Первый этап моделирования при выполнении курсового проекта по курсу *Электроника* на ЭВМ

Получение характеристик транзистора КТ315В и графический расчет рабочего режима на примере каскада с ОЭ.

<u>Рассчитать рабочую точку графически</u> можно по вольтамперным характеристикам транзистора. Но, к сожалению, найти характеристики транзисторов в современных справочниках (да и в Интернете тоже) невозможно. Поэтому получаем входные и выходные характеристики, используя программу *DesignLab* и модель транзистора, например, КТ315В. Параметры модели транзистора можно найти в Интернете на сайтах производителей.

Для получения входной характеристики $I_6(U_{69})$ для $U_{\kappa 9}$ =5В собираем схему, показанную на рис.1. При этом для установки управляющего тока в цепи базы транзистора и напряжения на коллекторе из библиотеки символьных компонентов выбираются постоянные источники IDC и VDC. Для вывода напряжения U_{69} устанавливаем на базе транзистора маркер \square . Так как в библиотеке компонентов в демо-версии транзистор отсутствует, выбираем транзистор n-p-n-типа QbreakN. После сохранения схемы под оригинальным именем, помечаем транзистор, щелкнув его один раз, и входим в интерфейсный диалог Edit - Model - Change Model Reference... и заменяем имя модели транзистора QbreakN на RT315V (все буквы латинские !!!). Это можно сделать, только если модель есть в библиотеке пользователя, и библиотека подключена к системе. В противном случае предварительно с помощью любого текстового редактора создается файл модели транзистора, который потом подключается к данной схеме.

Рис. 1. Схема для снятия входной и выходной характеристик транзистора КТ315В

Можно также просто установить (или заменить) параметры модели транзистора в окне, которое откроется по команде *Edit - Model - Edit instance model (text)*... (рис. 2).

Рис. 2. Задание параметров транзистора КТ315В

Чтобы получить входную характеристику биполярного транзистора, $U_{69}(I_6)$, задаем режим расчета напряжения U_{69} при изменении тока I_6 при фиксированном значении напряжения U_{89} =5В. С этой целью отключаем режим расчета схемы по постоянному току **Bias Point Detail** и устанавливаем режим расчета статических характеристик **DC Sweep**... (рис.3). После выхода из диалога **DC Sweep**... запускаем схему на расчет (клавиша **F11**, или пиктограмма и получаем входную характеристику $U_{69}(I_6)$. Изменяем масштаб по оси Y, и характеристика приобретает вид, показанный на рис.4.

Рис.3. Задание на построение входной характеристики транзистора КТЗ15В

По входной характеристике графоаналитическим способом определяем базовый ток транзистора в схеме усилительного каскада ОЭ. Для этого, оставаясь в диалоге с программой графического отображения результатов расчета *Probe*, делаем следующее.

— Наносим на график линию нагрузки $U_{69}(I_6) = E_{cm} - I_6 R_6 - I_9 R_9$, записав в окне *Trace Expression* (пиктограмма) следующее выражение:

$$E_{_{\mathrm{CM}}} - IB(VT) \; R_{_{\mathrm{G}}} - (IB(VT) + IC(VT)) \; R_{_{\mathrm{S}}} \; , \; \;$$
где $E_{_{\mathrm{CM}}} = E_{_{n}} \frac{R_{_{2}}}{R_{_{1}} + R_{_{2}}} \; , \; \; R_{_{\mathrm{G}}} = \frac{R_{_{1}}R_{_{2}}}{R_{_{1}} + R_{_{2}}} \; \;$ и

 $R_{_{9}}=R_{_{4}}+R_{_{5}}$ — определяются параметрами элементов схемы (см. рис. 8). Полученное уравнение линии нагрузки отображено на рис.4.

