

(19) BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENT- UND MARKENAMT

® Offenlegungsschrift _® DE 198 02 569 A 1

198 02 569.6 (1) Aktenzeichen: 23. 1.98 (2) Anmeldetag:

(3) Offenlegungstag: 9. 9.99 ⑤ Int. Cl. 6: C 12 N 9/10

A 61 K 38/45 // (C12N 9/10,C12R 1:145)

(71) Anmelder:

Albert-Ludwigs-Universität Freiburg, 79098 Freiburg, DE

(74) Vertreter:

Lederer, Keller & Riederer, 80538 München

(72) Erfinder:

Aktories, Klaus, Prof. Dr.Dr., 79189 Bad Krozingen, DE; Hofmann, Fred, Dr., 79110 Freiburg, DE

(56) Entgegenhaltungen:

Datenbank Swissprat AC J 40884, Gene, 161 (1995), S. 57-61; EMBL-Genbank AC X82638;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (A) Toxikologisch aktive Fragmente des lethalen Toxins von Clostridium sordellii und deren Verwendung in **Immuntoxinen**
- Offenbart werden biologisch aktive Fragmente des lethalen Toxins von Clostridium und Immuntoxine, die diese Fragmente und eine Zellbindungskomponente aufweisen.

Beschreibung

Bei den verschiedensten Therapieansätzen werden unterschiedliche Toxine eingesetzt. Bei den Toxinen handelt es sich um Stoffwechselprodukte von Mikroorganismen oder Pflanzen, die eine Giftwirkung auf den Organismus von Säugetieren und insbesondere des Menschen haben. Von bestimmten lebenden Bakterien werden die sogenannten Exotoxine, wie beispielsweise Cholera-, Diphtherie-, Tetanus-, Botulinus- oder Gasbrandtoxin abgesondert.

Die für die Therapie einsetzbaren Exotoxine wirken innerhalb der Zelle. Üblicherweise binden die Toxine zunächst an Rezeptoren an der Zelloberfläche, werden dann durch Endozytose aufgenommen und durchqueren eine intrazelluläre Membran, um das Zytosol in der Zelle zu erreichen. Im Zytosol rufen die Toxine dann die zytotoxischen Effekte hervor. Häufig stören die Toxine in dem Zytosol essentielle Stoffwechselwege. Die Störung tritt häufig bei der Proteinsynthese auf. Wenn Stoffwechselwege betroffen sind, die in jeder Zelle ablaufen, muß gewährleistet sein, daß bei der therapeutischen Anwendung das Toxin möglichst nur in die gewünschte Zielzelle gelangt, da anderenfalls die unerwünschten Nebenreaktionen überhand nehmen würden.

Die vorliegende Erfindung betrifft ein Fragment eines bakteriellen Exotoxins, nämlich des sogenannten lethalen Toxins (LT), das von Clostridium sordellii gebildet wird. Das lethale Toxin von Clostridium sordellii gehört zu der Familie der großen Clostridienzytotoxine, die morphologische Veränderungen in Zellinien hervorrufen. Diese gehen einher mit einer Zerstörung des Aktinzytoskeletts.

Das lethale Toxin ist eine Glucosyltransferase, die UDP-Glucose als Co-Substrat zur Modifikation von GTPasen mit niedrigem Molekulargewicht verwendet. LT modifiziert selektiv Rac und Rap sowie Ras. Ras ist der Prototyp einer Unterfamilie der Superfamilie der GTPasen mit niedrigem Molekulargewicht. LT modifiziert und inaktiviert Ras durch Glycosylierung eines essentiellen Threoninrestes (35). Durch die Glycosylierung wird Ras inaktiviert, was zu einer Inhibierung des EGF (Epidermal Growth Factor) stimulierten MAP-Kinaseweges führt.

Gegenstand der vorliegenden Erfindung ist daher ein biologisch aktives Fragment des lethalen Toxins von Clostridium, das dadurch gekennzeichnet ist, daß es die Aminosäuresequenz gemäß Sequenz-ID-Nr. 1 oder eine hierzu homologe Sequenz aufweist, wobei die Homologie zu der Aminosäuresequenz gemäß Sequenz-ID-Nr. 1 wenigstens 80% beträgt.

In einer besonders bevorzugten Ausführungsform weist das biologisch aktive Fragment des lethalen Toxins die Aminosäuresequenz gemäß Sequenz-ID-Nr. 1 auf.

