지하철 공실 문제 해결을 위한 공유 창고 '또타스토리지' 입지 선정

CONTENTS

분석의 필요성 분석 과정 결과 분석

- ✓ 분석 배경
- ✓ 현황 분석
- ✓ 분석 목적

- ✓ 분석 로드맵
- ✓ 데이터 전처리
- ✓ Cut-off
- ✓ 클러스터링

- ✓ 군집화 결과 해석
- ✓ 운영 방안 제시

- 결론
- ✓ 입지 선정
- ✓ 기대효과 및 추후 계획

분석 배경

지하철 역사 공실 문제로 인한 손실 임대료 증가

- 코로나19로 타격을 입은 지하철역 지하 상권
- 지하철 이용객 급감으로 인한 매출 하락으로 폐업 점포 증가*
- → 공실 증가

○ GS 리테일과 맺은 6,7호선 유휴공간 임대계약이 끝남

6,7 호선 공실 개수 222개 → 537개**

서울시 부담 손실 임대료

2019년 19억 9100만원

→ 3배 증가

2020년 57억 9600만원

서울시 지하철 역사 공실 활용을 위한 효율적인 비즈니스 모델 필요

^{*} 서울 지하철 상가 1/3이 공실…코로나에 폐업 3배 (2020.10.20) 서울경제

^{**} GS리테일도 떠난 지하철 상가, 체감공실률 따져보니…

분석 배경

떠오르는 셀프 스토리지 시장: 해외

- 셀프 스토리지
- 개인이나 기업이 물품을 보관할 수 있는 공간을 대여해주는 일종의 물품 보관 창고 사업
- 해외 사례 : 미국

미국에서는 이미 개인과 기업 중심으로 보편적으로 사용

구분	주요내용
연간 산업 매 출 액	380억달러(약 45조)
총 시설 개수	45,000 ~ 52,000개
총 임대 가능 시설 면적	17억 ft^2
인구 1인당 시설 면적	5.4 ft ²
임대 가구 비율	9.4%

▲미국 셀프 스토리지 시장 규모(2018년 기준)*

일자리 성장과 주택임대료 최고치가 계속되면서 사람들이 이동/이사하기 때문에 수요 성장은 꾸준할 것

해외에서는 이미 활성되어 있는 셀프 스토리지 시장

SEOUL METROPOLITAN GOVENMENT BIG DATA CAMPUS 서울특별시 빅데이터 캠퍼스

분석 배경

도입 초기 단계의 국내 셀프 스토리지 시장

- 물품 공간에 대한 높은 필요성
- 선진국에 비해 작은 인구 1인당 시설 면적
 - → 셀프 스토리지 예상 수요량 ↑

- 선진국에 비해 작은 셀프 스토리지 시장 규모
- 셀프 스토리지 도입 초기
- → 높은 필요성에 비해 작은 시장 규모

○ 글로벌 셀프 스토리지 협회(SSAA)는 2016년 말 보고서에서 향후 투자 유망 국가에 한국 포함

향후 국내 셀프 스토리지 시장의 성장가능성 높음

또타스토리지 현황 분석

또타스토리지

- 시민 누구나가 계절 의류, 취미 용품, 기업 서류 등을 접근성이 뛰어난 지하철 역사에 장기간 보관할 수 있는 무인형 개인창고 대여 서비스*
- → 시민들의 셀프 스토리지에 대한 니즈를 충족시킴으로써 편의성 제고
- 서울교통공사에서 현재 총 13곳 운영
- 답십리:100%, 반포: 100%, 이수:100% 등 이용률 높음
- → 수요층 확실
- 서울교통공사에 따르면 2023년까지 최대 50개소로 확대할 계획**

TYPE	1개월	3개월 (10%할인)	6개월 (15%할인)	12개월 (20%할인)
0.3평	79,000	213,300	402,900	758,400
0.5평	131,000	353,700	668,100	1,257,600

