FACTORIAL ANALYSIS OF VARIANCE DESIGN

OLUSEGUN AFIS ISMAIL MARCH 6, 2016

FACTORIAL ANOVA DESIGN

IN FACTORIAL ANOVA DESIGN, WE ARE INTERESTED IN THE MAIN AND INTERACTION EFFECTS ON THE RESPONSE VARIABLE.

ILLUSTRATION OF FACTORIAL ANOVA DESIGN
ASSUMING THAT FACTOR A HAS 3 LEVELS AND FACTOR B HAS 4 LEVELS
THE FACTORIAL ANOVA DESIGN MAY BE WRITTEN 3 X 4

THE EFFECTS UNDER INVESTIGATION ARE:

MAIN EFFECTS: A, B

INTERACTION EFFECT: A X B

TWO -WAY FACTORIAL ANOVA

■ WE CAN ILLUSTRATE THE TWO FACTORS INTO COLUMNS AND ROWS AS FOLLOWS

				FACTO	OR-B	ai	ai^2
		bl	b2	b3	b4	Row Total	
		al					
I	FACTOR-A	a2					
		a3					
	Column Total	bj					
		bj^2					

TERMS IN THE FACTORIAL DESIGN

- THE NUMBER OF REPLICATE PER CELL IS DEFINED AS "r" WHERE $r \geq 2$
- THE NUMBER OF LEVELS IN FACTOR A IS "a" WHERE $a \ge 2$
- THE NUMBER OF LEVELS IN FACTOR B IS "b" WHERE $b \ge 2$
- THE TOTAL OF REPLICATE RESPONSE PER CELL IN ROW i by COLUMN j IS DENOTED

 $\left[a_ib_j\right]$

SUM OF SQUARES IN TWO-WAY FACTORIAL ANOVA

- SUM SQUARE OF FACTOR A (SSA) $SSA = \frac{1}{b.r} \sum [a_i]^2 \frac{T^2}{N}$
- SUM SQUARE OF FACTOR B (SSB) $SSB = \frac{1}{a.r} \sum [b_j]^2 \frac{T^2}{N}$
- SUM SQUARE OF INTERACTION (AXB), SSAB= SSA.B SSA SSB
- WHERE SSA.B IS DEFINED AS

$$SSA.B = \frac{1}{r} \sum \left[a_i b_j \right]^2 - \frac{T^2}{N}$$

SUM SQUARES CONTD.

- SUM SQUARE OF ERROR (SSE) = SSTOT SSA.B
- SUM SQUARE TOTAL (SSTOT) OR TOTAL SUM OF SQUARE

$$SSTOT = \sum_{i,j} y_{ij}^2 - \frac{T^2}{N}$$

TWO-WAY FACTORIAL TABLE

SOURCE	DF	SS	MS	F
A	a-1	SSA	SSA/a-1=MSA	MSA/MSE
В	b-1	SSB	SSB/b-1 =MSB	MSB/MSE
AB	(a-1)(b-1)	SSAB	SSAB/(a-1)(b-1)=MSAB	MSAB/MSE
RESIDUAL	ab(r-1)	SSE	SSE/ab(r-1)=MSE=S ²	
TOTAL	N-1	SSTOT		

EXAMPLE

An engineer suspects that the surface finish of a metal part is influenced by the feed rate and the depth of cut. He selects three feed rates and four depths of cut. He then conducts a factorial experiment and obtains the following data:

- What is the purpose of the experiment? and what type?
- Formulate two research questions assuming you are the researcher.
- Conduct appropriate analysis of variance to answer the hypotheses formulated
 Use alpha =0.5. Use both manual calculation and SPSS to conduct the analysis
 Prepare a brief report on the conclusion of your findings
 Prepare the appropriate residual plots and comment on the model's adequacy

EXAMPLE

			Depth of Cut	(in)	
		0.15	0.18	0.2	0.25
		74	79	82	99
	0.2	64	68	88	104
		60	73	92	96
		92	98	99	104
Feed Rate	0.25	86	104	108	110
(in/min)		88	88	95	99
		99	104	108	114
	0.3	98	99	110	111
		102	95	99	107

SOLUTION

- PURPOSE OF EXPERIMENT: TO INVESTIGATE THE FEECTS OF DEPTH OF CUT, FEED RATE AND THE INTERACTION
- TYPE OF ANOVA: FACTORIAL
- RESEARCH QUESTIONS
- 1. IS THERE ANY RELATIONSHIP BETWEEN DEPTH CUT AND THE RESPONSE VARIABLE?
- 2. IS THERE ANY RELATIONSHIP BETWEEN FEED RATE AND THE RESPONSE VARIABLE?
- 3. IS THERE ANY EFFECT OF INTERACTION AND THE RESPONSE VARIABLE?

