	1 <i>a</i>	2a	2b	3a	4a	6a	7 <i>a</i>	7 <i>b</i>	7 <i>c</i>	12a	12 <i>b</i>	13a	14a	14b	14 <i>c</i>
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	1	1	1	1	-1	-1	1	-1	-1	-1
χ_3	12	2	0	0	0	0	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	0	0	-1	$E(7) + E(7)^{} 6$	$E(7)^3 + E(7)^4$	$E(7)^2 + E(7)^5$
χ_4	12	2	0	0	0	0	$-E(7)^3 - E(7)^4$	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	0	0	-1	$E(7)^2 + E(7)^5$	$E(7) + E(7)^{} 6$	$E(7)^{} 3 + E(7)^{} 4$
χ_5	12	-2	0	0	0	0	$-E(7)^3 - E(7)^4$	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	0	0	-1	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$
χ_6	12	-2	0	0	0	0	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	0	0	-1	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	$-E(7)^2 - E(7)^5$
χ_7	12	2	0	0	0	0	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	$-E(7)^2 - E(7)^5$	0	0	-1	$E(7)^{} 3 + E(7)^{} 4$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^{} 6$
χ_8	12	-2	0	0	0	0	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	$-E(7)^2 - E(7)^5$	0	0	-1	$-E(7)^3 - E(7)^4$	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$
χ_9	13	1	1	1	-1	1	-1	-1	-1	-1	-1	0	1	1	1
χ_{10}	13	-1	1	1	1	1	-1	-1	-1	1	1	0	-1	-1	-1
χ_{11}	14	0	-2	2	0	-2	0	0	0	0	0	1	0	0	0
χ_{12}	14	0	2	-1	2	-1	0	0	0	-1	-1	1	0	0	0
		0			-2	-1	0	0	0	1	1	1	0	0	0
		0					0	0	0	$E(12)^{}7 - E(12)^{}11$	$-E(12)^{}7 + E(12)^{}11$	1	0	0	0
χ_{15}	14	0	-2	-1	0	1	0	0	0	$-E(12)^{}7 + E(12)^{}11$	$E(12)^{}7 - E(12)^{}11$	1	0	0	0

