Вычислительные системы, сети и телекоммуникации

1. Коммутация в компьютерных сетях

Коммутация представляет собой процесс соединения абонентов сети для организации обмена данными между ними. В современных компьютерных сетях используются несколько основных методов коммутации, каждый из которых имеет свои особенности, преимущества и недостатки.

Коммутация каналов

При коммутации каналов между абонентами устанавливается выделенное соединение на все время передачи данных. Выделенный канал не используется другими абонентами в течение всего сеанса связи, независимо от того, происходит ли в данный момент передача информации.

Характеристики коммутации каналов:

- Гарантированная пропускная способность на время соединения
- Минимальные задержки после установления соединения
- Отсутствие перегрузок на установленном маршруте
- Неэффективное использование пропускной способности при передаче пульсирующего трафика

Примеры применения: традиционная телефонная сеть (PSTN), сети ISDN

Коммутация пакетов

При коммутации пакетов передаваемые данные разбиваются на сравнительно небольшие части (пакеты), которые содержат адресную информацию и могут передаваться независимо друг от друга по сети, возможно, по разным маршрутам.

Характеристики коммутации пакетов:

- Более эффективное использование пропускной способности сети
- Отсутствие блокировок при перегрузках отдельных каналов (возможность выбора альтернативных маршрутов)
- Возможны задержки и вариации задержек (джиттер)
- Необходимость в дополнительных механизмах для обеспечения требуемого качества обслуживания

Виды коммутации пакетов:

 Дейтаграммная передача (connectionless) — каждый пакет маршрутизируется независимо (примеры: IP)

• Виртуальные соединения (connection-oriented) — перед передачей данных устанавливается виртуальный канал (примеры: ATM, Frame Relay)

Коммутация сообщений

При коммутации сообщений передаваемое сообщение целиком передается от одного узла коммутации к другому, причем каждый промежуточный узел принимает сообщение полностью, хранит его и затем передает дальше.

Характеристики коммутации сообщений:

- Позволяет преодолеть различия в скорости работы отправителя и получателя
- Требует значительных ресурсов памяти в коммутаторах
- Значительные задержки в передаче
- Неэффективность при передаче больших объемов данных

Примеры применения: электронная почта, передача файлов (в исторических компьютерных сетях)

Коммутация ячеек

Коммутация ячеек является разновидностью коммутации пакетов, при которой данные разбиваются на ячейки фиксированного размера (обычно небольшого). Ячейки имеют упрощенный формат заголовка и обрабатываются аппаратно, что ускоряет процесс коммутации.

Характеристики коммутации ячеек:

- Более предсказуемые задержки по сравнению с коммутацией пакетов
- Эффективная реализация в аппаратном обеспечении
- Малые накладные расходы на обработку
- Некоторая избыточность при передаче небольших сообщений

Пример применения: технология ATM (Asynchronous Transfer Mode), где используются ячейки фиксированного размера в 53 байта (5 байт заголовок + 48 байт полезная нагрузка)

Преимущества и недостатки различных типов коммутации

Тип	Преимущества	Недостатки
коммутации	преимущеетва	педостатки

Тип коммутации	Преимущества	Недостатки	
Коммутация каналов	- Гарантированная пропускная способность - Постоянные задержки - Отсутствие перегрузок	- Неэффективное использование ресурсов- Время на установление соединения- Ограниченная масштабируемость	
Коммутация пакетов	Эффективное использование ресурсовУстойчивость к сбоямГибкость и масштабируемость	- Изменяющиеся задержки - Возможны потери пакетов - Сложность обеспечения QoS	
Коммутация сообщений	- Независимость от скорости работы конечных узлов - Возможность проверки целостности	- Большие требования к памяти - Значительные задержки - Сложность реализации	
Коммутация ячеек	- Предсказуемые задержки - Эффективная аппаратная реализация - Поддержка различных типов трафика	- Дополнительные накладные расходы - Сложность интеграции с существующими сетями - Ограниченное распространение	

2. Стандартизация в телекоммуникациях

Стандартизация является ключевым аспектом развития телекоммуникационных технологий, обеспечивая совместимость оборудования и систем разных производителей, единообразие технических решений и возможность глобального взаимодействия.

