

INFORMATICS INSTITUTE OF TECHNOLOGY In Collaboration with ROBERT GORDON UNIVERSITY ABERDEEN

Multimodal Fall Detection System For Elderly Persons

Group 20 Project Proposal Document by:

Modarage Ethan Christoff Perera – 20221812 | 2331419

Senuli Laknara Wickramage – 20220950 | 2330973

Himansa Wathsiluni Jayasuriya – 20230903 | 2330903

Mevinu Induwara Gunaratne – 20232429 | 2330893

Supervised by Mrs Vishmi Embuldeniya

Submitted in partial fulfilment of the requirements for the BEng/BSc in Artificial Intelligence and Data Science degree at the Robert Gordon University.

October 2024

© The copyright for this project and all its associated products resides with Informatics Institute of Technology

Table of Contents

Table Of Figures	ii
Section For Tables	ii
1.0 Introduction	3
1.1 Chapter Overview	3
1.2 Rich Picture	
1.3 Stakeholder Analysis	3
1.3.1 Onion Model	
1.3.2 Onion Model Content	4
1.4 Selection of Requirement Elicitation Techniques/Methods	6
1.5. Discussion of Results	
1.6 Summary of Findings	
1.7 Context Diagram	
1.8 Use Case Diagram	
1.9 Functional Requirements	
1.10 Non-Functional Requirements	
1.11 Chapter Summary	
Table Of Figures	
Figure 1: Rich Picture	
Figure 2: Onion ModelFigure 3: Context Diagram	
Figure 4: Use Case Diagram	
Section For Tables	
Table 1: Onion Model Stakeholder Descriptor	6
Table 5: UC01 Description	
Table 6: UC02 Description	
Table 7: UC03 Description	
Table 8: UC04 Description	
Table 9: UC05 Description	
Table 10: UC06 Description	
Table 11: Friority Definitions	
Table 13: Non-Functional Requirements Table	16

1.0 Introduction

1.1 Chapter Overview

This chapter outlines the application's fundamental requirements, focusing on data collection and functional aspects influencing core functionality. It details techniques like questionnaires and interviews, discussing their procedures, pros, and cons. Use case diagrams illustrate actor interactions with the system, while stakeholders and their affiliations are identified. Lastly, functional and non-functional requirements are listed to define the application's essential needs.

1.2 Rich Picture

Figure 1: Rich Picture

1.3 Stakeholder Analysis

Regarding the stakeholder analysis segment of this chapter, the following Onion model lists out how a stakeholder is involved in the development of the system:

1.3.1 Onion Model

Figure 2: Onion Model

1.3.2 Onion Model Content

Stakeholder Role in system		Contribution/ Benefit		
ML Engineers, Operational/		Design the process in developing a system to analyse potential		
Data Scientists Functional		falls while maintaining its functionality/accuracy and providing		
	maintenance	newly found data into data pools utilized within the machine		
		learning model for better accuracy		
System	Operational	They assist with deploying the application and configuring it to		
Administrator	Administration	fit in different environments		
Caretaker	Support Provider	They provide insights into how to look after elders while taking		
		care of them while the system is being implemented		
Elderly Users	Main User	They act as the main user of the system while providing it with		
		new training data (actively)		
Technical	Project/	They help maintain the system if ever it were to fail while		
Support &	Application	managing false positives and functional failures		
Maintenance	Functional			
	maintenance			
Medical Device	Peripherals	They provide the system with affordable options for the		
& Sensor	Provider	peripherals utilized in the system		
Suppliers				
Project Owner Functional		Owner of the fall detection system		
	Beneficiary			

