Análisis de los errores incurridos en la localización de fuentes de actividad neuronal por diversas suposiciones en los valores de conductividad cerebral

Óscar E. Colunga González

February 15, 2024 Version: My First Draft

Clean Thesis Style University

CleanThesis

Department of Clean Thesis Style Institute for Clean Thesis Dev Clean Thesis Group (CTG)

Documentation

Análisis de los errores incurridos en la localización de fuentes de actividad neuronal por diversas suposiciones en los valores de conductividad cerebral

Óscar E. Colunga González

1. Reviewer Dr. Mauricio Carrillo Tripp

Department of Clean Thesis Style Clean Thesis Style University

2. Reviewer Dr. Moisés Santillán Zerón

Department of Clean Thesis Style Clean Thesis Style University

Supervisors Dra. Dania Gutiérrez Ruíz

February 15, 2024

Óscar E. Colunga González

Análisis de los errores incurridos en la localización de fuentes de actividad neuronal por diversas suposiciones en los valores de conductividad cerebral

Documentation, February 15, 2024

Reviewers: Dr. Mauricio Carrillo Tripp and Dr. Moisés Santillán Zerón

Supervisors: Dra. Dania Gutiérrez Ruíz

Clean Thesis Style University

Clean Thesis Group (CTG)
Institute for Clean Thesis Dev
Department of Clean Thesis Style
Street address
Postal Code and City

Abstract

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Abstract (different language)

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Acknowledgement

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

This is the second paragraph. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language. Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Contents

1	Intr	oducción	1
	1.1	Electroencefalografía: uso clínico y herramienta de investigación	1
	1.2	Problema Directo del EEG	1
	1.3	Problema Inverso del EEG	3
	1.4	La razón de conductividad cerebro/cráneo como objeto de estudio .	4
2	Hip	ótesis y Objetivos	7
	2.1	Hipótesis	7
	2.2	Objetivo Principal	7
	2.3	Objetivos Particulares	7
3	Tral	pajo Previo Relacionado	9
	3.1	Related Work Section 2: Review on solving the forward problem in	
		EEG source analysis	9
	3.2	Related Work Section 1: Gutierrez 2004	9
	3.3	Related Work Section 3: McCann 2019	9
4	Met	odología	11
	4.1	Método Propuesto	11
	4.2	Construcción del Modelo Geométricamente Realista	13
	4.3	Variación de la conductividad y cálculo de la matriz de ganancia por	
		el método de elementos de frontera	15
	4.4	Dipolos de corriente e implementación de la solución del problema	
		directo	17
	4.5	Implementación del Problema Inverso del EEG	18
	4.6	Frontera de Cramer-Rao	19
Bi	bliog	raphy	21

Introducción

My own brain is to me the most unaccountable of machinery - always buzzing, humming, soaring roaring diving, and then buried in mud. And why? What's this passion for?

- Virgina Woolf

1.1 Electroencefalografía: uso clínico y herramienta de investigación

1.2 Problema Directo del EEG

Para generar mediciones simuladas de EEG es necesario resolver el problema directo, el cual consiste en calcular el potencial eléctrico presente en el cuero cabelludo mediante el modelado de la transducción de la corriente eléctrica generada por una fuente posicionada en la corteza cerebral, en este caso siendo modelada como un dipolo eléctrico que representa la actividad neuronal en eventos de respuesta evocada (ER) [1], [2].

Dadas las condiciones cuasi-estáticas del EEG [3] el cálculo del potencial generado por el dipolo de corriente con momento dipolar $\mathbf{d} = \partial e_{\mathbf{d}}$ con posición \mathbf{r}_{dip} en un medio conductor infinito con conductividad σ se describe por:

$$V(\mathbf{r}, \mathbf{r}_{dip}, \mathbf{d}) = \frac{\mathbf{d} \cdot (\mathbf{r} - \mathbf{r}_{dip})}{4\pi\sigma ||\mathbf{r} - \mathbf{r}_{dip}||^3},$$
(1.1)

con r siendo la posición donde el potencial es calculado [2].

El método de elementos de frontera (BEM por sus siglas en inglés *Boundary-element-method*) puede ser utilizado para la solución del problema directo sobre un modelo geométricamente realista [4]. Este método es capaz de obtener el campo eléctrico

sobre un volumen problema calculando el potencial inducido por una fuente de corriente en las interfaces y frontera del volumen [2]. Nuestro modelo geométricamente realista es el volumen problema y las mallas que lo componen son las interfaces que tienen diferentes valores de conductividad dependiendo del tejido representado, las pequeñas áreas triangulares de las mallas son los elementos de frontera en los que se calculará el potencial inducido por el dipolo eléctrico.

