DISKRETNA MATEMATIKA

VJEŽBE

U ovoj skripti su dijelom natipkani zadaci koji su rješavani na vježbama iz Diskretne matematike u akademskoj godini 2009./2010.

Skripta može pomoći studentima u boljem shvaćanju gradiva, ali ne može zamjeniti vježbe.

Zadaci i rješenja: MAROJE MAROHNIĆ i MATIJA BAŠIĆ.

Natipkali i uredili: IVAN KRIJAN, MARKO BOŽIĆ, IVAN GAVRAN i MARIO BERLJAFA.

Sadržaj

1	Osnovni principi prebrojavanja	3										
2	Permutacije skupova	6										
3	Kombinacije	10										
4	Permutacije i kombinacije s ponavljanjem											
5	Rekurzivne relacije 5.1 Homogene linearne rekurzije s konstantnim koeficijentima 5.2 Nehomogene linearne rekurzije s konstantnim koeficijentima 5.3 Modeliranje pomoću rekurzija	19										
6	Funkcije izvodnice6.1 Obične funkcije izvodnice6.2 Eksponencijalne funkcije izvodnice											
7	Formula uključivanja i isključivanja	31										
8	Teorija grafova 8.1 Uvod	37 41 43										
	8.6 Eulerovi i Hamiltonovi grafovi	46										

1 Osnovni principi prebrojavanja

Za konačan skup A, s|A| ćemo označavati broj elemenata (kardinalitet) skupa A.

Teorem 1.1. Pravilo sume.

Broj elemenata unije međusobno u parovima disjunktnih skupova A_i , $i \in \{1, 2, ..., n\}$ $(A_i \cap A_j = \emptyset, i, j \in \{1, 2, ..., n\}, i \neq j)$ jednak je sumi broja elemenata skupova A_i .

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{i=1}^{n} |A_i|.$$

Primjer 1.1. Iz grada A u grad B možemo doći brodom, autom ili avionom. Postoje dva morska, dva cestovna i tri zračna puta. Na koliko načina možemo doći iz grada A u grad B?

Rješenje. Uvedimo sljedeće skupove, AB neka je skup svih puteva iz grada A u grad B, M neka je skup svih morskih, Z zračnih, te C cestovnih puteva iz grada A u grad B. Jasno je da vrijedi

$$M \cap Z = Z \cap C = C \cap M = \emptyset$$
,

stoga možemo primjeniti pravilo sume, odnosno

$$|AB| = |M \cup Z \cup C| = |M| + |Z| + |C| = 2 + 3 + 2 = 7.$$

Definicija 1.2. Neka je $n \in \mathbb{N}$, $i \in \{1, 2, ..., n\}$, te A_i skupovi, s $A_1 \times A_2 \times ... \times A_n$ označavamo **Kartezijev** produkt skupova A_i ,

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) : a_i \in A_i\}.$$

Teorem 1.3. Pravilo produkta.

Neka je $n \in \mathbb{N}$, za konačne skupove A_i , $i \in \{1, 2, ..., n\}$ vrijedi

$$|A_1 \times A_2 \times \ldots \times A_n| = \prod_{i=1}^n |A_i|.$$

Teorem 1.4. Princip bijekcije.

Neka su S i T konačni skupovi. Tada je broj elemenata skupa S jednak broju elemenata skupa T ako i samo ako postoji bijekcija između skupa S i skupa T.

Primjer 1.2. Da bi iz grada A došli u grad B, moramo proći kroz gradove B i C. Iz grada A u grad B možemo doći na 2 načina, iz B u C na 5, te iz grada C u grad D na 3 načina. Na koliko načina možemo doći iz grada A u grad D?

Rješenje. Neka je AD skup svih puteva između gradova A i D, AB skup svih puteva između A i B, BC skup svih puteva između B i C, te CD neka je skup svih puteva između gradova C i D. Svakom $p \in AD$ možemo bijektivno pridružiti uređenu trojku (p_1, p_2, p_3) , gdje je $p_1 \in AB$, $p_2 \in BC$, $p_3 \in CD$. Sada primjenom principa bijekcije i pravila produkta dobivamo da je

$$|AD| = |AB \times BC \times CD| = |AB| \cdot |BC| \cdot |CD| = 2 \cdot 5 \cdot 3 = 30.$$

[Rj. 24]

 \checkmark

3

 \checkmark

Zadatak 1.3. Odredite broj prirodnih djelitelja broja 600.

Uputa. Broj prirodnih djelitelja prirodnog broja $n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_k^{\alpha_k}$ prikazanog u raspisu na proste faktore je $(\alpha_1 + 1) \cdot (\alpha_2 + 1) \cdot \ldots \cdot (\alpha_k + 1)$. Dokaži!

Zadatak 1.4. Odredite broj uređenih parova nenegativnih cijelih brojeva (x, y) koji zadovoljavaju nejednadžbu

$$x^2 + y^2 < 5$$
.

[Rj. 8]

Uputa. Ukoliko je $x \ge 3$ jasno je da rješenja ne postoje, dakle, preostaje promotriti slučajeve kada je $x \in \{0, 1, 2\}$. Kako bi došli do konačnog rješenja, je li potrebno broj rješenja u svakom pojedinom slučaju pomnožiti ili zbrojiti?

Još jedan način je da promotrimo skupove definirane sa $S_i = \{(x, y) \in \mathbb{Z}^2 : x^2 + y^2 = i\}, i \in \{0, 1, ..., 5\}.$ Je li potrebno pomnožiti ili zbrojiti međusobno brojeve elemenata skupova S_i ?

Primjer 1.5. Neka su definirani skupovi $X = \{1, 2, ..., 100\}$ te

$$S = \{(a, b, c) : a, b, c, \in X, a < b, a < c\}.$$

Koliko je |S|?

Rješenje. Broj a može biti bilo koji broj iz skupa $X \setminus \{100\}$, fiksiramo li broj a iz tog skupa, broj b i broj c tada, zbog uvjeta možemo izabrati na 100 - a načina (bilo koji broj između a + 1 i 100, uključivo). Konačno, traženi broj je

$$|S| = \sum_{a=1}^{99} (100 - a)^2 = \sum_{a=1}^{99} a^2 = \frac{99 \cdot 100 \cdot 199}{6} = 328350.$$

√

Teorem 1.5. Princip komplementa.

Neka su A i S konačni skupovi takvi da je $A \subseteq S$. Tada je

$$|S \setminus A| = |S| - |A|.$$

Primjer 1.6. Koliko ima prirodnih brojeva manjih od 10^n koji sadrže znamenku 4?

Rješenje. Jasno je da svi takvi brojevi mogu sadržavati $1, 2, \ldots, n$ znamenki 4. Jednostavnije nam je prebrojati koliko ima prirodnih brojeva manjih od 10^n koji ne sadrže znamenku 4. Prirodnih brojeva manjih od 10^n ima $10^n - 1$. Sve prirodne brojeve manje od 10^n možemo promatrati kao n-znamenkaste (na početku može biti nekoliko nula, jedini koji nam "ne valja" je onaj koji sadrži samo nule). Dakle, prirodnih brojeva manjih od 10^n koji ne sadrže znamenku 4 ima $9^n - 1$, svaka znamenka može biti bilo koja osim 4, te još moramo odbaciti slučaj kada su sve znamenke jednake 0. Konačno, odgovor na pitanje zadatka je

$$(10^n - 1) - (9^n - 1) = 10^n - 9^n.$$

✓

Definicija 1.6. Neka je S skup. **Partitivni skup** $\mathcal{P}(S)$ je skup koji sadrži sve podskupove skupa S.

Teorem 1.7. Neka je S konačan skup i $|S| = n \in \mathbb{N}_0$. Tada je $|\mathcal{P}(S)| = 2^n$.

Dokaz. Ukoliko je S prazan skup, jasno je da je jedini podskup skupa S samo prazan skup, pa tvrdnja vrijedi, jer je $2^0 = 1$. Pretpostavimo sada da je $n \in \mathbb{N}$. Neka je $S = \{a_1, a_2, \ldots, a_n\}$. Promotrimo sve binarne nizove duljine n, svaki od njih će određivati jedan podskup skupa S. Ukoliko je na i-tom mjestu u nizu broj 1, onda se a_i nalazi, a ukoliko je 0 onda se ne nalazi u podskupu određenom s tim nizom. Jasno je da smo na ovaj način odredili sve moguće podskupove skupa S i da svakom podskupu odgovara točno jedan binarni niz duljine n. Na

svakom mjestu u binarnom nizu može se nalaziti broj 1 ili broj 0, dakle, takvih nizova ima 2^n . Prema principu bijekcije, zaključujemo da je $|\mathcal{P}(S)| = 2^n$. Ovime je dokaz gotov.

Primjer 1.7. Na svako polje ploče $n \times n$ upisan je broj koji je jednak broju pravokutnika koji sadrže to polje. Odredi sumu svih upisanih brojeva.

Rješenje. Uvedimo koordinatni sustav kao na slici.

n				
:				
j			b	
:				
2				
1				
	1	2	 i	 n

Svakom polju s brojem b odgovara točno b pravokutnika koji sadrže to polje. Zato je suma svih brojeva b jednaka sumi površine svih pravokutnika na ploči. Svaki pravokutnik je jednoznačno određen svojim dimenzijama i pozicijom donjeg lijevog polja. x koordinatu donjeg lijevog polja pravokutnika dimenzija $i \times j$ možemo odabrati na n-i+1 načina (bilo koji broj između 1 i n-i+1, uključivo), analogno, y koordinatu možemo odabrati na n-j+1 načina. Dakle, pravokutnika dimenzija $i \times j$ na danoj ploči ima (n-i+1) (n-j+1). Konačno, traženo rješenje je

$$\begin{split} \sum_{i=1}^{n} \left\{ \sum_{j=1}^{n} \left[(n-i+1) \left(n-j+1 \right) \cdot i \cdot j \right] \right\} &= \sum_{i=1}^{n} \left\{ \left[(n-i+1) \cdot i \right] \cdot \sum_{j=1}^{n} \left[(n-j+1) \cdot j \right] \right\} \\ &= \left\{ \sum_{i=1}^{n} \left[(n+1) \cdot i - i^{2} \right] \right\} \cdot \left\{ \sum_{j=1}^{n} \left[(n+1) \cdot i - i^{2} \right] \right\} \\ &= \left[(n+1) \cdot \sum_{i=1}^{n} i - \sum_{i=1}^{n} i^{2} \right]^{2} \\ &= \left[(n+1) \cdot \frac{n \left(n+1 \right)}{2} - \frac{n \left(n+1 \right) \left(2n+1 \right)}{6} \right]^{2} \\ &= \left[\frac{n \left(n+1 \right) \left(n+2 \right)}{6} \right]^{2} . \end{split}$$

5

2 Permutacije skupova

Definicija 2.1. Neka je $A = \{a_1, a_2, \ldots, a_n\}$ skup koji ima n različitih elemenata, te neka je $r \in \{1, 2, \ldots, n\}$. Uređenu r-torku (b_1, b_2, \ldots, b_r) međusobno različitih elemenata iz A nazivamo r-permutacija skupa A.

Napomena 2.2. Ako je r = n, onda ćemo reći da se radi o **permutaciji** skupa A.

Primjer 2.1. Neka je $A = \{a, b, c, d\}$. Napišite sve 2-permutacije skupa A.

Rješenje.

$$(a, b), (a, c), (a, d),$$

 $(b, a), (b, c), (b, d),$
 $(c, a), (c, b), (c, d),$
 $(d, a), (d, b), (d, c).$

Napomena 2.3. (a, a), (b, b), (c, c), (d, d) nisu 2-permutacije. Također primjetite da je važan poredak.

Definicija 2.4. Za prirodan broj n definiramo $n! = n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1$ (n faktorijel), dodatno 0! = 1.

Napomena 2.5. Primjetite da faktorijele brzo rastu (već 7! = 5040), stoga se u praksi često koristi Stirlingova formula koja ih (za velike n) dobro aproksimira:

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n, \quad \lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = 1.$$

Teorem 2.6. Neka je A neprazan skup s $n \in \mathbb{N}$ elemenata, te neka je $r \in \{1, 2, ..., n\}$, r-permutacija skupa A ima

$$P_r^n = \frac{n!}{(n-r)!}.$$

Dokaz. Prvi element r-permutacije možemo odabrati na n načina, drugi na n-1, itd. r-ti na n-r+1 način. Stoga je

$$P_r^n = n \cdot (n-1) \cdot \ldots \cdot (n-r+1) = n \cdot (n-1) \cdot \ldots \cdot (n-r+1) \cdot \frac{(n-r)!}{(n-r)!} = \frac{n!}{(n-r)!}.$$

Primjer 2.2. Koliko se nizova slova duljine 5 može sastaviti iz hrvatske abecede, tako da su na prvom i petom mjestu različiti samoglasnici, a na ostala tri mjesta međusobno različiti suglasnici. (Hrvatska abeceda ima 30 slova, od kojih su 5 samoglasnici, a ostalo suglasnici.)

Rješenje. Na prvo mjesto možemo postaviti bilo koji od 5 samoglasnika, pa nam za peto mjesto ostaju 4 izbora, točnije, postoji P_2^5 načina za popuniti prvo i peto mjesto. Drugo, treće i četvrto mjesto možemo popuniti na ukupno P_3^{25} načina. Sada, za bilo koji način popunjavanja prvog i petog mjesta, postoji P_3^{25} načina popunjavanja preostala tri mjesta. Dakle, konačno rješenje je

$$P_2^5 \cdot P_3^{25} = 5 \cdot 4 \cdot 25 \cdot 24 \cdot 23 = 276000.$$

Primjer 2.3. Na zabavi je 7 mladića i 3 djevojke. Na koliko načina ljude možemo posložiti u red tako da

- (a) tri djevojke čine jedan blok,
- (b) mladići se nalaze na prvoj i posljednjoj poziciji i nema susjednih djevojaka.

6

Rješenje.

- (a) Blok od tri djevojke možemo postaviti na 8 različitih mjesta (tako da je prva djevojka u bloku na jednom od 1. do 8. mjesta u redu, uključivo). Djevojke unutar toga bloka možemo rasporediti na 3! načina. Mladiće (kojih ima 7) moramo rasporediti na preostalih 7 mjesta, što možemo učiniti na 7! načina. Dakle, rješenje je $8 \cdot 3! \cdot 7! = 3! \cdot 8!$.
- (b) Rasporedimo najprije mladiće u red, to možemo učiniti na 7! načina. Sada u red moramo smjestiti još 3 djevojke. Prvu djevojku možemo smjestiti između prvog i drugog, drugog i trećeg, itd. šestog i sedmog mladića. Dakle, za prvu djevojku imamo 6 načina, slično, nakon što smo smjestili prvu djevojku, za drugu imamo 5 načina, a konačno za treću 4 načina. Rješenje je $7! \cdot 6 \cdot 5 \cdot 4$.

Primjer 2.4. Na polici se nalazi m + n različitih knjiga od kojih je m matematičkih, a ostale su iz lijepe književnosti.

- (a) Na koliko načina možemo te knjige rasporediti na policu ako želimo da na prvih m mjesta budu knjige iz matematike?
- (b) Koliko je rasporeda knjiga na polici ako želimo da sve matematičke knjige budu jedna do druge?

Rješenje.

- (a) Knjige iz matematike možemo rasporediti na m! načina, preostale knjige na n! pa je konačno rješenje $m! \cdot n!$.
- (b) Blok od m matematičkih knjiga možemo na policu smjestiti na n+1 načina (prva matematička knjiga u tom bloku može biti na bilo kojem od prvog do (n+1)-vog mjesta, uključivo). Unutar tog bloka matematičke knjige možemo smjestiti na m! načina, još preostaje razmjestiti preostale knjige, a to možemo na n! načina. Konačno, postoji ukupno $(n+1) \cdot m! \cdot n! = m! \cdot (n+1)!$ načina.

