 1955 issue of Interchemical Review.
A discussion of the hydrogen bonding parameter is contained in an article by Allen A. Orr in the August 1975 issue of Journal of Paint Technology, Vol. 47, No. 607, pages 45–49. This particular article was the basis of the listed values of the hydrogen bonding parameter.

Table 11.42: Triethylene Glycol Monobutyl Ether/Highers (23) DOWANOL TBH

DOWANOL	CHEMICAL NAME	STRUCTURAL FORMULA	Molecular Weight	Boiling Pt. °C 760 mm Hg	Flash Polat "F	Evap. Rate BuAc = 1.00	Specific Gravity 25/25°C	Lb/Gal 25°C
TBH	Triethylene Glycol Butyl Ether/Highers	$C_4H_9O(C_2H_4O)_nH$ (n = 3,4,5)	231.2 (aver.)	283.0	285³	<<0.01	0.996	8.30

Viscosity	Vagor	Surface	DILUTIO	ON RATIO		SOLVENT CONSTANTS			
Centi- stokes 25°C	Pressure at 25°C (mm Hg)	Tension (dynes/ cm)	Toluene	Naphtha	Solubility Parameters	Hydrogen Bonding ²	Dipole Moment (Dobye)	Solubility in Water mi/100 mi	
9.2	<0.01	31.4	6.3	0.9	9.6	11,1	_	oc	

Solubility Parameters are useful as a guide in determining the ability of a solvent or solvent mixture to dissolve resins. A discussion of solubility parameters and the basis for these values are contained in an article by H.S. Burrell in the Spring 1955 issue of Interchemical Review.

^{3 :}Pensky-Martens Closed Cup (PMCC)

A discussion of the hydrogen bonding parameter is contained in an article by Allen A. Orr in the August 1975 issue of Journal of Paint Technology, Vol. 47, No. 607, pages 45–49. This particular article was the basis of the listed values of the hydrogen bonding parameter.

Pensky-Martens Closed Cup (PMCC)

Table 11.43: Tetraethylene Glycol (2)

Tetraethylene glycol is a high-boiling, clear liquid of low volatility. It is completely miscible with water and a wide variety of organic solvents. For certain aliphatic hydrocarbons, it has a very slight affinity. Tetraethylene glycol is used as a coupling agent for blending water-soluble and water-insoluble compounds in such formulations as lubricants, glues, cork and textile products, etc.

Acidity (as acetic acid), % by wt. (max.)	0.01
Ash, % by wt. (max.)	0.01
Bailing point:	
760 mm. Hg, °F.	586.0
760 mm. Hg, °C.	307.8
Color, Pt-Co scale (max.)	200
Fire point, (Cleveland open cup), °F.	375
Flash point (Cleveland open cup), °F.	365
Freezing range, °F.	22
Molecular weight	194.2
Refractive index (np at 25 °C.)	1.457
Specific gravity, 20/20°C.	1.125-7
Specific heat at 77°F. (25°C.)	0.52
Surface tension at 25°C., dynes/cm.	45
Vapor pressure at 25°C., mm. Hg	10.0
Viscosity (absolute) in centistokes:	
25°C.	39.9
60°C.	10.2
Water, % by wt.	0.20
Weight per gal. at 25°C., lb.	9.34

Table 11.44: Triethylene Glycol Dimethyl Ether (21)

TRIGLYME	C ₈ H ₁₈ O ₄
Molecular Weight	222.28
Boiling Point, °C 760 mm Hg	275
Freezing Point, °C	-29.7
Specific Gravity, 20°/20°C	1.0132
Weight per Gallon, lb 20°C	8.45
Vapor Pressure, mm Hg/20°C	0.01
Volatility, n-butylacetate = 100	⟨0.1
Viscosity, cp 20°C	4.1
Surface Tension, dynes/cm 20°C	33.8
Specific Heat, cal/g/°C	0.427
Auto Ignition, °C	215
Heat of Vaporization, K cal/mol	18.7
Heat of Combustion, K cal/mol	1480
Heat of Formation, K cal/mol	217
Flash Point, °C closed cup	141
Refractive Index n _D at 20°C	1.4330
Appearance	Clear, colorless
Odor	Very mild, non-residual
Solubility at 25°C	
In water	Complete
Water in	Complete
Organics*	

^{*}All glymes are miscible in all proportions in ethanol, acetone, benzene, diethyl ether and octane.

PROPYLENE GLYCOLS

Table 11.45: Propylene Glycol Monomethyl Ether (2)

ARCOSOLV PM DOWANOL PM POLY-SOLV MPM Glycol Ether PM

CH₃CHOCH₂OCH₃

Acidity (as acetic acid), % by wt. (max.)	0.02
Appearance	water-white
Boiling point, 760 mm. Hg, °C.	120.1
Fire point (open cup), °F.	100
Flash point (Cleveland open cup), °F.	100
Freezing range, °F.	-142
Refractive index (np at 20°C.)	1.4021
Molecular weight	90.1
Specific gravity, 20/20°C.	0.919
Specific heat (average), cal./°C.	0.58
Surface tension at 25°C., dynes/cm.	27.7
Vapor pressure at 20°C., mm. Hg	10.9
Viscosity at 20°C., centistokes	1 <i>.7</i> 5
75°Ć.	0.70
Weight per gal. at 20°C., lb.	7.65

Table 11.46: Propylene Glycol Monophenyl Ether (2)

DOWANOL PPh

Typical Physical Properties

Molecular Weight	152.2
Boiling Point, °C 760 mm Hg	242.7
Boiling Point, °C. 10 mm Hg	115.9
Freezing Point, °F	55
Specific Gravity, 25/25°C	1.063
Pounds/ Gallon at 25°C	8.80
Viscosity, cs, 25°C	23.2
Flash Point, °F (TCC)	260
Specific Heat, 25°C, cal/gm/°C	0.52
Surface Tension, 25°C, dynes/cm,	38.1
Refractive Index, 25°C	1.522
Solubility in Water, 25°C, g/100g	1.1
Vapor Pressure, 25°C, mm Hg	< 0.1
Color APHA	<25

Table 11.47: Propylene Glycol Monopropyl Ether (19)

ARCOSOLV PNP

Solvent		Formul Molecu Weight	lar Bo	Point, °C Point, °C		Flash Point, °F(a)	Vapor Pressure, mm Hg		
		118.18	14			119			
			Coefficient		Solubility at D°C, % by wt	***	Relative	Surface Tension at 25°C, dynes/cm	
	Gravity, P	Pounds Per Gallon	of Expansion at 20°C	in Water	Water In		Evaporation Rate (nBuAc = 100)	Neat Product	25% Aq. Solution(b)
	0.887	7.36	0.00104	Complete	e Comple	ete	22	27.0	30.4

⁽a) Tag Closed Cup

Table 11.48: Propylene Glycol Monobutyl Ether (19)

ARCOSOLV PNB

Solvent Butyl PROPASOL Solvent		Molecu	Formula Molecular Weight		Freezing Point, °C	Flash Point, °F(a)	Vspor Pressure, mm Hg		
		132.20		170.1	-80(c)	138	0.56		
		Coefficient		Solubility a 20°C, % by		Relative		tace Tension °C, dynes/cm	
	Specific Gravity, 20/20°C	Pounds Per Gallon	of Expansion at 20°C	in Water	Wate in	r	Helative Evaporation Rate (nBuAc = 100)	Nest Product	25% Aq. Solution®
	0.884	7.32	0.00100	5.6	14.9		8.8	27.4	32.3(0)

⁽a) Tag Closed Cup

⁽b) All solutions are percent by volume

⁽c) Sets to glass below this temperature

⁽b) All solutions are percent by volume

⁽c) Sets to glass below this temperature

⁽d) 5% solution

Table 11.49: Propylene Glycol tert-Butyl Ether (13)

SOLV PTB ARCOSOLV PTB Glyrol Ether PTB

							Dilu	tion Ratio	
Product Name	Chemical Abstract Service Number	Evaporation Rate n-BuAca1	Specific Gravity, @20:20°C	(b)gal	Distillation Range, °C	Viscosity cP 8% RS 1/2 sec N.C. 25°C	Toluene	Special Naphtholia (VM&P)	Flash Point, TCC,°F
Solv PTR	E7010 E2 7	0.25	0.070	7.07	145 155	2.0	2.2	1.2	113

	Solvent Constants Solubility @20°C			@20°C								
Solubility Parameter	Hydrogen Bonding	Dipole Moment	Weight % In Water	Weight % In Water	Blush Resistance %RH @ 80°F	Electrical Resistance Megohma	Vapor Pressure mm Hg @20°C	Coefficient of Expansion (Per * C)	DOT Hazard Class	NFPA Ratings H-F-R	HMIS Ratings H-F-R	RQ (Rbs.)
9.0	15.7	2.1	14.5	20.1	_	_	4.7		CL	2-2-0	2-2-0	

Table 11.50: Propylene Glycol Monobutoxyethyl Ether (19)

		Formula Molecular Weight	Boilin Point			Vapor Pressure, mm Hg	
	-	176.26	230.0) _90(c)	197	< 0.01	
			Solubility at 20°C, % by wt			Surface Tension al 25°C, dynes/cm	
		Coefficient			Relative		
Specific Gravity, 20/20°C	Pounds Per Gallon	Coefficient of Expansion at 20°C			Relative Evaporation Rate (nBuAc = 100)		

⁽a) Tag Closed Cup

Table 11.51: Propylene Glycol isobutyl Ether and Higher Homologs (23)

Boiling point, °C	172	Dilution ratio	
Flash point (TCC)°F	138	Toluene	2.3
Evaporation rate BuAc = 1.0	0.09	Naphtha	1.5
Specific gravity 25°/25°C	0.883	Solvent constants	
Pounds per gallon 25°C	7.33	Solubility parameter	8.6
Viscosity, cs 25°C	4.01	Hydrogen bonding	14.8
Vapor pressure @ 25°C (mm Hg)	1.3	Dipole moment (Debye)	1.97
Surface tension (dynes/cm)	25.1	Solubility in water ml/100 ml	2.9

⁽b) All solutions are percent by volume

⁽c) Sets to glass below this temperature

⁽d) An accurate determination of the solubility of Butoxyethyl PROPASOL Solvent in water and water in Butoxyethyl PROPASOL Solvent is difficult because of the similarity of their densities and the sensitivity of the solubility to slight changes in temperature. Thus, the solubility data reported here are approximate.

Table 11.52: Propylene Based Glycol Ether Blends (23)

DOWANOL BC-100 DOWANOL BC-200

DOWANOL	CHEMICAL NAME	STRUCTURAL FORMULA	Molecular Weight	Boiling Pt. °C 760 mm Hg	Flash Point "F	Evap. Rate BuAc = 1.80	Specific Gravity 25/25°C
BC-100	Propylene-Based Glycol Ether		-	120.0- 184.0	903	0.60	0.919
BC-200	Propylene-Based Glycol Ether		_	120.0- 184.0	933	0.25	0.924

	Viscosity	iscosity Vapor		DILUTIO	ON RATIO		SOLVENT C	ONSTANTS	
Lb/6al 25°C	Centi- stokes 25°C	Centi- Pressure stokes at 25°C	Surface Tension (dynes/ cm)	Toluene	Naphtha	Solubility Parameters ¹	Hydrogen Bonding ²	Dipole Moment (Dobye)	Solubility in Water mi/100 mi
7.68	2.39	12.5	_	5.0	0.9	10.2	14.5	1.7	∞
7.71	2.03	12.5	_	4.9	0.9	10.0	14.1	1.7	00

¹ Solubitity Parameters are useful as a guide in determining the ability of a solvent or solvent mixture to dissolve resins. A discussion of solubility parameters and the basis for these values are contained in an article by H.S. Burrell in the Spring 1955 issue of Interchemical Review.

Table 11.53: Propylene Based Glycol Ether Blend (23)

Boiling point, °C	179
Flash point (TCC)°F	147
Evaporation rate Bu Ac = 1.0	80.0
Specific gravity 25°/25°C	0.917
Pounds per gallon 25°C	7.62
Viscosity, cs 25°C	3.8
Vapor pressure @ 25°C (mm Hg)	0.6
Surface tension (dynes/cm)	26.4
Solvent constants	
Solubility parameters	9.0
Hydrogen bonding	14.1
Dipole moment (Debye)	. 1,97
Solubility in water ml/100 ml	12.0

Table 11.54: Dipropylene Glycol Monomethyl Ether (2)

ARCOSOLV DPM DOWANOL DPM POLY-SOLV DPM Glycol Ether DM

 $HOC^3H^9OC^3H^9OCH^3$

"Dowanol" DPM has a mild, pleasant odor. Because of its structure it is completely miscible with water and a wide variety of organic substances, and has the combined solubility characteristics of an alcohol, an ether and a hydrocarbon. It is used in formulations of brake fluids, lacquers, paints, varnishes, dye and ink solvents, wood stains, textile processes, dry cleaning soaps and cleaning compounds.

Acidity (as acetic acid), % by wt. (max.)	0.02	Specific gravity, 20/20°C.	0.951
Appearance	water–white	Specific heat (average), cal./°C.	0.54
Boiling point at 760 mm. Hg, °C.	188.3	Surface tension at 25°C. dynes/cm.	28.8
Fire point (open cup), °F.	185	Vapor pressure at 20°C., mm. Hg	0.4
Flash point (Cleveland open cup), °F.	185	Viscosity in centistokes: 25°C.	3.33
Freezing range, °C.	-117	75°C.	1.07
Refractive index (np at 20°C.)	1.419	Weight per gal. at 20°C., lb.	7.91
Molecular weight	148.2		

A discussion of the hydrogen bonding parameter is contained in an article by Allen A. Orr in the August 1975 issue of Journal of Paint Technology, Vol. 47. No. 607, pages 45-49. This particular article was the basis of the listed values of the hydrogen bonding parameter.

³ Setaflash

Table 11.55: Dipropylene Glycol Monopropyl Ether (19)

ARCOSOLV DPNP

			Formula Molecular Weight	Boiling Point, °C	Freezing Point, °C	Flash Point, °F(=)	Vapor Pressure, mm Hg	
			176.26	212.3	<-70	208	0.04	
				Solub	lity at		Surf	ace Tension
			Coefficient	20°C, 9		Relative	at 25°	°C, dynes/cm
Specil Gravit 20/20	ı, İ	Pounds Per Gallon	Coefficient of Expansion at 20°C	20°C, 9		Relative Evaporation Rate (nBuAc = 100)	at 25° Neat Product	°C, dynes/cm 25% Aq. Solution(b

⁽a) Tag Closed Cup

Table 11.56: Dipropylene Glycol Monobutyl Ether (19)

ARCOSOLV DPNB

			Formula Molecular Weight		ling int, °C	Freezing Point, °C	Flash Point, °F(a)	Vapor Pressure, mm Hg	
· · · · · · · · · · · · · · · · · · ·			190.28	230	0.6	-70(c)	230	0.05	
		01-	Coefficient	*	Solubility 20°C, % b		Relative	• • • • • • • • • • • • • • • • • • • •	lace Tension °C, dynes/cm
Speci Gravi 20/20	ty,	Pounds Per Gallon	of Expansion at 20°C	In Water	Wa In	iter	Evaporation Rate (nBuAc = 100)	Neat Product	25% Aq. Solution(b
0.91	7	7.62	0.00092	3.0	12	2.0	0.40	_	

⁽a) Tag Closed Cup

Table 11.57: Dipropylene Glycol Tertiary Butyl Ether (70)

ARCOSOLV DPTB

ARCOSOLV DPTB is a colorless liquid with a mild odor and low volatility. It is partially water soluble and demonstrates good coupling. It also shows good solvency for coating resins. The properties of DPTB support its use in agricultural, coating, cleaning, ink, textile and adhesive products

PRODUCT IDENTIFICATION

Chemical Name ...Tertiary Butoxy Propoxy PropanolDipropylene Glycol Tertiary Butyl Ether Chemical FamilyPropylene Glycol Ether Chemical FormulaC₁₀H₂₂O₃

⁽b) All solutions are percent by volume

⁽b) All solutions are percent by volume

⁽c) Sets to glass below this temperature

Table 11.57: (continued)

TYPICAL PROPERTIES

■ Density (pounds per gallon at 25°C)7.6
■ Evaporation Rate (BuAc = 100)1.5
■ Flash Point (SETA) °C (°F)87 (188)
■ Solubility by weight in water at 20°C12%
Solubility Parameter (Total Hansen)9.3
■ Surface Tension (Dynes/cm) @ 25°C (77°F)26
■ Refractive Index @ 25°C (77°F)1.42
■ Viscosity (centistokes) @ 25°C (77°F)4.9
■ Vapor Pressure @ 25°C (77°F) (mm Hg)0.08

PRODUCT SPECIFICATIONS

Property	Specifications	Test Method
Specific Gravity @ 25°C	0.890 - 0.910	ASTM D-891
Distillation @ 760mm Hg IBP, min. DP, max.	200°C 220°C	ASTM D-1078; E-202
Acidity, wt. % as acetic acid, max.	0.015	ASTM E-202; USP XXI
Water, wt. %, max.	0.25	ASTM E-202; E-203
Color, APHA, max.	20	ASTM E-202; D-1209

Table 11.58: Tripropylene Glycol (2)

Tripropylene glycol is a water-white liquid. One of its unique features is its combination of water-solubility and good solubility for many organic compounds. Because of high boiling point and low volatility it is used in the formulation of textile soaps, lubricants, cutting oils, and similar applications.

Boiling point:	
760 mm. Hg, °F.	513.0
760 mm. Hg, °C.	267.2
Fire point (Cleveland open cup), °F.	310
Flash point (Cleveland open cup), °F.	285
Freezing range	supercools
Molecular weight	192.3
Refractive index (np at 25°C.)	1.442
Specific heat at 77°F. (25°C.)	0.51
Surface tension at 25°C., dynes/cm.	34
Vapor pressure at 25°C., mm. Hg	0.01
Viscosity (absolute) in centistokes:	
25 °C.	55 <i>.</i> 1
60°C.	9.80
Weight per gal at 25 °C., lb.	8.51

Table 11.59: Tripropylene Glycol Monomethyl Ether (2)

ARCOSOLV TPM DOWANOL TPM POLY-SOLV TPM Glycol Ether TPM

$$HOC_3H_6OC_3H_6OC_3H_6OCH_3$$

Tripropylene glycol monomethyl ether is a colorless liquid possessing a mild, pleasant odor. It is completely miscible with a wide variety of organic products and water. This solubility for a wide range of organic products is due to the presence of the hydroxyl, ether and alkyl group in the molecule. It is used in the manufacture of cosmetics, liquid soaps, cleaning formulation, printing and writing inks, dyeing formulations, wood stains and in lacquers, paints and varnish formulations.

Acidity (as acetic acid), % by wt. (max.) Appearance Boiling point at 760 mm. Hg, °C. Fire point (open cup), °F.	0.02 water-white 242.4 270	Specific gravity, 25/25°C. Specific heat (average), cal./°C. Surface tension at 25°C., dynes/cm. Vapor pressure at 75°C., mm. Hg	0.967 0.51 30.0 0.022
Flash point (Cleveland open cup), °F. Freezing range, °C.	260 -42	Viscosity in centistokes: 25°C.	6.16
Refractive index (np at 25°C.)	1.428	75°C.	1.67
Molecular weight	206.3	Weight per gal. at 20°C., lb.	8.05

Table 11.60: Aromatic Based Glycol Ether (23)

DALPAD A

138.0
245.0
260
<0.01
1.104
9.18
20.5
0.03
42.0
Insoluble
Insoluble
11.4
16,6
1.67
2,3

TRIGLYCOLS

Table 11.61: Methoxytriglycol (19)

POLY-SOLV TM

Triethylene Glycol Monomethyl Ether

Molecular weight	164.20	Freezing point, °C	-38.2
Apparent specific gravity,		Absolute viscosity, cp	
@ 20°/20 °C	1.053	@ 20°C	7.27
Δ Specific gravity/ Δ t.,		Solubility	
10°-40°C, per °C	0.00088	@ 20°C in water	complete
Boiling point, °C		% by wt water in	complete
@ 760 mm Hg	249.0	Solubility, % by wt in	
@ 50 mm Hg	162	heptane**	1.5
@ 10 mm Hg	126	Refractive index, nD	1.4381
Δ b.p./ Δ p., 750 to 770		Heat of vaporization, Btu/lb	
mm Hg,°C per mm Hg	0.053	@ 1 atm	141
Vapor pressure at 20°C,		@ 300 mm Hg	150
mm Hg	<0.01	Flash point, closed cup, °F	238
Relative evaporation rate*		, , ,	
(Bu Ac = 100)	<0.1		

^{*}Evaporation rate of glycol ether at 20°C referenced to n-butyl acetate at 25°C.

^{**}At 25°C the glycol ether is completely soluble in acetone, benzene, ethyl ether, methanol, and carbon tetrachloride.

Table 11.62: Ethoxytriglycol (19)

POLY-SOLV TE

Triethylene Glyco	I Monoethyl Ether		
Molecular weight	178.23	Freezing point, °C	-18.7
Apparent specific gravity,		Absolute viscosity, cp	
@ 20°/20°C	1.0250	@ 20°C	7.8
Δ Specific gravity/ Δ t.,		Solubility	
10°-40°C, per °C	88000.0	@ 20°C in water	complete
Boiling point, °C		% by wt water in	complete
@ 760 mm Hg	255.9	Solubility, % by wt in	
@ 50 mm Hg	167	heptane**	2
@ 10 mm Hg	130	Refractive index, n ²⁰ D	1.4376
$\Delta_{\rm b,p.}/\Delta_{\rm p.,}$ 750 to 770		Heat of vaporization, Btu/lb	
mm Hg,°C per mm Hg	0.055	@ 1 atm	129
Vapor pressure at 20°C.		@ 300 mm Hg	137
mm Hg	<0.01	Flash point, closed cup, °F	255
Relative evaporation rate*			
(Bu Ac = 100)	<0.1		

^{*}Evaporation rate of glycol ether at 20°C referenced to n-butyl acetate at 25°C.

Table 11.63: Butoxytriglycol (19)

Triethylene Glycol Monobutyl Ether

Molecular weight	206,28	Freezing point, °C	-47.6
Apparent specific gravity,		Absolute viscosity, cp	
@ 20°/20°C	1.0021	@ 20°C	10.9
Δ Specific gravity/ Δ t.,		Solubility	
10°-40°C, per °C	0.00082	@ 20°C in water	complete
Boiling point, °C		% by wt water in	complete
@ 760 mm Hg	(dec)	Solubility, % by wt in	•
@ 50 mm Hg	188	heptane**	complete
@ 10 mm Hg	148	Refractive index, n ²⁰	1.4394
Δ b.p./ Δ p., 750 to 770		Heat of vaporization, Btu/lb	
mm Hg, °C per mm Hg	_	@ 1 atm	176***
Vapor pressure at 20 ℃,		@ 300 mm Hg	
mm Ha	<0.01	Flash point, closed cup, °F	>250
Relative evaporation rate*		•	
(Bu Ac = 100)	<0.1		

^{*}Evaporation rate of glycol ether at 20°C referenced to n-butyl acetate at 25°C.

MISCELLANEOUS GLYCOL DATA

Table 11.64: ARCOSOLV Evaporation Characteristics, Resin Compatibility and Other Data (70)

Relative Solvent Evaporation Rates

East Evaporating (-300)	
Acetone	559
Ethyl Acetate	391
Methyl Ethyl Ketone	379
Medium Evaporating (80 ,300)	
Methanol	207
Isopropyl Alcohol	144
Butyl Acetate	100
Slow Evaporating (+ 80)	
PM	66
EM	47
EE	32
EB	6
DPM	2
PMA	34
EEA	20

^{**}At 25°C the glycol ether is completely soluble in acetone, benzene, ethyl ether, methanol, and carbon tetrachloride.

^{**}At 25°C the glycol ether is completely soluble in acetone, benzene, ethyl ether, methanol, and carbon tetrachloride.

^{***}At 190°C and 50 mm Hg.

Evaporation Curves—Neat Solvents

Evaporation Rates for PM/DPM Blends

Evaporation Curves—55/45 PM/DPM Blend and EB (25°C)

(continued)

Evaporation Curves from 60% Araldite® 6010* **Epoxy Resin**

* Ciba-Geigy Corp.

Evaporation Curves from 10% RS 1/2 Sec. Nitrocellulose* Resin

*Hercules, inc.

Evaporation Times of Glycol Ether Acetates

Glycol Ether Acetate	Minutes to 90% Evaporation
PMA	17
EEA	28
EBA	115
DPM	315
DEA	500
DBA	2700

Evaporation Curves—Glycol Ether Acetates and PM Acetate/DPM Acetate Blends (25°C)

Glycol Ether Azeotropes with Water

	b.p. of pure	b.p. of	Composition of	of Azeotrope
Glycol Ether	glycol ether, C at 760mm Hg	azeotrope, C at 760mm Hg	Glycol Ether, Wt. %	Water, Wt ೌಶ
EE	136	99	29	71
EP*	150	99	27	73
EB	171	99	21	79
PM	121	98	50	50
PTB	151	95	21	79
PP	149	97	41	59
PB	170	99	28	72

^{*}Ethylene Glycol Propyl Ether

ARCOSOLV PTB Ether and other Glycol Ethers Evaporation Curves—Neat Solvents

C - Clear H - Hazy V - Very S - Slight NS - Not Soluble

- - Not Tested

- See Table for supplier listing by tradename.
- All testing carried out under ambient conditions. Resins were used as received from manufacturer. Criterion for solubility in solutions was two hours shaking. Sample size was 200 g. Films were applied at 3 mils thickness on glass and air dried 48 hours.
- 3. 20% Resin/80% ARCOSOLV PM solvent.

solvent.

4. 5% Resin/95% ARCOSOLV PM solvent. 5. 75% Resin/25% ARCOSOLV PM

Compatibility of ARCOSOLV® PM Solvent with Various Film Formers

Resin Tradename ¹		Wt.%	Compa ARCOS	atibility ² OLV PM	/Resin			
	10/90 50/50 90/-							
	Soin	Film	Soln	Film	Soln	Film		
Acrylic						2,332		
Acryloid AT-51 Elvacite 2041 Acryloid OL-42	C NS ³ C	<u>c</u>	C NS⁴ C	$\frac{c}{c}$	C NS C	VH		
Alkyd (Solvent Reducible)								
Beckosol 12-006 Duraplex 12-808 Cargill 5836	CCC	CCC	CCC	CCC	CCC	CCC		
Alkyd (Vinyl Toluene/Oil)	*					·		
Keltrol 1001	С	С	С	С	NS			
Alkyd (Water Reducible)		t	<u> </u>			·		
Kelsol 3902 Kelsol 3921	CC	CC	CC	C	C	C		
Cellulose Acetate Butyrate	9		·		· · · · · · · · · · · · · · · · · · ·	'		
CAB 381-05	C3	C ₃	C4	C4	С	С		
Chlorinated Rubber						· · · · · · · · · · · · · · · · · · ·		
Parlon S-20	NS⁴		·		NS	NS		
Ероху		·	·····					
Araldite 6010 Araldite 7071	C C⁵	C C ⁵	C	C C	C C	CC		
Ethylene Vinyl Acetate			-					
Elvax 40			NS		NS			
Melamine Formaldehyde								
Uformite 27-806 Cymel 303	CC	C C	CC	CC	CC	CC		
Nitrocellulose								
Cellofilm No. 101175	С	С	С	С	С	С		
Polyamide								
Hardener HZ 815X70 Hardener HZ 815 Hardener HZ 840	000	000	000	ССН	CCC	000		
Urea Formaldehyde						<u>~</u>		
Beetle 227-8 Beckamine 21-511	CC	C	C	C C	C	C		
Urethane						<u>_</u> _		
Spenkel F-78-50 Spenkel F-48-50 Spenkel F-77-60	000	CCC	CCC	CCC	CCC	H SH C		
Vinyl Chloride/Acetate								
Vinylite VYNS Vinylite VAGH Vinylite VYHH	NS ³ NS ³ NS ³	_	NS ⁴ NS ⁴ NS ⁴		NS NS NS			

(continued)

Acrylic				
Acryloid AT-51 Elvacite 2041 Rohm and Haas 100	Resin Tradename	Supplier	% Solids	Solvents
Elvacite 2041 Rohm and Haas 100 EEA	Acrylic			
Acryloid OL-42 Rohm and Haas 80 EEA Alkyd (Solvent Reducible) Beckosol 12-006 Reichhold 60 Duraplex 12-808 Reichhold 60 Cargill 50 Xylene/VM&P Naphtha Xylene EEA Alkyd (Vinyl Toluene/Oil) Spencer Kellogg 70 EEA Spencer Kellogg 75 Fopylene Glycol Spencer Kellogg 75 Fopylene Glycol Propylene G				Xylene/n-Butanol
Alkyd (Solvent Reducible) Beckosol 12-006				FFΔ
Beckosol 12-006			- 00	LLA
Duraplex 12-808				V 1 0 (0.40 D 1)
Alkyd (Vinyl Toluene/Oil) Spencer Kellogg 60 Mineral Spirits				
Alkyd (Vinyl Toluene/Oil) Spencer Kellogg 60 Mineral Spirits				
Spencer Kellogg 75 EB Spencer Kellogg 75 Propylene Glycol Propyl Ether Cellulose Acetate Butyrate				
Spencer Kellogg 75 Propylene Glycol Propyl Ether Cellulose Acetate Butyrate Eastman 100 —	Takya (Tary) Toladilare		60	Mineral Spirits
Spencer Kellogg 75 Propylene Glycol Propyl Ether Cellulose Acetate Butyrate				
Spencer Kellogg 75 Propylene Glycol Propyl Ether Cellulose Acetate Butyrate			75	FR
Cellulose Acetate Butyrate Eastman 100 —		Spencer Kellogg		Propylene Glycol
Hercules 100 —				Propyl Ether
Hercules 100 —	Cellulose Acetate But	rate		
Epoxy Araldite 6010			100	_
Epoxy Araldite 6010				
Araldite 6010		Hercules	100	_
Araldite 6010	Fnoxy			
Araldite 7071 Ciba-Geiğý 100 — Ethylene Vinyl Acetate		Ciba-Geigy	100	_
DuPont 100		Ciba-Geigy	100	_
DuPont 100	Ethylene Vinyl Acetate	9		
Reichhold American Cyanamid 100 i-Propanol/i-Butanol — Cellofilm No. 101175 Cellofilm 40 Methylisobutyl Ketone/ Toluene/Butyl Acetate/n-Butanol Polyamide Ciba-Geigy 70 Xylene Ciba-Geigy 100 —			100	_
American Cyanamid 100 — Cellofilm No. 101175 Cellofilm 40 Methylisobutyl Ketone/ Toluene/Butyl Acetate/n-Butanol Polyamide Ciba-Geigy 70 Xylene Ciba-Geigy 100 — Ciba-Geigy 10				
American Cyanamid 100 — Cellofilm No. 101175 Cellofilm 40 Methylisobutyl Ketone/ Toluene/Butyl Acetate/n-Butanol Polyamide Ciba-Geigy 70 Xylene Ciba-Geigy 100 — Ciba-Geigy 100 — Ciba-Geigy 100 — Ciba-Geigy 100 — Ciba-Geigy 100 — Urea Formaldehyde Beetle 227-8 Beckamine 21-511 Reichhold 52 Xylene/n-Butanol Reichhold 60 n-Butanol/Ethanol Urethane Spencer Kellogg 50 Mineral Spirits Mineral Spirits Mineral Spirits Spencer Kellogg 50 Mineral Spirits Vinyl Chloride/Acetate Vinylite VYNS Union Carbide 100 — Vinylite VAGH Union Carbide 100 —		Reichhold	80	i-Propanol/i-Butanol
V2 Sec. Solution				
V2 Sec. Solution Toluene/Butyl Acetate/n-Butanol				
1/2 Sec. Solution Toluene/Butyl Acetate/n-Butanol Polyamide Ciba-Geigy 70 100 — Ciba-Geigy 100 — Toluene/Butyl Urea Formaldehyde — Beetle 227-8 Beckamine 21-511 Reichhold 60 n-Butanol/Ethanol American Cyanamid 60 n-Butanol/Ethanol IUrethane Spencer Kellogg 50 Mineral Spirits Spencer Kellogg 50 Mineral Spirits Mineral Spirits Vinyl Chloride/Acetate Vinylite VYNS Union Carbide 100 — Vinylite VAGH Union Carbide 100 —	Cellofilm No. 101175	Cellofilm	40	Methylisobutyl Ketone/
Ciba-Geigy				Ťoluene/Butyl
Ciba-Geigy				Acetate/n-Butanol
Ciba-Geigy 100 — Urea Formaldehyde Beetle 227-8 Beckamine 21-511 Reichhold 52 Xylene/n-Butanol Beckamine 21-511 Reichhold 60 n-Butanol/Ethanol Urethane Spencer Kellogg 50 Mineral Spirits Mineral Spirits Spencer Kellogg 50 Mineral Spirits Spencer Kellogg 60 Mineral Spirits Vinyl Chloride/Acetate Vinylite VYNS Union Carbide 100 — Vinylite VAGH Union Carbide 100 —	Polyamide			
Urea Formaldehyde Beetle 227-8 Beckamine 21-511 American Cyanamid 52 Beckamine 21-511 Virethane Spencer Kellogg 50 Spencer Kellogg 50 Mineral Spirits Spencer Kellogg 60 Vinyl Chloride/Acetate Vinylite VYNS Union Carbide 100 Vinylite VAGH Union Carbide 100 Urea Formaldehyde Spencer Kellogg 50 Mineral Spirits Mineral Spirits Mineral Spirits Mineral Spirits Mineral Spirits Mineral Spirits Mineral Spirits		Ciba-Geigy		Xylene
Urea Formaldehyde Beetle 227-8 Beckamine 21-511 Reichhold Rineral Spirits Mineral Spirits Spencer Kellogg Spencer Kellogg Spencer Kellogg Spencer Kellogg Vinyl Chloride/Acetate Vinylite VYNS Union Carbide Vinylite VAGH Union Carbide 100 Vinylite VAGH Union Carbide 100 Vinylite VAGH Union Carbide 100 Vinylite VAGH				
Beetle 227-8 Beckamine 21-511 Reichhold Reichhold Spencer Kellogg Spencer K	Line Formeldebude	Ciba-Geigy		<u> </u>
Reichfold 60		American Cuspomid	F2	Vulono/n-Rutanol
I Urethane Spencer Kellogg 50 Mineral Spirits Spencer Kellogg 50 Mineral Spirits Mineral Spirits Spencer Kellogg 60 Mineral Spirits Vinyl Chloride/Acetate Vinylite VYNS Union Carbide 100 — Vinylite VAGH Union Carbide 100 —		Reichhold	60	n-Butanol/Ethanol
Spencer Kellogg 50 Mineral Spirits Spencer Kellogg 50 Mineral Spirits Mineral Spirits Spencer Kellogg 60 Mineral Spirits Mineral Spirits Spirits Vinyl Chloride/Acetate Vinylite VYNS Union Carbide 100 — Vinylite VAGH Union Carbide 100 —		110101111010		
Spencer Kellogg 50 Mineral Spirits Spencer Kellogg 60 Mineral Spirits Vinyl Chloride/Acetate Vinylite VYNS Union Carbide 100 — Vinylite VAGH Union Carbide 100 —	Totelliane	Spancer Kallogg	50	Mineral Spirits
Spencer Kellogg 60 Mineral Spirits Vinyl Chloride/Acetate Vinylite VYNS Union Carbide 100 — Vinylite VAGH Union Carbide 100 —		Spencer Kellogg		Mineral Spirits
Vinylite VYNS Union Carbide 100		Spencer Kellogg		Mineral Spirits
Vinylite VAGH Union Carbide 100 —	Vinyl Chloride/Acetate	,		
Vinylite VAGH Union Carbide 100 —	Vinylite VYNS			-
Vinylite VYHH Union Carbide 100 —	Vinylite VAGH			_
	vinylite VYHH	Union Carbide	100	

Viscosities of PM with Various Resins

		Viscosity, cps at 25°C			
Resin	Final % Sols.	PM	EE	EB	
Acrylic ¹	30	390	430	650	
Epoxy ²	60	690	780	1010	
Nitrocellulose ³	10	250	280	370	
Polyester4 (bake)	60	290	270	390	
Alkyd5 (wat. red.)	60	410	410	580	

- 1. Acryloid® B-72 (Rohm and Haas)
- 2. Epons 1001 (Shell Chemical Co.)
- 3. RS 1/2 Sec. Nitrocellulose (Hercules, Inc.)
- Aroplat^{*} 6025-A1-80 (Spencer Kellogg, Division of Textron, Inc.)
- 5. Cargill 7451 (Cargill, Inc.)

Viscosities of PM/DPM Blends with Various Resins

	Viscosity, cps at 25 C							
Resin	Final % Sols	PM	DPM	EE	EB	PM/DPM 95/5	PM/DPM 90/10	PM/DPM 65/35
Acrylic ¹	30	390	910	430	650	415	440	540
Alkyd²	50	460	840	490	645	480	490	600
Epoxy ³	80	170	400	170	230	180	190	235

- 1. Acryloid® B-72 (Rohm and Haas)
- 2. Cargill 7433 (Cargill, Inc.)
- 3. ARALDITE* 6010 (Ciba-Geigy Corporation)

Viscosity Reduction EPON® 1001 Epoxy Resin* (25°C)

'Shell Chemical Company

Viscosity Reduction RS 1/2 Sec. Nitrocellulose Resin* (25°C)

*Hercules, Inc.

Viscosity Reduction Aroplaz® 6230 Alkyd Resin* (25°C)

*Spencer Kellogg Division, Textron, Inc.

Viscosity Reduction CARGILL 5710 Alkyd Resin* (25°C)

(continued)

Table 11.64: (continued)

Viscosity Reduction Acryloid® B-72 Acrylic Resin*

*Rohm and Haas Co.

Viscosity of Acryloid® B-72 Acrylic Resin* in PM/DPM Blends

*Rohm and Haas Co.

Alkyd Resin Stability 125°F, Four Weeks

Table 11.64: (continued)

Performance¹ of ARCOSOLV^{*} DPMA in a Vinyl Acrylic Interior Wall Paint

(6.8 Wt. % Coalescent)

Coalescent	None	Texanol ²	EBA	ARCOSOLV* DPM Acetate
Viscosity (KU)	87	88	87	87
Film Appearance (Sealed/Unseal	ed)			
77°F	10/10	10/10	10/10	10/10
40°F	10/10	10/10	10/10	10/10
Sheen-85°F (Sealed/Unsealed)				
77°F	17/15	18/14	15/14	16/12
40°F	12/10	19/15	16/14	16/14
Hiding (Sealed Area)				
77°F	96.9	97.1	96.6	97.0
40°F	95.5	96.1	95.5	96.3
Reflectance-% (Sealed Area)				
77°F				
Unstained	91.9	92.1	91.8	92.1
Stained	86.6	86.2	85.5	85.5
40°F	1	1		
Unstained	89.7 -	92.5	92.2	92.2
Stained	72.1	84.8	84.2	85.0

1. ASTM Standardized Scoring Scheme

Score	Performance	Effect
10	Perfect	None
9	Excellent	Trace
8	Very Good	Very Stight
6	Good	Slight
4	Fair	Moderate
2	Poor	Considerable
1	Very Poor	Severe
0	No Value	Complete Faller

^{2.} Trademark of Eastman Chemical Products, Inc.

Improved Whiteness in Coatings using ARCOSOLV* Glycol Ethers and Acetates

Formulation	Solvent	Whiteness Index (4B-3G Reflectance)
Epoxy Baking Enamel	PM	80.2
	EE	78.4
Epoxy Maintenance Enamel	PM	77.6
	EE	75.8
High Solids Alkyd Enamel	PM	78.5
	EB	76.2
Polyester Appliance Enamel	PMA	79.7
	EEA	78.5

Whiteness Study—Reduced Amount of Titanium Dioxide White Epoxy Baking Enamel

	Р	EE			
TiO ₂ Reduction, %	_	10	- 1		
Whiteness Index	85.5	85.5	84.6	83.5	
Opacity	94.5	94.1	94.0		

Effect of Grinding Method on Whiteness White Epoxy Baking Enamel

	High : Dispe	Sand Mill			
	PM	EE	PM	88	
Viscosity (CPS)	25,000	19,000	400	1200	
Grind (Hegman No.)	7	7	8+	8+	
Whiteness Index	86.3	83.0	86.9	83.1	
Opacity	95.4	93.6	96.0	93.8	
Whiteness Index	86.4	84.5	86.3	83.3	
At 99.9+ % Opacity					

Hard Surface Cleaner Evaluation Selected Glycol Ethers

	Performance						
Glyco: Ether	Sheli "Janitor in a Drum": Type	ARCO All Purpose					
EB	79	80					
ARCOSOLV PM	78	79					
ARCOSOLV DPM	79	81					
ARCOSOLV TPM	78	80					

^{1.} Trademark of Texize Chemical Company

	Performance Rating						
Cleaner	Ethylene Glycol Butyl Ether	ARCOSOLV PM/DPM 60/40 Blend					
All Purpose Hard Surface Type'	91	98					
Spray-On Metal Cleaner	Excellent	Excellent					

	Formulation	ns					
All Purpose Hard Surface Type		Spray-On Metal Cleaner					
Glycol Ether	5.0 Wt.%	Glycol Ether	20.0 Wt.%				
Trisodium Phosphate	2.0	Makon® 10 Surfactant3	20.0				
Sodium Metasilicate (5 Hydrate)	2.0	Kerosene	60.0				
Sodium EDTA (Anhydrous)	2.0						
Tergitol [®] 15-S-9 Surfactant ²	7.0						
Na Xylene Sulfonate (40%)	1.0						
Water	81.0						

- Evaluated in eccordance with Federal Specification P-D-220D. Soil described in Method 6701T of Federal Test Method Standard 436.
- 2. Union Carbide Corporation,
- 3. Stepan Chemical Company.

ARCOSOLV Acceptable Exposure Criteria

TLV's of 5 ppm for EM, EE and their acetate derivatives established by the American Conference of Governmental Industrial Hygienists (ACGIH) in May 1984. Several glycol ether producers are recommending 2–5 ppm on EM and 5 ppm on EE and EEA. The ANPR could result in more severe restrictions. There is no standard established by ACGIH for PMA. Based on a comparison with PM TLV, a comfort level of 100 ppm would be recommended for PMA. For detailed information as for our toxicity bulletin or product MSDS

ARCOSOLV Comparative Aquatic Technology

			LC-50s	(mg/L) :			
GLYCOL ETHER	DAPHNIA MAGNA	BLUE GILL	FATHEAD MINNOW	RAINBOW TROUT	GUPPY	GOLDFISH	LAMPREY EEL
PM	23,000	N/D	20,800	N/D	N/D	N/D	N/D
PMA	408	N/D	161	N/D	N/D	N/D	>5,000
PE	N/D	N/D	N/D	N/D	N/D	N/D	>5,000
PNP	3,600	N/D	3,420	N/D	N/D	N/D	N/D
PNB	>1,000	N/D	N/D	N/D	560	N/D	>5.000
PTB	>1,000	>1,000	N/D	>1,000	N/D	N/D	N/D
PPh	370	N/D	280	N/D	N/Đ	N/D	N/D
DPM	1,919	N/D	>10,000	N/D	N/D	N/D	N/D
DPNB	>1,000	N/D	N/D	N/D	841	N/D	N/D
TPM	>10,000	N/D	11,600	N/D	N/D	N/D	N/D
TPNB	>1,000	N/D	N/D	N/D	564	. N /D	N/D
EM	>10,000	>10,000	N/D	16,000	17,400	>5,000	N/D
EE	N/D	>10,000	N/D	N/D	16,400	>5,000	N/D
EB	835	1,490	2,137	N/D	983	1,700	N/D

N/D = No Data Located

References

AQUIRE, 1994. Online environmental data base available through the Chemical Information System (CIS), Baltimore.

OHM/TADS (Oil and Hazardous Materials/Technical Assistance Data System), 1994. Online environmental data base available through the Chemical Information System (CIS), Baltimore.

U.S. Fish and Wildlife Services, Research Information Bulletin No. 84-78, August, 1984. Verschueren, K. 1983. 'Handbook of Environmental Data on Organic Chemicals, Second Edition.' Van Nostrand Reinhold, NY.

Biouggradation of selected propylene glycol ethers after 28 days incubation. Test performed in the same laboratory, with pre-acclimated inoculum, using the same dose (3.75 mg/l).

Table 11.64: (continued)

TOXIC	COLOGICAL DINTS TABLE	Bir Defe		Embryo/Fetal Toxicity		Testicular Toxicity		Blood Dam a ge		Thymic Atrophy	
LINDIC	MITO IABLE	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAE
	Inhalation (ppm)	3,000	NLF	1,000	3,000	3,000	NLF	3,000	NLF	3,000	NLF
PM	Dermal (mg/kg/d)	N/D	N/D	N/D	N/D	1,000	NLF	1,000	NLF	1,000	NLF
	Oral (mg/kg/d)	3,000	NLF	370	740	3,000	NLF	3,000	NLF	3,000	NLF
	Inhalation (ppm)	145	225	145	225	N/D	N/D	N/D	N/D	N/D	N/D
beta-PM	Dermal (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Oral (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	NNF	1,800	N/D	N/D
	Inhalation (ppm)	3,000	NLF	3,000	NLF	3,000	NLF	3,000	NLF	3,000	NLF
PMA	Dermal (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Oral (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Inhalation (ppm)	145	560	560	NLF	560	2,800	2800	NLF	2800	NLF
beta-	Dermal (mg/kg/d)	2,000	NLF	2,000	NLF	N/D	N/D	N/D	N/D	N/D	N/D
PMA	Oral (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Inhalation (ppm)	2,000	NLF	2,000	NLF	2,000	NLF	300	2,000	2,000	NLF
PE	Dermal (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Oral (mg/kg/d)	N/D	N/D	N/D	N/D	~1,800	NLF	~1,800	NLF	~1,800	NLF
	Inhalation (ppm)	N/D	N/D	N/D	N/D	1,176	NLF	1,176	NLF	1,176	NLF
PEA	Dermal (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Oral (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Inhalation (ppm)	1,524	NLF	755	NLF	600	NLF	600	NLF	600	NLF
PNP	Dermal (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Oral (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Inhalation (ppm)	N/D	N/D	N/D	N/D	700	NLF	700	NLF	700	NLF
PNB	Dermal (mg/kg/d)	N/D	N/D	N/D	N/D	1,140	NLF	1,140	NLF	1,140	NLF
	Oral (mg/kg/d)	N/D	N/D	N/D	N/D	1,000	NLF	1,000	NLF	1,000	NLF
	Inhalation (ppm)	990	NLF	990	NLF	709	NLF	709	NLF	709	NLF
PTB	Dermal (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Oral (ing/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Inhalation (ppm)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
PPh	Dermal (mg/kg/d)	N/D	N/D	N/D	N/D	1,000	NLF	1,000	NLF	1,000	NLF
	Oral (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Inhalation (ppm)	300	NLF	300	NLF	300	NLF	300	NLF	300	NLF
DPM	Dermal (mg/kg/d)	N/D	N/D	N/D	N/D	~5,000	NLF	~5,000	NLF	~5,000	NLF
1	Oral (mg/kg/d)	N/D	N/D	N/D	N/D	1,000	NLF	1,000	NLF	1,000	NLF

Table 11.64: (continued)

TOXICOLOGICAL ENDPOINTS TABLE		Birth Defects		Embryo/Fetai Toxicity		Testicular Toxicity		Blood Damage		Thymic Atrophy	
ENDPO	JINTS TABLE (continued)	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL
	Inhalation (ppm)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
DPE	Dermal (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Oral (mg/kg/d)	N/D	N/D	N/D	N/D	1,000	NLF	1,000	NLF	1,000	NLF
·····	Inhalation (ppm)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
DPNP	Dermal (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Oral (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Inhalation (ppm)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
DPNB	Dermal (mg/kg/d)	910	NLF	910	NLF	910	NLF	910	NLF	910	NLF
	Oral (mg/kg/d)	N/D	N/D	N/D	N/Đ	1,000	NLF	1,000	NLF	1,000	NLF
	Inhalation (ppm)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
DPTB	Dermal (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Oral (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Inhalation (ppm)	119	NLF	119	NLF	120	NLF	120	NLF	120	NFL
TPM	Dermal (mg/kg/d)	N/D	N/D	N/D	N/D	10,000*	NLF	~10,000*	NLF	~10,000*	NLF
	Oral (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Inhalation (ppm)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
TPE	Dermal (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Oral (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Inhalation (ppm)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
TPNB	Dermal (mg/kg/d)	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D
	Oral (mg/kg/d)	N/D	N/D	N/D	N/D	1,000	NLF	1,000	NLF	1,000	NLF
	Inhalation (ppm)	10	50	10	50	30	100	30	100	30	100
EM	Dermal (ing/kg/d)	NNF	250	NNF	250	NNF	650	N/D	N/D	N/D	N/D
	Oral (mg/kg/d)	31	250	NNF	31	50	100	10	50	NNF	100
	Inhalation (ppm)	50	175	10	50	100	400	100	370	N/D	N/D
EE	Dermal (mg/kg/d)	NNF	~250	NNF	~250	N/D	N/D	N/D	N/D	N/D	N/D
	Oral (mg/kg/d)	NNF	200	NNF	1.000	150	300	93	185	N/D	N/D
	Inhalation (ppm)	200	NLF	25	50	494	NLF	25	77	494	NLF
EB	Dermal (mg/kg/d)	1,176	NLF	1,176	NLF	360	NLF	150	180	360	NLF
	Oral (mg/kg/d)	1,180	NLF	30	100	885	NLF	80	90	885	NLF

N/D = No Data NNF = No NOAEL Found (Lowest dose tested caused the effect) • NLF = No LOAEL Found (Highest dose tested did not cause the effect) • Kidney toxicity was reported at lower doses.

Liquids Miscible With DOWANOL Glycol Ethers

Acetaldehyde	Diacetone Alcohol ¹	Furtural	Phenyl Acetate
Acetic Acid (Glacial)	Dibutoxy Ethyl Phthalate ¹	isopropanol	Phosphoric Acid (Conc.)
Acetic Anhydride	Dibutyl Phthalate	Isopropylbenzene (Cumene)	Pine Oil
Acetone	Dibutyl Sebacate ¹	Isopropyl Chloride ¹	Piperidine ¹
Acetylene Tetrabromide	o-Dichlorobenzene	Lactic Acid 85%	Polyethylene Glycol 4001
Acrylonitrile ¹	Dichloroethyl Ether	Methanol	Polyethylene Glycol 6001
Allyl Aicohol!	Oichloroisopropyl Ether	Methyl Cyclohexanol ¹	Polypropylene Glycol 4001
Amyl Alcohol	Diethanolamine	Methyl Ethyl Ketone	Polypropylene Glycol 7501
tert-Amyl Alcohol ¹	Didecyl Phthalate ¹	Methyl Isobutyl Ketone	Polypropylene Glycol 12001
Amyl Acetate	Diethyl Ether	Methyl Salicylate	n-Propanol
Aniline	Diethylene Glycol	Methylene Bromide	Propylene Oichloride
Benzaldehyde	Di-2-Ethylhexyl Phthalate ¹	Methylene Chlorobromide ¹	Propylene Glycol
Benzen e	Di-2-Ethylhexyl Sebacate ¹	Methylene Chloride	Pyridine ¹
Benzyi Alcohol	Diisoctyi Phthalate ¹	Monochiorobenzene	Ricinoleic Acid1
n-Butyl Acetate	Dimethoxy Ethyl Phthalate ¹	Monoethanolamine	Styrene N-991
n-Butyl Alcohol	p-Dioxane	Monoisopropanolamine	Styrene Oxide ¹
n-Butyl Lactate!	Diphenyl Oxide	Morpholine	Tetrachioroethane
Butyl Oleate ¹	Dipropylene Glycol	Nitrobenzene	
n-Butyraldehyde	Ethanol (95%)	Nitroethane!	Tetrahydrofurfuryl Alcohol Toluene
Carbon Bisulfide	Ethyl Acetate	Nitromethane	
Carbon Tetrachloride	Ethyl Benzene¹	Octvi Aicohol	Trichloroethylene
Castor Oil	Ethyl Bromide ¹	Oleic Acid	1,1,1-Trichloroethane
Chioroform	Ethylene Chlorohydrin ¹	Paraldehyde	Tricresyl Phosphate ¹
CHLORDTHENE* solvent	Ethylene Dibromide	Pentachlorodiphenyl Oxide!	Triethanolamine
Cyclohexanoi	Ethylene Dichloride	Perchloroethylene	Triethylene Glycol
Cyclohexanone ¹	Ethylene Glycol	•	Trimethylene Chlorobromide
Cyclohexene	Ethylidene Dichloride	Phenethyl Acetatel	Tripropylene Glycol
Dehydrated Castor Oil	Ethyl Lactate ¹	Phenethyl Alcohol ¹	Tall Oil
9-11 Acids1	CIIIYI LOCIDIO.	Phenetole ¹	Xylene

¹The solubility of these products has not been determined for DDWANOL EPh, DALPAO A, and DDWANOL PPh *Trademark of The Dow Chemical Company

Solubility Limits of Various Liquids in DOWANOL Glycol Ethers1 (ml/100 ml)

COMPOUND	PM	DPM	TPM	PPh	EB	DB	TBH	DM	TMH	EPh
n-Butyl stearate	œ		œ	20	∞	œ	_	8	_	20
Cottonseed oil	oc	z	œ	oc.	æ	ox.	_	ins.	_	6
Cyclohexane	00	∞	œ	∞	œ	- x	_	64		33
Diamylnaphthalene	œ	∞	∞	_	œ	œ	_	oc.	_	
Di-2-ethylhexyl adipate	œ	œ	∞	_	œ		_	∞	_	
Fish oil	30	œ	œ	_	æ	oc.	_	1.5	_	_
Formaldehyde (40%)	x	œ	œ	21	o c	-	∞	∞	œ	∞
Formamide (37-38% stabilized)	00	×	- oo	12	œ	00		00	_	∞
Gasoline	×	œ	œ	20	oc	œ	20	22	00	10
n-Heptane	x	×	20	46	œ	∞	×	19	23	8
Hexane	30	œ	∞	70		, ac	93	21	25	12
Hydrochloric acid (conc.)	œ	· *		5.2	∞	ox.	œ	∞		œ
Kerosene	o c	20	œ	∞	œ	œ	_	3	_	0.5
Linseed oil (boiled)	∞²	· ·	œ	20	œ	œ	x	<0.4	Ins.	oc
Lemon oil	oc.	×	œ		œ	∞		oc.	_	
Methyl cyclohexane	30	· · ·	α,	_	∞	œ	_	46	_	_
Oiticica oil	oc	×	œ	_	œ	oc.		×3		
Olive oil	æ	- oc	oc		æ	∞	æ	Ins.	Ins.	×
Peanut oil	20	20	8	_	x	×	∞	Ins.	ins.	_
Safflower oil	20	x	8	_	œ	æ	œ	Ins.	Ins.	_
Soybean oil	æ	œ	œ		∞	20	oc	Ins.	ins.	
Turpentine	æ	æ	œ	_	œ	∞		55	28	_
Tung oil	æ4	305	88		×	oc	æ	ins.	Ins.	
Water	oc	x.	∞	1.1	x	×	œ		æ	2.3

¹ Solubility data refer only to room temperature. For many OOWANOL glycol ether products, solubility is very dependent on temperature.

² Above 48 ml solute; smaller quantities give hazy solutions. 3 Above 80 ml solute; smaller quantities give hazy solutions.

⁴ Above 86 ml solute; smaller quantities give hazy solutions.

⁵ Above 20 ml solute; smaller quantities give hazy solutions.

Table 11.65: (continued)

Solubility of Various Soaps in DOWANOL Glycol Ethers1 (g/100 g)

COMPOUND	PM	DPM	TPM	PPh	EB	DB	DM	EPh
Monoethanolamine laurate	19	4	3	7	37	21	15	3
Monoethanolamine oleate	>100	>100	>100	>100	>100	>100	>100	>100
Monoethanolamine stearate	3	1	<1	2	2	<1	<1	<1
Diethanolamine laurate	>100	97	28	>100	>100	>100	>100	>100
Diethanolamine oleate	>100,	>100	>100	>100	>100	>100	>100	>100
Diethanolamine stearate	28	7	4	66	26	14	7	38
Triethanolamine laurate	>100	22	18	68	90	58	67	80
Triethanolamine oleate	>100	>100	>100	>100	>100	>100	>100	>100
Triethanolamine stearate	15	6	5	21	13	5	<1	27
Monoisopropanolamine laurate	>100	37	15	>100	>100	>100	>100	>100
Monoisopropanolamine oleate	>100	>100	>100	>100	>100	>100	>100	>100
Monoisopropanolamine stearate	3	2	1	11	5	4	<1	<1
Monoethanolamine tall oil	>100	>100	>100	>100	>100	>100	>100	>100
Triethanolamine tall oil	>100	>100	>100	>100	>100	>100	>100	>100
Mixed Isopropanolamine tall oil	>100	>100	>100	>100	>100	>100	>100	>100
Potassium oleate	>100	>100	>100	_	>100	>100	>100	_
Sodium oleate	<1	<1	<1	_	1	1	1	

¹ The solubilities of the various soaps in the DOWANOL glycol ether products were determined by the following method. The various substances were added by weight to 25g of DOWANOL glycol ether; the samples were than shaken mechanically for 15 hours.
All solubility studies were carried out at room temperature. Solubility and setermined on basis of a true solution.
Solubility in all cases is reported as grams dissolved in 100g of DOWANOL glycol ether.

			Resin	Solubili	ty†					
COMPDUNO	PM	DPM	TPM	PMA	DPMA	PPh	EB	D 8	OM	EPh
Acrylic Acryloid ¹ B-66	•	•	•	•	•	•	•	•	•	•
Acryloid B-72	•	•	•	•	•	•	•	•	•	•
Acryloid 8-82	•	•	•	•	•	•	•	•	•	•
Elvacite ² 2010	•	*	•	•	*	*	0	0	•	*
Epoxy D.E.R.* 651	•	•	•	•	•	•	•	•	•	•
D.E.R. 657	•	•	•	•	•	•	•	•	•	•
Melamine Cyrnel ³ 303	•	•	•	•	•	•	•	•	•	•
Isocyanate Desmodur ⁴ N100	•7	•7	•7	•	•	•7	●7	•7	•7	•7
Nitrocellulose R.S ½ sec	•	•	•	•	•	•	•	•	•	•
R.S. 1/4 sec	•	•	•	•	•	*	•	•	•	•
Alkyd Cargill 5710	•	•	•	•	•	•	•	•	•	•
Polyester Cargill 5781	•	•	•	•	•	•	•	•	•	•
Chempol ⁵ 11-2339	•	•	•	•	•	•	•	•	•	•
Cellulosic CAP-482-0.5	•	*	•	•	•	•	•	•	•	•
CAB-381-2	•	•	•	•	•	•	0	0	•	•
Phenoxy UCAR ⁶ PKHC	•	•	•	•	•	•	•	•	•	•
Vinyl UCAR VYHH	0	0	0	•	•	-	0	0	•	*

[†] METHOD: Solubility observations were made after 0.5 g resin and 4.5 ml solvent were agitated for 24 hours.

^{*} Trademark of The Dow Chemical Company

Acryloid Trademark of Rohm & Haas Company

² Elvacite Trademark of E.I. DuPont de Nemours & Company

³ Cymel Trademark of American Cyanamid Company

Desmodur Trademark of Farbenfabriken Bayer AG
 Chempol Trademark of Freeman Chemical Corporation

⁵ UCAR Trademark of Union Carbide Corporation
7 Soluble, but not recommended for use

Solubie

Soluble
 Partially soluble, some undissolved gel particles
 Partially soluble, many undissolved gel particles
 Insoluble

Table 11.65: (continued)

Coupling Abilities of DOWANOL Glycol Ethers and Alcohols

Composition of Titrant, Volume %								<u>l</u> t	
PM	DPM	TPM	EB	DB	DM	sec-butanol	isobutanol	n-butanol	mi to couple
			100						32.8
			75			25			34.2
2			50			50			37.9
50								50	41.0
	25					75			42.1
				100					42.5
			25			75			48.8
25								75	51.0
	50						50		58.3
						100			60.9
	25						75		61.8
	50					50			63.9
75								25	64.0
		100							67.0
								100	71.0
	75						25		78.8
100									80.0
	75					25			82.1
	100								95.8
							100		104.6
					100				230.0

¹ Milliliters of product required to titrate 10 ml of mineral spirits and 10 ml of water to a clear homogeneous solution at 25°C

Evaporation Rates of DOWANOL Products

DOWANOL	(BuAc = 1.00) ¹	DOWANOL	(BuAc = 1.00)
PM	0.71	BC-300	0.21
DPM	0.02	ЕВ	0.08
TPM	< 0.01	DB	0.003
РМА	0.34	ТВН	<<0.01
DPMA	< 0.01	DM	0.02
PPh	< 0.01	ТМН	<<0.01
BC-100	0.60	EPh	< 0.01
BC-200	0.25	DALPAD A	< 0.01

¹Chemists use the evaporation rate of butyl acetate as the standard for determining evaporation rates of solvents. Butyl acetate has an arbitrary value of 1.00 All solvents evaporating faster than butyl acetate have a number higher than 1.00. Those evaporating more slowly have evaporation rates lower than 1.00. All glycol ethers evaporate more slowly than butyl acetate.

Table 11.65: (continued)

Evaporation Rates of DOWANOL Products

Low Evaporation Rate

Table 11.65: (continued)

Vapor Pressures of DOWANOL Products

A = DOWANOL EB B = DOWANOL DM C = DOWANOL DB D = DOWANOL PPh E = DOWANOL EPh

A = DOWANOL PM B = DOWANOL PMA C = DOWANOL DPM D = DOWANOL DPMA E = DOWANOL TPM

(continued)

Table 11.65: (continued)

Density (g/cm³) of DOWANOL Products

Table 11.65: (continued)

Pounds/Gallon of DOWANOL Products

Table 11.65: (continued)

Coefficients of Expansion of Liquid DOWANOL Products

OOWANOL	Coefficient of Expansion (per °C)	Coefficient of Expansion (per °F)
РМ	0.00100	0.00056
DPM	0.00094	0.00052
ТРМ	0.00089	0.00049
PMA	0.00097	0.00054
DPMA	0.00100	0.00056
PPh	0.00086	0.00048
BC-100	0.00100	0.00056
BC-200	0.00099	0 00055
BC-300	0.00098	0.00055
εв	0.00086	0.00048
DB	0.00081	0.00045
твн	0.00079	0.00044
D M	0.00091	0.00051
ТМН	0.00079	0.00044
EPh	0.00086	0.00048
DALPAD A	0.00086	0.00048

Density (g/cm³) of Aqueous Solutions of DOWANOL Products

(continued)

Table 11.65: (continued)

Surface Tensions of Aqueous Solutions of DOWANOL Products

Refractive Indices of Aqueous Solutions of DOWANOL Products

Hygroscopicity of DOWANOL Products at 21°C (70°F) and 77% Relative Humidity

Freezing Points of Aqueous Solutions of DOWANOL Products

Percent By Weight Glycol Ether

Table 11.65: (continued)

Azeotropes of DOWANOL Products

		Boiling		Azeotro	pic Data	
Component Data		Point °C at 760 mm Hg Boiling Point for Pure °C at 760 mm Hg		Composition of Azeotrope		
Component A	Component B	Component	for Azeotrope	Wt. % A	Wt. % B	
DOWANOL EB		171.2	T	_		
	Water	100	98.8	20.8	79.2	
	Bis (2-chloroethyl)					
	Ether	179.2	170.8	75	25	
	Amyl Ether	187.5	169.0	67	33	
DOWANOL PM		120.1				
	Water	100	98.3	51.5	48.5	
	Toluene	110.7	106.5	30	70	

Rubber Swell Properties of DOWANOL Products

	PM	DPM	TPM	EB	OB	DM
Natural Rubber Swelf						
Average % Dimension Change	6	7	9	21	11	2
Average % Volume Change	21	26	29	92	32	7
Synthetic Rubber Swell ^a						
Change in Length ³			40			
Buna (GR-S)	8	12	12	20	11	!
Butyl	6	9	7	15	7	-1
Neoprene	10	20	22	24	28	7
Change in Width ³						
Buna (GR-S)	7	11	13	26	14	4
Butyi	3	7	6	16	10	3
Neoprene	10	22	22	24	29	9
Change in Thickness ³						
Buna (GR-S)	(6	10	11	49	34	\ 23
Butyl	5	10	7	33	25	19
Neoprene	42	59	58	60	69	48
Average % Volume Change						
Buna (GR-S)	22	37	40	127	69	30
Butyl	14	28	22	79	47	22
Neoprene	72	133	135	147	178	73

Tests made in manner specified for hydraulic fluids by SAE (Lockhead Wagner FC-666-XO brake fluid cups, 120 hours at 158°F.)

² Tests were carried out using cured rubber strips measuring approximately 2 x 1 x 0.11 inch, 120 hours at 158°F.

³ Average % dimension

Table 11.65: (continued)

Heats of Combustion of DOWANOL Glycol Ethers

DOWANOL	kcal/mole	kcal/g	BTU/Ib
PM	556	6.18	11,115
DP M	961	6.49	11,700
TPM	1,366	6.62	11,900
EB	848	7.18	12,915
DB	1,109	6.84	12,300
DM	670	5.58	10,043
EPh	958	6.93	12,500

Minimum Film Formation Temperature (MFFT) – Coalescent Efficiency

Wt. % Coalescent Relative to Latex Solids

Observed Evaporation Rates For DOWANOL EB, DB, PPh, EPh or DALPAD A

Coupling Abilities of DOWANOL Glycol Ethers and Alcohols¹

						rant, Volume %			4
PM	DPM	TPM	EB	DB	DM	sec-butanol	isobutanol	n-butanol	mi to couple
			100						32.8
			75			25			34.2
			50			50			37.9
50								50	41.0
	25					75			42.1
				100					42.5
			25			75			48.8
25								75	51.0
	50						50		58.3
						100			60 9
	25						75		61.8
	50					50			63 9
75								25	64.0
		100							67.0
								100	71.0
	75						2 5		78.8
100									80.0
	75					25			82.1
	100								95.8
							100		104.6
					100				230.0

¹ Milliliters of product required to Litrate 10 ml of mineral spirits and 10 ml of water to a clear homogeneous solution at 25°C

¹ Trademark of Rohm & Haas Company

² 2, 2, 4-trimethyl-1, 3-pentanediol monoisobutylrate

³ Ethylene glycol mono-2-ethylhexyl ether

Table 11.65: (continued)

Properties and Performance of DOWANOL Glycol Ethers in Lacquers

	Viscosity of 8% nitrocellulose solutions in		Blush Co	nditions ¹			ition ios²	
DOWANOL	DOWANOL	Blush Co	onditions	No Blush	Conditions			
	glycol ethers, centistokes at 77°F	% Relative Humidity	Temperature °F	% Relative Humidity	Temperature °F	Toluene	Naphtha	Kauri ³ Butanol Number
P M	74.18	61	82	56	82	5.2	0.9	Above 500
DP M	158.76	90	82	85	82	4.2	0.8	Above 500
TPM	407.16	95	82	90	82	3.1	0.7	Above 500
EB	160.92	95	82	90	82	5.2	2.2	Above 500
DB	229.32	No blush	at 95% rel. hur	n. and 84°F afte	er one hour	6.5	1.9	Above 500
DM	149.05	614	82	564	82	4.6	Immis- cible	Above 500

¹ Blush resistance lests were carried out by spraying a solution of 92% OOWANOL glycol ether and 8% nitrocellulose on a 6" x 24" glass plate from a distance of eight inches, 30-40 pounds air pressure was used and 30 minutes drying time allowed.

Solubility of Resins in DOWANOL Products

	Resin Solubility [†]									
COMPOUND	PM	DPM	TPM	PMA	DPMA	PPh	EB	DB	DM	EPh
Acrylic Acryloid ¹ B-66	•	•	•	•	•	•	•	•	•	•
Acryloid B-72	•	•	•	•	•	•	•	•	•	•
Acryloid B-82	•	•	•	•	•	•	•	•	•	•
Elvacite ² 2010	•	*	•	•	*	*	0	0	•	*
Epoxy D.E.R.* 651	•	•	•	•	•	•	•	•	•	•
D.E.R. 657	•	•	•	•	•	•	•	•	•	•
Melamine Cymel ³ 303	•	•	•	•	•	•	•	•	•	•
Isocyanate Desmodur ⁴ N100	•7	•7	•7	•	•	●7	•7	•7	•7	•7
Nitrocellulose R.S 1/2 sec	•	•	•	•	•	•	•	•	•	•
R.S. ¼ sec	•	•	•	•	•	*	•	•	•	•
Alkyd Cargill 5710	•	•	•	•	•	•	•	•	•	•
Połyester Cargill 5781	•	•	•	•	•	•	•	•	•	•
Chempol ⁵ 11-2339	•	•	•	•	•	•	•	•	•	•
Cellulosic CAP-482-0.5	•	*		•	•	•	•	•	•	•
CA8-381-2	•	•		•	•	•	0	С	•	•
Phenoxy UCAR® PKHC	•	•	•	•	•	•	•	•	•	•
Vinyl UCAR VYHH	0	C	O	•	•	•	0	0	•	•

[†] METHOD: Solubility observations were made after 0.5 g resin and 4.5 ml solvent were agitated for 24 hours.

² Dilution ratios were determined by dissolving 2 g of dried nitrocellulose in 20 ml of DOWANOL glycol ether and adding toluene or naphtha until the nitrocellulose precipitated. The volume of toluene or naphtha required divided by 20 was taken as the dilution ratio.

³ Kauri Butanol numbers are determined by adding the material being checked to 20 ml of Kauri Butanol reagent until 10 point type can no longer be read through the solution. The number of ml of material required to reach the endpoint is recorded as the Kauri Butanol number. With all DOWANOL glycol ether products tested, 500 ml were added to the reagent without the endpoint being reached.

⁴ OOWANOL DM glycol ether seemed to be quite deliquescent.

Soluble

^{*} Partially soluble, some undissolved gel particles

Partially soluble, many undissolved gel particles

O Insoluble

Table 11.65: (continued)

DOWANOL Glycol Ethers Used in Cleaning Formulations

			D	OWANOL	Slycol Eth	er		
CLEANER		P-Se	ries			E-S	eries	
	PM	DPM	TPM	PPh	EB	DB	DM	EPh
Household/Industrial Cleaners Glass Cleaners	•	•			•			
Liquid Soaps		•			•			
Dry Cleaning Soaps	•	•			•	•		
Rug Cleaners	•	•			•	• .		
Spotting Fluids	•	•			•	•	L	
Phosphoric Acid Rust Removers		•	•	Ĺ	•	•	•	•
Aluminum Brighteners		•	•		•	•	•	
Metal Cleaners	•	•			•	•		
Carbon and Grease Removers	•	•			•			
Paint/Varnish/ Silicone Removers	•	•	•	•	•	•	•	•
Ink Removers	•		•		•	•		
Hard Surface Cleaners	•	•	•		•	•		<u> </u>
Oven Cleaners		•	•			•		•
Penetrating Dils			•			•		
White Wall Tire Cleaners		•			•			
Disinfectants/Germicides		•			•	•	_	•

DOWANOL Glycol Ethers Acceptable as Inert Ingredients in Pesticide Formulations 40 CFR 180.1001, (d) & (e)

Inert Ingredient	Uses
(d) Pesticide formulat	ons applied to growing crops only:
DOWANOL PM	Solvent.
DOWANDL DPM	Stabilizer.
DOWANOL EB	Solvent, co-solvent.
DOWANOL OB	
DOWANOL DM	Deactivator for formulations used before crop emerges from soil, stabilizer.
(e) Pesticide formulat	ons applied to animals:
DOWANOL PM	Deactivator, emollient.
DOWANOL DPM	Surfactants, related adjuvants of surfactants.

Evaporation Rate Program Plot Format

CHEMCOMP: Evaporation Rate Program

100

MULT-COMPONENT PROFILE

WITH SOUTH S

40 60 % Evaporated

Typical Printout from Flash Point Estimator CHEMCOMP: Flash Point Estimator

(continued)

Table 11.65: (continued)

Typical Printout of Evaporation Rate Program

DOW CHEMICAL U.S.A. SOLVENT EVAPORATION RATE PROGRAM

CASE 1 – SOLVENTS AND COMPOSITIONS

		COMPOSITION						
CODE	SOLVENT NAME	MOLE%	WEIGHT%	VOLUME%				
PM	DOWANOL PM GLYCOL ETHER	51.10	50.00	48.37				
E8	DOWANOL EB GLYCOL ETHER	22.27	28.57	28.21				
NBOH	N-BUTYL ALCOHOL	26.63	21.43	23.43				
H₂O	WATER	0.00	0.00	0.00				

CODE	SOLVENT NAME	T90 (SEC)	RELATIVE RATE	FP (°F)	DENS (G/CC)	COST (\$/LB)
РМ	DOWANOL PM GLYCOL ETHER	669.	0.699509	100.	0.916	0.00
EB	DOWANOL EB GLYCOL ETHER	6095.	0.076770	143.	0.898	0.00
NBOH	N-BUTYL ALCOHOL	1064.	0.439783	97.	0.811	0.00
H₂O	WATER	1490.	0.314038		0.997	0.00

ESTIMATED PROPERTIES FOR THE INITIAL BLEND

DENSITY AT 25°C, G/CC	0.888
CLOSED CUP FLASH POINT, °F	103.
SOLUBILITY PARAMETER, SQRT (CAL/CC)	10.4
HYDROGEN BONDING, RELATIVE TO ISOOCTANE = 0	16.4
DIPOLE MOMENT, DEBYE	1.7
90% EVAPORATION TIME, SECONDS	3910.42
RATE RELATIVE TO NBAC AT 90% EVAPORATED	0.119657

DATA SUMMARY - INITIAL AND AIR TEMP = 25.00°C, REL HUMIDITY = 60.00%

0.35% OF SOLVENT LOST DURING SAMPLE INJECTION TIME OF 8.00 SECONDS

% EVAP	0.0	15.0	30.0	45.0	60.0	75.0	90.0
SECONDS	0.	264.	635.	1046.	1522.	2226.	3910.
REL RATE	0.00	0.30	0.25	0.22	0.20	0.18	0.12
FP (F)	104.	125.	134.	142.	150.	161.	165.
WT% PM	49.69	39.75	34.43	29.34	21.12	5.21	0.00
WT% EB	28.65	32.69	38.46	47.08	60.89	83.44	89.97
WT% NBOH	21.33	16.40	11.84	7.67	3.63	0.35	0.00
W T% H₂0	0.33	11.16	15.26	15.92	14.36	10.99	10.03

SELECT PLOT OPTION

1 = NO MORE PLOTS 2 = LINE PRINTER PLOTS 3 = PEN PLOTS

Table 11.65: (continued)

Typical Printout of Solvent Blend Program

The calculated values for this solvent blend are:

• Solubility Parameter 8.74
• Hydrogen Bonding Parameter 5.62
• Dipole Moment

Limits chosen for search are as follows:

You have specified 111 solvents to be included in the search for a blend containing 3 components, one of which is PMA.

BLEND #	SOL. Param.	H ₂ BOND.	DIPOLE MOMENT	SOLV. #1 WT%	SOLV. #2 WT%	\$0LV. #3 WT%
1	8.79	5.56	1.12	PMA 60	ACET 5	CHEX 35
2	8.70	5.53	1.42	PMA 45	ACET 25	HEPT 30
3	8.65	5.59	1.35	PMA 50	ACET 20	HEPT 30
4	8.60	5.65	1.29	PMA 55	ACET 15	HEPT 30
5	8.61	5.62	1.44	PMA 45	ACET 25	ISOE 30
6	8.67	5.70	1.46	PMA 45	ACET 25	ISOG 30
7	8.62	5.76	1.40	PMA 50	ACET 20	ISOG 30
8	8.64	5.73	1.47	PMA 45	ACET 25	ISOH 30

FOUND 100 BLENDS THAT MEET LIMITS OUT OF 119,308 CHECKED.

Typical Printout of VOC Program Calculations

VOC Calculations

FORMULATION: Epoxy Modified Acrylic COMMENTS: Bake Schedule: 350°F, 10 Min. TYPE OF CALCULATIONS: Dispersion

	DENSITY	FOR	MULA	SO	LIDS	VOC		
MATERIAL	LB/GAL	LB	GAL	LB	GAL	LB	GAL	
TITANIUM DIOXIDE	34.72	95.5	2.75	95.5	2.75	_	_	
ACRYLOID ¹ AT-400	8.60	_	 	_	T -	_	_	
METHYL AMYL KETONE	6.77	15.8	2.33			15.8	2.33	
RESIN SOLID	9.45	47.4	5.02	47.4	5.02	_	_	
DER* 661 EPOXY RESIN	9.90		_	_	_	_	_	
RESIN SOLID	9.90	15.5	1.57	15.5	1.57	_	_	
DOWANOL PM	7.56	28.0	3.70		_	28.0	3.70	
DOWANOL DPM	7.91	6.7	0.85	_	_	6.7	0.85	
CYMEL ² 370	9.80	_	-		_	_	_	
ISO-BUTANOL	6.68	4.6	0.68	_	_	4.6	0.68	
RESIN SOLID	10.47	33.5	3.20	33.5	3.20		_	
Totals	12.29	247.0	20.10	191.9	12.53	55.1	7.57	

VOC = 2.74 LB/GAL 328.25 G/L

^{*} Trademark of The Dow Chemical Company

¹ Trademark of Rohm & Haas Company

² Trademark of American Cyanamid Company

Table 11.65: (continued)

Observed Evaporation Rates of DOWANOL Glycol Ethers

Surface Tension

Surface Tension of Blends

(continued)

†Volume of glycol ether required to titrate 10ml of corn oil and 10ml of water to a homogeneous solution at 25°C.

Coupling Performance[†] of DOWANOL Glycol Ethers (Soybean Oil and Water)

†Volume of glycol ether required to titrate 10ml of soybean oil and 10ml of water to a homogeneous solution at 25°C.

Coupiling Performance[†] (Mineral Spirits and Water)

†Volume of solvent required to titrate 10ml of mineral spirits and 10ml of water at 25°C to obtain a homogeneous solution.

Coupling Performance[†] (Mineral Spirits and Water)

†Volume of solvent required to titrate 10ml of mineral spirits and 10ml of water at 25°C to obtain a homogeneous solution.

566

†Texanol ester alcohol. Texanol is a trademark of Eastman Chemical.

🗌 1 HR 🛮 🖺 3 HR

≅ 6 HR **■** 24 HR

Table 11.65: (continued)

Accelerated Aging Study (at Room Temperature)

Resin A Concentrate

Resin B Concentrate

Accelerated Aging Study (at 120°F)

Resin A Concentrate

Resin B Concentrate

Molecular Weight Distribution (Resin A Concentrate)

EB/s-BuOH Concentrate

PnB/DPM Concentrate

Table 11.65: (continued)

Comparative Metabolism and Disposition of Ethylene Glycol Methyl Ether and DOWANOL PM Propylene Glycol Methyl Ether FGMF¹

PGME²

Metabolism and Disposition of DOWANOL PMA Propylene Glycol Methyl Ether Acetate

Propylene glycol methyl ether acetate
 Propylene glycol methyl ether

Table 11.65: (continued)

Glycol Ether Toxicity Summary

Type of Study	Species	Exposure Level	Effects
Propylene Glycol Monomethyl Ether	(PM)		
90-day subchronic inhalation study	Rats Rabbits	3000 ppm	CNS depression and slight liver weight increase
		1000 ppm	NOEL
Inhalation teratology studies	Rats	3000 ppm	Maternal toxicity (slight CNS depression, decreased food consumption); slight fetotoxicity
		1500 ppm	NOEL
	Rabbits	3000 ppm	Maternal toxicity (decreased food consumption
		1500 ppm	NOEL
Dipropylene Glycol Monomethyl Eth	er (DPM)		
90-day subchronic inhalation study	Rats Rabbits	200 ppm 50 ppm 15 ppm	No treatment-related effects at any level
Inhalation teratology study	Rats Rabbits	300 ppm 150 ppm 50 ppm	No treatment-related effects at any level
4-week dermal study	Rats	1000 mg/kg 100 mg/kg	No treatment-related effects
Tripropylene Glycol Monomethyl Etl	her (TPM)		
Dermal 90-day subchronic study	Rabbits	10 ml/kg 4 ml/kg 3 ml/kg 1 ml/kg	Mortality at high dose; narcosis at lower doses; mild skin irritation
Inhalation teratology study	Rats	Aerosols of 1.0 mg/L 0.3 mg/L 0.1 mg/L	Maternal toxicity at high dose; embryo/fetotoxicity and teratogenicity NOEL=1.0 mg/L
Propylene Glycol Monomethyl Ether	Acetate (PMA)		
Inhalation 9-day subacute study	Rats Mice	3000 ppm 1000 ppm 300 ppm	Mild, high-dose liver effects similar to those seen with DOWANOL PM; evidence of upper respiratory tract irritation in all exposures in mice and high exposure in rats
Inhalation teratology study	Rats	4000 ppm 400 ppm	Embryo/fetotoxity and teratogenicity NOEL=4000 ppm slight maternal toxicity
Dipropylene Glycol Monomethyl Et	her Acetate (DPMA)	
No subchronic, teratogenicity, or reproduce completely convert to dipropylene glycol expected to be similar to dipropylene gly	uctive studies have be monomethyl ether af	en conducted. However, the absorption into the boo	nis compound is likely to rapidly and dy. Thus, its systemic toxicity would b
Propylene Glycol n-Butyl Ether (Pn	B)		
13-week subchronic dermal study	Rabbits	2 ml/kg/day of 57% soln. 5.7% soln. 0.57% soln.	Skin effects at all levels; no systemic effects at any level

Table 11.65: (continued)

Type of Study	Species	Exposure Level	Effects
Propylene Glycol n-Butyl Ether (PnE	3)	· · · · · · · · · · · · · · · · · · ·	
13-week subchronic dermal study	Rats	1 ml/kg/day (880 mg/kg/day) 0.3 ml/kg/day 0.1 ml/kg/day	Minor skin effects at all levels; no systemic effects at any level
13-week subchronic oral study	Rats	1000 mg/kg 350 mg/kg 100 mg/kg	Increased liver and kidney weights at 1000 mg/kg NOEL=350 mg/kg
Dermal teratology study	Rats	1 ml/kg/day 0.3 ml/kg/day	No embryo/fetotoxicity or teratogenicity at any level
	Rabbits	100 mg/kg/day 40 mg/kg/day 10 mg/kg/day	No embryo/fetotoxicity or teratogenicity at any level
Dipropylene Glycol n-Butyl Ether (D	PnB)		
13-week subchronic diet study	Rats	1000 mg/kg/day	Slight effects to body weights, clinical chemistries, and liver weights
		450 mg/kg/day	Capacity changes; not considered toxic effects
		200 mg/kg/day	NOEL
13-week subchronic dermal study	Rats	1 ml/kg/day	Skin effects; effects to body weights, food consumption, and liver weights
		0.3 ml/kg/day	Effects to body weights and food consumption
		0.1 ml/kg/day	NOEL for systemic effects
Dermal teratology study	Rats	1 ml/kg/day 0.3 ml/kg/day 0.1 ml/kg/day	Minor maternal skin effects at all levels; no embryo/fetotoxi- city or teratogenicity at any leve
Propylene Glycol Monophenyl Ether	(PPh)		
28-day subchronic dermal study	Rats	1000 mg/kg 300 mg/kg 100 mg/kg	No evidence of systemic toxicity (NOEL=1000 mg/kg); mild, tran- sient dermal irritation at all dose
Ethylene Glycol Monobutyl Ether (El	B)		
90-day subchronic inhalation study	Rats	77 ppm	Blood effects
		25 ppm	NOEL
90-day subchronic dermal study	Rabbits	150 mg/kg 50 mg/kg 10 mg/kg	No treatment-related effects at any level
Teratology studies	Rats	300 ppm	Maternal and embryo lethality
		200 ppm 100 ppm	Maternal toxicity, embryo toxicity, fetotoxicity
		50 ppm	NOEL
	Rabbits	200 ppm	Maternal toxicity, embryo toxicit
Diethylana Chaol Mana a Butyl Etha	- (DD)	100 ppm	NOEL
Diethylene Glycol Mono-n-Butyl Ethe	i i	0000 "	01.141
90-day subchronic dermal study	Rats	2000 mg/kg 666 mg/kg	Slight hemoglobinuria
		200 mg/kg	NOEL
90-day subchronic reproduction study	Rats	2000 mg/kg 666 mg/kg 200 mg/kg	No reproductive effects at any level

Table 11.65: (continued)

Type of Study	Species	Exposure Level	Effects
Diethylene Glycol Mono-n-Butyl Ether	(DB)		
Dermal teratology study	Rabbits	1000 mg/kg	NOEL for embryo toxicity and fetotoxicity
90-day subchronic neurotoxicity study	Rats	2000 mg/kg	NOEL
Triethylene Glycol Mono-n-Butyl Ethe	r and Higher Hon	nologs (TBH)	
Note: Toxicity tests described below have b	een conducted only	with triethylene glycol mo	ono-п-butyl ether.
3-week dermal study	Rabbits	1000 mg/kg	Skin irritation; no systemic toxicity
Oral developmental toxicity screen	Rats	1000 mg/kg 250 mg/kg	No treatment-related effects
Diethylene Glycol Monomethyl Ether	(DM)		
90-day subchronic inhalation study	Rats	216 ppm 100 ppm 30 ppm	No treatment-related effects at any level
Dermal teratology study	Rabbits	750 mg/kg	Maternal toxicity; slightly embryotoxic and fetotoxic
		250 mg/kg	Slightly fetotoxic
		50 mg/kg	NOEL
Triethylene Glycol Monomethyl Ether	and Higher Homo	ologs (TMH)	
Note: Toxicity tests described below have b	een conducted only	with triethylene glycol mo	onomethyl ether.
90-day oral subchronic study	Rats	4000 mg/kg 1200 mg/kg 400 mg/kg	NOEL for neurotoxicity 4000 mg/kg; NOEL for systemic toxicity 400 mg/kg
90-day dermal subchronic study	Rats	4000 mg/kg 1200 mg/kg 400 mg/kg	NOEL 4000 mg/kg
Oral teratology study	Rats	5000 mg/kg 2500 mg/kg 1250 mg/kg 625 mg/kg	Slight variations in fetal skeletons at 1250 mg/kg; fetal NOAEL 1250 mg/kg
Oral teratology study	Rabbits	1500 mg/kg 1000 mg/kg 500 mg/kg 250 mg/kg	Fetal NOAEL 1500 mg/kg
Oral developmental neurotoxicity study	Rats	3000 mg/kg 1650 mg/kg 300 mg/kg	Neurotoxicity NOEL 1650 mg/kg; developmental NOEL 300 mg/kg
Ethylene Glycol Monophenyl Ether (El	Ph)		
90-day subchronic dermal study	Rabbits	500 mg/kg 150 mg/kg 50 mg/kg	Minor skin effects; no evidenc of systemic toxicity at any leve
Dermal teratology study	Rabbits	1000 mg/kg 600 mg/kg 300 mg/kg	Maternal death at high dose, maternal toxicity at 600 mg/kg no embryo/fetotoxicity or teratogenicity at any level
Oral 5-week reproduction study	Mice	2000 mg/kg 1000 mg/kg 500 mg/kg	No reproductive effects at any level

NOEL: No Observed Effect Level NOAEL: No Observed Adverse Effect Level

Table 11.65: (continued)

Exposure Guidelines for DOWANOL Glycol Ethers and Acetates

DOWANOL	CHEMICAL NAME	OSHA ² Standard	ACGIH³ TLV4	Dow Internal Industrial Hygiene Guide
P-Series				
PM	Propylene glycol methyl ether	100 ppm ⁵	100 ppm	NE
DPM	Dipropylene glycol methyl ether	100 ppm ⁵ (skin) ⁶	100 ppm	NE
PMA	Propylene glycol methyl ether acetate	NE ⁷	NE	NE
E-Series				
ЕВ	Ethylene glycol n-butyl ether	25 ppm ⁵ (skin)	25 ppm (skin)	NE
DB	Diethylene glycol n-butyl ether	NE	NE	35 ppm
DM	Diethylene glycol methyl ether	NE	NE	30 ppm
EPh	Ethylene glycol phenyl ether	/NE	NE	25 ppm (skin)

Environmental Data for DOWANOL Products

DOWANOL	COD (part/part)	BOD/theory % ³				
DOWANOL	Theory ¹	K ₂ Cr ₂ O ₇ 2	5 days	10 days	20 days		
P- Serie s							
PM	1.95	1.84	0	22	58		
DPM	2.06	2.02	0	0	31		
TPM	2.09	2.02	0	1	52		
PMA	1.82	1.74	20	57	62		
DPMA	1.94	1.98	2	28	62		
PPh	2.30	2.26	3	37	52		
E-Series							
EB	2.30	2.21	5	57	72		
DB	2.17	2.06	2	13	47		
ТВН	2.10	2.02	0	5	24		
DM	1.73	1.66	0	21	66		
TMH	1.76	1.75	0	14	23		
EPh	2.18	2.12	2	71	80		
DALPAD A	2.18	2.12	2	71	80		

 $^{^{\}rm 1}$ Theoretical Oxygen Demand (Th00) calculated for complete oxidation to carbon dioxide and water.

² Chemical Oxygen Demand (COD) determined by oxidation with acidic dichromate.

³ Biochemical Oxygen Demand (BDD) expressed as a percentage of Theoretical Oxygen Demand. A BDD 20 of >50% indicates the product will be largely removed in a biological wastewater treatment plant. A BDD 20 of 10-50% indicates it will be partially removed.

Table 11.65: (continued) Food Additive Status of DOWANOL Glycol Ethers

Regulation Number (21 CFR)	Title	P M	DPM	TPM	EB	DB	DM	EPh
181.30	Substances used in the manufacture of paper and paperboard products used in food packaging (prior sanctioned food ingredients).	•	•	•				
176.300	Slimicides (for use in the manufacture of paper and paperboard). Adjuvant substances permitted to be used in the preparation of slimicides.	•	•	•	•	•		
176.210	Defoaming agents used in the manufacture of paper and paperboard.				•			
175.105	Adhesives.	•	•	•	•	•	•	•
178.1010	Sanitizing solutions. Paragraph (a)(4): an aqueous solution containing iodine, butoxy monoether of mixed (ethylene-propylene) polyalkylene glycol having a cloud point of 90°C-100°C in 0.5% aqueous solution and an average molecular weight of 3300, ethylene glycol monobutyl ether, and diethylene glycol monoethyl ether, together with components generally recognized as safe.				•			
176.180	Components of paper and paperboard in contact with dry food.					•		
177.1650	Polysulfide Polymer-Polyepoxy resins. Paragraph (a)(3): for use as a solvent.				•			
173.315	Chemicals used in washing or to assist in the lye peeling of fruits and vegetables. Paragraph (a)(3): for use in flume water for washing sugar beets prior to the slicing operation (not to exceed 1 ppm in the flume water).				•			

NOTE: This information is for use as a general guideline. The regulations should be consulted for complete details

Determining the Amount of Contents of Partially Filled Drums

Product Shelf Life

Product/Shelf Life	Lot Number System	Conditions of Temperature and Storage	Deterioration Characteristics
DOWANOL PM, DPM, TPM, EB, DB, DM glycol ether products 18 months – Drums 6 months – Bulk	Standard	Normal conditions – Store below 90°F. Material is hygroscopic; should be in closed containers. Aluminum containers should be avoided.	Lowering of pH – possible rise in color on prolonged standing.
DOWANOL PPh, EPh glycol ether products 18 months - Drums 6 months - Bulk	Standard	Store below 110°F. Aluminum containers should be avoided.	Develops yellow color.

Table 11.66: GLYME Azeotropic Vapor Pressure and Solubility Data (21)

AZEOTROPIC DATA

^{*}Butyl Diglyme, Triglyme, and Tetraglyme do not form azeotropes with water.

POLYMER SOLUBILITY

The solubility of various plastic and elastomeric materials in glymes was determined by placing 10 grams of sample in 100ml of the glyme at 21°C. The samples were examined after one week.

- U-Unaffected
- A Attacked (noticeable softening: some swelling)
 S—Soluble (10% or more; extreme swelling to gellation)

SONO CLAR SIENE CAR DOLLE DELLE

PLASTICS						
Acrylate				1		
Acrylate ester	s	1	s		1	S
Polymethyl methacrylate	s		S			S
Vinyl						-
Polyvinyl acetate	S		S			S
Polyvinyl chloride	A	A	A	A	U	A
Chlorinated polyvinyl chloride		A	S	A	U	
Polyvinyl chloride acetate	A	S	A	S	A	A
Polyvinyl alcohol	U	A	U	U	U	U
Polyvinylidene chloride	U	U	A	U	U	A
Cellulose					-	
Cellulose acetate	S		S			S
Cellulose acetate butyrate	S	A	S	A	U	S
Cellulose nitrate	S		S		1 31	S
Methyl cellulose	S	A	S	A	U	S
Condensation Polymers						-
Phenol formaldehyde, cast	A		Α		0	A
Nylon	U	U	U	U	U	Ü
Polyester	U	U	U	U	U	U
Polyurethane	A	A	S	A	u	5
Polycarbonate	A	U	Α	Α	u	A
Polyolefins						-
Polyethylene	U	U	U	U	U	U
Polystyrene	A		A	1 - 1		A
Polyletrafluoroethylene	U	U	U	U	U	U
ELASTOMERS						
Neoprene	s	s	s	s	s	S
EVA	A	A	A	A	A	
Nitrile Rubber (NBR)	S	s	s	S	100	U
Natural Rubber	S	S	A	S	A	S
EPDM	U	A	ů	7.1	S	A
SBR	S	S	S	AS	A S	A

VAPOR PRESSURE/ TEMPERATURE RELATIONSHIPS

Table 11.67: Union Carbide Glycol Ethers (19) **Product Family Order**

Solvent	Formula Molecular Weight	Boiling Point, °C	Freezing Point, °C	Flash Point, °F ^(a)	Vapor Pressure, mm Hg at 20°C
Methyl CELLOSOLVE Solvent	76.1	124.5	-85	103	6.2
Methyl CARBITOL Solvent	120.2	194.0	-85	188 ^(d)	0.1
Methoxytriglycol	164.2	249.0	-44	238 ^(d)	< 0.01
ELLOSOLVE Solvent	90.1	134.9	-90	108	4.1
ARBITOL Solvent	134.2	201.6	-78 ^(c)	182 ^(d)	0.08
thoxytriglycol	178.2	255.9	-19	255	< 0.01
Propyl CELLOSOLVE Solvent	104.2	150.1	-90	135 ^(d)	1.6
Butyl CELLOSOLVE Solvent	118.2	171.2	-70	160 ^(d)	0.6
Butyl CARBITOL Solvent	162.2	230.6	- 6 8	214	0.01
lutoxytriglycol	206.3	279.8 ^(e)	-48	276 ^(d)	< 0.01
lexyl CELLOSOLVE Solvent	146.2	208.1	-50	179	0.05
Hexyl CARBITOL Solvent	190.3	259.1	-40	271 ^(d)	<0.01
Boiling Point Order				•	
Methyl CELLOSOLVE Solvent	76.1	124.5	-85	103	6.2
ELLÓSOLVE Solvent	90.1	134.9	-90	108	4.1
Propyl CELLOSOLVE Solvent	104.2	150.1	- 9 0	135 ^(d)	1.6
Butyl CELLOSOLVE Solvent	118.2	171.2	-70	160 ^(d)	0.6
Methyl CARBITOL Solvent	120.2	194.0	-85	188 ^(d)	0.1
ARBITOL Solvent	134.2	201.6	-78 ^(c)	182 ^(d)	0.08
lexyl CELLOSOLVE Solvent	146.2	208.1	-50	179	0.05
utyl CARBITOL Solvent	162.2	230.6	-68	214	0.01
lethoxytriglycol	164.2	249.0	-44	238 ^(d)	< 0.01
thoxytriglycol	178.2	255.9	-19	255	< 0.01
Hexyl CARBITOL Solvent	190.3	259.1	-40	271 ^(d)	< 0.01
Butoxytriglycol	206.3	279.8 ^(e)	-48	276 ^(d)	< 0.01

Product Family Order

	Cmoslifia	Pounds	Coefficient of	Solubility at 20°C, % by wt In Water Water In		Relative	Surface Tension at 25°C, dynes/cm	
Solvent	Specific Gravity, 20/20°C	Per Gallon	Expansion at 20°C			Evaporation Rate (nBuAc = 100)	Neat Product	25% Aq. Solution ^(b)
Methyl CELLOSOLVE Solvent	0.966	8.04	0.00094	100	100	62	32.1	54.3
Methyl CARBITOL Solvent	1.023	8.51	0.00086	100	100	1.5	35.9	54.3
Methoxytriglycol	1.050	8.74	0.00084	100	100	0.04	34.7	48.4
CELLOSOLVE Solvent	0.931	7.74	0.00097	100	100	41	29.4	47.1
CARBITOL Solvent	0.991	8.25	0.00090	100	100	1.3	35.2	49.6
Ethoxytriglycol	1.025	8.53	0.00086	100	100	0.04	32.2	45.7
Propyl CELLOSOLVE Solvent	0.913	7.60	0.00095	100	100	21	26.3	32.3
Butyl CELLOSOLVE Solvent	0.902	7.50	0.00092	100	100	7.8	28.6	28.9
Butyl CARBITOL Solvent	0.954	7.94	0.00088	100	100	0.24	31.0	33.2
Butoxytriglycol	0.989	8.19	0.00085	100	100	< 0.1	30.0	32.2
Hexyl CELLOSOLVE Solvent	0.889	7.40	0.00086	1.00	18.80	0.82	30.3	28.5 ^(g)
Hexyl CARBITOL Solvent	0.935	7.78	0.00084	3	56.30	0.03	29.2 ^(f)	
Boiling Point Order								The second secon
Methyl CELLOSOLVE Solvent	0.966	8.04	0.00094	100	100	62	32.1	54.3
CELLÓSOLVE Solvent	0.931	7.74	0.00097	100	10	41	29.4	47.1
Propyl CELLOSOLVE Solvent	0.913	7.60	0.00095	100	100	21	26.3	32.3
Butyl CELLOSOLVE Solvent	0.902	7.50	0.00092	100	100	7.8	28.6	28. 9
Methyl CARBITOL Solvent	1.023	8.51	0.00086	100	100	1.5	35.9	54.3
CARBITOL Solvent	0.991	8.25	0.00090	100	100	1.3	35.2	49.6
Hexyl CELLOSOLVE Solvent	0.889	7.40	0.00086	1.00	18.80	0.82	30.3	28.5 ^(g)
Butyl CARBITOL Solvent	0.954	7. 9 4	0.00088	100	100	0.24	31.0	33.2
Methoxytriglycol	1.050	8.74	0.00084	100	100	0.04	34.7	48.4
Ethoxytriglycol	1.025	8.53	0.00086	100	100	0.04	32.2	45.7
Hexyl CARBITOL Solvent	0.935	7.78	0.00084	3	56.30	0.03	29.2 ^(f)	
Butoxytriglycol	0.989	8.19	0.00085	100	100	< 0.1	30.0	32.2

 ⁽a) Tag Closed Cup unless otherwise noted
 (b) All solutions are percent by volume
 (c) Sets to glass below this temperature

⁽d) Pensky-Martens Closed Cup

⁽e) Decomposes at 760 mm Hg, boiling point extrapolated

⁽f) at 2°C (g) 1% solution

Table 11.67: (continued)

(a) Heterogeneous at this boiling point

(b) Homogeneous at 20°C

Constant Boiling Azeotropic Mixtures of Glycol Ethers and Other Solvents

	Components					
Solvent	Specific Gravity at 20/20℃	Boiling Point at 760 mm Hg, °C				
Methyl CELLOSOLVE Solvent	0.966 0.868	124.5 10.6				
Toluene	0.868	10.0				
Methyl CELLOSOLVE Solvent	0.966	124.5				
Water	1.000	100.0				
Methyl CARBITOL Solvent	1.023	194.0				
Ethylene Glycol	1.115	197.6				
CELLOSOLVE Solvent	0.931	135.6				
Butyl Acetate	0.88	126.0				
CELLOSOLVE Solvent	0.931	135.6				
Toluene	0.868	110,6				
CELLOSOLVE Solvent	0.931	135.6				
Water	1.000	100.0				
CARBITOL Solvent	0.991	202.7				
Ethylene Glycol	1.115	197.6				
Propyl CELLOSOLVE Solvent	0.913	. 150.1				
Water	1.000	100.0				
Butyl CELLOSOLVE Solvent	0.902	171.2				
Water	1.000	100.0				
Butyl CARBITOL Solvent	0.954	230.6				
Ethylene Glycol	1.115	197.6				
Hexyl CELLOSOLVE Solvent	0.889	208.1				
Water	1.000	100.0				
Hexyl CARBITOL Solvent	0.935	259.1				
Water	1.000	100.0				

		Azeotrope									
Solvent			Composition, % by		Specific Gravity						
	Boiling Point at 760 mm Hg,℃	in Azeotrope	in Upper Layer	in Lower Layer	Relative Volume of Layers at 20°C	at 20/20°C of Azeotrope Layer					
Methyl CELLOSOLVE Solvent		25	-	_							
Toluene	105.9	75		_		0.887					
Methyl CELLOSOLVE Solvent		15		_	_						
Water	99.9	8 5		_	_						
Methyl CARBITOL Solvent		70		_							
Ethylene Glycol	192	30	1000		_	1.051					
CELLOSOLVE Solvent		35.7		_							
Butyl Acetate	125.8	64.3	~	_	Miller	0.896					
CELLOSOLVE Solvent		10.0		_							
Toluene	110.0	90.0		_	_	0.874					
CELLOSOLVE Solvent		28.8	_	_	_						
Water	99.4	71.2			-	1.003					
CARBITOL Solvent		54.5	_	_							
Ethylene Glycol	192	45.5	-	was.	_	_					
Propyl CELLOSOLVE Solvent		30									
Water	98.8	70	-	_		_					
Butyl CELLOSOLVE Solvent		20.8	57	10	_						
Water	98.8 ^(a)	79.2	43	90	_	0.989 ^(b)					
Butyl CARBITOL Solvent		27.5			_						
Ethylene Glycol	196.2	72.5		-	_	1.074					
Hexyl CELLOSOLVE Solvent		9	81.2	1.0	U 11	U 0.915					
Water	99.7	91	18.8	99.0	L 89	L 1.000					
Hexyl CARBITOL Solvent		2	43.7	1.7	U 0.5	U 0.982					
Water	100.0	98	56.3	98.3	L 99.5	1.000					

Table 11.67: (continued)

Surface Tension of Aqueous Solutions of Glycol Ethers

Table 11.67: (continued)

Chart Key:

- A Butyl Acetate
- B Methyl CELLOSOLVE Solvent
- C CELLOSOLVE Solvent
- D Propyl CELLOSOLVE Solvent
- E Butyl CELLOSOLVE Solvent
- F Methyl CARBITOL Solvent
- G CARBITOL Solvent
- H Hexyl CELLOSOLVE Solvent
- I Butyl CARBITOL Solvent
- Hexyl CARBITOL Solvent

Vapor Pressures of Glycol Ethers

Ecological Effects of Glycol Ethers

	Theoretical Oxygen Demand ^(a) , mg O ₂ /mg		Biodegradation(b) %			Bacterial ^(c)	Fathead Minnow ^(d,e)	Daphnia Magna ^(d,e)
Glycol Ether	Measured	Calculated	Day 5	Day 10	Day 20	IC ₅₀ mg/L	LC ₅₀ mg/L	LC ₅₀ mg/L
Methyl CELLOSOLVE Solvent	1.64	1.68	30	62	88	> 10,000	> 5,400	> 10,000
Methyl CARBITOL Solvent		1.34	5	73	100	> 5,000	> 10,000	> 10,000
Methoxytriglycol	_	1.75	29	33	71	> 5,000	> 10,000	> 10,000
CELLOSOLVE Solvent	1.98	1.86	36	88	100	> 10,000	> 10,000	> 10,000
CARBITOL Solvent	1.74	1.90	17	71	87	> 5,000	> 10,000	> 10,000
Ethoxytriglycol		1.89	8	47	71	> 10,000	> 10,000	> 10,000
Propyl CELLOSOLVE Solvent	1.94	2.15	13	66	100	> 1,000	> 5,000	> 5,000
Butyl CELLOSOLVE Solvent	2.25	2.30	26	74	88	> 5,000	1,700	> 1,000
Butyl CARBITOL Solvent	2.05	2.17	22	64	77	> 1,000	2,500	> 1,000
Butoxytriglycol		2.10	< 5	5	47	> 5,000	2,400	2,210
Hexyl CELLOSOLVE Solvent	1.89	2.52	72	93	100	770	140	305
Hexyl CARBITOL Solvent		2.36	23	69	80	> 1,000	220	433

⁽a) Calculated theoretical oxygen demand (THOD) based on complete oxidation of the chemical to carbon dioxide and water. Measured value determined by chemical oxygen demand procedure published in *Standard Methods for the Examination of Water and Wastewater*, 18th ed., Am. Public Health Assoc., Washington, D.C. (1992)

⁽b) Based on biooxidation measured in the dilution bottle biochemical oxygen demand (BOD) test published in Standard Methods. Biooxidation is the percentage ratio of BOD to THOD [(BOD/ThOD)*100%]. Nonacclimated domestic sewage microorganisms were used as seed in the tests.

⁽c) Determined by turbidity/growth procedures where the median inhibition concentration (IC₅₀) is measured after 16 hours of incubation with sewage microorganisms.

⁽d,e) EPA/ASTM bioassay procedures were followed in obtaining these values. Ten test organisms were used per test concentrations.

POLYETHYLENE GLYCOLS

Table 11.68: Ashland Polyethylene Glycols (69)

Soluble in water with resultant solutions being transparent, ASHLAND* polyethylene glycols are designated by numbers which approximate their average molecular weight. Intermediate combinations may be obtained by blending various grades.

ASHLAND* polypropylene glycols have average molecular weights ranging from 400 to 4,000, and encompass a wide range of physical and chemical properties. They are used in cosmetic formulations, brake fluids, lubricating oils and greases, and rubber processing.

Polyethylene Glycols 200, 300, 400 and 600

Water-soluble viscous liquids at normal temperatures, polyethylene glycols are also soluble in ketones, alcohols, glycol ethers, esters and aromatic hydrocarbons. Their viscosities and freezing points increase as the molecular weight increases. Used as paper softeners, in tire air bag lubricants and lotions. Fatty acid esters prove useful as emulsifiers, dispersants and lubricants.

Polyethylene Glycols 1000, 1450, 3350, 4600 and 8000

From semi-solid to the higher molecular weight hard waxy white solids, this group of polyethylene glycols finds use as mold lubricants and mold release agents in the rubber industry. Used in preparation of ointments, cosmetic creams and lotions, metal polishes, shoe polishes, abrasives and adhesives.

Product	Specific Gravity 20°/20°C	Lb/Gal at 20°C	Average Molecular Weight	Freezing Range °C	Flash Point ∀F PM*	Viscosity Centistokes at 210°F
Polyethylene Glycol 200	1.127	9.38	200	Supercools	>300	4.3
Polyethylene Glycol 300	1.127	9.38	300	-15 to -8	>350	5.8
Polyethylene Glycoi 400	1.128	9.39	400	4-8	>350	7.3
Polyethylene Glycol 600	1.128	9.40	600	20-25	>350	10.5
Polyethylene Glycol 1000	1.101(55/20)	9.16 (55°C)	1000	37-40	>350	17.4
Polyethylene Glycol 1450	1.102 (55/20)	9.17 (55°C)	1450	43-46	>350	25-32
Polyethylene Glycol 3350	1.1072 (a)	8.94 (80°C)	3350	54-58	>3 50	75-110
Polyethylene Glycol 4600	1.073 (a)	8.95 {80°C}	4600	57-61	>350	160-230
Polyethylene Glycol 8000	1.075 (a)	8.96 (80°C)	8000	60-63	>350	700-9 00
Polyethylene Glycol 20000	1.065 (80/20)	8.67 (130°C)	17500	50-55	>350	14,500

*Pensky-Martens (a) Density (a) 80°C

Table 11.69: BASF Pluracol E Polyethylene Glycois (47)

Product	Average Molecular Weight	Form	Viscosity at 99° C, CS	Flash Pt. ° C ^b	Pour Point ° C
E200	200	Liquid	4.4	182	- 65
E300 E400, E400 NF	300 400	Liquid Liquid	5.9 7.4	210 238	– 13 5
E600, E600 NF	600	Liquid	10.8	249	20
E1000 E1450, E1450 NF	1000 1450	Solid Solid	17.5 2 8.5	255 255	38° 45°
E2000	2000	Solid	43.5	>260	52ª
E4000	4000	Solid	134.0	>260	59ª
E4500	4500	Solid	170.0	>260	60a
E8000	8000	Solid	750.0	>260	61ª

Table 11.70: CARBOWAX Polyethylene Glycols (19)

Typical Physical Properties of CARBOWAX Polyethylene Glycols and Methoxypolyethylene Glycols

	Range of Average Molecular	e			Melting or Freezing	Solubility in Water at 20°C.	Viscosity at 210°F.	Average Number of Repeating	
Product	Weight	20°C	60°C	80°C	Range, °C	% by wt	cSt	Oxyethylene Units	
CARBOWAX.	Polyethylen	e Glyco	1						
200	190 to 210	1.1238	1.0921	1.0763	Œ	Complete	4.3	4.1	
300	285 to 315	1.1249	1.0927	1.0766	-15 to -8	Complete	5.8	6.4	
400	380 to 420	1.1255	1.0931	1.0769	4 to 8	Complete	7.3	8.7	
540 Blend (a)	468 to 534	(h)	1.0930	1.0765	38 to 41	73	15.1	(a)	
600	570 to 630	1.1258	1.0931	1.0767	20 to 25	Complete	10.8	13.2	
900	855 to 945	(h)	1.0926	1.0763	32 to 36	86	15.3	20.0	
1000	950 to 1050	(h)	1.0927	1.0765	37 to 40	80	17.2	22.3	
1450	1305 to 1595	(h)	1.0919	1.0761	43 to 46	72	26.5	32.5	
3350	3015 to 3685	(\mathbf{l}_1)	1.0926	1.0769	54 to 58	67	90.8	75.7	
4000	3600 to 4400	(h)	1.0926	1.0769	57 to 59	66	140.4	90.5	
4600	4140 to 5060	(h)	1.0926	1.0764	57 to 61	65	183.9	104.1	
8000	7000 to 9000	$(1\rangle)$	1.0852 (Б)	1.0689 (ਹੈ)	60 to 63	63	821.7	181.4	
Compound 20M	17,500 (g)	(h)	1.0540 (c)	1.0392 (e)	61 to 63	65 (g)	18,655	2 moles 8000 joined with an epoxide	
CARBOWAX*	Methoxypo	lyethyle	ne Glycol	ļ	T		Γ		
350	335 to 365	1.0894	1.0547	1.0373	-5 to 10	Complete	3.9	7.2	
550	525 to 575	1.1039	1.0690	1.0515	15 to 25	Complete	6.5	11.8	
750	715 to 785	(1)	1.0761	1.0595	27 to 32	Complete	10.3	16.3	
2000	1800 to 2200	(h)	1.0871	1.0707	49 to 54	68	45.5	44.7	
5000	4375 to 5625	(f_1)	1.0899	E.0742	57 to 63	64	319	112.9	

Product	Surface Tension at 25°C, dynes/cm Polyethyle	Refractive Index, n _D 20 ne Glycol	Liquid Specific Heat at 25°C, cal/g/°C	Heat of Fusion, cal/g	Heat of Combustion (I) at 25°C, Btu/lb	CTFA (m)/INCI (n) Nomenclature
200	44.5	1,4597	: 0.51	(f)	01c,01	PEG4
3()()	44.5	1,4644	0.51	37	10,840	PEG-6
4()()	44.5	1.4667	0.51	36	11,010	PEG-8
540 Blend (a)	(h)	(h)	0.51 (k)	37	-11,070	PEG-6 (and) PEG-32
600	44.5	1.4688	0.51	35	-11,100	PEG-12
9()()	(h)	(h)	0.51 (k)	36	-11;210	PEG-18
1000	(13)	(h)	0.51 (k)	38	-11,240	PEG-20
1450	(h)	(h)	0.51 (k)	37	-11,300	PEG-32
3350	(h)	(1)	0.51 (k)	39	-11,380	PEG-75
4000	(h)	(h)	0.51 (k)	45	-11,390	PEG-90 (p)
4600	(h)	(h)	0.51 (k)	45	-11,390	PEG-100
8000	51.3 (i)	(h)	0.51 (k)	41	-11,410	PEG-180
Compound 20M	49.6 (i)	(h)	0.51 (k)	38	-11,430	
CARBOWAX*	Methoxypo	lyethylene (Siycol		<u></u>	
35()	40.5	1.4557	0.51	26	-11,340	PEG-6 Methyl Ether
550	40.7 (j)	1.4620	0.51	30	-11,400	Methoxy PEG-10
750	40.7 (j)	1.4572 (j)	().51(k)	34	-11,350	Methoxy PEG-16
2000	(h)	(h)	0.51(k)	41	-11,390	Methoxy PEG-40
5000	(b)	(h)	0.51(k)	43	-11,410	Methoxy PEG-100

FOOTNOTES:

- (a) A 41/59 wt % mixture of PEG-300 and PEG-1450
- (b) At 70°C

- (a) At 70°C (c) At 120°C (d) At 90°C (e) At 140°C (f) Sets to glass below -65°C
- (g) Approximate

- (h) Solid at specified temperature
 (i) 50% aqueous solution
- (j) At 40°C
- (k) Solid heat capacity
- (f) Negative indicates heat evolved (m) Cosmetics, Toiletries, and Fragrances Association (n) International Nomenclature Cosmetic Ingredient
- (p) Proposed CTFA/INCI Name

(continued)

Liquid Densities of Aqueous Solutions of Liquid and Solid CARBOWAX® Polyethylene Glycols

Melting/Freezing Range of CARBOWAX® Polyethylene Glycols vs. Molecular Weight

Freezing Points of Aqueous Solutions of Liquid and Solid CARBOWAX Polyethylene Glycols

Note: Below -23°C, all mixtures supercool and have no definite freezing point. In high concentrations of water, the curves for polyethylene glycols 300, 400, 1000, 540 Blend, 1450, and 3350 can be interpolated from the curves given.,

Kinematic Viscosity of CARBOWAX Polyethylene Glycols

Kinematic Viscosity of CARBOWAX Methoxypolyethylene Glycols

Kinematic Viscosity of Aqueous Solutions of CARBOWAX Polyethylene Glycol 200

Kinematic Viscosity of Aqueous Solutions of CARBOWAX Polyethylene Glycol 300

Kinematic Viscosity of Aqueous Solutions of CARBOWAX Polyethylene Glycol 400

Kinematic Viscosity of Aqueous Solutions of CARBOWAX Polyethylene Glycol 540 Blend

Kinematic Viscosity of Aqueous Solutions of CARBOWAX Polyethylene Glycol 900

Kinematic Viscosity of Aqueous Solutions of CARBOWAX Polyethylene Glycol 1450

Kinematic Viscosity of Aqueous Solutions of CARBOWAX Polyethylene Glycol 4000

Table 11.70: (continued)

Kinematic Viscosity of Aqueous Solutions of CARBOWAX Methoxypolyethylene Glycol 350

Table 11.70: (continued)

Kinematic Viscosity of Aqueous Solutions of CARBOWAX Methoxypolyethylene Glycol 750

Kinematic Viscosity of Aqueous Solutions of CARBOWAX Methoxypolyethylene Glycol 5000

Kinematic Viscosity of Blends of CARBOWAX Polyethylene Glycols and Methoxypolyethylene Glycols

Hygroscopicity of Liquid CARBOWAX Polyethylene Glycols at Various Relative Humidities

100 90 80 at Equilibrium 70 60 50 40 Glycerine Diethylene Glycol on Dry Humectant) Contained CARBOWAX PEG 200 CARBOWAX PEG 300 CARBOWAX PEG 400 Percent Water (Based 3 25 35 45 50 65 70

Relative Humidity, percent at 70 to 80°F

Surface Tensions of Aqueous Solutions of CARBOWAX Polyethylene Glycois at 25°C

Note: These curves are valid to \pm 1 dyne per cm. Surface tension for CARBOWAX* Polyethylene Glycol 400 to 4600 lie between the curves shown.

Molecular Weight Distributions of CARBOWAX Polyethylene Glycois

Note: The curves for CARBOWAX* PEG 200, 300, 400, 600, 1000 and 1450 were determined by liquid chromatography. The curves for CARBOWAX* PEG 3350, 4600 and 8000 were determined by gel permeation chromatography.

Effect of Molecular Weight on Physical Properties

Avg MW Range	Solubility	Hygroscopicity	Vapor Pressure	Melting or Freezing Range	Viscosity
200	HIGHER	HIGHER	HIGHER	lower	lower
300	A	A	A .		
400					
600	Š	*			
900	5	·		•	•
1000				•	
1450					:
3350					
4600					
8000	lower	lower	lower	HIGHER	HIGHER

High Viscosity Component, centistokes at 210°F

Polymer Distribution in CARBOWAX Polyethylene Glycols 200, 300, 400, 600, 1000, 1450, 4600 and 8000

Note: These curves were computer-derived and confirmed by gel permeation chromatography

Approximate Kinematic Viscosity of Blends of CARBOWAX Polyethylene Glycols and Methoxypolyethylene Glycols

Note: To determine the viscosity of a blend of two polyethylene glycols, draw a straight line from the low viscosity component on the left to the component on the right. Viscosities and percentages of the components of blends are then approximated by points along this line. Deviations are greater when blending lower viscosity products with those of higher viscosity. The three curves on this page are examples.

