

Copyleft - 2018 D.A.S PUBLISHED BY D.A.S

BOOK-WEBSITE.COM

Is not Licensed yet.

2018

-1	Conceitos			
1	Introdução à Genética Quantitativa	. 7		
1.1	Interação Aditiva	8		
1.2	Interação de Dominância	9		
1.3	Grau médio de Dominância	10		
1.4	Caráter Quantitativo	10		
1.4.1	Dedução	11		
1.4.2	Variância Genética			
1.4.3	Estudo do Caráter	11		
1.4.4	Variância Ambiental			
2	Parâmetros Genéticos	15		
2.1	Herdabilidade	15		
2.1.1	Ganho de Seleção	16		
2.1.2	Média Predita	16		
2.1.3	Número de Genes	17		

Conceitos

	illilodação a Serielica Qualillativa	
1.1	Interação Aditiva	
1.2	Interação de Dominância	
1.3	Grau médio de Dominância	
1.4	Caráter Quantitativo	
2	Parâmetros Genéticos	15
2.1	Herdahilidade	

A genética quantiativa, em suma, é o entendimento da relação entre fenótipo e genótipo. Para isto, é necessário estudar tudo que influência esta relção.

O modelo básico para um ambiente é F = G + A. Sendo F (Fenótipo), G (Genótipo) e A (Ambiente). Para que este modelo seja aplicado a vários ambientes, é necessário adicionar outro parâmetro GA que consiste na interação entre genótipo e ambiente. Como resultado temos F = G + A + GA.

A análise do fenótipo pode ser qualitativa, como é feita na genética mendeliana, ou quantiativa como será visto ao longo do texto.

Fator	Caráter Qualitativo	Caráter Quantitativo
Controle Gênico	Poucos	Poligênica
Efeito Ambiental	Nenhum ou Pouco	Alto
Distribuição dos Dados	Discreto (Classe)	Contínuo
Estado do Caráter	(P1xP2) e Qui Quadrado	Média e Variância
Interação Alélica	Dominância completa, incompleta e codominância	Aditiva e Não Aditiva

Table 1.1: Caráter qualitativo x quantitativo

Os alelos são segmentos homólogos de DNA, os alelos dominantes, são representados por letras maiúsculas, enquanto os recessivos são representados por letras minúsculas. A Interação Alélica consiste na interação ou não de genes alélicos.

As interações alélicas qualitativas são: dominância completa, dominância incompleta e codominância. As interações alélicas quantitativas podem se dividir em aditivas: quando cada alelo contribui individualmente para o valor genotípico e consequentemente para o valor fenotípico final; não aditivas: que podem ser dominância completa, parcial ou sobredominância.

A Epstasia não é uma interação alélica, consiste em uma interação gênica.

As interações de dominância criam uma perturbação na análise quantitativa do melhoramento genético.

1.1 Interação Aditiva

Para as demonstrações assuma dois genes A: A1,A2 e B: B1, B2. Além disso vamos adimitir valores para A1,B1,A2 e B2; sendo A1 = B1 = 30 unidades e A2 = B2 = 5 unidades.

Temos:

- 1. Parental 1 (P1): A1A1B1B1 (120 unidades)
- 2. Parental 2 (P2): A2A2B2B2 (20 unidades)
- 3. *P1 e P2 são puros e contrastantes

O cruzamento entre P1 e P2 terá como resultado F1 (A1A2B1B2), realizando a autofecundação em F1, teremos F2 que poderá gerar os genótipos como mostra a tabela abaixo:

Genótipos	Frequência	Valor Genotípico
A1A1B1B1	1/16	120
A1A1B1B2	2/16	95
A1A1B2B2	1/16	70
A1A2B1B1	2/16	95
A1A2B1B2	4/16	70
A1A2B2B2	2/16	45
A2A2B1B2	1/16	70
A2A2B1B1	2/16	45
A2A2B2B2	1/16	20

Table 1.2: Genótipos Possíveis em F2

Considere \overline{X} como a média aritmética de um conjunto de valores.

