# STAT 566 Fall 2013 Statistical Inference Lecture Notes

# Junfeng Wen Department of Computing Science University of Alberta junfeng.wen@ualberta.ca

# December 22, 2013

# Contents

| 1 | Lecture 1: Introduction  1.1 Incomplete Repertory of Tasks                                                                                                                                              | 2<br>2<br>2            |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 2 | Lecture 2: Evaluation of Statistical Procedures I         2.1 How to compare $\delta$ ?          2.2 Comparing risk function I: Bayes risk          2.3 Bayes theorem          2.4 Bayes risk revisited | 2<br>3<br>3<br>3       |
| 3 | Lecture 3: Location Estimation, Bayes Rules for Parametric Models 3.1 Prerequisites & Bayes risk revisited                                                                                              | <b>4</b> 4             |
| 4 | Lecture 4: Evaluation of Statistical Procedures II  4.1 Comparing risk function II: minimax  4.2 Connection between minimax and Bayes  4.3 Admissibility  4.4 Unbiasedness                              | 5<br>5<br>6<br>6       |
| 5 | Lecture 5: Building Statistical Procedure I  5.1 Sufficient statistics                                                                                                                                  | 7<br>7<br>9<br>10      |
| 6 | 6.1 Substitution principle                                                                                                                                                                              | 13<br>15<br>16<br>17   |
| 7 | 7.1 Bootstrap                                                                                                                                                                                           | 1 <b>7</b><br>17<br>18 |
| 8 | 8.1 Bayesian confidence/probability intervals                                                                                                                                                           | 19<br>19<br>19         |
| 9 | 9.1 Setup                                                                                                                                                                                               | 20<br>20<br>20<br>21   |

| 10 | Lecture 10: Multiple testing                                        | 21             |
|----|---------------------------------------------------------------------|----------------|
|    | 10.1 Union-intersection test                                        | 22             |
|    | 10.2 Intersection-union test                                        | 22             |
|    | 10.3 Controlling family-wise error rate                             | 22             |
|    | 10.4 Controlling false discovery rate                               | 22             |
|    |                                                                     |                |
|    |                                                                     |                |
| 11 | Lecture 11: Hypothesis testing, practical procedures                | 23             |
| 11 | Lecture 11: Hypothesis testing, practical procedures 11.1 Wald test |                |
| 11 | V1                                                                  | 23             |
| 11 | 11.1 Wald test                                                      | 23<br>23       |
| 11 | 11.1 Wald test                                                      | 23<br>23<br>24 |

# 1 Lecture 1: Introduction

# 1.1 Incomplete Repertory of Tasks

- Estimation. E.g. estimating someone's weight.
- Testing. E.g. testing whether a treatment will work.
- Classification. E.g. email spam filter.
- Ranking...

### 1.2 Decision-theoretic Framework

- Data  $x \in \mathcal{X}$ , an outcome of random element X, a point in the sample space  $\mathcal{X}$ .
- Action space A, the space of decisions
  - For classification,  $\mathcal{A}$  is finite with at least two elements.
  - For testing, two possible elements: accept/reject.
- **Decision rule**  $\delta$ , procedure, any (possibly randomized) function.  $\delta: \mathcal{X} \mapsto \mathcal{A}$ .
- Model P, from which X is drawn, an element of some collection of distributions  $\mathcal{P}$ .
  - Parametric model  $\mathcal{P} = \{P_{\theta}\}$ , with  $\theta$  in some space  $\Theta$  (say  $\mathbb{R}^n$ ).
- Loss function  $l(\delta(x), P)$ , the loss incurred when action  $a = \delta(x)$  is chosen, and X is from P. Usually  $l \ge 0$ .

# 2 Lecture 2: Evaluation of Statistical Procedures I

# 2.1 How to compare $\delta$ ?

• If  $a = \delta(x)$  is randomized, then first average the loss over all possible a:

$$\overline{l}(\delta(x), P) = E_a(l(\delta(x), P)).$$

• Compare based on risk:

$$r_{\delta}(P) = E_{x \sim P}[l(\delta(x), P)] = \int l(\delta(x), P) dP(x).$$

- If  $\delta$  is randomized, then replace l by  $\overline{l}$  first.
- It depends on P.

# Estimation of the mean of normal.

 $X \sim \mathcal{N}(\theta, 1)$ , to estimate  $\theta$  with quadratic loss  $l(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2$ . Given an observation X, consider two estimators:

$$\hat{\delta}(X) = \hat{\theta}(X) = X; \quad \tilde{\delta}(X) = \tilde{\theta}(X) = 0.$$

Their respective risks are given by

$$r_{\hat{\theta}}(P) = E[(X - \theta)^2] = Var(X) = 1$$
  
 $r_{\tilde{\theta}}(P) = E[(0 - \theta)^2] = E^2(X) = \theta^2$ 

Therefore, none of  $\hat{\theta}(x)$  and  $\tilde{\theta}$  is dominant, because the risks depend on  $\theta$ , that is, P, the distribution of X.

# 2.2 Comparing risk function I: Bayes risk

- Prior distribution  $\Pi$  of P over distribution space  $\mathcal{P}$ .
  - In parametric case, prior  $\Pi$  of  $\theta$  over its space  $\Theta$ .
  - Bayes inference, given X, we can update our belief on P

$$\Pr(P|X) = \frac{\Pr(X|P)\Pr(P)}{\Pr(X)} \propto \Pr(X|P)\Pi(P)$$

• Bayes risk is defined by

$$R_{\delta}^{\Pi} = E_{P \sim \Pi}[r_{\delta}(P)] = \int r_{\delta}(P)d\Pi(P).$$

• It only depends on the decision rule  $\delta$  and the prior  $\Pi$ .

# 2.3 Bayes theorem

• Suppose that  $f_{U,V}(u,v)$  is a joint density of random elements U and V. The (marginal) density of V is

$$f_V(v) = \int f_{U,V}(u,v)du.$$

The conditional density of U given V is

$$f_{U|V}(u|v) = \frac{f_{U,V}(u,v)}{f_{V}(v)} = \frac{f_{U,V}(u,v)}{\int f_{U,V}(u,v)du}.$$

The Bayes theorem states

$$f_{V|U}(v|u) = \frac{f_{U,V}(u,v)}{f_{U}(u)} = \frac{f_{U,V}(u,v)}{\int f_{U,V}(u,v)dv} = \frac{f_{U|V}(u|v)f_{V}(v)}{\int f_{U|V}(u|v)f_{V}(v)dv}.$$

### 2.4 Bayes risk revisited

• Let the **posterior risk** be

$$R^{\Pi}(\delta(X)|P) = E_{P \sim \Pi}[l(\delta(X), P)|X].$$

• Bayes risk can be computed via posterior distribution

$$R_{\delta}^{\Pi} = E_{P \sim \Pi}[r_{\delta(P)}] \qquad R_{\delta}^{\Pi} = \int r_{\delta}(P)d\Pi(P) = \int r_{\delta}(p)f_{P}(p)dp$$

$$= E_{P \sim \Pi}[E_{X \sim P}[l(\delta(X), P)|P)]] \qquad = \int \left(\int l(\delta(x), P)f_{X|P}(x|p)dx\right)f_{P}(p)dp$$

$$= E_{(X,P)\sim(P,\Pi)}[l(\delta(X), P)] \qquad = \int \int l(\delta(x), P)f_{X,P}(x, p)dxdp$$

$$= E_{X \sim P}[E_{P \sim \Pi}[l(\delta(X), P)|X)]] \qquad = \int \left(\int l(\delta(x), P)f_{P|X}(p|x)dp\right)f_{X}(x)dx$$

$$= E_{X \sim P}[R^{\Pi}(\delta(X)|P)] \qquad = \int R^{\Pi}(\delta(X)|P)f_{X}(x)dx.$$

This will be favourable when posterior distribution  $f_{P|X}(p,x)$  is easily accessible.

# 3 Lecture 3: Location Estimation, Bayes Rules for Parametric Models

# 3.1 Prerequisites & Bayes risk revisited

- Assume that  $X \sim Q$  and we are interested in estimating some characteristic quantity of the distribution Q, say  $\theta(Q)$ , where  $\theta(\cdot)$  is a functional.
- Characteristic quantity of the distribution Q
  - Mean:  $\theta(Q) = \int x dQ(x)$ . Not always exists (e.g. Cauchy).
  - **Median**:  $\theta(Q)$  satisfies

$$\Pr\left(X \leqslant \theta(Q)\right) \geqslant \frac{1}{2}, \Pr\left(X \geqslant \theta(Q)\right) \geqslant \frac{1}{2}$$

- **Quantile**: For  $\tau \in (0,1)$ ,  $\theta_{\tau}(Q)$  satisfies

$$\Pr(X \leq \theta_{\tau}(Q)) \geqslant \tau, \Pr(X \geqslant \theta_{\tau}(Q)) \geqslant 1 - \tau.$$

When  $\tau = \frac{1}{2}$ , it is median.

