# Artificial Intelligence & Analytical Innovation

# --Enhance the Power of R Tools in Clinical Development

Qinghua Song

Kite Pharma, a Gilead Company Nov, 2019, R meetup, San Francisco

## **My Roles**

- Clinical Study Statistician lead for phase 1 dose escalation and dose expansion study and Phase 2 pivotal study: be responsible for trial study designs, protocol development, SAP/DPP development, TLF review, SDTM and ADaM specs, interpretation of results, and preparation of inputs for regulatory documents
- Lead of AI2 (Artificial Intelligence & Analytical Innovation) Group, under Biometrics
  - Serve as a leading representative engaging on internal or external industry challenges like AI/machine/deep learning applications, advanced analytics and complex innovative designs
  - Lead/oversee projects which apply AI/machine/deep learning applications for Translational Research
     & Clinical Development (Artificial Intelligence part)
  - Lead/oversee creating tools and platforms that operationalize key methodology making diverse approaches available to study teams (Analytical Innovation part)

Use R not just for fun, but for real work! ☺

# Statisticians Play Important Role in Model-Informed Drug Discovery and Development

Lead Life Cycle Target Selection and Preclinical Late Clinical Generation **Early Clinical** Management & Approval Validation Development Development Phase Therapeutic Development Optimization Use

#### **Internal Decision Support**

Regulatory Decision Support

#### Target Authorization & Mechanic Understanding

Candidate Comparison, Selection, Human PK & Dose Prediction

Study Design Optimization

Predicting & Characterizing ADME Including Intrinsic & Extrinsic Factors Impacting PK Variability

Risk/Benefit Characterization & Outcome Predication from Early Clinical Research

Dose & Schedule Selection & Label Recommendation (Including Drug Combination)

Comparator/Standard-of-Care Differentiation & Commercialization Strategies

Patient Population Selection & Bridging between Populations (Pediatric, elderly, Obese)



Good Practices in Model-Informed Drug Discovery and Development: Practice, Application, and Documentation., 2016, EFPIA MID3 Workgroup

## What Analytical Tools to Use in Pharma?





In Pharma setting simulations vs. analysis exploratory vs. confirmatory

#### Advantages of using R in pharma

- Ability to create effective visualizations/ graphics
- Flexibility to combine with other tools/ own code
- Ability to bring new statistical methods and Machine Learning methods to the table very quickly
- As an open source environment it supports collaboration- and therefore innovation

Cytel blog: The Rise of R-should SAS programmers get up to speed?

#### **Outstanding Graphical Outputs**

- A picture is not merely worth a 1,000 words, it is much more likely to be scrutinized than words are to be read. – John Tukey
- "R is able to produce clean, ascetic charts suitable for journals and books and super fancy graphics perfect for presentations"
- R has great capability of making high quality of graphs with any kind.. and varied..





R Graph Gallery: Enhance your data visualization with R

#### ...and Interactive Plots and Tables







The Shiny package uses R to build interactive web apps, an ideal data product to share, reduce iteration, allow clients to explore; provide a creative way in data visualization

The Markdown package build reports, documents, and presentations from R code: reproducible & dynamic

HTML W S

Biostatisticians can use Shiny and Markdown packages to create interactive data products straight from R; to create an ideal workflow for sharing data and results with clients and colleagues in Drug discovery and Development

# Shiny App and R Markdown for Biomarker Analysis and Report

- Biomarkers, the key components in translational research, can be used for many purposes including diagnosis,
   prognosis and selecting appropriate patient therapy, and can provide information on disease mechanism or progression
- Currently most biomarker analyses are exploratory: time profiling, association, etc. TFLs are costly to produce and time consuming to review with multiple iterations.
- Multiple TFLs needed for a full exploratory research on different responses of different biomarkers, by different cohorts, groups and other variables
  - For analysts, It is time consuming with redundant coding
  - For scientists, it is not convenient to review these outputs one by one and easy to get lost.



# With Shiny, biostatisticians can create R output from routine "Analytical Support"....











Al2 supporting Kite Biometrics' projects

## ...to "Analytical Innovation"

- Biomarker Explorer Shiny App:
- This R-shiny web app was developed for Translational statisticians and scientists to generate graphs and tables for biomarker exploratory analysis including time profiling, association and others, in an interactive platform.

