## Homework 8

ELEN 21/COEN 21 Instructor: Maria Kyrarini

## Lecture 12

- 1. Derive a minimal state table for a single-input and single-output Mealy-type state machine that produces an output of 1 if in the input sequence it detects either 110 or 101 patterns. Overlapping sequences should be detected.
- 2. The figure below shows a Mealy-type state machine. The states are presented in the form  $Q_2Q_1Q_0$ . Derive a circuit where the  $Q_2$  is a positive-edge D flip-flop, the  $Q_1$  is a positive-edge JK flip-flop, and the  $Q_0$  is a positive-edge T flip-flop.



3. Draw the state diagram for the table below that describes a state machine that has one input x and one output z.

| Present | Next State |       | Output (z) |       |
|---------|------------|-------|------------|-------|
| State   | x = 0      | x = 1 | x = 0      | x = 1 |
| Α       | Α          | Е     | 1          | 0     |
| В       | С          | F     | 0          | 0     |
| С       | В          | Н     | 0          | 1     |
| D       | Е          | F     | 0          | 0     |
| E       | D          | Α     | 0          | 1     |
| F       | В          | F     | 1          | 1     |
| G       | D          | Н     | 0          | 1     |
| Н       | Н          | G     | 1          | 0     |

## Lecture 13

- 4. Implement the following circuit  $F(a,b,c,d) = \Sigma m(4,6,7,8,10,11,12,14,15)$  using only 2-to-4 decoders (without enable).
- 5. Implement a full adder by using a decoder and a network of OR-AND-NOT gates.