Free choice: semantics and pragmatics

Maria Aloni

University of Amsterdam {M.D.Aloni}@uva.nl

 $\begin{array}{c} \text{LUSH} \\ 17/4/2008 \end{array}$

Overview

- Modal and subtrigging effects of Free Choice (FC) items:
 - (1)a. #Anyone fell.
 - b. Anyone may fall.
 - Anyone who tried to jump fell.

(subtrigging)

EMPIRICAL GOAL:

Explain distribution and meaning of FC any in (1).

THEORETICAL GOAL:

Contribute to the ongoing debate on the grammar-pragmatics interface:

- (2)Free choice effect in (1b) and universal meaning in (1c):
 - ► Entailments (e.g. Dayal 1998) or
 - ▶(Local) implicatures (e.g. Chierchia 2006)?

2 / 34

The classical analysis: Dayal 1998

- Any as wide scope universal quantifier over possible individuals:
 - (3) a. John may read any book. b. $\forall s \forall x [\text{Book}(x, s)][!\text{Read}(j, x, s)]$
 - (4) a. #John read any book. b. $\forall s \forall x [\text{Book}(x, s)][PAST_{s@}(s) \land \text{Read}(j, x, s)]$
 - (5) a. John read any book he found.
 - b. $\forall s \forall x [\operatorname{Book}(x,s) \wedge \exists s' [s < s' \wedge PAST_{s@}(s') \wedge \operatorname{Find}(j,x,s')]]$ $[PAST_{s@}(s) \wedge \operatorname{Read}(j,x,s)]$
 - '(4) is unacceptable because one cannot choose a domain that includes possible individuals and predicate something that is purely episodic of those individuals. [...] The temporal bound introduced by the relative clause in (5) restricts the domain appropriately.'

Dayal 1998: problems

- Any doesn't seem to be a universal quantifier:
- (6)To continue, push any key! [Giannakidou 2001]
- Explanation of subtrigging: vague but also counterintuitive:
 - (7)Maria iniziò a bussare a qualsiasi porta avesse i battenti in legno.

'Mary started knocking to whatever door had sub wooden shutters'

Subjunctive mood in subtrigging restrictions in Romance. SUB cannot anchor tense back to actual world.

A first sketch of my proposal (Aloni 2007)

- (1) a. #Anyone fell.
 - b. Anyone may fall.
 - c. Anyone who tried to jump fell.

$$\Rightarrow \forall x \Diamond F(x) \\ \Leftrightarrow \forall x (T(x) \to F(x))$$

- FC items are indefinite (contra Dayal)
- Indefinites induce sets of propositional alternatives (Aloni 2002, K&S 2002)
- **③** FC any requires the application of two covert operators:
 - (8) $[\forall]$... **exh** (... any ...)
- Ontrast between (1a) and (1b) explained by interplay between
 [∀], exh and the possibility operator (Menéndez-Benito 2005)
- **⑤** Subtrigging effects in (1c) explained by interactions between [∀], **exh** and the post-nominal modifier
- **6** Speculation: A pragmatic origin for $[\forall]$ and exh?

Structure of the talk

- Background:
 - ▶ 'Hamblin' semantics for indeterminate pronouns (K&S 2002);
 - ▶ Menéndez-Benito (2005) on any in modal statements.
- Proposal: modal and subtrigging effects via exhaustification.
 - ► Tools:
 - ★ Exhaustification (e.g. Zeevat);
 - ★ Type-shift rules: SHIFT_e & SHIFT_(s,t);
 - ► Applications:
 - ★ Free relatives and questions (Jacobson 1995);
 - ★ Subtrigging and modal effects of FC any.
 - ► Core idea: parallelism

Free relatives ⇔ Subtrigged case (1c)
Questions ⇔ Unsubtrigged cases (1a and 1b)

3 Speculation: a pragmatic origin for $[\forall]$ and **exh**.

'Hamblin' semantics for indeterminate pronouns

MOTIVATION

- Explain variety of indefinites. E.g.
 - ★ English: a, some, any, ...
 - ★ Italian: un(o), qualche, qualsiasi, nessuno, ...

How

- ▶ Indefinites 'introduce' sets of propositional alternatives;
- ▶ These are bound by propositional operators: $[\exists]$, $[\forall]$, [Neg], $[\mathbb{Q}]$;
- ▶ Different indefinites associate with different operators.

