SOLAR BATTERY AND METHOD OF MANUFACTURING THE SAME, AND SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME

Patent Number:

JP2001339086

Publication date:

2001-12-07

Inventor(s):

ISHIDA KEN; HASUO

Applicant(s):

MITSUI HIGH TEC INC

Application

JP20000159061 20000529

Priority Number(s):

IPC Classification:

H01L31/04; H01L31/052

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide a solar battery and a semiconductor device which have stability and a high light-receiving efficiency, are capable of regular arrangements of semiconductor particles easily, and has a high bonding strength between a substrate and semiconductor particles, and to provide a method of manufacturing the solar battery and a method of manufacturing the semiconductor device. SOLUTION: Recessed parts 17a are formed on the surface of a substrate 17 so that each inner wall consists of a reflecting surface 17c, and a plurality of spherical cells 10 are arranged along each longitudinal direction to be mounted.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-339086 (P2001 - 339086A)

(43)公開日 平成13年12月7日(2001.12.7)

(51) Int.Cl.7

識別記号

H01L 31/04

テーマコート*(多考) 5F051

Α G

H01L 31/04 31/052

審査請求 未請求 請求項の数10 OL (全 9 頁)

(21)出願番号

特願2000-159061(P2000-159061)

(22)出顧日

平成12年5月29日(2000.5.29)

(71)出題人 000144038

株式会社三井ハイテック

福岡県北九州市八幡西区小嶺2丁目10-1

(72) 発明者 石田 研

福岡県北九州市八幡西区小嶺二丁目10番1

号 株式会社三井ハイテック内

(72) 発明者 蓮尾 裕介

福岡県北九州市八幡西区小嶺二丁目10番1

号 株式会社三井ハイテック内

(74)代理人 100099195

弁理士 宮越 典明

最終頁に続く

(54)【発明の名称】 太陽電池、半導体装置、太陽電池の製造方法および半導体装置の製造方法

(57)【要約】

【課題】 安定でかつ受光効率が高く、また、規則的な 配列を容易に得ることができ、基板と半導体粒子の密着 強度が強い太陽電池、半導体装置、太陽電池の製造方法 および半導体装置の製造方法を提供する。

【解決手段】 基板17の表面に、内壁が反射面17c を構成するように形成された凹部17aを形成し、長手 方向に沿って複数個の球体セル10を一列に配列し、実 装する。

【特許請求の範囲】

【請求項1】 少なくとも側壁の一部が反射面を構成し てなる凹部を有する基板と、前記反射面からの反射光を 受光できるように前記凹部内に固着された球体セルと、 を具備したことを特徴とする太陽電池。

【請求項2】 前記凹部の各々に、長手方向に沿って複 数個の球体セルが一列に配列されていることを特徴とす る請求項1 に記載の太陽電池。

【請求項3】 前記凹部の各々の底面に溝を有し、前記 球体セルを前記溝に系合するように複数個の球体セルが 10 ―列に配列されたことを特徴とする請求項 1 に記載の太 陽電池。

【請求項4】 光透過性樹脂が前記凹部に充填されたと とを特徴とする請求項1~3のいずれかに記載の太陽電

【請求項5】 凹部を有する基板に、前記凹部の底面に 長手方向に沿って、互いに所定の間隔を持つように形成 された二列の溝を有し、前記二列の溝に系合するように 複数個の球体セルが二列に配列されたことを特徴とする 半導体装置。

【請求項6】 少なくとも側壁の一部が反射面を構成し てなる凹部を有する基板を用意する工程と、

第1 導電型半導体層の表面に第2 導電型半導体層が形成 された球体セルを、前記基板の凹部に、長手方向に沿っ て複数個の球体セルを一列に配列するように固着し、基 板または基板上に設けられた導電パターンに電気的に接 続する工程と、

前記球体セルの第1導電型半導体層にコンタクトを形成 する工程と、

前記基板上に形成された電極と、前記第1導電型半導体 層のコンタクトとを電気的に接続する工程とを含むこと を特徴とする太陽電池の製造方法。

【請求項7】 少なくとも側壁の一部が反射面を構成し てなる複数の凹部を有し、該複数の凹部の各々の底面に 溝を有する基板を用意する工程と、

第1 導電型半導体層の表面に第2 導電型半導体層が形成 された球体セルを、前記溝に系合するように複数個の球 体セルを一列に配列するように固着し、基板または基板 上に設けられた導電バターンに電気的に接続する工程

