Лекция А2 Конечые автоматы

Пузаренк

ε-НКА: основные сведения

НКА:

Лекция А2 Конечые автоматы

Вадим Пузаренко

15 сентября 2023 г.

Лекция А2 Конечые автоматы

Вадим Пузаренко

ε-НКА: основные сведения

НКА: основные сведения Формально любой ε -переход не увеличивает временную сложность, поскольку для "считывания" пустого слова не требуется дополнительных усилий. В связи с этим возникает вопрос, имеется ли возможность построить недетерминированный конечный автомат, не использующий ε -переходов? Если да, то какие усилия для этого потребуются и чем придётся пожертвовать?

Пузарени

ε-НКА: основные сведения

основные сведения

Теорема А2.1.

Для любого ε -HKA $\mathfrak A$ существует ε -HKA $\mathfrak A'$, не содержащий ε -переходов, для которого имеет место $\mathrm L(\mathfrak A)=\mathrm L(\mathfrak A').$

Лекция А2 Конечые автоматы

Вадим Пузаренко

ε-НКΑ: основные сведения

НКА: основные сведения

Теорема А2.1.

Для любого ε -НКА $\mathfrak A$ существует ε -НКА $\mathfrak A'$, не содержащий ε -переходов, для которого имеет место $\mathrm L(\mathfrak A)=\mathrm L(\mathfrak A')$.

Доказательство.

Покажем теперь, что $L(\mathfrak{A}) = L(\mathfrak{A}')$.

Пусть задан ε -НКА $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$. На множестве Q определим отношение предпорядка следующим образом: $q_0 riangleq q_1$, если и только если найдётся последовательность $q_0=r_0, r_1, \ldots, r_n=q_1$ состояний такая, что $r_{i+1}\in\delta(r_i,\varepsilon)$ для всех i, $0\leqslant i< n$, для некоторого $n\in\omega$. Далее, определим автомат $\mathfrak{A}'=(Q;\Sigma;\delta',Q_0,F')$ так, что $\delta'(q,a)=\bigcup\{\delta(q',a)\mid q\trianglelefteq q'\}$ для всех $q\in Q$ и $a\in\Sigma$ и $F'=\{q\mid q\trianglelefteq q'$ для некоторого $q'\in F\}$.

Лекция А2 Конечые автоматы

Вадим Пузаренко

ε-НКΑ: основные сведения

НКА: основные сведения

Доказательство (продолжение).

 $L(\mathfrak{A}')\subseteq L(\mathfrak{A})$. Пусть $\alpha=w_1w_2\ldots w_n\in L(\mathfrak{A}')$; тогда найдётся последовательность r_0, r_1, \ldots, r_n состояний, для которой выполняется следующее: $r_0 \in Q_0$, $r_n \in F'$ и, к тому же, $r_{i+1} \in \delta'(r_i, w_{i+1})$ для всех $i, 0 \leq i < n$, где $n \in \omega$. Так как $r_{i+1} \in \delta'(r_i, w_{i+1})$, существует последовательность $r_i = s_i^0, s_i^1, \ldots,$ $s_i^{k_i}$ состояний такая, что $s_i^{j+1} \in \delta(s_i^j, \varepsilon)$ (это означает, что $r_i \unlhd s_i^{k_i}$) и, к тому же, $r_{i+1} \in \delta(s_i^{k_i}, w_{i+1})$, где $0 \le i < n$. Так как $r_n \in F'$, существует последовательность $r_n = s_n^0, s_n^1, \ldots, s_n^{k_n}$ состояний такая, что $s_n^{i+1} \in \delta(s_n^i, \varepsilon)$ для всех $i, 0 \leqslant i < n$ (снова это означает, что $r_n \leq s_n^{k_n}$), и, к тому же, $s_n^{k_n} \in F$. Тем самым, последовательность s_0^0 , s_0^1 , ..., $s_0^{k_0}$, s_1^0 , s_1^1 , ..., $s_1^{k_1}$, ..., s_n^0 , s_n^1 , ..., $s_n^{k_n}$ состояний удовлетворяет условиям определения для $\alpha = w_1 w_2 \dots w_n \in L(\mathfrak{A}).$

Лекция А2 Конечые автоматы

Вадим Пузаренко

ε-НКА: основные сведения

НКА: основные сведения Доказательство (окончание).

 $\mathbf{L}(\mathfrak{A})\subseteq \mathbf{L}(\mathfrak{A}')$. Пусть $\alpha=w_1w_2\dots w_n\in \Sigma^*$ таково, что $\alpha\in \mathbf{L}(\mathfrak{A})$, и пусть $r_0^0,\,r_0^1,\,\dots,\,r_0^{k_0},\,r_1^0,\,r_1^1,\,\dots,\,r_1^{k_1},\,\dots,\,r_n^0,\,r_n^1,\,\dots,\,r_n^{k_n}$ — последовательность состояний из определения распознавания слова α на ε -НКА \mathfrak{A} . Далее, из определения отношения \unlhd на словах вытекает, что $r_i^0\unlhd r_i^{k_i}$ для всех $i,\,0\leqslant i\leqslant n$. Следовательно, $r_{i+1}^0\in \delta'(r_i^0,w_{i+1})$ и $r_n^0\in F'$. Таким образом, $\alpha\in \mathbf{L}(\mathfrak{A}')$.

Лекция A2 Конечые

Вадим Пузаренко

ε-НКΑ: основные сведения

НКА: основные сведения

Доказательство (окончание).

