重庆理工大学考试试卷

2018~2019 学年第 2 学期 姓名 考试科目 信号与系统 B 卷 闭卷 共 4 页

班级	学号	姓名	考试科目	信号与系统	<u>B 卷</u>	<u>闭卷</u>	共_	4	_页
	题(每小题 2 分 対信号无失真地を	·,共 20 分) 专输时,系统的系	经公司数字额域	山 広 襟 兄					
		^{▼相时, 永続的別} I ¹ 増加, 则频谱図				°			
		言号无失真的时场							
4. 若系统	充的单位冲激响 <i>[</i>	$ \overset{\sim}{\mathbb{Z}} h(t) = (1 - e^{-t}) \varepsilon(t) $),则系统的微	分方程为		o			
5. $x(t) =$	- δ(3t) + 3ε(t) 的払	大变换为	; 复变函数	$\mathbf{F}(s) = \left(\frac{1 - e^{-s}}{s}\right)$		函数是_		0	_
6. cos 2	$\Delta t \star \mathcal{O}(t) = \underline{\hspace{1cm}}$	$_{\underline{}}$; $\cos 2t$	* $\mathcal{O}(t) = \underline{\hspace{1cm}}$, , , , , , , , , , , , , , , , , , , 					
7. 函数5	式ε[cosπ]表示的	信号波形为	• •		٥				
8. 若 x(t	$)$ 的带宽是 $\Delta \omega$,	$x\left(\frac{t}{3}\right)$ 的带宽是_	; $x(3t)$ 的有	带宽。					
9. F(W)	e ^{jm} o的傅里叶反变	变换为;	F(W-2) 的体	 博里叶反变换	为	o	,		
10. 离散	时间序列 $f[k]=$	$A\sin\frac{1}{6}k + B\cos\frac{\pi}{3}$	- k 是(A. 周期信号;	B. 非质	期信号	<u>!</u>)。		
二、单项	选择题(从每小	题的四个备选答	案中,选出一个	`正确的答案,	每小是	页2分,	共:	20 <i>5</i>	分)
1. 下列:	冬 表达式中正确的	为是:	0						
				()	()	17.			
(A)	$\delta(2t) = \delta(t)$	(B) $\delta(2t) = \frac{1}{2}\delta(t)$) (C) $\delta(2t)$:	$=2\delta(t)$ (D)	$\delta(2t)$:	$=\delta(t)$			
2. 已知	f(t)的频谱函数 I	$ \vec{v}(\omega) = \begin{cases} 1 & \omega \le 0 \\ 0 & \omega > 0 \end{cases} $	1rad / s - 1rad / s	f(2t)进行均匀	习抽样的	り奈奎斯	万 特 才	由样	间
隔 <i>T_s</i> 为:	o								
		$\frac{\pi}{4}s \qquad (C)$ $\frac{\sigma}{2}(t) = \varepsilon(t+2) - \varepsilon(t+2)$			则 y(0)	为: _		°	
(A)	0 0 (B)	1 (C) 2	D) 3					

重庆理工大学考试试券

2018~2019 学年第 2 学期

班级	学号	姓名	考试科目_信号与系统	<u>B 卷</u>	<u>闭卷</u>	共 <u>4</u> 页

4.	序列 $f[n]$	$=-\varepsilon[-n]$	的 Z 变换为	0

- (A) $\frac{z}{z-1}$ (B) $\frac{-z}{z-1}$ (C) $\frac{1}{z-1}$ (D) $\frac{-1}{z-1}$

5. 信号 $e^{j2t}\delta'(t)$ 的傅里叶变换为: _____

- (A) -2 (B) $j(\omega 2)$ (C) $j(\omega + 2)$ (D) $2 + j\omega$

- (A) -1 (B) 1

- (C) $5+e^{-2}$ (D) $3+e^{-2}$

- (A) 实偶函数 (B) 实奇函数 (C) 虚偶函数 (D) 虚奇函数

- (A) $(t-1+e^{-t})\varepsilon(t)$ (B) $(t+e^{-t})\varepsilon(t)$ (C) $(t-1+e^{-t})\varepsilon(t)$ (D) $(t+e^{-t})\varepsilon(t)$

- (A) $y(n) \frac{1}{2}y(n-1) = f(n) f(n-1)$ (B) $y(n) + \frac{1}{2}y(n-1) = f(n) f(n-1)$
- (C) $y(n) \frac{1}{2}y(n-1) = f(n) + f(n-1)$ (D) $y(n) + \frac{1}{2}y(n-1) = f(n) + f(n-1)$

10. 信号 $f(t) = \varepsilon(t) - \varepsilon(t-1)$ 的单边拉氏变换 F(s) =________。

- (A) $\frac{1}{s}$ (B) $(1 e^{-s})/s$ (C) $\frac{1}{s} \frac{1}{s+1}$ (D) $\frac{e^{-s}}{s}$

三、简单分析题(每小题5分,共25分)

1. 已知系统的输入输出关系为 $y(t) = \sin 2t \times f(t)$,判断系统是否为线性系统?时不变系 统? 因果系统? 稳定系统? 说明原因。

2. 某系统当初始状态为 $f_1(0)=1$,激励 $f_1(t)=\varepsilon(t)$ 时,其全响应为: $y_1(t)=4e^{-t}\varepsilon(t)+2\varepsilon(t)$;若 初始状态仍为 $f_2(0)=2$,激励为 $f_2(t)=-\varepsilon(t)$ 时,其全响应为: $y_2(t)=2e^{-t}\varepsilon(t)-2\varepsilon(t)$;求全响应 $y_1(t)$ 的零输入响应和零状态响应。

重庆理工大学考试试券

2018~2019 学年第 2 学期

学号 班级

姓名 考试科目 信号与系统 B卷 闭卷 共 4 页

3. 已知函数 f(t)的波形如图所示,画出 $y(t) = f(-2t) * \delta(1-2t)$ 的波形。

4. $F(\omega)$ 的图形如图所示,求原函数 f(t)。

5. 简述周期矩形脉冲信号的频谱与周期 T 和脉冲持续时间 τ 的关系。

四、某LTI 系统初始状态为零,并满足如下条件: (1) 若激励 $f(t) = e^{-\frac{t}{2}} \varepsilon(t)$,则响应

$$y(t) = \delta(t) + ae^{-\frac{t}{4}}\varepsilon(t)$$
; (2) 对于所有 t , $f(t) = e^{-2t}$ 时,其响应 $y(t) = 0$ 。(15分)

试求: (1) 常数a 的值,并写出描述系统的微分方程;

(2) 当激励 $f(t) = e^{-\frac{t}{4}} \varepsilon(t)$ 时,其响应 y(t)

五、如图所示系统,已知 $f(t) = \frac{2}{\pi} Sa(t)$, $H(\omega) = j \operatorname{sgn}(\omega)$ 。求系统的零状态响应 $y_{zs}(t)$ 。(10 分)

重庆理工大学考试试卷

2018~2019 学年第 2 学期 班级______ 学号_____ 姓名_____ 考试科目<u>信号与系统</u> <u>B卷</u> <u>闭卷</u> 共 4 页

六、某离散系统的差分方程为 $y[k+2]-3y[k+1]+2y[k]=e[k+1]-2e[k]$,已知 $e[k]=\varepsilon[k]$,	初始
条件 $y_{zi}(0) = 1, y_{zi}(1) = 2$,试求: (10 分)	
(1) 系统的零输入响应、零状态响应和全响应;	
(2) 判定该系统是否稳定;	
(3) 画出该系统的模拟图。	