Design and Analysis of Algorithms

L37: LC Branch and Bound 0-1 Knapsack Problem

Dr. Ram P Rustagi Sem IV (2020-Even) Dept of CSE, KSIT rprustagi@ksit.edu.in

Resources

- Text book 2: Horowitz
 - Sec <u>8.2</u>
- Text book 1: Levitin
 - -Sec 12.1, **12.2**
- R1: Introduction to Algorithms
 - Cormen et al.
- Youtube link for lecture recording
 - https://www.youtube.com/watch?v=j556E7Lgvbl
- Youtube (other)
 - https://www.youtube.com/watch?v=yVId-b_NeK8

BB Search: State Space Tree

```
Algo BBSearch (node t) // search tree with root at t.
if t is an answer node
   output t and return
E←t // make t an E-node
Initialize the list \bot (of live nodes) to be empty.
<u>do</u>
   for each child x of E
      if \times is an answer node
          output the path from x to t and <u>return</u>
      Add(x) to list L of live nodes
      parent(x) \leftarrow E
   if \bot is empty // there are no more live nodes
      output "No answer nodes" and return
   E←Next (L) // take the next live node from to search
while True
```

BB Search: State Space Tree

- Three possible implementation of search space
 - Depends upon how the list L is implemented
 - and how the Next(L) is taken out
- L is Queue i.e. FIFO (First In First Out)
 - E-nodes are removed in the order they are added
 - Also called BFS (Breadth First search)
- L is Stack i.e. LIFO (Last in First Out)
 - E-nodes are removed in the reverse order it is added
 - Also called D-search (Depth First search)
- L is Heap (can be min or max heap)
 - E-nodes are removed as min (or max) value
 - Called Least Cost (LC) Search

DAA/Backtracking, Branch&Bound, NP-Complete

RPR/

LC Search: State Space Tree

```
Algo LCSearch (node t) // search tree with root at t.
if t is an answer node
   output t and return
E←t // make t an E-node
Initialize the list \bot (of live nodes) to be empty.
<u>do</u>
   for each child x of E
       if \times is an answer node
          output the path from x to t and <u>return</u>
       Add(x) to list L of live nodes
       parent(x) \leftarrow E
   if \bot is empty // there are no more live nodes
       output "No answer nodes" and return
   \mathbb{E}\leftarrowLeast (\mathbb{L}) // take the next live node from to search
while True
```

Bound Implementation

- Consider a tree t rooted at node x.
- Let C(X) denotes the cost of minimum cost answer node
 - Typically, this cost is equal to objective function value, e.g.
 - Min cost in job assignment problem, TSP
 - Computing c(x) is the main task to find the answer node
- When exploring state space Tree using LCBB
 - We pick the node with least cost.
 - Finding (computing) it requires exploring the entire tree
 - Leads to exponential cost
 - Thus, we would try to estimate c(x)
- Define $\hat{C}(x)$: a heuristic (estimate) value for C(x)
 - Use this $\hat{c}(x)$ in picking the next least cost E-node.
 - Thus it must follow $\hat{c}(x) \leq c(x)$
 - Otherwise, we are exploring a path with cost > c(x)
 - Reach an answer node which is not min cost

Bound Implementation

- Defining $\hat{c}(x)$: a heuristic value for c(x)
 - Provides a lower bound on solutions obtainable $\hat{c}(x) \leq c(x)$
- Let upper: upper bound on cost of min cost solution
 - Then, consider all live nodes with $\hat{c}(x)$ >upper
 - These live nodes can be killed, as answer node reachable from these live nodes will have $c(x) \ge \hat{c}(x) > upper$
 - Initial value of upper should be more than C(X)
 - May even be set as ∞
- Thus, as long as value of upper is $\geq_{\mathbb{C}} (x)$
 - Killing of live nodes will not cause killing a node that can reach min cost answer node.

0-1 Knapsack Problem

- Knapsack problem:
 - Given n items of known weights $w_1, ..., w_n$, and
 - Values $v_1, ..., v_n$ and knapsack capacity m
 - Find the most valuable subset of items that fit into the knapsack.
 - i.e.maximize the value of knapsack
 - An item has to be included in full (0-1 knapsack problem)
 - Note: All the weights w_i 's and knapsack capacity m are integers, but values v_i 's can be real numbers.
- 0-1 knapsack is a maximization problem
 - Branch and Bound solves minimization problem.
 - So convert knapsack to minimization problem

