Interval Vertex Deletion Admits Polynomial Kernel

Akanksha Agrawal, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

TAMREF (Changki Yun)

Sep 10, 2020

Seoul Nat'l Univ

Table of contents

- 1. Introduction
- 2. Computing k-redundant set
- 3. Designing a kernel
- 4. Main task
- 5. Epilogue

Intro

Graph Modification Problem

The **Graph Modification Problem** is an intriguing type of problem. Given a class $\mathcal F$ of graphs, The $\mathcal F$ -modification problem inquires Given a graph G, Is it possible to add/delete at most k vertices/edges in order to make modified graph belong to $\mathcal F$?

Each of them are called vertex/edges completion/deletion problems, respectively. There are a variety of special named questions about the vertex deletion problem.

- Feedback Vertex Set \mathcal{F} is consisted of acyclic graphs.
- Maximum Clique Problem \mathcal{F} is consisted of complete graphs.
- Minimum Vertex Cover \mathcal{F} is consisted of edgeless graphs.

...most of them looks quite hard.

Graph Modification Problem

Class \mathcal{F} is called **hereditary**, if $G \in \mathcal{F}$ implies that any induced subgraph of G belongs to \mathcal{F} as well.

Theorem (Lewis & Yannakakis, 1980)

• For any nontrivial hereditary graph class \mathcal{F} , \mathcal{F} -modification problem is **NP-hard**.

Known that the problem is *MaxSNP-hard*, which is out of our interest. After all, it is very hard to solve.

Graph Modification Problem

One of the canonical approach to challenge NP-hard problem is examining FPT (Fixed-Parameter Tractibility).

A problem with parameter k is Fixed-Parameter Tractible if it is solvable in $\mathcal{O}(f(k) \cdot n^{\mathcal{O}(1)})$ for some computable function f(k).

- f can be arbitrarily large such as $f(k) = k^{R(k,k^k)}$ as long as it's finite.
- Shoving all the 'hardness' of problem into k.

For example, vertex cover problem with n vertices and m edges may run in $\mathcal{O}(2^k \cdot \min(m, nk))$ time, with a pruning technique – vertex cover is FPT.

Elucidating that \mathcal{F} -modification problem is FPT, received attention for decades — bipartite graph, forests, chordal graphs... and finally interval graph. (Cao & Marx, 2015)

Current best complexity is $O(6^k(n+m))$ by Cao (2016).

Kernelization – Vertex Cover Example

Look at the 'pruning scheme' for a given vertex cover instance (G, k).

- 1. Ignore all the isolated vertices v and solve for (G-v,k).
- 2. If there is a vertex v with degree $\geqslant k$, include v to answer and solve for (G-v,k-1).
- 3. If G has more than k^2 edges and neither two rules above is not available, return No.

After the pruning scheme, G has at most $2k^2$ vertices, and applying the previous search tree algorithm gives the overall complexity is about $\mathcal{O}(k^22^k+n+m)$. Note that now we may cope with the case k=15 and $n=10^6$.

Kernelization

Kernelization means a *reduction step* from a parametrized problem instance (x, k) to an equivalent instance (x', k'), where |x'| is bounded by some function f(k').

• If f is $k^{\mathcal{O}(1)}$, we say the problem admits a *polynomial kernel*.

The *reduction step* need not to be polynomial, but it is common for a polynomial kernel to accept a polynomial reduction step.

In fact, kernelizability and FPT is equivalent in some sense. But FPT does not guarantee the existence of a polynomial kernel.

Let the story begin

Now, it's clear to say what is today's goal.

- Interval Graph Vertex Deletion (IVD) is NP-hard. (Lewis & Yannakakis, 1980)
- IVD is FPT. (Cao & Marx, SODA '14)
- IVD admits a Polynomial Kernel. (Agrawal et al, SODA '19)

But, we didn't mention a single word about the class *Interval Graph*. We share a few slide to analyze Interval Graphs.

Interval Graph

- Interval Graphs are **Chordal**. i.e. It does not have induced subgraph C_n for $n \ge 4$.
- Surprisingly, interval graphs are distinguishable to add a few type of forbidden induced subgraphs including the chordal condition, called obstructions.

Obstructions

- (t, t_l, t_r) forms a Asteroidal Triple (AT)s, two of them are connected by a path avoiding neighbor of the rest.
- t_l , t_r are called non-shallow terminal, t is called a shallow terminal.
- c_i are called 'center's, and b_i 's are called 'base vertices'.
- 'Base vertices' form a chordless path.

