26 Compact Spaces

- **Exercise 26.1.** (a) Let \mathcal{T} and \mathcal{T}' be two topologies on the set X; suppose that $\mathcal{T}' \supseteq \mathcal{T}$. What does compactness of X in one of these topologies imply about compactness in the other?
- (b) Suppose X is compact Hausdorff under both \mathcal{T} and \mathcal{T}' . Show that the topologies are either equal or incomparable.

Solution. (a) Any open cover in \mathcal{T} is also an open cover in \mathcal{T}' , so if X is compact in \mathcal{T}' , then X is also compact in \mathcal{T} .

(b) If $\mathcal{T}'\supseteq\mathcal{T}$ holds, then the identity map $\mathrm{id}:\mathcal{T}'\to\mathcal{T}$ is a continuous bijection, which is a homeomorphism by Theorem 26.6. This means the topologies are equal by the nature of the function id.

Exercise 26.2. (a) Show that in the finite complement topology on \mathbb{R} , every subspace is compact.

(b) If \mathbb{R} has the topology consisting of all sets A such that $\mathbb{R} - A$ is either countable or all of \mathbb{R} , is the subspace [0,1] compact?

Solution. (a) Let $Y \subseteq \mathbb{R}$ and let \mathcal{A} be an open cover of Y. We can assume that $\emptyset \notin \mathcal{A}$ since it has no effect. Now choose some $A \in \mathcal{A}$ arbitrarily, and choose neighborhoods A_{α} for each $\alpha \in \mathbb{R} - A$. The collection

$$\{A\} \cup \{A_{\alpha}\}$$

is a finite subcover.

(b) No, for example let $A_n = \mathbb{R} - \{1/k \mid k \geq n\}$ for each $n \in \mathbb{N}$.

Solution. Let K_1, \ldots, K_n be compact subspaces of X. Let \mathcal{A} be an open cover of $\bigcup K_i$. Then \mathcal{A} has a finite subcover of each individual K_i , so taking the union of these subcovers gives us a finite subcover of $\bigcup K_i$.

Exercise 26.4. Show that every compact subspace of a metric space is bounded in that metric and is closed. Find a metric space in which not every closed and bounded subspace is compact.

Solution. (1) Let X be a metric space with metric d. Let K be a compact subspace of X. Let

$$\mathcal{A} = \{ B_d(x, 1) \mid x \in X \}$$

be an open cover of K. Since K is compact, we can choose finitely many points x_1, \ldots, x_n such that the balls $\{B_d(x_i, 1) \mid 1 \leq i \leq n\}$ cover K. By the triangle inequality, we can find an upper bound for the diameter of K:

$$D \le \max_{1 \le i, j \le n} d(x_i, x_j) + 2.$$

This shows that K is bounded. Also, K is closed by Theorem 26.3 since metric spaces are Hausdorff.

(2) If we instead use the standard bounded metric \bar{d} which induces the standard topology on \mathbb{R} , the entire space \mathbb{R} is closed and bounded but not compact.

Exercise 26.5. Let A and B be disjoint compact subspaces of the Hausdorff space X. Show that there exist disjoint open sets U and V containing A and B, respectively.

Solution. Since B is compact, by Lemma 26.4 we can choose disjoint open sets U_x and V_x for each $x \in A$ such that $x \in U_x$ and $B \subseteq V_x$. The collection $\{U_x\}$ is an open cover of A, so it has a finite subcover $U_{x_1} \cup \cdots \cup U_{x_n}$.

Let $U = \bigcup U_{x_i}$ and $V = \bigcap V_{x_i}$. These are disjoint open sets containing A and B respectively.

Exercise 26.6. Show that if $f: X \to Y$ is continuous, where X is compact and Y is Hausdorff, then f is a closed map.

Solution. Let K be closed in X. Then K is compact because X is compact. Therefore, f(K) is also compact, so f(K) is closed since Y is Hausdorff. \square

Exercise 26.7. Show that if Y is compact, then the projection $\pi_1: X \times Y \to X$ is a closed map.

Solution. Let C be closed in $X \times Y$. We will show that $X - \pi_1(C)$ is open in X

Fix some point $x \in X - \pi_1(C)$. Then the line $\pi_1^{-1}(\{x\}) = \{x\} \times Y$ is disjoint from C. By the tube lemma, there is some neighborhood U of x such that $U \times Y$ is disjoint with C. From this we have $U \subseteq X - \pi_1(C)$, which implies that $X - \pi_1(C)$ is open. \square

Exercise 26.8. Let $f: X \to Y$; let Y be compact Hausdorff. Then f is continuous if and only if the graph of f,

$$G_f = \{x \times f(x) \mid x \in X\},\$$

is closed in $X \times Y$.

