Screening Designs

BIOE 498/598 PJ

Spring 2021

Why do we use screening designs?

- ► Screening designs are used to identify **important factors**.
- ► A follow-up design estimates effects and interactions for only the important factors.
- ▶ The goal of screening is to drop factors so the follow-up is feasible.
- You don't need to screen if
 - You already know every factor is important.
 - A Resolution V design is practical and within budget

What is a screening design?

▶ Screening designs have few runs, ideally $\leq 2 \text{ runs/factor.}$

What is a screening design?

- ▶ Screening designs have few runs, ideally $\leq 2 \text{ runs/factor}$.
- ► The focus is on main effects. By the Hierarchical Ordering and Effect Heredity Principles,

important factor ≈ significant main effect

What is a screening design?

- ightharpoonup Screening designs have few runs, ideally $\leq 2 \text{ runs/factor.}$
- ► The focus is on main effects. By the Hierarchical Ordering and Effect Heredity Principles,

important factor \approx significant main effect

▶ We don't worry about estimates of TWIs. We're selecting factors, not interactions.

Types of screening designs

- ► Resolution III Fractional Factorial Design
 - ▶ Pro: Mirror image can clear main effects
 - Con: Run size always a power of 2

Types of screening designs

- Resolution III Fractional Factorial Design
 - Pro: Mirror image can clear main effects
 - ► Con: Run size always a power of 2
- ► PB Design
 - Pro: Run size in multiples of 4
 - ► Con: Complex aliasing

Types of screening designs

- Resolution III Fractional Factorial Design
 - Pro: Mirror image can clear main effects
 - Con: Run size always a power of 2
- PB Design
 - Pro: Run size in multiples of 4
 - Con: Complex aliasing
- ► Definitive Screening Designs
 - Hybrid screening/optimization design. We'll discuss later!

Don't rule out Fractional Factorial Designs.

Workflow for Resolution III screens

- 1. Run the design
- 2. Fit the model with main effects. If you have DoF left over, add any TWIs that are **not** confounded with main effects.
- If the overall model fit is bad, or if you expected certain effects to be significant that were not, consider a second batch of runs with a mirror image design.
- 4. Drop any factors that are not **important** (practically or statistically).

	number of runs												
		8	16	32	64	128	256	512		2048	4096		
								only ti	nly the MA design				
number of factors	3	full											
	4	IV	full										
	5	III	٧	full									
	6	Ш	IV	VI	full								
	7	Ш	IV	IV	VII	full							
	8		IV	IV	V	VIII	full						
	9		III	IV	IV	VI	IX	full					
	10		III	IV	IV	V	VI	Х	full				
	11		III	IV	IV	٧	VI	VII	ΧI	full			
	12		III	IV	IV	IV	VI	VI	VIII	XII	full		
	13		III	IV	IV	IV	V	VI	VII	VIII	XIII		
	14		III	IV	IV	IV	V	VI	VII	VIII	IX		
	15		III	IV	IV	IV	V	VI	VII	VIII	VIII		
	16			IV	IV	IV	V	VI	VI	VIII	VIII		
	17			Ш	IV	IV	V	VI	VI	VII	VIII		
	18			III	IV	IV	IV	VI	VI	VII	VIII		
	19			III	IV	IV	IV	٧	VI	VII	VIII		
	20			III	IV	IV	IV	٧	VI	VII	VIII		
	21			III	IV	IV	IV	V	VI	VII	VIII		
	22			III	IV	IV	IV	٧	VI	VII	VIII		
	23			Ш	IV	IV	IV	٧	VI	VII	VIII		
	24			Ш	IV	IV	IV	IV	VI	VI	VIII		
Resolution III up to 31 63 127									factors	s.			
Res	olutior	ı IV up	to		32	64	80	160	factors.				
Resolution V up to number of factors: 33 47 65													
Res	olution	ı VI up	to nur	nber o	f facto	rs:			24	34	48		
		n is M											

Gromping, 2014

J. Stat. Software

26

Workflow for PB designs

- 1. Run the design.
- 2. Fit a model with main effects plus an effect for any unused column in the design.
- 3. Optional: Perform subset regression to identify factors that appear frequently in smaller models with good predictive power.
- 4. Drop any factors that are not important (practically or statistically).
- 5. If only a small number of factors remain, try refitting the small model.