 $\mathbf{L}(\mathfrak{A})\subseteq \mathbf{L}(\mathfrak{A}')$. Пусть $\alpha=w_1w_2\dots w_n\in \Sigma^*$ таково, что $\alpha\in \mathbf{L}(\mathfrak{A})$, и пусть $r_0^0,\,r_0^1,\,\dots,\,r_0^{k_0},\,r_1^0,\,r_1^1,\,\dots,\,r_1^{k_1},\,\dots,\,r_n^0,\,r_n^1,\,\dots,\,r_n^{k_n}$ — последовательность состояний из определения распознавания слова α на ε -НКА \mathfrak{A} . Далее, из определения отношения \unlhd на словах вытекает, что $r_i^0\unlhd r_i^{k_i}$ для всех $i,\,0\leqslant i\leqslant n$. Следовательно, $r_{i+1}^0\in \delta'(r_i^0,w_{i+1})$ и $r_n^0\in F'$. Таким образом, $\alpha\in \mathbf{L}(\mathfrak{A}')$.

Замечание А2.1.

Трансформация, описанная в теореме A2.1, имеет следующую сложность: количество состояний сохраняется (обозначим его через n(Q)); если в $\mathfrak A$ количество стрелок в переходах, соответствующих буквам из Σ , равнялось n, то количество стрелок в автомате $\mathfrak A'$ можно оценить числом $n' \leqslant n(Q) \cdot n$, причём данная оценка является точной (почему?)

НКА: определение

Лекция А2 Конечые автоматы

Вадим Пузаренко

ε-НКΑ: основные сведения

НКА: основные сведения Обычно в литературе под недетерминированным конечным автоматом понимается конечный автомат с единственным начальным состоянием, не содержащий ε -переходов. Здесь будут рассматриваться конечные автоматы, имеющие любое непустое множество начальных состояний.

НКА: определение

Вадим Пузаренко

ε-НКА: основные сведения

НКА: основные сведения Обычно в литературе под недетерминированным конечным автоматом понимается конечный автомат с единственным начальным состоянием, не содержащий ε -переходов. Здесь будут рассматриваться конечные автоматы, имеющие любое непустое множество начальных состояний.

Определение А2.1.

Двухосновная структура $\mathfrak{A} = (Q; \Sigma; \delta, Q_0, F)$ называется **недетерминированным конечным автоматом (НКА)**, если она удовлетворяет следующим условиям:

- $Q \neq \varnothing$ конечное множество состояний;
- $\Sigma \neq \emptyset$ конечный алфавит;
- $Q \cap \Sigma = \emptyset$:
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ функция перехода;
- $\varnothing \neq Q_0 \subseteq Q$ множество начальных состояний;
- $F \subseteq Q$ множество конечных состояний.

Способы задания НКА

Лекция A2 Конечые

Вадим Пузаренко

 $arepsilon ext{-} \mathsf{HKA}$: основные сведения

НКА: основные сведения

Графический.

Самый наглядный, но не всегда удобный для практических целей. Любой НКА может быть представлен в виде конечного ориентированного помеченного графа, возможно, с петлями, в котором из вершины, обозначающей состояние, исходит стрелка, помеченная буквой алфавита Σ , согласно его функции перехода. В отличие от ДКА, количество стрелок, помеченных буквой из Σ , не обязано равняться единице (оно может равняться и нулю). При этом помечаются также и вершины этого графа для того, чтобы можно было отличить начальные (ещё одно отличие!!!), а также конечные состояния от остальных.

Способы задания НКА

Лекция A2 Конечые

Вадим Пузаренко

 $arepsilon ext{-} \mathsf{HKA}$: основные сведения

НКА: основные сведения

Графический.

Самый наглядный, но не всегда удобный для практических целей. Любой НКА может быть представлен в виде конечного ориентированного помеченного графа, возможно, с петлями, в котором из вершины, обозначающей состояние, исходит стрелка, помеченная буквой алфавита Σ , согласно его функции перехода. В отличие от ДКА, количество стрелок, помеченных буквой из Σ , не обязано равняться единице (оно может равняться и нулю). При этом помечаются также и вершины этого графа для того, чтобы можно было отличить начальные (ещё одно отличие!!!), а также конечные состояния от остальных.

Табличный.

Любой НКА однозначно задаётся таблицей, описывающей функцию перехода, в которой определённым образом выделяются начальные, а также конечные состояния.

НКА: пример

Лекция А2 Конечые автоматы

Пузаренк

ε-НКА: основные сведения

НКА: основные сведения

Пример А2.1.

	0	1
$\triangleright q_0$	$\{q_0,q_1\}$	$\{q_0\}$
q_1	$\{q_{2}\}$	Ø
q 2*	Ø	Ø

Как работает НКА?

Лекция A2 Конечые

Вадим Пузаренко

ε-НКА: основные сведения

НКА: основные сведения Пусть заданы недетерминированный конечный автомат $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$ и слово $\alpha=a_1a_2\dots a_n$, где $n\in\omega$. Для того, чтобы переработать данное слово на заданном автомате, необходимо проделать следующую процедуру:

- $t=\mathbf{0}$: в момент $t=\mathbf{0}$ находимся в одном из состояний из Q_0 ;
- $t\mapsto t+1$: предположим, что в момент времени t находимся в состоянии q(t); при этом переработано слово $a_1a_2\dots a_t$; тогда в момент t+1 мы попадаем в состояние $q(t+1)\in \delta(q(t),a_{t+1})$;
- Завершение. Если после полной переработки слова α мы попадаем в конечное состояние, а именно, $q(n) \in F$, то слово α распознается автоматом \mathfrak{A} ; если никакая последовательность не приводит в конечное состояние, то слово α им не распознается.

