# Ensemble Learning: Bagging and RandomForest



### **Learning Objectives**





# Introduction to Ensemble Learning

# **Bagging**



Combine multiple learners by individually training various models, then combine the results via an aggregation procedure.



# **Boosting**



Sequentially add models together to an ensemble, each one correcting the mistakes of the previous one.



# **Stacking**



**Level-0 models**: Well-performing models trained on training data. **Level-1 model**: Meta-model that learns the best combination based on level-0 predictions and true labels.



# Construction of Random Forest

#### **Construction Random Forest**





How is a random forest model created?

Many models are less wrong than single models.

Goal: Control variance of decision trees.

# **Controlling Variance in Decision Trees**





#### Add Variance to Decision Trees





One tree has high bias, and almost no variance. Many trees have lower bias, higher variance than a single tree.



# **Bootstrapping**



N = 1 sample(features, 2)

debt assets status 500 2500 OK 250 4500 OK 500 2500 OK 4000 3 1000 default





N = 3

|   | debt | assets | price | status  |
|---|------|--------|-------|---------|
| 0 | 500  | 2500   | 1250  | ок      |
| 1 | 250  | 4500   | 1500  | ок      |
| 2 | 500  | 2500   | 1250  | ок      |
| 3 | 1000 | 4000   | 4500  | default |

N = 2 sample(features, 2)

|   | debt | price | status  |
|---|------|-------|---------|
| 0 | 500  | 1250  | OK      |
| 1 | 250  | 1500  | OK      |
| 2 | 500  | 1250  | OK      |
| 3 | 1000 | 4500  | default |

| assets | price | status  |
|--------|-------|---------|
| 2500   | 1250  | OK      |
| 4500   | 1500  | OK      |
| 2500   | 1250  | OK      |
| 4000   | 4500  | default |



N = 3 sample(features, 2)

2

# Aggregation





# **Bagging**









# Hyper Parameters and Tuning for Random Forest

### **Important Hyper Parameters**



#### Number of decision trees

- Specifies the number of independent decision trees in your ensemble.
- Higher value usually result in better / more stable predictions, since errors average out.

#### Maximum depth of trees

- Specifies the maximum depth a tree in the ensemble can have.
- Rule of thumb: Deeper trees give better accuracy but increase the risk of overfitting.

#### Minimum leaf size

- Determines the smallest size of a leaf node in the ensemble.
- Too many leaves can cause overfitting and poor model generalization.

## **Tunning Hyperparameter**



#### Typical approach

• Split data in training and validation set to find best hyperparameters with cross validation.

#### Random Forest

• Bootstrapping phase generates hold-out data automatically (no tree sees the full dataset).

# Feature Importance in Random Forest

### Interpretation and Feature Importance





#### **Global methods:**

Describe how features affect the prediction on average

# **Partial Dependencies Plot**





Graphical representation showing the marginal effect of one feature on the outcome.





# Permutation Feature Importance



#### The permutation feature importance algorithm based on Fisher, Rudin, and Dominici (2018):

Input: Trained model  $\hat{f}$  , feature matrix X, target vector y, error measure  $L(y,\hat{f})$ .

- 1. Estimate the original model error  $e_{orig} = L(y, \hat{f}(X))$  (e.g. mean squared error)
- 2. For each feature  $j \in \{1, \ldots, p\}$  do:
  - $\circ$  Generate feature matrix  $X_{perm}$  by permuting feature j in the data X. This breaks the association between feature j and true outcome y.
  - $\circ$  Estimate error  $e_{perm} = L(Y, \hat{f}(X_{perm}))$  based on the predictions of the permuted data.
  - $\circ$  Calculate permutation feature importance as quotient  $FI_j=e_{perm}/e_{orig}$  or difference  $FI_j=e_{perm}-e_{orig}$
- 3. Sort features by descending FI.

# Permutation Feature







# Thank you