(continued)

Glycol Ethers

Table 11.70: (continued)

Solubilities of Commonly Used Substances in CARBOWAX Polyethylene Glycols 400, 540 Blend and 3350

	CARBOWAX Polyethylene Glycol 400	CARBOWAX Polyethylene Glycol 540 Blend	CARBOWAX Polyethylene Glycol 3350
Nitrocellulose	Soluble	Soluble	Partly soluble
Ethyl Cellulose	Insoluble	Insoluble	Insoluble
Methyl Cellulose	Partly soluble	lnsoluble	Insoluble
Shellac	Partly soluble	Partly soluble	Insoluble
Carnauba Wax (No. 3)	Insoluble	lnsoluble	Insoluble
Paraffin Wax	Insoluble	lnsoluble	Insoluble
Beeswax	Insoluble	Insoluble	Insoluble
Ester Gum	insoluble	Insoluble	insoluble
Rosin	Soluble	Partly soluble	Partly soluble
Gum Arabic	Insoluble	Insoluble	Insoluble
Raw Castor Oil	Insoluble	lnsoluble	Insoluble
Tung Oil	Insoluble	Insoluble	Insoluble
Mineral Oil	Insoluble	Insoluble	Insoluble
Olive Oil	Insoluble	Insoluble	Insoluble
Pine Oil	Soluble	Partly soluble	Insoluble
Casein	Soluble	Soluble	Partly soluble
Zein	Soluble	Soluble	Partly soluble
Chlorinated Starch	Soluble	Soluble	Soluble
Gelatin	Insoluble	Insoluble	Insoluble

Solubilities of CARBOWAX Polyethylene Glycols 400, 540 Blend and 3350 in Common Solvents

	CARBOWA Polyethyles Glycol 400		CARBOWA Polyethyles Glycol 540 Blend		CARBOWAX Polyethylene Glycol 3350		
	Approxima by weight	ite %	Approxima by weight	ite %	Approximate % by weight		
	at 20°C	at 50°C	at 20°C	at 50°C	at 20°C	at 50°C	
Water	S	S	73	97	62	84	
Methanol	S	S	48	96	35	S	
Ethanol (200-proof)	S	S	<1	S	<1	S	
Acetone	s	S	20	S	<1	99	
Dichloroethyl Ether	S	S	44	S	25	85	
Trichloroethylene	S	S	50	90	30	80	
Methylene Chloride	S	(a)	S	lai	<i>7</i> 0	(a)	
CELLOSOLVE® Solvent		S	<1	S	<1	88	
Butyl CELLOSOLVE	S	S	<1	S	<1	52	
CARBITOL® Solvent	S	S	2	S	<1	63	
Butyl CARBITOL	s	S	<1	S	<1	64	
Ethyl Acetate	S	S S	15	S	<1	93	
Dimethyl Phthalate	S	S	30	90	13	74	
Dibutyl Phthalate	S	S	<1	S	<1	55	
Ethyl Ether	Insoluble	(a)	Insolubie	(a)	Insoluble	(a)	
Isopropyl Ether	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble	Insolubi	
Toluene	S	S	13	S	<1	S	
Heptane	Insoluble	Insoluble	0.50	0.01	< 0.01	< 0.01	

FOOTNOTES: S = Greater than 100 g per 100 cc of solvent. (a) Solvent boils at or below 50°C

Table 11.71: Dow Polyglycols (23)

Polyethylene	Visc ne Average Average Centi		verage scosity, ntistokes			Refractive		Density Lbs/Gal	Viscosity	Specific Heat Cal/g/°C	CTFA'			
Glycols E-Series		Molecular Weight	Freezing Point, C	32°F	77°F	100°F	210″F	PMCC, F	index at 25°C	Gravity 25/25°C	at 25°C	Index	at 25°C	Nomenclature
CAS# 25322-68-3	E200	200	Super Cools	187	40	23	4.4	340	1.459	1.124	9.35	111	0.524	PEG-4
	E300	300	10	343	69	36	5.9	> 400	1.463	1.125	9.36	118	0.508	PEG-6
	E400	400	+ 6		90	49	7.4	> 450	1.465	1.125	9.36	124	0.498	PEG-8
	E600	600	+22		131	12	11	>450	1.466	1.126	9.37	154	0 490	PEG-12
	E900	900	34			100	16	> 450	а	1.204	а	182	a	_
	E1000	1000	37				18	> 450	a	1.214	a		а	PEG-20
	E1450	1450	44		SOLID		29	> 450	а	1.214	a		а	PEG-6-32
	E3350	3350	54				93	> 450	а	1.224	а		a	PEG-75
	E4500	4500	58				180	> 450	a	1.224	а		а	PEG-100
	E8000	8000	60				800	> 500	a	1.224	а		а	PEG-150
Methoxypoly- ethylene Glycols MPEG														
CAS# 9004-74-4	MPEG 350	350	0		27	16	3.8	> 350	1.455	1.097	9.14	138		PEG-6 Methyl Ether
	MPEG 550	550	20		56	30	6.3	>400	1.461	1.102	917	181		PEG-10 Methyl Ether
	MPEG 750	750	30			53	9.9	>450	1.463	1.096b	9.04b	a	_	PEG-16 Methyl Ether

a Designates properties not applicable for solids

Liquids Miscible in all Proportions with Liquid Polyethylene Glycols E200, E300, E400, E600

Methyl Ethyl Ketone Acetaldehyde Dichloroisopropyl Ether Acetic Acid (Glacial) Diethanolamine Methyl Formate Acetic Anhydride Diethylene Glycol* Methyl Isobutyl Carbinol Methyl Isobutyl Ketone Acetone* 1,4-Dioxane* Acetylene Tetrabromide Diphenyl Oxide* Methyl Salicylate* Acrylonitrile Dipropylene Glycol* Morpholine¹ Nitrobenzene Allyl Alcohol Ethanol (95%) Allyl Bromide Ethanolamine* Nitroethane Nitromethane **Amyl Acetate Ethyl Acetate** 1-Nitropropane Ethyl Bromide **Amyl Alcohol** tert-Amyl Alcohol Ethyl Chloroacetate 2-Nitropropane Octyl Alcohol Aniline Ethyl Lactate Benzaldehyde Ethylene Chlorohydrin Paraldehyde Benzene Ethylene Dibromide* Phenetole Ethylene Dichloride* Phenyl Acetate Benzyl Alcohol Ethylene Glycol* Phenyl Ethyl Acetate Bromobenzene Ethylidene Dichloride Phenyl Ethyl Alcohol Bromoform 4-Phenyl-m-Dioxane n-Butyl Acetate Formamide n-Butyl Bromide Furfural Phosphoric Acid (85%) Piperidine n-Butyl Phosphate Glycerine* Hydrochloric Acid (conc.)* n-Propanol n-Butyl Stearate Isophorone Propylene Dibromide o-Chloroaniline Isopropanol (99%) Propylene Dichloride* Chlorobenzene Chloroform* Isopropyl Bromide Pyridine Lactic Acid (85%) Styrene Oxide o-Cresol Tetrahydrofurfuryl Alcohol Mesityl Oxide Cyclohexanol Triacetin Cyclohexanone Methanol Diacetone Alcohol Methyl Chloroform* Trimethylene Bromide Dichloroacetic Acid (1,1,1-trichloroethane) Trimethylene Chlorobromide Tripropylene Glycol* o-Dichlorobenzene 4-Methylcyclohexanol Dichloroethyl Ether Methylene Bromide Water Methylene Chloride* Methylene Chlorobromide*

b At 50°

Cosmetic, Toiletry and Fragrance Association

^{*}Available from Dow (Temp. = 75*F)

Table 11.71: (continued)

Liquids Insoluble or Partly Soluble in the Liquid Polyethylene Glycols

		Approximate Volume	e Solubility, Percent	
	E200	E300	E400	E600
n-Butyl Stearate	Ins.	Ins.	Ins.	ins.
Butyraldehyde	Ins.	ins.	Ins.	Ins.
Carbon Disulfide	10%	10%	10%	25%
Carbon Tetrachloride*	40%	45%	Sol.	Sol.
Castor Oil	Ins.	Ins.	Ins.	ins.
Cod Liver Oil	Ins.	Ins.	Ins.	Ins.
Cottonseed Oil	Ins.	Ins.	Ins.	Ins.
Cyclohexane	Ins.	Ins.	Ins.	Ins.
Decahydronaphthalene	Ins.	Ins.	Ins.	Ins.
Diamylnaphthalene	Ins.	Ins.	Ins.	Ins.
Dibutyi Sebacate	Ins.	ins.	Ins.	Ins.
Diethylbenzene*	ins,	Ins.	10%	25%
Diethyl Ether	25%	25%	25%	25%
Diisopropyibenzene	ìns,	Ins.	ins.	Ins.
Dodecyi Alcohol	Ins.	Ins.	Ins.	Ins.
Ethylbenzene*	10%	35%	75%	Sol.
Ethylcylohexane	ins.	Ins.	Ins.	Ins.
Gasoline	ins.	lns.	Ins.	Ins.
Isopropylbenzene	Ins.	25%	35%	Sol.
Isopropyl Chloride	25%	55%	Sol.	Sol.
Kerosene	Ins.	Ins.	ins.	ins.
Lard Oil	Ins.	Ins.	ins.	Sol.
Lemon Oil	Ins.	Ins.	ins.	Ins.
Methyl Laurate	Ins.	Ins.	Ins.	Ins.
alpha-Methylstyrene	35%	Sol.	Sol.	Sol.
Olive Oil	Ins.	2%	10%	30%
Orange Oil	Ins.	Ins.	Ins.	ins.
Pentachlorodiphenyl Oxide	Ins.	Sol.	Sol.	Sol.
Perchloroethylene*	Ins.	Ins.	10%	25%
Ricinoleic Acid	ins.	Ins.	Ins.	Ins.
Soya Oil	Ins.	Ins.	Ins.	Ins.
Sperm Oil	ins.	ins.	Ins.	1%
Tetrahydronaphthalene	10%	25%	45%	Sol.
Tributyl Aconitate	ins.	Ins.	Ins.	10%
Triethylbenzene	ins.	Ins.	Ins.	Ins.
Xylene	10%	35%	65%	Sol.

Sol. - Soluble in all proportions Ins. - Insoluble (Temp. = 75°F)

*Available from Dow

Solubility of Polyethylene Glycols in Various Solvents

	E200	E300	E400	E600	E1000	E1450	E3350	E4600	E8000
Acetone	αc	∞	oc	20	>100	60	< 0.1	< 0.1	< 0.1
Benzene	æ	œ	o c	æ	>100	64	32	38	12
Ether	11.0	7.0	5	4	4	< 0.1	< 0.1	< 0.1	< 0.1
n-Heptane	<1	<1	<1	<1	1	< 0.1	< 0.1	< 0.1	< 0.1
Methanol	<u>30</u>	œ	<u>∞</u>	<u>∞</u>	>100	>100	28	38	10
Water	<u>œ</u>	æ	<u>∞</u>	œ	>100	>100	>100	>100	>100

(approximate, grams per 100 grams solvent at 25 °C)

Effect of Polyethylene Glycols on Styrene-Butadiene Rubber*

% Average Dimension Change
-0.18
-0.18
-0.18
-0.27
-0.73
-0.55
-0.55
-0.73
-0.55

* Materials Styrene-Butadiene Rubber (SBR) Brake Cups — Wheel Cylinder, Part Number RM3, used for rubber swell tests. Tests carried out according to SAF procedures defined by SAF hydraulic brake fluid specification J1703a. (120 hours at 158 °F)

(continued)

Viscosity vs. Temperature For Dow Polyethylene Glycols

Viscosity of Aqueous Polyglycol E200 Solutions

Glycol Ethers

Viscosity of Aqueous Polyglycol E300 Solutions

Viscosity of Aqueous Polyglycol E400 Solutions

Table 11.71: (continued)

Viscosity of Aqueous Polyglycol E600 Solutions

Viscosity of Aqueous Polyglycol E900 Solutions

Temperature, *F

Temperature, *F

Viscosity of Aqueous Polyglycol E8000 Solutions

Viscosity of E300/E1450 Blends

607

Viscosity of E400/E3350 Blends

Viscosity of E300/E8000 Blends

Table 11.71: (continued)

Freezing Points -- E200, E300, E400, E600 Aqueous Solutions

Freezing Points — E1000 Aqueous Solutions

Table 11.71: (continued)

Freezing Point — E8000 Aqueous Solutions

Table 11.71: (continued)

POLYPROPYLENE GLYCOLS

Table 11.72: Ashland Polypropylene Glycols (69)

Product	Specific Gravity 20°/20°C	Lb/Gal at 20°C	Average Molecular Weight	Pt-Co Color	Centipoise at 20°C
Polypropylene Glycol 150	1.025	8.54	150	35	82(20°C)
Polypropylene Glycol 425	1.008	8.42	425	100	80
Polypropylene Glycol 1025	1.005	8.39	1000	25	150
Polypropylene Glycol 2025	1.005	8.39	2000	75	300
Polypropylene Glycol 4000	1.004	8.36	4000	75	900

^{*}Pensky-Martens (a) Density *** 80°C

Table 11.73: Dow Polypropylene Glycols and Polyglycol Copolymers (23)

Polypropylene Glycols				Refractive	Specific Gravity	Density Lbs/Gal	\$#	Specific Heat	CTFA'					
P-Series		Weight	Point, C	32°F	77°F	100°F	210 F	F PMCC.	Index at 25 C	25/25 C		Viscosity Index	Cal/g/ C at 25 C	Nomenciature
CAS#	5 405	1.55										-		
29434-03 -5	P425	425	- 4 5*	500	70	3 3	4.6	330	1.447	1.007	8.39		0.477	PPG-9
	P1200	1200	- <u>40*</u>	1130	175	91	13.5	345	1.448	1.007	8.38	161	0.459	PPG-20
	P2000	2000	- 30 *	1400	300	160	23	390	1.449	1.002	8.34	183	0.452	PPG-26
	P4000	4000	- 26*	4000	800	455	53	365	1.450	1.005	8.36	191	_	PPG-30
Polypropylene Glycols L-Series														
CAS#														PPG-14
9003-13-8	L910	910	- 43 °	356	83	43	8	345	1.444	0.9833	8.23	181		Butyl Ether
														PPG-18
	L1150	1150	- 40°	590	115	57	11	>400	1.446	0.9888	8.28	177		Butyl Ether
Polyglycol Copolymers														
CAS#														PPG-24
51258-15-2	15-200	2600	- 40*	2060	420	206	32	>450	1.460	1.060	8.81	200	0.470	Glycereth-24
CAS#														PPG-66
9082-00-2	112-2	4900	- 18 *	20000	1000	445	60	455	1.455	1.028	8.56	200	0.430	Glycereth-12
CAS#													-	Poloxamer-
53637-25-5	EP530	2000	- 32*	1450	321	168	25	>420	1.452	1.017	8.46	192		181

a Designates properties not applicable for solids

Solubility of Additional Liquids in Polypropylene Glycols

		Approximate Solut	ility, Volume %	
	P425	P1200	P2000	P4000
Diethanolamine*	Sol.	< 1	<1	<1
Diethylene Glycol*	Sol.	10%	10%	10%
Ethylene Glycol*	Sol.	8%	< 1	<1
Glycerine*	<1	< 1	<1	<1
Oleic Acid	< 1	Sol.	Sol.	Sol.
Polyglycol E200*	Sol.	Sol.	9%	< 1
Polyglycol E400*	Sol.	Sol.	<1	3%
Polyglycol E600*	Sol.	Sol.	< 1	<1
Propylene Glycol*	Sol.	Sol.	10%	5%
Sperm Oil	20%	Sol.	Sol.	Sol.
Triethanolamine*	Sol.	< 1	< 1	<1
Triethylene Glycol*	Sol.	Sol.	9%	9%

Soi. = Soluble in all proportions
*Product of The Dow Chemical Company
(Temp. = 77*F)

b At 50°

¹ Cosmetic, Toiletry and Fragrance Association

Liquids Soluble in All Proportions with Polyglycols P425, P1200, P2000 and P4000

Dichloroethyl Ether Methyl Laurate Acetaldehyde Acetic Acid (glacial) Dichloroisopropyl Ether Methyl Salicylate* Acetic Anhydride Diethylbenzene* a-Methylstyrene Acetone* Diethyl Ether Morpholine* Acetylene Tetrabromide Diisopropylbenzene Nitrobenzene Allyl Alcohol 1.4-Dioxane* Nitroethane Diphenyl Oxide* Allyl Bromide Nitromethane **Amyl Acetate** Dipropylene Glycol* 1-Nitropropane Amyl Alcohol **Dodecyl Alcohol** 2-Nitropropane tert-Amyl Alcohol Ethanol (95%) Octyl Alcohol Aniline Olive Oil Ether Benzaldehyde **Ethyl Acetate** Orange Oil Benzene Ethylbenzene* Paraidehyde Pentachiorodiphenyl Oxide Benzyl Alcohol **Ethyl Bromide** Bromobenzene **Ethyl Chloroacetate** Perchloroethylene¹ Bromocyclohexane Ethyl Cyanoacetate Phenyl Ethyl Acetate **Bromoform** Ethylcyclohexane Phenyí Ethyl Alcohol n-Butyl Acetate **Ethyl Lactate Phenetole** n-Butyl Bromide Ethylene Chlorohydrin **Phenyl Acetate** n-Butyl Lactate Ethylene Dibromide* 4-Phenyl-m-dioxane n-Butyl Phosphate Ethylene Dichlonde* Pine Needle Oil n-Butyraldehyde **Ethylidene Dichloride** Piperidine **Butyl Stearate** Furfural Propvi Alcohol Caproic Acid n-Heptane Propylene Dibromide Carbon Bisulfide Hydrochloric Acid (23°Be.)* Propylene Dichloride* Carbon Tetrachloride* Isophorone Pyridine Ricinoleic Acid Castor Oil Isopropyl Aicohol (99%) o-Chloroaniline Isopropylbenzene Soya Oil Styrene Oxide Chloroform* Isopropyl Bromide o-Chlorophenol Isopropyl Chloride Tetrachloroethane Cod Liver Oil Lactic Acid (85%) Tetrahydrofurfuryl Alcohol Cottonseed Oil Lard Oil Tetrahydronaphthalene Lemon Oil Triacetin Cresoit Cyclohexane Mesityl Oxide **Tributyl Aconitate** Cyclohexanol Methanol 1,1,2-Trichloroethane* Cyclohexanone Methyl Chloroform* Trichloroethylene* Decahydroaphthalene 4-Methylcyclohexanol Triethylbenzene Diacetone Alcohol Methylene Bromide Trimethylene Bromide Diamylnaphthalene Methylene Chloride* Trimethylene Chlorobromide Di-n-butylamine Methylene Chlorobromide

Dibutyl Sebacate

Dichloroacetic Acid

o-Dichlorobenzene Dichlorodiphenyl Oxide

Solubility of Aliphatic Hydrocarbons in Polypropylene Glycols

Methyl Ethyl Ketone

Methyl Isobutyl Carbinol

Methyl isobutyl Ketone

Methyl Formate

				Approximate	Solubility,	Volume %		
	P	425	P1	200	P2	000	P4000	
	77°F	120°F	77°F	120°F	77°F	120°F	77°F	120°F
Hexane	Sol.	Sol.	Sol.	Sol.	Sol.	Sol.	Sol.	Sol.
VM and P Naphtha	Sol.	Sol.	Sol.	Sol.	Sol.	Sol.	Sol.	Sol.
No. 2 Fuel Oil	Sol.	Sol.	Sol.	Sol.	Sol.	Sol.	Sol.	Sol.
Mineral Spirits	35%	Sol.	Sol.	Sol.	Sol.	Sol.	Soi.	
Hi Flash Naphtha	30%	Sol.	Sol.	Sol.	Sol.	Sol.	Sol.	Sol.
SAE 20 Lube Oil	15%	20%	25%	Sol.	30%	Sol.	16%	28%
Light Paraffin Oil	5%	10%	20%	40%	25%	Sol.	18%	22%
Heavy Mineral Oil	2%	10%	5%	15%	10%	20%	8%	13%

The solubility of aliphatic hydrocarbons in polyglycols P425, P1200, and P2000 diminishes with an increase in the chain length of the hydrocarbon. Sol. = Soluble in all proportions

Tripropylene Glycol*

Vinyl Cyanide

Xylene

^{*}Product of The Dow Chemical Company †Heat evolved on mixing (Temp. = 77 °F)

Viscosity vs. Temperature For Polypropylene Glycols — P-Series

Viscosity vs. Temperature For Polypropylene Glycols --- L-Series

Viscosity of Aqueous Solutions of Polyglycol P425

Water Solubility of Polypropylene Glycols P425 and P1200

Specific Heats of Polypropylene Glycols --- P-Series

Viscosity vs. Temperature for Polyglycol 15-200

Viscosity vs. Temperature of Aqueous Polyglycol 15-200 Solutions

Glycol Ethers

Viscosity vs. Concentration of Aqueous Polyglycol 15-200 Solutions

Hygroscopicity of Polyglycol 15-200

Table 11.73: (continued)

15-200 Cloud Point in Water

Polyglycol 15-200 Separation Temperature in Water

Table 11.73: (continued)

Solubility of Organic Liquids in Polyglycol 15-200

Organic Liquid	Solubility, %
Butyl Stearate	10
Cotton Seed Oil	>90
Cyclohexane	44
Decahydronaphthalene	36
Diethanolamine*	Ins.
Ethyl Cyclohexane	44
Ethylene Glycol*	25
Gasoline	25
Glycerine*	Ins.
Lard Oil	Ins.
Olive Oil	Ins.
Soya Oil	Ins.
Triethanolamine*	Ins.

Ins. = Insoluble in all proportions.

Organic Liquids Completely Soluble in Polyglycol 15-200

At 77 °F, Polyglycol 15-200 is soluble in all proportions with organic acids, alcohols, aldehydes, aromatics, halogenated hydrocarbons, glycols, glycol ethers, and some vegetable, animal and certain fruit oils. Specific compounds which are completely soluble include:

Acetaldehyde	Cyclohexanone	Isopropanol (99%)	Phenyl Ethyl Acetate
Acetic Acid (glacial)	Diacetone Alcohol	Isopropylbenzene	Phenyl Ethyl Alcohol
Acetic Anhydride	a-Diamylnaphthalene	Isopropyl Bromide	Phenetole
Acetone*	Di-N-Butylamine	Isopropyl Chloride	Phenyl Acetate
Acetylene Tetrabromide	Dibutyl Sebacate	Lactic Acid (85%)	4-Phenyl-M-Dioxane
Acrylonitrile	Dichloroacetic Acid	Lemon Oil	Pine Needle Oil
Allyl Alcohol	o-Dichlorobenzene	Mesityl Oxide	Piperidine
Allyl Bromide	Dichloroethyl Ether	Methanol	Polyglycol E200*
Amyl Acetate	Dichloroisopropyl Ether	Methyl Chloroform*	Polyglycol E300*
Amyl Alcohol	Diethylbenzene*	p-Methylcyclohexanol	Polyglycol E400*
tert-Amyl Alcohol	Diethylene Glycol*	Methylene Bromide	Polyglycol E600*
Aniline	Diethyl Ether	Methylene Chloride*	n-Propanol
Benzaldehyde	Diisopropylbenzene	Methyl Ethyl Ketone	Propylene Dibromide
Benzene	1, 4-Dioxane*	Methyl Formate	Propylene Dichloride*
Benzył Alcohol	Diphenyl Oxide*	Methyl Isobutyl Carbinol	Propylene Glycol*
Bromochloromethane	Dipropylene Glycol*	Methyl Isobutyl Ketone	Pyridine
Bromocyclohexane	Dodecyl Alcohol	Methyl Laurate	Ricinoleic Acid
Bromoform	Ethanol (95%)	Methyl Salicylate*	Sperm Oil
n-Butyl Acetate	Ethyl Acetate	a-Methylstyrene	Styrene Oxide
n-Butyl Bromide	Ethylbenzene*	Morpholine*	Tetrachloroethane
n-Butyl Lactate	Ethyl Bromide	Nitrobenzene	Tetrahydrofurfuryl Alcohol
n-Butyl Phosphate	Ethyl Chloroacetate	Nitroethane	Tetrahydronaphthalene
n-Butylaldehyde	Ethyl Cyanoacetate	Nitromethane	Triacetin
Carbon Bisulfide	Ethyl Lactate	1-Nitropropane	Tributyl Aconitate
Carbon Tetrachloride*	Ethylene Chlorohydrin	2-Nitropropane	1,1,2-Trichloroethane*
Castor Oil	Ethylene Dibromide*	Octyl Alcohol	Trichloroethylene*
o-Chloroaniline	Ethylene Dichloride*	Oleic Acid	Triethylbenzene
Chloroform*	Ethylidene Dichloride	Orange Oil	Triethylene Glycol*
o-Chlorophenol	Furfural	Paraldehyde	Trimethylene Bromide
Cresol	Hydrochloric Acid (23°Be)*	Pentachlorodiphenyl	Trimethylene Chlorobromide
Cyclohexanol	Isophorone	Oxide	Tripropylene Glycol*
-	•	Perchloroethylene*	Xylene

^{*}Products of The Dow Chemical Company

Viscosity vs. Temperature For Polyglycol 112-2

Viscosity vs. Temperature For Polyglycol EP530

POLYOLS

Table 11.74: Properties of PLURONIC and TETRONIC Block Copolymer Surfactants (47)

Product	Form	Cloud Point (1% aqueous sol.)° C	Surface Tension (0.1%, 25° C) dynes/cm	Foam Height (Ross Miles, 0.1%, 50° C\ mm	HLB Value 25° C
L10	Liquid	32	40.6	30	12—18
L31	Liquid	37	46.9	2	17
L35	Liquid	73 .	48.8	25	1823
F38	Solid	>100	52.2	35	> 24
L43	Liquid	42	47.3	0	7-12
L44, L44NF	Liquid	65	45.3	25	12-18
L61	Liquid	24	Ins.	0	1-7
L62	Liquid	32	42.8	25	17
L62D	Liquid	35	43.0	3	1-1
L62LF	Liquid	28	38.6	5	1-7
L64	Liquid	58	43.2	40	1218
P65	Paste	82	46.3	70	12—18
F68, F68NF	Solid	>100	50.3	35	>24
F68LF	Solid	32	43.7	16	>24
F77	Solid	> 100	47.0	100	>24
L81	Liquid	20	Ins.	ins.	1-
P84	Paste	74	42.0	90	12—18
P85	Paste	85	42.5	70	12-18
F87, F87NF	Solid	>100	44.0	80	>24
F88	Solid	> 100	48.5	80	>24
L92	Liquid	26	3 5.9	15	1
F98	Solid	>100	43.0	40	>24
L101	Liquid	15	Ins.	Ins.	1-7
P103	Paste	86	34.4	40	7-12
P104	Paste	81	33.1	50	1218
P105	Paste	91	39.1	40	12-18
F108, F108NF	Solid	>100	41.2	40	>24
L121	Liquid	14	33.0 ^b	ins.	1—7
L122	Liquid	19	33.0	20	1—7
P123	Paste	90	34.1	45	7-12
F127, F127NF	⁴Solid	> 100	40.6	40	18-23
10 R 5	Liquid	6 9	50.9	10	12-18
17R2	Liquid	35	41.9	0	2-7
17R4	Liquid	46	44.1	0	7—12
25R2	Liquid	29	37.5	1	2—
25R4	Liquid	40	40.9	25	7-12
25R8	Solid	45	46.1	15	12-18
31R1	Liquid	25	34.1	0	1—7

	TI	ETRONIC® Bloc	k Copolymer S	Copolymer Surfactants	
Product	Form	Cloud Point (1% aqueous sol.)° C	Surface Tension (0.1%, 25° C) dynes/cm	Foam Height (Ross Miles, 0.1%, 50° C) mm	HLB³ Value, 25° C
304	Liquid	75	53.0	2	12-18
701	Liquid	18	36.1 ^b	O_{P}	17
704	Liquid	79	40.3	80	12-18
901	Liquid	20	36.2 ^b	0ь	1-7
904	Liquid	74	35.4	70	1218
908	Solid	>100	45.7	40	>24
1107	Solid	>100	42.9	50	>24
90R4	Liquid	43	42.7	20 ^t	1-7
150R1	Liquid	20	33.3 ^b	Ins	17

GLYCERINE ETHERS

Table 11.75: Glyceryl α-Monomethyl Ether (2)

α-Monomethyl Ether of Glycerine

CH3OCH2CHOHCH2OH

Glyceryl α -monomethyl ether is a colorless liquid, soluble in benzene, ethyl alcohol, glycerol and water but insoluble in gasoline and carbon tetrachloride. It is a solvent for rosin, and when mixed with butyl acetate is compatible with nitrocellulose. It may be used as a selective solvent and in the manufacture of alkyd resins.

Boiling range at 745 mm	90% between 215-220°C
Refractive index, $n \frac{25^{\circ}}{D}$	1.442
Specific gravity at 25/25°C Weight per gal	1.1147 9.29 lb

Table 11.76: Glyceryl α, γ -Dimethyl Ether (2)

 α, γ -Dimethyl Ether of Glycerine

 H_3 COC H_2 CHOHC H_2 OC H_3

Glycerine α, γ -dimethyl ether is a water-white liquid soluble in benzene, gasoline, carbon tetrachloride, ethyl alcohol, water and glycerine, but insoluble in linseed oil and other fixed oils. It is a solvent for rosin, cellulose acetate and when mixed with butyl acetate is compatible with nitrocellulose. It has use as a solvent and plasticizer.

Boiling range at 736 mm. 90% between 164-170°C Specific gravity at 25/25°C 1.003 Weight per gul 8.36 lbs

Table 11.77: Glyceryl α-Mono-n-Butyl Ether (2)

α-Mono-n-Butyl Ether of Glycerine

C4H9OCH2CHOHCH2OH

 α -Mono-n-butyl ether of glycerine is a colorless liquid, soluble in benzene, gasoline, ethyl alcohol and carbon tetra-chloride, but only slightly soluble in water and glycerol. It is a solvent for rosin and ester gum and may be used in the preparation of varnishes made with these substances.

Boiling range at 18 mm.	90% between	133-137°C
Refractive index, n \frac{25°}{D}	1.434	
Specific gravity at 25/25°C	0.945	
Weight per gal	7.87 lbs	

Table 11.78: Glyceryl α -Monoisoamyl Ether (2)

α-Monoisoamyl Ether of Glyceryl

 $C_5H_{11}OCH_2CHOHCH_2OH$

 α -Monoisoamyl ether of glyceryl is a colorless liquid which generally contains small amounts of other amyl isomers. It is soluble in benzene, ethyl alcohol, hatogenated hydrocarbons, carbon tetrachloride, gasoline, linseed oil, and other fixed oils and, in certain amounts, soluble in glycerol and water. It is a solvent for rosin and, when mixed with butyl acetate, is compatible with nitrocellulose. It may be used as a solvent in the preparation of alkyd resins and in the synthesis of ester derivatives.

Table 11.79: Glyceryl σ,γ-Diisoamyl Ether (2)

α, y-Diisoamyl Ether of Glycerine

$$C_5H_{11}OCH_2CHOHCH_2OC_5H_{11}$$

Glyceryl α, γ -diisoamyl ether is a water-white liquid which may contain small quantities of other amyl isomers. It is soluble in ethyl alcohol, benzene, gasoline, carbon tetrachloride and linseed oil, but insoluble in water and glycerol. It is a solvent for ester gum and rosin and has use as a solvent and plasticizer.

Boiling range at 10 mm	90% between
	147-153°C
Refractive index, n 25°	1.432
Specific gravity at 25/25°C	0.903
Weight per gal	7.52 lbs

Table 11.80: Miscellaneous Glycerine Ethers (2)

Glycerine ethers range widely from low-boiling liquids to high-boiling solids. The solubility varies equally from complete water miscibility to complete water insolubility. The following lists these glyceryl ethers with their density and boiling points.

Glyceryl-Ether	<u>d</u>	b.p. (or m.p.) °C.
a-Isoamyl	0.987	137-9 #
		251 -2 _m
α, γdi-Isoamyl	0.903	147-53 ₁₀
		269
a-Benzyl	1.19614	124-6;
a-n-Butyl	0.945	133-7 ₁₈
Cresyl		
α-Ethyl	1.063	231-2 _{ma}
α, γ-di-Ethyl	0.92021	190
tri-Ethyl	0.886*	103-5∞
		181 ₇₆₀
Epiethylin	0.9412	128-9
Glycidol	1.114325	411
a-Methyl	1.1147 25	110 ₁₂
		221784
β-Methyl		
α, γ-di-Methyl	1.003	69.5-70.518
		164-70 ₇₈₆
tri-Methyl	0.93715	148 ₇₆₆
Epimethylin	1.002	113-4 ₇₇₀
mono-α-Naphthyl		m.p. 91-2
mono-β-Naphthyl		m.p. 109-10
α-Phenyl		185-714
		150-5₁
		m.p. 53-4
α, γ-di-Phenyl		287-8
		m.p. 80-1
α-o-Cl-Phenyl		m.p. 56
α-p-Cl-Phenyl		m.p. 76
mono-2, 4-di-Nitrophenyl		m.p. 83
Epiphenylin	1.0834	115-6 ₈₋₄
α-Propyl	1.07414	118- 22 ₁₈
α, γ-di-Isopropyl	0.91515	112-3
α, γ-di-n-Propyl		215-7
ınono-p-Tolyl		m.p. 73-4
		-

Ketones

ACETONE

Dimethyl Ketone, Methylacetyl, Propanone-2

 $CH_{3}-CO-CH_{3}$

Acetone is a colorless, limpid, mobile, hygroscopic, flammable liquid having a mint-like odor.

Table 12.1: Physical Properties of Acetone (41)

Typical Properties

Molecular Weight	58.08	Boiling Range, 760 mm, °C	
Color (Pt-Co Scale), max	5	Initial Boiling Point, min	55.1
Weight/Vol, 20°C,		Dry Point, max	57.1
lb/gal (U. S.)	6.59	Freezing Point, °F (°C)	-138 (-95)
kg/litre	0.79	Flash Point, Tag Closed Cup, °F (°C)	-4 (-20)
lb/gal (Imperial)	7.91	Tag Open Cup, °F (°C)	-2(-19)
Solubility, 20°C, wt %		Fire Point, °F (°C)	-2(-19)
In water	Complete	Flammable Limits in Air, % by volume	- (/
Water in	Complete	Lower	2.6
Evaporation Rate (n-butyl acetate = 1)	7.7	Upper	12.8
Dilution Ratio, toluene	4.6	Autoignition Temperature (ASTM D-2155),	
VM & P nachtha	0.55	°F (°C)	1000 (538)
Refractive Index, 20°C	1.3589	NFPA Classification 30	IB
Vapor Pressure, 20°C, mm Hg	180	DOT Classification	Flammable Liquid
Specific Gravity 20°/20°C	0.792	DOT Labels Required	Flammable Liquid

Table 12.2: Low Temperature Characteristics of Aqueous Solutions of Acetone (19)

Table 12.3: Solubility of Various Materials in Acetone (44)

SOLUBILITY OF SHELLACS IN ACETONE

SOLUBILITY	OF COPAL	RESINS	IN	ACETONE

ТУРЕ	PER CENT SOLUBLE AT BOILING POINT OF ACETONE	TYPE	PER CENT SOLUBLE AT BOILING POINT OF ACRTONE	SOLUBILITY (
Superfine orange shellac Superfine shellac T. N. shellac, No. 1 T. N. shellac, No. 2 A. C. garnet Refus lac	92.8 95.6 98.8 81.3 63.0	Congo Manila, soft. Elemi Yacca Sandarac Sierra Leone Borneo pontianac	40.8 96.6 100.0 96.6 97.0 55.5 93.5	M' M M M M' M' M'
		Batavia dammar	887	M ³

PERCENTAGE OF ACETONE-INSOLUBLE MATTER IN VARIOUS RESINS

TYPE	PER CENT INSOLUBLE I ACETONE
Kauri, pale	8.90
Kauri, brown	38.70
Kauri, bush	20.70
Rosin	Soluble
Burgundy pitch	Soluble
Stockholm tar	Soluble
Mustic	9.50
Sandarae	Soluble
Madagascar copal, fused	84.80

M-miscible in all proportions.

Red, accredites.

M'-miscible in concentrated solutions with separation on dilution.

95.2

М

SOLUBILITY OF WATER GUMS IN ACETONE

TYPE	PER CENT SOLUBLE AT BOILING FOINT OF ACETONE
Arabic gum	11.9
Indian gum.	16.7
Senegal gum	12.0
Tragacanth, Allepa	9.2
Tragacanth, Persian	8.0
Tragacanth, Turkey	

SOLUBILITY OF FATS, OILS AND GREASES IN ACETONE

TYPE	MISCIBILITY A 25°C.	PER CENT SOLUBLE AT 25°C.	SOLUBILITY AT BOILING POINT OF ACETONE	
Chinawood oil	М		Ī	
Coconut oil (refined and bleached)	M		1	
Corn oil (raw)	M		Ě	
Cottonseed oil (refined and bleached)	M		ŀ	
Cottonseed oil (hydrogenated, Crisco)	M	100.0	M	
Cottonseed oil (hydrogenated)		32.0	М	
Cottonseed oil (stearin)	M		Ì	
Cottonseed oil (summer)	M		1	
Cottonseed oil (winter)	M		1	
Fish oil (herring, raw)	M		1	
Fish oil (hydrogenated)	·	35.8	М	
Fish oil (menhaden, raw)	m	99.8	М	
Grease, brown	m	96.4	99.8	
Grease, garbage	m,	99.6	99.7	
Grease, white.	m	97.3	M	
Linseed oil, raw	M			

Solubility of Asphalts and Bitumens in Acetone

TYPE	PER CENT SOLUBLE AT BOILI POINT OF ACETONE
Alberite	5.8
Asphalt, blown, from mid-continental petroleum	56.4
Bermudez pitch, refined	62.4
Coal-tar pitch, refined	70.4
Fatty acid pitch, soft grade	62.4
Fatty acid pitch, medium grade	54.3
Gilsonite selex	25 .0
Grahamite	1.6
Mexican petroleum asphalt, steam-distilled, medium	1
grade	44.2
Mexican petroleum asphalt, steam-distilled, soft grade	64.3
Petroleum asphalt, steam-distilled, California, medium	1
grade	81.0
Residual oil from Gulf Coast	61.0
Residual oil from steam distillation of mid-continental	
petroleum asphalt	97.2
Syrian asphalt	5.9
Trinidad pitch, refined	42.0

Table 12.4: Specific Gravity of Aqueous Solutions of Acetone at Different Temperatures (19)

Table 12.5: Surface Tension of Aqueous Solutions of Acetone at 25°C (19)

Table 12.6: Viscosity of Aqueous Acetone Solutions at 25°C (19)

Table 12.7: Refractive Index of Aqueous Solutions of Acetone at 25°C (19)

Table 12.8: Liquid-Vapor Equilibria for Aqueous Solutions of Acetone at Different Pressures (19)

Table 12.9: Freezing Point of Aqueous Solutions of Acetone (19)

METHYL ETHYL KETONE

MEK, Butanone-2, Ethyl Methyl Ketone

CH3-CO-C2H5

Methyl ethyl ketone is a colorless, stable, mobile, flammable liquid with an odor like acetone.

Table 12.10: Physical Properties of Methyl Ethyl Ketone (2)

	Azeotr	opic Mixtur	·ca			
%	by wt.			% b	y wt.	B.P. (*C)
	37.5	Benzene			. 5	78.4
	73	tert-Butyl	alcohol	27		77.5
· · · · · · · · · · · · · · · · · · ·	84.7	Carbon di			. 3	45.9
	29	Carbon te				73.8
	10	1.3-Cyclob		60		73.0
	10 10	Cyclohexa		60		72.0
	10 12	Ethyl acet		82		77.0
				62 40		74.8
	5 0	Ethyl alco				-
	20	Ethyl sulf		80		77.5
	70	Isopropyl		30		77.5
	52	Methyl pr		48		79.3
	55	Propyl for		45		79.5
	75	Propyl me		25		55.5
•	15	Thiophene	1	55		76
	Terna	ry Mixtures	•			B.P. (°C)
(1) Methyl ethyl ketone	22.2	Water	3.0	CCL	74.8	
	17.8	Waver	8.9	CoH.	73.8	
(2) Upper layer of (2)	19.0		0.4	Certe	80.6	
Lower layer of (2)	3.5		96.4		0.1	
• ,,					0.1	
	•	ties and Sp				
Boiling point at 760 mm			79.6°C			
Coefficient of expansion				per °F		
Electrical Conductivity				10 ⁻¹ ohma	s at 25	°C
Explosive limits				10.2%		
Flash point (Tag Close	d Cup)		25°F			
Freezing point			-86.4	C.		
Heat of combustion			582 Ca	l./mole		
Latent heat of Vaporiza	ation at	20°C	106.0 c	al./g		
Refractive Index, N 20,			1.3788			
Solubility of water in a	olvent at	20°C	10% b	v wt.		
Specific gravity at 20/2	0°C		0.805-0	.807		
Specific heat			0.55 ca	1./g		
Surface tension				. •		
0°C 26.9 dynes/sq cn	n.					
20 24.6						
40 22.3						
75 18.4						
Viscosity at 15°C			0.00423	poise		
Weight per gallon at 20	°C		6.72 lb			
Acidity (as acetic)				by wt. (r	nax.)	
Distillation range (AST	M)		70°-80			
Non-volatile matter	,			per 100 m	d. (me	x.)
Purity			99%	p-: 100 H	\	,
. 4,			00 /0			

Table 12.11: Methyl Ethyl Ketone and Water (14)

Vapor and Liquid Compositions at the Boiling Point
Pressure = 1 Atm.

METHYL n-PROPYL KETONE

Pentanone-2

 $CH_3 \cdot CO \cdot CH_2 \cdot C_2H_5$

Commercial methyl n-propyl ketone, produced synthetically by dehydrogenation of the corresponding alcohol, consists of a mixture of methyl n-propyl and diethyl ketones in the approximate ratio of 3 to 1, and contains at least 97% of these ketones, the balance being secondary amyl alcohol. It is a colorless liquid, soluble in alcohol and ether but only very slightly soluble in water.

Table 12.12: Properties of Methyl n-Propyl Ketone (41)

Typical Properties					
Molecular Weight (C₅H₁₀O)	86.13	Specific Gravity at 20°/20° C	0.807		
Branched-Chain Ketones, wt % (max)	10	Boiling Range at 760 mm, °C			
Color (Pt-Co Scale), max	15	Initial Boiling Point, min	101		
Evaporation Rate (n-butyl acetate = 1)	2.3	Dry Point, max	105		
Weight/Vol at 20°C		Freezing Point, °F (°C)	-122 (-86)		
lb/gal (U.S.)	6.72	Flash Point, Tag Closed Cup, °F (°C)	46 (8)		
kg/L	0.81	Tag Open Cup, °F (°C)	50 (10)		
lb/gal (Imperial)	8.06	Fire Point, °F (°C)	50 (10)		
Solubility at 20°C, wt %		Flammable Limits in Air, % by volume			
In water	3.1	Lower, at 94°F (34°C)	1.56		
Water in	4.2	Upper, at 144°F (62°C)	8.7		
Dilution Ratio, toluene	3.9	Autoignition Temperature (ASTM D 2155), °F (°C)	840 (449)		
VM & P naphtha	1.0	NFPA Classification 30	1B		
Refractive Index at 20°C	1.3904	DOT Classification	Flammable Liquid		
Vapor Pressure at 20°C, mm Hg	27.8	DOT Labels Required	Flammable Liquid		

(continued)

Table 12.12: (continued)

Comparison of Solvent Power MPK vs Other Solvents

Solvent	Solution Viscosity at 25°C, cP (mPa · s)							
	RS ½-Sec Nitrocellulose 8%	CAB-381-0.5 ^a 10%	Elvacite 2010 Acrylich 10%	VYNS ^C 10%				
Ethyl Acetate ^a	23	28.3	5.8	-				
Isopropyl Acetate ^a	25	31.0	6.6	1 -				
MEK	14	18.8	3.6	22.8				
MPKa	16	20.8	4.5	31.5				
MIBK	23	27.0	5.8	59.2				

an Eastman product

METHYL n-BUTYL KETONE

Hexanone-2

 $CH_3 \cdot CO \cdot C_4H_9$

Methyl n-butyl ketone is a colorless liquid, freely soluble in alcohol and ether but very slightly soluble in water.

Table 12.13: Properties of Methyl n-Butyl Ketone (41)

Molecular Weight (C ₆ H ₁₂ O)	100.16 Water, wt %		0.0)5
Melting Point, °C	-56.9 Branched-Chain Ketones, max, wt %		5	
Boiling Point, °C, 760 mm	127	Refractive Index, 20°C	1.3969	
Evaporation Rate (n-butyl acetate = 1)	1.0	Flash Point (Tag Closed Cup), °F (°C)	77	(25)
Weight/Vol, at 20°C		(Tag Open Cup), °F (°C)	83	(28)
lb/gal. (U.S.)	6.75	Fire Point, °F (°C)	86	(30)
kg/liter	0.81	Flammable Limits in Air, % by volume		
lb/gal. (Imperial)	8.10	Lower		,
Solubility, 20°C, wt %		Upper	8.0)
In water	1.4	Autoignition Temperature (ASTM D-2155),		
Water in	2.1	°F (°C)	795	(424)
Dilution Ratio, toluene	4.0	NFPA Classification 30:	Flammat	ole Liquid,
VM & P naphtha	1.1		Class IC	
Color (Pt-Co Scale), ppm	5	ICC Labels Required	None	
Acidity, as acetic acid, wt %	0.01	Bureau of Explosives Classification Nonhazar		rdous
-, -, -, -, -, -, -, -, -, -, -, -, -, -			Liquid	

Several of the solvent characteristics of Methyl n-Butyl Ketone are listed in the following table. Similar values for other solvents are included for comparison.

Eastman Solvent Evap. Rate			Solution Viscosity, 25°C, cp			
		Blush Res., % R.H. @ 80°F (27°C)	RS. ½-Sec Cellulose Nitrate ^a 10 Wt %	<i>Exon</i> b 470 20 Wt %	Elvacita ^C 2010 20 Wt %	
Methyl n-Butyl Ketone	1.0	80	28	24	65	
Methyl Isobutyl Ketone	1.6	78	30	24	64	
Isobutyl Acetate	1.4	80	49	38	83	
n-Butyl Acetate	1.0	83	46	33	77	

aproduct of Hercules, Inc. bproduct of Firestone Plastics Co.

^{*}product of Du Pont Company
*product of Union Carbide Corporation

^cproduct of E. I. du Pont de Nemours Co., Inc.

Table 12.14: Solubility of Dry Half-Second R.S. Nitrocellulose in a System of Methyl Butyl Ketone-sec-Butanoi-Toluene (2)

METHYL ISOBUTYL KETONE

Hexone, 4-Methylpentanone-2, 2-Methyl-4-Pentanone

CH3.CO.C4H9

Although first prepared in 1849, methyl isobutyl ketone was not made synthetically and on a large scale until the last decades. It is a stable, colorless liquid classified as a medium boiler. It is miscible with most organic solvents and with mineral and vegetable oils. When compared with butyl acetate its rate of evaporation is somewhat faster so that it can either replace esters or be combined with them. Its rate of evaporation is somewhat faster than that of butyl acetate. It is used in the vinyl type resins for coatings where it helps to prevent gelling and lowers viscosity, in nitrocellulose lacquer manufacture, in extraction processes and in chemical synthesis. It may be used in dewaxing oils.

Table 12.15: Properties of Methyl Isobutyl Ketone (41)

Typical Properties

	_
Molecular Weight (C ₆ H ₁₂ O)	100.16
Color (Pt-Co Scale), max	10
Weight/Vol at 20° C,	
lb/gal (U.S.)	6.67
kg/L	0.80
lb/gal (Imperial)	8.00
Solubility at 20° C, wt %	
In water	2.0
Water in	1.0
Evaporation Rate (n-butyl acetate = 1)	1.6
Dilution Ratio, toluene	3.5
VM & P naphtha	1.0
Refractive Index at 20°C	1.3958
Vapor Pressure at 20° C, mm Hg	15
Specific Gravity at 20° /20° C	0.802
Boiling Range at 760 mm, °C	
Initial Boiling Point, min	114
Dry Point, max	117
Freezing Point, °F (°C)	-119 (-84)
Flash Point, Tag Closed Cup, °F (°C)	60 (16)
Tag Open Cup, °F (°C)	68 (20)
Fire Point, °F (°C)	70 (21)
Flammable Limits in Air, % by volume	
Lower, at 200°F (93°C)	1.22
Upper, at 200° F (93° C)	7.96
Autoignition Temperature (ASTM D-2155), °F (°C)	840 (449)
NFPA Classification 30	IB
DOT Classification	Flammable Liquid
DOT Labels Required	Flammable Liquid
5 0 . 2222.2	•

Table 12.15: (continued)

Several of these solvent characteristics of MIBK are listed in the following table. Similar values for other solvents are included for comparison.

Eastman Solvent			Solution Viscosity at 25°C, cP (mPa•s)			
	Evap Rate	Blush Res % R.H. @ 80°F (27°C)	RS ½-Sec Cellulose Nitrate* 10 Wt %	FPC 470 Resin ^b 20 Wt/%	Elvacite 2010 Resin ^c 20 Wt/%	
Methyl Isobutyl Ketone	1.6	78	30	24	64	
Isobutyl Acetate	1.4	80	49	38	83	
n-Butyl Acetate	1.0	83	46	33	77	

^aProduct of Hercules Incorporated

Table 12.16: Solubility of Miscellaneous Materials in Methyl Isobutyl Ketone at 20° to 25°C (2)

Soluble, Over 5% by Weight Concentration				
Acid	Gums			
Oleic (Technical Red Oil)	Elemi			
	Kauri (Pale Bold)			
Oils	Mastic			
Castor, Refined Raw	Pontianak			
Cottonseed, Raw				
China Wood	Resins, Natural			
Coconut, Crude	Dammar (dewaxed)			
Fish, Processed	Batavia			
Linseed, Purc Raw	Singapore			
Mineral, 70/80 viscosity	Light Rosin			
Pine	Sandarac			
Soybean, 2-3 viscosity				

RESINS, SYNTHETIC

Trade Name	Туре
Amberlac 80-X	Modified drying type phthalic alkyd
Amberol 801	Rosin modified maleic alkyd
Arochem 519	Modified maleic
Aroclor 1260	Chlorinated diphenyl
Bakelite BR-254	Non-heat-hardening 100% para-phenylphenol resin
No. 1 Solid Beckosol	Phenolic modified drying type alkyd
Beckosol 1313	Drying type alkyd
Beetle 227-8	Unmodified urea-formaldehyde
Cellolyn 102	Modified rosin ester
Ester gum	Rosin ester
Ethyl methacrylate	
Glyptal 2477	Non-drying type alkyd
Melmac 245-8	Unmodified melamine-formaldehyde
Neville R-21 (soft)	Unmodified coumarone-indene
Nevillite 1	
Nitrocellulose	
Parlon X (20 cps.)	Chlorinated rubber
Phenac 608	
Santolite K	Alkyl-arylsulfonamide-formaldehyde
Saran F-120	
Stavbelite	Hydrogenated rosin ester
Teglac Z-152	Rosin modified maleic alkyd
Vinylite AYAF	•
Vinylite VMCH	
-	mers
Vinylite VYHH	Vinyl chloride-vinyl acetate copolymers

Product of Firestone Plastics Company

^cProduct of Du Pont Company

METHYL n-AMYL KETONE

Heptanone -2

$$CH_3(CH_2)_4 \cdot CO \cdot CH_3$$

This ketone is a colorless, stable liquid, miscible with most lacquer solvents and only very slightly soluble in water. It is used as a high-boiling solvent for nitrocellulose and is particularly applicable in vinyl resin finishes, where its slow rate of evaporation prevents quick drying, improves the flow and gives blush resistance; also used with some effect in insecticidal preparations.

Table 12.17: Properties of Methyl n-Amyl Ketone (41)

Typical Properties

Molecular Weight (C7H14O)	114.19	Specific Gravity at 20°/20°C	0.817
Branched-Chain Ketones, wt % max	2.0	Boiling Range at 760 mm. °C	
Color (Pt-Co Scale), max	10	Initial Boiling Point, min	149
Evaporation Rate (n-butyl acetate = 1)	0.4	Dry Point, max	153.5
Weight/Vol. at 20°C		Freezing Point, °F (°C)	-27 (-33)
lb/gal (U.S.)	6.80	Flash Point, Tag Closed Cup, °F (°C)	102 (39)
kg/L	0.81	Tag Open Cup. °F (°C)	114 (46)
lb/gal (Imperial)	8.16	Fire Point. °F (°C)	115 (46)
Solubility at 20°C, wt %		Flammable Limits in Air, % by volume	
In water	0.46	Lower, at 150°F (66°C)	1.11
Water in	1.31	Upper, at 250°F (121°C)	7.9
Dilution Ratio, toluene	3.9	Autoignition Temperature (ASTM D 2155), °F (°C)	740 (393)
VM & P naphtha	1.2	NFPA Classification 30	11
Refractive Index at 20°C	1,4085	DOT Classification	Combustible Liquid
Vapor Pressure at 20°C, mm Hg	2.14	DOT Labels Required	None

COMPARISON OF PROPERTIES OF HIGH-BOILING SOLVENTS

Solvent		Blush Res.,	Solution Viscosity at 25°C, cP			
	Evap. Rate	% R.H. @ 80°F (27°C)	RS ½-Sec Cellulose Nitrate ^a 10 Wt %	CA8-381-0.5 ^b 10 Wt %	VMCH Copolymer ^c 20 Wt %	
Methyl n-Amyl Ketone ^b	0.4	93	40	37	158	
Methyl Isoamyl Ketone ^b	0.5	89	42	37	164	
Isobutyl isobutyrate ^b	0.4	92	128	Insol	Gel	
Ethyl Amyl Ketone	0.3	94	69	insol	320	
Diisobutyl Ketone ^b	0.2	95	143	Insol	Gel	
Ektasolve® EE Acetateb	0.2	94	113	89	1040	

aproduct of Hercules Incorporated

METHYL ISOAMYL KETONE

MIAK

CH3-CO-C5H11

MIAK is a retarder solvent, having an evaporation rate of 0.5, but it also possesses exceptional solvent power for most film-formers. In lacquers, the low evaporation rate of MIAK promotes good flow and leveling properties; whereas the high solvency provides low viscosities or permits a higher nonvolatile content.

Table 12.18: Properties of Methyl Isoamyl Ketone (41)

Typical Properties

Molecular Weight (C7H14O)	114.19	Boiling Range, 760 mm, °C	
Color (Pt-Co Scale), max	10	Initial Boiling Point, min	141
Weight/Vol, 20°C,		Dry Point, max	148
lb/gal (U.S.)	6.76	Freezing Point, °F (°C)	-101 (-74)
kg/litre	0.81	Flash Point, Tag Closed Cup, °F (°C)	96 (36)
Ib/gal (Imperial)	8.14	Tag Open Cup, °F (°C)	106 (41)
Solubility, 20°C, wt %		Fire Point, °F (°C)	107 (42)
In water	0.5	Flammable Limits in Air, % by volume	
Water in	1.2	Lower, at 200°F (93°C)	1.05
Evaporation Rate (n-butyl acetate = 1)	0.5	Upper, at 200°F (93°C)	8.2
Dilution Ratio, toluene	4.1	Autoignition Temperature (ASTM D-2155), °F (°C)	795 (4 25)
VM & P naphtha	1.2	NFPA Classification 30	IC
Refractive Index, 20°C	1.4069	DOT Classification	Flammable Liquid
Vapor Pressure, 20°C, mm Hg	4.5	DOT Labels Required	Flammable Liquid
Specific Gravity, 20°/20°C	0.814		(continued)

^ban Eastman product

^cproduct of Union Carbide Corporation

Table 12.18: (continued)

Solvent		Blush Res.	Solution Viscosity, 25°C, cP			
	Evap. Rate	% R. H. @ 80°F (27°C)	RS ½-Sec Cellulose Nitrate ^a 10 Wt/%	FPC 470 Resin ^b 20 Wt/%	Elvacite 2010 Resin ^C 20 Wt/%	
Methyl Amyl Acetate	0.5	92	128	Insol	insol	
Methyl Isoamyl Ketone	0.5	89	42	34	68	
Isobutyl Isobutyrate	0.4	92	128	Insol	Insol	
Ektasolve® EE Acetate	0.2	94	113	Insol	284	

^aproduct of Hercules Incorporated

Table 12.19: Properties of Methyl Isoamyl Ketone vs Other Solvents (41)

Salvent	Evaporation Rate	Dilution Ratio (Toluene)	Blush Resistance, % R.H. at 80°F.	Specific Gravity, 20/20°C.	Flash Point, Tag Open Cup, °F.	Boiling Range, 760 mm., °C.
Methyl isobutyl						
ketone	1.6	3.6	78	0.8018	73	114-117
Isobutyl acetate	1.4	2.7	78	0.8728	90	114-118
n-Butyl acetate	1.0	2.7	82	0.8109	100	116-118
Amyl acetate	0.6	2.4	92	0.862	93	100-150
MIAK	0.50	4.1	92	0.813	110	141-148
Methyl amyl acetate	0.5	1.7	92	0.8595	110	143-150
2-Ethoxyethanol	0.3	4.9	65	0.9311	130	132-136
4-Methoxy-4-methyl-		٠,	٠. ا	0.004		147.160
pentanone-2	0.3	3.1	91	0.904	141	147-163
Ethyl amyl ketone	0.2	2.2	94	0.822	135	156-162
2-Ethoxyethyl acetate	0.2	2.5	91	0.9748	150	145-165
	0.2	2.5	91	0.9746	130	145-165
4-Methoxy-4-methyl- pentanol-2	0.2	4.7	93	0.890	140	164-169
Cyclohexanone	0.2	5.8	92	0.945	129	153-160
2-Butoxyethanol	0.06	3.33	96	0.9019	165	166-173
Isophorone	0.03	6.2	97	0.9229	205	205-220

Table 12.20: Butyrate-Acrylic Wood Lacquer—Substituting Isoamyl Ketone for 2-Ethoxyethyl Acetate (41)

	Part A	Part B
Ingredients	Wt. %	Wt. %
Half-Second Butyrate	8.5	8.5
Acryloid B-66 resin (40%) ¹	21.3	21.3
Santicizer 160 plasticizer ^a	3.0	3.0
Dow-Corning 510 (1000 cs.) fluid ²	0.01	0.01
Eastman Inhibitor DOBP*	0.09	0.09
Toluene	26.3	36.3
Isobutyl acetate	13.6	13.6
isobuty) alcohol	13.6	3.6
Methyl ethyl ketone	6.8	6.8
MIAK	<u> </u>	6.8
2-Ethoxyethyl acetate	6.8	_
100	100	100
Solids, %	2 20.12	20.12
Viscosity, cp	50	42
Wt./gal., Ib	5 7.51	7.50
Flow out excelle	ent excellent	excellent

Product of Rohm and Haas Company
Product of Monsanto Chemical Company

b product of Firestone Plastics Company

cproduct of Du Pont Company

³Product of Dow Corning Corporation ⁴²-Hydroxy-4-dodecyloxy benzophenone

METHYL HEXYL KETONE

Octanone-2

CH3(CH2)5CO·CH3

A colorless liquid with a characteristic odor, methyl hexyl ketone is used as a solvent for vinyl compounds and dyes, and has been found particularly suitable in dispersing dyes in light petroleum oils for newsprint inks.

Table 12.21: Properties of Methyl Hexyl Ketone (2)

Purity 95%, min.

Specific gravity at 20°C. 0.81-0.83

Weight per gallon at 20°C. 6-8 lbs.

METHYL HEPTYL KETONE

MHK 5-Methyl-2-Octanone

CH₃CCH₂CH₂CH₂CH₂CH₃ CH₃

Methyl heptyl ketone, a high-boiling, active solvent, imparts desirable drying characteristics in many high-temperature baked coatings.

Table 12.22: Properties of Methyl Heptyl Ketone (41)

Molecular Weight (C, H ₁₈ O), calcd	142.24	Color (Pt-Co Scale), ppm	5-25
Melting Point, °C	9	Acidity, as acetic acid, wt %	0.018
Boiling Range, °C, 760 mm	183-195	Water, wt %	0.01-0.05
Evaporation Rate (n-butyl acetate = 1)	0.08	Flash Point (Tag Closed Cup), °F (°C)	140 (60)
Weight/Vol, at 20°C		(Tag Open Cup), °F (°C)	160 (71)
lb/gal (U.S.)	6.87	Fire Point, °F (°C)	168 (76)
kg/liter	0.83	Flammable Limits in Air, % by volume	
lb/gal (Imperial)	8.59	Lower (at 180°F)	0.9
Solubility, 20°C, wt %		Upper (at 313°F)	5.9
In water	0.5	Autoignition Temperature (ASTM D-2155), °F (°C)	680 (360)
Water in	0.95	NFPA Classification 30:	Combustible Liquid,
Dilution Ratio, toluene	3.0		Class IIIA
VM & P naphtha	1.0	ICC Labels Required	None
Refractive Index, 20°C	1.422	Bureau of Explosives Classification	Nonhazardous Liquid

	Evap	Dilutio	n Ratio	Blush Res ,	Sp Gr	Lb/gal
Solvent	Rate	Toluene	VM & P Naphtha	% RH @ 80°F(27°C)	20°/20°C	@20°C
MAK	0.4	3.9	1.2	93	0.815	6.80
EKTASOLVE® EB Solvent	0.1	3.4	2.1	96	0.902	7.51
мнк	0.08	3.0	1.0	97	0.827	6.87
Isophorone	0.03	6.2	1.2	97	0.922	7.68

^{*}EKTASOLVE EB (ethylene glycol monobutyl ether) is an Eastman product.

ETHYLBUTYL KETONE

Heptanone-3

C2H5COCH2CH2CH2CH3

Ethylbutyl ketone is a stable, high-boiling solvent of special value in lacquers and synthetic resin coatings. Its evaporation rate in relation to those of comparable solvents is indicated in the following tabulation:

Solvent	Hours
Methyl isobutyl ketone	4.5
Butyl acetate	8
Ethylbutyl ketone	14
Amyl acetate	16
Methylamyl acetate	17
Methylamyl ketone	20
"Cellosolve" acetate	38
Diisobutyl ketone	44

The unusual combination of good solvent power with medium evaporation rate makes ethylbutyl ketone generally useful for coating solutions having adequate flow without unduly long drying time. It bakes out of films somewhat faster than other comparable ketones.

Table 12.23: Properties of Ethylbutyl Ketone (2)

Boiling point	147.8°C.
Freezing point	- 36.7°C.
Coefficient of expansion at 20°C.	0.00107
Flash point	125°F.
Solubility in water at 20°C.	0.43% by wt.
Solubility of water in at 20°C.	0.78% by wt.
Refractive index at 20°C.	1.4085
Specific gravity at 20/20°C.	0.8197

ETHYL AMYL KETONE

EAK, 5-Methyl-3-Heptanone

Ethyl amyl ketone, a high boiling ketone, is a colorless, stable liquid with a mild pleasant odor. It is compatible with alcohols, ethers, other ketones and organic liquids, and in addition, exhibits low water miscibility. Ethyl amyl ketone's high solvency for cellulose esters, vinyl polymers

O CH,

and copolymers, synthetic and natural protective coating resins, coupled with its slow evaporation rate, high blush resistance and good diluent tolerance makes it a valued surface coating raw material.

Table 12.24: Properties of Ethyl Amyl Ketone (14)

Apparent specific gravity, 20/20°C	0.820-0.824 0.816-0.820	Acidity (as acetic acid), % w. Max Water, % w. Max	0.01 0.15
Color, Pt-Co, Max	25	Alcohol (as ethyl amyl carbinol), % w. Max	0.50
Distillation range, °C	156-162		

DI-n-PROPYL KETONE

Heptanone-4, Butyrone, Amyl Ketone

(CH3CH2CH2)2CO

Di-n-propyl ketone is a colorless, stable liquid having a pleosant odor. It is miscible with many organic solvents, and dissolves a wide variety of materials, some of which are crude rubber, nitrocellulose, raw and blown oils, many natural and synthetic resins like dewaxed dammar, manila, rosin, ester gum, and waxes.

Table 12.25: Properties of Di-n-Propyl Ketone (2)

Boiling point	143.7°C.
Coefficient of expansion	0.001073 (per °C.) to 20°C.
	0.001115 (per °C.) to 55°C.
Dilution ratio ("Kemsolene")	0.8
(Toluene)	3.1
Flash point (ASTM Open Cup)	49°C .
Freezing point	-32.1°C.
Heat of combustion	1051 cal./mol
Latent heat of vaporization	75.8 cal./g.
Solubility in water at 20°C.	0.53% by wt.
Solubility of water in solvent at 20°C.	1.27% by wt.
Specific gravity at 20/20°C.	0.8162
Refractive index at 20°C.	1.4068
Specific heat at 25°C.	0.553 cal./g.
Surface tension at 25°C.	25.2 dynes/sq. cm.
Vapor pressure at 20°C.	5.2 mm, Hg
Viscosity at 20°C.	0.0074 poise
Weight per gallon at 20°C.	6.79 lbs.

DIISOBUTYL KETONE

Valerone

(C4H9)2CO

A water-white, stable liquid, miscible with most organic liquids, diisobutyl ketone has good solvency for cellulase acetate, nitrocellulose, vinyl resins, waxes, gums, natural and synthetic resins, and crude rubber. It is used principally as a high-boiler in nitrocellulose lacquers and vinyl resin coatings, where its slow evaporation rate is advantageous.

Table 12.26: Properties of Disobutyl Ketone (41)

Typical Properties

Molecular Weight (Co H18O)	142.23	Boiling Range, 760 mm, °C	
Color (Pt-Co Scale), max	20	Initial Boiling Point, min	163
Evaporation Rate (n-butyl acetate = 1)	0.2	Dry Point, max	173
Weight/Vol. 20°C.		Freezing Point, °F (°C)	-43 (42)
lb/gal (U.S.)	6.76	Flash Point, Tag Closed Cup, °F (°C)	120 (49)
kg/liter	0.81	Tag Open Cup, °F (°C)	131 (55)
Ib/gal (Imperial)	8.11	Fire Point, °F (°C)	137 (58)
Solubility, 20°C, wt %		Flammable Limits in Air, % by volume	
In water	0.05	Lower, at 200°F (93°C)	0.81
Water in	0.75	Upper, at 200°F (93°C)	7.1
Dilution Ratio, toluene	1.5	Autoignition Temperature (ASTM D-2155), °F (°C)	745 (396)
VM & P naphtha	0.8	NFPA Classification 30	П
Refractive Index, 20°C	1.4230	DOT Classification	Combustible Liquid
Vapor Pressure, 20°C, mm Hg	1.7	DOT Labels Required	None
Specific Gravity, 20°/20°C	0.807-0.814	•	

Table 12.26: (continued)

			Solution Viscosity, 25°C, cp			
Solvent	Evap. Rate	Blush Res., % R. H. @ 80°F (27°C)	RS. ½-Sec Cellulose Nitrate, 10 Wt/%	FPC 470 Resin ^a , 20 Wt %	Elvacite 2010 Resin ^b 20 Wt %	
Methyl Isoamyl Ketone	0.5	89	50	34	68	
Methyl Amyl Acetate	0.5	92	128	Insol	insoi	
Isobutyi Isobutyrate	0.4	92	128	Insol	Insol	
Diisobutyl Ketone	0.2	95	160	75	Insol	

aproduct of Firestone Plastics Company

CYCLOHEXANONE

"Sextone", "Anon", Pimelin Ketone, Keto Hexamethylene

Cyclohexanone is a colorless to pale yellow, stable liquid with an odor suggestive of peppermint. It is made by the dehydrogenation of cyclohexanol. It is miscible in all proportions with most solvents, especially the common lacquer solvents and diluents, hydrogenated and chlorinated hydrocarbons, phenols, pyridine, and turpentine. It is a good solvent for cellulose ethers, esters, basic dyes, latex, fats, blown oils, waxes, crude rubber, and such gums and resins as ester gum, alkyds, vinyls, coumarone, 100% and modified phenol resins, cyclohexanone resins and many natural resins. It forms constant-boiling mixtures with camphor, tetrachloroethane, and trichloropropane. It has a very high dilution ratio as compared with the coal-tar hydrocarbons, a fact which accounts for its excellence as a solvent, especially in the lacquer industry.

Its low rate of evaporation and strong solvent powers impart blush resistance, good flow and working qualities to lacquers and give films that are clear, smooth and glossy and show good adhesion. It is also used in spraying and brushing lacquers and as a medium boiler. It is particularly effective for blending nitrocellulose with spirit—soluble and hydrocarbon—soluble resins and oils. Its solvency for basic dyes makes it applicable in wood stains. Other uses are in the air—drying and stoving type of synthetic resins, in plastics and molding powders, in paint and varnish removers, in spot and stain removers, in metal—degreasing preparations, in polishes, printing inks, as a leveling agent in dyeing, in delustering cellulose acetate, insecticides and pharmaceuticals.

Table 12.27: Properties of Cyclohexanone (2)

Boiling point	155.6°C.
Color	Water-white to pale yellow
Dielectric constant at 25°C.	18.2
Evaporation rate, approximate (toluene=100)	20
Flash paint (open cup)	130°F.
Freezing point	-45°C.
Solubility in water at 20°C.	8.7%
Specific gravity at 20°C.	0.944 - 0.950
Specific heat 15° to 18°C.	0.433 cal./g.
Refractive index	1.443 - 1.451
Viscosity (SUV at 100°F.)	33
Weight per gallon at 20°C.	7.9 lbs.
Acidity	Neutral
Distillation range	95% within 151° - 157°C.
Purity	98 - 100%
Residue	0.02%
Water content	0.2% max.

bproduct of E. I. du Pont de Nemours Co., Inc.

Table 12.28: Resin Solubility in Cyclohexanone (19)

Resin	Manufacturer	Viscosity at 25°C., cps. (1)	Toluene Dilution (2)	Heptane Dilution (2)
Acrylic				-
"Acryloid" B-82	Rohm & Haas	32	>50	2
"Elvacite" 2010	Du Pont	54	>50	7
Cellulosics		-		
Cellulose Acetate AB-141-95				
(14% acetyl)	Eastman	9200	28	6.5
Cellulose Acetate Butyrate				
EAB-171-2 (17% butyryl)	Eastman	892	34	9.5
Cellulose Acetate Butyrate				
EAB-381-20 (37% butyryl)	Eastman	5060	>50	14
Ethyl Cellulose (N-22, 24 sec.)	Hercules	1408	>50	23
Half Second Butyrate AB-H	Eastman	242	>50	17
"Hercose" "C" Type A	Hercules	806	38	8.5
Nitrocellulose (RS 1/2 sec.)	Hercules	218	>50	10.5
Styrene				
Polystyrene		96	>50	24
SMA 4000A	Sinclair	19	>50	14.5
Vinyl				
BAKELITE Vinyl Resin AYAF	UCC	74	>50	7
BAKELITE Vinyl Resin VYHH	UCC	68	>50	14.5
BAKELITE Vinyl Resin XYHL	UCC	(3)	-	14.5
"Saran" F-120 (1000 cps.)	Dow	484	21	6.5
<u></u>				
Epoxy BAKELITE Epoxy Resin EKR 2002	UCC	21	>50	9.5
	000			7.3
Urethane	C 1:1	202	14	4 6
"Estane" 5701F1	Goodrich	282	14	4.5
"Estane" 5707F1	Goodrich	388	6	2
Rosin-Ester				
"Amberol" 801 LT	Rahm & Haas	14	>50	19
"Cellolyn" 104	Hercules	20	>50	<1
Melamine-Formaldehyde				
"Cymel" 300	Am. Cyanamid	16	>50	>50
Alkyd				
''Beckasol''#7	Reichhold	28	>50	47
''Beckasol'' #31	Reichhold	25	>50	>50
Rubber				
"Parlon" S-20 (18 cps.)	Hercules	46	>50	22
"Pliolite" S-5	Goodyear	56	>50	30
Phenolic	· -			
BAKELITE Phenolic Resin BKR 2620	UCC	23	16	5.5
Phenoxy				
BAKELITE Phenoxy Resin PKHH	ucc	Insoluble	_	
DANLETTE FRENDRY RESIR PROTE	<u> </u>	IS OTODIE		

^{(1) 1}C grams resin, 90 grams cyclohexanone
(2) 10 grams of 10% resin solution, titrated with diluent (in ml.)
(3) Partially soluble

METHYL CYCLOHEXANONE

Methyl "Anon", "Sextone" B

Methyl cyclohexanone is a water-white to pale yellow liquid with an acetone-like odor. It is a mixture of two isomeric cyclic ketones made by the dehydrogenation of methyl cyclohexanol. It closely resembles cyclohexanone in its physical properties, miscibility, tolerance for non-solvents and solvent action. It differs from cyclohexanone in its somewhat slower evaporation rate and lower dilution ratios with aromatic hydrocarbons. Methyl cyclohexanone is especially suitable for phenolic and alkyd resins, crude rubber, nitrocellulose, ester gum and kauri. It is also an excellent agent for blending pyroxylin with resins, oils and rubber in lacquers. It is used in crystalizing lacquers, where its low evaporation rate retards evaporation sufficiently to permit crystal growth. It is also used in slow-setting varnish removers and in rubber cements.

Table 12.29: Properties of Methyl Cyclohexanone (2)

169.0° - 170.5°C. **Boiling point** Evaporation rate (approximate) (toluene = 100) 20 53°C. Flash point -70°C. Freezing point 1.442 - 1.446Refractive index at 25°C. Solubility in water at 20°C. 2 - 3%Specific gravity at 25/4°C. 0.910-0.914 Viscosity (SUV at 100°F.) 33 7.6 lbs. Weight per gallon Distillation range 165.0° - 172°C. 95% distills within 3.0° Purity 98 - 100% Residue None 0.2%, max.

METHYL ACETONE

Methyl Ketone

Water content

Methyl acetone is a clear, colorless, flammable, volatile liquid, obtained from the product of the destructive distillation of wood. Although it varies in composition it is generally composed of acetone 35 to 60%, methanol 20 to 40%, and methyl acetate 20 to 30%.

DIACETONE ALCOHOL

Diacetone
4-Hydroxy-4-Methylpentanone-2
"Pyranton A"
Diacetonyl Alcohol

Diacetone alcohol is a flammable liquid that is colorless when pure, becoming yellow on aging; it has a mint-like odor. Made by the condensation of acetone, the commercial product contains up to 15% of acetone. For this reason the technical product is superior in its solvent power to the acetone-free grade. It is miscible with most organic liquids, as well as with water. It is a good solvent for cellulose acetate, nitrocellulose, cellulose acetobutyrate, cellulose acetopropionate, hydrocarbons, oils, fats, resins, gums and dyes. It has only limited solvency for dammar gum, polyvinyl acetate and the petroleum resins. A high-boiling solvent, diacetone alcohol also exhibits the desirable properties of reducing the viscosities of organic solutions of high solids content, and of minimizing temperature effects on viscosities. In most respects it is quite similar to acetone with the exception of a very much slower rate of evaporation

It is used in cellulose ester lacquers, particularly of the brushing type, where it produces brilliant gloss and hard film and where its lack of odor is desirable. It is used in lacquer thinners, dopes, wood stains, wood preservatives and printing pastes; in coating compositions for paper and textiles; in making artificial silk and leather; in imitation gold leaf; in celluloid cements; as a preservative for animal tissue; in metal-cleaning compounds; in the manufacture of photographic film; and in hydraulic brake fluids, where it is usually mixed with an equal volume of castor oil

Diacetone alcohol is available in two grades: technical, containing up to 15% acetone, and acetone-free.

Table 12.30: Physical Properties of Acetone-Free Diacetone Alcohol (2)

Boiling point at 760 mm. 167.9°C. 0.000533 per °F. Coefficient of expansion (Cubical) Color Water-white to light straw 144°F. Flash point (open cup) Heat of combustion 8,601 cal./g. -47°C. Melting point Specific gravity at 20/20°C. 0.937 - 0.946Refractive index at 20°C. 1.4235 Viscosity (Saybolt) -12°C. 113 seconds at 674 seconds at -30°C. -48°C. 1,980 seconds at Weight per gallon at 20°C. 7.83 lbs. 0.05% Acidity (as acetic) Distillation range at 760 mm. Below 135°C. None Below 158°C. Not more than 5% Above 170°C. None Nonvolatile matter 0.005% by wt. (max.)

ACETONYL ACETONE

Hexanedione-2, 5 $(CH_3 \cdot CO \cdot CH_2)_2$

Acetonyl acetone, a diketone, is a water-white liquid with an agreeable odor. It is completely soluble in water, almost entirely soluble in such substances as toluene, kauri gum and rosin, and only partly soluble in raw linseed oil, shellac, dewaxed dammar and ester gum. It has been suggested as an intermediate in the manufacture of rubber accelerators, dyes, inhibitors, insecticides, and pharmaceuticals and for the preparatic of derivatives of thiophene, furan and pyrrole. It may also be employed in tanning hides and skins.

Table 12.31: Properties of Acetonyl Acetone (2)

Boiling point
Dilution ratio (xylene)
Flash point
Specific gravity at 20/20°C.
Solubility in water at 20°C.
Vapor pressure at 20°C.
Weight per gallon at 20°C.
Acidity (as acetic)
Boiling range at 760 mm.
Purity
Water

191.4°C.
1.8
158°F.
0.9710-0.9760
Complete
0.5 mm. Hg
8.10 lbs.
0.020% by wt., max.
185° to 195°C.
98.0% by wt., min.
Miscible with 19 vol. 60° Bé
gasoline at 20°C.

MESITYL OXIDE

4-Methyl-3-Pentenone-2 Isopropylidone Acetone Methyl Isobutenyl Ketane

 $(CH_3)_2C = CH \cdot CO \cdot CH_3$

Mesityl oxide is an unsaturated, medium-boiling ketone made by the dehydration of diacetone alcohol. It is a calorless to straw-yellaw, oily liquid with a peppermint-like odor. It will darken and form a solid residue on exposure and aging. It is miscible with most organic liquids and it is a good solvent for such substances as nitrocellulose, ethylcellulose, low-viscosity cellulose acetate, polyvinyl chloride, vinyl resins, hydrocarbons, raw linseed oil, kauri gum, rosin, ester gum and synthetic rubber. It will only partly dissolve shellac and dewaxed dammar.

Mesityl oxide is used in lacquers and thinners where its presence in the solution lowers the viscosity and gives it both a high tolerance for hydrocarbons and resistance to humidity. Its excellent solvent power for gums and resins is especially applicable in vinyl-type resins, where it produces films that are tough, glossy and have good flow; its presence permits use of larger proportions of aromatic hydrocarbon diluents.

Table 12.32: Properties of Mesityl Oxide (2)

Water

Boiling point at 760 mm. Coefficient of expansion Color Dielectric constant at 20°C. Flash point (Tag closed cup) Heat of combustion Heat of vaporization Melting point Solubility in water at 25°C. Solubility of water in solvent at 20°C. Specific gravity at 20/20°C. Specific heat (21 - 121°C.) Refractive index at 20°C. Vapor pressure at 20°C. 30°C. 40°C. Viscosity at 25°C. Weight per gallon at 20°C. Acidity (as acetic) Distillation range (ASTM) Purity

129.5°C. 0.000599 per °F. Straw-yellow 15.4 83°F. 846.7 Cal. per mol 85.9 cal./g. -59°C. 3.4% by vol. 3.4% by wt. 0.853 - 0.8560.521 cal./g. 1.4456 8.0 mm. Hg 14.3 mm. Hg 24.5 mm. Hg 8.79 millipoises 7.12 lbs. 0.05%, max. Below 120°C. None Above 135°C. None More than 95% distills over below 131°C. 95% by wt., min. Miscible without turbidity with 19 vols. of 60° Bé gasoline at 20°C. (approx. 0.20% by wt.)

ISOPHORONE

Isophorone is a stable, colorless, volatile liquid with a mild odor. It is only slightly soluble in water, but miscible with most lacquer solvents. It is an excellent solvent for many types of cellulose esters, cellulose ethers, oils, fats, gums and resins, both natural and synthetic. It is the most powerful solvent for nitrocellulose and "Vinylite" resins. Isophorone has one of the highest aromatic hydrocarbon dilution ratios for nitrocellulose—5.7 for toluene and 5.1 for xylene. It will dissolve 30% of "Vinylite" resin without gelling. At ordinary temperatures solutions can be made of 1/2 second RS nitrocellulose containing 45% solids. Isophorone is used in the manufacture of coatings, inks, stencil pastes and as a thinner in synthetic resin finishes.

Table 12.33: Properties of Isophorone (2)

Boiling point at 760 mm.	215.2°C.
Dilution ratios	
Toluene	5.7
Xylene	5.1
"Troluoil"	1.0
Mineral spirits	0.7
Flash point (open cup)	205°F.
Freezing point	-8.1°C.
Solubility in water at 20°C.	1.2% by wt.
Solubility of water in solvent at 20°C.	3.8% by wt.
Specific gravity at 20/20°C.	0.9200-0.9250
Vapor pressure at 20 °C.	0.25 mm. Hg
Weight per gallon at 20°C.	7.68 lbs.
Acidity (as acetic)	0.02% by wt., max.
Distillation range at 760 mm.	205° -220°C.
Color	Not darker than 0.05 g.
	K2Cr2O7 per 1. of water
Purity	98.0% by wt., min.
Water content	Miscible with 19 vol. 60° Bé gasoline at 20°C.

FENCHONE

Fenchone is a liquid ketone closely resembling camphor.

Table 12.34: Properties of Fenchone (2)

Boiling point	191.0°C.	Distillation Range				
Dilution ratio:		(Calculated from	n 50:50 Min. Spirits)			
with coal—tar naphtha	1.3 final conc. 8.0					
with hi-flash naphtha	1.2 final conc. 8.2	5%	193.0°C.			
Kauri-butanol	All proportions in 50%	1 0 %	193.4°C.			
	sol, with mineral	20%	193.8℃.			
	spirits 131	40%	194.2°C.			
Optical activity	+7.4	60%	194.5°C.			
Refractive index at 20°C.	1.4625	80%	195.4°C.			
Specific gravity at 15.5°C.	0.9457	90%	196.0°C.			
Aniline point (-)	54°C.	95%	197.5°C.			

BETA-PROPIOLACTONE

BPL

носн₂ –сн₂ –с=о

Beta-Propionic Acid Derivatives

Hydracrylic Acid Derivatives

Table 12.35: Physical Properties of Beta-Propiolactone (42)

Physical state	Liquid
Color	Colorless
Odor	Pungent, acrylic
Boiling point at 10 mm Hg, deg C	51
100 mm Hg	100.0
400 mm Hg	139.7
760 mm Hg	162.3
Melting point, deg C	—33.4
Refractive index n _D ²⁰	1.4131
Specific gravity, 20/20 C	1.1490
Pounds per gallon at 20 C	9.56
Flash point, Tag open cup, deg F	165

Solubility: BPL is miscible at room temperature with most organic solvents such as ether, alcohol (reacts), benzene, acetone, and acetic acid. Solubility in water at 25 C is 37 per cent by volume, with moderately fast hydrolysis to hydroxypropionic (hydracrylic) acid.

GAMMA-BUTYROLACTONE

BLO

=0

Gamma-butyrolactone is a powerful solvent and undergoes many reactions that make it of considerable interest in synthesis. It is a colorless hygroscopic liquid over a wide temperature range. It is soluble in acetone, benzene, carbon tetrachloride, ethyl ether, methanol, monochlorobenzene and water in all proportions.

Table 12.36: Properties of Gamma-Butyrolactone (49)

Appearance	Specify gravity (d ₄ ²⁵) 1.124 Flash point, tag closed cup 93°C (200°F) Fire point 99°C (210°F) pH (10% aqueous solution) 4.5 Refractive index (n ₂ ²⁵) 1.435 Heat of vaporization, Clausius-Clapeyron (calc) 133 cal/g Heat of solution 598 cal/mol
------------	--

Heat of combustion .	
Specific heat (25°C).	0.40 cal/g/°C
(60°C).	
Dielectric constant (2)	
Critical pressure	
·	(35 kg/cm²)
Critical temperature .	436°C
	cetone, benzene, carbon
tetrachloride, ethyl eth	
chlorobenzene, and v	vater in all proportions.

(continued)

Table 12.36: (continued)

Table i. Percentage of Butyrolactone Hydrolyzed under Acid Conditions as Function of Time, Temperature, and Concentration

Concer	Concentration Time (hours)									
(%	6)	1		3		5		24		
BLO	Dilute HCI	Room Temper- ature	65°C	Room Temper- ature	65°C	Room Temper- ature	65°C	Room Temper- ature	65°C	
99	1			_	0.34	_	0.54		0.56	
98	2	_	0.32	0.24	0.97	0.42	1.18	0.97	1.21	
95	5	_	0.73	0.49	2.35	0.68	2.53	1.94	3.11	
90	10	_	1.23	0.59	4.43	0.99	4.87	3.14	5.95	
80	20	0.28	2.17	1.02	8.15	1.62	9.15	5.52	10.95	
50	50	0.92	6.48	2.57	15.98	4.07	17.92	12.10	18.41	

BUTYROLACTONE refers to gamma butyrolactone

Table II. Percentage of Butyrolactone Hydrolyzed at pH 7 as Function of Time and Concentration*

Concentra	oncentration (%)† Time (hours)					
BLO H,O		8	24	48		
80	20		0.33	1.7		
50	50	1.7	11.1	17.4		

^{*}Tests were conducted at 65°C. No observable hydrolysis was detected at room temperature. †At concentrations of up to 10 per cent water, no hydrolysis was observed in 46 hours.

Table 12.36: (continued)

Table III. Bunsen Coefficients of Butyrolactone (cc gas/cc solvent converted to STP)

Gas	25°C	45°C	75°C
Hydrogen	0.12	0	0
Carbon Monoxide	0.09	0.044	0
Carbon Dioxide	3.6	2.7	1.1
Methyl Acetylene	37.8	12.5	10.8
Acetylene	11.8	8	1.45
Vinyl Acetylene	145.1 (27°C)	33.1	23.1 (73°C)

Table IV. Solubilities of Compounds in Butyrolactone	
Compound	% Soluble
Acrylonitrile, (high) spec. vis. 8.5 ⁴	>10
Acrylonitrile, (low) spec. vis. 3.18*	>16°
Acrylonitrile, (low) spec. vis. 2.45*	206
Acrylonitrile, (low) spec. vis. 2.11*	20⁵
"Amberol" Resin 820 (Rohm & Haas)	50
"Aroclor" (60% CI), chlorinated biphenyl (Monsanto)	50
Cellulose Acetate	2,
Cellulose Acetate Butyrate	10
Cellulose Acetate Propionate	10
Cellulose Nitrate	25
"Clorafin" (70% Cl), chlorinated paraffin (Hercules Powder)	50
DDT	50
"Epon" 1007, epoxy resin (Shell Chemical)	25
"Epon" 1009, epoxy resin (Shell Chemical)	
Ester Gum	50°
Ethyl Cellulose	25°
"Formvar," polyvinyl formal resin (Monsanto)	> 5
"Geon" Polyblend, polyvinyl chloride (Goodrich)	>10°
"Geon" 102, polyvinyl chloride (Goodrich)	> 5°
"Geon" 202, polyvinyl chloride (Goodrich)	>10°
HET Anhydride	60°
Methyl Methacrylate Polymer	25
Methyl Vinyl Ether Polymer	50
"Neolyn" 23 Resin (Hercules Powder)	50
"Parlon," chlorinated rubber (Hercules Powder)	>25
Polyvinyl Butyral	25°
Pyromellitic Acid	20
"Saran" F-120, vinylidene chloride (Dow Chemical)	>10
Shellac	25
Polystyrene	>25
Vinyl Acetate Polymer	>25
1-Vinyl-2-Pyrrolidone Polymer	>25
9-Vinylcarbazole, Monomer and Polymer	>25
"Vinylite" VYNW, vinyl chloride resin (Union Carbide)	> 5'
"Vinylite," XYSG, vinyl resin (Union Carbide)	10°

^{• 1} gram polymer dissolved in 100 ml BLO.

b Heated for 1 hour at 100°C, and then cooled to room temperature.

c Solubility after 1 hour at 100°C.

Table 12.37: Ashland Ketones (69)

LB./GAL.	SP. GR.	BOILING	RANGE	FL. PT.	EVAP.
20° C	20°/20° C	°C	°F	°F TCC	RATE
6.59	0.790	55-56	131-133	-4	14.4
6.71	0.806	78-81	172-178	24	5.7
6.72	0.807	101-105	214-221	46	2.3
6.67	0.802	114-117	237-243	60	1.6
6.78	0.813	141-148	286-298	98	0.47
7.82	0.939	145-172	293-342	126	0.12
6.80	0.818	147-154	297-309	102	0.40
7.88	0.946	156-158	313-316	111	0.20
6.75	0.809	163-173	325-343	120	0.20
7.68	0.922	210-218	410-424	179	< 0.05
	6.59 6.71 6.72 6.67 6.78 7.82 6.80 7.88 6.75	6.59 0.790 6.71 0.806 6.72 0.807 6.67 0.802 6.78 0.813 7.82 0.939 6.80 0.818 7.88 0.946 6.75 0.809	6.59 0.790 55-56 6.71 0.806 78-81 6.72 0.807 101-105 6.67 0.802 114-117 6.78 0.813 141-148 7.82 0.939 145-172 6.80 0.818 147-154 7.88 0.946 156-158 6.75 0.809 163-173	6.59 0.790 55-56 131-133 6.71 0.806 78-81 172-178 6.72 0.807 101-105 214-221 6.67 0.802 114-117 237-243 6.78 0.813 141-148 286-298 7.82 0.939 145-172 293-342 6.80 0.818 147-154 297-309 7.88 0.946 156-158 313-316 6.75 0.809 163-173 325-343	6.59 0.790 55-56 131-133 -4 6.71 0.806 78-81 172-178 24 6.72 0.807 101-105 214-221 46 6.67 0.802 114-117 237-243 60 6.78 0.813 141-148 286-298 98 7.82 0.939 145-172 293-342 126 6.80 0.818 147-154 297-309 102 7.88 0.946 156-158 313-316 111 6.75 0.809 163-173 325-343 120

Table 12.38: Chemcentral Ketones and Miscellaneous Active Solvents (67)

KETONES & MISC. ACTIVE SOLVENTS		CAS	Mole Weight	% Purity Comm.	Spec Grav. ബ	Lbs./ Gal. @	Coeff. of Expen.	∆Bp. Gr. Per °C	Refrac- tive Index	Distillat 9 76	ion Range 0 mm Hg	Vapor Press. @ 20°C
			Prod.	20/20°C	20°C	Per °C		€ 20°C	°C	۰F	mm Hg	
ACETONE	67-64-1	58 08	99.5	0 792	6.59	0.00151	00102	1.3584	55.5-56.5	132-134	185.0	
CYCLOHEXANONE	108-94-1	98.14	99.8	0.948	7 89	0.00091	00064	1.4507	154-157	309-315	7.0(30°)	
DIACETONE ALCOHOL, A.F.	123-42-2	116 16	99	0 939	7.82	0.00100	00072	1.4234	145-172	295-342	1.0(30)	
DIISOBUTYL KETONE (DIBK)	108 83 8	142 23	95	0.808	6.72	0.00105	00066	1 4230	163-173	325-343	14	
DIMETHYL FORMAMIDE (DMF)	68-12-2	73.09		0.951	7.92	0.00100	.00072	1.4269	(95%) 2° incl. 153°	(95%) 3.6° Incl. 307.4°	2.6	
FURFURAL	98-01-1	96.08	98	1 160	9.68		.00110	1.5261	161.7-BP	323.1-BP	1.7	
ISOPHORONE	78-59-1	138.20	98	0 923	7.68	0.00087	00058	1.4775	215-220	418-428	0.2	
METHYL AMYL KETONE (MAK)	110-43-0	114.19		0.817	6.80				149-151	300-304		
METHYL ETHYL KETONE (MEK)	78-93-3	72 10	999	0.806	6.71	0.00128	00084	1.3787	79-80	174-176	85.0	
METHYL ISOAMYL KETONE (MIAK)	110-12-3	114.2	97.5	0.813	6.76	0.00091			141-148	287-297		
METHYL ISOBUTYL KETONE (MIBK)	108-10-1	100 16	99.8	0.802	6.67	0.00120	.00078	1.3958	114-117	237-243	16.0	
METHYL n-PROPYL KETONE (MPK)	107-87-9	86.13	99	0.808	6.73	0.00125	.00082	1.3895	97-107	206-225		
TETRA HYDRO FURAN (THF)	109-99-9	72.10		0.888	7.40			1.4073	65-67		26.9	
2-NITROPROPANE (NiPar** \$-20)	79-46-9	89.09	94	0.992	8.24	0.00104		1.3941	119-122	149-153 246-252	45.0 12.9	

KETONES & MISC. ACTIVE SOLVENTS	Evap. Rate vs.	Solubility % by Wi. @ 20°C		Dilution Ratio		Bl. Res. % Rei. Hum.	V. 8% NC @ 25°C	Freeze Point	Flash Point T.C.C.	Explosive Limits % by Vol. In Air		Solu- bility Param-
	B. Acet. = 1	In H ₂ 0	O1 H,0	Toluol	Lactol	@ 80°F	CP8	•c	°F	Lower	Upper	olor
ACETONE	7.7	က	(x)	4.6	0.7	< 20	12	95	4	2.6	12.8	10.0
CYCLOHEXANONE	0.31	2.3	8.0	6.1	1.2	92	76	- 47	129	1.1	8.6	9.7
DIACETONE ALCOHOL: A I	0.14	∞	00	3.0	0.5	76	130	- 42.8	126	1.8	6.9	9.2
DIISOBUTYL KETONE (DIBK)	0.2	0.05	0.75	1.5	0.8	95	68	-41.5	120	0.8	6.2	7.8
DIMETHYL FORMAMIDE (DMF)	0.17	∞	∞					61	136	2.2	15,2	121
FURFURAL		8.3	4.8					- 36.5	1528	2.1	19.3	
ISOPHORONE	0.03	1.2	4.3	6.2	1.2	96	117	-8.1	179	0.8	3.8	9.1
METHYL AMYL KETONE (MAK)	0.4	0.46	1.31	3.9	1.2	93	26		102			9.0
METHYL ETHYL KETONE (MEK)	4.6	27.0	125	4.3	0.9	45	14	- 86.9	23	1.8	10.0	9.3
METHYL ISOAMYL KETONE (MIAK)	0.5	0.5	1.2	4.1	1.2	89	27		96		\$ (2)	8.3
METHYL ISOBUTYL KETONE MIHA	1.6	2.0	10	3.5	1.0	78	23	80.3	60	1.2		8.4
METHYL n-PROPYL KETONE MPK	2.5	4.3	3.3	3.9	1.0	70	16	-77.5	45	1.4	7.5	8.9
TETRA HYDRO FURAN (THF)	6.3	00	θυ	2.8	1.0	50	22		4	2.0	11.8	9.9
2-NITROPROPANE (NiPar** S 20	1.10	1.7	0.6	1.2	0.4	82	64	163	82	2.6		9.1

^{**}Trademark Angus

⁸ Tag Open Cup Flesh Point

Table 12.39: Eastman Chemical Ketones (41)

	Evaporation Rate n-BuOAc = 1	Lb/ Gal @ 20°C	Color Pt-Co Max	Specific Gravity @ 20°/20°C	Acidity, as Acetic Acid Max Wt %	Boiling Range °C	Freezing Point °C	Flash Point TCC °C (°F)	Assay Min Wt %
Acetone CH ₃ COCH ₃	5.7	6.59	5	0.792	0.004	55-57	-95	-20 (-4)	99.5
Methyl n-Propyl Ketone (MPK) ^a CH ₃ COC ₃ H ₇	2.3	6.74	15	0.810	0.02	101-105	-86	8 (46)	90.0
Methyl Isobutyl Ketone (MIBK) ^a CH ₃ COCH ₂ CH(CH ₃) ₂	1.6	6.67	10	0.802	0.01	114-117	-84	16 (60)	99.0
Methyl Isoamyl Ketone (MIAK) ^a CH ₃ COC ₂ H ₄ CH(CH ₃) ₂	0.5	6.76	10	0.813	0.02	141-148	-74	36 (96)	98.0
Methyl n-Amyl Ketone (MAK) ^{a,b} CH₃COC₅H ₁₁	0.4	6.80	10	0.818	0.02	147-154	-33	39 (102)	98.0
Diisobutyl Ketone (DIBK) (CH ₃) ₂ CHCH ₂ COCH ₂ CH(Cl	0.2 H ₃) ₂	6.76	20	0.811	0.02	163-176	-42	49 (120)	
EASTMAN® C-11 Ketone	0.02	7.02	75	0.84	0.10	175-250	-8	84 (184) (seta-flash)	_

^aUrethane grade

Table 12.40: Exxon Ketones (8)

	Methyl Ethyl Ketone	Methyl Isobutyl Ketone
Distillation Range, °C	79-81	114-117
Specific Gravity, 20°/20°C	0.81	0.80
Viscosity @ 25°C, cp	0.4	0.6
Vapor Pressure @ 20°C, mmHg	80	15
Density @ 20°C, lb/gal	6.71	6.68
Flash Point, TCC °C*	21	62
Acidity, wt % MAX**	0.003	0.01
Evaporation Rate, n-BuAc=100	572	165
Purity, wt % (MIN))99.5	⟩99.0
Hildebrand Solubility Parameter	9.3	8.6
Surface Tension @ 20°C, dynes/cm	25	24
Water Content, wt % (MAX)	0.1	0.1
Water Solubility @ 25°c, wt %		
In water	26.3	1.7
Water in	11.8	1.9
Inhalation TLV***	200	50
CAS Registry Number	78-93-3	108-10-1

^{*}Tag Closed Cup, ASTM D 56 **As acetic acid

^bKosher certified

^{***}Threshold Limit Value is a registered trademark of the ACGIH

Table 12.41: Hoechst-Celanese Ketones (42)

Physical Properties

Autoignition Temperature, °C	515.5	Heat of Combustion, kg-cal/g mole	582.3
Boiling Point at 760 mm Hg, °C	79.6	Heat of Fusion, cal/g mole	1.78
Boiling Point at 760 mm Hg, °F	175.3	Heat of Vaporization, btu/lb at 20°C	212.4
Coefficient of Thermal Expansion per °C at 20°C	1.126 x 10 ⁻³	Molecular Weight Refractive Index, n	72.11 1.3787
Critical Pressure, atmospheres Critical Temperature, °C	41.0 252.5	Solubility at 20°C at wt % in water water in	26.8 12.5
Dielectric Constant, 20°C	15.45	Specific Gravity, 20/20°C	0.8062
Evaporation Rate (BuAc = 1)	5.7	Specific Heat of Liquid, at 20°C, cal/g	.525
Flammable Limits (lower limit, vol %) (upper limit, vol %)	2.0 11.0	Surface Tension at 20°C, dynes/cm Vapor Density (air = 1)	24.6 2.5
Flash Point, Tag Open Cup, °F Tag Closed Cup, °F	30 20	Vapor Pressure, at 20°C, mm Hg Viscosity at 25°C, centipoise	77.5 0.40
Freezing Point, °C	-86.7	Weight, pounds per gallon at 20°C	6.71

Table 12.42: Shell Chemical Ketones (14)

Typical properties of the compounds

ı ypıc	al properties of the C	ompounds		
	Acetone	Methyl ethyl ketone	Methyl Isobutyl ketone	Diacetone alcohol
Molecular weight	58.080	72.108	100.162	116.162
Specific gravity (apparent)				
60/60°F	0.7967	0.8105	0.8055	0.9441
20/20°C	0.7925	0.8065	0.8022	0.9409
25/25°C	0.7879	0.8023	0.7986	0.9374
Weight per U.S gallon (in air)				
60°F	6.636	6.750	6.709	7.863
20°C	6.595	6.711	6.676	7.830
25°C	6.549	6.668	6.638	7.792
Boiling point @ 760 mm	0.0.0	0.000	0.000	
°C	56.13	79.64	116.2	169.2
۰F	133.03	175.26	241.16	336.6
Boiling point change	100.00		_,,,,,	
°C/mm @ 760 mm	0.0385	0.04	0.046	0.075
Vapor pressure @ 20°C, mm	185.95	70.21	14.96	0.81
Freezing point @ 760 mm, °C	-94.897	-86.69	-83.5	-44.
Refractive index n 20	1.35900	1.37880	1.3957	1.4234
-				
Heat of vaporization				
cal/g @ 760 mm	122.09	105.95	82.50	90.0
Heat of fusion at melting point				
cal/g	23.53	24.86		
Specific heat (liquid)				
cal/g °C @ 25°C	0.51	0.51	0.53	0.62
Flash point, tag open cup, °F approx.	15.	20 .	79.	135.
tag closed cup, °F approx.	-15.	23.	60 .	126.
Flammable limits in air				
% of compound, upper	11.0v	11.5v	7.5v	
lower	3.0v	1. 8 1v	1.4v	
Solubility, % wt.				
in water, @ 20°C	complete	27.1	2.04	complete
water in, @ 20°C	complete	12.5	2.41	complete
Azeotrope with water,				
%w compound	none	88.73	75.7	12.7
Boil pt. @ 760 mm, °C		73,41	87.93	98.8
Viscosity, cps				
@ 20°C			0.583	
@ 25°C	0.3075	0.41	0.55	2.9
@ 30°C		0.365		-
Surface tension				
dyne/cm 20°C	22.32	24.6	23.64	28.9
		=		- ·

Table 12.43: Union Carbide Ketones (19)

nes			Relative Evaporation	Vapor Pressure	Density		Specific Hoy Solubility Parameters				
	Formula	Molecular Weight	Rate nBuAc = 1	at 20°C, mm Hg	at 20°C, lb/gal	Gravity at 20/20°C	Total	Hydrogen .Bonding	Polar	Non-Pola	
Acetone	CH₃COCH₃	58.08	14.40	184.0	6.59	0.792	9.6	5.4	4.8	6.4	
Cyclohexanone	CH ₂ [CH ₂] ₄ CO	98 .1 <i>5</i>	0.40	3.0	7.89	0.948	10.4	5.4	4.6	7.6	
Diacetone Alcohol	CH3C(OH)(CH3)CH2COCH3	116.16	0.12	1.0	7.82	0.940	9.8	6.1	5.6	5.2	
Diisobutyl Ketone	[CH3CH(CH3)CH2]2CO	142.24	0.15	1.0	6.77	0.808	8.1	1.9	3.3	7.1	
Isophorone	$CH=C(CH_3)CH_2C(CH_3)_2CH_2CO$	138.21	0.02	0.1	7.68	0.923	9.4	1.6	4.6	8.0	
Methyl n-Amyl Ketone	CH3COC5H11	114.19	0.28	2.0	6.80	0.817	9.0	3.5	3.7	7.4	
Methyl Ethyl Ketone	CH3COC2H5	72.10	6.60	75.0	6.71	0.806	9.5	4.6	4.5	6.9	
Methyl Isobutyl Ketone	CH3COCH2CH(CH3)2	100.16	1.60	15.0	6.67	0.802	8.6	2.9	3.9	7.1	

ones	Viscosity at 20°C,	Surface Tension at 20°C,	Boiling Point at 760 mm Hg,	Solubility at 20°C, Percent by Wt		Flash Point, Tag Closed	Electrical Resistance®,	Odor Detection Threshold ¹⁶	Hazardous Air	CAS Registration
	cР	dynes/cm	°C	In Water	Water In	Cup, °F	Megohms	ED50, ppm	Pollutant ^(c)	Number
Acetone	0.3	23.7	56.3	Con	nplete	:0			No	67-64-1
Cyclohexanone	2.2	35.0	155.7	2.3	8.0	111			No	108-94-1
Diacetone Alcohol	3.2	30.3	169.2		·	133			No	123-42-2
Diisobutyl Ketone	1.0	23.2	169.4	0.05	0.75	120	0.06		No	108-83-8
Isophorone	2.6	31.6	215.2	<0.02	4.3	190			Yes	78-59-1
Methyl n-Amyl Ketone	0.8	26.7	151.5	0.4	1.3	105	0.75	0.02	Nó	110-43-0
Methyl Ethyl Ketone	0.4	24.5	79.6	24.0	10.0	21			Yes	78-93-3
Methyl Isobutyl Ketone	0.6	24.0	116.1	2	1	61	0.45		Yès	108-10-1

(a) Measured with a Ransburg Model 219CB Paint Resistance Tester. Values listed are for commercially available materials.

(b) Odor Detection Threshold is the concentration of adorant in ppm necessary for 50% of a test panel to detect or perceive an odor in air

		TYPE OF COATING												
		Relative Evaporation		1	litrocellulos	se .			The state of the s	,,,,,,,,,,,,-	WALL THE REAL PROPERTY OF THE PERSON NAMED IN COLUMN TWO I			
Type Ketone	rate (BuAc = 100)	Conven- tional	Hot Spray	High- Low	Muiti- Color	Emui- sions	Vinyl	Cellulose Acetate	1/2-s Butyrate	Ethyl Cellulose	Acrylic	Urethane	Water Soluble	
Fast	Acetone	1440	•		•		***************************************	•	•	•	•	•	***************************************	•
Evaporating	Methyl Ethyl Ketone	631	•		•			•	•	•	•	•	•	•
Medium	Methyl Isobutyl Ketone	162	•	•		•	•							
Evaporating	Methyl n-Amyl Ketone	40	•	•	•			•		•	•	•		•
	Cyclohexanone	23	•	•	•									
Slow	Diisobutyl Ketone	17	•	•	•	•	•	•	•		•	•		
Siow Evaporating	Diacetone Alcohol	12	•	•	•	-	•	•	•		•			_
cvaporating	Isophorone	2		•	•	•	•		-	•	•			•
	Isobutyl Heptyl Ketone	.1				-	•		•		•	•		

General Solvent Properties of UCAR® Ketones

			81	Percent Sol	ution of R.	5. 1/2-s Nitroce	ellulose				
	Relative Evaporation	Weight	D	Dilution Ratio		Blush Resistance		S	Solubility Parameters		Status under Rule
	Rate (BuAc = 100)	per Gallon at 20°C, Ib	Toluene	Naphtha	Xylene	at 80°P, % RH ± 2%	Viscosity at 25°C, cP	Totai	Polar	Hydrogen Bonding	66-Type Regulations(*)
Acetone	1440	6.59	4.5	0.7	_	< 35	9	9.62	4.79	5.39	NPCR
Methyl Ethyl Ketone	631	6.71	4.3	0.9		51	10	9.45	4.52	4.63	NPCR
Methyl Isobutyl Ketone	162	6.67	3.6	1.0	3.2	78	19	8.58	3.94	2.88	PCR-20%
Methyl n-Amyl Ketone	40	6.81	3.9	1.2	3.6	92	25	8.98	3.73	3.52	NPCR
Cyclohexanone	23	7.89	5.7	1.1	4.8	92	79	10.42	4.58	5.39	NPCR
Diisobutyi Ketone	17	6.72	1.5	0.6	1.5	95	65	8.06	3.32	1.88	PCR-20%
Diacetone Alcohol	12	7.82	3.0	0.5	2.3	76	148	9.78	5.56	6.14	PCR-20%
Isophorone	2	7.67	6.2	****	5.1	96	104	9.36	4.58	1.55	PCR-5%
Isobutyi Heptyi Ketone	1	6.84	lmm.	lmm.	lmm.			7.95	2.93	1.74	PCR-20%

Pootnote:

⁽a) NPCR. Nonphotochemically Reactive: PCR-20% and PCR-5%, Photochemically Reactive — volume percent without requiring emission control.

654

Resin Solubilities of UCAR® Ketones

	Cellulose Acetate,		e Acetate rrate,	Ethyl Cellulose,		Poly- (methyl	UCAR Solution	Poly- vinyl Acetate AYAI'
Ketone	41% Acetyl	17% Butyryi	37% Butyryi	47-49% Ethoxyl	Poly- styrene	Meth- acrylate)	Vinyl Resin VYHH	
Acetone	s	s	s	S	PS	s	s	s
Cyclohexanone	s	s	s	s	S	s	s	s
Diacetone Alcohol	s	PS	s	s	1	s	s	S
Diisobutyi Ketone	1	l I	ı	SW	SW	I	5-Q	PS
Isobutyi Heptyi Ketone	ı	ı	ı	SW	1	ı	ſ	1
Isophorone	s	S	s	s	s	PS PS	s	S
Methyl Ethyl Ketone	s	s	s	s	s	s	s	s
Methyl Isobutyl Ketone	I	I	s	s	s	s	S	5
Methyl n-Amyl Ketone	1	1	s	s	s	s	s	S

NOTE:

Concentration = 0.5 g resin to 4.5 ml of solvent

S = Soluble
I = Insoluble

SW = Swelling

PS = Partly soluble

S-G = Soluble, tendency to gel

(continued)

Constant Boiling Mixtures

,	COMP	COMPONENTS AZEOTROPE											
	Specific	Boiling Point	Boiling Point	Compos	ition at 20°C, %	by Weigh t	Relative Volume	Sp Gr at 20/20°C of					
Mixture	Gravity at 20/20°C	at 760 mm Hg.	at 760 mm Hg.	in Azeotrope	in Upper Layer	in Lower Layer	of Layers at 20°C	Azeotrope or Layers					
Acetone	0.7918	56.3	39.3	33.0				1.040					
Carbon Disulfide	1.2657	46.2	39.3	67.0				1.040					
Acetone	0.7918	56.3	64.7	20.0				1.268					
Chloroform	1.4925	61.2	U4. 7	80.0				1.200					
Acetone	0.7918	56.3		30.0									
Chioroform	1.4925	61.2	57.5 ^(a)	47.0				(b)					
Methanol	0.7922	64.7		23.0									
Acetone	0.7918	56.3	49.8	59.0									
Hexane	0.6717	68.7	45.0	41.0									
Acetone	0.7918	56.3	•	45.0									
Hexane (Commercial)	0.6717	68.7	47.0	48.0				0.720					
Methyl Acetate	0.9355	57.0		7.0									
Acetone	0.7918	56.3		56.5				0.754					
Isopropyl Ether	0.7250	68.3	53.3	43.5				0.764					
Acetone	0.7918	56.3		88.0									
Methanol	0.7925	64.7	55.7	12.0				0.795					
Acetone	0.7918	108.7(0)		68.0									
Methanol	0.7925	109.1(c)	102 ^(c)	32.0				0.796					
Acetone	0.7918	132.1 ^(d)		54.0									
Methanol	0.7925	128.4 ^(d)	124 ^(d)	46.0				0.796					
Acetone	0.7918	151.4 ^(e)		44.0									
Methanoi	0.7925	143.8 ^(e)	140 (e)	56.0				0.796					
Acetone	0.7918	56.3		5.8	1 1 1								
Methanol	0.7925	64.7	53.7	17.4				0.898					
Methyl Acetate	0.9355	57.0		76.8			•						
Acetone	0.7918	56.3		48.0									
Methyl Acetate	0.9355	57.0	55.6	52.0				0.854					
Acetone	0.7918	83.8 ^(f)		98.7									
Water	1.0000	127.30	81.40	1.5				0.795					
Cyclohexanone	0.9482	155.7		38.4	92.0	2.5	U 41.5	U 0.953					
Water	1.0000	100.0	95	61.6	8.0	97.7	L 58.5	L 1.000					
Diacetone Alcohol	0.9395	169.2		13.0									
Water	1.0000	100.0	99.6	87.0				1.002					
Diisobutyl Ketone	0.8075	169.4		48.1	99.25	0.05	U 53.4	U 0.810					
Water	1.0000	100.0	97.0	51.9	0.75	99.95	L 46.6	L 1.000					
sobutyl Heptyl Ketone	0.8215	218.2		16.0	99.8	0.01	U 19.0	U 0.810					
Water	1.0000	100.0	99.0	84.0	0.2	99.99	L 81.0	L 1.000					
	0.9220	215.3		16.1	95.7	1.2	U 16.0	U 0.929					
sophorone Vater	1.0000	100.0	99.5	83.9	95.7 4.3	98.8	L 84.0	L 0.999					

Pootnotes:

a) Distillation barrier present b) Homogeneous at 20°C c) at 4.56 atm d) at 7.82 atm e) at 11.6 atm f) at 20 psig g) at 50/20°C 655

Constant Boiling Mixtures (continued)

	COMP	OMENTS			AZEOTI	ROPE		
	Specific	Boiling Point	Boiling Point	Compos	tion at 20°C, %	by Weight	Relative	Sp Gr at
Mixture	Gravity at 20/20°C	at 760 mm Hg. °C	at 760 mm Hg. °C	In Azeotrope	in Upper Layer	in Lower Layer	Volume of Layers at 20°C	20/20°C of Azeotrope or Layers
Methyl Ethyl Ketone	0.8060	79.6	78.4	37.5				····
Benzene	0.8800	80.1	70,4	62.5				0.853
Methyl Ethyl Ketone	0.8060	79.6		26.1	28.1	5.2		***************************************
Benzene	0.8800	80.1	68.2	65.1	71.3	0.1	U 92.5	U 0.858
Water	1.0000	100.0		8.8	0.6	94.7	L 7.5	L 0.992
Methyl Ethyl Ketone	0.8060	79.6	45.9	15.3		***************************************		N
Carbon Disuifide	1.2657	46.2	45.9	84.7				1.157
Methyl Ethyl Ketone	0.8060	79.6		29.0	· · · · · · · · · · · · · · · · · · ·			
Carbon Tetrachioride	1.5970	76.7	73.8	71.0				1.247
Methyl Ethyl Ketone	0.8060	79.6		22.2	E E	20.5		
Carbon Tetrachloride	1.5970	76.7	65.7	74.8	5.5 0.1	22.6	U 4.0	U 0.993
Water	1.0000	100.0	99.7	3.0	94.4	77. 3 0.1	L 96.0	L 1.313
Methyl Ethyl Ketone	0.8060	79.6		83.0				
Chloroform	1.4925	61.2	79.9	17.0				0.877
Methyl Ethyl Ketone	0.8060	79.6						
Cyclohexane	0.7790	79.0 80.7	63.6	35.0 60.0	37.0	10.0	U 94.5	U 0.769
Water	1.0000	100.0	00.0	5.0	62.4 0.6	0.1 89.9	L 5.5	L 0.980
Methyl Ethyl Ketone	0,8060	79.6		66.0				
thanol	0.7871	78.3	74.8	34.0				0.802
1ethyl Ethyl Ketone	0.8060	79.6	· · · · · · · · · · · · · · · · · · ·	75.0		***************************************		
thanol	0.7871	78.3	73.2	14.0				
Vater	1.0000	100.0		11.0				0.832
lethyl Ethyl Ketone	0.8060	79.6		28.3				
lexane (Commercial)	0.6717	68.7	64.3	71.7				0.698
lethyl Ethyl Ketone	0.8060	79.6		22.0	22.5			***
lexane (Commercial)	0.6717	68.7	55.0	77.0	22.5 77.3	10.0	U 99.0	U 0.68@
later	1.0000	100.0	55.5	1.0	0.2	0.1 89.9	L 1.0	L 0.98@
lethyl Ethyl Ketone	0.8060	79.6		70.0			***************************************	· · · · · · · · · · · · · · · · · · ·
sopropanol	0.7864	82.3	77 .3	30.0				0.800
lethyl Ethyl Ketone	0.8060	79.6		99.0		·		
sopropanol	0.7864	82.3	73.4	88.0 1.0				
ater	1.0000	100.0		11.0				0.834
lethyl Ethyl Ketone	0.8060	79.6		88.0	-			
ater	1.0000	100.0	73.4	12.0				0.834
lethyl Isobutyl Ketone	0.8015	116.1		76.0				
ater	1.0000	100.0	87.9	76.0 24.0	98.4 1.6	2.0 98.0	U 80.4 L 19.6	ย 0.806 L 0.999

a) Distillation barrier present b) Homogeneous at 20°C

c) at 4.56 atm

d) at 7.82 atm e) at 11.6 atm f) at 20 psig g) at 30/20°C

SPECIFIC GRAVITY VS. TEMPERATURE

SPECIFIC GRAVITY OF SOLUTIONS OF DIACETONE ALCOHOL AND ACETONE

Table 12.46: Solubility of Ketones in Water (19)

Table 12.47: Solubility of Water in Ketones (19)

Table 12.48: Relative Evaporation of Ketones—Fast to Intermediate Evaporating Liquids (19)

CHART KEY

- A Acetone
- **B** Methyl Ethyl Ketone
- C Methyl Isobutyl Ketone
- **D** Mesityl Oxide
- E 2,4-Pentanedione

Table 12.49: Relative Evaporation of Ketones—Intermediate to Slow Evaporating Liquids (19)

CHART KEY

- F Cyclohexanone
- J Isophorone
- G Diisobutyl KetoneH Diacetone Alcohol
- K Isobutyl Heptyl Ketone
- I Acetophenone
- L Propiophenone

Table 12.50: Viscosity vs Concentration of Chlorinated Rubber (Hercules PARLON S-20) in MEK (8)

Acids

Table 13.1: Acetic Acid (2)

Vinegar Acid Methanecarboxylic Acid Ethanoic Acid

сн_зсоон

Acetic acid is a colorless liquid with a pungent odor; it is made synthetically from acetylene or by the oxidation of alcohol. It is soluble in water, alcohols, ethyl ether, and other organic solvents. It is used as a precipitant for albumen, casein, and rubber latex. It is also employed in the manufacture of leather, cordage, linoleum, acetate solvents, acetyl derivatives, dyes, matches, printing inks, and polishes, and as an assistant in dyeing processes.

Specifications (Glacial Acetic)

	Standard + Laundry Special	U.S.P. XH	C.P.
Acetaldehyde	0.05% (max.)		
Acidity, as acetic acid	99.5% (min.)	99.5% (min.)	$99.8^{o}_{ij} \ (min.)$
Color	Water-white	Water-white	Water-white
Formic acid	0.2% (max.)		0.00% (max.)
Freezing point	15.6°C (min.)	15.6°C (min.)	16.24°C (min.)
Non-volatile matter		0.0265% (max.)	0.0008% (max.)
Water content	0.5% (max.)	0.5% (max.)	0.2% (max.)
Weight per gallon at 20°C	8.74 lbs.	8.74 lbs.	8.74 lbs.

Table 13.2: Viscosity of Acetic Acid and Acetic Anhydride Mixtures at 15° and 76.5°C (19)

Ethylacetic Acid **Butanoic Acid** Propylformic Acid

 $CH_3CH_2CH_2COOH$

Butyric acid is a water-white liquid having a characteristically pronounced and highly disagreeable odor. It is soluble in most organic solvents and completely soluble in water. The importance of butyric acid is found in its butyrate, made with alcohols; these compounds are used as flavors because of their pleasant fruity odors. Other uses are in the manufacture of flavor esters, plastics, drugs, in leather tanning and for deliming hides.

Typical Properties and Specifications

Boiling point at 760 mm Coefficient of expansion at 20°C at 55 Color Critical temperature Critical density Dissociation constant at 25°C Electrical conductivity at 25°C Flash point (ASTM open cup) Heat of combustion Heat of fusion Heat of vaporization Melting point

163.5°C 0.001026°C 0.001064 Water-white 355°C 0.302 1.48 × 10-4 recip. ohm 0.00039 × 10⁻⁴ recip. ohm 170°F 5905 cal. (15)/g 20.1 cal. (15)/g 1.59 cal./g -5.7°C

Solubility in water at 20°C Solubility of water in solvent at 20°C Specific gravity at 20/20°C Specific heat Refractive index at 19°C Surface tension at 20°C Vapor pressure at 20°C Viscosity at 25°C Weight per gallon at 20°C Chlorides Distillation range at 760 mm Purity

Complete Complete 0.9595 0.514 (20-100°C) 1.3980 26.8 dynes/sq cm 0.84 mm Hg 0.01529 poise 7.985 lbs. None 160-165°C 99.0% by wt., min.

Table 13.4: Viscosity of Aqueous Butyric Acid Solution at 25°C (19)

Table 13.5: Butyric Anhydride (2)

(C3H,CO)2O

Butyric anhydride is a water-white liquid which hydrolyzes to butyric acid in the presence of water. Like butyric acid, it is used in making butyrates, flavors, drugs and tanning agents.

Boiling point at 760 mm. 199.5°C. Color Water-white Flash point 190°F. Melting point -75°C. Specific gravity at 20/20°C. 0.965-0.970 Vapor pressure at 20°C. 0.37 mm. Hg Weight per gallon at 20°C. Distillation range at 760 mm. Below 190°C. Above 200°C.

Below 195°C. Purity

8.1 lbs.

None None Not more than 10% 85% by wt., min.

Table 13.6: Solubility of Water in Caproic Acid at Various Temperatures (19)

Table 13.7: 2-Ethylbutyric Acid (2)

Diethyl Acetic Acid 2-Ethylbutanoic Acid

 $(C_2H_5)_2$ CHCOOH

2-Ethylbutyric acid is a water-white liquid, similar to butyric acid in most of its properties, except that its odor is less strong and it is not as soluble in water. Its halogenated derivatives are finding use in the manufacture of drugs. Its esters with higher glycols are outstanding vinyl resin plasticizers.

Boiling point at 760 mm. Flash point Solubility in water at 20°C. Solubility of water in solvent at 20°C. Specific gravity at 20/20°C.	194°C. 210°F. 0.22% by wt. 3.3% by wt. 0.9225	Vapor pressure at 20°C. Weight per gallon at 20°C. Distillation range at 760 mm. Purity	0.14 mm. Hg 7.68 lbs. 185°-200°C. 90% by wt., min.
--	---	---	---

Table 13.8: 2-Ethylhexoic Acid (2)

Octoic Acid
2-Ethylhexanoic Acid

 $\mathrm{CH_3(CH_2)_3CH(C_2H_5)COOH}$

This acid possesses a mild odor and a high boiling point. It is important for its metallic esters, the properties of which suggest usefulness as varnish driers. These metallic salts are stable, mild-odored, light-colored compounds, and are soluble in hydrocarbons. The glycol esters of this acid are excellent vinyl resin plasticizers.

Boiling point at 760 mm. Flash point Solubility in water at 20°C. Solubility of water in solvent at 20°C.	226.9°C. 260°F. 0.25% by wt. 1.2% by wt.	Vapor pressure at 20°C. Weight per gallon at 20°C. Distillation range at 760 mm.	0.03 mm. Hg 7.55 lbs. 220°–230°C. (90% distills within this range
Specific gravity at 20/20°C.	0.9077	Purity	95% by wt. min.

Table 13.9: Solubility of Water in Ethylhexolc Acid, Ethylbutyraidehyde and Ethylpropylacrolein (19)

α-Hydroxypropionic Acid

CH3CHOH-COOH

Lactic acid, which is among the oldest known organic acids, is obtained from sour milk by the reduction of hexose sugars or by the interaction of acetaldehyde and carbon monoxide. It is miscible with water and many organic reagents. Since it has an asymmetrical carbon atom, lactic acid exists in two optical isomeric forms. Peckham states that "the nomenclature used to designate the isomeric forms was, until recently, very confusing. The form of the acid commonly known as sarcolactic, the form occurring in blood, has (+) rotation but the I configuration. It is therefore correctly designated as I(+) lactic acid and its mirror image as I(+) lactic acid. The salts of the I(+) form are levorotatory and the salts of the I(+) form are dextrorotatory. Because of the low optical rotatory power of the free acids, rotation of the pure acid or its simple salts is not a suitable criterion for establishing the optical form of the acids, or the percentage composition in case of a mixture".

Commercial lactic acid has been determined to be a mixture of α -hydroxypropionic acid, lactyllactic acid, and water. When dilute lactic acid is concentrated, two molecules of lactic acid unite to form lactyllactic acid and water. The lactyllactic acid splits off from the water

Polylactyllactic acids may also be formed by loss of water between the carboxyl and the alcohol groups, thus:

The conditions which affect the production of a lactic acid solution from lactyllactic acid are temperature, concentration and age of solution.

A graph showing the Composition of Aqueous Lactic Acid Systems at Equilibrium and at Progress States of Dehydration.

Table 13.11: Trifluoroacetic Acid (25)

CF₃CO₂H Mol. Wt. 114.03 72.5°C **Boiling Point** Water Azeotrope (20.6% water) 105.5°C (1) Freezing Point -15.36°C (1,2) Density at 25°C 1,4844 g/ml 12.4 lb/gal Vapor Pressure 0°C 28.8 mm (3) 25°C 107 mm Heat of Vaporization 7949 cal/mol (3) 125.5 Btu/lb Viscosity at 25°C 0.813 cp (4) Dielectric Constant at 25°C 42.1 *€ (5)* 0.026 10⁵/cm ohm (4) Conductivity at 25°C Surface Tension at 26°C 13.44 dynes/cm (6)

- (1) Swarts, F., Bull. Acad. Roy. Belg. Classe sci., 8, 343 (1922).
- (2) Cady, H.H. and Cady, G.E., J. Am. Chem. Soc., 76, 915 (1954).
- (3) Taylor, M.D. and Templeman, M.B., J. Am. Chem. Soc., 78, 2950 (1956).
- (4) Fialkov, Y.Y. and Zhikarev, V.S., Zh. Obshch. Khim., 33, 3466, 3471, 3790 (1963).
- (5) Simons, J.H. and Lorentzen, K.E., J. Am. Chem. Soc., 72, 1426 (1950).
- (6) Jasper, J.J. and Wedlick, H.L., J. Chem. Eng. Data, 9, 446 (1964).

