

Project: Predicting IMDb Scores

<u>Topic:</u> Start building the **predicting IMDB scores** model by loading and preprocessing the dataset.

Predicting IMDb Scores

Introduction

Predicting IMDb scores is valuable for movie studios, distributors, and viewers. It assists in understanding a movie's potential success, guiding marketing strategies, and aiding investment decisions. This

report details the process of building an IMDb score prediction model.

Content for Project Phase 3

- Data Overview
- > Data Pre-processing
- > Feature Engineering
- Model Selection
- > Model Training
- Model Evaluation

Data Source

A good data source for house price prediction using machine learning should be Accurate, Complete, Covering the geographic area of interest, Accessible.

Data Overview

We collected a comprehensive dataset of movies, including various features such as genres, cast, director, budget, and release year. The dataset also includes IMDb scores, which serve as our target variable

Data Processing

To prepare the data for modelling, we executed the following preprocessing tasks

- Handling missing data o Encoding categorical
 variables o Normalizing or scaling numeric features
- Addressing outliers, if necessary

Feature Engineering

Feature engineering involved extracting valuable features from the dataset, including

- Genre-based features
 Actor and director-related features
- Budget normalization
- Release year transformation

Model Selection

We experimented with several machine learning models suitable for regression tasks, including

- o Linear Regression
- Random Forest

Gradient Boosting 0

Neural Networks

Model Training

The selected model was trained on a portion of the dataset, and hyperparameters were tuned for optimal performance

Model Evaluation

The model's performance was assessed using various evaluation metrics, including

○ Mean Absolute Error (MAE) ○
 Root Mean Squared Error (RMSE) ○
 R-squared (R2)

These metrics provided insights into the model's predictive accuracy and its ability to estimate IMDb scores effectively

Program:

Predicting IMDb Scores

In[1]:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from plotnine import *

Introduction

To Predict an IMDb Scores using Machine Language

Background

This dataset contains the information about the movies. For a movie to be commercial success, it depends on various factors like director, actors, critic reviews and viewers reaction. IMDb score is one of the important factors to measure the movie's success.

Description of dataset attributes

- Color :- Movie is black or coloured o Director_name:- Name
 of the movie director o num_critic_for_reviews :- No of
 critics for the movie o duration:- movie duration in minutes
- director_facebook_likes:-Number of likes for the Director on his
- Facebook Page o actor_3_facebook_likes:- No of likes for the actor 3 on his/her facebook Page
- actor2_name:- name of the actor 2 o
 actor_1_facebook_likes:- No of likes for the actor 1 on
 his/her facebook Page
- gross:- Gross earnings of the movie in Dollars o genres:- Film categorization like 'Animation', 'Comedy',

'Romance', 'Horror', 'Sci-Fi', 'Action', 'Family' ○ actor_1_name:- Name of the actor 1 ○ movie_title:-Title of the movie ○ num_voted_users:-No of people who voted for the movie ○ cast_total_facebook_likes:- Total facebook like for the movie ○ actor_3_name:- Name of the actor 3 ○

facenumber_in_poster:- No of actors who featured in the movie poster

plot_keywords:-Keywords describing the movie plots ○
 movie_imdb_link:-Link of the movie link ○
 num_user_for_reviews:- Number of users who gave a review
 ○ language:- Language of the movie ○ country:- Country
 where movie is produced ○ content_rating:- Content rating of
 the movie ○ budget:- Budget of the movie in Dollars ○
 title_year:- The year in which the movie is released ○
 actor_2_facebook_likes:- facebook likes for the actor 2 ○
 imdb_score:- IMDB score of the movie ○ aspect_ratio : Aspect ratio the movie was made in ○
 movie_facebook_likes:- Total no of facebook likes for the
 movie

Case Study

The dataset here gives the massive information about the movies and their IMDB scores respectively. We are going to analyze each and every factor which can influence the IMDb ratings so that we can predict better results. The movie with the higher IMDb score is more successful as compared to the movies with low IMDb score.

Data Processing

In[2]:

movie_df=pd.read_csv("/kaggle/input/imdb-5000-movie-dataset/movie_metadata.csv")

In[3]:

movie_df.head(10)

Out[3]:

