

22AIE204 COMPUTER NETWORKS

NETWORK LAYER

Subnetting

Objectives – Network Segmentation

- Understand and Analyze collision domain and Broadcast domain
- Problems with larger broadcast domain
- Reasons for segmenting networks to subnets
- Subnets classified based on
 - Location
 - Group based on function
 - Device Type

Collision Domain

- Network segment or domain affected by collision.
- Collision occurs during simultaneous transmission in shared medium.
- Switch reduces the size of collision domain.
- It is different from broadcast domain.

Reference: CCNA Introduction to Networks

Broadcast Domain

- Broadcasts are only propagated within that specific broadcast domain.
- Switches propagate broadcasts out all interfaces except the interface on which it was received.
- The only device that stops broadcasts is a router.
- Each router interface connects to a broadcast domain.

 Many protocols use broadcasts or multicasts (Ex: ARP, DHCP)

Collision and Broadcast domain Activity

Problems with Large Broadcast Domain

- Hosts can generate excessive broadcasts slows the device and network operations
- Solution to reduce the size of the network to create smaller broadcast domains in a process called subnetting.
- Dividing the network address 172.16.0.0 /16 into two subnets of 200 users each.
- Broadcasts are only propagated within the smaller broadcast domains.

Reasons for Segmenting Networks

- Subnetting reduces overall network traffic and improves network performance.
- It can be used to implement security policies between subnets.
- Subnetting reduces the number of devices affected by abnormal and excessive broadcast traffic.
- Subnets are used for a variety of reasons including:

Re-cap – Network Segmentation

- Collision domain separated by Switch
- Broadcast domain separated by Router
- Segmenting networks to subnets to avoid larger broadcast domain
- Subnets classified based on
 - Location
 - Group based on function
 - Device Type
- Next, discuss on Subnetting in IPv4 addresses

Subnet an IPv4 Network

Reference: CCNA ITN Chapter 11.5 Subnet an IPv4

network

Subnetting in Networking-

 Process of dividing a single network into multiple sub networks is called subnetting. Sub networks so created are called subnets

Subnet ID-

 Each subnet has its unique network address known as its Subnet ID.

Big Single Network

Division of network into 4 subnets

- The subnet ID is created by borrowing some bits from the Host ID part of the IP Address.
- The number of bits borrowed depends on the number of subnets created.

1. Fixed Length Subnetting-

Fixed length subnetting also called as **classful subnetting** divides the network into subnets where-

- •All the subnets are of same size.
- •All the subnets have equal number of hosts.
- •All the subnets have same subnet mask.

2. Variable Length Subnetting-

Variable length subnetting also called as classless subnetting divides the network into subnets where-

- •All the subnets are not of same size.
- •All the subnets do not have equal number of hosts.
- •All the subnets do not have same subnet mask.

Fixed length Subnetting: Subnet on an Octet Boundary

- Networks are most easily subnetted at the octet boundary of /8, /16, and /24.
- Notice that using longer prefix lengths decreases the number of hosts per subnet.

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of hosts
/8	255 .0.0.0	nnnnnnn .hhhhhhhh.hhhhhhhhhhhhhhhhhhhhh	16,777,214
/16	255.255 .0.0	nnnnnnn.nnnnnnnn.hhhhhhhhhhhhhhhhhhhhh	65,534
/24	255.255.255 .0	nnnnnnn.nnnnnnnnnnnnnnnnnnnnhhhhhhhh 1111111.1111111111	254
/n			2 ^{#h} - 2

Subnetting on 10.x.o.o/16

Subnet Address (256 Possible Subnets)	Host Range (65,534 possible hosts per subnet)	Broadcast
10.0 .0.0 /16	10.0 .0.1 - 10.0 .255.254	10.0 .255.255
10.1. 0.0 /16	10.1 .0.1 - 10.1 .255.254	10.1 .255.255
10.2 .0.0 /16	10.2 .0.1 - 10.2 .255.254	10.2 .255.255
10.3 .0.0 /16	10.3 .0.1 - 10.3 .255.254	10.3 .255.255
10.4 .0.0 /16	10.4 .0.1 - 10.4 .255.254	10.4 .255.255
10.5 .0.0 /16	10.5 .0.1 - 10.5 .255.254	10.5 .255.255
10.6 .0.0 /16	10.6 .0.1 - 10.6 .255.254	10.6 .255.255
10.7 .0.0 /16	10.7 .0.1 - 10.7 .255.254	10.7 .255.255
10.255 .0.0 /16	10.255 .0.1 - 10.255 .255.254	10.255 .255.255

