

MESSTECHNIK AI Prof. Dr. László Juhász

innovativ & lebendig — Bildungsregion DonauWald

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

Zur Person

Prof. Dr. László Juhász

geb. 1970

Lehrgebiet: Mess- und Regelungstechnik

Start: 1.9.2015

Material:

Ergänzendes Material wird hin- und wieder auf dem **iLearn** Plattform der THD verfügbar

iLearn.th-deg.de → Anmelden → Al3 - Messtechnik

Erreichbarkleit: THD, C-218, Sprechzeiten Donnerstag 9:45-10:45

Tel: 0991 / 3615-532

E-Mail: laszlo.juhasz@th-deg.de

Vorlesungsinhalte: Messtechnik

- 1. Einleitung
- 2. Grundlagen
- 3. Messung elektrischer Größen
- 4. Komponenten
- 5. Messung nicht-elektrischer Größen

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

1. Einleitung: Vorlesungsinhalte

- 1.1 Organisatorisches
- 1.2 Literaturhinweise
- 1.3 Physikalische Größen, Einheiten und Vorsätze

.

1. Einleitung: 1.2 Literatur zur Vorlesung:

1.2.1 Bücherauswahl

Autor	Titel	Verlag
WJ. Becker, K. W. Bonfig, K. Höing	Handbuch Elektrische Messtechnik	Hüthig Verlag
K. Bergmann	Elektrische Messtechnik	Vieweg + Teubner
R. Felderhoff, U. Freyer	Elektrische und elektronische Messtechnik	Hanser Verlag
G. Heyne	Elektronische Messtechnik	Oldenbourg Verlag
R. Lerch	Elektrische Messtechnik	Springer Verlag
R. Lerch	Elektrische Messtechnik (Übungsbuch)	Springer Verlag
Th. Mühl	Einführung in die elektrische Messtechnik	Vieweg + Teubner
J. Niebuhr, G. Lindner	Physikalische Messtechnik mit Sensoren	Oldenbourg Verlag
R. Parthier	Messtechnik	Vieweg + Teubner
W. Pfeiffer	Elektrische Messtechnik	VDE Verlag
E. Schrüfer	Elektrische Messtechnik	Hanser Verlag
Wolf-Jürgen Becker, Walter Hofmann	Aufgabensammlung Elektrische Messtechnik	Vieweg+Teubner
N. Weichert, M. Wülker	Messtechnik und Messdatenerfassung	Oldenbourg Verlag

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

CHNISCHE T

1. Einleitung: 1.2 Literatur zur Vorlesung:

1.2.1 Bücherauswahl

Reinhard Lerch

Elektrische Messtechnik: Analoge, digitale und computergestützte Verfahren

Verlag: Springer; 2012 Sprache: Deutsch ISBN-10: 3642226086 ISBN-13: 978-3642226083

Über das Bibliothek der THD herunterladbar!*

*Funktioniert nur aus der Hochschulnetz oder durch VPN

Į

1.2 Literatur zur Vorlesung: 1.2.1 Bücherauswahl

Elmar Schrüfer, Leonhard M. Reindl, Bernhard Zagar

Elektrische Messtechnik: Messung elektrischer und nichtelektrischer Größen

Verlag: Carl Hanser Verlag GmbH, 2014

Sprache: Deutsch **ISBN-10:** 3446442081 **ISBN-13:** 978-3446442085

Über das Bibliothek der THD herunterladbar!*

*Funktioniert nur aus der Hochschulnetz oder durch VPN

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

,

1. Einleitung:

1.2 Literatur zur Vorlesung: 1.2.1 Bücherauswahl

Wolf-Jürgen Becker, Walter Hofmann

Aufgabensammlung Elektrische Messtechnik: 337 Übungsaufgaben mit Lösungen

Verlag: Vieweg+Teubner Verlag, 2014

Sprache: Deutsch

ISBN: 978-3-658-05155-6 (Print) 978-3-658-05156-3 (Online)

Über das Bibliothek der THD herunterladbar!*

*Funktioniert nur aus der Hochschulnetz oder durch VPN

1.2 Literatur zur Vorlesung: 1.2.1 Bücherauswahl

Reinhard Lerch, Manfred Kaltenbacher, Franz Lindinger, Alexander Sutor

Elektrische Messtechnik: Übungsbuch

Verlag: Springer; Auflage: 2. Aufl. (27.

