Topologie et Calcul différentiel

Semaine 5: Fonctions convexes

Mardi 14 Mars 2023, Le projet est en ligne, à rendre pour dans trois semaines

Dans quel cas regarde-t-on une dérivée partielle de $f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^p$ pour appliquer le théorème des fonctions implicites plutôt que de regarder la jacobienne de f?

- Quand p = 1.
- Quand n=1.
- Quand p = n.
- Quanq n > p.

Quand on cherche un ouvert $U \subseteq \mathbb{R}$ et une fonction $\phi: U \to \mathbb{R}$ telle que $f(\phi(x),x)=0$ sur U pour pouvoir appliquer le théorème des fonctions implicites, on regarde :

- $\partial_1 f$
- $\partial_2 f$
- $\partial_1 f$ et $\partial_2 f$
- La copie du voisin.

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathcal{C}^1 . Pourquoi a-t-on le droit de dériver l'expression f(x,y)=0 par rapport à x au voisinage de (x_0,y_0) quand $f(x_0,y_0)=0$ et $\partial_2 f(x_0,y_0)\neq 0$?

- Parce que $y = \phi(x)$ sur un ouvert U qui contient x, donc on peut dériver l'expression par rapport à x.
- Parce que si une fonction s'annule en un point, sa dérivée s'annule aussi en ce point.
- Parce que la fonction f est nulle pour tous les couples (x, y) au voisinaage de (x_0, y_0) et que la dérivée d'une fonction nulle est nulle.
- On n'a pas le droit.

Pourquoi calcule-t-on un développement limité de ϕ dans l'exercice fait en cours plutôt que de donner l'expression de ϕ ?

- Parce qu'on ne peut pas donner l'expression explicite de ϕ .
- Parce que c'est plus facile.
- Parce que ϕ n'est pas de classe \mathcal{C}^{∞} .
- Il faut calculer les dérivées secondes de f pour donner une expression explicite de ϕ .

46 étudiants sur 73 ont fait le QCM

Fonctions convexes

Les fonctions convexes

Plan du cours

- Définitions, propriétés
- Liens avec la dérivée d'une fonction
- Inégalité de Hölder
- Inégalité de Jensen
- Pleins d'exercices

Définition

Soit I un intervalle de \mathbb{R} , soit $f:I\longrightarrow\mathbb{R}$, f est dite convexe si elle vérifie

$$\forall (a,b) \in I^2, \ \forall t \in [0,1], \ f((1-t)a+tb) \leq (1-t)f(a)+tf(b)$$

Lorsque -f est convexe, on dit que f est concave.

Remarque

Si $f: I \to \mathbb{R}$ est à la fois convexe et concave, alors f est

Propriété

Sur l'intervalle [a, b], la courbe passe en-dessous de sa corde entre a et b. En-dehors de l'intervalle [a, b], elle passe au-dessus de cette corde.

Preuve.

Définition

• Soit $f: I \longrightarrow \mathbb{R}$, on appelle épigraphe de f, l'ensemble

$$\mathcal{E}_{f} = \{(x, y) \in I \times \mathbb{R}, \ y \ge f(x)\}$$

• Soit $\mathcal{C} \subset \mathbb{R}$, on dit que \mathcal{C} est convexe si

$$\forall (A,B) \in \mathcal{C}^2, \ \forall t \in [0,1], \ \mathsf{Bary}\left((A,1-t),(B,t)\right) := (1-t)\cdot A + t\cdot B \in \mathcal{C}$$

Propriété

L'épigraphe \mathcal{E}_f de f est un ensemble convexe \Leftrightarrow la fonction f est convexe.

Preuve.

(⇒) Soit
$$A_1 = (x_1, y_1)$$
 et $A_2 = (x_2, y_2)$ deux points de \mathcal{E}_f et soit $t \in [0, 1]$, alors comme f est convexe,

.....

(
$$\Leftarrow$$
) Soit $(x,y) \in I^2$ et $t \in [0,1]$, alors $A = (x,f(x))$ et $B = (y,f(y))$ sont deux points de \mathcal{E}_f et donc Bary $((A,1-t),(B,t))$ aussi. Ce qui se traduit par

.....

Propriété

Soit f une fonction **continue** sur I. Alors

$$[f \text{ convexe}] \Leftrightarrow \left[\forall (x,y) \in I^2, \ f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2} \right]$$

Preuve.

- (⇒)
- (\Leftarrow) Soit x et y dans I fixés. On montre facilement par récurrence sur n que $\forall n \in \mathbb{N}, \ \forall k \in \{0, \dots, 2^n\}$,

$$f\left(\left(1-\frac{k}{2^n}\right)x+\frac{k}{2^n}y\right)\leq \left(1-\frac{k}{2^n}\right)f(x)+\frac{k}{2^n}f(y)$$

En remarquant que, si $t \in [0,1]$, alors $\frac{\lfloor t \, 2^n \rfloor}{2^n} \xrightarrow[n \to +\infty]{} t$ on peut, en passant à la limite dans l'inégalité ci-dessus pour $k = \lfloor t \, 2^n \rfloor$ et en utilisant la continuité de f obtenir la convexité de f.

Propriété (Inégalité des pentes)

Une fonction $f: I \to \mathbb{R}$ est convexe si, et seulement si $\forall (x, y, z) \in I^3$,

$$[x < z < y] \Leftrightarrow \left[\frac{f(z) - f(x)}{z - x} \le \frac{f(y) - f(x)}{y - x} \le \frac{f(y) - f(z)}{y - z} \right]$$

Preuve.

