How to Slice a Fillet

Context

E-GENI and the Vision

Researcher's Perspective

- Give me nodes X, Y, Z with flowspace A and QoS Q
- Connect X to Y using flowspace A
- Find largest number of connected nodes using flowspace A
- Find largest flowspace between X and Y
- Connect X to Y in 5 hops
- I want topology X (with flowspace A)
 - Else Y, Z
- I want largest Internet-like/mesh/tree topology
- I want topology X in US/Stanford but not Berekeley
- I want net that
 - allows Stanford opt-in
 - is expandable to 100 nodes
 - is connectable to this other net/Internet
- I want a net that start as 20 nodes and expands over 1 month to 1000 nodes

Feature Categories

- 1. Topology specification
- 2. Flowspace specification
- 3. QoS specification
- 4. Connectivity specification
 - a. Users
 - b. Other nets (including Internet)/Gateways
 - c. Other Experiments
- 5. Resource Policy
 - a. Locations
 - b. Time
 - c. Size
 - d. Dynamism?

Connectivity

Adjacency Matrix

	х	A	В	С	D
x	2	1	1	1	1
A	1	2	0	0	0
В	1	0	2	0	0
С	1	0	0	2	0
D	1	0	0	0	2

Connectivity

Connectivity with flow space

Connectivity Matrix?

Analogy – Virtual Memory

Analogy – Virtual Memory

Connectivity

Flowspace connectivity

Flow space is simply the space of available flow addresses/names.

End-host and app in the controller use virtual addresses/names.

For connectivity:

free input names = # free output names

Connectivity Matrix

- Each 1 bit corresponds to:
 - There is a physical connection
 - There is a sufficient number of free flow names
 - There is available QoS

What about shared access

End-host participates in two experiments?