REPORT WRITING

A Differential Equation Solver Application

By Malikova Aygul

Course: BS17-06, Bachelor

TA: Mingazov Marat

Date: 25.10.2018

Innopolis University 2018

Stack of used technologies

In order to create a convenient and understandable interface with the user, I decided to make a web-application using the following technologies:

- HTML 5
- CSS 3
- ECMAScript 6

Additional:

- Online editor for translating into LateX
 (https://www.codecogs.com/latex/eqneditor.php)
- Library for plotting
 (<u>https://plot.ly/javascript/getting-started/#plotlyjs-cdn</u>
)

Exact Solution of the equation

$$\begin{aligned} y' &= \frac{y^2}{x^2} - 2, \ y(1) = 1 \\ Substitution \ y &= xv, \ y' = xv' + v \\ xv' &+ v - \frac{(xv^2)}{x^2} = -2 \\ v' &= \frac{v^2 - v - 2}{x} - Separable \ equation \\ \int \frac{dv}{v^2 - v - 2} &= \int \frac{dx}{x} \\ \int \frac{dv}{v^2 - v - 2} &= \int \frac{1}{\left(v - \frac{1}{2}\right)^2 - \frac{9}{4}} dv \\ Substitution \ u &= v - \frac{1}{2} \end{aligned} \qquad \begin{aligned} &= -\frac{1}{3} \left(\ln \left| \frac{2}{3} + \frac{2v}{3} \right| - \ln \left| -\frac{4}{3} + \frac{2v}{3} \right| \right) = \\ &= \frac{1}{3} \ln \left| \frac{2 - v}{v + 1} \right| \\ \ln \left| \frac{2 - v}{v + 1} \right| &= 3 \ln |x| + C \end{aligned}$$

$$\frac{y - 2x}{y + x} = Cx^3$$

$$y = \frac{2x + Cx^4}{1 - Cx^3} - General \ Solution \end{aligned}$$

$$y(1) = 1$$

$$C = -\frac{1}{2}$$

$$Substitution \ u &= \frac{3}{2}w$$

$$4 \cdot \int \frac{1}{4u^2 - 9} du \qquad C = -\frac{1}{2}$$

$$Substitution \ u &= \frac{3}{2}w$$

$$4 \cdot \int \frac{1}{6(w^2 - 1)} dw = 4 \cdot \frac{1}{6} \left(- \int \frac{1}{-w^2 + 1} dw \right) = \frac{2x - \frac{1}{2}x^4}{1 + \frac{1}{2}x^3} - Partial \ Solution \end{aligned}$$

