MULTIPLEXERS AND DEMULTIPLEXERS PART - 01

Multiplexer (MUX)

A multiplexer (often abbreviated as MUX) is a digital circuit that selects one of many input signals and forwards the selected input to a single output line.

A multiplexer is a combinational circuit with: I_0 ■ 2ⁿ input lines output line I_2 n selection (or control) lines * Selecting over multiple inputs of Send to the op I(n) (Multiple Data Data Selection Single Data Inputs (Switch) Output Some 1 Selection Switch Source 2 Source 3 Switch

Select Line

A select line (also called a control line) in a multiplexer determines which input is connected to the output.

If there are m select lines and n input lines in a MUX then the number of possible input lines will be 2^m

max			
Select Lines (m)	Input Lines ($n = 2^{m}$)		
1	2		
2	4		
3	8		
4	16		
5	32		
m	2 ^m		

If a multiplexer has N input lines, the number of select lines needed is: $\lceil \log_2 N \rceil$

Select Line

* For every Combination of Select Line there will be I input line associated with that Combination.

* Eg if there are total of 4 infut lines then We need [log2(4)] select lines 2 sélect lines.

-> It is called as 4: 1 Mux or 4x1 Mux Input outful lines

lines - In fower of 2. __ m = select lines → We can orefresent a Mux as 2^m: 1 mux or 2^m X 1 mux

*Mux are also Called as Universal Logic' Input! & AND-OR Logic?

Input lines = 2 select lines

Active high and Active low Multiplexer

Active High: The Enable Switch of the Mux must be I to turn on the multiplexer

Fu=0. then Mux walks
Eu=0. then Mux will not work

Active low: It the enable switch is zero then mux work. If EN = 0 then Mux turn ON EN = 1 then Mux will Not work Low Data Inputs 2n:1 Output Multiplexer

 $S_2 S_1 S_0$

 I_{n-1}

A 2×1 mux consists of two input lines and one select line (S) and one output (Y)

TRUTH TABLE				
S (Select)	Do	D ₁	Y (Output)	
0	0	X	0	e \ 1
0	1	Χ	1	8=0 Y=D0
1	X	0	0	
1	X	1	1	S=1 Y= D1

S	γ				
0	D °	M⊅	Sol		
1	DI	m <u>.</u>	γ=	<u>2</u> D°	+ 2 D ^T

of DAND Gates are required to Create 2x1 mux

* The Sequence of Input lines & Select lines may be vary according to the Sequence.

A 4:1 Multiplexer (4-to-1 MUX) is a combinational circuit that selects one of four data inputs and routes it to a single output, based on the values of two select lines.

Data Inputs: D0, D1, D2, D3 (4 inputs)

Select Inputs: S1, S0 (2 bits)

Enable (EN) – if present, enables/disables the MUX

Y – Output

TRUTH TABLE			
S1	SO	Output (Y)	
0	0	D0 -	odoziz +
0	1	D1 —	→ SIS DI
1	0	D2 _	-> SISOD2
1	1	V D3 _	> 2120D3 > 2120D5

* No of Invertex negword = no d Select lines for a mox

Connecting Vcc to S1 pin in 4:1 Multiplexer

Possibl	e Gr	npinati	m	_
Sı	So	_		
1	0	\mathcal{D}_{2}	7	0 utput
4	4	D3	J	

$$\chi$$
 Do & D₁ Can not get Connected to the output if $\xi_1 = 1$.

.. Do LDe are disabled Input

Connecting GND to S1 pin in 4:1 Multiplexer

An 8:1 multiplexer selects one of 8 data inputs (D_0 – D_7) and sends it to the output Y, based on 3 select lines (S_2 , S_1 , S_0).

TRUTH TABLE				
S ₂	S ₁	So	Output (Y)	
0	0	0	Do	525, 50 Do
0	0	1	D ₁ —	> 525,56D,
0	1	0	D ₂ —	> 52 S, 50 D
0	1	1	D ₃	
1	0	0	D ₄	
1	0	1	D ₅	
1	1	0	D ₆	:
1	1	1	D ₇	S, S, S, D ₁

$$Y=\overline{S_2}\,\overline{S_1}\,\overline{S_0}\cdot D_0+\overline{S_2}\,\overline{S_1}\,S_0\cdot D_1+\overline{S_2}\,S_1\,\overline{S_0}\cdot D_2+\overline{S_2}\,S_1\,S_0\cdot D_3+S_2\,\overline{S_1}\,\overline{S_0}\cdot D_4+S_2\,\overline{S_1}\,\overline{S_0}\cdot D_5+S_2\,S_1\,\overline{S_0}\cdot D_6+S_2\,S_1\,S_0\cdot D_7$$

8×1 Multiplexer 3 invertus & AND gates AND AND AND OR AND

Id NAND gates are negliared to design 8:1 mux

Similarly we can design 16:1 mox, 32X1 mux 4 So on. but 9t is not feasable Minimize the MUX by distributing the high order multipleyer to the Sequence of low voder Mux. DM allom 7

Implementation of Logic gates wing Mux

Lunctions wing mux