# Natural Deduction with Alternatives

on structural rules, and identifying assumptions

Greg Restall



LOGIC SEMINAR · LANCOG · LISBON · DECEMBER 2022

# My Aim

To introduce natural deduction with alternatives, a well-behaved, mildly bilateralist, single-conclusion natural deduction framework for a range of logical systems, including classical, linear, relevant logic and affine logic, by varying the policy for managing discharging of assumptions and retrieval of alternatives.

# My Plan

# Natural Deduction with Alternatives

Weakening and Explosion

Varieties of Conjunction

Contraction, Composition, and Assumptions

# NATURAL DEDUCTION WITH ALTERNATIVES

$$\frac{[A \land \neg B]^{1}}{\neg B} \land E \qquad \frac{A \rightarrow B}{B} \xrightarrow{A} \rightarrow E} \land E$$

$$\frac{A \land \neg B}{\neg B} \land E \qquad \frac{A \rightarrow B}{A} \rightarrow E$$

$$\frac{[A \land \neg B]^{1}}{\neg B} \land E \qquad \frac{A \rightarrow B}{B} \qquad \frac{[A \land \neg B]^{1}}{A} \rightarrow E} \land E$$

$$\frac{\Box}{\neg (A \land \neg B)} \neg I^{1}$$

$$\frac{[A \land \neg B]^{1}}{\neg B} \land E \qquad \frac{A \rightarrow B}{A} \xrightarrow{A} \rightarrow E} \land E$$

$$\frac{A \land \neg B}{\neg B} \land E \qquad \frac{A \rightarrow B}{A} \rightarrow E$$

$$\frac{[A \land \neg B]^{1}}{\neg B} \land E \qquad \frac{A \rightarrow B}{B} \xrightarrow{A} \rightarrow E} \land E$$

$$\frac{A \land \neg B}{\neg B} \land E \qquad \frac{A \rightarrow B}{A} \rightarrow E$$

$$\frac{[A \land \neg B]^{1}}{\neg B} \land E \qquad \frac{A \rightarrow B}{B} \xrightarrow{A} \rightarrow E} \land E$$

$$\frac{A \rightarrow B}{\neg A} \rightarrow E$$

$$\frac{[A \land \neg B]^{1}}{\neg B} \land E \qquad \frac{A \rightarrow B}{B} \xrightarrow{A} \rightarrow E} \land E$$

$$\frac{A \land \neg B}{\neg B} \land E \qquad \frac{A \rightarrow B}{A} \rightarrow E$$

$$\frac{[A \land \neg B]^{1}}{\neg B} \land E \qquad \frac{A \rightarrow B}{B} \qquad \frac{[A \land \neg B]^{1}}{A} \rightarrow E} \land E$$

$$\frac{\Box}{\neg (A \land \neg B)} \neg I^{1}$$

Α

A 
$$\begin{bmatrix} [A]^{\mathfrak{i}} \\ \Pi \\ B \\ A \to B \end{bmatrix} \to I^{\mathfrak{i}} \qquad \begin{bmatrix} \Pi & \Pi' \\ A \to B & A \\ B \end{bmatrix} \to E$$

A 
$$\begin{bmatrix} [A]^{i} \\ \Pi \\ B \\ A \to B \end{bmatrix} \to I^{i} \qquad \begin{bmatrix} \Pi & \Pi' \\ A \to B & A \\ B \end{bmatrix} \to E$$

$$\begin{array}{ccc} \Pi & \Pi' & \Pi \\ \frac{A & B}{A \wedge B} \wedge I & \frac{A \wedge B}{A} \wedge E & \frac{A \wedge B}{B} \wedge E \end{array}$$

$$A \qquad \qquad \frac{\prod\limits_{B \\ A \to B}^{[A]^{\mathfrak{i}}}}{A \to B} \xrightarrow{A}^{I^{\mathfrak{i}}} \qquad \qquad \frac{\prod\limits_{A \to B}^{\Pi'}}{B} \xrightarrow{A}^{E}$$

$$\begin{array}{ccc} \Pi & \Pi' & & \Pi \\ \frac{A & B}{A \wedge B} \wedge I & & \frac{A \wedge B}{A} \wedge E & \frac{A \wedge B}{B} \wedge E \end{array}$$

