/enue	 MATH1019 Linear A	End of Semester 2, 2019 Igebra and Statistics for Engineers
Student Number		Curtin University
amily Name	 ₹₹	Carein Sinversity

First Name

Faculty of Science and Engineering EXAMINATION

End of Semester 2, 2019

MATH1019 Linear Algebra and Statistics for Engineers

This paper is for Bentley Campus and Curtin Malaysia students

This is a RESTRICTED BOOK examination

Examination paper IS to be released to student

Examination Duration 2 hours **Reading Time** 10 minutes Students may write notes in the margins of the exam paper during reading time **Total Marks** 100 Supplied by the University 1 x 16 page answer book Supplied by the Student **Materials** One A4 sheet of handwritten or typed notes (both sides) Calculator A calculator displaying 'Engineering Approved Calculator' sticker Instructions to Students Attempt as many questions or part questions as possible. SHOW ALL WORKING.

For Examiner Use Only

Q	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
	•

Examination Cover Sheet

T - 4 - 1		
IOTAL		
Total		

Given the four points A(2,1,1), B(0,2,-1), C(3,-1,0) and D(6,-1,5), as well as the vectors $\mathbf{a} = [3,-2,1]$ and $\mathbf{b} = [-2,1,0]$, determine:

- (a) The position vector of A. (1 mark)
- (b) The distance from A to B. (2 marks)
- (c) The length of \boldsymbol{a} . (1 mark)
- (d) The dot product $\boldsymbol{b.a}$. (1 mark)
- (e) The direction cosines and direction angles of \boldsymbol{b} . (4 marks)
- (f) A non-zero vector that is orthogonal to \boldsymbol{b} and \overrightarrow{DB} . (3 marks)
- (g) A vector in the direction of \boldsymbol{b} but with a length of 2. (2 marks)
- (h) If the four points A, B, C and D are coplanar or not. (6 marks)

(a) Given that \boldsymbol{a} , \boldsymbol{b} and \boldsymbol{c} are vectors in 3 space, determine whether the following expressions results in either: a scalar, a vector, or is the expression meaningless (i.e. it's not possible). If the expression is meaningless explain why the expression cannot be determined.

(i)
$$(\boldsymbol{a} \times \boldsymbol{b}).\boldsymbol{c}$$
 (1 mark)

(ii)
$$||a||.b$$
 (1 mark)

(iii)
$$\mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{b}$$
 (1 mark)

(iv)
$$||\boldsymbol{a}||\boldsymbol{b} + \boldsymbol{c} \times \boldsymbol{a}$$
 (1 mark)

$$(v) (\mathbf{c}.\mathbf{c})||\mathbf{c}|| \tag{1 mark}$$

$$(vi) \frac{\boldsymbol{a} + \boldsymbol{b}}{(\boldsymbol{a} \times \boldsymbol{b})} \tag{1 mark}$$

- (b) Determine the angle between the direction vector of the line $\frac{x-1}{2} = \frac{y+2}{-4} = z$ and the normal vector to the plane -x + z = 3. (5 marks)
- (c) Determine if the line x = 1 + 3t, y = -t, z = -4 2t is parallel or not parallel to the plane -6x + 2y 4z = 1. (4 marks)
- (d) Find the shortest distance from the point P(-1,1,0) to the line $\mathbf{r} = [2,2,-1] + t[3,0,-2]$. (5 marks)

Given the matrices,

$$A = \left[\begin{array}{ccc} -1 & 2 \\ -4 & 5 \end{array} \right], \quad B = \left[\begin{array}{ccc} 2 \end{array} \right], \quad C = \left[\begin{array}{cccc} -1 & 3 \end{array} \right], \quad D = \left[\begin{array}{cccc} -1 & 2 & 3 & 0 \\ 4 & 1 & 1 & 0 \end{array} \right], E = \left[\begin{array}{cccc} -9 & -15 \\ 3 & 5 \end{array} \right]$$

find the following, or briefly justify why it cannot be found,

(a) B - A.

(b) BA.

(c) CD. (2 marks)

(d) AC^T . (3 marks)

(e) $\det(C)$.

(f) A^{-1} .

(g) E^{-1} .

(h) $|B|I_3$.

(a) Solve the following linear system with two variables by using Cramer's rule. (Make sure you use Cramer's rule in solving both variables p and q).

$$3p - 4q = 8$$
$$p - 2q = 5$$

(5 marks)

- (b) Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$. Decide whether the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent or linearly independent. (5 marks)
- (c) Consider the following system of linear equations,

$$\begin{array}{rcl} x_1 + x_2 - x_3 + x_4 & = & 2 \\ 2x_2 + 4x_3 + 2x_4 & = & 3 \\ x_1 + 2x_2 + x_3 + 2x_4 & = & k \end{array}$$

By using Gaussian Elimination, identify the value of k that makes the system consistent. Hence, find the solution of the system. (10 marks)

(a) Given the matrices:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix}, \ \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

- (i) Use the Gauss-Jordan method to either calculate the inverse A^{-1} of the matrix A or to show that A has no inverse. Is A a singular matrix? (8 marks)
- (ii) If Ax = b is the matrix form of a homogeneous system, where b is the column vector of constants, determine whether the system has a trivial or non-trivial solution. (1 mark)
- (b) Is the set $U = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 \mid b = a^2, c = a + b \text{ where } a, b, c \in \mathbb{R} \right\}$ a subspace of \mathbb{R}^3 ? Justify why it is or isn't a subspace. (4 marks)
- (c) Using the pseudoinverse, determine the least squares line $y = a_0 + a_1 x$ that best fits the four-point data set: (-1,6), (0,3), (2,2) & (3,-1). (7 marks)

(A total of 20 marks for this question.)

END OF EXAMINATION