

CALIBRATION CERTIFICATE

Kalibrierschein

Certificate Number Zertifikatsnummer

1020A300773215

D-K-15195-01-00

General Data

Gegenstand

SMB100B SIGNAL GEN. BASE UNIT

Manufacturer

ROHDE & SCHWARZ

Hersteller

SMB100B

Type

Material Number

1422.1000K02 **Serial Number** 102254

Materialnummer

Seriennummer

Order Number Bestellnummer 8800067369 10, 312025498

Asset Number Inventarnummer

Customer Auftraggeber

Exporta s.r.o.

Patockova 1434/51 160 00 Praha 6

C.7

Performance

87700 Memmingen, Rohde-und-Schwarz-Str. 1 Place and Date of Calibration

Ort und Datum der Kalibrierung 2024-12-03

Statement of Compliance

(Incoming)

Konformitätsaussage

(Anlieferung)

All measured values are within the data sheet specifications.

Statement of Compliance

(Outgoing)

Konformitätsaussage (Auslieferung)

All measured values are within the data sheet specifications.

Customers due Interval

Kalibrierintervall des Kunden

Extent of Calibration Document

3 Pages Certificate

Umfang des Kalibrierdokuments

27 Pages Outgoing Results

Approval of the certificate by Date of Issue Ausstellungsdatum Freigabe des Kalibrierscheins durch

2024-12-03 Dr. Gerhard Rösel Christian Feigl

Laboratory Management Labormanagement

Person in Charge

Bearbeiter

Calibration Mark Kalibrierzeichen

300773215 D-K-15195-01-00 2024-12

Member of Deutscher Kalibrierdienst Mitglied im Deutschen Kalibrierdienst

This calibration certificate documents the metrological traceability to national standards, which realize the units of measurement according to the International System of Units (SI). The DAkkS is signatory to the multilateral agreements of the European co-operation for Accreditation (EA) and of the International Laboratory Accreditation Cooperation (ILAC) for the mutual recognition of calibration certificates The user is obliged to have the object recalibrated at appropriate intervals.
This calibration certificate may not be reproduced other than in full except with the permission of the issuing laboratory. Calibration certificates with the full name of the approval responsible person are valid without signature.

Dieser Kalibrierschein dokumentiert die metrologische Rückführbarkeit auf nationale Normale zur Darstellung der Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI). Die DAkkS ist Unterzeichner der multilateralen Übereinkommen der European cooperation for Accreditation (EA) und der International Laboratory Accreditation Cooperation (ILAC) zur gegenseitigen Anerkennung der Kalibrierscheine.

Für die Einhaltung einer angemessenen Frist zur Wiederholung der Kalibrierung ist der Benutzer verantwortlich.

Dieser Kalibrierschein darf nur vollständig weiterverbreitet werden. Auszüge oder Änderungen bedürfen der Genehmigung des ausstellenden Kalibrierlaboratoriums Kalibrierscheine sind bei Nennung des für die Freigabe Verantwortlichen in Klarschrift auch ohne Unterschrift gültig.

ROHDE&SCHWARZ

 Material No
 1422.1000K02
 Serial No
 102254
 Certificate
 1020A300773215

 Page
 2/3
 Number

Calibration Procedure

The calibration of the object can be classified as a direct measurement. Frequency was compared using a GPS synchronized rubidium oscillator. RF power was measured with a measurement system consisting of a power sensor as well as a spectrum analyzer. Linearity was measured with a spectrum analyzer.

With option modulation function installed: Modulation quantities was measured using a signal analyzer. The calibrations and measurements follow the guideline VDI/VDE/DGQ/DKD 2622 Part 14.1 (2015-02).

The traceability is represented in the table Working Standards used.

Working Standards used				
Item	Туре	Serial Number	Calibration Certificate Number	Cal. Due
Detector Kit for UCS2010	ENV-DET	101523	0001A300735433	2025-08-31
Standard Frequency System	FREQSTD	100257	0001A1230250	2025-10-31
Phase Noise Analyzer 50GHz	FSWP50	101607	20A1188357	2025-08-31
Spectrum Analyzer 26.5 GHz	FSW26	101683	0001A300707886	2025-01-31
Spectrum Analyzer 67GHz	FSW67	101798	0001A300738414	2025-09-30
Average Power Sensor 8kHz-18GH	NRP18A	101451	0001A300725178	2025-06-30
Average Power Sensor 8kHz-18GH	NRP18A	101400	0001A300725176	2025-06-30
Thermal Power Sensor 18GHz	NRP18T	101321	0001A300719420	2025-05-31
Thermal Power Sensor	NRP40T	101249	0001A300755514	2026-01-31
Thermal Power Sensor	NRP67T	101254	0001A300725185	2025-06-30
RMS Peak Voltmeter DC-30 MHz	URE3	827527/030	0001A300739341	2025-09-30
SWR Bridge 40kHz - 4GHz 50 Ohm	ZRC	100091	0001A300725186	2025-06-30
Calibration Kit 40GHz	ZRP40	101567	0001A300756324	2026-01-31
Calibration Kit 50GHz	ZRP50	101465	0001A300756320	2026-01-31
Directional Coupler 2-18 GHz	773D	100002	0001A300734284	2025-08-31

Remarks

The instrument was not adjusted, therefore only outgoing results are available.

The certificate number formatted 0001A300773215 corresponds to format 1020A300773215, because of formal changes.

ROHDE&SCHWARZ

 Material No
 1422.1000K02
 Serial No
 102254
 Certificate
 1020A300773215

 Page
 3/3
 Number

Environmental Conditions				
Ambient Temperature	(23 ± 3) °C	Relative Humidity	20%-70%	

Comments on Measurement Results

The reported results apply only to those items specifically listed on this calibration certificate and have been tested for compliance with the specifications. The associated uncertainty of measurement has been taken into account if not otherwise stated.

The non-binary decision rule with guard band is used according to ILAC G8:09/2019 'Guidelines on Decision Rules and Statements of Conformity'. Pass is normally not marked. Conditional Pass is marked with UGB1, Conditional Fail with UGB2 and Fail with Fail.

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor (k=2) such that the coverage probability corresponds to approximately 95 %. It is consistent with the EA-4/02 M:2022.

In addition to the calibration results, the calibration certificate includes functional measurements that might have an influence on the measurement uncertainty of the calibration results.

The functional measurement results are marked and are not intended to be used to support the further dissemination of metrological traceability. They are intended to verify the requirements on the measurement object according to manufacturer specifications and technical standards.

Outgoing Results

Designation: Signal Generator

Type: SMB100B
Material No.: 1422.1000K02

Serial No.: 102254

Certificate No.: 1020A300773215

Referring to Test Documentation: 1422.1000.01-PB-5.00

Test Department: 3MES3

Name: see certificate

Date: 2024-12-03

%	Page
ROHDE&SCHWARZ	1/27

The following abbreviations may be used in this document

{a}	No measurement uncertainty stated because the errors always add together. So it is sure

that a measurement result evaluated as "PASS" is pass.

{b} The measurement uncertainty depends on the measurement result. The stated measurement uncertainty is valid for the close area around the specification. Measurement results outside

the close area have a higher measurement uncertainty but are within the specification.

Functional test, therefore no measurement uncertainty is stated. {c}

{d} Typical value, refer to performance test.

The measurement uncertainty is taken into account when setting the measuring system. {e}

Verification of specified requirements, non-accredited measurements. Technical operations that consist of {g}

the determination of one or more characteristics to a specified procedure (formerly {f}).

DL or DT Data Limit for symmetrical tolerance limits

DLL **Datasheet Lower Limit** DUL **Datasheet Upper Limit**

MU Symmetrical Measurement Uncertainty MLL or MLV Measurement Uncertainty Lower Value MUL or MUV Measurement Uncertainty Upper Value

Nom. Nominal Value Dev. Deviation Act. **Actual Value**

UGB Uncertainty Guard Band: Measuring uncertainty violates the data (spec.) limit.

UGB1 A compliance statement may be possible where a confidence level of less than 95 % is acceptable. UGB2 A non-compliance statement may be possible where a confidence level of less than 95 % is acceptable.

DU **Datasheet Uncertainty**

Explanation of charts

Table of contents

Software used for measurement	4
REFERENCE FREQUENCY	5
Internal Reference Frequency Error	
Ref Out Level (Std.)	
Synchronisation Test	
Frequency Setting Time	
Trequency Setting Time	
SPECTRAL PURITY	
Harmonics CW-Mode	7
Subharmonics CW-Mode	7
Nonharmonics	8
Wideband Noise	9
Residual AM	
LEVEL	10
Level Accuracy	
·	
Level Linearity ALC Auto	
Level Linearity ALC Off (Table)	
Maximum Level	
Output Impedance (VSWR)	
Level Setting Time	15
INTERNAL MODULATION GENERATOR	16
Output Voltage	. 16
Frequency Response	
Distortion	
AMPLITUDE MODUL ATION	4-
AMPLITUDE MODULATION	
AM Depth Error	
AM Distortion	
AM Frequency Response	
Synchronous PhiM with AM	19
FREQUENCY MODULATION	20
FM Setting Uncertainty	
FM Distortion	
FM Frequency Response	
Synchronous AM with FM	
Carrier Frequency Offset with FM	
PHASE MODULATION	. 24
PhiM Setting Uncertainty	
PhiM Distortion	
PhiM Frequency Response	25
PULSE MODULATION	26
ON/OFF Ratio	26
Dynamic Characteristics	
Video Feedthrough	
Functional test of Pulse Ext.	

Software used for measurement					
Item	Туре	Version	Remark		
Suite	Setup	V12.49.07	Test Management Software G5		
Test Program (503886)	Component	V05.07			

REFERENCE FREQUENCY

Internal Reference Frequency Error

after adjusting at calibration temperature

	Nominal	DL /Hz	Error /Hz	MU /Hz
Ref Out Frequency	10 MHz	± 1.000	+0.000	0.010

Ref Out Level (Std.)

