Vectors and Matrices

IA Mich

Read hermitian matrix diagonalisable proof, and supo notes

1 Complex numbers

• Definitions

- Construct $\mathbb C$ from $\mathbb R$ with element i such that $i^2=-1$
- Addition, multiplication, Complex conjugate $(\bar{z} \text{ or } z^*)$
- Modulus, argument (multi-valued, restrict using principal value),
 Argand diagram

Properties

- $-\mathbb{C}$ is a field (with $+-\times\nabla\cdot$, associative, commutative, distributive)
- Fundamental Theorem of Algebra
- Geometric representation of addition, subtraction, complex conjugation
- Composition property: $|z_1z_2| = |z_1||z_2|$
- Triangle inequality: $|z_1+z_2| \le |z_1|+|z_2|$, and alternatively $|z_1-z_2| \ge ||z_1|-|z_2||$
- Multiplying complex numbers: moduli multiply, arguments add
- De Moivre's Theorem

• Exponential and Trig functions

- Define $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$, $\sin(z)$, $\cos(z)$ in terms of e^z , consistent with usual rules, thus can have exponential form of complex numbers
- Roots of unity: $z^n = 1 \iff z = \exp(\frac{2k\pi i}{n}), k = 0, 1, ..., n-1$

• Logarithm and Complex Powers

- Define log as inverse of exp
- $-z = |z|e^{i\arg(z)} \implies \log(z) = \log|z| + i\arg(z)$ (multi-valued as $\arg(z)$ is multi-valued, can restrict using principal value)
- Complex power: $z^{\alpha} = e^{\alpha \log(z)}$, generally infinitely many values, may be finite in special cases (integer/rational exponent)

- Lines and Circles
 - Line: parametric (point and direction), and non-parametric (eliminate by taking complex conjugate)
 - Circles: $|z c| = \rho$ (or expanded) or $z = c + \rho e^{i\theta}$
- Geometric transformations described in \mathbb{C} : translation, scaling, rotation, reflection, inversion; relation to Möbius transformation

2 Vectors in 3D

- Euclidean space: vectors have direction and magnitudes
- Addition and scalar multiplication (Geometric)
 - Parallelogram construction, scalar multiplication by extending
 - Properties: identity, inverses, commutativity, associativity, distributivity
 - Linear combination and span of vectors
 - Parallel: one vector being a scalar multiple of the other, otherwise the two vectors span a plane (allow $\mathbf{0} \parallel \mathbf{a}$ for all \mathbf{a} in this definition)
- Scalar/dot/inner product (Geometric)
 - Definition: $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$, using magnitude and angle between the vectors
 - Properties: symmetric, positive definite, scalar multiple can 'move around', distributive
 - Orthogonality: $\mathbf{a} \perp \mathbf{b} \iff \mathbf{a} \cdot \mathbf{b} = 0$ (allow $\mathbf{0} \perp \mathbf{a}$ for all \mathbf{a} in this definition)
 - Resolving a vector along another one: component of b along a is given by (in magnitude)

$$|\mathbf{b}|\cos\theta = \frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{a}|}$$

- Orthonormal Bases
 - A set of orthonormal vectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ (or $\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}$) are each of unit length and mutually perpendicular: $\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$
 - Equivalent to choosing Cartesian axes along the 3 directions

- Basis $\{\mathbf{e}_i\}$: linearly independent and span: Any vector can be represented uniquely by a linear combination of the three vectors: $\mathbf{a} = \sum_i a_i \mathbf{e}_i$, components determined by dotting \mathbf{a} with each of the basis vectors
- Notion of components: (a_1,a_2,a_3) or $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$
- Vector/Cross product (Geometric)
 - Definition: $\mathbf{a} \times \mathbf{b} = |\mathbf{a}||\mathbf{b}|\sin\theta \hat{\mathbf{n}}$, where $\hat{\mathbf{n}}$ (unit normal vector) and θ are defined in a right-handed sense
 - Signed area of parallelogram, with sign giving orientation
 - Can be seen as rotating and scaling a vector at the same time (p.15)
 - Define a orthonormal right-handed set by cross product, then cross products can be expressed in components

• Triple Products

- Scalar triple product: signed volume of parallelepiped, test for coplanar vectors
- Vector triple product: $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$
- Lines, planes and vector equations
 - Line: $\mathbf{r} = \mathbf{a} + \lambda \mathbf{u}$ (parametric form); $\mathbf{u} \times \mathbf{r} = \mathbf{c} = \text{constant}$ (non-parametric)
 - Plane: $\mathbf{r} = \mathbf{a} + \lambda \mathbf{u} + \lambda \mathbf{v}$, with \mathbf{u} and \mathbf{v} non-parallel in the plane (parametric form); $\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{a} = \kappa$, with \mathbf{n} normal vector to the plane;
 - Perpendicular distance of plane from origin = $\frac{|\kappa|}{|\mathbf{n}|}$
 - Vector equations: eliminate ${\bf r}$ by taking products; consider cases; let ${\bf r}$ be a linear combination of constant vectors and solve for coefficients, complete square
- Index notation and summation convention (Algebraic)

