

KCA UNIVERSITY SCHOOL OF TECHNOLOGY BIT 03206 – ARTIFICIAL INTELLIGENCE ASSIGNMENT TWO

DATE: JULY, 2025

Domain: Restaurant Management System

1. Types of Knowledge to Represent

To effectively manage a restaurant, we need to represent the following categories of knowledge:

a. Declarative Knowledge (Facts)

- **Menu items**: Names, categories (appetizer, main course, dessert, beverage), ingredients, dietary tags (vegan, gluten-free), prices.
- Staff: Roles (chef, waiter, manager), schedules, contact info.
- Tables: Table IDs, capacity, location (indoor/outdoor).
- **Customers**: Profiles, preferences, reservation history.
- Reservations: Date/time, table assignment, customer, special requests.

b. Procedural Knowledge

- Order workflow: Taking orders \rightarrow kitchen processing \rightarrow delivery to table \rightarrow billing.
- **Reservation management**: Check availability \rightarrow assign table \rightarrow confirm.
- **Inventory management**: Update stock → notify when low → reorder.

c. Heuristic Knowledge

- Preferred seating assignments based on customer profile.
- Time required for preparing specific dishes.
- · Rules for optimal staff scheduling.

d. Meta-Knowledge

• Confidence in the freshness of ingredients.

Reliability of suppliers.

2. Method of Knowledge Representation

Hybrid Approach:

- a. Ontology-Based Representation (using OWL/RDF)
 - Build a formal ontology for:
 - o Classes: MenuItem, Ingredient, Table, Reservation, Customer, Staff
 - o Properties: hasIngredient, isAvailableAtTime, servedBy, hasPreference, etc.
 - o Hierarchies: MenuItem subclassed into Appetizer, MainCourse, etc.
- b. Rule-Based System (using Production Rules)
 - Example:
 - IF reservation_time is during peak_hours AND party_size > 4
 - THEN assign a waiter with at least 2 years of experience.
- c. Frames (for Procedural Knowledge)
 - A Reservation frame:
 - Reservation:
 - - ID
 - Customer
 - TimeSlot
 - - TableAssigned
 - - SpecialRequests
 - Status (Confirmed/Cancelled)
- 3. Reasoning Capabilities
- a. Inference
 - Deduce available tables for a given time slot.
 - Infer dietary options for a customer based on previous orders.
- b. Consistency Checking
 - Ensure a table isn't double-booked.
 - Validate ingredient availability for ordered dishes.
- c. Classification
 - Automatically classify new dishes into categories based on ingredients.
 - Classify customer types (e.g., frequent diner, first-time visitor).

d. Temporal Reasoning

- Understand past vs. future reservations.
- Plan staff schedules over shifts and days.

e. Recommendation

- Suggest dishes based on customer preferences or allergies.
- Recommend reservations based on historical patterns.

4. Implementation Stack (Example)

Component	Technology/Tool
Ontology	OWL, Protégé
Inference Engine	SWRL, Apache Jena, Pellet
Rule Engine	Drools or CLIPS
Database	PostgreSQL or Graph DB (Neo4j)
UI/API	React + RESTful APIs

Example Scenario

User query: "Can I reserve a table for 4 people at 7 PM tonight, and can you recommend a vegan meal?"

System reasoning:

- Uses temporal reasoning to check table availability at 7 PM.
- Uses inference to filter menu items with vegan dietary tag.
- Uses rule-based logic to assign a waiter based on party size and time.

Response:

"Yes, a table for 4 is available at 7 PM. We recommend our 'Grilled Tofu Bowl' and 'Vegan Chocolate Cake'."