Dynamics of an isolated valve

(a) Experimental setup

In order to understand the valve dynamics, cycle characteristic times are measured (loading and unloading periods) for a set of opening/closing thresholds and widths. Each run lasts 2*T_scale, during which we measure the first loading (resp. unloading) dt, the last loading (resp. unloading) dt, and the time at which the measure is stabilized.

Dynamics of an isolated valve (b) Results: first loading period (I_dt_0)

Observations:

- 1/ No dependency on closing threshold (obviously)
- 2/ The higher the opening threshold, the longer the loading dt. l_dt_0 = f(dpdx_op) convex curve: the pressure rises quickly first and then slower and slower (cf dP curve in previous slide)
- 3/ The wider the barrier, the longer the loading (the overpressure needed to reach the threshold pressure gradient grows with distance from the center of the barrier)