第六章 时序逻辑电路

主要要求:

- 熟练掌握时序逻辑电路的描述方法;
- 掌握时序逻辑电路的分析、设计;

■ 掌握寄存器计数器等典型时序逻辑部件的功能和应用。

回顾: 计数器分析

1) 驱动方程:

$$\begin{cases} J_1 = (Q_2 Q_3)', & K_1 = 1 \\ J_2 = Q_1, & K_2 = (Q_1' Q_3')' \\ J_3 = Q_1 Q_2, & K_3 = Q_2 \end{cases}$$

2.状态方程

$$\begin{cases} Q_3^* = Q_1Q_2Q_3' + Q_2' \\ Q_2^* = Q_1Q_2' + Q_1' Q_2 \\ Q_1^* = (Q_2Q_3)' \cdot Q_1' \end{cases}$$

3.状态转换表

	Q_3	Q_2	Q_1	Q * ₃	Q * ₂	Q * ₁	Υ
	(م)	0	0	0	0	1	0
	(ဝ(0	1	0	1	0	0
)	9	31	0	0	1	1	0
	0	1	1	1	0	0	0
	1	0	0	1	0	1	0
	1	0	1	1	1	0	0
	1	1	0	0	0	0	1
	1	1	1	0	0	0	1

回顾:移位寄存器

比较: 计数器

6.3.4 移位型同步计数器

移位寄存器+反馈电路构成计数器,FF输入端简单,只需设计D0

FF输入端复杂, 需巧妙设计

例:设计能自启动的模3环形计数器

\mathbf{Q}_3	\mathbf{Q}_2	Q ₁ (现态)	$Q_3Q_2Q_1$ (次态)			
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	1	0	0	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	0	1	1	
1	1	0	1	0	1	
1	1	1	1	1	1	

例:设计能自启动的模3环形计数器

Q_2	$\mathbf{Q_1}$	01	11	10	
0	00x	010	11x	100	
1	001	01x	11x	10x	

$$Q_3^*Q_2^*Q_1^*$$

$$\boldsymbol{D_1} = \boldsymbol{Q_2}' \boldsymbol{Q_1}'$$

例:设计能自启动的模3环形计数器

$$D_1 = Q_2' Q_1'$$

扭环形移位型计数器

\mathbf{Q}_3	\mathbf{Q}_2	Q ₁ (现态)	$Q_3Q_2Q_1$ (次态)		
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	1	0	0
1	1	1	1	1	0

$$000 \longrightarrow 001 \longrightarrow 011$$
 $\uparrow \quad Q_3 Q_2 Q_1 \quad \downarrow$
 $100 \longleftarrow 110 \longleftarrow 111$
 $101 \Longrightarrow 010$

$101 \Longrightarrow 011$

例:设计计数器

	环形	扭环形
M6	6个FF	3个FF
M8	8个FF	4个FF
M5	5个FF	?个FF

$$D_1 = Q_1^{n+1} = Q_3 + Q_2$$

练习 74LS194A连接如下, 成为一个移位型计数器。 问,是几进制计数器, 能否自启动。

双向移存器74LS194功能表

R' _D	S_1	S_0	工作状态
0	X	X	置零
1	0	0	保持
1	0	1	右移
1	1	0	左移
1	1	1	并行输入

1)驱动方程 状态方程 D3=Q2 Q*3=Q2 D2=Q1 Q*2=Q1 D1=Q0 Q*1=Q0 D0=(Q2Q1)' Q*0=D0

2)状态转换表

2)状态转换表

6.3.2 计数器

应用: 用于计数、分频、定时、产生节拍脉冲等

分类: 按时钟分,同步、异步

按计数过程中数字增减分,加、减和可逆

按计数器中的数字编码分,二进制、二-十进制和循环码...

按计数容量分,十进制,六十进制...

一、同步计数器

1、同步二进制加法计数器

原理:根据二进制加法运算规则可知:在多位二进制数末位加1,若第i位以下皆为1时,则第i位应翻转。

由此得出规律,若用T触发器构成计数器,则第i位触发器输入端T_i的逻辑式应为:

$$T_i = Q_{i-1}Q_{i-2} \dots Q_0$$
$$T_0 \equiv 1$$

(4) 状态转换情况

状态转换图

逻辑功能: 4位同步 二进制加法计数器

分析功能

这是二进制加法计数器。

计数器的另一个作用是分频:

若CLK的频率为 f

则 Q_0 端输出脉冲频率为1/2f

 Q_0 端为二分频端

同理:

Q₁、Q₂、Q₃端分别为四分频、 八分频和十六分频端。

器件实例: 74LS161 4位同步二进制计数器

CLK	R_D'	LD'	EP	ET	工作状态
X	0	X	X	X	置 0 (异步)
JL	1	0	X	X	预置数 (同步)
X	1	1	0	1	保持(包括C)
X	1	1	X	0	保持(C=0)
<u>J</u>	1	1	1	1	计数

四位二进制同步计数器

器件实例: 74LS160 4位同步十进制计数器

◎ 集成同步十进制加法计数器74LS160。电路框图、功能表和74LS161相同,但输出只有0000-1001十个稳定状态。

CLK	R_D'	LD'	EP	ET	工作状态
X	0	X	X	X	置 0 (异步)
JL	1	0	X	X	预置数(同步)
X	1	1	0	1	保持(包括C)
X	1	1	X	0	保持(C=0)
T	1	1	1	1	计数

74LS160的状态转换图(Q₃Q₂Q₁Q₀)

三、任意进制计数器的构成方法

将已有的N进制芯片,组成M进制计数器,是常用的方法。

有两种情况:
$$\begin{cases} N > M \\ N < M \end{cases}$$

1、N > M

原理: 计数循环过程中设法跳过N-M个状态。

具体方法:置零法和置数法两种。

(1) 置零法

异步置零法同步置零法

例:将十进制的74160接成六进制计数器

CLK	R'_D	LD'	EP	ET	工作状态
X	0	X	X	X	置 0 (异步)
T	1	0	X	X	预置数(同步)
X	1	1	0	1	保持(包括C)
X	1	1	X	0	保持(C=0)
J	1	1	1	1	计数

例:将十进制的74160接成六进制计数器

异步置零法 D_0 D_1 D_2 D_3 **EP** 1 0010 0011 74160 ETLD 6—1 R_{D}^{\prime} $\triangleright^{\text{CLK}}_{\underline{Q_0}\ Q_1\ Q_2\ Q_3}$ CLK- R_{D} 计数输入 1001 0100 G 1000 0101 0111 0110 进位输出 清零信号取0110

缺点:置0信号作用时间短