El modelo matemático que describe el potencial $V(\mathbf{r})$ de cualquier punto \mathbf{r} en un volumen conductor dividido por elementos de frontera es:

$$V(r) = \frac{2\sigma_0}{\sigma_k^- + \sigma_k^+} V_0(r) + \frac{1}{2\pi} \sum_{i=1}^R \frac{\sigma_j^- - \sigma_j^+}{\sigma_k^- + \sigma_k^+} \int_{r' \in S_j} V(r') \frac{r' - r}{||r' - r||^3} \partial S_j, \tag{1.2}$$

donde σ_0 corresponde al medio en el que el dipolo fuente está localizado (la malla de la corteza cerebral) y $V_0(\mathbf{r})$ es el potencial en \mathbf{r} para un medio infinito con conductividad σ_0 como en la eq. (1.1). σ_j^- y σ_j^+ son las conductividades de los compartimentos interno y externo divididos por la interfaz S_j . ∂S es un vector orientado ortogonalmente a un elemento de superficie y $||\partial S||$ el área de ese elemento de superficie [2].

Considerando que la solución se busca en un volumen conductor de múltiples interfaces S_j con N número de triángulos, el potencial es calculado en el centro de cada uno de estos con la eq. (1.2). Por esta razón la integral sobre la interfaz S_j se reescribe como una sumatoria de integrales sobre esta superficie:

$$V(r) = \frac{2\sigma_0}{\sigma_r^- + \sigma_r^+} V_0(r) + \frac{1}{2\pi} \sum_{k=1}^R \frac{\sigma_k^- - \sigma_k^+}{\sigma_r^- - \sigma_r^+} \sum_{j=1}^{N_{S_k}} \int_{\Delta_{S_{k,j}}} V(r') \frac{r' - r}{||r' - r||^3} \partial S_k, \quad (1.3)$$

cuya integral se calcula sobre $\Delta_{S_j,k}$, el j-ésimo triángulo en la superficie S_j , y R es el número de interfaces en el volumen [2].

Estas ecuaciones pueden ser transformadas en un set de ecuaciones lineares:

$$V = BV + V_0, \tag{1.4}$$

Donde V y V_0 son vectores que denotan el potencial buscado en cada nodo y el potencial en un medio infinito respectivamente. B corresponde a la matriz

generada por las integrales, la cual depende de la geometría de las superficies y la conductividad asignada a cada una de estas [2].

1.3 Problema Inverso del EEG

Como su nombre lo indica; la contraparte del problema directo del EEG es el problema inverso. Si el problema directo se enfoca en obtener una solución para el campo eléctrico generado sobre un volumen conductor a partir de una fuente de corriente, el problema inverso consiste en identificar la posición de dichas fuentes de actividad eléctrica al modelar la amplitud de los dipolos eléctricos y seleccionando los que tengan una mayor actividad [5]. Para su cálculo es necesario: las mediciones de EEG que en nuestro caso son las obtenidas mediante el problema directo, el volumen conductor, y la matriz de ganancia con su correspondiente plantilla del sistema de EEG.

El beamformer LCMV es un filtro espacial que aplicado a la solución del problema inverso, relaciona el campo electromagnético medido en el exterior y superficie de la cabeza con la actividad neuronal subyacente utilizando la covarianza de las señales medidas y los modelos de actividad de las fuentes y transferencia de señal entre estas y los sensores, que en nuestro caso se trata de la matriz de ganancia computada con BEM. Los weights o ponderación del filtro espacial se calculan para cada ubicación en la región de interés (ROI) y acorde a Van Veen y Jaiswal [6], [7] su formulación es la siguiente:

Sea x una señal vector de forma $M \times 1$ de datos MEG o EEG medidos con M sensores, y N es el número de puntos en la ROI con coordenadas r_j , (j=1,...,N). Entonces la fuente $y(r_j)$ en cualquier punto r_j puede ser estimada como la combinación ponderada de la medición x con una matriz de $M \times 3$ denominada $W(r_j)$, de forma que

$$y(r_j) = W^T(r_j)x (1.5)$$

en esta ecuación $W(r_j)$ se conoce como el filtro espacial para una fuente en la posición r_j . Este tipo de filtro espacial produce un beamformer o formador de haces de tipo vectorial al estimar por separado la actividad para tres orientaciones de fuente ortogonales, correspondientes a las tres columnas de la matriz. Siguiendo el desarrollo de Van Veen y Jaiswal [6], [7], el filtro espacial $W(r_j)$ para el beamformer vectorial se define como

$$W^{T}(r_{i}) = (L^{T}(r_{i})C^{-1}L(r_{i}))^{-1}L^{T}(r_{i})C^{-1}$$
(1.6)

