

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
21. Juli 2005 (21.07.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/066434 A1

(51) Internationale Patentklassifikation⁷: **E04G 17/06**

(21) Internationales Aktenzeichen: PCT/EP2004/013981

(22) Internationales Anmeldedatum:
8. Dezember 2004 (08.12.2004)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
10 2004 001 091.9 5. Januar 2004 (05.01.2004) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): PERI GMBH [DE/DE]; Rudolf-Diesel-Strasse, 89264 Weissenhorn (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): SCHWÖRER, Artur [DE/DE]; Am Waldblick 7, 89250 Senden (DE).

(74) Anwalt: MANITZ, FINSTERWALD & PARTNER GBR; Postfach 31 02 20, 80102 München (DE).

(81) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart*): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK,

[Fortsetzung auf der nächsten Seite]

(54) Title: FORMWORK SYSTEM

(54) Bezeichnung: SCHALUNGSSYSTEM

(57) Abstract: The invention relates to a formwork system which comprises formwork elements having opposite formwork interior surfaces, which can be interlinked at a distance to one another by means of formwork ties. Said formwork ties are constituted of a bolt element and two locking elements that are configured so as to be coupled to the bolt elements in the two distal areas thereof facing away from each other and that are adapted to transmit tensile forces from the formwork elements onto the bolt element. The formwork system is characterized in that the locking elements comprise coupling elements for transmitting pressure forces from the formwork elements onto the bolt element.

[Fortsetzung auf der nächsten Seite]

WO 2005/066434 A1

EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL,
PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI,
CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

— mit internationalem Recherchenbericht

(57) Zusammenfassung: Schalungssystem mit einander gegenüberliegende Schalungsinnenflächen aufweisenden Schalungselementen, welche mittels Schalungskerns beabstandet zueinander miteinander verbindbar sind, wobei ein Schalungssanker aus einem Bolzelement und zwei Arretierungselementen besteht, die in den beiden einander abgewandten Endbereichen des Bolzelements mit diesem koppelbar und zur Übertragung von Zugkräften von den Schalungselementen auf das Bolzelement ausgebildet sind. Dabei weisen die Arretierungselemente Koppelemente zur Übertragung von Druckkräften von den Schalungselementen auf das Bolzelement auf.

Schalungssystem

5

Die Erfindung betrifft ein Schalungssystem mit einander gegenüberliegenden Schalungsinnenflächen aufweisenden Schalungselementen, welche mittels Schalungsankern beabstandet zueinander miteinander verbindbar sind, wobei ein Schalungsanker aus einem Bolzelement und zwei Arrestierungselementen besteht, die in den beiden einander abgewandten Endbereichen des Bolzelements mit diesem koppelbar und zur Übertragung von Zugkräften von den Schalungselementen auf das Bolzelement ausgebildet sind.

10 15 Derartige Schalungssysteme sind aus dem Stand der Technik in verschiedenen Ausführungsformen bekannt. Sie werden auf Baustellen unterschiedlichster Größen eingesetzt, um bei der Erstellung von Stahlbeton-Rohbauten durch Schalungsflächen bzw. durch eine Innen- und eine Außenschalung begrenzte Volumina zu definieren, die anschließend mit flüssigem Beton ausgefüllt werden. Nach dem Erstarren des Betons werden die Schalungselemente dann wieder entfernt, woraufhin sie in der Regel für den Aufbau weiterer Schalungen wieder verwendbar sind.
20 Mit den genannten Schalungssystemen lassen sich beispielsweise Wände, Säulen, Fundamente, Schächte und dergleichen aus Beton und Stahlbeton erzeugen.
25

Bei den genannten Schalungssystemen ist es üblich, die die Innenschaltung bildenden Schalungselemente mit den die Außenschaltung bildenden Schalungselementen über Schalungsanker zu koppeln, die durch in den Schalungselementen vorhandene Ankerlöcher geführt und derart mit den

Schalungselementen verbunden werden, dass sich Innen- und Außen- schalung beim Einfüllen von Beton nicht auseinander bewegen können. Um eine derartige Bewegung zu verhindern, wird ein Schalungsanker von einem Bolzenelement und zwei Arretierungselementen gebildet, wobei 5 letztere, wie bereits erwähnt, zur Übertragung von Zugkräften von den Schalungselementen auf das Bolzenelement geeignet sind.

Nachteilig an den bekannten Schalungssystemen ist die Tatsache, dass die bisher verwendeten Schalungsanker in der Regel nicht dazu in der 10 Lage sind, zu verhindern, dass sich Schalungselemente der Innen- und Außenschalung durch entsprechende Krafteinwirkung, insbesondere beim Einfüllen von Beton, aufeinander zu bewegen, so dass eine letztlich zu erzeugende Wand nach Fertigstellung nicht in allen Bereichen die gewünschte Dicke besitzt.

15

Eine Aufgabe der Erfindung besteht darin, ein Schalungssystem der eingangs genannten Art derart weiterzubilden, dass zuverlässig verhindert wird, dass sich Innen- und Außenschalung insbesondere beim Einfüllen von Beton aufeinander zu bewegen.

20

Die genannte Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 und insbesondere dadurch gelöst, dass ein Schalungssystem der eingangs genannten Art so ausgebildet wird, dass die Arretierungs- elemente der Schalungsanker Koppelemente zur Übertragung von 25 Druckkräften von den Schalungselementen auf das Bolzenelement aufwei- sen.

