Corso di Laurea in Ingegneria Informatica Prova di Matematica

12 gennaio 2009

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 60 minuti.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- Occorre rispondere in maniera corretta ad almeno 4 domande per ogni sezione (Analisi e Algebra Lineare).
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

Corso di Laurea in Ingegneria Informatica Prova di Matematica

12 gennaio 2009

	(Cognome) (Nome)	(Numero di matricola)
CO	DICE = 616412	
	A B C D E	
1		
2		
3		
4	0000	
5		
6		
7		
8		
9		
10		
11		

12

13 14

PARTE A

1. Data $f(x) = x^{\tan(x)}$ allora $f'(\pi/4)$ vale

A:
$$1 + \frac{\pi \, \log(\frac{\pi}{4})}{2}$$
 B: $\frac{\pi}{4}$ C: 0 D: N.A. E: N.E.

2. L'integrale

$$\int_{2}^{3} \frac{1+x}{(x-1)^2}$$

vale

A: N.A. B: 0 C:
$$1 + \log(2)$$
 D: $1 - \log(2)$ E: $\arctan(3) - \arctan(2)$

3. Calcolare l'immagine di $f(x) = \log(\log(x))$ per $x \in]1, e^{e}[$

A:
$$x > 0$$
 B: $]-\infty,1[$ C: $]-\infty,0[\cup]0,+\infty[$ D: N.A. E: $\mathbb R$

4. Il polinomio di Taylor di grado 1 in $x_0 = 1$ della funzione $\cos\left(\frac{\pi}{4} + \log(x)\right)$ vale

A:
$$\frac{1}{\sqrt{2}} - \frac{x-1}{\sqrt{2}}$$
 B: $\sqrt{2} + \frac{x-1}{\sqrt{2}!}$ C: N.A. D: $\frac{1}{\sqrt{2}} - \left(\frac{\sin(\frac{\pi}{4} + \log(x))}{x}\right)(x-1)$ E: $1 + \pi(x-1)$

5. Calcolare inf, min, sup e max dell'insieme

$$A := \left\{ x \in \mathbb{R} \backslash \frac{k\pi}{2} \ k \in \mathbb{Z} : \ \tan(x) < 1 \right\}$$

A: N.A. B:
$$\{-\pi/2, N.E., \pi/2, N.E.\}$$
 C: $\{-\pi/2, -\pi/2, \pi/2, \pi/2\}$ D: $\{-\infty, -\infty, +\infty, +\infty\}$ E: $\{-\infty, N.E., +\infty, N.E.\}$

6. Una soluzione particolare della equazione $x^{\prime\prime\prime}(t)+x^{\prime\prime}(t)=t^2$

A:
$$\frac{1}{2}\sin(t) + \cos(t)$$
 B: $t^2 - \frac{t^4}{12} - e^{-t}$ C: $t^2 + e^{-t}$ D: N.A. E: $t^2 - \frac{t^3}{3} + \frac{t^4}{12}$

7. Il limite

$$\lim_{x \to 1} \frac{1 + \cos(\pi x)}{(x - 1)^2}$$

A: N.E. B:
$$+\infty$$
 C: 0 D: $\frac{\pi^2}{8}$ E: N.A.

PARTE B

8. Il sistema lineare
$$Ax = b \text{ con } A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 0 \\ 0 & 1 & 0 \end{pmatrix} \text{ e } b = \begin{pmatrix} 4 \\ 3 \\ 5 \\ 1 \end{pmatrix}$$

9. Il determinante di

$$\begin{pmatrix} 1 & 0 & 3 & 1 \\ 0 & -1 & 0 & 3 \\ 2 & 0 & 1 & 2 \\ 1 & 0 & 1 & 2 \end{pmatrix}$$

vale

10. L'applicazione $T:\mathbb{R}^2 \to \mathbb{R}^2$ definita da

$$T\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} |x+y| \\ x+y \end{array}\right)$$

A: N.A. B: è lineare C: è iniettiva D: non è lineare E: è suriettiva

11. La dimensione del nucleo della applicazione lineare associata alla matrice

$$M = \begin{pmatrix} 1 & 2 & -1 & 3 \\ 1 & 0 & 1 & 2 \\ 2 & 2 & 0 & 5 \\ 0 & 2 & -2 & 1 \end{pmatrix}$$

è

A: 1 B: N.A C: 0 D: 3 E: 4

12. Modulo e argomento del numero complesso

$$\frac{1+i}{1-i}$$

A: $(1, 3\pi/2)$ B: $(\sqrt{2}/2, -\pi/4)$ C: $(1, \pi/2)$ D: $(\sqrt{2}/2, \pi/4)$ E: N.A.

13. La proiezione di (1,1,1,1) nella direzione di (1,0,1,0) è

A: (1/2, 1/2, 1/2, 1/2) B: N.A. C: (1/2, 0, 1/2, 0) D: (1, 1, 0, 0) E: (1, 0, 1, 0)

14. Date
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 0 \\ 1 & -1 \end{pmatrix}$$
 e $B = \begin{pmatrix} 1 & -1 \\ 3 & 3 \\ 0 & -1 \end{pmatrix}$ allora $AB \in B^T A$ valgono

$$\text{A: N.A.} \quad \text{B: } (N.E., \begin{pmatrix} 7 & 1 \\ 4 & 0 \end{pmatrix}) \quad \text{C: } (\begin{pmatrix} 7 & 4 \\ 1 & 0 \end{pmatrix}, N.E.) \quad \text{D: } (\begin{pmatrix} 7 & 4 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 7 & 1 \\ 4 & 0 \end{pmatrix}) \quad \text{E: (N.E., N.E.)}$$

Corso di Laurea in Ingegneria Informatica Prova di Matematica

12 gennaio 2009

	(Cognome)	(Nome)	(Numero di matricola)
	CODICE = 616412		
	A B C D E		
1			
2			
3			
4	$\bullet \circ \circ \circ \circ$		
5			
6	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$		
7			
8			

9 10

11 12

13 14