Solution. (\Longrightarrow) Suppose f is continuous. Let $x\times y$ be a point such that $f(x)\neq y$. Since Y is Hausdorff, we can choose disjoint open sets U_1 and U_2 containing f(x) and y respectively. Also, the set $f^{-1}(U_1)$ is open, so

$$f^{-1}(U_1) \times U_2$$

is a neighborhood of $x \times y$ which doesn't intersect G_f . We didn't use the assumption that Y is compact in this direction.

(\iff) Suppose that G_f is closed. Let C be a closed set in Y. Then the intersection $G_f \cap (X \times C)$ is closed, so by Exercise 26.7, the projection

$$\pi_1(G_f \cap (X \times C)) = f^{-1}(C)$$

is closed. Therefore, f is continuous.

Exercise 26.9. Generalize the tube lemma as follows:

Let A and B be subspaces of X and Y, respectively; let N be an open set in $X \times Y$ containing $A \times B$. If A and B are compact, then there exist open sets U and V in X and Y, respectively, such that

$$A \times B \subseteq U \times V \subseteq N$$
.

Solution. The tube lemma is this in the special case where A consists of a single point in X and B = Y.

We have $A \times B$ is compact; let \mathcal{A} be a finite open cover of $A \times B$ consisting of open sets $A_i \times B_i \subseteq N$ for $1 \leq i \leq n$. For each $b \in B$, let J_b be the set of indices i such that $b \in B_i$. Let U_b be the union of A_i for $i \in J_b$, and let V_b be the intersection of all B_i for $i \in J_b$.

By construction, $U_b \times V_b$ contains the line $A \times \{b\}$, so the collection

$$\{U_b \times V_b \mid b \in B\}$$

is an open cover of $A \times B$. By a similar method, we can create an open set contained in N which contains $A \times B$.

Exercise 26.10. (a) Prove the following partial converse to the uniform limit theorem:

Let $f_n: X \to \mathbb{R}$ be a sequence of continuous functions, with $f_n(x) \to f(x)$ for each $x \in X$. If f is continuous, and if the sequence f_n is monotone increasing, and if X is compact, then the convergence is uniform.

(b) Give examples to show that both hypotheses are necessary.

Solution. (a) Fix $\epsilon > 0$. For each $x \in X$, choose an integer N_x such that

$$f(x) - f_{N_x}(x) < \epsilon$$
.

Since $f - f_{N_x}$ is continuous, we can choose a neighborhood U_x of x such that

$$f(a) - f_{N_x}(a) < \epsilon$$

for all $a \in U_x$. Since X is compact, we can choose finitely many $x_1, \ldots, x_n \in X$ such that $U_{x_1} \cup \cdots \cup U_{x_n} = X$. Let $N = \max\{N_{x_1}, \ldots, N_{x_n}\}$, and we have

$$f(x) - f_N(x) < \epsilon$$

for all $x \in X$.

Exercise 26.11. Let X be a compact Hausdorff space. Let \mathcal{A} be a collection of closed connected subsets of X that is simply ordered by proper inclusion. Then

$$Y = \bigcap_{A \in \mathcal{A}} A$$

is connected.

Solution. Suppose $C \cup D$ is a separation of Y. Then C and D are both compact since they are closed in X. We can create disjoint open sets U and V containing C and D respectively, by Exercise 26.5.

Consider the set $A - (U \cup V)$ for each $A \in \mathcal{A}$. Each of these sets is closed in X, and also nonempty since A is connected. The intersection

$$\bigcap_{A\in\mathcal{A}}(A-(U\cup V))$$

is then nonempty since X is compact. This contradicts the fact that $Y\subseteq U\cup V.$

Exercise 26.12. Let $p: X \to Y$ be a closed continuous surjective map such that $p^{-1}(\{y\})$ is compact for each $y \in Y$. (Such a map is called a **perfect map**) Show that if Y is compact, then X is compact.

Solution. Let \mathcal{A} be an open cover of X. For each $y \in Y$, consider the collection of $A \in \mathcal{A}$ which intersect $p^{-1}(\{y\})$. This has a finite subcover of $p^{-1}(\{y\})$, which we will call \mathcal{A}_y .

Let $V_y = \bigcup A_y$. Since p is a closed map, the set $U_y = Y - p(X - V_y)$ is open and contains y for each $y \in Y$. We have

$$p^{-1}(U_y) = X - p^{-1}(p(X - V_y)) \subseteq V_y.$$

Since Y is compact, we can choose finitely many y_1, \ldots, y_n such that the sets U_{y_k} cover Y. Then their inverse images under p cover X, thus the sets V_{y_k} cover X. Since each V_{y_k} is just a finite union of sets in \mathcal{A} , we have our finite subcover of \mathcal{A} .

We didn't use the assumption that p is continuous or surjective. It just needs to be a closed map. \Box

Exercise 26.13.	Let G be a topological group.

` /	t A and B be s closed.	ubspaces of G .	If A is closed	and B is co	ompact, show	$A \cdot E$
Solutio	on.					