

VN920DB5-E

High-side driver

Features

Туре	R _{DS(on)}	I _{OUT}	V _{CC}
VN920DB5-E	18 mΩ	30 A	36 V

- ECOPACK®: lead free and RoHS compliant
- Automotive Grade: compliance with AEC guidelines
- Very low standby current
- CMOS compatible input
- On-state open load detection
- Off-state open load detection
- Thermal shutdown protection and diagnosis
- Undervoltage shutdown
- Overvoltage clamp
- Output stuck to V_{CC} detection
- Load current limitation
- Reverse battery protection
- Electrostatic discharge protection

Description

The VN920DB5-E is a monolithic device designed using STMicroelectronics VIPower M0-3 technology. The VN920DB5-E is intended for driving any type of load with one side connected to ground. The active V_{CC} pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table).

Active current limitation combined with thermal shutdown and automatic restart protects the device against overload. The device detects the open-load condition in both the on-state and off-state. In the off-state the device detects if the output is shorted to V_{CC} . The device automatically turns-off in the case where the ground pin becomes disconnected.

Table 1. Device summary

Package	Order codes	
гаска уе	Tube	Tape and reel
P ² PAK	VN920DB5-E	VN920DB5TR-E

Contents VN920DB5-E

Contents

1	Bloc	k diagram and pin description	5
2	Elec	trical specifications	6
	2.1	Absolute maximum ratings	6
	2.2	Thermal data	7
	2.3	Electrical characteristics	8
	2.4	Electrical characteristics curves	3
3	Арр	lication information	6
	3.1	GND protection network against reverse battery 1	6
		3.1.1 Solution 1: resistor in the ground line (RGND only)	6
		3.1.2 Solution 2: diode (DGND) in the ground line	7
	3.2	Load dump protection	7
	3.3	MCU I/Os protection	7
	3.4	P2PAK maximum demagnetization energy (V _{CC} = 13.5 V)	8
4	P ² P/	AK thermal data	9
5	Pack	kage and packing information	2
	5.1	ECOPACK® packages 2	2
	5.2	P ² PAK mechanical data 2	2
	5.3	P ² PAK packing information	4
6	Revi	sion history	5

VN920DB5-E List of tables

List of tables

Table 1.	Device summary	1
Table 2.	Suggested connections for unused and not connected pins	5
Table 3.	Absolute maximum ratings	6
Table 4.	Thermal data	7
Table 5.	Power	8
Table 6.	Switching (V _{CC} =13 V)	8
Table 7.	Input pin	9
Table 8.	V _{CC} output diode	
Table 9.	Status pin	9
Table 10.	Protections	9
Table 11.	Open-load detection	0
Table 12.	Truth table	
Table 13.	Electrical transient requirements	1
Table 14.	P ² PAK thermal parameters	<u>'</u> 1
Table 15.	P ² PAK mechanical data	23
Table 16.	Document revision history	25

List of figures VN920DB5-E

List of figures

Figure 1.	Block diagram	5
Figure 2.	Configuration diagram (top view)	5
Figure 3.	Current and voltage conventions	6
Figure 4.	Status timings	10
Figure 5.	Switching time waveforms	10
Figure 6.	Waveforms	12
Figure 7.	Off-state output current	13
Figure 8.	High level input current	13
Figure 9.	Input clamp voltage	13
Figure 10.	Status leakage current	13
Figure 11.	Status low output voltage	13
Figure 12.	Status clamp voltage	13
Figure 13.	On-state resistance vs T _{case}	14
Figure 14.	On-state resistance vs V _{CC}	14
Figure 15.	Overvoltage shutdown	14
Figure 16.	Input high level	14
Figure 17.	Input low level	
Figure 18.	Input hysteresis voltage	
Figure 19.	I _{lim} vs T _{case}	15
Figure 20.	Turn-on voltage slope	
Figure 21.	Turn-off voltage slope	15
Figure 22.	Application schematic	
Figure 23.	P ² PAK maximum turn-off current versus inductance	
Figure 24.	P ² PAK PC board	
Figure 25.	P^2 PAK Rthj-amb vs PCB copper area in open box free air condition	
Figure 26.	P^2PAK thermal impedance junction ambient single pulse	
Figure 27.	Thermal fitting model of a single channel HSD in P ² PAK	
Figure 28.	P ² PAK package dimensions	
Figure 29.	P ² PAK tube shipment (no suffix)	
Figure 30	P ² PAK tane and real (suffix "13TR")	2/