Основные организации по стандартизации

1. Международный союз электросвязи (ITU — International Telecommunication Union)

ITU является специализированным агентством ООН по информационнокоммуникационным технологиям.

Структура ITU:

- ITU-T (Сектор стандартизации электросвязи) разрабатывает международные стандарты в области телекоммуникаций, именуемые "Рекомендациями"
- ITU-R (Сектор радиосвязи) управляет радиочастотным спектром и спутниковыми орбитами
- ITU-D (Сектор развития) способствует расширению доступа к телекоммуникациям в развивающихся странах

Особенности работы:

- Формирование рекомендаций, а не обязательных стандартов
- Членство открыто для правительств и частных организаций
- Работа в исследовательских группах (Study Groups)
- Организация работы в четырехлетних циклах

2. Институт инженеров электротехники и электроники (IEEE — Institute of Electrical and Electronics Engineers)

IEEE является профессиональной ассоциацией, которая разрабатывает широко используемые стандарты в области электроники и компьютерных наук.

Значимые стандарты IEEE:

- IEEE 802 семейство стандартов для локальных и городских сетей
 - IEEE 802.3 (Ethernet)
 - IEEE 802.11 (Wi-Fi)
 - o IEEE 802.15 (Bluetooth, ZigBee)
 - IEEE 802.16 (WiMAX)

Особенности работы:

- Открытый процесс разработки стандартов
- Технически ориентированный подход
- Широкое участие специалистов из индустрии и академических кругов

3. Интернет-инженерный совет (IETF — Internet Engineering Task Force)

IETF разрабатывает и поддерживает стандарты для Интернета, известные как RFC (Request for Comments).

Основные области стандартизации:

- Протоколы маршрутизации (BGP, OSPF)
- Протоколы транспортного уровня (TCP, UDP)
- Прикладные протоколы (HTTP, SMTP, DNS)
- Протоколы безопасности (TLS, IPsec)

Особенности работы:

- Неформальная структура без строгого членства
- Открытое участие
- Рабочие группы по конкретным темам
- Принцип "грубого консенсуса и работающего кода"

4. Европейский институт телекоммуникационных стандартов (ETSI — European Telecommunications Standards Institute)

ETSI является европейской организацией, разрабатывающей стандарты для телекоммуникационной индустрии.

Значимые стандарты ETSI:

- GSM (Global System for Mobile Communications)
- UMTS (Universal Mobile Telecommunications System)
- LTE (Long-Term Evolution)
- DECT (Digital Enhanced Cordless Telecommunications)

Особенности работы:

- Региональная организация с глобальным влиянием
- Членство открыто для организаций из всех стран
- Технические комитеты по различным направлениям
- Взаимодействие с другими организациями стандартизации

5. Международная организация по стандартизации (ISO — International Organization for Standardization)

ISO разрабатывает международные стандарты практически во всех областях, включая информационные технологии.

Значимые стандарты ISO в области телекоммуникаций:

- Модель OSI (Open Systems Interconnection)
- Стандарты качества (ISO 9000)
- Стандарты информационной безопасности (ISO 27000)

Особенности работы:

- Представительство через национальные органы стандартизации
- Консенсусный процесс принятия решений
- Периодический пересмотр стандартов

Процесс стандартизации

Стандартизация в телекоммуникационной отрасли обычно проходит следующие этапы:

Виды телекоммуникационных стандартов

- 1. **Функциональные стандарты** определяют функции и возможности оборудования и систем
- 2. **Стандарты взаимодействия** определяют интерфейсы между различными компонентами
- 3. **Стандарты производительности** устанавливают метрики и требования к производительности
- 4. **Стандарты безопасности** определяют требования к безопасности и конфиденциальности
- 5. Стандарты управления определяют механизмы мониторинга и управления

Значение стандартизации для развития телекоммуникаций

- Обеспечение глобальной совместимости и взаимодействия систем
- Снижение затрат на разработку и производство оборудования
- Создание конкурентного рынка с множеством поставщиков
- Защита инвестиций потребителей в технологии
- Ускорение внедрения новых технологий
- Обеспечение качества и безопасности телекоммуникационных услуг

3. Понятие о протоколе и межуровневом интерфейсе

Протокол в телекоммуникациях

Протокол в телекоммуникациях — это набор правил и соглашений, определяющих формат и порядок обмена данными между устройствами в сети. Протоколы регламентируют все аспекты связи, включая установление соединения, передачу данных, обработку ошибок и завершение сеанса связи.