Aquí $L(r_j)$ es la matriz de ganancia con forma $M\times 3$ que define la contribución de una fuente dipolar en la posición r_j a la medición x, y C es la matriz de covarianza calculada a partir de las mediciones de EEG o MEG. Para realizar la localización de las fuentes utilizando LCMV, se estima la varianza resultante $Var(y(r_j))$ en cada punto del espacio de la fuente [6], [7], en nuestro caso siendo la malla de la corteza cerebral, lo que resulta en

$$\widehat{\text{Var}}(y(r_i)) = \text{Trace}[L^T(r_i)C^{-1}L(r_i)]^{-1}.$$
(1.7)

Por lo general, la señal medida está contaminada por ruido no uniformemente distribuido y por lo tanto, la varianza de la señal estimada se normaliza con la varianza del ruido proyectado C_n calculada sobre parte de las mediciones en estado basal o en reposo (baseline noise). Esta estimación normalizada es denomida Índice de Actividad Neural (NAI del inglés Neuronal Activity Index) [6] y puede expresarse como

$$NAI(r_j) = \frac{\text{Trace}\left\{ [L^T(r_j)C^{-1}L(r_j)]^{-1} \right\}}{\text{Trace}\left\{ [L^T(r_j)C_n^{-1}L(r_j)]^{-1} \right\}}$$
(1.8)

Al escanear y procesar todos los puntos en la región de interés en el espacio de la fuente, las mediciones de EEG y MEG se transforman en un mapa del NAI que puede ser proyectado sobre la misma malla de la corteza cerebral del modelo geométricamente realista, efectivamente resolviendo el problema inverso. Cabe mencionar que esta formulación es solo para un instante en el tiempo, lo que resulta en un snapshot de la actividad en ese momento de las mediciones de EEG/MEG, si se quiere observar el cambio de la actividad con respecto al tiempo, se tiene que calcular el kernel para el intervalo de interés.

1.4 La razón de conductividad cerebro/cráneo como objeto de estudio

La idea de estimar la razón de la conductividad cerebro/cráneo nace del uso del EEG como herramienta de localización de fuentes de actividad neuronal, las cuales

son posibles de estimar con las mediciones del potencial eléctrico sobre el cuero cabelludo obtenidas de EEG en cada uno de sus electrodos, y subsecuentemente aplicando técnicas de procesamiento digital de señales en tales mediciones. La problemática de este acercamiento es que es necesario contar con un modelo *a priori* de las posibles fuentes de actividad neuronal con la finalidad de tener puntos de referencia para la proyección de las mediciones de EEG y su ajuste al modelo. Este acercamiento a la estimación de fuentes de actividad neuronal se define como el problema directo (solución de un modelo de fuentes de actividad neuronal) y el problema inverso (solución para la localización de fuentes de actividad neuronal) del EEG [8]. Dado que una parte del problema no puede ser resuelta sin tomar suposiciones de la solución de la otra y de los parámetros bioelectromagnéticos de los tejidos que componen la cabeza como las conductividades, este acercamiento se considera un problema abierto, en particular el problema inverso del EEG por la multitud de posibles voltajes resultantes y su inestabilidad derivada de la sensibilidad a pequeños cambios en los datos como el ruido generado por el equipo de EEG.

Cuando este procedimiento es implementado para la localización de fuentes de actividad neuronal, estas son las que se toman como variable independiente con la intención de encontrar la posición que mejor se ajusta a las mediciones, mientras que como se comentó anteriormente, las propiedades bioelectromagnéticas en particular la conductividad de los tejidos, se asumen como conocidas utilizando valores estándar (i.e. 0.33 S/m para el cerebro y 0.0042 S/m para el cráneo). Estos valores aunque son utilizados ampliamente en el área de las neurociencias [9]-[11], han sido debatidos por múltiples estudios con acercamientos novedosos de la estimación de las conductividades obteniendo valores significativamente diferentes al estándar [12], hablando en términos de la razón de la conductividad cerebro/cráneo (BSCR Brain-scalp-conductivity-ratio) esta es una diferencia hasta 4 veces mayor (1:80 vs 1:20). Dada la multitud de diferentes soluciones a una misma implementación del problema inverso del EEG, se puede considerar que el uso de diferentes valores de conductividad también pueden afectar al resultado y puede ser utilizado como una variable en el cálculo del problema inverso en donde el caso de estudio es la estimación de la razón de la conductividad misma, claro, teniendo en cuenta que no podemos tener dos variables independientes, tendríamos que mantener en este caso la posición de las fuentes de actividad neuronal como conocidas para la solución del problema inverso.

