

AD A 088346

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

1. REPORT NUMBER 2. GOVT ACCESSION NO	READ INSTRUCTIONS BEFORE COMPLETING FORM
	3. RECIPIENT'S CATALOG NUMBER
DR-1154 AD-A088 346	
12824C LANCE	S. TYPE OF REPORT & PER OF TO
Missile Number 51942	
Round Number 353 NPL	6. PERFORMING ORG. REPORT NUMBE
4 5 11 19 00	8. CONTRACT OR GRANT NUMBER
(1) dita /4t.	(16, 11)
White Sands Meteorological Feam	DA Task, 1F665782D127482
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT TA
	AREA & WORK UNIT NUMBERS
	[2/2]
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
US Army Electronics Research & Dev Command	July 1980
Atmospheric Sciences Laboratory	-10- NUMBER OF PAGES
Atmospheric Sciences Laboratory White Sands Missile Range, New Mexico 88002 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	30 15. SECURITY CLASS. (of this report)
US Army Electronics Research & Dev Command	UNCLASSIFIED
Adelphi, MD 20783	154. DECLASSIFICATION/DOWNGRADIN
16. DISTRIBUTION STATEMENT (of this Report)	
1/(m)	1. **
111/2 11 11/11/11/11/11	54
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from	- Provide
The state of the s	
Annual Committee of the	
Approved for public releases; distribution unlimi	ted
18. SUPPLEMENTARY NOTES	
18. SUPPLEMENTARY NOTES	
18. SUPPLEMENTARY NOTES	
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number and identify by block number) 26. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 20. ASSTRACT (Continue on reverse skills if necessary and identify by block number) Meteorological data gathered for the launching of	the 12824C LANCE, Missile
19. KEY WORDS (Continue on reverse side if necessary and identify by block number and identify by block number) 28. (ABSTRACT (Continue on reverse skills if necessary and identify by block number)	the 12824C LANCE, Missile
19. KEY WORDS (Continue on reverse side II necessary and identify by block number) 20. (ABSTRACT (Continue on reverse skills if necessary and identify by block number) Meteorological data gathered for the launching of	the 12824C LANCE, Missile
19. KEY WORDS (Continue on reverse side II necessary and identify by block number) 20. (ABSTRACT (Continue on reverse skills if necessary and identify by block number) Meteorological data gathered for the launching of	the 12824C LANCE, Missile

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

A way have you

CONTENTS

	PAGE
INTRODUCTION	1
DISCUSSION	1
LAUNCH AREA MAP	2
TABLES:	
1. Surface Observation Taken at 1500 MDT at LC-33	3
2. WSD Significant Level Data at 1500 MDT	4
3. WSD Upper Air Data at 1500 MDT	5
4. WSD Mandatory Levels at 1500 MDT	10
5. SMR Significant Level Data at 1400 MDT	11
6. SMR Upper Air Data at 1400 MDT	13
7. SMR Mandatory Levels at 1400 MDT	17
8. HMN Significant Level Data at 1500 MDT	18
9. HMN Upper Air Data at 1500 MDT	20
10. HMN Mandatory Levels at 1500 MDT	26

Accession For
NTIS GRA&I 100 TAB Unumounced Justification
-
Бу
Distribution/
Ayniinbility Codes
Availand/or. special

INTRODUCTION

12824C LANCE	, Missile Number	5194	, Round Number 353 ECL ,
was launched from	LC-33 , White	Sands Missile	Range (WSMR), New Mexico,
at 1500 MDT on	4 July 1980	The schedu	iled launch time war
1500 MDT			

DISCUSSION

Meteorological data were recorded and reduced by the White Sands Meteorological Team. Atmospheric Sciences Laboratory (ASL), White Sands Missile Range, dea Mexico. The data were obtained by the following methods:

- 1. Observations
 - a. Surface
- (1) Standard surface observations to include pressure, temperature (0 C), relative humidity, dew point (0 C), density (gm/m 3), Wind direction and speed, and cloud cover were made at the <u>LC-33</u> Met Site at T-0 minutes.
- (2) Monitor of wind speed and direction from one anemometer was provided in the launch control room.
 - b. Upper Air
- (1) Low level wind data were obtained from RAPTS T-9 pibal observation at:

SITE AND ALTITUDE

NOT AVAILABLE

(2) Air structure data (rawinsonde) were collected at the following Met Sites. Data were collected from surface to as high as possible in 500-feet increments.

SITE AND TIME

WSD	1500 MDT
SMR	1400 MDT
HMN	1500 MDT

- 1. MET TOWER 4 Bendix Model T-20 Anemometers at 12 ft, 62 ft, 102 ft, and 202 ft with E/A recorders.
- 2. POLE ANEMOMETER Bendix Model T-120 with E/A recorders.
 - (a) Pole #1 38.7 ft.
 - (b) Pole #2 53.0 ft.
 - (c) Pole #3 83.6 ft.
- 2. RAMTS T-9 Radar Automatic Pilot-Balloon Tracking System T-9 Radar.

TABLE 1. Surface Observations Taken at 1500 MDT, 4 July 1980, at LC-33, 12824C LANCE, Missile Number 5194, Round Number 353 NPL.

ELEVATION	3987	IT/MSL
PRESSURE	877.5	MBS
TEMPERATURE	34.7	°c
RELATIVE HUMIDITY	26	γ
DEW POINT	12.2	ос
DENSITY	984	GM/m ³
WIND SPEED	04	KTS
WIND DIRECTION	090	DEGREES
CLOUD COVER	4	CI

\$14110N ALITUDE 5989-00 FEET MSL 4 JULY NO 1500 HRS NOT ASCENSION NO. 529

STGTFTCAUT LLVEL DATA 1860020359 WHITE SANDS

6EODETIC COORDIMATES 32.40043 LAT DEG 106.37033 LON DEG

TABLE 2.

429 J.S. 40	Growr TR1C	TEMPE	TE EIPE, RATOR	R. L. HUM.
			DEWPOILT	PLRCEINT
LIMARS	MIT FEEL	UF GREE S	CE'11 I GKADE	•
377.5	3789.0	37.5	2 . 6	18.U
150.0	1058.7	33.7	†	16.0
781.6	139.6	26.0	•	19•1
700.0	10530.6	17.4	-1.3	Z.B. n
531.6	13376.2	9 . c	-5.0	41.0
3.8cc	16665.5	÷	-to-6	58.0
0.000	19567.9	45.9	-12.0	1,2.0
	21n92.8	-0-t	-15.7	72.11
=	21786.6	ر، 10، ا	-16.0	2 4 • 0
_	23124.7	-13.7	1.54.0	16.0
	23593.0	-14.0	-34.9	15.0
	25189.9	-17.7	-38.0	15.0
_	267.34.1	-21.3	-40°-5	16.0
	31515.9	-32.9	-49.5	17.0
_	32049.5	-33+ts		
	3614,,,0	-42.3		
224 · B	38524.0	6-44-		
	41051.7	-6.00-		
	47059.7	-63.7		
	55151.3	-60.3		
	6064n.2	-67.2		
70.0	5.14.53	-63.1		
26.0	66435.4	0.74-		
0.05	69197.8	-57.9		
38.6	74637.8	1.44.		