Path Decomposition

- Another way to characterize interval graph is using the path decomoposition of graph.
- ullet A path decomposition of G is a path equipped with some 'bags' of V(G), assigning some common bags for each adjacent pair of vertices.
- Rigorous definition goes to the next slide.

Path Decomposition

A path decomposition (P,β) of G is consisted of a path P and 'bags' $\beta:V(P)\to 2^{V(G)}$ such that,

- $\bigcup_{p \in V(P)} \beta(p) = V(G)$ bags cover the whole vertex set.
- If $uv \in E(G)$, $\exists q \in V(P)$ s.t. $u, v \in \beta(q)$. adjacent vertices have some common bags.
- $P_v := \{ p \in V(P) \mid v \in \beta(p) \}$ is a subpath of P Each vertex is contained in some consecutive bags.

If $\beta(p)$ are distinct maximal cliques, (P, β) is called a *clique path*.

Theorem.

Graph G is interval if and only if G has a clique path.

1. Computing Redundant Sets –

(Chap 3)

Terminology Setup

Given an IVD instance (G, k).

- $X \subset V(G)$ is called *solution* if G X is an interval graph.
- Solution X is called a t-solution if $|X| \leq t$.
- For $\mathcal{W} \subseteq 2^{V(G)}$, $S \subset V(G)$ is a hitting set of \mathcal{W} if $W \cap S \neq \emptyset \ \forall W \in \mathcal{W}$.
- W is called *t*-necessary if all *t*-solutions hits W.
- Obstruction $\mathbb O$ is *covered* by $\mathcal W$, if there is $W \in \mathcal W$ s.t. $W \subset V(\mathbb O)$.
- $M \subset V(G)$ is called *t*-redundant w.r.t $W \in \mathcal{W}$, if for every obstruction $\mathbb O$ either
 - ullet O is covered by ${\mathcal W}.$
 - $|M \cap V(\mathbb{O})| > t$

Terminology Setup

All the other words are generic. What do you mean by *necessary* and *redundant*?

- We will eventually use the (k+2)-necessary family \mathcal{W} and a 9-redundant solution M w.r.t. \mathcal{W} such that $\mathcal{W} \subseteq 2^M$.
- Often we drop a carefully chosen vertex $v \notin M$, and claim that X, the solution of (G v, k) is a solution for (G, k).
- If it's false, there is an obstruction $\mathbb O$ such that $V(\mathbb O)\subset G-X$, and definitely $v\in V(\mathbb O)$. Now we prove that $|V(\mathbb O)\cap M|>9$.
- Otherwise, $\mathbb O$ is covered by $\mathcal W$. Thus there is a $Z \in \mathcal W$ such that $Z \subseteq V(\mathbb O)$. Then $X \cup \{v\}$, being a (k+1)-solution, intersects with Z hence $X \cap Z \neq \emptyset$. This contradicts to the choice of $\mathbb O$.

Hence, we only need to consider the large obstructions highly intersecting with M, which leads to a structural benefit.

Main Lemma

Lemma 3.1 (Agrawal)

- Given an IVD instance (G,l). For a fixed $r \in \mathbb{N}$, it is poly-time attainable to either verify that (G,l) is No-instance, or compute (\mathcal{W},M) such that
 - $W \subseteq 2^M$.
 - W is l-necessary.
 - M is r-redundant w.r.t. W.
 - M is $(r+1)(6l)^{r+1}$ -solution.

To prove Lemma 3.1, we use the following algorithm as a black-box.

Propo 3.1 (Cao)

 IVD admits a poly-time 6-approximation algorithm. We call this ApproxIVD(G).

Analyzing tool — copy of a graph

Define G' := G.copy(U, t) for $U \subset V(G)$ and $t \in \mathbb{N}$, such that

- $V(G') = \{v^0 \mid v \in V(G)\} \cup \{v^i \mid (v, i) \in U \times [t]\}$
- $E(G') = \{u^i v^j \mid uv \in E(G), 0 \le i, j \le t\} \cup \{v^i v^j \mid v \in V(G), 0 \le i < j \le t\}$

So we make t replicas for vertices in G, and made a clique with clones. We sometimes identify G as a subgraph of G'.

