Continuous time poiscet time fourier fourier	" hansform,	Laplace Transform.	
$X(j_{\omega}) = \int_{X(t_{c})}^{\infty} e^{-j\omega t} dt$ $X(e^{j\omega}) = \int_{0}^{\infty} \frac{1}{2} dt$	x(n) e Jun.	st dt	1. Farmula,
$\chi(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \chi(j\omega) e^{j\omega t} dt\omega \qquad \chi(\eta) = \frac{1}{2\pi}$	X(ejw)ejwn	$\chi(t) = \frac{1}{2\pi j} \int \chi(x) e^{-3t} dx$ $\sigma - j \infty$	i. Inverse Formula
$a_1 \times (U + a_2 \times_2 (E))$ $A_1 \times (U + a_2 \times_2 (E))$ $A_2 \times (J \cup U) + a_2 \times_2 (J \cup U)$ $A_3 \times_2 (E)$	(سْنوع)۲,4(وسنو) رسارع)۲۲(وليد له اله	$ax_1(L) + bx_2(L) \leftrightarrow ax_1(x_3) + bx_2(x_3)$	3. Linearity
x [n-na)↔	e-jwn×(ejw)	$x(t-t) \longleftrightarrow e^{-st} x(a)$	4. Time shifting
$e^{j\omega_o t} \dot{x}(t) \longleftrightarrow \kappa(j(\omega - \omega_o))$ $e^{j\omega_o \eta} x[n] \leftarrow$	e jwon x[n] <>> X(e j(w-lw))	e ^{Sot} ix(t) <>> × (3-10)	5. Freguency shifting
$x(at) \longleftrightarrow \frac{1}{ a } x(\frac{j\omega}{a})$		$\chi(at) \longleftrightarrow \frac{1}{ a } \chi\left(\frac{4}{a}\right)$	6. Fine scaling
$\frac{d}{dt} (x(t)) \leftarrow y (y \cap y) x [n] - x [n-1]$	$\chi[n] - \chi[n-1] \longleftrightarrow (1-e^{-j\omega})$ $\chi(e^{j\omega})$	$\frac{d}{dt} r(t) \longleftrightarrow 3\chi(a)$	7. Olf (in t)
tx[b) (m) dm x(jw) mx[n] <>	$j \frac{d}{d \omega} \times (e^{j\omega})$	- tx(b) c d x(s)	8. Off in

Scanned by CamScanner

2	(w) s (d) x (j, w) + m x (d) s (w)	$\sum_{ C=0 }^{n} x [k] \longleftrightarrow \frac{1}{1-e^{-j}} \times (e^{j\omega})$	\$ x(t)dt (-> 1x(s)	9. Integration (Accumulation)
	Passend's relection for Appeniedic Biznald [1x(t) 1 ² dt = 1 x(yw) ² dw.	Parsund's relation for Apaiodic Argnals \$\frac{\infty}{2} z(\pi) ^2 = \frac{1}{2\pi} \int x(e^{j\infty}) ^2 d\frac{\infty}{2\pi} \infty x(e^{j\infty}) ^2 d\	$1\sqrt{1}$ and $f V T$. $1\sqrt{1}$: $\chi(0^+) = \lim_{\mathbf{Z} \to 0} s \chi(s)$ $f V V V V V V V V V V V V V V V V V V V$	10. Theosems
, ,	× Σχε jtwot > 2π Z XK δ(w-kw)	ZXkeJkwin Skwin		Transforms of Periodic signals
	$(\omega(-t) \longleftrightarrow x(-j\omega)$	xt-m = x(e-jw)	$x(-t) \longleftrightarrow x(-x)$	11. Time reversal
	$x^*(t) \longleftrightarrow X^*(-j\omega)$	/ x* [n] (e-jw)	$x^*(t) \leftrightarrow x^*(a)$	12. Conjugation
Sc	$\xi_{\nu}\{x(t)\} \longleftrightarrow \text{Re}\{x(j\omega)\}$ $cd\{x(t)\} \longleftrightarrow \text{Im}\{x(j\omega)\}$ $x(t) \to \text{neal}$	Ev $\{x(n)\} \leftarrow Re\{x(e^{j\omega})\}$ Od $\{x(n)\} \leftarrow j(m\{x(e^{j\omega})\}\}$ $x(n) \rightarrow Red$.		13. Even + odd symmetry
anned by CamScan	$2c(t) \times y(t) \Leftrightarrow x(j\omega) Y(j\omega)$ $\int t^{2}(j\omega) = (\chi(j\omega) + \lfloor H(j\omega) \rfloor$	$x(e^{j\omega}) \times y(n) \iff x(e^{j\omega})$	$\chi(x) \star g(E) \iff \chi(x) \chi(\lambda)$	14. Consolution

-	e) who the state $(-)$ 2718 $(\omega - (\omega_0))$ $te^{-at} u(t) \leftarrow 1$	j ως ν ξ 2π δ(ω-ω-2πη)	
į.	(m + jw)	1 40 34 10 ()	- 5/8 (S) A
	Co300, € <>> n[S(w. wo) + S(w+ wo)]	CO3Won ← T & {S(w-wo-201m)	cosust u(t) ←→ s
AND PERSONAL PROPERTY.		3.11.3	
The state of the s	Sin Wet I I [Stw-w) + stw+w)	S'nwonz => I & foller us-271m)	Sin Wot u(t) <> W2 Style=
	A C> 2TTAS(w)	A C-> 2TAM & S(W-ZHM).	A-uct) (-> A
	$S(t) \longleftrightarrow 1$	8(n) (m) 8	8(t) 2-> (
	$e^{-at}u(t) \stackrel{V}{\longleftrightarrow} \frac{V}{a+j\omega}$	anu(n) 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	e-atu(t) 2 1 , Ressta
1	alel 120	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-e-at u(-t) (-> 1 ; Refist-a
1	William S. L. O. + W.		(1-ae-3w) 1+aein 21/2(t) John Snx(b) X +1
I	7 3 +	(net) de u(n+1)<-> de // (1-ae-jw)2	K=1 2 (6)
	u[n] <-> 1 + 5118(w-20m)	m+1 anu (n+1) <-> (1-ae-3w)2	Level Francisco Scarge