

Polarização e Lei de Malus

Universidade do Minho

Departamento de Física

Laboratório de Eletromagnetismo

Departamento de Física, Escola de Ciências, Universidade do Minho, Campus de Gualtar, 4710-057 Braga

Portugal

Docente: Maria Fátima Guimarães Cerqueira

Discentes:

Luís Miguel Pereira Silva, A96534

Mariana Isabel Oliveira Fernandes, A97171

Gabriel Domingues Fernandes, A97303

Licenciatura em Engenharia Física

13 de maio de 2022

Sumário

Este trabalho teve como objetivos principais compreender o conceito de luz polarizada e o fenómeno da polarização da luz com o auxílio de polarizadores dicroicos. Desta forma analisou-se as propriedades dos polarizadores e verificou-se experimentalmente a Lei de Malus para duas fontes de luz diferentes, uma lâmpada de halogéneo e um laser de díodo. Com os resultados obtidos experimentalmente, obteve-se uma percentagem de polarização da radiação eletromagnética emitida de 3,3% e 98,6% respetivamente.

Introdução

Polarização

Classicamente. luz é descrita a matematicamente como a duas sobreposição de ondas ortogonais entre si, das quais descrevem fisicamente a variação do campo elétrico e do campo magnético ao longo do espaço e do tempo, representado na figura 1.

Figura 1 (Representação matemática da luz (radiação eletromagnética))

Quando em determinado feixe de luz, a direção do campo elétrico é a mesma em todos os seus pontos, esse feixe de luz é "linearmente polarizado".

Além disso, por convenção, definimos "direção de polarização" de uma onda eletromagnética como a direção do seu respetivo campo elétrico.

Por exemplo, na Figura 1, a onda eletromagnética representada é "linearmente polarizada segunda a direção do eixo y".

Filtros polarizadores

Um polarizador é um material que, dado uma luz incidente, transmite essa luz polarizada segundo uma direção.

Os feixes polarizados podem ser obtidos com polarizadores baseados em fenómenos físicos como: dicroísmo, reflexão, dispersão e birrefringência.

Nesta experiência foram usados polarizadores dicroicos.

Os polarizadores dicroicos absorvem a componente da luz cujo a direção do campo elétrico seja perpendicular á direção característica do material, transmitindo apenas a componente da luz linearmente polarizada segundo essa direção.

Essa direção característica tem o nome de "eixo de transmissão" do polarizador.

Através destes polarizadores é possível identificar se um feixe de luz é polarizado ou não, por exemplo

simulando a montagem representada na Figura 2.

Figura 2 (Montagem para identificar se a luz é polarizada ou não por absorção seletiva)

Se a luz for polarizada, por absorção seletiva (Figura 2), o polarizador apenas transmite a componente da luz cujo a direção do campo elétrico seja paralela ao eixo de transmissão como referido anteriormente, deste modo, se mudarmos o eixo de transmissão rodando o polarizador, verifica-se que a intensidade da luz que chega ao detetor varia.

Analogamente, sabe-se que, se a intensidade da luz não variar, a luz não é polarizada.

Para a radiação monocromática, a percentagem de polarização da radiação é dada por:

$$\%P = \frac{I_{Max} - I_{Min}}{I_{Max} + I_{Min}} \times 100$$
 1)

 I_{Max} e I_{Min} são os valores, máximo e mínimo respetivamente, das intensidades detetadas.

Lei de Malus

Etienne Louis Malus foi um oficial do exército, físico e matemático francês.

Participou da expedição de Napoleão no Egito entre 1798 e 1801, em 1810 tornou-se membro da Academia Francesa de Ciências.

Seu trabalho científico foi quase exclusivamente direcionado ao estudo da luz.

A lei do cientista francês pode ser enunciada da seguinte maneira: as intensidades de entrada e de saída da luz durante a sua passagem por um analisador é regida pela fórmula:

$$I(\theta) = I_0 \cos(\theta)^2$$

Para verificar a Lei de Malus, podemos fazer uso de um aparato análogo ao representado na Figura 3.

Figura 3 (Ilustração da montagem para a verificação da Lei de Malus)

Nesta montagem, deu-se o nome de "analisador" ao polarizador mais perto do detetor.