- Evaluation of estimation quality: losses in question
  - Quadratic loss:  $l^{(2)}(a,Q) = (a-\theta(Q))^2$ , then  $r_{\delta}^{(2)}(Q) = E_{X \sim Q}^{(2)}[(\delta(X) \theta(Q))^2]$ .
  - Absolute loss:  $l^{(1)}(a,Q) = |a \theta(Q)|$ , then  $r_{\delta}^{(1)}(Q) = E_{X \sim Q}^{(1)}[|\delta(X) \theta(Q)|]$ .
  - **0-1 loss**:  $l^{(0)}(a,Q) = I(a \neq \theta(Q))$ , then

$$\begin{split} r_{\delta}^{(0)}(Q) &= E_{X \sim Q}^{(0)}[I(\delta(X) \neq \theta(Q))] \\ &= \Pr(\delta(X) \neq \theta(Q)) \cdot I(\delta(X) \neq \theta(Q)) + \Pr(\delta(X) = \theta(Q)) \cdot I(\delta(X) \neq \theta(Q)) \\ &= \Pr(\delta(X) \neq \theta(Q)) \cdot 1 + \Pr(\delta(X) = \theta(Q)) \cdot 0 \\ &= \Pr(\delta(X) \neq \theta(Q)). \end{split}$$

The second equation is because X can choose two types of values, those  $\delta(X) \neq \theta(Q)$  and those  $\delta(X) = \theta(Q)$ 

- Bayes approach
  - Get the posterior distribution given X.
    - \* Know the posterior distribution of Q, then compute  $\theta(Q)$ .
    - \* Or know the posterior distribution of  $\theta$  directly.
  - Observe the loss function in question and determine its corresponding characteristic value.
    - \* For  $l^{(2)}$ , the solution is the mean of posterior distribution.
    - \* For  $l^{(1)}$ , the solution is the median of posterior distribution.
    - \* For  $l^{(0)}$ , the solution is the mode of posterior distribution.

# 3.2 Estimation in parametric models

- Assume we have n independent variables  $X_i$ ,  $i = 1, \dots, n$  jointly from distribution P, which is determined by Q, the identical distribution of  $X_i$ . Further assume that  $\theta(Q)$  is one-to-one map.
- To estimate the quantity  $\theta(P)$  given data, we need its posterior distribution. (No loss function for the moment)

# Posterior of normal.

 $X_i \sim \mathcal{N}(\mu, \sigma)$ , to estimate  $\mu$  given  $X_i = x_i$ . Assume normal prior for  $\mu$ :  $\mu \sim \mathcal{N}(\mu_0, \sigma_0)$ . That is,

$$\pi(\mu) = \frac{1}{\sigma_0 \sqrt{2\pi}} \exp\left(-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right)$$
$$q(x|\mu) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right).$$

The posterior of  $\mu$  given data  $x_1, \dots, x_n$  is

$$f(\mu) \propto \prod_{i=1}^{n} q(x|\mu) \pi(\mu)$$

$$= \exp\left(-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^2} - \frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right)$$

$$= \exp\left(-\frac{1}{2} \left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}\right) \mu^2 + \left(\frac{n\bar{x}}{\sigma^2} + \frac{\mu_0}{\sigma_0^2}\right) \mu\right).$$

That is,

$$\mathcal{N}\left(\frac{\frac{\bar{x}}{\sigma^2} + \frac{\mu_0}{n\sigma_0^2}}{\frac{1}{\sigma^2} + \frac{1}{n\sigma_0^2}}, \frac{1}{\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}}\right).$$

In general, if a random variable X has a density of the form  $K \exp(ax^2 + bx + c)$ , then

- -a < 0, otherwise the integral will not converge to 1;
- The density can be expressed as

$$K\exp(ax^2+bx+c)=K\exp\left(\frac{c}{a}-\frac{b^2}{4a^2}\right)\exp a\left(x-\left(-\frac{b}{2a}\right)\right)^2,$$

which is the density of a normal distribution with  $\mu = -\frac{b}{2a}$  and  $\sigma^2 = -\frac{1}{2a}$ ;

-c is free and K = K(a, b, c) is a normalizing positive constant.

# 4 Lecture 4: Evaluation of Statistical Procedures II

### 4.1 Comparing risk function II: minimax

• The minimax risk ("worst case")

$$\bar{R}_{\delta} = \sup_{P \in \mathcal{D}} r_{\delta}(P).$$

• Minimax rule is the rule that minimize minimax risk.

### 4.2 Connection between minimax and Bayes

- Suppose  $\delta^{\Pi}$  is the Bayes rule for some prior  $\Pi$ , i.e.,  $R^{\Pi}_{\delta^{\Pi}} = \inf_{\delta} R^{\Pi}_{\delta}$  and suppose that for all P,  $r_{\delta^{\Pi}}(P) \leqslant R^{\Pi}_{\delta^{\Pi}}$ , then  $\delta^{\Pi}$  is minimax (and  $\Pi$  is called a least favourable prior).
  - Proof: If  $\delta^{\Pi}$  were not minimax, then there would exist  $\delta$  such that

$$\sup_{P} r_{\delta}(P) < \sup_{P} r_{\delta^{\Pi}}(P) \leqslant R_{\delta^{\Pi}}^{\Pi}.$$

As the average never exceeds sup, and the average of a constant is that constant, we would have a contradiction with the assumptions:

$$R_{\delta}^{\Pi} = E_{P \sim \mathcal{P}}[r_{\delta}(P)] \leqslant \sup_{\mathcal{D}} r_{\delta}(P) < \sup_{\mathcal{D}} r_{\delta^{\Pi}}(P) \leqslant R_{\delta^{\Pi}}^{\Pi}.$$

• If  $\delta$  is the Bayes rule with respect to some prior  $\Pi$ , and if it has constant risk,  $r_{\delta}(P) = c$  for all P, then  $\delta$  is minimax.

5

– In fact,  $r_{\delta^{\Pi}}(P) = R_{\delta^{\Pi}}^{\Pi} = c$  in such cases.

#### 4.3 Admissibility

- $\delta$  is admissible if there is no  $\tilde{\delta}$  such that  $r_{\tilde{\delta}}(P) \leqslant r_{\delta}(P)$  with strict inequality < at
- Connection to Bayes rule: if  $\delta^{\Pi}$  is the unique Bayes rule with respect to a prior  $\Pi$ , then  $\delta^{\Pi}$  is admissible.
  - Proof: If not, there exists  $\delta$  such that  $r_{\delta}(P) \leq r_{\delta} \pi(P)$  with strict inequality for some P, which implies

$$R_{\delta}^{\Pi} = E_{P \sim \Pi}[r_{\delta}(P)] \leqslant E_{P \sim \Pi}[r_{\delta^{\Pi}}(P)] = R_{\delta^{\Pi}}^{\Pi}.$$

Not necessarily the middle inequality is <, despite the strict inequality for at least one P (because difference at single point may not influence their integral; but if  $\mathcal{P}$  is discrete or continuous, then strict inequality will hold); however, the result is a contradiction with uniqueness.

- Connection to minimax rule: if  $\delta$  has constant risk and is admissible, then it is minimax.
  - Proof: Let  $\delta_c$  be an admissible rule with constant risk c, i.e.,  $r_{\delta_c}(P) = c, \forall P \in \mathcal{P}$ . Because  $\delta_c$  is admissible, for any other rule  $\delta$ , there exists  $P_0 \in \mathcal{P}$ , such that

$$r_{\delta_c}(P_0) \leqslant r_{\delta}(P_0).$$

Now we prove the claim by contradiction. Assume that  $\delta_c$  is not minimax, then there exists  $\delta$ , such that

$$\sup_{P \in \mathcal{P}} r_{\delta}(P) < \sup_{P \in \mathcal{P}} r_{\delta_c}(P).$$

Since the supremum should be larger than or equal to the risk at any specific P, we have

$$r_{\delta}(P_0) \leqslant \sup_{P \in \mathcal{P}} r_{\delta}(P)$$

To combine, we have

$$c = r_{\delta_c}(P_0) \leqslant r_{\delta}(P_0) \leqslant \sup_{P \in \mathcal{P}} r_{\delta}(P) < \sup_{P \in \mathcal{P}} r_{\delta_c}(P) = c.$$

A contradiction. Therefore, the assumption is false.  $\delta_c$  is minimax.



# James-Stein estimator.

 $X_i \sim \mathcal{N}(\theta_i, 1), i = 1, \dots, p$ , to estimate  $\theta_i$  with quadratic loss  $l(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2$ . The natural estimator is  $\theta_i = X_i$ . It is admissible for p = 1, 2, but not for p > 3; in that case, the James-Stein estimator

$$\widehat{\theta}_i^{JS} = \left(1 - \frac{p-2}{\sum_{i=1^p} X_i^2}\right)^+ X_i$$

has smaller risk. However, James-Stein estimator is not admissible either.

### Unbiasedness

•  $\delta$  is unbiased with respect to a loss l if for every P

$$r_{\delta}(P) = E_{X \sim P}[l(\delta(X), P)] \leqslant E_{X \sim P}[l(\delta(X), Q)], \text{ for all } Q.$$

That is,  $E_{X \sim P}[l(\delta(X), Q)]$  is minimized at  $Q^* = P$ .