30

35

40

45

50

55

60

Seq.-ID-Nr. 1

M F E L	N R Y K	L I H D	V Q N	N E M N	K D S N	A E E L	Q Y S T	L V S D	Q A V N K	K I V Y F	M L E L K	V N K N E	Y A Y T Y	V L L Y L	K E K K T	5
K M N N	S E L Y F	G V H I Y	R L F N D	N E I Q S	K L W W N	A K I K A	L N G D F	K N G V L	S Q N I	L I S N	T N D T	P D Y L	V T T K	E A V K	K I K T	10
I L E Q	V N I	E D I E	S P Y E	A E D N	T F K P Y	N D Q E S	N Y K F K	T N H I D	L K F I L	E F I D E	S Y D N A	F R Y I L	R K Y I N	E R K K	M S T Y	15
Y I R Q R	L E N E I	S E L L	N S E V M	E K E L	N F R K	K A W E	I D N D	T E L G	A D A G	N L A V	N V A Y	G R S L	N L D	Y I V	I N L D	20
M D M M	L S K L	P I Y D	G T K E	I N E E	Q T Y V	P S I Q	D W P R F	L E G S L	F M Y F P	K T E L	S K S D	I L K A D	N E N L I	K A F S K	P I D S V	25
K S Q N S	S P A Q I	D L I N	K E I K E	S V S N G	E K L R T	I I K Y D	A D K F	F S I N	A Y L T	N C N T	N S D M	S D N K	V L I	I V N F	N I P S	30
K T L	K I I L	L T N M	A N L F	S Y S K	I G D	S K P N	N V G S	E G V T	D F Y N T	N A T I K	M P G H I	M D A L S	F V Y L Q	M R Q E L	I S D P T	35
E E S	L Q Q	R E F	N I E	F T E	E S Y	F L K	P W K	K S G	F Y	N F	Q E	A G	R A	A L	K G	40

Darüber hinaus kann das biologisch aktive Fragment noch am N- und/oder C-Terminus weitere Sequenzen aufweisen. Bevorzugt ist jedoch, wenn das Fragment keine weiteren Sequenzen aufweist, die von Clostridium-DNA abgeleitet sind.

Gegenstand der vorliegenden Erfindung sind auch Abwandlungen und Variationen des bevorzugt eingesetzten Fragments des lethalen Toxins. Die beanspruchten Fragmente weisen eine Homologie zu der in Seq.-ID-Nr. 1 angegebenen Aminosäuresequenz von wenigstens 80% auf. Eine Homologie von 80% bedeulet, daß jeweils 80% der Aminosäuren an der jeweiligen Position der angegebenen Sequenz entsprechen, wohingegen 20% der Aminosäuren unterschiedlich sein können. Die essentiellen Bereiche des Proteinfragments müssen dabei unverändert bleiben, jedoch ist es möglich, daß Aminosäuren in den nicht biologisch aktiven Bereichen ausgetauscht werden können, wobei bevorzugt die Aminosäuren durch ähnliche Aminosäuren ausgetauscht werden. Die Ähnlichkeit wird bedingt durch die Seitenketten, insbesondere durch die Polarität und die Ladung der Seitenketten.

Die erfindungsgemäßen Fragmente können bevorzugterweise in Immuntoxinen Verwendung finden. In einem weiteren Aspekt betrifft die vorliegende Erfindung daher Immuntoxine, die erfindungsgemäß ein biologisch aktives Fragment und eine Zellbindungskomponente aufweisen.

Die Zellbindungskomponente kann ein Antikörper oder ein Teil davon (variable Regionen) sein, der spezifisch an eine Zielzelle bindet. Alternativ hierzu kann die Zellbindungskomponente ein Ligand sein, der spezifisch an einen Rezeptor der Zielzelle binden kann.

60

Bei den Zielzellen handelt es sich bevorzugt um Tumorzellen.

D

Ε

Als weiteren Bereich können die erfindungsgemäßen Immuntoxine ein Transportsystem oder einen Translokationsbereich aufweisen, der es ermöglicht, daß das Toxin in das Zytosol der Zelle eingebracht wird. Erfindungsgemäß wird besonders das Transportsystem des Pseudomonas Exotoxin A oder des Diphtherietoxins bevorzugt eingesetzt. In einer anderen bevorzugt eingesetzten Ausführungsform wird das Transportsystem des C2-Toxin bevorzugt eingesetzt, das in der deutschen Patentanmeldung 197 35 105.0 näher beschrieben ist. Das C2-Transportsystem beinhaltet die N-terminale C2I-Domäne des C2-Toxins von C.botulinum als Interaktionsdomäne.

Die vorliegende Erfindung betrifft also die Verwendung eines erfindungsgemäßen Fragments als Toxin, das zur Abtötung spezifischer Zellen eingesetzt werden kann.

