

Fundação CECIERJ - Vice Presidência de Educação Superior à Distância

Curso de Tecnologia em Sistemas de Computação

2^{da} Avaliação à Distância de Física para Computação – 2014.2

Nome:	Pólo:	

Observação: Em todas as questões, explique passo a passo todas as etapas do seu desenvolvimento. Não se limite à aplicação de fórmulas.

1ª Questão

(1,5 pontos) Duas pequenas bolinhas, 1 e 2, de massas m_1 e m_2 , estão carregadas com cargas elétricas q_1 e q_2 respectivamente. Sabe-se que m_1 é um pouco maior que m_2 , enquanto q_1 é menor que q_2 . As duas bolinhas estão penduradas de um mesmo ponto no teto por dois fios iguais e de massas desprezíveis. Qual das configurações a seguir pode representar a posição de equilíbrio das bolinhas? (a linha tracejada tem a direção vertical). Explique a sua conclusão, e faça um diagrama das forças que agem sobre as bolinhas. O que mudaria se q_1 fosse igual a q_2 ?

2ª Questão

(1,0 ponto) Duas barras metálicas "A" e "B" possuem a mesma resistência. A barra A tem comprimento de L_A e diâmetro D_A . A barra B tem comprimento de L_B e diâmetro D_B . Além disso, observa-se que $L_B = 2L_A$ e $D_B = 2D_A$. Determinar a relação entre suas resistividades.

3ª Questão

Considere um chuveiro que funciona com corrente contínua, com três resistores idênticos dispostos em paralelo para aquecer a água que passa por ele.

- (a) (1,0 ponto) O que ocorre com a temperatura da água se a vazão for aumentada em 50%?
- (b) (1,0 ponto) Se um dos resistores internos se romper, o que ocorre com a temperatura da água após passar pelo chuveiro, considerando que a vazão permaneça constante? Explique qualitativamente como manter a temperatura da água, neste caso.
- (c) (1,0 ponto) Desenhe o esquema do circuito antes e depois de queimar a resistência e mostre as fórmulas que justificam suas respostas.

4ª Questão

Uma espira metálica em forma de elipse é movimentada em translação retilínea, da posição A à posição E, em duas situações distintas. Na primeira, o eixo maior da espira, que é o triplo do eixo menor, está alinhado com a direção AE; na segunda o eixo menor é que está alinhado com a direção do movimento. Em ambos os casos a velocidade de translação é a mesma e a espira encontra uma região de campo magnético uniforme, perpendicular ao plano do papel e saindo dele conforme a figura:

- (a) (0,5 ponto) Em que partes do percurso aparece uma corrente elétrica na espira? Explique.
- (b) (1,0 ponto) Qual é o sentido da corrente nessas partes? Justifique.
- (c) (1,0 ponto) Compare os gráficos de corrente elétrica em função do tempo para as duas translações e explique as eventuais diferenças.

5ª Questão

(2,0 pontos) Uma carga elétrica q = 10⁻⁴ C é lançada com uma velocidade v=5x10³ m/s em uma região tridimensional em que o campo magnético é uniforme, e cujo valor é B=8x10⁻⁶ T. Determine a força magnética que a carga experimenta.

Figura 3