前記球体セルの第1導電型半導体層にコンタクトを形成 する工程と、

前記基板上に形成された電極と、前記第1導電型半導体 層のコンタクトとを電気的に接続する工程とを含むこと を特徴とする太陽電池の製造方法。

【請求項8】 少なくとも側壁の一部が反射面を構成し てなる複数の凹部を有し、該複数の凹部の各々の底面に 長手方向に沿って、互いに所定の間隔を持つように形成 された二列の溝を有する基板を用意する工程と、

第1 導電型半導体層の表面に第2 導電型半導体層が形成 50 【0005】

された球体セルを、前記二列の溝に系合するように複数 個の球体セルが二列に配列するように、固着し、基板ま たは基板上に設けられた導電パターンに電気的に接続す

前記球体セルの第1 導電型半導体層にコンタクトを形成 する工程と、

前記基板上に形成された電極と、前記第1導電型半導体 層のコンタクトとを電気的に接続する工程とを含むこと を特徴とする半導体装置の製造方法。

【請求項9】 前記球体セルの第1導電型半導体層にコ ンタクトを形成する工程において、前記球体セルの一部 を除去するように研削し、前記球体セルの研削面の第1 導電型半導体層に上にボンディングパッドを形成すると とによりコンタクトを形成することを特徴とする請求項 6~8に記載の太陽電池および半導体装置の製造方法。 【請求項10】 前記球体セルの研削面と、前記基板の 凸部とを、同じ高さに形成することを特徴とする請求項 9に記載の太陽電池および半導体装置の製造方法。

【発明の詳細な説明】

[0001]20

【発明の属する技術分野】本発明は、太陽電池、半導体 装置、太陽電池の製造方法および半導体装置の製造方法 に係り、特に球体セルを用いた太陽電池、半導体装置、 太陽電池の製造方法および半導体装置の製造方法に関す

[0002]

【従来の技術】半導体のpn接合部分には内部電界が生 じており、これに光を当て、電子正孔対を生成させる と、生成した電子と正孔は内部電界により分離されて、 電子はn側に、正孔はp側に集められ、外部に負荷を接 続するとp側からn側に向けて電流が流れる。この効果 を利用し、光エネルギーを電気エネルギーに変換する素 子として太陽電池の実用化が進められている。

【0003】近年、単結晶、多結晶シリコンなどの直径 1 m m以下の球状の半導体 (Ball Semiconductor)上に 回路パターンを形成して半導体素子を製造する技術が開 発されている。

【0004】その1つとして、アルミ箔を用いて多数個 の半導体粒子を接続したソーラーアレーの製造方法が提 案されている (特開平6-13633号)。 この方法で は、図10に示すように、n型表皮部とp型内部を有す る半導体粒子207をアルミ箔の開口にアルミ箔201 の両側から突出するように配置し、片側の表皮部209 を除去し、絶縁層221を形成する。次にp型内部21 1の一部およびその上の絶縁層221を除去し、その除 去された領域217に第2アルミ箔219を結合する。 その平坦な領域217が導電部としての第2アルミ箔2 19に対し良好なオーミック接触を提供するようにした ものである。

【発明が解決しようとする課題】しかしながら、このような方法では、高密度配置には限界があり、また、アルミ箔への位置決めが困難であり、多数個の半導体粒子を実装する場合には特に作業性が悪く、さらに、半導体粒子の径・形状のばらつきの影響を受けやすいという問題があり、規則的な配列を得ることが困難であった。また、基板(アルミ箔)と半導体粒子の密着強度や、接合部の安定性に問題があった。また、電極の形成についても、第1導電型表皮部と第2導電型内部との両方へのコンタクト端子が必要であるが、受光面積を減少させること 10なく、確実なコンタクト端子の形成を行うのは難しく、このため受光効率が悪くなるという問題があった。

【0006】さらにまた、安定な実装を行うためには半 導体粒子と基板との密着性を高める必要があるから、接 着面積を増大しようとすると受光面積が少なくなるとい う問題があった。

【0007】本発明は、上記問題点に鑑みて成されたものであり、安定でかつ受光効率が高く、また、規則的な配列を容易に得ることができ、基板と半導体粒子の密着強度が強い太陽電池、半導体装置、太陽電池の製造方法 20 および半導体装置の製造方法を提供することを目的とする。

