Computability and Complexity

Lecture 4, Thursday August 10, 2023 Ari Feiglin

Let us define the following decision problem,

 $3SAT = \left\{ \varphi \mid \begin{array}{l} \varphi \text{ is a satisfiable boolean formula in CNF, and each part of the conjunction is the disjunction of at} \\ \text{most three literals} \end{array} \right\}$

This is a restriction of the decision problem SAT. We've actually already proved that 3SAT is **NP**-complete since our proof of the Cook-Levin theorem actually gave us a reduction from CSAT to 3SAT, as our reduction to SAT defined a formula where each part of the conjunction is the disjunction of three literals. This shows that SAT is not **NP**-hard since we can't restrict the number of literals in each disjunction, as 3SAT is also **NP**-hard.

But it turns out that

 $2SAT = \left\{ \varphi \mid \varphi \text{ is a satisfiable boolean formula in CNF, and each part of the conjunction is the disjunction of at} \right\}$

is in **P**.

Example 4.1:

Let us define the following decision problem,

Clique = $\{(G, k) \mid G \text{ is an unordered graph with a clique whose size is at least } k\}$

then Clique is **NP**-complete.

Obviously Clique is in **NP**, as we can define the verifier V((G,k),C) and verify that C is a clique of G of size $\geq k$. Since $|C| \leq |G|$ for a clique, and this can be done in polynomial time on |C|, this is a polynomial proof system as required.

Let us define a reduction from IS to Clique, meaning IS \leq Clique and so Clique is **NP**-hard. Given an input (G = (V, E), k) we define the graph $G' = (V, E^c)$. Then $(G, k) \in IS$ if and only if $(G', k) \in C$ clique (ie. $(G, k) \mapsto (G', k)$ is a Karp reduction from IS to Clique). If $(G', k) \in C$ clique then suppose C is a clique of G of size $\geq k$, then for every $u, v \in C$ then $(u, v) \in E^c$ and so $(u, v) \notin E$. So C is an independent set of size $\geq k$ in G', and so $(G, k) \in IS$ as required. The proof for the converse is similar.

Thus Clique is indeed NP-complete as required.

Definition 4.2:

If G = (V, E) is a graph, a vertex cover is a set of vertices S which touches every edge in G. In other words, for every $(u, v) \in E$, either u or v is in S.

Example 4.3:

We define the following decision problem,

 $VertexCover = \{(G, k) \mid G \text{ has a vertex cover whose size is at most } k\}$

We will show that VertexCover is **NP**-complete.

It is easy to see that VertexCover is in **NP**. Notice that C is a vertex covering if and only if $V \setminus C$ is an independent set: if $u, v \in V \setminus C$ then $(u, v) \notin E$ (as then either u or v would be in C). And if $V \setminus C$ is an independent set, then for every $(u, v) \in E$ then u or v cannot be in $V \setminus C$ (ie. one is in C) as $V \setminus C$ is independent.

So G has a vertex covering of size k if and only if it has an independent set of size |V| - k, and therefore the mapping $(G, k) \mapsto (G, |V| - k)$ is a Karp reduction from IS to VertexCover, and therefore VertexCover is **NP**-complete as required.

Definition 4.4:

A dominating set of a graph G = (V, E) is a set of vertices S such that for every $u \in V$, either u is in S or u has a neighbor which is in S.

Example 4.5:

We define the following decision problem,

DominatingSet = $\{(G, k) \mid G \text{ has a dominating set whose size is at most } k\}$

We will show that DominatingSet is **NP**-complete.

Again, it is easy to see that DominatingSet is in **NP**. We will prove this by defining a reduction from VertexCover to DominatingSet. Notice that if C is a vertex cover, and there are no isolated vertices, then C is a dominating set: for $u \in V$ there exists a $(u, v) \in E$ and thus $u \in C$ or $v \in C$ as C is a vertex cover.

Suppose G = (V, E) is a graph (without isolated vertices), we define a new graph G' = (V', E') where

$$V' = V \cup \{uv \mid (u, v) \in E\}, \quad E' = E \cup \{(u, uv), (uv, v) \mid (uv) \in E\}$$

So for every edge in G, we insert a vertex which is also connected to both ends of the edge. We claim that $(G, k) \mapsto (G', k)$ is a Karp reduction from VertexCover to DominatingSet.

If G = (V, E) has isolated vertices, then we remove the isolated vertices and then construct G'. Since a vertex cover need not contain isolated vertices, we can assume that they don't (we are minimizing the size of the vertex covers and dominating sets).

If $(G, k) \in \text{VertexCover}$ then the vertex cover of size $\leq k$ in G is also a dominating set in G'. Suppose that C is a vertex cover in G, then for every $x \in V'$, if

- (1) $x = u \in V$ then since C is a vertex cover, and u is not isolated, there exists a $(u, v) \in E$ and so $u \in C$ or $v \in C$ as required.
- (2) x = uv then since $(u, v) \in E$, either u or v is in C and so x has a neighbor in C, as required.

and so C is a dominating set in G'. And therefore $(G',k) \in DominatingSet$ as required.