Die erfindungsgemäßen Immuntoxine weisen also in bevorzugter Ausführungsform wenigstens drei Bereiche auf. Der erste Bereich ist der Zellbindungsbereich. Mit Hilfe des Zellbindungsbereiches dockt das Immunotoxin an die Zielzelte an. Bei den natürlich vorkommenden Immuntoxinen bindet dieser Bereich üblicherweise an einen Rezeptor der Zielzelte. Beim Pseudomonas Exotoxin A bindet dieser Bereich beispielsweise an den α2-Makroglubolinrezeptor. Im Rahmen der vorliegenden Erfindung kann es sich bei der Zellbindungskomponente um einen Antikörper oder ein Antikörperfragment handeln, das an eine bestimmte Struktur an der Zelloberfläche bindet. Es ist nicht erforderlich, daß der gesamte Antikörper beim Immuntoxin vorhanden ist. Ausreichend können beispielsweise die Fv-Fragmente sein, die die variablen Regionen aus den Fab-Fragmenten eines Antikörpers darstellen.

Alternativ hierzu kann die Zellbindungskomponente ein Ligand sein, der an einen Rezeptor auf der Zelle bindet. Liganden können beispielsweise Zytokine wie Interferone, Interleukine, Tumornekrosefaktor usw. sein, die an die hierfür spezifischen Rezeptoren binden. Da üblicherweise eine möglichst hohe Zellspezifität für die Immuntoxine gewünscht wird, werden erfindungsgemäß bevorzugt solche Liganden eingesetzt, die an Rezeptoren binden, die sich nur oder zu-

mindest überwiegend auf den Zielzellen finden.

Das erfindungsgemäße Fragment des lethalen Toxins kann besonders vorteilhaft bei Tumoren verwendet werden, da das Toxinfragment zelleigene Enzyme inaktiviert, die bei der Krebsbildung außer Kontrolle geraten sind. Die Ras-Gene gehören zu den Onkogenen und werden besonders stark in Tumorzellen exprimiert. Wenn also die aufgrund des Tumors übermäßig stark exprimierten Ras-Genprodukte wieder inaktiviert werden können, ermöglicht diese eine effektive Tumortherapie.

Gegenüber dem unveränderten lethalen Toxin weisen die erfindungsgemäßen Fragmente den Vorteil auf, daß sie kleiner sind. Kleinere Proteine können aber von den Zielzellen leichter aufgenommen werden und die toxische Wirkung

kann sich daher besser im Zytosol der Zielzelle entfalten.

Bei der Therapie mit Immuntoxinen hat sich die Bildung von Antikörpern gegen das Toxin als Problem herausgestellt. Da erfindungsgemäß nur ein Fragment des Holotoxins eingesetzt wird, ist die Gefahr der Bildung von (neutralisierenden) Antikörpern verringert.

Überraschenderweise wurde auch herausgefunden, daß die erfindungsgemäßen Toxinfragmente eine höhere Aktivität außweisen als das unveränderte Holotoxin.

Die vorliegende Erfindung wird durch die nachfolgend beschriebenen Beispiele näher erläutert.

Beispiel 1

30

Mit Hilfe der Polymerase Kettenreaktion wurden zwei Fragmente des lethalen Toxins von C.sordellii, Stamm 6018 amplifiziert. Einmal wurde das erfindungsgemäße Fragment mit den Aminosäuren 1 bis 546. Weiterhin wurde als Vergleich das Fragment mit den Aminosäuren 1 bis 517 durch Verkürzung des erstgenannten Fragments hergestellt.

Die Amplifikation der Fragmente wurde mit Hilfe des PCR-Systems 2400 von Perkin Elmer gemäß den Vorschriften des Herstellers durchgeführt, wobei das Primerpaar CS1C/CS1N eingesetzt wurde. Die Primer hatten folgende Sequen-

5'-AGATCTATGAACTTAGTTAACAAAGCC-3'

Seq.-ID-Nr. 2

5'-GGATCCGAACCTTATCCTAAATCC-3'

Seq.-ID-Nr. 3

Die Reaktion wurde mit 300 nmol Primern, 250 ng chromosomaler DNA in einem Gesamtvolumen von 100 µl in 30 Zyklen durchgeführt (Denaturierung, 94°C, 10 Sek.; Annealing, 48°C, 30 Sek.; Verlängerung, 68°C, 3 Min.). Die amplifizierten DNA-Fragmente wurden mit den Restriktionsenzymen BglHI/BamHI verdaut und in den Expressionsvektor pGEX2T kloniert.

