

IN THE CLAIMS

1. (Currently Amended) A semiconductor laser light emitting device comprising:

~~a stacked film composed of a stack of group III nitride semiconductor films;~~

wherein each containing at least one kind group III nitride semiconductor film

comprises an element selected from the group consisting of aluminum, gallium, indium, and

boron;

wherein, an upper portion of said stacked film stack of group III nitride
semiconductor films comprises is formed into a ridge like stripe, to form a current injection
region;

wherein a current injection width Wst of said current injection region is at a value
in a range of $1 \mu\text{m} \leq Wst \leq 3 \mu\text{m}$; and

wherein said current injection region is formed on an active layer;
a current non-injection region formed on both sides of said ridge like strip current
injection region, wherein [();] at least part of said current non-injection region comprises is made
from a material expressed by a chemical formula $\text{Al}_x\text{Ga}_{1-x}\text{N}$ ($0 \leq x \leq 1.0$); wherein the
component ratio "x" of Al is at a value in a range of $0.3 \leq x \leq 1.0$, so that said semiconductor
laser light emitting device is configured as an index guide type semiconductor laser light
emitting device; and

wherein the group III nitride semiconductor films a film located between an the active
layer and the current non-injection region of the stacked film made from, comprises a material
expressed by a chemical formula $\text{Al}_x\text{Ga}_{1-x}\text{N}$ ($0.3 \leq x \leq 1.0$), and has have a combined thickness
of less than or equal to $0.2 \mu\text{m}$ but greater than zero.

not supported by spec!

Claims 2-4 (Cancelled)

5. (Original) A semiconductor laser light emitting device according to claim 1, wherein a difference Δn between an effective refractive index n_1 of said current injection region in the film stacking direction and an effective refractive index n_2 of said current non-injection region in the film stacking direction is in a range of $0.007 \leq \Delta n = (n_1 - n_2) \leq 0.012$.

Claims 6-8 (Cancelled)

9. (Currently Amended) A semiconductor laser light emitting device comprising:
~~a stacked film composed of a stack of group III nitride semiconductor films;~~
wherein each containing at least one kind group III nitride semiconductor film comprises
an element selected from the group consisting of aluminum, gallium, indium, and boron;
wherein, an upper portion of said ~~stacked film~~ stack of group III nitride semiconductor
films comprises is formed into a ridge-like stripe, to form a current injection region;
wherein a current injection width W_{st} of said current injection region is at a value in a
range of $1 \mu\text{m} \leq W_{st} \leq 3 \mu\text{m}$; and
wherein said current injection region is formed on an active layer;
a current non-injection region formed on both sides of said ridge-like strip current
injection region, wherein [;]] and at least part of said current non-injection region comprises is

~~made from a material expressed by a chemical formula $\text{Al}_x\text{Ga}_{1-x}\text{N}$ ($0 \leq x \leq 1.0$); wherein the~~

~~component ratio "x" of Al is at a value in a range of $0.15 < x < 0.30$ [,]~~

~~so that said semiconductor laser light emitting device is configured as a weak index type
pulsation semiconductor laser light emitting device; and~~

wherein the group III nitride semiconductor films ~~a film~~ located between ~~an~~ the active
layer and the current non-injection region of the stacked film made from, comprises a material
expressed by a chemical formula $\text{Al}_x\text{Ga}_{1-x}\text{N}$ ($0.15 \leq x \leq 0.30$), and ~~has~~ have a combined
thickness of less than or equal to $0.2 \mu\text{m}$ but greater than zero.

Claims 10-12 (Cancelled)

13. (Original) A semiconductor laser light emitting device according to claim 9,
wherein a difference Δn between an effective refractive index n_1 of said current injection region
in the film stacking direction and an effective refractive index n_2 of said current non-injection
region in the film stacking direction is in a range of $0 < \Delta n = (n_1 - n_2) < 0.007$.

Claims 14-24 (Cancelled)

25. (Currently Amended) A semiconductor laser light emitting device comprising:
a stack of group III nitride semiconductor films each comprising at least one element
selected from the group of aluminum, gallium, indium, and boron;

an upper portion of said stacked film stack of group III nitride semiconductor films
comprises forming a ridge-like stripe for a current injection region;
wherein a current non-injection region formed on both sides of said ridge-like strip,
wherein ~~at least part of~~ said current non-injection region comprises is made from a material
expressed by a chemical formula $\text{Al}_x\text{Ga}_{1-x}\text{N}$ ($0 \leq x \leq 1.0$), and wherein the component ratio "x"
of Al is between 0.3 and 1.0; and
a p-side electrode is formed on and in contact with the current non-injection region.

26. (Currently Amended) A semiconductor laser light emitting device comprising:
a stack of group III nitride semiconductor films each comprising at least one element
selected from the group of aluminum, gallium, indium, and boron;
an upper portion of said stacked film forming a ridge-like stripe for a current injection
region;

a current non-injection region formed on both sides of said ridge-like strip, wherein at
least part of said current non-injection region is made from a material expressed by a chemical
formula $\text{Al}_x\text{Ga}_{1-x}\text{N}$ ($0 \leq x \leq 1.0$), and wherein the component ratio "x" of Al is between 0.3 and
1.0; and

a contact layer formed in between on the current injection region, wherein the current
non-injection region is formed on both sides of said contact layer.

27. (Previously Presented) A semiconductor laser light emitting device
according to claim 26, wherein the contact layer is formed on the ridge-like stripe.

28. (Previously Presented) A semiconductor laser light emitting device

according to claim 27, wherein the contact layer is in contact with the ridge-like stripe.

29. (Previously Presented) A semiconductor laser light emitting device

according to claim 26, further comprising a p-side electrode is formed on and in contact with the contact layer.

30. (Currently Amended) A semiconductor laser light emitting device comprising:

a stack of group III nitride semiconductor films;

wherein each group III nitride semiconductor film comprises an element selected from the group consisting of aluminum, gallium, indium, and boron;

wherein, an upper portion of said stacked film stack of group III nitride semiconductor films comprises forming a ridge-like stripe for a current injection region;

wherein a current non-injection region formed on both sides of said ridge-like stripe
current injection region, wherein at least part of said current non-injection region comprises is
made from a material expressed by a chemical formula Al_xGa_{1-x}N (0 ≤ x ≤ 1.0); and

wherein the group III nitride semiconductor films a film located between an the active
layer and the current non-injection region of the stacked film made from, comprises a material
expressed by a chemical formula Al_xGa_{1-x}N (0.15 ≤ x ≤ 0.30), and having have a combined
thickness of less than or equal to 0.2 μm but greater than zero.