Sponsor	Functional	Fund the project through sponsors such that it can be developed
-	Beneficiary	further
System	Project/	Further develops the application to negate false positives while
Development	Application	increasing the overall accuracy
Team	Developers	
Medical	Health Advisors	Provide the system with advice over how to better detect falls
(Physiotherapist)		and what parameters are to be considered in doing so
Secondary	Medical Support	Respond to emergencies in case a fall were to occur
Caregivers	Advisors/	
& Emergency	Responders	
Responders		
Community	Ethical/Medical	Regard ethical constraints the application may occur in terms of
Health	Constraint	privacy and help administer solutions to it while constantly
Organizations	Advisors/	updating the systems database of constraints, etc
_	Responders	
Research	Knowledge	Validate the accuracy of the system by carrying out recursive
Institutions	Contributors	tests and provide evidence-based insights into the systems
		designs, aligning it more with real world needs
3 rd Party Systems	Functional	Enhance system functionality by allowing it to connect with
	beneficiaries	other platforms (e.g., emergency services, health records) for
		seamless data exchange and quick response.
Technical Writers	Operational	Support usability by developing clear, accessible
	Support	documentation for stakeholders, including users, caregivers,
		and developers
Researcher	Knowledge	Improve accuracy by validating the system's algorithms,
	Contributor	analysing effectiveness, and providing evidence-based insights
		for iterative improvements, they further the projects scope as
		well to experiment with new functions
ML Experts,	Expert	Enhance fall detection accuracy through improved algorithms,
Domain Expert		reducing false positives/negatives and optimizing system
_		performance while ensuring the application caters to real world
		needs in actual healthcare scenarios
Competitor	Negative	Develops an application that directly contrasts our application
•	Stakeholder	
Hacker	Negative	Finds vulnerabilities within the system, accesses them and then
	Stakeholder	reports them to the system project owner such that they are
		notified of a breach of privacy/functionality
Product	Developer,	Ensure the system is user-centred, incorporating practical
Developer	Operational	features and achieving alignment with stakeholder needs and
1	Maintenance	compliance standards.
Regulator	Quality Regulator	Ensures that the application stays within healthcare-based
		application standards while improving patient safety, data
		application standards with improving patient safety, data

privacy, and legal compliance. This boosts system credibility
and user trust

Table 1: Onion Model Stakeholder Descriptor

1.4 Selection of Requirement Elicitation Techniques/Methods

1.4.1 Analysis of Requirement Elicitation Methodologies

Requirement elicitation involves various methods to define a system's needs. This section evaluates the advantages and disadvantages of common approaches and outlines the techniques applied to develop our fall detection system.

1.4.1.1 Observing Existing Systems and Literature Review

Studying existing systems and reviewing literature provides insights into current fall detection technologies, highlighting areas for improvement. *Table 2*

Advantages	Disadvantages				
Provides a foundational understanding of	Reviewing research papers and solutions can				
fall detection systems.	be complex.				
Helps identify feature gaps and focus on	May lack real-world data for targeted				
patient safety.	demographics or use cases.				

1.4.1.2 Surveys & Questionnaires

Effective for gathering input from elderly patients, caregivers, and potential users, providing a broad understanding of user needs.

Table 3

Advantages	Disadvantages
Reaches a wide audience and captures	Responses may vary in quality or misunderstand
diverse insights.	questions.
Time-efficient and straightforward for	Limited to predefined questions, missing
analysis.	nuanced experiences.

1.4.1.3 Interviews

Interviews with medical professionals, caregivers, and patients provide detailed insights into critical requirements and user perspectives.

Table 4

Advantages				Disa	dvantag	es				
Allows	for	detailed	follow-up	and	Time-intensive	and	limits	the	number	of
clarifica	tion.				respondents.					

Offers unique qualitative insights.	Some interviewees may struggle to articulate
	requirements.

1.4.2 Requirement Gathering Methods Selected

A combination of methods ensures comprehensive, accurate requirements:

- **Structured Interviews**: Gather expert insights from medical professionals on fall risks and conditions.
- Closed-Question Questionnaires: Collect feedback from elderly patients on fall experiences and needs.
- **Unstructured Interviews**: Capture caregiving experiences and real-world challenges from caregivers.
- Structured Questionnaires in Physiotherapy Clinics: Collect consistent data on patients' fall risks and histories.

This balanced approach integrates qualitative insights and quantifiable data, enabling the development of a user-centred, reliable fall detection system.

1.5. Discussion of Results

Table 5: Interview Results with the Physiotherapist at National Hospital Sri Lanka

Question	Question Aim	Finding	Conclusion
1.Where on body is a good location to fix an accelerometer and gyroscope for accurate fall detection?		It was found that placing the device on the stomach is more fitting given the fact that the centre of gravity is normally located there and easily traceable	Placing the device on the stomach is ideal for accurate fall detection.
2. What health conditions or diseases might make a patient more vulnerable to falls?	Identify health conditions that increase fall risk.	Necrosis, Vascular disease, sudden drops and rises of blood pressure, loss of body mass, postural hypertension, joint issues, arthritis, neurological diseases, skeletal deformities.	Understanding these conditions helps target at-risk patients for fall prevention.
3.How quickly should the alert be sent, and should this response time vary based on individual patient conditions or be a standard time frame?	Establish an optimal alert response time to prevent falls.	In general, make it such that the application detects that a person is in the projected process of falling at least 2~3 minutes before they fall such that they may be told to take a seat.	Implementing a pre- fall alert system may effectively reduce the risk of injuries
4.If a patient receives an alert that they are about to fall, can they typically stabilize themselves in response to this alert?	Assess whether patients can respond to prefall alerts effectively	In imminent falls, patients can't stabilize themselves easily, but they can be notified to take preventive actions such as sitting down or getting low to the ground immediately.	Alerts can enable patients to take safer positions, reducing injury risk.