$$\begin{array}{c}
[A]^{i} \\
\Pi \\
\frac{\sharp}{\neg A} \neg I^{i}
\end{array}$$

$$A \qquad \frac{\prod G G}{\frac{B}{A \to B} \to I^{i}} \qquad \frac{A \xrightarrow{\Pi} G G}{\frac{A \xrightarrow{\Pi} G}{B} \to E}$$

$$\frac{\prod G G}{\frac{A \xrightarrow{\Pi} G}{A \times B} \land I} \qquad \frac{A \xrightarrow{\Pi} G}{\frac{A \xrightarrow{\Pi} G}{A} \land E} \qquad \frac{A \xrightarrow{\Pi} G}{\frac{A \xrightarrow{\Pi} G}{A} \to E}$$

$$\frac{A \xrightarrow{\Pi} G}{\frac{A \xrightarrow{\Pi} G}{A \times B} \land E} \qquad \frac{A \xrightarrow{\Pi} G}{\frac{A \xrightarrow{\Pi} G}{A} \to E}$$

$$\frac{A \xrightarrow{\Pi} G}{\frac{A \xrightarrow{\Pi} G}{A \times B} \land E} \qquad \frac{A \xrightarrow{\Pi} G}{\frac{A \xrightarrow{\Pi} G}{A} \to E}$$

A 
$$\frac{\prod\limits_{B}^{[A]^{i}}}{A \to B} \to I^{i}$$
 
$$\frac{A \to B}{A} \to B \to A$$

$$\frac{\prod\limits_{B}^{\Pi'}}{A \to B} \wedge I$$
 
$$\frac{\prod\limits_{A \to B}^{\Pi'}}{A} \wedge E$$
 
$$\frac{\prod\limits_{A \to B}^{\Pi'}}{A} \wedge E$$
 
$$\frac{A \wedge B}{A} \wedge E$$
 
$$\frac{A \wedge B}{$$

$$\frac{[A \land \neg B]^{1}}{\neg B} \land E \qquad \frac{A \to B}{B} \qquad \frac{[A \land \neg B]^{1}}{A} \land E$$

$$\frac{\exists A \land \neg B}{A} \rightarrow E$$

$$\frac{\exists A \land \neg B}{A} \rightarrow E$$

$$\frac{\exists A \land \neg B}{\neg (A \land \neg B)} \rightarrow E$$

$$A \to B \succ \neg (A \land \neg B)$$

$$\frac{[A \land \neg B]^{1}}{\neg B} \land E \qquad \frac{A \rightarrow B}{B} \qquad \frac{A \rightarrow B}{A} \rightarrow E} \land E$$

$$\frac{\Box A \land \neg B]^{1}}{\neg B} \land E \qquad A \rightarrow B, A \land \neg B \rightarrow B$$

$$A \rightarrow B, A \land \neg B \rightarrow B$$

$$\frac{[A \land \neg B]^{1}}{\neg B} \land E \qquad \frac{A \rightarrow B}{B} \xrightarrow{A} \rightarrow E$$

$$\frac{\exists A \land \neg B]^{1}}{\neg A} \land E \qquad \frac{\exists A \land \neg B}{\neg E} \Rightarrow E$$

$$\frac{\exists A \land \neg B}{\neg B} \rightarrow E$$

$$\frac{\exists A \land \neg B}{\neg A} \rightarrow E$$

$$\frac{\exists A \land \neg B}{\neg A} \rightarrow E$$

$$\frac{\exists A \land \neg B}{\neg A} \rightarrow E$$

$$\frac{[A \land \neg B]^{1}}{\neg B} \land E \qquad \frac{A \rightarrow B}{B} \qquad \frac{A \rightarrow B}{A} \rightarrow E} \land E$$

$$\frac{\exists A \land \neg B]^{1}}{\neg B} \land E \qquad A \rightarrow B, A \land \neg B \rightarrow B$$

$$A \rightarrow B, A \land \neg B \rightarrow B$$

$$\frac{[A \land \neg B]^{1}}{\neg B} \land E \qquad \frac{A \to B}{B} \xrightarrow{A} \rightarrow E \qquad A \land \neg B \succ A$$

$$\frac{[A \land \neg B]^{1}}{A} \land E \qquad A \to B \qquad A \land \neg B \succ A$$

# Classical Logic?

There's no proof from  $\neg (A \land \neg B)$  back to  $A \rightarrow B$ .

