A Bayesian modelling framework for health care resource use and costs in trial-based HEE

Andrea Gabrio

Department of Methodology and Statistics, FHML (UM)

a.gabrio@maastrichtuniversity.nl

https://github.com/AnGabrio

https://angabrio.github.io

Bayes Conference, Leiden, 2025

Thursday, October 23, 2025

Part I

Introduction to statistical modelling in HTA

Typically collected from studies (e.g. RCTs) at multiple time points

	Demographics			HRQL data				Cost data				Clinical outcome				
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		$y_{1,I}$
2	1	M	21		0.12	0.16		0.38	1 204	1808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

 $y_{ij}=$ Survival time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... $u_{ij}=$ Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...)

 c_{ij} = Cost of healthcare resources/services (eg CSRI, iMCQ, ...)

Typically collected from studies (e.g. RCTs) at multiple time points

		Demographics			HRQL data			Cost data				Clinical outcome				
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	M	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		$y_{1,I}$
2	1	M	21		0.12	0.16		0.38	1 204	1808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

```
y_{ij} = \text{Survival time, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... <math>u_{ij} = \text{Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...)}
c_{ij} = \text{Cost of healthcare resources/services (eg CSRI, iMCQ, ...)}
```

• Effectiveness/utility data at each time j and for each individual i often obtained after mapping country-specific value sets to the individual responses of L health domains assessed (profile):

$$u_{ij} = \text{mapping algorithm}[\mathsf{HRQL}_{ij}^1, \dots, \mathsf{HRQL}_{ij}^L]$$

Typically collected from studies (e.g. RCTs) at multiple time points

	Demographics			HRQL data				Cost data				Clinical outcome				
ID	Trt	Sex	Age		u_0	u_1		u_J	c_0	c_1		c_J	y_0	y_1		y_J
1	1	М	23		0.32	0.66		0.44	103	241		80	y_{10}	y_{11}		y_{1J}
2	1	M	21		0.12	0.16		0.38	1 204	1808		877	y_{20}	y_{21}		y_{2J}
3	2	F	19		0.49	0.55		0.88	16	12		22	y_{30}	y_{31}		y_{3J}

- $y_{ij} = \text{Survival time}$, event indicator (eg CVD), number of events, continuous measurement (eg blood pressure), ... $u_{ij} = \text{Utility-based score to value health (eg EQ-5D, SF-36, Hospital Anxiety & Depression Scale, ...)}$
- c_{ij} = Cost of healthcare resources/services (eg CSRI, iMCQ, ...)
- Cost data at each time j and for each individual i obtained after applying service-specific unit prices p_k to each of the K resource use services collected and summing up their costs:

$$c_{ij} = \mathsf{HRU}_{ij}^1 \times p_1 + \ldots + \mathsf{HRU}_{ij}^K \times p_K$$

• Aggregate measures, e.g. QALYs and total costs, are then obtained by combining u_{ij} and c_{ij} data over the study follow-up time.

Handling missing data in trial-based CEA

- Things to consider in the analysis (Faria et al. 2014):
 - Avoid biased methods (e.g. case deletion) in favour of those grounded on "plausible" missingness assumptions (e.g. multiple imputation)
 - Explore the impact of alternative assumptions on results in sensitivity analysis

Handling missing data in trial-based CEA

- Things to consider in the analysis (Faria et al. 2014):
 - Avoid biased methods (e.g. case deletion) in favour of those grounded on "plausible" missingness assumptions (e.g. multiple imputation)
 - Explore the impact of alternative assumptions on results in sensitivity analysis
- Analysis can be conducted at different levels:
 - HRQL and HRU responses at each time (disaggregated)
 - Utilities and costs at each time (intermediate)
 - QALYs and Total costs (aggregated)

