3 What is Differentiability?

There are a lot of ML engineers who brush off the mathematical details of what it means for a function to be differentiable. Algorithmic differentiation (sometimes misleadingly-called "automatic" differentiation) is only guaranteed to work when certain theoretical conditions about the *existence* of a gradient hold. This part of the class is dedicated to explaining that differentiability is not a freebie.

To start our discussion on differentiability, we will begin with a few preliminaries from analysis.

Definition 3.1 Let $A: \mathcal{H}_1 \to \mathcal{H}_2$. Then A is **linear** if, for every $\alpha \in \mathbb{R}$ and every $x, y \in \mathcal{H}_1$,

$$A(\lambda x) = \lambda A(x)$$
 and $A(x+y) = A(x) + A(y)$. (29)

Theorem 3.2 (Riesz-Fréchet representation) Let $A \colon \mathcal{H} \to \mathbb{R}$ be linear. Then there exists a unique vector $u \in \mathcal{H}$ such that, for every $x \in \mathcal{H}$, $A(x) = \langle u \mid x \rangle$.

Although at first-glance it looks unrelated, Theorem 3.2 is a central notion for defining the gradient. A necessary (albeit insufficient) condition for the existence of a gradient is the existence of a directional derivative, defined below.

Definition 3.3 Let $f: \mathcal{H} \to]-\infty, +\infty]$ be proper. The **directional derivative** of f at $x \in \text{dom } f$ in the direction $y \in \mathcal{H}$ is

$$f'(x;y) = \lim_{\alpha \searrow 0} \frac{f(x+\alpha y) - f(x)}{\alpha}.$$
 (30)

From Definition 3.3, we point out a few things.

- (i) The limit in (30) might not exist.
- (ii) If f is convex, then $f'(x;y) \in [-\infty, +\infty]$.
- (iii) Even if a directional derivative exists, it might not exist in \mathbb{R} (since it could be $+\infty$ or $-\infty$).

Definition 3.4 Let $x \in \text{dom } f$. If $f'(x; \cdot)$ is linear, we say f is **differentiable at** x. In this case, the unique vector provided by Theorem 3.2 is called the **gradient** of f at x and denoted $\nabla f(x)$.

$$f'(x;\cdot) = \lim_{\alpha \searrow 0} \frac{f(x+\alpha \cdot) - f(x)}{\alpha} = \langle \nabla f(x) \mid \cdot \rangle$$
 (31)

If f is differentiable at every $x \in \text{dom } f$, we say that f is **differentiable**.

Exercise 3.5 Verify that $\nabla(\frac{1}{2}\|\cdot\|^2)(x) = x$.

All of the properties we know and love about differentiability (chain rule, product rule, etc.) have to be proven. Here is an example below.

Proposition 3.6 Let $A: \mathcal{H}_1 \to \mathcal{H}_2$ be a linear operator (with adjoint denoted A^*), let $b \in \mathcal{H}_2$, and let $f: \mathcal{H} \to \mathbb{R}$ be proper and differentiable. Set g = f(Ax + b). Then g is differentiable and

$$\nabla q = A^*(\nabla f(A \cdot +b)). \tag{32}$$

Proof. Since dom $f = \mathcal{H}_2$, dom $g \neq \emptyset$ so we let $x \in \text{dom } g$. By definition,

$$g'(x;y) = \lim_{\alpha \searrow 0} \frac{g(x+\alpha y) - g(x)}{\alpha} \tag{33}$$

$$= \lim_{\alpha \searrow 0} \frac{f(A(x+\alpha y)+b) - f(Ax+b)}{\alpha} \tag{34}$$

$$= \lim_{\alpha \searrow 0} \frac{f(Ax + b + \alpha Ay) - f(Ax + b)}{\alpha}$$
(35)

$$= f'(Ax + b; Ay). \tag{36}$$

So the directional derivative of g exists. Now, since f is differentiable,

$$g'(x;y) = f'(Ax + b; Ay) = \langle \nabla f(Ax + b) \mid Ay \rangle = \langle A^*(\nabla f(Ax + b)) \mid y \rangle. \tag{37}$$

Hence the directional derivative of g is linear and g is differentiable. The specific form of the gradient is constructed in (37) \square

Algorithmic differentiation tools use results like Proposition 3.6 to approximate a gradient of a function by reading its machine code. However, these subroutines do not check the theoretical conditions required for their theorems (e.g., *f must be differentiable*) – this must be done (and is oftentimes unjustly ignored) by the user.

