Al6122 Text Data Management & Analysis

Topic: Probabilistic Ranking

Why Probabilistic IR?

- In traditional IR systems, matching between each document and a query is attempted in a semantically imprecise space of index terms.
- Can we use probabilities to quantify the uncertainties?

Probabilistic IR topics

- Classical probabilistic retrieval model
- Language model approach to IR

Recall a few probability basics

Bayes' Rule: for events a and b:

$$P(a,b) = P(a \cap b) = P(a|b)P(b) = P(b|a)P(a)$$

$$P(b) = P(b|a)P(a) + P(b|\bar{a})P(\bar{a})$$

$$P(a|b) = \frac{P(b|a)P(a)}{P(b)} = \frac{P(b|a)P(a)}{\sum_{x=a,\bar{a}} P(b|x)P(x)}$$

Odds:

$$O(a) = \frac{P(a)}{P(\overline{a})} = \frac{P(a)}{1 - P(a)}$$

Overview

- Probabilistic Approach to Retrieval
- Basic Probability Theory
- Probability Ranking Principle [For your information only]
- Language Models for Information Retrieval

The Document Ranking Problem

- Settings: We have a collection of documents
 - User issues a query
 - A list of documents need to be returned
- Ranking method is core of an IR system
 - In what order do we present documents to the user?
 - "Best" documents to be placed top
- Idea: rank by probability of relevance of the document w.r.t. information need
 - -P(Relevance|document,query)

Probability ranking principle (PRP)

- Let x be a document in the collection
- Let R represent relevance of a document w.r.t. given query and let NR represent non-relevance
- Need to find P(R|x):
 - the probability that a document x is relevant to the query:

$$P(R|x) = \frac{P(x|R)P(R)}{P(x)}$$

$$P(NR|x) = \frac{P(x|NR)P(NR)}{P(x)}$$

P(R|x) + P(NR|x) = 1

Probability ranking principle (PRP)

- Bayes' optimal decision rule: x is relevant iff P(R|x) > P(NR|x)
- PRP in action: Rank all documents by P(R|x)
- How do we compute all those probabilities?
 - Do not know exact probabilities, have to use estimates
 - Simplest model: Binary Independence Retrieval (BIR)
 - Binary means Boolean: document/query is represented by binary term vectors
- (Questionable) Assumptions
 - Relevance of each document is independent from relevance of other documents
 - how about duplicates?
 - Single step information need
 - how about query reformulation?

- Traditionally used in conjunction with the PRP
- 'Binary' (=Boolean)
 - Documents and queries represented as binary term incidence vectors
 - Document d represented by vector $\vec{x} = (x_1, \dots, x_M)$, where $x_t = 1$ if term t occurs in d and $x_t = 0$ otherwise

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

- 'Independence': no association between terms
 - not true, but practically works
 - 'naive' assumption of Naive Bayes models
- Similar to Bernoulli Naïve Bayes model
 - One feature X_w for each word in dictionary
 - X_w =True in document d if w appears in d
 - Naïve Bayes assumption
 - Given the document's topic, appearance of one word in the document tells us nothing about the chances that another word appears.

- Queries: binary term incidence vectors
- Given query \vec{q} ,
 - for each document d (represented as \vec{x}), compute $P(R|\vec{q},\vec{x})$
 - Interested only in ranking
- Will use odds and Bayes's Rule:

$$O(R|\vec{q}, \vec{x}) = \frac{P(R|\vec{q}, \vec{x})}{P(NR|\vec{q}, \vec{x})} = \frac{\frac{P(R|\vec{q})P(\vec{x}|R, \vec{q})}{P(\vec{x}|\vec{q})}}{\frac{P(NR|\vec{q})P(\vec{x}|NR, \vec{q})}{P(\vec{x}|\vec{q})}} = \frac{P(R|\vec{q})}{P(NR|\vec{q})} \times \frac{P(\vec{x}|R, \vec{q})}{P(\vec{x}|NR, \vec{q})}$$

Deriving a Ranking Function for Query Terms

Using Independence Assumption:

$$\frac{P(\vec{x}|R,\vec{q})}{P(\vec{x}|NR,\vec{q})} = \prod_{i}^{n} \frac{P(x_i|R,\vec{q})}{P(x_i|NR,\vec{q})}$$