	color	director_name	num_critic_for_reviews	duration	director_facebook_likes	actor_3_facebook_likes	actor_2_name	actor_1_facebook_likes	gross	genres
0	Color	James Cameron	723.0	178.0	0.0	855.0	Joel David Moore	1000.0	760505847.0	Action Adven
1	Color	Gore Verbinski	302.0	169.0	563.0	1000.0	Orlando Bloom	40000.0	309404152.0	Action Advent
2	Color	Sam Mendes	602.0	148.0	0.0	161.0	Rory Kinnear	11000.0	200074175.0	Action Advent
3	Color	Christopher Nolan	813.0	164.0	22000.0	23000.0	Christian Bale	27000.0	448130642.0	Action Thriller
4	NaN	Doug Walker	NaN	NaN	131.0	NaN	Rob Walker	131.0	NaN	Documentary
5	Color	Andrew Stanton	462.0	132.0	475.0	530.0	Samantha Morton	640.0	73058679.0	Action Advent
6	Color	Sam Raimi	392.0	156.0	0.0	4000.0	James Franco	24000.0	336530303.0	Action Advent
7	Color	Nathan Greno	324.0	100.0	15.0	284.0	Donna Murphy	799.0	200807262.0	Adventure An
8	Color	Joss Whedon	635.0	141.0	0.0	19000.0	Robert Downey Jr.	26000.0	458991599.0	Action Advent
9	Color	David Yates	375.0	153.0	282.0	10000.0	Daniel Radcliffe	25000.0	301956980.0	Adventure Far

In[4]:

movie_df.shape

Out[4]:

(5043, 28)

In[5]:

movie_df.dtypes

Out[5]:

color object director_name object num_critic_for_reviews float64 duration float64 director_facebook_likes float64 actor_3_facebook_likes float64 actor_2_name object actor_1_facebook_likes float64 float64 gross object genres actor_1_name object movie_title object num_voted_users int64 cast_total_facebook_likes int64 object actor_3_name facenumber_in_poster float64 plot_keywords object movie_imdb_link object num_user_for_reviews float64 language object country object object content_rating budget float64 float64 title_year actor_2_facebook_likes float64 imdb_score float64 aspect_ratio float64 int64 movie_facebook_likes dtype: object

In[6]:

movie_df.describe().T

Out[6]:

	count	mean	std	min	25%	50%	75%	max
num_critic_for_reviews	4993.0	1.401943e+02	1.216017e+02	1.00	50.00	110.00	195.00	8.130000e+02
duration	5028.0	1.072011e+02	2.519744e+01	7.00	93.00	103.00	118.00	5.110000e+02
director_facebook_likes	4939.0	6.865092e+02	2.813329e+03	0.00	7.00	49.00	194.50	2.300000e+04
actor_3_facebook_likes	5020.0	6.450098e+02	1.665042e+03	0.00	133.00	371.50	636.00	2.300000e+04
actor_1_facebook_likes	5036.0	6.560047e+03	1.502076e+04	0.00	614.00	988.00	11000.00	6.400000e+05
gross	4159.0	4.846841e+07	6.845299e+07	162.00	5340987.50	25517500.00	62309437.50	7.605058e+08
num_voted_users	5043.0	8.366816e+04	1.384853e+05	5.00	8593.50	34359.00	96309.00	1.689764e+06
cast_total_facebook_likes	5043.0	9.699064e+03	1.816380e+04	0.00	1411.00	3090.00	13756.50	6.567300e+05
facenumber_in_poster	5030.0	1.371173e+00	2.013576e+00	0.00	0.00	1.00	2.00	4.300000e+01
num_user_for_reviews	5022.0	2.727708e+02	3.779829e+02	1.00	65.00	156.00	326.00	5.060000e+03
budget	4551.0	3.975262e+07	2.061149e+08	218.00	6000000.00	20000000.00	45000000.00	1.221550e+10
title_year	4935.0	2.002471e+03	1.247460e+01	1916.00	1999.00	2005.00	2011.00	2.016000e+03
actor_2_facebook_likes	5030.0	1.651754e+03	4.042439e+03	0.00	281.00	595.00	918.00	1.370000e+05
imdb_score	5043.0	6.442138e+00	1.125116e+00	1.60	5.80	6.60	7.20	9.500000e+00
aspect_ratio	4714.0	2.220403e+00	1.385113e+00	1.18	1.85	2.35	2.35	1.600000e+01
movie_facebook_likes	5043.0	7.525965e+03	1.932045e+04	0.00	0.00	166.00	3000.00	3.490000e+05

In[7]:

movie_df.drop('movie_imdb_link', axis=1, inplace=True)

In[8]:

movie_df["color"].value_counts() movie_df.drop('color',axis=1,inplace=True)

In[9]: movie_df.columns

Out[9]:

In[10]:

movie_df.isna().any()

Out[10]:

director_name	True
num_critic_for_reviews	True
duration	True
director_facebook_likes	True
actor_3_facebook_likes	True
actor_2_name	True
actor_1_facebook_likes	True
gross	True
genres	False
actor_1_name	True
movie_title	False
num_voted_users	False
cast_total_facebook_likes	False
actor_3_name	True
facenumber_in_poster	True
plot_keywords	True
num_user_for_reviews	True
language	True
country	True
content_rating	True
budget	True
title_year	True
actor_2_facebook_likes	True
imdb_score	False
aspect_ratio	True
movie_facebook_likes	False
dtype: bool	

In[11]:

movie_df.isna().sum()