• When P is parametrized,  $\delta$  is unbiased with respect to a loss l if for every  $\theta$ 

$$E_{X \sim P_{\theta}}[l(\delta(X), \theta)] \leq E_{X \sim P_{\theta}}[l(\delta(X), \tilde{\theta})], \text{ for all } \tilde{\theta}.$$

# Unbiasedness for quadratic loss.

If l is quadratic loss, then unbiasedness means

$$\theta = \operatorname{argmin}_{\tilde{\theta}} E_{X \sim P_{\theta}} [(\delta(X) - \tilde{\theta})^{2}]$$

$$= \operatorname{argmin}_{\tilde{\theta}} \tilde{\theta}^{2} + 2\tilde{\theta} E_{X \sim P_{\theta}} [\delta(X)]$$

$$= E_{X \sim P_{\theta}} [\delta(X)].$$



# Bias-variance decomposition.

If l is quadratic loss, then the risk is

$$r_{\delta}(P) = E_{X}[(\delta(X) - \theta(P))^{2}]$$

$$= E[(\delta(X) - E(\delta(X)) + E(\delta(X)) - \theta(P))^{2}]$$

$$= E[((\delta(X) - E(\delta(X)))^{2}] + [E(\delta(X)) - \theta(P)]^{2}$$

$$= Var(\delta(X)) + Bias^{2}(\delta(X))$$

#### Lecture 5: Building Statistical Procedure I 5

#### Sufficient statistics 5.1

- A statistic is a function  $T: \mathcal{X} \to \mathbb{R}$ .
- A statistic T is called **sufficient** for the model  $\mathcal{P}$ , if the conditional distribution of the data X given the value of T(X) = T(x) does not depend on  $\mathcal{P}$ .



# Sufficient statistic for binomial distribution.

Suppose  $X \in \{0,1\}^n$  with independent and entries, where  $P(X_i = 1) = p, \forall i$ . Then  $T(X) = X^T \hat{\mathbf{1}}$  is sufficient:

$$\begin{split} P(X|X^T\mathbf{1} = s) &= \frac{P(X, X^T\mathbf{1} = s)}{X^T\mathbf{1} = s} \\ &= \begin{cases} \frac{p^s(1-p)^{n-s}}{\binom{n}{s}p^s(1-s)^{n-s}} &= \binom{n}{s}^{-1} & \text{if } X^T\mathbf{1} = s \\ 0 & \text{if } X^T\mathbf{1} \neq s \end{cases} \end{split}$$

which does not depend on p.

- If  $T(\cdot)$  is a sufficient statistic for  $\mathcal{P}$  and S is a one-to-one function, then  $S(T(\cdot))$  is also a sufficient statistic for  $\mathcal{P}$ .
- A sufficient statistic which is a function of every other sufficient statistic is called minimal sufficient.
  - May not exist.
  - In the binomial example, T(X) = X is not, but  $T(X) = X^T \mathbf{1}$  is.
- Let  $\Pi$  be a prior distribution on  $\mathcal{P}$ . A statistic  $T(\cdot)$  is called **Bayes sufficient** for  $\Pi$ , if the posterior distribution of P given X = x is the same as the posterior distribution of P given T(X) = T(x), for all x.
- (Kolmogorov) If T(X) is sufficient for  $\mathcal{P}$ , it is Bayes sufficient for every  $\Pi$ .
  - The converse is also true, but not in general.
- (Rao-Blackwell) Construct decision rule from sufficient statistics. Suppose that the loss function is convex for fixed P:

$$l(\alpha_1 a_1 + \alpha_2 a_2, P) \leq \alpha_1 l(a_1, P) + \alpha_2 l(a_2, P)$$

where  $\alpha_1, \alpha_2 \ge 0$  and  $\alpha_1 + \alpha_2 = 1$ . If T(X) is sufficient for  $\mathcal{P}$  and  $\delta$  is a decision rule, then the decision rule  $\delta^*(X) = E_{\delta(X)}(\delta(X)|T(X))$  has uniformly smaller risk:

$$r_{\delta *}(P) \leqslant r_{\delta}(P), \forall P.$$

# Rao-Blackwell for binomial distribution.

Suppose  $X \in \{0,1\}^n$  with independent and entries, where  $P(X_i = 1) = p, \forall i$ . Then  $T(X) = X^T \mathbf{1}$  is sufficient for p. Consider  $\delta(X) = X_1$  (estimating p, unbiased). Then

$$\begin{split} \delta^*(X) &= E_{\delta(X)}[\delta(X)|T(X) = T(x)] \\ &= E_{X_1}(X_1|X^T\mathbf{1} = s) \\ &= 0 \cdot P(X_1 = 0|X^T\mathbf{1} = s) + 1 \cdot P(X_1|X^T\mathbf{1} = s) \\ &= P(X_1|X^T\mathbf{1} = s) \\ &= \frac{P(X_1 = 1, X^T\mathbf{1} = s)}{P(X^T\mathbf{1} = s)} \\ &= \frac{p \cdot \binom{n-1}{s-1}p^{s-1}(1-p)^{(n-1)-(s-1)}}{\binom{n}{s}p^s(1-p)^{n-s}} \\ &= \frac{s}{n} = \frac{X^T\mathbf{1}}{n}. \end{split}$$

It is unbiased with respect to quadratic loss:

$$E_{X \sim P}\left(\frac{X^T \mathbf{1}}{n}\right) = \frac{1}{n} \sum_{i=1}^n E(X_i) = p.$$

Thus, its risk is the variance (see bias-variance decomposition):

$$r_{\delta*}(P) = Var\left(\frac{X^T \mathbf{1}}{n}\right) = \frac{1}{n^2} \sum_{i=1}^n Var(X_i) = \frac{1}{n^2} \cdot n \cdot p(1-p) = \frac{p(1-p)}{n}.$$

It has uniformly smaller risk than  $\delta(X)$  for any p:

$$r_{\delta*}(P) = E_{X \sim P} \left[ l \left( \frac{X^T \mathbf{1}}{n}, p \right) \right]$$

$$\leq E_{X \sim P} [l(X_1, p)]$$

$$= p \cdot (1 - p)^2 + (1 - p) \cdot (0 - p)^2$$

$$= p(1 - p).$$

• (Neyman-Savage) Factorization criterion for sufficient statistics. Suppose that X has a density (or mass). T is sufficient for  $\theta$  iff there are g and h such that

$$f(x|\theta) = g(T(x), \theta)h(x).$$

– T is sufficient for  $\theta$  if and only if the following is true:

$$T(x) = T(y) \Rightarrow f(x|\theta) = c(x, y)f(y|\theta).$$

- T is minimal sufficient for  $\theta$  if and only if the following is true:

$$T(x) = T(y) \Leftrightarrow f(x|\theta) = c(x, y)f(y|\theta).$$



# Neyman-Savage factorization criterion for binomial distri-

Suppose  $X \in \{0,\underline{1}\}^n$  with independent and entries, where  $P(X_i = 1) = p, \forall i$ . Then  $T(X) = X^T \mathbf{1}$  is sufficient for p, since if T(X) = T(x) = s,

$$f(x|p) = p^{s}(1-p)^{n-s} = g(s,p)h(x),$$

where

$$g(s,p) = p^{s}(1-p)^{n-s}; h(x) = 1.$$

T is minimal. Let

$$f(x|p) = p^{\sum_{i} x_{i}} (1-p)^{n-\sum_{i} x_{i}}; f(y|p) = p^{\sum_{i} y_{i}} (1-p)^{n-\sum_{i} y_{i}}.$$

T is minimal because

$$T(x) = T(y) = s \Leftrightarrow f(x|p) = c(x,y)f(y|p),$$

where c(x, y) = 1.



# Neyman-Savage factorization criterion for normal distribu-

Suppose  $X_i \sim \mathcal{N}(\mu, \sigma^2), i = 1, \dots, n, \sigma^2$  is known, to estimate  $\mu$ . Then T(X) = $X^T \mathbf{1}$  is sufficient for  $\mu$ , since if T(X) = T(x) = s,

$$\begin{split} f(x|p) &= \frac{1}{\sigma^n (2\pi)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right) \\ &= \frac{1}{\sigma^n (2\pi)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2\right) \cdot \exp\left(\frac{1}{2\sigma^2} (2\mu \sum_{i=1}^n x_i - n\mu^2)\right) \\ &= h(x)g(s,p). \end{split}$$

where

$$g(s,p) = \exp\left(\frac{1}{2\sigma^2}(2\mu s - n\mu^2)\right)$$
$$h(x) = \frac{1}{\sigma^n(2\pi)^{n/2}}\exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n x_i^2\right).$$

T is minimal. To see this, set  $c(x,y) = \exp\left(-\frac{1}{2\sigma^2}\sum_i(x_i^2 - y_i^2)\right)$ .

#### Complete statistics 5.2

- Assume a parametric model  $\{P_{\theta}\}$  and the quadratic loss function.
- A statistic S is **complete** if for every function g, independent of  $\theta$ ,

$$E_{X \sim P_{\theta}}[g(S(X))] = 0, \forall \theta \Rightarrow \Pr_{X \sim P_{\theta}}[g(S(X)) = 0] = 1, \forall \theta.$$

Roughly speaking, if the expectation with respect to all  $\theta$  is 0, then g is identically zero.



# Complete statistic for binomial distribution.

Suppose  $X \in \{0,1\}^n$  with independent and entries, where  $P(X_i = 1) = p, \forall i$ . Then  $T(X) = X^T \mathbf{1}$  is complete for p: if

$$E[g(T(X))] = \sum_{k=0}^{n} g(k) \Pr(T(X) = k) = \sum_{k=0}^{n} g(k) \binom{n}{k} p^{k} (1-p)^{n-k},$$

equals to zero for all  $p \in [0,1]$ , then g(k) = 0 for all k, because E[g(T(X))] is a polynomial of p.

• (Lehmann-Scheffé) Any unbiased estimator based (only) on a complete, sufficient statistic is **minimum-variance unbiased estimator**. That is, it has the smallest variance (= MSE for unbiased), for all  $\theta$ , among all unbiased estimators of  $\theta$ .

