Методы оптимизации и исследование операций

1. Дифференцируемые функционалы. Производная по направлению, по Лагранжу, Гато и Фреше. Экстремум дифференцируемых функционалов. Единственность производной Фреше. Принцип Ферма и сопутствующие утверждения.

Дифференцируемые функционалы

Функционал — это отображение F: $X \to \mathbb{R}$, где X — некоторое функциональное пространство. Функционал ставит в соответствие функции число.

Производные функционалов

 Производная по направлению: ✓ при α → 0 пропорционально α с коэффициентом δF(x, h), который называется вариацией функционала:

```
\lim(\alpha\to 0) (F[x + \alpha h] - F[x])/\alpha = \delta F[x, h]
```

2. **Производная по Лагранжу (первая вариация)**: Основной инструмент вариационного исчисления, определяется как линейная часть приращения функционала:

```
\delta F[x; h] = d/d\alpha F[x + \alpha h] | \alpha = 0
```

3. **Производная Гато**: Обобщение понятия производной на функциональные пространства:

```
\delta F[x; h] = \lim(\alpha \rightarrow 0) (F[x + \alpha h] - F[x])/\alpha
```

если этот предел существует.

4. **Производная Фреше**: Более сильное понятие дифференцируемости, требующее равномерной сходимости по всем направлениям:

```
F[x + h] - F[x] = L[h] + o(||h||)
```

где L[h] — линейный функционал, а o(||h||)/||h|| → 0 при ||h|| → 0.

Единственность производной Фреше

Если функционал F дифференцируем по Фреше в точке x, то его производная Фреше L[h] в этой точке единственна. Это следует из свойств линейности и непрерывности производной Фреше.

Экстремум дифференцируемых функционалов

Функционал F достигает экстремума в точке х₀, если для любого допустимого направления h значение функционала не улучшается при малых смещениях в этом направлении.

Принцип Ферма

Принцип Ферма: Если функционал F достигает экстремума в точке х₀ и дифференцируем в этой точке, то его первая вариация (производная по Лагранжу) равна нулю:

```
\delta F[x_0; h] = 0
```

для всех допустимых направлений h.

Сопутствующие утверждения:

- 1. Необходимое условие экстремума: если x_0 точка локального экстремума и F дифференцируем по Фреше в x_0 , то $F'(x_0) = 0$.
- 2. Если $F'(x_0) \neq 0$, то x_0 не является точкой экстремума.
- 3. Обращение производной в ноль является лишь необходимым, но не достаточным условием экстремума.
- 2. Постановка простейшей задачи вариационного исчисления. Основные леммы вариационного исчисления. Гладкость экстремали. Вывод уравнения Эйлера для классической задачи вариационного исчисления. Специальные случаи уравнения Эйлера.

Постановка простейшей задачи вариационного исчисления

Простейшая задача вариационного исчисления заключается в нахождении функции $y = y(x), x \in [a, b]$, которая доставляет экстремум (минимум или максимум) функционалу:

$$J[y] = \int^{ab} F(x, y, y') dx$$

при граничных условиях:

```
y(a) = A, y(b) = B
```

где F(x, y, y') — заданная функция, трижды непрерывно дифференцируемая по всем аргументам.

Основные леммы вариационного исчисления

1. **Лемма Дюбуа-Реймона**: Если функция p(x) непрерывна на [a, b] и

```
\int_{ab}^{ab} p(x) \eta(x) dx = 0
```

для любой функции $\eta(x)$ с непрерывной производной, обращающейся в нуль на концах отрезка, то $p(x) \equiv 0$ на [a, b].

2. **Основная лемма вариационного исчисления**: Если для непрерывной функции g(x) на [a, b]

```
\int^{ab} g(x) \eta(x) dx = 0
```

для любой непрерывной функции $\eta(x)$, обращающейся в нуль на концах отрезка, то $g(x) \equiv 0$ на [a, b].

Гладкость экстремали

Экстремаль задачи вариационного исчисления обладает определенной гладкостью, которая зависит от гладкости подынтегральной функции F. Если F имеет непрерывные частные производные до k-го порядка включительно, то экстремаль имеет непрерывные производные до порядка k+1.

Вывод уравнения Эйлера

Пусть y = y(x) — экстремаль функционала J[y]. Рассмотрим вариацию функционала в направлении $\eta(x)$, где $\eta(a) = \eta(b) = 0$:

```
\delta J[y; \eta] = d/d\alpha \ J[y + \alpha \eta] |\alpha = 0 = \int^{ab} (\partial F/\partial y \cdot \eta + \partial F/\partial y' \cdot \eta') dx
```

Интегрируя по частям второе слагаемое:

поскольку $\eta(a) = \eta(b) = 0$.

