

CSC 3001 · Assignment 2

Due: 23:59, October 25th, 2024

Instructions:

- Homework problems must be carefully and clearly answered to receive full credit. Complete sentences that establish a clear logical progression are highly recommended.
- You must independently complete each assignment.
- You must submit your assignment in Blackboard with all necessary supplemental material.
- Late submission will not be graded.

Question 1 (10 marks)

Show that $n^4 - n^2$ is divisible by 12 whenever n > 0.

Solution

To show that $n^4 - n^2$ is divisible by 12 for n > 0:

1. Factor the expression:

$$n^4 - n^2 = n^2(n^2 - 1) = n^2(n - 1)(n + 1)$$

- 2. Analyze divisibility:
 - Among n-1, n, and n+1, at least one is even, ensuring at least two factors of 2, thus $n^2(n-1)(n+1)$ is divisible by 4.
 - At least one of n-1, n, or n+1 is divisible by 3.
- 3. Conclusion: Since $n^2(n-1)(n+1)$ is divisible by both 4 and 3, it is divisible by $4 \times 3 = 12$. Thus, $n^4 n^2$ is divisible by 12 for any positive integer n.

Question 2 (10 marks)

Prove by induction that $3^{2(n+2)} - 2^{2n}$ is divisible by 5 for all integers $n \ge 0$.

Solution

To prove that $3^{2(n+2)} - 2^{2n}$ is divisible by 5 for all integers $n \ge 0$ using induction, we follow these steps:

Base Case: For n = 0:

$$3^{2(0+2)} - 2^{2 \cdot 0} = 3^4 - 2^0 = 81 - 1 = 80$$

Since $80 \div 5 = 16$, the base case holds.

Inductive Step: Assume the statement is true for n = k:

$$3^{2(k+2)} - 2^{2k} \equiv 0 \mod 5$$

We need to show it holds for n = k + 1:

$$3^{2((k+1)+2)} - 2^{2(k+1)} = 3^{2(k+3)} - 2^{2k+2}$$

This can be rewritten as:

$$3^{2(k+3)} - 2^{2k+2} = 9 \cdot 3^{2(k+2)} - 4 \cdot 2^{2k}$$

Next, express $9 \cdot 3^{2(k+2)}$ as:

$$9 \cdot 3^{2(k+2)} = 5 \cdot 3^{2(k+2)} + 4 \cdot 3^{2(k+2)}$$

Thus, we have:

$$9 \cdot 3^{2(k+2)} - 4 \cdot 2^{2k} = (5 \cdot 3^{2(k+2)} + 4 \cdot 3^{2(k+2)}) - 4 \cdot 2^{2k}$$

Rearranging gives:

$$5 \cdot 3^{2(k+2)} + 4(3^{2(k+2)} - 2^{2k})$$

By the inductive hypothesis, $3^{2(k+2)} - 2^{2k} \equiv 0 \mod 5$, which means:

$$4(3^{2(k+2)} - 2^{2k}) \equiv 0 \mod 5$$

So we conclude:

$$9 \cdot 3^{2(k+2)} - 4 \cdot 2^{2k} \equiv 0 \mod 5$$

Conclusion: Since both the base case and the inductive step hold, we conclude that $3^{2(n+2)} - 2^{2n}$ is divisible by 5 for all integers $n \ge 0$.

Question 3 (10 marks)

Given an integer $n \ge 1$, define $n! = n \times (n-1) \times \cdots \times 2 \times 1$ (in particular, 1! = 1). Moreover, by convention, define 0! = 1. The number n! is called the *factorial* of n. Prove by induction that

$$\int_0^\infty x^n e^{-ax} \, dx = \frac{n!}{a^{n+1}},$$

where a > 0 is a constant and all integers $n \ge 0$.

