3 Занятие 15/09/2020: метрические пространства, внешняя мера

Метрическим пространством называется пара (X, ρ) , состоящее из некоторого множества X и расстояния, то есть однозначной, неотрицательной, действительной функции $\rho(x,y)$, определенной для любых $x,y\in X$ и удовлетворяющей следующем условиям:

- 1. $\rho(x,y) = 0$ тогда и только тогда когда x = y,
- 2. $\rho(x,y) = \rho(y,x)$ (симметричность),
- 3. $\rho(x,z) \le \rho(x,y) + \rho(y,z)$ (неравенство треугольника).

Мерой μ на полукольце $\mathfrak{A}\subset 2^X$ называется вещественная неотрицаттельная функция μ на \mathfrak{A} , обладающая свойством аддитивности

$$\mu(A \cup B) = \mu(A) + \mu(B), \quad A \cap B = \varnothing.$$

Мера μ называется **счетно-аддитивной** или σ **-аддитивной** если выполнено

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} \mu(A_k), \quad A_i \cap A_j = \varnothing.$$

Теорема. Любая мера μ' на полукольце $\mathfrak A$ однозначно продолжается до меры μ на кольце $\mathcal R(\mathfrak A)$, причем если μ' счетно-аддитивна, то μ также счетно-аддитивна.

Пусть задано множество X, полукольцо $\mathfrak{A}\subset 2^X$ и σ -аддитивная мера μ на \mathfrak{A} . Определим **внешнюю меру** μ^* как

$$\mu^*(A) = \inf \sum_{k=1}^{\infty} \mu(A_k), \quad A \subset \bigcup_{k=1}^{\infty} A_k, \quad A_k \in \mathfrak{A}, \quad A \in 2^X.$$

Назовем множетсво A измеримым по Лебегу оттносительно меры μ если для любого $\varepsilon > 0$ найдется такое множество $B \in \mathcal{R}(\mathfrak{A})$, что $\mu^*(A \triangle B) < \varepsilon$.

Теорема. Совокупность $L(\mathfrak{A}, \mu)$ множеств, измеримых по Лебегу относительно меры μ , образует σ -алгебру, на которой μ^* является σ -аддитивной мерой.

Задачи

(1) Пусть l_2 — множество всевозможных последовательностей $x=(x_1,\ldots,x_n,\ldots)$ действительных чисел, удовлетворяющих $\sum_{k=1}^\infty x_k^2 < \infty$, а расстояние определяется формулой

$$\rho(x,y) = \sqrt{\sum_{k=1}^{\infty} (y_k - x_k)^2}.$$

Покажите, что l_2 — метрическое пространство.

(2) Обозначим за \mathbb{R}_p^n множество упорядоченных групп из n действительных чисел с расстоянием

$$\rho_p(x,y) = \left(\sum_{k=1}^n |y_k - x_k|^p\right)^{1/p},$$

где p — любое фиксированное число с $p \geq 1$. Докажите, что \mathbb{R}_p^n — метрическое пространство.

(3) Изменим немного задачу (1), а именно рассмотрим множество всевозможных последовательностей $x=(x_1,\ldots,x_n,\ldots)$ действительных чисел, удовлетворяющих $\sum_{k=1}^{\infty}|x_k|^p<\infty$, а расстояние определяется формулой

$$\rho(x,y) = \left(\sum_{k=1}^{\infty} |y_k - x_k|^p\right)^{1/p}, \quad p \ge 1$$

и обозначим его за l_p . Покажите, что l_p — метрическое пространство.

(4) Пусть $X = \mathbb{R}^2$ и $x = (x_1, x_2), y = (y_1, y_2) \in X$. Покажите, что X вместе с расстоянием

$$\rho(x,y) = \begin{cases} |x_1 - y_1|, & x_2 = y_2, \\ |x_1| + |x_2 - y_2| + |y_1|, & x_2 \neq y_2 \end{cases}$$

является метрическим пространством.

(5) Пусть (X,d) — метрическое пространство. Докажите, что (X,ρ) тоже является метрическим пространством, где

$$\rho(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$$

(6) Пусть (X, ρ) — метрическое пространство. Метрика ρ называется ультраметрикой если выполнено усиленное неравенство треугольника

$$\rho(x,y) \le \max(\rho(x,z), \rho(y,z)), \quad \forall x, y, z \in X.$$

- (a) Покажите, что Евклидова метрика на \mathbb{R}^n , $n \geq 2$ не является ультраметрикой.
- (b) Пусть p>2 некое простое число. Для любого $x\in\mathbb{Q}$ существует единственный $n\in\mathbb{Z}$ такой, что $x=p^nu/v$, где $p\nmid u,v$ (то есть n максимальная степень вхождения p в x). Обозначим $|x|_p=n$. Докажите, что

$$\rho_p(x,y) = \begin{cases} 0, & x = y, \\ p^{-|x-y|_p}, & x \neq y, \end{cases}$$

задает ультраметрику на \mathbb{Q} .

- (7) Пусть X пространство с конечной σ -аддитивной мерой μ , определенной на некоторой алгебре R. Внутренней мерой μ_* множества $A \subset X$ называется $\mu_*(A) = \mu(X) \mu^*(X \setminus A)$, где μ^* внешняя мера множества. Докажите, что $\mu^*(A) \geq \mu_*(A)$.
- (8) Докажите, что множество A измеримо по Лебегу тогда и только тогда, когда $\mu^*(A) = \mu_*(A)$.
- (9) Докажите, что для любых $A, B \in 2^X$ выполнено $|\mu^*(A) \mu^*(B)| \le \mu^*(A \triangle B)$.
- (10) Докажите, что функция μ^* обладает свойством счетной полуаддитивности на 2^X :

10

$$\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \le \sum_{n=1}^{\infty} \mu^* (A_n), \quad A_n \subset X.$$