Durch die Vorsehung dieser Koppelemente sind die Arretierungselemen- te nicht nur zur Übertragung von Zugkräften, sondern auch zur Übertra- 30 gung von Druckkräften von den Schalungselementen auf das Bolzenele-

ment geeignet. Auf diese Weise wird der durch die erfindungsgemäßen Schalungsanker definiert eingestellte Abstand zwischen den einander zugewandten Schalungsinnenflächen von Innenschalung und Außenschalung in beiden Richtungen fixiert, so dass sich dieser Abstand beim Einfüllen von Beton oder bei Einwirkung beliebiger anderer Kräfte weder vergrößern noch verkleinern kann. So wird sichergestellt, dass die zu erstellenden Betonwände in allen Bereichen die gewünschte und durch die Schalungsanker vorgegebene Dicke aufweisen.

- 5 10 Bevorzugt werden die einander gegenüberliegenden Schalungsinnenflächen der Innenschalung und der Außenschalung jeweils durch einen Verbund von einzelnen Schalungselementen gebildet. Dabei weist jeder Verbund von Schalungselementen jeweils insbesondere kreisrunde Ankerlöcher für die Aufnahme der Bolzenelemente der Schalungsanker auf.
- 15 20 Diese Ankerlöcher können beispielsweise im Bereich der Verbindungsstellen benachbarter, aneinander angrenzender Schalungselemente vorgesehen sein, so dass jedes Schalungselement in seinen Randbereichen beispielsweise halbkreisförmige Ankerhalblöcher aufweist, die gemeinsam mit halbkreisförmigen Ankerlöchern eines benachbarten Schalungselements vollständige Ankerlöcher bilden.

Die Arretierungselemente können jeweils eine mit der jeweiligen Außenseite der Schalungselemente zusammenwirkende Zugkraftübertragungsfläche aufweisen. Auf diese Weise lässt sich eine einfache Zugkraftübertragung von den Schalungselementen auf die Arretierungselemente erreichen, indem die Arretierungselemente jeweils so an den Außenseiten der Schalungselemente positioniert werden, dass sie mit ihren Zugkraftübertragungsflächen flächig an den genannten Außenseiten anliegen. In diesem Fall müssen dann die die Ankerlöcher umgebenden Bereiche der 25 30 Außenseiten der Schalungselemente zum Zusammenwirken mit den

Zugkraftübertragungsflächen der Arretierungselemente ausgebildet sein, was insbesondere durch eine ausreichende Stabilität der genannten Bereiche ermöglicht wird.

5 Besonders bevorzugt ist es, wenn an den Außenseiten der Schalungselemente Hinterschneidungen vorgesehen sind, welche in Wirkverbindung mit an den Koppelementen der Arretierungselemente vorgesehenen Druckkraftübertragungsflächen bringbar sind. Diese Hinterschneidungen können beispielsweise kostengünstig im Rahmen eines Strangpress-, Roll-
10 oder Walzverfahrens an Profilelementen vorgesehen werden, welche als Randbereiche der Schalungselemente eingesetzt werden. In diesem Fall erstrecken sich die Hinterschneidungen über zumindest im Wesentlichen die gesamte Höhe der Schalungselemente, so dass die genannte Wirkverbindung zwischen den Hinterschneidungen und den Koppelementen
15 grundsätzlich im gesamten Randbereich der Schalungselemente überall da möglich wird, wo Ankerlöcher vorgesehen sind.

Die an den Arretierungselementen vorgesehenen Koppelemente können im Querschnitt hakenförmig ausgebildet werden, so dass sie mit den
20 Hinterschneidungen der Schalungselemente verhakbar sind. Auf diese Weise lässt sich eine besonders einfache Wirkverbindung zwischen Koppelementen und Schalungselementen in kurzer Zeit herstellen. Alternativ könnte bei einer etwas verschlechterten Ausführungsform das Arretierungselement oder das Bolzelement auch mit dem Schalungselement
25 verschraubt werden. In diesem Fall würde das entsprechende Gewinde dann sowohl Zugkräfte als auch Druckkräfte von den Schalungselementen auf das Bolzelement übertragen. Das seitens der Arretierungselemente oder des Bolzelements vorhandene Gewinde würde in diesem Fall dann unter anderem das erfindungsgemäße Koppelement zur Übertra-

gung von Druckkräften von den Schalungselementen auf das Bolzenelement bilden.

Die Arretierungselemente weisen bevorzugt ein im Wesentlichen quaderförmiges Gehäuse auf, an welches das Koppelement angeformt ist. Dieses quaderförmige Gehäuse einschließlich des Koppelements kann beispielsweise mittels eines Strangpress-, Roll- oder Walzverfahrens als Meterware hergestellt werden, von welcher die einzelnen Gehäuse dann in der gewünschten Länge abgeschnitten werden können. In den Schnittbereichen sind die auf die genannte Weise hergestellten Gehäuse dann an zwei einander gegenüberliegenden Seiten offen.

Bevorzugt ist es, wenn das eine Arretierungselement unlösbar mit dem Bolzenelement verbunden ist, während das andere Arretierungselement lösbar mit dem Bolzenelement verbindbar ist. Hierdurch wird erreicht, dass der Monteur pro Schalungsanker lediglich zwei Teile, nämlich das mit dem einen Arretierungselement unlösbar verbundene Bolzenelement und das andere Arretierungselement, handhaben muss. Zur Montage kann das unlösbar mit dem Bolzenelement verbundene Arretierungselement ergriffen und das Bolzenelement durch die Ankerlöcher von Innen- und Außenschalung gesteckt werden. Anschließend kann dann an dem dem genannten Arretierungselement gegenüber liegenden Ende des Bolzenelements das andere Arretierungselement befestigt werden.