Тогда вариация функционала:

```
\delta J[y; \eta] = \int^{ab} (\partial F/\partial y - d/dx(\partial F/\partial y')) \cdot \eta dx
```

По принципу Ферма, δJ[y; η] = 0 для всех допустимых η. Применяя основную лемму вариационного исчисления, получаем уравнение Эйлера:

```
\partial F/\partial y - d/dx(\partial F/\partial y') = 0
```

Специальные случаи уравнения Эйлера

1. **F** не зависит явно от **y**: F = F(x, y')

Уравнение Эйлера принимает вид:

```
d/dx(\partial F/\partial y') = 0
```

Это означает, что $\partial F/\partial y' = C$ (константа). Это первый интеграл уравнения Эйлера.

2. **F** не зависит явно от **x**: F = F(y, y')

Уравнение Эйлера имеет первый интеграл:

```
F - y' \cdot \partial F/\partial y' = C
```

(Интеграл Бельтрами)

3. F = F(x, y) (нет зависимости от производной)

Уравнение Эйлера упрощается до:

```
\partial F/\partial y = 0
```

4. F = G(y') (зависит только от производной)

Уравнение Эйлера: $\partial G/\partial y' = C$, что дает y' = const, то есть y = Cx + D, где C и D определяются из граничных условий.

3. Уравнение Эйлера в многомерном случае.

Постановка задачи в многомерном случае

В многомерном случае рассматривается функционал:

```
 \begin{split} & \text{J[u]} = \text{$\int$}...\text{$\int$} \text{$F(x_1, x_2, ..., x_n, u, \partial u/\partial x_1, \partial u/\partial x_2, ..., \partial u/\partial x_n)$} \\ & \partial x_n) \, \mathrm{d} x_1 \mathrm{d} x_2 ... \mathrm{d} x_n \end{split}
```

где интегрирование ведется по некоторой области D в \mathbb{R}^n , а u = u(x₁, x₂, ..., x_n) — искомая функция с заданными граничными условиями на границе области D.

Вывод уравнения Эйлера в многомерном случае

Аналогично одномерному случаю, рассматривается вариация функционала:

```
\begin{split} \delta \textbf{J} [\textbf{u;} \ \boldsymbol{\eta}] &= \text{SS...S} \ (\partial \textbf{F}/\partial \textbf{u} \ \cdot \ \boldsymbol{\eta} \ + \ \partial \textbf{F}/\partial \left(\partial \textbf{u}/\partial \textbf{x} \textbf{1}\right) \ \cdot \ \partial \boldsymbol{\eta}/\partial \textbf{x} \textbf{1} \ + \ \dots \ + \ \partial \textbf{F}/\partial \left(\partial \textbf{u}/\partial \textbf{x}\right) \\ \partial \textbf{x}_{\textbf{n}}) \ \cdot \ \partial \boldsymbol{\eta}/\partial \textbf{x}_{\textbf{n}}) \, d\textbf{x}_{\textbf{1}} d\textbf{x}_{\textbf{2}} \dots d\textbf{x}_{\textbf{n}} \end{split}
```

Применяя теорему о дивергенции к слагаемым с производными вариации и учитывая, что вариация η обращается в нуль на границе области, получаем:

```
\delta J[u; \eta] = \text{sl...} [\partial F/\partial u - \Sigma_i \partial/\partial x_i (\partial F/\partial (\partial u/\partial x_i))] \cdot \eta \ dx_1 dx_2 ... dx_n
```

По аналогии с основной леммой вариационного исчисления, для произвольной вариации пражение в квадратных скобках должно быть равно нулю, что приводит к уравнению Эйлера в многомерном случае:

```
\partial F/\partial u - \Sigma_i \partial/\partial x_i (\partial F/\partial (\partial u/\partial x_i)) = 0
```

Частные случаи

1. **Уравнение Пуассона**: Если $F = (1/2)\Sigma_i(\partial u/\partial x_i)^2$ - fu, то уравнение Эйлера имеет вид:

```
-\Delta u = f
```

где $\Delta u = \Sigma_i \partial^2 u/\partial x_i^2$ — оператор Лапласа.