Out[11]:

director_name	104
num_critic_for_reviews	50
duration	15
director_facebook_likes	104
actor_3_facebook_likes	23
actor_2_name	13
actor_1_facebook_likes	7
gross	884
genres	0
actor_1_name	7
movie_title	0
num_voted_users	0
cast_total_facebook_likes	0
actor_3_name	23
facenumber_in_poster	13
plot_keywords	153
num_user_for_reviews	21
language	12
country	5
content_rating	303
budget	492
title_year	108
actor_2_facebook_likes	13
imdb_score	0
aspect_ratio	329
movie_facebook_likes	0
dtype: int64	

In[12]:

 $movie_df.dropna (axis=0, subset=['director_name',$

'num_critic_for_reviews','duration','director_facebook_likes','actor_3_facebook_likes','actor _2_name','actor_1_facebook_likes','actor_1_name','actor_3_name','facenumber_in_poster','num_user_for_reviews','language','country','actor_2_facebook_likes','plot_keywords'],inpl ace=True)

director_name	0
num_critic_for_reviews	0
duration	0
director_facebook_likes	0
actor_3_facebook_likes	0
actor_2_name	0
actor_1_facebook_likes	0
gross	0
genres	0
actor_1_name	0
movie_title	0
num_voted_users	0
cast_total_facebook_likes	0
actor_3_name	0
facenumber_in_poster	0
plot_keywords	0
num_user_for_reviews	0
language	0
country	0
content_rating	0
budget	0
title_year	0
actor_2_facebook_likes	0
imdb_score	0
aspect_ratio	0
movie_facebook_likes	0

In[19]:

 $movie_df.drop_duplicates (inplace=True) \ movie_df.shape$

dtype: int64

Out[19]:

(4695, 26)

In[20]:

movie_df["language"].value_counts()

Out[20]:

English	4405	Hungarian	1
French	69	AMERICAN PROGRAMMENTS	
Spanish	35	Mongolian	1
Hindi	25	Greek	1
Mandarin	24		
German	18	Romanian	1
Japanese	16	Bosnian	1
Russian	11		8
Italian	10	Telugu	1
Cantonese	10	Maya	1
Portuguese	8		'
Korean	8	Polish	1
Danish	5	Filipino	1
Norwegian	4	ritipino	1
Swedish	4	Czech	1
Hebrew	4	Dzongkha	1
Dutch	4	DZONGKIId	'
Persian	4	Kazakh	1
Arabic	3	Vietnamese	1
Thai	3	vietnamese	1
Indonesian	2	Icelandic	1
None	2	Aromaia	1
Aboriginal	2	Aramaic	1
Dari	2	Name: language,	dtype: int64
711711	2		

In[21]:

plt.figure(figsize=(40,10))

sns.countplot(movie_df["language"]) plt.show()

Zulu

In[22]:

movie_df.drop('language',axis=1,inplace=True)

In[23]:

movie_df["Profit"]=movie_df['budget'].sub(movie_df['gross'], axis = 0) movie_df.head(5)

Out[23]:

	director_name	num_critic_for_reviews	duration	director_facebook_likes	actor_3_facebook_likes	actor_2_name	actor_1_facebook_likes	gross	genres
0	James Cameron	723.0	178.0	0.0	855.0	Joel David Moore	1000.0	760505847.0	Action Adventure Far Fi
1	Gore Verbinski	302.0	169.0	563.0	1000.0	Orlando Bloom	40000.0	309404152.0	Action Adventure Far
2	Sam Mendes	602.0	148.0	0.0	161.0	Rory Kinnear	11000.0	200074175.0	Action Adventure Th
3	Christopher Nolan	813.0	164.0	22000.0	23000.0	Christian Bale	27000.0	448130642.0	Action Thriller
5	Andrew Stanton	462.0	132.0	475.0	530.0	Samantha Morton	640.0	73058679.0	Action Adventure Sci

In[24]:

movie_df['Profit_Percentage']=(movie_df["Profit"]/movie_df["gross"])*100 movie_df

Out[24]:

	director_name	num_critic_for_reviews	duration	director_facebook_likes	actor_3_facebook_likes	actor_2_name	actor_1_facebook_likes	gross	genres
0	James Cameron	723.0	178.0	0.0	855.0	Joel David Moore	1000.0	760505847.0	Action Adventure
1	Gore Verbinski	302.0	169.0	563.0	1000.0	Orlando Bloom	40000.0	309404152.0	Action Adventure
2	Sam Mendes	602.0	148.0	0.0	161.0	Rory Kinnear	11000.0	200074175.0	Action Adventure
3	Christopher Nolan	813.0	164.0	22000.0	23000.0	Christian Bale	27000.0	448130642.0	Action Thriller
5	Andrew Stanton	462.0	132.0	475.0	530.0	Samantha Morton	640.0	73058679.0	Action Adventure
	***	***		***	***	***	***	***	
5034	Neill Dela Llana	35.0	80.0	0.0	0.0	Edgar Tancangco	0.0	70071.0	Thriller
5035	Robert Rodriguez	56.0	81.0	0.0	6.0	Peter Marquardt	121.0	2040920.0	Action Crime Dra
5037	Edward Burns	14.0	95.0	0.0	133.0	Caitlin FitzGerald	296.0	4584.0	Comedy Drama
5038	Scott Smith	1.0	87.0	2.0	318.0	Daphne Zuniga	637.0	26005908.0	Comedy Drama
5042	Jon Gunn	43.0	90.0	16.0	16.0	Brian Herzlinger	86.0	85222.0	Documentary

