Question 1a: Paired Sum

This method would, in worse case scenario, run in time complexity $O(n^2)$, because:

- The outer for loop runs n times.
- The inner for loop runs $\sum_{i=0}^{n} n i 1$ times in worst case (pair is never found)
 - This series evaluates to some factor of n^2

The n^2 dominates the n with large array sizes, so the final time complexity is $O(n^2)$.

Question 1b: Tripled Sum

This method would, in worse case scenario, run in time complexity $O(n^3)$, because:

- We know from the previous example that the middle loop runs some factor of n^2 times in worst case
- Without doing an obscene amount of series calculations, we can logically suggest that the inner loop adds another "layer" to the iteration, and dominates the smaller n terms, resulting in $O(n^3)$ runtime.
 - O I believe the inner loop runs $\sum_{i=0}^{n} (n-i-1+\sum_{i=0}^{n} n-i-2)$ times in worst case scenario

Question 1c: Matrix Multiplication

```
for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
        double sum = 0;
        for (int k = 0; k < n; k++) {
            sum += a[i][k] * b[k][j];
        }
        c[i][j] = sum;
    }
}</pre>
```

This method would run in **time** complexity $O(n^3)$, because:

- Outer for loop runs n times
- Middle for loop runs $n * n = n^2$ times
- Inner for loop runs $n * n * n = n^3$ times

 n^3 dominates smaller n terms, so $O(n^3)$ runtime.

This method would run in **space** complexity $O(n^2)$, because:

- The method accesses three *n* * *n* arrays: the 2 matrices to be multiplied and the product matrix
- $3 * n * n = 3n^2 => O(n^2)$