Probabilistic Method: Problem Set I

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set I of Probabilistic Method 2016 at Courant Institute of Mathematical Sciences.

Question 1.

1. Find m = m(n) as large as you can so that the following holds: Let $A_1, \ldots, A_m \subseteq \{1, \ldots, 4n\}$ with all $|A_i| = n$. Then there exists a two coloring of $\{1, \ldots, 4n\}$ such that none of the A_i are monochromatic. Use a random equicoloring of $\{1, \ldots, 4n\}$. (That is, choose uniformly from the $\binom{4n}{2n}$ two colorings for which there are precisely 2n Red and precisely 2n Blue vertices.) Express your answer as an asymptotic function of n.

Solution. We consider a random equicoloring of $\{1, 2, ..., 4n\}$. Formally, we consider a finite sample space of all possible equicoloring of $\{1, 2, ..., 4n\}$, associated with a uniform probability, which assigns each outcome in the space with $\frac{1}{\binom{4n}{2n}}$. First, observe that the probability of the event, where A_i is monochromatic is given by

$$P(\{A_i \text{ is monochromatic}\}) = 2\frac{\binom{3n}{n}}{\binom{4n}{2n}},$$

as there are $\binom{3n}{n}$ cases of coloring the rest of the graph , when A_i has a fixed monochromatic coloring. By the subadditivity of probability, we have

$$P(\bigcup_{i=1}^{m} \{A_i \text{ is monochromatic }\}) \leq \sum_{i=1}^{m} P(\{A_i \text{ is monochromatic}\})$$

$$= m \cdot 2 \frac{\binom{3n}{n}}{\binom{4n}{2n}}.$$

By DeMorgan's laws, we see that

$$(\bigcup_{i=1}^{m} \{A_i \text{ is monochromatic }\})^c = \bigcap_{i=1}^{m} \{A_i \text{ is monochromatic }\}^c$$

$$= \{\text{No } A_i \text{ is monochromatic }\}.$$

Since the sum of an event and its complement event is 1 by one of the axioms of probability, if we have $m < \frac{\binom{4n}{2n}}{2\binom{3n}{n}}$, then

$$P(\{\text{No } A_i \text{ is monochromatic}\}) > 0.$$

Now, we express this answer as an asymptotic function of n. Using Sterling's formula, we have

$$\frac{\binom{3n}{n}}{\binom{4n}{2n}} = \frac{(3n)!(2n)!}{(n!(4n)!)!}$$
$$= (\frac{3n}{e})^{3n} \frac{2n}{e}$$

Question 2.

2. (-) Suppose $n \geq 2$ and let $A_1, \ldots, A_m \subseteq \Omega$ all have size n. Suppose $m < 4^{n-1}$. Show that there is a coloring of Ω by 4 colors so that no A_i is monochromatic.

Solution. We consider a random vertex 4-coloring of Ω . Formally, we consider a finite sample space of all possible vertex 4-coloring of Ω , associated with a uniform probability, which assigns each outcome in the space with $\frac{1}{|\Omega|}$ probability. By the subadditivity of probability, we have

$$P(\bigcup_{i=1}^{m} \{A_i \text{ is monochromatic }\}) \leq \sum_{i=1}^{m} P(\{A_i \text{ is monochromatic}\})$$
$$= m \cdot 4^{1-n}.$$

As $m < 4^{n-1}$, it follows that

$$m \cdot 4^{1-n} < 4^{n-1} \cdot 4^{1-n} = 1,$$

which primarily grants us

$$P(\bigcup_{i=1}^{m} \{A_i \text{ is monochromatic }\}) < 1.$$

By DeMorgan's laws, we see that

$$\begin{split} (\bigcup_{i=1}^m \{A_i \text{ is monochromatic }\})^c &= \bigcap_{i=1}^m \{A_i \text{ is monochromatic }\}^c \\ &= \{\text{No } A_i \text{ is monochromatic}\}. \end{split}$$

Since the sum of an event and its complement event is 1 by one of the axioms of probability, we have shown that

$$P(\{\text{No } A_i \text{ is monochromatic}\}) > 0.$$

Hence, we have shown that there is a coloring of Ω by 4 colors such that no A_i is monochromatic. \Box

Question 3.

3. (-) Suppose $n \geq 4$ and let $A_1, \ldots, A_m \subseteq \Omega$ all have size n. Suppose $m < \frac{4^{n-1}}{3^n}$. Prove that there is a coloring of Ω by 4 colors so that in every A_i all 4 colors are represented.