O primeiro polarizador irá polarizar qualquer feixe de luz segundo o seu eixo de transmissão. Desta maneira podemos verificar a Lei de Malus para luzes polarizadas ou não polarizadas. A intensidade da luz pode ser descrita através da expressão:

$$I_0(\theta) = \frac{c\varepsilon_0}{2} E_0^2 \qquad 2)$$

Sendo I a intensidade da luz, c a velocidade da luz, ε_0 a permitividade elétrica do meio e E_0 o campo elétrico associado.

Considerando E_0 como o campo elétrico da luz transmitida pelo primeiro polarizador, após a passagem da mesma pelo analisador, o valor do campo elétrico será $E=E_0\cos(\theta)$ por absorção seletiva.

Sendo assim a intensidade da luz transmitida pelo analisador pode ser descrita por:

$$I(\theta) = \frac{c\varepsilon_0}{2} E_0^2 \cos(\theta)^2 \qquad 3)$$

Deste modo, através da expressão 2, podemos reescrever a expressão 3 como:

$$I(\theta) = I_0 \cos(\theta)^2$$
 (Lei de Malus)

Resumidamente, nesta experiência, pela Lei de Malus, a intensidade transmitida pelo analisador varia com o cosseno ao quadrado de θ .

Procedimento experimental

1 ª Parte - Polarização

Nesta parte do trabalho, com o auxílio dos polarizadores respondemos a um conjunto de questões presentes no protocolo "T6-Polarização. Lei de Malus" em "Parte 1 – Polarização - introdução", com o intuito de explorar as propriedades de alguns polarizadores. As perguntas e conclusões associadas são as seguintes:

A – "Olhe para as lâmpadas do laboratório através do filtro polarizador. Descreva a forma como o polarizador afeta o que vê. Rodar o polarizador tem algum efeito?"

Observamos as luzes do laboratório através de um filtro polarizador. Rodamos o polarizador até 360 graus e nenhum efeito foi observado.

B – "Segure um segundo polarizador em frente ao primeiro e olhe novamente para as lâmpadas do laboratório. Descreva de que forma os filtros polarizadores afetam o que vê. Rodar um dos filtros em relação ao outro tem algum efeito? Baseando-se nas suas observações, o termo filtro é adequado para descrever os polarizadores? Em que difere o filtro polarizador de um filtro colorido?"

Se, frente a frende, rodarmos um dos polarizadores em relação ao outro, iremos notar a diminuição da intensidade, até que não observamos a passagem de luz. Isto acontece, porque a luz consiste na propagação campo eletromagnético um oscilante. como num e polarizador luz transmitida a depende da orientação relativa do polarizador em relação ao campo elétrico do feixe luz. Apenas a do campo componente elétrico paralela à direção de polarização do polarizador é transmitida através deste, caso as direções sejam perpendiculares não temos componente paralela e consequentemente não há intensidade luminosa.

Sendo assim o termo filtro é apropriado para o polarizador, tendo em conta que o mesmo filtra a componente paralela do campo elétrico. A diferença entre um polarizador e um filtro colorido, é que um filtra o campo elétrico e o outro filtra o comprimento de onda.

C – "As lâmpadas do laboratório emitem luz polarizada? Como justifica a sua afirmação baseando-se nas suas observações."

Tendo em conta o que foi observado no ponto A, ou seja, a intensidade da luz não diminui á medida que se rodou o polarizador, por isso essa luz não é polarizada.

Se olharmos para a tela do computador ou telemóvel através do filtro polarizador, observa-se a diminuição da intensidade da luz, por isso essa luz é polarizada.

D – "Suponha que tem dois polarizadores e que conhece as direções de polarização deles. Preveja como deve orientar os polarizadores, um em relação ao outro, de forma que a luz que os atravesse tenha (i) um máximo de intensidade e (ii) um mínimo de intensidade. Verifique experimentalmente as suas previsões."

Para (i) e (ii), segundo as conclusões tiradas anteriormente, é necessário que os eixos de transmissão dos polarizadores estejam em paralelo e perpendicular respetivamente.

- (i) Colocando os polarizadores com o eixo de polarização paralelo verificase intensidade máxima (Como o polarizador têm uma escala em graus, ou seja, $\theta = 0$ ° e $\varphi = 0$ °)
- (ii) Colocando os polarizadores com o eixo de polarização perpendicular verifica-se intensidade nula ($\theta = 0$ ° e $\varphi = 90$ °)

E – "Um feixe de luz polarizado linearmente incide num polarizador, como mostra o diagrama abaixo: a parte da esquerda é vista de lado, a parte da direita é vista de frente (olhando para o polarizador, representado por um círculo, na direção em que a luz se propaga). O campo elétrico do feixe de luz faz um ângulo θ com a direção de polarização do polarizador. A amplitude do campo elétrico é E_0 ."