September 2004)
Sprache: Deutsch
ISBN-10: 3540218831
ISBN-13: 978-3540218838

Auch als E-Book (PDF ohne DRM Kopierschutz) verfügbar

http://www.springer.com/de/book/9783540264378

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

1. Einleitung:

1.2 Literatur zur Vorlesung:

1.2.2 Normen (IEC 60617, Auszug)

ф	Ideale Stromquelle	v	Voltmeter
ф	Ideale Spannungsquelle	Alsing	Amperemeter (für Blindstrom)
8	Spannungswandler, allg.	4	Veränderbarer Widerstand
4	Diode		Induktivität

1.2 Literatur zur Vorlesung: 1.2.1a Motivation

Der Begriff des Messens

Voraussetzungen

- Existenz eines Zahlensystems
- Definition einer Messgröße
- · Festlegung der Einheit

Elektrische Messtechnik

- Rein elektrische Größen
- Nicht-elektrische Größen

Teilaufgaben

- Gewinnung des Messsignals
- Verarbeitung und Übertragung des Messsignals
- Darstellung, Dokumentation und Speicherung der Messwerte

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

11

1. Einleitung:

1.2 Literatur zur Vorlesung: 1.2.1a Motivation

Ziele beim Messen

- Sicherstellen der Genauigkeit (Kalibrierung)
- Verrechnung (Energie, Masse, Stückzahl)
- Prüfung
- Qualitätssicherung (z.B. Materialprüfung)
- Regelung
- Optimierung
- Überwachung (z.B. Schadensfrüherkennung)
- Meldung / Abschaltung (Schutzsystem)
- Mustererkennung (Gestalt, Oberfläche, Geräusch)

1.2 Literatur zur Vorlesung: 1.2.1b Begriffe

Maßsystemen, Einheiten, Naturkonstanten

Physikalische Größe = Zahlenwert · Einheit

Man ist bestrebt, die Einheiten durch unvergängliche atomare Größen zu definieren, die an jedem Ort und zu jeder Zeit mit hoher Genauigkeit bestimmt werden können.

Naturkonstante	Zeichen	Zahlenwert	Einheit
Elektrische Elementarladung	e_0	$1,6022 \cdot 10^{-19}$	As
Elektrische Feldkonstante	ε_0	$8,8542 \cdot 10^{-12}$	$AsV^{-1}m^{-1}$
Lichtgeschwindigkeit im Vakuum	c_0	299 792 458	ms^{-1}
Magnetische Feldkonstante	μ_0	$1,2566 \cdot 10^{-6}$	$VsA^{-1}m^{-1}$
Masse des Elektrons	m_0	$9,1095 \cdot 10^{-31}$	kg
Plancksches Wirkungsquantum	h	$6,6262 \cdot 10^{-34}$	$_{ m Js}$

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

13

1. Einleitung: 1.2 Literatur zur Vorlesung: 1.2.1b Begriffe

- Messen ist der experimentelle Vorgang, durch den ein spezieller Wert (Messwert) einer physikalischen Größe (Messgröße) als Vielfaches (Maßzahl) einer Einheit oder eines Bezugswertes ermittelt wird.
- Messprinzip heißt die physikalische Erscheinung, die bei der Messung benutzt wird.
- Ein Messgerät liefert Messwerte und deren Verknüpfungen.
- Als **Hilfsgeräte** werden Komponenten bezeichnet, die nicht unmittelbar der Aufnahme, Umformung oder der Ausgabe von Messwerten dienen.
- Eine **Messeinrichtung** besteht aus einem oder mehreren zusammenhängenden Messgeräten mit den Zusatzeinrichtungen, die ein Ganzes bilden.
- **Messsignale** stellen Messgrößen im Signalflussweg der Messeinrichtung durch zugeordnete physikalische Größen dar.
- Das Messergebnis ist ein Wert, der i.Allg. aus mehreren Messwerten einer physikalischen Größe ermittelt wird. Ein einzelner Messwert kann auch das Ergebnis sein.

1.3 Physikalische Größen, Einheiten u. Vorsätze: 1.3.1 Basisgrößen

Größe	Formel- zeichen	Basis- einheit	Abk. d. Einheit	Definition der Basiseinheit
Zeit	t	Sekunde	S	Vielfaches der Periodendauer eines atomaren Übergangs
Masse	m	Kilogramm	kg	Masse eines Eichkörpers
Länge	1	Meter	m	Streckenlänge, die Licht in def. Zeit zurücklegt
Temperatur	Т	Kelvin	K	Bruchteil der Wasser- temperatur am Tripelpunkt
Stromstärke	I	Ampere	Α	Stromstärke, die zwischen 2 Leitern def. Kraft erzeugt
Lichtstärke	I_{L}	Candela	cd	Lichtstärke einer Strahlungsquelle mit def. Frequenz und Strahlstärke
Stoffmenge	n	Mol	mol	Stoffmenge wie Atomanzahl in def. Masse vom ¹² C

