

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Podstawy konstrukcji maszyn 2

SPRAWOZDANIE Z ĆWICZENIA PROJEKTOWEGO

Łożysko ślizgowe tarcia płynnego

Prowadzący:

dr inż. Dariusz Lepiarczyk

Grupa projektowa nr: 2

Wykonawca:

Paweł Bryzek

Data wykonania sprawozdania:

12.12.2020

Pane F=SOKN 12 a lazenia: Material karpusu = Zeliwo N=1 L=ND=70mm N=1 L=ND=70mm Dabrana alej 150 V 5100: V 1=100 tai=20 A°C temperatural aloczenia: tai=20 A°C temp	F=SOKN n=900 = 000 = 000 N=1 L=X-D=90 = 00 N=1 L=X-D=90 = 00 L=X-D=90 = 00
3. Wybór pasowacia: \(\psi = 0.6.10^3. \ \forall \tau \tau \ \tau \ 20% = 0.809 \cdots \ 1,375.10^3 \\ \(\prizyjmvje: \ \psi = 1,3.10^3 \\ \(\prize \ \tau \tau	Lér = Lmin + Lmax = 91 pm No podstawie obliczeń luzów granicznych z normy PN-EN ISO 286-1:2011 dobieram pasowania:

Dmin = 70 mm dmin = 69,826 mm	
Dmax = 70,039 mm dmin = 69,9 mm	
3. Sredni lvz względny:	
Ymin = Dmax - dmin = 1,998.103, Ymax = Dmin - dmax = 1,43.103	,
Y's'r = 4max - 4min = 1,714.10-3	45r=1,714.10-3

I. <u>Iteracia obliczeń:</u>

z wyk. $\eta = 0.055 \, \text{Pa} \cdot s$

4.1. Korekta luzu ze względu na zmianę temperatury łożyska.

Temperatura montażu:
$$t_{mont} = t_{ot}$$

 $\Delta \Psi = (\alpha p - \alpha w) \cdot (t_{B0} - t_{mont}) = -0.6 \cdot 10^{-4}$

5.1.Rzeczywist luz względny: Ψ rz = Ψ śr + Δ Ψ = (1,714 - 0.06) \cdot 10⁻³ = 1.654 \cdot 10⁻³

6.1.0bliczenie wartości liczby Sommerfelda: $S = \frac{\eta \cdot n}{psr \cdot \Psi rz^2} = 0,0296$

z wykresu:
$$\mu/\Psi = 1,25$$

 $\mu = \frac{\mu}{\Psi} \cdot \Psi rz = 2,07 \cdot 10^{-3}$

8.1.Moc tracona w łożysku: $N_{\tau} = \mu \cdot F \cdot V = 341,24 \text{ W}$

9.1.Obliczenie rzeczywistej temperatury pracy łożyska na podstawie bilansu mocy:

$$A_{\text{wym}} = A_{\text{korp}} + A_{\text{wal}} = \text{Wkorp} \cdot \text{L} \cdot \text{D} + \frac{\pi \cdot D^2}{4} + 6 \cdot \text{L} \cdot \text{D} = 0,16 \text{ m}^2$$

przyjmuje: k=20 $\frac{W}{m^2 \cdot K}$

$$t_{B1} = \frac{N_T}{k \cdot Awym} + t_{ot} = 126,63 \,\Delta \,^{\circ}C$$

10.1.0bliczenie różnicy temperatury założonej i obliczonej: $t_{\rm B0}$ – $t_{\rm B1}$ = 76,63 Δ °C

Znacząca różnica temp. przechodzę do kolejnej iteracji: 11.1.0bliczenie nowej wartości temperatury założonej: $t_{\text{BONEW}} = \frac{tBO + tB1}{2}$ =88,315 Δ °C

II. Iteracja obliczeń: z wyk.
$$\eta' = 0.0125 \text{ Pa} \cdot s$$

4.2. Korekta luzu ze względu na zmianę temperatury łożyska. Temperatura montażu: $\mathbf{t}_{\mathrm{mont}} = \mathbf{t}_{\mathrm{ot}}$

 $\eta = 0.055 \text{ Pa} \cdot s$ $\Delta \Psi = -0.6 \cdot 10^{-4}$

Ψrz =1,654 ‰

5 = 0,0296

 $\mu = 2,07 \cdot 10^{-3}$

 $N_T = 341,24 W$

 $A_{\text{wym}} = 0.16 \text{ m}^2$ $k = 20 \frac{W}{m^2 \cdot K}$

 t_{B1} = 126,63 Δ °C

 $\mathsf{t}_{\mathsf{BONEW}} = 88,315\,\Delta\,^{\circ}\mathsf{C}$

II.

