Homework 1 1. (a) C3 N3 (OH)3 625F 3HNCOT 8HNCO+6NO2 = 7N2+4H2O+8CO2 (b) n(NO2)= m(NO3) 1.7×10'069 × 1039 M(NO3)= 1.7×10'069 × 1/189 = 17×10'2 mol 4 C3N3(OH)3~12HNCO~9NO2 n(GH3(OH)) 17 X1012 mol n(C3N3(OH)) = 12 × 1012mot => n(C3N3(OH))= 17 ×1012mol m(C3N3(OH)3)=n(C3N3(OH)3)M(C3N3(OH)3) = 17 X/0 12 mol x 1299. molt =1.1 X10139=1.1 X10139 X 189 = 1.1 X10 kg 2.(a) N (Ag Br) = m(Ag Br) 1.01989 N(Ag Br) = 187.769. molti 20.0054314mol X Br2 + 2 Ag NO2 -> 2Ag Br + X (NO3)2 0.0054314 mol n(XBrs) n(XBn) = 0.0054314mol => n(XBn) =0.0027157mol M(XBn)= m(XBn)
n(XBn) 0.50009 ~ 184.19-molt Therefore, the molecular mass (formula mass) of XBD 184.1 (b) The relative mass of X is 184.1-2×19.9=24.3 Referring to the Period Table of the Elements, we discovered that Mg's relative mass is 24.3 and according to our common sense, the ion of Mg usually shows the valence of +2. Therefore, the name of X

is magnesium ("33" in Chinese) and its symbol is Mg.
15 Mg.
100 840 4/4-4 W == 101/0-001/14
3. In terms of elements in the main group, those in the
same main group have the same number of the
electron in the outermost layer, so they usually have
similar property including valence.
Analogizing to the simplest binary compound that
the binary ogen forms with carbone, me thane (CHa), we predict
compound that hydrogen forms with germanium is
GeH4.
Analogizing to the binary compound that hydrogen
forms with chlorine, hydrochloric acid (HCU), we
predict the binary compound that hydrogen forms
with fluorine is HF.
Analogizing to the binary compounds that hydrogen
forms with oxygen water (H2O) we predict the
binary compound that hydrogen forms with tellurium
is HzTe. that
Analogizing to the binary compound hydrogen forms
with nitrogen, ammonia (NHs), we predict the
binary compound that hydrogen forms with bis muth
is Bi Hz.

4.(a) F= et = (1.602×10-19C) - 470×8.854×10"C-27-1111×62/3× 111 12 100% No. (b) E= (1.602×10-19C)-470×8.85 4×1012C-2J-1M+×2A°× 1008 5. (a) $F_1 = \frac{e^2}{4\pi\epsilon_0 R_1^2} = \frac{(1.602 \times 10^{19} \text{C})^4}{4\pi \times 8.85 \times 4 \times 10^{12} \text{C}^{-2} J^{-1} m^{-1} \times 12 / 3 \times \frac{1m}{10^{10} R})^2}$ $F_2 = \frac{e^4}{4\pi\epsilon_0 R_2^2} = \frac{(1.602 \times 10^{19} \text{C})^4}{4\pi \times 8.85 \times 4 \times 10^{12} \text{C}^{-2} J^{-1} m^{-1} \times 10.521 \times \frac{1m}{10^{19} R})^2}$ ≈8.24×10-32N $CF = F_2 - F_1 = (824 \times 10^{-33} - 5.13 \times 10^{-33} \text{N} \approx 7.73 \times 10^{-32} \text{N}$ $(b) E_1 = -\frac{e^2}{4\pi \mathcal{E} \cdot F_1} = \frac{(1.602 \times 10^{-19} \text{C})^2}{4\pi \times 8.85 \times 4 \times 10^{12} \text{C}^{-2} \text{J}^{-1} \text{m}^{-1} \times 12.12 \text{Å} \times \frac{10^{-3}}{10^{-3}})$ $\approx -1.09 \times 10^{-42} \text{J}$ $(160) \times 10^{-49} \text{O}^{-2}$ (1602X/0-19C)2 E2= - 471.8. h = 471.8.854X101°C=J+m+X(0.529) x [m] ~ - 4.36×10-427 $\Delta E = E_2 - E_1 = (-4.36 \times 10^{-62} + 1.09 \times 10^{-62}) J. = -3.27 \times 10^{-62})$ (C) $\Delta E = -3.27 \times 10^{-62} J \times 10^{-62}$