A média pode ser calculada utlizando a soma simples ou a frequência dos itens.

$$\overline{X} = \frac{\sum_{1}^{n} x_i}{n} \tag{1.1}$$

$$\overline{X} = \frac{\sum_{i=1}^{n} f_i \times x_i}{f_i} \tag{1.2}$$

Utilizando os dados da 1.2, pode-se calcular a média dos valores genotípicos de F2.

$$\overline{X} = \frac{\sum_{i=1}^{n} f_i \times x_i}{f_i} \tag{1.3}$$

$$\overline{X} = \frac{1 \times 120 + 2 \times 95 + 2 \times 70 + 2 \times 95 + 4 \times 70 + 2 \times 45 + 1 \times 70 + 2 \times 45 + 1 \times 20}{16}$$
 (1.4)

$$\overline{X} = 70 \tag{1.5}$$

Quando a interação é aditiva, a médica de qualquer descendência é igual a média de seus pais. Segregantes transgressivos consistem em indivíduos em que seus valores genotípicos sejam maiores ou menores que seus pais. Para exemplificar, considere A1,B1,C1,D1 = 30 unidades e A2,B2,C2,D2 = 5 unidades. Considere os seguintes valores:

- 1. P1 = A1A1B1B1C2C2D2D2
- 2. P2 = A2A2B2B2C1C1D1D1
- 3. F1 = A1A2B1B2C1C1D1D2
- 4. F2 = Autofecundação de F1

Dentre as 81 possibiblidades de F2, pode-se listar dois exemplos de segregantes transgressivos:

- 1. F2-1 = A1A1B1B1C1C1D1D1 = 240 unidades
- 2. F2-2 = A2A2B2B2C2C2D2D2 = 40

1.2 Interação de Dominância

As interações de dominância ocorrem quando existe a relação de dominância entre alelos, ou seja, quando o alelo dominante está presente, o recessivo não contribui para a característica. Para exemplificar considere:

- 1. Gene A, sendo 'A' (Dominante) e 'a' (recessivo)
- 2. Gene B, sendo 'B' (Dominante) e 'b' (recessivo)
- 3. AA = 60 unidades
- 4. Aa = 60 unidades
- 5. aa = 10 unidades
- 6. BB = 60 unidades
- 7. Bb = 60 unidades
- 8. bb = 10 unidades

Considere também os parentais P1:AABB (120 unidades) e P2:aabb (15 unidades). O cruzamento entre P1 e P2 dá origem ao descendente F1:AaBb (120). Neste caso, quando existe relação de dominância, o valor genotípico não será a média de seus parentais, podendo ser igual a um deles, como foi o caso.

Genótipos	Frequência	Valor Genotípico
AABB	1/16	120
AABb	2/16	120
AAbb	1/16	70
AaBB	2/16	120
AaBb	4/16	120
Abbb	2/16	70
aaBB	1/16	70
aaBb	2/16	70
aabb	1/16	20

Table 1.3: Genótipos Possíveis em F2

Com base nos dados da 1.3 a média de F2 = 95, como a média de F1 é 120, pode-se concluir que houve a diminuição na média dos valores genotípicos.

X	AB	Ab	aB	ab
AB	AABB	AABb	AaBB	AaBb
Ab	AABb	AAbb	AaBb	Aabb
aВ	AaBB	AaBb	AaBB	aaBb
ab	AaBb	Aabb	aaBb	aabb

Table 1.4: Genótipos Possíveis

1.3 Grau médio de Dominância

O grau médio de dominância mede a posição relativa do heterozigoto em relação à média dos homozigotos.

Figure 1.1: Grau Médio de Dominância

O valor do grau médio de dominância pode ser obtido dividindo-se d por a, esses valores são apresentados na 1.1.

Resultado da Divisão	Interação Intra Alélica
d/a = 0	Interação Aditiva
d/a = 1	Dominância Completa
0 < d/a < 1	Dominância Parcial
d/a > 1	Sobredominância

Table 1.5: Genótipos Possíveis

O efeito de dominância mascara o processo de seleção, pois, ele dificulta o conhecimento dos indivíduos superiores pelos efeitos aditivos.

