▼ 그룹별 통계치를 활용한 고급 피처 엔지니어링 버전

1. 전처리 (Preprocessing)

- 데이터 분리: 학습 데이터셋(train.csv)을 훈련(80%) 및 검증(20%) 데이터로 분리했습니다. 이때 support_needs 라는 타겟 변수의 클래스 비율을 유지하기 위해 stratify 옵션을 사용했습니다.
- 심화 피처 엔지니어링 (Advanced Feature Engineering):
 - o gender, subscription_type, contract_length 를 기준으로 그룹을 나누고, 각 그룹 내의 age, tenure, frequent, after_interaction 수치에 대한 평균(_mean)과 표준편차(_std)를 계산
 - 이 그룹 통계치를 활용해 두 가지 새로운 피처를 생성:
 - 그룹 평균과의 차이(_diff_from_..._mean): 개인의 값이 속한 그룹의 평균과 얼마나 다른지를 나타냅니다. 예를 들어, 특정 성별 그룹의 평균 나이보다 해당 개인의 나이가 얼마나 많은지를 알 수 있습니다.
 - 그룹 표준편차로 정규화된 값(_norm_by_...): 그룹 내에서 해당 개인의 수치가 얼마나 표준에서 벗어나 있는지를 나타내, 이상치 경향을 파악하는 데 유용합니다.
 - 이렇게 생성된 새로운 피처들은 모델이 각 고객의 특성을 해당 그룹과 비교하여 더 심층적으로 이해하도록 돕습니다.
- 데이터 스케일링 & 인코딩:
 - **수치형 데이터:** StandardScaler 를 사용해 피처 엔지니어링으로 추가된 새로운 변수들을 포함한 모든 수치형 변수를 표준화(평균 0, 표준편차 1)했습니다.
 - **범주형 데이터:** gender 와 subscription_type 변수는 pd.get_dummies 를 사용해 원-**핫 인코딩**으로 변환했습니다.

2. 모델 (Model)

- 모델 구조: WideMLP (다층 퍼셉트론) 모델을 사용
 - 4개의 은닉층과 하나의 출력층으로 구성
 - 각 은닉층에는 배치 정규화(BatchNorm1d), ReLU 활성화 함수, 그리고 드롭아웃
 (Dropout)이 순차적으로 적용

• 파라미터:

- 。 은닉층의 노드(뉴런) 수는 **512개**로 설정
- 드롭아웃 비율은 0.2

3. 하이퍼파라미터 및 학습 설정

- 손실 함수: FocalLoss 를 사용하여, 클래스 불균형 문제를 해결
- 옵티마이저: AdamW 옵티마이저를 사용, 초기 학습률은 $3 imes 10^{-4}$ 로 설정
- 학습률 스케줄러: CosineAnnealingWarmRestarts 를 적용하여 학습률을 주기적으로 조절 함으로써, 학습이 지역 최적해에 빠지는 것을 방지
- 조기 종료 (Early Stopping): 검증 손실(ValLoss)이 15 에포크 동안 개선되지 않으면 학습을 중단하고, 최적의 모델 가중치를 저장하도록 설정 실제로 로그를 보면 50번 째 에포크에서 조기 종료가 발생