Creating a PB design (up to 23 factors)

1. Start with the first run from the following table.

Runs	Factor Levels
12	++-+++-
20	+++++-+-+++-
24	++++-+-+

- 2. Cycle the factor levels by one to get run #2. Repeat for 11, 19, or 23 runs.
- 3. Set the final run to all low (-).
- 4. If the number of factors *k* is less than the number of runs, select the first *k* columns.

Example PB design: Cast fatigue

This design includes 7 factors; however, effects are estimated for all columns. The last 4 "factors" are interactions with complex aliasing.

To replicate or not to replicate?

- ► Many screening designs are saturated there are no DoF to estimate confidence intervals for the parameters.
- ▶ If you don't replicate the design, you will need to select factors based on the magnitude of the effects alone (half-normal plot).
 - Remember that half-normal plots work better as the number of factors grows.

To replicate or not to replicate?

- ► Many screening designs are saturated there are no DoF to estimate confidence intervals for the parameters.
- ▶ If you don't replicate the design, you will need to select factors based on the magnitude of the effects alone (half-normal plot).
 - Remember that half-normal plots work better as the number of factors grows.
- Replicating a Resolution III Design
 - Consider a mirror-image instead. This will give clear main effects.
 - Check if you can afford a Resolution IV instead. This gives clear main effects and a confounding structure.
- Replicating a PB Design
 - Replicating the design will help you estimate the "pure error".
 - You can "move up" to a larger PB design to get extra runs. This won't estimate pure error, but you can add more confounded effects to the model to improve the estimates.

▶ This is difficult. Very, very difficult. There is no simple answer.

- ▶ This is difficult. Very, very difficult. There is no simple answer.
- ▶ The follow-up experiment is at higher resolution, so more runs/factor.
- ▶ The follow-up experiment will also have fewer factors.

- ▶ This is difficult. Very, very difficult. There is no simple answer.
- ▶ The follow-up experiment is at higher resolution, so more runs/factor.
- ▶ The follow-up experiment will also have fewer factors.
- ▶ Do a "what-if" analysis using varying numbers of dropped factors.
- ▶ Replicates might be more important for a follow-up design.

- ▶ This is difficult. Very, very difficult. There is no simple answer.
- ▶ The follow-up experiment is at higher resolution, so more runs/factor.
- ▶ The follow-up experiment will also have fewer factors.
- ▶ Do a "what-if" analysis using varying numbers of dropped factors.
- ▶ Replicates might be more important for a follow-up design.
- ▶ Where do you want the bottleneck?
 - ightharpoonup Stringent screening (expensive) ightharpoonup smaller follow-up (cheaper)
 - ▶ Relaxed screening (cheaper) → larger follow-up (expensive)

- ▶ This is difficult. Very, very difficult. There is no simple answer.
- ▶ The follow-up experiment is at higher resolution, so more runs/factor.
- ▶ The follow-up experiment will also have fewer factors.
- ▶ Do a "what-if" analysis using varying numbers of dropped factors.
- ▶ Replicates might be more important for a follow-up design.
- ▶ Where do you want the bottleneck?
 - ightharpoonup Stringent screening (expensive) ightharpoonup smaller follow-up (cheaper)
 - ▶ Relaxed screening (cheaper) → larger follow-up (expensive)
- Use your experience in science or engineering. How much of your budget did you spend
 - Screening for a hit or working up the mechanism?
 - Building/testing a prototype or refining the second design?

About grading

- ► Your grade is determined by your process.
- If your methods are justified and implemented correctly, you can earn full credit.
- ▶ How your make your final predictions will be graded.
- ► The result of your final predictions determines a few bonus points and bragging rights.