Für die C-terminale Deletionsvariante 1-517 wurde zusätzlich mit den Restriktionsenzymen Spel/EcoRI verdaut. Die

verkürzten Fragmente wurden mit DNA-Polymerase I, Klenow-Fragment aufgefüllt und religiert.

Nach Sequenzierung wurde die DNA-Sequenz des Fragmentes 1-546 bestimmt. Dabei wurde folgende DNA-Sequenz ermittelt:

50

55

60

Seq.-ID-Nr. 4

		TTA	amm	220	222	CCC	מממ	መመ እ	CAA	ΔΔΔ	ATG	GTA	ጥልጥ	GTA	AAA	
ATG	AAC	ATT ATT	GTT	AAC	AAA	CAC	CAA	CMV	CCA	አጥል	ጥጥል	חממ	CCT	СТА	GAA	
TTT	CGT	ATT	CAA	GAA	GAT	GAG	TAC	O L M	CTA	COUNT	CAA	AAC	ייעה	TTA	AAA	5
GAA	TAT	CAC	AAC	ATG	TCA	GAA	AGT	CAM	שעע	שאכי	CTC	AAC	202	ጥልጥ		
		GAT	ATA	AAT	AAT	CTC	ACA	GAT	WWI	TAC TAC	777	CAA	TAT	CTA	ΔC·ጥ	
AAA	TCT	GGA	AGG	AA1	AAA	GCC	TTA	AAA	AAA	TII	አርጥ	CCV	CTC	CAA	ΔΔΔ	
		GTA	TTA	GAG	CTA	AAA	AAT	AAT	AGI	CIA	ACI	CAT	ACC	CCT	ΔΨΓ	
AAT	TTA	CAT	TTT	ATA	TGG	ATT	GGA	GGA	CAA	AIA	CVU	LIVE.	ACC	CTT	ΔΔΔ	10
AAC		ATA	AAT	CAA	TGG	AAA	GAT	GTA	AAT	AGC	AC A	LD LD Y	ACA	GII	አርጥ አርጥ	
GTT	TTT	TAT	GAT	AGT	AAT	GCA	TTT	TTG	ATA	CAC	mC A	ጥጥጥ	AAG	CAA	AACI	
ATT	GTT	GAG	TCA	GCA	ACA	AAT	AAT	ACT	CTT	GAG	TCA	111	AGA	CCT	ATIC	
TTA	AAT	GAC	CCT	GAA	TTC	GAT	TAT	AAT	AAA	TTT	CAT	MUA mam	MAM.	770	ጥርጥ	15
GAA	ATA	ATA	TAT	GAT	AAA	CAA	AAA	CAT	TTT	ATA	GAT	TAT	TWI	AAG	101	
		GAA		AAT	CCT	GAA	TTT	ATA	ATT	GAT	AAT	ATT	ATA	AAA	MCA mam	
TAT	CTC	TCA	AAT	GAG	TAT	TCA	AAA	GAC	CTA	GAA	GCC	CTT	AAT	AAG	TAT	
ATT	GAA	GAA	TCT	TTA	AAT	AAA	ATT	ACT	GCT	AAT	AAT	GGT	AAT	GAT	ATC	
AGA	AAT	CTA	GAA	AAA	TTT	GCT	GAT	GAG	GAT	TTG	GTA	AGA	TTA	TAT	AAT	20
CAA	GAA	TTA	GTA	GAA	AGA	TGG	AAT	TTG	GCT	GCT	GCT	TCT	GAT	ATA	TTA	
CGA	ATA	TCT	ATG	TTA	AAA	GAA	GAT	GGT	GGT	GTA	TAT	TTA	GAT	GTT	GAC	
ATG	TTA	CCA	GGT	ATA	CAA	CCA	GAT	TTA	TTT	AAA	TCT	ATA	AAC	AAG	CCT	
GAT	TCG	ATA	ACA	AAT	ACA	AGT	TGG	GAA	ATG	ATA	AAG	TTA	GAG	GCT	ATA	25
ATG	AAA	TAT	AAG	GAA	TAT	ATA	CCA	GGG	TAT	ACG	TCA	AAG	AA'I'	TTT	GAC	
ATG	TTA	GAT	GAA	GAA	GTT	CAA	CGC	AGT	TTT	GAA	TCT	GCT	TTA	AGT	TCT	
AAA	TCA	GAT	AAG	TCA	GAA	\mathbf{ATT}	TTT	TTG	CCA	CTT	GAT	GAT	ATA	AAA	GTA	
TCC	CCG	TTA	GAA	GTA	AAA	ATT	GCA	TTT	GCC	AAT	AAC	TCT	GTT	ATA	AAT	20
CAA	GCC	TTA	ATT	TCT	TTA	AAA	GAT	TCC	TAT	TGT	AGT	GAT	TTA	GTA	ATA	30
AAT	CAA	ATT	AAA	AAT	AGA	TAT	AAA	ATC	TTG	AAC	GAC	AAC	TTA	TAA	CCA	
TCC	ATT	AAT	GAA	GGT	ACT	GAC	TTT	AAT	ACT	ACA	ATG	AAA	ATT	TTT	AGT	
GAC	AAA	TTA	GCA	TCT	ATT	TCT	AAT	GAA	GAT	AAT	ATG	ATG		ATG		
AAA	ATT	ACA	AAT	TAT	TTA	AAA	GTT	GGA	TTT	GCT	CCA	GAT	GTT	AGA		35
ACT	ATT	AAC	TTA	AGT	GGA	CCT	GGA	GTA	TAT	ACA	GGA	GCT		CAA		
TTG	TTA	ATG	TTT	AAA	GAT	AAT	AGT	ACA	AAT	ATT	CAT	TTA	CTA	GAA	CCT	
GAG	TTA	AGA	\mathbf{AAT}	TTT	GAG	TTT	CCT	AAA	ACT	AAA	ATT	TCT	CAA	TTA	ACA	
CAA	CAG	GAA	АТА	ACT	AGT	TTA	TGG	TCA	TTT	AAC	CAA	GCA	AGA	GCC	AAG	40
TCT	CAA	TTT	GAA	GAA	TAT	AAA	AAA	GGT	TAT	TTT	GAA	GGT	GCA	CTT	GGA	40
GAA																