▲ 또타스토리지 이용요금

▲ 광흥창역 또타스토리지

▲ 또타스토리지 내부

또타스토리지는 지하철 여유 공간을 활용함과 동시에 시민들의 셀프 스토리지에 대한 수요를 충족시킬 수 있는 수단

^{* &}quot;지하철역 개인창고는 인기몰이" 서울교통공사 적자 탈피 안간힘 (2021.03.03) 한국일보

^{**} 지하철역 개인창고 '또타스토리지' 더 많아져요 (2021.06.24) 서울경제

수요 분석

주요 수요층은 추가적인 가사 용품 수납공간을 필요로 하는 도심 거주 개인 및 쾌적한 업무환경을 위해 기업 서류, 사무용품 등의 보관 공간에 대한 니즈를 가진 기업

○ 1인 가구의 비중은 매년 증가

또타스토리지 현황 분석

- 전체 가구 10가구 중 3가구가 1인 가구*
- 전체가구 1인가구 1인 가구 비중 (단위: 천가구, %)

○ 1인 가구의 54%가 40㎡ 이하에서 거주

- 추가적인 물건 보관 공간 수요 발생

○ 기업 보관 수요 확인

- 사설 공유 스토리지 업체들은 기업 전용 창고 시스템 서비스 운영**

^{** &#}x27;공유창고' 세컨신드롬, 시리즈B 투자 유치 (2021.02.23) 한경엣지

분석 목적

분석 목적

주거 및 사무 공간 소형화로 인한 추가적인 보관공간에 대한 수요 증가

"서울시 지하철 역사 공실을 활용할 수 있는 또타스토리지 최적 입지 선정"

또타스토리지의 수요를 파악하여 최적의 입지를 선택하고 운영의 방향성을 제시하고자 함

결론

분석 개요 및 로드맵

분석 과정

변수 선정 및 데이터 전처리

변수 선정

○ 또타스토리지 입지 선정에 영향을 미치는 요인 분석 및 변수 선정

거주 인구와 사업체 수가 많을수록 높은 사용량 예상

1. 행정동별 거주 인구

1위 진관동, 2위 화곡1동, 3위 신정2동, 4위 길동, 5위 역삼2동

2. 행정동별 1인 가구 수

1위 역삼1동, 2위 청룡동, 3위 영등포동, 4위 신림동, 5위 화양동

3. 행정동별 9인 이하 사업체 수

1위 종로 1,2,3,4가동, 2위 가산동, 3위 역삼1동, 4위 신당동, 5위 서교동

1인 가구의 영향력을 고려한 파생변수 생성 Multi-population = (행정동별 거주 인구) x (행정동별 1인 가구)

보관 공간이 부족한 9인 이하 소기업으로 범위 축소

변수 선정 및 데이터 전처리

>

변수 선정

유동 인구 수가 많을수록 높은 접근성 예상

4. 지하철 역 별 일평균 승하차 인구 12000 - 10000

지역별 유동인구보다 작은 단위인 역 별 승하차 인구를 사용함으로써 클러스터링 시 높은 정확도 기대

수요 예측을 위한 클러스터링에서는 공실 면적 변수 사용X 운영 방안 구체화 및 입지 선정 시 사용 예정

최종 클러스터링 변수: Multi-population, 사업체 수, 승하차 인구

변수 선정 및 데이터 전처리

데이터 전처리

○ 지하철역 데이터 처리 및 통합

Google Cloud API를 활용하여 주소 추출

- 역사명, 역위도, 역경도, 역사도로명주소 추출
- 도로명주소 기반으로 행정동 추출
- 동일역이지만 다르게 표기된 역 제거
- 환승역 처리
- 변수 데이터와 병합