4

MOT	
HEET	?
3989.00 1500	2
	٠.
STATION ALTITUDE	A SCLMS I UN

UMPER AIR DATA

SIALIUN AL	₹	89.00 FEE	S ADT		1060020359	55 57		6E0DE.11	GEODETIC COORDINATES 32.40043 LAT DEG
ASCEMSION NO.	NO. 359				TABLE 3.			106.	106.37033 LON DEG
GEOME IN1C	PRESSURE	TEM	TEMPERA 1URE	REL. HUM.	DENSITY	SPLEU OF	WIND DATA	TA	INDEX
AL I I I IUL		AIA	DEWPOINT	PERCENT	GM/CUBIC	SOUND	DIRECTION	SPEED	ප්
MSL FEE!	MILLIUNKS DEGREES	DEGREES	0		ME TER	KNOTS	DEGREES (1N)	KNOTS	REFRACTION
3989.n	877.5	37.5	3.2	18.0	979.1	P889	•	0.	1.000264
4000	877.2	37.5	0.0	13.0	978.9	_	162.0	· c·	1.000264
45110.0	962.6	35.5	6.6	16.0	9.646	_	182.0	1.0	1.000255
5000.0	848.2	33.5	4.5	16.1	960-0	•	182.0	2.0	1.000247
5500.0	H35.H	31.9	3.6	16.7	48.7		182.0	3.0	1.000244
0.0000	419.1	30.4	5∙8	17.3	957.6	679.9	182.0	0.4	1.000240
6500.0	802.8	28•H	7•1	17.9	956.6		101.1	4.6	1.000236
7000.0	7.761	27.2	1+3	18.5	915.8		178.4	± • •	1.000232
7500.0	178.1	25.7	••	19.3	8+406		175.0	6.4	1.000229
8000.0	765.1	24.5	₹.	20.7	893.2		100.1	5.4	1.000226
4500·U	/51.8	23.0	?	22.5	881.7		160.3	6.5	1.00023
0.0mg/	/38-/	51.6	0:	23.6	870.3	6.699	147.1	6.9	1.000221
9500.0	125.B	20.5	†	25.0	859.2		152.4	7.4	1.000218
10000	/13-2	18.9	B•-	26.5	848.2		115.2	7.2	1.000215
10500.0	a•00/	17.5	-1.2	27.9	R57.4		95.1	7.4	1.000212
110,,0.5	59B9	16.1	-1-4	30.1	826.3		61.9	6.9	1.000209
_	975.4	14.7	-1.6	32.4	815.4		9.48	5.9	1.000207
12000.6	563.8	13.4	-1.9	34.7	804.6		81.2	5.4	1.000204
12500.0	651.9	12.0	-2.5	37.0	294.0		77.2	6.4	1.000201
13000.0	2.040	10.6	-2-6	39.3	. 7H3.6		90.08	5.1	1.000198
13500.0	P28.1	9.3	-3-1	41.6	773.3		95.3	5.4	1.000195
14010.0	617.1	7.9	3.5	44.2	762.8		107.8	5.2	1.000193
14500.0	1.504	6.5	0:1-	46.8	752.4	652.4	121.0	5.2	1.000190
15000.0	294.5	5.1	9.6-	40.4	742.3		127.5	5.2	1.000187
15500.0	583.6	3.7	-5.5	52.0	732.3		151.2	5.1	1.000184
16000.0	372.B	2.3	-5.9	54.6	722.5		151.3	5.1	1.000161
16500.0	562.3	1.0	-6.5	57.1	712.6	645.8	128.4	5.5	1.000178
17000.	551.1	2.5	-7.4	54.5	702.5		128.1	5.5	1.000174
17500.n	241.5	-1.3	€.8	59.5	692.1		150.3	5.3	1.000171
18000.0	531.0	-2.4	Z•u-	59.8	681.6	641.7	129.5	5.6	1.000168
18500.0	4.05c	-3.5	-10-1	60.5	671.7		127.4	6.1	1.000164
19000-1	0.116	-4.6	-11.0	61.2	661.7	639.0	123.0	0•9	1.000161

STATION ALTITUME SGROOMO PEET HIST A JULY RD ASCERSTON HO. 539 1400 HRS MDT

UFPER AIR LATA 1860020359 WHITE SANDS

GEODETIC COORDINATES 32.40043 LAF DEG 106.37033 LON DEG

4 JULY 89	9	1400 HRS	RS MOT		WHITE SANDS	້າ		32. 106.	32.40043 LAT DEG 106.37033 LON DEG
				TAB	TABLE 3 (continued)	tinued)		•	
GEOID 1K1C	PRESSOR	18.34	TEMPERATUPE	RELATION. DENSITY		SPEED OF	MINU DATA	V.	INDEX
AL 117170E		AIR	DE WPO INT	PERCENT	ن	CHIOOS	UIRECTION	SPEED	0F
MOL FEET	MILLIDARS DESKEES	DE GREES	CENT TORADE.		MC 15.7	S - 024	UC GIVE E. 3 ' 1 IV'	5	MET MAL 1 17/N
19500.0	5011.5	H. C.	-11.9	61.9	651.9	637.6	118.0	5.0	1.000158
20000-0	•	6.9-	-12.4	8.49	642.5	_	115.9	4.9	1.000156
20500.0	•	-8-2	-14.0	64.1	632.7		113.0	U• H	1.000153
21000	H-37#	h•6-	-13.6	71.4	623.4	633.3	125.2	J. C	1.000151
21500.0	463.6	-10.1	-16.1	61.4	613.2		142.1	3.1	1.000146
22000.n	•	-11.0	-19.8	48.0	603.4		149.5	3.7	1.000141
22590.0		-12.2	-24.9	33.8	544.5		145.7	4.1	1.000137
25000 - n		-13.4	-31.7	19.6	585.6		112.3	4.6	1.000133
23500.0		-13.9	-34.7	15.2	575.3	627.5	94.6	5.4	1.000130
24000·n		6.41-	-35.7	15.0	566.0	626.1	85.5	5.8	1.000128
24500.0		-16.1	-36.6	15.0	557.3	624.7	82•1	5.6	1.000126
3.00055	40.5.1	-17.3	-37.6	15.0	248.6	123.3	6.08	6.4	1.000124
25500.0		-18.4	-58.4	15.2	540.0		73.0	6.4	1.000122
200110.A		-19.5	-30.1	15.5	531.4		63.9	5.3	1.000120
		-50.6	6-55-	15.8	523.0		1.96	5.5	1.000118
270110.0		-21.8	40.7	16.0	514.6	617.7	7.6h	5.8	1.000116
27590.0		-23+0	-41.7	16.1	506.4		43.5	6.5	1.000114
28000.0		-24.3	-42.6	16.3	6.364		38.6	6.7	1.000112
28590.9		-25.5	9.54-	16.4	# 40 to 3		37.5	7.1	1.000110
29040.0		-26.7	9.44.	16.5	. 482.5		37.0	7.6	1.000108
295110 • n	334.2	-27.9	9•54-	16.6	474.8	610.1	35.7	8.2	1.000106
30001		-56.5	-4(·•1)	16.7	46.7.2		74.46	6.0	1.000105
30500.0		-30.4	50251	16.8	459.B		31.2	0.6	1.000103
31000	·	-31.6	S•84-	16.9	452.5	4,400	27.0	8.8	1.000101
31500.0		-32.9	5-64-	17.0	445.3		70.4	A.5	1.000100
32000.0	•	-33.5	+•R8-4	1.64	437.I	_	27.7	8•0	1.000047
325110.0	•	-34.5			4.624		31.0	9.0	1.000046
35000	Ĭ	-35.6			421.9	_	24.7	8.3	1.000094
355110.0	•	-36./			414.5		્.0+ ડ•0	9•0	1.000092
340110.0	v	-37.1			407.3	597.8	45.9	6.7	1.00001
345110+3	•	-38+8			400.5	596.4	50.6	12.2	1.000089
350110.4	763.4	-39.8			393.3	_	53.to	14.7	1.000088

** AT LEAST ONE ASSUMED RELATIVE HURIDITY VALUE WAS USED IN HE INTERPOLATION.

STATION ALITHUE, SOBSON FEET MET 4 JULY BD 1400 HRS MDT ASCERISION NO. 359 1400 HRS MDT

UPPER AIR DATA 1860020359 WHITE SANDS

GEODETIC COORDINATES 52.40043 LAT DEG 106.37033 LON DEG

ASCENSION NO.	456		TABL	TABLE 3 (continued)	tinued)		106.	106.37033 LON DEG
GE UTE THIC	PRESSURL	TEMPERATUPE	REL-HUM. DEUSITY		SPLEU OF	WIND DATA	۲۸	INULX
AL I I I'UE		AIR DEWPOINT	PERCENT	د:	South	DIRECTION	SPEED	10.
MSL FEET	HILLIBAKS	MILLIBARS DEGREES CERTIGRAPE		METEN	KNOTS	DEGREES(111)	KHOTS	REFRACTION
355410.0	45/.1	6.00		386.4	593.8	9.50	15.4	1.000086
36000	452.1	6-14-		379.7	592.4	56.3	16.2	1.000085
305110.0	240.5	-43.1		373.1	591.0	61.2	15.8	1.000083
37µ00.0	740.5	2.44-		356.7	589.4	\$ • ag	15.6	1.000062
375110.0	435.5	-45·4		360+3	587.9	6-89	16.4	1.000060
38000.0	230.5	-46.6		354.1	5,96	71.0	17.3	1.000079
38500.0	225.0	-47.8		346.0		ხმ∙3	18.9	1.000078
99000°	<19.9	4.84-		340.8		6•40	20.7	1.000076
39500.0	4112	8.84-		333.7		60.3	22.7	1.000074
400000	210.0	-49.3		326.8		55.7	25.0	1.000073
40500	2020	8.64-		320.0		53.to	26.7	1.000071
0.000th	500.5	-50.3		313.3		52.8	28.0	1.000070
41500.0	195.1	-51.3		307.4		24 • 1	29.5	1.000068
42000·0	191.1	-52.4		301.6		2005	31.3	1.000067
42590.0	186.6	-53.5		296.0		55.4	32.7	1.000066
6.00ms# 7	182.2	-54.6		5 up • 4		6.56	34.1	1.000065
43500.0	6.171	-55.8		285.0	574.4	53.E	34.46	1.000063
44000.0	173./	-56.9		279.7		9∙\$¢	34.6	1.000062
44500.0	169.5	-58.0		274.5		57.5	34.7	1.000061
45000	165.5	-59.1		. 269.4		61.4	35.0	1.000000
45500·n	161.6	2.09-		264.4		65.4	35.1	1.000059
40000	157.8	-61.3		259.5		7.69	35.4	1.000058
465110.0	154.0	-62.5		254.7	565.5	71∙8	35.1	1.000057
4/0110.0	150.4	-63.6		250.0	264.0	74.1	34.8	1.000056
47500.0	140.1	-64.0		744.4		70.8	33.8	1.000054
48000	143.1	-64-4		258.7		8.6/	32.4	1.000053
46500.0	139.5	7.49-		253.2	562.5	83.6	30.9	1.000052
49000.0	130.1	-65.0		227.8		7•68	29.0	1.00001
495,80.0	132.1	-65.4		222+5	561.5	45.2	27.2	1.900050
50000	129.4	-65./		217.4	561.1	100.2	23.9	1.000048
50500	120.2	-66.1		212.4		100.2	20.9	1.000047
510110.0	125.1	F66.4		207.5	560.1	108∙8	18.5	1.000046

