第三次习题课

考试要点及例题讲解

集合的基本操作及性质

- 下列关于集合的说法不正确的是
- A. 存在 $H=\{x\mid x \in A \land x \in x\}$
- B. Ø∈Ø.
- C. $\{a,b\}\subseteq\{a,b,c,\{\{a,b\}\}\}\$,
- D. 若 A∈B 且 B⊆C, 则 A⊆C.

可用反证法证明集合 H 是不存在的. 假设存在这样的集合 H. 下面将证明,对某一具体事物 y,无法确定 y 是否属于 H. 我们以 H 本身作为这个具体事物 y,证明中 y 就是 H. 对于集合 H,必有 y \in H 或 y \in H,下面分别考虑之. (1) 若 y \in H. 由于 y 是 H 的元素,y 就具有 H 中元素的性质 y \in y. 考虑到 y 就是 H,所以 y \in H. 这与 y \in H 矛盾. (2) 由于 y 不是 H 的元素,y 就没有 H 中元素的性质,因此 y \in y. 又因 y 就是 H,则 y \in H. 这与 y \in H 矛盾. 两种情况都存在矛盾,所以 y \in H 和 y \in H 都不成立,集合 H 不存在. 问题的根源在于,集合论不能研究"所有集合组成的集合". 这是集合论中的一个悖论,称为 Russell 悖论.

ABD

幂集和广义集合

• 写出 {{a},a}的幂集.

$$P(A) = \{\emptyset, \{a\}, \{\{a\}\}, \{\{a\}, a\}\}\}$$

• 写出 {{1,{2}}}的幂集.

$$P(A) = \{\emptyset, \{\{1, \{2\}\}\}\}\$$

● 写出 ∩{{1,2,3},{2,3,4},{3,4,5}}.

$$\bigcap\{\{1,2,3\},\{2,3,4\},\{3,4,5\}\}=\{3\}$$

集合的图像表示

• 画出下列集合的文氏图

 $A \cap (-B \cup -C)$.

 $A \oplus (B \cup C)$.

关系及关系矩阵

设 $A = \{1,2,3\}$,在 A 上有多少不同的关系?设 |A| = n,在 A 上有多少不同的关系?

 $A = \{1,2,3\}$ 时, A 上不同的关系有 $2^{3^2} = 512$ 种. |A| = n 时, A 上不同的关系有 2^{n^2} 种.

对 $A = \{0,1,2,3,4\}$ 上的下列关系,给出关系图和关系矩阵.

$$R_4 = \{\langle x, y \rangle | x < y 或 x 是质数\}$$

$$\begin{bmatrix}
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

关系的逆、合成

设集合 A 上的关系 R 为

$$A = \{a, \{a\}, \{\{a\}\}\},\$$

$$R = \{\langle a, \{a\} \rangle, \langle \{a\}, \{\{a\}\} \rangle\}.$$

求
$$R^{-1}$$
 $R \upharpoonright \{\{a\}\}$ $R \circ R$ $R[\{a\}]$

$$R^{-1} = \{\langle \{a\}, a\rangle, \langle \{\{a\}\}, \{a\}\rangle \}\}$$

$$R \upharpoonright \{\{a\}\} = \{\langle \{a\}, \{\{a\}\}\rangle \}\}$$

$$R \circ R = \{\langle a, \{\{a\}\}\rangle \}$$

$$R[\{a\}] = \{\{a\}\}$$

对 X 到 Y 的关系 Q,Y 到 Z 的关系 S,Z 到 W 的关系 R

下列说法中正确的是

- A. $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.
- B. $ran(R^{-1}) = dom(R)$
- C. $(R \circ S) \circ Q = R \circ (S \circ Q)$
- D. $S \circ R \neq R \circ S$

ABCD

等价、相容、偏序、拟序

• 等价: 自反+对称+传递

•相容: 自反+对称

• 偏序: 自反+反对称+传递

• 拟序: 非自反+反对称+传递

R 是 A 上对称的⇔($\forall x$)($\forall y$)

 $((x \in A \land y \in A \land xRy) \rightarrow yRx)$

R 是 A 上自反的⇔($\forall x$)($x \in A \rightarrow xRx$),

R 是 A 上非自反的⇔($\forall x$)(x∈A →xRx).

