

直流单臂电桥 实验报告单

学 号: 2012604

姓 名: 苏可铮

年 级: 2020 级

学 院: 数学科学学院

完成日期: 2021 年 6 月 6 日

目录

实验目的	1
实验器材	
实验原理	
实验内容	6
数据记录与处理	7
思考题	10

实验报告 直流单臂电桥

实验目的

- 学习使用比较法(直流单臂电桥法)测定中电阻;
- 了解电桥灵敏度;
- 理解并掌握提高电桥测量精度;
- 掌握电桥不确定度分析的方法;

实验报告 直流单臂电桥

实验器材

- JK01 型高精度直流稳压电源
- FB3081 型直流数显显微电流计
- QJ21 型直流单臂电桥实验装置

实验原理

- 直流单臂电桥测量电阻
 - i 电桥平衡时,有:

$$R_a I_a = R_b I_b \qquad I_a = I_b$$

$$R_x I_x = R_0 I_0 \qquad I_b = I_0$$

ii 整理上式得:

$$R_x = \frac{R_a}{R_b} R_0$$

图 1: 直流单臂电桥测量电阻电路图

通常令 $C = \frac{R_a}{R_b}$,可由电桥平衡时,由已知的 R_a, R_b, R_0 值,便可以算出 R_x 。把 R_a, R_b 称为比例臂,C 为比例臂的倍率, R_0 称为比较臂, R_x 称为待测臂。单臂电桥测量电阻避免了电源电压波动的影响,因此误差更小,精度更高,测量更可靠。

- 倍率 C 的选取与测量精度
 - i 电桥由非平衡到平衡过程中,需要调节比较臂 R_0 的阻值。显然 R_0 调节位数越多,对电桥的平衡调节越精细,由此给测量的误差越小。为此要选取恰当的比率 C,使 R_0 调节有效位数尽量多。
 - ii 本实验中是一个四纽电阻,调节范围为 $1-9999\Omega$,最小调节为 1Ω ,待测电阻 R_x 为 1200Ω 左右。由此可知只有选取 C=1 时, R_0 的四个旋钮才都能用上,使电桥的平衡精细到四位有效数字。
- 电桥灵敏度与测量精度
 - i 实验中电桥平衡是通过检流计示数变化进行判断的。对此我们引入电桥灵敏度概念, 定义为:

 $S = \frac{\Delta I}{\frac{\Delta R_x}{R_x}} \quad Or \quad S = \frac{\Delta I}{\frac{\Delta R_0}{R_0}}$

其中 R_0 是电桥平衡时比较臂的阻值; ΔR_0 是在电桥平衡后 R_0 的微小改变量; ΔI 是电桥偏离平衡而引起的检流计示数的变化值。

- ii 本实验中检流计单位是 nA, ΔR_0 可选 1Ω 或者 2Ω , S 保留到 2 到 3 位有效 位数。
- iii 根据基尔霍夫定律可以得到电桥灵敏度为:

$$S = \frac{E}{K[(R_a + R_b + R_0 + R_x) + (2 + \frac{R_b}{R_0} + \frac{R_x}{R_a})R_g]}$$

- 换臂法 (C = 1)
 - i 当比率 C=1 时,可以采用换臂的方法消除比率对测量结果的影响。

交换前:

$$R_x = \frac{R_a}{R_b} R_0$$

交换后:

$$R_x' = \frac{R_a}{R_b} R_0'$$

则:

$$R_x = \sqrt{R_0 \times R_0'} \approx \frac{R_0 + R_0'}{2}$$

- 测量不确定度分析
 - i 测量完毕,计算 R_x 的不确定度时,要考虑桥臂误差 ρ_c 和 ρ_0 外,还应考虑到对电桥平衡的误差判断。

则 R_x 的总相对不确定度为:

$$\rho_x = \sqrt{\rho_c^2 + \rho_0^2 + (\frac{\delta}{S})^2} \quad (\delta = 0.1nA)$$