1	77	Η.	소서
	//	ш	$\neg \circ$

						`
역번호	역사명	노선번호	노선명	 역위도	역경도	역사도로명주소
205	동대문역사 문화공원	S1102	서울 도시철도 2호선	 37.565	127.0074	서울특별시 중구 을지로 지하 279 (을지로7가)
206	신당	S1102	서울 도시철도 2호선	 37.56583	127.0181	서울특별시 중구 퇴계로 지하 431-1 (신당동)
207	상왕십리	S1102	서울 도시철도 2호선	 37.56417	127.0294	서울특별시 성동구 왕십리로 지하 374 (하왕십리동)
208	왕십리	S1102	서울 도시철도 2호선	 37.56153	127.0375	서울특별시 성동구 왕십리로 지하300(행당동)

전국 도시 철도 역사 정보 표준 데이터

역사명	역위도	역경도	행정동		9인 이하 사업체수	일평균 승하차 인구수
동대문역사 문화공원역	37.56505	127.0072	광희동	11706870	8138	44427.96
신당역	37.56583	127.0181	황학동	47775245	1885	35259.96
상왕십리역	37.56417	127.0294	왕십리2동	48085284	783	21213.32
왕십리역	37.56146	127.0366	행당1동	37234320	1254	52604.86

분석 대상 선별

Stanine을 이용한 입지 후보 Cut-off

- 클러스터링 전 Cut-off 과정을 통해 기존 또타스토리지보다 등급이 낮은 역들을 입지 후보에서 제거
- 등급화 방법
- 1) 또타스토리지 수요량에 영향을 주는 변수에 stanine을 이용하여 등급 부여

*stanine: 수능 등급에 이용되는 평균 5이고 표준편차가 2인 9등급 표준 척도

2) 변수들의 등급을 평균 내어 역별 최종 등급 결정

역사명	1인 가구	9인 이하 사업체수	거주인구수	일평균 승하차인구수 등급	avg
가락시장역	9	4	4	4	5.25
광흥창역	4	5	5	6	5
창신역	4	5	3	7	4.75
태릉입구역	3	4	2	5	3.5

296개 역 중 5.04 등급보다 낮은 138개 역 제거

역사명	1인 가구	9인 이하 사업체수	거주인구수	일평균 승하차인구수 등급	avg
가산 디지털 단지역	1	1	5	1	2
강남구청역	5	7	5	3	5
•••					
화랑대역	4	5	2	6	4.25
흑석역	4	6	3	6	4.75

기존 12개 또타 스토리지 평균 등급 = 5.04등급

최종 입지 후보 158개 선정

Cut-off 과정을 통해 클러스터링 전 평균 미달의 입지 후보 제거

론

클러스터링

클러스터링 (Clustering)

- 클러스터링 변수: Multi-pop, 사업체수, 승하차 인구
- O Scaling 방법: Min-max, Robust, Standard, Unscaled
- O 클러스터링 방법: K-means, k-medoids, Hierarchical, DBSCAN

4x4 = 16번 클러스터링 진행

→ 실루엣 계수가 가장 높은 K-means, Min-max 사용

▼ K-means Clustering

데이터 간의 거리 차이가 최소가 되 도록 하는 중심점을 생성하여 데이터들을 k개의 클러스터에 할당

▼ Min-max Scaling

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

최소값과 최대값를 사용해 0~1 사이의 범위로 데이터를 표준화해주는 변환

▼ Silhouette Coefficient

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

$$s(i) = egin{cases} 1 - a(i)/b(i), & ext{if } a(i) < b(i) \ 0, & ext{if } a(i) = b(i) \ b(i)/a(i) - 1, & ext{if } a(i) > b(i) \end{cases}$$

각 군집 간의 거리가 얼마나 효율적으로 분리 돼있는지를 나타내는 계수로 0에 가까울 수록 근처 군집과 가까움을 나타냄

군집이 가장 효율적으로 분리되는 K-means를 사용해 클러스터링 진행

총 103개

클러스터링

분석 결과

O Elbow method

: 클러스터링 시 데이터 세트의 군집 수를 결정하는 방법

군집 결과 분석

분석 결과 해석

○ 군집별 변수 평균을 통해 수준 파악

Cluster	Multi-pop	9인이하 사업체수	일평균 승하차인구
0	하 (0.164)	하 (0.126)	중(0.444)
1	상 (0.458)	상 (0.870)	상 (0.552)
2	중(0.288)	중 (0.153)	하 (0.135)