4/26 Doc ID 17493 Rev 2

1 Block diagram and pin description

Figure 1. Block diagram

Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins

Connection / pin	Status	N.C.	Output	Input
Floating	Х	Х	Х	X
To ground		Х		Through 10 K Ω resistor

2 Electrical specifications

INPUT VCC INPUT STATUS OUTPUT OUT VCC VCC VOUT

Figure 3. Current and voltage conventions

2.1 Absolute maximum ratings

Stressing the device above the rating listed in the *Table 3* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to Absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics sure program and other relevant quality document.

Table 3. Absolute maximum rating	able 3.	Absolute	maximum	ratings
----------------------------------	---------	----------	---------	---------

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	41	V
- V _{CC}	Reverse DC supply voltage	- 0.3	V
- I _{gnd}	DC reverse ground pin current	- 200	mA
I _{OUT}	DC output current	Internally limited	Α
- I _{OUT}	Reverse DC output current	- 25	Α
I _{IN}	DC input current	+/- 10	mA
I _{STAT}	DC Status current	+/- 10	mA
V _{ESD}	Electrostatic discharge (Human Body Model: R = 1.5 KΩ; C = 100 pF) – INPUT – STATUS – OUTPUT – V _{CC}	4000 4000 5000 5000	V V V
E _{MAX}	Maximum switching energy (L = 0.25 mH; R_L = 0 Ω ; V_{bat} = 13.5 V; T_{jstart} = 150 °C; I_L = 45 A)	364	mJ

Table 3. Absolute maximum ratings (continued)

Symbol	Parameter	Value	Unit
P _{tot}	Power dissipation T _C = 25 °C	96.1	W
T _j	Junction operating temperature	Internally limited	°C
T _c	Case operating temperature	- 40 to 150	°C
T _{stg}	Storage temperature	- 55 to 150	°C

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Maximum value	Unit
R _{thj-case}	Thermal resistance junction-case	1.3	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	51.3 ⁽¹⁾	°C/W

^{1.} When mounted on a standard single-sided FR-4 board with 0.5 cm 2 of Cu (at least 35 μm thick).

2.3 Electrical characteristics

Values specified in this section are for 8 V < V_{CC} < 36 V; -40 $^{\circ}C$ < Tj < 150 $^{\circ}C$, unless otherwise stated.

Table 5. Power

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		5.5	13	36	V
V _{USD}	Undervoltage shutdown		3	4	5.5	٧
V _{USDhyst}	Undervoltage shutdown hysteresis			0.5		٧
V _{OV}	Overvoltage shutdown		36			V
R _{ON}	On-state resistance	$I_{OUT} = 10 \text{ A}; T_j = 25 \text{ °C};$ $I_{OUT} = 10 \text{ A};$ $I_{OUT} = 3 \text{ A}; V_{CC} = 6 \text{ V}$			18 36 50	$m\Omega$ $m\Omega$
		Off-state; $V_{CC} = 13 \text{ V}$; $V_{IN} = V_{OUT} = 0 \text{ V}$		10	25	μΑ
I _S	Supply current	Off-state; $V_{CC} = 13 \text{ V}$; $V_{IN} = V_{OUT} = 0 \text{ V}$; $T_j = 25 \text{ °C}$		10	20	μΑ
		On-state; $V_{CC} = 13V$; $V_{IN} = 5V$; $I_{OUT} = 0A$			3.5	mA
I _{L(off1)}	Off-state output current	$V_{IN} = V_{OUT} = 0 V$	0		50	μΑ
I _{L(off2)}	Off-state output current	V _{IN} = 0 V; V _{OUT} = 3.5 V	-75		0	μA
I _{L(off3)}	Off-state output current	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 125 \text{ °C}$			5	μΑ
I _{L(off4)}	Off-state output current	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 25 \text{ °C}$			3	μΑ