### 5.3 Cramér-Rao bound

- In this part we only consider **regular** models, whose support  $(\{x|f(x;\theta)>0\})$  does not depend on  $\theta$ . Also assumed is that we may interchange integration and differentiation.
- The score function is

$$s(x;\theta) = \frac{\partial}{\partial \theta} \log f(x;\theta) = \frac{\frac{\partial}{\partial \theta} f(x;\theta)}{f(x;\theta)}.$$

- Note that

$$E_{X \sim P_{\theta}}[s(X;\theta)] = \int \frac{\frac{\partial}{\partial \theta} f(x;\theta)}{f(x;\theta)} f(x;\theta) dx$$

$$= \int \frac{\partial}{\partial \theta} f(x;\theta) dx$$

$$= \frac{\partial}{\partial \theta} \int f(x;\theta) dx$$

$$= \frac{\partial}{\partial \theta} 1 = 0.$$
(5.1)

- When X consists of independent r.v.s then

$$s(x;\theta) = \frac{\partial}{\partial \theta} \log f(x;\theta) = \frac{\partial}{\partial \theta} \sum_{i=1}^{n} \log g(x_i;\theta) = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log g(x_i;\theta)$$

 $\bullet$  The  $Fisher\ information$  is defined by

$$I(\theta) = Var_{X \sim P_{\theta}}[s(X; \theta)]$$

$$= E_{X \sim P_{\theta}}[s^{2}(X; \theta)]$$

$$= \int \left(\frac{\frac{\partial}{\partial \theta}f(x; \theta)}{f(x; \theta)}\right)^{2} f(x; \theta) dx$$

$$= \int \frac{\left(\frac{\partial}{\partial \theta}f(x; \theta)\right)^{2}}{f(x; \theta)} dx$$

- Another way to compute  $I(\theta)$  via second derivative. First note that

$$\frac{\partial^2}{\partial^2 \theta} \log f = \frac{\partial}{\partial \theta} \frac{f'}{f} = \frac{f''f - f'f'}{f^2}.$$

Also,

$$E_{X \sim P_{\theta}}\left(\frac{f''}{f}\right) = \int \frac{f''}{f} f dx = \int f'' dx = 0 \text{ as } \int f dx = 1.$$

To combine, we have

$$E\left(-\frac{\partial^2}{\partial^2 \theta} \log f\right) = E\left(\frac{f'f' - f''f}{f^2}\right)$$
$$= E\left(\left(\frac{f'}{f}\right)^2\right) - E\left(\frac{f''}{f}\right)$$
$$= E(s^2) - 0 = I(\theta)$$

- When X consists of independent r.v.s then

$$I(\theta) = Var_{X \sim P_{\theta}}[s(X; \theta)]$$

$$= Var_{X \sim P_{\theta}}\left[\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log g(x_{i}; \theta)\right]$$

$$= \sum_{i=1}^{n} Var_{X \sim P_{\theta}}\left[\frac{\partial}{\partial \theta} \log g(x_{i}; \theta)\right]$$

$$= \sum_{i=1}^{n} \int \frac{(\frac{\partial}{\partial \theta} g(x_{i}; \theta))^{2}}{g(x_{i}; \theta)} dx_{i}$$

If all  $g_i$  are identical, then

$$I(\theta) = n \int \frac{\left(\frac{\partial}{\partial \theta} g(y; \theta)\right)^2}{g(y; \theta)} dy$$

• Cramér-Rao inequality provides a lower bound on the variance of any statistic U(X). Consider the covariance of  $s(X;\theta)$  and U(X). By Cauchy-Schwartz inequality

$$\begin{split} [Cov_{X \sim P_{\theta}}(s(X;\theta),U(X))]^2 &\leqslant Var_{X \sim P_{\theta}}(s(X;\theta)) \cdot Var_{X \sim P_{\theta}}(U(X)) \\ &= I(\theta) \cdot Var_{X \sim P_{\theta}}(U(X)) \end{split}$$

To compute  $Cov_{X \sim P_{\theta}}(s(X; \theta), U(X))$  (note Eq.(5.1)):

$$\begin{split} Cov_{X \sim P_{\theta}}(s(X;\theta), U(X)) &= E_{X \sim P_{\theta}}[s(X;\theta)U(X)] - E_{X \sim P_{\theta}}(s(X;\theta))E_{X \sim P_{\theta}}[U(X)] \\ &= E_{X \sim P_{\theta}}[s(X;\theta)U(X)] \\ &= \int \frac{\frac{\partial}{\partial \theta}f(x;\theta)}{f(x;\theta)}U(x)f(x;\theta)dx \\ &= \int \frac{\partial}{\partial \theta}f(x;\theta)U(x)dx \\ &= \frac{\partial}{\partial \theta}\int U(x)f(x;\theta)dx = \frac{\partial}{\partial \theta}E_{X \sim P_{\theta}}[U(X)]. \end{split}$$

Therefore, Cramér-Rao lower bound gives

$$Var_{X \sim P_{\theta}}(U(X)) \geqslant \frac{\{\frac{\partial}{\partial \theta} E_{X \sim P_{\theta}}[U(X)]\}^2}{I(\theta)}$$

- When U(X) is unbiased w.r.t. quadratic loss:

$$E_{X \sim P_{\theta}}(U(X)) = \theta.$$

Because  $\frac{\partial}{\partial \theta} E_{X \sim P_{\theta}}[U(X)] = \frac{\partial}{\partial \theta} \theta = 1$ , we have

$$Var_{X \sim P_{\theta}}(U(X)) \geqslant \frac{1}{I(\theta)}$$

# Cramér-Rao lower bound for binomial distribution.

Suppose  $X \in \{0,1\}^n$  with independent and entries, where  $P(X_i = 1) = p, \forall i$ .  $g(x_i;p) = p^{x_i}(1-p)^{1-x_1}$ . To compute the Fisher information

$$I(p) = n \times E_{X_i} \left[ \left[ \frac{\partial}{\partial \theta} \log g(x_i; p) \right]^2 \right]$$

$$= n \cdot E_{X_i} \left[ \left( \frac{x_i}{p} - \frac{1 - x_i}{1 - p} \right)^2 \right]$$

$$= \frac{n}{p^2 (1 - p)^2} E_{X_i} [(x_i - p)^2]$$

$$= \frac{n}{p^2 (1 - p)^2} Var_{X_i} (x_i) = \frac{n}{p(1 - p)}.$$

Therefore, any unbiased estimator of p must have a variance (which equals its

mean square error) greater than  $\frac{1}{I(p)} = \frac{p(1-p)}{n}$ . Now let's compute the variance (also MSE) of an unbiased estimator T(X) =

$$Var_X(T(X)) = \frac{1}{n^2} \sum_{i=1}^{n} Var_{X_i}(X_i) = \frac{p(1-p)}{n}.$$

Therefore, this estimator makes the Cramér-Rao lower bound tight.

When Cramér-Rao an equality? The inequality is the result of Cauchy-Schwartz. Therefore, if the score function has the form

$$s(x;\theta) = \frac{\partial}{\partial \theta} \log f(x;\theta) = c(\theta) + d(\theta)U(x),$$

equality will hold. Then

$$f(x;\theta) = \exp(\eta(\theta)U(X) - a(\theta) + g(x)).$$

That is, exponential families preserve equality in Cramér-Rao. For the exponential family, if we define  $\eta = \eta(\theta)$  as a new parameter, then  $a(\theta) = b(\eta)$ . For the density, we have

 $\int f(x;\eta)dx = \int \exp(\eta U(X) - b(\eta) + g(x))dx = 1.$ 

Differentiating in  $\eta$  on both sides (assuming we can interchange integration and differentiation), we have

$$0 = \int \exp(\eta U(X) - b(\eta) + g(x))(U(x) - b'(\eta))dx$$
  
=  $\int U(x) \exp(\eta U(X) - b(\eta) + g(x))dx - b'(\eta) \exp(\eta U(X) - b(\eta) + g(x))dx$   
=  $E_X(U(x)) - b'(\eta)$ .

Therefore, we have  $E_X(U(x)) = b'(\eta)$ . Similarly, we can show that  $Var_X(T(X)) = b''(\eta)$ .

# Cramér-Rao for exponential distribution.

Exponential distribution is specified by

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & \text{when } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

where  $\lambda > 0$  is the parameter. Note that it can be also expressed as

$$f(x;\theta) = \begin{cases} \frac{1}{\theta}e^{-\frac{1}{\theta}x} & \text{when } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

for  $\theta > 0$ . With this new parametrization, we can see that U(X) = X is unbiased for  $\theta$ , with least variance (MSE) one can have because of Cramér-Rao inequality.

Note that if we use old parametrization with  $\lambda$ , then U(X) = -X and

$$\lambda e^{-\lambda x} = e^{-\lambda x - (-\ln \lambda)}.$$

Thus 
$$b'(\lambda) = \frac{-1}{\lambda}$$
, so is  $E_X(U(X)) = E_X(-X) = -E_X(X) = \frac{-1}{\lambda}$ .

