8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

8: IIR Filter Transformations

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Classical continuous-time filters optimize tradeoff: passband ripple v stopband ripple v transition width

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Classical continuous-time filters optimize tradeoff: passband ripple v stopband ripple v transition width

Low-pass filter.

- Low-pass filter.
- Designed by British engineer and physicist Stephen Butterworth.
 "On the Theory of Filter Amplifiers" (1930)

- Low-pass filter.
- Designed by British engineer and physicist Stephen Butterworth.
 "On the Theory of Filter Amplifiers" (1930)
- Passband frequency response is as flat as possible.

- Low-pass filter.
- Designed by British engineer and physicist Stephen Butterworth.
 "On the Theory of Filter Amplifiers" (1930)
- Passband frequency response is as flat as possible.
- It is an all-pole filter.

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Classical continuous-time filters optimize tradeoff: passband ripple v stopband ripple v transition width

Butterworth:
$$\widetilde{G}^2(\Omega) = \left|\widetilde{H}(j\Omega)\right|^2 = \frac{1}{1+\Omega^{2N}}$$

• Monotonic $\forall \Omega$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Classical continuous-time filters optimize tradeoff: passband ripple v stopband ripple v transition width

Butterworth:
$$\widetilde{G}^2(\Omega) = \left|\widetilde{H}(j\Omega)\right|^2 = \frac{1}{1+\Omega^{2N}}$$

- Monotonic $\forall \Omega$
- $\widetilde{G}(\Omega) = 1 \frac{1}{2}\Omega^{2N} + \frac{3}{8}\Omega^{4N} + \cdots$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATI AB routines

Classical continuous-time filters optimize tradeoff: passband ripple v stopband ripple v transition width

- Monotonic $\forall \Omega$
- $\widetilde{G}(\Omega) = 1 \tfrac{1}{2}\Omega^{2N} + \tfrac{3}{8}\Omega^{4N} + \cdots$ "Maximally flat": 2N-1 derivatives are zero

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Classical continuous-time filters optimize tradeoff: passband ripple v stopband ripple v transition width

Butterworth:
$$\widetilde{G}^2(\Omega) = \left|\widetilde{H}(j\Omega)\right|^2 = \frac{1}{1+\Omega^{2N}}$$

- Monotonic $\forall \Omega$
- $\widetilde{G}(\Omega) = 1 \tfrac{1}{2}\Omega^{2N} + \tfrac{3}{8}\Omega^{4N} + \cdots$ "Maximally flat": 2N-1 derivatives are zero

Chebyshev:
$$\widetilde{G}^2(\Omega) = \frac{1}{1+\epsilon^2 T_N^2(\Omega)}$$

where polynomial $T_N(\cos x) = \cos Nx$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Classical continuous-time filters optimize tradeoff: passband ripple v stopband ripple v transition width

Butterworth:
$$\widetilde{G}^2(\Omega) = \left|\widetilde{H}(j\Omega)\right|^2 = \frac{1}{1+\Omega^{2N}}$$

- Monotonic $\forall \Omega$
- $\widetilde{G}(\Omega) = 1 \tfrac{1}{2}\Omega^{2N} + \tfrac{3}{8}\Omega^{4N} + \cdots$ "Maximally flat": 2N-1 derivatives are zero

Chebyshev:
$$\widetilde{G}^2(\Omega) = \frac{1}{1+\epsilon^2 T_N^2(\Omega)}$$

where polynomial $T_N(\cos x) = \cos Nx$

ullet passband equiripple + very flat at ∞

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Classical continuous-time filters optimize tradeoff: passband ripple v stopband ripple v transition width

Butterworth:
$$\widetilde{G}^2(\Omega) = \left|\widetilde{H}(j\Omega)\right|^2 = \frac{1}{1+\Omega^{2N}}$$

- Monotonic $\forall \Omega$
- $\widetilde{G}(\Omega) = 1 \tfrac{1}{2}\Omega^{2N} + \tfrac{3}{8}\Omega^{4N} + \cdots$ "Maximally flat": 2N-1 derivatives are zero

Chebyshev:
$$\widetilde{G}^2(\Omega) = \frac{1}{1+\epsilon^2 T_N^2(\Omega)}$$

where polynomial $T_N(\cos x) = \cos Nx$

ullet passband equiripple + very flat at ∞

Inverse Chebyshev:
$$\widetilde{G}^2(\Omega) = \frac{1}{1 + \left(\epsilon^2 T_N^2(\Omega^{-1})\right)^{-1}}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Classical continuous-time filters optimize tradeoff: passband ripple v stopband ripple v transition width

Butterworth:
$$\widetilde{G}^2(\Omega) = \left|\widetilde{H}(j\Omega)\right|^2 = \frac{1}{1+\Omega^{2N}}$$

- Monotonic $\forall \Omega$
- $\widetilde{G}(\Omega) = 1 \tfrac{1}{2}\Omega^{2N} + \tfrac{3}{8}\Omega^{4N} + \cdots$ "Maximally flat": 2N-1 derivatives are zero

Chebyshev:
$$\widetilde{G}^2(\Omega) = \frac{1}{1+\epsilon^2 T_N^2(\Omega)}$$

where polynomial $T_N(\cos x) = \cos Nx$

ullet passband equiripple + very flat at ∞

Inverse Chebyshev:
$$\widetilde{G}^2(\Omega) = \frac{1}{1+\left(\epsilon^2 T_N^2(\Omega^{-1})\right)^{-1}}$$

stopband equiripple + very flat at 0

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Classical continuous-time filters optimize tradeoff: passband ripple v stopband ripple v transition width

Butterworth:
$$\widetilde{G}^2(\Omega) = \left|\widetilde{H}(j\Omega)\right|^2 = \frac{1}{1+\Omega^{2N}}$$

- Monotonic $\forall \Omega$
- $\widetilde{G}(\Omega) = 1 \tfrac{1}{2}\Omega^{2N} + \tfrac{3}{8}\Omega^{4N} + \cdots$ "Maximally flat": 2N-1 derivatives are zero

Chebyshev:
$$\widetilde{G}^2(\Omega) = \frac{1}{1+\epsilon^2 T_N^2(\Omega)}$$

where polynomial $T_N(\cos x) = \cos Nx$

ullet passband equiripple + very flat at ∞

Inverse Chebyshev:
$$\widetilde{G}^2(\Omega)=\frac{1}{1+\left(\epsilon^2T_N^2(\Omega^{-1})\right)^{-1}}$$

• stopband equiripple + very flat at 0

Elliptic: [no nice formula]

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATI AB routines

Classical continuous-time filters optimize tradeoff: passband ripple v stopband ripple v transition width

Butterworth:
$$\widetilde{G}^2(\Omega) = \left|\widetilde{H}(j\Omega)\right|^2 = \frac{1}{1+\Omega^{2N}}$$

- Monotonic $\forall \Omega$
- $\widetilde{G}(\Omega) = 1 \tfrac{1}{2}\Omega^{2N} + \tfrac{3}{8}\Omega^{4N} + \cdots$ "Maximally flat": 2N-1 derivatives are zero

Chebyshev:
$$\widetilde{G}^2(\Omega) = \frac{1}{1+\epsilon^2 T_N^2(\Omega)}$$

where polynomial $T_N(\cos x) = \cos Nx$

ullet passband equiripple + very flat at ∞

Inverse Chebyshev:
$$\widetilde{G}^2(\Omega)=\frac{1}{1+\left(\epsilon^2T_N^2(\Omega^{-1})\right)^{-1}}$$

• stopband equiripple + very flat at 0

Elliptic: [no nice formula]

Very steep + equiripple in pass and stop bands

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Classical continuous-time filters optimize tradeoff: passband ripple v stopband ripple v transition width There are explicit formulae for pole/zero positions.