Handling missing data in trial-based CEA

- Things to consider in the analysis (Faria et al. 2014):
 - Avoid biased methods (e.g. case deletion) in favour of those grounded on "plausible" missingness assumptions (e.g. multiple imputation)
 - Explore the impact of alternative assumptions on results in sensitivity analysis
- Analysis can be conducted at different levels:
 - HRQL and HRU responses at each time (disaggregated)
 - Utilities and costs at each time (intermediate)
 - QALYs and Total costs (aggregated)
- Need to choose the right balance between modelling all evidence and fitting a stable model

Current missing data practice

Ling at el. 2022 revealed a somewhat **unclear picture** about *missing data methods* in routine analyses (2016-2021):

- Different according to the level of data aggregation used in analysis
- MI often used at aggregated/intermediate level, while at disaggregated level missing values are often "filled-in" in some ways
- Typical of HRU (usually some answers skipped) compared to HRQL instruments (usually all answers skipped)
- In many cases HRUs are imputed based on restrictive assumptions (e.g. assumed zero) which, if not justified, can misrepresent uncertainty and distort the results

A Bayesian framework for trial-based CE data

- Why Bayesian (Spiegelhalter et al. 2004)?
 - Modular structure to handle multiple data features (e.g. skewness, clustering, missingness)
 - Imputation and estimation steps are jointly performed and always "congenial"
 - Direct implementation of probabilistic sensitivity analysis (PSA)
- Aim apply framework to a real case study:
 - Assess impact of different missing HRU assumptions on posterior estimates
 - Fit separate models at different levels of data aggregation and compare the results

Part II

Case study

The PBS trial

- The Positive Behaviour Support (PBS) trial was an RCT involving individuals with mild to severe intellectual disabilities (Hassiotis et al. 2018)
 - Participants (n=244) allocated to either PBS ($n_2=108$) or TAU ($n_1=136$)
 - HRQL and HRU data collected via EQ-5D-5L and CSRI questionnaires at baseline (j=0), 6 and 12-months (j=1,2)
- Focus on the following individual-level CE data:
 - Utilities derived from EQ-5D answers and UK value sets $\left(u_{ij}
 ight)$
 - HRUs for K=9 types of healthcare services $(\operatorname{hru}_{ij}^k)$

Missingness rates

Outcome	Baseline $(j=0)$	6-months $(j=1)$	12-months $(j = 2)$	ic (outcome)
Utilities (u)	14 (5.7%)	23 (9.4%)	16 (6.6%)	40 (16.4%)
PSYDR (hru ¹)	0	18 (7.4%)	12 (4.9%)	22 (9%)
$PSYCH\ (hru^2)$	2 (1.4%)	12 (4.9%)	9 (3.7%)	14 (5.7%)
PHYSI (hru ³)	1 (0.4%)	13 (5.3%)	10 (4.1%)	16 (6.6%)
$DENT\ (hru^4)$	1 (0.4%)	14 (5.7%)	12 (4.9%)	19 (7.8%)
SOCWORK (hru ⁵)	1 (0.4%)	14 (5.7%)	11 (4.5%)	18 (7.4%)
COMWORK (hru ⁶)	0	13 (5.3%)	11 (4.5%)	15 (6.1%)
GP (hru ⁷)	3 (2.1%)	15 (6.2%)	14 (5.7%)	22 (9%)
NURSE (hru ⁸)	2 (1.4%)	17 (7%)	13 (5.3%)	24 (9.8%)
THERAP (hru ⁹)	1 (0.4%)	15 (6.1%)	12 (4.9%)	19 (7.8%)
ic (time)	10 (4.2%)	22 (9%)	17 (7%)	59 (24.2%)

- EQ5D data only affected by unit nonresponse, while CSRI data affected by both unit and item nonresponse
- Overall proportion of incomplete cases is **substantial** ($\approx 24\%$)

Structural zeros

Outcome	Structural zeros
PSYDR (hru ¹)	37 (15%)
$PSYCH\ (hru^2)$	159 (65%)
PHYSI (hru ³)	189 (77%)
$DENT\ (hru^4)$	35 (14%)
SOCWORK (hru ⁵)	47 (19%)
$COMWORK\ (hru^6)$	196 (80%)
GP (hru ⁷)	1 (0.4%)
NURSE (hru ⁸)	53 (22%)
THERAP (hru ⁹)	85 (35%)

