CN A – Test 2023.2 Resolution

Felipe B. Pinto 71951 – EQB

18 de dezembro de 2024

Conteúdo

Questao I	2	Questao 5							6
Questão 2	3	Questão 6							7
Questão 3	4	Questão 7							12
Questão 4	5	Questão 8							16

Considere o integral $I=\int_0^2 f(x) \; \mathrm{d}x$ onde $1-1/\sqrt{3}$ é o ponto fixo de f e $1+1/\sqrt{3}$ é razi da equação f(x)=0.

O valor da aproximação dada pela regra de Gauss com 2 pontos simples é:

a)
$$I_G = 0$$

c)
$$I_G = 1 - 1/\sqrt{3}$$

b)
$$I_G = f(-1/\sqrt{3}) + f(1/\sqrt{3})$$

d)
$$I_G = 2$$

Resposta

$$I_{G,2} = \int_0^2 f(x) \, \mathrm{d}x =$$

Using simple gauss rule (n = 2)

$$=\frac{2-0}{2}\int_{-2}^{1}g(x) dx \approx g(-1/\sqrt{3}) + g(1/\sqrt{3}) =$$

Using (1)

$$f(1-1/\sqrt{3}) + f(1+1/\sqrt{3}) = (1-1/\sqrt{3}) + 0$$

$$g(x) = f\left(\frac{b-a}{2}y + \frac{b+a}{2}\right) = f\left(\frac{2-0}{2}y + \frac{2+0}{2}\right) = f(y+1) \tag{1}$$

Considere $\alpha \in [a,b]$ e uma função $G \in C^1([a,b]): G'(\alpha) = -0.5$. Considere ainda $x_n = G(x_{n-1}), n \in \mathbb{N}$ uma sucessão de iteradas. Qual das seguintes afirmações é verdadeira?

- a) x_n converge para α se e só se $x_0 = \alpha$ c) x_n converge para α com ordem de convergência p=2
- b) x_n converge para α qualquer que ximo de α

seja $x_0 \in [a, b]$ suficientemente pro- d) x_n converge para qualquer que seja $x_0 \in \mathbb{R}$

Resposta b)

Seja $\alpha \in [1,3]$ a raiz única da equação não linear f(x)=0, sendo f(x) uma função continua em [1,3] tal que f(2)>0 e f(2.25)>0. Considere a sucessão $x_n, n=0,1,2,\ldots$ gerada pelo método da bissecção para obter uma aproximação para α , em que $x_2 \in [2,2.5]$.

Assinale a opção correta:

a)
$$x_3 = 2.125 \,\mathrm{e} \,|\alpha - x_{21}| < 0.5 \,\mathrm{E}^{-6}$$

c)
$$x_3 = 2.375 \,\mathrm{e} \,|\alpha - x_{21}| < 0.5 \,\mathrm{E}^{-6}$$

b)
$$x_3 = 2.125 \,\mathrm{e} \,|\alpha - x_{20}| < 0.5 \,\mathrm{E}^{-6}$$

d)
$$x_3 = 2.375 \,\mathrm{e} \,|\alpha - x_{20}| < 0.5 \,\mathrm{E}^{-6}$$

Resposta d)

Usando (2) (3) (4) (5) (6) (7)

Encontramos x_3 iterando x_n de 0 a 3

$$\alpha \in [1,3]$$
 Raiz única $f(x) = 0 \implies f(1) * f(3) < 0 \implies \begin{cases} f(1) > 0 \\ f(3) < 0 \end{cases}$ (2)

$$x_0 = \frac{a_0 + b_0}{2} = \frac{1+3}{2} = 2 \land f(2) > 0 \tag{3}$$

$$x_1 = \frac{a_1 + b_1}{2} = \frac{2+3}{2} = 2.5 \tag{4}$$

como $x_2 = 2.25 e f(2.25) > 0$

$$\wedge f(2.5) < 0 \tag{5}$$

$$x_2 = \frac{a_2 + b_2}{2} = \frac{2 + 2.5}{2} = 2.25 \land f(2.25) > 0 \tag{6}$$

$$x_3 = \frac{a_3 + b_3}{2} = \frac{2.25 + 2.5}{2} = 2.375 \tag{7}$$

$$|\alpha - x_n| \le \frac{b - a}{2^{n+1}} = \frac{3 - 1}{2^{n+1}} = 2^{-n} < 0.5 \,\mathrm{E}^{-6} \implies$$