2. Уравнение минимальной поверхности: Для функционала площади поверхности:

```
J[u] = \int \int \sqrt{(1 + (\partial u/\partial x)^2 + (\partial u/\partial y)^2)} dxdy
```

уравнение Эйлера выглядит как:

```
\frac{\partial}{\partial x}(\partial u/\partial x/\sqrt{(1+(\partial u/\partial x)^2+(\partial u/\partial y)^2))} + \frac{\partial}{\partial y}(\partial u/\partial y/\sqrt{(1+(\partial u/\partial x)^2+(\partial u/\partial y)^2)}) = 0
```

Векторный случай

Если искомая функция является вектор-функцией $u = (u_1, u_2, ..., u_m)$, то для каждой компоненты u_1 имеем отдельное уравнение Эйлера:

```
\partial F/\partial u_j - \Sigma_i \partial/\partial x_i (\partial F/\partial (\partial u_j/\partial x_i)) = 0, j = 1, 2, ..., m
```

4. Постановка конечномерных задач без ограничений и с ограничениями типа равенств. Принцип Лагранжа. Необходимые и достаточные условия экстремума второго порядка.

Задачи без ограничений

Рассматривается задача нахождения экстремума (минимума или максимума) функции f(x), где $x \in \mathbb{R}^n$, без каких-либо ограничений.

Необходимые условия первого порядка

Если точка x^* является локальным экстремумом функции f(x), и f дифференцируема в x^* , то градиент функции в этой точке равен нулю:

$$\nabla f(x^*) = 0$$

Необходимые условия второго порядка

Если точка x* является локальным экстремумом функции f(x), и f дважды дифференцируема в x*, то:

- 1. $\nabla f(x^*) = 0$
- 2. Матрица вторых производных (гессиан) $H(x^*)$ в точке x^* является:
 - положительно полуопределенной для минимума
 - отрицательно полуопределенной для максимума

Достаточные условия второго порядка

Пусть x^* — критическая точка функции f(x), т.е. $\nabla f(x^*) = 0$, и f дважды дифференцируема в окрестности x^* . Тогда:

- 1. Если гессиан H(x*) положительно определен, то x* точка локального минимума
- 2. Если гессиан H(x*) отрицательно определен, то x* точка локального максимума
- 3. Если гессиан $H(x^*)$ имеет и положительные, и отрицательные собственные значения, то x^* седловая точка

Задачи с ограничениями типа равенств

Рассматривается задача нахождения экстремума функции f(x), где $x \in \mathbb{R}^n$, при наличии m ограничений типа равенств:

$$g_1(x) = 0, g_2(x) = 0, ..., g_m(x) = 0$$

или в векторной форме: g(x) = 0, где $g: \mathbb{R}^n \to \mathbb{R}^m$.

Принцип Лагранжа

Для решения задач с ограничениями вводится функция Лагранжа:

$$L(x, \lambda) = f(x) + \lambda_1 g_1(x) + \lambda_2 g_2(x) + \dots + \lambda_m g_m(x) = f(x) + \lambda^T g(x)$$

где $\lambda = (\lambda_1, \lambda_2, ..., \lambda_m)$ — вектор множителей Лагранжа.

Принцип Лагранжа (необходимые условия первого порядка): Если точка x^* является локальным экстремумом функции f(x) при ограничениях g(x) = 0, и в точке x^* выполнено условие регулярности ограничений (якобиан $\nabla g(x^*)$ имеет ранг m), то существует вектор множителей Лагранжа λ^* такой, что:

$$\nabla_{\mathbf{x}} \mathbf{L} (\mathbf{x}^*, \lambda^*) = 0$$
 $g(\mathbf{x}^*) = 0$

Необходимые и достаточные условия второго порядка для задач с ограничениями

Необходимые условия второго порядка

Пусть x^* — точка локального экстремума функции f(x) при ограничениях g(x) = 0, и выполнены условия принципа Лагранжа. Тогда для любого вектора h такого, что $\nabla g(x^*)h = 0$ (h принадлежит касательному пространству k множеству ограничений), выполняется:

```
h^{T}\nabla^{2}_{xx}L(x^{*}, \lambda^{*})h \geq 0 для минимума h^{T}\nabla^{2}_{xx}L(x^{*}, \lambda^{*})h \leq 0 для максимума
```

где ∇^2_{xx} L — матрица вторых производных функции Лагранжа по переменным х.

Достаточные условия второго порядка

Пусть выполнены условия принципа Лагранжа в точке (x^*, λ^*) . Если для любого ненулевого вектора h такого, что $\nabla g(x^*)h = 0$, выполняется:

```
h^{T}\nabla_{x_{x}}L(x^{*}, \lambda^{*})h > 0
```

то x^* — точка локального минимума функции f(x) при ограничениях g(x) = 0.