НКА: распознаваемые слова

Лекция А2 Конечые автоматы

Вадим Пузаренко

є-НКА: основные сведения

НКА: основные сведения

Определение А2.2.

Пусть задан НКА $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$. Пусть также $\alpha=w_1w_2\dots w_n\in\Sigma^*$ $(n\in\omega)$. Будем говорить, что слово α распознаётся НКА \mathfrak{A} , если найдутся состояния $r_0,\,r_1,\,\dots,\,r_n\in Q$, удовлетворяющие следующим условиям:

- $r_0 \in Q_0$;
- $r_{i+1} \in \delta(r_i, w_{i+1}), \ 0 \leqslant i < n;$
- $r_n \in F$.

НКА: распознаваемые слова

Лекция А2 Конечые автоматы

Вадим Пузаренко

ε-НКА: основные сведения

НКА: основные сведения

Определение А2.2.

Пусть задан НКА $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$. Пусть также $\alpha=w_1w_2\dots w_n\in\Sigma^*$ $(n\in\omega)$. Будем говорить, что слово α распознаётся НКА \mathfrak{A} , если найдутся состояния $r_0,\,r_1,\,\dots,\,r_n\in Q$, удовлетворяющие следующим условиям:

- $r_0 \in Q_0$;
- $r_{i+1} \in \delta(r_i, w_{i+1}), \ 0 \leqslant i < n;$
- $r_n \in F$.

Определение А2.3.

Язык, распознаваемый НКА \mathfrak{A} , — это $L(\mathfrak{A}) = \{ \alpha \in \Sigma^* \mid \alpha \text{ распознаётся НКА } \mathfrak{A} \}.$

Предложение А2.1.

Для любого $lpha\in \Sigma^*$ язык $\{lpha\}$ распознаваем некоторым НКА.

основные сведения

НКА: основные сведения

Лекция A2 Конечые автоматы

Вадим Пузаренко

ε-НКА: основные сведения

НКА: основные сведения

Предложение А2.1.

Для любого $\alpha \in \Sigma^*$ язык $\{\alpha\}$ распознаваем некоторым НКА.

Доказательство.

Пусть $\alpha=w_1w_2\dots w_n\in \Sigma^*$ $(n\in\omega)$; определим автомат $\mathfrak{A}=(Q;\Sigma;\delta,\{q_0\},F)$ следующим образом:

- $Q = \{q_0, q_1, \ldots, q_n\};$
- $F = \{q_n\}$;
- $\delta = \{((q_i, w_{i+1}), \{q_{i+1}\}) \mid 0 \le i < n\} \cup \{((q_i, a), \varnothing) \mid a \in \Sigma \setminus \{w_{i+1}\}, 0 \le i < n\} \cup \{((q_n, a), \varnothing) \mid a \in \Sigma\}.$

Так как последовательность q_0, q_1, \ldots, q_n состояний удовлетворяет условиям определения распознавания слова α в автомате \mathfrak{A} , имеем $\alpha \in \mathrm{L}(\mathfrak{A})$.

Лекция А2 Конечые автоматы Вадим

-HKA:

основные сведения

НКА: основные сведения

Доказательство (окончание).

Остаётся теперь только показать, что $\beta \not\in \mathrm{L}(\mathfrak{A})$ при $\beta \in \Sigma^* \setminus \{\alpha\}$. Разберем несколько случаев.

Лекция А2 Конечые автоматы

Вадим Пузаренко

ε-НКА: основные сведения

НКА: основные сведения

Доказательство (окончание).

Остаётся теперь только показать, что $\beta \not\in \mathrm{L}(\mathfrak{A})$ при $\beta \in \Sigma^* \setminus \{\alpha\}$. Разберем несколько случаев.

 $eta \sqsubseteq_{
m beg} lpha$. В этом случае единственной последовательностью состояний для считывания слова eta будет $q_0, q_1, \ldots, q_{{
m lh}(eta)},$ причём ${
m lh}(eta) < n$; в частности, $q_{{
m lh}(eta)}
ot\in \{q_n\} = F$. Таким образом, $eta \not\in {
m L}(\mathfrak{A})$.

Лекция А2 Конечые автоматы

Вадим Пузаренко

ε-НКА: основные сведения

НКА: основные сведения

Доказательство (окончание).

Остаётся теперь только показать, что $\beta \notin \mathrm{L}(\mathfrak{A})$ при $\beta \in \Sigma^* \setminus \{\alpha\}$. Разберем несколько случаев.