Note that G' is also interval graph for an interval graph G.

In this problem, we specify $G' := G.\operatorname{copy}(U,6l+1)$, and analyze $\operatorname{ApproxIVD}(G')$.

ApproxIVD of G'

Let A := ApproxIVD(G'). The following statement holds.

- If |A| > 6l, then $\{U\}$ is l-necessary.
- If $|A| \leq 6l$, Every obstruction $\mathbb O$ of G intersects with $(A \cap V(G)) \setminus U$.

Thus, we may obtain a necessary set or augment the redundancy.

Proof.

- If |A|>6l, (G',l) is a No-instance. If $\{U\}$ is not necessary, there is an l-solution L s.t. $L\cap U=\emptyset$. Thus G-L is an interval graph containing U. Thus $(G-L).\operatorname{copy}(U,6l+1)$ equals G'-L and it's an interval graph. Contradiction, since L becomes an l-solution for (G',l).
- If $|A| \leqslant 6l$, every $b \in V(\mathbb{O}) \cap U$ has a 'twin' $b^{i(b)} \in G' \backslash A$ since b has 6l+1 duplicates. Exchanging b and $b^{i(b)}$ gives another obstruction, hence there should be a vertex $c \in (A \cap V(G)) \backslash U$.

The algorithm RedundantIVD

$$M_0 := \operatorname{ApproxIVD}(G), \ \mathcal{W}_0 := \emptyset, \ \mathcal{T}_0 := \{(v) \mid v \in V(M_0)\}.$$
 If $|V(M_0)| > 6l$ return No. For $i = 1, \cdots, r$,

- 1. $M_i := M_{i-1}$, $W_i := W_{i-1}$, $T_i := \emptyset$.
- 2. For $\mathbf{v} = (v_0, \cdots, v_{i-1}) \in \mathfrak{T}_{i-1}$
 - 2.1 $A := ApproxIVD(G.copy(\mathbf{v}, 6l + 1)).$
 - 2.2 If |A| > 6l, W_i .append(\mathbf{v})
 - 2.3 Else for each $u \in (A \cap V(G)) \setminus \mathbf{v}$, \mathcal{T}_i .append $(\mathbf{v} :: u)$, M_i .append(u)

return (M_r, W_r) .

- It is clear that W_i is l-necessary and M_i is i-redundant solution w.r.t W_i , and $W_i \subseteq 2^{M_i}$.
- Now we analyze the size of M_r , W_r .
 - $|\mathfrak{T}_i| \leqslant (6l)^{i+1}$.
 - $|M_i| \le |M_{i-1}| + 6l |\mathfrak{T}_i| \le \sum_{j=0}^i (6l)^{j+1} \le (i+1)(6l)^{i+1}$.
 - $|\mathcal{W}_i| \leq |\mathcal{T}_{i-1}| \leq (6l)^{i+1}$.

Intermission

Remaining set

Now, we have a 9-redundant $\mathcal{O}(k^{10})$ -solution M w.r.t k+2-necessary family \mathcal{W} . Additionally, we may erase all the singletons in \mathcal{W} and include them in the answer.

However, we still have to bound the kernel in G-M. To resolve this, we introduce the concept of **graph modules**.

 $C \subseteq V(G)$ is a **module** if all the vertices in C has same neighbor set outside C. (i.e. for all $v \notin C$, $N_G(v) \cap C \in \{\emptyset, C\}$)

We classify the connected components of G-M into module (in G) components and non-module (in G) components. Then we need to:

- Bound the number of distinct components in kernel
- Bound the size of each components in kernel

Easy parts

- Bounding the number of non-module components is easy.
- Bounding the size of module components is easy.
- Bounding the number of module components is involved.
- Bounding the size of non-module components is *dreadful*.

Number of non-module components

Claim.

• It is possible to leave at most $(k+2)|M|=\mathfrak{O}(k^{11})$ non-module components.

If not, there is a vertex $w \in M$ such that for at least k+3 non-module components E_1, \cdots, E_{k+3} , each E_i contains $u_i v_i \in E(G)$ such that $u_i w \in E(G)$ but $v_i w \notin E(G)$. Then for every k-subset S excluding w of G, G-S contains a **Long Claw** centred at w. Thus every k-solution must contain w. So we simply pick w and remove from G until the claim hold.

Size of module components

We introduce a simple proposition beforehand.