	Ref	In			Ref Out		{g}
Ref	Freq	Level	Freq	DLL	DUL	Actual	MU
Source	/MHz	/dBm	/MHz	/dBm	/dBm	/dBm	/dB
Int. 10 MHz	-	_	10.0	7.0	13.0	10.20	0.34
Ext.	10.0	0.0	10.0	7.0	13.0	10.34	0.34
Ext.		16.0	10.0	7.0	13.0	10.33	0.34

Synchronisation Test

Test if DUT is locked to Ref In signal:

Ref Source	Ref /MHz	In /dBm	Sync. BW	Ref In detune /ppm	Result	MU {c}
Ext.	10.0	0.0	Wide	0.0	PASS	
Ext.	10.0	16.0	Wide	0.0	PASS	
Ext.	10.0	8.0	Wide	+100.0	PASS	
Ext.	10.0	8.0	Wide	-100.0	PASS	

Frequency Setting Time

after remote control delimiter, GUI update stopped

Mode	Start freq./MHz	Stop freq./MHz	DUL /ms	Actual /ms	MU {g} /ms
Mode ALC AUTO (CW)					
	4100.001 4760.000 4760.001 1500.001 1870.000 1870.001 2170.000 2170.001 2730.000 2730.001 3000.000 3000.001 3740.000 4340.001 4340.001 5460.000 5460.001 6000.000	4100.000 4760.001 4760.000 1870.000 1500.001 2170.000 1870.001 2730.000 2170.001 3000.000 2730.001 3740.000 3740.000 3740.001 5460.000 4340.001 6000.000 5460.001	1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10	0.80 0.74 0.72 0.85 0.84 0.80 0.89 0.84 0.81 0.81 0.83 0.81 0.83 0.81 0.83	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

SPECTRAL PURITY

Harmonics CW-Mode

RF-Level = 13.0 dBm

Subharmonics CW-Mode

RF-Level = 10.0 dBm

Nonharmonics

Systematic nonharmonics of synthesis:

Systematic nonha	Systematic nonharmonics of synthesis:						
RF /MHz	Level /dBm	Spurious at /MHz	DUL /dBc	Actual /dBc	{g} MU /dB		
66.930000	10.0	70.88000	-80.0	-101.5	0.8		
77.590000	10.0	86.25980	-80.0	-102.1	0.8		
455.203520	10.0	455.23214	-80.0	-101.7	0.8		
881.777000	10.0	882.05250	-76.0	-111.6	0.8		
999.900000	10.0	1000.00000	-76.0	-98.6	0.8		
999.900000	10.0	1000.10000	-76.0	-103.3	0.8		
1076.561000	10.0	1076.57920	-76.0	-100.6	0.8		
1137.503000	10.0	1137.53730	-76.0	-101.6	0.8		
1157.803000	10.0	1157.82970	-76.0	-93.5	0.8		
1264.292000	10.0	1264.35250	-76.0	-88.7	0.8		
1291.929000	10.0	1292.08000	-76.0	-110.0	0.8		
1302.607000	10.0	1302.63020	-76.0	-92.7	0.8		
1343.016000	10.0	1343.09170	-76.0	-98.0	0.8		
1414.262000	10.0	1414.43860	-76.0	-97.6	0.8		
1424.408000	10.0	1424.51220	-76.0	-97.9	0.8		
1434.603000	10.0	1434.70090	-76.0	-97.5	0.8		
1499.900000	10.0	1500.30000	-76.0	-98.1	0.8		
1500.100000	10.0	1500.30000	-70.0	-90.8	0.8		
1500.100000	10.0	1500.50000	-70.0	-106.4	0.8		
1571.500000	10.0	1571.59090	-70.0	-90.9	0.8		
1675.765000	10.0	1675.79220	-70.0	-92.1	0.8		
1828.140000	10.0	1828.16720	-70.0	-90.8	0.8		
1999.900000	10.0	2000.00000	-70.0	-98.0	0.8		
1999.900000	10.0	2000.10000	-70.0	-93.4	0.8		
2000.100000	10.0	2000.20000	-70.0	-93.5	0.8		
2000.100000	10.0	2000.30000	-70.0	-91.3	0.8		
2153.144000	10.0	2153.17330	-70.0	-90.2	0.8		
2168.957000	10.0	2169.16790	-70.0	-101.6	0.8		
2274.980000	10.0	2275.00857	-70.0	-89.1	0.8		
2405.150000	10.0	2405.52230	-70.0	-86.5	0.8		
2574.265000	10.0	2574.54150	-70.0	-101.0	0.8		
2660.913000	10.0	2660.94297	-70.0	-91.1	0.8		
2828.451000	10.0	2828.63670	-70.0	-91.2	0.8		
3486.464000	10.0	3486.54170	-64.0	-97.0	0.8		
3527.057000	10.0	3527.15890	-64.0	-99.1	0.8		
3999.900000	10.0	3999.95000	-64.0	-90.1	0.8		
3999.900000	10.0	4000.00000	-64.0	-84.2	0.8		
3999.900000	10.0	4000.30000	-64.0	-90.2	0.8		
4000.100000	10.0	4000.15000	-64.0	-87.0	0.8		
4000.100000	10.0	4000.20000	-64.0	-83.4	0.8		
4000.100000	10.0	4000.50000	-64.0	-90.1	0.8		
4120.921000 4297.343000	10.0 10.0	4121.29230 4297.47110	-64.0 -64.0	-91.4 -96.9	0.8 0.8		
4337.933000	10.0	4338.19630	-64.0	-96.0	0.8		
4378.336000	10.0	4378.45300	-64.0	-95.9	0.8		
4418.937000	10.0	4418.98640	-64.0	-95.3	0.8		
4631.205000	10.0	4631.23730	-64.0	-88.3	0.8		
4999.900000	10.0	5000.00000	-64.0	-79.2	0.8		
5000.100000	10.0	5000.20000	-64.0	-78.9	0.8		
5376.196000	10.0	5376.21620	-64.0	-84.2	0.8		
5524.955000	10.0	5524.98220	-64.0	-80.3	0.8		
5710.228000	10.0	5710.73850	-64.0	-92.0	0.8		
5999.900000	10.0	6000.00000	-64.0	-94.8	0.8		
5999.900000	10.0	6000.10000	-64.0	-75.0	0.8		

Non-systematic nonharmonics, CW-mode:
Scanned range: 10 kHz to 10 MHz car

Scanned range: RF /MHz	: 10 kHz Level /dBm	to 10 MHz carrier Spurious at /MHz	offset DUL /dBc	Actual /dBc	/dB /dB
77.591000	10.0	68.908000	-80.0	-97.9	0.8
700.787000	10.0	700.813667	-80.0	-96.7	0.8
1571.500000	10.0	1571.409090	-70.0	-90.8	0.8
2579.693000	10.0	2579.720717	-70.0	-85.6	0.8
2762.520000	10.0	2762.543529	-70.0	-88.1	0.8
2803.138000	10.0	2803.153071	-70.0	-88.7	0.8
2935.758000	10.0	2935.579310	-70.0	-81.2	0.8
3437.509000	10.0	3437.537802	-64.0	-84.8	0.8
4509.337000	10.0	4509.364386	-64.0	-81.7	0.8
4712.546000	10.0	4712.641171	-64.0	-87.1	0.8
4753.130000	10.0	4753.143675	-64.0	-86.1	0.8
5240.570000	10.0	5240.467680	-64.0	-86.3	0.8
5443.738000	10.0	5443.709341	-64.0	-79.5	0.8
5524.955000	10.0	5524.981468	-64.0	-80.0	0.8
5606.287000	10.0	5606.308450	-64.0	-83.7	0.8
5871.400000	10.0	5871.458395	-64.0	-75.4	0.8

Wideband Noise

Residual AM

RMS value (20 Hz to 23 kHz) Level = 12 dBm $\,$

RF/MHz	DUL/%	Actual/%	MU
10	0.020	0.003	{a}
50	0.020	0.003	{a}
80	0.020	0.003	{a}
80.001	0.020	0.003	{a}
100	0.020	0.003	{a}
1000	0.020	0.003	{a}
1900	0.020	0.002	{a}
1901	0.020	0.002	{a}
2700	0.020	0.002	{a}
3000	0.020	0.002	{a}
3001	0.020	0.002	{a}
3600	0.020	0.002	{a}
3601	0.020	0.002	{a}
4100	0.020	0.002	{a}
4101	0.020	0.002	{a}
5400	0.020	0.003	{a}
6000	0.020	0.003	{a}

LEVEL

Level Accuracy

- Versus Frequency at Specific Level: CW-Mode:

Level Linearity ALC Auto

-0.5

Level Linearity ALC Off (Table)

Maximum Level

Output Impedance (VSWR)

Tests with different settings of signal path through the instrument. Frequency range up to 3 GHz:

Level Setting Time

after remote control delimiter to < 0.1 dB deviation from final value

Mode	RF /MHz	Start level /dBm	Stop level /dBm	DUL /ms	Actual /ms	MU {g}
ALC ON	10	-120.0	13.0	1.10	0.92	0.03
	10	-27.3	2.7	1.10	0.87	0.03
	10	2.7	-27.3	1.10	0.98	0.03
	30	-120.0	13.0	1.10	0.91	0.03
	30	-27.3	2.7	1.10	0.92	0.03
	30	2.7	-27.3	1.10	0.94	0.03
	375	-120.0	13.0	1.10	0.89	0.03
	375	-27.3	2.7	1.10	0.88	0.03
	375	2.7	-27.3	1.10	0.84	0.03
	1000	-120.0	13.0	1.10	0.84	0.03
	1000	-27.3	2.7	1.10	0.85	0.03
	1000	2.7	-27.3	1.10	0.89	0.03
	2000	-120.0	13.0	1.10	0.83	0.03
	2000	-27.3	2.7	1.10	0.94	0.03
	2000	2.7	-27.3	1.10	0.85	0.03
	3000	-120.0	13.0	1.10	0.92	0.03
	3000	-27.3	2.7	1.10	0.86	0.03
	3000	2.7	-27.3	1.10	0.96	0.03
	4500	-120.0	13.0	1.10	0.92	0.03
	4500	-27.3	2.7	1.10	0.85	0.03
	4500	2.7	-27.3	1.10	0.94	0.03
	6000	-120.0	13.0	1.10	0.85	0.03
	6000	-27.3	2.7	1.10	0.82	0.03
	6000	2.7	-27.3	1.10	0.81	0.03

INTERNAL MODULATION GENERATOR

Output Voltage

Frequency = 1.0 kHz Voltage /mV	DL /mV	Deviation /mV	MU /mV
3	1.03	+0.01	0.011
10	1.10	-0.03	0.036
30	1.30	-0.03	0.11
100	2.00	-0.10	0.35
300	4.00	-0.19	1.06
1000	11.00	-1.00	3.50
3000	31.00	-3.28	10.60
4000	41.00	-6.26	14.00

Frequency Response

Distortion

Frequency /kHz	DL /%	Actual /%	MU {g} /%
0.1	0.10	0.02	0.01
0.3	0.10	0.02	0.01
1.0	0.10	0.03	0.01
3.0	0.10	0.03	0.01
10.0	0.10	0.03	0.01
30.0	0.10	0.03	0.01
100.0	0.10	0.02	0.01

AMPLITUDE MODULATION

AM Depth Error

Setting Error vs Depth: Level = 0 dBm, Source LF Generator 1, LF = 1 kHz Error /% RF = 0.201 MHzError /% RF = 10 MHz-2 0.2 40 60 80 96 60 20 0.2 20 40 Depth /% Depth /% Error /% RF = 150 MHzError /% 0

Setting Error vs RF: Level = 0 dBm, Source LF Generator 1, LF = 1 kHz Depth = 80 % Error /% 2 0 -2

10

0.1

RF /MHz

80

96

AM Distortion

AM Frequency Response

RF-level = 0 dBm, Depth = 60%:

