1 Introduction

Let $\Omega \subseteq \mathbb{R}^n$, $V: \Omega \to \mathbb{R}$, $\kappa \in \mathbb{R}$, and $\psi: (0,T) \times \Omega \to \mathbb{C}$. The Nonlinear Schroedinger Equation (NSE) is given by:

$$-i\frac{\partial \psi}{\partial t} - \frac{1}{2}\Delta\psi + V\psi + \kappa|\psi|^2\psi = 0$$

With initial conditions:

$$\psi(0, \boldsymbol{x}) = \psi_0(\boldsymbol{x})$$

For all $\boldsymbol{x} \in \Omega$ and with boundary conditions:

$$\psi(t, \boldsymbol{x}) = 0$$

For all $(t, \mathbf{x}) \in (0, T) \times \partial \Omega$.

Because ψ is complex-valued, it is convenient to separate the equation into real and imaginary parts. If we take $\psi(t, \boldsymbol{x}) = u(t, \boldsymbol{x}) + \mathrm{i} v(t, \boldsymbol{x})$ for $u, v : (0, T) \times \Omega \to \mathbb{R}$, we also have that $|\psi|^2 = u^2 + v^2$:

$$-\mathrm{i}\frac{\partial}{\partial t}(u+\mathrm{i}v) - \frac{1}{2}\Delta(u+\mathrm{i}v) + V(u+\mathrm{i}v) + \kappa(u^2+v^2)(u+\mathrm{i}v) = 0$$

So:

$$\begin{split} &\frac{\partial v}{\partial t} - \frac{1}{2}\Delta u + Vu + \kappa(u^2 + v^2)u = 0\\ &-\frac{\partial u}{\partial t} - \frac{1}{2}\Delta v + Vv + \kappa(u^2 + v^2)v = 0 \end{split}$$

2 Toy Problem

Let $\Omega = [-1, 1]^n$, and consider, for an example:

$$u(t, \mathbf{x}) = \cos(\pi t) \prod_{i=1}^{n} \cos(\pi x_i)$$
$$v(t, \mathbf{x}) = \sin(\pi t) \prod_{i=1}^{n} \cos(\pi x_i)$$

Then:

$$u(0, \mathbf{x}) = \prod_{i=1}^{n} \cos(\pi x_i)$$
$$v(0, \mathbf{x}) = 0$$

We have that:

$$u^{2} + v^{2} = \cos^{2}(\pi t) \prod_{i=1}^{n} \cos^{2}(\pi x_{i}) + \sin^{2}(\pi t) \prod_{i=1}^{n} \cos^{2}(\pi x_{i})$$
$$= (\cos^{2}(\pi t) + \sin^{2}(\pi t)) \prod_{i=1}^{n} \cos^{2}(\pi x_{i})$$
$$= \prod_{i=1}^{n} \cos^{2}(\pi x_{i})$$

Note that $u^2 + v^2$ is independent of t. So:

Meanwhile:

$$\begin{split} \frac{\partial u}{\partial x_k} &= -\pi \cos(\pi t) \sin(\pi x_k) \prod_{i \neq k} \cos(\pi x_i) \\ \frac{\partial^2 u}{\partial x_k^2} &= -\pi^2 \cos(\pi t) \prod_{i=1}^n \cos(\pi x_i) \\ &= -\pi^2 u \\ \Delta u &= \sum_{k=1}^n \frac{\partial^2 u}{\partial x_k^2} \\ &= -n\pi^2 u \end{split}$$

Similarly:

$$\Delta v = -n\pi^2 v$$

And:

$$\frac{\partial u}{\partial t} = -\pi \sin(\pi t) \prod_{i=1}^{n} \cos(\pi x_i)$$
$$= -\pi v$$
$$\frac{\partial v}{\partial t} = \pi \cos(\pi t) \prod_{i=1}^{n} \cos(\pi x_i)$$