VAPOR PRESSURE OF TRIFLUOROACETIC ACID

FREEZING POINTS WATER—TRIFLUOROACETIC ACID SYSTEM

Properties of Derivatives of Trifluoroacetic Acid

Compound	Formula	Boiling Point °C	Melting Point °C
Trifluoroacetic Anhydride	(CF ₂ CO) ₂ O	40	65
Methyl Trifluoroacetate	CF ₃ CO ₂ CH ₃	43	
Ethyl Trifluoroacetate	CF ₃ CO ₂ C ₂ H ₅	62	
Trifluoroacetamide	CF3CONH2	163	75
Trifluoroacetonitrile	CF ₃ CN	_64	
Trifluoroacetyl Chloride	CF₃COCI	19	
Trifluoroacetyl Bromide	CF ₃ COBr	_5	-130
Trifluoroacetaldehyde	CF ₃ CHO	19	
Trifluoroacetaldehyde Hydrate	CF ₃ CH(OH) ₂	102-5	68-70

Table 13.11: (continued)

SOLUBILITY OF INORGANIC ACIDS

MISCIBLE	INSOLUBLE
HCl, HClO ₄ HF, HNO ₈ , H ₂ SO ₄	H ₈ PO ₄

SOLUBILITY OF SALTS IN 100 GRAMS OF TRIFLUOROACETIC ACID AT ABOUT 25°C

Over 10 g	1-10 g	0.1-1 g.	Less than 0.1 g
CsCl K ₃ PO ₄ K ₂ SO ₄ NH ₄ NO ₃	AgF, CrO ₃ , FeCl ₂ , KCl KCrO ₄ , KF, KI KMnO ₄ , KNO ₃ , NaCl, NaCrO ₄ , Nal NaF, NaNO ₃ , Na ₃ PO ₄ , Na ₂ SO ₄	BaCl ₂ , Be Cl ₂ CrCl ₃ Cr ₂ (SO ₄) ₃ MgF ₂ NiF ₂	AgCl, AlCl ₃ BaSO ₄ CaF ₂ , FeF ₃ KClO ₄ NaClO ₄ , PbF ₂

SOLUBILITY OF METAL TRIFLUOROACETATES IN TRIFLUOROACETIC ACID AT 30°C

Metal Salt	Al	Ba	Ca	Cu ⁺²	Hg ⁺²	K	Mg	Na	Ni	Fe ⁻³ *
g Salt/100 g acid	0.01	42	6.3	20	50	50	0.57	13	16	1.2

[•] Ref (38)

It is interesting to note that Si(O₂CCF₃)₄, TiO(O₂CCF₃)₂, Zr(O₂CCF₃)₄ and Th(O₂CCF₃)₄ have been prepared (77). The silicon compound exhibits covalent character.

SOLUBILITY OF GASES AT ABOUT 26°C; PARTIAL PRESSURES 650 mm Hg (38) (Units are ml. gas dissolved in one ml. liquid)

Gas	Cl ₂	со	CO ₂	HBr	HCl	H ₂ S	N ₂	O ₂	SO ₂	
Trifluoroacetic Acid	9.3	0.0	3.5	6.6	4.1	8.6	0.1	0.2	23	
Water	2.1	0.02	0.8	580	423	2.5	0.02	0.03	36	

Table 13.12: Vapor Pressure of Organic Acids and Anhydrides at Various Temperatures (19)

Table 13.13: Fatty Acid Composition of Various Fats and Oils (26)

	BUTYRIC	CAPROIC	CAPRYLIC	CAPRIC	LAURIC	LAUROLEIC	MYRISTIC	MYRISTOLEIC	PENTADECANOIC	PALMITIC	PALMITOLEIC	MARGARIC	STEARIC	OLEIC	LINOLEIC	LINOLENIC	RICINOLEIC	DIHYDROXYSTEARIC	LICANIC	ELEOSTEARIC	ARACHIDIC	EICOSENOIC	EICOSAPOLYENOIC	BEHENIC	ERUCIC (DOCOSENOIC)	DDCOSAPOLYENDIC	LIGNOCERIC	TETRACOSENOIC	TETRACOSAPOLYENOIC	IODINE VALUE	SAPONIFICATION VALUE	TITER -°C.
BABASSU			6.0	5.5	45.0		16.5			7.0		_	3.0	14.5	4.1			_	_							-		=			247-251	***
BUTTERFAT	3.0	1.0	1,5	3.0	3.5	_	12.0	1.5	1.0	28.0	3.0		13.0	28.5	1.5	 -	-		=-	 _ -	-=-	1.0			-		-=-	-=-	_	12-18 25-42		33-38
CASTOR			-				-		-	1.5		_	0.5	5.0	4.0	0.5	87.5	0.5		-	0.5					_			_=	81-91	177-187	1-3
COCOA BUTTER							0.5	_	_	25.0		-	34.5	36.5	3.0	0.5	87.3	U.5	=	1=		=		=				= 1	_=	35-40	190-200	45-50
COCONUT	_	0.5	7.0	6.0	48.0	_	19.0			9.0			3.0	6.0	1.5	-	<u> </u>		 _ -	=	-		 -			_		-= +	\equiv	8-12	250-260	20-24
CORN			-		_				_,	12.0			2.0	25.0	60.D	0.5					0.5				= 1		= 1	-=+	_=-	118-128	186-194	14-20
COTTONSEED	-		_	_		Ι=	1.0	_	_	23.0	0.5		2.5	16.5	57.0	-			= -	-	-				_		- 1	+		103-113		30-37
HERRING	-	=					7.0		_	12.0	10.0	_	0.5	8.0	13.0	 			_		_	25			24					125-145		23-27
LARD	_	-	_				1.5			25.0	3.0	0.5	13.0	45.5	10.5	1.0									- 1	-				58-68		34-43
LINSEED				_	_	_	_	_	_	6.0			3.5	20.0	14.5	56.0			_	_	_									180-195		19-21
MENHADEN	_	-		_		_	9.0	0.5	0.5	19.0	16.0	0.5	5.5	24.5	24.5	·	_	_		_		15	.0			.0	_	0.	5	140-180	188-196	31-33
MUSTARD SEED (MONTANA)			_	-			_	_	_	3.0	0.5	_	6.5	22.0	22.5	15.5	-	_		_	0.5	11.5	_		18.0	r = 1		= 1	_	114-128	176-184	6-10
NEATSFOOT	_	-		_	_	0.5	1.0	0.5	_	20.5	6.0		4.5	56.5	9.5					_	0	5				0.5		= 1		65-75	190-199	20-30
OITICICA	-				_	_	_			6.0			5.0	6.0	5.0	-	2	o	76.0	_	_	_	_	_				-	_	140-160	188-196	17-21
OLIVE							_		_	13.0	1.0	_	2.5	74.0	9.0	0.5	_	_	_			-	_	_	_	_	_	-1		79-89	188-196	17-26
PALM	-	-			_	_	1.0	_		43.5		_	4.5	40.0	11.0		_		-		_		_			_	_	- 1	_	45-55	195-205	40-47
PALM KERNEL		_	3.5	3.5	48.5	_	16.5		_	8.5		_	2.5	14.5	2.0				П	-	_	_	_	_		-		- 1	_	14-24		
PEANUT (SOUTHWEST)	_	-	_	-	_	_	_		1	11.0	_		2.5	50.0	30.5	1.0	_		1	-	1.0		-	3.0		-	1.0		-	93-98	188-196	28-34
PEANUT (WEST COAST)		_		\equiv	_	_			_	12.5			3.0	38.5	38.0	1.5	_	1		1	1.5	-	-	3.5	_	1	1.5	- 1	_	96-101	188-196	26-32
PERILLA	_	_			-	_	_	-	_	8.0		_	<u> </u>	16.0	14.0	62.0	_	_	-	-	-		1	1	-	1		_	_	193-208	188-197	12-19
RAPESEED (HIGH-ERUCIC)	_	_	_	_	1	0.5	_			4.0	1		0.5	12.5	14.5	16.5	_				-		_		51.5					97-104		11-15
RAPESEED (MONTANA)	=	_	~	ı	1	_	-			3.0			1.5	32.0	19.0	10.0				-		10.5	_	0.5	23.5	_	[]		104-110	170-180	11-15
RICE BRAN	_	-		-	ì		0.5		_	17.0	_	_	2.5	45.5	32.0	1.0		_			0.5	_					1.0	i		92-109	184-195	
SAFFLOWER		I			1	-	-	+	_	6.5	1		2.5	11.5	79.0	0.5				_		1		_	-	_				138-145	186-195	15-18
SARDINE				-	1		6.0		1	11.5	12.0		2.5	11.5	11.5				_	_		25	.5		19	.5				160-190		28-32
SESAME		1		ı	1	1	-	-	_	9.0	+	-	6.0	41.5	43.0	0.5										-				106-113	188-196	20-25
SOYBEAN	-	ı	-	-	1	1	-	-	1	11.0	1	-	4.0	21.0	55.5	8.5											-			125-135		20-22
SPERM-BODY FATTY ACIDS	_	-		_	1.0		5.0	4.0	-	6.5	26.5			37.0	_						_=_	19.0	_=_		1.0	-				76-88	122-130	
SPERM-HEAD FATTY ACIDS	_	_		3.0	16.0	4.0	14.0	14.0		8.0	15.0		2.0	17.0		<u> </u>						7.0								55-70	140-144	12-18
SUNFLOWER	L =_	-		_	_		0.5		-	6.5	_		4.0	17.0	72.5					_=_		_=			_=_					128-138		
TALL OIL (Distilled Fatty Acids)			L-	_=_						1.0	0.5		1.5	50.5	46.5				_=_						_					128-133 40-50	186-196	1-8
TALLOW		L					3.5	1.0	0.5	25.5	4.0	2.5	19.5	41.0	2.5						0.5										192-202	
TUNG OIL		_		_						4.0			1.0	8.5	3.5	3.0			=	80.0					_	<u> </u>	-		=	160-175	189-195 185-195	34-42
WHALE	l — .	<u> </u>	<u> </u>			<u> </u>	B.0 I	2.0		17.0	13.0		2.0		39.0						- 1	12	.5 1			3.5				110-140	103-153	22-24
		_											-							-		-								_		_
NUMBER OF CARBON ATOMS	4	6	8	10	12	12	14	14	15	16	16	17	18	18		18	18	18	18	18	20	20	20	22	22	22	24	24	24			
NUMBER OF DOUBLE BONDS	0	0	0	470	0	1	0	1	0	0	1	0	0		2	3	1	0	3	3	0	1	2-5	0	11	2-5	0	1	2-5			
MOLECULAR WEIGHT	88	116	144	172	200	198	228	226	242	256	254	270	284	282	280	278	298	316	292	278	312	310		340	338	-	368	366				
NEUTRALIZATION VALUE	636	483	389	325	280	282	245	247	231	216	220	207	197	198	200	201	187	177	191	201	179	180	_= i	164	165		152	153				
IODINE VALUE	0	0	0	0	0	128	0	112	0	0	99	0	0	89	181	273	85	_ •	260	273	0	81		0	74		0	69			,l	
BOILING POINT -°C @ 5 mm Hg		86.5	113.5	137.0	158.0	<u> </u>	178.0		187.0	197.0		206.0	214.0	209.0							233.0			247.0		-	255.0					
MELTING POINT -°C	-8.0	-3.4	16.7	31.6	44.2	L_=_	53.9		52.3	63.1	0.5	61.3	69.6	13.4	-5.0	<-10.0	5.0	141.0	74.0-75.0		75.3	1		79.9	34.7		84.2		-			

Table 13.14: Arizona Chemical ACTINOL Tall Oil Fatty Acids (5)

	COLOR GARDNER 1963	ACID VALUE	SAPONIFI- CATION VALUE	IODINE VALUE (WIJS)	MOISTURE	ASH %	ROSIN ACIDS	UNSAPONI- FIABLES	FATTY ACIDS TOTAL 20	LINOLEIC NON-CON- JUGATED
FA-1	5	194	197	131	< 0.1	< 0.01	4.5	2.7	92.8	34
FA-1 Special	4+	195	198	131	< 0.1	< 0.01	2.8	2.0	95.2	35
FA-2	3+	197	199	130	< 0.1	< 0.01	0.9	1.3	97.8	37
FA-3	3 -	198	200	130	< 0.1	< 0.01	0.5	0.7	98.8	38
EPG	1+	198	200	130	< 0.1	< 0.01	0.5	0.5	99.0	38
736	7	189	-	en despera de como e se estado e se estado e se estado e se estado e se estado e se estado e se estado e se es	< 0.1	< 0.01	7.5	5.5	87.0	0
746	4	198	-	90	< 0.1	< 0.01	1.0	1.5	97.5	0

	LINOLEIC CONJUGATED	OLEIC %	SATURATED %	OTHERS BY DIFFER- ENCE, %	SPECIFIC GRAVITY 25°/25° C	WEIGHT PER GAL. 25° C, LBS.	VISCOSITY GARDNER- HOLDT 25° C	VISCOSITY CPS 25° C	FLASH POINT CLOSED CUP
FA-1	9	44	5	8	0. 906	7.53	A	20	> 200
FA-1 Special	9	47	3	6	0.902	7.50	Α	20	> 200
FA-2	7	50	2	4	0.898	7.47	A	20	> 200
FA-3	7	50	2	3	0.897	7.45	Α	20	> 200
EPG	7	51	2	2	0.897	7.45	A	20	> 200
736	11	61	10	18	0.900	7.48	-	-	> 200
746	13	75	5	7	0.905	7.52	-	-	> 200

Table 13.15: Eastman Chemicals Acids and Anhydrides (41)

	Form	Color Pt-Co Max	Specific Gravity @ 20°/20°C	Boiling Point *C	Freezing Point °C	Flash Point TOC °C (°F)	Fire Point °C (°F)	Assay Min Wi %
Glacial Acetic Acid ^{a,b,c,d} (Ethanoic Acid) CH ₃ COOH	Liquid	-	1.05	118	17	43 (109)	64 (148)	99
Acetic Anhydride ^d (Acetyl Oxide) (CH ₃ CO) ₂ O	Liquid	_	1,08	140	-73	56 (132)	58 (137)	99
Butyric Acid (Ethyl Acetic Acid) C ₃ H ₇ COOH	Liquid	15	0.96	164	-8	71 (160)	75 (167)	99
Butyric Anhydride (C ₃ H ₇ CO) ₂ O	Liquid	_	0.97	195	-73	84 (183)	87 (189)	98
Crotonic Acid (2-Butenoic Acid) CH ₃ CH:CHCOOH	Solid	15 (APHA)	0.96 (80°/4°C)	185	70	94 (202) COC	97 (207)	99
2-Ethylhexoic Acid (2-Ethylhexanoic Acid) C ₄ H ₉ CH(C ₂ H ₅)COOH	Liquid	25	0.91	223	-118	118 (245) COC	127 (260)	99
Isobutyric Acid (2-Methylpropanoic Acid) (CH₃)₂CHCOOH	Liquid	10	0.95	155	-47	62 (143)	67 (152)	99
Isobutyric Anhydride C ₈ H ₁₄ O ₃	Liquid	_	0.95	182	-54	72 (161)	74 (166)	98
Propionic Acid ^{a,b,c} C₂H₅COOH	Liquid	10	0.99	141	-22	54 (130)	58 (137)	99
Propionic Anhydride (C₂H₅CO)₂O	Liquid	_	1.01	167	-45	66 (151)	66 (151)	98

^aAvailable in food grade

Table 13.16: Halocarbon Products BIOGRADE Trifluoroacetic Acid (25)

SPECIFICATIONS:

Assay by titration Trifluoroacetic Anhydride Water	99.9% Min. nil 0.05% Max.
Trace Impurities (Maximums)	
Chloride	0.001%
Fluoride	0.001%
Sulfate	0.001%
Iron (Fe)	0.0001%
Residue after evaporation	0.0002%

Color (Platinum-Cobalt Scale) 5 Max.
Ultraviolet Absorbance Maxima (0.1% in distilled water vs. distilled water in 1 cm cell path)
at 230 nm 0.15%
at 254 nm 0.01%

^bKosher certified

^cAvailable in feed grade

^dAvailable in reagent grade

Table 13.17: EMERY Fatty and Dibasic Acids (63)

Dimer, Trimer and Polybasic Acids

Speci	fications			Com	parative Typ	ical Compositi	lon¹	
	Acid Value	Color 1963 Gardner, max.	Моло	Short-Path Methyl Ester Distillation Di	Poly	Мопо	High Pressure Liquid Chromatography Di	Poly
Empol® 1010 Dimer Acid (polymer grade)	194-200	1	0	97	3	4	94	2
Empol 1014 Dimer Acid	194-198	5	1	95	4	4	91	5
Empoi 1016 Dimer Acid	190-198	6	1	80	19	6	76	18
Empol 1018 Dimer Acid	190-198	8	Tr	83	17	6	79	15
Empol 1022 Dimer Acid	189-197	8	3	75	22	9	77	14
Empol 1024 Dimer Acid	190-198	8	Tr	75	25	8	77	15
Empol 1040 Trimer Acid	175-192	-	-	7	93	2	18	80
Empol 1041 Trimer Acid	161-181	11	-	10	90	3	35	62
Empol 1052 Polybasic Acid	250-265²	dark		_		33	343	633

¹Short path methyl ester fractionation measures the relative molecular size of the various components of these acids. High pressure liquid chromatography (HPLC) separates components according to their functionality.

Food Grade¹ Fatty Acids

	Specific	cations						Ty	pical Cor	npositior)2			
						Sal	urated A	cids			Unsal	urated A	cids	
	Titer, °C	lodine Value max.	Color % Trans. 440/550 nm., min.	Acid Value	Myristic C ₁₄ H ₂₈ O ₂	Pentadecanoic C ₁₅ H ₃₀ O ₂	Palmitic C ₁₆ H ₃₂ O ₂	Margaric C ₁₇ H ₃₄ O ₂	Stearic C ₁₈ H ₃₈ O ₂	Myristoleic C ₁₄ H ₂₆ O ₂	Palmitoleic C ₁₆ H ₃₀ O ₂	0leic C ₁₈ H ₃₄ O ₂	Linoleic C ₁₈ H ₃₂ O ₂	Linolenic Carlando
Emersol® 6320 DP Stearic Acid	53.9-54.7	3.5-5.0	88/99	205-210	2.5	0.5	50	1	40			6		
Emersol 6332 NF TP Stearic Acid ^{3,4}	54.5-55.5	0.5	93/99	205-211	1.5	0.5	50	ĺ	47					
Emersol 6349 Stearic Acid	59.0-60.5	0.5	88/99	203-206	3	0.5	26.5	1	69			Tr		
Emersol 6351 Stearic Acid ⁵	65-68	1.0	84/98	196-201	1	Tr	7.5	2.5	88			1		
Emersol 6313 NF Low-titer Oleic Acid ³	6 max.	88-93	75/98	201-204	3	Tr	5	1	Tr	3	6	75	6	1
Emersol 6321 NF Low-titer White Oleic ³	6 max.	87-92	85/99	201-204	3	Tr	5	1	Tr	3	6	75	6	1
Emersol 6333 NF LL Oleic Acid ^{3,6}	8-10	86-91	85/99	200-204	3	Tr	6.5	1	1.5	3	5.5	73.5	5.5	0.5

¹Meet the requirements of Federal Food Additive Regulation Section 21CFR 172.860.

²Not a specification.

³By thin layer chromatography. This method determines composition according to functionality.

²Typical compositions determined by GLC analysis, AOCS Ce 1-62. These compositions are not manufacturing specifications.

^{*}USP XXI/NF XVI.

⁴Powdered grade also available.

⁵Ernersol 7051 Kosher Grade available.

LL (low-linoleic content) oleic: polyunsaturate 6% max.

Table 13.17: (continued)

Coconut Fatty Acids

	Sp	ecifications						Ty	pical Co	mposition	1		
			Col	or				. 74		ى جى		۳.	
	Titer, °C	lodine Value	% Trans. 440/550 nm., min.	Gardner 1963, max.	Acid Value	Caprylic CeH1602	Capric C10H2002	Lauric C12H24O2	Myristic C14HzeO2	Palmitic C ₁₆ H ₃₂ O ₂	Stearic C ₁₈ H ₃₆ O ₂	Oleic C ₁₈ H ₃₄ O ₂	Linoleic C ₁₆ H ₃₂ O ₂
Emery® 621 Coconut Fatty Acid	23-27	5-16	30/80	5²	258-268	4	5	48	20	10	2	10	1
Emery 622 Coconut Fatty Acid	22-26	5-10	65/96	22	268-276	7	6	48	19	9	2	8	1
Emery 625 Partially Hydro- genated Coconut Fatty Acid	23-25	5.0 max.	85/98	1	269-273	7	6	49	19	9	7	3	
Emery 626 Low IV Ultra Coconut Fatty Acid ³	23-26	1.0 max.	85/99	1	270-276	7	6	51	18	10	7	1	
Emery 627 Low IV, Stripped, Ultra Coconut Fatty Acid	28-32	1.0 max.	90/98	1	252-258		1	55	22	11	10	1	
Emery 629 Stripped, Coconut Fatty Acid	27-30	6-10	88/98	1	253-259		1	55	23	12	3	5	

¹Typical compositions determined by GLC analysis, AOCS Ce 1-62. These compositions are not manufacturing specifications.

Isostearic Acids

(Specifications		
			Color	
			% Trans.	
	Titer,	lodine	440/550,	Acid
	°C, max.	Value	nm., min.	Value
Emersol® 871 Isostearic Acid	10	12 max.	30/85	175 min.
Emersol 875 Isostearic Acid	10	3 max.	85/98	187-197

Olaic Acids

	Specific	cations							Typical	Compos	sition ¹				
							Saturate	d Acids				Unsati	urated A	cids	
	Titer, °C	lodine Value	Color % Trans. 440/550 nm., min.	Acid Value	Lauric C ₁₂ H ₂₄ O ₂	Myristic C ₁₄ H ₂₈ O ₂	Pentadecanoic C ₁₅ H ₃₀ O ₂	Palmitic C ₁₆ H ₃₂ O ₂	Margaric C ₁₇ H ₃₄ O ₂	Stearic C ₁₈ H ₃₆ O ₂	Myristoleic C14HzeO2	Palmitoleic C ₁₆ H ₃₀ O ₂	Oleic C ₁₈ H ₃₄ O ₂	Linoleic C ₁₈ H ₃₂ O ₂	Linolenic C ₁₈ H ₃₀ O ₂
Emersol® 210 Oleic Acid	7-12	87-95	2/30	197-204	Tr	. 3	Tr	5	1	1	4	6	71	8	1
Emersol 213 NF Low-titer Oleic Acid ^{2,3}	5 max.	88-95	56/86	199-204	Tr	3	Tr	5	1	Tr	3	6	73	8	1
Emersol 221 NF Low- titer White Oleic Acid ^{2,3}	5 max.	88-95	77/98	199-204	Tr	3	Tr	4	1	Tr	3	7	73	8	1
Emersol 223 NF Ultra Oleic Acid ²	5 max.	88-95	85/99	199-204	Tr	3	Tr	4	1	Tr	3	7	73	8	· 1
Emersol 233 LL Oleic Acid ⁴	6 max.	86-90	78/99	200-204	Tr	3	Tr	4	1	Tr	3	11	74	4	Tr

¹Typical compositions determined by GLC analysis, AOCS Ce 1-62. These compositions are not manufacturing specifications.

²Typical property.

³Emery 7026 Kosher Grade available.

²Corresponding food grade products available

For external use only, USP XXI/NF XVI.

⁴LL (low-linoleic content) oleic: polyunsaturates 5% max.

Table 13.17: (continued)

Short-Chain Acids²

	Spec	lfications					Typical Com	position ¹		
	Titer, °C	lodine Value max	Color % Trans. 440/550 nm., min.	Acid Value	Caproic CeH ₁₂ O ₂	Caprylic CeH1602	Capric C ₁₀ H ₂₀ O ₂	Lauric C ₁₂ H2402	Myristic C14Hzs02	Paimitic CseHzzO2
Emery® 657 Caprylic Acid	14-16	0.2	88/99	385-390	Tr	99	1			
Emery 658 Caprylic-Capric Acid	1-6	0.3	88/99	356-366	3	56	40	1		
Emery 659 Capric Acid	28-31	0.5	88/99	322-326	_	1	97	2		
Emery 650 Lauric Acid	33-35	0.4	85/97	268-272				71	28	1
Emery 651 Lauric Acid	41-43	0.2	90/98	276-282		Tr	1	96	3	
Emery 652 Lauric Acid	43 min.	0.2	90/98	277-281		Tr	0.3	99	0.7	
Emery 655 Myristic Acid	52.0-53.5	0.5	90/99	243-246				1	97	2

¹Typical compositions determined by GLC analysis, AOCS Ce 1-62. These compositions are not manufacturing specifications.

Stearic and Palmitic Acids

8p	ecifications					_		Typical	Compo	sition ¹			
	-, ,						Saturate	d Acids	3		Un	saturate Acids	ıd .
	Titer, °C	lodine Value	Color % Trans. 440/550 nm., min.	Acid Value	Myristic C14Hzs02	Pentadecanoic C ₁₅ H ₃₀ O ₂	Palmitic C ₁₆ H ₃₂ O ₂	Margaric C₁₁H₃₄0₂	Stearic C ₁₈ H ₃₆ O ₂	Arachidic C ₂₀ H ₄₀ O ₂	Palmitoleic C ₁₆ H ₃₀ O ₂	Oleic C ₁₈ H ₃₄ O ₂	Linoleic C ₁₈ H ₃₂ O ₂
Emersol® 110 Stearic Acid	52.8-53.5	8-12	60/94	205-210	2.5	0.5	50	2	35			9	1
Emersol 120 Stearic Acid ²	53.7-54.7	5-7	88/99	205-210	2.5	1	50	2.5	39		Tr	5	Tr
Emersol 132 NF Lily® Stearic Acid ^{2,3,4}	54.5-55.5	0.5 max.	93/99	205-210	2.5	0.5	50	1.5	45.5				
Emersol 143 Palmitic Acid	58-61	1 max.	93/99	215-223	Tr	0.5	91	4.5	4				
Emersol 150 Stearic Acid ⁵	63.9-65.0	1 max.	93/99	197-202	2	. 1	11	2	83			1	
Emersol 152 NF Stearic Acid ³	66.5-69.0	1 max.	80/97	196-199			7		90	3			
Emersol 153 NF Stearic Acid ³	67-69	1 max.	80/97	196-199			5		95				
Emery 400 Stearic Acid	52 min.	9.5 max.	1/40	197-212									
Ernery 404 Stearic Acid	53.5-54.5	6-9	1/50	197-209									
Emery 405 Stearic Acid ⁶	57 min.	6 max.	40/86	195-205									
Emery 410 Stearic Acid	56.1-60.0	7 max.	40/86	195-209	3	0.5	25	2	63		2.5	4	
Emery 420 Stearic Acid	57.2-63.0	1 max.	85/98	200-207	4	0.5	29	1.5	65		Tr	Tr	
Emery 422 Stearic Acid	55.8-60.0	1 max.	90/99	203-209	3	Tr	41	1	55				

¹Typical compositions determined by GLC analysis, AOCS Ce 1-62. These compositions are not manufacturing specifications.

²Kosher Grades of these acids are available.

^{*}Corresponding food grade products available:

For external use only, USP XXI/NF XVI.

⁴Powdered grade also available.

^{480%} minimum stearic content.

⁶Tentative specification.

Table 13.17: (continued)

Tallow and Modified Fatty Acids

	Specifica	otions						Typica	Compes	ition¹			
						Sat	urated A	cids		U	nsaturat	ed Acids	
	Titer, °C	lodine Value	Color % Trans. 440/550 nm., min.	Acid Value	Myristic C14H25O2	Pentadecanoic C ₁₅ H ₃₀ O ₂	Palmitic C ₁₈ H ₃₂ O ₂	Margaric C1.H3402	Stearic C ₁₈ H ₃₈ O ₂	Palmitoleic C ₁₈ H ₃₀ O ₂	Oleic C ₁₉ H ₃₄ O ₂	Linoleic CısHxz02	Linolenic C ₁₈ M ₃₉ O ₂
Emery® 531 Tallow Fatty Acid	36-44	45-70	19/81	200-208	2.5	0.5	27	1	17	4	42	5	1
Emery 401 Fatty Acid	44-53	34-44	80/95	199-208									_
Emery 876 Fatty Acid	35-45	2-6	_	235-269									
Ernery 877 Fatty Acid	34-45	2 max.	47/932	240-270			80% Mc	onobasic	acids, 20	% dibasi	c acids		
Emery 878 Fatty Acid	· _	1 max.	70/95	295-315									

¹Typical compositions determined by GLC analysis, AOCS Ce 1-62. These compositions are not manufacturing specifications.

Tallow/Coconut Fatty Acid Blends

		Specifications			
				Color	
				% Trans.	
	Acid	lodine	Titer,	440/550	
	Value	Value	•C	nm., min.	
Emery® 515 Fatty Acid	212-218	44-54	35-40	72/96	
Emery 516 Fatty Acid	214-216	35-42	38-45	70/94	
Emery 517 Fatty Acid	216-222	42 max.	37-40.5	78/94	

Linolelc and Vegetable Fatty Acids

		Specifica	tions							Typical	Compo	sition¹				
								Saturate	d Acids				Unsat	turated	Acids	
			Cole			20 °	stic 202	scanoic 3002	žQž žQž	anc 3402	Stearic	toleic 2602	Palmitoleic CreH3002	Oleic C ₁₈ H ₃₄ O ₂	Linoleic C ₁₈ H ₃₂ O ₂	Linolenic C ₁₈ H ₃₀ O ₂
	Titer °C	lodine Value	% Trans. 440/550 nm., min.	Gardner 1963, max.	Acid Value	Lauric C12H24O2	Myristic C ₁₄ HzsO ₂	Pentadecano C ₁₅ H ₃₀ O ₂	Palmitic C ₁₈ H ₃₂ O ₂	Margaric C ₁₇ H ₃₄ O ₂	Stearic C ₁₈ H ₃₆ O ₂	Myristoleic C14H2602	Palmi C.	8 2	S. E.	S E
Emersol® 315 Linoleic Acid	5 max.	145-160	72/96	3	195-202		0.5	Tr	3.5	Tr	0.5	Tr	Tr	19.5	65.5	10.5
Emery® 610 Soya Fatty Acid	15-25	125-138	60/90	3	195-205	Tr	0.5		16	Tr	4		1	25.5	48	5
Emery 818 Soya Fatty Acid	15-23	138-145	72/96	3	197-203				11		4		1	27	50	7

¹Typical compositions determined by GLC analysis, AOCS Ce 1-62. These compositions are not manufacturing specifications.

²Not a specification.

Table 13.18: INDUSTRENE and HYSTRENE Fatty and Dibasic Acids (26)

	l			SPECIFIC	CATIONS				1	TYPIC	AL CAI	RBON	CHAI	N COMPOSITION	
	ACID DESCRIPTION (CTFA ADOPTED NAME)	TITER	IODINE	ACID	% UNSAP	% TRANS 440/550	COLOR LOVIBOND			SA	TURAT	ED		UNSATURATED	OTHER
PRODUCT	CAS NUMBER	*c	VALUE	VALUE	MAX	nm, MIN	MAX	C8	C10	C12	C14	C16	C18		
Industrene 365*	Caprylic/Capric (Mixture Caprylic/ Capric Acid) 67762-36-1	6 Max	1 Max	355-369	1	70/92	5.0Y-0.5R	60	38					2	
• Available only	in bulk re levels are below 0.3%.														

			La	URIC AN	р Мү	RISTIC	Acids								
				SPECIFIC	ATIONS	·			1	YPICA	L CAF	RBON	CHAIR	COMPOSITION	
PRODUCT	ACID DESCRIPTION (CTFA ADOPTED NAME) CAS NUMBER	TITER °C	IODINE VALUE	ACID VALUE	% UNSAP MAX	% TRANS 440/550 nm, MIN	COLOR LOVIBOND MAX	C6	C10	SA C12	C14		C18	UNSATURATED C18:1	OTHERS
Industrene 325	Distilled Coconut (Coconut Acid) 61788-47-4	22-27	5-10	265-277	0.5	65/90	8.0Y-0.8R	7	6	50	19	9	2	6	1
Industrene 223	Hydrogenated Coconut (Hydrogenated Coconut Acid) 67701-05-7	23-26	3 Max	266-274	0.3	85/96	2.0Y-0.2R	7	6	51	18	9	2	5	2
Industrene 328	Stripped Coconut (Coconut Acid) 61788-47-4	27-30	5-10	252-260	0.5	80/96	3.0Y-0.3R			55	24	12	,1	4	4
Hystrene 5012	Hydrogenated Stripped Coconut (Hydrogenated Coconut Acid) 143-07-7	26-33	1 Max	250-260	0.5	85/96	2.0Y-0.2R	1	1	55	23	12	8		
Hystrene 9512	95% Lauric (Lauric Acid) 143-07-7	41-44	0.5 Max	275-281	0.25	85/96	2.0Y-0.2R		1	96	3				
Hystrene 991 2	99% Lauric (Lauric Acid) 143-07-7	43-45	0.2 Max	276-281	0.25	92/98	1.0 Y-0 .1R			99					1
Hystrene 9014	90% Myristic (Myristic Acid) 544-63-8	50-54	0.5 Max	238-245	0.3	85/96	2.0Y-0.2R			2	92	4			2
Hystrene 9514	95% Myristle (Myristle Aeld) 544-63-8	52-54	0.5 Max	241-247	0.3	92/98	1.0Y-0,1R			i	97	l			1
Typical moistu	re levels are below 0.3%.														

Table 13.18: (continued)

			STEAL	RIC AND	PALM	ITIC A	CIDS		,			
		1		SPECIFICATIO	MS			Į	YPICAL CA	ARBON CH	IAIN COMPOSITIO	ON
PRODUCT	ACID DESCRIPTION (CTFA ADOPTED NAME) CAS NUMBER	TITER °C	IODINE VALUE	ACID VALUE	% UNSAP MAX	% TRANS 440/550 nm, MIN	COLOR MAX	C14	SATURATE C16	D C18	UNSATURATED C18:1	OTHERS
Hystrene 9016	90% Palmitic (Palmitic Acid) 57-10-3	59-62	0.5 Max	214-219	0.2	92/98	1.0Y-0.1R Lovibond	1	92	6		1
Industrene 5016	Double Pressed Grade (Stearic Acid) 57-11-4	53-56	4-7	207-210	0.5	88/96	1.5Y-0.2R Lovibond	3	46	42	5	4
Hystrene 5016 NF-EXT	Triple Pressed Grade (Stearic Acid) 57-11-4	54.5-56.5	0.5 Max	206-210	0.2	92/98	1.0Y-0.1R Lovibond	2	51	45		2
Hystrene 5016 NF-EXT-VEG	Triple Pressed Grade (Stearic Acid) 57-11-4	55-57	0.7 Max	205-210	0.2	88/96	1.5Y-0.2R Lovibond	1	52	46		1
Industrene 4516	45% Palmitic (Palmitic Acid) 57–11–4	54-57	2 Max	204-209	1	88/96	1.5Y-0.2R Lovibond	2	44	52		2
Hystrene 4516	45% Palmitic (Palmitic Acid) 57-11-4	55-58	0.8 Max	203-209	0.25	92/98	1.0Y-0.1R Lovibond	2	43	52		3
Industrene R	Stearic Acid 57-11-4	52-64	10 Max	193-213	3		12 Gardner					
Industrene B	Stearic Acid 57–11–4	57-63	3 Max	198-207	1	40/86	3 Gardner	3	28	65		4
Industrene 7018	70% Stearic (Stearic Acid) 57-11-4	58-62	1 Max	200-207	0.5	70/92	5.0Y-0.5R Lovibond	3	28	65		4
Hystrene 7018	70% Stearic (Stearic Acid) 57-11-4	58-62	0.5 Max	200-206	0.3	92/98	1.0Y-0.1R Lovibond	2	28	66		4
Industrene 9018	90% Stearic (Stearic Acid) 57-11-4	65-68.5	2 Max	195-201	0.5	70/92	5.0Y-0.5R Lovibond		6	91		3
Hystrene 9718 NF-EXT	92% Stearic (Stearic Acid) 57-11-4	66.5-69	0.8 Max	195-200	0.3	92/98	1.0Y-0.1R Lovibond		4	94		2
Hystrene 9718 NF-EXT-VEG	92% Stearic (Stearic Acid) 57-11-4	66.5-69	0.8 Max	195-200	0.3	92/98	1.0Y-0.1R Lovibond		5	94		1
Typical moisture	levels are below 0.3%.											

Table 13.18: (continued)

		ı	Ar.	ACHIDIC SPECIFI	AND E	EHENIC	ACIDS	1	ТУРІ	CAL CA	RBON C	HAIN COMPO	RITION	
	ACID DESCRIPTION (CTFA ADOPTED NAME)	TITER	IODINE	ACID	% UNSAP	% TRANS 440/550	COLOR				URATE			OTHERS
PRODUCT	CAS NUMBER	°C	VALUE	VALUE	MAX	nm, MIN	MAX	C14	C16	C18	C20	C20 & C22	C22	
Hystrene 3022	30% Arachidic and Behenic (Hydrogenated Menhaden Acid) 112-85-6	51-55	4	193-201	1.5	50/90	3	6	30	30	•.	30		4
Hystrene 5522	55% Arachidic and Behenic (Hydrogenated Menhaden Acid) 112-85-6	60-63	4	178-185	1.5	50/90	3		14	26		55		5
Hystrene 6022	60% Arachidic and Behenic (Behenic Acid) 112-85-6	68-71	2	169-177	1.5	50/90	3			27	10		60	3
Hystrene 7022	70% Arachidic and Behenic (Behenic Acid) 112-85-6	63-67	3	170-180	1.5	50/90	3			23		72		5
Hystrene 9022	90% Arachidic and Behenic (Behenic Acid) 112-85-8	67-72	3	165-175	1.5	50/90	3			6		90		4
Hystrene 9222	92% Behenic (Behenic Acid) 112-85-6	74-79	2	162-169	2.0		3			2	3		93	2
Typical moist	ture levels are below 0.3%.													

				ERUCIO	Acids						
	1			SPECIFICATIONS			1	YPICAL CAR	BON CHAIN C	OMPOSITION	1
	ACID DESCRIPTION (CTFA ADOPTED NAME)	TITER	IODINE	ACID	% UNSAP	COLOR GARDNER		SATURATED	& UNSATURA	TED	OTHERS
PRODUCT	CAS NUMBER	*c	VALUE	VALUE	MAX	MAX	C18	C20	C22	C24	
Hystrene 2290	90% Erucic 112-86-7	27-37	65-90	160-185	2.0	5	1	3	90	4	2

Table 13.18: (continued)

				TALLO	ow Ty	ре Асі	DS								
-		t		SPECIF	CATIONS				T	PICAL	CARB	ON CHAI	N COMP	DSITION	
	ACID DESCRIPTION (CTFA ADOPTED NAME)	TITER	IODINE	ACID	% UNSAP	% TRANS 440/550	COLOR		SATU	RATED		UN	SATURA	ΓED	OTHERS
PRODUCT	CAS NUMBER	°C	VALUE	VALUE	MAX	nm, MIN	MAX	C12	C14	C18	C18	C16:1	C18:1	C18:2	
Hystrene 1835	Soap Blend (Mixture Tallow/ Coconut Acid) 67701-05-7	40 Max	36-42	214-222	l	78/94	4.0Y-0.4R Lovibond	10	6	22	18	3	33	3	5,
Industrene 143	Tallow Type 61790-37-2	39-43	45-65	201-206	1.5		5 Gardner		3	. 24	17	5	43	5	3
Industrene 145	Tallow Type 61790-37-2	44-49	36-44	198-207	1.0	80/93			3	26	25	3	39	1	3
Typical moist	ure levels are below 0.3%.														

				O	LEIC A	CIDS								
		 		PECIFICATION	5				TYPICA	L CARBON	CHAIN CO	MPOSITIO	N	
	ACID DESCRIPTION (CTFA ADOPTED NAME)	TITER	IODINE	ACID	% UNSAP	COLOR		TURATE			UNSATU			OTHERS
PRODUCT	CAS NUMBER	°C	VALUE	VALUE	MAX	MAX	C14	C16	C18	C16:1	C18:1	C18:2	C18:3	
Industrene 105	High-Titer Oleic (Oleic Acid) 112-80-1	14 Max	85-95	195-204	1.5	6 Gardner	3	6	2	6	70	10		3
Industrene 106	Oleic (Oleic Acid) 112-80-1	6 Max	95 Max	198-204	1	3 Gardner	2	5	2	6	72	10		3
Industrene 205	Oleic (Oleic Acid) 112-80-1	14 Max	85-95	195-204	1.5	5.0Y~0.5R Lovibond	2	5	3	5	72	9		4
Industrene 206	Low-Titer Oleic (Oleic Acid) 112-80-1	6 Max	95 Max	199-204	1	7.0Y-1.2R Lovibond	2	4	1	6	72	9		6
Industrene 210	Canola 67701-08-0	13 Max	100-125	190-210		10Y~1.5R Lovibond		7	2		63	20	5	3
Typical moistu	re levels are below 0.3%.													

Table 13.18: (continued)

			Lino	LEIC AND	Line	DLENIC .	Acids						
		1		SPECIFICA	TIONS				TYPICAL	L CARBON	CHAIN CO	MPOSITIO	N
	ACID DESCRIPTION (CTFA ADOPTED NAME)	TITER	IODINE	ACID	% UNSAP	% TRANS 440/550	COLOR GARDNER		IRATED		NSATURAT		OTHERS
PRODUCT	CAS NUMBER	·c	VALUE	VALUE	MAX	nm, MIN	MAX	C16	C18	C18:1	C18:2	C18:3	
Industrene 120	Linseed (Linolenic Acid) 68424-45-3	14-18	185-200	197-202	1		5	7	4	20	16	52	1
Industrene 130	Oleic-Linoleic 67701-06-8	30-38	90-112	198-206	2		4	18	10	31	32	5	4
Industrene 225	Soya (Linoleic Acid) 67701-08-0	25 Max	135-150	195-201	2	75/85	2	4	5	24	57	8	2
Industrene 226	Soya (Linoleic Acid) 67701-08-0	26 Max	127-138	195-203	2	70/85	3	11	4	24	53	6	2
Typical moistu	re levels are below 0.3%.												

		i		SPECIFICAT	TIONS			1	TYPICA	L CARI	BON CHA	IN COMP	OSITIO	N
	ACID DESCRIPTION (CTFA ADOPTED NAME)	TITER	IODINE	ACID VALUE	% UNSAP MAX	% TRANS 440/550	COLOR	SA1	URATE C16		UNSA	TURATE		OTHERS
PRODUCT	CAS NUMBER KOSHER	*c	VALUE	VALUE	MAA	nm, MIN	MAA	614	C10	010	C18:1	16:2	16:3	
Hystrene 4516 NF-FG	45% Palmitic {Palmitic Acid} 57–11–4	55-59	0.6 Max	203-209	0.25	92/98	1.0Y-0.1R Lovibond	1	44	54				1
Hystrene 5016 NF-FG	Triple Pressed Stearic (Stearic Acid) 57-11-4	54.5-56.5	0.5 Max	206-210	0.2	92/98	1.0Y-0.1R Lovibond	2	51	45				2
Hystrene 5016 NF-FG-VEG	Triple Pressed Stearic (Stearic Acid) 57-11-4	55-57	0.5 Max	205-210	0.2	92/98	1.0Y-0.1R Lovibond	1	52	46				1
Hystrene 7018 FG	70% Stearic (Hydrogenated Tallow Acid) 57-11-4	58-62	0.5 Max	200-205	0.3	92/98	1.0Y-0.1R Lovibond	2	28	66				4
Industrene 8718 FG	87% Stearic (Stearic Acid) 57-11-4	66-68	1 Max	195-200	0.5	92/98	1.0Y-0.1R Lovibond		9	89				2
Hystrene 9718 NF-FG	92% Stearic (Stearic Acid) 57-11-4	66.5-69	0.5 Max	195~200	0.3	92/98	1.0Y-0.1R Lovibond		4	94				2
Industrene 226 FG	Distilled Soya (Soya Acid) 67701-08-0	26 Max	127-138	195-203	2	70/85	3 Gardner		11	4	24	53	6	2

Table 13.19: NEO-FAT Fatty Acids (59)

	NEO. FAT	A Report		/				SPE	CIFICATIO	NS							- /		ΔΡΡ	$2 \cap V$	IRAA	TE	CHE	- 2417	Δ 1	CON	UPOS		- A
	NEO: FAT					1											/			IGA	2 (1)		CHE	TO	~~~	PHY	VIF US	1111	NΓ
	NEO- FAT®			S. Zee	./	Y deline	• /	Yales Palles	***************************************	• • /		/	Sulling Control	will only 1	Malilian	10 00 00 00 00 00 00 00 00 00 00 00 00 0	S S	di di di di di di di di di di di di di d	1	1		3/	/	/	7	7	7 7	1 de C. 16.	Japan Japan
	-		Min	Max	Min	Max	Min	Max	Max	Ma	Max	Mit	Max	Max	1	4			SATU	RATED		/			1		SATUR		
		Commercially Pure Caprylic	8.0	12.0		0.7	387	392	1.0 R- 5 Y 5-1,	4" 0.2	4.0 R-40 Y	387	394	0.2	5.0	92.0	3.0		T	T	_	Γ		T	+	T	T	Т-	T
Į	8-S	98% Min. Commercially Pure Caprylic	15.0		<u> </u>	0.5	385	390	0.5 R- 3 Y 5-1/	4" 0.2	2.5 R-15Y	385	392	0.2	0.4	99.2	0.4						1	+-	T	1	1	-	
SHORT CHAIN	10	Commercially Pure Capric	29.0	32.0		0.5	323	329	0.8 R- 3 Y 5-1/	4" 0.2	2.5 R-10 Y	323	331	0.2		1.0	97.0	2.0						+	1	1	1	†-	
SATURATED ACIDS	12	Commercially Pure Lauric	41.5	44.0	L	0.5	278	282	0.5 R- 3 Y 5-1/	4" 0.2	1.5 R-10 Y	278	284	0.2			1.0	97.0	2.0				1	+-	1	†	1	 	┢
Į.	12-43	99% Commercially Pure Lauric	43.0			0.5	278	282	0.5 R- 2 Y 5-1/	4" 0.2	1.0 R- 5 Y	278	284	0.2			0.3	99.0	0.7					1	1-	†	 	 	├-
Į.	14	Commercially Pure Myristic	52.0			0.5	244	249	0.5 R- 2 Y 5-1/	0.2	1.5 R- 8 Y	244	251	0.2				1.5	97.5	-†	1.0		 	1	1-	†	1	 	
į.	255	Stripped Coco	27.5	29.5	8.0	13.0	252	258	1.0 R- 7 Y 5-1/	4" 0.3		252	260	0.5			1.0	55.0	22.0	\exists	11.0		3.0	+	$^{+-}$	+-	6.0	2.0	-
	265	Distilled Coco	23.0	26.0		10.0	265	275	1.0 R- 7 Y 5-1/	0.3		265	277	0.5		5.0	6.0	52.0	19.0	\neg	9.0		2.0	1-	 	+	6.0	1.0	_
	16	Commercially Pure Palmitic	59.0	61.0		0.5	216	220	0.5 R- 2 Y 5-1/	0.2	1.0 R- 6 Y	216	221	0.3					1.0	0.5	92.5	1.0	5.0	1	├	╁		-	\vdash
[16-5	97% Commercially Pure Palmitic	61.6			0.5	216	220	0.5 R-2.0 Y 5-1/	0.2	1.0 R- 6 Y	216	221	0.3				$\neg \uparrow$	1	0.1	98.0	0.2	1.7	 	\vdash	+	 		_
	16-54	Eutectic Palmitic-Stearic	53.0	55.0		0.5	211	213	0.5 R- 2 Y 5-1/4	0.2	1.5 R- 7 Y	211	214	0.4	1			$\neg \neg$	2.0	0.5	66.0	1.5	30.0	 	<u> </u>	+-	 		
	16-56	80% Commercially Pure Palmitic	56.0	58.0		1.0	214	218	0.6 R-3.5 Y 5-1/	0.2	2.0 R-12 Y	214	219	0.4			$\neg \uparrow$		1.5	0.7	80.5	2.0	15.3	<u> </u>	_	 			
Γ	18	Commercially Pure Stearic	65.5	68.0		1.0	195	200	1.0 R- 5 Y 5-1/4	0.2	3.5 R-25 Y	197	201	0.5						_	7.0	2.5	90.0	0.5	\vdash	1-	trace		
LONG CHAIN	18-S	Special C. P. Stearic	65.5			0.5	195	200	0.5 R-1.5 Y 5-1/4	0.2	1.5 R-5.0 Y	197	201	0.5	\neg		-†		<u> </u>	\dashv	7.0	2.5	90.0	0.5	\vdash	 			
SATURATED ACIDS	18-53	Single Pressed Stearic	53.3	54.2	5.0	10.0	207	210	2.0 R- 15 Y 5-1/4	~ 0.5		207	211	0.8	_			_ †	2.5	→-	\rightarrow		38.0			-	5.0		
T	18-54	Double Pressed Stearic	54.0	54.6	4.5	7.0	208	211	0.5 R- 2 Y 5-1/4	~ 0.5	3.0 R-20 Y xxx	208	212	0.5			- †			_	-		39.0		\vdash	-	4.0		
J ⁻	18-55	Triple Pressed Stearic	55.0	56.0		0.5	208	211	0.5 R- 2 Y 5-1/4	~ 0.5	1.0 R- 7 Y	208	212	0.5			-+	\dashv	 +-		2.0	_	43.5		-	-	4.0		
	18-58	Hydrogenated Tallow Acid	57.0	61.0		1.0	201	206	1.0 R- 5 Y 5-1/4	" 0.5	2.5 R-15Y	201	207	0.5		\neg			\rightarrow	-	\rightarrow		66.0	1.0	-	┤┤	\rightarrow		
F	18-59	Rubber Grade Stearic	55.0	62.0		9.0	195	208	8.0 R-40 Y 1"	0.5				2.0	_	-	-+	2.0			-	\rightarrow	60.0	1.0			5.0		
[-	18-61	Stearic-Palmitic	60.0	64.0		1.0	198	205	1.0 R- 5 Y 5-1/4	0.5	3.5 R-25 Y	198		0.5	\dashv	+	+			0.5 2	_+			1.0			trace trace	\dashv	
	90-04*	Low Poly-unsaturated Oleic Acid‡		7.0	84.0		200	204	1.0 R- 8 Y 5-1/4	0.4	XX	200	205	1.0	-	-+	-+	_		\leftarrow	-		trace	1.0	1.5	6.5		4.0	1.0
UNSATURATED	92-04*	5°C Max Titer Crystallized White Oleic		5.0		95.0	200		1.3 R- 9 Y 5-1/4	+	 		-+	1.0	_	\dashv	\dashv				-	-	trace		1.5			-+	
	94-04*	5°C Max Titer Crystallized Red Oil	1	5.0		95.0	199	-	1.0 R- 7 Y I"	0.4	XX		-	1.5	-	+	-+			-		\rightarrow	trace	\dashv	1.5		~—		1.0
17	+	8-11°C Titer Crystallized Red Oil	8.0	11.0		95.0	199		1.0 R- 7 Y I"	0.4				1.5	+		-			-	-	-			1.5	\rightarrow	\rightarrow		1.0
UNSATURATED ACIDS-OTHER	-	Distilled Animal Acid	40.0	44.0	49.0	60.0	201		1.5 R- 10 Y 1"	0.5		201		1.0	+	-+	-		3.0 0	_	-+-	-	2.0		1.0	-+			1.0 0.5

^{*}Ester Number 1 Maximum

xxxPeroxide Index Max 1

xxFlash Point Min 300°F

12 Hours at 200°C; 5%" Lovibond Cell.

‡Polyunsaturates Max 5%

PROPERTIES OF FATTY ACIDS-SATURATED, UNSATURATED, AND SUBSTITUTED

	Systematic name	Number of C atoms	Viscosity centiliposes (T°C)	Index of refraction (T C)
Saturated				
Capric	Decanoic	10	2.88 (70)	1.4130 (80)
Undecylic	Undecanoic	11	7.30 (50)	1.4164 (80)
Lauric	Dodecanoic	12	4.43 (70)	1.4191 (80)
Myristic	Tetradecanoic	14	5.83 (70)	1.4236 (80)
	Pentadecanoic	15		1.4254 (80)
Pentadecylic	Hexadecanoic	16	7.8 (70)	1.4272 (80)
Palmitic	Heptadecanoic	17		1.4287 (80)
Margaric		18	9.87 (70)	1.4299 (80)
Stearic	Octadecanoic	20	The state of the s	1.4250 (100
Arachidic	Eicosanoic			1.4270 (100
Behenic	Docosanoic	22		
Unsaturated				1.44103 (70
Palmitoleic	9-Hexadecenoic	16		1.4582 (20)
Oleic	9-Octadecenoic	18	9.41 (60)	1.4758 (20)
Erucic	13-Docosenoic	22		CONTRACTOR AND ADDRESS OF THE PARTY OF THE P
Linoleic	9,12-Octadecadienoic	18		1.4699 (20)
Linolenic	9,12,15-Octadecatrienoic	18		1.480 (20)
Eleostearic	9,11,13-Octadecatrienoic	18		1.5112 (50)
Substituted				1 4716 (20)
Ricinoleic	12-Hydroxy-9-octadecenoic	18		1.4716 (20)
Vernolic	12-Epoxy-9-octadecenoic	18		1.4628 (40)

UNSATURATED FATTY ACIDS (C, H20. 12, O), where x is an integer from 1 to 5)

Geneva Nomenciature	Chemical Formula	Acid Value	Melting Point °C	lodine Value	Molecula Weight
	CH_CH_2,CH= CH(CH,),COOH	247.87	-4.0	112	226.35
		220.53	0.5	100	254.40
		198.63	13.4	90	282.45
		198.63	46.5	90	282.45
	CH*(CH*)+CH= CH(CH*)+,COOH	165.72	34.7	75	338.57
9, 12-Octadecadienoic	CH ₂ (CH ₂) ₄ CH= CHCH ₂ CH= CH(CH ₂) ₇ COOH	200.06	5.0	181	280.44
BLE BONDS					
	CH+CH+CH> CHCH+CH= CHCH+CH= CH(CH+)+COOH	201.51	-10.5	273	278.42
9, 11, 13-Octadecatrienoic	CH ₄ (CH ₂) ₄ CH= CHCH= CHCH= CH(CH ₂) ₂ COOH	201.51	49.0	273	278.42
	Homenclature E BOND 9-Tetradecenoic 9-Hexadecenoic cis-9-Octadecenoic trans-9-Octadecenoic cis-13-Docosenoic E BONDS 9, 12-Octadecadienoic BLE BONDS 9, 12, 15-Octadecatrienoic	## Chemical Formula BOND 9-Tetradecenoic CH _x (CH _x) _x CH= CH(CH _x) _x COOH 9-Hexadecenoic CH _x (CH _x) _x CH= CH(CH _x) _x COOH cis-9-Octadecenoic CH _x (CH _x) _x CH= CH(CH _x) _x COOH trans-9-Octadecenoic CH _x (CH _x) _x CH= CH(CH _x) _x COOH cis-13-Docosenoic CH _x (CH _x) _x CH= CH(CH _x) _x COOH EBONDS 9, 12-Octadecadienoic CH _x (CH _x) _x CH= CHCH _x CH= CH(CH _x) _x COOH BLE BONDS 9, 12, 15-Octadecatrienoic CH _x CH _x CH= CHCH _x CH= CHCH _x CH= CH(CH _x) _x COOH	Ceneval Nomenciature Chemical Formula Value E BOND February (CH ₂ (CH ₂) ₂ CH= CH(CH ₂) ₂ COOH 247.87 9-Tetradecenoic CH ₂ (CH ₂) ₂ CH= CH(CH ₂) ₂ COOH 220.53 cis-9-Octadecenoic CH ₂ (CH ₂) ₂ CH= CH(CH ₂) ₂ COOH 198.63 trans-9-Octadecenoic CH ₂ (CH ₂) ₂ CH= CH(CH ₂) ₂ COOH 198.63 cis-13-Docosenoic CH ₂ (CH ₂) ₂ CH= CH(CH ₂) ₁ COOH 165.72 E BONDS 9, 12-Octadecadienoic CH ₂ (CH ₂) ₂ CH= CHCH ₂ CH= CH(CH ₂) ₂ COOH 200.61 BLE BONDS 9, 12, 15-Octadecatrienoic CH ₂ CH ₂ CH≃ CHCH ₂ CH= CHCH ₂ CH= CH(CH ₂) ₂ COOH 201.51	Ceneral Nomenclature Chemical Formula Value Point °C E BOND Point °C CH _A (CH _A) _A CH= CH(CH ₂) ₇ COOH 247.87 —4.0 9-Hexadecenoic CH _A (CH ₂) _A CH= CH(CH ₂) ₇ COOH 220.53 0.5 cis-9-Octadecenoic CH _A (CH ₂) ₇ CH= CH(CH ₂) ₇ COOH 198.63 13.4 trans-9-Octadecenoic CH _A (CH ₂) ₇ CH= CH(CH ₂) ₇ COOH 198.63 46.5 cis-13-Docosenoic CH _A (CH ₂) ₇ CH= CH(CH ₂) ₁ COOH 165.72 34.7 E BONDS 9, 12-Octadecadienoic CH _A (CH ₂) _A CH= CHCH ₃ CH= CH(CH ₂) ₇ COOH 200.06 —5.0 BLE BONDS 9, 12, 15-Octadecatrienoic CH _A CH ₂ CH≥ CHCH ₃ CH= CHCH ₃ CH= CHC(H ₂) ₇ COOH 201.51 —10.5	Canners Chemical Fermula Value Point °C Value E BOND 9-Tetradecenoic CH _A (CH ₂) _A CH− CH(CH ₂) ₇ COOH 247.87 −4.0 112 9-Hexadecenoic CH _A (CH ₂) _A CH− CH(CH ₂) ₇ COOH 220.53 0.5 100 cis-9-Octadecenoic CH _A (CH ₂) ₇ CH− CH(CH ₂) ₇ COOH 198.63 13.4 90 trans-9-Octadecenoic CH _A (CH ₂) ₇ CH− CH(CH ₂) ₇ COOH 198.63 46.5 90 cis-13-Decesenoic CH _A (CH ₂) ₇ CH− CH(CH ₂) ₁ COOH 165.72 34.7 75 E BONDS 9, 12-Octadecadienoic CH _A (CH ₂) _A CH− CHCH ₂ CH− CH(CH ₂) ₇ COOH 200.06 −5.0 181 BLE BONDS 9, 12, 15-Octadecatrienoic CH ₃ CH ₂ -CH ² - CHCH ₂ CH− CHCH ₃ CH− CH(CH ₃) ₇ COOH 201.51 −10.5 273 9, 12, 15-Octadecatrienoic CH ₃ CH ₂ -CH ² - CHCH ₃ CH− CHCH ₃ CH− CHCH ₃ CH− CHCH ₃ CH 201.51 −10.5 273

SATURATED FATTY ACIDS (C.H.O.)

Common Name	Geneva Nomenciature	Chemical Formula	Molecular Weight	Acid Value	Melting Point °C
Acetic	n-Ethanoic	сн,соон	60.05	934.26	16.6
Butyric	n-Butanoic	С.Н.СООН	88.10	636.79	-7.9
Caproic	n-Hexanoic	C,H,,C00H	116.15	483.00	-3.4 ·
Caprylic	n-Octanoic	C-H1sCOOH	144.21	389.05	16.7
Capric	n-Decanoic	C.H.,COOH	172.26	325.69	31.6
auric	n-Dodecanoic	C11H22COOH	200.31	280.08	44.2
Myristic	n-Tetradecanoic	C12H =7COOH	228.36	245.68	53.9
Palmitic	n-Hexadecanoic	C1.H.,COOH	256.42	218.80	63.1
Stearic	n-Octadecanoic	C ₁₇ H ₂₆ COOH	284,47	197.23	69.6
	n-Eicosanoic	C ₁ ,H ₂ ,COOH	312.52	179.52	75.3
Arachidic	n-Docosanoic	C ₂₁ H ₄₂ COOH	340.57	164.73	79.9
Behenic Lignoceric	n-Tetracosanoic	C ₂₃ H ₄₂ COOH	368.62	152.20	84.2

Table 13.20: Proctor & Gamble Fatty Acids (39)

Fatty Acids

Chausiaal Danassias		Whole	-Cut Cocom	ut Type		Who	le-Cut Tallov	v Type	Soya Sunflower	Sunflower	Canola	Tallow/Coc
Chemical Properties	C-101	C-103	C-108	C-109	C-170	1-11	T-18	7-22	S-210	S-205	R-910	TC-1010T
Acid Value	267-273 (271)	267-273 (271)	266-274 (271)	266-274 (271)	266-274 (271)	200-208 (203)	200-208 (204)	200-210 (205)	197-203 (201)	200 аррх.	194-202	214-218 (217)
lodine Value	1.3 max. (1.1)	5.0 max. (3.2)	5.0 max. (3.2)	5.0-7.0	12 max. (6)	35-42 (42)	40-55 (50)	45-70 (60)	133 min. (136)	140 аррх.	105-125	36-41 (39)
Moisture (% KF)	0.3 max. (0.1)	0.3 mex. (0.1)	0.3 max. (0.04)	0.2 mex.	0.3 max. (0.05)	0.3 max. (0.05)	0.3 max. (0.05)	0,5 max. (0,1)	0.15 max. (0.04)	0,) max.	0.3 max.	0.3 max. (0.04)
Physical Properties												
Color, Gardner (1963)	(<1)	(<))	(<1)	(<1)	3 max. (2)		5 max. (2)	7 max. (4)	2 max. (1.5)	3 max.	3 max.	
Color, % Transmittance @ 440nm/550nm	85/95 min. (91/97)	85/95 min. (91/97)	85/95 min. (91/97)	80/95 min.	(80/96)	80/93 min. (85/97)						76/93 min (94/98)
Average Molecular Weight	(207)	(207)	(207)	(208)	(207)	(276)	(275)	(274)	(280)	(280)	(282)	(260)
Titer (C)	(27)	(25)	(25)	(25)	(25)	44-47 (45)	(42)	37-44 (39)	21-25 (23)		12 max.	38-42 (40)
Approximate Composition (GC)												
Có Caproic	<1	<l< td=""><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></l<>	1	1	1							
C8 Caprylic	6	6	7	7	7							ı
C10 Capric	6	6	6	6	6	}]]1
C12 Lauric	50	50	49	49	49	1	1	ì	0.5			10
C14 Myristic	19	19	18	18	18	3	3	2	0.5		1	6
C16 Palmitic	1	8	8	8	1	26	25	22	11	8	5	23
C16=1 Palmitaleic						2	3	3		ļ		3
C17 Margaric						2	2	7			0.3	h
C18 Stearic	9	6	6	5	4	25	19	18	4	3	2	17
C18=1 Oleic	1	4	4	5.0-7.0	5	40	42	43	24	20	56	35
C18=2 Linoleic					2	1	- 4	8	52	er .	23	3
C18=3 Linolenic							1	1	8	2.0 max.	n	
C20 Arachidic						<u> </u>			0.3	0.5	0.5	}
CAS No.	67701-05-7	6770i-05-7	67701-05-7	67701-05-7	67701-05-7	67701-06-8	67701-04-8	67701-06-8	67701-08-0	67701-08-0	67701-08-0	67701-06-1

Light Cut Fatty Acid and Methyl Ester

,				Fractionated				
Chemical Properties	C- 8 10	C-810L*	CE-8 10	C-895	C-898	C-899°	C-1095	Œ 1095
Saponification Value	370 max (365)	366 max		395 max (386)	395 max	386-390	331 max (324)	295-305 (302)
Acid Value	358-368 (364)	345-365 (357)	0.5 max (0.2)	380-394 (386)	380-394	385-389	320-330 (324)	0.5 max (0.3)
Iodine Value	0.5 max (0.2)	0.5 max (0.2)	0.5 max (0.2)	0.2 max (0.1)	0.2 max	0.2 max	0.5 max (0.3)	0.6 max (0.3)
Moisture, (%, KF)	0.2 max (0.04)	0.2 max (0.06)	0.15 max (0.06)	0.2 mex (0.03)	0.2 max	0.2 max	0.2 mgx (0.03)	0.15 max (0.04)

Table 13.20: (continued)

Physical Properties

Color - Lov.5'/ 4" Yellow/Red	3/0.8 max (1.1/0.1)	3/1.0 max (1.0/0.0)		3/0.8 max (1.2/0.2)	3/0.8 max	10/1 max	3/0.8 max (1.4/0.3)	
Color-% Transmittance @ 460nm/550nm			95 min (99)					95 min (98)
Avg. Molecular Weight	(154)	(157)		(145)		(144)	(173)	
Titer, (C)	(3)	(3)		(14)		(14)	(30)	
Specific Gravity 25/25 C			0.870					(0.874)
Melting Point (C)			-29					-14

Approximate Composition

C6 Caproic	6 max (4)	0.50 max (0.2)	6.0 max (4)	2.0 max (0.4)	1.0 max	0.6 max		
C8 Caprylic	53-60 (55)	53-63 (57)	51-58 (55.9)	95.0 min (97.5)	98.0 min	99.0 min	(0.9)	(0.4)
C10 Capric	34-42 (39)	37-47 (41)	34-42 (39.3)	(1.5)	1.0 max	0.6 max	95.0 min (96.9)	95.0 min (96.6)
C12 Lauric	2 max (0.4)	1.5 max (0.6)	1.0 max (0.5)	0.5 max (0.0)		0.1 max	(1.4)	(1.7)
C14 Myristic								(0.2)
CAS No.	67762-36-1	67762-36-1	67762-39-4	124-07-02	124-07-02	124-07-02	334-48-5	110-42-9

Table 13.21: Union Carbide Acids (19)

	2-Ethylhexolc Acid C ₄ H ₉ CH(C ₂ H ₅)COCH	isopentanoic Acid C₄H₅COOH	Propionic Acid C ₂ H ₅ COOH	Valeric Acid C₄H₅COOH
Molecular Weight	144.21	102.13	74.08	102.13
Pounds per gallon @20°C	7.56	7.76	8.28	6.9
Specific Gravity @ 20°/20°C	0.09077	0.9323	0.9952	0.9406
Boiling Point @ 760 mmHg, °C	227.0	175.0	140.8	185.5
Vapor Pressure @ 20°C, mmh	lg >0.1	0.21	2.4	0.1
Percent Solubility @ 20°C				
In Water	0.1		Complete	2.4
Water In	1.4	_ ·	Complete	13.0
CAS Registration Number	149-57-5	503-74-2	79-09-4	109-52-4

VAPOR PRESSURES AT VARIOUS TEMPERATURES

VAPOR PRESSURES AT VARIOUS TEMPERATURES

Amines

ALKYL AMINES

Table 14.1: Monomethylamine (2)

CH₃NH₂

Monomethylamine is a colorless, flammable gas with a strong ammoniacal odor; it is sold commercially as a 30% by weight aqueaus solution. It is saluble in ethyl alcohol, ethyl ether, and many other organic substances, as well as in water. It is used in the tanning industry, in the manufacture of dyestuffs, in many synthetic products, and in the treatment of cellulose acetate rayan for dyeing.

Typical Properties and Specifications

Boiling point (75 mm.)	-6°C.
Flash paint (30% salution)	0.3°C.
Melting point	-92.5°C.
Specific gravity at -10.8°/15°C.	0.699
Solubility in water	Very saluble
Weight per gallon (30% solution) at 68°F.	7.7 lbs.
Ammonia	Less than 0.2% by weight of solution
Concentration	3 to 3.5% by weight in water gas
Formaldehyde	Less than 0.3% by weight of salution
Purity	Not less than 98 mal % of total omines

Table 14.2: Dimethylamine (2)

(CH₃)₂NH

Dimethylamine is a colorless gas with a strong ammoniacal odor. The commercial product is an aqueous solution containing 25% by weight of dimethylamine. It is soluble in ethyl alcohol, ethyl ether, water, and many organic solvents. It is used as a dehairing agent in the tanning industry, in the manufacture of antioxidants, dyes, flotation agents, gasoline stabilizers, pharmaceuticals, rubber accelerators, emulsifiers, and cleaning compounds.

(continued)

Table 14.2: (continued)

Typical Properties and Specifications

Boiling point (764 mm.)

Description
Flash point (25% solution)

Melting point

Specific gravity at -6°C.

Solubility in water

Weight per gallon (25% solution, 68°F.)

Ammonia

Concentration

Formaldehyde

Purity

7.2 to 7.3°C.
Gas at ordinary temperature
Approx. 6.25°C.
-96°C.
0.6865
Soluble
Approx. 7.8 lbs.
Not more than 1% by wt. of sol.
25 to 25.5% by wt. in water
Not more than 0.5% by wt. of sol.
Not less than 98 mol % of
total amines

Table 14.3: Trimethylamine (2)

(CH₃)₃N

Trimethylamine is a colorless, flammable, easily condensible gas with a pungent, ammoniacal odor. The commercial product is an aqueous solution containing 25% by weight of trimethylamine. It is very soluble in water and is used as a warning agent in bottled gas, as an insect attractant, and in organic synthesis.

Typical Properties and Specifications

Decomposition temperature
Dielectric constant at 4°C.
Electrical conductivity

Heat of combustian
Ionization constant at 25°C.

Heat of evaporization at BP
Melting point
Specific gravity at -5°C.
Surface tension at -4°C.
Solubility in water at 19°C.

Absolute viscosity at -33.5°C. Ammonia

Formaldehyde

Boiling point

Critical temperature Critical pressure

Purity

161°C. 41 atm. 800 to 1300°C. 2.9 2.2 x 10⁻¹² reciprical ohms at -33.5°C. 578.6 kg. cal. per mol 6.5×10^{-5} for solutions 0.001 N to 0.06N 95.6 cal. per g. -124°C. 0.662 17.4 dynes per cm. 1 liter of aqueous saturated solution contains 410 g. af amine 3.208 millipoises Not more than 0.2% by wt. of solution

Not more than 0.3% by wt.

of solution
Nat less than 98 mol %

Approx. 3.5°C.

Table 14.4: Freezing Points of Aqueous Methylamine Solutions (34)

Table 14.5: Binary Azeotropes of Methylamines (34)

A = Monomethylamine	Azeotrope		Wt. % A
B - Component as follows:	b.p., °C		
Trimethylamine at 760 mm	6.5		70
60 psig	36		85
210 psig	75		90-92
1-3 Butadiene	- 9.5		41.4
1-Butene	-13		22.2
cis-2-Butene	- 9.6		47.5
trans-2-Butene	-10.4		48.5
1-Butene-3-yne	- 6.8		97.5
Isoprene		Minimum B.P.	
2-Methylpropane	-19.9		25.5
2-Methylpropene	-14.3		32
Butane	-14.0		37.6
Amylenes		Minimum B.P.	
A = Dimethylamine			
B - Component as follows:			
Trimethylamine at 760 mm	3		26
107 psig	73		72
Ammonia		Non-azeotrope	
3-Methyl-1-Butene		Non-azeotrope	
A = Trimethylamine			
B - Component as follows:			
Dimethyl ether		Non-azeotrope	
1-Butene		Non-azeotrope	
2-Methylpropene		Non-azeotrope	
n-Butane		Non-azeotrope	
2-Methylpropane		Non-azeotrope	
Acetic acid	149		20
Ammonia	-34		27
Boron trifluoride	230		47
Formic acid	179		75

SALT	MONO	(DI-)	TRI-	SALT	MONO	(DI-)	TRI-
SAL!	C				$\overline{}$	\smile	
					v	v	s
Agi	٧	٧	Αi	26 	٧	s	_
AgNO ₃	٧	٧	-	KAg(CN) ₂	-	s	_
Ag ₂ SO ₂	S	_	-	KCN	_	-	i
Ag ₃ SO ₄	Αi	_	-	KI	-	S	,
BaBr ₂	_	S	- !	KNO ₃	s	_	_
Bal ₂	Αv	Αv	As	K₂PtCl₄	_	S	_
Ba(NO ₃) ₃	S	S	S	K₂PtCl₄	5	-	_
Ba(SCN) ₂	٧	m	i	KSCN	٧	-	_
BiBr _a	_	٧	- :	LiCI	٧	m	_
BiCl _a	A m	_		Mg(NO ₃) ₂	_	A s	
Bil.	Αv	٧	S	NaBr		S	_
Bi ₂ S ₂	s	_		NaCIO ₃	m	S	~
Br ₂ a	٧	Rν	_	NaNO ₃	٧	S	S
CaC,	i	_		NiSO.	j		~
Cal,	_	v	_	P (red)	S	_	i
Ca(NO ₃) ₃	m	ì	i	P (yellow)	m		~
CdBr ₂	_	A m	_	PbBr ₂		m	-
Cd(CN),	_	m	_	Pbl₂⁴	Αs	Αs	Αs
Cdl ₂		v	m	Pb(SCN) ₂	Αv	-	m
Cr ₂ (SO ₄) ₂	ì	_	_	Ptl.	-	s	_
CuCl	Ŕ		_	S	v		S
CuHAsO ₃	s	_	_	Sbl	_	V	i
CuS	s	_	i	Snl.	Αi	m	_
CuSCN	v	_		Srl	_	Αv	_
CuSO ₄	· ·	_	_	Sr(NO ₃) ₂	v	_	_
Fel,	'	m	_	TINO	v	m	s
Fe ₂ (SO ₄) ₃	A i	***	_	UrO ₂ (C ₂ H ₂ O ₂) ₂ •		_	_
			_	UrO ₂ (NO ₃) ₂			i
Hg(CN) ₂	٧	v	-	ZnS	i	_	
Hgl ₂	٧	٧	m	2113		_	
Hg(SCN) ₂	S	_	S	E .			

LEGEND: v = very soluble; m = moderately soluble; s = slightly soluble; <math>i = insoluble; A = formation of an aminate; R = marked reaction

- a) Bromine reacts with dimethylamine with the evolution of heat to form a very soluble crystalline compound. With methylamine, the reaction is much more violent and a black residue is formed in addition to a soluble crystalline product.
- b) lodine is extremely soluble in mono- and dimethylamine, but not in trimethylamine. On standing, the deep color of the solution fades in color, Iodine is only slightly soluble in trimethylamine but, after some weeks, colorless crystals separate from this solution.
- c) Yellow phosphorus is soluble in monomethylamine, forming almost colorless solutions, but on standing the red form, which is only slightly soluble, separates.
- d) Pbl. turns white on contact with the amines. By heating the tubes very gently, the original yellow color returns, indicating that the amine of crystallization has been removed. On cooling, the Pbl. again turns white.
- e) A solution of UrO₂(C₂H₂O₂), gelatinizes on standing for some days.

solubility of methylamines in organic liquids

Volumes of gas per 1 cc of liquid Pressure = 1 atmosphere; temperature = 20°C

SOLVENT	MONO	DI-	TRI
Aniline	271 cc	520 cc	300 cc
Anisole	89	252	185
Benzyl alcohol	314	528	322
i-Butanol	298	598	405
n-Butanol	303	504	379
Cedrene	34	106	86
 Chloronaphthalene Cymene Decahydronaphthalene 	52	174	130
	48	182	177
	24	116	156
Diacetone alcohol	420	457	345
Dibenzylether	115	154	120
Dichlorobenzene	64	252	240
Diethanolamine	313	497	74
Diethylaniline	60	180	134
Diethylene glycol mono-ethyl ether	336	588	216
Dimethylaniline	64	230	149
Dimethylcyclohexylamine	67	187	187
Dimethylformamide	132	298	78
Ethanol	440	727	600
Ethylene glycol	630	860	369
Furfuryl alcohol	413	679	410
Methanol	654	992	573
Methylcyclohexanol	219	439	256
Monoethanolamine	216	379	48
Monoethylaniline	113	324	228
Monomethylaniline	197	406	223
Morpholine	255	580	138
Nitrobenzene	88	226	154
•-Nitrotoluene	86	221	149
Pinene	34	156	176
a-Propanol	339	600	439
Quinoline	92	212	255
Tetrahydronaphthalene	40	170	151
∘-Toluidine	88	430	242
Triethylene glycol	316	488	164
Trimethylene glycol	480	722	307

Table 14.7: Monoethylamine (2)

$C_2H_5NH_2$

Monoethylamine is a water-white liquid which is commercially available as a 70% aqueous solution. It is soluble in ethyl alcohol, methyl alcohol, the paraffin hydrocarbons, aromatic and aliphatic hydrocarbons, ethyl ether, ethyl acetate, acetone, fixed oils, mineral oil, oleic and stearic acids. It is also soluble in hot paraffin and carnauba waxes, which salidify when cooled.

Typical Properties and Specifications (Anhydrous grade) Distillation range 15-18°C Flash point (open cup) Below 20°F Purity 97-99% Specific gravity at 15/15°C 0.689Weight per gallon 5.70 lbs (70% Solution) 16.6°C Boiling point Color Water-white Critical temperature 183.2°C Dissociation constant at 25°C. 5.6 x 10-4 Heat of combustion Gas 9157 cal./g. Liquid 9058 cal./g. Heat of vaporization at 15°C 14.57 cal./g. Heat of solution in water at 19°C 6330 cal. per mol of solute at infinite dilution Melting point -80.6°C At least 70% Specific gravity at 20°/20°C 0.79-0.80 Weight per gallon (20°C) 6.63 lbs.

Table 14.8: Diethylamine (2)

$(C_2H_5)_2NH$

Diethylamine is a water-white liquid with an ammoniacal odor. It is soluble in water, ethyl alcohol, paraffin hydrocarbons, aromatic and aliphatic hydrocarbons, ethyl ether, ethyl acetate, acetone, fixed oils, mineral oil, oleic and stearic acids. It dissolves hot paraffin and carnauba waxes, which solidify when cooled. It is used as a selective solvent for the removal of impurities from oils, fats, ond waxes where its property of hydrating in aqueous solution is utilized; also used in the manufacture of rubber chemicals, textile emulsions, dyes, flotation agents, resins, polymerization inhibitors, gum inhibitors, drugs, and insecticides.

nd Specifications
56.0°C
0.246 g./ce.
36.2 atm
223.5°C
1.26 x 10 ⁻³
Below 0°F
9995 cal./g.
9882 cal./g.
91.03 cal./g.
8220 cal./mol of solute at
infinite dilution
-50.0°C
0.71
0.711
0.516 cal./g.
1.3873
C.346 centipoise
5.89 lbs.
Not below 53°C
Not above 59.5°
At least 98%
None

Table 14.9: Triethylamine (2)

$(C_2H_5)_3N$

Triethylamine is a colorless liquid, freely soluble in water at temperatures below 18°C., soluble in ethyl alcohol, methyl olcohol, ethyl ether, ethyl acetate, aliphatic and aromatic hydrocarbons, acetone, fixed oils, mineral oil, oleic and stearic acids, and in hot carnauba and paraffin waxes, the latter two solidifying when cooled. It is used in the manufacture of corrosion inhibitors, emulsifying agents, dyestuffs, and insecticides.

Typical Properties and Specifications

89.5°C Boiling point Critical solution temperature (in water) 18°C Dissociation constant 6.4 x 10-4 Flash point (open cup) 20°F 10,248 cal./g. Heat of combustion 10,040 cal./mol of solute at Heat of solution in water infinite dilution -114.8°C Melting point Specific gravity at 20/20°C 0.730 1.4003 Refractive index at 20°C Weight per gallon (20°C) 6.1 lbs. Color Water-white Distillation range Initial boiling point Not below 85°C Final boiling point Not above 91°C

Purity 98.5%, min. Water insoluble (20-30°C) None

Table 14.10: n-Propylamine (2)

1-Aminopropane

CH3CH2CH2NH2

n-Propylamine is a colorless liquid soluble in water, methyl and ethyl alcohols, ethyl ether, ethyl acetate, acetone, aromatic, aliphatic and paraffin hydracarbons, fixed oils, mineral oil, oleic and stearic acids, and hot carnauba and paraffin waxes, the latter two solidifying when caaled.

> Boiling point (760 mm) 49-50°C Distillation range 46-51°C Flash point Below 20°F Melting point -83°C Purity 95-99% (min.) Refractive index at 20°C 1.3910 Specific Gravity at 20°C 0.718 Weight per gallon (at 20°C) 5.99 lbs.

Table 14.11: Di-n-Propylamine (2)

$(C_2H_5CH_2)_2NH$

Di-n-propylamine is a colorless liquid, soluble in ethyl alcohol, methyl alcahol, ethyl ether, ethyl acetate, acetone, paraffin hydrocorbons, aliphatic and aromatic hydrocarbons, fixed oils, mineral oil, oleic and stearic acids. It dissolves hot paraffin and carnauba waxes which solidify when cooled. It is partly soluble in water.

> Boiling point 110-1°C Flash point 45°F Melting point -39.6°C 97% min. Purity Specific gravity at 20°C 0.74 Refractive index at 20°C 1.4063 Weight per gallon at 20°C 6.18 lbs.

Table 14.12: Mutual Solubility of Di-n-Propylamine and Water at Various Temperatures (2)

WEIGHT % AMINE	TEMP., *C.	WEIGHT % AMINE	темр., *C.
1.96	52.6	47.54	-1.5
2.42	44.1	60.40	4.2
2.91	36.1	64.06	8.0
5.86	12.2	73.33	17.5
9.33	-0.6	78.69	24.7
12.27	-2.2	82.15	31.2
15.28	-3.5	85.83	39.0
25.21	4.5°	89.26	49.0
33.69	-4.8	93.25	74.8
44.68	-2.9		

[•] Upon cooling to -5.0° the first blue opalescence was noted at -4.9° .

Table 14.13: Solubility Curve at 25° for the System DI-n-Propylamine-Water-Ethanol (29)

Table 14.14: Isopropylamine (2)

2-Aminopropane

CH3CH(NH2)CH3

This water-white, primary aliphatic amine is available commercially in an anhydrous form. It is soluble in water, methyl and ethyl alcohols, ethyl ether, ethyl acetate, aromatic and aliphatic hydrocarbons, acetone, mineral oil, fixed oils, oleic and stearic acids. It is soluble in hot paraffin and carnauba waxes, which solidify on cooling. It is potentially useful as an intermediate in such manufactured products as dyestuffs, surface-active agents, textile specialties, pharmaceuticals, bactericides, insecticides, and cleaning compaunds. It is also used as a dehairing agent in the leather industry.

Boiling point
Flash point
Melting point
Specific gravity at 25/4°C
Vapor pressure at 15°C
pH of 0.1 N aqueous solution
Boiling range
Color

<20°F -101.2°C 0.686 385 mm 11.57 31-35°C Water-white

31.9°C

Table 14.15: Di-Isopropylamine (2)

[(CH₃)₂CH]₂NH

Di-isopropylamine is a water-white liquid with an amine odor. It is soluble in methyl alcohol, ethyl ether, ethyl acetate, acetone, aromatic and aliphatic hydrocarbons, mineral oil, fixed oils, oleic and stearic acids, and only partly soluble in water. It dissolves hot paraffin and carnauba waxes which solidify on cooling.

Boiling range	81-85°C
Flash point	20°F
Specific gravity at 20/20°C	0.726

Table 14.16: n-Butylamine (2)

1-Aminobutane

CH3CH2CH2CH2NH2

n-Butylamine is a colorless liquid with an ammoniacal odor. It is miscible with water, ethyl alcohol, ethyl ether, paraffin hydrocarbons, and many organic solvents, and dissolves a wide range of materials. The butylamine salts and soaps are usually soluble in hydrocarbons. It behaves in many ways like monoamylamine, but will not produce a constant-boiling mixture with water. This compaund is used in the manufacture of specialty soaps, emulsifying agents, desizing agents for textiles, rubber chemicals, flotation agents, corrasion inhibitors, dyestuffs, insecticides, and pharmaceuticals.

Boiling point (760 mm)	77.8°C
Flash point	45°C
Heat of combustion	710 kg. cal. per mol
Melting point	-50.5°C
Specific gravity at 20/20°C	0.7385
Solubility in water	Complete
Solubility of water in solvent	Complete
Refractive index at 20°C	1.4044
Viscosity at 25°C	0.68 centipoise
Vapor pressure at 20°C	0.01 mm
Weight per gallon at 20°C	6.15 lbs.
Acid insoluble	1.0% max.
Distillation range	
Initial boiling point	Not below 73.0°C
Not less than 95%	Below 82.0°C
Final boiling point	Not above 86.0°C

Purity

Table 14.17: n-Dibutylamine (2)

$(C_AH_Q)_2NH$

94% min.

n-Dibutylamine is a water-white liquid with an ammoniacal odor. It is miscible with a large number and variety of organic solvents but its solubility in water is limited. It is soluble in ethyl and methyl alcohols, ethyl ether, ethyl acetate, acetane, aliphatic, and aromatic hydrocarbons, fixed oils, mineral oil, aleic and stearic acids. While it dissolves hat paraffin and carnauba waxes, these solidity an cooling. It is used in organic synthesis where its derivatives are used as flotation reagents, dyestuffs, rubber vulcanization accelerators and corrosion inhibitors.

Boiling point	161°C
Flash point (open cup)	135°F
Specific gravity at 20/20°C	0.76
20/4°C	0.767
Refractive index at 20°C	1.4186
Vapor pressure at 20°C	2.5 mm
Weight per gallon at 20°C	6.33 lbs.
Acid insoluble	0.6% max.
Distillation range	
Initial boiling point	Not below 153°C
Not less than 95%	Below 163°C
Final boiling point	Not above 172°C
Purity	98% min.

Table 14.18: n-Tributylamine (2)

(C₄H₉)₃N

n-Tributylamine is a water-white to light yellow liquid with an ammoniacal odor. It is soluble in ethyl alcohol, methyl alcohol, aliphatic and aromatic hydrocarbons, ethyl acetate, acetone, fixed oils, mineral oil, oleic and stearic acids, hot carnauba and paraffin waxes, the latter two solidifying when cooled, and most organic solvents. It is almost insoluble in water. Its sulfuric acid salts are water-soluble. It is used in the manufacture of corrosion inhibitors, emulsifying agents, dyestuffs, and insecticides.

Boiling point 214°C 0.00105 Coefficient of expansion per °C 187°F Flash point (open cup) -70°C Melting point Specific gravity at 20/20°C 0.7820/4°C 0.77860/15°C 0.755 Refractive index at 20°C 1.431 24.9 dynes/cm. Surface tension at 20°C Viscosity at 25°C 1.35 centipoise at 60°C 0.73 centipoise Weight per gallon at 20°C 6.5 lbs Acid insoluble 0.25% max. Distillation range Not below 203°C Initial boiling point Not less than 95% Below 216°C Not above 219°C Final boiling point Purity 99% min.

Table 14.19: Isobutylamine (2)

(CH₃)₂CHCH₂NH₂

Isobutylamine is a colorless liquid soluble in water, methyl and ethyl alcohols, ethyl ether, ethyl acetate, acetone, aromatic and aliphatic hydrocarbons, fixed oils, mineral oil, oleic and stearic acids, and hot paraffin and carnauba waxes, the latter two solidifying when cooled.

Boiling point 68-9°C Flash point Below 20°F Melting point -85°C Specific gravity at 20°C 0.731 Refractive index at 20°C 1.3985 Weight per gallon at 20°C 6.10 lbs. Distillation range 66-69°C Purity 99% min.

Table 14.20: Diisobutylamine (2)

$(C_4H_9)_2NH$

Diisobutylamine is a colorless liquid soluble in ethyl alcohol, methyl alcohol, aromatic and aliphatic hydrocarbons, ethyl ether, ethyl acetate, acetone, fixed oils, mineral oil oleic and stearic acids. It is insoluble in water and while it dissolves hot paraffin and carnauba waxes, these solidify on cooling.

 Flash point
 85°F

 Melting point
 -70°C

 Specific gravity at 20°C
 0.75

 Refractive index at 20°C
 1.4124

 Weight per gallon at 20°C
 6.22 lbs.

 Distillation range
 136-140°C

 Purity
 97% min.

Table 14.21: sec-Butylamine (2)

$CH_3CHNH_2C_2H_5$

sec-Butylamine is a water-white liquid with a characteristic amine odor. It is soluble in water, methyl and ethyl alcohols, ethyl ether, ethyl acetate, acetane, aromatic and aliphatic hydrocarbons, mineral oil, fixed oils, stearic and oleic acids. It dissolves hot paraffin and carnauba waxes but these solidify on cooling.

Boiling point (772 mm)	66°C
Flash point	20°F
Melting point	104°C
Specific gravity at 20/20°C	0.725
Boiling range	62-69°C

Table 14.22: Mono-n-Butyl Diamylamine (2)

$C_4H_9N(C_5H_{11})_2$

This amine is a light straw colored liquid with an amine odor. It is soluble in acetone, ethyl ether, ethyl acetate, aromatic and aliphatic hydrocarbons, fixed oils, mineral oil, and oleic and stearic acids. It is insoluble in water, methyl alcohol, and although soluble in hot paraffin and carnauba waxes, these solidity on cooling.

Flash point	200°F
Specific gravity at 20/20°C	0.788
Weight per gallon at 20°C	6.56 lbs.
Boiling range	229-241°C

Table 14.23: n-Amylamine (2)

CH3(CH2)4NH2

n-Amylamine is a colorless liquid with an ammoniacal odor. Commercially it is a mixture of the following isomers, although a pure product is available.

	B.P.*C
tert-Amylamine	82
sec-Isoamylamine	87
2-Aminopentane	89
3-Aminopentane	90
Active amylamine	94
sec-Amylamine	95
s-Amviemine	104

It is miscible with water, ethyl and methyl alcohols, ethyl ether, ethyl acetate, acetone, aromatic and aliphatic hydrocarbons, fixed oils, mineral oil, pyridine, oleic and hot stearic acids, hot paraffin and hot carnauba waxes, the latter two solidifying when cooled. It dissolves a varied range of materials which are usually dissolved with difficulty by other organic solvents. It is used as a corrosion inhibitor and as a base for emulsifiers which are soluble in vegetable and mineral oils. It is also employed in textile lubrication, and as a raw material in the manufacture of dyestuffs, emulsifying agents, antioxidants, desizing agents for textiles and pharmaceuticals.

Boiling point
Coefficient of expansion at 20-60°C
Constant-boiling mixture
n-Amylamine
Water
Flash point (open cup)
Heat of vaporisation
Melting point
Specific gravity at 20/20°C
Specific heat at 60°F
Refractive index at 19°C
Surface tension at 13°C

109_104°C

Viscosity at 20°C
Vapor pressure at 26°C
Weight per gallon at 20°C
Color
Distillation range
Initial boiling point
Not less than 95%
Final boiling point
Purity
Water dilution

0.01018 poise
35 mm
6.41 lbs.
Water-white
Not below 84°C
Below 100°C
Not above 110°C
90% min

20:1 min.

Table 14.24: sec-Amylamine (2)

CH3CH(NH2)C3H7

sec-Amylamine is a colorless liquid with an amine odor. It is soluble in water, methyl and ethyl alcohols, aromatic and aliphatic hydrocarbons, ethyl ether, ethyl acetate, acetone, fixed oils, oleic and stearic acids. It dissolves hot paraffin and carnauba waxes which solidify when cooled.

> Boiling point (760 mm) 91-92°C Flash point 20°F Specific gravity at 20°C 0.739 Refractive index at 20°C 1.4047 Weight per gallon at 20°C 6.15 lbs Distillation range 89-92°C Purity 95-99% min.

Table 14.25: Diamylamine (Mixed Isomers) (2)

$(C_5H_{11})_2NH$

Diamylamine is a colorless to straw-colored liquid with an ammoniacal odor, which is composed of a mixture of amyl isomers. It is soluble in ethyl alcohol, methyl alcohol, ethyl ethers, ethyl acetate, acetone, aromatic and aliphatic hydrocarbons, fixed oils, mineral oil, oleic and stearic acids. It is insoluble in water and while soluble in hot paraffin and carnauba waxes, these solidify on cooling. It is a solvent for oils, resins, and some cellulose esters. Introduction of the amyl group imparts oil solubility to otherwise oil-insoluble substances. It is used as a corrosion inhibitor, and in chemical synthesis.

> Coefficient of expansion at 20-60°C 0.00102 Flash point (open cup) 158°F Heat of vaporization 83 cal./g. Specific gravity at 20/20°C 0.77 - 0.78Specific heat at 60°F 0.54 cal./g Refractive index at 20°C 1.4259 Surface tension at 13°C 24.4 dynes/cm. Vapor pressure at 26°C 9 mm Viscosity at 20°C 0.01264 poise Weight per gallon at 20°C 6.45 lbs. Acid insoluble 0.5% min. Distillation range Not below 175°C Initial boiling point Not less than 95% Below 202°C Final boiling point Not above 218°C Purity 99% min. Sulfur 0.06% min.

Table 14.26: Triamylamine (Mixed Isomers) (2)

$(C_5H_{11})_3N$

Triamylamine is a water-white to light yellow, stable liquid which is strongly basic in reaction. It is soluble in ethyl alcohol, ethyl ether, ethyl acetate, acetone, aromatic and aliphatic hydrocarbons, fixed oils, mineral oil, oleic and stearic acids, and in hot paraffin and carnauba waxes, the latter two solidifying when cooled. It is insoluble in water and methyl alcohol. It is an excellent corrosion inhibitor of steel in a 0.13% solution in normal sulfuric acid. It is used in the manufacture of emulsifying agents, dyestuffs, and insecticides.

> Coefficient of expansion 0.00091 Flash point (open cup) 215°F 79 cal./g. Heat of vaporization Specific gravity at 20/20°C 0.79 - 0.80Specific heat at 60°F 0.51 cal./g.Refractive index at 18°C 1.4374 Surface tension at 13°C 24.4 dynes/cm. Viscosity at 20°C 0.02421 poise Vapor pressure at 26°C 7 mm Weight per gallon at 20°C 6.60 lbs. Acid insolubles 1.0% max. Distillation range Initial boiling point Not less than 50% Not less than 95%

Purity

Not below 234°C Above 244°C Below 256°C Final boiling point Not above 260°C 99% min.

Table 14.27: sec-Hexylamine(2)

CH3CHNH2C4H9

sec-Hexylamine is a colorless liquid with an amine odor and soluble in water, ethyl alcohol, and paraffin hydrocarbons.

Flash point Specific gravity at 20°C Weight per gallon Distillation range Purity 55°F 0.748 6.22 lbs. 107-110°C 95-99%

Table 14.28: 2-Ethylbutylamine (2)

Hexylamine

(C2H5)2CHCH2NH2

2-Ethylbutylamine is a water-white liquid with an amine odor. It is soluble in methyl and ethyl alcohols, ethyl ether, ethyl acetate, acetone, aromatic and aliphatic hydrocarbons, fixed oils, mineral oil, oleic and stearic acids. It dissolves in water and while soluble in hot paraffin and carnauba waxes, these solidity on cooling.

Flash point Specific gravity at 20/20°C Boiling range

70°F 0.776 121-125°C

Table 14.29: n-Heptylamine (2)

C7H15NH2

n-Heptylamine is a water-white liquid with an amine odor. It is insoluble in water but soluble in ethyl and methyl alcohols, ethyl ether, ethyl acetate, acetone, aromatic and aliphatic hydrocarbons, fixed oils, mineral oil, oleic and stearic acids. It dissolves hot paraffin and carnauba waxes, which solidify when cooled.

Flash point 130°C
Melting point -23°C
Specific gravity at 20/20°C 0.779
Boiling range 150-160°C

Table 14.30: 2-Ethylhexylamine (2)

Octylamine

 $C_4H_9CH(C_2H_5)CH_2NH_2$

Octylamine is a water-white liquid with an amine odor. It is insoluble in water but soluble in methyl alcohol, ethyl ether, ethyl acetate, acetone, aromatic and aliphatic hydrocarbons, fixed oils, mineral oil, oleic and stearic acids. It dissolves hot paraffin and carnauba waxes, which solidify on cooling.

Flash point Specific gravity at 20/20°C Boiling range 135°F 0.792 165-169°C

Table 14.31: Di-2-Ethylhexylamine (2)

Dioctylamine

 $[C_4H_9CH(C_2H_5)CH_2]_2NH$

Dioctylamine is a colorless liquid with a faintly amine odor. It is soluble in methyl alcohol, ethyl ether, ethyl acetate, acetone, aromatic and aliphatic hydrocarbons, fixed oils, mineral oil, oleic and stearic acids. It is insoluble in water and while soluble in hot paraffin and carnauba waxes, these solidify when cooled. Among the large number of substances it will dissolve are natural and synthetic resins.

Boiling point (760 mm) Flash point Specific gravity at 20/20°C Solubility in water at 20°C 281.1°C 270°C 0.8062 0.02% by wt. Solubility of water in solvent at 20°C Vapor pressure at 20°C Weight per gallon at 20°C Boiling range

0.17% by wt. 0.01 mm 6.71 lbs. 269-280°C

Table 14.32: Cyclohexylamine (2)

Cyclohexylamine is a colorless, caustic liquid with a fishy, amine odor. It has been known since 1893, but not until 1936 was it made in commercial quantities in the United States. It is produced by the catalytic hydrogenation of aniline. It is a strong base, even stronger than ammonia or the ethanol-amines. It is miscible with water and most of the common organic solvents, among which are the alcohols, ethers, ketones, esters, aliphatic and aromatic hydrocarbons, both pure and chlorinated. It is used as a solvent and as a corrosion inhibitor. Either alone or as a soap, it is employed as a wetting-out, cleansing, washing, emulsifying or dispersing agent in the textile industry. It may be used to absorb acidic gases, as a preservative for dyes, as an insecticide, and in the printing and dyeing of textile products.

Typical Properties and Specifications

 Boiling point (760 mm)
 134.5°C

 Freezing point
 -17.7°C

 Fire point
 30°C

 Flash point
 Below 0°C

 Specific gravity at 25/25°C
 0.8647

 Refractive index at 25°C
 1.4565

 Weight per galion at 20°C
 7.206 lbs.

Azeotropic mixture Cyclohexylamine

44.2% by wt. B.P. (760 mm) 96.4°C

Water 55.8% by wt.

Distillation range 132.0-137.5°C

Table 14.33: Dicyclohexylamine (2)

Dicyclohexylamine is a clear, colorless and strongly basic liquid with a faint odor. It is miscible with most organic solvents but only slightly soluble in water. Unlike cyclohexylamine, it does not form an azeotropic mixture with water. It is more toxic than cyclohexylamine when absorbed through the skin and when large amounts are absorbed, death may result.

Dicyclohexylamine soaps are good emulsifying agents. This solvent may be used to absorb acidic gases, to preserve rubber latex, to plasticize casein, to neutralize plant and insect poisons, and as a solvent for dyes in the textile printing and dyeing industry.

Typical Properties and Specifications

Boiling point (760 mm) 255.8°C Freezing point -0.1°C Fire point 160°C Flash point $100^{\circ}\mathrm{C}$ Specific gravity at 25/25°C 0.9104Refractive index at 25°C 1.4823 Weight per gallon at 20°C 7.59 lbs Boiling range 252.0-258.0°C Purity 98%, min.

Table 14.34: ALIQUAT Fatty Quaternary Ammonium Chloride (58)

Product Description Percent solids Aliquat 336*

Methyl tricaprylyl ammonium chloride

88% minimum

Table 14.35: KEMAMINE Fatty Quaternary Ammonium Chlorides (26)

Product	Description (CTFA adopted name)	% Active Min	% Amine Max	% Amine HCI Max	Color Gardner 1963 Max
Kemamine Q-2802C*	Dimethyl Di-Behenyl (Dibehenyl Dimonium Chloride)	75	2	2	4
Kemamine Q-9702C	Dimethyl Di-Hydrogenated Tallow (Quaternium-18)	75	1.5	0.5	2
Kemamine Q-9743CHGW	Trimethyl Monoalkyl (Tallow Trimonium Chloride)	65	1.5	0.5	4
Kemamine Q-9743C	Trimethyl Monoalkyl (Tallow Trimonium Chloride)	65	1.5	0.5	4
Kemamine BQ-9742C	Dimethyl Tallow Benzyl (Tallow Alkonium Chloride)	75	1.5	0.5	6

^{*}Semicommercial.

		pH of 5%		Typical carbon chain composition										
	Average		%		Unsaturated									
Product	molecular weight	solution Max	Ash Max	C14	C 16	C18	C20	C22	C24	C18:1	C18:2			
Kemamine Q-2802C*	690	9	0.2	1	2	5	10	80	3					
Kemamine Q-9702C	575	9	0.2	4	29	67	 		 -					
Kemamine Q-9743CHGW	335-355	9	0.5	4	29	25	<u> </u>			38	4			
Kemamine Q-9743C	335-355	9	0.5	4	29	25				38	4			
Kemamine BQ-9742C	420	9	0.2	4	29	25				38	4			

^{*}Semicommercial.

^{*}Aliquat is a registered trademark of Henkel Corp.

Table 14.36: High Molecular Weight Aliphatic Amines (59)

							_	Prim	ıry								Secon	dery		Dia	mines	
N-alkyl Carbon Chain Length	Armeen 8D	Armeen 10D	Armeen 12	Armeen 12D	Armeen 14D	Armeen 16D	Armeen H T	Armeen H T D	Armeen 18	Armeen 18D	Armeen T	Armeen T D	Armeen S	Armeen S D	Armeen C	Armeen C D	Armeen 2C	Armeen 2H T	Duomeen C	Duomeen C D	Duomeen S	D иомеев Т
Hexy 6 Octy 8 Decy 10 Dodecy 12 Tetradecy 14 Hexadecy 16 Octadecy 18 Octadeceny 18	3 90 7 	90 6	- 2 95 3 - -	- 2 95 3 - -	92 4	- - - 92 7 1	- - - 2 24 71 3	- - 2 24 71 3	- - - 6 90 4	- - - 6 90 4			- - 20 17 26 37		8 9 47 18 5 5	8 9 47 18 8 5	8 9 47 18 8 10	- - - 24 75	8 9 47 18 8 5 5	29 47 18 5 5	_ 20	
Mol. combining weight Percent Primary Amine Percent Secondary Amine Approx. Melting Pt. °C Color—FAC Grade:	135 90 - 13 3	- 8 3	82 	94 24 3	227 92 29 3	95 38 3	85 57 11	275 95 55 3	85 55 11	95 55 3	298 85 46 11	274 95 - 41 3	297 86 31 19	95 22 7	223 85 24 11	95 21 3	450 85 46 9	530 85 68 5	321 40 — 22 19	310 44 20 11	40 40 13	400 40 - 46 19
D—Distilled T—Technical	D	D	T	D	D	D	T	D	Т	D	Т	D	Т	D	T	D	D	D	T	D	T	T
		i_						Din	ethyl	Tertiar	y Ami	ne						D	alkyi	kyl Tertlery Amines		
N-alkyl Chain	Carbo Chair Lengt	ı (Armeen DM16	A DM 16D		Armeen DM18		Armeen DM18D	Armeen D M C		Armeen DMCD	Armeen D M S		Armeen D.M.S.D.	Armeen D.M.H.T		Armeen DMHTD		Armeen Mani	Armeen M2C		Armeen M2S
Hexyl Octyl Decyl Dodecyl Tetradecyl Hexadecyl Octadecyl Octadecenyl Octadecenyl	6 8 10 12 14 16 18 18		- - - - 92 7 1	- 9	92	- - - 6 90 4	-	6 90 4	89 47 18 5		8 9 47 18 8 5	2 1 2 3	0 7		7	2 4 1 3		-	2 2 24 71 3	47	7 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
Mol. weight—theoretical Mol. combining weight Percent Tertiary Amine Approx. Melting Pt. °C Color—Gardner—1933 D—Distilled T—Technical			271 338 80 15 5 T			295 369 80 23 5 T	3	95 21 92 20 1 D	224 280 80 - 10	2	224 244 92 15 1 D	28 36 8 1 T	1 0 0	289 314 92 -8 1 D	1	1 0 7 5	289 314 92 15 1 D	5	22 64 - 28 T	389 436 	5	520 594 9 T

Table 14.37: Solubilities of Pure Dodecyl- and Octadecyl-Trimethylammonium Chlorides in Grams per 100 Grams of Solvent (59)

Salt—Solver	it	-10°	0°	10°	20°	30°	40°	45°	50°	55°	56.5°	60°	65°	70°	72°	80°	84°	86
	Methanol	83.1	113.8	145.8	180	226.6		_								_	_	_
	Acetone			_	_	2.88	9.76	_	41.75	91.9	110.6	_			l _			
Dodecyl	Acetonitrile	l —	4.8	10.9	18.2	32.8	81.2			_	_		_					l _
	Carbon															1		ł
	tetrachloride	l —			_	1.21	34.2	102	gel		_		_		_	_		l _
	Insoluble in ethyl acetate, benzene, n-hexane or cyclohexane at 95°.																	
	Methanol	5.7	15.4	32.5	71.6	112.8	168		252			_				_	_	
	Ethanol(93.5%	6) 3.7	9.3	25.6	43.1	82.9	132		210	_		-		_	l _	_ :	:	
	Acetone	-		l — I	_				0.50	0.71	0.76			_	_	_		l _
	Acetonitrile	l —			0.7	1.8	3.2	_	5.1	_	_ 1	9.9	_	32.7	-	78.6		۱ _
Octadecyl	Carbon					ľ												1
-	tetrachloride	-		_	-		_			0.40		5.04	36.2	_	_		_	۱_
	Chloroform	13.6	25	40.8	56	73.5	100	_	l —	_	_	_	_		_	_ !	_	l
	Ethyl acetate	_	l —			l –			_		l — i		_		_	l _ :	1.22	50
	Benzene	-			_	_		_	_	0.5		3.1	19	46	_	_	_	_
	Insoluble in n-	hexan	e or cy	cloher	ane a	95°C.		'	•							1		

Table 14.38: Solubilities of Organic Compounds in Aliphatic Amines at 25° ± 5°C (1)(2)

Insoluble or extremely slightly soluble
Slightly soluble
Moderately soluble
Worky soluble
Worky soluble
Worky soluble
More than vs
Extremely soluble
Miscible in methylamine column only)
Miscible in methylamine column only)
Miscible in all proportions
Not soluble to an appreciably greater extent in hot solvent
Not soluble to an appreciably greater extent in hot solvent
Not soluble in heated amine (in some cases because of chemical reaction)
Separates into two liquid phases
Solute reacts chemically with solvent. Reaction is rapid enough to be apparent. All acidic substances react more or less rapidly with amines.

(The letter r has been omitted in these cases)
Swells
Swells a Numerals Numerala appearing in diethylamine column indicate number of grams of solute (or of its reaction product with diethylamine) per 100 cc. of solution NH4(-33°C.) : # " : " iso-CaHuNHs C.H.CHINH, (#-C.H.),NH HN (C,H,),N C,H,OH CH,NH, Acenaphthene Acetaldehyde Acetamide Acetanilide Acetic acid 15 SX SSX ins misc vs ins ss ins ssx 55X vs Acetoacetic ester Acetone Acetophenone ∞ ... 00 58X Acetone
Acetophenone
p-Acetophenylene diamine
p-Acetotoluide oo ins 8 9 10 85X SSX SSX 55 65X 58 s Acetylene Acetylene tetrabromide Acetylsalicylic acid Agar-agar Alanine ... 8 :: :: 11 12 13 14 15 ... s ... ٠. vs insn insn vs ... ∞ 22 ins :: 35 ins Alanine
Aldol
Alizarin
Aliyl alcohol
1-Aminoanthraquinone
9-Aminobenroic acid
9-Aminophenol
0-Aminophenol
0-Aminophenol
0-Aminophenol
0-Aminophenol
0-Aminophenol
0-Aminophenol
0-Aminophenol
0-Aminophenol
0-Aminophenol
0-16 17 18 19 20 ∞ 8 ... 88 ins ss ins ss isn 55m 55 ss ins ssx insn VS 5 55% VS1 # Vs + #SD VSF V5 + ss ins S SX 8\$ 86N 8 88 . . V8 55 58 Amyl alcohol (iso)
n-Amyl formate
Anethole
Anhydroformaldehydeaniline
Aniline blue 80 80 83 85 œ ∞ 55 . . 85 00 5311 55 :: ins sex ins 55 ins SSX SE 65 X 88 ssx ins Anthracene Anthranilic acid Anthraquinone Atoxyl Azobenzene ... 55X 8 56X 65 05 55X 5 85X 55 V8 ssx ins 85 X 88 88 8 83 \$5 \$6 55 56 ins SSX ins ins vs ins vsx ins vs ins ins 53 v. Azoxybenzene Beeswax Benzalacetophenone Benzaldehyde Benzamide 8 :: es 8 V5 © es 5 ... \$8M 86X VS © VSS es Va 5 . 55 8 ins ins 41 42 43 44 45 Benzene Benzidine Benzil Benzoic acid Benzoic sulfinide (Saccharin) 00 85 VS SSX ins ss ssp ... 5X s es vs 5X 65 8 vs+ Benzoin Benzophenone Benzyl acetate Benzyl alcohol Borneol 46 47 48 49 50 vs . . es vs+ 5X . 8 8 8 es ... **80** o-Bromoacetanilide p-Bromoaniline Bromcamphor Bromocresol green 1-Bromonaphthalene Vs vs s esx vs+x ss ∞ SSX SSX ins ... CHI vs+ s ins Bromonitrobenzene
 Bromotoluene
 Bromotoluene
 π-Butyl alcohol
 tert-Butyl alcohol 8 8 8 · · .. 8 8 88 :: . 8 8 8 : 60 55 X .. 8 ... ∞ 83.X res 15 Calcium acetate
n-Calcium butyrate
Calcium formate
d-Camphor
Carbon disulfide insn ins vs

Table 14.38 (continued)

		САТОН	о Ми Ми Ми Ми Ми Ми Ми Ми Ми Ми Ми Ми Ми	CH1NH3	C,H, > NH	(C ₂ H ₂),N	(*-CiHt)1NH	*-C.H.NH;	(n-C,H ₆) ₃ NH	(#-C,He);N	iso-C.H., NH	C.H.CH.NH;	NH4(~33°C.)
71 72 73 74 75	Casein Cellulose Cellulose acetate Cellulose nitrate Cerulein	ins ::	ine	 vs	ins ins ss	ins ins ins	ins	ins ins es vs	ins ins ins	ins ins ins ins	ins ins s vs	ins insa s vs	ins es
76 77 78 79 80	Cetyl atcohol p-Chioroacetic acid (mono) p-Chioroform Cholesteroi	s s co ssx	6 8 8 ∞	00 r	 srx vs+ ∞	vsxp vs+1	 vs+	es sx vs 	SSET VS	B BBP BX 	vs vs	ssrm vs	ins VS Gr ins
81 82 83 84 85	Chromotropic salt Cinchonine Cinnamic acid Coconut oil Copal	56 8 	88 VB	::	 5 60	 8.5 00	::	insn ssn sx co	65 60	SSX CO	esx s co insn	SSX co	ins s
86 87 88 89 90	Crystal violet Cyclohezanol o-Dianisidine (bianisidine) Diazoaminobenzene o-Dibromobenzene	5 5 5	VB VB	::	ins ∞ ss vs 40	ins ins vs+x	::	VS SX VEX	ins 89 VB	ins ins	6 E E E V	: : : vs+	\$ YB
91 92 93 94 95	2.3- Dibromopropyl alcohol Dichloramine-T p. Dichlorobenzene Dichlorogallein Dichlorohydrin	vs es 	 VS 	::	 53 ∞	esx	:: ::	var es	ser Ves	r vs+x ::	vsr esx	vs+r es	F 88 8
96 97 98 99 100	2.3-Dihydroxyquinoxaline Dimethyalminoaxobenzene p. Dimethylaminobenzaldehyde Dimethylaminine Dimethylamine Dimethylethylcarbinol	X 8 8	 s co s	::	SX 00 00	SSX	55E	insq sx sx 	 8 	85 	 \$ 	 	5 55
101 102 103 104 105	Dimethylglyoxime 2,6-Dimethylquinoline 2,2-Dinaphthylamine 2,4-Dinitroaniline m-Dinitroaniline	V8 VS SS SS SSI	VS 	 VS V3	ssx vs ssx 9.3	5 \$5X 	SSX 	VS SX 	54 53.X 55	ASX ASX 	Vs 	5 50 8	:: :: ::
106 107 108 109 110	3.5-Dinitrobenzoic acid 4.4-Dinitrodiphenyl 2.4-Dinitro-I-naphthol-7-sulfonic acid 2.4-Dinitrophenol 2.4-Dinitrotoluene	VS 54 85 68	58 VS VS	 	65 58 65 65 55	56 65	66X	S BSX BX SA	58 88 K 55 X	SST SST SST	VS SSX VS	8m 88x 	 VE SS
111 112 113 114 115	Diphenyl Diphenylamine Diphenylbenzamide Diphenylguanidine Diphenyl ketozime	55 VS 	* vs	 vs	41 es es es	s vs ins	es ::	es vs	vs 	ESX	CS SSX VS	es	::
116 117 118 119 120	Diphenyl sulfone (phenyl sulfone) Diphenylurea (sym.) 4.4°-Dipyridyl (bipyridine) Di-p-tolylselenide Zosin	55 8 V5	:	::	\$5X 55 	ins ins	::	55X 98 VSX es VS	55 55 56	ssx ssx ins	SSX S SX V1	\$5X 8	* vs
121 122 123 124 125	Ethyl alcohol Ethyl carbonate Ethyl cyanoacetate Ethylene dibromide Ethylene glycol	& \$ \$ \$	60 60 88	spr	55F 60 60	::	· · · · · · · · · · · · · · · · · · ·	 60 	 	::		80 	ar
126 127 128 129 130	Ethyl iodide Ethyl malonate Ethyl oxalate Ethyl sulfate Pluorene	5 00 5 5 5 5	8 ∞ ∨s		∞ ∞ π 13	 SSR	 sx		60 60 78	 ssx	 	esr sar 	ina
131 132 133 134 135	Pluorescein Galactose Gallein Gallic acid Gelatin	VS 55 	55 55	V8 88	insn ins	ins insn ins	::	s insn	ins :: insx ins	ins insn ins	e ins	ssm ins	•
136 137 138 139 140	Glucose \$.Glucose pentaacetate Glycerol Gusiacol Guanidine nitrate	8.9 8.5 80 80	ins ss ins oo	V8 	58 eq 65	ins	##T	VS+ ES	ina :: ::	ins	::	::	V5 V6
141 142 143 144 145	Gum arabic H acid Hemoglobin Hexaethylbenzene Hexamethylenetetramine	 65 8	ss vs ins	::	insn ins sen	ins	::	ins insn insn ssz ssn	ins	ins 	SBTI 	sn? 	## ##
146 147 148 149 150	Hippuric acid Hydrazine sullate Hydroquinone Hydroxylamine hydrochloride Indigotin	ss ins vs s ins	VS ins ins	VS VS VS V3	ins 35 	ss ins	:: ::	 5 		 44 55	vs s ins	AST AS	vs insr vs

(continued)

Table 14.38: (continued)

		сжон	0 < #13	CH,NH,	CH, > NH	(CaHr)1N	(a-CaHr)2NH	a-Callanda	(n-C.He);NH	(n-C.He)1N	iso-CaHaiNHs	C.H.CH.NH.	NHs(-33° C.)
151 152 153 154 155	Indole Isatin Isoquinoline Lactose Lanolin	V3 3 ∞ 55	ss so ins	::	es 00 85 es	 55 es	::	es Vs ss es	co ins	ins es	 60 65	ins es	 2 2 5
156 157 158 159 160	Linseed oil, raw Lysol Maleic acid Malic acid Malonic acid	 8 VS	 55 34 68	::	eo eo ins ins ins	ins ins insn	ins insx	00 55 R 55 R 55	ins ins ins	ins ins ins ss?	60 SEI ESD SS	∞ insm sex ins	ss ins
161 162 163 164 165	Mannite d-Menthol Mercuric acetate Mercuric cyanide Mercury diphenyl	55 55 5	ing va 	 vs	ez insr	ins es ins ins	6 6 	12 44 63 73	ins es ss 	ins es ins ssn ins	25 25 25	ins es ins ins	86 8 78
166 167 168 169 170	Mercury di-p-tolyl Methanol meso-Methyl acridine Methylene aminoacetonitrile Methylene dianiline	00 VS	 68 68	œ0 	es insn	 65	::	65 E 65 65 65	ins	SSE SSE INSE	65 X 63 64	ins ss	::
171 172 173 174 175	Methyl orange Mucie acid Naphthalene Naphthionic acid I-Naphthol	es ins es es vs	ins •• ins •vs	63 VS	ins ins 27 ss	ins ins sx ins	ins insn	\$3 V\$X 6	ins ins s ins	ins ins sx ins	55 78 5	ins ex es	## ## ***
176 177 178 179 180	2-Naphthol Naphthol yellow Night blue p-Nitroacetanilide m-Nitroaniline	vs 	V4 55 55	VB	es ins s ss	vs+ ins s	::	es 	ins s 	ins S 	es ins s 	ins A	
181 182 183 184 185	 Nitroaniline red Nitrobensaldehyde Nitrobensene Nitrobensene Nitrobensenesulfonamide Nitrobenseic acid 	V8 00	VS 00	VS VS VS	:: ::	\$8 	::	5 50 	### ### ### ### ### ### ### ### ### ##	 	::	# 	 VS
186 187 188 189 190	p-Nitrobenzoic acid p-Nitrobromobenzene o-Nitrophenol p-Nitrophenol p-Nitrophenol p-Nitrophenol	55 V5 V2	55 VE 5 	vs.	55 X 55 X 13	insn ss ss	SSX SSX 	A8 ** ** **	65 55 55	SS SSX SSM SSX	; ; ;;	82 ·	
191 192 193 194 195	o Nitrotoluene P Nitrotoluene 3-Nitro-4-toluidine Nitrourea Oleic acid	60 718 80	# *** ***	VB 	vs+x sx ins co		::	eo Asz		80 88X 87	40 		s vs ins
196 197 198 199 200	Olive cil Orange IV Ozalic acid.2H ₂ O Ozalide Ozanlide Palmitic acid	:: 1 63 16	# # #	 	ine 0.5	ins ins	::	insa ···	sq insn 	ins ins	asn ins	ns ins	ins ::
201 202 203 204 205	Paraffin Paraffin oil s-Pentane 2-Pentene Penacetin	 60 		 eo	50 50 50 55	ex :: ins	 	60 	### 8\$	## 00 sex	::	 	ins :: :: ::
206 207 208 209 210	Phenanthrene Phenol Phenolphthalein Phenylacetic acid maso-Phenyl acridine	55 00 5 65 55	2 00 55 72 3	VE VE VS	# ex 3 	5. 55	::	S VSX	 #	 85	ES 0 	 	ins ***
211 212 213 214 215	Phenylaso-1-naphthylamine o-Phenylenediamine Phenylglucosazone Phenylhydrazine Phenylhydrazine Phenylmercuric bromide	VS 86 90	V8 			::		SI SI SI	::	 	82. VB 	::	75 75
216 217 218 219 220	2-Phenylquinoline Phenyl-y-tolyl sulfone Phenyl urea Phthalic acid Phthalic anhydride	V2 V5 5	VS VS 85 85	ins ins	os os ins sm	ins sa ins	ine sen	ve ss e ins	## ## ine	ssx ssx insx ins	SEX VS	100 8 84.X 86.73	ins
221 222 223 224 225	Phthalimide Picric acid Potsasium amide Potsasium ethyl sulfate Potassium quinaldine	 	86 ins 	VS	esp ins ins	## ## 	61 V3 	vs+ insn vs	\$ \$ 	55CS 55X 	Vs	:3	41 41 41
226 227 228 229 230	Potassium triphenylmethyl Pyridine Pyrogallol Pyrrole Quinaldine	72 72 74 75	90 VE+ VS VS	*** V\$	 sem so	***		: : : ::	•	 86 	:: ::	 sm 	65 65 8
231 232 233 234 235	Ouinsidine picrate Ouinine Ouinoline Ouinoline Ouinoline methiodide Ouinoline yellow (water soluble)	25 6 	**+ :: ::	::	es s so ins	sem ine	**	# 715 CH	20 20 20 20 20 20 20 20 20 20 20 20 20 2	25 26 20 20 20 20 20 20 20 20 20 20 20 20 20	71 71		1000F 00 178
236 237 238 239 240	Ouinone Resortinol Rosaniline Rosan Rosolic acid	71 55 8	6 107 A2 A3	# ** ** **	a iut a	ins	::	 **	:: ima 78	ins ins			es s inar

Table 14.39: Vapor Pressure of Various Amines (37)

Table 14.40: Vapor Pressure of Sharples Amines (37)

ALKYLENE DIAMINES

Table 14.41: Ethylene Diamine (2)

NH2CH2CH2NH2

Ethylenediamine is a water-white, hygroscopic liquid with a strong ammoniacal odor. The commercial product is a 78% solution af ethylenediamine by weight. It is used in the synthesis of organic rubber accelerators, insecticides, textile processing chemicals, emulsifiers, plastics and pharmaceuticals. It is also used as a corrosian inhibitor.

78% solution	
Boiling point (760 mm)	117.2°C
Dielectric constant at 18°C	16.0
Flash point (open cup)	110°F
Heat of combustion	425.6 cal./mol
Heat of solution at 15°C	7.6 cal./mol
Ionization constant at 25°C	7.1×10^{-3}
Latent heat of evaporization	167 cal./g.
Latent heat of fusion (0°C)	77 cal./g.
Melting point	11.0°C
Specific gravity at 20/20°C	0.8995
Solubility in water at 20°C	Complete
Solubility of water in solvent at 20°C	Complete
Refractive index at 26°C	1.4540
Vapor pressure at 20°C	10.7 mm
Viscosity at 25°C	0.0154 poise
Weight per gallon at 20°C	7.49
Constant-boiling mixture	
Ethylenediamine	80% by wt. B.P.°C
Water	20% by wt. 118.5
Boiling range (760 mm)	115 to 122°C
Color	Water-white
Purity	78% by wt.

