Tecnología de Gestión de Datos

Tema 1: Evolución histórica

MU Ingeniería y Tecnología de Sistemas Software Profesor: Juan Carlos Casamayor

Tecnología de Gestión de Datos:

Tecnología (software) para la gestión de grandes volúmenes de datos en un computador.

- modelo de estructuración de los datos
- lenguaje de manipulación
- implementación de la tecnología

Etapa	Década		Sistemas
1 ^a	1950	ias de eros	Sistemas de ficheros en cinta magnética
2ª	1960	Sistemas de ficheros	Sistemas de ficheros en disco
3ª	1970	bases	SGBD prerrelacionales (jerárquico, red)
4ª	1980	Sistemas de b de datos	SGBD relacionales
5°	1990	Siste	SGBD postrelacionales (objeto- relacionales, orientados a objetos).
6ª	2000	Big Data	SGBD NoSQL

Sistemas de ficheros: conceptos previos:

Fichero:

- estructura de datos en memoria secundaria
- secuencia de registros.
- organizaciones de ficheros: ordenado, desordenado, con direccionamiento calculado (Hash).

Índice:

- estructura de datos en memoria secundaria
- permite el <u>acceso directo</u> (y secuencial) a los <u>registros</u>
 <u>de un fichero</u> por el valor de un campo(s).
- organizaciones de índices: árbol B, árbol B+, de mapa de bits, de Join, ...

Sistemas de ficheros.

	Etapa	Década	Sistemas	Eventos
s de ficheros	1 ^a	50	Sistemas de ficheros en cinta magnética	1945: aparición de la cinta magnética. 1965: aparición del disco magnético 1965: sistemas generalizados de acceso a ficheros (métodos) 1965: índices en árbol AVL
Sistemas	2ª	60	Sistemas de ficheros en disco	1972: índices en árbol B

Sistemas de ficheros.

	Etapa	Década	Sistemas	Características
s de ficheros	1ª	50	Sistemas de ficheros en cinta magnética	 dispositivo de acceso secuencial acceso secuencial a los registros: ficheros ordenados y desordenados.
Sistemas	2ª	60	Sistemas de ficheros en disco	 dispositivo de acceso directo acceso directo a los registros: ficheros hash, ficheros indexados múltiples caminos de acceso (índices).

Limitaciones de los sistemas de ficheros.

- desarrollo de <u>aplicaciones</u> <u>independientes</u> para los distintos departamentos de la organización.

- <u>dependencia</u> de los programas respecto a los datos: la descripción del fichero y el acceso formaba parte del código de las aplicaciones.

- <u>limitaciones</u> en el acceso concurrente, y en el control de la seguridad y la consistencia.

Etapa	Década	Sistemas		
1 ^a	1950	ias de eros	Sistemas de ficheros en cinta magnética	
2ª	1960	Sistemas de ficheros	Sistemas de ficheros en disco	
3ª	1970	bases	SGBD prerrelacionales (jerárquico, red)	
4ª	1980	Sistemas de b de datos	SGBD relacionales	
5ª	1990	Siste	SGBD postrelacionales (objeto- relacionales, orientados a objetos).	
6ª	2000	Big Data	SGBD NoSQL	

Sistemas de bases de datos

	Etapa	Década	Sistemas	Eventos
				1969: IMS (IBM). Modelo jerárquico.
				1969: primer informe CODASYL (DDL, DML). Modelo en red
50.			SGBD	1970: Codd propone el Modelo relacional.
datos	3ª	70	prerrelacionales (jerárquico, red)	1971: nuevo informe CODASYL (esquema, subesquema).
de				1973: Inicio del proyecto INGRES (Berkeley).
65				1974: Inicio del proyecto System R (IBM)
bases				1975: arquitectura ANSI/SPARC.
de b	4 ^a	80	SGBD relacionales	1978: nuevo informe CODASYL (esquema, subesquema, esquema interno).
as				1986: estándar SQL1 de ANSI.
Sistemas				1990: "The objet database system manifesto".
ste				1992: nuevo estándar SQL2.
Si	-0		SGBD	1995: "The third manifesto".
	5 ^a	90	postrelacionales	1996: "Active database system manifesto".
			'	1999: nuevo estándar SQL3.
				2003, 2005, 2008: extensiones del SQL3

Sistemas de bases de datos: conceptos previos

Base de datos:

colección <u>estructurada</u> de datos en memoria secundaria

Los mecanismos de estructuración de datos (estructuras de datos) que se pueden utilizar dependen del sistema informático (SGBD) con el que se vaya a crear y manipular la base de datos

Sistema de gestión de bases de datos (SGBD)

SGBD:

herramienta (software) para la gestión (creación y manipulación) de bases de datos.