[8000]

【課題を解決するための手段】本発明の第1の太陽電池は、少なくとも側壁の一部が反射面を構成してなる凹部を有する基板と、前記反射面からの反射光を受光できるように前記凹部内に固着された球体セルと、を具備したことを特徴とする。かかる構成によれば、球体セルを凹部内に固着することにより、基板と球体セルの密着強度が強くなり、化学的にも安定する。また、凹部内壁を反30射面とし、入射光を効率よく太陽電池の受光面に導くようにしているため、高効率で信頼性の高い太陽電池を得ることができる。

【0009】本発明の第2は、請求項1に記載の太陽電池において、前記凹部に、長手方向に沿って複数個の球体セルが一列に配列されていることを特徴とする。かかる構成によれば、球体セルに若干の径、形状のばらつきがあっても、規則的な配列を簡単に得られる。

【0010】本発明の第3は、請求項1に記載の太陽電池において、前記凹部の底面に溝を有し、前記球体セル 40を前記溝に系合するように複数個の球体セルが一列に配列されたことを特徴とする。かかる構成によれば、球体セルに若干の径、形状のばらつきがあっても、規則的な配列を簡単に得られ、球体セルを溝に系合することにより、基板と球体セルの密着強度がさらに強くなる。

【0011】本発明の第4は、請求項1~3のいずれか に記載の太陽電池において、光透過性樹脂が前記凹部に 充填されたことを特徴とする。かかる構成によれば、よ り強固に安定した接続が可能となり、大幅な寿命の向上 を図ることができる。 【0012】本発明の第5の半導体装置は、凹部を有する基板に、前記凹部の底面に長手方向に沿って、互いに所定の間隔を持つように形成された二列の溝を有し、前記二列の溝に系合するように複数個の球体セルが二列に配列されたことを特徴とする。かかる構成によれば、球体セルに若干の径、形状のばらつきがあっても、規則的な配列を簡単に得られ、球体セルを凹部内の二列の溝に系合することにより、基板と球体セルの密着強度が強くなり、化学的にも安定する。

【0013】本発明の第6の太陽電池の製造方法は、少 なくとも側壁の一部が反射面を構成してなる凹部を有す る基板を用意する工程と、第1導電型半導体層の表面に 第2導電型半導体層が形成された球体セルを、前記基板 の凹部に、長手方向に沿って複数個の球体セルを一列に 配列するように固着し、基板または基板上に設けられた 導電バターンに電気的に接続する工程と、前記球体セル の第1導電型半導体層にコンタクトを形成する工程と、 前記基板上に形成された電極と、前記第1導電型半導体 層のコンタクトとを電気的に接続する工程とを含むこと を特徴とする。かかる方法によれば、球体セルに若干の 径、形状のばらつきがあっても、規則配列が簡単に形成 できる。また、基板と球体セルの密着強度が強く、化学 的にも安定した太陽電池が形成できる。また、凹部内壁 を反射面とし、入射光を効率よく太陽電池の受光面に導 くようにしているため、高効率で信頼性の高い太陽電池 を形成することが可能となる。

【0014】本発明の第7の太陽電池の製造方法は、少 なくとも側壁の一部が反射面を構成してなる複数の凹部 を有し、該複数の凹部の各々の底面に溝を有する基板を 用意する工程と、第1導電型半導体層の表面に第2導電 型半導体層が形成された球体セルを、前記溝に系合する ように複数個の球体セルを一列に配列するように固着 し、基板または基板上に設けられた導電バターンに電気 的に接続する工程と、前記球体セルの第1導電型半導体 層にコンタクトを形成する工程と、前記基板上に形成さ れた電極と、前記第1導電型半導体層のコンタクトとを 電気的に接続する工程とを含むことを特徴とする。かか る方法によれば、球体セルに若干の径、形状のばらつき があっても、規則配列が簡単に形成できる。また、基板 と球体セルの密着強度がさらに強く、化学的にも安定し た太陽電池が形成できる。また、凹部内壁を反射面と し、入射光を効率よく太陽電池の受光面に導くようにし ているため、高効率で信頼性の高い太陽電池を形成する ことが可能となる。

【0015】本発明の第8の半導体装置の製造方法は、少なくとも側壁の一部が反射面を構成してなる複数の凹部を有し、該複数の凹部の各々の底面に長手方向に沿って、互いに所定の間隔を持つように形成された二列の構を有する基板を用意する工程と、第1導電型半導体層の50表面に第2導電型半導体層が形成された球体セルを、前

