

Algebra of Matrices Ex 5.1 Q1

We know that if a matrix is of the order $m \times n$, it has mn elements. Thus, to find all the possible orders of a matrix having 8 elements, we have to find all the ordered pairs of natural numbers whose products is 8.

The ordered pairs are: (1 \times 8), (8 \times 1), (2 \times 4), (4 \times 2)

(1,5) and (5,1) are the ordered pairs of natural numbers whose product is 5.

Hence, the possible orders of a matrix having 5 elements are 1×5 and 5×1

Algebra of Matrices Ex 5.1 Q2

If
$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} 2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2 \end{bmatrix}$$
 and $B = \begin{bmatrix} b_{ij} \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -3 & 4 \\ 1 & 2 \end{bmatrix}$

(i)
$$a_{22} + b_{21} = 4 + (-3) = 1$$

Hence, $a_{22} + b_{21} = 1$

(ii)
$$a_{11}b_{11} + a_{22}b_{22} = (2)(2) + (4)(4) = 4 + 16 = 20$$

Hence,
$$a_{11}b_{11} + a_{22}b_{22} = 20$$

Algebra of Matrices Ex 5.1 Q3

Here,
$$A = \left[a_{ij}\right]_{3 \le 4}$$

$$R_1 = \text{first row of } A = [a_{11}a_{12}a_{13}a_{14}]_{1 \times 4}$$

So, order of $R_1 = 1 \times 4$

 $C_2 = Second column of A$

$$=\begin{bmatrix}a_{12}\\a_{22}\\a_{32}\end{bmatrix}_{3\times 1}$$

Order of $C_2 = 3 \times 1$

Algebra of Matrices Ex 5.1 Q4

Let
$$A = \left(a_{ij}\right)_{2\times3}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \qquad \qquad ---\left(i\right)$$

$$(i) \qquad a_{ij} = i.j$$

$$a_{11}=1.1=1,\ a_{12}=1.2=2,\ a_{13}=1.3=3$$

$$a_{21}=2.1=2,\ a_{22}=2.2=4,\ a_{23}=2.3=6$$

So, using equation(i)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \end{bmatrix}$$

(ii)
$$a_{ij} = 2i - j$$

$$a_{11} = 2(1) - 1 = 1$$
, $a_{12} = 2(1) - 2 = 0$, $a_{13} = 2(1) - 3 = -1$

$$a_{21} = 2(2) - 1 = 3$$
, $a_{22} = 2(2) - 2 = 2$, $a_{23} = 2(2) - 3 = 1$

Using equation (i)

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 3 & 2 & 1 \end{bmatrix}$$

(iii)
$$a_{ij} = i + j$$

 $a_{11} = 1 + 1 = 2$, $a_{12} = 1 + 2 = 3$, $a_{13} = 1 + 3 = 4$
 $a_{21} = 2 + 1 = 3$, $a_{22} = 2 + 2 = 4$, $a_{23} = 2 + 3 = 5$

Using equation (i)

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

(iv)
$$a_{ij} = \frac{(i+j)^2}{2}$$

 $a_{11} = \frac{(1+1)^2}{2} = 2$, $a_{12} = \frac{(1+2)^2}{2} = \frac{9}{2}$, $a_{13} = \frac{(1+3)^2}{2} = 8$
 $a_{21} = \frac{(2+1)^2}{2} = \frac{9}{2}$, $a_{22} = \frac{(2+2)^2}{2} = 8$, $a_{23} = \frac{(2+3)^2}{2} = \frac{25}{2}$

Using equation(i),

$$A = \begin{bmatrix} 2 & \frac{9}{2} & 8 \\ \frac{9}{2} & 8 & \frac{25}{2} \end{bmatrix}$$

********* END *******