A package on automata

Version 1.16

Manuel Delgado

Steve Linton

José João Morais

Manuel Delgado

Email: mdelgado@fc.up.pt

Homepage: https://cmup.fc.up.pt/cmup/mdelgado/ Address: Departamento de Matemática - Faculdade de Ciências

> Porto Portugal

Steve Linton

Email: steve.linton@st-andrews.ac.uk

Homepage: http://www-groups.dcs.st-and.ac.uk/~sal/

Address: School of Computer Science University of St Andrews

Jack Cole Building, North Haugh St Andrews, Fife, KY16 9SX

United Kingdom

José João Morais

Address: No address known

Copyright

© 2004 by Manuel Delgado, Steve Linton and José Morais

Automata package is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. For details, see the file 'GPL' included in the package or see the FSF's own site.

Acknowledgements

The first author wishes to acknowledge Cyril Nicaud and Paulo Varandas for their help in programming some functions of the very first version of this package. He wishes also to acknowledge useful discussions and comments by Cyril Nicaud, Vítor H. Fernandes, Jean-Eric Pin and Jorge Almeida.

The first author also acknowledges support of FCT through CMUP and the FCT and POCTI Project POCTI/32817/MAT/2000 which is funded in cooperation with the European Community Fund FEDER.

The third author acknowledges financial support of FCT and the POCTI program through a scholarship given by Centro de Matemática da Universidade do Porto.

The authors would like to thank Mark Kambites for his contribution in finding bugs and making suggestions for the improvement of this package.

Concerning the maintenance:

The first author was/is (partially) supported by:

the Fundação para a Ciência e a Tecnologia (FCT) project PTDC/MAT/65481/2006;

the Centro de Matemática da Universidade do Porto (CMUP), in particular for those periods in which CMUP was funded by

the European Regional Development Fund through the program COMPETE and by the Portuguese Government through the FCT - Fundação para a Ciência e a Tecnologia under the project PEst-C/MAT/UI0144/2011;

The first author wants to acknowledge partial support by CMUP (UID/MAT/00144/2013 and UID/MAT/00144/2019), which is funded by FCT (Portugal) with national (MEC) and European structural funds through the programs FEDER, under the partnership agreement PT2020.

Colophon

This work started in 1998, when the first author was in the LIAFA at the University of Paris 7, in a post-doc. Encouraged by J. E. Pin, he began the implementation in GAP3 of an algorithm obtained some time before to answer a question from the realm of Finite Semigroups proposed by J. Almeida.

The first version of this package on automata was prepared by the first author who gave it the form of a GAP share package. In a second version, prepared by the first and third authors, many functions have been added and the performance of many of the existing ones has been improved. Further important improvements, specially concerning performance, have been achieved when the second author joined the group. The first author is particularly grateful to Max Horn whose help made the release of Versions 1.14 and 1.15 a lot easier.

From Version 1.12, the package is maintained by the first two authors, and Ruth Hoffmann joined the maintenance team from Version 1.16. Bug reports, suggestions and comments are welcome. Please use our email addresses to this effect.

Contents

1	Introduction	6
2	Finite Automata 2.1 Automata generation 2.2 Automata internals 2.3 Comparison of automata 2.4 Tests involving automata 2.5 Basic operations 2.6 Links with Semigroups	8 8 12 14 14 16 20
3	Rational languages	22
	3.1 Rational Expressions	22 25 25
4	Automata versus rational expressions4.1 From automata to rational expressions4.2 From rational expression to automata4.3 Some tests on automata	27 27 27 28
5	Some functions involving automata 5.1 From one type to another	31 31 34
6	Finite regular languages 6.1 Dealing with finite regular languages	38 38
A	Directed graphs A.1 Directed graphs	40
В	Drawing automata B.1 Installing some external programs	45 45
C	Inverse automata and subgroups of the free group C.1 From subgroups to inverse automata	53 53 55

References	56
Index	57

Chapter 1

Introduction

In many situations an automaton is conveniently described through a diagram like the following

This diagram describes a (deterministic) automaton with 3 states (the elements of the set $\{1,2,3\}$). The arrow pointing to the state 1 indicates that 1 is the initial state and the two circles around state 3 indicate that 3 is a final or accepting state. The set $\{a,b\}$ is the *alphabet* of the automaton; its elements are called *letters* and are the labels of the edges of the diagram. The words a, ab^2 , b^5a^3b are examples of words recognized by the automaton since they are labels of paths from the initial to the final state.

The set of words recognized by an automaton is called the *language* of the automaton. It is a rational language and may be represented through a rational expression. For instance,

(aUb)(a(aUb)Ub(aUb))*

is a rational expression representing the language of the above automaton.

Kleene's Theorem states that a language is rational if and only if it is the language of a finite automaton. Both directions of Kleene's Theorem can be proved constructively, and these algorithms, to go from an automaton to a rational expression and *vice-versa*, are implemented in this package.

Of course, one has to pay attention to the size of the output produced. When producing a deterministic automaton equivalent to a given rational expression one can obtain an optimal solution (the minimal automaton) using standard algorithms [AHU74].

When producing a rational expression for the language of an automaton, and taking into account some reasonable measure for the size of a rational expression, to determine a minimal one is apparently computationally difficult. We use here some heuristic methods (to be published elsewhere) which in practice lead to very reasonable results.

The development of this work has benefited from the existence of AMoRE [MMP+95], a package written in C to handle Automata, Monoids and Regular Expressions. In fact, its manual has been very useful and some of the algorithms implemented here are those implemented in AMoRE. In this package, unlike what happened with AMoRE, we do not have to worry about the monoid part in order to make it useful to semigroup theorists, since monoids are already implemented in GAP and we may take advantage of this fact. We just need a function to compute the transition semigroup of an automaton.

The parts of this package that have not so directly to do with automata or rational expressions are put into appendices in this manual. Some words about these appendices follow.

Using the external program Graphviz [DEG⁺02] to graph visualization, one can visualize automata. This very convenient tool presently works easily under LINUX.

Given a finitely generated subgroup of the free group it is possible to compute a flower automaton and perform Stallings foldings over it in order to obtain an inverse automaton corresponding to the given subgroup.

Chapter 2

Finite Automata

This chapter describes the representations used in this package for finite automata and some functions to determine information about them.

We have to remark that the states of an automaton are always named 1, 2, 3, ...; the alphabet may be given by the user. By default it is $\{a, b, c, ...\}$ (or $\{a_1, a_2, a_3, ...\}$ in the case of alphabets with more than 26 letters).

The transition function of an automaton with q states over an alphabet with n letters is represented by a (not necessarily dense) $n \times q$ matrix. Each row of the matrix describes the action of the corresponding letter on the states. In the case of a *deterministic automaton* (DFA) the entries of the matrix are non-negative integers. When all entries of the transition table are positive integers, the automaton is said to be *dense* or *complete*. In the case of a *non deterministic automaton* (NFA) the entries of the matrix may be lists of non-negative integers. *Automata with* ε -transitions are also allowed: the last letter of the alphabet is assumed to be ε and is represented by @.

2.1 Automata generation

The way to create an automaton in GAP is the following

2.1.1 Automaton

```
▷ Automaton(Type, Size, Alphabet, TransitionTable, Initial, Accepting) (function)
```

Type may be "det", "nondet" or "epsilon" according to whether the automaton is deterministic, non deterministic or an automaton with ε -transitions. Size is a positive integer representing the number of states of the automaton. Alphabet is the number of letters of the alphabet or a list with the letters of the ordered alphabet. TransitionTable is the transition matrix. The entries are non-negative integers not greater than the size of the automaton. In the case of non deterministic automata, lists of non-negative integers not greater than the size of the automaton are also allowed. Initial and Accepting are, respectively, the lists of initial and accepting states.

The alphabet of the automaton may be specified:

Instead of leaving a hole in the transition matrix, we may write a 0 to mean that no transition is present. Non deterministic automata may be given the same way.

Also in the same way can be given ε -automata. The letter ε is written 0 instead.

Bigger automata are displayed in another form:

```
Example

gap> aut:=Automaton("det",16,2,[[4,0,0,6,3,1,4,8,7,4,3,0,6,1,6,0],

> [3,4,0,0,6,1,0,6,1,6,1,6,6,4,8,7,4,5]],[1],[4]);

< deterministic automaton on 2 letters with 16 states >
```

```
gap> Display(aut);
     a
         4
1
         3
1
    ... some more lines
15
     a
15
     b
         8
16
     b
         7
Initial state: [ 1 ]
Accepting state: [ 4 ]
```

2.1.2 IsAutomaton

```
▷ IsAutomaton(0) (function)
```

In the presence of an object O, one may want to test whether O is an automaton. This may be done using the function IsAutomaton.