Figura 5 (Representação de um polarizador)

"O vetor E representa o campo elétrico do feixe incidente na superfície do polarizador num determinado instante. Decomponha o vetor E na componente transmitida e na componente absorvida pelo polarizador."

"Qual é a direção do campo elétrico do feixe transmitido? Tem alguma relação com a direção do campo elétrico do feixe incidente?"

"Escreva a expressão para a amplitude do campo elétrico do feixe transmitido em função de E_0 e de θ ."

"Escreva a expressão da intensidade da luz transmitida em função da intensidade de luz incidente, I_0 , e de θ ."

As componentes do campo elétrico correspondem,

Absorvida:

$$E = E_0 \sin(\theta)$$

Transmitida:

$$E = E_0 \cos(\theta)$$

Sendo assim a direção do campo elétrico do feixe transmitido é a direção de polarização, que corresponde á componente paralela do feixe incidente.

As componentes da intensidade da luz correspondem,

Absorvida:

$$I = I_0 \sin(\theta)^2$$

Transmitida:

$$I = I_0 \cos(\theta)^2$$

Onde $I_0 = \frac{c\varepsilon_0}{2} E_0^2$, conhecida como Lei de Malus!

F – "Um observador olha para uma fonte de luz através de dois polarizadores. Os polarizadores estão cruzados, isto é, a intensidade da luz transmitida é mínima."

Figura 6 (Esquema F)

1. "Suponha que é inserido um terceiro polarizador na posição B da figura. Preveja se e como isso afeta a intensidade de luz que chega ao observador. A sua resposta depende da orientação do polarizador a inserir em B? Verifique experimentalmente as suas previsões. Se as previsões estavam incorretas, identifique que aspetos levaram a fazer a previsão errada. Fundamente o seu raciocínio com as observações que fez no ponto E."

Se não tiver nenhum polarizador entre os outros dois:

$$E_1 = 0$$
$$I_1 = 0$$

Inserindo um terceiro polarizador entre os outros dois, intuitivamente pensamos que o resultado não dependerá do mesmo, mas isso não é verificado experimentalmente. Com:

Figura 7 (Esquema F.1)

$$I_1 = I_0 \cos(\beta)^2$$
$$E_1 = E_0 \cos(\beta)$$

De seguida:

 \triangleright

$$I_2 = I_1 \cos(\alpha)^2 \Leftrightarrow$$

$$\Leftrightarrow I_2 = I_0 \cos(\beta)^2 \cos(\alpha)^2$$

$$E_2 = E_1 \cos(\alpha) \Leftrightarrow$$

$$\Leftrightarrow E_2 = E_0 \cos(\beta) \cos(\alpha)$$

Onde α e β são complementares, ou seja:

$$\cos(\alpha) = \sin(\beta)$$
$$\cos(\beta) = \sin(\alpha)$$

Assim:

$$I_{2} = I_{0}\cos(\beta)^{2}\sin(\beta)^{2} \Leftrightarrow$$

$$\Leftrightarrow I_{2} = \frac{I_{0}\sin(2\beta)^{2}}{4}$$

$$E_{2} = E_{0}\cos(\beta)\cos(\alpha) \Leftrightarrow$$

$$\Leftrightarrow E_{2} = \frac{E_{0}\sin(2\beta)}{2}$$

Quando
$$\beta = \frac{\pi}{4}$$
:

$$I_2 = \frac{I_0}{4}$$

$$E_2 = \frac{E_0}{2}$$

Quando $\beta = 0$ ou $\beta = \frac{\pi}{2}$:

$$I_2 = 0$$

$$E_2 = 0$$

2. "Suponha que o terceiro polarizador era inserido em A. Preveja se e como isso afeta a intensidade da luz que chega ao observador. A sua resposta depende da orientação do terceiro polarizador?"

Neste dois caso como temos polarizadores consecutivos com direções de polarização perpendiculares para qualquer orientação do polarizador entre a fonte e o primeiro polarizador temos,

$$E_2 = 0$$

$$I_2 = 0$$

Que foi verificado experimentalmente!

