

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁵ : C07C 229/16, A61K 31/195 A61K 7/48, 7/06 C07D 213/38		A1	(11) Numéro de publication internationale: WO 94/11338 (43) Date de publication internationale: 26 mai 1994 (26.05.94)
<p>(21) Numéro de la demande internationale: PCT/FR93/01109</p> <p>(22) Date de dépôt international: 10 novembre 1993 (10.11.93)</p> <p>(30) Données relatives à la priorité: 92/13707 13 novembre 1992 (13.11.92) FR 93/07641 23 juin 1993 (23.06.93) FR</p> <p>(71) Déposant (<i>pour tous les Etats désignés sauf US</i>): L'OREAL [FR/FR]; 14, rue Royale, F-75008 Paris (FR).</p> <p>(72) Inventeurs; et (75) Inventeurs/Déposants (<i>US seulement</i>): GALEY, Jean-Baptiste [FR/FR]; 20, rue Lacépède, F-75005 Paris (FR). DUMATS, Jacqueline [FR/FR]; 13, avenue A.-Croizat, F-93240 Villepinte (FR).</p>		<p>(74) Mandataire: BUREAU D.A. CASALONGA JOSSE; 8, avenue Percier, F-75008 Paris (FR).</p> <p>(81) Etats désignés: CA, JP, US, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).</p> <p>Publiée <i>Avec rapport de recherche internationale.</i></p>	
<p>(54) Title: USE OF N-ARYLMETHYLENE, ETHYLENEDIAMINETRIACETATES N-ARYLMETHYLENE IMINODIACETATES OR N, N'-DIARYLMETHYLENE ETHYLENEDIAMINACETATES FOR USE IN COMBATTING OXIDATIVE STRESS</p> <p>(54) Titre: UTILISATION DE N-ARYLMETHYLENE ETHYLENEDIAMINETRIACETATES, N-ARYLMETHYLENE IMINODIACETATES OU N,N'-DIARYLMETHYLENE ETHYLENEDIAMINACETATES CONTRE LE STRESS OXYDANT</p> <p>(57) Abstract</p> <p>N-arylmethylene ethylenediaminetriacetate, N-arylmethylene iminodiacetate or N,N'-diarylmethylene ethylenediaminediacetate type compounds and their use in combatting oxidative stress, and pharmaceutical and cosmetic compositions comprising said compounds. The invention also concerns a process for the preparation of said compounds.</p> <p>(57) Abrégé</p> <p>La présente invention concerne des composés du type N-arylméthylène éthylènediaminetriacétate, N-arylméthylène imino-diacétate ou N,N'-diarylméthylène éthylènediaminediacétate et leur utilisation contre le stress oxydant, ainsi que les compositions pharmaceutiques et cosmétiques comportant de tels composés. Elle concerne également le procédé de préparation de ces composés.</p>			

THIS PAGE BLANK (USPTO)

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Autriche	GB	Royaume-Uni	MR	Mauritanie
AU	Australie	GE	Géorgie	MW	Malawi
BB	Barbade	GN	Guinée	NE	Niger
BE	Belgique	GR	Grèce	NL	Pays-Bas
BF	Burkina Faso	HU	Hongrie	NO	Norvège
BG	Bulgarie	IE	Irlande	NZ	Nouvelle-Zélande
BJ	Bénin	IT	Italie	PL	Pologne
BR	Brésil	JP	Japon	PT	Portugal
BY	Bélarus	KE	Kenya	RO	Roumanie
CA	Canada	KG	Kirghizistan	RU	Fédération de Russie
CF	République Centrafricaine	KP	République populaire démocratique de Corée	SD	Soudan
CG	Congo	KR	République de Corée	SE	Suède
CH	Suisse	KZ	Kazakhstan	SI	Slovénie
CI	Côte d'Ivoire	LI	Liechtenstein	SK	République slovaque
CM	Cameroun	LK	Sri Lanka	SN	Sénégal
CN	Chine	LU	Luxembourg	TD	Tchad
CS	Tchécoslovaquie	LV	Lettonie	TG	Togo
CZ	République tchèque	MC	Monaco	TJ	Tadjikistan
DE	Allemagne	MD	République de Moldova	TT	Trinité-et-Tobago
DK	Danemark	MG	Madagascar	UA	Ukraine
ES	Espagne	ML	Mali	US	Etats-Unis d'Amérique
FI	Finlande	MN	Mongolie	UZ	Ouzbékistan
FR	France			VN	Viet Nam
GA	Gabon				

UTILISATION DE N-ARYLMETHYLENE ETHYLENEDIAMINETRIACETATES, N-ARYLMETHYLENE IMINODIACETATES OU N,N'-DIARYLMETHYLENE ETHYLENEDIAMINACETATES CONTRE LE STRESS OXYDANT

5

10

La présente invention concerne des dérivés de N-arylméthylène éthylènediaminetriacétate, N-arylméthylène iminodiacétate ou N,N'-diarylméthylène éthylènediaminediacétate, utiles notamment pour protéger l'organisme contre le stress oxydant, leur procédé de préparation ainsi que les compositions pharmaceutiques et cosmétiques contenant de tels composés.

15

20

Dans le domaine de la santé et de la cosmétique, le concept du stress oxydant est connu, stress oxydant qui apparaît notamment dès qu'il existe un déséquilibre de la balance antioxydant-prooxydant. Ce déséquilibre se traduit notamment par des processus oxydatifs au sein des tissus vivants, non contrôlés, qui mettent en jeu des radicaux libres oxygénés et conduisent notamment à des dégâts oxydatifs sur les molécules et les macromolécules biologiques (Sies, H., In *Oxidative Stress*, Academic Press Inc. (London) Ltd, 1985).

25

Il est connu que des situations diverses provoquent, favorisent ou accompagnent le stress oxydant ou en sont la conséquence; il s'agit notamment de l'exposition aux rayons ultraviolets et aux rayonnements ionisants, du vieillissement, de l'inflammation, de la carcinogénèse, des situations d'ischémie reperfusion, de la toxicité et/ou du mode d'action de certains médicaments.

