16.09 - 25.09.201918/13/8 з. на 5/4/3

Определение 1. Вероятностным пространством называется тройка (Ω, \mathbb{A}, P) , где

- Ω некоторое множество, элементы которого называются элементарными событиями или исходами:
- \mathbb{A} совокупность подмножеств множества Ω , называемых событиями, такая что:
 - c1. $\emptyset \in \mathbb{A}, \Omega \in \mathbb{A}$;
 - с1. $\varnothing \in \mathbb{A}$, $M \in \mathbb{A}$; с2. если $A \in \mathbb{A}$, то событие \overline{A} , противоположеное событию A, лежит в \mathbb{A} ; с3. если $A, B \in \mathbb{A}$, то сумма событий $A \cup B$ лежит в \mathbb{A} ; с4. если $A, B \in \mathbb{A}$, то произведение событий $A \cap B$ лежит в \mathbb{A} ;

 - с5. если Ω бесконечно и $A_i \in \mathbb{A}$ при $i=1,2,\ldots,$ то $\bigcup_{i=1}^{\infty} A_i \in \mathbb{A}$ и $\bigcap_{i=1}^{\infty} A_i \in \mathbb{A}$.
- P числовая функция $P:\mathbb{A}\to\mathbb{R}$ (называемая вероятностью или вероятностной мерой), такая что

 - в1. $P(\varnothing) = 0, \ P(\Omega) = 1, \ P(A) \geqslant 0$ для любого $A \in \mathbb{A}$; в2. (addumushocmb) если $A \cap B = \varnothing$ (то есть события A и B несовместны), то $P(A \cup B) = P(A) + P(B)$; в3. (cчётная addитивность) если Ω бесконечно, $A_i \in \mathbb{A}$ при $i = 1, 2, \ldots$ и $A_i \cap A_j = \varnothing$ при $i \neq j$,

то $P(\bigcup_{i=1}^{\infty}A_i)=\lim_{n\to\infty}\sum_{i=1}^nP(A_i).$ Задача 1. Пусть (Ω,\mathbb{A},P) — вероятностное пространство, A и B — события. Докажите, что:

- а) $P(\overline{A}) = 1 P(A)$; б) $P(A) \le 1$; в) если $A \subset B$, то $P(A) \le P(B)$;
- $P(A \cup B) = P(A) + P(B) P(A \cap B);$ д) $P(A \cup B \mid C) = P(A \mid C) + P(B \mid C) P(A \cap B \mid C);$
- ${f e}$) Переформулируйте в терминах множеств исходов утверждение: «событие A влечёт событие B».
- **Задача 2.** Рассмотрим любое конечное множество Ω из k элементов. Пусть $\mathbb{A}-$ множество 2^{Ω} всех подмножеств Ω . Для каждого $X \in \mathbb{A}$ положим P(X) = |X|/k. Докажите, что тройка (Ω, \mathbb{A}, P) образует вероятностное пространство. Найдите все такие вероятностные пространства в листке 35.
- **Задача 3.** Пусть (Ω, \mathbb{A}, P) конечное вероятностное пространство. **a)** Чему равны минимальное и максимальное значения |A|? **б)** Докажите, что |A| — всегда степень двойки.
- **Задача 4** $^{\circ}$. (Схема Бернулли) Проводятся n независимых опытов, в каждом опыте может произойти определенное событие («успех») с вероятностью p (или не произойти — «неудача» — с вероятностью q = 1 - p), после чего подсчитывается количество успехов. С какой вероятностью будет ровно i успехов?
- Задача 5. На неудачном перекрёстке авария происходит с вероятностью 0,01 в день. Какое число аварий произойдёт на нём за год с наибольшей вероятностью?
- Задача 6. (Геометрическое распределение) Проводится сколь угодно длинная серия независимых опытов, в каждом из которых может произойти событие («успех») с вероятностью p, или событие «неудача» (с вероятностью q=1-p), до тех пор, пока не произойдёт успех. Подсчитывается количество испытаний до наблюдения первого «успеха». Найдите вероятности каждого исхода.
- Задача 7. Пусть вероятность попасть под машину, переходя улицу в неположенном месте, равна 0,01. Какова вероятность остаться целым, сто раз перейдя улицу в неположенном месте?

Геометрические вероятности

Иногда множество исходов естественно представлять как какую-то фигуру на прямой, на плоскости или в пространстве. В этом случае событиями считают любые подмножества фигуры, которые имеют длину, площадь или объём. А вероятность события — как долю от полной длины, площади или объёма.

- Задача 8. В мишень радиуса 1 стреляют точечной пулей. С какой вероятностью пуля попадёт в круг радиуса 1/2 с тем же центром? Попробуйте придумать рассуждения с разными ответами.
- Задача 9. (Парадокс Бертрана) С какой вероятностью случайная хорда окружности больше стороны правильного треугольника, вписанного в эту окружность? Попробуйте придумать рассуждения с разными ответами.
- Задача 10. Юра ежедневно в случайное время между 16 ч и 18 ч едет ужинать к маме или невесте, которые живут по той же линии метро, но в разных концах. Юра садится в первый пришедший поезд (в любом направлении). Он считает, что его шансы ужинать у мамы или невесты равны, но за 20 дней был у мамы лишь дважды. Как это могло быть?
- **Задача 11.** На отрезок [0, L] бросают 3 точки. С какой вероятностью третья окажется между первыми двумя?
- Задача 12[®]. Палку случайно ломают на 3 части. С какой вероятностью из них можно сложить треугольник?
- Задача 13. В течение часа к станции в случайные моменты времени подходят два поезда. Какова вероятность того, что удастся перебежать из поезда в поезд, не ожидая на платформе, если оба стоят по 5 минут?
- Задача 14. На шахматную доску случайно кладут прямоугольник со сторонами, параллельными сторонам доски. С какой вероятностью в нём будет поровну чёрного и белого?
- Задача 15. На окружности случайным образом выбирают а) 3; б)* n полуокружностей. С какой вероятностью они покрывают всю окружность?

1 a	1 6	1 в	1 г	1 Д	1 e	2	3 a	3 6	4	5	6	7	8	9	10	11	12	13	14	15 a	15 б