연세대학교 통계 데이터 사이언스 학회 ESC 23-2 FALL WEEK6

Cluster Analysis

[ESC 정규세션 학술부] 김민주 오동윤

Contents

Part I.

- 1. Introduction
- 2. The proximity between objects
- 3. Traditional Cluster Algorithm

Part II.

- 1. Adaptive Weight Clustering
- 2. Spectral Clustering

1.Introduction

Introduction

Cluster Analysis

-Proximity가 높은 object끼리 cluster로 묶는 다변량 기법

과정

1. Choose proximity measure

2. Choose group-building algorithm

2. The proximity between objects

The Proximity Between Objects

- Data matrix $\mathcal{X}_{n \times p}$
- Proximity matrix(or dissimilarity matrix) $\mathcal{D}_{n\times n}$

$$\mathcal{D} = \begin{pmatrix} d_{11} & d_{12} & \dots & d_{1n} \\ \vdots & d_{22} & & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ d_{n1} & d_{n2} & \dots & d_{nn} \end{pmatrix}$$

where d_{ij} : dissimilarity measure(or proximity measure) Ex) L2-norm

The Proximity Between Objects

Similarity of Objects with Binary Structure

- Euclidean distance를 사용할 경우 x_{ik} 가 0인 경우와 1인 경우를 동일하게 취급하므로, proximity measure를 사용

$$d_{ij} = rac{a_1 + \delta a_4}{a_1 + \delta a_4 + \lambda (a_2 + a_3)}$$
 when

$$d_{ij} = \frac{a_1 + \delta a_4}{a_1 + \delta a_4 + \lambda (a_2 + a_3)} \qquad \text{where} \qquad \begin{aligned} a_1 &= \sum_{k=1}^p \mathrm{I}(x_{ik} = x_{jk} = 1), & a_3 &= \sum_{k=1}^p \mathrm{I}(x_{ik} = 1, x_{jk} = 0), \\ a_2 &= \sum_{k=1}^p \mathrm{I}(x_{ik} = 0, x_{jk} = 1), & a_4 &= \sum_{k=1}^p \mathrm{I}(x_{ik} = x_{jk} = 0). \end{aligned}$$

Ex 13.1) Car Marks Data

 X_1 : A Economy,

 X_2 :B Service.

Non-depreciation of value,

 X_4 : D Price, Mark 1 for very cheap cars

 X_5 : E Design,

*X*₆: F Sporty car,

Safety, and

Easy handling.

$$X_i \in \{1,2,3,4,5,6\}$$

$$y_{ik} = \begin{cases} 1 & \text{if } x_{ik} > \overline{x}_k, \\ 0 & \text{otherwise,} \end{cases}$$

$$i=1,\dots n, k-1,\dots p$$

$$Jacard(\delta = 0, \lambda = 1)$$

$$card(\delta=0,\ \lambda=1)$$
 Tanimoto($\delta=1,\ \lambda=2$)

$$\mathcal{D} = \begin{pmatrix} 1.000 & 0.000 & 0.400 \\ 1.000 & 0.167 \\ 1.000 \end{pmatrix} \qquad \mathcal{D} = \begin{pmatrix} 1.000 & 0.000 & 0.455 \\ 1.000 & 0.231 \\ 1.000 \end{pmatrix}$$

Simple Matching($\delta = 1$, $\lambda = 1$)

$$\mathcal{D} = \begin{pmatrix} 1.000 \ 0.000 \ 0.625 \\ 1.000 \ 0.375 \\ 1.000 \end{pmatrix}$$

The Proximity Between Objects

Distance Measures for Continuous Variables

- Distance Measure: $L_r - norms$

$$d_{ij} = ||x_i - x_j||_r = \left\{ \sum_{k=1}^p |x_{ik} - x_{jk}|^r \right\}^{1/r}$$

$$d_{ij}^2 = \|x_i - x_j\|_{\mathcal{A}} = (x_i - x_j)^{\top} \mathcal{A}(x_i - x_j) \qquad d_{ij}^2 = \sum_{k=1}^p \frac{(x_{ik} - x_{jk})^2}{s_{X_k X_k}} \qquad - \chi^2 \text{-metric:} \qquad d^2(i_1, i_2) = \sum_{j=1}^p \frac{1}{\left(\frac{x_{\bullet j}}{x_{\bullet \bullet}}\right)} \left(\frac{x_{i_1 j}}{x_{i_1 \bullet}} - \frac{x_{i_2 j}}{x_{i_2 \bullet}}\right)^2$$

Ex 13.2)
$$x_1 = (0,0), x_2 = (1,0), x_3 = (5,5)$$

-L1 norm

-squared L2 norm

$$\mathcal{D}_1 = \begin{pmatrix} 0 & 1 & 10 \\ 1 & 0 & 9 \\ 10 & 9 & 0 \end{pmatrix}$$

$$\mathcal{D}_1 = \begin{pmatrix} 0 & 1 & 10 \\ 1 & 0 & 9 \\ 10 & 9 & 0 \end{pmatrix} \qquad \qquad \mathcal{D}_2 = \begin{pmatrix} 0 & 1 & 50 \\ 1 & 0 & 41 \\ 50 & 41 & 0 \end{pmatrix}$$

-Contingency table χ 에 대해, 각 행과 열은 $\frac{x_{ij}}{x_{i.}}$ 의conditional frequency distribution