記二列の溝に系合するように複数個の球体セルが二列に 配列するように、固着し、基板または基板上に設けられ た導電バターンに電気的に接続する工程と、前記球体セ ルの第1 導電型半導体層にコンタクトを形成する工程 と、前記基板上に形成された電極と、前記第1導電型半 導体層のコンタクトとを電気的に接続する工程とを含む ことを特徴とする。かかる方法によれば、球体セルに若 干の径、形状のばらつきがあっても、規則配列が簡単に 形成できる。また、基板と球体セルの密着強度がさらに 強く、化学的にも安定した半導体装置が形成できる。

【0016】本発明の第9は、請求項6~8に記載の太 陽電池および半導体装置の製造方法において、前記球体 セルの第1導電型半導体層にコンタクトを形成する工程 において、前記球体セルの一部を除去するように研削 し、前記球体セルの研削面の第1導電型半導体層に上に ボンディングパッドを形成することによりコンタクトを 形成することを特徴とする。かかる方法によれば、球体 セルの第1導電型半導体層と電極との接続をワイヤボン ディング等により、容易に形成できる。

【0017】本発明の第10は、請求項9に記載の太陽 電池および半導体装置の製造方法において、前記球体セ ルの研削面と、前記基板の凸部とを、同じ高さに形成す ることを特徴とする。かかる方法によれば、球体セルの 研削面と基板の凸部とを、同じ高さに形成することによ り、基板が導電性である場合には、絶縁フィルムを貼り 付けることが容易にできる。また、同一工程で球体セル と基板の凸部とを研削することができる。

[0018]

【発明の実施の形態】以下、本発明に係る太陽電池、半 導体装置、太陽電池の製造方法および半導体装置の製造 30 方法の実施形態について図面を参照して詳細に説明す

【0019】(第1の実施形態)第1の実施形態に係る 太陽電池は、図1に要部斜視図を示すように、絶縁性基 板17表面に、内壁が反射面を構成するように形成され た凹部17aを形成し、長手方向に沿って複数個の球体 セルを一列に配列し、実装してなることを特徴とする。 【0020】図2に断面概要図を示すように、p型半導 体層11 (第1導電型半導体層) とpn接合を形成する n型半導体層12 (第2導電型半導体層)を有する球体 40 セル10が、n型電極となる導体パターン(図示せず) が形成された絶縁性基板 17の凹部 17 a に、導電性へ ースト16によって固着され、電気的に接続されてい る。 絶縁性樹脂基板 17の凹部 17 a は、凹部を囲む壁 面の一方に反射面17cを有している。この反射面17 cは、反射光が効率良く球体セル10に対して反射する ような傾斜角で形成されている。

【0021】球体セル10は、球体の一部が削られた研 削面10aを有し、この研削面10a上のp型半導体層 11と、n型半導体層12との電気的に絶縁するための 50 絶縁性樹脂14が形成されており、この上に、p型半導 体層11と絶縁性樹脂基板17の凸部17b上に設けら れたp型電極15とを、接続するための導電性樹脂13 が形成されている。

【0022】次に、具体的な製造方法の一例を以下、説 明する。まず、本発明で用いる球体セル10の形成方法 の一例について説明する。直径1mmのp型多結晶シリ コン粒を真空中で加熱しつつ落下させ、結晶性の良好な p型多結晶シリコン球(p型半導体層)11を形成し、 この表面に、フォスフィンを含むシランなどの混合ガス を用いたCVD法により、n型多結晶シリコン層(n型 半導体層) 12を形成する。 ここでCVD工程は細いチ ューブ内でシリコン球を撤送しながら、所望の反応温度 に加熱されたガスを供給排出することにより、薄膜形成 を行うものである。

【0023】なお、この工程は、p型多結晶シリコン粒 を真空中で加熱しつつ落下させながら球状化し、p型多 結晶シリコン球 (p型半導体層) 11を形成するととも に、落下途上で所望のガスと接触させることにより、 n 型多結晶シリコン層 (n型半導体層) 12を形成する様 にすることも可能である。

【0024】なお、n型多結晶シリコン層(n型半導体 層) 12の外側に、透明導電膜(例えば、ITO)スパ ッタリング法などにより、薄膜堆積しても良い。さら に、透明導電膜の外側にスパッタリング法などにより、 反射防止膜を形成しても良い。

