DESAIN DAN ANALISIS KEHANDALAN STRUKTUR ANJUNGAN LEPAS PANTAI TIPE JACKET TRIPOD DI PERAIRAN SELAT MAKASSAR

TUGAS AKHIR

Karya tulis sebagai salah satu syarat untuk memperoleh gelar Sarjana

Muhammad Arkaan Ah'naf NIM 15517047

Program Studi Teknik Kelautan

Fakultas Teknik Sipil dan Lingkungan

Institut Teknologi Bandung

2021

LEMBAR PENGESAHAN

Tugas Akhir Sarjana

DESAIN DAN ANALISIS KEHANDALAN STRUKTUR ANJUNGAN LEPAS PANTAI TIPE *JACKET TRIPOD* DI PERAIRAN SELAT MAKASSAR

Adalah benar dibuat oleh saya sendiri dan belum pernah dibuat dan diserahkan sebelumnya baik sebagian atau pun seluruhnya, baik oleh saya mau pun orang lain, baik di ITB maupun institusi pendidikan lainnya.

Cirebon, 28 Agustus 2021

Penulis

Muhammad Arkaan Ah'naf

NIM 15517047

Cirebon, 31 Agustus 2021

Pembimbing

Prof.Dr.Ir. Ricky Lukman Tawekal NIP 19590904 198503 1 001

Mengetahui:

Program Studi Teknik Kelautan

Ketua,

Dr. Ir. Hendriyawan, MT NIP 197208162 008011 010

DESAIN DAN ANALISIS KEHANDALAN STRUKTUR ANJUNGAN LEPAS PANTAI TIPE *JACKET TRIPOD* DI PERAIRAN SELAT MAKASSAR

Muhammad Arkaan Ah'naf¹ dan Prof. Dr. Ir. Ricky Lukman Tawekal²

Program Studi Teknik Kelautan
Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung,
JI Ganesha 10 Bandung 40132

¹arkaanahnaf@students.itb.ac.id dan ²ricky@ocean.itb.ac.id

ABSTRAK – Indonesia merupakan negara maritim yang kaya akan sumber daya alam, contohnya adalah minyak dan gas bumi yang sangat penting untuk kebutuhan aktivitas manusia. Oleh karena itu, diperlukan struktur anjungan lepas pantai untuk kebutuhan eksplorasi minyak dan gas. Salah satu tipe anjungan lepas pantai yaitu fixed jacket platform. Pada Tugas Akhir ini dilakukan pemodelan dan analisis kehandalan untuk struktur anjungan lepas pantai tiga kaki tipe fixed jacket platform dengan bantuan perangkat lunak SACS. Sebelum dilakukan analisis kehandalan, struktur harus memenuhi kriteria analisis in-place, seismic dan spectral fatigue. Semua analisis tersebut dikerjakan mengacu pada kode standar API RP-2A WSD. Analisis kehandalan dilakukan karena banyak ketidakpastian dari parameter dalam mendesain struktur, contohnya adalah beban lingkungan yang nilainya selalu berubah. Analisis kehandalan dilakukan berdasarkan nilai base shear yang didapat dari analisis pushover. Perhitungan analisis kehandalan pada Tugas Akhir ini menggunakan FORM 2 dengan fungsi performansi yang dipengaruhi oleh variabel acak tegangan leleh, tinggi gelombang dan kecepatan arus. Hasil dari analisis kehandalan berupa nilai indeks kehandalan. Indeks kehandalan yang didapat adalah 4.869 dengan probabilitas kegagalan sebesar 0.000000566. Nilai indeks kehandalan ini sudah memenuhi target kelas keselamatan tinggi apabila mengacu pada Bai dan Jin yakni 3.72 untuk target kelas keselamatan tinggi.

ABSTRACT – Indonesia is a maritime country that is rich in natural resources, for example oil and natural gas which are very important for human activities. Therefore, an offshore platform structure is needed for oil and gas exploration needs. One type of offshore platform is fixed jacket platform. In this final project, modelling and reliability analysis for the structure of a three legged offshore platform jacket type using SACS software. Prior to the reliability analysis, the structure must meet the criteria for in-place, seismic and spectral fatigue analysis. All of these analyzes were carried out according to the API RP-2A WSD standard code. Reliability analysis is carried out because there are many uncertainties in parameter in designing structure, for example, environmental loads whose values are always changing. In this final project, reliability analysis was carried out based on the base shear value obtained from the pushover analysis. The calculation of reliability analysis in this Final Project uses FORM 2 with performance function that is influenced by random variables of yield strength, wave height and current velocity. The result of reliability analysis in the form of a reliability index value. The reliability index obtained is 4.869 with probability of failure 0.000000566. This reliability index value has met the target of high safety class when referring to Bai and Jin, which is 3.72 for the high safety target.

Kata Kunci: Struktur Jacket, In-place, Seismic, Spectral Fatigue, Pushover, Kehandalan, FORM 2.

I. PENDAHULUAN

Latar Belakang

Indonesia merupakan negara maritim yang kaya akan sumber daya alam. Total luas lautan Indonesia mencapai 3,26 km² yang mana merupakan dua pertiga dari keseluruhan wilayah Indonesia. Salah satu sumber daya alam yang dimiliki oleh Indonesia adalah minyak dan gas bumi yang sangat penting bagi kebutuhan aktivitas manusia.

Cadangan minyak yang tersedia semakin menipis dikarenakan kebutuhan manusia yang membutuhkan minyak dan semakin gas meningkat seiring berkembangnya jaman. Berdasarkan data dari BP Statistical Review of World Energy 2020, pada tahun 2019 Indonesia memproduksi minyak 781 ribu barrel per hari yang mana Indonesia sendiri memiliki 0.2% cadangan minyak di dunia. Indonesia merupakan produsen gas alam nomor 4 di APAC (Asia Pacific Assests Corporation) dengan cadangan gas yang besar meskipun mengalami penurunan aktivitas eksplorasi. Produksi gas Indonesia mengalami penurunan sehingga pemerintah mendorong akselerasi onsteram project baru.

Dalam pengembangan lapangan minyak dan gas bumi di laut lepas, dibutuhkan fasilitas berupa anjungan lepas pantai. Untuk membangun anjungan lepas pantai sendiri diperlukan perencanaan yang matang dikarenakan resiko yang diambil sangat tinggi. Indonesia sebagai maritim, memiliki wilayah lautan yang mayoritas merupakan laut dangkal. Oleh karena itu, Indonesia merupakan negara yang cocok untuk dibangun anjungan lepas pantai tipe *fixed platform*.

Pada tugas akhir ini, dilakukan pemodelan struktur anjungan lepas pantai tiga kaki tipe *jacket* yang memiliki jumlah kaki sebanyak 3 buah. Anjungan lepas pantai ini berlokasi di Selat Makassar. Struktur yang dimodelkan juga akan dilakukan analisis agar struktur tidak mengalami kegagalan yang dikarenakan beban dan kondisi yang terjadi di lapangan. Analisis yang dilakukan antara lain analisis *in-place*, seismik, dan *fatigue*. Analisis lanjut yang akan dilakukan adalah Kehandalan berdasarkan performansi base shear struktur anjungan lepas pantai yang didapatkan dari analisis *pushover*.

Tujuan

Tujuan dari penulisan Tugas Akhir ini adalah sebagai berikut:

- 1. Melakukan desain struktur anjungan lepas pantai tiga kaki tipe jacket berdasarkan kriteria *in-place*, *seismic*, dan juga *fatigue* sesuai dengan standar API RP-2A WSD.
- Menentukan Indeks kehandalan struktur anjungan lepas pantai tiga kaki tipe jacket dengan kondisi lingkungan ekstrim menggunakan FORM 2 berdasarkan fungsi performansi sesuai dengan standar API RP-2A WSD.

Ruang Lingkup

Ruang lingkup dari pengerjaan Tugas Akhir ini antara lain:

- Pengolahan data gelombang acak untuk mendapatkan distribusi gelombang acak yang paling cocok dan analisis ekstrim untuk mendapatkan gelombang dan arus periode ulang 100 tahun.
- Mendesain model struktur anjungan lepas pantai tipe fixed platform berupa struktur jacket yang memiliki jumlah kaki sebanyak tiga buah dengan menggunakan bantuan perangkat lunak SACS.
- 3. Melakukan analisis terhadap struktur yang dimodelkan yakni analisis *in-place*, *seismic* dan *spectral fatigue* yang mengacu pada standar API RP-2A WSD.
- 4. Menghitung indeks kehandalan pada struktur anjungan lepas pantai berdasarkan performansi *base shear* beban lingkungan dan *collapse base shear* sesuai dengan standar API RP-2A WSD.