Classless subnetting

• /25 – Borrowing 1 bit from the fourth octet creates 2 subnets supporting 126 hosts each.

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of subnets	# of hosts
/25	255.255.255.128	nnnnnnn.nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn	2	126
/26	255.255.255.192	nnnnnnn.nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn	4	62
/27	255.255.255.224	nnnnnnn.nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn	8	30
/28	255.255.255.240	nnnnnnn.nnnnnnnnnnnnnnnnnnnnnnnnhhhh 11111111.1111111111	16	14
/29	255.255.255.248	nnnnnnn.nnnnnnnnnnnnnnnnnnnnnnhhh 1111111.11111111.11111111. 11111 000	32	6
/30	255.255.252	nnnnnnn.nnnnnnnnnnnnnnnnnnnnnnnhh 11111111.1111111111	64	2

Classless Subnetting Example

192.168.1.0/25 Network

Dotted Decimal Addresses

	Borrow 1 bit from the host portion of the address. Borrow 1 bit from the host portion of the address.						S.						
			-	>							→		
Original	192.	168.	1.	0 000	0000	1 Network	Original	192.	168.	1.	0 000	0000	1 Network
Mask	255.	255.	255.	0 000	0000	TNetwork	Mask	255.	255.	255.	0 000	0000	Trocoron
	The borrowe	ed bit value	is 0 for	the Net O	address			400	1.50		0.405		
	THE BOHOW	od bit value	, 13 0 101	01014010	dddioss			192.	168.	1.	0/25		
Net 0	192.	168.	1.	0 000	0000		Net 0	192.	168.	1.	0 000	0000	
	The bo	rrowed bit		1 for the I	Net 1	2 Subnets		100	1.60		120/25		2 Subnets
		ac	ddress.			2 Subilets		192.	168.	1. 1	128/25		1
Net 1	192.	168.	1.	1 000	0000		Net 1	192.	168.	1.	1 000	0000	
								٥٠٠	0.5.5	٥٠٠	100		
	The new s	ubnets hav	e the SA	ME subn	et mask.			255.	255.	255.	128		
Mask	255.	255.	255.	1 000	0000		Mask	255.	255.	255.	1 000	0000	

Creating 2 Subnets

/25 Subnetting Topology

Address Range for 192.168.1.0/25 Subnet

Address Range for 192.168.1.128/25 Subnet

Subnetting Formulas

To calculate the number of subnets.

n= bits borrowed

• To calculate the number of hosts 2^n-2

Activity – Subnet Mask and prefix

Summary – Subnet an IPv4 Network

- Subnet on Octet Boundary
- Subnetting on 10.x.0.0/16
 - 256 subnets possible
 - $2^16 2$ hosts/subnet
- Classless subnetting
 - 192.168.1.0/24 address space
- Creating 2 subnets
 - 192.168.1.0/25, 192.168.1.128/25
- Subnetting formulas

Objectives – Subnet an IPv4 Network

- To work out a subnetting problem for a scenario
- Identify the subnets needed based on the requirement of hosts
- Identify the IP addresses for the devices in each subnet
- Configure the Router interfaces and Switch
- Test the connectivity

Classless subnetting Example Problem

- Given IPv4 address space for subnetting 192.168.0.0/24
- 50 hosts are required in LAN-A network and 40 hosts are required in LAN-B network and 2 more subnets needs to be reserved
- 50 and 40 hosts can be accommodated by 6 bits for 64 hosts
- 2 bits can be borrowed for having 4 subnets. Magic number = 64

