BLATT 3

DANIEL SCHMIDT & PAMELA FLEISCHMANN

Aufgabe 1. Sei $V = (\mathcal{P}(\mathbb{N}), \subseteq)$ und $R \subseteq \mathbb{N}$. Dann gilt

a. $\tau(M) = \{x - 1 | x \in M \setminus \{1\}\}\$ ist monoton und die leere Menge ist der einzige Fixpunkt.

b. $\tau(M) = M \setminus R$ ist monoton und genau die $F \in \mathcal{P}(\mathbb{N})$ mit $F \cap R = \emptyset$ sind die Fixpunkte.

c. $\tau(M) = R \setminus M$ ist nicht monoton und hat keine Fixpunkte.

d. $\tau(M) = \{1\} \cup \{2x | x \in M\}$ ist monoton und $F = \{1\} \cup \{n \in \mathbb{N} | n \equiv_2 0\}$ ist der einzige Fixpunkt.

Beweis. ad a. Seien $M_1, M_2 \in \mathcal{P}(\mathbb{N})$ mit $M_1 \subseteq M_2$. Seit weiter $m \in \tau(M_1)$. Dann existiert ein $n \in M_1 \setminus \{1\}$ mit m = n - 1. Wegen $M_1 \subseteq M_2$ gilt $n \in M_2 \setminus \{1\}$. Damit gilt $m \in \tau(M_2)$ und τ ist monoton.

Für alle $x \in \emptyset$ gilt offensichtlich $x-1 \in \emptyset$ und somit ist die leere Menge ein Fixpunkt von τ .

Annahme: $\exists M \in \mathcal{P} \setminus \{\emptyset\} : \tau(M) = M$

Wegen $M \neq \emptyset$ gilt $|M| \geq 1$. Ist $M = \{1\}$, so ist $\tau(M) = \emptyset \neq M$. ξ Somit existiert in M mindestens ein $m \neq 1$. Wähle dieses maximal. Wegen $M = \tau(M)$ gilt $m \in \tau(M)$ und somit existiert ein $n \in M \setminus \{1\}$ mit m = n - 1. Damit gilt $m + 1 = n \in M$, was ein Widerspruch zur Maximalität von m ist. Damit ist \emptyset der einzige Fixpunkt von τ .

ad b. Seien $M_1, M_2 \in \mathcal{P}(\mathbb{N})$ mit $M_1 \subseteq M_2$. Seit weiter $m \in \tau(M_1)$. Dann gilt $x \in M_1 \setminus R$, also $x \in M_1$ und $x \notin R$. Wegen $M_1 \subseteq M_2$ gilt $x \in M_2$ und es folgt $x \in M_2 \setminus R = \tau(M_2)$. Damit ist τ monoton.

Für $F \in \mathcal{P}(\mathbb{N})$ mit $F \cap R = \emptyset$ gilt offensichtlich $\tau(M) = F \setminus R = F$.

Annahme: $\exists M \in \mathcal{P}(\mathbb{N}) : M \cap R \neq \emptyset \land \tau(M) = M$

Dann gilt $\tau(M) = M \setminus R \subset M$. \not Damit sind die zu R disjunkten Teilmengen die einzigen Fixpunkte von τ .

ad c. Annahme: τ ist monoton.

Seien $M_1, M_2 \in \mathcal{P}(\mathbb{N})$ mit $M_1 \subset M_2$ und $\tau(M_1) \subseteq \tau(M_2)$. Sei $x \in R \cap M_2 \setminus M_1$. Dann gilt $x \notin M_1$ und $x \in R$ und somit $x \in R \setminus M_1 = \tau(M_1)$. Damit gilt $x \in \tau(M_2) = R \setminus M_2$, also auch $x \notin M_2$. $x \notin M_2$.

Annahme: $\exists M \in \mathcal{P}(\mathbb{N}) \text{ mit } \tau(M) = M$

Dann gilt für jedes $m \in M$ aber $m \in \tau(M) = R \backslash M$ also $m \notin M$. $\mnormal{\sharp}$

ad d. Seien $M_1, M_2 \in \mathcal{P}(\mathbb{N})$ mit $M_1 \subseteq M_2$. Seit weiter $m \in \tau(M_1)$. Ist m = 1, so ist m offensichtlich Element von $\tau(M_2)$. Sei also m = 2n für ein passendes $n \in M_1$. Wegen $M_1 \subseteq M_2$ gilt $n \in M_2$ und somit $m \in \tau(M_2)$.

Ist $x \in F$, so gilt entweder x = 1 oder $x = 2\ell$ für ein $\ell \in \mathbb{N}$. Damit gilt $x \in \tau(F)$. Ist $x \in \tau(F)$, so ist x entweder 1 oder es existiert ein $y \in F$ mit x = 2y. Im ersten Fall ist x offensichtlich in $\tau(F)$ und im zweiten Fall ist x offensichtlich gerade und somit auch in $\tau(F)$.