- Many individuals have constant zero HRU values across all times (so called "structural zeros")
- These values induce a high degree of skewness in the empirical distributions

Part III

Modelling framework

Fitting models at different levels of data aggregation

- Consider three alternative model specifications:
 - At the **aggregated** level (e_i, tc_i) O'Hagan et al. 2001
 - At the **intermediate** level (u_{ij}, c_{ij}) Gabrio et al. 2020
 - At the $\operatorname{disaggregated}$ level $(\operatorname{HRQL}_{ij}^l,\operatorname{HRU}_{ij}^k)$

Fitting models at different levels of data aggregation

- Consider three alternative model specifications:
 - At the **aggregated** level (e_i, tc_i) O'Hagan et al. 2001
 - At the **intermediate** level (u_{ij}, c_{ij}) Gabrio et al. 2020
 - At the $\operatorname{ extbf{disaggregated}}$ level $(\operatorname{ extbf{HRQL}}_{ij}^l,\operatorname{ extbf{HRU}}_{ij}^k)$
- Easier to specify model at more aggregated levels BUT:
 - when item nonresponse occurs, it is not possible to directly incorporate evidence from partially-observed cases into the analysis
 - need to either discard cases or impute them in some way prior to model fitting

Fitting models at different levels of data aggregation

- Consider three alternative model specifications:
 - At the **aggregated** level (e_i, tc_i) O'Hagan et al. 2001
 - At the **intermediate** level (u_{ij}, c_{ij}) Gabrio et al. 2020
 - At the **disaggregated** level $(\mathsf{HRQL}_{ij}^l, \mathsf{HRU}_{ij}^k)$
- Easier to specify model at more aggregated levels BUT:
 - when item nonresponse occurs, it is not possible to directly incorporate evidence from partially-observed cases into the analysis
 - need to either discard cases or impute them in some way prior to model fitting
- Models fitted at more disaggregated level can overcome this limitation but are usually more challenging to fit

 \bullet Cross-sectional model for QALYs (e_i) and Total costs (tc_i)

ullet Cross-sectional model for QALYs (e_i) and Total costs (tc_i)

$$p(\underline{e_i}, \!\!\!\! tc_i) = p(\underline{tc_i}|\underline{e_i})p(\underline{e_i})$$

Marginal model for \emph{e}

• Select a distribution $f(\cdot)$ for each variable (e.g. Normal, Gamma)

$$\textcolor{red}{e_i} {\sim} f(\phi_{ie}, \sigma_e)$$

ullet Cross-sectional model for QALYs (e_i) and Total costs (tc_i)

$$p(\underline{e_i,}\underline{tc_i}) = p(\underline{tc_i}|\underline{e_i})p(\underline{e_i})$$

Marginal model for e

- Select a distribution $f(\cdot)$ for each variable (e.g. Normal, Gamma)
- Choose structure and link function $g(\cdot)$ to model dependence on other variables (e.g. \log)

$$\begin{aligned} & e_i {\sim} f(\phi_{ie}, \sigma_e) \\ g(\phi_{ie}) &= \alpha_0 + \alpha_1 X_{ie} + \dots \end{aligned}$$

ullet Cross-sectional **joint** model for QALYs (e_i) and Total costs (tc_i)

$$p(\boldsymbol{e_i},\!\boldsymbol{tc_i}) = p(\boldsymbol{tc_i}|\boldsymbol{e_i})p(\boldsymbol{e_i})$$

Marginal model for \boldsymbol{e}

$$\begin{aligned} & \frac{e_i}{\sim} f(\phi_{ie}, \sigma_e) \\ & g(\phi_{ie}) = \alpha_0 + \alpha_1 X_{ie} + \dots \end{aligned}$$