30

Lors de ce phénomène du stress oxydant, il est connu que du fer est libéré de ses sites de stockage usuels comme la ferritine et, libéré, peut participer à certaines réactions, et notamment aux réactions de Fenton (1) et Haber-Weiss (2) dont résulte la formation des radicaux hydroxyle, radicaux connus pour être responsables de nombreux dommages oxydatifs (Reif, D.W., *Free Rad. Biol. Med.* 12, 417-427, 1992).

L'oxygène est indispensable à la respiration des êtres vivants

aérobies, mais peut être réduit en radical superoxyde $O_2^{\bullet-}$ dans toutes les cellules aérobies. Ce radical peut subir une réaction de dismutation donnant naissance à du peroxyde d'hydrogène :

5

En présence de traces de fer, ce radical superoxyde peut également réduire l'ion Fe^{3+} :

10

Les ions Fe^{2+} ainsi produits peuvent donner lieu à la réaction de Fenton qui produit le radical hydroxyle :

15

La réaction d'Haber-Weiss produit elle aussi des radicaux hydroxyle :

20

Le radical hydroxyle OH^{\bullet} peut provoquer des dégâts très importants dans l'organisme. Il est capable de casser des brins d'ADN et d'altérer le patrimoine génétique de la cellule vivante. Contrairement à H_2O_2 et au radical superoxyde $O_2^{\bullet-}$, il est également capable de provoquer une peroxydation des acides gras insaturés. Il joue un rôle important dans le vieillissement de la peau.

25

Il est connu que la protection des tissus vivants contre les attaques du radical hydroxyle est difficile.

30

L'une des approches connue pour se protéger est d'utiliser des molécules, notamment le D-mannitol ou le DMSO (diméthylsulfoxyde), capables de piéger les radicaux hydroxyle. Néanmoins, le radical hydroxyle est une espèce si réactive qu'il faut utiliser des quantités très importantes de ces piègeurs, de manière à entrer en compétition avec toutes les molécules biologiques, cibles potentielles du radical hydroxyle (Halliwell, B., Free Rad. Res. Comms., 9(1), 1-32, 1990). L'utilisation de fortes quantités de ces piègeurs pose des problèmes de toxicité.

35

L'autre approche connue pour se protéger contre les radicaux hydroxyle est d'utiliser des chélateurs du fer, notamment la

déféroxamine ou l'acide diéthylène triamine pentaacétique (DTPA) pour l'empêcher de participer aux réactions de Fenton et Haber-Weiss.

Cependant, si leurs constantes de complexation sont élevées, ces chélateurs peuvent être toxiques. C'est ainsi que le DTPA présente des effets secondaires importants, liés probablement pour une partie à la chélation de métaux tels que le calcium.

La déféroxamine présente une toxicité chronique supposée liée à sa capacité à chélater les métaux des sites actifs des métalloenzymes ou hémoprotéines comme l'hémoglobine.

Par ailleurs, des chélateurs puissants, qui peuvent complexer le fer, tels que l'EHPG (éthylène bis-o-hydroxy phényl glycine), sont également connus pour avoir des toxicités aiguës importantes.

Enfin, le HBED [acide N,N'-bis(2-hydroxybenzyl)-éthylène diamine diacétique] qui est un chélateur du fer exceptionnellement efficace (cf. US-4.528.196), présente également des risques de toxicité car il forme un complexe très stable, tous les sites de coordination du fer étant occupés du fait de la présence des groupes OH en position 2.

La demanderesse a découvert que des dérivés de N-arylméthylène éthylènediaminetriacétate, N-arylméthylène iminodiacétate ou N,N'-diarylméthylène éthylènediaminediacétate, étaient particulièrement efficaces pour protéger l'organisme contre le stress oxydant.

Sans que cette explication soit limitative, il semble que cet effet soit dû à la faculté de ces dérivés non seulement de former avec le fer des complexes, mais encore de piéger les radicaux hydroxyle, de façon quasi stoechiométrique, avant qu'ils ne puissent attaquer d'autres molécules.

En effet, les composés selon l'invention forment des complexes avec l'ion Fe^{2+} et ces complexes sont capables de décomposer le peroxyde d'hydrogène sans libérer de radicaux hydroxyle. Ces radicaux sont en effet formés mais aussitôt piégés par un processus d'hydroxylation intramoléculaire, ce qui permet de n'utiliser que de très faibles concentrations des molécules selon l'invention. Ce dernier point constitue un avantage par rapport aux autres piégeurs de radicaux hydroxyle déjà cités qui nécessitent d'être utilisés en très large excès.

Un autre avantage des composés selon l'invention, est que ceux-ci forment avec le fer des complexes dont les constantes d'association sont beaucoup plus faibles que celles des composés cités plus haut comme la déferoxamine ou l'HBED. Les risques toxicologiques sont donc diminués.

Enfin, les produits d'hydroxylation intramoléculaire des complexes ferreux des molécules selon l'invention ont une grande affinité pour le fer et forment avec celui-ci des complexes capables de l'empêcher de catalyser la formation d'autres radicaux hydroxyle.

L'invention a pour objet l'utilisation pour la protection de l'organisme contre le stress oxydant, et notamment comme piégeurs de radicaux libres hydroxyle et chélateurs du fer, de dérivés de N-arylméthylène éthylènediaminetriacétate, N-arylméthylène iminodiacétate ou N,N'-diarylméthylène éthylènediaminediacétate.

Un autre objet est constitué par les compositions cosmétiques et pharmaceutiques les mettant en oeuvre.

L'invention a également pour objet les composés nouveaux de la famille des N-arylméthylène éthylènediaminetriacétate, N-arylméthylène iminodiacétate ou N,N'-diarylméthylène éthylènediaminediacétate et leur préparation.

D'autres objets de l'invention apparaîtront à la lecture de la description et des exemples qui suivent.