Primjer 2.5. Koliko ima parnih brojeva između 20000 i 70000 takvih da su znamenke svakog broja međusobno različite.

Rješenje. Na prvom mjestu može se nalaziti bilo koja znamenka iz skupa $\{2, 3, ..., 6\}$. Moramo posebno promotriti slučaj kada je prva znamenka parna, te kada je neparna.

- 1° Ukoliko je prva znamenka parna, nju možemo izabrati na 3 načina. Zadnju znamenku tada možemo izabrati na 4 načina (bilo koja parna znamenka osim one koja je već odabrana kao prva), a preostale tri znamenke na $8 \cdot 7 \cdot 6$ načina. Dakle, u ovom slučaju imamo $3 \cdot 4 \cdot 6 \cdot 7 \cdot 8$ načina.
- 2° Ukoliko je prva znamenka neparna, nju možemo izabrati na 2 načina, zadnju na 5, a preostale 3 opet na $8\cdot 7\cdot 6,$ što nam daje još $2\cdot 5\cdot 6\cdot 7\cdot 8$

Dakle, konačno rješenje je $6 \cdot 7 \cdot 8 \cdot (3 \cdot 4 + 2 \cdot 5) = 6 \cdot 7 \cdot 8 \cdot 22 = 7392$.

Zadatak 2.6. Neka je S skup prirodnih brojeva čije znamenke su iz skupa $\{1, 3, 5, 7\}$ takvih da se niti jedna znamenka ne ponavlja.

(a) Odredite |S|. [Rj. 64]

(b) Odredite $\sum_{n \in S} n$. [Rj. 117856]

 \mathbf{Uputa} . Pokušajte nekako "pametno" grupirati brojeve u skupu S.

Zadatak 2.7. Na koliko načina se može razmjestiti 8 kula na šahovku ploču tako da se nikoje dvije kule ne napadaju?

 \checkmark

(a) Bez dodatnih uvjeta.

[Rj. 8!]

(b) Tako da se kule razlikuju.

 $\left[\text{Rj. } (8!)^2 \right]$

(Kula napada sva polja u istom retku i stupcu u kojem se nalazi.)

Primjer 2.8. Na koliko načina n ljudi može sjesti oko okruglog stola? Dva rasporeda smatramo jednakim ako se jedan iz drugoga može dobiti rotacijom.

- (a) Bez dodatnih uvjeta.
- (b) Tako da Anja i Marko sjede jedno do drugoga. $(n \ge 2)$

Rješenje.

- (a) Možemo razmišljati na dva načina. Najprije poslažemo ljude normalno u red, što možemo učiniti na n! načina. Sada, "krajeve" tog reda spojimo u krug, vidimo da se svaki raspored ponavlja točno n puta, dakle, odgovor je (n-1)!.
 - Drugi način je da izaberemo jednu osobu i nju smatramo početkom, sada je jasno da preostale ljude možemo razmjestiti na (n-1)! načina.
- (b) Anju i Marka možemo smatrati jednim blokom i ujedno njega smatrati početkom, Anju i Marka unutar toga bloka možemo rasporediti na 2 načina, a preostalih n-2 ljudi na (n-2)! načina. Dakle, odgovor je $2 \cdot (n-2)!$.

 \checkmark

 ${f Zadatak}$ 2.9. Odredite broj načina na koji možemo posjesti n bračnih parova oko okruglog stola tako da

(a) muškarci i žene alterniraju,

[Rj. $n! \cdot (n-1)!$]

(b) svaka žena sjedi do svog muža.

[Rj. $2^n \cdot (n-1)!$]

Primjer 2.10.

- (a) S koliko nula završava broj 100!?
- (b) S kojim eksponentom prost broj p ulazi u rastav broja n! na proste faktore?

Rješenje.

- (a) Primjetimo da će broj 100! završiti s onoliko nula koliko puta se broj 5 pojavljuje u njegovom raspisu na proste faktor. (Za svaki par brojeva 2 i 5 u raspisu broja n! na proste faktore dobijemo jednu nulu na njegovom kraju, ali broj 2 se sigurno pojavljuje više puta od broja 5.) Konačno, broj 100! završava s $\left| \frac{100}{5} \right| + \left| \frac{100}{25} \right| = 24$ nule. (U (b) dijelu zadatka je objašnjeno zašto vrijedi korištena formula.)
- (b) Prost broj p se u raspisu broja n! na proste faktore pojavljuje onoliko puta koliko ulazi u raspis svakog od brojeva iz skupa $\{1, 2, ..., n\}$ na proste faktore. Broj p se u svim brojevima koji su djeljivi sp, a nisu djeljivi s p^2 pojavljuje jednom, u svim onima koji su djeljivi s p^2 , ali nisu s p^3 još jednom, itd. Dakle, ukupni broj pojavljivanja prostog broja p u raspisu broja n! na proste faktore je $\sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor$.

 \checkmark

Napomena 2.7. Suma $\sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor$ je konačna, jer za sve prirodne brojeve k takve da je $p^k > n$ vrijedi $\left\lfloor \frac{n}{p^k} \right\rfloor = 0$.

 ${f Zadatak~2.11.}~n$ kandidata za neki posao se predstavlja pred tročlanom komisijom. Svaki od članova komisije rangira kandidate prema svom kriteriju. Pravilo je da će neki kandidat biti prihvaćen ako su ga barem dvojica članova komisije stavila na prvo mjesto. Izračunajte u koliko će se posto slučajeva izabrati neki kandidat.

Rj. $\frac{3n-2}{n^2} \cdot 100\%$

Uputa. Povoljne ishode, tj. one u kojima će netko biti izabran prebrojite tako da prvo prebrojite ishode u kojem su nekog kandidata izabrala točno dva člana komisije, a zatim i one u kojima su ga izabrala sva 3 člana komisije.

3 Kombinacije

Definicija 3.1. Neka su n i r prirodni brojevi takvi da je $n \ge r$. Neka je A skup koji sadrži n različitih objekata. Za r-člani podskup skupa A kažemo da je r-kombinacija skupa A.

Primjer 3.1. Odredite sve 3-kombinacije skupa $\{a, b, c, d\}$.

Rješenje.

$${a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}.$$

Napomena 3.2. Nije bitan poredak!

Definicija 3.3. Neka je n prirodan i r nenegativan cijeli broj, $n \ge r$. **Binomni koeficijent** je broj

$$\binom{n}{r} = \frac{n!}{r! \cdot (n-r)!}$$

kojeg čitamo "n povrh r".

Napomena 3.4. Za r > n definiramo $\binom{n}{r} = 0$.

Teorem 3.5. Neka su n i r prirodni brojevi takvi da je $n \ge r$. Broj r-kombinacija n-članog skupa je

$$C_r^n = \binom{n}{r}.$$

Dokaz. Znamo da r-permutacija n-članog skupa ima $P_r^n = \frac{n!}{(n-r)!}$. Kod kombinacija poredak nije bitan, stoga se iz jedne r-kombinacije dobije točno r! različitih r-permutacija. Zaključujemo:

$$C_r^n = \frac{P_r^n}{r!} = \frac{n!}{(n-r)! \cdot r!} = \binom{n}{r}.$$

Primjer 3.2. Na koliko načina možemo odabrati grupu od 5 osoba iz grupe od 4 profesora i 7 studenata

- (a) ako nema restrikcija,
- (b) tako da u grupi budu točno 2 profesora,
- (c) tako da u grupi budu barem 3 profesora,
- (d) tako da određeni profesor i student ne budu u grupi?

Rješenje.

- (a) Iz grupe od 4+7=11 ljudi moramo izabrati 5, odgovor je $\binom{11}{5}$ načina.
- (b) 2 profesora možemo izabrati na $\binom{4}{2}$ načina, a preostalih troje ljudi na $\binom{7}{3}$, rješenje je $\binom{4}{2} \cdot \binom{7}{3}$.
- (c) Posebno promatramo dva (disjunktna!) slučaja.
 - 1° Odabrana su točno 3 profesora, imamo $\binom{4}{3}\cdot\binom{7}{2}=4\cdot\binom{7}{2}=25$ načina.
 - 2° Odabrana su točno 4 profesora, imamo $\binom{4}{4} \cdot \binom{7}{1} = 7$ načina.

Dakle, imamo sveukupno 32 načina.

Napomena 3.6. Netočno bi bilo najprije odabrati 3 profesora, a zatim od preostalih 8 ljudi još dvije osobe. Više puta bi brojali istu situaciju u kojoj su sva četiri profesora izabrana. Zašto?

(d) Pošto ne smijemo izabrati jednog profesora i jednog studenta, preostaje nam 9 ljudi od kojih moramo izabrati grupu od 5 ljudi, odnosno, imamo $\binom{9}{5}$ načina.

Primjer 3.3. Na koliko načina možemo podjeliti 240 studenata u 3 jednakobrojne skupine tako da

- (a) prva skupina ide na vježbe iz Vjerojatnosti, druga na vježbe iz Diskretne matematike, a treća na Engleski,
- (b) sve tri skupine idu na vježbe iz Diskretne matematike?

Rješenje.

- (a) Najprije odaberemo studente za prvu skupinu, zatim od ostatka studente za drugu skupinu, a preostale studente smjestimo u treću skupinu. Što nam daje $\binom{240}{80} \cdot \binom{160}{80}$ načina.
- (b) Razmišljamo isto kao u (a) dijelu zadatka, samo što nam u ovom slučaju nije bitno u koju će prostoriju koja grupa ići (u svima se slušaju vježbe iz Diskretne matematike), pa je odgovor $\frac{\binom{240}{80} \cdot \binom{160}{80}}{3!}$ načina.

Teorem 3.7. Neka su n i r prirodni brojevi takvi da je $n \ge r$. Za binomne koeficijente vrijedi.

(1) Simetrija.

$$\binom{n}{r} = \binom{n}{n-r}.$$

(2) Pascalova formula.

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}.$$

Dokaz. Provesti ćemo ga na dva načina.

(i) Algebarski način.

(1)
$$\binom{n}{r} = \frac{n!}{r! \cdot (n-r)!} = \frac{n!}{(n-r)! \cdot [n-(n-r)]!} = \binom{n}{n-r}.$$

(2)
$$\binom{n-1}{r-1} + \binom{n-1}{r} = \frac{(n-1)!}{(r-1)! \cdot (n-r)!} + \frac{(n-1)!}{r! \cdot (n-r-1)!}$$

$$= \frac{(n-1)!}{(r-1)! \cdot (n-r-1)!} \cdot \left(\frac{1}{n-r} + \frac{1}{r}\right)$$

$$= \frac{(n-1)!}{(r-1)! \cdot (n-r-1)!} \cdot \frac{n}{r \cdot (n-r)}$$

$$= \frac{n!}{r! \cdot (n-r)!} = \binom{n}{r}.$$

 \checkmark

 \checkmark

- (ii) Kombinatorni način.
 - (1) Broj s lijeve strane jednak je broju r-članih podskupova n-članog skupa. Broj s desne strane jednak je broju (n-r)-članih podskupova n-članog skupa. Ta dva broja su očito jednaka, jer za svaki izbor r-članog podskupa jednoznačno odredimo jedan (n-r)-člani podskup i obratno.
 - (2) Ukoliko je n=r identitet trivijalno vrijedi, jer je $\binom{n}{n}=\binom{n-1}{n-1}=1$. Pretpostavimo sada da je r < n. Prema definiciji je izraz s lijeve strane broj r-kombinacija n-članog skupa. Pokažimo da je tome jednak i broj s desne strane. Promatrajmo proizvoljan skup S koji ima n elemenata. Neka je $x \in S$. Sve r-kombinacije možemo podjeliti u dvije (disjunktne!) familije r-članih podskupova skupa S:
 - one koje sadrže element x: $\mathcal{A} = \{X \subseteq S : |X| = r, x \in X\},$
 - te one koje ne sadrže element x: $\mathcal{B} = \{X \subseteq S : |X| = r, x \notin X\}$.

Vrijedi $|\mathcal{A}| = \binom{n-1}{r-1}$ (svaki skup familije \mathcal{A} sastoji se od elementa x i još r-1 elemenata od preostalih n-1 elemenata skupa S), $|\mathcal{B}| = \binom{n-1}{r}$. Očito je da familije \mathcal{A} i \mathcal{B} u uniji daju sve r-člane podskupove skupa S. Ovime je dokaz gotov.

Zadatak 3.4. Neka su n i k prirodni brojevi takvi da je $n \ge k$. Koliko ima binarnih nizova duljine n koji sadrže k nula i n - k jedinica? $\left[\text{Rj.} \binom{n}{k} \right]$

Primjer 3.5. "Metoda kuglica i štapića."

Na koliko načina možemo $n \in \mathbb{N}$ jednakih kuglica rasporediti u $m \in \mathbb{N}$ različitih kutija?

Rješenje.

$$\bullet \bullet \longleftarrow \Big| \longleftarrow \Big| \bullet \bullet \ldots \longleftarrow \Big| \bullet \ldots \longleftarrow \Big| \longrightarrow \bullet$$

Promatrajmo niz kuglica i pregrada kao na gornjoj slici. Kuglice lijevo od prve pregrade pripadaju prvoj kutiji, kuglice između prve i druge pregrade drugoj kutiji, itd. kuglice nakon zadnje pregrade zadnjoj kutije. Dakle, imamo niz od n kuglica i m-1 pregrada. Svaki niz određuje točno jedan raspored kuglica po kutijama. Pregrade možemo razmjestiti na $\binom{n+m-1}{m-1}$ načina, što je i odgovor na pitanje zadatka.

Zadatak 3.6. Neka su m i n prirodni brojevi. Odredite broj nenegativnih cjelobrojnih rješenja jednadžbe

$$x_1 + x_2 + \ldots + x_m = n.$$

$$\left[\text{Rj.} \binom{n+m-1}{m-1} \right]$$

Primjer 3.7. Koliko ima uređenih četvorki $(x_1, x_2, x_3, x_4) \in \mathbb{N}^4$ takvih da je $x_1x_2x_3x_4 = 9000$.

Rješenje. $9000 = 2^3 \cdot 3^2 \cdot 5^3$.

Svaki faktor broja 9000 je oblika $x_i = 2^{\alpha_i} \cdot 3^{\beta_i} \cdot 5^{\gamma_i}$; $\alpha_i, \gamma_i \in \{0, 1, 2, 3\}, \beta_i \in \{0, 1, 2\}, i \in \{1, 2, 3, 4\}$. Da bi bilo $x_1x_2x_3x_4 = 9000$, mora vrijediti

$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 3,$$

 $\beta_1 + \beta_2 + \beta_3 + \beta_4 = 2,$
 $\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4 = 3.$

Postoji $\binom{6}{3}$ različitih rješenja prve jednadžbe, $\binom{5}{3}$ druge, te $\binom{6}{3}$ zadnje. Odgovor na pitanje zadatka je $\binom{6}{3}^2 \cdot \binom{5}{2} = 4000$.

Primjer 3.8. Koliko ima najkraćih puteva u cjelobrojnoj mreži od (0, 0) do $(m, n) \in \mathbb{N}^2$?

- (a) Bez dodatnih uvjeta.
- (b) Koji prolaze točkom (p, q), gdje je $p \in \mathbb{N}$, p < m i $q \in \mathbb{N}$, q < n.
- (c) Koji ne prolaze segmentom [(p, q), (p+1, q)], gdje je $p \in \mathbb{N}$, p < m-1 i $q \in \mathbb{N}$, q < n.

Rješenje. Najprije primjetimo da su svi putevi koji se sastoje samo od kretanja desno i gore jednako dugi i da su to najkraći putevi. Svaki niz od $x \in \mathbb{N}_0$ slova 'D' (desno) i $y \in \mathbb{N}_0$ slova 'G' (gore) određuje točno jedan put od $(x_0, y_0) \in \mathbb{N}_0^2$ do $(x_0 + x, y_0 + y)$. Npr. "GGGDDGDGDDD" nam određuje put od (x_0, y_0) do $(x_0 + 6, y_0 + 6)$.