Then, rewriting the first equation:

$$Vu = -\frac{\partial v}{\partial t} + \frac{1}{2}\Delta u - \kappa(u^2 + v^2)u$$
$$= -\pi u - \frac{n}{2}\pi^2 u - \kappa(u^2 + v^2)u$$
$$V(\mathbf{x}) = -\pi - \frac{n}{2}\pi^2 - \kappa(u^2 + v^2)$$

And the second equation:

$$\begin{split} Vv &= \frac{\partial u}{\partial t} + \frac{1}{2}\Delta v - \kappa(u^2 + v^2)v \\ &= -\pi v - \frac{n}{2}\pi^2 v - \kappa(u^2 + v^2)v \\ V(\boldsymbol{x}) &= -\pi - \frac{n}{2}\pi^2 - \kappa(u^2 + v^2) \end{split}$$

We see that the equations agree.

3 Spatial Discretization

Consider a set of basis function $\Phi_i: \Omega \to \mathbb{R}^2$, where each $\Phi_i(\boldsymbol{x}) = \varphi_{b_i} \hat{\mathbf{e}}_{c_i}$, where $\varphi_j: \Omega \to \mathbb{R}$ is a set of basis functions (b_i) is the base index of the index i and c_i is the component index of i). We write $\boldsymbol{w} = \begin{bmatrix} u \\ v \end{bmatrix}$ and make the approximation $\boldsymbol{w} = W_j \Phi_j$ (Einstein summation); furthermore, we approximate $\frac{\partial \boldsymbol{w}}{\partial t} = \dot{W}_j \Phi_j$. Then, we have that:

$$u = W_j \varphi_{b_j} \delta_{1,c_j}$$

$$v = W_j \varphi_{b_j} \delta_{2,c_j}$$

$$\frac{\partial u}{\partial t} = \dot{W}_j \varphi_{b_j} \delta_{1,c_j}$$

$$\frac{\partial v}{\partial t} = \dot{W}_j \varphi_{b_j} \delta_{2,c_j}$$

Then, we multiply and integrate the system with a basis function Φ_i :

$$\left\langle \mathbf{\Phi}_{i} \mid \begin{matrix} \mathrm{i}\partial_{t}v - \frac{1}{2}\Delta u + Vu + \kappa(u^{2} + v^{2})u \\ -\mathrm{i}\partial_{t}u - \frac{1}{2}\Delta v + Vv + \kappa(u^{2} + v^{2})v \end{matrix} \right\rangle = 0$$

$$\mathrm{i} \left\langle \mathbf{\Phi}_{i} \mid \begin{matrix} \partial_{t}v \\ -\partial_{t}u \end{matrix} \right\rangle - \frac{1}{2} \left\langle \mathbf{\Phi}_{i} \mid \begin{matrix} \Delta u \\ \Delta v \end{matrix} \right\rangle + \left\langle \mathbf{\Phi}_{i} \mid \begin{matrix} Vu \\ Vv \end{matrix} \right\rangle + \kappa \left\langle \mathbf{\Phi}_{i} \mid \begin{matrix} u^{3} \\ v^{3} \end{matrix} \right\rangle + \kappa \left\langle \mathbf{\Phi}_{i} \mid \begin{matrix} uv^{2} \\ u^{2}v \end{matrix} \right\rangle = 0$$

We consider each form separately:

$$\left\langle \mathbf{\Phi}_{i} \mid \frac{\partial_{t} v}{-\partial_{t} u} \right\rangle = \delta_{1,c_{i}} \left\langle \varphi_{b_{i}} \mid \partial_{t} v \right\rangle - \delta_{2,c_{i}} \left\langle \varphi_{b_{i}} \mid \partial_{t} u \right\rangle$$

$$= \delta_{1,c_{i}} \left\langle \varphi_{b_{i}} \mid \dot{W}_{j} \varphi_{b_{j}} \delta_{2,c_{j}} \right\rangle - \delta_{2,c_{i}} \left\langle \varphi_{b_{i}} \mid \dot{W}_{j} \varphi_{b_{j}} \delta_{1,c_{j}} \right\rangle$$

$$= \left(\delta_{1,c_{i}} \delta_{2,c_{j}} - \delta_{2,c_{i}} \delta_{1,c_{j}} \right) \left\langle \varphi_{b_{i}} \mid \varphi_{b_{j}} \right\rangle \dot{W}_{j}$$

$$\left\langle \mathbf{\Phi}_{i} \mid \frac{\Delta u}{\Delta v} \right\rangle = \delta_{1,c_{i}} \left\langle \varphi_{b_{i}} \mid \Delta u \right\rangle + \delta_{2,c_{i}} \left\langle \varphi_{b_{i}} \mid \Delta v \right\rangle$$

