

(a) DBE		
	the ¹³ C NMR spectrum. The multiplicity of each signal is given on the gnal corresponds to and write possible part structures.	e spectrum. Identify what kind of
Type of C (e.g. sp ³ CH ₂) and/or part structures (e.g. N-CH ₂)	
δ 7.5		
δ 32.2		
δ 36.1		
δ 52.0		
δ 52.7		
δ 53.4		
δ 168.9		
δ 171.8		
δ 204.4		
(c) What are t	he three peaks at δ 77?	

Problem R-04F ($C_9H_{14}O_5$). Determine the structure (or part structure) of **R-04F** from the ¹H and ¹³C NMR

spectra provided.

(d) Analyze the 2-proton multiplet between δ 2.7 and 3.1 (reproduced below). Draw a coupling tree and report coupling constants (in the standard form: e.g., δ 3.9, tq, J = 12, 4 Hz, 1H) and part structure you could obtain from the signal. You may use first-order analysis.

What kind of pattern is this? _____ What other signal is coupled to these protons?

(e) Analyze the two-proton multiplet between δ 2.2 and 2.6 in the 300 MHz 1 H NMR spectrum. The multiplet is reproduced below. Draw a coupling tree and report couplings and a part structure. You may use first order analysis.

What kind of pattern is this?_____ What other signal is coupled to these protons?

(c) Show a structure for **R-04F**. If there is more than one possibility, circle your best choice.

Problem R-04F ($C_9H_{14}O_5$). Determine the structure (or part structure) of **R-04F** from the ¹H and ¹³C NMR spectra provided.

- 2 (a) DBE <u>3</u>
 - (b) Interpret the ¹³C NMR spectrum. The multiplicity of each signal is given on the spectrum. Identify what kind of carbon each signal corresponds to and write possible part structures.

Type of C (e.g. sp³ CH₂) and/or part structures (e.g. N-CH₂)

- (c) What are the three peaks at δ 77? CDCl₃: D has spin = 1, giving a 1:1:1 triplet, J_{CD} = 30.7 Hz
- (d) Analyze the 2-proton multiplet between δ 2.7 and 3.1 (reproduced below). Draw a coupling tree and report coupling constants (in the standard form: e.g., δ 3.9, tq, J = 12, 4 Hz, 1H) and part structure you could obtain from the signal. You may use first-order analysis.

What kind of pattern is this? AB of ABX What other signal is coupled to these protons?

These protons are coupled to dd at δ 3.75 (X)

2

6

This is a diastereotopic CH₂ coupled to a CH₃ group. The large gem coupling means the CH₂ is next to a carbonyl group

What kind of pattern is this?

6

8

AB of ABX₃ What other signal is coupled to these protons?

These protons are coupled to triplet at δ 0.95 (X₃)

(c) Show a structure for R-04F. If there is more than one possibility, circle your best choice.

Some alternate solutions:

MeO OMe

OMe O **OMe** Ö 0 5

Not chiral - would have no diastereotopic CH₂ groups

PLT ex-1-2004-05-gg.plt