- (a) Nizova duljine m + n koji sadrže m slova 'D' i n slova 'G' ima $\binom{m+n}{m}$ (izaberemo m mjesta na kojima će biti slovo 'D', a na preostalima tada mora biti slovo 'G'), to je i odgovor u ovom slučaju.
- (b) Najprije iz (0, 0) dođemo u (p, q), a zatim iz njega u (m, n). Prvi dio puta možemo izabrati na $\binom{p+q}{p}$ načina, a drugi na $\binom{m-p+n-q}{m-p}$ načina. Dakle, postoji $\binom{p+q}{p} \cdot \binom{m-p+n-q}{m-p}$ puteva.
- (c) U ovom slučaju ćemo od svih mogućih (najkraćih) puteva oduzeti one koji prolaze tim segmentom, a tim segmentom prolaze svi putevi koji vode od (0,0) u (p,q), iz njega u (p+1,q), a zatim u (m,n). Ukupno ima $\binom{m+n}{m}$ puteva. "Loših" puteva ima $\binom{p+q}{p} \cdot \binom{m-p-1+n-q}{m-p-1}$. Konačno, rješenje je $\binom{m+n}{m} \binom{p+q}{p} \cdot \binom{m-p-1+n-q}{m-p-1}$ puteva.

Definicija 3.8. Neka je n prirodan broj. Neka je A skup s2n elemenata. **Sparivanje** je particija skupa A na dvočlane podskupove.

Primjer 3.9. Neka je $n \in \mathbb{N}$. Odredite koliko ima različitih sparivanja skupa A koji sadrži 2n elemenata.

Rješenje. Dati ćemo dva načina rješavanja.

- (i) Permutacija skupa A ima (2n)!. Permutacija jednog sparivanja skupa A ima n!. Dakle, iz svakog sparivanja skupa A možemo dobiti točno $2^n \cdot n!$ permutacija skupa A (svaki član sparivanja, koji je dvočlani skup, možemo "unutar sebe" permutirati 2 puta). Iz dva različita sparivanja nikako ne možemo dobiti dvije jednake permutacije. Također, iz svih mogućih sparivanja dobiti ćemo sve permutacije. Dakle, svih mogućih sparivanja skupa A ima $\frac{(2n)!}{2^n \cdot n!}$.
- (ii) Najprije od 2n elemenata izaberemo 2, zatim od preostalih 2n-2 još 2, itd. zadnja preostala 2 "stavimo" u n-ti skup. No, nije nam bitan poredak tako dobivenih dvočlanih skupova, stoga je rješenje

$$\frac{\prod\limits_{i=0}^{n-1} \binom{2n-2i}{2}}{n!} = \frac{1}{n!} \cdot \prod\limits_{i=0}^{n-1} \frac{(2n-2i)(2n-2i-1)}{2} = \frac{(2n)!}{2^n \cdot n!}.$$

 \checkmark

4 Permutacije i kombinacije s ponavljanjem

Definicija 4.1. Uređenu r-torku $(x_1, x_2, ..., x_r)$ (ne nužno različitih) elemenata skupa S nazivamo r-permutacijom s ponavljanjem.

Primjer 4.1. $A = \{a, b, c\}$. Odredi sve 2-permutacije s ponavljanjem skupa A.

Rješenje.
$$(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)$$

Nameće se pitanje: koliko je r-permutacija s ponavljanjem skupa od n elemenata?

Teorem 4.2. Postoji točno n^r r-permutacija s ponavljanjem n-članog skupa.

Dokaz. Prvi član uređene r-torke možemo odabrati na n načina, drugi također na n načina (jer se elementi smiju ponavljati), . . ., i r-ti na n načina. U svemu, uređenu r-torku možemo odabrati na n^r načina.

Zadatak 4.2. Na koliko načina možemo 6 vrsta voća kojeg imamo u neograničenim količinama podijeliti između 10 djece tako da svako dijete dobije po jednu voćku? $[Rj. 6^{10}]$

Napomena 4.3. Kada voća ne bismo imali u neograničenim količinama, zadatak bi bio puno složeniji.

Definicija 4.4. Konačni multiskup M na skupu S je uređen par (S, m) gdje je $m: S \to \mathbb{N}_0$ funkcija takva da je $\sum_{x \in S} m(x)$ konačan broj. Za $x \in S$ broj m(x) zovemo kratnost od x.

Definicija 4.5. Neka je M=(S,m) multiskup. Uređenu r-torku (x_1, x_2, \ldots, x_r) , $x_i \in M$, $\forall i \in \{1, 2, \ldots, n\}$, takvu da je broj pojavljivanja elementa x_i manji od $m(x_i)$ zovemo r-permutacija multiskupa. Ako je $\sum_{x \in S} m(x) = r$, govorimo o permutaciji multiskupa M.

Primjer 4.3. $M = \{a, a, b, b, c, c, c\} = \{a^2, b^2, c^3\}$ Koliko ima permutacija multiskupa M?

Rješenje. Možemo razmišljati na dva načina.

1. način. Broj permutacija 7–članog skupa je 7!. Kako je M multiskup, više puta smo brojali neke permutacije (prvi a i drugi a ne razlikujemo). Svaka permutacija istih elemenata skupa rezultira istom permutacijom multiskupa M. Zato je traženi broj $\frac{7!}{2! \cdot 2! \cdot 3!}$.

2. način. Odabiremo prvo dva mjesta (od sedam) na koje ćemo *smjestiti a*-ove. To možemo učiniti na $\binom{7}{2}$ načina. c-ove zatim možemo rasporediti na $\binom{5}{3}$ načina, a za b-ove je preostao samo još jedan način $\binom{2}{2}$. Ukupno je broj permutacija multiskupa jednak $\binom{7}{2} \cdot \binom{5}{3} \cdot \binom{2}{2} = \frac{7!}{2! \cdot 3! \cdot 2!}$.

Analogno određujemo i broj permutacija općenitog multiskupa.

Teorem 4.6. Broj permutacija multiskupa $\{x_1^{m_1}, x_2^{m_2}, \dots, x_k^{m_k}\}$, pri čemu je $\sum_{i=1}^k m_i = N$, jednak je

$$\binom{N}{m_1} \cdot \binom{N-m_1}{m_2} \cdot \ldots \cdot \binom{N-m_1-m_2-\ldots-m_{k-1}}{m_k} = \frac{N!}{m_1! \cdot m_2! \cdot \ldots \cdot m_k!}$$

Zadatak 4.4. Odredi broj ternarnih nizova (nizovi nula, jedinica i dvojki) koji imaju 2 nule, 3 jedinice i 5 dvojki. $\left[\text{Rj.} \ \frac{10!}{2! \cdot 3! \cdot 5!}\right]$

 $\textbf{Primjer 4.5.} \ \ \text{Koliko ima peteroznamenkastih brojeva kojima su znamenke elementi multiskupa } \left\{ 7^4, \, 2^2, \, 4^1, \, 6^1 \right\}?$

Rješenje. Zadatak ćemo riješiti razbijanjem na nekoliko slučajeva u ovisnosti o tome koliko istih znamenaka sadrži traženi petroznamenkasti broj. U opisu svakog slučaja navodimo multiskupove zbroja kratnosti 5 čiji će elementi biti znamenke traženog broja.

$$1^{\circ} \{7^4, 2^1\}, \{7^4, 4^1\}, \{7^4, 6^1\}$$

Broj permutacija svakog od triju multiskupova jednak je $\frac{5!}{4!}$, i zato je ukupan broj brojeva u prvom slučaju jednak $\#_1 = 3 \cdot \frac{5!}{4!} = 15$

$$2^{\circ} \ \left\{ 7^{3}, \, 2^{1}, \, 4^{1} \right\}, \, \left\{ 7^{3}, \, 2^{1}, \, 6^{1} \right\}, \, \left\{ 7^{3}, \, 6^{1}, \, 4^{1} \right\}$$

$$\#_{2} = 3 \cdot \frac{5!}{3!} = 60$$

$$3^{\circ} \left\{ 7^3, 2^2 \right\}$$

$$\#_3 = \frac{5!}{2! \cdot 3!} = 10$$

$$4^{\circ} \left\{ 7^{2}, 2^{2}, 6^{1} \right\}$$

$$\#_{4} = 2 \cdot \frac{5!}{2! \cdot 2! \cdot 1} = 60$$

5°
$$\{7^2, 2^1, 4^1, 6^1\}, \{7^1, 2^2, 4^1, 6^1\}$$

 $\#_5 = 2 \cdot \frac{5!}{2!} = 120$

Dakle, takvih je brojeva ukupno $\# = \sum_{i=1}^{5} \#_i = 265$

(Ovakav problem ne bismo mogli općenito riješiti — barem zasad)

Primjer 4.6. Pokaži da je broj 4n! djeljiv s 2^{3n} i 3^n

Rješenje. Promotrimo multiskup $M = \{a_1^4, a_2^4, \dots, a_n^4\}$. Broj permutacija tog multiskupa (**prirodan broj!**) $je^{\frac{(4n)!}{4!\cdot 4!\cdots \cdot 4!}} = \frac{(4n)!}{2^{3n}\cdot 3^n} \in \mathbb{N}$

Napomena 4.7. Slično, zbog kombinatorne interpretacije znamo i da je izraz oblika $\frac{n!}{r!(n-r)!}$ prirodan broj.

Definicija 4.8. Za r-člani $\left(\sum_{s,s} m(s) = r\right)$ multiskup M = (S,m) kažemo da je r-kombinacija s ponavljanjem skupa S.

Primjer 4.7. Ispiši sve 2-kombinacije skupa $S = \{a, b, c\}$.

Rješenje.
$$\{a, b\}, \{a, c\}, \{b, c\}, \{a, a\}, \{b, b\}, \{c, c\}.$$

Napomena 4.9. Ovo su dvočlani **podmultiskupovi** multiskupa $M = \{a^{\infty}, b^{\infty}, c^{\infty}\}$ (svaki od elemenata možemo odabrati koliko god puta želimo).

Sada želimo odrediti broj r-kombinacija s ponavljanjem n-članog skupa. Neka je $S = \{a_1, a_2, \dots, a_n\}$ zadani skup. Tada s x_i označimo broj ponavljanja elementa a_i u r-kombinaciji. Problem se tada svodi na određivanje broja nenegativnih cjelobrojnih rješenja jednadžbe

$$x_1 + x_2 + \ldots + x_n = r. \tag{1}$$

Taj problem rješavamo metodom štapića i kuglica, opisanom u **Primjeru 3.5.** na stranici 12. **Teorem 4.10.** Broj r-kombinacija s ponavljanjem n-članog skupa jednak je $\binom{n+r-1}{n-1} = \binom{n+r-1}{r}$.

Napomena 4.11. Ponovno naglasimo da smo promatrali slučaj kad se svaki član skupa S može pojaviti po volji mnogo puta (U kontekstu jednadžbe (1) to znači da elementi x_i nisu odozgo ograničeni.) Onaj drugi slučaj, kad će postojati ograničenja na broj ponavljanja određenog elementa u skupu bit će riješen kasnije.

Primjer 4.8. U Bologni se prodaju tri vrste sendviča: sa šunkom, tunom i vegetarijanski. Na koliko načina student može naručiti 6 sendviča?

Rješenje. Tražimo sve šesteročlane podskupove multiskupa $\{S^{\infty}, T^{\infty}, V^{\infty}\}$, odnosno broj nenegativnih cjelobrojnih rješenja jednadžbe $x_1 + x_2 + x_3 = 6$. Taj je broj jednak $\binom{6+3-1}{3-1} = \binom{8}{2}$.

Primjer 4.9. Koliko ima cjelobrojnih rješenja jednadžbe

$$x_1 + x_2 + x_3 + x_4 + x_5 = 50$$

uz uvjete: $x_1, x_4, x_5 \ge 0; 2 \le x_3 \le 7; x_2 \ge 2$

Rješenje. Uvest ćemo supstituciju $[y_1 = x_1, y_2 = x_2 - 2, y_3 = x_3 - 2, y_4 = x_4, y_5 = x_5]$, nakon čega početna jednadžba glasi

$$y_1 + y_2 + y_3 + y_4 + y_5 = 46 (2)$$

uz uvjete $y_i \ge 0, i \in \{1, 2, ..., 5\}$ i $y_3 \le 5$

Jednostavnom supstitucijom svodimo uvjet $x \geq c, \ c \in \mathbb{N}$ na $x \geq 0$, što znamo riješiti. Uvjet $y_3 \leq 5$ također ćemo pokušati svesti na poznatu situaciju. Poslužit ćemo se principom komplementa: broj cjelobrojnih rješenja jednadžbe (2) uz uvjet $y_3 \leq 5$ jednak je razlici broja rješenja bez ikakvih dodatnih uvjeta i broja rješenja uz uvjet $y_3 > 5$, tj. $y_3 \geq 6$. Broj rješenja uz uvjet $y_3 \geq 6$ određujemo supstitucijom $z_3 = y_3 - 6$, te $z_i = y_i$, za i = 1, 2, 4, 5 pa govorimo o jednadžbi $z_1 + z_2 + z_3 + z_4 + z_5 = 40$. Na kraju, broj cjelobrojnih nenegativnih rješenja početne jednadžbe jednak je $\binom{46+5-1}{46} - \binom{40+5-1}{40} = \binom{50}{4} - \binom{44}{4}$.

Primjer 4.10. Koliko ima r-podskupova skupa $\{1, 2, ..., n\}$ takvih da ne sadrže dva uzastopna broja?

Rješenje. Promatramo brojeve $b_1, b_2,...,b_r$ takve da vrijedi

$$1 \le b_1 < b_2 < \dots < b_r \le n - r + 1$$

Sada označimo $a_1=b_1,\ a_2=b_2+1,\ a_3=b_3+2,...,a_r=b_r+r-1$ Među brojevima $a_1\ldots a_r$ nema uzastopnih i za njih vrijedi

$$1 \le a_1 < a_2 < \ldots < a_r \le n$$

Postoji bijekcija između r-torki (a_1, a_2, \ldots, a_r) i (b_1, b_2, \ldots, b_r) .

Dakle, potrebno je odgovoriti na koliko načina možemo odabrati r elemenata od njih n-r+1. Odgovor je $\binom{n-r+1}{r}$.

Problemi distribucije

- 1. Želimo odrediti broj rasporeda m različitih objekata u n različitih kutija tako da
 - (a) u svaku kutiju možemo staviti najviše jedan objekt:

$$n \cdot (n-1) \cdot \ldots \cdot (n-m+1)$$
.

(b) svaka kutija može sadržavati proizvoljno mnogo objekata:

$$n^m$$

(c) svaka kutija može sadržavati samo jedan objekt, a na raspolaganju je r_1 objekata prve vrste, ..., r_k objekata k—te vrste:

$$\frac{n!}{r_1! \cdots r_k!}, \text{ gdje je } n = \sum_{i=1}^k r_i.$$

(d) svaka kutija može sadržavati proizvoljan broj objekata, ali poredak unutar kutije je bitan:

$$n \cdot (n+1) \cdot (n+2) \cdot \ldots \cdot (n+m-1)$$
.

- 2. Želimo odrediti broj rasporeda m identičnih objekata u n različitih kutija tako da
 - (a) u svaku kutiju stavimo najviše jedan objekt:

$$\binom{n}{m}$$
.

(b) u svaku kutiju stavimo proizvoljan broj objekata:

$$\binom{n+m-1}{m}$$
.

(c) niti jedna kutija ne bude prazna:

Tražimo broj cjelobrojnih rjesšenja jednadžbe $r_1+r_2+\ldots+r_n=m,\quad r_i\geq 1.$

Uz supstituciju $s_i = r_i - 1 \Rightarrow s_1 + \ldots + s_n = m - n + 1$.