Trivial source character table of $G \cong PSL(2,13)$: C2 at p = 13

Thivial source character table of $G = I SL(2,13)$. GZ at $p = 13$																
$Normalisers N_i$				N_1								Λ	I_2			
$p-subgroups \ of \ G \ up \ to \ conjugacy \ in \ G$				P_1								F	\mathcal{P}_2			
Representatives $n_j \in N_i$	1a $2a$ $2b$ $3a$ $4a$ $6a$	7a	7b	7c	12a	12b	14a	14b	14c	1a $2b$ $3a$	3a $4a$ $4a$	6a	6a $12a$	12b	12b	$\overline{12a}$
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $					1	1 -	$-E(7) - E(7)^3 - E(7)^4 - E(7)^3$	$^{}6 - E(7)^{}2 - E(7)^{}3 - E(7)^{}4 - E(7)^{}$	$5 - E(7) - E(7)^2 - E(7)^5 - E(7)^6$	0 0 0	0 0 0	0	0 0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$+0\cdot\chi_{13}+0\cdot\chi_{14}+0\cdot\chi_{15}$ 13 -3 1 1 -1 1				-1			$E(7)^2 + E(7)^3 + E(7)^4 + E(7)^5$		0 0 0	$0 \qquad 0 \qquad 0$	0	0 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$+0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} \mid 26 -2 -2 -1 0 1$	$-E(7) - E(7)^{} 6$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7)^2 - E(7)^5$	$E(12)^7 - E(12)^11 - E(12)^7$		$-E(7)^3 - E(7)^4$	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	0 0 0	0 0 0	0	0 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$+0\cdot\chi_{13}+0\cdot\chi_{14}+1\cdot\chi_{15}$ 26 2 -2 -1 0 1	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$		$-E(12)^{}7 + E(12)^{}11 E(12)^{}7$	$7 - E(12)^{} 11$	$E(7)^{} 3 + E(7)^{} 4$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^{} 6$	0 0 0	$0 \qquad 0 \qquad 0$	0	0 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$+0\cdot\chi_{13}+0\cdot\chi_{14}+0\cdot\chi_{15}$ 26 -2 2 -1 2 -1	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	-1	-1	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	$-E(7)^2 - E(7)^5$	0 0 0	$0 \qquad 0 \qquad 0$	0	0 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$+1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15}$ 26 2 2 -1 -2 -1	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	1	1	$E(7) + E(7)^{} 6$	$E(7)^3 + E(7)^4$	$E(7)^2 + E(7)^5$	0 0 0	$0 \qquad 0 \qquad 0$	0	0 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$+0\cdot\chi_{13}+0\cdot\chi_{14}+0\cdot\chi_{15}$ 26 -2 -2 2 0 -2	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	0	0	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	$-E(7)^2 - E(7)^5$	0 0 0	$0 \qquad 0 \qquad 0$	0	0 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$+0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} \mid 26 2 -2 2 0 -2$	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	0	0	$E(7) + E(7)^{} 6$	$E(7)^3 + E(7)^4$	$E(7)^2 + E(7)^5$	0 0 0	$0 \qquad 0 \qquad 0$	0	0 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$+0\cdot\chi_{13}+0\cdot\chi_{14}+0\cdot\chi_{15}$ 26 2 2 -1 2 -1	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	$-E(7)^2 - E(7)^5$	-1	-1	$E(7)^{} 3 + E(7)^{} 4$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^{} 6$	0 0 0	$0 \qquad 0 \qquad 0$	0	0 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$+1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} \mid 26 -2 2 -1 -2 -1$	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	$-E(7)^2 - E(7)^5$	1	1	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	0 0 0	$0 \qquad 0 \qquad 0$	0	0 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $,0-0 ,0-0	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$E(12)^{} 7 - E(12)^{} 11 - E(12)^{}$	\ /	$E(7)^2 + E(7)^5$	$E(7) + E(7)^{} 6$	$E(7)^3 + E(7)^4$	0 0 0	$0 \qquad 0 \qquad 0$	0	0 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$+0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} \mid 26 -2 -2 -1 0 1$	$-E(7)^{} 3 - E(7)^{} 4$	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-E(12)^{}7 + E(12)^{}11 E(12)^{}7$	$7 - E(12)^{} 11$	$-E(7)^2 - E(7)^5$	$-E(7) - E(7)^{} 6$	$-E(7)^3 - E(7)^4$	0 0 0	$0 \qquad 0 \qquad 0$	0	0 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$+0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} \mid 13 1 1 1 -1 1$	-1	-1	-1	-1	-1	1	1	1	0 0 0	$0 \qquad 0 \qquad 0$	0	0 0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $		-1	-1	-1	1	1	-1	-1	-1	0 0 0	0 0 0	0	0 0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $		1	1	1	1	1	1	1	1	1 1 1	1 1 1	1	1 1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $		0	0	0	$-E(12)^{}7 + E(12)^{}11 E(12)^{}7$	()	0	0	0	1 $-1 E(3)^2$	$E(3) \qquad E(4) \qquad -E(4)$	-E(3) - E(3)	$E(3)^2 = E(12)^1$	$E(12)^{}7 -$	$-E(12)^{}11 -F$	∠(12) ⁷ 7
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $		0	0	0	$-E(12)^{}7 + E(12)^{}11 E(12)^{}7$	$7 - E(12)^{} 11$	0	0	0	1 -1 $E(3)$	$E(3)^2 - E(4) - E(4)$	$-E(3)^{} 2$ -	$E(3) \qquad -E(12)^{}$	$-E(12)^{}11$	$E(12)^{}7 \qquad E($	$(12)^{}11$
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $		1	1	1	-1	-1	-1	-1	-1	1 1 1	1 -1 -1	1	$1 \qquad -1$	-1	-1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $		0	0	0	0	0	0	0	0	1 -1 1	1 E(4) -E(4)	-1	-1 $E(4)$	E(4)	-E(4)	-E(4)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $		0	0	0	0	0	0	0	0	1 -1 1	1 $-E(4)$ $E(4)$	-1	-1 $-E(4)$	-E(4)	E(4)	E(4)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $		0	0	0	1	1	0	0	0	1 1 $E(3)$	$E(3)^2 -1 -1$	$E(3)^2$	E(3) -E(3)	$-E(3)^2$	-E(3) -7	$-E(3)^2$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $		0	0	0	1	1	0	0	0	1 1 $E(3)^2$	E(3) -1 -1	E(3) E	$(3)^2 - E(3)^2$	-E(3)	(-)	-E(3)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $		0	0	0	-1	-1	0	0	0	1 1 $E(3)$	- (-)	$E(3)^2$	E(3) $E(3)$	$E(3)^2$	()	$E(3)^2$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $		0	0	0	-1	-1	0	0	0	1 1 $E(3)^2$	()	E(3) E	$(3)^2 E(3)^2$	E(3)	$E(3)^{} 2$	E(3)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $		0	0	0	$E(12)^{} 7 - E(12)^{} 11 - E(12)^{}$. ()	0	0	0	(-)	$E(3) \qquad -E(4) \qquad E(4)$	(-)	(-)	$1 - E(12)^{} 7$	$E(12)^{}11$ E	\((12)^\cap 7
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$+0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} \mid 14 0 -2 -1 0 1$	0	0	0	$E(12)^{} 7 - E(12)^{} 11 - E(12)^{}$	$7 + E(12)^1$	0	0	0	1 -1 $E(3)$	$E(3)^2 = E(4) = -E(4)$	$-E(3)^2 - E(3)^2$	$E(3)$ $E(12)^{} 7$	$E(12)^{}11$ -	$-E(12)^{} 7 - E$	J(12)^ 11

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 4, 12, 5, 2, 13, 14, 10, 9, 6, 11, 8, 3)]) \cong C13$

 $N_1 = Group([(1,2)(3,5)(4,6)(7,9)(8,11)(10,12)(13,14),(1,3,5,8)(2,4,7,10)(6,9,11,13)]) \cong PSL(2,13) : C2$ $N_2 = Group([(2,14,6,10)(3,13,4,9)(5,8,11,12),(1,4,12,5,2,13,14,10,9,6,11,8,3),(2,3,11)(4,5,6)(8,10,9)(12,14,13)]) \cong C13 : C12$