CS2100 Tutorial 8

MSI Components

Recap

Decoders and Encoders

Multiplexers and Demultiplexers

• Half adders, Full-adders, Multi-bit adders

Overview

Q1) Using multiplexers

Q2) Implementing boolean functions with decorders

Q3) [Past paper] Block-level design

Q4) [Past paper] Equivalent gate

Q5) [Past paper] Finding boolean function from diagram

X	Y	Z	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	d
1	0	1	0
1	1	0	0
1	1	1	1

$$F(X,Y,Z) = \prod M(1,5,6) \cdot D(4)$$

Note:

Using *d* instead of *X* for don't care to avoid confusion with input *X*.

X	Y	Z	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	d
1	0	1	0
1	1	0	0
1	1	1	1

 $F(X,Y,Z) = \prod M(1,5,6) \cdot D(4)$

X	Y	Z	F	F
0	0	0	1	7,
0	0	1	0	Z'
0	1	0	1	1
0	1	1	1	'
1	0	0	d	0 or Z ′
1	0	1	0	X'
1	1	0	0	7
1	1	1	1	Z

$$F(X,Y,Z) = \prod M(1,5,6) \cdot D(4)$$

 $F(X,Y,Z) = \prod M(1,5,6) \cdot D(4)$

Q2) Is there a simpler circuit?

$$K(W,X,Y,Z) = \sum m(8,11)$$

Q2) Is there a simpler circuit?

$$K(W,X,Y,Z) = \sum m(8,11)$$

Q3. Designing converter

A	В	С	D	F	G	Н
0	0	0	0	0	0	0
1	0	0	0	0	0	1
1	1	0	0	0	1	0
1	1	1	0	0	1	1
1	1	1	1	1	0	0
0	1	1	1	1	0	1
0	0	1	1	1	1	0
0	0	0	1	1	1	1

What is your observation?

- 1. If A=1 (or D=0), count #1s in ABCD.
- 2. If *A*=0...?

A	В	С	D	F	G	Н
0	0	0	0	0	0	0
1	0	0	0	0	0	1
1	1	0	0	0	1	0
1	1	1	0	0	1	1
1	1	1	1	1	0	0
0	1	1	1	1	0	1
0	0	1	1	1	1	0
0	0	0	1	1	1	1
Count-0						

Solution #1

- 1. If A=1 (or D=0), count #1s in ABCD.
- 2. If A=0 (or D=1), 4 + #0s.

A	В	С	D	F	G	Н
0	0	0	0	0	0	0
1	0	0	0	0	0	1
1	1	0	0	0	1	0
1	1	1	0	0	1	1
1	1	1	1	1	0	0
0	1	1	1	1	0	1
0	0	1	1	1	1	0
0	0	0	1	1	1	1
Count-0						

Solution #2

- 1. If A=1 (or D=0), count #1s in ABCD.
- 2. If A=0 (or D=1), #1s + 2 × #0s.

A B C D F G H 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1

Solution #3

- 1. D = F
- 2. If D = 0, GH = #1s in ABCD
- 3. If D = 1, GH = #0s in ABCD

A	В	С	D	F	G	Н
0	0	0	0	0	0	0
1	0	0	0	0	0	1
1	1	0	0	0	1	0
1	1	1	0	0	1	1
1	1	1	1	1	0	0
0	1	1	1	1	0	1
0	0	1	1	1	1	0
0	0	0	1	1	1	1

Solution #4

- 1. F = D
- 2. G = LSB of #1s in BD
- 3. H = LSB of #0s in ABCD

Q4. Equivalent logic gate

NAND gate

A Boolean function Z(A,B) is implemented as shown below.

The circuit may be replaced by a single 2-input logic gate. What is the logic gate?

Half-adder

X	Y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Priority encoder

F ₁	F _o	G
0	0	Χ
0	1	0
1	Χ	1

X	Y	С	S	F ₁	F _o	G
0	0	0	0	1	1	1
0	1	0	1	1	0	1
1	0	0	1	1	0	1
1	1	1	0	0	1	0

Q5. Finding boolean fn from diagram

A Boolean function S(A,B,C,D) is implemented with a 2×4 decoder with one-enable, two 2:1 multiplexers and an OR gate as shown below. What is S(A,B,C,D) in Σm notation?

 $S(A,B,C,D) = \Sigma m(2,7,10,15).$

End of Tutorial 8

• Slides uploaded on github.com/theodoreleebrant/TA-2425S1

• Email: theo@comp.nus.edu.sg

Anonymous feedback:
 bit.ly/feedback-theodore
 (or scan on the right)