Besonders vorteilhaft ist es, wenn das Bolzenelement in dem mit ihm fest verbundenen Arretierungselement um seine Längsachse drehbar gelagert ist. Dabei kann das Bolzenelement auf der der Zugkraftübertragungsfläche abgewandten Seite aus dem mit ihm fest verbundenen Arretierungselement bzw. Gehäuse hervorstehen. In diesem hervorstehenden Bereich ist dann am Bolzenelement bevorzugt eine Angriffsfläche für ein Werkzeug

vorgesehen. Insbesondere ist dieser hervorstehende Bereich als Vier- oder Sechskant ausgebildet, so dass er mittels eines Werkzeugs auf einfache Weise um die Längsachse des Bolzenelements verdrehbar ist.

An seinem dem mit ihm fest verbundenen Arretierungselement abgewand-

5 ten Endbereich kann das Bolzenelement mit einem Gewinde zum Ein-schrauben in das vom Bolzenelement lösbare Arretierungselement ver-sehen sein. In diesem Fall kann das Bolzenelement an seinem mit ihm fest verbundenen Arretierungselement ergriffen und durch die beiden Ankerlöcher von Innen- und Außenschalung gesteckt werden, woraufhin durch 10 ein Verdrehen der Werkzeug-Angriffsfläche um die Längsachse des Bol-zenelements von Hand oder mittels eines Werkzeugs ein Einschrauben des genannten Gewindes in das vom Bolzenelement lösbare Arretierungsele-ment bewirkt werden kann.

15 Bevorzugt ist das Bolzenelement konisch ausgebildet, wobei der Quer-schnitt des Bolzenelements insbesondere mit zunehmendem Abstand von dem mit ihm fest verbundenen Arretierungselement abnimmt. Hierdurch wird erreicht, dass das Bolzenelement nach dem Erstarren des Betons problemlos aus den Ankerlöchern bzw. dem erstarrten Beton herausgezo-20 gen werden kann.

Es ist von Vorteil, wenn das vom Bolzenelement lösbare Arretierungsele-25 ment mit einer Gewindeglocke versehen ist, in welche das Bolzenelement einschraubar ist, wobei der Außendurchmesser der Gewindeglocke unge-fähr so bemessen ist, wie der Innendurchmesser der in den Schalungs-elementen ausgebildeten Ankerlöcher. Dabei ist die Länge des aus dem Arretierungselement hervorstehenden Abschnitts der Gewindeglocke bevor-zugt so bemessen, dass sie sich zumindest über die gesamte Dicke eines mit dem Arretierungselement zusammenwirkenden Schalungselements 30 erstreckt. Auf diese Weise kann die Gewindeglocke mit dem in sie einge-

schraubten Bolzelement das Ankerloch eines Schalungselements im Bereich der Schalungsinnenfläche in der Weise verschließen, dass kein flüssiger Beton in die Ankerlöcher eintreten und somit aus der Schalung austreten kann. Diese Abdichtungsfunktion der Gewindeglocke ist insbesondere deswegen relevant, weil das Gewinde, wie bereits erwähnt, am dünneren Endbereich des konisch ausgebildeten Bolzelementes vorgesehen ist, so dass hier ohne Gewindeglocke zwischen der Umrandung des Ankerlochs und dem Bolzelement ein Zwischenraum existieren würde. Dieser Zwischenraum wird jedoch durch die beschriebene Gewindeglocke ausgefüllt.

Die genannte Gewindeglocke kann unlösbar mit dem ihr zugeordneten Arretierungselement verbunden sein, was die Anzahl der handzuhabenden Teile gering hält.

In den Gehäusen der Arretierungselemente kann jeweils ein Arretierungsblock gehalten sein, welcher mit dem Bolzelement lösbar verbindbar oder fest verbunden ist. Bei einer festen Verbindung zwischen Arretierungsblock und Bolzelement ist das Bolzelement bevorzugt drehbar im Arretierungsblock gelagert, kann jedoch nicht aus dem Arretierungsblock herausgezogen werden. Bei einer lösbar Verbindung zwischen Bolzelement und Arretierungsblock kann das Bolzelement entweder direkt in den Arretierungsblock oder in eine mit ihm fest verbundene Gewindeglocke der bereits erläuterten Art eingeschraubt werden.

Die Gehäuse der Arretierungselemente können an einander gegenüberliegenden Seiten mit zueinander ausgerichteten Bolzenlöchern versehen sein, durch welche das Bolzelement gesteckt werden kann. Diese Bolzenlöcher sind zum einen nötig, um das Bolzelement mit den erwähnten Arretierungsblöcken, welche sich im Inneren der Gehäuse befinden, kop-

peln zu können. Zum anderen sind die genannten Bolzenlöcher erforderlich, um ein Bolzelement mit seiner Werkzeug-Angriffsfläche aus der dem Schalungselement abgewandten Seite des Gehäuses hervorstehen zu lassen.