방사형 그래프를 통한 군집별 변수 시각화

- → 거주 인구 / 사업체 수 / 유동 인구가 가장 높은 Cluster 1 가장 높은 수요 예상
- * 1 Multi-pop 2 9인 이하 사업체수 3 일평균 승하차인구

○ Cluster 1에 또타스토리지 설치 시 문제점

Cluster	역사명	공실 면적
1	가산 디지털 단지	0
1	신논현	0
1	홍대입구	0

- → 공실 면적이 수요를 반영할 만큼 충분하지 않음
- → 예상수요와 공실면적의 Mismatch 발생

예상 수요와 공실 면적의 Mismatch → 수익성 개선을 위해서는 운영방식의 변화가 필요

군집 결과 분석

새로운 운영 방안 제시

1. 입지 특성을 활용한 용도 구분

유동인구에 비해 거주인구, 사업체 수가 적은 지역 → Cluster 1에서 접수한 물품 보관

수요량은 높지만 공실 면적은 작은 지역

- → 물품 보관 접수
- 작은 물품 보관

Cluster 2 종합형

- → 보관형 + 접수형
- → 저장 방식 다변화

2. 수요에 따른 저장 방식 다변화

현재 또타스토리지: 캐비넷형(0.3평), 룸형(0.5평)

Cube

- 문서 보관용

Small - 작은 짐 Medium

- 캐비넷형 (0.3평)

Large

- 룸형(0.5평)

- 장기 보관용

	Cluster	Cube	Small	Medium	Large
0	보관형			0	0
1	접수형	0	0		
2	종합형	0	0	0	0

접수형(Cluster 1), 보관형(Cluster 0) 입지 선정

- 접수형 위치를 기준으로 4개 권역 선정
 - 허브 역할을 하는 접수형(Cluster 1)을 우선적으로 입지 선정
- 접수형 입지 선정 결과

- * 현재 공실이 없는 역:신논현, 홍대입구, 가산디지털단지
- → 당장 도입하기에는 어려움이 있으나, 추후 공실 생기는 경우 우선으로 고려

접수형(Cluster 1), 보관형(Cluster 0) 입지 선정

- 권역별로 예상 수요량을 계산하여 보관형(Cluster 0) 입지 선정
- 예상 수요량 = 필요 면적 (m^2) = (1인 가구 인구) \times 0.094* \times 0.5**
 - *0.094 = 셀프 스토리지 시장이 가장 활발한 미국의 셀프 스토리지 이용 가구 비율 **0.5 = 미국의 1인당 시설 면적
- 권역별로 예상 수요량을 고려하여 접수형에서 가까운 보관형 역 선택

▼마포 홍대입구 합정 🧯

* 현재 공실이 존재하는 역들에 한해서 선택

- 공덕, 당산, 신촌, 연신내
- 예상 수요량: 472.82*m*²

접수형

○ 보관형

- 신도림
- 예상 수요량: 175.639 m^2

접수형(Cluster 1), 보관형(Cluster 0) 입지 선정

▼ 종로

보관형

- 강남구청, 고속터미널, 교대, 사당, 신사, 양재, 잠실새내, 잠실
- 예상 수요량: 580.92*m*²

- Cluster 1(종각, 종로3가, 안국)만으로도 예상 수요량 만족
- 유동 인구 가장 큰 종각을 접수형으로 두고, 종로3가 ㆍ 안국을 보관형으로 변환
- 예상 수요량: 197.682*m*²

S

최적 입지 선정

종합형(Cluster 2) 입지 선정

- Cluster 2 입지 적정성 평가
- Multi-population : 사업체 수 : 승하차인원 = 2* : 1 : 1 로 점수 매겨 상위 5개 역 선정
- *Multi-population은 거주인구와 1인가구 두 개의 변수를 포함하고 있기 때문에 가중치 2배 부여