Les composés utilisés conformément à l'invention pour la protection contre le stress oxydant, notamment par piégeage de radicaux libres hydroxyle et complexation du fer, sont les composés de formule (I) :

dans laquelle :

Z_1, Z_2, Z_3 , indépendamment l'un de l'autre, représentent NO_2 , COOH , CF_3 , un atome d'halogène ou un groupement R_1 , OR_1 , SR_1 ou NR_1R_2 ,

5 Z_4 représente H ou un groupement R_1 ;

où R , R_1 et R_2 , indépendamment l'un de l'autre, représentent H ou un groupement alkyle linéaire ou ramifié, en C_1 à C_8 ,

10 X_1, X_2, X_3 représentent : $-\text{C}=$ ou $-\text{N}=$, à condition que
si $X_1=\text{N}$, alors $X_2=X_3=\text{C}$ et il n'y a pas de substituant Z_1 sur X_1 ,
si $X_2=\text{N}$, alors $X_1=X_3=\text{C}$ et il n'y a pas de substituant Z_2 sur X_2 ,
si $X_3=\text{N}$, alors $X_2=X_1=\text{C}$ et il n'y a pas de substituant Z_3 sur X_3 ,
c'est-à-dire qu'il s'agit d'un noyau de benzène ou de pyridine;

15 Z_5 représente :

le groupement : $-\text{COOR}$ (a)

15

20

ou le groupement :

25

30

dans lesquels $Z_1, Z_2, Z_3, Z_4, X_1, X_2, X_3, \text{R}, \text{R}_1$ et R_2 ont les mêmes significations que ci-dessus;

ainsi que leurs sels et leurs complexes métalliques.

Les groupements alkyle, linéaires ou ramifiés en C₁-C₈, sont de préférence des groupements alkyle en C₁-C₄, tels que méthyle, éthyle, isopropyle, tert-butyle.

5 Comme sels, on peut citer les sels d'addition avec un acide minéral comme les acides H₂SO₄, HCl, HNO₃ ou H₃PO₄, par exemple, et les sels d'addition avec une base minérale comme NaOH ou KOH.

10 Comme complexes métalliques, on peut citer les complexes formés par addition de ZnCl₂ ou CaCl₂, par exemple.

15 Les composés nouveaux sont les composés de formule (I), dans laquelle Z₁, Z₂, Z₃, Z₄, Z₅, X₁, X₂, X₃, R, R₁, R₂ ont les significations indiquées précédemment, ainsi que leurs sels et complèxes métalliques, à l'exclusion des produits ci-dessous qui sont déjà connus :

15

20

25

acide benzyl imino-diacétique

acide 3-aminobenzyl imino-diacétique

5

10

acide 3-nitrobenzyl
iminodiacétique

15

20

25

acide 4-nitrobenzyl
iminodiacétiqueacide 4-aminobenzyl
iminodiacétique

5

10

acide 4-hydroxybenzyl
iminodiacétique

acide 4-diméthylamino-
benzyl iminodiacétique

15

20

25

acide 4-méthylbenzyl
iminodiacétique

acide 4-fluorobenzyl
iminodiacétique

5

10

acide 2-nitrobenzyl iminodiacétique

15

20

acide 3-nitro-4-chlorobenzyl iminodiacétique

acide benzyl éthylènediamine triacétique

25

30

acide 3-pyridylméthylène iminodiacétique

et sous réserve que :

lorsque Z_5 désigne le groupement (c) dans lequel X_1 , X_2 , X_3 représentent C et Z_4 désigne H,

l'un au moins de Z_1 et Z_3 est différent de H lorsque Z_2 désigne H,
5 Cl, NO₂ ou CH₃ et

Z_3 n'est pas H lorsque Z_1 désigne OH et Z_2 désigne OCH₃.

Les composés définis par la formule (I) sont utilisés comme médicaments, notamment pour protéger l'organisme des effets néfastes des radicaux libres dus en particulier au stress oxydant. Ils sont 10 particulièrement utilisables pour traiter les situations de stress oxydant liées à des états pathologiques chez l'homme ou l'animal, comme les cancers, les états inflammatoires, l'ischémie reperfusion, les surcharges en fer, les maladies dégénératives du système nerveux, ou encore pour traiter les effets liés à l'exposition aux rayonnements 15 ionisants ou à l'utilisation de certains médicaments connus pour générer des radicaux libres, notamment des médicaments anticancéreux comme l'adriamycine, etc.

Les composés conformes à l'invention peuvent également être utilisés pour traiter les situations de stress oxydant liées à des états 20 non pathologiques, comme ceux résultant de l'exposition au soleil ou dus au vieillissement. Ils sont utilisés dans ce cas-là par voie topique pour leur effet cosmétique sur la peau ou les cheveux.

Les compositions cosmétiques et pharmaceutiques mettant en oeuvre les composés de formule (I) comportent un composé de formule 25 (I) ou l'un de ses sels ou complexes métalliques, dans un milieu cosmétiquement ou pharmaceutiquement acceptable.

Ces compositions contiennent les composés de formule (I) dans des proportions de 0,001 à 10% en poids.

Les compositions cosmétiques et pharmaceutiques peuvent se 30 présenter sous des formes diverses habituellement utilisées dans ce domaine, et en particulier sous forme d'onguent, de crème, de pommade, de comprimé, de suspension buvable, d'injection ou de gel pour les compositions pharmaceutiques et sous forme de gel, de spray, de lotion, d'émulsion ou de dispersion vésiculaire pour les 35 compositions cosmétiques.

5 Lorsque les composés de formule (I) sont utilisés dans le cadre d'un traitement pharmaceutique, les formes d'administration peuvent adopter la voie orale, topique ou parentérale, le support pharmaceutiquement acceptable dépendant de la forme d'administration choisie. La posologie est généralement comprise entre 1 et 100 mg/kg/jour.

Le milieu cosmétiquement ou pharmaceutiquement acceptable est un milieu usuel dans le domaine cosmétique ou pharmaceutique.

10 Les composés de formule (I) peuvent, selon une forme de réalisation préférée, être utilisés avec au moins un autre agent actif (ou un autre agent anti-radicaux libres). Ces agents peuvent être choisis plus particulièrement parmi :

- les antilipoperoxydants comme la vitamine E, le trolox, le BHT (butylhydroxytoluène),
- 15 - un réducteur biologique comme le glutathion réduit et ses dérivés, la vitamine C et ses dérivés,
- un capteur d'oxygène singulet comme un caroténoïde tel que le β-carotène,
- 20 - un système capable de décomposer le peroxyde d'hydrogène tel que des enzymes comme la catalase ou les peroxydases en présence de leur co-substrat,
- un système de protection contre l'anion superoxyde comme les SOD ou des analogues tels que le complexe Mn-desferal ou le di-isopropyl salicylate de cuivre,
- 25 - un système capable de décomposer les hydroperoxydes organiques comme la glutathion peroxydase ou des systèmes à base de sélénium,
- les agents anti-inflammatoires,
- les filtres UV,
- 30 - les promoteurs de pénétration,
- et les associations de ces composés.