# Classical Logic?

There's no proof from  $\neg (A \land \neg B)$  back to  $A \rightarrow B$ .

*One option*: More sequents — not just  $X \succ C$ , but  $X \succ Y$ .

# Classical Logic?

There's no proof from  $\neg (A \land \neg B)$  back to  $A \rightarrow B$ .

*One option*: More sequents — not just  $X \succ C$ , but  $X \succ Y$ .

What does that mean for **proofs**?

$$P_1, P_2 \succ C_1, C_2$$
 can become  $P_1, P_2, \mathcal{L}_1 \succ C_2$ 

$$P_1, P_2 \succ C_1, C_2$$
 can become  $P_1, P_2, C_1 \succ C_2$  or  $P_1, P_2, C_2 \succ C_1$ 

$$P_1, P_2 \succ C_1, C_2$$
 can become  $P_1, P_2, C_1 \succ C_2$  or  $P_1, P_2, C_2 \succ C_1$  or  $P_1, P_2, C_1, C_2 \succ$ 

$$P_1, P_2 \succ C_1, C_2$$
 can become  $P_1, P_2, \mathcal{L}_1 \succ C_2$  or  $P_1, P_2, \mathcal{L}_2 \succ C_1$  or  $P_1, P_2, \mathcal{L}_1, \mathcal{L}_2 \succ$ 

Proofs with alternatives have formulas or slashed formulas at the leaves, and either one formula, or  $\sharp$  as a conclusion.



$$X, Y$$
 $\Pi$ 
 $A \quad A$ 
 $\sharp$ 

$$\frac{X, \cancel{+} \succ A}{X, \cancel{+}, \cancel{+} \succ} \uparrow$$

$$X, Y$$
 $\Pi$ 
 $A \quad A$ 
 $\sharp$ 

$$\frac{X, \cancel{Y} \succ A}{X, \cancel{Y}, \cancel{A} \succ} \uparrow \quad \frac{X \succ A; Y}{X \succ ; A, Y} \uparrow$$

$$X, Y$$
 $\Pi$ 
 $A \quad A$ 
 $\sharp$ 

$$X, [\mathcal{A}]^{i}, \mathcal{Y}$$

$$\prod_{\stackrel{\sharp}{A} \downarrow^{i}}$$

$$\frac{X, \cancel{+} \times A}{X, \cancel{+}, \cancel{+} \times} \uparrow \quad \frac{X \times A; Y}{X \times ; A, Y} \uparrow$$

$$X, Y$$
 $\Pi$ 
 $A \quad A$ 
 $\sharp$ 
 $A$ 
 $\downarrow^i$ 

$$\frac{X, \mathcal{Y} \succ A}{X, \mathcal{Y}, \mathcal{A} \succ} \uparrow \quad \frac{X \succ A; Y}{X \succ ; A, Y} \uparrow \qquad \frac{X, \mathcal{Y}, \mathcal{A} \succ}{X, \mathcal{Y} \succ A} \downarrow$$

$$X, Y$$
 $\Pi$ 
 $A \quad A$ 
 $\sharp$ 

$$X, [\mathcal{A}]^{i}, \mathcal{Y}$$

$$\prod_{\stackrel{\sharp}{A}\downarrow^{i}}$$

$$\frac{X, \cancel{Y} \succ A}{X, \cancel{Y}, \cancel{A} \succ} \uparrow \quad \frac{X \succ A; Y}{X \succ ; A, Y} \uparrow \qquad \frac{X, \cancel{Y}, \cancel{A} \succ}{X, \cancel{Y} \succ A} \downarrow \quad \frac{X \succ ; A, Y}{X \succ A, Y} \downarrow$$

$$\frac{X, \cancel{+} \succ A}{X, \cancel{+}, \cancel{+} \succ} \uparrow \quad \frac{X \succ A; Y}{X \succ ; A, Y} \uparrow \qquad \frac{X, \cancel{+}, \cancel{+} \succ}{X, \cancel{+} \succ A} \downarrow \quad \frac{X \succ ; A, Y}{X \succ A, Y} \downarrow$$

We add the *store* and *retrieve* rules and keep the other rules *fixed*.