Annahme: $\exists M \in \mathcal{P}(\mathbb{N}) \setminus \{F\} : \tau(M) = M$

Wegen $1 \in \tau(M) = M$ ist M nicht leer. Wähle $m \in M$ maximal. m kann o.B.d.A. als echt größer 1 angenommen werden, da mit $1 \in M$ schon $2 \in \tau(M) = M$ gilt. Gäbe es ein ℓ mit $m = 2\ell + 1$, so wäre $\ell \geq 1$ und somit $2\ell + 1 \in \tau(M)$. Damit gälte $2\ell + 1 = 2n$ für ein $n \in M$. ξ Somit kann m als gerade vorausgesetzt werden. Damit enthält M außer der 1 nur gerade Zahlen. Wegen $m \in M$ gilt aber $m < 2m \in \tau(M) = M$, was ein Widerspruch zur Maximalität von m ist.

Aufgabe 2. Sei *P* ein Datalog-Programm. Dann gilt

- 1) Mit je zwei Herbrand-Modellen I_1 und I_2 von P ist auch $I_1 \cap I_2$ ein Herbrand-Modell von P.
- 2) Es existiert ein P und es existieren Herbrand-Modelle I_1 und I_2 von P, so dass $I_1 \cup I_2$ kein Herbrand-Modell von P ist.
- 3) Die Herbrand-Basis HB ist ein Herbrand-Modell von P.
- 4) Es existiert ein P, so dass \emptyset ein Herbrand-Modell von P ist.
- 5) Seien Konst_P die Menge der in P vorkommenden Konstantensymbole und I ein beliebiges Herbrand-Modell von P. Dann ist auch $I = \{p(k_1, \ldots, k_j) \in I \mid p \in \text{Pred}, k_1, \ldots, k_j \in \text{Konst}_P\}$ ein Herbrand-Modell von P.

Beweis. ad 1) Seien I_1 und I_2 Herbrand-Modelle von P und $d \in P$. Ist d ein Grundatom, so gilt $d \in I_1, I_2$ und somit $d \in I_1 \cap I_2$. Sei d nun $q(\dots): -p_1(\dots), \dots, p_m(\dots)$ und ϱ eine Belegung von d. Ist ein $||p_i(\dots)||_{\varrho}$ ($i \in [m]$) weder in I_1 noch in I_2 , so gilt auch $||p_i(\dots)||_{\varrho} \notin I_1 \cap I_2$ und wegen der falschen Prämisse ist die Regel gültig und es gilt $\models_{I_1 \cap I_2, \varrho} d$. Sind für alle $i \in [m]$ $p_i(\dots) \in I_1, I_2$, so gilt die Behauptung offensichtlich. Seien nun $||p_{i_1}||_{\varrho}, \dots, ||p_{i_k}||_{\varrho} \in I_1$ und $||p_{j_1}||_{\varrho}, \dots, ||p_{j_\ell}||_{\varrho} \in I_2$ mit $i_1, \dots, i_k, j_1, \dots, j_\ell \in [m]$ und $\{i_1, \dots, i_k\} \cap \{j_1, \dots, j_k\} \neq [m], \emptyset$. Dann existiert ein $c \in [m]$, so dass $||p_c(\dots)||_{\varrho} \notin I_1 \cap I_2$ gilt. Damit ist die Prämisse falsch und die Regel gültig unter $I_1 \cap I_2$.

ad 2) Betrachte $P = \{p(X) : -q(X), r(X)\}$ sowie $I_1 = \{q(1)\}$ und $I_2 = \{r(1)\}$ für Konst $P = \{1\}$. Dann sind I_1 und I_2 Herbrand-Modelle, da in beiden Fällen die Prämissen falsch sind. $I_1 \cup I_2 = \{r(1), q(1)\}$ ist allerdings kein Herbrand-Modell für P, da die Prämisse wahr ist, q(1) aber nicht in $I_1 \cup I_2$ enthalten ist.

ad 3) In HB_P sind alle Grundatome enthalten. Da cons(P) ein Herbrand-Modell ist, $cons(P) \subseteq HB_P$ gilt und HB_P maximal ist, ist HB_P ein Herbrand-Modell von P.

BLATT 3 3

- ad 4) Betrachte $P = \{: -p(X)\}$. Da kein Element in der leeren Menge ist, ist die Prämisse falsch und Regel somit gültig.
- ad 5) Da I ein Modell ist, sind die Grundatome in I und somit auch in I'. Da für alle Konstanten genau die Klauseln aufgenommen werden, die auch in I sind und I ein Herbrand-Modell ist, überträgt sich die Eigenschaft auf I'.