

Département Génie Electrique

Traitement du signal

Pr. Olivier Bernard

Lab. CREATIS – Univ. of Lyon, France olivier.bernard@insa-lyon.fr

Signaux aléatoires

- Signaux déterministes
 - Signaux parfaitement définis par une formule
 - \rightarrow Ex: $x(t) = \cos(2\pi f t + \phi)$
 - Signaux entièrement connus
 - ightharpoonup La valeur d'un signal déterministe à un instant t nous renseigne entièrement sur la valeur qu'aura le signal à l'instant t+ au
 - Exemple: porteuse lors d'une émission d'onde radio

- Signaux aléatoires
 - Signaux dont l'information est liée à un certains degré d'incertitude / d'aléatoire
 - Signaux plus difficile à caractériser
 - → Des paramètres statistiques définissent les possibilités d'évolution du signal
 - Exemples de signaux aléatoires: bruit électronique, le signal de la parole

- Signaux aléatoires
 - C'est quoi les paramètres statistiques d'un signal aléatoire ?
 - → Moyenne, variance, autocorrélation, moments, ...
 - Ces paramètres peuvent varier au cours du temps (non stationnarité)

Exemple: signal de la parole

- → On peut facilement observer que
 - la moyenne est constante et nulle au cours du temps
 - la variance évolue au cours du temps
- → On peut faire l'hypothèse que la variance est constante pour de courtes durées du signal (hypothèse de stationnarité sur de courtes durées)

- Signaux aléatoires
 - Un signal aléatoire n'est pas forcément du bruit!
 - Exemple 1: Transmettre la parole sur une bande de fréquences radios
 - → Le signal important est la parole, c'est un signal aléatoire
 - → Le bruit gênant pour entendre est déterministe, c'est la porteuse sinusoïdale que l'on cherchera à supprimer
 - Exemple 2: Réception d'un signal numérique au bout d'une ligne de transmission
 - → Le signal numérique est aléatoire
 - → Le bruit sur la ligne de transmission est aléatoire

- Processus aléatoire
 - Famille de fonctions aléatoires à plusieurs variables
 - Une des dimensions est généralement le temps en traitement du signal
 - Expression mathématique: X(t, u)
 - → t est le temps (variable réelle)
 - $\rightarrow u$ est un ensemble d'événements
 - \rightarrow t et u peuvent être des variables continues ou discrètes
 - $\rightarrow X(t,u)$ peut prendre des valeurs continues ou discrètes

Exemple d'application: téléphonie mobile

- t est une variable réelle et continue (le temps)
- u est un variable discrète (une personne donnée)
- $X(t,u_i)$ est une représentation particulière de X(t,u) pour l'événement « u_i / la personne a été choisie »

Fils rouge: peut on caractériser le signal de la parole chez l'être humain afin de dimensionner des équipements tels que la téléphonie ?

► Elément de modélisation

- Pour un instant t_k donné, $X(t_k, u)$ est une variable aléatoire
- Une réalisation particulière $X(t,u_i)$ n'est pas un signal déterministe !

 Tous les signaux sont a priori différents, mais le phénomène physique à l'origine du signal (ici, les cordes vocales) est le même pour toutes les personnes

Pour modéliser un processus stochastique, il faut trouver des lois statistiques communes

- Comment caractériser un processus aléatoire ?
 - On peut facilement représenter / calculer la TF d'un signal aléatoire donné, mais comment caractériser le contenu fréquentiel d'un processus aléatoire au sens statistique ?

Représentation de la répartition de l'énergie ou de la puissance d'un processus aléatoire en fonction de la fréquence

 \rightarrow Densité spectrale de puissance (ou d'énergie) $S_{XX}(f)$

Comment estimer une densité spectrale de puissance d'un processus aléatoire ?