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

1. Einleitung: 1.3 Physikalische Größen, Einheiten u. Vorsätze: 1.3.2 Vorsätze > 1

Faktor	Vorsatz	Vorsatz- zeichen	Beispiele
10 ¹	Deka	da	
10 ²	Hekto	h	Durchschnittlicher jährlicher Bierkonsum pro Kopf in Bayern = 1,554 hl
10 ³	Kilo	k	Gesamtlänge der deutschen Autobahn = 12700 km
10 ⁶	Mega	M	Nettoleistung Isar II = 1410 MW
10 ⁹	Giga	G	durchschnittliche Energie eines Blitzes = 1,5 GJ
10 ¹²	Tera	Т	Abstand Sonne – Saturn = 1,4 Tm
10 ¹⁵	Peta	Р	Jährlicher Primärenergieverbrauch in Bayern = 1978 PJ
10 ¹⁸	Exa	E	Jährlicher Primärenergieverbrauch in Deutschland = 13,842 EJ

1.3 Physikalische Größen, Einheiten u. Vorsätze: 1.3.3 Vorsätze < 1

Faktor	Vorsatz	Vorsatz- zeichen	Beispiele
10 ⁻¹	Dezi	d	Maximal zugelassene Breite und Tiefe von Fußballtorpfosten = 1,2 dm
10 ⁻²	Centi	С	Durchmesser der 1-€-Münze = 2,325 cm
10 ⁻³	Milli	m	Dicke der 1-€-Münze = 2,33 mm
10 ⁻⁶	Mikro	μ	Größe von Bakterien ~ μm
10 ⁻⁹	Nano	n	typische Größe von organischen Molekülen = 20 nm
10 ⁻¹²	Piko	р	Kapazität von Kondensatoren ~ pF
10 ⁻¹⁵	Femto	f	Pulsdauer von Hochleistungslaser = 100 fs
10 ⁻¹⁸	Atto	а	Dauer ultrakurzer Lichtpulse = 650 as

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

1. Einleitung:

1.3 Physikalische Größen, Einheiten u. Vorsätze: 1.3.4 Abgeleitete Größen (Elektromagnetismus/ Auswahl)

Größe	Formel- zeichen	Kohärente Einheiten	Basis- Einheiten	Bemerkungen
Ladung	q, Q	С	A·s	q: Ladung eines Ladungsträgers,Q: Gesamtladung
Spannung	u, U	$V = \frac{W}{A}$	$\frac{\text{kg} \cdot \text{m}^2}{\text{s}^3 \cdot \text{A}}$	u: t-abh. Spannung u(t);U: Spannungswert
(Ohmscher) Widerstand	R	$\Omega = \frac{V}{A}$	$\frac{kg \cdot m^2}{s^3 \cdot A^2}$	
Arbeit, Energie	W	$J = V \cdot A \cdot S = W \cdot S$	$\frac{kg \cdot m^2}{s^2}$	1 eV = 1,6022~10 ⁻¹⁹ J
Leistung	Р	$W = V \cdot A = \frac{J}{S}$	$\frac{\text{kg} \cdot \text{m}^2}{\text{s}^3}$	
Elektrische Feldstärke	Е	$\frac{N}{C} = \frac{V}{m}$	$\frac{kg}{A \cdot s^3}$ $A^2 \cdot s^4$	
Kapazität	С	$F = \frac{C}{V}$	$\frac{A^2 \cdot s^4}{m^2 \cdot kg}$	
Magnetische Feldstärke	В	$T = \frac{N \cdot s}{C \cdot m} = \frac{V \cdot s}{m^2}$	$\frac{kg}{A \cdot s^2}$	$1 \text{ G} = 10^{-4} \text{ T}$
Magnetischer Fluss	Φ	$Wb = V \cdot s = T \cdot m^2$	$\frac{kg \cdot m^2}{A \cdot s^4}$	
Induktivität	L	$H = \frac{V \cdot s}{A} = \frac{Wb}{A}$	$\frac{kg \cdot m^2}{A^2 \cdot s^4}$	

1.3 Physikalische Größen, Einheiten u. Vorsätze: 1.3.5 Griechische Buchstaben

Name	Buch- staben	Verwendung
Alpha	Α,α	Winkel, Winkelbeschleunigung
Beta	Β,β	Winkel
Gamma	Γ,γ	Winkel, Wichte
Delta	Δ,δ	Winkel
Epsilon	Ε,ε	Influenzkonstante, Dehnung
Zeta	Z,ζ	Widerstandsbeiwert
Eta	Η,η	Wirkungsgrad
Theta	Θ, θ	Winkel
Jota	I, t	
Карра	Κ,κ	Adiabatenexponent
Lambda	Λ,λ	Wellenlänge
Му	Μ, μ	Induktionskonstante

