GA4 で Core Web Vitals を計測して BigQuery で分析する

太田 泰弘

株式会社マネーフォワード
CTO室 データ分析基盤グループ リーダー
データエンジニア
@yshr1200

アジェンダ

- 1. GA4とは
- 2. GA4とBigQuery
- 3. Core Web Vitalsとは
- 4. Core Web Vitalsの値をGA4で計測する
- 5. [BigQuery] ページ毎のCore Web Vitalsの値を取得する
- 6. [BigQuery] 改善すべきページを洗い出す

GA4とは

次世代の Google アナリティクス

- 2020年10月リリース
- アプリとウェブのクロスプラットフォーム計測
- イベント単位の計測方式
 - 従来のセッション単位の計測方式から大幅変更
- プライバシーに配慮
 - GDPR, CCPA, ITPなどに配慮した設計
- BigQueryに生データを転送可能

参考:

https://support.google.com/analytics/answer/10089681

GA4 & BigQuery

- 集計前の「生データ」を無償で BigQuery に転送可能
 - GCPの利用料金は別途発生する
- 従来のGAでは「生データ」をBigQueryに格納する機能は有 償版でのみ利用可能
 - より多くのユーザが「生データ」を利用出来るようになった

BigQueryとのリンク設定

- 事前にBigQueryを有効にしたGCPプロジェクトを用意
- GA4管理画面より数クリックで設定可能
 - リンク先GCPプロジェクト
 - データロケーション
 - 転送するデータ
 - ウェブのみ、アプリのみ、ウェブアプリすべてなどの選択が可能
 - 転送頻度

GA4 で **Core** Web Vitals を計測して **BigQuery** で分析する

管理している BigQuery プロジェクトへのリンク							
Q	google-analytics						
	データ ロケーション ②						
	米国 (us) ▼						
デー	夕設定						
==	データ ストリーム						
	1/1 個のデータ ストリーム 表示						
	モバイルアプリ ストリーム用の広告識別子の追加						
Λ.	頻度						
	✓ 毎日 1 日 1 回、すべてのデータのエクスポートが行われます						
	ストリーミング継続的なエクスポート (イベントの到着から数秒以内) 。 詳細						

Core Web Vitalsとは

ウェブで優れたUXを実現するために重要と思われる品質シ グナルの統合ガイドを提供する取り組みです。

> この取り組み(Web Vitals)で核となる指標群が Core Web Vitals です。

2021年5月以降、検索ランキングにおいてCore Web Vitalsが評価されると発表されています。

Core Web Vitalsの3つの指標

- LCP (Largest Contentful Paint)
 - ○読み込み時間
- FID (First Input Delay)
 - インタラクティブ性
- CLS (Cumulative Layout Shift)
 - ページコンテンツの視覚的な安定性

LCP

- ページ内のメインコンテンツの**レンダリング時間**を指す
 - o GOOD
 - 2.5秒未満
 - NEEDS IMPROVEMENT
 - 2.5秒以上4.0秒未満
 - POOR
 - 4.0秒以上

FID

- ページ内でユーザーが最初のアクションを起こしてから応答するまでの時間を指す
 - GOOD
 - 100ミリ秒未満
 - NEEDS IMPROVEMENT
 - 100ミリ秒以上300ミリ秒未満
 - POOR
 - 300ミリ秒以上

CLS

- 予期せぬレイアウトのズレを指す(ズレが生じた表示領域の 比率 × 距離の比率)
 - o GOOD
 - 0.1未満
 - NEEDS IMPROVEMENT
 - 0.1以上0.25未満
 - POOR
 - 0.25以上

Core Web VitalsをGA4で計測する

- Google Tag Managerのカスタムタグテンプレートを使用してCore Web Vitalsの各指標をイベントとして計測する
- 設定方法
 - Track Core Web Vitals In GA4 With Google Tag
 Manager | Simo Ahava's blog
 - Simo Ahava氏(GDE for Google Analytics and Google Tag Manager)のブログ

[BigQuery] ページ毎のCore Web Vitalsの値を取 得する

- ページ別の3指標(LCP, FID, CLS)の平均値をBigQueryで 取得しましょう。
 - LCP, FIDの値はいずれもミリ秒単位で格納されています。

SQLファイルはこちら

```
WITH t1 AS (
 SELECT
   (SELECT value.string_value FROM UNNEST(event_params) WHERE key = 'page_location') AS page_location,
   (SELECT value.string_value FROM UNNEST(event_params) WHERE key = 'web_vitals_measurement_name') AS cwv_type,
   (SELECT value.double_value FROM UNNEST(event_params) WHERE key = 'web_vitals_measurement_value') AS cwv_value,
 FROM
    `exmple.analytics_1234567890.events_20210201`
 WHERE
   event_name IN ("FID", "CLS", "LCP")
SELECT
 page_location,
 AVG((IF(cwv_type = "LCP", cwv_value, NULL))) AS LCP,
 AVG((IF(cwv_type = "FID", cwv_value, NULL))) AS FID,
 AVG((IF(cwv_type = "CLS", cwv_value, NULL))) AS CLS,
FROM
 t1
GROUP BY
 page_location
```

