Éléments de mathématiques pour la physique

JÉRÔME - - FILIO Paul

12 septembre 2024

Table des matières

1	Syst	ystèmes de coordonnées 2		
	1.1	Coordo	nnées cartésiennes	
		1.1.1	Vecteur position	
		1.1.2	Vecteur vitesse	
		1.1.3	Vecteur accélération	
		1.1.4	Différentielles des vecteurs de base	
		1.1.5	Déplacement élémentaire	
		1.1.6	Volume élémentaire	
	1.2	Coordo	nnées cylindriques	
		1.2.1	Vecteur position	
		1.2.2	Vecteur vitesse	
		1.2.3	Vecteur accélération	
		1.2.4	Différentielles des vecteurs de base	
		1.2.5	Déplacement élémentaire	
		1.2.6	Volume élémentaire	
	1.3	Coordo	nnées shériques	
		1.3.1	Vecteur position	
		1.3.2	Différentielles des vecteurs de base	
		1.3.3	Déplacement élémentaire	
		1.3.4	Volume élémentaire	
2	Vec	teurs et	eurs et différentiation Différentielle d'une fonction de plusieurs variables	
	2.1	Différer		
	2.2			
		2.2.1	Nabla	
			Gradient	
			Divergence	
		2.2.4	Rotationnel	
		2.2.5	Laplacien scalaire	

1 Systèmes de coordonnées

1.1 Coordonnées cartésiennes

1.1.1 Vecteur position

$$\overrightarrow{OM} = x\overrightarrow{\mathbf{u}_x} + y\overrightarrow{\mathbf{u}_y} + z\overrightarrow{\mathbf{u}_z}$$

1.1.2 Vecteur vitesse

$$\frac{\mathrm{d}\overrightarrow{OM}}{\mathrm{d}t} = \dot{x}\overrightarrow{\mathbf{u}_x} + \dot{y}\overrightarrow{\mathbf{u}_y} + \dot{z}\overrightarrow{\mathbf{u}_z}$$

1.1.3 Vecteur accélération

$$\frac{\mathrm{d}^2 \overrightarrow{OM}}{\mathrm{d}t^2} = \ddot{x} \overrightarrow{u_x} + \ddot{y} \overrightarrow{u_y} + \ddot{z} \overrightarrow{u_z}$$

1.1.4 Différentielles des vecteurs de base

$$d\overrightarrow{u_x} = dx\overrightarrow{u_x}$$
$$d\overrightarrow{u_y} = dy\overrightarrow{u_x}$$
$$d\overrightarrow{u_z} = dz\overrightarrow{u_z}$$

1.1.5 Déplacement élémentaire

$$\overrightarrow{d\ell} = dx\overrightarrow{u_x} + dy\overrightarrow{u_y} + dz\overrightarrow{u_z}$$

1.1.6 Volume élémentaire

$$d\tau = dx dy dz$$

1.2 Coordonnées cylindriques

1.2.1 Vecteur position

$$\overrightarrow{OM} = r\overrightarrow{\mathbf{u}_r}$$

1.2.2 Vecteur vitesse

$$\frac{\mathrm{d}\overrightarrow{OM}}{\mathrm{d}t} = \dot{r}\overrightarrow{\mathbf{u}_r} + r\dot{\theta}\overrightarrow{\mathbf{u}_\theta} + \dot{z}\overrightarrow{\mathbf{u}_z}$$

1.2.3 Vecteur accélération

$$\frac{\mathrm{d}^2 \overrightarrow{OM}}{\mathrm{d}t^2} = \left(\ddot{r} - r\dot{\theta}^2\right) \overrightarrow{\mathbf{u}_r} + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right) \overrightarrow{\mathbf{u}_\theta} + \ddot{z}\overrightarrow{\mathbf{u}_z}$$

1.2.4 Différentielles des vecteurs de base

$$d\overrightarrow{u_r} = d\theta \overrightarrow{u_\theta}$$

$$d\overrightarrow{u_\theta} = -d\theta \overrightarrow{u_r}$$

$$d\overrightarrow{u_z} = dz \overrightarrow{u_z}$$

1.2.5 Déplacement élémentaire

$$\overrightarrow{\mathrm{d}\ell} = \mathrm{d}r\overrightarrow{\mathrm{u}_r} + r\,\mathrm{d}\theta\overrightarrow{\mathrm{u}_\theta} + \mathrm{d}z\overrightarrow{\mathrm{u}_z}$$

