FINM3123 Introduction to Econometrics

Chapter 5 Exercises

- 1. In the simple regression model under MLR.1 through MLR.4, we argued that the slop estimator, $\hat{\beta}_1$, is consistent for β_1 . Using $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}_1$, show that $\text{plim}\hat{\beta}_0 = \beta_0$. [You need to use the consistency of $\hat{\beta}_1$ and the law of large numbers, along with the fact that if $\text{plim}(T_n) = \alpha$ and $\text{plim}(U_n) = \beta$, then $\text{plim}(T_n + U_n) = \alpha + \beta$ and $\text{plim}(T_n U_n) = \alpha \beta$.]
- 2. Use the data WAGE1.RData (or WAGE1.xls) for this exercise.
 - (a) Estimate the equation

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + u.$$

Save the residuals and plot the histogram.

- (b) Repeat part (a), but with $\log(wage)$ as the dependent variable.
- (c) Would you say that Assumption MLR.6 is closer to being satisfied for the level-level model or the log-level model?
- 3. Several statistics are commonly used to detect nonnormality in underlying population distribution. Here we will study one that measures the amount of skewness in a distribution. Recall that any normally distributed random variable is symmetric about its mean; therefore, if we standardize a symmetrically distributed random variable, say z = (y − μ_y)/σ_y, where μ_y = E(y) and σ_y = sd(y), then z has mean zero, variance one, and E(z³) = 0. Given a sample of data {y_i : i = 1,...,n}, we can standardize y_i in the sample by using z_i = (y_i − μ̂_y)/σ̂_y, where μ̂_y is the sample mean and σ̂_y is the sample standard deviation. (We ignore the fact that these are estimates based on the sample.) A sample statistic that measures skewness is n⁻¹ ∑_{i=1}ⁿ z_i³, or where n is replaced with (n − 1) as a degrees-of-freedom adjustment. If y has a normal distribution in the population, the skewness measure in the sample for the standardized values should not differ significantly from zero.
 - (a) First use the data set 401KSUBS.RData (or 401KSUBS.xls), keeping only observations with fsize = 1. Find the skewness measure for inc. Do the same for log(inc). Which variable has more skewness and therefore seems less likely to be normally distributed?
 - (b) Next use BWGHT2.RData (or BWGHT2.xls). Find the skewness measures for *bwght* and *log(bwght)*. What do you conclude?
 - (c) Evaluate the following statement: "The logarithmic transformation always makes a positive variable look more normally distributed."
 - (d) If we are interested in the normality assumption in the context of regression, should we be evaluating the unconditional distribution of y and log(y)? Explain.