Beispiel 2

45

50

Es wurde die Glucosyltransferase-Aktivität des Holoenzyms verglichen mit der des erfindungsgemäßen Fragments (AS 1-546) und mit der des am C-Terminus deletierten Fragments mit den Aminosäuren 1-517.

Die Ergebnisse dieses Versuchs sind in Fig. 1 dargestellt. Hierzu wurde jeweils 1 µg Ras mit dem Holoenzym (schwarz ausgefülltes Dreieck [♠]), gereinigtem N-terminalen Toxinfragment mit den Aminosäuren 1-546, dargestellt als schwarz ausgefülltes Quadrat [♠], und Deletionsfragment mit den Aminosäuren 1-517 (schwarz ausgefüllte Kreise [♠]) inkubiert. Eingesetzt wurden jeweils 1 nM des Toxins. Die Inkubation erfolgte in Gegenwart von UDP-[¹⁴C]-Glucose (10 µM) für die angegebene Zeit. Dann wurden die markierten Proteine mit SDS PAGE und Phosphorbilddarstellung analysiert. Fig. 1 zeigt, daß das erfindungsgemäße Fragment eine höhere Aktivität aufweist als das Holotoxin. Die Aktivität ist bei dem weiterdeletierten Fragment (1-517) nahezu vollständig verlorengegangen.

60

55

SEQUENZPROTOKOLL

(1) ALLGEMEINE INFORMATION:

ANMELDER:

- (A) NAME: Albert-Ludwigs-Universität Freiburg
- (B) STRASSE: Werthmannplatz
- (C) ORT: Freiburg (E) LAND: Germany

(F) POSTLEITZAHL: 79098

ANMELDETITEL:

Toxikologisch aktive Fragmente des lethalen Toxins von Clostridium sordellii und deren Verwendung in Immuntoxinen

ANZAHL DER SEQUENZEN: 4

COMPUTER-LESBARE FORM:

- (A) DATENTRÄGER: Floppy Disk
- (B) COMPUTER: IBM PC compatible
 (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PADAT Sequenzmodul Version 1.0

