6. Aufgabenblatt zur Statistik-Vorlesung

Basisaufgaben

Aufgabe 6.1

Sie überlegen, wen von 40 Kommilitonen Sie zu Ihrer Geburtstagsfeier einladen sollen. Zwischen wie vielen Möglichkeiten können Sie wählen ...

- a) ... wenn Sie genau 10 Personen einladen wollen?
- b) ... wenn die Zahl der Personen keinen Einschränkungen unterliegt?
- c) Wie viele Möglichkeiten gibt es, in welcher Reihenfolge 10 Gäste eintreffen können?

Aufgabe 6.2

Ein Haustürvertreter schafft an einem Tag 20 Verkaufsgespräche. Bei jedem einzelnen Verkaufsgespräch beträgt die Wahrscheinlichkeit eines erfolgreichen Abschlusses 12%.

Die Ergebnisse der einzelnen Verkaufsgespräche seien stochastisch unabhängig voneinander.

- a) Wie wahrscheinlich ist es, dass er genau zwei Abschlüsse schafft?
- b) Wie wahrscheinlich ist es, dass er weniger als 3 Abschlüsse schafft?
- c) Bestimmen Sie Erwartungswert und Standardabweichung der Anzahl Abschlüsse.

Anwendungsaufgaben

Aufgabe 6.3

- i. Welche der in (a) bis (f) beschriebenen Zufallsvariablen sind binomialverteilt? Geben Sie entweder die Werte der Parameter n und p an, oder begründen Sie, welche der Voraussetzungen der Binomialverteilung nicht vorliegt.
- ii. Berechnen Sie für die binomialverteilten Zufallsvariablen die jeweils gesuchte Wahrscheinlichkeit.
- iii. [schwer] Berechnen Sie für die *nicht* binomialverteilten Zufallsvariablen die jeweils gesuchte Wahrscheinlichkeit.
 - a) Eine multiple Choice Klausur besteht aus 50 Fragen, bei denen jeweils genau eine von 4 angebotenen Antworten richtig ist. Ein Kandidat rät blind. Zufallsvariable:
 - X = Anzahl richtig beantworteter Fragen (Gesucht: P(X=10))
 - b) Wie (a), aber pro richtig beantworteter Aufgabe gibt es +4, pro falsch beantworteter Aufgabe -1 Punkt. **Y**:= **Gesamtzahl Punkte** (Gesucht: P(Y=0))
 - c) Wie a), nur werden bei den ersten 25 Fragen 4 mögliche Antworten, bei den restlichen 25 Fragen aber 6 mögliche Antworten angeboten.

X = Anzahl richtig beantworteter Fragen

Gesucht: P(X=10). (Formel genügt, muss nicht ausgerechnet werden)

- d) In einer Urne liegen 37 Lose, davon 18 Gewinnlose und 19 Nieten. Jemand kauft 10 Lose.
 - **Z = Anzahl Gewinnlose** (Gesucht: P(Z=4))
- e) Jemand spielt nacheinander 10 Runden Roulette und setzt dabei jeweils auf Schwarz.
 - **Z = Bei wie vielen der 10 Male gewinnt er** (Gesucht: P(Z = 4)) (Beim Roulette gibt es 37 mögliche Zahlen, davon 18 schwarze, also Gewinnwahrscheinlichkeit 18/37)

Aufgabe 6.4

Ein Anzeigeelement besteht aus 64 LEDs. Jede LED ist mit Wahrscheinlichkeit 1% defekt. Wie wahrscheinlich ist es, dass

- a) Genau eine LED defekt ist?
- b) Genau zwei LEDs defekt sind?
- c) Mehr als zwei LEDs defekt sind?
- d) Geben Sie Erwartungswert und Standardabweichung der Anzahl defekter LEDs an.
- e) Sie betrachten Anzeigeelemente mit mehr als zwei kaputten LEDs als unbrauchbar. Wie wahrscheinlich ist es, dass von 10 gekauften Anzeigeelemente mehr als zwei unbrauchbar sind?
- f) * Wie wahrscheinlich sind genau 2 LEDs kaputt bei einem Monitor mit (1024·768) LEDs, wenn jede einzelne LED unabhängig von den anderen mit einer Wahrscheinlichkeit von 10⁻⁶ defekt ist?

Weitere Basisaufgabe zum zusätzlichen Üben

Aufgabe 6.5 (Kombinatorik)

Sie bestellen ein neues Auto. Dabei haben Sie jeweils die Wahl zwischen 10 Lackfarben, 3 Diesel- und 2 Benzinmotoren, und drei Innenausstattungsvarianten ("Basic", "Lowline" und "Highline")

- a) Wie viele Möglichkeiten haben Sie zur Wahl?
- b) Zusätzlich stehen 5 aufpreispflichtige Optionen (z.B. Navi, Xenon-Licht, Heckkamera, Runflat-Bereifung und beheizbare Außenspiegel) zur Wahl, die jeweils untereinander und mit den Varianten aus (a) beliebig kombinierbar sind. Wie viele Möglichkeiten haben Sie (inclusive der Wahlmöglichkeiten von (a)), wenn Sie
 - i) frei entscheiden können?
 - ii) maximal Budget für 2 der Optionen haben?
- c) Wie viele Bits muss man mindestens vorsehen, um die gewählte Konfiguration zu codieren, wenn alle in b-i betrachteten Konfigurationen möglich sind?