Основные компоненты протокола:

- 1. Синтаксис определяет структуру и формат данных, включая:
 - Формат заголовков и полей сообщений
 - Размер и типы полей
 - Кодирование данных
- 2. Семантика определяет смысловое значение элементов протокола:
 - Интерпретация полей заголовков
 - Значение управляющих сообщений
 - Типы операций и команд
- 3. Тайминг определяет временные аспекты взаимодействия:
 - Последовательность сообщений
 - Скорость передачи
 - Тайм-ауты и повторные передачи

Пример протокольного взаимодействия (ТСР):

Межуровневый интерфейс

Межуровневый интерфейс определяет способы взаимодействия между соседними уровнями сетевой архитектуры. Он обеспечивает передачу данных и управляющей информации между уровнями, позволяя каждому уровню выполнять свои функции независимо от реализации других уровней.

Ключевые аспекты межуровневого интерфейса:

- 1. **Примитивы сервиса** набор операций или команд, с помощью которых верхний уровень запрашивает услуги нижнего уровня:
 - Request (запрос) запрос на выполнение операции
 - Indication (уведомление) оповещение о событии
 - **Response** (ответ) ответ на уведомление
 - Confirmation (подтверждение) подтверждение выполнения запроса
- 2. **Точки доступа к сервису (SAP Service Access Point)** логические точки, через которые верхний уровень получает доступ к услугам нижнего уровня.
- 3. **Протокольные блоки данных (PDU Protocol Data Unit)** форматы данных, которыми обмениваются одноранговые уровни разных устройств:
 - Данные верхнего уровня + заголовок = PDU данного уровня
 - PDU данного уровня = данные (SDU) для нижнего уровня

Эталонная модель взаимодействия открытых систем ISO/OSI

Модель OSI (Open Systems Interconnection) — это концептуальная модель, разработанная Международной организацией по стандартизации (ISO) для стандартизации коммуникаций в компьютерных сетях. Она определяет семь уровней, каждый из которых выполняет определенные функции в процессе передачи данных.

Уровни модели OSI:

- 1. Физический уровень (Physical Layer) передача битов по физическому каналу:
 - Электрические и механические характеристики интерфейса
 - Скорость передачи, кодирование сигналов
 - Топология соединений
- 2. **Канальный уровень (Data Link Layer)** надежная передача кадров данных:
 - Обнаружение и коррекция ошибок
 - Управление доступом к среде (МАС)
 - Адресация на физическом уровне
- 3. Сетевой уровень (Network Layer) маршрутизация пакетов через сеть:
 - Логическая адресация (IP-адреса)
 - Определение маршрутов
 - Фрагментация и сборка пакетов
- 4. **Транспортный уровень (Transport Layer)** надежная передача данных между конечными точками:
 - Управление соединением
 - Контроль потока данных
 - Восстановление при ошибках
- 5. Сеансовый уровень (Session Layer) управление сеансами связи:
 - Установление, поддержание и закрытие сеансов
 - Синхронизация обмена данными
 - Контрольные точки для восстановления
- 6. Представительский уровень (Presentation Layer) представление и шифрование данных:
 - Преобразование форматов данных
 - Сжатие/распаковка данных
 - Шифрование/дешифрование
- 7. **Прикладной уровень (Application Layer)** предоставление сетевых сервисов приложениям:
 - Интерфейс для пользовательских приложений
 - Протоколы прикладного уровня (HTTP, FTP, SMTP)
 - Идентификация взаимодействующих партнеров

Модель взаимодействия и стек протоколов ТСР/ІР

Стек протоколов TCP/IP — это набор протоколов, используемых в Интернете и большинстве современных компьютерных сетей. В отличие от модели OSI, которая является теоретической, TCP/IP представляет собой реальную реализацию сетевой архитектуры.

