VICTORIA UNIVERSITY OF WELLINGTON

Te Whare Wananga o te Upoko o te Ika a Maui

Cassandra Consistency Levels

Lecturer: Dr. Pavle Mogin

SWEN 432
Advanced Database Design and
Implementation

Cassandra The Fortune Teller

Plan for Consistency Leveles

- Configuring Data Consistency
 - Prolog
 - Write and Read Consistency Levels
- Write Requests
 - Examples of Write Consistency Levels
- Read Requests
 - Examples of Read Consistency Levels

Prolog

- Consistency refers to how up-to-date and synchronized a data object is on all of its replicas
- Cassandra extends the concept of eventual consistency by offering tuneable consistency
 - For any given read or write operation, the client application decides how consistent the requested data should be
 - Available consistency ranges from eventual, via strong to even strict (the highest)
 - As the consistency is higher, the throughput is lower
 - The consistency can be set globally (on a cluster or data centre basis), or per individual operation basis
 - The default consistency level is eventual
 - On individual operation basis, consistency level is defined using cqlsh command CONSISTENCY

```
cqlsh> consistency <level>;
```

Write Requests

- A client can ask any node in a cluster to coordinate a write
 - Each node has information about all other nodes
- The coordinator sends a write request to all replicas that own the row being written
- As long as all replica nodes are up and available, they will get the write
- If a replica misses a write, Cassandra will make the row consistent later using one of its built-in repair mechanisms:
 - Hinted handoff,
 - Read repair, or
 - Anti-entropy node repair

Write Consistency Levels

- The write consistency level specifies the number of replicas on which a write must succeed before the coordinator returns an acknowledgment to the client application
- Success means that the data was written to the commit log and the memtable
- The write consistency levels:
 - ANY, ALL, QUORUM, EACH_QUORUM, LOCAL_QUORUM,
 LOCAL_SERIAL, SERIAL, LOCAL_ONE, ONE, TWO, and THREE
- Even at consistency level ONE or LOCAL_QUORUM, the write is still sent to all replicas for the written key, even to replicas in other data centres

Write Consistency Level ANY

ANY

- Description:
 - A write must be written to at least one node
 - If all replica nodes for the given row key are down, the write can still succeed after a hinted handoff has been written
 - If all replica nodes are down at write time, an ANY write is not readable until the replica nodes for that row have recovered
- Features:
 - Provides low latency and a guarantee that a write never fails
 - Delivers the lowest consistency and highest availability compared to other levels

Example:

```
blogs> consistency any;
Consistency level set to ANY.
```

Write Consistency Level ALL

ALL

- Description:
 - A write must be written to the commit log and memtable on all replica nodes for that row in the cluster
- Features:
 - Provides the strict (highest) consistency and the lowest availability of any other level

• Example:

```
blogs> consistency all;
Consistency level set to ALL.
```

Consistency QUORUM and EACH_QUORUM

QUORUM

- Description:
 - A write must be written to the commit log and memtable on a quorum of replica nodes (regardless of the number of data centres)
- Features:
 - A prerequisite for the strong consistency

EACH_QUORUM

- Description:
 - A write must be written to the commit log and memory table on a quorum of replica nodes in all data centres
- Features:
 - Used in multiple data centre clusters to provide for the strong consistency level in each data centre

Two DC Cluster and QUORUM

Consistency Level LOCAL_QUORUM

LOCAL_QUORUM

- Description:
 - A write must be written to the commit log and memtable on a quorum of replica nodes in the same data center as the coordinator node
- Features:
 - A prerequisite for strong consistency
 - Used in multiple data centre clusters with a rack-aware replica placement strategy (Network Topology Strategy) and a properly configured snitch
 - Fails when using Simple Strategy
 - Used to maintain consistency locally (within a single data centre)
 - · Avoids latency of inter-data centre communication

```
blogs> consistency local_quorum;
Consistency level set to LOCAL QUORUM.
```

Consistency LOCAL_SERIAL and SERIAL

LOCAL_SERIAL

- Description:
 - A write must be written conditionally to the commit log and memory table on a quorum of replica nodes in the same data centre
- Features:
 - Used to achieve linearizable consistency for lightweight transactions by preventing unconditional updates

