Perceptrons, Backprop, and Gradient Descent

RRC Summer School '23

Takes in several binary inputs

Takes in several binary inputs

Gives out one binary output

How does it know what to output?

Takes in several binary inputs

- How does it know what to output?
- Preferred listening to inputs
 - Weights assigned to inputs

Takes in several binary inputs

- How does it know what to output?
- Preferred listening to inputs
 - Weights assigned to inputs

$$ext{output} = \left\{ egin{array}{ll} 0 & ext{if } \sum_j w_j x_j \leq ext{ threshold} \ 1 & ext{if } \sum_j w_j x_j > ext{ threshold} \end{array}
ight.$$

Takes in several binary inputs

- How does it know what to output?
- Preferred listening to inputs
 - Weights assigned to inputs
- Knobs: weights and thresholds

$$ext{output} = \left\{ egin{array}{ll} 0 & ext{if } \sum_j w_j x_j \leq ext{ threshold} \ 1 & ext{if } \sum_j w_j x_j > ext{ threshold} \end{array}
ight.$$

Scaling Up

Cascading Layer after Layer

- The first layer of perceptrons - is making three very simple decisions, by weighing the input evidence.

Cascading Layer after Layer

- The first layer of perceptrons is making three very simple decisions, by weighing the input evidence.
- Second perceptrons is making a decision by weighing up the results from the first layer of decision-making.

Cascading Layer after Layer

- The first layer of perceptrons is making three very simple decisions, by weighing the input evidence.
- Second perceptrons is making a decision by weighing up the results from the first layer of decision-making.
- Thus complex decision boundaries can be learnt

Bias

Gives a feel of what it takes for a neuron to fire

$$ext{output} = \left\{egin{aligned} 0 & ext{if } w \cdot x + b \leq 0 \ 1 & ext{if } w \cdot x + b > 0 \end{aligned}
ight.$$

Bias

Gives a feel of what it takes for a neuron to fire

Learning

- Is about automatically tuning the weights and biases of neurons
- So that model's output is in line with the training data

What exactly does a neural net do?

 Learns/ tries to converge on a function which would most closely model training input to label transformation

Neural Networks in Action

What are those hidden neurons doing?

Forward Pass

Get the output

Loss wrt Label

$$ext{cost}(w,b) = rac{1}{2n} \sum_{\mathit{all\ training\ samples}} || ext{model}(training\ sample}) - label ||^2$$

Gradient Calculation: Backpropagation

Update "optimise" weights

Repeat

Repeat

One traversal over the entire training dataset = 1 Epoch

Gradient Descent and Loss Landscapes

$$\Delta C = rac{\partial C}{\partial v_1} v_1 + rac{\partial C}{\partial v_2} v_2$$

Say v1 and v2 are the only two learnable parameters in your model

With a small change in v1 and v2, this is the change in Loss we measure

$$\Delta v \equiv (\Delta v_1, \Delta v_2)^T$$

If we are able to measure the gradient of C at a point

We can figure out what change in the params we should do

$$abla C \equiv \left(rac{\partial C}{\partial v_1}, rac{\partial C}{\partial v_2}
ight)^T$$

$$\Delta v = -\eta
abla C \ v
ightarrow v - \eta
abla C$$

$$\Delta C pprox
abla C \cdot \Delta v$$
.

Doing away with the brevity,

Chain Rule!

$$\frac{\partial \mathcal{L}}{\partial w_{4}} = \frac{\partial \mathcal{L}}{\partial f} \frac{\partial f}{\partial w_{4}} = (\ell - f)(d)$$

$$\frac{\partial \mathcal{L}}{\partial w_{4}} = \frac{\partial \mathcal{L}}{\partial f} \frac{\partial f}{\partial d} = (\ell - f)(w_{4})(a)$$

$$\frac{\partial \mathcal{L}}{\partial w_{1}} = \frac{\partial \mathcal{L}}{\partial f} \frac{\partial f}{\partial d} \frac{\partial d}{\partial w_{1}} = (\ell - f)(w_{4})(a)$$

AutoGrad Demo

