Programming Techniques for Scientific Simulations I

Autumn Semester 2022

About the course

- RW (CSE) students
 - Mandatory lecture in the 3rd semester in the bachelor curriculum
- Physics students
 - Recommended course as preparation for Computational Physics Courses
- Other students
 - Useful

Lecture homepage/repository

- https://gitlab.ethz.ch/pt1_hs22/lecture
- Updated regularly with lecture contents
 - News about the course
 - Lecture slides
 - Lecture examples
 - Exercises
 - Recordings
- Important information concerning
 - Exam
 - Testat

- Laptops & Smartphones (iOS, Android)
 - https://eduapp-app1.ethz.ch/

- 1)How are your C++ programming skills?
 - A)I have never programmed at all
 - B)I have never programmed in C nor C++
 - C)I know some basic C
 - D)I know some basic C++
 - E)I know C++ well
 - F)I am a C++ guru

- 2) What operating system are you using (for programming)?
 - A)I have no idea
 - B)Windows
 - C)Linux
 - D)macOS (my computer looks pretty and has some bitten apple on it)
 - E)Other

- 3) What compiler do you use?
 - A)None, I don't know what it is
 - B)Whatever the compile button in my IDE uses
 - C)GNU Compiler Collection
 - D)Clang
 - E)MinGW
 - F)My own

- 4)Do you know build systems?
 - A)I have never heard about it
 - B)I have used Automake
 - C)I have used Lego
 - D)I have used CMake
 - E)I have used Scons

- 5)Do you know version control?
 - A) I have never heard about it
 - B)I have used CVS
 - C)I have used SVN
 - D)I have used GIT
 - E)I have used Copy&Paste
 - F)I use a/my naming convention p_v0.1, p_v1.2_after_subst, ...

6) What is the size of the string "Hello", i.e. the result of

```
sizeof("Hello")
```

- A)1
- B)5
- **C**)6
- D)7
- E)8

7) What will the following code print:

```
int a = 0;

std::cout << a++;

std::cout << ++a;

std::cout << a;

std::cout << "\n";

C)112

D)122

E)123
```

- 8) What is the machine precision ε ?
 - A)The smallest floating point number that can be represented
 - B)The smallest positive floating point number
 - C) The largest number such that $1.0 + \varepsilon = 1.0$
 - D)The smallest number such that $1.0 + \epsilon \neq 1.0$
 - E) The largest number such that $0.0 + \varepsilon = 0.0$
 - F) The smallest number such that $0.0 + \epsilon \neq 0.0$

- 9)Does any of the loops not always print all positive numbers up to n?
 - A)All loops are wrong
 - B)The first loop is wrong
 - C)The second loop is wrong
 - D)The third loop is wrong
 - E)The fourth loop is wrong
 - F)All loops are correct

```
std::cout << "Enter a number: ":
unsigned int n;
std::cin >> n;
for (int i=1; i<=n; ++i)
  std::cout << i << "\n";
int i=0;
while (i<n)
  std::cout << ++i << "\n":
i=1;
  std::cout << i++ << "\n";
while (i<=n);
i=1;
while (true) {
  if(i>n) break;
  std::cout << i++ << "\n";
```

10) Five examples for swapping a number. What will happen if we compile it?

```
void swap1 (int a, int b) { int t=a; a=b; b=t; }
void swap2 (int& a, int& b) { int t=a; a=b; b=t; }
void swap3 (const int& a, const int& b) { int t=a; a=b; b=t; }
void swap4 (int *a, int *b) { int *t=a; a=b; b=t; }
void swap5 (int* a, int* b) { int t=*a; *a=*b; *b=t; }
```

- A)All will compile
- B)swap1 will not compile
- C)swap2 will not compile
- D)swap3 will not compile
- E)swap4 will not compile
- F)swap5 will not compile

Contents of the lecture

- Important skills for (scientific) software development
 - Version control
 - Build systems
 - Debugging / Testing
 - Profiling and optimization
- Advanced C++ programming
 - Generic programming and templates
 - Object oriented programming
 - Runtime and compile time polymorphism
- Libraries
 - High performance libraries: BLAS, LAPACK
 - C++ libraries: Standard library, Boost, Eigen
- Some Python

Course organization

Lecture

- Thursday 13:45 15:30
- Hybrid: HCI J 3 & live stream (over Zoom)
- Webpage: https://gitlab.ethz.ch/pt1_hs22/lecture

Break

30 minutes for ETHZ safety concept hygiene measures and room ventilation regulations

Exercises

- Thursday 15:45 17:30
 - Old exercise debriefing & New exercise briefing (~ max. 45 min)
 - Rest study center like: questions (individual or group) & work on new exercises
- Hybrid: HCI J 3 & live stream (over Zoom)
- Team: Pascal Engeler, Christoph Grötzbach, Kalman Szenes, RK, Ignacio Labarca Figueroa, Michal Sudwoj

Questions

pt1@sympa.ethz.ch and slack channel (see link on webpage)

Course organization

- Questions in lecture/exercises (de)briefing :
 - Just ask, please!
 - Online: by unmuting your microphone or in the "chat"

- Questions in the "study center"
 - To a specific team member: join his "breakout room", tell your name and scope of the question (... there may be a waiting list...)
 - General question: choose the least crowded "breakout room" :-)

Preparing for the course

- Software to install on your computer
 - All operating systems:
 - C++ compiler, e.g. gcc, clang, ...gitToday

 - Make and Cmake
 BLAS, LAPACK, ...
 Python 3 (including numpy, matplotlib, ...)

- Linux (e.g. Ubuntu/Debian):
 - E.g.: sudo apt-get install build-essential cmake
- Windows 10/11:
 - Windows Subsystem for Linux (WSL): https://docs.microsoft.com/en-us/windows/wsl/install
 - We recommend the Ubuntu distribution
 - E.g.: sudo apt-get install build-essential cmake
- macOS:
 - Xcode with command line tools
 - E.g.: xcode-select --install
- We will help you in the exercise classes