Rješenje je, stoga

$$\binom{m-n+n-1}{n-1} = \binom{m-1}{n-1}.$$

Koliko postoji particija n-članog skupa? Ne postoji jednostavan način za računanje istoga.

Definicija 4.12. n-ti **Bellov broj**, B_n kao broj particija n-članog skupa. Dodatno, definiramo $B_0 = 1$.

Teorem 4.13. Vrijedi

$$B_n = \sum_{k=1}^{n} {n-1 \choose k-1} B_{n-k}.$$

Definicija 4.14. Definiramo **Stirlingove brojeve druge vrste** S(n, k) kao broj k–članih particija n–članog skupa.

Napomena 4.15. Ponekad se koristi oznaka $S\left(n,\,k\right)=\left\{\begin{array}{c}n\\k\end{array}\right\}$.

Teorem 4.16. Vrijedi

$$S(n+1, k) = S(n, k-1) + kS(n, k)$$
.

Lako vidimo da je S(n, 1) = S(n, n) = 1, $\forall n \in \mathbb{N}$. Sada možemo konstruirati tablicu iz koje lako očitavamo Stirlingove brojeve druge vrste.

$n \backslash k$	1	2	3	4	5	6
1	1					
2	1	1				
3	1	3	1			
4	1	7	6	1		
5	1	15	25	10	1	
6	1	31	90	65	15	1

 \checkmark

5 Rekurzivne relacije

5.1 Homogene linearne rekurzije s konstantnim koeficijentima

Izraz oblika $c_r a_{n+r} + c_{r-1} a_{n+r-1} + \ldots + c_0 a_n = 0$ nazivamo homogena linearna rekurzija s konstantnim koeficijentima reda r.

Tražimo rješenje u obliku $a_n = x^n$. Uvrštavajući dobivamo

$$c_r x_{n+r} + c_{r-1} x_{n+r-1} + \dots + c_0 x_n = 0 / : x^n$$

 $c_r x_r + c_{r-1} x_{r-1} + \dots + c_0 x_0 = 0,$

taj izraz se naziva karakteristična jednadžba.

Teorem 5.1. Ako su x_1, x_2, \ldots, x_r međusobno različita rješenja karakteristične jednadžbe, onda je svako rješenje početne rekurzije oblika $a_n = A_1 x_1^n + A_1 x_1^n + \ldots + A_r x_r^n$, gdje A_1, \ldots, A_r određujemo iz početnog uvjeta.

Primjer 5.1. Riješite rekurzivnu relaciju:

$$a_n = 2a_{n-1} + a_{n-2} - 2a_{n-3};$$
 $a_1 = 1, a_2 = 2, a_3 = 3.$

Rješenje. Uvrštavanjem x^n u $a_n - 2a_{n-1} - a_{n-2} + 2a_{n-3} = 0$ dobivamo karakterističnu jednadžbu

$$x^{n} - 2x^{n-1} - x^{n-2} + 2x^{n-3} = 0 / : x^{n-3},$$
$$x^{3} - 2x^{2} + x - 2 = 0.$$

Izračunamo nultočke: -1, 1, 2, pa je opće rješenje: $a_n = A \cdot (-1)^n + B \cdot 1^n + C \cdot 2^n$. Sada iz početnih uvjeta imamo:

Iz čega imamo rješenje $a_n = \frac{(-1)^n}{6} + \frac{1}{2} + \frac{2^n}{3}$.

Teorem 5.2. Ako su rješenja karakteristične jednadžbe x_1, \dots, x_m s kratnostima k_1, \dots, k_m , onda je opće rješenje rekurzije dano formulom

$$a_{n} = (A_{11} + A_{12}n + \dots + A_{1k_{1}}n^{k_{1}-1}) x_{1}^{n}$$

$$+ (A_{21} + A_{22}n + \dots + A_{2k_{2}}n^{k_{2}-1}) x_{2}^{n}$$

$$\vdots$$

$$+ (A_{m1} + A_{m2}n + \dots + A_{mk_{m}}n^{k_{m}-1}) x_{m}^{n}.$$

Primjer 5.2. Riješite rekurziju:

$$a_n - 7a_{n-1} + 15a_{n-2} - 9a_{n-3} = 0; \ a_0 = 1, \ a_1 = 2, \ a_2 = 3.$$

Rješenje. Karakteristična jednadžba: $x^3 - 7x^2 + 15x - 9 = 0 \Longrightarrow x_1 = 1, x_2 = x_3 = 3$, sada je opće rješenje

$$a_n = A \cdot 1^n + B \cdot 3^n + C \cdot n \cdot 3^n$$

Iz početnih uvjeta imamo

$$\begin{array}{rclcrcl} 1 & = & a_0 & = & A+B \\ 2 & = & a_1 & = & A+3B+3C \\ 3 & = & a_2 & = & A+9B+18C \end{array} \right\} \Longrightarrow A=0, \ B=1, \ C=-\frac{1}{3}.$$

Uvrstimo u opće rješenje i imamo $a_n = \left(1 - \frac{n}{3}\right) \cdot 3^n$.

Zadatak 5.3. Riješite rekurziju

$$a_n + a_{n-2} = 0; \quad a_0 = 1, \, a_1 = 1.$$

Rj.
$$a_n = \frac{1-i}{2} \cdot i^n + \frac{1+i}{2} \cdot (-i)^n$$

5.2 Nehomogene linearne rekurzije s konstantnim koeficijentima

Izraz oblika $c_r a_{n+r} + \cdots + c_1 a_{n+1} + c_0 a_n = f(n)$, gdje je f neka funkcija od n, nazivamo **nehomogena line-**arna rekurzija s konstantnim koeficijentima r-tog reda.

Postupak za rješavanje:

- (1) Nalazimo opće rješenje pripadne homogene jednadžbe a_n^H .
- (2) Tražimo partikularno rješenje a_n^P prema tablici (koja slijedi).
- (3) Opće rješenje je $a_n = a_n^H + a_n^P$, a koeficijente određujemo iz početnih uvjeta.

$f\left(n ight)$	a_n^P	
$C \cdot b^n$	(a)	b nije korijen karakteristične jednadžbe; $a_n^P = A \cdot b^n$
	(b)	b je korijen karakteristične jednadžbe kratnosti $k;$ $a_n^P = A \cdot n^k \cdot b^n$
$p(n) \in \mathbb{R}[x]$, stupanj od $p = m$	(a)	1 nije korijen karakteristične jednadžbe; $a_n^P=p_1\left(n\right)$, polinom stupnja n s neodređenim koeficijentima
	(b)	1 je korijen karakteristične jednadžbe kratnosti k ; $a_n^P = n^k \cdot p_1\left(n\right)$
$C \cdot n^m \cdot b^n$	(a)	b nije korijen karakteristične jednadžbe; $a_n^P = p_1(n) \cdot b^n$, stupanj od $p_1 = m$
	(b)	b je korijen karakteristične jednadžbe kratnosti $k;$ $a_{n}^{P}=n^{k}\cdot p_{1}\left(n\right)\cdot b^{n}$

ovdje nam C, b i A predstavljaju neke konstante.

Primjer 5.4. Riješite rekurziju

$$a_{n+1} - 5a_n = 4n^2 + 2n + 6; \quad a_1 = 1.$$

Rješenje. Rješavanjem karakteristične jednadžbe pripadne homogene rekurzije dobivamo $a_n^H = A \cdot 5^n$. Dalje, vidimo da partikularno rješenje moramo tražiti u obliku $a_n^P = Bn^2 + Cn + D$, uvrštavanjem u danu rekurziju dobivamo

$$B(n+1)^{2} + C(n+1) + D - 5Bn^{2} - 5Cn - 5D = 4n^{2} + 2n + 6$$

$$\iff$$

$$-4Bn^{2} + (2B - 4C)n + (B + C - 4D) = 4n^{2} + 2n + 6.$$

Izjednačavajući koeficijente s lijeve i desne strane (kao u jednakosti polinoma) nalazimo $B=-1,\ C=-1,\ D=-2.$ Konačno, uvrštavanjem $a_n=a_n^H+a_n^P$ u početni uvjet

$$1 = a_1 = 5A - 1 - 1 - 2 = 5A - 4$$

nalazimo da je A=1. Rješenje dane rekurzije je $a_n=5^n-n^2-n-2$.

Primjer 5.5. Riješite rekurziju

$$a_n = 6a_{n-1} - 9a_{n-2} + n \cdot 3^n$$
 $a_0 = 2, a_1 = 3.$

Rješenje. Karakteristična jednadžba pripadne homogene rekurzije dana je s $x^2-6x+9=0,$ te ima rješenja $x_1=x_2=3.$ Dakle, $a_n^H=A\cdot 3^n+B\cdot n\cdot 3^n.$ Sada vidimo u kakvom obliku moramo tražiti partikularno rješenje, odnosno $a_n^P=n^2\cdot (an+b)\cdot 3^n.$ Uvrštavanjem u danu rekurziju imamo

$$n^{2} \cdot (an+b) \cdot 3^{n} = 6 \cdot (n-1)^{2} \cdot [a(n-1)+b] \cdot 3^{n-1} - 9 \cdot (n-2)^{2} \cdot [a(n-2)+b] \cdot 3^{n-2} + n \cdot 3^{n} / : 3^{n} \iff$$

$$\Leftrightarrow$$

$$n^{2} \cdot (an+b) = 2 \cdot (n^{2} - 2n + 1) (an-a+b) - (n^{2} - 4n + 4) (an - 2a + b) + n$$

$$\Leftrightarrow$$

$$(1-6a) n + (6a - 2b) = 0.$$

Dakle, $a = \frac{1}{6}$, $b = \frac{1}{2}$. Sada, uvrštavanjem $a_n = a_n^H + a_n^P$ u početne uvjete dobivamo A = 2, $B = \frac{-5}{3}$. Konačno rješenje je $a_n = \frac{3^{n-1}}{2} \cdot (n^3 + 3n^2 - 10n + 12)$.

Zadatak 5.6. Riješite rekurziju

$$a_n - 3a_{n-1} + 2a_{n-2} = 2^n$$
; $a_0 = 3$, $a_1 = 8$.
[Rj. $a_n = (2n+1) \cdot 2^n + 2$]

Primjer 5.7. Riješite sustav rekurzija

$$a_n = -2a_{n-1} + 4b_{n-1},$$

 $b_n = -5a_{n-1} + 7b_{n-1};$
 $a_1 = 4, b_1 = 1.$

Rješenje. Iz prve rekurzije dobivamo $b_{n-1} = \frac{a_n + 2a_{n-1}}{4}$, odnosno $b_n = \frac{a_{n+1} + 2a_n}{4}$. Uvrštavajući dobiveno u drugu rekurziju dobivamo da je potrebno rješiti rekurziju

$$a_n - 5a_{n-1} + 6a_{n-2} = 0;$$
 $a_1 = 4, a_2 = -2a_1 + 4b_1 = -4.$

Rješenje dobivene rekurzije je $a_n = 2^{n+3} - 4 \cdot 3^n$, a sada lako nalazimo i da je $b_n = 2^{n+3} - 5 \cdot 3^n$.

5.3 Modeliranje pomoću rekurzija

Primjer 5.8. Na koliko načina možemo ploču $1 \times n$ popločati pločicama dimenzija 1×1 i 1×2 ?

Rješenje. Neka je a_n broj načina iz zadatka. Promotrimo prvu pločicu. Ukoliko je ona dimenzija 1×1 ostatak ploče možemo popločati na a_{n-1} načina, a ukoliko je ona dimenzija 1×2 onda ostatak možemo popločati na a_{n-2} načina. Dakle, vrijedi rekurzija

$$a_n = a_{n-1} + a_{n-2}.$$

Početni uvjeti su $a_1 = 1$, $a_2 = 2$. Preostaje nam samo za primjetiti da je $a_n = F_{n+1}$, gdje je $(F_n)_{n \in \mathbb{N}}$ Fibonaccijev niz.

Napomena 5.3. Fibonaccijev niz je definiran s $F_1 = F_2 = 1$, te $F_n = F_{n-1} + F_{n-2}$, $\forall n \geq 3$. Zatvorena formula za Fibonaccijeve brojeve dana je s

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right], \ \forall n \in \mathbb{N}.$$

Primjer 5.9.

- (a) Odredite broj podskupova skupa $\{1, 2, \ldots, n\}$ koji nemaju susjednih elemenata.
- (b) Koliko ima binarnih nizova duljine n koji nemaju susjednih jedinica?

Rješenje. Kao u dokazu Teorema 1.7. konstruiramo bijekciju između skupova opisanih pod (a) i binarnih nizova opisanih pod (b) (dakle, odmah vidimo da je pod (a) i pod (b) jednak odgovor). Pretpostavimo da znamo odgovor za svaki prirodan broj manji od n. Označimo s a_n traženi broj. Na zadnje mjesto u nizu možemo staviti ili 0 ili 1 (ili ćemo uzeti n-ti element ili nećemo). Ukoliko je 0, onda očito imamo a_{n-1} načina, a ukoliko je to 1, onda na (n-1)-vom mjestu ne smije biti 1, pa imamo a_{n-2} načina. Dakle, dobili smo rekurziju

$$a_n = a_{n-1} + a_{n-2},$$

s početnim uvjetima $a_1 = 2$, $a_2 = 3$, konačno $a_n = F_{n+2}$.

Primjer 5.10. Na koliko maksimalno područja *n* pravaca dijeli ravninu?

Rješenje. Zanima nas maksimalni broj, stoga možemo pretpostaviti da nikoja dva pravca nisu paralelna i da se nikoja tri ne sijeku u istoj točki. Označimo s a_n traženi broj. Kada na n-1 pravac dodamo još jedan, dobivamo n dijelova ravnine više no što smo imali. Očito je $a_1=2$, dakle, trebamo rješiti

$$a_n = a_{n-1} + n; \quad a_1 = 2.$$

Tipični način rješavanja dobivene rekurzije znamo, pokažimo sada tzv. teleskopiranje.

$$a_n = a_{n-1} + n = [a_{n-2} + (n-1)] + n = \dots$$

= $2 + 2 + 3 + \dots + n =$
= $\frac{n(n+1)}{2} + 1$.

 Zadatak 5.11. Neka je r_n broj djelova na koje dijagonale konveksnog n-terokuta djele njegovu unutrašnjost. Pretpostavimo da se nikoje 3 dijagonale ne sijeku u istoj točki. Nađite rekurziju i zatvorenu formulu za r_n . $\left[\text{Rj. } r_n = \frac{n^4 - 6n^3 + 23n^2 - 42n + 24}{24}\right]$

Rj.
$$r_n = \frac{n^4 - 6n^3 + 23n^2 - 42n + 24}{24}$$

Uputa. Dodamo n-tu točku i prebrojimo koliko novih djelova dobijemo. To radimo na taj način da tu novu točku spajamo s preostalima i to jednu po jednu i gledamo koliko smo novih djelova dobili u svakom koraku.

Tražena rekurzija je

$$r_n = r_{n-1} + \frac{n^3 - 6n^2 + 17n - 18}{6}, \ \forall n \ge 4, \ r_3 = 1,$$

koju lako rješavamo teleskopiranjem.

6 Funkcije izvodnice

Do sada smo pod rješenjem kombinatornih problema uglavnom podrazumijevali zatvorenu formulu, npr. n! za broj permutacija ili $\binom{n}{k}$ za broj k-kombinacija skupa od n elemenata. No svi kombinatorni problemi nemaju rješenje u obliku zatvorene formule pa smo npr. sa S(n,k) označili broj k particija skupa od n elemenata, a B_n za broj particija skupa od n elemenata. Neke probleme (odredite broj k kombinacija konačnog multiskupa, pogledajte **Primjer 4.9.** na stranici 16, odredite broj permutacija s ponavljanjem konačnog multiskupa, pogledajte **Primjer 4.3.** na stranici 14) trebalo je rastaviti na slučajeve i onda riješiti svaki slučaj posebno, pogledajte **Primjer 4.5.** na stranici 14. Kod takvih problema od velike pomoći su nam funkcije izvodnice koje ne samo da možemo shvatiti kao rješenje danog problema već su i moćan tehnički alat za rješavanje kombinatornih problema.