Butterworth:
$$\widetilde{G}^2(\Omega) = \left|\widetilde{H}(j\Omega)\right|^2 = \frac{1}{1+\Omega^{2N}}$$

- Monotonic $\forall \Omega$
- $\widetilde{G}(\Omega) = 1 \tfrac{1}{2}\Omega^{2N} + \tfrac{3}{8}\Omega^{4N} + \cdots$ "Maximally flat": 2N-1 derivatives are zero

Chebyshev:
$$\widetilde{G}^2(\Omega) = \frac{1}{1+\epsilon^2 T_N^2(\Omega)}$$

where polynomial $T_N(\cos x) = \cos Nx$

ullet passband equiripple + very flat at ∞

Inverse Chebyshev:
$$\widetilde{G}^2(\Omega)=\frac{1}{1+\left(\epsilon^2T_N^2(\Omega^{-1})\right)^{-1}}$$

• stopband equiripple + very flat at 0

Elliptic: [no nice formula]

Very steep + equiripple in pass and stop bands

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Change variable: $z = \frac{\alpha + s}{\alpha - s}$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

- Impulse Invariance
- Summary
- MATLAB routines

Change variable:
$$z = \frac{\alpha + s}{\alpha - s} \Leftrightarrow s = \alpha \frac{z - 1}{z + 1}$$

8: IIR Filter Transformations

Continuous Time Filters

Bilinear Mapping

• Continuous Time Filters

Mapping Poles and Zeros

• Spectral Transformations

Constantinides

Transformations

• Impulse Invariance

Summary

MATLAB routines

Change variable: $z=rac{\alpha+s}{\alpha-s}\Leftrightarrow s=lpharac{z-1}{z+1}$: a one-to-one invertible mapping

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Change variable: $z=rac{\alpha+s}{\alpha-s} \Leftrightarrow s=lpharac{z-1}{z+1}$: a one-to-one invertible mapping

• \Re axis $(s) \leftrightarrow \Re$ axis (z)

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Change variable: $z=\frac{\alpha+s}{\alpha-s} \Leftrightarrow s=\alpha \frac{z-1}{z+1}$: a one-to-one invertible mapping

- \Re axis $(s) \leftrightarrow \Re$ axis (z)
- \Im axis $(s) \leftrightarrow$ Unit circle (z)

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Change variable: $z=rac{\alpha+s}{\alpha-s} \Leftrightarrow s=lpharac{z-1}{z+1}$: a one-to-one invertible mapping

- ullet \Re axis $(s) \leftrightarrow \Re$ axis (z)
- \Im axis $(s) \leftrightarrow$ Unit circle (z)

Proof:
$$z = e^{j\omega} \Leftrightarrow s = \alpha \frac{e^{j\omega} - 1}{e^{j\omega} + 1}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Change variable: $z=rac{\alpha+s}{\alpha-s} \Leftrightarrow s=lpharac{z-1}{z+1}$: a one-to-one invertible mapping

- \Re axis $(s) \leftrightarrow \Re$ axis (z)
- \Im axis $(s) \leftrightarrow$ Unit circle (z)

Proof:
$$z = e^{j\omega} \Leftrightarrow s = \alpha \frac{e^{j\omega} - 1}{e^{j\omega} + 1} = \alpha \frac{e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}}}{e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}}}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Change variable: $z=rac{\alpha+s}{\alpha-s} \Leftrightarrow s=lpharac{z-1}{z+1}$: a one-to-one invertible mapping

- ullet \Re axis $(s) \leftrightarrow \Re$ axis (z)
- \Im axis $(s) \leftrightarrow$ Unit circle (z)

Proof:
$$z = e^{j\omega} \Leftrightarrow s = \alpha \frac{e^{j\omega} - 1}{e^{j\omega} + 1} = \alpha \frac{e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}}}{e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}}} = j\alpha \tan \frac{\omega}{2} = j\Omega$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Change variable: $z=\frac{\alpha+s}{\alpha-s} \Leftrightarrow s=\alpha\frac{z-1}{z+1}$: a one-to-one invertible mapping

- ullet \Re axis $(s) \leftrightarrow \Re$ axis (z)
- \Im axis $(s) \leftrightarrow$ Unit circle (z)

Proof:
$$z = e^{j\omega} \Leftrightarrow s = \alpha \frac{e^{j\omega} - 1}{e^{j\omega} + 1} = \alpha \frac{e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}}}{e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}}} = j\alpha \tan \frac{\omega}{2} = j\Omega$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Change variable: $z=\frac{\alpha+s}{\alpha-s} \Leftrightarrow s=\alpha\frac{z-1}{z+1}$: a one-to-one invertible mapping

- \Re axis $(s) \leftrightarrow \Re$ axis (z)
- \Im axis $(s) \leftrightarrow \text{Unit circle }(z)$ Proof: $z = e^{j\omega} \Leftrightarrow s = \alpha \frac{e^{j\omega} - 1}{e^{j\omega} + 1} = \alpha \frac{e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}}}{e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}}} = j\alpha \tan \frac{\omega}{2} = j\Omega$
- Left half plane(s) \leftrightarrow inside of unit circle (z)

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Change variable: $z=\frac{\alpha+s}{\alpha-s} \Leftrightarrow s=\alpha\frac{z-1}{z+1}$: a one-to-one invertible mapping

- \Re axis $(s) \leftrightarrow \Re$ axis (z)
- \Im axis $(s) \leftrightarrow$ Unit circle (z)

Proof:
$$z=e^{j\omega} \Leftrightarrow s=\alpha \frac{e^{j\omega}-1}{e^{j\omega}+1}=\alpha \frac{e^{j\frac{\omega}{2}}-e^{-j\frac{\omega}{2}}}{e^{j\frac{\omega}{2}}+e^{-j\frac{\omega}{2}}}=j\alpha\tan\frac{\omega}{2}=j\Omega$$

Proof:
$$s = x + jy \Leftrightarrow |z|^2 = \frac{|(\alpha + x) + jy|^2}{|(\alpha - x) - jy|^2}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATI AB routines

Change variable: $z=\frac{\alpha+s}{\alpha-s} \Leftrightarrow s=\alpha\frac{z-1}{z+1}$: a one-to-one invertible mapping

- ullet \Re axis $(s) \leftrightarrow \Re$ axis (z)
- \Im axis $(s) \leftrightarrow$ Unit circle (z)

Proof:
$$z = e^{j\omega} \Leftrightarrow s = \alpha \frac{e^{j\omega} - 1}{e^{j\omega} + 1} = \alpha \frac{e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}}}{e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}}} = j\alpha \tan \frac{\omega}{2} = j\Omega$$

Proof:
$$s = x + jy \Leftrightarrow |z|^2 = \frac{|(\alpha + x) + jy|^2}{|(\alpha - x) - jy|^2}$$
$$= \frac{\alpha^2 + 2\alpha x + x^2 + y^2}{\alpha^2 - 2\alpha x + x^2 + y^2}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATI AB routines

Change variable: $z=\frac{\alpha+s}{\alpha-s} \Leftrightarrow s=\alpha\frac{z-1}{z+1}$: a one-to-one invertible mapping

- ullet \Re axis $(s) \leftrightarrow \Re$ axis (z)
- \Im axis $(s) \leftrightarrow$ Unit circle (z)

Proof:
$$z = e^{j\omega} \Leftrightarrow s = \alpha \frac{e^{j\omega} - 1}{e^{j\omega} + 1} = \alpha \frac{e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}}}{e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}}} = j\alpha \tan \frac{\omega}{2} = j\Omega$$

Proof:
$$s = x + jy \Leftrightarrow |z|^2 = \frac{|(\alpha + x) + jy|^2}{|(\alpha - x) - jy|^2}$$

$$= \frac{\alpha^2 + 2\alpha x + x^2 + y^2}{\alpha^2 - 2\alpha x + x^2 + y^2} = 1 + \frac{4\alpha x}{(\alpha - x)^2 + y^2}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATI AB routines

