CSU11031

Problem Sheet 6

- 1. A negative point charge of 10^{-6} C is situated in air at the origin of a rectangular coordinate system. A second negative point charge of 10^{-4} C is situated on the positive x-axis at a distance of 50 cm from the origin. What is the force on the second charge?
- 2. Determine the resultant force acting on a point charge of -2.0×10^{-6} C situated at the origin of a rectangular coordinate system in the vicinity of point charges 3.0×10^{-6} C and -4.0×10^{-6} C at distances 0.12 m along the positive x-axis and 0.08m along the half-line y = x where $x, y \le 0$ respectively.
- 3. Compute the Electric Field Strength midway between two point charges of $30~\mu C$ and $40\mu C$ when the charges are placed 10cm apart in air.
- 4. An electron, starting from rest, moves unimpeded in an electric field of strength E V/m.

Taking $q = 1.602 \times 10^{-19} \text{ C}$ and $m_e = 9.11 \times 10^{-31} \text{ Kg find}$:

- (i) the force it experiences,
- (ii) its acceleration,

Answers:

Q1. $F = \hat{i}3.6 \text{ N}$; Q2. $14.15 < 34.20^{\circ} \text{ N}$; Q3. $E = 36 \times 10^{6} \text{ N/C}$ directed from the 40 μC charge to the 30 μC charge; Q4. $F = (1.602 \times 10^{6} \text{ N/C}) \times 10^{6} \text{ N/C}$ directed from the 40 μC charge to the 30 μC charge; Q4. $F = (1.602 \times 10^{6} \text{ N/C}) \times 10^{6} \text{ N/C}$ directed from the 40 μC charge to the 30 μC charge; Q4. $F = (1.602 \times 10^{6} \text{ N/C}) \times 10^{6} \text{ N/C}$ directed from the 40 μC charge to the 30 μC charge; Q4. $F = (1.602 \times 10^{6} \text{ N/C}) \times 10^{6} \text{ N/C}$ directed from the 40 μC charge to the 30 μC charge; Q4. $F = (1.602 \times 10^{6} \text{ N/C}) \times 10^{6} \text{ N/C}$ directed from the 40 μC charge to the 30 μC charge; Q4. $F = (1.602 \times 10^{6} \text{ N/C}) \times 10^{6} \text{ N/C}$ directed from the 40 μC charge to the 30 μC charge; Q4. $F = (1.602 \times 10^{6} \text{ N/C}) \times 10^{6} \text{ N/C}$ directed from the 40 μC charge to the 30 μC charge; Q4. $F = (1.602 \times 10^{6} \text{ N/C}) \times 10^{6} \text{ N/C}$ directed from the 40 μC charge to the 30 μC charge; Q4. $F = (1.602 \times 10^{6} \text{ N/C}) \times 10^{6} \text{ N/C}$ directed from the 40 μC charge to the 30 μC charge; Q4. $F = (1.602 \times 10^{6} \text{ N/C}) \times 10^{6} \text{ N/C}$ directed from the 40 μC charge to the 30 μC charge; Q4. $F = (1.602 \times 10^{6} \text{ N/C}) \times 10^{6} \text{ N/C}$ directed from the 40 μC charge to the 30 μC c