Table 14.42: Boiling Point Composition Curves for Aqueous Ethylenediamine Solutions (2)

Table 14.43: Diethylenetriamine (2)

$NH_2CH_2CH_2NHCH_2CH_2NH_2$

Diethylenetriamine is a colorless liquid, completely miscible with water and many organic solvents. It is a solvent for sulfur, acid gases, numerous natural resins and dyes. It is also used in organic synthesis and as a saponification agent for acidic materials.

Boiling point (760 mm)	207.1°C
Flash point (open cup)	215°F
Specific gravity at 20/20°C	0.9542
Vapor pressure at 20°C	0.03 mm
Weight per gallon at 20°C	7.94 lbs.

Table 14.44: Boiling Point Composition Curves for Aqueous Diethylenetriamine Solutions (2)

Table 14.45: Tetraethylenepentamine (2)

NH2(CH2CH2NH)3CH2CH2NH2

Tetraethylenepentamine is a viscous, hygroscapic and high-boiling liquid. It is miscible with water and many organic solvents, and is a solvent for dyes, resins, sulfur, and acid gases. It also forms soaps with fatty acids and it is employed in the synthesis of emulsifiers, plastics, and in rubber reclaiming.

Boiling point (760 mm)	333°C
Flash point	325°F
Specific gravity at 20°C	0.998
Vapor pressure at 20°C	0.01 mm
Weight per gallon at 20°C	8.31 lbs.
Boiling range (760 mm)	320°-360°C

Table 14.46: Propylenediamine (2)

1,2-Diaminoprapane

CH3CH(NH2)CH2NH2

Propylenediamine is a water-white liquid with an ammoniacal odor. It is miscible with water and many organic salvents, among them being benzene and naphtha. It does not form a constant-boiling mixture with water. It is a solvent for such substances as cellulose nitrate, castor oil, shellac, pine oil, copal gum, rosin, and dyes.

It behaves much like ethylenediamine but it is considered superior in solvent power. It is used in the manufacture of gasoline additives.

Boiling point (760 mm)
Flash point (open cup)
Specific gravity at 20/20°C
Solubility in water at 20°C
Solubility of water in solvent at 20°C
Vapor pressure at 20°C
Weight per gallon at 20°C
Boiling range (760 mm)
Purity

119.7°C 120°F 0.8732 Complete Complete 9.4 mm 7.27 lbs. 112-122°C 80% by wt. min.

Table 14.47: Solvent Properties of Alkylene Diamines (2)

	ETHYLENE DIAMINE	PROPYLENE DIAMINE	TRIETHY- LENE TETRAMINE	Morpeo- Line	MORPHO- LINE ETHANOL	MORPHOLINE ETHYL ETHER
Water	М	М	М	М	М	М
Alcohol	M	M	M	M	M	M
Glycols	M	M	M	M	M	M
Glycol ethers	M	M	M	M	M	M
Acetone	M	M	M	M	M	M
Methyl butyl ketone	s	s	S	M	M	M
Ethyl ether	s	S	8	M	M	M
Butyl ether	SS	S	SS	M	M	M
Naphtha	s	S	88	s	I	M
Benzene	М	М	S	М	M	M
Turpentine	I	I	I	M	M	M
Pine oil	M	M	M	M	M	M
Paraffin oil	I	I	I	I	I	M
Castor oil	M	M	M	M	M	M
Linseed oil	1	I	I	M	s	M
Paraffin wax	SH	SH	SH	SH	SH	SS
Beeswax	I	I	SH	I	I	SS
Shellac	s	S	s	s	S	S
Rosin	s	s	s	s	SS	S
Ester gum	SS	SS	SS	s	S	S
Dammar gum	I	I	I	PS	PS	S
Copal gum	s	S	s	8	S	s
Sulfur	vs	VS	s	SS	88	SS
Vinylite A	G	G	G	s	G	SS
Vinylite N	s	S	8	S	S	8
Vinylite 0200	G	G	G	s	G	s
Cellulose acetate	G	G	G	S	S	1
Cellulose nitrate	s	S	S	s	s	s
Benzyl cellulose	SS	SS	SS	8	S	S
Water-sol. dye	s	S	SS	I	1	1
Alcohol-sol. dye	s	s	s	s	s	s
Oil-sol. dye	s	S	s	S	S	S
Satd. brine	M	M	M	M	M	S

M = miscible in all proportions
S = sol. to over 5%
SS = sol. from 1 to 5%
PS = sol. in part

Table 14.48: Vapor Pressures of Alkylene Diamines and Other Amines (19)

I = sol. to less than 1% SH = sol. hot VS = very sol. G = gels.

Table 14.49: Density of Ethylenediamine Solutions (23)

Table 14.50: Density of Higher Ethylene Amines (23)

Table 14.51: Viscosity of Ethylenediamine Solutions (23)

Table 14.52: Viscosity of Higher Ethylene Amines (23)

COMPARATIVE DATA

Table 14.53: Akzo ARMEEN, DUOMEEN, TRIAMEEN, ETHOMEEN, Ethoxylated Diamines, Propoxylated Amines (59)

Armeen Primary Amines

	SPEC	IFICATIONS	\$			[4]		TYPI	CAL PRO	PERTIES	
Registered Tradename	Common Name*	TSCA Number	Primary Amine, %	Amine Number	Gardner Color	Moisture %	Equivalent Weight**	Melting Point, °C	Primary Amine, %	Amine Number	lodine Value
			Min.	Min.	Max.	Max.					
Armeen 12D	Dodecylamine	124-22-1	98	297	1	0.5	186	24	99.5	30 3	0.5
Armeen 16D	Hexadecylamine	143-27-1	98	228	1	0.5	243	48	99	231	1
Armeen 18D	Octadecylamine	124-30-1	98	204	1	0.5	270	55	99	208	2
Armeen O	Oleylamine	112-90-3	97	205	3	0.5	266	24	98	211	89
Armeen OD	Oleylamine	112-90-3	98	207	1	0.5	265	23	99	212	89
Armeen OL	Oleylamine	112-90-3	95	202	4	0.5	273	20	97	206	89
Armeen OLD	Oleylamine	112-90-3	98	207	1	0.5	265	21	100	212	89
Armeen C	Cocoalkylamine	61788-46-3	97	272	3	0.5	204	16	98	275	. 9
Armeen CD	Cocoałkylamine	61788-46-3	98	275	1	0.5	200	16	100	281	9
Armeen S	Soyaalkylamine	61790-18-9	97	206	4	0.5	273	29	97	206	92
Armeen SD	Soyaalkylamine	61790-18.9	98	208	2	0.5	264	29	100	213	92
Armeen T	Tallowalkylamine	61790-33-8	97	208	3	0.5	267	40	98	210	46
Armeen TD	Tallowalkylamine	61790-338	98	210	1	0.5	262	40	100	214	46
Armeen HT	Hydrogenated tallowalkylamine	61788-45-2	97	207	3	0.5	271	55	98	207	3
Armeen HTD	Hydrogenated tallowalkylamine	61788-45-2	98	209	1	0.5	263	55	100	213	3

Armeen Secondary Amines

	SPECIFICATIONS	S****	and they to be take to	ar salara da		Lande Date one	TYPIC	AL PROPE	RTIES	
Registered Tradename	Common Name*	TSCA Number	Apparent Secondary Amine, %	Amine Number	Gardne Color	Equivalent Weight**	Melting Point, °C	Secondary Amine, %	Amine Number	lodine Value
			Min.	Min.	Max.					
Armeen 2C	Dicocoalkyłamin e	61789-76-2	93	140	2	401	43	92	140	8
Armeen 2T	Ditallowalkylamine	68783-24-4	93	110	2	507	55	94	111	33
Armeen 2HT	Dihydrogenated tallowalkylamine	61789-79-5	93	110	2	510	62	91	110	3
Armeen 2-18	Dioctadecylamine	112-99-2	93	107	2	518	80	89	108	1

[&]quot;Common name may be different from the name listed by TSCA.

^{**}Equivalent Weight = 56,110/Amine Number

^{***}D = Distilled

^{** * *} All secondary amines meet moisture specifications of 0.5% max._

Table 14.53: (continued)

Armeen Tertiary Amines

Armeen Monoalkyl Amines

	SPECIFICATION	NS**			1.	T	PICAL P	ROPERTI	ES .
Registered Tradename	Common Name***	TSCA Number	Tertiary Amine, %	Amine Number	Gardne Color	Equivalent Weight	Melting Point, ℃	Amine Number	Tertiary Amine, %
			Min,	Min.	Max.				
·	Monoalkyl-dimethylamines:								
Armeen DM12D****	Dodecyl-dimethylamine	112-18-5	95	250	1,	218	-15	258	98
Armeen DM16D	Hexadecyl-dimethylamine	112-69-6	95	198	1	276	8	203	98
Armeen DM18D	Octadecyl-dimethylamine	124-28-7	95	180	1	303	20	185	98
rmeen DMOD	Oleyl-dimethylamine	28061-69-0	95	183	1	295	-10	190	98
Armeen DMCD	Cocoalkyl-dimethylamine	61788-93-0	95	234	1 1	236	-22	239	98
rmeen DMSD	Soyaalkyl-dimethylamine	61788-91-8	95	183	2	297	-10	189	98
Armeen DMTD	Tallowalkyl-dimethylamine	68814-69-7	95	184	+ -	291	5	193	98
Armeen DMHTD	Hydrogenated tallowalkyl-dimethylamine	61788-95-2	95	184	2	292	18	192	98

Armeen Dialkyl Amines

	SPECIFICATIO				TYPICAL PROPERTIES					
Registered Tradename	Common Name * * *	TSCA Number	Tertiary Amine, % Min.	Amine Number Min.	Cardnei Color Max.	Equivalent Weight	Melting Point, ℃	Amine Number	Tertiary Amine, %	
	Dialkyl-methylamines:									
Armeen M2C	Dicocoalkyl-methylamine	61788-62-3	97	137	2	395	-2	142	99	
Armeen M2HT	Dihydrogenated tallowalkyl-methylamine ,	61788-63-4	97	105	1	524	38	107	99	

Armeen Triaikyi Amines

	SPECIFIC	CATIONS * *	ONS**				TYPICAL PROPERTIES					
Registered Tradename	Common Name • • •	TSCA Number	Tertiary Amine, % Min.	Amine Number Min.	Gardnei Color Max.	Equivalent Weight	Melting Point, ℃	Amine Number	Tertiary Amine, %			
	Trialkylamines:											
Armeen 3-12	Tridodecylamine	102-87-4	95	102	1	540	-9	104	96			
Armeen 3-16	Trihexadecylamine	_ 67701-00-2	98	82	3	668	38	84	99			

Table 14.53: (continued)

Polyamines

Duomeen Diamines

Tradename Common Name* Number Number Color Value % Weight @ 25 °C Num Min. Max. Min. Max.											
	Common Name*								Amine Number		
			Min.	Max.	Min.	Max.					
Duomeen C	N-coco-1,3-diaminopropane	61791-63-7	410	5	-	1.0	133	Liquid	422		
Duomeen CD	N-coco-1,3-diaminopropane	61791-63-7	410	3	-	1.0	130	Liquid	432		
Duomeen T	N-tallow-1,3-diaminopropane	61791-55-7	334	5	30	1.0	161	Paste	348		
Duomeen TTM	N,N,N'-trimethyl-N'- tallow-1,3-diaminopropane	68783-25-5	271	8	_	1.0	199	Liquid	282		
Duomeen OL	N-oleyl-1,3-diaminopropane	7173-62-8	520	10	70	1.0	163	Liquid	344		
Duomeen LT-4	3-tailowalkyl-1,3- hexahydropyrimidine	EPA Listed	267	8	-	0.5	200	Liquid	281		
Duomeen S	N-Soyaalkyl trimethylenediamines	61791-67-1	312	12	60	1.0	160	Soft Paste	350		

Higher Amines

America and the first control of the	SPECI	FICATIONS		والمراجعة المستوادة	a delan di dina		TYPICA	AL PROP	ERTIES
Registered Tradename	Common Name*	TSCA Number	Amine Number	Gardner Color	lodine Value	Moisture %	Equivalent Weight	Melting Point	Amine Number
			Min.	Max.	Min.	Max.			
Triameen T	N-tallowalkyl dipropylene triamine	61791-57-9	415	8	-	0.5	133	34	422
Tetrameen T	N-tallowalkyl tripropylene tetramine	68911-79-5	475	6	25-35	0.5	114	37	492

^{*}Common name may be different from the name listed by TSCA.

Ethomeen Ethoxylated Amines

	SPEC			TYPICAL PROPERTIE				
Registered Tradename	Common Name***	TSCA Number	Equivalent Weight		Gardner Color	Primary plus Secondary Amine, %	Amine Number	Appearance @ 25 °C
			Min.	Max.	Max.			
Ethomeen C/12	Ethoxylated (2) cocoalkylamine	61791-31-9	280	300	6	3	193	Liquid
Ethomeen C/15	Ethoxylated (5) cocoalkylamine	61791-14-8	410	435	7	2	133	Liquid
Ethomeen C/20	Ethoxylated (10) cocoalkylamine	61791-14-8	620	660	10	1	88	Liquid
Ethomeen C/25	Ethoxylated (15) cocoalkylamine	61791-14-8	830	890	10	1	65	Liquid
Ethomeen O/12	Ethoxylated (2) oleylamine	13127 82-7	343	363	8	3	160	Liquid

Table 14.53: (continued)

	SPECI	FICATION	s••	v3*:	i.		TYPICAL P	ROPERTIES
Registered Tradename	Common Name***	TSCA Number		ent Weight	Gardner Color	Primary plus Secondary Amine, %	Amine Number	Appearance @ 25 °C
Ethomeen O/15	Ethoxylated (5) oleylamine	58253-49-9	Min. 470	Max. 495	Max. 8	2	116	Liquid
Ethomeen T/12	Ethoxylated (3) dieylamine Ethoxylated (2) tallowalkylamine	61/91-44-4	340	360	6	3	160	Paste
		61791-26-2	470	495	7	2	116	Liquid to Paste
Ethomeen T/15	Ethoxylated (5) tallowalkylamine				-	<u> </u>		
Ethomeen T/25 '	Ethoxylated (15) tallowalkylamine	61791 26-2	890	950	8		61	Liquid to Paste
Ethomeen S/12	Ethoxylated (2) soyaalkylamine	61791-24-0	342	362	10	3	159	Liquid
Ethomeen S/15	Ethoxylated (5) soyaalkylamine	61791-24-0	470	495	10	2	116	Liquid
Ethomeen S/20	Ethoxylated (10) soyaalkylamine	61791-24-0	685	725	10	1	80	Liquid
Ethomeen S/25	Ethoxylated (15) soyaalkylamine	61791-24-0	895	955	10	1	61	Liquid
Ethomeen 18/12	Ethoxylated (2) octadecylamine	10213-78-2	350	370	7	3	156	Solid
Ethomeen 18/15	Ethoxylated (5) octadecylamine	26635 92 7	480	505	8	2	114	Solid
Ethomeen 18/20	Ethoxylated (10) octadecylamine	26635-92-7	690	730	8	1	79	Liquid to Paste
Ethomeen 18/25	Ethoxylated (15) octadecylamine	26635 92 7	900	960	В	1	60	Liquid to Paste
Ethomeen 18/60	Ethoxylated (50) octadecylamine	26635-92-7	2370	2570	10	0.5	23	Paste to Solid

Ethoduomeen Ethoxylated Diamines

	SPECIFICAT	TYPICAL PROPERTIES						
Registered Tradename	ommon Name*** TSCA Number Equivalent Weight				Primary plus Secondary Amine, %	Equivalent Weight	Appearance @25 ℃	
			Min.	Max.	Max.			
Ethoduomeen T/13	Ethoxylated (3) N-tallow-1,3-diaminopropane	61790-85-0	220	250	2	239	Liquid	
Ethoduomeen T/20	Ethoxylated (10) N-tallow-1,3- diaminopropane	61790-85-0	375	405	2	144	Liquid	
Ethoduomeen T/25	Ethoxylated (15) N-tallow-1,3- diaminopropane	61790-85-0	485	515	2	112	Liquid	

Propomeen Proxylated Amines

87		TYPICAL PROPERT						
Registered Tradename	CAS Name	TSCA Number	Equivale	nt Weight	Gardner Color	Tertlary Amine, %	Amine Number	Appearance @25°C
			Min.	Max.	Max.	Min.		
Propomeen C/12	N-cocoalkyl-1,1'- iminobis-2-propanol	68516-06- 3	308	318	5	95	179	Hazy Liquid
Propomeen O/12	N-oleyl-1,1'-iminobis- 2-propanol	65086-71-7	371	391	6	97	147	Clear Liquid
Propomeen T/12	N-tallowalkyl-1,1 iminobis-2 propanol	68951 72-4	373	383	5	95	148	Clear Liquid

Table 14.53: (continued)

ARMEEN Aliphatic Amines

TRADE NAME	CTFA ADOPTED NAME	FORM	CONC (%)
Armeen CD	Cocamine	Liquid	98
Armeen 2C	Dicocamine	Solid	90
Armeen DMCD	Dimethyl Cocamine	Liquid	95
Armeen DMMCD	Dimethyl Cocamine	Liquid	95
Armeen 12D	Lauramine	Liquid	95
Armeen DM12D	Dimethyl Lauramine	Liquid	95
Armeen 16D	Palmitamine	Solid	98
Armeen DM16D	Dimethyl Palmitamine	Liquid	95
Armeen 18D	Stearamine	Solid	90
Armeen DM18D	Dimethyl Stearamine	Liquid	95
Armeen SD	Soyamine	Paste	98
Armeen DMSD	Dimethyl Soyamine	Liquid	95
Armeen TD	Tallow Amine	Solid	98
Armeen HTD	Hydrogenated Tallow Amine	Solid	98
Armeen DMHTD	Dimethyl Hydrogenated Tallow Amine	Liquid	95
Armeen 2HT	Hydrogenated Ditallow Amine	Solid	92
Armeen OD	Oleamine	Paste	98

ETHOMEEN Ethoxylated Aliphatic Amines

TRADE NAME	CTFA ADOPTED NAME	FORM	CONC (%)
Ethomeen C/12	PEG - 2 Cocamine	Liquid	99
Ethomeen C/15	PEG - 5 Cocamine	Liquid	99
Ethomeen C/20	PEG - 10 Cocamine	Liquid	99
Ethomeen C/25	PEG - 15 Cocamine	Liquid	99
Ethomeen 18/12	PEG - 2 Stearamine	Solid	99
Ethomeen 18/15	PEG - 5 Stearamine	Solid	99
Ethomeen 18/20	PEG - 10 Stearamine	Liquid to Paste	99
Ethomeen 18/25	PEG - 15 Stearamine	Liquid to Paste	99
Ethomeen 18/60	PEG - 50 Stearamine	Paste to Solid	99
Ethomeen O/12	PEG - 2 Oleamine	Liquid	99
Ethomeen O/15	PEG - 5 Oleamine	Liquid	99
Ethomeen O/25	PEG - 15 Oleamine	Liquid	99
Ethomeen S/12	PEG - 2 Soyamine	Viscous Liquid	99
Ethomeen S/15	PEG - 5 Soyamine	Liquid	99
Ethomeen S/20	PEG - 10 Soyamine	Liquid	99
Ethomeen S/25	PEG - 15 Soyamine	Liquid	99
Ethomeen T/12	PEG - 2 Tallow Amine	Paste	99
Ethomeen T/15	PEG - 5 Tallow Amine	Liquid to Paste	99
Ethomeen T/25	PEG - 15 Tallow Amine	Liquid to Paste	99

Table 14.53: (continued)

Solubilities of Normal Saturated Primary Fatty Amines in Various Solvents

All temperatures are in degrees Centigrade. Solubilities are in g/amine per 100 g/solvent.

No. of Carbon Atoms in Aminies 10° 20° 50° 40° 50°		Benzene						Acetone							
14		10°	20	0	30°	40°	50°		-20.0	0.0	20.0	30.	00 4	•0.0°	50.0°
10	12 14 16	72 26.4 10.0	277 83 30	3	2 02 98	* 388	x x x	12 14 16	6.6 0.3	8.1	266 15.5	5 22 1 4.	8 7 4	∞ 45	x x
10			Cyclohex	ane						2-Buta	none		····		
12		10°	20	ю	30°	40°	50°		-20.0		20.0	30.	00 4	0.0⁰	50.0°
Trichloromethan Trichlorom	12 14 16	57 19.9 7.4	230 68 6 26	2	68 86	* 360	x x x	12 14 16	10.0 3.6 0.2	18.6	290 48 8.	285 3 48		580	* * *
10		Tetr	achloron	nethane						Meth	anol				
10		1	, , , , , , , , , , , , , , , , , , , 			40.0	50.00					20.0°	30.0	40.0	50.0
Trickloromethane	12 14 16	0.5	19.8 7.7 3.2	148 56	235 73	∞ ∞ 335	x x x	12 14 16	4.8	29.7 2.8	196 62 6.1	930 292 116	770 256	785	x x x
-40.0° -20.0° 0.0° 20.0° 30.0° 40.0° 50.0°			1		27.5	1 120	1 033	Ethanol							
10					0.00 30	.0° 40.0	0° 50.0°		40.00	20.00	0.00	20.00	70.0	1,00	25000
16		17.7	43.0 1	48				10					-	1	+
Color	14 16	4.5 2.4	11.2 6.6	17.0	56 1	08 ∞ 17 378	x 3 x	14 16	2.0	14.1	115 30.2 3.0	218 83	660 239	∞ 2 770	x x x
10			Ethyl Et	her						Isopro	panol				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-40.0°	20.0°	0.0	20.0°	30.0°	34.5°		- 40.0°	- 20.0°	0.0	20.0°	30.0	40.0	50.0
-20.0° 0.0° 20.0° 30.0° 40.0° 50.0° -40.0° -20.0° 0.0° 20.0° 30.0° 40.0° 50.0°	12 14 16		3.4	86 22.6 5.8 0.2	275 71 18.5	273 72	∞ 705 135	12 14 16	4.7	15.0 3.7	75 25.1 7.3	492 154 68	∞ 458 169	∞ × 580	x x x
10		E	thyl Ace	tate						n-But	anol				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				20.0°	30.0°	40.0°	50.0°		- 40.0°	- 20.0°	0.0°	20.0°	30.0	40.0	50.00
-20.0° 0.0° 20.0° 30.0° 40.0° 50.0° -20.0° 0.0° 20.0° 30.0° 40.0° 50.0°	12 14 16	4.7 1.7	18.6 7.8 3.2	211 57 19.7	233 63	∞ ∞ 295	x x x	12 14 16	2.4	2.4	57 16.5 3.9	430 130	405 148	± ∞ 515	x x x
10 13.3 69 x x x x 10 2.8 12.7 x x x x 12 12 4.4 23.0 221 x x x x 12 12 0.2 27.7 x x x x x 14 14 9.7 62 233 x x x 14		E	Butyl Ace	tate						Aceton	itrile				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				20.0°	30.0°	40.0°	50.0°					P 30.	0° 4	0.0	50.0°
	12 14 16	4.4 1.4	23.0	221 62 23.9	233 64	295	x x x	12 14 16	2.8		27.7	7 x 3 14 2 1	.9	∞ × 14.8	х х х

Table 14.53: (continued)

Vapor Pressure Curves of Normal Saturated Primary Amines

Approximate Alkyl Percent Distribution for Fine Amine Chemicals*										
Alkyl Groups	10	12	16	18	O	OL	С	s	т	нт '
Alkyl Composition Saturated	decyl-	dodecyl-	hexadecyl-	octadecyl-	oleyi-	oleyi-	coco	soya	tallow	hydrogenated tallow
C8	4						6			
C10	90	1				<u> </u>	7			
C12	6	95			0.5	0.5	51	0.5		
C14		3			1.5	1.5	19	1.0	3	3.5
C15			0.5						0.5	0.5
C16		1	91	9	4	4	9	16.0	29	31
C17			1.5	2	0.5	0.5			1	1
C18			7	87	14	8	2	15.0	20	61
Unsaturated										
C14'					0.5	0.5			0.5	
C16'					4	4		1.0	2	
C18′				2	70	74	6	49.5	44	3
C18"					5	7		13		

^{*}Composition is that of base acids from which amines were derived.

The chemical name in each table indicates the major alkyl group or the source of each alkyl mixture for every product.
The table gives additional information about the alkyl distribution of all products.

The tradename includes the source for each product; for example, Armeen 18 is octadecylamine.

The alkyl group in Armeen Z is derived from cocamine.

Table 14.54: ANGUS Amines (34)

Amine CS-1135[€]

Principal component	78% by weight in water
	Colorless to pale yellow mobile liquid
Boiling point	70-72 C at 100 torr
Neutral equivalent (calc)	
Density at 26°C	
pH of 0.1M soln. (20°C)	11.0
Soluble at >50% by wt. in water;	ethyl alcohol; benzene; mineral spirits

Amine CS-1246~

Principal component	97.5% minimum
Appearance	Colorless to pale yellow mobile liquid
Boiling point	
Neutral equivalent (calc)	143
Density at 26°C	1.072g/ml
pH of 0.1M soln. (20°C)	10.2
Soluble at > 50% by wt. in water; eth	nyl alcohol; benzene; mineral spirits

ZOLDINE® ZT-55

Principal component	55% solution in water
Appearance	Colorless to pale yellow mobile liquid
	54.5°C (active component)
Neutral equivalent	
Density at 25°C	1.125g/ml
pH of 0.1M soln. (20°C)	9.4

Active ingredient soluble at >50% by wt. in water, ethyl alcohol; at 25 g/100 ml in benzene at 25°C; at 1.2 g/100 ml in mineral spirits1 at 75°C.

Table 14.55: Ashland Amines (69)

Product	Specific Gravity	Distillation °C	Amine % by wt Based on Total Alkalinity	Color PI-Co Scale Max	Flash Point °F Open Cup	Freezin Point °C	g l.b. per Gal. at 20°C
AMP-95	0.942		95	28	172	-2	7.85 (25℃)
Butyl Amine	0.742-0.747	76.0-81.0	97.0	15	30	- 49	6.20
Cyclohexylamine	0.8645-0.8655 (25°/25°C)	Approx. 134.5	98	20	72	-18	7.19 (25℃)
Dibuty! Amine	0.760	155-163	98	15	124	-62	6.32
Diethanolamine	1.090-1.094	Approx 187 (50mm)	98.5	15	280	28.0	9.14
Diethyl Amine	0.705-0.709	54.0-59.5	98.5	15	<0	-50	5.88
Diethylene Triamine	0.953-0.958	195-215	89.0-93.0	30	215	- 39	7.98
Diethylethanolamine	0.885	157-165	99.5	15	120(CC)		
Diisopropyl Amine	0.715-0.720	Approx. 84.1	98.0	15	21	-96	5.97
Dimethylethanolamine	0.888	130-135	99	20	103(CC)	- 59	
Isopropyl Amine	0.686-0.690	30.5-34.0 (90 ml. min.)	99.0	15	<0	- 95	5.73
Methyldiethanolamine	1.04	242-260	99	250	259	- 22.5	8.68
Monoethanolamine	1.016-1.019	166.0-174.0		15	200	10.3	8.47
Morpholine	1.001-1.004	126.0-130.0	99.0	10	102		8.37
Triethanolamine	1.1220-1.1300	Approx. 360	85.0	50	355	21.6	9.37
Triethanolamine, 99%	1.1240-1.1270		99.0	50	375	21.6	9.37
Triethyl Amine	0.726-0.730	85.0-91.0	99.0	15	20	-115	6.06

Typical Properties of AMINE CS-1135

Amine component	78% by wi
Neutral equivalent as a base	2 120-126
Color, APHA	100 (max)
Flash point, Tag closed cup.	120°F
Freezing point	
Specific gravity at 25/25°C	0.98-0.99
Viscosity at 25°C	~7.5 cp
pHHq	10.5-11.5
Weight per U.S. gallon	8.2 lb

Typical Physical Properties of CS-1246

Specific gravity, 30/20°C	. 1.085
Boiling point, °C at 15 mmHg	71
Freezing point, °C	0
Surface tension, dynes/cm at 25°C.	36.5
pH	8-9
Soluble in water, ethanoi, benzene,	
chlorinated hydrocarbons, and ace	tone
Flash point, Tag closed cup, °F	175

Specifications

Purity, % by wt	97.5 min.
Total Oxazolidines, % by wt.	99.5 min.
Color, APHA	
Water, % by wt	

¹ when anhydrous

Table 14.56: Chemcentral Amines (67)

AMINES		CAS	Mole Weight	% Purity Comm. Prod.	Specific Gravity 25/25°C	Lbs. Per Gal. © 25°C	Coeff. of Expan. Per °C	∆Spec. Gravity Per °C	Refractive Index @ 25°C
AMP-95 ^c		124-68-5		· · · · · · · · · · · · · · · · · · ·	0.942	7.85	.00096	•	
AMP REGULAR ^C		124-68-5		l ·	0.928 d	7.78d	.00095		1.449
DIETHANOLAMINE (DEA)		111-42-2	105.3	98.0	1.088 30/4°C	9.09 *** 30°C	.00060	.00040	1.475@ 30°C
DHSOPROPANOLAMINE		110-97-4	133.0	l	0.992 40/4°C	8.28 @ 40°C			1.4595 @ 30°C
DI-TRI ISOPROPANOLAMINE	1 1 1		139.5		1.008 20/4°C	8.37	.00070	.00034	1.4601
MONOETHANOLAMINE (MEA)		141-43-5	61.4	97.5 Min	. 1.015	8.45	.00079	.00058	1.4525
MONOISOPROPANOLAMINE		78-96-6	75.2	97	0.960	7.99	.00086	.00060	1.4456
MORPHOLINE		110-91-8	87 1	99	0.999	8.32	.00096	.00072	1.4545 @ 20°C
TRIETHANOLAMINE (TEA)		102-71-6	149.2	85	1.121	9.33	00053	.00036	1.4836
TRIETHANOLAMINE 99%		102-71-8	149.2	99	1.124	9.35			
TRIISOPPOPANOLAMINE		122-20-3	191.0		1.010 40°C	8.44 a 40°C			
ETHYLENEDIAMINE	EDA	107-15-3	60.1	99	0.901	7.45			1,455
DIETHYLENETRIAMINE	ETA	111-40-0	103.2	99	0.949	7.89			1.483
TRIETHYLENETETRAMINE T	TETA	112-24-3	146.2		0.977	8.13			1.496
TETRAETHYLENEPENTAMINE T	TEPA	112-57-2	189.3		0.922	8.26			1.503
DIETHYLAMINOETHANOL		100-37-8	117.2	99	0.8851†	7.40 t			
DIETHYLAMINE		109-89-7	73.14	99.4	0.7079†	5.871			
ETHYLAMINOETHANOL		110-73-6	89.16		0.914†	7.621			
TRIETHYLAMINE		121-44-8	101.2	100	0.729†	6.081			
20 mm Ha **5 mm Ha † 4	20/20°C	⁸ Open Cup	b Сеп	listokes	CTrade Mark Angus	d = 40/40°C			

AMINES		Boiling Ra @ 760	nge 5-95% mm Hg	Vapor Press. @ 25°C	Viscosity CPS	Solubility % by Wt. @ 25°C		Freeze Point °C	Fire Point	Flash Point
		°C	°C °F		® 25°C	In H,0	O1 H,0		°F	°F
AMP-95 ^C		100-165	212-329		147			-2		172
AMP REGULARC		156-177	313-351			~	∞	31	Ī	
DIETHANOLAMINE (DEA)		168-169"	334-336*	< .01	351.9 (30°C)	∞	∞	28	300	305
DIISOPROPANOLAMINE		119 123**	246-253**		870 (30°C)	1200	∞	47	275	250
DI-TRI ISOPROPANOLAMINE		100-274**	212-525**		980	∞	∞ .	-23	245	> 197
MONOETHANOLAMINE (MEA)		170-172	338-342	0.36	18.95	∞	∞	10	200	195
MONOISOPROPANULAMINE		159 163	318-325	0.51	23.0	∞	∞	3		165
MORPHOLINE		126-130	259-266	7.0	2.23 (20°C)	∞	∞	-5		100
TRIETHANOLAMINE (TEA)		175-191**	347 376**	< .01	590.5	∞	∞	18	410	365
TRIETHANOLAMINE 99%					800.7	∞	∞	20	420	385
TRIISOPPOPANOLAMINE						> 500		60		320
ETHYLENEDIAMINE.	EDA	115-119	239-246		1.56 b	∞	∞	11	100	100
DIETHYLENETRIAMINE	ETA	199-207	390 405		6.00 b	∞	∞	-35	210	210
TRIETHYLENETETRAMINE	TETA	260-290	500-554		20 00 b	∞)	∞	<40	310	270
TETRAETHYLENEPENTAMINE	TEPA	155-210	311-410		52.50 b			< -40	385	340
DIETHYLAMINOETHANOL	~	162.1	324	· · · · · · · · · · · · · · · · · · ·		∞	œυ			130
DIETHYLAMINE		55.5	132			∞	∞.	49	1	< 0
ETHYLAMINOETHANOL		162 169	324 336			∞	(≪)			160
TRIETHYLAMINE		85-91	185 196			∞	co	-114	I	20

Γable 14.57: Dow Commercial Alkanolamines (23)

Properties of Dow Commercial Alkanolamines¹

Property	MEA	DEA	TEA 85	TEA 99	MIPA	DIPA	TIPA	Isopro- panolamine Mixture
Equivalent Wt	61.4	105.3	142.0	148.6	75.2	133.0	191.0	139.5
Boiling Point,		i	ĺ					
"C("F), 760mm Hg	171 (340)	268 (514)	325 (617)	340 (644)	159 (318)	249 (480)	306 (583)	214 (417)
Freezing Point, °C, °F	10 (50)	28 (82.4)	17 (62.6)	21 (69.8)	31 (37.4)	44 ¹ (111.2)	44 ¹ (111.2)	24 ¹ (75.2)
Specific Gravity, 25/4°C	1.0113	1.0881 (30/4°C)	1.1179	1.1205	0.960 (20/4°C)	0.992 (40/4°C)	0.988 (70/4°C)	1.003
Lbs/Gal, 25°C	8.45	9.09 (30°C)	9.34	9.35	7.95	8.27 (40°C)	8.24 (70°C)	8.36
Refractive Index N _d , 25°C	1.4525	1.4750 (30°C)	1.4836	1.4839	1.4456	1.4595 (30°C)		1.4601
Viscosity, cps, 25°C	18.9	351.9 (30°C)	590.5	600.7	23.0	870.0 (30°C)		950
60°C	5.0	53.8	65.6	65.8	6.0 (54°C)	86.0 (54°C)	100	68 (54°C)
Flash Point, *F	201 ²	325 ³	354⁴	350 ⁵	173 ⁶	276 ³	320 ⁵	2294
Fire Point, *F	200	300	410	420		275	l —	245

¹Supercools; freezing point results show variation.

^{&#}x27;Supercools; treezing point results show variables.'

2L.T. Setaflash C.C.

4Pensky-Martin C.C.

5Cleveland O.C., no flashpoint observed up to the boiling point using Setaflash closed cup.

6Tag C.C.

These properties are typical of the product, but should not be confused with or regarded a †These properties are typical of the product, but should not be confused with or regarded as specifications.

Table 14.57: (continued)

Properties of Pure Alkanolamines[†]

Property	Mono- ethanolamine	Diethanol- amine	Triethanolo- amine	Monoisopro- panolamine	Diisopro- panolamine	Triisopro- panolamine	
Chemical Name	2- amino- Name ethanol		2,2',2''- nitrilo- trisethanol	1-aminopro- pan-2-oi	1,1'- iminodi-2- propanol	1,1′,1″- nitrilotri- 2-propanol	
CAS Number	141-43-5	111-42-2	102-71-6	78-96-6	110-97-4	122-20-3	
Formula	HOC ₂ H ₄ NH ₂	(HOC ₂ H ₄) ₂ NH	(HOC ₂ H ₄) ₃ N	HOC ₃ H ₆ NH ₂	(HOC ₃ H ₆) ₂ NH	(HOC ₃ H ₆) ₃ N	
Molecular Weight	61.09	105.14	149.19	75.11	133.19	191.27	
Boiling point, *C 760mm Hg	171	268	340	159	249	306	
Freezing point, *C	10	28	21	3.0	44	44	
Density, gm/ml, 20°C	1.0147		—	0.961	0.999 (30°C)		
25°C	1.0108	l—	1.1196	0.957	0.992 (40°C)		
40°C	0.9989	1.0828	1.1116	0.944	0.977 (60°C)	1.010	
Viscosity, cps, 20°C	24.14		_	30.6		_	
25°C		l—	613.6	17.3 (30°C)	870 (30°C)		
40°C	10.06	196.4	208.1	6.0 (54°C)	86 (54°C)	100 (60°C)	
Refractive index, N _d , 20°C	1.4541	 	1.4835 (25°C)	1.4479	1.4595 (30°C)	1.4560 (25°C)	
40°C	1.4474	1.4720	1.4798	1.4369 (50°C)	<u> </u>	1.4600	
Specific heat, 30°C,							
cal/gm/°C		0.593	0.555	0.650	0.710 (50°C)	0.635 (50°C)	
Flash point, *F1	201	325	350	173	276	320	
Heat of fusion, btu/lb2	144.35	102.75	78.41	77.65	85.14	51.10	
Heat of vaporization,				İ		i	
btu/lb, 1 atm.2		287 ³	176	273	188	143	
	341.3	442.1	514.3	339.5	399.2	444.9	
Critical pressure,							
	44.1	32.3	24.2	55.9	36.0	26.6	
Constants for Antoine		0.140.40	0.00007				
	8.27771	8.14949	8.36007	7.65791	7.52712	7.65342	
=	2103.36	2336.03	2987.63	1666.511	1885.092	2177.51	
C	219.339	175.008	205.111	180.077	156.432	150.00	

Solubility of Alkanolamines

		Grams of	Aikanolamine	per 100 grai	ms of solvent	at 25°C		
	Mono- ethanoi- amine	Di- ethanoi- amine	Trl- ethanol- amine 85	Trl- ethanol- amine 99	Mono- Isopropanol- amine	Dilsopro- panoi- amine	Tri- Isopropanol- amine	Isopro- panolamine Mixture
¹ Acetone	СМ	СМ	СМ	СМ	СМ	810	450	СМ
Benzene	about 1.2	about 0.2	about 2.7	about 4.9	СМ	53	410	СМ
n-Butyl Alcohol	СМ	СМ	СМ	СМ	СМ	200	445	СМ
[†] Carbon Tetrachloride					about 4*	about 35*	about 170*	CM*
Dibutyl Phthalate to-Dichloro-	about 3.6	about 0.5	about 2.8	about 3.8	about 19*	about 5*	about 115*	CM* (slow)
benzene	about 0.7*	about 0.1*	about 6*	CM*	CM*	about 29*	about 300*	см*
[†] DOWANOL** EB glycol ether	СМ	СМ	СМ	СМ	СМ	91	250	СМ
[†] DOWANOL TPM glycol ether	СМ	СМ	СМ	СМ	СМ	45	18	СМ
Ethyl Alcohol (absolute)	СМ	СМ	СМ	СМ	СМ	430	> 500	СМ
Ethyl Ether	about 2.2	about 0.7	about 1.5	about 1.8	CM (slow)	9	365	CM (slow)
[†] Ethylene Dichloride	СМ.	im*	CM.	CM*	см.	about 150*	about 375*	CM*
[†] Ethylene Glycol	СМ	СМ	СМ	СМ	СМ	260	425	СМ
[†] Glycerine	СМ	СМ	СМ	СМ	СМ	220	115	СМ
n-Heptane	about 0.06	about 0.01	about 0.02	about 0.03	0.4	0.1	3.45	0.9
Isopropanol	СМ	СМ	СМ	СМ	СМ	320	>500	СМ
Kerosene	about 0.05	about 0.01	about 0.02	about 0.03	0.4	0.2	4	0.8
Methanol	СМ	СМ	СМ	СМ	СМ	670	>500	СМ
†1,1,1-Trichloro- ethane	about 0.6*	about 0.08*	about 1.4*	about 2.5*	CM*	about 15*	about 280*	CM*
[†] Methylene Chloride	CM*	IM*	См*	CM*	CM*	about 180*	>500*	CM*

(continued)

Reference data and methods for Dow Commercial Alkanolamines above.

Calculated.

At 165.5°C and 13.2min Hg.
These properties are typical of the product, but should not be confused with or regarded as specifications.

Table 14.57: (continued)

Grams of Alkanolamine per 100 grams of solvent at 25°C											
	Mono- ethanol- amine	Di- ethanoi- amine	Tri- ethanoi- amine 85	Tri- ethanoi- amine 99	Mono- isopropanol- amine	Diisopro- penoi- amine	Tri- isopropanoi- amine	isopro- panolamine Mixture			
Mineral Oil	about 0.06	about 0.02	about 0.03	about 0.03	0.2	0.05	about 0.4	0.2			
Mineral Spirits	about 0.08	about 0.01	about 0.03	about 0.04	0.4	0.2	5	1,0			
Naphtha VMP † Perchloro- ethylene	about 0.07	about 0.01	about 0.03	about 0.06	0.4 about 0.7*	0.3 about 0.9*	6 about 160*	1.6 CM*			
Pine Oil	CM	CM	CM	CM	CM	110	90	CM			
Toluene	about 0.7	about 0.1	about 0.6	about 1.7	СМ	12	340	СМ			
Water	СМ	СМ	СМ	СМ	СМ	1200	>500	СМ			

CM = completely miscible IM = not completely mine reacts with the solvent to some extent **Trademark of The Dow Chemical Company

(continued)

IM = not completely miscible

[†]Dow Solvents

Table 14.57: (continued)

Freezing Curves of Aqueous Ethanolamine Solutions

Freezing Curves of Aqueous Isopropanolamine Solutions

L.F.G.

L.F.G.

Table 14.57: (continued)

Freezing Curves of Aqueous Isopropanolamine Solutions (Con't.)

pH Values of Aqueous Ethanolamines

Industrial Solvents Handbook

Table 14.57: (continued)

pH Values of Aqueous Isopropanolamines

Densities of Aqueous Ethanolamine Solutions (weight % of amine)

(continued)

Densities of Aqueous Isopropanolamine Solutions (weight % of amine)

Table 14.57: (continued)

Table 14.57: (continued)

Total Vapor Pressures of Aqueous Monoisopropanolamine Solutions (weight % of amine)

Total Vapor Pressures of Aqueous Disopropanolamine Solutions (weight % of amine)

Table 14.57: (continued)

Table 14.57: (continued)

Total Vapor Pressures of Alkanolamines

Viscosities of Aqueous Monoethanolamine Solutions (weight % of amine)

Table 14.57: (continued)

Viscosities of Aqueous Diethanolamine Solutions (weight % of amine)

Viscosities of Aqueous Triethanolamine Solutions (weight % of amine)

Table 14.57: (continued)

VISCOSITY, centipoise

Table 14.57: (continued)

Hygroscopicity

(Water Uptake)
MEG¹ vs ALKANOLAMINES
45°C/74% Relative Humidity

¹MEG is monoethylene glycol

Table 14.58: Humko Amines (26)

Typical carbon chain composition Color Total Unsaturated Gardner, % Saturated amine % H₂O Max 1963 lodine value Primary Description C18:2 C12 C10 C:e C16:1 C18:3 C14 C₁₀ Min Max value Min (CTFA adopted name) Product 10 5 5 2 58 20 12 Max 270 1 0.5 97 Distilled Coco Kemamine P-650D 67 4 29 3 0.5 3 Мах Technical Hydrogenated Tallow 93 205 Kemamine P-970* (Hydrogenated Tallow Amine) 0.5 3 Мах 4 29 67 1 97 210 Distilled Hydrogenated Tallow Kemamine P-9700* (Hydrogenated Tallow Amine) 25 38 4 4 0.5 38 Min 29 210 1 97 Distilled Tallow Kemamine P-974D (Tallow Amine) 7 4 14 10 65 70 Min 205 1 0.5 97 Distilled Olevi Kemamine P-989D (Oleamine) 15 6 52 25 2 85 Min 0.5 5 93 200 Technical Oleic-Linoleic Kemamine P-999

*Available in flake form.

Amines

Primary

3-Propylenediamine Color Amine values Gardner, % H₂0 iodine 1963 value Max 1° 2° 3° Total Max % Diamine Description **Product** 10 Max 0.5 280 Min 9 120 Typ 10 Typ 88 Typ 150 Typ N-90% Kemamine D-190 Behenyl-Arachidyl 0.5 70 Min 10 Max 300 Min 8 140 Min 150 Min 88 Typ N-Kemamine D-999 Oleic-Linoleic

Tertiary Amines

_				Total	Color		Typical carbon chain composition							
			%	Total amine	Gardner,	%	Saturated					Unsaturated		
	Product	Description (CTFA adopted name)	Tertiary Min	value Min	1963 Max	H₂O Max	C10	C12	C14	C10	C ₁₆	C18:1	C16:2	aturated
	Kemamine T-65020	Distilled Dimethyl Coco	95	230	1	0.5	2	61	22	8	3	2		<u> </u>
	Kemamine T-9701	Methyl Di-Hydrogenated Tallow	95	103	3	0.5			4	29	67	<u> </u>		<u> </u>
	Kemamine T-9892D	Distilled Dimethyl Oleyl	95	180	1	0.5			4	14	10	65	7	
	Kemamine T-9902D	Distilled Dimethyl Stearyl Dimethyl Stearamine	95	180	1	0.5				10	90	ļ		
r	Kemamine T-9992D	Distilled Dimethyl Oleic-Linolenic	95	180	2	0.5			<u> </u>	15	7	53	22	3

Product	Description	Total amine value Min	Primary amine value Min	Secondary amine value Min	Color Gardner, 1963 Max	% Moisture
Kemamine DP-3695*	Dimer Diprimary Amine	185	175		14	1 Max
Kemamine DP-3680*	Dimer Diprimary Amine	175	165		14	1 Max
Kemamine DD-3680*	Dimer Diamine	280	135	135	14	1 Max

^{*}Semicommercial.

Table 14.59: Proctor & Gamble Tertiary Amines (39)

Chemical Properties	AT-1295	AT-1495	AT-1695	AT-1214	AT-121416
% Total Amine	97.3 min (98.5)	97.3 min (98.4)	97.3 min (98.2)	97.3 min (98.4)	97.3 min (98.4)
% Non-Terminal Amine	6.0 max (5.2)	6.0 max (5.0)	6.0 max (5.6)	6.0 max (5.1)	6.0 max (5.0)
% Non-Amine Material	2.0 max (1.5)	2.0 max (1.5)	2.0 max (1.7)	2.0 max (1.5)	2.0 max (1.5)
Amine Value	254-264 (263)	226-234 (232)	203-211 (208)	246-254 (252)	236-244 (243)
% Moisture	0.20 max (0.1)	0.20 max (0.1)	0.20 max (0.1)	0.2 max (0.1)	0.2 max (0.1)
Physical Properties					
Color-APHA	35 max (15)	25 max (19)	35 max (29)	35 max (17)	35 max (19)
Appearance	Clear to slight haze	Clear to slight haze	Clear to slight haze	Clear to slight haze	Clear to slight haze
Equivalent Weight	(213)	(242)	(270)	(223)	(231)
Compostion (%GC)					
C10 & Lower	1.0 max (0.0)				1.0 max (0.0)
C12	95.0 min (98.2)	3.0 max (1.0)		69.0+/-1.5 (68.7)	41.5+/-1.5 (41.4)
C14	(1.3)	95.0 min (97.5)	5.0 max (2.2)	31.0+/-1.5 (30.5)	49.0 +/-1.5 (48.9)
C16	2.0 max (0.3)	2.0 max (1.4)	95.0 min (97.4)	1.0 max (0.8)	9.5 +/-1.5 (9.7)
C18 & Higher			1.0 max (0.3)		0.1 max (0.0)
CAS No.	112-18-5	112-75-4	112-69-6	112-18-5 112-75-4	112-18-5 112-75-4 112-69-6

Table 14.60: Occidental Ethanolamines (27)

Ethanolamines Products, Grades and Specifications

Specifications	MEA 99	DEA 99	TEA 85	теа 97 нс
Monoethanolamine, wt. % Diethanolamine, wt. %	99.0 min. 0.5 max.	1.0 max. 98.5 min.	0.5 max.	0.5 max. 3.0 max.
Triethanolamine, wt. %	-	1.0 max.	85.0 min.	97.0 min.
Color (APHA), max. Apparent equivalent wt.	15 61.0-62.0	15 104-106	50 140-145	250 145-150
Water, wt. % max.	0.3	0.15	0.2	0.2
Miscellaneous Grades	PEA 60	PEA 85		
Monoethanolamine, wt. %	5 max.	2 max.		
Diethanolamine, wt. %	40 max.	15 max.		
Triethanolamine, wt. %	60 min.	85 min.		
Ethylene glycol, wt. %	5 max.	2 max.		
Heavy ends & others, wt. %	4 max.	4 max.		
Color (APHA)	1000	1000		-
Water, wt. % max.	2	1.5		

Low Freeze Grades

Ethanolamines have relatively high freezing points, and in winter, especially in northern climates, they can become too viscous to pump. For customers in these areas whose applications are not sensitive to water, Oxy-Chem offers each ethanolamine in a "Low Freeze" grade. Low freeze grade ethanolamines are produced by the addition of 15

percent by weight of deionized water. They are blended in the delivery vessels prior to each shipment, and therefore, are not stored as finished products.

Low Freeze Grades	MEA 99 LFG	DEA 99 LFG	TEA 85 LFG	TEA 97 LFG
Monoethanolamine, wt. %	84.0 min.	0.9 max.	0.5 max.	0.5 max.
Diethanolamine, wt. %	0.5 max.	83.5 min.	13.0 max.	2.7 max.
Triethanolamine, wt. %	_	0.9 max.	72.0 min.	83.0 min.
Color (APHA), max.	25	25	50	250
Water, wt. % max.	15.5	15.5	15.5	15.5
Freezing point, (°C)	-12	1	-5.5	-5.5

Table 14.60: (continued)

Compatibility

Acceptable Metals	AcceptableNon-Metals
Carbon steel (to 80°F)	Butadiene-acrylonitrile (NBR, Buna-N®) (MEA only)
Copper (to 80°F)	Carbon-graphite, resin impregnated
Hastelloy B®	Chlorinated polyether (TEA only)
Hastelloy C®	Epoxy compounds
lnconel®	Ethylene propylene diene (EPDM)
Monel®	Ethylene-terefluoroethylene (ETFE, Tefzel®)
Nickel	Fluorinated ethylene propylene (FEP)
Nickel resist	Fluoroelastomers (FKM, Viton A®, Fluorel®)
304 Stainless steel	Modified phenylene oxide (Noryl®)
316 Stainless steel	Natural rubber
20 Cb 3 Stainless steel	Polybutadiene (Isoprene)
Tantalum	Polyamides (Nylon® 12, Nylon® 66)
Titanium	Polychloroprene (Neoprene®)
	Polyester terephthalate (PET)
	Perfluoroalkoxy (PFA)
	Perfluoroelastomers (FPM, Kalrez®, Chemraz®, Kel-F®)
	Polypropylene (except TEA)
	Polysulione (except TEA)
	Polyvinylidene fluoride (PVDF, Kynar®) (TEA only)
	Vinyl ester

Technical Data

Physical Properties	MEA	DEA	TEA
Chemical formula	H ₂ NCH ₂ CH ₂ OH	HN(CH ₂ CH ₂ OH) ₂	N(CH ₂ CH ₂ OH) ₃
Molecular weight, (g/mol)	61.08	105.14	149.19
Acidity/alkalinity, (pH)	11.5-12.2	10-12	10-12
Boiling point @ 760 mm Hg, (°C/°F)	170/338	268/514 (decomp.)	335/635 (decomp.)
Critical pressure, (Atmos.)	44.1	32.3	24.2
Critical temperature, (°C)	341.3	442.1	514.3
Coefficient of cubical expansion, (/°C)	0.00078	Q.00065	0.00055
applicable range, (°C)	20-30	30-40	20-30
Density @ 20°C, (lbs/gal)	8.487	9.104 (@30°C/20°C)	9.354
@ 25°C, (g/ml)	1.008	1.093	1.120
Dielectric constant - liquid	37.7	22.81	29.36
Equivalent weight, (g/mol)	61-63	104-108	140-149
Explosive limits in air, vol. % - lower	5.5	-	-
- upper	17.0	-	-
Evaporation rate @ 25 °C			
n-butyl acetate - (=1.00)	<0.001	<0.005	0.015
n-butyl acetate - (155 seconds)		8.5 hrs.	2.9 hrs.

Table 14.60: (continued)

Physical Properties	MEA	DEA	TEA
Flammability rating	combustible	non-flammable	non-flammable
Flash point, (°C/°F) - Cleve. Open Cup	91/195	138/280	191/375
- Tag Closed Cup	85/186	146/295	194/382
- Pensky-Martin CC	-	166/330	210/410
Fire point, (°C/°F)	93/200	149/300	210/410
Freezing point, (°C/°F)	10.3/50.5	28/82	21/70
Heat of fusion, (BTU/lb²)	144.35	102.75	78.41
Auto ignition temperature, (°C/°F)	410/770	662/1224	350/662
Kauri-butanol value	NA	NA	NA
Latent heat of vaporization @ B.P.			
- (cal/g)	199	-	-
- (BTU/lb)	360	287	176
		(@166°C, 13.2 mm Hg)	
Refractive index - liquid N 20°D	1.4540	1.4770	1.4835
Solubility @ 20°C, (% by wt) - In H ₂ 0	100	95.4	100
- H ₂ 0 In	100	-	100
Solubility parameter,			
[Hildebrand units, (cai/cm³) 1/2]	13.9	14.3	15.4
Specific gravity, (20°C/20°C)	1.018	1.092 (@30°C/20°C)	1.126
Specific heat, (cal/gm/°C, BTU/lb/°F) - liquid, (20°C),	0.644	0.593	0.555
Surface tension, (dynes/cm), Air @ 25°C	48.16	48.00	46.07
Thermal conductivity, liquid @ 35°C (BTU-ft/ft²/hr/°F)	0.154	0.127	-
Vapor density, (g/L) air=1, (lbs/ft ³)	2.1	3.65	5.14
Vapor pressure @ 20°C, (mm. Hg)	0.67	<0.01	<0.01
Viscosity, liquid @ 25°C, (cps)	19	580	591
Antoine constants -A	8.02401	8.12303	8.2054
-В	1921.6	2315.46	2739.58
-C	203.2	173.3	175.7

Table 14.60: (continued)

Density vs. Temperature for Aqueous Solutions
of Monoethanolamine

Density vs. Temperature for Aqueous Solutions of Monoethanolamine

Table 14.60: (continued)
pH vs. Concentration for Aqueous Solutions of
Monoethanolamine

Vapor Pressure vs. Temperature for Aqueous Solutions of Monoethanolamine

Table 14.60: (continued)

Viscosity vs. Temperature for Aqueous

Solutions of Monoethanolamine

Density vs. Temperature for Aqueous Solutions of Diethanolamine

Table 14.60: (continued)

pH vs. Concentration for Aqueous Solutions of Diethanolamine

Vapor Pressure vs. Temperature for Aqueous Solutions of Diethanolamine

Table 14.60: (continued)

Viscosity vs. Temperature for Aqueous

Solutions of Diethanolamine

Density vs. Temperature for Aqueous Solutions of Triethanolamine

Table 14.60: (continued)

pH vs. Concentration for Aqueous Solutions of Triethanolamine

Vapor Pressure vs. Temperature for Aqueous Solutions of Triethanolamine

Table 14.60: (continued)

Viscosity vs. Temperature for Aqueous

Solutions of Triethanolamine

Freezing Point vs. Concentration for Aqueous Ethanolamine Solutions

Table 14.61: Union Carbide Ethyleneamines (19)

Typical Physical Properties

Ethyleneamine	Molecular Weight	Apparent Specific Gravity at 20/20°C	Freezing Point, *C	Vapor Pressure at 20°C, mm Hg
Ethylenediamine	60.10	0.898	11	10.40
Diethylenetriamine	103.17	- 0.952	-39	0.08
Triethylenetetramine	146.24(1)	0.980	- 35	< 0.01
Tetraethylenepentamine UHP	189.30(1)	0.994	-46 ⁽⁶⁾	< 0.01
Heavy Polyamine X	275(2)	1.015	-32 ⁽⁶⁾	< 0.01
Piperazine, 65%	86.14 ⁽³⁾	1.036(4)	41	6.28
Piperazine, Anhydrous	86.14	0.877(5)	110	0.10 ⁽⁷⁾
Aminoethylpiperazine	129.21	0.986	- 17	< 0.01
Aminoethylethanolamine	104.15	1.030	- 45(6)	< 0.01

				∆ Boiling Poinl/∆p,	Absolute	
	700 11-	Boiling Point, °C		750-770 mm,	Viscosity	
Ethyleneamine	760 mm Hg	50 mm Hg	10 mm Kg	°C per mm Hg	at 20°C, cP	
Ethylenediamine	117.0	47.8	19.4	0.043	1.80	
Diethylenetriamine	206.9	123.3	88.9	0.052	7.16	
Triethylenetetramine	277(8)	183	144	0.058	26.0	
Tetraethylenepentamine UHP	288(8)	215	184	0.045	83.1	
Heavy Polyamine X	_	279(8)	236	-	460.7	
Piperazine, 65%	116	54	27	0.036	22.5(10)	
Piperazine, Anhydrous	146.1	(9)	_ (9)	0.037	0.73(11)	
Aminoethylpiperazine	221.0	134.3	100.9	0.056	15.4	
Aminoethylethanolamine	242.8	161.3	127.0	0.049	140.6	

	Electrical Conductivity at 25°C. micromhos/cm	lonization Constant, K1, at 25°C in Water	Dielectric Constant at 23°C	Solubility in Water at 20°C, % by wt
Ethylenediamine	7.52	0.73 x 10⁴	13.29	100
Diethylenetriamine	0.86	0.65 x 10 ⁻⁴	12.22	100
Triethylenetetramine	0.24	0.63 x 10 ^{-4 (2)}	10.24	100(12)
Tetraethylenepentamine UHP	0.091	0.72 x 10 ^{-4 (2)}	9.32	100(12)
Heavy Polyamine X	0.092	0.95 x 10 ⁻⁴ (2)	8.72	100(12)
Piperazine, 65%	49.4(10)	0.43 x 10 ^{-4 (3)}	— (9)	100(10)
Piperazine, Anhydrous	(9)	0.43 x 10 ⁻⁴	_ (9)	14
Aminoethylpiperazine	0.007	0.40 x 10 ⁻⁴	7.13	100
Aminoethylethanolamine	0.63	0.31 x 10 ⁻⁴	19.13	100

Table 14.61: (continued)

	Refractive Index, n _o 20°C	Specific Heat at 20°C, cal/g•°C	Heat of Vaporization at 760 mm Hg. BTU/Ib ⁽¹⁵⁾	Heat of Combustion at 25°C. BTU/lb	Heat of Formation at 25°C, BTU/Ib ⁽¹⁸⁾
Ethylenediamine	1.457	0.68	270	-13251	- 569
Diethylenetriamine	1.483	0.65	197	-13910	-403
Triethylenetetramine	1.499	0.63	162	- 14353	- 162 ^(†)
Tetraethylenepentamine UHP	1.505	0.61	162	- 14487	- 139 ⁽¹⁾
Heavy Polyamine X	1.513	0.58	99	-14643	
Piperazine, 65%	(9)	0.78(13)	528	-9261	_
Piperazine, Anhydrous	(9)	0.63(14)	250	-14696	- 304
Aminoethylpiperazine	1.501	0.52	152	- 14744	-256
Aminoethylethanolamine	1.486	0.64	237	- 12395	-1193

- (1) Linear component only
- (2) Typical molecular weight
- (3) For Piperazine, Anhydrous
- (4) At 42°C/42°C
- (5) At 130°C/20°C
- (6) Pour point

- (7) Vapor pressure of the solid
- (8) Extrapolated; with decomposition
- (9) Solid at this condition
- (10) At 42°C
- (11) At 130°C
- (12) Forms hydrate with time
- (13) At 42°C; melting point 36°C, heat of fusion 50.74 cal/g
- (14) At 130°C; melting point 109.6°C, heat of fusion 72.83 cal/g
- (15) Estimated from vapor pressure using Clausius-Clapeyron equation
- (16) Calculated from gross heat of combustion

Ethyleneamines, Vapor Pressure vs. Temperature

750

Ethylenediamines Aqueous Solutions, Freezing Point vs. Composition

Ethylenediamine Aqueous Solutions, Vapor-Liquid Equilibria at 760 mm HG

Table 14.61: (continued)

Ethylenediamine Aqueous Solutions, Heat of Solution at 22°C

Ethylenediamine Aqueous Solutions, Specific Gravity vs. Temperature

Piperazine Aqueous Solutions, Freezing Point vs. Composition

Composition, Weight % Piperazine Studies show evidence of a metastable freezing point in the region of 20 wt.% piperazine

Piperazine Aqueous Solutions, Vapor-Liquid Equilibria at 760 mm Hg

Table 14.62: Union Carbide Ethanolamines (19)

Typical Properties of Union Carbide Ethanolamines (Determined on Purified Samples)

	Monoethanolamine	Diethanolamine	Triethanolamine	
Formula Molecular Weight	H ₂ NCH ₂ CH ₂ OH 61.08	HN(CH ₂ CH ₂ OH) ₂ 105.14	N(CH ₂ CH ₂ OH) ₃ 149.19	
Apparent Sp. Gr. at 20/20°C ΔSp. Gr./Δt at (20/30°C)	1.0179 1.09199 ^(a) 0.00065 ^(b)		1.1258 ^(f) 0.00055	
Boiling Point at 760mm Hg, °C at 50mm Hg, °C at 10mm Hg, °C	at 50mm Hg, °C 101 187		335.4 ^(c) 245 205	
Vapor Pressure at 20°C, mm Hg	<1	< 0.01	< 0.01	
Absolute Viscosity at 20°C, cP at 30°C, cP Freezing Point, °C(°F)	24.1 16.2 10.5 (50.9)		921 ^(f) 404 21.6 (70.9) ^(e)	
Solubility at 20°C, % by wt In Water Water In	Complete Complete	96.4	Complete ^(f)	
Solubility in Organic Liquids at 25°C, % by wt Acetone Benzene Carbon Tetrachloride Ethyl Ether Heptane Methanol	Complete 0.6 0.1 0.7 0.1 Complete	Complete ^(f) 0.03 0.01 0.5 0.03 Complete ^(f)	Complete 2 Complete 2 < 0.03 Complete	
Surface Tension, Dynes/cm Refractive Index, n _D ²⁰ ΔN _D /Δt at 20 to 40°C per °C	48.3 ^(d) 1.4539 0.00034	48.5 ^(g) 1.4747 ^(g) 0.00027 ^(b)	48.9 ^(d) 1.4852 ^(f) 0.00020	
Flash Point, °F	185 ^(h)	336 ⁽ⁱ⁾	407(1)	

- (a) At 30/20°C
- (b) at 30 to 40°C
- (c) Extrapolated (decomposes)
- (d) At 25°C
- (e) Supercools easily

- (f) Supercooled liquid
- (g) At 30°C
- (h) Determined by ASTM Method D 56, using the Tag Closed Cup
- (i) Determined by ASTM Method D 93, using the Pensky-Martens Closed Cup

Table 14.62: (continued)

Vapor Pressure of Ethanolamines vs Temperature

- NOTE: Ethanolamines begin decomposing at temperatures above 200°C and can undergo self-sustained decomposition at temperatures above 260°C
- 1 Monoethanolamine
- 2 Diethanolamine
- 3 Triethanolamine

Heat of Vaporization of Ethanolamines

*1 Btu/lb = 0.5555556 cal/g

Heat of Vaporization, Btu/lb*

Partial Pressures of Monoethanolamine in Aqueous Solutions at Various Contact Temperatures

Liquid-Vapor Equilibria of Aqueous Monoethanolamine Solutions at 760 mm Hg

Water, Mol Percent in the Liquid Phase

Table 14.62: (continued)

Partial Pressures of Diethanolamine in Aqueous Solutions at Various Contact Temperatures

Partial Pressures of Triethanolamine in Aqueous Solutions at Various Contact Temperatures

Boiling Points and Condensation Temperatures of Aqueous Monoethanolamine Solutions at 50 mm Hg Absolute

Liquid-Vapor Equilibria of Aqueous Diethanolamine Solutions at 760 mm Hg

Liquid-Vapor Equilibria of Aqueous Triethanolamine Solutions at 760 mm Hg

Water, Mol Percent in the Liquid Phase

Boiling Points and Condensation Temperatures of Aqueous Monoethanolamine Solutions at 300 mm Hg Absolute

B Curve Boiling Point vs. Composition Curve = Condensation Temperature vs. Composition

Table 14.62: (continued)

Boiling Points and Condensation Temperatures of Aqueous Monodethanolamine Solutions at 760 mm Hg Absolute

Boiling Points and Condensation Temperatures of Aqueous Monoethanolamine Solutions at 25 psi Absolute

Boiling Points and Condensation Temperatures of Aqueous Diethanoiamine Solutions at 50 mm Hg Absolute

Boiling Points and Condensation Temperatures of Aqueous Diethanolamine Solutions at 300 mm Hg Absolute

Bolling Points and Condensation Temperatures of Aqueous Diethanoiamine Solutions at 760 mm Hg Absolute

Boiling Points and Condensation Temperatures of Aqueous Diethanoiamine Solutions at 25 psi Absolute

Ethanolamines can undergo decomposition reactions at temperatures above 200°C.

vs. Composition

Table 14.62: (continued)

Boiling Points and Condensation Temperatures of Aqueous Triethanolamine Solutions at 50 mm Hg Absolute

Boiling Points and Condensation Temperatures of Aqueous Triethanolamine Solutions at 300 mm Hg Absolute

Boiling Points and Condensation Temperatures of Aqueous Triethanolamine Solutions at 760 mm Hg Absolute

Boiling Points and Condensation Temperatures of Aqueous Triethanolamine Solutions at 25 psi Absolute

Ethanolamines can undergo decomposition reactions at temperatures above 200°C

B Curve

vs. Composition

Absolute Viscosity of Aqueous Monoethanolamine Solutions

C Curve =

Absolute Viscosity of Aqueous 2 Diethanolamine Solutions

- 1 30°C (86°F) 2 50°C (122°F) 3 75°C (167°F) 4 100°C (212°F)

Absolute Viscosities of Aqueous **Triethanolamine Solutions**

Triethanolamine, Percent by Weight

Table 14.62: (continued)

Freezing Points of Aqueous Ethanolamine Solutions

Specific Gravity of Aqueous Ethanolamine Solutions at 20°/20°C

Weight per Gallon of Aqueous Monoethanolamine Solutions at Various Temperatures

Weight per Gallon of Aqueous Diethanolamine Solutions at Various Temperatures

Weight per Gallon of Aqueous Triethanolamine Solutions at Various Temperatures

Table 14.62: (continued)

Specific Heats of Aqueous Monoethanolamine Solutions

Specific Heats of Aqueous Diethanolamine Solutions

Specific Heats of Aqueous Triethanolamine Solutions

Specific Heat-Temperature Data for Ethanolamines

Comparative Hygroscopicities of Diethanolamine and Triethanolamine from 75° to 80°C

Weight Percent Ethanolamine in Aqueous Solutions vs Normality of Solution

pH of Ethanolamines Solutions

ALKANOL AMINES

The most important members of this group from a commercial standpoint are monoethanolamine, diethanolamine, and triethanolamine. Also available in commercial quantities are the aminohydroxy derivatives of nitroparaffins, which are 2-amino-1-butanol, 2-amino-2-methyl-1-propanol, 2-amino-2-methyl-1,3-propanediol, 2-amino-2-ethyl-1,3-propanediol, and tris(hydroxymethyl)aminomethane.

These compounds are used as emulsifiers for cosmetic lotions and creams, mineral oil and paraffin wax emulsions, textiles, leather dressings, cleaning compounds, polishes, and "soluble oils." They are also used in the manufacture of pharmaceuticals, surface-active and wetting agents, vulcanization accelerators, photographic developers, dyestuffs, and resins. Having the property of absorbing acidic gases, such as H2S and CO2 in cold aqueous solutions and releasing them when hot, these compounds suggest usefulness in gas recovery and purification. They also form the basis for chemical synthesis.

Table 14.63: Monoethanolamine (19)

2(Hydroxyethyl)amine 2-Aminoethanol Colamine

H2NCH2CH2OH

Monoethanolamine is a somewhat viscous hygroscopic liquid with an ammoniacal odor. It is miscible with water and many organic solvents. Its molecule contains both a hydroxyl and an amine group, thus producing derivatives that have characteristics of both types of compounds. It is used as a softener and conditioning agent, and in the recovery and extraction of carbon dioxide and hydrogen sulfide from industrial gases. Its soaps with fatty acids are excellent emulsifiers for waxes. It is also utilized as an intermediate in the manufacture of rubber accelerators and dyestuffs.

Typical Properties and Specifications

Boiling point	172.2°C
Coefficient of expansion at 20°C	0.000770 (per°C)
Dissociation constant at 20°C	5×10^{-4}
Equivalent weight.	61 to 63
Flash point (open cup)	93°C (200°F)
Heat of evaporization at B.P.	199 cal/g
Refractive index at 20°C	1.4539
Specific gravity at 20 (20°C	1.0180
Specific heat at 30°C	0.665 cal/g
Surface tension at 20°C	51 dynes/cm
Viscosity at 20°C	3.40 poises
Vapor pressure at 20°C	0.67 mm Hg
Weight per gallon at 20°C	8.472 lbs
Boiling range at 760 mm Not less than 90% over betw	een 165 and 173°C
Color	Water-white
pH 25% Solution at 25°C	12.1
Solubility in water	Complete

Table 14.64: Boiling Point Composition Curves for Aqueous Monoethanolamine Solutions (19)

Table 14.65: Viscosity of Monoethanolamine at Various Temperatures (19)

Table 14.66: Diethanolamine (2)

Di-2-Hydroxyethylamine

(HOCH2CH2)2NH

When pure, diethanolamine is a crystalline, white solid which has a melting point of 28°C., or just above room temperature. The commercial material has a mild, ammoniacal odor. Like other ethanolamines, diethanolamine enters into reactions characteristic of both amines and alcohols; its most important property is its ability to combine directly with acids and acidic gases. At normal temperatures, its aqueous solutions have a strong affinity for hydrogen sulfide and carbon dioxide; and at higher temperatures, this affinity decreases, with expulsion of the gases.

Diethanolamine finds wide use as an absorbent for acidic gases; especially for the removal, recovery, and concentration of carbon dioxide from flue and other waste gases as well as from hydrogen gas produced by cracking methane. Many industrial processes require pure hydrogen free of acidic gases. Diethanolamine is used to remove troublesome hydrogen sulfide from sour natural gas in transmission lines and natural gasoline plants. It is also used as a softening, moistening, and emulsifying agent; and in the synthesis of organic compounds by esterification of its hydroxyl groups.

It is an excellent agent for neutralizing the acidity which is developed by the high percentage of clays used in rubber compounding, and thus reduces the curing time considerably. It is also used in the production of powerful synthetic detergents and in certain synthetic resins.

Color and properties: Faintly colored, viscous liquid.

Constants: Sp.gr. 1.0985 at 20°C./20°C.; b. p. (760 mm.) 268.0°C.; vapor pressure < 0.01 mm. (20°C.); flash point 280°F.; wt. 91. lbs./gal. (20°C.). Typical specifications: Sp.gr. 1.088 to 1.095 at 30°C./20°C.; water not more than 1.5%; monoethanolamine not more than 2%; diethanolamine not less than 95%; triethanolamine not more than 2%; color (100-mm. tube) not more than 3 yellow and 1 red Lovibond; equivalent wt. 104 to 108; average wt. 9.08 lbs./gal. (30°C.).

Miscible with water and most organic solvents.

Table 14.67: Viscosity of Diethanolamine at Various Temperatures (19)

Table 14.68: Triethanolamine (2)

Tri-2-Hydroxyethylamine

(HOCH₂CH₂)₃N

Triethanolamine is a viscous and very hygroscopic liquid with a slight ammoniacal odor. It boils at 244°C. at 50 mm. (360°C. at 760 mm.) and is entirely soluble in water and alcohols, but only slightly soluble in hydrocarbons. It is a mild, organic base which like ammonia combines with acids and acidic materials. The alkalinity of pure triethanolamine is somewhat less than that of ammonia, its pH being 11.2 in 25% solution.

Three commercial grades of triethanolamine are available: 98%, "regular", and "SP." These differ only slightly in physical and chemical properties from the pure compound. The most significant variation is in equivalent weights. Pure triethanolamine has an equivalent weight of 149; "regular," 140; and "SP," about 130. This variation is due to increasing amounts of mono- and diethanolamine present in the respective commercial grades.

Table 14.68: (continued)

With free fatty acids, triethanolamine forms soaps in direct malecular proportions. Triethanolamine oleate is a semi-liquid soap capable of forming solutions of marked detergent properties in water or in organic solvents such as gasoline. In water, triethanolamine oleate is soluble in all proportions; in gasoline, more than 2% soap is necessary to effect solution. The stearate is a hard, white product which finds use in cosmetic preparations. Only the 98% or regular grades should be used in cosmetic products. These soaps are practically neutral, their pH being approximately 8, and are thus free from irritating effect upon the skin or from injurious effect on fabrics. Very stable water emulsions of almost any oil, fat, or wax can in general be prepared with these soaps. The usual requirements for emulsification are between 2 and 4% triethanolamine and 5 to 15% oleic or stearic acid, each based on the weight of the oil to be emulsified. Triethanolamine emulsions are distinguished by their small particle size, non-corrosiveness, non-valatility, ease of preparation, and wide flexibility in formulation with fear of separation.

A small percentage of triethanolamine assists in the penetration of liquids into porous materials. Because of its pronounced hygroscopicity, it is employed as an economical softening agent, humectant, and plasticizing agent for such products as textiles, glues, leather coatings, as a penetrating agent in impregnating wood, paper, and cellulose products. Also, an ingredient of adhesives, rubber mixtures, and lacquers.

Viscous, pale yellow liquid intermediate in properties between alcohol and ammonia; slightly ammoniacal odor; excellent penetrating properties; forms soaps with fatty acids; hygroscopic. Commercial product contains 70-75% triethanolamine, 20-25% diethanolamine, 0-5% monoethanolamine. Soluble in water, alcohol and chloroform. Sp.gr. 1.1204-1.1284; b.p. 360°C; vapor pressure < 0.01 mm (20°C); flash point 355°F; wt./gal. 9.4 lbs. (20°C); coefficient of expansion 0.00048 (20°C); freezing point 21.2°C; viscosity 0.10 poise (20°C).

Typical specifications: Sp. gr. 1.1240-1.1300 (20/20°C); water not more than 1.0%; purity not more than 2.5% monoethanolamine, not more than 15% diethanolamine, not less than 80% triethanolamine; equivalent wt. 140-145; color (500-mm. tube) not more than 7 yellow and 2 red Lovibond; average wt./gal. 9.40 lbs. (20°C).

Table 14.69: Viscosity of Triethanolamine at Various Temperatures (19)

Table 14.71: Surface Tension of Aqueous Ethanolamine Solutions at 20°C (19)

Table 14.70: Specific Heats of Aqueous Triethanolamine Solutions at 21°C (19)

Table 14.72: Viscosity of Aqueous Ethanolamine Solutions at 20°C (19)

Table 14.73: Isopropanolamines Mixed (2)

The mixed isopropanolamines are ovailable as a liquid mixture of mono-, di-, and triisopropanolamine.

Uses: The isopropanolamine soaps may be employed in all uses now found for the ethanolamine soaps. Their excellent hydrocarbon solubility and color stability make them of special interest in soluble oils, dry cleaning soaps, cosmetics, and pharmaceutical preparations. Vinyl acetate resin emulsions of the oil-in-water type for coating fabrics and leather have excellent stability when prepared by stirring 80 parts by weight of "Vinylite" resin AYAF (30% solution in toluene) and 1 part oleic acid, into 20 parts of water containing 0.6 to 0.8 parts of mixed isopropanolamine.

Kerosene solubilized with 4% by weight of mixed isopropanolamine and 15% by weight of oleic acid produces stable emulsions with water upon mechanical agitation. Stable water emulsions of chlorinated hydrocarbons or naphtha may be prepared by a similar procedure. The addition of about 2% by weight of mixed isopropanolamine has been found to improve the penetration of starch glues into heavily sized envelope stock.

Purity	
Monoisopropanolamine	14± 2% by wt.
Diisopropanolamine.	43± 4% by wt.
Triisopropanolamine	43+ 4% by wt.
Specific growity at 20/20°C	1 0040-1 0100

Table 14.74: Triisopropanolamine (2)

Tri-2-Hydroxyisopropylamine

(CH3CHOHCH2)3N

This compound is a white, crystalline solid, completely soluble in water. It is used as a reactant in pharmaceutical syntheses. It is important in the oral treatment of syphilis. Combined with sodium bismuthate and propylene glycol, it produces a bismuth compound stable enough to withstand chemical action of the digestive system. Triisopropanolamine can be used for the preparation of casmetic creams, "soluble" oils, and emulsions—where the good color stability of its soaps is af interest. Formulas cantaining lanolin may vary in color stability. Triisopropanolamine is especially suggested for "soluble" white paraffin oils for the rayan industry, where good color and low free fatty acid content are desirable.

Boiling point (760 mm)	305.4°C
Flash point	305°F
Latent heat of vaporization	45°C
Melting point	46°C
pH 25% Solution at 25°C	10.7
Equivalent weight.	188-192
Specific gravity at 50/20°C	0.9996
Solubility in water at 20°C	Complete
Solubility of water in amine.	Complete
Vapor pressure at 20°C	0.01 mm Hg
Weight per gallon at 50°C	8.32 lbs.

Table 14.75: 2-Amino-2-Methyl-1-Propanol (2)

CH₃C(CH₃)NH₂CH₂OH

This is a water-white, syrupy, alkaline liquid, with a faint ammoniacal odor. It is saluble in water and many organic solvents. It forms soaps with higher fatty acids and these are useful as emulsifying agents in textile and leather materials, water-emulsian paints, and self-polishing waxes.

Boiling point (760 mm)	165°C
Melting point	. 25°C
Specificity gravity	
pH (0.1 M solution at 20°C	
Solubility in 100 cc water	
Vapor pressure at 20°C	
Flash point (Tag. open cup)	
Refractive index at 20°C	
Weight per Gallon at 68°F	7 77 lbe

Table 14.76: 2-Amino-2-Methyl-1,2-Propanediol (2) Table 14.77: 2-Amino-2-Ethyl-1,3-Propanediol (2)

CH2OHC(CH3)NH2CH2OH

Boiling point at 10 mm	151°C
Melting point	109-111°C
pH (0.1 M solution) at 20°C	
Solubility in 100 cc water	250 grams

$CH_2OHC(C_2H_5)NH_2CH_2OH$

Boiling point at 10 mm.	153°C
Flash point (Tag. open cup)	166°F
Melting point	37.5 to 38.5°C
pH of 0.17 M aqueous solution at 20°C	
Solubility in water at 20°C	Complete
Specific gravity at 20/20°C	1.099
Refractive index at 20°C.	1.490
Weight per gallon at 68°F	9.15 lbs.

Table 14.78: 2-Amino-1-Butanoi (2)

NH₂ l CH₃CH₂CHCH₂OH

Boiling point at 760 mm.	178°C
Flash point (Tag. open cup)	
Melting point	-2°C
pH of 0.1M aqueous solution at 20°C	11.1
Specific gravity at 20°/20°C	
Solubility in water at 20°C	
Vapor pressure at 20°C (est)	
Refractive index at 20°C	

Table 14.79: Tris(Hydroxymethyl)Aminomethane (2)

Boiling point at 10 mm	219 to 220°C
Melting point	171 to 172°C
pH of 0.1M aqueous solution at 20°C	10.4
Solubility in water at 20°C	80 grams per 100 ml

Table 14.80: 2-Aminoethylethanolamine (2)

Hydroxyethyl Ethylenediamine

NH2CH2CH2NHCH2CH2OH

This compound is a hygroscopic liquid with a mild ammoniacal odor; it is completely soluble in water. It is used in the manufacture of dyes, pharmaceuticals, textile specialties, flotation agents, resins, insecticides, and rubber products.

Boiling point at 760 mm	
Flash point	
Specific gravity at 20/20°C	
Solubility in water	
Solubility of water in solvent	
Vapor pressure at 20°C	
Weight per gallon at 20°C	
Boiling range at 760 mm.	232-250°C
Purity	99%, min

Table 14.81: 1-Diethylamino-2,3-Propanediol (2)

(C2H5)2NCH2CHOHCH2OH

This alkylol amine is a water-white to light-straw liquid with a faintly ammoniacal odor. It is soluble in water, methyl alcohol, ethyl ether, ethyl, acetate, acetone, aromatic hydrocarbons, fixed oils, aleic and hot stearic acids, and hot carnauba wax, the latter solidifying when cooled. It is insoluble in mineral oil and paraffin wax.

Boiling range.	233-235°C
Flash point	210°F
Specific gravity at 20/20°C	0.973

Table 14.82: Aminohydroxy Compounds (34)

Product Specifications

	2-Amino-2-methyl- 1-propanol				thyl)aminomethane
	AMP Regular	AMP-95	AEPD	TRIS AMINO Crystals	TRIS AMINO 40% Concentrate
Neutral equivalent	88.5-91	93-97	121.5*	121-122	
Water, % by wt (max.)	0.8	5.8	3.6	0.5	
Melting point, *C (min.)	_	_		160	_
Color (max.)	20 APHA	20 APHA	2 Gardner	_	5 Gardner
Color of 20% aqueous solution (max.)		_	_	40 APHA	_
Distillation range, *C	156-177		-	_	_
Nonvolatile matter, % by wt (max.)	0.005	0.005	_	_	_
Amine assay by titration, calc. as % TRIS AMINO	_	—	_	_	40 ± 2
*Anhydrous basis (max)					

Physical Properties of Purified Materials

	2-Amino-2-methyl- 1-propanol	2-Amino-2-ethyl- 1,3-propanediol	Tris(hydroxymethyl)- aminomethana
	NH,	NH,	ŅH,
Formula	сн,¢сн,он	носн,ссн,он	носн,ссн,он
	Ċн,	Ċ,н,	Снюн
Molecular weight (calcd.)	89.14	119.17	121.14
Boiling point at 760 mmHg, *C	165		— .
Boiling point at 10 mmHg, *C	_	152-153	219-220
Melting point, *C	30-31	37.5-38.5	171-172
Specific gravity at 40/40°C	0.928	1.101	
pH of 0.1M aqueous solution at 20°C	11.3	10.8	10.4
Solubility in water at 20°C, g/100 ml	miscible	miscible	80
Weight per gallon at 20°C, lb	7.78	9.15	_
pK _a at 25°C	9.72	8.60	8.03

Additional Properties of AMP

	AMP Regular	AMP-95
Viscosity at 10°C, cp	_	561
25°C, cp	_	147
30°C, cp	102	-
50°C, cp	24	
70°C, cp	9	_
90°C, cp	4	_
Vapor pressure at 100°C, mmHg	59	
150°C, mmHg	457	_
Specific gravity at 25/25°C		0.942
Coefficient of expansion per *C	0.00095	0.00096
Refractive index, no, at 20°C	1.449	_
Heat of vaporization at 110°C, kcal/mole	13.2	_
130°C, kcal/mole	12.5	
150°C, kcal/mole	12.3	_
165°C, kcal/mole	12.1	_
Heat of dissociation at 25°C, kcal/mole	12.9	_

Table 14.83: 2-Diethylamino-2-Methyl-1-Propanol (34)

DMAMP-80

CH₃ CH₃—CH₂OH N(CH₃)₂

Specifications

DMAMP, % by wt	
(as titratable amine)	
Color, APHA	100 max
Water, % by wt	18-22

Typical Properties

	DMAMP-80
Neutral equivalent	~148
Specific gravity at 25/25°C	0.95
Weight per gallon at 25°C	7.9 lb
Flash point, Tag open cup	150°F
Tag closed cup	153°F
Freezing point	– 20°C
Boiling point at 760 mmHg	~98°C
Viscosity at 25°C, Gardner	A-A,
pH of 0.1 N aqueous solution	11.6
APHA color (max.)	

ALKYLALKANOL AMINES

This group of compounds, also referred to as alkylaminoethanols, have less odor than most alkylamines and possess both water and oil solubility. The solubility degree of each is determined by the number of alkyl or hydroxyl groups present in the molecule. A larger number of hydroxyl groups gives greater water solubility, whereas a predominance of alkyl groups gives greater oil solubility. The derivatives of these compounds are of particular interest. They form soaps with fatty acids which may be employed as emulsifying, penetrating, and wetting agents, and these uses can also be applied to the ester and acid amide derivatives. These amines also serve as intermediates in the manufacture of drugs and dyes.

Table 14.84: Properties of Various Alkylalkanol Amines (2)

Dimethylethanolamine [(CH₃)₂NCH₂CH₂OH]. Dimethylethanolamine is a water-white liquid with an amine odor. It resembles diethylethanolamine in chemical behavior and it is used as an intermediate in the synthesis of corrosion inhibitors, dyes, pharmaceuticals, and textile auxiliaries.

Boiling point.	133°C
Equivalent weight.	89
Specific Gravity at 20/20°C	0.887
Refractive index	1.4300

Diethylethanolamine (Diethylaminoethanol, $(C_2H_6)_2NC_2H_4OH)$. Diethylaminoethanol is a water-white, hygroscopic liquid which behaves chemically like the tertiary amines and alcohols. It is soluble in water, ethyl alcohol, methyl alcohol, ethyl ether, ethyl acetate, acetone, aromatic hydrocarbons, fixed oils, mineral oil, oleic acid, hot stearic acid, and hot paraffin and carnauba waxes, the last two solidifying when cooled. It is used in the manufacture of certain pharmaceuticals, such as procaine and "atabrine". It forms amine soaps with higher fatty acids, which are oilsoluble and useful as emulsifiers and textile lubricants. Its mild alkalinity makes it applicable as a neutralizing agent and a corrosion inhibitor.

Di-n-butylethanolamine (Di-n-Butylaminoethanol, $(C_4H_3)_2NCH_2CH_2-OH)$. This alkylolamine is a water-white liquid with a faintly amine odor. It is insoluble in water but soluble in ethyl alcohol, methyl alcohol, ethyl ether, ethyl acetate, aromatic hydrocarbons, fixed oils, mineral oil, oleic and hot stearic acids, and hot paraffin and earnauba waxes, the latter two solidifying when cooled. It is slightly soluble in paraffinic hydrocarbons.

n-Butyl diethanolamine [C₄H₂N(CH₂CH₂OH)₂]. This alkylol amine is a light straw-colored liquid with a faintly amine odor. It is soluble in water, ethyl alcohol, methyl alcohol, ethyl ether, ethyl acetate, acetone, aromatic hydrocarbons, castor oil, oleic and hot stearic acids, and hot carnauba wax, the latter solidifying when cooled. It is insoluble in linseed and cotton-seed oils, mineral oil, and paraffin wax.

 $n ext{-Butyl monoethanolamine}$ ($C_4H_4NHCH_2CH_3OH$). This alkylol amine is a water-white liquid with a faintly amine odor. It is soluble in water, ethyl alcohol, methyl alcohol, ethyl ether, ethyl acetate, acetone, aromatic hydrocarbons, fixed oils, oleic and stearic acids, and hot carnauba and paraffin waxes, the latter two solidifying when cooled. It is only slightly soluble in paraffinic hydrocarbons.

Ethyl diethanolamine $[C_2H_4N(CH_2CH_2OH)_2]$. Ethyl diethanolamine is a water-white liquid with an amine odor and soluble in water, ethyl alcohol, methyl alcohol, acetone, aromatic hydrocarbons, some fixed oils, oleic and hot stearic acids. It is insoluble in linseed and cottonseed oils, mineral oil, paraffin and carnauba waxes. It is only slightly soluble in paraffinic hydrocarbons.

Table 14.84: (continued)

Ethyl monoethanolamine (C₂H₅NHCH₂CH₂OH). This alkylolamine is a colorless liquid, with an amine odor. It is soluble in water, ethyl alcohol, methyl alcohol, ethyl ether, ethyl acetate, acetone, aromatic hydrocarbons, fixed oils, mineral oil, oleic and stearic acids, and hot carnauba and paraffin waxes, the latter two solidifying when cooled. It is only slightly soluble in paraffinic hydrocarbons.

Tetraethanolammonium hydroxide $[N(C_1H_4OH)_4OH]$. This solvent is a white, crystalline, strongly basic solid, completely miscible with water. The commercial product is an aqueous methanol solution in which 40 to 41 per cent of this solvent is present. Although aqueous solutions of this solvent are stable at ordinary temperatures, it will decompose when heated to weakly basic tertiary amines. This property is utilized in processes where it is desired to destroy a strongly alkaline substance which is no longer needed. Tetraethanolammonium hydroxide is also a good solvent for certain types of dyea.

Color	White
Description.	Crystalline solid
Melting point.	123°C
Solubility in water	
Solubility of water in solvent	
Vapor pressure at 20°C	

	Diethylamino- ethanol	Ethyl Monoethanolamine	Ethyl Disthanolamine
Color	Water-white	Water-white	Water-white
Specific gravity at 20°/20°C.	0.88-0.89	0.92	1.02
Minimum amine content	99.5%	98.5%	98.5%
Initial boiling point	158°C.	161°C	245°C.
Final boiling point	1 63°C .	174.5°C.	260°C.
Flash point	135°F.	1 60°F .	255°F.
Solidification point	< -70°C.	-8.8°C.	-50°C.
Refractive index at 20°C.	1.440	1.444	1.466
Viscosity at 25°C (centipoise)	4.05	12.40	53
Viscosity at 60°C (centipoise)	1.50	3.22	11.2
Coefficient of expansion per °C.	0.0012	0.00091	0.00080
Theoretical molecular weight	117.19	89.14	133.19
Average weight per gallon	7.36 lbs.	7.66 lbs.	8.5 lbs.

	Di-n-Butyl- aminoethanol	n-Butyl- Monoethanolamine	n-Butyl Diethanolamine
Color	Water-white	Water-white	Water-white to
			Light Straw
Specific gravity at 20°/20°C.	0.860	0.89	0.97
Minimum amine content	98.5%	96.0%	95.0%
Initial boiling point	222°C.	192°C.	262°C.
Final boiling point	234°C.	215°C.	290°C.
Flash point	200°F.	1 70°F .	245°F.
Solidification point	<-70°C.	-3.5°C.	<-70°C.
Refractive index at 20°C.	1.444	1.444	1.462
Viscosity at 25°C (centipoise)	6.50	17.4	55
Viscosity at 60°C (centipoise)	1.94	4.02	10.6
Coefficient of expansion per °C.	0.00114	0.0010	0.00077
Theoretical molecular weight	173.29	117.19	161 . 24
Average weight per gallon	7.16 lbs.	7.44 lbs.	7.25 lbs.

GLYCOL ETHER AMINES

Table 14.85: Properties of Various Glycol Ether Amines (47)						
Amine	Methoxyethyl	Dimethoxyethyl	Ethoxyethyl	Diethoxyethyl	Methoxyisopropyl	
					СНз	
Formula	CH3OC2H4NH2	(CH3OC2H4)2NH	C2H5OC2H4NH2	$(C_2H_5OC_2H_4)_2NH$	CH3OCH2CH NH2	
Molecular Weight	. 75	133	89	161	89	
Boiling Point, °C	. 91	172	107	194	98	
Vapor Pressure, mm. at 20°C.		1.0		0.5		
n _D at 25°C.	1.4058	1.4190	1.4086	1.4205	1.4038	
Specific Gravity	0.89	0.91	0.85	0.88	0.84	
pKb	4.62	5.49	7.74	5.53	4.60	
Flash Point, °F.	60	155	70	185	60	
	Formula	$(C_4H_9)_2NH$	(CH3OCH2CH2) 2N	H (HOCH ₂ CH ₂) ₂ NH		
	Molecular Weight	129	133	105		
	Boiling Point, °C.	160	172	270		
	Vapor Pressure, (20°C.)	1.9	1.0	<0.01		
	Freezing Point, °C	62	<-40	28.0		
	Specific Gravity	0.76	0.91	1.09		
	рК _b	2.7	5.5	5.2		
	% Solubility in H ₂ O at 25°C.	0.47	ω	ω		
			СН300	CH2CH(CH3)O-		
	Formula	C4H9CH(C2H		I(CH ₃)NH ₂		
	Molecular Weight	129		147		
	Boiling Point, °C.	169)	175		
	Vapor Pressure, (20°C.)	1.2	?	1.0		
	Freezing Point, °C	. 	•			
	Specific Gravity	0.7	9	0.85		
	pK _b	3.2	!	4.8		
	% Solubility in H ₂ O at 25°C.	0.2	25	ω		

ARYL AMINES

Table 14.86: Aniline (2)

Aminobenzene Phenylamine

C6H5NH2

Aniline is a colorless to straw-colored, toxic, highly refractive, oily liquid having a characteristic odor. It is soluble in ethyl alcohol, ethyl ether, carbon tetrachloride, and only slightly soluble in water. It is used in the production of such materials as indigo, aniline black, tetranitraniline, acetanilide, explosives, dyes, rubber chemicals, and pharmaceuticals.

Boiling point 184.2°C Flash point 70°C -6.3°C min. Freezing point Melting point -6.2°C Specific gravity at 25/25°C 1.021 Solubility in water at 25°C 3.8 6.0 Weight per gallon at 25°C 8.50 lbs. Boiling range 1.5°C

95% distills within 1.0°C

Nitrobensene None

Table 14.87: Dimethylaniline (2)

C6H5N(CH3)2

Dimethylaniline is a pale yellow, highly refractive, toxic, oily liquid with a pungent odar. It is soluble in ethyl alcohol, ethyl ether, and carbon tetrachloride, but only very slightly soluble in water. It is used in the making of dyes and the explosive tetranitroaniline ("Tetryl").

 Boiling point
 192.9°C

 Freesing point
 1.5°C

 Specific gravity at 25/25°C
 0.956

 Weight per gallon at 25°C
 7.95 lbs.

 Boiling range within
 2.0°C

95% distills within 1.0°C Color Yellow to amber Monomethylaniline 0.5% max.

Table 14.88: Diethylaniline (2)

C6H5N(C2H5)2

Diethylaniline is a light-yellow, oily, toxic liquid with a pungent odor. It is soluble in ethyl alcohol, ethyl ether, and carbon tetrachloride, but only very slightly soluble in water. It is used in the preparation of dyes, pharmaceuticals, and other organic compounds.

 Boiling range
 216.3°C

 Freezing point
 -34.4°C

 Specific gravity at 25/25°C
 0.933

 Weight per gallon at 25°C
 7.76 lbs.

 Aniline
 None

Boiling range 5-95% within 2.5°C Boiling range includes 216.3°C

Color Light yellow
Monoethylaniline 0.2% max.
Purity 99.8%, min.
Water No visible separation

Table 14.89: N-Mono-n-Butyl Aniline (2)

CAH5NHC4H9

This secondary amine is a light straw to amber-colored liquid with an aniline odor. It is insoluble in water but soluble in ethyl alcohol, methyl alcohol, ethyl ether, ethyl acetate, acetone, aromatic and aliphatic hydrocarbons, fixed oils, mineral ail, oleic acid, and hot steoric acid. It is also soluble in hot paraffin and carnauba waxes which solidify upon coaling.

 Flash point
 225°F

 Specific gravity at 20°C
 0.93

 Refractive index at 20°C
 1.5351

 Weight per gallon at 20°C
 7.71 lbs.

 Boiling range
 234-242°C

 Purity
 95%, min.

Table 14.90: N,N-Di-n-Butyl Aniline (2)

C6H5N(C4H9)2

N,N-Di-n-Butyl aniline is a light-straw colored liquid with a faintly aniline odor and is soluble in ethyl alcahol, aromatic hydrocarbons, ethyl ether, ethyl acetate, acetone, fixed oils, mineral oil, oleic acid and hot stearic acid. It is insoluble in water, methyl alcahol, and while soluble in hot paraffin and carnauba waxes, these salidify when cooled.

 Flash point
 230°F.

 Specific gravity at 20°C
 0.904

 Refractive index at 20°C
 1.5197

 Weight per gallon at 20°C
 7.53 lbs.

 Boiling range
 267-275°C

 Purity
 95%, min.

Table 14.91: n-Monoamyl Aniline (Mixed Isomers) (2)

C6H5NHC5H11

n-Manoamyl aniline is a mixture of isomers. It is a light-straw colored liquid with a faintly aniline odor. It is insoluble in water but soluble in ethyl alcohol, methyl alcohol, ethyl ether, ethyl acetate, acetone, aromatic and aliphatic hydrocarbons, fixed oils, mineral oil, oleic acid, and hot stearic acid. It is also soluble in hot paraffin and carnauba waxes which solidify an coaling.

 Flash point
 225°F

 Specific gravity at 20°C
 0.92

 Refractive index at 20°C
 1.5285

 Weight per gallon at 20°C
 7.64 lbs.

 Boiling range
 245-280°C

 Purity
 95%, min.

Table 14.92: p-tert-Amyl Aniline (2)

C5H11C6H4NH2

p-tert-Amyl aniline, an aryl amine, is a straw to deep red-colored liquid with a faintly aromatic odor. It is soluble in methyl alcohol, ethyl ether, ethyl acetate, acetone, aromatic and aliphatic hydrocarbons, fixed oils, mineral oil, oleic acid and hot stearic acid. It is insoluble in water and while it dissolves hot carnauba and paraffin waxes, these solidify on cooling.

 Flash point
 215°F

 Specific gravity at 20/20°C
 0.948

 Boiling range
 253-259°C

Table 14.93: Di-tert-Amyl Aniline (2)

(C5H11)2C6H3NH2

Di-tert-amyl aniline, an aryl amine, is a red-colored, almost odorless liquid, soluble in ethyl ether, ethyl acetate, acetone, aromatic and aliphatic hydrocarbons, fixed oils, mineral oil, oleic acid and hot stearic acid. It is insoluble in water and methyl alcohol, and dissolves hot carnauba and paraffin waxes, which solidify when cooled.

 Flash point
 265°F

 Specific gravity at 20/20°C
 0.923

 Boiling range
 289-321°C

Table 14.94: N,N-Diamyl Aniline (Mixed Isomers) (2)

C6H5N(C5H11)2

N, N-diamyl aniline is a dark-amber liquid with a faintly aniline odor. It is insaluble in methyl alcohol and water, but soluble in ethyl ether, ethyl acetate, acetone, aromatic and aliphatic hydrocarbons, fixed oils, mineral oil, oleic acid, and hot stearic acid. It is also saluble in hot carnauba and paraffin waxes, which solidify on cooling.

 Flash point
 280°F

 Specific gravity at 20/20°C
 0.898

 Boiling range
 276-292°C

Table 14.95: Diethylbenzylamine (2)

$C_6H_5CH_2N(C_2H_5)_2$

Diethylbenzylamine is a colorless liquid with an almond-like odor. It is soluble in ethyl and methyl alcohols, ethyl ether, ethyl acetate, acetone, aromatic hydrocarbons, fixed oils, mineral oil, oleic acid and hot stearic acid. It is insoluble in water and while soluble in hot paraffin and carnauba waxes, these solidify on cooling.

 Flash point
 170°F

 Specific gravity at 20°C
 0.890

 Refractive index at 20°C
 1.5002

 Weight per gallon at 20°C
 7.41 lbs.

 Boiling range
 207-215°C

 Purity
 97%, min.

Table 14.96: N-(n-Butyl)-o-Naphthylamine (2)

C₁₀H₇NHC₄H₉

This solvent is a dark-red liquid with a faintly amine odor. It is a solvent for methyl alcohol, ethyl ether, ethyl acetate, acetone, aromatic and aliphatic hydrocarbons, fixed oils, mineral oil, oleic and hot stearic acid. It is insoluble in water, and soluble in hot paraffin and carnauba waxes which solidify on cooling.

 Flash point
 295°F

 Specific gravity at 20/20°C
 1.012

 Boiling range
 318-325°C

IMINES

Table 14.97: Ethylene Imine (23)

Ethylene imine is a colorless mobile liquid having an amine-like odor, with the above structure.

Molecular Weight	43.07
Density, gm. ml 10° C	0.865
0° C	0.856
10° C:	0.846
25° C	0.832
Boiling Point, °C	57
Freezing Point, °C	78
Index of Refraction, n _D at 25° C	1.4123
Viscosity, cps. at 25° C	
Surface Tension, dynes cm	32.8
Flash Point, °F	12
Heat of Formation, Kcal., mole	21.95
Heat of Vaporization, Kcal., mole at 20° C	7.9
Dissociation Constant	7.8 x 10 ⁻⁷

Table 14.98: Propylene imine (41)

Pentane

Molecular Weight	57.09
Density, g./ml.	
25°C.	0.8017
35°C.	0.7908
45°C.	0.7811
$\triangle d/\triangle t$, g./ml. per $^{\circ}$ C. at 25 $^{\circ}$ C.	0.0011
Boiling Point, OC. at 760 mm. Hg	66.0
△B.P./△p, °C. per mm. Hg at 760 mm. Hg	0.038
Vapor Pressure at 25°C., mm. Hg	140
Refractive Index, N _D at 25°C.	1.4084
Absolute Viscosity, centipoises at 25°C.	0.491
pKa at 25°C.	8.18
Heat of Vaporization at 66°C. and 1 atm, cal. per g.	139
Integral Heat of Solution of P.I. in water, 5 wt. % P.I. final conc., kcal./mole	4.5
Heat of Vaporization at 66°C. and 1 atm, BTU per lb.	250
Solubility:	
Water	Soluble
Polar organic solvents	in all

Proportions

AMIDES

Table 14.99: Formamide (11)

HCONH₂

Formamide is a water-white to light yellow, hygroscopic liquid. It is miscible in all proportions with the lower alcohols and glycols, but is insoluble in hydrocarbons, chlorinated solvents and ethers. Its high dielectric constant is an indication of its high ionizing power.

Formamide dissolves many metal chlorides, iodides, nitrates, phosphates, and some carbonates and is less soluble in sulfates and oxides. Proteins, saccharides, and palyvinyl alcohol dissolve or soften in formamide. Cellulose will swell in formamide as it does in water. Formamide is a nonaqueous solvent for electrolytes due to its ionizing solvent action on numerous inorganic salts.

AVERAGE ANALYSIS Formamide, % Methanol, % Color (as shipped), APHA	1.0
PHYSICAL PROPERTIES	
Molecular weight	45.04
Boiling point (760mm), °C	
°F	410
Freezing point, °C	
°F	36.7
Specific gravity, 25°/4°C (77°/39°F).	1.1339
Density, lb/gal, 60°F (15.6°C)	
Refractive index, N ²⁰	
Surface tension, dynes/cm, 20°C (68°F	
Viscosity, cp, 20°C (68°F)	
Dielectric constant, 20°C (68°F)	84
Solubility parameter	
Hydrogen bonding index	>16.2
Specific conductance, ohm-1, 25°C (77°	F) 18.9×10^{-5}
Specific heat of liquid, cal/g, 19°C	
Btu/lb, 66°F	
Latent heat of vaporization, cal/g, 210°0	
Btu/lb, 410	
Flash point (TOC), °F	310
°C	154.4

Table 14.100: Dimethylformamide (11)

DMF $(CH_3)_2NCH=O$

DMF, dimethylformanide, is a uniquely versatile and powerful solvent with the following general properties:

Appearance	Colorless, mobile liquid	Flash point, T.O.C., °C
Molecular weight	73.09	Ignition temperature, °C
Boiling point, 760mm, °C	153 (307°F)	Flammability limits in air
Freezing point, °C	61 (-78°F)	lower
Specific gravity 0°/4°C	0.9683	upper
25°/4°C	0.9445	Dielectric constant, 25°C36.71
Density, lbs/gal, 20°C	7.92	Dipole moment, 20°C
Refractive index, Np25°C		Hygroscopicity, 30°C (300 hrs @ 50% RH) 34% gain
Vapor pressure, 25°C	3.7mm	Relative evaporation rate (butyl acetate = 100) 17
Viscosity, 25°C	0.802 ср	Solubility parameter
Surface tension, 25°C	35.2 dynes/cm	Ionization constant (@ 20°C)
Specific heat (liquid, 20°C)	0.49 Btu/lb/°F	Azeotropes:
Heat of vaporization	248 Btu/lb	DMF (18.7 wt %), p-xylene (81.3%)135.1°C at 760mm
Heat of combustion	457.5 kg cal/gm mol	DMF (69 wt %), formic acid (31 wt %) 162.4°C at 760mm
	11,280 Btu/lb	DMF (7 wt %), tetrachlorethylene (93.0 wt %)117.5°C at 730mm
Thermal conductivity (at 23.5°C)	440 cal/sec cm°C	, , , , , , , , , , , , , , , , , , , ,

Table 14.100: (continued)

Evaporation Rate

ospheric conditions	
% Evaporation	Time, Hours
0	
20	
40	
60	26
80	
100	

Heat of Mixing DMF-Water . . .

Temp 30°C . . .

Wt % DMF in Aqueous Solution	Btu/lb DMF
5	89
10	82.5
15	
20	
25	70
30	
35	

Flash and Fire Point of DMF Water Solutions . . .

Composition, DMF-H₂O MixtureDMF % by Wt	Flash Point °F	Fire Point
100		150
90		170
70		230
65	210	225
	none	
	none	

Table 14.101: Surface Tension and Density of DMF-Water Mixtures (11)

			g/100g DMF
AgBr	0.03	LiH	0.7
AgCI	0.01	MgCl₂	moderate
Agl	0.04	MgSO₄	0.13*
AICI ₃	reaction	MnCl ₂ • 4H ₂ O	15
Al(NO ₃) ₃ • 9H ₂ O	20	NaB(OCH ₃) ₆	77.8
Be(NO ₁) ₂ • 3H ₂ O	20	NaBH₄	25.5₩
CaCl₂	Approx. 0.5	NaCHO₂	0.03
CaF₂	0.05	NaC₂H₃O₂ • 3H₂O	1.5
Ca(NO₃)₂ • 4H₂O	20	NaCl	0.05
CaSO ₄ • 2H ₂ O	1.293	NaCN	0.76
Cd(NO ₃) ₂	20	NaCNO	0.05
Co(C ₂ H ₃ O ₃) ₂ • 4H ₂ O	20	NaCNS	29.2
CoCl ₂ • 6H ₂ O	20	Na ₂ CO ₃	0.05
Co(NO ₃) ₂ • 6H ₂ O	20	Na ₂ Cr ₂ O ₇ • 2H ₂ O	20
CoSO4 • 7H2O	slight	Na ₂ Fe(CN) ₂ (NO) • 2H ₂ O	25
CrCl ₃ • 6H ₂ O	40	Na₂HPO₄	0.05
Cu(C ₂ H ₃ O ₂) ₂	slight	Nal	14.4
CuCl ₂ • 2H ₂ O	15	NaIO ₂	0.05
Cu(NO ₃) ₂ • 3H ₂ O	20	NaNO ₂	2.0*
CuSO ₄	1.8	NaNO₃	15.4
FeCl ₃	20	Na PO₃	0.05
Fe(NO ₃) ₃ • 6H ₂ O	20	Na ₂ S ₂ O ₃	0.08
FeSO ₄ • 7H ₂ O	slight	NH₄Br	12.795
HgCl₂	25	NH ₄ C ₂ H ₃ O ₂	0.1
l ₂	25	NH ₄ CI	0.1
KBH₄	1.2	NH ₄ CNS	15.2
KC ₂ H ₃ O ₂	0.09	(NH ₄) ₂ CO ₃	0.04
KCI	0.05	NH ₄ NO ₃	55.1
KCN	0.22	NiClz • 6H2O	5
KCNO	0.12	Ni(NO ₃) ₂ • 6H ₂ O	20
KCNS	18.2	Pb(C ₂ H ₃ O ₂) ₂ • 3H ₂ O	1.5
K₃Fe(CN)₅	0.05	Pb(HCO ₂) ₂	0.1
KI	25	PbO	0.3
KMnO ₄	reaction	PbS	0.15
KNO₂	0.7**	PbSO₄	0.1
KNO ₃	1.5	*Urea increases solu	bility:
кон	0.1	4.7g NaNOz with 4.6	-
LiBH.	3.5™	8.1g NaNOz with 9.3	-
LiCl	11.40	3.7g KNO2 with 7.5g	ı urea

Cellulosic	Cellulose nitrate	:
	Cellulose acetate	9
	Cellulose acetate butyrate	5
	Cellulose acetate propionate	5
	Cellulose triacetate	P
	Ethyl cellulose	5
	Cyanoethylated cellulose	5
Chlorinated Polyet	ther ("Penton"-Hercules Powder)	
Nylon (polyamides	s) Types 6/6, 6, 6/10	
	Type 8 (Belding-Corticelli Industries, B.C.I.)	:
Polyethylene		
Polypropylene		
Polycarbonate	("Lexan"—General Electric Company)	F
Fluorocarbons	Polytetrafluoroethylene ("Teflon"*)	
Styrene	Polystyrene	:
	Styrene-acrylonitrile copolymer (Tyril 767-Dow)	. !
Vinyl_Polymers		
and Copolymers	Polyvinyl chloride	
	Polyvinyl chloride-acetate	
	Polyvinyl alcohol	
	Polyvinyl butyral ("Butacite" - DuPont)	
	Vinylidene chloride/vinyl chloride copolymer (Geon 200 x 20)	:
	Vinylidene chloride/vinyl chloride copolymer (Saran B-115)	
	Polyvinyl acetate	
	Polyvinyl formal	
	Polyvinyl fluoride	
Polyesters	Saturated ("Mylar" *)	
	Alkyd	
Phenolic	Phenol-formaldehyde pure resin	
	Ester gum modified phenol-formaldehyde	
	Urea formaldehyde	
	Thiourea formaldehyde	
Coumarone	Coumarone-indene	
Natural	Garnet shellac	
	Orange shellac	F
	Ester gum	
	Kauri gum	
	Manila copal	
	Esterified congo copal	
	Wood resin	
	Damar	
	Soft albino asphalt	F
Epoxy (cured)		•
		,

Table 14.102: (continued)

Polymer Solvent

The principal use of DMF is as a solvent in the spinning of acrylic and polyurethane fibres. This is a specialised outlet but illustrates the solvent power of DMF for polymers of high molecular weight.

Various polymers which are soluble in DMF together with some which are insoluble are shown in the following lists:

Soluble
polyacrylonitrile
polyurethanes
polymethylmethacrylate
cellulose acetate
cellulose nitrate
cellulose acetate butyrate
ethylcellulose
cyanoethylated cellulose
polyvinyl chloride
polyvinyl alcohol
polyvinyl acetate
alkyds
phenol-formaldehyde resins
coumarone-indene resins
shellac
ester gum
kauri gum

Insoluble
polyethylene
polypropylene
polytetrafluoroethylene
saturated polyesters
uree-formsidehyde resins
natural rubber
butyl rubber
styrene-butadiene rubber

nylon 66, 6, and 610

Not only does DMF allow many polymers of sparing solubility to be brought into solution at economical concentrations, but when used either alone or as a booster solvent it yields solutions with lower viscosities and higher solids content than can be obtained with other solvents. It is therefore suggested as an attractive solvent for use in the formulation of protective coatings and films, adhesives, and printing inks.

Reaction Solvent and Catalyst

The use of DMF alone or as a component of a solvent system confers a number of advantages, the relative importance of which depends upon the particular application, but the following may be specially noted:

- (a) its high solvent power can increase the effective concentration of one of the reacting species;
- (b) it has a high dielectric constant;

Table 14.103: Dimethylacetamide (11)

DMAC

PHYSICAL PROPERTIES OF DIMETHYLACETAMIDE:
Formula
Molecular weight
Boiling point
Vapor pressure at 25°C1.3 mm
Freezing point—20°C
Specific gravity (15.5°C)
Pounds per gallon (15.5°C)
Viscosity (25°)
Refractive index1.4356
Dielectric constant37.8
Dipole moment (in dioxane)3.79
Flash point (Tag Open Cup)70°C
Thermal conductivity (22.2°C)
Specific heat (liquid, 0 to 87°C)0.485 BTU/lb°F
Heat of vaporization at 165°C (cal'd)10,360 cal/g mol
Heat of combustion (20°C)
Flammability limits in air at 740 mm Hg and 160°C
Lower
Upper11.5% by vol

Table 14.103: (continued)

Vapor	pressure:—
-------	------------

ssuic.—	
Temperature, °C	Pressure, mm Hg
25	1.3
40	3.4
70	18
90	46
110	108
130	230
150	460
165.5	758

Azeotrope —

DMAC (77.2 wt %)—acetic acid (21.1 wt %)—170.8°C at 760 mm

Solubility—Completely miscible with water, ethers, esters, ketones, and aromatic compounds. Unsaturated aliphatics are highly soluble, but saturated aliphatics have limited solubility.

	Solubility at 25°C g/100 g DMAC
Iso-octane	33
Di-isobutylene	Compl Misc
N-hexane	" "
N-Heptane	31
Cyclohexane	Compl Misc
Cyclohexene	" "
Kerosene	16

Table 14.104: Viscosities of Resins in DMAC (11)

Viscosities of Surface Coating Resins in DMAC

		Viscosity at 25°C, 15 wt % Solution—cps
Acrylic Re	sins	
Acryloid "	' A-21 (b)	23
•	A-107(b)	23
	B-72(b)	20
Lucite (c)	44	26
	45	38
	46	30
Expoxy Rea	sins	
Epon ^{©(d)}	1001	5
	1002	6
	1004	7
	1007	10
Cellulosic I	Resins	
Half-Sec. B	lutyrate	555
EAB-500-1(*)		950
EAB-171-2(*)		1275
Urea-Form	aldehyde Re	esins
Uformite*	• F-222 ⁽¹⁾	20
Melamine-	Formaldehy	de Resin
MM-55		18

Viscosities of Vinyl Resins in DMAC

,	Viscosity at 25°C, 15 wt % resin in 50/50 Solvent/ Toluene, cps
VYHH(E)	52
VAGH (E)	53
VMCH ^(e)	48
Geon®(h) 121	230
Geon®(h) 101	3800

Viscosities of Nitrocellulose Solutions in DMAC

	Viscosity at 25°C, 8 wt % resin in Solvent, cps
HB-14 Nitrocellulose (c)	18

- (a)-Rohm and Haas Company
- (b)—Reduced to 5 wt % solids with DMAC
- (c) -E. I. du Pont de Nemours & Co. (Inc.)
- (d)-Shell Chemical Corporation
- (e)—Eastman Chemical Products, Inc.
- (f)-Reduced to 30 wt % solids with DMAC
- (g)-Union Carbide Chemicals Company
- (h)-B. F. Goodrich Chemicals Company

Table 14.105: 1-Formylpiperidine (78)

1-Formylpiperidine, an amide solvent, is a stable, highly ordered, dipolar aprotic liquid having a high boiling point and wide liquid range (-30.6° to 222°C), making this a favorable solvent for nonvolatile applications in gas absorption processes, ink and dye systems, and plastics modifiers and stabilizers.
1-Formylpiperidine is a strong solvent for both polar and nonpolar compounds. It is unusual for its solubility in both water and hexane. It is miscible with acyclic alkanes (C₆ and below), cyclaalkanes, alcohols, esters, ketones, aldehydes, amines, carboxylic acids and hydrides, amides, alkyl halides beyond C₁₁, stearates, ethers, alefins, nitriles, nitro compounds, heterocyclics, aromotics, organophosphorus campounds, alkynes, organotin campounds, organosilicates and inorganic ocids. The high solubility of many polymers in 1-formylpiperidine is of particular significance. 1-Farmylpiperidine is a reactive solvent reacting at the carbonyl center and at the amide nitrogen.

Molecular Formula	C ₆ H ₁₁ NO
Molecular Weight	113.16
Density	1.02 g/ml (8.51 ib/gal)
Index of Refraction (25.0°C)	1.4823
Freezing Point	-30.6°C
Boiling Point	222° C
Vapor Pressure	
25°C	0.1 mm Hg (0.002 lb/in ² , 0.0001 atm)
100°C	14 mm Hg (0.27 lb/in², 0.02 atm)
Heat of Vaporization (ΔHvap)	16.5 kcai/mol (262 Btu/lb)
Heat of Fusion (ΔH_f)	2.2 kcal/mol (35 Btu/lb)
Heat of Sublimation (ΔHsub)	1B.7 kcal/mol (297 Btu/lb)
Entropy of Vaporization (ΔSvap)	33.4 cal/°/mol
Molar Freezing Point Depression Constant	5 .7°C/mol
Corrosion of Metals at 222°C	
Mild Steel	0.3 x 10 ⁻⁴ in/yr
Brass	3.2 x 10 ⁻⁴ in/yr
Copper	5.2 x 10 ⁻⁴ in/yr
Hydroscopicity (23°C, 100% RH,	0.16% weight gain/hour
exposed surface area/volume = 1.67 cm ⁻¹)	(nearly linear to 100 hr)

Solubilities of Gases (g/100 g, 23°C, 1 atm)

Ammonia	1.1
1,3-Butadiene	12.9
1-Butene	6.B
Carbon Dioxide	0.8
Methyl Chloride	12.9
Ethane	0.2
Methane	less than 0.1

Solubilities of Inorganic Solids (g/100 g, 23°C)

Aluminum Chloride	React
Potassium Acetate	0.51
Potassium Cyanide	0.06
Potassium lodide	18.9
Potassium Permanganate	React
Sodium Chloride	0.08
Ammonium Bromide	2.4
Sodium lodide	17.1
Sodium Hydroxide	0.02

Toxicity

LD₅₀ in rats and mice (C5)

~1,100 mg/kg of body weight

Table 14.105: (continued)

TERNARY SYSTEM

I-FORMYLPIPERIDINE, WATER, CYCLOHEXANE
at 25°C, ! ATMOSPHERE

CLAUSIUS -CLAPEYRON PLOT

VAPOR PRESSURE I - FORMYLPIPERIDINE

FREEZING POINT-COMPOSITION DIAGRAM FOR

THE I-FORMYLPIPERIDINE, WATER SYSTEM

LIQUID-VAPOR COMPOSITION DIAGRAM FOR THE
I- FORMYLPIPERIDINE, WATER SYSTEM

NITRILES

Table 14.106: n-Butyronitrile (19)

CH3CH2CH2C≡N

n-Butyronitrile is a clear, colorless liquid which is slightly soluble in water and completely miscible with common organic solvents. The product undergoes reactions typical of the aliphatic nitriles.

Physical Properties

Molecular weight	69.10
Specific gravity, 20/20°C	0.7920
Boiling point, 760 mm	117.5°C
50 mm	43 ° C
10 mm	13 ° C
Vapor pressure, 20°C	15 mm
Freezing point	-111.90°C
Solubility, in water, 20°C	3.5% by wt.
water in, 20°C	2.5% by wt.
Viscosity, O°C	0.8 срв.
20°C	0.6 срв.
7+O . C	0.5 cps.
Refractive index, $n \frac{20}{D}$	1.3841
Weight per gallon, 20°C	6.60 lbs.
Flash point	79 ° F

Shipping Data

Net Container Contents:	
1-gallon tin can	6.5 lbs.
5-gallon iron drum	30 lbs.
55-gallon iron drum	360 lbs.

Typical Analysis of Current Production

Specific gravity	0.7907
Distillation, IBP	115.7°C
50 ml	117.6°C
-DP	118.4°C
n-Butyronitrile	98.9% by wt.
Water	0.09% by wt.
Alkalinity	0.22 meq/gm
Color	5 Pt-Co

HETEROCYCLIC COMPOUNDS

Table 14.107: Pyrrole (49)

Appearance Colorless liquid, darkens on standing	Freezing Point*
Odor · · · · · · Mild, nonirritating	Specific Gravity, 20/4°C.*,0.968
Molecular Weight	Index of Refraction, n20/D*
Boiling Point* 129°C. (264°F.) at 760 mm.	Flosh Point (Tag closed cup)
	Modified Reid Vapor Pressure*0.25 p.s.i. (±0.05)

^{*}Determined on purified pyrrole

H,C C C C

2-pyrrolidone

Molecular Weight 85

PHYSICAL Physical Characteristics of 2-PYROL: PROPERTIES*

Physical State	
Boiling Point at 760 mm	245°C
Boiling Point at 400 mm	226° C
Boiling Point at 200 mm	202° C
Boiling Point at 100 mm	181°C
Boiling Point at 60 mm	
Boiling Point at 40 mm	155° C
Boiling Point at 20 mm	138° C
Boiling Point at 10 mm	122° C
Density at 25°C	1.107 g/ml
Density at 50°C	1.087 g/ml
Density at 75°C	1.067 g/ml
Density at 100°C	1.046 g/ml
Density at 125°C	1.025 g/ml
Density at 150°C	1.005 g/ml
Density at 175°C	0.985 g/ml
Viscosity at 25°C	12.0 cs or 13.3 cp
Refractive Index n _D ²⁵	1.486
Flash Point (open cup)	129.4°C (265°F)
Fire Point	
pH (10% aqueous solution)	8-10

As shipped, 2-PYROL meets a specification of 98.5% minimum purity, 0.5% maximum moisture.