6.1 Obične funkcije izvodnice

Primjer 6.1. Na koliko načina možemo "usitniti" novčanicu od 20 kn ako na raspolaganju imamo kovanice od 1, 2 i 5 kn?

Rješenje. Označimo sa x, y i z broj kovanica od jedne, dvije i pet kuna. Tada problem glasi:

Koliko ima rješenja jednadžbe $x+2y+5z=20,\ x,y,z\geq 0,\ x,y,z\in\mathbb{Z}$?

Problem možemo riješiti rastavljanjem na slučajeve po npr. varijabli z. No dobili bismo previše slučajeva, a i želimo naći metodu koja rješava sve slične probeme.

Promotrimo izraz:

Raspišemo li ovaj produkt dobivamo sumu u kojoj svaki pribrojnik odgovara nekom iznosu isplaćenom u kovanicama po 1, 2 ili 5 kn. Jedan takav pribrojnik je

Rješenje je broj pribrojnika za koje se dobije da im je suma 20. Uz supstituciju

slijedi:

$$f(x) = (1 + x + x^2 + x^3 + \cdots) \cdot (1 + x^2 + x^4 + \cdots) \cdot (1 + x^5 + x^{10} + \cdots)$$
$$f(x) = a_0 + a_1 x + a_2 x^2 + \cdots$$

Treba odrediti koeficijent a_{20} (oznaka $\langle x^{20} \rangle$). Grubom silom dobivamo:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{20} x^{20} + \dots$$

[Rj. $a_{20} = 29$]

Došli smo do funkcije izvodnice za niz (a_n) . U osnovi smo problem riješili rastavljanjem (točnije, popisivanjem) svih mogućih slučajeva, no zbog kompaktnije notacije rješenje je ipak bilo jednostavnije za odrediti. \checkmark

Definicija 6.1. Za niz $(a_n)_{n\in\mathbb{N}}$ pridružena funkcija izvodnica (skraćeno FI) je formalni red potencija $\sum_{n=0}^{\infty} a_n x^n$.

Red nazivamo formalnim jer ne razmatramo pitanje konvergencije kao kod Taylorovih redova. Nas ne zanima vrijednost u određenoj točki x već isključivo koeficijenti. Osnovne operacije s formalnim redovima identične su kao i kod Taylorovih redova.

Definicija 6.2. Neka su $f_1(x) = \sum_{n=0}^{\infty} a_n x^n$ i $f_2(x) = \sum_{n=0}^{\infty} b_n x^n$ funkcije izvodnice. Tada definiramo: $(f_1 + f_2)(x) = \sum_{n=0}^{\infty} (a_n + b_n) x^n$ (3)

$$(f_1 f_2)(x) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k} x^n$$
(4)

$$\frac{d}{dx}f_1(x) = \sum_{n=0}^{\infty} na_n x^{n-1}$$
(5)

$$\int f_1(x) \, dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1} \tag{6}$$

Pročitajte poglavlje predavanja iz funkcija izvodnica i provjerite možete li izvesti osnovne operacije: iz danog niza odredite mu pripadnu funkciju izvodnicu i iz dane funkcije izvodnice odredite pripadni niz.

Prilikom određivanja koeficijenata koristimo svojstva Taylorovih redova:

Geometrijski red (konvergira za |x| < 1)

$$1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}$$

Prisjetimo se još nekih tvrdnji koje vrijede za Taylorove redove :

Binomni poučak

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Opći binomni poučak

$$(1 \pm x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} (\pm x)^k$$

Definicija 6.3. Neka je $\alpha \in \mathbb{R}, \ n \in \mathbb{N}.$ Tada se opći binomni koeficijent $\binom{\alpha}{n}$ definira kao

$$\binom{\alpha}{n} = \frac{\alpha (\alpha - 1) \cdots (\alpha - n + 1)}{n!}$$

Pomoću funckija izvodnica možemo opravdati metodu za rješavanje linearnih rekurzija s konstantnim koeficijentima. Ovdje će nas više zanimati modeliranje kombinatornih problema (kombinacije konačnog mutiskupa, permutacije s ponavljanjem).

Interpretacija binomnog poučka pomoću funkcija izvodnica

$$\binom{n}{k} = \text{broj } k\text{-kombinacija } n\text{-članog skupa}$$

Neka je $S = \{S_1, S_2, \cdots, S_n\}$ n-člani skup, te $A = \{S_{i_1}, S_{i_2}, \cdots, S_{i_k}\} \subseteq S$ k-člani podskup od S. Na koliko načina možemo odabrati A?

Prvi element možemo uzeti 0 puta ili jednom, drugi element možemo uzeti 0 puta ili jednom, ... i n-ti element možemo uzeti 0 puta ili jednom, odnosno:

$$(1+x)\cdot(1+x)\cdot\dots\cdot(1+x) = (1+x)^n$$

Dakle $f(x) = (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$ je funkcija izvodnica za broj kombinacija n-članog skupa.

Što je s kombinacijama s ponavljanjem *n*-članog skupa? Svaki element možemo uzeti proizvoljno mnogo puta!

$$f(x) = (1 + x + x^{2} + \cdots) \cdot (1 + x + x^{2} + \cdots) \cdots (1 + x + x^{2} + \cdots)$$

$$= \frac{1}{1 - x} \cdot \frac{1}{1 - x} \cdot \cdots \cdot \frac{1}{1 - x}$$

$$= (\frac{1}{1 - x})^{n}$$

$$= a_{0} + a_{1}x + a_{2}x^{2} + \cdots$$

Dobiveni red nazivamo funkcijom izvodnicom za kombinacije multiskupa $\{S_1^{\infty}, S_2^{\infty}, \cdots, S_n^{\infty}\}$.

Pravilo inverzije

$$\begin{pmatrix} -n \\ k \end{pmatrix} = \frac{(-n)(-n-1)\cdots(-n-k+1)}{k!}$$

$$= \frac{(-1)^k(n+k-1)(n+k)\cdots(n)}{k!}$$

$$= (-1)^k \binom{n+k-1}{k}$$

Vratimo se sad primjeru k-kombinacija multiskupa $\{S_1^{\infty}, S_2^{\infty}, \cdots, S_n^{\infty}\}$:

$$f(x) = \left(\frac{1}{1-x}\right)^n$$

$$= (1-x)^{-n}$$

$$= \sum_{k=0}^{\infty} {\binom{-n}{k}} (-x)^k$$

$$= \sum_{k=0}^{\infty} (-1)^k {\binom{n+k-1}{k}} (-1)^k x^k$$

$$= \sum_{k=0}^{\infty} {\binom{n+k-1}{k}} x^k$$

Zadatak 6.2. Odredite funkciju izvodnicu za broj kombinacija multiskupa $\{a^2, b, c^2, d\}$ te odredite koliko ima 4-kombinacija.

 \checkmark

Rješenje. Elemente a i c možemo uzeti 0,1 ili 2 puta, dok elemente b i c možemo uzeti ili ne uzeti:

$$f(x) = (1 + x + x^{2})(1 + x)(1 + x + x^{2})(1 + x)$$

Sada je lako to izmnožiti te potom očitati $\langle x^4 \rangle$

$$f(x) = 1 + 4x + 8x^2 + 10x^3 + 8x^4 + 4x^5 + x^6$$

 $\implies \langle x^4 \rangle = 8$

Zadatak 6.3. Odredite funkciju izvodnicu za broj kombinacija multiskupa $\{a^{10}, b^7, c^{12}\}$ te odredite koliko ima 15-kombinacija.

Rješenje. Element a možemo uzeti proizvoljan broj puta, od 0 do 10, b od 0 do 7 puta i c od 0 do 12 puta:

$$f(x) = (1+x+\dots+x^{10}) (1+x+\dots+x^{7}) (1+x+\dots+x^{12})$$

$$= \frac{1-x^{11}}{1-x} \cdot \frac{1-x^{8}}{1-x} \cdot \frac{1-x^{13}}{1-x}$$

$$= (1-x^{11}) \cdot (1-x^{8}) \cdot (1-x^{13}) \cdot (1-x)^{-3}$$

$$= \left\{ (1-x)^{-3} = \sum_{k} {\binom{-3}{k}} (-x)^{k} = \sum_{k} {\binom{k+2}{k}} x^{k} \right\} =$$

$$= (1-x^{8}-x^{11}-x^{13}+x^{19}+\dots) \cdot \sum_{k} {\binom{k+2}{k}} x^{k}$$

$$\Longrightarrow \langle x^{15} \rangle = {\binom{15+2}{15}} - {\binom{7+2}{7}} - {\binom{4+2}{4}} - {\binom{2+2}{2}} = 79$$

Zadatak 6.4. Na koliko načina se 24 jednaka bombona može raspodijeliti među 4 djece tako da svako dijete dobije barem 3, ali ne više od 8 bombona?

Rješenje. Svakom od njih četvero možemo dati 3, 4, ... ili 8 bombona.

$$\begin{split} f\left(x\right) &= \left(x^3 + x^4 + \dots + x^8\right)^4 \\ &= x^{12} \cdot \left(1 + x + \dots + x^5\right)^4 \\ &= x^{12} \cdot \left(\frac{1 - x^6}{1 - x}\right)^4 \\ &= x^{12} \cdot \left(1 - x^6\right)^4 \left(1 - x\right)^{-4} \\ &= x^{12} \cdot \left(1 - 4x^6 + 6x^{12} - 4x^{18} + x^{24}\right) \cdot \sum_{k=0}^{\infty} {\binom{-4}{k}} \left(-x\right)^k \\ &= \left(x^{12} - 4x^{18} + 6x^{24} - 4x^{30} + x^{36}\right) \cdot \sum_{k=0}^{\infty} {\binom{k+3}{k}} x^k \\ &\left\langle x^{24} \right\rangle = {\binom{12+3}{12}} - 4 \cdot {\binom{6+3}{6}} + 6 \cdot {\binom{3}{0}} \end{split}$$

Zadatak 6.5. Broj particija $p_1(n)$ od n u različite sumande jednak je broju particija $p_2(n)$ od n u neparne sumande. Dokažite!

Rješenje. Naći ćemo funkcije izvodnice za oba problema, i pokazati da su jednake! Same brojeve takvih particija ne znamo izračunati, pa nam funkcije izvodnice uvelike pomažu u ovom slučaju.

Pogledajmo particije od n=6 u različite i u neparne sumande:

$$\begin{array}{lll} 6 & = 1 + 2 + 3 & = 1 + 1 + 1 + 1 + 1 + 1 \\ & = 1 + 5 & = 1 + 1 + 1 + 3 \\ & = 2 + 4 & = 1 + 5 \\ & = 6 & = 3 + 3 \end{array}$$

Funkciju izvodnicu f_1 za računanje $p_1(n)$ nije teško odrediti, svaki od sumanda možemo uzeti 0 ili 1 put, dakle:

$$f_1(x) = (1+x) \cdot (1+x^2) \cdots (1+x^n) \cdots$$
$$= \prod_{k=1}^{\infty} (1+x^k)$$

Analogno odredimo i f_2 , smijemo uzimati samo neparne sumande, ali ih možemo uzeti proizvoljno mnogo puta:

$$f_{2}(x) = (1 + x + x^{2} + \cdots) \cdot (1 + x^{3} + x^{6} + \cdots) \cdot (1 + x^{5} + x^{10} + \cdots) \cdots$$
$$= \frac{1}{1 - x} \cdot \frac{1}{1 - x^{3}} \cdot \frac{1}{1 - x^{5}} \cdots$$

Preostaje pokazati da su te dvije funkcije jednake:

$$f_{1}(x) = \prod_{k=1}^{\infty} (1 + x^{k})$$

$$= \prod_{k=1}^{\infty} \left(\frac{1 - x^{2k}}{1 - x^{k}}\right)$$

$$= \frac{1 - x^{2}}{1 - x} \cdot \frac{1 - x^{4}}{1 - x^{2}} \cdot \frac{1 - x^{6}}{1 - x^{3}} \cdot \frac{1 - x^{8}}{1 - x^{4}} \cdots$$

$$= f_{2}(x)$$

Jer se svi faktori oblika $1 - x^{2k}$ pokrate.

Napomena 6.4. Pogrešno bi bilo funkciju izvodnicu za broj particija u različite sumande iz prethodnog zadatka definirati kao $f(x) = \underbrace{(1+x)\cdot(1+x)\cdots(1+x)}_{n \text{ puta}}$. Do tog rezultata dolazimo razmišljajući na sljedeći način; u

rastavu broja n na različite sumande, jedinicu ćemo uzeti ili ne uzeti, analogno, dvojku ćemo uzeti ili ne uzeti itd. To razmišljanje je definitivno točno, ali nam ovdje **svaki od odabira nije "jednako vrijedan"**, kao kod npr. odabira k-članog podskupa n-članog skupa! Primjetimo da bismo u tom slučaju koeficijent $\langle x^n \rangle$ koji odgovara broju rastava broja n na različite sumande dobili na jedan jedini način; iz svake zagrade odaberemo x (dakle ni iz jedne ne odaberemo 1) i sve ih pomnožimo. Vidjeli smo da za n=6 takav prikaz nije jedinstven (zapravo, za svaki $n \in \mathbb{N}, n \geq 3$ takav prikaz nije jedinstven). Uočimo da svaki od navedenih rastava u primjeru za n=6 odgovara jednom od načina na koji možemo dobiti x^n iz funkcije f_1 i obratno:

$$1 + 2 + 3 \longleftrightarrow x^{1} \cdot x^{2} \cdot x^{3}$$
$$1 + 5 \longleftrightarrow x^{1} \cdot x^{5}$$
$$2 + 4 \longleftrightarrow x^{2} \cdot x^{4}$$
$$6 \longleftrightarrow x^{6}$$

Jasno je da isto vrijedi za svaki $n \in \mathbb{N}$. Rješavanje raznih kombinatornih problema pomoću funkcija izvodnica naizgled zaobilazi "problem" zbrajanja, stvar se svodi na množenje, zapravo je u pozadini

$$x^n \cdot x^m = x^{n+m}$$

Upravo bi iz tih razloga bilo jednako krivo definirati dotičnu funkciju kao $f(x) = (1+x) \cdot (1+2x) \cdots (1+nx)$.

6.2 Eksponencijalne funkcije izvodnice

Veza permutacija i kombinacija n-članog skupa:

$$a_k = P_k^n = \binom{n}{k} \cdot k! \Longrightarrow \binom{n}{k} = \frac{a_k}{k!}$$
$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Dakle $e(x) = \sum_{k=0}^{n} \frac{a_k}{k!} x^k$ je eksponencijalna funkcija izvodnica za permutacije n-članog skupa.

Definicija 6.5. Za niz $(a_n)_{n\in\mathbb{N}}$ pridružena *eksponencijalna funkcija izvodnica* (skraćeno EFI) je formalni red potencija $\sum_{n=1}^{\infty} \frac{a_n}{n!} x^n$.

Definicija 6.6. Neka su $e_1(x) = \sum_{n=0}^{\infty} \frac{a_n}{n!} x^n$ i $e_2(x) = \sum_{n=0}^{\infty} \frac{b_n}{n!} x^n$ eksponencijalne funkcije izvodnice. Tada definiramo:

$$(e_1 + e_2)(x) = \sum_{n=0}^{\infty} \frac{a_n + b_n}{n!} x^n$$
 (7)

$$(e_1 e_2)(x) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} \frac{a_k b_{n-k}}{n!} x^n$$
 (8)

$$\frac{d}{dx}e_1(x) = \sum_{n=0}^{\infty} \frac{a_n}{(n-1)!} x^{n-1}$$
(9)

$$\int e_1(x) dx = \sum_{n=0}^{\infty} \frac{a_n}{(n+1)!} x^{n+1}$$
(10)

Primjer 6.6. Neka je $S = \{a_1^{n_1}, a_2^{n_2}, \cdots, a_k^{n_k}\}$ multiskup. Odredite eksponencijalnu funkciju izvodnicu za permutacije multiskupa.