Les composés de formule (I) (composant (A)) et les agents actifs ou agents anti-radicaux libres (composant (B)) définis ci-dessus, peuvent être mis en oeuvre dans la même composition ou être appliqués séparément, de façon décalée ou non, dans le temps, à l'aide

d'une composition cosmétique ou pharmaceutique les contenant.

Par ailleurs, la demanderesse a constaté que les composés (I) selon l'invention sont utilisables comme antioxydants pour conserver les compositions les contenant.

5 La présente invention concerne également le procédé de préparation des composés (I) de l'invention.

Le procédé varie selon la nature de Z_5 .

Lorsque $Z_5 = - \text{COOR}$ (a), selon le procédé (A), l'aldéhyde de formule (II) (1 mole) :

10

15

où X_1 , X_2 , X_3 , Z_1 , Z_2 , Z_3 et Z_4 ont les significations déjà indiquées,

est mis en présence de l'ester éthylique de la glycine (1 mole) pour

obtenir l'imine correspondante.

Lorsque Z_5 désigne

25

30

selon le procédé (B), l'aldéhyde de formule (II) (1 mole) est mis en présence de N-acétyl éthylènediamine (1 mole) pour obtenir l'imine correspondante.

Lorsque Z_5 désigne

5

selon le procédé (C), l'aldéhyde de formule (II) (2 moles) est mis en présence d'éthylènediamine (1 mole) pour obtenir la diimine correspondante.

Dans chacun des trois procédés, l'imine ou la diimine obtenue, isolée ou non, est mise en présence de borohydrure de sodium ou est réduite par hydrogénéation catalytique, pour donner naissance à l'amine ou à la diamine correspondante.

Selon le procédé (B), la diamine obtenue est alors traitée par l'acide chlorhydrique pour hydrolyser la fonction acétyle.

Selon le procédé (A), l'amine obtenue est traitée par la soude pour saponifier l'ester éthylique.

Dans une étape ultérieure, l'amine ou la diamine obtenue par les procédés (A), (B) ou (C), est traitée en milieu basique, par exemple en présence d'hydroxyde de sodium, avec l'acide bromoacétique ou l'un de ses esters, en présence de monohydrogénocarbonate de sodium. On récupère alors le produit de formule (I) correspondant. Ces procédés sont schématisés comme suit :

SCHEMA DE SYNTHESE GENERALE

Selon la nature de Z_1 , Z_2 et Z_3 , une étape de protection/déprotection peut être nécessaire, notamment dans le cas où l'un de ces substituants est NH_2 . Cette étape supplémentaire est faite selon les techniques usuelles de la chimie organique, de même que l'estérification finale des composés selon la formule (I) pour lesquels R est H, si on utilise l'acide bromo-acétique libre.

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture des exemples ci-après.

10

EXEMPLES DE PREPARATION

15

Exemple 1

acide 3,4,5-triméthoxybenzyl iminodiacétique

20

Exemple 2

acide benzyl iminodiacétique

25

Exemple 3

acide 3-hydroxybenzyl iminodiacétique

Exemple 4
acide N-benzyl éthylène
diaminetriacétique

5

10

15

20

Exemple	point de fusion	RMN ^{13}C ou ^1H et SM
N° 1	206-208°C	conformes
N° 2	200°C	conformes
N° 3	222°C	conformes
N° 4	250°C	conformes

25

30

Exemples 5 à 18

Exemple	X ₁	X ₂	X ₃	Z ₁	Z ₂	Z ₃	Z ₄	R	PF °C	RMN ¹³ C ou ¹ H et SM
5	C	C	C	H	H	H	Me	H	198	Conformes
6	C	C	C	H	H	OH	H	H	175	"
7	C	C	C	H	OMe	OH	H	H	> 260	"
8	C	C	C	OMe	OMe	OMe	H	H	180	"
9	C	C	C	H	OH	H	H	H	255	"
10	C	C	C	H	H	H	H	H	> 260	"
11	C	C	C	OMe	H	H	H	H	174	"
12	C	C	C	OMe	H	OMe	H	H	170	"
13	C	C	C	OH	NO ₂	H	H	H	220	"
14	C	C	C	Cl	H	H	H	H	> 260	"
15	C	C	C	H	OMe	Me	Me	H	> 260	"
20	16	C	C	C	H	H	H	isoPr	50	"
17	C	C	C	OMe	OMe	OMe	H	Me	80	"
18	N	C	C	-	H	H	H	H	218	"

25 MODE OPERATOIRE GENERAL

Première étape

30 40 mmoles du benzaldéhyde de formule (II) de départ sont solubilisées dans 30 ml de méthanol. On additionne 40 mmoles de l'amine (20 mmoles dans le cas de l'éthylènediamine), puis le mélange est chauffé 30 minutes à 50°C.

Le précipité obtenu est filtré et lavé à l'éther éthylique. On obtient un produit blanc.

Deuxième étape

5 17 mmoles de l'imine ou de la diimine sont mises en suspension dans 100 ml d'éthanol absolu. On additionne peu à peu 1 équivalent de borohydrure de sodium et on agite le mélange 1 heure à température ambiante.

10 Après évaporation, on ajoute 20 ml d'eau au résidu et on ramène le pH à 8 par addition d'acide chlorhydrique.

15 Le précipité est filtré, lavé à l'eau puis séché.

20 Le produit est recristallisé dans un mélange eau/éthanol. On obtient un produit blanc.

25 Dans le cas de la synthèse du composé n°9, le produit est solubilisé dans 30 ml d'éthanol, puis 4 ml d'une solution d'éthanol chlorhydrique à 8 moles/l sont ajoutés. Le précipité obtenu est filtré puis lavé à l'éther. On obtient le dichlorhydrate de la diamine sous forme d'un produit blanc.

Troisième étape

30 Selon le procédé (C) (exemples n°5 à 18), 10 mmoles de la diamine sont solubilisées dans 15 ml d'eau contenant 10 mmoles d'hydroxyde de sodium (30 mmoles si on part du dichlorhydrate).