0-1 Knapsack Problem

- 0-1 Knapsack problem (maximization problem)
 - Maximize $\Sigma_{1 \leq i \leq n}$ $\forall_i x_i$,
 - Subject to $\Sigma_{1 \leq i \leq n} w_i x_i \leq m$
 - x_i is 0 or 1, and $1 \le i \le n$
- Problems of TSP and Job Assignment were minimization problem solved using Branch-n-Bound
- Convert knapsack maximization to minimization

```
Minimize -\Sigma_{1 \le i \le n} \ v_i x_i, (call it cost)
```

- -It maximizes $\Sigma_{1 \le i \le n}$ $\forall_i x_i$ (values)
- subject to $\Sigma_{1 \le i \le n} w_i x_i \le m$ (knapsack constraint)
- State space tree formation
 - Using fixed tuple size, one variable for each weight
 - Using variable tuple size, uses the index of weight

0-1 Knapsack Problem

- State space tree formation
 - Using fixed tuple size, one variable for each weight
 - Each variable has two values 0 or 1
 - Thus, Each node has two children
 - Using variable tuple size, uses the index of weight
 - Can be easily built from fixed tuple size case
- Implementation: define two terms:
 - Cost per node (what can be reached theoretically)
 - Upper bound per node (what can be achieved)
 - Define C (x) = $-\Sigma_{1 \le i \le n}$ v_ix_i for each answer node x
 - $C(x) = \infty$ for infeasible leaf nodes
 - For non-leaf nodes, define c(x) recursively as
 - min{c(Lchild(x)), c(Rchild(x))}
 - Thus, computation recursively becomes exponential

Example: LCBB 0-1 Knapsack

- Consider knapsack instance with n=4, m=15, and
 - Values (v_1, v_2, v_3, v_4) =(10, 10, 12, 18), and
 - Weights $(w_1, w_2, w_3, w_4)=(2, 4, 6, 9)$
 - $-v_{i}/w_{i}$ ratios are $5>2.5>2\ge 2$
- Using fixed tuple implementation, trace LCBB
 - Fixed implementation implies 4 tuple variables
 - x_1 , x_2 , x_3 , x_4 and each can take value 0 or 1.
- We need to compute following values for each node
 c(x), u(x), upper
- Consider root node i.e. start node at level 1.
 - Least Cost (LC) approach
 - Among all live nodes, choose the node with lowest cost to explore (i.e. it becomes E-node)
 - List L of live nodes is implemented as Heap

• Assume items are sorted in the non-increasing order of max profits per unit of weight i.e.

$$p[i]/w[i] \ge p[i+1]/w[i+1]$$
 , $1 \le i < n$

- Defining $\hat{c}(x)$ for 0-1 knapsack
 - Cost till the first node which doesn't fit the knapsack
 - But including its partial value to max the knapsack
- Define u(x): an upper bound for node x.
 - Cost till the first node which doesn't fit the knapsack,
 - But excluding the partial value.
- Thus, for node x, we have $\hat{c}(x) \leq c(x) \leq u(x)$
 - #note cost is -ve, removing partial value makes it more
- Maintain single upper variable.
 - This indicates minimum cost solution achieved so far.
- Thus, for any node when $\hat{c}(x)$ >upper
 - Discard that path (i.e. kill that node), prune the tree

	1	2	3	4
V	10	10	12	18
W	2	4	6	9

n=4, m=15

• Start with node 1:

$$\hat{c}(x)$$
: w_1 , w_2 , and w_3 contributes fully, w_4 exceeds knapsack $\hat{c}=-(10+10+12+((15-12)/9)*18))=-38$ $u(x)$: w_1 , w_2 , and w_3 contributes fully, w_4 exceeds knapsack $u=-(10+10+12+0)=-32$] $upper=-32$

- This node is live node (ĉ≤upper) and only node so far,
- Explore this node, two children
 - $x_1=1$ (include w_1), $x_1=0$ (exclude w_1)

n=4, m=15

- node $2: x_1=1$
 - $\hat{c}(x): w_1, w_2, \text{ and } w_3 \text{ contributes fully, } w_4 \text{ exceeds knapsack}$ $\hat{c}=-(10+10+12+((15-12)/9)*18))=-38$
 - u (x): w_1 , w_2 , and w_3 contributes fully, w_4 exceeds knapsack u=-(10+10+12+0)=-32

 $\hat{c}(x)$, u(x), upper don't change

• node $3: x_1=0$ (partial weight of w_4 becomes 5)

$$\hat{c}=-(0+10+12+((15-10)/9)*18))=-32$$

 $u=-(0+10+12+0)=-22$

upper remains -32 (doesn't change)