-
$$\chi^2$$
-metric: $d^2(i_1, i_2) = \sum_{j=1}^p \frac{1}{\left(\frac{x_{\bullet j}}{x_{\bullet \bullet}}\right)} \left(\frac{x_{i_1 j}}{x_{i_1 \bullet}} - \frac{x_{i_2 j}}{x_{i_2 \bullet}}\right)^2$

Traditional Clustering method

1. Non-hierarchical algorithm

VS

2. Hierarchical algorithm

-iteration에 따라 object의 그룹이 바뀜

-Data의 저장이 필요 없어 큰 data set에 적용가능

-group이 정해지면 바뀌지 않음

-비교적 큰 data set에 적용 불가능

Partitioning(nonhierarchical clustering) Algorithm

-Goal: 정해진 k에 대해 distance based objective function을 minimize

K-means Method

$$\hat{S} = \underset{S}{\operatorname{argmin}} \sum_{j=1}^{k} \sum_{i \in S_j} \|x_i - \mu_j\|^2 \qquad S = \{S_1, \dots, S_k\}$$

- 1. Initial partition set을 지정
- 2. Each object와 group centroid와의 거리를 계산하여 nearest group에 reassign
- 3. Repeat until convergence

K-means Method

Ex)		Observations	
	Item	x_1	x_2
	A	5	3
	В	-1	1
	C	1	-2
	D	-3	-2

1. Initial Set: (AB) (CD)

	Coordinates of centroid		
Cluster	\bar{x}_1	\overline{x}_2	
(AB)	$\frac{5 + (-1)}{2} = 2$	$\frac{3+1}{2}=2$	
(CD)	$\frac{1 + (-3)}{2} = -1$	$\frac{-2 + (-2)}{2} = -2$	

2. Compute the distance

$$d^{2}(A,(AB)) = (5-2)^{2} + (3-2)^{2} = 10$$

$$d^{2}(A,(CD)) = (5+1)^{2} + (3+2)^{2} = 61$$

$$d^{2}(A,(B)) = (5+1)^{2} + (3-1)^{2} = 40$$

$$d^{2}(A,(ACD)) = (5-1)^{2} + (3+.33)^{2} = 27.09$$

$$d^{2}(B,(AB)) = (-1-2)^{2} + (1-2)^{2} = 10$$

$$d^{2}(B,(CD)) = (-1+1)^{2} + (1+2)^{2} = 9$$

$$d^{2}(B,(A))) = (-1-5)^{2} + (1-3)^{2} = 40$$

$$d^{2}(B,(BCD)) = (-1+1)^{2} + (1+1)^{2} = 4$$

$$d^{2}(C,(A)) = (1-5)^{2} + (-2-3)^{2} = 41$$

$$d^{2}(C,(BCD)) = (1+1)^{2} + (-2+1)^{2} = 5$$

$$d^{2}(C,(AC)) = (1-3)^{2} + (-2-.5)^{2} = 10.25$$

$$d^{2}(C,(BD)) = (1+2)^{2} + (-2+.5)^{2} = 11.25$$

Cluster A: 0
Cluster (BCD):
$$4+5+5=14$$

min $E=\sum d_{i,\,c(i)}^2$
- update set: (A) (BCD) => converge

- Successive computation 사용

$$\bar{x}_{i, new} = \frac{n\bar{x}_i + x_{ji}}{n+1}$$
 if the jth item is *added* to a group
$$\bar{x}_{i, new} = \frac{n\bar{x}_i - x_{ji}}{n-1}$$
 if the jth item is *removed* from a group

K-means Method

Ex) Cluster 개수 K를 설정하는 기준 예시: Table 12.4의 Public Utility Data 22개 maximize the between-cluster variability relative to the within-cluster variability

K = 4			K = S		
Cluster	Number of firms	Firms	Cluster	Number of firms	Firms
1	5	Idaho Power Co. (8), Nevada Power Co. (11), Puget Sound Power & Light Co. (16), Virginia Electric & Power Co. (22), Kentucky Utilities Co. (9).	1	5	Nevada Power Co. (11), Puget Sound Power & Light Co. (16), Idaho Power Co. (8), Virginia Electric & Power Co. (22), Kentucky Utilities Co. (9).
2	6	Central Louisiana Electric Co. (3), Oklahoma Gas & Electric Co. (14), The Southern Co. (18), Texas Utilities Co. (19), Arizona Public Service (1), Florida Power & Light Co. (6).	2	6	Central Louisiana Electric Co. (3), Texas Utilities Co. (19), Oklahoma Gas & Electric Co. (14), The Southern Co. (18), Arizona Public Service (1), Florida Power & Light Co. (6).
3	5	New England Electric Co. (12), Pacific Gas & Electric Co. (15), San Diego Gas & Electric Co. (17), United Illuminating Co. (21), Hawaiian Electric Co. (7).	3	5	New England Electric Co. (12), Pacific Gas & Electric Co. (15), San Diego Gas & Electric Co. (17), United Illuminating Co. (21), Hawaiian Electric Co. (7).
4	6	Consolidated Edison Co. (N.Y.) (5), Boston Edison Co. (2), Madison Gas & Electric Co. (10), Northern States Power Co. (13), Wisconsin Electric Power Co. (20), Commonwealth Edison Co. (4).	4	2	Consolidated Edison Co. (N.Y.) (5), Boston Edison Co. (2).
		((20), Commonwealth Edison Ct. (4).	5	4	Commonwealth Edison Co. (4), Madison Gas & Electric Co. (10), Northern States Power Co. (13), Wisconsin Electric Power Co. (20).

