

Cálculo

folha 9 (V2) -

2018'19 —

Aplicações do integral de Riemann

1. Usando integrais definidos, calcule

(a)
$$\lim_{n \to +\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \ldots + \frac{n-1}{n^2} \right)$$

(b)
$$\lim_{n \longrightarrow +\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{n+n} \right)$$

- **2.** Seja $f:[-1,2] \longrightarrow \mathbb{R}$ definida por $f(x)=1+x^2$. Determine o valor médio da função e, se possível, o valor $c \in [-1, 2]$ tal que f(c) é o valor médio da função.
- 3. Seja f uma função real contínua tal que $\int_{-1}^{3} f(x) dx = 8$. Mostre que a função f toma o valor 4 em pelo menos um ponto do intervalo [1, 3].
- **4.** Sejam $f \in g$ duas funções integráveis em [a, b] cujas curvas de intersetam neste intervalo. Nestas condições, qual o significado geométrico de cada um dos integrais?

(a)
$$\int_{a}^{b} [f(x) - g(x)] dx$$

(b)
$$\int_{a}^{b} |f(x) - g(x)| dx$$

- 5. Determine a área da região limitada por $y=\sqrt{x}$, pela tangente a esta curva em x=4 e pelo eixo das ordenadas.
- **6.** Represente graficamente o conjunto A dado e calcule a sua área.
 - (a) A é o conjunto do plano limitado pelas retas x=1, x=4, y=0 e pela curva de $f(x)=\sqrt{x}$.
 - (b) $A = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1 \text{ e } \sqrt{x} \le y \le -x + 2\}.$
 - (c) A é o conjunto do plano limitado superiormente pela parábola de equação $y=-x^2+\frac{7}{2}$ e inferiormente pela parábola de equação $y = x^2 - 1$.
 - (d) $A \in \mathcal{A}$ o conjunto de todos os pontos (x, y) em \mathbb{R}^2 tais que $x^2 1 < y < x + 1$.
- 7. Em cada alínea calcule a área da região limitada pelas curvas de equações:

(a)
$$x = 0$$
, $x = 1$, $y = 3x$, $y = -x^2 + 4$ (d) $y = -x^3$, $y = -(4x^2 - 4x)$

(d)
$$y = -x^3$$
, $y = -(4x^2 - 4x)$

(b)
$$x = 0$$
, $x = \pi/2$, $y = \sin x$, $y = \cos x$ (e) $x = 0$, $x = 2 - y - y^2$

(e)
$$x = 0$$
, $x = 2 - y - y^2$

(c)
$$x = -1$$
, $y = |x|$, $y = 2x$, $x = 1$

(f)
$$y = 2 - x^2$$
, $y^3 = x^2$

- **8.** Defina a reta horizontal (y = k) que divide a área da região entre $y = x^2$ e y = 9 em duas partes iguais.
- **9.** Seja A a área limitada por $y=\frac{1}{\sqrt{x}}$, y=0, x=1 e x=b,b>1. Calcule A e $\lim_{b\longrightarrow +\infty}A$.
- 10. Encontre o comprimento da curva definida por y=2x entre os pontos de coordenadas (1,2) e (2,4):
 - (a) usando o teorema de Pitágoras;
 - (b) usando um integral definido em ordem a x;
 - (c) usando um integral definido em ordem a y;
- **11.** Considere a curva definida por $y = x^{2/3}$.
 - (a) Esboce o arco desta curva, entre x = -1 e x = 8.
 - (b) Explique porque razão não pode usar um integral definido em ordem a x para calcular o comprimento de arco esboçado na alínea 11a.
 - (c) Calcule o comprimento da curva da 11a.

12. Determine o comprimento da curva definida pelas equações apresentadas, entre os pontos A e B indicados:

(a)
$$y = \frac{2}{3}x^{2/3}$$
, $A = (1, \frac{2}{3})$, $B = (8, \frac{8}{3})$

(c)
$$y = 6\sqrt[3]{x^2} + 1$$
, $A = (-1,7)$, $B = (-8,25)$

(b)
$$y = 5 - \sqrt{x^3}$$
, $A = (1, 4)$, $B = (4, -3)$

(d)
$$y = \frac{1}{4x} + \frac{x^3}{3}$$
, $A = (2, \frac{67}{24})$, $B = (3, \frac{109}{12})$.