Change variable: $z=\frac{\alpha+s}{\alpha-s} \Leftrightarrow s=\alpha\frac{z-1}{z+1}$: a one-to-one invertible mapping

- ullet \Re axis $(s) \leftrightarrow \Re$ axis (z)
- \Im axis $(s) \leftrightarrow$ Unit circle (z)

Proof:
$$z = e^{j\omega} \Leftrightarrow s = \alpha \frac{e^{j\omega} - 1}{e^{j\omega} + 1} = \alpha \frac{e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}}}{e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}}} = j\alpha \tan \frac{\omega}{2} = j\Omega$$

Proof:
$$s=x+jy\Leftrightarrow |z|^2=\frac{|(\alpha+x)+jy|^2}{|(\alpha-x)-jy|^2}$$

$$=\frac{\alpha^2+2\alpha x+x^2+y^2}{\alpha^2-2\alpha x+x^2+y^2}=1+\frac{4\alpha x}{(\alpha-x)^2+y^2}$$
 $x<0\Leftrightarrow |z|<1$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATI AB routines

Change variable: $z=\frac{\alpha+s}{\alpha-s} \Leftrightarrow s=\alpha\frac{z-1}{z+1}$: a one-to-one invertible mapping

- $ullet \ \ \Re$ axis $(s) \leftrightarrow \Re$ axis (z)
- \Im axis $(s) \leftrightarrow$ Unit circle (z)

Proof:
$$z = e^{j\omega} \Leftrightarrow s = \alpha \frac{e^{j\omega} - 1}{e^{j\omega} + 1} = \alpha \frac{e^{j\frac{\omega}{2}} - e^{-j\frac{\omega}{2}}}{e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}}} = j\alpha \tan \frac{\omega}{2} = j\Omega$$

• Left half plane(s) \leftrightarrow inside of unit circle (z)

Proof:
$$s=x+jy\Leftrightarrow |z|^2=\frac{|(\alpha+x)+jy|^2}{|(\alpha-x)-jy|^2}$$

$$=\frac{\alpha^2+2\alpha x+x^2+y^2}{\alpha^2-2\alpha x+x^2+y^2}=1+\frac{4\alpha x}{(\alpha-x)^2+y^2}$$
 $x<0\Leftrightarrow |z|<1$

• Unit circle $(s) \leftrightarrow \Im$ axis (z)

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

- Impulse Invariance
- Summary
- MATLAB routines

Take
$$\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$$
 and choose $\alpha = 1$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

- Impulse Invariance
- Summary
- MATLAB routines

Take
$$\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$$
 and choose $\alpha = 1$

Substitute:
$$s = \alpha \frac{z-1}{z+1}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

- Impulse Invariance
- Summary
- MATLAB routines

Take
$$\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$$
 and choose $\alpha = 1$

Substitute:
$$s = \alpha \frac{z-1}{z+1}$$

$$H(z) = \frac{1}{\left(\frac{z-1}{z+1}\right)^2 + 0.2\frac{z-1}{z+1} + 4}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

- Impulse Invariance
- Summary
- MATLAB routines

Take
$$\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$$
 and choose $\alpha = 1$

Substitute:
$$s = \alpha \frac{z-1}{z+1}$$
 [extra zeros at $z = -1$]

[extra zeros at
$$z=-1$$
]

$$H(z) = \frac{1}{\left(\frac{z-1}{z+1}\right)^2 + 0.2\frac{z-1}{z+1} + 4}$$
$$= \frac{(z+1)^2}{(z-1)^2 + 0.2(z-1)(z+1) + 4(z+1)^2}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

- Impulse Invariance
- Summary
- MATLAB routines

Take
$$\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$$
 and choose $\alpha = 1$

Substitute:
$$s = \alpha \frac{z-1}{z+1}$$
 [extra zeros at $z = -1$]

[extra zeros at
$$z=-1$$
]

$$H(z) = \frac{1}{\left(\frac{z-1}{z+1}\right)^2 + 0.2\frac{z-1}{z+1} + 4}$$

$$= \frac{(z+1)^2}{(z-1)^2 + 0.2(z-1)(z+1) + 4(z+1)^2}$$

$$= \frac{z^2 + 2z + 1}{5.2z^2 + 6z + 4.8}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

- Impulse Invariance
- Summary
- MATLAB routines

Take
$$\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$$
 and choose $\alpha = 1$

Substitute:
$$s = \alpha \frac{z-1}{z+1}$$
 [extra zeros at $z = -1$]

[extra zeros at
$$z=-1$$
]

$$H(z) = \frac{1}{\left(\frac{z-1}{z+1}\right)^2 + 0.2\frac{z-1}{z+1} + 4}$$

$$= \frac{(z+1)^2}{(z-1)^2 + 0.2(z-1)(z+1) + 4(z+1)^2}$$

$$= \frac{z^2 + 2z + 1}{5.2z^2 + 6z + 4.8} = 0.19 \frac{1 + 2z^{-1} + z^{-2}}{1 + 1.15z^{-1} + 0.92z^{-2}}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

- Impulse Invariance
- Summary
- MATLAB routines

Take
$$\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$$
 and choose $\alpha = 1$

Substitute:
$$s = \alpha \frac{z-1}{z+1}$$
 [extra zeros at $z = -1$]

[extra zeros at
$$z=-1$$
]

$$H(z) = \frac{1}{\left(\frac{z-1}{z+1}\right)^2 + 0.2\frac{z-1}{z+1} + 4}$$

$$= \frac{(z+1)^2}{(z-1)^2 + 0.2(z-1)(z+1) + 4(z+1)^2}$$

$$= \frac{z^2 + 2z + 1}{5.2z^2 + 6z + 4.8} = 0.19 \frac{1 + 2z^{-1} + z^{-2}}{1 + 1.15z^{-1} + 0.92z^{-2}}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATI AB routines

Take
$$\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$$
 and choose $\alpha = 1$

Substitute:
$$s = \alpha \frac{z-1}{z+1}$$
 [extra zeros at $z = -1$]

[extra zeros at
$$z = -1$$
]

$$H(z) = \frac{1}{\left(\frac{z-1}{z+1}\right)^2 + 0.2\frac{z-1}{z+1} + 4}$$

$$= \frac{(z+1)^2}{(z-1)^2 + 0.2(z-1)(z+1) + 4(z+1)^2}$$

$$= \frac{z^2 + 2z + 1}{5.2z^2 + 6z + 4.8} = 0.19 \frac{1 + 2z^{-1} + z^{-2}}{1 + 1.15z^{-1} + 0.92z^{-2}}$$

Frequency response is identical (both magnitude and phase) but with a distorted frequency axis:

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATI AB routines

Take
$$\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$$
 and choose $\alpha = 1$

Substitute:
$$s = \alpha \frac{z-1}{z+1}$$
 [extra zeros at $z = -1$]

[extra zeros at
$$z = -1$$
]

$$H(z) = \frac{1}{\left(\frac{z-1}{z+1}\right)^2 + 0.2\frac{z-1}{z+1} + 4}$$

$$= \frac{(z+1)^2}{(z-1)^2 + 0.2(z-1)(z+1) + 4(z+1)^2}$$

$$= \frac{z^2 + 2z + 1}{5.2z^2 + 6z + 4.8} = 0.19 \frac{1 + 2z^{-1} + z^{-2}}{1 + 1.15z^{-1} + 0.92z^{-2}}$$

Frequency response is identical (both magnitude and phase) but with a distorted frequency axis:

Frequency mapping:
$$\omega = 2 \tan^{-1} \frac{\Omega}{\alpha}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATI AB routines

Take
$$\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$$
 and choose $\alpha = 1$