Solution. We consider a random vertex 4-coloring of Ω . Formally, we consider a finite sample space of all possible vertex 4-coloring of Ω , associated with a uniform probability, which assigns each outcome in the space with $\frac{1}{|\Omega|}$ probability. By the subadditivity of probability, we have

$$P(\bigcup_{i=1}^m \{A_i \text{ has at most 3 colors }\}) \leq \sum_{i=1}^m P(\{A_i \text{ has at most 3 colors }\})$$

$$\leq m \cdot 3^n 4^{-n+1},$$

as there are $\binom{4}{1}3^n$ is an upper bound to ways to have coloring of at most 3 colors for n vertices. Since $m < 3^{-n}4^{n-1}$, it follows that

$$m \cdot 3^n 4^{-n+1} < 3^{-n} 4^{n-1} 3^n 4^{-n+1} = 1.$$

which primarily grants us

$$P(\bigcup_{i=1}^{m} \{A_i \text{ has at most 3 colors }\}) < 1.$$

By DeMorgan's laws, we see that

$$\left(\bigcup_{i=1}^{m} \{A_i \text{ has at most 3 colors }\}\right)^c = \bigcap_{i=1}^{m} \{A_i \text{ has at most 3 colors }\}^c$$
$$= \{\text{Every } A_i \text{ has 4 colors}\}.$$

Since the sum of an event and its complement event is 1 by one of the axioms of probability, we have shown that

$$P(\{\text{Every } A_i \text{ has 4 colors }\}) > 0.$$

Hence, we have shown that there is a coloring of Ω by 4 colors such that every A_i has 4 colors. \square

Question 4.

4. The expected number of isolated trees [just take this as a fact] on k vertices in G(n,p) is given by $f(n,k,p):=\binom{n}{k}k^{k-2}p^{k-1}(1-p)^B$ with $B=k(n-k)+\binom{k}{2}-k+1$. Set $p=\frac{1}{n}$. Let c be a positive constant. Find (see Asymptopia, Chapter 5 or webnotes) for $\binom{n}{k}$) the asymptotics of f(n,k,p) when $k\sim cn^{2/3}$. (*) Express the limit as $n\to\infty$ of the sum of f(n,k,p) for $n^{2/3}\leq k<2n^{2/3}$ as a definite integral and use a computer package to evaluate the integral numerically.

Solution.

Question 5.

5. (-) Consider Boolean expressions on atoms x_1, \ldots, x_n . By a k-clause C we mean an expression of the form $y_{i_1} \vee \ldots \vee y_{i_k}$ where each y_{i_j} is either x_{i_j} or \overline{x}_{i_j} . Prove a theorem of the following form [you fill in the m = m(k)] by the probabilistic method: For any m k-clauses

 C_1, \ldots, C_m there is a truth assignment such that $C_1 \wedge \ldots \wedge C_m$ is satisfied.

Solution. We claim the following: Suppose $m < 2^k$. Then, there exists a truth assignment such that $\bigvee_{i=1}^m C_i$ is satisfied.

We consider a random truth assignment of atoms, $\{x_1, ... x_n\}$. Formally, we consider a finite sample space of all possible truth assignment of atoms, associated with a uniform probability, which assigns each outcome in the space with $\frac{1}{2^n}$ probability. By the subadditivity of probability, we have

$$P(\bigcup_{i=1}^{m} \{C_i \text{ is not satisfied }\}) \leq \sum_{i=1}^{m} P(\{C_i \text{ is not satisfied }\})$$

$$\leq m \cdot 2^{-k},$$

as there is only one assignment, which assigns all false values to k variables, that makes C_i clause not satisfied. Since $m < 2^k$, it follows that

$$m \cdot 2^{-k} < 2^k 2^{-k} = 1$$
,

which primarily grants us

$$P(\bigcup_{i=1}^{m} \{C_i \text{ is not satisfied }\}) < 1.$$

By DeMorgan's laws, we see that

$$(\bigcup_{i=1}^{m} \{C_i \text{ is not satisfied }\})^c = \bigcap_{i=1}^{m} \{C_i \text{ is not satisfied }\}^c$$
$$= \bigcap_{i=1}^{m} \{C_i \text{ is satisfied }\} = \{\bigvee C_i \text{ is satisfied }\}.$$

Since the sum of an event and its complement event is 1 by one of the axioms of probability, we have shown that

$$P(\{\bigvee_{i=1}^{m} C_i \text{ is satisfied }\}) > 0.$$

Hence, we have shown that there is a truth assignment such that $\bigvee_{i=1}^m C_i$ is satisfied, when $m < 2^k$.