Elementos de Sistemas

Apresentação da disciplina Organização de computadores

Renan Trevisoli

Engenharia da Computação

05/02/2025

A verdadeira viagem de descoberta não consiste em buscar novas paisagens, mas em ter novos olhos. Le véritable voyage de découverte ne consiste pas à chercher de nouveaux paysages, mais à avoir de nouveaux yeux.

Marcel Proust (1871-1922) escritor francês

Apresentação do curso

Objetivos

- Essenciais
 - Implementar um computador a partir de componentes eletrônicos.
 - Integrar as camadas de programação e execução de um computador.
 - Trabalhar de forma colaborativa no desenvolvimento do sistema.

Objetivos

Essenciais

- Implementar um computador a partir de componentes eletrônicos.
- Integrar as camadas de programação e execução de um computador.
- Trabalhar de forma colaborativa no desenvolvimento do sistema.

Complementares

- Compreender a evolução da informática.
- Descrever como dados e instruções são tratados em computadores.
- Entender questões relacionadas a desempenho e operação.

Ideia inicial

• The Elements of Computing Systems Noam Nisan e Shimon Schocken.

Os primeiros capítulos estão disponíveis no site

Histórico/Equipe atual

- Curso idealizado e desenvolvido pelo Prof. Luciano Soares (2016-17).
- Posteriormente ministrado pelo Prof. Rafael Corsi (2017-21).
- A partir do 2° semestre de 2021, Prof. Renan Trevisoli.
- Equipe atual:

Renan Trevisoli

Alex Fukunaga Prof. Auxiliar

Rogério Cuenca

Informações gerais

Horários das aulas:

• Quartas: 13:30 às 15:30

Sextas: 7:30 às 9:30

• Atendimento: sextas das 9:30 às 11:00.

Plano de Ensino

Blackboard

- Site da disciplina
 - https://insper.github.io/Z01.1/

Formato do curso

- Estudo prévio
 - Vocês deverão estudar a teoria no site da disciplina antes das aulas!

Projetos/APS

- Ao final de todas as APS, vocês terão desenvolvido um computador.
- Serão 9 APS no total.
- Serão desenvolvidas em grupo de 5/6 integrantes.
- O grupo permanecerá o mesmo ao longo do semestre.
- Desenvolvimento colaborativo/ágil. Cada um terá seu papel (facilitador ou desenvolvedor) em cada APS.
- Cada APS será avaliada pelo trabalho do grupo (rubricas são apresentadas nas páginas de cada projeto) e pela atuação individual (através de Forms).

Avaliações/Nota final

- 3 avaliações (1 em aula + AI + AF)
- Haverão atividades extras no total de 20 pontos extras em HW e SW.
- A média final na disciplina, será a média das notas das avaliações e das APS, caso as condições de aprovação sejam satisfeitas.
- Para ser aprovado(a), é necessário:
 - Ao final das avaliações, acumular:
 - 50 pontos em HW
 - 50 pontos em SW
 - Ter no máximo 2 notas individuais em APS menor que C.
 - Ter no máximo 1 nota de grupo em APS menor que C.
 - Média final das APS maior ou igual à C.

Cronograma

	Quarta	Sexta	
Introdução	05/02	07/02	Dados Digitais
A - Álgebra Booleana	12/02	14/02	A - Álgebra Booleana
A - Álgebra Booleana	19/02	21/02	Álgebra Booleana/Atividade
B - Lógica booleana	26/02	28/02	B - Lógica booleana
	-	07/03	B - Lógica booleana
C - ULA	12/03	14/03	C - ULA
D - Seq	19/03	21/03	D - Seq
D - Seq	26/03	28/03	Al
Al	02/04		
E - CPU	09/04	11/04	E - CPU
E - CPU	16/04		
F - ASM	23/04	25/04	F - ASM
F - ASM	30/04	-	
G - Assembler	07/05	09/05	G - Assembler
G - Assembler	14/05	16/05	H - VM
H - VM	21/03	23/05	I - VM Translator
I - VM Translator	28/05	30/05	AF
AF	06/06		

Ferramental

- Todas as APS (exceto a APS A) serão feitas e entregue pelo Github/Github Classroom.
- As avaliações AI e AF também serão realizadas pelo Github Classroom.
- Toda a teoria, laboratórios e projetos estarão no site da disciplina.
- Serão usados os softwares GHDL, GTKWave, Quartus, VSCode no SSD que vocês receberão.

