Effort Thomas Cluj-Napoca — Romania, 3-14 July 2018

A5. Determine all functions $f:(0,\infty)\to\mathbb{R}$ satisfying

$$\left(x + \frac{1}{x}\right)f(y) = f(xy) + f\left(\frac{y}{x}\right) \tag{1}$$

for all x, y > 0.

Answer: $f(x) = C_1 x + \frac{C_2}{x}$ with arbitrary constants C_1 and C_2 .

Solution 1. Fix a real number a > 1, and take a new variable t. For the values f(t), $f(t^2)$, f(at) and $f(a^2t^2)$, the relation (1) provides a system of linear equations:

$$x = y = t:$$

$$\left(t + \frac{1}{t}\right)f(t) = f(t^2) + f(1)$$

$$x = \frac{t}{a}, y = at:$$

$$\left(\frac{t}{a} + \frac{a}{t}\right)f(at) = f(t^2) + f(a^2)$$

$$x = a^2t, y = t:$$

$$\left(a^2t + \frac{1}{a^2t}\right)f(t) = f(a^2t^2) + f\left(\frac{1}{a^2}\right)$$

$$\left(2c\right)$$

 $x = y = at: \qquad \left(at + \frac{1}{at}\right)f(at) = f(a^2t^2) + f(1) \tag{2d}$

In order to eliminate $f(t^2)$, take the difference of (2a) and (2b); from (2c) and (2d) eliminate $f(a^2t^2)$; then by taking a linear combination, eliminate f(at) as well:

$$\left(t + \frac{1}{t}\right)f(t) - \left(\frac{t}{a} + \frac{a}{t}\right)f(at) = f(1) - f(a^2) \quad \text{and}$$

$$\left(a^2t + \frac{1}{a^2t}\right)f(t) - \left(at + \frac{1}{at}\right)f(at) = f(1/a^2) - f(1), \quad \text{so}$$

$$\left(\left(at + \frac{1}{at}\right)\left(t + \frac{1}{t}\right) - \left(\frac{t}{a} + \frac{a}{t}\right)\left(a^2t + \frac{1}{a^2t}\right)\right)f(t)$$

$$= \left(at + \frac{1}{at}\right)\left(f(1) - f(a^2)\right) - \left(\frac{t}{a} + \frac{a}{t}\right)\left(f(1/a^2) - f(1)\right).$$

Notice that on the left-hand side, the coefficient of f(t) is nonzero and does not depend on t:

$$\left(at+\frac{1}{at}\right)\left(t+\frac{1}{t}\right)-\left(\frac{t}{a}+\frac{a}{t}\right)\left(a^2t+\frac{1}{a^2t}\right)=a+\frac{1}{a}-\left(a^3+\frac{1}{a^3}\right)<0.$$

After dividing by this fixed number, we get

$$f(t) = C_1 t + \frac{C_2}{t} \tag{3}$$

where the numbers C_1 and C_2 are expressed in terms of a, f(1), $f(a^2)$ and $f(1/a^2)$, and they do not depend on t.

The functions of the form (3) satisfy the equation:

$$\left(x + \frac{1}{x}\right)f(y) = \left(x + \frac{1}{x}\right)\left(C_1y + \frac{C_2}{y}\right) = \left(C_1xy + \frac{C_2}{xy}\right) + \left(C_1\frac{y}{x} + C_2\frac{x}{y}\right) = f(xy) + f\left(\frac{y}{x}\right).$$

Solution 2. We start with an observation. If we substitute $x = a \neq 1$ and $y = a^n$ in (1), we obtain

 $f(a^{n+1}) - \left(a + \frac{1}{a}\right)f(a^n) + f(a^{n-1}) = 0.$

For the sequence $z_n = a^n$, this is a homogeneous linear recurrence of the second order, and its characteristic polynomial is $t^2 - \left(a + \frac{1}{a}\right)t + 1 = (t - a)(t - \frac{1}{a})$ with two distinct nonzero roots, namely a and 1/a. As is well-known, the general solution is $z_n = C_1 a^n + C_2 (1/a)^n$ where the index n can be as well positive as negative. Of course, the numbers C_1 and C_2 may depend of the choice of a, so in fact we have two functions, C_1 and C_2 , such that

$$f(a^n) = C_1(a) \cdot a^n + \frac{C_2(a)}{a^n}$$
 for every $a \neq 1$ and every integer n . (4)

The relation (4) can be easily extended to rational values of n, so we may conjecture that C_1 and C_2 are constants, and whence $f(t) = C_1 t + \frac{C_2}{t}$. As it was seen in the previous solution, such functions indeed satisfy (1).

The equation (1) is linear in f; so if some functions f_1 and f_2 satisfy (1) and c_1, c_2 are real numbers, then $c_1f_1(x) + c_2f_2(x)$ is also a solution of (1). In order to make our formulas simpler, define

$$f_0(x) = f(x) - f(1) \cdot x.$$

This function is another one satisfying (1) and the extra constraint $f_0(1) = 0$. Repeating the same argument on linear recurrences, we can write $f_0(a) = K(a)a^n + \frac{L(a)}{a^n}$ with some functions K and L. By substituting n = 0, we can see that $K(a) + L(a) = f_0(1) = 0$ for every a. Hence,

$$f_0(a^n) = K(a)\left(a^n - \frac{1}{a^n}\right).$$

Now take two numbers a > b > 1 arbitrarily and substitute $x = (a/b)^n$ and $y = (ab)^n$ in (1):

$$\left(\frac{a^n}{b^n} + \frac{b^n}{a^n}\right) f_0((ab)^n) = f_0(a^{2n}) + f_0(b^{2n}), \text{ so}$$

$$\left(\frac{a^n}{b^n} + \frac{b^n}{a^n}\right) K(ab) \left((ab)^n - \frac{1}{(ab)^n}\right) = K(a) \left(a^{2n} - \frac{1}{a^{2n}}\right) + K(b) \left(b^{2n} - \frac{1}{b^{2n}}\right), \text{ or equivalently}$$

$$K(ab) \left(a^{2n} - \frac{1}{a^{2n}} + b^{2n} - \frac{1}{b^{2n}}\right) = K(a) \left(a^{2n} - \frac{1}{a^{2n}}\right) + K(b) \left(b^{2n} - \frac{1}{b^{2n}}\right). \tag{5}$$

By dividing (5) by a^{2n} and then taking limit with $n \to +\infty$ we get K(ab) = K(a). Then (5) reduces to K(a) = K(b). Hence, K(a) = K(b) for all a > b > 1.

Fix a > 1. For every x > 0 there is some b and an integer n such that 1 < b < a and $x = b^n$. Then

$$f_0(x) = f_0(b^n) = K(b) \left(b^n - \frac{1}{b^n} \right) = K(a) \left(x - \frac{1}{x} \right).$$

Hence, we have $f(x) = f_0(x) + f(1)x = C_1x + \frac{C_2}{x}$ with $C_1 = K(a) + f(1)$ and $C_2 = -K(a)$.

Comment. After establishing (5), there are several variants of finishing the solution. For example, instead of taking a limit, we can obtain a system of linear equations for K(a), K(b) and K(ab) by substituting two positive integers n in (5), say n = 1 and n = 2. This approach leads to a similar ending as in the first solution.

Optionally, we define another function $f_1(x) = f_0(x) - C\left(x - \frac{1}{x}\right)$ and prescribe K(c) = 0 for another fixed c. Then we can choose ab = c and decrease the number of terms in (5).