2.1.3 IsDeterministicAutomaton

▷ IsDeterministicAutomaton(aut)

(function)

Returns true when aut is a deterministic automaton and false otherwise.

```
Example gap> x:=Automaton("det",3,2,[ [ 0, 2, 0 ], [ 0, 1, 0 ] ],[ 3 ],[ 2 ]);;
gap> IsDeterministicAutomaton(x);
true
```

2.1.4 IsNonDeterministicAutomaton

▷ IsNonDeterministicAutomaton(aut)

(function)

Returns true when aut is a non deterministic automaton and false otherwise.

```
Example

gap> y:=Automaton("nondet",3,2,[[,[1,3],],[,[2,3],[1,3]]],[1,2],[1,3]);;

gap> IsNonDeterministicAutomaton(y);

true
```

2.1.5 IsEpsilonAutomaton

▷ IsEpsilonAutomaton(aut)

(function)

Returns true when aut is an ε -automaton and false otherwise.

```
Example

gap> z:=Automaton("epsilon",2,2,[[[1,2],],[[2],[1]]],[1,2],[1,2]);;

gap> IsEpsilonAutomaton(z);

true
```

2.1.6 String

```
▷ String(aut) (function)
```

The way GAP displays an automaton is quite natural, but when one wants to do small changes, for example using *copy/paste*, the use of the function String (possibly followed by Print) may be useful.

```
Example

gap> x:=Automaton("det",3,2,[ [ 0, 2, 0 ], [ 0, 1, 0 ] ],[ 3 ],[ 2 ]);;

gap> String(x);

"Automaton(\"det\",3,\"ab\",[ [ 0, 2, 0 ], [ 0, 1, 0 ] ],[ 3 ],[ 2 ]);;"

gap> Print(String(x));

Automaton("det",3,"ab",[ [ 0, 2, 0 ], [ 0, 1, 0 ] ],[ 3 ],[ 2 ]);;
```

```
Example

gap> z:=Automaton("epsilon",2,2,[[[1,2],],[[2],[1]]],[1,2],[1,2]);;

gap> Print(String(z));

Automaton("epsilon",2,"a@",[ [ [ 1, 2 ], [ ] ], [ [ 2 ], [ 1 ] ] ],[ 1, 2 ],[ \
1, 2 ]);;
```

2.1.7 RandomAutomaton

```
▷ RandomAutomaton(Type, Size, Alphabet) (function)
```

Given the *Type*, the *Size* (i.e. the number of states) and the *Alphabet* (a positive integer or a list), returns a pseudo random automaton with these parameters.

```
_ Example
gap> RandomAutomaton("det",5,"ac");
< deterministic automaton on 2 letters with 5 states >
gap> Display(last);
  1 2 3 4 5
         2 3
 a l
 c |
      2 3
Initial state:
               [4]
Accepting states: [ 3, 4 ]
gap> RandomAutomaton("nondet",3,["a","b","c"]);
< non deterministic automaton on 3 letters with 3 states >
gap> RandomAutomaton("epsilon",2,"abc");
< epsilon automaton on 4 letters with 2 states >
gap> RandomAutomaton("epsilon",2,2);
< epsilon automaton on 3 letters with 2 states >
gap> Display(last);
```

2.2 Automata internals

In this section we describe the functions used to access the internals of an automaton.

2.2.1 AlphabetOfAutomaton

```
▷ AlphabetOfAutomaton(aut)
```

(function)

Returns the number of symbols in the alphabet of automaton aut.

```
gap> aut:=Automaton("det",4,2,[[3,,3,4],[3,4,0,]],[1],[4]);;
gap> AlphabetOfAutomaton(aut);
2
```

2.2.2 AlphabetOfAutomatonAsList

```
▷ AlphabetOfAutomatonAsList(aut)
```

(function)

Returns the alphabet of automaton aut always as a list. Note that when the alphabet of the automaton is given as an integer (meaning the number of symbols) not greater than 26 it returns the list "abcd....". If the alphabet is given by means of an integer greater than 26, the function returns ["a1", "a2", "a3", "a4", ...].

2.2.3 TransitionMatrixOfAutomaton

▷ TransitionMatrixOfAutomaton(aut)

(function)

Returns the transition matrix of automaton aut.

```
Example

gap> aut:=Automaton("det",4,2,[[3,,3,4],[3,4,0,]],[1],[4]);;

gap> TransitionMatrixOfAutomaton(aut);

[[3,0,3,4],[3,4,0,0]]
```

2.2.4 InitialStatesOfAutomaton

▷ InitialStatesOfAutomaton(aut)

(function)

Returns the initial states of automaton aut.

```
gap> aut:=Automaton("det",4,2,[[3,,3,4],[3,4,0,]],[1],[4]);;
gap> InitialStatesOfAutomaton(aut);
[ 1 ]
```

2.2.5 SetInitialStatesOfAutomaton

▷ SetInitialStatesOfAutomaton(aut, I)

(function)

Sets the initial states of automaton aut. I may be a positive integer or a list of positive integers.

```
gap> aut:=Automaton("det",4,2,[[3,,3,4],[3,4,0,]],[1],[4]);;
gap> SetInitialStatesOfAutomaton(aut,4);
gap> InitialStatesOfAutomaton(aut);
[ 4 ]
gap> SetInitialStatesOfAutomaton(aut,[2,3]);
gap> InitialStatesOfAutomaton(aut);
[ 2, 3 ]
```

2.2.6 FinalStatesOfAutomaton

▷ FinalStatesOfAutomaton(aut)

(function)

Returns the final states of automaton aut.

```
Example

gap> aut:=Automaton("det",4,2,[[3,,3,4],[3,4,0,]],[1],[4]);;

gap> FinalStatesOfAutomaton(aut);

[ 4 ]
```

2.2.7 SetFinalStatesOfAutomaton

```
\triangleright SetFinalStatesOfAutomaton(aut, F) (function)
```

Sets the final states of automaton aut. F may be a positive integer or a list of positive integers.

```
gap> aut:=Automaton("det",4,2,[[3,,3,4],[3,4,0,]],[1],[4]);;
gap> FinalStatesOfAutomaton(aut);
[ 4 ]
gap> SetFinalStatesOfAutomaton(aut,2);
gap> FinalStatesOfAutomaton(aut);
[ 2 ]
```

2.2.8 NumberStatesOfAutomaton

```
NumberStatesOfAutomaton(aut)
```

(function)

Returns the number of states of automaton aut.

```
gap> aut:=Automaton("det",4,2,[[3,,3,4],[3,4,0,]],[1],[4]);;
gap> NumberStatesOfAutomaton(aut);
4
```

2.3 Comparison of automata

Although there is no standard way to compare automata it is useful to be able to do some kind of comparison. Doing so, one can consider sets of automata. We just compare the strings of the automata.

```
Example

gap> x:=Automaton("det",3,2,[ [ 0, 2, 0 ], [ 0, 1, 0 ] ],[ 3 ],[ 2 ]);;

gap> y:=Automaton("det",3,2,[ [ 2, 0, 0 ], [ 1, 3, 0 ] ],[ 3 ],[ 2, 3 ]);;

gap> x=y;

false

gap> Size(Set([y,x,x]));

2
```

2.4 Tests involving automata

This section describes some useful tests involving automata.

2.4.1 IsDenseAutomaton

```
▷ IsDenseAutomaton(aut)
```

(function)

Tests whether a deterministic automaton aut is complete. (See also NullCompletionAutomaton (2.5.2).)

```
Example

gap> aut:=Automaton("det",4,2,[[3,,3,4],[3,4,0,]],[1],[4]);;

gap> IsDenseAutomaton(aut);

false
```

2.4.2 IsRecognizedByAutomaton

```
▷ IsRecognizedByAutomaton(A, w)
```

(function)

The arguments are: an automaton A and a string (i.e. a word) w in the alphabet of the automaton. Returns true if the word is recognized by the automaton and false otherwise.

```
gap> aut:=Automaton("det",3,2,[[1,2,1],[2,1,3]],[1],[2]);;
gap> IsRecognizedByAutomaton(aut,"bbb");
true

gap> aut:=Automaton("det",3,"01",[[1,2,1],[2,1,3]],[1],[2]);;
gap> IsRecognizedByAutomaton(aut,"111");
true
```

2.4.3 IsPermutationAutomaton

```
▷ IsPermutationAutomaton(aut)
```

(function)

The argument is a deterministic automaton. Returns true when each letter of the alphabet induces a permutation on the vertices and false otherwise.

```
gap> x:=Automaton("det",3,2,[[1,2,3],[1],[2,3]);;
gap> IsPermutationAutomaton(x);
true
```

2.4.4 IsInverseAutomaton

```
▷ IsInverseAutomaton(aut)
```

(function)

The argument is a deterministic automaton. Returns true when each letter of the alphabet induces an injective partial function on the vertices and false otherwise.

```
Example

gap> x:=Automaton("det",3,2,[ [ 0, 1, 3 ], [ 0, 1, 2 ] ],[ 2 ],[ 1 ]);;

gap> IsInverseAutomaton(x);

true
```

Frequently an inverse automaton is thought as if the inverse edges (labeled by formal inverses of the letters of the alphabet) were present, although they are usually not explicited. They can be made explicit using the function AddInverseEdgesToInverseAutomaton

2.4.5 AddInverseEdgesToInverseAutomaton

```
▷ AddInverseEdgesToInverseAutomaton(aut)
```

(function)

The argument is an inverse automaton over the alphabet $\{a,b,c,\ldots\}$. Returns an automaton with the inverse edges added. (The formal inverse of a letter is represented by the corresponding capital letter.)

```
_ Example -
gap> x:=Automaton("det",3,2,[[ 0, 1, 3 ],[ 0, 1, 2 ]],[ 2 ],[ 1 ]);;Display(x);
        1 3
b |
        1 2
Initial state:
                [2]
Accepting state: [ 1 ]
gap> AddInverseEdgesToInverseAutomaton(x);Display(x);
        1 3
 a |
b |
A | 2
B | 2 3
Initial state:
                [2]
Accepting state: [ 1 ]
```

2.4.6 IsReversibleAutomaton

```
▷ IsReversibleAutomaton(aut)
```

(function)

The argument is a deterministic automaton. Returns true when aut is a reversible automaton, i.e. the automaton obtained by reversing all edges and switching the initial and final states (see also ReversedAutomaton (2.5.5)) is deterministic. Returns false otherwise.

```
Example gap> x:=Automaton("det",3,2,[ [ 0, 1, 2 ], [ 0, 1, 3 ] ],[ 2 ],[ 2 ]);; gap> IsReversibleAutomaton(x); true
```

2.5 Basic operations

2.5.1 CopyAutomaton

```
▷ CopyAutomaton(aut)
```

(function)

Returns a new automaton, which is a copy of automaton aut.