Уровни стека ТСР/IP:

1. **Уровень сетевого доступа (Network Access Layer)** — соответствует физическому и канальному уровням модели OSI:

13e4aulA

- o Ethernet, Wi-Fi, PPP, HDLC
- Управление доступом к физической среде
- Адресация на уровне канала (МАС-адреса)
- 2. Интернет-уровень (Internet Layer) соответствует сетевому уровню модели OSI:
 - IP (Internet Protocol)
 - ICMP (Internet Control Message Protocol)
 - IGMP (Internet Group Management Protocol)
 - Маршрутизация пакетов
- 3. **Транспортный уровень (Transport Layer)** соответствует транспортному уровню модели OSI:
 - TCP (Transmission Control Protocol) надежная передача с установлением соединения
 - UDP (User Datagram Protocol) ненадежная передача без установления соединения
 - SCTP (Stream Control Transmission Protocol) сочетание надежности ТСР и многопоточности
- 4. Прикладной уровень (Application Layer) соответствует сеансовому, представительскому и прикладному уровням модели OSI:
 - HTTP/HTTPS (Web)
 - SMTP, POP3, IMAP (Email)
 - FTP, SFTP (передача файлов)
 - DNS (система доменных имен)
 - SSH, Telnet (удаленный доступ)

Сравнение моделей OSI и TCP/IP:

Инкапсуляция данных в стеке TCP/IP:

4. Адресация и маршрутизация в компьютерных сетях

Адресация в компьютерных сетях

Адресация является ключевым механизмом, обеспечивающим идентификацию и достижимость устройств в сети. В современных компьютерных сетях используются различные схемы адресации на разных уровнях сетевой архитектуры.

Физическая (МАС) адресация

MAC-адрес (Media Access Control) — это уникальный идентификатор, присваиваемый сетевым интерфейсам для коммуникаций на канальном уровне сети.

Характеристики МАС-адресов:

- 48 бит (6 байт), обычно записывается как шесть пар шестнадцатеричных цифр, разделенных двоеточиями или дефисами (например, 00:1A:2B:3C:4D:5E)
- Первые 3 байта OUI (Organizationally Unique Identifier), уникальный идентификатор производителя
- Последние 3 байта уникальный номер устройства в рамках данного производителя
- Уникальный (в теории) в глобальном масштабе
- Обычно "прошивается" в устройство производителем

Типы МАС-адресов:

- Unicast адрес конкретного сетевого интерфейса
- Multicast адрес группы сетевых интерфейсов (первый бит первого байта = 1)
- Broadcast адрес для отправки всем устройствам в сегменте (FF:FF:FF:FF:FF)

Логическая (ІР) адресация

IP-адрес (Internet Protocol) — это числовой идентификатор, присваиваемый устройствам в компьютерной сети, использующей протокол IP.

IPv4:

- 32-битный адрес, записываемый как четыре десятичных числа (от 0 до 255), разделенных точками (например, 192.168.0.1)
- Состоит из двух частей: сетевого префикса и идентификатора хоста
- Разделение на префикс сети и идентификатор хоста определяется маской подсети

Классы IPv4-адресов:

- **Класс А** (1-126.x.x.x) маска подсети 255.0.0.0 (/8)
- **Класс В** (128-191.х.х.х) маска подсети 255.255.0.0 (/16)
- **Класс С** (192-223.х.х.х) маска подсети 255.255.255.0 (/24)
- **Класс D** (224-239.х.х.х) для многоадресной рассылки
- Класс Е (240-255.х.х.х) зарезервирован для экспериментального использования

Специальные адреса IPv4:

- Локальные адреса (127.х.х.х) для тестирования и диагностики
- Частные адреса:
 - 10.0.0.0 10.255.255.255 (10.0.0.0/8)
 - 172.16.0.0 172.31.255.255 (172.16.0.0/12)
 - 192.168.0.0 192.168.255.255 (192.168.0.0/16)

