Homework 0 Key

- 1. Express the following complex numbers in exponential form:
 - (a) 9(1+i)= $9\sqrt{2} \exp \left[i \tan^{-1}(1)\right]$ = $9\sqrt{2}e^{i\pi/4}$
 - (b) 1 i= $\sqrt{2} \exp \left[i \tan^{-1}(-1) \right]$ = $\sqrt{2} e^{-i\pi/4}$
- 2. Express the following complex numbers in a+bi form:
 - (a) $3 \exp\left(\frac{\pi i}{2}\right)$ = $3\left(\cos\frac{\pi}{2} + i\sin\left(\frac{\pi}{2}\right)\right)$ = 3(0+i)= 3i
 - (b) $\exp\left(\frac{3\pi i}{2}\right)$ $= \cos\frac{3\pi}{2} + i\sin(3\frac{\pi}{2})$ = 0 + i(-1)= -i
 - (c) $\exp(4\pi)$ = $\exp(4\pi)$ because no i
- 3. Write the complex conjugate of:
 - (a) $(1-2i)^{\frac{3}{2}} + \exp(3+4i)$ Conj: $(1+2i)^{\frac{3}{2}} + \exp(3-4i)$
 - (b) $\frac{1}{8\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{\frac{3}{2}} \frac{r}{a_0} \exp\left(-\frac{r}{2a_0}\right) \sin\theta \exp(i\phi)$ Conj: $\frac{1}{8\sqrt{\pi}} \left(\frac{1}{a_0}\right)^{\frac{3}{2}} \frac{r}{a_0} \exp\left(-\frac{r}{2a_0}\right) \sin\theta \exp(-i\phi)$

- 4. Find as many roots as possible for the following equation: $x^5 = 7$ Roots: $\sqrt[5]{7}, \sqrt[5]{7}e^{i2\pi/5}, \sqrt[5]{7}e^{i4\pi/5}, \sqrt[5]{7}e^{i6\pi/5}, \sqrt[5]{7}e^{i8\pi/5}$
- 5. Calculate the following derivatives:

(a)
$$y(x) = x^x, \frac{dy}{dx} = ?$$

$$y(x) = e^{x \ln(x)}; \quad \text{exponent rule: } a^b = e^{b \ln(a)}$$

$$u = x \ln(x)$$

$$du = (x \cdot \frac{1}{x}) + (1 \cdot \ln x)$$

$$du = \ln(x) + 1$$

$$\frac{dy}{dx} = du \cdot e^u$$

$$\frac{dy}{dx} = (\ln x + 1)e^{x \ln x}$$

$$\frac{dy}{dx} = (\ln x + 1)x^x$$

(b)
$$y(x) = \frac{\sin(ax)}{\cos(ax) + 2}, \frac{dy}{dx} = ?$$

quotient rule: $\frac{dy}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$
 $\frac{dy}{dx} = \frac{a\cos(ax)\cos((ax) + 2) - (-a\sin(ax)\sin(ax))}{(\cos(ax) + 2)^2}$
 $\frac{dy}{dx} = \frac{a\cos(ax)\cos((ax) + 2) + a\sin^2(ax)}{(\cos(ax) + 2)^2}$

(c)
$$y(x,z) = x^z + z^x$$
, $\left(\frac{\partial y}{\partial x}\right)_z = ?$
treat z as constant; exponent rule: $a^b = e^{b \ln(a)}$
 $y(x,z) = x^z + e^{x \ln(z)}$
 $\left(\frac{\partial y}{\partial x}\right)_z = zx^{z-1} + \ln(z)e^{x \ln(z)}$
 $\left(\frac{\partial y}{\partial x}\right)_z = zx^{z-1} + \ln(z)z^x$

- 6. Calculate the following integrals:
 - (a) $\int x \exp(x) dx$ integration by parts: $\int u \ dv = uv - \int v \ dx$ $u = x \quad du = 1 \quad v = \exp(x) \quad dv = \exp(x)$ $= x \exp(x) - \exp(x) + C$