UPPER ATH CATA 18601120359

6EODETIC COOKUITATES 32-40043 LAT DEG 106.37033 LOH DEG	INUEX OF REFRACTION	1.000045	1.000044	1.000043	1.000042	1.000041	1.000040	1.000039	1.000038	1.000037	1.000036	1.000035	1.000035	1.000034	1.000033	1.000032	1.000031	1.000030	1.000030	1.000029	1.000028	1.000027	1.000026	1.000025	1.000025	1.000024	1.000023	1.000023	1.000022	1.000022	1.000021	1.000021	1.000020
52.4 32.4 106.3	ta Speed Karots	16.2	17.1	18.0	17.9	17.4	17.1	17.0	17.2	18.1	19.3	17.4	15.7	14.0	12.4	12.0	12.9	13.8	14.2	14.5	14.8	15.0	15.3	15.9	16.4	16.9	17.4	18.6	21.2	24.3	26.4	28.4	29.7
	WIND DATA DIRECTION SI DEGREES(TA) K	112.0	110.4	108.9	109.9	111.6	113∙8	110.5	120.3	150.7	132.3	137.2	143.2	141.3	135.4	129.5	125.4	122.1	120.5	119.1	116.5	113.7	1111.1	109.0	107.1	104.2	101.4	9. tr	85.5	11.1	0 • / /	17.0	6.27
inued)	SPEED OF SOUND RIGOTS	559.7	5.59.2	558.7	558.3	557.8	557.3	556.8	550.4	550.4	550.7	556.9	557.2	557.5	557.7	558.0	558.2	558.5	558.8	559.0	560.3	562.1	563.8	565.0	565.8	566.6	567.4	568.2	569.0	569•B	570.6	571.4	571.9
CATA CATA THE SANDS WHITE SANDS TABLE 3 (continued)	د	202.7	196.0	103.4	189.0	144.6	140.5	1,6.5	172.1	167.8	163.5	159.5	155.1	151-1	147.2	143.4	139.7	156.1	132.6	12942	155.4	121.6	117.8	114.5	111.4	106.4	195.5	102.7	100.0	97.3	L • 1/0	92.2	8•6H
TABL	REC. Hum. DENSITY PERCENT GMZCUNI																																
1400 HRS MOT	FRESONE TEMPERATURE ALL DEWPOTHE MILLINGS DEGREES CENTINGADE	1,66.8	-67.1	-67.5	-67.8	-68.2	-68.5	-68•8	-69-2	-69.5	-69-11	-6B•B	-68.6	-68.4	-68.2	-68.0	-67.H	-67.6	-67.4	-67.5	-66.3	-65.0	-63-7	-62.H	-62.2	-61.6	-61.0	4.04-	-59•B	-59.2	-58.tb	158.0	-57.6
1140 398 10. 359	PRESOUR ALLIBARS 1	120.1	11/01	114.6	111.4	466.5	105.5	111,00	8.00T	686	ו5.0	7.°C	91.1	86.8	80.0	84.4	8443	80.5	78.03	76.5	Z4.5	76	70.33	4.69	67.5	63,+18	6.4.3	1.29	51.6	59.H	50.3	56.4	45.5
STATTON ALTITUDE SORO-OD FEET # OULT RU 1400 HRS ASCENSION NO. 359	GEORIE INIC ALTITIOE MSL FRET M	515.00•0	2.0000.c	525,000	550110+0	0.9550	54000-0	54540 • 6	55000+6	55500.0	שייוויסל	50500	57000.0	57500.0	58000.0	58590.0	59040.0		6.0110.0	605,00	61000 n	61500.n	n20110.0	62500·0	n.50HB.n	0.15HU.A	D.40110+0	64540.0	0.00069	7.011.cd	60000 · n	00i,00	0.7000.0

STATION 4 JULY ASCENSI

UPPLR AIR DATA

000011441ES 143 LAT DEG 133 LON DEG

WIND DATA	TEMPERATURE RELIBERS DEUSTRY SPLED OF WIND DATA	TEMPERATUPE.	THIC PRESSURE
106.3703	TABLE 3 (continued)		1510k 140. 35?
32.4004	WHITE SAIDS	1400 HRS MDT	1400 HRS MDT
GEODETIC COC	1860120359	O.O. PEFT MSL	ON ALTITUDE 3389 AND PEFT MSE

GEOINE IMIC	PRESSURE	TEM!	TEMPERATUPE.	HEL.1974	DEUSITY	SPEED OF	OF WIND DATA	TA	INUEX
AL 11T'UE		YI V	DEWPOINT	PERCENT	6M/CURIC	Child	DIRECTION	SPEED	S.
MSL FEE!	MILLIBAMS DEGREES	DEGREES			METEH	NIOTS	DEGREES (TH)	KIJOTS	REFPACTION
675HB.A		-57.1			R7.7		83.2	28.4	1.000020
0.000g		-57.1			45.6		0.68	27.4	1.000019
68500.0		-57.B			H3.6		3.56	56.6	1.000019
69000		-57.9			H1.7		9.46	25.B	1.000018
9.00.40		-57.1			79.7		9006	25.0	1.000018
700110.0		-57.3			7.77		97.5	25.7	1.000017
705,110.n		-57.0			15.7		7.26	27.2	1.000017
71000-0	4,0.3	-56.6			73.8	573.2	97.5	28.8	1.000016
/15,00.0		-56.3			72.0		0.66	29.1	1.000016
720110.0		-55.9			70.2		100.8	29.5	1.000016
72590.0		-55.6			4.89		102.7	29.3	1.900015
7.5000.0		-55.2			46.7				1.000015
735"0.0		-54.9			0.59				1.000014
74000		-54.5			63.4				1.0000.1
74500.0		-54.2			61∙8				1.000014
,									

STATION ALTITUM, SYSTEM FLET MEL WALT HO ALLISTON HIT. SOY 1400 HRS MDT

TANDATORY LEVELS 1860920359 WHITE SANDS

6EODETIC CODMUINATES 32-48043 LAT DEG 106-37033 LON DEG

•	334 1400 HRS	S MOT		WHITE SAUDS TABLE 4.	ຳ		32.4 106.3
	FIRE SCINE	PRESSIME GEOPOTITIEN	TEMPE	TEMPERATURE	KEL .HU	MIND PAIN	41A
	MILLIBARS	FIET	ر د	ENTIGRADE	יבונכניים	DEGREES (TN)	KNOTS
	A50.n	4935.	33.7	7.7	10.	182.0	1.9
	800.0	6713.	28.1	1.7	18.	180.0	4.5
	750.₽	6574	22.n		22.	159.6	1.0
	700.0	10520	17.4	-1.3	20.	94.1	7.4
	0.069	12575.	11.8	-2.3	37.	78.8	5.0
	0.009	147511.	g.,	-4.3	48.	125⋅8	5,3
	550.0	17062.	=:	-7.5	59.	120.4	5.2
	500.0	19540.	6.5	-12.0	وج.	117.7	5.8
	#50.H	22219.	-11.6	-22.2	41.	152.1	0.4
	400.0	25147.	-17.7	-38·u	15.		4.7
	350.0	28378.	-25.3	-43.4	10.		7.0
	306.0	319A4.	-35.6				7.9
	250.0	361n5.	-42.3				16.1
	200.0	4n951.	-50.3				28.0
	175.0	43770.	-56.5			53.8	34.6
	150.0	46926.	-63.7				34.8
	125.0	50574.	-66.2			107.2	20.0
	100.0	24978	-69.3				17.4
	80.0	59368.	-67.6			122.0	15.8
	70.0	6202a	-63.1				15.5
	6.09	65165.	-50-3			79.5	23.4
	20.0	68935.	-57.9			95.4	25.5
	0.04	73545.	-54.6				

** AT LEAST ONE ASSUMED RELATIVE HIMIDITY VALUE WAS USED IN THE INTERPOLATION.

STATION ALTITUDE 3997.30 FEET MSL 4 JULY 89 ASCENSION NO. 83 1400 HRS MDT

SIGNIFICANI LEVEL DATA 1860960065 S.M.R.