Solubility: 2-PYROL is completely soluble in

water ethyl alcohol ethyl ether	chloroform benzene	ethyl acetate carbon disulfide
Dissolves polymers chlordane DDT d-sorbitol glycerine iodine sugars		

^{*}These data are typical of current production but are not specifications

Mole Percent Water

Table 14.110: N-Methyl-2-Pyrrolidone (49)

Structural Formula M-PYROL

Empirical Formula

C₅H₉NO

		CGS	ENGLISH	
Molecular Weight		99.1	99.1	
Purity (N-methyl-2-pyrrolidone, area% VPC)		99.8% min		
Physical form	· · · · · · · · · · · · · · · · · · ·	liquid with mild amine-like odor		
Moisture Content		0.05% max	0.05% max	
Density - Liquid	(20°C)	1.03 gm/cc	64.3 lb/ft ³	
•	(30°C)	1.02 gm/cc	63. 5 lb/ft ³	
	(40°C)	0.99 gm/cc	61.8 lb/ft ³	
Boiling Point	@ 760mm	202°C	395°F	
•	@ 162mm	150°C	302°F	
	@ 24mm	100°C	212°F	
Freezing Point		-29.4°C	-11.9°F	
Viscosity	(20°C)	1.7 cp	4.11 lb/ft-hr	
-	(50°C)	1.0 cp	2.41 lb/ft-hr	
	(80°C)	0.9 cp	2.17 lb/ft-hr	
Specific Gravity (d ²⁵ 4)		1.027		
	@ 75°C	0.987		
	@ 100°C	0.969		
Interfacial Surface Tension (25°C)		40.7 dynes/cm		
Flash Point (ASTM D 93-72)		93°C	199°F	
Heat of Vaporization — 100°C		127.3 K cal/kg	230 BTU/lb	
Specific Heat - Liquid	(0°C)	0.401 cal/g-°C	0.401 BTU/lb-°F	
•	(50°C)	0.465 cal/g-°C	0.465 BTU/lb-°F	
	(100°C)	0.502 cal/g-°C	0.502 BTU/lb-°F	
Specific Heat - Vapor (25°C)		0.301 cal/g-°C	0.301 BTU/lb-°F	
Vapor Pressure -	(40°C)	1.0 Torr	0.02 psi	
•	(60°C)	3.5 Torr	0.07 psi	
	(80°C)	9.5 Torr	0.19 psi	
Refractive Index	·	1.4700	1.4700	
Heat of Combustion		7.29 kcal/g	13,100 BTU/lb	
Dipole Moment		4.09 ± 0.04 Debye		
Dielectric Constant (25°C	()	32.2		
Ignition Temperance (AS	·	270°C	518°F	
Flammable Limits in Air	Upper	9.5 vol %	9.5 vol. %	
	Lower	1.3 vol. %	1.3 vol. %	
Thermal Conductivity (25	5°C)	1.33 W/cm-°C	1.13 BTU-in/ft. ² hr°F	
Hansen Solubility param	eters:			
		δd 8.8 (cal/cm ³) ¹⁹		
		δp 6.0 (cal/cm ³) ^{1/2}		
		δh 3.5 (cal/cm ³) ³		
		δt 11.2 (cal/cm ³) ^{1/2}		
Kauri-Butanol Value (AS	TM D1138-83)	>300		

Table 14.111: Acute Oral Toxicity (49)

M-Pyrol shows a low order of oral toxicity for each of the species investigated.

LD ₅₀	Species	Reference	
4.1 g/kg	Mouse	(1)	
7.5 g/kg	Mouse	(2)	
4.2 g/kg	Rat	(3)	
3.8 ml/kg	Rat	(2)	
3.5 ml/kg	Rat	(4)	
4.4 g/kg	Guinea Pig	(5)	
3.5 g/kg	Rabbit	(5)	
2.5-5.0 g/kg	Bobwhite Quail	(6)	

Table 14.112: Acute Dermal Toxicity (49)

M-Pyrol is readily absorbed through the skin and shows dermal toxicity of approximately the same magnitude as oral toxicity.

LD ₅₀	Species	Reference
7.0 g/kg	Rat	(1)
5-10 g/kg	Rat	(8)
4-8 g/kg	Rabbit	(6)
2-4 g/kg	Rabbit (abraded skin)	(6)

Table 14.113: Injection Toxicity (49)

As might be expected, M-Pyrol is slightly more toxic by injection than by the other modes of application. Differences, however, are generally small so that toxicity is still low.

Injection mode	LD ₅₀	Species	Reference
Intraperitoneal	4.3 ml/kg	Mouse	(2)
Intraperitoneal	1.9 ml/kg	Mouse	(4)
Intraperitoneal	2.4 ml/kg	Rat	(2)
Intravenous	3.5 ml/kg	Mouse	(2)
Intravenous	2.4 ml/kg	Rat	(2)

Intravenous injection of M-Pyrol in rats was studied, monitoring arterial blood pressure, blood glucose levels and electrocardiograms. Doses of 50 mg/kg produced a slight and short-lived hypotension without altering the ECG; hyperglycemia was observed at the higher dosage only. At 500 mg/kg, hypotension, hyperglycemia, and ECG alterations were all produced.

Table 14.114: Toxicity to Aqueous Organisms (49)

M-Pyrol shows low toxicity for all of the aquatic animals tested.

LC ₅₀	Species	Reference	
0.8 ml/1	Sunfish	(6)	
1.1 ml/1	Fathead Minnow	(6)	
3.0 ml/1	Trout	(6)	
1.3 ml/1	Guppy	(1)	
4.9 ml/1	Daphnia	(6)	
4.7 ml/1	Scud	(6)	
1.6 ml/1	Mud Crab	(6)	
1.1 ml/1	Grass Shrimp	(6)	

Table 14.116: Specific Heat (49)

Table 14.117: Thermal Conductivity (49)

Table 14.118: Vapor Pressure (49)

Table 14.119: Comparison of Vapor Pressures of M-Pyrol and Other Aprotic Solvents (49)

Table 14.120: Surface Tension (49)

785

* Virtanen, P.O.I. and Korpela, J. Suomen Kemistrilehti B40:99-103 (1967); Virtanen, P.O.I. ibid B-40:241-9 (1967); ibid B40:313-16 (1967)

Table 14.124: Vapor/Liquid Equilibrium Data for M-Pyroi-Water System at Atmospheric and 400 mg Pressures (49)

		Mole-% M	Mole-% M-PYROL®		Weight-% M-PYROL®	
Boiling Pt, C	Pressure. mm	Liquid	Vapor	Liquid	Vapor	
202	757.2	99.6	95.7	99.9	99.2	
190	761.8	95.9	70.8	99.2	9 3 .0	
186	758.2	96.7	68.6	99.4	9.23	
135	757.2	72.4	10.0	93.5	37.9	
108	755.5	34.7	1.9	7 4 .5	9.5	
102	756.0	17.4	1.0	53.7	5.3	
168	400.0	9 7.6	77.1	99.6	94.9	
165	399.0	97.3	68.1	99. 5	92.1	
162	400.4	96.6	63.8	99.4	90.6	

Table 14.127: Comparison of Hydrolysis of M-Pyrol and DMF (49)

Reagent	Time, Hours	Temp., °C	Conc., M-PYROL®	mol/1 DMF	Hydrolysis, %
0.5N NaOH	24	R.T.	0.40	0	0
0.5N NaOH	24	R.T.	0	0.39	90.4
0.5N H ₂ SO ₄	24	R.T.	0.45	0	0
0.5N H ₂ SO ₄	24	R.T.	0	0.42	0
0.25N NaOH	1	80	0.21	0	5.4
0.25N NaOH	1	80	0	0.22	100

Table 14.128: Hydrolysis of M-Pyrol in Alkaline Salt Solutions (49)

Aikaline Salt	pH 1% Solution	% Hydrolysis
Sodium tripolyphosphate	9.7	0.3
Potassium pyrophosphate	10.1	0.5
Sodium carbonate	11.4	1.5
Trisodium phosphate	12.0	4.7
Sodium metasilicate	12.6	18.3
Sodium hydroxide	13.2	39.7

Table 14.129: Hygroscopicity Data (49)

Note: Dynamic tests conducted in humidity cabinet having complete change of atmosphere every 3 minutes. Surface area to weight ratios of large Petri dish, small Petri dish, and vial were 17.0, 2.4, and 0.25, respectively.

Table 14.130: Hygroscopicity Data (49)

Table 14.131: Hygroscopicity Data (49)

Table 14.132: Effect of Temperature on Hygroscopicity (49)

Table 14.133: Correlation of M-Pyrol and Water Vapor Data (49)

Table 14.134: Vapor/Liquid Equilibrium of M-Pyrol Containing 1% Water (49)

Equilibrium Natural Gas Pressure (psia)

al Gas			
osition	Temperature		Vapor Composition
le %)	(F)	psia	(mole % Solvent)
4.35	100	765	0.0050
90.04	100	797	0.0046
3.30	100	560	0.0045
1.84	100	435	0.0048
0.47	100	417	0.0058
	100	190	0.0086
	100	50	0.0168
	100	14.7	0.095*
	osition le %) 4.35 90.04 3.30 1.84	osition (F) 4.35 100 90.04 100 3.30 100 1.84 100 0.47 100 100 100	osition le %) Temperature (F) psia 4.35 100 765 90.04 100 797 3.30 100 560 1.84 100 435 0.47 100 417 100 190 100 50

^{*}Calculated from 0.76 mm Hg vapor pressure.

Table 14.135: Solubility of Acetylene in Various Solvents (49)

Solvent	K Value (20 °C, 1 atm) ml gas / ml solvent	Solvent B. P., °C
M-PYROL®	43	202
Dimethylformamide	36	153
Dioxane	19.5	101
Acetone	17.5	56.5
BLO	17	204
Cyclohexanone	14	155

Table 14.136: Solubility of Sulfur Compounds and Carbon Dioxide in M-Pyrol Solvent (49)

Table 14.137: Solubility of Paraffin Hydrocarbons in M-Pyrol Solvent (49)

Table 14.138: Vapor-Liquid Equilibrium Distribution Coefficients for Sulfur Compounds and Carbon Dioxide in M-Pyrol Solvent (49) 500 O Pure Solutes × Diluted with Nitrogen A Mixed with Other Solutes 100 50 K = Y/X at 1 Atm 10 ×× Mole Fraction in Vapor Phase Mole Fraction in Liquid Phase 1.0 0.5 0.1

50

100

200

Temperature (°F)

300

400

Table 14.139:Vapor-Liquid Equilibrium Distribution Coefficients for Paraffin Hydrocarbons in M-Pyrol Solvent (49)

Between Equilibrium Distribution Coefficients (K) and Solute Table 14.141: Classification of Equilibria in M-Pyrol Showing Relationship Table 14.140: Correlation of Equilibrium Distribution Coefficients for Ethane and Heavier Paraffin Hydrocarbons

Table 14.144: Solubilities of Acetylenes in Anhydrous M-Pyrol Solvent (49)

Table 14.145: Vapor-Liquid Equilibrium Distribution Coefficients for Olefins and Carbon Monoxide in M-Pyrol Solvent (49)

Table 14.146: Vapor-Liquid Equilibrium Distribution Coefficients for Diolefins in Anhydrous M-Pyrol Solvent (49)

Table 14.147: Vapor-Liquid Equilibrium Distribution Coefficients for Acetylenes in Anhydrous M-Pyrol Solvent (49)

Table 14.148: Effect of Water (5 wt %) in M-Pyroi Solvent on Equilibrium Distribution Coefficients for Olefins (49)

Table 14.149: Effect of Water (5 wt %) in M-Pyrol Solvent on Equilibrium Distribution Coefficients for Diolefins (49)

 $K_F = \frac{Fugacity \text{ of Solute at Vapor Pressure}}{Fugacity \text{ of Solute Vapor at System Pressure}}$

 $K_F = \frac{Fugacity \text{ of Solute at Vapor Pressure}}{Fugacity \text{ of Solute Vapor at System Pressure}}$

Table 14.152: Classification and Correlation of Equilibria of Unsaturated Hydrocarbons in Anhydrous M-Pyrol Solvent (2-10 atm, 25°-150°C range) (49)

Table 14.153: Effect of Water and Elevated Pressure on Solubility of Hydrogen Sulfide in M-Pyrol Solvent (49)

Table 14.154: Solubility of Polymers in M-Pyrol (49)

Polymer	Solubility,	% *
Acrylonitrile/vinyl chloride copolymer	>1	0
Adiprene B urethane rubber (duPont)	1	()a
Black Tervan wax (Exxon)	>1	0
Cellulose triacetate	>1	0
Chemigum butadiene/acrylonitrile copolymer (Goodyear)	SC	ol
Delrin polyacetal resin (duPont)	insc	ol
Epi Rez 510 epoxy resin (Interchemical)	SC	ol
Epolene N polyethylene (Eastman)	insc	ot
Epon 1000, 1004, 1007 epoxy resin (Shell)	SC	
Estane 5740X1 and 5740X2 polyurethane (Goodrich)	>1	-
Ethyl Cellulose N-100 (Hercules)	-	.5
Formvar polyvinyl formal resin (Monsanto)		5
Gantrez AN methylvinylether/maleic anhydride copol. (GAF)	>1	-
Geon 101 and 102 polyvinyl chloride (Goodrich)	-	0
Hycar OR butadiene/acrylonitrile copolymer (Goodrich)	\$C	
Kynar polyvinylidene fluoride (Pennwalt)		ol
Lexan polycarbonate (General Electric)	-	10ь
Mekon 20 wax (Petrolite)	>1	Τ.
Multrathane MA-40 and MB-40 polyurethane (Mobay)	inso	-
Mylar polyester flim (duPont)	>1	-
Nylon	>1	
Pentalyn M pentaerythritol ester of resin (Hercules)	-	50
Polyacrylonitrile, specific viscosity 2.1c	_	24
3.1		8
8.7	_	0
31.9		5
Poly(methyl α-chloroacrylate)	>1	_
Poly(methyl methacrylate)	>1	-
Polybutene	_	ol
Polystyrene	_	25
Polyester-type polyurethane rubber (Mobay)	(at 80°C) 1	
Polyvinyl chloride	>1	_
Polyvinyl pyrrolidone	>1	
Teflon fluorocarbon resin (duPont)	inso	
Vinosol Ester Gum glycol ester of pine resin (Hercules)	-	0
Vinac polyvinyl acetate (Air Products)	_	0
Vinylite VYHH, VMCH, and VYNS VC/VAc copolymers (U.		
Vinylite NYGL vinyl resin (Union Carbide)		25
Vinylite VYNW vinyl chloride resin (Union Carbide)	_	15
Zytel nylon molding resin (duPont)	(at 200°C) 2	25

^{* &}quot;>10" shows that a 10g sample dissolves in 100g M-PYROL at room temperature; other numbers indicate the solubility limit for pourable viscosity. "Sol" indicates a qualitative test only, and "insol" indicates no solubility under test conditions.

 $[\]bullet$ Solubility 10% (room temperature) and 25% (80°C).

b After 24 hours at 25°C or 1 hour at 60°C, gels.

Sp. Visc. of 1 g polymer in 100 ml M-PYROL at room temp.

Table 14.155: Bunsen Solubility Coefficients for Gases in M-Pyrol Solvent (49)

Table 14.156: Solubility in M-Pyrol (to nearest 5%) at Room Temperature (49)

: Herbicides	2, 4-dichlorophenoxybutyric acid		25%
	butoxycthyl ester		75%
	butyl ester		75%
	isooctyl ester		>80%
	isopropyl N-(3-chlorophenyl) carbamate		>80%
	2-methyl-4-chlorophenoxyacetic acid		>80%
	2, 4, 5-trichlorophenoxyacetic acid		50%
	butoxyethoxypropyl ester		75%
	butyl ester		75%
	isobutyl ester		75%
	isooctyl ester		75%
Insecticides	aldrin	(cloudy)	30%
	chlordane		60%
	DDT		65%
	dieldrin		35%
	O, O-dimethyl-O-(2, 2-dichlorovinyl) phosphate		>80%
	heptachlor	(cloudy)	30%
	lindane		50%
	malathion		>80%
	methyl parathion		>80%
	parathion		80%
	Sevin (Union Carbide)		55%
	toxaphene		50%
Fungicides	captan	(100°C)	33%
	pentachlorophenol		10%
	phenylmercuric acetate		10%

Table 14.157: M-Pyrol Solvent Effects at Ambient Temperature for 7 Days (49)

	Percent Change from Initial					
Substrate	Weight	Length	Width	Thickness	Comments	
ABS	Coupons fragr	nented within 1	hr. of immer	sion		
Buna-N	66.99	17.19	13.47	22.23	Note 1	
Butyl Rubber	1.37	0.42	-1.39	0.00	Note 2	
EPDM-70	4.14	0.91	-0.32	1.56	Note 1	
Kynar	-11.72	3.85	-2.99	19.30	Coupons dissolving	
Lexan	Coupons comp	oletely dissolve	ed within 18 he	ours	dissolving	
Neoprene	0.79	-1.57	-0.45	0.00	Note 1	
Noryl EN-265	Coupons comp	oletely delamin	ated within 72	2 hrs.		
Nylon 101	-0.59	-0.16	-0.19	4.17	Note 2	
Polyethylene - Crosslinked Polyethylene -Low	0.09	0.07	0.003	-0.25	Note 2	
Density Polyethylene -	0.39	0.10	-0.26	0.00	Note 2	
High Density Polypropylene	0.15 0.02	0.10 -0.53	0.06 -0.85	-0.75 1.62	Note 2 Note 2	
PVC	Coupons comp	oletely dissolve	d within 24 h	rs.		
Silicon Rubber	1.09	0.16	0.45	0.93	Note 2	
Teflon	-0.01	-0.10	0.00	-2.65	Note 2	
Viton	176.0	50.28	56.89	64.38	Note 1	
Note 1: Coupons disc Note 2: No visible effe		r continued to le	ach M-PYROL	up to 24 hrs. afte	r removal.	

Table 14.158: M-Pyrol Solvent Effects at 70°C for 7 Days (49)

		Percent Change from Initial			
Substrate	Weight	Length	Width	Thickness	Comments
Butyl Rubber	6.25	1.60	1.44	0.00	Note 1
EPDM-70	5.88	0.62	1.92	0.00	Note 1
Neoprene	1.71	-0.42	0.78	-2.86	Note 1
Nylon 101	1.65	0.23	0.00	3.03	Note 2
Polyethylene - Crosslinked	1.40	0.13	0.13	1.24	Note 2
Polyethylene -Low Density	1.63	-0.09	0.26	0.00	Note 2
Polyethylene - High Density	0.99	0.20	-0.32	-2.70	Note 2
Polypropylene	1.94	0.30	0.33	1.64	Note 2
Silicon Rubber	2.3 3	0.65	0.00	2.78	Note 2
Teflon	0.01	0.30	-0.06	0.00	Note 2

Table 14.159: Solubility Parameters (49)

Comparison of M-PYROL Solvent and **Moderately Hydrogen-Bonded Solvents**

NOTE: The value for M-PYROL solvent d = 11.0 is based on a total vaporization of 12,200 cal/mol,

The solubility parameters for resins are based published by Burrell (1957) and Hughes and Britt

Polystyrene seems to be a notable exception. It is known to be soluble in M-PYROL solvent yet the reported parameter range is only 9.0 ± 0.9 (Burrell 1957).

Table 14.160: Typical Physical Properties of Pyrrolidone Solvents (49)

	NEP®	CHP*	HEP®
Physical Form	Liquid	Liquid	Liquid
Molecular Weight	113	167	129
Purity, Area % GC	98% Minimum	98% Minimum	98% Minimum
Moisture, %	0.5 Maximum	0.5 Maximum	0.5 Maximum
Boiling Point, °C	200	284	295
Freezing Point, °C	<-70	12	20
Viscosity, cps 25°C	3.5	11.5	53
Refractive Index @ 25°C	1.4664	1.4950	1.4951
Specific Gravity @ 25°C	0.993	1.026	1.139
Flash Point, Closed Cup (°F)	199	293	320
Heat of Vaporization KCal/mole	12.7	12.9	16
Solubility, Parameter	10.3	8.7	11.7
CAS Registry No.	2687-91-4	6837-24-7	3445-11-2
Chemical Structure	CH ₂ CH ₃		OH ₂ CH ₂ OH

Table 14.161:Hydrolytic Stability of Alkyl Pyrrolidones (49)

Pseudo First Order Rate Constant for Acid Hydrolysis of Selected One Molar Pyrrolidones in Aqueous One Molar HCI at 100°C pH 0.4 \pm 0.1

		Hydroly	sis Rate
Pyrrolidone Solvent	Pseudo First Order Rate Constant K X 10 ¹⁰ Sec ⁻¹	t(0.50) Years	t(0.05) Days
2-PYROL®	44.7 ± 10	1.96	53
HEP®	22.3 ± 5	3.9	105
M-PYROL®	15.2 ± 0.4	5.8	156
NEP®	7.45 ± 1.2	11.7	316
CHP®	1.35 ± 0.09	6 5	1745

Base Hydrolysis, 1 M NaOH, 100°C

Pyrrolidone Solvent	% Hydrolyzed in 5 Hours
HEP®	64.9
NEP®	53.6
CHP®	0

Acid Hydrolysis of CHP (One Molar) in 2.5 Normal HCl at 80°C

Time (Days)	% Hydrolysis	
0	0	
0.9	. 1.24	
2.0	6.45	
4.3	13.44	
5 .	15.32	
6	17.92	
8	22.80	
12	31.90	
16.2	40.50	
20	47.4	
22	50.8	

Table 14.162: CHP/Water System (30:70) Minimum Critical Solution Temperature as a Function of Acid/Base Concentration (49)

Table 14.163: Phase Diagram CHP Water (49)

Table 14.164: Minimum Critical Solution Temperature of CHP Water System (30:70) as a Function of Acid/Base Concentration (49)

Normality of H2SO4, pH < 1	'CST (°C)
0.93	79.5
0.6	65.5
0.3	57.0
0.1	52.5
20	50.5
Normality of NaOH, pH > 13	'CST (°C)
20	50.5
0.09	40.0
0.185	32.0
0.275	23.5
0.37	15.5
0.46	6.0

¹CST is the minimum temperature below which the system is in one phase for all compositions. ²pH = 8.5

Table 14.165: Comparison of NEP, HEP, CHP Solvents with Common Solvents (49)

	Freezing Point (°)C	Boilting Point (°)C	Surface Tension dynes/cm 20° cm	Flash Point (°)C	Solubility Parameter
HEP® (N-Hydroxyethyl-Pyrrolidone)	20	295	49	160	11.7
M-PYROL® (N-Methyl-Pyrrolidone)	-24	202	41	95	11.0
NEP® (N-Ethyl-Pyrrolidone)	<-70	200	36	93	10.3
CHP® (N-Cyclohexyl-Pyrrolidone)	12	284	43	145	8.7
DMAC® (Dimethyl-Acetamide) (DuPont)	-20	166	34	70	10.8
DMF® (Dimethyl-Formamide) (DuPont)	-6 1	153	35	68	12.1

Table 14.166: Surfadone LP Specialty Solvent Structure (49)

Table 14.167: Physical Properties of Surfadone LP Products (49)

	SURFADONE* LP-100	SURFADONE* LP-300
Physical Form (25°C)	Clear to slightly hazy liquid	Clear to slightly hazy liquid
Boiling Point (°C)	100 (0.3mm Hg)	145 (0.2mm Hg)
Vapor pressure (mm Hg)	0.5x10 ⁻³	0.1×10 ⁻⁴
Density (g/cc)	0.92	0.90
Solubility Parameter	9.2	8.9
Flash Point (°C)(TCC)	119	116
Solidification Point(°C)	-25	10
Thermal Gravimetric Analysis (°C) ⁽¹⁾	175	225
Molecular Weight	197	253
Min. Surface Tension (dynes/cm) ⁽²⁾	28	26

- (1) Temperature at which 10% weight loss occurs (by volatilization).
- (2) Saturated solution

Table 14.168: Phase Diagrams (49)

Table 14.169: Solubilities of Surfadone LP 100 and LP-300 Nonionics in Various Solvents (49)

Solvent	SURFADONE® LP-100	SURFADONE® LP-300
Water Ethanol Acetone Xylene Heptane Paraffin Oil Stoddard Solvent Perchloroethylene	< 0.1% or > 65% S S S S S S S S	< 0.002% or > 80% S S S S S S S

S = soluble at 10%

Table 14.170: Surfactant Properties of Surfadone LP Products (49)

Solvent	SURFADONE® LP-100	SURFADONE® LP-300
Maximum concentration in H ₂ 0 (%)	0.124	0.002
Minimum static surface tension (dynes/cm)	28	26
Draves wetting time (sec.)	4	300
Dynamic surface tension (dynes/cm) ⁽¹⁾	29	N/A
HLB	6	3

⁽¹⁾ at a surface age of one second

Table 14.171: Low Concentrations of Surfadone LP Products Lower Surface Tension of Water (49)

Table 14.172: Draves Wetting Time for Surfadone LP Products with SDS (seconds) (49)

	0.1% Solution	with 0.008% SDS	0.018% SDS
SURFADONE® LP-100	3.5	2.4	<1
SURFADONE® LP-300	>300	5.4	4.4
SDS	17	•	_

Table 14.173: Low Concentrations of Surfadone LP Products Reduce Dynamic and Equilibrium Surface Tension (49)

LP-100 %	Surface Tension (dynes/cm.) Bubbles/sec.			
	1	5 •	10 A	
0.007	62	67	69	
0.015	57	62	67	
0.030	48	52	57	
0.060	39	41	45	
0.100	35	37	40	
0.120	30	32	35	

Table 14.174: Surfadone LP Products Effectively Wet Difficult-to-Wet Substrates (49)

(Contact Angles in 0.1% Solutions in Water)

	Aluminum	Silicone	Polypropylene	Teflon
Water	84	95	95	113
SURFADONE® LP-100	<5	56	34	54
SURFADONE® LP-300	36	53	33	54

Table 14.175: Surfadone LP/SDS Ratio (49)

	Pure	3:1	1:1	1:3
SURFADONE® LP-100 SURFADONE® LP-300	25/5 13/11	159/159 139/139	164/161 135/135	58/157 151/151
Sodium Dodecyl Sulfate (SDS)	156/156	_	_	

Foam Height (mm), initial/5 min Total concentration, 0.1%

Table 14.176: Elastomer Mechanical Properties—Results of Material Resistance to NMP (47)

(6 Weeks Immersion @ 120°F)

	MATERIAL	INITIAL WT. (G)	FINAL WT. (G)	∆ WEİGH T	% ∆ WEIGHT	DIMENSION BEFORE (CM)	DIMENSION AFTER (CM)	TOTAL LOSS	TOTAL GAIN
1)	CELCON*	95.8334	96.7680	0.9346	0.98	3.0 × 11.5 · × 1.93	3.0 × 11.5 × 1.56	_	0.026
2)	TEFLON*	16.8372	16.8394	0.0022	0.013	3.2 × 10.1 × 0.241	3.2 × 10.1 × 0.241	_	
3)	NYLON (ROD)	15.8448	15.9256	0.0808	0.51	1.3 × 10.2 × 1.300	1.3 × 10.2 × 1.290	0.01	
4)	TIVAR*	28.9250	29.1876	0.2626	0.91	2.6 × 10.2 × 1.204	2.6 × 10.3 × 1.209	_	× 0.1 × 0.005
5)	NYLON (SHEET)	31.0453	31.1811	0.1358	0.44	3.6 × 10.5 × 0.711	3.6 × 10.5 × 0.714	_	0.1 × - × 0.003
6)	PVC	17.3684	_	_	_	3.5 × 11.7 × 0.301	_	_	_
7)	EPD M	13.5350	12.4198	- 1.1152	-8.2	3.8 × 10.2 × 0.331	3.6 × 9.8 × 0.309	0.2 × 0.4 × 0.022	
8)	NEOPRENE (R-30)	17.7365	23.5720	6.8355	39.0	4.0 × 10.4 × 0.354	_		
	NEOPRENE (R-30)	17.7365	18.2105	0.4740	2.7	4.0 × 10.4 × 0.354	3.9 × 10.4 × 0.324	0.1 × × 0.03	_
9)	GUM RUBBER	27.2070	31.9650	4.7580	17.5	4.0 × 10.3 × 0.683	4.3 × 10.3 × 0.719	_	0.3 × 0.5 × 0.036
10)	NEOPRENE (R-41)	8.2889	9.1755	0.8866	10.7	3.9 × 10.1 × 0.165	_	_	_
	NEOPRENE (R-41)	8.2889	7.1048	- 1.1841	- 14.3	_	3.6 × 9.5 × 0.160	0.3 × 0.6 × 0.005	_
11)	BUTYL RUBBER	39.1515	40.8792	1.7277	4.4	4.4 × 10.2 × 0.640	4.4 × 10.3 × 0.665	_	— × 0.1 × 0.025
12)	MYLAR*	0.6565	0.7224	0.0659	10.0	3.9 × 10.1 × 0.013	3.8 × 10.2 × 0.013	_	_
13)	VITON*	12.2540	25.5317	13.2777	108.0	4.0 × 10.3 × 0.162	-	_	
	VITON"	12.2540	14.2267	1.9727	16.1	4.0 × 10.3 × 0.162	4.4 × 11.0 × 0.134	_	0.4 × 0.7 × 0.03
14)	HYPALON*	9.0964	10.3928	1.2964	14.3	3.9 × 10.2 × 0.170		-	_
	HYPALON*	9.0964	8.2690	- 0.8274	-9.1	3.9 × 10.2 × 0.170	3.7 × 9.8 × 0.167	0.2 × 0.4 × 0.003	
15)	SILICONE	8.1632	8.2814	0.1182	1.45	4.2 × 10.3 × 0.158	4.2 × 10.3 × 0.157	0.001	_

Detailed information is available in a separate technical report.

Table 14.177: Pyridine (2)

Pyridine is a liquid miscible with water, alcohol, ether, benzene and many organic liquids. It is an excellent solvent for organic materials and will dissolve many metallic salts giving comparatively stable compounds (without substitution). It is used in the preparation of water-proofing chemicals, rubber accelerators, and pharmaceuticals. It is also used as an extractant and in distilling and purifying operations. The less pure grade is used as a denaturant for industrial alcohol.

 Boiling point
 115°C

 Melting point
 -42°C

 Specific gravity at 25/4°C
 0.978

Table 14.178: Alpha-Picoline (2)

2-Methyl Pyridine

Alpha-picoline is a liquid which is very soluble in water, farming a constant-boiling mixture with it. It is also soluble in ethyl alcohol and ethyl ether. It may be used in the manufacture of alkaloids, pharmaceuticals, antioxidants, and rubber accelerators.

Boiling point Melting point Specific gravity at 15/4°C

Distillation Range Completely within 2°C

128°C -69.9°C

0.950

Table 14.179: Beta-Picoline (2)

3-Methyl Pyridine

Beta-picaline is similar to the alpha compound. It is soluble in water with which it farms a canstant-boiling mixture; it is also soluble in ethyl alcohol and ethyl ether. Suggested uses for it are in the manufacture of alkaloids, pharmaceuticals and rubber accelerators. It is also a starting material for the production of nicotinic acid and nicotinic acid amide.

 Boiling point
 143.5°C

 Melting point
 -18.3°C

 Purity
 95%, min.

 Specific gravity at 15/4°C
 0.961

Table 14.180: Gamma-Picoline (2)

4-Methyl Pyridine

The salubility and uses for this solvent are similar to those of the alpha and beta compounds.

 Boiling point
 143.1°C

 Melting point
 +3.8°C

 Purity
 95%, min.

 Specific gravity at 15/4°C
 0.957

811

Table 14.181: 2,4-Lutidine (2)

2,4-Dimethyl Pyridine

2,4-Lutidine is a liquid, very soluble in alcohols, ketone, ethers, hydrocarbons, and most organic solvents, but only 15% soluble in water. It is recommended for use in the synthesis of drugs, dyes, and other chemicals.

> Boiling point Distillation Freezing point Specific gravity at 25/4°C

158.3°C 90% distills within 2°C Below -60°C 0.927

Table 14.182: 2,6-Lutidine (2)

2,6-Dimethyl Pyridine

2,6-Lutidine is a liquid, very soluble in water, alcohols, ethers, ketones, hydrocarbons, and most organic solvents. It is recommended for use in the manufacture of resins, dyes, drugs, insecticides, rubbers, and organic chemicals.

> Boiling point Freezing point Specific gravity at 25/4°C

142.9°C -6.0°C 95%, min.

Table 14.183: Quinoline (2)

Quinoline is a liquid, soluble in alcohol, ether, carbon disulfide, and in most of the common organic solvents, but only partially soluble in water. It is a solvent for cellulose esters and ethers when used with other solvents. It is used in the manufacture of dyes, photographic sensitizers, nicotinic acid, and drugs. It is also used as an extraction agent and in organic synthesis.

> Boiling point Melting point Specific gravity at 20/4°C Distillation range

237.7°C -19.5°C 1.095

95% distills within 2°C

Table 14.184: 2-Methyl-5-Vinyl Pyridine (4)

FORMULA	CH ₂ = CH — C CH CH		
PROPERTIES			
Purity, mol percent (water-free basis)	95.1	94.0 min * •	
Boiling point, at 50 mm Hg, F	212		
at 160 mm Hg, F	358		
Freezing point, C (water-free basis)	-14,16	-15,14 min	
Water content, weight percent	0.20	0.5 max	
Refractive index at 25 C	1.541		
Specific gravity of liquid at 60/60 F	0.962		
Density of liquid at 60 F, lbs/gal	8.01		
Color, Gardner	1	2 max	
Appearance	Clear	**************************************	
Polymer content (Hexane Dilution)	Negative	Negative min	
Flash point, F (TOC)	165		
nhibitor content, weight percent	······································		
(Tertiary Butyl Catechol)	0.1	0.05 min — 0.15 max	

Table 14.185: 1,2,4-Trimethylpiperazine (47)

TYPICAL PHYSICAL PROPERTIES

Form Viscosity at 25°C. pH, 1% Aqueous Solution Boiling Point (746 mm) Freezing Point Specific Gravity 25/25°C. Refractive Index at 25°C.	Liquid 1.037 cps. 10.3 149° - 151°C. <-50°F. 0.851 1.4480
Refractive Index at 25°C.	1.4480
Fire Point, Cleveland Open Cup	125°F.
Pour Point	<-50°F

SOLUBILITY

Soluble in water, acetone, methanol and benzene.

AVAILABILITY

1,2,4-trimethylpiperazine is available in semi-commercial quantities.

Table 14.186: 1,4-Bis(2-Hydroxypropyl)-2-Methylpiperazine (DHP-MP) (47)

TYPICAL PHYSICAL PROPERTIES

Form	Liq u i d
Viscosity, 25°C.	752 cps.
Boiling Point (3 mm.)	145°C.
Pour Point	10°F.
Specific Gravity 25/25°C.	1.001
Refractive Index, 25°C.	1.4803
Flash Point, Open Cup	300°F.
Color	Light Yellow
Molecular Weight	216
pH, 1% Aqueous Solution	10.0
Analysis, based on tertiary	
nitrogen content	97%

SOLUBILITY

Miscible in all proportions with water, acetone, ethanol, benzene, heptane, and carbon tetrachloride.

Table 14.187: Morpholine (48)

Tetrahydro-p-Oxazine

Molecular weight: 87.12

This commercially important secondary amine is a water-white, mobile liquid having an ammoniacal odor. It is very soluble in water and forms a stable solution which exhibits a constant composition during evaporation and distillation as well as preserving a constant alkalinity. The ring structure of this solvent, as well as its ether and amine groups, gives it unique solvent power for a greater than usual variety of organic substances, among which are resins, dyes, waxes, shellac, and casein.

It is used in permanent wave solutions for its mild alkalinity; in soaps which are emulsifying agents for paper coatings; in rubless polishes, lacquers, paints, insecticides, etc. It imparts water-resistance after drying. Its water-soluble salts have high phenol coefficients. Morpholine may also be used in photographic developing.

Color, Pt-Co scale	15 max.
Boiling range, °C IBP DP	125.0 min. 132.0 max.
Purity, wt.%	98.0 min.
Specific gravity, 20/20°C	0.999 - 1.004
Suspended matter	Substantially free
Freezing point, °C	-4.9
Boiling point, °C	128.9
Flash point, (TOC) °C °F	38 100
Density, g./cc. at 20°C	0.9994
Refractive index, $n_{\mathfrak{p}}^{20}$	1.4545
Surface tension, dynes/cm.at 20°C	37.5
Viscosity, centipoises at 20°C	2.23
Conductivity, mho/cm.x 10 ¹⁰	6
pK _b	9.61
Dielectric constant	7, 33
Dipole moment, Debyes	1.58
Molar polarization, P_{∞} in benzene	75.3
Heat capacity, cal./mol./deg. at 25°C	41.6
Heat of vaporization, cal./mol. (45-129 $^{\circ}$ C)	9510

Table 14.188: Boiling Point Composition Curves for Aqueous Morpholine Solutions (19)

Table 14.189: pH of Aqueous Morpholine Solutions at 25°C (19)

Table 14.190: Viscosity of Aqueous Morpholine Solutions at 20°C (19)

Table 14.191: Solubility of Various Substances in Morpholine (48)

Substance	g. Solute in 100 g. Morpholine at 25°C	Substance	g. Solute in 100 g. Morpholine at 25°C
Acetone	∞	2-Hexanone	œ
Beeswax	< 1	Linseed oil	x 0
Benzene	æ	Methanol	æ
Benzyl cellulose	> 5	Methylamine	33
Butyl ether	×	Methylcyclohexanol	œ
Castor oil	œ	Naphtha	> 5
Cellulose acetate	> 5	Paraffin oil	< 1
Cellulose nitrate	> 5	Paraffin wax (hot)	> 5
Copal gum	> 5	Pine oil	သ
Dimethylamine	109	Resin	> 5
Ester gum	> 5.	Shellac	> 5
Ethanol	œ	Sulfur	< 5
2-Ethylbutanol	x 0	Trimethylamine	34
Ethylene glycol	æ	Turpentine	x 0
Ethyl ether	×	Polyvinyl acetate	> 5
Glycol ether	æ	Polyvinyl butyral	> 5
		Polyvinyl chloride	> 5

Table 14.192: N-Ethyl Morpholine (2)

This cyclic tertiary amine is a water-white liquid miscible with water. It may be used as a solvent for oils, dyes and resins, and as an intermediate in the synthesis of rubber accelerators, emulsifying agents, drugs, and dyes.

Table 14.193: N-Phenyl Morpholine (2)

Boiling Point at 760 mm.	 . 268°C.
Melting Point	 . 57°C.

Esters

FORMATES

Table 15.1: Methyl Formate (2)

 $HCOOCH_3$

Methyl formate is a colorless flammable liquid with a pleasant ethereal odor. It will dissolve cellulose ethers and esters but will dissolve them more readily when mixed with other solvent esters or the less volatile halogenated hydrocarbons.

Acidity Neutral to methyl orange (methyl formate hydrolyzes in presence of water) Boiling point 31.8° C Water-white Color Distillation range Below 31.5°C None Above 35.0°C None Electrical conductivity at 25°C 3.6×10^{-6} reciprocal ohms Flash point -32°C Melting point Odor initial -99.8°C Pleasant, ethereal Odor residual Non-residual Purity 95% to 100% ester, by wt Refractive index at 20°C 1.3431 Solubility in water at 20°C 30% by vol Solubility of water in solvent 24% by vol at 25° C Specific gravity at 20/20°C 0.950 to 0.980 Vapor pressure 0°C 195.0 mm of Mercury 10°C 309.4 mm of Mercury 16°C 400.0 mm of Mercury 20°C 476.4 mm of Mercury 600.0 mm of Mercury 25.8°C 30°C 707.9 mm of Mercury

Table 15.2: Ethyl Formate (2)

Formosol HCOOC₂H₅

Ethyl formate is a water-white, highly volatile and unstable liquid with a pleasant odor resembling peach kernels. It is partly soluble in water and miscible with benzene. It is a powerful solvent for cellulose nitrate and acetate, yielding solutions of unusual low viscosity which have a tendency to chill. It is an important fumigant and larvicide for the treatment of tobacco, cereals, dried fruit and similar products. It is used as a chemical intermediate in the manufacture of such medicinals as sulfadiazine, thiamin (Vitamin B₁), and perfumes and synthetic flavors.

816

Table 15.2: (continued)

Acidity Neutral to methyl orange (it hydrolyzes in the presence of water)

Boiling point 54.5°C
Color Water-white
Distillation range 51°-55°C

Electrical conductivity at 25°C Less than 1.45×10^{-9} recip ohms Flash point -19° C

Vapor pressure at 20.6°C 200 mm of Hg at 30.2°C 300 mm of Hg

Weight per gal at 68°F 7.61 lbs

Table 15.3: Butyl Formate (2)

$\mathsf{HCOOCH_2CH_2CH_2CH_3}$

Butyl formate is a colorless liquid, miscible with alcohols, ethers, oils, hydrocarbons and so forth. It will dissolve cellulose nitrate, some types of cellulose acetate, and many cellulose ethers. Butyl formate will also dissolve many natural and synthetic resins such as copals, dammar, elemi, mastic, shellac, cumar resins, ester gum and alkyds in the presence of ethyl alcohol. It is used as an intermediate and in perfumes.

Acidity 0.02% max.
Ester content 85% min.
Boiling range 96°-110°C.
Specific gravity 0.885-0.9108

Table 15.4: Amyl Formate (2)

HCOOC₅H₁₁

Commercial amyl formate is an anhydrous, colorless liquid composed of a mixture of isomeric amyl formates with the iso-amyl formate in predominance. This mixture is miscible with oils, hydrocarbons, alcohols, ketones and so forth. It is a solvent for cellulose esters, "Cumar", copal, gum esters, etc. It is able, when mixed with an alcohol, to dissolve shellac and alkyd resin. It is a less odoriferous and more energetic solvent than amyl acetate. It also has both a lower boiling point and a greater speed of evaporation. n-Butyl acetate and amyl formate have similar volatility and have substantially the same solvent power which permit free interchange of these only as far as these properties allow.

Acidity 0.05% max.
Boiling point 130.4°C.
Boiling range 110°-130°C.
Flash point 80°F.
Specific gravity 0.880-0.885

ACETATES

Table 15.5: Methyl Acetate (2)

CH3COOCH3

Methyl acetate is a water-white flammable, readily hydrolyzable liquid, with a fragrant odor. This low-boiling solvent was first prepared in 1835 by reacting acetic acid and methanol. It is miscible with most organic solvents and will completely dissolve cellulose nitrate and acetate, ethyl cellulose, resins such as ester gum, rosin, "Cumar", elemi, phenolics, and oils such as corn, linseed, castor, neatsfoot, chinawood and cottonseed. It will only partially dissolve shellac, manila, dammar, pontianac, Beckacites and alkyds. In many respects, methyl acetate resembles acetone as a solvent, particularly as to its boiling point, solvent power and miscibility, but its tendency to hydrolyze to methanol and acetic acid, in the presence of water, limits its wider use in the industries. Methyl acetate is usually admixed with higher boiling solvents. It is used in lacquers, paints, varnishes, enamels, perfumes, dyes, dopes, plastics, and synthetic finishes as well as a substitute for acetone.

Acidity (as acetic)	0.005%, max	Freezing point	-98.1°C
Boiling point	56.9°C	Heat of combustion	5371 cal/g
Distillation range	55–5€°C	Heat of vaporization	104.4 cal/g
Coefficient of expansion (per °C) at 20°C	0.001390	Non-volatile matter	0.005 gram per 100 cc, max
Color	Water-white	Refractive index at 20°C	1.3593
Critical temperature	233.7°C	Solubility in water at 20°C	24% by wt
Critical pressure	46-3 atm	Solubility of water in solvent at 20°C	8% by wt
Dielectric constant at 20°C	7.3 ± 0.2	Specific gravity at 20/20°C	0.9353
Dilution ratios		Surface tension at 20°C	24.6 dynes/cm
Toluene	2.9	Vapor pressure at 20°C	173 mm Hg
Petroleum naphtha	0.9	Viscosity at 20°C	0.00381 poises
Electrical conductivity at 25°C	$3.4 \times 10^{-4} \text{ mho}$	Weight per gal at 20°C	7.783 lbs
Flash point (A.S.T.M. Open Cup)	−15°C		

Table 15.6: Ethyl Acetate (2)

Acetic Ether

(85 to 88%)

CH3COOC2H2

Ethyl acetate is a water-white, flammable liquid with a pleasant, fruity odor. The 85 to 88 per cent grade of ethyl acetate suitably denatured is generally used for commercial purposes but 95 and 99 percent grades are also available. It is miscible with most organic solvents such as alcohols, ketones, esters, aromatic, aliphatic and halogenated hydrocarbons. It dissolves such materials as nitrocellulose, camphor, oils, fats, waxes, gums and natural and synthetic resins. It will tolerate fairly large amounts of lacquer diluents and like methyl acetate it not only has a wide range of solubilities but it possesses the unique property of dissolving nitrocellulose, cellulose acetate and cellulose ethers yielding solutions of low viscosity. Its solvent power for cellulose derivatives is much improved, however, by adding a small quantity of alcohol.

(6	0 (0 00 76)		
Acidity (as acetic acid) Blush resistance at 90°F (10%	0.01% by wt, max	Flash point	-5°C (23°F) -82.4°C
sec. R.S. nitrocellulose		Freezing point Non-volatile matter	
solution)	Clear 45% Relative humidity	Refractive index at 20°C	0.003 gram per 100 cc, max 1.3725
Borucion	Bluish 50%	Solubility in water at 25°C	9.7% by vol
Coefficient of cubical expansion		Solubility of water in solvent at	9.8% by vol
(ordinary temperatures)	0.00073 per °F	25°C	3.576 UJ VOI
(oraning maperation)	0.00132 per °C	Specific gravity at 20/20°C	0.883 to 0.888
Color	Water-white	Viscosity at 20°C	4.546 millipoises
Critical temperature	250.1°C	Weight per gal at 68°F	7.36 lbs
Critical pressure	37.8 atmospheres	Weight per gar at to 1	7.56 755
Dilution ratio	•		(95 to 98%)
Toluol	3.5	Acidity (as acetic)	0.01% by wt, max
Petroleum naphtha	1.1	Blush resistance at 90°F (10%)	0.01/g by "c, max
Distillation range	Below 70°C None	sec. R.S. nitrocellulose solu-	
	Below 72°C Not more than 10%	tion)	Clear 50% Relative humidity
	Above 80°C None	,	Blush 55%
Dryness	Miscible without turbidity with 20 volumes	Coefficient of expansion per 1°F	0.00074
	60° Bé gasoline at 20°C	per 1°C	0.00133
Electrical conductivity at 25°C	Less than 1 × 10 ⁻⁰ reciprocal ohms	Color	Water-white
Evap. rate at 95°F (in min.)		Dilution ratio	
5%	1	Toluol	3.2
25%	13	Petroleum hydrocarbon	1.0
50%	31	Distillation range	74 to 80°C
75%	61	Dryness at 20°C	Miscible without turbidity with 20
90%	94		vol 60° Bé gasoline
95%	111		(continued)

(95 to 98%) Evap. rate at 95°F (in min.) 5% 25% 1 3 50% 6 75% 71 90% 95% 26°F (approximate) Flash point 0.003 gm per 100 cc, max Non-volatile matter Solubility of water in solvent at 4% by vol 25°C Specific gravity at $20/20^{\circ}\mathrm{C}$ 0.895 to 0.900 Viscosity (10% } sec. nitrocel-33 centipoises lulose solution) No turbidity when mixed with 19 vol-Water umes of 60° Bé gusoline at 20°C Weight per gal at 20°C (99 to 100%) acctic ether grade 0.01% by wt, max Acidity (as acetic) Blush resistance at 90°F (10% } sec. R.S. nitrocellulose solu-Clear 55% Relative humidity tion) Blush 60% Coefficient of expansion per 1°F 0.00074 per 1°C 0.000133

Color	Water-white
Dilution ratio	
Toluol	3.0
Petroleum naphtha	1.0
Distillation range	75 to 80°C
Electrical conductivity at 25°C	3.2 × 10 ⁻⁷ recip ohms
Evap. rate at 95°F (in min.)	•
5%	i i
25%	11
50%	3 1
75%	61
90%	9 1
95%	10 1
Explosive limits	2.26-11.4%
Flash point	0.5°C
Freezing point	-82.4°C
Heat of combustion	538 kg. cal/mole
Heat of vaporization at 0°C	102 cal/gm
at 80°C	102.9 cal/gm
Non-volatile matter	0.003 gram when 100 cc, max

Table 15.7: n-Propylacetate (41)

$CH_3COOC_3H_7$

The properties of n-propyl acetate are, approximately, intermediate between those of ethyl and n-butyl acetates. It is miscible with alcohols, ketones, esters, oils and hydrocarbons and is a good solvent for nitrocellulose and a wide range of cellulose derivatives, especially when it is admixed with the aromatic hydrocarbons or the lower aliphatic alcohols. It will also dissolve natural and synthetic resins like elemi, "Cumar" resins, ester gum, manila, mastic, rosin and sandarac. It is used principally as a low-boiling component in nitrocellulose lacquer formulations.

Molecular Weight (Theoretical)	102.08	Boiling Range, 760 mm, °C	
Color (Pt-Co Scale), max	15	Initial Boiling Point, min	99
Weight/Vol, 20°C,		Dry Point, max	10.3
lb/gal (U.S.)	7.39	Freezing Point, °F (°C)	-131 (-93)
kg/liter	0.89	Flash Point, Tag Closed Cup, °F (°C)	55 (13)
lb/gal (Imperial)	8.87	Tag Open Cup, °F (°C)	58 (14)
Solubility, 20°C, wt %		Fire Point, °F (°C)	70 (21)
In water	2.3	Flaminable Limits in Air, % by volume	
Water in	2.6	Lower, at 100°F (38°C)	1.71
Evaporation Rate (n-butyl acetate = 1)	2.3	Upper, at 200°F (93°C)	7.95
Dilution Ratio, toluene	3.2	Autoignition Temperature (ASTM D-2155), °F (°C)	855 (457)
VM & P naphtha	1.5	NFPA Classification 30:	IB
Refractive Index, 20°C	1.3844	ICC Labels Required	Red
Vapor Pressure, 20°C, mm Hg	23	Bureau of Explosives Classification	Flammable Liquid
Specific Gravity, 20°/20°C	0.885	·	

Table 15.8: isopropyl Acetate (2)

CH3COOCH(CH3)2

Isopropyl acetate is a water-white pleasont-odored liquid with properties intermediate between ethyl and butyl acetates. It is miscible with most of the common organic solvents such as alcohols, ketones, esters, oils, hydrocarbons, etc., and it is a solvent for nitrocellulose, cellulose acetate (of low viscosity) and a wide range of oils, fats, waxes, gums and natural and synthetic resins. Like n-propyl acetate, its solvent power for cellulose esters is increased when lower aliphatic alcohols are added. It is largely used in the lacquer industry where its slow evaporation rate and blush resistance are of importance. It is also used in the manufacture of plastics, artificial leather, dopes, films, cements, and in the recovery of acetic acid from aqueous solutions.

Acidity (as acetic)	0.02% by	wt, max	Flash point (Γag Closed C	Cup)	39°F
Boiling point at 760 mm	88.6°C		Freezing poin	t		−73.4°C
Coefficient of expansion per °F	0.000727		Heat of vapor	ization		79.4 cal/gm
Color	Water-wl	nite	Non-volatile r	natter		2 mg per 100 cc, ma
Dilution ratios			Refractive ind	ex, N 20/D		1.3772
Toluene	2.7		Solubility of v	vater in solv	ent	3.2% by wt
V.M. and P. naphtha	0.92		Specific gravit	y at 20/20°C	;	0.866 to 0.871
Distillation range	84.5-90°C		Specific heat a	t 15-25°C		0.521 cal/gm
Electrical conductivity at 25°C	$5.7 \times 10^{-}$	recip ohms	Surface tensio	n at 25°C		24.5 dynes/cm
Evaporation rate at 95°F (in minutes)		•	Vapor pressur	c at 10°C		26.2 mm Hg
5%	1			20°C		45.7 mm Hg
25%	17			30°C		76.1 mm Hg
50%	4 1			40°C		121.8 mm Hg
75%	7		Viscosity at 20	°C		0.00525 poises
90%	101		Weight per ga	llon at 20°C		7.23 lbs
95%	111					
		Constant E	Boiling Mixtures			
			•	% by Wt	B.PC	
Isopro	pyl Acetate	47.7	Isopropanol	52.3	80.1	
	• •				70.0	

89.4

Table 15.9: n-Butyl Acetate (2)

Isopropyl Acetate

$CH_3COOCH_2CH_2CH_2CH_3$

Water

10.6

This ester is a water-white liquid with a characteristic fruity odor which is less pronounced than the odor of amyl acetate. It is miscible with alcohols, ketones, esters and most of the common organic solvents. It is a solvent for nitrocellulose and cellulose ethers, especially when previously mixed with active or latent solvents. It will dissolve oils, fats, waxes, metallic resinates, camphor, "Cumar" resins, dammar, ester gum, elemi, kauri, manila, mastic, pontianac, rosin, sondarac, chlorinated rubber, and such synthetic resins as the vinyls, polystyrene, and acrylates. In combination with 20 per cent of butyl alcohol, butyl acetate will dissolve the less highly polymerized alkyd resins and shellac. Owing to its power of imparting low viscosity, gum compatibility, and good working qualities, it is classed among the best medium boiling solvents for nitrocellulose. Its volatility meets the demands of a lacquer solvent because it is sufficiently high to leave the film readily and at the same time low enough to prevent blushing. When combined with butyl alcohol it will prevent gum-blush, cotton-blush and chilling. Its largest use is as a solvent in the manufacture of nitrocellulose lacquers for protective coatings, artificial leather and coated paper, plastics, polishes, safety glass, in perfumes, and flavoring materials.

Table 15.9: (continued)

	88-92%		9	8-100%		
Acidity (as acetic)	0.01% by wt, max	Acidity (as	acetic)	0.01% by wt, m	a.x	
Boiling point at 760 mm Hg	126.5°C	Boiling poi	nt	126.5°C		
Coefficient of cubical expansion	i.	Coefficient	of expansion per 1°F	0006		
(ordinary temperatures)	0.00067 per°F		per 1°C	0.0011		
	0.00121 per°C	Color (A.P	.H.A.)	10 max		
Color	Water-white	Dilution ra	tio			
Dielectric constant at 20°C	5.0	Toluol		3.05		
Dilution ratio		Petroleur	n naphtha	1.40		
Toluol	2.9	Distillation	•	123°-128°C		
Petroleum naphtha	1.4		conductivity at 25°C	13 × 10 ⁻⁹ recip	ohma	
Distillation range	Below 115°C None	Flash point		82°F approx	• • • • • • • • • • • • • • • • • • • •	
	Below 120°C Not more than 8%	Fractionati		114.3°		
	Above 130°C Not more than 5%		10%	116.0		
	Above 135°C None		25%	116.9		
Evaporation rate at 95°F (in	I		50%	117.4		
minutes)			75%	117.6		
5%	11		90%	117.6		
25%	61		E.P.	118.1		
50%	134	Heat of va-	porization	73.8 cal/gm		
75%	22 1	Non-volati	le matter	Negligible		
90%	31	Refractive	index at 20°C	1.3951		
95%	341	Solubility i	n water at 25°C	0.78% by wt		
Flash point	28°C	Solubility of	of water in solvent	2.88% by wt		
Heat of vaporization	73.8 calories per gm	at 25°C	;			
Freezing point	-76.8°C		wity at 20/20°C	0.879 to 0.883		
Non-volatile matter	0.005 gram per 100 cc, max	•	at at 21-27°C	0.505 cal/gm		
Residue	None		sion at 27°C	27.6 dynes/em		
Refractive index at 20°C	1.3947		sure at 20°C	9.0 mm Hg		
Solubility in water at 25°C	0.5% by vol	Viscosity a	-	0.00693 poises		
Solubility of water in solvent	1.6% by vol	Weight per	gallon	7.76 lbs		
at 25°C			Constant	Boiling Mixtures		
Specific gravity at 20/20°C	0.872 to 0.880		% by Wt	Juliny Million	% by Wt	B.P. °C
Vapor pressure at 0° C	3.0 mm Hg	n-Butyl acetate	54.0	n-Butanol	46.0	118.0
25°C	15.0 mm Hg	n-Butyl acctate	54.0 60.0	n-Butanoi n-Propanol	40.0	94.2
50°C	45.0 mm Hg	n-Butyl acctate	48.0	Isopropanol	52.0	80.1
Viscosity at 25°C	0.671 centipoises	n-Butyl acetate	71.3	Water	28.7	90.2
Weight per gallon at 20°C	7.28 lbs	n-nutyl accuate	71.0	***	20.1	30.2
Weight per gamon at 20 C	1.20 1/6		Тетпа	ry Mixtures		
					B.P.	
			n-Butyl acetate	35.3%		
			n-Butanol	27.4%	89.4°C	
			Water	37.3%		

Table 15.10: sec-Butyl Acetate (2)

$CH_3COOCH(CH_3)CH_2CH_3$

sec-Butyl acetate is a colorless, flammable liquid with a fruity odor. It is miscible with castor and linseed oils and hydro-carbons, and will dissolve nitrocellulose, cumarone, elemi, ester gum, kauri, mastic, manila, pontianac, asphalt and tar. It has only partial solubility for dammar and shellac. Its solvency is very similar to n-butyl acetate but it has a lower boiling range, less blush resistance and will evaporate with greater rapidity. For this reason, to replace n-butyl acetate it is necessary that this solvent should be mixed with slower evaporating solvents that can make up for its quicker rate of evaporation. It is largely used in the manufacture of nitrocellulose lacquers and similar types of coatings used in airplane dopes, artificial leather, celluloid products, coated paper, patent leather, and textile sizing and printing compounds.

Acidity (as acetic) 0.03% by wt, max Blush resistance at 60°F Clear 75% Relative humidity Blush 80% Coefficient of expansion per 1°F 0.00063 per 1°C 0.00113 Color Water-white Distillation range: Below 104°C None Below 111°C Not more than 10% Below 114°C Not more than 60% Below 118°C Not less than 90% Above 130°C None

(continued)

Table 15.10: (continued)

Evaporation rate at 95°F (in minutes) 5% ½ 25% 3½ 50% 8½ 75% 13½ 90% 16½ 95% 18 Flash point 66°F	Non-volatile matter Residue Refractive index, N 25.3/D Specific gravity at 20/20°C Solubility in water Solubility of water in solvent at 25°C Weight per gal at 20°C	0.005 gm per 100 cc, max None 1.3866 0.862-0.866 0.74% by wt 2.1% by wt 7.19 lbs (approx.)
--	--	--

Table 15.11: Isobutyi Acetate (41)

$$\mathrm{CH_3COOCH_2CH(CH_3)_2}$$

Isobutyl acetate is a medium-boiling solvent, colorless and with a mild, fruity ester adar. The commercial grade has an ester content of 88 to 92 percent, the balance being substantially isobutyl alcohol. The solvent power of this ester is similar to the normal and secondary acetates. It is miscible with most organic solvents and will dissolve a large number of ails, waxes and natural and synthetic resins. With the limitation set by Rule 66 on the use of branched chain ketanes and aromatic solvents, isobutyl acetate is an economical replacement for MIBK and by having a similar evaporation rate, can be formulated in toluene replacements.

Molecular Weight (C ₆ H ₁₂ O ₂)	116.2	Boiling Range, 760 mm, °C	
Color (Pt-Co Scale), max	10	Initial Boiling Point, min	112
Weight/Vol. 20°C.		Dry Point, max	119
lb/gal (U.S.)	7.25	Freezing Point, °F (°C)	-146 (-99)
kg/liter	0.87	Flash Point, Tag Closed Cup, °F (°C)	69 (20)
lb/gal (Imperial)	8.70	Tag Open Cup, °F (°C)	75 (24)
Solubility, 20°C, wt %		Fire Point, °F (°C)	88 (31)
In water	0.7	Flammable Limits in Air, % by volume	
Water in	1.6	Lower, at 200°F (93°C)	1.27
Evaporation Rate (n-butyl acetate = 1)	1.4	Upper, at 200°F (93°C)	7.5
Dilution Ratio, toluene	2.7	Autoignition Temperature (ASTM D-2155), °F (°C)	800 (427)
VM & P naphtha	1.1	NFPA Classification 30:	1B
Refractive Index, 20°C	1.3997	DOT Labels Required	Red
Vapor Pressure, 20°C, mm Hg	12.5	DOT Classification	Flammable Liquid
Specific Gravity, 20°/20°C	0.870		

Table 15.12: Amyl Acetate (2)

Banana Oil Amyl Acetic Ether Isoamyl Acetate

 $CH_{3}COOC_{5}H_{11}$

Amyl acetate is a colorless, flammable liquid with an odor resembling bananas or pears. Its exceptional solvent power places it among the first solvents in the nitrocellulose lacquer industry. The amyl acetates are made by the acetylation of fusel oil or synthetic amyl alcohols. Amyl acetate is miscible with oils, hydrocarbons, alcohols, ethers and esters, and will dissolve such substances as camphor, elemi, ester gums, copal ester, copals, dammar, kauri, rosin, sandarac, tannins, waxes, zanzibar and "Cumar" resins, and when it is mixed with alcohol it will dissolve some alkyd resins. It is a good solvent for cellulose esters and ethers, the solvency of which is increased when combined with ethyl alcohol. Amyl acetate is used extensively as a solvent in nitrocellulose lacquers, both for its solvency and its power to impart blush resistance, good flow, gloss and toughness. It is also used in making smokeless powder, artificial leather and pearls, airplane dopes, waterproofing compositions, varnishes, dry cleaning compounds, bronzing liquid, films, celluloid, rayon, linoleum, oilcloth, fruit flavors, soft drinks, food preparations, confectionery, perfumes, soap solvent, and in photoengeaving.

85-88% technical grade			
Acidity (as acetic)	0.03% by wt, max		
Blush resistance at 90°F (10% }			
sec R.S. nitrocellulose solu-			
tion)	Clear 80% Relative humidity		
	Blush 85%		
Coefficient of expansion per 1°F	0.00066		
per 1°C	0.00119		
Color	Water-white		
Dilution ratio			
Toluol	2.7		
Petroleum naphtha	1.4		

(continued)

Table 15.12: (continued)

85-88% technical grade		(High Test 85-88%)		
Distillation range		Non-volatile matter	Not more than 0.005 gm per 100 cc	
Below 110°C	Not more than 15%	Odor	Mild	
Below 120°C	Not more than 30%	Odor residual	Non-residual	
Below 130°C	Not more than 55%	Purity	Fister content as amyl acetate 85-88%	
Below 140°C	Not less than 80%	Solubility of water in solvent at	100 cc solvent dissolves 1.8 cc water	
Above 150°C	None	25°C		
Dryness	Miscible without turbidity with 20 vols 60° Bé gasoline at 20°C	Specific gravity at 20/20°C Viscosity (10% ½ sec. R.S. ni-	0.859-0.863 61 centipoises	
Evaporation rate at 95°F (in		trocellulose solution)		
minutes)		Weight per gal at 20° C	7.17 lbs	
5%	1			
25%	6	. <u>90-</u>	95% grade	
50%	15 1	Acidity (as acetic)	0.035% by wt, max	
75%	281	Blush resistance at 90°F (10%		
90%	411	sec. R.S. nitrocellulose solu-		
95%	471	tion)		
Flash point	63°F	01011)	Clear 85% Relative humidity	
Non-volatile matter	0.005 gm per 100 cc, max		Blush 90%	
Solubility of water in solvent	2.4% by vol	Coefficient of expansion	Didsii 3070	
at 25°C		per 1°F	0.00061	
Specific gravity at 20/20°C	0.857-0.865	per 1°C	0.00110	
Viscosity (10% sec. R.S. nitro-	43 centipoises	Color	Water-white	
cellulose solution)		Dilution ratio	Water-winte	
Weight per gal at 20°C	7.17 lbs	Toluol	2.6	
g par gar av av		. —		
(High	Test 85-88%)	Petroleum naphtha	1.4	
	Not 11 0.0207	Evaporation rate at 95°F (in		
Acidity (as acetic)	Not more than 0.03%	minutes)		
Blush resistance at 90°F (10% }		5%	11	
sec. R.S. nitrocellulose solu-	O1 0500 P. 1 .: 1 .: 11	25%	7	
tion)	Clear 85% Relative humidity	50%	151	
	Blush 90%	75%	251	
Coefficient of expansion per 1°F	0.00066	90%	35	
per 1°C	0.00119	95%	40	
Color	Water-white	Flash point	79°F	
Dilution ratio		Distillation range		
Toluol	2.5	Below 110°C	None	
Petroleum naphtha	1.4	Below 120°C	Not more than 10%	
Distillation range		Below 130°C	Not more than 70%	
Below 110°C	None	Below 140°C	Not less than 90%	
Below 120°C	Not more than 10%	Above 150°C	None	
Below 130°C	Not more than 40%	Non-volatile matter	0.005 gram per 100 cc, max	
Below 140°C	Not less than 60%	Residuc	None	
Below 150°C	None	Solubility in water at 25°C	2% by vol	
Evaporation rate at 95°F (in minutes)		Solubility of water in solvent at 25°C	2% by vol	
5%	14	Specific gravity at 20/20°C	0.868 to 0.872	
25%	81	Viscosity (10% 1 sec. R.S. ni-		
50%	181	trocellulose solution)	60 centipoises	
	30	Weight per gal at 20°C	7.22 lbs	
75%	45	weight per gar at 20 C	1.25 103	
90% 05#	51 1			
95%	517 84°F			
Flash point	01 1			

Table 15.13: sec-Amyl Acetate (2)

CH3COOC5H11

This medium boiling solvent is a water-white liquid made by acetylation from the secondary amyl alcohols (pentanol-2 and pentanol-3). Although its solvent power is not equal to that of amyl acetate because it has a lower tolerance for diluents, as well as a less desirable odor, it has many similar properties and it is used as a nitrocellulose and ethyl cellulose solvent.

Acidity (as acetic)	0.03% by wt, max
Blush resistance at 90°F (10%	Clear 85% Relative humidity
sec. R.S. nitrocellulose solu- tion)	Blush 90%
Coefficient of Expansion	
per 1°F	0.00060
per 1°C	0.00108
Color	Water-white
Dilution ratio	
Toluol	2.1
Petroleum naphtha	1.1

Table 15.13: (continued)

```
Distillation range
 Below 123°C
                                 None
 Below 126°C
                                 Not more than 10%
 Below 132°C
                                 Not more than 60%
 Below 140°C
                                 Not less than 90%
 Above 145°C
                                 None
Evaporation rate at 95°F (in
 minutes)
 25%
                                 7}
 50%
                                 151
 75%
                                 241
 90%
                                 30 ł
 95%
                                 331
Flash point
                                 89° F
Non-volatile matter
                                 0.005 gm per 100 cc, max
Residue
                                 None
Specific gravity at 20/20°C
                                 0.862-0.866
Solubility of water in solvent at
                                0.8% by vol
 25°C
Viscosity (10% 1 sec. R.S. nitro-
                                75 centipoises
 cellulose solution)
Weight per gal at 20°C
                                 7.19 lbs
```

Table 15.14: Pentacetate (2)

Pentacetate made from synthetic amyl alcohol is a mixture of five isomeric amyl acetates with some free amyl alcohol. It is soluble in methanol, ethyl ether, ethyl acetate, fixed oils, acetone, oleic acid, hot stearic acid, and aromatic and aliphatic hydrocarbons. It is soluble in hot paraffin and carnauba waxes but these congeal on cooling. It is insoluble in water. The solvent power of this mixture being similar to that of amyl acetate, pentacetate finds its most important use in the manufacture of nitrocellulose lacquers. It is also used as an extractant in the production of penicillin. It also finds use in various types of poison bait.

Some of the esters to be found in Pentacetate are:

CH2CH2CH2CH2CH1OOCCH2

148°C

(CH ₂) ₂ CHCH ₂ CH ₂ O	OCCH,	142°C
CH3CII2CH(CH3)CH		142°C
CH,CH(OOCCH,)CI		134°C
CH,CH,CH(OOCCH		132°C
	.,	
Acidity (as acetic)	0.03% by wt max	
Coefficient of expansion at 10 to 35°C	0.00110 per °C	
Color	Water-white	
Distillation range		
100%	Above 126°C	
95%	Above 130°C	
75%	Above 135°C	
25%	Above 140°C	
End point	Not above 150°C	
Dilution ratio		
Toluol	2.1	
Petroleum naphtha	1.3	
Evaporation rate at 114.8°F		
Minutes 3.92	25%	
Minutes 7.92	50%	
Minutes 12.50	75%	
Minutes 20.00	100%	
Flash point (Open Cup)	107°F	
Heat of vaporization	68.5 cal/gm	
Non-volatile	0.005 gm/100 cc ma	ax
Refractive index at 20°C	1.4013	
Specific gravity at 20/20°C	0.860-0.870	
Solubility in water	1% by vol	
Solubility of water in solvent	1.5% by vol	
Viscosity at +40°C	0.683 centipoises	
−40° C	3.464 centipoises	
Water azeotropic mixture at	67% Pentacetate (approx)
92-95°C	33% water by vol	'
Water content	None	
Weight per gal	7.21 1bs	

Table 15.15: Methyl Amyl Acetate (2)

Methyl Isobutyl Carbinol Acetate

CH3COOCH(CH3)CH2CH(CH3)2

Methyl amyl acetate is a colorless liquid with a mild and pleasant odor. This medium boiling solvent is used in nitrocellulose lacquer fabrication producing such advantages as blush resistance, reduction of "orange peel" in the lacquer film, and no swelling of oilbase undercoats.

Acidity (as acetic) Boiling range at 760 mm 0.02% by wt, max Below 140°C None Above 150°C None

Not more than 5% distills below 143°C Not less than 95% distills below

148°C

Color Dryness

Purity Specific gravity at 20/20°C Weight per gal at 20°C

Miscible with 19 vol 60° Bé gasoline

at 20°C 95% by wt, max 0.855 to 0.860 7.14 lbs

Table 15.16: 2-Ethyl Butyl Acetate (2)

2-Ethyl butyl acetate is a colorless liquid having a mild odor. It is a solvent for nitrocellulose, gums and resins, and is employed as a high-boiling solvent in lacquers.

Acidity (as acetic) Color

Specific gravity

0.01% by wt, max Water-white 0.875 to 0.881 at $\frac{20^{\circ}\text{C}}{20^{\circ}\text{C}}$ Boiling range Purity Dryness

155°-164°C 90% min

Miscible with 19 vols Bé gasoline at 20°C

7.33 lbs/gal (20°C) Average weight

Table 15.17: 2-Ethylhexyl Acetate (41)

Ethylhexyl acetate is a water-white, stable liquid. It will dissolve nitrocellulose and many of the natural and synthetic resins. It is used in slow-evaporating preparations such as brushing and dipping lacquers, mist coatings, baking finishes and lacquer emulsions.

Molecular Weight (C ₁₀ H ₂₀ O ₂)	172.26
Color (Pt-Co Scale), max	15
Weight/Vol, 20°C.	
ib/gai (U. S.)	7.26
kg/liter	0.87
lb/gal (Imperial)	8.71
Solubility, 20°C, wt %	
In water	0.03
Water in	0.55
Evaporation Rate (n-butyl acetate = 1)	0.03
Dilution Ratio, toluene	1.4
VM & P naphtha	0.9
Refractive Index, 20°C	1.4103
Vapor Pressure, 20°C, mm Hg	0.4
Specific Gravity, 20°/20°C	0.872
Boiling Range, 760 mm, °C	
Initial Boiling Point, min	192.0
Dry Point, max	205.0
Freezing Point, °F (°C)	-135 (-93)
Flash Point, Tag Closed Cup, °F (°C)	160 (71)
Tag Open Cup, °F (°C)	175 (79)

Fire Point, °F (°C) 187 (86) Flammable Limits in Air, % by volume Lower, at 200°F (93°C) 0.76 Upper, at 300°F (149°C) 8.14 Autoignition Temperature (ASTM D-2155), °F (°C) 515 (268) NFPA Classification 30 IIIA DOT Labels Required None DOT Classification Nonhazardous Liquid Color (Pt-Co Scale), ppm, max Specific Gravity, 20°/20°C 0.870 - 0.875 Acidity, as acetic acid, wt %, max 0.02 Boiling Range, 760 mm, °C Initial boiling point, min 197.0 Dry point, max 205.0 Ester Content, wt %, min 95.0 Water, wt %, max 0.2 Odor

Table 15.18: Cyclohexyl Acetate (2)

Hexalin Acetate Hexahydrophenyl Acetate Adronol Acetate

Mild

Cyclohexyl acetate is a colorless, water-insoluble liquid with an odor resembling that of amyl acetate. It is miscible in all proportions with most of the lacquer solvents and diluents, with halogenated and hydrogenated hydrocarbons, and will completely dissolve waxed dammar and unrun congo copal. It is a good solvent for cellulose ethers and nitrocellulose and has powerful solvency for basic dyes, blown oils, raw rubber, metallic soaps, driers, shellac, bitumens, and a wide range of natural and synthetic resins and gums. It is used in spraying and brushing lacquers importing blush resistance and good flow. (continued)

Table 15.18: (continued)

160-180°C Boiling range Color Water-white 64°C Flash point -65°C Freezing point Purity 88-95% min Residue None Refractive index 1.435-1.445 Specific gravity at 20°C 0.968-0.972 Water None Viscosity (S.U.V. at 100°F)

Table 15.19: Methyl Cyclohexanyl Acetate (2)

Sextate
Methyl Hexalin Acetate
Hexahydrocresol Acetate
Hexahydromethylphenol Acetate

Methyl cyclohexanyl acetate is a colorless high-boiling liquid having an ester-like odor. Its miscibility and solvent action are quite similar to those of cyclohexanyl acetate but it is slower acting. It is a solvent for nitrocellulose, basic dyes, rubber, bitumens, oils, fats and waxes, and for such resins as dammar, elemi, manila, mastic, rosin, ester gum, phenolic and vinyl resins. It will dissolve, in a lesser degree, shellac, kauri and cellulose acetate. It is used as a high-boiling solvent in nitrocellulose lacquers for both spraying and brushing purposes. Its solvency and slow rate of evaporation impart resistance to blushing and good working qualities and produce films that are smooth, homogeneous and glossy. Its dilution ratio with various diluents are as follows:

Xylene 2.5
Toluene 2.5
Benzene 2.0
White spirits 1.5

Acidity 4.04% (max.)
Ester content 80-90%
Boiling range 175°-190°C.
Flash point 66°-69°C.
Specific gravity 0.95

Table 15.20: Ethylene Glycol Monoacetate (2)

СН₂ОН СН₂ООССН₃

Ethylene glycol monoacetate is a colorless, odorless liquid and is structurally a primary alcohol and an ester. It is made by combining a dihydric alcohol and a monocarboxylic acid. It will mix completely with water and many of the lacquer solvents. Ethylene glycol monoacetate will dissolve cellulose esters and ethers and many of the resins.

> Boiling point 181°C. Specific gravity 1.109 (20°C.) Flash point 102°C.

Table 15.21: Ethylene Glycol Diacetate (2)

 $\mathsf{CH_2OOCCH_3} \\ \mathsf{CH_2OOCCH_3}$

Glycol diacetate is a colorless liquid having a faint odor resembling that of ethyl acetate. It will dissolve a wide range af cellulose esters, camphor, dammar, ester gum, elemi, mastic, rosin and sandarac. When it is mixed with active solvents its range of solubility is increased for a wide variety of cellulose esters and ethers and for natural and synthetic resins.

(continued)

Table 15.21: (continued)

Molecular Weight (C ₆ H ₁₀ O ₄)	146.15
Color (Pt-Co Scale), max	15
Weight/Vol. 20°C.	
lb/gal (U.S.)	9.21
ke/liter	1.11
lb/gal (Imperial)	11.04
Solubility, 20°C, wt %	
In water	16.4
Water in	7.6
Evaporation Rate (n-butyl acetate = 1)	0.02
Dilution Ratio, toluene	1.4
Refractive Index, 20°C	1.4159
Vapor Pressure, 20°C, mm Hg	0.2
Specific Gravity , 20°/20°C	1.107
Boiling Range, 760 mm, °C	
Initial Boiling Point, min	187.0
Dry Point, max	193.0
Freezing Point, °F (°C)	-43 (-42)
Flash Point, Tag Closed Cup, °F (°C)	191 (88)
Cleveland Open Cup, °F (°C)	210 (99)
Fire Point, °F (°C)	210 (99)
Flammable Limits in Air, % by volume	
Lower, at 275°F (135°C)	1.6
Upper, at 310°F (154°C)	8.4
Autoignition Temperature (ASTM D-2155), °F (°C)	900 (482)
NFPA Classification 30:	IIIA
DOT Labels Required	None
DOT Classification	Nonhazardous Liquid

Table 15.22: Ethylene Glycol Monomethyl Ether Acetate (19)

Methyl CELLOSOLVE Acetate ARCOSOLV EMA

Typical Properties

Formula Molecular Weight	118.14
Apparent Specific Gravity at 20/20°C	1.0055
Pounds per Gallon at 20°C	8.37
Boiling Point at 760 mm Hg, *C	145.0
Vapor Pressure at 20°C, mm Hg	2
Freezing Point, °C	-6 5.1
Absolute Viscosity at 20°C, cP	1.1
Solubility at 20°C, % by wt	
In Water	Complete
Water in	Complete
Flash Point, Closed Cup, °F*	121
Relative Evaporation Rate (nBuAc = 100)	31
Heat of Vaporization, Btu/Ib	
At 1 Atm	147
At 300 mm Hg	156
*Determined by Tag Closed Cup, ASTM Method D56.	

Table 15.23: Ethylene Glycol Monoethyl Ether Acetate (41)

CELLOSOLVE Acetate Eastman EE Acetate	сн ₂ ос ₂ н ₅
ARCOSOLV EEA Glycol Ether EEA	Ċн ₂ ооссн ₃

This is a water-white liquid with a mild, characteristic odor. It is widely used as a solvent in nitrocellulose lacquers where it imparts gloss, flow, and prevents blush.

Table 15.23: (continued)

Typical Properties

Molecular Weight (C ₆ H ₁₂ O ₃)	132.16	Boiling Range at 760 mm, °C	
Color (Pt-Co Scale), max	15	Initial Boiling Point, min	150
Weight/Vol at 20° C.		Dry Point, max	160
Ib/gal (U.S.)	8.11	Freezing Point, °F (°C)	-78 (-61)
kg/L	0.98	Flash Point, Tag Closed Cup, °F (°C)	130 (54)
Ib/gal (Imperial)	9.73	Tag Open Cup. *F (*C)	139 (59)
Solubility at 20°C, wt %	•5	Fire Point, °F (°C)	144 (62)
In water	23.8	Flammable Limits in Air. % by volume	
Water in	6.5	Lower, at 200°F (93°C)	1.24
Evaporation Rate (n-butyl acetate = 1)	0.2	Upper, at 275°F (135°C)	12.7
Dilution Ratio, toluene	2.5	Autoignition Temperature (ASTM D 2155), °F (°C)	720 (382)
VM & P naphtha	0.9	NFPA Classification 30	11
Refractive Index at 20°C	1.4030	DOT Classification	Combustible Liquid
Vapor Pressure at 20°C, mm Hg	1.7	DOT Labels Required	None
Specific Gravity at 20/20°C	0.973	·-··	

Table 15.24: Ethylene Glycol Monobutyl Ether Acetate (41)

Butyl CELLOSOLVE Acetate SOLV EB Acetate Eastman EB Acetate Glycol Ether EB Acetate ARCOSOLV EBA Glycol Ether EBA

$$CH_3-C-O-CH_2-CH_2-O-C_4H_0$$

This is a high boiling glycol ether ester solvent particularly useful as a coalescing aid for latex paint. With its limited water solubility and its general solvent properties, it is found useful in multicolor lacquers and lacquer emulsions.

Typical Properties

Molecular Weight (C. H. O.)	160.21
Molecular Weight (C ₈ H ₁₆ O ₃)	160.21
Color (Pt-Co Scale), max	15
Evaporation Rate (n-butyl acetate = 1)	0.03
Weight/Vol, 20°C,	
lb/gal (U. S.)	7.84
kg/litre	0.94
lb/gal (Imperial)	9.42
Solubility, 20°C, wt %	
In water	1.1
Water in	1.6
Dilution Ratio, toluene	1.8
VM & P naphtha	1.2
Refractive Index, 20°C	1.4200
Vapor Pressure, 20°C, mm Hg	0.29
Specific Gravity, 20°/20°C	0.942
Boiling Range, 760 mm, °C	
Initial Boiling Point, min	186
Dry Point, max	194
Freezing Point, °F (°C)	-83 (-64)
Flash Point, Tag Closed Cup, °F (°C)	160 (71)
Tag Open Cup, °F (°C)	177 (81)
Fire Point, °F (°C)	180 (82)
Flammable Limits in Air, % by volume	()
Lower, at 200°F (93°C)	0.88
Upper, at 275°F (135°C)	8.54
Autoignition Temperature (ASTM D-2155), °F (°C)	645 (340)
NFPA Classification 30	IIIA
DOT Classification	Combustible Liquid
DOT Labels Required	None
DO 1 Papels Kediffled	MONE

SOLV DE Acetate Eastman DE Acetate Glycol Ether DE Acetate ARCOSOLV DEA

$$\begin{array}{c} CH_{3}-C-O-CH_{2}-CH_{2}-O-CH_{2}-CH_{2}-O-C_{2}H_{5} \\ \parallel \\ O \end{array}$$

This is primarily used as a coalescing aid in latex paints. Both its solvency and slow evaporation rate are effective in producing slow drying characteristic brushing lacquers.

Typical Properties	
Molecular Weight (C ₈ H ₁₆ O)	176.21
Color (Pt-Co Scale), max	15
Evaporation Rate (n-butyl acetate = 1)	< 0.01
Weight/Vol, 20°C,	
Ib/gal (U. S.)	8.41
kg/litre	1.01
lb/gal (Imperial)	10.09
Solubility, 20°C, wt %	
în water	Complete
Water in	Complete
Dilution Ratio, toluene	2.2
VM & P naphtha	0.6
Refractive Index, 20°C	1.4230
Vapor Pressure, 20°C, mm Hg	0.05
Specific Gravity, 20°/20°C	1.011
Boiling Range, 760 mm, °C	
Initial Boiling Point, min	214
Dry Point, max	221
Freezing Point, "F ("C)	-13 (-25)
Flash Point, Cleveland Open Cup, °F (°C)	225 (107)
Fire Point, °F (°C)	230 (110)
Flammable Limits in Air, % by volume	
Lower, at 275°F (135°C)	0.98
Upper, at 365°F (185°C)	19.4
Autoignition Temperature (ASTM D-2155), °F (°C)	680 (360)
NFPA Classification 30	IIIB
DOT Classification	Nonhazardous Liquid

Table 15.26: Diethylene Glycol Monobutyl Ether Acetate (41)

DOT Labels Required

SOLV DB Acetate Eastman DB Acetate ARCOSOLV DBA Glycol Ether DBA

$$\begin{array}{c} {\sf CH_3-\!C\!-\!O\!-\!CH_2\!-\!CH_2\!-\!O\!-\!CH_2\!-\!CH_2\!-\!O\!-\!C_4\!H_9} \\ {\sf II} \\ {\sf O} \end{array}$$

None

This very high-boiling glycol ester is used primarily as a solvent in printing inks and high-bake enamels, and as a coalescing aid in latex paints. The very slow evaporation rate and the limited water solubility of this solvent are especially applicable in silk screen inks and as a component in polystyrene coatings for decals. Also it is a selective solvent in the separation of alcohols and ketanes by distillation.

Molecular Weight (theoretical)	204.27	Solubility, 20°C, wt %,	
Weight/Vol, 20°C, lb/gal (U.S.)	8.16	In water	6.5
kg/liter	0.98	Water in	3.7
lb/gal (Imperial)	9.79	Color (Pt-Co Scale), ppm, max	15
Evaporation Rate (n-butyl acetate = 1)	< 0.01	Acidity, as acetic acid, wt %, max	0.03
Dilution Ratio, toluene VM & P naphtha	1.8 0.9	Boiling Range, 760 mm, °C	0.03
Flash Point (Cleveland open cup), °F	240 116	Initial boiling point, min Dry point, max	235.0 250.0
Freezing Point, °F	-26	Specific Gravity, 20°/20°C	0.975 - 0.985
°C	-32	Ester Content, wt %, min	97.0
Vapor Pressure, 20°C, mm Hg	0.04	Water, wt %, max	0.2

Table 15.27: Propylene Glycol Monomethyl Ether Acetate (41)

ARCOSOLV PM Acetate DOWANOL PMA Methyl PROPASOL Acetate Eastman PM Acetate Glycol Ether PM Acetate ARCOSOLV PMA

Typical Properties

Molecular Weight (CeH12O3)	132.2
Color (Pt-Co Scale)	15
Evaporation Rate (n-butyl acetate = 1)	0.39
Weight/Vol at 20° C,	
ib/gal (U.S.)	8.06
kg/L	0.97
lb/gal (Imperial)	9.68
Solubility at 20°C, wt %	
In water	20
Water in	5.9
Dilution Ratio,	
Toluene	2.6
VM & P naphtha	0.8
Refractive Index at 20°C	1.40
Vapor Pressure at 20°C, mm Hg	3.7
Specific Gravity at 20°/20°C	0.97
Boiling Range at 760 mm, °C	
Initial Boiling Point, min.	140
Dry Point, max.	150
Flash Point by Setaflash, °C (°F)	45 (114)
Flammable Limits in Air, % by volume	
Lower at 78°C (173°F)	1.3
Upper at 139°C (283°F)	13.1
Autoignition Temperature (ASTM D 2155), °C (°F)	354 (670)
DOT Classification	Combustible Liquid
DOT Labels Required	None

Table 15.28: Propylene Glycol Monoethyl Ether Acetate (70)
ARCOSOLV PEA

		ARCO TRADERAME	CHEMICAL NAME	CHEMICAL STRUCTURE	CASI	MOL. WT.	BOILBIG PT. °C 760mm	SPECIFIC GRAVITY 20/20	LBS/GAL	BETA Flash*f	EVAPORATION RATE (n-BuAc=100)
	en Tin Great	PMA PEA DPMA	Propylene Glycol Methyl Ether Acetate Propylene Glycol Ethyl Ether Acetate	CH3OCH2CHCH3OOCCH3 CH3CH2OCH2CHCH3OOCCH3	108-65-6 98516-30-4 88917-22-0	132.2 146.2	145.8 158	0.969 0.941	8.03 7.83	114 129	34 19
ACETATES	4.3 , 3	EMA	Dipropylene Glycol Methyl Ether Acetate Ethylene Glycol Methyl Ether Acetate	CH3OCH2CHCH3)2OOCCH3	110-49-6	190.2	209.3	1.006	8.18 8.37	186 120 TCC ²	35
ACET	E-Series	EEA EBA'	Ethylene Glycol Ethyl Ether Acetate Ethylene Glycol Butyl Ether Acetate	C ₂ H ₅ OC ₂ H ₄ OOCCH ₃	111-15-9 112-07-2	132.16 160.21	150 186	0.973 0.941	8.11 7.84	130 TCC ²	20 3
	E-S	DEA DBA	Diethylene Glycol Ethyl Ether Acetate Diethylene Glycol Butyl Ether Acetate	C ₂ H ₅ (OC ₂ H ₄) ₂ OOCCH ₃ C ₄ H ₉ (OC ₂ H ₄) ₂ OOCCH ₃	112-15-2 124-17-4	176.21 204.27	214 235	1.012 0.980	8.42 8.16	225 COC ⁵ 240 COC ⁵	0.8 0.2

								HAN	SEN SOLUBIL	CTY PARAMI	ETERS			
	· .	ARCO TRADENAME	%80L. IN H ₇ 0 20°C	REF. INDEX 25°C	SURF. TENSION DYNES/CM 25°C	SOLC Investig ANLOW LAKERS	Vies, sps. 25°C	CGE HAMSEN D	CGS HANSEN P	CGS HANSEN H	CGS TOTAL HAMSEN	HEAT OF VAPORIZ. CAL/°C	SPECIFIC HEAT Cally*C 25°C	HLB DAVIES
	E#	34	18	1.400	27.4	3.8	1.1	7.5	2.3	4.2	8.9	87.0	0.42	8.3
		19	10	1.401	26.3	1.5	1.3	7.5	2.0	3.9	8.7	69.0	0.44	7.9
	F	<1	12	1.414	28.3	0.05	2.1	7.3	2.3	3.9	8.6	59.1	0.42	8.2
ſ		35	100	1.4025	34.0	2	1.1	7.2	4.8	4.4	9.9	81.7		8.8
I	w	20	24	1.4030	28.2	1.7	1.3	7.8	2.3	5.2	9.7			8.3
1	E-Series	3	1	1.4142	30.3	0.29	1.8	7.5	2.2	4.3	8.9			7.4
ł	E-S	0.8	100	1.4220	31.7	0.05	2.8	7.9	2.5	4.5	9.4			8.7
		0.2	6	1.4239	30.0	0.04	3.2	7.8	2.0	4.0	9.0			7.7

Table 15.28: (continued)

Regulatory Information

			HMI8	ODE8	2 m	1	IFPA CODE	B	1990	8ARA
		HEALTH	FLAMM.	REACT.	PERS. PROT.	HEALTH	FLAMM.	REACT.	CAAA HAP	TITLE III BEG. 313 ^{L. 4}
	710 83	2	2	0	В	0	2	0	no	по
	夏	2	2	0	x	1	2	0	no	no
Ċ	ABC. A	1	2	٥	В	0	2	0	no	no
ACETATES						1	2		yes	yes
Ä	v,					1	2		yes	yes
¥	E-Series					1	2	0	yes	yes
	4	ŀ				,	1	0	yes	yes
						1	1	o	yes	yes

Table 15.29: Dipropyiene Glycol Monomethyl Ether Acetate (DPMA) (70)

ARCOSOLV DPMA **DOWANOL DPMA**

Glycol Ether DPM Acetate

C	ARCO Chemical Company menclature	Chemical Name	Molecular Weight	Boiling Point C (760 mm Hg)	Flash Point ² *F	Specific Gravity at 25 C	Evaporation Rate BuAC 100	Vapor Pressure at 25 C mm Hg	Lbs/Gal at 25 C
	COSOLV® M Acetate	Dipropylene Glycol Methyl Ether Acetate (DPMA)	190.2	210	186	.972	<1	0.2	8.14

4000		C -4					ames of re Products
ARCO Chemical Company Nomenclature	Viscosity (centistokes) at 25 C	Surface Tension dynesion at 25°C	Freeze Point °F	Solubility Parameter ³ .	Solubility in Water ml/100 ml	Union Carbide	Eastman
ARCOSOLV® DPM Acetate	2.2	28.3	<-67	8.3	12.3	<u>-</u>	-

- Values should not be regarded as specifications, maxima or minima.
 Hash points below 200°F by Tag Closed Cup. Flash points above 200° by Pensky-Martens Closed Cup.

Table 15.30: Propylene-Based Glycoi Ether Acetate (23)

DOWANOL BC-300

DOWANOL	CHEMICAL NAME	STRUCTURAL FORMULA	Molecular Weight	Boiling Pt. °C 760 mm Hg	Flash Point °F	Evap. Rate BuAc = 1.00	Specific Gravity 25/25°C
BC-300	Propylene-Based Glycol Ether Acetate			145.0- 210.0	108³	0.21	0.97

Viscosity Va		Vapor	Surface	DILUTIO	N RATIO	SOLVENT CONSTANTS				
Lb/Gal 25°C	Centi- stokes 25°C	Pressure at 25°C (mm Hg)	Tension (dynes/ cm)	Toluene	Naphtha	Solubility Parameters ¹	Hydrogen Bonding ²	Dipole Moment (Debye)	Solubility in Water mi/100 ml	
8.09	1.28	~3.7	27.9	2.4	0.5	9.1	9.6	1.8	20.3	

Solubility Parameters are useful as a guide in determining the ability of a solvent or solvent mixture to dissolve resins. A discussion of solubility parameters and the basis for these values are contained in an article by H.S. Burrell in the Spring 1955 issue of Interchemical Review.

A discussion of the hydrogen bonding parameter is contained in an article by Allen A. Orr, in the August 1975 issue of Journal of Paint Technology, Vol. 47, Mo. 607, pages 45–49. This particular article was the basis of the listed values of the hydrogen bonding parameter.

^{3.} For a discussion of solubility parameters, see H. Burrel, Interchemical Review, Vol. 14,

PROPIONATES

CH₂CH₂COOR

The propionic esters are very similar to the acetic esters in physical and chemical properties with the difference that the former have a higher bailing point, lower evaporation rate and a lesser power of solubility. They are miscible with many of the lacquer solvents and diluents and passess a distinctive but not a disagreeable odor. The consumption of these esters for solvent purposes is relatively small compared to the highly developed acetate esters.

Table 15.31: Methyl Propionate (2)

Methyl propionate has been advocated as a solvent for cellulose derivatives. When it is admixed with other propionates (such as ethyl, propyl, butyl and amyl) the mixture will dissolve cellulase ethers and esters.

> 91°C. Boiling paint 0.937 (4°C.) Specific gravity

Table 15.32: Ethyl Propionate (2)

Propionic Ether Propionic Ester

CH₂CH₂COOCH₂CH₃

Ethyl propionate is a colorless liquid with an odor resembling that of pineapples. It is a solvent for cellulose ethers and esters and for a variety of natural and synthetic resins. It is used principally as an ingredient in soft drinks and fruit syrups.

Acidity (as propionic) Distillation range Color Toluene dilution ratio

Dryness

0.02% by wt, max

90 to 100% between 80 and 120°C Water-white

2.5 - 3.0

No turbidity with 19 volumes gasoline

Evaporation rate Purity Residue Specific gravity at 151°C

Weight per gal

Slower than ethyl acetate 85 to 90%

None 0.876-0.886 7.35 lbs

Table 15.33: n-Butyl Proplonate (2)

CH3CH2COOC4H

n-Butyl propianate is a water-white liquid with an apple-like odor. It is miscible with most of the lacquer solvents and diluents and with oils but not miscible with water. It is a solvent for nitrocellulose and mony of the natural and synthetic resins. When an active solvent is added to it, butyl propionate will dissolve many of the cellulose esters and ethers. It It may be used as a solvent in lacquer fabrication where it imparts gloss, adhesion and prevents blushing. It is also used to replace butyl and amyl acetate when lower volatility and slower evaporation are desired.

Acidity (as propionic) Blush resistance at 90°F (10% } sec. R.S. nitrocellulose solution) Distillation range

0.35% by wt. max Clear 85% Relative humidity Blush 90%

120-175°C

per 1°F per 1°C Color Dilution ratio Toluol Petroleum naphtha Distillation range: Below 120°C Below 140°C Below 150°C Above 160°C

Dryness at 20°C

Coefficient of expansion

0.00060 0.001 Water-white 2.1 1.2

None Not more than 50% Not less than 85% None

Miscible without turbidity with 20 volumes 60° Bé gasoline

Evaporation rate at 95°F (in minutes) 5% 25% 50% 75% 90% 95%

Flash point Non-volatile matter Purity

Residue Solubility of water in solvent at 25°C Specific gravity at 20/20°C

Viscosity (10% | sec. R.S. nitrocellulose solution) Weight per gal at 20°C

1.2% by vol 0.868-0.872 5.9 centipoises

0.005 gm/100 cc, max

2

12

241

414

56

63}

63°F

90-92%

None

7.24 lbs

Table 15.34: Amyl Propionate (2)

$CH_3CH_2COOC_5H_{11}$

Amyl propionate is a colorless, volatile liquid with an apple-like odor. It will dissolve cumar resins, elemi, ester gum, mastic, copal, kauri, sandarac, and nitrocellulose and it is miscible with most lacquer solvents and oils. It has a slow solvent action upon cellulose ethers thus acting as a latent solvent and this latency can be overcome when acetone or ethyl alcohol is added to it. It has similar solvent properties to amyl acetate but is not as rapid and its solutions are more viscous, it has a slower rate of evaporation, and it has a more agreeable odor. It is used as a desirable high-boiling lacquer solvent imparting gloss, blush resistance and a reduction in "orange peel" effect. It is also used in flavoring and perfumery.

> Acidity (as propionic) 0.030% by wt, max Blush resistance at 90°F (10% Clear 90% Relative humidity sec. R.S. nitrocellulose so-Blush 95% lution) Coefficient of expansion per 1°F 0.00060 per 1°C 0.00108 Color Water-white Dilution ratio Toluol Petroleum naphtha 0.7 Distillation range: At or below 110°C None At or below 150°C Not more than 40% Not less than 90% At or below 170°C Above 175° C None Not more than 0.005 gms per 100 cc Non-volatile matter None Residue Solubility of water in solvent 0.3% by vol at 25°C Specific gravity at 20/20°C 0.869-0.873 Viscosity (10% | sec. R.S. ni-106 centipoises trocellulose solution) 7.25 lbs Weight per gal at 20°C

Table 15.35: Ethyl 3-Ethoxypropionate (19)

Typical Properties

**	
Molecular Weight	146.19
Boiling Point at 760 mm Hg, °C	170.1
Vapor Pressure at 20°C, mm Hg	<1
Relative Evaporation Rate (BuAc = 100)	11
Apparent Specific Gravity at 20/20°C	0.950
Solubility Parameters	
Total	9.0
Polar	4,1
Hydrogen Bonding	4.0
Solubility of Pure Material at 20°C, % by wt	
In water	1.6
Water In	1.9
Pounds per Gallon at 20°C	7.91
Flash Point, Closed Cup, °F	136
Surface Tension at 25°C, dynes/cm	27.3

BUTYRATES

Butyrates do not find extensive use in the solvent industry because of their relatively unpleasant odor and higher price.

Table 15.36: Methyl Butyrate (2)

$$CH_3CH_2CH_2COOCH_3$$

Methyl butyrate is a solvent for ethyl cellulose and when it is mixed with active solvents it will dissolve nitrocellulose.

Boiling point

102°C.

Specific gravity

0.898 (20°C.)

Table 15.37: Ethyl Butyrate (2)

$$CH_3CH_2CH_2COOC_2H_5$$

Ethyl butyrate is a nontoxic liquid having an odor suggestive of pineapples. Its solvent properties lie between those of ethyl acetate and n-butyl acetate, and when mixed with other solvents it will dissolve cellulose esters and ethers, and many of the natural and synthetic resins. It is used in flavors.

Boiling point

120°C.

Flash point

23°C.

Specific gravity

0.879 (20°C.)

Table 15.38: n-Butyl Butyrate (2)

$$\mathsf{CH_3CH_2CH_2COOC_4H_9}$$

Butyl butyrate is a water-white, neutral liquid with an apple-like odor. The commercial grade is composed of a mixture of the isomeric esters. It is a solvent for nitrocellulose, "Cumar" resins, dammar, ester gum, elemi, shellac, and metallic resinates.

Acidity (as butyric)

0.02% by wt, max 156.9° C

Boiling point Distillation range

95-100% between 140-170°C

Critical temperature

338°C 1.8 - 2.0

Toluene dilution ratio

No turbidity with 19 vol 60° Bé gas-

oline

Dryness

Complete, standing at least 19 vols

gasoline without turbidity 51°C

Flash point Purity Refractive index Residue

90-95% 1.4035 None 0.8717 0.458

Specific gravity at 20/20°C Specific heat at 20°C Surface tension at 157°C Vapor pressure at 20°C Viscosity at 25°C.

Weight per gal

12.0 113 mm Hg 0.84 centipoises 7.25 lbs

Ethyl Oxybutyrate

Ethyl hydroxy-isobutyrate is a water-white, stable liquid of a mild odor. It is a solvent for cellulose nitrate and acetate and when mixed with other solvents it will also dissolve cellulose ethers. Its solvent action is somewhat comparable with that of ethyl lactate, differing in the following aspects:

Its solvent action is slower and requires the presence of an active solvent to accentuate it. Its solutions of nitrocellulose are more viscous.

Its tolerance for hydrocarbons is about the same as far as it concerns nitrocellulose and is lower in the presence of acetyl cellulose.

Its volatility is higher.

Ester content 96-100%
Boiling range 142°-146°C.
Specific gravity 0.978-0.986 (20°C.)

Table 15.40: Isobutyl isobutyrate (41)

Isobutyl isobutyrate is a slow evaporating solvent with blush resistance, good flow and leveling which are favorable properties in formulating cellulose nitrate. Its solvent activity is equivalent to methyl amyl acetote and is therefore used as a direct substitute in many formulations.

Molecular Weight $(C_8H_{16}O_2)$ Color (Pt-Co Scale), max Weight/Vol, 20°C,	144.22 15	Boiling Range, 760 mm, °C Initial Boiling Point, min Dry Point, max	144 151
lb/gal (U.S.) kg/liter lb/gal (Imperial) Solubility, 20°C, wt %	7.13 0.86 8.56	Freezing Point, [°] F (°C) Flash Point, Tag Closed Cup, °F (°C) Tag Open Cup, °F (°C) Fire Point, °F (°C)	-112 (-80) 101 (38) 111 (44)
In water Water in Evaporation Rate (n-butyl acetate = 1) Dilution Ratio, toluene VM & P naphtha	<0.1 <0.2 0.4 1.5 0.8	Flammable Limits in Air, % by volume Lower, at 200°F (93°C) Upper, at 200°F (93°C) Autoignition Temperature (ASTM D-2155), °F (°C) NFPA Classification 30:	115 (46) 0.96 7.59 810 (432) II
Refractive Index, 20°C Vapor Pressure, 20°C, mm Hg Specific Gravity, 20°/20°C	1.3913 3.2 0.855	DOT Labels Required DOT Classification	None Nonhazardous Liquid

Table 15.41: 2,2,4-Trimethylpentanediol-1,3-Monoisobutyrate (41)

	Evaporation Rate n-BuOAc = 1	Lb/ Gal @ 20°C	Color Pt-Co Max	Specific Gravity @ 20°/20°C	Acidity, as Acetic Acid Max Wt %	Boiling Range °C	Freezing Point °C	Flash Point COC °C (°F)	Fire Point °C (°F)
TEXANOL® Ester Alcohol	0.002	7.90	20	0.950	0.2	244-247	-50	120 (248)	132 (270)
(2,2,4-Trimethyl-1,3-pentan	ediol Monoisobut	yrate)			(isobutyric)				
C ₁₂ H ₂₄ O ₃		•			•				

COMPARATIVE DATA

Table 15.42: ARCOSOLV PM Acetate and ARCOSOLV PE Acetate (70)

ARCOSOLV PMA is a colorless, combustible liquid with low toxicity. It has a characteristic ester odor and is soluble in water to the extent of 18% at 20°C. It has excellent solvency for a variety of substances including acrylic, nitrocellulose and urethane coating resins. ARCOSOLV PMA is a substitute for ethylene glycol (E-series) ether acetates, particularly EEA and EMA.

Product Identification

1-Methoxy-2-Propanol Acetate
Propylene Glycol Ether Acetate
Methoxy Propanol Acetate
lene Glycol Methyl Ether Acetate
1- Methoxy Propanol Acetate
C ₆ H ₁₂ O ₃

Product Specifications¹

	Steelle 10/5	
Specific Gravity @ 25/25°C	0.963 - 0.966	ASTM D-891
Distillation @ 760mm Hg IBP, min. DP, max.	140°C 150°C	ASTM D-1078
Acidity, wt. % as acetic acid, max.	0.02	ASTM D-1613
Water, wt. %, max.	0.05	ASTM E-203
Color, APHA, max.	10	ASTM E-1209
GC Purity, wt. %, min.	99.0	ACC 8314

¹ 50-75 ppm BHT is added to control peroxides.

Typical Properties

♣ Autoignition temperature (°F)	522
Density (pounds per gallon at 25°C)	
⋆Evaporation Rate (BuAc = 100)	34
¬Flammability Limits (Lower/Upper Vol. %)	1.5/10
Flash Point (Tag Closed Cup) °C (°F)	47 (116)
■ Solubility by weight of water in at 20°C	
¬Solubility Parameter (Total Hansen)	
¬Surface Tension (Dynes/cm) @ 25°C (77°I)	
Refractive Index @ 25°C (77°F)	
√Viscosity (centistokes) @ 25°C (77°F)	1.1
Vapor Pressure @ 25°C (mm Hg)	3.8

Table 15.42: (continued)

ARCOSOLV PEA is a colorless, liquid with a low order of toxicity. It has a mild, ether-like odor. It is slightly soluble in water but miscible with a number of organic solvents and has good solvency for a number of substances.

Product Identification

CHEMICAL NAME

Ethoxy Propanol Acetate

OTHER NAMES

Propylene Glycol Monoethyl Ether Acetate

CHEMICAL FAMILY

■ Propylene Glycol Ether Acetate

CHEMICAL FORMULA

■ C₇H₁₄O₃

Product Specifications

Property	Specifications	Test Method
Specific Gravity @ 20/20°C	0.942 0.9481	ASTM D-891
Distillation @ 760mm Hg IBP, Initial Boiling Point, min. DP, Dry Point, max.	148°C 168°C	ASTM D-1078
Acidity, wt. % as acetic acid, max.	0.02	ASTM D-1613
Water, wt. %, max.	0.05	ASTM E-203
Color, APHA, max.	15	ASTM D-1209

¹ Equivalent specific gravity range at 25°/25°C is 0.934 – 0.940

Typical Properties

■ Boiling Point °C (°F)	158 (316)
■ Density (pounds per gallon at 20°C)	7.5
	0.19
■ Flash Point (SETA) °C (°F)	54 (129)
Formula Molecular Weight	146
Refractive Index @ 25°C	1.40
Solubility by weight in water	10%
Viscosity (centistokes) @ 20°C (68°F)	1.3
▶ Vapor Pressure @ 20°C (68°F) (mm Hg)	1.5

Table 15.43: Ashland Ester Solvents (69)

	LB./GAL.	SP. GR.	BOILING RANGE		FL. PT.	EVAP.
PRODUCT	20° C	20°/20° C	°C	٥F	°F TCC	RATE!
Ethyl Acetate 99%	7.51	0.902	75.5-78.0	168-172	24	4.1
Isopropyl Acetate 99%	7.27	0.872	85-90	185-194	42	3.0
n-Propyl Acetate	7.39	0.888	99-103	210-217	55	2.3
Ethyl Propionate	7.42	0.892	99-	210-	61	3.1
Isobutyl Acetate	7.25	0.870	112-119	234-246	63	1.6
n-Butyl Acetate 99%	7.35	0.882	120-128	248-262	81	1.0
Glycol Ether PM Acetate	8.06	0.970	140-150	284-302	114	0.4
Amyl Acetate (primary)	7.29	0.876	142-152	288-306	101	0.49
Isobutyl Isobutyrate	7.13	0.855	144-151	291-304	104	0.45
n-Butyl Propionate	7.29	0.876	145-	292-	97	0.45
Ester Solvent EEP	7.91	0.950	165-172	329-342	136	0.12
n-Pentyl Propionate	7.27	0.872	168-	334-	138	0.18
Glycol Ether EB Acetate	7.84	0.942	186-194	367-381	165	0.03
2-Ethylhexyl Acetate	7.26	0.872	192-205	378-401	160	0.03
Glycol Ether DPM Acetate	8.12	0.976	193-205	379-401	186	< 0.01
Dibasic Ester	9.10	1.092	196-212	385-414	2126	< 0.01
Glycol Ether DE Acetate	8.41	1.011	214-221	417-430	225*	< 0.01
Glycol Ether DB Acetate	8.16	0.980	235-250	455-482	2218	< 0.01
¹n-Butyl Acetate = 1 *PMCC						

Table 15.44: Chemcentral Esters (67)

ESTERS	CAS	Mole Weight	% Purity Comm.	rity Grav.	Lbs./ Gal.	Coeff. of Expan.	∴Sp. Gr. Per °C	Refrac- tive Index	Distillation Range @ 760 mm Hg		Vapor Press. @ 20°C
			Prod.	20/20°C	20°C	Per °C	30	€: 20°C	°C	۰F	mm Hg
AMYL ACETATE (Primary)	628-63-7	130.18	95	0 876	7 29	0.00115	.00080	1.4018	104-150	284-302	4.0
ISO BUTYL ACETATE	110-19-0	116.16	90	0.868	7.26	0.00137	.00098	1.3892	112-119	233-246	12.5
n BUTYL ACETATE	123-86-4	116.16	98	0.882	7.35	0.00113	.00082	1.3947	120-128	248-262	7.8
GLYCOL ETHER DB ACETATE	124-17-4	204.26	95	0 980	8.16	0.00097	.00072	1.4265	235-259	455-482	< 0.001
GLYCOL ETHER EB ACETATE	112-07-2	160.22	99	0.942	7.84	0.00104	.00076	1.4200	188-192	370-378	0.29
GLYCOL ETHER DE ACETATE	112-15-2	176.21	97	1011	B.41	0.00101	.00078	1.4230	214-221	417-430	0.05
GLYCOL ETHER EE ACETATE	111-15-9	132.16	95	0 974	8.11	0.00112	.00086	1.4058	145-166	293-331	1,7
GLYCOL ETHER EM ACETATE	110-49-6	146	99	1 006	8.37	0.00109	.00084	1.4025	140-147	284-297	2.0
GLYCOL ETHER PM ACETATE	108-65-6	132.16	99	0.969	8.07			1.400	140-150	284-302	3.7
ETHYL ACETATE (85-88%)	141-78-6	88.11	85-68	0.886	7.38	0.00139	.00102	1.3696	71-79	160-174	88.0
ETHYL ACETATE (99%)	141-78-6	88 11	99	0 902	7.51	0.00139	.00104	1.3710	76-77 5	169-172	76.0
ETHYL 3 ETHOXY PROPINATE (EEP)	763-69-9	146.19	99	0.944	7.84			T	163 166	320-330	1.11
ISO PROPYL ACETATE	108-21-4	102 14	99	0872	7.26	0.00115	.00094	1.3779	85-90	185 194	47.5
0 PHOPYL ACETATE	109-60-4	102 14	96	0.886	7.39	0.0013	00000	1	99 103	210-217	23.0
ISOBUTYL ISOBUTYRATE	97-85-8	144.21	99	0.855	7.13				144-151	291-304	3.2
DIBASIC ESTER (DBE)		160.0	99	1 086	9.0				196 225	385 437	

ESTERS	Evap. Rate vs. B. Acet. = 1	Salubility % by Wt. @ 20°C		Dilution Ratio		BI. Res. % Rel. Hum.	V. 8% NC @ 25°C	Freeze Point	Flash Point T.C.C.	Explosive Limits % by Vol. In Air		Solu- bility Param-
		In H ₂ 0	O1 H,0	Totuol	Lactol	@ 80°F	CPS	-0	°F	Lower	Upper	eter
AMYL ACETATE (Primary)	0.4	0.2	0.9	2.3	1.3	92	41	100	106	1.1	7.5	8.5
iso - BUTYL ACETATE	1.45	0.75	1.64	2.7	1.1	80	35	-97.1	69	2,4	10.5	8.4
n - BUTYL ACETATE	1.0	0.7	1.6	2.7	1.2	83	33	-73.5	76	1.7	7.6	8.7
GLYCOL ETHER DB ACETATE	< 0.01	6.5	3.7	1.8	0.9	96	201	- 32.2	240*	0.8	5.0	8.5
GLYCOL ETHER EB ACETATE	0.03	1.1	1.6	1.8	1.2	96	92	-63.5	160			8.5
GLYCOL ETHER DE ACETATE	< 0.01	∞	∞	2.2	0.6	92	158	25	230.	1.0	6.9	8.5
GLYCOL ETHER EE ACETATE	0.2	23.8	6.5	2.5	0.9	94	65	-61.7	130	1.7		8.7
GLYCOL ETHER EM ACETATE	0.2	∞	00	2.3	0.6	80	63	- 65.1	120			9.2
GLYCOL ETHER PM ACETATE	0.39	- 20	5.9	2.6	0.8	92	65		1148	1.3	13.1	8.8
ETHYL ACETATE (85-88%)	4.2	7.4	3.1	3.3	1.2	38	23	< -83.6	26	2.05	11.0	9.1
ETHYL ACETATE (99%)	4.1	7.4	3.3	3.1	1.1	39	23	-83.6	24	2.2	11.0	9.1
ETHYL 3 ETHOXY PROPINATE (EEP)	0.12	2.9		1.8			52		136 ⁸	1.05		9 1
iso - PROPYL ACETATE	3.1	2.9	1.8	3.0	1.2	69	25	69	35	18	80	8.6
n - PROPYL ACETATE	2.3	2.3	5.6	3.2	1.5	65	25	- 95	55	20	B.0	8.8
ISOBUTYL ISOBUTYRATE	0.43	< 0.1	< 0.2	1.5	0.8	92	56	-81	978			8.0
DIBASIC ESTER (DBE)								20	212			

Tag Open Cup

*Seta Closed Cup

SALES SPECIFICATIONS:

	Butyl Lactate	Ethyl Lactate*
Purity, % ester	95.0 minimum	98.0 minimum
Specific Gravity, 20/20 °C	0.970 to 0.990	1.032 to 1.035
Acid value	0.5 maximum	0.5 maximum
Water, wt. %	0.2 maximum	0.3 maximum
Color, APHA	25 maximum	25 maximum
*Electronic grade also available		

PHYSICAL PROPERTIES:

	Butyl Lactate	Ethyl Lactate
Flash point, °C	76	48
Freezing point, °C	-46	25
Boiling point, °C @ 760 mm Hg	188	154
Vapor pressure mm Hg @ 20°C	0.4	2
Vapor density (air = 1)	5.04	1.03
Relative evaporation rate		
(butyl acetate = 1)	0.044	0.29
Molecular weight	146.2	118.1
Pounds per gallon	8.15	8.59
Odor	mild	mild
Appearance	water white liquid	water white liquid

Table 15.46: Eastman Glycol Ether Esters (41)

	NOMENCLATURE OF GLYCOL ETHERS AND GLYCOL ETHER ESTERS									
GLYCOL ETHERS										
Company Name	Ethylene Gtycol Propyl Ether	Ethylene Glycol Butyl Ether	Ethylene Glycol 2-Ethylhexyl Ether	Diethylene Glycol Methyl Ether	Diethylene Glycol Ethyl Ether	Diethylene Glycol Propyl Ether	Diethylene Glycol Butyl Ether	Propylene Glycol Methyl Ether		
Eastman	Eastman EP	Eastman EB	Eastman EEH	Eastman DM	Eastman DE	Eastman DP	Eastman DB	Easiman I M		
Union Carbide	Propyl Celloso∿e	Butyl Cellosolve	_	Methyl Carbitol	Carbitol (low gravity)	Propyl Carbitol	Butyl Carbitol	Methyl Prop isol		
Dow	_	Dowanol EB	t risker	Dowanol DM	Dowanol DE	_	Dowanol DB	Dowa. rol PM		
Shell	_	Butyl Oxital	. Low	_		-	Butyl Dioxital	 -		
Occidental	_	EB		_	DE		DB			
Arco				_		-		Arcosotv F'M		

	GLYCOL ETHER ESTERS									
Company Name	Ethylene Glycol Bulyl Ether Acetate	Diethylene Glycol Ethyl Ether Acetate	Diethylene Glycoł Butyl Ether Acetate	Propylene Glycol Methyl Ether Acetale						
Eastman	Eastman EB acetate	Eastman DE acetate	Eastman DB acetate	Eastman PM acetate						
Union Carbide	Butyl [®] Cellosolve acetate		Butyl Carbitol acetate	Methyl Propasol acetate						
Arco			-	Arcosolve PM acetate						
Dow	,			Dowanol PM acetate						
Occidental	EB acetate		DB acetate	PM acetate						

Table 15.47: Hoechst Celanese Esters (42)

Ethyl Acetate

(Acetic Acid, Ethyl Ester, Ethyl Acetic Ester, Ethyl Ethanolate, Acetidin)

Physical Properties

Autoignition Temperature, °C	426.7
Boiling Point at 760 mm Hg, °C	77
Boiling Point at 760 mm Hg, °F	171
Coefficient of Thermal Expansion per °C (at 20°C)	0.00141
Critical Pressure, atmospheres (est)	37.8
Critical Temperature, °C (est)	250
Evaporation Rate (BuAc = 1)	4.5
Flammable Limits (lower limit, vol %) (upper limti, vol %)	2,0 11.4
Flash Point, Tag Open Cup, °F Tag Closed Cup, °F	56 24
Freezing Point, ℃	-83
Heat of Combustion, kcal/mole (liquid, 25°C)	534.3
Heat of Formation, kcal/mole(liquid, 25°C)	-115.2
Heat of Fusion, cal/gm	28.43
Heat of Vaporization, btu/lb at normal boiling point	158
Molecular Weight	88.11
Refractive Index n _D ²⁰	1.3719
Solubility at 20°C, wt % in water wt % water in	8.7 3.3
Specific Gravity, 20/20°C	0.9019
Specific Heat of Liquid, cal/gm/°C at 20°C	0.459
Surface Tension in Air at 20°C dynes/cm	23.7
Vapor Density (air ≈ 1)	3.0
Vapor Pressure, mm Hg, 20°C	73
Viscosity at 20°C, centipoise	0.46
Weight, pounds per gallon at 20°C	7.51

<u>Isopropyi Acetate</u> (Acetic Acid, Isopropyi Ester)

Physical Properties

Autoignition Temperature, °C	460
Critical Properties: Temperature, °C Pressure, atm Volume, cm³/mol Compressibility Factor (Z _c)	257.85 35.7 312 0.255
Density: Liquid (20°C) Vapor (air = 1.0)	0.8718 3.5
Explosive Limits (25°C), vol % Lower (LEL) Upper (UEL)	1.76 7.20
Flash Point (TCC), °C	22
Latent Heat of Vaporization (25°C), kcal/mol	8.89
Liquid Specific Heat (25°C), cal/g°C	0.460
Liquid Viscosity (20°C), centipose	0.60
Melting Point, °C	-73.4
Molecular Weight	102.134
Normal Boiling Point, (n-bp), °C	88.6
Refractive Index, (n _d) at 20°C	1.3791
Standard Net Heat of Combustion, kcal/mol	-632.9 (gas
Surface Tension (20°C), dyne/cm	22.3
Vapor Pressure (20°C), mm Hg	47

n-Propyl Acetate

(Acetic Acid, Propyl Ester, Normal Propyl Acetate)

Isobutyl Acetate

(Acetic Acid, Isobutyl Ester, 2-Methyl-1-Propyl Acetate, B-Methylpropyl Ethanoate)

Physical Properties

Physical Properties

Autoignition Temperature, °C	450.0	Boiling Point at 760 mm Hg, ℃	118
Boiling Point at 760 mm Hg, °C	101.6	Boiling Point at 760 mm Hg, °F	244
Boiling Point at 760 mm Hg, °F	214.9	Coefficient of Thermal	
Evaporation Rate (BuAc = 1)	2.2	Expansion per °C at 55°C	1.26 x 10 ⁻³
Flammable Limits		Distillation Range, °C	114.0-119.0
(lower limit, vol %) (upper limit, vol %)	2.0 8.0	Evaporation Rate (BuAc = 1)	1.6
Flash Point, Tag Open Cup, °F Tag Closed Cup, °F	70 55	Flammable Limits (lower limit, vol %) (upper limit, vol %)	2.4 10.5
Freezing Point, °C	-92.5	Flash Point, Tag Open Cup, °F Tag Closed Cup, °F	83 64
Heat of Vaporization, btu/lb at normal boiling point	145	Freezing Point, °C	-99
Molecular Weight	102.13	Heat of Vaporization, k joules/ mol at normal boiling point	36.7
Solubility at 20°C, wt % in water	2.3	Molecular Weight	116.16
Specific Gravity, 20/20°C	0.8870	Refractive Index, n ²⁰	1.3900
Specific Heat of Liquid, cal/gm/°C at 20°	0.459	Solubility at 20°C, wt % in water	0.63
Vapor Density (air = 1)	3.5	Specific Gravity, 20/20°C	0.8724
Vapor Pressure, 20°C, mm Hg	25	Specific Heat of Liquid,	
Viscosity at 20°C, centipoise	0.59	cal/gm/°C at 20°C	0.459
Weight, pounds per gallon at 20°C	7.39	Vapor Density (air = 1)	4.0
		Vapor Pressure at 20°C, mm Hg	13.0
		Viscosity, 20°C, centipoise	0.70
		Weight, pounds per gallon at 20℃	7.26

Table 15.47: (continued)

n-Butyl Acetate

(Acetic Acid, Butyl Ester, Butyl Ethanoate, Normal Butyl Acetate)

Physical Properties

· myolodi i roporti	
Boiling Point (760 mm Hg):	126.5°C (259.7°F)
Coefficient of Thermal Expansion per °C	
(at 20°C):	1.13 x 10 ⁻³
Critical Pressure:	31.7 atm
Critical Temperature:	306.2 °C
Distillation Range:	120-128°C
Evaporation Rate (BuAc = 1):	1.0
Flammability Limits in Air (% by vol):	
Upper:	7.6
Lower:	1.7
Flash Point:	
Tag Open Cup:	93°F
Tag Closed Cup:	76°F
Freezing Point:	-73.5°C
Heat of Combustion (liquid, 25°C):	-847 kcal/mole
Heat of Formation (liquid, 25°C):	-5.17 kcal/mole
Heat of Vaporization	
(at normal boiling point):	139 btu/lb
Molecular Weight:	11 6 .16
Refractive Index n _D ²⁰ :	1.3947
Solubility at 20°C, wt%, in water:	0.68
water in:	1.175
Specific Gravity (20/20°C):	0.8820
Specific Heat of Liquid (at 20°C):	0.503 cal/gm/°C
Surface Tension (in Air at 20°C):	24.0 dynes/cm
Vapor Density (Air = 1):	4.0
Vapor Pressure (20°C):	18.4 mm Hg
Viscosity (at 20°C, centipoise):	0.74
Weight (pound per gallon at 20°C):	7.35
5 "	

Methyl Formate - 97.5%

(Formic Acid, Methyl Ester)

Physical Properties

Autoignition Temperature, °C	449.0
Boiling Point at 760 mm Hg, °C	32.1
Boiling Point at 760 mm Hg, °F	89.8
Critcal Pressure, atmospheres	59.25
Critical Temperature, °C	214
Evaporation Rate (Ether = 1)	1.6
Flammable Limits (lower limit, vol %) (upper limit, vol %)	5.0 ⁽¹⁾ 23.0
Flash Point, Tag Open Cup, °F Tag Closed Cup, °F	-2 -26
Freezing Point, °C	-100.2
Heat of Vaporization, btu/lb at normal boiling point	202.3
Molecular Weight	60.05
Refractive Index, n ²⁰ _D	1.3434
Solubility at 20°C, wt % in water	33.0
Specific Gravity, 20/20°C	0.980
Specific Heat of Liquid, btu/lb/°F at 68°F	0.493
Surface Tension in air at 25°C, dynes/cm	24.62
Vapor Density (air = 1)	2.07
Vapor Pressure, 20°C, mm Hg	476.4
Viscosity at 25°C, centipoise	0.355
Weight, pounds per gallon at 20°C (68°F)	8.17

Table 15.48: Mobil Oil Esters (64)

	N-Butyl	Cyclohexyl	Ethyl	
Typical Characteristics	Acetate	Acetate	Acetate	EGMEEA
Density kg/l at 15°C	0.887	0.973	0.905	0.975
Distillation °C, IBP	124.0	173	76.6	156
DP	126.7	179	77.4	165
Color, APHA	5	5	10	10
Flash Point *C (TCC)	23	58	-1	58
Water Content % Wt.	0.1	0.09	0.1	
Acidity as Acetic, ppm	70	140	50	100
Properties of Pure Material				
Molecular Wt.	116.16	142.19	88.10	132.09
Coefficient of Cubical Expansion/°C	0.00121	0.00095	0.00139	0.00111
Density Correction/ °C	0.00104	0.00090	0.00123	0.00106
Solubility of Water in, at 20°C, % w/w	1.37	0.80	3.0	6.5
Solubility in Water, at 20 °C, % w/w	1.0	0.33	7.9	23
Viscosity at 20°C, cP	0.69	2.0	0.45	1.21
Refractive Index at 20°C	1.3951	1.441	1.3725	1.4058
Specific Heat at 20 °C, kJ/kg/ °C	1.92	1.72	2.00	2.07
Latent Heat of Evaporation, kJ/kg	310	313	367	339
Vapor Pressure at 20°C, mm Hg	10	1.0	73	1.2
Explosive Range, % vol in air.	1.7 – 15	1.0 - ?	2.2 – 11.0	1.7 - 10.1
Sat. Vapor Explosive in range, °C	23 – 70		-7 - +33	_
Autoignition Temperature, °C	425	330	426	379

Table 15.49: Union Carbide Esters (19)

	MOLECULAR WEIGHT	BOILING POINT at 760 mm Hg, °C	WAPOR PRESSURE at 20°C, mm Hg	RELATIVE EWAPORATION HATE (BUAC = 100)	APPARENT SPECIFIC GRAWITY at 20/20°C	SOLUI Total	BILITY PARA Polar	METERS Hydrogen Bonding	Pure Mat	BILITY of erial at 20°C, y weight Water in	POUNDS PER GALLON at 20°C	FLASH POINT, Closed Cup, °F	SURFACE TENSION at 25°C, dynes/cm	SURFACE TENSION at 25°C of 20% Solution in Water, dynes/cm
ESTERS														
Ethyl Acetate (99.5%)	88.11	77.2	76	747	0.902	8.91	4.20	4.35	8.7	3.3	7.51	30	23.7	24.5 (a)
CELLOSOLVE Acetaté	132.16	156.3	2	20	0.975	9.35	4.41	4.33	22.9	6.5	8.10	126	28.0	33.5 `´
Methyl PROPASOL Acetate	132.16	145.7	3	34	0.969	9.10	4.50	3.86	18.5	5.6	8.96	116	28.2	_
Ester EEP	146.19	170.1	<1	11	0.950	9.0	4.1	4.0	1.6	1.9	7.91	136	27.3	_
Butyl CELLOSOLVE Acetate	160.21	192.3	<1	3	0.942	8.91	3.92	3.83	1.5	1.7	7.84	165	27.4	41.0 (b)
Butyl CARBITOL Acetate	204.27	246.7	<1	<1	0.980	9.05	3.97	4.25	6.5	3.7	8.16	221	30.0	39.2 (c)
Filmer IBT	216.30	169.7	<1	<1	0.95	8.5	_		<1	0.9	7.91	248	_	-

(a) 5 percent aqueous solution.

