

RECUPERAÇÃO DE INFORMAÇÃO

Profa. Patrícia Proença patricia.proenca@ifmg.edu.br

ATENÇÃO!!!

- professora PATRÍCIA APARECIDA PROENÇA AVILA, como material pedagógico do IFMG, dentro de suas atividades curriculares ofertadas em ambiente virtual de aprendizagem. Seu uso, cópia e ou divulgação em parte ou no todo, por quaisquer meios existentes ou que vierem a ser desenvolvidos, somente poderá ser feito, mediante autorização expressa deste docente e do IFMG. Caso contrário, estarão sujeitos às penalidades legais vigentes".
- Conforme Art. 2°§1° da Nota Técnica n° 1/2020/PROEN/Reitoria/IFMG (SEI 0605498, Processo n° 23208.002340/2020-04

MODELO PROBABILÍSTICO

Modelo probabilístico

- Proposto em 1976 por Robertson e Sparck;
- Propõe uma solução ao problema de RI com base na teoria das probabilidades.

Ideia fundamental

- A partir de uma consulta do usuário, existe um conjunto de documentos que contém exatamente os documentos relevantes (resposta ideal) e nenhum outro;
- Dada uma descrição desse conjunto resposta ideal, poderíamos recuperar os documentos relevantes;
- Quais são essas propriedades dessa descrição?
 - Resposta: não sabemos! Tudo que sabemos é que existem termos de indexação para caracterizar tais propriedades.

Ideia fundamental

- Problema:
 - Essas propriedades não são conhecidas na hora da consulta!
 - É necessário um esforço para conseguir uma estimativa inicial dessas propriedades.
- Essa estimativa inicial nos permite gerar uma descrição probabilística preliminar do conjunto resposta ideal, que pode ser utilizado para recuperar um primeiro conjunto de documentos.

Ideia fundamental

- Por exemplo:
 - O usuário pode ver os documentos recuperados e decidir quais são relevantes e quais não são;
 - O sistema pode então utilizar essa informação para refinar a descrição do conjunto resposta ideal;
 - Repetindo-se esse processo muitas vezes, espera-se que a descrição do conjunto resposta ideal fique mais precisa;
- IMPORTANTE: é necessário estimar, no início, a descrição do conjunto resposta ideal.

Ideia fundamental -Similaridade

- Como calcular a medida de similaridade?
 - Como criar uma função que irá ranquear os resultados?
 - Será usada a chance ou razão de possibilidade;
 - Modo de quantificar o quão forte a presença (ou ausência) da propriedade A está associada a presença (ou ausência) da propriedade B;
 - Relação: documento di ser relevante a q e o documento di não ser relevante a q; (proporção de sucessos / proporção de falhas);

Ideia fundamental -Exemplo

- Suponhamos que em uma amostra de 100 homens, 90 beberam vinho na semana anterior;
- Em um grupo similar de 100 mulheres, apenas 20 beberam vinho no mesmo período;
- Portanto, a probabilidade de um homem beber vinho é de 90 para 10, ou 9:1, enquanto que a chance de uma mulher beber vinho é de 20 para 80, ou 1:4 = 0,25:1;
 - Razão: proporção de sucessos / proporção de falhas
- Podemos calcular então a razão de chances como sendo 9/0.25, ou 36, mostrando que homens tem muito mais chances de beber vinho do que mulheres.
 - O quão forte a presença de homens que bebem vinho está associada a presença de mulheres beberem vinho;

Definição

No modelo probabilístico, uma consulta q é um subconjunto dos termos de indexação. Um documento dj é representado por um vetor de pesos binários que indicam a presença ou a ausência de termos de indexação, como segue

$$\vec{d}_j = (w_{1,j}, w_{2,j}, \dots, w_{t,j})$$

onde wi,j = 1 se o termo ki ocorre no documento dj e wi,j = 0 caso contrário.