2 ª Parte - Lei de Malus

Material utilizado

- Laser de díodo;
- Lâmpada de halogéneo;
- 2 polarizadores lineares;
- Calha ótica e respetivos suportes;
- Foto díodos;
- Multímetro.

Montagem experimental

Para a realização deste trabalho utilizou-se o seguinte esquema ótico:

Figura 8 (Montagem experimental, 2ª Parte)

Legenda

L - Fonte de radiação

P1, P2 - Polarizadores

D - Detetor

M - Multímetro

Descrição do procedimento experimental

Em primeiro lugar, utilizando como fonte o laser díodo e apenas um polarizador, roda-se o mesmo de -90 a 90 graus (de 10 em 10 graus) e regista-se os valores de intensidade da luz que chega ao detetor de modo a calcular a % de polarização.

Adiciona-se agora outro polarizador, estando P1 e P2 inicialmente

orientados com $\theta=0$ ° e $\varphi=0$ ° e, posteriormente roda-se o P2 de -90 a 90 graus e regista-se, novamente, os valores de intensidade.

Em segundo lugar, repete-se o procedimento utilizado para a lâmpada de halogéneo.

Durante a realização desta experiência tivemos em consideração alguns aspetos como:

- O zero do ângulo considerado em todas as experiências corresponde à intensidade máxima;
- 2. Quando temos dois polarizadores apenas podemos rodar P2, porque para verificar a Lei de Malus o polarizador que é rodado precisa de receber um feixe já polarizado de modo a ter resultados mais fidedignos;
- 3. A sala do laboratório terá de estar escura durante a realização das experiências;
- 4. Não alterar a posição das fontes durante a realização das experiências.

Nota:

Caso se rode apenas o P1:

Figura 9 (Representação da rotação do P1)

Considerando que temos uma fonte polarizada,

$$\mu \simeq 0$$

por isso, variando γ temos:

$$I_1 = I_0 \cos(\gamma)^2$$

$$E_1 = E_0 \cos(\gamma)$$

e,

$$I_2 = I_1 \cos(\gamma)^2$$

$$E_2 = E_1 \cos(\gamma)$$

Então:

$$I_2 = I_0 \cos(\gamma)^4$$

$$E_2 = E_0 \cos(\gamma)^2$$

Caso rodássemos apenas P1, para verificar a Lei de Malus teríamos de ajustar uma função quadrática aos pontos de I em função do $\cos(\gamma)^2$ para obter o I_0 no ajuste.

Considerando uma fonte sem polarização, já é possível a realização de tal forma (rodando apenas P1) porque o valor de E_1 e I_1 será sempre o mesmo.

Já para uma percentagem de polarização intermédia, tem-se que:

$$I_1 \neq I_0 \cos(\gamma)^2$$

$$E_1 \neq E_0 \cos(\gamma)$$

E, I_1 e E_1 não são contantes, afetando assim os resultados.

Rodando apenas o P2 nenhum destes problemas ocorre por isso fizemos isso durante toda a experiência.

Análise de dados e discussão de resultados

Laser de díodo

Um Polarizador

Apenas com um polarizador, registaram-se os seguintes valores:

Intensidade (V)
0,0852
0,2848
1,100
2,849
4,381
6,60
8,41
10,55
11,79
12,16
11,80
11,05
9,10
7,50
5,407
3,350
1,750
0,6100
0,1034

Tabela 1 (Laser com um polarizador, ângulo e intensidade)

Quando o ângulo é 0 graus foi registada a intensidade máxima, quando o ângulo corresponde a 90 graus a intensidade é mínima. Podendo assim calcular a % de polarização do laser, como:

$$I_{Max} = 12,16 V \text{ e } I_{Min} = 0,0852 V \Rightarrow$$

$$\Rightarrow \%P = 98,6\%$$

Temos então que o laser de díodo é polarizado. Podemos também representar os pontos da tabela 1 num gráfico (Gráfico 1) e traçar um ajuste aos pontos experimentais (com o solver), onde a intensidade ajustada

corresponde (é verificada Lei de Malus por a luz ser polarizada):

$$I_{Ajustada} = I_0 \cos(\theta + \psi)^2$$

Gráfico 1 (Intensidade em função do ângulo, um polarizador, laser)

 I_0 e ψ são parâmetros do ajuste e correspondem neste caso a 12,07 V e 0 °, respetivamente. (I_0 com um desvio percentual de I_{Max} de 0,7%).