5 XX 71	T1 .:0 1:11	751 1 1 1 1 1 1 1 1 1 1 1 1	mi
5.What assessments or	Identify reliable	Physiotherapists calculate the risk of	These provide a
tests do you use to	fall risk	falling using fall risk scales - Berg	standardized
evaluate a person's risk of	assessment tools.	Balance Scale, the Timed Up and Go	measure of fall risk
falling?		test, and the 10-Minute Walk Test	for clinical use.
6.Can blood pressure be	Evaluate blood	Blood pressure is not a key factor for	Looking for sudden
considered as a good	pressure changes	falls, but in sudden changes (drops or	blood pressure
factor for finding fall	as indicators of	rises) falls can occur due to dizziness,	changes should be
risk?	fall risk.	loss of balance or fainting.	done rather than just
		C	high or low.
7. What additional health	Identify other	Conditions like high blood pressure,	Blood sugar and
conditions contributes to	conditions that	low blood sugar levels, and heart	heart attack
falls, such as sudden	may lead to falls.	attacks can also lead to falls.	monitoring is not
drops in blood pressure?			possible due to
			resource limitations
8. What privacy concerns	Ensure	Patients consent should always be	Following privacy
should we consider, and	compliance with	taken. The patient must always be	protocols protects
from whom should we	privacy and	aware of the device.	patients' rights and
obtain consent?	ethical	3.7.30	trust in the system.
	requirements		
9.In terms of placing a	Determine the	Wrist is a good position, because the	Wrist placement
blood pressure monitor	optimal location	skin in that area is thin and arteries	should be done for
on the body, where can be	for monitoring	and veins going in that area is easily	accurate blood
an appropriate place?	blood pressure.	identifiable from outside.	pressure monitoring.
10. How do you think our	Evaluate Evaluate	very good product for elders and	Early fall alerts may
system could benefit	potential patient	patients with risk of fall. Falls cause	reduce recovery time
patients, especially older	benefits of the	injuries, bone fractures, get	and improve patient
adults?	system.	bedridden, head injuries that will lead	outcomes.
addits.	5,500111.	to death. This can minimize most of	outcomes.
		them if alerted before falling.	
11.Do you have any	Get suggestions	Consider identifying elderly patients	Personalized
suggestions for	to improve fall	with specific conditions and directing	recommendations
improving our system?	detection	them toward physiotherapy support.	improve system's
Improving our system:	effectiveness.	mem toward physiomerapy support.	effectiveness for at-
	CHOCHVOIICSS.		risk patients.
			115K patients.

Table 6: Questionnaire results from the elderly individuals and patients with less balance from the National Hospital

Understanding their Needs and Experiences							
Question 1	How often do you feel unsteady or at risk of losing balance during your daily activities?						
Question Aim	Тоа	assess the ind	ividual's per	ceived risk of f	alls during thei	r daily routine.	
Observation	8 6 4 2	1 (5.6%)	5 (27.8%)	7 (38.9%)	4 (22.2%)	1 (5.6%)	Responses mostly range from 2 to 4, indicating a moderate sense of unsteadiness.
		1	2	3	4	5	

Conclusion	Many respondents occasionally feel unsteady, suggesting some awareness of fall risks but no				
	extreme concern.				
Question 2	How much extra support do you feel you need for specific activities?				
Question Aim	To understand the level of assistance the individual requires for various tasks.				
Observation	Ratings are mixed with some participants rating it low (1-2), while others lean toward moderate or high (4-5).				
Conclusion	The need for additional support varies widely, reflecting individual differences in physical capabilities and confidence.				
	Gauging Expectations for the System				
Question 3	How important would it be to you to receive an alert if you were at risk of a fall?				
Question Aim	To evaluate the importance of a fall detection and alert system to the individual.				
Observation	Most responses ar rated 5 highlighting hig importance.				
Conclusion	The majority consider fall alerts crucial, reinforcing the system's relevance.				
Question 4	How comfortable would you feel if someone (like a family member or neighbour) wer notified in case of a fall?				
Question Aim	To determine the individual's openness to external intervention during a fall incident.				
Observation	Responses show strong agreement (mostly 5). 14 (77.8%)				
Conclusion	Participants are highly comfortable with notifying others, emphasizing the importance of involving caregivers or family.				
Question 5	If you couldn't reach someone right away in an emergency, how useful would you find system to automatically request help?				
Question Aim	To assess the perceived utility of an automated emergency response system.				

