Cheatsheet: Exercise 5.2

Cheatsheet: Partial Fractions (Exercise 5.2)

Class 11 Mathematics (Chapter 5)

Prepared by ExpertBoy

Overview

Exercise 5.2 focuses on resolving rational functions into partial fractions where the denominator includes repeated linear factors, e.g., $(x-a)^n$, often combined with distinct linear factors. The goal is to decompose $\frac{P(x)}{Q(x)}$ into simpler fractions, handling both proper and improper fractions.

Note

For repeated linear factors $(x-a)^n$, include terms $\frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \cdots + \frac{A_n}{(x-a)^n}$. Always check if the fraction is improper.

Key Concepts

- **1. Rational Function** A rational function is $\frac{P(x)}{Q(x)}$, where P(x) and Q(x) are polynomials, $Q(x) \neq 0$, with no common factors.
 - **Proper**: Degree of P(x) < degree of Q(x). E.g., $\frac{1}{(x-1)^2(x+1)}$.
 - Improper: Degree of $P(x) \ge$ degree of Q(x). E.g., $\frac{2x^4}{(x-3)(x+2)^2}$.
- **2. Partial Fraction Resolution for Repeated Linear Factors** For a denominator with a repeated linear factor $(x a)^n$, the partial fraction form includes:

$$\frac{P(x)}{(x-a)^n} = \frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \dots + \frac{A_n}{(x-a)^n}$$

If combined with distinct factors, e.g., $(x-a)^n(x-b)$, include:

$$\frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \dots + \frac{A_n}{(x-a)^n} + \frac{B}{x-b}$$

- 3. Steps for Partial Fraction Decomposition
 - 1. Check Fraction Type: If improper, divide P(x) by Q(x) to get a polynomial plus a proper fraction.
 - 2. Factor Denominator: Identify repeated and distinct linear factors.
 - 3. **Set Up Partial Fractions**: Include a term for each power of repeated factors and each distinct factor.
 - 4. **Solve for Constants**: Use substitution (set *x* to roots of denominators) and/or equate coefficients.
 - 5. **Combine**: Write the final sum of partial fractions.

Techniques for Exercise 5.2

1. Repeated Linear Factors Only For $\frac{P(x)}{(x-a)^n}$, assume:

$$\frac{P(x)}{(x-a)^n} = \frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \dots + \frac{A_n}{(x-a)^n}$$

Multiply through, equate numerators, and solve. E.g., $\frac{2x^2-3x+4}{(x-1)^3}$ (Q.1, page 358):

- Set x = 1 to find A_n .
- Equate coefficients of x^2 , x to find A_1 , A_2 .

2. Repeated and Distinct Linear Factors For $\frac{P(x)}{(x-a)^n(x-b)}$, assume:

$$\frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \dots + \frac{A_n}{(x-a)^n} + \frac{B}{x-b}$$

E.g., $\frac{4x}{(x+1)^2(x-1)}$ (Q.3, page 360):

- Set x = a, b to find A_n, B .
- Equate coefficients for remaining constants.

3. Improper Fractions Divide to obtain:

$$rac{P(x)}{Q(x)} = ext{Polynomial} + rac{ ext{Remainder}}{Q(x)}$$

Resolve the proper remainder. E.g., $\frac{2x^4}{(x-3)(x+2)^2} = 2x - 2 + \frac{18x^2 + 8x - 24}{(x-3)(x+2)^2}$ (Q.12, page 369).

4. Multiple Repeated Factors For $\frac{P(x)}{(x-a)^n(x-b)^m}$, include terms for each power up to n and m. E.g., $\frac{x-1}{(x-2)(x+1)^3}$ (Q.9, page 366).

Solving for Constants

- **Substitution Method**: Set x to roots of each denominator factor (e.g., x = a for $(x a)^n$) to find constants like A_n, B .
- Coefficient Method: Equate coefficients of like powers of \boldsymbol{x} to solve for remaining constants.

Common Errors to Avoid

- Omitting terms for higher powers of repeated factors.
- Incorrect polynomial division for improper fractions.
- Arithmetic errors in coefficient equations.
- Failing to verify by recombining fractions.

Tip

Always include a term for each power of a repeated factor up to its multiplicity. Verify by substituting back or checking the numerator degree.