BEST AVAILABLE COPY

(19) 日本国特許庁

公開特許公報

願(1)

(2,000円)

49.8.75

节件片

特許庁長官員

. 1. 発明の名称

· 3. 特許出願人

49 8 8 町 72 美 樂學第二章 48 (SU7) 東京芝浦電気株式会社 代表者 五

代理人

住所 東京都港区芝西久保督川町 2 番地 電腦 03 (502) 3 1 8 1 (大代表) 医粉织 氏名 (5847) 弁理士 鈴

①特開昭 51-17790

❸公開日 昭51. (1.9 7 6) 2. 12

①特願昭 49-89F73

22出顧日 昭49. (1974) 8. ځ (全5頁)

審查請求

庁内整理番号 716488 2/03.33

62日本分類·

F40.D3

51) Int. C12.

Got B 19/18 B23Q 1/00

1.発明の名称

"長権制御装置に於ける固定ほ点復帰装置 2.特許請求の範囲

一定周期のサンプル時間パルスを発生する莪 滑と、移動体の単位移動紙に移動方向判別可能 **な位間出力ペルスと基準ペルスを発生する位置** 検出器と、前記位置出力ペルスを計数する可逆 カウンタと、サンブル時間毎に可避カウンタの 内容を受け取るメッフアレジスまとく過速単点 近海を検出するリミットスイッチと位置検出器 の表達ペルスにより基準点が検出されると前記 可逆カウンタの内容をクリヤし第1のフリ 固定球点復帰が指令されたとき、一定の指令理

サンプル時間毎に位置談差記憶内容に 業機加算し、一方前記パップ たいぶスまの内容 サンプル時間保に位置鉄法記憶の内容に展現 液焦し、前記第2のフリップフロップがセット した時、上記位爾製養記憶の内容を一定値にセ ットし、以後各サンプル時間毎の前配指令増分 数値を0にし、同時にF2信号を発生し、前記 位置良差記憶の内容を遺食処理して、サンプル 時間毎に出力する計算機と、この計算機の出力 によつて移動体の位置を制御するサーボ装置と から成る数値制御装備の固定原点復帰設置。

8.発明の辞組な説明

本発明は数値削御工作機の軸移動体を固定原 点へ自動的に復帰させる数値制御板機に係り、 特に計算器により一定サンプル時間毎に難移動 体の指令潜分数値を発生し、これとサンプル時 簡毎の移動体の実際の移動距離を基だして、サ を制御する計算機式数値制御装置に

以下本発明の一実施例を1つの軸についての

プロック3が計算機の場合、コンピュータの 動作サイクル中の適当な時点で、プログラム制 脚の下に計算機のハードウエヤの適当なものが 使用され処理されるのであつて、第1回のプログ ク3内の各プロック要素のような特別の場所で 行なわれるものはないが、固定配線デイジタル

ラムを作成できる。

が 特別 昭51--1779b (2) 国際の場合はプロック 2 内の各要素で行なわれ

計算機は内の指合地分数信発生器はは、一定 時間低にペルスを発生するサンプルペルス発生 舞leの出力BPを受けるる無に、テープリーダ 1 より与えられる切削経路に対するサンプル期 間毎の拒合増分数値はXを計算する。一方、信 号 B P を入力とする遅れ回路 4 により、信号 8P より遅れたペルス BPD が得られる。この遅れ時 間はサンプル期間より十分小さいものとする。 ペルス SPD によりゲート 6 を介して指令機分配 ∉ & X は、位景製差記憶 8 の内容 PEX に異様加 算される。一方、 パッフサレジスタ 160内容 には後述するように、サンプル期間毎の経動体 の実際の移動距離 JXP が入つているが、 SPD パ ルスによりゲート?を介して、この移動距離 AXP が位置製差記憶 8 の内容に累積を算する。 かくして位置鉄兼記憶 8 の内容 PEX は、累積位 農製法を表わすことになる。この内容 PEX はサ

汽型

行なつた後、計算機2の出力としてサーポアンプ 1 1 へ出力される。 サーポアンプ 1 1 はこの出力によつて、 関示しない工作機を駆動するサーポモータ 1 2 を回転させる。 サーポモータ 1 2 を回転させる。 サーポモータ 1 2 を回転させる。 サーポモータ に 酸単位年に回転方向が正のとき + X ベルスを 1 機関生し、 波回転で - X ベルスを 1 機関生し、 波回転で - X ベルスを 1 機関生