2.5.2 NullCompletionAutomaton

```
▷ NullCompletionAutomaton(aut)
```

(function)

aut is a deterministic automaton. If it is complete returns aut, otherwise returns the completion (with a null state) of aut. Notice that the words recognized by aut and its completion are the same.

```
Example
gap> aut:=Automaton("det",4,2,[[3,,3,4],[2,4,4,]],[1],[4]);;
gap> IsDenseAutomaton(aut);
false
gap> y:=NullCompletionAutomaton(aut);;Display(y);
  1 2 3 4 5
a | 3 5 3 4 5
b | 2 4 4 5 5
Initial state: [ 1 ]
Accepting state: [ 4 ]
```

The state added is a *sink state* i.e. it is a state q which is not initial nor accepting and for all letter a in the alphabet of the automaton, q is the result of the action of a in q. (Notice that reading a word, one does not go out of a sink state.)

2.5.3 ListSinkStatesAut

```
▷ ListSinkStatesAut(aut)
```

(function)

Computes the list of all sink states of the automaton aut.

```
gap> x:=Automaton("det",3,2,[ [ 2, 3, 3 ], [ 1, 2, 3 ] ],[ 1 ],[ 2, 3 ]);;
gap> ListSinkStatesAut(x);
gap> y:=Automaton("det",3,2,[ [ 2, 3, 3 ], [ 1, 2, 3 ] ],[ 1 ],[ 2 ]);;
gap> ListSinkStatesAut(y);
[ 3 ]
```

2.5.4 RemovedSinkStates

(function)

```
Removes all sink states of the automaton aut Example
gap> y:=Automaton("det",3,2,[[ 2, 3, 3 ],[ 1, 2, 3 ]],[ 1 ],[ 2 ]);;Display(y);
  1 1 2 3
 a | 2 3 3
b | 1 2 3
Initial state:
                [1]
Accepting state: [2]
gap> x := RemovedSinkStates(y);Display(x);
< deterministic automaton on 2 letters with 2 states >
   | 1 2
a | 2
b | 1 2
Initial state:
Accepting state: [ 2 ]
```

2.5.5 ReversedAutomaton

▷ ReversedAutomaton(aut)

(function)

Inverts the arrows of the automaton aut.

2.5.6 PermutedAutomaton

```
▷ PermutedAutomaton(aut, p)
```

(function)

Given an automaton aut and a list p representing a permutation of the states, outputs the equivalent permuted automaton.

2.5.7 ListPermutedAutomata

▷ ListPermutedAutomata(aut)

(function)

Given an automaton aut, returns a list of automata with permuted states

```
Example

gap> x:=Automaton("det",3,2,[[0,2,3],[1,2,3]],[1],[2,3]);;

gap> ListPermutedAutomata(x);

[ < deterministic automaton on 2 letters with 3 states >,
            < deterministic automaton on 2 letters with 3 states >,
            < deterministic automaton on 2 letters with 3 states >,
            < deterministic automaton on 2 letters with 3 states >,
            < deterministic automaton on 2 letters with 3 states >,
            < deterministic automaton on 2 letters with 3 states >,
            < deterministic automaton on 2 letters with 3 states > ]
```

2.5.8 NormalizedAutomaton

Produces an equivalent automaton but in which the initial state is numbered 1 and the accepting states have the greatest numbers.

```
_ Example _
gap> x:=Automaton("det",3,2,[[ 1, 2, 0 ],[ 0, 1, 2 ]],[2],[1, 2]);;Display(x);
  | 1 2 3
a | 1 2
        1 2
                 [2]
Initial state:
Accepting states: [ 1, 2 ]
gap> Display(NormalizedAutomaton(x));
   1 1 2 3
a | 1
           3
b | 3 1
Initial state:
                 [ 1 ]
Accepting states: [ 3, 1 ]
```

2.5.9 UnionAutomata

```
▷ UnionAutomata(A, B) (function)
```

Produces the disjoint union of the deterministic or non deterministic automata A and B. The output is a non-deterministic automaton.

2.5.10 ProductAutomaton

```
▷ ProductAutomaton(A1, A2) (function)
```

The arguments must be deterministic automata. Returns the product of A1 and A2. Note: (p,q)->(p-1)m+q is a bijection from $\{1,\ldots,n\}\times\{1,\ldots,m\}$ to $\{1,\ldots,mn\}$.

```
1 2
b | 1 3
Initial state:
                 [1]
Accepting states: [ 1, 2 ]
gap> y := Automaton("det",3,"ab",[ [ 0, 1, 2 ], [ 0, 2, 0 ] ],[ 2 ],[ 1, 2 ]);;
gap> Display(y);
   | 1 2 3
a |
        1 2
b |
        2
Initial state:
                 [2]
Accepting states: [ 1, 2 ]
gap> z:=ProductAutomaton(x, y);;Display(z);
     1 2 3 4 5 6 7 8 9
                 1
                 8
        2
b |
Initial state:
                 [2]
Accepting states: [ 1, 2, 4, 5 ]
```

2.5.11 ProductOfLanguages

```
▷ ProductOfLanguages(A1, A2)
```

(function)

Given two regular languages (as automata or rational expressions), returns an automaton that recognizes the concatenation of the given languages, that is, the set of words uv such that u belongs to the first language and v belongs to the second language.

```
Example
gap> a1:=ListOfWordsToAutomaton("ab",["aa","bb"]);
< deterministic automaton on 2 letters with 5 states >
gap> a2:=ListOfWordsToAutomaton("ab",["a","b"]);
< deterministic automaton on 2 letters with 3 states >
gap> ProductOfLanguages(a1,a2);
< deterministic automaton on 2 letters with 5 states >
gap> FAtoRatExp(last);
(bbUaa)(aUb)
```

2.6 Links with Semigroups

Each letter of the alphabet of an automaton induces a partial transformation in its set of states. The semigroup generated by these transformations is called the *transition semigroup* of the automaton.

2.6.1 TransitionSemigroup

```
▷ TransitionSemigroup(aut)
```

(function)

Returns the transition semigroup of the deterministic automaton aut.

```
Example

gap> aut := Automaton("det",10,2,[[7,5,7,5,4,9,10,9,10,9],

> [8,6,8,9,9,1,3,1,9,9]],[2],[6,7,8,9,10]);;

gap> s := TransitionSemigroup(aut);;

gap> Size(s);

30
```

The transition semigroup of the minimal automaton recognizing a language is the *syntactic semigroup* of that language.

2.6.2 SyntacticSemigroupAut

```
\triangleright SyntacticSemigroupAut(aut) (function)
```

Returns the syntactic semigroup of the deterministic automaton aut (i.e. the transition semigroup of the equivalent minimal automaton) when it is non empty and returns fail otherwise.

```
Example

gap> x:=Automaton("det",3,2,[[1,2,0],[0,1,2]],[2],[1,2]);;

gap> S:=SyntacticSemigroupAut(x);;

gap> Size(S);

3
```

2.6.3 SyntacticSemigroupLang

```
▷ SyntacticSemigroupLang(rat)
```

(function)

Returns the syntactic semigroup of the language given by the rational expression rat.

```
gap> rat := RationalExpression("a*ba*ba*(@Ub)");;
gap> S:=SyntacticSemigroupLang(rat);;
gap> Size(S);
7
```

Chapter 3

Rational languages

Rational languages are conveniently represented through rational expressions. These are finite expressions involving letters of the alphabet; concatenation, corresponding to the *product*; the symbol U, corresponding to the *union*; and the symbol *, corresponding to the Kleene's star.

3.1 Rational Expressions

The expressions @ and "empty_set" are used to represent the empty word and the empty set respectively.

3.1.1 RationalExpression

```
▷ RationalExpression(expr[, alph]) (function)
```

A rational expression can be created using the function RationalExpression. expr is a string representing the desired expression literally and alph (may or may not be present) is the alphabet of the expression. Of course alph must not contain the symbols '@', '(', ')', '*' nor 'U'. When alph is not present, the alphabet of the rational expression is the set of symbols (other than '"', etc...) occurring in the expression. (The alphabet is then ordered with the alphabetical order.)

```
gap> RationalExpression("abUc");
abUc
gap> RationalExpression("ab*Uc");
ab*Uc
gap> RationalExpression("001U1*");
001U1*
gap> RationalExpression("001U1*","012");
001U1*
```

3.1.2 RatExpOnnLetters

```
▷ RatExpOnnLetters(n, operation, list) (function)
```

This is another way to construct a rational expression over an alphabet. The user may specify the alphabet or just give the number n of letters (in this case the alphabet $\{a, b, c, \ldots\}$ is considered).

operation is the name of an operation, the possibilities being: product, union or star. list is a list of rational expressions, a rational expression in the case of "star", or a list consisting of an integer when the rational expression is a single letter. The empty list [] and empty_set are other possibilities for list. An example follows

The empty word and the empty set are the rational expressions:

```
gap> RatExpOnnLetters(2,[],[]);
0
gap> RatExpOnnLetters(2,[],"empty_set");
empty_set
```

3.1.3 RandomRatExp

▷ RandomRatExp(arg)

