Course Title: Computer Architecture Course no: CSC-201

Credit hours: 3 Full Marks: 80+20 Nature of course: Theory (3 Hrs.) Pass Marks: 32+8

Course Synopsis: This course gives the fundamental knowledge concern with the way the hardware components are connected together to form a computer system and how they interact to provide the processing needs of the user.

Goals:

- Introduces the fundamental concepts behind the design working and organization of a computer system.
- Instruction set architecture, memory hierarchies and interconnection.

Unit	Topics	Hrs.
1.	Data Representation	(5)
	 Data Representation Data Types- number systems, alphanumeric representation, complements (r's and r-1's) 	1.5
	 Fixed Point Representation Integer Representation Arithmetic addition, subtraction, overflows. Decimal fixed point representation 	1
	Floating Point Representation	1
	 Binary and Decimal Codes Gray, BCD, ASSCII ,Excess-3 	1
	 Error Detection code Parity bit, parity checker and parity generator 	0.5
2.	Micro operations	(5)
	 Arithmetic Micro operations Add micro operation, subtract micro operation Binary adder, binary subtractor, binary adder-subtractor, binary 	2
	incrementor Arithmetic circuit	
	 Logic Micro operations Logic microoperations Implementations and application 	1
	Shift Microoperations	

	Logical shift, circular shift, arithmetic shift.	1
	Combinational circuit shifter	
	Arithmetic Logic Shift Unit	1
3.	Fundamental of Computer Organization and Design	(7)
	 Computer Register Registers for the basic computer and common bus system 	1
	 Computer Instructions Instruction format, basic instructions, instruction set completeness, types of instructions (memory reference, register reference, i/o) 	1.5
	 Instruction Cycle Phases of instruction cycle Fetch & decodes Flowchart for instruction cycle 	1
	 Input and Output and Interrupt i/o configuration, Input-output instruction Types of interrupt, Program Interrupt, interrupt cycle 	1.5
	 Basic computer Design and Accumulator Logic Basic Hardware components Flowchart for computer operations Control logic gates Control of registers and memory Control of common bus Control of Flip flop Design of accumulator logic (control of AC register, Adder and logic circuit) 	2
4.	Control Unit	(5)
	 Control Memory Control word, control memory, stored program organization 	1
	 Hardwired control Introduction, Timing and Control, Control unit of basic computer, timing signal 	1
	 Microprogrammed Control Microprogram control organization Address Sequencing Introduction, conditional branching, Mapping of instruction, subroutines 	3

_	,	
	 Microprograms Microinstruction and microoperation format, Symbolic Microinstructions, Symbolic microprogram, Binary microprogram Design of Control Unit F Field decoding, Microprogram sequencer 	
5.	Central Processing Unit	(6)
	 Register Organization Bus System and CPU, Control word, ALU and Microoperation for CPU 	0.5
	 Register Stack and memory Stack LIFO and Stack Pointer, Register Stack, Memory Stack 	1
	 One address and two address instruction Instruction Format, One address instruction, two address instruction, three address instruction and zero address instruction 	1.5
	 Addressing Modes Introduction, Implied Mode, Immediate Mode, Register Mode, Register Indirect Mode, autoincrement/autodecrement Mode, Direct Address Mode, Indirect Address Mode, Relative Address Mode, Indexed Addressing ModeBase Register Addressing Mode 	1
	 Data transfer and Manipulation Basic Operations Data Transfer Instructions Data Manipulation Instructions Types, Arithmetic Instructions, Logical and Bit Manipulation Instruction, Shift Instruction 	1
	 Introduction to RISC and CISC Introduction to RISC and CISC, Characteristics of RISC and CISC, Overlapped Register Window 	1
6.	Fixed point Computer Arithmetic	(5)
	 Addition and Subtraction Introduction, Addition and subtraction with signed magnitude, Hardware Implementation, Hardware Algorithm Addition and subtraction with signed 2's complement 	1.5
	 Multiplication Introduction, Hardware Implementation and Algorithm, Booth 	2

