Operating System

Booting

- 1. Power on
- 2. CPU reset
- 3. POST(Power On Self Test)
- 4. Load boot sector into 0x7c00
- 5. Enter protected mode

IA-32

- IA-32 (Intel Architecture, 32-bit), as known as i386, is the title of the third generation x86 architecture.
- IA-32 was first implemented in Intel 80386 in 1985. It was the first x86 microprocessor to support 32-bit computing.

IA-32

- There are two working mode, which are real mode and protected mode.
- When we boot up the computer, CPU is working under real mode. By entering protected mode, CPU can have more powerful address capability.
- Why do we need two modes?
 Let's review architectural history...

Intel 8086

- Intel 8086 is a 16-bit microprocessor chip
- 16-bit register
- 16-bit data bus
- 20-bit address bus
- 1MB address capability
- Physical address
 - = Segment(16) + Offset(16)

Intel 8086

Example:

- 0x1000(Segment):0x1234(Offset)
 - $= (0x1000 << 4) \mid 0x1234$
 - = 0x11234
- 0x06EF(Segment):0x1234(Offset)
 - $= (0x06EF << 4) \mid 0x1234$
 - = 0x08124
- 0xFFFF(Segment):0x0010(Offset)
 - $= (0xFFFF << 4) \mid 0x0010$
 - = 0x00000

Intel 80386

- Intel 80386 is a 32-bit microprocessor chip
- 32-bit register
- 32-bit data bus
- 32-bit address bus
- 4GB address capability
- Still using segment:offset to represent a memory address

What's the difference?

GDT

- In real mode, an address with segment 0x1234 means a memory segment starting from 0x12340
- In protected mode, segment is an index referring to a data structure which defines the detail of the segment.
- This data structure is called
 Global Descriptor Table(GDT).

GDT

- There is only one GDT allowed to exist in the system. In Intel architecture, the address of GDT is stored in a register GDTR.
- Shared memory and kernel memory will be described by the GDT.

LDT

- Besides GDT, IA-32 allows programmer to create several Local Descriptor Tables (LDT).
- LDT is essential to implementing separate address spaces for multiple processes.
 There will be generally one LDT per user process, describing privately held memory.
- LDT itself is a segment, and its segment descriptor is stored in GDT.

Privilege

Why is it called "protected" mode?

 There are four privilege levels or rings in protected mode, numbered from 0 to 3.

Ring 0 is the most privileged and 3 is the

least.

CPL, DPL, RPL

CPL(Current Privilege Level)

 The privilege level of current process. It's stored in the lowest two bits of CS and SS.

DPL(Descriptor Privilege Level)

 The privilege level of a segment. It's stored in the DPL bit of segment descriptor.

RPL(Requested Privilege Level)

 The privilege level of a request. It's stored in the lowest two bits of segment selector.

CPL, DPL, RPL

Check whether a request is legal:

```
EPL = CPL > RPL ? CPL : RPL;
if (EPL <= DPL) {
  // request accepted
} else {
  // request denied
```

- The Interrupt Descriptor Table(IDT) is a data structure used by the x86 architecture to implement an interrupt vector table.
- The IDT is used by the processor to determine the correct response to interrupts and exceptions.
- Use of the IDT is triggered by three types of events: hardware interrupts, software interrupts, and processor exceptions.

Real mode:

- The IDT resides at a fixed location in memory from address 0x0000 to 0x03ff, and consists of 256 32-bit real mode pointers.
- A real mode pointer is defined as a 16-bit segment address and a 16-bit offset into that segment.

Protected mode:

- The IDT is an array of 8-byte descriptors stored consecutively in memory and indexed by an interrupt vector.
- These descriptors may be either interrupt gates, trap gates or task gates.

Protected mode:

- Interrupt gate will disable further processor handling of hardware interrupts, and is mainly used for handling service hardware interrupts.
- Trap gate will leave hardware interrupts enabled and is mainly used for handling software interrupts and exceptions.
- Task gate will cause the currently active task-state segment to be switched, effectively hand over use of the processor to another program, thread or process. (not used in Linux)

- In protected mode, the IDT may reside anywhere in physical memory.
- In Intel architecture, the processor has a special register called IDTR to store the base address and the length of the IDT.
- When an interrupt occurs, the processor multiplies the interrupt vector by 8 and adds the result to the IDT base address.
- The 8-byte descriptor at the result address location is loaded and actions are taken.

Summary

- Segment addressing
- Descriptor table
- Privilege levels
- Interrupt vector