MATH-2400 INTRODUCTION TO DIFFERENTIAL EQUATIONS

SPRING 2021

Homework-5

Assigned Friday March 5,2021 Due 5 PM, Friday March 12, 2021

NOTES

- 1. Practice problems listed below and taken from the textbook are for your own practice, and are not to be turned in.
- 2. Legible, handwritten solutions will be acceptable, but the use of a typesetting system such as LaTeX is strongly recommended. Do not turn in your rough attempt at solving a problem; once you have worked out the solution, copy it neatly or typeset it before submission, after removing all false starts.
- 3. Please write your solutions clearly and coherently, with the work displayed in a sequential manner and sufficient explanation provided so that your strategy and approach are transparent to the reader.
- 4. Figures, if any, should be neatly drawn by hand, properly labelled and captioned.
- 5. The assignment is to be submitted electronically to LMS as a single pdf file. Be sure that the pages are properly oriented and well lighted. Please do not e-mail your homework submission to the TAs or the instructors.

Practice Problems from the textbook (not to be turned in)

Exercises from Chapter 3, pages 58-59: 1(d,f,h,p), 2(c,d,g), 3(c,j).

Exercises from Chapter 3, page 63: 1(c,d,e), 3(b).

Subjective part: problems to be turned in

1. (20 points) Solve the initial-value problem

$$y'' - 4y' = 4te^{4t} + 4t$$
, $y(0) = 1$, $y'(0) = 1$.

solution: Let us first consider the homogeneous DE first. Let $y = e^{rt}$, the characteristic equation is

$$r^2 - 4r = 0$$

which is equivalent to r(r-4)=0. This gives us the result r=0 or r=4.

Thus
$$y_h(t) = C_1 + C_2 e^{4t}$$

Next we need to find a particular solution of the DE. We observed that the forcing function of DE consists of 2 parts. Let us denote y_{p1} as a particular solution to the DE $y'' - 4y' = 4te^{4t}$ and y_{p2} as a particular solution to the DE y'' - 4y' = 4t. Then $y_p = y_{p1} + y_{p2}$.

The guess for the solution to y_{p1} is $y_{p1} = (a+bt)t$ (since there is no y) and the guess for y_{p2} is $y_{p2} = (cte^{4t} + de^{4t})t$. Then the solution is $y_p = (a+bt)t + (cte^{4t} + de^{4t})t$.

Then we have

$$y'(t) = a + 2bt + de^{4t} + 4de^{4t}t + 4ce^{4t}t^2 + 2e^{4t}t$$

$$y''(t) = 2b + c(2e^{4t} + 16e^{4t}t^2 + 16e^{4t}t) + d(8e^{4t} + 16e^{4t}t))$$

Then let us substitute y'(t) and y''(t) into the DE,

$$y'' - 4y' = 4te^{4t} + 4t$$

$$2b + c(2e^{4t} + 16e^{4t}t^2 + 16e^{4t}t) + d(8e^{4t} + 16e^{4t}t)) - 4(a + 2bt + de^{4t} + 4de^{4t}t + 4ce^{4t}t^2 + 2e^{4t}t) = 4te^{4t} + 4te^{4t}t + 4de^{4t}t + 4de^{4t$$

Then we have the following system of equations

$$-4a + 2b = 0$$
$$4d + 2c = 0$$
$$-8b = 4$$
$$8c = 4$$

Then we have the following solutions $a=-\frac{1}{4},b=-\frac{1}{2},c=\frac{1}{2}$, and $d=-\frac{1}{4}$

Thus
$$y_p = -\frac{t^2}{2} + \frac{1}{2}e^{4t}t^2 - \frac{t}{4} - \frac{1}{4}e^{4t}t$$

Then we have $y(t)=y_p(t)+y_h(t)=-\frac{t^2}{2}+\frac{1}{2}e^{4t}t^2-\frac{t}{4}-\frac{1}{4}e^{4t}t+C_1+C_2e^{4t}$.

Substituting y(0) = 1 gives us $c_1 + c_2 = 1$

$$y'(t) = -\frac{e^{4t}}{4} + 2e^{4t}t^2 - t + 4c_2e^{4t} - \frac{1}{4}$$
(1)

Substituting y'(0) gives us $4c_2 - \frac{1}{2} = 1$

Thus we have $c_1 = \frac{5}{8}$ and $c_2 = \frac{3}{8}$

Then we have $y(t)=-\frac{t^2}{2}+\frac{1}{2}e^{4t}t^2-\frac{t}{4}-\frac{1}{4}e^{4t}t+\frac{5}{8}+\frac{3}{8}e^{4t}$

After simplification we have $y(t) = \frac{1}{8}(-4t^2 - 2t + e^{4t}(4t^2 - 2t + 3) + 5)$

2. (20 points) Find the solution of the IVP

$$y'' + 4y' + 5y = 4e^{-2t}\cos t$$
, $y(0) = 2$, $y'(0) = 0$.

solution: Let us first consider the homogeneous DE first. Let $y = e^{rt}$, the characteristic equation is

$$r^2 + 4r + 5 = 0$$

Let us obtain the roots using the formula $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$. Thus the roots are $-2\pm i$.

