

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4 «ИССЛЕДОВАНИЕ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ В MULTISIM»

по курсу «Основы электроники»

Студент: Дубов Андрей Игоревич		
Группа: ИУ7-33Б		
Студент	подпись, дата	_ Дубов А. И.
Преподаватель	подпись, дата	_ Оглоблин Д. И.
Оценка		

Оглавление

Параметры диода	
Получение резонансных характеристик в программе Міс	c rocap. Error! Bookmark not defined.
Расчёт параметров диода в Mathcad	Error! Bookmark not defined.

Параметры диода

В работе используется вариант диода №55.

```
.model KD212B D(Is=8.272p Rs=.107 N=1 Xti=3 Eg=1.11 Bv=100.2 Ibv=783.8u + Cjo=150p Vj=.75 M=.25 Fc=.5 Tt=360.7n)
```

Рисунок 1 Параметры диода на вкладке Техт программы Місгосар

Исследование BAX полупроводниковых диодов с использованием прибора IV Analyzer

Добавив нужный прибор и выставив нужные значения, можно получить следующий график.

Рисунок 2 График и схема

Рисунок 3 Параметры прибора

Напряжение изменяется от 0 до 0,7 В с шагом в 0,01 В. Также отдельно включаются точки.

Рисунок 4 График в окне Graph View

Для извлечения данных используем экспорт в CSV. На BAX выбираем рабочую точку. Для этой точки напряжение = 0.662088 B, ток = 0.306146 A.

Рисунок 5 Выбранная точка

Рассчитываем сопротивление R1, которое необходимо для того, чтобы при напряжении источника в 1 В диод работал в этой точке. R1 = $(1 - 0.662088) / 0.306146 \sim 1$ Ом. Проверяем расчет экспериментом

Рисунок 6 Проверка

Проверка влияния температуры на диод

Выставив требуемые параметры в окне Анализа температурного сдвига

Рисунок 7 Параметры temperature sweep

Рисунок 8 Напряжение на источнике

Видно, что напряжение на диоде изменилось с 0,72 В до 0,56 В, а ток — с 0,253 А до 0,389 А.

Исследование вольтфарадной характеристики полупроводникового диода

Чтобы получить данные для расчета параметров диода, нам потребуется провести два вида анализа: DC Sweep, где варьировать будем напряжение источника управления V2, и AC Analysis, где варьируется частота источника V1. Для того чтобы осуществить это, воспользуемся функционалом Parameter Sweep

Рисунок 9 Hacmpoйки power sweep

В результате получаем несколько кривых, изображенных на одном графике (рис. 21). Каждая из этих кривых показывает зависимость напряжения на диоде от частоты источника V1 при определенном напряжении источника управления

V2. В легенде графика программа Multisim указывает, какое значение принимает напряжение V2 для некоторой кривой.

Рисунок 10 Результаты

Рисунок 11 Получение значений экстремумов

$$\text{Fres} := \begin{pmatrix} 319779 \\ 373737 \\ 387144 \\ 400042 \\ 403776 \end{pmatrix} \qquad \qquad V2 := \begin{pmatrix} 0 \\ -7.2 \\ -14.4 \\ -21.6 \\ -28.8 \\ -36 \end{pmatrix} \qquad \qquad \text{Cd} := \frac{-\left(\text{Ck} \cdot \text{Lk} - \frac{1}{4\text{Fres}^2 \cdot \text{pi}^2}\right)}{\text{Lk}}$$

$$\text{Cd} := \frac{-\left(\text{Ck} \cdot \text{Lk} - \frac{1}{4\text{Fres}^2 \cdot \text{pi}^2}\right)}{\text{Lk}}$$

$$\text{Cd} := \frac{1.477 \times 10^{-10}}{\text{S.}135 \times 10^{-11}}$$

$$\text{Cd} := \frac{1.477 \times 10^{-10}}{\text{S.}135 \times 10^{-11}}$$

$$\text{Cd} := \frac{1.2 \times 10^{-10}}{\text{S.}28 \times 10^{-11}}$$

$$\text{Cd} := \frac{1.2 \times 10^{-10}}{\text{S.}28 \times 10^{-11}}$$

$$\text{Cd} := \frac{1.5 \times 10^{-10}}{\text{S.}28 \times 10^{-11}}$$

Рисунок 12 Опредление параметров диода

$$M := 0.25$$
 $VJ0 := 0.75$ $CJ0 := 15^{-11}$

Given

 $M := 0.25 VJ0 := 0.75 CJ0 := 15^{-11}$

$$1.477 \cdot 10^{-10} = \text{CJO} \left(1 - \frac{0}{\text{VJO}} \right)^{-M}$$
$$6.9 \cdot 10^{-11} = \text{CJO} \left(1 - \frac{-14.4}{\text{VJO}} \right)^{-M}$$
$$5.537 \cdot 10^{-11} = \text{CJO} \left(1 - \frac{-36}{\text{VJO}} \right)^{-M}$$

Result := Minerr(CJ0, VJ0, M)
Result =
$$\begin{pmatrix} 1.477 \times 10^{-10} \\ 0.7 \\ 0.248 \end{pmatrix}$$

Рисунок 13 Метод Given Miner

Полученные значения приблизительно равны значениям из библиотеки диодов.