EXAMPLES

- (9)a. $[\exists]$ (someone fell)
 - b. $[\forall]$ (anyone fell)

 d_1 fell d_2 fell d_3 fell

- c. [Q] (who fell)
- d. [Neg] (nessuno cadde)

A closer look

- In a Hamblin semantics, all expressions denote sets.
- Mostly singleton sets of traditional denotations. E.g.

(10) **[fell]**_{$$w,g$$} = { $\lambda x \lambda w'$.FELL(x)(w')}

- Indefinites map to multi-membered sets of alternatives. E.g.
 - (11) $[someone/anyone/who]_{w,g} = \{x \mid HUMAN(x)(w)\}$
- Via pointwise functional application, these individual alternatives expand into propositional alternatives:
 - (12) **[fell]**_{w,g}(**[someone/anyone/who]**_{w,g}) = {that d_1 fell, that d_2 fell, that d_3 fell,...}
- Until they reach one of the propositional operators. E.g.
 - (13) $[\forall](\llbracket \mathbf{fell} \rrbracket_{w,g}(\llbracket \mathbf{anyone} \rrbracket_{w,g})) = \{ \text{that everyone fell} \}$

Any: naif account

• [\forall] quantifies over propositional alternatives.

(14)a. $[\forall]$ (anyone fell)

 d_1 fell d_2 fell d_3 fell

Predicted meaning: $\forall x F(x)$

 $[\forall]$ (anyone may fall) b.

 $[\forall]$ (anyone who tried to jump fell)

Predicted meaning: $\forall x (T(x) \rightarrow F(x))$

- Merits: captures universal meaning of (c);
- Problems: doesn't explain (a) & dubious truth-conditions for (b):

E.g. suppose only two options: (i) nobody falls; (ii) everybody falls. Then (b) would be true against intuitions [Menéndez-Benito 2005].

Any: Menéndez-Benito account

Excl transforms Hamblin alternatives into sets of mutually exclusive propositions.

- (15) $[\forall]$ (Excl(anyone fell)) only d_1 fell only d_2 fell Predicted meaning: $\forall x \text{ ONLY}_x F(x)$, i.e. \perp
 - $[\forall](\Diamond(\mathbf{Excl}(\text{anyone fall})))$ b. \Diamond only d_1 fall \Diamond only d_2 fall Predicted meaning: $\forall x \lozenge \text{ONLY}_x F(x)$
 - $[\forall]$ (Excl(anyone who tried to jump fell))

only
$$d_1$$
 fell | only d_2 fell

Predicted meaning: $\forall x (T(x) \rightarrow ONLY_x F(x))$, i.e. \perp

- Merits: captures (a) (out because inconsistent) and (b) (consistent and unrestricted liberty of choice);
- Problems: doesn't extend to (c) (out because inconsistent).

Synopsis

- Desiderata:
 - ▶ M-B's predictions for the unsubtrigged and modal cases (a) and (b) [via Excl];
 - ▶ Naif account's predictions for the subtrigged case (c) [no Excl].
- Question: why **Excl** does not seem to play a role when a post-nominal modifier is present?
- My answer will assume, rather than **Excl**, a much more general and independently motivated notion **exh** of exhaustification.
- What's next:
 - ▶ Main ingredients: exhaustification & type-shift principles
 - ▶ Independent motivation: free relatives and wh-interrogatives
 - ▶ Main application: free choice in modal and subtrigged sentences

Exhaustification

• Exhaustive interpretations (Gr & St 84, vSt& Zim 84):

- (16) a. John and Mary fell \Rightarrow nobody else fell b. John can spend 150 Euro \Rightarrow J cannot spend more c. John can live on 150 Euro \Rightarrow J cannot live on less
- (16) can be explained by *pragmatic* reasoning (Spector, S&vR)
- But exhaustification at work in the *semantics* of a large variety of constructions (Grosu & Landman). E.g.
 - (17) Questions (Gr & St):
 - a. John knows who fell.
 - b. John knows of those who fell that they fell and that nobody else fell.
 - (18) Free relatives (Jacobson):
 - a. What J can spend is less than what J can live on.
 - b. The max amount of money that J can spend is less than the min amount of money that J can live on.

The **exh** operator

- exh takes a domain D (type e) and a property P (type $\langle e, \langle s, t \rangle \rangle$) and returns the property of exhaustively satisfying P wrt D:
 - a. exh[D, P]type: $\langle e, \langle s, t \rangle \rangle$ (19)b. $\{\lambda x \lambda w [x \text{ exhaustively satisfies } P \text{ wrt } \alpha \text{ in } w]\}$
- E.g. using Zeevat 1994:
 - (20)x exhaustively satisfies P wrt D iff x is in D, P(x) is true, and for all y in D if P(y) is true then P(x) entails P(y).
- x and y range over domains of plural individuals (e.g. Link 1983).

