MIPS Reference Data

1

	IXCI		circe Data		
CORE INSTRUCTI	ON SE	Т			OPCODE
1111E 10E10		FOR-			/ FUNCT
NAME, MNEMO Add		MAT R		(1)	(Hex)
	add		R[rd] = R[rs] + R[rt]		0 / 20 _{hex}
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
Add Imm. Unsigned		I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0 / 21 _{hex}
And	and	R	R[rd] = R[rs] & R[rt]	(2)	0 / 24 _{hex}
And Immediate	andi	Ι	R[rt] = R[rs] & ZeroExtImm	(3)	c_{hex}
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equal	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	$5_{ m hex}$
Jump	j	J	PC=JumpAddr	(5)	2 _{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	$30_{ m hex}$
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f _{hex}
Load Word	lw	Ι	R[rt] = M[R[rs]+SignExtImm]	(2)	23 _{hex}
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$. ,	0 / 27 _{hex}
Or	or	R	R[rd] = R[rs] R[rt]		0 / 25 _{hex}
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	d_{hex}
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a _{hex}
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b_{hex}
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}
Shift Right Logical	srl	R	R[rd] = R[rt] >> shamt		0 / 02 _{hex}
Store Byte	sb	Ι	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38 _{hex}
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}
Store Word	sw	Ι	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}
Subtract	sub	R	R[rd] = R[rs] - R[rt]		0 / 22 _{hex}
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]	(1)	0 / 23 _{hex}
			se overflow exception		nex
	(2) Sign (3) Zero (4) Bra	nExtI oExtI nchA	mm = { 16{immediate[15]}, imme mm = { 16{1b'0}, immediate } ddr = { 14{immediate[15]}, imme ir = { PC+4[31:28], address, 2'b	diate,	

BASIC INSTRUCTION FORMATS

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5 0
I	opcode	rs	rt		immediate	
	31 26	25 21	20 16	15		0
J	opcode			address		
	21 24					

ARITHMETIC CORE INSTRUCTION SET

		O	/ FMT /FT
	FOR-		/ FUNCT
NAME, MNEMONIC	MAT	OPERATION	(Hex)
Branch On FP True bclt	FI	if(FPcond)PC=PC+4+BranchAddr (4)	
Branch On FP False bclf	FI	if(!FPcond)PC=PC+4+BranchAddr(4)	
Divide div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned divu	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0///1b
FP Add Single add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double	110	{F[ft],F[ft+1]}	
FP Compare Single cx.s*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	FR	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//y
Double		{F[ft],F[ft+1]})?1:0	11/11/
		==, <, or <=) (y is 32, 3c, or 3e)	11/10//3
FP Divide Single div.s	rĸ	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide Double	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
FP Multiply Single mul.s	FR	{F[ft],F[ft+1]}	11/10//2
FP Multiply		F[fd] = F[fs] * F[ft] $(F[fd] = F[fd+1]) = (F[fd] + F[fd+1]) *$	11/10//2
Double mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} * {F[ft],F[ft+1]}$	11/11//2
FP Subtract Single sub.s	FR	F[fd]=F[fs] - F[ft]	11/10//1
FP Subtract		{F[fd],F[fd+1]} = {F[fs],F[fs+1]} -	
Double sub.d	FR	{F[ft],F[ft+1]}	11/11//1
Load FP Single 1wc1	I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP		F[rt]=M[R[rs]+SignExtImm]; (2)	
Double ldc1	I	F[rt+1]=M[R[rs]+SignExtImm+4]	35//
Move From Hi mfhi	R	R[rd] = Hi	0 ///10
Move From Lo mflo	R	R[rd] = Lo	0 ///12
Move From Control mfc0	R	R[rd] = CR[rs]	10 /0//0
Multiply mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0///18
Multiply Unsigned multu	R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	0///19
Shift Right Arith. sra	R	R[rd] = R[rt] >>> shamt	0///3
Store FP Single swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)	39//
Store FP		M[R[rs]+SignExtImm] = F[rt]; (2)	3d//
Double sdc1	I	M[R[rs]+SignExtImm+4] = F[rt+1]	3d//

OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode		fmt	ft			fs	fd	funct	
	31	26 25	21	20	16	15	11	10 6	5	0
FI	opcode	Τ	fmt	ft				immediate	;	
	31	26 25	21	20	16	15				0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	if(R[rs]<=R[rt]) PC = Label
Branch Greater Than or Equal	bge	if(R[rs]>=R[rt]) PC = Label
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

41	01111117	NIVIE, NOIVIE	JEN, OSE, CALL CONVE	111011
	NAME	MILIMBED	USE	PRESERVEDACROSS
1	IVAIVIE	NUMBER	USE	A CALL?
	\$zero	0	The Constant Value 0	N.A.
	\$at	1	Assembler Temporary	No
	\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
	\$a0-\$a3	4-7	Arguments	No
Ī	\$t0-\$t7	8-15	Temporaries	No
Ī	\$s0-\$s7	16-23	Saved Temporaries	Yes
1	\$t8-\$t9	24-25	Temporaries	No
	\$k0-\$k1	26-27	Reserved for OS Kernel	No
Ī	\$gp	28	Global Pointer	Yes
Ī	\$sp	29	Stack Pointer	Yes
Ī	\$fp	30	Frame Pointer	Yes
Ì	\$ra	31	Return Address	No

⁽⁶⁾ Operands considered unsigned numbers (vs. 2's comp.)
(7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic

MIPS

ı

2000	DAC	CONVER	MOION		CVMD	01.0		3	
		(2) MIPS	SION,			ASCII	_	Hexa-	ASC
opcode	funct	funct	Binary	Deci-	deci-	Char-	Deci-	deci-	Char
			Binary	mal			mal		
(31:26)	(5:0)	(5:0)			mal	acter		mal	acte
(1)	sll	add,f	00 0000		0	NUL	64	40	@
		sub.f	00 0001		1	SOH	65	41	Α
j	srl	mul.f	00 0010		2	STX	66	42	В
jal	sra	div.f	00 0011		3	ETX	67	43	C
beq	sllv	sqrt.f	00 0100) 4	4	EOT	68	44	D
bne		abs. f	00 0101	. 5	5	ENQ	69	45	E
blez	srlv	mov.f	00 0110) 6	6	ACK	70	46	F
bqtz	srav	$\operatorname{neg} f$	00 0111		7	BEL	71	47	G
addi	jr	37	00 1000		8	BS	72	48	Н
addiu	jalr		00 1001		9	HT	73	49	I
slti	movz		00 1010		a	LF	74	4a	J
sltiu	movn		00 1011		b	VT	75	4b	K
			00 1100		c	FF	76	4c	L
andi	syscall	round.w.f							
ori	break	trunc.w.f	00 1101		d	CR	77	4d	M
xori		ceil.w,f	00 1110		e	SO	78	4e	N
lui	sync	floor.w.f	00 1111		f	SI	79	4f	0
	mfhi		01 0000		10	DLE	80	50	P
(2)	mthi		01 0001	17	11	DC1	81	51	Q
	mflo	movz.f	01 0010	18	12	DC2	82	52	R
	mtlo	movn.f	01 0011	19	13	DC3	83	53	S
		,	01 0100		14	DC4	84	54	T
			01 0101		15	NAK	85	55	Ū
			01 0110		16	SYN	86	56	v
			01 0111		17	ETB	87	57	w
	mult						88	58	
			01 1000		18	CAN			X
	multu		01 1001		19	EM	89	59	Y
	div		01 1010		1a	SUB	90	5a	Z
	divu		01 1011		1b	ESC	91	5b	[
			01 1100		1c	FS	92	5c	/
			01 1101	29	1d	GS	93	5d]
			01 1110	30	1e	RS	94	5e	Á
			01 1111		1f	US	95	5f	
lb	add	cvt.s.f	10 0000		20	Space	96	60	-
lh	addu	cvt.d.f	10 0001		21	!	97	61	a
lwl	sub	cvcray	10 0010		22	,	98	62	b
lw.	subu		10 0011		23	#	99	63	c
			10 0100		24	\$	100	64	d
lbu	and	cvt.w.f							
lhu	or		10 0101		25	%	101	65	e
lwr	xor		10 0110		26	&	102	66	f
	nor		10 0111		27	,	103	67	g
sb			10 1000		28	(104	68	h
sh			10 1001	41	29)	105	69	i
swl	slt		10 1010	42	2a	*	106	6a	j
sw	sltu		10 1011		2b	+	107	6b	k
			10 1100		2c		108	6c	1
			10 1101		2d	,	109	6d	m
swr			10 1110		2e		110	6e	n
cache			10 1111		2f	,	111	6f	0
cacne 11	tan	- F F	11 0000		30	0	1112	70	
	tge	c.f.f							p
lwc1	tgeu	c.un.f	11 0001		31	1	113	71	q
lwc2	tlt	c.eq.f	11 0010		32	2	114	72	r
pref	tltu	c.ueq.f	11 0011		33	3	115	73	S
	teq	c.olt.f	11 0100		34	4	116	74	t
ldc1		c.ult.f	11 0101	53	35	5	117	75	u
ldc2	tne	c.ole.f	11 0110	54	36	6	118	76	v
		c.ule.f	11 0111		37	7	119	77	w
sc		c.sf.f	11 1000		38	- 8	120	78	x
swc1		c.ngle.f	11 1001		39	9	121	79	y
			11 1010		3a	:	122	7a	
swc2		c.seq.f					123	7b	Z
		c.ngl.f	11 1011		3b	,			-{
		c.lt.f	11 1100		3c	<	124	7c	Į
sdc1		c.nge.f	11 1101		3d	-	125	7d	}
sdc2		c.le.f	11 1110		3e	>	126	7e	~
		c nat f	11 1111	63	3f	2	127	7f	DEI

