1. The volume of a snowball of radius r is $V(r) = (4/3)\pi r^3$, where r is measured in inches and V is in measured in inches cubed. Explain what $V'(2) \approx 50.265$ means in language your parents could understand.

2. If you increase the radius of a snowball from 2 inches to 2.02 inches, estimate the change in volume of the snowball.

$$\Delta V \approx V'(z) \cdot \Delta r = 50.265 \cdot (0.02) = [.0053 \text{ cubiz inches}]$$

3. Compute $\frac{d}{dx} \tan(x)$

$$\frac{d}{dx} \ln(x) = \frac{d}{dx} \frac{\sin(x)}{\cos(x)} = \sec^2(x)$$
 by last worksheet

4. Compute $\frac{d}{dx}\sec(x)$

$$\frac{d}{dx} = \frac{-1}{\sqrt{3x}} \frac{d}{\cos(x)} = + \frac{\sin(x)}{\cos(x)} = \frac{\sin(x$$

5. Compute the second derivative $\frac{d^2}{dx^2}e^x\cos(x)$

$$\frac{d}{dx} e^{+(65x)} = e^{+(65x)} - e^{+(65$$

- **6.** A 12 foot ladder rests against a wall. Let θ be the angle between the ladder and the wall and let *x* be the distance from the base of the ladder and the wall.
 - a. Compute x as a function of θ .

$$s_{ih}\theta = \frac{x}{12}$$

$$x = 12 s_{ih}\theta$$

b. How fast does *x* change with respect to θ when $\theta = \pi/6$?

$$x(\theta) = 12 \sin \theta$$

$$x'(\theta) = 12 \cos \theta$$

$$x''(\frac{\pi}{6}) = 12 \cos \frac{\pi}{6}$$

$$= 12 \cos \frac{\pi}{6}$$

$$= 12 \cos \frac{\pi}{6}$$