**Shiny + R Package** provides efficient way to generate re-producible outputs



#### Highlight:

- Interactive graph displays
- Subset Analysis
- Creating output spec file
- Automatically producing TFLs



#### **Generate Dynamic and Static Report for Exploratory Analysis**

**Shiny + Rmarkdown** provides efficient way to generate reports in static or dynamic format

# Efficient Statistical Tool Analysis Report (ESTAR) Coding outside of R Shiny or Markdown The R Shiny + Markdown Report writing

Summary

Report (html/PDF)

Qinghua Song, Feiyang Niu, and Yucheng Yang

Copyright @ 2017 Gilead Sciences, Inc. All rights reserved.

**TFLs** 



## **Useful Shiny Apps for Drug R&D**

| Category                  | Shiny app                               | Description                                                                                                                                                                                           |
|---------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Translational<br>Research | Assay Development and Qualification     | Graphs and tables for assay development and qualification.                                                                                                                                            |
|                           | Biomarker Explorer                      | Graphs and tables for biomarker exploratory analysis including time profiling and association                                                                                                         |
|                           | Predictive Biomarker<br>Evaluation Tool | Implements STEPP and smooth curve visualization to assess trend of biomarker association with clinical outcome to facilitate identification of patient subgroup most likely to benefit from treatment |
|                           | Quartile Table                          | Summary (median, min and max for continuous parameters and frequency for discrete parameters) will be displayed by quartile.                                                                          |
| Phase I                   | Phase 1 dose escalation                 | Visualization and exploration of pharmacokinetic and/or pharmacodynamic data                                                                                                                          |
|                           | PK Modeling                             | Model PKPD data along with quick diagnostic tools to evaluate model fit                                                                                                                               |
| Phase II & III            | Oncology Topline<br>Summary             | Update in real time to the clinical team the key data of an on-going clinical trial including topline efficacy and safety results                                                                     |
|                           | ClinPlot                                | Generate graphs for presentation purpose. The graphs include: CDF plot, forest plot, Kaplan Meier plot, Line plot, swimmer plot, waterfall plot and Venn Diagram.                                     |
|                           | Event Projection                        | Predict when the pre-specified event milestones can be reached                                                                                                                                        |
|                           | Predictive Power                        | Provide interactive way to estimate predictive power in various stages of clinical trials for various endpoints                                                                                       |
| Safety                    | Safety Monitoring & Graphics            | Statistical methods for comparison and multiple control and to have interactive graphic display for Safety Monitoring                                                                                 |

Selected Example apps developed by Biostatisticians from Gilead and Kite



# Process for Shiny app development, validation, release, maintenance, and training



## What Analytical Tools to Use in Pharma?





In Pharma setting simulations vs. analysis exploratory vs. confirmatory

#### Advantages of using R in pharma

- Ability to create effective visualizations/ graphics
- Flexibility to combine with other tools/ own code
- Ability to bring new statistical methods and Machine Learning methods to the table very quickly
- As an open source environment it supports collaboration- and therefore innovation

Cytel blog: The Rise of R-should SAS programmers get up to speed?

## Tasks that need AI in Pharma industry



Kevin, H. BioIT, 2019

## The Potential Benefits of Machine Learning in Clinical Trial and Drug Development

- identification of subgroup(s) with enhanced treatment benefit or identification of signatures highly correlated with clinical outcomes, by a combination of baseline clinical, biomarker and genomic factors in trial data
- As the number of biomarkers/features increases
  with technology advances, identifying a
  meaningful pattern raises particular statistical
  challenges within the context of limited sample
  sizes in clinical trials. Machine learning
  approaches (advanced regression and tree-based
  approaches etc.) applicable in exploratory setting
  to identify predictive signatures and subgroups

# R Provides Advanced Statistical Programming Language for Machine Learning Projects and Clinical Trial

Current ongoing ML Projects in Al2 Group

| Carrent ongoing with rojects in 742 Group                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Machine Learning Project                                                                                                                                                                                                                                 | <u>R packages</u> for ML methods                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Machine Learning Platform for multivariate analysis: an end-to-end platform with multiple steps, which powers both self-service analytics and the operationalization of state-of-art machine learning models in an automatic and reproducible production | <u>caret, party</u> for Random Forest; <u>xgboost</u> for XgBoost <u>keras</u> , <u>LIME</u> for deep learning; <u>factoextra</u> for Principle Component <u>pls</u> for Partial Least Square; <u>ClustOfVar</u> for Hierachical Clustering; <u>pdp</u> for Partial Dependencey Plot; <u>ALEPlot</u> for Accumulated Local Effect plot |  |  |  |  |
| Investigation and application of <b>propensity score</b> methods to clinical data and Real World data aiming to detect signals that may account for interested comparisons                                                                               | <u>MatchIt</u> for Propensity Score Matching <u>WeightIt</u> for IPTW                                                                                                                                                                                                                                                                  |  |  |  |  |
| Application of <b>causal learning</b> with Bayesian network to explore the association and make causal inference of biomarkers and clinical outcomes                                                                                                     | <u>bnlearn</u> for Bayesian network structure learning<br><u>sparsebn</u> for learning sparse Bayesian networks<br><u>igraph, gqdaq</u> for visualizing Bayesian networks                                                                                                                                                              |  |  |  |  |
| Application of <b>Generative Adversarial Networks (GANs)</b> to                                                                                                                                                                                          | <u>keras</u> , implements almost all basic neural network layers, optimization                                                                                                                                                                                                                                                         |  |  |  |  |

