

Cryptography I Homework sheet 13

Erwin van Duijnhoven 0719562

Rick Staals 0716184

January 8, 2014

Question 1

Let n = 263. Run the Fermat test for k = 3 with a = 2, 3, and 5.

Solution:

 $\gcd\left(263,2\right)=1 \qquad \checkmark$ $2^{262}\equiv 1 \mod 263 \quad \checkmark$ $\gcd(263,3) = 1$ \checkmark $3^{262} \equiv 1 \mod 263$ \checkmark $\gcd(263,5) = 1$ \checkmark $5^{262} \not\equiv 1 \mod 263$ \checkmark

Therefore 263 is probably prime of Carmichel.

Question 2

Let n = 263. Run the Miller-Rabin test for k = 3 with a = 2, 3, and 5.

Solution:

$$\gcd\left(263,2\right)=1 \qquad \checkmark$$

$$2^{131}\equiv 1 \mod 263 \quad \checkmark$$

$$\gcd{(263,3)} = 1 \qquad \checkmark$$
$$3^{131} \equiv 1 \mod{263} \quad \checkmark$$

$$\gcd(263,5) = 1$$

$$5^{131} \equiv -1 \mod 263 \quad \checkmark$$

Therefore 263 is prime with probability $1 - 4^ {}^{\mathsf{R}} = 0.984375.$

Question 3

Factor n = 110545695839248001 using the Pollard rho method with $a_0 = 1$ and c = 1.

Solution:

We use the following code to get the factorization of n. We first implement n as is. After that we run the same script for n devided by the found factors. Until n itself is prime. We use $a_0 = b_0 = 1$ and start the script from i = 1 because $a_0 - b_0 = 0$.

```
n = 110545695839248001;

a = 2;

b = 5;

c = 1;

While[GCD[a - b, n] = 1,

a = Mod[a^2 + c, n];

b = Mod[(b^2 + c)^2 + c, n];

]

GCD[a - b, n]
```

We find that n can be factorized into $479909 \cdot 479939 \cdot 479951$.

Question 4

Factor n = 53098980256925153592047 using the p-1 method with B = 128 and a = 2.

Solution:

We use the following code to get the factorization of n. We first implement n as is. After that we run the same script for n devided by the found factors. Until n itself is prime.

1/3

```
n = 53 098 980 256 925 153 592 047;
a = 2;
B = 128;
m = 1:
While[Prime[m] < B,
  k = 1:
  While [Prime [m]^k < B, k++];
  a = Mod[a^{(Prime[m]^{(k-1))}, n];
  m ++;
 1;
GCD [a - 1, n]
m = 32;
new = a - 1;
While [GCD [new, n] == 1,
  new = Mod[new * (a^Prime[m] - 1), n];
  m ++;
1;
GCD [new, n]
```

With this program we found that we can factorize n into $479971 \cdot 480043 \cdot 480059 \cdot 480061$

you did not find all these factors without changing R