

UNIVERSIDADE ESTADUAL DE MARINGÁ DEPARTAMENTO DE INFORMÁTICA

Prof. Yandre Maldonado - 1

Prof. Yandre Maldonado e Gomes da Costa

- Autômato com Pilha AP
 - São formalismos (máquinas) capazes de reconhecer as Linguagens Livres de Contexto;
 - Maior poder que os Autômatos Finitos, pois possuem um "espaço de armazenamento" extra que é utilizado durante o processamento de uma cadeia;
 - Possui uma pilha que caracteriza uma memória auxiliar onde pode-se inserir e remover informações;
 - Mesmo poder de reconhecimento das GLC's;

- o Exemplo de LLC: {aⁿbⁿ | n≥0}
- Um AF não é capaz de reconhecer este tipo de linguagem devido à sua incapacidade de "recordar" (memorizar) informação sobre a cadeia analisada;
- Autômatos com Pilha (AP) possuem uma pilha para armazenar informação, adicionando poder aos AF's.

o Definição:

- AP é uma sextupla $\langle \Sigma, \Gamma, S, S_0, \delta, B \rangle$, onde:
 - Σ é o alfabeto de entrada do AP;
 - Γ é o alfabeto da pilha;
 - S é o conjunto finito não vazio de estados do AP;
 - S₀ é o estado inicial, S₀ ∈ S;
 - δ é a função de transição de estados,
 δ: S × (Σ∪{λ}) × Γ → conjunto de subconjuntos finitos de S × Γ*
 - B é o símbolo da base da pilha, B $\in \Gamma$.

Abstração de um AP como reconhecedor de cadeias (DELAMARO, 1998).

- Ao contrário da fita de entrada, a pilha pode ser lida e alterada durante um processamento;
- O autômato verifica o conteúdo do topo da pilha, retira-o e substitui por uma cadeia $\alpha \in \Gamma^*$.
 - Se α = A, e A ∈ Γ, então o símbolo do topo é substituído por A e a cabeça de leitura escrita continua posicionada no mesmo lugar;
 - Se α = A₁A₂...A_n, n>1 então o símbolo do topo da pilha é retirado, sendo A_n colocado em seu lugar, A_{n-1} na posição seguinte, e assim por diante. A cabeça é deslocada para a posição ocupada por A₁ que é então o novo topo da pilha;
 - Se $\alpha = \lambda$ então o símbolo do topo da pilha é retirado, fazendo a pilha decrescer.

- A função de transição δ, é função do estado corrente, da letra corrente na fita de entrada e do símbolo no topo da pilha;
- Além disso, esta função determina não só o próximo estado que o AP assume, mas também como o topo da pilha deve ser substituído;
- O AP inicia sua operação num estado inicial especial denotado por S₀ e com um único símbolo na pilha, denotado por B.

- A configuração de um AP é dada por uma tripla <s, x, α> onde s é o estado corrente, x é a cadeia da fita que falta ser processada e α é o conteúdo da pilha, com o topo no início de α;
- O AP anda ou move-se de uma configuração para outra através da aplicação de uma função de transição.

- Se o AP está na configuração <s,ay,Aβ> e temos que $\delta(s,a,A)=\langle t,\gamma \rangle$, então o AP move-se para a configuração <t,y, $\gamma\beta$ > e denota-se $\langle s, ay, A\beta \rangle \mid -- \langle t, y, \gamma \beta \rangle$.
- Se o AP move-se de uma configuração $\langle s_1, x_1, \alpha_1 \rangle$ para uma configuração $\langle s_2, x_2, \alpha_2 \rangle$ por meio de um número finito de movimentos, denotamos

$$|---^*$$

 \circ Se o valor de δ para uma determinada configuração for Ø o AP pára.

- Note que, segundo esta definição, AP's não possuem estados finais como os AF's;
- Assim, uma cadeia x é aceita se, ao chegar ao final do processamento da mesma, a pilha estiver vazia, independentemente do estado em que o AP se encontra;

o Formalmente temos:

- Dado o AP P = $\langle \Sigma, \Gamma, S, S_0, \delta, B \rangle$ e a cadeia x sobre Σ , diz-se que x é aceita por P sse existe s ∈ S tal que <S₀,x,B>|—*<s, λ , λ >. Caso contrário, x é rejeitada.
- Dado o AP P = $\langle \Sigma, \Gamma, S, S_0, \delta, B \rangle$, a linguagem L(P) definida por P é

$$\{x \in \Sigma^* | \exists s \in S \exists \langle S_0, x, B \rangle | ---^* \langle s, \lambda, \lambda \rangle \}$$

Autômato com Pilha

Exemplo de AP para a LLC {aⁿbⁿ | n≥0}:

• • Autômato com Pilha

• • Autômato com Pilha

o AP para $\{x \in \{a,b\}^* | |x|_a = |x|_b\}$:

Está correto?

12

Autômato com Pilha

■ Um AP definitivo para $\{x \in \{a,b\}^* | |x|_a = |x|_b\}$:

$$\delta(S,a,C) = \{ \langle S,AC \rangle \}$$

$$\delta(S,b,C) = \{\langle S,BC \rangle\}$$

$$\delta(S,\lambda,C) = \{\langle S,\lambda \rangle\}$$

$$\delta(S,a,A) = \{ < S,AA > \}$$

$$\delta(S,b,A) = \{\langle S,\lambda \rangle\}$$

$$\delta(S,a,B) = \{\langle S,\lambda \rangle\}$$

$$\delta(S,b,B) = \{\langle S,BB \rangle\}$$

<a,C>/AC <b,C>/BC <λ,C>/λ

<a,A>/AA

<b, $A>/\lambda$

<a,B>/ λ

<b,B>/BB

Autômato com Pilha

Exemplo: processamento da cadeia aaaabbabbb

BASE DA PILHA: C

• • Autômato com Pilha

Exemplo: processamento da cadeia aaaabbabbb

PILHA

 Descreva um AP para a linguagem {aⁿb^maⁿ | n≥0 ∧ m>0}.

• • Bibliografia

 DELAMARO, Márcio Eduardo. Linguagens Formais e Autômatos. UEM, 1998.