MANOVA Table for Comparing Population Mean Vectors

Source of variation	Matrix of sum of squares and cross products (SSP)	Degrees of freedom (d.f.)
Treatment	$\mathbf{B} = \sum_{\ell=1}^g n_\ell (\bar{\mathbf{x}}_\ell - \bar{\mathbf{x}}) (\bar{\mathbf{x}}_\ell - \bar{\mathbf{x}})'$	g - 1
Residual (Error)	$\mathbf{W} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \bar{\mathbf{x}}_{\ell}) (\mathbf{x}_{\ell j} - \bar{\mathbf{x}}_{\ell})'$	$\sum_{\ell=1}^g n_\ell - g$
Total (corrected for the mean)	$\mathbf{B} + \mathbf{W} = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (\mathbf{x}_{\ell j} - \overline{\mathbf{x}}) (\mathbf{x}_{\ell j} - \overline{\mathbf{x}})'$	$\sum_{\ell=1}^g n_\ell - 1$

Distances between Cluster Centers

$$F_{\text{nuc}} = \frac{\text{mean square percent nuclear between clusters}}{\text{mean square percent nuclear within clusters}} = \frac{3.335}{.255} = 13.1$$

$$\frac{|W|}{|B+W|}$$
, $tr(W^{-1}B)$ 등을 기준으로 사용

K-means Method

장점

- 1. Simple and easy
- 2. Fast: Computational cost $O(tkn) \approx O(n)$
- 3. Scalability
- 4. Flexibility

단점

- 1. Sensitive to initial set
- 2. Sensitive to outlier
- → local minimum에 도달할 수도

K-means++ Method

1. K개의 centroid를 initialize하지 않고,1개의 point를 centroid로 지정

2. Centroid부터 나머지 point까지의 거리 계산

3. Centroid로부터 가장 먼 곳 data point를 centroid로 지정해 k개 initial centroid

K-medoids Method

-K-mean Method의 outlier에 민감함을 보완

단점

-느림: Computational cost $O(k * (n - k)^2)$

K-median Method

$$\hat{S} = \underset{S}{\operatorname{argmin}} \sum_{j=1}^{k} \sum_{i \in S_j} |x_i - med_j|$$

Fuzzy k-means Method

$$\hat{\mathcal{S}} = \underset{\mathcal{S}}{\operatorname{argmin}} \sum_{j=1}^{k} \sum_{i \in \mathcal{S}_{j}} u_{i,j} \|x_{i} - \mu_{j}\|^{2}$$

-각 data point가 특정 cluster에 속할 가능성을 weight로

- w_{ij}: object i가 cluster j에 속할 확률

Problem

$$\min_{\mathcal{S}} \sum_{j=1}^k \sum_{i=1}^n w_{ij}^p \|x_i - \mu_j\|$$

Subject to $\sum_{i=1}^k w_{ij}$, $0 < \sum_{i=1}^n w_{ik} < n$

$$-\hat{S} = argmin_{S} \sum_{j=1}^{k} \sum_{i=1}^{n} w_{ij}^{p} d(x_{i}, \mu_{j})^{2}$$

$$-\mu_j = \frac{\sum_{i=1}^n w^p_{ik} x_i}{\sum_{i=1}^n w^p_{ik}}, j=1,\dots,K$$

$$-w_{ik} = \frac{\left\{\frac{1}{d(x_{i},\mu_{k})^{2}}\right\}^{\frac{1}{p-1}}}{\sum_{j=1}^{K} \left\{\frac{1}{d(x_{i},\mu_{j})^{2}}\right\}^{\frac{1}{p-1}}}, j=1,\dots,k$$

-p가 커질수록 fuzzy해지므로 일반적으로 p=2 사용

$$-w_{ik} = \frac{1}{\sum_{j=1}^{K} \left\{ \frac{d(x_i, \mu_k)^2}{d(x_i, \mu_j)^2} \right\}}, j=1, \dots, k$$

Hierarchical Algorithm

- Agglomerative algorithm
- Splitting algorithm

Agglomerative Algorithm

- 1. N개의 cluster로 초기값 설정, $\mathcal{D}_{n \times n} = \{d_{ik}\}$
- 2. 가장 가까운 두 개의 cluster를 하나로 병합
- \mathcal{J} . $\mathcal{D}_{(n-1)\times(n-1)}=\{d_{ik}\}$ 업데이트
- 4. 2-3을 n-1번 반복

$$d_{(UV)W} = \delta_1 d_{UW} + \delta_2 d_{VW} + \delta_3 d_{UV} + \delta_4 |d_{UW} - d_{VW}|$$

Single Linkage(Nearest Neighbor algorithm)

$$d_{(UV)W} = \delta_1 d_{UW} + \delta_2 d_{VW} + \delta_3 d_{UV} + \delta_4 |d_{UW} - d_{VW}| \quad \text{where } \delta_1 = \frac{1}{2}, \ \delta_2 = \frac{1}{2}, \delta_3 = 0, \ \delta_{4=} - \frac{1}{2}, \delta_{4=} -$$