35 20 mmoles d'acide bromoacétique sont solubilisées dans 25 ml d'eau à 0°C contenant 20 mmoles de monohydrogénocarbonate de sodium.

40 Les deux solutions sont mélangées et chauffées à 40°C pendant 6 heures en maintenant le pH vers 12 par addition de soude à 30%.

45 Après une nuit au repos à température ambiante, le mélange est acidifié par de l'acide chlorhydrique concentré jusqu'à pH 4-5.

50 La solution est concentrée sous vide et le précipité obtenu est filtré puis recristallisé dans un mélange eau/éthanol. On récupère une poudre blanche.

55 Selon le procédé (A) (exemples n° 1, 2, et 3), 10 mmoles d'amine dans 20 ml d'eau sont préalablement agitées 30 minutes à température ambiante en présence de 10 mmoles de NaOH. Le mélange brut obtenu est alors traité par 10 mmoles d'acide bromoacétique solubilisées dans

25 ml d'eau contenant 10 mmoles de NaHCO₃, comme indiqué ci-dessus pour le procédé (C).

Selon le procédé (B) (exemple n° 4), 10 mmoles de diamine dans 20 ml d'HCl 4N sont portées au reflux pendant 24 heures. Le mélange brut obtenu est alors ramené à pH basique et traité par 30 mmoles d'acide bromoacétique solubilisées dans 30 ml d'eau contenant 30 mmoles de NaHCO₃ pour obtenir le dérivé N-benzyléthylène diamine correspondant, comme indiqué ci-dessus pour le procédé (C).

10 EXEMPLES DE FORMULATION COSMETIQUE

EXEMPLE A

On prépare l'émulsion suivante selon les techniques classiques en utilisant les constituants ci-dessous.

- Composé de l'exemple 1	0,1	g
- Polyéthéneglycol oxyéthyléné à 50 moles d'oxyde d'éthylène	3	g
- Monodiglycérylstéarate	3	g
- Huile de vaseline	24	g
- Alcool cétylique	5	g
- Eau	qsp	100 g

On obtient une émulsion blanche destinée à être appliquée topiquement sur la zone de la peau à protéger.

EXEMPLE B

On prépare l'émulsion suivante selon les techniques classiques en utilisant les constituants ci-dessous.

- Composé de l'exemple 2	0,02	g
- Octylpalmitate	10	g
- Glycérylisostéarate	4	g
- Huile de vaseline	24	g
- Vitamine E	1	g
- Glycérol	3	g

- Eau qsp 100 g

On obtient une émulsion blanche destinée à être appliquée topiquement sur la zone de la peau à protéger.

5

EXEMPLE C

On prépare la formulation suivante selon les techniques classiques en utilisant les constituants ci-dessous.

10	- Composé de l'exemple 2	0,02	g
	- Huile de jojoba	13	g
	- Parahydroxybenzoates de méthyle et d'isopropyle	0,05	g
	- Sorbate de potassium	0,3	g
15	- Cyclopentadiméthylsiloxane	10	g
	- Alcool stéarylque	1	g
	- Acide stéarique	4	g
	- Stéarate de polyéthylèneglycol	3	g
	- Vitamine E	1	g
20	- Glycérol	3	g
	- Eau	qsp	100 g

On obtient une émulsion blanche destinée à être appliquée topiquement sur la zone de la peau à protéger.

25

EXEMPLE D

On prépare l'éulsion suivante selon les techniques classiques en utilisant les constituants ci-dessous.

30	- Composé de l'exemple 6	0,1	g
	- Polyéthylèneglycol oxyéthyléné à 50 moles d'oxyde d'éthylène	3	g
	- Monodiglycérylstéarate	3	g
	- Huile de vaseline	24	g
	- Alcool cétylique	5	g
	- Eau	qsp	100 g

On obtient une émulsion blanche destinée à être appliquée topiquement sur la zone de la peau à protéger.

EXEMPLE E

5 On prépare l'émulsion suivante selon les techniques classiques en utilisant les constituants ci-dessous.

- Composé de l'exemple 7	0,02	g
- Octylpalmitate	10	g
- Glycérylisostéarate	4	g
10 - Huile de vaseline	24	g
- Vitamine E	1	g
- Glycérol	3	g
- Eau	qsp	100 g

15 On obtient une émulsion blanche destinée à être appliquée topiquement sur la zone de la peau à protéger.

EXEMPLE F

20 On prépare la formulation suivante selon les techniques classiques en utilisant les constituants ci-dessous.

- Composé de l'exemple 6	0,02	g
- Huile de jojoba	13	g
- Parahydroxybenzoates de méthyle et d'isopropyle	0,05	g
25 - Sorbate de potassium	0,3	g
- Cyclopentadiméthylsiloxane	10	g
- Alcool stéarylque	1	g
- Acide stéarique	4	g
30 - Stéarate de polyéthylèneglycol	3	g
- Vitamine E	1	g
- Glycérol	3	g
- Eau	qsp	100 g

On obtient une émulsion blanche destinée à être appliquée

topiquement sur la zone de la peau à protéger.

EXEMPLES DE FORMULATION PHARMACEUTIQUE

G - VOIE ORALE

5 1) *Comprimé*

- Composé de l'exemple 2	0,001	g
- Amidon	0,114	g
- Phosphate bicalcique	0,020	g
10 - Lactose	0,060	g
- Stéarate de magnésium	0,005	g

Après compactage, on obtient un comprimé de 0,2 g.