(b)
$$\int_{-3}^{3} x \exp\left(-\frac{x^{2}}{2\pi}\right) dx$$

$$u = \frac{-x^{2}}{2\pi}$$

$$du = -\frac{x}{\pi} dx$$

$$-\pi du = x dx$$

$$\int_{-3}^{3} x \exp\left(-\frac{x^{2}}{2\pi}\right) dx = -\pi \exp\left(-\frac{x^{2}}{2\pi}\right) \Big|_{-3}^{3}$$

$$= -\pi \exp\left(-\frac{3^{2}}{2\pi}\right) - \left(-\pi \exp\left(-\frac{(-3)^{2}}{2\pi}\right)\right)$$

$$= 0$$

7. What is the dimension of the vector spaces spanned by the following vectors? In each case, propose a minimal orthonormal set of vectors that could span these spaces:

using dot product

(a)
$$\begin{pmatrix} -14 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 7 \\ -1.5 \end{pmatrix}$ one dimension; first 2x second $\begin{pmatrix} \frac{-14\sqrt{205}}{205} \\ \frac{3\sqrt{205}}{205} \end{pmatrix}$
(b) $\begin{pmatrix} -14 \\ 3 \end{pmatrix}$, $\begin{pmatrix} -7 \\ -1.5 \end{pmatrix}$ two dimension; linear independent $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
(c) $\begin{pmatrix} -14 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 7 \\ 1.5 \end{pmatrix}$ two dimension; linear independent $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

8. Calculate the determinant of the following matrices

(a)
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = 1 \cdot \begin{pmatrix} 5 & 6 \\ 8 & 9 \end{pmatrix} - 2 \cdot \begin{pmatrix} 4 & 6 \\ 7 & 9 \end{pmatrix} + 3 \cdot \begin{pmatrix} 4 & 5 \\ 7 & 8 \end{pmatrix}$$

$$= 1 \cdot (45 - 48) - 2 \cdot (36 - 42) + 3 \cdot (32 - 35)$$

$$= -3 + 12 - 9$$

$$= 0$$
(b)
$$\begin{pmatrix} 1 & 2 & 3 \\ 8 & 10 & 12 \\ 7 & 8 & 9 \end{pmatrix} = 1 \cdot \begin{pmatrix} 10 & 12 \\ 8 & 9 \end{pmatrix} - 2 \cdot \begin{pmatrix} 8 & 12 \\ 7 & 9 \end{pmatrix} + 3 \cdot \begin{pmatrix} 8 & 10 \\ 7 & 8 \end{pmatrix}$$

$$= 1 \cdot (90 - 96) - 2 \cdot (72 - 84) + 3 \cdot (64 - 70)$$

$$= -6 + 24 - 18$$

$$= 0$$
(c)
$$\begin{pmatrix} 1 & 2 & 3 \\ 7 & 8 & 9 \\ 4 & 5 & 6 \end{pmatrix} = 1 \cdot \begin{pmatrix} 8 & 9 \\ 5 & 6 \end{pmatrix} - 2 \cdot \begin{pmatrix} 7 & 9 \\ 4 & 6 \end{pmatrix} + 3 \cdot \begin{pmatrix} 7 & 8 \\ 4 & 5 \end{pmatrix}$$

$$= 1 \cdot (48 - 45) - 2 \cdot (42 - 36) + 3 \cdot (35 - 32)$$

$$= 3 - 12 + 9$$

$$= 0$$

- 9. The function g(x, y) is defined over the circumference of a circle of radius 2 centered in the origin. Calculate the maximum of g(x, y) if:
 - (a) g(x,y) = 2x + 2y

Use the Lagrangian multipliers, $\nabla f(x,y,z) = \lambda \nabla g(x,y,z)$, where you want to maximaze your value f(x) in a constraint of g(x). In this case, the constraint is defined to be $x^2 + y^2 = 4$, which is the function that encompasses the circumference of a circle with r = 2.

Your three equations are:

$$2 = \lambda 2x; \qquad 2 = 2y; \qquad x^2 + y^2 = 4$$

$$\frac{1}{\lambda} = x; \qquad \frac{1}{\lambda} = y; \qquad x^2 + y^2 = 4$$

$$\frac{1}{\lambda}^2 + \frac{1}{\lambda}^2 = 4$$

$$\lambda = \pm \frac{1}{\sqrt{2}}$$

plug λ s into $x^2 + y^2 = 4$, the max coordinate is $(\sqrt{2}, \sqrt{2})$ g(x,y) max is $4\sqrt{2}$

(b)
$$q(x,y) = x^2 + y^2$$

Your three equations are:

$$2x = \lambda 2x;$$
 $2y = 2y;$ $x^2 + y^2 = 4$
 $2x - \lambda 2x = 0;$ $2y - \lambda 2y = 0;$ $x^2 + y^2 = 4$

$$2x(1-\lambda)=0;$$
 $2y(1-\lambda)=0;$ $x^2+y^2=4$ $x=0 \text{ or } \lambda=1$ $y=0 \text{ or } \lambda=1$

plug x and y into $x^2+y^2=4$ to get coordinate, cannot do anything about λ because it is not in terms of x or y.

g(x,y) max is 4