(function)

Given the number of symbols of the alphabet and (possibly) a factor m which is intended to increase the randomality of the expression, returns a pseudo random rational expression over that alphabet.

```
gap> RandomRatExp(2);
b*(@Ua)
gap> RandomRatExp("01");
empty_set
gap> RandomRatExp("01");
(OU1)*
gap> RandomRatExp("01",7);
0*1(@UOU1)
```

3.1.4 SizeRatExp

```
\triangleright SizeRatExp(r) (function)
```

Returns the size, i.e. the number of symbols of the alphabet, of the rational expression r.

```
gap> a:=RationalExpression("0*1(@UOU1)");
0*1(@UOU1)
gap> SizeRatExp(a);
5
```

3.1.5 IsRationalExpression

```
▷ IsRationalExpression(r)
```

(function)

Tests whether an object is a rational expression.

```
gap> r := RationalExpression("1(0U1)U0");
1(0U1)U0
gap> IsRatExpOnnLettersObj(r) and IsRationalExpressionRep(r);
true
gap> IsRationalExpression(RandomRatExp("01"));
true
```

3.1.6 AlphabetOfRatExp

▷ AlphabetOfRatExp(R)

(function)

Returns the number of symbols in the alphabet of the rational expression R.

```
gap> r:=RandomRatExp(2);
a*(ba*U@)
gap> AlphabetOfRatExp(r);
2
gap> r:=RandomRatExp("01");
1*(01*U@)
gap> AlphabetOfRatExp(r);
2
gap> a:=RandomTransformation(3);;
gap> b:=RandomTransformation(3);;
gap> r:=RandomRatExp([a,b]);
(Transformation( [ 1, 1, 3 ] )UTransformation( [ 1, 1, 2 ] ))*
gap> AlphabetOfRatExp(r);
2
```

3.1.7 AlphabetOfRatExpAsList

▷ AlphabetOfRatExpAsList(R)

(function)

Returns the alphabet of the rational expression R always as a list. If the alphabet of the rational expression is given by means of an integer less than 27 it returns the list "abcd....", otherwise returns ["a1", "a2", "a3", "a4", ...].

```
gap> r:=RandomRatExp(2);
(aUb)((aUb)(bU@)U@)U@
gap> AlphabetOfRatExpAsList(r);
"ab"
gap> r:=RandomRatExp("01");
1*(0U@)
gap> AlphabetOfRatExpAsList(r);
"01"
gap> r:=RandomRatExp(30);;
gap> AlphabetOfRatExpAsList(r);
[ "a1", "a2", "a3", "a4", "a5", "a6", "a7", "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", "a16", "a17", "a18", "a19", "a20", "a21", "a22", "a23", "a24", "a25", "a26", "a27", "a28", "a29", "a30" ]
```

3.1.8 CopyRatExp

```
\triangleright CopyRatExp(R) (function)
```

Returns a new rational expression, which is a copy of R.

```
gap> r:=RandomRatExp(2);
a*(bU@)
gap> CopyRatExp(r);
a*(bU@)
```

3.2 Comparison of rational expressions

The way two rational expressions r1 and r2 are compared through the < operator is the following: the empty set is lesser than everything else; if r1 and r2 are letters, then the lesser is taken from the order in the alphabet; if r1 is a letter an r2 a product, union or star, then r1 is lesser than r2; a star expression is considered to be lesser than a product or union expression and a product lesser than a union; to compare two star expressions we compare the expressions under the stars; to compare two product or union expressions we compare the subexpressions of each expression from left to right;

3.3 Operations with rational languages

Only operations with rational languages over the same alphabet are allowed.

We may compute expressions for the product, union and star (i.e., submonoid generated by) of rational sets. In some cases, simpler expressions representing the same set are returned. Note that that two simplifications are always made, namely, $r \cup "empty_set" = r$ and $r\varepsilon = r$. Of course, these operations may be used to construct more complex expressions. For rational expressions we have the functions UnionRatExp, ProductRatExp, StarRatExp, that return respectively rational expressions for the *union* and *product* of the languages given by the rational expressions r and s and the star of the language given by the rational expression r.

3.3.1 UnionRatExp

```
\triangleright UnionRatExp(r, s) (function)
```

3.3.2 ProductRatExp

```
\triangleright ProductRatExp(r, s) (function)
```

3.3.3 StarRatExp

```
\triangleright StarRatExp(r) (function)
```

The expression (a(aUb))* may be produced in the following way

```
gap> r1 := RatExpOnnLetters(2,[],[1]);
a
gap> r2 := RatExpOnnLetters(2,[],[2]);
b
gap> r3 := UnionRatExp(r1,r2);
aUb
gap> r4 := ProductRatExp(r1,r3);
a(aUb)
gap> r5 := StarRatExp(r4);
(a(aUb))*
```

Chapter 4

Automata versus rational expressions

A remarkable theorem due to Kleene shows that a language is recognized by a finite automaton precisely when it may be given by means of a rational expression, i.e. is a rational language.

An automaton and a rational expression are said to be *equivalent* when both represent the same language. In this chapter we describe functions to go from automata to equivalent rational expressions and *vice-versa*.

4.1 From automata to rational expressions

4.1.1 AutomatonToRatExp

```
    ▷ AutomatonToRatExp (A) (function)
    ▷ AutToRatExp(A) (function)
    ▷ FAtoRatExp(A) (function)
```

From a finite automaton, FAtoRatExp, AutToRatExp and AutomatonToRatExp, which are synonyms, compute one equivalent rational expression, using the state elimination algorithm.

```
Example

gap> x:=Automaton("det",4,2,[[ 0, 1, 2, 3 ],[ 0, 1, 2, 3 ]],[ 3 ],[ 1, 3, 4 ]);;

gap> FAtoRatExp(x);

(aUb)(aUb)U@

gap> aut:=Automaton("det",4,"xy",[[ 0, 1, 2, 3 ],[ 0, 1, 2, 3 ]],[ 3 ],[ 1, 3, 4 ]);;

gap> FAtoRatExp(aut);

(xUy)(xUy)U@
```

4.2 From rational expression to automata

4.2.1 RatExpToNDAut

```
\triangleright RatExpToNDAut(R) (function)
```

Given a rational expression R, computes the equivalent NFA

```
gap> r:=RationalExpression("aUab");
aUab
```

```
gap> Display(RatExpToNDAut(r));
 1 2 3 4
               [1,2]
     [3]
b |
Initial state: [ 4 ]
Accepting states: [ 1, 3 ]
gap> r:=RationalExpression("xUxy");
xUxy
gap> Display(RatExpToNDAut(r));
 1 2 3 4
                 [1,2]
x |
уΙ
      [3]
Initial state: [4]
Accepting states: [ 1, 3 ]
```

4.2.2 RatExpToAutomaton

```
▷ RatExpToAutomaton(R) (function)
▷ RatExpToAut(R) (function)
```

Given a rational expression R, these functions, which are synonyms, use RatExpToNDAut (4.2.1)) to compute the equivalent NFA and then returns the equivalent minimal DFA

```
__ Example
gap> r:=RationalExpression("@U(aUb)(aUb)");
@U(aUb)(aUb)
gap> Display(RatExpToAut(r));
  1 2 3 4
 a | 3 1 3 2
b | 3 1 3 2
Initial state: [ 4 ]
Accepting states: [ 1, 4 ]
gap> r:=RationalExpression("@U(0U1)(0U1)");
@U(OU1)(OU1)
gap> Display(RatExpToAut(r));
  1 2 3 4
______
 0 | 3 1 3 2
 1 | 3 1 3 2
Initial state: [ 4 ]
Accepting states: [ 1, 4 ]
```

4.3 Some tests on automata

This section describes functions that perform tests on automata, rational expressions and their accepted languages.

4.3.1 IsEmptyLang

```
▷ IsEmptyLang(R)

(function)
```

This function tests if the language given through a rational expression or an automaton R is the empty language.

```
gap> r := RationalExpression("empty_set");
empty_set
gap> IsEmptyLang(r);
true
gap> r := RationalExpression("aUb");
aUb
gap> IsEmptyLang(r);
false
```

4.3.2 IsFullLang

```
▷ IsFullLang(R) (function)
```

This function tests if the language given through a rational expression or an automaton R represents the Kleene closure of the alphabet of R.

```
gap> r:=RationalExpression("aUb");
aUb
gap> IsFullLang(r);
false
gap> r:=RationalExpression("(aUb)*");
(aUb)*
gap> IsFullLang(r);
true
```

4.3.3 AreEqualLang

```
▷ AreEqualLang(A1, A2) (function)

▷ AreEquivAut(A1, A2) (function)
```

These functions, which are synonyms, test if the automata or rational expressions A1 and A2 are equivalent, i.e. represent the same language. This is performed by checking that the corresponding minimal automata are isomorphic. Note hat this cannot happen if the alphabets are different.

```
Example

gap> x := Automaton("det",4,"ab",[[0,1,3,4],[0,1,2,0]],[2],[1,2,3,4]);;
gap> y := Automaton("det",4,"ab",[[1,3,4,0],[0,3,4,0]],[3],[1,3,4]);;
gap> z := Automaton("det",4,"ab",[[0,4,0,0],[1,3,4,0]],[2],[1,3,4]);;
gap> AreEquivAut(x, y);
true
gap> AreEquivAut(x, z);
false
gap> a:=RationalExpression("(aUb)*ab*");
(aUb)*ab*
```

```
gap> b:=RationalExpression("(aUb)*");
(aUb)*
gap> AreEqualLang(a, b);
false
gap> a:=RationalExpression("(bUa)*");
(bUa)*
gap> AreEqualLang(a, b);
true
gap> x:=RationalExpression("(1U0)*");
(1U0)*
gap> AreEqualLang(a, x);
The given languages are not over the same alphabet
false
```

4.3.4 IsContainedLang

```
▷ IsContainedLang(R1, R2)
```

(function)

Tests if the language represented (through an automaton or a rational expression) by R1 is contained in the language represented (through an automaton or a rational expression) by R2 .

```
gap> r:=RationalExpression("aUab");
aUab
gap> s:=RationalExpression("a","ab");
a
gap> IsContainedLang(s,r);
true
gap> IsContainedLang(r,s);
false
```

4.3.5 AreDisjointLang

```
▷ AreDisjointLang(R1, R2)
```

(function)

Tests if the languages represented (through automata or a rational expressions) by R1 and R2 are disjoint.

```
gap> r:=RationalExpression("aUab");;
gap> s:=RationalExpression("a","ab");;
gap> AreDisjointLang(r,s);
false
```

Chapter 5

Some functions involving automata

This chapter describes some functions involving automata. It starts with functions to obtain equivalent automata of other type. Then the minimalization is considered.