$LF = 1 \text{ kHz, MU: } \{a\}$

FREQUENCY MODULATION

FM Setting U	ncertainty					
RF /MHz	LF /kHz	FM-Dev. /kHz	Mode	DL /kHz	Error /kHz	MU /kHz
FM Source	Internal:					
8.0	2.0	2500.0	High BW	50.02	-7.13	10.00
250.0	2.0	2500.0	High BW	50.02	-7.16	10.00
250.1	2.0	1250.0	High BW	25.02	-3.53	5.00
750.1	2.0	5000.0	High BW	100.02	-14.27	20.00
1000.0	2.0	5000.0	High BW	100.02	-14.03	20.00
1500.0	2.0	5000.0	High BW	100.02	-14.18	20.00
3000.0	2.0	100.0	High BW	2.02	-0.31	0.40
6000.0	2.0	100.0	High BW	2.02	-0.31	0.40
8.0	2.0	50.0	Low Noise	1.02	-0.16	0.20
750.1	2.0	50.0	Low Noise	1.02	-0.16	0.20
1000.0	2.0	50.0	Low Noise	1.02	-0.15	0.20
1500.0	2.0	50.0	Low Noise	1.02	-0.16	0.20
3000.0	2.0	100.0	Low Noise	2.02	-0.31	0.40
6000.0	2.0	100.0	Low Noise	2.02	-0.31	0.40
FM Source	External 1	_:				
1000.0	2.0	5000.0	High BW	150.02	-18.35	50.00

FM Distortio	n					
RF /MHz	LF /kHz	FM-Dev. /kHz	Mode	DUL /%	Actual /%	MU {g}
	1					
8.0	2.0	500.0	High BW	0.20	0.000	0.001
250.0	2.0	500.0	High BW	0.20	0.000	0.001
250.1	2.0	250.0	High BW	0.20	0.001	0.001
750.1	2.0	1000.0	High BW	0.20	0.000	0.001
1000.0	2.0	1000.0	High BW	0.20	0.000	0.001
1500.0	2.0	1000.0	High BW	0.20	0.000	0.001
3000.0	2.0	2000.0	High BW	0.20	0.000	0.001
6000.0	2.0	4000.0	High BW	0.20	0.001	0.001
8.0	2.0	500.0	Low Noise	0.20	0.000	0.001
750.1	2.0	100.0	Low Noise	0.20	0.002	0.001
1000.0	2.0	100.0	Low Noise	0.20	0.002	0.001
1500.0	2.0	100.0	Low Noise	0.20	0.002	0.001
3000.0	2.0	200.0	Low Noise	0.20	0.001	0.001
6000.0	2.0	400.0	Low Noise	0.20	0.000	0.001

FM Frequency Response

Synchronous AM with FM

Mode: High Bandwidth

	RF/MHz	LF/kHz	Dev./kHz	DUL/%	Actual/%	MU	
	8.001	1.0	40.0	0.20	0.026	{a}	
	350.0	1.0	40.0	0.20	0.017	{a}	
	350.001	1.0	40.0	0.20	0.014	{a}	
	750.1	1.0	40.0	0.20	0.003	{a}	
1	0.00.0	1.0	40.0	0.20	0.012	{a}	
1	500.0	1.0	40.0	0.20	0.008	{a}	
3	3000.0	1.0	40.0	0.20	0.011	{a}	
6	0.000	1.0	40.0	0.20	0.011	{a}	

Carrier Frequency Offset with FM

RF = 1 GHz, ModFreq = 1 MHz

			Offset	
Mode	Dev./kHz	DL/kHz	/kHz	MU/kHz
Internal	1000.0	2.000	-0.020	0.010
External, 50 R, AC	1000.0	2.000	+0.150	0.010
External, 50 R, DC	1000.0	2.000	-0.210	0.010
External, High, AC	1000.0	2.000	+0.100	0.010
External, High, DC	1000.0	2.000	-0.830	0.010

PHASE MODULATION

PhiM Setting	Uncertainty					
RF /MHz	LF /kHz	PhiM-Dev. /rad	Mode	DL /rad	Error /rad	MU /rad
PhiM Source	Internal	 		1	l	
8.0	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
350.0	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
350.1	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
750.0	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
1000.0	10.0	10.0	High Dev	0.2030	-0.0249	0.0101
1500.1	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
3000.1	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
3500.0	10.0	10.0	High Dev	0.2030	-0.0249	0.0101
4900.0	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
5400.0	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
6000.0	10.0	10.0	High Dev	0.2030	-0.0236	0.0101
500.0	10.0	0.001	High BW	0.0030	+0.0000	0.0001
500.0	10.0	0.01	High BW	0.0032	+0.0000	0.0001
500.0	10.0	0.1	High BW	0.0050	-0.0006	0.0002
500.0	10.0	0.5	High BW	0.0130	-0.0027	0.0006
8.0	10.0	0.0625	Low Noise	0.0043	-0.0002	0.0002
1000.0	10.0	0.125	Low Noise	0.0055	+0.0005	0.0002
1500.1	10.0	0.25	Low Noise	0.0080	+0.0007	0.0004
3000.1	10.0	0.5	Low Noise	0.0130	+0.0014	0.0006
6000.0	10.0	0.5	Low Noise	0.0130	+0.0017	0.0006
PhiM Source	External	:				
70.687	10.0	0.625	High BW	0.0218	-0.0018	0.0045
1000.0	10.0	0.125	Low Noise	0.0068	+0.0002	0.0010
3000.0	10.0	40.0	High Dev	1.2030	-0.1564	0.2801

PhiM Distort	ion					
RF/MHz	LF/kHz	Dev./rad	Mode	DL/%	Actual/%	{g} MU/%
8.0	10.0	0.25	High BW	0.20	0.007	0.001
10.0	10.0	0.25	High BW	0.20	0.007	0.001
250.0	10.0	0.25	High BW	0.20	0.019	0.002
500.0	10.0	0.25	High BW	0.20	0.011	0.002
812.0	10.0	0.50	High BW	0.20	0.004	0.001
940.0	10.0	0.50	High BW	0.20	0.003	0.001
1067.0	10.0	0.50	High BW	0.20	0.004	0.001
1194.0	10.0	0.50	High BW	0.20	0.004	0.001
1321.0	10.0	0.50	High BW	0.20	0.003	0.001
1484.0	10.0	0.50	High BW	0.20	0.005	0.001
2200.0	10.0	1.0	High BW	0.20	0.003	0.001
4000.0	10.0	2.0	High BW	0.20	0.009	0.002
6000.0	10.0	2.0	High BW	0.20	0.020	0.002

PULSE MODULATION

ON/OFF Ratio

RF-Level = 0 dBm

Dynamic Characteristics

The expanded uncertainty of the measurands risetime and falltime is 1 ns. The characteristic overshoot is a test result.

Transition Type: Fast

RF /MHz	Risetime /ns	Falltime /ns	DUL /ns	Overshoot /%	DUL /%	Result	MU
700	5.9	2.2	15	0.3	10	PASS	{a}
1000	6.5	2.3	15	0.0	10	PASS	{a}
2000	5.7	2.3	15	0.0	10	PASS	{a}
3000	5.2	1.8	15	0.0	10	PASS	{a}
4000	5.7	2.2	15	0.1	10	PASS	{a}
5000	5.5	1.9	15	0.0	10	PASS	{a}
6000	6.9	2.0	15	0.0	10	PASS	{a}

Transition Type: Smoothed

RF /MHz	Risetime /ns	Falltime /ns	DUL /ns	Overshoot /%	DUL /%	Result	MU
700	50.3	13.7	200	0.2	10	PASS	{a}
1000	48.1	13.7	200	0.0	10	PASS	{a}
2000	44.0	13.6	200	0.0	10	PASS	{a}
3000	39.0	13.1	200	0.0	10	PASS	{a}
4000	49.9	16.4	200	0.0	10	PASS	{a}
5000	50.2	14.9	200	0.0	10	PASS	{a}
6000	53.8	14.6	200	0.0	10	PASS	{a}

Video Feedthrough

Modulation Signal: 100 kHz Square

Transition	RF /MHz	Level /dBm	DUL /mVpp	Actual /mVpp	MU
Fast	3250.0	+10.0	200	57.8	{e}
	4250.0	+10.0	200	45.2	{e}
	6000.0	+10.0	200	62.9	{e}
Smoothed	3250.0	+10.0	200	32.2	{e}
	4250.0	+10.0	200	24.7	{e}
	6000.0	+10.0	200	34.3	{e}

Functional test of Pulse Ext.

Test of Pulse Ext. connector

PASS

Calibration Certificate

Certificate Number 1020-300773215

Kalibrierschein Zertifikatsnummer

Unit Data

SMB100B SIGNAL GEN. BASE UNIT

Gegenstand

ROHDE & SCHWARZ Manufacturer

Hersteller

SMB100B Type

Тур

1422.1000K02 Serial Number 102254 **Material Number**

Seriennumme

Materialnummer

Asset Number Inventarnummer

Order Data

Exporta s.r.o. Customer Auftraggeber

Patockova 1434/51 160 00 Praha 6

CZ

Order Number Bestellnummer

8800067369 10, 312025498

Date of Receipt

2024-11-27

Eingangsdatum

Performance

Place and Date of Calibration

Ort und Datum der Kalibrierung

Scope of Calibration

Umfang der Kalibrierung

Statement of Compliance

(Incoming)

Konformitätsaussage

(Anlieferung)

Statement of Compliance

(Outgoing)

Konformitätsaussage (Auslieferung)

Extent of Calibration Documents

Umfang des Kalibrierdokuments

2 Pages Calibration Certificate 29 Pages Outgoing Results

Standort Memmingen, 2024-12-03

All measured values are within

All measured values are within

the data sheet specifications.

the data sheet specifications.

Standard Calibration

29 Pages Incoming Results

This calibration certificate documents, that the named item is tested and measured against defined

specifications.

Measurement results are located usually in the corresponding interval with a probability of approx. 95% (coverage factor k = 2).
Calibration is performed with test

equipment and standards directly or indirectly traceable by means of approved calibration techniques to the PTB/DKD or other national /

international standards, which realize the physical units of measurement according to the International System

of Units (SI). In all cases where no standards are available, measurements are referenced to standards of the R&S

laboratories.

Principles and methods of calibration correspond and are conformant with EN ISO/IEC 17025. ANSI/NCSL Z540.1-1994 and ANSI/NCSL Z540.3-2006. The applied quality system is certified to EN ISO 9001. This calibration certificate may not be reproduced other than in full. Calibration certificates without signatures are not valid.

The user is obliged to have the object recalibrated at appropriate intervals.

Dieser Kalibrierschein dokumentiert, dass der genannte Gegenstand nach festgelegten Vorgaben geprüft und gemessen wurde. Die Messwerte lagen im Regelfall mit einer Wahrscheinlichkeit

von annähernd 95% im zugeordneten Werteintervall (Erweiterte Messunsicherheit mit k = 2).