The store and retrieve rules are the only rules that manipulate alternatives.

$$\frac{[B]^{1} \quad [B]^{2}}{\frac{\sharp}{\neg B}^{\neg I^{1}}} \uparrow \frac{[A]^{3} \quad \frac{\sharp}{\neg B}^{\neg I^{1}}}{A \land \neg B} \land I$$

$$\frac{\frac{\sharp}{B} \downarrow^{2}}{A \rightarrow B} \rightarrow I^{3}$$

$$\frac{[B]^{1} \quad [B]^{2}}{\frac{\sharp}{\neg B} \neg I^{1}} \uparrow$$

$$\frac{\neg (A \land \neg B) \quad A \land \neg B}{A \land \neg B} \neg E}$$

$$\frac{\frac{\sharp}{B} \downarrow^{2}}{A \rightarrow B} \rightarrow I^{3}$$

$$\frac{[B]^{1} \quad [B]^{2}}{\frac{\sharp}{\neg B} \neg I^{1}} \uparrow$$

$$\frac{\neg (A \land \neg B) \quad A \land \neg B}{A \land \neg B} \neg E} \uparrow$$

$$\frac{\frac{\sharp}{B} \downarrow^{2}}{A \rightarrow B} \rightarrow I^{3}$$

$$\frac{[B]^{1} \quad [\cancel{B}]^{2}}{\frac{\sharp}{\neg B} \neg I^{1}} \uparrow$$

$$\frac{\neg (A \land \neg B) \qquad \frac{[A]^{3} \qquad \frac{\sharp}{\neg B} \neg I^{1}}{A \land \neg B} \neg E}$$

$$\frac{\frac{\sharp}{B} \downarrow^{2}}{A \rightarrow B} \rightarrow I^{3}$$

$$\frac{[B]^{1} \quad [B]^{2}}{\frac{\sharp}{-B}^{-I^{1}}} \uparrow$$

$$\frac{[A]^{3} \quad \frac{\sharp}{-B}^{-I^{1}}}{A \land -B} \land I$$

$$\frac{\frac{\sharp}{B} \downarrow^{2}}{A \to B} \to I^{3}$$

$$\frac{[B]^{1} \quad [B]^{2}}{\frac{\sharp}{-B}^{-I^{1}}} \uparrow \qquad \neg (A \land \neg B), A \succ B;$$

$$\frac{\neg (A \land \neg B)}{A \land \neg B} \xrightarrow{A \land \neg B} \neg E}$$

$$\frac{\frac{\sharp}{B} \downarrow^{2}}{A \rightarrow B} \xrightarrow{\rightarrow I^{3}}$$

$$\frac{[B]^{1} \quad [B]^{2}}{\frac{\sharp}{-B}^{-I^{1}}} \uparrow$$

$$\frac{[A]^{3} \quad \frac{\exists}{-B}^{-I^{1}} \uparrow}{A \land \neg B} \land I$$

$$\frac{\frac{\sharp}{B} \downarrow^{2}}{A \rightarrow B} \rightarrow I^{3}$$

# WEAKENING AND

### EXPLOSION

#### Paradoxes of Relevance

$$\mathfrak{p} \succ \mathfrak{q} \to \mathfrak{p}$$

$$p, \neg p \succ q$$

#### Paradoxes of Relevance

$$p \succ q \rightarrow p$$

$$p, \neg p \succ q$$

$$\frac{p}{q \to p} \! \to \! I$$

#### Paradoxes of Relevance

$$p \succ q \rightarrow p$$

$$p, \neg p \succ q$$

$$\frac{p}{q \to p} \mathop{\to} I$$

$$\frac{\neg p \quad p}{\sharp q \sharp E} \neg E$$

#### Given alternatives, #E is not a separate rule!



#### Given alternatives, #E is not a separate rule!

$$\begin{array}{ccc}
 & & & [\mathcal{A}]^{i} \\
 & & \Pi \\
 & & & \frac{\sharp}{A} \downarrow^{i}
\end{array}$$

