Determination of waverigth of Laser Light:

Distance between grating and Screen (D): 17 m

Number of lines per metre length

of the grating: N = 10⁵

	Order of diffraction (m)	Distance of orders from Central Spo Left	f different the t(x) m Reght	Mean (x) m	Angle of diffraction 0 = tan - 1[x/D]	A: SinOm A.
1	1	1.2	1.1	1.15	3 - 8673	6731 Å
2	2	2.4	2.3	2.35	7.8684	6886 Å
3	3	3.6	3.5	3.55	11.7939	6856 Å
4	4	4.8	4.7	4:75	15.6103	6805 Å

Calculation:

Mean (x) m

1.
$$1.2 + 1.1 = \frac{2.3}{2} = \frac{1.15}{}$$

2.
$$2.4 + 2.3 = 4.7 = 2.35$$

$$1. \frac{x}{D} = \frac{1.15}{17} = 0.0676$$

2.
$$\frac{x}{D} = \frac{2.35}{17} = 0.1382$$

 $tan^{-1} 0.1382 = 7.8684$

$$\lambda = \frac{\sin \theta_m}{N}$$

2.
$$\frac{O_m}{N_m}$$
 = $\frac{7.8684}{2}$ = $\frac{3.9342}{2}$

$$\phi = \frac{(a_2 - a_1)}{a(d_2 - d_1)} = \frac{4 - 3}{a(a_0 - 16)} = \frac{1}{10} = \frac{0.1}{10}$$