Hipótesis y Objetivos

2.1 Hipótesis

Existen rangos de error tolerables al definir una razón de conductividad eléctrica cerebro/cráneo en la solución del problema inverso en EEG y la tolerancia estará dictada por la frontera de Cramér-Rao.

2.2 Objetivo Principal

Implementar un método de estimación del valor de la razón entre la conductividad eléctrica cerebro/cráneo basado en el cálculo de modelos de electroencefalograma (EEG) rápidamente reconfigurables en geometrías realistas obtenidas con el método de elementos de frontera (BEM del inglés *Boundary element method*).

2.3 Objetivos Particulares

- Implementar el método del cálculo de EEG rápidamente recalculable propuesto por Ermer *et al.* [4] para el caso de una fuente de actividad cerebral conocida y valores típicos del BSCR.
- Calcular el costo computacional de dicha implementación para una serie de valores discretos del BSCR.
- Probar la aplicabilidad del método propuesto en una prueba piloto para el caso de datos reales de EEG de una respuesta sensorial evocada MODIFICAR O REMOVER.

Trabajo Previo Relacionado

3

A picture is worth a thousand words. An interface is worth a thousand pictures.

— Ben Shneiderman (Professor for Computer Science)

- 3.1 Related Work Section 2: Review on solving the forward problem in EEG source analysis
- 3.2 Related Work Section 1: Gutierrez 2004
- 3.3 Related Work Section 3: McCann 2019

Metodología 4

En esta sección revisamos el método propuesto para probar nuestra hipótesis junto a las consideraciones tomadas para su uso. Las divisiones principales se enfocan en: la preparación del modelo geométrico utilizado para la aproximación estructural y las propiedades bioelectromagnéticas de los tejidos incluidas las variaciones de conductividad, la solución del problema directo utilizando dipolos eléctricos que modelan puntos fijos de actividad neuronal equivalentes a respuestas evocadas (ER por sus siglas en inglés *Evoked response*) y un vector tridimensional de magnitud variable que representa el comportamiento de dicho dipolo, la solución del problema inverso de las señales simuladas para identificar la posición de las fuentes de actividad neuronal, y por último un análisis estadístico del estimador utilizando la frontera de Cramer-Rao para verificar su desempeño como estimador no sesgado.

4.1 Método Propuesto

Con la finalidad de estimar el BSCR, diseñamos un experimento que nos permitiría construir un estimador al implementar una solución del problema inverso con datos completamente simulados, y por ende con total control sobre las variables definidas como: la conductividad, la posición, orientación y magnitud de las fuentes de actividad neuronal, y el ruido añadido a las mediciones. El proceso del experimento es una implementación completa del problema directo e inverso del EEG con un posterior análisis estadístico, el problema directo nos permite obtener un modelo detallado de la actividad neuronal en la cabeza y simular mediciones de EEG con diferentes valores del BSCR, a su vez, el problema inverso resolverá las posiciones de las fuentes simuladas utilizando las mediciones generadas por el modelo del problema directo, y el análisis estadístico nos permitirá obtener la estimación de los valores de conductividad con base en el error incurrido en la localización de las fuentes de actividad neuronal respecto a su posición real agrupando por los distintos valores de conductividad utilizados. Basándonos en trabajo previo, decidimos implementar el filtrado espacial, en particular el Beamformer de Van Veen [13] como método de la solución del problema inverso, el cual es catalogado como un método paramétrico, también conocido como Método de Dipolo de Corriente

Equivalente [8]. Como su nombre lo indica, estos métodos consisten en buscar en una serie predefinida de dipolos de corriente el que mejor se ajuste en su posición y orientación a las fuentes que generaron las mediciones de EEG.

Con el fin de realizar esta prueba de ajuste de los dipolos de corriente equivalente (solución del problema inverso) es necesario obtener la solución del problema directo. Existen varios métodos para obtener dicha solución [1], de los cuales elegimos el método de elementos de frontera (BEM) para modelos geométricamente realistas [4]. La razón de elegir este método radica en el precedente del uso de modelos con geometrías más sencillas en estudios similares [14], esto debido a que el BEM resultaba ser no viable por su elevado gasto computacional al calcular de las matrices de ganancia. En la actualidad se cuenta con mayor facilidad de acceso a equipos de cómputo con el suficiente desempeño para obtener resultados en un tiempo razonable, esto aunado al desarrollo de métodos y software mucho más eficientes [15], [16] nos presenta la posibilidad de implementar el BEM para geometrías realistas como una evolución natural de los métodos utilizados anteriormente.

