

Факультет программной инженерии и компьютерной техники Лабораторная работа №5

Численное дифференцирование и задача Коши

Вариант метод Эйлера Выполнила Громилова Мария Дмитриевна,

рыполнила 1 ромилова <u>Мария дмитрисвна</u>,

группа Р32311,

Преподаватель Перл Ольга Вячеславовна

г. Санкт-Петербург 2023 г.

Описание метода расчетные формулы:

Метод Эйлера - это простой численный метод для решения задачи Коши для обыкновенных дифференциальных уравнений (ОДУ) первого порядка.

Рассмотрим задачу Коши вида:

$$y' = f(x,y), y(x0) = y0$$

где f(x,y) - заданная функция, y(x) - неизвестная функция, которую мы пытаемся найти, x - независимая переменная, y0 - начальное значение функции y в точке x0.

Метод Эйлера решает эту задачу численно с помощью приближенных значений у. Метод состоит в следующих шагах:

- 1. Задаются начальные условия: x0, y0
- 2. Задается шаг h
- 3. Используя формулу Эйлера, находим приближенное значение у на следующей итерации:

$$yi+1 = yi + h * f(xi, y])$$

- 4. Вычисляем следующее значение x: xi+1 = xi + h
- 5. Повторяем шаги 3-4 для всех итераций, пока не достигнем конечной точки b.

Таким образом, метод Эйлера позволяет найти последовательность приближенных значений у от x, которые могут быть использованы для построения графика функции у(x) или для дальнейшего анализа.

Метод Эйлера не является самым точным численным методом для решения задачи Коши и может давать неточные результаты, особенно при большом шаге h. Для более точных результатов могут использоваться другие численные методы

Блок-схема численного метода:

Листинг реализованного численного метода программы:

```
public double[][] getResult(double a, double b, double h, double y0, int num) {
    int n = (int) ((b - a) / h) + 1;
    double[] x = new double[n];
    double[] y = new double[n];
    double[] yAnalytic = new double[n];
    x[0] = a;
    y[0] = y0;
    for (int i = 1; i < n; i++) {
        x[i] = x[i-1] + h;
        y[i] = y[i-1] + h * f(x[i-1], y[i-1], num);
        yAnalytic[i] = getAnalyticSolution(num, x[i], y[i]);
    }
    yAnalytic[0]=y0;
    double[][] result = new double[][]{x, y, yAnalytic};
    return result;
}</pre>
```

Примеры и результаты работы программы на разных данных:

Численное дифференцирование Метод Эйлера
Выберите номер уравнения:
1)y' = xy/2
$2)y' = x^2 - 2y$
$3)y' = \sin(x) + y$
1
Выберите аппроксимирующую функцию:
1)Линейная у = kx + b
2)Экспоненциальная функция у = be^(ax)
3)Квадратичная у = ax^2 + bx + c
2
Выберите нижнюю границу:
1
Выберите верхнюю границу:
_
5
Parameter 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
Введите размер шага
0.01
Products and the second
Введите значение у0:
2

Численное дифференцирование Метод Эйлера
Выберите номер уравнения: 1)y' = xy/2 2)y' = x^2 - 2y 3)y' = sin(x) + y
1
Выберите аппроксимирующую функцию: 1)Линейная у = kx + b 2)Экспоненциальная функция у = be^(ax) 3)Квадратичная у = ax^2 + bx + c
3
Выберите нижнюю границу:
-2
Выберите верхнюю границу:
0
Введите размер шага 0.1
Введите значение y0: 2

Численное дифференцирование Метод Эйлера
Выберите номер уравнения:
1)y' = xy/2
$2)y' = x^2 - 2y$
$3)y' = \sin(x) + y$
2
Выберите аппроксимирующую функцию:
1)Линейная y = kx + b
2)Экспоненциальная функция у = be^(ax)
3)Квадратичная у = ax^2 + bx + c
3
Выберите нижнюю границу:
1
Выберите верхнюю границу:
10
Введите размер шага
0.1
Введите значение у0:
1

Численное дифференцирование Метод Эйлера
Выберите номер уравнения:
1)y' = xy/2
$2)y' = x^2 - 2y$
$3)y' = \sin(x) + y$
2
Выберите аппроксимирующую функцию:
1)Линейная y = kx + b
2)Экспоненциальная функция у = be^(ax)
3)Квадратичная у = ax^2 + bx + c
3
Выберите нижнюю границу:
1
Выберите верхнюю границу:
4
Введите размер шага
0.001
Введите значение у0:
1
1

Численное дифференцирование Метод Эйлера
Выберите номер уравнения: 1)y' = xy/2 2)y' = x^2 - 2y 3)y' = sin(x) + y
Выберите аппроксимирующую функцию: 1)Линейная у = kx + b 2)Экспоненциальная функция у = be^(ax) 3)Квадратичная у = ax^2 + bx + c
Выберите нижнюю границу:
Выберите верхнюю границу:
Введите размер шага 0.01 Введите значение у0:
1

Вывод:

Метод Эйлера один из самых простых для решения задачи Коши. Но даже исходя из полученных результатов, можно заметить что при большом приближении, когда нас интересует промежуток длины меньше 10, можно увидеть расхождение графика аналитического решения. Порядок точности этого метода $O(h^2)$, тогда ка для метода Рунге-Кутты это значение $O(h^5)$, для метода Милна $O(h^4)$ и метода Адамса $O(h^4)$.

Сравнение:

- 1. Метод Эйлера является простым и быстрым методом численного решения дифференциальных уравнений, но обладает лишь первым порядком точности и может давать неточные результаты на большом интервале интегрирования или при наличии больших производных. Он может быть использован в случае достаточно гладких функций на небольших интервалах.
- 2. Усовершенствованный метод Эйлера обладает вторым порядком точности и может дать более точный результат, чем простой метод Эйлера, но также может иметь проблемы на больших интервалах.
- 3. Метод Рунге-Кутты обладает высоким порядком точности и может быть использован для получения точных результатов на больших интервалах. Он является наиболее распространенным методом для решения обыкновенных дифференциальных уравнений.
- 4. Метод Милна является усовершенствованным методом Эйлера, может быть использован для решения жестких задач.
- 5. Метод Адамса является методом многошагового интегрирования, который может быть использован для решения дифференциальных уравнений высокого порядка. Он обладает высокой точностью и может быть использован для решения задач на больших интервалах.