- $eta \sqsubseteq_{
 m beg} lpha$. В этом случае единственной последовательностью состояний для считывания слова eta будет $q_0, q_1, \ldots, q_{{
 m lh}(eta)},$ причём ${
 m lh}(eta) < n$; в частности, $q_{{
 m lh}(eta)}
 ot\in \{q_n\} = F$. Таким образом, $eta
 ot\in {
 m L}(\mathfrak{A})$.
- $eta
 otin begin{align*} eta & \square_{\mathrm{beg}} \ lpha. \end{array}$ Пусть γ слово наибольшей длины, для которого выполняются соотношения $\gamma \sqsubseteq_{\mathrm{beg}} \ lpha$ и $\gamma \sqsubseteq_{\mathrm{beg}} \ eta. \\ \ & \square_{\mathrm{ora}} \ eta = \gamma \hat{\ }_{1} \ \text{для некоторого} \ eta_{1} \neq \varepsilon \ \text{(скажем}, \\ \ eta_{1} = \hat{\ }_{2} \hat{\ }_{2}). \end{array}$ Как и ранее, единственной считывающей последовательностью состояний слова γ будет $q_{0}, \ q_{1}, \ldots, \ q_{\mathrm{lh}(\gamma)}.$ Из того, что $\beta \not\sqsubseteq_{\mathrm{beg}} \ lpha$, вытекает, что $\gamma \hat{\ }_{2} \not\sqsubseteq_{\mathrm{beg}} \ lpha$; следовательно, $\delta(q_{\mathrm{lh}(\gamma)}, a) = \varnothing$. Таким образом, $\beta \not\in \mathrm{L}(\mathfrak{A}).$

Лекция А2 Конечые автоматы

Вадим Пузаренко

ε-НКΑ: основные сведения

НКА: основные сведения

Теорема А2.2.

Если языки L_1 и L_2 конечного алфавита $\Sigma \neq \varnothing$ распознаются некоторыми НКА, то язык $L_1 \cup L_2$ также распознаётся некоторым НКА.

Лекция A2 Конечые

Вадим Пузаренко

 $arepsilon ext{-} \mathsf{HKA}$: основные сведения

НКА: основные сведения

Теорема А2.2.

Если языки L_1 и L_2 конечного алфавита $\Sigma \neq \varnothing$ распознаются некоторыми НКА, то язык $L_1 \cup L_2$ также распознаётся некоторым НКА.

Доказательство.

Пусть недетерминированные конечные автоматы $\mathfrak{A}_1=(Q_1;\Sigma;\delta_1,Q_0^1,F_1)$ и $\mathfrak{A}_2=(Q_2;\Sigma;\delta_2,Q_0^2,F_2)$ таковы, что $L_1=\mathrm{L}(\mathfrak{A}_1)$ и $L_2=\mathrm{L}(\mathfrak{A}_2)$. Без ограничения общности, можно считать, что $Q_1\cap Q_2=\varnothing$. Положим $\mathfrak{A}'=(Q_1\cup Q_2;\Sigma;\delta_1\cup\delta_2,Q_0^1\cup Q_0^2,F_1\cup F_2)$ и докажем, что $\mathrm{L}(\mathfrak{A}')=L_1\cup L_2$.

Лекция А2 Конечые автоматы

Вадим Пузаренко

 $arepsilon ext{-} \mathsf{HKA}$: основные сведения

НКА: основные сведения

Доказательство (окончание).

 $L_1 \cup L_2 \subseteq \mathrm{L}(\mathfrak{A}')$. Пусть $\alpha = w_1 w_2 \dots w_n \in L_1 \cup L_2$; разберём только случай, когда $\alpha \in L_1$, — случай, когда $\alpha \in L_2$, рассматривается аналогично. Пусть последовательность q_0, q_1, \dots, q_n состояний свидетельствует о том, что $\alpha \in L_1$ в автомате \mathfrak{A}_1 . Тогда $q_0 \in Q_0^1 \subseteq Q_0^1 \cup Q_0^2, \ q_{i+1} \in \delta_1(q_i, w_{i+1}) \subseteq (\delta_1 \cup \delta_2)(q_i, w_{i+1})$ для всех $i, 0 \leqslant i < n$, и, к тому же, $q_n \in F_1 \subseteq F_1 \cup F_2$. Таким образом, $\alpha \in \mathrm{L}(\mathfrak{A}')$.

Лекция A2 Конечые автоматы

Вадим Пузаренко

 ε -НКА: основные сведения

НКА: основные сведения

Доказательство (окончание).

 $L_1 \cup L_2 \subseteq \mathrm{L}(\mathfrak{A}')$. Пусть $\alpha = w_1 w_2 \dots w_n \in L_1 \cup L_2$; разберём только случай, когда $\alpha \in L_1$, — случай, когда $\alpha \in L_2$, рассматривается аналогично. Пусть последовательность q_0, q_1, \dots, q_n состояний свидетельствует о том, что $\alpha \in L_1$ в автомате \mathfrak{A}_1 . Тогда $q_0 \in Q_0^1 \subseteq Q_0^1 \cup Q_0^2, \ q_{i+1} \in \delta_1(q_i, w_{i+1}) \subseteq (\delta_1 \cup \delta_2)(q_i, w_{i+1})$ для всех $i, 0 \leqslant i < n$, и, к тому же, $q_n \in F_1 \subseteq F_1 \cup F_2$. Таким образом, $\alpha \in \mathrm{L}(\mathfrak{A}')$.

 $\mathbf{L}(\mathfrak{A}')\subseteq L_1\cup L_2$. Пусть $\alpha=w_1w_2\dots w_n\in \mathbf{L}(\mathfrak{A}')$; тогда найдётся последовательность $q_0,\ q_1,\dots,q_n$ состояний из $Q_1\cup Q_2$ такая, что $q_0\in Q_0^1\cup Q_0^2,\ q_{i+1}\in (\delta_1\cup\delta_2)(q_i,w_{i+1})$ и, к тому же, $q_n\in F_1\cup F_2$. Пусть для определённости $q_0\in Q_0^2$. Так как $Q_1\cap Q_2=\varnothing$ и $(\delta_1\cup\delta_2)\upharpoonright (Q_2\times\Sigma)=\delta_2$, приходим к тому, что $q_i\in Q_2,\ q_{i+1}\in\delta_2(q_i,w_{i+1})$ для всех $i,\ 0\leqslant i< n$, и, к тому же, $q_n\in F_2$. Таким образом, $\alpha\in \mathbf{L}(\mathfrak{A}_2)\subset L_1\cup L_2$.