Definição

Seja R um conjunto de documentos inicialmente estimado como relevante para o usuário para a consulta q. Seja o complemento de R (o conjunto de documentos não relevantes). A similaridade sim(dj,q) entre o documento dj e a consulta q é definida por:

$$sim(d_j, q) = \frac{P(R|\vec{d_j}, q)}{P(\overline{R}|\vec{d_j}, q)}$$

Expressão chave para a computação do ranking no modelo probabilístico

- Ao aplicarmos:
 - Regra de Bayes;
 - Hipótese de independência;
 - Uso de logaritmos;
 - Simplificação de notação;
 - Conversão de produtório de logaritmo para somatório de logaritmo;

Expressão chave para a computação do ranking no modelo probabilístico

$$sim(d_j, q) \sim \sum_{k_i \in q \land k_i \in d_j} \log \left(\frac{p_{iR}}{1 - p_{iR}} \right) + \log \left(\frac{1 - q_{iR}}{q_{iR}} \right)$$

- piR é a probabilidade que o termo de indexação ki esteja em um documento aleatoriamente selecionado a partir do conjunto R de relevantes à consulta q.
- qiR é a probabilidade que o termo de indexação ki esteja presente em um documento aleatoriamente selecionado a partir do conjunto de não relevantes à consulta q.
- Como não conhecemos o conjunto R no princípio do processo, é necessário definir um método para, inicialmente, computar as probabilidades piR e qiR.

Estimar as probabilidades relacionadas ao conjunto de documentos relevantes

Caso	Relevantes Não relevantes		Total	
Documentos que contêm k_i	r_i	$n_i - r_i$	n_i	
Documentos que não contêm k_i	$R-r_i$	$N-n_i-(R-r_i)$	$N-n_i$	
Todos os documentos	R	N-R	N	

- Seja N o número de documentos da coleção e ni o número de documentos que contêm o termo ki.
- Seja R o número total de documentos para a consulta q (na opinião do usuário) e ri o número de documentos relevantes que contêm o termo ki.

Estimar as probabilidades relacionadas ao conjunto de documentos relevantes

Se a informação na tabela estivesse disponível para qualquer consulta, poderíamos escrever:

$$p_{iR} = \frac{r_i}{R} \ , \quad q_{iR} = \frac{n_i - r_i}{N - R}$$

e reescrever a equação original da seguinte forma:

$$sim(d_j, q) \sim \sum_{k_i[q, d_j]} \log \left(\frac{r_i(N - n_i - R + r_i)}{(R - r_i)(n_i - r_i)} \right)$$

Estimar as probabilidades relacionadas ao conjunto de documentos relevantes

Para lidar com valores pequenos de ri, é conveniente somar 0,5 a cada um dos termos da fórmula anterior:

$$sim(d_j, q) \sim \sum_{k_i[q, d_j]} \log \left(\frac{(r_i + 0.5)(N - n_i - R + r_i + 0.5)}{(R - r_i + 0.5)(n_i - r_i + 0.5)} \right)$$

- Essa fórmula é conhecida como equação Robertson-Spark Jones e é considerada a equação de ranqueamento clássica para o modelo probabilístico.
- Comporta-se bem para estimativas particulares como R = ri.

Estimativa (R = ri = 0)

Ausência de informação quanto à relevância dos documentos:

$$sim(d_j, q) \sim \sum_{k_i \in q \land k_i \in d_j} \log \left(\frac{N - n_i + 0.5}{n_i + 0.5} \right)$$

Essa equação apresenta problemas quando ni > N/2.

Estimativa (R = ri = 0) - Exemplo

#	termo	$f_{i,1}$	$f_{i,2}$	$f_{i,3}$	$f_{i,4}$
1	to	4	2	-	-
2	do	2	-	3	3
3	is	2		-	-
4	be	2	2	2	2
5	or	177	1	-	-
6	not	122	1	100	201
7	I	_	2	2	_
8	am	_	2	1	_
9	what	_	1	-	_
10	$_{ m think}$	_	_	1	_
11	therefore	_	_	1	_
12	da	-	_	-	3
13	let	_	_	_	2
14	it	_	_	-	2
Tamar (# pal	nho do documento avras)	10	11	10	12