SOLUTION

- HYPOTHESES
- FACTOR A (Feed Rate)

$$H_0: \alpha_1 = \alpha_2 = \alpha_3$$

$$H_1: \alpha_1 \neq \alpha_2 \neq \alpha_3$$

► FACTOR B (Depth of cut)

$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4$$

$$H_1: \beta_1 \neq \beta_2 \neq \beta_3 \neq \beta_4$$

INTERACTION (AB)

$$H_0: (\alpha\beta)_{ij} = 0$$

$$H_1:(\alpha\beta)_{ij}\neq 0$$

CALCULATION OF TOTALS

	0.15	0.18	0.2	0.25	ai	ai^2
	74	79	82	99	979	958441
	64	68	88	104		
0.2	60	73	92	96		
	92	98	99	104	1171	1371241
	86	104	108	110		
0.25	88	88	95	99		
	99	104	108	114	1246	1552516
	98	99	110	111		
0.3	102	95	99	107		
bj	763	808	881	944		
bj^2	582169	652864	776161	891136		

[aibj]

198	220	262	299
170	220	202	211
266	290	302	313
299	298	317	332

[aibj]^2

39204	48400	68644	89401
70756	84100	91204	97969
89401	88804	100489	110224

SUM SQUARES AND TOTALS

```
T = 3396
N = 36
CORRECTION FACTOR = T^2/N = (3396)^2/36 = 320356
SSTOTAL = 326888 -320356 = 6532
b = 4
a = 3
r = 3
SSA = [958441 + 1371241 + 1552516]/12 - 320356 = 3160.5
SSB = [582169 + 652864 + 776161 + 891136]/9 - 320356 = 2125.11
SSA.B = 978596/3 - 320356 = 5842.67
SSAB = SSA.B. - SSA - SSB = 5842.67 - 3160.5 - 2125.11 = 557.06
SSE = SSTOT - SSA.B = 6532 - 5842.67 = 689.33
```

MEAN SQUARE CALCULATIONS

- \blacksquare MSA, FACTOR A = 3160.5/2 = 1580.25
- \blacksquare MSB, FACTOR B = 2125.11/3 = 708.37
- **MSAB, INTERACTION** = 557.06/6 = 92.84
- **■** MSE, ERROR=RESIDUAL = 689.33/24 = 28.72

F - CALCULATIONS

► FACTOR A F = MSA/MSE = 1580.25/28.72 = 55.0226

FACTOR B F = MSB/MSE = 708.37/28.72 = 24.664

■ INTERACTION F = MSAB/MSE = 92.84/28.72 = 3.2325

HYPOTHESES TESTING

LEVEL OF SIGNIFICANCE IS 5%

F-TABLE FOR FACTOR A, F(2, 24, 0.05) = 3.402826

F-TABLE FOR FACTOR B, F(3, 24, 0.05) = 3.008787

F-TABLE FOR INTERACTION (AB), F(6, 24, 0.05) = 2.508189

DECISIONS: REJECT THE NULL HYPOTHESIS FOR ALL, F-CAL > F-TABLE

CONCLUSION

- At the 5% level of significance, there is an evidence that there are effects of the depth of cut, feed rate and interaction of both factors on the surface finish of metal part. Further post hoc or multiple comparison of the means for each factor level to identify the least and greatest effect on the surface finish.
- Alternatively we are 95% confident that the depth of cut, feed rate and interaction of both factors have effects on the surface finish of metal part tested in the study.