- ✓tipos de estructuras de datos
- ✓operadores asociados (lenguajes)

Características de la tecnología de bases de datos:

superación de las limitaciones de los sistemas de ficheros.

soporte del SI de la organización

- ✓ <u>integración</u> de la información de la organización
- ✓ persistencia de datos

abstracción de datos

- ✓ <u>descripción unificada</u> de los datos e independiente de las aplicaciones: <u>esquema</u> de base de datos
- ✓ <u>independencia</u> de las aplicaciones respecto a la representación física (implementación) de los datos: <u>arquitectura ANSI/SPARC</u>

Características de la tecnología de bases de datos

servicio a distintos usuarios

- ✓ definición de <u>vistas parciales</u> de los datos para distintos usuarios
- ✓acceso simultáneo para distintos usuarios (concurrencia)

consistencia de los datos

✓ ejecución consistente y recuperación de transacciones: principio ACID

seguridad de los datos

✓ privacidad de los datos.

Evolución de los modelos de datos.

SGBD	modelo	estructuras de datos
jerárquicos	jerárquico	registro, árbol
en red	red	registro, lista (set)
relacionales	relacional	registro (tupla), tabla (relación)
7		

Arquitectura ANSI/SPARC.

Correspondencia: definición de cada *elemento* de un esquema en términos de *elementos* del esquema inmediatamente inferior

Procesamiento de transacciones

Transacción: unidad lógica de ejecución

Principio ACID para el procesamiento de transacciones:

Atomicidad Persistencia

Consistencia Aislamiento

Características de la tecnología de bases de datos.

Ideas básicas:

- Datos estructurados: distintos modelos de datos
- Concepto de <u>esquema de base de datos</u>: definición unificada de los datos
- Arquitectura <u>ANSI/SPARC</u>: distintos esquemas de la base de datos (independencia de datos)
- <u>Principio ACID</u>: ejecución consistente de transacciones en un entorno concurrente

Sistemas de bases de datos prerrelacionales.

SGBD	modelo	estructuras	SGBD
jerárquicos	jerárquico	registro, árbol	IMS (IBM)
(1969)			
en red (Codasyl)	red	registro, lista (set)	IDMS (Bull)
(1969, 1971, 1978)			DMS1100 (Univac)

Sistemas de bases de datos prerrelacionales. (ver Anexo I)

- integración de los datos: descripción unificada
- independencia de datos: esquemas de la base de datos

- estructuras de datos de bajo nivel (árbol, lista)
- lenguajes navegacionales (orientados al registro)

	Etapa	Década	Sistemas	Características
				integración de los datosdescripción unificada de los datos
50.			SGBD	- independencia lógica y física (débil)
de datos	3ª	70	prerrelacionales (jerárquico, red)	- estructuras de datos de bajo nivel (árboles, listas)
				- lenguajes navegacionales (orientados al registro)
ias de bases	4ª	80	SGBD relacionales	
Sistemas	5°	90	SGBD postrelacionales	

Sistemas de bases de datos relacionales.

- estructuras de alto nivel (tablas)
- lenguajes declarativos (SQL)

avances

SGBD relacionales

limitaciones (ver Anexo II)

- dominios escalares
- manejo de relaciones explícitamente (JOIN)
- ausencia de primitivas para definir objetos complejos y jerarquías de objetos
- limitada capacidad deductiva y activa

	Etapa	Década	Sistemas	Características
				integración de los datosdescripción centralizada de los datos
50.			SGBD	- independencia lógica y física (débil)
de datos	3ª	70	prerrelacionales (jerárquico, red)	- estructuras de datos de bajo nivel (árboles, listas)
				 lenguajes navegacionales (orientados al registro)
3Se				- independencia lógica y física (fuerte)
de bases	4ª	80	SGBD relacionales	- estructuras de datos de alto nivel (tablas)
			relacionales	 lenguajes declarativos (orientados al conjunto)
Sistemas	5 ^a	90	SGBD postrelacionales	

relaciona

modelo

de

imitaciones

✓ atributos simples sobre dominios escalares.

