MC602-Circuitos Lógicos e Organização de Computadores

Capítulo 2 – Introdução aos Circuitos Lógicos

Ricardo Pannain

pannain@unicamp.br

VARIÁVEIS E FUNÇÕES – Chaves de dois estados

(a) Chave binária - dois estados

(b) Símbolo de uma chave

VARIÁVEIS E FUNÇÕES – Uma luz controlada por uma chave

(a) Conexão de uma chave e uma luz a uma bateria

(b) Usando a conexão com o terra

VARIÁVEIS E FUNÇÕES – Funções Básicas

(b) Função Lógica **OR** (ligação paralela)

Ligação Série-Paralela

Exercício

Escreva a função lógica de dê os valores de L para todas as combinações possíveis de x1, x2 e x3

Ligação Série-Paralela

Exercício

Escreva a função lógica de dê os valores de L para todas as combinações possíveis de x1, x2 e x3

$$L = (x1 + x2) \cdot x3$$

Função de inversão - NOT

$$L(x) = \overline{x}$$
; L = 1 se x = 0 e L = 0 se x = 1

Função de inversão - NOT

$$L(x) = \overline{x}$$
; L = 1 se x = 0 e L = 0 se x = 1

Tabela Verdade – Funções AND e OR de duas variáveis

x_1	x_2	$x_1 \cdot x_2$	$x_1 + x_2$
0	0	0	0
0	$\frac{1}{2}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
1	0 1	U 1	<u> </u>
1	1		1

AND OR

Tabela Verdade – Funções AND e OR de tres variáveis

x_1	x_2	x_3	$x_1 \cdot x_2 \cdot x_3$	$x_1 + x_2 + x_3$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

EXERCÍCIO

Desenhar o circuito e dar a tabela verdade de $L = (x1 + x2) \cdot x3$

Função OR-AND

Exercício – Dê a tabela verdade desta função.

Função OR-AND

Exercício – Dê a tabela verdade desta função.

x 1	x2	x3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Rede Lógica – Circuito Lógico

<i>X</i> ₂	$f(x_1, x_2)$
0	1
1	1
0	0
1	1
	x ₂ 0 1 0 1

(b) Tabela verdade para f

Rede Lógica – Circuito Lógico

C I
$$x_1$$
 $0 \rightarrow 0 \rightarrow 1 \rightarrow 1$ $0 \rightarrow 1 \rightarrow 0 \rightarrow 0$ $0 \rightarrow 1 \rightarrow 0 \rightarrow 1$ $0 \rightarrow 1 \rightarrow 1$ $0 \rightarrow 1$

Rede Lógica – Circuito Lógico

(a) Circuito que implementa $f = \bar{x}_1 + x_1 \cdot x_2$

(d) Circuito que implementa $g = \bar{x}_1 + x_2$

$$x1' + x1x2 = (x1'+x1). (x1'+x2) =$$

= $x1'+x2$

f e g são funções equivalentes

(b) Tabela verdade para f e g

George Boole (1849) – teoria algébrica aplicada à lógica

Claude Shannon (1930) – mostrou que esta teoria poderia ser aplicada em circuitos baseados em chaves

