HYPERTORIC MANIFOLDS

GENERAL NOTES

ABSTRACT

Notes on toric hyperkähler manifolds.

1 Cotangent Spaces to Extended Core Components

Let $M_{\lambda} = (\mu_{\mathbb{R}}^{-1}(\lambda) \cap \mu_{\mathbb{C}}^{-1}(0)) / K$ be a toric hyperkähler manifold. Define

$$\mathbb{C}_A := \{ (z_i, w_i) \in \mathbb{C}^{2n} \mid w_i = 0 \text{ if } i \in A, \text{ and } z_i = 0 \text{ if } i \notin A \} \cong \mathbb{C}^n \subset \mathbb{H}^n.$$

Lemma 1.1 ([1]). Let M_{λ} be a toric hyperkähler manifold. If \mathcal{E}_A is non-empty, then its holomorphic cotangent bundle $T^*\mathcal{E}_A$ is contained in M_{λ} as an open subset.

Fix a subset $A \subset \{1, \dots, n\}$, and define

$$(x_i^{(A)}, y_i^{(A)}) := \begin{cases} (z_i, w_i), & \text{if } i \in A, \\ (w_i, -z_i), & \text{if } i \notin A. \end{cases}$$

Then $x^{(A)}=(x_1^{(A)},\ldots,x_n^{(A)})$ is a point in the vector space \mathbb{C}_A^n , and $y^{(A)}=(y_1^{(A)},\ldots,y_n^{(A)})$ is a point in the dual space $(\mathbb{C}_A^n)^*$. That is, we identify the cotangent bundle $T^*\mathbb{C}_A^n$ with \mathbb{H}^n as above.

2 Symplectic Cutting

2.1 Compactifying the Extended Core

Let S^1 act on M by rotating the cotangent fibres, that is, for $\tau \in S^1$,

$$\tau \cdot [z; w] = [z; \tau w].$$

This S^1 -action is Hamiltonian, with moment map

$$\Phi: M \longrightarrow (\mathbb{R})^*; \qquad [z:w] \longmapsto \frac{1}{2} ||w||^2.$$

Let S_A^1 denote the residual S^1 -action on M restricted to the extended core component

$$\mathcal{E}_A = \{ [z_1 : \dots z_n; w_1, \dots, w_n] \mid w_0 = 0 \text{ if } i \in A, \text{ and } z_i = 0 \text{ if } i \notin A \}.$$

Now the global S^1 -action does not act on the cotangent fibres of M as a subtorus of T^n , but it does when restricted to each component of the extended core, \mathcal{E}_A . Indeed,

$$\tau \cdot [z; w] = [z; \tau w] = [z_1 : \ldots : z_n; \tau w_1 : \ldots : \tau w_n] = [\tau_1 z_1 : \ldots : \tau_n z_n; \tau_1^{-1} w_1 : \ldots : \tau_n^{-1} w_n],$$

where

$$\tau_i := \begin{cases} \tau^{-1}, & \text{if } i \in A, \\ 1, & \text{if } i \notin A, \end{cases}$$

which shows that the S^1 -action restricted to each individual \mathcal{E}_A acts as a subtorus of the original torus T^n .

Denote by S^1_A the image of S^1 in T^n when considered as a subtorus restricted to each individual \mathcal{E}_A , and let $\jmath_A:S^1\hookrightarrow T^n$ be the respective inclusion homomorphism, so we have $S^1_A:=\jmath_A(S^1)\lhd T^n$.

On the Lie algebra level, we have that

$$(j_A)_* : \operatorname{Lie}(S_A^1) \longrightarrow \mathfrak{t}^n; \qquad \xi \longmapsto (\xi_1, \dots, \xi_n),$$

where analogously [UNSURE]

$$\xi_i := \begin{cases} -1, & \text{if } i \in A, \\ 0, & \text{if } i \notin A. \end{cases}$$

[TODO: S_A^1 and $S_{A'}^1$ -action (say) on adjacent Δ_A 's coincide along the common hyperplane H_i ; formalise this!] Since S_A^1 acts as the subtorus $j_A(S^1)$ of T^n on each \mathcal{E}_A , the moment map $\Phi_A := \Phi\big|_{\mathcal{E}_A}$ for this action is given by composing $\mu_{\mathbb{R}}$ with the dual of the inclusion $(j_A)_*$, so

$$\Phi_A[z, w] = (j_A^* \circ \mu_{\mathbb{R}}) [z; w] = j_A^* \left(\frac{1}{2} \sum_{i=1}^n (|z_i|^2 - |w_i|^2) e^i \right).$$

3 Moment Polytychs

3.1 Example: $T^*\mathbb{CP}^2$

$$\mathcal{E}_{123} \colon \qquad \mathcal{E}_{123} \cong \left\{ \left[z_1 : z_2 : z_3 : \xi \right] \in M_a \mid |z_1|^2 + |z_2|^2 + |z_3|^2 + |\xi|^2 = k + a, \, |\xi|^2 = a \right\},$$

$$\mathcal{E}_{12} \colon \qquad \mathcal{E}_{12} \cong \left\{ \left[z_1 : z_2 : w_3 : \xi \right] \in M_a \mid |z_1|^2 + |z_2|^2 + |\xi|^2 = k + a, \, |w_3|^2 + |\xi|^2 = a \right\},$$

$$\mathcal{E}_{11} \colon \qquad \mathcal{E}_{12} \cong \left\{ \left[z_1 : w_2 : w_3 : \xi \right] \in M_a \mid |z_1|^2 + |\xi|^2 = k + a, \, |w_2|^2 + |w_3|^2 + |\xi|^2 = a \right\},$$

$$\mathcal{E}_{13} \colon \qquad \mathcal{E}_{13} \colon \qquad \mathcal{E}_{13} \cong \left\{ \left[z_1 : z_3 : w_2 : \xi \right] \in M_a \mid |z_1|^2 + |z_3|^2 + |\xi|^2 = k + a, \, |w_2|^2 + |\xi|^2 = a \right\},$$

$$\mathcal{E}_{23} \colon \qquad \mathcal{E}_{23} \colon \qquad \mathcal{E}_{23} \colon \qquad \mathcal{E}_{23} \colon \left\{ \left[z_3 : w_1 : w_2 : \xi \right] \in M_a \mid |z_2|^2 + |\xi|^2 = k + a, \, |w_1|^2 + |w_2|^2 + |\xi|^2 = a \right\},$$

$$\mathcal{E}_{22} \colon \qquad \mathcal{E}_{22} \colon \left\{ \left[z_2 : z_3 : w_1 : \xi \right] \in M_a \mid |z_2|^2 + |\xi|^2 = k + a, \, |w_1|^2 + |w_3|^2 + |\xi|^2 = a \right\},$$

$$\mathcal{E}_{22} \colon \qquad \mathcal{E}_{22} \colon \left\{ \left[z_2 : w_1 : w_3 : \xi \right] \in M_a \mid |z_2|^2 + |\xi|^2 = k + a, \, |w_1|^2 + |w_3|^2 + |\xi|^2 = a \right\}.$$

References

[1] Hiroshi Konno. The topology of toric hyperKähler manifolds. In *Minimal surfaces, geometric analysis and symplectic geometry (Baltimore, MD, 1999)*, volume 34 of *Adv. Stud. Pure Math.*, pages 173–184. Math. Soc. Japan, Tokyo, 2002.