ML Week 0xJ2-2 ANN

0.1 Perceptron

Controversy

- Led to AI stagnating, though not immediately nor only because of this
- Minsky and Papert book showed impossible to learn XOR
- Often believed (incorrectly) that they claimed same result for multi-layer perceptron
- ANN research resurgence in the 1980's

Algorithm

- Talk about binary classifier
- Talk about bias term meaning
- Talk about weights meaning
- Talk about decision boundary
- Algorithm doesn't terminate if not linearly separable
- Perceptron is the simplest instance of a feedforward neural network
- Initialize weights randomly (or to zero)
- For each input, compute output
- Update weights by adding α if correct

Convergence

- If not linearly separable, don't even get an approximate solution
- If linearly separable, then upper bound on number of times weights updated
- Solution quality not guaranteed
- "Perceptron of optimal stability" now known as SVM

0.2 Overview, Neurons, and deep learning

Review

- WTF is deep learning? $(\times 2)$
- Supervised, reinforcement, unsupervised
- Supervised = regression, classification (\times 3)
- Labels are expensive (×3)

Deep nets

- Architectures
- Applications
- Data sets $(\times 2)$
- Hardware (×5)
- Brains $(\times 2)$
- Neurons $(\times 3 \text{ each})$
 - linear
 - binary threshold
 - rectified linear
 - sigmoid
 - stochastic binary

Example: handwriting $(\times 6)$

Architectures ($\times 10$)

History $(\times 4)$

Perceptron $(\times 5)$

Progress $(\times 5)$

Hinton $(\times 5)$

2011 (before, then since)

Basic ideas (\times 3)

0.3 Restricted Boltzmann Machines

Convolution:

$$f(t) * g(t) = (f * g)(t) := \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau$$

Examples (gif's):

- Sliding windows
- Rolling mean