(b) Define potential difference	l	(a)	the definition of work done to show that the SI base units of energy are $kg m^2 s^{-2}$.
(b) Define potential difference			
(b) Define potential difference			
(b) Define potential difference			
			[2]
(c) Determine the SI base units of resistance. Show your working.		(b)	Define potential difference.
(c) Determine the SI base units of resistance. Show your working.			
		(-)	
units[3		(C)	Determine the SI base units of resistance. Snow your working.
units[3			
			units[3]

2 A stone is thrown vertically upwards. The variation with time *t* of the displacement *s* of the stone is shown in Fig. 2.1.

Fig. 2.1

(a)	Fig. 2.1 to describe, without calculation, the speed of the stone from $t = 0$ to $t = 3.0$ s.
	[2]

- (b) Assume air resistance is negligible and therefore the stone has constant acceleration.Calculate, for the stone,
 - (i) the speed at 3.0 s,

(ii)	the distance travelled from $t = 0$ to $t = 3.0$ s,
	distance = m [3]
(iii)	the displacement from $t = 0$ to $t = 3.0$ s.
	displacement = m direction
) On	[2] Fig. 2.2, draw the variation with time t of the velocity v of the stone from $t = 0$ to $t = 3.0$ s.

Fig. 2.2

3 A rod PQ is attached at P to a vertical wall, as shown in Fig. 3.1.

Fig. 3.1

The length of the rod is 1.60 m. The weight W of the rod acts 0.64 m from P. The rod is kept horizontal and in equilibrium by a wire attached to Q and to the wall at R. The wire provides a force F on the rod of 44 N at 30° to the horizontal.

- (a) Determine
 - (i) the vertical component of F,

vertical component =N [1]

(ii) the horizontal component of F.

horizontal component =N [1]

(b) By taking moments about P, determine the weight *W* of the rod.

W =N [2]

(c)	Explain why the wall must exert a force on the rod at P.		
	[1]		
	On Fig. 3.1, draw an arrow to represent the force acting on the rod at P. Label your arrow with the letter S.		

4 (a) A gas molecule has a mass of $6.64 \times 10^{-27} \, \text{kg}$ and a speed of $1250 \, \text{m s}^{-1}$. The molecule collides normally with a flat surface and rebounds with the same speed, as shown in Fig. 4.1.

Fig. 4.1

Calculate the change in momentum of the molecule.

	change in momentum = Ns [2]
(i)	the kinetic model to explain the pressure exerted by gases.
	[3]
(ii)	Explain the effect of an increase in density, at constant temperature, on the pressure of a gas.

5 (a) On Fig. 5.1, sketch the temperature characteristic of a thermistor.

Fig. 5.1

[2]

(b) A potential divider circuit is shown in Fig. 5.2.

Fig. 5.2

The battery of electromotive force (e.m.f.) 12 V and negligible internal resistance is connected in series with resistors X and Y and thermistor Z. The resistance of Y is $15\,\mathrm{k}\Omega$ and the resistance of Z at a particular temperature is $3.0\,\mathrm{k}\Omega$. The potential difference (p.d.) across Y is $8.0\,\mathrm{V}$.

(i)	Explain why the power transformed in the battery equals the total power transformed in
	X, Y and Z.

.....[1]

(ii) Calculate the current in the circuit.

	resistance = Ω [3]
(iv)	The temperature of Z is increased.
	State and explain the effect on the potential difference across Z.
	[2]

(iii) Calculate the resistance of X.

6	(a)		e two differences between progressive waves and stationary waves.	
		2		
	(b)	A sc	ource S of microwaves is placed in front of a metal reflector R, as shown in Fig. 6.1.	[2]
		nicrov sour S	ce	
			Fig. 6.1	
		A m	icrowave detector D is placed between R and S.	
		Des	cribe	
		(i)	how stationary waves are formed between R and S,	
		(ii)	how D is used to show that stationary waves are formed between R and S,	
	((iii)	how the wavelength of the microwaves may be determined using the apparatus Fig. 6.1.	in
				[2]

7	reaction is given by	A uranium-235 nucleus absorbs a neutron and then splits into two nuclei. A possible nuclear reaction is given by				
	²³⁵ U	$+$ $^{a}_{b}$ n \rightarrow $^{93}_{37}$ Rb $-$	$+ {}_{d}^{c}X + 2_{b}^{a}n$	+ energy.		
	(a) State the constituent	(a) State the constituent particles of the uranium-235 nucleus.				
				[1]		
	(b) Complete Fig. 7.1 for	this reaction.				
			value			
		a				
		b				
		С				
		d				
[3] Fig. 7.1						
	(c) Suggest a possible form of energy released in this reaction.					
				[1]		
	(d) Explain, using the law of mass-energy conservation, how energy is released in this reaction.					
	[2]					