Illustration of 'x exhaustively satisfies P wrt D'

• Normally exhaustive values are maximal plural entities:

• But with scalar predication other exhaustification effects show up:

(22)	a.	D: amount of money	$\{0, 50, 100, 150,\}$
	b.	P: $\lambda x[J \text{ can live on } x]$	$\{100, 150, 200,\}$
	c.	x: the min amount of money that	t J can live on 100

(23) a. D: amount of money
$$\{0, 50, 100, 150, 200, ...\}$$

b. P: $\lambda x[J \text{ can spend } x]$ $\{0, 50, 100, 150, 200, ...\}$
c. x : the max amount of money that J can spend 150

Two type-shift rules for properties

- SHIFT_e: $\langle e, \langle s, t \rangle \rangle \to e$ (from properties to **entities**)
 - (24) Partee iota rule:

a.
$$\mathbf{P} \to \iota x[\mathbf{P}(x)(w_0)]$$

b. $\{P\} \to \{d\}$

if d is the unique P in w_0 , undefined otherwise

- ② SHIFT $\langle s,t \rangle$: $\langle e, \langle s,t \rangle \rangle \rightarrow \langle s,t \rangle$ (from properties to **propositions**)
 - (25) 'Hamblin' question formation rule:

a.
$$\mathbf{P} \rightarrow \hat{p} \left[\exists x (\mathbf{P}(x) = p) \right]$$

b.
$$\{P\} \rightarrow \{d_1 \text{ is } P, d_2 \text{ is } P, d_3 \text{ is } P, ...\}$$

Exhaustification and type-shift principles

When applied to $exh[\alpha, \mathbf{P}]$

- (i) SHIFT_e (always defined) yields normally maximal plural entities:
 - (26) a. SHIFT_e($\exp[\alpha, \mathbf{P}]$)
 - b. {the maximal plural entity from α satisfying P in the world of evaluation w_0
- (ii) SHIFT_(s,t) yields sets of mutually exclusive propositions:
 - (27) a. SHIFT(s,t) (exh[α , P])
 - b. {nobody is P, only d_1 is P, only d_2 is P, only $d_1 \& d_2$ are $P, \dots \}$

First application: Free relatives and wh-interrogatives

- Examples:
 - Free relative: John read [DP] what was on the list (28)a.
 - Wh-interrogative: John knows Q what was on the list]
- Main ideas:
 - ► Exhaustification at work in both constructions (Jacobson, Gr&St)
 - ▶ Free relatives and wh-interrogatives born with the same meaning, but typeshift differently (Cooper, Jacobson)

Formalizing main ideas

- Common meaning of free relatives and wh-interrogatives:
 - (29)what was on the list
 - **exh**[what, on the list] type: $\langle e, \langle s, t \rangle \rangle$
 - $\{\lambda x \lambda v. \ x \text{ is the maximal collection of things on the}$ list in v
- Different type-shift:
 - (30)(John read) [DP] what was on the list
 - $SHIFT_e(exh[what, on the list])$
 - {the maximal collection of things on the list in w_0 }
 - (John knows) [Q] what was on the list (31)
 - SHIFT_(s,t)(exh[what, on the list]) type: $\langle s,t\rangle$
 - {nothing was on the list, only d_1 was on the list, only d_2 was on the list, ... }

LUSH 17/4/2008

type: e

A closer look at free relatives (FRs)

- Definite meaning of FR follows (Jacobson):
 - (32) a. John read [$_{DP}$ what was on the list]
 - b. [Q] $(\mathbf{read}(j)(\mathbf{SHIFT}_e(\mathbf{exh}[\mathbf{what}, \mathbf{on the list}])))$
 - c. {that John read the things on the list in w_0 }
- FRs, however, sometimes also have a universal reading:
 - (33) We will veto three-quarters of whatever proposals you make.
 - a. **Definite**: Of the proposals: three-quarters won't make it.
 - b. **Universal**: For each proposal: three-quarters of it will be vetoed.

