Homework 2

Ben Larson

Sept 14, 2016

For this homework I developed line search algorithms as they apply to steepest decent and newton method. The algorithms I wrote were done in MATLAB and followed the description as seen in the book, Chp3 pg 60,61.

I would first like to define a few terms so that I can talk about the experiments.

Each experiment went through the same number of iterations to find the minimum using:

$$\alpha_k = LineSearch()$$

$$x_{k+1} = x_k + \alpha_k p_k$$

repeat

Where the search direction is defined as $p_k = -\beta_k^{-1} \nabla f_k$ and $\beta_k^{-1} = I$ for steepest decent and $\beta_k^{-1} = \nabla^2 f(x_k)$ for newton methods.

This homework focused on finding the optimal α_k . This is accomplished by passing an intial guess for α_k through a system of wolfe conditions:

$$f(x_k + \alpha * p_k) \le f(x_k) + c_1 * \alpha \nabla f_k^T p_k$$

Sufficient decrease condition. This condition will only allow α values that reduce our function value after our step.

$$\nabla f(x_k + \alpha_k p_k)^T p_k \ge c_2 \nabla f_k^T p_k$$

Curvature condition. This condition is to check if we can make bigger step sizes.

I define $\nabla f_k^T p_k$ as the directional derivative below.

Image of the value map of $f_1(x_1, x_2)$. From this we can kind of get an estimate of the minimum using this range of values(-3:3).

Image of the value map for $f_2(x_1, x_2)$. We again can get a general idea of the minimizer for the ranges of (-4:4).

1 Code

This is how I selected an α for the optimization methods. There were parts of the algorithm that was put in the book that I couldn't figure out. Mostly the zoom method produced results I didn't expect. Such as when my α did not satisfy the sufficient decrease condition and continued to try and find a new smaller alpha. After 40 iterations of this I just stopped it and used whatever alpha it had reached. For steepest descent I picked my first alpha to be unreasonably large (100) this is so that I will for sure break the sufficient decrease condition and force my algorithm to find smaller steps. For newton method my initial alpha was 1 as suggested in the book.

Line Search

- 1. Chose an initial $\alpha_0 = 0$ and α_1 between 0 and max. loop
- 2. check if sufficient decrease, if not then use zoom
- 3. check curvature conditions, if not then use zoom
- 4. check directional derivative is negative if not, use zoom
- 5. if none of these conditions were met, then chose a new α_i , larger.

Zoom

- 1. interpolate for a trial value α_j between α_i . The input lets say is the interval: a (low alpha) and b (high alpha).
- 2. if sufficient decrease not met, decrease the highest step; $b = \alpha_i$
- 3. else, check curvature conditions. and if ok this is the new α_i b = a
- 4. if both fail try a new alpha in the range of input α_i and α_{max}

2 Steepest Descent

f1 using [1,0] as initial point.

iteration	location	directional derivative	step length	f(x)
1	[-0.280,-0.299]	[-3.277,-0.765]	0.3907	0.978
2	[-0.370,0.812]	[-0.058,0.711]	1.5626	0.851
3	[-0.902,0.567]	[-1.361,-0.627]	0.3907	0.831
4	[-0.533,0.667]	[1.887,0.514]	0.1954	0.616

f1 using [-1,1] as initial condition.

iteration	location	directional derivative	step length	f(x)
1	-1.1,-0.2	-2.7,-0.9	0.78	2.35
2	0.3,0.15	3.8,1.1	0.39	1.4
3	-0.7,-0.2	-1.3,-0.5	0.78	1.23
4	-0.15,0.13	1.5,1.04	0.39	0.87

f2 using [1,0] as initial point. Step length stagnant between iterations, but still decreasing. Maybe already close to the local minimum (see graphs and location above).

iteration	location	directional derivative	step length	f(x)
1	[0.6, -0.5]	[-3.2,-6]	0.097	1.21
2	[0.85, 0.04]	[1.7,6.4]	0.097	1.13
3	[0.59, -0.35]	[-2.7, -5.9]	0.09	1.069
4	[0.76, 0.06]	[1.78,6.0]	0.09	0.998

f2 using [1,-1] as center point. Does not reach a minimum if compared to min above. Maybe this is because of the slow zig zag down gradients (see directional derivatives).

iteration	location	directional derivative	step length	f(x)
1	1.2,0.17	2.8,12	0.09	4.0
2	0.6,-0.8	-6,-10	0.0978	3.88
3	1, 0.2	3.5,11.7	0.0978	3.67
4	0.5,-0.8	-4.9,-10.9	0.0978	3.54

f3 using [1,0,0] as center point. This method seems to work well for this function.

iteration	location	directional derivative	step length	f(x)
1	0.9,0.09,0	-2,15,0	0.0062	0.46
2	0.98,0.06,-0.001	-0.5,-3.7,-0.1	0.062	0.42
3	0.972,0.08,-0.002	-0.9,0.8,-0.1	0.0123	0.4186
4	0.9,0.06,0-0.003	-0.7,-1.4,-0.1	0.0123	0.4151

f3 using [1,-1,0] as center point

iteration	location	directional derivative	step length	f(x)
1	0.8,0.33,0.012	-17,215,2	0.0062	7.4
2	0.9,0.003,0.006	3.2,-53,-0.9	0.0062	0.6
3	0.9,0.08,0.005	-1.7,13,05,-0.14	0.0062	0.38
4	0.9,0.06,0.004	-0.5,-3.2,-0.2	0.0062	0.3565

3 Newton Method

f1 using [1,0] as initial point.