Thus  $b'(\lambda) = \frac{-1}{\lambda}$ , so is  $E_X(U(X)) = E_X(-X) = -E_X(X) = \frac{-1}{\lambda}$ . (Side note: having an estimator,  $\hat{\theta}$  of  $\theta$ , with some properties does not mean that  $g(\theta)$  is the estimator of  $g(\theta)$  with the same properties (unless g is very simple - say, a linear function). For instance, an unbiased estimator for  $\sigma^2$  may not be unbiased for  $\sigma$ )



# Cramér-Rao for binomial distribution: revisited.

Suppose  $X \in \{0,1\}^n$  with independent and entries, where  $P(X_i = 1) = p, \forall i$ .  $g(x_i; p) = p^{x_i}(1-p)^{1-x_1}$ . The joint distribution is

$$f(x;p) = p^{\sum_{i} x_{i}} (1-p)^{n-\sum_{i} x_{i}}$$

$$= \left(\frac{p}{1-p}\right)^{\sum_{i} x_{i}} (1-p)^{n}$$

$$= \exp\left(\ln \frac{p}{1-p} \sum_{i} x_{i} + n \ln(1-p)\right).$$

Let  $\eta = \ln \frac{p}{1-p}$ , we have

$$f(x;p) = \exp\left(\eta \sum_{i} x_i - n \ln(1 + e^{\eta})\right)$$

Therefore, it is also a member of exponential family. As a result, Cramér-Rao bound is sharp (as we already shown).

#### Lecture 6: Building Statistical Procedure II 6

#### Substitution principle 6.1

- Let  $x = (x_1, x_2, \dots, x_n)$ , which is a realization of  $X = (X_1, X_2, \dots, X_n)$ , where  $X_i$  is a r.v. with distribution P. We want to estimate  $\theta(P)$ , some characteristic quantity of P. Typically,  $X_i$  are independent, but it is not absolutely necessary; some permutational invariance (exchangeability) is enough.
- An **empirical distribution** by x is the discrete distribution that assigns probability  $\frac{1}{n}$  to every point  $x_i$ , denoted  $\mathbb{P}_x$ :

$$\mathbb{P}_x(E) = \frac{1}{n} \operatorname{card}\{i | x_i \in E\}.$$

• The substitution principle states that to estimate  $\theta(P)$ , replace P by  $\mathbb{P}_x$ .

Moment estimation.

Suppose we want to estimate the kth moment

$$\theta(P) = \int z^k dP(z), k = 1, 2, \cdots$$

The resultant estimators with substitution principle is

$$\theta(\mathbb{P}_x) = \int z^k d\mathbb{P}_x(z) = \frac{1}{n} \sum_{i=1}^n x_i^k.$$

Variance estimation.

Suppose we want to estimate the variance

$$\theta(P) = \int \left(z - \int u dP(u)\right)^2 dP(z).$$

The resultant estimator with substitution principle is

$$\theta(\mathbb{P}_x) = \frac{1}{n} \sum_{i=1}^n \left( x_i - \frac{1}{n} \sum_{i=1}^n x_i \right)^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2.$$



Linear regression.

Consider the linear regression model:

$$Y = \alpha X + \beta + U, \tag{6.1}$$

where X is input variable and Y is output variable (jointly with U from some distribution),  $\alpha, \beta$  are the parameters of the model, and U is an error term independent of X (so they are also uncorrelated, E(XU) = 0) with E(U) = 0. Taking expectation on both sides, we have

$$E(Y) = \alpha E(X) + \beta. \tag{6.2}$$

Moreover, we can multiply Eq.(6.1) by X, then take expectation:

$$E(XY) = \alpha E(X^2) + \beta E(X). \tag{6.3}$$

With Eq.(6.2) and Eq.(6.3), we can solve  $\alpha, \beta$  as

$$\alpha = \frac{E(XY) - E(X)E(Y)}{E(X^2) - (E(X))^2} = \frac{Cov(X,Y)}{Var(X)}$$
$$\beta = E(Y) - \alpha E(X).$$

By substitution principle, all expectations (variance/covariance) can be computed from sample  $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}:$ 

$$\widehat{\alpha} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

$$\widehat{\beta} = \overline{y} - \widehat{\alpha}\overline{x}$$

break.

# Quantile estimation.

For  $\tau \in (0,1)$ , suppose we are going to estimate the quantile  $q_{\tau}$  such that

$$P((-\infty, q_{\tau}]) \geqslant \tau; P([q_{\tau}, +\infty)) \geqslant 1 - \tau.$$

We can see quantile in a different way. Define check function as

$$\rho_{\tau}(z) = |z| + (2\tau - 1)z = \begin{cases} 2\tau z & \text{for } z > 0\\ 2(1 - \tau)z & \text{for } z \leqslant 0 \end{cases}$$

Then

$$q_{\tau} = \operatorname{argmin}_{c} E[\rho_{\tau}(Z - c)] = \int \rho_{\tau}(z - c) dP(z).$$

Therefore, given  $\tau \in (0,1)$ , to estimate  $q_{\tau}$ , find the minimizer  $c^*$  of

$$\int \rho_{\tau}(z-c)d\mathbb{P}_{x}(z) = \frac{1}{n} \sum_{i=1}^{n} \rho_{\tau}(x_{i}-c).$$

For instance, if  $\tau = 0.5$ , we are trying to estimate the median, then

$$\operatorname{card}\{i|x_i \leqslant c^*\} \geqslant \frac{n}{2}; \operatorname{card}\{i|x_i \geqslant c^*\} \geqslant \frac{n}{2}.$$

That is,  $c^*$  is just sample median.

• Can be used to estimate non-parametric model. If we want to estimate the accumulative distribution  $F(z) = P((-\infty, z])$ , by substitution principle, we have

$$\mathbb{F}_n(z) = \mathbb{P}_x(z) = \frac{1}{n} \operatorname{card}\{i | x_i \leq z\},$$

which is essentially a step function.

- $E(\mathbb{F}_n(z)) = F(z).$
- $-Var(\mathbb{F}_n(z)) = \frac{F(z)(1-F(z))}{n}.$
- $-\mathbb{F}(z) \to F(z)$  as  $n \to \infty$  (in probability, almost surely).
- $-\sup_{z} |\mathbb{F}(z) F(z)| \to 0 \text{ as } n \to \infty \text{ (in probability, almost surely)}.$

# 6.2 Consistency

- If the estimator  $\hat{\theta}_n$  converges to the target/estimated quantity  $\theta$  as  $n \to \infty$ , where convergence is determined by
  - Convergence in probability

$$\Pr(|\hat{\theta} - \theta| \ge \epsilon) \to 0 \text{ for every } \epsilon > 0.$$

- Almost surely (with probability 1) convergence

$$\Pr(|\hat{\theta} - \theta| \to 0) = 1.$$

- Convergence in some mean sense

$$E(|\widehat{\theta} - \theta|^p) \to 0.$$

then we say  $\hat{\theta}_n$  is **consistent**.



# Consistent estimator for mean and variance.

Assume that  $X_i$  are iid r.v.s and the mean  $\mu = E(X_i)$  exists. Then  $\bar{X}_n$  is a consistent estimator for  $\mu$ . By a law of large numbers (have different versions).

$$\bar{X}_n \stackrel{p}{\to} \mu$$

as  $n \to \infty$ .

Now further assume that the variance  $\sigma^2 = Var(X_i)$  exists. Consider the quantity

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu) = \sqrt{n} (\bar{X}_n - \mu).$$

A central limit theorem (again, many versions) states that

$$\frac{\bar{X}_n - E(\bar{X}_n)}{\sqrt{Var(X_n)}} = \frac{\bar{X}_n - \mu}{\sqrt{\frac{\sigma^2}{n}}} = \sqrt{n} \frac{\bar{X}_n - \mu}{\sigma}$$

converges in distribution to the standard normal distribution  $\mathcal{N}(0,1)$ . It follows that  $\sqrt{n}(\bar{X}_n - \mu)$  converges in distribution to  $\mathcal{N}(0, \sigma^2)$ .

# Asymptotic normality

- If the estimator,  $\hat{\theta}_n$ , of  $\theta$ , has the property that  $\sqrt{n}(\hat{\theta}_n \theta)$  converges in distribution to  $\mathcal{N}(0,\sigma^2)$ , then we call that estimator **asymptotically normal** with asymptotic variance  $\sigma^2$ .
  - The smaller  $\sigma^2$  is, the better (more accurate).
- To compare two asymptotically normal estimator  $\hat{\theta}$  and  $\hat{\theta}$ , with

$$\sqrt{n}(\widehat{\theta} - \theta) \xrightarrow{d} Z \sim \mathcal{N}(0, \sigma^2); \quad \sqrt{n}(\widetilde{\theta} - \theta) \xrightarrow{d} Z \sim \mathcal{N}(0, \widetilde{\sigma}^2).$$

The asymptotic relative efficiency (ARE) of  $\hat{\theta}$  to  $\hat{\theta}$  is defined as

$$ARE(\widetilde{\theta}, \widehat{\theta}) = \frac{\sigma^2}{\widetilde{\sigma}^2}.$$



# ARE of sample mean versus sample median.

Assume that  $X_i$  are iid r.v.s whose mean and median are both  $\mu$ .

- Suppose that the variance of  $X_i$  is  $\sigma^2$ ; from the central limit theorem, we know that  $\sigma^2$  is the asymptotic variance of the sample mean.
- Suppose that the common density, f, of  $X_i$  exists and is positive at  $\mu$ . For the sample median, Kolmogorov proved that under these assumptions, it is asymptotically normal with the asymptotic variance  $\frac{1}{4(f(u))^2}$ .

For instance, if the distribution of  $X_i$  is normal, then the asymptotic variance of sample mean is  $\sigma^2$ , while the asymptotic variance of sample median is

$$\frac{1}{4(f(\mu))^2} = \frac{\pi}{2}\sigma^2.$$

Therefore,

$$ARE(\mu_{\text{median}}, \mu_{\text{mean}}) = \frac{\sigma^2}{\frac{\pi}{2}\sigma^2} = \frac{2}{\pi} \approx 0.6366,$$

which means sample mean  $\mu_{\text{mean}}$  is more efficient.