#### **Discharge** Policies

|            | DUPLICATES | NO DUPLICATES |
|------------|------------|---------------|
| VACUOUS    | Standard   | Affine        |
| NO VACUOUS | Relevant   | Linear        |

## VARIETIES OF CONJUNCTION

#### Conjunction and Weakening

$$\frac{p \quad [q]^1}{\frac{p \wedge q}{p} \wedge E} \wedge I \\ \frac{q \rightarrow q}{q \rightarrow p} \rightarrow I^1$$

#### Conjunction and Weakening

$$\frac{p \quad [q]^1}{\frac{p \wedge q}{p} \wedge E} \wedge E$$

$$\frac{q}{q \rightarrow p} \rightarrow I^1$$

Don't use  $\triangle I$  with  $\triangle E$  if you want to avoid weakening!

$$\frac{A \quad B}{A \otimes B} \otimes I$$

$$\frac{A \quad B}{A \otimes B} \otimes I \qquad \frac{A \otimes B \quad C}{C} \otimes E^{i}$$

$$\frac{A \quad B}{A \otimes B} \otimes I \qquad \qquad \frac{A \otimes B \quad C}{C} \otimes E^i$$

$$\frac{X \succ A; Y \qquad X' \succ B; Y'}{X, X' \succ A \otimes B; Y, Y'} \otimes R$$

$$\frac{A \quad B}{A \otimes B} \otimes I \qquad \frac{A \otimes B \quad C}{C} \otimes E^{i}$$

$$\frac{X \succ A; Y \qquad X' \succ B; Y'}{X, X' \succ A \otimes B; Y, Y'} \otimes R \qquad \qquad \frac{X, A, B \succ C; Y}{X, A \otimes B \succ C; Y} \otimes L$$

$$\frac{A \sqcap B}{A} \sqcap E \qquad \frac{A \sqcap B}{B} \sqcap E$$

$$\frac{A \cap B}{A} \cap E$$
  $\frac{A \cap B}{B} \cap E$ 

$$\frac{X,A \succ C;Y}{X,A \sqcap B \succ C;Y} \sqcap L \qquad \frac{X,B \succ C;Y}{X,A \sqcap B \succ C;Y} \sqcap L$$

$$\frac{A \cap B}{A} \cap E$$
  $\frac{A \cap B}{B} \cap E$ 

$$\frac{X,A \succ C;Y}{X,A \sqcap B \succ C;Y} \sqcap L \qquad \frac{X,B \succ C;Y}{X,A \sqcap B \succ C;Y} \sqcap L \qquad \qquad \frac{X \succ A;Y \qquad X \succ B;Y}{X \succ A \sqcap B;Y} \sqcap R$$

$$\frac{A \sqcap B}{A} \sqcap_{E} \qquad \frac{A \sqcap B}{B} \sqcap_{E} \qquad \frac{A \sqcap B}{A \sqcap B} \sqcap_{E} \qquad \frac{A \sqcap B}{A \sqcap B} \sqcap_{I}$$

$$\frac{X, A \succ C; Y}{X, A \sqcap B \succ C; Y} \sqcap_{L} \qquad \frac{X, B \succ C; Y}{X, A \sqcap B \succ C; Y} \sqcap_{L} \qquad \frac{X \succ A; Y \qquad X \succ B; Y}{X \succ A \sqcap B; Y} \sqcap_{R}$$

#### **Combining Assumptions**

$$\begin{array}{ccc} X, \mathcal{Y} & X, \mathcal{Y} \\ \Pi_1 & \Pi_2 \\ \underline{A} & \underline{B} \\ A \sqcap B \end{array}$$

$$\frac{X \succ A; Y \qquad X \succ B; Y}{X \succ A \sqcap B; Y} \sqcap B$$

#### **Combining Assumptions**

$$\begin{array}{ccc} X, \boldsymbol{\mathcal{Y}} & [X, \boldsymbol{\mathcal{Y}}]^{\mathfrak{i}} \\ \Pi_{1} & \Pi_{2} \\ \underline{A} & \underline{B}_{\sqcap I^{\mathfrak{i}}} \end{array}$$

$$\frac{X \succ A; Y \qquad X \succ B; Y}{X \succ A \sqcap B; Y} \sqcap R$$

#### You can't compose proofs using $\Box I$

$$\frac{p \sqcap q}{p} \sqcap E \qquad \frac{p \quad [p]^1}{p \sqcap p} \sqcap I^1$$