In[25]:

value_counts=movie_df["country"].value_counts() print(value_counts)

Out[25]:

USA	3568	Poland	2
UK	420	Taiwan	2
France	149		
Canada	107	Iceland	2
Germany	96	Romania	2
Australia	53	Hungary	2
Spain	32	Greece	2
India	27	Soviet Union	1
China	24	Slovakia	1
Japan	21	Finland	1
Italy	20	Official site	1
Hong Kong	16		
New Zealand	14	Turkey	1
South Korea	12	Peru	1
Ireland	11	Libya	1
Denmark	11	Afghanistan	1
Russia	11	Cambodia	1
Mexico	11	Indonesia	1
South Africa	8	Nigeria	1
Brazil	8		1
Norway	7	Kyrgyzstan	
Netherlands	5	Colombia	1
Sweden	5	New Line	1
Thailand	4	Philippines	1
Iran	4	Bahamas	1
Argentina	4	Bulgaria	1
Czech Republic	3	Georgia	1
Switzerland	3	Aruba	1
Belgium	3		
Israel	3	Chile	1
West Germany	3	Name: country,	dtype: int64

In[26]:

vals = value_counts[:2].index

print (vals)

movie_df['country'] = movie_df.country.where(movie_df.country.isin(vals), 'other')

In[27]:

movie_df["country"].value_counts()

Out[27]:

USA 3568 other 707 UK 420

Name: country, dtype: int64

In[28]:

 $movie_df.head (10)$

Out[28]:

	director_name	num_critic_for_reviews	duration	director_facebook_likes	actor_3_facebook_likes	actor_2_name	actor_1_facebook_likes	gross	genres
0	James Cameron	723.0	178.0	0.0	855.0	Joel David Moore	1000.0	760505847.0	Action Adventure Fa
1	Gore Verbinski	302.0	169.0	563.0	1000.0	Orlando Bloom	40000.0	309404152.0	Action Adventure Fa
2	Sam Mendes	602.0	148.0	0.0	161.0	Rory Kinnear	11000.0	200074175.0	Action Adventure Th
3	Christopher Nolan	813.0	164.0	22000.0	23000.0	Christian Bale	27000.0	448130642.0	Action Thriller
5	Andrew Stanton	462.0	132.0	475.0	530.0	Samantha Morton	640.0	73058679.0	Action Adventure Sc
6	Sam Raimi	392.0	156.0	0.0	4000.0	James Franco	24000.0	336530303.0	Action Adventure Ro
7	Nathan Greno	324.0	100.0	15.0	284.0	Donna Murphy	799.0	200807262.0	Adventure Animation
8	Joss Whedon	635.0	141.0	0.0	19000.0	Robert Downey Jr.	26000.0	458991599.0	Action Adventure Sc
9	David Yates	375.0	153.0	282.0	10000.0	Daniel Radcliffe	25000.0	301956980.0	Adventure Family Fa
10	Zack Snyder	673.0	183.0	0.0	2000.0	Lauren Cohan	15000.0	330249062.0	Action Adventure Sc

Data Visualization

In[29]:

(ggplot(movie_df)

+ aes(x='title_year')

```
+ geom_bar(size=20)
)
```

In[30]:

```
ggplot(aes(x='imdb_score', y='Profit'), data=movie_df) +\
geom_line() +\ stat_smooth(colour='blue', span=1)
```


Out[30]:

<ggplot: (8779159653317)>

In[31]:

```
ggplot(aes(x='imdb_score', y='Profit'), data=movie_df) +\
geom_line() +\ stat_smooth(colour='blue', span=1)
```


Out[31]:

<ggplot: (8779159577103)>

In[32]:

ggplot(aes(x='country', y='imdb_score'), data=movie_df) +\
geom_line() +\ stat_smooth(colour='blue', span=1)

Out[32]:

<ggplot: (-9223363257695236576)>

In[33]:

```
(ggplot(movie_df)
+ aes(x='imdb_score', y='movie_facebook_likes')
+ geom_line()
+ labs(title='IMDB_Score vs. Facebook like for Movies', x='IMDB scores', y='Facebook Likes for movies')
)
```


Out[33]:

<ggplot: (8779159517781)>

In[34]:

```
plt.figure(figsize=(10,8)) movie_df= movie_df.sort_values(by
='Profit' , ascending=False)
```

```
movie_df_new=movie_df.head(20)

ax=sns.pointplot(movie_df_new['Profit'], movie_df_new['budget'],
hue=movie_df_new['movie_title'])

ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right")
plt.tight_layout() plt.show()
```