Qinghua Song Ph.D.

generate synthetic data for clinical trial

R Pharma Meetup 2019

algorithms, loss functions, automatic gradient calculations

# R Provides Advanced Statistical Programming Language for Machine Learning Projects and Clinical Trial

#### Current ongoing Projects for Clinical Trial Enhancement in Al2 Group

| Projects for Clinical Trial Enhancement                                                                                                                | <u>R packages</u> for Advanced Methods                                                                                                                                                                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>Prediction of Events</b> and enrollments based on observed clinical data with consideration of accrual, event distribution and follow-up/drop-out.  | <u>survival</u> for model regression/prediction <u>applot2</u> for generating observed/prediction curves <u>shiny, shinyjs, shinybs</u> for shiny app development.                                                             |  |
| Generating frequently used <b>clinical plots</b> , including Kaplan-Meier plot, swimmer plot, waterfall plot and forest plot.                          | <u>shiny, colourpicker, gridextra, shinyjs, shinybs</u> for shiny app development. <u>survival, survminer, metafor, Hmisc</u> for survival-related plot element. <u>ggplot2, gridextra, scales, grid</u> for generating plots_ |  |
| Deep dive into <b>Bayesian Optimal Interval (BOIN)</b> Design, a novel phase I clinical trial design to fine maximum tolerated dose.                   | <b>BOIN</b> for trial design and simulation.                                                                                                                                                                                   |  |
| <b>Mixture Cure Model</b> with cox survival and logistic regression cure rate is implemented to discover potential cure effect from certain biomarker. | Modified CRAN package <u>smcure</u> is used.                                                                                                                                                                                   |  |

### **Multivariate Analysis Platform (MAP)**

#### **Goal of Analysis:**

- Discovering Patterns of Biomarkers; Understanding Clusters
- Characterizing association of Biomarkers with outcomes
- Predictive Modeling, Model evaluation, cut-off selection



#### A Step-by-step Easy-to-use Workflow

## Multivariate Analysis Platform Workflow

Jin Xie<sup>1</sup>, Tao Hu<sup>1</sup> and Qinghua Song<sup>1</sup>

<sup>1</sup>Kite Pharma, A Gilead Company

October 23, 2019

#### **Abstract**

MAP (Multivariate Analysis Platform) is a multivariate analysis and machine learning platform developed by Artificial Intelligence & Analytical Innovation group for internal usage. This platform aims to provide analytical support for business questions, to pattern and cluster the covariates; to find the association of covariates with outcomes; and to build a predictive model. MAP is a collaborative platform which powers both self-service analytics and the operationalization of state-of-art machine learning models in an automatic and reproducible production. It is an end to end platform with multiple steps from data pro-precessing, imputation, feature selection to statistical modeling, interpretation and model evaluation. This document provides step-by-step introduction on the major functionalities of the package. Example codes and results can be found within each section.

#### Contents

- 1 Introduction
- 2 Reproducibility
- 3 Data Preparation
- 4 Univariate Screening
- 5 Variable Importance Ranking
  - 5.1 Data Imputation
  - 5.2 Variable Importance by Conditional Random Forest
    - 5.2.1 The details of obtaining the Variable Importance by Cforest
    - 5.2.2 Model Training by Cforest
    - 5.2.3 Variable Pre-elimination
  - 5.3 Variable Importance by Extreme Gradient Boosting (XGBoost)
    - 5.3.1 Advantages of XGboost
    - 5.3.2 Model Training by XGboost
    - 5.3.3 Setting Customized Parameters
- 6 Feature Selection
- 7 Modeling and Evaluation
- 8 Interpretation and Visualization
  - 8.1 Single Conditional Inference Tree
  - 8.2 Partial Dependence Plot
  - 8.3 Accumulated Local Effects Plot
  - 8.4 Principal Component Analysis
  - 8.5 Partial Least Squares
  - 8.6 Clustering of Variables