Die Kalibrierung erfolgte mit Messmitteln und Normalen, die direkt oder indirekt durch Ableitung mittels anerkannter Kalibriertechniken rückgeführt sind auf Normale der PTB/DKD oder anderer nationaler/internationaler Standards zur Darstellung der physikalischen Einheiten

in Übereinstimmung mit dem Internationalen Einheitensystem (SI) Wenn keine Normale existieren, erfolgt die Rückführung auf Bezugsnormale der

R&S-Laboratorien.

Grundsätze und Verfahren der Kalibrierung beziehen sich auf und entsprechen EN ISO/IEC 17025, ANSI/NCSL Z540.1-1994 und ANSI/NCSL Z540.3-2006.

Das angewandte

Qualitätsmanagement-System ist zertifiziert nach EN ISO 9001.

Dieser Kalibrierschein darf nur vollständig und unverändert weiterverbreitet werden. Kalibrierscheine ohne Signatur sind

ungültig.

Für die Einhaltung einer angemessenen Frist zur Wiederholung der Kalibrierung ist der Benutzer verantwortlich.

Rohde & Schwarz Messgerätebau GmbH

Date of Issue Ausstellungsdatum **Laboratory Management**

Laborleitung

Person in Charge

Bearbeiter

2024-12-03

Michael Dill

Christian Feigl

Page 1/2 ver9815/MB0707 Ambient Temperature Umgebungstemperatur

(23 ⁺⁷₋₃) °C

Working standards used (having a significant effect on the accuracy)

Verwendete Gebrauchsnormale (mit signifikantem Einfluss auf die Genauigkeit)

Item		Serial Number	Calibration Certificate Number	Cal. Due
Gegenstand	Type Typ	Seriennummer	Kalibrierscheinnummer	Kalibr. bis
Detector Kit for UCS2010	ENV-DET	101523	0001A300735433	2025-08-31
Standard Frequency System	FREQSTD	100257	0001A1230250	2025-10-31
Phase Noise Analyzer 50GHz	FSWP50	101607	20A1188357	2025-08-31
Spectrum Analyzer 26.5 GHz	FSW26	101683	0001A300707886	2025-01-31
Spectrum Analyzer 67GHz	FSW67	101798	0001A300738414	2025-09-30
Average Power Sensor 8kHz-18GH	NRP18A	101451	0001A300725178	2025-06-30
Average Power Sensor 8kHz-18GH	NRP18A	101400	0001A300725176	2025-06-30
Thermal Power Sensor 18GHz	NRP18T	101321	0001A300719420	2025-05-31
Thermal Power Sensor	NRP40T	101249	0001A300755514	2026-01-31
Thermal Power Sensor	NRP67T	101254	0001A300725185	2025-06-30
RMS Peak Voltmeter DC-30 MHz	URE3	827527/030	0001A300739341	2025-09-30
SWR Bridge 40kHz - 4GHz 50 Ohm	ZRC	100091	0001A300725186	2025-06-30
Calibration Kit 40GHz	ZRP40	101567	0001A300756324	2026-01-31
Calibration Kit 50GHz	ZRP50	101465	0001A300756320	2026-01-31
Directional Coupler 2-18 GHz	773D	100002	0001A300734284	2025-08-31

UGB1 A compliance statement may be possible where a confidence level of less than 95 % is acceptable.

Die Bestätigung der Konformität ist möglich, sofern ein Grad des Vertrauens von weniger als 95 % akzeptabel ist.

Die Bestätigung der Nicht-Konformität ist möglich, sofern ein Grad des Vertrauens von weniger als 95 % akzeptabel ist.

 $\mathsf{UGB2}$ A non-compliance statement may be possible where a confidence level of less than 95 % is acceptable.

Ref.: ILAC G8:09/2019 Guidelines on Decision Rules and Statements of Conformity

Notes

Anmerkungen

The certificate number formatted 0001-300773215 corresponds to format 1020-300773215, because of formal changes.

Installed options are included in calibration. Depending on installed options, numbers of pages of the record are not consecutive.

Outgoing Results

Designation: Signal Generator

Type: SMB100B
Material No.: 1422.1000K02

Serial No.: 102254

Certificate No.: 1020-300773215

Referring to Test Documentation: 1422.1000.01-PB-5.00

Test Department: 3MES3

Name: see certificate

Date: 2024-12-03

\$	Page
ROHDE&SCHWARZ	1/29

The following abbreviations may be used in this document

{a}	No measurement uncertainty stated because the errors always add together. So it is sure

that a measurement result evaluated as "PASS" is pass.

{b} The measurement uncertainty depends on the measurement result. The stated measurement uncertainty is valid for the close area around the specification. Measurement results outside

the close area have a higher measurement uncertainty but are within the specification.

{c} Functional test, therefore no measurement uncertainty is stated.

{d} Typical value, refer to performance test.

{e} The measurement uncertainty is taken into account when setting the measuring system.

{g} Verification of specified requirements, non-accredited measurements. Technical operations that consist of

the determination of one or more characteristics to a specified procedure (formerly {f}).

DL or DT Data Limit for symmetrical tolerance limits

DLL Datasheet Lower Limit
DUL Datasheet Upper Limit

MU Symmetrical Measurement Uncertainty
MLL or MLV Measurement Uncertainty Lower Value
MUL or MUV Measurement Uncertainty Upper Value

Nom. Nominal Value
Dev. Deviation
Act. Actual Value

UGB Uncertainty Guard Band: Measuring uncertainty violates the data (spec.) limit.

UGB1 A compliance statement may be possible where a confidence level of less than 95 % is acceptable.

UGB2 A non-compliance statement may be possible where a confidence level of less than 95 % is acceptable.

DU Datasheet Uncertainty

Explanation of charts

Table of contents

Software used for measurement	
DUT Configuration	
REFERENCE FREQUENCY	
Internal Reference Frequency Error	
Ref Out Level (Std.)	
Synchronisation Test	
Frequency Setting Time	
SPECTRAL PURITY	
Harmonics CW-Mode	
Harmonics vs Level	
Subharmonics CW-Mode	
Nonharmonics	
Wideband Noise	
SSB Phase Noise	
Residual AM	
Residual Aivi	I
LEVEL	
Level Accuracy	
Level Linearity ALC Auto	
Level Linearity ALC Off (Table)	
Maximum Level	
Output Impedance (VSWR)	
Level Setting Time	
INTERNAL MODULATION GENERATOR	
Output Voltage	
Frequency Response	
Distortion	
AMPLITUDE MODULATION	
AM Depth Error	
AM Distortion	
AM Frequency Response vs RF	
AM Frequency Response	
Synchronous PhiM with AM	
Synononous i ilim with ilim with ilim in ilim in ilim ilim ilim ilim ili	
FREQUENCY MODULATION	2
FM Setting Uncertainty	
FM Distortion	
FM Frequency Response	
Synchronous AM with FM	2
Carrier Frequency Offset with FM	
	_
PHASE MODULATION	
PhiM Setting Uncertainty	
PhiM Distortion	
PhiM Frequency Response	
PULSE MODULATION	2
ON/OFF Ratio	
Dynamic Characteristics	
Video Feedthrough	
Functional test of Dulce Ext	

Test Management Software G5

Suite

Test Program (503886)

Setup

Component

Software used for measurement				
Item	Туре	Version	Remark	

V12.49.07

V05.07

DUT Configuration

Firmware version: 5.10.121.41

Specifications: 05.05

REFERENCE FREQUENCY

Internal Reference Frequency Error

after adjusting at calibration temperature

	Nominal	DL /Hz	Error /Hz	MU /Hz
Ref Out Frequency	10 MHz	± 1.000	+0.000	0.010

Ref Out Level (Std.)								
Ref Freq /MHz	In Level /dBm	Freq /MHz	DLL /dBm	Ref Out DUL /dBm	Actual /dBm	{g} MU /dB		
-	-	10.0	7.0	13.0	10.20	0.34		
10.0	0.0 16.0	10.0	7.0 7.0	13.0 13.0	10.34 10.33	0.34		
	Ref Freq /MHz	Ref In Freq Level /MHz /dBm 10.0 0.0	Ref In Freq Level Freq /MHz /dBm /MHz 10.0 10.0 0.0 10.0	Ref In Freq Level Freq DLL /MHz /dBm /MHz /dBm 10.0 7.0 10.0 0.0 10.0 7.0	Ref In	Ref In		

Synchronisation Test

Test if DUT is locked to Ref In signal:

Ref Source	Ref /MHz	In /dBm	Sync. BW	Ref In detune /ppm	Result	MU {c}
Ext.	10.0	0.0	Wide	0.0	PASS	
Ext.	10.0	16.0	Wide	0.0	PASS	
Ext.	10.0	8.0	Wide	+100.0	PASS	
Ext.	10.0	8.0	Wide	-100.0	PASS	

after remote control delimiter, GUI update stopped

Mode	Start freq./MHz	Stop freq./MHz	DUL /ms	Actual /ms	MU {g} /ms
ALC AUTO (CW)	0.200	0.201	1.10	0.93	0.03
ALC AUTO (CW)	0.200	0.201	1.10	0.91	0.03
	5.000	5.001	1.10	0.80	0.03
	5.001	5.001	1.10	0.86	0.03
	10.000	10.001	1.10	0.74	0.03
	10.000	10.001	1.10	0.74	0.03
	80.000	80.001	1.10	0.86	0.03
	80.001	80.000	1.10	0.76	0.03
	100.000	100.001	1.10	0.85	0.03
	100.001	100.000	1.10	0.84	0.03
	250.000	250.001	1.10	0.77	0.03
	250.001	250.000	1.10	0.72	0.03
	267.000	267.001	1.10	0.72	0.03
	267.001	267.000	1.10	0.75	0.03
	1400.000	1400.001	1.10	0.85	0.03
	1400.001	1400.000	1.10	0.82	0.03
	1500.000	1500.001	1.10	0.84	0.03
	1500.001	1500.000	1.10	0.77	0.03
	3000.000	3000.001	1.10	0.85	0.03
	3000.001	3000.000	1.10	0.82	0.03
	3780.000	3780.001	1.10	0.73	0.03
	3780.001	3780.000	1.10	0.70	0.03
	3876.000	3876.001	1.10	0.71	0.03
	3876.001	3876.000	1.10	0.68	0.03
	4100.000	4100.001	1.10	0.84	0.03
	4100.001	4100.000	1.10	0.80	0.03
	4760.000	4760.001	1.10	0.74	0.03
	4760.001	4760.000	1.10	0.72	0.03
	1500.001	1870.000	1.10	0.85	0.03
	1870.000	1500.001	1.10	0.84	0.03
	1870.001	2170.000	1.10	0.80	0.03
	2170.000	1870.001	1.10	0.80	0.03
	2170.001	2730.000	1.10	0.89	0.03
	2730.000	2170.001	1.10	0.84	0.03
	2730.001	3000.000	1.10	0.81	0.03
	3000.000	2730.001	1.10	0.81	0.03
	3000.001	3740.000	1.10	0.83	0.03
	3740.000	3000.001	1.10	0.81	0.03
	3740.001	4340.000	1.10	0.81	0.03
	4340.000	3740.001	1.10	0.83	0.03
	4340.001	5460.000	1.10	0.84	0.03
	5460.000	4340.001	1.10	0.80	0.03
	5460.001	6000.000	1.10	0.85	0.03
	6000.000	5460.001	1.10	0.83	0.03
				+	