II. TEORI DAN METODOLOGI

Beban Lingkungan

1. Angin

Beban angin dapat dihitung menggunakan persamaan sebagai berikut:

$$u(z,t) = U(z)x[1 - 0.41xI_u(z)xln\left(\frac{t}{t_0}\right)]$$

$$U(z) = U_0x\left[1 + Cxln\left(\frac{z}{32.8}\right)\right]$$

$$C = 5I_u(z) = 0.06x[1 + 0.0131xU_0]x\left(\frac{z}{32.8}\right)^{-0.22}$$

$$C = 5.73x10^{-2}x(1 + 0.0457xU_0)^{0.5}$$

$$F = \left(\frac{\rho}{2}\right)U^2(z,t)C_sA$$

Dimana;

- F = gaya angin (kips)
- ρ = massa jenis angin (0.0023668 slugs/ft³ untuk tekanan dan temperature standar)
- u = kecepatan angin (ft/s)

- C_s = koefisien bentuk
- $A = \text{luas permukaan objek (ft}^2)$
- Arus

Pembebanan arus dilakukan dengan cara menginput kecepatan arus di kedalaman tertentu menggunakan perangkat lunak SACS.

3. Gelombang

Skema pembebanan gelombang dapat dilihat pada Gambar 1.

Gambar 1 Skema Perhitungan Gelombang

Analisis Struktur

1. Analisis *In-place*

Analisis In-place menghasilkan output berupa unity check member dan joint can, kapasitas tanah dan defleksi. Unity check member dapat diihitung menggunakan persamaan sebagai berikut:

$$UC = \frac{f_a}{f_c} + \frac{C_m \sqrt{f_{bx}^2 + f_{by}^2}}{\left(1 - \frac{f_a}{\frac{\pi^2 EI}{(KL)^2}}\right)} F_b$$

$$UC = \frac{f_a}{0.6F_y} + \frac{\sqrt{f_{bx}^2 + f_{by}^2}}{F_b}$$

Jika member memiliki nilai f a/F a ≤ 0.15 , maka UC dihitung menggunakan persamaan sebagai berikut:

$$UC = \frac{f_a}{F_a} + \frac{\sqrt{f_{bx}^2 + f_{by}^2}}{F_b}$$

Untuk nilai UC dari pile, dapat dihitung dengan UC single pile analysis dengan menggunakan persamaan sebagai berikut:

$$UC = \frac{\frac{P}{A}}{F_{xc}} + \frac{2}{\pi} \left| \sin^{-1} \frac{\frac{M}{Z}}{F_{xc}} \right|$$

Dimana;

• $f_a = Axial\ loading\ (kips)$

• $F_a = Allowable \ axial \ stress \ (ksi)$

• $C_m = Reduction factor$

• $f_{bx} = X$ axis bending moment (kips-ft)

• $f_{by} = Y$ axis bending moment (kips-ft)

• $K = effective \ length \ factor$

• E = Elastic modulus (ksi)

 $I = Moment of Inertia (ft^4)$

 $F_b = Allowable bending stress (ksi)$

 $F_y = Yeild Strength (ksi)$

 F_{xc} = Inelastic local buckling stress (ksi)

P = Non-linear analysis axial loading

 $A = Cross-sectional area (ft^2)$

M = Non-linear bending moment (kips-ft)

 $Z = Plastic sectional modulus (ft^3)$

Perhitungan unity check joint can dapat digunakan persamaan sebagai berikut:

$$Strength~UC = \frac{F_{yb}\gamma\tau sin\theta}{F_{yc}\left(11 + \frac{1,5}{\beta}\right)} \le 1.0$$

Dimana;

$$\begin{split} f_a &= \textit{Yield strength pada joint chord} \\ F_a &= \textit{Yield strength pada brace member} \\ \gamma &= \frac{\textit{Diameter chord}}{2(\textit{Tebal Chord})} \end{split}$$

 $\tau = \text{Tebal } Chord$

 β = Perbandingan diameter *brace* dengan chord

 θ = Sudut *brace*

Pengecekan kapasitas tiang pancang ini bertujuan untuk mengetahui apakah kapasitas tiang pancang melebihi kapasitas izin dari tiang pancang. API RP-2A mensyaratkan nilai minimum safety factor tersebut berdasarkan kondisi yang terjadi. Batas nilai safety factor dapat dilihat pada Tabel 1.

Tabel 1 Kapasitas Pile Minimum

Kondisi	Safety Factor
Operating	2
Storm	1.5

Syarat defleksi mengacu pada SNI-03-1729-2000, perhitungan nilai defleksi adalah sebagai berikut:

$$\delta_{vertikalmax} = rac{L}{100}$$

$$\delta_{horizontalmax} = rac{H}{200}$$

$$\delta_{pileheadmax} = rac{OD}{10}$$

Dimana:

- $\delta_{vertikal}$ = Defleksi vertical
- $\delta_{horizontal} = \text{Defleksi } Horizontal$
- $\delta_{pilehead}$ = Defleksi pilehead
- L =Jarak lateral antara acting joint dengan joint acuan
- OD = Diameter luar tiang pancang
- H = Jarak dalam arah vertical antrara acting joint dengan joint acuan

2. Analisis Seismic

Analisis seismik merupakan analisis dinamis pada struktur anjungan lepas pantai sebagai akibat dari gempa yang terjadi di laut lepas. Analisis seismik dilakukan apila suaru daerah memiliki percepatan tanah lebih dari 0.05g, kurang dari angka tersebut dapat dikatakan bahwa pergerakan seismik di daerah tersebut rendah sehingga beban lingkungan yang lain lebih berpengaruh.

Pada saat gempa terjadi, tidak ada aktivitas manusia pada struktur sehingga beban hidup yang digunakan untuk analisis seismik ini hanya sebesar 75% dari total. Kombiasi pembebanan pada analisis seismik dengan konsep WSD adalah sebagai berikut:

$$D + 0.75L + E$$

Dimana:

- D = Beban mati;
- L = Beban hidup; dan
- E = Beban gempa

3. Analisis *Fatigue*

Analisis fatigue merupakan analisis yang mempertimbangkan kelelahan dari struktur akibat beban berulang (siklik) yang terjadi. Struktur akan mengalami damage yang disebabkan tegangan kecil namun terjadi berulang kali. Analisis fatigue yang dilakukan adalah spectral fatigue. Pada analisis fatigue spectral, data gelombang determintistik yang memiliki periode dan tinggi yang berbeda-beda dihitung gayanya. Struktur dikenakan gelombang tersebut dan akan menghasilkan rentang tegangan pada setiap membernya, Adapun spectrum gelombang dapat menghasilkan rentang tegangan dengan menggunakan persamaan sebagai berikut.

$$\sigma_{RMS} = \sqrt{\int_0^\infty H_i^2(f) x S_i(f) x df}$$

Dimana:

- σ_{RMS} = rentang tegangan (spektrum) $H_i(f)$ = transfer function
- $S_i(f)$ = wave power spectral density

Pada analisis fatigue spectral, jumlah kejadian gellmbang selama masa layan struktur anjungan lepas pantai dapat dihitung menggunakan persamaan berikut.

$$n_i = \frac{m_i L}{T_z} = \frac{m_i L}{\sqrt{\frac{\int_0^\infty S_i(f) x df}{\int_0^\infty f_i^2 x S_i(f) x df}}}$$

Dimana;

- L = umur layan desain terfaktor;
- m_i = probabilitas teradinya suatu *stress*
- T_z = periode gelombang zero-crossing

Gambar 2 Kurva S-N

Kurva S-N adalah karakteristik fatigue yang umum digunakan dari suatu bahan yang mengalami tegangan berulang dengan besar yang sama. Dari kurva S-N dapar disimpulkan bahwa semakin besar tegangan berutang yang terjadi maka semakin sedikit siklus menuju kegagalan struktur.

Nilai damage akibat beban berulang dapat dihitung dengan menggunakan persamaan berikut.

$$D = \sum_{i=1}^{I} \frac{n_i}{N_i}$$

Dimana;

- D = damage (kerusakan);
- n_i = jumlah siklus pada rentang tegangan beban gelombang ke-I;
- N_i = jumlah siklus yang diizinkan oleh kurva S-N apda rentang tegangan beban gombang ke-i.