25

10

15

20

30

35

40

45

50

55

60

(2) IN	FORM	ATIO	14 20	250	1,0	NO.	1.									
	(i)	(A) LÄ	CHA NGE: T: A	546	Ami	nosä										5
		(C) ST	RANGI POLO	FORM	: Ei	nzel										10
(MOLI													15
(xi)	SEQU	JENZ E	BESCH	IREIE	BUNG:	: SEÇ	ID.	NO:	1:							20
Met 1		. Leu	ı Val	L Asn S		Ala	Gln	Leu	Gln 10		Met	. Val	Tyr	Val 15	Lys		
Phe	Arg	, Ile	Gln 20	ı Glu	Asp	Glu	Tyr	Val 25		Ile	Leu	Asn	Ala 30		Glu		25
Glu	туг	His	Asn	Met	Ser	Glu	Ser 40	Ser	Val	Val	Glu	Lys 45	Tyr	Leu	Lys		30
Leu	Lys 50	Asp	Ile	Asn	Asn	Leu 55	Thr	Asp	Asn	Tyr	Leu 60		Thr	Tyr	Lys		35
Lys 65	Ser	Gly	Arg	Asn	Lys 70	Ala	Leu	Lys	Lys	Phe 75	Lys	Glu	Tyr	Leu	Thr 80		40
Met	Glu	Val	Leu	Ġ1u 85	Leu	Lys	Asn	Asn	Ser 90	Leu	Thr	Pro	Val	Glu 95	Lys		45
Asn	Leu	His	Phe 100	Ile	Trp	Ile	Gly	Gly 105	Gln	Ile	Asn	Asp	Thr 110	Ala	Ile		50
Asn	Tyr	Ile 115	Asn	Gln	Trp	Lys	Asp 120	Val	Asn	Ser	Asp	Tyr 125	Thr	Val	Lys		
Val	Phe 130	Tyr	Asp	Ser	Asn	Ala 135	Phe	Leu	Ile	Asn	Thr 140	Leu	Lys	Lys	Thr		55
																	60

5	Ile 145		Glu	ı Ser	Ala	Thr 150		Ası	Thr	: Leu	Glu 155	. Ser	Phe	Arg	Glu	Asn 160
	Leu	Asn	Asp	Pro	Glu 165		Asp	Tyr	Asn	Lys 170	Ph∋	Tyr	Arg	Lys	Arg 175	Met
10	Glu	Ile	Ile	180		Lys	Gln	Lys	His 185		Ile	Asp	Tyr	Туг 190	Lys	Ser
15	Gln	Ile	Glu 195		Asn	Pro	Glu	Phe 200		Ile	Asp	Asn	11e 205	Ile	Lys	Thr
20	Tyr	Leu 210		Asn	Glu	Tyr	Ser 215	Lys	Asp	Leu	Glu	Ala 220	Leu	Asn	Lys	Туг
25	Il= 225	Glu	Glu	Ser	Leu	Asn 230	Lys	Ile	Thr	Ala	Asn 235	Asn	Gly	Asn	Asp	Ile 240
30	Arg	Asn	Leu	Glu	Lys 245	Phe	Ala	Asp	Glu	Asp 250	Leu	Val	Arg	Leu	Tyr 255	Asn
35	Gln	Glu	Leu	Val 260	Glu	Arg	Trp	Asn	Leu 265	Ala	Ala	Ala	Ser	Asp 270	Ile	Leu
40	Arg	Ile	Ser 275	Met	Leu	Lys	Glu	Asp 280	Gly	Gly	Val	Tyr	Leu 285	Asp	Val	Asp
	Met	Leu 290	Pro	Gly	Ile	Gln	Pro 295	Asp	Leu	Phe	Lys	Ser 300	Ile	Asn	Lys	Pro
45	Asp 305	Ser	Ile	Thr	Asn	Thr 310	Ser	Trp	Glu	Met	Ile 315	Lys	Leu	Glu	Ala	11e 320
50	Met 		Tyr	Lys	Glu 325	Tyr	Ile	Pro	Gly	туг 330	Thr	Ser	Lys	Asn	Phe 335	Asp
55	Met	Leu	Asp	Glu 340	Glu	Val	Gln	Arg	Ser 345	Phe	Glu	Ser	Ala	Leu 350	Ser	Ser
60	Lys	Ser	Asp 355	Lys	Ser	Glu	Ile	Phe 360	Leu	Pro	Leu	Asp	Asp 365	Ile	Lys	Val
65	Ser	Pro 370	Ļeu	Glu	Val	Lys	Ile 375	Ala.	Phe	Ala	Asn	Asn 380	Ser	Val	Ile	Asn