Лекция А2 Конечые автоматы

Вадим Пузаренко

 ε -НКА: основные сведения

НКА: основные сведения

Замечание А2.2.

Трансформация, описанная в теореме A2.2, имеет следующую сложность: количество состояний и стрелок в автомате \mathfrak{A}' есть сумма соответственно количеств состояний и количеств стрелок из автоматов \mathfrak{A}_1 и \mathfrak{A}_2 .

Лекция A2 Конечые

Вадим Пузаренко

arepsilon-НКА: основные сведения

НКА: основные сведения

Замечание А2.2.

Трансформация, описанная в теореме A2.2, имеет следующую сложность: количество состояний и стрелок в автомате \mathfrak{A}' есть сумма соответственно количеств состояний и количеств стрелок из автоматов \mathfrak{A}_1 и \mathfrak{A}_2 .

Следствие А2.1.

Объединение конечного числа языков, распознаваемых недетерминированными конечными автоматами, является языком, распознаваемым некоторым НКА.

Лекция А2 Конечые автоматы Вадим

ε-НΚΑ: основные

НКА: основные сведения

Замечание А2.2.

Трансформация, описанная в теореме A2.2, имеет следующую сложность: количество состояний и стрелок в автомате \mathfrak{A}' есть сумма соответственно количеств состояний и количеств стрелок из автоматов \mathfrak{A}_1 и \mathfrak{A}_2 .

Следствие А2.1.

Объединение конечного числа языков, распознаваемых недетерминированными конечными автоматами, является языком, распознаваемым некоторым НКА.

Доказательство.

Проводится индукцией по количеству n языков, распознаваемых недетерминированными конечными автоматами, причём база индукции описывается в предложении A1.2(1), теоремах A1.3, A2.1, а индукционный шаг — в теореме A2.2.

НКА: конечные языки

Лекция А2 Конечые автоматы

Вадим Пузаренк

ε-НКА: основные сведения

НКА: основные сведения Следствие А2.2.

Любой конечный язык распознаваем некоторым НКА.

НКА: конечные языки

Лекция А2 Конечые автоматы

Вадим Пузаренк

ε-НКΑ: основные сведения

НКА: основные сведения

Следствие А2.2.

Любой конечный язык распознаваем некоторым НКА.

Доказательство.

Непосредственно следует из следствия A2.1 и предложения A2.1.

Лекция А2 Конечые автоматы

Пузаренко

ε-НКА: основные сведения

НКА: основные сведения

Теорема А2.3.

Язык L распознаваем некоторым HKA, если и только если его обращение L^R также распознаваемо некоторым HKA.

Лекция A2 Конечые

Вадим Пузаренко

ε-НКΑ: основные сведения

НКА: основные сведения

Теорема А2.3.

Язык L распознаваем некоторым НКА, если и только если его обращение L^R также распознаваемо некоторым НКА.

Доказательство.

 (\Rightarrow) Разберём только случай, когда $L \neq \varnothing$: случай, когда $L = \varnothing$, очевиден, поскольку L^R также пуст. Пусть НКА $\mathfrak{A} = (Q; \Sigma; \delta, Q_0, F)$ таков, что $L = \mathrm{L}(\mathfrak{A})$. Покажем, что $L^R = \mathrm{L}(\mathfrak{A}')$ для автомата $\mathfrak{A}' = (Q; \Sigma; \delta', F, Q_0)$, где $q \in \delta'(q', a) \Leftrightarrow q' \in \delta(q, a)$ для всех $q, q' \in Q$ и $q \in \Sigma$. (Другими словами, в автомате все стрелки меняем на противоположные, начальные состояния — на конечные, а конечные состояния — на начальные.)

Лекция А2 Конечые автоматы

Вадим Пузаренко

ε-НКА: основные сведения

НКА: основные сведения

Теорема А2.3.

Язык L распознаваем некоторым HKA, если и только если его обращение L^R также распознаваемо некоторым HKA.

Доказательство.

(\Rightarrow) Разберём только случай, когда $L \neq \varnothing$: случай, когда $L = \varnothing$, очевиден, поскольку L^R также пуст. Пусть НКА $\mathfrak{A} = (Q; \Sigma; \delta, Q_0, F)$ таков, что $L = \mathrm{L}(\mathfrak{A})$. Покажем, что $L^R = \mathrm{L}(\mathfrak{A}')$ для автомата $\mathfrak{A}' = (Q; \Sigma; \delta', F, Q_0)$, где $q \in \delta'(q', a) \Leftrightarrow q' \in \delta(q, a)$ для всех $q, q' \in Q$ и $a \in \Sigma$. (Другими словами, в автомате все стрелки меняем на противоположные, начальные состояния — на конечные, а конечные состояния — на начальные.)

 $L(\mathfrak{A}')\subseteq L^R$. Пусть $\alpha=w_1w_2\dots w_n\in L(\mathfrak{A}')$; тогда существует последовательность $q_0,\,q_1,\,\dots,\,q_n$ состояний такая, что $q_0\in F$, $q_n\in Q_0$ и $q_{i+1}\in \delta'(q_i,w_{i+1})$ для всех $i,\,0\leqslant i< n$.

