Katharina Hermann - Weekly reports - SATO

Katharina Hermann

Week	What has been done?	What failed that prever success?
19.04 - 25.04	-	-
26.04 - 02.05	-	-
03.05 - 09.05	-	-
10.05 - 16.05	-	-
17.05 - 23.05	joined the team	-

24.05 -30.05 • Research to understand the mechanism of the human hand

First concept plan

• Idea collection for new hand prototypes

Stronger Hand

 lack of concern presen version hand-a

what has be already, did forces etc.?

 hard to forces real hu for any force a require definiting constrate analysi actually user s

31.05 - 06.06	 Project Plan: Projektplan: User stories and requirements research interview with Christine Hümmer: no focus on strength requirement (more on movement flexibility and optical similarity to human hands) concrete goals and requirements definition for the future hand: sources for human hand movements and forces: http://kraftatlas.de/files/kraftatlas/Der_montagespezifische_Kraftatlas.pdf https://edoc.ub.uni-muenchen.de/11100/1/Rickert_Marcus.pdf CAD introduction by @JürgenLippl state of the art research: Books selection -sources for thesis 	concrete goi requirement not complete missing inte Rafael
07.06 - 13.06	 calculation of forces acting within the finger system of a hand for the most general case of grisping interview with Rafael-definition and clarification of requirements for the strong hand: Requirements.docx focus on functional hand: maximization of forces and precision for grasping - approximation to human hand forces vision: carrying 90kg motors for the hand: 4x Myobrics for "strong forces" + Dynamixel for "weak forces" optical approximation to human hands neglected functional realization of range of motion and DOF (for grasping), other motions neglected no studies of the old hand (other requirements were assumed) inspiration from state of the art: https://softroboticstoolkit.com/about Towards_a_bio-inspired_leg_design_for_high-speed_running.pdf 	calculation of transmitted if cases not po own calculat prototype de each graspin

14.06-20.06

Thesis

- research documentation in ZoteroSet the goals,wrote the Abstract

- worked on the structure for the thesis

Practical part: Prototyping

• First Prototype model for the finger in CAD Fusion360

• would 1 feedba prototy the righ

20.06-27.06 meeting with Rafael, Darwin and Jürgen: further prototy • discussion of the first design prototype propose whole I brainstorming on new design approaches with the given requirements not ma conclusion: long as • focus on force maximization- 300N Myobric at least for the closing of the hand not test new design with with only one tendon routing around all fingers prototy · variation of range of movement realized not by actuating different tendons, but via electro magnets control compo · no mechanical parts within the finger/ hand by step research on suitable electro magnets to implement on the hand: (Finger Inte fingers Palm • need to be small, strong enough, and not too expensive! of fingers on Interaction (research on biomimetic and other hand solutions: hand) analyzation matrix to extract design advantages and aspects of existing hands Studyir Matrixanalyse des Stands der Technik.docx · first selection of several robotic hands to analyze : • i-HY Hand • SDM -Hand • High Speed Hand (Namiki et al.) Barrett Hand (Townsend) DLR-Hand (Butterfass et al.) Cyberhand(Carrozza et al) Unipi-Hand (Catalano et Al.) Columbia Hand Prosthetic Robot Hand with High Performances Based on Novel Actuation Principles Uthah/MIT Dextrous Hand(Jacobsen) 28.06-05.07 · studying for exams studyin • overview for the architecture - big picture probler kinematic analysis:Kinematikanalyse und resultierende Anforderungen an das Handdesign.docx new CAD design: Prototyp Finger 1_Magnetversion 1 (Fusion location: Master Stronger Hand Prototype 1 V15)

- found several electro magnets for the new design:
 - https://www.amazon.de/dp/B07D5VNQ2J/ref=pe_386171_37038121_TE_psd_dp_2
 - kleiner aber immer noch sehr groß ___, weniger Kraft ___, günstiger 🕩
 - https://www.maqna.de/elektromagnete/permanentmagnete-bei-stromabschaltbar/permanentmagnet-20x22mm-haftkraft-40n/a-2359/
 - größer ___, mehr Kraft ___, teurer ___

20.07-26.07

- Finished Design report "Why did I build the prototype like this?"
 Included part: Testing for Verification and Validation
 Prototyp 1-Dokumentation mit Testing.docx

Drafting of test stand for finger prototype

Constructed complementary part for magnet Plan Magnetstück.pdf

- Studyir
- Only th and the pulley I deliver

no a possi

no re possi 27.07-02.08

• assembling of magnets with the 3D printed design

• attachment of the counter-part for the magnet

• first test for magnets and control mechanism went well, friction yet to low without roughening to transfer a strong moment, but works already pretty good