Solution

Base Case: For n = 0:

$$\int_0^\infty e^{-ax} \, dx = \frac{1}{a} = \frac{0!}{a^1}.$$

Inductive Step: Assume the statement holds for n = k:

$$\int_0^\infty x^k e^{-ax} \, dx = \frac{k!}{a^{k+1}}.$$

We show it holds for n = k + 1:

$$\int_0^\infty x^{k+1} e^{-ax} \, dx.$$

Using integration by parts: - Let $u=x^{k+1},\ dv=e^{-ax}dx$. - Then $du=(k+1)x^kdx,\ v=-\frac{1}{a}e^{-ax}$. Thus,

$$\int_0^\infty x^{k+1} e^{-ax} \, dx = \left[-\frac{1}{a} x^{k+1} e^{-ax} \right]_0^\infty + \frac{1}{a} \int_0^\infty (k+1) x^k e^{-ax} \, dx.$$

The boundary term is zero. Therefore:

$$= \frac{1}{a}(k+1) \cdot \frac{k!}{a^{k+1}} = \frac{(k+1)!}{a^{k+2}}.$$

Conclusion: By induction,

$$\int_0^\infty x^n e^{-ax} \, dx = \frac{n!}{a^{n+1}}$$

holds for all integers $n \geq 0$.

Question 4 (10 marks)

For any non-negative integers a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n , the following inequality holds:

$$(a_1 + a_2 + \ldots + a_n) (b_1 + b_2 + \ldots + b_n) \ge (a_1b_1 + a_2b_2 + \ldots + a_nb_n).$$

Solution

To prove the inequality

$$(a_1 + a_2 + \ldots + a_n) (b_1 + b_2 + \ldots + b_n) \ge (a_1b_1 + a_2b_2 + \ldots + a_nb_n),$$

we will use induction.

Base Case: For n = 1:

$$(a_1)(b_1) \geq a_1b_1,$$

which holds true.

Inductive Step Assume the inequality holds for n = k:

$$(a_1 + a_2 + \ldots + a_k) (b_1 + b_2 + \ldots + b_k) \ge (a_1b_1 + a_2b_2 + \ldots + a_kb_k).$$

We need to show it holds for n = k + 1:

$$(a_1 + a_2 + \ldots + a_k + a_{k+1})(b_1 + b_2 + \ldots + b_k + b_{k+1}) > (a_1b_1 + a_2b_2 + \ldots + a_{k+1}b_{k+1}).$$

Expanding the Left-Hand Side Expanding this gives:

$$LHS = (a_1 + \ldots + a_k)(b_1 + \ldots + b_k) + (a_1 + a_2 + \ldots + a_k)b_{k+1} + a_{k+1}(b_1 + b_2 + \ldots + b_k) + a_{k+1}b_{k+1}.$$

Using the Inductive Hypothesis By the inductive hypothesis:

$$S_1 = (a_1 + a_2 + \ldots + a_k) (b_1 + b_2 + \ldots + b_k) \ge a_1 b_1 + a_2 b_2 + \ldots + a_k b_k$$

Since a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n are all non-negative integers, we have:

$$(a_1 + a_2 + \ldots + a_k)b_{k+1} + a_{k+1}(b_1 + b_2 + \ldots + b_k) \ge 0.$$

Thus,

$$S_1 + (a_1 + a_2 + \ldots + a_k)b_{k+1} + a_{k+1}(b_1 + b_2 + \ldots + b_k) + a_{k+1}b_{k+1} \ge a_1b_1 + a_2b_2 + \ldots + a_kb_k + a_{k+1}b_{k+1}.$$

Conclusion: By induction, the inequality holds for all non-negative integers n.

Question 5 (10 marks)

Let F_n denote the *n*-th Fibonacci number defined by $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.

1. For all integers $n \geq 0$, prove by induction that

$$F_{2n+1} = F_n^2 + F_{n+1}^2$$

2. For all integers $n \geq 0$, prove by induction that

$$F_{2n} = F_n(2F_{n+1} - F_n)$$

Solution

(a)

Base Case: For n = 0:

$$F_{2\cdot 0+1} = F_1 = 1,$$

and

$$F_0^2 + F_1^2 = 0^2 + 1^2 = 0 + 1 = 1.$$

Thus, the base case holds.