Fig. 4.1: Proceso del problema directo e inverso del EEG

Una vez establecidos los métodos a utilizar en el método directo e inverso, se procedió a recopilar y formular la información necesaria para realizar los cálculos. En el caso del problema directo los datos de entrada requeridos son: el modelo geométricamente realista que representará a los tejidos de la cabeza como un volumen conductor, una serie de dipolos que modelan el fenómeno de respuesta evocada, los valores a probar de la conductividad entre los tejidos, en específico la razón cerebro/cráneo, y por último el arreglo de sensores de EEG que medirán el campo eléctrico simulado. Como resultado, se obtiene una matriz de ganancia

dependiente de los valores de conductividad utilizados que dictamina como el arreglo de sensores de EEG captaría el campo eléctrico generado por las fuentes de actividad neuronal (dipolos) sobre la parte más superficial del modelo geométrico. Mientras que para el problema inverso, los datos de entrada consisten en: las mediciones de EEG simuladas a partir de la solución del problema directo, el mismo modelo geométrico con su arreglo de EEG correspondiente, las matrices de ganancia generadas en el problema directo, y las propiedades pertinentes al método de beamforming, como la matriz de covarianza de las mediciones y una matriz de covarianza del ruido. Como resultado final de este método, obtenemos un kernel de proyección de las fuentes de actividad neuronal que el beamformer pudo localizar. Lo que nos permite comparar la posición de los dipolos que fueron fijados en un principio en el problema directo contra la posición localizada por el beamformer con respecto a los diferentes valores de conductividad, y así obtener un estimador basado en los errores incurridos en la localización de estas fuentes.

4.2 Construcción del Modelo Geométricamente Realista

Entrando en detalles, la construcción del modelo geométricamente realista de los tejidos se basó en la plantilla "Colin27 Average Brain 2008" realizada por Aubert-Broche *et al* [17]. Esta consiste en una versión mejorada del modelo de Colin que resulta del promedio de 27 imágenes de resonancia magnética ponderadas en T1, T2, y densidad protónica, provenientes de diferentes mediciones del mismo sujeto [18].

Con la información recopilada de la anatomía del sujeto se generó mediante el software libre Brainstorm[19] un conjunto de mallas teseladas y anidadas que representan las fases entre los diferentes tejidos de interés *i.e.* cerebro, cráneo, y cuero cabelludo. Dado el alto costo computacional la resolución de las mallas es diferente dependiendo de la profundidad de las fases, siendo cerebro/cráneo y cráneo/cuero cabelludo (figs. 4.3b and 4.3c) las que mayor resolución tienen; 8640 triángulos y 4322 vértices, debido a que estas tienen una mayor sensibilidad al ser las más cercanas a la fuente de actividad neuronal y que representan por completo la capa de tejido óseo que servirá como volumen conductor, por estas razones es importante que ambas mallas tengan la misma resolución y no comprometan la precisión de los resultados. La fase del cuero cabelludo/aire (fig. 4.3d) tiene una resolución menor con 6480 triángulos y 3242 vértices, esta fue definida así porque

(a) Corte coronal

(c) Corte axial

Fig. 4.2: Resonancia magnética de Colin27

fue el límite de resolución computable con la RAM de la workstation, aún así, esta es una resolución alta comparada con el uso recomendado del software [20]. Por último se tiene una malla que representa la corteza cerebral (fig. 4.3a), esta tiene una resolución de 29988 triángulos compuestos de 15002 vértices, los cuales son importantes mencionar porque la finalidad de esta malla es tener un arreglo de "dipolos elementales" sobre los que se proyectarán los resultados, por esta razón aunque la malla es importante para el cálculo del campo eléctrico generado por actividad neuronal no influye drásticamente en el costo computacional y puede utilizarse una resolución mayor para representar con detalle los pliegues y concavidades de la corteza cerebral. Todas las mallas en conjunto representan nuestro volumen conductor (fig. 4.4) sobre el que se implementarán los cálculos de BEM y la proyección del resultado del beamformer.