In[35]:

plt.figure(figsize=(10,8)) movie_df= movie_df.sort_values(by ='Profit_Percentage', ascending=False) movie_df_new=movie_df.head(20) ax=sns.pointplot(movie_df_new['Profit_Percentage'], movie_df_new['budget'], hue=movie_df_new['movie_title']) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show()

In[36]:

```
plt.figure(figsize=(10,8))
```

```
movie_df= movie_df.sort_values(by ='imdb_score', ascending=False)

movie_df_new=movie_df.head(20)

ax=sns.pointplot(movie_df_new['director_name'], movie_df_new['imdb_score'],

hue=movie_df_new['movie_title']) ax.set_xticklabels(ax.get_xticklabels(),

rotation=40, ha="right") plt.tight_layout() plt.show()
```


In[37]:

Out[37]:

ggplot: (8779159511195)>

In[38]:

plt.figure(figsize=(10,8)) movie_df= movie_df.sort_values(by ='Profit_Percentage', ascending=False) movie_df_new=movie_df.head(20) ax=sns.pointplot(movie_df_new['actor_1_name'], movie_df_new['Profit_Percentage'], hue=movie_df_new['movie_title']) ax.set_xticklabels(ax.get_xticklabels(), rotation=40, ha="right") plt.tight_layout() plt.show()

In[39]:

```
plt.figure(figsize=(10,8))

movie_df= movie_df.sort_values(by ='imdb_score', ascending=False)

movie_df_new=movie_df.head(20)

ax=sns.pointplot(movie_df_new['actor_1_name'], movie_df_new['imdb_score'],

hue=movie_df_new['movie_title']) ax.set_xticklabels(ax.get_xticklabels(),

rotation=40, ha="right") plt.tight_layout() plt.show()
```


In[40]:

```
plt.figure(figsize=(10,8))

movie_df= movie_df.sort_values(by ='imdb_score', ascending=False)

movie_df_new=movie_df.head(20)

ax=sns.pointplot(movie_df_new['country'], movie_df_new['imdb_score'],

hue=movie_df_new['movie_title']) ax.set_xticklabels(ax.get_xticklabels(),

rotation=40, ha="right") plt.tight_layout() plt.show()
```


Data Preparation for the models

Removing Columns with names

In[41]:

movie_df.drop('director_name', axis=1, inplace=True)

In[42]:

movie_df.drop('actor_1_name',axis=1,inplace=True)

```
In[43]:
movie_df.drop('actor_2_name',axis=1,inplace=True)
In[44]:
movie_df.drop('actor_3_name',axis=1,inplace=True)
In[45]:
movie_df.drop('movie_title',axis=1,inplace=True)
In[46]:
movie_df.drop('plot_keywords',axis=1,inplace=True)
In[47]:
movie_df['genres'].value_counts()
Out[47]:
```

Drama	209
Comedy	186
Comedy Drama Romance	182
Comedy Drama	180
Comedy Romance	149
Comedy Drama Horror	1
Mystery Western	1
Animation Comedy Drama Romance	1
Adventure Drama Romance Western	1
Drama War Western	1
Name: genres, Length: 875, dtype:	int64

In[48]:

movie_df.drop('genres',axis=1,inplace =True)

Remove the Linear dependent variables

In[49]:

movie_df.drop('Profit',axis=1,inplace=True)

In[50]:

movie_df.drop('Profit_Percentage',axis=1,inplace=True)

In[51]:

```
import matplotlib.pyplot as plt import seaborn as sns corr =
movie_df.corr() sns.set_context("notebook", font_scale=1.0,
rc={"lines.linewidth": 2.5}) plt.figure(figsize=(13,7))
# create a mask so we only see the correlation values once
mask = np.zeros_like(corr)
mask[np.triu_indices_from(mask, 1)] = True a =
sns.heatmap(corr,mask=mask, annot=True, fmt='.2f') rotx
= a.set_xticklabels(a.get_xticklabels(), rotation=90) roty =
a.set_yticklabels(a.get_yticklabels(), rotation=30)
```


In[52]:

movie_df['Other_actor_facebbok_likes']=movie_df["actor_2_facebook_likes"] + movie_df['actor_3_facebook_likes']

```
In[53]:
movie_df.drop('actor_2_facebook_likes',axis=1,inplace=True)
In[54]:
movie df.drop('actor 3 facebook likes',axis=1,inplace=True)
In[55]:
movie_df.drop('cast_total_facebook_likes',axis=1,inplace=True)
In[56]:
movie_df['critic_review_ratio']=movie_df['num_critic_for_reviews']/movie_df['num_user_fo
r_reviews']
In[57]:
movie_df.drop('num_critic_for_reviews',axis=1,inplace=True)
movie_df.drop('num_user_for_reviews',axis=1,inplace=True)
In[58]:
import matplotlib.pyplot as plt import seaborn as sns corr =
movie_df.corr() sns.set_context("notebook", font_scale=1.0,
rc={"lines.linewidth": 2.5}) plt.figure(figsize=(13,7)) mask =
```

```
np.zeros_like(corr) mask[np.triu_indices_from(mask, 1)] = True a =
sns.heatmap(corr,mask=mask, annot=True, fmt='.2f') rotx =
a.set_xticklabels(a.get_xticklabels(), rotation=90) roty =
a.set_yticklabels(a.get_yticklabels(), rotation=30)
```