Table 6. Switching (V_{CC}=13 V)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$R_L = 1.3 \Omega$		50		μs
t _{d(off)}	Turn-off delay time	$R_L = 1.3 \Omega$		50		μs
dV _{OUT} /dt _(on)	Turn-on voltage slope	$R_L = 1.3 \Omega$	See Figure 20		V/µs	
dV _{OUT} /dt _(off)	Turn-off voltage slope	$R_L = 1.3 \Omega$	See Figure 21		21	V/µs

Table 7. Input pin

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{IL}	Input low level				1.25	V
I _{IL}	Low level input current	V _{IN} = 1.25 V	1			μΑ
V _{IH}	Input high level		3.25			٧
I _{IH}	High level input current	V _{IN} = 3.25 V			10	μΑ
V _{hyst}	Input hysteresis voltage		0.5			٧
V _{ICL}	Input clamp voltage	I _{IN} = 1 mA	6	6.8	8	V
V ICL	Input clamp voltage	I _{IN} = -1 mA		- 0.7		V

Table 8. V_{CC} output diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _F	Forward on voltage	- I _{OUT} = 5.5 A; T _j = 150 °C	-	-	0.7	V

Table 9. Status pin

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{STAT}	Status low output voltage	I _{STAT} = 1.6 mA			0.5	V
I _{LSTAT}	Status leakage current	Normal operation; $V_{STAT} = 5 V$			10	μΑ
C _{STAT}	Status pin input capacitance	Normal operation; V _{STAT} = 5 V			100	pF
V _{SCL}	Status clamp voltage	I _{STAT} = 1 mA I _{STAT} = - 1 mA	6	6.8 - 0.7	8	V V

Table 10. Protections⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _{TSD}	Shutdown temperature		150	175	200	°C
T _R	Reset temperature		135			°C
T _{hyst}	Thermal hysteresis		7	15		°C
t _{SDL}	Status delay in overload condition	$T_j > T_{jsh}$			20	ms
I _{lim}	Current limitation	V _{CC} = 13 V 5.5 V < V _{CC} < 36 V	30	45	75 75	A A
V _{demag}	Turn-off output clamp voltage	I _{OUT} = 2 A; V _{IN} = 0 V; L = 6 mH	V _{CC} - 41	V _{CC} - 48	V _{CC} - 55	V

To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device operates under abnormal conditions this software must limit the duration and number of activation cycles.

577

Table 11. Open-load detection

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{OL}	Open-load on-state detection threshold	V _{IN} = 5 V	300	500	700	mA
t _{DOL(on)}	Open-load on-state detection delay	I _{OUT} = 0 A			250	μs
V _{OL}	Open-load off-state voltage detection threshold	V _{IN} = 0 V	1.5	2.5	3.5	V
t _{DOL(off)}	Open-load detection delay at turn-off				1000	μs

Figure 4. Status timings

Figure 5. Switching time waveforms

Table 12. Truth table

Conditions	Input	Output	Status
Normal operation	L	L	Н
Normal operation	Н	Н	Н
	L	L	Н
Current limitation	Н	X	$(T_j < T_{TSD})$ H
	Н	X	$(T_j < T_{TSD})$ H $(T_j > T_{TSD})$ L
Ougstamparatura	L	L	Н
Overtemperature	Н	L	L
11 1 1	L	L	X
Undervoltage	Н	L	X
Overveltage	L	L	Н
Overvoltage	Н	L	Н
Output valtage . V	L	Н	L
Output voltage > V _{OL}	Н	Н	Н
Output ourront al	L	L	Н
Output current < I _{OL}	Н	Н	L