可迎カウンタ 1 4 はサンブルベルス 8 P によりその内容を 0 にクリナし + X ベルス で 1 個づつカウントアップし、 - X ベルスでダウンカウントする。そして次のサンブルベルス 5 P で、可逆カウンタの計数内容がバツファレジスタ15に入り、入り終つた所で可逆カウンタの内容を 0 にクリナするから、ベツファレジスタ 1 5 の内容はサンブル期間中の移動体の実験の移動距線を示している。

以上の構成により、位置試差配は 8 の内容 PEX が常に 0 になるようにサーゼルーブがサジ ブル制御されるので、サンブル期間中の実験の 工作機の移動量が、サンブル期間無の指令増分 ーポを安定化するための処理を安定化処理まで

以上の親明はテーブ運転時の説明であるが、 次に本発明の固定原点方式について説明があるとと、 まず国定原点を検出するため位置を被出力 RFPPを 設成に1 満だけ基準ベルスを制造 出版に1 満だけ基準ベルスを では、一次のでは、位置機を別えば400 個出するとき、一次の変更では、のの固定では、 のとするのでで、1 では、 ののでは、

さて、今工作機が停止していて固定原点より

国知

特開 昭51-17790 (3)

色の位置で停止しているものとする。 そして最 初に間短原点復備スイッチ 5 I が * OFP * の時、 とのスイッチ出力は"り"でこの信号計算機 2 内のインメータ58を介して、フリンプフロツ プ、即ちFF59のリセット囃子に入りFF59 をりセットし、FFS9の出力"FZ"はこの 時、 第2因 (b) のタイミング関に示すように " O " である。このような状態から工作機を固定原点 に復帰させるために、國定原点復帰スイツチ51 を"ON"にすると、このスイツチ借号が"1." になりこの信号は計算備2の指令場分数値発生 礎まに入力され、指令地分数値発生器。まは固定 原点復帰動作を明始し、サンブル時間毎に選定 原点復帰動作時の工作磁の送り測度に渡当な数 値となる』Xを正の一定数値で出す。この指令 派催る又に相当して、工作機はテープ運転時と 同様のサーボループによつて正方向に固定派点 に向つて移動し始める。

この時の様子を第2回のタイミング図に示す。 第2回回のほ定派点復帰スインチ信号が"1."

14の内室を第2例(1)に示すようにのにクリヤ すると同時化フリップフロップ則ちFFSまを セットするのでFPS3の出力は毎8页(4)に示 すよりに"1"になる。その後移動体が正方向 に単位移動量動く毎に可能カウンタエ4の内容 は第2図(1)に示すように0から1個づつ増加し て行きその内容は基準点人よりの移動距離を示 すこと、なる。そして基準点点が検出されてか 5 長 切 の サン アル パルス S P が 躬 2 図 (t) の よう に時刻 C で現らわれると、この時の可逆カウン タ 1 4 の内容が (第 2 図(l) の例ではこの位は 8) パツファレジスタ I 5 化入る。同時に特別C 化 於てサンプルパルス8Pとフリツプフロツブ58 の出力を入力とする AND 国路 5 4 の出力が"1" だなり、この出力が、フリップフロップ即ち P P 5 6をセットし、第8回(a)に示すように F F 5 5 の出力はこの時 * 1 * K なる。この F F 5 5 0 * 1 * 出力は計算機 2 内のゲート 60 を開き、一定数値 CON が入つている一定数値配。 館61の内容を位置鉄鉄配偶8に設定する。

化なつてから移動体が固定原点方向に動く途中。 位/履検出器・1 8.の基準 ペルス出力 RFP は第2 図 (e) 化示すように位甲検出器が1回転する部に発・ 生する。そして固定原点近傍に来ると第3図(0) 化示すように固定原点リミットスイツチをもが "1"になる。このりミットスイッチ 5 6 が " 1 "に変化する移動体の位置は、りもツドス イッチ 5 6 が"1"になつてから最初の薪幣パ ルス出力.RPP が発生する第3図の基準点Aとい その度前の苦準 ペルス出力 RFP が発生する第 8 図のB点の中間に無くことが塞ましい。さて、 リミットスイッチ 5 6 が"1"になつた以降も 工作機が正方向に相変わらず移動すると、りゃ ツトスイッチ 6 6 が * 1 * になつ.てから最初の 基本ペルス出力 RFP が堪われる。(第8図の基 準点A)との時りミットスイッチ 5 6 、確定原 点復帰スインチェミ、基準ペルス RFP 、フリッ プェリのする出力を反転したインパータミアの 出力の各々を入力とする第1図の AND 回路 5 2 の出力が"1"となりこの出力が可逆カウンタ