	Algorithm, Array Multiplier	
	 Division Algorithm Introduction, Hardware Implementation, Overflow, Hardware Algorithm, Restoring method, Comparision and nonrestoring Method. 	1.5
7.	Input and Output Organization	(6)
	 Introduction to Peripheral Devices ➤ I/O subsystem and peripherals 	0.5
	 I/O interface Interface, I/O bus and interface module, Types of I/O Commands I/O and Memory bus, Isolated I/o, Memory Mapped I/O, I/O interface Unit 	1.5
	 Direct Memory Access (DMA) Types of I/O, DMA, DMA Transfer 	1.5
	 I/O Processor I/O Processing, CPU-IOP Communication 	1.0
	 Data communication processor Serial and parallel Communication, data communication processor, Modes of data transfer, Protocol 	1.5
8.	Memory Organization	(6)
	 Hierarchy of Memory System Types of Memory, Sequential, Random, Memory Hierarchy 	1
	 Primary and Secondary Memory Primary memory-RAM, ROM, Bootstrap Loader, RAM and ROM Chips, Memory Address Map, Memory-CPU connection Auxiliary Memory-Types, Magnetic (Tape, Disk), Optical, Semiconductor 	1.5
	 Virtual Memory Introduction, Address space, Memory space, Address Mapping using Pages, Associative Page Table , Page Replacement 	2.5
	 Memory Management hardware Introduction, Segmented Page Mapping, Memory Protection 	1

Text Books: M. Morris Mano, **Computer System Architecture**

References:

M. Morris Mano "Digital Design", Pearson Education, Third Edition

M. Morris Mano "Logic and Computer Design Fundamentals, Pearson Education, 2nd Edition Updated.

Members:

Name Address	Signature
--------------	-----------

Dr. Subarna Shakya ----- Expert/Coordinator

Hari Khadka ------ Patan Campus
Bhoj Raj Ghimire ------ Amrit Science Campus A.

N. Mishra ----- St. Xavier College Pratima Karki ----- Kathford College

BCSIT—Third Semester Course Title: Computer Architecture Course no: CSC-201

Full Marks: 80 Pass Marks: 32

Long Answer Questions

Attempt any two questions. 2 x 10=20		
1.	What do you understand by interrupt? Draw and explain the flow chart for interrupt cycle. 2+8	
2.	State and explain the different types of data manipulation instructions used in a typical computer.	
3.	Why do computers need input-output interface? Explain the sequence of operations carried out during CPU-IOP Communication with the help of suitable flow chart. 3+7	
	Short Answer Questions	
Attem	apt any ten questions. $12 \times 5 = 60$	
1.	Derive the circuit for a 3-bit parity generator and a 4-bit parity checker using even parity bit. 6	
2.	Explain the shift micro-operation in brief.	
3.	Explain the difference between hardwired and micro-programmed control units. Is it possible to have a hardwired control with a hardwired control associated with a control memory? $4+2$	
4.	Show using the concept of addition/subtraction algorithm that adding B after the operation $A+B'+1$ restores the original value of A. What should be done with the end carry? $5+1$	
5.	Describe the memory mapping table in a paged system. 6	
6.	Starting from an initial value of $R = 11011101$, determine the sequence of binary values in R after a logical shift left, followed by a circular shift, followed by a logical shift-right and a circular shift left. $1.5 + 1.5 + 1.5 + 1.5$	
7.	In your opinion, what different hardware components are required to design a basic computer? 6	
8.	What are the microinstructions needed for fetch routine? Write a symbolic microprogram for the fetch routine. $3+3$	
9.	Differentiate between RISC and CISC computers. 6	
10.	What do you understand by the memory hierarchy in a computer system?	
11.	Why does DMA have priority over CPU when both request a memory transfer? 6	
12.	Write short notes on the following: 3+3	
	a. Alphanumeric representation b. Divide overflow	