1.4 Caráter Quantitativo

O modelo para o estudo do caráter quantitativo é:

$$F = G + A \tag{1.6}$$

Considere V(X) como a variância de X e Cov(X) como a covariância de X.

$$V(F) = F(G+A) \to V(F) = V(G) + V(A) + 2 \times Cov(G+A)$$
 (1.7)

Como:

$$Cov(G+A) = 0 ag{1.8}$$

Temos:

$$V(F) = F(G+A) \to V(F) = V(G) + V(A)$$
 (1.9)

A variância (V) é descrita pela seguinte fórmula:

$$V(F) = \frac{\sum_{1}^{n} (x_i - \overline{X})^2}{n - 1}$$
 (1.10)

ou

$$V(F) = \frac{\sum_{1}^{n} x^{2} - [\sum_{1}^{n} x]^{2}}{n - 1}$$
(1.11)

1.4.1 Dedução

Para o cálculo da dedução da variância ambiental, considere um gene A, com dois alelos 'A' e 'a'.

Genótipos	Nº Indivíduos	Frequência	Valor Genotípico	Val. Gen. Codificado
AA	n1	n1/n = D	X1 = u + a	a
Aa	n2	n2/n = H	X2 = u + d	d
aa	n3	n3/n = R	X3 = u - a	-a

Table 1.6: Dedução

Aplicando a fórmula da média na média genotípica:

Definition 1.4.1 — Média Genotípica.

$$Mg = \frac{\sum_{1}^{n} f_{i} \times x_{i}}{f_{i}}$$

$$Mg = D \times a + H \times d + R \times -a$$

$$Mg = a \times (D - R) + H \times d$$

$$Mg = u + a \times (D - R) + H \times d$$

$$(1.12)$$

$$Mg = u + a \times (D - R) + H \times d$$

$$(1.15)$$

$$Mg = D \times a + H \times d + R \times -a \tag{1.13}$$

$$Mg = a \times (D - R) + H \times d \tag{1.14}$$

$$Mg = u + a \times (D - R) + H \times d \tag{1.15}$$

1.4.2 Variância Genética

$$Va(x) = (\sum_{i=1}^{n} x_i^2) - (\sum_{i=1}^{n} f_i \times x_i)^2$$
(1.16)

$$V(G) = D \times a^{2} + H \times d^{2} + R \times (-a)^{2} - [a \times (D - R) + H \times d]^{2}$$
(1.17)

1.4.3 Estudo do Caráter

Para o estudo do caráter, considere:

- 1. P1: AA
- 2. P2: aa
- 3. F1: Aa (P1xP2)
- 4. F2: [AA,Aa,aa]

Definition 1.4.2 — Análise de P1.

$$Mg(P1) = u + a \times (D - R) + H \times d \tag{1.18}$$

$$Mg(P1) = u + a \times (1 - 0) + 0 \times d$$
 (1.19)

$$Mg(P1) = u + a \tag{1.20}$$

(1.21)

Definition 1.4.3 — Variância de P1.

$$V(P1) = D \times a^{2} + H \times d^{2} + R \times (-a)^{2} - [a \times (D - R) + H \times d]^{2}$$
(1.22)

$$V(P1) = 1 \times a^2 + 0 \times d^2 + 0 \times (-a)^2 - [a \times (1-0) + 0 \times d]^2$$
(1.23)

$$V(P1) = 1 \times a^2 + -1 \times a^2 \tag{1.24}$$

$$V(P1) = 0 \tag{1.25}$$

Portanto, como só existe um genótipo possível, não existe variância. A análise de P2 utiliza o mesmo método de P1, portanto, não há variância em P2.

Definition 1.4.4 — Análise de F2.

$$Mg(F2) = u + a \times (\frac{1}{4} - \frac{1}{4}) + \frac{1}{2} \times d$$
 (1.26)

$$Mg(F2) = u + \frac{1}{2} \times d \tag{1.27}$$

(1.28)

Definition 1.4.5 — Variância de F2.

$$V(F2) = D \times a^{2} + H \times d^{2} + R \times (-a)^{2} - [a \times (D - R) + H \times d]^{2}$$
(1.29)

$$V(F2) = \frac{1}{4} \times a^2 + \frac{1}{2} \times d^2 + \frac{1}{4} \times (-a)^2 - \left[a \times \left(\frac{1}{4} - \frac{1}{4}\right) + \frac{1}{2} \times d\right]^2$$
 (1.30)

$$V(F2) = \frac{1}{4} \times a^2 + \frac{1}{2} \times d^2 + \frac{1}{4} \times (a)^2 - \left[\frac{1}{2} \times d\right]^2$$
 (1.31)

$$V(F2) = \frac{1}{2} \times a^2 + \frac{1}{2} \times d^2 - \frac{1}{4} \times d^2$$
 (1.32)

$$V(F2) = \frac{1}{2} \times a^2 + \frac{1}{4} \times d^2 \tag{1.33}$$

(1.34)