5.1 From one type to another

Recall that two automata are said to be equivalent when they recognize the same language. Next we have functions which have as input automata of one type and as output equivalent automata of another type.

5.1.1 EpsilonToNFA

```
▷ EpsilonToNFA(A) (function)
```

A is an automaton with ε -transitions. Returns a NFA recognizing the same language.

```
Example .
gap> x := Automaton("epsilon",3,"ab@",[ [ [ 3 ], [ 1 ], [ 1, 2 ] ], [ [ ], [ ], [ ], [ 1, 3 ] ], [ [ 1
gap> Display(x);
                       3
 a | [3] [1, 2]
                      [1,3]
 @ | [ 1, 3 ]
              [1]
Initial states: [ 1, 2, 3 ]
Accepting states: [ 1, 3 ]
gap> Display(EpsilonToNFA(x));
  | 1
 a | [3] [1,3] [1..3]
                     [ 1, 3 .. 3 ]
Initial states: [ 1 .. 3 ]
Accepting states: [ 1, 2, 3 ]
```

5.1.2 EpsilonToNFASet

```
▷ EpsilonToNFASet(A)
```

(function)

A is an automaton with ε -transitions. Returns a NFA recognizing the same language. This function differs from EpsilonToNFA (5.1.1) in that it is faster for smaller automata, or automata with few epsilon transitions, but slower in the really hard cases.

5.1.3 EpsilonCompactedAut

```
▷ EpsilonCompactedAut(A)
```

(function)

A is an automaton with ε -transitions. Returns an ε NFA with each strongly-connected component of the epsilon-transitions digraph of A identified with a single state and recognizing the same language.

```
_ Example
gap> x := Automaton("epsilon",3,"ab@",[ [ [ ], [ 1 ], [ 1 ] ], [ [ 2 ], [ ] ], [ [ 2 ], [ 1,
gap> Display(x);
            [1]
                          [1]
b | [2]
                         [1,3]
@ | [2]
            [ 1, 2, 3 ]
              [3]
Initial state:
Accepting states: [ 2, 3 ]
gap> Display(EpsilonCompactedAut(x));
a | [1]
b | [1]
Initial state:
                Γ 1 ]
Accepting state: [ 1 ]
```

5.1.4 ReducedNFA

```
▷ ReducedNFA(A) (function)
```

A is a non deterministic automaton (without ε -transitions). Returns an NFA accepting the same language as its input but with possibly fewer states (it quotients out by the smallest right-invariant partition of the states). A paper describing the algorithm is in preparation.

```
\_ Example .
gap> x := Automaton("nondet",5,"ab",[ [ 2, 5], [ 2, 5], [ 4], [ 5], [ 3] ], [ [ 1, 2], |
gap> Display(x);
                               3
                                                        5
              [2,5]
a | [2, 5]
                             [4]
                                             [ 5 ]
b | [1, 2]
              [1, 2, 3, 4] [1, 2, 3, 5]
                                            [2,5]
                [1]
Initial state:
Accepting states: [ 2, 3, 5 ]
gap> Display(ReducedNFA(x));
```

```
a | [3] [1] [2] [1,4] [1,4]
b | [3,4] [1,4] [1,3,4,5] [2,3,4,5] [4,5]
Initial state: [5]
Accepting states: [1,3,4]
```

5.1.5 NFAtoDFA

```
▷ NFAtoDFA(A)

(function)
```

Given an NFA, these synonym functions, compute the equivalent DFA, using the powerset construction, according to the algorithm presented in the report of the AMoRE [MMP⁺95] program. The returned automaton is dense deterministic

5.1.6 FuseSymbolsAut

```
\triangleright FuseSymbolsAut(A, s1, s2) (function)
```

Given an automaton A and integers s1 and s2 which, returns an NFA obtained by replacing all transitions through s2 by transitions through s1.

```
____ Example
gap> x:=RandomAutomaton("det",3,2);;Display(x);
  1 2 3
a | 2 3
b |
        1
Initial state:
              [3]
Accepting states: [ 1, 2, 3 ]
gap> Display(FuseSymbolsAut(x,1,2));
            2
                  3
  | 1
a | [2] [1, 3]
Initial state: [ 3 ]
Accepting states: [ 1, 2, 3 ]
```

5.2 Minimalization of an automaton

The algorithm used to minimalize a dense deterministic automaton (i.e., to compute a dense minimal automaton recognizing the same language) is based on an algorithm due to Hopcroft (see [AHU74]). It is well known (see [HU69]) that it suffices to reduce the automaton given and remove the inaccessible states. Again, the documentation for the computer program AMoRE [MMP⁺95] has been very useful.

5.2.1 UsefulAutomaton

```
▷ UsefulAutomaton(A) (function)
```

Given an automaton A (deterministic or not), outputs a dense DFA B whose states are all reachable and such that A and B are equivalent.

```
_ Example
gap> x:=RandomAutomaton("det",4,2);;Display(x);
  1 2 3 4
        3 4
a |
b | 1 4
                [ 3 ]
Initial state:
Accepting states: [ 2, 3, 4 ]
gap> Display(UsefulAutomaton(x));
  1 2 3
_____
a | 2 3 3
b | 3 3 3
Initial state:
                [1]
Accepting states: [ 1, 2 ]
```

5.2.2 MinimalizedAut

```
▷ MinimalizedAut(A) (function)
```

Returns the minimal automaton equivalent to A.

```
___ Example
gap> x:=RandomAutomaton("det",4,2);;Display(x);
  1 2 3 4
a |
        3 4
b | 1 2 3
Initial state:
                 [4]
Accepting states: [ 2, 3, 4 ]
gap> Display(MinimalizedAut(x));
  | 1 2
a | 2 2
b | 2 2
Initial state:
                [1]
Accepting state: [ 1 ]
```

5.2.3 Minimal Automaton

```
▷ MinimalAutomaton(A)
```

(attribute)

Returns the minimal automaton equivalent to A, but stores it so that future computations of this automaton just return the stored automaton.

```
Example
gap> x:=RandomAutomaton("det",4,2);;Display(x);
  1 2 3 4
a |
        2 4
        3 4
bΙ
                 [4]
Initial state:
Accepting states: [ 1, 2, 3 ]
gap> Display(MinimalAutomaton(x));
a | 1
b | 1
                [1]
Initial state:
Accepting state:
```

5.2.4 AccessibleStates

```
▷ AccessibleStates(aut[, p])
```

(function)

Computes the list of states of the automaton aut which are accessible from state p. When p is not given, returns the states which are accessible from any initial state.

5.2.5 AccessibleAutomaton

```
▷ AccessibleAutomaton(A)
```

(function)

If A is a deterministic automaton, not necessarily dense, an equivalent dense deterministic accessible automaton is returned. (The function UsefulAutomaton is called.)

If A is not deterministic with a single initial state, an equivalent accessible automaton is returned.

5.2.6 IntersectionLanguage

```
▷ IntersectionLanguage(A1, A2) (function)
▷ IntersectionAutomaton(A1, A2) (function)
```

Computes an automaton that recognizes the intersection of the languages given (through automata or rational expressions by) A1 and A2. When the arguments are deterministic automata, is the same as ProductAutomaton, but works for all kinds of automata. Note that the language of the product of two automata is precisely the intersection of the languages of the automata.

```
_ Example
gap> x:=RandomAutomaton("det",3,2);;Display(x);
  1 2 3
a | 2 3
b |
        1
Initial state:
Accepting states: [ 1, 2, 3 ]
gap> y:=RandomAutomaton("det",3,2);;Display(y);
   | 1 2 3
a |
        1
b | 1 3
Initial state:
                 [ 3 ]
Accepting states: [ 1, 3 ]
gap> Display(IntersectionLanguage(x,y));
  | 1 2
_____
a | 2 2
b | 2 2
Initial state:
                [1]
Accepting state: [ 1 ]
```

5.2.7 AutomatonAllPairsPaths

```
▷ AutomatonAllPairsPaths(A) (function)
```

Given an automaton A, with n states, outputs a n x n matrix P, such that P[i][j] is the list of simple paths from state i to state j in A.

Chapter 6

Finite regular languages

This chapter describes some functions to deal with finite regular languages.