Substitute:
$$s = \alpha \frac{z-1}{z+1}$$
 [extra zeros at $z = -1$]

[extra zeros at
$$z = -1$$
]

$$H(z) = \frac{1}{\left(\frac{z-1}{z+1}\right)^2 + 0.2\frac{z-1}{z+1} + 4}$$

$$= \frac{(z+1)^2}{(z-1)^2 + 0.2(z-1)(z+1) + 4(z+1)^2}$$

$$= \frac{z^2 + 2z + 1}{5.2z^2 + 6z + 4.8} = 0.19 \frac{1 + 2z^{-1} + z^{-2}}{1 + 1.15z^{-1} + 0.92z^{-2}}$$

Frequency response is identical (both magnitude and phase) but with a distorted frequency axis:

Frequency mapping:
$$\omega = 2 \tan^{-1} \frac{\Omega}{\alpha}$$

$$\Omega = \begin{bmatrix} \alpha & 2\alpha & 3\alpha & 4\alpha & 5\alpha \end{bmatrix}$$

$$\rightarrow \omega = \begin{bmatrix} 1.6 & 2.2 & 2.5 & 2.65 & 2.75 \end{bmatrix}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATI AB routines

Take
$$\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$$
 and choose $\alpha = 1$

Substitute: $s = \alpha \frac{z-1}{z+1}$ [extra zeros at z = -1]

$$H(z) = \frac{1}{\left(\frac{z-1}{z+1}\right)^2 + 0.2\frac{z-1}{z+1} + 4}$$

$$= \frac{(z+1)^2}{(z-1)^2 + 0.2(z-1)(z+1) + 4(z+1)^2}$$

$$= \frac{z^2 + 2z + 1}{5.2z^2 + 6z + 4.8} = 0.19 \frac{1 + 2z^{-1} + z^{-2}}{1 + 1.15z^{-1} + 0.92z^{-2}}$$

Frequency response is identical (both magnitude and phase) but with a distorted frequency axis:

Frequency mapping: $\omega = 2 \tan^{-1} \frac{\Omega}{\alpha}$

$$\Omega = \begin{bmatrix} \alpha & 2\alpha & 3\alpha & 4\alpha & 5\alpha \end{bmatrix}$$

$$\rightarrow \omega = \begin{bmatrix} 1.6 & 2.2 & 2.5 & 2.65 & 2.75 \end{bmatrix}$$

Choosing α : Set $\alpha = \frac{\Omega_0}{\tan \frac{1}{2}\omega_0}$ to map $\Omega_0 \to \omega_0$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Take
$$\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$$
 and choose $\alpha = 1$

Substitute: $s = \alpha \frac{z-1}{z+1}$ [extra zeros at z = -1]

$$H(z) = \frac{1}{\left(\frac{z-1}{z+1}\right)^2 + 0.2\frac{z-1}{z+1} + 4}$$

$$= \frac{(z+1)^2}{(z-1)^2 + 0.2(z-1)(z+1) + 4(z+1)^2}$$

$$= \frac{z^2 + 2z + 1}{5.2z^2 + 6z + 4.8} = 0.19 \frac{1 + 2z^{-1} + z^{-2}}{1 + 1.15z^{-1} + 0.92z^{-2}}$$

Frequency response is identical (both magnitude and phase) but with a distorted frequency axis:

Frequency mapping: $\omega = 2 \tan^{-1} \frac{\Omega}{\alpha}$

$$\Omega = \begin{bmatrix} \alpha & 2\alpha & 3\alpha & 4\alpha & 5\alpha \end{bmatrix}$$

$$\rightarrow \omega = \begin{bmatrix} 1.6 & 2.2 & 2.5 & 2.65 & 2.75 \end{bmatrix}$$

Choosing α : Set $\alpha = \frac{\Omega_0}{\tan \frac{1}{2}\omega_0}$ to map $\Omega_0 \to \omega_0$ Set $\alpha=2f_s=\frac{2}{T}$ to map low frequencies to themselves

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

- Impulse Invariance
- Summary
- MATLAB routines

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

- Impulse Invariance
- Summary
- MATLAB routines

- Alternative method: $\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$
- Find the poles and zeros: $p_s = -0.1 \pm 2j$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

- Impulse Invariance
- Summary
- MATLAB routines

Alternative method:
$$\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$$

Find the poles and zeros:
$$p_s=-0.1\pm 2j$$
 Map using $z=\frac{\alpha+s}{\alpha-s}$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

- Impulse Invariance
- Summary
- MATLAB routines

Find the poles and zeros:
$$p_s = -0.1 \pm 2j$$

Map using
$$z = \frac{\alpha + s}{\alpha - s} \Rightarrow p_z = -0.58 \pm 0.77j$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Alternative method: $\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$

Find the poles and zeros: $p_s=-0.1\pm 2j$ Map using $z=\frac{\alpha+s}{\alpha-s}\Rightarrow p_z=-0.58\pm 0.77j$

After the transformation we will always end up with the same number of poles as zeros:

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Alternative method: $\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$

Find the poles and zeros: $p_s=-0.1\pm 2j$ Map using $z=\frac{\alpha+s}{\alpha-s}\Rightarrow p_z=-0.58\pm 0.77j$

After the transformation we will always end up with the same number of poles as zeros:

Add extra poles or zeros at z=-1

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Alternative method: $\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$

Find the poles and zeros: $p_s=-0.1\pm 2j$ Map using $z=\frac{\alpha+s}{\alpha-s}\Rightarrow p_z=-0.58\pm 0.77j$

After the transformation we will always end up with the same number of poles as zeros:

Add extra poles or zeros at z=-1

$$H(z) = g \times \frac{(1+z^{-1})^2}{(1+(0.58-0.77j)z^{-1})(1+(0.58+0.77j)z^{-1})}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Alternative method:
$$\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$$

Find the poles and zeros:
$$p_s=-0.1\pm 2j$$

Map using $z=\frac{\alpha+s}{\alpha-s}\Rightarrow p_z=-0.58\pm 0.77j$

After the transformation we will always end up with the same number of poles as zeros:

Add extra poles or zeros at z=-1

$$H(z) = g \times \frac{(1+z^{-1})^2}{(1+(0.58-0.77j)z^{-1})(1+(0.58+0.77j)z^{-1})}$$
$$= g \times \frac{1+2z^{-1}+z^{-2}}{1+1.15z^{-1}+0.92z^{-2}}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Alternative method: $\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$

Find the poles and zeros: $p_s=-0.1\pm 2j$ Map using $z=\frac{\alpha+s}{\alpha-s}\Rightarrow p_z=-0.58\pm 0.77j$

After the transformation we will always end up with the same number of poles as zeros:

Add extra poles or zeros at z=-1

$$H(z) = g \times \frac{(1+z^{-1})^2}{(1+(0.58-0.77j)z^{-1})(1+(0.58+0.77j)z^{-1})}$$
$$= g \times \frac{1+2z^{-1}+z^{-2}}{1+1.15z^{-1}+0.92z^{-2}}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Alternative method: $\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$

Find the poles and zeros: $p_s=-0.1\pm 2j$ Map using $z=\frac{\alpha+s}{\alpha-s}\Rightarrow p_z=-0.58\pm 0.77j$

After the transformation we will always end up with the same number of poles as zeros:

Add extra poles or zeros at z=-1

$$H(z) = g \times \frac{(1+z^{-1})^2}{(1+(0.58-0.77j)z^{-1})(1+(0.58+0.77j)z^{-1})}$$
$$= g \times \frac{1+2z^{-1}+z^{-2}}{1+1.15z^{-1}+0.92z^{-2}}$$

At
$$\Omega_0 = 0 \Rightarrow s_0 = 0$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Alternative method: $\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$