6E.ODETIC COORDINATES 32.46034 LAT LEG 186.42307 LON DEG

TABLE 5.

PRESSURL GF AL MILLIBARS MS	GFO.SFTRIC ALTITUDE MSL FEET	TLMPE AIR UFGPEES	TEMPERATUKE IR DEWPOINT PEES CENTIGKALE	KLL .HUM. PLRCENT
	I	0 01		0.41
•				
6216.0		30.7		18.0
8590.8		23.9	-1.1	19.0
10565.7		18.3	.	30.0
12058.4		3.0	-2.5	.1.u
16036.1		4.6	-7.1	0.94
17160.3		۲۰۶	J.U.	53.0
18639.1		0.4-	-7.6	75.0
19394.4		-5.6	-9.1	16.11
19624.6		8•4 <u>-</u>	-10.4	n.0/
19779.9		æ• ∵ -	-11.9	0.50
21321.7		٠. د.	-14.7	63.0
22547.5		-12.0	-54.0	36.0
22626.2		-11.9	-31.9	17.0
22005.3		-12.0	-32.6	16.0
23320.9		-12.1	-32.7	16.0
25261.4		-17.3	-37.0	16.0
28325.A		-25.0	-42.9	17.0
29854.0		-29.3	0.04-	18.0
32116.1		-34.0	6.64-	18.0
34486, 9		-30.1		
36.48.2		-41.7		
373"1.6		3.4.		
38262.0		-46.1		
40250.7		-48.2		
41151.8		2.64-		
43282.0		-55.2		
47141.3		-63.1		
48448.5		-6.5.7		
8.0416p		-65.3		
50264.2		-6.6.3		

4 JILT NO ALTHODE 3997.30 FFET 65L 4 JILT NO ASCENSION NO 1400 HRS MDT ASCENSION NO. 113

STOURTCANT LEVEL DATA 1860/1600a5 S-N-R

GEODETTC COORDINATES 32-48034 LAT DEG 106-42307 LON LEG

S M R STABLE 5 (continued)

PRLSSUR	PRESSURE GFORETRIC	TEMPERATURE	KLL.11UM.
MILLIMAN	ALTITUDE MILLIMAKS MSL FEET	AIR DEWPOINT UPGREES CENTICHADE	PLRCENT
117.6	52021.7	-65.7	
100.0		-6.H.2	
84.1	58705.0	-65.6	
16.6	60569.3	-67.R	
72.8	61589.A	-6.3.9	
£6.65	61190-6	-62.0	

ANGEL STATE

1.51	MOT
FEE1	HRS
3997+30	1400 HRS MDT
ALTIUUL	4 JULY AU NSCENSION NO.
MOLLATOR	4 JULY ISCENSIO

JEODETIC COORDINATES 32-48034 LAT DEG 106-42307 LON DEG

UIFFER ATK DATA
LOGOUGUUSS
S M R

TABLE 6.

GEORICINIC ALIITUDE MSL FEE!	PRESSURE MILLIBARS	ILNP AIR DEGREES	PRESSURE FEMPERATURE AIR DEMPOLIST MILLIBARS DEGREES CENTIGKADE	REL MUM. PEPCENT	DENSITY GMZCUBIC METER	SPEED OF SOUND KNOTS	WIND DATA DIRECTION SI DEGREESITN? KI	1A SPEEU KROTS	INDEX OF REFRAC110N
3941.3	11119	38.0	7.8	16.0	978.2	688.8	90.06	6.6	1.000260
41,00.0		38.0	7.8	16.0	978.1		0.06	6.6	1.000260
45HD+A		35.9	9•9	16.5	7.846		4.76	9•4	1.000255
5000 r		33.9	5.5	17.0	959.1		107.8	7.1	1.000250
5500.0		32.6	4.1	17.4	947.2		122.3	6.1	1.000246
9.000a		31.3	4.0	17.8	935.4		129.5	5.5	1.000242
6500.p		59.9	3.1	18.1	923.9		120.8	5.1	. 1.000237
7000.0		28.4	2•1	18.3	912.5		110.7	4.8	1.000233
7500.0		27.0	1.1	18.5	901.4		106.9	9•4	1.000229
8000.0		25.6	-	18.6	8.00.4	_	11104	7.7	1 • 000225
0.0058		24.5	6	0.61	8.678	672.7	116.9	4.2	1.000220
9000.0		22.1	5	21.3	868.2		120.4	3.8	1.000219
9500.n		21.3	?• -	24.1	857.0		157.8	3.6	1.000218
100001		19.9	••	26.8	846.1	_	152.4	3.5	1.000216
10500.0		18.5	3 •	29.6	835.3	_	161.1	3.6	1.900214
11nm0.0		17.2	†• •	30.3	824.3	_	163.2	3.9	1.000210
11500.0		15.4	7.1-	30.6	813.5	_	147.9	3.6	1.000206
12000.0		14.6	-2•4	31.0	802.9	_	154.1	3.2	1.000202
12500.0		13.2	-2.0	32.7	792.1		106.3	3.3	1.000199
13000 tu		11.8	-3.3	34.6	781.5	_	92.1	3.6	1.000196
13500.0		10.4	-3+B	36.4	7/1-1	_	98•3	£.3	1.000193
14900.0		9.6	73.5	39.3	760.8	_	103.5	5.1	1.000190
14500.0		7.6	-5.0	40.5	750.7	_	110.4	6.5	1.000188
15000.0		6.3	J-5-	42.1	740.7	_	11:4 • 4	7.5	1.000185
15500•0		7 . 4	-6.3	44.0	730.9	_	116.0	7.5	1.000162
16000.0		3.5	-7.0	45.9	721.3	_	117.6	7.4	1.000179
10500.0		1.9	-7.7	48.9	712.0		119.4	6.5	1.000176
170000		٠.	₹.6:	52.0	702.8		121.5	5.4	1.000173
17500.0		-1:1	£ • K -	58.1	693.0	_	124.3	3.5	1.000171
18000.0		-2.4	6-1-0	65.5	643.1		135.4	1.7	1.000170
18590.0	2.220	-3.6	-7-8	72.9	673.3	_	233.4	6•	1.000168
19000	2.216	£.\$-	カ・ビー	75.5	643.3	_	555∙6	2.0	1.000165

/ U L 108 F	ANCHISTON NO. CO
2 3 3	TAOO HRS MDT
1860	STATION ALTITODE 3997-30 FELT MSL
(IPPER)	