Caractérisation d'un processus aléatoire

Statistiques du 1^{er} et 2nd ordre

- Caractérisation d'un processus aléatoire statistique du 1ère ordre
 - Fonction de répartition pour un t_k donné

$$F_X(x,t_k) = prob(X(t_k,u) \leq x)$$

• Densité de probabilité pour un t_k donné

$$f_X(x, t_k) = \frac{\partial F_X(x, t_k)}{\partial x}$$

ullet Espérance mathématique (n=1) et les moments d'ordre supérieur

$$E[X^n(t_k)] = \int_{-\infty}^{+\infty} X^n(t_k) \cdot f_X(x, t_k) \, dx$$

 \rightarrow Les moments dépendent de t_k , sauf dans les cas stationnaires

- ► Caractérisation d'un processus aléatoire statistique du 1ère ordre
 - Exemple: un processus / signal / bruit gaussien possède une densité de probabilité définie par une loi normale

$$f_X(x,t_k) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\left(-\frac{(x-m)^2}{\sigma^2}\right)}$$

• m étant la moyenne et σ l'écart type

- Caractérisation d'un processus aléatoire statistique du 2^{ème} ordre
 - Analyse de la relation entre les statistiques prises à deux instants t_1 et t_2 différents
 - On considère deux variables aléatoires
 - Fonction de répartition pour un couple t_1, t_2 donné

$$F_{XX}(x,y,t_1,t_2) = prob(X(t_1,u) \leq x, X(t_2,u) \leq y)$$

• Densité de probabilité pour un couple t_1, t_2 donné

$$f_{XX}(x, y, t_1, t_2) = \frac{\partial^2 F_{XX}(x, y, t_1, t_2)}{\partial x \partial y}$$

Caractérisation d'un processus aléatoire

Corrélation / autocorrélation

Définition

- Signaux déterministes
 - Signaux à énergie finie
 - Signaux à puissance finie
 - Outil utilisé: autocorrélation temporelle
 - → Mesures de ressemblance
- Signaux aléatoires
 - Statistique du second ordre
 - Outil utilisé: autocorrélation statistique
 - → Caractérisation fréquentielle des signaux aléatoires (densité spectrale)

Energie d'un signal à énergie finie

$$E_{x} = \int_{-\infty}^{+\infty} |x(t)|^{2} dt = \int_{-\infty}^{+\infty} |X(f)|^{2} df < \infty$$

- Signaux de durée finie
- Existence de la transformée de Fourier associée
- Dans la pratique, la plupart des signaux sont a énergie finie
 - Exemples

$$\rightarrow x(t) = rect(t)$$

$$\rightarrow x(t) = a$$

$$\rightarrow x(t) = Asin(2\pi f_0 t)$$

énergie finie / énergie infinie ?

énergie finie / énergie infinie ?

énergie finie / énergie infinie ?

Autocorrélation temporelle d'un signal réel à énergie finie

$$R_{xx}(\tau) = \int_{-\infty}^{+\infty} x(t) \cdot x(t+\tau) dt$$

- ullet Mesure du degré de ressemblance entre un signal et sa version décalée de au
- Si x(t) est réel, l'autocorrélation est réelle et paire
- Analogie avec la convolution

$$R_{xx}(\tau) = x(\tau) * x(-\tau)$$

• Pour $\tau = 0$, on retrouve l'énergie du signal

$$R_{xx}(0) = E_x$$

• $R_{\chi\chi}(\tau)$ est maximal en $\tau=0$ \rightarrow Rien ne ressemble plus au signal que lui-même!

- Autocorrélation temporelle d'un signal à énergie finie
 - Exemple: signal rectangle x(t) = rect(t/T)

• Autocorrélation $R_{\chi\chi}(\tau) = T \cdot Tri(t/T)$

Intercorrélation temporelle d'un signal réel à énergie finie

$$R_{xy}(\tau) = \int_{-\infty}^{+\infty} x(t) \cdot y(t+\tau) dt$$

- ullet Mesure du degré de ressemblance entre deux signaux en fonction d'un décalage au
- Si x(t) est réel, l'intercorrélation est réelle et vérifie

$$R_{xy}(-\tau) = R_{yx}(\tau)$$

- ► Intercorrélation temporelle d'un signal à énergie finie
 - Exemple:

• Intercorrélation $R_{xy}(\tau)$

Autocorrélation temporelle d'un signal à puissance finie – Signaux périodiques

$$R_{xx}(\tau) = \frac{1}{T} \int_{-T/2}^{+T/2} x(t) \cdot x(t+\tau) dt$$

- Les mêmes propriétés que pour les signaux à énergie finie sont conservées
- ► Intercorrélation temporelle d'un signal à puissance finie Signaux périodiques

$$R_{xy}(\tau) = \frac{1}{T} \int_{-T/2}^{+T/2} x(t) \cdot y(t+\tau) dt$$

Les mêmes propriétés que pour les signaux à énergie finie sont conservées

Processus aléatoires

- Autocorrélation statistique
 - Mesure du degré de ressemblance d'un processus aléatoire pour deux instants t_1 et t_2 différents
 - Statistiques du second ordre, moment conjoint

$$R_{\chi\chi}(t_1, t_2) = E[X^*(t_1)X(t_2)]$$

Dans le cas d'un processus réel et continu

$$R_{\chi\chi}(t_1, t_2) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x \cdot y \cdot f_{\chi\chi}(x, y, t_1, t_2) dx dy$$

Caractérisation d'un processus aléatoire

Stationnarité / Ergodicité

Processus aléatoires

- Processus stationnaires (au sens large)
 - Espérance mathématique constante (= moment statistique d'ordre 1)
 - Egalité des moyennes statistiques
 - Autocorrélation dépend uniquement du décalage $au=t_1-t_2$

$$R_{\chi\chi}(t_1,t_2) \rightarrow R_{\chi\chi}(\tau)$$

- Processus ergodiques (au sens large)
 - Egalité des moyennes statistiques et temporelles
 - Egalité des fonctions d'autocorrélation statistiques et temporelles
- Processus stationnaires ergodiques

Estimation des paramètres statistiques à partir des paramètres temporels!

Caractérisation d'un processus aléatoire

Densité spectrale d'énergie ou de puissance

Densité spectrale

- Intérêt
 - Comment représenter / caractériser les processus aléatoires ?

Représentation de la répartition de l'énergie ou de la puissance d'un processus aléatoire en fonction de la fréquence

- On peut facilement représenter / calculer la TF d'un signal aléatoire donné, mais comment caractériser le contenu fréquentiel d'un processus aléatoire (au sens statistique) ?
 - \rightarrow Densité spectrale de puissance $S_{XX}(f)$

Densité spectrale

Signaux déterministes à énergie finie

$$S_{xx}(f) = |X(f)|^2$$

- $S_{xx}(f)$ est une densité spectrale d'énergie
- Fonction réelle
- Si le signal est réel, $S_{\chi\chi}(f)$ est paire
- On peut montrer la relation suivante (voir annexes):

$$S_{xx}(f) = TF\{R_{xx}(\tau)\} = \int_{-\infty}^{+\infty} R_{xx}(\tau) \cdot e^{-j2\pi f \tau} d\tau$$

La densité spectrale d'énergie peut être obtenue par transformée de Fourier de la fonction d'autocorrélation temporelle!

Densité spectrale

Processus aléatoires stationnaires

$$S_{XX}(f) = TF\{R_{XX}(\tau)\} = \int_{-\infty}^{+\infty} R_{XX}(\tau) \cdot e^{-j2\pi f \tau} d\tau$$

- $S_{XX}(f)$ est une densité spectrale de puissance au sens statistique
- Fonction réelle
- Si le signal est réel, $S_{XX}(f)$ est paire
- Processus aléatoires ergodiques

Estimation de la densité spectrale de puissance par la fonction d'autocorrélation statistique qui est égale à la fonction d'autocorrélation temporelle des réalisations disponibles du processus aléatoire