5

Besonders vorteilhaft ist es, wenn die Bolzenlöcher jeweils die Form eines gekrümmten Langlochs aufweisen, in welchen das Bolzelement und/oder die Gewindeglocke verschiebbar sind. Durch diese Verschiebbarkeit kann letztlich das Gehäuse relativ zum Bolzelement bzw. zur Gewindeglocke bewegt werden, nachdem Bolzelement und Gewindeglocke in die Ankerlöcher der Schalungselemente eingeführt wurden, um so beispielsweise ein Verhaken der am Gehäuse vorgesehenen Koppenelemente mit Hinterschneidungen der Schalungselemente zu bewirken.

10

15 Weitere bevorzugte Ausführungsformen der Erfindung sind in den Unteransprüchen beschrieben.

Die Erfindung wird nachfolgend beispielhaft anhand von Ausführungsbeispielen unter Bezugnahme auf die Figuren beschrieben; in diesen zeigen:

20

Fig. 1 eine dreidimensionale Ansicht eines erfindungsgemäß einsetzbaren Schalungsankers,

25

Fig. 2 einen Querschnitt durch einen Schalungsanker gemäß Fig. 1, wobei der Schalungsanker mit Schalungselementen einer Innenschalung sowie einer Außenschalung gekoppelt ist,

30

Fig. 3a - c aufeinander folgende Verfahrensschritte beim Koppeln eines mit einer Gewindeglocke versehenen Arretierungselements mit einer Schalung, und

Fig. 4a - c aufeinander folgende Verfahrensschritte beim Koppeln eines unlösbar mit einem Arretierungselement verbundenen Bolzenelements mit einer Schalung gemäß Fig. 3c.

5

Fig. 1 zeigt einen Ankerbolzen 1, welcher in seinen beiden einander abgewandten Endbereichen mit jeweils einem Arretierungselement 2, 3 gekoppelt ist.

10 Beide Arretierungselemente 2, 3 bestehen jeweils aus einem Gehäuse 4, 5, wobei in jedem Gehäuse 4, 5 jeweils ein Arretierungsblock 6, 7 angeordnet ist.

Die Gehäuse 4, 5 sind mittels eines Strangpress-, Roll- oder Walzverfahrens als Meterware hergestellt, von der sie in der gewünschten Länge entlang der Schnittflächen 8 abgeschnitten werden. Dies hat zur Folge, dass die Gehäuse 4, 5 stirnseitig im Bereich der Schnittflächen 8 offen sind, so dass durch diese offenen Seiten die Arretierungsblöcke 6, 7 in die Gehäuse 4, 5 eingeschoben werden können.

20

An die Gehäuse 4, 5 ist jeweils ein Koppelement 9, 10 zur Übertragung von Druckkräften von Schalungselementen auf das Bolzenelement 1 angeformt, wobei diese Koppelemente 9, 10 einen über die gesamte Länge der Gehäuse 4, 5 einen konstanten Querschnitt besitzen, so dass die Koppelemente 9, 10 gleichzeitig mit den Gehäusen 4, 5 durch ein Strangpress-, Roll- oder Walzverfahren herstellbar sind. Die Koppelemente 9, 10 sind im Querschnitt hakenförmig ausgebildet, so dass sie mit entsprechenden Hinterschneidungen der Schalungselemente verhakbar sind (siehe Fig. 2). Die Orientierung der beiden Koppelemente 9, 10 ist

derart gewählt, dass sie sich hakenförmig in zueinander entgegengesetzte Richtungen erstrecken.

Das Bolzelement 1 ist aus einem insbesondere metallischen Vollmaterial gefertigt und besitzt eine konische, sich mit zunehmendem Abstand vom Arretierungselement 2 verjüngende Form. Weiterhin ist das Bolzelement 1 im Arretierungsblock 6 des Arretierungselements 2 unlösbar, jedoch drehbar gehalten, wobei es aus dem Gehäuse 4 in einer dem Arretierungselement 3 abgewandten Richtung hervorsteht. Dieser hervorstehende Bereich des Bolzelements 1 ist als Sechskant 11 ausgebildet, über welchen das Bolzelement 1 von Hand oder mittels eines Werkzeugs relativ zu den Arretierungselementen 2, 3 um seine Längsachse verdreht werden kann.

Der im Gehäuse 5 aufgenommene Arretierungsblock 7 ist fest mit einer Gewindehülse 12 gekoppelt, welche in Richtung des Arretierungselements 2 aus dem Gehäuse 5 hervorsteht. Die Gewindehülse 12 ist innenseitig mit einem Gewinde versehen, in welches das Bolzelement 1 mit seinem dem Arretierungselement 2 abgewandten Ende eingeschraubt werden kann. Jedes der beiden Gehäuse 4, 5 besitzt in einander gegenüberliegenden Gehäuseseiten jeweils ein Bolzenloch 13, 14, welches jeweils die Form eines gekrümmten Langlochs aufweist. Die beiden Bolzenlöcher 13, 14 jedes Gehäuses 4, 5 sind miteinander ausgerichtet. In Fig. 1 ist aufgrund der gewählten Perspektive jeweils nur ein Bolzenloch 13, 14 pro Gehäuse 4, 5 zu sehen.

Auf Seiten des Arretierungselements 2 erstreckt sich das Bolzelement 1 durch beide Bolzenlöcher 13, wohingegen sich beim Arretierungselement 3 die Gewindehülse 12 durch das dem Arretierungselement 2 zugewandte, in Fig. 1 nicht sichtbare Bolzenloch 14 erstreckt. Das andere, in Fig. 1

sichtbare Bolzenloch 14 ermöglicht den Durchtritt des Bolzenelementen-
des 15, wenn dieses weit genug in die Gewindeglocke 12 eingeschraubt ist.