Axiomas

1a.
$$0.0 = 0$$

$$1b \quad 1 + 1 = 1$$

$$2b \quad 0 + 0 = 0$$

3a.
$$0.1 = 1.0 = 0$$

$$3b \quad 1 + 0 = 0 + 1 = 1$$

4a Se
$$x = 0$$
 então $\overline{x} = 1$

4 b Se
$$x = 1$$
 então $\overline{x} = 0$

Teoremas de uma variável

5a.
$$x \cdot 0 = 0$$

$$5b x + 1 = 1$$

6a
$$x \cdot 1 = x$$

6b
$$x + 0 = x$$

7a.
$$x \cdot x = x$$

$$7b \quad x + x = x$$

8a
$$x \cdot \bar{x} = 0$$

8b x
$$+ \bar{x} = 1$$

$$\frac{1}{2}$$

Teoremas de duas e três variáveis

10a.
$$x. y = y. x$$

Comutativa

$$10b \quad x + y = y + x$$

11a
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

Associativa

11b
$$x + (y + z) = (x + y) + z$$

12a.
$$x \cdot (y + z) = x \cdot y + x \cdot z$$

Distributiva

12b
$$x + (y \cdot z) = (x + y) \cdot (x + z)$$

13a
$$x + x \cdot y = x$$

Absorção

13b
$$x \cdot (x + y) = x$$

14a
$$x \cdot y + x \cdot \overline{y} = x$$

Combinação

14b
$$(x + y) \cdot (x + \overline{y}) = x$$

15a
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

Teorema de DeMorgan

15b
$$\overline{x+y} = \overline{x} \cdot \overline{y}$$

16a
$$x + \overline{x} \cdot y = x + y$$

16b
$$x \cdot (\overline{x} + y) = x \cdot y$$

Exemplo

$$f = x1' + x1$$
. $x2 = (x1' + x1)$. $(x1' + x2) = 1.(x1' + x2) = x1' + x2 = g$

Provas dos teoremas

13a

$$x + x \cdot y = x \cdot (1 + y) = x \cdot 1 = x$$

13b

$$x \cdot (x + y) = x \cdot x + x \cdot y = x + x \cdot y = x \cdot (1 + y) = x \cdot 1 = x$$

14a

$$x \cdot y + x \cdot y' = x \cdot (y + y') = x \cdot 1 = x$$

14b

$$(x + y) \cdot (x + y') = x + (y \cdot y') = x + 0 = x$$

16a

$$x + x'$$
. $y = (x + x')$. $(x + y) = 1$. $(x + y) = x + y$

16b

$$x \cdot (x' + y) = (x \cdot x') + (x \cdot y) = 0 + x \cdot y = x \cdot y$$

Princípio da Dualidade: Dada uma expressão lógica seu dual é obtido substituindo todos os operadores + pelo operador . , e vice versa, e substituindo todos os 0s por 1s, e vice versa

Prova do Teorema DeMorgan 15a

x	y	$x \cdot y$	$\overline{x \cdot y}$	$ \overline{x} $	$oxed{\overline{y}}$	$\overline{x} + \overline{y}$
0	0	0	1	1	1	1
0 1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$egin{array}{cccc} 1 & 1 & \end{array}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	$egin{array}{cccc} 1 & 1 & \end{array}$
1	1	1	0	0	0	0
		\mathbf{L}^{\prime}		RI	HS	

LHS = left hand side

RHS = right hand side

Prova do Teorema DeMorgan 15b

X	y	x + y	(x + y)'	x'	y'	x' . y'
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1		0	0	0	0

$$(x1 + x3) \cdot (x1' + x3') =$$

$$= x1x1' + x1x3' + x1'x3 + x3x3'$$

$$= 0 + x1x3' + x1'x3 + 0$$

$$= x1.x3' + x1'.x3 = x1 \text{ XOR } x3$$

$$(x1 + x3) \cdot (x1' + x3') = x1.x3' + x1'.x3$$

LHS =
= $x1.x1' + x3.x1' + x1.x3' + x3.x3' = 0 + x1'x3 + x1x3' + 0 = x1'x3 + x1x3'$

$$x1x3' + x2'x3' + x1x3 + x2'x3 = x1'x2' + x1x2 + x1x2'$$

$$x1x3' + x2'x3' + x1x3 + x2'x3 = x1'x2' + x1x2 + x1x2'$$

LHS =
$$x1x3'+x1x3+x2'x3'+x2'x3 =$$

= $x1(x3'+x3) + x2'(x3'+x3) =$
= $x1.1+x2'.1 = x1 + x2'$

RHS =
$$x1'x2' + x1x2' + x1x2 + x1x2' =$$

= $(x1'+x1)x2' + (x2+x2')x1 = 1. x2' + 1. x1 = x1+x2'$

$$= x1'x2' + x1 = (x1 + x1')(x1+x2') = x1+x2'$$

Representação - Diagrama de Venn

Representação - Diagrama de Venn

Representação de Venn – Propriedade Distributiva

(c) $x \cdot (y + z)$

Capítulo 2 - Introdução aos Circuitos Lógicos

(f) $x \cdot y + x \cdot z$

- Notações e Terminologias
 - Soma de produtos (SOP)

$$x1. x2. x3 + x1. x4 + x2. x3. x4$$

• Produto de somas (POS)

$$(x_1 + x_2) \cdot (x_1 + x_3) \cdot (x_2 + x_3 + x_4)$$

OBS - O termo produto da Soma de Produtos é chamado de mintermo e o termo Produto de Somas é chamado de maxtermo

- Precedência de Operações
 - NOT AND OR

OBS - Obedecer os parênteses

Síntese de funções utilizando AND, OR e NOT

Projetar um circuito com duas entradas (x1 e x2), assumindo que x1 e x2 representam o estado de duas chaves, respectivamente. (chave aberta xi = 0 e chave fechada xi = 1).