15 2) *Suspension buvable*

- Composé de l'exemple 2	0,001	g
- Glycérol	0,500	g
- Sorbitol à 70%	0,500	g
- Saccharinate de sodium	0,010	g
20 - Parahydroxybenzoate de méthyle	0,040	g
- Arôme qs		
- Eau purifiée qsp	5 ml	

25 3) *Comprimé*

- Composé de l'exemple 6	0,001	g
- Amidon	0,114	g
- Phosphate bicalcique	0,020	g
- Lactose	0,060	g
- Stéarate de magnésium	0,005	g

30 Après compactage, on obtient un comprimé de 0,2 g.

35 4) *Suspension buvable*

- Composé de l'exemple 8	0,001	g
- Glycérol	0,500	g
- Sorbitol à 70%	0,500	g

	- Saccharinate de sodium	0,010	g
	- Parahydroxybenzoate de méthyle	0,040	g
	- Arôme qs		
	- Eau purifiée qsp	5 ml	

5

H - ADMINISTRATION PAR INJECTION

Ampoule injectable de 3 ml

	- Composé de l'exemple 2	0,002	g
10	- Hydroxyde de sodium	0,0007	g
	- Eau pour préparation injectable qsp	3 ml	

Ampoule injectable de 3 ml

	- Composé de l'exemple 9	0,002	g
15	- Hydroxyde de sodium	0,0007	g
	- Eau pour préparation injectable qsp	3 ml	

REVENDICATIONS

1. Utilisation d'un composé de formule (I) :

5

10

dans laquelle :

15

Z_1 , Z_2 , Z_3 , indépendamment l'un de l'autre, représentent NO_2 , COOH , CF_3 , un atome d'halogène ou un groupement R_1 , OR_1 , SR_1 ou NR_1R_2 ,

20

Z_4 représente H ou un groupement R_1 ;

où R , R_1 et R_2 , indépendamment l'un de l'autre, représentent H ou un groupement alkyle linéaire ou ramifié, en C_1 à C_8 ,

X_1 , X_2 , X_3 représentent : $-\text{C}=$ ou $-\text{N}=$, à condition que

si $X_1=\text{N}$, alors $X_2=X_3=\text{C}$ et il n'y a pas de substituant Z_1 sur X_1 ,

si $X_2=\text{N}$, alors $X_1=X_3=\text{C}$ et il n'y a pas de substituant Z_2 sur X_2 ,

si $X_3=\text{N}$, alors $X_2=X_1=\text{C}$ et il n'y a pas de substituant Z_3 sur X_3 ,

c'est-à-dire qu'il s'agit d'un noyau de benzène ou de pyridine;

Z_5 représente :

25

le groupement : $-\text{COOR}$ (a)

30

ou le groupement :

ou le groupement :

dans lesquels Z_1 , Z_2 , Z_3 , Z_4 , X_1 , X_2 , X_3 , R , R_1 et R_2 ont les mêmes significations que ci-dessus;

15 ou de ses sels et complexes métalliques, pour le traitement cosmétique de l'organisme, en vue de le protéger contre le stress oxydant.

2. Composition cosmétique, caractérisée par le fait qu'elle contient au moins un composé de formule (I) tel que défini dans la revendication 1, dans un milieu cosmétiquement acceptable.

20 3. Composition selon la revendication 2, caractérisée par le fait qu'elle contient 0,001 à 10% en poids d'au moins un composé de formule (I) tel que défini dans la revendication 1.

25 4. Composition destinée au traitement cosmétique des effets du stress oxydant ou à la protection contre ces effets, caractérisée par le fait qu'elle comprend deux composants (A) et (B) :

20 le composant (A) étant constitué par le composé de formule (I) tel que défini dans la revendication 1,

30 le composant (B) étant choisi parmi les antilipoperoxydants, les réducteurs biologiques, les capteurs d'oxygène singulet, les systèmes capables de décomposer le peroxyde d'hydrogène, les systèmes de protection contre l'anion superoxyde, les systèmes capables de décomposer les hydroperoxydes organiques, les filtres UV, les promoteurs de pénétration ou leurs associations, et étant présent dans la même composition que le composant (A) ou destiné à être utilisé de façon séparée, décalée ou non dans le temps.

5. Composition selon la revendication 4, caractérisée par le fait que l'agent antilipoperoxydant est choisi parmi la vitamine E, le trolox, le BHT; le réducteur biologique est choisi parmi le glutathion réduit ou la vitamine C; le capteur d'oxygène singulet est un caroténoïde; le système capable de décomposer le peroxyde d'hydrogène est une enzyme catalase ou peroxydase; le système de protection contre l'anion superoxyde est constitué par les SOD, le complexe Mn-desferal, le di-isopropyl salicylate de cuivre; le système capable de décomposer les hydroperoxydes organiques est la glutathion peroxydase ou un système à base de sélénium.

10 15 20 25 30

6. Composé de formule (I) :

dans laquelle :

Z_1 , Z_2 , Z_3 , indépendamment l'un de l'autre, représentent NO_2 , COOH , CF_3 , un atome d'halogène ou un groupement R_1 , OR_1 , SR_1 ou NR_1R_2 ,

Z_4 représente H ou un groupement R_1 ;
où R , R_1 et R_2 , indépendamment l'un de l'autre, représentent H ou un groupement alkyle linéaire ou ramifié, en C_1 à C_8 ,

X_1 , X_2 , X_3 représentent : $-\text{C}=\text{}$ ou $-\text{N}=$, à condition que
si $X_1=\text{N}$, alors $X_2=X_3=\text{C}$ et il n'y a pas de substituant Z_1 sur X_1 ,
si $X_2=\text{N}$, alors $X_1=X_3=\text{C}$ et il n'y a pas de substituant Z_2 sur X_2 ,
si $X_3=\text{N}$, alors $X_2=X_1=\text{C}$ et il n'y a pas de substituant Z_3 sur X_3 ,
c'est-à-dire qu'il s'agit d'un noyau de benzène ou de pyridine;

Z_5 représente :

le groupement : $-\text{COOR}$ (a)

5

10

15

20

dans lesquels Z_1 , Z_2 , Z_3 , Z_4 , X_1 , X_2 , X_3 , R , R_1 et R_2 ont les mêmes significations que ci-dessus;
ou ses sels ou complexes métalliques,
pour son utilisation dans une méthode de traitement thérapeutique du corps humain ou animal.

25

7. Composé répondant à la formule (I) tel que défini dans la revendication 6, pour son utilisation dans la protection de l'organisme humain contre le stress oxydant.

8. Composition pharmaceutique, caractérisée par le fait qu'elle contient dans un milieu pharmaceutiquement acceptable, au moins un composé de formule (I) tel que défini dans la revendication 6.

30

9. Composition pharmaceutique selon la revendication 8, caractérisée par le fait qu'elle contient 0,001 à 10% en poids d'au moins un composé de formule (I) tel que défini dans la revendication 6.