Hardware

Organização Básica de Computadores

• Como uma aplicação é executada fisicamente a nível de hardware?

Tetris Pong

Elementos de Sistemas

¹http://vadim.oversigma.com/Tetris.htm

²https://en.wikipedia.org/wiki/Pong Renan Trevisoli (Engenharia da Computação)

- Hardware
 - Desenvolvimento da CPU

- Software
 - Ferramentas para programar a CPU

Evolução dos eletrônicos

Calculator 1939

Personal computer: kenbak-1 1971

Epson HX-20 1983

iPhone 2007

Stress-free e-skin 2013

based technology

2030~

Mobile Immobile

1876 Bell's telephone 1946

ENIAC

1973

Mobile phone: DynaTAC

1990

Wearable computer

2013

Smart wearable devices: Google glass, Apple Watch

earable

Insper $^{1} \\ \text{https://www.researchgate.net/figure/A-chronological-illustration-presenting-the-journey-of-electronic-components-presenting-the-description and the second contract of the present of the pres$ from fig1 282502585 4 D F 4 P F F F F F F

Quiz

Quando foi depositada a primeira patente de um transistor?

- **1**926
- **2** 1933
- **3** 1949
- **4** 1952
- **1961**

Evolução dos transistores

 $^{^{1} \}texttt{https://www.kla.com/advance/innovation/kla-celebrates-the-75th-anniversary-of-the-transistor} \leftarrow \texttt{?} \quad \land \quad \texttt{?} \quad \land \quad \texttt{?} \rightarrow \texttt{?} \quad \texttt{?} \rightarrow \texttt{?} \quad \texttt{?} \rightarrow \texttt$

Quiz

Em 1958, Jack Kilby, ganhador do prêmio Nobel de 2000, projetou o primeiro circuito integrado. Quantos transistores possuía esse CI?

- **1**
- **2** 8
- **3** 12
- **4** 32
- **3** 2300

Quiz

Em 1958, Jack Kilby, ganhador do prêmio Nobel de 2000, projetou o primeiro circuito integrado. Quantos transistores possuía esse CI?

- **1**
- **2** 8
- **3** 12
- **4** 32
- **3** 2300

E hoje, quantos transistores um processador possui?

Lei de Moore

Insper

 $^{^{1} {\}tt https://en.wikipedia.org/wiki/Transistor_count}$

Camadas de abstração

• Iremos construir/analisar o nosso CPU por camadas. Por quê?

Camadas de abstração

- Iremos construir/analisar o nosso CPU por camadas. Por quê?
 - O funcionamento de algo é separado em camadas abstratas.
 - É uma forma de ocultar detalhes e permitir a separação de interesses.
 - Facilita a interoperabilidade e a implementação do sistema.
 - Se as interfaces entre as camadas forem bem definidas, podemos mudar uma camada e mesmo assim tudo continuar funcionando.

Camadas de abstração

- Iremos construir/analisar o nosso CPU por camadas. Por quê?
 - O funcionamento de algo é separado em camadas abstratas.
 - É uma forma de ocultar detalhes e permitir a separação de interesses.
 - Facilita a interoperabilidade e a implementação do sistema.
 - Se as interfaces entre as camadas forem bem definidas, podemos mudar uma camada e mesmo assim tudo continuar funcionando.
- Que outras aplicações são implementadas por camadas?

Atividades

Problema:

Ordene as camadas de abstração de um computador de forma que as mais básicas estejam na base e as mais complexas na parte superior.

Pesquise na Internet as camadas desconhecidas.

Questões:

Discutam em grupo:

- De forma geral, quais dos níveis de abstração vocês acham que mais mudaram/evoluíram nos últimos 50 anos?
- ② O que mais influenciou e viabilizou na computação, a evolução do Hardware ou do Software?

Próxima aula

ullet Estudar: Teoria o Dados digitais

05/02/2025