A saída f(x1,x2) será 1 quando (x1,x2) forem: (0,0), (0,1) ou (1,1). Será 0 quando (x1,x2) = (1,0)

Tabela Verdade

_	x_1	x_2	$f(x_1,x_2)$	POS	/ SOP
	0 0 1 1	0 1 0 1	1 1 0 1	$M0 = x1+x2$ $M1 = x1+x^2$ $M2 = x^1+x^2$ $M3 = x^1+x^2$	/m2 = x1.x'2

Síntese de funções utilizando AND, OR e NOT

Projetar um circuito com duas entradas (x1 e x2), assumindo que x1 e x2 representam o estado de duas chaves, respectivamente. (chave aberta xi = 0 e chave fechada xi = 1).

A saída $f(x_1,x_2)$ será 1 quando (x_1,x_2) forem: (0,0), (0,1) ou (1,1). Será 0 quando $(x_1,x_2) = (1,0)$

x_1	x_2	$f(x_1,x_2)$	SOP f = (x1'x2').1 + (x1'x2).1 + (x1x2').0 + (x1x2).1
0	0	1	$f = (x_1 \ x_2).1 + (x_1 \ x_2).1 + (x_1 x_2).1$ $f = m_0.1 + m_1.1 + m_2.0 + m_3.1 = m_0 + m_1 + 0 + m_3 = m_0 + m_1 + m_2 + m_3 + m_3$
1	0	0	POS $f = ((x1+x2)+1) \cdot ((x1+x^2)+1) \cdot ((x^2+x^2)+0) \cdot (x^2+x^2)+1$
I	1	1	$f = (M0 + 1) \cdot (M1 + 1) \cdot (M2 + 0) \cdot (M31 + 1) = 1 \cdot 1 \cdot M2 \cdot 1 = M2 = x'1 + x2$

Tabela Verdade

Síntese – Soma de Produtos (Mintermos)

Para uma função de n variáveis, o termo produto (mintermo) é formado por xi se xi = 1 e xi se xi = 0.

$$m0 = \bar{x}1\bar{x}2$$
; $m1 = \bar{x}1x2$; $m2 = x1\bar{x}2$; $m3 = x1x2$

Para a figura anterior:

$$f = m0 . 1 + m1 . 1 + m2 . 0 + m3 . 1 = m0 + m1 + m3 =$$

= $\bar{x}1\bar{x}2 + \bar{x}1x2 + x1x2$

OBS
$$-x'1(x'2+x2) + x1x2 = x'1 + x1x2 = x'1 + x2$$
 (custo mínimo)

Outra forma de representação:

$$f(x1,x2) = \Sigma (m0, m1, m3)$$
 ou $f(x1,x2) = \Sigma m(0,1,3)$

Representação com e portas lógicas

(a) Circuito que representa a Soma de Produtos

(b) Circuito de custo mínimo – mesmo circuito

Custo = n. de gates do circuito + n. de entradas de todos os gates do circuito

- a) custo = $2 \text{ INV} + 2 \times 1 \text{ ENTRADA} + 3 \text{ ANDs} + 3 \times 2 \text{ ENTRADAS} + 10 \text{R} + 3 \text{ ENTRADAS} = 17$
- b) custo = 1 INV + 1 ENTRADA + 1 OR + 2 ENTRADAS = 5

Síntese – Produto de Somas (Maxtermos)

Uma função pode ser também representada como uma soma de mintermos onde f = 1, ou seja f = 0. No exemplo anterior:

x_1	x_2	$f(x_1, x_2)$	$\overline{f(x1,x2)} = \overline{M2} = m2 = x1\overline{x2}$
0	0	1	
0	1	1	
1	0	0	$f(\overline{x1}, \overline{x2}) = f(x1, x2) = x1\overline{x2} = \overline{x1} + x2 = \overline{m2} = M2$
1	1	1	
		<u> </u>	Mi = maxtermo