Dois Polarizadores

Com dois polarizadores, registaramse os seguintes valores:

Ângulo (°)	Intensidade (V)
-90	0,0000
-80	0,2430
-70	0,974
-60	2,039
-50	3,595
-40	5,053
-30	6,30
-20	7,51
-10	8,18
0	8,47
10	8,21
20	7,52
30	6,27
40	5,065
50	3,500
60	2,133
70	1,047
80	0,2806
90	0,0010

Tabela 2 (Laser com dois polarizadores, ângulo e intensidade)

No qual o gráfico e o ajuste aos pontos da tabela 2 corresponde:

Gráfico 2 (Intensidade em função do ângulo, laser com dois polarizadores)

Com,
$$I_0 = 8,48 V e \psi = 0$$
°.

A incerteza associada à intensidade é dada por:

$$\pm (0.15\% * [Valor] + 2 * [Escala])$$

Que pode ser encontrada no manual do usuário do voltímetro (que também se encontra no apêndice).

Assim temos as seguintes incertezas associada a cada valor individualmente:

		1
Intensidade	Escala	Incerteza da
(V)	(V)	intensidade (V)
0,0000	0,0001	0,0002
0,2430	0,0001	0,001
0,974	0,001	0,003
2,039	0,001	0,005
3,595	0,001	0,007
5,053	0,001	0,010
6,30	0,01	0,029
7,51	0,01	0,031
8,18	0,01	0,032
8,47	0,01	0,033
8,21	0,01	0,032
7,52	0,01	0,031
6,27	0,01	0,029
5,065	0,001	0,010
3,500	0,001	0,007
2,133	0,001	0,005
1,047	0,001	0,004
0,2806	0,0001	0,001
0,0010	0,0001	0,0002

Tabela 3 (Laser, intensidade, escala e incerteza da intensidade)

Como visto anteriormente, a Lei de Malus é dada por:

$$I(\theta) = \frac{c\varepsilon_0}{2} E_0^2 \cos \theta^2$$
Onde $I_0 = \frac{c\varepsilon_0}{2} E_0^2$, ou seja,
$$I(\theta) = I_0 \cos \theta^2$$

$$y = mx + 0$$

$$\Rightarrow m = I_0$$

A partir dos valores da tabela 2 podemos traçar um gráfico da intensidade em função do cosseno ao quadrado do ângulo:

Gráfico 3 (Intensidade em função do $\cos \theta^2$ com as barras de erro)

Fazendo uma regressão linear (fixando a ordenada na origem) dos pontos do Gráfico 2, obtém se as seguintes estatísticas:

$$m = 8,48 \pm 0,02 V$$
$$R^2 = 0,999$$

(0 desvio a I_0 (8,47 V) corresponde a 0,5 σ)

Também, como

$$I(\theta) = I_0 \cos \theta^2$$

temos que:

$$\frac{I(\theta)}{I_0} = \cos \theta^2$$
$$y = x + 0$$
$$\Rightarrow m = 1$$

Assim, temos os seguintes pontos experimentais:

Ângulo	$I(\theta)$
(°)	I_0
-90	0,00000
-80	0,0287
-70	0,1150
-60	0,241
-50	0,424
-40	0,597
-30	0,744
-20	0,887
-10	0,966
0	1,000
10	0,969
20	0,888
30	0,740
40	0,598
50	0,413
60	0,252
70	0,1236
80	0,0331
90	0,00012

Tabela 4 (Laser, ângulo e intensidade sobre a intensidade máxima)

Podendo obter a respetiva incerteza associada a cada valor individualmente, obtidas a partir da seguinte expressão:

$$\sigma_{\underline{I(\theta)}^{2}} = \sigma_{I(\theta)}^{2} \left(\frac{\partial \left(\frac{I(\theta)}{I_{0}}\right)}{\partial I(\theta)}\right)^{2} + \sigma_{I_{0}}^{2} \left(\frac{\partial \left(\frac{I(\theta)}{I_{0}}\right)}{\partial I(\theta)}\right)^{2}$$

$$\sigma_{\underline{I(\theta)}^{2}}^{2} = \sigma_{I(\theta)}^{2} \left(\frac{1}{I_{0}}\right)^{2} + \sigma_{I_{0}}^{2} \left(\frac{I(\theta)}{I_{0}^{2}}\right)^{2}$$

$$\sigma_{\underline{I(\theta)}^{2}}^{2} = \sqrt{\frac{\sigma_{I(\theta)}^{2}}{I_{0}^{2}} + \frac{\sigma_{I_{0}}^{2} I(\theta)^{2}}{I_{0}^{4}}}$$

