QUESTION 1

193079024

Sarvesh Kale

Q1 NAND Implementation -→

X5=0

1, X5=1 193079024 Sarvesh Kale.

f= x5 (x1x2x3 + x1x3x4+ x2x3x4+x1x2x4) + 252192+ 252324+ 252244 + 252223 + 252124 + 253173.

simplification. $f_1 = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{4} + \frac{1}{2} \frac{1}{2} \frac{1}{4} + \frac{1}{2} \frac{1}{2} \frac{1}{4} + \frac{1}{2} \frac{1}{2} \frac{1}{4} + \frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{1}{4} + \frac{1}{2} \frac{1}{4} \frac{1}$

m = x4223 + x12334 + x12244

M = 217273

MAJORITY FUNCTION IMPLEMENTATION USING NAND GATES.

Sqruesh Kale.

Implementation using NOR gates.

 $\overline{x_5}$ ($(x_1+x_2)(x_3+x_4)(x_2+x_4)(x_3+\overline{x_4}+x_1)(x_1+\overline{x_3}+x_4)$) + expression bf x5 ((x,+22+23)(x,+23+24) (x,+2+24) (22+23+264)) TT in SOP formal

$$= \frac{\overline{x_5} + (\overline{x_1}, \overline{x_2} + \overline{x_3}, \overline{x_4} + \overline{x_2}, \overline{x_4} + \overline{x_3}, \overline{x_4}, \overline{x_1} + \overline{x_1}, \overline{x_3}, \overline{x_4})}{\overline{x_5} + \overline{x_1}, \overline{x_2}, \overline{x_3} + \overline{x_1}, \overline{x_3}, \overline{x_4} + \overline{x_1}, \overline{x_2}, \overline{x_4} + \overline{x_2}, \overline{x_3}, \overline{x_4}}$$

The below expression implementation is drawn as a multiplexer.

F 237	9 00	01	11	10
00	0	0		Ŏ
01	0	1	I	1
11	1	(1	D	D
10	٥	1	U.	IJ

 $x_{5}=0$ We ave $f_{x_{5}} = x_{2}x_{3}x_{4} + x_{1}x_{3}x_{4} + x_{1}x_{2}x_{3} + x_{1}x_{2}x_{4}$