【0025】次に、上述の球体セル10を用いた太陽電 池の製造方法を図3を用いて説明する。図3は、本実施 の形態に係る太陽電池を製造する各工程の概略断面図で

【0026】図3の(a) に示すように、凹凸のある絶 緑性樹脂基板 17 (例えば、ポリプロステレン、アクリ ル等)を用意する。絶縁性樹脂基板17の凹部17aは 凹部を囲む壁面の一方に反射面 17cを有している。凸 部176上には、太陽電池のp型電極15が形成されて いる。この反射面17cは、反射光が効率よく球体セル 10に反射するように設定された角度で形成されてい る。また、反射面17 c に反射率の高い金属薄膜等をコ ーティングすることが好ましい。

【0027】次に、図3の(b)に示すように、p型半 導体層11の表面に n 型半導体層12が形成された球体 セル10を、導電性ペースト16(例えば、Agペース ト等)を用いて、凹凸のある絶縁性樹脂基板 17の凹部 17a内の反射面17cに対向する壁面に接するように 固定して、規則的に並べて実装する。

【0028】また、光透過性樹脂等を凹部 17a に充填 してもよい。ここで選択する光透過性樹脂は、凹部17 aの内壁に形成された反射面17cからの反射光を効率 良く球体セル10の受光領域に導くことができるような 屈折率を持つものである必要がある。これにより、より

強固に安定した接続が可能となり、大幅な寿命の向上を 図ることができる。

【0029】次に、図3の(c)に示すように、機械研磨により、p型半導体層11を露出させるため、球体セル10の反射面17cに対向する壁面側の一部を除去するように研削する。

【0030】次に、図3の(d)に示すように、球体セル10の研削面のp型半導体層11と、n型半導体層1 2との電気的な絶縁をするための絶縁性樹脂14(例えば、エボキシレジン、シリコーンレジン等)を塗布する。

【0031】次に、図3の(e)に示すように、研削により露出したp型半導体層11同士または、絶縁性樹脂基板17の凸部17b上に設けられたp型電極とを接続するため、導電性樹脂13を研削面に塗布する。あるいは、導電性樹脂13の代わりに、導電性ペースト、金属、金属クリップ、ワイヤーボンド、超微粒子等を用いてもよい。

【0032】(第2の実施形態)第2の実施形態に係る 太陽電池は、図4に要部斜視図を示すように、金属基板 20 27表面に、内壁が反射面を構成するように形成された 凹部27aを形成し、さらに凹部27aの底面に溝28 を形成し、球体セルを溝28に系合するように、複数個 の球体セル10を一列に配列し、実装してなることを特 徴とする。

【0033】図5に断面概要図を示すように、p型半導体層11(第1導電型の半導体層)とpn接合を形成するn型半導体層12(第2導電型の半導体層)を有する球体セル10が、凹部27a内の溝28に系合するように、導電性ペースト26によってn型電極となる金属基30板27の凹部27aに固着され、電気的に接続されている。金属基板27の凹部27aは、凹部を囲む壁面の一方に反射面27cを有している。この反射面27cは、反射光が効率良く球体セル10に対して反射するような傾斜角で形成されている。

【0034】球体セル10は、球体の一部が削られた研削面10aを有し、この研削面10a上のp型半導体層11と、n型半導体層12との電気的に絶縁するための絶縁フィルム24が、この研削面10a上と凸部27b上にまたがるように形成されており、この絶縁フィルム4024上に、太陽電池のp型電極25が形成されている。【0035】研削面10aのp型半導体層には、高濃度にドープされた多結晶シリコン層11bが形成され、この多結晶シリコン層11b上にボンディングバッド23が形成されており、このボンディングバッド23とp型電極25とが、ボンディングワイヤー29により接続されている。

【0036】次に、本実施の形態に係る太陽電池の製造 方法を図6を用いて説明する。図6は、本実施の形態に 係る太陽電池を製造する各工程の概略断面図である。な 50

お、球体セル10の形成方法については第1の実施の形態で述べたとおりである。

【0037】まず、図6の(a)に示すように、凹凸のある金属基板27(例えば、A1.Cu、SUS等)の凹部27aに、予め溝28を形成する。金属基板27の凹部27aは凹部を囲む壁面に反射面27cを有している。この反射面27cは、反射光が効率よく球体セル10に反射するように設定された角度で形成されている。また、反射面27cに金属基板27より反射率の高い金属薄膜等をコーティングしても良い。