Ex)
$$\mathbf{D} = \{d_{ik}\} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & & & \\ 9 & 0 & & \\ 4 & 6 & 5 & 9 & 0 \\ 5 & 11 & 10 & 2 & 8 & 0 \end{bmatrix}$$

$$\begin{vmatrix} d_{(35)2} = \min\{d_{32}, d_{52}\} = \min\{d_{34}, d_{54}\} = \min\{d_{34}, d_{54}\} = \min\{d_{35}, d_{54}$$

$$\min_{i,k} (d_{ik}) = d_{53} = 2$$

$$d_{(35)1} = \min \{d_{31}, d_{51}\} = \min \{3, 11\} = 3$$

$$d_{(35)2} = \min \{d_{32}, d_{52}\} = \min \{7, 10\} = 7$$

$$d_{(35)4} = \min \{d_{34}, d_{54}\} = \min \{9, 8\} = 8$$

$$(35) \quad 1 \quad 2 \quad 4$$

$$(35) \quad \begin{bmatrix} 0 \\ \hline 3 & 0 \\ 7 & 9 & 0 \\ 4 & 8 & 6 & 5 & 0 \end{bmatrix}$$

$$d_{(135)2} = \min \{d_{(35)2}, d_{12}\} = \min \{7, 9\} = 7$$

$$d_{(135)4} = \min \{d_{(35)4}, d_{14}\} = \min \{8, 6\} = 6$$

Single Linkage(Nearest Neighbor algorithm)

$$d_{(UV)W} = \min\{d_{UW}, d_{VW}\}$$

Ex) Single linkage clustering of 11 languages

- (a) Single linkage confused by near overlap
- (b) Chaining effect

Figure 12.5 Single linkage clusters.

Complete Linkage(Farthest Neighbor algorithm)

$$d_{(UV)W} = \delta_1 d_{UW} + \delta_2 d_{VW} + \delta_3 d_{UV} + \delta_4 |d_{UW} - d_{VW}| \qquad \text{where } \delta_1 = \frac{1}{2}, \ \delta_2 = \frac{1}{2}, \delta_3 = 0, \ \delta_{4=} - \frac{1}{2}, \delta_{4=} = 0, \ \delta_{4=} =$$

$$d_{(UV)W} = \max\{d_{UW}, d_{VW}\}$$

Ex)
$$\mathbf{D} = \{d_{ik}\} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & & & \\ 9 & 0 & & & \\ 3 & 7 & 0 & & \\ 4 & 5 & 2 & 8 & 0 \end{bmatrix}$$

$$\begin{bmatrix} (35) & 1 & 2 & 4 \\ 0 & & & \\ 11 & 0 & & \\ 2 & 10 & 9 & 0 \\ 9 & 6 & 5 & 0 \end{bmatrix}$$

$$d_{(24)(35)} = \max\{d_{2(35)}, d_{4(35)}\}$$

$$d_{(24)1} = \max\{d_{21}, d_{41}\} = 9$$

$$d_{(35)1} = \max \{d_{31}, d_{51}\} = \max \{3, 11\} = 11$$

$$d_{(35)2} = \max \{d_{32}, d_{52}\} = 10$$

$$d_{(35)4} = \max \{d_{34}, d_{54}\} = 9$$

$$d_{(24)(35)} = \max \{d_{2(35)}, d_{4(35)}\} = \max \{10, 9\} = 10$$

$$d_{(24)1} = \max \{d_{21}, d_{41}\} = 9$$

Average Linkage algorithm

$$d_{(UV)W} = \delta_1 d_{UW} + \delta_2 d_{VW} + \delta_3 d_{UV} + \delta_4 |d_{UW} - d_{VW}|$$

$$d_{(UV)W} = \delta_1 d_{UW} + \delta_2 d_{VW} + \delta_3 d_{UV} + \delta_4 |d_{UW} - d_{VW}| \qquad \text{where } \delta_1 = \frac{N_U}{N_U + N_V}, \; \delta_2 = \frac{N_V}{N_U + N_V}, \; \delta_3 = 0, \; \delta_{4=}0, \; \delta_$$

$$\Rightarrow d_{(UV)W} = \frac{\sum_i \sum_k d_{ik}}{N_{(UV)} N_W}$$

(Complete linkage) vs (Average linkage) clustering of 11 languages

Centroid algorithm

$$d_{(UV)W} = \delta_1 d_{UW} + \delta_2 d_{VW} + \delta_3 d_{UV} + \delta_4 |d_{UW} - d_{VW}| \quad \text{ where } \delta_1 = \frac{N_U}{N_U + N_V}, \ \delta_2 = \frac{N_V}{N_U + N_V}, \delta_3 = -\frac{N_U N_V}{(N_U + N_V)^2}, \ \delta_{4=0}, \delta_{4=0} = -\frac{N_U N_V}{N_U + N_V}$$

Ex)

