

Mehrad Ansari

Email: mehrad.ansari@utoronto.ca

Personal website: https://mehradans92.github.io

Summary:

A detail-oriented chemical engineer with hands-on background in materials science, computational modeling, machine learning and scientific software development, supported by academic research and professional work experience in interdisciplinary settings.

Education

Doctor of Philosophy in Chemical Engineering

Master of Science in Chemical Engineering

Thesis: "Applications of Physics-informed Machine Learning in Chemical Engineering", Advisor: Andrew D White

Master of Science in Environmental Engineering

(May 2018)

(May 2023)

(Oct 2021)

Missouri University of Science and Technology (UMR), Rolla, MC

Thesis: "Numerical Modeling of Capillary-driven Flow in Open Microchannels: An Implication of Optimized Wicking Fabric Design"

Bachelor of Science in Chemical Engineering

(July 2015)

University of Tehran, Iran

Thesis: "Experimental Setup and Optimization for Electro-catalytical Generation of Hydroxyl Radicals in Wastewater Treatment"

Work Experience

Staff Scientist

(Jan 2024 - present) (June 2023 - Dec 2023)

Acceleration Consortium Research Fellow Acceleration Consortium, Toronto, ON

- Facilitating AI & Automation (representation learning, Bayesian opt, physics-informed ML and Al-agents) across various self-driving chemistry labs
 - Incorporating built-in domain knowledge in self-driving chemistry lab workflows, materials inverse design problem and hit-to-lead optimization
 - Developed chemistry-informed Al agents within Slack API
 - $Developed \underline{\ agent-based\ chemistry\ plugins}\ via\ large\ language\ models\ to\ accelerate\ design\ of\ materials\ for\ CO_2\ reduction$

Research Assistant (2019 - 2023)

- Developed a HuggingFace app that answers questions from scientific papers using OpenAl's large language models
- Developed a edge-computing cheminformatics tool for semi-supervised classification of the activity of antimicrobial peptides via positive-unlabeled learning using recurrent neural networks
- Developed a <u>disease modeling tool</u> to predict future disease spreads and infer location of patient-zero
- Developed an automated tool in CFD modeling that reduces the number of simulations using active learning and generates a symbolic equation for the system of interest via symbolic regression
- Contributed to development of a simulation-based inference tool via maximum entropy reweighting
- Contributed to development of a plugin with TensorFlow GPU-accelerated operations combined with HOOMD-Blue molecular dynamics simulation engine (HOOMD-TF)
- Developed a web-app for peptide-based gelator transparency classification using Kernel ridge regression
- Developed an automated tool on a Raspberry-Pi for real-time monitoring of HPC using Python, JS and HTML
- Implemented finite difference analysis in Python to study 2D shallow water dynamics
- Implemented Monte Carlo simulations in MATLAB to study evolution of spin configurations of a ferromagnet using the Ising model

Energy & Materials Intern and Research Engineer

(May 2022 - Mar 2023)

Developed a deep learning software to predict degradation of used Li-ion batteries with unknown cycling histories (US Patent pending).

Teaching Assistant of "Advanced Transport Phenomena"

(Jan - Dec 2020)

University of Rochester, Rochester, NY

Tutored students on homework related problems and organized laboratory experiments

Lead CFD Analyst at Missouri S&T Solar Car Design Team

(2016 - 2018)

Missouri University of Science and Technology, Rolla, MO

- Developed validated wind tunnel simulations in STAR-CCM+ for aerodynamic optimization of the solar car
- Improved aerodynamic design efficiency prior to manufacturing

Manufacturing Process Modeling Intern

(May-Dec 2017)

- Phase-change heat transfer modeling and optimization of tire vulcanization process in ANSYS
- Model verification based on plant data and analytical solution
- Utilized assets more efficiently through MATLAB post processing and automating the simulation process using OPTIMUS
- Provided faster simulation results using Adaptive Mesh Refinement and High-Performance Computing
- GUI development and coupling ANSYS with MATLAB for time-effective post processing

Teaching Assistant of "Applied Numerical Methods in CFD"

Missouri University of Science and Technology, Rolla, MO

(Jan-May 2017)

Organized CFD and programming workshops for ANSYS and Star-CCM +

Research Assistant (2016 - 2018)

Missouri University of Science and Technology, Rolla, MO

- Numerical modeling of multiphase flow in open microfluidics using ANSYS and STAR-CCM +
- Reduced simulation run-time by developing an algorithm for adaptive mesh refinement (AMR)

Mehrad Ansari

(July-Sept 2014)

Personal website: https://mehradans92.github.io

Email: mehrad.ansari@utoronto.ca

Work Experience

-Leer University of Applied Sciences, Emden, Germany

Design of experiments in advanced oxidation process (AOP) for wastewater treatment