Name	Buch- staben	Verwendung
Ny	Ν,ν	Frequenz
Xi	Ξ,ξ	Schall- auslenkung
Omikron	О, о	
Pi	Π,π	
Rho	Ρ, ρ	Dichte
Sigma	Σ,σ	Stefan- Boltzmann- Konstante
Tau	Τ, τ	Zeit
Ypsilon	Υ,υ	
Phi	Φ, φ	Winkel
Chi	Χ, χ	Suszeptibilität
Psi	Ψ,ψ	
Omega	Ω,ω	Kreisfrequenz

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

19

Empfohlene Literatur für die Einleitung

Autor	Titel	Verlag
R. Lerch	Elektrische Messtechnik	Springer
R. Leicii	Kapitel 1 und 2	Verlag
E. Schrüfer	Elektrische Messtechnik	
L. Reindl	Kapitel 1.1 und 1.2	Hanser Verlag
B. Zagar		

2. Grundlagen: Vorlesungsinhalte

- 2.1 Elektrotechnische Grundlagen
- 2.2 Grundstruktur von Messeinrichtungen
- 2.3 Genauigkeitskriterien
- 2.4 Übertragungsverhalten von Messgliedern
- 2.5 Messfehler und Messunsicherheiten

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

2. Grundlagen:

2.1 Elektrotechnische Grundlagen: 2.1.1 Wiederholung (Auswahl)

• Knotensatz (1. Kirchhoffsches Gesetz, Gesetz von der Stromsumme):

$$\sum_{i=1}^{n} I_{i} = 0$$

• Maschensatz (2. Kirchhoffsches Gesetz, Gesetz von der Spannungssumme):

$$\sum_{i=1}^n U_i = 0$$

- Zweigstromanalyse
- Überlagerungsverfahren (Superpositionsverfahren)
- Thévenin- und Norton-Äquivalent

2. Grundlagen:

2.1 Elektrotechnische Grundlagen:

2.1.1 Wiederholung (Zweigstromanalyse)

- 3 Zweipole z: qelb, orange, grün
- 2 Knoten k, mit (k-1)
- ⇒ 1 unabhängige Knotengleichung
- mit m=z-(k-1)
- 2 unabhängige Maschengleichungen

Knoten 1
$$I_1 - I_2 - I_3 = 0$$

Masche 1
$$U_1 - R_1 I_1 - R_3 I_1 - R_5 I_3 = 0$$

Masche 2
$$R_4I_2 - U_2 + R_2I_2 - R_5I_3 = 0$$

$$U_1 = 1 \text{ V} \quad R_1 = 50 \Omega$$

$$U_1 = 1 \text{ V} \quad R_1 = 50 \Omega$$

 $U_2 = 3 \text{ V} \quad R_2 = 100 \Omega$

$$R_3 = 2 k\Omega$$

$$R_4 = 3 k\Omega$$

$$R_5 = 5 k\Omega$$

http://elektroniktutor.oszkim.de/analogtechnik/netzwerk.html

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

2. Grundlagen:

2.1 Elektrotechnische Grundlagen: 2.1.1 Wiederholung (Überlagerungsverfahren)

Überlagerungssatz / Anwendungsbeispiel

a) Schaltung, b) Teilschaltung 1, c) Teilschaltung 2

(aus: H. Frohne et al: Moeller Grundlagen der Elektrotechnik)

Siehe auch:

Quelle:

http://elektroniktutor.oszkim.de/analogtechnik/netzwerk.html

2. Grundlagen:

2.1 Elektrotechnische Grundlagen:

2.1.1 Wiederholung (Überlagerungsverfahren)

Quelle:

http://elektroniktutor.oszkim.de/analogtechnik/netzwerk.html

Fakultät Elektrotechnik, Medientechnik und Informatik- Vorlesung - Prof. Dr. László Juhász

TECHNISCHE THO

2. Grundlagen:

2.1 Elektrotechnische Grundlagen:

2.1.1 Wiederholung Thévenin-Äquivalent

Thévenin und Norton-Äquivalent

Siehe auch:

http://elektroniktutor.oszkim.de/analogtechnik/u_ersatz.html http://elektroniktutor.oszkim.de/analogtechnik/i_ersatz.html