Если же выполняется:

```
h^T \nabla^2_{xx} L(x^*, \lambda^*) h < 0
```

то х* — точка локального максимума.

5. Задача Лагранжа. Постановка задачи. Теорема существования. Необходимые условия оптимальности. Достаточные условия оптимальности.

Постановка задачи Лагранжа

Задача Лагранжа — обобщение классической задачи вариационного исчисления, в которой требуется найти функцию у(x), x ∈ [a, b], доставляющую экстремум функционалу:

```
J[y] = \int^{ab} F(x, y, y') dx
```

при наличии интегральных ограничений:

```
\int_{ab}^{ab} G_i(x, y, y') dx = l_i, i = 1, 2, ..., m
```

и граничных условиях:

$$y(a) = A, y(b) = B$$

Теорема существования

Теорема существования решения задачи Лагранжа: Если функции F(x, y, y') и G_i(x, y, y') непрерывны вместе со своими частными производными по у и у' до второго порядка включительно в области определения, и множество допустимых функций, удовлетворяющих ограничениям и граничным условиям, непусто и компактно в соответствующей топологии, то задача Лагранжа имеет решение.

Необходимые условия оптимальности

Для решения задачи Лагранжа вводится расширенный функционал:

```
 \Phi[y] = J[y] + \lambda_1 (\int^{ab} G_1(x, y, y') dx - l_1) + ... + \lambda_m (\int^{ab} G_m(x, y, y') dx - l_m)
```

где $\lambda_1, \, \lambda_2, \, ..., \, \lambda_m$ — постоянные множители Лагранжа.

Этот функционал можно записать как:

```
\Phi[y] = \int^{ab} H(x, y, y') dx - \Sigma_i \lambda_i l_i
```

где $H(x, y, y') = F(x, y, y') + \sum_i \lambda_i g_i(x, y, y') - \phi y + K u y \pi J a гранжа (гамильтониан).$

Необходимые условия оптимальности: Если функция y(x) является решением задачи Лагранжа, то существуют постоянные множители λ_1 , λ_2 , ..., λ_m , не все равные нулю одновременно, такие, что функция y(x) удовлетворяет уравнению Эйлера для расширенного функционала:

```
\partial H/\partial y - d/dx(\partial H/\partial y') = 0
```

или в развернутом виде:

```
\partial F/\partial y + \Sigma_i \lambda_i \partial G_i/\partial y - d/dx (\partial F/\partial y' + \Sigma_i \lambda_i \partial G_i/\partial y') = 0
```

Достаточные условия оптимальности

Достаточные условия оптимальности для задачи Лагранжа: Если функция y(x) удовлетворяет необходимым условиям оптимальности с некоторыми множителями Лагранжа λ_1 , λ_2 , ..., λ_m , и вторая вариация расширенного функционала $\Phi[y]$ положительно (или отрицательно) определена, то y(x) доставляет локальный минимум (или максимум) исходному функционалу J[y] при заданных ограничениях.

Вторая вариация функционала Ф[у] имеет вид:

```
\delta^2 \Phi[y; \eta] = \int^{ab} \left[ \frac{\partial^2 H}{\partial y^2} \cdot \eta^2 + 2\frac{\partial^2 H}{\partial y \partial y^1} \cdot \eta \cdot \eta^1 + \frac{\partial^2 H}{\partial y^{12}} \cdot \eta^{12} \right] dx
```

Условие Лежандра для достаточности минимума требует:

```
\partial^2 H/\partial y'^2 > 0 для всех х \in [a, b]
```

Более сильное условие Якоби связано с отсутствием сопряженных точек на интервале [a, b].

6. Задача с подвижными концами. Необходимое условие экстремума. Условие трансверсальности.

Постановка задачи с подвижными концами

В задаче с подвижными концами граничные условия заданы не конкретными значениями функции, а некоторыми кривыми или поверхностями. Рассматривается функционал:

```
J[y] = \int^{ab} F(x, y, y') dx
```

где границы интервала [a, b] могут быть фиксированными или подвижными, а значения функции у(x) на границах могут принадлежать заданным кривым:

```
x = a, y \in N_1

x = b, y \in N_2
```

где N_1 , N_2 — заданные кривые или поверхности.

Необходимое условие экстремума

Основным необходимым условием экстремума остается уравнение Эйлера:

```
\partial F/\partial y - d/dx(\partial F/\partial y') = 0
```

которое должно выполняться внутри интервала [a, b].