We note that:

$$\begin{split} \langle \varphi_{b_i} \mid \Delta f \rangle &= \int_{\Omega} \varphi_{b_i} \Delta f \, \mathrm{d} \boldsymbol{x} \\ &= \oint_{\partial \Omega} \varphi_{b_i} \nabla f \cdot \hat{\mathbf{n}} \, \mathrm{d} \boldsymbol{s} - \int_{\Omega} \nabla \varphi_{b_i} \cdot \nabla f \, \mathrm{d} \boldsymbol{x} \\ &= \langle \varphi_{b_i} \hat{\mathbf{n}} \mid \nabla f \rangle_{\partial \Omega} - \langle \nabla \varphi_{b_i} \mid \nabla f \rangle \end{split}$$

And, because we have Dirichlet boundary conditions, we must have that $\varphi_{b_i}(t, \boldsymbol{x}) = 0$ for all $(t, \boldsymbol{x}) \in (0, T) \times \partial \Omega$. So:

$$\begin{split} \left\langle \boldsymbol{\Phi}_{i} \mid \frac{\Delta u}{\Delta v} \right\rangle &= -\delta_{1,c_{i}} \left\langle \nabla \varphi_{b_{i}} \mid \nabla u \right\rangle - \delta_{2,c_{i}} \left\langle \nabla \varphi_{b_{i}} \mid \nabla v \right\rangle \\ &= -\delta_{1,c_{i}} \left\langle \nabla \varphi_{b_{i}} \mid W_{j} \nabla \varphi_{b_{j}} \delta_{1,c_{j}} \right\rangle - \delta_{2,c_{i}} \left\langle \nabla \varphi_{b_{i}} \mid W_{j} \nabla \varphi_{b_{j}} \delta_{2,c_{j}} \right\rangle \\ &= -\left(\delta_{1,c_{i}} \delta_{1,c_{j}} + \delta_{2,c_{i}} \delta_{2,c_{j}} \right) \left\langle \nabla \varphi_{b_{i}} \mid \varphi_{b_{j}} \right\rangle W_{j} \end{split}$$

$$\begin{split} \left\langle \boldsymbol{\Phi}_{i} \mid \overset{Vu}{Vv} \right\rangle &= \delta_{1,c_{i}} \left\langle \varphi_{b_{i}} \mid Vu \right\rangle + \delta_{2}, c_{i} \left\langle \varphi_{b_{i}} \mid Vv \right\rangle \\ &= \delta_{1,c_{i}} \left\langle \varphi_{b_{i}} \mid W_{j}V\varphi_{b_{j}}\delta_{1,c_{j}} \right\rangle + \delta_{2,c_{i}} \left\langle \varphi_{b_{i}} \mid W_{j}V\varphi_{b_{j}}\delta_{2,c_{j}} \right\rangle \\ &= \left(\delta_{1,c_{i}}\delta_{1,c_{j}} + \delta_{2,c_{i}}\delta_{2,c_{j}} \right) \left\langle \varphi_{b_{i}} \mid V\varphi_{b_{j}} \right\rangle W_{j} \end{split}$$

