

Department of Computer Science CSCI 2824: Discrete Structures Chris Ketelsen

> Relations Properties of Relations

Reflexive Relations

Def: A relation is *reflexive* iff $(a, a) \in R$ for all $a \in A$

Graph Analogy: All nodes in the graph have self-loops

Example: R_2 is reflexive because each vertex has a self-loop

Reflexive Relations

Def: A relation is *reflexive* iff $(a, a) \in R$ for all $a \in A$

Graph Analogy: All nodes in the graph have self-loops

Example: R_1 is not reflexive. Vertices b, d, e don't have self-loops

Reflexive Relations

Def: A relation is *reflexive* iff $(a, a) \in R$ for all $a \in A$

Example: The Facebooks friends relation is / is NOT reflexive

Example: The Twitter *follower of* relation is / is **NOT** reflexive

Example: The at least as tall as relation is / is NOT reflexive

Symmetric Relations

Def: A relation is *symmetric* iff for all $(a, b) \in R$ also $(b, a) \in R$

Graph Analogy: If there is an edge from a to b then there is also an edge from b to a

Example: R_1 is not symmetro. Note $(d, c) \in R_1$ but not $(c, d) \in R_1$

Symmetric Relations

Def: A relation is *symmetric* iff for all $(a, b) \in R$ also $(b, a) \in R$

Graph Analogy: If there is an edge from a to b then there is also an edge from b to a

Example: R_2 is symmetrc.

Symmetric Relations

Def: A relation is *symmetric* iff for all $(a,b) \in R$ also $(b,a) \in R$

Example: The Facebooks friends relation is / is NOT symmetric

Example: The Twitter follower of relation is / is NOT symmetric

Example: The at least as tall as relation is / is NOT symmetric

Anti-Symmetric Relations

Def: A relation is *anti-symmetric* iff whenever $(a, b) \in R$ **AND** $(b, a) \in R$ **THEN** a = b.

Graph Analogy: If there is an edge from *distinct* a to b then there is **NOT** an edge from b to a

Example: R_1 is anti-symmetrc.

Anti-Symmetric Relations

Def: A relation is *anti-symmetric* iff whenever $(a, b) \in R$ **AND** $(b, a) \in R$ **THEN** a = b.

Graph Analogy: If there is an edge from *distinct* a to b then there is **NOT** an edge from b to a

Example: The following relation is **NOT** anti-symmetrc.

Transitive Relations

Def: A relation is *transitive* iff for all a, b, c, **IF** $(a, b) \in R$ **AND** $(b, c) \in R$ **THEN** $(a, c) \in R$

Graph Analogy: If there is an edge from a to b and an edge from b to c then there is also an edge from a to c

Example: R_1 is transitive.

Transitive Relations

Def: A relation is *transitive* iff for all a, b, c, **IF** $(a, b) \in R$ **AND** $(b, c) \in R$ **THEN** $(a, c) \in R$

Graph Analogy: If there is an edge from a to b and an edge from b to c then there is also an edge from a to c

Example: R_2 is **not** transitive. Note: $1 \rightarrow 2$ and $2 \rightarrow 3$, but $1 \not\rightarrow 3$

Transitive Relations

Def: A relation is *transitive* iff for all a, b, c, **IF** $(a, b) \in R$ **AND** $(b, c) \in R$ **THEN** $(a, c) \in R$

Example: The Facebooks friends relation is / is NOT transitive

Example: The Twitter follower of relation is / is NOT transitive

Example: The at least as tall as relation is / is NOT transitive