#### You can't compose proofs using $\Box I$

$$\frac{p \sqcap q}{p} \sqcap E \qquad \frac{p \quad [p]^1}{p \sqcap p} \sqcap I^1$$

$$\frac{p \sqcap q}{p \sqcap p} \stackrel{\sqcap E}{=} [p]^1$$

## CONTRACTION, COMPOSITION, AND ASSUMPTIONS

$$\frac{[p]^1 \quad [p]^1}{p \otimes p}^{\otimes I} \\ \frac{p \otimes p}{p \to (p \otimes p)}^{\to I}$$

$$\frac{p \succ p \qquad p \succ p}{p, p \succ p \otimes p} \otimes R$$

$$\frac{p \succ p \otimes p}{p \succ p \otimes p} W$$

$$\frac{p \succ p \otimes p}{p \rightarrow (p \otimes p)} \rightarrow I$$

$$\frac{\frac{[p]^1 \quad [p]^1}{p \otimes p}^{\otimes I}}{p \rightarrow (p \otimes p)}^{\rightarrow I}$$

$$\frac{p \succ p \qquad p \succ p}{p, p \succ p \otimes p} \otimes R$$

$$\frac{p \succ p \otimes p}{p \succ p \otimes p} W$$

$$\frac{p \succ p \otimes p}{p \rightarrow (p \otimes p)} \rightarrow I$$

$$\frac{\frac{[p]^1 \quad [p]^1}{p \otimes p}^{\otimes I}}{p \rightarrow (p \otimes p)}^{\rightarrow I}$$

$$\frac{p \succ p \qquad p \succ p}{p, p \succ p \otimes p} \otimes R$$

$$\frac{p \succ p \otimes p}{p \succ p \otimes p} W$$

$$\frac{p \succ p \otimes p}{p \rightarrow (p \otimes p)} \rightarrow I$$

$$\frac{[\mathfrak{p}]^1 \quad [\mathfrak{p}]^1}{\mathfrak{p} \otimes \mathfrak{p}}^{\otimes I} \\ \overline{\mathfrak{p} \to (\mathfrak{p} \otimes \mathfrak{p})}^{\to I}$$

$$\frac{p \succ p \qquad p \succ p}{p, p \succ p \otimes p} \otimes R$$

$$\frac{p \succ p \otimes p}{p \succ p \otimes p} \longrightarrow I$$

$$\frac{p \succ p \otimes p}{p \rightarrow (p \otimes p)} \longrightarrow I$$

$$\frac{[p]^{1} \quad [p]^{1}}{p \otimes p} \otimes I \qquad \qquad \frac{p \succ p \quad p \succ p}{p, p \succ p \otimes p} \otimes R}{p \rightarrow (p \otimes p)}^{\rightarrow I}$$

$$\frac{p \rightarrow p \quad p \rightarrow p}{p \rightarrow p \otimes p} \otimes R$$

$$\frac{p \rightarrow p \quad p \rightarrow p}{p \rightarrow p \otimes p} \otimes R$$

$$\frac{p \rightarrow p \quad p \rightarrow p}{p \rightarrow p \otimes p} \otimes R$$

We can identify assumptions before discharging them.

#### In a type theory, this is managed by assumption variables

$$\frac{\mathfrak{p}}{\mathfrak{p}\otimes\mathfrak{p}}\otimes \mathfrak{p}$$

$$\frac{p \quad p}{p \otimes p} \otimes I \qquad \frac{x : p \quad y : p}{\langle x, y \rangle : p \otimes p} \otimes I$$

$$\frac{p \quad p}{p \otimes p} \otimes I \qquad \qquad \frac{x : p \quad y : p}{\langle x, y \rangle : p \otimes p} \otimes I$$

$$\frac{p^1 \quad p^1}{p \otimes p} \otimes I$$

$$\frac{\mathsf{p}}{\mathsf{p}\otimes\mathsf{p}}\otimes I$$

$$\frac{\mathfrak{p} \quad \mathfrak{p}}{\mathfrak{p} \otimes \mathfrak{p}} \otimes I \qquad \qquad \frac{\mathfrak{x} : \mathfrak{p} \quad \mathfrak{y} : \mathfrak{p}}{\langle \mathfrak{x}, \mathfrak{y} \rangle : \mathfrak{p} \otimes \mathfrak{p}} \otimes I$$