SPECTRAL PURITY

Harmonics CW-Mode

RF-Level = 13.0 dBm

Harmonics vs Level

Subharmonics CW-Mode

RF-Level = 10.0 dBm

Nonharmonics

Systematic nonharmonics of synthesis:

Systematic nonha	armonics of	synthesis:			()
RF /MHz	Level /dBm	Spurious at /MHz	DUL /dBc	Actual /dBc	{g} MU /dB
66.930000	10.0	70.88000	-80.0	-101.5	0.8
77.590000	10.0	86.25980	-80.0	-102.1	0.8
455.203520	10.0	455.23214	-80.0	-101.7	0.8
881.777000	10.0	882.05250	-76.0	-111.6	0.8
999.900000	10.0	1000.00000	-76.0	-98.6	0.8
999.900000	10.0	1000.10000	-76.0	-103.3	0.8
1076.561000	10.0	1076.57920	-76.0	-100.6	0.8
1137.503000	10.0	1137.53730	-76.0	-101.6	0.8
1157.803000	10.0	1157.82970	-76.0	-93.5	0.8
1264.292000	10.0	1264.35250	-76.0	-88.7	0.8
1291.929000	10.0	1292.08000	-76.0	-110.0	0.8
1302.607000	10.0	1302.63020	-76.0	-92.7	0.8
1343.016000	10.0	1343.09170	-76.0	-98.0	0.8
1414.262000	10.0	1414.43860	-76.0	-97.6	0.8
1424.408000	10.0	1424.51220	-76.0	-97.9	0.8
1434.603000	10.0	1434.70090	-76.0	-97.5	0.8
1499.900000	10.0	1500.30000	-76.0	-98.1	0.8
1500.100000	10.0	1500.30000	-70.0	-90.8	0.8
1500.100000	10.0	1500.50000	-70.0	-106.4	0.8
1571.500000	10.0	1571.59090	-70.0	-90.9	0.8
1675.765000	10.0	1675.79220	-70.0	-92.1	0.8
1828.140000	10.0	1828.16720	-70.0	-90.8	0.8
1999.900000	10.0	2000.00000	-70.0	-98.0	0.8
1999.900000	10.0	2000.10000	-70.0	-93.4	0.8
2000.100000	10.0	2000.20000	-70.0	-93.5	0.8
2000.100000	10.0	2000.30000	-70.0	-91.3	0.8
2153.144000	10.0	2153.17330	-70.0	-90.2	0.8
2168.957000	10.0	2169.16790	-70.0	-101.6	0.8
2274.980000	10.0	2275.00857	-70.0	-89.1	0.8
2405.150000	10.0	2405.52230	-70.0	-86.5	0.8
2574.265000	10.0	2574.54150	-70.0	-101.0	0.8
2660.913000	10.0	2660.94297	-70.0	-91.1	0.8
2828.451000	10.0	2828.63670	-70.0	-91.2	0.8
3486.464000	10.0	3486.54170	-64.0	-97.0	0.8
3527.057000	10.0	3527.15890	-64.0	-99.1	0.8
3999.900000	10.0	3999.95000	-64.0	-90.1	0.8
3999.900000	10.0	4000.00000	-64.0	-84.2	0.8
3999.900000	10.0	4000.30000	-64.0	-90.2	0.8
4000.100000	10.0	4000.15000	-64.0	-87.0	0.8
4000.100000	10.0	4000.20000	-64.0	-83.4	0.8
4000.100000	10.0	4000.50000	-64.0	-90.1	0.8
4120.921000	10.0	4121.29230	-64.0	-91.4	0.8
4297.343000	10.0	4297.47110	-64.0	-96.9	0.8
4337.933000	10.0	4338.19630	-64.0	-96.0 -95.9	0.8
4378.336000	10.0	4378.45300	-64.0		0.8
4418.937000	10.0	4418.98640	-64.0 -64.0	-95.3 -88.3	0.8
4631.205000	10.0	4631.23730			0.8
4999.900000 5000.100000	10.0 10.0	5000.00000 5000.20000	-64.0 -64.0	-79.2 -78.9	0.8
5376.196000		5376.21620	-64.0 -64.0		
5524.955000	10.0 10.0	5524.98220	-64.0 -64.0	-84.2 -80.3	0.8
5710.228000	10.0	5710.73850	-64.0	-92.0	0.8
5999.900000	10.0	6000.00000	-64.0	-92.0 -94.8	0.8
5999.900000	10.0	6000.10000	-64.0	-75.0	0.8
3,7,7,00000	10.0	3000.10000	04.0	- 73.0	0.0

Non-systematic nonharmonics, CW-mode:

Scanned range: RF /MHz	: 10 kHz Level /dBm	to 10 MHz carrier Spurious at /MHz	offset DUL /dBc	Actual /dBc	{g} MU /dB
77.591000	10.0	68.908000	-80.0	-97.9	0 0
700.787000	10.0	700.813667	-80.0	-97.9 -96.7	0.8 0.8
1571.500000	10.0	1571.409090	-70.0	-90.8	0.8
2579.693000	10.0	2579.720717	-70.0	-85.6	0.8
2762.520000	10.0	2762.543529	-70.0	-88.1	0.8
2803.138000	10.0	2803.153071	-70.0	-88.7	0.8
2935.758000	10.0	2935.579310	-70.0	-81.2	0.8
3437.509000	10.0	3437.537802	-64.0	-84.8	0.8
4509.337000	10.0	4509.364386	-64.0	-81.7	0.8
4712.546000	10.0	4712.641171	-64.0	-87.1	0.8
4753.130000	10.0	4753.143675	-64.0	-86.1	0.8
5240.570000	10.0	5240.467680	-64.0	-86.3	0.8
5443.738000	10.0	5443.709341	-64.0	-79.5	0.8
5524.955000	10.0	5524.981468	-64.0	-80.0	0.8
5606.287000	10.0	5606.308450	-64.0	-83.7	0.8
5871.400000	10.0	5871.458395	-64.0	-75.4	0.8

Wideband Noise

SSB Phase Noise

RF /MH		DUL /dBc	Actual /dBc	MU {g} /dB
10	0 20.0	-142.0	-150.1	1.0
100	0 20.0	-126.0	-133.7	1.0
200	0 20.0	-120.0	-127.8	1.0
300	0 20.0	-116.0	-124.5	1.0
400	0 20.0	-114.0	-121.5	1.0
600	0 20.0	-110.0	-118.6	1.0

Residual AM

RMS value (20 Hz to 23 kHz) Level = 12 dBm $\,$

RF/MHz	DUL/%	Actual/%	MU
10	0.020	0.003	{a}
50	0.020	0.003	{a}
80	0.020	0.003	{a}
80.001	0.020	0.003	{a}
100	0.020	0.003	{a}
1000	0.020	0.003	{a}
1900	0.020	0.002	{a}
1901	0.020	0.002	{a}
2700	0.020	0.002	{a}
3000	0.020	0.002	{a}
3001	0.020	0.002	{a}
3600	0.020	0.002	{a}
3601	0.020	0.002	{a}
4100	0.020	0.002	{a}
4101	0.020	0.002	{a}
5400	0.020	0.003	{a}
6000	0.020	0.003	{a}

LEVEL

Level Accuracy

- Versus Frequency at Specific Level: CW-Mode:

Level Linearity ALC Auto

Level Linearity ALC Off (Table)

Maximum Level

Output Impedance (VSWR)

Tests with different settings of signal path through the instrument. Frequency range up to 3 GHz:

Level Setting Time

after remote control delimiter to $< 0.1 \ \mathrm{dB}$ deviation from final value

Mode	RF /MHz	Start level /dBm	Stop level /dBm	DUL /ms	Actual /ms	MU {g} /ms
ALC ON	10	-120.0	13.0	1.10	0.92	0.03
	10	-27.3	2.7	1.10	0.87	0.03
	10	2.7	-27.3	1.10	0.98	0.03
	30	-120.0	13.0	1.10	0.91	0.03
	30	-27.3	2.7	1.10	0.92	0.03
	30	2.7	-27.3	1.10	0.94	0.03
	375	-120.0	13.0	1.10	0.89	0.03
	375	-27.3	2.7	1.10	0.88	0.03
	375	2.7	-27.3	1.10	0.84	0.03
	1000	-120.0	13.0	1.10	0.84	0.03
	1000	-27.3	2.7	1.10	0.85	0.03
	1000	2.7	-27.3	1.10	0.89	0.03
	2000	-120.0	13.0	1.10	0.83	0.03
	2000	-27.3	2.7	1.10	0.94	0.03
	2000	2.7	-27.3	1.10	0.85	0.03
	3000	-120.0	13.0	1.10	0.92	0.03
	3000	-27.3	2.7	1.10	0.86	0.03
	3000	2.7	-27.3	1.10	0.96	0.03
	4500	-120.0	13.0	1.10	0.92	0.03
	4500	-27.3	2.7	1.10	0.85	0.03
	4500	2.7	-27.3	1.10	0.94	0.03
	6000	-120.0	13.0	1.10	0.85	0.03
	6000	-27.3	2.7	1.10	0.82	0.03
	6000	2.7	-27.3	1.10	0.81	0.03

INTERNAL MODULATION GENERATOR

Output Voltage

Frequency = 1.0 kHz Voltage /mV	DL /mV	Deviation /mV	MU /mV	
3	1.03	+0.01	0.011	
10	1.10	-0.03	0.036	
30	1.30	-0.03	0.11	
100	2.00	-0.10	0.35	
300	4.00	-0.19	1.06	
1000	11.00	-1.00	3.50	
3000	31.00	-3.28	10.60	
4000	41.00	-6.26	14.00	

Frequency Response

Distortion

Frequency /kHz	DL /%	Actual /%	MU {g} /%
0.1	0.10	0.02	0.01
0.3	0.10	0.02	0.01
1.0	0.10	0.03	0.01
3.0	0.10	0.03	0.01
10.0	0.10	0.03	0.01
30.0	0.10	0.03	0.01
100.0	0.10	0.02	0.01

AMPLITUDE MODULATION

AM Depth Error

Setting Error vs Depth: Level = 0 dBm, Source LF Generator 1, LF = 1 kHz Error /% RF = 0.201 MHzError /% -2 0.2 40 60 80 96 20 0.2 Depth /% RF = 150 MHz

Setting Error vs RF:

Level = 0 dBm, Source LF Generator 1, LF = 1 kHz

AM Frequency Response vs RF

AM Frequency Response

RF-level = 0 dBm, Depth = 60%:

Synchronous PhiM with AM

 $LF = 1 \text{ kHz, MU: } \{a\}$

FREQUENCY MODULATION

FM Setting Ur	ncertainty					
RF /MHz	LF /kHz	FM-Dev. /kHz	Mode	DL /kHz	Error /kHz	MU /kHz
FM Source	Internal:					
8.0	2.0	2500.0	High BW	50.02	-7.13	10.00
250.0	2.0	2500.0	High BW	50.02	-7.16	10.00
250.1	2.0	1250.0	High BW	25.02	-3.53	5.00
750.1	2.0	5000.0	High BW	100.02	-14.27	20.00
1000.0	2.0	5000.0	High BW	100.02	-14.03	20.00
1500.0	2.0	5000.0	High BW	100.02	-14.18	20.00
3000.0	2.0	100.0	High BW	2.02	-0.31	0.40
6000.0	2.0	100.0	High BW	2.02	-0.31	0.40
8.0	2.0	50.0	Low Noise	1.02	-0.16	0.20
750.1	2.0	50.0	Low Noise	1.02	-0.16	0.20
1000.0	2.0	50.0	Low Noise	1.02	-0.15	0.20
1500.0	2.0	50.0	Low Noise	1.02	-0.16	0.20
3000.0	2.0	100.0	Low Noise	2.02	-0.31	0.40
6000.0	2.0	100.0	Low Noise	2.02	-0.31	0.40
FM Source	External 1	_:				
1000.0	2.0	5000.0	High BW	150.02	-18.35	50.00

FM Distortion							
RF /MHz	LF /kHz	FM-Dev. /kHz	Mode	DUL /%	Actual /%	MU {g} /%	
8.0 250.0 250.1 750.1 1000.0 1500.0 3000.0 6000.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	500.0 500.0 250.0 1000.0 1000.0 2000.0 4000.0	High BW	0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20	0.000 0.000 0.001 0.000 0.000 0.000 0.000	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	
8.0 750.1 1000.0 1500.0 3000.0 6000.0	2.0 2.0 2.0 2.0 2.0 2.0	500.0 100.0 100.0 100.0 200.0 400.0	Low Noise Low Noise Low Noise Low Noise Low Noise	0.20 0.20 0.20 0.20 0.20 0.20	0.000 0.002 0.002 0.002 0.001 0.000	0.001 0.001 0.001 0.001 0.001 0.001	

FM Frequency Response

Synchronous AM with FM

Mode: High Bandwidth

RF/MHz	LF/kHz	Dev./kHz	DUL/%	Actual/%	MU
8.001	1.0	40.0	0.20	0.026	{a}
350.0	1.0	40.0	0.20	0.017	{a}
350.001	1.0	40.0	0.20	0.014	{a}
750.1	1.0	40.0	0.20	0.003	{a}
1000.0	1.0	40.0	0.20	0.012	{a}
1500.0	1.0	40.0	0.20	0.008	{a}
3000.0	1.0	40.0	0.20	0.011	{a}
6000.0	1.0	40.0	0.20	0.011	{a}

Carrier Frequency Offset with FM

RF = 1 GHz, ModFreq = 1 MHz

			Offset	
Mode	Dev./kHz	DL/kHz	/kHz	MU/kHz
Internal	1000.0	2.000	-0.020	0.010
External, 50 R, AC	1000.0	2.000	+0.150	0.010
External, 50 R, DC	1000.0	2.000	-0.210	0.010
External, High, AC	1000.0	2.000	+0.100	0.010
External, High, DC	1000.0	2.000	-0.830	0.010

PHASE MODULATION

PhiM Setting	Uncertainty					
RF /MHz	LF /kHz	PhiM-Dev. /rad	Mode	DL /rad	Error /rad	MU /rad
PhiM Source	Internal	:				
8.0	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
350.0	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
350.1	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
750.0	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
1000.0	10.0	10.0	High Dev	0.2030	-0.0249	0.0101
1500.1	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
3000.1	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
3500.0	10.0	10.0	High Dev	0.2030	-0.0249	0.0101
4900.0	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
5400.0	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
6000.0	10.0	10.0	High Dev	0.2030	-0.0236	0.0101
500.0	10.0	0.001	High BW	0.0030	+0.0000	0.0001
500.0	10.0	0.01	High BW	0.0032	+0.0000	0.0001
500.0	10.0	0.1	High BW	0.0050	-0.0006	0.0002
500.0	10.0	0.5	High BW	0.0130	-0.0027	0.0006
8.0	10.0	0.0625	Low Noise	0.0043	-0.0002	0.0002
1000.0	10.0	0.125	Low Noise	0.0055	+0.0005	0.0002
1500.1	10.0	0.25	Low Noise	0.0080	+0.0007	0.0004
3000.1	10.0	0.5	Low Noise	0.0130	+0.0014	0.0006
6000.0	10.0	0.5	Low Noise	0.0130	+0.0017	0.0006
PhiM Source	External	:				
70.687	10.0	0.625	High BW	0.0218	-0.0018	0.0045
1000.0	10.0	0.125	Low Noise	0.0068	+0.0002	0.0010
3000.0	10.0	40.0	High Dev	1.2030	-0.1564	0.2801

PhiM Distortion							
RF/MHz	LF/kHz	Dev./rad	Mode	DL/%	Actual/%	{g} MU/%	
8.0	10.0	0.25	High BW	0.20	0.007	0.001	
10.0	10.0	0.25	High BW	0.20	0.007	0.001	
250.0	10.0	0.25	High BW	0.20	0.019	0.002	
500.0	10.0	0.25	High BW	0.20	0.011	0.002	
812.0	10.0	0.50	High BW	0.20	0.004	0.001	
940.0	10.0	0.50	High BW	0.20	0.003	0.001	
1067.0	10.0	0.50	High BW	0.20	0.004	0.001	
1194.0	10.0	0.50	High BW	0.20	0.004	0.001	
1321.0	10.0	0.50	High BW	0.20	0.003	0.001	
1484.0	10.0	0.50	High BW	0.20	0.005	0.001	
2200.0	10.0	1.0	High BW	0.20	0.003	0.001	
4000.0	10.0	2.0	High BW	0.20	0.009	0.002	
6000.0	10.0	2.0	High BW	0.20	0.020	0.002	

0.01

PhiM Frequency Response

10000

LF /kHz

10000

LF /kHz

PULSE MODULATION

ON/OFF Ratio

RF-Level = 0 dBm

Dynamic Characteristics

The expanded uncertainty of the measurands risetime and falltime is $1\ \mathrm{ns}$. The characteristic overshoot is a test result.

Transition Type: Fast

RF /MHz	Risetime /ns	Falltime /ns	DUL /ns	Overshoot /%	DUL /%	Result	MU
700	5.9	2.2	15	0.3	10	PASS	{a}
1000	6.5	2.3	15	0.0	10	PASS	{a}
2000	5.7	2.3	15	0.0	10	PASS	{a}
3000	5.2	1.8	15	0.0	10	PASS	{a}
4000	5.7	2.2	15	0.1	10	PASS	{a}
5000	5.5	1.9	15	0.0	10	PASS	{a}
6000	6.9	2.0	15	0.0	10	PASS	{a}

Transition Type: Smoothed

RF /MHz	Risetime /ns	Falltime /ns	DUL /ns	Overshoot /%	DUL /%	Result	MU
700	50.3	13.7	200	0.2	10	PASS	{a}
1000	48.1	13.7	200	0.0	10	PASS	{a}
2000	44.0	13.6	200	0.0	10	PASS	{a}
3000	39.0	13.1	200	0.0	10	PASS	{a}
4000	49.9	16.4	200	0.0	10	PASS	{a}
5000	50.2	14.9	200	0.0	10	PASS	{a}
6000	53.8	14.6	200	0.0	10	PASS	{a}

Video Feedthrough

Modulation Signal: 100 kHz Square

Transition	RF /MHz	Level /dBm	DUL /mVpp	Actual /mVpp	MU
Fast	3250.0	+10.0	200	57.8	{e}
	4250.0	+10.0	200	45.2	{e}
	6000.0	+10.0	200	62.9	{e}
Smoothed	3250.0	+10.0	200	32.2	{e}
	4250.0	+10.0	200	24.7	{e}
	6000.0	+10.0	200	34.3	{e}

Functional test of Pulse Ext.

Test of Pulse Ext. connector

PASS

Incoming Results

Incoming Results

Designation: Signal Generator

Type: SMB100B
Material No.: 1422.1000K02

Serial No.: 102254

Certificate No.: 0001-300773215

Referring to Test Documentation: 1422.1000.01-PB-5.00

Test Department: 3MES3

Name: see certificate

Date: 2024-11-28

%	Page
ROHDE&SCHWARZ	1/29

The following abbreviations may be used in this document

{a} No measurement uncertainty stated because the errors always add together. So it is sure

102254

that a measurement result evaluated as "PASS" is pass.

{b} The measurement uncertainty depends on the measurement result. The stated measurement

uncertainty is valid for the close area around the specification. Measurement results outside

the close area have a higher measurement uncertainty but are within the specification.

{c} Functional test, therefore no measurement uncertainty is stated.

Typical value, refer to performance test. {d}

The measurement uncertainty is taken into account when setting the measuring system. {e}

Verification of specified requirements, non-accredited measurements. Technical operations that consist of $\{g\}$

the determination of one or more characteristics to a specified procedure (formerly {f}).

DL or DT Data Limit for symmetrical tolerance limits

DLL **Datasheet Lower Limit** DUL **Datasheet Upper Limit**

MU Symmetrical Measurement Uncertainty MLL or MLV Measurement Uncertainty Lower Value MUL or MUV Measurement Uncertainty Upper Value

Nom. Nominal Value Dev. Deviation Act. Actual Value

UGB Uncertainty Guard Band: Measuring uncertainty violates the data (spec.) limit.

UGB1 A compliance statement may be possible where a confidence level of less than 95 % is acceptable. UGB2 A non-compliance statement may be possible where a confidence level of less than 95 % is acceptable.