Find the poles and zeros: $p_s=-0.1\pm 2j$ Map using $z=\frac{\alpha+s}{\alpha-s}\Rightarrow p_z=-0.58\pm 0.77j$

After the transformation we will always end up with the same number of poles as zeros:

Add extra poles or zeros at z=-1

$$H(z) = g \times \frac{(1+z^{-1})^2}{(1+(0.58-0.77j)z^{-1})(1+(0.58+0.77j)z^{-1})}$$
$$= g \times \frac{1+2z^{-1}+z^{-2}}{1+1.15z^{-1}+0.92z^{-2}}$$

At
$$\Omega_0 = 0 \Rightarrow s_0 = 0 \Rightarrow \left| \widetilde{H}(s_0) \right| = 0.25$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Alternative method: $\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$

Find the poles and zeros: $p_s = -0.1 \pm 2j$ Map using $z = \frac{\alpha + s}{\alpha - s} \Rightarrow p_z = -0.58 \pm 0.77j$

After the transformation we will always end up with the same number of poles as zeros:

Add extra poles or zeros at z=-1

$$H(z) = g \times \frac{(1+z^{-1})^2}{(1+(0.58-0.77j)z^{-1})(1+(0.58+0.77j)z^{-1})}$$
$$= g \times \frac{1+2z^{-1}+z^{-2}}{1+1.15z^{-1}+0.92z^{-2}}$$

At
$$\Omega_0 = 0 \Rightarrow s_0 = 0 \Rightarrow \left| \widetilde{H}(s_0) \right| = 0.25$$

$$\Rightarrow \omega_0 = 2 \tan^{-1} \frac{\Omega_0}{\alpha} = 0 \Rightarrow z_0 = e^{j\omega_0} = 1$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Alternative method: $\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$

Find the poles and zeros: $p_s=-0.1\pm 2j$ Map using $z=\frac{\alpha+s}{\alpha-s}\Rightarrow p_z=-0.58\pm 0.77j$

After the transformation we will always end up with the same number of poles as zeros:

Add extra poles or zeros at z=-1

$$H(z) = g \times \frac{(1+z^{-1})^2}{(1+(0.58-0.77j)z^{-1})(1+(0.58+0.77j)z^{-1})}$$
$$= g \times \frac{1+2z^{-1}+z^{-2}}{1+1.15z^{-1}+0.92z^{-2}}$$

At
$$\Omega_0 = 0 \Rightarrow s_0 = 0 \Rightarrow \left| \widetilde{H}(s_0) \right| = 0.25$$

$$\Rightarrow \omega_0 = 2 \tan^{-1} \frac{\Omega_0}{\alpha} = 0 \Rightarrow z_0 = e^{j\omega_0} = 1$$

$$\Rightarrow |H(z_0)| = g \times \frac{4}{3.08} = 0.25$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Alternative method: $\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$

Find the poles and zeros: $p_s=-0.1\pm 2j$ Map using $z=\frac{\alpha+s}{\alpha-s}\Rightarrow p_z=-0.58\pm 0.77j$

After the transformation we will always end up with the same number of poles as zeros:

Add extra poles or zeros at z=-1

$$H(z) = g \times \frac{(1+z^{-1})^2}{(1+(0.58-0.77j)z^{-1})(1+(0.58+0.77j)z^{-1})}$$
$$= g \times \frac{1+2z^{-1}+z^{-2}}{1+1.15z^{-1}+0.92z^{-2}}$$

At
$$\Omega_0 = 0 \Rightarrow s_0 = 0 \Rightarrow \left| \widetilde{H}(s_0) \right| = 0.25$$

$$\Rightarrow \omega_0 = 2 \tan^{-1} \frac{\Omega_0}{\alpha} = 0 \Rightarrow z_0 = e^{j\omega_0} = 1$$

$$\Rightarrow |H(z_0)| = g \times \frac{4}{3.08} = 0.25 \Rightarrow g = 0.19$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Alternative method: $\widetilde{H}(s) = \frac{1}{s^2 + 0.2s + 4}$

Find the poles and zeros: $p_s=-0.1\pm 2j$ Map using $z=\frac{\alpha+s}{\alpha-s}\Rightarrow p_z=-0.58\pm 0.77j$

After the transformation we will always end up with the same number of poles as zeros:

Add extra poles or zeros at z=-1

$$H(z) = g \times \frac{(1+z^{-1})^2}{(1+(0.58-0.77j)z^{-1})(1+(0.58+0.77j)z^{-1})}$$
$$= g \times \frac{1+2z^{-1}+z^{-2}}{1+1.15z^{-1}+0.92z^{-2}}$$

At
$$\Omega_0 = 0 \Rightarrow s_0 = 0 \Rightarrow \left| \widetilde{H}(s_0) \right| = 0.25$$

$$\Rightarrow \omega_0 = 2 \tan^{-1} \frac{\Omega_0}{\alpha} = 0 \Rightarrow z_0 = e^{j\omega_0} = 1$$

$$\Rightarrow |H(z_0)| = g \times \frac{4}{3.08} = 0.25 \Rightarrow g = 0.19$$

$$H(z) = 0.19 \frac{1 + 2z^{-1} + z^{-2}}{1 + 1.15z^{-1} + 0.92z^{-2}}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

We can transform the z-plane to change the cutoff frequency by substituting

$$z = \frac{\hat{z} - \lambda}{1 - \lambda \hat{z}}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

We can transform the z-plane to change the cutoff frequency by substituting

$$z = \frac{\hat{z} - \lambda}{1 - \lambda \hat{z}} \Leftrightarrow \hat{z} = \frac{z + \lambda}{1 + \lambda z}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

We can transform the z-plane to change the cutoff frequency by substituting

$$z = \frac{\hat{z} - \lambda}{1 - \lambda \hat{z}} \Leftrightarrow \hat{z} = \frac{z + \lambda}{1 + \lambda z}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

We can transform the z-plane to change the cutoff frequency by substituting

$$z = \frac{\hat{z} - \lambda}{1 - \lambda \hat{z}} \Leftrightarrow \hat{z} = \frac{z + \lambda}{1 + \lambda z}$$

Frequency Mapping:

If $z=e^{j\omega}$, then $\hat{z}=z\frac{1+\lambda z^{-1}}{1+\lambda z}$ has modulus 1 since the numerator and denominator are complex conjugates.

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

We can transform the z-plane to change the cutoff frequency by substituting

$$z = \frac{\hat{z} - \lambda}{1 - \lambda \hat{z}} \Leftrightarrow \hat{z} = \frac{z + \lambda}{1 + \lambda z}$$

Frequency Mapping:

If $z=e^{j\omega}$, then $\hat{z}=z\frac{1+\lambda z^{-1}}{1+\lambda z}$ has modulus 1 since the numerator and denominator are complex conjugates.

Hence the unit circle is preserved.

$$\Rightarrow e^{j\hat{\omega}} = \frac{e^{j\omega} + \lambda}{1 + \lambda e^{j\omega}}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

We can transform the z-plane to change the cutoff frequency by substituting

$$z = \frac{\hat{z} - \lambda}{1 - \lambda \hat{z}} \Leftrightarrow \hat{z} = \frac{z + \lambda}{1 + \lambda z}$$

Frequency Mapping:

If $z=e^{j\omega}$, then $\hat{z}=z\frac{1+\lambda z^{-1}}{1+\lambda z}$ has modulus 1 since the numerator and denominator are complex conjugates.

Hence the unit circle is preserved.

$$\Rightarrow e^{j\hat{\omega}} = \frac{e^{j\omega} + \lambda}{1 + \lambda e^{j\omega}}$$

Some algebra gives: $\tan \frac{\omega}{2} = \left(\frac{1+\lambda}{1-\lambda}\right) \tan \frac{\hat{\omega}}{2}$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

We can transform the z-plane to change the cutoff frequency by substituting

$$z = \frac{\hat{z} - \lambda}{1 - \lambda \hat{z}} \Leftrightarrow \hat{z} = \frac{z + \lambda}{1 + \lambda z}$$

Frequency Mapping:

If $z=e^{j\omega}$, then $\hat{z}=z\frac{1+\lambda z^{-1}}{1+\lambda z}$ has modulus 1 since the numerator and denominator are complex conjugates.