## From Multiple Folders to a Single Shiny app; From Being Static to Being Dynamic and Interactive

| L 2_imp_cforest_seed                   | 8/14/2019 12:51 PM | File folder         |          |
|----------------------------------------|--------------------|---------------------|----------|
| 👢 3_pred_result                        | 8/14/2019 12:51 PM | File folder         |          |
| 👢 4_Partial_Dependence_Plot            | 8/14/2019 12:51 PM | File folder         |          |
| lmportance                             | 8/14/2019 12:51 PM | File folder         |          |
| 🔊 0_data_imputed                       | 8/13/2019 10:16 AM | Microsoft Excel Com | 35 KB    |
| 1_Univaraite_Screen                    | 8/13/2019 10:11 AM | Microsoft Excel Com | 4 KB     |
| 2_imp_cforest_average50                | 8/13/2019 1:09 PM  | Microsoft Excel Com | 66 KB    |
| 2_imp_cforest_average50_summary        | 8/13/2019 1:09 PM  | Microsoft Excel Com | 2 KB     |
| 2_RF_backward_selection                | 8/13/2019 2:52 PM  | Microsoft Excel Com | 1 KB     |
| a 2_RF_final_selection                 | 8/13/2019 2:52 PM  | Microsoft Excel Com | 1 KB     |
| 2_RF_selection                         | 8/13/2019 2:52 PM  | Adobe Acrobat Doc   | 6 KB     |
| 2_var_imp                              | 8/13/2019 2:50 PM  | Adobe Acrobat Doc   | 13 KB    |
| 3_backward_overall_coef                | 8/13/2019 4:03 PM  | Microsoft Excel Com | 1 KB     |
| 3_backward_penalized_regression        | 8/13/2019 4:03 PM  | Adobe Acrobat Doc   | 6 KB     |
| 3_backward_penalized_regression_label  | 8/13/2019 4:03 PM  | Adobe Acrobat Doc   | 6 KB     |
| 3_backward_penalized_regression_result | 8/13/2019 4:03 PM  | Microsoft Excel Com | 2 KB     |
| 4_cforest_all.fit                      | 8/13/2019 4:44 PM  | FIT File            | 9,481 KB |
| 5_PCA_pcs                              | 8/13/2019 5:30 PM  | Microsoft Excel Com | 1 KB     |
| 5_PCA_plots                            | 8/13/2019 5:30 PM  | Adobe Acrobat Doc   | 11 KB    |
| 5_PCA_variable_loadings                | 8/13/2019 5:30 PM  | Microsoft Excel Com | 7 KB     |
| 5_PLS_plots                            | 8/13/2019 5:32 PM  | Adobe Acrobat Doc   | 9 KB     |
| 5_PLS_variable_loadings                | 8/13/2019 5:32 PM  | Microsoft Excel Com | 7 KB     |
| 5_PLS_VIP                              | 8/13/2019 5:32 PM  | Microsoft Excel Com | 1 KB     |
| 6_PCA_clustering_groups                | 8/13/2019 5:34 PM  | Microsoft Excel Com | 1 KB     |
| 6_PCA_clustering_plots                 | 8/13/2019 5:34 PM  | Adobe Acrobat Doc   | 9 KB     |



Currently, all the outputs are saved in a folder

A shiny app is under development to help reviewing and saving outputs more efficiently

- Organize outputs in a better structure than multiple folders
- Demonstrate outputs more dynamically and interactively

#### **Discussion**

- Biostatisticians need to be on top of cutting-edge methodologies and technologies
- Should we pursue building high-quality cross-platform apps with fancier design, more complete/complex setting, more customized functions, to fulfill ALL needs, in a more professional setting?
- Should we propose and expand the implement of R in submission?
- What we can do:
  - Bring in more robust and validated R products/platforms which offer complete deployment flexibility with unrestricted server activations
  - Build Cloud environment which enables collecting, storing and analyzing huge amount of data; faster speed of installing software and transferring data; more convenient way to use existing service (AzureML, for example)

## Acknowledgement

- Kite AI2 group (Qinghua Song, Bella Feng, Jin Xie, Tao Hu, Shengchao Hou, Allen Xue)
- Kite Biometrics (Lianqing Zheng, Jennifer Sun, Yin Yang, Rajesh Venkkataram, Joe Jiang)
- Kite IT (Ben Lam, Nikki Nguyen, Peter Taing, Sepehr Dadsetan)
- Gilead Center of Excellence (Ron Yu, Shuo Wang)
- Gilead Biometrics (Jing Hu, Zhisheng Ye, Xiaomin Lu, Neby Bekele)
- Gilead R Platform (Niall Mcsharry, Kaiding Zhu)