1 Part I: Choose the correct answer

1.1 Gradient Descent and smoothness

Question 1: Define $f(x) = ax^2 + b$, $x \in \mathbb{R}$. Consider running gradient descent with a constant-step size. For which one of the following statements, is it **NOT** possible to find a combination of starting point, step size and positive real numbers a and b where the statement happens at some step t?

- 1. $x_{t+1} < 0 < x_{t+2} < x_t$
- $2. \ x_{t+1} < x_{t+2} < 0 < x_t$
- 3. $x_{t+1} < 0 < x_t < x_{t+2}$
- 4. $x_{t+1} \neq x_t, x_t = x_{t+2}$

Question 2: Define $f(x) = x^4$ with domain $D_f = [-2, 2]$. Assume we want to find a point x_T with $f(x_T) \le \epsilon$ starting from $x_0 \in D_f$. Among the following statements, which is true and provides the tightest bound?

- 1. Using Nesterov acceleration and an appropriate step size, we have $T \in \mathcal{O}(\frac{1}{\epsilon})$ since f is smooth and convex over D_f .
- 2. Using Nesterov acceleration and an appropriate step size, we have $T \in \mathcal{O}(\frac{1}{\sqrt{\epsilon}})$ f is smooth and convex over D_f .
- 3. Using Gradient Descent and an appropriate step size, we have $T \in \mathcal{O}(\frac{1}{\sqrt{\epsilon}})$ since f is smooth and convex over D_f .
- 4. Using Gradient Descent and an appropriate step size, we have $T \in \mathcal{O}(\log(1/\epsilon))$ since f is smooth and strongly convex over D_f .

1.2 Subgradient Descent

Question 3: Consider the function $f(x) = 4x - x^2$ for $x \in \mathbb{R}$. The gradient and the subgradient at x = 2 are, respectively,

- 1. 0, [-1, 1]
- $2. 0, \{0\}$
- 3. 0, does not exist
- $4. 2, \{2\}$

1.3 Stochastic Gradient Descent

Question 4: Assume we perform constant step-size stochastic gradient descent on $f(x) = \frac{1}{2}(f_1(x) + f_2(x))$ where $f_1(x) = (x-1)^2$ and $f_2(x) = (x+1)^2$, i.e., $x_{t+1} = x_t - a\nabla f_{i_t}(x_t)$ at each iteration i_t is chosen uniformly random in $\{1,2\}$. Which of the following statement(s) is (are) false:

- 1. For a = 1, we can guarantee that the iterates stay in a bounded set.
- 2. x = 0 is the global minimum of f.
- 3. Whatever the choice of constant step-size a > 0, the iterates cannot converge as t goes to infinity.
- 4. For a=2, for any starting point x_0 and after the first iteration, the iterates will belong to [-1,+1].

2 Part II: True or False

Question 5: If a function is strictly convex, then it is also strongly convex.

- 1. True
- 2. False

Question 6: For a convex, L-smooth function f with a global minimum and running gradient descent with step size a = 1/L we have

$$\frac{1}{T} \sum_{t=0}^{T-1} \|\nabla f(x_t)\|^2 \le \mathcal{O}\left(\frac{1}{T}\right), \quad T > 0.$$

- 1. True
- 2. False

3 Part III: Open Questions

Question 1:Assume that f has L-Lipschitz gradients, i.e., $\forall (x,y), \|\nabla f(x) - \nabla f(y)\|_2 \leq L\|x - y\|_2$. The gradient descent update: $x_{t+1} = x_t - a\nabla f(x_t)$, with step size $a = \frac{1}{L}$. Show the following inequality

$$f(x_{t+1}) \le f(x_t) - \frac{1}{2L} \|\nabla f(x_t)\|_2^2$$

How do you interpret the above inequality?

Question 2: Assume the same as in Question 1, show that

$$f(x_{t+1}) - f(x_t) \le \frac{L}{2} (\|x_t - x^*\|_2^2 + \|x_{t+1} - x^*\|_2^2)$$