Particle filters for continuous likelihood evaluation and maximisation

Shasha CUI, Wensi DING, Quan SUN

ENSAE

19 Jan 2018

Plan

- Introduction to algorithm
- Application
 - AR(1) plus noise model
 - Stochastic Volatility model with leverage
 - GARCH plus error model
 - Continuous time model
- Conclusion

Algorithm

Task: **Continuous** estimation of the likelihood with respect to parameters θ , $logL(\theta) = logp(y_1, \dots, y_T | \theta)$

The boostrap filter: algorithm

All operations to be performed for all $n \in 1 : N$.

At time 0:

- (a) Generate $X_0^n \sim P_0(\mathrm{d}x_0)$.
- (b) Compute $w_0^n=f_0(y_0|X_0^n),\ W_0^n=w_0^n/\sum_{m=1}^N w_0^m,$ and $L_0^N=N^{-1}\sum_{n=1}^N w_0^n.$

Recursively, for t = 1, ..., T:

- (a) Generate ancestor variables Aⁿ_t ∈ 1 : N independently from M(W^{1,N}_{t-1}).
- (b) Generate $X_t^n \sim P_t(X_{t-1}^{A_t^n}, \mathrm{d}x_t)$.
- (c) Compute $w_t^n = f_t(y_t|X_t^n)$, $W_t^n = w_t^n/\sum_{m=1}^N w_t^m$, and $L_t^N = L_{t-1}^N \{N^{-1}\sum_{n=1}^N w_t^n\}$.

Algorithm

Algorithm: Convergence Results

- Particle filter delivers a consistent and an unbiased estimator for the true likelihood function $L(\theta)$
- The resulting simulated maximum likelihood (SML) estimator is consistent if T and $N \to \infty$
- For the corresponding estimator of the log-likelihood, $\sqrt{N}\{\log\hat{L}_N(\theta)-\log L(\theta)\}\rightarrow N(-\frac{\sigma_{SMC,T}^2}{2\sqrt{N}},\sigma_{SMC,T}^2)$
- The bias introduced by using the approximation of the empirical distribution function is only of order 1/N

AR(1) plus noise model

- Model:
 - $y_t = x_t + \epsilon_t, \epsilon_t \sim N(0, \sigma_{\epsilon}^2)$
 - $x_{t+1} = \mu + \phi(x_t \mu) + \eta_t, \eta_t \sim N(0, \sigma_{\epsilon}^2)$

AR(1) plus noise model

- Model:
 - $y_t = x_t + \epsilon_t, \epsilon_t \sim N(0, \sigma_{\epsilon}^2)$
 - $x_{t+1} = \mu + \phi(x_t \mu) + \eta_t, \eta_t \sim N(0, \sigma_{\epsilon}^2)$
- Implementation:
 - CSIR Method
 - Kalman Filter

Figure: Fixed dataset, boxplot of 50 runs with different random seeds, T = 150, N = 300 (left), N = 600 (right)

Figure: Fixed dataset, boxplot of 50 runs with different random seeds, T = 150, N = 300 (left), N = 600 (right)

Figure: The true and estimated log-likelihood (left) and likelihood (right) profiles for the AR(1) model plus noise for (from top to bottom) σ_{η}, ϕ, μ . Length of series T=5000. True parameters: $\sigma_{\eta}=\sqrt{0.02}, \mu=0.5, \phi=0.975$ and N=300

Figure: The true and estimated log-likelihood (left) and likelihood (right) profiles for the AR(1) model plus noise for (from top to bottom) σ_{η}, ϕ, μ . Length of series T=5000. True parameters: $\sigma_{\eta}=\sqrt{0.02}, \mu=0.5, \phi=0.975$ and N=300

Figure: The true and estimated log-likelihood (left) and likelihood (right) profiles for the AR(1) model plus noise for (from top to bottom) σ_{η}, ϕ, μ . Length of series T=5000. True parameters: $\sigma_{\eta}=\sqrt{0.02}, \mu=0.5, \phi=0.975$ and N=300

Model:

•
$$y_t = \epsilon_t \exp(x_t/2), t = 1, ..., T$$

$$\bullet \ x_{t+1} = \mu(1-\phi) + \phi x_t + \sigma_\eta \eta_t$$

$$\bullet \ \begin{pmatrix} \epsilon_t \\ \eta_t \end{pmatrix} \sim \textit{N}(0, \Sigma), \Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$

$$\mu = 0.5, \phi = 0.975, \sigma_n^2 = 0.02, \rho = -0.8$$

Figure: Fixed dataset, mean value of 50 runs with different random seeds, T = 1000, N = 300 (left), N = 600 (right)

μ	0.3	0.4	0.5	0.6	0.65	0.7	0.75
N =	11.226	10.766	10.390	10.246	10.097	9.970	9.845
300							
N =	3.468	3.356	3.282	3.270	3.253	3.236	3.226
600							

Table: Empirical variance comparaison with N=300 and N=500

2000 daily returns of SP 500 from 16 May 1995 to 24 April 2003

Figure: Results for SP 500 index returns. SV with leverage model. (left):.The quantiles for filtered volatility (0.05, 0.25, 0.5, 0.75, 0.95).