Integrais Impróprios.

13. Estude a natureza dos seguintes integrais impróprios

(a)
$$\int_{2}^{+\infty} \frac{1}{x-1} dx$$

(a)
$$\int_{2}^{+\infty} \frac{1}{x-1} dx$$
 (c) $\int_{2}^{+\infty} \frac{1}{x^2-1} dx$ (e) $\int_{1}^{+\infty} \frac{1}{x^2} dx$ (g) $\int_{e}^{+\infty} \frac{1}{x \ln x} dx$

(e)
$$\int_{1}^{+\infty} \frac{1}{x^2} \, dx$$

(g)
$$\int_{a}^{+\infty} \frac{1}{x \ln x} \, dx$$

(b)
$$\int_{-\infty}^{0} x e^{-x^2} dx$$

(d)
$$\int_{1}^{+\infty} x^2 dx$$

(f)
$$\int_{1}^{+\infty} \cos(\pi x) \, dx$$

(b)
$$\int_{-\infty}^{0} x e^{-x^2} dx$$
 (d) $\int_{1}^{+\infty} x^2 dx$ (f) $\int_{1}^{+\infty} \cos(\pi x) dx$ (h) $\int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx$

- **14.** Mostre que o integral impróprio $\int_1^{+\infty} \frac{1}{x^r} \ dx$ é convergente se r>1 e é divergente se $r\leq 1$.
- **15.** Mostre que o integral $\int_{0}^{+\infty} e^{-rx} dx$ é convergente se r > 0 e divergente se $r \le 0$.

(Sug.: comece por estudar o caso r=0.)

- **16.** Seja $\mathcal D$ a região definida por $y=e^{-x}$ com $x\geq 0$ e o eixo das abcissas.
 - (a) Esboce \mathcal{D} e calcule, se possível, a área de \mathcal{D} .
 - (b) Determine, se possível, o comprimento da curva que limita \mathcal{D} superiormente.
- 17. Indique, justificando, se cada um dos seguintes integrais é convergente ou divergente.

(a)
$$\int_0^{+\infty} e^{-x} \cos \sqrt{x} \ dx;$$

(b)
$$\int_{-\infty}^{+\infty} e^{-|x|} dx$$
. (Sug.: escreva o integral como soma de dois integrais.)

- **18.** Seja f uma função tal que $\lim_{c \to +\infty} \int_{-a}^{c} f(x) dx = 0$. O que se pode, nestas condições, dizer sobre $\int_{-\infty}^{\infty} f(x) dx$?
- 19. Estude a natureza dos seguintes integrais

(a)
$$\int_0^1 \frac{1}{x} dx$$

(c)
$$\int_0^1 \ln x \, dx$$

(e)
$$\int_{1}^{2} \frac{1}{\sqrt{x-1}} dx$$

(b)
$$\int_0^1 \frac{1}{1-x} \, dx$$

(d)
$$\int_0^1 x \ln x \, dx$$

(f)
$$\int_{-3}^{1} \frac{1}{x^2 - 4} \, dx$$

- **20.** Considere a função f definida por $f(x) = \frac{e^{-x}}{\sqrt{x}}$. Indique o domínio de f e estude a natureza do integral $\int_0^{+\infty} \frac{e^{-x}}{\sqrt{x}} dx.$
- **21.** Seja fuma função contínua em $\mathbb R$ tal que $\int_0^{+\infty} f(x) dx$ converge. Sendo a > 0, indique, justificando, quais (se algum) dos seguintes integrais é convergente

(a)
$$\int_0^{+\infty} a f(x) dx$$

(c)
$$\int_0^{+\infty} f(a+x) dx$$

(b)
$$\int_0^{+\infty} f(ax) dx$$

(d)
$$\int_0^{+\infty} [a+f(x)] dx$$