Условие трансверсальности

В зависимости от того, какие концы являются подвижными, формулируются различные условия трансверсальности.

Случай 1: Правый конец подвижен вдоль кривой y = g(x)

В этом случае условие трансверсальности имеет вид:

```
[F - y' \cdot \partial F / \partial y']_{x = \beta} = 0
```

или

$$[F - y' \cdot \partial F/\partial y' + \partial F/\partial y' \cdot g'(x)]_{x=\beta} = 0$$

Случай 2: Оба конца подвижны вдоль вертикальных прямых x = a и x = b

Условия трансверсальности:

```
[\partial F/\partial y']_{x=a} = 0
[\partial F/\partial y']_{x=\beta} = 0
```

Случай 3: Оба конца подвижны вдоль заданных кривых

Если левый конец подвижен вдоль кривой $y = g_1(x)$, а правый — вдоль $y = g_2(x)$, то условия трансверсальности:

```
[F - y' \cdot \partial F/\partial y' + \partial F/\partial y' \cdot g_1'(x)]_{x=a} = 0
[F - y' \cdot \partial F/\partial y' + \partial F/\partial y' \cdot g_2'(x)]_{x=\beta} = 0
```

Общая формулировка условия трансверсальности

В общем случае, если конец подвижен вдоль кривой, заданной уравнением $\phi(x, y) = 0$, условие трансверсальности имеет вид:

```
[\partial F/\partial y' \cdot \delta x - (F - y' \cdot \partial F/\partial y') \cdot \delta y]_x=концевая_точка = 0
```

где δх и бу связаны соотношением:

```
\partial \phi / \partial x \cdot \delta x + \partial \phi / \partial y \cdot \delta y = 0
```

Геометрически условие трансверсальности означает, что экстремаль должна пересекать граничную кривую под прямым углом (быть трансверсальной к ней), если граничная кривая не является естественной границей для данного функционала.

7. Условия второго порядка. Сильный и слабый экстремум. Необходимое условие Лежандра.

Виды экстремумов в вариационном исчислении

В вариационном исчислении различают несколько видов экстремумов:

Слабый экстремум: Функция y₀(x) доставляет слабый экстремум функционалу
 J[y], если существует такое ε > 0, что J[y₀] ≤ J[y] (для минимума) или J[y₀] ≥ J[y]
 (для максимума) для всех допустимых функций y(x), удовлетворяющих условию:

```
\max |y(x) - y_0(x)| < \epsilon и \max |y'(x) - y_0'(x)| < \epsilon
```

То есть, функция и ее производная должны мало отличаться от экстремали.

Сильный экстремум: Функция y₀(x) доставляет сильный экстремум функционалу J[y], если существует такое ε > 0, что J[y₀] ≤ J[y] (для минимума) или J[y₀] ≥ J[y] (для максимума) для всех допустимых функций y(x), удовлетворяющих только условию:

```
\max |y(x) - y_0(x)| < \varepsilon
```

То есть, только функция должна быть близка к экстремали, а ее производная может существенно отличаться.

Условия второго порядка

Для анализа характера экстремума в вариационном исчислении используются условия второго порядка, связанные со второй вариацией функционала.

Вторая вариация функционала $J[y] = \int_{ab} F(x, y, y') dx$ имеет вид:

```
\delta^2 J[y; \eta] = \int^{ab} [F_{pp} \cdot \eta'^2 + 2F_{ps} \cdot \eta' \eta + F_{ss} \cdot \eta^2] dx
```

где $F_{pp} = \partial^2 F/\partial y'^2$, $F_{ps} = \partial^2 F/\partial y' \partial y$, $F_{ss} = \partial^2 F/\partial y^2$, а $\eta(x)$ — допустимая вариация, обращающаяся в нуль на концах интервала.

Необходимое условие Лежандра

Необходимое условие Лежандра: Если функция $y_0(x)$ доставляет слабый экстремум (минимум или максимум) функционалу J[y], то для всех $x \in [a, b]$ должно выполняться условие:

```
F_{pp}(x, y_0(x), y_0'(x)) \ge 0 для минимума F_{pp}(x, y_0(x), y_0'(x)) \le 0 для максимума
```

Если хотя бы в одной точке интервала [a, b] условие Лежандра нарушается, то функция $y_0(x)$ не может быть экстремалью.