Hence the unit circle is preserved.

$$\Rightarrow e^{j\hat{\omega}} = \frac{e^{j\omega} + \lambda}{1 + \lambda e^{j\omega}}$$

Some algebra gives: $\tan \frac{\omega}{2} = \left(\frac{1+\lambda}{1-\lambda}\right) \tan \frac{\hat{\omega}}{2}$

Equivalent to:

$$z \longrightarrow s = \frac{z-1}{z+1} \longrightarrow \hat{s} = \frac{1-\lambda}{1+\lambda}s \longrightarrow \hat{z} = \frac{1+\hat{s}}{1-\hat{s}}$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

We can transform the z-plane to change the cutoff frequency by substituting

$$z = \frac{\hat{z} - \lambda}{1 - \lambda \hat{z}} \Leftrightarrow \hat{z} = \frac{z + \lambda}{1 + \lambda z}$$

Frequency Mapping:

If $z=e^{j\omega}$, then $\hat{z}=z\frac{1+\lambda z^{-1}}{1+\lambda z}$ has modulus 1 since the numerator and denominator are complex conjugates.

Hence the unit circle is preserved.

$$\Rightarrow e^{j\hat{\omega}} = \frac{e^{j\omega} + \lambda}{1 + \lambda e^{j\omega}}$$

Some algebra gives: $\tan \frac{\omega}{2} = \left(\frac{1+\lambda}{1-\lambda}\right) \tan \frac{\hat{\omega}}{2}$

Equivalent to:

$$z \longrightarrow s = \frac{z-1}{z+1} \longrightarrow \hat{s} = \frac{1-\lambda}{1+\lambda}s \longrightarrow \hat{z} = \frac{1+\hat{s}}{1-\hat{s}}$$

Lowpass Filter example:

Inverse Chebyshev

$$\omega_0 = \frac{\pi}{2} = 1.57$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

We can transform the z-plane to change the cutoff frequency by substituting

$$z = \frac{\hat{z} - \lambda}{1 - \lambda \hat{z}} \Leftrightarrow \hat{z} = \frac{z + \lambda}{1 + \lambda z}$$

Frequency Mapping:

If $z=e^{j\omega}$, then $\hat{z}=z\frac{1+\lambda z^{-1}}{1+\lambda z}$ has modulus 1 since the numerator and denominator are complex conjugates.

Hence the unit circle is preserved.

$$\Rightarrow e^{j\hat{\omega}} = \frac{e^{j\omega} + \lambda}{1 + \lambda e^{j\omega}}$$

Some algebra gives: $\tan \frac{\omega}{2} = \left(\frac{1+\lambda}{1-\lambda}\right) \tan \frac{\hat{\omega}}{2}$

Equivalent to:

$$z \longrightarrow s = \frac{z-1}{z+1} \longrightarrow \hat{s} = \frac{1-\lambda}{1+\lambda}s \longrightarrow \hat{z} = \frac{1+\hat{s}}{1-\hat{s}}$$

Lowpass Filter example:

Inverse Chebyshev

$$\omega_0 = \frac{\pi}{2} = 1.57 \xrightarrow{\lambda = 0.6} \hat{\omega}_0 = 0.49$$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

We can transform the z-plane to change the cutoff frequency by substituting

$$z = \frac{\hat{z} - \lambda}{1 - \lambda \hat{z}} \Leftrightarrow \hat{z} = \frac{z + \lambda}{1 + \lambda z}$$

Frequency Mapping:

If $z=e^{j\omega}$, then $\hat{z}=z\frac{1+\lambda z^{-1}}{1+\lambda z}$ has modulus 1 since the numerator and denominator are complex conjugates.

Hence the unit circle is preserved.

$$\Rightarrow e^{j\hat{\omega}} = \frac{e^{j\omega} + \lambda}{1 + \lambda e^{j\omega}}$$

Some algebra gives: $\tan \frac{\omega}{2} = \left(\frac{1+\lambda}{1-\lambda}\right) \tan \frac{\hat{\omega}}{2}$

Equivalent to:

$$z \longrightarrow s = \frac{z-1}{z+1} \longrightarrow \hat{s} = \frac{1-\lambda}{1+\lambda}s \longrightarrow \hat{z} = \frac{1+\hat{s}}{1-\hat{s}}$$

Lowpass Filter example:

Inverse Chebyshev

$$\omega_0 = \frac{\pi}{2} = 1.57 \xrightarrow{\lambda = 0.6} \hat{\omega}_0 = 0.49$$

Explicit Computation

$$\lambda = 4/10$$
 and $\omega_0 = \pi/2$.

$$\tan\left(\frac{\omega}{2}\right) = \frac{1+\lambda}{1-\lambda}\tan\left(\frac{\widehat{\omega}}{2}\right)$$

$$\to \underbrace{\tan\left(\frac{\pi}{4}\right)}_{=1} = \underbrace{\frac{1+0.6}{0.4}}_{=4}\tan\left(\frac{\widehat{\omega}}{2}\right)$$

$$\Rightarrow \widehat{\omega} = 2 tan^{-1} \left(\frac{1}{4} \right) \approx \frac{49}{100}$$

Constantinides Transformations

Transform any lowpass filter with cutoff frequency ω_0 to:

Target	Substitute	Parameters
Lowpass $\hat{\omega} < \hat{\omega}_1$	$z^{-1} = \frac{\hat{z}^{-1} - \lambda}{1 - \lambda \hat{z}^{-1}}$	$\lambda = \frac{\sin(\frac{\omega_0 - \hat{\omega}_1}{2})}{\sin(\frac{\omega_0 + \hat{\omega}_1}{2})}$
Highpass $\hat{\omega} > \hat{\omega}_1$	$z^{-1} = -\frac{\hat{z}^{-1} + \lambda}{1 + \lambda \hat{z}^{-1}}$	$\lambda = \frac{\cos(\frac{\omega_0 + \hat{\omega}_1}{2})}{\cos(\frac{\omega_0 - \hat{\omega}_1}{2})}$
Bandpass $\hat{\omega}_1 < \hat{\omega} < \hat{\omega}_2$	$z^{-1} = -\frac{(\rho - 1) - 2\lambda\rho\hat{z}^{-1} + (\rho + 1)\hat{z}^{-2}}{(\rho + 1) - 2\lambda\rho\hat{z}^{-1} + (\rho - 1)\hat{z}^{-2}}$	$\lambda = \frac{\cos(\frac{\hat{\omega}_2 + \hat{\omega}_1}{2})}{\cos(\frac{\hat{\omega}_2 - \hat{\omega}_1}{2})}$ $\rho = \cot(\frac{\hat{\omega}_2 - \hat{\omega}_1}{2})\tan(\frac{\omega_0}{2})$
Bandstop $\hat{\omega}_1 \not< \hat{\omega} \not< \hat{\omega}_2$	$z^{-1} = \frac{(1-\rho)-2\lambda\hat{z}^{-1}+(\rho+1)\hat{z}^{-2}}{(\rho+1)-2\lambda\hat{z}^{-1}+(1-\rho)\hat{z}^{-2}}$	$\lambda = \frac{\cos(\frac{\hat{\omega}_2 + \hat{\omega}_1}{2})}{\cos(\frac{\hat{\omega}_2 - \hat{\omega}_1}{2})}$ $\rho = \tan(\frac{\hat{\omega}_2 - \hat{\omega}_1}{2})\tan(\frac{\omega_0}{2})$

