Homework 5

Christopher Achenbach

Problems from 2.6

7.

p	q	$\neg q$	$p \land \neg q$	$q \land \neg q$	$(p \land \neg q) \to (q \land \neg q)$	$p \rightarrow q$
1	1	0	0	0	1	1
1	0	1	1	0	0	0
0	1	0	0	0	1	1
0	0	1	0	0	1	1

 $\begin{array}{c|cccc} & 0 & 0 & 1 & 0 & 0 & 0 \\ \hline \text{Therefore, } (p \land \neg q) \to (q \land \neg q) & = & p \to q. \end{array}$

8.

p	q	$\neg p$	$\neg q$	$p \to \neg q$	$\neg q \to p$	$(p \to \neg q) \land (\neg q \to p)$	$\neg p \leftrightarrow q$
1	1	0	0	0	1	0	0
1	0	0	1	1	1	1	1
0	1	1	0	1	1	1	1
0	0	1	1	1	0	0	0

Therefore, $\neg p \leftrightarrow q = (p \rightarrow \neg q) \land (\neg q \rightarrow p)$.

10.

$\mid p$	q	r	$\neg q$	$\neg r$	$p \rightarrow q$	$p \land \neg q$	$(p \land \neg q) \land \neg r$	$\neg((p \land \neg q) \land \neg r)$	$(p \to q) \lor r$
1	1	1	0	0	1	0	0	1	1
1	1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	1	0	1	1
0	0	0	1	1	1	0	0	1	1
0	1	1	0	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1	1

Therefore, $\neg((p \land \neg q) \land \neg r) = (p \to q) \lor r$. Yes, they are logically equivalent.

11.

p	q	$\neg p$	$p \rightarrow q$	$q \to p$	$(\neg p) \land (p \to q)$	$\neg (q \to p)$
1	1	0	1	1	0	0
1	0	0	0	1	0	0
0	1	1	1	0	1	1
0	0	1	1	1	1	0

Therefore, $(\neg p) \land (p \rightarrow q) \neq \neg (q \rightarrow p)$. No, they are not logically equivalent. In the case where both p is false and q is false, the two statements are not the same.

12.

p	q	$\neg q$	$p \rightarrow q$	$\neg(p \to q)$	$p \land \neg q$
1	1	0	1	0	0
1	0	1	0	1	1
0	1	0	1	0	0
0	0	1	1	0	0

Problems from 2.7

- 1. "The square of all real numbers is greater than zero." \leftarrow False.
- 3. "There exists a real number, a, such that for all real numbers, x, the statement ax = x is true." \leftarrow True.
- 4. "All subsets of the Natural Numbers are also subsets of the Real Numbers." \leftarrow True.
- 5. "For all natural numbers, n, there exists a subset of the Natural Numbers, such that the cardinality of that subset is less than n." \leftarrow True.
- 7. "For all subsets of the Natural Numbers, there exists an integer, n, such that the cardinality of that subset is equal to n." \leftarrow True.