Rješenje. Element a_i možemo uzeti od 0 do n_i puta, i tako $\forall i = 1, 2, \dots, k$:

$$e(x) = \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^{n_1}}{n_1!}\right) \cdot \left(1 + \frac{x}{1!} + \dots + \frac{x^{n_2}}{n_2!}\right) \cdots \left(1 + \frac{x}{1!} + \dots + \frac{x^{n_k}}{n_k!}\right)$$

Primjer 6.7. Koliko ima riječi duljine 4 sastavljenih od slova B,A,N,A,N i A?

Rješenje. Traže se 4-permutacije multiskupa $S = \{A^3, B, N^2\}$. Slovo A možemo uzeti od 0 do 3 puta, B uzeti ili ne, a C možemo uzeti 0, 1 ili 2 puta:

$$e(x) = \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}\right) \cdot (1+x) \cdot \left(1 + x + \frac{x^2}{2!}\right)$$
$$= 1 + 3x + 4x^2 + \frac{19}{6}x^3 + \frac{19}{12}x^4 + \frac{1}{2}x^5 + \frac{1}{12}x^6$$
$$\frac{a_4}{4!} = \left\langle x^4 \right\rangle = \frac{19}{12} \Longrightarrow a_4 = 38$$

 \checkmark

 \checkmark

Zadatak 6.8. Koliko ima ternarnih nizova duljine n, tako da imamo paran broj nula, neparan broj jedinica i proizvoljno dvojki?

Rješenje. Za nule uzimamo samo parne potencije, za jedinice neparne, a za dvojke sve:

$$e(x) = \left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots\right) \cdot \left(x + \frac{x^3}{3!} + \cdots\right) \cdot \left(1 + x + \frac{x^2}{2!} + \cdots\right)$$

$$= \frac{e^x + e^{-x}}{2} \cdot \frac{e^x - e^{-x}}{2} \cdot e^x$$

$$= \frac{1}{4} \cdot \left(e^{2x} - e^{-2x}\right) \cdot e^x$$

$$= \frac{1}{4} \cdot \left(e^{3x} - e^{-x}\right)$$

$$= \frac{1}{4} \cdot \left(\sum_{k=0}^{\infty} \frac{(3x)^k}{k!} - \sum_{k=0}^{\infty} \frac{(-x)^k}{k!}\right)$$

$$= (7) = \sum_{k=0}^{\infty} \frac{1}{4} \cdot \frac{3^k - (-1)^k}{k!} x^k$$

$$\langle x^n \rangle = \frac{1}{4} \cdot \frac{3^n - (-1)^n}{n!}$$

$$\Longrightarrow a_n = \frac{3^n - (-1)^n}{4}$$

Napomena 6.7. Tokom rješavanja koristili smo rezultate koje dobijemo zbrajanjem, odnosno oduzimanjem sljedećih jednadžbi:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

 $e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!} + \cdots$

Definicija 6.8. Deranžman je permutacija bez fiksnih točaka.

Zadatak 6.9. Odredite EFI za deranžmane!

Rješenje. Označimo broj deranžmana n- članog skupa sa d_n , EFI za broj deranžmana sa d(x). Sada je $d(x) = \sum_{n=0}^{\infty} \frac{d_n}{n!} x^n.$

Skup svih permutacija S_n skupa od n elemenata, možemo razdvojiti na disjunktnu uniju $\bigcup_{k=0}^{n} S_n^{(k)}$ gdje je $S_n^{(k)}$ skup svih permutacija n-članog skupa koje imaju k fiksnih točaka, i to za svaki $k=0,1,\cdots,n$. Dobivamo

$$n! = \sum_{k=0}^{n} \binom{n}{k} d_{n-k}$$

Pomnožimo dobiveni rezultat sa $\frac{x^n}{n!}$, imamo

$$x^{n} = \sum_{k=0}^{n} \binom{n}{k} \frac{d_{n-k}}{n!} x^{n}, \ \forall n \in \mathbb{N}$$

$$\sum_{n=0}^{\infty} x^n = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} \frac{d_{n-k}}{n!} x^n$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} \frac{d_{n-k}}{n!} x^n$$

$$= (8) = \left(\sum_{n=0}^{\infty} \frac{x^n}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{d_n}{n!} x^n\right)$$

$$= e^x \cdot d(x)$$

$$\implies d(x) = \frac{1}{1-x} \cdot e^{-x}$$

Preostaje razviti dobivenu funkciju:

$$d(x) = \frac{1}{1-x} \cdot e^{-x}$$

$$= \sum_{n=0}^{\infty} x^n \sum_{n=0}^{\infty} \frac{(-x)^n}{n!}$$

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(-1)^k}{k!} x^n$$

Sada lako vidimo koliki je broj deranžmana n-članog skupa, naime $\langle x^n \rangle = \sum_{k=0}^n \frac{(-1)^k}{k!}$ pa je

$$d_n = n! \cdot \sum_{k=0}^{n} \frac{(-1)^k}{k!}$$

7 Formula uključivanja i isključivanja

Za dva disjunktna skupa, A i B, znamo da je broj elemenata njihove unije jednak zbroju elemenata u svakom od njih. Općenito vrijedi $|X \cup Y| \le |X| + |Y|$ (pri zbrajanju kardinalnih brojeva skupova dvaput su brojani elementi presjeka). Vrijedi

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Teorem 7.1. Formula uključivanja i isključivanja

Neka je S konačan skup i $A_1, A_2, \ldots, A_n \subseteq S$. Tada je broj elemenata njihove unije

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| + \ldots + (-1)^{n-1} \cdot |A_1 \cap A_2 \cap \ldots \cap A_n|$$

Odatle slijedi:

$$|\bar{A}_1 \cap \bar{A}_2 \cap \ldots \cap \bar{A}_n| = |S| - \sum_{i=1}^n |A_i| + \sum_{i < j} |A_i \cap A_j| - \ldots + (-1)^n |A_1 \cap \ldots \cap A_n|$$

Zadatak 7.1. Neka je $S = \{1, 2, ..., 10^6\}$. Koliko je brojeva iz S koji nisu djeljivi ni s dva, ni s tri niti sa četiri?

Rješenje. Označimo: $A_i = \{x \in S : i | x\}$. Vrijedi $|A_i| = \left\lfloor \frac{10^6}{i} \right\rfloor$. Nas zanima $|\bar{A}_2 \cap \bar{A}_3 \cap \bar{A}_4|$, a on je, prema drugoj tvrdnji prethodnog teorema, jednak

$$\begin{aligned} \left| \bar{A}_2 \cap \bar{A}_3 \cap \bar{A}_4 \right| &= |S| - |A_2| - |A_3| - |A_4| + |A_2 \cap A_3| + |A_2 \cap A_4| + |A_3 \cap A_4| - |A_2 \cap A_3 \cap A_4| \\ &= 166666 \end{aligned}$$

Zadatak 7.2. Koliko brojeva dijeli barem jedan od brojeva 10^{60} , 20^{50} , 30^{40} ?

Rješenje. Označimo $A = \left\{d \in \mathbb{N} : d | 10^{60}\right\}, B = \left\{d \in \mathbb{N} : d | 20^{50}\right\}, C = \left\{d \in \mathbb{N} : d | 30^{40}\right\}$ Kako je $10^{60} = 2^{60} \cdot 5^{60}$ svi brojevi iz A su oblika $2^{\alpha_1} \cdot 5^{\alpha_2}$, uz $\alpha_1, \alpha_2 \leq 61$. Zato je $|A| = 61^2$. Istim zaključivanjem nalazimo $|B| = 101 \cdot 51$ i $|C| = 41^3$ Zanima nas i koliko ima brojeva koji su istovremeno i u A i u B. Oni u svom rastavu na proste faktore smiju imati samo dvojke i petice, pri čemu dvojki smije biti najviše 60 (zbog oblika brojeva iz A), a petica najviše 50 (zbog oblika brojeva iz B). Zato je $|A \cap B| = 61 \cdot 51$ Slično je i $|B \cap C| = 41^2, |A \cap C| = 41^2, |A \cap B \cap C| = 41^2$. Sada prema formuli uključivanja i isključivanja nalazimo $|A \cap B \cap C| = 73001$

Zadatak 7.3. Pustinjom putuje karavana od devet deva. Nakon odmora u oazi, potrebno je promijeniti redoslijed deva tako da niti jedna deva ne hoda iza one deve iza koje je hodala prije dolaska u oazu. Na koliko je načina to moguće napraviti?

Rješenje. Ako je S skup svih redoslijeda deva, a A_i ={redoslijed u kojem i-ta deva hoda iza (i-1). deve}, želimo utvrditi koliko je $|\bar{A}_1 \cap \bar{A}_2 \cap \ldots \cap \bar{A}_9|$. Znamo da je |S| = 9! i $|A_k| = 8!$, za $2 \le k \le 9$ (dvije deve promatramo kao blok). Isto tako znamo da za sve i, j vrijedi $A_i \cap A_j = 7!$ (promatramo ili dva bloka od dvije deve i još 5 deva ili, u slučaju da su i i j uzastopni, jedan blok od tri deve i još 6 deva). Sličnim razmišljanjem dolazimo do $|A_i \cap A_j \cap A_k| = 6!, \ldots, |A_1 \cap A_2 \cap \ldots \cap A_9| = 1$. Zato je traženi broj redoslijeda

$$|\bar{A}_1 \cap \bar{A}_2 \cap \ldots \cap \bar{A}_9| = |S| - \sum_{i=1}^n |A_i| + \sum_{i < j} |A_i \cap A_j| - \ldots + (-1)^9 \cdot |A_1 \cap A_2 \cap \ldots \cap A_9|$$

$$= 9! - 8 \cdot 8! + {8 \choose 2} \cdot 7! - {8 \choose 3} \cdot 6! + \ldots - 1$$

$$= \sum_{k=0}^8 (-1)^k \cdot {8 \choose k} \cdot (9 - k)!$$

31

Zadatak 7.4. Na početku nove sezone RK Zagreb potpisuje ugovore s pojačanjima. Na potpisivanje je došlo n rukometaša, svaki u pratnji agenta i liječnika. Na koliko načina možemo tu grupu od 3n ljudi rasporediti u tročlane grupe sastavljene od jednog rukometaša, jednog agenta i jednog liječnika, ali tako da nijedan rukometaš nije u grupi s oba svoja pratitelja?

Rješenje. Svih mogućih grupiranja u trojke ima $n!^2$ (rukometaš određuje grupu, a zatim agente i liječnike možemo rasporediti po grupama na n! načina). Neka je A_i skup onih grupiranja u kojima je i-ti rukometaš u grupi sa svojim liječnikom i agentom. Tada je $|A_i| = (n-1)!^2$ (jedna je grupa zadana, brojimo načine na koliko se može sastaviti preostalih n-1 grupa), $|A_i \cap A_j| = (n-2)!^2, \ldots, |A_1 \cap A_2 \cap \ldots \cap A_n| = 1$. Na kraju je

$$|\bar{A}_1 \cap \bar{A}_2 \cap \ldots \cap \bar{A}_n| = n!^2 - \sum_{i=1}^n |A_i| + \sum_{i < j} |A_i \cap A_j| - \ldots + (-1)^n \cdot |A_1 \cap A_2 \cap \ldots \cap A_n|$$

$$= n!^2 - n \cdot (n-1)!^2 + \binom{n}{2} \cdot (n-2)!^2 - \binom{n}{3} \cdot (n-3)!^2 + \ldots (-1)^n \cdot \binom{n}{n} 0!^2$$

$$= \sum_{k=0}^n (-1)^k \cdot \binom{n}{k} \cdot (n-k)!^2$$

Zadatak 7.5. Odredi broj deranžmana n-članog skupa

Rješenje. Neka je S_n skup svih permutacija n-članog skupa. Nas zanima koliko je permutacija $\pi \in S_n$ takvih da je $\pi(i) \neq i, \forall i$. Uvedimo oznaku $A_i = \{\pi \in S_n : \pi(i) = i\}$

$$|S_n| = n!$$

$$|A_i| = (n-1)!$$

$$|A_i \cap A_j| = (n-2)!$$

$$\vdots$$

$$\vdots$$

$$|A_1 \cap A_2 \cap \ldots \cap A_n| = 1$$

Sada, slično kao u prethodna dva zadatka, dolazimo do formule za broj deranžmana

$$\sum_{k=0}^{n} (-1)^n \cdot \binom{n}{k} \cdot (n-k)!$$

Definicija 7.2. Eulerova funkcija broja n, $\varphi(n)$, je broj prirodnih brojeva manjih ili jednakih od n koji s brojem n nemaju zajedničkih djelitelja

Zadatak 7.6. Pronađi izraz za Eulerovu funkciju

Rješenje. Broj n možemo prikazati kao umnožak njegovih prostih faktora, $n=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot\ldots\cdot p_k^{\alpha_k}$ Neka je A_i skup svih višekratnika broja $p_i,\ 1\leq i\leq k$ $\varphi(n)=\left|\bar{A}_1\cap\bar{A}_2\cap\ldots\cap\bar{A}_k\right|=n-|A_1\cup A_2\cup\ldots\cup A_k|$

$$|A_{i}| = \frac{n}{p_{i}}$$

$$|A_{i} \cap A_{j}| = \frac{n}{p_{i} \cdot p_{j}}$$

$$\vdots$$

$$|A_{1} \cap A_{2} \cap \ldots \cap A_{k}| = 1$$

$$\varphi(n) = n - (\frac{n}{p_{1}} + \frac{n}{p_{2}} + \ldots + \frac{n}{p_{k}} - \frac{n}{p_{1} \cdot p_{2}} - \frac{n}{p_{1} \cdot p_{3}} - \ldots - \frac{n}{p_{k-1} \cdot p_{k}} + \ldots + (-1)^{k} \cdot \frac{n}{p_{1} \cdot p_{2} \cdot \ldots \cdot p_{k}})$$

$$= n(1 - \frac{1}{p_{1}})(1 - \frac{1}{p_{2}}) \cdot \ldots \cdot (1 - \frac{1}{p_{k}})$$

Zadatak 7.7. Koliko je najkraćih puteva u cjelobrojnoj mreži od ishodišta do točke (7,5) koji ne prolaze segmentima [(2,2),(3,2)] i [(4,2),(4,3)]

$$\left[\text{Rj. } \binom{7+5}{7} - \binom{2+2}{2} \cdot \binom{4+3}{4} - \binom{4+2}{2} \cdot \binom{3+2}{2} + \binom{2+2}{2} \cdot 1 \cdot \binom{3+2}{2}\right]$$

8 Teorija grafova

8.1 Uvod

Definicija 8.1. Graf je uređen par (V, E), pri čemu je V skup vrhova, a E skup bridova. Skup bridova E je podskup svih dvočlanih podskupova od V. Za vrhove kažemo da su susjedni ako je $\{A, B\} \in E$. Vrh A i brid e su incidentni ako je $A \in e$, tj. ako postoji e takav da $e = \{A, B\}$ za neki B.

Primjer 8.1. Graf sa vrhovima $V = \{a, b, c, d, e, f, g\}$ i bridovima $E = \{\{a, b\}, \{a, d\}, \{b, f\}, \dots, \{f, g\}\}$

Definicija 8.2. Multigraf je graf čiji bridovi čine multiskup. Petlja je brid koji spaja vrh sa samim sobom. Stupanj vrha v(d(v)) je broj bridova koji su incidentni sa vrhom v.

Napomena 8.3. Često graf, u smislu definicije 7.1., nazivamo jednostavan graf.

Teorem 8.4. (Lema o rukovanju) U jednostavnom grafu G=(V,E) zbroj stupnjeva svih vrhova je paran, tj. $\sum_{v\in V}d(v)$ je paran.