• Given an obstruction $\mathbb O$ with size >4 and a module component D, either $V(\mathbb O)\subseteq V(D)$ or $|V(\mathbb O)\cap V(D)|\leqslant 1$.

Claim

• For a minimal obstruction $\mathbb O$ not covered by $\mathcal W$ and a module component of $D, |V(\mathbb O)\cap V(D)|\leqslant 1$ holds.

 $\mathbb O$ is not covered by $\mathcal W$ means $|M\cap V(\mathbb O)|>9$, thus $|V(\mathbb O)|>4$ holds. Also D is interval graph, hence $V(\mathbb O)\not\subseteq V(D)$. Thus $|V(\mathbb O)\cap V(D)|\leqslant 1$.

Size of module components

If there is a module component D with |V(D)|>k+1, we just erase an arbitrary vertex $v\in V(D)$ and solve for (G-v,k).

If S is a k-solution for (G-v,k), we claim that S is a k-solution for G as well. If not, take a minimal obstruction $\mathbb O$ of G-S, and v must be included.

Since S+v is (k+1)-solution, S hits $\mathcal W$ by its (k+2)-necessity. Also, $\mathcal W\subset 2^M$ guarantees that S hits $\mathcal W.$ S and $\mathbb O$ are disjoint, hence $\mathbb O$ is not covered by $\mathcal W.$

By the previous lemma, $\{v\} = V(\mathbb{O}) \cap V(D)$. Since D is a module component, $\mathbb{O} - v + u$ is also obstruction for all $u \in V(D)$. As |V(D)| > k+1, $|V(D) \backslash S \backslash v| \geqslant 1$ means there is an obstruction $\mathbb{O}' = \mathbb{O} - v + u'$ for some $u' \in V(D) \backslash S \backslash v$, which contradicts to that S is a k-solution for $G \backslash v$.

Main

Current score

- 9-redundant solution M w.r.t. (k+2)-necessary family \mathcal{W} : $\mathcal{O}(k^{10})$.
- Number of non-module components: $O(k^{11})$
- Size of each module component: k+1
- Number of module components: $O(k^{102})$.
- Size of each non-module component: ???

Main Lemma (Lemma 4.3)

Variables

- (*G*, *k*): IVD instance
- \hat{M} : some arbitrary vertex set. $M' := M \cup \hat{M}$, which is still 9-redundant.
- $\hat{\mathbb{C}}$: set of module compo's in G-M'.

In polynomial time,

We can do either

- Find an equivalent instance (G', k) such that G' is a strictly induced subgraph of G
- Find a set $B \subseteq V(\hat{\mathbb{C}})$ with $|B| \leqslant 8(k+1)^2 |M'|^{10}$ such that for all k-subset $S \subset V(G)$ which has a corresponding obstruction \mathbb{O}_S such that $S \cap \mathbb{O}_S = \emptyset$ and not covered by \mathcal{W} , there is an obstruction \mathbb{O}' such that $\mathbb{O}' \cap S = \emptyset$ and $\mathbb{O}' \cap (V(\hat{\mathbb{C}}) \setminus B) = \emptyset$.

Power of Lemma 4.3

To reduce the module component size, just put $\hat{M}=\emptyset$.

- If Lemma 4.3 gives (G', k), just solve for it.
- If Lemma 4.3 gives the set B, delete arbitrary $v \in V(\hat{\mathbb{C}}) \backslash B$ and solve (G-v,k).

We prove that S, a k-solution for (G-v,k) is also a k-solution for (G,k). Similarly assume the contrary, and then S hits $\mathcal W$ and the minimal obstruction $\mathbb O_S$ in G-S is not covered by $\mathcal W$. Thus applying the Lemma 4.3, there is an obstruction $\mathbb O'$ with $\mathbb O'\cap S=\emptyset$ and $\mathbb O'\cap (V(\hat{\mathbb C})\backslash B)=\emptyset$. Where $v\in V(\hat{\mathbb C})\backslash B$, the existence of $\mathbb O'$ contradicts that S+v is a k+1-solution.

Thus, the reduction rule guarantees that $\left|V(\hat{\mathbb{C}})\right| \leqslant 8(k+1)^2 \left|M'\right|^{10} = \mathcal{O}(k^{102}).$

So our final goal is to construct such B to prove the Lemma 4.3. we switch to the general case with $\hat{M} \neq \emptyset$ again.