SPSS

RESPONSE	FACTOR A	FACTOR B
74	1	1
64	1	1
60	1	1
79	1	2
68	1	2
73	1	2
82	1	3
88	1	3
92	1	3
99	1	4
104	1	4
96	1	4

SPSS

EACTOR A	FACTOR B
	1 ACION B
	1
	1
	1
	2
	2
	2
	3
	3
	3
	4
2	4
2	4
3	1
3	1
3	1
3	2
3	2
3	2
3	3
	3
	3
	4
	4
3	4
	3 3 3 3 3 3 3 3 3 3

FACTORIAL ANOVA BY OLUSEGUN AFIS ISMAIL MARCH 6 2016

SPSS - GENERAL LINEAR MODEL, UNIVARIATE

SPSS OUTPUT

- Tests of Between-Subjects Effects
- Dependent Variable: RESPONSE

	SourceType III	Sum of Squares	df	Mean Square	e F	Sig.
	Corrected Model	5842.667°	11	531.152	18.493	.000
-	Intercept	320356.000	1	320356.000	11153.594	.000
-	FACTORA	3160.500	2	1580.250	55.018	.000
-	FACTORB	2125.111	3	708.370	24.663	.000
-	FACTORA * FACTORB	557.056	6	92.843	3.232	.018
-	Error	689.333	24	28.722		
	Total	326888.000	36			
	Corrected Total	6532 000	35			

a. R Squared = .894 (Adjusted R Squared = .846)

INTERACTION BETWEEN DEPTH 2 & 4

RESIDUAL PLOT

DESCRIPTIVE STATISTICS

- 2. Feed Rate
- Dependent Variable: RESPONSE

Feed	Rate	Mean	Std. Error	95% Confid	ence Interval
				Lower Bound	Upper Bound
1.00		81.583	1.547	78.390	84.776
2.00		97.583	1.547	94.390	100.776
3.00	1	103.833	1.547	100.640	107.026

DESCRIPTIVE STATISTICS

- 3. Depth
- Dependent Variable: RESPONSE

Depth	Mean	Std. Error	95% Confidence Interval	
			Lower Bound	Upper Bound
1.00	84.778	1.786	81.091	88.465
2.00	89.778	1.786	86.091	93.465
3.00	97.889	1.786	94.202	101.576
4.00	104.889	1.786	101.202	108.576

MULTIPLE COMPARISONS-FEED RATE

Multiple Comparisons

Dependent Variable: RESPONSE

LSD

					95% Confide	ence Interval
(I) Feed Rate		Mean Differençe (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
1.00	2.00	-16.0000°	2.18793	.000	-20.5157	-11.4843
	3.00	-22.2500 [*]	2.18793	.000	-26.7657	-17.7343
2.00	1.00	16.0000 [*]	2.18793	.000	11.4843	20.5157
	3.00	-6.2500 [*]	2.18793	.009	-10.7657	-1.7343
3.00	1.00	22.2500 [*]	2.18793	.000	17.7343	26.7657
	2.00	6.2500 [*]	2.18793	.009	1.7343	10.7657

MULTIPLE COMPARISON - DEPTH OF CUT

Multiple Comparisons								
Dependent Variable: RESPONSE LSD								
					95% Confidence Interval			
(I) Depth		Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound		
1.00	2.00	-5.0000	2.52640	.059	-10.2142	.2142		
	3.00	-13.1111 [*]	2.52640	.000	-18.3254	-7.8969		
	4.00	-20.1111 [*]	2.52640	.000	-25.3254	-14.8969		
2.00	1.00	5.0000	2.52640	.059	2142	10.2142		
	3.00	-8.1111 [*]	2.52640	.004	-13.3254	-2.8969		
	4.00	-15.1111 [*]	2.52640	.000	-20.3254	-9.8969		
3.00	1.00	13.1111 [*]	2.52640	.000	7.8969	18.3254		
	2.00	8.1111 [*]	2.52640	.004	2.8969	13.3254		
	4.00	-7.0000 [*]	2.52640	.011	-12.2142	-1.7858		
4.00	1.00	20.1111 [*]	2.52640	.000	14.8969	25.3254		
	2.00	15.1111 [*]	2.52640	.000	9.8969	20.3254		
	3.00	7.0000*	2.52640	.011	1.7858	12.2142		
Described an absorbed manager								

Based on observed means.

The error term is Mean Square(Error) = 28.722.

*. The mean difference is significant at the .05 level.

DISPLAY OF UNIVARIATE OPTIONS

ASSUMPTION OF EQUALITY OF VARIANCE

Levene's Test of Equality of Error Variances a				
Dependent Variable: RESPONSE				
F	df1	df2	Sig.	
0.772	11	24	0.663	

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a Design: Intercept + FACTORA + FACTORB + FACTORA * FACTORB