Conditional model for tc

 Capture correlation between the outcomes

$$\begin{split} & \frac{tc_i}{|e_i} \sim f(\phi_{itc}, \sigma_{tc}) \\ & g(\phi_{itc}) = \beta_0 + \beta_1 e_i + \beta_2 X_{itc} + \dots \end{split}$$

• Mean incremental QALYs ($\Delta_e = \mu_{e2} - \mu_{e1}$) and Total costs ($\Delta_{tc} = \mu_{tc2} - \mu_{tc1}$) derived as linear combination of model parameters or through simulation (e.g. Monte Carlo methods)

• Mean incremental QALYs ($\Delta_e = \mu_{e2} - \mu_{e1}$) and Total costs ($\Delta_{tc} = \mu_{tc2} - \mu_{tc1}$) derived as linear combination of model parameters or through simulation (e.g. Monte Carlo methods)

Advantages

- Need to model only two variables (e_i, tc_i)
- Relatively easy to implement in most cases

• Mean incremental QALYs ($\Delta_e = \mu_{e2} - \mu_{e1}$) and Total costs ($\Delta_{tc} = \mu_{tc2} - \mu_{tc1}$) derived as linear combination of model parameters or through simulation (e.g. Monte Carlo methods)

Advantages

- Need to model only two variables (e_i, tc_i)
- Relatively easy to implement in most cases

Drawbacks

- HRQL/HRU item nonreponses are either discarded or imputed a priori
- Incomplete utilities / costs are either discarded or imputed a priori
- Often partially-missing HRUs/ costs are imputed as zero, and used to calculate tc_i to ensure higher completion rates

ullet Longitudinal **joint** model for utilities (u_{ij}) and costs (c_{ij})

$$p(u_{ij}, \!\!\! c_{ij}) = p(u_{ij}|u_{ij-1}, \!\!\! c_{ij}) p(c_{ij}|u_{ij-1}, \!\!\! c_{ij-1})$$

ullet Longitudinal **joint** model for utilities (u_{ij}) and costs (c_{ij})

$$p(u_{ij}, c_{ij}) = p(u_{ij} | u_{ij-1}, c_{ij}) p(c_{ij} | u_{ij-1}, c_{ij-1})$$

Conditional models for u

- Select a distribution, structure and link function for each variable
- Capture *correlation* between outcomes and *dependence* over time

$$\begin{split} u_{ij}|u_{ij-1},&c_{ij}{\sim}f(\phi_{iju},\sigma_{ju})\\ &g(\phi_{iju})=&\alpha_{0j}+\alpha_{1j}X_{iu}+\\ &\alpha_{2j}u_{ij-1}+\alpha_{3j}c_{ij}+\dots \end{split}$$

Longitudinal **joint** model for utilities (u_{ij}) and costs (c_{ij})

$$p(u_{ij}, c_{ij}) = p(u_{ij} | u_{ij-1}, c_{ij}) p(c_{ij} | u_{ij-1}, c_{ij-1})$$

Conditional models for u

$$\begin{split} u_{ij}|u_{ij-1},& c_{ij} {\sim} f(\phi_{iju},\sigma_{ju}) \\ g(\phi_{iju}) = & \alpha_{0j} + \alpha_{1j} X_{iu} + \\ & \alpha_{2j} u_{ij-1} {+} \alpha_{3j} c_{ij} {+} \dots \end{split}$$

Conditional models for c

$$\begin{split} \frac{c_{ij}|u_{ij-1},& c_{ij-1} {\sim} f(\phi_{ijc},\sigma_{jc}) \\ g(\phi_{ijc}) = & \beta_{0j} + \beta_{1j} X_{ic} + \\ \beta_{2j} u_{ij-1} + & \beta_{3j} c_{ij-1} + \dots \end{split}$$

• Time-specific mean utilities (μ_{ju}) and costs (μ_{jc}) derived as linear combination of model parameters or through simulation (e.g. Monte Carlo methods), and then used to calculate Δ_e and Δ_{tc}