- ✓identificación de las entidades por valor (contenido)
- √ manipulación de las relaciones explícitamente
- ✓ ausencia de primitivas para representar entidades complejas (agregación)
- ✓ ausencia de primitivas para representar jerarquías de entidades (generalización)
- ✓ lenguaje de manipulación (SQL3) computacionalmente incompleto
- ✓ operadores predefinidos y genéricos (INSERT, DELETE, UPDATE)
- ✓ limitaciones en la definición de información implícita: vistas recursivas
- ✓ limitaciones en la definición de comportamiento activo: disparadores

	Etapa	Década	Sistemas	Características
	·			integración de los datosdescripción centralizada de los datos
25			SGBD	 - descripción centralizada de los datos - independencia lógica y física (débil)
datos	3ª	70	prerrelacionales (jerárquico, red)	- estructuras de datos de bajo nivel (árboles, listas)
ss de				- lenguajes navegacionales (orientados al registro)
de bases	4ª 80	80		- independencia lógica y física (fuerte)
			SGBD relacionales	 estructuras de datos de alto nivel (relaciones)
			relacionales	- lenguajes declarativos (orientados al conjunto)
Sistemas				- SQL3 (objeto-relacional, deductivo, activo)
		5° 90	SGBD postrelacionales	- SGBD orientados a objetos
	5°			- Integración de BD: SGBD federadas, SGBD distribuidas
				- Nuevas aplicaciones: Datawarehouse, Multimedia, GIS (nuevos desarrollos tecnológicos)

Etapa	Década	Sistemas		
1ª	1950	ias de eros	Sistemas de ficheros en cinta magnética	
2ª	1960	Sistemas de ficheros	Sistemas de ficheros en disco	
3ª	1970	bases	SGBD prerrelacionales (jerárquico, red)	
4ª	1980	Sistemas de b de datos	SGBD relacionales	
5ª	1990	Siste	SGBD postrelacionales (objeto- relacionales, orientados a objetos).	
6ª	2000	Big Data	SGBD NoSQL	

Big Data

Nuevas aplicaciones de la tecnología de gestión de datos:

aplicaciones web

sistemas de información masivos

...

- datos muy estructurados
- poca escalabilidad
- rigidez de procesamiento: principio ACID

Big Data

Características:

- Datos semiestructurados o no-estructurados
- Ausencia de esquema de la base de datos
- Alta distribución de los datos
- Alta escalabilidad (horizontal)
- Procesamiento eventualmente consistente de transacciones.

. . .

Sistemas NoSQL ("not only SQL")

Anexo I

Sistemas de bases de datos prerrelacionales

Sistemas de bases de datos prerrelacionales.

Esquema conceptual

Hay dos <u>departamentos</u> con la siguiente información:

- código = DSIC, nombre = Sistemas Informáticos y Computación, director =
 Juan García, teléfono = 3570
- código = DFA, nombre = Física, director = José Ruíz, teléfono = 3540.

Hay tres <u>profesores</u>:

- código = JCP, nombre = Juan Cerdá Pérez, dirección = Olta 23, teléfono = 3222, categoría = TEU
- código = LBP, nombre = Luis Bos Pérez, dirección = Jesús 91, teléfono = 3545, categoría = TEU
- código = PMG, nombre = Pedro Martí García, dirección = Cuenca 12, teléfono
 = 3412, categoría = TEU

Hay tres <u>asignaturas</u>:

- código = AD1, nombre = Algoritmos y estructuras de datos 1, teo = 3, prac = 3
- código = IP, nombre = Introducción a la programación, teo = 1.5, prac = 1.5
- código = AD2, nombre = Algoritmos y estructuras de datos 2, teo = 3, prac = 3

Respecto a las <u>relaciones</u>, la información es la siguiente:

- los tres profesores pertenecen al DSIC.
- las tres asignaturas están adscritas al DSIC.
- Juan Cerdá Pérez imparte 9 créditos de AD1 y 9 de IP, Luis Bos Pérez imparte
 9 créditos de IP y Pedro Martí García imparte 9 créditos de AD1.

31

Modelo en red de CODASYL.

Esquema de la base de datos (CODASYL):

- Ficheros de registros
- Listas circulares de registros (SET)

Modelo en red de CODASYL.

Modelo en red de CODASYL.