A handy lemma (Lemma 4.6)

Lemma 4.6 (Agrawal)

• For $u \neq v \in V(G)$ with $uv \notin E(G)$, then either $\{u,v\} \in \mathcal{W}$ or $G[(N_G(u) \cap N_G(v)) - M']$ is a clique.

Assume $\{u,v\} \notin \mathcal{W}$ and there exists a pair of vertices $x,y \in (N_G(u) \cap N_G(v)) - M'$ such that $xy \notin E(G)$. Then $\mathbb{O} := G[\{u,v,x,y\}]$ is a hole C_4 . \mathbb{O} is not covered by \mathcal{W} since $x,y \notin M'$, $\{u,v\} \notin \mathcal{W}$ and there are no singletons in \mathcal{W} . Thus $|M' \cap V(\mathbb{O})| > 9$, but $|V(\mathbb{O})| = 4$ leads to a contradiction.

Consequence of Lemma 4.6

Henceforth, for each non-adjacent u,v with $\{u,v\} \notin \mathcal{W}$, there is at most one module component $C_{uv} \in \hat{\mathbb{C}}$ such that $N_G(u) \cap N_G(v) \cap V(C_{uv}) \neq \emptyset$. Denote

$$\mathfrak{C}^* := \{ C_{uv} \mid uv \notin E(G), \{u,v\} \notin \mathcal{W}, N_G(u) \cap N_G(v) \cap V(C_{uv}) \neq \emptyset \}$$

Then $|V(\mathcal{C}^*)| \leq (k+1) |M'|^2 = \mathcal{O}(k^{21})$, which is small enough. so we just care for module components in $\mathcal{C}' := \hat{\mathcal{C}} \setminus \mathcal{C}^*$.

• Given a vertex $v \in V(\mathcal{C}')$ and $u \neq w \in N_G(v) \cap M'$, $\{u, w\} \in \mathcal{W}$ or $uw \in E(G)$.

Classification Lemma (Lemma 4.11)

Variables

- $C \in \mathcal{C}'$: a module component.
- O: a minimal obstruction not covered by W, intersecting with C.

Then $\{t\} = V(\mathbb{O}) \cap V(C)$ and \mathbb{O} is an **AW**, having t as a terminal.

Since $\mathbb O$ is not covered, $|V(\mathbb O)|>9$ and thus $\mathbb O$ is either †-AW, ‡-AW or a hole. Since $N_G(t)\subset V(C)\cup M'$ and Lemma 4.6, for any $u,w\in N_G(t)\cap V(\mathbb O)$ is adjacent, since $\{u,w\}\notin \mathcal W$. The figure implies that t must be a terminal.

Handling non-shallow terminals

• Remark that t_l , t_r are non-shallow terminals, while t is a shallow terminal.

Lemma 4.13 (Agrawal)

- There is a set $A' \subseteq V(\mathcal{C}')$ such that $|A'| \leq (k+1)|M'|^4$, all non-shallow terminals in $V(\mathcal{C}') \setminus A'$ has k+1 alternatives.
- Rigorously, if an obstruction $\mathbb O$ is not covered by $\mathcal W$ and $\mathbb O$ is an AW having a non-shallow terminal $v \in V(\mathcal C') \backslash A'$, there are k+1 elements $a \in A'$ such that $\mathbb O v + a$ is still an obstruction.
- So, if S the k-solution of $G \setminus v$ is not a k-solution for (G, k)...

We won't look at the proof and the construction. It's just a case-work.

Handling shallow terminals

Lemma 4.17 (Agrawal)

- There is a set $A'' \subseteq V(\mathcal{C}')$ such that $|A''| \leq 4(k+1)^2 |M'|^{10}$, all shallow terminals in $V(\mathcal{C}') \setminus (A' \cup A'')$ has k+1 alternatives.
- Rigorously, if an obstruction $\mathbb O$ is not covered by $\mathcal W$ and $\mathbb O$ is an AW having a shallow terminal $v \in V(\mathfrak C') \setminus (A' \cup A'')$, there are k+1 elements $a \in A''$ such that $\mathbb O v + a$ is still an obstruction.
- So, if S the k-solution of $G \setminus v$ is not a k-solution for (G, k)...

... Let's peek at this! (optional)

Observation 4.6

Let P be a chordless path. We say that P is covered by $\mathcal W$ if there is $W\in \mathcal W$ with $W\subset V(P)$, it's same as the obstructions.

