

부동산가격예측모델개발

팀 이름: 아파트

조 원: 이유리, 우병준, 이정인

Table of

Contents

1. Project Overview	프로젝트 개요
2. Team Composition and Roles	팀 구성 및 역할
3. Project Execution Process and Methodology—————	수행 절차 및 방법
4. Data Preprocessing ————————————————————————————————————	데이터 전처리
5. Project Outcomes - Modeling	수행결과 - 모델링

1. Project Overview

프로젝트 개요

매매가여촉

주제 선정 배경

서울시 아파트 매매가는 부동산 시장의 주요 지표. 따라서 시민과 투자자들에게 중요한 의사결정 정보를 제공

프로젝트 개요

서울시 아파트 매매가 예측 머신러 닝 모델 개발

주요 데이터 아파트 매매 실거래가 데이터 등

> 데이터 전처리 및 분석 feature 선정 예측 모델 구성

활용 장비 및 개발 환경

언어 Python

라이브러리 Pandas, NumPy, Scikitlearn, XgBoost 등

분석 도구 Jupyter Notebook, VS Code 프로젝트 구조

데이터 수집

데이터 전처리 및 탐색적 분석

머신러닝 모델 구축 및 예측

2. Team Composition and

Roles

이유리

우병준

팀 구성 및 역할

이정인

• 학교 도로명 주소

위도 경도 변환

人人	i Hi
TE	<u> </u> _

이터

- 아파트 실거래가
- 아파트 브랜드
- 구/행정동/법정동 목록 및 경계 파일
- 버스정류장, 지하철역
- 정치 데이터

- 국토교통부
- 부동산 사이트
- 공공데이터 포털 및 브이 공간 월드
 - 공공데이터 포털
- 재임 기간

- 소비자 물가지수
- 환율, 금리
- 행정동별 인구밀도
- 행정동별
 - 상가 소득 및 소비
- 범죄율(폐기)

- 통계청
- 한국은행
- 공공데이터 포털
- 공공데이터 포털

- 학교, 병원, 공원
- 위치 데이터
- 날씨(폐기)

• 기상청

• 공공데이터 포털

전처리

모델링

기타

• 그 외 모든 전처리

XgBoost

• 문서 작업

Ridge, Lasso

Decision Tree

• 발표자료 제작 (전반부)

- 2019년, 2020년 아파트 도로 명 주소 위도 경도 변환
- 행정동별 상가 소득 및 소비
- Random Forest
- 최고 성능 모델의 하이퍼파라 미터 튜닝
- 발표자료 제작 (후반부)
- 문서 작업

3. Project Execution Process and Methodology

수행 절차 및 방법

기획

프로젝트 주제 선정

- 부동산 시장 분석 및 프로젝트 주제 선정
- 필요 데이터및 목표 정의

수행

데이터 수집

- 서울시 실거래가 데이터 수집
- 주변 시설
- 교통
- 정치
- 환율, 금리
- 소득-소비
- 브랜드화

데이터 전처리

- 아파트 기본 정보 주소 위도경도 변환 등
- 주변 시설 및 교통아파트 기준최단거리 계산일정 반경 내 점수화
- 동별 직전 월의 거래 건수
- 환율, 금리, 정치결측치 처리
- 인구밀도 및 경제 수준

예측 모델링

- Ridge, Lasso
- Decision Tree
- Random Forest
- XgBoost
- 최고 성능 모델 (Gradient Boosting 알고리즘 구현) XGBoost 하이퍼파라미터 튜닝

데이터 전처리

연도별 총 거래 건수 (2019-2023 하이라이트)

2020년 84,135건

2021년 43,423건

2022년 12,799건

2023년 35,642건

5개년 총합 251,096건

데이터 전처리

불필요한 컬럼을 지운 서울시 아파트 실거래가 원데이터 (도로명 주소는 가림)

NO	시군구	단지명	전용면적 (㎡)	계약년 월	계약 일	거래금액(만 원)	층	건축년 도
1	서울특별시 성동구 마장 동	현대	134.790	201912	31	88,000	17	1998

인덱스용 NO컬럼 값 정제

NONOaddress2019_000012019_00001서울특별시 성동구 살0

NO		latitude	longitu	longitude		
2019_00	001	37.56	127.04			

위도 경도 추출을 위한 주소 정제 API 활용 위도 경도 변환

Missing Value는 주소를 뒤에서 부터 잘라,

모든 주소 위도 경도 변환

(학교 주소도 같은 방식으로 변환)

데이터 전처리

상위 1위 ~10위 고급 (4점)

상위 11위~28위 중급 (3점)

순위 밖 브랜드 하급 (2점)

그의 브랜드 아님 (1점)

데이터 전처리

소비자 총물가지수 활용

2023 화폐가치로 전환

데이터 전처리

아파트기준

버스 정류장, 학교, 병원, 공원 연도별 지하철역

거리 계산 점수 계산

0~500m 10점 (도보약 5분) 500m~1km 5점 (도보약 10분) 1km~1.5km 1점 (도보약 15분 이상)

구/행정동 매핑

동별 직전 1/3/6개월 거래 건수 집계 행정동별 인구밀도 데이터 적용 행정동별 상가기준 소득-소비 데이터 적용

데이터 전처리

완**율**

5. Project Outcomes Modeling

수행결과 - 모델링

Correlation Analysis

상관 관계 분석

특성 간 상관관계 분석을 통한 다중공선성 탐지

Correlation Analysis

Feature Importance

RandomForestRegressor

• R²

훈련 세트 R² : 0.984

테스트 세트 R²: 0.871

• MAE

12731.622

• 평균 절대 오차

랜덤 포레스트

MSE

RMSE

724951722.668

• 평균 제곱 오차

26924.928

Error Rate

0.13

• 평균 제곱근 오차

Hyperparameter tuning

하이퍼 파라미터 조정

 $R^2 = 0.875$ MAE = 12632.60 RMSE = 26503.194

Error Rate = 0.129

Unsampled Data

• R²

0.891

랜덤 포레스트

MAE

12170.569

• 평균 절대 오차

MSE

• RMSE

540423738.4162

• 평균 제곱 오차

23247.015

Error Rate

0.128

• 평균 제곱근 오차

XGBRegressor

XGBoost

오차율 0.105

• R²

훈련 세트 R²: 0.982

테스트 세트 R²: 0.936

MAE

6735.414

• 평균 절대 오차

MSE

89093354.404

• 평균 제곱 오차

9438.927

RMSE

• 평균 제곱근 오차

Hyperparameter tuning

하이퍼 파라미터 조정

Unsampled Data

• R²

0.936

XGBoost

MAE

9506.353

• 평균 절대 오차

MSE

316722287.767

• 평균 제곱 오차

17796.693

오차율 0.096

RMSE

• 평균 제곱근 오차

Thank

You