Consulta: Obtener las asignaturas impartidas por el profesor de código LBP.

```
Profesor.código ← "LBP"

FIND Profesor USING clave_prof

FIND FIRST Créditos RECORD WITHIN Prof_Cre SET

mientras no_error

FIND OWNER RECORD WITHIN Asg_Cre SET

escribir (datos_asignatura)

FIND NEXT Créditos RECORD WITHIN Prof_Cre SET

fin_mientras
```

- lenguajes navegacionales

Sistemas de bases de datos relacionales.

Esquema de la base de datos (relacional):

- tablas de tuplas (registros)

Relación Departamento

Código	Nombre	Director	Teléfono
DSIC	Sistemas Informáticos y Computación	Juan García	3570
DFA	Física	José Ruíz	3540

Relación Profesor

Código	Nombre	Dirección	Categoría	Teléfono	Dpto
JCP	Juan Cerdá Pérez	Olta 23	TEU	3222	DSIC
LBP	Luis Bos Pérez	Jesús 91	TEU	3545	DSIC
PMG	Pedro Martí García	Cuenca 12	TEU	3412	DSIC

Relación Asignatura

Código	Nombre		Prac	Dpto
AD1	Algoritmos y estructuras de datos I		3	DSIC
IP	Introducción a la programación	1.5	1.5	DSIC
AD2	Algoritmos y estructuras de datos II	3	3	DSIC

Relación Docencia

cod_prof	cod_asg	créditos	
JCP	JCP AD1		
JCP	IP	9	
LBP	IP	9	
PMG	AD1	9	

- estructuras de alto nivel

Sistemas de bases de datos relacionales.

Consulta: Obtener las asignaturas impartidas por el profesor de código LBP.

SELECT A.nombre

FROM Asignatura A, Docencia D

WHERE A.codigo=D.cod_asg AND D.cod_prof='LBP'

- lenguajes declarativos

Anexo II

Limitaciones del modelo relacional de datos

Limitaciones del modelo relacional (SQL92) en la definición de información compleja

- dominios escalares
- ausencia de primitivas para definir objetos complejos

Consulta: Obtener las asignaturas impartidas por el profesor de código LBP.

```
SELECT Asignatura.nombre
FROM Asignatura, Docencia
WHERE Asignatura.código = Docencia.cod_asg
and
Docencia.cod_prof = 'LBP'
```

Consulta de la base de datos

- lenguajes declarativos (SQL)
- manipulación explícita de las relaciones (JOIN) para <u>reconstruir</u> <u>la información de un objeto</u>.

Se desea registrar en la base de datos información sobre los prerrequisitos (incompatibilidades) entre las asignaturas.

La propiedad de ser prerrequisito entre dos asignaturas es una propiedad que se transmite transitivamente.

A partir de un información básica sobre la relación de prerrequisitos entre las asignaturas a un primer nivel (prerrequisitos directos), se puede derivar información sobre la relación de prerrequisitos a cualquier nivel (prerrequisitos indirectos), es decir a través de otras asignaturas:

"Si la asignatura X tiene como prerrequisito a la asignatura Y e Y tiene como prerrequisito a la asignatura Z, entonces X tiene como prerrequisito a Z".

Se desea registrar en la base de datos información sobre los prerrequisitos (incompatibilidades) entre las asignaturas.

Definición declarativa de la propiedad "ser prerrequisito":

Regla 1: Prerrequisito(x,y) \leftarrow prer(x,y)

Regla 2: Prerrequisito $(x,y) \leftarrow prer(x,z) \land prerrequisito(z,y)$

Prer: representa la propiedad "ser prerrequisito directo"

Prerrequisito: representa la propiedad "ser prerrequisito directa o indirectamente"

Limitaciones del modelo relacional (SQL92) en la definición de vistas:

Limitaciones del modelo relacional (SQL92) en la definición de vistas:

Relación derivada PRERREQUISITO VISTA

SQL: CREATE VIEW PRERREQUISITO AS
SELECT asg1, asg2
FROM PRER
UNION
SELECT asg1, asg2
FROM PRER, PRERREQUISITO

- limitaciones en la definición de información implícita: vistas recursivas.

Limitaciones del modelo relacional (SQL92) en la definición de comportamiento activo:

información derivada que debe ser mantenida por el SGBD

INSERT Profesor

DELETE Profesor

UPDATE (dpto) ON Profesor

UPDATE (profesores)
ON Departamento

- limitaciones en la definición de comportamiento activo: disparadores.