 $\eta' = 0.0125 \text{ Pa} \cdot s$

$\Delta \ \Psi' = (\alpha \ p - \alpha \ w) \cdot (t_{BONEW} - t_{mont}) = -0.14 \cdot 10^{-3}$ 5.2.Rzeczywist luz względny: $\Psi \ rz' = \Psi \ \text{sr} + \Delta \ \Psi' = (1.714 - 0.14) \cdot 10^{-3} = 1.574 \cdot 10^{-3}$ 6.2.Obliczanie wartości liczby Sommerfelda: $S' = \frac{n'n}{psr \cdot \Psi rr^2} = 0.0074$	ΔΨ'=-0,14 ·10-3 Ψrz' = 1,574·10-3 ‰
7.2. Wyznaczenie współczynnika tarcia: z wykresu: $\mu/\Psi'=0.7$ $\mu'=\frac{\mu}{\Psi'}\cdot\Psi rz'=1.1\cdot10^{-3}$	5 '= 0,0074
8.2.Moc tracona w łożysku: N _τ '= μ' · F · V =181,3 W	$\mu' = 1, 1 \cdot 10^{-3}$
9.2.0bliczenie rzeczywistej temperatury pracy łożyska na podstawie bilansu mocy: $\mathbf{t_{B2}} = \frac{N_T'}{k\cdot Awym} + t_{ot} = 76,66~\Delta$ °C	N _T '= 181,3 W
10.2.0bliczenie różnicy temperatury założonej i obliczonej: t _{BONEW} – t _{B2} = 11,655 ∆°C	t _{B2} = 11,655 Δ °C
Znacząca różnica temp. przechodzę do kolejnej iteracji: 11.2.0bliczenie nowej wartości temperatury założonej: $t_{\text{BONE}W+tB2} = 82,48 \Delta ^{\circ}\text{C}$	
III. <u>Iteracja obliczeń:</u> z wyk. η " = 0,015 Pa · s	t _{BONEW2} = 82,48 Δ°C
4.3. Korekta luzu ze względu na zmianę temperatury łożyska. Temperatura montażu: $t_{mont} = t_{ot}$ $\Delta \Psi'' = (\alpha p - \alpha w) \cdot (t_{BONEW2} - t_{mont}) = -0,125 \cdot 10^{-3}$	III. $\eta'' = 0,015 \text{ Pa} \cdot s$
5.3. Rzeczywist luz względny: $\Psi rz'' = \Psi \acute{s}r + \Delta \Psi'' = 1,59 \cdot 10^{-3}$	ΔΨ"=-0,125· 10-3
6.3.0bliczanie wartości liczby Sommerfelda: $S'' = \frac{\eta'' \cdot n}{p_{SF} \cdot \Psi r z''^2} = 0,0087$	Ψrz" = 1,59·10-3 ‰
7.3.Wyznaczenie współczynnika tarcia: z wykresu: μ/Ψ "=0,8 μ " = $\frac{\mu}{\Psi}$ " · Ψ rz" = 1,272 · 10 $^{-3}$	5 "= 0,0087
8.3.Moc tracona w łożysku: N _τ "= μ" · F · V =209,7 W	$\mu'' = 1,272 \cdot 10^{-3}$
9.3.0bliczenie rzeczywistej temperatury pracy łożyska na podstawie bilansu mocy:	N _T "= 209,7 W

