تمرین سری سوم – کارگاه حل مسئله ریاضی عمومی ۱ چهارشنبه ۱ آبان ۹۸

مسئله ۱.

الف) همه ی جوابهای معادله ی $z^{r}+z+1=\cdot$ را در مجموعه اعداد مختلط \mathbb{C} بیابید.

بایید. $z^{\mathfrak{s}}+z^{\mathfrak{r}}+1=\mathfrak{o}$ بیابید. مجموعه اعداد مختلط $z^{\mathfrak{s}}+z^{\mathfrak{r}}+1$

هستند؟ معادله مختلط رئوس چه شکلی و تعیین کنید ریشه های این معادله در صفحه اعداد مختلط رئوس چه شکلی هستند؟ $z^{s}=rac{1+i}{1-i}$

هسئله ۳. در هر یک از دو مورد زیر مجموعهی اعداد مختلطی را که در روابط زیر صدق میکنند مشخص کنید و این نقاط را در صفحهی مختلط نمایش دهید.

$$z^{\epsilon} - \Upsilon i z^{\Upsilon} - \Upsilon = \cdot$$
 (الف

$$Re(z^{\mathsf{r}}) < Im(z^{\mathsf{r}})$$
 (پ

مسئله ٤.

الف) از چند رقم پس از ممیز عدد ...۱۹۳۴۶۲۰۷۲۵... استفاده کنیم تا خطای محاسبه مجذور آن از $^{-7}$ بزرگتر نشود؟

ب) عدد حقیقی $A_1 = 4$ ۴۶۱۵ $/a_1$ ۴۶۱۵ $/a_1$ را با A_n نمایش با عدد حقیقی $A_1 = 4$ ۴۶۱۵ $/a_1$ و با ۴۶۱۵ $/a_1$ از $A_1 = 4$ نمایش می دهیم. تعیین کنید A_1 را چقدر بگیریم که تفاوت A_1 و A_1 از $A_1 = 4$ کوچکتر باشد.

همگراست. مسئله ٥. ثابت كنيد اگر دنبالهى اعداد نامنفى a_1, a_2, a_3, a_4 به عدد a_2, a_3, a_4, a_5 به عدد اگر دنبالهى اعداد نامنفى اعداد نامنفى a_3, a_4, a_5, a_6 به عدد اگر دنبالهى اعداد نامنفى نامنفى

 $z^n=\overline{z}$ مسئله ٦. براى هر عدد طبيعى n ، همهى اعداد مختلط مانند

مسئله ۷. دنباله a_n از اعداد حقیقی به صورت زیر تعریف می شود:

$$\begin{cases} a_{\cdot} = \cdot , \ a_{\cdot} = \mathbf{1} \\ a_{n} = \frac{a_{n-1} + a_{n-1}}{\mathbf{Y}} \ (n > \mathbf{Y}) \end{cases}$$

 $I_{n+1}\subseteq I_n$ الف I_n را بازهای در نظر بگیرید که دو سر آن a_n و a_n است. ثابت کنید الف

ب) ثابت كنيد a_n كنيد وجود دارد.

مسئله ۸. ثابت کنید اگر |a|<1 آنگاه دنباله $x_n=a^n$ به صفر همگراست.

هسئله ۹. دنباله ی $\{a_n\}_{n=1}^{\infty}$ از اعداد حقیقی در رابطه ی بازگشتی $\{a_n\}_{n=1}^{\infty}$ بازگشتی $\{a_n\}_{n=1}^{\infty}$ بازگشتی $\{a_n\}_{n=1}^{\infty}$ معودی است.

مسئله ۱۰.

- الف) دو عدد گنگ در بین صفر و یک مثال بزنید که رقم اول بعد از ممیز در بسط اعشاری آنها متفاوت باشد ولی فاصله شان از ۱۰۰۰ کمتر باشد.
- ب) فرض کنید lpha عددی گنگ باشد. نشان دهید اگر $\{x_n\}_{n=1}^{\infty}$ دنبالهای حقیقی و همگرا به lpha باشد، آنگاه عدد طبیعی n وجود دارد به طوری که هزار رقم اول در بسط اعشاری همه ی اعداد $x_n, x_{n+1}, x_{n+1}, \dots$ برابر است.

مسئله ۱۱. معادلهی
$$(1-\sqrt{r}i)(z+i)^n=(1-\sqrt{r}i)(z-i)^n$$
 را حل کنید.

مسئله ۱۲. ریشه های سوم ۵i را به صورت a+ib بدست آورید.

مسئله ۱۳ دنبالهی $\{a_n\}$ را به صورت

$$a_n = \underbrace{\sqrt{\mathbf{Y} + \sqrt{\mathbf{Y} + \sqrt{\ldots + \sqrt{\mathbf{Y}}}}}}_{\mathbf{A}_{\mathbf{A}_{\mathbf{Y}}}}$$

تعریف می کنیم. ثابت کنید a_n همگراست و حد آن را حساب کنید.

هسئله ۱۶. در هر مورد ثابت کنید دنبالهی a_n به صفر همگراست:

$$(|z|>1\,,\,z\in\mathbb{C})$$
 $a_n=rac{n}{z^n}$ (الف

$$a_n = \frac{n!}{n^n}$$
 (ب

$$a_n = \sqrt{n+1} - \sqrt{n} \ (\epsilon$$