Рис.4. Входная характеристика транзистора

- По координатам точки пересечения линии нагрузки и входной характеристики транзистора (т. **A**) с помощью курсора определяем базовый ток I_6 и напряжение база-эмиттер U_{69} .
- На линейном участке характеристики выбираем вторую точку (т. В) и определяем входное сопротивление транзистора в режиме малого сигнала:

$$r_{\text{BX}} = h_{119} = \frac{\Delta U_{69}}{\Delta I_{6}}.$$

Для расчета семейства выходных характеристик биполярного транзистора $I_{\kappa}(U_{\kappa_3})$ необходимо задать режим расчета тока I_{κ} при изменении напряжения U_{κ_3} при фиксированных значениях тока базы I_{δ} . Для этого:

- устанавливаем маркер тока на коллектор транзистора VT для задания вывода тока I_{κ} ; маркер вывода напряжения U_{69} удаляем;
- устанавливаем режим расчета выходной характеристики *DC Sweep*...
 (рис. 5).
- Запускаем схему на расчет (клавиша F11, или пиктограмма [™]) и получаем семейство выходных характеристик (рис. 6).
- По выходным характеристикам графоаналитическим способом определяем коллекторный ток транзистора в схеме усилительного каскада ОЭ. Для этого наносим на график линию нагрузки $U_{\kappa_9}(I_{\kappa}) = E_{\pi} I_{\kappa} R_{\kappa} I_{9} R_{9}$, записав в командной строке окна *Trace Expression* (пиктограмма) следующее

выражение: $(E_n - V(V1))/R_=$, где E_n и $R_=$ определяются параметрами элементов схемы (см. рис. 8). Полученное уравнение линии нагрузки отображено на рис. 6. Построив (используя линейную интерполяцию) фрагмент дополнительной выходной характеристики, соответствующей рабочему току $I_6 = 260.5$ мкА (см. рис 4), определяем координаты точки пересечения линии нагрузки и этой выходной характеристики (точка A).

Рис. 5. Задание на построение семейства выходных характеристик транзистора

С помощью курсоров определяем координаты точек 1 и 2, для которых $U_{\kappa 91} = U_{\kappa 92} = U_{\kappa 9A}$, и рассчитываем коэффициент усиления транзистора в режиме малого сигнала: $h_{219} = \Delta I_{\kappa}/\Delta I_{6}$.

Рис. 6. Семейство выходных характеристик транзистора

Для определения выходного сопротивления транзистора на выходных характеристиках с помощью курсоров определяем координаты точки 3. По полученным данным рассчитываем выходное сопротивление транзистора:

$$r_{\text{\tiny BMX}} = \frac{1}{h_{229}} = \frac{U_{\text{\tiny K3}} - U_{\text{\tiny K2}}}{I_{\text{\tiny K3}} - I_{\text{\tiny K2}}} \, .$$

Для определения рабочего режима усилителя на биполярном транзисторе с общим эмиттером собираем рабочую схему (рис.7) и устанавливаем режим *Bias Point Detail*. После запуска программы расчета (клавиша **F11**, или пиктограмма и нажатия на пиктограммы и нажатия на пиктограммы и на рис.7.

Рис.7. Схема усилителя для расчета рабочего режима

Рис.8. Схема усилителя

Результаты расчета каскада по постоянному току можно посмотреть также в выходном файле программы *Pspice*, воспользовавшись, например, командой *Analysis/Examine Output* программы *Schematics*:

**** BIPOLAR JUNCTION TRANSISTORS

NAME	Q_Q1
MODEL	kt315v
IB	2.62E-04 - ток базы
IC	1.98Е-02 - ток коллектора
VBE	6.91Е-01 - напряжение база-эмиттер
VBC	-4.36E+00 - напряжение база- коллектор
VCE	5.05E+00 - напряжение коллектор-эмиттер
RPI	1.04E+02 - входное сопротивление транзистора
RO	3.12E+03 - выходное сопротивление транзистора
BETAAC	6 83Е+01 — коэффициент рад