Definition 3.7 Let f be proper and differentiable. f is **smooth** ("L-smooth") if there exists L > 0 such that

$$(\forall x, y \in \mathcal{H}) \quad \|\nabla f(x) - \nabla f(y) \le L\|x - y\|. \tag{38}$$

Exercise 3.8 Construct a function which is differentiable and nonsmooth.

Proposition 3.9 *Let* $f: \mathcal{H} \to [-\infty, +\infty]$ *be proper and convex. Then,*

$$(\forall x \in \text{dom } f)(\forall y \in \mathcal{H}) \qquad f'(x; y - x) + f(x) \le f(y). \tag{39}$$

Proof. By Proposition 2.2, for every $\alpha \in [0, 1]$,

$$f(x + \alpha(y - x)) - f(x) = f((1 - \alpha)x + \alpha y) - f(x)$$
(40)

$$\leq (1 - \alpha)f(x) + \alpha f(y) - f(x) \tag{41}$$

$$=\alpha(f(y)-f(x)). \tag{42}$$

Therefore,

$$\frac{f(x+\alpha(y-x))-f(x)}{\alpha} \le f(y)-f(x). \tag{43}$$

Taking the limit as $\alpha \searrow 0$ implies $f'(x;y) \leq f(y) - f(x)$, which in turn yields (39). \square

Corollary 3.10 *Let* $f: \mathcal{H} \to]-\infty, +\infty]$ *be proper and convex. If* f *is differentiable at an interior point* x *of its domain* x *of i*

$$(\forall y \in \mathcal{H}) \quad \langle y - x \mid \nabla f(x) \rangle + f(x) \le f(y). \tag{44}$$

When the lefthand side of (44) is viewed as a function of y, we see it is the first-order Taylor series approximation of f. Therefore, it follows from (39) that a convex differentiable function always remains above its first-order Taylor approximation! This is the motivating idea in defining a (convex) subgradient.

Definition 3.11 Let $f: \mathcal{H} \to [-\infty, +\infty]$. A vector g is a **subgradient** of f at $x \in \mathcal{H}$ if

$$(\forall y \in \mathcal{H}) \quad \langle y - x \mid g \rangle + f(x) \le f(y). \tag{45}$$

The **subdifferential** of f at x is the set of all subgradients, denoted $\partial f(x)$.

This leads to the following fundamental theorem for optimization.

Theorem 3.12 (Fermat's Rule) Let $f: \mathcal{H} \to]-\infty, +\infty]$ be proper. Then x is a minimizer of f if and only if $0 \in \partial f(x)$.

Proof. By definition,

$$0 \in \partial f(x) \Leftrightarrow (\forall y \in \mathcal{H}) \qquad \langle 0 \mid y - x \rangle + f(x) \le f(y) \tag{46}$$

$$\Leftrightarrow (\forall y \in \mathcal{H}) \qquad f(x) \le f(y). \tag{47}$$

Unlike differentiable functions, there are technical conditions we must check in order to get the "standard" rules one would hope for.

Theorem 3.13 (Sum rule) *Let* $f, g \in \Gamma_0(\mathcal{H})$ *and suppose that one of the following holds:*

- (i) The interior of dom g intersects with dom f
- (ii) dom $g = \mathcal{H}$
- (iii) *The relative interiors of* dom *f* and dom *g* intersect.

Then $\partial(f+g) = \partial f + \partial g$.

Note: If f is convex and differentiable at $x \in \mathcal{H}$, then $\partial f(x) = {\nabla f(x)}$.

²the *interior* of the domain