Data in Public and Social Services - 2nd practical exercise class

8th April 2024 by Davide Chicco davide.chicco@unimib.it

Practical exercise class lecturer: Vasco Coelho v.coelho@campus.unimib.it

The goals of this practical exercise class are the following:

- A. Apply the concepts on exploratory data analysis (EDA) seen during the last class lecture on an EHRs dataset:
 - a. Quantitative description
 - b. Statistical correlations
 - c. Dimensionality reduction

R setup main commands

0) Put the following commands as header of your script:

```
setwd(".") #we use the current folder of the script as working directory
options(stringsAsFactors = FALSE) # we set the input strings not to be considered
set.seed(10) # we set a seed to be able to replicate our tests
options(repos = list(CRAN="http://cran.rstudio.com/")) # we set the URL
where to download the packages
```

1) load the pacman library for an easier installation and loading of the libraries:

```
# install.packages("pacman", dependencies = TRUE)
library("pacman")
```

Load and/or install other packages we need

```
p_load("dlookr", "dplyr", "ggplot2", "pastecs", "tableone", "umap",
"textshape")
```

Application of the main exploratory data analysis (EDA) steps to a dataset of electronic health records of patients with diabetes type 1 from Japan

- 2) Apply the concepts on data cleaning and data preparation seen during the first three class lectures on a real EHRs dataset:.
- 2.1) Takashi 2019 diabetes type 1 dataset: we download the preprocessed version, that is the output of the first practical exercise class

Takashi2019 diabetes type1 dataset preprocessed.csv file to download

Takashi Y, Ishizu M, Mori H, Miyashita K, Sakamoto F, Katakami N, et al. (2019) "Circulating osteocalcin as a bone-derived hormone is inversely correlated with body fat in patients with type 1 diabetes". PLOS ONE 14(5): e0216416. https://doi.org/10.1371/journal.pone.0216416

Cerono G, Chicco D. 2024, "Ensemble machine learning reveals key features for diabetes duration from electronic health records". PeerJ Computer Science 10:e1896 https://doi.org/10.7717/peerj-cs.1896

A. Load the dataset

```
fileName <- "Takashi2019_diabetes_type1_dataset_preprocessed.csv"
patients_data <- read.csv(fileName, header = TRUE, sep =",")</pre>
```

B. Quantitative description

We want to generate the descriptive statistics of all the features involved

```
patients_data %>% dim()
patients_data %>% summary()
patients_data %>% str()
patients_data %>% colnames() %>% sort()

patients_data %>% pastecs::stat.desc()

tableone::CreateTableOne(data=patients_data)

summary(tableone::CreateTableOne(data = patients_data)))

# What are the outputs of stat.desc() and summary() telling us?
```

C. Histograms

Let's see the histogram of age, by changing some parameters

```
ggplot(patients_data, aes(x=age)) + geom_histogram()
ggplot(patients_data, aes(x=age)) + geom_histogram(binwidth=10)
age_histogram <- ggplot(patients_data, aes(x=age)) +
geom_histogram(binwidth=1, fill="blue", color="black")
histogram_file_width <- 10
histogram_file_height <- 5
output_age_histogram_file_name <- "age_histogram.pdf"
ggsave(age_histogram, width=histogram_file_width,
height=histogram_file_height, file=output_age_histogram_file_name)
# Generate the histograms for body mass index, eGFR, ucOC and save them into files
# Interpret these plots: what are they telling you?</pre>
```

D. Correlation matrix (or correlation heatmap)

We can use the dlookr package to generate a correlation matrix (or correlation heatmap) by using the Pearson correlation coefficient, the Kendall distance, or the Spearman coefficent

```
pearson_correlation_matrix <- patients_data %>% correlate(.,
method="pearson") %>% plot()

corr_matrix_file_width <- 15
corr_matrix_file_height <- 15
output_corr_matrix_file_name <- "Pearson_corr_matrix.pdf"

ggsave(pearson_correlation_matrix, width=corr_matrix_file_width,
height=corr_matrix_file_height, file=output_corr_matrix_file_name)</pre>
```

Generate the correlation heatmaps for the Kendall distance and the Spearman coefficient, and save them into PDF files

Interpret these images: what are they telling you?

E. Dimensionality reduction

Let's use UMAP to perform dimensionality reduction

```
thisNeighborsNumber <- 20
min_distance <- 0.01</pre>
```

```
# we need the ID column for the visualization
patients_data$"ID" <- row.names(patients_data) %>% as.numeric()
umap_fit_patients <- patients_data %>% column_to_rownames("ID") %>%
scale() %>% umap(., n neighbors = thisNeighborsNumber, min dist =
min distance)
umap fit patients %>% str()
# we merge the first two principal components of UMAP with the rest of the
patients_data variable
umap_df_patients <- umap_fit_patients$"layout" %>%
    as.data.frame() %>%
    rename(UMAP1="V1",UMAP2="V2") %>%
    mutate(ID=row number()) %>%
    inner join(patients data, by="ID")
umap_df_patients %>% dim()
umap_df_patients %>% head()
umap df patients %>% colnames() %>% sort()
# we plot two first two principal components of UMAP, by highlighting age and sex as
color and shape of the points
pointSize <- 10</pre>
setFontSize <- 20
plot_title <- "UMAP plot on diabetes 1 dataset"</pre>
umap plot single <- umap df patients %>%
    ggplot(aes(x = UMAP1,
    y = UMAP2,
    color = age,
    shape = as.factor(sex 0man 1woman))) +
    geom point(size=pointSize, alpha=0.5)+
    labs(x = "UMAP1",
    y = "UMAP2",
    subtitle = plot_title) +
    theme(text=element_text(size=setFontSize))
umap plot single
umap plot_file_name <- paste0("umap_plot_neighbors",</pre>
thisNeighborsNumber, "_minDistance", min_distance, ".pdf")
```

```
plot_width <- 25
plot_height <- 15
ggsave(umap_plot_single, file=umap_plot_file_name, width=plot_width,
height=plot_height)</pre>
```

Generate new UMAP plots by changing the number of neighbors and the minimal distance

Plot the UMAP results using another real variable different from age and another ordinal variable different from sex

F. Insert comments for all the previous R commands you used

Application of the main data cleaning and data preparation steps to a dataset of electronic health records of patients with diabetes type 2 from Saudi Arabia

Repeat all the steps of the previous analysis [A, B, C, ..., I] Convert the file from XLSX to CSV, first. Use Diabetic retinopathy (DR) as target for the data unbalance phase

For one-hot encoding, use the one_hot() function of the nestedcv package: https://search.r-project.org/CRAN/refmans/nestedcv/html/one_hot.html

AlOlaiwi LA, AlHarbi TJ, Tourkmani AM (2018) Prevalence of cardiovascular autonomic neuropathy and gastroparesis symptoms among patients with type 2 diabetes who attend a primary health care center. PLOS ONE 13(12): e0209500. https://doi.org/10.1371/journal.pone.0209500

Cerono G, Chicco D. 2024, "Ensemble machine learning reveals key features for diabetes duration from electronic health records". PeerJ Computer Science 10:e1896 https://doi.org/10.7717/peerj-cs.1896

2.2) pone.0209500.s001.xlsx file to download