Fig. 4.3: Mallas de las diferentes fases de los tejidos de la cabeza

4.3 Variación de la conductividad y cálculo de la matriz de ganancia por el método de elementos de frontera

Recapitulando, lo necesario para la solución del problema directo es: una fuente de corriente eléctrica y un modelo de un volumen conductor con la conductividad de los tejidos que representan. Usualmente, la finalidad de la implementación del problema directo es ubicar la posición de la fuente de corriente que representa la actividad neuronal por lo que esta ubicación es la variable independiente al momento de hacer el cálculo, mientras que la conductividad se mantiene como un valor fijo.

En el área de neurociencias se suele mantener un valor estandarizado para la razón de conductividad cerebro-cráneo de 1:80 (*i.e.* 0.33 S/m para el cerebro y 0.0042 S/m para el cráneo) [9]–[11]. Sin embargo, múltiples estudios con diferentes acercamientos han publicado valores de la razón de conductividiad cerebro-cráneo (BSCR por

Fig. 4.4: Modelo geométricamente realista

sus siglas en inglés*Brain-scalp-conductivity-ratio*) que se desvían significativamente del estandár de 1:80 [12]. Razón por la cual el objetivo de nuestro experimento es estimar el valor del BSCR al utilizarlo como la variable independiente mientras se toma por conocida la posición del dipolo de corriente además de mantenerse fija para todos los experimentos.

Regresando a la eq. (1.4) *B* representa la llamada *matriz de ganancia* que determina la sensibilidad del arreglo de electrodos en un EEG y como estos registrarán el campo eléctrico sobre el cuero cabelludo. Para el cálculo de esta matriz de ganancia por medio de BEM se utilizó el software OpenMEEG [15], [21], donde se utilizaron como datos de entrada nuestro modelo geométricamente realista, un arreglo de EEG de 10-10 (65) IMAGEN DEL ARREGLO, y los valores de conductividad del cerebro, cráneo, y cuero cabelludo. Se completó el cálculo de la matriz de ganancia para 10 TABLA DE CONDUCTIVIDADES valores del BSCR de los cuales 2 son valores aceptados en la literatura (1:20, 1:80) y los 8 restantes se eligieron de una revisión realizada por McCann [12], el criterio para la elección de estos 8 fue el hecho que su estimación se realizó con métodos que involucraban el uso de EEG, EEG/MEG, esto con el fin de mantener relación con nuestra propia estimación y compararlos objetivamente. La matriz resultante de cada una de los valores del BSCR tiene forma de (45006 X 65), que corresponden a los 65 canales del EEG y su respuesta a los

15002 vértices de la malla de la corteza cerebral del modelo geométrico en sus tres componentes vectoriales.

4.4 Dipolos de corriente e implementación de la solución del problema directo

La matriz de ganancia de cada BSCR con el modelo geométrico completan el volumen conductor con sus propiedades electromagnéticas, la pieza restante para el cálculo del problema directo es la fuente de actividad eléctrica que se propagará por dicho volumen conductor. Como se había discutido anteriormente se decidió usar un dipolo eléctrico de posición fija gracias a que la actividad neuronal correspondiente a un ER se puede modelar como tal, este dipolo varía su magnitud con el tiempo en un periodo de 600 ms FIGURA DEL DIPOLO. En cuanto a la posición, se decidió utilizar tres diferentes, cada una en distintas zonas del cerebro correspondientes a lugares de eventos de respuesta evocada, siendo estas: la corteza somatosensorial primaria (coordenadas MNI -52.2, -32.4, 55.8), corteza visual primaria (9.7, -98.6, 2.4), y corteza auditiva primaria (-65.0, -24.7, 11). Cabe mencionar que el sistema de coordenadas MNI (CITAR http://www.bic.mni.mcgill.ca/ louis/stx history.html) es usualmente utilizado como referencia para la comparación de diferentes sujetos, pero el software utiliza para sus cálculos el sistema CTF/MRI al que denomina Subject Coordinate System (SCS), por lo que toda futura mención de coordenadas corresponden a dicho sistema.

Teniendo satisfechos los requisitos para la solución del problema directo este se calculó de la siguiente forma: dentro del software Brainstorm se crearon *scouts* en la malla de la corteza cerebral que consisten en las coordenadas SCS de las regiones de interés (ROI *Region-of-interest*) estos fueron llamados *dip1* (somatosensorial), *dip2* (visual), y *dip3* (auditiva), los scouts fueron utilizados como dato entrada junto con la función del dipolo con respecto al tiempo, el volumen conductor compuesto por el modelo geométricamente realista y la matriz de ganancia de cada BSCR, y por último el arreglo de sensores de EEG. Como resultado obtuvimos 10 mediciones de EEG simuladas correspondientes a cada BSCR para cada uno de los tres scouts, siendo en total 30 mediciones de EEG. Tomando en cuenta de que estamos simulando nuestros datos y estamos en control de todas las variables, se procedió a añadir ruido en la implementación del problema directo para considerar otras condiciones de experimentos con pacientes, el ruido se añadió con una relación señal/ruido (SNR del inglés *Signal-to-noise-ratio*) de 0.01, 0.05, y 0.1. Obteniendo así 3 sets de

10 mediciones para cada uno de los 3 dipolos, resultando en 90 mediciones de EEG diferentes.