R 是 A 上反对称的⇔($\forall x$)($\forall y$)

 $((x \in A \land y \in A \land xRy \land yRx) \rightarrow x = y)$

R 是 A 上传递的⇔($\forall x$)($\forall y$)($\forall z$)

 $((x \in A \land y \in A \land z \in A \land xRy \land yRz) \rightarrow xRz).$

函数的概念及性质

- 下列说法中正确的是
- A. $\{\langle x,y\rangle | x \in \mathbb{N} \land y \in \mathbb{N} \land x+y < 10\}$ 是函数
- B. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 2x 15$ 是单射的
- C. $f: \mathbb{R} \to (0, \infty), f(x) = 2^x$ 是双射的
 D. $f: \mathbb{Z} \to \mathbb{N}, f(x) = |x|$ 是满射的

- (1) 若 ran(f) = B,则称 f 是满射的,或称 f 是 A 到 B 上的:
- (2) 若对任意的 $x_1, x_2 \in A, x_1 \neq x_2$,都有 $f(x_1) \neq f(x_2)$,则称 f 是单射的,或内射的,或一对一的;
- (3) 若 f 是满射的又是单射的,则称 f 是双射的,或一对一 A 到 B 上的. 简称双射.

函数的复合及逆

设
$$f,g,h \in \mathbb{N}_{\mathbb{N}}, f(n) = n+1, g(n) = 2n, h(n) = \begin{cases} 0 & n$$
 是偶数 ,求出 $f \circ f, f \circ g, g \circ f, g \circ h, h \circ g, (f \circ g) \circ h. \end{cases}$

$$f \circ f(n) = n+2, f \circ g(n) = 2n+1, g \circ f(n) = 2n+2,$$

$$g \circ h(n) = \begin{cases} 1 & n \text{ 为偶数} \\ 1 & n \text{ 为奇数} \end{cases}, h \circ g(n) = 0, (f \circ g) \circ h(n) = \begin{cases} 1 & n \text{ 为偶数} \\ 3 & n \text{ 为奇数} \end{cases}$$

定义 11. 2. 2 设 $f: A \rightarrow B$, $g: B \rightarrow A$, 如果 $g \circ f = I_A$, 则称 g 为 f 的左逆; 如果 $f \circ g = I_B$, 则称 g 为 f 的右逆.

补充题讲解

9.1. 集合的概念和表示方法

- () 1. 以下___不是集合
 - A. φ×P(φ) (P表示幂集运算)
 - B. {x|x是整数且|x|是素数}
 - c. $\{x \mid x$ 是包含1的集合 $\}$
 - D. {x|x包含1且x ⊆ R}

书P131

矛盾. 两种情况都存在矛盾,所以 $y \in H$ 和 $y \in H$ 都不成立,集合 H 不存在. 问题的根源在于,集合论不能研究"所有集合组成的集合". 这是集合论中的一个悖论,称为 Russell 悖论.

9.3. 集合的运算

```
    ( ) 10. 以下各项中正确的选项为_____
    A. Ø∪ {Ø}=Ø
    B. [Ø, {Ø}]-{{Ø}}={Ø}
    C. {Ø, {Ø}}-{Ø}={Ø, {Ø}}
    D. {Ø, {Ø}}-Ø={{Ø}}
```

大括号层级分清楚

В

9.4. 集合的图形表示法

10. 对 24 名科技人员进行掌握外语情况的调查,其统计资料如下:会说英语、日语、德语、法语的人数分别是 13、5、10 和 9。其中同时会说英语、日语的人数为 2。同时会说英语、德语或同时会说英语、法语或同时会说德语、法语两种语言的人数均为 4。会说日语的人既不会说法语也不会说德语。则同时会说英语、德语、法语的人数为 1。

$$\sum 1 \hat{\gamma} - \sum 2\hat{z} + \sum 3\hat{z} - 4\hat{z} = 4\hat{z}$$

$$(37) - (14) + (x) = 24 \implies x = 1$$

9.4. 集合的图形表示法

9.5. 集合运算的性质和证明

- () 2. AU(B∩C)与___不恒等
 - A. $(A \cup B) \cap (A \cup C)$
 - B. $((A-B)-C)\cup(B\cap C)$
 - c. $(A-B) \cup (B \cap C) \cup (A-C)$
 - D. $A \cup (B (B \oplus C))$