And if $(G', k) \in DominatingSet$ then let S be a dominating set of size $\leq k$ in G', then let us define a new set S', where for every $x \in S$ if

- (1) $x = u \in V$, add u to S'.
- (2) x = uv then add either u or v to S'.

Then $|S'| \leq |S| \leq k$, and S' is a vertex cover of G: if $(u, v) \in E$ then since $uv \in V'$ and S is a dominating set, either $uv \in S$, or $u \in S$, or $v \in S$. This means that either $u \in S'$ or $v \in S'$, and thus S' is indeed a vertex cover of G. Therefore $(G, k) \in \text{VertexCover}$ as required.

Definition 4.6:

A Hamiltonian path in a graph is a path which visits every vertex exactly once.

Example 4.7:

We define the decision problem

 $DHP = \{G \mid G \text{ is a directed graph which has a Hamiltonian path}\}\$

We claim that this is \mathbf{NP} -complete.

It is easy to see that this is in **NP**. We will define a reduction from SAT to DHP. Suppose we are given a boolean formula in CNF,

$$\varphi = \bigwedge_{i=1}^{m} \bigvee_{j=1}^{n} \varepsilon_{ij} x_{j}$$

We define a graph G = (V, E) where we define the following types of vertices:

- (1) For each variable x_i we define 3m+3 copies of it as vertices, which we will denote $x_{i,1},\ldots,x_{i,3m+3}$.
- (2) For i = 1, ..., m we add a vertex b_i which corresponds to the *i*th disjunction in φ .
- (3) We add start and end nodes, s and t.

We also define the following types of edges

- (1) For each variable x_i , we define the edges $(x_{i,j}, x_{i,j+1})$ and $(x_{i,j+1}, x_{i,j})$.
- (2) For each variable x_i , we define the edges $(x_{i,1}, x_{i+1,1}), (x_{i,1}, x_{i+1,3m+3}), (x_{i,3m+3}, x_{i+1,1}),$ and $(x_{i,3m+3}, x_{i+1,3m+3}).$
- (3) For each disjunction D_i and each variable x_i which appears in D_i , then
 - (i) if x_i appears in D_i as-is, then we add edges $(x_{j,3i}, b_i)$ and $(b_i, x_{j,3i+1})$.
 - (ii) if $\neg x_j$ appears in D_i , then we add edges $(x_{j,3i+1}, b_i)$ and $(b_i, x_{j,3i})$.
- (4) We add edges $(s, x_{1,1})$ and $(s, x_{1,3m+3})$, and $(x_{n,1}, t)$ and $(x_{n,3m+3,t})$.

Now, if $\varphi \in SAT$ then suppose τ satisfies it. Then we define a Hamiltonian path in G as follows:

- (1) We start at S.
- (2) For every i = 1, ..., n if τ_i is true then we move on the row $x_{i,1}, ..., x_{i,3m+3}$ from left to right. Otherwise we move from right to left.

At each $x_{i,j}$ we check if we can visit some b_k and continue (ie. if we are going from left to right, we must check if we can go from b_k to $x_{i,j+1}$). If we can then we go to that b_k and then $x_{i,j\pm 1}$ (if we are going from left to right, then it is +1, and right to left is -1).

If we can't go to some b_k , then we go to the next $x_{i,j\pm 1}$ (again, the sign depends on the direction of movement). If $j\pm 1=0$ or 3m+4 (ie we've reached the end of the row), then we go to $x_{i+1,1}$ or $x_{i+1,3m+3}$ depending on whether on the row $x_{i+1,1}, \ldots, x_{i+1,3m+3}$ depending on if we are moving left or right on the row for $x_{i+1,j}$.

(3) Once we get to $x_{n,1}$ or $x_{n,3m+3}$, and this is the final vertex in $x_{n,j}$, then we go to t.

This is a well-defined path. We claim it is Hamiltonian. Since we necessarily traverse every vertex of the form $x_{i,j}$ or s or t, we must confirm that we also visit every vertex of the form b_i . For every b_i , some $\varepsilon_{ij}x_j$ must be satisfied by τ , and so if we let j the minimum such value, we will visit b_i on the row of x_j .

Now suppose G has a Hamiltonian path. Suppose that from $x_{i,j}$ we visit b_k , then from b_k we go to $x_{a,b}$. Suppose for the sake of a contradiction that $a \neq i$. Further suppose that on the x_i th row, we are going from left to right. So let j be the minimum such j where this occurs on the x_i th row, so by this point we must have visited all $x_{i,j'}$ for $j' \leq j$. Then at some other point we must go back to the x_i row, and since j is the minimum where this anomaly occurred, we must go to $x_{i,j'}$ for some j' > j and visit $x_{i,j}$ from its right. But then from $x_{i,j}$ we will not have a place to go (since it can only go to $x_{i\pm 1,j}$, which have been visited), and thus we cannot have reached t (this must be the final vertex in the Hamiltonian cycle).

So this means that if we go from $x_{i,j}$ to b_k then we return to $x_{i\pm 1,j}$, depending on the direction of movement in the x_i th row. So if we go from left to right in x_i , let τ_i be true, and otherwise let it be false. This satisfies φ as each disjunction (b_i) is satisfied.

Thus $\varphi \mapsto G$ is a reduction from SAT to DHP, and so DHP is **NP**-complete.