Lecture 1, 4/3/23

Definition 0.1. A field extension $F \subseteq K$ is a field F, which is a subfield of a larger field K.

One way to keep track of how these are related is the <u>degree</u>, [K : F]. This is the dimension of K as a vector space over F.

If this degree is $< \infty$, then we refer to this as a <u>finite extension</u> (we of course do not mean that they are finite as sets)

If $S \subseteq K$, then F(S) is the subfield of K given by $F \cup S$.

F[S] is the sub-ring of K generated by $F \cup S$. These are different in general!

If $S = \{a_1, \ldots, a_n\}$, we use $F(a_1, \ldots, a_n)$ and $F[a_1, \ldots, a_n]$ to denote F(S)/F[S].

If the extension has the form F[a] for some element a, then this is called a <u>simple extension</u>. Here, a is called a primitive element.

An extension $F \subseteq K$ is called algebraic if every $k \in K$ is algebraic over F, meaning is the root of some polynomial in F[x]

Example 0.1.

• $Q \subseteq \mathbb{R}$. This is an infinite extension. Further, it is not an algebraic extension. The hard way to show this is to demonstrate that some element of \mathbb{R} is not algebraic. For example, π , e are real, but transcendental over the rationals.

The easy way is by a simple cardinality argument: Because $\mathbb Q$ is countable, $\overline{\mathbb Q}$ is, but $\mathbb R$ is not

- $\mathbb{R} \subseteq \mathbb{C}$. This is a finite extension. In fact, it is a simple extension, with primitive i.
- $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{5})$. This is algebraic. Of course, $\sqrt{5}$ is a root of $x^5 1$, but what about the other elements of $\mathbb{Q}(\sqrt{5})$?

Consider $\{a+b\sqrt{5}\mid a,b\in\mathbb{Q}\}$. This is a subset of $\mathbb{Q}(\sqrt{5})$, a subring, and a subfield: indeed, consider $\frac{1}{a+b\sqrt{5}}$. The "typical high school trick" is to multiply by the conjugate:

$$\frac{1}{a + b\sqrt{5}} \frac{a - b\sqrt{5}}{a - b\sqrt{5}} = \frac{a - b\sqrt{5}}{a^2 - 5b^2}$$

So $\mathbb{Q}(\sqrt{5}) = \{a + b\sqrt{5} \mid a, b \in \mathbb{Q}\}$, as this is a subfield of $Q(\sqrt{5})$ which contains $\sqrt{5}$, so must contain $\mathbb{Q}(\sqrt{5})$. That is,

$$\mathbb{Q}(\sqrt{5}) = \{a + b\sqrt{5} \mid a, b \in \mathbb{Q}\} = \mathbb{Q}[\sqrt{5}]$$

It is easy to see that $[\mathbb{Q}(\sqrt{5}):\mathbb{Q}]=2$

Let $F \subseteq K$ be a field extension, and consider $F[a_1, \ldots, a_n]$.

There exists an evaluation map $\varepsilon : F[X_1, \ldots, X_n] \to K$, given by $\varepsilon(f) = f(a_1, \ldots, a_n)$. ε is a ring homomorphism, so $\operatorname{Im}(\varepsilon)$ is a subring of K. We have $F[a_1, \ldots, a_n] = \operatorname{Im} \varepsilon$ $F(a_1, \ldots, a_n)$ is a quotient field for the ring $F[a_1, \ldots, a_n]$

Let F be a field, x, y be indeterminants which are independent over F. Let $L = F(y)[x]/\langle x^2 - y \rangle$.

We can check that $x^2 - y$ is irreducible in F(y)[x] because it is quadratic, and y has no square roots.

So because this is irreducible, L is a field.

In particular, F(y) embeds in L via the natural map $F(y) \hookrightarrow F(y)[x] \twoheadrightarrow L$. So $F(y) \subseteq L$. This is a degree two extension of F(y).

Proposition 1. If $[K:F] < \infty$, then $F \subseteq K$ is an algebraic extension.

Proof. Let n = [K : F], and let $a \in K$. Look at $1, a, a^2, \ldots, a^n$. This is n + 1 elements in K, so they must be linearly independent over F. So there exists c_0, c_1, \ldots, c_n , not all zero, such that $\sum_{i=0}^n c_i a^i = 0$. Then $f = \sum_{i=0}^n c_i x^i \in F[x]$ is a polynomial to which a is a solution, so a is algebraic.

Theorem 0.1. (*I*)

Let $F \subseteq K$ be a field extension, $a \in K$. Then The Following Are Equivalent (TFAE):

- **1.** a is algebraic over F
- 2. $\dim_F F[a] < \infty$
- **3.** $[F(a):F] < \infty$
- **4.** F(a) = F[a]

Proof. Notice that $3 \Rightarrow 2$ are really saying the same thing. Further, $2+4 \Rightarrow 3$. So if we can connect 1, 2, 4, then 3 will come along for the ride. Therefore, it is enough to show that 1, 2, 4 are equivalent.

$$1 \Rightarrow 2$$

There exists a nonzero $f \in F[x]$ such that f(a) = 0. $f = \sum_{i=0}^{n} c_i x^i$, where $c_n \neq 0$. So $\sum_{i=0}^{n} c_i a^i = 0$, and so $a^n = \sum_{i=0}^{n-1} d_i a^i$, with $d_i \in F$ new coefficients.

Set $V = \sum_{i=0}^{n-1} Fa^i$. Then $a^n \in V$. So

$$a^{n+1} = \sum_{i=0}^{n-1} d_i a^{i+1}$$
$$= \sum_{j=1}^{n-1} d_{j-1} a^j + d_{n-1} a^n$$

But $d_{n-1}a^n = \sum_{i=0}^{n-1} d_{n-1}d_ia^i$.