Por isso temos:

$\frac{\sigma_{I(\theta)}}{I_0}$
0,00002
0,0001
0,0006
0,001
0,002
0,003
0,005
0,005
0,005
0,005
0,005
0,005
0,004
0,003
0,002
0,001
0,0006
0,0001
0,00002

Tabela 5 (Laser, $\frac{I(\theta)}{I_0}$ e $\sigma_{\frac{I(\theta)}{I_0}}$)

A partir dos valores da tabela 4, podemos traçar o seguinte gráfico:

Gráfico 4 (Intensidade sobre Intensidade máxima em função do $\cos \theta^2$ com as barras de erro)

Novamente, fazendo uma regressão linear dos pontos do Gráfico 3, obtém se as seguintes estatísticas:

$$m = 1,001 \pm 0,002$$
$$R^2 = 0.999$$

(0 desvio ao valor 1 corresponde a 0.5σ)

Para analisar os valores individualmente:

$$I = I_0 \cos(\theta)^2$$

Considerando I_0 o valor da intensidade registada em 0 graus (durante a experiência o máximo de intensidade foi a nossa referência para 0 graus) e multiplicando pelo quadrado do cosseno do ângulo, podemos obter a intensidade teórica.

Sendo o número de desvios:

$$n\sigma = \frac{\left|I_{Te\'orica} - I_{Experimental}\right|}{\sigma_{I_{Experimental}}}$$

Tendo em conta o que foi dito acima podemos fazer a seguinte tabela:

Intensidade	Incerteza da	Intensidade	Número de
(V)	intensidade (V)	teórica (V)	desvios, n
0,0000	0,0002	0,00	0,0
0,2430	0,001	0,26	22,0
0,974	0,003	0,99	4,9
2,039	0,005	2,12	15,5
3,595	0,007	3,50	12,9
5,053	0,010	4,97	8,6
6,30	0,029	6,35	1,8
7,51	0,031	7,48	1,0
8,18	0,032	8,21	1,1
8,47	0,033	8,47	0,0
8,21	0,032	8,21	0,1
7,52	0,031	7,48	1,3
6,27	0,029	6,35	2,8
5,065	0,010	4,97	9,9
3,500	0,007	3,50	0,1
2,133	0,005	2,12	3,0
1,047	0,004	0,99	15,7
0,2806	0,001	0,26	40,6
0,0010	0,0002	0,00	5,0

Tabela 6 (Incerteza teórica e número de desvios, laser)

Observando o número de desvios de alguns pontos podem nos induzir que os valores são disparatados, mas temos de ter em conta que a incerteza no ângulo é muito mais significativa que a incerteza do voltímetro. Como a escala de menor divisão do ângulo é

 $10\,^\circ$, a incerteza associada ao ângulo é $5\,^\circ$. Por isso, os desvios dos valores registados em relação aos valores teóricos, devem-se principalmente á incerteza no ângulo.

Discussão dos resultados obtidos, laser de díodo

Como esperado, o feixe do laser de díodo é polarizado.

Observando os valores obtidos nas regressões e considerando a incerteza associada à mesma, em ambas se encontram dentro do valor esperado. Tendo em conta este resultado podemos afirmar que a Lei de Malus foi verificada para o laser de díodo.

Em relação á análise dos valores individualmente, conseguimos observar que a incerteza na medição do ângulo é muito mais significativa que a incerteza da intensidade da radiação.

Lâmpada de halogéneo

Um Polarizador

Apenas com um polarizador, registaram-se os seguintes valores:

Ângulo (°)	Intensidade (V)
-90	0,703
-80	0,702
-70	0,703
-60	0,707
-50	0,719
-40	0,726
-30	0,734
-20	0,742
-10	0,748
0	0,751
10	0,75
20	0,748
30	0,744
40	0,731
50	0,719
60	0,708
70	0,703
80	0,697
90	0,698

Tabela 7 (Lâmpada com um polarizador, ângulo e intensidade)

Por isso:

$$I_{Max} = 0.751 V \text{ e } I_{Min} = 0.698 V \Rightarrow$$

$$\Rightarrow \%P = 3.3\%$$

Ou seja, podemos considerar que a lâmpada não é polarizada.