Outras formas de representação do Produto de somas:

$$f(x_1,x_2) = \Pi(M_2)$$
 ou $f(x_1,x_2) = \Pi(M_2)$

Mintermos e Maxtermos de função de três variáveis

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \ m_1 = \overline{x}_1 \overline{x}_2 x_3 \ m_2 = \overline{x}_1 x_2 \overline{x}_3 \ m_3 = \overline{x}_1 x_2 x_3 \ m_4 = x_1 \overline{x}_2 \overline{x}_3 \ m_5 = x_1 \overline{x}_2 x_3 \ m_6 = x_1 \overline{x}_2 \overline{x}_3 \ m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x_3}$ $M_2 = x_1 + \overline{x_2} + x_3$ $M_3 = x_1 + \overline{x_2} + \overline{x_3}$ $M_4 = \overline{x_1} + x_2 + x_3$ $M_5 = \overline{x_1} + x_2 + \overline{x_3}$ $M_6 = \overline{x_1} + \overline{x_2} + x_3$ $M_7 = \overline{x_1} + \overline{x_2} + \overline{x_3}$

Exemplo – Escrever a função descrita pela tabela verdade abaixo, como Soma de Produtos - SOP e Produto de Soma- POS. Minimizar as funções e desenhar os circuitos equivalentes.

Row number	$ x_1 $	x_2	x_3	$f(x_1,x_2,x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	$1 \mid$	0

Exemplo – Escrever a função descrita pela tabela verdade abaixo, como Soma de Produtos e Produto de soma. Minimiza as funções e desenhe os circuitos equivalentes.

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

SOP

$$f = \Sigma m(1,4,5,6)$$

 $f = x1'x2'x3 + x1x2'x3' + x1x2'x3 + x1x2x3'$

POS

$$f = \Pi M(0,2,3,7)$$

 $f = (x1+x2+x3) \cdot (x1+x2'+x3') \cdot (x1+x2'+x3') \cdot (x1'+x2'+x3')$

SOP

$$f = x1'x2'x3 + x1x2'x3' + x1x2'x3 + x1x2x3'$$

$$f = (x1 x2'x3' + x1 x2 x3') + (x1'x2'x3 + x1 x2'x3)$$
 (14a)

$$f = x1x3'(x2'+x2) + x2'x3(x1'+x1)$$

$$f = x1.x3' + x2'.x3 \rightarrow custo = 2 inv + 2 X 1 + 2 ands + 2 X 2 entr + 1$$

or +1 X 2 entr = 13

POS

$$f = \prod M(0,2,3,7)$$

(14b)

$$f = (x1+x2+x3) \cdot (x1+x2'+x3) \cdot (x1+x2'+x3') \cdot (x1'+x2'+x3')$$

$$f = (x1 + x3)$$
. $(x2' + x3') \rightarrow custo = 2 inv + 2 + 2 or + 4 + 1 and + 2 = 13$

Duas representações da função do exemplo anterior

(a) Circuito mínimo referente à SOP

(b) Circuito mínimo referente ao POS

EXEMPLOS

- 1. Controle de luz por 3 chaves
 - Assumir uma sala com 3 portas e perto de cada porta um interruptor de luz. Queremos projetar um circuito (SOP e POS) que controle a iluminação da sala de tal maneira que possamos acender ou apagar a lâmpada pela mudança de qualquer chave.
 - Tabela verdade
 - Função boolena minimizada
 - Custo
 - Circuito equivalente

Tabela verdade - Controle de luz por 3 chaves

x_1	x_2	x_3	$\int f$
0	0	0	0
0	0	$1 \mid$	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Controle de luz por 3 chaves

-					
	x_1	x_2	x_3	$\int f$. f'
	0	0	0	0	1
	0	0	1	1	0
	0	1	0	1	0
	0	1	1	0	1
	1	0	0	1	0
	1	0	1	0	1
	1	1	0	0	1
	1	1	1	1	0
			-		

SOP

Controle de luz por 3 chaves

x_1	x_2	x_3	$\int f$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

POS

$$f = (x1+x2+x3) \cdot (x1+x2'+x3') \cdot (x1'+x2+x3') \cdot (x1'+x2'+x3)$$

 $f = (x1+((x2+x3)\cdot(x2'+x3'))) \cdot (x1'+((x2+x3')(x2'+x3)))$
 $f = x1 \text{ XOR } x2 \text{ XOR } x3$