	GEODETIC COORDINATES	32.48034 LAT DEG	101 1024-101 DEG
UPPER AIR DAIA	1860060065	C 25 S	TABLE 6 (continued)
	iSt.	101	

INDEX OF REFRACTION	1.000161	1.000156	1.000153	1.000150	1.000146	1.000142	1.000138	1.000132	1.000130	1.000128	1.000126	1.000124	1.000122	1.000120	1.000118	1.000116	1.000114	1.000112	1.000110	1.000109	1.000107	1.000105	1.000193	1.000102	1.000100	1.000098	1.000096	1.000045	1.000093	1.000001	1.000090	1.000088
TA SPEED KNOTS	2.7	3.4	4.3	4.8	5	3.3	2.5	4.2	9•9	7.2	6.5	5.9	5.5	4.8	*• :	4.1	3.8	3.7	4.6	5.9	7.2	8.1	8.1	8.2	8.9	9.6	10.3	10.9	11.0	11.3	12.0	12.8
WIMD DATA DIRECTION SI DEGREES(IN) KI	235.5	216.1	199•6	190.2	190.3	178.4	123.9	85.5	72.8	72.5	77.5	83.2	6.68	£*#6	92.9	92.4	93.6	0.87	52.0	35.6	24.7	19.9	21.2	22+3	22.B	21.7	16.3	34.6	55.2	500	38.7	9.04
SPLED OF SOUND KHOTS						631.4																										
DENSITY GMZCUHIC METER	653.0	6"2.0	6.52 • 1	672.4	613.0	6114.2	595.4	5.84 - 1	5/3.8	565.3	556.9	548.7	540.5	532.1	523.8	515.7	507.8	500.0	442.5	4.484	4.77.4	469.9	461.9	454.0	446.3	4.58.7	431.2	473.8	416.5	409.3	4112.3	304.7
REL.HIM. PERCENT	73.3	52.1	4,2.5	62.H	58.4	47.6	36.2	16.0	16.0	16.0	16.0	16.0	16.1	16.2	16.4	16.6	16.7	16.9	17.1	17.4	17.8	19.0	18.0	18.0	18.0	19.0	15.1+*	11.300	7.5+	3.7**		
TEMPERATURE R DEMPOTIT LES CENTIGRADE	2.0-	-12.3	-13.2	-14.1	16.0	-10.7	-21.9	-32.6	-33.1	-34.2	-35-3	-36.4	-37.5	-34.4	-37.4	-40+3	-41.3	2.24-	2.5 h-	2.44-	2.54-	-4K.2	-47.1	0.04-	6-44-	L+04-	-52-1	1.01,4	-50.5	-6,100		
TEMP AJR UEGREES	-5.1	-6.3	-7.3	-B.3	ተ•6-	-10.7	-12.0	-12.0	-12.6	-13.9	-15.3	-16.6	-17.9	-19.2	-20.4	-21.1	-22.9	-24.2	4-42-	-26.9	-28.5	-29.6	-30.6	-31.1	-32.7	-33.8	-34·B	-35.9	- 17.0	-38.1	-39.1	÷39•à
PRESSURE TEMPERATURE AIR DEMPOTIT	902.4	9.764	483.2	473.5	1.494	455.6	446.	437.4	429.3	420.8	412.4	2.1.04	34,,1	388.U	380-1	37.2.4	364.8	357.4	950.0	342.1	3.35.0	326.5	321.6	214.7	300.0	341.5	0.062	283.b	282.3	270.5	270.2	264.3
GEUME IKIC ALIITME MSL FEEI	19500.0	20000.0	20590 · n	210"0.4	215110.0	2-04077	22500.0	7.5000-n	23500.n	24010.7	24500.0	25000.0	25500 P	200000	26580.0	270110.0	27500.0	280MB.n	28500.0	29000-0	295110+0	Sunning.	30500.0	31010.0	51500.0	341110.0	325110.0	33000.0	33500.0	340110.0	345,00	350110•0

** AT ELAST OTH. ASSUMED RELITIVE HIMIDITY VALUE WAS USED IN THE INTERPOLATION.

STATION ALTHOUR SUBSTAND FEET MSE 4 JULY 89 1400 ASCENSION NOT

upper Alk LATA 1660060005 S M R TABLE 6 (continued)

GEODETIC COORDINATES 32.46034 LAT DEG 186.42307 LOH DEG

			IABI	MELE 6 (continued)	(panuta			
GEORIE INIC ALIII'UE MSL FEEI	PRESSORE	PRESSING REMPERATURE ALM DEMPOLITEMENT OF MELLINAMS OF GREES CENTISHAND	REL-HIM. DEMSITY PERCENT GMZCUNIC IL METER		SPEEU UP SOUMD KHOTS	WIND DATA DIRECTION SI DEGREES(TH) KI	SPEED KRIOTS	INUEX OF REFRACTION
355"10.0	€58.5	40.0		387.2	1.400	52.1	13.4	1.000066
30000	45.5c. H	-41.3		379.9		57.7	14.1	1.000085
30500·9	7.11.7	-42.5		3/3.3	591.7	63.5	15.3	1.000063
370110.9	7.1.42	-44-1		367.5		69.3	16.5	1.000082
375,00.0	236.3	-45.2		361.1		1.50	17.5	1.000040
38000.0	6.08.2	-45.8		353.9		57.6	18.7	1.000079
38500.0	75027	n•9h-		346.7	•	52.6	20.7	1.000077
39000	450.5	6.94-		339.7		†• € †	22.9	1.000076
3.95.110.0	215.tb	-47.4		352.8	-	46.4	54.0	1.000074
40000	7:017	-48.0		326.0		47.6	26.3	1.000073
40500.0	4.0.2	-48.7		319.6	583.7	46.3	27.7	1.000071
41000.0	20102	4-64-		313.4		J•63	29.1	1.000070
41500.U		-50.6		307.8		40.1	30.5	1.00000
42000		-51.9		302.4		6.6 ±	31.5	1.0000t,7
42500.n	187.4	-53.2		297.1		5.63	32.2	1.000006
430HB+0	183.2	-54.5		291.9		6.64	32.8	1.00006.5
43500.0		-55.6		286.5		5143	32.8	1.000064
U-060000	174.6	-56./		281.0	573.2	9.64	32.7	1.000063
44500.0	170.5	-57./		. 275.6		15.0	32.7	1.000061
#2000·U	160.4	-58./		2/0.3		58.4	33.1	1.0000_{00}
455110.0	162.4	-59.1		265.1		61.1	33.6	1.000059
460110.0	₹ •8 4 1	-60.8		560 • B	56.7.8	65.3	33.8	1.000058
46500.0	154.1	-61.8		255+0		69.5	33.5	1.000057
47000.0	153 • U	-62.B		250.1		7.5.7	33.5	1.000056
47500.0	10/01	-64.1		245.0		4.0/	32 • 4	1.000055
40000	143.	-65.6		241.2	•	79.0	31.0	1.000054
46500.0	2.891	-65.5		235.3		41.7	29.1	1.000052
49000	150.8	-65.4		229.3	561.6	9.49	26.1	1.000051
49500.0	-	-65.6		223.9		80.7	23.5	1.000050
Suntid.	-	-66.1		218.9	•	6.76	21.7	1.000049
505110.0	126.9	-66.2		213.6	560.4	97.3	20·4	1.000048
51000.0	123+B	-66.0		208+2	560.6	100.6	19.5	1.000046

UPPER AIR DAIA 1850060085	× × × ×	TABLE 6 (continued)
SIALIUM ALIIIMDE 3997.30 PEET MSL	" JULY HO 1400 HRS MDT	ASCENSION NO. 43 CO.

GEODETIC COUNDIDATES 32.48034 LAT DEG 106.42307 LON DEG

_	SEONE INTO	PRESSURE	I I	TEMPERATUPE	FEL.IIIF.	DENS I IY	SPLEU OF		ITA	INUEX
	ALIII'UE MSE FEEI		A I R DEGREES	AIR DEWPOLUT	PERCENT	GM/CUHIC MLTER	SUUIN KI10 I S	DIRECTION DEGREES(TW)	SPEEU KNOTS	OF REFRACTION
	-									
	51500·n		-65.4			2112.9		102.1	1.61	1.000045
	520110-0		1-69-			197.7		103.5	18.6	1.000044
	525110.0		-66.1			193.1		100.5	18.4	1.900043
	55000.0		-66.5			146.7		110.1	18.3	1.000042
	535"0.A		-66.B			1.44.4		113.7	18.3	1.000041
	54000.0		-67.2			180.1		117.5	18.4	1.000040
	54500.0		-67.6			1/6.0		121+3	18.6	1.000039
	250000		1.8°			172.0		125.3	18.5	1.000038
	55500.0		-68.0			167.7		130.6	17.7	1.900037
	SCA110.1		-67.th			163.3		136.7	17.0	1.000036
	50500.0		-67.3			158.9		134.6	16.5	1.000035
	570000		-66.4			154.7		158.7	15.8	1.000034
	5/500.0		-to-5			150.6		137.7	15.1	1.000034
	58000·n		-66.1			146.6		133.8	14.7	1.000033
	58500.0		-65.B			142.7		128.6	14.6	1.000032
	59900		4.69-			139.3		123.3	14.5	1.000031
1	29500.0		-66.5			136.3		125.8	15.0	1.000030
6	66000		-67.1			153.3		128.6	15.6	1.000030
	60500.0		-67.7			1.50.5				1.000029
	61000.0		-66.2			126.2				1.00002#
	615HU.0		-64.2			121.9				1.000027
	62010.F		-63.5			118.5				1.000026
	625HO.A		-62.4			115.4				1.000026
	6.5000 · P	61.9	-62.4			112.3	565.5			1.000025

THE SALES

PAHPATORY LEVELS	1860969965	Σ E	TARIE 7
	STATTON ALTITUDE 3997.30 PEET HISL	4 JULY 80 1400 HRS MDT	ASCENSION NO.