• Then we have:

$$O(R|\vec{q}, \vec{x}) = \frac{P(R|\vec{q})}{P(NR|\vec{q})} \times \prod_{i}^{n} \frac{P(x_i|R, \vec{q})}{P(x_i|NR, \vec{q})}$$
Document independent

Deriving a Ranking Function for Query Terms

• Since x_i is either 0 or 1: $O(R|\vec{q},\vec{x}) = O(R|\vec{q}) \cdot \prod_i \frac{P(x_i|R,\vec{q})}{P(x_i|NR,\vec{q})}$

$$O(R|\vec{q}, \vec{x}) = O(R|\vec{q}) \cdot \prod_{x_i=1} \frac{P(x_i = 1|R, \vec{q})}{P(x_i = 1|NR, \vec{q})} \cdot \prod_{x_i=0} \frac{P(x_i = 0|R, \vec{q})}{P(x_i = 0|NR, \vec{q})}$$

Assume: Ignore all terms not occurring in the query (q=0)

$$O(R|\vec{q}, \vec{x}) = O(R|\vec{q}) \cdot \prod_{x_i = 1, q_i = 1} \frac{P(x_i = 1|R, \vec{q})}{P(x_i = 1|NR, \vec{q})} \cdot \prod_{x_i = 0, q_i = 1} \frac{P(x_i = 0|R, \vec{q})}{P(x_i = 0|NR, \vec{q})}$$

For all matching query terms

For all non-matching query terms

Deriving a Ranking Function for Query Terms

$$O(R|\vec{q}, \vec{x}) = O(R|\vec{q}) \cdot \prod_{x_i = 1, q_i = 1} \frac{P(x_i = 1|R, \vec{q})}{P(x_i = 1|NR, \vec{q})} \cdot \prod_{x_i = 0, q_i = 1} \frac{P(x_i = 0|R, \vec{q})}{P(x_i = 0|NR, \vec{q})}$$

Let

$$p_i = P(x_i = 1|R, \vec{q})$$

$$r_i = P(x_i = 1|NR, \vec{q})$$

	document	relevant (R)	nonrelevant (NR)
Term present	$x_{\rm i} = 1$	$p_{ m i}$	$r_{ m i}$
Term absent	$x_i = 0$	$1-p_{\rm i}$	$1-r_{\rm i}$

 P_i is the probability of term x_i appearing in a relevant document

$$O(R|\vec{q}, \vec{x}) = O(R|\vec{q}) \cdot \prod_{x_i = q_i = 1} \frac{p_i}{r_i} \cdot \prod_{x_i = 0, q_i = 1} \frac{1 - p_i}{1 - r_i}$$
$$= O(R|\vec{q}) \cdot \prod_{x_i = q_i = 1} \frac{p_i (1 - r_i)}{r_i (1 - p_i)} \cdot \prod_{q_i = 1} \frac{1 - p_i}{1 - r_i}$$

Including query terms found in documents into the right product and simultaneously dividing through by them in the left product

Document independent

Retrieval Status Value (RSV)

$$RSV = \log \prod_{x_i = q_i = 1} \frac{p_i(1 - r_i)}{r_i(1 - p_i)} = \sum_{x_i = q_i = 1} \log \frac{p_i(1 - r_i)}{r_i(1 - p_i)} = \sum_{x_i = q_i = 1} c_i$$

where
$$c_i = \log \frac{p_i(1-r_i)}{r_i(1-p_i)}$$

For each term t, look at the table of document counts:

Documents	Relevant	Non-relevant	Total
Term present ($x = 1$)	S	df_t - s	df_t
Term absent ($x = 0$)	S-s	$(N - df_t) - (S - s)$	$N - df_t$
Total	S	N-S	N

$$RSV = \sum_{x_i = q_i = 1} c_i \quad \text{where } c_i = \log \frac{p_i(1 - r_i)}{r_i(1 - p_i)}$$

Estimates:
$$p_i \approx \frac{s}{S}$$
, $r_i \approx \frac{df_t - s}{N - S}$

$$c_i \approx \log \frac{\frac{s}{S} \times \left(1 - \frac{df_t - s}{N - S}\right)}{\frac{df_t - s}{N - S} \times \left(1 - \frac{s}{S}\right)} = \log \frac{\frac{s}{S - S}}{\frac{df_t - s}{N - S} - df_t + s}$$