Лекция А2 Конечые автоматы

Вадим Пузаренко

ε-НКА: основные сведения

НКА: основные сведения

Доказательство (окончание).

Из определения следует, что $q_i \in \delta(q_{i+1}, w_{i+1})$ и, следовательно, $\alpha^R = w_n \dots w_2 w_1 \in \mathrm{L}(\mathfrak{A}) = L$; таким образом, $\alpha = (\alpha^R)^R \in L^R$.

Лекция А2 Конечые автоматы

Вадим Пузаренко

 $\varepsilon ext{-}HKA:$ основные сведения

НКА: основные сведения

Доказательство (окончание).

Из определения следует, что $q_i \in \delta(q_{i+1}, w_{i+1})$ и, следовательно, $\alpha^R = w_n \dots w_2 w_1 \in \mathrm{L}(\mathfrak{A}) = L$; таким образом, $\alpha = (\alpha^R)^R \in L^R$. $L^R \subseteq \mathrm{L}(\mathfrak{A}')$. Пусть $\alpha = w_1 w_2 \dots w_n \in L^R$, т. е. $w_n \dots w_2 w_1 \in L$; тогда существует последовательность q_0, q_1, \dots, q_n состояний такая, что $q_0 \in Q_0, q_n \in F$ и $q_{i+1} \in \delta(q_i, w_{n-i})$ для всех i, $0 \leqslant i < n$. Из определения следует, что $q_i \in \delta'(q_{i+1}, w_{n-i})$ и, следовательно, $\alpha = w_1 w_2 \dots w_n \in \mathrm{L}(\mathfrak{A}')$.

Лекция A2 Конечые автоматы

Вадим Пузаренко

 $\varepsilon ext{-}HKA:$ основные сведения

НКА: основные сведения

Доказательство (окончание).

Из определения следует, что $q_i \in \delta(q_{i+1}, w_{i+1})$ и, следовательно, $\alpha^R = w_n \dots w_2 w_1 \in \mathrm{L}(\mathfrak{A}) = L$; таким образом, $\alpha = (\alpha^R)^R \in L^R$. $L^R \subseteq \mathrm{L}(\mathfrak{A}')$. Пусть $\alpha = w_1 w_2 \dots w_n \in L^R$, т. е. $w_n \dots w_2 w_1 \in L$; тогда существует последовательность q_0, q_1, \dots, q_n состояний такая, что $q_0 \in Q_0, q_n \in F$ и $q_{i+1} \in \delta(q_i, w_{n-i})$ для всех i, $0 \leqslant i < n$. Из определения следует, что $q_i \in \delta'(q_{i+1}, w_{n-i})$ и, следовательно, $\alpha = w_1 w_2 \dots w_n \in \mathrm{L}(\mathfrak{A}')$. (\Leftarrow) Если L^R распознаваем некоторым НКА, то, по доказанному, $(L^R)^R = L$ также распознаваем некоторым НКА.

Лекция А2 Конечые автоматы

Вадим Пузаренко

arepsilon-НКА: основные сведения

НКА: основные сведения

Доказательство (окончание).

Из определения следует, что $q_i \in \delta(q_{i+1}, w_{i+1})$ и, следовательно, $\alpha^R = w_n \dots w_2 w_1 \in \mathrm{L}(\mathfrak{A}) = L$; таким образом, $\alpha = (\alpha^R)^R \in L^R$. $L^R \subseteq \mathrm{L}(\mathfrak{A}')$. Пусть $\alpha = w_1 w_2 \dots w_n \in L^R$, т. е. $w_n \dots w_2 w_1 \in L$; тогда существует последовательность q_0, q_1, \dots, q_n состояний такая, что $q_0 \in Q_0, q_n \in F$ и $q_{i+1} \in \delta(q_i, w_{n-i})$ для всех i, $0 \leqslant i < n$. Из определения следует, что $q_i \in \delta'(q_{i+1}, w_{n-i})$ и, следовательно, $\alpha = w_1 w_2 \dots w_n \in \mathrm{L}(\mathfrak{A}')$. (\Leftarrow) Если L^R распознаваем некоторым НКА, то, по доказанному, $(L^R)^R = L$ также распознаваем некоторым НКА.

Замечание А2.3.

Трансформация, описанная в теореме A2.3, сохраняет как количество состояний, так и количество стрелок.

Лекция А2 Конечые автоматы

Вадим Пузаренко

 $arepsilon ext{-} \mathsf{HKA} : \ \mathsf{ochoshise} \ \mathsf{cseqehus}$

НКА: основные сведения

Теорема А2.4.

Если языки L_1 и L_2 распознаваемы некоторыми НКА, то их конкатенация L_1L_2 также распознаваема некоторым НКА.

Теорема А2.4.

Если языки L_1 и L_2 распознаваемы некоторыми НКА, то их конкатенация L_1L_2 также распознаваема некоторым НКА.

Доказательство.

Пусть НКА $\mathfrak{A}_1=(Q_1;\Sigma;\delta_1,Q_0^1,F_1)$ и $\mathfrak{A}_2=(Q_2;\Sigma;\delta_2,Q_0^2,F_2)$ таковы, что $L_1=\mathrm{L}(\mathfrak{A}_1)$ и $L_2=\mathrm{L}(\mathfrak{A}_2)$. Будем считать, что $Q_1\cap Q_2=\varnothing$. По теореме A2.1, достаточно построить ε -НКА, распознающий язык L_1L_2 . Определим $\mathfrak{A}'=(Q_1\cup Q_2;\Sigma;\delta',Q_0^1,F_2)$ так, что $\delta'=\delta_1\cup\delta_2\cup\{((q,\varepsilon),q')\mid q\in F_1,\,q'\in Q_0^2\}\cup\{((q,\varepsilon),\varnothing)\mid q\not\in F_1\};$ докажем, что $\mathrm{L}(\mathfrak{A}')=L_1L_2$.

