COMP1204: Data Management Coursework Two: SQL

Xiaoke Li 31951473

May 20, 2022

1 The Relational Model

1.1 EX1

Relation:

dataset(dateRep, day, month, year, cases, deaths, countriesAndTerritories, geoId, countryterritoryCode, popData2020, continentExp)

attributes and types

1. dateRep: TEXT

2. day: INTEGER

3. month: INTEGER

4. year: INTEGER

5. cases: INTEGER

6. deaths: INTEGER

7. countriesAndTerritories: TEXT

8. geold: TEXT

9. countryterritoryCode: TEXT

10. popData2020: INTEGER

11. continentExp: TEXT

1.2 EX2

Minimal set of FDs:

(Any two country in the world may or may not have the same population, thus here let assume they will have same value)

- 1. $dateRep \rightarrow day$
- 2. dateRep \rightarrow month
- 3. dateRep \rightarrow year
- 4. $(day,month,year) \rightarrow dateRep$
- 5. geoId \rightarrow countriesAndTerritories
- 6. geoId \rightarrow country territoryCode
- 7. $geoId \rightarrow continentExp$
- 8. $geoId \rightarrow popData2020$
- 9. $(dateRep,geoId) \rightarrow cases$
- 10. $(dateRep,geoId) \rightarrow deaths$ **Contrary**
- 11. countries AndTerritories \rightarrow geoId
- 12. country territoryCode \rightarrow geoId

1.3 EX3

list all the potential candidate keys

- $1. \ \, {\rm dateRep, geoId}$
- 2. >> date Rep, countries And Territories
- $3. \ \, {\rm dateRep, country territory Code}$

1.4 EX4

My primary key:

${\tt dateRep,geoId}$

Reason:

- 1. It is candidate key
- $2.\ {\rm geoId}$ is short and Easy to distinguish
- 3. Each geoId is unique

2 Normalisation

2.1 EX5

Partial-key dependencies:

- $dateRep \rightarrow day$
- dateRep \rightarrow month
- $dateRep \rightarrow year$
- $geoId \rightarrow countryterritoryCode$
- $geoId \rightarrow continentExp$
- $geoId \rightarrow popData2020$
- $geoId \rightarrow continentExp$

Then we divide it into 3 tables

- 1. dateRep,geoId \rightarrow cases, deaths
- 2. dateRep \rightarrow day, month, year
- 3. geoId \rightarrow countriesAndTerritories, country territoryCode, popData2020, continentExp

2.2 EX6

2NF Normal Form

- Cases (dateRep,geoId, cases, deaths)
- Date(dateRep, day, month, year)
- Country(geoId, countriesAndTerritories, countryterritoryCode, popData2020, continentExp)

The primary keys for their respective tables are:

- -Date dateRep
- -Country geoId
- -Cases dateRep, geoId

The foreign keys for their respective tables are:

- -Date None
- -Country None
- -Cases dateRep, geoId

2.3 EX7

There are no more transitive dependencies in those relations.

2.4 EX8

The relations are the same as which is in 2NF, because there are no transitive dependencies. All the non key attributes are either determined by key.

2.5 EX9

It is a BCNF. Every determinant is a candidate key!

3 Modelling

3.1 EX10

```
sqlite3 coronavirus.db
  .open coronavirus.db // create new database
  //Then use DataGrip -> Import Data From File(Automatic import)
5 sqlite3 coronavirus.db .dump > database.sql
   3.2 EX11
   create table Date
       dateRep Text
                      not null
           primary key,
4
               INTEGER not null,
       day
5
       month
               INTEGER not null,
6
               INTEGER not null
       year
   );
   create table Country
11
                                      not null
                                TEXT
12
       geoId
           constraint Country_pk
13
               primary key,
14
       countriesAndTerritories TEXT
15
       countryterritoryCode
                               TEXT
                                        not null,
       popData2020
                                integer not null,
17
                                TEXT
       continentExp
                                        not null
  ) ;
19
  create table Cases
21
22
       dateRep TEXT not null,
23
       geoId TEXT not null,
24
       deaths integer,
25
       cases integer,
26
       constraint Cases_pk
27
           primary key (dateRep, geoId)
28
  );
   3.3 EX12
  INSERT INTO Date (dateRep, day, month, year)
   SELECT DISTINCT dateRep, day, month, year
  FROM dataset;
  INSERT INTO Country (geoId, countryterritoryCode, continentExp, countriesAndTerritories, pe
   SELECT DISTINCT geoId, countryterritoryCode, continentExp, countriesAndTerritories, popData
  FROM dataset;
  INSERT INTO Cases (dateRep, geoId, cases, deaths)
  SELECT DISTINCT dateRep, geoId, cases, deaths
11 FROM dataset;
```

```
3.4 EX13
```

```
sqlite3 coronavirus.db < dataset.sql
sqlite3 coronavirus.db < ex11.sql
sqlite3 coronavirus.db < ex12.sql
// use test.db to replace coronavirus.db</pre>
```

4 Querying

4.1 EX14

```
SELECT sum(cases) AS total_cases, sum(deaths) AS total_deaths
FROM Cases;
```

4.2 EX15

```
SELECT Cases.dateRep, cases
FROM Cases
INNER JOIN Date ON Date.dateRep = Cases.dateRep
WHERE Cases.geoId = 'UK'
ORDER BY year, month, day ASC;
```

4.3 EX16

```
select countriesAndTerritories AS country, Cases.dateRep AS date,
Cases.cases, Cases.deaths
from Cases
natural join Country
natural join Date
GROUP BY country,dateRep
ORDER BY countriesAndTerritories ASC ,year,month,day ASC
```

4.4 EX17

4.5 EX18

4.6 EX19

```
SELECT Cases.dateRep AS "date",
sum(deaths) OVER win1 AS "cumulative UK deaths",
```

- sum(cases) OVER win1 AS "cumulative UK cases"
- 4 FROM Cases
- 5 NATURAL JOIN Date
- 6 WHERE geoid='UK'
- 7 WINDOW win1 AS (ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
- 8 ORDER BY year, month, day ASC;