Circuito de Controle de luz por 3 chaves - SOP

Circuito de Controle de luz por 3 chaves - POS

EXEMPLOS

2. XOR

x 1	x2	f
0	0	0
0	1	1
1	0	1
1	1	0

SOP

$$f = x1'x2 + x1x2'$$

POS

$$f = (x1+x2) \cdot (x1'+x2')$$

XNOR

x 1	x 2	f
0	0	1
0	1	0
1	0	0
1	1	1

SOP

$$f = x1'x2' + x1x2$$

POS

$$f = (x1 + x2') \cdot (x1' + x2)$$

EXEMPLOS

3. Multiplexador

- É um circuito que permite com que seja escolhida, dentre várias entradas, apenas uma
- MUX 2:1
 - f(s,x1,x2)
 - f = x1 se s = 0, caso contrário f = x2
- Mostre a tabela verdade, a função booleana correspondente e o circuito correspondente

MULTIPLEXADOR 2:1 – TABELA VERDADE

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

S	$f(s, x_1, x_2)$
0	x_1
1	x_2

(a) Tabela Verdade

(b) Representação compacta da tabela verdade

MULTIPLEXADOR 2:1

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	$\int_{S} f(s, x_1, x_2)$
001	0	$\begin{array}{c c} \hline 0 & x_1 \end{array}$
010	1	
011	1	x_2
100	0	
101	1	(b) Representação compacta da tabela verdade
110	0	
111	1	f = s'x1 + sx2

(a)Tabela Verdade

$$f = s'x1x2' + s'x1x2 + sx1'x2 + sx1 x2$$

MULTIPLEXADOR 2:1 – Equação simplificada

$s x_1 x_2$	$f(s, x_1, x_2)$		
000	0	$\int_{S} f(s, x_1, x_2)$	
001	0	$\begin{array}{c c} \hline 0 & x_1 \end{array}$	
010	1	,	
011	1	x_2	
100	0		
101	1	(b) Representação compacta da tabela verdade	
110	0		
111	1	f = s'x1 + sx2	

(a)Tabela Verdade

$$f = s'x1x2' + s'x1x2 + s x1' x2 + s x1 x2$$

 $f = s'x1(x2' + x2) + s x2 (x1' + x1)$
 $f = s'x1 + s x2$

MULTIPLEXADOR 2:1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

(b) Circuito

S	$f(s, x_1, x_2)$
0	x_1
1	x_2

(a)Tabela Verdade

(d) Representação compacta da tabela verdade

(c) Símbolo Gráfico

s_1	So	f
0	0	w _o
0	1	<i>w</i> ₁
1	0	w_2
1	1	<i>W</i> ₃

EXEMPLO - MUX 4:1

(a) Símbolo Gráfico

(b) Tabela Verdade

Ferramentas de Auxílio ao Projeto de Circutos – Editor de Forma de Ondas

EXEMPLO 4

Escreva a função f(x1,x2)

Ferramentas de Auxílio ao Projeto de Circutos – Editor de Forma de Ondas

SOP:
$$f = x1'x2' + x1'x2 + x1 x2$$

Simplifique

$$f = x1'(x2'+x2) + x2(x1'+x1)$$

$$f = x'1 + x2$$

POS:
$$f = x'1 + x2$$

x 1	x2	f
0	0	1
0	1	1
1	0	0
1	1	1

Ferramentas de Auxílio ao Projeto de Circutos – Editor de Forma de Ondas

$$f(x1,x2) = x1'x2' + x1'x2 + x1 x2$$

$$f(x1,x2) = x1'(x2' + x2) + x1 x2$$

$$f(x1,x2) = x1' + x1 x2 = (x1' + x1) \cdot (x1' + x2)$$

$$f(x1,x2) = x1' + x2$$

Ferramentas de Auxílio ao Projeto de Circutos — Captura Esquemática

Escreva a função f(x1,x2,x3), sabendo-se que o retângulo é a função anterior (x1'+x2)

Ferramentas de Auxílio ao Projeto de Circutos — Captura Esquemática

$$f = A' + B$$

 $A = x1$
 $B = x2 \cdot x3'$
 $f = x1' + x2 \cdot x3'$

Capítulo 2 - Introdução aos Circuitos Lógicos

VHDL - Very High Speed Integrated Circuit Hardware Description Language - Introdução