In[59]:

movie_df["imdb_binned_score"]=pd.cut(movie_df['imdb_score'], bins=[0,4,6,8,10], right=True, labels=False)+1

In[60]:

movie_df.drop('imdb_score',axis=1,inplace=True)

In[61]:

movie_df.head(5)

Out[61]:

	duration	director_facebook_likes	actor_1_facebook_likes	gross	num_voted_users	facenumber_in_poster	country	content_rating	budget	title_year
1937	142.0	0.0	11000.0	28341469.0	1689764	0.0	USA	R	25000000.0	1994.0
3466	175.0	0.0	14000.0	134821952.0	1155770	1.0	USA	R	6000000.0	1972.0
66	152.0	22000.0	23000.0	533316061.0	1676169	0.0	USA	PG-13	185000000.0	2008.0
2837	220.0	0.0	22000.0	57300000.0	790926	1.0	USA	R	13000000.0	1974.0
3355	178.0	16000.0	13000.0	107930000.0	1324680	1.0	USA	R	8000000.0	1994.0

Handling the categorical Data

In[62]:

movie_df = pd.get_dummies(data = movie_df, columns = ['country'] , prefix = ['country'] ,
drop_first = True)

movie_df = pd.get_dummies(data = movie_df, columns = ['content_rating'] , prefix =
['content_rating'] , drop_first = True)

In[63]:

 $movie_df.columns$

Out[63]:

Splitting the Data into Training and test Data

In[64]:

```
X=pd.DataFrame(columns=['duration','director_facebook_likes','actor_1_facebook_likes','gr oss','num_voted_users','facenumber_in_poster','budget','title_year','aspect_ratio','movie_fa cebook_likes','Other_actor_facebbok_likes','critic_review_ratio','country_USA','country_oth er','content_rating_G','content_rating_GP','content_rating_M','content_rating_NC-17','content_rating_Not Rated','content_rating_PG','content_rating_PG-13','content_rating_PG-13','content_rating_Passed','content_rating_R','content_rating_TV-14','content_rating_TVG','content_rating_TV-PG','content_rating_Unrated','content_rating_X'],data=movie_df)
y=pd.DataFrame(columns=['imdb_binned_score'],data=movie_df) from sklearn.model_selection import train_test_split
X train, X test, y train, y test=train test split(X,y,test size=0.3,random state=100)
```

Feature Scaling

In[65]:

```
from sklearn.preprocessing import StandardScaler sc_X
= StandardScaler()

X_train = sc_X.fit_transform(X_train)

X_test = sc_X.transform(X_test)
```

Classification Model Selection

Logistic Regression

```
In[66]:
from sklearn.linear_model import LogisticRegression logit
=LogisticRegression()
logit.fit(X_train,np.ravel(y_train,order='C'))
y_pred=logit.predict(X_test)
```

In[67]:

```
from sklearn import metrics cnf_matrix =
  metrics.confusion_matrix(y_test, y_pred)
  print(cnf_matrix)

print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
```

Out[67]:

```
[[ 0 24 22 0]
 [ 0 93 285 0]
 [ 0 67 851 6]
 [ 0 1 28 32]]
Accuracy: 0.6926898509581263
```

<u>KNN</u>

In[68]:

```
from sklearn.neighbors import KNeighborsClassifier knn =
KNeighborsClassifier(n_neighbors=22) knn.fit(X_train,
np.ravel(y_train,order='C')) knnpred = knn.predict(X_test)
cnf_matrix = metrics.confusion_matrix(y_test, knnpred)
print(cnf_matrix)
print("Accuracy:",metrics.accuracy_score(y_test, knnpred))
```

Out[68]:

```
[[ 0 24 22 0]
[ 0 155 223 0]
[ 0 153 771 0]
[ 0 2 47 12]]
```

Accuracy: 0.6657203690560681

SVC

In[69]:

```
from sklearn.svm import SVC svc= SVC(kernel = 'sigmoid')
svc.fit(X_train, np.ravel(y_train,order='C')) svcpred =
svc.predict(X_test) cnf_matrix =
metrics.confusion_matrix(y_test, svcpred)
print(cnf_matrix)
print("Accuracy:",metrics.accuracy_score(y_test, svcpred))
```

Out[69]:

```
[[ 1 36 9 0]
[ 2 157 219 0]
[ 4 175 730 15]
[ 0 8 33 20]]
Accuracy: 0.6444286728176012
```