4.5 Implementación del Problema Inverso del EEG

Dado que nuestro objetivo es la estimación del BSCR la forma en la que se implementó el problema inverso para la construcción de nuestro estimador fue la siguiente: Para cada uno de los 3 dipolos y su nivel de ruido correspondiente, se acomodaron los resultados del problema directo pareados con la matriz de ganancia de cada BSCR a probar, dando un total de 900 combinaciones diferentes. Con el fin de aumentar la robustez del estimador y evitar un sesgo, se realizaron 100 implementaciones del problema inverso por cada una de esas 900 combinaciones, obteniendo en total 900,000 sets de soluciones del problema inverso de nuestro arreglo de dipolos que componen la malla de la corteza cerebral con respecto al arreglo del EEG.

En retrospectiva, esto probablemente vaya en la introducción

Al igual que en la implementación del problema directo se utilizó la suite Brainstorm en Matlab, específicamente las librerías pertinentes para el procesado de las mediciones de EEG, estas fueron extraídas y modificadas para manejar de forma óptima el procesamiento de nuestro gran volumen de información mediante automatización y combinación de procesamientos posteriores. La razón de utilizar Brainstorm para resolver el problema inverso es que dentro de las opciones de métodos de solución incluidas se encuentra una variación método de filtrado espacial: *Beamformer* Linealmente Constreñido de Varianza Mínima (LCMV del inglés linearly-constrained minimum variance), el cual fue originalmente diseñado e introducido en las neurociencias por Van Veen y Van Drongelen [6], [13].

La implementación de este método en Brainstorm se basa en la matriz de covarianza de las mediciones de EEG y una matriz de covarianza del ruido, la cual es utilizada para calcular un kernel de proyección que nos permite localizar y visualizar las fuentes de actividad neuronal.

La implementación de este filtro produce mapas del Pseudo-Índice de Actividad neuronal (PNAI) llamado así por las modificaciones realizadas por Mosher *et al.* [7] a la definición del Índice de Actividad Neuronal (NAI) del LCMV Beamformer de Van Veen. Estos mapas detallan como se propaga el campo eléctrico desde su origen en la corteza cerebral, hasta la superficie de la capa más externa, pasando por las fases

internas FIGURA IMAGING KERNEL THROUGHOUT LAYERS de nuestro modelo geométricamente realista. A detalle, los mapas son producidos por kernel de reconstrucción de imágenes que tiene como base la matriz de ganancia correspondiente al BSCR que se esté utilizando como referencia, , el cual