GA4 で **Core Web Vitals** を計測して **BigQuery** で分析する

行	page_location	LCP	FID	CLS
1	https://exapmle.jp/b	2878.9379396596973	11.904083993373762	0.09651695208926175
2	https://exapmle.jp/2	1886.7657640670689	14.518741599774883	0.08416215406708404
3	https://exapmle.jp/	2454.2573774123584	19.55377155963198	0.02605632291375768
4	https://exapmle.jp/c	2667.1433529084884	19.858358650624748	0.24682367428040766
5	https://exapmle.jp/h	2297.47629121825	10.656277439634257	0.05242595714918341
6	https://exapmle.jp/o	2591.199519472865	15.825459771028145	0.11954786953638201
7	https://exapmle.jp/s	2501.857547748166	12.957433388730033	0.07524664115792891
8	https://exapmle.jp/t	2791.2938817990444	22.914108891871805	0.556514542357586
9	https://exapmle.jp/i	2317.5800117116646	13.923948009194646	0.10324458236431647
10	https://exapmle.jp/m	1682.8858376203136	11.551736464986623	0.12983536661467363

ポイント

- 転送されるテーブルは**日付別テーブル**
 - 対象のプロパティ毎にデータセットが作成され、

events_YYYYMMDDという名前のテーブルが作成される

ポイント

- テーブルの各行はイベント単位で、ネストされる形でイベントパラメータが格納される
 - event_params.keyに各イベントパラメータの名前が格納 される
 - event_params.value以下に各イベントパラメータの値が 格納される
 - 値の型によりstring_value, int_value, float_value, double_valueなど格納されるカラムが異なる

例: ページビューイベント

行	event_date	event_timestamp	event_name	event_params.key	event_params.value.string_value	event_params.value.int_value	event_params.value.float_value	event_params.value.double_value
1	20210201	1612170342908120	page_view	product_name		null	null	null
				session_engaged	1	null	null	null
				engaged_session_event	null	1	null	null
				ga_session_number	null	37	null	null
				medium	referral	null	null	null
				page_location		null	null	null
				campaign	(referral)	null	null	null
				source		null	null	null
				ga_session_id	null	1612170239	null	null
				page_title		null	null	null
				page_referrer		null	null	null

[BigQuery] 改善すべきページを洗い出す

- LCP, FID, CLSの3指標がオールGOODでないページは改善する余地があります。
- 前項で各指標のページ別平均値を取得したテーブルを基にオールGOODでないページの一覧を取得します。

SQLファイルはこちら

```
SELECT
 page_location,
 CASE
   WHEN LCP < 2500 THEN "GOOD"
   WHEN LCP >= 2500 AND LCP < 4000 THEN "NEEDS IMPROVEMENT"
   WHEN LCP >= 4000 THEN "POOR"
 END AS LCP,
 CASE
   WHEN FID < 100 THEN "GOOD"
   WHEN FID >= 100 AND FID < 300 THEN "NEEDS IMPROVEMENT"
  WHEN FID >= 300 THEN "POOR"
 END AS FID,
 CASE
   WHEN CLS < 0.1 THEN "GOOD"
   WHEN CLS >= 0.1 AND CLS < 0.25 THEN "NEEDS IMPROVEMENT"
   WHEN CLS >= 0.25 THEN "POOR"
 END AS CLS,
FROM
 `exmple.analytics_1234567890.cwv_20210201`
WHERE
 LCP >= 2500
 OR FID >= 100
 OR CLS >= 0.1
```

GA4 で **Core Web Vitals** を計測して **BigQuery** で分析する

行	page_location	LCP	FID	CLS
1	https://exapmle.jp/c	NEEDS IMPROVEMENT	GOOD	NEEDS IMPROVEMENT
2	https://exapmle.jp/a	GOOD	GOOD	NEEDS IMPROVEMENT
3	https://exapmle.jp/s	NEEDS IMPROVEMENT	GOOD	GOOD
4	https://exapmle.jp/t	NEEDS IMPROVEMENT	GOOD	POOR
5	https://exapmle.jp/b	NEEDS IMPROVEMENT	GOOD	GOOD
6	https://exapmle.jp/m	GOOD	GOOD	NEEDS IMPROVEMENT
7	https://exapmle.jp/i	GOOD	GOOD	NEEDS IMPROVEMENT
8	https://exapmle.jp/f	NEEDS IMPROVEMENT	GOOD	GOOD
9	https://exapmle.jp/o	NEEDS IMPROVEMENT	GOOD	NEEDS IMPROVEMENT
10	https://exapmle.jp/j	GOOD	GOOD	POOR

まとめ

- GA4のリリースによりBigQueryを用いた詳細なアクセス解析が無償版ユーザーでも可能になった
 - 従来のGAでは出来なかったようなより詳細な分析をサンプ リングを気にせずおこなえる
- Core Web Vitalsに限らず、カスタムイベントを増やすことで柔軟なアクセス解析が可能
- ウェブとアプリを跨いだ分析が可能