IPv6:

- 128-битный адрес, записываемый как восемь групп шестнадцатеричных цифр, разделенных двоеточиями (например, 2001:0db8:85a3:0000:0000:8a2e:0370:7334)
- Сокращенная нотация:
 - Ведущие нули в группе могут быть опущены (2001:db8:85a3:0:0:8a2e:370:7334)
 - Последовательность групп, содержащих только нули, может быть заменена двойным двоеточием (:<> один раз в адресе (2001:db8:85a3::8a2e:370:7334)

Типы адресов IPv6:

- Unicast адрес одного интерфейса
- Multicast адрес группы интерфейсов (префикс ff00::/8)
- **Anycast** адрес, присваиваемый нескольким интерфейсам, но пакет доставляется ближайшему

Разрешение адресов

ARP (Address Resolution Protocol) — протокол, используемый для определения МАС-адреса по известному IP-адресу в локальной сети:

- Устройство отправляет широковещательный ARP-запрос, содержащий IP-адрес
- Устройство с соответствующим IP-адресом отвечает своим МАС-адресом
- Соответствие сохраняется в ARP-кэше

NDP (Neighbor Discovery Protocol) — эквивалент ARP для IPv6, использующий ICMPv6 сообщения:

- Запрос соседа (Neighbor Solicitation)
- Объявление соседа (Neighbor Advertisement)
- Объявление маршрутизатора (Router Advertisement)
- Запрос маршрутизатора (Router Solicitation)

Маршрутизация в компьютерных сетях

Маршрутизация — это процесс определения оптимального пути для передачи пакетов данных от источника к получателю через сеть или несколько сетей.

Основные концепции маршрутизации

Таблица маршрутизации — структура данных, содержащая информацию о доступных сетях и оптимальных путях к ним:

- Сетевой префикс (адрес назначения)
- Маска подсети
- Следующий узел (next hop)
- Интерфейс выхода
- Метрика (стоимость) маршрута
- Источник маршрута (статический, динамический, непосредственно подключенный)

Принципы маршрутизации:

- Наиболее длинное совпадение префикса (Longest Prefix Match) при наличии нескольких подходящих маршрутов выбирается тот, у которого самая длинная маска подсети
- **Административная дистанция** мера надежности источника маршрутной информации (например, в Cisco: непосредственно подключенная сеть 0, статический маршрут 1, EIGRP 90, OSPF 110, RIP 120)
- **Метрика маршрута** численное значение, отражающее "качество" маршрута (например, количество хопов, пропускная способность, задержка)

Протоколы маршрутизации

Протоколы маршрутизации автоматизируют процесс обмена маршрутной информацией между маршрутизаторами, позволяя им динамически обновлять свои таблицы маршрутизации.

Классификация по области применения:

- IGP (Interior Gateway Protocol) протоколы для маршрутизации внутри автономной системы:
 - RIP (Routing Information Protocol)
 - OSPF (Open Shortest Path First)
 - IS-IS (Intermediate System to Intermediate System)
 - EIGRP (Enhanced Interior Gateway Routing Protocol)
- EGP (Exterior Gateway Protocol) протоколы для маршрутизации между автономными системами:
 - BGP (Border Gateway Protocol)

Классификация по принципу работы:

- Дистанционно-векторные протоколы (Distance Vector):
 - Каждый маршрутизатор периодически отправляет своим соседям полную таблицу маршрутизации
 - Для выбора маршрута используется метрика, основанная на "расстоянии" (например, количество хопов)
 - Примеры: RIP, EIGRP (гибридный)
 - Проблемы: медленная сходимость, возможность образования петель маршрутизации
- Протоколы состояния каналов (Link State):
 - Каждый маршрутизатор строит топологическую карту сети
 - Маршрутизаторы обмениваются информацией о состоянии своих каналов
 - Для выбора маршрута используется алгоритм кратчайшего пути (например, алгоритм Дейкстры)
 - Примеры: OSPF, IS-IS
 - Преимущества: быстрая сходимость, отсутствие петель маршрутизации
- Протоколы маршрутизации на основе политик (Policy-Based):
 - Выбор маршрута осуществляется на основе административных правил и политик
 - Примеры: BGP
 - Используется для маршрутизации между автономными системами в Интернете

Коммутация по меткам MPLS

MPLS (Multiprotocol Label Switching) — технология быстрой коммутации пакетов в многопротокольных сетях, основанная на использовании меток.