모델 학습을 시작합니다		
Epoch 001 TrainLoss 0.5072 TrainAcc 0.418	I ValLoss 0.4656 ValAcc 0.4576	MacroF1 0.4404 LR 2.93e-04
Epoch 002 TrainLoss 0.4785 TrainAcc 0.438	5 ValLoss 0.4668 ValAcc 0.4606	MacroF1 0.4404 LR 2.71e-04
Epoch 003 TrainLoss 0.4718 TrainAcc 0.442	1 ValLoss 0.4631 ValAcc 0.4718	MacroF1 0.4457 LR 2.38e-04
Epoch 004 TrainLoss 0.4662 TrainAcc 0.456	7 ValLoss 0.4636 ValAcc 0.4614	MacroF1 0.4503 LR 1.97e-04
Epoch 005 TrainLoss 0.4622 TrainAcc 0.460	5 ValLoss 0.4579 ValAcc 0.4689	MacroF1 0.4591 LR 1.50e-04
Epoch 006 TrainLoss 0.4574 TrainAcc 0.466	5 ValLoss 0.4581 ValAcc 0.4770	MacroF1 0.4605 LR 1.04e-04
Epoch 007 TrainLoss 0.4530 TrainAcc 0.468	3 ValLoss 0.4553 ValAcc 0.4749	MacroF1 0.4612 LR 6.26e-05
Epoch 008 TrainLoss 0.4522 TrainAcc 0.472	5 ValLoss 0.4554 ValAcc 0.4783	MacroF1 0.4613 LR 2.96e-05
Epoch 009 TrainLoss 0.4510 TrainAcc 0.473	3 ValLoss 0.4555 ValAcc 0.4765	MacroF1 0.4612 LR 8.32e-06
Epoch 010 TrainLoss 0.4520 TrainAcc 0.474	5 ValLoss 0.4559 ValAcc 0.4765	MacroF1 0.4618 LR 3.00e-04
Epoch 011 TrainLoss 0.4557 TrainAcc 0.463	5 ValLoss 0.4566 ValAcc 0.4989	MacroF1 0.4538 LR 2.98e-04
Epoch 012 TrainLoss 0.4519 TrainAcc 0.471	7 ValLoss 0.4526 ValAcc 0.4911	MacroF1 0.4607 LR 2.93e-04
Epoch 013 TrainLoss 0.4483 TrainAcc 0.474	7 ValLoss 0.4523 ValAcc 0.4827	MacroF1 0.4642 LR 2.84e-04
Epoch 014 TrainLoss 0.4441 TrainAcc 0.485	5 ValLoss 0.4548 ValAcc 0.4697	MacroF1 0.4603 LR 2.71e-04
Epoch 015 TrainLoss 0.4431 TrainAcc 0.488	3 ValLoss 0.4506 ValAcc 0.4851	MacroF1 0.4549 LR 2.56e-04
Epoch 016 TrainLoss 0.4398 TrainAcc 0.489	3 ValLoss 0.4529 ValAcc 0.4747	MacroF1 0.4619 LR 2.38e-04
Epoch 017 TrainLoss 0.4371 TrainAcc 0.497	5 ValLoss 0.4534 ValAcc 0.4749	MacroF1 0.4622 LR 2.18e-04
Epoch 018 TrainLoss 0.4368 TrainAcc 0.496	1 ValLoss 0.4496 ValAcc 0.4789	MacroF1 0.4647 LR 1.97e-04
Epoch 019 TrainLoss 0.4367 TrainAcc 0.496	5 ValLoss 0.4495 ValAcc 0.4738	MacroF1 0.4624 LR 1.74e-04
Epoch 020 TrainLoss 0.4351 TrainAcc 0.499	l ValLoss 0.4492 ValAcc 0.4710	MacroF1 0.4621 LR 1.50e-04
Epoch 021 TrainLoss 0.4340 TrainAcc 0.501	5 ValLoss 0.4492 ValAcc 0.4809	MacroF1 0.4695 LR 1.27e-04
Epoch 022 TrainLoss 0.4320 TrainAcc 0.502	7 ValLoss 0.4495 ValAcc 0.4856	MacroF1 0.4667 LR 1.04e-04
Epoch 023 TrainLoss 0.4321 TrainAcc 0.506	3 ValLoss 0.4499 ValAcc 0.4759	MacroF1 0.4643 LR 8.26e-05
Epoch 024 TrainLoss 0.4308 TrainAcc 0.503	3 ValLoss 0.4497 ValAcc 0.4841	MacroF1 0.4694 LR 6.26e-05
Epoch 048 TrainLoss 0.4253 TrainAcc 0.508	l ValLoss 0.4508 ValAcc 0.4843	MacroF1 0.4677 LR 1.74e-04
Epoch 049 TrainLoss 0.4243 TrainAcc 0.512		MacroF1 0.4613 LR 1.62e-04
Epoch 050 TrainLoss 0.4245 TrainAcc 0.511	1 ValLoss 0.4484 ValAcc 0.4875	MacroF1 0.4676 LR 1.50e-04
> 50 Epoch에서 조기 종료. Best ValLoss: 0.4458		

MacroF1 0.4676

▼ Wide & Deep 모델 사용

전처리 (Preprocessing)

Wide & Deep 모델에 특화된 2단계 전처리 과정.

• 피처 엔지니어링:

- 비율 피처 생성: tenure (총 이용 기간), frequent (서비스 이용일),
 after_interaction (최근 이용 경과 기간) 변수를 조합하여 비율 형태의 새로운 피처들을 생성
 - tenure_freg_ratio: 총 이용 기간 대비 서비스 이용일 비율.
 - tenure_inter_ratio: 총 이용 기간 대비 최근 이용 경과 기간 비율.
 - freg inter ratio: 서비스 이용일 대비 최근 이용 경과 기간 비율.

• Wide & Deep 전처리:

- Deep 파트: age , tenure , frequent 등 연속적인 수치형 피처는 StandardScaler 로 표준화합니다. gender , subscription_type , contract_length 등 범주형 피처는 OneHotEncoder 로 변환합니다.
- **Wide 파트:** subscription_type 과 contract_length 를 조합하여 sub_x_contract 와 같은 교차 특성(Cross-Features)을 생성한 후, OneHotEncoder 를 통해 변환
- 클래스 가중치

모델 (Model)

Wide & Deep 모델

- 구조:
 - Deep 파트: 여러 Dense 레이어와 Dropout 레이어로 구성되어 복잡한 패턴을 학습
 - Wide 파트: 원-핫 인코딩된 교차 특성을 직접 최종 출력층과 연결하여 피처 간
 의 선형적인 관계를 빠르게 학습
 - 두 파트의 출력이 Concatenate 레이어를 통해 합쳐진 후, 최종 출력 레이어를 거쳐 3개 클래스를 예측
- 모델 튜닝 시도: keras-tuner 를 사용해 최적의 하이퍼파라미터를 탐색
 - 튜닝 대상: Dense 레이어의 뉴런 수(units_1, units_2), 드롭아웃 비율(dropout),
 L2 규제 강도(12), 학습률(learning_rate).
 - 최적의 조합: 첫 번째 Dense 층 뉴런 수 64개, 두 번째 Dense 층 뉴런 수 16 개, 드롭아웃 비율 0.3, L2 규제 강도 0.01, 학습률 0.001로 찾아냄

하이퍼파라미터 및 학습 설정

• **손실 함수:** sparse_categorical_crossentropy 를 사용

- **옵티마이저:** adam **옵티마이저**를 사용했습니다. 최종 학습에서는 튜닝을 통해 얻은 최적 학습률 0.001 을 적용
- 정규화 및 과적합 방지:
 - Dropout(0.5): 튜닝된 드롭아웃 비율인 0.5를 적용하여 모델의 과적합을 방지
 - **L2 규제 (**regularizers.l2(0.0001) **):** 모델의 가중치가 너무 커지지 않도록 패널티를 부여하여 과적합을 억제
 - 조기 종료 (EarlyStopping): 검증 손실(val_loss)이 5번 연속 개선되지 않으면 학습을 중단하고 최적의 가중치를 복원하도록 설정

결과→0.4520