The group G is isomorphic to the group labelled by [42, 5] in the Small Groups library. Ordinary character table of $G \cong D42$:

	1a	2a	3a	7a	21a	7b	21b	21c	7c	21d	21e	21f	
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	
χ_2	1	-1	1	1	1	1	1	1	1	1	1	1	
χ_3	2	0	-1	2	-1	2	-1	-1	2	-1	-1	-1	
χ_4	2	0	2	$E(7)^2 + E(7)^5$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7) + E(7)^6$	
χ_5	2	0	2	$E(7) + E(7)^6$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7)^3 + E(7)^4$	
χ_6	2	0	2	$E(7)^3 + E(7)^4$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^2 + E(7)^5$	
χ_7	2	0	-1	$E(7)^3 + E(7)^4$	$E(21)^5 + E(21)^{16}$	$E(7) + E(7)^6$	$E(21)^2 + E(21)^{19}$	$E(21)^4 + E(21)^{17}$	$E(7)^2 + E(7)^5$	$E(21)^{10} + E(21)^{11}$	$E(21)^8 + E(21)^{13}$	$E(21) + E(21)^{20}$	
χ_8	2	0	-1	$E(7)^3 + E(7)^4$	$E(21)^2 + E(21)^{19}$	$E(7) + E(7)^6$	$E(21)^5 + E(21)^{16}$	$E(21)^{10} + E(21)^{11}$	$E(7)^2 + E(7)^5$	$E(21)^4 + E(21)^{17}$	$E(21) + E(21)^{20}$	$E(21)^8 + E(21)^{13}$	
χ_9	2	0	-1	$E(7)^2 + E(7)^5$	$E(21)^8 + E(21)^{13}$	$E(7)^3 + E(7)^4$	$E(21) + E(21)^{20}$	$E(21)^2 + E(21)^{19}$	$E(7) + E(7)^6$	$E(21)^5 + E(21)^{16}$	$E(21)^4 + E(21)^{17}$	$E(21)^{10} + E(21)^{11}$	
χ_{10}	2	0	-1	$E(7)^2 + E(7)^5$	$E(21) + E(21)^{20}$	$E(7)^3 + E(7)^4$	$E(21)^8 + E(21)^{13}$	$E(21)^5 + E(21)^{16}$	$E(7) + E(7)^6$	$E(21)^2 + E(21)^{19}$	$E(21)^{10} + E(21)^{11}$	$E(21)^4 + E(21)^{17}$	
χ_{11}	2	0	-1	$E(7) + E(7)^6$	$E(21)^{10} + E(21)^{11}$	$E(7)^2 + E(7)^5$	$E(21)^4 + E(21)^{17}$	$E(21)^8 + E(21)^{13}$	$E(7)^3 + E(7)^4$	$E(21) + E(21)^{20}$	$E(21)^5 + E(21)^{16}$	$E(21)^2 + E(21)^{19}$	
χ_{12}	2	0	-1	$E(7) + E(7)^6$	$E(21)^4 + E(21)^{17}$	$E(7)^2 + E(7)^5$	$E(21)^{10} + E(21)^{11}$	$E(21) + E(21)^{20}$	$E(7)^3 + E(7)^4$	$E(21)^8 + E(21)^{13}$	$E(21)^2 + E(21)^{19}$	$E(21)^5 + E(21)^{16}$	

Trivial source character table of $G \cong D42$ at $p=3$:												
Normalisers N_i		N_1						N_2				
p-subgroups of G up to conjugacy in G		P_1					P_2					
Representatives $n_j \in N_i$	1a	2a	7a	7b	7c	1a	2a	7c	7a	7 <i>b</i>		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	1	3	3	3	0	0	0	0	0		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	3	-1	3	3	3	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	6	0	$3*E(7)^2 + 3*E(7)^5$	$3*E(7)^3 + 3*E(7)^4$	$3*E(7) + 3*E(7)^6$	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12}$	6	0	$3*E(7) + 3*E(7)^6$	$3*E(7)^2 + 3*E(7)^5$	$3*E(7)^3 + 3*E(7)^4$	0	0	0	0	0		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	6	0	$3*E(7)^3 + 3*E(7)^4$	$3*E(7) + 3*E(7)^6$	$3*E(7)^2 + 3*E(7)^5$	0	0	0	0	0		
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1	1	1		
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	-1	1	1	1	1	-1	1	1	1		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	0	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	2	0	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	0	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	2	0	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$		
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	0	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	2	0	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$		

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1,7,3)(2,10,5)(4,13,8)(6,16,11)(9,19,14)(12,22,17)(15,25,20)(18,28,23)(21,31,26)(24,34,29)(27,37,32)(30,39,35)(33,41,38)(36,42,40)]) \cong C3$

 $N_1 = Group([(1,2)(3,10)(4,36)(5,7)(6,33)(8,42)(9,30)(11,41)(12,27)(13,40)(14,39)(15,24)(16,38)(17,37)(26,31)(26,29)(26,28), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,23)(26,31)(26,29)(26,28), (1,3,7)(2,5,10)(4,8,13)(6,11,16)(9,14,19)(12,17,23)(26,31,37,41)(10,16,22,28,34,39,42)]) \cong D42 \\ N_2 = Group([(1,7,3)(2,10,5)(4,13,8)(6,16,11)(9,19,14)(12,27)(13,40)(14,39)(15,24)(16,38)(17,37)(18,21)(19,35)(20,34)(22,32)(23,31)(25,29)(26,28), (1,4,9,15,21,27,33)(2,6,12,18,24,30,36)(3,8,14,20,26,32,38)(5,11,17,23,29,35,40)(7,13,19,25,31,37,41)(10,16,22,28,34,39,42)]) \cong D42 \\ N_2 = Group([(1,7,3)(2,10,5)(4,34,29)(27,37,32)(30,39,35)(33,41,38)(36,42,40), (1,2,27,33)(26,12,18,24,30,36)(3,8,14,20,26,32,38)(5,11,17,23,29,35,40)(7,13,19,25,31,37,41)(10,16,22,28,34,39,42)]) \cong D42 \\ N_3 = Group([(1,7,3)(2,10,5)(4,34,29)(27,37,32)(30,39,35)(33,41,38)(36,42,40), (1,2,27,33)(26,32,32)(23,31)(25,29)(26,28), (1,3,7)(25,31)(25,29)(26,28), (1,3,7)(25,31)(25,29)(26,28), (1,3,7)(25,31)(25,29)(26,28), (1,3,7)(25,31)(25,29)(26,28), (1,3,7)(25,31)(25,29)(26,28), (1,3,7)(25,31)(25,29)(26,28), (1,3,7)(25,31)(25,29)(26,28), (1,3,7)(25,31)(25,29)(26,28), (1,3,7)(25,31)(25,29)(26,28), (1,3,7)(25,31)(25,29)(26,28), (1,3,7)(25,31)(25,29)(26,28), (1,3,7)(25,31)(25,29)(26,28), (1,3,7)(25,29)(26,28)$