Zadatak 8.2. Je li moguće da u grupi od sedam osoba svaka osoba ima točno tri poznanika.

Rješenje. Pokušajmo problem svesti na graf. Neka nam vrhovi predstavljaju osobe. Nadalje, vrh A je spojen sa vrhom B ako i samo ako se osoba A i B poznaju. Kada bi svaka osoba imala točno tri poznanika tada bi stupanj svakog vrha bio tri, tj. $d(v) = 3, \forall v \in V$. Sada je zbroj stupnjeva jednak

$$\sum_{v \in V} d(v) = 7 \cdot 3 = 21,$$

što je u kontradikciji sa lemom o rukovanju. Dakle, situacija nije moguća.

Definicija 8.5. Šetnja je niz vrhova (v_1, v_2, \dots, v_k) pri čemu su v_i i v_{i+1} susjedni za $i = 1, 2, \dots, k-1$. **Ciklus** je šetnja pri kojoj je $v_1 = v_k$.

Definicija 8.6. Graf $G_1 = (V_1, E_1)$ je **podgraf** od G = (V, E) ako je $V_1 \subseteq V$, a $E_1 \subseteq \{\{v_i, v_j\} \in E : v_i, v_j \in V_1\}$. Ako je $E_1 = \{\{v_i, v_j\} \in E : v_i, v_j \in V_1\}$ tada kažemo da je G_1 inducirani podgraf.

Definicija 8.7. Grafovi $G_1 = (V_1, E_1)$ i $G_2 = (V_2, E_2)$ su **izomorfni** ako postoje bijekcije $\theta : V_1 \longrightarrow V_2$ i $\varphi : E_1 \longrightarrow E_2$ takve da je vrh v incidentan sa bridom e u G_1 ako i samo ako je $\theta(v)$ incidentan sa bridom $\varphi(e)$ u G_2 .

Napomena 8.8. Ako su grafovi G_1 i G_2 izomorfni onda vrijedi

- $(1) |V_1| = |V_2|$
- (2) $|E_1| = |E_2|$
- (3) $d(v) = d(\theta(v)), \forall v \in V_1$
- (4) Ako je (v_0, v_1, \dots, v_0) ciklus duljine n onda je $(\theta(v_0), \theta(v_1), \dots, \theta(v_0))$ isto ciklus duljine n.
- (5) Inducirani podgraf sa $V \subseteq V_1$ je izomorfan s induciram podgrafom $\theta(V) \subseteq V_2$.

Zadatak 8.3. Odredite jesu li sljedeći grafovi izomorfni.

Rješenje. Odmah uočavamo da je broj vrhova i broj bridova isti u oba grafa. Također vidimo da u oba grafa postoje 4 vrha stupnja 2 i 4 vrha stupnja 3. Pokušajmo provjeriti svojstvo 5 iz gornje napomene. Promotrimo inducirani podgraf $G = (\{a, e, g, c\}, \{\{ae\}, \{gc\}\})$. Vrhovi tog podgrafa su stupnja 3 pa se moraju preslikavati u vrhove $\{1, 2, 5, 6\}$, ali kako god ih preslikali ta dva podgrafa neće biti izomorfna. Zaključujemo, grafovi nisu izomorfni.

Zadatak 8.4. Ispišite sve izomorfne klase grafa koji ima 4 vrha.

Rješenje.

Primjetite da slučaj |E|=i ima isto klasa kao i slučaj |E|=6-i. To je zato što slučaj |E|=6-i dobijemo tako da u slučaju |E|=i sve bridove obrišemo, a sve točke koje nisu bile spojene bridom spojimo.

Zadatak 8.5. Jesu li slijedeći grafovi izomorfni?

Rješenje. Uzmimo neka se a preslikava u 1 (ovu pretpostavku uzmimamo jer su grafovi simetrični tj. svi vrhovi su "ravnopravni"). Kada bi grafovi bili izomorfni moralo bi vrijediti $\{b,c,f,g\} \longrightarrow \{2,4,5,7\}$ jer su to susjedni vrhovi vrhu a odnosno vrhu 1. Promotrimo li inducirani podgraf sa vrhovima $\{f,g,b,c\}$ i inducirani podgraf sa vrhovima $\{7,4,5,2\}$ vidimo da možemo uzeti: $b\mapsto 4,c\mapsto 7,g\mapsto 5,f\mapsto 2$. Preostaje nekako pridružiti $\{d,e\} \longrightarrow \{3,6\}$. Pridružimo: $d\mapsto 3$ jer d nije susjedan sa g a 3 nije susjedan sa g i $e\mapsto 6$. Sada lako provjerimo da su grafovi zaista izomorfni.

Zadatak 8.6. Odredite broj multigrafova koji imaju n vrhova i m bridova.

Rješenje. Neka je $V = \{v_1, \cdots, v_n\}$ skup vrhova. Bridovi su ili petlje ili oblika $e = \{v_i, v_j\}, i \neq j$. Zanima nas koliko ih ima različitih. Različitih petlji ima n (za svaki vrh jedna petlja), a bridova oblika $e = \{v_i, v_j\}, i \neq j$ ima $\binom{n}{2}$. Još preostaje odabrati koliko puta se koji brid pojavljuje u grafu, pa je rješenje $\binom{\binom{n}{2}+m-1}{m}$ \checkmark

8.2 Povezanost grafova

Zadatak 8.7. Ako u grafu $\mathcal{G} = (V, E)$ postoji šetnja od u do v, onda postoji i put od u do v. Dokažite!

Rješenje. Neka je $(u, e_1, v_1, \ldots, e_n, v)$ šetnja od u do v, ako je to put nema se šta dokazivati, ako nije, onda postoje indeksi i, j, i < j takvdi da je $v_i = v_j$, tada je $(u, e_1, \ldots, v_i, e_{j+1}, v_{j+1}, \ldots, v)$ također šetnja od u do v, ako je to i put smo gotovi, u protivnom ponovimo postupak, jer je šetnja konačna algoritam će u nekom trenutku stati.

Definicija 8.9. Kažemo da je graf $\mathcal{G} = (V, E)$ **povezan** ako postoji put između svaka dva vrha, ako graf nije povezan kažemo da je **nepovezan**.

Definicija 8.10. Komponenta povezanosti je maksimalan povezan neprazan podgraf, tj. povezan podgraf koji nije pravi podgraf ni u kojem drugom povezanom podgrafu.

Napomena 8.11. Komponente povezanosti smo mogli definirati kao klase ekvivalencije relacije \sim na V definirane na sljedeći način:

 $u \sim v \iff \text{postoji put od } u \text{ do } v$

Pokažimo da je to zaista relacija ekvivalencije:

(1) Refleksivnost: Neka je $u \in V$ proizvoljan vrh iz V. Put od u do u je (u), dakle $u \sim u$, $\forall u \in V$

 \checkmark

(2) Simetričnost:

Neka su $u, v \in V$ proizovoljni vrhovi iz V takvi da je $u \sim v$. Neka je $(u, e_1, v_1, \dots, e_n, v)$ put od u do v. Tada je

$$(v, e_n, \ldots, v_1, e_1, u)$$

put od v do u pa je $v \sim u$.

(3) Tranzitivnost:

Neka su $u, v, z \in V$ proizovljni vrhovi iz V takvi da je $u \sim v$ i $v \sim z$. Neka je $(u, e_1, v_1, \ldots, e_n, v)$ put od u do v i $(v, f_1, w_1, \ldots, f_m, z)$ put od v do z.

Očito je $(u, e_1, v_1, \ldots, e_n, v, f_1, w_1, \ldots, f_m, z)$ šetnja od u do z po **zadatku 8.7.** postoji put od u do z, dakle $u \sim z$.

Zadatak 8.8. Dokažite da je jednostavan graf sn vrhova i strogo više od $\binom{n-1}{2}$ bridova povezan.

Rješenje. Pretpostavimo suprotno, neka je \mathcal{G} nepovezan graf s više od $\binom{n-1}{2}$ bridova i n vrhova. Označimo komponente povezanosti s $\mathcal{G}_1, \mathcal{G}_2, \dots, \mathcal{G}_m$. Promatramo \mathcal{G}_1 i $\mathcal{G}_1^C = \bigcup_{i=1}^m \mathcal{G}_i$.

 \mathcal{G}_1 ima najviše bridova ako je potpun graf. Neka \mathcal{G}_1 ima x vrhova, tada je $|E\left(\mathcal{G}_1\right)| \leq |E\left(\mathcal{K}_x\right)|$, također, $|E\left(\mathcal{G}_1^C\right)| \leq |E\left(\mathcal{K}_{n-x}\right)|$.

Tada je $|E| \le {x \choose 2} + {n-x \choose 2} = x^2 - nx + \frac{n^2 - n}{2} =: f(x)$. Jer je $x \in \{1, 2, ..., n-1\}$, i koeficijent uz x^2 strogo pozitivan, f(x) postiže maksimum na rubovima segmenta, no

$$\begin{split} f\left(1\right) &= \binom{1}{2} + \binom{n-1}{2} &= \binom{n-1}{2} \\ f\left(n-1\right) &= \binom{n-1}{2} + \binom{1}{2} &= \binom{n-1}{2} \\ \Longrightarrow \max_{x \in [1, n-1]} f\left(x\right) &= \binom{n-1}{2} \Longrightarrow |E| \leq \binom{n-1}{2} \Longrightarrow \Leftarrow \end{split}$$

Definicija 8.12. Stablo je povezan graf koji nema ciklus. List je vrh stupnja 1.

Teorem 8.13. Povezan graf $\mathcal{G} = (V, E)$ sa n vrhova je stablo akko |E| = n - 1.

Zadatak 8.9. Dokažite da stablo koje ima vrh stupnja d ima barem d listova.

Rješenje. Pretpostavimo suprotno, $\exists v \in V$ takav da je d(v) = d i graf ima manje od d listova. Po **teoremu 8.13.** znamo da je |E| = n - 1, jer je $2|E| = \sum_{v \in V} d(v)$ imamo:

$$2\left(n-1\right) = \sum_{v \in V} d\left(v\right) \geq \underbrace{d}_{1} + \underbrace{\left(d-1\right) \cdot 1}_{2} + \underbrace{\left(n-d\right) \cdot 2}_{3} = 2n-1 \Rightarrow \Leftarrow$$

- (1) vrh v
- (2) listovi
- (3) preostali vrhovi, za koje pretpostavljamo da niti jedan nije list, dakle, svi su stupnja barem 2 i ima ih n-d

Definicija 8.14. Razapinjujući podgraf \mathcal{H} grafa \mathcal{G} je podgraf od \mathcal{G} takav da je $V(\mathcal{H}) = V(\mathcal{G})$. **Razapinjujuće stablo** \mathcal{H} nekog grafa \mathcal{G} je razapinjujući podgraf od \mathcal{G} koji je i stablo.

Napomena 8.15. Svaki povezan graf ima razapinjujuće stablo.

Teorem 8.16. Potpun graf K_n ima n^{n-2} razapinjujućih stabala.

Napomena 8.17. Dokaz ide preko FUI, no može se dokazati i koristeći Prüferov kod, koji uspostavlja bijekciju između niza duljine n-2 i potpunog grafa sa n vrhova, taj je dokaz znatno kompliciraniji, ali se spomenuta bijekcija može pokazati korisnom.

Definicija 8.18. Kažemo da je graf $\mathcal{G} = (V, E)$ bipartitan ako postoje $A, B \neq \emptyset$ takvi da je $A \cup B = V$ i $A \cap B = \emptyset$ te da $\forall e \in E, e = \{a, b\}$ vrijedi $a \in A, b \in B$.

Teorem 8.19. Graf je bipartitan akko nema neparan ciklus.

Dokaz. Neka je graf bipartitan, odnosno postoje A i B iz definicije. Pretpostavimo da postoji neparan ciklus $(v_0, e_1, v_1, \dots, e_k, v_k)$, gdje je $k \in 2\mathbb{N} - 1$. BSO možemo pretpostaviti da je $v_0 \in A$, sad je, redom, $v_1 \in B, v_2 \in A, v_3 \in B, \dots, v_k \in B$, no $v_0 = v_k \Rightarrow \in$

Obratno. Neka graf nema neparnih ciklusa. BSO možemo pretpostaviti da je graf povezan (u suprotnom se dokaz provodi za svaku komponentu povezanosti zasebno). Konstruirat ćemo skupove A i B.

Uzmimo neki
$$v \in V$$
, stavimo $A = \{v\}$, $B = \emptyset$
SVE DOK $A \cup B \neq V$ PONAVLJAJ
 $\rhd \forall a \in A, \forall e = \{a, b\} \in E$
 $B = B \cup \{b\}$
 $\rhd \forall b \in B, \forall e = \{b, a\} \in E$
 $A = A \cup \{a\}$

Jer je graf povezan i konačan, algoritam će u nekom trenutku stati. Pretpostavimo da postoji $w \in V$ takav da je $w \in A$ i $w \in B$. To znači da imamo ciklus koji počinje i završava u w, odnosno, da smo krenuvši od v nakon "prelaska" preko parno mnogo bridova došli do w, i stavili w u A, ali i da smo do w došli nakon neparno mnogo koraka, te stavili w u B, dakle, imamo neparan ciklus $\Rightarrow \Leftarrow$

Primjer 8.10. Potpun bipartitan graf $\mathcal{K}_{n,m}$, |A| = n, |B| = m, svaki vrh iz A je spojen sa vrhom iz B, za $A = \{a, b, c\}$, $B = \{1, 2\}$ imamo $\mathcal{K}_{3,2}$

Zadatak 8.11. Odredite broj razapinjujućih stabala grafa $\mathcal{K}_{2,m}$.

Rješenje. Graf $\mathcal{K}_{2,5}$ prikazan je na sljedećoj slici:

Neki od mogućih razapinjujućih stabala su

Kako je |V| = |A| + |B| = 2 + m to razapinjujuće stablo ima m + 1 brid. Tvrdimo da je točno jedan vrh u B razapinjujućeg stabla stupnja 2, a ostali su listovi. Naime, nemoguća je situacija

jer bi imali ciklus, također kad bi svi vrhovi u B bili listovi, onda podgraf ne bi bio povezan

Vrh stupnja 2 biramo na m načina, za preostalih m-1 vrhova iz B biramo jedan od 2 vrha u A s kojim je spojen, shodno tome:

$$\# = m \cdot 2^{m-1}$$

 \checkmark

Napomena 8.20. Zadatak je moguće riješiti i na način da primijetite da je proizvoljno mnogo od 1 do m-1 vrhova iz B spojeno sa jednim vrhom u A, i jedan od tih sa sa drugim u A, kao i ostali iz B, dakle:

$$\# = \sum_{k=1}^{m-1} k \binom{m}{k} = \sum_{k=1}^{m-1} k \frac{m}{k} \binom{m-1}{k-1} = m \sum_{k=0}^{m-1} \binom{m-1}{k} = m \cdot 2^{m-1}$$

8.3 Težinski grafovi

Definicija 8.21. Težinski graf je par (\mathcal{G}, ω) gdje je $\mathcal{G} = (V, E)$ graf, a $\omega : E \to \mathbb{R}_0$ neka funkcija koju nazivamo **težinska funkcija**.

Definicija 8.22. Težina težinskog grafa (\mathcal{G}, ω) definira se kao $\sum_{e \in E} \omega(e)$.

Prirodno se postavlja pitanje pronalaska minimalnog (u smislu težine) razapinjujućeg stabla.

${\bf Kruskalov}$ algoritam

Neka je $\mathcal{G} = (V, E)$ povezan graf ω nenegativna težinska funkcija na E.

Stavimo $S = \emptyset$ SVE DOK (V, S) nije povezan PONAVLJAJ >ODABERI brid $e \in E$ minimalne težine, takav da $S \cup \{e\}$ nema ciklus $S = S \cup \{e\}$

Napomena 8.23. Kruskalov algoritam je primjer pohlepnog algoritma. Lokalno nalazi najbolju soluciju.