Ward algorithm

$$d_{(UV)W} = \delta_1 d_{UW} + \delta_2 d_{VW} + \delta_3 d_{UV} + \delta_4 |d_{UW} - d_{VW}| \quad \text{ where } \delta_1 = \frac{N_W + N_U}{N_U + N_V + N_W}, \ \delta_2 = \frac{N_W + N_V}{N_U + N_V + N_W}, \ \delta_3 = -\frac{N_W}{N_U + N_V + N_W}, \ \delta_4 = 0,$$

$$I_R = \frac{1}{n_R} \sum_{i=1}^{n_R} d^2(x_i, \overline{x}_R)$$

$$\Delta(P, Q) = \frac{n_P n_Q}{n_P + n_Q} d^2(P, Q)$$

Ex) 20 Swiss bank notes

Clustering based on Statistical Models

- data가 특정한 분포를 따르는 데이터일 때의 clustering

ex) 3개의 정규분포가 결합된 혼합분포

$$f_{Mix}(\mathbf{x}) = \sum_{k=1}^{K} p_k f_k(\mathbf{x})$$

=> p_k 의 확률로 f_k 의 분포를 따른다! : Mixing distribution

Clustering based on Statistical Models

$$f_{Mix}(\mathbf{x}) = \sum_{k=1}^{K} p_k f_k(\mathbf{x}) \qquad f_{Mix}(\mathbf{x} \mid \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \dots, \boldsymbol{\mu}_K, \boldsymbol{\Sigma}_K)$$

$$= \sum_{k=1}^{K} p_k \frac{1}{(2\pi)^{p/2} |\boldsymbol{\Sigma}_k|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)' \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right)$$

$$L(p_1, \dots, p_K, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \dots, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_K) = \prod_{j=1}^N f_{Mix}(\mathbf{x}_j | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \dots, \boldsymbol{\mu}_K, \boldsymbol{\Sigma}_K)$$

$$= \prod_{j=1}^N \left(\sum_{k=1}^K p_k \frac{1}{(2\pi)^{p/2} |\boldsymbol{\Sigma}_k|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x}_j - \boldsymbol{\mu}_k)' \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_j - \boldsymbol{\mu}_k)\right) \right)$$

$$L_{\max} = L(\hat{p}_1, \dots, \hat{p}_K, \hat{\boldsymbol{\mu}}_1, \hat{\boldsymbol{\Sigma}}_1, \dots, \hat{\boldsymbol{\mu}}_K, \hat{\boldsymbol{\Sigma}}_K)$$

Clustering based on Statistical Models

$$L(p_1, \dots, p_K, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \dots, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_K) = \prod_{j=1}^N f_{Mix}(\mathbf{x}_j | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \dots, \boldsymbol{\mu}_K, \boldsymbol{\Sigma}_K)$$

$$= \prod_{j=1}^N \left(\sum_{k=1}^K p_k \frac{1}{(2\pi)^{p/2} |\boldsymbol{\Sigma}_k|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x}_j - \boldsymbol{\mu}_k)' \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_j - \boldsymbol{\mu}_k)\right) \right)$$

AIC =
$$2 \ln L_{\text{max}} - 2N \left(K \frac{1}{2} (p+1)(p+2) - 1 \right)$$

BIC =
$$2 \ln L_{\text{max}} - 2 \ln(N) \left(K \frac{1}{2} (p+1)(p+2) - 1 \right)$$

Assumed form for Σ_k	Total number of parameters	BIC
$\Sigma_k = \eta I$	K(p + 1)	$\ln L_{\max} - 2\ln(N)K(p+1)$
$\mathbf{\Sigma}_k = \boldsymbol{\eta}_k \mathbf{I}$	K(p + 2) - 1	$\ln L_{\max} - 2\ln(N)(K(p+2) - 1)$
$\Sigma_k = \eta_k Diag(\lambda_1, \lambda_2, \ldots, \lambda_p)$	K(p+2)+p-1	$\ln L_{\max} - 2 \ln(N) (K(p+2) + p - 1)$

Clustering based on Statistical Models

Ex) A model based clustering of the iris data

$$\boldsymbol{\mu}_1 = \begin{bmatrix} 5.01 \\ 3.43 \\ 1.46 \\ 0.25 \end{bmatrix}, \quad \boldsymbol{\mu}_2 = \begin{bmatrix} 5.90 \\ 2.75 \\ 4.40 \\ 1.43 \end{bmatrix}, \quad \boldsymbol{\mu}_3 = \begin{bmatrix} 6.85 \\ 3.07 \\ 5.73 \\ 2.07 \end{bmatrix}$$

$$\boldsymbol{\mu}_1 = \begin{bmatrix} 5.01 \\ 3.43 \\ 1.46 \\ 0.25 \end{bmatrix}, \quad \boldsymbol{\mu}_2 = \begin{bmatrix} 6.26 \\ 2.87 \\ 4.91 \\ 1.68 \end{bmatrix}$$

$$\hat{\mathbf{\Sigma}}_1 = \begin{bmatrix} .1218 & .0972 & .0160 & .0101 \\ .0972 & .1408 & .0115 & .0091 \\ .0160 & .0115 & .0296 & .0059 \\ .0101 & .0091 & .0059 & .0109 \end{bmatrix}$$

$$\hat{\Sigma}_2 = \begin{bmatrix} .4530 & .1209 & .4489 & .1655 \\ .1209 & .1096 & .1414 & .0792 \\ .4489 & .1414 & .6748 & .2858 \\ .1655 & .0792 & .2858 & .1786 \end{bmatrix}$$

Figure 12.13 Multiple scatter plots of K = 3 clusters for Iris data

Notation

주어진 데이터: $X_1 \sim X_n \subset \mathbb{R}^p$ (p가 매우 큰 경우도 가능) X_i 와 X_j 의 거리는 $d(X_i, X_j)$ 로 표현

가중치 행렬 $W=(w_{ij}),\quad i,j=1...n\quad (w_{ij}$ 는 binary) $w_{ij}=1$ 은 X_i 와 X_j 가 같은 군집에 속한다는 의미 $w_{ij}=0$ 은 X_i 와 X_j 가 다른 군집에 속한다는 의미