Gln 385	Ala	Leu	Ile	Ser	Leu 390	Lys	Asp	Ser	Tyr	Суs 395	Ser	Asp	Leu	Val	11e 400		5	
Asn	Gln	Ile	Lys	Asn 405	Arg	Tyr	Lys	Ile	Leu 410	Asn	Asp	Asn	Leu	Asn 415	Pro			
Ser	Ile	Asn	Glu 420	Gly	Thr	Asp	Phe	Asn 425	Thr	Thr	Met	Lys	Ile 430	Phe	Ser		10	
Asp	Lys	Leu 435	Ala	Ser	Ile	Ser	Asn 440	Glu	Asp	Asn	Meţ	Met 445	Fhe	Met	Ile		15	,
Lys	Ile 450	Thr	Asn	Tyr	Leu	Lys 455	Asn	Gly	Phe	Ala	Pro 460	Asp	Val	Arg	Ser		20)
Thr. 465	Ile	Asn	Leu	Ser	Gly 470	Pro	Gly	Val	Tyr	Thr 475	Gly	Ala	Tyr	Gln	Asp 480		25	5
Leu	Leu	Met	Phe	Lys 485	Asp	Asn.	Ser	Thr	Asn 490	Ile	His	Leu	Leu	Glu 495	Pro		3(D
Glu	Leu	Arg	Asn 500	Phe	Glu	Phe	Pro	Lys 505	Thr	Lys	Ile	Ser	Gln 510	Leu	Thr		3:	5
Glu	Gln	Glu 515	Ile	Arg	Ser	Leu	Trp 520	Ser	Phe	Asn	Gln	Ala 525	Arg	Ala	Lys		4	0
	Gln 530	Phe	Glu	Glu	Tyr	Lys 535	Lys	Gly	Tyr	Phe	Glu 540	Gly	Ala	Leu	Gly			
Glu 545	Asp															•	4	5
																	5	50
																	5	55
																	Ó	50
																	(65

	(2) INFORMATION 20 SEQ ID NO: 2:	
5	(i) SEQUENZ CHARAKTERISTIKA:	
	(A) LÄNGE: 27 Basenpaare	
	(B) ART: Nukleinsäure	
	(C) STRANGFORM: Einzel	
10	(D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: Genom-DNA	
15	,	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:	
20	AGATCTATGA ACTTAGTTAA CAAAGCC	2
25		
	(2) INFORMATION ZU SEQ ID NO: 3:	
	(i) SEQUENZ CHARAKTERISTIKA:	
30	(A) LÄNGE: 24 Basenpaare	
	(B) ART: Nukleinsäure	
	(C) STRANGFORM: Einzel	
35	(D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: Genom-DNA	
40		
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:	
45	GGATCCGAAC CTTATCCTAA ATCC	24
,,		24
50		
55		
60		
65		

(2) INFORMATION ZU SEQ ID NO: 4:

(i) SEQUENZ CHARAKTERISTIKA:		5
(A) LÄNGE: 1638 Basenpaare		,
(B) ART: Nukleinsäure		
(C) STRANGFORM: Einzel (D) TOPOLOGIE: linear		10
(D) TOPOLOGIE: Tinear		
(ii) ART DES MOLEKÜLS: Genom-DNA		
(II) ARI DES HODERODS. Genom-San		15
		13
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:		
·		
ATGAACTTAG TTAACAAAGC CCAATTACAA AAAATGGTAT ATGTAAAATT TCGTATTCAA	60	20
GAAGATGAGT ACGTAGCAAT ATTAAATGCT CTAGAAGAAT ATCACAACAT GTCAGAAAGT	120	
		25
AGTGTAGTTG AAAAGTATTT AAAATTAAAG GATATAAATA ATCTCACAGA TAATTACCTG	180	
	240	
AACACATATA AAAAATCTGG AAGGAATAAA GCCTTAAAAA AATTTAAAGA ATATCTAACT	240	30
ATGGAAGTAT TAGAGCTAAA AAATAATAGT CTAACTCCAG TCGAAAAAAA TTTACATTTT	300	
ATGGAAGTAT TAGAGCTAAA AAATAATAGT CTAACTCCAG TCGAAAAAAA TTTACATTTT	300	
ATATGGATTG GAGGACAAAT AAATGATACC GCTATCAACT ATATAAATCA ATGGAAAGAT	360	35
GTAAATAGCG ATTATACAGT TAAAGTTTTT TATGATAGTA ATGCATTTTT GATAAATACA	420	
		40
TTAAAGAAAA CTATTGTTGA GTCAGCAACA AATAATACTC TTGAGTCATT TAGAGAAAAC	480	40
TTAAATGACC CTGAATTCGA TTATAATAAA TTTTATAGAA AACGTATGGA AATAATATAT	540	
THE REPORT OF THE PARTY OF THE	600	45
GATAAACAAA AACATTTTAT AGATTATTAT AAGTCTCAGA TAGAAGAGAA TCCTGAATTT	800	
ATAATTGATA ATATTATAAA AACATATCTC TCAAATGAGT ATTCAAAAGA CCTAGAAGCC	650	
ATAMITURIA ATATTATAM AMONIMICIO TONIMICIO INTERNATIONI CONTRATA		50
CTTAATAAGT ATATTGAAGA ATCTTTAAAT AAAATTACTG CTAATAATGG TAATGATATC	720	
AGAAATCTAG AAAAATTTGC TGATGAGGAT TTGGTAAGAT TATATAATCA AGAATTAGTA	780	55
GAAAGATGGA ATTTGGCTGC TGCTTCTGAT ATATTACGAA TATCTATGTT AAAAGAAGAT	840	
		60

