Chapter 7: Eigenvalues and Eigenvectors

Cheng Chang, Ph.D.
Department of Math & CS
Mercy College

Contents

1.	Eigenvalues and Eigenvectors	4
1.1.	. Eigenvalues and Eigenvectors of Linear Transformations	4
2.	Diagonalization	Ę
2.1.	. Diagonalization and Linear Transformations	6

1. Eigenvalues and Eigenvectors

Definition 1.1. Let A be an $n \times n$ matrix. The scalar λ is an **eigenvalue** of A when there is a nonzero vector \vec{x} such that $A\vec{x} = \lambda \vec{x}$. The vector \vec{x} is an **eigenvector** of A corresponding to λ .

Example 1.1. For the matrix

$$A = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$$

verify that $\vec{x}_1 = (1,0)$ is an eigenvector of A corresponding to the eigenvalue $\lambda_1 = 2$, and that $\vec{x}_2 = (0,1)$ is an eigenvector of A corresponding to the eigenvalue $\lambda_2 = -1$.

Example 1.2. For the matrix

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

verify that

$$\vec{x}_1 = (-3, -1, 1)$$
 and $\vec{x}_2 = (1, 0, 0)$

are eigenvectors of A and find their corresponding eigenvalues.

If A is an $n \times n$ matrix with an eigenvalue λ and a corresponding eigenvector \vec{x} , then every nonzero scalar multiple of \vec{x} is also an eigenvector of A. It is also true that if \vec{x}_1 and \vec{x}_2 are eigenvectors corresponding to the same eigenvalue λ , then their sum is also a eigenvector corresponding to λ . In other words, the set of all eigenvectors of an eigenvalue λ , together with the zero vector, is a subspace of \mathbb{R}^n .

Theorem 1.1. If A is an $n \times n$ matrix with an eigenvalue λ , then the set of all eigenvectors of λ , together with the zero vector

$$\{\vec{x}: \vec{x} \text{ is an eigenvector of } \lambda\} \cup \{\vec{0}\}$$

is a subspace of \mathbb{R}^n . This subspace is the **eigenspace** of λ .

Example 1.3. Find the eigenvalues and corresponding eigenspaces of $A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.

To find the eigenvalues and eigenvectors of an $n \times n$ matrix A, let I be the $n \times n$ identity matrix. Suppose λ is an eigenvalue and \vec{x} is a corresponding eigenvector, then they must satisfy the equation

$$A\vec{x} = \lambda \vec{x} \text{ or } A\vec{x} = \lambda I\vec{x}$$

rearranging gives

$$(\lambda I - A)\vec{x} = \vec{0}.$$

This homogeneous system of equations has nonzero solutions (by the definition of eigenvectors, \vec{x} must be nonzero) if and only if the coefficient matrix $(\lambda I - A)$ is not invertible—that is, if and only if its determinant is zero.

Theorem 1.2. Let A be an $n \times n$ matrix.

- (1) An eigenvalue of A is a scalar λ such that $\det(\lambda I A) = 0$.
- (2) The eigenvectors of A corresponding to λ are the nonzero solutions of $(\lambda I A)\vec{x} = \vec{0}$.

The equation $\det(\lambda I - A) = 0$ is the **characteristic equation** of A. Moreover, when expanded to polynomial form, the polynomial $|\lambda I - A|$ is the **characteristic polynomial** of A.

Example 1.4. Find the eigenvalues and corresponding eigenvectors of $A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}$.

A summary of the steps used to find the eigenvalues and corresponding eigenvectors of a matrix is below.

Procedure 1 (Finding Eigenvalues and Eigenvectors). Let A be an $n \times n$ matrix.

- (1) Form the characteristic equation $|\lambda I A| = 0$. It will be a polynomial equation of degree n in the variable λ .
- (2) Find the real roots of the characteristic equation. These are the eigenvalues of A.
- (3) For each eigenvalue λ_i , find the eigenvectors corresponding to λ_i by solving the homogeneous system $(\lambda_i I A)\vec{x} = \vec{0}$. This can require row reducing an $n \times n$ matrix. The reduced row-echelon form must have at least one row of zeros.

Example 1.5. Find the eigenvalues and corresponding eigenvectors of

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

What is the dimension of the eigenspace of each eigenvalue?