 C_i 는 고정된 i에 대해서 w_{ij} 가 양수인 j로 이루어진 cluster

Overview

AWC 알고리즘은 순차적으로 w_{ij} 를 새롭게 계산하면서 clustering을 진행

처음(k=0)에는 초기값 $w_{ij}^{(0)}$ 를 통해서 $C_i^{(0)}$ 을 구성 $k\geq 1$ 단계에서는 $C_i^{(k-1)}$ 과 $C_j^{(k-1)}$ 사이에 "no gab test"를 진행해 $w_{ij}^{(k)}$ 를 업데이트 (이때, $d(X_i,X_j)\leq h_k$ 인 $X_i,~X_j$ 에 대해서만 진행한다.) 이 과정을 k=K까지 반복해주고 완성된 W를 통해서 clustering

Sequence of radii

각 단계마다 기준치가 되는 **반경**

$$h_1 \leq h_2 \leq \ldots \leq h_K$$

 h_k 는 다음과 같은 조건을 만족하도록 설정 $n(X_i,h_{k+1}) \leq a \cdot n(X_i,h_k), \ \ h_{k+1} \leq b \cdot h_k$

$$(a=\sqrt{2},\ b=1.95)$$

Initialization of weights

초기 단계에서는 각 point를 n_0 개의 가까운 이웃들만 가중치 부여 $(n_0=2p+2)$

$$w_{ij}^{(0)} = I[\ d(X_i, X_j) \le max\{h_0(X_i),\ h_0(X_j)\}\]$$

 $h_0(X_i)$ 는 X_i 와 n_o 번째로 가까운 데이터 사이의 거리

Updates at step k

k-1번째 단계에서의 결과는 주어져 있다고 가정 각각의 X_i 에 대해서 가중치 $\{w_{ij}^{(k-1)}, j=1,...,n\}$ 를 가지고 있음 이때, $w_{ij}=1$ 은 X_j 가 다음을 만족한다는 의미 $B(X_i,h_{k-1})=\{x:d(X_i,x)\leq h_{k-1}\}$ or $d(X_i,X_j)\leq h_{k-1}$

 $d(X_i,X_j) \leq h_k$ 를 만족하는 point에 대해서만 w_{ij} 업데이트

Updates at step k

$$N_{i \wedge j}^{(k)} = \sum_{l \neq i,j} w_{il}^{(k-1)} w_{jl}^{(k-1)}.$$

$$N_{i \triangle j}^{(k)} = \sum_{l \neq i, j} \left\{ w_{il}^{(k-1)} \mathbf{I}(X_l \notin B(X_j, h_{k-1})) + w_{jl}^{(k-1)} \mathbf{I}(X_l \notin B(X_i, h_{k-1})) \right\}.$$

$$N_{i \vee j}^{(k)} = N_{i \wedge j}^{(k)} + N_{i \triangle j}^{(k)}$$

$$\tilde{\theta}_{ij}^{(k)} = N_{i \wedge j}^{(k)} / N_{i \vee j}^{(k)}.$$

Updates at step k

 $ilde{ heta}_{ij}^{(k)}$ 는 $B(X_i,h_k)$ 와 $B(X_j,h_k)$ 의 교집합과 합집합의 비율의 추정치

$$\tilde{\theta}_{ij}^{(k)} pprox q_{ij}^{(k)} = \frac{V_{\cap}(d_{ij}, h_{k-1})}{2V(h_{k-1}) - V_{\cap}(d_{ij}, h_{k-1})}$$

만약 $\tilde{\theta}_{ij}^{(k)}$ 가 $q_{ij}^{(k)}$ 충분히 작다면, 두 군집간의 gap이 크다는 것을 의미두 군집 간의 gap이 크다면 두 군집은 합치기X 두 군집 간의 gap이 작다면 두 군집은 합치기O $\tilde{\theta}_{ii}^{(k)} > q_{ij}^{(k)}$ vs $\tilde{\theta}_{ii}^{(k)} \leq q_{ij}^{(k)}$

Updates at step k

$$T_{ij}^{(k)} = N_{i\vee j}^{(k)} \ KL(\tilde{\theta}_{ij}^{(k)}, q_{ij}^{(k)}) \left\{ I(\tilde{\theta}_{ij}^{(k)} \leq q_{ij}^{(k)}) - I(\tilde{\theta}_{ij}^{(k)} > q_{ij}^{(k)}) \right\}.$$

 $KL(\theta,\eta)$ 는 Kullback-Leibler(KL) divergence로 주로 두 분포 간에 차이를 볼 때 사용

$$KL(\theta, \eta) = \theta \log \frac{\theta}{\eta} + (1 - \theta) \log \frac{1 - \theta}{1 - \eta}$$

