

Prepared by:

Sohaila Mahmoud Alashry

Section (1)

Chapter one

Faculndex Free Numbers

INDEX NUMBER: A number that expresses the relative change in price, quantity, or value compared to a base period.

Simple index

$$P = \frac{p_t}{p_0} \times 100$$

P is the price index.

Pt is the price of current period.

P₀ is the price of base period.

Example:

Item	2	.000	2018		
	Price	Quantity	Price	Quantity	
	P_0	Q_0	p _t	Q_t	
\					
Α	1	30	3	50	
В	5	15	4	30	
FC.C	U 6	40 0	M6/E	RC20	

1-compute a simple price index for each item. 2-compute a simple quantity index for each item.

Solution

1-simple price index

$$P = \frac{p_t}{p_0} \times 100$$

$$P = \frac{p_t}{p_0} \times 100$$
*A = $\frac{3}{1} \times 100 = 150$

price increased by 50%

*B =
$$\frac{4}{5}$$
 × 100 = 80

price decreased by 20 %

$$*C = \frac{6}{6} \times 100 = 100$$
no change

2- simple quantity index

$$q = \frac{q_t}{q_0} \times 100$$

*A=
$$\frac{50}{30}$$
×100 =166.6

quantity increased by 66.6%

*B =
$$\frac{30}{15}$$
 × 100 = 200

quantity increased by 100%

$$*C = \frac{20}{40} \times 100 = 50$$

quantity decreased by 50%

SIMPLE AVERAGE OF THE PRICE INDICES

Item	2000		2018		Simple index number
7	P_0	Q_0	p _t	Q _t	Pi = pt/p0
A	ULI	30	30	50	ER 150
В	5	15	4	30	80
С	6	40	6	20	100
sum	12		13		

$$P = \frac{\sum_{i=1}^{n} p_{i}}{n}$$

$$P = \frac{150 + 80 + 100}{3} = 110$$

-the mean of the group of indices Increased 10% from 2000 to 2018.

Simple Aggregate Index

$$P = \frac{\sum p_{t}}{\sum P_{0}} (100)$$

$$P = \frac{13}{12} (100) = 108.33$$

-the aggregate of the group of indices increased 8.33% from 2000 to 2018.

WEIGHTED INDEXES:

1-LASPEYRE'S Price Index:

$$P = \frac{\sum p_t q_0}{\sum P_0 q_0} (100)$$

2- PAASCHE price index:

$$P = \frac{\sum p_t q_t}{\sum P_0 q_t} (100)$$

3- FISHER'S IDEAL INDEX:

$$P = \sqrt{\text{(laspeyre's index)(paasche index)}}$$

Example: let the price for 6 foods are repeated below

Itam	2000		2018		
Item	P_0	q 0	P _T	qt	
bread	0.77	50	0.89	55	
eggs	1.85	26	1.84	20	
milk	0.88	102	1.01	130	
apples	1.46	30	1.56	40	
orange	1.58	40	1.7	41	
coffee	4.4	12	4.62	12	

Required:

- (1) compute LASPEYRE'S Price Index.
- (2) compute PAASCHE price index.
- (3) compute FISHER'S ideal index.

Solution

	200	00	203	18				
Item	P_0	q0	p _t	qt	p _{t*q0}	P _{0*q0}	P _{t*qt}	P _{0*qt}
			1					
bread	0.77	50	0.89	55	44.5	38.5	48.95	42.35
eggs	1.85	26	1.84	20	47.84	48.1	36.8	37
milk	0.88	102	1.01	130	103.02	89.76	131.3	114.4
apples	1.46	30	1.56	40	46.8	43.8	62.4	58.4
orange	1.58	40	1.7	41	68	63.2	69.7	64.78
coffee	4.4	12	4.62	12	55.44	52.8	55.44	52.8
sum					365.6	336.16	404.59	369.73

√ Laspeyres's price index

$$P = \frac{\sum p_t q_0}{\sum P_0 q_0} (100)$$
$$= \frac{365.6}{336.16} \times 100 = 108.8\%$$

Price increased by 8.8%

√ the Paasche price index

$$P = \frac{\sum p_t q_t}{\sum P_0 q_t} (100)$$

$$=\frac{404.59}{369.73}\times100=109.4\%$$

Price increased by 9.4%

√ the fisher's ideal index

 $P=\sqrt{(laspeyre's index)(paasche index)}$

$$=\sqrt{108.8\times109.4}$$
 =109. 1%

Price increased by 9.1%

Value index (price × quantity)

$$= \frac{\sum p_t q_t}{\sum P_0 q_0}$$

Example:

Item	2	2015	2020		
FAC	Price	Quantity	Price	Quantity	
	P_0	Q_0	p _t	Q_t	
Α	1	1000	2	900	
В	30	100	40	120	
С	10	5000	8	500	

What is the value index?

$$V = \frac{(2*900) + (40*120) + (8*500)}{(1*1000) + (30*100) + (10*5000)} \times 100$$

=117.8

*the value increased by 17.8%

Example:

The prices of the fruit and the quantity consumed for a year2000,2005 explained in the following table, use 2000 as a base year:

funit	2000		2005		
fruit	P_0	q0	P _T	qt	
banana	0.23	100	0.35	120	
grapes	0.29	50	0.27	55	
apples	0.35	85	0.35	85	
strawberry	1.08	10	1.6	12	
orange	0.55	5	0.65	7	

Required:

- (1) compute the simple price index for each item.
- (2) compute the Simple Aggregate Index.
- (3) compute the simple average of the price indices.
- (4) compute LASPEYRE'S Price Index.
- (5) compute PAASCHE price index.

(6) compute FISHER'S ideal index.

Solution

	Olaci								
	20	00	20	05					
Item	P ₀	q ₀	p _t	qt	$P_i = n/n_0$	p _t *q ₀	P ₀ *q ₀	$P_{t^{*q}t}$	$P_0^*q_t$
					Pv Po				
banana	0.23	100	0.35	120					
grapes	0.29	50	0.27	55					
apples	0.35	85	0.35	85	М	YE	RC	E	1
strawberry	1.08	10	1.6	12				1	
orange	0.55	5	0.65	7				1	
sum									

Example:

Suppose we have the following data:

	2017		2020	2020		
item	Po	q0	P _T	qt		
A	0.09	1800	0.20	2000		
В	0.04	1500	0.02	1550		
С	0.18	2000	0.18	2000		
FAD	0.07	6500	0.10	6800		

Required:

- (1) compute the simple price index for each item and the average of all simple index
- (2) compute the Simple Aggregate Index.
- (3) compute LASPEYRE'S Price Index.
- (4) compute PAASCHE price index.
- (5) compute FISHER'S ideal index.

Solution