Принципы работы MPLS:

- Каждому пакету при входе в MPLS-сеть присваивается короткая фиксированная метка
- Маршрутизация пакетов внутри MPLS-сети осуществляется на основе меток, а не IP-адресов
- При передаче между маршрутизаторами метки могут заменяться, добавляться или удаляться
- Выходной маршрутизатор удаляет метку и передает пакет дальше на основе стандартной маршрутизации

Компоненты MPLS-сети:

- LSR (Label Switch Router) маршрутизатор, поддерживающий MPLS
- LSP (Label Switched Path) путь через MPLS-сеть, определяемый последовательностью меток
- LDP (Label Distribution Protocol) протокол для распределения меток между LSR
- FEC (Forwarding Equivalence Class) группа пакетов, которые обрабатываются одинаково при передаче

Преимущества MPLS:

- Повышение производительности коммутации (простая обработка фиксированных меток)
- Поддержка Quality of Service (QoS)
- Возможность организации виртуальных частных сетей (MPLS VPN)
- Поддержка Traffic Engineering управления трафиком в сети
- Независимость от протоколов сетевого уровня (IP, IPX и т.д.)

5. Понятие о качестве обслуживания (QoS)

Качество обслуживания (Quality of Service, QoS) — это совокупность технологий, обеспечивающих предсказуемое и дифференцированное качество передачи данных для различных приложений и типов трафика в компьютерных сетях.

Показатели QoS

Основные параметры, характеризующие качество обслуживания в сети:

- 1. **Пропускная способность (Bandwidth)** максимальная скорость передачи данных:
 - Измеряется в битах в секунду (bps) или производных единицах (Kbps, Mbps, Gbps)
 - Разные приложения требуют разной пропускной способности (видеоконференции: ~1-4 Mbps, потоковое видео HD: ~5-8 Mbps, загрузка файлов: потенциально неограниченно)
- 2. **Задержка (Latency, Delay)** время, требуемое для передачи пакета от источника к получателю:
 - Измеряется в миллисекундах (мс)
 - Составляющие задержки:
 - Задержка распространения (время прохождения сигнала по среде)
 - Задержка передачи (время помещения бита в среду)
 - Задержка обработки (время обработки пакета на узлах)
 - Задержка в очередях (время ожидания в буферах)
 - Критична для интерактивных приложений (голос: <150 мс, видео: <250 мс, игры: <100 мс)
- 3. **Джиттер (Jitter)** вариация задержки при передаче последовательных пакетов:
 - Измеряется в миллисекундах (мс)
 - Высокий джиттер приводит к неравномерной передаче потоковых данных
 - Решается с помощью буферизации, но это увеличивает общую задержку
 - Критичен для медиа-приложений (голос, видео)
- 4. Потеря пакетов (Packet Loss) доля пакетов, которые не достигли получателя:
 - Измеряется в процентах от общего числа отправленных пакетов
 - Причины потерь:
 - Перегрузка сети и переполнение буферов
 - Физические повреждения или помехи
 - Ошибки в работе оборудования
 - Допустимый уровень зависит от приложения (голос: <1%, видео: <0.5%, данные: зависит от протокола)
- 5. **Доступность (Availability)** доля времени, в течение которого сеть функционирует нормально:
 - Измеряется в процентах или в терминах "девяток" (99.9%, 99.99% и т.д.)

• Связана с надежностью сети и возможностью быстрого восстановления

Механизмы обеспечения QoS

Для обеспечения требуемого качества обслуживания в сетях применяются различные механизмы, воздействующие на разные аспекты передачи данных.

1. Классификация и маркировка трафика

Процесс идентификации пакетов и присвоения им приоритетов для дальнейшей обработки.