1.6 Summary of Findings

Findings	Literature Review	Questionnaire	Existing Systems
Optimal device placement on the body	X	X	
Health conditions affecting fall risk	X	X	
Importance of pre-fall alert systems		X	
Privacy concerns in monitoring systems	X	X	
Variability in fall assessment tools	X		
Lack of focus on multi-factor detection	X		X

1.7 Context Diagram

Figure 3: Context Diagram

1.8 Use Case Diagram

Figure 4: Use Case Diagram

Use Case ID	UC01
Use Case Name	Customize Profile
Description	Customize and view user profiles, registering details and adjusting thresholds
Actors	User (Caretaker, Elder)
Pre-conditions	User must log into the system with valid credentials
Main-Flow	1.User Customizes Profile
	2.User adjusts the thresholds of certain parameters (eg: age, height, BMI
	3.Add new parameters such as bone density, past conditions, etc
	4.User profile is then stored in the system
	5.User can view profile to identify causes of symptoms/behaviour.
Alternative	-
Flow	
Exceptional	User fails to login, loop back to the start of UC01
Flows	

Table 7: UC01 Description

Use Case ID	UC02		
Use Case Name	Receive Alert		
Description	User receives fall alerts (caretaker, emergency service, or elder alert to		
	rest/exercise)		
Actors	User (Caretaker, Elder), "Emergency Service"		
Pre-conditions	A user profile must exist (UC01)		
Main-Flow	1.An elderly individual is in a risk of falling		
	2.System alerts for erratic movement and blood pressure spikes.		
	3.Elderly individual performs exercises for self-assessment.		
	4. The relevant authorities are alerted in case they are in risk of a fall		
Alternative Flow	Instead of receiving an alert for a negative factor, it may just be to remind the user		
	to carry out their "daily wellness checks in"		
Exceptional Flows	The system fails to alert the user so proceeds to contact another individual		

Table 8: UC02 Description

Use Case ID	UC03
Use Case Name	Request for assistance
Description	Elder may press the emergency button to alert authorities.
Actors	Elder
Pre-conditions	A user profile must exist (UC01)
Main-Flow	1.The elder experiences some difficulties in walking
	2.System device contacts authorities as a precaution.
Alternative Flow	-
Exceptional	In case the system doesn't work through a manual activation, the systems automated
Flows	facilities will alert the relevant authorities

Table 9: UC03 Description

Use Case ID	UC04
Use Case Name	Configure emergency contacts
Description	The user can set up emergency contacts in the system.
Actors	User (Caretaker, Elder)
Pre-conditions	A user profile must exist (UC01)
Main-Flow	1. System shows the "Emergency Contacts" setup screen in settings.
	2.User selects the option to add a new emergency contact.
	3.System prompts the user to enter contact details (e.g., name, phone number,
	relationship).
	4.User enters the emergency contact information and confirms the entry.
	5.System verifies the format of the contact information (e.g., valid phone number).
	6.System saves the new contact and displays a confirmation message.
	7.User repeats steps 2-6 to add additional emergency contacts if needed.
Alternative Flow	The user could modify an existing contact or remove one
Exceptional Flows	Invalid contact information, database connection error, maximum contacts reached

Table 10: UC04 Description

Use Case ID	UC05	
Use Case Name	Request Report	
Description	Elevated users can request performance reports (weekly, bi-weekly, etc.).	
Actors	"Emergency Service", Caretaker	
Pre-conditions	-	
Main-Flow	1.Actor navigates to the "Reports" section within the system.	
	2.System displays available report options (e.g., weekly, bi-weekly, monthly).	
	3.Actor selects a desired report type and specifies a time period.	
	4.System retrieves data for the selected time frame and compiles the report.	
	5.System generates the report and displays it to the actor in a viewable format.	
	6.Actor reviews the report and may choose to download or print it.	
Alternative Flow	Request a custom time period-based report	
Exceptional	No data available for selected period, Report generation timed out due to error,	
Flows	insufficient access rights	