[Grosu and Landman 98]

Universal reading of FRs

- Universal meanings captured in terms of $[\forall]$:
 - (34) We will veto three-quarters of whatever proposals you make.

```
a. [Q](P(SHIFT_e(exh[whatever, S]))) (definite)
b. [\forall]([Q](P(\downarrow SHIFT_e(exh[whatever, S]))) (universal)
```

- For (34)-b, we need ↓ mapping plural individuals back into their atomic elements:
 - (35) a. $[\![\alpha]\!]_{w,g} = \{a+b\}$ a singleton set of plural individuals b. $[\![\downarrow\alpha]\!]_{w,g} = \{a,b\}$ a multi-membered set of atoms

4□ > 4□ > 4 = > 4 = > = 90

A closer look at interrogatives

- Declaratives and interrogatives have the same type here: $\langle s, t \rangle$. But:
 - Declaratives \mapsto singleton sets of propositions a.
 - b. Interrogatives \mapsto multi-membered sets of mutually exclusive propositions
- For example:
 - (36)Mary fell \mapsto {that Mary fell}
 - Who fell? \mapsto {that no-one fell, that only M fell, ...}
- I.e. Groenendijk and Stokhof's partitions in a Hamblin's setting.

Know, believe and wonder

Different embedding potential of attitude verbs could be explained in terms of propositional quantifiers:

- (37) a. John believes that Mary fell/#who fell.
 - b. $\operatorname{Bel}_{j}[\exists](A)$ [trivial, if A partition]
- (38) a. John wonders who fell/# that Mary fell.
 - b. [Neg] $(Bel_j[Q](A))$
- (39) a. John knows who fell/that Mary fell.
 - b. $Bel_i[true](A)$
 - c. j believes the unique true proposition in A, if there is one, undefined otherwise.

[vacuous, if A singleton]

More on know: factivity

- When know embeds a proposition p, p must be true, otherwise undefined:
 - (40)John knows that Mary fell. a.
 - b. $Bel_i[true](fell(m))$
 - c. j believes the unique true proposition in {that Mary fell}, if there is one, undefined otherwise.
- Factivity explained: (a) presupposes (b).
 - (41)a. John knows that Mary fell
 - b. Mary fell

More on *know*: exhaustivity

- When know embeds a question (here a partition), always defined:
 - (42)John knows who fell.
 - $\operatorname{Bel}_{i}[\operatorname{true}]([\mathrm{Q}](\operatorname{SHIFT}_{\langle s,t\rangle}(\mathbf{exh}[\operatorname{who}, \operatorname{fell}])))$
 - c. j believes the unique true proposition in {that no-one fell, that only M fell, ...}
- Weak and strong exhaustivity follow.
 - John knows who fell & M fell. \Rightarrow (43)a.
 - John knows that M fell. b. (weak exhaustivity)
 - John knows who fell & M didn't fall. \Rightarrow (44)
 - John knows that M didn't fall. b. (strong exhaustivity)

Subtrigging and modal effects of FC items: core idea

- FC items like wh-words trigger the application of **exh**.
- Unsubtrigged cases:
 - (45) a. [IP] Anyone fell b. I_{IP} Anyone may fall
 - ► Exhaustification must apply at the IP level;
 - \triangleright SHIFT_(s,t) generates sets of mutually exclusive propositional alternatives.
- Subtrigged cases:
 - [DP] Anyone who tried to jump fell. (46)
 - ► Exhaustification can apply at the DP level;
 - ▶ SHIFT_e and \downarrow apply and generate sets of individuals.
- Post-nominal modifier crucial for (46) because it supplies the 2nd argument essential for the application of **exh** inside the DP.

Any: final proposal

(47) a. $[\forall](\text{SHIFT}_{(s,t)}(\mathbf{exh}[\text{anyone, fell}]))$

Predicted meaning: \bot

only d_1 fell | only d_2 fell | ...

b. $[\forall](\Diamond(\text{SHIFT}_{(s,t)}(\mathbf{exh}[\text{anyone, fall}])))$

Pr. $m.: \forall x \Diamond \text{ONLY}_x F(x)$

 \Diamond only d_1 fall $|\Diamond$ only d_2 fall $|\ldots|$

Predicted meaning: $\forall x \Diamond \text{ONLY}_x F(x)$

c. $[\forall](\downarrow SHIFT_e(\mathbf{exh}[anyone, who tried to jump]) fell)$

Predicted meaning: $\forall x (T(x) \rightarrow F(x))$

 d_1 fell d_2 fell

- MERITS: captures (a) (out because inconsistent), (b) (consistent and unrestricted freedom of choice) and (c) (consistent and universal meaning).
- Problems: ...

Problems, problems, problems

- Theoretical: Where do $[\forall]$ and **exh** come from?
- Empirical: No account of rule-like meaning of subtrigged French tout (Jayez & Tovena) and Spanish cualquier (Menendez-Benito):
 - (48) a. #Tout étudiant qui était dans le couloir est rentré.
 - 'Any student who was in the corridor came in'
 - b. Tout étudiant qui avait triché a été renvoyeé.
 - 'Any student who had cheated was excluded'

...