- Let P be an chordless path in G[V(G)-V(C)] for some $C\in \hat{\mathbb{C}}'$, not covered by \mathcal{W} Then for all $v\in V(C)$ $|N_G(v)\cap V(P)|\leqslant 2$, and they are adjacent.
- If $u,v\in N_G(v)\cap V(P)$, since $\{u,v\}\notin \mathcal{W}\ (u,v)\in E(G)$. Thus, u,v must be adjacent and $N_G(v)\cap V(P)$ cannot contain more than three elements to maintain chord-free property.

Handling shallow terminals

Define $M'' := M' \cup V(\mathfrak{C}^*) \cup A'$.

For all 2-subset S of M', denote $A_S:=\{v\in V(\mathcal{C}')\backslash A'\mid S\subseteq N_G(v)\}$. It intuitively means the candidate of vertices can be a shallow terminal of AW, having S as center.

Denote $V(M'')=\{v_1,\cdots,v_p\}$ and $E(G[M''])=\{e_1,\cdots,e_q\}$. We define a incidence vector $\mathrm{inc}(u)\in\mathbb{F}_2^{p+q+1}$ for all $u\in V(\mathfrak{C}')\backslash A'$ as:

- $\operatorname{inc}(u)_i$ is 1 iff $v_i \in N_G(u)$. $(1 \leqslant i \leqslant p)$
- $\operatorname{inc}(u)_{p+i}$ is 1 iff both endpoints of e_i is in $N_G(u)$. $(1 \le i \le q)$
- $inc(u)_{p+q+1} = 1$.

 inc_i completely describes the possible incidence relation of u.

Basis Marking Strategy

For every 2-subset $S \subset M'$, define the **multiset** of vectors $\mathbf{V}_S := \{ \mathrm{inc}(u) \mid u \in A_S \}$. Then we gradually build up the bases:

- 1. $\mathbf{U}_{S}^{0} := \emptyset$.
- 2. For $i=1,\cdots,k+1$, build the basis \mathbf{B}_S^i for the vector subspace $\mathbf{V}_S \backslash \mathbf{U}_S^{i-1}$, and assign $\mathbf{U}_S^i = \mathbf{U}_S^{i-1} \cup \mathbf{B}_S^i$.
- 3. For every $\mathbf{v} \in \mathbf{U}_S^{k+1}$, choose an arbitrary vertex $u_{\mathbf{v}}$ such that $\mathrm{inc}(u) = \mathbf{v}$.
- 4. Denote $A_S'' := \{u_{\mathbf{v}} \mid \mathbf{v} \in \mathbf{U}_S^{k+1}\}.$

Then merge all A_S'' into a single set $A'':=\bigcup_S A_S''$. Note that $\left|A_S''\right|\leqslant (k+1)(p+q)\leqslant (k+1)p^2$ since A_S'' is k+1-union of vector spaces with dim (p+q). Thus $\left|A''\right|\leqslant (k+1)\left|M'\right|^2\left|M''\right|^2\leqslant 4(k+1)^2\left|M'\right|^{10}$.

Nullifying path

Define a vector $\mathbf{n}^{X,Y}$, such that $\mathbf{n}_i^{X,Y}=1$ if and only if $i\in X$ or $i-p\in Y$ or i=p+q+1. i.e. \mathbf{n}_i extracts the integer from vertex set X and the edge set Y.

For a path P, $\mathbf{n}^P := \mathbf{n}^{V(P) \cap M'', E(P) \cap E(G[M''])}$.

Lemma 4.16 (Agrawal)

• Let P be an induced path in $G[V(G)\backslash V(C)]$ for some $C\in \mathfrak{C}'$, such that P is not covered by \mathcal{W} . For all $u\in V(C)$, $\mathbf{n}^P\cdot \mathrm{inc}(u)=1$ (mod 2) iff $N_G(u)\cap V(P)=\emptyset$.

Since the only possible case is $|N_G(u) \cap V(P)| = 0, 1, 2$, examining each case gives the proof.

Lemma 4.17 (Restated)

• Let $w \in V(\hat{\mathcal{C}}') \setminus (A' \cup A'')$, and \mathbb{O} be an AW with the shallow termiinal w. Let S be the center of \mathbb{O} , then for all $i \in [k+1]$ there is a $v \in \mathbf{B}_S^i$ such that $\mathbb{O} - w + u_{\mathbf{v}}$ is still an obstruction.