Table 13. Electrical transient requirements

ISO T/R	Test level				
7637/1 test pulse	ı	II	III	IV	Delays and impedance
1	- 25 V ⁽¹⁾	- 50 V ⁽¹⁾	- 75 V ⁽¹⁾	- 100 V ⁽¹⁾	2 ms,10 Ω
2	+ 25 V ⁽¹⁾	+ 50 V ⁽¹⁾	+ 75 V ⁽¹⁾	+ 100 V ⁽¹⁾	0.2 ms, 10 Ω
3a	- 25 V ⁽¹⁾	- 50 V ⁽¹⁾	- 100 V ⁽¹⁾	- 150 V ⁽¹⁾	0.1 μs, 50 Ω
3b	+ 25 V ⁽¹⁾	+ 50 V ⁽¹⁾	+ 75 V ⁽¹⁾	+ 100 V ⁽¹⁾	0.1 μs, 50 Ω
4	- 4 V ⁽¹⁾	- 5 V ⁽¹⁾	- 6 V ⁽¹⁾	- 7 V ⁽¹⁾	100 ms, 0.01 Ω
5	+ 26.5 V ⁽¹⁾	+ 46.5 V ⁽²⁾	+ 66.5 V ⁽²⁾	+ 86.5 V ⁽²⁾	400 ms, 2 Ω

^{1.} All functions of the device are performed as designed after exposure to disturbance.

^{2.} One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device.

2.4 **Electrical characteristics curves**

Figure 7. Off-state output current

High level input current Figure 8.

Figure 9. Input clamp voltage

Vicl (V) lin=1mA 7.6 7.4 7.2 6.8 6.6 6.4 6.2 -50 -25 0 50 75 100 125 150 175

Figure 10. Status leakage current

Figure 11. Status low output voltage

Figure 13. On-state resistance vs T_{case} Figure 14. On-state resistance vs V_{CC}

Figure 15. Overvoltage shutdown

Vov (V) 48 46 42 40 38 36 34 32 75 100 125 0 25 50 150 175

Tc (°C)

Figure 16. Input high level

Figure 17. Input low level

Figure 18. Input hysteresis voltage

14/26 Doc ID 17493 Rev 2

Figure 19. I_{lim} vs T_{case}

Figure 20. Turn-on voltage slope

Figure 21. Turn-off voltage slope

3 Application information

Figure 22. Application schematic

3.1 GND protection network against reverse battery

3.1.1 Solution 1: resistor in the ground line (R_{GND} only)

This can be used with any type of load.

The following is an indication on how to dimension the $\ensuremath{\mathsf{R}_{\mathsf{GND}}}$ resistor.

- 1. $R_{GND} \le 600 \text{ mV} / (I_{S(on)max})$.
- 2. $R_{GND} \ge (-V_{CC}) / (-I_{GND})$

where - I_{GND} is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet.

Power Dissipation in R_{GND} (when $V_{CC} < 0$: during reverse battery situations) is:

$$P_D = (-V_{CC})^2 / R_{GND}$$

This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where $I_{S(on)max}$ becomes the sum of the maximum on-state currents of the different devices.

Please note that if the microprocessor ground is not shared by the device ground then the R_{GND} produces a shift ($I_{S(on)max} * R_{GND}$) in the input thresholds and the status output values. This shift varies depending on how many devices are ON in the case of several high side drivers sharing the same R_{GND} .

If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then ST suggests to utilize solution 2 (see *Section 3.1.2*).

3.1.2 Solution 2: diode (D_{GND}) in the ground line

A resistor (R_{GND} = 1 $k\Omega$) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (~600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the absolute maximum rating.

Safest configuration for unused INPUT and STATUS pin is to leave them unconnected.