1.4.4 Variância Ambiental

Definition 1.4.6 — Fórmulas mais utilizadas.

$$V(Amb) = V(P1) \tag{1.35}$$

$$V(Amb) = V(P2) \tag{1.36}$$

$$V(Amb) = V(F1) \tag{1.37}$$

$$V(Amb) = \frac{V(P1) + V(P2)}{2} \tag{1.38}$$

$$V(Amb) = V(F1)$$

$$V(Amb) = \frac{V(P1) + V(P2)}{2}$$

$$V(Amb) = \frac{V(P1) + V(P2) + V(F1)}{2}$$

$$V(Amb) = \frac{V(P1) + V(P2) + 2 \times V(F1)}{4}$$

$$(1.39)$$

$$V(Amb) = \frac{V(P1) + V(P2) + 2 \times V(F1)}{4}$$

$$(1.41)$$

$$V(Amb) = \frac{V(P1) + V(P2) + 2 \times V(F1)}{4} \tag{1.40}$$

(1.41)

2.1 Herdabilidade

A herdabilidade é um coeficiente que expressa a relação entre a variância genotípica e a variância fenotípica, ou seja, mede o nível da correspondência entre o fenótipo e o valor genético.

Definition 2.1.1 — Dedução de Herdabilidade.

$$r = \frac{Cov(x, y)}{\sqrt{v(x) \times v(y)}}$$
 (2.1)

$$r(F,G) = \frac{Cov(F,G)}{\sqrt{v(F) \times v(G)}}$$
 (2.2)

$$r(F,G) = \frac{Cov(G+A,G)}{\sqrt{v(F) \times v(G)}}$$

$$r(F,G) = \frac{Cov(G,G) + Cov(G,A)}{\sqrt{v(F) \times v(G)}}$$
(2.3)

$$r(F,G) = \frac{Cov(G,G) + Cov(G,A)}{\sqrt{v(F) \times v(G)}}$$
(2.4)

$$Como: Cov(G,A) = 0 (2.5)$$

$$\rightarrow r(F,G) = \frac{Cov(G,G)}{\sqrt{v(F) \times v(G)}}$$
 (2.6)

$$Como: Cov(X,X) = V(X)$$
(2.7)

$$\rightarrow r(F,G) = \frac{V(G)}{\sqrt{v(F) \times v(G)}}$$
 (2.8)

$$r(F,G) = \sqrt{\frac{[V(G)]^2}{v(F) \times v(G)}}$$
(2.9)

$$r(F,G) = \sqrt{\frac{[V(G)]}{v(F)}}$$
(2.10)

$$Como: H = \frac{[V(G)]}{v(F)}$$
(2.11)

$$\rightarrow r(F,G) = \sqrt{H^2} \tag{2.12}$$

$$(2.13)$$

Definition 2.1.2 — Fórmula da Herdabilidade.

$$H^2 = \frac{V(G)}{V(F)} {(2.14)}$$

(2.15)

O valor da herdabilidade pode variar entre 0 e 1. Por definição, quando o valor da herdabilidade é maior que 0,7 é considerado alto para plantas. Em caso de animas, pode variar entre 0,3 e 0,4.

2.1.1 Ganho de Seleção

Definition 2.1.3 — Fórmula do Ganho de Seleção (GS).

$$GS = H^2 \times (\overline{X}_s - \overline{X}_0) \tag{2.16}$$

(2.17)

Sendo Xs a média dos indivíduos selecionados e X0 a média inicial dos indivíduos.

2.1.2 Média Predita

2.1 Herdabilidade

Definition 2.1.4 — Fórmula Média Predita (Xm).

$$Xm = GS + \overline{X}_0 \tag{2.18}$$

(2.19)

2.1.3 Número de Genes

Definition 2.1.5 — Fórmula Número de Genes (Nrg).

$$Nrg = \frac{(\overline{P_1} - \overline{P_2})^2}{8 \times V(G)_{F1}} \tag{2.20}$$

(2.21)

Sendo P1 a média dos parentais 1 e P2 a média dos parentais 2