0보다 크거나 같은 값을 가짐

Updates at step k

 $d(X_i,X_j) \leq h_k$ 를 만족하는 $X_i,~X_j$ 에 대해서 다음과 같이 w_{ij} 업데이트

$$w_{ij}^{(k)} = \mathbf{I}\left(T_{ij}^{(k)} \le \lambda\right)$$

 λ 는 tuning parameter로 clustering에 큰 영향을 끼침

만약 λ 가 크다면 적은 수의 통합된 군집이 생성되고 λ 가 작다면 많은 수의 개별적인 군집 생성

Choose lambda

$$S(\lambda) = \sum_{i,j=1}^{n} w_{ij}^{K}(\lambda).$$

 λ 값을 변화시켜가며 $S(\lambda)$ 를 계산 (λ) 가 크다면 $S(\lambda)$ 가 크고, λ 가 작다면 $S(\lambda)$ 가 작음) $S(\lambda)$ 가 급격하게 변할 경우, 직전의 λ 선택 만약, $S(\lambda)$ 변하는 구간이 여러 개인 경우 λ 를 비교해가며 선택

AWC Algorithm

Algorithm 13.5 AWC

- 1: **Fix** a sequence of radii $h_1 \le h_2 \le \ldots \le h_K$
- 2: Initialization of weights: $w_{ij}^{(0)} = I\left(d(X_i, X_j) \le \max(h_0(X_i), h_0(X_j))\right)$
- 3: Updates at step k:
- 4: Compute $T_{ij}^{(k)}$ using 13.27
- 5: $w_{ij}^{(k)} = I\left(d(X_i, X_j) \le h_k\right) I\left(T_{ij}^{(k)} \le \lambda\right)$
- 6: **Repeat** until k = K.

Notation

$$G = (V, E)$$

weighted adjacency matrix

degree matrix

$$d_i = \sum_{j=1}^n w_{ij}.$$

Notation

$$A\subset V$$
 일 때, $V\setminus A$ 는 $ar{A}$ 로 정의 indicator vector $1_A=(f_1,...,f_n)'$, 만약 $v_i\in A$ 라면 $f_i=1$, 아니면 $f_i=0$

$$W(A,B) := \sum_{i \in A, j \in B} w_{ij}.$$

|A| := the number of vertices in A

$$\operatorname{vol}(A) := \sum_{i \in A} d_i.$$

How to make Similarity graph

데이터 $x_1 \sim x_n$ 가 주어졌을 때, x_i 와 x_j 간의 유사도를 나타내는 s_{ij} 또는 d_{ij} 를 활용하여 Similarity Graph 생성

The ϵ -neighborhood graph

데이터 간의 거리가 ϵ 보다 작은 경우에만 이어줌 일반적으로 unweighted graph로 간주

k-nearest neighbor graphs

 v_j 가 v_i 의 k번째 가까운 노드에 속하면 연결 연결 후 노드의 유사도에 따라 엣지에 가중치 부여

The fully connected graph

Laplacian Matrix

G는 undirected, weighted graph로 가정

$$L = D - W$$

1. For every vector $f \in \mathbb{R}^n$ we have

$$f'Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.$$

- 2. L is symmetric and positive semi-definite.
- 3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one vector $\mathbb{1}$.
- 4. L has n non-negative, real-valued eigenvalues $0 = \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n$.

Laplacian Matrix

앞선 성질에 대한 증명

$$f'Lf = f'Df - f'Wf = \sum_{i=1}^{n} d_i f_i^2 - \sum_{i,j=1}^{n} f_i f_j w_{ij}$$
$$= \frac{1}{2} \left(\sum_{i=1}^{n} d_i f_i^2 - 2 \sum_{i,j=1}^{n} f_i f_j w_{ij} + \sum_{j=1}^{n} d_j f_j^2 \right) = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2$$

W와 D가 symmetry이고 $f'Lf \geq 0$ for all $f \in \mathbb{R}^n$ 이므로 positive semi definite

Algorithm

Unnormalized spectral clustering

Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct.

- ullet Construct a similarity graph by one of the ways described in Section 2. Let W be its weighted adjacency matrix.
- ullet Compute the unnormalized Laplacian L.
- Compute the first k eigenvectors u_1, \ldots, u_k of L.
- Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors u_1, \ldots, u_k as columns.
- ullet For $i=1,\ldots,n$, let $y_i\in\mathbb{R}^k$ be the vector corresponding to the i-th row of U.
- Cluster the points $(y_i)_{i=1,...,n}$ in \mathbb{R}^k with the k-means algorithm into clusters C_1,\ldots,C_k .

Output: Clusters A_1, \ldots, A_k with $A_i = \{j | y_j \in C_i\}$.

Graph cut point of view

그래프가 주어졌을 때, 서로 다른 그룹 사이의 엣지는 낮은 가중치를 갖도록, 같은 그룹내에서의 엣지는 높은 가중치를 갖도록 나누고 싶음

$$\operatorname{cut}(A_1,\ldots,A_k) := \frac{1}{2} \sum_{i=1}^k W(A_i,\overline{A}_i).$$

k=2인 경우

$$cut(A, \bar{A}) := \frac{1}{2} \cdot W(A, \bar{A})$$

Graph cut point of view

그룹의 크기를 고려하는 RatioCut

RatioCut
$$(A_1, \dots, A_k) := \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A}_i)}{|A_i|} = \sum_{i=1}^k \frac{\text{cut}(A_i, \overline{A}_i)}{|A_i|}$$

k=2인 경우

$$RatioCut(A, \bar{A}) = cut(A, \bar{A}) \times (\frac{1}{|A|} + \frac{1}{|\bar{A}|})$$

Approximating RatioCut for k=2

우리는 주어진 데이터를 그래프로 바꿀 수 있음

그래프에 대해서 서로 다른 그룹 사이의 엣지는 낮은 가중치를 갖도록, 같은 그룹내에서의 엣지는 높은 가중치를 갖도록 나누고 싶음

그래프를 RatioCut을 가장 작게 하는 k개의 cluster로 나누면 됨 (k=2인 경우)

