

Digital Technologies

Data governance framework in an organization

Giulio Nicelli

giulio.nicelli@polimi.it

Managing Data and Data strategy adoption

Elements of Data Governance: logical and physical models

Setup of a Data Framework: an example

Digital Business requires to manage, analyze and respond to a huge amount of data

... low Data Quality will have a profound impact on Business Value

The use of data will be the first source of technological impact

Pharma executives say big data, cybersecurity and cloud services will have the biggest impact on the industry

Notes: Respondents were asked to select up to 5 digital trends that would have the most impact on their firm's business activities over the next 5 years; respondents were also asked for most important trends of the last 5 years; trend acceleration is calculated as (next 5 average) – (last 5 average) with a margin 1 percentage point Source: Bain Digital Insights Survey,

The evolution in the use of data

Manage Data in innovative companies

Intervention Areas

Data Strategy. Define a clear vision on the use of data in the company and integrate it into the definition of the innovation projects portfolio, starting with the priorities of the CEO and C-Suites

Data Governance. Define a **data management** system that guarantees **quality** and correct use, throughout the
entire **life cycle**, from acquisition,
archiving to cleaning and sharing

- Target the **data domain of value** for the implementation of the business strategy
- Define and develop the business case
- Define **goals** and metrics to measure results
- Orienting long-term architectural and technological choices
- Guarantee the integrity, consistency and quality of the data assets
- Identify the **roles and skills** needed to manage the data assets
- Organize the internal team with adequate processes and tools

Data Strategy: main focus

Strategy and Goals

- Business objectives definition and prioritization
- Identification of insights for building business cases
- Detection of the level of corporate maturity in the use of data

Feasibility Study

- Accessibility and quality of company data
- Data management technology architecture
- How to view and access data

Implementation Plan

- Priority Business Case to be built
- Technological evolution interventions necessary
- Creation of a Data Governance structure

Data Governance: main focus

Organization, processes, policies and standards

- Definition of roles and responsibilities of individuals and teams
- Definition of data management processes and its life cycle
- Definition of data management rules and standards

Data Architecture

- Alignment with corporate strategies
- Coordination and direction of overall architecture
- Supervision, direction, monitoring of processes, projects and initiatives

Technological architecture and Data Integration

- Data Lake technology stack presidium
- Integrations technology stack protection

Tools

- Applications and systems to support data governance processes:
 - Business Glossary / Data Catalog / Data Governance Platform
 - Data platform / Data integration / API Management Tools

DAMA Reference Framework

The **DAMA Framework**, short for Data Management Body of Knowledge, serves as a comprehensive guideline for data management professionals. Developed by DAMA International, it provides a **structured** approach to managing an organization's data assets, encompassing a wide range of disciplines such as data governance, data architecture, and data quality management. In today's lecture, we will explore the ten core knowledge areas of the DAMA Framework, which aim to ensure that data is managed as a valuable resource.

Data management is transversal within the company

Data Life Cycle

Data Types

Data Governace Structure

Data flow

Data flow from
Operational IS to
Management IS, is
crucial guarantee
quality through
the entire Data
Lifecycle because
"Garbage-in
Garbage out"

On two occasions I have been asked (*by members of the British Parliament*), "Excuse me, Mr. Babbage, **if you put wrong digits in the machine, will they come up with the right answers?"** ... I am not actually able to understand the kind of confusion that could provoke such a question. *Charles Babbage, Passages from the Life of a Philosopher, 1864*

What do most of your colleagues put their time and effort into on data quality?

Good quality data are the foundation of digital business

Fonte: Gartner

Managing data and Data strategy adoption

Elements of Data Governance: logical and physical models

Setup of a Data Framework: : an example

Logical Model and Physical Model

LOGICAL LEVEL

It's the level where Business Entities are located on, which are the information objects represented in terms of concept, used within the business processes

The Logical level responds to the need to provide a unique description to the elements here contained, defining information assets uniquely for the whole organization

PHYSICAL LEVEL

It's the level on which everything existing at the physical level inside a company is mapped, the Physical Entities themselves, which are based on the business concepts defined at the Logical Level

The Physical level translates the logical scheme in terms of tables and relationships, to constitute the real physical structure of the information assets, i.e. what is physically located within the company systems

Logical Model: Conceptual Data Model

The Conceptual Data Model (CDM) is the conceptual model for data providing a graphical representation of the various Business Entities (BEs) existing within an organization.