10. Composition destinée au traitement thérapeutique des effets du

stress oxydant ou à la protection contre ces effets, caractérisée par le fait qu'elle comprend deux composants (A) et (B) :

le composant (A) étant constitué par le composé de formule (I) tel que défini dans la revendication 6,

le composant (B) étant choisi parmi les antilipoperoxydants, les réducteurs biologiques, les capteurs d'oxygène singulet, les systèmes capables de décomposer le peroxyde d'hydrogène, les systèmes de protection contre l'anion superoxyde, les systèmes capables de décomposer les hydroperoxydes organiques, les agents anti-inflammatoires, les promoteurs de pénétration ou leurs associations, et étant présent dans la même composition que le composant (A) ou destiné à être utilisé de façon séparée, décalée ou non dans le temps.

11. Composé de formule (I) :

15

20

dans laquelle :

25 Z_1, Z_2, Z_3 , indépendamment l'un de l'autre, représentent NO_2 , COOH , CF_3 , un atome d'halogène ou un groupement R_1 , OR_1 , SR_1 ou NR_1R_2 ,

Z_4 représente H ou un groupement R_1 ;

où R , R_1 et R_2 , indépendamment l'un de l'autre, représentent H ou un groupement alkyle linéaire ou ramifié, en C_1 à C_8 ,

30 X_1, X_2, X_3 représentent : $-\text{C}=$ ou $-\text{N}=$, à condition que
si $X_1=\text{N}$, alors $X_2=X_3=\text{C}$ et il n'y a pas de substituant Z_1 sur X_1 ,
si $X_2=\text{N}$, alors $X_1=X_3=\text{C}$ et il n'y a pas de substituant Z_2 sur X_2 ,
si $X_3=\text{N}$, alors $X_2=X_1=\text{C}$ et il n'y a pas de substituant Z_3 sur X_3 ,
c'est-à-dire qu'il s'agit d'un noyau de benzène ou de pyridine;

35 Z_5 représente :

le groupement : -COOR (a)

ou le groupement :

5

10

ou le groupement :

15

20

(c)

dans lesquels Z_1 , Z_2 , Z_3 , Z_4 , X_1 , X_2 , X_3 , R , R_1 et R_2 ont les mêmes significations que ci-dessus;

à l'exclusion des composés suivants : acide benzyl iminodiacétique, acide 3-aminobenzyl iminodiacétique, acide 3-nitrobenzyl iminodiacétique, acide 4-nitrobenzyl iminodiacétique, acide 4-aminobenzyl iminodiacétique, acide 4-hydroxybenzyl iminodiacétique, acide 4-diméthylaminobenzyl iminodiacétique, acide 4-méthylbenzyl iminodiacétique, acide 4-fluorobenzyl iminodiacétique, acide 2-nitrobenzyl iminodiacétique, acide 3-nitro-4-chlorobenzyl iminodiacétique, acide benzyl éthylènediaminetriacétique, acide 3-pyridylméthylène iminodiacétique, et sous réserve que, lorsque Z_5 désigne le groupement (c), dans lequel X_1 , X_2 , X_3 représentent C et Z_4 désigne H, l'un au moins de Z_1 et Z_3 est différent de H, lorsque Z_2 désigne H, Cl, NO_2 ou CH_3 et Z_3 n'est pas H, lorsque Z_1 désigne OH

et Z_2 désigne OCH_3 ;
ainsi que ses sels et complexes métalliques.

12. Composé de formule (I) selon la revendication 11, caractérisé par le fait qu'il est choisi parmi l'acide 3,4,5-triméthoxybenzyl iminodiacétique, l'acide 3-hydroxybenzyl iminodiacétique, l'acide N,N'-di(2-méthylbenzyl)éthylènediaminediacétique, l'acide N,N'-di(3-hydroxybenzyl)éthylènediaminediacétique, l'acide N,N'-di(3-hydroxy-4-méthoxybenzyl)éthylènediaminediacétique, l'acide N,N'-di(3,4,5-triméthoxybenzyl)éthylènediaminediacétique et son ester méthylique, l'acide N,N'-di(4-hydroxybenzyl)éthylènediaminediacétique, l'acide N,N'-di(3-méthoxybenzyl)éthylènediaminediacétique, l'acide N,N'-di(3,5-diméthoxybenzyl)éthylènediaminediacétique, l'acide N,N'-di(3-hydroxy-4-nitrobenzyl)éthylènediaminediacétique, l'acide N,N'-di(3-chlorobenzyl)éthylènediaminediacétique, l'acide N,N'-di(2,3-diméthyl-4-méthoxybenzyl)éthylènediaminediacétique et l'acide N,N'-di(3-pyridylméthylène)éthylènediaminediacétique, ainsi que leurs sels et complexes métalliques.

13. Procédé de préparation du composé de formule (I) selon la revendication 11, caractérisé en ce qu'on réalise les étapes suivantes :
20 1) on fait réagir l'aldéhyde de formule (II) :

30 (A) avec l'ester éthyllique de la glycine lorsque Z_5 désigne le groupement (a), (B) avec la N-acétyl éthylènediamine lorsque Z_5 désigne le groupement (b), ou (C) avec l'éthylènediamine lorsque Z_5 désigne le groupement (c),

2) on réduit l'imine ou la diimine correspondante obtenue par du borohydrure de sodium ou par hydrogénéation catalytique,

3) on traite l'amine obtenue par le procédé (A) par NaOH pour saponifier l'ester éthylique et la diamine obtenue par le procédé (B) par HCl pour hydrolyser la fonction acétyle,

4) on traite l'amine ou la diamine obtenue en milieu basique par l'acide bromoacétique en présence de monohydrogénocarbonate de sodium, pour obtenir le composé de formule (I) correspondant et on récupère le produit obtenu.