Estimation – key challenge

- r_i (prob. of term occurrence in non-relevant documents for query)
 - If non-relevant documents are approximated by the whole collection, then r_i is $\frac{df_i}{N}$ and

$$-\log \frac{(1-r_i)}{r_i} \approx \log \frac{(N-df_i)}{df_i} \approx \log \frac{N}{df_i} = IDF!$$

- p_i (probability of term occurrence in relevant documents) can be estimated in various ways:
 - from relevant documents from user (relevance feedback) $c_i = \log \frac{p_i(1-r_i)}{r_i(1-p_i)}$
 - constant (e.g. 0.5)
 - proportional to probability of occurrence in collection

PRP and BIR

- Among the oldest formal models in IR
 - Since an IR system cannot predict with certainty which document is relevant, we should deal with probabilities
- Requires restrictive assumptions
 - Boolean representation of documents/queries/relevance
 - Term independence
 - Out-of-query terms do not affect retrieval
 - Document relevance values are independent
- Some of the assumptions can be removed
 - A successful method: Okapi BM25 (later)

An Appraisal of Probabilistic Models

- The difference between 'vector space' and 'probabilistic' IR is not that great:
 - In either case you build an information retrieval scheme in the exact same way.

Difference:

 For probabilistic IR, at the end, you score queries not by cosine similarity and tfidf in a vector space, but by a slightly different formula motivated by probability theory

Okapi BM25: A Nonbinary Model

- The BIM was originally designed for short catalog records of fairly consistent length, and it works reasonably in these contexts
- For modern full-text search collections, a model should pay attention to term frequency and document length
- BestMatch25 (a.k.a BM25 or Okapi) is sensitive to these quantities
- From 1994 until today, BM25 is one of the most widely used and robust retrieval models

Okapi BM25: A Nonbinary Model

• The simplest score for document d is just idf weighting of the query terms present in the document:

$$-RSV_d = \sum_{t \in q} \log \frac{N}{df_t}$$

Improve this formula by factoring in the term frequency and document length:

$$RSV_d = \sum_{t \in q} \log \left[\frac{N}{df_t} \right] \times \frac{(k_1 + 1) \times t f_{td}}{k_1 \times \left((1 - b) + b \times \left(\frac{L_d}{L_{ave}} \right) \right) + t f_{td}}$$

- $-tf_{td}$: term frequency in document d
- $-L_d(L_{ave})$: length of document d (average document length in the whole collection)
- $-k_1$: tuning parameter controlling the document term frequency scaling
- b: tuning parameter controlling the scaling by document length

Okapi BM25: A Nonbinary Model

If the query is long, we might also use similar weighting for query term

$$RSV_d = \sum_{t \in q} \log \left[\frac{N}{df_t} \right] \times \frac{(k_1 + 1) \times tf_{td}}{k_1 \times \left((1 - b) + b \times \left(\frac{L_d}{L_{ave}} \right) \right) + tf_{td}} \times \frac{(k_3 + 1) \times tf_{tq}}{k_3 + tf_{tq}}$$

- $-tf_{tq}$: term frequency in the query q
- $-k_3$: tuning parameter controlling term frequency scaling of the query
- The above tuning parameters should ideally be set to optimize performance on a development test collection.
 - In the absence of such optimisation, experiments have shown reasonable values are to set k_1 and k_3 to a value between 1.2 and 2 and b=0.75

Stochastic Language Models

- Model probability of generating strings (each word in turn) in a language
 - commonly all strings over alphabet Σ
 - Example: a unigram model

Model M			
0.20	the		
0.10	а		
0.01	man		
0.01	woman		
0.03	said		
0.02	likes		

the	man	likes	the	woman
0.2	0.01	0.02	0.2	0.01

$$P(s \mid M) = 0.00000008$$

Stochastic Language Models

Model probability of generating any string

Model M_1			
0.20	the		
0.01	class		
0.0001	sayst		
0.0001	pleaseth		
0.0001	yon		
0.0005	maiden		
0.01	woman		

Model M_2			
0.20	the		
0.0001	class		
0.03	sayst		
0.02	pleaseth		
0.1	yon		
0.01	maiden		
0.0001	woman		

the	class	pleaseth	yon	maiden
0.2	0.01	0.0001	0.0001	0.0005
0.2	0.0001	0.02	0.1	0.01

$$P(s|M_2) > P(s|M_1)$$

Language models (LMs) for IR

We view a document as a generative model that generates the query

 p(Query|M_d)

- How do we create such a model for a document?
- How do we generate a query from language model?