Fatigue damage pada setiap pasangan tinggi dan periode gelombang yang terjadi dapat dihitung menggunakan persamaan berikut.

$$D_{i,\sigma_{rms}} = \frac{n_i}{N_{i,\sigma_{rms}}} p_{\sigma_{RMS}}$$

Dimana;

- $N_{i,\sigma_{rms}}$ = jumlah kejadian yang menghasilkan keruntuhan pada suatu stress range
- $p_{\sigma_{RMS}}$ = probabilitas terjadinya suatu spektrum *stress range*

Kegagalan analisis *fatigue* terjadi ketika nilai D mencapat angka 1.00. Menurut API RP-2A WSD, stuktur anjungan lepas pantai harus memiliki service life dua kali lebih besar dari umur layan.

4. Analisis Pushover

Analisis Pushover merupakan analisis statik plastik non-linier yang digunakan untuk mengetahui kekuatan dan plastisitas struktur terhadap beban geser. Kombinasi beban vertikal dan beban lingkungan pada struktur digunakan untuk melakukan analisis pushover dengan beban vertikal bernilai tetap sedangkan beban lingkungan ditambahkan

secara bertahap hingga struktur mengalami keruntuhan. Hasil dari analisis ini yaitu berupa reserve strength ratio (RSR) yang dihitung menggunakan analisa non linier elemen hingga. Berikut perhitungan RSR dapat dilihat pada rumus dibawah.

$$RSR = \frac{F_{collapse}}{F_{initial}}$$

Dimana:

- $F_{collapse}$ = Beban struktur saat struktur mengalami keruntuhan (*Collapse*)
- $F_{initial}$ = Beban pada stuktur saat kondisi lingkungan ekstrim

5. Analisis Kehandalan

Jenis-jenis *limit-state* adalah sebagai berikut:

- Ultimate limit state;
- Fatigue limit state;
- Serviceability limit state; dan
- Accidental limit state.

Limit-state yang digunakan dapat diubah menjadi sebuah fungsi yang dinamakan fungsi performasi. Persamaan performasi pada umumnya dapat ditulis dengan persamaan sebagi berikut:

$$Z = g(R - S) = R - S$$

Dimana:

- R =Kekuatan yang dimiliki oleh struktur; dan
- S = Beban yang diterima oleh struktur

Gambar 3 Limit State

Pada tugas akhir ini, dilakukan perhitungan indeks kehandalan menggunakan FORM 2

Metodologi

Metodoogi pengerjaan tugas akhir ini dapat dilihat pada *Gambar 4*.

Gambar 4 Metodologi

III. PEMODELAN

Pada tugas akhir ini merupakan struktur *wellhead* tipe *fixed jacket* tiga kaki yang memiliki kemiringan pada arah sumbu x pada dua kaki dengan perbandingan rise:run 8:1 dan kemiringan pada arah sumbu y pada satu kaki dengan perbandingan rise:run 7:1. Struktur ini membentuk sudut 45° dengan true north berlawanan dengan arah jarum jam Anjungan lepas pantai ini memiliki elevasi deck yang digunakan yang dapat dilihat pada Tabel 2.

Tabel 2 Elevasi Deck

Tabel 2 Eleve	isi Deck
Deck (tipe)	Elevasi (m)
Main Deck	22.000
Mezzanine Deck	17.500
Cellar Deck	14.500
Sub Cellar Deck	11.000
Landing Deck	8.500

API RP- 2A WSD menjelaskan untuk arah beban lingkungan yang digunakan untuk struktur dengan tiga kaki minimal menggunakan 12 arah mata angin. Ilustrasi dari arah mata angin yang digunakan untuk analisis ditunjukkan pada Gambar 5.

Gambar 5 Ilustrasi Mata Angin

Untuk kebutuhan analisis *inplace*, dibutuhkan kedalaman maksimum dan minimum setiap kondisi desain. Nilai kedalaman dapat dilihat pada Tabel 3.

Tabel 3 Kedalaman Desain

Item	MSL (m) – Platform
1-year Minimum Water depth	59.34
1-year Maximum Water depth	61.82
100-year Minimum Water depth	59.29
100-year Maximum Water depth	61.90

Data angin yang digunakan terdiri dari parameter kecepatan dengan arah *omni-directional*. Data angin dapat dilihat pada Tabel 4.

Tabel 4 Kecepatan Angin

	Pla	aftorm			
	Omni Directional				
Deskripsi	1-Tahun Operating Storm	100-Tahun Extreme <i>Storm</i>			
Kecepatan angin rata- rata 1 jam (m/s)	11.8	15.4			
Kecepatan angin rata- rata 10 menit (m/s)	13.0	16.9			
Kecepatan angin rata- rata 1 menit (m/s)	15.4	20.1			
Kecepatan hembusan angin 3 detik (m/s)	17.1	22.3			

Data arus yang digunakan terdiri dari parameter kecepatan dengan arah omni-directional. Data arus dapat dilihat pada Tabel 5.

Tabel 5 Kecepatan A

rus

	7 615				
	Platf	orm			
Arus	Omni Directional				
Alus	1-Tahun	100-Tahun			
	Operating Storm	Extreme Storm			
At Surface	1.6	1.9			
(m/s)	1.0	1.9			
Mid Depth	1.5	1.7			
Layer (m/s)	1.3	1./			
Layer 1 above	0.9	1.1			
sea bed (m/s)	0.9	1.1			

Data marine growth yang digunakan terdiri dari parameter tebal perkedalaman dan densitas. Densitas dari marine growth yang digunakan adalah 1.4 tonne/m³. Data tebal perkedalaman dapat dilihat pada Tabel 6.

Tabel 6 Data Marine Growth

Elevation (m)	Marine Growth Thickness (mm)	Marine Growth Density (in air) (tonne/m³)
EL (+) 2.0 to (-) 15	100	1.4
(-) 15 to (-) 30	50	1.4
(-) 30 to mudline	25	1.4

Data gempa yang tersedia adalah nilai spectral desain untuk Strength Level Earthquake (SLE) dan Rare Intense Earthquake (RIE). Data gempa yang akan digunakan dapat dilihat pada Tabel 7.

Tabel 7 Data Gempa

Tuest / Eura Gempa						
Dowind (a)	Spectral Acceleration	Spectral Acceleration				
Period (s)	(G) SLE	(G) RIE				
0.01	0.100	0.180				
0.2	0.230	0.430				
0.5	0.160	0.310				
1	0.100	0.200				
2	0.066	0,120				
5	0.014	0.027				

Corrosion allowance diletakkan di area splash zone karena rawan terjadi korosi sehingga sebagai justifikasi pada pemodelan, diberikan toleransi sebesar 1/8 inch untuk semua member pada area spash zone.

Berikut adalah profil dari struktur anjungan lepas pantai dapat dilihat pada Tabel 8 dan Tabel 9.

Tabel 8 Profil Member pada Deck

No	Member Group	Deskripsi	Jenis	Ukuran
1	UB2		Wide Flange	UB 253 x 146 x 43
2	UB3		Wide Flange	UB 356 x 171 x 67
3	UB4		Wide Flange	UB 457 x 191 x 161
4	UB5		Wide Flange	UB 533 x 210 x 92
5	UB6		Wide Flange	UB 686 x 254 x 170
6	UB7		Wide Flange	UB 762 x 267 x 197
7	UB8		Wide Flange	UB 838 x 292 x 176
8	UB9		Wide Flange	UB 914 x 305 x 576
9	L6		Angle	L6 x 6 x 0.5
10	H100		Flange	H100 x 100 x 6
11	C25	Main Deck.	Channel	C250 x 90 x9
12	CPL	Mezzanine	Tubular	150 cm x 3.81 cm
13	CN1	Deck, Cellar Deck, Subcellar	Cone	91.4 cm x 2.5 cm 60 cm x 2.5 cm
14	CN2	Deck	Cone	150 cm x 3.81 cm 91.4 cm x 3.81 cm
15	DLG		Tubular	91.4 cm x 3.81 cm
16	DGD		Tubular	40.64 cm x 1.27 cm
17	DHB		Tubular	21.91 cm x 0.82 cm
21	VB1		Tubular	60.00 cm x 2.54 cm
22	JW		Tubular	45.72 cm x 1.6 cm
23	VB2		Tubular	40.64 cm x 1.27 cm
24	VB3		Tubular	27.31 cm x 1.27 cm
25	VB4		Tubular	16.83 cm x 0.71 cm
26	VB5		Tubular	11.41 cm x 0.60 cm
27	CGD		Tubular	60.99 cm x 3.81 cm