14. Utilisation comme antioxydant du composé tel que défini dans l'une quelconque des revendications 1, 11 et 12.

INTERNATIONAL SEARCH REPORT

Int'l Application No

PCT/FR 93/01109

A. CLASSIFICATION OF SUBJECT MATTER

IPC 5 C07C229/16 A61K31/195 A61K7/48 A61K7/06 C07D213/38

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 5 C07C A61K C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>AMERICAN JOURNAL OF HEMATOLOGY vol. 24, no. 3, March 1987 pages 277 - 284</p> <p>BYOUNG-KOOK K. 'EFFECTIVENESS OF ORAL IRON CHELATORS ASSAYED IN THE RAT' see page 277</p> <p>---</p> <p>INORGANICA CHIMICA ACTA vol. 138, no. 3, 1987 pages 215 - 230</p> <p>A. E. MARTELL ET AL 'DEVELOPMENT OF IRON CHELATORS FOR COOLEY'S ANEMIA' see page 215 see page 219 - page 220</p> <p>---</p> <p>-/-</p>	1-14
A		1-14

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *'A' document defining the general state of the art which is not considered to be of particular relevance
- *'E' earlier document but published on or after the international filing date
- *'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *'O' document referring to an oral disclosure, use, exhibition or other means
- *'P' document published prior to the international filing date but later than the priority date claimed

- *'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *'&' document member of the same patent family

2

Date of the actual completion of the international search

10 February 1994

Date of mailing of the international search report

16. 02. 94

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Sanchez y Garcia, J

INTERNATIONAL SEARCH REPORT

International Application No

PCT/FR 93/01109

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	CHEMICAL ABSTRACTS, vol. 110, no. 13, 27 March 1989, Columbus, Ohio, US; abstract no. 110927, LI J ET AL. 'Specific sequestering agents for the actinides VI' page 344 ; see abstract & SHANDONG YIKE DAXUE XUEBAO (SYXBEE); 88; VOL.26 (2); PP.64-8 & CHEMICAL ABSTRACTS, vol. 24, no. 2, 25 January 1960, Columbus, Ohio, US; abstract no. 110927, '12TH COLLECTIVE INDEX CHEMICAL SUBSTANCES: GLYCINE, N,N'-1,2 -ETHANEDIYLBIS[N-[(3-HYDROXY-4-4-METHOXYPH ENYL)METHYL]-] page 41612CS ; see abstract ---	1-14
A	US,A,4 528 196 (C.G. PITT) 9 July 1985 cited in the application see the whole document ---	1-14
A	JOURNAL OF MEDICINAL CHEMISTRY vol. 29, no. 7, July 1986 , WASHINGTON US pages 1231 - 1237 C.G. PITT ET AL. 'ESTERS AND LACTONES OF PHENOLIC AMINO CARBOXYLIC ACIDS: PRODRUGS FOR IRON CHELATION' see page 1231; example 5 ---	1-14
A	EP,A,0 367 223 (THE DOW CHEMICAL COMPANY) 9 May 1990 see claims; table 1 -----	1-14

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/FR 93/01109

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US-A-4528196	09-07-85	NONE		
EP-A-0367223	09-05-90	AU-B-	628095	10-09-92
		AU-A-	4391689	04-10-90
		CA-A-	2001765	30-04-90
		EP-A-	0566166	20-10-93
		EP-A-	0570022	18-11-93
		JP-A-	2196761	03-08-90

RAPPORT DE RECHERCHE INTERNATIONALE

Date internationale No
PCT/FR 93/01109

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 5 C07C229/16 A61K31/195 A61K7/48 A61K7/06 C07D213/38

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)
CIB 5 C07C A61K C07D

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Category	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	AMERICAN JOURNAL OF HEMATOLOGY vol. 24, no. 3 , Mars 1987 pages 277 - 284 BYOUNG-KOOK K. 'EFFECTIVENESS OF ORAL IRON CHELATORS ASSAYED IN THE RAT' voir page 277 --- A INORGANICA CHIMICA ACTA vol. 138, no. 3 , 1987 pages 215 - 230 A. E. MARTELL ET AL 'DEVELOPMENT OF IRON CHELATORS FOR COOLEY'S ANEMIA' voir page 215 voir page 219 - page 220 --- -/-	1-14
		1-14

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- "X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- "Y" document partiellement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- "&" document qui fait partie de la même famille de brevets

2

Date à laquelle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport de recherche internationale
10 Février 1994	16. 02. 94
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+ 31-70) 340-3016	Fonctionnaire autorisé Sanchez y Garcia, J

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No

PCT/FR 93/01109

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie *	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
A	<p>CHEMICAL ABSTRACTS, vol. 110, no. 13, 27 Mars 1989, Columbus, Ohio, US; abstract no. 110927, LI J ET AL. 'Specific sequestering agents for the actinides VI' page 344 ; voir abrégé</p> <p>& SHANDONG YIKE DAXUE XUEBAO (SYXBEE); 88; VOL.26 (2); PP.64-8</p> <p>& CHEMICAL ABSTRACTS, vol. 24, no. 2, 25 Janvier 1960, Columbus, Ohio, US; abstract no. 110927, '12TH COLLECTIVE INDEX CHEMICAL SUBSTANCES:GLYCINE,N,N'-1,2 -ETHANEDIYLBIS[N-[(3-HYDROXY-4-4-METHOXYPH ENYL)METHYL]-'</p> <p>page 41612CS ; voir abrégé</p> <p>---</p>	1-14
A	<p>US,A,4 528 196 (C.G. PITTE) 9 Juillet 1985 cité dans la demande voir le document en entier</p> <p>---</p>	1-14
A	<p>JOURNAL OF MEDICINAL CHEMISTRY vol. 29, no. 7 , Juillet 1986 , WASHINGTON US</p> <p>pages 1231 - 1237</p> <p>C.G. PITTE ET AL. 'ESTERS AND LACTONES OF PHENOLIC AMINO CARBOXYLIC ACIDS: PRODRUGS FOR IRON CHELATION'</p> <p>voir page 1231; exemple 5</p> <p>---</p>	1-14
A	<p>EP,A,0 367 223 (THE DOW CHEMICAL COMPANY) 9 Mai 1990 voir revendications; tableau 1</p> <p>-----</p>	1-14

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs à la famille de brevets

Demande Internationale N°

PCT/FR 93/01109

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
US-A-4528196	09-07-85	AUCUN	
EP-A-0367223	09-05-90	AU-B- 628095 AU-A- 4391689 CA-A- 2001765 EP-A- 0566166 EP-A- 0570022 JP-A- 2196761	10-09-92 04-10-90 30-04-90 20-10-93 18-11-93 03-08-90

THIS PAGE BLANK (USPTO)