Resilient Federated Learning Framework Sprint 3

Student: Leonardo Almeida

Supervisor: Mario Luis Pinto Antunes

Co-supervisors: Rui Aguiar

Summary: Federated Learning (FL) offers a promising approach to training machine learning

models collaboratively across distributed devices while preserving data privacy.

However, the performance and robustness of FL systems are heavily influenced

by the underlying communication infrastructure. The proposed framework will

incorporate mechanisms to gracefully handle the addition and removal of worker

nodes, minimizing disruptions to the training process and maintaining model

quality.

Work done / results

Table 3.1: Categorization of Papers based on Topics

Ref	Fault Tolerance	Elasticity	Scalability	Security	Evaluation	Code
[1]	✓	X	Not tested	✓	X	X
[2]	✓	X	1000	\checkmark	✓	X
[5]	✓	✓	10000	X	✓	X
[6]	✓	X	400	\checkmark	X	X
[8]	✓	X	1000	\checkmark	X	√
[9]	✓	X	600	X	✓	X
[13]	✓	✓	64	X	✓	√
[14]	\checkmark	X	10	X	✓	√
Results:	100%	25%	Έ	50%	62.5%	37.5%

Work done / results

Table 4.1: Qualitative comparison of the proposed solution with existing solutions

Solution	Resilience	Modularity	Analysis	Code and Documentation	Compliance
[2]	X	X	✓	X	25%
[5]	✓	X	✓	X	50%
[9]	\mathbf{X}	X	✓	X	25%
[13]	✓	X	✓	✓	75%
[14]	X	X	✓	✓	50%
HeteroFL	✓	X	✓	✓	75%
CoCoFL	✓	X	✓	✓	75%
Flower	X	✓	X	✓	50%
\mathbf{TTF}	✓	X	X	✓	50%
Proposed	√	√	✓	✓	100%

Work done / results

Figure 4.1: Proposed system architecture

Table 4.2: SWOT analysis of the proposed solution

	Helpful	Harmful	
Internal	Strengths	Weaknesses	
	Resilient, highly modular and easy to use	Validation is limited to the simulation environment	
	Opportunities	Threats	
External	Easy to extend and integrate with other systems	Scalability may be limited	

Future work / challenges