The status of $[\forall]$ and **exh**: a speculation

- The proposed analysis:
 - (49) a. Anyone may fall.
 - b. $[\forall](\Diamond(\text{SHIFT}_{(s,t)}(\mathbf{exh}[\text{anyone, fall}])))$
- Hypothesis:
 - (49)-b result of fossilization/conventionalization of an originally pragmatic free choice implicature.

Free choice implicatures

- Permission (50)-a pragmatically implicates (50)-b:
 - (50) a. You may go to the beach or go to the cinema.
 - b. You may go to the beach and you may go to the cinema.
- Intuitive reasoning behind implicature:
 - (51) a. Speaker said $\Diamond(A \vee B)$:
 - b. Could it be that A is not possible? No, otherwise the speaker would have used $\Diamond B$;
 - c. Could it be that B is not possible? No, otherwise the speaker would have used $\Diamond A$;
 - d. Therefore, we can conclude that A is possible and that B is possible.

Deriving free choice implicatures

- Various formalisations of (51) have been proposed (e.g. Fox, Schulz, Geurts, Aloni)
- Aloni (2006): in BiOT using Grice's maxims + MMP which derives pragmatic exhaustification;
- Predictions for disjunctive permissions:
 - (52) a. original sentence: $\Diamond(A \vee B)$ b. FC implicature: $\Diamond(A \wedge \neg B) \wedge \Diamond(B \wedge \neg A)$
- Generalization to the existential case:
 - (53) a. original sentence: $\Diamond \exists x F(x)$ b. FC implicature: $\forall x \Diamond \text{ONLY}_x F(x)$

4 D > 4 D > 4 E > 4 E > E 9 Q C

Back to FC items: Chierchia 2006

- Why not Chierchia's analysis?
 - (54) Anyone may fall.
 - a. basic meaning: $\Diamond \exists x F(x)$
 - b. FC (local) implicature: $\forall x \Diamond \text{ONLY}_x F(x)$
- Hard to extend to the episodic case:
 - (55) Anyone who tried to jump fell.
 - a. basic meaning: $\exists x (T(x) \land F(x))$
 - b. antiexhaustiveness implicature: $\forall x (T(x) \to F(x))$
 - (56) #Anyone fell.
 - a. basic meaning: $\exists x F(x)$
 - b. antiexhaustiveness implicature: $\forall x F(x)$
- Problems:
 - ▶ Antiexhaustiveness implicature: not a rational implicature;
 - ▶ Dayal's explanation needed for (55) and (56).

My proposal: a diachronic perspective

- In languages with specialized free choice morphology, free choice implicatures, pragmatic in origin, have been conventionalized using mechanisms of propositional quantification:
 - (57) Anyone may fall.
 - a. Original FC implicature: $\forall x \Diamond ONLY_x F(x)$
 - b. Logical form after fossilization: $[\forall](\Diamond(\text{SHIFT}_{(s,t)}(\mathbf{exh}[\text{anyone, fall}])))$
- **exh** → grammaticalized version of originally pragmatic exhaustification.
- Once in the grammar, **exh** in interplay with [∀] and standard type-shift rules explain restricted distribution and subtrigging effects.

Diachronic stages

- Three diachronic stages wherein languages gradually developed free choice morphology:
 - stage 1 Languages with no specialized free choice morphology e.g. Maltese
 - stage 2 Languages in which emphatic indefinites may prefer free choice interpretations e.g. German *irgendein*
 - stage 3 Languages with free choice morphology e.g. Romance, Hebrew, Lavtian,...
- Back to our initial question: semantics or pragmatics?
 - ▶ FC effects:
 - \star In stage 1 and 2 languages: global implicatures (cancellable)
 - ★ In stage 3 languages: conventionalized implicatures (i.e. entailments)
 - ► Subtrigging effects: entailments (⇒ occurs only in stage 3 languages)

Future plans

- Look for evidence for diachronic hypothesis (Vidi project)
- Extend the proposal to account for rule-like interpretations of subtrigged sentences;
- Apply the analysis to explain variety of disjunctions (e.g. Szabolcsi).
 - (58)I didn't see John or Mary.
 - a. $\neg A \lor \neg B$
 - b. $\neg (A \vee B)$
 - a. Non ho visto Giovanni o Maria. $\neg A \lor \neg B$ (59)
 - Non ho visto né Giovanni né Maria. $\neg(A \lor B)$ b.