For any unimodal f (only has one mode), the ratio is  $\geq 1/3$  and there are f with > 1, i.e., the sample median is more efficient (t distribution with 3 or 4 degrees of freedom, for instances).

#### 6.4Maximum likelihood estimate

Likelihood

$$L(\theta) = f(x; \theta).$$

If we have independent r.v.s, then

$$L(\theta) = f(x; \theta) = \prod_{i=1}^{n} g(x_i; \theta).$$

• Maximum likelihood estimate is given by

$$\hat{\theta} = \operatorname{argmax}_{\theta} L(\theta).$$

Usually take the logarithm when we have independent r.v.s.

- Suppose that  $\hat{\theta}_n$  are maximum likelihood estimators of  $\theta$ , from iid sample where the distribution of  $X_i$  is specified by  $\theta$ . Then typically,
  - Maximum likelihood estimators are consistent (in probability):  $\hat{\theta}_n \stackrel{p}{\to} \theta$ .
  - They are asymptotically normal, and asymptotically efficient:

$$\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{\to} Z \sim \mathcal{N}\left(0, \frac{1}{I(\theta)}\right),$$

where  $I(\theta)$  is the Fisher information for one observation from the family parametrized by  $\theta$ . (Note that the Fisher information for the whole sample  $X_1, X_2, \dots, X_n$  is  $nI(\theta)$ .)

#### 7 Lecture 7: Estimating the precision of estimates

#### 7.1Bootstrap

• We care about how accurate our prediction is.



# Standard error: a canonical example.

Consider an example where  $X_1, \dots, X_n$  are i.i.d. r.v.s with the same distribution P with mean  $\mu$  and variance  $\sigma^2$ . We are estimating the mean  $\mu$  by  $\bar{X}$ . It is known that  $Var(\bar{X}) = \frac{\sigma^2}{n}$ . So the standard error of sample mean is given by

$$se_{X \sim P}(\bar{X}) = \frac{\sigma}{\sqrt{n}}.$$

However, we don't know  $\sigma$ , so we can estimate this by substitution principle,

$$se_{X \sim \mathbb{P}_x}(\bar{X}) = \frac{1}{\sqrt{n}} \sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2}.$$

(Sometimes, n-1 is preferable.)

Unlike the example above, standard error (standard deviation) of estimator  $\theta$  may not be calculated in closed form. So we can estimate its standard error via bootstrap.

- Generate B bootstrap samples of size n (sampling from  $\mathbb{P}_x$  with replacement.)
- We estimate  $se_{\mathbb{P}_x}(\hat{\theta})$  by the standard derivative of  $\hat{\theta}^*$ , the estimation from bootstrap sample:

$$se_{\mathbb{P}_x}(\hat{\theta}) \approx \sqrt{\frac{1}{B} \sum_{i=1}^B (\hat{\theta}_b^* - \frac{1}{B} \sum_{i=1}^B \hat{\theta}_b^*)^2}.$$
 (7.1)

- In theory, there are  $\binom{2n-1}{n}$  distinct bootstrap samples of size n (place n-1 boards in between n balls). However, their probabilities are different. The probability of a bootstrap sample in which  $x_i$  appears  $k_i$  times, with  $k_i > 0$  and  $k_1 + k_2 + 1$  $\cdots + k_n = n$  is

$$\frac{n!}{n^n k_1! k_2! \cdots k_n!}.$$

The most probable sample is the one with  $k_i = 1$  - the original one.

- Bias correction via bootstrap.
  - The bias of  $\hat{\theta}$  is

$$b_{X \sim P}(\widehat{\theta}) = E_{X \sim P}(\widehat{\theta}) - \theta.$$

If it is known, then we can use

$$\widetilde{\theta} = \widehat{\theta} - b_{X \sim P}(\widehat{\theta})$$

as a "corrected" estimate:  $E_{X\sim P}(\widetilde{\theta}) = E_{X\sim P}(\widehat{\theta}) - E_{X\sim P}(b_{X\sim P}(\widehat{\theta})) = [\theta + b_{X\sim P}(\widehat{\theta})] - b_{X\sim P}(\widehat{\theta}) = \theta$ .

- When  $b_{X\sim P}(\widehat{\theta})$  is unknown, we estimate it by

$$b_{X \sim \mathbb{P}_r}(\widehat{\theta}) = E_{X \sim \mathbb{P}_r}(\widehat{\theta}) - \widehat{\theta},$$

where  $E_{X \sim \mathbb{P}_x}(\hat{\theta})$  can be estimated by bootstrap  $\frac{1}{B} \sum_{i=1}^B \theta_b^*$ . That is, we can correct bias by

 $\widetilde{\theta} = 2\widehat{\theta} - E_{X \sim \mathbb{P}_x}(\widehat{\theta}).$ 

### • Parametric bootstrap

- Non-parametric bootstrap is to substitute P by  $\mathbb{P}_x$ .
- Parametric bootstrap assumes that the distribution P comes from a model  $\{P_{\theta}\}_{{\theta}\in\Theta}$ , and substitutes  $P_{\hat{\theta}}$  for P. In Monte Carlo approximation, it means that we do not draw random samples from  $\mathbb{P}_x$ , but from  $P_{\theta}$  instead.

# 7.2 Delta method

• Suppose we have an asymptotic normality theorem for  $\hat{\theta} = \hat{\theta}_n$  (for example, CLT with  $\hat{\theta} = \bar{X}$ ):

$$\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{\mathcal{L}}{\to} N(0, \sigma^2),$$

then we have

$$\widehat{\theta}_n \stackrel{.}{\sim} N(\theta, \frac{\sigma^2}{n}).$$

where  $\stackrel{\cdot}{\sim}$  is "approximately distributed as".  $\sigma$  can be known or estimated, then we can use  $\sigma/\sqrt{n}$  as standard error of  $\hat{\theta}_n$ .

• Sometimes we care about  $g(\theta)$  instead of  $\theta$  itself. Then we may estimate  $g(\theta)$  by  $g(\hat{\theta})$  (MLE works for instance). If g is differentiable (which implies continuous) at  $\theta$  and  $g'(\theta) \neq 0$ , then

$$\sqrt{n} \frac{g(\widehat{\theta}_n) - g(\theta)}{\sigma |g'(\theta)|} \xrightarrow{\mathcal{L}} N(0, 1),$$

and then

$$g(\widehat{\theta}_n) \stackrel{\cdot}{\sim} N\left(g(\theta), \frac{\sigma^2(g'(\theta))^2}{n}\right),$$

which implies the standard error of  $g(\widehat{\theta}_n)$  is  $\frac{\sigma g'(\theta)}{\sqrt{n}}$ .

•  $\theta$  is unknown, so  $g'(\theta)$  is also unknown. If  $\hat{\theta}_n$  is consistent  $(\stackrel{p}{\to} \theta)$ , and g' is continuous (at  $\theta$ ), then we have (by Slutsky's Theorem)

$$\sqrt{n} \frac{g(\hat{\theta}_n) - g(\theta)}{\sigma |g'(\hat{\theta})|} \xrightarrow{\mathcal{L}} N(0, 1),$$

and then

$$g(\widehat{\theta}_n) \stackrel{\cdot}{\sim} N\left(g(\theta), \frac{\sigma^2(g'(\widehat{\theta}))^2}{n}\right).$$

# 8 Lecture 8: Confidence interval

# 8.1 Bayesian confidence/probability intervals

- Bayesian approach: everything is in posterior distribution.
- Percentile method.
  - Take two quantiles,  $q_{\beta}$  and  $q_{1-\gamma}$ , set  $\beta, \gamma$  such that

$$Pr(q_{\beta} \leqslant \theta \leqslant q_{1-\gamma}) = 1 - \alpha.$$

Usually,  $\beta = \gamma = \alpha/2$ .

- **HPD** (highest posterior density). With posterior density  $f_{\theta|x}(u)$ , find c such that the region is  $E = \{u|f_{\theta|x}(u) \ge c\}$ , where

$$Pr_{\theta|x}(E) = \int_{E} f_{\theta|x}(u)du = 1 - \alpha \quad \text{(or } \ge 1 - \alpha \text{ if discrete)}.$$

It is the shortest interval if  $f_{\theta|x}(u)$  is unimodal.

# 8.2 General confidence intervals

- Main idea: find the distribution of the estimates.
  - Normal observations: unknown  $\mu$ , known  $\sigma$ .

Consider an example where  $X_1, \dots, X_n$  are i.i.d. r.v.s with  $N(\mu, \sigma^2)$ . We are estimating the mean  $\mu$  by  $\bar{X}$ . We know that  $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ , so  $\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$ .

$$1-\alpha = \Pr\left[\left|\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\right| \leqslant z_{\alpha/2}\right] = \Pr\left[\bar{X}-\frac{\sigma}{\sqrt{n}}z_{\alpha/2} \leqslant \mu \leqslant \bar{X} + \frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right],$$

where  $z_{\alpha/2}$  is the  $\alpha/2$ -quantile of standard normal N(0,1).