• Time-specific mean utilities (μ_{ju}) and costs (μ_{jc}) derived as linear combination of model parameters or through simulation (e.g. Monte Carlo methods), and then used to calculate Δ_e and Δ_{tc}

Advantages

- Directly capture the *longitudinal structure* of the data
- Missingness in (u_{ij}, c_{ij}) is directly handled

• Time-specific mean utilities (μ_{ju}) and costs (μ_{jc}) derived as linear combination of model parameters or through simulation (e.g. Monte Carlo methods), and then used to calculate Δ_e and Δ_{tc}

Advantages

- Directly capture the longitudinal structure of the data
- Missingness in (u_{ij}, c_{ij}) is directly handled

Drawbacks

- More challenging to fit (i.e. $J \times 2$ variables)
- HRQL / HRU item nonreponses are either $\emph{discarded}$ or $\emph{imputed}$ a priori
- Often partially-missing HRUs are imputed as zero, and used to calculate c_{ij} to ensure higher completion rates

ullet Longitudinal **joint** model for utilities (u_{ij}) and f HRUs (hru_{ij}^k)

$$p(u_{ij}, \operatorname{hru}_{ij}^k) = p(u_{ij}|u_{ij-1}, \operatorname{hru}_{ij}^k) p(\operatorname{hru}_{ij}^k|u_{ij-1}, \operatorname{hru}_{ij-1}^k)$$

• Longitudinal **joint** model for utilities (u_{ij}) and HRUs (hru_{ij}^k)

$$p(u_{ij}, \operatorname{hru}_{ij}^k) = p(u_{ij}|u_{ij-1}, \operatorname{hru}_{ij}^k) p(\operatorname{hru}_{ij}^k|u_{ij-1}, \operatorname{hru}_{ij-1}^k)$$

Conditional models for u

- Select a distribution, structure and link function for each variable
- Capture *correlation* between outcomes and *dependence* over time

$$\begin{split} u_{ij}|u_{ij-1}, & \operatorname{hru}_{ij}^k {\sim} f(\phi_{iju}, \sigma_{ju}) \\ g(\phi_{iju}) = & \alpha_{0j} + \alpha_{1j} X_{iu} + \\ & \alpha_{2j} u_{ij-1} {+} \alpha_{3j} \operatorname{hru}_{ij}^k {+} \dots \end{split}$$

• Longitudinal **joint** model for utilities (u_{ij}) and HRUs (hru_{ij}^k)

$$p(u_{ij}, \operatorname{hru}_{ij}^k) = p(u_{ij}|u_{ij-1}, \operatorname{hru}_{ij}^k) p(\operatorname{hru}_{ij}^k|u_{ij-1}, \operatorname{hru}_{ij-1}^k)$$

Conditional models for hru^k

Specify outcome models for only non-structural values for service k

$$\begin{array}{c|c} u_{ij} \\ \uparrow \\ \sigma_{ju} \end{array} \begin{array}{c} \operatorname{hru}_{ij}^k | u_{ij-1}, \operatorname{hru}_{ij-1}^k \sim f(\phi_{ijc}, \sigma_{jc}) \\ g(\phi_{ijc}) = \beta_{0j} + \beta_{1j} X_{ic} + \\ \beta_{2j} u_{ij-1} + \beta_{3j} \operatorname{hru}_{ij-1}^k + \dots \end{array}$$

• Longitudinal **joint** model for utilities (u_{ij}) and HRUs (hru_{ij}^k)

$$p(u_{ij}, \operatorname{hru}_{ij}^k) = p(u_{ij}|u_{ij-1}, \operatorname{hru}_{ij}^k) p(\operatorname{hru}_{ij}^k|u_{ij-1}, \operatorname{hru}_{ij-1}^k)$$