6.1 Dealing with finite regular languages

6.1.1 IsFiniteRegularLanguage

```
▷ IsFiniteRegularLanguage(L)
```

(function)

L is an automaton or a rational expression. This function tests whether its argument represents a finite language or not.

```
gap> r:=RationalExpression("b*(aU@)");;
gap> IsFiniteRegularLanguage(last);
false
gap> r:=RationalExpression("aUbU@");;
gap> IsFiniteRegularLanguage(last);
true
```

6.1.2 FiniteRegularLanguageToListOfWords

```
▷ FiniteRegularLanguageToListOfWords(L)
```

(function)

L is an automaton or a rational expression. This function outputs the recognized language as a list of words.

```
gap> r:=RationalExpression("aaUx(aUb)");
aaUx(aUb)
gap> FiniteRegularLanguageToListOfWords(r);
[ "aa", "xa", "xb" ]
```

6.1.3 ListOfWordsToAutomaton

```
ightharpoonup ListOfWordsToAutomaton(alph, L)
```

(function)

Given an alphabet alph (a list) and a list of words L (a list of lists), outputs an automaton that recognizes the given list of words.

```
Example

gap> ListOfWordsToAutomaton("ab",["aaa","bba",""]);

< deterministic automaton on 2 letters with 6 states >

gap> FAtoRatExp(last);
(bbUaa)aU@
```

Appendix A

Directed graphs

Automata are frequently described through directed labeled graphs. This appendix on directed graphs (digraphs) is devoted to some functions designed with the purpose of being used as auxiliary functions to deal with automata, but may have independent interest.

A.1 Directed graphs

A directed graph with n vertices is represented by an adjacency list. For example, the list G = [[2,4],[3],[1,4],[]] represents a directed graph with 4 (= Length(G)) vertices; the sublist in position i is the list of endpoints of the edges beginning in vertex i.

A.1.1 RandomDiGraph

▷ RandomDiGraph(n)

(function)

Produces a pseudo random digraph with *n* vertices

```
gap> RandomDiGraph(4);
[[],[1,2,4],[]]
```

A.1.2 VertexInDegree

▷ VertexInDegree(DG, v)

(function)

Computes the in degree of the vertex v of the directed graph DG

```
Example

gap> G:= [[1], [1, 2, 4], [], [1, 2, 3]];;

gap> VertexInDegree(G,2);

2
```

A.1.3 VertexOutDegree

▷ VertexOutDegree(DG, v)

(function)

Computes the out degree of the vertex v of the directed graph DG

```
gap> G:=[[1], [1, 2, 4], [], [1, 2, 3]];;
gap> VertexOutDegree(G,2);
3
```

A.1.4 AutoVertexDegree

▷ AutoVertexDegree(DG, v)

(function)

Computes the degree of the vertex v of the directed graph DG

```
gap> G:=[[1], [1, 2, 4], [], [1, 2, 3]];;
gap> AutoVertexDegree(G,2);
5
```

A.1.5 ReversedGraph

▷ ReversedGraph(G)

(function)

Computes the reversed graph of the directed graph G. It is the graph obtained from G by reversing the edges.

```
Example

gap> G:=[[], [4], [2], [1, 4]];;

gap> ReversedGraph(G);

[[4], [3], [], [2, 4]]
```

We say that a digraph is connected when for every pair of vertices there is a path consisting of directed or reversed edges from one vertex to the other.

A.1.6 AutoConnectedComponents

▷ AutoConnectedComponents(G)

(function)

Computes a list of the connected components of the digraph

```
Example

gap> G:=[[], [1, 4, 5, 6], [], [1, 3, 5, 6], [2, 3], [2, 4, 6]];;

gap> AutoConnectedComponents(G);

[[1, 2, 3, 4, 5, 6]]
```

Two vertices of a digraph belong to a strongly connected component if there is a directed path from each one to the other.

A.1.7 GraphStronglyConnectedComponents

□ GraphStronglyConnectedComponents(G)

(function)

Produces the strongly connected components of the digraph *G*.

```
Example

gap> G:=[[], [4], [], [4, 6], [], [1, 4, 5, 6]];;

gap> Set(GraphStronglyConnectedComponents(G));

[[1], [2], [3], [5], [6, 4]]
```

A.1.8 UnderlyingMultiGraphOfAutomaton

▷ UnderlyingMultiGraphOfAutomaton(A)

(function)

A is an automaton. The output is the underlying directed multi-graph.

A.1.9 UnderlyingGraphOfAutomaton

▷ UnderlyingGraphOfAutomaton(A)

(function)

A is an automaton. The output is the underlying directed graph.

A.1.10 DiGraphToRelation

```
▷ DiGraphToRelation(D)
```

(function)

Returns the relation corresponding to the digraph. Note that a directed graph may be seen in a natural way as a binary relation on the set of vertices.

A.1.11 MSccAutomaton

```
▷ MSccAutomaton(A) (function)
```

Produces an automaton where, in each strongly connected component, edges labeled by inverses are added. (M stands for modified.)

This construction is useful in Finite Semigroup Theory.

```
Example
gap> a := Automaton("det",3,"ab",[ [ 0, 2, 0 ], [ 1, 2, 0 ] ],[ 3 ],[ 1, 3 ]);;
gap> Display(a);
  1 1 2 3
a |
        2
b | 1 2
Initial state:
                 [ 3 ]
Accepting states: [ 1, 3 ]
gap> MSccAutomaton(a);
< deterministic automaton on 4 letters with 3 states >
gap> Display(last);
  | 1 2 3
______
        2
a |
b | 1 2
A |
        2
B | 1 2
Initial state:
                 [ 3 ]
Accepting states: [ 1, 3 ]
```

A.1.12 AutoIsAcyclicGraph

```
▷ AutoIsAcyclicGraph(G)
```

(function)

The argument is a graph's list of adjacencies and this function returns true if the argument is an acyclic graph and false otherwise.

```
gap> G := [ [ ], [ 3 ], [ 2 ] ];;
gap> AutoIsAcyclicGraph(last);
false
```

Appendix B

Drawing automata

The drawing of graphs described here uses graphviz [DEG⁺02], a software for drawing graphs developed at AT & T Labs, that can be obtained at https://www.graphviz.org/.

B.1 Installing some external programs

In order to create the drawings you should have graphviz installed and to view them you should have installed some pdf viewer.

B.2 Functions to draw automata

B.2.1 DrawAutomaton

```
▷ DrawAutomaton(A[, state_names, L])
(function)
```

This function draws automaton A. The arguments state_names, L and file are optional.

An automaton with n states will be drawn with numbers 1 to n written inside the corresponding graph node. The argument <code>state_names</code> is a list of n strings which will be the new text written inside the corresponding graph node.

The argument *L* is a list of lists of integers, each of which specifies a set of states to be drawn in a different color.

```
Example

gap> x:=Automaton("det",3,2,[ [ 2, 3, 0 ], [ 0, 1, 2 ] ],[ 1 ],[ 1, 2, 3 ]);;

gap> DrawAutomaton(x);

gap> DrawAutomaton(x,["st 1", "2", "C"]);

gap> DrawAutomaton(x,["st 1", "2", "C"],[[2],[1,3]]);
```

The output of the three previous DrawAutomaton commands would be the following diagrams, respectively.

B.2.2 DotForDrawingAutomaton

▷ DotForDrawingAutomaton(arg)

(function)

This function computes the dot code that can be used to display an automaton. This can be done by using the function DrawAutomaton (B.2.1) (if the system is properly configured) or by the user in some independent way. The arguments and options are the same than those of DrawAutomaton (B.2.1).

```
Example

gap> DotStringForDrawingAutomaton(x);

"digraph Automaton{\n\"1\" -> \"2\" [label=\"a\",color=red];\n\"2\" -> \"3\" \
    [label=\"a\",color=red];\n\"2\" -> \"1\" [label=\"b\",color=blue];\n\"3\" -> \
    \"2\" [label=\"b\",color=blue];\n\"1\" [shape=triangle,peripheries=2, style=fi\
    lled, fillcolor=white];\n\"2\" [shape=doublecircle, style=filled, fillcolor=wh\
    ite];\n\"3\" [shape=doublecircle, style=filled, fillcolor=white];\n\"n\"n\"
```

By using Print (or PrinTo, if one wants to print to a file) the string is displayed as follows:

```
gap> Print(last);
digraph Automaton{
  "1" -> "2" [label="a",color=red];
  "2" -> "3" [label="a",color=red];
  "2" -> "1" [label="b",color=blue];
  "3" -> "2" [label="b",color=blue];
  "1" [shape=triangle,peripheries=2, style=filled, fillcolor=white];
  "2" [shape=doublecircle, style=filled, fillcolor=white];
  "3" [shape=doublecircle, style=filled, fillcolor=white];
}
```

The dot code produced for the remaining pictures:

```
_ Example
gap> Print(DotStringForDrawingAutomaton(x,["st 1", "2", "C"]));
digraph Automaton{
"st 1" -> "2" [label="a",color=red];
"2" -> "C" [label="a".color=red]:
"2" -> "st 1" [label="b",color=blue];
"C" -> "2" [label="b",color=blue];
"st 1" [shape=triangle,peripheries=2, style=filled, fillcolor=white];
"2" [shape=doublecircle, style=filled, fillcolor=white];
"C" [shape=doublecircle, style=filled, fillcolor=white];
gap> Print(DotStringForDrawingAutomaton(x,["st 1", "2", "C"],[[2],[1,3]]));
digraph Automaton{
"st 1" -> "2" [label="a",color=red];
"2" -> "C" [label="a",color=red];
"2" -> "st 1" [label="b",color=blue];
"C" -> "2" [label="b",color=blue];
"st 1" [shape=triangle,peripheries=2, style=filled, fillcolor=burlywood];
"2" [shape=doublecircle, style=filled, fillcolor=brown];
"C" [shape=doublecircle, style=filled, fillcolor=burlywood];
}
```

