PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2023

MAT1207 – Introducción al Álgebra y Geometría

Solución Interrogación N° 2

- 1. Para cada una de las siguientes, escriba la negación y demuestre la proposición o su negación.
 - (a) $\forall x \in \mathbb{R}(x > 2 \Rightarrow x \ge 3)$
 - (b) $\forall x \in \mathbb{R}(x < 3 \lor \exists y \in \mathbb{R}(xy = 3))$
 - (c) $\exists x \in \mathbb{R}(\forall y \in \mathbb{R}(x > y \Rightarrow x^2 < y^2))$

Solución.

- (a) La negación es $\exists x \in \mathbb{R}(x > 2 \land x < 3)$. La negación es verdadera y se demuestra con un ejemplo: $x = \sqrt{5}$ cumple que $(x > 2 \land x < 3)$.
- (b) La negación es $\exists x \in \mathbb{R}(x \geq 3 \land \forall y \in \mathbb{R}(xy \neq 3))$. La proposición original es verdadera y se demuestra notando que si x = 0, se cumple x < 3 y si $x \neq 0$, entonces existe $y = \frac{3}{x} \in \mathbb{R}$ que satisface xy = 3.
- (c) La negación es $\forall x \in \mathbb{R}(\exists y \in \mathbb{R}(x > y \land x^2 \ge y^2))$. La proposición original es verdadera y se demuestra con un ejemplo. Si x = 0 entonces $x > y \Rightarrow x^2 = 0 < y^2$.

Puntaje Pregunta 1.

- 1 punto por la negación y 1 punto por la demostración de la negación.
- 1 punto por la negación y 1 punto por la demostración de la proposición.
- 1 punto por la negación y 1 punto por la demostración de la proposición.

2. Dado $P(x) = x^4 - 2x^3 - 3x^2 + 8x - 4$ determine el resto al dividir P por el polinomio D donde

(a)
$$D(x) = x^2 - 2x + 3$$
,

(b)
$$D(x) = x - 1$$
,

(c)
$$D(x) = x - 3$$
.

Solución. Ítem 2a. El método de división de polinomios nos da

$$\left(\begin{array}{c} x^4 - 2x^3 - 3x^2 + 8x - 4 \\ \underline{-x^4 + 2x^3 - 3x^2} \\ \hline -6x^2 + 8x - 4 \\ \underline{-6x^2 - 12x + 18} \\ -4x + 14 \end{array} \right) \div \left(x^2 - 2x + 3 \right) = x^2 - 6 + \frac{-4x + 14}{x^2 - 2x + 3}$$

Entonces, el resto R al dividir por D dado por $D(x) = x^2 - 2x + 3$ es R(x) = -4x + 14.

Ítem 2b y 2c. Por el teorema del resto, sabemos que el resto al dividir por el factor $x - \alpha$ es $P(\alpha)$. Consecuentemente,

- P(1) = 0 (es decir el resto es 0),
- P(3) = 20.

Alternativamente, se puede realizar la división por polinomios o usar el esquema de Horner, por ejemplo para $\alpha=3$:

	1	-2	-3	8	-4
3		3	3	0	24
	1	1	0	8	20

Puntaje Pregunta 2. 3 para ítem 2a, 1.5 para cada de los otros ítemes.