Table 11: UC05 Description

Use Case ID	UC06
Use Case Name	Get Location and Health Information
Description	Elevated users may view the user's location and retain information in urgent fall
	scenarios.
Actors	"Emergency Service"
Pre-conditions	A user profile must exist (UC01) with proper contacts (UC04)
Main-Flow	1.Actor logs into the system with elevated access rights and navigates to the "Live
	Location and Health" section.
	2.System verifies the actor's credentials and confirms elevated access.
	3.Actor searches for the user by name or ID and selects the user's profile.
	4.System retrieves and displays the user's current location on a map.
	5.System displays recent health data, including heart rate, oxygen levels, and any
	recent incidents or alerts.
	6.Actor reviews the location and health data in real-time.
	7.Actor may initiate contact with the user's emergency contacts or caregivers
	directly from the interface if additional assistance is needed.
Alternative Flow	Users Health Data unavailable, User may instead request for historical health data
Exceptional	User location not available, Access denied
Flows	

Table 12: UC06 Description

1.9 Functional Requirements

The functional requirements of the application are listed down below (they cover the fundamental needs of our application for it to be considered as a useable system):

Priority Level	Description
Critical	Core functionality/feature of the application, cannot function without it
Moderate	Not mandatory, but is considered as a requirement

Non-Important Out of scope requirements

Table 13: Priority Definitions

ID	Requirement And Description	Priority
FR01	Real-Time-Fall Detection – Always analysing the potential of a fall using the sensors and the camera accurately.	Critical
FR02	Automated Alerts before a fall occurs and after - The system must be able to alert the relevant authorities if a user is in risk of a fall or has fallen such that they will respond immediately to the issue	Critical
FR03	Posture Detection - The application should be able to detect the posture of a person to detect the persons pre-fall poses.	Critical
FR04	Blood Pressure Monitoring - The system must be able to accurately and actively measure the users blood pressure to know if the user might experience a loss or gain in blood pressure	Critical
FR05	Activity Monitoring - Track the daily movement of the user to actively being traced and monitored by the system (e.g. see if they're standing, walking or in an idle position)	Moderate
FR06	Periodic Health Check Reminders - Constantly or time to time reminding the user to take self-assessments for them and the caretakers to understand their health status. Besides that, the user may be instructed to take a seat to keep them safe.	Critical
FR07	Long-Term-Data Storage - Storing historical health data (posture, blood pressure, fall events) to track trends and to generate insights over time.	Moderate
FR08	Emergency Contact Setup - The system should enable the user to setup emergency contacts (such as authorities in areas close to them) for them to respond to a fall or potential fall immediately	Critical
FR09	Battery Level Alerts - The system should be able to alert the user of low battery levels so in those cases, user can be advised to stay in an idle position (in a controlled space) until the device is ready to be used again.	Critical
FR10	User Profile Customization - The caretakers should be able to develop profiles for the user (elder) that take into consideration their age, height, weight, previous conditions.	Moderate
FR11	Environmental Monitoring Integration - The system may optionally amend the sensors for room temperature or humidity to provide a safer living environment for users in isolated settings	Non- Important
FR12	Weekly Health Reports - The system should be able to generate reports on the users' movements for the week to specify if they have been moving around in an irrational manner such that it might suggest that the user is experiencing fall inducing symptoms	Moderate
FR13	Manual Emergency Button - Provides a button for users to manually trigger an alert if they feel at risk of falling or are experiencing a health issue.	Critical
FR14	Educational Content on Join health - Includes access to information and tips on joint health, fall prevention, and exercises for improving stability and balance.	Non- Important

Table 14: Functional Requirements Table

1.10 Non-Functional Requirements

The non-functional requirements establish the quality and operational standards for the fall detection system, emphasizing reliability, real-time performance, and data security to ensure it effectively supports its critical functions.

ID	Requirement and Description	Priority
NFR01	Reliability and Responsiveness: The system must accurately detect falls and give	Critical
	alerts with minimum of false positives or negatives immediately.	
NFR02	Performance and Efficiency: The immediate detection and sending alerts should	Critical
	be done with optimized usage of power for wearable devices.	
NFR03	Usability and Accessibility: The interface has to be user-friendly. Needs to have	High
	accessible designs (visually impaired people)	
NFR04	Security and Data Privacy: Sensitive data must be handled with privacy	Critical
	standards, which limits access to authorized personnel.	
NFR05	Scalability and Interoperability: System should be able to support additional	Moderate
	users, sensors, and devices without the need of significant changes.	
NFR06	Maintainability: The codebase should be able to be easily maintained, by	High
	allowing for easy updates, bug fixes and future enhancements.	

Table 15: Non-Functional Requirements Table

1.11 Chapter Summary

To summarize, this chapter covered the fundamental and core requirements of the fall detection project as it listed out all the findings of the study, the functional/non-functional requirements, the use cases, requirements elicitation techniques and the stakeholder analysis to cover the potential contributors to the system (and its development).