Inductive Step: Assume the statement is true for n = k:

$$F_{2k+1} = F_k^2 + F_{k+1}^2.$$

We need to show it holds for n = k + 1:

$$F_{2(k+1)+1} = F_{2k+3} = F_{2k+2} + F_{2k+1} = (F_{2k} + F_{2k+1}) + F_{2k+1} = F_{2k} + 2F_{2k+1} = 3F_{2k+1} - F_{2k-1}.$$

This simplifies to:

$$F_{2k+3} = 3F_{k+1}^2 + 2F_k^2 - F_{k-1}^2.$$

Substituting $F_{k-1}^2 = (F_k - F_{k+1})^2$ gives:

$$F_{k-1}^2 = F_k^2 - 2F_k F_{k+1} + F_{k+1}^2$$
.

Thus:

$$F_{2k+3} = 2F_k^2 + 3F_{k+1}^2 - (F_k^2 - 2F_k F_{k+1} + F_{k+1}^2).$$

Combining terms results in:

$$F_{2k+3} = F_k^2 + 2F_{k+1}^2 + 2F_kF_{k+1}.$$

This can be expressed as:

$$F_{2k+3} = F_{k+1}^2 + (F_k + F_{k+1})^2 = F_{k+1}^2 + F_{k+2}^2$$

Thus, the statement holds for n = k + 1.

Conclusion: By induction, we have proven that for all integers $n \geq 0$:

$$F_{2n+1} = F_n^2 + F_{n+1}^2$$
.

(b)

Base Cases: For n = 0:

$$F_{2\cdot 0} = 0,$$

For n = 1:

$$F_{2\cdot 1} = F_1(2F_2 - F_1) = 1.$$

Thus, the base case holds.

From (a), we have:

$$F_{2n+1} = F_n^2 + F_{n+1}^2$$
.

Thus, we can write:

$$F_{2n} = F_{2n+1} - F_{2n-1} = F_{n+1}^2 - F_{n-1}^2$$

Simplifying leads to:

$$F_{2n} = F_{n+1}^2 - (F_{n+1} - F_n)^2 = 2F_{n+1}F_n - F_n^2.$$

Thus, we can write:

$$F_{2n} = F_n(2F_{n+1} - F_n).$$

Conclusion: We have proven that:

$$F_{2n} = F_n(2F_{n+1} - F_n).$$

Question 6 (10 marks)

Find and prove closed-form formulas for generating functions

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots$$

of the following sequences.

- 1. $a_n = a^n$, where $a \in \mathbb{R}$;
- 2. $a_n = \binom{m}{n}$, where $m \in \mathbb{N}$; For $n \in \mathbb{N}^+$, the combinatorial number $\binom{m}{n} = \frac{m!}{n!(m-n)!}$ when $n \leq m$, and it is zero when n > m;

Solution

(a) Let $f(x) = \sum_{n=0}^{\infty} a^n x^n$. Then

$$axf(x) = \sum_{n=0}^{\infty} a^{n+1}x^{n+1} = f(x) - 1,$$

hence

$$f(x) = \frac{1}{1 - ax}.$$

(b) Let $f(x) = \sum_{n=0}^{\infty} {m \choose n} x^n$. Note that this sum is, in fact, finite. One of the definitions of binomial coefficients implies that

$$f(x) = (1+x)^m.$$

The formula can be proved by induction without assuming extra knowledge. Base case:

$$\binom{1}{0} + \binom{1}{1}x = (1+x)^1.$$

Step:

$$\sum_{n=0}^{\infty} {m+1 \choose n} x^n = \sum_{n=0}^{\infty} \left({m \choose n-1} x^n + {m \choose n} x^n \right)$$
$$= x(1+x)^m + (1+x)^m = (1+x)^{m+1}.$$

(c)

Question 7 (10 marks)

Consider the Fibonacci sequence $\{F_n\}$, where $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for other n. Calculate the closed form of the generating function f(x) of Fibonacci sequence F_n ;

Solution Let $f(x) = \sum_{n=0}^{\infty} F_n x^n$. We use the defining property of F_n to notice that

$$f(x) - xf(x) - x^{2}f(x) = 0 + (1 - 0)x + \sum_{n=2}^{\infty} (F_{n} - F_{n-1} - F_{n-2})x^{n} = x,$$

hence

$$f(x) = \frac{x}{1 - x - x^2}.$$

Question 8 (10 marks)

Consider also the Fibonacci sequence $\{F_n\}$, determine the values of the sequences below. You can represent the value with n-Fibonacci number F_n .