- Free indices appear exactly once in every term: represent components;
 Dummy indices appear exactly twice in each term, and are summed up;
- Nothing should appear more than twice
- Kronecker Delta δ_{ij} : represent identity matrix I
- Levi-Civita Epsilon ϵ_{ijk} : antisymmetric, commonly used in cross product, determinant
- Identities: $\epsilon_{ijk}\epsilon_{pqk} = \delta_{ip}\delta_{jq} \delta_{iq}\delta_{jp}$, "same minus different"

3 Vectors in general, \mathbb{R}^n and \mathbb{C}^n (Algebraic)

- \mathbb{R}^n : set of real n-tuples, form linear combination by addition and (real) scalar multiplication
 - Component expression correspond to a standard basis
 - Inner product on \mathbb{R}^n : symmetric, bilinear (linear in both arguments), positive definite ($\mathbf{x} \cdot \mathbf{x} \ge 0$, equality holds $\iff \mathbf{x} = \mathbf{0}$)
 - Parallel, orthogonality, and (Euclidean) norm of vectors
 - Cauchy-Schwarz inequality: $|\mathbf{x} \cdot \mathbf{y}| \leq |\mathbf{x}||\mathbf{y}|$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, with equality iff $\mathbf{x} = \lambda \mathbf{y}$ or $\mathbf{y} = \lambda \mathbf{x}$ for $\lambda \in \mathbb{R}$; thus can define angle between vectors in \mathbb{R}^n by inner product
 - Triangle inequality: $|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|$
 - Vector inner product as matrix multiplication: $\mathbf{x} \cdot \mathbf{y} = \mathbf{x}^T \mathbf{y}$
 - Inner product carries to higher dimensions from \mathbb{R}^3 , but cross product cannot (due to $\epsilon_{ij...k}$ with too many free indices)
 - Instead, $\epsilon_{ij}x_iy_j$ defines an alternative scalar product in 2D, which generalises to scalar triple product in 3D

• Vector spaces

- Defining vector spaces with axioms that enable addition, scalar multiplication (e.g. distributive, associative, identity)
- For a set of vectors $\mathbf{v}_i \in V$, a vector space, define span $\{\mathbf{v}_i\} = \{\sum_i \lambda_i \mathbf{v}_i\}$, the set of all linear combinations
- The span of a set of vectors forms a subspace of V (a subset and itself a vector space); a subspace must contain $\mathbf{0}$

- Linearly independent: $\sum_{i} \lambda_{i} \mathbf{v}_{i} = \mathbf{0} \implies \lambda_{i} = 0$ for all i
- Linear dependence: $\sum_{i} \lambda_{i} \mathbf{v}_{i} = \mathbf{0}$ has non-trivial solutions; i.e. some vector in the set can be written as a linear combination of the others
- Inner products obey the three properties: symmetric, bilinear, positive definite

• Bases and dimension

- Basis: linearly independent and spans the vector space V; thus each point in V has a unique linear combination
- Any set of bases of V has the same number of elements, defined to be $\dim V$
- A spanning set with more vectors than dim V is not linearly dependent (can remove one); a linearly independent set with less vectors than dim V does not span (can add one)
- A set of mutually orthogonal non-zero vectors is linearly independent (dot with each vector, everything else vanish)

• Vectors in \mathbb{C}^n

- \mathbb{C}^n : Vector space with linear combinations (complex scalar multiple), thus has n basis vectors
- Inner product: $(\mathbf{z}, \mathbf{w}) = \sum_{i} \bar{z}_{i} w_{i}$
- Inner product as matrix multiplication: $(\mathbf{z}, \mathbf{w}) = \mathbf{z}^{\dagger} \mathbf{w}$
- Properties: hermitian $((\mathbf{z}, \mathbf{w}) = \overline{(\mathbf{w}, \mathbf{z})})$, anti-linear/linear (in first/second argument), positive definite; scalar products in \mathbb{R}^2 recovered in inner product on \mathbb{C}
- Define length/norm, orthogonality, orthonormal basis, linear independence (where $\mathbf{z}^{\dagger} = \bar{\mathbf{z}}^{T}$, a row vector with components \bar{z}_{i})

4 Matrices and Linear Map

- Linear transformation/map
 - A function $T: V \to W$, between vector spaces V (with dim n) and W (with dim m): satisfying $T(\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda T(\mathbf{x}) + \mu T(\mathbf{y})$, where λ and μ real/complex (a field in general)