03.08-09.08. finished assembling of the prototype

studying for

studyin still things le assembling

> roughe counte magne attachr elastic "backw movem attache return ¡

• Tested and Validated the Prototype

roboytest.mp4

- Changed the overall Goal for the Thesis from the whole hand on the finger with the magnets mechanism
- Prepared the Final Video
- Prepared the Final presentation

18.08-23.08

Rearranged the Structure of the thesis: TOC: Inhaltsverzeichnis.docx

Finished Behavior Modell- Kinetikanalysis:

New Change Plan:

Design of

- Genera for Gra UnderaPrototy

Seperatley

Prist draft for the test bench on CAD

got normal Servo Motors from Andi from Utum

Design of the Second Prototype:

Redesign Finger

New Design Grasping Tool Basis

31.08-06.09

Design of the Second Prototype:

could not wo the first 3 da week online maintenance

didn't place shape ways the Grasping is way too e New Design Grasping Tool Basis - Finished- Ready for Order

Design of the Test Bench:

• Finished CAD-Model - Ready for Order

- Created BOM-Maintenance Document for:
 Prototype2
 Test Bench

 - BOM-Maintenance.xlsx
- Wrote first draft of Documentation for Prototype 2 (only text):

Zweiter Prototyp.docx

• First ControlLogik Diagramm for the Tests

ControlFlow_Stronger Hand.pdf

- Started Dokumentation of the Test Bench
 Zweiter Prototyp.docx (Update)

07.09-13.09	ArduinoProgramming Part for the Test Bench: Set up for the Electronic Hardware for the Arduino Microcontroller: Designed Circuit for Magnet Control Connected the Servos for test run Connected one PCB Board for Magnet Sensing (trial) set up Object oriented structure for software programming ClassDiagramm.pdf	Couldn't prir bench, since information I dimensions feedback se missing (servoswere arrive earlier
	Research for Final Motors:	
	Meeting with Anand Suresh: (1h)	
	 discussed a way for contact detection (and force measurement): Spring arrangement with hall sensors (Motor force measurement for feedback control) Test Bench: waiting for Servo Motors to arrive to go ahead with: (TO DO design motors in Fusion) Lasercut the plates with new material: Delrin (TO DO order at UTum) 3D print the other parts of the embodiment talked about the programming part (discussed the Class Diagramm) no controlling with path planning inverse kinematics but just forward kinematics control (predefined grasping motion for 6 different types of grasping) 	
	 Looked for ways to Realice Spring Arrangement for Tendon Force Measurement: Potentiometer (Slider) for displacement measurement of the Spring https://www.exp-tech.de/sensoren/sonstige/4652/slid e-pot-small-10k-linear-taper Spring Force has to be within a range of ideally (0N up to 44N) for the Servos, but more for the final version with Maxon Motors. nonlinear progression characteristic of Springs only available for Cone Springs, (but hard to find) 	
	Update for the Test Bench Dokumentation+ Update of CAD Model: Test Bench_Evaluierung des Greifers.docx	
	 Finished final Order for all Parts of the Second Prototype Anzugsplatte Capstan Screws Magnets waiting for parts to arrive 	
14.09-20.09	No Progress	Mandatory Scholarship-
21.09-27.09	No Progress	Mandatory § School

28.09-04.10

assembling of the Gripper (not finished)assembling of the Test Bench (not finished)

• PCB B ready y asseml Force S constru asseml since F Springs

• Wrote main-functions for Tests in Arduino

 $https://github.com/Roboy/Stronger-Hans-/blob/Programming-Part-for-Tests/Test_Main.ino$

• Construction of proof of concept of new Extension mechanism with konstant Force, instead of Spring arrangement

05.10-11.10

- Basic Modeling of Kinematics in Matlab
 Research+ Writing Kinematics _Modelling part of the Thesis
- updated BOM-Maintenance File BOM-Maintenance _Final Version 08.10.2018.xlsx

Fixed remaining Mechanical assembly of the test bench: Mechanical part of the prototype finished now

- Mounting of constant spring Construction:
- Mounting of the Counterpart plate for ElektroMagnets

other smaller fixes

Finished assembly of the electronically parts(except for the missing PCB boards)

- new version of the code for the tests (Test main)
 - https://github.com/Roboy/Stronger-Hand

- PCB B missinį
- (all fun control depend them)