1.
$$S_n^1 = F_0 + F_1 + F_2 + \ldots + F_n$$
;

2.
$$S_n^2 = F_0 + F_2 + F_4 + \ldots + F_{2n}$$
.

Solution

1. If n = 0, $S_0^1 = 0$; If n = 1, $S_1^1 = 1$; If $n \ge 2$, we have

$$S_n^1 = F_0 + F_1 + F_2 + \dots + F_n$$

$$= F_0 + F_1 + (F_0 + F_1) + (F_1 + F_2) + \dots + (F_{n-1} + F_{n-2})$$

$$= F_1 + (F_0 + F_1 + F_2 + \dots + F_{n-2}) + (F_0 + F_1 + F_2 + \dots + F_{n-1})$$

$$= 1 + S_{n-2}^1 + S_{n-1}^1.$$

So we have $(S_n^1+1)=(S_{n-1}^1+1)+(S_{n-2}^1+1)$. Then from $S_0^1+1=1=F_2,\,S_1^1+1=2=F_3,$ we know that $S_n^1+1=F_{n+2},$ i.e. $S_n^1=F_{n+2}-1.$

2.

$$S_n^2 = F_0 + F_2 + F_4 + \dots + F_{2n}$$

$$= F_0 + (F_0 + F_1) + (F_2 + F_3) + \dots + (F_{2n-2} + F_{2n-1})$$

$$= F_0 + S_{2n-1}^1$$

$$= F_{2n+1} - 1.$$

Question 9 (10 marks)

Prove the recursion formula $r_n = \sum_{k=1}^n r_{k-1} r_{n-k}$ implies the explicit form $r_n = \frac{1}{n+1} \binom{2n}{n}$ with $r_0 = 1$, which is just the n-th Catalan number.

Hint: Prove it using generating function, learn how to expand fractional binomials and fractional binomial coefficients. 5 marks for only closed form generating function.

Solution

We represent the generating function of sequence r_n as $f(x) = \sum_{i=0}^{\infty} r_i x^i$. We define for any finite a_i , $\sum_{i=1}^{0} a_i = 1$, then we have the relation below

$$f(x) = \sum_{i=0}^{\infty} r_i x^i$$

$$= \sum_{i=0}^{\infty} \sum_{k=1}^{i} r_{k-1} r_{i-k} x^i$$

$$= 1 + x \sum_{i=1}^{\infty} \sum_{k=1}^{i} r_{k-1} x^{k-1} r_{i-k} x^{i-k}$$

$$= 1 + x f(x) \cdot f(x).$$

Since we can deduce $r_n > 0$, $f(x) \neq 0$ for every $x \in \mathbb{R}$. We can solve $f(x) = 1 + xf^2(x)$ with $f(0) = r_0 = 1$ to get $f(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$.

Since

$$\sqrt{1-4x} = \sum_{i=0}^{\infty} {1 \choose i} (-4x)^i$$

$$= \sum_{i=0}^{\infty} (-1)^i \frac{(\frac{1}{2})(\frac{1}{2}-1)\dots(\frac{1}{2}-i+1)}{i!} 2^{2i}x^i$$

$$= 1 - \sum_{i=1}^{\infty} \frac{(2(i-1))!}{2^{i-1}(i-1)!(i-1)!i} (2x)^i.$$

Then we know

$$f(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$

$$= \sum_{i=1}^{\infty} \frac{(2(i-1))!}{2^{i-1}(i-1)!(i-1)!i} (2x)^{i-1}$$

$$= \sum_{i=0}^{\infty} \frac{(2i)!}{i!i!i+1} x^{i}$$

$$= \sum_{i=0}^{\infty} \frac{1}{i+1} {2i \choose i} x^{i}.$$

So we know $r_n = \frac{1}{n+1} \binom{2n}{n}$ with $r_0 = 1$.

Question 10 (10 marks)

Give an alternative proof to the Distinct-Roots Theorem without using Generating Functions.