相应的,换臂后 R_x 的总相对不确定度为:

$$\rho_x = \sqrt{\rho_0^2 + (\frac{\delta}{S})^2}$$

最后可以得到:

$$R_x' = R_x \pm \Delta R_x \quad (\Delta R_x = \rho_x \times R_x)$$

实验内容

- 换臂法测 Rx 阻值
 - I 测量未知电阻 R_{x1} 的阻值和电桥灵敏度,并采用换臂测量法。

II
$$R_a = R_b = 100\Omega R_{x1} \approx 1200\Omega$$

- 探究电压与电桥灵敏度关系
 - I 测量电桥灵敏度与电源电压的关系,并作图。

II
$$R_a = R_b = 100\Omega R_{x1} \approx 1200\Omega E = 0.5 - 3.5V$$

- 测量 R_x 阻值
 - I 测量未知电阻 R_{x2} 的阻值和电桥灵敏度。
 - II $R_{x1} \approx 50\Omega$

数据记录与处理

换臂法测量未知电阻 R_{x1} 的阻值和电桥灵敏度

选取 $R_a = 100\Omega$, $R_b = 100\Omega$, 比例臂的倍率 C = 1。

表 1: 换臂法测量未知电阻 R_{x1}

电桥状态	R_0	R_x	ΔR_0	ΔI	S_1
换臂前	1192Ω	1192Ω	1Ω	5.7nA	6.79×10^{-6}
换臂后	1191Ω	1191Ω	1Ω	5.9nA	7.03×10^{-6}

利用换臂前数据计算 R_{x1} :

$$R_{x1} = (1192 \pm 1.03)\Omega$$

计算不确定度:

$$\Delta R_{x1} = \rho_{x1} R_{x1} = \sqrt{\rho_0^2 + \rho_c^2 + (\frac{\delta}{S_{x1}})^2} R_{x1} = \sqrt{\rho_0^2 + \rho_a^2 + \rho_b^2 + (\frac{\delta}{S_{x1}})^2} R_{x1} = 1.03$$

利用换臂前后两次数据计算 R_{x1} :

$$R_{x1} = (1191 \pm 0.60)\Omega$$

计算不确定度:

$$\Delta R_{x2} = \rho_{x2} R_{x2} = \sqrt{\rho_0^2 + (\frac{\delta}{S_{x1}})^2} R_{x1} = \sqrt{\rho_0^2 + (\frac{\delta}{S_{x1}})^2} R_{x1} = 0.60$$

探究电压与电桥灵敏度关系

选取 $R_a=100\Omega$, $R_b=100\Omega$, $R_x=R_{x1}=1200\Omega$, 改变电源电压 E,测量不同电压下电桥的灵敏度并作 S-E 关系图。

实验报告 直流单臂电桥

耒	2:	探究电压与电桥灵敏度关系
1	∠.	

电压 E	0.5V	1.0V	1.5V	2.0V	2.5V	3.0V	3.5V
ΔR_0	1Ω						
ΔI	2.8nA	5.7nA	8.8nA	11.6nA	14.5nA	17.9nA	18.8nA
$ \overline{S 3.36 \times 10^{-6} 6.84 \times 10^{-6} 1.056 \times 10^{-5} 1.392 \times 10^{-5} 1.74 \times 10^{-5} 2.148 \times 10^{-5} 2.256 \times 10^{-5} } $							

图 2: S-E 关系图

换臂法测量未知电阻 Rx2 的阻值和电桥灵敏度

选取 $R_a = 10\Omega$, $R_b = 1000\Omega$, 比例臂的倍率 C = 0.01。

表 3: 换臂法测量未知电阻 R_{x2}

电桥状态	R_0	R_x	ΔR_0	ΔI	S_2
数据记录	5046Ω	50.46Ω	1Ω	2.1nA	1.06×10^{-5}

计算不确定度:

$$\Delta R_{x2} = \rho_{x2} R_{x2} = \sqrt{\rho_0^2 + \rho_c^2 + (\frac{\delta}{S_{x2}})^2} R_{x2} = \sqrt{\rho_0^2 + \rho_a^2 + \rho_b^2 + (\frac{\delta}{S_{x2}})^2} R_{x2} = 0.06$$

利用换臂前数据计算 R_{x2}:

$$R_{x2} = (50.46 \pm 0.06)\Omega$$

思考题

- 1. 在用电桥测量电阻时恰当选取倍率 C 的目的何在?
- 解 1. 电桥由非平衡到平衡过程中,需要调节比较臂 R_0 的阻值。显然 R_0 调节位数越 8 ,对电桥的平衡调节越精细,由此给测量的误差越小。为此要选取恰当的比率 R_0 调节有效位数尽量 8 。
- 2. 电源电压不太稳定是否影响测量的准确度? 电源电压太低为什么影响测量准确度?
- 解 2. 会导致检流计示数不稳定, 从而导致电阻调节有偏差。

电压太低导致电流过小,当小到小于检流计最小检测限度,导致电路是否平衡无法判断,导致电阻调节出现偏差。