Если для всех $x \in [a, b]$ выполняется строгое неравенство:

```
F_{pp}(x, y_{\theta}(x), y_{\theta}(x)) > 0
```

то говорят, что выполнено усиленное условие Лежандра.

Усиление необходимых условий

Условие Лежандра является лишь необходимым условием слабого экстремума. Для более полного анализа используются также:

- 1. Условие Якоби: Связано с отсутствием сопряженных точек на интервале [a, b].
- 2. **Условие Вейерштрасса**: Необходимое условие сильного экстремума, связанное с функцией Вейерштрасса:

```
E(x, y, p, q) = F(x, y, q) - F(x, y, p) - (q - p) \cdot \partial F/\partial y'(x, y, p)
```

Достаточные условия экстремума

Для того чтобы функция у₀(x), удовлетворяющая уравнению Эйлера, доставляла минимум функционалу J[y], достаточно, чтобы:

- 1. Выполнялось усиленное условие Лежандра: $F_{pp} > 0$ на [a, b]
- 2. Не было сопряженных точек на [а, b] (условие Якоби)

3. Функция Вейерштрасса E(x, y₀, y₀', q) ≥ 0 для всех допустимых q (для сильного минимума)

8. Уравнение Якоби и свойства его решений. Сопряженные точки. Свойство знакопостоянства второй производной.

Уравнение Якоби

Уравнение Якоби возникает при исследовании второй вариации функционала и играет ключевую роль в определении достаточных условий экстремума в вариационном исчислении.

Для функционала $J[y] = \int^{ab} F(x, y, y') dx$ и экстремали $y_0(x)$ уравнение Якоби имеет вид:

$$d/dx[F_{pp}(x) \cdot u'] - F_{ps}(x) \cdot u' + F_{sp}(x) \cdot u' - F_{ss}(x) \cdot u = 0$$

или в более компактной форме:

$$(F_{pp} \cdot u')' - F_{ps} \cdot u' - F_{sp} \cdot u' + F_{ss} \cdot u = 0$$

где u = u(x) — искомая функция, а F_{pp} , F_{ps} , F_{sp} , F_{ss} вычисляются на экстремали у₀(x).

Свойства решений уравнения Якоби

1. **Линейность**: Уравнение Якоби — линейное дифференциальное уравнение второго порядка, поэтому его общее решение представляется в виде:

```
u(x) = C1u1(x) + C2u2(x)
```

где $u_1(x)$ и $u_2(x)$ — линейно независимые частные решения.

- 2. **Тривиальное решение**: Одним из решений уравнения Якоби всегда является функция $u_1(x) = y_0'(x)$, где $y_0(x)$ экстремаль исходного функционала.
- 3. Осцилляционные свойства: Для многих задач решения уравнения Якоби имеют осцилляционный характер, что важно для определения сопряженных точек.

Сопряженные точки

Сопряженные точки — это точки, в которых нетривиальное решение уравнения Якоби, обращающееся в нуль в одной из них, также обращается в нуль.

Формально: точка $c \in (a, b]$ называется сопряженной к точке a, если существует нетривиальное решение u(x) уравнения Якоби такое, что u(a) = u(c) = 0.

Теорема Якоби

Теорема Якоби (необходимое условие): Если функция у₀(х) доставляет слабый экстремум функционалу J[у], то на интервале (a, b) не должно быть точек, сопряженных к точке a.

Усиленная теорема Якоби (достаточное условие): Если функция $y_0(x)$ удовлетворяет уравнению Эйлера, выполнено усиленное условие Лежандра ($F_{pp} > 0$), и на интервале [а, b] нет точек, сопряженных к точке а, то $y_0(x)$ доставляет слабый минимум функционалу J[y].

Свойство знакопостоянства второй производной

Для функционала простейшего вида $J[y] = \int^{ab} F(y') dx$, где F зависит только от производной, условие Лежандра принимает вид:

```
F''(y') \ge 0 для минимума F''(y') \le 0 для максимума
```

В этом случае вторая вариация функционала имеет вид:

```
\delta^2 J[y; \eta] = \int^{ab} F''(y') \cdot \eta'^2 dx
```

Если F''(y') > 0 на всем отрезке [a, b], то вторая вариация положительна для любой ненулевой вариации η(x), удовлетворяющей граничным условиям. Это означает, что экстремаль доставляет функционалу минимум.

Аналогично, если F''(y') < 0 на всем отрезке [a, b], то экстремаль доставляет функционалу максимум.

Таким образом, свойство знакопостоянства второй производной функции F по у' является важным критерием при определении характера экстремума в задачах вариационного исчисления.