تشخیص کلاهبرداری از توالی تراکنشهای بانکی با استفاده از الگوریتمهای مختلف یادگیری ماشین

كهبد آئيني

با نظارت دکتر همتیار

محتواي ارائه

- ۱. تعریف مسئله
- ۲. آشنایی با مجموعه داده
- ٣. الگوريتم رگرسيون منطقي
 - ۴. الگوریتم درخت تصمیم
 - ۵. الگوريتم نيوي بيز
- ۶ پیادهسازی و اجرای الگوریتمها
 - ۷. مقایسهی نتایج
 - ۸. نتیجهگیری

- هدف تشخیص کلاهبرداری یا سلامت
 - یک مجموعه تراکنش ۲۸ تایی حل مسئله با سه الگوریتم مختلف
 - بررسی و مقایسهی سه روش با یک
 - تلاش براى يافتن دلايل تفاوتها

آشنایی با مجموعه داده

۲۸ تراکنش و موجودی حساب برچسب سلامت توالی تراکنشها در ستون آخر

ابعاد ۲۸۴۸۰۷X۳۰

۳۰ستون

تقسيم مجموعه داده

دادههای یادگیری

* A. *

ΥΛΥΛ• Λ=

دادههای آزمون

* 7. *

 $\sqrt{\chi_{\chi} + \chi_{-}}$

08981

رگرسیون منطقی

- یک روش قوی برای مدلسازی و پیشبینی متغیرهای پیوسته
 - تحلیل و پیش بینی با استفاده از مدل سازی احتمالی
 - رویکردی موثر برای تحلیل روابط بین متغیرها
 - کاربردها و قابلیتهای این الگوریتم در یادگیری ماشین
 - ارائهای جامع برای تحلیل و پیشبینی دادهها

درخت تصميم

- از سادگی تا پیچیدگی در تصمیمگیری ماشین
 - معرفي الگوريتم درخت تصميم
 - عک الگوریتم موثر برای دستهبندی دادهها
- معرفی الگوریتم درخت تصمیم در یادگیری ماشین
 - از جستجوی شاخهها تا تصمیم گیری

نیوی بیز

- روشی قدرتمند برای تصمیمگیری بر اساس احتمالات شرطی
 - دستهبندی هوشمند بر اساس تئوری احتمال و آمار
 - کاربردها و قابلیتهای این الگوریتم در یادگیری ماشین
 - مدلسازی با الگوریتم نیوی بیز

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})}$$

پیادهسازی و اجرای الگوریتمها

- پیادهسازی با زبان<u>R</u>
- تولید معیارهای ارزشسنجی و مقایسه به صورت خودکار

Parameter	Logistic Regression	Decision Tree	Naive Bayes						
Sensitivity	99.98768971	99.96834497	98.28535251						
Specificity	58.16326531	78.57142857	85.71428571						
Pos Pred Value	99.92793996	99.96307108	99.97495617						
Neg Pred Value	89.0625	81.05263158	7.932011331		مقایسهی نتایج				
Precision	99.92793996	99.96307108	99.97495617						
Recall	99.98768971	99.96834497	98.28535251						
F1	99.95780591	99.96570795	99.12295482						
Prevalence	99.82795246	99.82795246	99.82795246						
Detection Rate	99.81566335	99.79635189	98.11625498						
Detection Prevalence	99.88764242	99.83321922	98.1408332	↓ _	<u> 1</u>				
Balanced Accuracy	79.07547751	89.26988677	91.99981911		Parameter	Best Model	Best Result		
					Sensitivity	Logistic Regression	99.98768971		
					Specificity	Naive Bayes	85.71428571		
					Pos Pred Value	Naive Bayes	99.97495617		
					Neg Pred Value	Logistic Regression	89.0625		
					Precision	Naive Bayes	99.97495617		
					Recall	Logistic Regression	99.98768971		
					F1	Decision Tree	99.96570795		
					Prevalence	Logistic Regression	99.82795246		
					Detection Rate	Logistic Regression	99.81566335		
					Detection Prevalence	Logistic Regression	99.88764242		
					Balanced Accuracy	Naive Bayes	91.99981911		

نتيجه گيري

یکسانبودن
ماهیت ویژگیها
دلیل ناکامی
درخت تصمیم

- برتری روش نیوی بیز و رگرسیون منطقی
 - برابری نسبی دو روش برتر

با تشکر فراوان از دکتر همتیار بابت راهنماییهای ایشان در انجام پروژه و دکتر صفایی بابت حضور در جلسه

> کهبد آئینی kabodaeini@gmail.com

دانشگاه صنعتی شریف تیر ۱۴۰۲