If an eigenvalue λ_i occurs as a multiple root (k times) of the characteristic polynomial, then λ_i has **multiplicity** k. In general, the multiplicity of an eigenvalue is greater than or equal to the dimension of its eigenspace.

Example 1.6. Find the eigenvalues of

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 5 & -10 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3 \end{bmatrix}$$

and find a basis for each of the corresponding eigenspaces.

Theorem 1.3. If A is an $n \times n$ triangular matrix, then its eigenvalues are the entries on its main diagonal.

Example 1.7. Find the eigenvalues of each matrix.

1.1. Eigenvalues and Eigenvectors of Linear Transformations.

Eigenvalues and eigenvectors can also be defined in terms of linear transformations. A number λ is an **eigenvalue** of a linear transformation $T:V\to V$ when there is a nonzero vector \vec{x} such that $T(\vec{x})=\lambda\vec{x}$. The vector \vec{x} is an **eigenvector** of T corresponding to λ , and the set of all eigenvectors of λ (with the zero vector) is the **eigenspace** of λ .

Example 1.8. Find the eigenvalues and a basis for each corresponding eigenspace of

$$A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}.$$

2. Diagonalization

In this section, we will look at another classic problem in linear algebra called the diagonalization problem. The problem is "for a square matrix A, does there exist an invertible matrix P such that $P^{-1}AP$ is a diagonal?

Definition 2.1. An $n \times n$ matrix A is **diagonalizable** when A is similar to a diagonal matrix. That is, A is diagonalizable when there exists an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.

With this definition, the diagonalization problem can be stated as "which square matrices are diagonalizable?"

Example 2.1. The matrix

$$A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

is diagonalizable because

$$P = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

has the property that

$$P^{-1}AP = \begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

The eigenvalue problem is related closely to the diagonalization problem. The next two theorems shed some light on this relationship.

Theorem 2.1. If A are B are similar $n \times n$ matrices, then they have the same eigenvalues.

Example 2.2. The matrices A and D are similar.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & -2 & 4 \end{bmatrix} \text{ and } D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

Find the eigenvalues of A.

Theorem 2.2. An $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.

Procedure 2 (Steps for Diagonalizing a Square Matrix). Let A be an $n \times n$ matrix.

- (1) Find n linearly independent eigenvectors $\vec{p_1}, \vec{p_2}, \dots, \vec{p_n}$ for A (if possible) with corresponding eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. If n linearly independent eigenvectors do not exist, then A is not diagonalizable.
- (2) Let P be the $n \times n$ matrix whose columns consists of these eigenvectors. That is, $P = [\vec{p_1} \ \vec{p_2} \cdots \vec{p_n}]$.
- (3) The diagonal matrix $D = P^{-1}AP$ will have the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ on its main diagonal. Note that the order of the eigenvectors used to form P will determine the order in which the eigenvalues appear on the main diagonal of D.

Example 2.3. Show that the matrix A is diagonalizable.

$$A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 3 & 1 \\ -3 & 1 & -1 \end{bmatrix}$$

Then find a matrix P such that $P^{-1}AP$ is diagonal.

Example 2.4. Show that the matrix A is diagonalizable.

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 5 & -10 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 3 \end{bmatrix}$$

Then find a matrix P such that $P^{-1}AP$ is diagonal.

Example 2.5. Show that the matrix A is not diagonalizable.

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$

For a square matrix A of order n to be diagonalizable, the sum of the dimensions of the eigenspaces must be equal to n. This can happen when A has n distinct eigenvalues.

Theorem 2.3. If an $n \times n$ matrix A has n distinct eigenvalues, then the corresponding eigenvectors are linearly independent and A is diagonalizable.

Example 2.6. Determine whether the matrix A is diagonalizable.

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -3 \end{bmatrix}$$

2.1. Diagonalization and Linear Transformations.

In terms of linear transformations, the diagonalization problem can be stated as: For a linear transformation ${\bf r}$

$$T:V\to V$$

does there exist a basis B for V such that the matrix for T relative to B is diagonal? The answer is "yes" when the standard matrix for T is diagonalizable.

Example 2.7. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation represented by

$$T(x_1, x_2, x_3) = (x_1 - x_2 - x_3, x_1 + 3x_2 + x_3, -3x_1 + x_2 - x_3).$$

If possible, find a basis B for \mathbb{R}^3 such that the matrix for T relative to B is diagonal.