Tabel 9 Profil Member pada Jacket

No	Member Group	Deskripsi	Jenis	Ukuran
1	BOA	D (1 1)	Tubular	45.72 cm x 2.54 cm
2	BOB	Boatlanding	Tubular	25.4 cm x 2.54 cm
3	CG	Conductor Guide	Tubular	60.99 cm x 3.81 cm
4	DGJ	Diagonal brace	Tubular	71.12 cm x 3.175 cm
5	DGS	Diagonal brace	Tubular	70.49 cm x 2.858 cm
6	HOR	Horizontal brace	Tubular	61 cm x 3.175 cm
7	MDM	Mudmat	TUbulat	61 cm x 3.175 cm
8	LG2		Tubular	110 cm x 4.8 cm
9	LG3	1	Tubular	110 cm x 4.8 cm
10	LG4		Tubular	110 cm x 4.8 cm
11	LG5	1	Tubular	110 cm x 4.8 cm
12	LG6] . [Tubular	110 cm x 4.8 cm
13	LG7	Leg	Tubular	110 cm x 4.8 cm
14	LG8	1	Tubular	110 cm x 4.8 cm
15	LG9	1	Tubular	110 cm x 4.8 cm
16	LGB		Tubular	110 cm x 4.8 cm
17	LGS		Tubular	109.36 cm x 4.48 cm
18	PL1		Tubular	91.4 cm x 3.81 cm
19	PL2		Tubular	91.4 cm x 3.81 cm
20	PL3		Tubular	91.4 cm x 3.81 cm
21	PL4	1	Tubular	91.4 cm x 3.81 cm
22	PL5	Pile	Tubular	91.4 cm x 3.81 cm
23	PL6	Pile	Tubular	91.4 cm x 3.81 cm
24	PL7	1	Tubular	91.4 cm x 3.81 cm
25	PL8		Tubular	91.4 cm x 3.81 cm
26	PL9] [Tubular	91.4 cm x 3.81 cm
27	PLA		Tubular	91.4 cm x 3.81 cm

Struktur anjungan lepas pantai tipe jacket pada tugas akhir ini dimodelkan menggunakan perangkat lunak SACS. Bagian yang dimodelkan antara lain leg, pile dan deck. Ilustrasi model struktur dan elevasi penting ditunjukkan pada *Gambar 6* dan Gambar 7.

Gambar 6 Tampilan Isometrik Struktur

Gambar 7 Elevasi Penting Jacket

Struktur jacket dimodelkan dengan memiliki 8 level horizontal bracing dengan diagonal bracing tipe down. Berikut salah satu contoh elevasi pada *jacket* dapat dilihat pada Gambar 8.

Gambar 8 Horizontal Bracing

Deck yang dimodelkan terdiri 4 deck utama dengan elevasi deck terendah dihitung dengan persamaan sebagai berikut:

$$\begin{split} Elevasi_{terendah} &= HAT + SS + \frac{H}{2} + Freeboard \\ Elevasi_{terendah} &= d1.06 + 0.34 + \frac{6.2}{2} + 1.524 \\ &Elevasi_{terendah} = 6.024 \ meter \end{split}$$

Dimana:

- HAT = Highest Astronomical Tide (m);
- SS = Storm Surge (m);
- H = Tinggi Gelombang (m);
- Freeboard = Freeboard/Air Gap (5 ft)

Pemodelan deck dilakukan berdasarkan beban yang diletakkan diatas deck tersebut. Visualisasi pemodelam beam pada deck dapat dilihat pada Gambar 9.

Gambar 9 Tampilan Isometric Deck

IV. HASIL ANALISIS

Analisis In-Place

Berdasarkan pengecekan *unity check member* berikut adalah nilai *unity check member* untuk kondisi operasi dapat dilihat pada Tabel 10 dan untuk kondisi badai dapat dilihat pada Tabel 11.

Tabel 10 Unity Check Member Kondisi Operasi

	Tavei	10 Only	Спеск Ме	mber K	onaisi Ope	rasi
		Critical	Maximum O	pe rating	Minimum O	pe rating
No	Code	Member	Load Combination	Max UC	Load Combination	Max UC
1	C25	6190-6192	204	0.89	104	0.89
2	CG	241C-0161	210	0.66	110	0.71
3	CGD	B45C-8128	212	0.43	112	0.43
4	CN1	L007-L008	209	0.34	109	0.35
5	CN2	L056-L055	202	0.71	102	0.71
6	CPL	8043-L058	209	0.8	106	0.8
7	DGD	7506-8010	204	0.89	104	0.89
8	DGJ	202L-301L	201	0.37	101	0.4
9	DGS	901L-803L	209	0.27	109	0.29
10	DHB	6126-6254	209	0.34	109	0.35
11	DLG	B03L-L050	204	0.73	105	0.72
12	H10	6185-6183	210	0.18	110	0.18
13	HOR	801L-0563	212	0.42	111	0.43
14	JW	0150-903L	204	0.17	104	0.17
15	L6	8020-8012	206	0.3	106	0.3
23	LG9	0142-903L	210	0.46	110	0.46
24	LGB	803L-0144	210	0.4	110	0.41
25	LGS	0144-0142	210	0.41	110	0.43
26	MDM	0202-0315	210	0.69	110	0.74
27	PL1	003P-103P	204	0.69	104	0.83
28	PL2	103P-203P	204	0.68	104	0.81
29	PL3	203P-303P	204	0.69	104	0.83
37	UB2	7086-7073	212	0.94	112	0.94
38	UB3	6098-6258	212	0.89	102	0.89
39	UB4	7125-7067	202	0.57	102	0.57
40	UB5	6153-6156	205	0.2	108	0.21
41	UB6	6173-6164	204	0.77	104	0.77
42	UB7	6107-6327	210	0.95	110	0.96
43	UB9	8041-8043	204	0.85	104	0.85
44	VB1	L008-8054	203	0.56	103	0.56
45	VB2	6173-7083	204	0.92	104	0.93
46	VB3	5004-6107	210	0.53	110	0.54
47	VB4	7102-8062	209	0.74	109	0.75
48	VB5	5025-6261	205	0.27	105	0.27

Tabel 11 Unity Check Member Kondisi Badai

		Critical	Maximum Storm		Minimum	Storm
No	Code	Member	Load Combination	Max UC	Load Combination	Max UC
1	C25	6190-6192	404	0.55	304	0.55
2	CG	0152-244C	410	0.8	310	0.81
3	CGD	0021-6062	410	0.39	310	0.39
4	CN1	L007-L008	410	0.29	311	0.28
5	CN2	L056-L055	404	0.27	304	0.27
6	CPL	L056-8043	404	0.17	304	0.18
7	DGD	7507-8045	404	0.59	304	0.6
8	DGJ	203L-301L	403	0.53	303	0.56
9	DGS	901L-803L	409	0.29	309	0.3
10	DHB	6235-6106	411	0.32	311	0.31
11	DLG	7304-6160	404	0.7	304	0.69
12	H10	6185-6183	410	0.12	310	0.12
13	HOR	0213-0214	410	0.45	312	0.44
14	JW	0150-903L	404	0.21	304	0.2
15	L6	8020-8012	410	0.17	310	0.17
23	LG9	0142-903L	410	0.52	310	0.52
24	LGB	803L-0144	410	0.45	310	0.47
25	LGS	0144-0142	410	0.46	310	0.48
26	MDM	0202-0315	410	0.87	310	0.88
27	PL1	003P-103P	404	0.93	304	0.83
28	PL2	103P-203P	404	0.91	304	0.81
29	PL3	203P-303P	404	0.86	304	0.75
37	UB2	7071-7076	410	0.52	309	0.51
38	UB3	6098-6258	404	0.7	310	0.58
39	UB4	7000-7001	411	0.56	311	0.54
40	UB5	6153-6156	404	0.16	304	0.17
41	UB6	6062-6065	410	0.63	310	0.62
42	UB7	6000-6016	412	0.86	312	0.83
43	UB9	6171-6160	404	0.43	304	0.43
44	VB1	7000-8001	411	0.4	311	0.39
45	VB2	6173-7083	404	0.52	304	0.52
46	VB3	5004-6107	410	0.48	310	0.47
47	VB4	7102-8062	410	0.5	310	0.49
48	VB5	5025-6261	404	0.19	304	0.19

Berdasarkan pengecekakan *unity check joint can*, berikut adalah nilai *unity check joint can* dapat dilihat pada *Tabel 12*.

