



# **Testing Round #12**

# A. Divisibility

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input output: standard output

Find the number of k-divisible numbers on the segment [a,b]. In other words you need to find the number of such integer values x that  $a \le x \le b$  and x is divisible by k.

### Input

The only line contains three space-separated integers k, a and b ( $1 \le k \le 10^{18}$ ; -  $10^{18} \le a \le b \le 10^{18}$ ).

#### Output

Print the required number.

#### Sample test(s)

| mpie test(s) |
|--------------|
| nput         |
| 1 10         |
| utput        |
|              |
|              |
| nput<br>-4 4 |
| -4 4         |
| utput        |
|              |

## B. Restaurant

time limit per test: 4 seconds memory limit per test: 256 megabytes input: standard input output: standard output

A restaurant received n orders for the rental. Each rental order reserve the restaurant for a continuous period of time, the i-th order is characterized by two time values — the start time  $l_i$  and the finish time  $r_i$  ( $l_i \le r_i$ ).

Restaurant management can accept and reject orders. What is the maximal number of orders the restaurant can accept?

No two accepted orders can intersect, i.e. they can't share even a moment of time. If one order ends in the moment other starts, they can't be accepted both.

#### Input

The first line contains integer number n ( $1 \le n \le 5 \cdot 10^5$ ) — number of orders. The following n lines contain integer values  $l_i$  and  $r_i$  each ( $1 \le l_i \le r_i \le 10^9$ ).

#### Output

Print the maximal number of orders that can be accepted.

## Sample test(s)

| 1 ()    |  |
|---------|--|
| put     |  |
| 11<br>7 |  |
| ıtput   |  |
|         |  |
| put     |  |
| 2       |  |

5
1 2
2 3
3 4
4 5
5 6
output
3

| input  |  |
|--------|--|
| 6      |  |
| 4 8    |  |
| 1 5    |  |
| 4 7    |  |
| 2 5    |  |
| 1 3    |  |
| 6 8    |  |
| output |  |
| 2      |  |

# C. Subsequences

time limit per test: 1 second memory limit per test: 256 megabytes input: standard input output: standard output

For the given sequence with n different elements find the number of increasing subsequences with k+1 elements. It is guaranteed that the answer is not greater than  $8 \cdot 10^{18}$ .

### Input

First line contain two integer values n and k ( $1 \le n \le 10^5$ ,  $0 \le k \le 10$ ) — the length of sequence and the number of elements in increasing subsequences.

Next n lines contains one integer  $a_i$  ( $1 \le a_i \le n$ ) each — elements of sequence. All values  $a_i$  are different.

### Output

Print one integer — the answer to the problem.

### Sample test(s)

| 5 2<br>1 2<br>2 3<br>3 5<br>4                       | - campio toot(o) |  |  |
|-----------------------------------------------------|------------------|--|--|
| 1 2 3 5 4 4 5 5 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | input            |  |  |
| 1 2 3 5 5 4 output 7                                | 5 2              |  |  |
| 2 3 5 4 output 7                                    | 1                |  |  |
| output 7                                            | 2                |  |  |
| 4 output 7                                          | 5                |  |  |
| output<br>7                                         | 4                |  |  |
| 7                                                   | output           |  |  |
|                                                     | 7                |  |  |

Codeforces (c) Copyright 2010-2015 Mike Mirzayanov The only programming contests Web 2.0 platform