Fundamentals of Computer Graphics

Exercises

Emanuele Rodolà rodola@di.uniroma1.it

Overview

There are 3 exercises of increasing difficulty (and decreasing detail in the description)

- You can use all the code from the course webpage
- You can co-operate in groups
- Doing all 3 correctly grants 1 extra point in the final grade for each group member

Exercise 1: Shape approximation

Given a shape \mathcal{X} , approximate its vertex coordinates in the Laplacian eigenbasis at increasing number of basis functions.

- Represent the x,y,z coordinates as three functions in the Laplacian eigenbasis of dimension k, obtaining k coefficients for each of the three functions
- ullet Resynthesize the coordinate functions from the k coefficients
- Illustrate the behavior at k = 10, 20, 50, 100, 300
- Compute the approximation error for each k as the L_2 distance between each reconstructed vertex and its original position in \mathbb{R}^3
- Visualize the approximation error as a scalar function on each reconstructed shape using the inverse hot colormap. The colormap should have fixed extrema across all reconstructions

Exercise 2: Schrödinger eigenbasis

Consider the functional

$$\mathcal{R}(f) = \int_{\mathcal{X}} (f(x)(1 - u(x)))^2 dx$$

where $u:\mathcal{X}\to[0,1]$ is an indicator function such that u(x)=1 for $x\in R\subseteq\mathcal{X}$ and u(x)=0 otherwise

- Write the integral above in matrix notation
- Construct the Schrödinger operator ${\bf S} + \mu {\bf R}$, where ${\bf S}$ is the usual stiffness matrix, $\mu > 0$ is a scalar weight, and ${\bf R}$ is the matrix from the previous bullet point
- \bullet Compute the eigen-functions of ${\bf S} + \mu {\bf R}$ and plot them with a zero-centered blue/white/red colormap

The final result should be similar to the next slide.

Exercise 2: Schrödinger eigenbasis

Exercise 3: Localized correspondence

Express the ground-truth functional map in the Schrödinger eigenbasis and use it to transfer delta functions