(b) 1 percent aqueous solution.

(c) 2 percent aqueous solution.

Resin Solubilities

							Vinyl Resins			
Solvent	Cellulose Acetate, 41% Acetyl		etate Butyrate,	Ethyl Cellulose, 47-49% Ethoxyl	Polystyrene	Poly(methyl Methacrylate)	VYHH Vinyl Chloride/Vinyl Acetate Copolymer	AYAF Polyvinyl Acetate	XYHL Polyvinyl Butyrl	
			-	•			ne.			
Butyl CARBITOL® Solvent Butyl CELLOSOLVE® Solvent	1	I I	G I	s• s	1	I I	PS I	S PS	\$ \$	
Butyl CELLOSOLVE Acetate	1	1	s	S	s	ı	SI.S	s	1	
Butyl PROPASOL® Solvent	1	ī	i	S-G	1	i	1	SW	S-G	
CARBITOL Solvent PM-600	1	SW	PS	PS	ł	t	I	PS	S	
CELLOSOLVE Acetate	SI.S	PS	S	S	S	S	S	S	G	
CELLOSOLVE Solvent	ı	ı	s	s	1	ī	ı	S	s	
Methyl CARBITOL Solvent	S-G	SW	S	PS	1	1	ı	S	S	
Methyl CELLOSOLVE Solvent	s	1	S	s	1	s	PS	s	s	
Methyl CELLOSOLVE Acetate	S	S	S	S	S	S	S	S	G	
Methyl PROPASOL Acetate	f	SW	S	PS	s	s	s	S	SW	
Methyl PROPASOL Solvent	1	I	S	PS	I	S ,	1	S	PS	
Propyl CARBITOL Solvent	1	I	G	s	I	ı	PS	s	s	
Propyl CELLOSOLVE Solvent	1	I	S	S	1	I	1	S	S	
Propyl PROPASOL Solvent	1	I	1	s-g•	1	I	t	SI.S	S-G	
UCAR® Ester EEP	_	S		S	PS	PS	S	-	_	

Concentration = 0.5 g resin to 4.5 ml of solvent = 0.5 g resin to 9.5 ml solvent

S = Soluble

l = Insoluble

G = Gel

SW = Swelling

SI.S = Slightly soluble

PS = Partly soluble

S-G = Soluble, tendency to gel

PS-G = Partly soluble, tendency to gel

Sl.S-G = Slightly soluble, tendency to gel

Table 15.49: (continued)

Coating Performance Properties

		Solubility Pa	rameters					Relative		
Solvent	7.4.1		Hydrogen	Blush		Dilution Rati	os	Evaporation	Surface Tens	sion at 25°C, dynes/cr
	Total	Polar	Bonding	Resistance	Toluene	Naphtha	Xylene	Rate (nBuAc = 100)	Solvent	20% Solution in Water(a)
Butyl CARBITOL® Solvent	9.79	3.94	6.16	_	3.9	1.0				III WALE
Butyl CELLOSOLVE® Acetate	8.91	3.92	3.83	96+	1.8	1.9	4.2	< 1	31.0	33,2
				50 +	1.0	1.2		3	27.4	41,Q(b)
Butyl CELLOSOLVE Solvent	9.87	3.88	6.35	96+						
Butyl PROPASOL® Solvent	9.31	3.67	5.63		3.5	2.3	3.2	6	28.6	28.9
		3.07	5.05	96+	1.9	0.9		8	27.4	32,3(c)
CARBITOL Solvent, Low Gravity	10.34	4.35	C 00						27.7	32.3(4)
CARBITOL Solvent PM 600	10.3		6.89	78	4.7	0.5	-	<1	** 0	
	10.5	-	_	76	1.9	imm.	1.2	<1	35.2	49.6
CELLOSOLVE Acetate	0.75							~1		
CELLOSOLVE Solvent	9.35	4.41	4.33	94	2.5	0.9	2.3	20		
CDEDGGGEVE SOIVEIL	10.71	4.43	7.42	59	4.9	1.1	4.3	32	28.0	33.5
Hexyl CARBITOL Solvent							٠.5	32	29.4	47.1
Howal CELLOSOLUBO	9.70	3.08	5.84		2.9	1.8	-			
Hexyl CELLOSOLVE Solvent	9.63	3.53	5.90	96+	2.4	1.5		<1	29.6	_
Matter I CARRIER					•	1.5	-	1	30.3	28.5
Methyl CARBITOL Solvent	11.15	4.70	7.70	76	2.3					
Methyl CELLOSOLVE Acetate	9.9	_	_	80	2.3	lmm.	1.0	< 1	35.9	49.6
				00	2.3	0.6	1.9	31	_	
Methyl CELLOSOLVE Solvent	11.7	_	_	42						
Methyl PROPASOL Acetate	9.10	4.50	3.86		4.0	imm.	2.9	47		
		50	5.00	_	2.5	0.8	-	34	28.2	_
Methyl PROPASOL Solvent	10.42	4.48	6.98						-4.2	-
Propyl CARBITOL Solvent	9.99	4.11		-	5.2	0.9	_	60	28.3	10.0
	3.33	4.11	6.46	-	_	_	_	<1		46.8
ropyl CELLOSOLVE Solvent	10.16							••	_	
Propyl PROPASOL Solvent	10.16	4.10	6.77	69	4.0	2.0	-	22		
	9.55	3.89	5.89		_	1.1	_	22	26.7	-
CAR® DPM Solvent							•	44	27.0	30.4
JCAR Ester EEP	9.4	-	13.3	_	4.2	0.8		_		
CAN LSIEF EEF	9.0	4.1	4.0	_	1.4	0.7	_	3	28.8	_
a) All solutions are percent by volume						0.7	-	11	27.5	

⁽a) All solutions are percent by volume

Constant Boiling Azeotropic Mixtures of Glycol Ether Esters with Water

		Components			Azeotrope				
		S pec ific	Boiling Point, °C at	Boiling Point, °C at	Composit	ion. % by Wt,	at 20°C	Relative Volume	Sp. Gr. 20/20°C
	Solvent		760 mm Hg	760 mm Hg	In Azeotrope	in Upper Layer	in Lower Layer	of Layers(a) at 20°C	of Azeotrope Layer(a)
RES	Butyl CELLOSOLVE Acetate Water	0.9442 1.0000	191.5 100.0	98.8	28.1 71.9	98.4 1.6	1.1 98.9	U 71.0 L 29 .0	U 0.941 L 0.999
ETHE	CELLOSOLVE Acetate Water	0.9748 1.0000	156.4 100.0	97.5	45.5 54.5	93.3 6.7	24.5 75.5	U 31.2 L 68.8	U 0.972 L 1.011
GLYCOL ETHER ESTER MIXTURES	Methyl CELLOSOLVE Acetate Water	1.0067 1.0000	145.5 100.0	97.1	48.2 51.8	-	_		1.03
93	UCAR® Ester EEP Water	0.9496 1.0000	170.1 100.0	97	38.6 61.4	97.2 2.8	5.3 94.7	U 38 L 62	U 0.94 L 0.99
	(a) II Depart Lawrence								

⁽b) I percent aqueous solution

⁽c) 5 percent aqueous solution

Table 15.49: (continued)

Relative Viscosities of Lacquers at 25°C

(Butyl Acetate = 100)

UCAR® Ester EEP as a Polymerization Solvent for an Acrylic Resin

Electrostatic Application

Monomer Composition		Glycol Ether Esters	Resistivity, megohms
Ingredient	Weight Percent	Methyi CELLOSOLVE Acetate	0.2
Styrene	30.8	Butyl PROPASOL Solvent	0.45
Butyl Acrylate	38.2	Methyl PROPASOL Acetate	1.8
Hexoxy Ethyl Acrylate	15.7	Butyl CELLOSOLVE Acetate	3.0
Acrylic Acid	3.2	CELLOSOLVE Acetate	4.0
Initiator(1)	4.4	UCAR Ester EEP	20.0
Solvent	7.7		
Total	100.0		

Results

Polymerization Solvent	Polymerization Temperature, °C	Average Molecular Welght	Solids,(2) % by Wt	Viscosity, ⁽³⁾ cP
Methyl n-Amyl Ketone	155	19.480	70	3440
UCAR® Ester EEP	175	13.739	70	3150
"Exxate"(4) 600	171	17.592	70	3850

- (1) "Luperox" 500R (Pennwalt)
- (2) Polymerization solids were ~81%, reduced to 70% for viscosity studies
- (3) Brookfield model LVT
- (4) Exxon

Vapor Pressures of Esters vs Temperature

Table 15.49: (continued)

Solubilities of Water in Esters

Table 15.49: (continued)

Relative Evaporation of Solvents

CHART KEY

- A Ethyl Acetate B Methyl Ethyl Ketone
- C Isopropyl Acetate
- D Ethanol, Anhydrous
- E Propyl Acetate
- F Isopropanol, Anhydrous G Methyl Isobutyl Ketone
- H Isobutyl Acetate I Butyl Acetate
- Isobutanol
- K Butanol
- L Primary Amyl Acetate
- M CELLOSOLVE Solvent
- N Methyl CELLOSOLVE Acetate
- O Primary Amyl Alcohol
- P CELLOSOLVE Acetate
- Q Diisobutyl Ketone
- R Diacetone Alcohol (A/F)
- 5 Butyl CELLOSOLVE
- T Butyl CELLOSOLVE Acetate
- U Glycol Diacetate
- V CARBITOL Acetate
- W Butyl CARBITOL Acetate

Table 15.49: (continued)

Viscosity of UCAR® Phenoxy Resin PKHH Solutions

Evaporation Profiles in an Automotive Refinish Thinner

HIGHER FATTY ACID ESTERS

Table 15.50: Emery Methyl Esters (63)

SPECIFICATIONS						TYPICAL COMPOSITION ¹								
						Saturated Esters						Unsaturate Esters		
	Acid Value Max	Sap. Value	lodine Value max. (range)	Color % Trans 440/550 nm., min.	Typical Melting Point, °C	Caproate Ce	Caprylate C ₈	Caprate C ₁₀	Laurate C ₁₂	Myristate C ₁₄	Palmitate C ₁₆	Stearate C ₁₈	Oleate C ₁₈	Linoleate C ₁₈
EMERY® 2209 Methyl Caprylate-Caprate	0.5	330-336	0.4	95/	-30	3	55	40	2					
EMERY® 2296 Methyl Laurate 96	0.5	258-263	0.5	95/-	5			2	96	2				
EMERY® 2290 Methyl Laurate 90	0.5	258-262	0.5	95/–	2			2	90	8				
EMERY® 2270 Methyl Laurate 70	0.5	251-255	0.5	95/-	-1		•	1	70	28	1			
EMERY® 2214 Methyl Myristate 95	1.0	230-234	0.6	92/-	17				3	95	2			
EMERY® 2216 Methyl Palmitate 95	0.2	206-210	0.2	92/-	27					2	95	3		
EMERY® 2218 Methyl Stearate 95	0.5	186-192	1	71/98	36						4	95	1	
EMERY® 2219 Methyl Oleate	4.0	188-192	(68-88)	71/98	18						4	24	58	14
EMERY® 2252 Methyl Coconate	1.0	250-260	4-11	85/min	4		8	7	48	17	9	2	7	2
EMERY 2253 Methyl Coconate	0.5	250-260	(7-11)	71/98²	4		8	7	48	17	9	2	7	2
EMERY® 2254 Stripped Methyl Coconate	1.0	237-247	(5-10)	90/-				Tr	54	22	11	3	8	2
EMERY® 2255 Methyl Palm Kernalate	1.0	230-240	14-20	90/			.25	1.5	50	17	9.5	3	16	3

¹ Typical compositions determined by GLC analysis, AOCS Ce 1-62. These compositions are not manufacturing specifications.

² Not a specification.

³ Color. Gardner 1963, max.

Table 15.51: Procter & Gamble Methyl Esters (39)

Chemical Properties	CE-618.	CE-810	CE-1095	CE-1218	CE-1270	CE-1290	CE-1295	CE-1618	CE-1897
Saponification Value			295-305 (302)						195-205
Acid Value	1.0 max (0.6)	0.5 max (0.2)	0.5 max (0.3)	1.0 max (0.7)	0.5 max (0.2)	0.5 max (0.1)	0.3 max (0.1)	1.5 max	1.0 max
Iodine Value	14 max (5)	0.6 max (0.2)	0.6 max (0.3)	(8.9)	0.8 max (0.1)	0.8 max (0.1)	0.10 max (0.07)	60-70	85-95
Moisture, (%, KF)	0.1 max (0.05)	0.15 max (0.06)	0.15 max (0.04)	0.1 max (0.04)	0.05 max (0.03)	0.10 max (0.04)	0.05 max (0.03)	0.1 max	0.1 max
Physical Properties						***			
Specific Gravity 25/25 C	25 ((0.864) 25 (25 ((0.870) 25 (25 ((0.874) 25 (25 ((0.866) 25 (25 ((0.877) · 25 (25 ((0.867) 25 (25 ((0.866) 25 (
Melting Point (C)	(-4)	(-29)	(-14)	(10)	(0)	(5)	(6)		***************************************
%Transmittance @ 460 nm	90 min (94)	95min (99)	95 min (98)	85 min (94)	96 min (98)	95 min (99)	95 min (99)	80 min	90 min
Composition (GC%)									
C&	(0.5)	6.0 max (4)							
C8	7-9.5 (7.2)	51-58 (55.9)	(0.4)		(0.0)	(0.0)	0.3 max (0.0)		
C10	(6.2)	34-42 (39.3)	95.0 min (96.6)	0-3 (0.4)	1.0 max (0.3)	1.5 max (0.4)	2.5 max (0.5)		
C12	44.0-49.9 (47.3)	1.0 max (0.5)	(1.7)	52-57 (55.6)	70.5-74.5 (73.0)	90-94 (91.7)	95 min (98.1)	0.5 max	
C14	(17.3)		(0.2)	19-24 (20.9)	24-29 (26.3)	6-9 (7.8)	2.5 max (1.4)	1.0 max	1.0 max
C16	5.5-10.0 (9.7)			8-12 (10.2)	1.0 max (0.2)	0.8 max (0.0)	0.5 max (0.0)	25-32	0.2
C18	(7.8)			9-15 (12.3)				8	11
C18=1								53	73
C18=2								11	14
CAS No.	67762-37-2	67762-39-4	110-42-9	67762-26-9	67762-40-7	67762-40-7	111.82.0		

Table 15.52: Stepan Esters (68)

		FORM	
PRODUCT	INCI NOMENCLATURE	@ 25°C	APPLICATIONS
ALCOHOL ESTERS			
KESSCO IPM	ISOPROPYL MYRISTATE	Liquid	IPM has a dry, velvety, non-oily feel due to its ready absorption into skin. Generally used in premium formulations for velvety emolliency.
KESSCO IPP	ISOPROPYL PALMITATE	Liquid	IPP is a dry, soft non-oily emollient generally used in economical formulations. Excellent solvent for mineral oil, silicone and lanolin.
KESSCO OCTYL PALMITATE			Dry, light, silky emollient. Enhances gloss in hair grooming products. Can be used as a binder in pressed powder makeup.
SSCO OCTYL OCTYL ISONONANOATE L ONONANOATE		Liquid	Very dry, non-oily properties that allow the skin to breathe. Has the lowest freeze point (-30°C) of all alcohol esters. May be used in antiperspirants, hair sprays and creams/lotions.
KESSCO ICS	ISOCETYL STEARATE	Liquid	Premium emollient recommended for make-up formulations seeking a dry velvety feel.
KESSCO BS	BUTYL STEARATE	Liquid	Wetting agent for pigments and a fragrance solubilizer.
KESSCO 653	CETYL PALMITATE	Flake	Cetyl Palmitate is a waxy ester that imparts good skin feel properties to cosmetics. It is used as a base in stick cosmetics and as an emollient thickener in creams and lotions.
KESSCO 654	CETYL MYRISTATE	Flake	Similar to Kessco 653 but lower melting point (47-53°C).
GLYCEROL ESTERS KESSCO GMO	GLYCERYL OLEATE	Liquid	Effective water-in-oil emulsifier. Often used in bath oils as a lubricant
KESSCO GDL	GLYCERYL DILAURATE	Solid	and spreading agent. Imparts slip to creams. Semi-solid ester recommended for free flowing lotions. Imparts slight emolliency.
KESSCO GMS PURE	GLYCERYL STEARATE	Flake	High purity ester containing no soaps. Acts simultaneously as an emulsifier, opacifier and bodying agent. Used in creams, lotions, antiperspirants, hair care products and sunscreens.
KESSCO GMS 63F	GLYCERYL STEARATE	Flake	Emulsifier for creams and lotions
KESSCO GMS, S.E./A.S.	GLYCERYL STEARATE (and) PEG 100 STEARATE	Flake	Excellent emulsifier for low pH (3-5) systems. Is relatively insensitive to electrolytes in antiperspirants and cream rinses.
KESSCO GMS S.E. KESSCO GMS 24 S.E.	GLYCERYL STEARATE S.E. GLYCERYL STEARATE S.E.	Flake Flake	The S.E. grade allows the formulator to utilize GMS as a primary emulsifier for oil-in-water systems at a pH of 5-9. Anionic modified for broader emulsification properties.
KESSCO GDS	GLYCERYL DISTEARATE	Flake	Emulsifier with extremely low HLB compared to KESSCO GMS PURE, but with similar functionality.
SPECIALTIES			
STEPAN TAB-2 FLAKE	DI(HYDROGENATED) TALLOW	Flake	Emulsion and suspension product for triglycerides, mineral oil,
STEPAN SAB-2	PHTHALIC ACID AMIDE DI-STEARYL PHTHALIC ACID AMIDE	Flake	and silicones.
KESSCO CETYL ALCOHOL	CETYL ALCOHOL	Flake	Emollient, emulsion stabilizer, and viscosity modifier for skin and hair conditioners.

PRODUCT	INCI NOMENCLATURE	FORM @ 25°C	APPLICATIONS
GLYCOL ESTERS			
KESSCO EGMS	GLYCOL STEARATE	Flake	Excellent pearlizing agent for shampoos and liquid hand soap.
KESSCO EGMS 70	GLYCOL STEARATE	Flake	Excellent pearlizing agent recommended for use in low solids formulations because it tends to increase viscosity.
KESSCO EGDS	GLYCOL DISTEARATE	Flake	Pearlizing agent for shampoos, handsoaps and bubble baths where no additional viscosity is required.
KESSCO EGAS	GLYCOL STEARATE (and) STEARAMIDE AMP	Flake	Pearlizing and bodying agent that imparts a soft, smooth skin feel to formulations due to the presence of a small amount of amide.
KESSCO DGMS KESSCO DGDS	PEG-2 STEARATE PEG-2 DISTEARATE	Flake Flake	Generally used as opacifiers in shampoos and lotions. Imparts emolliency and adds body to these types of formulations.
KESSCO DGS NEUTRAL	PEG-2 STEARATE	Flake	Used as an emulsifier and opacifier in creams and lotions
KESSCO DGS S.E.	PEG-2 STEARATE (and) STEARIC ACID	Flake	Emulsifier for hair care products, creams, lotions, antiperspirants and sunscreens.
KESSCO PGMS PURE	PROPYLENE GLYCOL STEARATE	Flake	Good auxiliary emulsifiers and opacifiers. Has a melting point near body temperature and is used in suppositories, lipsticks and sunscreens.
KESSCO PGML E	PROPYLENE GLYCOL LAURATE	Liquid	Emollient and auxiliary emulsifier. Imparts a soft, velvety feel to cosmetic products.
KESSCO PGMS 8615	PROPYLENE GLYCOL STEARATE S.E.	Flake	Emulsifier for creams and lotions.
KESSCO PGMS 534F	PROPYLENE GLYCOL STEARATE	Flake	Food grade auxiliary emulsifier. Also used in creams, lotions and suppositories.
POLYETHYLENE GLYCO	OL ESTERS		
KESSCO PEG 200-6000 MONO AND DILAURATES	PEG-4 to PEG-150 LAURATE AND DILAURATE	Liquids to Solids	Non-toxic and non-irritating nonionic emulsifiers that cover a wide HLB range They act as viscosity modifiers, emollients, opacifiers, spreading agents, wetting and dispersing agents. They may be used
KESSCO PEG 200-6000 MONO AND DIOLEATES	PEG-4 TO PEG-150 OLEATE AND DIOLEATE	Liquids to Solids	in lotions, creams, make-up, bath oils, ointments, shampoos, conditioners, suppositories and sunscreen products.
KESSCO PEG 200-6000 MONO AND DISTEARATES	PEG-4 and PEG-150 STEARATE AND DISTEARATE	Solids	
DREWPOL 3-1-0 DREWPOL 6-1-0 DREWPOL 10-4-0 DREWPOL 10-10-0	POLYGLYCERYL-3 OLEATE POLYGLYCERYL-6 OLEATE POLYGLYCERYL-10 TETRAOLEATE POLYGLYCERYL-10 DECAOLEATE	Liquid Liquid Liquid Liquid	The DREWPOL polyglycerol esters comprise a relatively new class of emulsifiers for the cosmetic industry. These products range from hydrophilic monoesters to lipophilic deca-esters. The polyglycerol esters are effective nonionic emulsifiers in both oil-in-water and water-in-oil emulsions.
SPECIALTY OILS			
NEOBEE M-5 COSMETIC WECOBEE S WECOBEE M	CAPRYLIC/CAPRIC TRIGLYCERIDE HYDROGENATED VEGETABLE OIL HYDROGENATED VEGETABLE OIL	Liquid Flake Solid	The Neobee and Wecobee oils are derived from edible vegetable oils. The Neobee's are used as emollients in creams and lotions. The Wecobee's are used as a replacement for cocoa butter in cosmetic products.

ADIPATES

Table 15.53: Mixture of Dimethyl Adipate and Dimethyl Glutarate (11)

 $H_3COOC(CH_2)_xCOOCH_3$ x = 3-4

This mixture of dibasic esters is used as a high boiling solvent and as an intermediate.

Diester Content, Wt. % Minimum	99	Water Content, Wt. % Maximum	0.5
DIMETHYL ADIPATE, WT. %	30-45	Average Molecular Weight	165
DIMETHYL GLUTARATE, WT. %	55- 7 0	Specific Gravity	1.082 - 1.090 a 25/25°C
DIMETHYL SUCCINATE, WT. % MAX.	3	Distillation Range, °C	210 -225
SOLUBILITY PARAMETERS (HANSEN SYSTEM)		EVAPORATION RATE	
Polar Bonding	3.29	BuAc = 100	< 1
Hydrogen Bonding	4.02	Viscosity @ 25°C, Centipoise	2.38
Non-Polar Bonding	7.03	FREEZING POINT	-13°C (Approx.)
SOLUBILITY PARAMETER	8.75	FLASH POINT	219°F CLOSED CUP

Table 15.54: Mixture of Dimethyl Adipate, Dimethyl Glutarate and Dimethyl Succinate (11)

 $H_3COOC(CH_2)_xCOOCH_3$ x = 2-4

This dibasic ester mixture is used as a high boiling solvent in industrial and automotive coatings.

DIESTER CONTENT, WT. % MINIMUM	99
DIMETHYL ADIPATE, WT. %	20-30
DIMETHYL GLUTARATE, WT. %	40-60
DIMETHYL SUCCINATE, WT. %	20-30
SOLUBILITY PARAMETERS (HANSEN SYSTEM)	
Polar Bonding	3.4
Hydrogen Bonding	4.1
Non-Polar Bonding	8.5
SOLUBILITY PARAMETER	10.1
WATER CONTENT, WT. % MAXIMUM	0.5
Average Molecular Weight	160
SPECIFIC GRAVITY	1.082 - 1.090 a 25/25°C
Distillation Range, °C	196 - 225
EVAPORATION RATE BUAC = 100	< 1
Viscosity a 25°C, Centipoise	2.39
FREEZING POINT	-20°C (Approx.)
FLASH POINT	212°F TAG CLOSED

Table 15.55: Dialkyl Adipate (75)

$$\begin{array}{c|c} O & \\ \parallel & \\ C-O-R & \\ \mid & \\ (CH_2)_4 & \\ \mid & \\ C-O-R & \\ \parallel & \\ O & \\ \end{array}$$

Table A. Propertie	Ta	ble	A.	Pro	pe	rti	е	S
--------------------	----	-----	----	-----	----	-----	---	---

Table A. Properties	
Molecular Weight	370
Acidity	0.25
(meq/100 gm. max)	
Appearance	Clear, oily liquid
Color (APHA) [max.]	50
Moisture (KF in	0.10
Methanol) %, max.	
Refractive Index (@25°C)	1.441 – 1.447
Specific Gravity	0.916-0.924
(25°/25°C)	
Density (@ 25°C)	7.7
ca. lbs./gal.	
Crystallizing Point (°C)	– 13
Boiling Point	224
@ 10mm Hg, °C	
Vapor Pressure (mm Hg)	
@ 200°C	3.3
@ 250℃	27
Viscosity (Centistokes)	12.8
@ 25°C	
Surface Tension	30.3
@ 25°C (dynes/cm)	
Flash Point (C.O.C.) (°F.)	400
Fire Point (C.O.C.) [°F.]	450
Solubility In Water	
@ 25°C,%	<0.01
CAS Number	68515-75-3

Specification

Table B. Comparison of Seven Commercial Low-temperature Plasticizers at Three Levels in PVC

	Sant 97	DOA	DNODA	DINA	DIDA	DOZ	DOS
Flex Temperature, °	C., Clash-Berg	Method					
35 PHR	-33.5	-29.1	-33.4	-27.0	-26.7	-32.0	-32.2
50 PHR	- 56.7	-52.9	- 55.0	-48.8	-49.4	- 54.4	-54.7
67 PHR	- 67.5	-64.3	-61.0	- 62.0	-62.2	-66.3	- 68.5
Carbon Volatility, %	Plasticizer lost	, 24 hrs. at 8	37℃.				
35 PHR	10.2	13.2	9.8	5.5	3.2	4.3	2.1
50 PHR	9.7	13.3	9.6	5.4	3.5	3.8	2.1
67 PHR	9.8	13.1	9.7	5.0	3.0	3.8	2.1
Shore A Hardness,	10 sec. reading						
35 PHR	92	91	93	95	96	92	94
50 PHR	82	81	83	86	90	82	85
67 PHR	71	71	72	76	80	73	74
Water Sensitivity, 2	4 hrs. at 50°C.,	% water ab	sorbed/% so	uble matter	lost		
35 PHR	.32/.07	.35/.07	.36/.08	.35/.05	.37/.08	.32/.04	.31/.02
50 PHR	.31/.18	.31/.16	.31/.20	.34/.13	.32/.16	.25/.09	.23/.08
67 PHR	.33/.20	.33/.25	.32/.22	.36/.15	.31/.15	.31/.09	.26/.07
Kerosene Extract, 9	% Plasticizer los	st, 24 hrs. at	23℃.	,			
35 PHR	24.6	13.5	30.4	23.4	49.8	19.4	31.4
50 PHR	74.2	42.5	68.3	71.8	73.0	71.8	74.7
67 PHR	77.0	72.7	76.3	75.7	80.4	74.9	82.8
Loop Compatibility	 Degree of ex 	udation: 0 =	dry, no exud	ation; $10 = 0$	dripping we	<u> </u>	
35 PHR 4 hours	5	4	5	5	5	5	5
1 day	7	5	7	. 7	7	7	7
1 week	5	0	5	. 7	7	7	7
50 PHR 4 hours	7	5	7	7	7	7	7
1 day	7	7	8	8	8	. 8	8
1 week	0	0	0	7	8	5	5
67 PHR 4 hours	7	6	7	7	7	7	7
1 day	6	5	6	7	8	7	7
1 week	0	0	0	0	6	0	0
Cumulative rating (lower is better)	44	32	45	55	63	53	53

Table C. Adipate Performance in Plastisols (65 PHR)

Brookfield v	iscosity, poises, 5	50 RPM (HAT #6 Spine	die)
		Santicizer® 97	Dioctyl adipate
23°C	Initial	8	12
	7 days	10	20
	28 days	12	26
40°C	Initial	8	10
	7 days	17	32
	28 days	24	43
50°C	Initial	8	11
	7 days	31	42
	28 days	51	62
Severs	10 psi	8	8
Viscosity	50 psi	7	7
poises	100 psi	7	6

Table 15.56: Dioctyl Adipate (75)

Tab	le /	l.P	rop	196	ti	8 5
-----	------	-----	-----	-----	----	------------

Table A. Properties	
Molecular Weight	371
Acidity	0.25
(meq/100 gm. max)	
Appearance	Clear, oily liquid
Color (APHA) [max.]	25
Moisture (KF in	0.10
Methanol) %, max.	
• Odor	Mild
Refractive Index (@25°C)	1.444 – 1.448
Specific Gravity	0.921-0.927
(25°/25°C)	
Density (@ 25°C)	7.72
ca. lbs./gal.	
Crystallizing Point (°C)	<-70
Pour Point (°C)	-65
Boiling Point	224
@ 10mm Hg, °C	
Vapor Pressure (mm Hg)	
@ 200°C	2.3
@ 250°C	32
Viscosity (Centistokes)	
@ 37.8℃	8.2
@ 98.9℃	2.4
Surface Tension	29
@ 20°C (dynes/cm)	
Thermal Expansion	0.00078
Coefficient	
@ 10°−40°C	
(cc/cc/°C)	
Flash Point (C.O.C.) [°F.]	377
Fire Point (C.O.C.) [°F.]	450
Solubility In Water	<0.01
@ 25℃,%	
CAS Number	103-23-1

Specification

fable B. Dioctyl Adipate Performance in PV	(30%) 43 PHR	(40%) 67 PHR	(50%) 100 PHR
Volatility (% Lost) (Activated Carbon)	14	13	14
Low-temperature Flex, Tf °C	-46	-66	<-70
Water immersion (24 hours): % soluble matter lost % water absorbed	0.05 0.40	0.10 0.66	0.07 0.82
Kerosene extraction (% plasticizer lost)	19	>70	>70
Shore "A" Hardness	83	67	48
Migration, Linde Silica: 1 day	5.1	7.5	11.0
3 days	9.5	13.5	22.0
7 days	14.6	21.0	28.0
Tensile, p.s.i.	2560	1870	1090
Elongation, %	390	450	460
Modulus @ 100% Elongation	1390	730	380
Flammability (Limiting O ₂ Index)*	22.6	21.0	19.6
Heat Stability	Good	Good	Good
Migration Resistance to Nitrocellulose	Poor	Poor	Poor
Fluxing Rate	Fair	Fair	Fair
Electrical Properties	Fair	Fair	

^{*}The Oxygen Index Test results are not intended to reflect performance of these or any other materials under actual fire conditions. Each user should determine independently whether potential fire hazards are associated with the finished product and whether DOA is suitable for the particular use.

Table C. Dioctyl Adipate Performance in Plastisol Formulation

Viscosity, poi	ses Brookfield HAT #6 Spindle 50 PRM	65 PHR
23°	Initial 7 Days 28 Days	12 20 26
40°	Initial 7 Days 28 Days	10 32 43
50°	Initial 7 Days 28 Days	11 42 62
	10 psi	8
Severs	50 psi	7
	100 psi	6
Yield value, d	lynes/cm ²	20
Flow Index		0.
Gel Temperature, °C		80
Fusion, Relative Temperature, °C		175
*Air-release Rate		Fast
*Resilience, steel ball, inches		10.

^{&#}x27;Efficiency Conc. Adj. to "60" Shore A Hardness

Table 15.57: Diethyl Oxalate (2)

Ethyl Ethanedioate

 $(COOC_2H_5)_2$

Diethyl oxalate is a water-white liquid with a mild odor. It is used as a slow-evaporating nitrocellulose solvent, in special lacquers for fixing rare salts on the cathode of radio tubes and in organic synthesis.

0.00056

0.00101

3.5

0.7

Water-white

Acidity (as oxalic)
Blush resistance at 60° F (10%

§ sec. R.S. nitrocellulose solution)

0.05% by wt, max Clear 90% Relative humidity Blush

10 cc solvent dissolves 1.5 cc water

Coefficient of expansion

per 1°F
per 1°C
Color
Dilution ratio
Toluol
Petroleum naphtha
Distillation range

Below 180°C

Below 188°C

Above 190°C

None

Not more than 10%

Not less than 90%

None

Dryness at 20°C Miscible without turbidity with 20

| volumes 60° B6 gasoline
Flash point (Open Cup)	168°F
Non-volatile matter	0.005 gm per 100 cc, max
Odor	Mild, non-residual
Purity	99% min
Specific gravity at 20/20°C	1.075-1.079

Specific gravity at 20/20°C Water solubility at 25°C Viscosity (10% } sec. R.S. ni-

trocellulose solution) 380 centipoises
Weight per gal at 20°C 8.96 lbs (approx)

Table 15.58: Dibutyl Oxalate (2)

 $C_4H_9OOCCOOC_4H_9$

Dibutyl oxalate is a high-boiling, water-white liquid with a mild odor and having a tendency to hydrolyze and split off oxalic acid. It is miscible with most alcohols, ketones, oils and hydrocarbons, and is a solvent for benzyl abietate, cellulose esters and ethers, "Cumar" resins, ester gum, copal ester, "Glyptal" resins and mastic. It is used in nitrocellulose lacquers as a plasticizing solvent for the purpose of fixing rare earth salts on cathode elements, and in organic synthesis.

Acidity (as oxalic)

Blush resistant at 90°F (1.0%

R.S. ½ sec. nitrocellulose soBlush

lution)

Coefficient of expansion

per 1°F 0.00053 per 1°C 0.00095 Color Water-white Dilution ratio

Toluol 2.3
Petroleum naphtha 1.0
Distillation range:

Below 240°C Not more than 5% Below 248°C Not less than 90% Above 255°C None

Dryness at 20°C Miscible without turbidity with 20 volumes 60° Bé gasoline

Freezing point -30.0°C
Non-volatile matter 0.005 gm/100 cc, max
Solubility of water in solvent at 25°C
0.5% by vol

Viscosity (10%) sec. nitrocellulose solution)

Weight per gal at 20°C 8.24 lbs

$C_5H_{11}OOCCOOC_5H_{11}$

Diamyl oxalate is a colorless, oily liquid miscible with most lacquer solvents, oils and hydrocarbons. It is a solvent for ester gum, copal ester, "Cumar" resins, alkyd resins, mastic, nitrocellulose and shellac. It is used as a plasticizer and in paint and varnish removers. Like other oxalates, it has a tendency to hydrolyze.

Boiling point 265°C. Flash point 116°C. Specific gravity 0.97

LACTATES

858

Table 15.60: Methyl Lactate (2)

CH3CH(OH)COOCH3

Methyl lactate is a water-white liquid, completely miscible with water and most organic liquids. It is a solvent for nitrocellulose, cellulose acetate, cellulose acetabutyrate and cellulose acetapropionate. It is used in the manufacture of lacquers and dopes where it contributes high tolerance for diluents, good flow and blush resistance.

Acidity (as lactic)
Boiling point
Color
Distillation range:
Below 115°C

Between 141°C and 145°C Above 155°C Flash point Heat of combustion

Freesing point
Non-volatile matter
Purity
Refractive index at 20°C

Refractive index at 20°C Specific gravity at 20/20°C Water at 20°C

Weight per gal at 68°F

0.15% by wt, max 144.8°C Water-white

None Not less than 60%

51.7°C 4778 calories per gram Approx 66°C 0.01 gram per 100 cc, max 95% min

1.4131 1.087 to 1.097

No turbidity when mixed with 19 volumes of 60° Bé gasoline

9.09 lbs

Table 15.61: Ethyl Lactate (2)

$CH_3CH(OH)COOC_2H_5$

Ethyl lactate is a colorless and almost odorless liquid, which, upon evaporation, will sometimes develop a disagreeable odor. This is owing to the lactides, or inner anhydrides, contained in the lactic acid made by fermentation. It is miscible with water, alcohols, ketones, esters, hydrocarbons and oils. Ethyl lactate will dissolve cellulose acetate and nitrate and many of the ethers of cellulose. It is also a solvent for basic dyes, alkyd resins, kauri, manila, pontianac, rosin, shellac and vinyl resins. Ethyl lactate has high solvent power and equally high tolerance for nonsolvents and diluents. These exceptional properties are accounted for by the existence of both an alcohol and an ester group in its molecule.

Its rate of evaporation is slow but this is desirable for brushing lacquers. The presence of ethyl lactate in a solvent mixture imparts good working qualities and good flow, and permits the application of a thin coat on almost any surface. The resulting films are smooth and uniform, although at times the film will remain soft for a longer period than is anticipated. Its solvent action is slower than that of butyl or amyl acetate and the resulting solution has a high viscosity. However, it will tolerate two or three times as much nonsolvent or diluent. In fact, a solution of pyroxylin in ethyl lactate will tolerate the addition of 25 percent water without precipitation. As far as water tolerance is concerned it has no rival in the field of solvents. Ethyl lactate is useful as a lacquer solvent for cellulose nitrate, acetate and ethers. It is used in the preparation of stencil sheets, incandescent mantle lacquers and in laminated glass.

(continued)

Table 15.61: (continued)

Physical Properties and Specifications

0.08%, max Acidity (as lactic) Color Water-white

Distillation range: Below 102°C

Below 139°C Not more than 10% Below 155°C Not less than 90%

Above 173°C None

Miscible without turbidity with 20 Dryness vols 60° Bé gasoline at 20°C

Non-volatile matter 0.005 g/100 cc, max Mild, non-residual Odor Purity 96% min

Specific gravity at $\frac{20^{\circ}\text{C}}{20^{\circ}\text{C}}$ 1.020 - 1.036

Blush resistance at 90°F (10% Clear 80% Relative humidity 1-sec. R.S. nitrocellulose sol.) Blush 85% 0.00058/1°F

Coefficient of expansion 0.00104/1°C Dilution ratio 5.5 with toluene 0.8 with petroleum naphtha

Evaporation rate at 95°F

5 25 50 75 90 Per cent 4 23 47 73 92 101 Minutes 129°F. (approx) Flash point Viscosity 195 centinoises

(10% 4-sec. R.S. nitrocellu-

lose solution)

Water solubility Soluble in all proportions (25°C)

Table 15.62: Butyl Lactate (2)

CH3CH(OH)COOC4H

Butyl lactate is a colorless liquid having a mild odor. The commercial grade contains condensation products and its physical and chemical properties will vary. It is miscible with many of the lacquer solvents, diluents and oils. It will dissolve such substances as cellulose esters, "Cumar" resins, ester gum, copal ester, alkyd resins, mastic and shellac. It has a high tolerance for nonsolvents and it evaporates slowly. Its presence in a solvent mixture will impart brilliance, gloss, adhesion, flexibility and tenacity to the film. It is used as a solvent in lacquers, in stencil manufacture and in lithographic and printing inks. It is also used as an anti-skinning agent, as an intermediate, and in perfumes.

> Purity 95% ester by wt, min Specific gravity at $\frac{20^{\circ}\text{C}}{20^{\circ}\text{C}}$ 0.974 to 0.984

Acidity (as lactic) 0.15% max

Water No turbidity when mixed with 19 vols of 60° Bé gasoline at 20°C

0.01 g per 100 cc, max Non-volatile matter Color Water-white Distillation range

Below 140°C None

Between 155°C and 195°C Not less than 60 per cent Not less than 90 per cent Between 187°C and 189°C

Dry point Not above 200°C Molecular weight 146.11 Odor Mild (No residual odor)

Flash point 71°C (159.8°F) Freezing point −43°C Weight per gallon 8.15 lbs. (68°F) Solubility in water 3.4% by vol (25°C) Solubility of water

in butyl lactate 13.0% by vol (25°C) Refractive index 1.42162 (20°C) 0.4 mm Hg (20°C) Vapor pressure Heat of vaporization 77.4 cal/g (20°C)

Table 15.63: Amyl Lactate (2)

Amyl lactate is a colorless to pale yellow nontoxic liquid with an odor like that of brandy. Its composition varies containing lacticides among other things. It is miscible with alcohols, ketones, esters, hydrocarbons, oils, and so forth. It is a solvent for cellulose ethers, "Cumar" resins, copal esters, mastic, nitrocellulose and shellac, and will dissolve alkyd resins when combined with alcohol. It is used as a plasticizer for cellulose derivatives.

> Acidity (as lactic) 0.05% by wt., max.

Water-white

100% between 75°-150°C. Distillation range at 20 mm.

175°F. Flash point

At least 95%, min. Purity

0.954-0.966 Specific gravity at 20°C. 7.99 lbs. Weight per gal.

Table 15.64: Physical Properties of Lactates (2)

	B.P		SP. GR.	REPRACTIVE VALUE				В.Р.				BAPONIFIC VALUE	
	•c	Mm.			Calcd.	Found		*C	Mm.		******	Calcd.	Found
	La	ctic E	iters					Acetoxy	propior	ate Esters			
Methyl Ethyl n-Propyl Isopropyl n-Butyl Isobutyl sec-Butyl n-Amyl Isoamyl n-Hexyl 2-Ethyl butyl 2-Ethyl hexyl	144.8 154.5 86 166-8 185 96 180 112 82 75 104	760 760 40 760 760 40 760 40 7 2 12 3.6	d' 1.0898 d' 1.0308 d' 0.996 d' 0.998 d' 0.973 d' 0.974 d' 0.952 d' 0.953 d' 0.9614 d' 0.9615 d' 0.9615	nº 1.4132 ^b nº 1.4121 ^b nº 1.4121 ^b nº 1.4167 ^b nº 1.4082 ^b nº 1.4214 ^b nº 1.4183 ^b nº 1.4254 ^b nº 1.4240 nº 1.4240 nº 1.4240 nº 1.4290 nº 1.4307 nº 1.4307	350 322 322 277	353 322 321 278	Methyl Ethyl n-Propyl Isopropyl n-Butyl Isobutyl n-Amyl Isoamyl n-Heryl 2-Ethyl butyl	171.5 177 195-6 182-3 213-4 205 226-7 221-2 135 127 145 165	760 733 766 765 767 763 763 763 17 14	d* 1.088 d* 1.0458 d* 1.0163 d* 0.9920 d* 1.0001 d* 0.9952 d* 0.9838 d* 0.9770 d* 0.9822 d* 0.9838	nº 1.4111 nº 1.4085 nº 1.4123 nº 1.4058 nº 1.4147 nº 1.4140 nº 1.4140 nº 1.4190 nº 1.4232 nº 1.4245 nº 1.4245	519 519 460	519 522 462
Lauryl Phenyl ethyl Glycol ⁴ Glycerol ⁴ Bensyl Stearyl	112 150-3 124 140 175-80• 134 180•	4 4 10	d: 0.9108 d: 1.0979 d: 1.1967 d: 1.1355	n _D 1.4338 n _D .14433 n _D 1.5073 n _D 1.4452 n _D 1.5049	217 217 289 419	278 212 293 413	Lauryl Phenyl ethyl Acetoxyethyl (glycol mono- lactate diacetate) Bensyl Glycerol monolactate tri- actetate	165 139 145 145.8	10 4	d## 0.9304 d## 1.0983 d## 1.1489 d## 1.1227	n _p 1.4373 n _p 1.4896 n _p 1.4297 n _p 1.4874	373 475	870 476

- 4 Monolactate.
- 4 Decomposed.

CARBONATES

Table 15.65: Diethyl Carbonate (2)

Ethyl Carbonate DIATOL (contains 90% diethyl carbonate)

 $(C_2H_5)_2CO_3$

Acidity (as carbonic)	0.02% by wt, max	Evaporation rate at 95°F (in	
Blush resistance at 90°F (10%	Clear 85% Relative humidity	minutes)	
sec. R.S. nitrocellulose so-	Blush 90%	5%	11
lution)		25%	7 1
		50%	144
		75%	24
Boiling point	180°C	90%	31 2
Coefficient of expansion		95%	342
per 1°F	0.00066	Flash point	89°F
per 1°C	0.00119	Freezing point	48.2°C
Color	Water-white	Non-volatile matter	Not more than 0.005 gm per 100 cc
Dilution ratio		Purity	98-100%
Toluol	0.6	Solubility in water	69% by wt
Petroleum Naphtha	0.4	Solubility of water in solvent at	1.4% by vol
Distillation range:		25°C	
Below 120°C	None	Specific gravity at 20/20°C	0.973-0.977
Below 128°C	Not less than 90%	Vapor pressure at 103°C	54 mm Hg
Above 130°C	None	Weight per gal at 20°C	8.11 lbs (approx)
Dryness at 20°C	Miscible without turbidity with 20 vols 60° Bé gasoline		

<sup>Where no reference is given, the properties were determined by the authors.
Properties not given in the reference but determined by the authors.</sup>

[·] Compounds not prepared by authors.

JEFFSOL Ethylene Carbonate (CAS 96-49-1)

STRUCTURE

$$H_2C - O$$

 $H_2C - O$
 $C = O$

Mol. wt. 88.06

DESCRIPTION

A low-melting point solid, practically odorless and colorless.

SALES SPECIFICATIONS

Appearance Melt shall be clear

and substantially free of suspended matter

Color, Pt-Co 40 max. (supercooled

liquid)

Assay, wt. %¹ 99.5 min. Ethylene glycol, wt. % 0.2 max. Water, wt. %² 0.1 max.

TYPICAL PROPERTIES

Boiling point, 760 mm Hg, °C 248.2 Flash point, PMCC, °C 160 Melting point, °C 36.4 Weight, lb/gal, 20°C 11.0 UEL, (v/v) at 200°C 26.8% LEL, (v/v) at 200°C 4.5% Autoignition temp. 447-450°C

JEFFSOL Propylene Carbonate (CAS 108-32-7)

STRUCTURE

H₂C-O HC-O CH₃

Mol. wt. 102.09

DESCRIPTION

A clear, mobile, hygroscopic liquid at room temperature.

SALES SPECIFICATIONS

Appearance Clear and substantially free of

suspended matter

Color, Pt-Co 40 max.
Assay, wt. %¹ 99.7 min.
PG, wt. % 0.2 max.
Water, wt. %² 0.1 max.

TYPICAL PROPERTIES

Boiling point, 760 mm, °C 242 Flash point, PMCC, °F 275 Melting point, °C -49.2 Vapor pressure, mm Hg, 20°C 0.02 Weight, lb/gal, 20°C 10.1 Ash, wt. % 0.01 max. Specific gravity, 20/20°C 1.203 min. 1.210 max. UEL, (v/v) at 200°C 26.8% LEL, (v/v) at 200°C 4.5% 430°C Autoignition temperature

(continued)

¹GC Assay on water free basis ²Karl Fisher Assay

Table 15.66: (continued)

Dielectric Constants of Mixtures											
		JEFFSOL EC, WT %									
Solvent	Temperature	0	20	40	60	80	100				
Benzene	25°C	2.27	9.47	21.2	38.6	62.8	Solid				
	40°C	2.24	9.03	20.0	36.1	58.5	89.1				
Methanol	25℃	32.6	39.1	47.4	58.6	74.0	Solid				
	40°C	29.8	35.9	43.7	54.0	68.5	89.1				
JEFFSOL PC	25°C	65.0	69.1	74.6	80.5	87.2	Solid				
Water	25°C	78.5	80.5	81.6	83.3	86.4	Solid				

JEFFSOL PC Solubility

Acetone		g Solute in 100 g JEFFSOL PC		g Solute in 100 g JEFFSOL PC at 25°C
Benzene		at 25°C		at 25 C
n-Butanol		••		
2-Butoxyethanol		**		
Chloroform ∞ CoCl₂ · 6H₂O 3.0(40°C) Dibutyl sebacate ∞ Co(NO₃)₂ · 6H₂O 25.4(40°C) Diethylene glycol ∞ Coumanone-indene >10(110°C) Diethylene glycol DDT 17 monobutyl ether ∞ Dioctyl sebacate 2 Diethylene glycol Epichiorohydrin-bisphenol >10(30°C) monomethyl ether ∞ Ester gum >10(120°C) Diethylene glycol ∞ Ethyl cellulose >10(145°C) Di(2-ethylhexyl) phthalate ∞ Ethyl cellulose >10(145°C) Direthyl flormamide ∞ n-Heptane 4.1 Ethanol ∞ HgCl₂ 21,0(40°C) Ethylacetate ∞ Lignin >10(30°C) Ethylacetate ∞ Lindane 18 Ethylene glycol ∞ Methyl chloride 4.1(40°C) Methanol ∞ NiCl₂ · 6H₂O 5.8(40°C) Methyl ethyl ketone ∞ Ni(NO₃)₂ · 6H₂O 5.8(40°C) Monylphenol <td< td=""><td></td><td>==</td><td></td><td>, ,</td></td<>		==		, ,
Dibutyl sebacate	•	∞	•	>10(30°C)
Diethylene glycol		∞		3.0(40°C)
Diethylene glycol monobutyl ether ∞ Dioctyl sebacate 2 Diethylene glycol monomethyl ether ∞ Epichlorohydrin-bisphenol >10(30°C) Diethylene glycol monomethyl ether ∞ Ester gum >10(120°C) Diethyl ether ∞ Ethyl cellulose >10(145°C) Dii(2-ethylhexyl) phthalate ∞ Gum shellac >10(175°C) Dimethylformamide ∞ n-Heptane 4.1 Ethalol ∞ HgCl₂ 21.0(40°C) Ethylacetate Lignin >10(30°C) Ethylene dichloride ∞ Lindane 18 Ethylene glycol ∞ Methyl chloride 4.1(40°C) Methyl chloride 4.1(40°C) Methyl chloride 4.1(40°C) Methyl ethyl ketone Nil(02, 6H₂O 0.4(40°C) 5.8(40°C) Methyl ethyl ketone Nitrocellulose >10(130°C) Nonylphenol ∞ Nylon >10(190°C) Ortho-nitrobiphenyl ∞ Polyacrylonitrile 10(90°C) Polyosyethylene glycols (mol. wt. 1000 and 4000)		∞		25.4(40°C)
Dioctyl sebacate 2	, ,,	∞		
Diethylene glycol monomethyl ether ≤ Epichlorohydrin-bisphenol >10(30°C) Diethyl ether ∞ Ester gum >10(120°C) Diethyl ether ∞ Ethyl cellulose >10(120°C) Direthyl ether ∞ Gum sheilac >10(175°C) Dimethylformamide ∞ n-Heptane 4.1 Ethanol ∞ HgCl₂ 21.0(40°C) Ethyl acetate ∞ Lignin >10(30°C) Ethylene dichloride ∞ Lindane 18 Ethylene glycol ∞ Methyl chloride 4.1(40°C) Methanol ∞ NiCl₂ · 6H₂O 0.4(40°C) 2-Methoxyethanol ∞ Ni(NO₃)₂ · 6H₂O 5.8(40°C) Methyl ethyl ketone ∞ Ni(10°C) · 6H₂O 5.8(40°C) Nonylphenol ∞ Nylon >10(190°C) Ortho-nitrobiphenyl ∞ Polyacrylonitrile 10(90°C) Polyoxyethylene glycols (mol. wt. 1000 and 4000) >100 (mol. wt. 400 and 600) ∞ Polyvinyl chloride >10(100°C) <			DDT	17
Monomethyl ether		∞ `	Dioctyl sebacate	2
Diethyl ether ∞ Ethyl cellulose >10(145°C) Di (2-ethylhexyl) phthalate ∞ Gum shellac >10(175°C) Dimethylformamide ∞ n-Heptane 4.1 Ethanol ∞ HgCl₂ 21.0(40°C) Ethyl acetate ∞ Lignin >10(30°C) Ethylene dichloride ∞ Lindane 18 Ethylene glycol ∞ Methyl chloride 4.1(40°C) Methanol ∞ NiCl₂·6H₂O 0.4(40°C) 2-Methoxyethanol ∞ Ni(NO₂)₂·6H₂O 5.8(40°C) Methyl ethyl ketone ∞ Nitrocellulose >10(30°C) Nonylphenol ∞ Nylon >10(190°C) Ortho-nitrobiphenyl ∞ Polyacyrlonitrile 10(90°C) Polyoxyethylene glycols (mol. wt. 1000 and 4000) >100 (mol. wt. 400 and 600) ∞ Polyvinyl chloride >10(100°C) JEFFSOL EC ∞ Polyvinyl chloride >10(100°C) Tricresyl phosphate ∞ Polyvinylidene chloride 10(30°C)			Epichlorohydrin-bisphenol	>10(30°C)
Di (2-ethylhexyl) phthalate ∞ Gum shellac >10(175°C) Dimethylformamide ∞ n-Heptane 4.1 Ethanol ∞ HgCl₂ 21.0(40°C) Ethyl acetate ∞ Lignin >10(30°C) Ethylene dichloride ∞ Lindane 18 Ethylene glycol ∞ Methyl chloride 4.1(40°C) Methanol ∞ NiCl₂·6H₂O 0.4(40°C) 2-Methoxyethanol ∞ Ni(NO₃)₂·6H₂O 5.8(40°C) Methyl ethyl ketone ∞ Nitrocellulose >10(30°C) Nonylphenol ∞ Nitrocellulose >10(30°C) Nonylphenol ∞ Nylon >10(190°C) Ortho-nitrobiphenyl ∞ Polyacrylonitrile 10(90°C) Ortho-nitrobiphenyl ∞ Polyacrylonitrile 10(90°C) Polyoxyethylene glycols (mol. wt. 1000 and 4000) >100 (mol. wt. 400 and 600) ∞ Polyvinyl chloride >10(100°C) JEFFSOL EC ∞ Polyvinyl chloride 10(30°C)		∞	Ester gum	>10(120°C)
Dimethylformamide ∞ n-Heptane 4.1 Ethanol ∞ HgCl₂ 21.0(40°C) Ethyla acetate ∞ Lignin >10(30°C) Ethylene dichloride ∞ Lignin >18 Ethylene glycol ∞ Methyl chloride 4.1(40°C) Methanol ∞ NiCl₂·6H₂O 0.4(40°C) 2-Methoxyethanol ∞ Ni(NO₃)₂·6H₂O 5.8(40°C) Methyl ethyl ketone ∞ Nitrocellulose >10(30°C) Nonylphenol ∞ Nitrocellulose >10(30°C) Ortho-nitrobiphenyl ∞ Polyacrylonitrile 10(90°C) Ortho-nitrobiphenyl ∞ Polyacrylonitrile 10(90°C) Polyoxyethylene glycols (mol. wt. 400 and 600) ∞ (mol. wt. 1000 and 4000) >100 Propylene oxide ∞ Polyvinyl chloride >10(100°C) JEFFSOL EC ∞ Polyvinyl chloride 10(30°C) Tricresyl phosphate ∞ Polyvinyl chloride 10(30°C) Tricresyl phosphate ∞	•	∞	Ethyl cellulose	>10(145°C)
Ethanol ∞ HgCl₂ 21.0(40°C) Ethyl acetate ∞ Lignin >10(30°C) Ethylene dichloride ∞ Lindane 18 Ethylene glycol ∞ Methyl chloride 4.1(40°C) Methanol ∞ NiCl₂ · 6H₂O 0.4(40°C) 2-Methoxyethanol ∞ Ni(NO₃)₂ · 6H₂O 5.8(40°C) Methyl ethyl ketone ∞ Nitrocellulose >10(30°C) Nonylphenol ∞ Nylon >10(190°C) Ortho-nitrobiphenyl ∞ Polyacrylonitrile 10(90°C) Polyoxyethylene glycols (mol. wt. 400 and 600) > 100 Propylene oxide ∞ Polyvinyl chloride >10(100°C) JEFFSOL EC ∞ Polyvinyl chloride >10(100°C) JEFFSOL EC ∞ Polyvinyl chloride- 10(30°C) Tricresyl phosphate ∞ Polyvinyl chloride- 10(30°C) Triethylene glycol o polyvinylidene chloride- 10(130°C) di-2-ethyl hexoate ∞ Polyvinylidene chloride- 1		∞	Gum sheilac	>10(175℃)
Ethyl acetate	Dimethylformamide	∞	n-Heptane	4.1
Ethylene dichloride	Ethanol	∞	HgCl ₂	21.0(40°C)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ethyl acetate	∞	Lignin	>10(30°C)
Methanol ∞ NiCl₂ · 6H₂O 0.4(40°C) 2-Methoxyethanol ∞ Ni(NO₃)₂ · 6H₂O 5.8(40°C) Methyl ethyl ketone ∞ Nitrocellulose >10(30°C) Nonylphenol ∞ Nylon >10(190°C) Ortho-nitrobiphenyl ∞ Polyacrylonitrile 10(90°C) Polyoxyethylene glycols (mol. wt. 1000 and 4000) >100 (mol. wt. 400 and 600) ∞ (mol. wt. 1000 and 4000) >100 Propylene oxide ∞ Polyvinyl chloride >10(100°C) JEFFSOL EC ∞ Polyvinyl chloride- 10(30°C) Ticresyl phosphate ∞ Polyvinyl chloride- 10(30°C) Triethylene glycol ∞ Polyvinyl chloride- 10(130°C) di-2-ethyl hexoate ∞ Polyvinylidene chloride 10(130°C) Xylene ∞ Polyvinylidene chloride- 10(110°C) Rosin, dibasic acid modified >10(120°C) Acetylene 0.6(40°C) Tri(2-ethylhexyl) phosphate 5 Alkyd resin, long oil- (1 <td>Ethylene dichloride</td> <td>∞</td> <td>Lindane</td> <td>18 ` ´</td>	Ethylene dichloride	∞	Lindane	18 ` ´
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ethylene glycol	∞	Methyl chloride	4.1(40°C)
2-Methoxyethanol	Methanol	∞	NiCl ₂ · 6H ₂ O	0.4(40°C)
Methyl ethyl ketone ∞ Nitroceilulose >10(30°C) Nonylphenol ∞ Nylon >10(190°C) Ortho-nitrobiphenyl ∞ Polyacrylonitrile 10(90°C) Polyoxyethylene glycols (mol. wt. 1000 and 4000) >100 (mol. wt. 400 and 600) ∞ (mol. wt. 1000 and 4000) >100 Propylene oxide ∞ Polyvinyl chloride >10(100°C) JEFFSOL EC ∞ Polyvinyl chloride- 10(30°C) Toluene ∞ polyvinyl acetate 10(30°C) Tricresyl phosphate ∞ Polyvinyl chloride- 10(130°C) Triethylene glycol polyvinyl chloride- 10(130°C) di-2-ethyl hexoate ∞ Polyvinylidene chloride- 10(110°C) Xylene ∞ Polyvinylidene chloride- 10(110°C) Rosin, dibasic acid modified >10(120°C) Acetylene 0.6(40°C) Tri(2-ethylhexyl) phosphate 5 Alkyd resin, long oil- v1 v1 nonoxidizing >10(60°C) Water 8.3 <td>2-Methoxyethanol</td> <td>∞</td> <td></td> <td></td>	2-Methoxyethanol	∞		
Nonylphenol ∞ Nylon >10(190°C) Ortho-nitrobiphenyl ∞ Polyacrylonitrile 10(90°C) Polyoxyethylene glycols (mol. wt. 400 and 600) ∞ (mol. wt. 1000 and 4000) >100 Propylene oxide ∞ Polyvinyl chloride >10(100°C) JEFFSOL EC ∞ Polyvinyl chloride- Toluene ∞ polyvinyl acetate 10(30°C) Tricesyl phosphate ∞ Polyvinyl chloride- Triethylene glycol polyvinyl dene chloride- Triethylene glycol polyvinylidene chloride Xylene ∞ Polyvinylidene chloride- Toluene πodified >10(110°C) Acetylene 0.6(40°C) Tri(2-ethylhexyl) phosphate 5 Alkyd resin, long oil- nonoxidizing >10(60°C) Water 8.3	Methyl ethyl ketone	∞		` ,
Ortho-nitrobiphenyl ∞ Polyacrylonitrile 10(90°C) Polyoxyethylene glycols (mol. wt. 400 and 600) ∞ (mol. wt. 1000 and 4000) >100 Propylene oxide ∞ Polyvinyl chloride >10(100°C) JEFFSOL EC ∞ Polyvinyl chloride- Toluene ∞ polyvinyl acetate 10(30°C) Tricesyl phosphate ∞ Polyvinyl chloride- Triethylene glycol polyvinyl chloride- Triethylene glycol polyvinylidene chloride polyvinylidene chloride Xylene ∞ Polyvinylidene chloride- Triethylene glycol polyvinylidene chloride- Triethylene glycol polyvinylidene chloride- Triethylene glycol polyvinylidene chloride- Triethylene glycol polyvinylidene chloride- Triethylene glycol polyvinylidene chloride- Triethylene glycol polyvinylidene chloride- Triethylene glycol polyvinylidene chloride- Triethylene chloride- Trice-ethyl hexoate 5 Acetylene 0.6(40°C) Tri(2-ethylhexyl) phosphate 5 Alkyd resin, long oil- Trice-ethylhexyl) phosphate 5 Urea <1 Name of the first of the fir	Nonylphenol	∞	Nylon	• • •
Polyoxyethylene glycols (mol. wt. 400 and 600) Propylene oxide JEFFSOL EC JEFFSOL EC Tricresyl phosphate Triethylene glycol di-2-ethyl hexoate Xylene Acetylene Acetylene Alkyd resin, long oil- nonoxidizing Polyoxyethylene glycols (mol. wt. 1000 and 4000) Polyvinyl chloride Polyvinyl chloride- polyvinyl chloride- polyvinyl chloride- polyvinylidene chloride polyvinylidene chloride- polyvinylidene chloride- polyacrylonitrile Rosin, dibasic acid modified >10(110°C) Tri(2-ethylhexyl) phosphate 5 Alkyd resin, long oil- nonoxidizing >10(60°C) Water 8.3	Ortho-nitrobiphenyl	∞	Polyacrylonitrile	, ,
(mol. wt. 400 and 600) ∞ (mol. wt. 1000 and 4000) >100 Propylene oxide ∞ Polyvinyl chloride >10(100°C) JEFFSOL EC ∞ Polyvinyl chloride- 10(30°C) Toluene ∞ Polyvinyl acetate 10(30°C) Tricresyl phosphate ∞ Polyvinyl chloride- 10(130°C) Tricresyl phosphate ∞ Polyvinylidene chloride- 10(110°C) Kylene ∞ Polyvinylidene chloride- 10(110°C) Rosin, dibasic acid modified >10(120°C) Acetylene 0.6(40°C) Tri(2-ethylhexyl) phosphate 5 Alkyd resin, long oil- Urea <1	Polyoxyethylene glycols		Polyoxyethylene glycols	- (/
JEFFSOL EC Toluene Toluene Ticresyl phosphate Triethylene glycol di-2-ethyl hexoate Xylene Acetylene Alkyd resin, long oil- nonoxidizing Delyvinyl chloride- polyvinyl chloride- polyvinylidene chloride polyvinylidene chloride Polyvinylidene chloride polyvacrylonitrile Polyvinylidene chloride polyacrylonitrile Tri(2-ethylhexyl) phosphate Tri(2-ethylhexyl) phosphate Urea 21 Polyvinyl chloride- polyvinyl chloride-	(mol. wt. 400 and 600)	∞		>100
JEFFSOL EC Toluene ∞ polyvinyl acetate polyvinyl acetate polyvinyl acetate polyvinyl chloride- polyvinyl chloride- polyvinyl chloride- polyvinylidene chloride polyvinylidene chloride polyvinylidene chloride polyvinylidene chloride polycrylonidrile Xylene ∞ polyacrylonidrile Rosin, dibasic acid modified > 10(110°C) Rosin, dibasic acid modified > 10(120°C) Acetylene Alkyd resin, long oil- nonoxidizing > 10(60°C) Water 8.3	Propylene oxide	∞	Polyvinyl chloride	>10(100°C)
Tricresyl phosphate Tricresyl phosphate Tricthylene glycol di-2-ethyl hexoate Xylene	JEFFSOL EC	oc	Polyvinyl chloride-	,
Tricresyl phosphate Triethylene glycol di-2-ethyl hexoate Xylene	Toluene	∞	polyvinyl acetate	10(30°C)
di-2-ethyl hexoate		∞	Polyvinyl chloride-	` ,
di-2-ethyl hexoate Xylene	Triethylene glycol		polyvinylidene chloride	10(130°C)
Xylene ∞ polyacrylonitrile Rosin, dibasic acid modified 10(110°C) Acetylene 0.6(40°C) Tri(2-ethylhexyl) phosphate 5 Alkyd resin, long oilnonoxidizing >10(60°C) Water 8.3	di-2-ethyl hexoate	∞	Polyvinylidene chloride-	, ,
Rosin, dibasic acid modified >10(120°C) Acetylene 0.6(40°C) Tri(2-ethylhexyl) phosphate 5 Alkyd resin, long oil- nonoxidizing >10(60°C) Water 8.3	Xylene	∞	polyacrylonitrile	10(110°C)
Acetylene 0.6(40°C) Tri(2-ethylhexyl) phosphate 5 Alkyd resin, long oil- nonoxidizing >10(60°C) Water 5.3				-(/
Acetylene 0.6(40°C) Tri(2-ethylhexyl) phosphate 5 Alkyd resin, long oil- nonoxidizing >10(60°C) Water 5.3			•	>10(120°C)
Alkyd resin, long oil- nonoxidizing >10(60°C) Urea <1 8.3	Acetylene	0.6(40°C)	Tri(2-ethylhexyl) phosphate	• •
nonoxidizing >10(60°C) Water 8.3	Alkyd resin, long oil-	` ,		
-(>10(60°C)		
Outsiphot 50	Camphor	80		

	g Solute in 100 g JEFFSOL EC		g Solute in 100 g JEFFSOL EC
Substance	at 40°C	Substance	at 40°C
Benzene	∞	Coumarone-indene	>10(1 90°C)
Butyl acetate	x	Dibutyl sebacate	<2
Chloroform	∞	Dioctyl sebacate	<1
Dichloroethyl ether	∞	Di(2-ethylhexyl) phthalate	<2
Ethanol	oc	Epichlorohydrin-bisphenol	>10
Ethyl acetate	သင	Ester gum	>10(200°C)
Ethylene dichloride	œ	Gum shellac	>10(160°C)
Formamide	∞	HgCl ₂	49
Methanol	œ	Lignin	>10
Methylene dichloride	∞	Naphthalene	15
Nonviphenol	œ	$Ni(NO_3)_2 \cdot 6H_2O$	74
JEFFSOL PC	∞	Nitrocellulose	>10
Toluene	∞	Nylon, Type 8	
Tricresyl phosphate	∞	molding powder	>10(130°C)
Water	œ	Polyacrylonitrile	>10
		Polyoxyethylene glycols	100
		Rosin, dibasic acid	
Acetylene	0.6	modified	>10(20 5°C)
Alkyd resin, long		Sulfur dioxide	26
oil-nonoxidizing	>10(160°C)	Triethylene glycol	
Camphor, USP	55-60	di-2-ethyl hexoate	5-7
Castor oil, USP	<1	Tri(2-ethylhexyl) phosphate	<2
Cellulose acetate	>10(100°C)	Urea	1.5
Cellulose acetate butyrate	>10(130°C)	Vinylidene chloride-	
CoCl ₂ · 6H ₂ O	33	acrylonitrile	10(110°C)
Co(NO ₃) ₂ ·6H ₂ O	37	ZnCl ₂	33

JEFFSOL EC Solubility

1.13

1.12

1.11

1.10

0

20 30 40 50

864

60

TEMPERATURE, °C

70 80

90

Table 15.66: (continued)

PHTHALATES

Table 15.67: Alkyl Benzyl Phthalates (75)

SANTICIZER 261

Table A. Properties

Molecular Weight	368
Acidity	0.37
(meq/100 gm. max)	
Appearance	Clear, oily liquid
Color (APHA) [max.]	75
Moisture (KF in Methanol)	0.15
%, max.	
Odor	Slight, characteristic
Refractive Index (@ 25°C)	1.523 - 1.529
Specific Gravity	1.065 — 1.074
(25°/25°C)	
Density (@ 25°C)	8.9
ca. lbs./gal.	
Pour Point (°C)	45
Boiling Point	252
@ 10mm Hg, °C	
Vapor Pressure (mm Hg)	
@ 200°C	0.5
@ 250°C	9.7

53
4.2
35.3
0.00059
445
0.00003
<3
68515-40-2

Specification

Table B. Santicizer® 261 — Properties of Acrylic Lacquers

Plasticizer (at 29%)	Hard- ness'	Qie	rometer oss/ ctance	Fog ¹ Value	Ad- hesion ³	Solvent 5°C.	Craze' 10°C.	Water' Immers.
Santicizer®160	F/H	Std.	Std.	37 SR	4	checked	checked	Std.
Santicizer 261	F/H	+	+	66 SR	6	checked	ОК	Equiv.

Table C. Santicizer®261 - Performance in PVC

	(30%) 43 PHR	(40%) 67 PHR	(50%) 100 PHR
Volatility, 24 hours at 87°C in carbon	2.1	2.1	2.3
Low-temperature flex, Tr °C	-7	-26	- 40
Water extraction, 24 hours at 50°C	0.02	0.07	0.08
Kerosene extraction, 24 hours at 23°C	1.0	3.8	8.8
Shore "A" hardness, 10 second reading	89	71	54

Table D. Santicizer®261 — Performance in Plastisol Formulation

50 RPM	poises Brookfield HAT #6 Spindle	65 PHR
23°C	Initial 7 Days 28 Days	63 74 86
40°C	Initial 7 Days 28 Days	32 110 170
50°C	Initial 7 Days 28 Days	36 150 Gel
	10 psi	160
Severs	50 psi	230
	100 psi	180
Yield Valu	e, dynes/cm²	28
Flow Inde	x	3.6
Gel Temp	erature, °C	67
Fusion, R	elative Temperature, °C	159

^{1.} Pencil Hardness – The film is harder than the top letter, softer than the bottom letter.
2. Specular Reflection (SFI) or plate glass covers over breakers in which the plasticized films were heated for 1 hr. (ii 110°C. 3. Cellophane tape multipud.)

^{4.} Coated panels conditioned at 5 and 10° C. —a drop of methyl ethyl ketone was applied and allowed to dry. Crazing determined by visual observation (with magnifying lens).

5. Panels immersed in water at 40°C. for 100 hours — rated by ASTM test D-714.

Table 15.67: (continued)

Table E. Plasticizer Effect on Polysulfide Polymer

Data Courtesy of Morton Thiokol, Inc.

Table F. Polysulfide Strength at Break as a Function of Plasticizer Level

Table G. Polysulfide Elongation at Break as a Function of Plasticizer Level

¹Plasticizer Effect on Calcium Carbonate Filled Polysulfide Composition. (Cast sheets cured 7 days at 70-72°F and 44-48% Relative Humidity.)

Formulation (parts by weight-pov	v)
Part A	
LP-32 Polymer	100
Ultrafine precipitated CaCO ₃	50
Stearic Acid	0.5
Sulfur	0.1
Santicizer® 261	0-30
Part B	
MnO ₂	7.5
Santicizer 278	7.5

*Plasticizer as % of total system.

Table 15.67: (continued)

SANTICIZER 278

	lable A. Properties	
i	Molecular Weight	455

Molecular Weight	455
Acidity	0.37
(meq/100 gm. max)	
Appearance	Clear, oily liquid
Color (APHA) [max.]	175
Moisture (KF in	0.15
Methanol) % max.	
Odor	Slight, characteristic
Refractive Index (@25°C)	1.516 - 1.520
Specific Gravity	1.093-1.100
(25°/25°C)	
Density (@ 25°C)	9.1
ca. lbs./gal.	
Boiling Point	243
@ 10mm Hg, °C	
Vapor Pressure (mm Hg)	
@ 200°C	0.5
@ 250°C	15

ca. 10,000
860
11.5
34.8
·
0.00073
440
535
Practically insoluble
16883-83-3

Specification

Table B. Santicizer® 278 - Performance in PVC (40 Mil Sheet)

	(30%) 43 PHR	(40%) 67 PHR	(50%) 100 PHR
Volatility (% Lost) (Activated Carbon 24 hours at 87°C)	0.7	0.7	0.7
Low-temperature Flex, Tr °C	+ 19	+ 2	- 14
Water immersion (24 hours at 50°C) % soluble matter lost % water absorbed	0.01 0.28	0.02 0.33	0.04 0.36
Kerosene extraction (24 hours at 23°C) (% plasticizer lost)	0.3	0.5	1.3
Shore "A" Hardness, 10 second reading	97	85	65
Migration, Linde Silica: 1 day 3 days 7 days	0.0 0.04 0.05	0.0 0.08 0.14	0.0 0.3 0.5
Tensile, p.s.i.	3180	2600	2030
Elongation, %	258	340	410
Modulus (ii 100% Elongation	3140	1850	840
Heat Stability	Good	Good	Good
Migration Resistance to Nitrocellulose	Good	Good	Good
Fluxing Rate	Good	Good	Good

Table C. Santicizer® 278—Performance in Plastisol Formulation

50 RPM	poises Brookfield HAT Spindle	65 PHR
23°C	Initial 7 Days 28 Days	1370 1420 1400
40°C	Initial 7 Days 28 Days	380 560 640
50°C	Initial 7 Days 28 Days	160 600 900
	10 psi	3400
Severs	50 psi	3900
	100 psi	1900
Yield value	, dynes/cm ²	. 0
Flow Index		2.8
Gel Tempe	rature, °C	79
Fusion, Re	lative Temperature, °C	156

Table 15.67: (continued)

Table D. Use of	f Sa ntic	izer® :	278 t	o Repi	ace F	Jo.	ymeri	ic Pl	astici	zers

	Santicizer® 278	High M.W.,Polyester
Shore "A" Hardness, 10 second reading	84	77
Volatility, % Plasticizer Lost 6 days @ 87°C in carbon	3.9	2.0
Tf. °C		2.0 -18
Extraction, % Plasticizer Lost		10
5% Caustic, 96 hours @ 23°C 1% Ivory Soap, 96 hours @ 50°C Hexane, 4 hours @ 23°C	0.1 3.0	0.6 9.2
Hexane, 24 hours @ 23°C	1.6 3.2	1.3 2.7
Humidity Compatibility 100% R.H. Days to exude @ 60°C Days to exude @ 80°C	Pass* Pass*	70 18
Water Sensitivity, 24 hours @ 50°C % Soluble Matter Lost % Absorption	0.05 0.69	0.08 1.28
Viscosity, stokes @ 23°C Gardner Bubble	7	47
Fusion, via Fisher-Johns Clear Point, °C	115	153

 PVC
 100

 Plasticizer
 67

 Mark WS
 1

*Test terminated at 126 days (18 weeks) with no exudation.

Table E. Adhesive Migration Resistance

		ol Strength lbs./in.'	Failure Mode
Emulsion Type PSA			
Santicizer® 278		6.2	Cohesive
High M.W. Polyester		5.9	Cohesive
Solution Type PSA			
Santicizer 278		5.0	Cohesive
High M.W. Polyester		4.2	Cohesive
Formulation		124 Hours (ii Room	Temperature
PVC Plasticizer Processing Aid Stabilizer ITO ₂	100 25 5 3		

Table F. Performance of Santicizer® 278 in Moisture Cured Urethane Sealants

	Plasticizer Concentration		
	17%	22%	27%
Modulus, psi			
200%	135	130	125
400%	200	190	190
% Elongation	540	490	490
Tensile Strength, psi	240	205	210
Shore A Hardness @ 5 sec.	29	29	30

*Cured 2 Weeks at 25°C/50% Relative Humidity

Table G. Plasticizer Effect on Polysulfide Polymer Strength¹

Formulation (parts by weight - pbw)		
Part A		
LP-32 Polymer	100	
Ultrafine precipitated CaCO ₃	50	
Stearic acid	0.5	
Sulfur	0.1	
Santicizer®261	0-30	
Part B		
Mn O ₂	7.5	
Santicizer 278	7.5	

¹Plasticizer Effect on Calcium Carbonate Filled Polysulfide Composition. (Cast sheets cured 7 days at 70-72°/F and 44-48% Relative Humidity.) Data courtesy of Morton Thiokol Inc.

Table 15.68: Butyl Benzyl Phthalate (75)

SANTICIZER 160

Molecular Weight 312 • Acidity (meq/100 gm. max) 0.37 • Appearance Clear, oily liquid • Color (APHA) [max.] 40 • Moisture (KF in Methanol) %, max. 0.15 • Odor Slight, characteristic • Refractive Index (@25°C) 1.535 − 1.540 • Specific Gravity (25°/25°C) 1.115 − 1.123 • Specific Gravity (25°/25°C) 9.3 • Ca. lbs./gal. 1.115 − 1.123 Hydroxyl No. <1 Crystallizing Point (°C) < −35 Pour Point (°C) −45 Boiling Point (°C) 240 © 150°C (mm Hg) 0.16 © 200°C (mm Hg) 0.16 © 25°C (mm Hg) 0.25°C © 25°C (mm Hg) 0.25°C © 98.9°C (mm Hg) 39.5 © 98.9°C (mm Hg) 3.42 Surface Tension (mm Hg) 0.00069 © 10° − 40°C (mm Hg) 0.00069 © 10° − 40°C (mm Hg) 0.00069 © 10° − 40°C (mm Hg) 0.00069 © 10° − 40°C (mm Hg) 0.00069 <t< th=""><th>Table A. Properties</th><th></th></t<>	Table A. Properties	
(meq/100 gm. max) • Appearance Clear, oily liquid • Color (APHA) [max.] 40 • Moisture (KF in Methanol) %, max. 0.15 • Odor Slight, characteristic • Refractive Index (@25°C) 1.535 − 1.540 • Specific Gravity 1.115 − 1.123 (25°/25°C) 9.3 ca. lbs./gal. 440 Hydroxyl No. <1	Molecular Weight	312
• Appearance Clear, oily liquid • Color (APHA) [max.] 40 • Moisture (KF in 0.15 Methanol) %, max. • Odor Slight, characteristic • Refractive Index (@25°C) 1.535 − 1.540 • Specific Gravity 1.115 − 1.123 (25°/25°C) 9.3 ca. lbs./gal. Hydroxyl No. <1 Crystallizing Point (°C) < −35 Pour Point (°C) −45 Boiling Point 240 @ 10mm Hg, °C Vapor Pressure (mm Hg) @ 150°C 0.16 @ 200°C 1.9 @ 25°C 39.5 @ 98.9°C 3.42 Surface Tension 39.9 (25°C (dynes/cm) Thermal Expansion Coefficient 0.00069 @ 10° − 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water @ 25°C, %	Acidity	0.37
• Color (APHA) [max.] 40 • Moisture (KF in Methanol) %, max. • Odor Slight, characteristic • Refractive Index (@25°C) 1.535 – 1.540 • Specific Gravity 1.115 – 1.123 (25°/25°C) Density (@ 25°C) 9.3 ca. lbs./gal. Hydroxyl No. <1 Crystallizing Point (°C) < -35 Pour Point (°C) -45 Boiling Point 240 @ 10mm Hg, °C Vapor Pressure (mm Hg) @ 150°C 0.16 @ 200°C 1.9 @ 250°C 14.4 Viscosity (Centistokes) @ 0°C 230 @ 25°C 39.5 @ 98.9°C 3.42 Surface Tension 39.9 (@ 25°C (dynes/cm) Thermal Expansion Coefficient 0.00069 (@ 10° – 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003	(meq/100 gm. max)	
• Moisture (KF in Methanol) %, max. • Odor Slight, characteristic • Refractive Index (@25°C) 1.535 – 1.540 • Specific Gravity 1.115 – 1.123 (25°/25°C) Density (@ 25°C) 9.3 ca. lbs./gal. Hydroxyl No. <1 Crystallizing Point (°C) < -35 Pour Point (°C) -45 Boiling Point 240 @ 10mm Hg, °C Vapor Pressure (mm Hg) @ 150°C 0.16 @ 200°C 1.9 @ 250°C 14.4 Viscosity (Centistokes) @ 0°C 230 @ 25°C 39.5 @ 98.9°C 3.42 Surface Tension 39.9 @ 10° – 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water @ 25°C, %	Appearance	Clear, oily liquid
Methanol) %, max. • Odor Slight, characteristic • Refractive Index (@25°C) 1.535 − 1.540 • Specific Gravity (25°C)°C) 1.115 − 1.123 • Specific Gravity (25°C) 9.3 ca. lbs./gal. 9.3 Hydroxyl No. <1 Crystallizing Point (°C) < −35 Pour Point (°C) −45 Boiling Point (°C) 240 (w 10mm Hg, °C) 0.16 (w 200°C (1.9 1.9 (w 250°C (1.9 14.4 Viscosity (Centistokes) 0.230 (w 25°C (230) 39.5 (w 98.9°C (25°C (39.5) 39.9 (w 25°C (dynes/cm) 39.9 Thermal Expansion 0.00069 Coefficient (20°C) (20°C) 39.0 Fire Point (C.O.C.) [°F.] (450 390 Fire Point (C.O.C.) [°F.] (25°C) 450 Solubility In Water (25°C, % 0.0003	Color (APHA) [max.]	40
• Odor Slight, characteristic • Refractive Index (@25°C) 1.535 − 1.540 • Specific Gravity 1.115 − 1.123 (25°/25°C) 9.3 ca. lbs./gal. Hydroxyl No. <1 Crystallizing Point (°C) < −35 Pour Point (°C) −45 Boiling Point 240 @ 10mm Hg, °C Vapor Pressure (mm Hg) @ 150°C 0.16 @ 200°C 1.9 @ 250°C 14.4 Viscosity (Centistokes) @ 0°C 230 @ 25°C 39.5 @ 98.9°C 3.42 Surface Tension 39.9 @ 10° − 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water @ 25°C, %	Moisture (KF in	0.15
• Refractive Index (@25°C) • Specific Gravity (25°/25°C) Density (@ 25°C) ca. lbs./gal. Hydroxyl No. Crystallizing Point (°C) Boiling Point @ 10mm Hg, °C Vapor Pressure (mm Hg) @ 150°C @ 250°C 1.9 @ 250°C 14.4 Viscosity (Centistokes) @ 0°C @ 98.9°C 3.42 Surface Tension @ 10° − 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] Solubility In Water @ 25°C, % 1.115 − 1.123 1.115	Methanol) %, max.	
*Specific Gravity (25°/25°C) Density (@ 25°C) 9.3 ca. lbs./gal. Hydroxyl No. <1 Crystallizing Point (°C) <-35 Pour Point (°C) -45 Boiling Point 240 @ 10mm Hg, °C Vapor Pressure (mm Hg) @ 150°C 0.16 @ 200°C 1.9 @ 250°C 14.4 Viscosity (Centistokes) @ 0°C 230 @ 25°C 39.5 @ 98.9°C 3.42 Surface Tension 39.9 @ 25°C (dynes/cm) Thermal Expansion Coefficient 0.00069 @ 10° - 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003	•Odor	Slight, characteristic
(25°/25°C) Density (@ 25°C) 9.3 ca. lbs./gal. Hydroxyl No. <1 Crystallizing Point (°C) <-35 Pour Point (°C) -45 Boiling Point 240 @ 10mm Hg, °C Vapor Pressure (mm Hg) @ 150°C 0.16 @ 200°C 1.9 @ 250°C 14.4 Viscosity (Centistokes) @ 0°C 230 @ 25°C 39.5 @ 98.9°C 3.42 Surface Tension 39.9 @ 25°C (dynes/cm) Thermal Expansion Coefficient 0.00069 @ 10° - 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003 @ 25°C, %	Refractive Index (@25°C)	
Density (@ 25°C) 9.3 ca. lbs./gal. 4 Hydroxyl No. <1	Specific Gravity	1.115 – 1.123
ca. lbs./gal. Hydroxyl No. <1 Crystallizing Point (°C) <-35 Pour Point (°C) -45 Boiling Point 240 @ 10mm Hg, °C Vapor Pressure (mm Hg) @ 150°C 0.16 @ 200°C 1.9 @ 250°C 14.4 Viscosity (Centistokes) @ 0°C 230 @ 25°C 39.5 @ 98.9°C 3.42 Surface Tension 39.9 @ 25°C (dynes/cm) Thermal Expansion Coefficient 0.00069 @ 10° - 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003 @ 25°C, %	(25°/25°C)	
Hydroxyl No. <1	Density (@ 25°C)	9.3
Crystallizing Point (°C) <−35	ca. lbs./gal.	
Pour Point (°C) —45 Boiling Point	Hydroxyl No.	<1
Boiling Point @ 10mm Hg, °C Vapor Pressure (mm Hg) @ 150°C	Crystallizing Point (°C)	<-35
@ 10mm Hg, °C Vapor Pressure (mm Hg) @ 150°C 0.16 @ 200°C 1.9 @ 250°C 14.4 Viscosity (Centistokes) 230 @ 25°C 39.5 @ 98.9°C 3.42 Surface Tension 39.9 @ 25°C (dynes/cm) Thermal Expansion 0.00069 Coefficient 0.00069 @ 10° − 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003 @ 25°C,% 0.0003	Pour Point (°C)	-45
Vapor Pressure (mm Hg)	Boiling Point	240
(#) 150°C	@ 10mm Hg, ℃	
@ 200°C 1.9 @ 250°C 14.4 Viscosity (Centistokes) @ 0°C 230 @ 25°C 39.5 @ 98.9°C 3.42 Surface Tension 39.9 @ 25°C (dynes/cm) Thermal Expansion Coefficient 0.00069 @ 10° − 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003 @ 25°C,%	Vapor Pressure (mm Hg)	
@ 250°C 14.4 Viscosity (Centistokes) @ 0°C 230 @ 25°C 39.5 @ 98.9°C 3.42 Surface Tension 39.9 @ 25°C (dynes/cm) Thermal Expansion Coefficient 0.00069 @ 10° – 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003 @ 25°C,%	@ 150°C	0.16
Viscosity (Centistokes) @ 0°C 230 @ 25°C 39.5 @ 98.9°C 3.42 Surface Tension 39.9 @ 25°C (dynes/cm) Thermal Expansion Coefficient 0.00069 @ 10° – 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003 @ 25°C,%	@ 200°C	1.9
@ 0°C 230 @ 25°C 39.5 @ 98.9°C 3.42 Surface Tension 39.9 @ 25°C (dynes/cm) Thermal Expansion Coefficient 0.00069 @ 10° – 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003 @ 25°C,%		14.4
@ 25°C 39.5 @ 98.9°C 3.42 Surface Tension 39.9 @ 25°C (dynes/cm) Thermal Expansion Coefficient 0.00069 @ 10° – 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003 @ 25°C,%		
@ 98.9°C 3.42 Surface Tension 39.9	0	
Surface Tension 39.9 (@ 25°C (dynes/cm) Thermal Expansion Coefficient 0.00069 (@ 10° – 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003 (@ 25°C,%		
(w 25°C (dynes/cm) Thermal Expansion Coefficient 0.00069 (@ 10° – 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003 (@ 25°C,%		
Thermal Expansion Coefficient 0.00069 @ 10° – 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003 @ 25°C,%		39.9
Coefficient 0.00069 @ 10° – 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003 @ 25°C,%		
@ 10° – 40°C (cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003 @ 25°C,%		
(cc/cc/°C) Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003 @ 25°C,%		0.00069
Flash Point (C.O.C.) [°F.] 390 Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003 @ 25°C,%		
Fire Point (C.O.C.) [°F.] 450 Solubility In Water 0.0003 @ 25°C,%		
Solubility In Water 0.0003 @ 25°C,%		
@ 25°C,%		
		0.0003
CAS Number 85-68-7		
	CAS Number	85-68-7

Specification

	(30%) 43 PHR	(40%) 67 PHR	(50%) 100 PHR
Volatility (% Lost) (Activated Carbon; 24 hours at 87°C)	7.0	7.7	8.1
Low-Temperature Flex, Tf °C	-3.8	-24	- 39
Water immersion (24 hours at 23°C) % soluble matter lost % water absorbed	0.06 0.35	0.07 0.30	0.08 0.43
Kerosene extraction (24 hours at 23°C) (% plasticizer lost)	1.0	3.4	8.2
Shore "A" Hardness, 10 second reading	86	68	52
Migration, Linde Silica: 1 day 3 days 7 days	0.2 0.4 0.7	1.2 2.5 4.1	4.0 7.8 11.4
Tensile, p.s.i., ASTM D-412	3090	2270	1420
Elongation, %, ASTM D-412	350	450	460
Modulus @ 100% Elongation, ASTM D-412	1960	1000	510

Table 15.68: (continued)

Table C. Effect of Additive Use of Santicizer* 160 with GPP Based Plastisols on Gel and Fusion Properties

Table D. Effect of Benzyl Phthalates on Fusion

PVAc ADHESIVE APPLICATION DATA

Table E. Performance of Plasticizers in Acrylic Automotive Lacquers

20% Plasticizer Concentration

Plasticizer	Humidity ¹ Stability	Volatility ²	Sward Hardness
Santicizer® 160	1	46	44
Dipropylene Glycol Dibenzoate	8	51	52
DBP	1	>70	46

¹Visual Rating 1-10; 1 = best; 10 = worst

Table G. Plasticizer Effect of Tg* of PVAc Emulsion

Data Courtesy Air Products and Chemicals Inc

Table F. Effect of Plasticizers on Water Resistance of Airflex 320 Emulsion

Data Courtesy Air Products and Chemicals Inc

Data Courtesy Air Products and Chemicals Inc

*Dipropylene Glycol Diberizoate

^{2%} Plasticizer lost (ir: 170°F 3 mil coating

Table 15.69: Dibutyl Phthalate (75)

DBP

Table A. Properties	
Molecular Weight	278
Acidity	0.12
(meq/100 gm.)	i
Appearance	Clear, oily liquid
Color (APHA) max.	20
Moisture (KF in	0.15
Methanol) %	
Odor	Slight, characteristic
Refractive Index (@25°C)	1.4895 1.4915
Specific Gravity (25°/25°C)	1.044 — 1.048
Density (@ 25°C)	8.72
ca. lbs./gal.	0.72
Crystallizing Point (°C)	<-35
Pour Point (°C)	-40
Boiling Point	192
@ 10mm Hg, ℃	192
Vapor Pressure (mm Hg)	
@ 150°C	0.8
@ 200°C	14
@ 250°C	100
Viscosity (Centistokes)	
@ 0°C	55.0
@ 25°C	15.6
@ 98.9°C	2.4
Surface Tension	35
@ 30°C (dynes/cm)	ļ
Thermal Expansion	0.00078
Coefficient	
@ 10°-40°C	
(cc/cc/°C)	
Flash Point (C.O.C.) [°F.]	340
Fire Point (C.O.C.) [°F.]	395
Solubility In Water	0.001
@ 30°C,%	
General Solubility	Soluble in all common organic solvents and oils
CAS Number	84-74-2

Table B. Dibutyi Phthalate — Evaluation in Polyvinyi Acetate Adhesives

Formulation: Gelva® S-55 90% re Plasticizer 10%	esin	
Room Temperature Viscosity, cps. (Brookfield LVT #3 Spindle, 30 rpm)	Olbutyi Phthalate	Senticizer® 160
Initial	2070	2000
1 Day	2080	1900
1 Week	2480	2170
2 Weeks	2520	2490
4 Weeks	4080	3970
Wet Tack (sec.)	15	14
Open Time (min.:sec.)	3:45	3:30
Elongation, %	385	335
100% Modulus, psi	300	430
Tensile Strength, psi	690	920

Table 15.70: Di-2-Ethylhexyl Phthalate (Dioctyl Phthalate) (75)

DOP

Table A. Properties	
Molecular Weight	391
Acidity	0.12
(meq/100 gm. max)	
Appearance	Clear, oily liquid
Color (APHA)	25 .
Moisture (KF in	0.10
Methanol) %	
Odor	Slight, characteristic
Refractive Index (@25°C)	1.4845 — 1.4858
Specific Gravity	0.980-0.985
(25°/25°C)	
Density (@ 25°C)	8.18
ca. lbs./gal.	
Crystallizing Point (°C)	-55 (very stiff gel)
Pour Point (°C)	-47
Boiling Point	236
@ 10mm Hg, °C	
Vapor Pressure (mm Hg)	
@ 200°C	1.2
@ 250°C	18

Viscosity (Centistokes)	
@ 0°C	348.0
@ 25°C	58.0
@ 98.9°C	4.3
Surface Tension	33
@ 25°C (dynes/cm)	
Thermal Expansion	0.00074
Coefficient	
@ 10°-40°C	
(cc/cc/°C)	
Flash Point (C.O.C.) [°F.]	425
Fire Point (C.O.C.) [°F.]	480
Solubility In Water	<0.005
@ 25°C,%	
General Solubility	Miscible with most
-	common solvents and
	with most primary and
	secondary plasticizers for polyvinyl chloride
CASAlumbar	117-81-7
CAS Number	11/-01-/

Table B. Performance in PVC (40 Mil Sheet)

	(30%) 43 PHF		(50%) 100 PHR
Volatility (% Lost) (Activated Carbon)	4.2	4.0	4.0
Low-temperature Flex, Tf °C	- 17	-39	-55
Water immersion (24 hours): % soluble matter lost % water absorbed	0.0° 0.22		0.04 0.27
Kerosene extraction (% plasticizer lost)	8.3	44	>70
Shore "A" Hardness	87	70	53
Tensile, p.s.i.	2910	2230	1390
Elongation, %	360	460	480
Modulus @ 100% Elongation, psi	1950	990	500
Flammability, Limiting 0 ₂ Index *	23.1	21.8	20.3

The Oxygen Index Test results are not intended to reflect performance of these or any other materials under actual fire conditions. Each user should determine independently whether potential fire hazards are associated with the finished product, and whether DOP is suitable for the particular use.

Table C. DOP Performance in Plastisol Formulation

Viscosity, poises Brookfield HAT #6 Spindle

50 RPM		65 PHR
23°C	Initial 7 Days 28 Days	36 65 82
40°C	Initial 7 Days 28 Days	25 94 102
50° C	Initial 7 Days 28 Days	28 210 260
	10 psi	58_
Severs	50 psi	50
	100 psi	41
Yield value,	dynes/cm ²	0
Flow Index		1.4
Gel Tempe	rature, °C	75
Fusion, Rel	ative Temperature, °C	167
*Air-Release	Rate	Moderate
*Resilience.	steel ball, inches	4.5

^{*}Efficiency Conc. Adj. to "60" Shore A hardness

Table 15.71: t-Butylphenyl Diphenyl Phosphate (75)

SANTICIZER 154

Table A. Properties

Molecular Weight (avg.)	371
Phosphorus, %	8.4 (Calc)
 Acidity (meq/100g.) max. 	0.20
Appearance ,	Clear, mobile liquid
Color (APHA) [max.]	100
Moisture, % max.	0.15
Odor	Essentially odorless
Retractive Index @25°C	1.5535 1.5565
Sp. Grav. 25°C/25°C	1.175 - 1.185
Density (a) 25°C lbs./gal.	9.8
Crystallizing Point (°C)	<-20
Pour Point (°C)	-25
Boiling Point	
(a) 10mm Hg, ℃	258
Vapor Pressure	***************************************
<i>@</i> 200°C	1.0
(≈ 250°C	7.4
@ 300°C	41

Viscosity (Centistokes)	
@ 0°C	475
@ 25℃	58
@ 100°C	4.1
Flash Point (COC, °F.)	505
Fire Point (COC °F.)	590
Sol. in Water @ 25°C	<0.001%
Coefficient of Thermal Expansion @ 10-40°C (cc/cc/°C)	0.000703
Surface Tension (Dynes/cm)	38.6 @ 23°C
CAS Number	56803-37-3

Specification

Table B. Santicizer® 154 Comparative Performance in Plasticized, Flame-retarded Compounds

VINYL FILM						
Physical Properties in PVC, 67 PHR						
Plasticizer	T,°C	Volatility % Lost	Shore Hard- ness "A"	Water Ext/Abs	Kerosene Extraction	
Santicizer® 154	10.5	3.1	78	.08/.49	1.4	
Tricresyl phosphate	-14.2	1.3	72	.03/.26	2.4	
Isopropylated triphenyl phosphate	- 14.6	2.9	77	.07/.40	1.9	
Blend (70/30) of Santicizer 154/148	-17.2	3.0	75	.07/.47	3.0	

NITRILE RUBBER SHEET Physical Properties					
Santicizer® 154	5.5	610	995	345	
Isopropylated triphenyl					
phosphate	5.6	570	875	330	
Santicizer 148	6.0	490	815	385	

Flame-retardant Properties					
Plasticizer	Flame Spread (Monsanto Two-	% Light Transmission foot Tunnel Test)*	Oxygen Index		
Santicizer® 154	3.0	9	29.5		
Tricresyl phosphate	3.0	7	29.3		
Isopropylated triphenyl phosphate	3.0	10	29.3		
Blend (70/30) of Santicizer 154/148	3.3	15	28.7		
	PMB .				

Flame-retardant Properties				
Plasticizer	Vertical Burn Test (UL 94)* Oxygen Index*			
Santicizer® 154		V-O	42.0	
Isopropylated triphenyl phosphate		V-O	41.5	
Santicizer 148		V-O	39.9	
Formulation	PHR		UL 94, and the Two-foot	

1 3 1.5 1.5 0.2 35

pnospnate	3.0	′	29.3	Pliovic ⁵ M50 vinyl chloride resin
Isopropylated triphenyl phosphate	3.0	10	29.3	Hydraf ⁶ 710 alumina hydrate Hard Dixie clay MagCarb ⁷ L Thermogard ⁸ antimony trioxide
Blend (70/30) of Santicizer 154/148	3.3	15	28.7	Dyphos ⁹ stabilizer Stearic acid Drapex ² 10.4 epoxidized linseed oil
rmulation	PHIR			Zinc oxide Soider ¹⁰ sulfur
on ¹ 102 vinyl resin	100			Thiofide® MBTS accelerator
asticizer (as indicated)	50			Thiurad® TMTD accelerator
apex2 10.4 epoxidized linseed oil	3			Plasticizer (as indicated)
ark ² WS stabilizer	2			
omite ³ calcium carbonate filler	30			

performance of these or any other materials under actual fire conditions. Each user should determine independently whether potential fire hazards are associated with the finished product and whether Santicizer 154 is suitable for the particular use.

Trademarks of

(1) B. F. Goodrich Inc. (2) Argus Chemical Corp. (3) Thompson Weinman's Co. (4) Uniroyal Inc.

(5) Goodyear Tire & Rubber Co.
(6) Aluminum Company of America
(7) Merck & Co., Inc. (8) M & T Chemicals Inc. (9) NL Industries Inc. (10) Stauffer Chemical Co.

			_	_
Table	C. Aut	cianitio	n Temn	arstura

(ASTM D-2155-66)	
Fluid	A.l.T., °F
Santicizer® 154	1,050
Butylated triphenyl phosphate	1,025
Isopropylated triphenyl phosphate	1,010
Hydrocarbon (typical)	700 – 750

Table 15.72: 2-Ethylhexyl Diphenyl Phosphate (75)

SANTICIZER 141

Table A. Properties

IEDIA W LIGHALMAS	
Molecular Weight	362
Phosphorus, %	8.6 (Calc)
Acidity	0.20
(meq/100 gm. max)	
Appearance	Clear, oily liquid
Color (APHA) [max.]	40
Moisture (KF in	0.10
Methanol) %, max.	
Odor	Essentially odorless
Refractive Index (@25°C)	1.508 — 1.511
Specific Gravity	1.0880 - 1.093
(25°/25°C)	
Density (@ 25°C)	9.1
ca. lbs./gal.	
Pour Point (°C)	– 54
Boiling Point	239 (decomposes)
@ 10mm Hg, °C	

Vapor Pressure	
@ 150°C	0.2
@ 200°C	1.6
Viscosity (Centistokes)	
@ 0°C	61.0
@ 25°C	16.4
@ 98.9°C	2.5
Surface Tension	33.4
@ 22°C (dynes/cm) '	
Flash Point (C.O.C.) [°F.]	435
Fire Point (C.O.C.) [°F.]	460
Solubility In Water	0.002
@ 25°C,%	
CAS Number	1241-94-7
Specification	

Specification

Table B. Flow Index and Fusion Points of Various Plasticizers

Plasticizer	Gel Point, °C	Fusion Point, °C	Flow Index*
Santicizer® 160	89	148	9.5
CDP	100	143	13.0
Santicizer 141	105	151	2.4
DOP	127	167	1.4
7-9-11 Phthalate	128	172	1.2
DOA	139	175	0.6
Santicizer 97	143	177	1.0

[&]quot;Ratio of Severs visc. (50 psi) to Brookfield visc. (50 RPM).

(65 PHR)

58

64

58

(65 PHR)

84*

80

62

10 psi

50 psi

100 psi

Table C. Plastical Viscosity Stability (Formulated With 100 PHR Geon® 121)

Brookfield Viscosity — Polses						•	
Plasticizer	PHR	Temp., °C	RPM	Initial	1 Day	7 Days	28 Days
DOP	65	23	5	64	98	93	109
			50	58	86	80	96
		40	5	57	80	115	147
			50	40	59	86	109
Santicizer® 141	65	23	5	94	147	208	259
			50	56	84	112	154
		40	5	128	896	7,040	Gelled
			50	71	368	2,509	Gelled
DOP and Santicizer 141	60/5	23	5	64	70	86	112
			50	54	59	67	94
		40	5	48	104	147	224
			50	34	66	101	133
DOP and Santicizer 141	50/15	23	5	96	112	128	173
			50	62	66	74	100
		40	5	64	186	352	480
			50	42	93	162	216
		Seven	S Viscosity	Data			
DOP	Santiciz		OOP and Sa		41 DO	P and Sant	icizer 141

(60/5 PHR)

86

81

60

(50/15 PHR)

77

76

54

Table 15.72: (continued)

Formulation PVC DOP 100 50 3 2 Epoxidized soya oil Liquid Ba/Cd Liquid Zn Stearic Acid 0.25 0.5 U.V. Stabilizer: 2-Hydroxy-4-Methoxy Benzophenone

Table 15.72: (continued)

Table F. Santicizer® 141 - Performance in PVC (40 Mil Sheet)

	(30%) 43 PHR	(40%) 67 PHR	(50%) 100 PHR
Volatility (% Plasticizer Lost) (Activated Carbon 24 hours at 87°C)	6.8	7.4	8.4
Low-temperature Flex, Tr°C (Clash-Berg Method)	17	-39	-58
Water immersion (24 hours at 50°C) % soluble matter lost % water absorbed	0.02 0.24	0.06 0.36	0.25 0.50
Kerosene extraction (24 hours at 23°C) (% plasticizer lost)	3.0	7.3	24
Shore "A" Hardness, 10 second reading	84	68	50
Migration, Linde Silica: 1 day	0.3	1.5	4.2
3 days	1.2	4.6	12.3
7 days	2.1	9.0	22.4
Tensile, p.s.i.	2930	2210	1310
Elongation, %	320	440	510
Modulus @ 100% Elongation	1810	8 20	450
Flammability (Limiting O ₂ Index)*	27.0	25.4	24.9
Heat Stability	Fair	Fair	Fair
Migration Resistance to Nitrocellulose	Poor	Poor	Poor
Fluxing Rate	Excellent	Excellent	Excellent

^{*}The Oxygen Index Test results are not intended to reflect performance of these or any other materials under actual fire conditions. Each user should determine independently whether potential fire hazards are associated with the finished product and whether Santicizer 141 is suitable for the particular use.

Table G	Santiciz	or® 141_	_ Derforms	nce in Dise	tisci Formulation

Viscosity, poises	s Brookfield HAT #6 Spindle 50 PRM	65 PHR
23°C	Initial 7 Days 28 Days	24 59 88
40°C	Initial 7 Days 28 Days	26 640 Gel
50°C	Initial 7 Days 28 Days	170 Gel Gel
Severs	10 psi 50 psi 100 psi	47 58 54
Yield value, dyne	es/cm ²	12
Flow Index		2.4
Gel Temperature, °C		64
Fusion, Relative Temperature, °C		151
*Air-release Rate		Moderate
*Resilience, steel	ball, inches	5.8

^{*}Efficiency Conc. Adj. to "60" Shore A Hardness

Table 15.73: Isodecyl Diphenyl Phosphate (75)

SANTICIZER 148

Table A. Properties	
Molecular Weight	390
Phosphorus, %	7.9 (Calc)
Acidity	0.20
(meq/100 gm. max)	
Appearance	Clear, oily liquid
Color (APHA) [max.]	100
Moisture (KF in	0.10
Methanol) %, max.	
• Odor	Essentially odorless
Refractive Index (@25°C)	1.504 — 1.510
Specific Gravity	1.069 1.079
(25°/25°C)	
Density (@ 25°C)	8.94
ca. lbs./gal.	
Crystallizing Point (°C)	<-35
Pour Point (°C)	<-50
Boiling Point	245 (decomposes)
@ 10mm Hg, °C	

Vapor Pressure (mm Hg)	
@ 150°C	<0.1
@ 200°C	0.5
Viscosity (Centistokes)	
@ 0°C	95
@ 25℃	22.5
@ 98.9°C	3.0
Flash Point (C.O.C.) [°F.]	465
Fire Point (C.O.C.) [°F.]	500
Thermal Expansion Coefficient	0.00071
@ 10°−40°C	
(cc/cc/°C)	
Solubility In Water	
@ 25℃,%	<0.0008
CAS Number	29761-21-5

Specification

Table B. Effect of Type of Filler

(25% Phosphate Ester as Shown Blended With 711 Phthalate

		-foot Tunnel* Test Flame Spread	Oxygen Index % O ₂ to Sustain Burning		
30 PHR Atomite	No Sb ₂ O ₃	4 PHR Sb ₂ 0 ₃	No Sb ₂ 0 ₃	4 PHR \$6203	
Control	11.9	6.7	23.2	· 26.7	
(No phosphate ester)					
Triarylphosphate**	7.4	6.8	25.6	27.6	
Santicizer® 148	8.6	6.8	24.4	26.8	
30 PHR Hydrai*** 710					
Triarylphosphate**	3.3	2.9	29.4	30.3	
Santicizer 148	4.3	3.3	28.6	29.8	
30 PHR Atomite/Magcar	ቴ**** L(2/1)				
Triarylphosphate**	6.6	4.4	26.1	28.9	
Santicizer 148	4.7	3.6	24.7	28.2	

[&]quot;For a description of the Two-foot Tunnel and its operation, see "The Use of a Small Flame Tunnel For Evaluating Fire Hazard" by H.L. Vandersall, Journal of Paint Technology, Vol. 39, No. 11, August 1967. "Isopropylated triphenylphosphate. ""Trademark of Aluminum Company of America. ""Trademark of Merick & Co. Inc. For details see Monsanto U.S. Pat. 3,869,420.

Table C. Vertical Burn Performance of Antimony Trioxide Vs. All Phosphate Ester (50 PHR) Plasticizer

	Federal Specification CCC-T-191b, Method 5903			
	Char Length (in.)	After-flame (sec.)	After-glow	
711 Phthalate + 4 PHR Sb ₂ 0 ₃	3.2	9.0	0	
Triarylphosphate*	2.5	1.0	0	
Santicizer® 148	2.9	1.0	0	

^{*}Isopropylated triphenylphosphate.

__ (continued)

Table 15.73: (continued)

Table D. Comparison of Smoke Generation (50 PHR Plasticizer; **Atomite Filleri Monsanto Two-foot Tunnel Results**

	% Light Transmission at Maximum Smoke Density*	
(a) 711 Phthalate (control)	12	
(b) 50 PHR Phosphate Ester		
Triarylphosphate**	4	
Santicizer®148	29	
(c) 25% Phosphate Ester blend with		
711 Phthalate		
Triarylphosphate**	10	
Santicizer 148	25	

^{*}Monsanto Two-foot Tunnel (as used for plastic) equipped with smoke box.

Table E. Comparison of Smoke Generation (50 PHR Plasticizer; Atomite Filler) NBS Smoke Chamber*

	Specific Optical Density at Maximum Smoke Density in Chamber Dm Corrected			
	Flaming	Smoldering	Average	
(a) 711 Phthalate (control) (50 PHR)	165	194	180	
(b) 50 PHR Phosphate Ester				
Triarylphosphate**	346	209	278	
Santicizer® 148 (c) 25% Phosphate Ester Blend with 711 Phthalate	173	94	139	
Triarylphosphate**	235	209	222	
Santicizer 148	177	153	165	

^{*}See N.B.S. Technical Note 708: ASTM E-662
**Isopropylated triphenylphosphate.

Table F. Santicizer® 148 — Performance in PVC Fire Retardant Plastisol Formulation

Brookfield HAT #6 S	oindle 50 rpm	65 PHR
Viscosity Poises @ 23°C	Initial 1 Day 7 Days	25 53 74
@ 40°C	Initial 1 Day 7 Days	24 185 Gel

Table G. Santicizer® 148—Performance in PVC (40 Mil Sheet)

	(30%) 43 PHR	(40%) 67 PHR	(50%) 100 PHR
Volatility (% Plasticizer Lost) (Activated Carbon 24 hours at 87°C)	2.9	2.8	3.1
Low-temperature Flex, Tr°C (Clash-Berg Method)	- 13	- 34	- 50
Water Immersion (24 hours at 50°C) Soluble Matter Lost, % Water Absorbed %	0.05 0.33	0.06 0.41	0.16 0.53
Kerosene Extraction (% Plasticizer Lost 24 hours at 23°C)	1.7	6.4	14.6
Shore "A" Hardness, 10 second reading	83	69	52
Tensile, p.s.i.	2930	2210	1380
Ultimate Elongation %	370	460	500
Modulus @ 100% Elongation	1940	980	490 ·
Heat Stability	Fair	Fair	Fair
Fluxing Rate	Excellent	Excellent	Excellent
*Flammability (Limiting O ₂ Index)	26.9	25.1	24.7
Smoke Generation	Low	Low	Low

^{*}For formulation, see Section III, Performance in PVC.

^{**}Isopropylated triphenylphosphate.

^{*}The Oxygen Index Test results are not intended to reflect performance of these or any other materials under actual fire conditions. Each user should determine independently whether potential fire hazards are associated with the finished product and whether Santicizer 148 is suitable for the particular use.

Table 15.74: Emulsifiable Triaryl Phosphate (76)

Reofos 1884 Emulsifiable triaryl phosphate

Introduction Reofos 1884 is a water-dispersible phosphate ester product which combines the excellent flame retardance of triaryl phosphates with convenient dispersibility in aqueous systems.	phosphate fl acceptance systems. Re is a homoge	is based on FMC's Reofos 65, a triaryl ame retardant which has found wide in vinyl, rubber, and other polymer ofos 1884 contains no water because it neous mixture of Reofos 65 and a ulsifying agent.
Typical properties Acid number Color (APHA) Specific gravity (20°/20°C)	0.26 mg KOH/ 150-200 1.145-1.161	g
Weight loss, % (neat)	105° C	155° C
2 hours 4 hours	0.224 0.235	0.40 0.77
24 hours	0.466	3.82

Table 15.75: Proprietary Triaryl Phosphate Ester (75)

SANTICIZER 143

Table A. Properties	
Phosphorus, %	8.2 (Calc)
Acidity	0.20
(meq/100g) max.	
Appearance	Clear, oily liquid
Color (APHA) [max.]	100
Moisture % max.	0.15%
Refractive Index (@25°C)	1.539 1.545
Specific Gravity	1.144 – 1.158
(25°/25°C)	
Density lbs./gal.	9.58
Viscosity (Centistokes)	
@ 0°C	297
@ 25°C	44.2
@ 100°C	3.87
Coefficient of Thermal Exp.	0.00070
@10-40°C (cc/cc/°C)	
Flash Point (C.O.C.) [°F.]	475
Fire Point (C.O.C.) [°F.]	525
Sol. In Water @ 25°C,%	<0.001
CAS Number	56803-37-3 29761-21-5
l	

Specification

Table 15.75: (continued)

Table B. Comparative Performance	Data of Santicizer® 143
in Clear Behadayd Chleadde Ellast	

		Phosphate Ester						
	Se	nticizerº 1	143	Sentick	ter* 148	Isopropylated Triphenyl (K-100) ³	Tricresyl (TCP)	
PHR Plasticizer	30	40	50	40	50	50	50	
Hardness (Shore A) Brittle Temp. (°C) Low-temp. Flex. (°C) Volatility (% Plast. Lost) Oil Extraction (% Lost) Tensile Strength (PSI) % Elongation at Break 100% Modulus (PSI)	96 20 15 2.7 1.2 3570 235 3800	90 9 4 3.0 1.5 3350 290 3040	84 -2 -8 -3.5 2.0 3135 325 2380	86 -10 -13 2.8 1.8 3200 320 2500	78 -20 -28 3.3 2.3 2805 365 1690	84 2 7 3.3 1.5 3120 320 2475	80 -3 -8 1.5 0.5 3220 330 1990	
Oxygen Index	32.6	31.6	30.4	29.0	27.8	31.5	31.4	
Moneanto Two-foot Tunnel Flame Spread (in.) % Light Transmittance	3.1 18	3.2 16	3.3 15	3.4 33	3.5 32	3.5 10	3.0 5	
Vertical Burn (CCT 191B, 5903) After-flame (sec.) Char Length (in.)	32 3.0	17 2.6	10 2.2	1.5 1.8	0.4 1.7	17 2.2	13 2.0	
NBS Smoke Chamber Dm Flaming Mode Dm Smoldering Mode	236 128	275 141	305 157	155 85	171 98	345 188	303 163	

Geon¹ 102 EP 100 Parts
Plasticizer as given
Drapex² 10.4 3 Parts
Mark² WS 2 Parts

¹B.F. Guodrich Inc. ²Argus Chemical Corp. ³FMC Corp. These flammability test results are not intended to reflect performance of these or any other material under actual fire conditions. Each user should determine independently whether potential fire hazards are associated with the friished products and whether Santicizer 143 is suitable for the particular user.

Table 15.76: Tributoxyethyl Phosphate (76) KP-140°

KP-140 is tributyoxyethyl phosphate. Its CAS number is 78-51-3,

Formula

The formula of KP-140 is $(C_4H_0OC_2H_4O)_3$ PO

Specifications

 Specific gravity at 20°C
 1.016-1.023 (ASTM D263-69)

 Moisture
 0.2% w/w max (ASTM D364-64)

 Colour (Pt-Co: APHA)
 75 max (ASTM D1209-69)

Typical properties

The properties shown in the following tables are typical and do not represent specification limits

Property	KP-140
Odour	mild, butyl type
Total acid number	<0.5 mgKOH/g
Boiling range at 4 mm Hg (533 Pa),	215 to 228°C
Mid-boiling point at 4 mm Hg (533 Pa)	222°C
Freezing point	<-70°C (viscous liquid)
Pour point	<-70°C
Flash point (PMCC)	224°C (435°F)
Fire point	252°C (485°F)
Viscosity at 20°C	12.2 cp (mPa.s)
Vapour pressure	
at 150°C	<0.10 mm Hg (13.3 Pa)
at 200°C	1.6 mm Hg (213 Pa)
Surface tension at 20°C	30 dynes/cm (mN/m)
Refractive index N ₀ ²⁵	1.434 ± 0.002
Specific heat at 50 to 150	0.58 average
Solubility	
in water at 25°C	0.11% by weight
in water at 25°C	approx. 7.3% by volume
in mineral oil at 25°C	approx. 7.0% by volume
in gasoline at 25°C	complete
General solubility	Insoluble or limited solubility in
	glycerine, glycols, and certain amines.
	Soluble in most other organic liquids.
Thermal expansion at 10-40°C,	0.00081 per °C
Density at 20°C	1018 kg/m³ (8.50 lb/US gallon)

Table 15.77: Tributyl Phosphate (76)

Reomol TBP

Formula	(C ₄ H ₉ O) ₃ PO	MW (mol) 266
Specifications		
Specific gravity @ 20°/20°C	0.977-0.983 (#	ASTM D268-62/3)
Moisture, % by weight	0.20 max (AS	TM D1364-62)
Color Pt-Co (APHA)	50 max (AS	TM D1209-62)
Typical properties	,	
Odor	normal characteristic	•
Acidity, % as acetic acid	0.05 (ASTM D	1613-61T)
Boiling range @ 4 mm Hg (533 Pa), °C	137-145	
Mid-boiling range @ 4 mm Hg (533 Pa), °C	139	
Freezing point, °C	<-80	
Pour point, °C	<-80	
Flash point, °C (°F), PMCC	115 (239)	
Fire point, °C (°F)	182 (360)	
Viscosity, cp (mPa·s) @ 20°C	3.7	
Vapor pressure @ 150° C, mm Hg (kPa)	7.3 (0.97)	
@ 200° C, mm Hg (kPa)	>500 (66.6)	
Surface tension @ 20° C, dyne/cm (m N/m)	29	
Refractive index, N _D ²⁵	1.423 ± 0.001	
Solubility, in water @ 25°C	0.1%	
water in @ 25°C	7.0%	
in mineral oil @ 25°C	complete	
in casoline @ 25°C	complete	
General solubility	Insoluble or limited s	solubility in glycerine, glycols, and ible in most other organic liquids.
Thermal expansion @ 10 to 40°C	0.00086 per °C	C
Lb/U.S. gal (kg/m³) @ 20°C	8.14 (975)	

Table 15.78: Triphenyl Phosphate (75)

Table A. Properties	
Molecular Weight	326
Phosphorus, %	9.5 (Calc)
Acidity	0.10
(meq/100 gm. max)	
Appearance	White flakes
Color (APHA) [max.]	20 (molten)
Odor (max.)	Very faint, aromatic
Refractive Index (@ 60°C)	1.550
Specific Gravity (60°/20°C)	1.268
Density (@ 60°C)	10.5
ca. lbs./gal.	
Crystallizing Point (°C)	49
Boiling Point	238
@ 10mm Hg, °C	
Vapor Pressure (mm Hg)	
@ 150°C	>0.1
@ 200°C	1.3
@ 250°C	18.2
Viscosity (Centistokes)	
@ 55°C	7.8
@ 98.9°C	2.9
Flash Point (C.O.C.) [°F.]	437
Solubility In Water	
@ 34°C,%	0.002
CAS Number	115-86-6

Table 15.78: (continued)

Table B. Compatibility of Triphenyl Phosphate With	Various Resins
	(PHR)
Polyvinyl chloride	20
Polyvinyl acetate	80
Nitrocellulose	75
Cellulose acetate	35
Cellulose acetate-propionate	50
Cellulose acetate-butyrate	50
Ethyl cellulose	30
Acrylics	25
Santolite® MHP resin	100
Neoprene	50
Nitrile rubber	50
Phenolic	50

Resin	l l		Ethyl Cellulose		Nitro- Cellulose	
PHR	. 42.5	0	15	0	50	33
Solution Temperature °C.	180	_	_	_	_	-
Yield, p.s.i.	_	6755	4550	_	-	-
Tensile, p.s.i.	-	8960	6685	8533	4410	2500
Elongation, %	_	30	30	6	8	10
Hardness	81	100	70	_	-	_
Sward Hardness	_	_	_	_		40
Volatility	_	E	Е	-	-	-
Flexibility Schopper Fold Cycles		_	-	20	24	_
Flexural Strength, p.s.i.	9020	_		-	-	_
Moisture Permeability, %	_	_	_	100	56	_
% Water Absorbed in 24 hrs.	1.17	-	-	_	-	_

PHOSPHITES

Table 15.79: Dialkyl Hydrogen Phosphites (64)

DUVCICAT	PROPERTIES
PHYSICAL	PROPERTIES

	Dimethyl	Diethyl	Dibutyl	Bis(2-ethylhexyl)
	Hydrogen	Hydrogen	Hydrogen	Hydrogen
Property	Phosphite	Phosphite	Phosphite	Phosphite
Formula	(CH ₃ O) ₂ P(O)H	$(C_2H_5O)_2P(O)H$	$(C_4H_9O)_2P(O)H$	$(C_8H_{17}O)_2P(O)H$
Molecular Weight	110.1	138.1	194.2	306.4
Appearance	colorless liquid	colorless liquid	colorless liquíd	colorless líquid
Odor	mild, characteristic	mild, plea s ant	mild, pleasant	mild, suggestive of octyl alcohol
Boiling Point	72-3°C/25 mm	65-66°C/6 mm	118-9°C/7 mm	163 -4° C/3 mm
Specific Gravity				
20°/4°	1,200	1.079	0.995	0.937
Index of Refraction, nD nD	1.4016	1.4073	1.4238	1.4423
Flash Point, Clevela	and			
open cup	205°F	195°F	250° F	330° F
Fire Point, Clevelar	nd,			
open cup	220° F	220°F	300° F	400° F
Viscosity				
(Centistokes) 77°F	1.08	1,21	2.36	6.54
100° F	0.92	1.03	1.90	4.72
210° F	0.51	0.56	0.89	1.59
Toxicity (single dose oral LD ₅₀ , rats),				
mg/kg	3,050	1,000	3,900	11,900
Acidity	neutral	neutral	neutral	neutral
Solubility				
in water:	sol., hydrolyzes	sol., hydrolyzes	sl. sol., slowly	insol., very slowly hydrolyzes
			hydrolyzes	

in other solvents: miscible with alcohol, ether, acetone and most common organic solvents.