(1) opcode(31:26) = 0 (2) opcode(31:26) == $17_{\text{ten}} (11_{\text{hex}})$; if fmt(25:21)== $16_{\text{ten}} (10_{\text{hex}}) f$ = s (single); if fmt(25:21)== $17_{\text{ten}} (11_{\text{hex}}) f$ = d (double)

11 1111

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Compu

DEL

127

IEEE 754 FLOATING-POINT STANDARD

(-1)^S × (1 + Fraction) × 2^(Exponent - Bias) where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

4

DATA ALIGNMENT

Double Word								
Word Word								
Halfv	vord	Half	word	Hal	fword	Half	word	
Byte Byte		Byte	Byte	Byte Byte		Byte	Byte	
0	1	2	3	4	5	6	7	

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

Er	FIION CONTROL REGISTERS: CAUSE AND STATUS									
	В			Interrupt		Ex	ception	П		
	D			Mask		(Code			
	31		15	8		6		2		
				Pending			U		Е	Ι
				Interrupt			M		L	Е
			15	- 8			4		1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable **EXCEPTION CODES**

Number	Name	Cause of Exception	Number	Name	Cause of Exception				
0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception				
4	AdEL	Address Error Exception	10	RI	Reserved Instruction				
"	Auel	(load or instruction fetch)	10	KI	Exception				
5	Adec	Ades	AdES	Ades	Ades	Address Error Exception	11	CpU	Coprocessor
'	Aues	(store)	11	СрО	Unimplemented				
6	IDE	IBE Bus Error on		Ov	Arithmetic Overflow				
_ 0	IDE	Instruction Fetch	12	Ov	Exception				
7	DBE	Bus Error on	13	Tr	Trap				
_ ′	DBL	Load or Store	13	11	•				
- 8	Sys	Syscall Exception	15	FPE	Floating Point Exception				

SIZE PREFIXES (10^x for Disk, Communication; 2^x for Memory)

The first of the proof of the p									
SI Size	Prefix	Symbol	IEC Size	Prefix	Symbol				
10 ³	Kilo-	K	2 ¹⁰	Kibi-	Ki				
10^{6}	Mega-	M	220	Mebi-	Mi				
10 ⁹	Giga-	G	2 ³⁰	Gibi-	Gi				
10^{12}	Tera-	T	240	Tebi-	Ti				
10^{15}	Peta-	P	250	Pebi-	Pi				
10^{18}	Exa-	E	2 ⁶⁰	Exbi-	Ei				
10^{21}	Zetta-	Z	270	Zebi-	Zi				
1024	Yotta-	Y	280	Yobi-	Yi				