

Mérési jegyzőkönyy

T mérési jegyzőkönyv

Mérés helye: Miskolci SZC Kandó Kálmán

Informatikai Technikum

Mérés időpontja: 2024.10.09

Mérést végző személy(ek): Hódos Balázs, Kónya

Zsombor

Cél: A T ellenállás- hálózat jellemzőinek meghatározása a megadott ellenállásértékek alapján.

Aláírás:						
Évfolyam:	Csoport:	Helyszín:	Beadás	Osztályzat:		
13/E	GYAK3	V3 Labor	dátuma:			
			2024.10.09			

Eszközök:

Megnevezés	Típus		
Multiméter	UT61D	UNI-T	
Breadboard	SYB-46		
Jelgenerátor	GAG-810	GW	
Oszcilloszkóp	HMO1002	ROHDE&SCHWARZ	
Ellenállások	Ω	220, 1000	

Ábra:

Mérés menete:

- -T ellenállás- hálózat felépítése R1 és R2 értékekkel
- -Következő paraméterek megmérése a jelgenerátor és oszcilloszkóp segítségével:
 - Az áramkör bemeneti impedenciája
 - Az áramkör kimeneti impedenciája
 - Az áramkör átviteli aránya
 - A csillapítása

Használt képletek:

1. Átviteli arány (T) képlete

Az átviteli arány dB-ben kifejezve a bemeneti és kimeneti feszültségek arányából számítható:

$$T = 20 \cdot \log_{10} \left(rac{V_{out}}{V_{in}}
ight)$$

2. Csillapítás (A) képlete

A csillapítást szintén a bemeneti és kimeneti feszültségek arányából számíthatjuk:

$$A = 20 \cdot \log_{10} \left(rac{V_{in}}{V_{out}}
ight)$$

3. Bemeneti és kimeneti impedancia (Zin és Zout)

A T ellenállás-hálózat bemeneti és kimeneti impedanciáját a következő képletek alapján határozhatjuk meg:

Bemeneti impedancia:

$$Z_{in} = R1 + \left(\frac{R2 \cdot R3}{R2 + R3}\right)$$

(Itt R3 = R2, ha a kimeneti szakasz is R2-vel van zárva.)

Szimulációban lefuttatva:

Értékek:

Bemeneti impedencia: 8,1V

Kimeneti impedencia: 4,40V

Átviteli arány: -6dB

Csillapítás: 6dB

1. Bemeneti és Kimeneti impedancia szkópon

Számítások:

1. Ha R1 = 204Ω :

$$Z_{in} = 204 + rac{1000}{2} = 204 + 500 = 704\,\Omega$$

2. Ha R1 = 199 Ω :

$$Z_{in} = 199 + rac{1000}{2} = 199 + 500 = 699 \, \Omega$$

Átviteli arány (T):

$$T = 20 \cdot \log_{10} \left(rac{V_{out}}{V_{in}}
ight) = 20 \cdot \log_{10} \left(rac{0.5}{1}
ight) pprox -6\,dB$$

Csillapítás (A):

$$A = 20 \cdot \log_{10} \left(rac{V_{in}}{V_{out}}
ight) = 20 \cdot \log_{10} \left(rac{1}{0.5}
ight) = 6\,dB$$

Tapasztalatok:

Az elején talán a legfontosabb lépés az ellenállások pontos értékének meghatározása, ez az egész alapja. Utána a legközelebbi hozzárendelhető értékű ellenállás kiválasztása. Az oszcilloszkóp mérési tartományának beállítása problémát okozott, de sokadik próbálkozásra sikeres volt a beállítás. Ezután sikeresnek mondható lett a mérés.