$$\frac{\mathfrak{p}^1 \qquad \mathfrak{p}^1}{\mathfrak{p} \otimes \mathfrak{p}} \otimes I$$

$$\frac{x:\mathfrak{p}\qquad x:\mathfrak{p}}{\langle x,x\rangle:\mathfrak{p}\otimes\mathfrak{p}}\otimes I$$

$$\frac{p \quad p}{p \otimes p} \otimes I \qquad \qquad \frac{x : p \quad y : p}{\langle x, y \rangle : p \otimes p} \otimes I$$

$$\frac{\mathfrak{p}^1 \qquad \mathfrak{p}^1}{\mathfrak{p} \otimes \mathfrak{p}} \otimes I \qquad \qquad \frac{x : \mathfrak{p} \qquad x : \mathfrak{p}}{\langle x, x \rangle : \mathfrak{p} \otimes \mathfrak{p}} \otimes I$$

Here, proofs come with *equivalence classes* on formula occurrences in the leaves, indicated by labelling.

## Distinguishing two senses of assumption

- The act of assuming p.
- The content p assumed.
- If the acts are the same, the contents are too.
- But different acts can share the same content.

#### Back to $\Box I$

$$X^{\alpha}, \mathcal{Y}^{\beta} \qquad X^{\alpha}, \mathcal{Y}^{\beta}$$

$$\Pi_{1} \qquad \Pi_{2}$$

$$\frac{A}{A \sqcap B} \sqcap I$$

Here,  $\alpha$  and  $\beta$  identify the labellings in X and  $\gamma$  respectively. The equivalence relation links one class in  $\Pi_1$  with one class in  $\Pi_2$ .

## Compare with $\otimes I$

$$X^{\alpha}, \mathcal{Y}^{\beta}$$
  $X'^{\alpha'}, \mathcal{Y}^{\beta'}$ 
 $\Pi_1$   $\Pi_2$ 

$$A \longrightarrow B \otimes I$$

Here, the labellings  $\alpha$ ,  $\beta$  and  $\alpha'$ ,  $\beta'$  are disjoint if we do not allow contraction as a structural rule. The equivalence classes in the two proofs are kept disjoint.

### Compare

$$\frac{p \sqcap (q \sqcap r)^{1}}{p} \sqcap E \qquad \frac{\frac{p \sqcap (q \sqcap r)^{1}}{q \sqcap r} \sqcap E}{\frac{q \sqcap r}{q \sqcap I}} \sqcap E \qquad \frac{p \sqcap (q \sqcap r)^{1}}{\frac{q \sqcap r}{r} \sqcap E} \sqcap E}{(p \sqcap q) \sqcap r} \sqcap E$$

$$\frac{p \sqcap (q \sqcap r) \land (p \sqcap q) \sqcap r}{p \sqcap (q \sqcap r) \land (p \sqcap q) \sqcap r}$$

### Compare

$$\frac{p \sqcap (q \sqcap r)^{1}}{\frac{p}{p} \sqcap E} \sqcap E \qquad \frac{\frac{p \sqcap (q \sqcap r)^{1}}{q \sqcap r} \sqcap E}{\frac{q \sqcap r}{q \sqcap I}} \sqcap E \qquad \frac{p \sqcap (q \sqcap r)^{1}}{\frac{q \sqcap r}{r} \sqcap E} \sqcap E$$

$$\frac{p \sqcap q}{(p \sqcap q) \sqcap r} \qquad \frac{p \sqcap (q \sqcap r)^{1}}{r} \sqcap E$$

$$p \sqcap (q \sqcap r) \succ (p \sqcap q) \sqcap r$$

$$\frac{p \sqcap (q \sqcap r)^{1}}{\frac{p}{p} \sqcap E} \sqcap E \qquad \frac{\frac{p \sqcap (q \sqcap r)^{1}}{q \sqcap r} \sqcap E}{\frac{q \sqcap r}{q \sqcap I} \sqcap E} \qquad \frac{p \sqcap (q \sqcap r)^{2}}{\frac{q \sqcap r}{r} \sqcap E} \sqcap E}{\frac{p \sqcap (q \sqcap r)^{2}}{(p \sqcap q) \otimes r} \sqcap E}$$

$$p \sqcap (q \sqcap r), p \sqcap (q \sqcap r) \succ (p \sqcap q) \otimes r$$

# You can compose proofs — substitute on the assumption

$$\frac{p \sqcap q}{p} \sqcap E \qquad \frac{p^1 \quad p^1}{p \sqcap p} \sqcap I$$