	GGTGGTGTAT ATTTAGATGT TGACATGTTA CCAGGTATAC AACCAGATTT ATTTAAATCT	90
5	ATAAACAAGC CTGATTCGAT AACAAATACA AGTTGGGAAA TGATAAAGTT AGAGGCTATA	960
	ATGAAATATA AGGAATATAT ACCAGGGTAT ACGTCAAAGA ATTTTGACAT GTTAGATGAA	1020
10	GAAGTTCAAC GCAGTTTTGA ATCTGCTTTA AGTTCTAAAT CAGATAAGTC AGAAATTTTT	1080
15	TTGCCACTTG ATGATATAAA AGTATCCCCG TTAGAAGTAA AAATTGCATT TGCCAATAAC	1140
	TCTGTTATAA ATCAAGCCTT AATTTCTTTA AAAGATTCCT ATTGTAGTGA TTTAGTAATA	1200
20	AATCAAATTA AAAATAGATA TAAAATCTTG AACGACAACT TAAATCCATC CATTAATGAA	1260
	GGTACTGACT TTAATACTAC AATGAAAATT TTTAGTGACA AATTAGCATC TATTTCTAAT	1320
25	GAAGATAATA TGATGTTTAT GATAAAAATT ACAAATTATT TAAAAGTTGG ATTTGCTCCA	. 1380
20	GATGTTAGAA GTACTATTAA CTTAAGTGGA CCTGGAGTAT ATACAGGAGC TTATCAAGAT	1440
30	TTGTTAATGT TTAAAGATAA TAGTACAAAT ATTCATTTAC TAGAACCTGA GTTAAGAAAT	1500
35	TTTGAGTTTC CTAAAACTAA AATTTCTCAA TTAACAGAAC AGGAAATAAC TAGTTTATGG	1560
	TCATTTAACC AAGCAAGAGC CAAGTCTCAA TTTGAAGAAT ATAAAAAAGG TTATTTTGAA	1620
10	GGTGCACTTG GAGAAGAT	1638

Patentansprüche

1. Fragment des lethalen Toxins von Clostridium, dadurch gekennzeichnet, daß es die Aminosäuresequenz ge-45 mäß Sequenz-ID-Nr. 1 oder eine hierzu homologe Sequenz aufweist, wobei die Homologie zu der Aminosäuresequenz gemäß Sequenz-ID-Nr. 1 wenigstens 80% beträgt.

2. Fragment gemäß Anspruch 1, dadurch gekennzeichnet, daß die Homologie zu der Aminosäuresequenz gemäß Sequenz-ID-Nr. 1 wenigstens 90% beträgt.

3. Fragment gemäß Anspruch 1, dadurch gekennzeichnet, daß die Homologie zu der Aminosäuresequenz gemäß 50 Sequenz-ID-Nr. 1 wenigstens 95% beträgt.

4. Immuntoxin, dadurch gekennzeichnet, daß es

a) ein Fragment gemäß einem der Ansprüche 1-3 und

b) eine Zellbindungskomponente

55 aufweist.

- 5. Immuntoxin gemäß Anspruch 4, dadurch gekennzeichnet, daß die Zellbindungskomponente (b) ein Antikörper oder ein Teil davon ist, der spezifisch an eine Zielzelle bindet.
- 6. Immuntoxin gemäß Anspruch 4, dadurch gekennzeichnet, daß die Zellbindungskomponente (b) ein Ligand ist, der spezifisch an einen Rezeptor der Zielzelle binden kann.
- 7. Immuntoxin gemäß Anspruch 5 oder 6, dadurch gekennzeichnet, daß es sich bei der Zielzelle um eine Tumorzelle handelt.
 - 8. Immuntoxin nach einem der Ansprüche 4-7, dadurch gekennzeichnet, daß es weiterhin
 - c) ein Transportsystem

- 9. Immuntoxin nach Anspruch 8, dadurch gekennzeichnet, daß das Transportsystem die Translokationsdomäne des 65 Pseudomonas Exotoxins A ist.
 - 10. Immuntoxin nach Anspruch 8, dadurch gekennzeichnet, daß das Transportsystem die Translokationsdomäne des C2-Toxins von Clostridium ist.

11. Verwendung eines Fragments gemäß einem der Ansprüche 1 bis 3 als zielzellspezifisches Toxin.

Hierzu 1 Seite(n) Zeichnungen

0

Fig. 1