Estación de Monitoreo Inteligente Multisensorial de Seguridad Basado en Machine Learning

Marco Vásquez Ovares Junior Ruiz Sánchez

Estación de Monitoreo Inteligente Multisensorial de Seguridad Basado en Machine Learning

Sistema embebido para detectar sonidos críticos usando ML.

Seguridad más accesible e inteligente.

Motivación

La seguridad es una prioridad. Sistemas tradicionales no detectan bien el contexto sonoro.

Objetivo del sistema

Clasificar sonidos del entorno y activar respuestas locales

¿Qué sonidos detecta?

- ambiente normal
- sirenas de policía

- vidrios rotos
- ladridos de perro

¿Por qué esos sonidos?

Son frecuentes en eventos de seguridad y fáciles de identificar acústicamente.

Hardware

Arduino Nano 33 BLE Sense.

micrófono MEMS para capturar audio.

Modelo de clasificación

Se entrenó un modelo en Edge Impulse para reconocer los 4 sonidos definidos.

Recolección de datos

Se grabaron muestras con el micrófono del Arduino y se procesaron en Python.

```
Presiona ENTER para grabar muestra 2/50 de 'ladrido'...
64000 muestras capturadas.
Muestra 2 guardada: ladrido 02.way
Presiona ENTER para grabar muestra 3/50 de 'ladrido'...
-> Grabando...
64000 muestras capturadas.
Muestra 3 quardada: ladrido 03.wav
Presiona ENTER para grabar muestra 4/50 de 'ladrido'...
64000 muestras capturadas.
Muestra 4 guardada: ladrido 04.wav
Presiona ENTER para grabar muestra 5/50 de 'ladrido'...
-> Grabando...
64000 muestras capturadas.
Muestra 5 quardada: ladrido 05.wav
Presiona ENTER para grabar muestra 6/50 de 'ladrido'...
64000 muestras capturadas.
Muestra 6 guardada: ladrido 06.way
Presiona ENTER para grabar muestra 7/50 de 'ladrido'...
-> Grabando...
64000 muestras capturadas.
Muestra 7 guardada: ladrido 07.way
Presiona ENTER para grabar muestra 8/50 de 'ladrido'...
64000 muestras capturadas.
Muestra 8 guardada: ladrido 08.wav
Presiona ENTER para grabar muestra 9/50 de 'ladrido'...
-> Grabando..
64000 muestras capturadas.
Muestra 9 quardada: ladrido 09.wav
```

```
-> Grabando...
64000 muestras capturadas.
Muestra 46 quardada: vidrios 46.wav
Presiona ENTER para grabar muestra 47/50 de 'vidrios'...
-> Grabando...
64000 muestras capturadas.
Muestra 47 guardada: vidrios 47.wav
Presiona ENTER para grabar muestra 48/50 de 'vidrios'...
-> Grabando...
64000 muestras capturadas.
Muestra 48 guardada: vidrios 48.wav
Presiona ENTER para grabar muestra 49/50 de 'vidrios'...
64000 muestras capturadas.
Muestra 49 guardada: vidrios 49.wav
Presiona ENTER para grabar muestra 50/50 de 'vidrios'...
-> Grabando...
64000 muestras capturadas.
Muestra 50 guardada: vidrios 50.wav
Grabacion finalizada.
■ audio [main] / python3 data audio.py
Nombre de la clase (ej: ladrido): sirena polic
¿Cuantas muestras a grabar?: 50
Conectado a /dev/ttyACMO a 230400 baudios.
Presiona ENTER para grabar muestra 1/50 de 'sirena polic'...
-> Grahando
64000 muestras capturadas.
Muestra 1 quardada: sirena polic 01.wav
Presiona ENTER para grabar muestra 2/50 de 'sirena polic'...
-> Grabando...
64000 muestras capturadas.
Muestra 2 guardada: sirena polic 02.way
Presiona ENTER para grabar muestra 3/50 de 'sirena polic'...
```

Formato de datos

Audios .WAV de 4 segundos a 16 kHz. Organizados por clases para el entrenamiento.

SAMPLE NAME	LABEL	ADDED	LENGTH	
vidrios_02	vidrios	Yesterday, 15:	4s	i
vidrios_08	vidrios	Yesterday, 15:	4s	ŧ
vidrios_05	vidrios	Yesterday, 15:	4s	i
vidrios_01	vidrios	Yesterday, 15:	4s	i
sirena_polic_45	sirena	Yesterday, 15:	4s	ŧ
sirena_polic_48	sirena	Yesterday, 15:	4s	ŧ
sirena_polic_50	sirena	Yesterday, 15:	4s	ŧ
sirena_polic_49	sirena	Yesterday, 15:	4s	÷
sirena_polic_42	sirena	Yesterday, 15:	4s	ŧ
sirena_polic_33	sirena	Yesterday, 15:	4s	ŧ
sirena_polic_36	sirena	Yesterday, 15:	4s	:
sirena_polic_35	sirena	Yesterday, 15:	4s	ŧ

			<u>"</u> "	
SAMPLE NAME	LABEL	ADDED	LENGTH	
ladrido_07	ladrido	Yesterday, 15:	4s	÷
ladrido_02	ladrido	Yesterday, 15:	4s	÷
ambiente_46	ambiente	Yesterday, 15:	4s	÷
ambiente_43	ambiente	Yesterday, 15:	4s	ŧ
ambiente_48	ambiente	Yesterday, 15:	4s	ŧ
ambiente_45	ambiente	Yesterday, 15:	4s	i
ambiente_50	ambiente	Yesterday, 15:	4s	ŧ
ambiente_40	ambiente	Yesterday, 15:	4s	ŧ
ambiente_49	ambiente	Yesterday, 15:	4s	ŧ
ambiente_47	ambiente	Yesterday, 15:	4s	ŧ
ambiente_34	ambiente	Yesterday, 15:	4s	ŧ
ambiente_31	ambiente	Yesterday, 15:	4s	:

Entrenamiento en Edge Impulse

- → Subida de datos
- → Creación de impulso
- → Clasificación
- → Despliegue del modelo

Evaluación del modelo

Se probaron muestras nuevas.

El modelo mostró buena precisión en clasificación.

Implementación en Arduino

Se carga el modelo en el Arduino para clasificar sonidos en tiempo real

Inferencia en tiempo real

El micrófono captura, el modelo infiere y se imprime la predicción por Serial.

Validación funcional

Se hacen pruebas con sonidos reales. El sistema responde correctamente.

```
Predictions (DSP: 308 ms., Classification: 8 ms., Anomaly: 0 ms.):
    ambiente: 0.96094
    ladrido: 0.00000
    sirena: 0.00000
    vidrios: 0.03906

Predictions (DSP: 309 ms., Classification: 8 ms., Anomaly: 0 ms.):
    ambiente: 0.00000
    ladrido: 0.00000
    sirena: 0.00000
    vidrios: 0.99609
```

Ventajas del sistema

Bajo costo, autónomo, no depende de red ni nube. Ideal para entornos locales.

Limitaciones

Solo clasificacion de sonido.

No Image Available

Posibles mejoras

Agregar IoT, cámara o sensores de presencia. Expandir la base de sonidos.

Conclusiones

Se logró clasificar sonidos relevantes con buena precisión en un sistema embebido.

Fin

Muchas Gracias !!!