Naive Bayes

In[70]:

```
from sklearn.naive_bayes import GaussianNB gaussiannb=
GaussianNB()
gaussiannb.fit(X_train, np.ravel(y_train,order='C')) gaussiannbpred
= gaussiannb.predict(X_test) cnf_matrix =
metrics.confusion_matrix(y_test, gaussiannbpred)
print(cnf_matrix) print("Accuracy:",metrics.accuracy_score(y_test, gaussiannbpred))
```

Out[70]:

```
[[ 42  0  1  3]
[326  1  1  50]
[530  0  5  389]
[ 8  1  0  52]]
```

Accuracy: 0.07097232079488999

Decision Tree

In[71]:

```
from sklearn.tree import DecisionTreeClassifier dtree =

DecisionTreeClassifier(criterion='gini') dtree.fit(X_train,

np.ravel(y_train,order='C')) dtreepred =

dtree.predict(X_test) cnf_matrix =

metrics.confusion_matrix(y_test, dtreepred)

print(cnf_matrix)

print("Accuracy:",metrics.accuracy_score(y_test, dtreepred))
```

Out[71]:

```
[[ 5 24 17 0]
[ 24 194 160 0]
[ 15 192 706 11]
[ 0 2 23 36]]
```

Accuracy: 0.6678495386799148

ADA Boosting

In[72]:

```
from sklearn.ensemble import AdaBoostClassifier abcl =

AdaBoostClassifier(base_estimator=dtree, n_estimators=60)

abcl=abcl.fit(X_train,np.ravel(y_train,order='C'))

abcl_pred=abcl.predict(X_test) cnf_matrix =

metrics.confusion_matrix(y_test, abcl_pred) print(cnf_matrix)

print("Accuracy:",metrics.accuracy_score(y_test, abcl_pred))
```

Out[72]:

```
[[ 7 25 14 0]
[ 20 194 164 0]
[ 13 205 689 17]
[ 0 1 29 31]]
Accuracy: 0.6536550745209369
```

Random Forest

In[73]:

```
from sklearn.ensemble import RandomForestClassifier rfc =
RandomForestClassifier(n_estimators = 200)#criterion = entopy,gini
rfc.fit(X_train, np.ravel(y_train,order='C')) rfcpred = rfc.predict(X_test)
cnf_matrix = metrics.confusion_matrix(y_test, rfcpred)
print(cnf_matrix) print("Accuracy:",metrics.accuracy_score(y_test, rfcpred))
```

Out[73]:

```
[[ 2 31 13 0]
[ 0 177 201 0]
[ 0 77 846 1]
[ 0 0 34 27]]
```

Accuracy: 0.7466288147622427

Bagging Classifier

In[74]:

new_movie_df=movie_df.pop("imdb_binned_score")

In[75]:

from sklearn.ensemble import BaggingClassifier bgcl = BaggingClassifier(n_estimators=60, max_samples=.7, oob_score=True) bgcl = bgcl.fit(movie_df, new_movie_df) print(bgcl.oob_score_)

Out[75]:

0.7429179978700745

Gradient Boosting

In[76]:

from sklearn.ensemble import GradientBoostingClassifier gbcl =

GradientBoostingClassifier(n_estimators = 50, learning_rate = 0.09, max_depth=5) gbcl =

gbcl.fit(X_train,np.ravel(y_train,order='C')) test_pred = gbcl.predict(X_test) cnf_matrix =

metrics.confusion_matrix(y_test, test_pred) print(cnf_matrix)

print("Accuracy:",metrics.accuracy_score(y_test, test_pred))

Out[76]:

```
[[ 1 38 7 0]
[ 0 211 167 0]
[ 2 100 817 5]
[ 1 0 30 30]]
```

Accuracy: 0.751596877217885

XG Boosting

In[77]:

```
from xgboost import XGBClassifier xgb = XGBClassifier()
xgb.fit(X_train, np.ravel(y_train,order='C')) xgbprd =
xgb.predict(X_test) cnf_matrix =
metrics.confusion_matrix(y_test, xgbprd)
print(cnf_matrix)
print("Accuracy:",metrics.accuracy_score(y_test, xgbprd))
```

Out[77]:

```
[[ 1 36 9 0]
[ 2 198 178 0]
[ 1 101 818 4]
[ 0 2 26 33]]
```

Accuracy: 0.7452093683463449

Model Comparison

In[78]:

from sklearn.metrics import classification_report

print('Logistic Reports\n',classification_report(y_test, y_pred)) print('KNN Reports\n',classification_report(y_test, knnpred)) print('SVC Reports\n',classification_report(y_test, svcpred)) print('Naive BayesReports\n',classification_report(y_test, gaussiannbpred)) print('Decision Tree Reports\n',classification_report(y_test, dtreepred)) print('Ada Boosting\n',classification_report(y_test, abcl_pred)) print('Random Forests Reports\n',classification_report(y_test, rfcpred)) print('Bagging Clasifier',bgcl.oob_score_) print('Gradient Boosting',classification_report(y_test, test_pred)) print('XGBoosting\n',classification_report(y_test, xgbprd))