• Alives nodes are: 2 and 3 ($\hat{c}(x) \leq upper$)

n=4, m=15

- Least Cost ĉ among live nodes(2, 3) is −38 for node 2.
- Explore node 2 (2 becomes E-node, 3 remains live node)
 - $x_2=1$ (node 4), and $x_2=0$ (node 5)
- Node 4:

$$\hat{c}=-(10+10+12+((15-12)/9)*18))=-38$$

 $u=-(10+10+12+0)=-32$

upper remains same and doesn't change

$$n=4, m=15$$

Node 5 (partial weight of W4 changes)

$$\hat{c}=-(10+0+12+((15-8)/9)*18))=-36$$

 $u=-(10+0+12+0)=-22$

upper remains same and doesn't change

- Lives nodes now: 3, 4, 5 (ĉ≤upper)
- Least Cost node is $4, \hat{c}=-38$, explore it
 - $x_3=1$ (node 6), and $x_3=0$ (node 7)

n=4, m=15

$$\hat{c} = -38$$
 $u = -32$
6

Node 6 $(x_3=1)$ $\hat{c}=-(10+10+12+((15-12)/9)*18))$ =-38

Node 7
$$(x_3=0)$$

 $\hat{c}=-(10+10+0+18))=-38$
 $u=-(10+10+0+18)=-38$
upper becomes less and

u=-(10+10+12+0)=-32

hence changes to -38

upper remains same, doesn't change

DAA/Backtracking, Branch&Bound, NP-Complete

n=4, m=15

start

- Nodes 3 and 5 are killed, $\hat{c}(3)$ > upper, $\hat{c}(5)$ > upper
- Live nodes are 6 and 7. (\hat{c} (6) ≤ -38 , \hat{c} (7) ≤ -38)
- Next Least Cost live node: can be taken either 6 or 7,
- Take 6 as least cost node. (both 6 & 7 are equal.)

$$n=4, m=15$$

- Nodes 6
 - $x_4=1$ makes knapsack weight 21, can't consider
 - x_4 =0 increases \hat{c} to -32 Thus, kill the node 6.
- Explore node 7 $x_4=1$ (node 8), $x_4=0$ (node 9)

n=4, m=15

- $\hat{c} = -38$ u = -32 u = -22
- $\hat{c} = -38$ u = -32 $\hat{c} = -38$ u = -38 $\hat{c} = -38$ u = -38

$$\hat{c} = -38$$
 8 $\hat{c} = -20$ 9 $u = -20$ 9

- Node 8 $\hat{c}=-(10+10+0+18)=-38$ u=-(10+10+0+18)=-38upper does not change
- Node 9 $\hat{c}=-(10+10+0+0)=-20$ u=-(10+10+0+0)=-20upper does not change

n=4, m=15

- Live Nodes 8, 9
- Reached the leaf nodes
- Least Cost: node 8
- Thus, answer node is 8
 - Knapsack value=38
 - Tuple=(1, 1, 0, 1)

0-1 Knapsack Implementation

- State space tree is a binary tree with depth n+1
 - Define two functions
 - Bound() to compute ĉ
 - used to compute estimated cost
 - UBound() to compute u
 - used to compute upper value

```
u(x)=UBound(-\Sigma_{1\leq i < j}V<sub>i</sub>X<sub>i</sub>,\Sigma_{1\leq i < j}W<sub>i</sub>X<sub>i</sub>, j-1,m)
c(x) \geq Bound(\Sigma_{1\leq i < j}V<sub>i</sub>X<sub>i</sub>, \Sigma_{1\leq i < j}W<sub>i</sub>X<sub>i</sub>, j-1)
```

Bound()

```
Proc Bound(float cv, float cw, int k)
// provides an upper bound (partial knapsack) on best
solution obtainable (by expanding any node \mathbb{Z} at level k+1)
// includes the partial value of node which exceeds knapsack
//cp: current total value, cw: current total weight
// k is the index of last removed item of knapsack
  float b=cp; float c=cw;
  else // include cost for partial weight
      return b
```

UBound()

```
Proc UBound(float cv, float cw, int k,float m)
// provides an upper bound (0-1 knapsack) on best solution
obtainable by expanding any node \mathbb{Z} at level k+1
// does not include the cost last node that exceeds knapsack
//cp: current total value, cw: current total weight
// k is the index of last removed item of knapsack
  float b=cp;
  float C=CW;
 .....U5
  return b
```

Summary:

- Least Cost Branch and Bound for
 - − 0 − 1 Knapsack problem
- Next to explore
 - FIFO Branch and Bound