Homework Assignment 7

Matthew Tiger

April 17, 2016

Problem 1. State all of the KKT conditions for (N-max). More precisely state all of the following results for (N-max): KKT-FONC, KKT-FOSC, KKT-SONC, KKT-SOSC.

Solution. For the following theorems, we assume (N-max) has the following form

(N-max) maximize
$$f(x)$$

subject to $h(x) = 0$
 $g(x) \le 0$

where $f: \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R}^n \to \mathbb{R}^m$, and $g: \mathbb{R}^n \to \mathbb{R}^p$ with $m \le n$. Additionally, define the following Lagrangian function to be $L(x, \lambda, \mu) := f(x) - \lambda^{\mathsf{T}} h(x) - \mu^{\mathsf{T}} g(x)$.

Theorem 1 (KKT-FONC for (N-max)). Let $f, g, h \in C^1$ and let x^* be a regular point and local maximizer for the problem (N-max). Then, there exist $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that:

- i. $\mu^* > 0$.
- ii. $D_x \boldsymbol{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = Df(\boldsymbol{x}^*) \boldsymbol{\lambda}^{*\mathsf{T}} D\boldsymbol{h}(\boldsymbol{x}^*) \boldsymbol{\mu}^{*\mathsf{T}} D\boldsymbol{g}(\boldsymbol{x}^*) = \boldsymbol{0}^\mathsf{T}.$
- iii. $\mu^{*\mathsf{T}} \boldsymbol{g}(\boldsymbol{x}^*) = 0.$

Note that there are no explicit first-order conditions that are sufficient in general to show optimality.

Theorem 2 (KKT-SONC for $(N-\max)$). Let $f, g, h \in C^2$ and let x^* be a regular point and local maximizer for the problem $(N-\max)$. Then, there exist $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that:

- i. $\mu^* \geq 0, D_x L(x^*, \lambda^*, \mu^*) = 0^\mathsf{T}, \mu^{*\mathsf{T}} g(x^*) = 0.$
- ii. For all $\boldsymbol{y} \in T(\boldsymbol{x}^*)$, we have that $\boldsymbol{y}^\mathsf{T} D_x^2 \boldsymbol{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) \boldsymbol{y} \leq 0$.

Theorem 3 (KKT-SOSC for (N-max)). Let $f, g, h \in C^2$ and suppose there exists a feasible point x^* and vectors $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that:

i.
$$\mu^* \geq 0, D_x L(x^*, \lambda^*, \mu^*) = 0^\mathsf{T}, \mu^{*\mathsf{T}} g(x^*) = 0.$$

ii. For all $\boldsymbol{y} \in T(\boldsymbol{x}^*)$, we have that $\boldsymbol{y}^\mathsf{T} D_x^2 \boldsymbol{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) \boldsymbol{y} < 0$.

Then x^* is a strict local maximizer for the problem $(N\text{-}\max)$.

Problem 2. Find local minimizers for

$$\begin{array}{ll} \text{(N-}\min) & \text{minimize} & x_1^2 + 6x_1x_2 - 4x_1 - 2x_2 \\ & \text{subject to} & x_1^2 + 2x_2 \leq 1 \\ & 2x_1 - 2x_2 \leq 1. \end{array}$$

Solution. \Box

Problem 3. Consider the problem of optimizing

(N) minimize (maximize)
$$(x_1 - 2)^2 + (x_2 - 1)^2$$

 $x_2 - x_1^2 \ge 0$
subject to $2 - x_1 - x_2 \ge 0$
 $x_1 \ge 0$.

Let $x^* = [0, 0]$.

- a. Does x^* satisfy the KKT-FONC for minimization or maximization? What are the KKT multipliers?
- b. Does x^* satisfy the KKT-SOSC? Justify your answer.

 \Box

Problem 4. Consider the problem with equality constraint

minimize
$$f(x)$$

subject to $h(x) = 0$.

We can convert the above into the equivalent optimization problem

minimize
$$f(\boldsymbol{x})$$

subject to $\frac{1}{2} \|\boldsymbol{h}(\boldsymbol{x})\|^2 \leq 0$.

Write down the KKT condition for the equivalent problem and explain why the KKT theorem cannot be applied in this case.

Solution. \Box