Classless subnetting Example Problem

- Given IPv4 address space for subnetting 192.168.0.0/24
- 2 subnet bits needed for accommodating 4 subnets and each subnet with 64-2=62 hosts
- Magic number = 64. LAN-A starts with 0, S2 starts with 64*1, S3 starts with 64*2 = 128, S4 starts with 64*3=192

Subnet #	#hosts	Network Address	Broadcast Address	First Usable host address	Last Usable host address
LAN-A	50	192.168.0. <mark>0</mark> /26	192.168.0.63/26	192.168.0.1/26	192.168.0.62/26
LAN-B	40	192.168.0.64/26	192.168.0.127/26	192.168.0.65/26	192.168.0.126/26
S3-Unused	-	192.168.0. <mark>128</mark> /26	192.168.0.191/26	192.168.0.129/26	192.168.0.190/26
S4-Unused	-	192.168.0. <mark>192</mark> /26	192.168.0.255/26	192.168.0.193/26	192.168.0.254/26

Activity - Packet Tracer

Summary – Subnet an IPv4 Network

- Subnet example of borrowing 2 bits from 192.168.0.0/24
- 4 subnets of having 6 bits in the host can meet 50 or 40 host requirement
- Followed Equal division Equal Length subnetting to 4 subnets having 64-2=62 hosts/network
- Configured in the Packet Tracer with suitable IP addresses in this example

Subnet to meet Requirements

Reference: CCNA ITN 11.7 Subnet to meet

requirements

Objectives – Subnet to Meet Requirements

- Subnet Private Vs Public IPv4 Address space
- Minimize Unused Host Address & Maximize subnets
- Example: Efficient IPv4 Subnetting
- Activity to determine the number of bits to borrow

Subnet Private Vs Public IPv4 Address space

Enterprise networks will have an:

- Intranet A company's internal network typically using private IPv4 addresses.
 - A company could use the 10.0.0.0/8 and subnet on the /16 or /24 network boundary.
- DMZ A companies internet facing servers. Devices in the DMZ use public IPv4 addresses
 - The DMZ devices would have to be configured with public IP addresses.
 - DMZ stands for demilitarized zone

Minimize Unused Host address & Maximize subnets

There are two considerations when planning subnets:

- The number of host addresses required for each network
- The number of individual subnets needed

Prefix Length	Subnet Mask	Subnet Mask in Binary (n = network, h = host)	# of subnets	# of hosts
/25	255.255.255.128	nnnnnnn.nnnnnnnnnnn. n hhhhhhh 11111111.111111111111111. 1 0000000	2	126
/26	255.255.255.192	nnnnnnn.nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn	4	62
/27	255.255.255.224	nnnnnnn.nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn	8	30
/28	255.255.255.240	nnnnnnn.nnnnnnnnnnnnnnnnnnnnnnnnhhhh 11111111.1111111111	16	14
/29	255.255.255.248	nnnnnnn.nnnnnnnnnnnnnnnnnnnnnnhhh 11111111.1111111111	32	6
/30	255.255.255.252	nnnnnnn.nnnnnnnnnnnnnnnnnnnnnnhh 11111111.1111111111	64	2

Example: Efficient IPv4 Subnetting

- In this example, corporate headquarters has been allocated a network address of 172.16.0.0/22 (10 host bits) by its ISP providing 1,022 host addresses.
- There are five sites and therefore five internet connections which means the organization requires 10 subnets with the largest subnet requires 40 addresses.
- It allocated 10 subnets with a /26 (i.e., 255.255.255.192) subnet mask.