Teorem 8.24. Kruskalov algoritam nalazi optimalno rješenje.

Zadatak 8.12. Nađite minimalno razapinjujuće stablo za težinski graf sa slike

Rješenje.

- (1) $S = \emptyset$
- (2) uzimamo brid najmanje težine, $S = \{CD\}$
- (3) možemo uzeti DE ili CE
 - 1° biramo DE, $S = \{CD, DE\}$
 - 2° biramo $CE, S = \{CD, CE\}$

- (4) 1° ne možemo uzeti CE pa uzimamo CB, $S = \{CD, DE, CB\}$
 - 2° biramo CB, $S = \{CD, CE, CB\}$
- (5) 1° biramo AD, $S = \{CD, DE, CB, AD\}$
 - 2° biramo $AD, S = \{CD, CE, CB, AD\}$

Kao što vidimo rješenje nije jedinstveno, i u oba slučaja imamo $\sum_{v \in S} \omega \left(v \right) = 22.$

Napomena 8.25. Ovaj algoritam ima veliku složenost, naime, teško je naći brid minimalne težine za koji nećemo dobiti ciklus. Poboljšana verzija je sljedeći algoritam.

Primov algoritam

Neka je $\mathcal{G} = (V, E)$ povezan graf ω nenegativna težinska funkcija ne E.

Odaberemo
$$v_0 \in V$$
 i definiramo $T = \{v_0\}$, $S = V \setminus \{v_0\}$, $F = \emptyset$
SVE DOK $|F| < n - 1$ PONAVLJAJ
 \triangleright ODABERI brid $e = \{v, w\} \in E$ minimalne težine, takav da je $v \in T, w \in S$
 $T = T \cup \{w\}$, $F = F \cup \{e\}$, $S = S \setminus \{w\}$

Zadatak 8.13. Riješite zadatak 8.12. na stranici 41 Primovim algoritmom polazeći od vrha A.

Rješenje.

U ovom smo slučaju dobili isto razapinjujuće stablo kao u 2. slučaju (na stranici 42) kod Kruskalovog algoritma.

8.4 Planarnost grafa

Definicija 8.26. Graf je **planaran** ako se može nacrtati u ravnini \mathbb{R}^2 (*uložiti u ravninu* - svakom vrhu pridružiti točku, a svakom bridu neorijentiranu krivulju u \mathbb{R}^2) tako da mu se bridovi sijeku samo u vrhovima.

Teorem 8.27. Eulerova formula

Svako ulaganje povezanog planarnog grafa $\mathcal G$ sp vrhova i q bridova dijeli ravninu u r područja (koja nazivamo stranama) i vrijedi

$$p-q+r=2$$

Definicija 8.28. Stupanj područja <math>f je broj bridova koji ga omeđuju. Za stupanj područja koristimo oznaku d(f).

Teorem 8.29. U povezanom planarnom grafu zbroj stupnjeva svih područja jednak je dvostrukom broju bridova, tj.

$$\sum_{f \in F} d(f) = 2 \cdot |E|$$

 \checkmark

Zadatak 8.14. Dokaži da jednostavan, povezan, planaran graf sn vrhova ima najviše 3n-6 bridova.

Rješenje. Iz toga što je graf jednostavan, zaključujemo da vrijedi $d(f) \geq 3, \forall f \in F$.

$$2 \cdot |E| = \sum_{f \in F} d(f) \ge 3 \cdot |F| \Rightarrow |F| \le \frac{2}{3}|E|$$

Uvrstivši to u Eulerovu formulu, dobivamo

$$2 + |E| = |V| + |F| \le n + \frac{2}{3}|E|$$

$$\frac{1}{3}|E| \le n - 2 \Rightarrow |E| \le 3n - 6$$

Postavlja se pitanje: jesu li potpuni grafovi (\mathcal{K}_n) planarni?

Lako vidimo da su \mathcal{K}_3 i \mathcal{K}_4 planarni, ali za \mathcal{K}_5 se na prvi pogled ne vidi kako ga uložiti u ravninu. Pokušajmo zato dokazati da nije planaran. (Ako bismo to dokazali, slijedilo bi da $\mathcal{K}_n, n \geq 5$ nije planaran. Naime, svi potpuni grafovi s više od pet vrhova sadrže \mathcal{K}_5 kao podgraf.)

Zadatak 8.15. Dokaži da \mathcal{K}_5 nije planaran.

Rješenje.

$$|V| = 5, |E| = {5 \choose 2} = 10$$

Ako bi graf bio planaran, broj bridova |E| bi, prema prethodnom zadatku, morao biti manji od $3 \cdot 5 - 6 = 9$. Kontradikcija.

Zadatak 8.16. Dokaži da jednostavan, povezan, planaran i bipartitan graf sn vrhova ima najviše 2n-4 bridova.

Rješenje. Graf je bipartitan ako i samo ako nema ciklus neparne duljine pa je $d(f) \ge 4, \forall f \in F$. Dalje vrijedi

$$2\cdot |E| = \sum_{f\in F} d(f) \ge 4\cdot |F| \Rightarrow |F| \le \frac{|E|}{2}$$

$$2 + |E| = |V| + |F| \le n + \frac{|E|}{2} \Rightarrow |E| \le 2n - 4$$

Zadatak 8.17. Svaka od tri novoizgrađene kuće mora se spojiti s priključnim mjestima za vodovod, plinovod i telefonsku mrežu. Svi kabeli moraju biti na istoj dubini i ne smiju se presijecati. Kako je to moguće učiniti?

Rješenje. Nikako. Promatrajmo kuće i priključna mjesta kao vrhove, a kabele kao bridove grafa. Šest je vrhova, a bridova bi moralo biti devet (iz svake kuće po tri). Ali, prema prethodnom zadatku, bridova je najviše $2 \cdot 6 - 4 = 8$.

Definicija 8.30. Subdivizija brida $\{A, B\}$ je dodavanje u graf vrha C i zamjena brida $\{A, B\}$ bridovima $\{A, C\}$ i $\{C, B\}$

. **Definicija 8.31.** Subdivizija grafa \mathcal{G} je graf \mathcal{H} dobiven rekurzivnom subdivizijom bridova polaznog grafa.

Teorem 8.32. (Kuratowski)

Graf je planaran ako i samo ako ne sadrži subdiviziju od \mathcal{K}_5 ili subdiviziju od $\mathcal{K}_{3,3}$.

Zadatak 8.18. Odredi je li graf planaran.

Rješenje. Promatramo možemo li brisanjem nekih vrhova stupnja dva doći do $\mathcal{K}_{3,3}$ ili \mathcal{K}_5 (tada se možemo pozvati na teorem Kuratowskog). Uklonimo li vrhove a, d, i i f dobivamo zaista $\mathcal{K}_{3,3}$ i zato je graf neplanaran.

Zadatak 8.19. Odredi je li graf planaran.

Rješenje. Vrhova u grafu je 8. Bridove možemo izbrojati ili odrediti iz zbroja stupnjeva svih vrhova.

$$|V| = 8, 2 \cdot |E| = \sum_{v \in V} d(v) = 4 + 5 + 4 + 6 + 6 + 4 + 5 + 4 = 38$$

|E|=19, a prema zadatku 8.14 mora vrijediti $|E|\leq 3\cdot 8-6=18$. Dakle, graf nije planaran.

8.5 Arhimedova tijela

Definicija 8.33. Tijelo je *Arhimedovo* ako je svaki vrh istog stupnja i istog tipa (tj. tijelo je jednako sa svih strana) te ako su strane tijela dvije vrste pravilnih mnogokuta (stupanj vrha je broj bridova koji iz njega *izlaze*).

Napomena 8.34. Svakom tijelu možemo pridružiti graf. Tijelo *spljoštimo* u ravninu tako da crtamo što vidimo gledajući kroz gornju plohu. Odatle i naziv *strane* za područja u grafu (Tm. 8.27). Na primjer, kocka

predstavljena grafom izgleda ovako

Zadatak 8.20. Odredi sva Arhimedova tijela čije su stranice pravilni peterokuti i šesterokuti.

Rješenje. Označimo s n broj peterokuta, a s m broj šesterokuta. Stupanj svakog vrha je tri (kad bi bio više od tri, najmanji moguć zbroj kuteva je $4 \cdot 180^{\circ} > 360^{\circ}$). Kako je tijelo simetrično, svi su vrhovi isti: u njima se

sastaju ili dva peterokuta i šesterokut; ili dva šesterokuta i peterokut. Vrlo brzo se vidi da prvi slučaj otpada. Vrijedi, dakle, $|V| = 5 \cdot n = 6 \cdot \frac{m}{2}$

$$\sum_{v \in V} = 3d(v) \cdot |V| = 2 \cdot |E| = \sum_{f \in F} d(f) = 5n + 6m,$$

$$|F| = n + m$$

Vrijedi Eulerova formula:

$$2+|E|=|F|+|V|$$

$$2+\frac{5n+6m}{2}=n+m+\frac{5n+6m}{3}$$

$$\Rightarrow n=12, m=20$$

Radi se zapravo o staromodnoj lopti ili o modelu molekule fulerena C_{60} .

./

8.6 Eulerovi i Hamiltonovi grafovi

Definicija 8.35. Eulerova staza u grafu je staza koja uključuje svaki brid grafa. Ako je zatvorena, naziva se Eulerovom turom. Graf u kojem postoji Eulerova tura je Eulerov graf.

Teorem 8.36. Multigraf je Eulerov ako i samo ako je povezan i svaki vrh je parnog stupnja. Multigraf ima nezatvorenu Eulerovu stazu ako i samo ako je povezan i ima točno dva vrha neparnog stupnja.

Definicija 8.37. *Hamiltonov put* je put koji prolazi kroz sve vrhove grafa. Ako je, dodatno, zatvoren, naziva se *Hmiltonovim ciklusom*. Graf u kojem postoji Hamiltonov ciklus je *Hamiltonov graf*.

Lema 8.38. Ukoliko u Hamiltonovom grafu postoji vrh stupnja dva, tada oba brida s njim incidentna moraju biti dio Hamiltonovog ciklusa.

Dokaz. Predstavimo Hamiltonov ciklus kao (orijentiran, kružni) slijed vrhova $v_1, v_2, \dots v_n, v_1$. Vrh v_i ima prethodnika i sljedbenika. Dakle, za svaki vrh,točno dva brida incidentna s njim dio su Hamiltonovog ciklusa. Ako je v_i stupnja dva, to su i jedina dva brida koja iz njega izlaze.

Teorem 8.39. (Ore)

Dan je graf \mathcal{G} s n vrhova. Ukoliko za svaka dva nesusjedna vrha u \mathcal{G} vrijedi da je suma njihovih stupnjeva veća ili jednaka n, graf je Hamiltonov.

Teorem 8.40. (Dirac)

Dan je graf \mathcal{G} s n vrhova. Ukoliko je svaki vrh stupnja barem $\frac{n}{2}$, graf je Hamiltonov.

U sljedećim zadatcima provjeri postoje li:

- 1. Eulerova tura
- 2. Eulerova staza
- 3. Hamiltonov ciklus

Rješenje. DA, DA, DA

Rješenje. Stupanj svakog vrha je tri \Rightarrow ne postoje Eulerova staza ni Eulerova tura. Hamiltonov ciklus postoji.
 \checkmark

Rješenje. Stupanj svakog vrha je paran: graf jest Eulerov. Ipak, nije Hamiltonov. ✓

 ${\bf Rje \check{s}enje}.$ Graf nije ni Eulerov ni Hamiltonov

Rješenje. Eulerova tura ide po vrhovima:

$$a - b - c - f - i - h - g - d - e - f - h - e - b - d - a$$

Tvrdimo da ne postoji Hamiltonov ciklus. Ako postoji vrh
 stupnja dva, tada se, prema Lemi~8.38 u Hamiltonovom ciklusu moraju pojaviti oba brida incidentna s
 tim vrhom. Promatramo vrh a. Bez smanjenja općenitosti, krenemo od
 a do b. Sada moramo u c (jer je stupnja dva) i zatim u f. Sada moramo u i pa u h. Nakon toga je jasno da ne možemo obići oba vrha g i e i vratiti se u a.

Zadatak 8.26.

Rješenje. Graf nije Eulerov (više od dva vrha su neparnog stupnja), ali, prema Diracovom uvjetu, jest Hamiltonov. \checkmark

Zadatak 8.27.

Rješenje. Graf nije Eulerov (više od dva vrha su neparnog stupnja). Primjetimo da se radi o bipartitnom grafu i

da je |A|=4, |B|=6 pa zato (kao što će biti dokazano u sljedećoj lemi) nije Hamiltonov.

./

Lema 8.41. Za bipartitan i Hamiltonov graf, čiji je skup vrhova V particioniran u skupove A i B, vrijedi |A| = |B|.

Dokaz. Neka je $a_1, a_2 \cdots a_n, a_1$ Hamiltonov ciklus i neka je $a_i \in A$, i neparan te $a_i \in B$, za i paran. $\Rightarrow n$ je paran, a kako se vrhovi iz A i oni iz B redaju naizmjence, |A| = |B|.

Zadatak 8.28. Dokaži da je graf snvrhova i barem $\binom{n-1}{2}+2$ brida Hamiltonov.

Rješenje. Pokazat ćemo da su zadovoljeni uvjeti Oreovog teorema. Promatrajmo neka dva nesusjedna vrha A i B. Neka je \mathcal{G}' dobiven od \mathcal{G} izbacivanjem A i B i svih njihovih bridova.

$$\binom{n-1}{2} + 2 \leq |E|$$

$$= |E'| + d(a) + d(b)$$

$$\leq |K_{n-2}| + d(a) + d(b)$$

$$= \binom{n-2}{2} + d(a) + (b)$$

$$d(a) + d(b) \geq \frac{(n-1)(n-2)}{2} + 2 - \frac{(n-2)(n-3)}{2} = n$$

Zadatak 8.29. Miš gricka put kroz 3×3 kocku sira grickajući svih $27 \ 1 \times 1$ kockica. Ako miš počne grickati u kutu i uvijek se pomiče za po jednu susjednu kockicu, može li na kraju doći u sredinu? (Susjedne su kockice one koje dijele jednu stranu.)

Rješenje. Opišimo problem pomoću grafa: 27 vrhova (svakoj gradivnoj kockici odgovara jedan), a bridovi postoje između onih koje predstavljaju susjedne kockice. Ako s v_1 označimo vrh koji odgovara kockici u kutu, a s v_k vrh koji odgovara onoj u sredini, sveli smo problem na traženje Hamiltonovog puta u grafu, s rubnim točkama v_1 i v_k . Obojimo vrhove crno-bijelo, tako da su susjedni vrhovi različite boje (to je moguće, u grafu nema ciklusa!) i pretpostavimo da Hamiltonov put postoji. On je duljine 27, sastavljen naizmjence od crnih i bijelih vrhova. To znači da bi početni i krajnji vrh tog puta trebali biti različite boje, a nije tako. Kontradikcija. \checkmark

Zadatak 8.30. Na poslovnoj večeri našlo se dvanaest Sicilijanaca iz jedne obitelji. Svaki od njih ima barem šest prvih rođaka među preostalom jedanaestoricom. Dokaži da oni mogu sjesti za stol tako da se svaki nalazi između dva svoja prva rođaka.

Rješenje. Neka su vrhovi Sicilijanci, a bridovi povučeni između prvih rođaka. Želimo dokazati da u takvom grafu postoji Hamiltonov ciklus. $d(v) \geq 6, \forall v \in V$. To znači da su zadovoljeni uvjeti Diracovog teorema i da Hamiltonov ciklus postoji.

Zadatak 8.31. Dokaži da se za svaki neparan n veći ili jednak tri bridovi potpunog grafa \mathcal{K}_n mogu prekriti s $\frac{n-1}{2}$ Hamiltonovih ciklusa bez zajedničkih bridova.