Die Bolzenlöcher 13, 14 sind als Langlöcher derart gekrümmmt, dass sich
5 jeweils ihre oberen Bereiche näher an den mit den Koppelementen 9, 10
versehenen Seiten der Gehäuse 4, 5 befinden als ihre unteren Bereiche.

Fig. 2 zeigt einen Schnitt durch einen Schalungsanker gemäß Fig. 1,
wobei dieser Schalungsanker gemäß Fig. 2 nun mit Schaltungselementen
10 einer Innen- sowie einer Außenschalung verbunden ist. Hinsichtlich des
Schalungsankers sind in Fig. 2 die gleichen Bezugszeichen verwendet wie
in Fig. 1.

Fig. 2 zeigt dementsprechend zwei miteinander gekoppelte Schaltungsele-
15 mente 16 einer Innenschalung sowie zwei miteinander gekoppelte Scha-
lungselemente 17 einer Außenschalung.

Im Bereich der Koppelstellen der Schaltungselemente 16, 17 ist in der
Innenschalung sowie in der Außenschalung jeweils ein Ankerloch 18
20 vorgesehen, welches sich vollständig durch die Innen- und Außenschal-
lung hindurch erstreckt und senkrecht zu den Schalungsinnenflächen 19,
20 der Innen- und Außenschalung verläuft.

Innen- und Außenschalung besitzen jeweils auf ihrer der Schalungsin-
25 nenfläche 19, 20 abgewandten Außenseite eine sich zur Schalungsin-
nenfläche 19, 20 parallel erstreckende Anlagefläche, an welcher Zugkraft-
übertragungsflächen 21, 22 der Gehäuse 4, 5 anliegen. Die Zugkraftüber-
tragungsflächen 21, 22 (siehe Fig. 1) befinden sich an den einander zuge-
wandten Seiten der Gehäuse 4, 5.

Ferner sind die Schalungselemente 16, 17 auf ihren den Schalungsinnenflächen 19, 20 abgewandten Seiten mit jeweils einer Hinterschneidung 23, 24 versehen, welche jeweils von den hakenförmigen Koppelementen 9, 10 hintergriffen werden, so dass sich letztlich eine Verhakung zwischen
5 den Koppelementen 9 bzw. 10 und den Hinterschneidungen 23 bzw. 24 ergibt. Diejenigen Bereiche der Koppelemente 9, 10, die in Kontakt mit den Hinterschneidungen 23, 24 sind, bilden die bereits erwähnten Druckkraftübertragungsflächen der Koppelemente 9, 10.

10 Das Bolzelement 1 ist mittels eines Sprenglings 26 im Arretierungsblock 6 derart fixiert, dass es um seine Längsachse drehbar ist, jedoch nicht vom Arretierungsblock 6 gelöst werden kann.

Ferner weist das Bolzelement 1 an seinem dem Sechskant 11 abgewandten Ende ein Außengewinde 25 auf, welches in ein entsprechendes Innengewinde der Gewindegülse 12 eingeschraubt ist. Die Gewindeabschnitte des genannten Außengewindes 25 und des Innengewindes der Gewindegülse 12 erstrecken sich ausschließlich im Bereich des Gehäuses 5; sie erstrecken sich im dargestellten Ausführungsbeispiel also nicht bis
15 in denjenigen Bereich, welcher innerhalb der Schalungselemente 17 zu liegen kommt. Alternativ wäre es jedoch auch möglich, das Innengewinde der Gewindegülse 12 und das Außengewinde 25 des Bolzelements 1 so anzuordnen, dass sie sich zumindest abschnittsweise bis in denjenigen Bereich erstrecken, welcher letztlich innerhalb der Schalungselemente 17
20 zu liegen kommt.
25

Die Länge der Gewindegülse 12 ist derart bemessen, dass sie sich vollständig durch die Schalungselemente 17 hindurch erstreckt, so dass das in den Schalungselementen 17 ausgebildete Ankerloch 18 durch die Ge-

windehülse 12 und das Bolzelement 1 in ausreichender Weise verschlossen und abgedichtet wird.

Die in Fig. 2 dargestellte Anordnung zeigt, dass durch das Zusammenwirken der Zugkraftübertragungsflächen 21, 22 mit den Außenseiten der Schalungselemente 16, 17 Zugkräfte von den Schalungselementen 16, 17 über die Gehäuse 4, 5 auf das Bolzelement 1 übertragen werden können. In gleicher Weise können Druckkräfte von den Schalungselementen 16, 17 über die Gehäuse 4, 5 auf das Bolzelement 1 übertragen werden, da die Koppelemente 9, 10 im Bereich ihrer Druckkraftübertragungsflächen mit den Hinterschneidungen 23, 24 verhakt sind.

Anhand der nachfolgend erläuterten Fig. 3a - c und Fig. 4a - c wird beschrieben, in welcher Weise ein Schalungsanker gemäß den Fig. 1 und 2 mit einer Schalung gemäß Fig. 2 verbunden werden kann.

Die Fig. 3a - 4c zeigen jeweils einen Schnitt durch Schalungselemente 16, 17 entsprechend Fig. 2 sowie durch die entsprechenden Elemente des Schalungsankers einschließlich jeweils einer Draufsicht auf die Gehäuse 4, 5 der Arretierungselemente 2, 3 in Richtung der Pfeile A. In den Fig. 3a - c sind jeweils Draufsichten auf die Gehäuse 5, in den Fig. 4a - c jeweils Draufsichten auf die Gehäuse 4 gezeigt.