B.2.3 DrawSubAutomaton

```
▷ DrawSubAutomaton(A, B)
```

(function)

This function tests if automaton A is a subautomaton of B in which case draws B high-lighting the edges not in A by drawing them in a dotted style, while the others are drawn in a plain style.

```
Example

gap> A := Automaton("nondet",5,"abc",[ [ [ 2, 3 ], [ 5 ], [ 1, 4, 5 ], [ 1, 5 ],
        [ 3, 4 ] ], [ [ 1, 4, 5 ], [ ], [ 1 ], [ 1, 3, 5 ], [ 1, 2, 5 ] ], [ [ ],
        [ 2, 4, 5 ], [ 1, 3, 5 ], [ ], [ 2, 3, 4 ] ] ],[ ],[ 2, 3, 4 ]);;

gap> B := Automaton("nondet",5,"abc",[ [ [ 2, 3 ], [ 5 ], [ 1, 4, 5 ], [ 1, 5 ],
        [ 3, 4 ] ], [ [ 1, 4, 5 ], [ ], [ 1 ], [ 1, 3, 5 ], [ 1, 2, 5 ] ], [ [ 1, 4, 5 ],
        [ 2, 4, 5 ], [ 1, 3, 5 ], [ 2, 3, 4, 5 ], [ 2, 3, 4 ] ] ],[ 3, 4, 5 ],[ 2, 3, 4 ]);;

gap> DrawSubAutomaton(A,B);
```

The output is as follows, in case the configuration of your computer permits. Otherwise, you may be interested in the dot code, as pshown below.

B.2.4 DotStringForDrawingSubAutomaton

(function)

This function computes the dot code that can be used to draw automata A, with the subsutomaton B emphasized. It is silently used by the function DrawSubAutomaton (B.2.3) (if the system is properly configured) or can be used by the user in some independent way.

```
Example
 gap> DotStringForDrawingSubAutomaton(A,B);
  "digraph Automaton \{\n1 -> 2 [label=\n4], \n1 -> 3 [label=\n4], \color=red] \}
lor=red];\n1 -> 1 [label=\"b\",color=blue];\n1 -> 4 [label=\"b\",color=blue];\
\n1 -> 5 [label=\"b\",color=blue];\n1 -> 1 [label=\"c\",color=green,style = do\
tted];\n1 \rightarrow 4 [label=\"c\",color=green,style = dotted]; \n1 \rightarrow 5 [label=\"c\",\]
 color=green, style = dotted]; \\ \  \  1 -> 5 \ [label=\"a\", color=red]; \\ \  \  -> 2 \ [label=\"a\"]; \\ \  \  -> 2 \ [label=\"a\ ]; \\ \ \ -> 2 \ [label=\"a\ ]; \\ \ \ -> 2 \ [label=\"a\ ]; \\ \ \ -> 2 \ [label=\"a\ ]; \\ \ \ -> 2 \ [label=\"a\ ]; \\ \ \ -> 2 \ [label=\"a\ ]; \\ \ \ -> 2 \ [label=\"a\ ]; \\ \ \ -> 2 \ [label=\"a\ ]; \\ \ \ -> 2 \ [label=\"a\ ]; \\ \ \ -> 2 \ [label=\"a\ ]; \\ \ \ -> 2 \ [label=\"a\ ]; \\ \ \ -> 2 \ [label=\"a\ ]; \\ \ \ -> 2 \ [label=\"a\ ]; \\ \ \ -> 2 \ [label=\"a\ ]; \\ \ \ -> 2 \ [label=\"a\ ]; \\ \ \ -> 2 \ [label=\"a\ ]; \\ \ \ -> 2 \ [label=\
 \label=\"c\",color=green]; \n2 -> 5 [label=\"c\",color=green]; \n3 -> 5 [label=\"c\",color=green]; \n4 -> 5 [label=\"c\",color=green]; \
lor=green]; \n 3 -> 1 [label=\"a\", color=red]; \n 3 -> 4 [label=\"a\ , color=red]; \n 3 -> 4 [label
 \n3 -> 5 [label=\"a\",color=red];\n3 -> 1 [label=\"b\",color=blue];\n3 -> 1 [l\
 abel=\"c\",color=green];\n3 -> 5 [label=\"c\",color=green];\n3 -> 5 [label=\"c\",color=green];\n4 -> 5 [label=\"c\",color=green];\n4 -> 5 [label=\"c\",color=green];\n4 -> 5 [label=\"c\",color=green];\n4 -> 5 [label=\"c\",col
 \label= \a\", color=red]; \n4 -> 5 [label= \a\", color=rd]; \n4 -> 5 [label= \a\", color=r \nd]; \n4 -> 5 [label= \a\", color=r \nd]; \n4 -> 6 [label= \a\", color=r \nd]; \n4 -> 7 [label= \a\", color=r \nd]; \n4 -> 8 [label= \a\", color=r \nd]; \n4 -> 9 [label= \a\", 
 ed];\n4 \rightarrow 1 [label=\"b\",color=blue]; \n4 \rightarrow 3 [label=\"b\",color=blue]; \n4 \rightarrow \
        5 [label=\"b\",color=blue];\n4 -> 2 [label=\"c\",color=green,style = dotted];\
 \n4 -> 3 [label=\"c\",color=green,style = dotted];\n4 -> 4 [label=\"c\",color=\
 green,style = dotted];\n4 -> 5 [label=\"c\",color=green,style = dotted];\n5 ->\
       3 [label=\"a\",color=red];\n5 -> 4 [label=\"a\",color=red];\n5 -> 1 [label=\"\" ^{-}
\label{label-b} $$ b'',color=blue]; \n 5 -> 5 [label=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=\b'',color=
blue];\n5 -> 2 [label=\"c\",color=green];\n5 -> 3 [label=\"c\",color=green];\n\
5 -> 4 [label=\"c\",color=green];\n3 [shape=triangle,color=gray];\n4 [shape=tr\
 iangle,color=gray];\n5 [shape=triangle,color=gray];\n2 [shape=doublecircle];\n\
3 [shape=doublecircle]; \n1 [shape=circle]; \n1 [shape=circle]; \n"
```

By using Print (or PrinTo, if one wants to print to a file) the string is displayed as follows:

```
gap> Print(last);
digraph Automaton {
1 -> 2 [label="a",color=red];
1 -> 3 [label="a",color=red];
```

```
1 -> 1 [label="b",color=blue];
1 -> 4 [label="b",color=blue];
1 -> 5 [label="b",color=blue];
1 -> 1 [label="c",color=green,style = dotted];
1 -> 4 [label="c",color=green,style = dotted];
1 -> 5 [label="c",color=green,style = dotted];
2 -> 5 [label="a",color=red];
2 -> 2 [label="c",color=green];
2 -> 4 [label="c",color=green];
2 -> 5 [label="c",color=green];
3 -> 1 [label="a",color=red];
3 -> 4 [label="a",color=red];
3 -> 5 [label="a",color=red];
3 -> 1 [label="b",color=blue];
3 -> 1 [label="c",color=green];
3 -> 3 [label="c",color=green];
3 -> 5 [label="c",color=green];
4 -> 1 [label="a",color=red];
4 -> 5 [label="a",color=red];
4 -> 1 [label="b",color=blue];
4 -> 3 [label="b",color=blue];
4 -> 5 [label="b",color=blue];
4 -> 2 [label="c",color=green,style = dotted];
4 -> 3 [label="c",color=green,style = dotted];
4 -> 4 [label="c",color=green,style = dotted];
4 -> 5 [label="c",color=green,style = dotted];
5 -> 3 [label="a",color=red];
5 -> 4 [label="a",color=red];
5 -> 1 [label="b",color=blue];
5 -> 2 [label="b",color=blue];
5 -> 5 [label="b",color=blue];
5 -> 2 [label="c",color=green];
5 -> 3 [label="c",color=green];
5 -> 4 [label="c",color=green];
3 [shape=triangle,color=gray];
4 [shape=triangle,color=gray];
5 [shape=triangle,color=gray];
2 [shape=doublecircle];
3 [shape=doublecircle];
4 [shape=doublecircle];
1 [shape=circle];
}
```

B.2.5 DotStringForDrawingGraph

```
▷ DotStringForDrawingGraph(G) (function)
▷ DrawGraph(G) (function)
```

Draws a graph specified as an adjacency list G.

```
gap> Print(DotStringForDrawingGraph(G));
digraph Graph__{{
1 -> 1 [style=bold, color=black];
1 -> 2 [style=bold, color=black];
1 -> 3 [style=bold, color=black];
2 -> 5 [style=bold, color=black];
3 -> 3 [style=bold, color=black];
3 -> 4 [style=bold, color=black];
4 -> 1 [style=bold, color=black];
5 -> 2 [style=bold, color=black];
5 -> 5 [style=bold, color=black];
1 [shape=circle];
2 [shape=circle];
3 [shape=circle];
4 [shape=circle];
5 [shape=circle];
```

The dot code can be used to produce the following picture (which may also be produced by typing DrawGraph(G);

B.2.6 DrawSCCAutomaton

```
▷ DrawSCCAutomaton(A[, state_names, L])
```

(function)

Draws automaton A and highlights it's strongly connected components by drawing the other edges in a dotted style.