Application: Garch plus noise model

Model:

- $y_t|_t \sim N(x_t, \sigma^2)$
- $x_t | \sigma_t^2 \sim N(0, \sigma_t^2)$

Model:

- $y_t | \sigma_t^2 \sim N(0, \sigma^2 + \sigma_t^2)$
- $x_t | \sigma_t^2, y_t \sim N(\frac{b^2 y_t}{\sigma^2}, b^2)$

$$\sigma_{t+1}^2 = \beta_0 + \beta_1 x_t^2 + \beta_2 \sigma_t^2$$

with
$$b^2=rac{\sigma^2\sigma_t^2}{\sigma^2+\sigma_t^2}$$

Application: Garch plus noise model

Result of data generated from

$$\beta_0 = 0.01, \beta_1 = 0.2, \beta_2 = 0.75, \sigma = 0.1$$

Figure: The sliced estimated log-likelihood for the GARCH model plus noise for β_2 (left), σ (right), T = 500, N = 500

Application: Garch plus noise model

Result of continuous compounded daily return on UK pounds vs US dollars from 2 January 1982 to 29 December 1982:

Figure: estimated likelihood of β_1 of us vs uk dataset,left: $\sigma=0$, right: $\sigma=0.55,\,T=500$

Log Likelihood with noise -473.9, without noise -476.02. Likelihood ratio test: reject $\sigma = 0$ with 1% level of significance

General Case: Model

- $dy(t) = \{\mu + \beta \sigma^2(t)\}dt + \sigma(t)dW_1(t)$
- $d\sigma^2(t) = a(\sigma^2(t))dt + b(\sigma^2(t))dW_2(t)$
- $Corr(W_1(t), W_2(t)) = \rho$
- with observations at time: $\tau_1 < \tau_2 < \cdots < \tau_n < \tau_{n+1}$
- $r_s = y(\tau_{s+1}) y(\tau_s)$
- $r_s \sim N(\mu \Delta_s + \beta \sigma_s^{2*} + \rho Z_s, (1 \rho^2) \sigma_s^{2*})$
- for $s = 1, \dots, n$
- $\Delta_s= au_{s+1}- au_s$, $\sigma_s^{2*}=\int_{ au_s}^{ au_{s+1}}\sigma^2(u)du$, $Z_s=\int_{ au_s}^{ au_{s+1}}\sigma(u)dW_2(u)$

General Case: Euler approximation

Place M_s-1 evenly spaced latent points between $\sigma^2(\tau_s)$ and $\sigma^2(\tau_{s+1})$, noted by $\sigma^2_{s,1},\cdots,\sigma^2_{s,M_s-1}$, with time interval between latent points $\delta=\Delta_s/M_s$

- $\sigma_{s,m+1}^2 = \sigma_{s,m}^2 + a(\sigma_{s,m}^2)\delta + b(\sigma_{s,m}^2)\sqrt{\delta}u_m$
- for $m = 0, \dots, M_s 1$, where $u_m \sim NID(0, 1)$
- $r_s \sim N(\mu \Delta_s + \beta \hat{\sigma}_s^{2*} + \rho \hat{Z}_s, (1 \rho^2) \hat{\sigma}_s^{2*})$
- $\hat{\sigma}_s^{2*} = \delta \sum_{m=0}^{M_s-1} \sigma_{s,m}^2$, $\hat{Z}_s = \sqrt{\delta} \sum_{m=0}^{M_s-1} \sigma_{s,m} u_m$

Adjustment for Resampling

Before:
$$\omega_j = p(r_s|\hat{\sigma}_s^{2*j}; \hat{Z}_s^j)$$
, $\pi_j = \frac{\omega_j}{\sum_{i=1}^N \omega_i}$, $j = 1, \dots, N$

After:
$$\omega_j^* = \frac{\sum_{i=1}^N \omega_i \phi((x_j - x_i)/h)}{\sum_{i=1}^N \phi((x_j - x_i)/h)}, \ \pi_j^* = \frac{\omega_j^*}{\sum_{i=1}^N \omega_i^*}$$

Nelson volatility process

$$dy(t) = \sigma(t)dW_1(t)$$

 $d\sigma^2(t) = k(\theta - \sigma^2)dt + \sqrt{\xi}\sigma^2dW_2(t)$

Figure: The log-likelihood for Nelson volatility model. Three runs of a fixed sample, n=1000, N=600, true parameters k=0.02, θ =0.5, ξ =0.0178

Figure: The log-likelihood for Nelson volatility model. Three runs of a fixed sample, n=1000, N=600, true parameters k=0.02, θ =0.5, ξ =0.0178

Conclusion

- Investigation and implementation of CSIR method for different models
- Good performance for both simulated data and real data