PHYSICAL PROPERTIES							
Property	Trimethyl Phosphite	Triethyl Phosphite	Tris(2-chloroethyl) Phosphite	Triisopropyl Phosphite	Tributy l Phosphite	Triisooctyl Phosphite	Tris(2-ethylhexyl) Phosphite
Formula	(CH ₃ O) ₃ P	$(C_2H_5O)_3P$	$(ClC_2H_4O)_3P$	(C ₃ H ₇ O) ₃ P	(C ₄ H ₉ O) ₃ P	$(C_8H_{17}O)_3P$	(C ₈ H ₁₇ O) ₃ P
Molecular Weight	124.08	166.2	269.5	208.2	250,3	418.6	418.6
Appearance	colorless liquid	colorless liquid	colorless liquid	colorless liquid	colorless liquid	colorless liquid	colorless liquid
Odor	penetrating	sweet, characteristic	mild, characteristic	sweet, characteristic	mild, not unpleasant	mild, not unpleasant	mild, not unpleasant
Boiling Point	111-112°C	65°C/24 mm	119°C/0,15 mm	94-6°C/50 mm	118-25°C/7 mm	161-4°C/0.3 mm	163-4°C/0.3 mm
Specific Gravity 20°/4°	1.046	0.969	1.353	0.914	0.925	0.891	0.902
Index of Refraction, n_D^{20}	1.4076	1,4131	1.4878	1.4101	1.4327	1.4498	1.4494
Flash Point, Cleveland, open cup	100°F	130° F	375° F	165°F	250°F	385°F	365°F
Fire Point, Cleveland, open cup	100° F	160° F	410° F	195°F	275°F	410°F	400°F
Viscosity (Centistokes) 77°F 100°F 210°F	0.58 0.52 0.32	0.74 0.65 0.40	5,22 4,11 1,45	1.18 0.99 0.57	2.08 1.65 0.86	9.49 6.85 2.24	8.35 5.86 1.90
Toxicity (single dose oral LD ₅₀ , rats), mg/kg	2,000	3,160	250	2,300	3,000	9,200	
Solubility in water:	insol, but reacts with	sl. sol., hydrolyzes	insol., slowly hydrolyzes	insol., slowly hydrolyzes	insol., slowly hydrolyzes	insol., very slowly hydrolyzes	insol., very slowly hydrolyzes
In other solvents:	miscible with alco	hol, acetone, benzene	, ether, heptane, carbon				

tetrachloride, and most of the common organic solvents.

Table 15.81: Tertiary Phosphites (27)

Name	Formula	Molecular Weight	Oral Toxicity LD50 Microliters per Kg of Rat Wt.	Color and Form	Phosphorus Content % P	Melting Point °C	Boiling Point °C	Refractive Index n 25 ID	Specific Gravity 25: 15°C	Flash Point COC*F	Viscos 66°F	ity Centist	okes 210°F	Vapor Pressure
Trimethyl Phosphite	{CH₃O}₃P	124	2000	Water-white liquid	24.97	<-78	111±1	1.404	1.045	130	_	0.51	0.30	10 mm at 12°C 100 mm at 55°C
Triethyl Phosphite	(C ₂ H ₅ O) ₃ P	166	3160	Water-white liquid	18.67	_	154±1	1.413	0.954			_	_	_
Tri(2-ethylhexyl) Phosphite	(CaH17O)3P	418		Straw-colored liquid	7.45	glass at low temp.		1.451	0.897	340	8.5	5.03	-	_
Tridecyl Phosphite (iso)	{C ₁₀ H ₂₁ O} ₃ P	502	>10000	Water-white liquid	6.17	< 0	180 at 0.1 mm	1.454	0.886	455	_	11.24	2.90	_
Trilauryl Phosphite	(C ₁₂ H ₂₅ O) ₃ P	586	> 3160	Water-white liquid	5.29	<10		1.456	0.866		_		_	_
Trioctadecyl Phosphite	(C18H37O)5P	838	>10000	White waxy solid	3.70	45-47	-		0.940*		_	_	_	
Trilauryl Trithiophosphite	(C ₁₂ H ₂₃ S) ₃ P	634	>10000	Light straw-colored liquid	4.89	20		1.502	0.915	430	<u> </u>	24.7	5.7	0.01 mm at 200°C
Triphenyl Phosphite	(O°);	310	Approx. 2800	Water-white to pale yellow liquid	10.0	22-25	155-160 at 0.1 mm	1.589	1.184	425	_	8.34	2.07	_
Diphenyldecyl Phosphite (iso)	()-P-OC10H21	374	>10000	Water-white liquid	8.28	18	_	1.516	1.024	425	_	7.82	2.26	_
Phenyldidecyl Phosphite (iso)	-O-P (OC10H21)2	438	>10000	Water-white liquid	7.07	<0		1.478	0.940	425	_	8.95	2.42	
"Pentite" [tetra(diphenyl phosphito) pentaerythritol]	(O .o) , P.OCH2c	989	1500	White waxy solid	12.4	30-60	_	_	1.240	_	_	-	-	
"Dipentite" — [diphenyl pentaerythritol diphosphite]	OCHac CHac Chac	380	5000	White solid	16.3	70-80	190-200 at 0.1 mm	_	_	_	-	-		-
Phenylneopentyl Phosphite	$\frac{CH_3}{CH_3} > C < \frac{CH_2 - O}{CH_2 - O} > NO - \frac{CE}{CH_2}$	226	1780	Water-white liquid	13.70	19	138-140 at 10 mm	1.517	1.135				_	
1620 Polymeric Phosphite	Bisphenol A-Pentaerythritol Phosphite	Av 1100	>3160	White solid	16.1±0.2	100-110			-	-	_	_	_	_
	I	I	I	I	l	i	l	l				•D	ensity	

Table 15.82: Organophosphites (27)

PHYSICAL DATA

	Triphenyl	Diphenyldecyl	Phenyldidecyl	Tridecyl
Phosphorus Content	10%	8.28%	7.07%	6.17%
Melting Point	22°-25°C.	18°C.	< 0°C .	< 0°C .
Boiling Point at 0.1 mm.	155° - 160°C .	_	_	180°C.
Refractive Index, n25/D	1.589	1.5160	1.4785	1.4560
Flash Point (Cleveland open cup)	425°F.	425°F.	425°F.	455°F.
Fire Point (Cleveland open cup)	470°F.	455°F.	470°F.	485°F.
Specific Gravity, 25°/15.5°C.	1.184	1.023	0.940	0.891
Specific Gravity Correction Factor,				
per 1°C.	0.00085	0.00077	0.00073	0.00066
Pounds per Gallon at 25°C.	9.86	8.520	7.829	7.421
Viscosity in Centistokes:				
at 100°F.	8.34	7.82	8.95	11.24
at 210°F.	2.07	2.26	2.42	2.90

SILICATES

Table 15.83: Ethyl Silicate (2)

Silicon Tetraethyl Ester Ortho-Silicic Acid Ethyl Ester $Si(OC_2H_5)_4$

Ethyl silicate is a water-white liquid, soluble in alcohol. It hydrolyzes in water to an adhesive form of silicic acid and alcohol. It is used in lacquers and paint as a pigment binder giving films that are resistant to fire and chemicals and are weatherproof. A less pure, higher silica ester, Ethyl Silicate 40, is also available commercially.

Specifications-Tetraethyl Silicate

Acidity (as HCl)
Available silica (as SiO₁)
Boiling point
Boiling range at 760 mm
Below 160°C
Below 170°C
Color
Purity
Specific gravity at 20/20°C
Weight per gal at 20°C

0.05% by wt, max 28.8% 165.5°C

Not more than 5% Not less than 95% Water-white 97%, min 0.933 to 0.938 7.78 lbs

Specifications—Ethyl Silicate

Acidity, maximum acidity (as HCl)
Available silica (as SiO₂)
Boiling point
Boiling range at 760 mm
Below 80°C
Below 110°C
Color
Odor initial
Specific gravity at 20/20°C
Weight per gal at 20°C

0.1% 34-42% 165°C None

Not more than 5% Light brown Mild 1.050 to 1.070 8.82 lba

Table 15.84: Summary of Typical Properties of Plasticizers (75)

		Phthalates				Adipates 		
	Diocty!*	Santicizer* 160	Santicizer 261	Santicizer 278	Dibuty!*	Santicizer 97	Dioctyl	
Molecular Weig	nt 391	312	368	455	278	370	371	
Acidity** (meq./100 gm. max	0.12	•0.37	•0.37	•0.37	0.12	•0.25	•0.25	
Appearanc	e Clear, oily liquid	Clear, oily liquid	Olear, oily liquid	•Clear, oily liquid	Clear, oily liquid	•Clear, oily liquid	•Clear, oily liquid	
Color (APHA) (max	.) 25	•40	•75	•175	20	•50	•25	
Moisture (KF Methanol) % ma		•0.15	•0.15	•0.15	0.15	•0.10	•0.10	
Od	Slight, characteristic	Slight, characteristic	•Slight, characteristic	•Slight, characteristic	Slight, characteristic		•Mild	
Refractive Index (at 25°	1.4845-1.4858	•1.535-1.540	•1.523-1.529	•1.516-1.520	1.4895-1.4915	•1.441-1.447	•1.444-1.448	
Specific Gravity (25°/25°	0.980-0.985	•1.115-1.123	•1.065-1.074	•1.093-1.100	1.044-1.048	•0.916-0.924	•0.921-0.927	
Density (at 25°C) ca. ibs./ga	l. 8.18	9.3	8.9	9.1	8.72	7.7	7.72	
Crystallizing Point (°C)*	-55 (very stiff gel)	<-35	-	-	<-35	-13	<-70	
Pour Point (°	– 47	-4 5	-45	-6.5	–4 0	-	-65	
Flash Point (C.O.C.) (°	F) 425	390	445	440	340	400	377	
Fire Point (C.O.C.) (°	F) 480	450	-	535	395	450	450	
Boiling Point @ 10 mm Hg.	C 236	240	252	243	192	224	224	
Vapor Pressure @ 150	C -	0.14	-	-	.08	-	-	
@ 200	C 1.2	1.9	0.5	0.5	14.0	3.3	2.3	
@ 250	<u> </u>	14.4	9.7	15	100	27	32	
% VOC, EPA method 24**		2.3	0.7	1.1	14.8	2.8	4.2	
Viscosity (centistokes) @ 0		230	-	ca 10,000	55.0	-	-	
@ 25		39.5	53	800	15.6	12.8	12.3	
@ 98.9		3.42	4.2	11.5	2.4	2.6	2.4	
Surface Tensio @ 20°C (dynes/cm	.)	39.9 (25°C)	35.3 (24°C)	34.8 (25℃)	35 (30°C)	30.3 (25°C)	29	
Solubility in Wat @ 25°C (9		0.0003 (30°C)	0.00003	Practically insol.	<0.001 (30°C)	<0.01	<0.01	
Hydroxyl	# -	<1	2	2-4	-	-	-	

	Phosphates			Specialty Modifiers			
	Santicizer 141	Santicizer 148	Santicizer 2148	Santicizer 143	Senticizer 154	НВ-40	
Molecular Weight	362	390		~	368	-	Molecular Weight
Acidity** (meq./100 gm. max.)	•0.20	•0.20	•0.20	•0.20	•0.25	-	Acidity** (meq./100 gm. max.)
Appearance	Clear, oily liquid	Clear, oily liquid	◆Clear, oily liquid		Clear, oily liquid	Clear, oily liquid	Appearance
Color (APHA) (max.)	•40	•100	•200	•100	•60	•450	Color (APHA) (max.)
Moisture (KF in Methanol) % max.	•0.10	•0.10	•0.10	•0.15	•0.15	•150 ppm	Moisture (KF in Methanoi) % max.
Odor	 Essentially odorless 	 Essentially odorless 	 Essentially odorless 	~	 Essentially odorless 	Faint, characteristic	Odor
Refractive Index (at 25°C)	•1.506-1.510	•1.501-1.507	•1.494-1.502	•1.539-1.545	•1.5535-1.5565	•1.560-1.575	Refractive Index (at 25°C)
Specific Gravity (25°/25°C)	•1.085-1.091	•1.061-1.071	•1.028-1.044	•1.144-1.158	•1.175-1.185	1,001-1.009 (25°/15.5°C)	Specific Gravity (25°/25°C)
Density (at 25°C) ca. lbs./gal.	9.1	8.94	8. 6 5	9.6	9.8	8.4	Density (at 25°C) ca. lbs./gal.
Crystallizing Point (°C)***	_	<-35	0	-	<-20	-	Crystallizing Point (°C)***
Pour Point (°C)	-54	<-50	-		-25	-26	Pour Point (°C)
Flash Point (C.O.C.) (°F)	435	465	445	475	505	345	Flash Point (C.O.C.) (°F)
Fire Point (C.O.C.) (°F)	460	500	500	525	590	385	Fire Point (C.O.C.) (°F)
Boiling Point @ 10 mm Hg. °C	239 (dec)	245 (dec)	230 (dec)	-	258	180	Boiling Point @ 10 mm Hg. °C
Vapor Pressure @ 150°C	0.2	<0.1	-		-	2.6	Vapor Pressure @ 150°C
@ 200°C	1.6	0.5	<0.2	_	1.0	22	@ 200°C
@ 250°C		-	-	-	7.4	95	@ 250°C
% VOC, EPA method 24****	2.5	1.6	0.4	_	0.7	_	% VOC, EPA method 24****
Viscosity (centistokes) @ 0°C	61.0	95	-	297	475	1,200-2,000	Viscosity (centistokes) @ 0°C
@ 25°C	16.4	22.5	24	44.2	58	75-200	@ 25°C
@ 98.9°C	2.5	3.0	3.5	-		3.9-4.4	@ 98.9°C
Surface Tension @ 20°C (dynes/cm.)	33.4 (22°C)	-	36.4	-	38.6 (23°C)	40.1	Surface Tension @ 20°C (dynes/cm.)
Solubility in Water @ 25°C (%)	0.003	<0.003	<0.2	<0.001	<0.001	Practically insol.	Solubility in Water @ 25°C (%)
Hydroxyl #	<3	<3	>4	<3	<1	<1	Hydroxyl #

Specification.

^{*}Registered Trademark of Monsanto Co.

^{&#}x27;This product is no longer manufactured by Monsanto. Data is included for reference only.

[&]quot;To convert from meg/100 gram, multiply by 0.559 to obtain "acid no." (milligrams KOH per gram of sample).

[&]quot;Oystalkzing point is NOT a valid prediction of low temperature performance in a polymer system.
""Tested per ASTM:2369 as specified in EPA method 24. Tested <u>WITH</u> toluene solvent as specified in ASTM method. Testing without toluene reduces measured VOC 10-50% below values reported here.

HPLC and UV Data

GC-FID CHROMATOGRAMS

Table 16.1: Methylene Chloride (56)

These capillary GC-FID Chromatograms show the significant decrease in impurity content from raw material to finished product.

Raw Material: Methylene Chloride 500 → 5 concentration

Table 16.1: (continued)

Finished Product: HPLC Methylene Chloride #9315 500 → 5 concentration

HPLC GRADIENT CHROMATOGRAMS

Table 16.2: Water vs Methanol (56)

Water Versus Methanol - 215nm

Table 16.3: Water vs Acetonitrile (56)

Table 16.4: Water vs 2-Propanol (56)

Table 16.5: Water vs Tetrahydrofuran (56)

Table 16.5: (continued)

Table 16.6: Water-0.1% Trifluoroacetic Acid vs Acetonitrile-0.1% Trifluoroacetic Acid (56)

Table 16.6: (continued)

Table 16.7: 0.1 M Potassium Phosphate vs Acetonitrile (56)

Table 16.8: 0.1 M Potassium Phosphate vs Methanol (56)

Table 16.9: 0.05 M Potassium Phosphate vs Acetonitrile (56)

(continued)

Table 16.9: (continued)

Table 16.10: 0.05 M Potassium Phosphate vs Methanol (56)

Table 16.11: 0.01 M Potassium Phosphate vs 0.5 M Potassium Phosphate pH 6.8/6.4 (56)

Table 16.12: Hexane vs Chloroform (56)

Table 16.13: Hexane vs Methylene Chloride (56)

Table 16.14: Hexane vs Ethyl Acetate (56)

Table 16.15: Hexane vs 2-Propanol (56)

Table 16.15: (continued)

Table 16.16: Hexane vs Ether (Anhydrous) (56)

Table 16.17: 2,2,4-Trimethylpentane vs Chloroform (56)

Table 16.18: 2,2,4-Trimethylpentane vs Methylene Chloride (56)

20

Time Iminutes!

30

Table 16.19: 2,2,4-Trimethylpentane vs Ethyl Acetate (56)

Table 16.20: 2,2,4-Trimethylpentane vs 2-Propanol (56)

(continued)

Table 16.20: (continued)

Table 16.21: Methylene Chloride vs Methanol (56)

Table 16.22: Methylene Chloride vs 2-Propanol (56)

Table 16.23: Methylene Chloride vs Ethyl Acetate (56)

Table 16.24: Methylene Chloride vs Ether (Anhydrous) (56)

Table 16.24: (continued)

ULTRAVIOLET SPECTRA

Table 16.25: Acetic Acid, Glacial (56)

Table 16.26: Acetone (56)(61)

(continued)

Table 16.26: (continued)

SPECIFICATIONS (61)
Packed under nitrogen

Water: Less than 0.50% by infrared spectroscopy

Ultraviolet absorbance:

	Maximum
Wavelength, nm	Absorbance
330	1.000
340	0.060
350	0.010
3 75	0.005
400	0.005

Refractive index: 1.3586 ± 0.0003 at 20°C

Boiling range: 56-57°C Residue: Less than one mg/l

Purity: Greater than 99.9% by gc analysis

Electron capture gc: No residue peaks greater than 10 ng/l as heptachlor epoxide.

Table 16.27: Acetonitrile (56)(61)

ACETONITRILE NON-SPECTRO (61)

<u>SPECIFICATIONS</u>

Water: Less than 0.05% by Karl Fischer titration

Ultraviolet absorbance: Optical transparency is not controlled. For spectro-

photometric applications use Acetonitrile UV.

Refractive index: 1.3440 ± 0.0006 at 20°C

Boiling range: 81-82°C Residue: Less than one mg/l

Purity: Greater than 99.9% by gc analysis

Electron capture gc: No residue peaks greater than 10 ng/1 as heptachlor epoxide,

based on a 1:1 petroleum ether extract.

0.005

Table 16.27: (continued)

ACETONITRILE UV (61)

SPECIFICATIONS

Water: Less than 0.01% by Karl Fischer titration

Ultraviolet absorbance: Maximum

Wavelength, nm
190
1.000
200
0.050
225
0.010
250
0.005

Refractive index: 1.3440 ± 0.0006 at 20°C

Boiling range: 81-82°C Residue: Less than one mg/l

Purity: Greater than 99.9% by gc analysis

Electron capture gc: No residue peaks greater than 10 ng/l as heptachlor epoxide,

350

based on a 1:1 petroleum ether extract.

Purity by liquid chromatography: No UV absorbing peak greater than 0.001 absorbance unit (1 cm path length) at 254 nm, or 0.005 absorbance unit at 205 nm in a gradient from 100% water to 100% acetonitrile on a 15 x 0.46 cm column with 5 uM C-18 packing. No fluorescent peak greater than that equivalent to 20 pg of benzo(a)-pyrene under the above conditions using 350 nm excitation, 450 nm emission.

Table 16.28: Benzene (56)(61)

SPECIFICATIONS (61)

Water: Less than 0.02% by Karl Fischer titration

Ultraviolet absorbance:

	<u>Maximum</u>
Wavelength, nm	Absorbance
278	1.000
300	0.020
325	0.010
350	0.005
400	0.005

M - - - - - - -

Refractive index: 1.5006 ± 0.0006 at 20°C

Boiling range: 80-81°C Residue: Less than one mg/l

Purity: Greater than 99.5% by gc analysis

Substances darkened by sulfuric acid: Passes ACS test Color with hot sulfuric acid: Passes test (colorless)

Thiophene: Passes ACS test (limit one mg/l)

Electron capture gc: No residue peak greater than 4 ug/l as heptachlor epoxide.

Table 16.29: 2-Butanol (61)

<u>SPECIFICATIONS</u>

Water: Less than 0.05% by Karl Fischer titration

Ultraviolet absorbance:

	Maximum
Wavelength, rm	<u>Absorbance</u>
260	1.000
275	0.300
300	0.010
350	0.005
400	0.005

Refractive index: 1.3970 ± 0.0008 at 20° C

Boiling range: 99-100°C Residue: Less than five mg/l

Purity: Greater than 98% by gc analysis

Table 16.30: n-Butyl Acetate (61)

SPECIFICATIONS

Water: Less than 0.05% by Karl Fischer titration

Ultraviolet absorbance:

	TIGALTINGIA
Wavelength, nm	<u>Absorbance</u>
254	1.000
275	0.050
300	0.010
350	0.005
400	0.005

Maximum

Refractive index: 1.3937 ± 0.0010 at 20°C

Boiling range: 124-126°C Residue: Less than five mg/l

Purity: Greater than 99.0% by gc analysis

Table 16.31: n-Butyl Alcohol (61)

SPECIFICATIONS

Water: Less than 0.03% by Karl Fischer titration

Ultraviolet absorbance:

		Maximum
Wavel	ength, nm	<u>Absorbance</u>
	215	1.000
	225	0.500
	250	0.040
	275	0.010
	300	0.005

Refractive index: 1.3990 ± 0.0004 at 20°C

Boiling range: 117-118°C

Residue: Less than five mg/l Purity: Greater than 99.8% by gc analysis

Table 16.32: n-Butyl Chloride (61)

SPECIFICATIONS

Water: Less than 0.02% by Karl Fischer titration

Ultraviolet absorbance:

<u>Maximum</u>
<u>Absorbance</u>
1.000
0.300
0.010
0.005
0.005

Refractive index: 1.4017 \pm 0.0008 at 20°C Boiling range: 78-79°C

Residue: Less than one mg/l Chloride: Not detectable (limit 10 mg/l) Purity: Greater than 99.5% by gc analysis

Table 16.33: tert-Butyl Methyl Ether (56)

Table 16.34: Carbon Tetrachloride (56)(61)

SPECIFICATIONS (61)

Water: Less than 0.01% by Karl Fischer titration

Ultraviolet absorbance:

	Maximum
Wavelength, nm	<u>Absorbance</u>
263	1.000
275	0.100
300	0.005
350	0.005
400	0.005

Refractive index: 1.4601 ± 0.0003 at 20°C

Boiling range: 76-77°C Residue: Less than one mg/l

Purity: Greater than 99.9% by gc analysis

Substances darkened by sulfuric acid: Passes ACS test

Acidity: Not detectable (limit one mg/l as HCl)

Chloride: Not detectable (limit 10 mg/l)

Infrared absorbance: C-H and C=O free. Shows no extraneous absorbance bands in the 3.1-3.6 and 5.6-6.0 micron ranges when observed in a 25 mm path

length liquid cell.

Table 16.35: Chlorobenzene (61)

SPECIFICATIONS

Water: Less than 0.03% by Karl Fischer titration

Ultraviolet absorbance: Maximum Wavelength, nm Absorbance 1.000 287 300 0.050 0.040 325 350 0.020

Refractive index: 1.5249 ± 0.0007 at 20°C

Boiling range: 131-132°C Residue: Less than one mg/l

Purity: Greater than 99.9% by gc analysis

Table 16.36: Chloroform (56)(61)

(Alcohol Stabilized) (56)

400

0.005

Table 16.36: (continued)

(Hydrocarbon Stabilized) (56)

(Without Ethanol) (61)

SPECIFICATIONS

Packed under nitrogen Preservative: Amylene

Water: Less than 0.02% by Karl Fischer titration

Ultraviolet absorbance: <u>Maximum</u> Absorbance Wavelength, nm 245 1.000 250 0.300 275 0.005 300 0.005 0.005 400

Refractive index: 1.4457 ± 0,0003 at 20°C

Boiling range: 61-62°C

Residue: Less than one mg/l Purity: Greater than 99.9% by gc analysis (excluding preservative)

Suitability for use in dithizone tests: Passes ACS test Substances darkened by sulfuric acid: Passes ACS test Acidity: Not detectable (limit one mg/l as HCl)

Chloride: Not detectable (limit 10 mg/l)

Alkaline extraction: Absorbance of aqueous alkaline extract not more than 0.10

at 240 nm.

Electron capture gc: No residue peaks greater than 10 ng/1 as heptachlor epoxide.

(With 1% Ethanol) (61)

SPECIFICATIONS

Packed under nitrogen Contains 1% ethanol. Preservative: Amylene

Water: Less than 0.02% by Karl Fischer titration

Ultraviolet absorbance:

Wavelength, nm	<u>Maximum</u> Absorbance
245	1.000
250	0.300
275	0.005
300	0.005
400	0.005

1.4447 ± 0.0004 at 20°C Refractive index:

Boiling range: 61-62°C Residue: Less than one mg/l

Purity: Greater than 99.9% by gc analysis (excluding preservative)

Suitability for use in dithizone tests: Passes ACS test Substances darkened by sulfuric acid: Passes ACS test Acidity: Not detectable (11mit one mg/l as HCl) Chloride: Not detectable (11mit 10 mg/l)

Alkaline extraction: Absorbance of aqueous alkaline extract not more than 0.10 at 240 nm.

Electron capture gc: No residue peaks greater than 10 ng/1 as heptachlor epoxide.

Table 16.37: Cyclohexane (56)(61)

SPECIFICATIONS (61)

Water: Less than 0.01% by Karl Fischer titration

Ultraviolet absorbance:		<u>Maximum</u>
	Wavelength, nm	<u>Absorbance</u>
	200	1.000
	225	0.170
	250	0.020
	300	0.005
	400	0.005

Refractive index: 1.4240 ± 0.0020 at 20° C

Boiling range: 80-81°C Residue: Less than one mg/l

Purity: Greater than 99.5% by gc analysis

Electron capture gc: No residue peaks greater than 10 ng/l as heptachlor epoxide.

Table 16.38: Cyclopentane (61)

SPECIFICATIONS

Water: Less than 0.01% by Karl Fischer titration

Ultraviolet absorbance: Maximum
Absorbance
200 1.000
215 0.300
225 0.020
300 0.005
400 0.005

Refractive index: 1.4065 ± 0.0005 at 20°C

Boiling range: 49-50°C

Residue: Less than one mg/l

Purity: Greater than 75% cyclopentane and 99% cyclopentane and saturated

C₅ hydrocarbons by gc analysis

Electron capture gc: No residue peaks greater than 10 ng/1 as heptachlor epoxide.

Table 16.39: Decahydronaphthalene (Decalin) (61)

SPECIFICATIONS

Water: Less than 0.01% by Karl Fischer titration

Ultraviolet absorbance (under nitrogen):

	Maximum
Wavelength, nm	Absorbance
200	1.000
225	0.500
250	0.050
300	0.005
400	0.005

Refractive index: 1.4766 ± 0.0015 at 20°C

Residue: Less than 10 mg/l Purity: Greater than 99.0% by gc analysis

Table 16.40: o-Dichlorobenzene (56)(61)

SPECIFICATIONS (61)

Water: Less than 0.02% by Karl Fischer titration

Ultraviolet absorbance:		<u>Maximum</u>
	<u>Wavelength. nm</u>	<u>Absorbance</u>
	295	1.000
	300	0.300
	325	0.100
	350	0.050
	400	0.005

Refractive index: 1.5517 ± 0.0008 at 20° C

Residue: Less than five mg/l Purity: Greater than 98.0% by gc analysis

Table 16.41: Diethyl Carbonate (61)

SPECIFICATIONS

Water: Less than 0.02% by Karl Fischer titration

Ultraviolet absorbance:

	<u>Maximum</u>
<u>Wavelength, nm</u>	<u>Absorbance</u>
256	1.000
265	0.150
275	0.050
300	0.040
400	0.010

Refractive index: 1.384 ± 0.0010 at 20°C

Boiling range: 125-126°C Residue: Less than five mg/l

Purity: Greater than 99.0% by gc analysis

Table 16.42: Dimethyl Acetamide (61)

SPECIFICATIONS

Packed under nitrogen

Water: Less than 0.03% by Karl Fischer titration

Ultraviolet absorbance:

	TIGNETHORN
Wavelength, nm	Absorbance
268	1.000
275	0.300
300	0.080
350	0.005
400	0.005

Maximum

Residue: Less than one mg/l

Purity: Greater than 99.5% by glc analysis

Gc impurities eluting before solvent: None greater than five mg/1

Table 16.43: Dimethyl Formamide (61)

SPECIFICATIONS

Packed under nitrogen

Water: Less than 0.03% by Karl Fischer titration

Ultraviolet absorbance:

	<u>Maximum</u>
Wavelength, nm	Absorbance
268	1.000
275	0.300
300	0.050
350	0.005
400	0.005

Residue: Less than two mg/l

Purity: Greater than 99.9% by glc analysis

Gc impurities eluting before solvent: None greater than five mg/l

Table 16.44: Dimethyl Sulfoxide (61)

SPECIFICATIONS

Packed under nitrogen

Water: Less than 0.04% by Karl Fischer titration

Ultraviolet absorbance:

Wavelength, nm	<u>Maximum</u> Absorbance
268	1.000
275	0.500
300	0.200
350	0.020
400	0.005

Refractive index: 1.4775 ± 0.0015 at 20° C

Residue: Less than one mg/1

Purity: Greater than 99.5% by gc analysis

Table 16.45: 1,4-Dioxane (61)

SPECIFICATIONS

Packed under nitrogen

Water: Less than 0.05% by Karl Fischer titration

Ultraviolet absorbance:

Wavelength, nm	Absorbance
215	1.000
250	0.300
300	0.020
350	0.005
400	0.005

Maximum

Refractive index: 1.4216 ± 0.0010 at 20°C

Boiling range: 101-102°C Residue: Less than one mg/1

Purity: Greater than 99.9% by gc analysis

Peroxides: Less than two mg/l as H2O2 at time of packaging

Table 16.46: Ether, Anhydrous (56)

Table 16.47: 2-Ethoxyethanol (61)

SPECIFICATIONS

Packed under nitrogen

Water: Less than 0.05% by Karl Fischer titration

400

0.005

Refractive index: 1.4074 ± 0.0005 at 20° C

Boiling range: 134-136°C Residue: Less than one mg/l

Purity: Greater than 99.5% by gc analysis

Peroxides: Less than two mg/1 as H_2O_2 at time of packaging

Table 16.48: Ethyl Acetate (56)(61)

SPECIFICATIONS (61)

Water: Less than 0.03% by Karl Fischer titration

Refractive index: 1.3721 ± 0.0003 at 20°C

Boiling range: 77-78°C Residue: Less than one mg/1

Purity: Greater than 99.5% by gc analysis. A special grade free of trace aldehyde, ketone, acid, and alcohol (less than 0.005A at 275 nm) is

available at extra cost.

Electron capture gc: No residue peaks greater than 10 ng/l as heptachlor epoxide.

Table 16.48: (continued)

ETHYL ACETATE - Ketone Free

Purified for applications requiring solvent free of trace aldehyde, ketone, acid or alcohol.

SPECIFICATIONS

Water: Less than 0.05% by Karl Fischer titration

Ultraviolet absorbance:

Wavelength, nm	<u>Maximum</u> Absorbance
256	1.000
275	0.005
300	0.005

Refractive index: 1.3721 ± 0.0003 at 20° C

Boiling range: 77-78°C Residue: Less than one mg/1

Purity: Greater than 99.9% by gc analysis.

Electron capture gc: No residue peaks greater than 10 ng/1 as heptachlor epoxide.

Color with sulfuric acid: Passes ACS test

Substances reducing permanganate: Passes 24 hour test

Table 16.49: Ethylene Dichloride (61)

SPECIFICATIONS

Water: Less than 0.01% by Karl Fischer titration

Ultraviolet absorbance:

Wavelength, nm	Absorbance
228	1.000
240	0.300
250	0.100
300	0.005
400	0.005

Maximum

Refractive index: 1.4444 ± 0.0006 at 20°C

Boiling range: 83-84°C

Residue: Less than one mg/l Acidity: Not detectable (limit one mg/l as HCl) Chloride: Not detectable (limit 10 mg/l)

Purity: Greater than 99.9% by gc analysis

Table 16.50: Ethyl Ether (61)

ETHYL ETHER WITH 2% ETHANOL

SPECIFICATIONS

Packed under nitrogen Preservative: 2% ethanol

Water: Less than 0.03% by Karl Fischer titration

Ultraviolet absorbance:

	Maximum
Wavelength, nm	Absorbance
215	1.000
250	0.080
275	0.010
300	0.005
400	0.005

Refractive Index: 1.3528 ± 0.0005 at 20°C

Boiling range: 34-35°C Residue: Less than one mg/l

Purity: Greater than 99.9% by gc analysis (excluding preservative)

Peroxides: Less than one mg/l as H2O2 at time of packaging

Electron capture gc: No residue peaks greater than 10 ng/1 as heptachlor epoxide.

Table 16.50: (continued)

ETHYL ETHER WITHOUT PRESERVATIVE

SPECIFICATIONS

Packed under nitrogen Contains no preservatives

Water: Less than 0.03% by Karl Fischer titration

Ultraviolet absorbance:

Wavelength, nm	Maximum Absorbance
215	1.000
250	0.080
275	0.010
300	0.005
400	0.005

Refractive Index: 1.3521 ± 0.0005 at 20°C

Boiling range: 34-35°C Residue: Less than one mg/l

Purity: Greater than 99.9% by gc analysis

Peroxides: Less than one mg/1 as H_2O_2 at time of packaging

Electron capture gc: No residue peaks greater than 10 ng/l as heptachlor epoxide.

Table 16.51: GLYME (61)

SPECIFICATIONS

Packed under nitrogen

Water: Less than 0.08% by Karl Fischer titration

Ultraviolet absorbance:

	<u>riaximum</u>
Wavelength, nm	Absorbance
220	1.000
250	0.250
300	0.050
350	0.010
400	0.005

Refractive index: 1.3790 ± 0.0010 at 20° C

Boiling range: 84-85°C Residue: Less than five mg/l

Purity: Greater than 99.5% by gc analysis

Peroxides: Less than two mg/l as H_2O_2 at time of packaging

Table 16.52: n-Heptane (56)(61)

Table 16.52: (continued)

SPECIFICATIONS (61)

Water: Less than 0.01% by Karl Fischer titration

Ultraviolet absorbance:

	<u>Maximum</u>
<u>Wavelength, nm</u>	<u>Absorbance</u>
200	1.000
225	0.100
250	0.010
300	0.005
400	0.005

Refractive index: 1.3878 ± 0.0006 at 20°C

Boiling range: 98-99°C Residue: Less than one mg/l

Purity: Greater than 96% n-heptane and 99.9% n-heptane and saturated C7

hydrocarbons by gc analysis

Electron capture gc: No residue peak greater than 4 ug/l of heptachlor epoxide.

Table 16.53: Hexadecane (61)

SPECIFICATIONS

Packed under nitrogen

Water: Less than 0.01% by Karl Fischer titration

Ultraviolet absorbance:

Wavelength, nm	Maximum Absorbance
190	1.000
200	0.500
250	0.020
300	0.005
400	0.005

Refractive index: 1.4340 ± 0.0006 at 20° C

Residue: Less than five mg/l

Purity: Greater than 99.9% by gc analysis

Table 16.54: Hexane (56)(61)

97% n-Hexane (56)

(continued)

Table 16.54: (continued)

95% n-Hexane (56)

85% n-Hexane (56)

Hexane Non-Spectro (61)

SPECIFICATIONS

Water: Less than 0.01% by Karl Fischer titration

Ultraviolet absorbance: Optical transparency is not controlled. For spectro-

photometric applications use Hexane UV.

Refractive index: 1.3770 ± 0.0020 at 20°C

Boiling range: 68-69°C

Residue: Less than one mg/l Benzene: Less than 10mg/l

Purity: Greater than 85% n-hexane and 99.5% n-hexane and saturated C6 hydro-

carbons by glc analysis.

Electron capture gc: No residue peaks greater than 10 ng/l as heptachlor epoxide.

Table 16.54: (continued)

Hexane UV (61)

SPECIFICATIONS

Water: Less than 0.01% by Karl Fischer titration

Ultraviolet absorbance:

Wavelength, r	Maximum M Absorbance
195	1.000
225	0.050
250	0.010
275	0.005
300	0.005

Refractive index: 1.3770 ± 0.0020 at 20°C

Residue: Less than one mg/1 Benzene: Less than one mg/l

Purity: Greater than 85% n-hexane and 99.9% n-hexane and saturated C6

hydrocarbons by glc analysis

Electron capture gc: No residue peaks greater than 10 ng/1 as heptachlor epoxide.

Table 16.55: Isobutyl Alcohol (56)(61)

SPECIFICATIONS (61)

Water: Less than 0.05% by Karl Fischer titration

Ultraviolet absorbance:

<u>Maximum</u>
<u>Absorbance</u>
1.000
0.050
0.030
0.020
0.010

Refractive index: 1.3959 ± 0.0011 at 20°C

Boiling range: 108-109°C Residue: Less than five mg/l

Purity: Greater than 99.0% by gc analysis

Table 16.56: iso-Octane (2,2,4-Trimethylpentane) (61)

SPECIFICATIONS

Water: Less than 0.01% by Karl Fischer titration

Ultraviolet absorbance:

<u>maximum</u>
Absorbance
1.000
0.100
0.020
0.005
0.005

Refractive index: 1.3915 ± 0.0008 at 20°C

Boiling range: 99-100°C Residue: Less than one mg/l

Purity: Greater than 99.0% by gc analysis

Halomethanes: Less than one ppb available on special order

Electron capture gc: No residue peaks greater than 4 ug/l as heptachlor epoxide.

Table 16.57: Isopropyl Alcohol (61)

SPECIFICATIONS

Water: Less than 0.06% by Karl Fischer titration

Ultraviolet absorbance:

HANTHUM
<u>Absorbance</u>
1.000
0.160
0.020
0.005
0.005

Mavimum

Refractive index: 1.3766 ± 0.0006 at 20°C

Boiling range: 82-83°C Residue: Less than two mg/l

Purity: Greater than 99.9% by gc analysis

Electron capture gc: No residue peak greater than 4 ug/l as heptachlor epoxide.

ISOPROPYL ALCOHOL Low Water

SPECIFICATIONS

Water: Less than 0.01% by Karl Fischer titration

Ultraviolet absorbance:

	<u>Maximum</u>
Wavelength, nm	<u>Absorbance</u>
205	1.000
225	0.160
250	0.020
300	0.005
400	0.005

Refractive index: 1.3766 ± 0.0006 at 20°C

Boiling range: 82-83°C Residue: Less than two mg/l

Purity: Greater than 99.9% by gc analysis

Electron capture gc: No residue peak greater than 4 ug/1 as heptachlor epoxide.

Table 16.58: Isopropyi Myristate (61)

A specially purified solvent intended for sterility testing of ophthalmic ointments.

SPECIFICATIONS

pH of Water extract: Greater than 6.5 Appearance: Clear, colorless liquid

Infrared absorbance: Equivalent to standard

Table 16.59: Methanol (56)(61)

SPECIFICATIONS (61)

Water: Less than 0.05% by Karl Fischer titration

Ultraviolet absorbance:

Wavelength, nm	<u>Maximum</u> Absorbance
205	1.000
225	0.160
250	0.020
300	0.005
400	0.005

Refractive index: 1.3284 ± 0.0004 at 20°C

Boiling range: 64-65°C

Residue: Less than one mg/l

Purity: Greater than 99.9% by gc analysis

Electron capture gc: No residue peaks greater than 10 ng/l as heptachlor epoxide. Purity by liquid chromatography: No UV absorbing peak greater than 0.005

absorbance unit (1 cm path length) at 254 nm in a gradient from 100% water to 100% methanol on a 15 x 0.46 cm column with 5 uM C-18 packing. No fluorescent peak greater than that equivalent to 20 pg of benzo(\underline{a})pyrene under the above conditions using 350 nm excitation, 450 nm emission.

METHANOL For Purge and Trap Analysis

SPECIFICATIONS (61)

Water: Less than 0.05% by Karl Fischer titration

Refractive index: 1.3284 ± 0.0004 at 20°C

Boiling range: 64-65°C Residue: Less than one mg/l Purity: Greater than 99.9% by gc analysis

Volatile Organics: Suitable for GC-MS analysis of volatile organics in water and soil/sediment samples according to the EPA purge and trap Methods 601, 624, and 8240 (2-Butanone: less than 10 ug/1).

Table 16.60: 2-Methoxyethanol (61)

SPECIFICATIONS

Packed under nitrogen

Water: Less than 0.08% by Karl Fischer titration

Ultraviolet absorbance:

	<u>Maximum</u>
Wavelength, nm	<u>Absorbance</u>
210	1.000
250	0.130
275	0.030
300	0.005
400	0.005

Refractive index: 1.4020 ± 0.0010 at 20° C

Boiling range: 123-124°C Residue: Less than one mg/1

Purity: Greater than 99.9% by gc analysis

Suitability for use in ninhydrin assay: Passes test Peroxides: Less than two mg/l as ${\rm H_2O_2}$ at time of packaging

Table 16.61: 2- Methoxyethyl Acetate (61)

SPECIFICATIONS

Packed under nitrogen

Preservative: Available with or without 0.1% para-methoxyphenol

Water: Less than 0.05% by Karl Fischer titration

Ultraviolet absorbance:

	<u>Maximum</u>
Wavelength, nm	<u>Absorbance</u>
254	1.000
275	0.150
300	0.050
350	0.005
400	0.005

Refractive index: 1.4015 ± 0.0010 at 20°C

Boiling range: 143-144°C

Residue: Less than five mg/l Purity: Greater than 98% by gc analysis

Peroxides: Less than two mg/l as H2O2 at time of packaging

Table 16.62: Methyl t-Butyl Ether (61)

SPECIFICATIONS

Packed under nitrogen

Water: Less than 0.02% by Karl Fischer titration

Ultraviolet absorbance:

	Maximum
Wavelength, nm	<u>Absorbance</u>
210	1.000
225	0.500
250	0.100
300	0.005
400	0.005

Refractive index: 1.3690 ± 0.0010 at 20°C

Boiling range: 55-56°C Residue: Less than one mg/l

Purity: Greater than 99.0% by gc analysis Peroxide: Less than one mg/1 as H₂O₂

Electron capture gc: No residue peaks greater than 10 ng/l as heptachlor epoxide.

Table 16.63: Methylene Chioride (56)(61)

SPECIFICATIONS (61)

Preservative: Cyclohexene

Water: Less than 0.01% by Karl Fischer titration

Ultraviolet absorbance:

	<u>Maximum</u>
Wavelength, nm	Absorbance
233	1.000
240	0.100
250	0.010
300	0.005
400	0.005

Refractive index: 1.4241 ± 0.0005 at 20°C

Boiling range: 40-41°C

Residue: Less than one mg/1

Acidity: Not detectable (limit one mg/l as HCl)

Chloride: Not detectable (limit 10 mg/l) Purity: Greater than 99.9% by gc analysis

Electron capture gc: No residue peaks greater than 10 ng/l as heptachlor epoxide.

Table 16.64: Methyl Ethyl Ketone (56)(61)

Table 16.64: (continued)

SPECIFICATIONS (61) Packed under nitrogen

Water: Less than 0.05% by Karl Fischer titration

 CICICION	
Wavelength, nm	<u>Maximum</u> Absorbance
329	1.000
340	0.100
350	0.020
375	0.010
400	0.005

Refractive index: 1.3783 ± 0.0007 at 20° C

Boiling range: 79-80°C

Residue: Less than one mg/l

Purity: Greater than 99.5% by gc analysis

Table 16.65: Methyl Isoamyl Ketone (61)

SPECIFICATIONS

Packed under nitrogen

Water: Less than 0.05% by Karl Fischer titration

Ultraviolet absorbance: Maximum Wavelength, nm Absorbance 1.000 330 340 0.100 350 0.050 0.010 375 400 0.005

Refractive index: 1.4072 ± 0.0005 at 20° C

Boiling range: 142-144°C

Residue: Less than five mg/l

Purity: Greater than 99.0% by gc analysis

Table 16.66: Methyl Isobutyl Ketone (61)

SPECIFICATIONS

Packed under nitrogen

Water: Less than 0.05% by Karl Fischer titration

Ultraviolet absorbance:

	<u>Maximum</u>
Wavelength, nm	<u>Absorbance</u>
334	1.000
340	0.500
350	0.250
375	0.050
400	0.005

Refractive index: 1.3954 ± 0.0006 at 20° C

Boiling range: 115-116°C Residue: Less than five mg/l

Purity: Greater than 99.0% by gc analysis

Table 16.67: Methyl n-Propyl Ketone (61)

SPECIFICATIONS

Packed under nitrogen

Water: Less than 0.05% by Karl Fischer titration

Ultraviolet absorbance:

Wavelength, nm	Maximum Absorbance
331	1.000
340	0.150
350	0.020
375	0.005
400	0.005

Refractive index: 1.3903 ± 0.0008 at 20° C

Boiling range: 101-102°C Residue: Less than two mg/l

Purity: Greater than 90.0% methyl n-propyl ketone and greater than 99.0% methyl n-propyl ketone and methyl isobutyl ketone by gc analysis

Table 16.68: N-Methylpyrrolidone (61)

SPECIFICATIONS

Packed under nitrogen

Water: Less than 0.05% by Karl Fischer titration

Ultraviolet absorbance:

Wavelength, nm	<u>Maximum</u> Absorbance
285	1.000
300	0.500
325	0.100
350	0.030
400	0.010

Refractive index: 1.4700 ± 0.0020 at 20°C Purity: Greater than 99.5% by gc analysis

Table 16.69: Pentane (56)(61)

Table 16.69: (continued)

SPECIFICATIONS (61)

Water: Less than 0.01% by Karl Fischer titration

Ultraviolet absorbance:

	<u>Maximum</u>
Wavelength, nm	Absorbance
190	1.000
200	0.600
250	0.010
300	0.005
400	0.005

Refractive index: 1.3576 ± 0.0003 at 20° C

Boiling range: 35-37°C Residue: Less than one mg/l

Purity: Greater than 98% n-pentane and 99.9% n-pentane and saturated C_5

hydrocarbons by gc analysis

Halomethanes: Less than one ppb available on special order

Electron capture gc: No residue peaks greater than 10 ng/1 as heptachlor epoxide.

Table 16.70: Petroleum Ether (61)

SPECIFICATIONS

Water: Less than 0.01% by Karl Fischer titration

Ultraviolet absorbance: Optical transparency is not controlled. Typical

ultraviolet absorption spectrum is shown for information only.

Refractive index: 1.3650 ± 0.0050 at 20° C

Boiling range: 30-60°C Residue: Less than one mg/l

Purity: Greater than 99% total pentane and hexane isomers by gc analysis

Electron capture gc: No residue peaks greater than 10 ng/1 as heptachlor epoxide.

Table 16.71: beta-Phenethylamine (61)

SPECIFICATIONS

Packed under nitrogen Ultraviolet absorbance:

ltraviolet absorbance:		<u>Maximum</u>
	Wavelength, nm	<u>Absorbance</u>
	285	1.000
	300	0.300
	325	0.100
	350	0.050
	400	0.005

Purity: Greater than 98% by gc analysis

Table 16.72: 2-Propanol (56)

Table 16.73: n-Propyl Alcohol (61)

SPECIFICATIONS

Water: Less than 0.05% by Karl Fischer titration

Ultraviolet absorbance: Maximum

Wavelength, nm
210
1.000
225
0.500
250
0.050
300
0.005
400
0.005

Refractive index: 1.3849 ± 0.0008 at 20° C

Boiling range: 97-98°C

Residue: Less than three mg/l

Purity: Greater than 99.5% by gc analysis

Table 16.74: Propylene Carbonate (61)

SPECIFICATIONS

Water: Less than 0.04% by Karl Fischer titration

Ultraviolet absorbance:

	<u>Maximum</u>
Wavelength, nm	<u>Absorbance</u>
280	1.000
300	0.500
350	0.050
375	0.030
400	0.020

Refractive index: 1.4212 ± 0.0008 at 20° C

Residue: Less than five mg/l

Purity: Greater than 99% by gc analysis

Table 16.75: Pyridine (56)(61)

SPECIFICATIONS (61)

Packed under nitrogen

Water: Less than 0.05% by Karl Fischer titration

Primary and secondary amines by ninhydrin test: Less than 10 ppm

Refractive index: 1.5093 ± 0.0008 at 20°C

Boiling range: 115-116°C Residue: Less than two mg/l

Purity: Greater than 99.8% by gc analysis

Table 16.76: Tetrahydrofuran (56)(61)

Table 16.76: (continued)

TETRAHYDROFURAN NON-SPECTRO (61)

SPECIFICATIONS

Packed under nitrogen

Preservative: 250 mg/l butylated hydroxytoluene. Water: Less than 0.03% by Karl Fischer titration

Ultraviolet absorbance: Optical transparency is not controlled. For spectro-

photometric applications use Tetrahydrofuran UV.

Refractive index: 1.4070 ± 0.0005 at 20°C

Boiling range: 66-67°C

Purity: Greater than 99.9% by gc analysis

Peroxides: Less than two mg/l as H2O2 at time of packaging

TETRAHYDROFURAN UV (61)

SPECIFICATIONS

Packed under nitrogen

Water: Less than 0.03% by Karl Fischer titration

Ultraviolet absorbance:

Wavelength, nm	<u>Maximum</u> Absorbance
212	1.000
250	0.180
300	0.020
350	0.005
400	0.005

Refractive index: 1.4070 ± 0.0005 at 20°C

Boiling range: 66-67°C

Residue: Less than one mg/1 Purity: Greater than 99.9% by gc analysis

Peroxides: Less than two mg/1 as H2O2 at time of packaging

Table 16.77: Toluene (56)(61)

(continued)

Table 16.77: (continued)

SPECIFICATIONS (61)

Water: Less than 0.03% by Karl Fischer titration

Ultraviolet absorbance:

	<u>Maximum</u>
lavelength, nm	<u>Absorbance</u>
284	1.000
300	0.120
325	0.020
350	0.005
400	0.005

Refractive index: 1.4967 ± 0.0004 at 20°C

Boiling range: 110-111°C Residue: Less than one mg/1 Benzene: Less than 500 mg/1

Purity: Greater than 99.8% by gc analysis

Electron capture gc: No residue peak greater than 4 ug/1 as heptachlor epoxide.

Table 16.78: 1,2,4-Trichlorobenzene (56)(61)

SPECIFICATIONS (61)

Water: Less than 0.01% by Karl Fischer titration

Ultraviolet absorbance:

	<u>Maximum</u>
Wavelength, nm	<u>Absorbance</u>
308	1.000
310	0.500
350	0.050
375	0.010
400	0.005

Refractive index: 1.5716 ± 0.0005 at 20° C Purity: Greater than 98.0% by gc analysis

Particulate matter: Filtered through a 0.5 micron filter

Residue: Less than 10 mg/l

Table 16.79: Trichloroethylene (61)

SPECIFICATIONS

Preservative: 1,2-Butylene oxide

Water: Less than 0.02% by Karl Fischer titration

Ultraviolet absorbance:

	TIGNETICAL
Wavelength, nm	<u>Absorbance</u>
273	1.000
300	0.100
325	0.080
350	0.060
400	0.060

Mavimum

Refractive index: 1.4767 ± 0.0008 at 20°C

Boiling range: 86-87°C

Residue: Less than one mg/l
Acidity: Not detectable (limit one mg/l as HCl)
Chloride: Not detectable (limit 10 mg/l) Purity: Greater than 99% by gc analysis

Table 16.80: 1.1.2-Trichlorotrifluoroethane (56)(61)

SPECIFICATIONS (61)

Water: Less than 0.01% by Karl Fischer titration

Ultraviolet absorbance:

<u>Maximum</u>
Absorbance
1.000
0.050
0.005
0.005
0.005

Refractive index: 1.3583 ± 0.0003 at 20°C

Boiling range: 47-48°C

Residue: Less than one mg/l Acidity: Not detectable (limit one mg/l as HCl) Chloride: Not detectable (limit 10 mg/l) Purity: Greater than 99.5% by gc analysis

Infrared absorbance: C-H free. Shows no extraneous absorbance bands in the 3.1-3.6 micron range when observed in a 25mm path length liquid cell.

Table 16.81: Trifluoroacetic Acid (56)(61)

SPECIFICATIONS (61)

Water: Less than 0.05%

Ultraviolet absorbance (0.1% solution in water):

Wavelength, nm	Maximum Absorbance
210	1.000
230	0.150
250	0.010
300	0.005

Purity: Greater than 99.9% by titration

Table 16.82: Trimethylpentane (56)

Table 16.83: Water (56)(61)

HIGH PURITY WATER (61)

SPECIFICATIONS

Ultraviolet absorbance:

	HANTINGII
Wavelength, nm	<u>Absorbance</u>
190	0.010
200	0.010
250	0.005
300	0.005
400	0.005

Marimum

M ---- d ----

Refractive index: 1.3330 ± 0.0010 at 20°C

Residue: Less than one mg/l

Purity by liquid chromatography: No UV absorbing peak greater than 0.001 absorbance unit (1 cm path length) at 254 nm, or 0.005 absorbance unit at 205 nm in a gradient from 100% water to 100% acetonitrile on a 15 x 0.46 cm C-18 column with 5 uM packing after an initial loading of 20 mL water. No fluorescent peak greater than that equivalent to 20 pg of benzo(a)pyrene under the above conditions using 350 nm excitation, 450 nm emission.

Table 16.84: ortho-Xylene (61)

SPECIFICATIONS

Water: Less than 0.02% by Karl Fischer titration

Ultraviolet absorbance:

	<u>Maximum</u>
Wavelength, nm	<u>Absorbance</u>
288	1.000
300	0.200
325	0.050
350	0.010
400	0.005

Refractive index: 1.5050 ± 0.0010 at 20° C

Boiling range: 144-145°C Residue: Less than five mg/l

Purity: Greater than 95.0% \underline{o} -xylene and 99.0% xylenes by gc analysis

Appendix—Comparative Data for Various Solvents

Physical Properties of Some Selected Solvents (10)

Name	Mol. Wt.	Density	Temp.	Refract. Index	Melting Point	Pressure	Boiling Point	Dielec. Constant	List No.
WATER	18.02	0.9971	25.0	1.3329	0.0	760.	100.0	78.54	1
METHANOL	32.04	0.7866	25.0	1.3265	-97.7	0.	64.7	32.70	2
ACETONITHILE ETHYLENIMINE	41.05 43.07	0.7766 0.8320	25.0 25.0	1.3416	-43.8 -78.0	0.	81.6 57.0	37.50 18.30	3
ACETALDEHYDE	44.05	0.7780	20.0	1.3311	-123.0	ō.	20.4	21.10	5
FORMAMIDE	45.04	1.1334	20.0	1.4475	2.6	0.	210.5	109.00	6
FORMIC ACID	46.63	1.2141	25.0 25.0	1.3694 1.3594	8.3 -114.1	0. 0.	100.6 78.3	58.50 24.55	7 8
ETHANOL ACRYLONITRILE	46.07 53.06	0.8004	25.0	1.3594	-83.6	0.	77.3	33.00	9
1.2-BUTAUIENE	54.09	0.6760	1.0	1.4205	-136.3	Ö.	10.9	0.0	10
2-BUTYNE	54.09	0.6910	20.0	1.3921	-32.3	760.	27.0	0.0	11
PROPIONITRILE PROPIONITRILE	55.08 55.08	0.7818 0.7768	20.0 25.0	1.3681	-92.8 -92.8	0. 0.	97.4 97.4	27.20 27.20	12 13
ACROLEIN	56.06	0.8389	20.0	1.4017	-87.0	ŏ.	52.7	0.0	14
PROPARGYL ALCOHOL	56.06	0.9450	25.0	1.4300	-51.8	0.	113.6	24.50	15
ALLYLAMINE	57.10	6.7629	20.0	1.4205	-88.2	0.	53.3	G.O	16
ACETONE ACETONE	58.05 58.08	0.7900 0.7844	20.0 25.0	1.3587 1.3560	-94.7 -94.7	0.	56.3 56.3	20.70 20.70	17 18
ALLYL ALCOHOL	58.08	0.8540	20.0	1.4135	-129.0	ŏ.	97.0	0.0	19
2-PROPENL-1-OL	58.08	0.8421	30.0	1,4090	-129.0	0.	97.1	21.60	20
PROPIONALDEHYDE	58.08	0.7912	25.0	1.3593	-80.0	٥.	48.0	18.50	21
PROPYLENÉ OXIDE N-ME FORMAMIDE	58.08 59.07	0.8287 0.9988	20•0 25•0	1.3660	-111.9 -3.8	0. 0.	33.9 182.5	0.0 1H2.40	22 23
ISOPROPYLAMINE	59.11	0.6821	25.0	1.3711	-95.2	٥.	32.4	5.45	24
N-PROPYLAMINE	59.11	0.7173	20.0	1.3882	-83.0	9.	48.5	5.31	25
ACETIC ACID	60.05	1.0492	20.0	1.3719	16.7	٥٠	117.9	6.15	26
METHYL FORMATE ETHYLENEDIAMINE	60.05 60.10	0.9742 0.8859	20.0 30.0	1.3433	-99.0 11.3	o. o.	31.5 117.3	8.50 12.90	27 28
PROPANOL-1	60.10	0.6038	20.0	1.3856	-126.2	ŏ.	97.2	20.33	29
PROPANOL-1	60.10	0.7998	25.0	1.3837	-126-2	0.	97.2	20.33	30
PROPANOL -2	60.10	0.7854 1.1312	20.0	1.3772	-88.0 -28.5	٥.	82.3	19•92 35•87	31 32
NITROMETHANE 2-AMINOE (HANOL	61.04 61.08	1.0116	25.0 25.0	1.3796 1.4521	10.5	0. 0.	170.0	37.72	33
1.2-ETHANEDIOL	62.07	1.1135	20.0	1.4318	-13.2	ŏ.	197.3	37.70	34
ETHANETHIOL	62.13	0.8391	20.0	1.4311	-144.4	760.	35.0	0.0	35
METHYLSULFIDE	63.13	0.8423	25.0	1.4323	-98.3	0.	37.3	6.20 9.45	36 37
CHLOROETHANE 3-BUTENENITRILE	64.52 67.09	0.9039 0.8329	20.0 20.0	1.3790 1.4060	-136.4 -84.0	0. 76Q.	12.3	0.0	3A
TRANS-CRUTONONITRILE	67.09	0.8239	20.0	1.4225	-51.5	760.	120.5	0.0	39
METHYLACKYLONITRILE	67.09	0.8001	20.0	1.4007	-35.8	0.	90.3	0.0	40
PYRROLE	67.09 68.08	0.9699 0.9378	21.0	1.5002	-23.4 0.0	0. 0.	31.4	8.13 2.94	41 42
FURAN 1.3-PENTADIENE	68.11	0.6830	3.0	1.4280	0.0	ő.	41.8	0.0	43
ISOPHENE	68.13	0.6810	20.0	1.4219	-146.0	760.	34.0	2.10	44
1.2-PENTADIENE	68.13	0.6926	20.0	1.4209	-137.3	760.	44.9	0.0	45
1,4-PENTADIENE 2,3-PENTADIENE	68.13 68.13	0.6608 0.6950	20.0 20.0	1.3888	-148.3 -125.7	760. 760.	0.0 48.3	0.0	46 47
BUTYHONITRILE	69.11	0.7954	15.0	1.3860	-111.9	0.	117.9	20.30	48
BUTYKONITRILE	69.11	0.7865	25.0	1.3820	-111.9	0.	117.9	20.30	49
ISOBUTYRONITRILE	69.11 70.05	0.7656	25.0	1.3712	-71.5	0.	103.9	20.40 0.0	50 51
PROPYNOIC ACID CROTONALUEHYDE	70.05	1.1380 0.8516	20.0 20.0	1.4306	18.0 -76.5	0. 9.	144.0 104.1	0.0	52
CYCLOPENTANE	70.13	0.7454	0.0	1.4065	-93.8	0.	49.3	1.96	53
1-PENTENE	70.13	0.6405	50.0	1.3715	-165.2	0.	30.0	2.02	54
2-PENTENE CIS-2-PENTENE	70.13 70.13	0.6545	20.0 20.0	1.3798 1.3830	-138.0 -151.4	0.	36.7 36.9	0.0	55 56
TRANS-2-PENTENE	70.13	0.6482	20.0	1.3793	-140.2	ö.	36.4	U.0	57
2-METHYL-1-BUTENE	70.14	0.6504	20.0	1.3378	-137.6	760.	31.2	2.20	58
2-METHYL+2-BUTENE	70.14	0.6623	20.0	1.3874	-133.8	760.	38.6	0.0	59
2-CYANOETHANOL 3-HYUROXY PROPIONITRILE	71.08 71.08	1.0404	25.0 20.0	0.0 1.4240	-46.0 0.0	0. 760.	220.0	0.0 0.0	60 61
LACTONITHILE	71.08	0.9877	20.0	1.4058	-40.0	Ŏ.	183.0	0.0	62
PYRROLIDINE	71.12	J.8520	22.0	1.4270	0.0	0.	88.7	0.0	63
ACRYLIC ACID	72.06	1.0511	20.0	1.4224	13.5	0.	141.2	0.0	64
PROPIOLACTONE ALLYL METHYL ETHER	72.06 72.11	1-1460	20.0 25.0	1.4131	-33.4 0.0	o. o.	155.0 41.5	0.0 0.0	65 66
2-BUTANONE	72.11	0.8049	20.0	1.3788	-86.7	ŏ.	79.6	18.51	67
Z-BUTANONE	72.11	0.7997	25.0	1.3764	-86.7	0.	79.6	18.52	68
2-BUTENEUL-1 (CIS) 1.2-BUTYLENE OXIDE	72.11 72.11	0.8540 0.8297	20.0 20.0	1.4342 1.3840	-89.4 -150.0	760. 0.	123.6 63.2	0.0 6.0	69 70
BUTYRALDEHYDE	72.11	0.8016	20.0	1.3791	-96.4	ŏ.	74.8	13.40	71
ISO-BUTYKALDEHYDE	72.11	0.7891	20.0	1.3727	-65.0	Ö.	64.1	0.0	72
ETHYLVINYL ETHER	72.11	0.7531	20.0	1.3754	-115.8	0.	35.7	0.0	73
METHALLYL ALCOHOL TETRAHYDHOFURAN	72.11 72.11	ე•8574 0•8892	19.0 20.0	1.4255 1.4050	0.0 -108.5	o. o.	114.5 66.0	0.0 7.58	74 75
TETRAHYDHOFURAN,	72.11	0.8811	25.0	1.4050	-108.5	ŏ.	66.0	7.58	76
1.2-EPOXY-2-ME PROPANE	72.12	0.8650	0.0	1.3712	0.0	760.	52.0	0.0	77
2.2-UIMETHYL PROPANE	72 15	0.6135	20.0	1.3476	-20.0	٥.	9.5	0.0 1.84	78 70
2-METHYL BUTANE PENTANE	72.15 72.15	0.6197 0.6262	0.0 20.0	1.3537	-159.9 -129.7	0.	27.9 36.1	0.0	79 80
NN-DIMETHYLFORMAMIDE	73.10	0.9440	25.0	1.4282	-60.4	760.	153.0	36.71	81
METHYL ISOTHIOCYANATE	73.12	1.0691	37.0	1.5258	36.0	758.	119.0	9.0	82
METHYL THIOCYANATE	73.12 73.14	1-0678	25.0	1.4669	-5.1 -104.5	757. 0.	132.9	0.0	83 84
SEC-BUTYL AMINE (D) SEC-BUTYL AMINE (DL)	73.14	0.7240 0.7271	20.0 17.0	1.3440 1.3950	-72.0	772.	67.0	0.0	85
- ·· · · · · · · · · · · · · · · · · ·	-					-			

Note: Missing dato is indicated by 0, 0., or 0.0.

(continued)

Name	Mol. Wt.	Density	Temp.	Refract. Index	Melting Point	Pressure	Boiling Point	Dielec. Constant	List No.
N-BUTYLAMINE	73.14	0.7346	25.0	1.3987	-49.1	0.	77.4	4.88	- 86
SEC-BUTYLAMINE	73.14	0.7246	20.0	1.3934	0.0 -49.8	٥.	62.5	0.0	87 88
DIETHYLAMINE ISOBUTYLAMINE	73.14 73.14	0.7070 0.7346	20.0	1.3854	-84.6	0.	55.5 67.7	3.58 4.43	89
TERT-BUTYLAMINE	73.14	J.6908	25.0	1.3761	-72.7	0.	44.4	0.0	90
DIOXOLANE	74.08	1.0600	20.0	1.3974	-95.0	765.	78.0	7 14	91
ETHYL FORMATE Hydruxy acetone	74.08 74.08	0.5289	15.0 20.0	1.3625	-79.4 -17.0	o.	54.1 145.5	7.16	93
3-HYUROXYPROPYLENEOXIDE	74.08	1.1110	22.0	1.4350	0.0	ŏ.	166.5	0.0	94
METHYL ACETATE	74.08	0.9342	20.0	1.3614	-98.1	0.	56.3	6.68	. 95 96
PROPANOIC ACID	74.08 74.12	0.9880	25.0 20.0	1.3843	-20.7 -88.6	o. o.	140.8 117.7	3.44 17.51	97
1-BUTANOL	74.12	0.8060	25.0	1.3973	-88.6	ō.	117.7	17.51	98
2-BUTANOL_	74.12	0.6026		1.3950	-114.7	0.	99.6	16.56	99
OIETHYL ∟THER ETHYL ETHER	74.12 74.12	0.7138	20.0	1.3526	-116.2 -116.3	760. 0.	34.5 34.5	4.34 4.34	100 101
2-METHYL-1-PROPANOL	74.12	J.7978	25.0	1.3939	-108.0	ŏ.	107.7	17.93	102
2-METHYL-2-PROPANOL	74.12	0.7808	25.0	1.3878	25.5	0.	82.2	1.77	103
METHYL PRUPYL ETHER	74.12	0.7380	20.0	1.3579	0.0	760.	38.9	0.0	104 105
TERT BUTYL ALCOHOL 1.2-PROPANEDIAMINE	74.12 74.13	J.7887 J.8584	20.0	1.3878	25.5 0.0	0. 760.	82.2 120.5	1.77 0.0	106
NITROETHANE	75.07	1.0446	25.0	1.3897	-89.5	0.	114.1	28.06	107
1-AMINO-2-PROPANOL	75-11	3.9730	18.0	1.4500	-1.0	750.	160.0	0.0	108
3-AMINO-2-PROPANOL 2-METHOXYETHANOL	75.11 76.10	0.9824	26.0 25.0	1.4570	11.0 -85.1	756. 0.	187.0 124.6	0.0 16.93	109 110
METHYLAL	76.10	0.8665	15.0	1.3563	-105.2	Ö.	42.3	2.65	111
1,2-PROPANEDIOL	76.16	1.0362	20.0	1.4329	-60.0	0.	187.6	32.00	112
1.3-PROPANEOIOL	76.10	1.0538	20.0	1.4396	-26.7	٥.	214.4	35.00 2.64	113 114
CARBON DISULFICE 1-PROPANE THIOL	76.14 76.17	1.2700	15.0 20.0	1.6319	-111.6 -113.3	0. 760.	46.2 67.5	0.0	115
2-PROPANE THIOL	76.17	0.8143	20.0	1.4255	-130.5	760.	52.6	0.0	116
3-CHLOROPROPENE	76.52	0.9442	15.0	1.4181	-134.5	0.	45.1	8.20	117
CIS+PROPENYL CHLORIDE TRANS-PROPENYL CHLORIDE	76.53 76.53	0.9347 0.9350	20.0	1.4055	-134.8 -99.0	760. 760.	32.8 37.4	0.0	118 119
BENZENE	78.12	0.8790	20.0	1.5011	5.5	0.	80.1	2.28	120
BENZENE	78.12	0.8737	25.0	1.4979	5.5	0.	80.1	2.28	151
OIMETHYLSULFOXIDE	78.13	1.0958	25.0	1.4773	18.5	0.	189.6	46.68 (LA	122 123
ETHANOL-1-TH10L-2 ACETYL CHLORIDE	78.13 78.50	1.1143	20.0	1.4996	-112.0	13.	55.0 51.5	0.0 15.00	124
1-CHLOROPHOPANE	78.54	0.8909	20.0	1.3879	-122.8	0.	46.6	7.70	125
2-CHLOROPROPANE	78.54	0.8617	20.0	1.3777	-117.2	0.	35.7	9.02	126
2-CHLOROPROPANE PYRIÚINE	78.54 79.10	0.8491 0.9782	30.0 25.0	1.3711	-117.2 -41.6	0. 0.	35.7 115.3	9.82 12.40	127 128
PYRIDAZINE	80.09	1.1035	23.0	1.5231	-8.0	٥.	208.0	0.0	129
PYRIMIDINE	80.09	0.0	0.0	0.0	22.0	0.	123.7	0.0	130
2-CHLOROETHANOL 1-METHYL PYRROLE	80.52 81.11	1.2019	20.0 15.0	1.4438	-67.5 0.0	0. 748.	128.6	25.80 0.0	131 132
1-METHYL IMIDAZOLE	82.10	1.6325	21.0	1.4924	-6.0	0.	198.0	0.0	133
CYCLOHEXENE	82.15	0.6061	25.0	1.4438	-103.5	0.	83.0	2.22	134
1.5-MEXADIENE N-ME-ALANINE NITRILE	82.15 83.11	0.6923	20.0	1.4044	-141-0	22.	60.0 82.0	0.0	135 136
VALERONITRILE	83.13	0.7950	25.0	1.3951	-96.2	0.	141.3	19.71	137
CYCLOPENTANONE	84.11	0.9509	0.0	1.9366	-51.3	0.	130.7	0.0	138
THIOPHENE CYCLOHEXANE	84.14 84.16	1.0649	20.0	1.5289 1.4262	-38.2 6.6	0. 0.	84.2 80.7	2.71 2.02	139 140
CYCLOHEXANE	84.16	3.7739	25.0	1.4235	6.6	ŏ.	80.7	2.02	141
1-HEXENE	84.16	0.0685	25.0	1.3850	-139.8	0.	63.5	2.05	142
METHYL CYCLOPENTANE DICHUOROMETHANE	84.16 84.93	1.3148	20.0 25.0	1.4096	-142.4 -95.1	0. 0.	72.1 39.8	1.98 8.93	143 144
ACETUNE CYANOHYDRIN	85.11	0.9320	19.0	1.4211	-190.0	ŏ.	82.0	0.0	145
2-PYRROL IDINONE	85.11	1.1070	25.0	1.4860	25.0	0.	245.0	0.0	146
PIPERIDINE	85.15	0.8616	20.0	1.4525	-10.5	0 .	106.4	5.80 0.0	147 148
ALLYL FORMATE CIS-2-BUTENOIC AC1D	86.09 86.09	0.9498 1.0267	18.0 20.0	1.3980	0.0 15.5	760.	83.0 169.3	Ú.O	149
BUTYROLAUTONE	86.09	1.1254	25.0	1.4348	-43.5	760.	204.6	39.00	150
METHACRYLIC ACID	86.09	1.0153	20.0	1.4314	15.0	760.	160.5	0.0	151
METHYL AURYLATE Vinyl acëtate	86.09	0.9547 0.9312	18.0	1.4117 1.3959	-75.0 -92.8	0. 0.	80.2 72.5	0.0	152 153
ALLYL ETHYL ETHER	86.13	0.7597	25.0	1.3861	64.0	ŏ.	0.0	0.0	154
2-PENTANUNE	86.13	0.8124	15.0	1.3895	-77.8	0.	102.0	0.0	155
3-PENTANONE 1-PENTENE+3-OL	86.13 86.13	0.8095 0.8395	25.0 22.0	1.3900 1.4183	-39.0 0.0	0. 0.	102.0 115.0	17.00 0.0	156 157
TETRAHYDHOPYRAN	86.13	0.8772	25.0	1.4195	-45.0	0.	88.0	5.61	158
TRI-ME ACETALDEHYDE	86.13	J.7927	17.0	1.3791	6.0	0.	75.0	0.0	159
VALEHALDEHYDE 2.2-DIMETHYL BUTANE	86.13 86.17	0.8095 0.6492	20.0	1.3944	-91.5 -99.9	0. 0.	102.5 49.7	10.00 0.0	160 161
2.3-OIMETHYL BUTANE	86.17	0.0616	0.0	1.3749	-128.5	0.	57.9	0.0	162
HEXANE	86.17	0.6548	25.0	1.3723	-95.3	0.	68.7	1.89	163
HEXANE 2-METHYL PENTANE	86.17 86.17	0.6594 0.6532	0.0	1.3749	-95.3 -153.7	0.	68.7	1.89	164 165
3-METHYL PENTANE	86.17 86.17	0.6643	0.0	1.3765	0.0	0. 0.	63.3	0.0	166
N.N-DIMEACETAMIDE	87.12	0.9366	25.0	1.4356	-20.0	0.	166.l	37.78	167
N-ME PROPIONAMIDE	87.12	3.9305	25.0	1.4345	-30.9	0.	148.ŭ	172.20 7.42	168 169
ETHYL ISUTH LOCYANATE	87.12 87.14	1.0050	25.0 20.0	1.4573 1.5130	-3.1 -5.9	0. 760.	128.9	0.0	170
· · · · · · · · · · · · · · · · · · ·	1								-

(continued)

Name	Mol. Wt.	Density	Temp.	Refract. Index	Melting Point	Pressure	Boiling Point	Dielec. Constant	List No.
1-AMINOPENTANE	87.17	0.7547	20.0	1.4118	-55.0	760.	104.4	0.0	171
ETHYLENE CARBONATE PYRROLINE	88.06 88.06	1.2272	25.0 0.0	1.4250	36.4 13.6	n. o.	238.0	%9.60 0.0	172 173
PYRUVIC ACID	88.06	1.2272	20.0	1.4280	13.6	760.	165.0	0.0	174
ALDOL	88.10	1.1030	20.0	1.4497	0.0	12.	79.0 235.0	0.0	175 176
CIS-2-BUTENE-14-DIOL TRN+2-BUTENE-14-DIOL	88.11 88.11	1.0740	20.0 20.0	1.4793	11.0 27.3	o. o.	132.0	0.0 0.0	177
BUTYRIC ACID	88.11	1.9532	25.0	1.3958	-5.2	0.	163.3	2.97	178
1.3-DIOXANE P-DIOXANC	88.11 88.11	1.3042	20.0 25.0	1.4165	-42.0 11.8	755. 0.	105.0 101.3	2.21	179 180
ETHYL ACETATE	88.11	0.9006	20.0	1.3724	-83.9	ŏ.	77.1	6.02	181
ETHYL ACETATE	88.11	0.8946	25.0	1.3698	-83.9 -46.1	0.	77.1 154.7	6.02 2.73	182 183
ISOBUTYRIC ACID METHYLPRÜPIONATE	88.11 88.11	0.9682 0.9151	20.0 20.0	1.3930 1.3779	-87.5	0. 0.	78.7	5.50	184
PROPYL FURMATE	88.11	0.9111	15.0	1.3790	-92.9	0.	80.8	7.72	185
VALERONITRILE ETHYL-N-PROPYL ETHER	88.13	0.8034 0.7330	15.0	l.3991 l.3695	-96.2 -79.0	0.	141.3 63.6	19.71 0.0	186 187
2-METHYL-1-BUTANOL	88.15	0.8152	*25.0	1.4087	-70.0	760.	128.7	14.70	188
3-METHYL-1-BUTANUL	88.15	0.8071	25.0	1.4052	-117.2 -8.8	60. 0.	130.5	14.70 5.82	189 190
2-METHYL-2-BUTANUL 3-METHYL-2-BUTANUL	88.15 88.15	0.8050 0.8138	25.0 25.0	1.4024 1.4075	0.0	ŏ.	111.5	0.0	191
METHYL-N-BUTYL ETHER	88.15	0.7443	0.0	1.3736	-115.5	0.	71.0	0.0	192
1-PENTANOL 2-PENTANUL	88.15 88.15	0.8115 0.8054	25.0 25.0	1.4079	-78.2 0.0	0. 0.	137.6	13.90 13.82	193 194
3-PENTANUL	88.15	0.8160	25.0	1.4079	Ű.O		115.3	13.02	195
TETRAHYDROTHIOPHENE	88.17	0.9938	25.0	1.5257	-96.2	0.	120.9	0.0 23.24	196
1-NITROPROPANE 2-NITROPROPANE	89.10 89.10	1.9961 0.9829	25.0 25.0	1.3996 1.3924	-104.0 -91.3	0. 0.	120.3	25.52	197 198
2-AMINO-1-BUTANOL	89.14	J.9162	20.0	1.4489	-2.0	0.	178.0	0.0	199
3-AMINO-2-BUTANOL DIMETHYL ETHANOLAMINE	89.14 89.14	0.8866	25.0 20.0	1.4502 1.4300	19.0	745. 760.	159.5 134.0	0.0 0.0	20 0 201
2-ETHYLAMINOETHANOL	89.14	3.9140	20.0	1.4440	-9.0	760.	169.5	0.0	202
3-CHLOROPROPIONITRILE	89.53	1.1375	0.0	1.4380	0.0	0.	5A.0	0.0	203
DIMETHYL CARBONATE LACTIC ACID DL	90.08 90.08	1.0694	20.0 25.0	1.3687 1.4392	3.0 18.0	0. 12.	90.5 119.0	0.0 0.0	204 205
METHOXYACETIC ACID	90.08	1.1768	20.0	1.4168	0.0	760.	213.0	0.0	206
METHYL GLYCOLATE	90.08	1.1677	18.0	0.0	0.0	760. 0.	151.1	0.0 U.0	207 208
1.2-BUTANEDIOL 1.3-BUTANEDIOL	90.12 90.12	1.0059	20.0 20.0	1.4375 1.4410	77.0	٥.	207.5	0.0	209
1.4-BUTANEDIOL	90.12	1.0171	50.0	1.4460	20.1	.0.	235.0	0.0	210
2.3-BUTANEDIOL 1.2-DIMETHOXYETHANE	90.12 90.12	0.9872 J.8629	20.0 20.0	1.4306 1.3796	34•0 -58•0	760. 760.	181.0 83.5	0.0	211 212
2-ETHOXYETHANOL	90.12	0.9252	25.0	1.4057	-90.0	0.	135.6	29.60	213
1-METHOXYPROPANOL-2	90.12	0.9620	20.0	1.4070	0.0	0.	118.3	0.0	214 215
1-METHOXYPROPANOL-2 1-BUTANETHIOL	90.12 90.19	0.9620 0.8416	20.0 20.0	1.4070 1.4429	0.0 -115.7	o. o.	118.3 98.4	0.0 5.07	216
ETHYL SULFIDE	90.19	0.8312	25.0	1.4402	-103.9	0.	92.1	5.72	217
CIS-1-CL-1-BUTENE TRANS-1-CL-1-BUTENE	90.55 90.55	0.9153 0.9205	15.0 15.0	1.4194	0.0 0.0	760. 760.	63.5 68.0	0.0	218 219
2-CHLORO-1-BUTENE	90.55	0.9107	15.0	1.4115	0.0	760.	58.7	0.0	220
3-CHLORO-1-BUTENE	90.55	0.8978	50.0	1.4149	0.0	766. 773.	64.5 75.0	0.0	222 221
4-CHLORO-1-BUTENE CIS-1-CL-2-BUTENE	90.55 90.55	0.9211 0.9426	20.0	1.4233 1.4390	0.0	758.	84.1	0.0	223
TRANS-1-CL-2-BUTENE	90.55	0.9295	20.0	1.4350	0.0	752.	84 . H	0.0	224
CIS-2-CL-2-BUTENE Trans-2-CL-2-BUTENE	90.55 90.55	0.9239 0.9138	20.0	1.4240	-117.3 -105.8	760. 760.	70.6 628.0	0.0 0.0	225 226
1-CL-2-ME-PROPENE-1	90.55	0.9250	10.0	1.4221	0.0	775.	68.0	0.0	227
3-CL-2-ME-PROPENE-1	90.55	0.9250	20.0	1.4270	0.0 -80.0	0. 765.	72.0 194.0	0.0	228 228
2-NITROETHANOL-1 1.2.3-PROPANETRIOL	91.07 92.1¢	1.2700	15.0 20.0	1.4438	18.2	0.	290.0	42.50	230
TOLUENE	92.14	0.8669	20.0	1.4969	-94.9	0.	110.6	2.38	231
TOLUENE CHLOROACETONE	92.14 92.53	1.1500	25.0	1.4941	-94.9 -44.5	0. 0.	110.6 119.0	2.38 0.0	232 233
EPICHLORUHYDRIN	92.53	1-1807	20.0	1.4380	-57.2	0.	116.1	22.60	234
TERT-BUTTL CHLORIDE	92.57 92.57	0.8420 0.8862	20.0 20.0	1.3857	-25.4 -123.1	760. 0.	52.0 78.4	0.0 7.39	235 236
1-CHLOROBUTANE 2-CHLOROBUTANE	92.57	0.8732	50.0	1.3971	-140.5	ő.	68.3	7.09	237
1-CL-2-METHYLPROPANE	92.57	0.8773	20.0	1.3980	-130 • 3	0.	68.8	6.49	238
2-CL-2-METHYLPROPANE ANILINE	92.57 93.13	0.8420 1.0217	20.0 20.0	1.3857 1.5863	-25.4 -6.0	n. 0.	50.7 184.4	9.96 6.89	239 240
2-METHYLPYRIDINE	93.13	0.9497	15.0	1.5029	0.0	Ŏ.	128.8	9.80	241
3-METHYLPYRIDINE	93•13 94•12	0.9613 0.9911	15.0	1.5043	0.0 -29.0	0.	143.5 286.0	9.80 0.0	242 243
GLUTARONITRILE PHENDL	94.12	1.0576	15.0 41.0	1.5428	40.9	0. 0.	181.8	9.78	244
1.2-DIHYDROTOLUENE	94.16	J.8354	0.0	1,4763	0.0	0.	110.0	0.0	245
1-CHLORO-2-PROPANOL 3-CHLORO-1-PROPANOL	94.54 94.54	1.1100	20.0	1.4392	0.0	762.	126.5	0.0	246 247
PYRROLE-2-CARGDXALDEHYDE	95.10	0.0	16.0	1.5939	40.5	0.	218.0	0.0	248
2.5-UIME-PYRROLE	95.14	0.9353	20.0	1.5025	0.0	765.	171.0	0.0	249 250
1-ETHYL-PYRROLE 1.4-PYRONE	95.15 96.08	0.9009	20.0	1.4841	0.0 32.5	742.	216.0	0.0	250 251
2-FUHALDEHYDE	96.09	1-1598	20.0	1.5261	-36.5	0.	161.8	38.00	252
FLUOMOBENZENE 2.5-DIMETHYL FURAN	96.10 96.14	1.0309 0.8883	15.0 20.0	1.4684	-42.2 -62.8	0. 760.	93.5	0.0 0.0	253 254
2.4-HEPTADIENE	96.17	0.7384	0.0	1.4578	0.0		108.0		255

Name	Mol. Wt.	Density	Temp.	Refract. Index	Melting Point	Pressure	Boiling Point	Dielec. Constant	List No.
1-HEPTYNE	96.17	0.7338	20.0	1.4054	-e1.0	760.	100.0	0.0	256
1.1-UICHLOROETHYLENE	96.94	1.2132	20.0	1.4247	-122.6	0.	31.6	4.60	257
CIS-1.2-DICLETHYLENE TRANS1.201CLETHYLENE	96.94 96.94	1.2837	20.0	1.4490	-80.0 -49.8	٥.	60.6	9.20	258
CAPRONITRILE	97.16	0.8052	20.0	1.4462	-80.3	0.	47.7 163.6	2•14 17•26	259 260
4-MEVALEKONITRILE	97.16	9.7993	25.0	1.4040	-51.1	ů.	154.0	15.50	261
FURFURYL ALCOHOL	98.10	1.1238	30.0	1.4801	-29.0	ŏ.	170.5	0.0	262
Z-METHOXY FURAN	98.10	1.0646	25.0	1.4468	0.0	j.	110.5	0.0	263
PROPARGYL ACETATE	98.10	0.9982	20.0	1.4167	0.0	0.	121.5	0.0	264
PROPARGYL ACETATE	98.1¢	0.9952	20.0	1.4187	0.0	. 0.	121.5	0.0	265
3,4-DIMETHYL FURAZAN ALLYL ACETONE	98.11 98.14	1.0528	14.0	1.4237	-7.0	744.	156.0	0.0	266
ALLYL ETHER	98.15	0.8006	0.0 25.0	1.4917 1.4141	0.0	0 ·	128.0	0.0 U.0	267 268
CYCLOHEXANONE	98.15	0.9510	25.0	1.4520	-32.1	ó.	155.6	18.3C	269
MESITYL UXIDE	98.15	0.8653	20.0	1.4440	-52.9	760.	129.8	6.0	270
2-METHYL THIOPHENE	98.17	1.0193	20.0	1.5203	-63.4	760.	112.6	0.0	271
3-METHYLTHIOPHENE	98.17	1.0218	20.0	1.5204	-69.0	760.	115.4	0.0	272
METHYL CYCLOHEXANE 1-HEPTEN:	98.18 98.19	0.7694	0.0	1.4231	-126.6 -118.9	0. 760.	98.2	0.0	273
1.1-DICHLOROETHANE	98.96	1.1680	20.0	1.3998	-97.0	0.	93.6 57.3	2.07 10.10	274 275
1.2-DICHLURGETHANE	98.96	1.2458	25.0	1.4421	-35.7	0.	83.5	10.36	276
METHYLCYANOACETATE	99.09	1.1225	25.0	1.4166	-13.1	ő.	205.1	29.30	277
1-ME-2-PYRROLIDINUNE	99.13	1.0279	25.0	1.4680	-24.4	769.	202.0	32.00	278
1-ME-2-PYROLIDONE	99.13	1.0279	25.0	1.4680	-24.4	10.	79.0	32.00	279
ALLYLISOTHIOCYANATE	99.16	1.0126	20.0	1.5306	-80.0	760.	152.0	17.20	280
N-METHYL PIPERIOINE	99.17	0.8159	0.0	1.4355	0.0	0.	107.0	0.0	281
CYCLOHEXYLAMINE 2,4-UIME-PYRROLIDINE	99.18 99.18	0.8671	20.0	1.4592	-17.7	0. 753.	134.8	4.73	282 283
ALLYL ACETATE	100.12	0.8297	20.0	1.4325	0 • 0 Ú • 0	0.	116.0	0.0 0.0	284
ETHYL ACHYLATE	100.12	0.9234	20.0	1.4068	-71.2	0.	99.5	0.0	285
METHYLMETHACRYLATE	100.12	0.9433	20.0	1.4146	-48.2	ŏ.	100.3	2.90	286
2.3 PENTANEDIONE	100.12	0.9565	19.0	1.4014	0.0	0.	108.0	0.0	287
2.4 PENTANEDIONE	100 • 12	0.9721	25.0	1.4541	-23.0	734.	139.0	0.0	288
GAMMA-VALEROLACTONE	100.12	1.0520	25.0	1.4320	-37.0	٠.	206.0	0.0	289
CYCLOHUT-CARBOXYLIC ACID BUTYLVINYL ETHER	100.13	1.0599	20.0 25.0	1.4400 1.3997	-2.0 -92.0	754. 0.	190.0 93.8	0.0	290 291
CYCLOHEXANOL	100.16	0.9684	25.0	1.4648	25.1	0.	161.1	15.00	292
2-HEXANONE	100.16	0.8116	0.0	1.4015	-57.0	0.	126.0	0.0	293
METHYL-T-HUTYL KETONE	100.16	0-8016	0.0	1.3952	-52.5	0.	106.0	0.0	294
3-ME-2-PENTANONE	100.16	0.8181	14.0	1.4002	0.0	0.	118.0	0.0	295
4-METHYL-2-PENTANONE	100.16	0.8008	20.0	1.3957	-84.0	0.	116.5	13.11	296 297
HEPTANE HEPTANE	100.19	0.6836	20.0 25.0	1.3876 1.3851	-90.6 -90.6	٥. ٥.	98.4 98.4	0.0 U.O	29A
2-METHYL HEXANE	100.19	0.6744	25.0	1.3848	-118.3	ŏ.	90.1	0.0	299
3-METHYL HEXANE	100.19	0.6829	25.0	1.3886	-119.4	0.	91.9	0.0	300
2.3-DIMETHYL PENTANE	100.21	0.6909	25.0	1.3920	0.0	0.	89.8	0.0	301
2.4-DIMETHYL PENTANE	100.21	0.6683	25.0	1.3814	-119.2	0.	80.5	0.0	302
3.3-DIMETHYL PENTANE	100.21	0.6933	0.0	1.3909	-135.0	٥.	86.l	0.0	303 304
2.2.3-TRIMETHYLBUTANE N-METHYLMURPHOLINE	100.21	0.6901 0.9051	20.0 20.0	1.3894	-25.n 0.0	0. 750.	80.9 115.0	0.0	305
DIISOPROPYLAMINE	101.19	0.7153	20.0	1.3924	-96.3	0.	83.9	0.0	306
DIPROPYLAMINE	101.19	0.7375	20.0	1.4043	-63.0	ŏ.	109.2	3.07	307
TRIETHYLAMINE	101.19	0.7230	25.0	1.3980	-114.7	0.	89.5	2.42	308
ACETIC ANHYDRIDE	102.09	1.0871	15.0	1.3930	-7 1 - 1	. 0.	140.0	20.70	309
4-METHYL DIOXOLANE	102.09	1.2069	20.0	1.4189	-46.8	760.	242.0	0.0	310
BUTYL FORMATE ETHYL PRUPIONATE	102.13	0.8917 0.8957	20.0 15.0	1.3890 1.3864	-91.0 -73.9	0. 0.	106.6 99.1	2.43 5.65	311 312
ETHYL PRUPIONATE	102.13	0.8899	20.0	1.3839	-73.9	ŏ.	99.1	5.65	313
ISOBUTYL FORMATE	102.13	0.8853	20.0	1.3855	-94.5	ŏ.	98.4	6.41	314
ISOPHOPYL ACETATE	102.13	0.8717	20.0	1.3773	-73.4	0.	88.2	0.0	315
ISOVALERIC ACID	102.13	0.9308	15.0	1.4064	-29.3	0.	176.5	2.64	316
METHYL-N-BUTYRATE	102.13	0.8984	20.0	1.3870	-95.0	9.	102.6	5.60	317
4-ME-1+3-DIOXANE	102.13	0.9953	20.0	1.4168	0.0 -92.5	0.	114.0	0.0	318 319
PROPYL ACETATE TETRA H FURFURYL ALC	102.13	0.8938 1.0420	15.0 25.0	1.3866 1.4599	0.0	0. 0.	101.5 178.0	6.0C 13.61	320
VALERIC ACID	102.13	0.9345	35.0	1.4060	33.7	ŏ.	185.5	2.66	321
BUTYL ETHYL ETHER	102.18	3.7448	25.0	1.3793	-103.0	0.	92.2	0.0	322
2-ETHYL-1-BUTANOL	102.18	0.8295	25.0	1.4205	-114.4	0.	146.5	6.09	323
1-HEXANOL	102.18	0.8159	25.0	1.4161	-44.6	9.	157.0	13.30	324
ISOPROPYL ETHER	102-18	0.7182	25.0	1.3655	-85.5	0.	68.3	3.88	325
2-METHYL-2-PENTANOL 3-METHYL-2-PENTANOL	102.18 102.18	0.8350	16.0 25.0	1.4125	108.0	0. 0.	121.5 134.3	0.0	326 327
4-METHYL-2-PENTANOL	102.18	0.8075	20.0	1.4100	-90.0		133.5	0.0	328
3-METHYL-3-PENTANOL	102.18	0.8237	20.0	1.4180	-38.0		121.0	0.0	329
PROPYL ETHER	102-18	0.7419	25.0	1.3760	-123.2	ō.	89.6	3.39	330
BENZONITRILE	103.12	1.0006	25.0	1.5259	-12.8	Q.	191.1	25.20	331
METHYL UNETHANE	103.12	1.0350	15.0	1.4200	0.0		170.0	0.0	332
I-NITROBUTANE DIETHYLENETRIAMINE	103.12	0.9880	0.0	1.4103	- 26.0		153.0 207.0	0.0	333 334
METHYL LACTATE	103.17 104.12	0.9586 1.0857	20.0 26.0	1.4810 1.4131	-39.0 -66.0		207.0 144.8	0.0	335
STYRENE	104.14	0.9012	25.0	1.5440	-30.6		145.2	2.43	336
DIETHOXYMETHANE	104.15	0.8319	20.0	1.3748	-665.0	ŏ.	A8.0	0.0	337
N-PROPYL NITRATE	105.09	1.0580	0.0	1.3976	0.0	0.	110.5	0.0	338
DIETHANOLAMINE	105.14	1.0899	30.0	1.4747	28.0		268.4	2.81	339
BENZALDEHYDE	106.12	1.0447	50.0	1.5455	-26.0	0.	178.9	17.80	340

(continued)

Name	Mol. Wt.	Density	Temp.	Refract. Index	Melting Point	Pressure	Boiling Point	Dielec. Constant	List No.
DIETHYLENE GLYCOL	106.12	1.1164	20.0	1.4475	-10.5	0.	244.8	31.69	341
METHUXYMETHOXYETHANOL	106.12	1.0385	25.0	1.4100	-70.0	0.	167.5	0.0	342
ETHYL BENZENE	106.17	0.8626	25.0	1.4932	-94.9	٥.	136.2	2.40	343
O-XYLENE M-XYLENE	106.17	0.8759	25.0 25.0	1.5029	-25.2 -47.8	0. 0.	144.4	2.57 2.37	344 345
P-XYLENE	106.17	0.8611	20.0	1.4958	13.3	ö.	138.3	2.27	346
P-XYLENE	106.17	0.8567	25.0	1.4933	13.3	0.	138.3	2.27	347
BENZYLAMINE	107.15	0.9813	20.0	1.5402	10.0	770.	185.0	0.0	348
P.4-DIMETHYL PYRIDINE	107.15	0.9271	25.0	1.4984	0.0 -15.0	0.	159.2	0.0	349 350
2,5-DIME PYRIDINE 2,6-DIME PYRIDINE	107.15	0.9261 0.9200	25.0 25.0	1.4953	-5.0	0.	156.H 143.C	0.0	351
3.5-UIME PYRIDINE	107.15	0.9385	25.0	1.5032	0.0	0.	171.6	0.0	352
3.4-DIME PYRIDINE	107.15	0.9537	25.0	1.5099	-12.0	759.	178.8	0.0	353
METHYL ANILINE O-TOLUIDINE	107.15	0.9891 0.9984	0.0 20.0	1.5702	-57.0 -16.1	0. 0.	196.3	5.97 6.34	354 355
M-TOLUIDINE	107.16	0.9930	15.0	1.5704	-30.4	ŏ.	203.4	5.95	356
P-TOLUIDINE	107.16	0.9659	45.0	1.5540	43.8	Ŏ.	200.6	4.98	357
ADIPONITRILE	103.14	0.9510	19.0	1.4597	2.0	0.	180.0	0.0	358
ANISOLE	108.14	0.9893	25.0	1.5143	-37.5 -15.3	0.	153.8 205.4	4.33	359
BENZYL ALCOHOL BENZYL ALCOHOL	108.14	1.0454	20.0 25.0	1.5403	-15.3 -15.3	0.	205.4	13.10 13.10	360 361
0-CRESOL	108.14	1.1350	25.0	1.5442	30.9	ŏ.	191.0	11.50	362
M-CRESOL	108.14	1.0302	25.0	1.5396	12.2	0.	202.2	11.80	363
P-CRESOL	108.14	1.0178	41.0	1.5311	34.7	٥.	201.9	9.91	364 365
1.3-PROPANEDITH10L ETHYL CHLOROFORMATE	108.23	1.0783	20.0	1.5403	-79.0 -80.6	0. 760.	95.0	0.0	366
METHYL CHLOROACETATE	108.53	1.2337	20.0	1.4218	-32.1	760.	129.8	0.0	367
BROMUETHANE	108.97	1.4708	15.0	1.4276	-118.6	0.	38.4	9.39	368
0-FLUORO FOLUENE	110.13	1.0027	15.0	1.4716	-62.0	. 0.	114.4	4.22	369
M-FLUOROTULUENE P-FLUOROTULUENE	110.13	0.9974	20.0	1.4691	-87.7 -50.8	760. 760.	116.5	0.0 5.86	370 371
BENZENETHIOL	110.18	1.0727	25.0	1.5872	-14.9	0.	169.1	4.38	372
THIO-PHENOL	110.18	1.0728		1.5879	70.5	ō.	169.5	0.0	373
2.3-DICHLUROPROPENE	110.98	1.2040	25.0	1.4600	0.0	. 0.	94.0	0.0	374
ACETAZINE Z-METHYLCYCLOHEXANONE	112.17	0.8422	20.0	1.4535	-125.0	757.	133.0	0.0	375 376
	112.19	0.9956	0.0	1.5130	0.0		137.8	0.0	377
P-DIMETHYLCYCLOHEXANE	112.21	0.7827	0.0	1.4253	-87.0		124.6		378
ETHYL CYCLOHEXANE	112.21	0.7839	25.0		-111.3	0.	131.8	0.0	379
OCTENE-1 DI-ISO-BUTYLENE	112.21	0.7149 0.7122	25.0	1.4087	-101.7	0.	121.3	0.0	360 381
CHLOROBENZENE	112.56	1.1117	15.0	1.5275	-45.6	ŏ.	131.7	5.62	
1.2-DICHLUROPROPANE	112.99	1.1560	20.0		-100.4	760.	96.4	0.0	363
1.3-DICHLUROPROPANE	112.99	1.1878	20.0	1.4487	-94.5	760.	120.4	0.0	384
2.2-DICHLOROPROPANE 1.1-DICHLOROPROPANE	112.99	1.1120	20.0	1.4148	-33.8	760. 760.	69.3 88.1	0.0	385
	113.12	1.1321	20.0	1.4155	-22.5	0.	206.0	26.70	387
CHLOROACETYL CHLORIDE	113.94	1.4202	20.0	1.4541	0.0	760.	107.0	0.0	388
TRIFLUOROACETIC ACID	114.02	1.4890	20.0	1.2850	-15.3	0.	71.8	8.55	389
ALLYL PROPIONATE 2.5-HEXANEDIONE	114.14	0.7370	25.0	1.4110	0.0 -5.5	754.	124.0	0.0	390 391
2.4-DIME-3-PENTANONE	114-18	0.8062	20.0	1.4001	0.0	0.	124.0	ú.0	392
2-HEPTANONE	114.18	0.8111	20.0	1.4116	-35.0	0.	151.0	J.0	393
3-HEPTANONE	114.18	0.8183	20.0	0.0	39.0	0.	50.0	0.0	394
4-HEPTANONE CYCLOHEXYLMETHYL ETHER	114.18	0.8174	20.0	1.4073	-33.0 -74.4	760.	133.0	0.0	395 396
1-METHYLCYCLOHEXANOL	114.19	0.9251	20.0 24.6	1.4355	26.0	0.	157.0	0.0	397
2-METHYLCYCLOHEXANOL	114-19	0.9254	20.0	1.4610	0.0		167.6	13.30	398
	114-19	0.9360	20.0	1.4640	7.0	0.	165.0	0.0	399
TRN-2-ME CYCLOHEXANOL 3-METHYLCYCLOHEXANOL	114.19	0.9247	20.0	1.4616	-4.0 0.0	0.	172.0	0.0 12.30	400
CIS-3-ME CYCLOHEXANOL	114-19	0.9155		1.4572).	168.0	16.47	402
TRN-3-ME CYCLOHEXANOL	114-19	0.9214	20.0	1.4580		0.	P4.0	8.05	403
	114.19	0.9122	20.0	1.4565	0.0	763.	172.0	13.30	404
5-METHYL-3-HEXANONE	114.19	0.8150	17.0	1.3970	-107.4	735.	134.0	3.0	405 406
	114.22	0.7025		1.3974	-56.8	0.	125.6		407
	114.22	0.6985		1.3951	-56.8	0.	125.6	1.95	408
2.2.4-TRIME PENTANE	114.22	0.7078	0.0	1.3914	-107.4	0.	98.2	1.94	409
2.2.3-TRIME PENTANE	114.22	0.7121	25.0	1.4006	-112.3 -41.0	8:	109.H	0.0	410
ACETUNYLUREA METHYLACETOACETATE	116.12	0.6018	20.0	1.4186	-80.0	0.	171.7	0.0	412
1-URE 100-2-PROPANONE	116.12	0.8018	4.0	0.0	-41.0	0.	82.0	0.0	413
BETA-ACETUPROPIONIC ACID		1 • 1 3 3 5	20.0	1.4396	37.2	0.	245.8	0.0	414
INDENE 4-ME-2-PENTANONE-4-OL	116.15 116.15	0.9915	0.0	1.5642	-2.0 -44.0	0.	182.2	3.0 3.0	416
AMYL FORMATE	116.16		15.0	1.3992	-73.5	0.	132.1	0.0	417
RUTYL ACETATE	116.16	0.8713	30.0	1.3827	-73.5	0.	126.1	5.01	418
SEC BUTYL ACETATE	116.16	0-8720	20.0	1.3894	0.0	0.	112.3	0.0	419
CAPROIC ACID DIACETONE ALCOHOL	116.16	0.9230	25.0	1.4148	-3.9 -44.0	0. 12.	205.7 168.1	2.63 18.20	420
ETHYL BUTYRATE	110.16	0.8791	20.0	1.3928	-98.0		121.6	5.10	422
ETHYL ISUBUTYRATE	116.16	0.8693	20.0	1.3903	-88.2		111.0	0.0	423
ISOAMYL FORMATE	116.16	0.8820	20.0	1.3476	. 0.0	0.	124.2	0.0	424
ISOBUTYL ACETATE	116.16	0.8695	25.0	1.3890	-98.8	0.	118.0	5.29	425

Name	Mol. Wt.	Density	Temp.	Refract. Index	Melting Point	Pressure	Boiling Point	Dielec. Constant	List No.
N-PROPYL PROPIONATE	116.16	0.8330	0.0	1.6015	-76.0	0.	122.5	0.0	426
	116.16	0.9654	25.0	1.4493	-1.2	0.	175.2	23.06	427
2-HEPTANUL	116.21	0.8171	20.0	1.4210	0.0	0.	159.7	9.21	428
PHENYLACTIONITRILE TOLUIC NITRILE	117.14	1.0155	0.0	1.5233	-23.8 -23.8	0.	233.5	0.0 18.70	429 430
	117.19	0.9081	25.0 20.0	1.5209	0.0	0. 15.	83.0	0.0	431
2-BUTYLAMINO ETHINOL	117.19	0.8907	20.0	1.4437	-3.5	760.	199.5	0.0	432
	118.09	1.1716	60.0	1.3790	5.4	760.	164.5	J. 0	433
	118.09	1.1930	1.0	1.3580	-10.0	0.	174.0	0.0	434
ACETAL	118.12	0.8213	25.0	1.3682	0.0	0.	103.6	3.80	435
DIETHYL CARBONATE	118.13	3.9693	25.0	1.3829	-43.0	0.	126.8	2.82	436
ETHYL LACTATE ETHYL LACTATE	118.13	1.0328	20.0	1.4124	-26.0 -26.0	0.	154.5 69.5	13.10 13.10	437 438
2-MEDXYETHYLACETATE	118.13	1.0272 1.0049	25.0 20.0	1.4127	-65.1	36. 0.	144.5	B.25	439
	118.17	ÿ.8341	0.0	1.3819	0.0	ŏ.	102.2	0.0	440
	118.17	0.9140	0.0	0.0	-20.0	765.	165.0	0.0	441
	118.18	0.9008	20.0	1.4198	0.0	760.	170.2	9.30	442
2-METHYL-2+4-PENTANEDIOL		0.9254	17.0	1.4250	-40.0	760.	197.0	0.0	443
	118.61	1.0000	20.0	1.4626	-43.9	0.	143.0	3.0	444
	119.12	1.0960	0.0	1.5350	0.0 -27.0	.0•	165.0 70.0	0.0	445 446
	119.38	1.0880	20.0 25.0	1.5589	-63.5	11.	61.1	0.0 4.81	447
ACETOPHENONE	120.15	1.0281	20.0	1.5342	19.6	0.	202.0	17.39	448
GLYCEROL DIMETHYL ETHER	120.15	1.0085	0.0	1.4192	0.0	õ.	169.0	0.0	449
2-(2-MEOLTO) ETHANUL 328	120.15	1.0167	25.0	1.4245	-70.0	0.	194.1	0.0	450
	120.15	1.0469	25.0	1.5350	-35.6	0.	191.5	0.0	451
	120.15	1.0469	25.0	1.5350	-35.6	0.	191.5	0.0	452
	120.17	1.2614	30.0	1.4820	28.5	o.	287.3	43.30	453
	120.19 120.19	0.8618 0.8870	20.0	1.4915	-96.0 -17.0	0.	152.4 164.9	2.3A 0.0	454 455
	120.19	0.8575	25.0	1.4889	-96.0	0.	152.4	2.38	456
	120.19	0.8620	0.0	1.4920	-99.5	0.	159.2	0.0	457
1.2.3 TRIME BENZENE	120-19	0.8944	0.0	1.5139	-25.5	0.	176.0	0.0	458
	120.19	0.8890	4.0	1.5030	-60.5	0.	169.3	0.0	459
	120.19	0.8642	0.0	1.4998	-52.7	0.	164.7	0.0	460
	120.20	0.8620	0.0	1.4900	-99.5	0.	159.2	0.0	461
	120.20 120.62	0.8642 0.8784	20.0	1.4998	-52.7 -83.0	0. 0.	164.7	2.27 0.0	462 463
	120.62	0.8694	0.0 21.0	1.4142	0.0	0.	0.0	0.0	464
	120.62	0.8700	20.0	1.4163	0.0	ŏ.	0.0	0.0	465
	120.99	1.4133	20.0	1.4519	-116.6	ŏ.	59.5	0.0	466
O-ETHYL ANILINE	121-18	0.9830	22.0	1.5584	-5.0	0.	209.0	0.0	467
	121.18	v • 9769	20.0	1.5649	0.0		206.0	0.0	468
2.4.6-TRIMETHYL PYRIDINE		0.9166	22.0	1.4959	0.0	754.	172.0	0.0	469
	122.13 122.16	1.1525	25.0	1.5702	-7.0 0.0	0.	196.7	13.90	470 47)
	122.17	0.9605	15.0 25.0	1.5049	-29.5	ŏ.	170.0	4.22	472
DIETHANOL SULFIDE	122.19	1.1793	25.0	1.5146	-10.0	ŏ.	585.0	0.0	473
2-CHLOROLTHYLACE TATE	122.55	1.1783	6.0	1.4215	-20.0	0.	145.0	0.0	474
	122.55	1.1144	20.0	1.4215	-26.0	740.	144.0	0.0	475
	122.60	1.0327	25.0	1.4660	0.0	0.	173.0	0.0	476
	122.96	1.6630	0.0	1.4538	-96.5	٥.	76.7	0.0	477
1-BRUMOPKUPANE 2-BROMOPKUPANE	123.00 123.00	1.3452	25.0 25.0	1.4317	-109.8 -89.0	0. 0.	71.1 59.4	8.09 9.46	478 479
	123.11	1.2082	15.0	1.5546	5.7	0.	210.8	34.82	480
	123.50	1.1820	18.0	1.4954	-28.0	ŏ.	118.0	0.0	481
	124.21	1.0526	12.0	1.5752	-20.0	0.	195.4	0.0	482
BETA-CLETHYLCELLOSOLVE	124.57	0.0	19.0	1.4505	0.0	760.	182.0	0.0	483
	125.00	1-1782	20.0	1.4754	-14.0	0.	138.3	0.0	484
	125.21	0.8097	25.0	1.4182	-45.6	٠.	205.2	13.90	485
DIMETHYL SULFATE 2.5-DIME-CYCLOHEXANONE	126 - 13	1.3283	20.0	1.3874	-31.A	760.	188.5 178.0	0.0	486
	126.19 126.23	0.9025 n.7540	20.0	1.4446	0.0 0.0	0. 0.	148.5	0.0	487 488
	126.24	5.7253	25.0	1.4133	-81.4	0.	146.9	0.0	489
	126.58	1.1000	0.0	1 5391	-39° A	0.	179.4	23.00	490
	126.58	1.0722	0.0	1.5214	-47.8	0.	162.0	5.55	491
	126.58	1.0697	0.0	1.5199	7.5	0.	162.0	6.09	492
		1.0930	20.0		-130.0		108.0	0.0	493
	127.02	1.0863	0.0	1.4355	0.0	763.	114.5	0.0	494
1.2-DICHLOROBUTANE	127.02	1.1116	25.0 12.0	1.4474	-38.7	0.	124.0	0.0	495 496
2.3-DICHLDROBUTANE	127.03	1.1134	20.0	1.4420	-80.0	760.	116.0	0.0	497
1.1-DICH-2-ME PROPANE	127.03	1.0111	20.0	1.4330	0.0	760.	105.5	0.0	498
1,2-DICH-2-ME PROPANE	127.03	1.0930	20.0	1.4370	-130-0	760.	108.0	0.0	499
1.3-UICH-2-ME PROPANE	127.03	1-1325	25.0	1.4488	0.0	760.	134.6	0.0	500
1-ACETYLP IPERIDINE	127.18	1.0112	9.0	0.0	108.0	0.	226.5	0.0	501
0-CHLOROANILINE	127.57	1.2125	20.0	1.5881	-1.9	٥.	208.8	13.40	502
3-ME-HEPTANONE-2 2-ETHYLCTCLOHEXANOL(CIS)	128.21	0.8318	20.0	1.4172	0.0	0.	167.0	0.0	503 504
OCTANONE-2	128.22	0.8185	21.0	1.4655 1.4161	-20.9	12.	173.0	0.0	505
	128.22	0.8220	20.0	1.4156	0.0	738.	169.0	0.0	506
ISO-NONAINE	128.25	0.7134	0.0	1.4032	-80.5	0.	142.8	6.0	507
4-METHYL UCTANE	128.25	0.7199	0.0	1.4061	-119.1	0.	142.4	0.0	508
NONANE	128.25	C•7138	25.0	1.4054	-53.5	0.	150.8	1.97	509
2.2.5-TRIME HEXANE	128.25	0.7032	25.0	1.3997	-165.8	0.	124.1	0.0	510

(continued)

Name	Mol. Wt.	Density	Temp.	Refract. Index	Melting Point	Pressure	Boiling Point	Dielec. Constant	List No.
DICHLOROACETIC ACID	128.94	1.5634	20.0	1.4658	10.8	0.	192.5	8.20	511
1.3-DICL-Z-PROPANOL	128.99	1.3506	17.0	1.4837	0.0	760.	176.0	0.0	512
N-ACETYL MORPHOLINE CINNAMONITRILE	129.16	1.1165	20.0 20.0	1.4383 1.6043	14.0 22.0	50. 0.	152.0 263.8	0.0	513 514
QUINOLING	129.16	1.0977	25.0	1.6293	-14.9	760.	237.1	9.00	515
DIBUTYLAMINE	129.25	0.7619	20.0	1.4177	-62.0	0.	159.6	2.98	516
ETHYLACETUACETATE	130.15	1.0222	20.0	1.4192	-40.0	0.	180.8	15.70	517
PROPIONIC ANHYDRIDE N-BUTYL PROPIONATE	130.15	1.0110	50.0	1.4045	-43.0 -89.5	0.	169.0 145.5	18.30	518 519
HEPTANOIU ACID	130.18	0.8818	0.0	1.3982 1.4216	-10.0	0. 0.	223.0	0.0	520
1509UTYLPROPIONATE	130.18	0.8876	20.0	1.3975	-71.4	0.	136.8	0.0	521
4(2-AMINUET) MORPHOLINE	130.19	0.9915	20.0	1.4715	25.6	50.	116.0	0.0	522
AMYL ACETATE ETHYL ISOVALERATE	130.19	0.8753	20.0	1.4028	-100.0 -99.3	0.	149.2	4.75 4.71	523 524
2-OCTANOL (DL)	130.19 130.22	0.8652	20.0	1.3962	-38.5	o.	180.0	0.0	525
2.2.4-TRI ME PENTANOL-4	130.22	0.8270	0.0	1.4293	-16.7	ŏ.	194.5	0.0	526
BUTYL ETHER	130.23	0.7641	25.0	1.3968	-95.2	0.	142.2	0.0	527
2-ET-1-HEXANOL	130.23	0.8291	25.0	1.4292	-76.0	٥.	184.4	4.41	528 529
2-ME-HEP (ANOL-2 3-ME-HEP (ANOL-3	130.23	0.8142	20.0	1.4279	0.0 0.08-	o.	156.0 163.0	0.0 0.0	530
1-OCTANOL	130.23	0.8221	25.0	1.4275	-15.0	ŏ.	195.2	10.34	531
P-FLUORO CHLORO BENZENE	130.55	1.5560	0.0	1.4990	-28.3	757.	130.0	0.0	532
TRIMETHYL BORATE	130.92	0.9200	23.0	1.3568	-34.0	0.	69.0	0.0	533
ISOAMYL ACETATE 4(8-HYDROXYET)MORPHOLINE	130.98	1.0710	25.0 20.0	1.3984	78.5 U.O	0• 757•	42.0 227.0	4.63 0.0	534 535
1-NITROHEXANE	131.17	0.0	0.0	1.4229	0.0	0.	0.0	0.0	536
TRICHLORUETHYLENE	131.39	1.4762	15.0	1.4800	-86.4	0.	87.2	3.42	537
DIMETHYLMALONATE	132.11	1.1544	0.0	1.4140	-80.0	٥.	183.0	0.0	538
CELLUSOLVÉ ACETATE CINNAMALDEHYDE	132.16	0.9730	20.0	1.4050	-61.7	0. 760.	253.0	7.57 16.90	539 540
1234TET H NAPHTHALENE	132.16	1.0497	20.0	1.6195	-75.0 -35.8	0.	207.6	2.77	541
1234TET H NAPHTHALENE	132.21	0.9662	25.0	1.5492	-35.8	ō.	207.6	2.77	542
1-FLUORO OCTANE	132.22	0.8103	0.0	1.3935	0.0	0.	142.5	0.0	543
ETHYLOIE1HANOLAMINE 1.1.1-TRICHLOROETHANE	133.19	1.0135	20.0	1.4663	-50.0	760.	247.0	0.0 7.53	544
1.1.2-TRICH ETHANE	133.41	1.3376	20.0	1.4379	-30.4 -37.4	o.	74.0	0.0	545 546
3-BR PROPIONITRILE	133.98	1.6152	20.0	1.1470	0.0	25.	92.0	0.0	547
ALLYL PHENYL ETHER	134.18	0.9788	25.0	1.5200	0.0	10.	85.0	0.0	548
CARBITOL	134.18	0.9881	0.0	1.4273	0.0	. 0.	201.0	0.0	549
CINNAMYL ALCOHOL	134.18	1.0440	20.0	1.5819 1.4254	33.0	0.	257.5	0.0	550 551
BIS(2-MEGET) ETHER	134.18	0.9440	25.0	1.4043	0.0	ŏ.	159.8	0.0	552
1-PHENYL-2-PROPANONE	134.18	1.0157	20.0	1.5168	27.0		216.5		553
PROP1OPHLNONE	134.18	1.0105	20.0	1.5269	18.6	0.	218.0	0.0	554
0-DIETHYLBENZENE	134.21	0.8639	20.0	1.5035	-20.0	0.	181.0	0.0	555 556
1.4-DIETHYLBENZENE	134.21	0.8620	20.0	1.4967	-35.0	0.	182.0	0.0	557
P-ISOPROPYL TOLUENE	134.21	0.8569	0.0	1.4904	0.0	ō.	177.0	0.0	558
1234 TETKA-ME-BENZENE	134.21	0.9010	0.0	1.5187	-64.0	0.	203.5	0.0	559
1235 TETRA-ME-BENZENE	134.21	0.8906		1.5134	-24 • 0	0.	196.0		560.
BUTYL BENZENE SEC-BUTYL BENZENE	134.22 134.22	0.8561	25.0	1.4874	-87.9 -75.5	0.	183.3	2.36	561 562
P-CYMENE	134.22	0.8533	25.0	1.4885	-67.9	ŏ.	177.1	2.25	563
TERT-BUTYL BENZENE	134.22	0.8624	25.0	1.4902	-57.9	0.	169.1	2.37	564
4-CHLOROCYCLOHEXANOL	134.61	1 • 1435	17.0	1.4930	0.0	14.	106.0	0.0	565
1-CHLOROMEPTANE 2-CL-HEP1 ANE	134.65	0.8810 0.8725	0.0 15.0	1.4248	-69•0 0•0	0. 19.	158.0 46.0	0.0 0.0	566 567
3-CL-HEPTANE	134.65	0.8960	20.0	1,4237	0.0	751.	144.0	0.0	568
4-CL-HEPTANE	134.65	0.8710	20.0	1.4237	0.0	758.	144.0	0.0	569
4-BRUMO-1-BUTENE	135.01	1.3230	50.0	1.4622	0.0	758.	98.5	0.0	570
BENZEDRINE PHENYL ACETATE	135.20	0.9400 1.0730	25.0	1.5463	0.0	765.	203.5 195.8	0.0 18.40	571 572
BENZYL FURMATE	136.15	1.0817	25.0	1.5121	0.0	20.	93.0	0.0	573
METHYL BENZOATE	136.15	1.0790	30.0	1.5123	-12-1	0.	199.5	6.59	574
N-PROPYL PHENYL ETHER	136-19	0.9530	15.0	1.5011	0.0	0.	189.5		575
BENZYL ETHYL ETHER 3-PHENYL-1-PROPANOL	136.20	0.9446 1.0080	25.0 20.0	1.4934	0.0 -18.0	0. 750.	185.0 236.5	3.90 0.0	576 577
ALPHA PINENE	136.24	0.8539	25.0	1.4632	-64.0	0.	156.9	2.26	578
BETA PINENE	136.24	0.8667	25.0	1.4768	-61.5	0.	166.0	2.50	579
ETHYL CHLOROGLYDXYLATE	136.54	1.2226	20.0	0.0	0.0	760.	135.0	0.0	580
6-CL-HEXANOL-I BROMOBUTANE	136.62	0.0	0.0	1.4531	0.0	12.	107.0	0.0	581
2-BROMO-2-ME PROPANE	137.03	1.2764	20.0	1.4389	-112.4 -20.0	0. 0.	101.3 73.3	0.0	582 583
1-BROMO-2-ME PROPANE	137.03	1.3356	25.0	1.4348	0.0	0.	91.0	0.0	584
DIETHYL SELENIDE	137.06	1.2300	20.0	1.4768	0.0	0.	108.0	0.0	585
ANILINGETHANOL	137.18	1.1129	25.0	1.5749	0.0	٥٠	286.0	0. 0	586 587
METHOXY BENZYL ALCOHOL 2-PHENOXYETHANOL	138.16	1.0430	25.0 22.0	1.5490	0.0 14.0	0.	249.0	0.0	587 588
VERATROLE	138.17	1.0819	25.0	1.5323	22.5		206.3	4.09	589
DIETHYL SULFITE	138.19	1-0829	20.0	1.4144	0.0	768.	157.0	0.0	590
ISOPHORONE	138.21	0.9229	20.0	1.4759	-8.1	754.	214.0	0.0	591
DECAHYDRÜNAPHTHALENE CIS-DECAHYDRONAPHTHALENE	138.24	0.8789 0.8967	25.0 0.0	1.4758	-125.0 -43.3	0.	191.7 195.7	0.0	592 593
TRAN-DECAHYDRONAPTHALENE		0.8700	0.0	1.4696	-32.5	0.	187.3	0.0	594
BROMUACETIC ACID	138.95	1.9335	50.0	1.4804	5.0	760.	208.0	0.0	595