The optional arguments state_names and L are as described in DrawAutomaton (B.2.1).

```
Example -
gap> rcg := Automaton("det",6,"ab",[ [ 3, 3, 6, 5, 6, 6 ], [ 4, 6, 2, 6, 4, 6 ] ],
[],[]);;
gap> Print(DotStringForDrawingSCCAutomaton(rcg));
digraph Automaton{
"1" -> "3" [label="a",color=red,style = dotted];
"2" -> "3" [label="a",color=red];
"3" -> "6" [label="a",color=red,style = dotted];
"4" -> "5" [label="a",color=red];
"5" -> "6" [label="a",color=red,style = dotted];
"6" -> "6" [label="a",color=red,style = dotted];
"1" -> "4" [label="b",color=blue,style = dotted];
"2" -> "6" [label="b",color=blue,style = dotted];
"3" -> "2" [label="b",color=blue];
"4" -> "6" [label="b",color=blue,style = dotted];
"5" -> "4" [label="b",color=blue];
"6" -> "6" [label="b",color=blue,style = dotted];
"1" [shape=circle, style=filled, fillcolor=white];
"2" [shape=circle, style=filled, fillcolor=white];
"3" [shape=circle, style=filled, fillcolor=white];
"4" [shape=circle, style=filled, fillcolor=white];
"5" [shape=circle, style=filled, fillcolor=white];
"6" [shape=circle, style=filled, fillcolor=white];
}
```

The dot code can be used to produce the following picture (which may also be produced by typing DrawGraph(G);

Appendix C

Inverse automata and subgroups of the free group

Inverse automata with a single initial/accepting state are in a one to one correspondence with finitely generated subgroups of the free group over the alphabet of the automaton. See [MSW01], [KM02] for details, as well as for concepts such as *flower automaton* and *Stallings foldings*.

C.1 From subgroups to inverse automata

A finitely generated subgroup of a finitely generated free group is given through a list whose first element is the number of generators of the free group and the remaining elements are the generators of the subgroup. The set of generators of the free group of rank n consists on the n first letters of the set $\{a,b,c,d,e,f,g\}$. In particular, free groups of rank greater than 8 must not be considered. A formal inverse of a generator is represented by the corresponding capital letter.

A generator of the subgroup may be given through a string of letters or through a list of positive integers as should be clear from the example that follows.

For example, [2,"abA","bbabAB"] stands for the subgroup of the free group of rank 2 on the generators aba^{-1} and $bbaba^{-1}b^{-1}$. The same subgroup may be given as [2,[1,2,3],[2,2,1,2,3,4]]. The number n+j represents the formal inverse of the generator represented by j. One can go from one representation to another, using the following functions.

C.1.1 GeneratorsToListRepresentation

▷ GeneratorsToListRepresentation(L)

(function)

```
Example _______

gap> L:=[2,"abA","bbabAB"];;

gap> GeneratorsToListRepresentation(L);

[ 2, [ 1, 2, 3 ], [ 2, 2, 1, 2, 3, 4 ] ]
```

C.1.2 ListToGeneratorsRepresentation

(function)

```
gap> K:=[2,[1,2,3],[2,2,1,2,3,4]];;
gap> ListToGeneratorsRepresentation(K);
[ 2, "abA", "bbabAB" ]
```

C.1.3 FlowerAutomaton

```
\triangleright FlowerAutomaton(L) (function)
```

The argument L is a subgroup of the free group given through any of the representations described above. Returns the flower automaton.

C.1.4 FoldFlowerAutomaton

```
    FoldFlowerAutomaton(A) (function)
```

Makes identifications on the flower automaton A. In the literature, these identifications are called Stallings foldings.

(This function may have true as a second argument. WARNING: the second argument should only be used when facilities to draw automata are available. In that case, one may visualize the identifications that are taking place.)

C.1.5 SubgroupGenToInvAut

```
▷ SubgroupGenToInvAut(L)
```

(function)

Returns the inverse automaton corresponding to the subgroup given by L.

C.2 From inverse automata to subgroups

Given an inverse automaton with a single initial/accepting state, one can find a set of generators for the subgroup represented by the automaton. Moreover, using a geodesic tree, one can find a Nielsen reduced set of generators [KM02].

C.2.1 GeodesicTreeOfInverseAutomaton

```
    □ GeodesicTreeOfInverseAutomaton(A) (function)
```

Returns a subautomaton of A whose underlying graph is a geodesic tree of the underlying graph of the inverse automaton A.

C.2.2 InverseAutomatonToGenerators

```
▷ InverseAutomatonToGenerators(A)
```

(function)

Returns a set of generators (given through the representation above) of the subgroup of the free group corresponding to the automaton A given.

```
gap> NW := InverseAutomatonToGenerators(A);
[ 2, "baBA", "bbA" ]
```

References

- [AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. *The Design and Analisys of Computer Algorithms*. Addison-Wesley, Reading, Mass., 1974. 7, 34
- [DEG⁺02] D. Dobkin, J. Ellson, E. Gansner, E. Koutsofios, S. North, and G. Woodhull. Graphviz graph drawing programs. Technical report, AT&T Research and Lucent Bell Labs, 2002. (https://www.graphviz.org). 7, 45
- [HU69] J. E. Hopcroft and J. D. Ullman. *Formal Languages and their Relation to Automata*. Addison-Wesley, Reading, Mass., 1969. 34
- [KM02] I. Kapovich and A. Myasnikov. Stallings foldings and subgroups of free groups. *J. of Algebra*, 248:608–668, 2002. 53, 55
- [MMP⁺95] O. Matz, A. Miller, A. Potthoff, W. Thomas, and E. Valkema. Report on the program amore. Technical Report 9507, Christian Albrechts Universität, Kiel, 1995. 7, 33, 34
- [MSW01] S. Margolis, M. Sapir, and P. Weil. Closed subgroups in pro-V topologies and the extension problem for inverse automata. *Int. J. of Algebra and Computation*, 11:405–445, 2001. 53

Index

MinimalAutomaton, 35	FlowerAutomaton, 54
StarRatExp, 25	FoldFlowerAutomaton, 54
-	FuseSymbolsAut, 33
AccessibleAutomaton, 35	
AccessibleStates, 35	GeneratorsToListRepresentation, 53
AddInverseEdgesToInverseAutomaton, 16	GeodesicTreeOfInverseAutomaton, 55
AlphabetOfAutomaton, 12	GraphStronglyConnectedComponents, 42
AlphabetOfAutomatonAsList, 12	Tuiti-10t-t-20fA-t
AlphabetOfRatExp, 24	InitialStatesOfAutomaton, 13
AlphabetOfRatExpAsList, 24	IntersectionAutomaton, 36
AreDisjointLang, 30	IntersectionLanguage, 36
AreEqualLang, 29	InverseAutomatonToGenerators, 55
AreEquivAut, 29	IsAutomaton, 10
AutoConnectedComponents, 42	IsContainedLang, 30
AutoIsAcyclicGraph, 44	IsDenseAutomaton, 15
Automaton, 8	IsDeterministicAutomaton, 10
AutomatonAllPairsPaths, 36	IsEmptyLang, 29
AutomatonToRatExp , 27	${\tt IsEpsilonAutomaton}, 10$
AutoVertexDegree, 41	IsFiniteRegularLanguage, 38
AutToRatExp, 27	IsFullLang, 29
	IsInverseAutomaton, 15
CopyAutomaton, 16	${\tt IsNonDeterministicAutomaton,10}$
CopyRatExp, 25	IsPermutationAutomaton, 15
	IsRationalExpression, 23
DiGraphToRelation, 43	IsRecognizedByAutomaton, 15
DotForDrawingAutomaton, 47	IsReversibleAutomaton, 16
DotStringForDrawingGraph, 50	
DotStringForDrawingSubAutomaton, 49	ListOfWordsToAutomaton, 38
DrawAutomaton, 45	ListPermutedAutomata, 18
DrawGraph, 50	ListSinkStatesAut, 17
DrawSCCAutomaton, 51	ListToGeneratorsRepresentation, 53
DrawSubAutomaton, 48	MinimalizadAu+ 24
	MinimalizedAut, 34
EpsilonCompactedAut, 32	MSccAutomaton, 43
EpsilonToNFA, 31	NFAtoDFA, 33
EpsilonToNFASet, 32	NormalizedAutomaton, 19
TAL D. 17 07	NullCompletionAutomaton, 16
FAtoRatExp, 27	NumberStatesOfAutomaton, 14
FinalStatesOfAutomaton, 13	
FiniteRegularLanguageToListOfWords, 38	PermutedAutomaton, 18

ProductAutomaton, 19
ProductOfLanguages, 20
ProductRatExp, 25
RandomAutomaton, 11
RandomDiGraph, 41
RandomRatExp, 23
RatExpOnnLetters, 22
RatExpToAut, 28
RatExpToAutomaton, 28
RatExpToNDAut, 27
rational expressions, 22
RationalExpression, 22
ReducedNFA, 32
RemovedSinkStates, 17
ReversedAutomaton, 18
ReversedGraph, 41
SetFinalStatesOfAutomaton, 14
SetInitialStatesOfAutomaton, 13
SizeRatExp, 23
String, 11
SubgroupGenToInvAut, 54
SyntacticSemigroupAut, 21
SyntacticSemigroupLang, 21
TransitionMatrixOfAutomaton, 13
${\tt TransitionSemigroup, 20}$
UnderlyingGraphOfAutomaton, 42
UnderlyingMultiGraphOfAutomaton, 42
UnionAutomata, 19
UnionRatExp, 25
UsefulAutomaton, 34
VertexInDegree, 41
VertexOutDegree, 41