Generally, if  $\hat{\theta}$  is (approximately)  $N(\theta, (se(\hat{\theta}))^2)$ , then

$$Pr\left[\widehat{\theta} - se(\widehat{\theta})z_{\alpha/2} \leqslant \theta \leqslant \widehat{\theta} + se(\widehat{\theta})z_{\alpha/2}\right] = 1 - \alpha.$$

- Bootstrap confidence intervals (normal case). If  $se(\hat{\theta})$  is unknown ( $\sigma$  is unknown), then we can estimate it via bootstrap (7.1). This works if  $\hat{\theta}$  is (approximately) normal.
- Bootstrap "percentile" confidence intervals (normal case). We can estimate the end points  $\hat{\theta} \pm se(\hat{\theta})z_{\alpha/2}$  directly by bootstrap estimates  $\hat{\theta}_{\alpha/2}^*$ ,  $\hat{\theta}_{1-\alpha/2}^*$ . Recall that we have B bootstrap sample estimates  $\hat{\theta}^*$ .  $\hat{\theta}_{\alpha/2}^*$  corresponds to the  $\alpha/2$  sample quantile of these B estimates.
- Bootstrap pivotal confidence intervals. We can estimate the  $\alpha/2$  and  $1-\alpha/2$  quantiles  $(q_{\alpha/2} \text{ and } q_{1-\alpha/2})$  of  $\hat{\theta} \theta$ , by  $\hat{\theta}^*_{\alpha/2} \hat{\theta}$ ,  $\hat{\theta}^*_{1-\alpha/2} \hat{\theta}$ . Then

$$\begin{split} 1 - \alpha &= \Pr[q_{\alpha/2} \leqslant \widehat{\theta} - \theta \leqslant q_{1-\alpha/2}] \\ &= \Pr[\widehat{\theta} - q_{1-\alpha/2} \leqslant \theta \leqslant \widehat{\theta} - q_{\alpha/2}] \\ &\approx \Pr[\widehat{\theta} - (\widehat{\theta}^*_{1-\alpha/2} - \widehat{\theta}) \leqslant \theta \leqslant \widehat{\theta} - (\widehat{\theta}^*_{\alpha/2} - \widehat{\theta})] \\ &= \Pr[2\widehat{\theta} - \widehat{\theta}^*_{1-\alpha/2} \leqslant \theta \leqslant 2\widehat{\theta} - \widehat{\theta}^*_{\alpha/2}] \end{split}$$

# Normal observations: unknown $\mu$ , unknown $\sigma$ .

Consider an example where  $X_1, \dots, X_n$  are i.i.d. r.v.s with  $N(\mu, \sigma^2)$ . We are estimating the mean  $\mu$  by  $\bar{X}$ . Let

$$s^{2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}.$$

We know that

$$\begin{split} Z &= \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1) \\ \chi^2 &= \frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1) \\ t &= \frac{Z}{\sqrt{\chi^2/(n-1)}} = \frac{\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)s^2}{\sigma^2(n-1)}}} = \sqrt{n} \frac{\bar{X} - \mu}{s} \sim \frac{N(0,1)}{\sqrt{\frac{\chi^2(n-1)}{n-1}}} = t(n-1), \end{split}$$

since Z and  $\chi^2$  are independent. Then

$$\begin{split} 1-\alpha &= \Pr\left[|t| \leqslant t_{\alpha/2}(n-1)\right] \\ &= \Pr\left[\bar{X} - \frac{s}{\sqrt{n}}t_{\alpha/2}(n-1) \leqslant \mu \leqslant \bar{X} + \frac{s}{\sqrt{n}}t_{\alpha/2}(n-1)\right], \end{split}$$

where  $t_{\alpha/2}(n-1)$  is the  $\alpha/2$ -quantile of  $t(n-1),\ t$  distribution with (n-1)degree of freedom.

#### 9 Lecture 9: Hypothesis testing

#### Setup 9.1

- Null hypothesis set  $\mathcal{P}_0$ ; alternative hypothesis set  $\mathcal{P}_A$ . ( $\Theta_0$  and  $\Theta_A$  if parametric).
- $\mathcal{P}_0 \cap \mathcal{P}_0 = \emptyset$ ;  $\mathcal{P}_0 \cup \mathcal{P}_0 = \mathcal{P}$ .
- Rejection region  $\mathcal{R} \subseteq \mathcal{X}$ : if data X falls into  $\mathcal{R}$ , then reject null hypothesis; accept null hypothesis if  $X \in \mathcal{X} \setminus \mathcal{R}$ .
- Errors

Table 1: Testing errors

|       |       | Decision      |              |
|-------|-------|---------------|--------------|
|       |       | Accept $H_0$  | Reject $H_0$ |
| Truth | $H_0$ | Correct       | Type I Error |
|       | $H_A$ | Type II Error | Correct      |

#### 9.2 Testing evaluation

- Power function, level, size
  - The **power function** is defined as

$$\beta(P) = Pr(X \in \mathcal{R}),$$

where  $X \sim P$  and  $\mathcal{R}$  is calculated based on the testing method. Note that

$$\beta(P) = \begin{cases} Pr(\text{Type I error}) & \text{if } P \in \mathcal{P}_0 \\ 1 - Pr(\text{Type II error}) & \text{if } P \in \mathcal{P}_A \end{cases}$$

We say that a test is **powerful** if  $\beta(P)$  is "large" for  $P \in \mathcal{P}_A$ .

- Given  $0 \le \alpha \le 1$ , a test is of (significance) level  $\alpha$  if  $\sup_{P \in \mathcal{P}_0} \beta(P) \le \alpha$ .

- Given  $0 \le \alpha \le 1$ , a test is of size  $\alpha$  if  $\sup_{P \in \mathcal{P}_0} \beta(P) = \alpha$ .
- Most powerful test. A test at level  $\alpha$  that has higher or equal power than all other tests at level  $\alpha$  for all  $P \in \mathcal{P}_A$  is called **uniformly most powerful** at level  $\alpha$ .
- Neyman-Pearson lemma. To test one simple hypothesis  $P_0$  against one simple alternative hypothesis  $P_A$ . Assuming they can be represented by density  $f_0(x), f_A(x)$ , respectively. On the basis of observed x, the (uniformly) most powerful test exists and

reject 
$$H_0$$
 if  $\frac{f_A(x)}{f_0(x)} \geqslant c$ ,

where c is set so that

$$P_0[x \in \mathcal{R}] = P_0\left[\frac{f_A(x)}{f_0(x)} \geqslant c\right] = \alpha.$$

- Randomized version:

reject 
$$H_0$$
 if  $\frac{f_A(x)}{f_0(x)} > c$ ,  
reject  $H_0$  with probability  $d$  if  $\frac{f_A(x)}{f_0(x)} = c$ ,  
accept  $H_0$  if  $\frac{f_A(x)}{f_0(x)} < c$ ,

where c and  $d \in [0,1]$  are set so that

$$P_0\left[x \in \mathcal{R}\right] = P_0\left[\frac{f_A(x)}{f_0(x)} > c\right] + P_0\left[\frac{f_A(x)}{f_0(x)} = c\right] \cdot d = \alpha.$$

Normal observations: most powerful test.

Consider an example where  $X_1, \dots, X_n$  are i.i.d. r.v.s with  $N(\mu, \sigma^2)$ , where  $\sigma$ is known. We are testing  $H_0: \mu = \mu_0$  against  $H_A: \mu = \mu_A$ . The most powerful test has rejection region

$$\frac{\frac{1}{\sigma^n(2\pi)^{n/2}}e^{-\frac{1}{2\sigma^2}\sum(X_i-\mu_A)^2}}{\frac{1}{\sigma^n(2\pi)^{n/2}}e^{-\frac{1}{2\sigma^2}\sum(X_i-\mu_0)^2}} = \exp\left(\sum(X_i-\mu_0)^2 - \sum(X_i-\mu_A)^2\right) \geqslant c,$$

which is equivalent to

$$\bar{X} = \frac{1}{n} \sum X_i \geqslant k \text{ if } \mu_A > \mu_0; \bar{X} = \frac{1}{n} \sum X_i \leqslant k \text{ if } \mu_A < \mu_0.$$

The constant k is chosen so that  $P_0(\bar{X} \ge k) = \alpha$ . We know that under  $H_0$ (so that we compute  $P_0$  based on  $\mu_0$ ),  $\bar{X} \sim N(\mu_0, \sigma^2/n)$ . That is,  $\sqrt{n} \frac{\bar{X} - \mu_0}{\sigma} \sim$ N(0,1). Therefore,  $k = \mu_0 + \frac{\sigma}{\sqrt{n}} z_{\alpha}$ .

The result here can be extended to composite testing where  $H_0: \mu \leq \mu_0$  and  $H_A: \mu > \mu_A$ 

• Unbiased test. A test with power function  $\beta(P)$  is unbiased if  $\beta(P_A) \geqslant \beta(P_0)$  for every  $P_A \in \mathcal{P}_A, P_0 \in \mathcal{P}_0$ .

#### *p*-value 9.3

• Suppose we have nested rejection regions  $\mathcal{R}_{\alpha_1} \subseteq \mathcal{R}_{\alpha_2}$  whenever  $\alpha_1 \leqslant \alpha_2$ . Given the observed data x, the observed significance level (or p-value) is defined as

$$p(x) = \inf\{\alpha | x \in \mathcal{R}_{\alpha}\}.$$

#### 10 Lecture 10: Multiple testing

Suppose we have K tests,  $k = 1, 2, \dots, K$ : testing  $H_{0k} : \mathcal{P}_{0k}$  against  $H_{Ak} : \mathcal{P}_{Ak}$  with rejection region  $\mathcal{R}_k$ .