PELARGONIC NITRILE 139-24 0.9426 20.0 1.4235 -34.2 0.24.0 0.0 59 DECAMYDRUWUINOLINE 139-24 0.9426 20.0 1.4926 -40.0 20. 90.0 0.0 59 TRIMETHYLPHOSPHATE 140.08 1.2144 20.0 1.3967 -46.0 76.0 197.2 0.0 59 2-ACETYL CYCLOHEXANONE 140.18 1.0782 20.0 1.5138 0.0 18. 112.0 0.0 60 BUTYLCYCLOHEXANONE 140.27 0.8178 20.0 1.4538 0.0 76. 199.0 0.0 60 BUTYLCYCLOHEXANONE 140.27 0.8178 20.0 1.4500 -78.6 0. 179.0 0.0 60 1.5-UICHLOROPENTANE 140.27 0.8369 25.0 1.4191 -66.3 0. 170.6 0.0 60 1.000METHANIE 141.94 2.2649 25.0 1.5270 -66.5 0. 42.4 7.00 60 1-METHYL NAPHTHALENE 142.20 1.0257 20.0 1.4726 0.0 50. 125.0 0.0 60 METHYL NAPHTHALENE 142.23 0.8185 0.0 1.6170 -22.0 76.0 244.6 0.0 60 METHYL HEPTYL KETONE 142.23 0.8185 0.0 1.4216 -20.0 1.73.0 0.0 187.5 0.0 60 5-MONANONE 142.24 0.8370 20.0 1.4210 0.0 0.187.5 0.0 60 5-MONANONE 142.24 0.8370 20.0 1.4550 -4.8 0.188.4 0.0 61 DECANE 142.27 0.7262 25.0 1.4119 -29.7 0.0 173.0 0.0 60 DECANE 142.27 0.7262 25.0 1.4119 -29.7 0.0 174.1 1.99 61 METHYL-DICHLORO ACETATE 143.01 1.2192 20.0 1.4575 -46.8 0.178.8 21.20 61 1.3-DICL-2-ME-Z-PROPANOL 143.18 1.0585 0.0 1.4166 -1.0 0.246.5 0.0 61 2-METHYL JETHER 143.01 1.2192 20.0 1.4575 -46.8 0.178.8 21.20 61 1.3-DICL-2-ME-Z-PROPANOL 143.18 1.0585 0.0 1.4176 -93.5 0.156.0 0.0 61 DIMETHYL MALEATE 144.13 1.7392 20.0 1.4917 -16.7 0.107.0 0.0 61 DIMETHYL MALEATE 144.13 1.7392 20.0 1.4917 -16.7 0.107.0 0.0 61 TETRANYDNOFURFURTUR ACET 144.21 0.8876 0.0 1.4917 -16.7 0.107.0 0.0 62 ANYLEROPHONAPHOLINE 144.21 0.8876 0.0 1.4096 -73.1 760. 166.6 0.0 62 ANYLEROPHONAPHE 144.22 0.8879 20.0 1.4917 -16.7 0.107.0 0.0 62 ANYLEROPHONAPHE 144.22 0.8717 20.0 1.4917 -16.7 0.107.0 0.0 62 ANYLEROPHONAPHOLINE 144.21 0.8876 0.0 1.4917 -16.7 0.107.0 0.0 62 ANYLEROPHONAPHOLINE 144.21 0.8876 0.0 1.4917 -16.7 0.0 16.5 0.0 62 ANYLEROPHONAPHOLINE 144.22 0.8719 20.0 1.4917 -16.7 0.0 174.5 0.0 62 ANYLEROPHONAPHOLINE 144.22 0.8719 20.0 1.4919 -80.7 0.0 174.5 0.0 62 ANYLEROPHONAPHOLINE 144.22 0.8719 20.0 1.4917 -16.7 0.0 174.5 0.0 62 A	Name Mol. Density Temp. Refract. Melting	Pressure Boilin		List No.
DECAMYDRUJULINOLINE				596
TRIMETHYLPHOSPHATE				597
Z-ACETYL CYCLOMEXANONE 140.18 1.0782 20.0 1.5138 0.0 18. 112.c 0.0 60 2-ISOPROPYLCYCLOMEXANONE 140.23 0.9270 20.0 1.4538 0.0 76. 199.0 0.0 60 1-DECENE 140.27 0.8178 20.0 1.4400 -78.6 0. 179.0 0.0 60 1-DECENE 140.27 0.7369 25.0 1.4191 -66.3 0. 170.6 0.0 60 1.5-DICTLOUROPENTANE 141.04 1.1006 20.0 1.4564 -72.8 760. 180.0 0.0 60 1000METHANIE 141.94 2.2649 25.0 1.5270 -66.5 0. 42.4 7.00 60 1-ACETYL CYCLOMEXANOL 142.20 1.0257 20.0 1.4726 0.0 50. 125.0 0.0 60 1-METHYL NAPHTHALENE 142.20 1.0257 20.0 1.4161 -22.0 760. 244.6 0.0 60 METHYL HEPTYL KETONE 142.23 0.8185 0.0 1.4161 -20.9 0. 173.0 0.0 60 4-MONANONE 142.24 0.8370 20.0 1.4210 0.0 0. 187.5 0.0 60 5-MONANONE 142.24 0.8370 20.0 1.4210 0.0 0. 187.5 0.0 60 5-MONANONE 142.24 0.8906 16.0 1.4550 37.3 750. 202.0 0.0 61 DECANE 142.27 0.7262 25.0 1.4119 -29.7 0. 174.1 1.99 61 METHYL-DICHLORO ACETATE 142.27 0.7262 25.0 1.4119 -29.7 0. 174.1 1.99 61 1515(2-CL ETHYL) ETHER 143.01 1.2192 20.0 1.4575 -46.8 0. 178.8 21.20 61 1.3-DICL-2-ME-Z-PROPANOL 143.02 1.2758 20.0 1.4917 -46.8 0. 178.8 21.20 61 1.5-DICL-2-ME-Z-PROPANOL 143.02 1.2758 20.0 1.4917 -16.7 0. 246.5 0.0 61 1.5-DICL-2-ME-Z-PROPANOL 143.18 1.0585 0.0 1.4917 -16.7 0. 246.5 0.0 61 1.5-DICL-2-ME-Z-PROPANOL 143.18 1.50585 0.0 1.4917 -16.7 0. 266.5 0.0 61 1.5-DICL-2-ME-Z-PROPANOL 144.21 0.8962 0.0 1.4917 -16.7 0. 107.0 0.0 61 1.5-DICL-2-ME-Z-PROPANOL 144.21 0.8962 0.0 1.4917 -16.7 0. 107.0 0.0 61 1.5-DICL-2-ME-Z-PROPANOL 144.21 0.8962 0.0 1.4917 -16.7 0. 107.0 0.0 61 1.5-DICL-2-ME-Z-PROPANOL 144.21 0.8962 0.0 1.4917 -16.7 0. 107.0 0.0 61 1.5-DICL-2-ME-Z-PROPANOL 144.21 0.8962 0.0 1.4917 -16.7 0. 107.0 0.0 61 1.5-DICL-2-ME-Z-PROPANOL 144.21 0.8962 0.0 1.4917 -16.7 0. 107.0 0.0 61 1.5-DICL-2-ME-Z-PROPANOL 144.21 0.8962 0.0 1.4917 -16.7 0. 107.0 0.0 61 1.5-DICL-2-ME-Z-PROPANOL 144.21 0.8962 0.0 1.4917 -16.7 0. 107.0 0.0 62 1.5-DICL-2-ME-Z-PROPANOL 144.21 0.8962 0.0 1.4917 -16.7 0. 107.0 0.0 62 1.5-DICL-2-ME-Z-PROPANOL 144.21 0.8962 0.0 1.4917 -16.7 0. 107.0 0.0 62 1.5-DICL-2-ME-Z-PROPANOL 144.21 0.8962 0.0 1.4917 -16.7 0. 10				599
BUTYLCYCLOHEXANE	CYCLOHEXANONE 140-18 1-0782 20.0 1.5138 0-0			600
1-DECENE	PYLCYCLOHEXANONE 140.23 0.9270 20.0 1.4538 0.0			601
1.5-UICHLUROPPENTANE				602
1-00METHANE				604
1-ACETYL CYCLOHEXANOL				605
METHYL HEPTYL KETONE 142.23 0.8185 0.0 1.4161 -20.9 0. 173.9 0.0 60 4-NONANONE 142.24 0.8270 20.0 1.9980 -4.8 0. 187.5 0.0 60 5-NONANONE 142.24 0.8270 20.0 1.9980 -4.8 0. 187.5 0.0 60 61 3.3.5-TRIME CYCLOHEXANOL 142.24 0.9066 16.0 1.4550 37.3 750. 202.0 0.0 61 DECANE 142.27 0.7262 25.0 1.4119 -29.7 0. 174.1 1.99 61 METHYL-DICHLORO ACETATE 142.97 1.3774 20.0 1.4555 -40.8 0. 178.8 21.20 61 1.3-DICL-2-MEZ-2-PROPANOL 143.02 1.2758 20.0 1.4575 -46.8 0. 178.8 21.20 61 2-METHYL UUINOLINE 143.18 1.0585 20.0 1.4744 0.0 0. 174.5 0.0 61 2-METHYL UUINOLINE 143.18 1.0585 20.0 1.4744 0.0 0. 174.5 0.0 61 TRI-N-PRUPYL AMINE 143.27 0.7530 25.0 1.4917 -16.7 0. 150.0 0.0 61 TRI-N-PRUPYL AMINE 143.27 0.7530 25.0 1.4917 -16.7 0. 107.0 0.0 61 TETRAHYDNOFURFURYL ACET 144.13 1.1513 20.0 1.4917 -16.7 0. 200.4 0.0 61 TETRAHYDNOFURFURYL ACET 144.17 1.0672 25.0 1.4917 -16.7 0. 200.4 0.0 61 TETRAHYDNOFURFURYL ACET 144.21 0.8876 20.0 1.4096 -73.1 760. 166.7 0.0 62 AMYLPROPIONATE 144.21 0.8876 20.0 1.4096 -73.1 760. 166.7 0.0 62 AMYLPROPIONATE 144.21 0.8876 20.0 1.4095 -73.1 760. 166.7 0.0 62 SUTYLBUTYRATE 144.21 0.8876 20.0 1.4095 -73.1 760. 166.7 0.0 62 CAPRYLIC ACID 144.22 0.8779 15.0 1.4209 -80.7 0. 167.5 0.0 62 CAPRYLIC ACID 144.22 0.8790 20.0 1.4095 -91.5 760. 166.6 0.0 62 SUTYLBUTYL ACETATE 144.21 0.8888 0.0 1.4057 0.0 0.167.5 0.0 62 CAPRYLIC ACID 144.22 0.8790 20.0 1.4095 -91.5 760. 162.5 0.0 62 SUTYLBUTYL ACETATE 144.22 0.8790 20.0 1.4095 -91.5 760. 162.5 0.0 62 CAPRYLIC ACID 144.22 0.8790 20.0 1.4095 -80.7 0. 167.5 0.0 62 SUTYLLSOBUTYRATE 144.22 0.8790 20.0 1.4095 -80.7 0. 175.6 0.0 62 SUDYLLSOBUTYRATE 144.22 0.8790 20.0 1.4095 -80.7 0. 175.6 0.0 62 SUDUTYLLSOBUTYRATE 144.25 0.8879 20.0 1.4095 -80.7 0. 175.6 0.0 63 SUDUTYLLSOBUTYRATE 144.25 0.8879 20.0 1.4095 -80.7 0. 175.6 0.0 63 SUDUTYLLSOBUTYRATE 144.25 0.8879 20.0 1.3999 -80.7 0. 175.6 0.0 63 SUDUTYLLSOBUTYRATE 144.25 0.8879 20.0 1.3999 -80.7 0. 175.6 0.0 63 SUDUTYLLSOBUTYRATE 144.25 0.8879 20.0 1.3999 -80.7 0. 175.6 0.0 63 SUDUTYLLSOBUTYRATE 144.25 0.8879 20.0 1.3999 -80.7 0.	CYCLOHEXANOL 142-20 1-0257 20.0 1-4726 0-0	50. 125.		606
4—NONANONE 142.24 0.8370 20.0 1.4210 0.0 0.187.5 0.0 60 5-NONANONE 142.24 0.8270 20.0 1.3980 -4.8 0. 188.4 0.0 61 3.3,5-TRIME CYCLOHEXANOL 142.24 0.9006 16.0 1.4550 37.3 750. 202.0 0.0 61 DECANE 142.27 0.7262 25.0 1.4119 -29.7 0.174.1 1.99 61 BIS (2-CL ETHYL)ETHER 143.01 1.2192 20.0 1.4575 -40.8 0. 178.8 21.20 61 1.3–01CL-2-ME-2-PROPANOL 143.02 1.2758 20.0 1.4575 -40.8 0. 178.8 21.20 61 1.3–01CL-2-ME-2-PROPANOL 143.02 1.2758 20.0 1.4744 0.0 0. 174.5 0.0 61 TRI-N-PRUPYL MINNE 143.27 6.7530 25.0 1.4176 -93.5 0. 156.0 0.0 61 TRI-N-PRUPYL AMINE 143.27 6.7530 25.0 1.4176 -93.5 0. 156.0 0.0 61 1-BR-2-CL-ETHANE 144.13 1.1513 20.0 1.4917 -16.7 0. 107.0 0.0 61 TETRAHYDRUFURFURTL ACET 144.13 1.1513 20.0 1.4352 0.0 14.856 0.0 62 AMYLPROPIONATE 144.21 0.88760 0.0 1.4045 -73.1 760. 168.7 0.0 62 AMYLBUTYLBUTYRATE (N) 144.21 0.88760 0.0 1.4045 -73.1 760. 168.7 0.0 62 N-PRUPYL VALERATE 144.21 0.88760 0.0 1.4045 -91.5 760. 166.6 0.0 62 N-PRUPYL VALERATE 144.21 0.88760 0.0 1.4045 -91.5 760. 166.6 0.0 62 N-PRUPYL VALERATE 144.21 0.88717 20.0 1.4045 -91.5 760. 166.6 0.0 62 N-PRUPYL VALERATE 144.22 0.88707 20.0 1.4045 -91.5 760. 166.6 0.0 62 N-PRUPYL VALERATE 144.22 0.88707 20.0 1.4097 -01.00 760. 167.5 0.0 62 N-PRUPYL VALERATE 144.22 0.8707 20.0 1.4097 -01.00 760. 167.5 0.0 62 N-PRUPYL VALERATE 144.22 0.8707 20.0 1.4097 -01.00 760. 167.5 0.0 62 N-PRUPYL VALERATE 144.22 0.8707 20.0 1.4097 -01.00 760. 167.5 0.0 62 N-PRUPYL VALERATE 144.22 0.8707 20.0 1.4097 -01.00 760. 167.5 0.0 62 N-PRUPYL VALERATE 144.22 0.8707 20.0 1.4097 -01.00 760. 167.5 0.0 62 N-PRUPYL VALERATE 144.22 0.8707 20.0 1.4097 -00.0 760. 167.5 0.0 62 N-PRUPYL SOBUTYLATE 144.22 0.8707 20.0 1.4097 -00.0 760. 171.5 0.0 62 N-PRUPYL SOBUTYLATE 144.22 0.8707 20.0 1.4097 -00.0 760. 171.5 0.0 62 N-PRUPYL SOBUTYLATE 144.22 0.8709 20.0 1.4097 -00.0 760. 171.5 0.0 62 N-PRUPYL SOBUTYLATE 144.22 0.8709 20.0 1.4097 -00.0 760. 171.5 0.0 62 N-PRUPYL SOBUTYLATE 144.22 0.8709 20.0 1.4097 -00.0 760. 171.5 0.0 62 N-PRUPYL SOBUTYLATE 144.22 0.8709 20.0 1.4097 -00.0 760. 171.5 0.0 62 N-P				607
5-MONANONE 142.24 0.8270 20.0 1.9980 -4.8 C. 188.4 0.0 61 DCANE 142.24 0.9906 16.0 1.4550 37.3 750. 202.0 0.0 61 DCANE 142.27 0.7262 25.0 1.4119 -29.7 0. 174.1 1.99 61 METHYL-DICHLORO ACETATE 142.97 1.3774 20.0 1.4429 -51.9 760. 142.8 0.0 61 B15 (2-CL ETHYL) ETHER 143.01 1.2192 20.0 1.4575 -46.8 0.178.8 21.20 61 1.3-DICL-2-ME-2-PROPANOL 143.02 1.2758 20.0 1.4744 0.0 0. 178.8 21.20 61 2-METHYL UUINOLINE 143.18 1.0585 0.0 1.6126 -1.0 0. 246.5 0.0 61 2-METHYL HAILE 143.27 0.7530 25.0 1.4917 -16.7 0. 107.0 0.0 61 1-BR-2-CL-ETHANE 143.43 1.7392 20.0 1.4917 -16.7 0. 107.0 0.0 61 1-BR-2-CL-ETHANE 144.13 1.5151 20.0 1.4422 -17.5 0.200.0 61 ETRI-N-PROPYL AGET 144.17 1.0672 25.0 1.4352 0.0 14.85.0 0.0 62 4.3-AMINOPROP) MONPHOLINE 144.21 0.8972 20.0 1.4749 -15.0 50. 134.0 0.0 62 4.3-AMINOPROP) MONPHOLINE 144.21 0.8717 20.0 1.4096 -73.1 760. 168.7 0.0 62 AMYLPROPIONATE 144.21 0.8717 20.0 1.4096 -73.1 760. 168.7 0.0 62 BUTYLBUTYRATE (N) 144.21 0.8717 20.0 1.4096 -73.1 760. 168.7 0.0 62 N-PROPYL VALERATE 144.21 0.8888 0.0 1.4057 0.0 0.157.0 0.0 62 N-PROPYL VALERATE 144.22 0.8888 0.0 1.4057 0.0 0.157.0 0.0 62 -ETHYLBUTYL ACETATE 144.22 0.8709 20.0 1.4092 -91.5 760. 166.6 0.0 62 -ETHYLBUTYL ACETATE 144.22 0.8709 20.0 1.4092 -93.9 760. 171.5 0.0 62 -ETHYLBUTYL ACETATE 144.22 0.8709 20.0 1.4092 -80.9 760. 171.5 0.0 62 -ESOBUTYL ISOBUTYRATE 144.22 0.8709 20.0 1.4092 -80.9 760. 171.5 0.0 62 -ESOBUTYL ISOBUTYRATE 144.22 0.8709 20.0 1.4092 -80.9 760. 171.5 0.0 62 -ESOBUTYL ISOBUTYRATE 144.22 0.8709 20.0 1.4092 -80.9 760. 171.5 0.0 62 -ESOBUTYL ISOBUTYRATE 144.22 0.8709 20.0 1.4093 -80.7 0. 175.6 0.0 63				609
DECANE 142.27 0.7262 25.0 1.4119 -29.7 0. 174.1 1.99 61 METHYL-DICHLORO ACETATE 142.97 1.3774 20.0 1.4429 -51.9 760. 142.8 0.0 61 BIS (2-CL ETHYL)ETHER 143.01 1.2192 20.0 1.4575 -46.8 0. 178.8 21.20 61: 1.3-DICL-2-ME-2-PROPANOL 143.02 1.2758 20.0 1.4744 0.0 0. 174.5 0.0 61 73.0 0.0 61 74.5 0.0 61 74.5 0.0 61 74.5 0.0 61 74.5 0.0 61 74.5 0.0 61 74.5 0.0 61 74.5 0.0 61 74.5 0.0 61 74.5 0.0 61 74.5 0.0 61 74.5 0.0 61 74.5 0.0 61 74.5 0.0 61 74.5 0.0 61 74.5 0.0 61 74.5 0.0 61 74.5 0.0 61 74.5 0.0 61 74.5 0.0 74.5				610
METHYL-DICHLORO ACETATE 142.97 1.3774 20.0 1.4429 -51.9 760. 142.8 0.0 61 BIS (2-CL ETHYL)ETHER 143.01 1.2192 20.0 1.4575 -46.8 0. 178.8 21.20 61 1.3-DICL-2-ME-2-PROPANOL 143.02 1.2758 20.0 1.4575 -40.8 0. 178.7 0.0 61 2-METHYL WUINOLINE 143.18 1.0585 0.0 1.6126 -1.0 0. 246.5 0.0 61 TRI-N-PRUPYL AMINE 143.27 C.7530 25.0 1.4176 -93.5 0. 156.0 0.0 61 TRI-N-PRUPYL AMINE 143.27 C.7530 25.0 1.4176 -93.5 0. 156.0 0.0 61 DIMETHYL MALEATE 144.13 1.7392 20.0 1.4917 -16.7 0. 107.0 0.0 61 DIMETHYL MALEATE 144.13 1.1513 20.0 1.4422 -17.5 0. 200.4 0.0 61 TETRAHYDROFUREWIRL ACET 144.17 1.0672 25.0 1.4352 0.0 14. 85.0 0.0 62 413-AMINOPROP) MORPHOLINE 144.21 0.9872 20.0 1.4749 -15.0 50. 134.0 0.0 62 BUTYLBUTYRATE (N) 144.21 0.8760 0.0 1.4096 -73.1 760. 166.7 0.0 62 BUTYLBUTYRATE (N) 144.21 0.8760 0.0 1.4096 -73.1 760. 166.7 0.0 62 N-PROPYL VALERATE 144.21 0.8364 18.0 1.4030 0.0 0. 157.0 0.0 62 N-PROPYL VALERATE 144.21 0.8364 18.0 1.4030 0.0 0. 157.0 0.0 62 CAPRYLIC ACID 144.22 0.9106 20.0 1.4280 16.5 0.239.9 2.45 62 CAPRYLIC ACID 144.22 0.8779 15.0 1.4280 16.5 0.239.9 2.45 62 CAPRYLIC ACID 144.22 0.8779 15.0 1.4092 -80.9 760. 171.5 0.0 62 ISOBUTYLISOBUTYRATE 144.22 0.8779 15.0 1.4092 -80.9 760. 171.5 0.0 62 ISOBUTYLISOBUTYRATE 144.22 0.8779 15.0 1.4092 -80.9 760. 171.5 0.0 62 ISOBUTYLISOBUTYRATE 144.22 0.8779 15.0 1.4092 -80.9 760. 171.5 0.0 62 ISOBUTYLISOBUTYRATE 144.22 0.8789 20.0 1.3981 -80.7 0. 147.5 0.0 62 ISOBUTYLISOBUTYRATE 144.22 0.8878 20.0 1.3981 -80.7 0. 175.6 0.0 63 NONYL ALCUMOL 144.25 0.8090 21.0 1.4280 1.4282 0.0 760. 175.5 0.0 63				611
BIS (2-CL ETHYL)ETHER 143.01 1-2192 20.0 1.4575 -40.8 0. 178.8 21.20 61: 1.3-DICL-2-ME-2-PROPANOL 143.02 1.2758 20.0 1.4744 0.0 0. 174.5 0.0 61: 2-METHYL WUINOLINE 143.18 1.0585 0.0 1.6126 -1.0 0. 246.5 0.0 61: TRI-N-PROPYL AMINE 143.27 0.7530 25.0 1.4176 -93.5 0. 156.0 0.0 61: DIMETHYL MALEATE 144.13 1.1513 20.0 1.4917 -16.7 0. 107.0 0.0 61: ETRAHYDRUFURFURYL ACET 144.17 1.0672 25.0 1.4917 -16.7 0. 200.4 0.0 61: ETRAHYDRUFURFURYL ACET 144.17 1.0672 25.0 1.4352 0.0 14.85.0 0.0 62: AMYLPROPIONATE 144.21 0.88760 0.0 1.4749 -15.0 50. 136.0 0.0 62: AMYLPROPIONATE 144.21 0.8760 0.0 1.4096 -73.1 760. 168.7 0.0 62: SUTYLBUTYRATE (N) 144.21 0.83717 20.0 1.4045 -91.5 760. 166.6 0.0 62: N-PROPYL VALERATE 144.21 0.83717 20.0 1.4057 0.0 0.157.0 0.0 62: N-PROPYL VALERATE 144.21 0.8364 18.0 1.4030 0.0 0. 157.0 0.0 62: CARRYLIC ACID 144.22 0.8379 20.0 1.4280 16.5 0.239.9 2.455 62: CAPRYLIC ACID 144.22 0.8790 20.0 1.4097 -80.7 0.0 162.5 0.0 62: SOBUTYLISOBUTYRATE 144.22 0.8790 20.0 1.4099 -80.7 0. 147.5 0.0 62: SOBUTYLISOBUTYRATE 144.22 0.8489 25.0 1.3981 -80.7 0. 175.6 0.0 63: NONYL ALCUMOL 144.25 0.8673 0.0 1.4333 -5.0 0.212.2 0.0 63: CABRILISOBUTYRATE 144.22 0.8878 25.0 1.3981 -80.7 0. 175.6 0.0 63: CABRILISOBUTYLATE 144.22 0.88790 20.0 1.4333 -5.0 0.212.2 0.0 63: CABRILISOBUTYLATE 144.22 0.88790 20.0 1.4333 -5.0 0.212.2 0.0 63: CABRILISOBUTYLATE 144.22 0.8878 25.0 1.3981 -80.7 0. 175.6 0.0 63: CABRILISOBUTYLATE 144.22 0.8878 25.0 1.3981 -80.7 0. 175.6 0.0 63: CABRILISOBUTYLATE 144.25 0.8089 25.0 1.3981 -80.7 0. 175.6 0.0 63: CABRILISOBUTYLATE 144.25 0.8090 21.0 1.4280 0.0 760. 176.5 0.0 63: CABRILISOBUTYLATE 144.25 0.8090 21.0 1.4280 0.0 760. 176.5 0.0 63: CABRILISOBUTYLATE 144.25 0.8090 21.0 1.4280 0.0 760. 176.5 0.0 63: CABRILISOBUTYLATE 144.25 0.8090 21.0 1.4333 -5.0 0.212.2 0.0 63: CABRILISOBUTYLATE 144.25 0.8090 21.0 1.4280 0.0 760. 176.5 0.0 63: CABRILISOBUTYLATE 144.25 0.8090 21.0 1.4280 0.0 760. 176.5 0.0 63: CABRILISOBUTYLATE 144.25 0.8090 21.0 1.4280 0.0 760. 176.5 0.0 63: CABRILISOBUTYLATE 144.25 0.8090 21.0 1.4				612
1.3-DICL-2-ME-2-PROPANOL 143.02 1.2758 20.0 1.4744 0.0 0.174.5 0.0 61 2-METHYL JUINOLINE 143.18 1.0585 0.0 1.6126 -1.0 0.246.5 0.0 61 1.812 1.27 0.7530 25.0 1.4176 -93.5 0.156.0 0.0 61 1.88-2-CL-ETHANE 143.27 0.7530 25.0 1.4176 -93.5 0.156.0 0.0 61 1.88-2-CL-ETHANE 143.43 1.7392 20.0 1.4917 -16.7 0.107.0 0.0 61 1.8124 1.1513 20.0 1.4922 -17.5 0.200.4 0.0 61 1.8124 1.1513 20.0 1.4922 -17.5 0.200.4 0.0 61 1.8124 1.1513 20.0 1.4922 -17.5 0.200.4 0.0 61 1.8124 1.1513 20.0 1.4922 -17.5 0.200.4 0.0 62 1.4324 1.4012 1.0876 0.0 1.4922 -17.5 0.0 14.85.0 0.0 62 1.4324 1.4012 1.0876 0.0 1.4096 -73.1 760. 166.7 0.0 62 1.4324 1.4012 1.8124 1.08717 20.0 1.4096 -73.1 760. 166.7 0.0 62 1.8012 1.				614
TRI-N-PRUPYL AMINE 143.27 C.7530 25.0 1.4176 -93.5 0. 156.0 0.0 61 1-BR-2-CL-ETHANE 143.43 1.7392 20.0 1.4917 -16.7 0. 107.0 0.0 61 10HETHYL MALEATE 144.13 1.1513 20.0 1.4422 -17.5 0. 20.4 0.0 61 1ETRAHYDRUFURFURFURT ACET 144.17 1.0672 25.0 1.4352 0.0 14. 85.0 0.0 62 4(3-AMINOPROP) MONPHOLINE 144.21 0.8760 0.0 1.4749 -15.0 50. 134.0 0.0 62 AMYLPROPIONATE 144.21 0.8760 0.0 1.4096 -73.1 760. 168.7 0.0 62 BUTYLBUTYRATE (N) 144.21 0.8717 20.0 1.4045 -91.5 760. 166.6 0.0 62 150BUTYL-N-BUTYRATE 144.21 0.88717 20.0 1.4045 -91.5 760. 166.6 0.0 62 N-PROPYL VALERATE 144.21 0.8888 0.0 1.4057 0.0 0.157.0 0.0 62 N-PROPYL VALERATE 144.21 0.8888 0.0 1.4057 0.0 0.167.5 0.0 62 CAPTYLIC ACID 144.22 0.8749 20.0 1.4280 16.5 0.239.9 2.45 62 CAPTYLBUTYLACETATE 144.22 0.8749 20.0 1.4097 -100.0 760. 162.5 0.0 62 FIXTH BUTYL ACETATE 144.22 0.8749 20.0 1.4097 -80.9 760. 171.5 0.0 62 150BUTYLISOBUTYRATE 144.22 0.8749 20.0 1.4097 -80.9 760. 171.5 0.0 62 150BUTYLISOBUTYRATE 144.22 0.8489 25.0 1.3981 -80.7 0. 147.5 0.0 62 150BUTYLISOBUTYRATE 144.22 0.8489 25.0 1.3981 -80.7 0. 175.6 0.0 63 2.6-01METHYL-4-HEPTANOL 144.25 0.8079 21.0 1.4280 1.6295 0.0 760. 175.5 0.0 63 2.6-01METHYL-4-HEPTANOL 144.25 0.8079 21.0 1.4280 0.0 760. 175.5 0.0 63 2.6-01METHYL-4-HEPTANOL 144.25 0.8079 21.0 1.4280 0.0 760. 175.5 0.0 63 2.6-01METHYL-4-HEPTANOL 144.25 0.8079 21.0 1.4280 0.0 760. 175.5 0.0 63	-2-ME-2-PROPANOL 143.02 1.2758 20.0 1.4744 0.0			615
1-BR-2-CL-ETHANE				616
DIMETHYL MALEATE 144.13 1-1513 20.0 1.4422 -17.5 0. 200.4 0.0 61 TETRAHYDNOFURFURYL ACET 144.17 1.0672 25.0 1.4352 0.0 14. 85.0 0.0 62 413-AMINOPROP) MORPHOLINE 144.21 0.9872 20.0 1.4749 -15.0 50. 134.0 0.0 62 AMYLPROPIONATE 144.21 0.88760 0.0 1.4096 -73.1 760. 166.7 0.0 62 BUTYLBUTYRATE (N) 144.21 0.8876 120.0 1.4096 -73.1 760. 166.6 0.0 62 150BUTYL-N-BUTYRATE 144.21 0.8364 18.0 1.4030 0.0 0.157.0 0.0 62 N-PROPYL VALERATE 144.21 0.8364 18.0 1.4030 0.0 0.167.5 0.0 62 CAPRYLIC ACID 144.22 0.8790 20.0 1.4057 0.0 0.167.5 0.0 62 CAPRYLIC ACID 144.22 0.8790 20.0 1.4109 -100.0 760. 162.5 0.0 62 CETHYLBUTYL ACETATE 144.22 0.8790 20.0 1.4109 -100.0 760. 162.5 0.0 62 150BUTYLISOBUTYRATE 144.22 0.8792 20.0 1.4092 -80.7 760. 171.5 0.0 62 150BUTYLISOBUTYRATE 144.22 0.8742 20.0 1.3999 -80.7 0. 147.5 0.0 62 150BUTYLISOBUTYRATE 144.22 0.8878 20.0 1.3999 -80.7 0. 175.6 0.0 63 150BUTYLISOBUTYRATE 144.22 0.8878 0.0 1.3981 -80.7 0. 175.6 0.0 63 12.6 0.0 10HINJ-4-HEPTANOL 144.25 0.8073 0.0 1.4233 -5.0 0. 212.0 0.0 63 2.6 0.0 10HINJ-4-HEPTANOL 144.25 0.8079 21.0 1.4242 0.0 760. 176.5 0.0 63				
TETRAHYDNOFURFURTL ACET 144-17 1-0672 25.0 1-4352 0.0 14.85.0 0.0 62.4(3-AMINDPROP)MONPHOLINE 144-21 0.8876 0.0 1.4749 -15.0 50. 134-0 0.0 62.4MYLPROPIONATE 144-21 0.8876 0.0 1.4096 -73.1 760. 168.7 0.0 62.8MYLPROPIONATE 144-21 0.88717 20.0 1.4096 -73.1 760. 168.7 0.0 62.8MYLPROPIONATE (N) 144-21 0.88717 20.0 1.4096 -91.5 760. 166.6 0.0 62.8MYLPLAH-BUTYRATE 144-21 0.88718 18.0 1.4030 0.0 0.0 157.0 0.0 62.8MPLPAPPL VALERATE 144-21 0.8888 0.0 1.4037 0.0 0.167.5 0.0 62.8MPLPAPPL VALERATE 144-22 0.8878 20.0 1.4097 0.0 0.167.5 0.0 62.8MPLPAPPL VALERATE 144-22 0.8790 20.0 1.4097 100.0 760. 162.5 0.0 62.8MPLTLSOBUTYL ACETATE 144-22 0.8742 20.0 1.4092 -80.9 760. 171.5 0.0 62.8MPLTLSOBUTYRATE 144-22 0.8742 20.0 1.3999 -80.7 0.147.5 0.0 62.8MPLTLSOBUTYRATE 144-22 0.88742 20.0 1.3999 -80.7 0.147.5 0.0 62.8MPLTLSOBUTYRATE 144-22 0.88742 20.0 1.3999 -80.7 0.147.5 0.0 62.8MPLTLSOBUTYRATE 144-22 0.88742 20.0 1.3999 -80.7 0.147.5 0.0 62.8MPLTLSOBUTYRATE 144-22 0.88742 20.0 1.3999 -80.7 0.175.6 0.0 63.8MPLTLSOBUTYRATE 144-22 0.8489 25.0 1.3981 -80.7 0.175.6 0.0 63.8MPLTLSOBUTYRATE 144-25 0.8673 0.0 1.4333 -5.0 0.2 122.0 0.6 32.6-01ME1HYL-4-HEPTANOL 144-25 0.8073 0.0 11.4242 0.0 760. 176.5 0.0 63.8MPLTLSOBUTYRATE 144-25 0.8073 0.0 1.4333 -5.0 0.2 122.0 0.6 32.6-01ME1HYL-4-HEPTANOL 144-25 0.8073 0.2 11.4242 0.0 760. 176.5 0.0 63.8MPLTLSOBUTYRATE 144-25 0.8073 0.0 11.4232 0.0 760. 176.5 0.0 63.8MPLTLSOBUTYRATE 144-25 0.8073 0.0 11.4333 -5.0 0.2 122.0 0.0 63.8MPLTLSOBUTYRATE 144-25 0.8073 0.0 11.4333 -5.0 0.2 122.0 0.0 63.8MPLTLSOBUTYRATE 144-25 0.8073 0.0 11.4333 -5.0 0.0 176.5 0.0 63.8MPLTLSOBUTYRATE 144-25 0.8073 0.0 11.4333 -5.0 0.0 122.0 0.0 63.8MPLTLSOBUTYRATE 144-25 0.8073 0.0 11.4333 -5.0 0.0 1176.5 0.0 63.8MPLTLSOBUTYRATE 144-25 0.8073 0.0 11.4333 -5.0 0.0 1176.5 0.0 63.8MPLTLSOBUTYRATE 144-25 0.8073 0.0 11.4333 -5.0 0.0 1176.5 0.0 63.8MPLTLSOBUTYRATE 144-25 0.8073 0.0 11.4333 -5.0 0.0 1176.5 0.0 63.8MPLTLSOBUTYRATE 144-25 0.8073 0.0 11.4333 -5.0 0.0 1176.5 0.0 63.8MPLTLSOBUTYRATE 144-25 0.8073 0.0 11.4333 -5.0 0.0 1176.5				619
AMYLPROPIONATE 144.21 0.8760 0.0 1.4096 -73.1 760. 168.7 0.0 62; BUTYLBUTYRATE (N) 144.21 0.8717 20.0 1.4045 -91.5 760. 166.6 0.0 62; BUTYLBUTYRATE 144.21 0.8814 18.0 1.4030 0.0 0. 157.0 0.0 62; N-PROPYL VALERATE 144.21 0.8888 0.0 1.4057 0.0 0.167.5 0.0 62; CAPRYLIC ACID 144.22 0.9106 20.0 1.4280 16.5 0.239.9 2.45 62; CAPRYLIC ACID 144.22 0.8790 20.0 1.4109 -100.0 760. 162.5 0.0 62; HEXYL ACLIATE 144.22 0.8790 20.0 1.4109 -100.0 760. 162.5 0.0 62; ISOBUTYLISOBUTYRATE 144.22 0.8772 20.0 1.3999 -80.7 0. 171.5 0.0 62; ISOBUTYLISOBUTYRATE 144.22 0.8489 25.0 1.3981 -80.7 0. 175.6 0.0 63; NONYL ALCUHOL 144.25 0.8673 0.0 1.4333 -5.0 0.212.0 0.0 63; ACLIME 1 HYL-4-HEPTANOL 144.25 0.8073 20.0 1.4333 -5.0 0.212.0 0.0 63; ACLIME 1 HYL-4-HEPTANOL 144.25 0.8090 21.0 1.4242 0.0 760. 176.5 0.0 63				620
BUTYLBUTYRATE (N) 144.21 0.8717 20.0 1.4045 -91.5 760. 166.6 0.0 62. ISOBUTYL-N-BUTYRATE 144.21 0.8364 18.0 1.4030 0.0 0. 157.0 0.0 62. N-PROPPL VALERATE 144.21 0.8388 0.0 1.4057 0.0 0.167.5 0.0 62. CAPRYLIC ACID 144.22 0.8879 20.0 1.4280 16.5 0. 239.9 2.45 62. ETHYLBUTYL ACETATE 144.22 0.8790 20.0 1.4109 -100.0 760. 162.5 0.0 62. HEXYL ACCTATE 144.22 0.8790 20.0 1.4109 -100.0 760. 162.5 0.0 62. ISOBUTYLISOBUTYRATE 144.22 0.8742 20.0 1.3999 -80.7 0. 171.5 0.0 62. ISOBUTYLISOBUTYRATE 144.22 0.8742 20.0 1.3999 -80.7 0. 147.5 0.0 62. ISOBUTYLISOBUTYRATE 144.22 0.88742 20.0 1.3991 -80.7 0. 175.6 0.0 63. NONYL ALCOHOL 144.25 0.8273 0.0 1.4333 -5.0 0. 212.0 0.0 63. 2.6-UIMEIHYL-4-HEPTANOL 144.25 0.8073 0.0 1.4242 0.0 760. 176.5 0.0 63.				621
ISOBUTYL-N-BUTYRATE				622
N-PROPYL VALERATE 144.21 0.8888 0.0 1.4057 0.0 0.167.5 0.0 62' CAPRYLIC ACID 144.22 0.8190 20.0 1.4280 16.5 0.239.9 2.45 62' CAPRYLIC ACID 144.22 0.8790 20.0 1.4109 -100.0 760. 162.5 0.0 62' HEXYL ACLTATE 144.22 0.8779 15.0 1.4092 -80.9 760. 171.5 0.0 62' ISOBUTYLISOBUTYRATE 144.22 0.8742 20.0 1.3999 -80.7 0. 171.5 0.0 62' ISOBUTYLISOBUTYRATE 144.22 0.8489 25.0 1.3981 -80.7 0. 175.6 0.0 63' NONYL ALCUHOL 144.25 0.8673 0.0 1.4333 -5.0 0.212.0 0.6 32' 2.6-UIMEINYL-4-HEPTANOL 144.26 0.8090 21.0 1.4242 0.0 760. 176.5 0.0 63'				
CAPRYLIC ACID 144.22 0.9106 20.0 1.4280 16.5 0. 239.9 2.45 620 2-ETHYLBUTYL ACETATE 144.22 0.8790 20.0 1.4109 -100.0 760. 162.5 0.0 62 15.08UTYLISOBUTYRATE 144.22 0.8742 20.0 1.3999 -80.7 0. 147.5 0.0 62 15.08UTYLISOBUTYRATE 144.22 0.8742 20.0 1.3999 -80.7 0. 147.5 0.0 62 15.08UTYLISOBUTYRATE 144.22 0.8489 25.0 1.3981 -80.7 0. 175.6 0.0 63 NONYL ALCOHOL 144.25 0.8273 0.0 1.4333 -5.0 0. 212.0 0.0 63 2.6-UIMEIHYL-4-HEPTANOL 144.26 0.8090 21.0 1.4242 0.0 760. 176.5 0.0 63				625
HEXYL ACLTATE 144-22 0.6779 15.0 1.4092 -80.9 760. 171.5 0.0 621 1508UTYLISOBUTYRATE 144-22 0.8742 20.0 1.3999 -80.7 0. 147.5 0.0 621 1508UTYLISOBUTYRATE 144-22 0.88742 25.0 1.3981 -80.7 0. 175.6 0.0 631 NONYL ALCOHOL 144-25 0.8273 0.0 1.4333 -5.0 0. 212.0 0.0 631 2.6-UIME1HYL-4-HEPTANOL 144-26 0.6090 21.0 1.4242 0.0 760. 176.5 0.0 633	ACID 144.22 0.9106 20.0 1.4280 16.5	0. 239.	2.45	626
ISOBUTYLISOBUTYRATE				627
ISOBUTYLISOBUTYRATE 144.22 0.8489 25.0 1.3981 -80.7 0. 175.6 0.0 631 NONYL ALCUMOL 144.25 0.8273 0.0 1.4333 -5.0 0.212.9 0.0 632 2.6-UIMEINYL-4-HEPTANOL 144.26 0.6090 21.0 1.4242 0.0 760. 176.5 0.0 633				
NONYL ALCOHOL 144.25 0.8273 0.0 1.4333 -5.0 0. 212.0 0.0 63 2.6-DIMETHYL-4-HEPTANOL 144.26 0.6090 21.0 1.4242 0.0 760. 176.5 0.0 63				630
	COHOL 144.25 0.8273 0.0 1.4333 -5.0	0. 212.	0.0	631
				632
				633 634
				635
				636
				637 638
				639
				640
TRIETHYLLNETETRAMINE 146.24 0.9820 20.0 1.4971 12.0 760. 266.5 0.0 641		760. 266.		641
				642 643
				644
KAIROLINE 147.21 1.0220 0.0 1.5082 0.0 758. 0.0 0.0 645	147.21 1.0220 0.0 1.5082 0.0		0.0	645
				646
				647 648
	CHLOROPROPANE 147.43 1.2870 25.0 0.0 0.0			649
	CHLOROPROPANE 147.43 1.3557 20.0 1.4718 -59.0			650
				651
				652 653
				654
1-CHLORO UCTANE 148.67 0.8748 0.0 1.4306 0.0 765. 181.0 0.0 65	OCTANE 148.67 0.8748 0.0 1.4306 0.0			655
				656
				657 658
				659
TRIETHANOLAMINE 149-19 1-1196 25.0 1.4835 21-6 0. 335.4 29-36 660	PLAMINE 149.19 1.1196 25.0 1.4835 21.6			660
				661
				662
				664
TRIETHYLENE GLYCOL 150.18 1.1274 15.0 1.4578 -4.3 0. 288.0 23.69 665		0. 288.0	23,69	
				666
				667
				668 . 669
1-BROMO-3-ME BUTANE 151.05 1.2609 20.0 1.4420 -112.0 0. 120.0 0.0 670	HE BUTANE 151.05 1.2609 20.0 1.4420 -112.0			670
1-BROMOPENTANE 151.65 1.2177 0.0 1.4413 -95.0 0. 129.7 0.0 671	NTANE 151.65 1.2177 0.0 1.4413 -95.0	0. 129.7	0.0	671
ET-2-PYRIDINECARBOXYLATE 151.16 1.1194 20.0 1.5104 1.0 0. 243.0 0.0 672 METHYL SALICYLATE 152.15 1.1831 20.0 1.5365 -8.6 0. 233.3 9.41 673	UINECARBOXYLATE 151.16 1.1194 20.0 1.5104 1.0			672 673
	XYETHANOL 152.20 1.0640 20.0 1.5233 -75.0			674
CINNAMYL CHLORIDE 152.63 0.0 0.0 0.0 -19.0 0. 214.0 0.0 675	CHLORIDE 152.63 0.0 0.0 0.0 -19.0	0. 214.0		675
BROMOMETHYLACETATE 152.99 1.6560 12.0 0.0 0.0 750. 130.0 0.0 676	YLACETATE 152.99 1.6560 12.0 0.0 0.0	750. 130.0	0.0	676
				678
CARBON TETRACHLORIDE 153.82 1.5844 25.0 1.4574 -23.0 0. 76.7 2.24 679				679
		0. 208.0		680

Name	Mol. Wt.	Density	Temp.	Refract. Index	Melting Point	Pressure	Boiling Point	Dielec. Constant	List No.
1,8-CINEOLE	154.25	0.9192	25.0	1.4555	1.3	0.	176.0	4.57	681
2-NBUTYLCYCLOHEXANONE	154.28	0.9350	20.0	1.4545	0.0	5.	7.0	0.0	682
1-UNDECENE SUCCINYL CHLORIOE	154.29 154.98	0.7506	0.0	1.4261	-50.0 20.0	0. 760.	193.0	0.0	683 684
1.6-DICL-HEXANE	155.08	1.0677	20.0	1.4572	0.0	0.	202.4	0.0	685
1000ETHANE	155.97	1.9357	20.0	1.5133	-111.1	0.	72.3	7.82	686
3-CYCLOHEXPROPANOIC ACID		0.9966	20.0	1.4658	16+0	750.	193.0	0.0	687
1-ETHYL NAPHTHALENE	156.23	1.0082	20.0	1.6062	-13.9	760.	258.7	0.0	688
2-ETHYL NAPHTHALENE DECANONE-2	156.23 156.26	0.9922	20.0	1.5999 1.4621	-7.4 14.0	760. 767.	257.9	0.0	689 690
2-BUTYLCYCLOHEXANDL	156.27	0.9020	20.0	1.4641	0.0	3.	75.1	0.0	691
3-ISOPRO-2-HEPTANONE	156.27	0.8195	20.0	1.4750	0.0	0.	78.0	0.0	692
UNDECANE	156.30	0.7401	0.0	1.4172	-25.0	0.	195.5	2.01	693
BETA-CHLUROPHENETOLE P-CHLOROPHENETOLE	156.61 156.61	1.1443	25.0	1.5328	21.0	0. 0.	0.0 21 3. 0	0.0 0.0	694 695
2-CLETHYLCHLORDACETATE	157.00	1.3600	25.0	1.4619	0.0	760.	202.0	0.0	696
2.3-DICHLOROGIOXANE	157.00	1.4680	20.0	1.4928	30.0	10.	81.0	0.0	697
ETHYLOICHLOROACETATE	157.00	1.2821	20.0	1.4386	0.0	0.	157.0	10.00	698
BROMÚBENZENE DIPENTYLAMINE	157-02 157-30	1.4882 U.7771	25.0	1.5571	-30.8 -70.0	760.	155.9 202.5	5.40 0.0	699 700
ALLYLIDENE DIACETATE	158.15	1.0749	20.0	1.4272	-37.6	0.	180.0	0.0	701
TETRAHYDROFURFURYL PROP	158.19	1.0321	25.0	1.4380	0.0	18.	101.0	0.0	702
BUTYRIC ANHYDRIDE	158.20	0.9668	20.0	1.4127	-66.7	0.	199.5	12.90	703
HEXYL PROPIONATE	158.23	0.8698	50.0	0.0	57.5	0.	190.0	0.0	704
ISOAMYL ETHER AMYL ETHER	158.27 158.28	G.7777 0.7790	20.0 25.0	1.4085 1.4098	0.0 -69.4	0.	173.4 186.9	0.0	705 706
DIETHYL MALONATE	160.17	1.0549	20.0	1.4136	-48.9	0.	199.3	7.87	707
CYCLOHEXYLBENZENE	160.26	0.9387	25.0	1.5239	7.0	ŏ.	240.1	0.0	708
1-CHLOROPENTANE	160.60	0.8818	20.0	1.4120	-99.0	0.	107.7	6.60	709
BENZAL CHLORIDE	161.03	1.2557	14.0	1.5502	-16.4	0. 741.	205.2	0.0	710
N-BUTYLDIETHANOLAMINE 1.2.3-TRICHLORO BUTANE	161.25 161.46	1.3164	20.0 20.0	1.4625	-70.0	725.	274.0 166.5	0.0	711 712
2-ME-1+2+3-TRICL PROPANE		1.3012	25.0	1.4765	0.0	0.	162.0	0.0	713
ISOSAFROLE	162.18	1-1140	25.0	1.5740	0.0	0.	0.0	0.0	714
SAFROLE	162.18	1.0950	25.0	1.5383	11.2	0.	233.5	0.0	715
DIETHYLENEGLYCDIET ETHER BUTYLCAR81TOL	162.22	1.9063 (.9553	50.0 0.0	1.4115	0.0 -68.1	0. 760.	231.0	0.0	716 717
1.2.4-TRIETHYL BENZENE	102.27	0.8738	0.0	1.5024	0.0	0.	218.0	0.0	714
1.3.5-TRIETHYL BENZENE	162.27	0.8621	0.0	1.4958	-66.5	755.	216.0	0.0	719
1-PHENYLHEXANE	162.28	0.8540	0.0	1.4860	-62.0	760.	226.0	0.0	720
2-CHLORONAPHTHALENE	162.61 162.62	1.1377	71.0	1.6079	59.0 -2.3	0. 0.	256.0 259.3	0.0 5.04	721 722
1-CHLORONAPHTHALENE TRICHLORUACETIC ACID	163.39	1.6218	20.0 64.0	1.6332	5.8	760.	197.6	0.0	723
2-CHLOROQUINOLINE	163.60	1.2464	25.0	1.6259	37.5	751.	275.0	0.0	724
DICHLOROBROMOMETHANE	163.85	1.9800	20.0	1.4964	0.0	742.	89.5	0.0	725
4-PHÉNYL-1:3-DIOXANE EUGENOL	164.19 164.20	1.1038	20.0	1.5306 1.5410	9.0	0. 760.	245.0 255.0	0.0	726 727
PROPYL BENZOATE	164.21	1.0232	20.0	1.5003	-51.6	0.	231.2	0.0	728
BENZYL BUTYL ETHER	164.25	0.9407	20.0	1.4970	15.0	744.	220.5	0.0	729
NITRUTRICHLORO METHANE	164.38	1.6566	20.0	1.4622	-64.5	760.	111.8	0.0	730
1-BROMOHEXANE	165.08	1.1763	20.0	1.4478	-85.0	0.	154.0	0.0	731
2-BR-HEXANE 3-BR-HEXANE	165.08 165.08	1.1658 1.1799	20.0	1.4432	0.0	0. 744.	144.0 144.0	0.0	732 733
TETRACHLOROETHYLENE	165.83	1.6311	15.0	1.5076	-22.3	0.	121.2	2.30	734
	166.31	0.8862	20.0	1.4800	3.6	0.	234.0	0.0	735
	167.02	1.5140	20.0	1.4547	-13.8	0.	162.5	0.0	736
	167.35	1.5786	30.0	1.4868	-43.8	0.	146.2	8.20	737 738
3-1000PRUPENE	167.86 167.99	1.5532	0.0 22.0	1.4821	-68.1 -99.3	0.	129.5 102.5	0.0	739
	168.23	1.0100	0.0	1.6824	45.0	0.	262.5	0.0	740
2-BENZYL PYRIDINE	169.23	1.0670	20.0	1.5785	12.0	742.	276.0	0.0	741
	170.00	1.7394	25.0	1.5028	-101.3	٥.	102.4	7.00	742
	170.00 170.21	1.6946	25.0 20.0	1.4961 1.6280	-90.0 12.0	0.	89.5 297.0	8.19 0.0	743 744
	170.21	1.0661	30.0	1.5763	26.9	0.	258.3	3.69	745
DODECANE	170.34	0.7487	20.0	1.4216	-9.6	0.	216.3	2.01	746
	170.60	1.1950	25.0	1.5160	0.0	0.	0.0	0.0	747
	171.04	1.4019	20.0	1.5510	-39.8	0.	183.7	5.36	748 749
P-BROMOTULUENE B.B.DICL-DIISOPROP ETHER	171-04	1.3898	20.0	1.5490 1.4505	28.5	0.	184.5 187.0	5.49 0.0	750
DIETHYL MALEATE	172.18	1.0687	20.0	1.4400	-8.8	ŏ.	225.3	8.58	751
1-ETHOXY NAPHTHALENE	172.23	1.0600	20.0	1.5953	5.5	0.	280.5	0.0	752
	172.26	0.8679	20.0	0.0	-50.9	٥.	209.0	0.0	753
	172.27	6.8718	20.0	1.4204	-93.U	0. 760.	198.6 243.0	0.0	754 755
	172.30 172.31	6.8298 5.8270	0.0 20.0	1.4392 1.4369	19.0 12.0	760.	225.4	0.0	756
	173.02	1.4924	20.0	1.5892	5.6	0.	194.5	0.0	757
METHYLENE BROWIDE	173.85	2.4970	20.0	1.5420	-52.6	760.	97.0	7.50	758
DIETHYL SUCCINATE	174-19	1.0406	20.0	1.4201	-22.0	0.	217.7	0.0	759
	174.19 174.20	1.0169	20.0	1.4168	-46.3 10.3	0. 13.	214.5 115.0	0.0	760 761
	174.20	1.0600 0.8370	0.0	1.4263	-69.0		203.0	0.0	762
P-FLUORO BROMOBENZENE	175.01	1.4946	0.0	1.5604	-17.0	764.	152.0	0.0	763
	175.22	0.9750	0.0	0.0	0.0	20.	111.0	0.0	764
2-(2-ETOETO) ETACETATE	176.21	1.0096	20.0	1.4213	-25.0	0.	217.4	0.0	765

Name	Mol. Wt.	Density	Temp.	Refract. Index	Melting Point	Pressure	Boiling Point	Dielec. Constant	List No.
ETHYL CINNAMATE	176.21	1.0494	20.0	1.5598	6.7	0.	272.7	0.0	766
1-CHLORODECANE	176.73	0.8683	0.0	1.4373	0.0	0.	222.5	0.0	767
ISOAMYL ISOVALERATE	177.26	0.8583	18.7	1.4130	0.0	0.	194.0	3.62	768
METHYL TRICL ACETATE	177.43	1.4890	19.2	1.5250	-17.5	765.	152.5	0.0	769
BENZYL BUTYRATE	178.23	1.0140	19.0	1.4920	9.0	٥.	109.0	0.0	770
TETRAMETHYL TIN	178-83	1.3140	0.0	1.4386	-54-8	0.	78.0	0.0	771
1-BRUMOHEPTANE	179 - 11	1.1384	20.0	1.4505	-58.0	٥.	179.0	0.0	772
HEXAME PHOSPHORAMIDE	179.20	1.0270	20.0	1.4588	7.2	٥.	233.0	30.00	773 774
1.4-(815 CL ME) CYC HEX	180.20	1.0729	15.0	1.5065	0.0	٥.	121.0	0.0	775
1.2.4-TRICL BENZENE	181.11	1.1180	25.0	1.4908	15.0 17.0	0. 760.	213.5	0.0	776
1112TETRACLPROPANE	181.89	1.4695	22.0	1.4855	-64.0	0.	152.5	0.0	777
1.1-DIPHENYLETHANE	182.27	r.9875	20.0	1.5761	-215.0	ŏ.	286.0	0.0	778
1.2-DIPHENYLETHANE	182.27	0.9950	20.0	1.5338	52.2	0.	285.0	0.0	779
TERT-BUTYL IODIDE	184.02	1.5445	20.0	1,4918	-36.2	0.	108.0	0.0	780
1-IODOBUTANE	184.03	1.6123	0.0	1.5000	-103-1	o.	130.0	0.0	781
N-TRIDECANE	184.37	0.7559	0.0	1.4233	-5.5	0.	243.0	0.0	782
BENZYL CHLOROACETATE	184.63	1.2223	4.0	1.5426	10.0	0.	133.3	0.0	783
TRI-N-BUTYLAMINE	185.36	0.7771	2ù.0	1.4297	-70.0	760.	213.0	0.0	784
TRIBUTYL AMINE (150)	185.36	C.7640	20.5	1.4252	-21.8	0.	191.5	0.0	785
CIS-1,2-DIBR ETHYLENE	185.80	2.2464	20.0	1.5428	-53.0	760.	112.5	0.0	786
TRANS-1.2-DIBR ETHYLENE	185.80	2.2308	20.0	1.5505	-6.5	760.	108.0	0.0	787
2-BROMO-4-ME ANILINE	186.06	1.4745	25.0	1.6012	15.0	٥.	0.0	0.0	788
HEXAFLUOROBENZENE OCTYL PRUPIONATE	186.06 186.29	0.8663	20 .0 0.0	1.3781	5.1 0.0	0.	80.3	0.0	789 790
OIHEXYL ETHER	186.34	0.7936	20.0	1.4204	-43.0	768.	223.0	0.0	791
BIS (2-CL ET) CARBONATE	187.02	1.3444	25.0	1.4595	10.0	0.	117.0	0.0	792
112THIFL-122TRICLETHANE	187.38	1.5635	25.0	1.3557	-36.4	ŏ.	47.7	0.0	793
1.1-DIBRUMOETHANE	187.87	2.0554	0.0	1.5122	-63.0	0.	110.0	0.0	794
1,2-DIBROMOETHANE	187.87	2.1687	25.0	1.5360	9.8	Ŏ.	131.4	4.78	795
1245 TETRAETHYL BENZENE	190.32	0.8788	0.0	1.5054	10.0	ŏ.	250.0	0.0	796
ETHLYTRIUL ACETATE	191.44	1.3826	20.0	1.4507	0.0	0.	167.5	7.80	797
ETHYL BENZOYL ACETATE	192.21	1.1220	20.0	1.5312	0.0	14.	165.0	0.0	798
3-BRUMOMETHYL HEPTANE	193.13	1.1227	25.0	1.4548	0.0	0.	57.J	6.00	799
1-BROMO UCTANE	193.13	1.1180	0.0	1.4527	-55.0	0.	202.3	0.0	800
METHYL BENZOPHENONE	193.24	1.1464	0.0	1.6738	-18.0	0.	325.0	0.0	801
DIMETHYL PHTHALATE	194.18	1.1905	20.7	1.5150	0.0	. 0 •	243.0	0.0	802
METHYL PHTHALATE	194.18	1.1890	25.0	1.5150	0.0	734.	283.0	0.0	803
TETRAETHYLENE GLYCOL	194.22	1-1285	0.0	1.4598	-6.2	0.	328.0	0.0	804
PHENTL CHLOROFORM	195.48	1.3800	0.0	1.5011	-4.8	0.	220.7	0.0	805
TETRANITROMETHANE 1-TETRADECENE	196.04	1.6372	0.0	1.4398	13.0	٥.	126.0	0.0	806
OIBENZYLAMINE	196.38 197.28	0.7852 1.0256	0.0	1.4932	-12.0 -26.0	250.	270.0	0.0 3.60	807 808
1-IODOPENTANE	198.06	1.5170	0.0	1.4955	73.1	2.00	155.0	0.0	809
BENZYL ETHER	198.27	1.0428	20.0	1.5406	36.0	ŏ.	288.3	0.0	810
TRICHLORUBROMOMETHANE	198.30	2.0120	0.0	1.5061	-21.0	ō.	104.0	0.0	811
N-TE I RADECANE	198.40	0.7627	0.0	1.4290	6.0	0.	253.5	0.0	812
PHENYL-N-PROPYL BROMIDE	199.09	1.3098	19.0	1.5517	0.0	0.	121.5	0.0	813
(3-BROMOPROPYL)BENZENE	199.10	1.3098	19.0	1.5517	0.0	0.	121.5	0.0	814
BIS(4-CL BUTYL) ETHER	199-12	1.0796	25.0	1.4800	0.0	10.	130.0	0.0	815
2.3-DIBROMOPROPENE	199.88	2.0346	25.0	1.5416	0.0	760.	141.0	0.0	816
TRIBUTYL CARBINOL	200.35	0.8408	0.0	1.4445	20.0	٥٠	230.0	0.0	817
0-BRUMOPHENETOLE	201.07	1.4105	25.0	1.5532	0.0	22.	124.0	0.0	818
P-BRUMOPHENETOLE	201.07	1.4031	25.0	1.5498	11.0	0. 74.	233.0	0.0	819
1.1-DIBRUMOPROPANE	201.91	0.0	0.0	1.5100	0.0		135.4	0.0	820
1.2-DIBRUMOPROPANE 1.3-DIBRUMOPROPANE	201.91	1.9366	0.0	1.5206	-55.5	٥.	141.4	0.0	821
ACETYLDIMETHYLMALONATE	201.91	1.9893	0.0 26.0	1.5230	-34.2 0.0	0. 0.	0.0	0.0	822 823
DIBUTYL UXALATE	202.25	0.9873	50.0	1.4234	-30.5	773.	242.0	0.0	824
DIETHYLAUIPATE	202.25	1.0076	20.0	1.4272	-19.8	760.	245.0	0.0	825
PENTACHLOROETHANE	202.30	1.6881	15.0	1.5054	-29.0	0.	162.0	3.73	826
1122TETCLOIF ETHANE	203.83	1.6252	35.0	1.4083	26.0	0.	92.8	2.52	827
IODOBENZENE	204.01	1.8230	25.0	1.6197	-31.4	Ō.	189.0	0.0	828
N.N-OIBUTYLANILINE	205.34	0.9037	20.0	1.5186	-32.2	760.	274.8	0.0	829
1-BROMONAPHTHALENE	207.08	1.4834	20.0	1.6580	6.2	0.	281.1	4.83	830
1-BRUMONUNANE	207.16	1.0851	25.0	1.4520	0.0	5.	84.0	0.0	831
2-BRUMO-NONANE	207-16	1.0810	0.0	1.4519	0.0	767.	208.5	0.0	832
1.10-DICHLORODECANE	211.18	p.9936	0.0	1.4600	0.0	0.	148.0	0.0	833
BENZYL BENZOATE	212.25	1.1121	25.0	1.5681	19.4	0.	323.5	4.90	834
N-PENTADECANE	212.41	6.7689	0.0	1.4315	10.0	.0.	270.5	0.0	835
3-BRPROPYL PHENYL ETHER	215.10	1.3650	16.0	0.0	11.0	19.	127.0	0.0	836
2-NITRO-UIPHENYL ETHER	215.21	1.2539	22.0	1.5750	-50.0	9.	184.0	0.0	837
1.2-018ROMOBUTANE 1.4-018ROMOBUTANE	215.94	1.7950	0.0	1.5500	0.0 -26.0	0.	166.3 197.5	0.0	838 839
2,3-DIBROMOBUTANE	215.94	1.7830	0.0		-70.3	0.	161.0	0.0	840
1.2-DIBR-2-ME PROPANE	215.94	1.7830	20.0	1.5133	10.5	0. 760.	150.0	0.0	841
METHYLENE IODIDE	217.87	3.3254	0.0	1.7559	6.0	0.	181.0	0.0	842
2+3-DIBR-1-PROPANOL	217.90	2.0739	20.0	1.5466	0.0	17.	118.0	0.0	843
0-1000TOLUENE	218.05	1.7130	0.0	1.6090	0.0	o.	211.5	0.0	844
GLYCEROL TRIACETATE	218.21	1.1562	20.0	1.5064	3.2	0.	259.0	0.0	845
PENTAETHYL BENZENE	218.37	0.8985	19.0	1.5127	-50.0	0.	277.0	0.0	846
ISOBUTYL TRICL ACETATE	219.50	1.2550	25.0	1.4456	0.0	0.	188.0	0.0	847
TETRAETGLYCOL DIME ETHER	222.29	1.0132	20.0	1.4336	-21.4	760.	275.ê	0.0	848
1-HEXADECENE	224.42	0.7825	0.0	1.4441	4.0	. 0.	155.0	0.0	849
2-CLETHYL TRICL ACETATE	225.89	1.5357	20.0	1.4813	0-0	766.	217.0	0.0	850

Note: Missing data is indicated by 0, 0., or 0.0.

(continued)

Name	Mol. Wt.	Density	Temp.	Refract. Index	Melting Point	Pressure	Boiling Point	Dielec. Constant	List No.
TRICHLORUACETYL BROMIDE	226.29	0.1900	15.0	0.0	0.0	760.	143.0	6.0	851
TRI-N-PENTYLAMINE	227.44	0.7907	20.0	1.4367	-70.0	0.	242.5	0.0	852
DIBUTYL MALEATE	228.29	0.9950	20.0	1.4454	-80.0	0.	280.0	0.0	853
1.5-DIBRUMOPENTANE	229.96	1.7060	18.0	1.5091	-39.5	0.	222.2	0.0	854 855
TRIBUTYL GORATE DIISUPROPYL ADIPATE	230.16	0.9659	20.0	1.4092	-70.0 -1.1	0. 6.	233.5 120.0	0.0 0.0	856
DIPROPYL ADIPATE	230.31	0.9790	20.0	1.4314	-15.7	11.	151.0	0.0	857
DIPHENYL SELENIDE	233.17	1.3510	20.0	1.6500	2.5	760.	301.5	0.0	858
TETRAETHYL TIN	234.94	1.1870	23.0	1.4724	-112.0	0.	181.0	0.0	859
O-DIHROMUBENZENE	235.92	1.9557	0.0	1.6081	6.7	0.	221.0	0.0	860
M-DIBROMUBENZENE	235.92	1.9523	0.0	1.6083	-7.0	0.	220.0	0.0	861
1-1000 OCTANE	240.14	1.3297	0.0	1.4890	-45.7	0.	255.5	0.0	862 863
1,2-DIBROMOHEXANE	243.99	1.5872	15.0	1.5012	0.0 -18.5	16.	287.0 291.5	0.0	864
DIETHYL AZELATE TRICHLORUIODOMETHANE	244.33	2.3650	20.0	1.4351	-19.0	0.	142.0	0.0	865
4-BR-DIPHENYL ETHER	249.11	1.4225	19.0	1.6088	18.0	ŏ.	305.0	0.0	866
BENZAL BHUMIDE	249.95	1.5100	0.0	1.6147	0.0	0.	140.0	0.0	867
TRIBHOMOACETALDEHYDE	250.76	2.6650	25.0	1.5939	0.0	760.	174.0	0.0	868
BROMOFORM	252.76	2.8889	20.0	1.5976	8.1	0.	149.6	4.39	869
1-IOUO NAPHTHALENE	254.07	1.7399	20.0	1.7026	4.2	0.	302.0	0.0	870
DIBUTYL ADIPATE	258.35	0.9652	0.0	1.4369	-37.0	14.	183.0	0.0	871
OIBUTYL ADIPATE	258 - 36	0.9652	20.0	1.4369	-37.0	4. 773.	145.0 306.0	0.0	872 873
DIETHYL SEBACATE DI ISOBUTYL ADIPATE	258.36 258.36	0.9646 0.9530	20.0	1.4359	5.0 -17.0	760.	262.0	0.0 5.19	874
12016RTETE ETHANE	259.83	2.1630	25.0	1.3670	-110.5	0.	47.3	2.34	875
HEXACHLONOACETONE	264.77	1.7440	12.0	0.0	-30.0	0.	203.0	0.0	876
TRIBHOMOLIHYLENE	264.78	2.7080	20.5	1.6345	0.0	0.	163.5	0.0	877
1.1.2.3.4.4-HEXACLBUTANE	264.82	1.6460	20.0	1.5258	0.0	10.	111.0	0.0	878
TRI-N-BUTYL PHOSPHATE	266.32	0.9760	25.0	1.4226	-79.0	0.	289.0	7.96	879
1.1.2-TRIBROMOETHANE	266.79	2.5789	0.0	1.5933	-35.5	۰,	188.5	0.0	880
TETRAMETHYL LEAD	267.33	1.9950	20.0	1.5120	-27.5	٥.	110.0	0.0 5.32	881 882
DISCOMETHANE DIBUTYL PHTHALATE	267.83 278.35	3.3078 1.0465	25.0	1.7380	6.1 -35.0	0. 0.	182.0 340.0	6.44	883
1.1.2-TRIBROMO PROPANE	280.80	2.3548	20.0	1.5790	0.0	760.	200.5	0.0	884
1.2.2-TRIBROMO PROPANE	280.80	2.2985	20.0	1.5670	0.0	760.	190.5	0.0	885
1.2.3-TRIBROMO PROPANE	260.80	2.4209	20.0	1.5862	16.9	760.	222.2	0.0	886
1.1-DIIOJOETHANE	281.86	2.8400	0.0	1.6730	2.8	0.	179.5	0.0	887
OLEIC ACID	282.47	0.8870	25.0	1.4582	13.4	0.	360.0	2.44	BBB
1-BROMO-2-IDDDBENZENE	282.92	2.2571	25.0	1.6618	8.0	0.	257.0	0.0	859
1-BROMO-3-10DOBENZENE	282.92	5.5550	25.0	1.6608	-9.0	754.	252.0	0.0	890
1-CHLOROUCTADECANE	288.95	0.8586	25.0 25.0	1.4525	19.0 18.6	2. 80.	154.0 172.0	0.0	891 892
1-BROMOPENTAGECANE 123-TRIBH-2-ME PROPANE	294.65	2.1750	0.0	1.5652	0.0	0.	223.5	0.0	893
1.2.4-TRIBROMO BUTANE	294.83	2.1700	20.0	1.5608	-18.0	760.	215.0	0.0	894
2.2.3-TRIBROMO BUTANE	294.83	2.1724	20.0	1.5602	-1.9	760.	206.0	0.0	895
1.2.3-TRIBROMOBUTANE	294.84	2.1938	0.0	1.5680	-17.0	21.	113.5	0.0	896
METHYL OLEATE	296.50	0.8702	25.0	1.4502	19.9	0.	217.0	3.21	897
TRI-CL-ACETIC ANHYDRIDE	308.76	1.6908	20.0	0.0	0.0	760.	169.0	0.0	898 899
OI-N-BUTYL SEBACATE	314.47	0.9366	20.0	1.4397	1.0	0.	345.0 345.0	4.54 4.54	900
DIBUTYL SEBACATE TETRAETHYL LEAD	314.47	1.6590	25.0	1,4415	-11.0 -136.8	19.	91.0	0.0	901
N-BUTYL ULEATE	338.56	0.8657	25.0	1.4480	-10.0	ő.	227.5	4.00	902
BUTYL STEARATE	340.60	0.8540	25.0	1.4422	26.3	ō.	222.5	3.11	903
1122-TET BROMOETHANE	345.67	2.9529	25.0	1.6323	0.0	ŏ.	243.5	7.00	904
1,1,1,2-TETRABROMOETHANE	345.70	2.8748	0.0	1.6277	0.0	. 0.	103.5	0.0	905
BIS (2-ETHOXY ET) SEBACATE	346.46	(+9953	25.0	1.4440	-10.0	0.	0.0	0.0	906
TRI (2-TOLYL) PHOSPHATE	368.36	1.1830	25.0	1.5575	11.0	20.	264.0	0.0	907
DI(2-ET HEX) ADIPATE	370.58	0.9220	25.0	1.4474	-67.8	5.	214.0	0.0	908 909
BIS(2-ETHEX)PHTHALATE DIETHYLHEXYL AZELATE	390.57 412.66	0.9843 0.9150	20.0 25.0	1.4859	-50.0 -78.0	0. 5.	231.0 237.0	5.30 0.0	910
BIS (2-ETHYLHEX) SEBACATE	426.66	6.9120		1.4510	-48.0	5.	256.0	4.03	911
			,						

Note: Missing data is indicated by 0, 0., or 0.0.

Comparison of Solvent Properties (11)

			Po	orly Hydr	ogen-Bond	ed				
	benzene	carbon tetra- chloride	n-hexane	chloro- form	perchloro- ethylene	Freon* TF	Freon* MF	trichloro- ethylene	methyl formate	methylen chloride
Boiling Point, °C °F	80 176	77 171	68 154	61 142	121 250	48 117.6	24 74.8	87 189	31.8 89.2	39 102
Freezing Point, °C °F	5.4 41	-23 -9	-96 -141	-64 -83	-24 -11	-35 -31	-111 -168	-73 -99	-100 -148	-96 -142
Density, g/mL (mg/m³) lb/gal	0.88 7.34	1.59 13.26	0.66 5.51	1.49 12.43	1.62 13.55	1.58 13.16	1.49 12.42	1.46 12.22	0.97 8.13	1.33 11.07
Vapor Density (air = 1)	2.8	5.3	2.97	4.1	5.8			4.54	2.1	2.93
Rate of Evaporation (Butyl acetate = 1)	6.30	12.80	10.00	11.60	2.80	9.87	13.07	6.20	~36	27.50
Viscosity, 20°C (68°F), cP (mPa-s)	0.65	0.99	0.29	0.57	0.88	0.70	0.41 (30°C) 0.58	0.35	0.44
Surface Tension in Air, 20°C (68°F), dyn/cm (mN/m)	28.9	26.8	18.4	27.2	32.3	19.0	18.7	32.0 (25°C)	25.0	2 8 .2
Specific Heat, Liquid, 20°C (68°F), caVg·C (Btw/lb·F) kJ/kg·K	0.42 1.75	0.21 0.88	0.54 2.26	0.23 0.96	0. 2 1 0. 8 7	0.22 0.93	0.21 0.87	0.23 0.96	0.51 6 2.16	0.28 1.17
Heat of Vaporization (bp) cal/g Btu/lb kJ/kg	94 170 395	46 84 195	80 145 337	59 106 247	50 90 209	35.09 63.12 146.8	43.52 78.31 182.1	57 103 240	112.4 202.3 470.0	78 141 327
Solubility Parameter, δ	9.2	8.6	7.3	9.3	9.3	7.2	7.8	9.3	9.7	9.7
Hydrogen Bonding Index, γ	2.2	2.2	2.2	2.2	2.2	2.5	2.5	2.5	2.7	2.7
Flash Point, TCC, °C °F	-11 12	NF	-22 -7	NF	NF	NF	NF	NF	19 2	ΝF
Flammable Limits, vol% Lower Upper	1.4 8	NF	1.2 6.9	NF	NF	NF	NF	NF	5 23	NF
Threshold Limit Value,* ppm	10	5 skin	50	10	25	1000	1000 ceil.	50	100	50
Formula	O	CCI *	сн ₃ (сн ₃),сн ₃	СНСІ	CI ₂ C:CCI ₂	CCI ₂ FCCIF ₂	CCI,F	CHCI:CCI ₂	HCOCH ₃	CH ₂ Cl ₂

Moderately	Hydrogen-Bonded
ac.ac.y	nyarogen bonaca

						•				
	toluene	mixed xylenes	dimethyl suffoxid e	MEK	MIBK	ethyl acetate	THF	n-butyl acetate	acetone	1,4- dioxane
Bailing Point, °C °F	111 231	135 275	189 372	79 175	117 2 43	77 171	66 151	125 257	56 133	101 214
Freezing Paint, °C °F	-95 -139	_	18 65	- 87 -124	-85 -121	-84 -119	-108.5 -163	-76 -105	-94 -137	10 50
Density, g/mL (mg/m³) lb/gal	0.87 7.25	0.87 7.24	1.10 9.18	0.80 6.71	0.80 6. 68	0.9 0 7.51	0.89 7.41	0.88 7.34	0.79 6.58	1.04 8.60
Vapor Density (air = 1)	3.1	1.1	-	2.5	3.5	3.04	2.49	4.0	2.0	3.0
Rate of Evaporation (Butyl acetate = 1)	2.4	0.7	9.2	5.72	1.65	6.15	8.0	1.00	11.60	3.11
Viscosity, 20°C (68°F), cP (mPa-s)	0.59	0.69	1.9 8 (25°C	0.42	0.59	0.44	0.48	0.74	0.35	1.31
Surface Tension in Air, 20°C (68°F), dyn/cm (mN/m)	28.4	28.9	43.5	24.6	22.7	23.9	26.4 (25°C)	27.6 (27	°C) 23.7	33.4
Specific Heat, Liquid, 20°C (68°F), cal/g·C (Btu/lb·F) kJ/kg·K	0.39 1.63	0.40 1.67	0.47 1.97	C) 0.55 2.30	0.50 2.09	0.46 1.92	0.469 1.97	0.51 2.13	0.51 2.13	0.41 1.72
Heat of Vaporization (bp) cal/g Btu/lb kJ/kg	87 156 362	82 147 342	144 260 604	106 191 444	87 157 365	88 158 367	95 171 398	74 133 309	124 224 521	98 177 412
Solubility Parameter, δ	8.9	8.8	13.0	9.3	8.4	9.1	9.1	8.5	10	9.9
Hydrogen Bonding Index, γ	3.8	3.8	5.0	5.0	5.0	5.2	5.3	5.4	5.7	5.7
Flash Point, TCC, °C °F	4 40	27 80	95 (TOC) 203	-7 20	23 73	-4 24	-14 6	27 81	-18 0	12 54
Flammable Limits, vol% Lower Upper	1.2 7.1	1.1 7.0	2.6 28.5	1.8 10	1.4 7.5	2.2 11	2 11.8	1.4 7.6	3 13	2 22.2
Threshold Limit Value,* ppm	50 skin	100	_	200	50	400	200	150	750 (500 proposed)	2 5 skin
Formula	O CH	H. F.	сн _, scн,	СН ₂ СС ₂ Н ₃	0 	, 1,300, H3 0	Н С СН Н С СН	сн,со(сн,),сн, 0	CH ₃ CCH ₃	H ₂ H ₂ H ₂

(continued)

Strongly Hydrogen-Bonded

	cyclo- hexanone	DMF	DMAC	EGME	ethyl ether	methanol	ethanol 95%	isopropyl alcohol	n-butyl alcohol	formamide
Boiling Point, °C °F	157 315	153 307	166.1 331	124 255	34 94	65 148	75.0 167	82 180	118 244	210 410
Freezing Point, °C °F	-31.2 -24	61 78	-20 -4	-85 -121	-123 -189	-98 144	-128.0 -198.4	-89 -128	-89.8 -130	3 36
Density, g/mL (mg/m³) ib/gal	0.94 7.88	0.90 7.50	0.945 7.88	0.96 8.04	0.71 5.92	0.79 6.63	0.812 6.74	0.78 6.55	0.81 6.76	1.13 9.46
Vapor Density (air = 1)	3.4	2.51	3.0	2.62	2.55	1.11	1.59	2.07	2.55	
Rate of Evaporation (Butyl acetate = 1)	0.23	0.17	<1	0.47	33.00	6.10	1.7	2.30	0.45	<1
Viscosity, 20°C (68°F), cP (mPa·s)	2.2	0.80	0.92 (25°C) 1.72	0.23	0.59	1.2	2.4	2.7	3.76
Surface Tension in Air, 20°C (68°F), dyn/cm (mN/m)	34.5	35.2 (25°C) 32.4 (30°C)	35.0 (25°C)	17.0	22.6	22.8	21.7	24.6	58.4
Specific Heat, Liquid, 20°C (68°F), cal/g·C (Btu/lb·F) kJ/kg·K	0.49 2.05	0.49 2.05	0.48 2.01	0.53 2.22	0.55 2.30	0.60 2.51	0.62 2.59	0.60 2.51	0.56 2.34	0.551 2.31
Heat of Vaporization (bp) cal/g Btu/lb kJ/kg	109 197 (29°C) 458	138 248 576	119 214 498	135 243 565	84 151 351	263 473 1100		160 287 668	141 254 591	400 720 1674
Solubility Parameter, δ	9.9	12.1	10.8	10.8	7.4	14.5	13.6	11.5	11.4	19.2
Hydrogen Bonding Index, γ	6.4	6.4	6.6	6.9	6.9	8.9	8.9	8.9	8.9	>16.2
Flash Point, TCC, °C °F	44 111	58 136	63 145	46 115	-45 -49	11 52	14 57	12 53	29 84	155 (TOC) 310
Flammable Limits, vol% Lower Upper	1.1 8.1	2.2 (100° 15.2	C) 1.8 (100°C) 8.6 (20°C)	2.5 14	1.9 48	6.7 36	3.3 19.0	2.3 12.7	1.4 11	1.5 12
Threshold Limit Value,* ppm	25 skin	10 skin	10 skin	5 skin	400	200 skin	1000	400	50 ceil. skin (25 ceil. proposed)	10 skin
Formula	(<u>\$)</u> = 0	CH, CH, NCH	CH3 NCCH	сн ₃ 0(сн ₂) ₂ 0	c²H²oc²H²	сн,он	но°н²о	СН ₃ \ СНОН	сн,(сн,),он	HCNH ₂

Fats and Oils Composition (26)

	ļ		FA	TS AND	OILS C	OMPOSI	TION		
FATTY ACID	COMPONENT	CANOLA	CASTOR	COCO BUTTER	COCONUT	CORN	COTTON SEED	CRAMBE	LINSEE
C4	BUTANOIC (Butyric)								***************************************
C6	HEXANOIC (Caproic)							1	
C8	OCTANOIC (Caprylic)				7.6			1	
C10	DECANOIC (Capric)				7.3			—	
C10:1	DECENOIC						†	!	
TOTAL C	•	,			7.3		[
C12	LAURIC (Dodecanoic)			}	48.2		0.1	1	
C12:1	cts-9-DODECENOIC								
TOTAL C					48.2		0.1		
C14	MYRISTIC (Tetradecanoic)			0.5	16.6		0.7		
C 14:1	cis-9-TETRADECENOIC							† — — · · · ·	
TOTAL C				0.5	16.6		0.7		
C15	PENTADECANOIC			0.0	20.0		"	!	
TOTAL C				1					
C16	PALMITIC (Hexadecanoic)	3.2	1.2	25.0	8.0	11.5	21.6	2.0	5.5
C16:1	cis-9-HEXADECENOIC	9.2	0.2	25.0	1.0		0.6	0.4	
		3.2	1.4	25.0	9.0	11.5	22.2	2.4	5.5
TOTAL C		3.2	1.4	25.0	9.0	11.5	0.1	2.4	9.0
C17	HEPTADECANOIC			ļi			0.1	 	
C17:1	HEPTADECENOIC						1		
TOTAL C		0.0		0.5	9.0	0.0	0.2		2 -
C18	STEARIC (Octadecanoic)	0.9	1.0	34.5	3.8	2.2	2.6	0.4	3.5
C18:1	OLEIC (cis-9-Octadecenoic)	66.8	3.0	36.5	5.0	26.6	18.6	16.9	19.1
C18:2	LINOLEIC (cis-9, cis-12-Octadecadienoic)	19.0	3.5	3.0	2.5	58.7	54.4	8.6	15.3
C18:3	LINOLENIC (cis-9, cis-12, cis-15-Octadecatrienoic)	9.1	0.2	0.5		0.8	0.7	6.4	56.6
C18:4	cis-6. cis-9, cis-12, cis-15-OCTADECATETRAENOIC							}	
	H) RICINOLEIC (12-Hydroxy-cis-9-Octadecenoic)		89.2					;	
C18 (OH):			1.4						
TOTAL C		95.8	98.3	74.5	11.3	88.3	76.3	32.3	94.5
C19	NONADECANOIC								
TOTAL C	19				1		1	!	
C20	EICOSANOIC (Arachidic)		0.3			0.2	0.3	0.5	
C20: I	cis-9 or cis-11-EICOSENOIC							3.2	
C20:2	EICOSADIENOIC								
C20 3	EICOSATRIENOIC				ek amerik e taren besit in de	er om ombuerbersenbru			
C20:4	ARACHIDONIC (cis-5, cis-8, cis-11, cis-14-Eicosatetraenoic)								
C20:5	EICOSAPENTAENOIC								
TOTAL C	20		0.3			0.2	0.3	3.7	
C22	DOCOSANOIC (Behenic)						0.2	2.0	
C22:1	cis-13-DOCOSENOIC (Erucic)	1.0						57.2	
C22:2	DOCOSADIENOIC							0.8	
C22:5	4, 8, 12, 15, 19-DOCOSAPENTAENOIC								
C22:6	DOCOSAHEXAENOIC								
TOTAL C		1.0					0.2	60.0	
C24	TETRACOSANOIC (Lignoceric)							-	
C24:1	TETRACOSENOIC		Language of the control of the contr		-		t - · - ·	1 1	
TOTAL C									
Others					en expense with the			1.6	

IODINE VALUE	94-126	81-91	81-91	7-12	118-128	98-118	91	155-205
SAP VALUE OF OIL	186-198	176-187	177-187	250-264	187-193	189-198	169	188-196
MELTING POINT, 'C		-20 to -10		23-26	-12 to -10	2 to 2		-20
TITER, IOF SPLIT ACIDS) C	0-2	1-3	1 3.5	20 - 24	14-20	30-37	Ī	19-21

	i				DILS CO	MPOSITI	ON	
	ŀ		VE	ETABLE BAS	KERNEL) PAI	LM OIL
FATTY ACID COMPO	NENT	OLIVE	PALM KERNEL	OLEIN	STEARINE	PALM OIL	OLEIN	STEARINE
C4 BI	JTANOIC (Butyric)							
	EXANOIC (Caproic)			0.2	0.1			
	CTANOIC (Caprylic)		1.4	4.3	2.4			
C10 DI	ECANOIC (Capric)		2.9	3.7	3.2			
C10:1 DE	ECENOIC							
TOTAL C10			2.9	3.7	3.2		İ	
C12 LA	URIC (Dodecanoic)		50.9	42.6	55.2	0.3	0.2	0.7
	s-9-DODECENOIC							
TOTAL C12			50.9	42.6	55.2	0.3	0.2	0.7
C14 M	YRISTIC (Tetradecanoic)		18.4	12.4	19.9	1.1	1.0	1.5
	s-9-TETRADECENOIC					ľ	ĺ	1
TOTAL C14			18.4	12.4	19.9	1.1	1.0	1.5
C15 PE	NTADECANOIC							1
TOTAL C15						1	1	
C16 PA	LMITIC (Hexadecanoic)	9.0	8.7	8.4	8.1	42.9	39.8	55.7
C16:1 cis	9-9-HEXADECENOIC	0.6				0.2	0.2	
TOTAL C16		9.6	8.7	8.4	8.1	43.1	40.0	55.7
C17 HE	EPTADECANOIC					0.1		
C17:1 HE	PTADECENOIC							
TOTAL C17	İ					0.1	1	
C18 ST	EARIC (Octadecanoic)	2.7	1.9	2.5	3.3	4.6	4.4	4.8
	EIC (cis-9-Octadecenoic)	80.3	14.6	22.3	6.9	39.3	42.5	29.5
	NOLEIC (cis-9. cis-12-Octadecadienoic)	6.3	1.2	3.4	0.8	10.7	11.2	7.2
	NOLENIC (cis-9. cis-12. cis-15-Octadecatrienoic)	0.7				0.4	0.2	0.1
	-6. cis-9. cis-12. cis-15-OCTADECATETRAENOIC							
	CINOLEIC (12-Hydroxy-cis-9-Octadecenoic)						İ	
	HYDROXYSTEARIC							
TOTAL CIS		90.0	17.7	28.2	11.0	55.0	58.3	41.6
C19 NC	DNADECANOIC							
TOTAL C19							j	
	COSANOIC (Arachidic)	0.4		0.1	0.1	0.3	0.4	0.4
	-9 or cis-11-EICOSENOIC	•		0.1			1	
	COSADIENOIC						1	
	COSATRIENOIC							
C20:4 AR	ACHIDONIC (cis-5, cis-8, cis-11, cis-14-Eicosatetraenoic)						İ	
	COSAPENTAENOIC							
TOTAL C20		0.4	1	0.2	0.1	0.3	0.4	0.4
	OCOSANOIC (Behenic)					0.1	0.1	0.1
	-13-DOCOSENOIC (Erucic)						ļ	
	COSADIENOIC		—	-		<u> </u>	1	
	8. 12. 15. 19-DOCOSAPENTAENOIC						1	
	COSAHEXAENOIC		1				1	
TOTAL C22	- · · · · · · · · · · · · · · · · · · ·					0.1	0.1	0.1
	TRACOSANOIC (Lignoceric)					1		
	TRACOSENOIC		 			-		İ
TOTAL C24							ł	
Others			<u> </u>				 	
TOTAL	<u> </u>	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Note: Typical % composition determined by chromatography. Some values

Chemical Values							
IODINE VALUE	80-88	14-19	25-31	6-9	50~55	56 Min	48 Max
SAP VALUE OF OIL	188-196	245-255			196 - 2 02		
MELTING POINT, 'C		24-26			27-50		24 - 26
TITER, (OF SPLIT ACIDS) 'C	17-26	20-28		32	40 47		20-26
Note: Some values obtained from literature.							

			TS AND (VEGETABLE BAS		MPOSITIO	N
FATTY ACID COMPONENT	PEANUT	RAPE SEED	SAFFLOWER	SOYBEAN	SUNFLOWER	TALL OIL
C4 BUTANOIC (Butyric)						
C6 HEXANOIC (Caproic)						
C8 OCTANOIC (Caprylic)						
C10 DECANOIC (Capric)						
C10:1 DECENOIC						
TOTAL C10						
C12 LAURIC (Dodecanoic)		İ			1	
C12:1 cis-9-DODECENOIC						
TOTAL C12						
C14 MYRISTIC (Tetradecanoic)	0.1	0.1		0.1		
C 14:1 cis-9-TETRADECENOIC						
TOTAL C14	0.1	0.1		0.1		
C15 PENTADECANOIC				,		
TOTAL C15						
C16 PALMITIC (Hexadecanoic)	11.1	4.0	6.5	10.5	7.0	0.2
C16:1 cis-9-HEXADECENOIC	0.2	0.1				
TOTAL C16	11.3	4.1	6.5	10.5	7.0	0.2
C17 HEPTADECANOIC	0.1		1		'''	
C17:1 HEPTADECENOIC	0.1	 				
TOTAL C17	0.2	1				
	2.4	1.3	2.5	3.2	3.3	2.2
C18 STEARIC (Octadecanoic)	46.7	17.6	12.5	22.3	21.0	58.6
C18:1 OLEIC (cis-9-Octadecenoic)	32.0	+	F			36.0
C18:2 LINOLEIC (cis-9, cis-12-Octadecadienoic)	32.0	12.7	77.5	54.5	68.0	36.0
C18:3 LINOLENIC (cis-9, cis-12, cis-15-Octadecatrienoic)		5.3		8.3	0.7	
C18:4 cis-6, cis-9, cis-12, cis-15-OCTADECATETRAENOIC						
C18:1 (OH) RICINOLEIC (12-Hydroxy cis-9-Octadecenoic)		+				
C18 (OH) ₂ DIHYDROXYSTEARIC						
TOTAL CIS	81.1	36.9	92.5	88.3	93.0	96.8
C19 NONADECANOIC					l i	
TOTAL C19			_			
C20 EICOSANOIC (Arachidic)	1.3	0.9	0.5	0.2		0.7
C20:1 cis-9 or cis-11-EICOSENOIC	1.6	10.6	0.5	0.9		0.7
C20:2 EICOSADIENOIC		1				
C20 3 EICOSATRIENOIC		1				
C20:4 ARACHIDONIC (cis-5, cis-8, cis-11, cis-14-Eicosatetraenoic)						
C20:5 EICOSAPENTAENOIC						
TOTAL C20	2.9	11.5	1.0	1.1		1.4
C22 DOCOSANOIC (Behenic)	2.9	0.7			<u></u>	
C22:1 cis-13-DOCOSENOIC (Erucic)		45.8				
C22:2 DOCOSADIENOIC		0.1				, ,
C22:5 4, 8, 12, 15, 19-DOCOSAPENTAENOIC		<u></u>				
C22:6 DOCOSAHEXAENOIC						
TOTAL C22	2.9	48.8				
C24 TETRACOSANOIC (Lignoceric)	1.5	0.2				
C24:1 TETRACOSENOIC		0.6				
TOTAL C24	1.5	0.8				
Others		1				1.6
TOTAL	100.0	100.0	100.0	100.0	100.0	100.0

Note: Typical % composition determined by chromatography. Some values

Chemical Values

IODINE VALUE	84-100	100 -110	140 150	120-141	125-136	122-142
SAP VALUE OF OIL	188-195	183-188	188 194	189-195	188 -194	197-200
MELTING POINT, 'C	-2	-7 to 10	18 to 16	-23 to -20	-18 to -16	
TITER, (OF SPLIT ACIDS) C	26 -32	23 26	16 18	20 21	16 20	4 15

Note: Some values obtained from literature.

		i .			
	ì	ANIMAL	BASED		
FATTY ACID COMPONENT		BUTTER	LARD	TALLOW	YELLOW
C4	BUTANOIC (Butyric)	2.3			
C6	HEXANOIC (Caproic)	1.6	 		
C8	OCTANOIC (Caprolic)	1.5			
C10	DECANOIC (Capric)	2.2	-	<u> </u>	
C10:1	DECENOIC	0.4	 		
TOTAL C10		2.6			1
C12	LAURIC (Dodecanoic)	2.5	0.3		
C12:1	cis-9-DODECENOIC	0.2	- 0.0	 	<u> </u>
TOTAL C12		2.7	0.3		İ
C14	MYRISTIC (Tetradecanoic)	8.2	1.7	3.0	2.6
C 14:1	cis-9-TETRADECENOIC	2.6	0.2	0.4	0.3
TOTAL C14		10.8	1.9	3.4	2.9
C15	PENTADECANOIC	-5.5	0.1		
TOTAL C15			0.1		1
C16	PALMITIC (Hexadecanoic)	25.8	26.2	26.3	26.3
C16:1	cis-9-HEXADECENOIC	4.6	4.0	2.6	3.2
TOTAL C16		30.4	30.2	28.9	29.5
C17	HEPTADECANOIC		0.5	0.4	0.3
C17:1	HEPTADECENOIC		0.3	0.4	
TOTAL C17			0.8	0.8	0.3
C18	STEARIC (Octadecanoic)	9.1	13.5	22.4	18.4
C18:1	OLEIC (cis-9-Octadecenoic)	32.1	42.9	43.1	45.3
C18:2	LINOLEIC (cis-9, cis-12-Octadecadienoic)	4.9	9.0	1.4	3.6
C18:3	LINOLENIC (cis-9, cis-12, cis-15-Octadecatrienoic)	2.0	0.3		
C18:4	cis-6, cis-9, cis-12, cis-15-OCTADECATETRAENOIC				
	RICINOLEIC (12-Hydroxy-cis-9-Octadecenoic)	` `			
C18 (OH) ₂	DIHYDROXYSTEARIC			 	
TOTAL CIS		48.1	65.7	66.9	67.3
C19	NONADECANOIC				
TOTAL C19		·		İ	
C20	EICOSANOIC (Arachidic)		0.2		
C20:1	cis-9 or cis-11-EICOSENOIC		0.8		
C20:2	EICOSADIENOIC				
C20 3	EICOSATRIENOIC				
C20:4	ARACHIDONIC (cis-5, cis-8, cis-11, cis-14-Eicosatetraenoic)		-		
C20:5	EICOSAPENTAENOIC				
TOTAL C20			1.0		
C22	DOCOSANOIC (Behenic)				
C22:1	cis-13-DOCOSENOIC (Erucic)				
C22:2	DOCOSADIENOIC	-			
C22:5	4, 8, 12, 15, 19-DOCOSAPENTAENOIC				
C22:6	DOCOSAHEXAENOIC				
TOTAL C22	• • • • • • • • • • • • • • • • • • •				
C24	TETRACOSANOIC (Lignoceric)				
C24:1	TETRACOSENOIC				
TOTAL C24					
Others		-			
TOTAL		100.0	100.0	100.0	100.0

Note: Typical $\mbox{\%}$ composition determined by chromatography. Some values

Chemical Values

1 0.00000000000000000000000000000000000				
IODINE VALUE	25-42	53-57	48~52	50-65
SAP VALUE OF OIL	233-240		192-202	190-202
MELTING POINT, 'C	28-35	33-46	40 47	
TITER, (OF SPLIT ACIDS) C	33-38	32-43	40 - 47	39 -43

Note: Some values obtained from literature.

	-		MARINE BASED		1
FATTY ACID COMPONENT		HERRING	MENHADEN	SARDINE	
					C4
C4 C6	BUTANOIC (Butyric) HEXANOIC (Caproic)		 		C6
C8	OCTANOIC (Caproic)		 		C8
210	DECANOIC (Capric)		 		C10
C10:1	DECENOIC (Capite)				C10:1
TOTAL C					TOTAL CI
C12	LAURIC (Dodecanoic)				C12
012:1	cis-9-DODECENOIC		†		C12:1
COTAL C					TOTAL CI
C14	MYRISTIC (Tetradecanoic)	7.6	7.3	6.0	C14
C 14:1	cis-9-TETRADECENOIC	7.0	1.5	0.0	C14:1
TOTAL C		7.6	7.3	6.0	TOTAL CI
215	PENTADECANOIC	0.4	0.4	0.0	C15
DIS P otal C :		0.4	0.4		TOTAL CI
DIAL C	PALMITIC (Hexadecanoic)	18.3	23.6	10.0	C16
216:1	cis-9-HEXADECENOIC	8.3	9.9	13.0	C16:1
COTAL C	i i i i i i i i i i i i i i i i i i i	26.6	33.5	23.0	TOTAL C1
		0.5	0.9	23.0	C17
217	HEPTADECANOIC	0.5	0.9		C17:1
C17:1	HEPTADECENOIC	0.5	0.9		TOTAL CI
COTAL C		2.2	2.6	2.0	
18	STEARIC (Octadecanoic)	16.9	17.0	24.0	C18
218:1	OLEIC (cis-9-Octadecenoic)	1.6		24.0	C18:1 C18:2
018:2	LINOLEIC (cis-9, cis-12-Octadecadienoic)	0.6	1.2		
18:3	LINOLENIC (cis-9, cis-12, cis-15-Octadecatrienoic)	0.6	4.1		C18:3
218:4	cis-6, cis-9, cis-12, cis-15-OCTADECATETRAENOIC		4.1		C18:4
	i) RiCINOLEIC (12 Hydroxy cis-9 Octadecenoic)				C18:1 (OH
C18 (OH) ₂		01.0		26.0	C18 (OH)2
TOTAL CI		21.3	24.9	26.0	TOTAL C1
219	NONADECANOIC		1.2		C19
TOTAL C	A CONTRACTOR OF THE CONTRACTOR		1.2		TOTAL C1
220	EICOSANOIC (Arachidic)				C20
20:1	cis-9 or cis-11-EICOSENOIC	9.4			C20:1
20:2	EICOSADIENOIC		0.3		C20:2
20 3	EICOSATRIENOIC		0.2		C20:3
20:4	ARACHIDONIC (cis-5, cis-8, cis-11, cis-14-Eicosatetraenoic)	0.4	3.4	26.0	C20:4
20:5	EICOSAPENTAENOIC	8.6	12.0		C20:5
TOTAL C		18.4	15.9	26.0	TOTAL C2
222	DOCOSANOIC (Behenic)		<u> </u>		C22
22:1	cis-13-DOCOSENOIC (Erucic)	11.6	ļ		C22:1
22:2	DOCOSADIENOIC		1.7		C22:2
22:5	4, 8, 12, 15, 19-DOCOSAPENTAENOIC	1.3	9.1	19.0	C22:5
22:6	DOCOSAHEXAENOIC	7.6			C22:6
OTAL C	22	20.5	10.8	19.0	TOTAL C2
24	TETRACOSANOIC (Lignoceric)		L		C24
24:1	TETRACOSENOIC	0.4	0.8		C24:1
OTAL C	34	0.4	0.8		TOTAL C2
Others		4.3	4.3		Others
TOTAL		100.0	100.0	100.0	

Chemical Values

	•			
	IODINE VALUE	123-142	140-188	170-193
1	SAP VALUE OF OIL	180~192	189-193	189-193
	MELTING POINT, TC			
	TITER, (OF SPLIT ACIDS.) "C	23-27	27-28	31-33

Note: Some values obtained from literature.

No warranties, express or implied. including patent warranties or warranties of merchantability or fitness for use, are made by Witco Corporation with respect to products described or information set forth herein. Nothing contained herein shall constitute a permission or recommendation to practice any invention covered by a patent without a license from the owner of the patent.

Color Conversion Chart (26)

	-	Coro	R CONVERS	SION C	IART		
INDEX	PHOTOMETRIC INDEX' (A.O.C.S.) 440/550 NM	LOVIBOND 5 1/4" CELL Y/R	TRANSMISSION % THRU 2 5 CM 440/550 NM	GARDNER 1963		I.S.T.M. 3-15000	INDEX
	0/0		100/100		0		
	4/0-		÷		50—		
A	7/0—		90/100— 85/100—		100—		A
В	11/0.3-	— 3/0.3	-	1	200		В
C	14/0.5—	-4/0.5	72/99—		300	1	С
С			65/98—-	2			L
D	22/1-		03/30	-	400—		D
	25/1.5—		59/97—				
E	28/2—	—8/1.5	51/95—		450—		E
F	32/3-		-	-3	500—		F
G	44/5—	14/3 16/4	39/90—	-4	1—		G
н	62/10—	—18/5 —5/1	28/85—	-5	_	11/2	н
	75/15		21/75—_	-6	3	•	
I	88/20	7 /2	12/60—	 7	5	21/2	ī
J	108/30-	10/3	8/50	- 8 -9	7— 9—	3	t
К	150/50	—16/5 —20/10	2/30	-10 11	13		К
L	200/100—	/20	-	-12 -13		41/2	1.
М	-/200-	/30	1/15— - 0/0	-14 -15 -16	19—_ — 31—_ 35—	6	M
INDEX	PHOTOMETRIC INDEX* (A 0 C S) 440/558 NM	LOVIBOND 1 CELL Y/R	TRANSMISSION % THRU 2.5 CM 440:550 NM	GARDNER 1963		:8.T.M. 2-15000	INDEX
1. Comparisons of color scales of different systems are very difficult and inaccurate. Thus, this conversion chart should be used only for fatty acids and only to obtain approximate values.							
2. Absor	rbency readings v	vere taken on	Coleman 6A Spec	Irophotomet	r using 25mm (uvette.	

Viscosity Conversions (41)

VISCOSITY CONVERSIONS (For Newtonian Fluids, @ 25°C, D = 1)

Centipoises	Ford Cup #4	Zahn #2	Zahn #3	Zahn #4	Gardner Holdt	Krebs Stormer
1.0					A-5	
10.0		16			A-4	
15.0		17			A-3	
22 0	14	19			A-2	
32.0	15	20			A-1	
50.0	19	22			A	
65.0	22	27			В	
85 .0	27	34			С	
100.0	30	41	12		D	
125.0	36	49	14	11	E	
140.0	40	58	16	13	F	
165.0	46	66	18	14	G	
200.0	5 0	82	23	17	н	52
225.0	5 5		25	18	1	54
250.0	68		27	20	J	56
275.0	74		32	22	К	5 9
300.0	81		34	24	Ĺ	61
320.0	86		36	25	М	62
340.0	91		39	26	N	63
370. 0	99		41	28	0	64
400.0	107		46	30	P	65
435.0	116		50	33	a	66
470.0	125		52	34	R	67
500.0	133		57	37	S	68
550.0	146		63	40	Т	69
630.0 ·	167		68	44	U	71
885.0	199			64	V	78
1.070.0	270				w	85
1,290.0					X	95
1,760.0					Y	100
2.270.0					Z	105
2.7 00 .0					Z-1	114
3,620.0					Z-2	129
4,630.0					Z-3	136
6.340.0					Z-4	
9. 85 0.0					Z·5	
14,800.0					Z-6	

Density of Water at Various Temperatures (23)

Density of Wat	er at Various Temperatures
Temperature, ℃	Density, g/ml
-20	0.99349
-10	0.998137
0	0.999868
1	0.999927
2	0.999968
3	0.999992
4	1.000000
5	0.999992
6	0.999968
7	0.999930
8	0.999877
9	0.999809
10	0.999728
15	0.999129
20	0.998234
25	0.997075
30	0.995678
35	0.994063
40	0.992247
50	0.988066
60	0.983226
70	0.977793
80	0.971819
90	0.965340
95	0.961920
100	0.958384

References

- (1) Mellan, I., Industrial Solvents, Reinhold Publishing Corp., New York, NY (1939)
- (2) Mellan, I., Industrial Solvents, 2nd Ed., Reinhold Publishing Corp., New York, NY (1950)
- (3) Mellan, I., Handbook of Solvents, Vol. I, "Pure Hydrocarbons," Reinhold Publishing Corp., New York, NY (1957)
- (4) Phillips Chemical Co., 14 Phillips Bldg., Bartlesville, OK 74004, (800-858-4327)
- (5) Arizona Chemical Co., 1001 E. Business Highway 98, Panama City, FL 32401, (800-526-5294)
- (6) Fina Oil and Chemical Co., 8350 N. Central Expressway, Dallas, TX 75206, (800-344-FINA)
- (7) Mellan, I. Source Book of Industrial Solvents, Vol. II, "Halogenated Hydrocarbons," Reinhold Pub. Corp., New York, NY (1957)
- (8) Exxon Chemical Co., P.O. Box 3272, Houston, TX 77253, (800-526-0749/800-231-6633)
- (9) Elf Atochem Inc., 266 Harristown Rd., P.O. Box 607, Glen Rock, NJ 07452, (201-652-8575/800-932-0420)
- (10) Eastman Chemical Co., P.O. Box 431, Kingsport, TN 37662, (800-EASTMAN)
- (11) DuPont Co., Wilmington, DE 19898, (800-441-9408)
- (12) Sun Refining and Marketing Co., Ten Penn Center, 1801 Market St., Philadelphia, PA 19103, (215-977-3513/800-825-3535
- (13) Unocal Corp., 1701 Golf Rd., Rolling Meadows, IL 60008, (800-967-7601/800-964-7676)
- (14) Shell Chemical Co., 3200 Southwest Freeway, Suite 1230, Houston, TX 77027, (713-241-8101)
- (15) CPS Chemical Co., Inc., P.O. Box 162, Old Bridge, NJ 08857, (908-607-2700)
- (16) Castrol Industries, 1000 W. 31st St., Downers Grove, IL 60515
- (17) Allied-Signal, Inc., Engineered Solvent, P.O. Box 1139R, Morristown, NJ 07962, (201-455-2120/800-922-0964)
- (18) Penreco, 138 Petrolia St., Karns City, PA 16041, (412-756-0110/800-245-3952)
- (19) Union Carbide Corp., 39 Old Ridgebury Rd., Danbury, CT 06817, (800-SOLVENT)
- (20) Amoco Chemicals, 801 Warrenville Rd., Lisle, IL 60532, (800-621-4567)
- (21) Grant Chemical Division, Ferro Corp., P.O. Box 263, Baton Rouge, LA 70821, (504-654-6801)
- (22) PPG Industries, Inc. One PPG Place, Pittsburgh, PA 15272, (412-434-3131/800-CHEM-PPG)
- (23) Dow Chemical Co., Midland, MI 48674, (800-447-4369)
- (24) Rhone-Poulenc Basic Chemicals Corp., One Corporate Dr., Box 881, Shelton, CT 06484, (203-925-3300)
- (25) Halocarbon Products Corp., 887 Kinderkamack Rd., River Edge, NJ 07661, (201-262-8899)
- (26) Humko Chemical Division, Witco Corp., P.O. Box 125, Memphis, TN 38101-0125, (901-320-5800)
- (27) Occidental Chemical Corp., Occidental Tower, 5005 LBJ Freeway, Dallas, TX 75244, (972-404-3700/800-733-9960)
- (28) Hercules, Inc., Hercules Plaza, Wilmington, DE 19894, (800-235-0543/800-400-6579)
- (29) Holson, R.W., et al, Journal of the American Chemical Society, 63:2094 (1941)
- (30) Quantum Chemical Corp., USI Division, 11500 Northlake Dr., Cincinnati, OH 45249, (708-285-0024/800-331-0229)
- (31) Mellan, I., Source Book of Industrial Solvents, Vol. III, "Monohydric Alcohols," Reinhold Publishing Corp., New York, NY (1959)
- (32) Mellan, I., Polyhydric Alcohols, Spartan Books, Washington, DC (1962)
- (33) Kirk, R.E., and Othmer, D.F., Encyclopedia of Chemical Technology, Interscience Encyclopedia, Inc., New York, NY
- (34) Angus Chemical Co., 1500 E. Lake Cook Rd., Buffalo Grove, IL 60089, (847-215-8600)
- (35) Haas, H.B. and Riley, E.F., Chemical Review, 32, No. 373 (1943)
- (36) Gaylord Chemical Corp., P.O. Box 1209, Slidell, LA 70459, (504-649-5464)
- (37) Dynaloy, Inc., 7 Great Meadow La., Hanover, NJ 07936, (201-887-9270)
- (38) ICI Americas Inc., Wilmington, DE 19897, (302-575-4270)
- (39) Procter & Gamble, Industrial Chemical Div., P.O. Box 599, Cincinnati, OH 45201, (513-983-5607/800-543-1580)
- (40) Vista Chemical Co., 900 Threadneedle, P.O. Box 19029, Houston, TX 77224, (713-588-3000/800-231-8212)
- (41) Eastman Kodak Co., 343 State St., Rochester, NY 14650, (800-225-5352)
- (42) Hoechst Celanese Corp., 1601 West LBJ Freeway, Dallas, TX 75234, (214-277-4000)
- (43) SCM Glidco Organics Corp., P.O. Box 389, Jacksonville, FL 32201, (904-768-5800/800-231-6728)
- (44) Rember, R.F., Acetone: Its Production and Uses, National Wood Chemicals Association, Washington, DC
- (45) Sonneborn Division, Witco Corp., 520 Madison Ave., New York, NY 10022-4236, (212-605-3911/800-634-4010)
- (46) QO Chemicals, Inc., P.O. Box 2500, West Lafayette, IN 47906, (317-497-6100/800-621-9521)
- (47) BASF Corp., 3000 Continental Dr. N., Mt. Olive, NJ 07828, (800-443-6460)
- (48) Huntsman Corp. (formerly Texaco), P.O. Box 27707, Houston, TX 77227, (713-235-6000)
- (49) ISP (GAF), International Specialty Products (GAF), 1361 Alps Rd., Wayne, NJ 07470, (201-628-3000)
- (50) Mellan, I., Ketones, Chemical Publishing Co., New York, NY (1968)
- (51) Mapstone, G.E., Chemical Processing, April 1967
- (52) Total Petroleum, Inc., East Superior St., Alma, MI 48802, (517-463-1161)
- (53) Vulcan Chemicals, P.O. Box 530390, Birmingham, AL 35253, (205-877-3000/800-633-8280)
- (54) 3M Adhesive Systems, 3M Center, St. Paul, MN 55144, (612-733-1110)
- (55) American Ink Maker, New York, NY
- (56) J.T. Baker Chemical Co., 222 Red School La., Phillipsburg, NJ 08865, (201-859-2151)
- (57) Chemical Processing, p.94b, September, 1954

- (58) Henkel Corp., 5325 S. 9th Ave., LaGrange, IL 60525-3602, (312-579-6150/800-237-4037)
- (59) Akzo Chemicals Inc., 300 S. Riverside Plaza, Chicago, IL 60606, (312-906-7500/800-257-8292)
- (60) Crowley Chemical Co., Inc. 261 Madison Ave., New York, NY 10016, (212-682-1200)
- (61) Baxter Healthcare Corp., Burdick & Jackson Div., 1953 S. Harvey St., Muskegon, MI 49442, (616-726-3171/800-368-0050)
- (62) Alpha Metals, Inc., 600 Route 440, Jersey City, NJ 07304, (201-434-6778)
- (63) Henkel Corp., Emery Group, 5051 Estercreek Dr., Cincinnati, OH 45232, (513-482-3000)
- (64) Mobil Oil Corp., 3225 Gallows Rd., Fairfax, VA 22037, (800-662-4525)
- (65) Kendall/ Amalie Division, Witco Corp., 77 N. Kendall Ave., Bradford, PA 16701, (814-368-6111)
- (66) Oiin Chemicals, 120 Long Ridge Rd., Stamford, CT 06904, (203-356-3000/800-243-9171)
- (67) Chemcentral Corp., P.O. Box 730, Chicago (Bedford Park), IL 60499, (800-331-6174)
- (68) Stepan Co., 22 W. Frontage Rd., Northfield, IL 60093, (708-446-7500/800-745-7837)
- (69) Ashland Chemical Co., ICS Division, P.O. Box 2219, Columbus, OH 43216, (614-790-3333)
- (70) ARCO Chemical Co., 3801 W. Chester Pike, Newtown Square, PA 19073, (800-345-0252)
- (71) Cardolite Corp., 500 Doremus Ave., Newark, NJ 07105, (201-344-5015/800-322-7365)
- (72) "Solvay's Chlorobenzenes," Chemical Engineering, April 1954
- (73) Liggett, L.M., Anal. Chem., 26:748 (1954)
- (74) Velsicol Chemical Corp., 10400 W. Higgins Rd., Suite 600, Rosemont, IL 60018, (708-298-9000)
- (75) Monsanto Chemical Co., 800 N. Lindbergh Blvd., St. Louis, MO 63167, (314-694-1000/800-325-4330)
- (76) FMC Corp., 1735 Market St., Philadelphia, PA 19103, (800-468-3853)
- (77) Witco Corp., One American La., Greenwich, CT 06831, (800-494-8287)
- (78) Reilly Industries, Inc., 1510 Market Square Center, 151 N. Delaware St., Indianopolis, IN 46204, (317-247-8141)

Trade Name Index

AR (Angua Chamical) 214 215	GLYME (Ferro) - 574
AB (Angus Chemical) - 214, 215 ACINTENE (Arizona Chemical) - 58-60	HALSO (Occidental Chemical) – 115
	HEP (ISP) - 805
ACINTOL (Arizona Chemical) – 670	, ,
AEPD (Angus Chemical) 215	HERCO (Hercules) - 349
ALFOL (Vista Chemical) – 322–324	HERCULES (Hercules) - 56, 57, 457
ALIQUAT (Henkel Corp.) – 699	HEXSOLV (Chemcentral Corp.) - 63
ALPHA (Alpha Metals) – 149	HI-SOL (Ashland Chemical) - 62
AMINE CS-1135 (Angus Chemical) - 718	HYSTRENE (Witco Corp.) - 676-680
AMINE CS-1246 (Angus Chemical) - 718	INDUSTRENE (Witco Corp) - 676, 677, 679, 680
AMP (Angus Chemical) - 214, 765	INKSOLV (Union Carbide) – 284, 285
AMPD (Angus Chemical) - 214, 215	ISOPAR (Exxon Chemical) - 73
ANGUS (Angus Chemical) - 211-214	JEFFSOL (Huntsman Corp.) – 861–866
ANHYDROL (Union Carbide) - 284, 285, 328	KEMAMINE (Humko Corp.) - 699, 735
ARCOSOLV (Arco Chemical) - 496, 497, 514-516,	KEMSTRENE (Witco Corp.) - 444
521, 523, 524, 530–534, 536, 537, 540, 544,	KENSOL (Kendall/Amalie) – 75-77
545, 827-831, 836, 837, 839	KESSCO (Stepan Co.) - 852, 853
ARMEEN (Akzo Chemicals) - 711, 712, 715	KP-140 (FMC Corp.) - 882
AROMATIC (Exxon) - 73	KWIK DRI (Ashland Chemical) - 62
ASHLAND (Ashland Chemical) - 498, 741	LACOLENE (Ashland Chemical) - 62
BIOGRADE (Halocarbon Products Corp.) - 671	LACTOL (Unocal Corp.) - 99
BLO (ISP) - 791	LPA (Vista Chemical) - 101
BUTYL DIOXITOL (Shell Chemical) - 84, 85	3M (3M Adhesive Systems) - 93
C-11 KETONE (Eastman) - 650	MONOGLYME (Ferro) - 515
CARBITOL (Union Carbide) - 96-98, 476, 513, 523,	M-PYROL (ISP) - 782-804
525, 576-580, 598, 839, 843-848	MR (Vista Chemical) - 101
CARBOWAX (Union Carbide) - 109, 582-598	NAPTHOL SPIRITS (Unocal Corp.) - 99
CARDOLITE (Cardolite Corp.) - 480	NB (Angus Chemical) - 212
CELLOSOLVE (Union Carbide) - 96-98, 358, 476,	NE (Nitroethane) (Angus Chemical) - 211
513-516, 521, 576-580, 827-829, 839, 843-	NEOBEE (Stepan Co.) - 853
849	NEO-FAT (Akzo Chemicals) - 681, 682
CHLOROTHENE (Dow Chemical) - 548	NEP (ISP) - 805
CHLOROWAX (Occidental Chemical) – 108–110	NEPD (Angus Chemical) - 212
CHP (ISP) - 805	NEUSTRENE (Witco Corp.) 444
	NIPAR (Angus Chemical) – 216, 217, 219
COMSOL - 218-221 CYCLO-SOL (Shell Chemical) - 88, 89	NM (Nitromethane) (Angus Chemical) – 213
DALPAD (Dow Chemical) - 500-502, 536, 550, 559,	NMP (Angus Chemical) – 213, 809
572	NMPD (Angus Chemical) – 213
DIPENTENE (Hercules) - 55	NORPAR (Exxon Chemical) – 73
DMAMP-80 (Angus Chemical) - 214, 765	OXITOL (Shell Chemical) - 839
DOWANOL (Dow Chemical) - 405, 423, 501, 502,	OXSOL (Occidental Chemical) – 169–194
516, 519, 523, 528, 530, 533, 536, 548, 550,	PANASOL (Amoco Chemical) – 61
554–565, 568, 572, 573, 830, 831, 839	PEGASOL (Mobile Oil) - 79, 80
DREWPOL (Stepan) - 853	PENRECO (Penreco) – 81
DUOMEEN (Akzo Chemicals) - 711, 713	PERCHLOR (PPG Industries) – 130
DYNASOLVE (Dynaloy) - 65-67	PLURACOL (BASF Corp.) - 581
EASTMAN (Eastman) - 69-71, 457, 503, 650, 827-	PLURONIC (BASF Corp.) - 622
830, 839	POLYGLYME (Ferro/Grant) - 505
EKTASOLVE (Eastman) - 216, 503, 516, 523, 524,	POLY-SOLV (Olin Chemicals) - 512-514, 523,
634, 636	525, 527, 530, 533, 536, 537
EMERSOL (Henkel Corp.) - 673-675	PROPASOL (Union Carbide) - 96, 830, 839, 843-
EMERY (Henkel Corp.) - 443, 672-675, 850	845, 849
EMPOL (Henkel) - 697	PROPOMEEN (Akzo Chemicals) - 714
ETHODUOMEEN (Akzo) - 714	PUNCTILIOUS (Quantum Chemical) - 282
ETHOMEEN (Akzo) - 711, 713-715	QO (QO Chemicals) - 340, 346
EXXSOL (Exxon) - 73	REOFOS (FMC Corp.) - 881
FILMEX (Quantum Chemical) - 281, 328	REOMOL (FMC Corp.) - 883
FINA (Fina Oil and Chemical) - 131	RETARDSOL (Unocal) - 100
,	- · · - · · · · ·

SAF-T-SOL (Crowley Chemical) - 64 SANTICIZER (Monsanto Chemical) - 855, 867, 872, 875-882, 889 SCOTCH-GRIP (3M Adhesive Systems) - 93 SHELL SOL (Shell Chemical) - 88, 89 SOLVENOL (Hercules) - 55, 56 SOLVENT III (Vulcan Chemicals) - 137-141, 145 SPECIAL NAPHTHOLITE (Unocal) - 99 STAR (Procter & Gamble) - 443 SULFOLANE (Phillips Chemical) - 236 SUPEROL (Procter & Gamble) - 443 **SURFADONE (ISP) - 807-809** SYNASOL (Union Carbide) - 284, 285 TECSOL (Eastman Chemical) - 72, 327, 328 TERPINEOL (Hercules) - 352, 353 TETRONIC (BASF Corp.) - 622 TEXANOL (Eastman Chemical) - 70, 71, 325, 835 TEXTILE SPIRITS (Unocal) - 99

THFA (QO Chemicals) - 346, 348 TOLU-SOL (Shell Chemical) - 88, 89 TOTAL (Total Petroleum) - 93 TRIAMEEN (Akzo Chemicals) - 711, 713 TRIS AMINO (Angus Chemical) - 213, 214 TRIS NITRO (Angus Chemical) - 212, 213 UCAR (Union Carbide) - 96, 97, 462, 549, 653, 654, 844, 845 UNION CARBIDE (Union Carbide) - 652, 843 UNOCAL (Unocal) - 99, 100 VARSOL (Exxon Chemical) - 73 VERTREL (DuPont) - 160-168 VISTA (Vista Chemical) - 101, 102 WECOBEE (Stepan Co.) - 853 WITCO (Witco Corp.) - 75-77, 444 YARMOR (Hercules) - 350, 351 ZOLDINE ZT-55 (Angus Chemical) - 718