# You can compose proofs — substitute on the assumption

$$\frac{p \sqcap q}{p} \sqcap E \qquad \frac{p^1 \quad p^1}{p \sqcap p} \sqcap I$$

$$\frac{p \sqcap q^1}{p} \sqcap E \qquad \frac{p \sqcap q^1}{p} \sqcap E$$

$$\frac{p \sqcap p}{p \sqcap p} \sqcap E$$

### Composition, in General

$$\frac{X \succ A; Y \qquad A, X' \succ B; Y'}{X, X' \succ B; Y, Y'} Cut$$

## Composition, in General

$$\frac{X \succ A; Y \qquad A, X' \succ B; Y'}{X, X' \succ B; Y, Y'} \textit{Cut}$$

$$X, Y \qquad A^i, X', Y'$$
 $\Pi \qquad \qquad \Pi'$ 
 $A \qquad \qquad B$ 

## Composition, in General

$$\frac{X \succ A; Y \qquad A, X' \succ B; Y'}{X, X' \succ B; Y, Y'} \mathit{Cut}$$

$$\begin{array}{cccc} & & & X^{\alpha}, \boldsymbol{\mathcal{Y}}^{\beta} \\ X, \boldsymbol{\mathcal{Y}} & A^i, X', \boldsymbol{\mathcal{Y}} & \Pi \\ \Pi & \Pi' & A & X', \boldsymbol{\mathcal{Y}} \\ A & B & \Pi' \\ & & B \end{array}$$

 $\alpha$  and  $\beta$  are sets of new labels used to identify each distinct occurrence of the assumptions in X and  $\Upsilon$ .

## Some Upshots

• *Alternatives* are a well-behaved addition to Gentzen-Prawitz natural deduction.

## Some Upshots

- Alternatives are a well-behaved addition to Gentzen-Prawitz natural deduction.
- Alternatives help us *unify* the natural deduction account of *relevance/weakening*.

## Some Upshots

- Alternatives are a well-behaved addition to Gentzen-Prawitz natural deduction.
- Alternatives help us *unify* the natural deduction account of *relevance/weakening*.
- The *act/content* distinction applies to assumptions, and this is important when it comes to different forms of *contraction*, and the composition of proofs.

## Thank you!

```
SLIDES: https://consequently.org/presentation/2022/natural-deduction-with-alternatives-london
```

PAPER: https://consequently.org/writing/ structural-rules-in-natural-deduction-with-alternatives

Greg Restall

#### References: Natural Deduction and Alternatives

#### SARA NEGRI AND JAN VON PLATO Structural Proof Theory

Cambridge University Press, 2001

#### GREG RESTALL

"Speech Acts & the Quest for a Natural Account of Classical Proof"

Presentation at the Berkeley Logic Group, September 2020 https://consequently.org/presentation/

#### MICHEL PARIGOT

"λμ-Calculus: An Algorithmic Interpretation of Classical Natural Deduction"

International Conference on Logic for Programming Artificial Intelligence and Reasoning, LNAI 624, 190–201, 1992

#### References: Substructural Natural Deduction

#### SARA NEGRI

"A Normalizing System of Natural Deduction for Intuitionistic Linear Logic" Archive for Mathematical Logic, 2002 (41) 789-810.

#### LILA RAMALHO MARTINS AND ANA TERESA MARTINS

"Natural Deduction and Weak Normalization for Full Linear Logic"

*Logic Journal of the IGPL*, 2004 (12) 601–625.

#### ERNST ZIMMERMANN

"Substructural Logics in Natural Deduction"

Logic Journal of the IGPL, 2007 (15) 211–232.