A

北京航空航天大学 2016-2017 学年 第二学期期末

《 工科数学分析 (2) 》 试 卷

学 号			姓名			成绩			
任课教师				班次			考场		
题	号			三	四	五.	六	七	总分
成	绩								
阅卷人									
校对	寸人								

2017年06月26日

一、 选单项择题(每小题 4 分, 共 20 分)

1. $i gl_1 = \iint_D \sin(\sqrt{x^2 + y^2}) dx dy$, $I_2 = \iint_D \sin(x^2 + y^2) dx dy$,

A.
$$I_1 > I_2 > I_3$$
; B. $I_3 > I_2 > I_1$; C. $I_2 > I_1 > I_3$; D. $I_3 > I_1 > I_2$.

2. 设 V_r 表示球体 $x^2 + y^2 + z^2 \le r^2$,则极限

$$\lim_{r\to 0} \frac{1}{r^3} \iiint_V \cos(x^2 + y^2 + z^2) dx dy dz = ($$
).

- A. 0 B. $\frac{5}{3}\pi$ C. $\frac{4}{3}\pi$

3. 设曲线 Γ 为圆周 $\begin{cases} x^2 + y^2 + z^2 = a^2, \\ x + y + z = 0. \end{cases}$ 则曲线积分 $\int_{\Gamma} (x + y^2) ds = (x + y + z + z) ds = (x + y + z + z) ds$

- A. $\frac{2\pi a^2}{3}$. B. $\frac{4\pi a^2}{3}$. C. $\frac{2\pi a^3}{3}$. D. $\frac{4\pi a^3}{3}$.

4. 给定曲面Σ: |x| + |y| + |z| = 1,已知其在第一卦限内的面积为 $\frac{\sqrt{3}}{2}$, 则曲面积分 \oint_{Σ} (|x|+y) dS=()

- A. $\frac{2}{3}\sqrt{3}$; B. $\frac{4}{3}\sqrt{3}$; C. $\frac{8}{3}\sqrt{3}$; D. $\frac{16}{3}\sqrt{3}$.

5. 设f(x)为连续函数, $F(z) = \int_1^z dy \int_v^z f(x) dx$,则F'(z) = ()

- A. f(z); B. f(z)z; C. f(z)(1-z); D. f(z)(z-1).

二、计算题(每空6分,满分30分)

1. 计算二重积分 $\iint_{D} \frac{1+x+y}{1+x^2+y^2} dxdy$, 其中 $D = \{(x,y)|x^2+y^2 \le 1\}$.

2. 计算三重积分 $\iint_V (x+y)^2 dxdydz$,其中 \mathbf{V} 由 $x^2+y^2=z^2$ 与平面 z=1 所围成的立体.

3. 计算第一型曲线积分 $\oint_L x^{2017}y$ ds,其中L为单位圆周.

4. 设 L 为椭圆 $x^2+2y^2=2$ 的上半部分逆时针,计算第二型曲线积分 $I=\int_L x dy-y dx.$

5. 计算第一型曲面积分 $\iint_{\Sigma} (x^2+y^2) dS$,其中 Σ 为锥面 $z=\sqrt{x^2+y^2}$ 介于 z=0 与 z=1 之间的部分.

三、(本题 8 分) 设Σ是平面x - 2y + z = 1在第四卦限内的部分,方向取与z轴正向夹角为锐角,求

$$\iint\limits_{\Sigma} [f(x,y,z) + x] \mathrm{d}y \mathrm{d}z + [f(x,y,z) + y] \mathrm{d}z \mathrm{d}x + [f(x,y,z) + z] \mathrm{d}x \mathrm{d}y$$

四、(本题 8 分) (利用 Green 公式) 设 L 为上半圆周 $x^2 + y^2 = 9$,方 向为逆时针方向,求 $\int_L (2xy - 2y) dx + (x^2 - 4x) dy$ 的值.

五、(本题 10分) (利用 Gauss 公式) 计算

$$\iint\limits_{S} y^2 z \ dydz + 3(x^2 + z^2)y \ dzdx + x^2 y \ dxdy,$$

其中S为曲面 $4-y=x^2+z^2$ (y>0)的外侧.

六、(本题 14分) (利用 Stokes 公式) 计算

$$\oint_{\Gamma} (y^2 + z^2) dx + (z^2 + x^2) dy + (x^2 + y^2) dz,$$

其中 为上半球面 $x^2 + y^2 + z^2 = 2 Rx(z \ge 0 R > 1)$ 与圆柱面 $x^2 + y^2 = 2x$ 的交线,从z轴正向看 为逆时针方向.

七、(附加题,本题10分)若在右半平面内,

曲线积分 $\int_{\mathbb{L}} \frac{\varphi(y)dx + xdy}{x^2 + y^2}$ 与路径无关,其中 $\varphi(y)$ 连续可导.

- (1) 求函数 $\varphi(y)$ 的表达式.
- (2) 对(1) 中的φ(y), 求满足全微分

$$du(x,y) = \frac{\varphi(y)}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy 且$$
 的函数