SERIAL

- Description:
 - A write must be written conditionally to the commit log and memory table on a quorum of replica nodes
- Features:
 - Same as for LOCAL_SERIAL

Consistency ONE and LOCAL_ONE

ONE

- Description:
 - A write must be written to the commit log and memory table of at least one replica node
- Features:
 - Guaranties the eventual consistency only (unless the ALL consistency level is used for reading)
 - The replica node closest to the coordinator node that received the request, serves the request (unless the dynamic snitch determines that the node is performing poorly and routes it elsewhere)

LOCAL_ONE

- Description:
 - A write must be sent to all, and successfully acknowledged by at least one replica node in the local data centre
- Features:
 - Avoids the latency induced by inter data centre traffic

A Single DC Cluster and ONE

Types of Read Requests

- There are two types of read requests that a coordinator node can send to a replica:
 - A direct read request
 - A background read repair request
- The number of replicas contacted by a direct read request is determined by the consistency level specified by the client
- Background read repair requests are sent to any additional replicas that did not receive a direct request
- Read repair requests ensure that the requested row is made consistent on all replicas

The Direct Read Request

- A client can send a read request to any node in the cluster
 - Each node contains information about all the other nodes in the cluster
 - The contacted node becomes the coordinator for the read request
- The coordinator node first contacts the replicas specified by the consistency level
- The coordinator sends these requests to the replicas that are currently responding the fastest
 - The nodes contacted respond with the requested data
 - The replica that has the most recent data (based on the timestamp) is used by the coordinator to forward the result back to the client

Read Path Details

(1)

- The coordinator node uses various Cassandra mechanisms to execute a read request:
 - The ReadExecutor determines the replicas (endpoints) to read from by processing the row (partition) key with the ReplicationStrategy for the keyspace
 - Endpoints are filtered to contain only those that are currently up/alive
 - If there are not enough live endpoints to meet the consistency level,
 an UnavailableException reponse is returned
 - Endpoints are sorted by "proximity"
 - With a SimpleSnitch, proximity directly corresponds to proximity on the token ring
 - With implementations based on PropertyFileSnitch, endpoints in the same rack, or if not available then in the same data center are always considered "closer"

Read Path Details

(2)

- A further filtering of the "closest" node is done:
 - By using information from a file called DynamicSnitch that contains data about the performance of other nodes
 - An effort to avoid routing more traffic to slower endpoints
- The closest node (as determined by proximity sorting discussed) will be sent a command to perform an actual data read
 - As required by consistency level, additional nodes may be sent digest commands, asking them to perform the read locally but send back the digest only
 - For example, at replication factor 3 a read at consistency level
 QUORUM would require one digest read in addition to the data read request sent to the closest node
 - A node asked for a digest read, performs a normal read locally, but sends only a hash of data read over the network

Read Path Details

(3)

- On the data node a read request is processed in the way described in the Cassandra Storage Engine lecture by reading from the memTable and SSTables and returning the result to the coordinator node
- Back on the coordinator node, responses from replicas are handled:
 - If a replica fails to respond before a configurable timeout, a ReadTimeoutException is raised
 - If responses (data and digests) do not match, a full data read is performed against the contacted replicas in order to guarantee that the most recent data is returned
- Once retries are complete and digest mismatches resolved, the coordinator responds with the final result to the client

A Node Proximity Example

- Assume a cluster spans two data centers and has six nodes in each.
- Nodes are stored in racks according to the picture below.

- The node n_c receives a client request to read data under consistency level ONE. Data to read are replicated on nodes n_d, n_e, and n_f in dc1 and on nodes n_i, n_k, and n_l in dc2.
- Which node is the coordinator node n_c going to send a direct read request, assuming all nodes are performing equally good?