Points of discontinuity

$$1 + \frac{1}{2}x^3 = 0$$

$$x = -\sqrt[3]{2}$$

$$x \notin [1; 10.2]$$

So, there is no points of discontinuity

Local errors

X :	Y: (Exact)	Y: (Euler)	Error
0: 1	0: 1	0: 1	0: 0
1: 1.5	1: 0.1744186046511628	1: 0.5 2: -0.444444444444444444444444444444444444	1: -0.32558139534883723 2: -0.355555555555556
2: 2	2: -0.8 3: -1.648936170212766	3: -1.4197530864197532	3: -0.2291830837930129
3: 2.5 4: 3	4: -2.3793103448275863	4: -2.25849718030788	4: -0.12081316451970636
5: 3.5	5: -3.032033426183844	5: -2.9751188740046217	5: -0.056914552179222255
6: 4	6: -3.63636363636362	6: -3.6138400040267227	6: -0.022523632336913568 7: -0.004347096776732506
7: 4.5	7: -4.21006711409396 8: -4.7637795275590555	7: -4.205720017317227 8: -4.76897727993296	8: 0.005197752373904407
8: 5 9: 5.5	9: -5.304008908685969	9: -5.314114394002624	9: 0.01010548531665556
10: 6	10: -5.834862385321101	10: -5.847340645365502	10: 0.012478260044401779
11: 6.5	11: -6.35901491188432	11: -6.372460192269066	11: 0.013445280384745573 12: 0.013628329780133619
12: 7 13: 7.5	12: -6.878260869565217 13: -7.393836626363904	12: -6.891889199345351 13: -7.407214334691748	13: 0.013377708327843685
14: 8	14: -7.906614785992218	14: -7.9195092306911885	14: 0.012894444698970275
15: 8.5	15: -8.41722458916616	15: -8.429519961511478	15: 0.01229537234531719
16: 9	16: -8.926128590971272	16: -8.937777354026906	16: 0.011648763055633893
17: 9.5 18: 10	17: -9.4336727272727 18: -9.940119760479043	17: -9.444667082235819 18: -9.950474637392224	17: 0.010994354963091979 18: 0.010354876913181599
X:	Y: (Exact)	Y: (Improved)	Error
0. 1	0: 1	0: 1	0: 0
0: 1 1: 1.5	1: 0.1744186046511628	1: 0.179999999999994	1: -0.005581395348837143 2: 0.00365568000000005
2: 2	2: -0.8	2: -0.8036556800000001 3: -1.6460359469874442	3: -0.0029002232253219073
3: 2.5	3: -1.648936170212766	4: -2.371520081737919	4: -0.007790263089667349
4: 3	4: -2.3793103448275863 5: -3.032033426183844	5: -3.0225105551189406	5: -0.009522871064903349
5: 3.5 6: 4	6: -3.6363636363636362	6: -3.6267997860710692	6: -0.009563850292567011
7: 4.5	7: -4.21006711409396	7: -4.201155867717766	7: -0.00891124637619356 8: -0.008044250175231582
8: 5	8: -4.7637795275590555	8: -4.755735277383824 9: -5.2968413986364435	9: -0.007167510049525205
9: 5.5 10: 6	9: -5.304008908685969 10: -5.834862385321101	10: -5.828502905445761	10: -0.006359479875339247
11: 6.5	11: -6.35901491188432	11: -6.353371334937094	11: -0.005643576947226059
12: 7	12: -6.878260869565217	12: -6.8732405503090135	12: -0.00502031925620372
13: 7.5	13: -7.393836626363904	13: -7.389355083752118 14: -7.9025982124757705	13: -0.004481542611785905 14: -0.004016573516447686
14: 8 15: 8.5	14: -7.906614785992218 15: -8.41722458916616	15: -8.413609785121748	15: -0.0036148040444121676
16: 9	16: -8.926128590971272	16: -8.922861927637417	16: -0.0032666633338553908
17: 9.5	17: -9.4336727272727	17: -9.430708841383789	17: -0.002963885888938478
18: 10	18: -9.940119760479043	18: -9.937420275526396	18: -0.0026994849526467135
X:	Y: (Exact)	Y: (Runge Kutta)	Error
0: 1	0: 1	0: 1	0: 0
1: 1.5	1: 0.1744186046511628	1: 0.1809235621357037	1: -0.006504957484540913
2: 2	2: -0.8	2: -0.7945889298359203	2: -0.005411070164079712
3: 2.5	3: -1.648936170212766	3: -1.6517277870054432	3: 0.002791616792677143
4: 3	4: -2.3793103448275863	4: -2.377060132513641	4: -0.002250212313945177 5: -0.0060398065878435325
5: 3.5	5: -3.032033426183844	5: -3.0259936195960004 6: -3.6288468736431985	6: -0.007516762720437775
6: 4 7: 4.5	6: -3.6363636363636362 7: -4.21006711409396	7: -4.202368627481343	7: -0.007698486612616406
8: 5	8: -4.7637795275590555	8: -4.756474479562369	8: -0.007305047996686298
9: 5.5	9: -5.304008908685969	9: -5.297307054311736	9: -0.006701854374232319
10: 6	10: -5.834862385321101	10: -5.8288058394396804	10: -0.006056545881420128
11: 6.5	11: -6.35901491188432	11: -6.3535743535621965	11: -0.005440558322123756
12: 7	12: -6.878260869565217	12: -6.873380307902831 13: -7.3894536321320015	12: -0.004880561662385929 13: -0.004382994231902693
13: 7.5	13: -7.393836626363904	13: -7.3894536321320015 14: -7.902669211195511	14: -0.003945574796706985
14: 8 15: 8.5	14: -7.906614785992218 15: -8.41722458916616	15: -8.41366192838645	15: -0.003562660779710569
16: 9	16: -8.926128590971272	16: -8.922900889108046	16: -0.0032277018632260734
17: 9.5	17: -9.4336727272727	17: -9.430738408944674	17: -0.0029343183280534646
18: 10	18: -9.940119760479043	18: -9.937443031169252	18: -0.00267672930979046

Details of application design

Besides the methods for handling with user interaction, I have several significant methods:

- 1. Exact and numerical methods
 - a. Exact()
 - b. Euler()
 - c. ImprovedEuler()
 - d. RungeKutta()
- 2. Function for computing y value of certain point for numerical methods (equation(x, y))
- 3. Function for computing C value for partial solution (partial solution(x))
 - 4. Functions for computing error for each method
 - a. EulerError()
 - b. ImprovedEulerError()
 - c. RungeKuttaError()
 - 5. Function for plotting

Plots

General graph for IVP:

$$h = 0.5$$

Apply

General graph for other values:

$$y(2) = 2$$

$$h = 0.5$$

Apply

For better representation there are also plots separated for each method.