Методы классификации:

- По портам или адресам (Layer 3-4)
- По типу приложения (Layer 7)
- По содержимому пакета (Deep Packet Inspection)

Методы маркировки:

- ToS (Type of Service) / DSCP (Differentiated Services Code Point) поле в IPзаголовке (6 бит)
- CoS (Class of Service) поле в Ethernet-заголовке 802.1Q (3 бита)
- **MPLS EXP** поле в MPLS-метке (3 бита)

2. Управление перегрузками и очередями

Механизмы, определяющие, какие пакеты будут обрабатываться в первую очередь, а какие могут быть отброшены при перегрузке.

Алгоритмы организации очередей:

- FIFO (First-In-First-Out) обработка пакетов в порядке поступления
- PQ (Priority Queuing) обработка пакетов в соответствии с приоритетом
- WFQ (Weighted Fair Queuing) распределение ресурсов между потоками пропорционально их весам
- CBWFQ (Class-Based Weighted Fair Queuing) применение WFQ к классам трафика
- LLQ (Low Latency Queuing) сочетание CBWFQ с приоритетной очередью для чувствительного к задержкам трафика

Механизмы управления перегрузками:

- Tail Drop отбрасывание пакетов при переполнении очереди
- **RED (Random Early Detection)** вероятностное отбрасывание пакетов при приближении к переполнению
- WRED (Weighted RED) применение различных профилей RED к разным классам трафика
- ECN (Explicit Congestion Notification) уведомление отправителя о возможной перегрузке без отбрасывания пакетов

3. Управление трафиком

Механизмы, регулирующие скорость и объем передаваемых данных.

Traffic Policing:

- Ограничение скорости трафика до заданного значения
- Отбрасывание пакетов, превышающих установленный предел
- Работает на входе или выходе интерфейса

Traffic Shaping:

- Сглаживание трафика, приведение его к заданному профилю
- Буферизация пакетов вместо их отбрасывания
- Обычно применяется на выходе интерфейса

CAC (Call Admission Control):

- Контроль установления новых соединений
- Отказ в установлении соединения, если нет достаточных ресурсов

4. Резервирование ресурсов

Механизмы, гарантирующие выделение необходимых ресурсов для передачи данных.

RSVP (Resource Reservation Protocol):

- Сигнальный протокол для резервирования ресурсов вдоль пути
- Устанавливает сессии с требуемыми параметрами QoS
- Обеспечивает гарантированное качество обслуживания

IntServ (Integrated Services):

- Архитектура QoS, основанная на явном резервировании ресурсов
- Требует поддержки RSVP
- Обеспечивает строгие гарантии QoS, но имеет проблемы с масштабируемостью

DiffServ (Differentiated Services):

- Архитектура QoS, основанная на классификации и маркировке трафика
- Не требует поддержки сигнальных протоколов
- Обеспечивает относительные приоритеты без строгих гарантий
- Хорошо масштабируется на крупные сети

Примеры внедрения QoS в различных сценариях

1. Корпоративная сеть

Приоритеты трафика:

- 1. VoIP и видеоконференции (высший приоритет)
- 2. Бизнес-критичные приложения
- 3. Интерактивные приложения
- 4. Передача файлов и резервное копирование (низший приоритет)

Типичные механизмы:

- Классификация трафика по DSCP
- LLQ для голосового трафика
- CBWFQ для остальных классов
- Полисинг для ограничения некритичного трафика
- Шейпинг на WAN-соединениях

2. Сеть интернет-провайдера

Приоритеты трафика:

- 1. Служебный трафик провайдера
- 2. Премиальные услуги (VoIP, видео)
- 3. Обычный пользовательский трафик
- 4. "Лучшее усилие" (Best Effort)

Типичные механизмы:

- DiffServ для масштабируемости
- Traffic Engineering с использованием MPLS
- Полисинг для соблюдения SLA
- WRED для управления перегрузками
- Hierarchical QoS для многоуровневых политик

3. Беспроводные сети

Приоритеты трафика:

- 1. Голос и видео в реальном времени
- 2. Интерактивные данные
- 3. Фоновые приложения

Типичные механизмы:

- 802.11e / WMM (Wi-Fi Multimedia) для приоритизации
- Admission Control для ограничения числа соединений
- Адаптивное управление скоростью в зависимости от условий
- Специальные механизмы для мобильных сетей (QCI в LTE)

6. Эволюция стандартов сетей сотовой подвижной связи 3-го и 4-го поколений

Развитие сетей сотовой связи характеризуется постепенным переходом от систем, ориентированных преимущественно на голосовую связь, к универсальным мультисервисным сетям с высокоскоростной передачей данных и поддержкой различных типов приложений.