Neste caso, como a luz é não polarizada não é possível traçar um ajuste do solver para se verificar a Lei de Malus.

Dois Polarizadores

Com dois polarizadores, registaramse os seguintes valores:

	,
Ângulo (°)	Intensidade (V)
-90	0,0683
-80	0,0749
-70	0,0877
-60	0,1061
-50	0,130
-40	0,149
-30	0,177
-20	0,197
-10	0,209
0	0,211
10	0,206
20	0,194
30	0,172
40	0,145
50	0,125
60	0,0981
70	0,0810
80	0,0700
90	0,0684

Tabela 8 (Lâmpada com dois polarizadores, ângulo e intensidade)

Observando os valores da tabela 8, os +90° deveriam pontos aproximadamente 0 V, mas como a luz da lâmpada de halogénio é mais dispersa (O laser de díodo era apenas feixe. muito um preciso). Provavelmente a intensidade em ± 90° corresponde a uma que intensidade não atravessa através dos polarizadores, mas sim pelas laterais dos polarizadores, e vai ser constante durante toda experiência. Por esse motivo, podemos remover essa constante a todos os valores da tabela 8, obtendo assim a intensidade corrigida.

Assim temos os seguintes valores:

Ângulo (°)	Intensidade corrigida (V)
-90	0,000
-80	0,0066
-70	0,0194
-60	0,0378
-50	0,062
-40	0,081
-30	0,109
-20	0,129
-10	0,141
0	0,143
10	0,138
20	0,126
30	0,104
40	0,077
50	0,057
60	0,0298
70	0,0127
80	0,0017
90	0,0001

Tabela 9 (Lâmpada com dois polarizadores, ângulo e intensidade corrigida)

No qual o gráfico e o ajuste aos pontos da tabela 9 corresponde:

Gráfico 5 (Intensidade corrigida em função do ângulo, laser com dois polarizadores)

Com os seguintes parâmetros de ajuste, $I_0 = 1,42 \text{ V}$ e $\psi = 1,3 \degree$.

Como visto anteriormente, a incerteza associada à intensidade é dada por:

$$\pm (0.15\% * [Valor] + 2 * [Escala])$$

Assim a incerteza associada a cada valor individualmente é:

Intensidade	Escala	Incerteza da
corrigida (V)	(V)	intensidade (V)
0,0000	0,0001	0,0002
0,0066	0,0001	0,0002
0,0194	0,0001	0,0002
0,0378	0,0001	0,0003
0,062	0,001	0,002
0,081	0,001	0,002
0,109	0,001	0,002
0,129	0,001	0,002
0,141	0,001	0,002
0,143	0,001	0,002
0,138	0,001	0,002
0,126	0,001	0,002
0,104	0,001	0,002
0,077	0,001	0,002
0,057	0,001	0,002
0,0298	0,0001	0,0002
0,0127	0,0001	0,0002
0,0017	0,0001	0,0002
0,0001	0,0001	0,0002

Tabela 10 (Lâmpada, intensidade corrigida, escala e incerteza da intensidade)

Pode se agora traçar o ajuste dos pontos da tabela 9, da intensidade em função do quadrado do cosseno do ângulo (para se verificar a Lei de Malus):

Gráfico 6 (Intensidade corrigida em função do $\cos \theta^2$)

Fazendo uma regressão linear (fixando a ordenada na origem) dos pontos do Gráfico 6, obtém-se as seguintes estatísticas:

$$m = 0.142 \pm 0.001 V$$
$$R^2 = 0.999$$

(0 desvio a I_0 (0,143 V) corresponde a 1σ)

Também, temos os seguintes pontos experimentais:

Ângulo (°)	$\frac{I(\theta)}{I}$
	I_0
-90	0,000
-80	0,046
-70	0,136
-60	0,265
-50	0,43
-40	0,57
-30	0,76
-20	0,90
-10	0,99
0	1,00
10	0,96
20	0,88
30	0,73
40	0,54
50	0,40
60	0,209
70	0,089
80	0,012
90	0,001

Tabela 11 (Lâmpada, ângulo e intensidade corrigida sobre a intensidade máxima)

Como vimos anteriormente,

$$\sigma_{\frac{I(\theta)}{I_0}} = \sqrt{\frac{\sigma_{I(\theta)}^2}{{I_0}^2} + \frac{{\sigma_{I_0}}^2 I(\theta)^2}{{I_0}^4}}$$