지하철역	Multi-pop	사업체수	일평균 승하차 인구수	점수
발산역	0.621621	0.318229	0.221727	1.7832
망원역	0.337832	0.570071	0.179255	1.42499
서초역	0.293406	0.422561	0.216443	1.22582
태릉입구역	0.433928	0.136236	0.155133	1.15923
남구로역	0.245508	0.393899	0.176322	1.06124

지하철 역 별 적정성 평가

최종 5개 종합형 선정 : 발산, 망원, 서초, 태릉입구, 남구로

최종 입지 선정

기대 효과 및 추후 계획

기대 효과

- 지하철 역사 내 빈 상가 공간을 활용하여 수익성 개선
- 클러스터링과 여러 평가 체계를 도입하여 또타스토리지의 구체적인 입지분석과 더불어 현재 운영방식보다 효율적인 활용 방안을 제시하였다.
- 장기간 공실로 있던 역사 내 상가 공간을 또타스토리지로 활용하고 부가수익을 창출하여 수익성 개선으로 이어질 것이다.
- 서울시 1인가구 특별대책, 중소기업 지원사업과 연계
- 급증한 서울시 1인가구를 지원하고, 복지 정책을 확대하려는 서울시의 정책적 방향에 직간접적으로 기여할 수 있다.
- 임대료가 부담스러운 중소기업과에 인프라를 제공하고 서울시 중소기업 정책과 연계하여 정책을 지원할 수 있다.

추가 연구 계획

- 접수형 보관형 스토리지 물품 이동 방안 구체화
- 접수형에서 받은 물품을 보관형 스토리지로 옮기는 과정에서 실버택배와 같은 다양한 정책과 연계할 수 있다. 이를 각각 평가해보고 가장 효율적인 방식을 찾아 운영 방안을 모색할 필요가 있다.

References

참고문헌

- [1] 공간의 재발견, 도심형 창고 셀프 스토리지(2019.04.01) KB금융지주 경영연구소 지식비타민(19-25)
- [2] 서울특별시 종로구 길거리 쓰레기통 최적 입지 선정(2020) 대한산업공학회 추계학술대회 논문집
- [3] 땅값 비싼 강남 한복판에 웬 창고가?(2020.07.16) 매일경제
- [4] '공유창고' 세컨신드롬, 시리즈B 투자 유치 (2021.02.23) 한경엣지
- [5] "지하철역 개인창고는 인기몰이" 서울교통공사 적자 탈피 안간힘 (2021.03.03) 한국일보
- [6] 서울 지하철 상가 1/3이 공실···코로나에 폐업 3배 (2020.10.20) 서울경제
- [7] 지하철역 개인창고 '또타스토리지' 더 많아져요 (2021.06.24) 서울경제
- [8] GS리테일도 떠난 지하철 상가, 체감공실률 따져보니… (2021.08.12) 비즈한국

사용 데이터

데이터명	기간	<u>활용목</u> 적	출처
서울시 행정동 단위 거주인구 데이터	2011년12월~2021년 06월	행정동 별 거주인구 산출	서울시 빅데이터 캠퍼스
서울교통공사_지하상가임대정보	2021년 09월 기준	지하철 역사 별 공실 유무 및 공실 면적 산출	공공데이터포털
서울시 지하철 호선별 역별 승하차 인원 정보	2021년 09월 기준	지하철 역사 별 승하차 인원 정보 산출	서울시 열린데이터 광장
서울시 세대원수별 세대수 (동별)통계	2021년 2분기 기준	행정동 별 1인가구 인구 산출	서울시 열린데이터 광장
서울시 사업체현황 종사자 수(종사자 규모별/동별/성별)	2021년 03월 기준	행정동 별 9인 이하 사업체 수 산출	서울시 열린데이터 광장
9호선 임대상가 현황	2021년 9월 기준	9호선 공실 유무 및 공실 면적 산출	Metro 9 홈페이지

THANK YOU