练习 1. 设 $F \in \mathbb{R}^n$ 的有界闭集. 证明: 若映照 $f: F \to F$ 满足

$$|f(x) - f(y)| < |x - y|, \ \forall \ x, y \in F, \ x \neq y,$$

则存在唯一的 $x_0 \in F$ 使得 $f(x_0) = x_0$.

练习 2. 用类似 Cantor 集的构造方法构造一个闭集合 $\hat{\mathcal{C}}$: 第 k 步时从第 k-1 步得到的 2^{k-1} 个无交闭区间中各除去一个长度为 ℓ_k 的同心开区间,其中

$$\ell_1 + 2\ell_2 + \dots + 2^{k-1}\ell_k < 1.$$

即取 $\hat{C}_0 = [0,1]$ 。第一步除去 \hat{C}_0 的中心处长度为 ℓ_1 的开区间,得到 \hat{C}_1 (是 2个无交闭区间的并);第二步在构成 \hat{C}_1 的 2个无交闭区间中各除去长度为 ℓ_2 的同心开区间,得到 \hat{C}_2 (是 4个无交闭区间的并);继续这个过程,第 k 步在构成 \hat{C}_{k-1} 的 2^{k-1} 个无交闭区间中各除去长度为 ℓ_k 的同心开区间,得到 \hat{C}_k (是 2^k 个无交闭区间的并).所需"类 Cantor 集"为 $\hat{C} = \bigcap_{k=0}^{\infty} \hat{C}_k$. 特别地,当 $\ell_k = 1/3^k$ 时,则为标准的 Cantor 集.

- (a) 证明: 对于任何 $x \in \hat{\mathcal{C}}$,存在一个点列 $\{x_n\}_{n=1}^{\infty}$,满足 $x_n \to x$, $x_n \in I_n$. 这里 I_n 是 $[0,1] \setminus \hat{\mathcal{C}}$ 的子区间, $|I_n| \to 0$.
- (b) 证明: $\hat{\mathcal{C}}$ 是完备集.
- (c) 证明: \hat{C} 是不可数集.
- (d) 判断 $\hat{\mathcal{C}}$ 是第一纲集还是第二纲集,并说明理由.

练习 3. 找一个集合 $E \subset \mathbb{R}$,它是 F_{σ} 集,但不是 G_{δ} 集。

练习 4. 假设 $F \in \mathbb{R}^n$ 的一个完备集,f 和 f_k ($k = 1, 2, \cdots$) 是定义在 F 上的函数. 如果每个 f_k 的连续点均在 F 中稠密,且 f_k 在 F 上一致收敛于 f,求证 f 的连续点在 F 中稠密.