GEODETIC COORDINATES 32.48034 LA1 DEG 106.42307 LON DEG

^	٠
4	
9	2
7	
٠	

PRESCURE G	PRESCURE GEOFOFFILTAL		TE MITTANTURE	KEL+HU	WIND DAIN	V I A	
		AIF	DEMPOINT	PERCEUT	UIREC 110N	SPEED	
11CL 18JARS	FEET	DEGREFS	DEGREES CLAITGRADE		DEGREES (TN)	KNOTS	
A50.0	4951.	34 - 1)	5.5	17.	100.7	7.2	
910.0	6734.	26.62	2•6	10.	116.2	6.4	
750.0	NSOH.	23.0	-1.1	19.	118.0	4,1	
200.0	10555.	18.3	7.	30.	161.4	5.7	
650.0	12618.	12.4	-3·0	33.	102.0	3.3	
6.003	Tagon.	t.0	1-5-4	ų į.	113.4	7.3	
550.0	17119.	:	-8.6	53.	122.0	. 6.4	
2000	19597	H-C-	-10.4	70.	232.5	2.8	
450.0	222A2	-11.5	-22.3	40.	148.7	5•2	
0.004	25218	-17.3	-37.0	١٥.	86.4	5.5	
350.0	2845n	-25.5	-43.2	17.	52.5	4.6	
300.0	52051.	- 34 • 0	6.00-	16.	20.5	9.6	
250.0	36166.	-41.7				9.41	
200.0	41031.	-49.7				29.4	
175.0	43852	-56.6				32.7	
150.0	47012.	-63.1				33.5	
125.0	50651.	-66-1				19.8	
100.0	55079.	-6H.2				16.1	
80.0	59505	-66.8	•			15.2	
70.0	62169.	-63-1					

STATEON ALTITUDE "126-59 FEET MSL " JULY 89 ASCENSION 110. 226 1500 HRS MDT

SIGNIFICANÍ LEVLL DAÍA 1860#10226 HOLLOMAN

GEODETIC COORDINATES 32.68865 LAT DEG 106.09965 LON DEG

	<i>.</i>	TA	TABLE 8.	
PRESSURE	ة و	LEMPE	IEMPERATURE	R.L.HUM.
MILLIBARS	S NSL FEET	<i>ر</i> .	CENT 16KADE	PEKCEN.
874.2	4120.6	36.0	0°3	18.0
863.8	4483.6	34 • 8	11.2	D. # 3
850.0	6.2904	34 • 1	10.7	24.11
763.8	8092.5	6.46	1. 0	30.11
700.0	10572.5	17.1	2.7	58.0
654+0	13114.7	x.c	72.	51.0
557.0	16787.3	-1-1	-1.2	0.66
516.6	1875n.5	0.1-	-4.1	99.0
500.0	19600.5	-7-3	4.7-	99.0
490.8	20077.6	-7.1	2.1-	0.66
483.1	20/181.2	-10.5	-10.6	0∙66
4/8.0	20751.9	-7.5	-7.6	0.66
433.4	23252.1	-10.3	-10.4	•
4.56.2	236/2.8	-15.7	-19.7	71.0
419.0	24093.4	-18.6	-28.3	45.0
412.0	24505.8	-20.0	-34.1	27.0
400.0	25225,2	-21.3	-37.7	21.0
338.8	29194.0	-24.2	-43.3	24.0
314.0	50777.3	-30.6	-36.5	56.0
300.0	52050.9	-33.1	-39.9	50.0
260.8	35231.0	-40.5	-4B+-	43.0
250.0	35176.0	-42.5		
239.4	37154.9	-45.0		
209.4	40066.5	-47.5		
200.0	41059.3	-50.0		
160.2	45711.1	-61.1		
150.0	47070.1	-63.7		
122.0	51185.4	-68.2		
161.6	54799.6	-600-3		
0.001	_	0.69-		
9.6/	6.14768	-66.65		•
13.4	61255.3	-68.02		

STATION ALLITUDE "126-59 FEEL FIST 4 JULY NO ASCENSION NO. 200 1500 HRS MDT ASCENSION NO. 200 1500 HRS MDT

SIGNIFICANI LEVEL DATA 1860918226 HOLLOMAH

6E0DETIC COORDINATES 32.88865 LAT DE6 106.09965 LON DEC

(continued) TABLE 8

HLL.HUM. TEMPERATURE AIR DEMPUTAT DEGREES CENTIGHADE

-61.9 -61.6 -61.6 -58.4 -7.7.7 -7.7.7 -7.0 -7.0 -7.0 -6.0 -6.0 -50.0 PRESSURE GFOUFTRIC ALITIDE MILLIBARS MSE FEET 62240.6 64750.3 69110.5 71447.5 75744.2 79876.5 87175.9 88641.7 70.0 50.0 50.0 36.4 36.4 50.4 20.0

STALLON ALITH 4 JULY RD ASCELSTON NO.		1500 HRS	r ast MDT	~	итея АТИ БАТА 1860119226 НОССОМА	۸۱۸ د د د د د د د د د د د د د د د د د د د		LEODETT 32. 196.	0E0DETIC COORDINALES 32-86865 LAT REG 196.09965 LOD REG
					TABLE 9.	•			
GEU, JE IMIC	PRESSIRE	Ž	TEMPERATUPE	PFL. Him.	DENSITY	SPLED OF	WIND DATA	17.A 2.06.5.0	INUCX
ALITION IISL FFE!	AIR DEAPTHE	DEGREES C	LINTERARE	ויבוילים	METER	KHOTS	DEGREES (10)	KIOTS	REFRACTION,
4176.6	474.6	36.0	0•6	18.0	940.5	680.6	0.	0.	1.000261
4.540.0	463.3	34 . 13	11.2	24.0	9/1-0	0.689	108.6	8.	1.000270
50110.0	948.9	34.0	13.0	24.1	4.746	5.484	100.6	1.8	1.000265
5400.0	254.5	32.5	10.0	25.0	9.5.8	U83.U	108.6	2∙8	1.900261
5.00vo	820.4	31.1	·.	56.0	934.4	641.3	108.0	ф*Ю	1.000256
0.0050	3000	59.b	9 . K	56.9	923.2		108.6	6.4	1,000252
7000	6.201	28.1	7.3	27.4	912.2	677.9	108∙6	5.0	1.000248
75,00.0	17.9.11	56.6	7.1	54.9	901.3	670.2	110.0	6.2	1.000243
0.0000	76006	25.2	£+9	8 . 62	8,10.5	674.5	125+5	6.5	1.000239
85/10+3	152.49	23.6	2.5	31.3	8.678	1.274	155.4	6 • 9	1.000235
0.00ft	139.4	22.0	ت • ن	32.0	869.5	678.8	140.3	7.5	1.000232
9500.0	120.4	₹.02	4+3	34.5	858.7	0.699	145+3	7.6	1.000228
30000	714.5	18.9	34.5	36.2	H48.4	_	149.3	7.6	1.000224
10500.0	χ·1υ/	17.3	H.C	37.B	858.2	665.3	154.5	7.6	1.000220
11000.0	58.3.3	16.11	7.4	គ.ប្	R27.2	66,3.7	159.0	7.7	1.000217
11500.0	610.4	14.6	2•0	42.4	816.2	662.2	162.3	7.3	1.000214
12000	₽ • +94	13.3	1.6	H. 4. 73	. 805.4		165.4	6.7	1.000211
125.10.0	655.9	12.0	1.1	47.1	7.11.7		1.691	6.0	1.00020A
15000	2.1.00	10.6	٠. • ١	46.5	7H4.2	657.5	175.7	5.4	1.000205
13500.0	456.24	8.5	٠.	53.6	773.9		181.0	6.4	1.000202
14010.5	510.0	7.6	÷	00.b	763.7		191.4	4.7	1.000201
14500.0	500c	b.1	•••	4,7,4	7>5⋅8	-	282.0	4.6	1.000199
15000.0	4,05	4 • t	• •	74.3	744.0		213.6	4.7	1.000197
155,00.0	28.4 • 4	2•9	٠.	81.2	734.4	0.640	225.4	6.4	1.000194
10000	77.5.0	1.4	†	89.1	725.0	640.7	55.3.6	5.1	1.000141
16500.0	963.0	2.	6	0.50	715.8	_	235.4	5•3	1.000189
17000.0	252+5	-1.4	<u>.</u> 1	0.66	705.6	643.4	240.6	5.6	1.0001 H5
1.540.0	6.0746	-2.1	-2+3	99•0	644.2	642.5	242.3	5•0	1.000161
18000	7.11.4	6.5-	1.5	99•0	6H3•0	_	241.0	7.0	1.000178
16500.0	25.1 • 7	J•6-	5.4.	0 • 66	6/2.0	_	238.4	2.4	1.000174
190061	11.11	-5.0	T • 5 •	99•9	662.7		215-1	σ.	1.000170
V*0u56T	7.100		-7.0	97•13	0.549	636.5	h•26	1. 6	1.000165