 $\implies n = -\log_2 0.5 \,\mathrm{E}^{-6} = 20.932 \cong 21$

Seja $\alpha \in [a,b]$ raíz unica da equação f(x)=0 com $f \in C^2([a,b])$, em que f'(x) < 0 e f''(x) > 0, $\forall x \in [a,b]$. Considere ainda uma função iteradora $\phi(x)=x-\frac{f(x)}{f'(x)}$ com $\phi'(\alpha)=0$. Seja $x_n=\phi(x_{n-1}), n \in \mathbb{N}$ uma sucessão de iteradas tal que $f(x_0)=1$.

- Qual das seguintes afimações é verdadeira?
 - 1) Não se conseguie garantir a convergencia de x_n para α
 - 2) x_n converge para α com ordem de convergência p > 1
 - 3) x_n não converge qualquer que seja $x_0 \in [a, b]$.
 - 4) x_n converge para α com ordem de convergência p=1

Considere o seguinte sistema de equações lineares AX=B com n incógnitas e n equações e a sucessão de vetores obtida pelo método iterativo geral $X^{(k)}=GX^{(k-1)}+H, k=1,2,\ldots$, onde $G\in\mathbb{R}^n\times\mathbb{R}^n$ é a matriz de iteração e $H\in\mathbb{R}^n$. Sabe-se que $\|G\|_1=2/3$ e $\|G\|_\infty=3/2$ Assinale a opção correta

- a) A sucessão não converge se a matriz A do sistema não for de diagonal estritamente dominante
- b) A sucessão não converge porque $||G||_{\infty} > 1$.
- c) A sucessão converge qualquer que seja $X^{(0)} \in \mathbb{R}^n$
- d) Nada se pode concluir quanto à convergência da sucessão.
- e) Se a matriz A do sistema for de diagonal estritamente dominante então é certo que a sucessão converge.

Considere a sucessão

$$egin{cases} x_0 \in [0,\pi/2] \ x_{n+1} = arphi_c(x_n), \qquad n=0,1,2,\ldots \end{cases}$$

onde $\varphi_c(x) = \frac{1+\sin(x)}{c}$, com c > 0

Nota: Apresente os cálculos com 6 casas decimais convenientemente arredondadas

06 a.

Prove que α é raiz de equação $1 + \sin(x) - cx = 0$ se e só se α é ponto fixo de $\varphi_c(x)$

Q6 b.

Sendo α a raiz unica em $[0,\pi/2]$, prove que se $c\geq 4/\pi$ então x_n converge para

 α e a ordem de convergência é p=1 se $\alpha \neq \pi/4$

06 c.

76

Considerando c=2 e $x_0=0$ determine x_2 e uma estimativa para o erro absoluto associado a x_2 .

06 d.

Nas mesmas condições da alinea anterior diga quantas iteradas teria de calcular para ter uma estimativa para o erro absoluto inferior a 10^{-6} .

 $e b = [1 \ 1 \ 1]^T$.

Considere o seguinte sistema de equações lineares AX = B, com $A = \begin{bmatrix} 5 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \end{bmatrix}$

Questão 7

07 a.

/ ح

Mostre que o método de Gauss-Seidel converge para a solução de AX=B, qualquer que seja a iterada $X^{(0)}\in\mathbb{R}^3$ que se considere.

Q7 b.

Usando o método de Gauss-seidel obtenha a iterada $x^{(2)}$ partindo de $X^{(0)} = [0\ 0\ 0]^T$ e diga quantas casas decimais significativas no mínimo pode garantir para cada componente de $X^{(2)}$. Justifique

Q7 c.

Sem calcular a iterada $X^{(10)}$ diga quantas casas decimais significativas no mínimo pode garantir para cada componente $X^{(10)}$. Justifique.

Considere o problema de valor inicial bem posto

$$egin{cases} y'(t)=1+(t-y(t))^2, & t\in [2,3] \ y(2)=1 \end{cases}$$

Determine um valor paroximado para y(2.4) pelo método de Taylor de ordem 2 com h=0.2. Justifique devidamente os cálculos.

Nota: Apresente os cálculos com 6 casas decimais conveninentemente arredondadas