ABE 303 – Homework 5 Fall 2017 Solutions

Question 1

The apparent viscosity η_{app} can be determined as the shear stress σ divided by the shear rate $\dot{\gamma}$

$$\eta_{app} = \frac{\sigma}{\dot{\gamma}}$$

By using the Casson model, the above equation becomes'

$$\eta_{app} = \frac{\left(\sqrt{\sigma_o} + K\sqrt{\dot{\gamma}}\right)^2}{\dot{\gamma}} = \frac{\sigma_o + 2K\sqrt{\sigma_o}\sqrt{\dot{\gamma}} + K^2\dot{\gamma}}{\dot{\gamma}} = \frac{\sigma_o}{\dot{\gamma}} + \frac{2K\sqrt{\sigma_o}}{\sqrt{\dot{\gamma}}} + K^2$$

The equation above shows that when the shear rate is small the viscosity of the chocolate is very large whereas when the shear rate is large the apparent viscosity of the chocolate $\rightarrow K^2$

Question 2

2 The CDD is a dita is and Dale Co Diamid
2. The following data is available for liquid.
T(°c) µ(cP) 5 19
5 / 19
30 6.4
30 6.4 40 5.5
50 4.1
60 3.1
Determine an equation to estimate the viscosity of the material as
Determine an equation to estimate the viscosity of the material as
Assume that the viscosity of the liquid changes with temperature
collowing an Airhenius relationship and that there is no
Assume that the viscosity of the liquid changes with temperature following an Airhenius relationship and that there is no coaquilation of the protein in that range of temperatures
P.L.
by M = Al (1) A and B are empirical
constants they can be
M=Al (1) A and B are empirical constants, they can be determined four the date
Consider Two experimental points, e.g. extrame temperatures
$T_1 = 5 + 273 = 278K$ $M_1 = 19 CP$
$T_2 = 60 + 273 = 333 \text{ M}_2 = 3.1 \text{ cP}$
2 = 00 1273 = 0.1
$\left\{ \ln M_1 = \ln A + B/T_1 \right\} = \left\{ \ln M_2 = B \left[\frac{1}{T_1} - \frac{1}{T_2} \right] \right\} $
$ln M_1 = ln A + B/T_1$ $= ln M_2 = ln$

$$B = \frac{\ln \mu / \mu_{2}}{(T, T_{2})}$$

$$\ln A = \ln \mu_{1} - B \qquad (4)$$

$$Trom Eq.(3) \quad B = \ln 19/3.1 \qquad = 1.81 = 3046.5 k$$

$$\left(\frac{1}{278} - \frac{1}{333}\right) = 0.0006$$

$$B = 3046.5 k$$

$$Trom Eq.(4) \quad \ln A = \ln 19 - 3046.5 = -3.01$$

$$278$$

$$A = 1 = 3.307 \times 10^{-4} \text{ P}$$

$$1 = 3.307 \times 10^{-4} \text{ P}$$

$$2 = 3.307 \times 10^{-4} \text{ P}$$

$$3046.5 = 3.31 \text{ M}$$

Question 3a

$\frac{Q=1}{\pi R^3} \int_{-\infty}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty}$
For a power law fluid $T = K8^n \Rightarrow 8 = f(T) = \left(\frac{T}{K}\right)^n$ Substituting into Eq.(12) $Q = \frac{1}{TR^3} \int_{W}^{3} \int_{W}^{2} \frac{T^2 d^{1/n}}{\sqrt{N}} dT = \frac{1}{T^3 K^{1/n}} \int_{W}^{2} \int_{W}^{2} \frac{T^{1/n}}{\sqrt{N}} dT = \frac{1}{TR^3} \int_{W}^{3} \frac{T^{1/n}}{\sqrt{N}} dT = \frac{1}{TR^3} \int_{W}^{2} \frac{T^{1/n}}{\sqrt{N}} dT$
$\frac{Q}{TR^3} = \frac{1}{\sigma_w^3} \frac{1}{\kappa^4} \frac{1}{3n+1} = \frac{1}{3n+1} \frac{1}{\kappa^4} \frac{1}{\kappa^4}$ and $\frac{1}{\sigma_w} = \frac{1}{\kappa} \frac{1}{3n+1} \frac{1}{3n+1} \frac{1}{\kappa^4} \frac{1}{\kappa^4}$ $\frac{1}{\sigma_w} = \frac{1}{\kappa} \frac{1}{3n+1} \frac{1}{\kappa^4} \frac{1}$