# 10.1 Union-intersection test

- Testing  $H_0: \mathcal{P}_0 = \bigcap_k \mathcal{P}_{0k}^c$  against  $H_A: \mathcal{P}_A = (\bigcap_k \mathcal{P}_{0k})^c = \bigcup_k \mathcal{P}_{0k}$ .
- Rejection region is  $\mathcal{R} = \bigcup_k \mathcal{R}_k$ .
- Union bound:  $P_0(X \in \mathcal{R}) = P_0(X \in \bigcup_k \mathcal{R}_k) \leq \sum_k P_0(X \in \mathcal{R}_k)$ .

### 10.2 Intersection-union test

- Testing  $H_0: \mathcal{P}_0 = \bigcup_k \mathcal{P}_{0k}$  against  $H_A: \mathcal{P}_A = (\bigcup_k \mathcal{P}_{0k})^c = \bigcap_k \mathcal{P}_{0k}$ .
- Rejection region is  $\mathcal{R} = \bigcap_k \mathcal{R}_k$ .

# 10.3 Controlling family-wise error rate

**Family-wise error rate** (**FWER**): the probability of committing *at least* one error of the first kind. We want to bound it as

$$\text{FWER} = P_0 \left( X \in \bigcup_{k=1}^K \mathcal{R}_k \right) \leqslant \alpha.$$

• Bonferroni method: reject all null hypotheses whose p-value  $p_k$  is smaller than  $\alpha/K$ . By union bound,

$$\text{FWER} = P_0(X \in \mathcal{R}) = P_0\left(X \in \bigcup_{k=1}^K \mathcal{R}_k\right) \leqslant \sum_{k=1}^K P_0(X \in \mathcal{R}_{k=1}^K) \leqslant \sum_{k=1}^K \frac{\alpha}{K} = \alpha.$$

- Holm method.
  - Order *p*-values as  $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(K)}$ .
  - If  $\frac{\alpha}{K} \leq p_{(1)}$ , then accept all null hypotheses and stop; otherwise reject  $H_{0(1)}$  and continue.
  - If  $\frac{\alpha}{K-1} \leq p_{(2)}$ , then accept all remaining null hypotheses and stop; otherwise reject  $H_{0(2)}$  and continue.
  - ...
  - If  $\frac{\alpha}{1} \leq p_{(K)}$ , then accept  $H_{0(K)}$  and stop; otherwise reject  $H_{0(K)}$  and stop.

### 10.4 Controlling false discovery rate

Rejecting null hypothesis when it is true means "false discovery" (Type I error).

• False discovery proportion (FDP) is defined as

$$FDP = \frac{\# \text{ of false discoveries}}{\# \text{ of all discoveries}},$$

where the # is counted from K tests.

• False discovery rate (FDR) is defined as the expectation of FDP, i.e.,

$$FDR = E(FDP).$$

We want to control FDR as FDR $\leq \alpha$ .

- Benjamini and Hochberg method.
  - Order *p*-values as  $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(K)}$ .
  - Let  $l_i = \frac{i\alpha}{KC_K}$ , where

$$C_K = \begin{cases} 1 & \text{if tests are independent} \\ \sum_{i=1}^{K} \frac{1}{i} & \text{otherwise} \end{cases}$$

Let  $r = \max\{i | p_{(i)} < l_i\}.$ 

– Set  $t = p_{(r)}$  as the Benjamini-Hochberg rejection threshold. Reject all null hypotheses whose  $p_k \leq t$ .

# 11 Lecture 11: Hypothesis testing, practical procedures

### 11.1 Wald test

- $\hat{\theta}$  is an estimator of  $\theta$ . To test  $H_0: \theta = \theta_0$ , against the alternative  $H_A: \theta \neq \theta_0$ .  $\frac{\hat{\theta} \theta}{se(\hat{\theta}|\theta)}$  is a good indicator of discrepancy.
- Suppose  $\hat{\theta}$  is (approximately) normal:

$$\sqrt{n}(\hat{\theta} - \theta) \stackrel{\mathcal{L}}{\to} N(0, \sigma^2) \Longrightarrow \hat{\theta} \stackrel{\cdot}{\sim} N(\theta, (se(\hat{\theta}|\theta))^2) \Longrightarrow \frac{\hat{\theta} - \theta}{se(\hat{\theta}|\theta)} \stackrel{\cdot}{\sim} N(0, 1).$$

• If  $se(\hat{\theta}|\theta)$  is unknown (because  $\theta$  is unknown), then we can estimate it by

$$se(\hat{\theta}|\theta) \approx se(\hat{\theta}|\hat{\theta}) = \sqrt{Var(\hat{\theta})}, \text{ or } \sigma^2 \approx \hat{\sigma}^2.$$

We reject  $H_0$  if  $\frac{\hat{\theta}-\theta_0}{\sqrt{Var(\hat{\theta})}}$  is too large or too small. Equivalently, reject  $H_0$  if

$$\frac{(\hat{\theta} - \theta_0)^2}{Var(\hat{\theta})} \stackrel{\cdot}{\sim} \chi^2(1)$$

is too large.

• In multidimensional case, with (approximately) normality,

$$\sqrt{n}(\widehat{\theta} - \theta) \stackrel{\mathcal{L}}{\to} N(0, V),$$

where  $V_{p\times p}$  is variance matrix. Then the Wald test becomes reject  $H_0$  if

$$n(\hat{\theta} - \theta_0)^T V^{-1}(\hat{\theta} - \theta_0) \stackrel{\cdot}{\sim} \chi^2(p)$$

If V unknown, estimate it as  $\hat{V} = V(\hat{\theta})$  or  $\hat{V} = V(\theta_0)$ .

• If  $\hat{\theta}$  is an MLE of  $\theta$ , then

$$V(\theta) = I^{-1}(\theta),$$

where  $I(\theta)$  is the Fisher information matrix for *ONE observation*.

– In one dimensional case,  $Var(\hat{\theta}) = \frac{1}{nI(\theta)}$ .

### 11.2 Likelihood ratio test

Consider parametric model and its hypotheses  $H_0: \theta \in \Theta_0$  and  $H_A: \theta \in \Theta_A$ .

• From Neyman-Pearson lemma, the optimal test is based on

$$\frac{f_A(x)}{f_0(x)} = \frac{L(\theta_A)}{L(\theta_0)} \geqslant c.$$

Or equivalently

$$\log L(\theta_A) - \log L(\theta_0) = l(\theta_A) - l(\theta_0) \ge c.$$

• To extend this to multiple hypotheses case, the likelihood ratio test statistic is defined as: reject  $H_0$  if

$$\frac{\sup_{\theta \in \Theta_A} L(\theta)}{\sup_{\theta \in \Theta_0} L(\theta)} \geqslant c.$$

Or alternatively, reject  $H_0$  if

$$\frac{\sup_{\theta \in \Theta} L(\theta)}{\sup_{\theta \in \Theta_0} L(\theta)} \geqslant c.$$

• Let  $\hat{\theta}$  and  $\hat{\theta}_0$  be unconstrained and constrained MLE, respectively. Then the test in logarithm form: reject  $H_0$  if

$$2(l(\widehat{\theta}) - l(\widehat{\theta}_0)) \ge c,$$

where the 2 is to ensure that the statistic has the approximate distribution  $\chi^2(p)$ , where p is the number of restrictions imposed by the null hypothesis.  $l(\theta)$ 

#### 11.3 Rao score test via Lagrange multipliers

If the null hypothesis is interpreted as a restriction on parameters:  $H_0: g(\theta) = 0$ , and the alternative is again  $H_A: g(\theta) \neq 0$ , then following the idea of Neyman-Pearson, we can check the magnitude of Lagrange multiplier as an indicator of how much the constraint is violated.

• Consider maximizing  $l(\theta) - \lambda g(\theta)$ . Setting the derivative (in  $\theta$ ) to zero, we have

$$\lambda(\theta) = \frac{l'(\theta)}{g'(\theta)} = \frac{f'(x;\theta)}{f(x;\theta)} \frac{1}{g'(\theta)}.$$

We reject null if  $\left|\frac{\lambda(\theta)}{se(\lambda(\theta))}\right|$  or  $\frac{\lambda^2(\theta)}{Var(\lambda(\theta))}$  is too large.

• When  $g(\theta) = \theta - \theta_0$ ,  $g'(\theta) = 1$ ,  $Var(\lambda(\theta_0)) = nI(\theta_0)$ . Then

$$\frac{\lambda(\theta_0)}{\sqrt{nI(\theta_0)}} \stackrel{.}{\sim} N(0,1), \frac{\lambda^2(\theta_0)}{nI(\theta_0)} \stackrel{.}{\sim} \chi^2(1).$$

Quantiles can be applied to find rejection region.



# Score test for Binomial.

 $X \sim Bin(n,p)$ . To compute the score function and Fisher information:

$$\lambda(p) = s(p) = \frac{n(\hat{p} - p)}{p(1 - p)}, nI(p) = \frac{n}{p(1 - p)}.$$

Therefore.

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \stackrel{\cdot}{\sim} N(0, 1),$$

which is equivalent to Wald test with  $se(\hat{p}|p)$  estimated as  $se(\hat{p}|p_0)$  instead of  $se(\hat{p}|\hat{p})$ 



Figure 1: Illustration of Wald, LRT and Rao tests.

#### **Bayes factor** 11.4

To interpret Neyman-Pearson in Bayesian formula, consider averaging instead of maximization: reject  $H_0$  if

$$\frac{\int_{\Theta_A} L(\theta) \pi_A(\theta) d\theta}{\int_{\Theta_0} L(\theta) \pi_0(\theta) d\theta} \geqslant c,$$

where  $\pi_A$  and  $\pi_0$  are priors over  $\Theta_A$  and  $\Theta_0$ .