1.2.6 Volume élémentaire

$$d\tau = r dr d\theta dz$$

1.3 Coordonnées shériques

$$\theta, \varphi) \in [0, \pi[\times[0, 2\pi[$$

1.3.1 Vecteur position

$$\overrightarrow{OM} = r\overrightarrow{\overrightarrow{u_r}}$$

1.3.2 Différentielles des vecteurs de base

$$\begin{split} \mathrm{d}\overrightarrow{\mathrm{u}_r} &= \mathrm{d}\theta\overrightarrow{\mathrm{u}_\theta} + \sin(\theta)\,\mathrm{d}\varphi\overrightarrow{\mathrm{u}_\varphi} \\ \mathrm{d}\overrightarrow{\mathrm{u}_\theta} &= -\,\mathrm{d}\theta\overrightarrow{\mathrm{u}_r} + \cos(\theta)\,\mathrm{d}\varphi\overrightarrow{\mathrm{u}_\varphi} \\ \mathrm{d}\overrightarrow{\mathrm{u}_\varphi} &= -\,\mathrm{d}\varphi\,(\sin(\theta)\overrightarrow{\mathrm{u}_r} + \cos(\theta)\overrightarrow{\mathrm{u}_\theta}) \end{split}$$

1.3.3 Déplacement élémentaire

$$\overrightarrow{\mathrm{d}\ell} = \mathrm{d}r\overrightarrow{\mathrm{u}_r} + r\,\mathrm{d}\theta\overrightarrow{\mathrm{u}_\theta} + r\sin(\theta)\,\mathrm{d}\varphi\overrightarrow{\mathrm{u}_\varphi}$$

1.3.4 Volume élémentaire

$$\boxed{\mathrm{d}\tau = r^2 \sin\theta \, \mathrm{d}r \, \mathrm{d}\theta \, \mathrm{d}\phi}$$

2 Vecteurs et différentiation

2.1 Différentielle d'une fonction de plusieurs variables

$$df(x, y, z) = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$$

2.2 Vecteurs et différentiation

2.2.1 Nabla

$$\overrightarrow{\nabla} = \frac{\partial}{\partial x} \overrightarrow{\mathbf{u}}_x + \frac{\partial}{\partial y} \overrightarrow{\mathbf{u}}_y + \frac{\partial}{\partial z} \overrightarrow{\mathbf{u}}_z$$
 en coordonnées cartésiennes

$$\overrightarrow{\nabla} = \frac{\partial}{\partial r} \overrightarrow{\mathbf{u}_r} + \frac{1}{\theta} \frac{\partial}{\partial \theta} \overrightarrow{\mathbf{u}_\theta} + \frac{\partial}{\partial z} \overrightarrow{\mathbf{u}_z}$$
 en coordonnées cylindriques
$$= \frac{\partial}{\partial r} \overrightarrow{\mathbf{u}_r} + \frac{1}{r} \frac{\partial}{\partial \theta} \overrightarrow{\mathbf{u}_\theta} + \frac{1}{r \sin(\theta)} \frac{\partial}{\partial \varphi} \overrightarrow{\mathbf{u}_\varphi}$$
 en coordonnées sphériques

2.2.2 Gradient

$$\overrightarrow{\operatorname{grad}} f = \overrightarrow{\nabla} f$$

$$\overrightarrow{\operatorname{grad}} f = \frac{\partial f}{\partial x} \overrightarrow{u_x} + \frac{\partial f}{\partial y} \overrightarrow{u_y} + \frac{\partial f}{\partial z} \overrightarrow{u_z}$$
 en coordonnées cartésiennes
$$= \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{\theta} \frac{\partial f}{\partial \theta} \overrightarrow{u_\theta} + \frac{\partial f}{\partial z} \overrightarrow{u_z}$$
 en coordonnées cylindriques
$$= \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \overrightarrow{u_\theta} + \frac{1}{r \sin(\theta)} \frac{\partial f}{\partial \varphi} \overrightarrow{u_\varphi}$$
 en coordonnées sphériques

2.2.3 Divergence

$$\overrightarrow{\mathrm{div}}\,\overrightarrow{A} = \overrightarrow{\nabla}.\overrightarrow{A}$$

2.2.4 Rotationnel

$$\overrightarrow{\operatorname{rot} A} = \overrightarrow{\nabla} \wedge \overrightarrow{A}$$

2.2.5 Laplacien scalaire

$$\begin{split} \Delta f &= \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} & \text{en coordonn\'es cart\'esiennes} \\ &= \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2} & \text{en coordonn\'es cylindriques} \\ &= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2 f}{\partial \varphi^2} & \text{en coordonn\'es sph\'eriques} \end{split}$$