iteration	location	directional derivative	step length	f(x)
1	[0.66, -0.200]	[-0.6,-0.4]	0.5	1.7727
2	[0.3687, -0.176]	[-0.5,0.05]	0.5	1.342
3	[-0.481,0.271]	[-0.8,0.4]	1.0	0.658
4	[-0.733,0.757]	[-0.25,0.5]	1.0001	0.58

fl using [1,-1] as initial point. However matlab threw error "matrix singular". I checked the eigen values of the hessian, the smallest was 0. The algorithm still made small decreases towards a minimum however. Possibly matlab fixes the singular problem on it's own(modifying the hessian).

iteration	location	directional derivative	step length	f(x)
1	0.7 - 1	5, 0		2.07
2	0.3, -1			1.69
3	0.32, -1			1.69
4	0.078,-1			1.62

f2 using [1,0] as initial point

iteration	location	directional derivative	step length	f(x)
1	[0.9, -0.01]	[-0.33,-0.22]	0.0625	1.15
2	[0.9, -0.02]	[-0.3,-0.2]	0.0625	1.02
3	[0.9, -0.03]	[-3,-0.1]	0.0625	0.912
4	[0.9, -0.04]	[-0.3,-0.17]	0.0625	0.8109

f2 using [1,-1] as center point.

iteration	location	directional derivative	step length	f(x)
1	0.9,-0.9	-0.2,-0.7	0.0625	3.97
2	0.95,-0.90	-0.3,0.7	0.0625	3.34
3	0.93,-0.86	-0.3,0.6	0.0625	2.94
4	0.9,-0.8	-0.3,0.6	0.0625	2.6

f3 using [1,0,0] as center point . The problem with this function and method was that sufficient decrease was not obtained.

iteration	location	directional derivative	step length	f(x)
1	0.9,0,0	-1,0,0	0.0078	0.984
2	0.9,0,0	-0.9,0,0	0.0078	0.9691
3	0.9,0, 0	-0.9,0,0	0.0078	0.954
4	0.9,0,0	-0.9,0,0	0.0078	0.9392

f3 using [1,-1,0] as center point

iteration	location	directional derivative	step length	f(x)
1	0.9,-0.9,0	-1,1,0	0.0078	114.19
2	0.9,-0.9, 0	-0.9,0.9,0	0.0078	112.4
3	0.9,-0.9,0	-0.9,0.9,0	0.0078	110.6
4	0.9,-0.9,0	-0.97,0.97,0	0.0078	108.94

4 Modified Newton

What modified Newton means is that you correct for the possibility that the hessian matrix is not positive definite. MATLAB threw errors saying my matrix was singular. I believe this is similar to the positive definite problem. My solution was to check the eigenvalues of the hessian. If $any(eigenvalues \le 0)$ then I added a small $\epsilon * I$ to the hessian matrix.

$$\nabla f_k^2 = \nabla f_k^2 + \epsilon I$$

f1 using [1,0] as initial point.

iteration	location	directional derivative	step length	f(x)
1	[0.6, -0.2]	[-0.6,-0.4]	0.5	1.77
2	[0.3, -0.2]	[-0.6,0.04]	0.5	1.34
3	[-0.4, 0.27]	[-0.8,0.4]	1.0	0.65
4	[-0.7, 0.7]	[-0.2,0.4]	1.0001	0.58

f
1 using [1,-1] as intial point

iteration	location	directional derivative	step length	f(x)
1	0.7,-1	-0.5,9.2e-6	0.5	2.07
2	0.3,-0.9	-0.4,0.002	1.0	1.69
3	0.05,-0.8	0.14	1.0	1.45
4	-0.6,0.4	-0.6,1.3	1.0	0.59

f2 using [1,0] as initial point

iteration	location	directional derivative	step length	f(x)
1	[0.9, -0.01]	[-0.3, -0.2]	0.0625	1.15
2	[0.95, -0.02]	[-0.3, -0.2]	0.0625	1.02
3	[0.9, -0.03]	[-0.31,-0.18]	0.0625	0.9120
4	[0.9,-0.04]	[-0.3,-0.17]	0.0625	0.81

f2 using [1,-1] as center point.

iteration	location	directional derivative	step length	f(x)
1	0.9,-0.9	-0.2,-0.7	0.0625	3.97
2	0.95,-0.90	-0.3,0.7	0.0625	3.34
3	0.93,-0.86	-0.3,0.6	0.0625	2.94
4	0.9,-0.8	-0.3,0.6	0.0625	2.6

f3 using [1,0,0] as center point. The problem with this function and method was that sufficient decrease was not obtained. I see it getting stuck in my code when trying to find a new alpha that satisfies the sufficient decrease and curvature conditions. I forced my code to stop after a certain step length was found (hence no change in alpha between iterations).

iteration	location	directional derivative	step length	f(x)
1	0.9,0,0	-1,0,0	0.0078	0.984
2	0.9,0,0	-0.9,0,0	0.0078	0.9691
3	0.9,0, 0	-0.9,0,0	0.0078	0.954
4	0.9,0,0	-0.9,0,0	0.0078	0.9392

f3 using [1,-1,0] as center point.

iteration	location	directional derivative	step length	f(x)
1	0.9,-0.9,0	-1,1,0	0.0078	114.19
2	0.9,-0.9, 0	-0.9,0.9,0	0.0078	112.4
3	0.9,-0.9,0	-0.9,0.9,0	0.0078	110.6
4	0.9,-0.9,0	-0.97,0.97,0	0.0078	108.94