Sistem Temu Kembali Informasi

"Evaluasi"

Tim pengampu Dosen STKI

Buku Penunjang & Literatur

Evaluation «Sistem Temu Kembali Informasi»

Evaluation «Sistem Temu Kembali Informasi»

- Bagaimana mengetahui bahwa hasil yang diperoleh adalah relevan?
 - Mengevaluasi suatu "Search Engine"
 - Benchmark (Patokan).
 - Presisi dan Recall.
 - Akurasi.
 - Ketidaksepakatan antar hakim.
 - Normalisasi potongan untung kumulatif.
 - Pengujian A/B.
- Rangkuman hasil :
 - Membuat hasil yang bermanfaat bagi pengguna.

Ukuran bagi Search Engine (SE)

- Seberapa cepat membangun indeks
 - Jumlah dokumen/jam.
 - (Rerata ukuran dokumen).
- Seberapa cepat melakukan pencarian
 - · Latency sebagai fungsi dari ukuran indeks.
- Ekspresi dari bahasa query
 - Kemampuan mengekspresikan kebutuhan informasi yang kompleks
 - Kecepatan pemrosesan query kompleks.
- UI (User Interface): Tertata dan mudah digunakan?
- Gratis atau berbayar?

Ukuran bagi Search Engine (SE) [2]

- Semua kriteria tersebut measurable: dapat dihitung kecepatan/ukurannya
 - Dapat diekspresikan dengan tepat.
- Tetapi ukuran kunci: happiness (kebahagian pengguna):
 - Apa itu?
 - Kecepatan respon/ukuran dari indeks adalah faktor penting.
 - Tetapi tidak asal cepat, jawaban yang tak berguna membuat pengguna kecewa.
- Perlu cara menghitung kepuasan pengguna.

Ukuran Kebahagiaan Pengguna

- Masalah: Siapa pengguna yang akan dibuat bahagia?
 - Tergantung pada seting.
- Web Engine:
 - Pengguna mencari apa yang diinginkan dan Kembali ke Engine
 - Dapat diukur angka pengguna yang kembali.
 - Pengguna melengkapi tugasnya: pencarian sebagai alat (sarana), bukan akhir.
- Situs eCommerce: pengguna mencari apa yang diinginkan dan beli
 - Kepuasan bagi end-user atau situs eCommerce?
 - Waktu belanja atau % pencarian yang menjadi pembelian?
- Recommender System: pengguna mencari rekomendasi berguna atau sistem mampu memprediksi rating pengguna?

Mengukur Kebahagiaan Pengguna

- Enterprise (perusahaan/pemerintah/kampus) harus peduli dengan "produktifitas pengguna"
 - Berapa waktu yang dihemat oleh pengguna ketika mencari informasi?
 - Banyak kriteria lain yang harus diperhatikan, terutama yang berkaitan dengan keleluasaan, kemudahan dan keamanan akses.

Kebahagiaan: Sukar diukur

- Proxy paling umum: Relevansi hasil pencarian.
- Tetapi bagaimana mengukur relevansi?
- OAda metodologi => ada persoalan yang muncul.
- Ukuran relevansi memerlukan 3 elemen:
 - 1. Koleksi dokumen *benchmark*.
 - 2. Paket query benchmark.
 - 3. Biasanya taksiran biner: Relevan atau Tak-Relevan untuk setiap query dan setiap dokumen.
 - Ada yang tak biner, tapi tak standard.

Kebutuhan => Query

Kebutuhan informasi => Query => Search Engine => Hasil => Browse atau Query => . . .

Mengevaluasi Sistem STKI

- •Kebutuhan informasi diterjemahkan ke dalam Query.
- Relevansi ditaksir relatif terhadap kebutuhan informasi, bukan Query.
- •Misal, kebutuhan informasi: "I'm looking for information on whether using olive oil is effective at reducing your risk of heart attacks."
- Query: olive oil heart attack effective
- Evaluasi: apakah dokumen menjawab kebutuhan informasi, atau hanya menyesuaikan kata-kata yang terkandung dalam query.

Benchmark Relevansi Standard

- TREC National Institute of Standards and Technology (NIST) telah menjalankan test bed TKI besar selama bertahun-tahun.
- Obsumen benchmark: Reuters dan lainnya.
- "Tugas-tugas Retrieval" ditetapkan:
 - Kadang kala sebagai query
- Pakar manusia menilai kedekatan setiap query dengan untuk setiap dokumen: Relevan atau Takrelevan.
 - Atau setidaknya untuk subset dari dokumen yang dikembalikan oleh sistem untuk query tersebut.

Relevansi & Dokumen Yang Ditemukan Kembali

- Presisi: % dokumen yang diretrieve dan relevan = P(relevan | diretrieve)
- Recall: % dokumen relevan yang berhasil
 diretrieve P(diretrieve | relevan)

	Relevant	Nonrelevant
Retrieved	tp	fp
Not Retrieved	fn	tn

- \bigcirc Presisi P = tp/(tp + fp) = tp/diretrieve
- Recall R = tp/(tp + fn) = tp/relevan

Akurasi

- Diberikan suatu query, suatu engine (classifier) mengelompokkan setiap dokumen sebagai "Relevan" atau "Tak-relevan".
 - Apakah yang diretrieve terklasifikasi oleh engine sebagai "relevan" dan apakah yang tidak diretrieve diklasifikasikan sebagai "tak-relevan".
- Akurasi dari engine: % ketepatan dari klasifikasi
 - (tp + tn) / (tp + fp + fn + tn)
- Akurasi adalah ukuran evaluasi yang umum digunakan dalam kerja klasifikasi machine learning.
- Mengapa ini bukan ukuran evaluasi yang sangat penting dalam STKI?

MengapaTidak Hanya Akurasi?

•Bagaimana membangun Search Engine yang akurat 99.999% dengan biaya rendah?

Sistem Temu Kembali Informasi digunakan untuk mendapatkan sesuatu dan mempunyai toleransi tertentu terhadap sampah (junk).

Presisi, Recall & Akurasi

Presisi sangat rendah, Recall sangat rendah, Akurasi

$$\bigcirc A = (tp + tn) / (tp + fp + fn + tn)$$

= $(0 + (27*17 - 2)) / (0+1+1+(27*17 - 2))$
= 0.996

Kuis (Latihan Soal)

Cari paper atau jurnal STKI tentang materi Evaluasi, kemudian rangkumlah perbandingan antara beberapa metode dalam mengevaluasi konsep STKI tersebut kedalam bentuk artikel (min. 500 kata).

Thanks!

Any questions?