다음과 같은 목적함수를 갖는 최적화 문제를 풀면 됨

 $\min_{A\subset V} \operatorname{RatioCut}(A,\overline{A})$

Approximating RatioCut for k=2

벡터
$$f=(f_1,...,f_n)'\in\mathbb{R}^n$$
 의 entry f_i 를 다음과 같이 설정

$$f'Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2$$

$$= \frac{1}{2} \sum_{i \in A, j \in \overline{A}} w_{ij} \left(\sqrt{\frac{|\overline{A}|}{|A|}} + \sqrt{\frac{|A|}{|\overline{A}|}} \right)^2 + \frac{1}{2} \sum_{i \in \overline{A}, j \in A} w_{ij} \left(-\sqrt{\frac{|\overline{A}|}{|A|}} - \sqrt{\frac{|A|}{|\overline{A}|}} \right)^2$$

$$= \operatorname{cut}(A, \overline{A}) \left(\frac{|\overline{A}|}{|A|} + \frac{|A|}{|\overline{A}|} + 2 \right)$$

$$= \operatorname{cut}(A, \overline{A}) \left(\frac{|A| + |\overline{A}|}{|A|} + \frac{|A| + |\overline{A}|}{|\overline{A}|} \right)$$

$$\sum_{i=1}^{n} f_i = \sum_{i \in A} \sqrt{\frac{|\overline{A}|}{|A|}} - \sum_{i \in \overline{A}} \sqrt{\frac{|A|}{|\overline{A}|}} = |A| \sqrt{\frac{|\overline{A}|}{|A|}} - |\overline{A}| \sqrt{\frac{|A|}{|\overline{A}|}} = 0.$$

 $= |V| \cdot \text{RatioCut}(A, \overline{A}).$

$$||f||^2 = \sum_{i=1}^n f_i^2 = |A| \frac{|\overline{A}|}{|A|} + |\overline{A}| \frac{|A|}{|\overline{A}|} = |\overline{A}| + |A| = n.$$

$$f_i = \begin{cases} \sqrt{|\overline{A}|/|A|} & \text{if } v_i \in A\\ -\sqrt{|A|/|\overline{A}|} & \text{if } v_i \in \overline{A}. \end{cases}$$

Approximating RatioCut for k=2

$$\min_{A\subset V} \mathrm{RatioCut}(A,\overline{A})$$

$$\min_{A \subset V} f' L f \text{ subject to } f \perp \mathbb{1}, \ \|f\| = \sqrt{n}.$$

$$\min_{f \in \mathbb{R}^n} f' L f \text{ subject to } f \perp \mathbb{1}, \ \|f\| = \sqrt{n}.$$

최적해: 벡터 f는 L 행렬의 2번째로 작은 고유값에 대응하는 고유벡터

$$\begin{cases} v_i \in A & \text{if } f_i \ge 0 \\ v_i \in \overline{A} & \text{if } f_i < 0 \end{cases}$$

Approximating RatioCut for arbitrary k

주어진 V를 $A_1,...,A_k$ 로 나눌 때, indicatort vector $h_j=(h_{1,j},...,h_{n,j})$ 의 entry를 다음과 같이 설정

$$h_{i,j} = \begin{cases} 1/\sqrt{|A_j|} & \text{if } v_i \in A_j \\ 0 & \text{otherwise} \end{cases}$$

$$h'_i L h_i = \frac{\operatorname{cut}(A_i, \overline{A}_i)}{|A_i|}.$$
 $h'_i L h_i = (H'LH)_{ii}.$

RatioCut
$$(A_1, \ldots, A_k) = \sum_{i=1}^k h'_i L h_i = \sum_{i=1}^k (H'LH)_{ii} = \operatorname{Tr}(H'LH),$$

Approximating RatioCut for arbitrary k

$$min_{A_1,...,A_k} RatioCut(A_1,...,A_k)$$

$$\min_{A_1,...,A_k} \operatorname{Tr}(H'LH)$$
 subject to $H'H = I$

$$\min_{H \in \mathbb{R}^{n \times k}} \operatorname{Tr}(H'LH) \text{ subject to } H'H = I.$$

최적해: H행렬은 L행렬의 k개의 고유값(작은 순서대로)에 대응하는 고유벡터 k개가 열로 이루어짐

How to choose k

eigengap heuristic 사용

L의 $\lambda_1,...,\lambda_k$ 는 작은데 λ_{k+1} 이 상대적으로 커지게 되는 k 선택

Algorithm

Unnormalized spectral clustering

Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number k of clusters to construct.

- ullet Construct a similarity graph by one of the ways described in Section 2. Let W be its weighted adjacency matrix.
- ullet Compute the unnormalized Laplacian L.
- Compute the first k eigenvectors u_1, \ldots, u_k of L.
- Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors u_1, \ldots, u_k as columns.
- ullet For $i=1,\ldots,n$, let $y_i\in\mathbb{R}^k$ be the vector corresponding to the i-th row of U.
- Cluster the points $(y_i)_{i=1,...,n}$ in \mathbb{R}^k with the k-means algorithm into clusters C_1,\ldots,C_k .

Output: Clusters A_1, \ldots, A_k with $A_i = \{j | y_j \in C_i\}$.

END