【0038】次に、図6の(b)に示すように、金属基板27の凹部27a内の溝28に系合するように、球体セル10を固定し、凹凸のある金属基板27の凹部27a内の反射面27cに対向する壁面に接するように固定して、規則的に並べて実装する。

【0039】また、光透過性樹脂等を凹部27aに充填してもよい。ことで選択する光透過性樹脂は、凹部27aの内壁に形成された反射面27cからの反射光を効率良く球体セル10の受光領域に導くことができるような屈折率を持つものである必要がある。これにより、より強固に安定した接続が可能となり、大幅な寿命の向上を図ることができる。

[0040]次に、図6の(c)に示すように、機械研磨により、p型半導体層11を露出させるように、反射面27cに対向する壁面側の球体セル10の一部を除去するように、研削し、p型半導体層の研削面10aに選択的気相成長により、高濃度にドープされた多結晶シリコン層11bを形成し、この上にボンディングパッド23を設ける。

(0041)次に、図6の(d)に示すように、金属基板27の凸部27bと、球体セル10の研削面のp型半導体層11と、n型半導体層12との電気的な絶縁をするための絶縁フィルム24を貼り付ける。

【0042】次に、図6の(e)に示すように、絶縁フィルム24上に、太陽電池のp型電極25を導電性フィルムまたはメッキ法で形成する。

[0043]次に、図6の(f)に示すように、p型電 極25と、ボンディングパッド23とをボンディングワイヤー29で接続する。あるいは、ボンディングワイヤー29の代わりに、導電性ペースト、金属、金属クリップ、ワイヤーボンド、超微粒子等を用いてもよい。

【0044】(第3の実施形態)第3の実施形態に係る 半導体装置は、図7に要部斜視図を示すように、複数の 凹凸のある金属基板37の各凹部37aに球体セル10 が各々の凹部内で、二列に配置・実装してなることを特 徴とする。

【0045】図8に断面概要図を示すように、p型半導体層11(第1導電型の半導体層)とpn接合を形成するn型半導体層12(第2導電型の半導体層)を有する球体セル10が、凹部37a内の二列の溝38a、38

bに系合するように、導電性ペースト36によって金属 基板37の凹部37aに固定されている。

[0046]球体セル10は、球体の一部が削られた研 削面10aを有し、この研削面10a上のp型半導体層 11と、 n型半導体層12との電気的に絶縁するための 絶縁フィルム34が、この研削面10a上と凸部37b 上にまたがるように形成されており、この絶縁フィルム 34上に、半導体装置のp型電極35が形成されてい

【0047】研削面10aのp型半導体層には、高濃度 10 にドープされた多結晶シリコン層 l l bが形成され、と の多結晶シリコン層11b上にボンディングバッド33 が形成されており、このボンディングパッド33とp型 電極35とが、ポンディングワイヤー33aにより接続 されている。

[0048]次に、本実施の形態に係る半導体装置の製 造方法を図9を用いて説明する。図9は、本実施の形態 に係る半導体装置を製造する各工程の概略断面図であ る。なお、球体セル10の形成方法については第1の実 施の形態で述べたとおりである。

【0049】まず、図9の(a)に示すように、凹凸の ある金属基板37 (例えば、A1, Cu, SUS等) を 用いる。凹部37a内には二列の溝38a、38bが形 成されている。

【0050】まず、図9の(b) に示すように、溝38 a、38b内にそれぞれ系合するように、球体セル10 を固定し、金属基板37の両側の壁面に各々接するよう に規則的に並べて実装する。それぞれの列の球体セル1 0は図のように接触しないように配置されるが、接触さ せて配置しても良い。

[0051]次に、図9の(c)に示すように、機械研 磨により、p型半導体層 l l を露出させる。図のよう に、球体セル10の一部を除去するように研削し、p型 半導体層の研削面10aに選択的気相成長により、高濃 度にドープされた多結晶シリコン層11bを形成し、こ の上にボンディングパッド33を設ける。

【0052】次に、図9の(d)に示すように、金属基 板37の凸部37bと、この凸部37bを挟んだ2列の 球体セル10の研削面のp型半導体層11と、n型半導 体層12との電気的な絶縁をするための絶縁フィルム3 40 4を貼り付ける。