Лекция А2 Конечые автоматы

Вадим Пузаренко

ε-НКА: основные сведения

НКА: основные сведения

Доказательство (продолжение).

 $L(\mathfrak{A}')\subseteq L_1L_2$. Пусть $\alpha=w_1w_2\ldots w_n\in L(\mathfrak{A}')$; тогда существуют последовательность $q_0, q_1, ..., q_m \ (m \geqslant n)$ и $0 \le i_0 < i_1 < \ldots < i_{n-1} < m$, удовлетворяющие следующим условиям: $q_0 \in Q_0^1$, $q_m \in F_2$ и $q_{i,+1} \in \delta'(q_{i}, w_{i+1})$ $(0 \leqslant i < n)$, а также $q_{k+1} \in \delta'(q_k, \varepsilon)$ $(0 \leqslant k < m, k \neq i_i, 0 \leqslant j < n)$. Так как $Q_1 \cap Q_2 = \emptyset$, должно выполняться m > n. Из того, что $\delta'(q,\varepsilon) \subseteq Q_2 \; (q \in Q_1 \cup Q_2)$ и $\delta'(q',\varepsilon) = \emptyset \; (q' \in Q_2)$, вытекает $m\leqslant n+1$. Пусть k_0 таково, что $q_{k_0+1}\in\delta'(q_{k_0},\varepsilon)$; тогда $q_{k_0}\in F_1$ и $q_{i} \in Q_{1} \ (0 \leqslant j \leqslant k_{0})$; следовательно, $lpha_1=w_1w_2\ldots w_{k_0}\in\mathrm{L}(\mathfrak{A}_1)=L_1$. Кроме того, $q_{k_0+1}\in Q_0^2$ и $q_i\in Q_2$ $(k_0 + 1 \le i \le n + 1)$; следовательно, $\alpha_2 = w_{k_0+1} \dots w_n \in \mathrm{L}(\mathfrak{A}_2) = L_2$. Таким образом, $\alpha = \alpha_1 \hat{\alpha}_2 \in L_1 L_2$

Лекция А2 Конечые автоматы

Вадим Пузаренко

ε-НКА: основные сведения

НКА: основные сведения

Доказательство (окончание).

 $L_1L_2\subseteq L(\mathfrak{A}')$. Пусть $u_1u_2\dots u_m\in L_1$ и $v_1v_2\dots v_n\in L_2$; тогда существуют последовательности $r_0,\ r_1,\ \dots,\ r_m\in Q_1$ и $s_0,\ s_1,\ \dots,\ s_n\in Q_2$, удовлетворяющие следующим условиям: $r_0\in Q_0^1$, $s_0\in Q_0^2$, $r_m\in F_1$, $s_n\in F_2$ и, к тому же, $r_{i+1}\in \delta_1(r_i,u_{i+1})$ $(0\leqslant i< m)$, $s_{j+1}\in \delta_2(s_j,v_{j+1})$ $(0\leqslant j< n)$. Далее, имеем $s_0\in \delta'(r_m,\varepsilon)$ и, тем самым, $u_1u_2\dots u_mv_1v_2\dots v_n\in L(\mathfrak{A}')$.

Лекция А2 Конечые автоматы

Вадим Пузаренко

ε-НКА: основные сведения

НКА: основные сведения

Доказательство (окончание).

 $L_1L_2\subseteq L(\mathfrak{A}')$. Пусть $u_1u_2\dots u_m\in L_1$ и $v_1v_2\dots v_n\in L_2$; тогда существуют последовательности $r_0,\ r_1,\dots,\ r_m\in Q_1$ и $s_0,\ s_1,\dots,\ s_n\in Q_2$, удовлетворяющие следующим условиям: $r_0\in Q_0^1$, $s_0\in Q_0^2$, $r_m\in F_1,\ s_n\in F_2$ и, к тому же, $r_{i+1}\in \delta_1(r_i,u_{i+1})$ $(0\leqslant i< m),\ s_{j+1}\in \delta_2(s_j,v_{j+1})\ (0\leqslant j< n)$. Далее, имеем $s_0\in \delta'(r_m,\varepsilon)$ и, тем самым, $u_1u_2\dots u_mv_1v_2\dots v_n\in L(\mathfrak{A}')$.

Замечание А2.4.

Трансформация построения НКА без ε -переходов, описанная в теореме A2.4, имеет следующую сложность: количество состояний равняется $n(Q_1)+n(Q_2)$, а количество стрелок — $n'\leqslant n_1+n_2+n(Q_1)\cdot n_2$, причём данная оценка является точной. (см. теорему A2.1).

ε-НКΑ: основные

сведения НКА:

НКА: основные сведения Зачастую на практике необходимо, чтобы конечный автомат имел единственное начальное состояние. Следующая трансформация позволяет не только предполагать данное условие, но и при этом, что в начальное состояние вернуться уже не удастся.

