Semantic Argument Classification

28. Januar 2015

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Institut für Computerlinguistik Universität Heidelberg

Gliederung

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Daten

Umsetzun

Features

Schwierigkeite

Experimente

Setup Evaluation

Ausblick

Literatur

Referenzer

Problemstellung

Daten

Umsetzung

Features

Featureextraktion

Schwierigkeiten

Experimente

Setup

Evaluation

Ausblick

Literatur

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Semantic Argument Classification

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

_

Umsetzun

Featureextrakt

Schwierigkeiter

Experimente

Evaluatio

Ausblic

Literatur

Referenzer

Was ist Semantic Argument Classification?

- ➤ Zuweisung bestimmter Rollen in einem Satz ⇒ "Wer tut wem was an?"
- It operates stores mostly in Iowa and Nebraska
- ► [Arg0 lt][Pred operates][Arg1 stores][ArgLoc mostly in lowa and Nebraska]

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Daten

Features
Featureextraktion

Schwierigkeiter Experimente

Setup

Ausblick

Literatur

Referenzen

► NLTK

► PropBank

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

PropBank

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellur

Daten

Umsetzun

Featureextraktion

Schwierigkeiten

Experimen

Evaluation

Ausblick

Literatur

Referenzer

- $lackbox{ versucht generalisierte Argumente zu verwenden } \rightarrow {\sf Parser}$
- ▶ Argumentrollen sind für jedes Verb in Frames organisiert → weniger spezifisch

ARG0	proto-agent
ARG1	proto-patient
ARG2	instrument, benefactive, attribute
ARG3	starting point, benefactive, attribute
ARG4	ending point
ARGM	modifier

PropBank

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellur

Daten

Umsetzun

Featureextraktion

Schwierigkeiter

Experimente

Setup

Evaluatio

Ausblick

Literatur

Referenzer

- ► [ARG0 She][Predicate writes][ARG1 a program]
- ► [ARG0 She][Predicate writes][ARG2 about headbands]
- ► [argo She][Predicate writes][arg1 a program][arg3 for BAppleTM]
- ► [ARGM-TMP Now][ARG0 she][Predicate writes][ARG1 a program]
- ▶ → verschieden Rollen

Penn Treebank

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellul

Daten

Umsetzun

Featureextraktion

Schwierigkeiter

Setup

Evaluatio

Ausblick

Literatur

Heterenzer

- Subkorpus aus WSJ, bestehend aus ungefähr 1 Millionen Tokens
- ▶ 112.917 Prädikat-Argument Strukturen annotiert nach PropBank-Annotationsschema
- ▶ 292.975 Instanzen
- ▶ wsj/00/wsj_0001.mrg 1 10 gold publish.01 p—a 10:0-rel 11:0-ARG0

Klassenverteilung

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Daten

Umsetzun

Feetone

Featureextraktion

Schwierigkeite

Experimen

Setup

Evaluation

Ausblick

Literatur

Referenzer

No.	Label	Count
1	ARG0	48267
2	ARGM	44558
3	ARG1	63820
4	ARG2	14737
5	ARG4	1900
6	ARG3	2442
7	ARG5	51
8	ARGA	10

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Penn Treebank

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellu

Daten

Umsetzun

Features

Cobujeriakeiter

- . .

Setup

Evaluatio

Ausblick

Literatur

Referenzer

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Features

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Daten

Umsetzung

Features

Featureextraktion

Schwierigkeiten

Evnorimente

Setup

Evaluation

Ausblick

Literatur

Referenzen

- ▶ Predicate
- ► Path
- ► Phrase Type
- ► Position
- ▶ Voice

Predicate

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Daten

Umsetzun

Features

Featureextrakti

Schwierigkeit

Experiment

Setup

Evaluatio

Ausblick

Literatur

Referenzer

► lemmatisierte Prädikat

▶ 3966 distinct feature values

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Path

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellur

Daten

Umsetzun

Features

Schwierigkeiten

Experimente

Setup

Evaluation

Ausblick

Literatur

Referenzen

- beschreibt Pfad zwischen ARG und Predicate
- ▶ vereinfacht z.B. NP-SBJ → NP
- extrahiert über Lowest Common Ancestor
- ▶ beispielsweise: NP↑S↓VP↓VBD
- ► 41737 distinct feature values

Phrase Type

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstell

Daten

Umsetzun

Features

Featureextrakt

Schwierigkeite

Satur

Setup

Ausblick

Literatur

neierenzer

- beschreibt die Kategorie des Argument
- ► z.B: NP, MD, PP, SBAR
- ▶ 65 distinct feature values

Position

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Daten

Umsetzun

Features

Cobujeriakeiter

Experimente

Setup

Aushlick

Literatur

Referenzer

- Beschreibt, ob das Argument vor oder nach dem Prädikat steht
- ▶ Binäres Feature

No.	Label	Count
	before	92712
2	after	83073
lass: cl	ass (Nom)	▼ Visualize Al
lass: d	ass (Nom)	▼ Visualize Al
lass: cl	ass (Nom)	
	ass (Nom)	▼ Visualize Al
	ass (Nom)	

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellur

Daten

Umsetzun

Features

Featureextraktion

Schwierigkeite

Experiment

Setup

Aushlick

Literatur

Referenzen

- gibt an, ob das Prädikat aktiv oder passiv ist
- größtenteils annotiert
- ▶ 3 distinct feature values: active, passive, unknown