Tabel 12 Unity Check Joint Can In-Place

						_	_				
		Operat		mum Depth				Opera	ting - Minin		
No	Joint	Load UC	Strength UC	Load Combination	Lokasi (m)	No	Joint	Load UC	Strength UC	Load Combination	Lokasi (m)
1	903L	0.154		210	7.000	1	903L	0.151	0.954	110	7.000
2	803L	0.212	0.804	205	-3.000	2	802L	0.209	0.865	103	-3.000
3	703L	0.197	0.876	210	-9.833	3	703L	0.202	0.879	110	-9.833
4	602L	0.266	0.887	207	-19.667	4	602L	0.278	0.887	107	-19.667
5	502L	0.265	0.885	207	-29.500	5	502L	0.276	0.885	107	-29.500
6	402L	0.249	0.837	207	-39.330	6	402L	0.259	0.883	107	-39.330
7	302L	0.26	0.882	207	-49.167	7	302L	0.269	0.882	107	-49.167
8	202L	0.193	0.901	212	-59.000	8	202L	0.207	0.904	112	-59.000
		Stori	Storm - Maximum Depth				Stor		Storm - Minimum Depth		
			m - maxim	ит Беріп				Stor	m - Minimu	m Depth	
No	Joint		Strength	Load	Lokasi (m)	No	Joint		m - Minimu	m Depth Load	Lokasi (m)
No	Joint	Load UC			Lokasi (m)	No	Joint	Load UC			Lokasi (m)
No 1	Joint 903L		Strength	Load	Lokasi (m) 7.000	No 1	Joint 903L		Strength	Load	Lokasi (m) 7.000
		Load UC	Strength UC	Load Combination	(/	No 1 2		Load UC	Strength UC	Load Combination	
1	903L	Load UC 0.164	Strength UC 0.981	Load Combination 410	7.000	1	903L	Load UC 0.158	Strength UC 0.985	Load Combination 310	7.000
1 2	903L 802L	Load UC 0.164 0.237	Strength UC 0.981 0.739	Load Combination 410 404	7.000 -3.000	1 2	903L 802L	Load UC 0.158 0.238	Strength UC 0.985 0.742	Load Combination 310 304	7.000
1 2 3	903L 802L 703L	0.164 0.237 0.227	Strength UC 0.981 0.739 0.875	Load Combination 410 404 410	7.000 -3.000 -9.833	1 2 3	903L 802L 703L	0.158 0.238 0.228	Strength UC 0.985 0.742 0.881	Load Combination 310 304 310	7.000 -3.000 -9.833
1 2 3 4	903L 802L 703L 603L	0.164 0.237 0.227 0.257	Strength UC 0.981 0.739 0.875 0.833	Load Combination 410 404 410 410	7.000 -3.000 -9.833 -19.667	1 2 3	903L 802L 703L 603L	0.158 0.238 0.228 0.269	Strength UC 0.985 0.742 0.881 0.838	Load Combination 310 304 310 310	7.000 -3.000 -9.833 -19.667
1 2 3 4 5	903L 802L 703L 603L 503L	0.164 0.237 0.227 0.257 0.265	Strength UC 0.981 0.739 0.875 0.833 0.788	Load Combination 410 404 410 410 410	7.000 -3.000 -9.833 -19.667 -29.500	1 2 3 4 5	903L 802L 703L 603L 503L	0.158 0.238 0.228 0.269 0.279	Strength UC 0.985 0.742 0.881 0.838 0.792	Load Combination 310 304 310 310 310	7.000 -3.000 -9.833 -19.667 -29.500

Berdasarkan pengecekan kapasitas tiang pancang, berikut nilai kapasitas tiang pancang setiap kondisi dapat dilihat pada *Tabel 13*.

Tabel 13 Kapasitas Pile In-Place

			Operating	– <i>Ма</i> .	ximum Dep	oth						
		Compress	ion			Tension	!					
Joint	Capacity (kN)	Max. Load (kN)	Load Comb.	SF	Capacity (kN)	Max. Load (kN)	Load Comb.	SF	Min. SF			
001P	-26940.8	-6723.9	208	4.01	27100	2068.1	202	13.10	2			
002P	-26940.8	-7129.9	212	3.78	27100	1939.8	206	13.97	2			
003P	-26887.6	-11900.1	204	2.26	27047	3062.1	210	8.83	2			
Operating – Minimum Depth												
		Compress	ion			Tension	!					
Joint	Capacity (kN)	Max. Load (kN)	Load Comb.	SF	Capacity (kN)	Max. Load (kN)	Load Comb.	SF	Min. SF			
001P	-26940.8	-6329	107	4.26	27100	2113.1	102	12.82	2			
002P	-26940.8	-7117.7	112	3.79	27100	2062.1	106	13.14	2			
003P	-26887.6	-12091.7	104	2.22	27047	3233.2	110	8.37	2			
			Storm -	Maxi	mum Depth	ı						
		Compress	ion			Tension	!					
Joint	Capacity (kN)	Max. Load (kN)	Load Comb.	SF	Capacity (kN)	Max. Load (kN)	Load Comb.	SF	Min. SF			
001P	-26940.8	-9378.5	408	2.87	27100	5614	402	4.83	1.5			
002P	-26940.8	-10162.7	412	2.65	27100	5612.6	406	4.83	1.5			
003P	-26887.6	-16811.2	404	1.60	27047	9444.3	410	2.86	1.5			
			Storm -	Minii	num Depth							
		Compress	ion			Tension	!					
Joint	Capacity (kN)	Max. Load (kN)	Load Comb.	SF	Capacity (kN)	Max. Load (kN)	Load Comb.	SF	Min. SF			
001P	-26940.8	-9974.6	308	2.70	27100	5608.1	302	4.83	1.5			
002P	-26940.8	-10757.5	312	2.50	27100	5709.9	306	4.75	1.5			
003P	-26887.6	-17323.8	304	1.55	27047	9539.9	310	2.84	1.5			

Berdasarkan pengecekan defleksi pada struktur, berikut nilai defleksi pada struktur dapat dilihat pada Tabel defleksi horizontal dan vertikal dapat dilihat pada *Tabel 14* sampai *Tabel 21*.

Tabel 14 Defleksi Horizontal Minimum Operating

Kondisi Minimum Operating											
Deck	Joint	LC	Displac	cement	h (m)	Defleksi (cm)					
Deck			x	у		Relatif	Izin				
Main deck	8017	104	0.47	22.14	81	22.15	40.50				
Mezzanine Deck	7098	104	0.25	20.88	77.5	20.88	38.25				
Cellar Deck	6136	104	0.46	20.28	73.5	20.28	36.75				
Sub-Cellar Deck	5033	110	0.23	19.67	70	19.67	35.00				

Tabel 15 Defleksi Horizontal Maximum Operating

Kondisi Maximum Operating										
Deck	Joint	LC	Displac	cement	h (m)	Defleksi (cm)				
Деск			x	у		Relatif	Izin			
Main deck	8017	204	0.48	19.66	81	19.66	40.50			
Mezzanine Deck	7098	204	0.27	18.50	77.5	18.50	38.25			
Cellar Deck	6136	204	0.47	17.97	73.5	17.98	36.75			
Sub-Cellar Deck	5033	210	-0.79	17.73	70	17.74	35.00			

Tabel 16 Defleksi Horizontal Minimum Storm

Defleksi (cm)	
Izin	
40.50	
38.25	
36.75	
35.00	
-	

Tabel 17 Defleksi Horizontal Maximum Storm

Kondisi Maximum Storm										
Deck	Joint	1.0	Displac	cement	h (m)	Defleksi (cm)				
Деск	Joini	LC	x	у	h (m)	Relatif	Izin			
Main deck	8017	404	-0.22	36.15	81	36.15	40.50			
Mezzanine Deck	7100	404	-0.19	34.85	77.5	34.85	38.25			
Cellar Deck	6136	404	0.08	33.95	73.5	33.95	36.75			
Sub-Cellar Deck	5035	404	-0.01	33.17	70	33.17	35.00			

Tabel 18 Defleksi Vertikal Minimum Operating

Lokasi Joint	LC	Joint	Defleksi	Ref.	Def Ref.	SPAN	Deflek	si (cm)	
Lokasi Joini			Joint	Joint	Joint (cm)	(m)	Relatif	Izin	
Main deck	103	8154	-4.052	8155	-3.9003	1.2	0.1517	1.2	
Mezzanine Deck	109	7100	-3.853	7098	-3.765	1.2	0.088	1.2	
Cellar Deck	103	6182	-5.839	6186	-5.4036	1.1	0.4354	1.1	
Sub-Cellar Deck	103	5096	-4.814	5097	-4.5418	1.65	0.2722	1.65	

Tabel 19 Defleksi Vertikal Maximum Operating

Deck	LC	Joint	Defleksi	Ref.	Defleksi	SPAN	Defl	eksi
			Joint	Joint	Ref Joint	(m)	Relatif	Izin
Main deck	203	8154	-3.741	8155	-3.6131	1.2	0.1279	1.2
Mezzanine Deck	209	7100	-3.659	7098	-3.5583	1.2	0.1007	1.2
Cellar Deck	203	6182	-5.462	6186	-5.0508	1.1	0.4112	1.1
Sub-Cellar Deck	203	5096	-4.535	5097	-4.2971	1.65	0.2379	1.65

