Série - Rév. 01/2025/26- 25-PYCJ2ME1-Corrigé

Exercice 2 - Eau de Quinton

Q1. Il faut diluer 5 fois la solution d'eau de Quinton commerciale.

Solution mère : Solution fille :

Eau de Quinton commerciale hypertonique Eau de Quinton isotonique

 $C_0 C_1 = C_0/5$

 $V_0 = ?$ $V_1 = 100, 0 \text{ mL}$

Au cours d'une dilution la quantité de matière de soluté se conserve :

 $C_0 \cdot V_0 = C_1 \cdot V_1$

$$C_0 \cdot V_0 = \frac{C_0}{5} \cdot V_1$$

$$V_0 = \frac{V_1}{5}$$

 $V_0 = 100,0 /5 = 20,0 \text{ mL}$

Protocole:

On verse de la solution mère dans un becher.

À l'aide d'une pipette jaugée de 20,0 mL, on prélève le volume de solution mère que l'on verse dans une fiole jaugée de 100,0 mL.

On ajoute de l'eau distillée jusqu'au tiers de la fiole. On agite.

On poursuit l'ajout d'eau distillée jusqu'au trait de jauge.

On bouche, on agite.

Q2. La solution préparée est isotonique si sa concentration est quantité en ions chlorure est comprise dans l'intervalle 100 à 110 mmol·L⁻¹.

La solution a été préparée à partir d'eau de mer dont la concentration en masse est

5.464788732e-1

égale à $C_{m0} = 19,4 \text{ g} \cdot \text{L}^{-1}$.

$$C_0 = C_{m0} / M(C\ell)$$

 $C_0 = \frac{19.4 \text{ g} \cdot \text{L}^{-1}}{35.5 \text{ g} \cdot \text{mol}^{-1}} = 0.546 \text{ mol} \cdot \text{L}^{-1}$

$$C_1 = C_0/5$$

Donc $C_1 = 0.109 \text{ mol} \cdot \text{L}^{-1} = 109 \text{ mmol} \cdot \text{L}^{-1}$

La concentration est bien dans l'intervalle annoncé, la solution est isotonique.

Q3. $Ag^+(aq) + C\ell^-(aq) \rightarrow AgC\ell$ (s)

Q4. La figure 2 montre que la concentration en espèce A diminue, puis est nulle après l'équivalence : c'est le réactif Cl⁻(aq).

La concentration en espèce B est nulle jusqu'à l'équivalence puis augmente ensuite, c'est le réactif Ag⁺(aq).

1

La concentration en espèce C augmente sans cesse : c'est l'ion spectateur versé NO₃-(aq). La concentration en espèce D ne varie pas, c'est l'ion spectateur Na⁺(aq) initialement présent.

Q5. À l'équivalence, les réactifs ont été mélangés dans les proportions stœchiométriques $n(Ag^+)_{\text{versée}} = n(Cl^-)_{\text{initiale}}$

$$C_2 \cdot V_E = C_1 \cdot V_1$$

donc
$$V_E = \frac{C_1 \cdot V_1}{C_2}$$

Avec les notations du programme Python, on obtient $V_E=(C_1*V_1)/C_2$.

Q6.

La conductivité de la solution dépend de la concentration des ions et de leur conductivité molaire ionique, suivant la loi de Kohlrausch $\sigma = \sum_i \lambda_i.[X_i]$.

Concentration	Avant l'équivalence	Après l'équivalence
A = Cℓ-	Diminue	Nulle
B = Ag ⁺	Nulle	Augmente
$C = NO_3^-$	Augmente	Augmente
D = Na ⁺	Ne varie pas	Ne varie pas

Avant l'équivalence, les ions NO_3^- remplacent au fur et à mesure les ions Cl^- , or $\lambda(NO_3^-) < \lambda(Cl^-)$, donc la conductivité diminue.

Après l'équivalence, la concentration en ions Ag⁺ et NO₃⁻ augmente donc la conductivité augmente.

Q7. On a établi précédemment que $C_2 \cdot V_E = C_1 \cdot V_1$

donc
$$C_1 = \frac{C_2 \cdot V_E}{V_4}$$

On détermine le volume équivalent V_E = 18,0 mL.

$$C_1 = \frac{3,00 \times 10^{-1} \times 18,0}{10,0} = 0,540 \text{ mol} \cdot L^{-1}$$

Ne pas tenir compte des 200 mL d'eau distillée

$$C_m = C_1 \cdot M(CI)$$

 $C_m = 0.540 \times 35.5 = 19.2 \text{ g} \cdot \text{L}^{-1}$

Q8. Calculons l'incertitude sur la concentration C_{Quniton}.

$$u(C_{\text{Quinton}}) = C_{\text{Quinton}} \times \sqrt{\left(\frac{u(V_1)}{V_1}\right)^2 + \left(\frac{u(V_E)}{V_E}\right)^2 + \left(\frac{u(C_2)}{C_2}\right)^2}$$

$$1.917 \text{E1*} \sqrt{\left(\frac{0.02}{10}\right)^2 + \left(\frac{0.5}{18}\right)^2 + \left(\frac{2E^2}{3E^2}\right)^2}$$

$$5.489617888 \text{E}^2$$

$$u(C_{\text{Quinton}}) = 19.17 \times \sqrt{\left(\frac{0.02 \text{ mL}}{10.0 \text{ mL}}\right)^2 + \left(\frac{0.5 \text{ mL}}{18.0 \text{ mL}}\right)^2 + \left(\frac{2 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}}{3.00 \times 10^{-1} \text{mol} \cdot \text{L}^{-1}}\right)^2} = 0.55 \text{ g} \cdot \text{L}^{-1}$$

On arrondit l'incertitude par excès à 1 chiffre significatif alors $u(C_{Quinton}) = 0.6 \text{ g.L}^{-1}$

On peut calculer le z-score = $\frac{\left|C_{Quinton} - C_{réf}\right|}{u(C_{Quinton})}$

z-score =
$$\frac{|19,2-19,4|}{0,6} = 0,3 < 2$$

La valeur trouvée expérimentalement s'écarte de 0,3 fois l'incertitude de mesure de la valeur de la concentration de l'eau de mer bretonne. C'est un écart assez faible qui permet de valider la valeur trouvée expérimentalement.