B

9.5. 集合运算的性质和证明

书P142及145

- () 3. 假设 $A \subseteq B$, 以下___不一定成立
 - A. $\bigcup A \subseteq \bigcup B$
 - B. $\bigcap A \subseteq \bigcap B$
 - $\mathbf{C}. \ P(A) \subseteq P(B)$
 - D. $A-B \subseteq B-A$

定理 9.5.11 对集合的集合 $A \cap B$,有

- (1) $A \subseteq B \Rightarrow \bigcup A \subseteq \bigcup B$,
- (2) $A \subseteq B \Rightarrow \bigcap B \subseteq \bigcap A$,其中 $A \cap B$ 非空.

证明 (1) 设 $A\subseteq B$. 对任意的 x,可得

 $x \in \bigcup A \Leftrightarrow (\exists y)(x \in y \land y \in A)$ $\Rightarrow (\exists y)(x \in y \land y \in B) \Leftrightarrow x \in \bigcup B$

所以, $\bigcup A \subseteq \bigcup B$.

(2) 设 $A\subseteq B$. 对任意的 x,可得

 $x \in \bigcap B \Leftrightarrow (\forall y)(y \in B \to x \in y)$ $\Rightarrow (\forall y)(y \in A \to x \in y)(\text{if } A \subseteq B)$ $\Leftrightarrow x \in \bigcap A$

所以, $\cap B \subseteq \cap A$.

B

9.6. 有限集合的基数

9.7. 集合论公理系统

三. (8') 证明: $A \times A \in P(P(P(A)))$.

27.00	: (木門徒义证明)
9.7 NEMP	$A \times A = \{\langle x, y \rangle x, y \in A \} = \{\{x, y\}, \{x\} x, y \in A\}.$
	{x} EP(A), {x,y} EP(A)
	$\Rightarrow \{ \{x\}, \{x,y\} \} \subseteq P(A)$
-	> <x,y> \(\text{PP(A)} \)</x,y>
	A XA S PP(A)
	AXA E PPP(A).

10.1. 二元关系

2. 设A是n个元素的集合,则A中的所有不同关系的总数是______i

 $A \times A = n^2$ 种组合 每个组合有两种可能(xRy或xRy)

10.5. 关系的闭包

五. (8') 给定 $A = \{1,2,3,4\}$ 和 A 上的关系 $R = \{(1,3),(1,4),(2,3),(2,4),(3,4)\}$. 求: R 的自反闭包、对称闭包及传递闭包的关系矩阵。

$\frac{\pi}{4}$ $A = \{1,2,3,4\}$	$s(R) = R \cup R^{-1}$						
R= 14137, <1,47, (2,37, (2,47, (3,47).	$M(s(R)) = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$						
MIR)= \[\(\frac{00}{00} \) \(\frac{1}{10} \) \(1101						
t(R)= RUR° = RUIA							
$M(H(R)) = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$	R本县(支羌的, M(t(R)) = M(R).						
0001							

10.5. 关系的闭包

八、(10') 设 $A = \{a,b,c,d\}$ 中的关系 $R = \{\langle a,b \rangle,\langle b,a \rangle,\langle b,c \rangle,\langle c,d \rangle\}$,

- (1) 用 M(R) 的幂求 R², R³;
- (2) 求最小的自然数m, n (m < n), 使得 $R^m = R^n$ 。
- (3) 求出关系 R 的自反、对称且传递的闭包,请写出详细步骤。

		- 0	-	_	-	7-							19 5	
1). (1) A={a,b,c,d}.	M(R2) =	1	0	1	0	1	0	1	0		01	0	0	12
$M(R) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$	77.74	0	0	v	0 _	0	0	0	0	5	0 0	0	0	
0000	R2 =	1	(0 ,	97	_ <	(q, c	Σ,	()	دط رط) <b< td=""><td>d>}.</td><td>1</td><td></td><td></td></b<>	d>}.	1		