- Image, kernel, rank, nullity, rank-nullity theorem
- Linear combination and composition of linear maps

• Matrices as linear maps

- Matrices define a transformation by $x'_i = M_{ij}x_j$ (summation)
- The i-th basis vector is mapped to the i-th column; image of matrix is the span of columns
- $-x_i' = (\mathbf{R}_i)_j x_j = \mathbf{R}_i \cdot \mathbf{x}$: dotting the i-th row with \mathbf{x} gives the i-th component of \mathbf{x}' ; kernel of matrix is $\{\mathbf{x} : \mathbf{R}_i \cdot \mathbf{x} = 0 \text{ for all i}\}$
- Geometric examples of linear map: $\mathbb{R}^3 \to \mathbb{R}^3$
 - Rotation (about a unit vector $\hat{\mathbf{n}}$)
 - Reflection (in a plane through $\mathbf{0}$ with unit normal $\hat{\mathbf{n}}$)
 - Dilation (along three axes)
 - Shear

• Matrices in general

- Given vector spaces V (dim n) with basis $\{\mathbf{e_1}, \mathbf{e_2}, ..., \mathbf{e_n}\}$, and W (dim m) with basis $\{\mathbf{f_1}, \mathbf{f_2}, ..., \mathbf{f_m}\}$, the linear map $T: V \to W$ w.r.t. to the given bases can be represented by an $n \times m$ matrix M, where $T(\mathbf{e_i}) = \sum_a M_{ai} \mathbf{f_a}$, i.e. image of $\mathbf{e_i}$ is the i-th column of M with respect to basis $\{\mathbf{f_a}\}$
- $-T(\mathbf{x})_i = \sum_j M_{ij} x_j = \text{dot product of } i\text{-th row of } M \text{ with } \mathbf{x}$
- Given bases of each vector space, vectors and transformation become components and matrices $(\mathbb{F}^n, \mathbb{F}^m \text{ and } M_{n \times m}(\mathbb{F}))$
- Matrix addition, scalar multiplication and matrix multiplication represent adding, scaling and composition of linear maps
- Invertible/non-singular matrices: left/right inverse, same inverse for square matrices

• Operation and properties of matrices

- Transpose and hermitian conjugate: (need not be square matrix) properties under adding, scaling and product of matrices
- Symmetric $(A^T = A)$, anti-symmetric $(A^T = -A)$, hermitian $(A^{\dagger} = A)$, anti-hermitian $(A^{\dagger} = -A)$

- Trace, decomposition of square matrices into antisymmetric + symmetric traceless + isotropic (multiple of identity)
- Orthogonal and Unitary matrices
 - Orthogonal matrix: $A^T = A^{-1}$, inner product preserved, rows orthonormal, columns orthonormal
 - General 2×2 orthogonal matrices: rotation or reflection (distinguished by determinant of matrix)
 - Unitary matrix: $A^{\dagger} = A^{-1}$, complex inner product preserved

5 Determinants and Inverses

- Determinant
 - Factor by which the signed (n-dim) volume is scaled by the transformation
 - $-\det A \neq 0 \iff \text{linear dependence}$
 - Sum over indices: det $A=\sum_{i_1,i_2,...,i_n} \varepsilon_{i_1i_2...i_n} A_{i_11}A_{i_22}...A_{i_nn}$, extended from 3D case
 - Sum over permutations in S_n : det $A = \sum_{\sigma \in S_n} \varepsilon(\sigma) A_{\sigma(1)1} A_{\sigma(2)2} ... A_{\sigma(n)n}$, sign of permutation $\varepsilon(\sigma)$
 - Scaling a row/column, scaling the whole matrix, row and column operations/exchanges, transpose property, multiplicative property
 - Expand along column or row
- Minors, cofactors and inverses
 - Minor: $M^{ij} = \det$ of matrix M with i-th row and j-th col deleted
 - Cofactor of $\Delta_{ij} = (-1)^{i+j} M^{ij}$ (signed minor)
 - Adjugate: transpose of the cofactor matrix, so $M^{-1} = \frac{1}{\det M} \Delta^T$
- System of linear equations $A\mathbf{x} = \mathbf{b}$, where $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$, and $A \in M_{n \times n}(\mathbb{R})$
 - Existence and nature of solutions:
 - * $\det A \neq 0 \iff \operatorname{Im} A = \mathbb{R}^n \iff \operatorname{Ker} A = \{\mathbf{0}\} \iff \text{unique solution}$

- * $\det A = 0$ and $\mathbf{b} \in \operatorname{Im} A \iff \text{infinitely many solution}$
- * $\det A = 0$ and $\mathbf{b} \notin \operatorname{Im} A \iff$ no solutions
- * General solution (if there exists particular solution $\mathbf{x_0}$) is $\mathbf{x} = \mathbf{x_0} + \mathrm{Ker} A$
- Can interpret each equation as a (hyper-)plane in \mathbb{R}^n , intersection is the set of solutions
 - * Homogeneous equation: each plane passes through origin, so must have at least one solution: **0**
 - * Inhomogeneous: may not pass through origin, solution not guaranteed
- Gaussian Elimination: reduce to echelon form, (variables that are not pivot columns have 'degree of freedom')