Eq. (13) $T_{w} = K \left(\frac{3n+1}{4n} \frac{4Q}{\Pi R^{3}} \right)^{n}$
but $\nabla_{w} = \underline{AP_{\kappa}R}$
$\frac{\Delta P_* R}{2L} = K \left(\frac{3n+1}{4n} \right)^n \left(\frac{4Q}{TR^3} \right)^n$
$\Delta P = \frac{2LK}{R} \left(\frac{3n+1}{4n} \right)^n \left(\frac{4Q}{\pi R^3} \right)^n$
2)
$\Delta P = 2LK \left(\frac{3n+1}{4n}\right) \left(\frac{4Q}{\pi R^{3+\frac{1}{2}}}\right)$
57
$\Delta P = 2LK \left(\frac{3n+1}{4n}\right)^n \left(\frac{4Q}{7R^{\frac{3n+1}{n}}}\right)$

Question (3b)

From the chart we can see that K=305.7 mPa.s^{0.3} and n-1 = -0.70 \Rightarrow n = 0.3 The apparent viscosity can be calculated as: $\mu_{app} = K \dot{\gamma}^{0.3-1} = K \dot{\gamma}^{-0.7}$ or

$$\mu_{app} = 305.7 \ mPa.s^{0.3} \ 20^{-0.7} \ \frac{1}{s^{-0.7}} = 37.5 \, mPa.s$$

Question 4

A shear sensitive non-Newtonian protein solution having a density of 1041 kg/m^3 is flowing through 14.9 meters of tubing having an inside diameter of 5.24 cm. Capillary viscometer measurements have shown that the solution is time-independent and that, for the flow conditions in the processing line the following rheological parameters apply n = 0.4 and $k = 15.2 \text{ Pa.s}^{0.4}$. The mass flow rate is 590 kg/h.

(a) What is the type of flow behavior being exhibited by the fluid? Explain your answer, i.e., why do you think the protein solution is exhibiting that behavior?

The fluid is shear thinning because the value of n < 1. Probably due to shear flow the orientation of the protein in the solution is enhanced and the viscosity of the solution, which is the resistance of the material to flow, decreases. There is no information on the rheological data of the presence of a yield stress, so it is not a plastic fluid.

- (b) Calculate the pressure drop due to viscous friction in the pipeline assuming laminar flow.
- (c) An increase in the throughput requires increasing the mass flowrate 50%. An existing spare pump can deliver the new required flowrate but at a maximum permissible discharge pressure of 50kPa (gauge). Determine whether that pump will do the job or it would be necessary to acquire one with a higher maximum permissible discharge pressure.
- (d) The maximum shear rate that can be applied without causing the protein to denature is 2001/s. Find if the new flow given in (c) will cause shear denaturation on the protein

(b)

100	
	K=15.2 Paso.4 n=0.4 Q=590 43/K W
	L= 14.9 m 1041 xx x 3600 sec
	$D = 5.24 \times 10^{-2} \text{ m}$
	R = 2.62×10-2 m Q = 1.574×10-9 m3
	0.4 \$ 0.4
	APr = 2 x 14.9 x 15.2 (3,0.4+1) (4 x 1.574 x 10-7)
	$D = 5.24 \times 10^{-2} \text{ m}$ $R = 2.62 \times 10^{-2} \text{ m}$ $Q = 1.574 \times 10^{-4} \text{ m}^{3}$ 0.4 $\Delta P_{f} = \frac{2 \times 14.9 \times 15.2}{2.62 \times 10^{-2}} \left(\frac{3 \times 0.4 + 1}{4 \times 0.4} \right) \left(\frac{4 \times 1.574 \times 10^{-4}}{11 \times (2.62 \times 10^{-2})^{3}} \right)$
	4
	ΔP ₁ = 1.729×10 ⁴ × 1.14 × 2.623 = 51,700.9 Pa
	AP ~ 517120
	ME 51.7 KPa
	(c) If we assure that the inlet and outlet of the pipe one of
	the some hight, the some pipe diometer is used and
	the some height the some pipe diemeter is used and overall pressures are at atmospheric pressures;
	Pd= AP = 51.7 KPe
	so an inverse in to flow by 50% will inverse
	so an inverse in to flow by 50% will inverse the discharge pressure and the space pump will not work
	(d) For a your law fluid the maximum theorete is
	(d) For a your low fluid the maximum theorrate is at the wall and given as:
	$8w = \frac{3n+1}{4n} \frac{4Q}{\pi R^3}$
	2
	$Q = \frac{4n}{3n+1} \frac{8w}{3} = \frac{4x0.4}{3x0.4+1} \cdot 200 \times \pi \times (2.62 \times 10^{-2})^{3}$
	3n+1 3x0.4+1
	Q = 8.218 x10 m3 By Q= 8.218 x10 m3 x 1041 4 x 3600 3
	Q = 8.218 x10 ³ m ³ or Q = 8.218 x10 ³ m ³ x 1041 40 x 3600 5 Q = 30,798.8 Kg/h Big-through)
	d., 531,491