Tabel 20 Defleksi Vertikal Minimum Storm

Deck	LC	Joint	Defleksi	Ref.	Defleksi	SPAN	Defleksi	
			Joint	Joint	Ref Joint	(m)	Relatif	Izin
Main deck	311	8062	-3.672	8061	-3.5806	1.2	0.0914	1.2
Mezzanine Deck	311	7102	-3.66	7104	-3.5749	1.2	0.0851	1.2
Cellar Deck	303	6182	-4.997	6186	-4.2284	1.1	0.7686	1.1
Sub-Cellar Deck	301	5096	-4.181	5097	-4.0618	1.65	0.1192	1.65

Tabel 21 Defleksi Vertikal Maximum Storm

Deck	LC	Joint	Defleksi	Ref.	Ref. Defleksi		Defleksi	
			Joint	Joint	Ref Joint	(m)	Relatif	Izin
Main deck	402	8154	-3.874	8155	-3.7529	1.2	0.1211	1.2
Mezzanine Deck	411	7102	-3.776	7104	-3.6593	1.2	0.1167	1.2
Cellar Deck	403	6182	-5.428	6186	-4.9596	1.1	0.4684	1.1
Sub-Cellar Deck	402	5096	-4.438	5097	-4.1945	1.65	0.2435	1.65

Berikut defleksi *pilehad* dapat dilihat pada Tabel 22.

Tabel 22 Defleksi Pilehad

	Ma	ximum De _l	oth - Opera	ting	
Joint	LC	Displa	cement	Deflek	si (cm)
Joini	LC	х	у	Relatif	Izin
001P	210	0.1126	3.7788	3.780477	9.14
002P	211	1.0083	3.4618	3.605652	9.14
003P	210	0.1216 3.6991		3.701098	9.14
	Mi	nimum Dep	oth - Opera	ting	
Joint	LC	Displa	cement	Deflek	si (cm)
Joint	LC	х	у	Relatif	Izin
001P	110	0.1261	4.0208	4.022777	9.14
002P	111	1.0884	3.6646	3.822814	9.14
003P	110	0.1363 3.9276		3.929964	9.14
	N	1aximum D	epth - Stor	m	
7 - : 4	LC	Displa	cement	Deflek	si (cm)
Joint	LC	х	у	Relatif	Izin
001P	410	0.06	5.9342	5.934503	9.14
002P	411	1.6507	5.605	5.843016	9.14
003P	410	0.2465	5.8563	5.861485	9.14
	N	/Iinimum D	epth - Stori	m	
Joint	LC	Displa	cement	Deflek	si (cm)
Joint	LC	х	у	Relatif	Izin
001P	310	0.0795	6.0821	6.08262	9.14
002P	311	1.7005	5.726	5.973171	9.14
003P	310	0.2539	5.9839	5.989284	9.14

Analisis seismik

Berdasarkan pengecekan *unity check member* berikut adalah nilai *unity check member* untuk kondisi SLE dapat dilihat pada dan kondisi DLE dapat dilihat pada Tabel 23.

Tabel 23 Unity Check Seismik

		Critical Manubas	SI	LE	R	IE
Description	Group	Critical Member No.	LC	UC	LC	UC
Deck Beam	C25	6190-6192	2	0.69	2	0.69
Vertical Cone Bracing	CN1	L007-L008	2	0.11	2	0.14
at Deck	CN2	L056-L055	2	0.64	2	0.66
Crane Pedestal Leg	CPL	8043-L058	1	0.49	1	0.49
Diagonal Bracing at Deck	DGD	7506-8010	2	0.31	2	0.33
Diagonal Bracing at Jacket	DGJ	203L-301L	1	0.08	1	0.1
Diagonal Bracing at Jacket (Splash Zone)	DGS	902L-803L	1	0.07	1	0.09
Horizonal Tubular Bracing at Deck	DHB	6235-6106	1	0.13	1	0.14
Deck Leg	DLG	7067-L055	2	0.38	2	0.39
Deck Beam	H10	6185-6183	2	0.09	2	0.1
Horizontal Bracing at Jacket	HOR	0564-802L	2	0.13	2	0.14
Jacket Walkway	JW	0150-903L	2	0.08	2	0.09
Deck Beam	L6	8058-8060	2	0.2	2	0.2
	LG2	102L-202L	2	0.06	2	0.09
	LG3	201L-301L	2	0.06	2	0.09
	LG4	303L-403L	2	0.02	2	0.03
	LG5	401L-501L	1	0.03	1	0.04
Jacket Leg	LG6	501L-601L	1	0.04	1	0.05
	LG7	601L-701L	1	0.05	1	0.06
	LG8	701L-801L	1	0.06	1	0.08
	LG9	901L-A01L	1	0.07	1	0.1
	LGB	803L-0144	2	0.06	2	0.08
Jacket Leg at Splash Zone	LGS	0143-0141	1	0.06	1	0.08
Mudmat	MDM	803L-0144	2	0.06	2	0.14
	PL1	002P-102P	2	0.13	2	0.19
	PL2	103P-203P	2	0.14	2	0.19
	PL3	203P-303P	2	0.15	2	0.19
	PL4	303P-403P	2	0.11	2	0.14
D:1	PL5	403P-503P	2	0.1	2	0.13
Pile	PL6	503P-603P	2	0.1	2	0.12
	PL7	603P-703P	2	0.1	2	0.12
	PL8	703P-803P	2	0.1	2	0.12
	PL9	803P-903P	2	0.11	2	0.14
	PLA	A03L-B03L	2	0.13	2	0.15
	UB2	7124-7088	1	0.44	1	0.44
	UB3	7013-7115	2	0.45	2	0.46
	UB4	7329-7117	2	0.31	2	0.32
Deck Beam	UB5	6153-6156	1	0.04	1	0.05
	UB6	6173-6164	2	0.43	2	0.43
	UB7	6328-6123	2	0.45	2	0.49
	UB9	8041-8043	2	0.41	2	0.42
	VB1	L008-8054	2	0.23	2	0.25
	VB2	6173-7083	1	0.39	1	0.41
Vertical Bracing at Deck	VB3	5004-6107	1	0.22	1	0.23
	VB4	7102-8062	2	0.32	2	0.33
	VB5	5025-6261	1	0.1	1	0.1

Berdasarkan pengecekakan *unity check joint can*, berikut adalah nilai *unity check joint can* dapat dilihat pada *Tabel 24*.

Tabel 24 Unity Check Joint Can Seismik

Location			SLE			RIE			
(m)	Joint	LOAD UC	STRN UC	LC	Joint	LOAD UC	STRN UC	LC	
(+) 7.000	903L	0.046	0.88	4	903L	0.061	0.886	4	
(-) 3.000	801L	0.04	0.817	4	801L	0.064	0.866	4	
(-) 9.833	702L	0.058	0.85	4	702L	0.084	0.862	4	
(-) 19.667	602L	0.057	0.845	4	601L	0.086	0.866	4	
(-) 29.500	502L	0.057	0.842	4	501L	0.087	0.87	4	
(-) 39.330	402L	0.057	0.831	4	402L	0.087	0.874	4	
(-) 49.167	301L	0.065	0.818	4	301L	0.107	0.88	4	
(-) 59.000	202L	0.037	0.883	4	202L	0.06	0.886	4	

Berdasarkan pengecekan kapasitas tiang pancang, berikut nilai kapasitas tiang pancang setiap kondisi dapat dilihat pada *Tabel 25*.

Tabel 25 Kapasitas Pile Seismik

Condition	Joint	Capacity	Maximum	Safety
Conailion	Joini	(kN)	Load (kN)	Factor
Strength Level	001P	-26940.8	-2522.7	10.68
Earthquake	002P	-26940.8	-2852.6	9.44
Еатпqиаке	003P	-26887.6	-4102.5	6.55
Rare Intense	001P	-26940.8	-3208.9	8.4
Earthquake	002P	-26940.8	-3559.7	7.57
<i>E</i> анн <i>qиаке</i>	003P	-26887.6	-5063.7	5.31

Analisis fatigue

Berikut hasil analisis *fatigue* dapat dilihat pada Tabel 26, Gambar 10 dan Gambar 11.