Gemäß Fig. 3a wird das Arretierungselement 3 (Fig. 1) an seinem Gehäuse 5 ergriffen und mit der Gewindeglocke 12 voran in das Ankerloch 18, welches in den Schalungselementen 17 ausgebildet ist, eingeführt. Während dieses Einführens ist es unbedeutlich, an welcher Position des Bolzenlochs 14 sich die in diesem Bolzenloch 14 verschiebbare Gewindeglocke 12 befindet. Beispielsweise kann sich die Gewindeglocke 12 im oberen Bereich des Bolzenlochs 14 befinden, wie dies in Fig. 3a dargestellt ist.

Wenn nun die Gewindegülse 12 so weit in das Ankerloch 18 eingeschoben ist, dass das Koppelement 10 an der Hinterschneidung 24 anstoßen würde, muss das Gehäuse 5 relativ zur Gewindegülse 12 derart angehoben werden, dass sich die Gewindegülse 12 innerhalb des Bolzenlochs 14 nach unten bewegt. Durch die Krümmung des Bolzenlochs 14 wird durch diese Bewegung erreicht, dass sich das Koppelement 10 in Richtung des Pfeils B gemäß Fig. 3b bewegt, so dass es beim weiteren Einschieben der Gewindegülse 12 in das Ankerloch 18 nicht mit der Hinterschneidung 24 kollidiert. Dementsprechend kann bei der genannten Position der Gewindegülse 12 im Bolzenloch 14 das Koppelement 10 über die Hinterschneidung 24 hinweg bewegt werden, wie dies aus Fig. 3b ersichtlich ist. In dieser Position ist die Gewindegülse 12 vollständig in das Ankerloch 18 eingeschoben. Allerdings wäre bei der Position gemäß Fig. 3b noch ein Herausziehen der Gewindegülse 12 aus dem Ankerloch 18 möglich, da Koppelement 10 und Hinterschneidung 24 noch nicht miteinander verhakt sind.

Anschließend wird dann gemäß Fig. 3c das Gehäuse 5 wiederum abgesenkt, so dass sich die Gewindegülse 12 im Bolzenloch 14 in dessen oberen Bereich hinein bewegt. Hierdurch wird eine Bewegung des Gehäuses 5 in Richtung des in Fig. 3c eingezeichneten Pfeils C erreicht, und zwar derart, dass das Koppelement 10 die Hinterschneidung 24 hintergreift, so dass Koppelement 10 und Hinterschneidung 24 letztlich miteinander verhakt sind. Durch diese Verhakung wird erreicht, dass das Gehäuse 5 mit der Gewindegülse 12 nicht mehr entgegen der Pfeilrichtung A aus dem Ankerloch 18 herausbewegt werden kann.

Gemäß Fig. 4a wird nun das fest mit dem Arretierungselement 2 (Fig. 1) verbundene Bolzenelement 1 durch das Ankerloch 18 der Schalungsele-

mente 16 gesteckt, wobei es bei diesem Vorgang analog zu Fig. 3a wiederum nicht darauf ankommt, an welcher Stelle des im Gehäuse 4 ausgebildeten Bolzenlochs 13 sich das Bolzelement 11 befindet. Im Beispiel gemäß Fig. 4a befindet sich das Bolzelement 1 im Bereich des oberen
5 Endes des Bolzenlochs 13.

Das Bolzelement 1 wird nun so weit in das Ankerloch 18 eingeführt bzw. in die Gewindeglocke 12 eingeschraubt, bis das Koppelement 9 mit der Hinterschneidung 23 der Schalungselemente 16 kollidieren würde.

10 Anschließend erfolgt dann gemäß Fig. 4b ein Anheben des Gehäuses 4 derart, dass das Bolzelement 1 in den unteren Bereich des gekrümmten Bolzenlochs 13 bewegt wird, wodurch analog zu Fig. 3b eine Bewegung des Gehäuses 4 in Richtung des Pfeils D erzielt wird. In dieser Stellung kann das Koppelement 9 durch fortgesetztes Einschrauben in die Gewindeglocke 12 über die Hinterschneidung 23 hinweg bewegt werden, bis
15 das Bolzelement 1 über den Sechskant 11 vollständig in die Gewindeglocke 12 eingeschraubt ist.

Nach dem vollständigen Einschrauben des Bolzelements 1 in die Gewindeglocke 12 wird dann das Gehäuse 4 wiederum nach unten bewegt, so
20 dass sich das Bolzelement 1 innerhalb des Bolzenlochs 13 nach oben bewegt. Hierdurch wird nun eine Bewegung des Gehäuses 4 in Richtung des Pfeils E gemäß Fig. 4c erreicht, so dass das Koppelement 9 die Hinterschneidung 23 hintergreift. Es ergibt sich also analog zu Fig. 3c eine
25 Verhakung zwischen Koppelement 9 und Hinterschneidung 23.

In der in Fig. 4c dargestellten Position – welche der Anordnung gemäß Fig. 2 entspricht – ist der Schalungsanker endgültig mit den Schalungselementen 16, 17 verbunden und dazu in der Lage, von den Schalungs-

elementen 16, 17 Zug- als auch Druckkräfte über die Gehäuse 4, 5 auf das Bolzenelement 1 zu übertragen.