Estimativa (R = ri = 0) - Exemplo

Consulta: to do

termo	$f_{i,1}$	$f_{i,2}$	$f_{i,3}$	$f_{i,4}$
to	4	2	-	-
do	2	-	3	3
is	2	100	100	-
be	2	2	2	2
or	1.77	1	-	-
not	122	1	-	20
I	-	2	2	_
am	_	2	1	_
what	_	1	-	_
think	_	_	1	_
therefore	_	_	1	_
da	_	_	_	3
let	_	_	_	2
it	_	_	_	2
	,			

$$sim(d_j, q) \sim \sum_{k_i \in q \land k_i \in d_j} \log \left(\frac{N - n_i + 0.5}{n_i + 0.5} \right)$$

Doc	Computação do escore	Escore
d_1	$\log\frac{4-2+0.5}{2+0.5}\!+\!\log\frac{4-3+0.5}{3+0.5}$	-1,222
d_2	$\log \frac{4-2+0.5}{2+0.5}$	0
d_3	$\log \frac{4-3+0.5}{3+0.5}$	-1,222
d_4	$\log \frac{4 - 3 + 0.5}{3 + 0.5}$	-1,222

Ajuste para (R = ri = 0)

Para evitar o comportamento anômalo mostrado anteriormente, podemos eliminar o fator ni do numerador da equação anterior, conforme sugerido por Robertson e Walker (1997):

$$sim(d_j,q) ~\sim ~ \sum_{k_i \in q \wedge k_i \in d_j} \log \left(\frac{N+0.5}{n_i+0.5} \right)$$

Dessa forma, um termo que ocorre em todos os documentos (ni = N) produz um peso igual a zero (log(1)=0) e não existem mais pesos negativos.

Ajuste para (R = ri = 0) -Exemplo

$$sim(d_j, q) \sim \sum_{k_i \in q \land k_i \in d_j} \log \left(\frac{N + 0.5}{n_i + 0.5} \right)$$

Doc	Computação do escore	Escore
d_1	$\log \frac{4+0.5}{2+0.5} + \log \frac{4+0.5}{3+0.5}$	1,210
d_2	$\log \frac{4+0.5}{2+0.5}$	0,847
d_3	$\log \frac{4+0.5}{3+0.5}$	0,362
d_4	$\log \frac{4+0.5}{3+0.5}$	0,362

Alternativa para estimar R e ri

- As equações anteriores consideram que R=ri=0.
- Uma alternativa para estimar R e ri mais cuidadosamente é:
 - 1) Fazer a busca inicial utilizando a equação com R=ri=0;
 - 2) Selecionar os 10-20 documentos mais bem ranqueados;
 - 3) Inspecionar os documentos para obter novas estimativas para R e ri;
 - 4) Remover esses 10-20 documentos da coleção;
 - 5) Reprocessar a consulta com as novas estimativas.

Vantagem do modelo probabilístico

 Os documentos são ranqueados de acordo com sua probabilidade de serem relevantes, com base na informação disponível ao sistema.

Desvantagens do modelo probabilístico

- 1) Relevância de um documento é afetada por diversos fatores externos, não somente na informação disponível ao sistema;
- 2) Necessidade de estimar a separação inicial dos documentos em conjuntos relevantes e não relevantes;
- 3) Não leva em consideração a frequência na qual um termo de indexação ocorre em um documento;
- 4) Falta de normalização pelo tamanho dos documentos.

Comparação entre os modelos clássicos

- 1) Modelo booleano é considerado o mais fraco entre os modelos clássicos;
- 2) O maior problema do modelo booleano é a falta de casamento parcial entre a consulta e os documentos;
- S) Existe controvérsia quanto ao modelo probabilístico ser melhor do que o vetorial:
 - a) Experimentos realizados por Croft indicam que o modelo probabilístico fornece melhor qualidade de recuperação;
 - b) Outros experimentos conduzidos por Salton e Buckley contestam esses resultados.
- 4) Com coleções genéricas, o modelo vetorial fornece um modelo de RI razoável e robusto para fins de comparação.