Logistic models for hru^k

 Handle structural zeros in service k using an hurdle approach

$$\begin{split} d^k_{i0} \coloneqq \mathbb{I}(\mathsf{hru}_{i \forall j} = 0) \sim \mathsf{Bernoulli}(\eta^k_i) \\ \mathsf{logit}(\eta^k_i) = \gamma^k_0 + \gamma^k_1 X_{i0} + \dots \end{split}$$

• Original hru_{ij}^{k} are expressed as:

$$\mathbf{hru}_{ij}^{k} = \mathbf{hru}_{ij}^{k} \times (1 - \pi_{0}^{k}) + \mathbf{hru}_{ij}^{k} \times \pi_{0}^{k}$$

• Longitudinal **joint** model for utilities (u_{ij}) and HRUs (hru_{ij}^k)

- Estimates for the overall mean HRUs for each service k and time j are then obtained as:
 - the linear combination $\mu_{j\mathrm{hru}}^k = (1-\pi_0^k)\mu_{j\mathrm{hru}}^k$
 - which are then combined with unit prices p^k to generate mean costs μ^k_{jc} and summed across all services and times to obtain μ_{tc} and Δ_{tc}

- Estimates for the overall mean HRUs for each service k and time j are then obtained as:
 - the linear combination $\mu_{j\mathrm{hru}}^k = (1-\pi_0^k)\mu_{j\mathrm{hru}}^k$
 - which are then combined with unit prices p^k to generate mean costs μ^k_{jc} and summed across all services and times to obtain μ_{tc} and Δ_{tc}

Advantages

- Directly capture the longitudinal structure of the data
- Missingness in $(u_{ij}, \operatorname{hru}_{ij}^k)$ directly handled **without** the need of prior imputation

- Estimates for the overall mean HRUs for each service k and time j are then obtained as:
 - the linear combination $\mu_{j\mathrm{hru}}^k = (1-\pi_0^k)\mu_{j\mathrm{hru}}^k$
 - which are then combined with unit prices p^k to generate mean costs μ^k_{jc} and summed across all services and times to obtain μ_{tc} and Δ_{tc}

Advantages

- Directly capture the longitudinal structure of the data
- Missingness in $(u_{ij}, \operatorname{hru}_{ij}^k)$ directly handled **without** the need of prior imputation

Drawbacks

- More challenging to fit (i.e. $J \times (K+1)$ variables)
- Need a compromise between model complexity and feasibility (e.g. in small samples)

Implementation

- All models fitted to the PBS data via JAGS, called from R
 - Total of 20000 iterations per chain, with a burn-in of 10000
 - Convergence assessed via standard measures (e.g. Rhat, Trace plots)
 - Fit to observed data assessed through graphical posterior predictive checks and Bayesian information measures (e.g. WAIC)
- For each model, the distribution for each outcome was selected after comparing the fit of alternative choices:
 - Normal for utilities / QALYs
 - Gamma for costs / Total costs (compared to Normal and LogNormal)
 - Normal + hurdle for structural zeros for HRUs (compared to Poisson and Negative Binomial)

Part IV

Results

Posterior mean QALY/Total cost estimates

- Compare alternative models and missingness strategies:
 - S1) Aggregated data: all cases (ALL); zero-imputed HRU (IMP-H); zero-imputed HRU and costs (IMP-HC)
 - S2) Intermediate data: all cases (ALL); zero-imputed HRU (IMP-H)
 - S3) Disaggregated data: all cases (ALL)

Posterior mean QALY/Total cost estimates

- Compare alternative models and missingness strategies:
 - S1) Aggregated data: all cases (ALL); zero-imputed HRU (IMP-H); zero-imputed HRU and costs (IMP-HC)
 - S2) Intermediate data: all cases (ALL); zero-imputed HRU (IMP-H)
 - S3) Disaggregated data: all cases (ALL)