【0053】次に、図9の(e)に示すように、絶縁フ ィルム34上に、p型電極35を導電性フィルムまたは メッキ法で形成する。

【0054】次に、図9の(f)に示すように、このp 型電極35と、凸部37bを挟んだ2列の球体セル10 のボンディングパッド33とを、ボンディングワイヤー 39でそれぞれ接続する。あるいは、ボンディングワイ ヤー39の代わりに、導電性ペースト、金属、金属クリ ップ、ワイヤーボンド、超微粒子等を用いてもよい。

【0055】また、凹部37a内の二列の球体セル10 の一列を、第1導電型半導体層11をn型、第2導電型 半導体層 12を p型、とすることもできる。これによ り、本半導体装置を用いた回路の直列接続が実現でき

【0056】以上の各実施形態において、第1導電型を p型、第2導電型をn型として、説明を行うが、第1導 電型をn型、第2導電型をp型としても同様に製造でき る。また、p型多結晶を球状基板とする球体セルを用い たが、p型単結晶またはp型アモルファスシリコンなど を用いても良い。

【0057】なお、前記第1および第2の実施形態で は、太陽電池について説明したが、発光素子にも適用可 能である。すなわち、球体セルとして発光ダイオードな どの発光素子を使用し、凹部に、前記発光素子からの光 を効率よく前方に導くことができるように構成された反 射面を形成することにより、発光効率の極めて高い発光 素子を得るととが可能となる。

[0058]

20

【発明の効果】以上詳記したように、本発明に係る太陽 電池、半導体装置、太陽電池の製造方法および半導体装 置の製造方法によれば、球体セルを凹部内に固着すると とにより、基板と球体セルの密着強度が強くなり、化学 的にも安定しているため、製品の長寿命化が図れる。ま た、凹部内壁を反射面とし、入射光を効率よく太陽電池 の受光面に導くようにしているため、受光効率の向上が 図れ、高効率で信頼性の高い太陽電池を得ることができ る。また、凹凸のある基板の凹部に、長手方向に沿って 複数個の球体セルが一列に配列されているため、球体セ 30 ルに若干の径、形状のばらつきがあっても、規則的な配 列を簡単に得られ、さらに、凹部に溝を設けることによ り、より規則配列の簡略化および、基板と球体セルの密 着強度を強くできる。また、回路の直列・並列の切り替 え接続が容易であるため、出力コントロールの簡略化が 図れる。さらに、製造プロセスの簡略化が図れるため、 コスト削減ができる。

【図面の簡単な説明】

【図1】第1の実施形態に係る太陽電池の要部斜視図で

【図2】第1の実施形態に係る太陽電池を説明する断面 概要図である。

【図3】第1の実施形態に係る太陽電池の製造方法の製 造工程(a)~(e)を説明する断面概要図である。

【図4】第2の実施形態に係る太陽電池の要部斜視図で

【図5】第2の実施形態に係る太陽電池を説明する断面 概要図である。

【図6】第2の実施形態に係る太陽電池の製造方法の製 造工程(a)~(f)を説明する断面概要図である。

【図7】第3の実施形態に係る半導体装置の要部斜視図 50

である。

【図8】第3の実施形態に係る半導体装置を説明する断 面概要図である。

【図9】第3の実施形態に係る半導体装置の製造方法の 製造工程(a)~(f)を説明する断面概要図である。 【図10】従来の太陽電池を説明する断面概要図であ

【符号の説明】

10 球体セル

10a 研削面

11b 多結晶シリコン層

第1導電型半導体層 1 1

12 第2導電型半導体層

【図1】

絶縁性樹脂 14

15, 25, 35 p型電極

導電性ペースト 16, 26, 36

1 7 絶縁性樹脂基板

17a、27a、37a 凹部

17b、27b、37b 凸部

17c、27c、37c 反射面

23、33 ボンディングパッド

10 24, 34 絶縁フィルム

27、37 金属基板 (n型電極)

28、38a、38b 溝

29、39 ボンディングワイヤー

【図2】

【図5】

【図8】

【図10】

(図9)

フロントページの続き

F ターム(参考) 5F051 AA02 BA11 BA17 CB27 DA01 DA03 DA20 EA01 EA17 EA20 FA16 FA17 FA30 GA03 GA11 GA20 JA02 JA14

ند. سه