DU **Datasheet Uncertainty**

Explanation of charts

Table of contents

Software used for measurement	4
DUT Configuration	
REFERENCE FREQUENCY	
Internal Reference Frequency Error	5
Ref Out Level (Std.)	5
Synchronisation Test	5
Frequency Setting Time	6
	_
SPECTRAL PURITY	
Harmonics CW-Mode	
Harmonics vs Level	
Subharmonics CW-Mode	
Nonharmonics	9
Wideband Noise	10
SSB Phase Noise	10
Residual AM	11
Level Accuracy	
, , , , , , , , , , , , , , , , , , ,	
Level Linearity ALC Auto	
Level Linearity ALC Off (Table)	
Maximum Level	
Output Impedance (VSWR)	15
Level Setting Time	17
INTERNAL MORNI ATION OFNER ATOR	40
INTERNAL MODULATION GENERATOR	
Output Voltage	
Frequency Response	
Distortion	18
AMPLITUDE MODULATION	19
AM Depth Error	
AM Distortion	
AM Frequency Response vs RF	
AM Frequency Response	
· · · ·	
Synchronous PhiM with AM	∠1
FREQUENCY MODULATION	22
FM Setting Uncertainty	22
FM Distortion	22
FM Frequency Response	
Synchronous AM with FM	
Carrier Frequency Offset with FM	
PHASE MODULATION	
PhiM Setting Uncertainty	26
PhiM Distortion	26
PhiM Frequency Response	27
DILL CE MODILL ATION	
PULSE MODULATION	
ON/OFF Ratio	
Dynamic Characteristics	
Video Feedthrough	
Functional test of Pulse Ext.	29

<u> </u>
\bigcirc
Ö
\sim

Software used for measurement					
Item	Туре	Version	Remark		
Suite	Setup	V12.49.07	Test Management Software G5		
Test Program (503886)	Component	V05.07			

Specifications: 05.05

REFERENCE FREQUENCY

Internal Reference Frequency Error

	Nominal	DL /Hz	Error /Hz	MU /Hz
Ref Out Frequency	10 MHz	±38.500	-10.540	0.010

Ref Out Level (Std.)

	Ref	In			Ref Out		{g}
Ref Source	Freq /MHz	Level /dBm	Freq /MHz	DLL /dBm	DUL /dBm	Actual /dBm	MU /dB
Int. 10 MHz	-	_	10.0	7.0	13.0	10.20	0.34
Ext. Ext.	10.0	0.0 16.0	10.0	7.0 7.0	13.0 13.0	10.34 10.33	0.34 0.34

Synchronisation Test

Test if DUT is locked to Ref In signal:

Source /MHz /dBm Sync. BW			
Ext. 10.0 0.0 Wide Ext. 10.0 16.0 Wide Ext. 10.0 8.0 Wide Ext. 10.0 8.0 Wide	0.0 0.0 +100.0 -100.0	PASS PASS PASS PASS	

Frequency Setting Time

after remote control delimiter, GUI update stopped

Mode	Start freq./MHz	Stop freq./MHz	DUL /ms	Actual /ms	MU {g} /ms
Mode ALC AUTO (CW)					
	4100.001 4760.000 4760.001 1500.001 1870.000 1870.001 2170.000 2170.001 2730.000 2730.001 3000.000 3740.000 3740.001 4340.000 4340.001 5460.000 5460.001 6000.000	4100.000 4760.001 4760.000 1870.000 1500.001 2170.000 1870.001 2730.000 2170.001 3000.000 2730.001 3740.000 3740.001 4340.000 4340.001 6000.000 5460.001	1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10	0.80 0.74 0.72 0.85 0.84 0.80 0.89 0.84 0.81 0.81 0.83 0.81 0.81 0.83 0.81 0.83 0.81 0.83	0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

SPECTRAL PURITY

Harmonics CW-Mode

RF-Level = 13.0 dBm

Harmonics vs Level

Subharmonics CW-Mode

RF-Level = 10.0 dBm

Nonharmonics

Systematic nonharmonics of synthesis:

Systematic nonh	armonics of	f synthesis:			(~)
RF /MHz	Level /dBm	Spurious at /MHz	DUL /dBc	Actual /dBc	/dB /dB
66.930000	10.0	70.88000	-80.0	-101.5	0.8
77.590000	10.0	86.25980	-80.0	-102.4	0.8
455.203520	10.0	455.23214	-80.0	-102.5	0.8
881.777000	10.0	882.05250	-76.0	-111.7	0.8
999.900000	10.0	1000.00000	-76.0	-98.9	0.8
999.900000	10.0	1000.10000	-76.0	-99.6	0.8
1076.561000	10.0	1076.57920	-76.0	-100.3	0.8
1137.503000	10.0	1137.53730	-76.0	-100.5	0.8
1157.803000	10.0	1157.82970	-76.0	-94.3	0.8
1264.292000	10.0	1264.35250	-76.0	-88.8	0.8
1291.929000	10.0	1292.08000	-76.0	-109.1	0.8
1302.607000	10.0	1302.63020	-76.0	-92.5	0.8
1343.016000	10.0	1343.09170	-76.0	-97.2	0.8
1414.262000	10.0	1414.43860	-76.0	-97.4	0.8
1424.408000	10.0	1424.51220	-76.0	-97.2	0.8
1434.603000	10.0	1434.70090	-76.0	-97.5	0.8
1499.900000	10.0	1500.30000	-76.0	-97.7	0.8
1500.100000	10.0	1500.30000	-70.0	-92.3	0.8
1500.100000	10.0	1500.50000	-70.0	-105.0	0.8
1571.500000	10.0	1571.59090	-70.0	-91.1	0.8
1675.765000	10.0	1675.79220	-70.0	-92.2	0.8
1828.140000	10.0	1828.16720	-70.0	-89.9	0.8
1999.900000	10.0	2000.00000	-70.0	-95.4	0.8
1999.900000	10.0	2000.10000	-70.0	-93.3	0.8
2000.100000	10.0	2000.20000	-70.0	-94.4	0.8
2000.100000	10.0	2000.30000	-70.0	-91.2	0.8
2153.144000	10.0	2153.17330	-70.0	-89.8	0.8
2168.957000	10.0	2169.16790	-70.0	-101.2	0.8
2274.980000	10.0	2275.00857	-70.0	-89.8	0.8
2405.150000	10.0	2405.52230	-70.0	-86.4	0.8
2574.265000	10.0	2574.54150	-70.0	-102.0	0.8
2660.913000	10.0	2660.94297	-70.0	-91.0	0.8
2828.451000	10.0	2828.63670	-70.0	-90.9	0.8
3486.464000	10.0	3486.54170	-64.0	-98.4	0.8
3527.057000	10.0 10.0	3527.15890	-64.0 -64.0	-99.6 -86.5	0.8
3999.900000 3999.900000		3999.95000		-84.1	0.8
3999.900000	10.0 10.0	4000.00000 4000.30000	-64.0 -64.0	-89.8	0.8 0.8
4000.100000	10.0	4000.30000	-64.0	-87.3	0.8
4000.100000	10.0	4000.13000	-64.0	-83.5	0.8
4000.100000	10.0	4000.20000	-64.0	-89.5	0.8
4120.921000	10.0	4121.29230	-64.0	-91.5	0.8
4297.343000	10.0	4297.47110	-64.0	-96.2	0.8
4337.933000	10.0	4338.19630	-64.0	-97.8	0.8
4378.336000	10.0	4378.45300	-64.0	-95.2	0.8
4418.937000	10.0	4418.98640	-64.0	-97.5	0.8
4631.205000	10.0	4631.23730	-64.0	-86.8	0.8
4999.900000	10.0	5000.00000	-64.0	-79.2	0.8
5000.100000	10.0	5000.20000	-64.0	-79.0	0.8
5376.196000	10.0	5376.21620	-64.0	-84.5	0.8
5524.955000	10.0	5524.98220	-64.0	-81.1	0.8
5710.228000	10.0	5710.73850	-64.0	-95.3	0.8
5999.900000	10.0	6000.00000	-64.0	-92.7	0.8
5999.900000	10.0	6000.10000	-64.0	-74.8	0.8

Non-systematic nonharmonics, CW-mode: Scanned range: 10 kHz to 10 MHz ca:

Scanned range RF /MHz	: 10 kHz Level /dBm	to 10 MHz carrier Spurious at /MHz	offset DUL /dBc	Actual /dBc	{g} MU /dB
77.591000	10.0	68.908000	-80.0	-97.4	0.8
700.787000	10.0	700.813667	-80.0	-96.0	0.8
1571.500000	10.0	1571.409090	-70.0	-90.5	0.8
2579.693000	10.0	2579.665283	-70.0	-85.6	0.8
2762.520000	10.0	2762.543529	-70.0	-87.2	0.8
2803.138000	10.0	2803.153071	-70.0	-87.5	0.8
2935.758000	10.0	2935.936690	-70.0	-81.1	0.8
3437.509000	10.0	3437.537802	-64.0	-84.8	0.8
4509.337000	10.0	4509.364386	-64.0	-82.3	0.8
4712.546000	10.0	4712.450829	-64.0	-87.1	0.8
4753.130000	10.0	4753.143675	-64.0	-86.2	0.8
5240.570000	10.0	5240.672320	-64.0	-86.3	0.8
5443.738000	10.0	5443.709341	-64.0	-79.6	0.8
5524.955000	10.0	5524.981469	-64.0	-81.1	0.8
5606.287000	10.0	5606.308450	-64.0	-82.5	0.8
5871.400000	10.0	5871.341605	-64.0	-75.5	0.8

Wideband Noise

SSB Phase Noise

 RF /MHz	Offset /kHz	DUL /dBc	Actual /dBc	MU {g} /dB
100	20.0	-142.0	-150.1	1.0
1000	20.0	-126.0	-133.5	1.0
2000	20.0	-120.0	-127.6	1.0
3000	20.0	-116.0	-124.6	1.0
4000	20.0	-114.0	-121.6	1.0
6000	20.0	-110.0	-118.7	1.0

Residual AM

RMS value (20 Hz to 23 kHz) Level = 12 dBm $\,$

RF/MHz	DUL/%	Actual/%	MU
10	0.020	0.003	{a}
50	0.020	0.003	{a}
80	0.020	0.003	{a}
80.001	0.020	0.003	{a}
100	0.020	0.003	{a}
1000	0.020	0.003	{a}
1900	0.020	0.003	{a}
1901	0.020	0.002	{a}
2700	0.020	0.003	{a}
3000	0.020	0.003	{a}
3001	0.020	0.003	{a}
3600	0.020	0.003	{a}
3601	0.020	0.003	{a}
4100	0.020	0.002	{a}
4101	0.020	0.002	{a}
5400	0.020	0.003	{a}
6000	0.020	0.003	{a}

LEVEL

Level Accuracy

Versus Frequency at Specific Level: CW-Mode:

Level Linearity ALC Auto

Level Linearity ALC Off (Table)

Maximum Level

Output Impedance (VSWR)

Tests with different settings of signal path through the instrument. Frequency range up to 3 GHz:

1.4

1.2

3000

4000

5000

1.4

1.2

3000

4000

5000

6000

RF /MHz

6000

RF /MHz

Level Setting Time

after remote control delimiter to < 0.1 dB deviation from final value

Mode	RF /MHz	Start level /dBm	Stop level /dBm	DUL /ms	Actual /ms	MU {g} /ms
ALC ON	10	-120.0	13.0	1.00	0.78	0.03
	10	-27.3	2.7	1.00	0.80	0.03
	10	2.7	-27.3	1.00	0.78	0.03
	30	-120.0	13.0	1.00	0.82	0.03
	30	-27.3	2.7	1.00	0.77	0.03
	30	2.7	-27.3	1.00	0.80	0.03
	375	-120.0	13.0	1.00	0.65	0.02
	375	-27.3	2.7	1.00	0.72	0.03
	375	2.7	-27.3	1.00	0.67	0.02
	1000	-120.0	13.0	1.00	0.70	0.03
	1000	-27.3	2.7	1.00	0.75	0.03
	1000	2.7	-27.3	1.00	0.69	0.02
	2000	-120.0	13.0	1.00	0.69	0.02
	2000	-27.3	2.7	1.00	0.70	0.03
	2000	2.7	-27.3	1.00	0.69	0.02
	3000	-120.0	13.0	1.00	0.76	0.03
	3000	-27.3	2.7	1.00	0.72	0.03
	3000	2.7	-27.3	1.00	0.73	0.03
	4500	-120.0	13.0	1.00	0.74	0.03
	4500	-27.3	2.7	1.00	0.74	0.03
	4500	2.7	-27.3	1.00	0.68	0.02
	6000	-120.0	13.0	1.00	0.69	0.02
	6000	-27.3	2.7	1.00	0.70	0.02
	6000	2.7	-27.3	1.00	0.63	0.02

INTERNAL MODULATION GENERATOR

Output Voltage

Frequency = 1.0 kHz Voltage /mV	DL /mV	Deviation /mV	MU /mV
3	1.03	+0.01	0.011
10	1.10	-0.03	0.036
30	1.30	-0.03	0.11
100	2.00	-0.10	0.35
300	4.00	-0.19	1.06
1000	11.00	-1.00	3.50
3000	31.00	-3.28	10.60
4000	41.00	-6.26	14.00

Frequency Response

Distortion

	Frequency /kHz	DL /%	Actual /%	MU {g} /%	
1	0.1	0.10	0.02	0.01	
	0.3	0.10	0.02	0.01	
	1.0	0.10	0.03	0.01	
	3.0	0.10	0.03	0.01	
	10.0	0.10	0.03	0.01	
	30.0	0.10	0.03	0.01	
	100.0	0.10	0.02	0.01	

AMPLITUDE MODULATION

AM Depth Error

Setting Error vs Depth:

Depth /%

Setting Error vs RF:

Level = 0 dBm, Source LF Generator 1, LF = 1 kHz

AM Distortion

AM Frequency Response vs RF

AM Frequency Response

RF-level = 0 dBm, Depth = 60%:

Synchronous PhiM with AM

 $LF = 1 \text{ kHz, MU: } \{a\}$

FREQUENCY MODULATION

FM Setting U	ncertainty					
RF /MHz	LF /kHz	FM-Dev. /kHz	Mode	DL /kHz	Error /kHz	MU /kHz
FM Source	Internal:					
8.0	2.0	2500.0	High BW	50.02	-7.13	10.00
250.0	2.0	2500.0	High BW	50.02	-7.16	10.00
250.1	2.0	1250.0	High BW	25.02	-3.53	5.00
750.1	2.0	5000.0	High BW	100.02	-14.27	20.00
1000.0	2.0	5000.0	High BW	100.02	-14.03	20.00
1500.0	2.0	5000.0	High BW	100.02	-14.18	20.00
3000.0	2.0	100.0	High BW	2.02	-0.31	0.40
6000.0	2.0	100.0	High BW	2.02	-0.31	0.40
8.0	2.0	50.0	Low Noise	1.02	-0.16	0.20
750.1	2.0	50.0	Low Noise	1.02	-0.16	0.20
1000.0	2.0	50.0	Low Noise	1.02	-0.15	0.20
1500.0	2.0	50.0	Low Noise	1.02	-0.16	0.20
3000.0	2.0	100.0	Low Noise	2.02	-0.31	0.40
6000.0	2.0	100.0	Low Noise	2.02	-0.31	0.40
FM Source	External 1	_:				
1000.0	2.0	5000.0	High BW	150.02	-18.35	50.00

FM Distortion	n					
RF /MHz	LF /kHz	FM-Dev. /kHz	Mode	DUL /%	Actual /%	MU {g} /%
		1			l	
8.0	2.0	500.0	High BW	0.20	0.000	0.001
250.0	2.0	500.0	High BW	0.20	0.000	0.001
250.1	2.0	250.0	High BW	0.20	0.001	0.001
750.1	2.0	1000.0	High BW	0.20	0.000	0.001
1000.0	2.0	1000.0	High BW	0.20	0.000	0.001
1500.0	2.0	1000.0	High BW	0.20	0.000	0.001
3000.0	2.0	2000.0	High BW	0.20	0.000	0.001
6000.0	2.0	4000.0	High BW	0.20	0.001	0.001
8.0	2.0	500.0	Low Noise	0.20	0.000	0.001
750.1	2.0	100.0	Low Noise	0.20	0.002	0.001
1000.0	2.0	100.0	Low Noise	0.20	0.002	0.001
1500.0	2.0	100.0	Low Noise	0.20	0.002	0.001
3000.0	2.0	200.0	Low Noise	0.20	0.001	0.001
6000.0	2.0	400.0	Low Noise	0.20	0.000	0.001

0.01

0.1

10

100

1000

LF/kHz

10000

0.01

0.1

10

1000

LF/kHz

10000

FM Frequency Response

Synchronous AM with FM

Mode: High Bandwidth

RF/MHz	LF/kHz	Dev./kHz	DUL/%	Actual/%	MU
8.001	1.0	40.0	0.20	0.026	{a}
350.0	1.0	40.0	0.20	0.017	{a}
350.001	1.0	40.0	0.20	0.014	{a}
750.1	1.0	40.0	0.20	0.003	{a}
1000.0	1.0	40.0	0.20	0.012	{a}
1500.0	1.0	40.0	0.20	0.008	{a}
3000.0	1.0	40.0	0.20	0.011	{a}
6000.0	1.0	40.0	0.20	0.011	{a}

Carrier Frequency Offset with FM

RF = 1 GHz, ModFreq = 1 MHz

Mode	Dev./kHz	DL/kHz	Offset /kHz	MU/kHz
Internal	1000.0	2.000	-0.020	0.010
External, 50 R, AC	1000.0	2.000	+0.150	0.010
External, 50 R, DC	1000.0	2.000	-0.210	0.010
External, High, AC	1000.0	2.000	+0.100	0.010
External, High, DC	1000.0	2.000	-0.830	0.010

PHASE MODULATION

PhiM Setting	Uncertainty					
RF /MHz	LF /kHz	PhiM-Dev. /rad	Mode	DL /rad	Error /rad	MU /rad
PhiM Source	Internal	 				
8.0	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
350.0	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
350.1	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
750.0	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
1000.0	10.0	10.0	High Dev	0.2030	-0.0249	0.0101
1500.1	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
3000.1	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
3500.0	10.0	10.0	High Dev	0.2030	-0.0249	0.0101
4900.0	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
5400.0	10.0	10.0	High Dev	0.2030	-0.0244	0.0101
6000.0	10.0	10.0	High Dev	0.2030	-0.0236	0.0101
500.0	10.0	0.001	High BW	0.0030	+0.0000	0.0001
500.0	10.0	0.01	High BW	0.0032	+0.0000	0.0001
500.0	10.0	0.1	High BW	0.0050	-0.0006	0.0002
500.0	10.0	0.5	High BW	0.0130	-0.0027	0.0006
8.0	10.0	0.0625	Low Noise	0.0043	-0.0002	0.0002
1000.0	10.0	0.125	Low Noise	0.0055	+0.0005	0.0002
1500.1	10.0	0.25	Low Noise	0.0080	+0.0007	0.0004
3000.1	10.0	0.5	Low Noise	0.0130	+0.0014	0.0006
6000.0	10.0	0.5	Low Noise	0.0130	+0.0017	0.0006
PhiM Source	External	:				
70.687	10.0	0.625	High BW	0.0218	-0.0018	0.0045
1000.0	10.0	0.125	Low Noise	0.0068	+0.0002	0.0010
3000.0	10.0	40.0	High Dev	1.2030	-0.1564	0.2801

PhiM Distortion

RF/MHz	LF/kHz	Dev./rad	Mode	DL/%	Actual/%	{g} MU/%
8.0	10.0	0.25	High BW	0.20	0.007	0.001
10.0	10.0	0.25	High BW	0.20	0.007	0.001
250.0	10.0	0.25	High BW	0.20	0.019	0.002
500.0	10.0	0.25	High BW	0.20	0.011	0.002
812.0	10.0	0.50	High BW	0.20	0.004	0.001
940.0	10.0	0.50	High BW	0.20	0.003	0.001
1067.0	10.0	0.50	High BW	0.20	0.004	0.001
1194.0	10.0	0.50	High BW	0.20	0.004	0.001
1321.0	10.0	0.50	High BW	0.20	0.003	0.001
1484.0	10.0	0.50	High BW	0.20	0.005	0.001
2200.0	10.0	1.0	High BW	0.20	0.003	0.001
4000.0	10.0	2.0	High BW	0.20	0.009	0.002
6000.0	10.0	2.0	High BW	0.20	0.020	0.002

0.01

10000

LF /kHz

PhiM Frequency Response

10000

0.01

PULSE MODULATION

ON/OFF Ratio

RF-Level = 0 dBm

Dynamic Characteristics

The expanded uncertainty of the measurands risetime and falltime is 1 ns. The characteristic overshoot is a test result.

Transition Type: Fast

RF /MHz	Risetime /ns	Falltime /ns	DUL /ns	Overshoot /%	DUL /%	Result	MU
700	5.9	2.2	15	0.3	10	PASS	{a}
1000	6.5	2.3	15	0.0	10	PASS	{a}
2000	5.7	2.3	15	0.0	10	PASS	{a}
3000	5.2	1.8	15	0.0	10	PASS	{a}
4000	5.7	2.2	15	0.1	10	PASS	{a}
5000	5.5	1.9	15	0.0	10	PASS	{a}
6000	6.9	2.0	15	0.0	10	PASS	{a}

Transition Type: Smoothed

RF /MHz	Risetime /ns	Falltime /ns	DUL /ns	Overshoot /%	DUL /%	Result	MU
700	50.3	13.7	200	0.2	10	PASS	{a}
1000	48.1	13.7	200	0.0	10	PASS	{a}
2000	44.0	13.6	200	0.0	10	PASS	{a}
3000	39.0	13.1	200	0.0	10	PASS	{a}
4000	49.9	16.4	200	0.0	10	PASS	{a}
5000	50.2	14.9	200	0.0	10	PASS	{a}
6000	53.8	14.6	200	0.0	10	PASS	{a}

Video Feedthrough

Modulation Signal: 100 kHz Square

Transition	RF /MHz	Level /dBm	DUL /mVpp	Actual /mVpp	MU
Fast	3250.0	+10.0	200	57.8	{e}
	4250.0	+10.0	200	45.2	{e}
	6000.0	+10.0	200	62.9	{e}
Smoothed	3250.0	+10.0	200	32.2	{e}
	4250.0	+10.0	200	24.7	{e}
	6000.0	+10.0	200	34.3	{e}

Test of Pulse Ext. connector