- Linguagem para descrição de hardware
 - Representação dos sinais digitais → BIT (0 ou 1)
 - Código VHDL
 - •Declaração dos sinais de entrada e saída do circuito
 - → ENTITY / PORT /IN / OUT

•Exemplo

```
entity nome is
    port (entradal:in TYPE;
    saidal:out TYPE);
end nome;
```

VHDL - Very High Speed Integrated Circuit Hardware Description Language - Introdução

- •Código VHDL continuação
 - •Descrição da funcionabilidade → ARCHITECTURE
 - •Funções → AND, OR, NOT, NAND, NOR, XOR, XNOR
 - •Exemplo

```
architecture nome_da_entidade is
begin

f <= entrada1 AND entrada2;
end nome_da_entidade;</pre>
```

Código VHDL de uma função simples

Código VHDL de uma função simples


```
ENTITY example 1 IS
```

PORT (x1, x2, x3 : IN BIT; f : OUT BIT);

END example1;

ARCHITECTURE LogicFunc OF example 1 IS BEGIN

 $f \le (x1 \text{ AND } x2) \text{ OR (NOT } x2 \text{ AND } x3);$ END LogicFunc; Circuito de uma função de quatro entradas - VHDL

Capítulo 2 - Introdução aos Circuitos Lógicos

Código VHDL de uma função de quatro entradas


```
ENTITY example 2 IS

PORT ( x1, x2, x3, x4 : IN BIT;
f, g : OUT BIT);

END example 2;

ARCHITECTURE LogicFunc OF example 2 IS

BEGIN
f <= (x1 \text{ AND } x3) \text{ OR (NOT } x3 \text{ AND } x2);
g <= (\text{NOT } x3 \text{ OR } x1) \text{ AND (NOT } x3 \text{ OR } x4);
END LogicFunc;
```

Diagrama de tempo que representa uma função lógica

Diagrama de tempo que representa uma função lógica

$$f = x1' x2' x3' + x1' x2 x3 + x1 x2'x3 + x1 x2 x3'$$

Diagrama de tempo que representa uma função lógica

x1	x2	х3	f
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Verifique se I e II são funções equivalentes

$$I = xy + yz + x'z$$
$$II = xy + x'z$$

Verifique se I e II são funções equivalentes

$$I = xy + x'zxy + yz + x'z$$

$$f = x1x3 + x1x2' + x1'x2x3 + x1'x2'x3'$$

$$f = x3(x1 + x1'x2) + x2'(x1 + x1'x3')$$

$$F = x3(x1 + x2) + x2'(x1 + x3')$$

$$F = x1x3 + x2x3 + x1x2' + x2'x3'$$

$$F = x1x2x3 + x1x2'x3 + x1x2'x3 + x1x2'x3' + x1'x2x3 + x1'x2'x3'$$

$$F = x1x2x3 + x1x2'x3 + x1'x2x3 + x1'x2'x3'$$

$$F = x1x3 (x2+x2') + x2x3 (x1_x1') + x1'x2'x3'$$

$$F = x1x3 + x2x3 + x1'x2'x3'$$

				B' OR (A' AND C') OR (A' AND D')	
Α	В	C	D	0	
0	0	0	0	1	
0	0	0	1	1	
0	0	1	0	1	
0	0	1	1	1	
0	1	0	0	1	
0	1	0	1	1	
0	1	1	0	1	
0	1	1	1	0	(A+B'+C'+D')
1	0	0	0	1	
1	0	0	1	1	
1	0	1	0	1	
1	0	1	1	1	
1	1	0	0	0	(A'+B'+C+D)
1	1	0	1	0	(A'+B'+C+D')
1	1	1	0	0	(A'+B'+C'+D)
1	1	1	1	0	(A'+B'+C'+D')

$$f = \Pi M (7,12,13,14,15) =$$

$$= (A+B'+C'+D').(A'+B'+C+D).(A'+B'+C+D').(A'+B'+C'+D).(A'+B'+C'+D') =$$

$$= (A+B'+C'+D').(A'+B'+C'+D').(A'+B'+C+D).(A'+B'+C+D').(A'+B'+C'+D).$$

$$.(A'+B'+C'+D') =$$

$$= (B'+C'+D').(A'+B'+C)(A'+B'+C') = (B'+C'+D').(A'+B')$$

$$F = x'y' + x'z' = x'(y'+z')$$