্র হালাকালের নামন

0.E0DETIC CO0.DIHATES 32.88465 LAT 6.EG 116.09465 LON 0.EG

TABLE 9 (continued)

HPLP AIR DAIA 1860010226 BOLLOMAN

1.000156
1.000153
1.000153
1.000147
1.000144
1.000158
1.000128
1.000128
1.000123 1.000090 1.000000 1.0000007 1.000162 1.000109 1.000102 .000115 .000113 +000106 .000111 .000104 8600000• 100000 +0000045 .00000 .00000 KEFPACT101 SPECO K. (075 AINU UNIA UIRECTION DEGREES (TW) 65-0 65-4 66-7 71-6 72-7 PEL-HITT DERSITY SPEED OF 636.3 635.5 634.8 634.8 618.4 617.6 617.6 617.6 617.6 617.6 617.7 610.2 607.8 607.8 633.4 632.7 628.5 622.5 620.0 603.8 602.3 8.00A 599.3 1,960.5 500Mn kno13 450.4 450.5 445.1 455.8 420.5 414.2 407.2 578.2 578.1 578.1 574.8 573.8 557.4 558.0 538.8 512.2 503.0 495.2 486.9 477.9 GMZCURIC MLTER 1.619 6,073 598.5 MALE UEMPOTIT (EPCFIT 44.6 43.5 30.8** 47.4 55.0 53.0 50.2 40.0 47.0 46.8 45.7 99.0 93.0 0.56 0.0--26.1 -38-1 -38-8 -40-2 -41.6 -42.3 -41.6 -34.2 - 50.13 147.4 .4.6 -2.6 -16.1 8.51--37.7 -41.1 - 56.55 -39.4 - 56.05 TEMPERATUPL 100.2 100.3 10 -35.0 -36.2 -36.5 -36.5 -37.7 -38.9 -40.1 A11.116.075 PRESSORE 265.50 25101 492.7 473.4 454.7 446.4 446.4 446.4 446.4 457.7 424.1 412+1 463+7 595+4 548.43 541.6 515.7 507.1 294.1 294.1 675.3 379.4 371.4 34.4 32/04 320.5 281.4 46.9.3 363.1 356.4 20508.0 215"0.7 220"0.9 25588.0 20088.0 26588.0 50500.0 51600.0 51500.0 52600.0 52500.0 535900.0 535900.0 34500 • n 35600 • n 35500 • n 22500.0 SECOND TRIC 24590 • C 25000 • C ALIII'UE MSL FEEI 28000.0 285,00.0 29000.0 29500 · n 30000 235/10 • 0 24000-0 27500.0

** AT LEAST ONE ASSUMED RELATIVE HIMTIDITY VALUE WAS UBED IN THE TITLEHFOLATION.

	1300 FIRS PLUI	55 01 170 · . < 0
A140 1 10.1	TOU UDG MOT	e .
140481	ALIII OUR "126.59 FEET MSL	ALIIINDE
() in PER A		

	:
UPPER ATH DATA 18h0#1@220 HOLLOMAR	•
HPER AIR 18500103 HOLLOWAG	`
7 E.C.	ı
5 5	, ,

STATION ALITION: 4126-19 FEET 4 JULY 50 HRS	HINDE TIC	1500 HRS MDT		1860010220 600000	J.		SEOULTI	GEODETIC COORDINATES
ASCENSION NO.	130. Let		TA	TABLE 9 (continued)	tinued		106.	106-09965 LON DEG
GEUME INTO	PRESSURE	34	!		SPILED OF	WIND DATA) A	1.0EX
ACITIONE HSC FEET	MILLINGRS	AIR DEMPTTOL	ANT PLACENT	ML TEH	KIJOTS	DEGREES (14)	KI10TS	REFRACTION
30000	45240	-42.1 -63.1	•1 A.0••	340.0	592.1	71.8	17.9	1.000065
365,00.0	P+042	-43.5		3/3.5	590.0	6.69	18.6	1.000083
37000.0	5. (142	9.44-		36.7.2	586.9	0./q	19.3	1.000082
375"0.0	435.4	-45.3		360.0	586.0	5.5°	0.01	$1 \cdot 0000 $
38000	7.500-1	1.5.1		352.5	587.5	6•09	20.5	1.000079
38540.0	6-1122	Z*9ħ-		345.2	580.9	ટ∙ક¢	21.4	1.000077
39000.0	5.617	-46.t		358.1	-	8.44	22.3	1.000075
39500•0	414.9	0.74-		351.0		53.7	23.1	1.000074
40000	210.U	+ · / +-		354.5	585.3	21.7	23.9	1.000072
40500.0	20.02	i)•6ti-		319.0		50.5	24.5	1.0000.1
41000.0	C.002	-50.7		314.1	-	9.64	25.0	1.000070
41540.0	19,5.8	-51.9		308.3	579.5	48.5	25.5	1.000069
0 45000.0	7.101	-53.0		302.5		47.5	26.0	$1.0000_{\rm b}7$
0.42500.n	140.1	-54-1		5,000	570.6	0·0 ₇	56.6	1.00006.6
4.50'10.0	182.3	-55.5		241.3		7• Ω7	27.2	1.000065
43540.0	178.5	-56.3		285.9		6•09	6.75	1.000064
0.00044	173.13	-57.3		280.6		54•15	2002	1.000062
445110.6	169.1	-58.4		275.4		5 9• 6	28.5	1.0000.1
Ů•000€ħ	10.10	-59.5		270.3		64.3	. 28•6	$1 \cdot 00000$
45500.0	161.4	-60.6		265.3	567.9	1.69	28.3	1.000059
46000.0	157.9	-61./		20075	566.6	73.3	28.5	1.000058
465110.0	15%1	-62.6		255.0	565.3	75.5	50.4	1.000057
47010.0	150.4	-63.b		250.0	563.9	ħ• / /	29.7	1.000056
4.7500.0	140.7	-64.5		244.5		7.67	28.3	1.000054
48009•0	143.11	7-49-		259.1		2000	26.8	1.000053
48598•0	139.5	-65.3		233∙8		0.50	54.9	1.000052
49000	130.1	-65.8		228.6	561.0	85.7	23.0	1.000051
49540.0	132.1	-6.0.4		223.6	500.5	9•88	21.5	1.000050
20000	129.4	-66.9		218.0		91.5	20.4	1.000049
56540•4	120.0	۲۰۲۰-		213.13		7. pt	19.4	1.000048
51000.0	173.1	-68•0		209.1	950.0	98.5	18.6	1.000047
514,000	1.6.	-68.3		204.2	557.u	105	18.0	1 • 0000045

THE THE MAN A SUMED RELATIVE HINTIDITY VALUE WAS USED IN THE THEREOLATION.

	UPPER AIR DAIA	
STATION ALTINOL MIZE-59 PEET MSL	1860#1#220	GEODETIC COORDINA
4 JULY RI 1500 HRS MIT	HOLLOMAN	32.88865 LAT
ASCENSION NO. 246 CO.		106.09965 LON