4.6 Frontera de Cramer-Rao

Bibliography

- [1]J. C. Mosher, R. M. Leahy, and P. S. Lewis, "EEG and MEG: Forward solutions for inverse methods", *IEEE Transactions on Biomedical Engineering*, vol. 46, no. 3, pp. 245–259, 1999 (cit. on pp. 1, 12).
- [2]H. Hallez, B. Vanrumste, R. Grech, *et al.*, "Review on solving the forward problem in EEG source analysis", *Journal of NeuroEngineering and Rehabilitation*, vol. 4, 2007 (cit. on pp. 1–3).
- [3]R. Plonsey and D. B. Heppner, "Considerations of quasi-stationarity in electrophysiological systems", *The Bulletin of Mathematical Biophysics*, vol. 29, no. 4, pp. 657–664, 1967 (cit. on p. 1).
- [4]J. J. Ermer, J. C. Mosher, S. Baillet, and R. M. Leahy, "Rapidly recomputable EEG forward models for realistic head shapes", *Physics in Medicine and Biology*, vol. 46, no. 4, pp. 1265–1281, 2001 (cit. on pp. 1, 7, 12).
- [5]S. Baillet, J. C. Mosher, and R. M. Leahy, "Electromagnetic brain mapping", *IEEE Signal Processing Magazine*, vol. 18, no. 6, pp. 14–30, 2001 (cit. on p. 3).
- [6]B. D. Van Veen, W. Van Drongelen, M. Yuchtman, and A. Suzuki, "Localization of brain electrical activity via linearly constrained minimum variance spatial filtering", *IEEE Transactions on Biomedical Engineering*, vol. 44, no. 9, pp. 867–880, 1997 (cit. on pp. 3, 4, 18).
- [7] A. Jaiswal, J. Nenonen, M. Stenroos, *et al.*, "Comparison of beamformer implementations for MEG source localization", *NeuroImage*, vol. 216, no. March, p. 116 797, 2020 (cit. on pp. 3, 4, 18).
- [8]R. Grech, T. Cassar, J. Muscat, *et al.*, "Review on solving the inverse problem in EEG source analysis", *Journal of NeuroEngineering and Rehabilitation*, vol. 5, pp. 1–33, 2008 (cit. on pp. 5, 12).
- [9]S. Rush and D. A. Driscoll, "Current distribution in the brain from surface electrodes.", *Anesthesia and analgesia*, vol. 47, no. 6, pp. 717–723, 1968 (cit. on pp. 5, 15).
- [10]S. Rush and D. A. Driscoll, "EEG Electrode Sensitivity-An Application of Reciprocity", *IEEE Transactions on Biomedical Engineering*, vol. BME-16, no. 3, pp. 204–204, 1969 (cit. on pp. 5, 15).
- [11]D. Cohen and B. N. Cuffin, "Demonstration of useful differences between magnetoencephalogram and electroencephalogram", *Electroencephalography and Clinical Neurophysiology*, vol. 56, no. 1, pp. 38–51, 1983 (cit. on pp. 5, 15).

- [12]H. McCann, G. Pisano, and L. Beltrachini, *Variation in Reported Human Head Tissue Electrical Conductivity Values*, 5. Springer US, 2019, vol. 32, pp. 825–858 (cit. on pp. 5, 16).
- [13]B. D. Van Veen and K. M. Buckley, "Beamforming: A Versatile Approach to Spatial Filtering", *IEEE ASSP Magazine*, vol. 5, no. 2, pp. 4–24, 1988 (cit. on pp. 11, 18).
- [14]D. Gutiérrez, A. Nehorai, and C. H. Muravchik, "Estimating brain conductivities and dipole source signals with EEG arrays", *IEEE Transactions on Biomedical Engineering*, vol. 51, no. 12, pp. 2113–2122, 2004 (cit. on p. 12).
- [15] A. Gramfort, T. Papadopoulo, E. Olivi, and M. Clerc, "OpenMEEG: Opensource software for quasistatic bioelectromagnetics", *BioMedical Engineering Online*, vol. 9, no. 1, pp. 1–20, 2010 (cit. on pp. 12, 16).
- [16]M. Clerc, A. Gramfort, E. Olivi, and T. Papadopoulo, "The symmetric BEM: Bringing in more variables for better accuracy", *IFMBE Proceedings*, vol. 28, pp. 109–112, 2010 (cit. on p. 12).
- [17]B. Aubert-Broche, A. C. Evans, and L. Collins, "A new improved version of the realistic digital brain phantom", *NeuroImage*, vol. 32, no. 1, pp. 138–145, 2006 (cit. on p. 13).
- [18] C. J. Holmes, R. Hoge, L. Collins, *et al.*, "Enhancement of MR Images Using Registration for Signal Averaging", *Journal of Computer Assisted Tomography*, vol. 22, no. 2, pp. 324–333, 1998 (cit. on p. 13).
- [19]F. Tadel, S. Baillet, J. C. Mosher, D. Pantazis, and R. M. Leahy, "Brainstorm: A user-friendly application for MEG/EEG analysis", *Computational Intelligence and Neuroscience*, vol. 2011, pp. 1–13, 2011 (cit. on p. 13).
- [20]F. Tadel, E. Bock, G. Niso, et al., "MEG/EEG group analysis with brainstorm", Frontiers in Neuroscience, vol. 13, no. FEB, p. 435 877, 2019 (cit. on p. 14).
- [21]J. Kybic, M. Clerc, T. Abboud, *et al.*, "A common formalism for the integral formulations of the forward EEG problem", *IEEE Transactions on Medical Imaging*, vol. 24, no. 1, pp. 12–28, 2005 (cit. on p. 16).

List of Figures

4.1	Proceso del problema directo e inverso del EEG	12
4.2	Resonancia magnética de Colin27	14
4.3	Mallas de las diferentes fases de los tejidos de la cabeza	15
4.4	Modelo geométricamente realista	16

List of Tables