Tabel 26 Lima Joint Service Life terkecil

Joint	Member	Member Group	Damage	Service life (tahun)	Safety Factor
A03L	903L-A03L	LG9	0.326	45.99	2
0202	0008-0202	MDM	0.638	23.49	5
0315	0202-0315	MDM	0.628	23.88	5
0203	0027-0203	MDM	0.623	24.07	5
0314	0203-0314	MDM	0.593	25.29	5

Gambar 10 Service Life Terkecil Pada Leg

Gambar 11 Service Life Terkecil Pada Mudmat

Analisis Gelombang

Analisis gelombang dilakukan terhadap beberapa kandidat yakni Gumbel (FT-I), Frechet (FT-II), Weibull dan Lognormal, namun dikarenakan Weibull k=2 serupa dengan Lognormal (Goda, 2000), maka Lognormal tidak diikutsertakan sebagai kandidat.

Berikut hasil uji nilai korelasi setiap kandidat dapat dilihat pada Tabel 27.

Tabel 27 Uji Nilai Korelasi

Distr	ribusi	Korelasi
FI	Г-І	0.949
	2.5	0.758
FT-II	3.33	0.824
L1-II	5	0.878
	10	0.919
	0.75	0.805
Waihaall	1	0.877
Weibull	1.4	0.934
	2	0.969

Hasil uji nilai rasio residu setiap kandidat dapat dilihat pada Tabel 28.

Tabel 28 Hasil Uji Rasio Residu

Distr	ibusi	r	Δr	а	b	С	Δrmean	Δr/Δrmean
FI	Г-І	0.949	0.051	-2.603	-0.1013	-0.044	0.0234	2.180
	2.5	0.758	0.242	-2.455	-0.1582	0	0.0449	5.387
FT-II	3.33	0.824	0.176	-2.471	-0.197	-0.007	0.0335	5.247
F1-11	5	0.878	0.122	-2.463	-0.2241	-0.019	0.0247	4.930
	10	0.919	0.081	-2.409	-0.258	-0.033	0.0180	4.505
	0.75	0.805	0.195	-2.603	-0.1009	-0.047	0.0223	8.752
Weibull	1	0.877	0.123	-2.355	-0.2612	-0.043	0.0158	7.766
weibuii	1.4	0.933809	0.066191	-2.221	-0.3668	-0.044	0.0116	5.727
	2	0.969	0.031	-2.027	-0.4767	-0.041	0.0094	3.295

Selain itu, dilakukan juga Uji Chi-Square dan Uji Kolmogorov-Smirnov yang dapat dilihat pada Tabel 29 dan Tabel 30.

Tabel 29 Hasil Uji Chi-Square

Distribusi		Chi-Error	Status	
F	Γ-Ι	11.891	NOT OK	
	2.5	26.380	NOT OK	
FT-II	3.33	12.334	NOT OK	
L1-II	5	9.256	OK	
	10	.33 12.334 5 9.256 10 65.720 .75 63618.545 1 3369.382 1.4 664.996	NOT OK	
	0.75	63618.545	NOT OK	
Weibull	1	5 26.380 33 12.334 5 9.256 0 65.720 75 63618.545 3369.382 4 664.996	NOT OK	
Welbull	1.4	664.996	NOT OK	
	2	8.745	OK	
Kriteria = 9.487				

Tabel 30 Hasil Uji Kolmogorov-Smirnov

Distr	ibusi	Chi-Error	Status
F	Γ-Ι	0.128	OK
	2.5	0.212	NOT OK
FT-II	3.33	0.210	NOT OK
L1-II	5	0.162	OK
	10	0.160	OK
	0.75	0.367	NOT OK
Weibull	1	0.217	NOT OK
Welbull	1.4	0.138	OK
	2	0.162 OI 0.160 OI 0.367 NOT 0.217 NOT 0.138 OI 0.125 OI	OK
	Kriteria	= 0.176	

Berdasarkan semua uji diatas, disimpulkan bahwa distribusi yang paling cocok adalah distribusi Weibull k=2 atau Lognormal.

Analisis Pushover

Berikut hasil analisis penentuan arah ekstrim untuk analisis *pushover* dapat dilihat pada Tabel 31.

Tabel 31 Penentuan Arah Ekstrim

Doroint	I	H design, T design	
Derajat	Wave Base Shear	Collapse Base Shear	RSR
0	3510.622	13160.340	3.749
30	3323.873	12913.450	3.885
60	3382.292	9871.050	2.918
90	3482.411	9016.290	2.589
120	3391.508	10145.710	2.992
150	3285.158	12563.410	3.824
180	3136.626	13129.620	4.186
210	2875.085	7818.240	2.719
240	3030.549	7515.490	2.480
270	3317.160	6942.540	2.093
300	3411.026	7818.240	2.292
330	3482.290	9724.430	2.793

Berikut hubungan antara *collapse base shear* dengan tegangan leleh dapat dilihat pada Gambar 12.

Gambar 12 Hubungan CBS dengan Tegangan Leleh

Grafik diatas memiliki persamaan:

$$CBS = 156.19F_y^{1.187}$$
$$R = 0.9986$$

Dimana;

- *CBS* = *Collapse Base Shear* (kN);
- $F_y = Yield Strength (kN/cm^2); dan$
- R =Koefisien Korelasi.

Analisis Kehandalan

Berikut adalah hubungan antara *environmental* base shear dengan tinggi gelombang dan kecepatan arus dapat dilihat pada Gambar 13.

Gambar 13 Hubungan Antara EBS dengan H dan Vc

Grafik tersebut memiliki persamaan sebagai berikut:

$$EBS(H, V_c) = 59.836H^2 + 648.98V_c^2 - 207.26H + 372.817V_c$$

$$R = 0.9992$$

Dimana;

- $EBS = Environmental\ Base\ Shear\ (kN);$
- H = Tinggi Gelombang (m);
- V_c = Kecepatan Arus (m/s); dan
- R =Koefisien Korelasi.

Berikut adalah hasil analisis kehandalan menggunakan FORM 2 dapat dilihat pada Tabel 32 dan Tabel 33.

Tabel 32 FORM 2 Iterasi 1-3

	FORM II	Iterasi 1	Iterasi 2	Iterasi 3
Step 1	$g(\) = 156.19F_y^{1.187} - 5$ $- 372.8$	59.836H ² – 6	$48.98V_c^2 +$	207.26 <i>H</i>
Step 2	Fy*	27.141		
Stop 2	H*	5.651		
	V*	1.732		
	$g(F_y, H, V_c)$	4527.457		
Step 3	μ_{Fy}^N	_	25.446	26.517
Step 3	$\sigma_{Fv}^{\mu_{Fy}}$	27.058	25.416	1.700
	μ_H^N	5.625		5.513
	σ_H^N	0.546		0.655
	$\mu_{V_r}^N$	1.724		1.593
	$\sigma_{V_c}^N$	0.167		0.235
	V _c **	0.048	2.272	3.584
	F'*	0.039	-5.095	-2.759
	H'*	0.048	1.387	1.942
Step 4	$\left(\frac{\partial g}{\partial F_y}\right)^{\bullet}$	343.709	318.947	329.985
	$\left(\frac{\partial g}{\partial V_c}\right)^*$	-2620.563	-3159.089	-3535.234
	$\left(\frac{\partial g}{\partial H}\right)^*$	-469.006	-562.318	-604.706
Step 5	$\left(\frac{\partial g}{\partial F_{v}'}\right)^{*}$	726.530	451.990	560.940
	$\left(\frac{\partial g}{\partial V_c'}\right)^*$	-438.259	-654.898	-831.813
	$\left(\frac{\partial g}{\partial H'}\right)^*$	-255.949	-349.213	-396.222
Step 6	New Fy'*	-4.193	-2.533	-2.534
	New V''	2.529	3.670	3.758
	New H'*	1.477	1.957	1.790
Step 7	New β	5.114	4.870	4.873
	Δβ		1.417 5.570 0.621 1.676 0.207 2.272 -5.095 1.387 318.947 -3159.089 -562.318 451.990 -654.898 -349.213 -2.533 3.670 1.957	3.E-03
Step 8	New Fy*	18.196	21.826	22.209
	New V _c *	2.147	2.436	2.477
	New H*	6.431	6.785	6.685
	New $g(F_v, H, V_c)$	-4.E+01	-4.E+01	-1.E+00
9	$(F_y, H, V_c) < 0.001?$	NOT OK	NOT OK	NOT OK
	$\Delta \beta < 0.001$?		NOT OK	NOT OK