Before we consider the nonlinear forms, we note that:

$$u^{3} = (W_{j}\varphi_{b_{j}}\delta_{1,c_{j}})^{3}$$

$$= (W_{j}\varphi_{b_{j}}\delta_{1,c_{j}})(W_{k}\varphi_{b_{k}}\delta_{1,c_{k}})(W_{\ell}\varphi_{b_{\ell}}\delta_{1,c_{\ell}})$$

$$= W_{j}^{3}\varphi_{b_{j}}^{3}\delta_{1,c_{j}} + 3W_{j}^{2}W_{k}\varphi_{b_{j}}^{2}\varphi_{b_{k}}\delta_{1,c_{j}}\delta_{1,c_{k}}(1 - \delta_{j,k})$$

$$+ 6W_{j}W_{k}W_{\ell}\varphi_{b_{j}}\varphi_{b_{k}}\varphi_{b_{\ell}}\delta_{1,c_{j}}\delta_{1,c_{k}}\delta_{1,c_{\ell}}(1 - \delta_{j,k})(1 - \delta_{j,\ell})(1 - \delta_{k,\ell})$$

$$u^{2}v = (W_{j}\varphi_{b_{j}}\delta_{1,c_{j}})^{2}(W_{\ell}\varphi_{b_{\ell}}\delta_{2,c_{\ell}})$$

$$= (W_{j}\varphi_{b_{j}}\delta_{1,c_{j}})(W_{k}\varphi_{b_{k}}\delta_{1,c_{k}})(W_{\ell}\varphi_{b_{\ell}}\delta_{2,c_{\ell}})$$

$$= W_{j}^{3}\varphi_{b_{j}}^{3}\delta_{1}^{2}\zeta_{1,c_{j}}^{2}\delta_{2,c_{j}} + W_{j}^{2}W_{\ell}\varphi_{b_{j}}^{2}\varphi_{b_{\ell}}\delta_{1,c_{j}}\delta_{2,c_{\ell}}(1 - \delta_{j,\ell}) + 2W_{j}^{2}W_{k}\varphi_{b_{j}}^{2}\varphi_{b_{k}}\delta_{1,c_{j}}\delta_{1,c_{k}}\delta_{2,c_{\ell}}(1 - \delta_{j,k})$$

$$+ 2W_{j}W_{k}W_{\ell}\varphi_{b_{j}}\varphi_{b_{k}}\varphi_{b_{\ell}}\delta_{2,c_{j}}\delta_{1,c_{k}}\delta_{1,c_{\ell}}(1 - \delta_{j,k})(1 - \delta_{j,\ell})(1 - \delta_{k,\ell})$$

$$+ 2W_{j}W_{k}W_{\ell}\varphi_{b_{j}}\varphi_{b_{k}}\varphi_{b_{\ell}}\delta_{1,c_{j}}\delta_{2,c_{k}}\delta_{1,c_{\ell}}(1 - \delta_{j,k})(1 - \delta_{j,\ell})(1 - \delta_{k,\ell})$$

$$+ 2W_{j}W_{k}W_{\ell}\varphi_{b_{j}}\varphi_{b_{k}}\varphi_{b_{\ell}}\delta_{1,c_{j}}\delta_{2,c_{\ell}}(1 - \delta_{j,k})(1 - \delta_{j,\ell})(1 - \delta_{k,\ell})$$

$$+ 2W_{j}W_{k}W_{\ell}\varphi_{b_{j}}\varphi_{b_{k}}\varphi_{b_{\ell}}\delta_{1,c_{j}}\delta_{2,c_{\ell}}(1 - \delta_{j,k})(1 - \delta_{j,\ell})(1 - \delta_{k,\ell})$$

$$= W_{j}^{2}W_{\ell}\varphi_{b_{j}}^{2}\varphi_{b_{\ell}}\delta_{1,c_{j}}\delta_{2,c_{\ell}}$$

$$+ 2W_{j}W_{k}W_{\ell}\varphi_{b_{j}}\varphi_{b_{\ell}}\varphi_{b_{\ell}}\varphi_{b_{\ell}}(\delta_{1,c_{\ell}}\delta_{1,c_{\ell}}\delta_{2,c_{\ell}} + \delta_{1,c_{\ell}}\delta_{2,c_{\ell}}\delta_{1,c_{\ell}} + \delta_{2,c_{\ell}}\delta_{1,c_{\ell}}\delta_{1,c_{\ell}})(1 - \delta_{i,\ell})(1 - \delta_{i,\ell}$$