A probabilistic language model

- A language model is a function that puts a probability measure over strings drawn from some vocabulary
 - One-state <u>probabilistic</u> finite-state automaton
 - A unigram language model and the state emission distribution for its one state q_1
- STOP is not a word, but a special symbol indicating that the automaton stops
 - e.g. P("frog said that toad likes frog STOP")= $0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02 \cdot 0.01 \cdot 0.2$ = 0.00000000000048

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2	toad	0.01
the	0.2	said	0.03
a	0.1	likes	0.03 0.02 0.04
frog	0.01	that	0.04

Using language models in IR

- Each document is treated as (the basis for) a language model.
- Given a query q, rank documents based on $P(d|q) = \frac{P(q|d)P(d)}{P(q)}$
 - -P(q) is the same for all documents, so ignore
 - -P(d) is the prior often treated as the same for all d (how about PageRank?)
 - -P(q|d) is the probability of q given d.
 - the probability that a query would be observed as a random sample from the respective document model.
 - So to rank documents according to relevance to q, ranking according to P(q|d) and P(d|q) is equivalent.

How to compute P(q|d): query likelihood model

 We will make the same conditional independence assumption as for Naive Bayes.

•
$$P(q|M_d) = P(\langle t_1, ..., t_{|q|} \rangle |M_d) = \prod_{1 \le k \le |q|} P(t_k|M_d)$$

- -|q|: length of q;
- $-t_k$: the token occurring at position k in q
- This is equivalent to the following, where $tf_{t,q}$: term frequency (# occurrences) of t in q
- $-P(q|M_d) = \prod_{distinct\ term\ t \in q} P(t_k|M_d)^{tf_{t,q}}$

Query generation probability

$$p(Q \mid M_d) = \prod_{t \in Q} p_{mle}(t \mid M_d) = \prod_{t \in Q} \frac{tf_{t,d}}{dl_d}$$

- Unigram assumption: Words appear independently in document
 - mle: Maximum likelihood estimation
 - $-tf_{t,d}$: term frequency of term t in document d
 - $-dl_d$: the total number of tokens in document d
 - If a query term does not appear in a document?
 - Need smoothing

Smoothing

- Key intuition: a non-occurring term is possible
 - but no more likely than would be expected by chance in the collection.
- Notation:

$$p_{mle}(t \mid M_C) = \frac{cf_t}{T}$$

- $-M_c$: the collection model;
- $-cf_t$: the number of occurrences of t in the collection (or collection frequency)
- $-T = \sum_{t} c f_{t}$: the total number of tokens in the collection.
- We will use $\hat{P}(t|M_c)$ to "smooth" P(t|d) away from zero.

Mixture model

$$p(Q \mid d) \propto \prod_{t \in Q} \left(\lambda \frac{t f_{t,d}}{d l_d} + (1 - \lambda) \frac{c f_t}{T} \right)$$

- Model: $P(t|d) = \lambda P_{mle}(t|M_d) + (1 \lambda)P_{mle}(t|M_c)$
- Mixes the probability from the document with the general collection frequency of the word.
 - High value of λ : "conjunctive-like" search tends to retrieve documents containing all query words.
 - Low value of λ : more disjunctive, suitable for long queries
 - Correctly setting λ is very important for good performance.

LMs vs. Vector Space Model

- The two have common things
 - Both use term frequencies
 - Probabilities are inherently "length-normalized" [0,1]
 - Mixing term frequencies in document and collection has an effect similar to idf
 - Terms that are rare in the collection, but frequent in some documents have great influence on the ranking

Differences

- LMs: based on probabilistic theory, VSM: linear algebra notion
- Collection frequency vs. document frequency
- Other details: term frequency, length normalization