Approach	$\mu_{tc(t=1)}$		$\mu_{tc(t=2)}$		$\mu_{e(t=1)}$		$\mu_{e(t=2)}$					
	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI				
	Strategy 1 - total cost & QALY											
ALL	2543	(2157;2938)	2754	(2249;3310)	0.487	(0.449;0.575)	0.609	(0.569; 0.649)				
IMP-H	2888	(2411;3393)	2379	(1939;2872)	0.488	(0.45; 0.526)	0.61	(0.571; 0.651)				
IMP-HC	2395	(1897;2899)	2237	(1175;2749)	0.486	(0.449;0.523)	0.61	(0.572;0.649)				
Strategy 2 - cost & utility at each time												
ALL	2607	(2253;2971)	2701	(2278;3145)	0.494	(0.463;0.527)	0.6	(0.566; 0.635)				
IMP-H	2453	(2087;2843)	2273	(1874;2664)	0.494	(0.462;0.526)	0.6	(0.565;0.633)				
Strategy 3 - HRU category & utility at each time												
ALL	2687	(2173;3194)	2587	(1995;3206)	0.513	(0.475;0.55)	0.599	(0.565;0.634)				

Posterior mean QALY/Total cost esitmates

- Compare alternative models and missingness strategies:
 - S1) Aggregated data: all cases (ALL); zero-imputed HRU (IMP-H); zero-imputed HRU and costs (IMP-HC)
 - S2) Intermediate data: all cases (ALL); zero-imputed HRU (IMP-H)
 - S3) Disaggregated data: all cases (ALL)

Approach	$\mu_{tc(t=1)}$		$\mu_{tc(t=2)}$		$\mu_{e(t=1)}$		$\mu_{e(t=2)}$				
	mean	95% CI	mean	95% CI	mean	95% CI	mean	95% CI			
Strategy 1 - total cost & QALY											
ALL	2543	(2157;2938)	2754	(2249;3310)	0.487	(0.449;0.575)	0.609	(0.569;0.649)			
IMP-H	2888	(2411;3393)	2379	(1939;2872)	0.488	(0.45; 0.526)	0.61	(0.571; 0.651)			
IMP-HC	2395	(1897;2899)	2237	(1175;2749)	0.486	(0.449;0.523)	0.61	(0.572;0.649)			
Strategy 2 - cost & utility at each time											
ALL	2607	(2253;2971)	2701	(2278;3145)	0.494	(0.463;0.527)	0.6	(0.566; 0.635)			
IMP-H	2453	(2087;2843)	2273	(1874;2664)	0.494	(0.462;0.526)	0.6	(0.565;0.633)			
Strategy 3 - HRU category & utility at each time											
ALL	2687	(2173;3194)	2587	(1995;3206)	0.513	(0.475;0.55)	0.599	(0.565;0.634)			

Posterior mean incremental TC esitmates

Key results:

- S1/S2 Δ_{tc} based on zero-imputed data are systematically lower
- S3 Δ_{tc} located between S1/S2 alternative missingness strategies

Economic evaluation

- Assess cost-effectiveness based on standard tools
 - **CE plane**: representation of the joint distribution of (Δ_e, Δ_{tc})

Economic evaluation

- Assess cost-effectiveness based on standard tools
 - **CE** acceptability curve: proportion of dots lying below the straight line ($sustainability\ area$) in CE plane upon varying the threshold k

Acceptance threshold

Part V

Discussion

Summary

- CEAs often conducted on quantities derived from questionnaire data affected by missingness
 - Lack of a "gold standard" to handle missing at item level (e.g. HRUs)
 - Current practice often relies on ad-hoc methods(e.g. zero-imputing)
 - These can **distort** the data and lead to *incorrect* inferences

Summary

- CEAs often conducted on quantities derived from questionnaire data affected by missingness
 - Lack of a "gold standard" to handle missing at item level (e.g. HRUs)
 - Current practice often relies on ad-hoc methods(e.g. zero-imputing)
 - These can **distort** the data and lead to *incorrect* inferences
- Propose Bayesian framework for CEA data to handle item nonresponse in HRUs
 - Allow to fit models at different levels of data-aggregation
 - Can handle different types of data features (correlation, skewness, structural zeros)
 - Directly quantify impact of missingness uncertainty on results
 - Implemented using freely-available software (e.g. JAGS)