Computer Skills

Scientific Softwares I	Deve	oped
------------------------	------	------

Engineering Intern

• MaxEnt AL-CFD

• Peptide.bio

 HOOMD-TF dZiner

· Bye-Cycle

Other tools: AWS, TensorFlow, PyTorch, Scikit-learn, JAX, LangChair Languages: Python, JavaScript, HTML, CSS

Honors and Awards

3 rd Place Radical Al Winner at the <u>2024 LLM Hackathon - Materials and Chemistry</u> Toronto, ON	(May 2024)
2 nd Place Winner Team at the <u>Bayesian Optimization Hackathon for Chemistry and Materials</u> Toronto, ON	(Apr 2024)
Acceleration Consortium Research Fellowship University of Toronto, Toronto	(May 2023)
1 st place winner at the <u>Battery Informatics & ML Kaggle Competition</u> Materials Research Society, Boston, MA	(Dec 2022)
Kwang-Yu and Lee-Chien Wang Fellowship Department of Chemical Engineering, University of Rochester	(Nov 2021)
Earl W. Costich Graduate Fellowship Department of Chemical Engineering, University of Rochester	(May 2020)
1st place winner: 2017 Mike Alizadeh Scholarship American Society of Civil Engineers (ASCE)	(Aug 2017)

Selected Publications and Patents (Google Scholar)

1.	dZiner: Rational Inverse Design of Materials with Al Agents Spotlight Al4Mat-NeurIPS 2024 M Ansart, J Watchorn, CE Brown, JS Brown	(Oct 2024)
2.	Agent-based Learning of Materials Datasets from Scientific Literature Digital Discovery MAnsari, SM Moosavi	(Oct 2024)
3.	Learning Peptide Properties with Positive Examples Only Digital Discourage	(Mar 2024)

Digital Discovery **M Ansari**, AD White <u>History-agnostic Battery Degradation Inference</u> and US Patent Pending

Journal of Energy Storage M Ansari, S Torrisi, A Trewartha, S Sun

Recognized reviewer: Journal of Environmental Chemical Engineering

(Mar 2024)

(May 2016)

Serverless Prediction of Peptide Properties with Recurrent Neural Networks 5. Journal of Chemical Information and Modeling **M Ansari**, AD White

(Apr 2023)

Assessment of Chemistry Knowledge in Large Language Models that Generate Code Digital Discovery

AD White, GM Hocky, HA Gandhi, M Ansari, S Cox, GP Wellawatte, S Sasmal, Z Yang, K Liu, Y Singh, WJ Peña Ccoa

(Jan 2023)

Book chapter: Hyper-parameter Optimization in Deep Learning Deep Learning for Molecules and Materials, Living Journal of Computational Molecular Science **M Ansari**, AD White (July 2022)

8. Inferring Spatial Source of Disease Outbreaks using Maximum Entropy

Serverless Prediction of Peptide Properties with Recurrent Neural Networks

Advances in Neural Information Processing Systems 33: Workshop on Machine Learning for Structural Biology

<u>Simulation-based Inference with Approximately Correct Parameters via Maximum Entropy</u>

Middle Atlantic Regional Meeting of the American Chemical Society, Ewing Township, NJ

(July 2022)

American Physical Society, Physical Review E M Ansari, D Soriano-Paños, G Ghoshal, AD White <u>Iterative Symbolic Regression for Learning Transport Equations</u>

(Mar 2022)

AlChE Journal, Special Edition for Al M Ansari, HA Gandhi, DG Foster, AD White Simulation-based Inference with Approximately Correct Parameters via Maximum Entropy NeurIPS 2020, Machine Learning in Science and Technology R Barrett, **M Ansari**, G Ghoshal, AD White

(Apr 2022)

(June 2022)

(Dec 2020)

=⊕

9.

Presentations and Talks

2	Fieselitations and Taiks	
1.	Live Demo: Rational Inverse Design of Materials with Chemist AI Agents Spotlight AI4Mat-NeurIPS 2024, Vancouver, BC	(Dec 2024)
2.	Multi-modal Al Agents in Materials Discovery Accelerate 24, Vancouver, BC	(Aug 2024)
3.	Materials Inverse Design with Al Agents (Invited talk) Trillion Parameter Consortium, Barcelona, Spain	(June 2024)
4.	Al That Probably Wouldn't Kill You (Invited talk) 2024 LLM Hackathon - Materials and Chemistry, Toronto, ON	(May 2024)
5.	Flexible Automation of Self-driving Labs with Built-in Domain Knowledge (Invited talk) Toyota Research Institute, Los Altos, CA	(Mar 2024)
6.	Positive Unlabeled Learning of Peptide Properties Accelerate23 Conference, Toronto, ON	(Aug 2023)
7.	Maximum Entropy Inference in Chemical Reaction Networks with Unknown Kinetic Parameters AIChE, Phoenix, AZ	(Nov 2022)
8.	Rescuing Physics-based Models with Maximum Entropy Reweighting Wang Lecture, University of Rochester, NY	(Sept 2022)