Different BEs can be grouped together, showing the links existing between them and relating one to each other.

Each element within the CDM represents a business entity (eg. Customer, Order, ...), or rather a logical information element proper of that business context. For example, the EB Customer in the B2C field will represent the consumers to whom the company sells its products / services.

Physical Model: Entity-Relationship Model

The Entity-Relationship Model (or E-R Model) is a theoretical model for the conceptual and graphic representation of data, equivalent to the Conceptual Data Model for the Logical part.

Unlike the previous one, the E-R Model shows the relationships between the physical objects present in the system, thus tables, providing an indication of which ones are related and what type of relationship persists between them.

Two Levels - Business Entity and Physical Entity

LOGICAL LEVEL

The **Business Entity** is an information object represented in conceptual terms, or rather a package of information

PHYSICAL LEVEL

Physical Entities represent the digital information objects that reside within the databases of the different systems used by the organization

Two Levels - Business Entity and Physical Entity

LOGICAL LEVEL

BEs can be defined and identified regardless of whether they are digitally managed on an organization's system / application

PHYSICAL LEVEL

Each Physical Entity are made up of aggregates of information coming from one or more source tables

Data Attributes and Physical Fields

LOGICAL LEVEL

A Business Entity can be associated with one or more **Data Attributes** that allow the characterization of that specific business concept (e.g. the B2C customer could have as attributes Name, Surname, Address, ...)

At the physical level, for each Data Attribute is defined a **Physical Field** within the table(s) which constitute the physical entity

Methodological Tools

LOGICAL LEVEL

Business Glossary:

tool used to give each business term a unique meaning and trace the elements contained on this level

It is useful for creating and sharing definitions and conventions used in terms of the meaning of the data, at the semantic level

PHYSICAL LEVEL

Data Catalog:

methodological tool useful for have indication about data, how the data is made, how it is aggregated, and where it resides. What is mapped in the Data Catalog finds a counterpart in the Business Glossary

CUSTOMER PHYSICAL ENTITY

It is useful for defining and sharing the meaning of the Data, in terms of syntax

Metadata

LOGICAL LEVEL

Metadata can be added to the Data Attributes, being useful for improving the understanding and usability of what resides in the system

BE CUSTOMER At the Logical level, Metadata can be: :

- Description: offers a textual description to define the semantics of the data
- Taxonomy: it offers an indication of the characteristic of the field, about how data should be indicated
- Validity/quality rules: indicates the validity of the data, for example indicating a range of validity
- Usage rules: they define how that data is to be used

PHYSICAL LEVEL

Metadata are information that describe various aspects of an information asset, and have value both for the Logical and for the Physical level

CUSTOMER PHYSICAL ENTITY

At the Physical level, an example of Metadata is provided by:

- App: indicates which application is associated with the Information Object in question
- Tables: provide information on which tables compete to define the Physical Entity in question
- Source Database: provides information on the origin of Data, in terms of source db

Data Lineage

The Data Lineage indicates the path that the data follows when transferred from one system to another, for example during the analysis operation of the data within the source system.

Agenda

Managing data and Data strategy adoption

Elements of Data Governance: logical and physical models

Setup of a Data Framework: an example

Data strategy: prioritizing the use cases

Data strategy: prioritizing the use cases for a data governance project

Data Value: level of relevance and strategic priority of the information involved wih respect to the objectives of the company

Data Governance: level of relevance of the use case in terms of Data Governance (involvement of Business actors, data and systems involved, type of projects, etc.)

DATA GOVERNANCE

Synthetic evaluation of the initiatives

Characterizing elements of the Data Governance framework

Data governance: responsibility domains

- Role Assignment
- Check adoption of data governance processes Instruments

GOVERNMENT

- Data Platform SYSTEMS
- Technical documentation supervision

technical supervision,

external data sources

source systems and

- **BUSINESS**
- Semantic responsibility and guarantee of alignment with business processes
- Business documentation supervision
- DQ evaluation

PROJECTS

Activation of DG business and technical roles within the project contexts

Data governance in an organization: example

Data governance in an organization: example

Data governance in an organization: example