Read Consistency Levels

- The read consistency level specifies how many replicas must respond to a read request before returning data to the client application
- The read consistency levels:
 - ALL, QUORUM, EACH_QUORUM, LOCAL_QUORUM,
 LOCAL_SERIAL, SERIAL, ONE, LOCAL_ONE, TWO, and THREE
- Cassandra checks the specified number of replicas for the most recent data, based on the timestamp, to satisfy the read request

Read Consistency Level ALL

- ALL
 - Description:
 - Returns the record with the most recent timestamp after all replicas have responded
 - The read operation will fail if a replica does not respond
 - Features:
 - Provides the highest (strict) consistency of all levels and the lowest availability of all levels (since the latency is the greatest)

Read Consistency LOCAL_QUORUM

LOCAL_QUORUM

- Description:
 - Returns the record with the most recent timestamp once a quorum of replicas in the current data centre as the coordinator node has reported

– Features:

- A prerequisite for the strong consistency
- Used in multiple data centre clusters with a rack-aware replica placement strategy (Network Topology Strategy) and a properly configured snitch
- Fails when using Simple Strategy
- Avoids latency of inter-data centre communication

Two DC Cluster and LOCAL_QUORUM

Consistency QUORUM and EACH_QUORUM

QUORUM

- Description:
 - Returns the record with the most recent timestamp after a quorum of replicas has responded regardless of data centre
- Features:
 - A prerequisite for the strong consistency

EACH QUORUM

- Description:
 - Returns the record with the most recent timestamp once a quorum of replicas in each data centre of the cluster has responded
- Features:
 - Used with Network Topology Strategy
 - Fails with Simple Strategy

A Single DC Cluster and QOURUM

Consistency SERIAL and LOCAL_SERIAL

SERIAL

- Description:
 - Allows reading the current (and possibly uncommitted) state of data without proposing a new addition or update
 - If a SERIAL read finds an uncommitted transaction in progress, it will commit the transaction as part of the read.
- Features:
 - Used with Light Weight Transactions
- LOCAL_SERIAL
 - The same as SERIAL only confined to the data centre of the coordinator node

Consistency ONE and LOCAL_ONE

ONE

- Description:
 - Returns a response from the closest replica, as determined by the snitch
 - By default, a read repair runs in the background to make the other replicas consistent
- Features:
 - Provides the highest availability of all the levels if you can tolerate a comparatively high probability of stale data being read
 - The replicas contacted for reads may not always have the most recent write

LOCAL_ONE

- Description:
 - Returns a response from the closest replica, as determined by the snitch, but only if the replica is in the local data centre
 - Features:
 - Avoids the latency induced by inter data centre traffic

A Single DC Cluster and ONE

QUORUM in Multi DC Clusters

The quorum q in a multi data centre cluster is

- Example:
 - Assume a three data centre cluster where each data centre has a replication factor of n = 3, then:
 - Under the consistency level QOURUM, q = 5 (regardless of data centre),
 - Under the consistency level LOCAL_QOURUM, q = 2,
 - Under the consistency level EACH_QOURUM, $q_i = 2$, for i in $\{1, 2, 3\}$, (at least 2 nodes from each data centre has to respond, so, 6 in total)

Simple Consistency Examples

Eventual Consistency

```
use blogs;
insert...;
read...;
```

- Why is the consistency eventual?
- Strong Consistency

```
use blogs;
consistency quorum;
insert...;
read...;
```

– Why is the consistency strong?

Question for You

- Question for you:
 - Assume someone issues the following CQL statements:

```
use blogs;
consistency quorum;
insert...:
consistency one;
read...;
```

- What is the consistency level of data read?
 - Strong?
 - Eventual?
- Why eventual?

The Rapid Read Protection

- Rapid read protection (RRP) allows Cassandra to still deliver read requests when the originally selected replica nodes are either down or taking too long to respond
- If the table has been configured with the speculative_retry property, the coordinator node for the read request will retry the request with another replica node if the original replica node exceeds a configurable timeout value to complete the read request

RRP, CONSISTENCY ONE

Summary

- A client can issue a write or read request to any node in a cluster, since each node has information about partitions of all other nodes in the cluster
 - The contacted node becomes the coordinator
- Write consistency levels are:
 - ANY, ALL, QUORUM, EACH_QUORUM, LOCAL_QUORUM,
 LOCAL_SERIAL, SERIAL, LOCAL_ONE, ONE, TWO, and THREE
 - The coordinator sends a write request to all replicas
 - The write consistency level determines how many replicas have to acknowledge
- Read consistency levels are:
 - ALL, QUORUM, EACH_QUORUM, LOCAL_QUORUM,
 LOCAL_SERIAL, SERIAL, ONE, LOCAL_ONE, TWO, and THREE
 - The consistency level determines to how many replicas the coordinator sends the direct read request
- The consistency level of a request is defined by the client