10.5. 关系的闭包

```
r(R)= RUIA = 1 < 9,67, < 6,07, < 6,07, < c, d>
                                                                           (9,07, 6,67, (c,c), (d,d)
M(R3) = M(R20R)
                                                  x toto 5(R) - RURT = (4,6) (6,0) (6,0) (6,0)
                                                                                        <4, c7 5
                                                          turi= RURLUR3 ... -
   R= 140,67, (9, d>, < 6, 07, < 6, c>).
                                                         M(tur) = M(RUR UR) =
  M(R4)=
                                                          t(R)= 1 < a, b>, < a, c7, < a, d7, < a, 97
            R2=R4 =>
                       M=2,n=4
                                                                  < b, a>, < b, b>, < b, c> , < b, d>
                                                                  (c,d7
```

10.6. 等价关系和划分

3. $A = \{1,2,3,4\}$ 上的等价关系的个数为

书上P181

定理 10.6.1 R 是非空集合 A 上的等价关系,对任意的 $x,y \in A$,成立

- (1) $[x]_R \neq \emptyset$ $\underline{\mathbf{H}}[x]_R \subseteq A$,
- (2) 若 xRy, 则 $[x]_R=[y]_R$,
- (3) 若 xRy, 则 $[x]_R \cap [y]_R = \emptyset$,
- (4) $\bigcup \{[x]_R | x \in A\} = A$.

10.6. 等价关系和划分

四. (8') 设R是A中的对称关系,且 $R^2 \subseteq R$,证明: $S = I_A \cup R$ 是A上的等价关系。

先证明自反性	最后是传递
< %, %> 6	la コ <x,xxe laur=""> xSx 得证 (XSY) x (YSZ)</x,xxe>
再证明对称性	(x (x lay V x Ry) \ (y laz V y Rz)
xSy 🖨	xRy V Xlay => yRx V ylax => ysx => (xlay A y laz) V (xlay A yRz)
,	V (ARY A Y IAZ) V (ARY A Y RZ)
	(x IAZ) v (xRZ) v (xRZ) v (xRZ)
	\Rightarrow χSz .

10.8. 偏序关系

- () 6. 下面四个关系中_____是拟序关系
 - A. R中的">"关系
 - B. N-{0}中的整除关系
 - c. N-{0}中的互素关系
 - D. $R = \{ \langle x, y \rangle | (x y)$ 被5整除, $x, y \in Z \}$

书上P185

定义 10.8.2 对非空集合 A 上的关系 R,如果 R 是非自反的和传递的,则称 R 为 A 上的拟序关系.

定理 10.8.1 R为A上的拟序关系,则R是反对称的.

10.6-8. 等价关系和划分、相容关系和覆盖、偏 序关系

- ()7. 设 R 是 A 中的一个关系, $I_A\subseteq R$,若有 < $a,b>\in R\land <$ $a,c>\in R\Longrightarrow <$ $b,c>\in R$,则下列说法最准确的是_____
 - A. R是等价关系
 - B. R 是相容关系
 - c. R 是偏序关系
 - D. R 是拟序关系

(自反+对称) +传递

10.6-8. 等价关系和划分、相容关系和覆盖、偏序关系

() 11. R_1 , R_2 均为 A 中的关系,下面结论正确的是_____

r1 = {<1,2>,<2,1>} r2 = {<2,3>,<3,2>} r1or2 = {<1,3>}

- A. 若 R_1 , R_2 均为对称关系,则 $R_1 \circ R_2$ 为对称关系
- B. 若 R_1 是偏序关系,则 R_1^{-1} 也是偏序关系
- C. $t(R_1) \cup t(R_2) = t(R_1 \cup R_2)$
- D. $st(R_1) = ts(R_1)$

书上P166及P174

定理 10.5.6 对非空集合 A 上的关系 R_1 、 R_2 ,则

(1)
$$r(R_1) \bigcup r(R_2) = r(R_1 \bigcup R_2)$$
,

- (2) $s(R_1) \bigcup s(R_2) = s(R_1 \bigcup R_2)$,
- $(3) t(R_1) \bigcup t(R_2) \subseteq t(R_1 \bigcup R_2).$

定理 10.5.12 对非空集合 A 上的关系 R,有

(1)
$$rs(R) = sr(R)$$
,

- (2) rt(R) = tr(R),
- (3) $st(R) \subseteq ts(R)$.