Constantinides Transformations

Transform any lowpass filter with cutoff frequency ω_0 to:

Target	Substitute	Parameters
Lowpass $\hat{\omega} < \hat{\omega}_1$	$z^{-1} = \frac{\hat{z}^{-1} - \lambda}{1 - \lambda \hat{z}^{-1}}$	$\lambda = \frac{\sin(\frac{\omega_0 - \hat{\omega}_1}{2})}{\sin(\frac{\omega_0 + \hat{\omega}_1}{2})}$
Highpass $\hat{\omega} > \hat{\omega}_1$	$z^{-1} = -\frac{\hat{z}^{-1} + \lambda}{1 + \lambda \hat{z}^{-1}}$	$\lambda = \frac{\cos(\frac{\omega_0 + \hat{\omega}_1}{2})}{\cos(\frac{\omega_0 - \hat{\omega}_1}{2})}$
Bandpass $\hat{\omega}_1 < \hat{\omega} < \hat{\omega}_2$	$z^{-1} = -\frac{(\rho-1)-2\lambda\rho\hat{z}^{-1}+(\rho+1)\hat{z}^{-2}}{(\rho+1)-2\lambda\rho\hat{z}^{-1}+(\rho-1)\hat{z}^{-2}}$	$\lambda = \frac{\cos(\frac{\hat{\omega}_2 + \hat{\omega}_1}{2})}{\cos(\frac{\hat{\omega}_2 - \hat{\omega}_1}{2})}$ $\rho = \cot(\frac{\hat{\omega}_2 - \hat{\omega}_1}{2})\tan(\frac{\omega_0}{2})$
Bandstop $\hat{\omega}_1 \not< \hat{\omega} \not< \hat{\omega}_2$	$z^{-1} = \frac{(1-\rho)-2\lambda\hat{z}^{-1}+(\rho+1)\hat{z}^{-2}}{(\rho+1)-2\lambda\hat{z}^{-1}+(1-\rho)\hat{z}^{-2}}$	$\lambda = \frac{\cos(\frac{\hat{\omega}_2 + \hat{\omega}_1}{2})}{\cos(\frac{\hat{\omega}_2 - \hat{\omega}_1}{2})}$ $\rho = \tan(\frac{\hat{\omega}_2 - \hat{\omega}_1}{2})\tan(\frac{\omega_0}{2})$

Bandpass and bandstop transformations are quadratic and so will double the order:

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Bilinear transform works well for a lowpass filter but the non-linear compression of the frequency distorts any other response.

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Bilinear transform works well for a lowpass filter but the non-linear compression of the frequency distorts any other response.

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Bilinear transform works well for a lowpass filter but the non-linear compression of the frequency distorts any other response.

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATI AB routines

Bilinear transform works well for a lowpass filter but the non-linear compression of the frequency distorts any other response.

Alternative method:

$$\widetilde{H}(s) \xrightarrow{\mathscr{L}^{-1}} h(t) \xrightarrow{\text{sample}} h[n] = T \times h(nT) \xrightarrow{\mathscr{Z}} H(z)$$

 $\widetilde{H}(s) \overset{\mathscr{L}^{-1}}{\longrightarrow} h(t) \overset{\text{sample}}{\longrightarrow} h[n] = T \times h(nT) \overset{\mathscr{Z}}{\longrightarrow} H(z)$ Express $\widetilde{H}(s)$ as a sum of partial fractions $\widetilde{H}(s) = \sum_{i=1}^N \frac{g_i}{s-\widetilde{p}_i}$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Bilinear transform works well for a lowpass filter but the non-linear compression of the frequency distorts any other response.

Alternative method:

$$\widetilde{H}(s) \xrightarrow{\mathscr{L}^{-1}} h(t) \xrightarrow{\text{sample}} h[n] = T \times h(nT) \xrightarrow{\mathscr{Z}} H(z)$$

Express $\widetilde{H}(s)$ as a sum of partial fractions $\widetilde{H}(s) = \sum_{i=1}^N \frac{g_i}{s-\widetilde{p}_i}$

Impulse response is $\tilde{h}(t) = u(t) \times \sum_{i=1}^{N} g_i e^{\tilde{p}_i t}$

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Bilinear transform works well for a lowpass filter but the non-linear compression of the frequency distorts any other response.

Alternative method:

$$\widetilde{H}(s) \xrightarrow{\mathscr{L}^{-1}} h(t) \xrightarrow{\text{sample}} h[n] = T \times h(nT) \xrightarrow{\mathscr{Z}} H(z)$$

Express $\widetilde{H}(s)$ as a sum of partial fractions $\widetilde{H}(s) = \sum_{i=1}^{N} \frac{g_i}{s - \widetilde{p}_i}$

Impulse response is $\tilde{h}(t) = u(t) \times \sum_{i=1}^{N} g_i e^{\tilde{p}_i t}$

Digital filter $\frac{H(z)}{T} = \sum_{i=1}^N \frac{g_i}{1-e^{\tilde{p}_i T}z^{-1}}$ has identical impulse response

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Bilinear transform works well for a lowpass filter but the non-linear compression of the frequency distorts any other response.

Alternative method:

$$\widetilde{H}(s) \xrightarrow{\mathscr{L}^{-1}} h(t) \xrightarrow{\text{sample}} h[n] = T \times h(nT) \xrightarrow{\mathscr{Z}} H(z)$$

Express $\widetilde{H}(s)$ as a sum of partial fractions $\widetilde{H}(s) = \sum_{i=1}^{N} \frac{g_i}{s - \widetilde{p}_i}$

Impulse response is $\tilde{h}(t) = u(t) \times \sum_{i=1}^{N} g_i e^{\tilde{p}_i t}$

Digital filter $\frac{H(z)}{T} = \sum_{i=1}^{N} \frac{g_i}{1 - e^{\tilde{p}_i T} z^{-1}}$ has identical impulse response

Poles of H(z) are $p_i=e^{\tilde{p}_iT}$ (where $T=\frac{1}{f_s}$ is sampling period)

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Bilinear transform works well for a lowpass filter but the non-linear compression of the frequency distorts any other response.

Alternative method:

$$\widetilde{H}(s) \xrightarrow{\mathscr{L}^{-1}} h(t) \xrightarrow{\text{sample}} h[n] = T \times h(nT) \xrightarrow{\mathscr{Z}} H(z)$$

Express $\widetilde{H}(s)$ as a sum of partial fractions $\widetilde{H}(s) = \sum_{i=1}^{N} \frac{g_i}{s - \widetilde{p}_i}$

Impulse response is $\tilde{h}(t) = u(t) \times \sum_{i=1}^{N} g_i e^{\tilde{p}_i t}$

Digital filter $\frac{H(z)}{T} = \sum_{i=1}^{N} \frac{g_i}{1 - e^{\tilde{p}_i T} z^{-1}}$ has identical impulse response

Poles of H(z) are $p_i=e^{\tilde{p}_iT}$ (where $T=\frac{1}{f_s}$ is sampling period) Zeros do not map in a simple way

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Bilinear transform works well for a lowpass filter but the non-linear compression of the frequency distorts any other response.

Alternative method:

$$\widetilde{H}(s) \xrightarrow{\mathscr{L}^{-1}} h(t) \xrightarrow{\text{sample}} h[n] = T \times h(nT) \xrightarrow{\mathscr{Z}} H(z)$$

Express $\widetilde{H}(s)$ as a sum of partial fractions $\widetilde{H}(s) = \sum_{i=1}^N \frac{g_i}{s - \widetilde{p}_i}$

Impulse response is $\tilde{h}(t) = u(t) \times \sum_{i=1}^{N} g_i e^{\tilde{p}_i t}$

Digital filter $\frac{H(z)}{T} = \sum_{i=1}^{N} \frac{g_i}{1 - e^{\tilde{p}_i T} z^{-1}}$ has identical impulse response

Poles of H(z) are $p_i=e^{\tilde{p}_iT}$ (where $T=\frac{1}{f_s}$ is sampling period) Zeros do not map in a simple way

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Bilinear transform works well for a lowpass filter but the non-linear compression of the frequency distorts any other response.

