Process Mining - 02269

Lecture 2

Limitations of Alpha Algorithm

Andrea Burattin

Log Completeness

- Required completeness for the α Algorithm
 - Completeness w.r.t. direct success relationship (>_W)
 - Whenever two tasks may occur as direct successors, this must be observed in at least one trace
 - Example: concurrent execution of five tasks, A, B, C, D, E
 - If $\langle A, B, C, D, E \rangle$ and $\langle B, A, C, E, D \rangle$ are observed, $\langle B, A, C, D, E \rangle$ is not required for log completeness!
- This completeness criterion reduces the number of required traces for highly concurrent processes dramatically

Rediscovery Problem

For which class of WF-nets can we guarantee that WF_1 and WF_2 are equivalent if logging is complete according to introduced notion?

Structural and behavioural assumptions on WF_1

The α Algorithm can rediscover

sound structured workflow net without short loops,

if the event log is complete according to introduced notion

(based on direct success relationship)

Implicit Places

- The presence or absence of implicit places does not change the behaviour of a net system
 - Hence, process models with implicit places cannot be re-discovered
 - Not really an issue, since there are no consequences for the behaviour

Structured Workflow-Nets

- Structured WF-nets (SWF-nets) are structural subclass:
 - A WF-net N = (P, T, F) is a structured Workflow net iif
 - For all $p \in P$ and $t \in T$ with $(p, t) \in F : |p \bullet| > 1$ implies $| \bullet t | = 1$
 - For all $p \in P$ and $t \in T$ with $(p, t) \in F : |\bullet t| > 1$ implies $|\bullet p| = 1$
 - There are no implicit places

- Note
 - Sufficiently expressive to model most process-related control-flow structures, sequences, concurrency, exclusive choices, etc.

Soundness

- Behavioural correctness criterion for WF-nets
 - Processes terminate in proper final state
 - Final state is indeed characterised unambiguously
 - All activities can contribute to process execution
- Recall: WF-net has initial place i and final place o
 - Overload notation and refer to i and o also as the markings that put one token into i and o, respectively, and no token in any other place

Soundness Definition

- A workflow system (PN, i) with workflow net PN = (P, T, F) is sound iff
 - For every state M reachable from state i there exists a firing sequence leading from M to o (option to complete):

$$\forall M \left(i \stackrel{*}{\to} M \right) \Rightarrow \left(M \stackrel{*}{\to} o \right)$$

• State o is the only state reachable from state i with at least one token in place o (proper completion):

$$\forall M \left(i \stackrel{*}{\to} M \land M \ge o \right) \Rightarrow M = o$$

• There are no dead transition in the workflow net in state *i* (no dead transition):

$$(\forall t \in T) \exists M, M' : i \xrightarrow{*} M \xrightarrow{t} M'$$

Consider Loops

• Short loops are a problem

Short Loops

• Short loops (length 1 or 2) pose an issue for rediscoverability by the α Algorithm:

The α Algorithm can rediscover

sound structured workflow net without short loops,

if the event log is complete according to introduced notion

(based on direct success relationship)