其中 rs(R) = r(s(R)),其他类似.

10.6-8. 等价关系和划分、相容关系和覆盖、偏 序关系

- () 15. 设 R 是 A 中的对称关系,且 $R^2 \subseteq R$,则 $S = I_A \bigcup R$ 是 A 上____。
 - A. 相容关系
 - B. 等价关系
 - C. 偏序关系
 - D. 拟序关系

对称+ (自反+传递)

11.1. 函数和选择公理

书上P195

如果 $f:A \rightarrow B$ 是满射的,则对任意的 $y \in B$,存在 $x \in A$,使 f(x) = y.如果 $f:A \rightarrow B$ 是单射的,则对任意的 $y \in \text{ran}(f)$,存在唯一的 $x \in A$,使 f(x) = y.

11.1. 函数和选择公理

- () 13. 函数 f:R→R, f(x)=x³-x²+x 是____。
 - A. 满射但是不单射的
 - B. 单射但是不满射的
 - C. 双射的
 - D. 既不是满射也不是单射的

C

- () 9. f, g是函数. 若 g 不是单射的. 则_____
 - A. f o g 不是单射的
 - B. $g \circ f$ 不是单射的
 - C. A. B 都不对
 - D. 不一定

书上P197

A

定理 11. 2. 1 设 $g:A \rightarrow B, f:B \rightarrow C,$ 则

- (1) $f \circ g$ 是函数 $f \circ g : A \rightarrow C$,
- (2) 对任意的 $x \in A$,有 $(f \circ g)(x) = f(g(x))$.

- () 8. f是集合 A 到集合 B 的关系,则____
 - A. 若f是函数,则f⁻¹也是函数
 - B. 若f'是函数,则f也是函数
 - C. 若f不是函数,则f⁻¹也不是函数
 - D. 都不对

多对一vs.一对多

() 14. 函数f: $R \to R$, f(x) = x + 1与g: $R \to R$, g(y) = y - 1, 则函数的合成 $h = f \circ g$ 为____。

- $A. \quad h(x) = x$
- $B. \quad h(x) = x^2 1$
- C. h(x,y) = (x+1)(y-1)
- $h(x) = x^2 + x 1 \qquad h(x) = (x 1) + 1$

8. 若函数f: A → B是双射的,则 f 的左逆

等于

右逆(等于,不等于)。

书上P200

定理 11.2.8 设 $f:A \rightarrow B, A \neq \emptyset$,则

- (1) f 存在左逆,当且仅当 f 是单射的;
- (2) f 存在右逆,当且仅当 f 是满射的;
- (3) f 存在左逆又存在右逆,当且仅当 f 是双射的;
- (4) 若 f 是双射的,则 f 的左逆等于右逆.

(4) 设 f 的左逆为 $g:B\to A$,右逆为 $h:B\to A$,则 $g\circ f=I_A$, $f\circ h=I_B$. $g=g\circ I_B=g\circ (f\circ h)=(g\circ f)\circ h=I_A\circ h=h$ 所以,g=h.

11.3. 函数的性质

五、(8') 设f:A→B,g:C→D,f⊆g,C⊆A, 证明f=g

 $\forall \langle x, y \rangle \in g$,有 $x \in C$,由 $C \subseteq A$,则 $x \in A$, 那么 $\exists y_0, f(x) = y_0$,即 $\langle x, y_0 \rangle \in f$, 又由 $f \subseteq g$,则 $\langle x, y_0 \rangle \in g$. 由函数定义易知 $y = y_0$,因此 $\langle x, y \rangle \in f$ 则 $g \subseteq f$,所以 f = g.