Pour résumer

- Si processus aléatoire stationnaire
- Si processus aléatoire ergodique

Dimension statistique $X(t_k, u)$

$$R_{XX}(t_1, t_2) = R_{XX}(\tau)$$

$$R_{XX}(au) = R_{\chi\chi}(au)$$
statistique temporelle

$$x_i(t) = X(t, u_i)$$

$$R_{x_i x_i}(\tau) = \int_{-\infty}^{+\infty} x_i(t) \cdot x_i(t+\tau) d\tau$$

$$R_{XX}(\tau) \approx \frac{1}{N} \sum_{i=1}^{N} R_{x_i x_i}(\tau)$$

$$S_{XX}(f) = TF\{R_{XX}(\tau)\}\$$

Et maintenant jouons un peu

- Jupyter notebook
- Caractérisation de 3 signaux aléatoires
 - Bruit blanc gaussien
 - Bruit blanc gaussien filtré
 - Somme d'un signal sinusoïdal et d'un bruit blanc gaussien

That's all folks

$$egin{align} R_{xx}(au) &= \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \, dt \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} R_{xx}(au) \cdot e^{-j2\pi f au} \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \, dt
ight) \cdot e^{-j2\pi f au} \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot e^{-j2\pi f au} \, dt \, d au \ TF\{R_{xx}(au)\} &= \int_{-\infty}^{+\infty} x(t) \cdot x(t+ au) \cdot x$$

$$TF\{R_{xx}(au)\} = \int_{-\infty}^{+\infty} x(t) \cdot \left(\int_{-\infty}^{+\infty} x(t+ au) \cdot e^{-j2\pi f au} \, d au
ight) dt$$

$$\int_{-\infty}^{+\infty} x(t+ au) \cdot e^{-j2\pi f au} \, d au$$
 $u=t+ au$ $au=u-t$ $d au=du$ $=\int_{-\infty}^{+\infty} x(u) \cdot e^{-j2\pi f(u-t)} \, du$ $=e^{j2\pi ft} \cdot \int_{-\infty}^{+\infty} x(u) \cdot e^{-j2\pi fu} \, du$

 $\int_{-\infty}^{+\infty} x(t+ au) \cdot e^{-j2\pi f au} \, d au = e^{j2\pi ft} \cdot X(f)$

$$TF\{R_{xx}(au)\} = \int_{-\infty}^{+\infty} x(t) \cdot \left(\int_{-\infty}^{+\infty} x(t+ au) \cdot e^{-j2\pi f au} \, d au
ight) dt$$

$$TF\{R_{xx}(au)\} = \int_{-\infty}^{+\infty} x(t) \cdot e^{j2\pi ft} \cdot X(f) \, dt$$

$$TF\{R_{xx}(au)\} = X(f) \cdot \int_{-\infty}^{+\infty} x(t) \cdot e^{j2\pi ft} \, dt$$

$$X(f) = \int_{-\infty}^{+\infty} x(t) \cdot e^{-j2\pi f t} \, dt$$

$$\overline{X(f)} = \overline{\int_{-\infty}^{+\infty} x(t) \cdot e^{-j2\pi f t} \, dt}$$

$$\overline{X(f)} = \int_{-\infty}^{+\infty} \overline{x(t) \cdot e^{-j2\pi ft}} \, dt$$

$$\overline{X(f)} = \int_{-\infty}^{+\infty} \overline{x(t)} \cdot \overline{e^{-j2\pi ft}} \, dt$$

$$\overline{X(f)} = \int_{-\infty}^{+\infty} x(t) \cdot \overline{e^{-j2\pi ft}} \, dt$$

$$\overline{X(f)} = \int_{-\infty}^{+\infty} x(t) \cdot e^{j2\pi f t} \, dt$$

$$TF\{R_{xx}(au)\} = X(f) \cdot \int_{-\infty}^{+\infty} x(t) \cdot e^{j2\pi f t} \, dt$$

$$TF\{R_{xx}(au)\} = X(f) \cdot \overline{X(f)}$$

$$TF\{R_{xx}(au)\} = |X(f)|^2$$

$$TF\{R_{xx}(au)\} = S_{xx}(f)$$