Featureextraktion

write features to file in ARFF

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellun

Daten

Umsetzun

Features

Featureextraktion

Schwierigkeite

Evporimont

Setup

Evaluatio

Ausblick

Literatur

Reierenzen

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Featureextraktion

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

1 TODICITISE

Daten

Umsetzung

Features

Featureextraktion

Schwierigkeite

Experimente

Setup

Ausblick

Literatur

Referenzer

wsj/00/wsj_0041.mrg 38 14 gold talk.01 vn-3a 0:1-ARGM-ADV 12:1-ARG0 14:0-rel 15:1-ARG1-about (S I(PP-LOC (IN Against) (NP (DT a) (NN shot)) ARGInstanceBuilder (PP (IN of) (NP (NNP Monticello))) (VBN superimposed) (NP (-NONE- *)) (PP-CLR (IN on) (NP (DT an) (JJ American) (NN flag)))))) (NP-SBJ (DT an) (NN announcer)) (VBZ talks) (PP-CLR (IN about) (NP (DT the) ('' '') (JJ strong) (NN tradition)) ARGInstance processed features ARFFDocument attributes, data

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellun

Daten

Umsetzur

Featureextraktion

Schwierigkeiter

Experimente

Setup Evaluation

Ausblic

Literatur

Referenze

@relation SAC_All

@attribute predicate {join,publish,name,use, make, cause, ...}

@attribute phraseType {NP, MD, PP, NN, ADVP, S, ...}

@attribute position {before, after}

@attribute path {NP^S!VP!VP, MD^VP^S!VP!VP,...}

@attribute voice {active, passive, NONE}

@attribute class {ARG0, ARGM, ARGA, ARG1, ...}

@data

join, NP, before, NP^S!VP!VP, active, ARG0 join, MD, before, MD^VP^S!VP!VP, active, ARGM join, NP, after, NP^VP^VP^S!VP!VP, active, ARG1 join, PP, after, PP^VP^VP^S!VP!VP, active, ARGM join, NP, after, VP^VP^S!VP!VP, active, ARGM

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Schwierigkeiten

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellun

_

Umsetzun

i eatures

Schwieriakeiten

Continuingiton

Setup

Evaluation

Ausblick

Literatur

Referenzer

- PropBankChain- und PropBankSplitTreePointer
- Verwendung einer externen PennTreeBank
- ► einige Feature (bsp. path) nehmen sehr viele Werte an

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellur

_

Umsetzung

Egaturagytraktie

Calministrate

Schwierigkeiter

Setup

Evaluation

Aushlick

Literatur

Referenzer

► 60% train, 20% dev, 20% test

▶ Baseline: ZeroR

► Naive Bayes, j48 tree, (libSVM)

bisher: Training auf train, Evaluierung mit dev

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Ergebnisse

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Daten

Umsetzung

Uniserzung

Featureextrakt

Schwieriakeite

Experimente

Satur

Evaluation

Ausblick

Literatur

Referenzen

	Precision	Recall	F-Measure
Baseline	0.132	0.364	0.194
Naive Bayes	0.771	0.778	0.770
j48 Tree	0.784	0.786	0.781

Confusion Matrix (Naive Bayes)

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Daton

Umsetzung

Enstures

Featureextraktion

Schwierigkeiter

Experimente

Setup

Evaluation Ausblick

Literatur

Literatui

Reierenzen

	а	b	С	d	е	f	g	h	<- classified as
	14497	348	361	272	0	4	0	1	a = ARG0
	291	11394	2143	1009	189	48	0	1	b = ARGM
	3119	707	17064	375	31	27	0	0	c = ARG1
\	180	792	1854	2163	29	23	0	0	d = ARG2
	2	217	23	141	379	3	0	0	e = ARG3
	37	289	144	147	170	99	0	0	f = ARG4
	0	13	0	1	0	0	3	0	g = ARG5
	5	0	0	0	0	0	0	0	h = ARGA
				'	1			'	

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Feature Evaluation

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellung

Daten

Umsetzung

Features

Featureextraktio

Schwierigkeite

Experimente

Evaluation

Ausblick

Literatur

Referenzen

	Precision	Recall	F-Measure	F-Measure Change
All Features	0.771	0.778	0.770	0
-voice	0.748	0.754	0.745	-0.025
-path	0.778	0.783	0.776	+0.006
-phraseType	0.735	0.747	0.733	-0.037
-position	0.758	0.773	0.757	-0.013
-predicate	0.717	0.732	0.716	-0.54
	1			'

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Ausblick

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

Problemstellur

Umsetzun

Featureextraktion

Schwierigkeiten

Experimente

Setup

Evaluation

Ausblick

Literatur

Referenzei

► Path Feature überarbeiten

- ▶ HeadWord Feature implementieren
- genauere Evaluation
- ► SVM?
- ► Abschlussbericht schreiben

Institut für Computerlinguistik Ruprecht-Karls-Universität Heidelberg

Quellen

Semantic Argument Classification

Julian Baumann, Kevin Decker, Maximilian Müller-Eberstein

FIODIEIIIStellul

Umsetzur

Featureextraktion

Schwierigkeiter

Setup

Evaluatio

Literatur

Referenzen

[1] Omri Abend und Roi Reichart. Unsupervised Argument Identification for Semantic Role Labeling.

[2] Jean Carletta. "Assessing agreement on classification tasks: the kappa statistic". In: Computational Linguistics (1996), S. 249–254.

[3] Daniel Gildea. "Automatic labeling of semantic roles". In: *Computational Linguistics* 28 (2002), S. 245–288.

[4] Alessandro Moschitti und Cosmin Adrian Bejan. "A Semantic Kernel for Predicate Argument Classification". In: *IN CONLL 2004*. 2004, S. 17–24.

[5] Sameer Pradhan u. a. Support Vector Learning for Semantic Argument Classification. 2005.

Vielen Dank für Eure Aufmerksamkeit! Noch Fragen?

