Logistic Regression

Classification Types

- Two-class
 - $y \in \{0,1\}$
 - 0: "negative" class
 - 1: "positive" class
 - Yes/No; Benign/Malignant; Click/No click
- Multi-class
 - $y \in \{0,1,2,...,n\}$
 - Grades; Colors; Item Categories

Two Class via Linear Regression

- Goal: Assign objects to y = 0 or y = 1
- Decision rule:
 - $h_{\theta}(x) \ge 0.5$; y = 1
 - $h_{\theta}(x) < 0.5$; y = 0
- Issues:
 - Hard to fit properly
 - $h_{\theta}(x)$ can be > 1 or < 0
 - Can't extract probabilities

Logistic Regression

- Use "Logistic Function"
- Shape better suited to two-class problem

Logistic Function

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

- Class Assignment:
 - $y = 1 \text{ if } h_{\theta}(x) > 0.5$
 - $y = 0 \text{ if } h_{\theta}(x) < 0.5$
- Asymptotic
 - $h_{\theta}(x) \to 1 \text{ as } x \to \infty$
 - $h_{\theta}(x) \to 0$ as $x \to -\infty$

Logistic Function

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Probabilistic interpretation

- $P_{\theta}(y = 1|x) = h_{\theta}(x)$
- $P_{\theta}(y = 0|x) = 1 h_{\theta}(x)$
- Always between 0 and 1!

Reminder: Gradient Descent

$$\theta_{j+1} = \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

- α is the "learning rate"
- Each time, the algorithm takes a step in the direction of the steepest downward slope, so $J(\theta)$ decreases.
- α determines how quickly or slowly the algorithm will converge to a solution

Cost Function: Log-Likelihood

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} -\ln\left(P_{\theta}(y = y_i | x^{(i)})\right)$$

Cost Function: Log-Likelihood

Need to find $\frac{\partial}{\partial \theta_i} J(\theta)$ for log-likelihood

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} -\ln\left(P_{\theta}(y = y_i | x^{(i)})\right)$$

Since y is only 1 or 0, rewrite this as:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y_i \ln\left(h_{\theta}(x^{(i)})\right) + (1 - y_i) \ln\left(1 - h_{\theta}(x^{(i)})\right) \right]$$

Quick Recap

Hypothesis:
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Cost Function:
$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y_i \ln \left(h_{\theta}(x^{(i)}) \right) + (1 - y_i) \ln \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

Parameters:
$$\theta^T = [\theta_1, ..., \theta_n]$$

Decision Boundary

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

- Consider the exponent $\theta^T x$
 - Assume threshold of 0.5

•
$$0.5 = \frac{1}{1 + e^{-\theta^T x}} \to e^{-\theta^T x} = 1 \to \theta^T x = 0$$

- $D(\theta, x) = \theta^T x$ is the "decision boundary"
- Visualize class separation

Decision Boundary: Linear

- Logistic regression is a "linear classifier"
- Example in 2-D

•
$$D(\theta, x) = (\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

•
$$\theta^T = [-3, 1, 1]$$

•
$$\theta^T x = -3 + x_1 + x_2 \ge 0$$

•
$$\rightarrow x_1 + x_2 \ge 3$$

Decision Boundary: Non-Linear

- "Non-linear" algorithms have more complicated decision boundaries
- $D(\theta, x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2$
- $\theta^T = [-2, 0, 0, 1, 1]$

$$- x_1^2 + x_2^2 \ge 2$$

Example: Handwritten Digit Recognition

QUESTIONS