Since $w \in A_S$ but $w \notin A''$, $\operatorname{inc}(w) \in \mathbf{V}_S$ is not spent by \mathbf{U}_S^i . Thus $\operatorname{inc}(w) \in \mathbf{V}_S \backslash \mathbf{U}_S^{i-1}$ for all $i \in [k+1]$.

Thus

$$\operatorname{inc}(w) = \operatorname{inc}(b_{i1}) + \cdots + \operatorname{inc}(b_{it})$$

for some $\operatorname{inc}(b_{ij}) \in \mathbf{B}_S^i$. Taking a dot product with the chordless path P of \mathbf{O} ,

$$1 = \mathbf{n}^P \cdot \mathrm{inc}(b_{i1}) + \cdots + \mathbf{n}^P \cdot \mathrm{inc}(b_{it})$$

indicates that there is some j such that $\mathbf{n}^P \cdot \mathrm{inc}(b_{ij}) = 1$. Then $\mathbb{O} - w + b_{ij}$ is still an obstruction, and we may choose j for all $i \in [k+1]$.

Summary

Hence, all the vertices in $V(\hat{\mathbb{C}}) \setminus (V(\mathbb{C}^\star) \cup A' \cup A'')$ is a terminal of some AW, and there are k+1 'replica obstructions' in $(V(\mathbb{C}^\star) \cup A' \cup A'')$.

Since $|(V(\mathcal{C}^*) \cup A' \cup A'')| = \mathcal{O}(k^{102})$, our main Lemma 4.3 is proved.

Epilogue

Current score

- 9-redundant solution M w.r.t. (k+2)-necessary family \mathcal{W} : $\mathcal{O}(k^{10})$.
- Number of non-module components: $O(k^{11})$
- Size of each module component: k+1
- Number of module components: $O(k^{102})$.
- Size of each non-module component: ???

In current state, we may kernelize the subset with additional parameter – the vertex cover size.

Current score

- 9-redundant solution M w.r.t. (k+2)-necessary family \mathcal{W} : $\mathcal{O}(k^{10})$.
- Number of non-module components: $O(k^{11})$
- Size of each module component: k+1
- Number of module components: $O(k^{102})$.
- Size of each non-module component: 0

In current state, we may kernelize the subset with additional parameter – the vertex cover size.

Introducing M as a vertex cover, all the components in G-M are independent set.

But we know that, the vertex cover can grow arbitrarily large. Thus for completion, we have to bound the size of each non-module component.

How to?

First, we adopt the clique-path decomposition of each non-module component. Then we may deal with each independent question:

- 9-redundant solution M w.r.t. (k+2)-necessary family \mathcal{W} : $\mathcal{O}(k^{10})$.
- Number of non-module components: $O(k^{11})$
- Size of each module component: k+1
- Number of module components: $O(k^{102})$.
- Size of each non-module component: $?_1 \times ?_2$
 - Maximum size of bags in clique-path: ?1 (section 5, pp.21-40)
 - Maximum clique-path length in each non-module component: ?₂ (section 6, pp.40-62)

How to?

First, we adopt the clique-path decomposition of each non-module component. Then we may deal with each independent question:

- 9-redundant solution M w.r.t. (k+2)-necessary family \mathcal{W} : $\mathcal{O}(k^{10})$.
- Number of non-module components: $O(k^{11})$
- Size of each module component: k+1
- Number of module components: $O(k^{102})$.
- Size of each non-module component: $?_1 \times ?_2$
 - Maximum size of bags in clique-path: ?1 (section 5, pp.21-40)
 - Maximum clique-path length in each non-module component: ?2 (section 6, pp.40-62)

 $?_1 = \mathcal{O}(k^{101})$, $?_2 = \mathcal{O}(k^{1629})$. Several marking strategies are used for each cases.

Hence, we obtain size $O(k^{1741})$ kernel for IVD.

Thanks!

- One simpler problem is Chordal Vertex Deletion, which has $\mathfrak{O}(k^{13})$ kernel found by Agrawal et al.
- \bullet The author believes there is about $\mathcal{O}(k^{10})$ kernel and leaves it to an open problem.
- The accessible paper is quite faulty... There are some calculation errors and typos.