And conversely:

$$v^{3} = W_{j}^{3} \varphi_{b_{j}}^{3} \delta_{2,c_{j}} + 3W_{j}^{2} W_{k} \varphi_{b_{j}}^{2} \varphi_{b_{k}} \delta_{2,c_{j}} \delta_{2,c_{k}} (1 - \delta_{j,k})$$

$$+ 6W_{j} W_{k} W_{\ell} \varphi_{b_{j}} \varphi_{b_{k}} \varphi_{b_{\ell}} \delta_{2,c_{j}} \delta_{2,c_{k}} \delta_{2,c_{\ell}} (1 - \delta_{j,k}) (1 - \delta_{j,\ell}) (1 - \delta_{k,\ell})$$

$$uv^{2} = W_{j}^{2} W_{\ell} \varphi_{b_{j}}^{2} \varphi_{b_{\ell}} \delta_{2,c_{j}} \delta_{1,c_{\ell}}$$

$$+ 2W_{j} W_{k} W_{\ell} \varphi_{b_{j}} \varphi_{b_{k}} \varphi_{b_{\ell}} (\delta_{2,c_{j}} \delta_{2,c_{k}} \delta_{1,c_{\ell}} + \delta_{2,c_{j}} \delta_{1,c_{k}} \delta_{2,c_{\ell}} + \delta_{1,c_{j}} \delta_{2,c_{k}} \delta_{2,c_{\ell}}) (1 - \delta_{j,k}) (1 - \delta_{j,\ell}) (1 - \delta_{k,\ell})$$

Then:

$$\begin{split} \left\langle \boldsymbol{\Phi}_{i} \mid \frac{u^{3}}{v^{3}} \right\rangle &= \delta_{1,c_{i}} \left\langle \varphi_{b_{i}} \mid u^{3} \right\rangle + \delta_{2,c_{i}} \left\langle \varphi_{b_{i}} \mid v^{3} \right\rangle \\ &= \delta_{1,c_{i}} \delta_{1,c_{j}} \left\langle \varphi_{b_{i}} \mid \varphi_{b_{j}}^{3} \right\rangle W_{j}^{3} + \delta_{2,c_{i}} \delta_{2,c_{j}} \left\langle \varphi_{b_{i}} \mid \varphi_{b_{j}}^{3} \right\rangle W_{j}^{3} \\ &\quad + 3\delta_{1,c_{i}} \delta_{1,c_{k}} (1 - \delta_{j,k}) \left\langle \varphi_{b_{i}} \mid \varphi_{b_{j}}^{2} \varphi_{b_{k}} \right\rangle W_{j}^{2} W_{k} \\ &\quad + 3\delta_{2,c_{i}} \delta_{2,c_{j}} \delta_{2,c_{k}} (1 - \delta_{j,k}) \left\langle \varphi_{b_{i}} \mid \varphi_{b_{j}}^{2} \varphi_{b_{k}} \right\rangle W_{j}^{2} W_{k} \\ &\quad + 6\delta_{1,c_{i}} \delta_{1,c_{k}} \delta_{1,c_{k}} \delta_{1,c_{\ell}} (1 - \delta_{j,k}) (1 - \delta_{j,\ell}) (1 - \delta_{k,\ell}) \left\langle \varphi_{b_{i}} \mid \varphi_{b_{j}} \varphi_{b_{k}} \varphi_{b_{\ell}} \right\rangle W_{j} W_{k} W_{\ell} \\ &\quad + 6\delta_{2,c_{i}} \delta_{2,c_{j}} \delta_{2,c_{k}} \delta_{2,c_{\ell}} (1 - \delta_{j,k}) (1 - \delta_{j,\ell}) (1 - \delta_{k,\ell}) \left\langle \varphi_{b_{i}} \mid \varphi_{b_{j}} \varphi_{b_{k}} \varphi_{b_{\ell}} \right\rangle W_{j} W_{k} W_{\ell} \end{split}$$