6 Eigenvalues and eigenvectors

• Introduction

- Given a linear map $T: V \to V$, an eigenvector $\mathbf{v} \in V \setminus \{\mathbf{0}\}$ with eigenvalue $\lambda \in \mathbb{F}$ (where V is defined over) satisfies $T(\mathbf{v}) = \lambda \mathbf{v}$
- Given a basis, can express the map with a matrix A, then have $A\mathbf{v} = \lambda \mathbf{v} \iff \chi_A(\lambda) = \det(A \lambda I) = 0$ (characteristic polynomial)
- $-\chi_A(\lambda) = 0$ has *n* roots (counted with multiplicity) in \mathbb{C} , by FTA; deduce tr *A*, det *A* from the equation
- Eigenspace E_{λ} , geometric multiplicity m_{λ} , algebraic multiplicity M_{λ} , defect Δ_{λ}
- Eigenvectors with distinct eigenvalues are linearly independent

• Diagonalisability

- Diagonalisable: eigenvectors form a basis \iff there exists invertible matrix P such that $P^{-1}AP = D$, with entries being the eigenvalues
- Criteria:
 - * Sufficient but not necessary: an $n \times n$ matrix has n distinct eigenvalues \implies form a basis
 - * Sufficient and necessary: $M_{\lambda} = m_{\lambda}$ for each λ (*n* linearly independent eigenvectors, form a basis)

• Similar matrix

- A and B are similar \iff ∃ invertible P s.t. $B = P^{-1}AP$ (all n-dimensional), equivalence class
- Similar matrices have same trace, determinant, characteristic polynomial

• Hermitian and symmetric matrices

- Hermitian matrices have real eigenvalues, eigenvectors with distinct eigenvalues are orthogonal (complex inner product)
- Real symmetric: can choose real eigenvectors for each real eigenvalue, the eigenvectors are orthogonal (real inner product)
- Gram-Schmidt Orthogonalisation: transform any basis into orthonormal basis (e.g. the union of bases of eigenspaces with distinct eigenvalues can be orthogonalised)
- Any hermitian (real symmetric) matrix is unitarily (orthogonally) diagonalisable: can choose orthonormal set of eigenvectors , i.e. ${\cal P}$ can be chosen to be unitary (orthogonal)
- Cayley-Hamilton Theorem: any matrix satisfies its own characteristic equation

7 Change of Bases, Canonical form and Symmetries

• Change of bases:

- Transformation matrix: the *i*-th column of P is the *i*-th vector in the new basis w.r.t. the old basis: $\mathbf{e}'_{\mathbf{i}} = \sum_{j} P_{ji} \mathbf{e}_{\mathbf{j}}$
- $-A' = P^{-1}AP$: similar matrices represent same linear map w.r.t. different bases

• Jordan Canonical Form:

 Classify square matrices by similarity: 2D case classify by eigenvalue and multiplicities

• Quadratic Forms

- Given real-symmetric matrix A: the quadratic form is $\mathcal{F}(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = x_i A_{ij} x_j$

- Real-symmetric matrix can be orthogonally diagonalised (by above) with $D = P^{-1}AP$, i.e. has an orthonormal basis of eigenvectors, the principal axes of \mathcal{F}
- Using coordinates w.r.t. the principal axes (i.e. letting $\mathbf{x} = P\mathbf{x}'$), then $\mathcal{F}(\mathbf{x}) = \mathbf{x}'^T D\mathbf{x}' = \sum_i \lambda_i x_i'^2$
- Signs of eigenvalues and value of $\mathcal{F}(\mathbf{x})$ determine shape

• Quadrics and conics

- General quadric: $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c = A_{ij} x_i x_j + b_i x_i + c = 0$, defines a surface in \mathbb{R}^n
- Completing the square gives quadratic form
- Conics: classify up to translation and orthogonal transformation (diagonalising)

• Symmetries and Transformation Groups

- Orthogonal and special orthogonal group O(n), SO(n): length, volume (and orientation) preserving
- Can view as transforming vectors or changing orthonormal bases

• 2D Minkowski Space and Lorentz Transformations

- Define new inner product: Minkowski metric, \mathbb{R}^n becomes Minkowski space
- Minkowski metric preserved by linear maps, subgroup of matrices with det M>0 and $M_{00}>0$ form the Lorentz group
- General form of matrices in terms of hyperbolic trig, matrix map corresponds to Lorentz transformation, speed of light being maximum possible speed