Out[78]:

Logistic	Repo	rts			
		precision	recall	f1-score	support
	1	0.00	0.00	0.00	46
2		0.50	0.25	0.33	378
3		0.72	0.92	0.81	924
	4	0.84	0.52	0.65	61
accura	асу			0.69	1409
macro a	avg	0.52	0.42	0.45	1409
weighted a	avg	0.64	0.69	0.65	1409
KNN Report	ts				
		precision	recall	f1-score	support
	1	0.00	0.00	0.00	46
2		0.46	0.41	0.44	378
3		0.73	0.83 0.78		924
	4	1.00	0.20	0.33	61
accura	асу			0.67	1409
macro a	avg	0.55	0.36	0.39	1409
weighted a	avg	0.64	0.67	0.64	1409

SVC Repor	rts					
-	TOTAL .	precision	recall	f1-score	e support	
	1		0.02	0.04	46	
	2		0.42	0.42	378	
	3		0.79	0.76	924	
	4	0.57	0.33	0.42	61	
accui	racy			0.64	1409	
macro	avg	0.47	0.39	0.41	1409	
weighted	avg	0.62	0.64	0.63	1409	
Naive Bay	yesRep	orts				
		precision	recall	f1-score	e support	
	1	0.05	0.91	0.09	46	
	2	0.50	0.00	0.01	378	
	3	0.71	0.01	0.01	924	
	4	0.11	0.85	0.19	61	
accui	racy			0.07	1409	
macro	avg	0.34	0.44	0.07	1409	
weighted	avg	0.61	0.07	0.02	1409	
Decision	Tree	Reports				
		precision	recall	f1-score	e support	
	1	0.11	0.11	0.11	46	
	2		0.51	0.49	378	
	3	0.78	0.76	0.77	924	
	4	0.77	0.59	0.67	61	
accui	racy			0.67	1409	
macro	avg	0.53	0.49	0.51	1409	
weighted	avg	0.67	0.67	0.67	1409	
Ada Boosting	pre	ecision	recall f	l-score	support	
1		0.17	0.15	0.16	46	
2			0.51	0.48	378	
3			0.75	0.76	924	
4		0.65	0.51	0.57	61	
accuracy				0.65	1409 1409	
macro avg	MICHELLI STRAFF		0.48			
weighted avg		0.66	0.65	0.66	1409	

Random For	rests	Reports					
		precision	recall	f1-score	suppor	t	
	1	1.00	0.04	0.08	46	0	
	2	0.62	0.47	0.53	378	1	
	3	0.77	0.92	0.84	924	66	
	4	0.96	0.44	0.61	61		
accura	асу			0.75	1409		
macro a	avg	0.84	0.47	0.52	1409	19	
weighted a	avg	0.75	0.75	0.72	1409		
Bagging Cl	lasif	ier 0.742917	997870074	5			
Gradient Boosting		precision		recall	f1-score	support	
	1	0.25	0.02	0.04	46	0)	
	2	0.60	0.56	0.58	378		
	3	0.80	0.88	0.84	924	-6	
	4	0.86	0.49	0.62	61		
accura	асу			0.75	1409	il	
macro a	avg	0.63	0.49	0.52	1409	r)	
weighted a	avg	0.73	0.75	0.74	1409		
XGBoosting	9						
		precision	recall	f1-score	suppor	t	
	1	0.25	0.02	0.04	46	0	
	2	0.59	0.52	0.55	378	E	
	3	0.79	0.89	0.84	924	3	
	4	0.89	0.54	0.67	61		
accura	асу			0.75	1409	18	
macro a	avg	0.63	0.49	0.53	1409		
weighted a	avg	0.72	0.75	0.73	1409		

Conclusion

The conclusion is that Random Forest Algorithm along with the gradient boosting have the accuracy of 74.5 and 75.5 respectively

This analysis compares certain attributes regarding Facebook and IMDB site against the gross revenue of a film. The higher number of Facebook likes from the primary actor and supporting actors plays a significant role in generating revenue from a film. Through both models and the sensitivity analysis, someone can easily see the support in this conclusion. Directors and producers can take this dataset and implement it into their thought process when planning their movie. Movie-goers can use this dataset to make the same predictions once the movie is announced with primary and supporting actors/actresses. It could possibly save movie-goers money when debating on whether to go see a movie or not.

This project has helped me substantially in practicing with running analysis on certain topics and generating a result. It has developed my skill in Excel and XL Miner by using the Missing Data handle, the Reduce Categories handle, the Data Partition handle, the Multiple Linear Regression handle, and a sensitivity analysis. Overall, the effectiveness of this project was very useful for me in the preparation for my career. I can take this project as proof of knowledge in these areas as well as knowing associated terms.