	$t_{B3} = \frac{N_T''}{k \cdot Awym} + t_{ot} = 85,5 \Delta ^{\circ}C$	
	10.3.0bliczenie różnicy temperatury założonej i obliczonej: t_{BONEW2} – t_{B3} = 3,02 Δ °C	t _{B3} = 85,5 Δ°C
	Dla pewności wykonuję jeszcze jedną iterację: 11.3.0bliczenie nowej wartości temperatury założonej: $t_{\text{BONEW}3} = \frac{tBONEW2 + tB3}{2} = 84 \Delta ^{\circ}\text{C}$	
	IV. Iteracja obliczeń: z wyk. $\eta''' = 0.014 \text{ Pa} \cdot s$	t _{BONEW3} = 84 ∆ °C
	4.4. Korekta luzu ze względu na zmianę temperatury łożyska. Temperatura montażu: $t_{mont} = t_{ot}$ $\Delta \ \Psi \ "" = (\alpha \ p - \alpha \ w) \cdot (t_{BONEW3} - t_{mont}) = -0,128 \cdot 10^{-3}$	IV. η ''' = 0,014 Pa·s
	5.4.Rzeczywist luz względny: $\Psi rz''' = \Psi \acute{s}r + \Delta \Psi''' = 1,586 \cdot 10^{-3}$	ΔΨ'''= -0,128·10-3
	6.4.Obliczanie wartości liczby Sommerfelda: $S''' = \frac{\eta''' \cdot n}{psr \cdot \Psi rz'''^2} = 0,0082$	Ψrz''' = 1,586 · 10-3 ‰
	7.4. Wyznaczenie współczynnika tarcia: z wykresu: $\mu/\Psi'''=0.78$ $\mu'''=\frac{\mu}{\Psi}'''\cdot\Psi rz'''=1,237\cdot10^{-3}$	
	8.4.Moc tracona w łożysku: N _T '''= μ''' · F · V =203,9 W	5 '''= 0,0082
	9.4.Obliczenie rzeczywistej temperatury pracy łożyska na podstawie bilansu mocy:	$\mu''' = 1,237 \cdot 10^{-3}$
	$t_{B4} = \frac{N_T'''}{k \cdot Awym} + t_{ot} = 83,72 \Delta ^{\circ} C$ 10.4.0bliczenie różnicy temperatury założonej i obliczonej:	N _T ""= 203,9 W
	t _{BONEW3} – t _{B4} = 0,28 Δ °C <u>Mała różnica temp. iteracja zakończona.</u> Pozostałe parametry wyznaczamy dla S=0,0082	t _{B4} = 83,72 Δ °C
	12.0bliczenie minimalnej grubości filmu smarnego: z wykresu: $h0/\delta = 0.08$ δ sr = Ψ sr · $R = 0.06$	
Rzc = 1,25 µm	h0 = $\frac{h0}{8} \cdot \delta sr$ =4,8 µm Wysokość chropowatości czopa: Rzc = 1,25 µm - Frezowanie cylindryczne dokładne. Wysokość chropowatości panwi: Rzp = 1,25 µm - Toczenie i wytłaczanie dokładne.	$h0/\delta = 0.08$ $\delta \text{ sr} = 0.06$ $h0 = 4.8 \mu \text{m}$
Rzp = 1,25 μm	wytiaczanie uokiaune.	·

Rzc + Rzp = 2,5 µm Sprawdzenie podstawowego warunku tarcia płynnego: h0 > Rzc + Rzp 4,8 > 2,5 Warunek spełniony.	
13.Wyznaczenie wartości ekscentryczności względnej: $\epsilon=1-\frac{h0}{\delta}$ =0,92 Wartość ekscentryczności względnej mieści się w zalecanym zakresie.	ε=0,92
14.0bliczenie zapotrzebowania na środek smarny: z wykresu: Q/R δ nL = 4,8 Q = $Q_R \delta nL \cdot R \cdot \delta sr \cdot n \cdot L = 635 \frac{mL}{min}$	
15.Obliczenie natężenia wypływów bocznych: z wykresu: Qs/Q = 0,96	$Q = 635 \frac{mL}{min}$
$Qs = \frac{Qs}{Q} \cdot Q = 609, 6 \frac{mL}{min}$	Qs/Q= 0,96
16.Wyznaczenie kąta minimalnej grubości filmu smarnego: z wykresu: ϕ min = 19 deg	$Qs = 609, 6 \frac{mL}{min}$
17.Ciśnienie maksymalne: z wykresu: P/Pmax = 0,39	ϕ min = 19 deg
$Pmax = \frac{1}{P/Pmax} \cdot F = 128205, 13Pa$	
18.Sposób smarowania łożyska ślizgowego: Zastosuje pierścień smarujący luźny. dla oleju o gęstości: 875kg/m³ Orientacyjne proporcje pierścienia luźnego o przekroju prostokątnym: średnica pierścienia – Dp ≈ 1,5÷1,75 D = 112mm szerokość pierścienia – a ≈ 0,1 Dp = 11,2mm	Pmax = 128205, 13 <i>P a</i>
grubość - s ≈ (0,3÷0,4) · a = 4mm	D- 113
Głębokość zanurzenia pierścienia – t \approx Dp ^{0,6} = 17mm prędkość przejścia dla oleju: vp = 0,47·D _p ^{1,5} · η ^{-0,67} = 0,3 m/s	Dp= 112mm a= 11,2mm s= 4mm t= 17mm
natężenie przepływu oleju w granicznym przypadku: qp = 1,67·10 ⁻² ·a·Dp ^{2,25} · η ^{-0,35} = $6\cdot 10^{-5}$ m³/s	vp =0,3 m/s
	$qp = 6 \cdot 10^{-5} \text{ m}^3/\text{s}$