Preuve (suite).

Propriété (Taux d'accroissement)

Soit $f: I \longrightarrow \mathbb{R}$. La fonction f est convexe sur I si et seulement si, pour tout $x \in I$, l'application

$$au_{\mathsf{x}} \,:\, \left\{ egin{array}{ll} I\setminus \{x\} & \longrightarrow & \mathbb{R} \\ t & \longmapsto & \dfrac{f(t)-f(x)}{t-x} \end{array}
ight. \ \ ext{est croissante}$$

Propriété (Continuité d'une fonction convexe)

Si $f: I \longrightarrow \mathbb{R}$ est une fonction convexe, alors f est continue sur \mathring{I} .

Preuve.

- Soit $z \in \mathring{I}$, on peut alors trouver x et y dans I tels que x < z < y. On a alors pour tout $h \in [z, y]$.
-
- 2 Le nous permet de déduire que

$$f(h) \xrightarrow[h \to z^+]{} f(z)$$

ce qui est la continuité à droite de f en z. La continuité à gauche s'obtient de la même manière.

Remarque: contre-exemple

Il n'y a pas nécessairement continuité aux bornes de l'intervalle. Par exemple, la fonction

$$f: egin{cases} [0,1] \longrightarrow \mathbb{R} \ x \longmapsto egin{cases} 0 & ext{si } x \in]0,1[\ 1 & ext{si } x \in \{0,1\} \end{cases}$$

est convexe sur [0,1], mais n'est pas continue en 0 à droite, ni en 1 à gauche.

Fonctions convexes

Plan du cours

- Définitions, propriétés
- Liens avec la dérivée d'une fonction
- Inégalité de Hölder
- Inégalité de Jensen

Rappel

On rappelle que si I = [a, b], [a, b[,]a, b] ou]a, b[, avec $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in]a, +\infty[\cup \{+\infty\}$, alors $\mathring{I} =]a, b[$.

Dérivée d'une fonction convexe

Soit $f: I \to \mathbb{R}$ convexe et dérivable sur \mathring{I}

$$[f \text{ convexe sur } I] \iff [f' \text{ croissante sur } \mathring{I}]$$

Preuve. (\Rightarrow) (f convexe \Rightarrow f' croissante) On a vu que si x < z < y, alors

$$\frac{f(z) - f(x)}{z - x} \le \frac{f(y) - f(z)}{y - z}$$

En faisant tendre z vers x^+ , il vient

$$\dots \leq \frac{f(y) - f(x)}{y - x}$$

En faisant tendre z vers y^- , il vient

$$\frac{f(y)-f(x)}{y-x}\leq \dots$$

Preuve (suite). (\Leftarrow) (f' croissante $\Rightarrow f$ convexe) Soit x, y et z dans I, tels que x < z < y. D'après, on a l'existence de $c \in]x, z[$ et de $d \in]z, y[$ tels que

$$\frac{f(z)-f(x)}{z-x}=f'(c) \text{ et } \frac{f(y)-f(z)}{y-z}=f'(d)$$

Or $f'(c) \leq f'(d)$, donc on a

$$\frac{f(z) - f(x)}{z - x} \le \frac{f(y) - f(z)}{y - z}$$

Ce qui nous donne la convexité de f (l'inégalité des pentes).

Dérivée seconde d'une fonction convexe

Si la fonction f est continue sur I et deux fois dérivable sur \mathring{I} , alors

$$[f \text{ convexe}] \iff [f'' \ge 0]$$

Preuve. On utilise $[f' \text{ croissante}] \iff [f'' \ge 0]$.

Exemples

Fonctions convexes : exp, $x \longmapsto x^2$, $x \longmapsto x^4$, $x \longmapsto x^{2n}$, $x \longmapsto x^{2n+1}$ sur $[0, \infty[, x \longmapsto \sin(x) \text{ sur } [-\pi, 0], x \longmapsto \cos(x) \text{ sur } [\frac{\pi}{2}, \frac{3\pi}{2}], x \longmapsto \tan(x) \text{ sur } [0, \frac{\pi}{2}[, x \longmapsto \arcsin(x) \text{ sur } [0, 1], x \longmapsto \arccos(x) \text{ sur } [-1, 0], x \longmapsto \arctan(x) \text{ sur }]-\infty, 0].$ Fonctions concaves : $x \longmapsto \sqrt{x}$, $x \mapsto \ln(x)$, $x \longmapsto x^{2n+1}$ sur $]-\infty, 0]$,

Fonctions concaves : $x \longmapsto \sqrt{x}$, $x \mapsto \ln(x)$, $x \longmapsto x^{2n+1}$ sur $]-\infty,0]$, $x \longmapsto \sin(x)$ sur $[0,\pi]$, $x \longmapsto \cos(x)$ sur $[-\frac{\pi}{2},\frac{\pi}{2}]$, $x \longmapsto \tan(x)$ sur $]-\frac{\pi}{2},0]$, $x \longmapsto \arcsin(x)$ sur [-1,0], $x \longmapsto \arccos(x)$ sur [0,1], $x \longmapsto \arctan(x)$ sur $[0,+\infty[$.

Exercice

Exercice

Montrer les inégalités suivantes :

- Montrer que $\forall x \in \mathbb{R}_+$, $\ln(1+x) \le x$
- Montrer que $\forall x \in \mathbb{R}_+$, $x \leq e^x 1$
- Trouver un encadrement des fonctions cos et sin sur l'intervalle $[0, \pi/2]$.