Dada uma região não retângular, podemos integrar uma função f nesta região da seguinte forma:

$$F(x, y) = \begin{cases} f(x, y) & \text{se } (x, y) \text{ está em } D \\ 0 & \text{se } (x, y) \text{ está em } R \text{ mas não em } D \end{cases}$$

Se F for integrável em R, definimos a integral dupla de f em D por

$$\int \int_D f(x,y) dA = \int \int_R F(x,y) dA$$

Como calcular na prática:

Dividimos essas regiões em dois tipos.

• Tipo I: $D = \{(x, y) | a \le x \le b, g_1(x) \le y \le g_2(x)\}$

A variável x varia entre dois valores constantes e a variável y entre duas funções de x.

Como calcular na prática:

Se f é contínua em uma região D do tipo I tal que

$$D = \{(x, y) \mid a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

então,

$$\int \int_D f(x,y) dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) dy dx.$$

1) Calcule $\int \int_D (x + 2y) dA$, onde D é a região limitada pelas parábolas $y = 2x^2$ e $y = 1 + x^2$.

- Seguindo a seta azul, de baixo para cima, verificamos que y varia da função $g_1(x) = 2x^2$ até chegar na função $g_2(x) = 1 + x^2$.
- No exemplo, a limitação do x é dada pelos pontos que fecham a região, que neste caso, são dados no encontro das duas funções. Para verificar, basta resolver a equação $2x^2=1+x^2$, que resultará nos valores de x que fazem com que $g_1(x)=g_2(x)$. Teremos $-1 \le x \le 1$.

Assim,

$$\int \int_{D} (x+2y) dA = \int_{-1}^{1} \left[\int_{2x^{2}}^{1+x^{2}} (x+2y) dy \right] dx$$

$$= \int_{-1}^{1} \left[xy + y^{2} \right]_{2x^{2}}^{1+x^{2}} dx$$

$$= \int_{-1}^{1} \left[x(1+x^{2}) - x(2x^{2}) + (1+x^{2})^{2} - (2x^{2})^{2} \right] dx$$

$$= \int_{-1}^{1} (-3x^{4} - x^{3} + 2x^{2} + x + 1) dx$$

$$= -3\frac{x^{5}}{6} - \frac{x^{4}}{4} + 2\frac{x^{3}}{2} + \frac{x^{2}}{2} + x \right]_{-1}^{1} = \frac{32}{16}$$

Como calcular na prática:

• Tipo 2: $D = \{(x, y) | h_1(y) \le x \le h_2(y), c \le y \le d\}$

A variável y varia entre dois valores constantes e a variável x entre duas funções de y.

1) Calcule $\int \int_D xy \, dA$, onde D é a região limitada pela reta x=y+1 e pela parábola $x=\frac{y^2}{3}-3$.

- Seguindo a seta azul, da esquerda para a direita, verificamos que x varia da função $h_1(y) = \frac{y^2}{3} 3$ até chegar na função $h_2(y) = y^2 + 1$.
- No exemplo, a limitação do y é dada pelos pontos que fecham a região, que neste caso, são dados no encontro das duas funções. Para verificar, basta resolver a equação $\frac{y^2}{3} 3 = y^2 + 1$, que resultará nos valores de y que fazem com que $h_1(y) = h_2(y)$. Teremos $-2 \le y \le 4$.

Assim,

$$\int \int_{D} xy \, dA = \int_{-2}^{4} \left[\int_{\frac{y^{2}}{3} - 3}^{y+1} xy \, dx \right] dy$$

$$= \int_{-2}^{4} \left[y \frac{x^{2}}{2} \right]_{\frac{y^{2}}{3} - 3}^{y+1} dy$$

$$= \frac{1}{2} \int_{-2}^{4} y \left[(y+1)^{2} - \left(\frac{y^{2}}{6} - 3 \right)^{2} \right] dy$$

$$= \frac{1}{2} \int_{-2}^{4} \left(-\frac{y^{5}}{4} + 4y^{3} + 2y^{2} - 8y \right) dy$$

$$= \frac{1}{2} \left[-\frac{y^{6}}{24} + y^{4} + 2\frac{y^{3}}{3} - 4y^{2} \right]_{-2}^{4} = 36$$

Exercícios:

- Calcule a integral dupla $\int \int_D y^2 dA$, onde $D = \{(x,y) \mid -1 \le y \le 1, -y 2 \le x \le y\}$. Resp. $\frac{4}{3}$
- ② Calcule a integral dupla $\int \int_D x \, dA$, onde $D = \{(x,y) \mid 0 \le x \le \pi, \ 0 \le y \le \text{sen}x\}$. Resp: π