この後、第8凶(g)で示される SPD ベルスが時期 D で発生しゲート 6 、7 が悪く。 この時、増分数値 d X は 0 でペッファレジスタ 1 5 の 出力 dXP は制述の例で 8 であるから、 位便鉄差記憶 8 の内容は 1 0 0 - 8 = 9 7 に なる。かくして位置鉄差記憶の内容 PEX は 5 2 ២ (j)に示すように時刻 D よう次の SPD 起の期間 9 7 に なる。 第 2 図の時刻 C のサンブルベルス以降に位置検出

BEST AVAILABLE COPY

特朗 昭51-17790(4)

器13から97ベルスの+Xベルスが現らわれれば、これらの97個の+Xベルスが終る図の時期にの次サンプルベルスをより以降に、各サンプルベルス S P 毎に可遊カウンタミ 4を介してパツファレジスタミ 5 に転送され、 これらの体動ベルス量がベルス SPD 毎に位置は登記値の内容 PEX に異構滅策されて、 PEX が97個の+Xベルスで0になり、この位置で工作機は停止する。

かくして、工作機の絶対基準点 A より時期 C までに 収 元 飲 出 器 が発生した ベルス 量 8 と、 時 刻 C よ り 以 承 に 位 置 検 出 器 が 発生 し た ベルス 量 9 7 の 合計 ベルス 量 1 0 0 に た つ た 時 工 作 機 は 停止 し、 こ の 位 便 が 工 作機 の 固 定 原 点 と た る 。

上記の説明よりわかるように基準点 A より以降に位置検出祭からの十方向ベルスの実種値が第1例の一定数値記憶 f I の内容 CON になつた時、位置数差記憶の内容 PEX は 0 になるから工作語の固定派点は基準点 A より 寿値 CON だけ正方向にオフセットした位置になる。

5 1 … 固定項点 博得 スイッチ、 5 3 … AND 、 5 3 … F P 、 5 4 … AND 、 5 5 … P P 、 5 5 … 固定 項点 9 ミットスイッチ、 6 7 , 8 8 … インパータ、 5 9 … F P 、 6 0 … ゲート、 6 1 … 一 定数 戦 配信 図 時 。

出版人代理人 奔頭士 鉛 江 武 彦

隣 AND 国際 5 まの入力にインパー 5 5 7 を介して F 2 信号が入っている理由は、 時刻 C に於て F 2 信号が * 1. * になった様に、 位置 被出船から 薬準 ベルス RFP が発生しても、 AND 回路 52 の AND 条件が成立せず、 蒸煮点は第 2 窓の A 点だけにするためである。 又計算料 2 内のフリップフロップ 5 9 は第 2 図 (a)に示すように間定度点復帰スイッチ 5 1 が * OPF * になった時りセットされる。

4. 図前の簡単な説明

第1 例は本発明による数値制御装置に於ける 固定原点復無調量の一実施例を示すプロック結 項例、第2 図は間実施例の動作を説明するため のタイミング図である。

1 … テープリーダ、 3 … 計算機 、 3 … 指令増 分取催発生器、 4 … 遅れ固路、 6 , 7 … ゲート、 8 … 位置製差配像、 9 … 安定化処理回路、 1 .1 … サーボアンプ、 1 2 … サーボモータ、 1 3 … 位置検出器、 1 4 … 可逆カワンタ、 1 5 … パッ マプレジスタ、 1 5 … サンプルパルス発生器、

BEST AVAILABLE COPY

2

(a) 医克耳克森·1/2 (b) 医克耳克森·1/2 (c) (c) 医克耳克森·1/2 (c) (d) (d) (e) FF (33) (e) FF (35) (f) アフルルルスは音ののア) (f) FF (37) (FB) (f) 年本カランチ(本)・北京・1/2 (f) 生産が変化を含む。