Induction gets us that $a^j \in V$ for all $j \geq 0$.

So V is closed under multiplication, hence a subring of K.

So V = F[a]. Note $\dim_F F[a] = \dim_F V \le n$, because we used n elements to span in the first place.

$$2 \Rightarrow 4$$

It will be enough to show F[a] is a field.

Let $x \in F[a], x \neq 0$. Define a map $\mu_x : F[a] \to F[a]$, given by $\mu_x(y) = xy$. This is F-linear, and ker $\mu_x = 0$. We have an injective linear transformation from a finite dimensional vector space to itself, so it has to be an isomorphism onto its image. So there exists $x' \in F[a]$ so that $\mu_x(x') = 1$, so x is invertible.

Lecture 2, 4/5/23

We continue the proof.

$$4 \Rightarrow 1$$

If A = 0, we are done. If $A \neq 0$, then $\frac{1}{a} \in F(a) = F[a]$. So $\frac{1}{a} = \sum_{i=1}^{m} c_i a^i$ where each $c_i \in F$. Note $1 = \sum_{i=0}^{m} c_i a^{i+1}$, so a is a root of $-1 + \sum_{i=0}^{m} c_i x^{i+1} = 0$

Thus a is algebraic over F.

Theorem 0.2. Assume a is algebraic over K.

- (i) There exists a unique monic polynomial $p \in F[x]$ such that p(a) = 0 with minimal degree. We call this the minimal polynomial for a over F, and write $p_{a,F}$.
- (ii) p is irreducible.

- (iii) If $g \in F[x]$, g(a) = 0, then $p \mid g$ in F[x].
- (iv) $[F(a):F] = \deg p$
- (v) If $n = \deg p$, then $(1, a, a^2, \dots, a^{n+1})$ is a basis for F(a) over F.
- (vi) Let $\varepsilon: F[x] \to K$, $\varepsilon(f) = f(a)$. This induces an isomorphism of rings $\overline{\varepsilon}: \frac{F[x]}{\langle p \rangle} \to F(a), \overline{\varepsilon}(f + \langle p \rangle) = f(a)$

Proof.

- (i) Since a is algebraic over F, there exists $f \in F[x]$ such that f(a) = 0. Note that we can divide by the leading coefficient to make f monic with a as a root. Find minimal polynomial of this form, and call it p.
 - Uniqueness: Suppose $p' \in F[x]$ is monic, p'(a) = 0 minimal. Then (p-p')(a) = 0. Since $\deg(p-p') < \deg p$, if $p-p' \neq 0$, we have found a monic polynomial with smaller degree than p with a as a root. Contradiction
- (ii) Let $\varepsilon: F[x] \to F(a) = F[a]$ be the evaluation map. ε induces $\overline{\varepsilon}: \frac{F[x]}{\ker \varepsilon} \to F(a)$. Note $\ker \varepsilon = 0$. Since F[x] is a PID, $\ker \varepsilon = \langle q \rangle$ where $0 \neq q \in F[x]$. Without loss of generality, assume q is monic. We know
 - \bullet q is irreducible
 - q(a) = 0
 - When $g \in F[x], g(a) = 0$, then $q \mid g$

Thus, if $g \neq 0$, $\deg(q) \leq \deg(g)$. This implies that q = p.

- (iii) See above
- (iv) $\overline{\varepsilon}$ is also an isomorphism of vectors over F. Exercise: If $x \in X + \langle p \rangle$, then $(1, x, x^2, \dots, x^{n+1})$ is a basis for $\frac{F[x]}{\langle p \rangle}$. Thus $(1, a, a^2, \dots, a^{n-1})$ is a basis for F(a) Furthermore, $[F(a):F] = n = \deg p$

Let $F \leq K$ be a field extension, $a \in K$ algebraic over F. If $p \in F[x]$ is monic and irreducible with p(a) = 0, then $p = p_{a,F}$

- (v) See iv
- (vi) See ii

Example 0.2. Let $a = \sqrt[4]{5} \in \mathbb{R}_{>0}$, $p = X^4 - 5 \in \mathbb{Q}[x]$. Since p is irreducible over $\mathbb{Q}[x]$, $p = p_{a,F}$.

Note that p is reducible over $\mathbb{Q}(\sqrt{5})[x]$. In fact, $p_{a,\mathbb{Q}[\sqrt{5}]} = x^2 - \sqrt{5}$. We have the tower of fields:

Let $F \subseteq K \subseteq L$ be a tower of fields. If $a \in L$ is algebraic in F, then a is also algebraic over K. Furthermore, $p_{a,K} \mid p_{a,F}$ in K[x].

Proposition 2. If $f \in F[x]$ is a nonzero polynomial of degree n, then f has at most n roots in n.

Proof. By induction.

n = 0: trivial.

n > 0: if there are no roots, we're okay.

Otherwise, there exists $a \in F$ such that f(a) = 0. So f = (x - alg), for some $g \in F(x)$. $g \neq 0$, $\deg g = n - 1$. Thus g has $\leq n - 1$ roots in F.

Since {roots of f} = {a} \cup {roots of g}, there are $\leq n$ roots of f.

Let $F \subseteq K$ be a field extension. Let $\mathcal{A} = \{a \in K, a \text{ algebraic over } F\}$.

If F is infinite, then $|\mathcal{A}| = |F|$. If F is finite, $|\mathcal{A}|$ is countable.

Let A denote the complex numbers which are algebraic over \mathbb{Q} . Note $|A| = |\mathbb{Q}| = \aleph_0$

Lecture 3, 4/10/23