Bezugszeichenliste

1	Bolzenelement
2	Arretierungselement
5 3	Arretierungselement
4	Gehäuse
5	Gehäuse
6	Arretierungsblock
7	Arretierungsblock
10 8	Schnittflächen
9	Koppelement
10	Koppelement
11	Sechskant
12	Gewindeglocke
15 13	Bolzenloch
14	Bolzenloch
15	Bolzenelementende
16	Schalungselemente
17	Schalungselemente
20 18	Ankerloch
19	Schalungsinnenflächen
20	Schalungsinnenflächen
21	Zugkraftübertragungsfläche
22	Zugkraftübertragungsfläche
25 23	Hinterschneidung
24	Hinterschneidung
25	Außengewinde
26	Sprengring

Ansprüche

1. Schalungssystem mit einander gegenüberliegende Schalungsinnenflächen (19, 20) aufweisenden Schalungselementen (16, 17), welche mittels Schalungsankern beabstandet zueinander miteinander verbindbar sind, wobei ein Schalungsanker aus einem Bolzenelement (1) und zwei Arretierungselementen (2, 3) besteht, die in den beiden einander abgewandten Endbereichen des Bolzenelements (1) mit diesem koppelbar und zur Übertragung von Zugkräften von den Schalungselementen (16, 17) auf das Bolzenelement (1) ausgebildet sind, dadurch gekennzeichnet,
dass die Arretierungselemente (2, 3) Koppelemente (9, 10) zur Übertragung von Druckkräften von den Schalungselementen (16, 17) auf das Bolzenelement (1) aufweisen.
2. Schalungssystem nach Anspruch 1,
dadurch gekennzeichnet,
dass die einander gegenüberliegenden Schalungsinnenflächen (19, 20) jeweils durch einen Verbund von einzelnen Schalungselementen (16, 17) gebildet sind, wobei jeder Verbund von Schalungselementen (16, 17) jeweils insbesondere kreisrunde Ankerlöcher (18) für die Aufnahme der Bolzenelemente (1) der Schalungsanker aufweist.
3. Schalungssystem nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Arretierungselemente (2, 3) jeweils eine mit der jeweiligen Außenseite der Schalungselemente (16, 17) zusammenwirkende Zugkraftübertragungsfläche (21, 22) aufweisen.

4. Schalungssystem nach Anspruch 2 und Anspruch 3,
dadurch gekennzeichnet,
dass der die Ankerlöcher (18) umgebende Bereich der Außenseite der
Schalungselemente (16, 17) zum Zusammenwirken mit der Zugkraft-
übertragungsfläche (21, 22) ausgebildet ist.
5. Schalungssystem nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass an den Außenseiten der Schalungselemente (16, 17) Hinter-
schneidungen (23, 24) vorgesehen sind, welche in Wirkverbindung
mit an den Koppelementen (9, 10) vorgesehenen Druckkraftüber-
tragungsflächen bringbar sind.
6. Schalungssystem nach Anspruch 5,
dadurch gekennzeichnet,
dass die Koppelemente (9, 10) im Querschnitt hakenförmig ausge-
bildet sind, so dass sie mit den Hinterschneidungen (23, 24) der
Schalungselemente (16, 17) verhakbar sind.
7. Schalungssystem nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Arretierungselemente (2, 3) jeweils ein im Wesentlichen qua-
derförmiges Gehäuse (4, 5) aufweisen, an das das Koppelement (9,
10) angeformt ist.
8. Schalungssystem nach Anspruch 7,
dadurch gekennzeichnet,
dass das quaderförmige Gehäuse (4, 5) einschließlich des Koppelele-
ments (9, 10) mittels eines Strangpress-, Roll- oder Walzverfahrens

hergestellt ist und an zwei gegenüberliegenden Seiten, welche sich senkrecht zu den Schalungsflächen (19, 20) erstrecken, offen ist.

9. Schalungssystem nach einem der vorhergehenden Ansprüche,
5 dadurch gekennzeichnet,
dass das eine Arretierungselement (2) unlösbar mit dem Bolzelement (1) verbunden ist und das andere Arretierungselement (3) lösbar mit dem Bolzelement (1) verbindbar ist.
10. Schalungssystem nach Anspruch 9,
dadurch gekennzeichnet,
dass das Bolzelement (1) in dem mit ihm fest verbundenen Arretierungselement (2) um seine Längsachse drehbar gelagert ist.
- 15 11. Schalungssystem nach einem der Ansprüche 9 oder 10,
dadurch gekennzeichnet,
dass das Bolzelement (1) auf der der Zugkraftübertragungsfläche (21, 22) abgewandten Seite aus dem mit ihm fest verbundenen Arretierungselement (2) hervorsteht und in diesem hervorstehenden Bereich mit einer Angriffsfläche (11) für ein Werkzeug, insbesondere mit
20 einem Vier- oder Sechskant versehen ist.
12. Schalungssystem nach einem der Ansprüche 9 bis 11,
dadurch gekennzeichnet,
25 dass das Bolzelement (1) an seinem dem mit ihm fest verbundenen Arretierungselement (2) abgewandten Endbereich mit einem Gewinde zum Einschrauben in das vom Bolzelement (1) lösbar Arretierungselement (3) versehen ist.