Лекция А2 Конечые автоматы

Вадим Пузаренко

ε-НКΑ: основные сведения

НКА: основные сведения Зачастую на практике необходимо, чтобы конечный автомат имел единственное начальное состояние. Следующая трансформация позволяет не только предполагать данное условие, но и при этом, что в начальное состояние вернуться уже не удастся.

Теорема А2.5.

Для любого НКА $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$ существует НКА $\mathfrak{A}'=(Q';\Sigma;\delta',\{\overline{q}\},F')$ такой, что $\mathrm{L}(\mathfrak{A})=\mathrm{L}(\mathfrak{A}'),$ удовлетворяющий, к тому же, условию $\overline{q}\not\in\delta'(q,a)$ для всех $q\in Q'$ и $a\in\Sigma$.

Вадим Пузаренко

ε-НКΑ: основные сведения

НКА: основные сведения Зачастую на практике необходимо, чтобы конечный автомат имел единственное начальное состояние. Следующая трансформация позволяет не только предполагать данное условие, но и при этом, что в начальное состояние вернуться уже не удастся.

Теорема А2.5.

Для любого НКА $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$ существует НКА $\mathfrak{A}'=(Q';\Sigma;\delta',\{\overline{q}\},F')$ такой, что $\mathrm{L}(\mathfrak{A})=\mathrm{L}(\mathfrak{A}'),$ удовлетворяющий, к тому же, условию $\overline{q}\not\in\delta'(q,a)$ для всех $q\in Q'$ и $a\in\Sigma$.

<u>Док</u>азательство.

По теореме A2.1, достаточно построить ε -HKA \mathfrak{A}' , удовлетворяющий заключению теоремы. Определим $\mathfrak{A}' = (Q \cup \{\overline{q}\}; \Sigma; \delta', \{\overline{q}\}, F)$ так, что $\overline{q} \not\in Q$ и $\delta' = \delta \cup \{((\overline{q}, \varepsilon), Q_0)\} \cup \{((q, \varepsilon), \varnothing) \mid q \in Q\}$; докажем, что $L(\mathfrak{A}) = L(\mathfrak{A}')$.

Лекция А2 Конечые автоматы

Вадим Пузаренко

ε-НКА: основные сведения

НКА: основные сведения

Доказательство (окончание).

 ${
m L}({\mathfrak A})\subseteq {
m L}({\mathfrak A}').$ Пусть $lpha=w_1w_2\dots w_n\in {
m L}({\mathfrak A});$ тогда существует последовательность $q_0,\,q_1,\,\dots,\,q_n$ состояний такая, что $q_0\in Q_0,\,q_n\in F$ и, к тому же, $q_{i+1}\in \delta(q_i,w_{i+1})=\delta'(q_i,w_{i+1})\;(0\leqslant i< n).$ Так как $q_0\in Q_0=\delta'(\overline{q},\varepsilon)$, имеем $lpha\in {
m L}({\mathfrak A}')$ (следует рассмотреть последовательность $\overline{q},\,q_0,\,q_1,\,\dots,\,q_n$).

Лекция А2 Конечые автоматы

Вадим Пузаренко

ε-НКА: основные сведения

НКА: основные сведения

Доказательство (окончание).

 $q_n \in F$ и, к тому же, $q_{i+1} \in \delta(q_i, w_{i+1}) = \delta'(q_i, w_{i+1}) \ (0 \leqslant i < n)$. Так как $q_0 \in Q_0 = \delta'(\overline{q}, \varepsilon)$, имеем $\alpha \in L(\mathfrak{A}')$ (следует рассмотреть последовательность \overline{q} , q_0 , q_1 , ..., q_n). $L(\mathfrak{A}')\subseteq L(\mathfrak{A})$. Пусть $\alpha=w_1w_2\ldots w_n\in L(\mathfrak{A}')$; тогда существуют последовательность $r_0, r_1, \ldots, r_m \ (m > n)$ состояний и $0 \leqslant j_0 < j_1 < \ldots < j_n \leqslant m$ такие, что $r_0 = \overline{q}$, $r_m \in F$ и, к тому же, $r_{i,i+1} \in \delta'(r_i, w_{i+1}) = \delta(r_i, w_{i+1}) \ (0 \leqslant i < n), \ r_{k+1} \in \delta'(r_k, \varepsilon)$ $(0 \le k < m, k \ne j_i, 0 \le i < n)$. Из определения функции δ' перехода, а также из того, что $\mathfrak A$ не содержит ε -переходов, следует, что $r_1 \in Q_0 (= \delta'(r_0, \varepsilon))$ и m = n + 1. Тем самым, последовательность $r_1, r_2, \ldots, r_{n+1}$ свидетельствует о том, что $\alpha \in L(\mathfrak{A})$.

 $L(\mathfrak{A})\subseteq L(\mathfrak{A}')$. Пусть $\alpha=w_1w_2\ldots w_n\in L(\mathfrak{A})$; тогда существует

последовательность q_0, q_1, \ldots, q_n состояний такая, что $q_0 \in Q_0$,

Лекция А2 Конечые автоматы

Вадим Пузарени

ε-НКΑ: основные сведения

НКА: основные сведения

Замечание А2.5.

Трансформация, описанная в теореме A2.5, имеет сложность n(Q)+1 для количества состояний и $n'\leqslant 2\cdot n_1$ для количества стрелок, причём последняя оценка является точной (здесь n_1 — количество стрелок в автомате $\mathfrak A$).

Лекция А2 Конечые автоматы Вадим

ε-НКА: основные

сведения

НКА: основные сведения

Спасибо за внимание.