Application

- Application to PBS data shows that:
 - Model estimates and CE results are affected by the approach used
 - Aggregated models require implicit assumptions(e.g. zero) about disaggregated missingness
 - Possibly lead to a substantial loss of information and distort the results

Application

- Application to PBS data shows that:
 - Model estimates and CE results are affected by the approach used
 - Aggregated models require implicit assumptions(e.g. zero) about disaggregated missingness
 - Possibly lead to a substantial loss of information and distort the results

Advantages:

- Quantify impact of missingness and parameter uncertainty coherently with the analysis model
- Flexible model specification at different aggregation levels

Application

- Application to PBS data shows that:
 - Model estimates and CE results are affected by the approach used
 - Aggregated models require implicit assumptions(e.g. zero) about disaggregated missingness
 - Possibly lead to a substantial loss of information and distort the results

Advantages:

- Quantify impact of missingness and parameter uncertainty coherently with the analysis model
- Flexible model specification at different aggregation levels

Limitations:

- Same assumption for cases with different missingness patterns
- Challenging to fit as number of variables and parameters increases

Recommendations & Conclusions

- Design: minimise item missingness (e.g. shorter follow-ups or fewer questionnaire items)
- Data processing: ad-hoc imputation should be avoided unless clearly motivated
- Analysis: account for data features, including missingness:
 - Fully-missing HRQL/HRU & partially-missing utilities/costs→ Intermediate model
 - Partially-missing HRU & costs ightarrow Disaggregated model

Recommendations & Conclusions

- Design: minimise item missingness (e.g. shorter follow-ups or fewer questionnaire items)
- Data processing: ad-hoc imputation should be avoided unless clearly motivated
- Analysis: account for data features, including missingness:
 - Fully-missing HRQL/HRU & partially-missing utilities/costs→ Intermediate model
 - Partially-missing HRU & costs → Disaggregated model
- Always need to find a balance between ideal approach and its feasibility based on the available data:
 - Simplify model (i.e. dependence among variables) to reduce the number of parameters
 - Use more informative priors to handle sparse data
 - Aggregate some types of HRUs to reduce number of variables

References

- Faria, R., Gomes, M., Epstein, D., & White, I. R. (2014). A guide to handling missing data in cost-effectiveness analysis conducted within randomised controlled trials. *Pharmacoeconomics*, 32(12), 1157–1170.
- Gabrio, A., Daniels, M. J., & Baio, G. (2020). A bayesian parametric approach to handle missing longitudinal outcome data in trial-based health economic evaluations. *Journal of the Royal Statistical Society Series A: Statistics in Society, 183*(2), 607–629.
- Hassiotis, A., Poppe, M., Strydom, A., Vickerstaff, V., Hall, I., Crabtree, J., Omar, R., King, M., Hunter, R., Bosco, A., Biswas, A., Ratti, V., Blickwedel, J., Cooper, V., Howie, W., & Crawford, M. (2018). Positive behaviour support training for staff for treating challenging behaviour in people with intellectual disabilities: A cluster RCT. Health Technology Assessment, 22.
- Ling, X., Gabrio, A., Mason, A., & Baio, G. (2022). A scoping review of item-level missing data in within-trial cost-effectiveness analysis. *Value in Health*.
- O'Hagan, A., Stevens, J. W., & Montmartin, J. (2001). Bayesian cost-effectiveness analysis from clinical trial data. *Statistics in Medicine*, *20*(5), 733–753.
- Plummer, M. et al. (2003). JAGS: A program for analysis of bayesian graphical models using gibbs sampling. *Proceedings of the 3rd International Workshop on Distributed Statistical Computing*, 124, 1–10.
- Spiegelhalter, D. J., Abrams, K. R., & Myles, J. P. (2004). Bayesian approaches to clinical trials and health-care evaluation. John Wiley & Sons.