Assim temos que a incerteza correspondente a cada valor é:

$\frac{I(\theta)}{I}$	$\sigma_{\frac{I(\theta)}{I_0}}$
I_0	
0,000	0,001
0,046	0,002
0,136	0,003
0,265	0,004
0,43	0,02
0,57	0,02
0,76	0,02
0,90	0,02
0,99	0,02
1,00	0,02
0,96	0,02
0,88	0,02
0,73	0,02
0,54	0,02
0,40	0,02
0,209	0,004
0,089	0,002
0,012	0,001
0,001	0,001

Tabela 12 (Laser.
$$\frac{I(\theta)}{I_0}$$
 e $\sigma_{\frac{I(\theta)}{I_0}}$)

A partir dos valores da tabela 11, podemos traçar o seguinte gráfico:

Gráfico 7 (Intensidade sobre Intensidade máxima em função do $\cos\theta^2$)

Novamente, fazendo uma regressão linear dos pontos do Gráfico 7, obtém se as seguintes estatísticas:

$$m = 0,995 \pm 0,008$$
$$R^2 = 0.999$$

(0 desvio ao valor 1 corresponde a 0.55σ)

Analisando individualmente os valores:

Intensidade	Incerteza da	Intensidade	Número de
(V)	intensidade (V)	teórica (V)	desvios, n
0,0000	0,0002	0,0000	0,0
0,0066	0,0002	0,0043	10,9
0,0194	0,0002	0,0167	11,8
0,0378	0,0003	0,0357	8,3
0,062	0,002	0,059	1,3
0,081	0,002	0,084	1,4
0,109	0,002	0,107	0,8
0,129	0,002	0,126	1,2
0,141	0,002	0,138	1,0
0,143	0,002	0,143	0,0
0,138	0,002	0,138	0,3
0,126	0,002	0,126	0,1
0,104	0,002	0,107	1,5
0,077	0,002	0,084	3,3
0,057	0,002	0,059	1,1
0,0298	0,0002	0,0357	24,0
0,0127	0,0002	0,0167	18,2
0,0017	0,0002	0,0043	12,9
0,0001	0,0002	0,0000	0,5

Tabela 13 (Incerteza teórica e número de desvios, lâmpada)

Novamente, observando o número de desvios de alguns pontos podem nos induzir que os valores são disparatados, mas como vimos anteriormente, temos de ter em conta que a incerteza no ângulo é muito mais significativa que a incerteza do voltímetro.

Discussão dos resultados obtidos, lâmpada de halogénio

Como esperado, vimos que a lâmpada de halogénio não é polarizada.

Novamente, também foi verificada a Lei de Malus, agora para a lâmpada de halogénio (embora se tenha feito uma correção pela luz ser mais dispersa).

Conclusão

Esta experiência foi muito interessante porque permitiu-nos também conhecer e compreender melhor as propriedades dos polarizadores, como por exemplo o ponto F e F.1 do procedimento experimental, 1ª parte polarização.

Tendo em conta todos os resultados obtidos, esta experiência foi um sucesso, conseguindo concluir que a laser de díodo é polarizado e a lâmpada de halogénio não polarizada, também verificamos a Lei de Malus tanto para a lâmpada de halogénio, como para o laser de díodo.

Apêndice

No manual do voltímetro tínhamos os seguintes dados:

Função	Resolução	Precisão*
Milivolts CC	0,1 mV	
	0,001 V	
Volts CC	0,01 V	0,15%+2
Voits CC	0,1 V	
	1 V	

Tabela 14 (Precisão no multímetro)

^{*} $(\pm [\% da leitura] + [contagens])$

Bibliografia

- 1. *Hecht, E.* (tradução portuguesa da 3º edição); 2º ed, Fundação Calouste Gulbenkian, Lisboa, (2002).
- "T6 Polarização. Lei de Malus." Laboratório de Eletromagnetismo (e Ótica) 2021/22 Universidade do Minho.
- 3. Polarização da luz. Obtido a 20 de abril de 2022 <u>Link</u>
- 4. Figura 8. Obtido a 20 de abril de 2022 em Link
- 5. Ilustração Lâmpada. Obtido a 6 de maio de 2022 em <u>Link</u>
- 6. Figura 1. Obtido a 20 de abril de 2022 em <u>Link</u>