For r = -2 + i the complex solution is

$$Y_1(t) = e^{(-2+i)t} = e^{-2t}cost + ie^{-2t}sint$$

Thus the general solution is $y_h(t) = C_1 e^{-2t} cost + C_2 e^{-2t} sint$.

Next we need to find a particular solution of the DE. We make an educated guess. Let $y_p = t(ae^{-2t}cost + be^{-2t}sint)$. Then we calculate y_p'

$$y_p' = ae^{-2t}cos(t) - 2ae^{-2t}tcos(t) - ae^{-2t}tsin(t) + be^{-2t}tcos(t) + be^{-2t}sin(t) - 2be^{-2t}tsin(t)$$

$$y_p'' = -ae^{-2t}tcos(t) + acos(t)(-4e^{-2t} + 4e^{-2t}t) - 2a(e^{-2t} - 2e^{-2t}t)sin(t) + 2bcos(t)(e^{-2t} - 2e^{-2t}t) - 2a(e^{-2t} + 4e^{-2t}t)sin(t) + b(-4e^{-2t} + 4e^{-2t}t)sin(t)$$

Substitute into the DE gives us:

$$y_p'' + 4y_p' + 5y_p = 4e^{-2t}cos(t)$$

$$-ae^{-2t}tcos(t) + acos(t)(-4e^{-2t} + 4e^{-2t}t) - 2a(e^{-2t} - 2e^{-2t}t)sin(t) + 2bcos(t)(e^{-2t} - 2e^{-2t}t) \\ -be^{-2t}tsin(t) + b(-4e^{-2t} + 4e^{-2t}t)sin(t) + 4(ae^{-2t}cos(t) - 2ae^{-2t}tcos(t) - ae^{-2t}tsin(t) + be^{-2t}tcos(t) + be^{-2t}tsin(t) + 5(t(ae^{-2t}cost + be^{-2t}sin(t))) \\ = 4e^{-2t}cos(t)$$

After simplication we have: $2be^{-2t}cos(t) - 2ae^{-2t}sin(t) = 4e^{-2t}cos(t)$

Then we know $2b=4 \land -2a=0$. Thus $a=0 \land b=2$. Therefore the particular solution is $y_p(t)=2e^{-2t}tsin(t)$

Then the solution is $y(t) = C_1 e^{-2t} cost + C_2 e^{-2t} sint + 2e^{-2t} tsin(t)$.

Substitute y(0) = 2 in gives us $c_1 = 2$

We take the derivative of y, which gives us $y'(t) = 2e^{-2t}tcos(t) + 2e^{-2t}sin(t) - 4e^{-2t}tsin(t) - 2c_1e^{-2t}cos(t) - c_1e^{-2t}sin(t) + c_2e^{-2t}cos(t) - 2c_2e^{-2t}sin(t)$ Substitute y'(0) = 0 in gives us $-2c_1 + c_2 = 0$

Thus $c_1 = 2$ and $c_2 = 4$

Thus the DE is $y(t) = 2e^{-2t}(\cos(t) + (t+2)\sin(t))$

3. (20 points) Consider the DE

$$ty'' - (1+t)y' + y = t^2e^{2t}, \ t > 0.$$

(a) Check that $y_1(t) = 1 + t$ and $y_2(t) = e^t$ are solutions of the homogeneous DE. $y_1' = 1 \wedge y_1'' = t$ $0 \wedge y_2' = e^t \wedge y_2'' = e^t$

Substitution: $t \times 0 - (1+t) + (1+t) == 0$

 $te^t - (1+t)e^t + e^t = 0$ Thus they are the solution for homogenous DE.

(b) Use variation of parameters to find the general solution of the DE.

We seek the solution in the form $y_p = u(t)(1+t) + v(t)e^t$.

The DE can be written as $y'' - (\frac{1+t}{t})y' + (\frac{1}{t}y) = te^{2t}$

Then the wrosnskian gives us $e^t - e^t(t+1) = -te^t = y_1y_1' - y_2y_1'$

Then
$$u' = \frac{t^2 e^{2t}(e^t)}{-te^t}$$
, $v' = \frac{t^2 e^{2t}(t+1)}{-te^t}$

Therefore $u = \int \frac{t^2 e^{2t}(e^t)}{-te^t} = \frac{1}{4}(1-2t)$ (perform an integrate by parts, where f = t, df = dt, $g = \frac{e^{2t}}{2}$, $dg = e^{2t} dt$) $v = \int \frac{t^2 e^{2t}(t+1)}{-te^t} = e^t(t^2 - t + 1)$ Thus $y_p = \frac{1}{4}(1-2t) + e^t(t^2 - t + 1)$ Thus $y = C_1(1+t) + C_2e^t + \frac{1}{4}(1-2t) + e^t(t^2 - t + 1)$

Thus
$$y_n = \frac{1}{4}(1-2t) + e^t(t^2-t+1)$$