Theorem 1. Distinct-Roots Theorem

Suppose a sequence $(a_0, a_1, a_2, a_3, ...)$ satisfies a recurrence relation

$$a_k = Aa_{k-1} + Ba_{k-2}$$

If $t^2 - At - B = 0$ has two distinct real roots r and s, then $a_n = Cr^n + Ds^n$ for some C and D.

If a_0 and a_1 are given, then C and D are uniquely determined.

Solution

We provid two proofs, one needs the knowledge of linear algebra and the other doesn't need that.

1. We can write the recursion equation as the equation below

$$\begin{pmatrix} a_k \\ a_{k-1} \end{pmatrix} = \begin{pmatrix} A & B \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_{k-1} \\ a_{k-2} \end{pmatrix}.$$

Then we have

$$\begin{pmatrix} a_n \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} A & B \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} a_1 \\ a_0 \end{pmatrix}.$$

To calculate the eigenvalues of the matrix $\begin{pmatrix} A & B \\ 1 & 0 \end{pmatrix}$, we need to solve

$$\det\begin{pmatrix} A-t & B\\ 1 & -t \end{pmatrix} = t^2 - At - B = 0.$$

From the condition in the theorem, we know the matrix has two distinct eigenvalues r and s. We also know there are two linear independent eigenvectors v_r and v_s repect to two eigenvalues. So for arbitrary vector $\begin{pmatrix} a_1 \\ a_0 \end{pmatrix}$, we can write it in the form of a unique linear combination of v_r and v_s , we suppose that

$$\begin{pmatrix} a_1 \\ a_0 \end{pmatrix} = C_1 v_r + D_1 v_s.$$

So we know

$$\binom{a_n}{a_{n-1}} = C_1 r^{n-1} v_r + D_1 s^{n-1} v_s.$$

Denote the first elements of v_r and v_s as $v_r(2,1)$ and $v_s(2,1)$, we also suppose that $B \neq 0$, otherwise the recursion equation will degenerate to a simple form, then we have $r \neq 0$ and $s \neq 0$. We extract the first dimension element of the equation above to get

$$a_n = C_1 r^{n-1} v_r(2,1) + D_1 s^{n-1} v_s(2,1) = \frac{C_1 v_r(2,1)}{r} r^n + \frac{D_1 v_s(2,1)}{s} s^n = C r^n + D s^n,$$

where we denote $C = \frac{C_1 v_r(2,1)}{r}$ and $D = \frac{D_1 v_s(2,1)}{s}$. Since C_1 and D_1 are determined uniquely, C and D are determined uniquely by a_0 and a_1 .

2. We assume the update form as below

$$a_k - \alpha a_{k-1} = \lambda (a_{k-1} - \alpha a_{k-2}),$$

$$a_k = (\lambda + \alpha) a_{k-1} - \lambda \alpha a_{k-2}.$$

To let it coordinate with the original update formula, we have the equations below

$$\lambda + \alpha = A,$$
$$-\lambda \alpha = B.$$

Represent α with λ , we get one equation $\lambda^2 - A\lambda - B = 0$. Since we know the equation has two distinct roots r and s, we have two update formulae

$$a_n - (A - r)a_{n-1} = r(a_{n-1} - (A - r)a_{n-2})$$

$$= r^{n-1}(a_1 - (A - r)a_0),$$

$$a_n - (A - s)a_{n-1} = s(a_{n-1} - (A - s)a_{n-2})$$

$$= s^{n-1}(a_1 - (A - s)a_0).$$

Solve them as linear equations, we get

$$(r-s)a_n = r^{n-1}(A-s)(a_1 - (A-r)a_0) - s^{n-1}(A-r)(a_1 - (A-s)a_0),$$

$$a_n = r^n \frac{(A-s)(a_1 - (A-r)a_0)}{r(r-s)} + s^n \frac{(A-r)(a_1 - (A-s)a_0)}{s(s-r)}.$$

We generally have $r \neq 0$ and $s \neq 0$ and let $C = \frac{(A-s)(a_1 - (A-r)a_0)}{r(r-s)}$ and $D = \frac{(A-r)(a_1 - (A-s)a_0)}{s(s-r)}$, then we have $a_n = Cr^n + Ds^n$. We also know that C and D is determined uniquely by a_1 and a_0 .