13. Schalungssystem nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass das Bolzelement (1) konisch ausgebildet ist.
- 5 14. Schalungssystem nach Anspruch 13,
dadurch gekennzeichnet,
dass das Gewinde gemäß Anspruch 12 am dünneren Endbereich des
konisch ausgebildeten Bolzelements (1) vorgesehen ist.
- 10 15. Schalungssystem nach einem der Ansprüche 9 bis 14,
dadurch gekennzeichnet,
dass das vom Bolzelement (1) lösbare Arretierungselement (3) mit
einer Gewindeglocke (12) versehen ist, in welche das Bolzelement (1)
einschraubbar ist, wobei der Außendurchmesser der Gewindeglocke
15 (12) ungefähr so bemessen ist, wie der Innendurchmesser der in den
Schalungselementen (16, 17) ausgebildeten Ankerlöchern (18).
16. Schalungssystem nach Anspruch 15,
dadurch gekennzeichnet,
20 dass die Länge des aus dem Arretierungselement (3) hervorstehenden
Abschnitts der Gewindeglocke (12) so bemessen ist, dass sie sich zu-
mindest über die gesamte Dicke eines mit dem Arretierungselement
(3) zusammenwirkenden Schalungselements (17) erstreckt.
- 25 17. Schalungssystem nach einem der Ansprüche 15 oder 16,
dadurch gekennzeichnet,
dass die Gewindeglocke (12) unlösbar mit dem ihr zugeordneten Arre-
tierungselement (3) verbunden ist.

18. Schalungssystem nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass im Gehäuse (4, 5) nach Anspruch 7 ein Arretierungsblock (6, 7)
gehalten ist, welcher mit dem Bolzenelement (1) lösbar verbindbar
oder fest verbunden ist.

19. Schalungssystem nach Anspruch 18,
dadurch gekennzeichnet,
dass der Arretierungsblock (7) des einen Arretierungselements (3) fest
mit der Gewindeglocke (2) nach einem der Ansprüche 15 bis 17 ver-
bunden ist, während im anderen Arretierungsblock (6) das Bolzen-
element (1) um seine Längsachse drehbar gelagert ist.

20. Schalungssystem nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass das Gehäuse (4, 5) nach Anspruch 7 an einander gegenüberlie-
genden Seiten mit zueinander ausgerichteten Bolzenlöchern (13, 14)
versehen ist.

20 21. Schalungssystem nach Anspruch 20,
dadurch gekennzeichnet,
dass die Bolzenlöcher (13, 14) jeweils die Form eines gekrümmten
Langlochs aufweisen, in welchen das Bolzenelement (1) und/oder die
Gewindeglocke (12) nach einem der Ansprüche 15 bis 17 verschiebbar
sind.

Fig. 2

Fig. 3a**Fig. 3b****Fig. 3c**

Fig. 4a**Fig. 4b****Fig. 4c**

INTERNATIONAL SEARCH REPORT

Inte
nal Application No
PCT/EP2004/013981

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 E04G17/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 E04G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	AP 100 A (HENDRIK PETRUS BOTHE) 9 October 1990 (1990-10-09) page 11, line 8 – page 12, line 30 figures 1,4,5,7,8a,8b,9 -----	1-8,13
X	GB 2 057 042 A (TOWER SCAFFOLDING LTD) 25 March 1981 (1981-03-25) figures -----	1-5,7,8
X	US 913 538 A (D. MORGAN) 23 February 1909 (1909-02-23) figure 10 -----	1,3,4
X	US 3 167 842 A (JR. FRANK G. PAULI,) 2 February 1965 (1965-02-02) figures ----- -/-	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

11 April 2005

18/04/2005

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Andlauer, D

INTERNATIONAL SEARCH REPORT

Int'

ional Application No
PCT/EP2004/013981**C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT**

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2 584 822 A (SYMONS ARTHUR H) 5 February 1952 (1952-02-05) figures -----	1

INTERNATIONAL SEARCH REPORT

Inte

nal Application No
PCT/EP2004/013981

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
AP 100	A	09-10-1990	NONE	
GB 2057042	A	25-03-1981	NONE	
US 913538	A		NONE	
US 3167842	A	02-02-1965	NONE	
US 2584822	A	05-02-1952	NONE	

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/013981

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 7 E04G17/06

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 E04G

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	AP 100 A (HENDRIK PETRUS BOTEST) 9. Oktober 1990 (1990-10-09) Seite 11, Zeile 8 – Seite 12, Zeile 30 Abbildungen 1,4,5,7,8a,8b,9 -----	1-8,13
X	GB 2 057 042 A (TOWER SCAFFOLDING LTD) 25. März 1981 (1981-03-25) Abbildungen -----	1-5,7,8
X	US 913 538 A (D. MORGAN) 23. Februar 1909 (1909-02-23) Abbildung 10 -----	1,3,4
X	US 3 167 842 A (JR. FRANK G. PAULI,) 2. Februar 1965 (1965-02-02) Abbildungen ----- -----	1
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

11. April 2005

18/04/2005

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL – 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Andlauer, D

INTERNATIONALER RECHERCHENBERICHTInternationales Aktenzeichen
PCT/EP2004/013981**C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN**

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	US 2 584 822 A (SYMONS ARTHUR H) 5. Februar 1952 (1952-02-05) Abbildungen -----	1

INTERNATIONALER RECHERCHENBERICHT

Interr

des Aktenzeichen

PCT/EP2004/013981

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
AP 100	A	09-10-1990	KEINE	
GB 2057042	A	25-03-1981	KEINE	
US 913538	A		KEINE	
US 3167842	A	02-02-1965	KEINE	
US 2584822	A	05-02-1952	KEINE	