3.2 Load dump protection

 D_{ld} is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the V_{CC} max DC rating. The same applies if the device is subject to transients on the V_{CC} line that are greater than the ones shown in *Table 13*.

3.3 MCU I/Os protection

If a ground protection network is used and negative transient are present on the V_{CC} line, the control pins are pulled negative. ST suggests to insert a resistor (R_{prot}) in line to prevent the microcontroller I/Os pins to latch-up.

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

 $-V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{lHmax}$

Calculation example:

For $V_{CCpeak} = -100 \text{ V}$ and $I_{latchup} \ge 20 \text{ mA}$; $V_{OH\mu C} \ge 4.5 \text{ V}$

 $5 k\Omega \le R_{prot} \le 65 k\Omega$.

Recommended values:

 $R_{prot} = 10 \text{ k}\Omega$.

P2PAK maximum demagnetization energy (V_{CC} = 13.5 V) 3.4

Figure 23. P²PAK maximum turn-off current versus inductance

Note:

Values are generated with $R_L = 0 \Omega$. In case of repetitive pulses, T_{jstart} (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

VN920DB5-E P²PAK thermal data

4 P²PAK thermal data

Figure 24. P²PAK PC board

Note:

Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area = 60 mm x 60 mm, PCB thickness = 2 mm, Cu thickness = 35 μ m, Copper areas: 0.97 cm², 8 cm²).

Figure 25. P²PAK R_{thi-amb} vs PCB copper area in open box free air condition

P²PAK thermal data VN920DB5-E

ZTH (°C/W) 1000 100 0.97 cm² 10 0.01 0.0001 10 1000 0.001 0.01 0.1 100 Time (s)

Figure 26. P²PAK thermal impedance junction ambient single pulse

Equation 1: pulse calculation formula

$$\begin{split} Z_{TH\delta} &= R_{TH} \cdot \delta + Z_{THtp} (1 - \delta) \\ \text{where } \delta &= t_P / T \end{split}$$

Figure 27. Thermal fitting model of a single channel HSD in P²PAK

VN920DB5-E P²PAK thermal data

Table 14. P²PAK thermal parameters

Area/island (cm ²)	0.97	6
R1 (°C/W)	0.02	
R2 (°C/W)	0.1	
R3 (°C/W)	0.22	
R4 (°C/W)	4	
R5 (°C/W)	9	
R6 (°C/W)	37	22
C1 (W·s/°C)	0.0015	
C2 (W·s/°C)	0.007	
C3 (W·s/°C)	0.015	
C4 (W·s/°C)	0.4	
C5 (W·s/°C)	2	
C6 (W·s/°C)	3	5

5 Package and packing information

5.1 ECOPACK® packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

5.2 P²PAK mechanical data

Table 15. P²PAK mechanical data

Direc		mm	
Dim.	Min.	Тур.	Max.
А	4.30		4.80
A1	2.40		2.80
A2	0.03		0.23
b	0.80		1.05
С	0.45		0.60
c2	1.17		1.37
D	8.95		9.35
D2		8.00	
E	10.00		10.40
E1		8.50	
е	3.20		3.60
e1	6.60		7.00
L	13.70		14.50
L2	1.25		1.40
L3	0.90		1.70
L5	1.55		2.40
R		0.40	
V2	Oō		8 _ō
Package weight		1.40 Gr (typ)	,

5.3 P²PAK packing information

Figure 29. P²PAK tube shipment (no suffix)

Figure 30. P²PAK tape and reel (suffix "13TR")

Doc ID 17493 Rev 2

VN920DB5-E Revision history

6 Revision history

Table 16. Document revision history

Date	Revision	Changes	
17-May-2010	1	1 Initial release.	
15-Nov-2010	2	Updated Features list. Updated following tables: - Table 3: Absolute maximum ratings - Table 4: Thermal data	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

26/26 Doc ID 17493 Rev 2