Tabel 33 FORM 2 Iterasi 4-7

	FORM II	Iterasi 4	Iterasi 5		Iterasi 7
Step 1	$g() = 156.19F_y^{1.187} - 59.$	$.836H^2 - 64$	$8.98V_c^2 + 2$	07.26H - 3	72.817V _c
Step 2	Fy*	27.141			
	H*	5.651			
	V_c^*	1.732			
	$g(F_y, H, V_c)$	4527.457			
Step 3	μ_{Fy}^{N}	26.595	26.596	26.598	26.599
	$\sigma_{F_V}^N$	1.730	1.730	1.731	1.731
	μ_H^N	5.530	5.541	5.545	5.547
	σ_H^N	0.646	0.640	0.637	0.636
	σ_H^N $\mu_{V_c}^N$	1.579	1.575	1.573	1.572
	$\sigma_{V_c}^N$	0.239	0.240	0.241	0.241
	$V_c^{\prime\prime *}$	3.756	3.799	3.819	3.828
	F _V *	-2.536	-2.534	-2.528	-2.526
	H'*	1.789	1.693	1.653	1.636
Step 4	$\left(\frac{\partial g}{\partial F_y}\right)^*$	331.058	331.070	331.096	331.107
	$\left(\frac{\partial g}{\partial V_c}\right)^*$	-3588.440	-3601.609	-3608.023	- 3610.799
	$\left(\frac{\partial g}{\partial H}\right)^*$	-592.791	-585.416	-582.356	-581.039
Step 5	$\left(\frac{\partial g}{\partial F_y'}\right)^*$	572.625	572.750	573.039	573.165
	$\left(\frac{\partial g}{\partial V_c'}\right)^*$	-858.537	-865.217	-868.479	-869.894
	$\left(\frac{\partial g}{\partial H'}\right)^*$	-382.715	-374.469	-371.075	-369.618
Step 6	New Fy'*	-2.534	-2.528	-2.526	-2.525
	New V'*	3.799	3.819	3.828	3.832
	New H'*	1.693	1.653	1.636	1.628
Step 7	New β	4.870	4.869	4.869	4.869
	Δβ	3.E-03	7.E-04	1.E-04	2.E-05
Step 8	New Fy*	22.213	22.222	22.227	22.228
	New V _c *	2.488	2.493	2.495	2.496
	New H*	6.624	6.598	6.587	6.582
	New $g(F_y, H, V_c)$	-3.E-01	-5.E-02	-1.E-02	-9.E-04
g($(F_v, H, V_c) < 0.001$?	NOT OK	NOT OK	NOT OK	ОК
	$\Delta \beta < 0.001$?	NOT OK	OK	ОК	ОК

V. PENUTUP

Kesimpulan

Model anjungan lepas pantai yang didesain memenuhi kriteria analisis *in-place* dengan kode standar API RP-2A WSD yang dapat diurai sebagai berikut:

- 1. Tegangan member dengan nilai *unity check* terbesar yakni 0.96 pada kondisi operasi dengan kedalaman minimum, 0.95 pada kondisi operasional dengan kedalaman maksimum, 0.88 pada kondisi badai dengan kedalaman minimum dan 0.93 pada kondisi badai dengan kedalaman maksimum.
- 2. Nilai defleksi horizontal terbesar yakni 36.15 cm pada kondisi badai dengan kedalaman maksimum, nilai defleksi vertikal terbesar yakni 0.7686 cm pada kondisi badai dengan kedalaman minimum.
- 3. Untuk *joint punching shear* dengan nilai *unity check* terbesar yakni 0.954 pada kondisi operasi dengan kedalaman minimum, 0.953 pada kondisi operasional dengan kedalaman maksimum, 0.981 pada kondisi badai dengan kedalaman minimum dan 0.985 pada kondisi badai dengan kedalaman maksimum.
- 4. Nilai *safety factor* kapasitas tiang pancang terkecil yakni 2.22 pada kondisi operasi dengan kedalaman minimum, 2.26 pada

kondisi operasional dengan kedalaman maksimum, 1.55 pada kondisi badai dengan kedalaman minimum dan 1.60 pada kondisi badai dengan kedalaman maksimum.

Model anjungan lepas pantai yang didesain memenuhi kriteria analisis seismik dengan kode standar API RP-2A WSD yang dapat diurai sebagai berikut:

- 1. Setelah diiterasi, didapat faktor beban gempa pada struktur sebesar 0.0195 untuk sumbu x, 0.0173 untuk sumbu y pada kondisi gempa SLE dan 0.0645 untuk sumbu x, 0.058 untuk sumbu y pada kondisi gempa RIE.
- 2. Berdasarkan *extract mode shapes*, didapat periode natural struktur sebesar 2.616 detik untuk kondisi gempa SLE dan RIE.
- 3. Tegangan member dengan nilai *unity check* terbesar yakni 0.69 pada kondisi gempa SLE dan 0.69 pada kondisi gempa RIE.
- 4. Untuk *joint punching shear* dengan nilai *unity check* terbesar yakni 0.883 pada kondisi gempa SLE dan 0.886 pada kondisi gempa RIE.
- 5. Nilai *safety factor* kapasitas tiang pancang terkecil yakni 5.31 pada kondisi gempa SLE dan 6.55 pada kondisi gempa RIE.

Model anjungan lepas pantai yang didesain memenuhi kriteria analisis *spectral fatigue* dengan kode standar API RP-2A WSD yang dapat diurai sebagai berikut:

- 1. Untuk kriteria *service life (safety factor* = 5) dengan nilai *service life* terkecil terdapat pada joint 0202 dengan member 0008-0202 yang termasuk kedalaman member grup MDM memiliki *service life* sebesar 23.49 tahun dengan *damage* sebesar 0.638.
- 2. Untuk kriteria *service life* (*safety factor* = 2) dengan nilai *service life* terkecil terdapat pada joint A03L dengan member 903L-A03L yang termasuk kedalaman member grup LG9 memiliki *service life* sebesar 45.99 tahun dengan *damage* sebesar 0.326.

Model anjungan lepas pantai yang didesain memenuhi kriteria Analisis Kehandalan dan terdapat kesimpulan yang diurai menjadi beberapa poin sebagai berikut:

 Berdasarkan uji kecocokkan distribusi gelombang, dapat ditentukan bahwa data gelombang acak paling cocok digunakan distribusi Lognormal

- 2. Berdasarkan analisis *pushover*, didapat persamaan hubungan antara *collapse base shear* dengan tegangan leleh sebagai berikut. $CBS = 156.19F_v^{1.187}$
- 3. Berdasarkan simulasi *inplace*, didapat persamaan hubungan antara *Environmental Base Shear* dengan tinggi gelombang dan kecepatan arus sebagai berikut.

 $EBS(H, V_c) = 59.836H^2 + 648.98V_c^2 - 207.26H + 372.817V_c$

4. Berdasarkan analisis kehandalan, didapat indeks kehandalan sebesar 4.869 dengan probabilitas kegagalan sebesar 0.000000566. Indeks kehandalan ini memenuhi target apabila diambil target kelas keselamatan tinggi menurut Bai dan Jin yakni 3.72.

Saran

- 1. Sebaiknya pembebanan dilakukan lebih mendetail sheingga menyerupai kondisi *platform* sebenarnya.
- 2. Lokasi struktur berada harus benar-benar sama dengan lokasi pengambilan data gelombang acak sehingga tidak perlu dilakukan kalibrasi terhadap gelombang desain.
- 3. Diambil data pasang surut sehingga tidak dilakukan asumsi tunuk parameter statistik dari kecepatan arus.

DAFTAR PUSTAKA

- American Petroleum Institute. (2007).

 Recommended Practice for Planning,
 Designing and Constructing Fixed
 Offshore Platform Working Stress
 Design 21st edition. Washington DC: API
 Publishing Services.
- Goda. (2000). Advanced Series on Ocean Engineering - Volume 15: Randoms Seas and Design of Maritime Structures. Singapore: World Scientific Publishing Co. Pte. Ltd.
- Chakrabarti, S. (1994). Offshore Structure Modeling. Singapore: World Scientific.
- Haldar, A., dan Mahadevan, S. (2000): Probability, Reliability and Statistical Methods in Engineering Design, John Wiley & Sons, Inc., New York.
- Bai, Y., dan Jin, W.-L. (2016): Marine Structural Design, Elsevier.
- Tawekal, R., Baskara, A., & Adriadi, R. (2004). Studi Kehandalan Struktur Anjungan Lepas Pantai Tipe Brace Monopod. Jurnal Teknik Sipil, 11 (4).

- Hess, P. E., Bruchman, D., Assakkaf, I. A., dan Ayyub, B. M. (t.t.): Uncertainties in Material Strength, Geometric, and Load Variables, 54.
- Hermanto, M.F. (2020). Tesis Program Magister.
 Penentuan Faktor Beban Lingkungan
 LRFD Anjungan Lepas Pantai di Perairan
 Makassar dengan Metode Analisis
 Kehandalan. Bandung: Program Studi
 Teknik Kelautan ITB.