Activity – Determine the number of bits to borrow

Summary – Subnet to Meet Requirements

- Private addresses for Intranet & Public addresses for servers in DMZ demands subnets
- Minimize Wastage of IPv4 addresses
- Example for Equal Length Subnet Mask for 10 subnets all having 62 hosts/subnet
- Activity to determine the number of bits to borrow
- Next, we will explore Variable Length Subnet Mask(VLSM)

Variable Length subnet Mask (VLSM)

Reference: 11.8.1 Video - VLSM basics, 11.8.2 Video - VLSM example

Variable Length Subnet Mask (VLSM)

Reference: CCNA Chapter 11.6 Subnetting to meet requirements, 11.7 VLSM

Objectives – Variable Length Subnet Mask

- IPv4 Address Conservation
 - Problems with traditional subnetting causing wastage of IPv4 addresses
- Variable Length Subnet Mask (VLSM) Vs Traditional subnetting
- Activity Variable Length Subnet Mask

IPv4 Address Conservation

- Given the topology, 7 subnets are required (i.e, four LANs and three WAN links) and the largest number of host is in Building D with 28 hosts.
- A /27 mask would provide 8 subnets of 30 host IP addresses and therefore support this topology.

IPv4 Address Conservation

- Point-to-point WAN links only require two addresses and therefore waste 28 addresses each for a total of 84 unused addresses.
- Applying a traditional subnetting scheme here is not very efficient.
- VLSM was developed to avoid wasting addresses by enabling us to subnet a subnet.

Reference: CCNA ITN Ch11 IPv4 Addressing

VLSM

- Traditional subnetting scheme do not cater to reduce the unused addresses
- When using VLSM, always begin by satisfying the host requirements of the largest subnet and continue subnetting until the host requirements of the smallest subnet are satisfied.
- The resulting topology with VLSM applied

Reference: CCNA ITN Ch11 IPv4 Addressing

Activity – VLSM

Summary – VLSM

- IPv4 Address Conservation
 - Example problem where 84 unused addresses due to inefficient subnetting
- Variable Length Subnet Mask (VLSM) Vs Traditional Equal Length subnet Mask
- Activity Variable Length Subnet Mask
- Next, we shall explore Structured Design

Structured Design

Reference: CCNA ITN Chapter 11.8 Structured design

Objectives – Structured Design

- IPv4 Network Address Planning
- Device Address Assignment
- Packet Tracer Activity
 - VLSM design based on requirement
 - Implementation by assigning IP address to the devices in the subnets

IPv4 Network Address Planning

- IP network address planning is crucial to develop a scalable solution to an enterprise network.
- What we should know to develop an IPv4 network wide addressing scheme?
 - how many subnets are needed,
 - how many hosts a particular subnet requires,
 - what devices are part of the subnet,
 - which parts of your network use private addresses and
 - which use public and
 - many other determining factors.

IPv4 Network Address Planning

Examine the needs of an organization's network usage and how the subnets will be structured.

- Perform a network requirement study by looking at the entire network to determining how each area will be segmented.
- Determine how many subnets are needed and how many hosts per subnet.
- Determine DHCP address pools and Layer 2 VLAN pools.

IP Addresses two types-Static and Dynamic

When a device is assigned a **static IP address**, the **address** does not change. Most devices use **dynamic IP addresses**, which are assigned by the network when they connect and change over time.

Static IPAddress-

- •Static IP Address is an IP Address that once assigned to a network element always remains the same.
- •They are configured manually.
- •Static IP Addresses are more costly than dynamic IP Addresses.

Dynamic IPAddress-

- •Dynamic IP Address is a temporarily assigned IP Address to a network element.
- •It can be assigned to a different device if it is not in use.
- •Dynamic Host Configuration Protocol(DHCP) assigns dynamic IP addresses.

Device Address Assignment

Different types of devices within a network that require addresses:

- End user clients Most use DHCP to reduce errors and burden on network support staff.
- Servers and peripherals These should have a predictable static IP address.
- Servers that are accessible from the internet Servers must have a public IPv4 address, most often accessed using NAT.
- Intermediary devices Devices are assigned addresses for network management, monitoring, and security.
- Gateway Routers and firewall devices are gateway for the hosts in that network.

VLSM Network Address Design PT

VLSM Implementation – Device Assignment PT

VLSM Implementation – Configuration PT

Summary – Structured Design

- Packet Tracer Activity
 - VLSM design based on Network Address Planning considering #subnets, #hosts
 - VLSM Implementation by assigning IP address to the devices in the subnets
 - Configuring the Assigned IP address and testing the connectivity

Namah Shiyaya

