Queen's Power Group www.QueensPowerGroup.com

Topology and Analysis of a New Resonant Gate Driver

Presented and Authored By: Zhiliang Zhang

Co-authors: Zhihua Yang, Sheng Ye and Dr. Yan-Fei Liu

Outline

- Introduction
- Proposed Resonant Gate Driver and Operation
- Loss Analysis and Optimization Design
- Experimental Results
- Conclusion

- Introduction
- Proposed Resonant Gate Driver and Operation
- Loss Analysis and Optimization Design
- Experimental Results
- Conclusion

Conventional MOSFET Driver

Switching Loss: Common Source Inductance

Buck converter with parasitic inductors

Equivalent circuit of MOSFET switching transition (turn-on)

Switching Loss: Common Source Inductance

 V_D =12V, I_L =20A, f_s =1MHz, MOSFET: IRF7821

Switching loss increases significantly due to common source inductance!

Resonant Gate Drive Techniques

- Limitations of voltage source driver:
- No gate charge energy recovered
- Low switching speed and high switching loss due to common source inductance

Resonant gate driver techniques:

- ✓ Many good circuits proposed since 1990s, but generally unused
- Existing methods emphasize gate energy savings, but ignore potential switching loss savings

- Introduction
- Proposed Resonant Gate Driver and Operation
- Loss Analysis and Optimization Design
- Experimental Results
- Conclusion

Proposed Dual Channel High-Side and Low-Side Gate Driver

Key waveforms

Before t_0

Key waveforms

Turn-off Q_2 : $[t_0, t_1]$

Key waveforms

Turn-on Q_1 : $[t_1, t_2]$

Key waveforms

- Introduction
- Proposed Resonant Gate Driver and Operation
- Loss Analysis and Optimization Design
- Experimental Results
- Conclusion

Driver Loss Analysis

• The conduction loss of S_1 - S_4

$$P_{cond_s1-s4} = 2I_{s1_RMS}^2 \cdot R_{ds(on)} + 2I_{s2_RMS}^2 \cdot R_{ds(on)}$$
 $R_{ds(on)}$ is the on-resistance of S_1 - S_4

The resonant inductor loss

$$P_{ind} = P_{copper} + P_{core}$$

• The loss of MOSFET mesh resistance R_G

$$P_{RG} = 2R_{G1}I^{2}_{Lr_{pk}} \cdot t_{sw1} \cdot f_{s} + 2R_{G2}I^{2}_{Lr_{pk}} \cdot t_{sw2} \cdot f_{s}$$

 t_{sw1} and t_{sw2} are the switching time, I_{Lr_pk} is the peak current of resonant inductor

• The loss of gate charges of switches S1-S4

$$P_{Gate} = 4 \cdot Q_{g_s} \cdot V_{gs_s} \cdot f_s$$

V_{cc} Selection of Resonant Gate Driver

 V_{in} =12V; I_o =20A; f_s =1MHz;

 $\begin{aligned} &Q_1: \text{IRF7821}(30\text{V}, \ R_{DS(on)} = 9\text{m}\Omega @\ V_{GS} = 6\text{V}); \ Q_2: \ \text{FNS7088}(30\text{V}, \ R_{DS(on)} = 3.5\text{m}\Omega @\ V_{GS} = 6\text{V}); \\ &S_1 - S_4: \ \text{FDN335N}(20\text{V N-channel}, \ R_{DS(on)} = 0.07\Omega @\ V_{GS} = 4.5\text{V}); \ L_r = 2.2\text{uH}. \end{aligned}$

Gate Charge Current I_G Selection

- 1. Switching loss $P_{switching}(I_G)$ as function of driven current I_G is calculated
- 2. Total loss $P_{circuit}(I_G)$ of the resonant gate drive circuit as function of driven current I_G is calculated
- 3. The Objective function is established by adding switching loss and the resonant gate driver loss together

$$F(I_G) = P_{circuit}(I_G) + P_{switching}(I_G)$$

Conventional Driver vs. Resonant Driver

 V_{in} =12V; V_o =1.5V; I_o =20A; I_s =1MHz;

Control FET: IRF7821(30V, $R_{DS(on)}$ =9m Ω @ V_{GS} =6V)

Syn FET: FNS7088 (30V, $R_{DS(on)}$ =3.5m Ω @ V_{GS} =6V)

- Introduction
- Proposed Resonant Gate Driver and Operation
- Loss Analysis and Optimization Design
- Experimental Results
- Conclusion

Experimental Results: Fast Switching Speed

Fast speed No miller plateau

Resonant inductor current and drainsource voltage (Synchronous FET)

 V_{io} =12V; I_o =20A; I_s =1MHz; Control FET: IRF7821;Syn FET: FNS7088

Experimental Results: Reduced Dead Time

Resonant gate driver

Conventional gate driver (TPS2832 TI)

 V_{io} =12V; V_{o} =1.5V; I_{o} =20A; I_{s} =1MHz; Control FET: IRF7821;Syn FET: FNS7088

Experimental Results: Loss Savings

4.5W Loss Reduction @Vo=1.5V/20A(15% of the output power)

- Introduction
- Proposed Resonant Gate Driver and Operation
- Loss Analysis and Optimization Design
- Experimental Results
- Conclusion

Conclusion

- A New Resonant Driver Proposed
 - ✓ Switching Loss Reduction
 - ✓ Immunity to Common Source Inductance
 - ✓ Gate Energy Recovery
 - ✓ ZVS for Driver Switches
 - ✓ High *Cdv/dt I*mmunity (Low Impedance)
 - ✓ Reduced Body Diode Conduction Time
- Loss Analysis and Design Procedure Presented
- 4.5W Loss Reduction
 @Vo=1.5V/20A/1MHz(15% of output power)

Thank You For Your Time

Other Resonant Gate Drive Material at: www.QueensPowerGroup.com