IATES | CEG | DEG INUEX WIND DATA TABLE 9 (continued) REL.HIM. DENSITY SPLED OF **TEMP**ERATUPE GEUGIETHTE PRESSURE

3101		יינ	I CHALERA OTT	MELLONIUM. DEMOSITI	05.451.1	SPLED OF	MINU UNIN	₹_	I NOT
AL 11TIVE		Y I V	AIR ULEPOLUT	PERCENT	OW/CUPITC	Sour	DIRECTION	SPEED	0F
MSL FEET		MS DEGREE	S CENTIGRAPE		AL TER	NI401S	UEGREES (TN)	KNOTS	KEFHACT10H
C-00024					199.2		105.4	17.7	1.000044
0.00524			_		194.4		100.0	17.9	1.000043
550119.0	.0 111.5	•			149.7		100.6	18.1	1.000042
n.011,00					145.1		107.3	17.9	1.00041
24010+0		•			180.0		100.1	17.7	1.000040
24500.0	7				1/6.2	556.4	109.1	17.3	1.000039
r.00000	_	h -69.1			1/1.7		113.6	16.1	1.000038
255.00.0			_		167.2		118.9	15.0	1.000037
26000	4.66	ი -68•ა			162.8		155-1	13.9	1.000036
n-01505					158.6		132.5	12.8	1.000035
276"0.0					154.4		141.2	12.0	1.000034
27500.0					150.4		147.0	11.6	1.000033
280110					146.4		151.0	11.5	1.000033
0.00.500					142.6		154.2	11.6	1.000032
. 55nti0.n					138.9		146.3	13.9	1.000031
59590					135.3		140.7	16.5	1.000030
600HB					132.1		137.5	18.5	1.000029
00500·U	700 U				129.1		135.9	19.7	1.000029
01010					126.2		134.4	20.19	1.000028
615,110					122.9		132.5	19.2	1.000027
621100.0					119.1		129.9	16.4	1.000027
62540.0					115.6		120.1	13.7	1.000026
63000					112.2		117.4	12.9	1.000025
0.5500.0	٠٠ 65.				100.9		107-9	12.6	1.000024
0.040.0		1 -62.1			105.8		97.6	12.9	1.000024
54500·n					102.7		65.7	14.6	1.000023
620110					6.6i		10.0	16.8	1.000022
65598.0		•			47.4		70.6	19.3	1.000022
65011G.U		•			95.0		70.7	22.0	1.000021
ٕ00590	•				45.6		70.7	24.7	1.000021
0.00019	٠٥ 55٠4	4 -59.5			90.3	50.60	71.2	27.2	1.000020
67500.n			•		H8.0		17.5	56.9	1.000020
									i

WIZE SEED MSE 514110N ALITTOPE 4 JULT 80 ASCENSION NO. 27

UPPER AIR LAIA 1860010226

SEODETTC COOKNINATES

		3					101	1000
ASCENSION NO.	q./2 •011		TAB	TABLE 9 (continued)	tinued)		106.	106.09965 LON DEG
GEORE INIC	PRESSURE	TEMPLKATUPE ATR DESPOTE	HEL.HIM. DENSITY		SPEED OF	WIND DATA	TA	INUEX
MAL FEET	HILLIDAMS	_		METER	K1.0 TS	DEGREES (IN)	KHOTS	REFRACT100
DH0110.0	5, 18	-59.0		85.8	570.2	84•0	26.9	1.000019
555,110.n	51.5	-58.1		H3.7	•	7.06	27.3	1.000019
6.9000	5.0.3	-58+5		A1.6		91.9	27.1	1.000018
695JIB.A	1.(1)	-57.9		19.4	571.5	95.6	56.9	1.000018
70000	41.7	-57.4		77.4	572.3	45.3	26.8	1.000017
70590	£ . 3	-56.8		75.3	573.1	4.16	26.2	1.000017
711,00.0	1.5.1	-56.2		73.3	-	49.7	25.5	1.000016
715"0.0	44.5	-55.7		71.5		102.2	54.9	1.000016
12000-0	4.5.6	-55.6		₩•69		104.5	24.2	1.000016
7.500.6		-55.6		68.1		106.3	23.4	1.000015
7.5900.0	41.5	-55.5		66.5	574.7	108.2	55.6	1.000015
73500.0	4 .0.4	-55.5		6.49		110.2	21.8	1.000014
74910.0	3.9.6	-55.4		63.4		100.4	21.5	1.000014
14500.A	300.	-55.3		61.9	574.9	101.8	21.4	1.000014
750,00-0	31.4	-55.3		60.4		2.16	21.5	1.000013
755110.0	200	55.55		0.64	575.1	93.2	22.0	1.000013
766.00.0	30.00	-55.0		51.5		7.06	23.0	1.000013
705,110.0	35.42	-54.6		56+1	575.9	87.2	24.1	1.000012
770,000	34.4	-54.3		24.7		9•68	25.2	1.000012
175110-0	33.b	-53.9		53.3		84.5	26.1	1.000012
780,10.0	37.3	-53.5		52.0		84.5	27.1	1.000012
785110.0	34.0	-53.1		7.04	Ī	84∙ ₺	28.0	1.000011
7.31110.0	31.3	-5,2.7		h•6ti	578.4	3.45	2R.7	1.000011
79500.0	30.0	-52.3		48.5		84.5	29.5	1.000011
31000	6.62	-52.0		47.0	•	す・カニ	29.7	1.000010
40500	2.6.2	8.18-		6.34		7.70	30.2	1.000010
81010.0	244.5	-51.6		9-5%		80.1	30-2	1.000010
415,40.0	5/011	-51.5		45.1		67.9	30.2	1.000010
82nt0.n	2112	-51.3		42.7	_	9•69	30.2	1.000010
0.5900.0	20.4	-51.1		41.7	٠,	61.1	30.4	1.000049
850H0z4	7.7	-5,1.0		40.7	•	0.46	30.7	1.000009
4.35.00 °C	7.00	X*0.0-1		70,00	0.004			1.00000

6EODLTIC COONDINATES 32.68865 LAT DEG 106.09965 LON DEG	
11974 # 119 CA 1A 1860#1102-c 1104COM11	TABLE 9 (continued)
STATTON ALTITUDE 4126+59 PERT NSE	ASCENSION NO. 220

GF ORIT IMIC	PRESSURE	1 F KIL	TEMPERATURE	REL.HIM.	DENSIIY	SPEED UF	AIND DA	٧1	INDEX
ALTITUDE MSL FEET	MILLINAMS DEGREES (AIR Ut GREES	DEWPOTAT CENTISRANF	PEPCLNT	GM/CUMIL MLTEM	SOUMP KHOTS	DIRECTION SPE DEGREESTN) KNO	SPEEU Kr40TS	OF KEFRACTION
		:			S. 35.	-	98.3	31.5	1.00009
84910.0		0.00			2.5	_	5.00	31.1	1.000008
84500.0	-	-20.2					0 7 7	1 10	1.000008
85000		-50.3			0.70		6.16	0 0	000000
855,00.0		-50.2			36.1	-	3.7	64.6	000000
Hen90.P		-50.0			35.3	•			oimino T
865119.0	1.72	8.64-			34 - 4	582.5			1.000000
8/000.0		1.64-			33.6				100000
8/500.0		4.64-			32.9	-			100000
C80000		1.64-			32.1				1.000001
935,00.6		8.64-			31.4				1.00000
0.0Hng.		6.64-			2005				700001
0.01124B		-50.0			30.00				100001

PAUDATORY LEVELS	1450410220	HOLLOMAN	2
	STATION ALTITUDE "126.59 PEET HSL	* JULT HO 1500 HRS MDT	ASCENSION NO. 220

GEODETIC COORDINATES	32.68865 LAT DEG	106.09965 LOW DEG	
1450010226	HOLLOMAN		TARIF 10

RESSURE &	PRESSURE SECPOISONIAL		TEPPERATORE	ינרריונה: מרריונה:	ATAC UNITE	Ξ.
MILLIHARS	FEET	AIK DEGREFS	DEGREES CENTIGRADE	FKCFN	DEGREES(TN)	3. EEU) K ⁽¹⁰ 15
850.0	4959.	34.1	10.7	24.	108.0	1.7
900.0	6744.	28.9	8.5	27.	108.0	5.4
750.0	8609.	23.3	5.5	34.	135.1	7.1
709.0	10562.	17.1	2.7	30.	155.1	7.6
650+0	12618.	11.6	6•	48.	170.2	5.9
0.009	14702.	5.5	₹.	71.	209.5	9.4
550.0	17048.	٠١-	-1.7	66	241.7	5,7
500.0	19573.	-7.3	1·/-	•66	88.6	2.0
450.0	22262.	2.6-	11.6-	•60	2.69	2,9
400.0	25183.	-21.3	-37.7	21.	229.7	3,5
350.0	28375	1.12-	-42.1	23.	310.1	7,1
300.0	31975.	-35.1	-39.9	50.	41.0	15.8
250.0	56097.	-42.5		I	71.0	18,2
200.0	409611	-50.0			49.5	. 0.52
175.0	43772.	-57.0		٠	53.5	28.2
150.0	46923.	-63.7			77.5	29.7
125.0	50558.	-67.7			0.96	19.1
100.0	54942.	0-69-			114.5	15.9
80.0	59345.	-66.7			140.6	16,6
70.0	61991.	-65.0			128.8	15,4
60.0	65105.	-60.3			72.2	10,3
50.0	68851.	-58.4			92.1	27.1
40.0	735n1.	-55.4			108.5	21.6
30.0	79555.	-52.0			84.4	29.5
25.0	63471.	-50.7			4.70	31,3
0.00	2000	400				

** AT LEAST ONE ASSUMED RELATIVE HITTDITY VALUE HAS USED IN THE INTERPOLATION.