Alternative method:

$$\widetilde{H}(s) \xrightarrow{\mathscr{L}^{-1}} h(t) \xrightarrow{\text{sample}} h[n] = T \times h(nT) \xrightarrow{\mathscr{Z}} H(z)$$

Express $\widetilde{H}(s)$ as a sum of partial fractions $\widetilde{H}(s) = \sum_{i=1}^N \frac{g_i}{s - \widetilde{p}_i}$

Impulse response is $\tilde{h}(t) = u(t) \times \sum_{i=1}^{N} g_i e^{\tilde{p}_i t}$

Digital filter $\frac{H(z)}{T} = \sum_{i=1}^{N} \frac{g_i}{1 - e^{\tilde{p}_i T} z^{-1}}$ has identical impulse response

Poles of H(z) are $p_i=e^{\tilde{p}_iT}$ (where $T=\frac{1}{f_s}$ is sampling period) Zeros do not map in a simple way

Properties:

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Bilinear transform works well for a lowpass filter but the non-linear compression of the frequency distorts any other response.

Alternative method:

$$\widetilde{H}(s) \xrightarrow{\mathscr{L}^{-1}} h(t) \xrightarrow{\text{sample}} h[n] = T \times h(nT) \xrightarrow{\mathscr{Z}} H(z)$$

Express $\widetilde{H}(s)$ as a sum of partial fractions $\widetilde{H}(s) = \sum_{i=1}^{N} \frac{g_i}{s - \widetilde{p}_i}$

Impulse response is $\tilde{h}(t) = u(t) \times \sum_{i=1}^{N} g_i e^{\tilde{p}_i t}$

Digital filter $\frac{H(z)}{T} = \sum_{i=1}^{N} \frac{g_i}{1 - e^{\tilde{p}_i T} z^{-1}}$ has identical impulse response

Poles of H(z) are $p_i=e^{\tilde{p}_iT}$ (where $T=\frac{1}{f_s}$ is sampling period) Zeros do not map in a simple way

Properties:

© Impulse response correct.

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATI AB routines

Bilinear transform works well for a lowpass filter but the non-linear compression of the frequency distorts any other response.

Alternative method:

$$\widetilde{H}(s) \xrightarrow{\mathscr{L}^{-1}} h(t) \xrightarrow{\text{sample}} h[n] = T \times h(nT) \xrightarrow{\mathscr{Z}} H(z)$$

Express $\widetilde{H}(s)$ as a sum of partial fractions $\widetilde{H}(s) = \sum_{i=1}^{N} \frac{g_i}{s-\widetilde{n}}$

Impulse response is $\tilde{h}(t) = u(t) \times \sum_{i=1}^{N} g_i e^{\tilde{p}_i t}$

Digital filter $\frac{H(z)}{T} = \sum_{i=1}^{N} \frac{g_i}{1-e\tilde{p}_i T_z-1}$ has identical impulse response

Poles of H(z) are $p_i = e^{\tilde{p}_i T}$ (where $T = \frac{1}{f_s}$ is sampling period) Zeros do not map in a simple way

Properties:

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATLAB routines

Bilinear transform works well for a lowpass filter but the non-linear compression of the frequency distorts any other response.

Alternative method:

$$\widetilde{H}(s) \xrightarrow{\mathscr{L}^{-1}} h(t) \xrightarrow{\text{sample}} h[n] = T \times h(nT) \xrightarrow{\mathscr{Z}} H(z)$$

Express $\widetilde{H}(s)$ as a sum of partial fractions $\widetilde{H}(s) = \sum_{i=1}^N \frac{g_i}{s - \widetilde{p}_i}$

Impulse response is $\tilde{h}(t) = u(t) \times \sum_{i=1}^{N} g_i e^{\tilde{p}_i t}$

Digital filter $\frac{H(z)}{T} = \sum_{i=1}^{N} \frac{g_i}{1 - e^{\tilde{p}_i T} z^{-1}}$ has identical impulse response

Poles of H(z) are $p_i=e^{\tilde{p}_iT}$ (where $T=\frac{1}{f_s}$ is sampling period) Zeros do not map in a simple way

Properties:

- Impulse response correct.No distortion of frequency axis.
- © Frequency response is aliased.

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

- Impulse Invariance
- Summary
- MATLAB routines

- Classical filters have optimal tradeoffs in continuous time domain
 - \circ Order \leftrightarrow transition width \leftrightarrow pass ripple \leftrightarrow stop ripple
 - Monotonic passband and/or stopband

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

- Impulse Invariance
- Summary
- MATLAB routines

- Classical filters have optimal tradeoffs in continuous time domain
 - Order ↔ transition width ↔ pass ripple ↔ stop ripple
 - Monotonic passband and/or stopband
- Bilinear mapping
 - Exact preservation of frequency response (mag + phase)
 - non-linear frequency axis distortion
 - \circ can choose lpha to map $\Omega_0 o \omega_0$ for one specific frequency

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

- Impulse Invariance
- Summary
- MATLAB routines

- Classical filters have optimal tradeoffs in continuous time domain
 - \circ Order \leftrightarrow transition width \leftrightarrow pass ripple \leftrightarrow stop ripple
 - Monotonic passband and/or stopband
- Bilinear mapping
 - Exact preservation of frequency response (mag + phase)
 - non-linear frequency axis distortion
 - \circ can choose α to map $\Omega_0 \to \omega_0$ for one specific frequency
- Spectral transformations
 - lowpass → lowpass, highpass, bandpass or bandstop
 - bandpass and bandstop double the filter order

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATI AB routines

- Classical filters have optimal tradeoffs in continuous time domain
 - \circ Order \leftrightarrow transition width \leftrightarrow pass ripple \leftrightarrow stop ripple
 - Monotonic passband and/or stopband

Bilinear mapping

- Exact preservation of frequency response (mag + phase)
- non-linear frequency axis distortion
- \circ can choose α to map $\Omega_0 \to \omega_0$ for one specific frequency

Spectral transformations

- lowpass → lowpass, highpass, bandpass or bandstop
- bandpass and bandstop double the filter order

Impulse Invariance

- Aliassing distortion of frequency response
- o preserves frequency axis and impulse response

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

Transformations

- Impulse Invariance
- Summary
- MATI AB routines

- Classical filters have optimal tradeoffs in continuous time domain
 - Order ↔ transition width↔ pass ripple ↔ stop ripple
 - Monotonic passband and/or stopband

Bilinear mapping

- Exact preservation of frequency response (mag + phase)
- non-linear frequency axis distortion
- \circ can choose α to map $\Omega_0 \to \omega_0$ for one specific frequency

Spectral transformations

- lowpass → lowpass, highpass, bandpass or bandstop
- bandpass and bandstop double the filter order

Impulse Invariance

- Aliassing distortion of frequency response
- preserves frequency axis and impulse response

For further details see Mitra: 9.

MATLAB routines

8: IIR Filter Transformations

- Continuous Time Filters
- Bilinear Mapping
- Continuous Time Filters
- Mapping Poles and Zeros
- Spectral Transformations
- Constantinides

- Impulse Invariance
- Summary
- MATLAB routines

bilinear	Bilinear mapping
impinvar	Impulse invariance
butter	Analog or digital
butterord	Butterworth filter
cheby1	Analog or digital
cheby1ord	Chebyshev filter
cheby2	Analog or digital
cheby2ord	Inverse Chebyshev filter
ellip	Analog or digital
ellipord	Elliptic filter