NEURAL NETWORKS

a **machine learning** classifier for handwritten numbers by: sravya balasa

WHAT IS A NEURAL NETWORK?

- Takes in large amount of training examples
 - More examples = More accuracy
- system can <u>train</u> from those examples
- Then evaluates testing examples
- o 30 neurons in hidden layer is optimal (accuracy + speed)

784 neurons in first layer → 9 neurons in last layer

MINIMUM VIABLE PRODUCT

- Implement a neural network (NN)
- 2. Use NN to classify the MNIST dataset of handwritten numbers (0-9)
- 3. Display the **accuracy** of the neural networks' classification
- 4. Implement <u>successful</u> **user input**
 - a. AKA modifications to testing dataset

CHALLENGES

- Understanding the python <u>functions</u> and <u>math</u> used in the backpropogation algorithm
- Finding the individual output from each image that contributes to the accuracy rate
- Discovering the exact pattern of the data structures of the input
- Implementing user input facility
- Implementing new libraries

I WHAT'S THE USER'S INPUT?

- 1. transforms an image to 28*28 image
- 2. transforms it to a numpy (matrix) array
- 3. adds it to the **testing data**
- 4. evaluates!

WHAT'S THE USER'S INPUT?

USER INPUT:

asks for which image should be processed

WHAT'S THE OUTPUT?

EPOCH:

one full training of network

```
RESTAR: /home/linux/ieng6/spis18/spis18ab/github/Spis-Final-Project/SPIS/runner.pv
Epoch 0 raining complete
Real Op tut: 3
Desired Output: 3
Real Ouptut: 3
Desired Output: 3
Accuracy on evaluation data: 39828 / 50001
Epoch 1 training complete
Real Ouptut: 3
Desired Output: 3
Real Ouptut: 3
Desired Output: 3
Accuracy on evaluation agra; 41591 / 50001
Epoch & graining complete
Real Oup tut: 3
Desired Output: 3
-1 Juptut: 3
Desired Output: 3
Accuracy on evaluation data: 42518 / 50001
Epoch 3 training complete
Real Ouptut: 3
Desired Output: 3
Real Ouptut: 3
Desired Output: 3
Accuracy on evaluation data: 42828 / 50001
Epoch 4 training complete
Real Ouptut: 3
Desired Output: 3
Real Ouptut: 3
Desired Output: 3
Accuracy on evaluation data 43610 / 50001
```

REAL:

result of user's input after run through network **DESIRED:**

user's predicted result

ACCURACY:

- -number of testing data inputs classified correctly -accuracy increases with each epoch
- **REACHED 98%**

ACTIVATION ENERGIES

- 0
- highlist_
 - **©**
 - 0
 - **©**
 - **©**
 - 0.0
 - •

- Activation energies only adjusted by weights and biases
 - Allows for slow adjustment between each hidden layer
- Last layer = desired output layer
- **Ex:** 3rd neuron has activation 1.0, inputted number is a 2
 - Network aims to always add reach one highest value

COST FUNCTION

- Measures **changes in activation** from one layer to the next
- Ex: Between last layer and desired output layer

STOCHASTIC GRADIENT DESCENT

GRADIENT

Effect on cost

- Division into mini-batches
- Effect on cost computed each batch
- Total cost adjusted for each batch
- Less accurate + Fast → Local min

- More accurate + slow → Local min
- Careful because takes in ALL training data in one batch

BACKPROPAGATION THE ALGORITHM ITSELE.

- How do changes in weights, biases, activation affect final activation?
- Which weight changes decreases cost the most + gets our final output?

POSSIBLE CHANGES: WEIGHTS, BIASES, INITIAL ACTIVATION

Maryal CITATIONS

- 1. NIELSEN'S GITHUB
- 2. MNIST DATASET
- 3. <u>NIELSEN'S BOOK: NEURAL NETWORKS AND DEEP LEARNING</u>