Сети третьего поколения (3G)

Сети 3G были разработаны с целью обеспечения более высоких скоростей передачи данных, чем их предшественники, и поддержки мультимедийных услуг.

UMTS (Universal Mobile Telecommunications System)

UMTS — стандарт сотовой связи третьего поколения, разработанный 3GPP (3rd Generation Partnership Project) и являющийся европейским вариантом реализации концепции IMT-2000.

Ключевые характеристики:

- Использование технологии WCDMA (Wideband Code Division Multiple Access)
- Теоретическая скорость передачи данных до 2 Мбит/с (в первых версиях)
- Частотные диапазоны: преимущественно 2100 МГц, а также 850, 900, 1800, 1900 МГц
- Полоса частот: 5 МГц
- Архитектура сети, включающая:
 - Сеть радиодоступа UTRAN (UMTS Terrestrial Radio Access Network)
 - Базовые станции Node B и контроллеры RNC (Radio Network Controller)
 - Опорную сеть CN (Core Network), частично унаследованную от GSM/GPRS

Эволюция UMTS:

- 1. **Release 99 (1999)** первая версия стандарта:
 - Скорость передачи данных до 384 кбит/с в условиях мобильности
 - До 2 Мбит/с в стационарных условиях
 - Интеграция с опорной сетью GSM/GPRS
- 2. **Release 4 (2001)** разделение голоса и данных:
 - Переход от коммутации каналов к коммутации пакетов для голоса
 - Введение технологии TD-SCDMA для Китая
- 3. **Release 5 (2002)** введение HSDPA:

- High-Speed Downlink Packet Access
- Скорость до 14,4 Мбит/с в направлении "вниз"
- Снижение задержек до 100 мс
- Введение подсистемы IMS (IP Multimedia Subsystem)

4. **Release 6 (2004)** — введение HSUPA:

- High-Speed Uplink Packet Access
- Скорость до 5,76 Мбит/с в направлении "вверх"
- Мультимедийная широковещательная/многоадресная услуга MBMS

5. **Release 7 (2007)** — HSPA+:

- Evolved HSPA или HSPA Evolution
- Введение MIMO (Multiple Input Multiple Output)
- Скорость до 28 Мбит/с в направлении "вниз" и 11 Мбит/с "вверх"
- Поддержка передачи голоса по IP (VoIP)

6. **Release 8 (2008)** — усовершенствованный HSPA+:

- Теоретическая скорость до 42 Мбит/с (использование 64QAM)
- Введение Dual-Carrier HSDPA (DC-HSDPA)
- Определение стандарта LTE (первый релиз LTE)

CDMA2000

CDMA2000 — семейство стандартов сотовой связи 3G, разработанное 3GPP2 (3rd Generation Partnership Project 2) и используемое преимущественно в Северной Америке и некоторых азиатских странах.

Ключевые характеристики:

- Развитие стандарта IS-95 (cdmaOne)
- Использование технологии CDMA (Code Division Multiple Access)
- Обратная совместимость с IS-95
- Частотные диапазоны: 450, 800, 1700, 1900, 2100 МГц
- Полоса частот: 1,25 МГц (1X) или n×1,25 МГц (нX)

Основные версии:

1. CDMA2000 1X (IS-2000) — первая версия:

- Теоретическая скорость до 153 кбит/с
- Улучшенная емкость голосовой связи по сравнению с IS-95
- Также известен как 1xRTT (1x Radio Transmission Technology)

2. **CDMA2000 1xEV-DO (IS-856)** — ориентирован на данные:

- 1x Evolution-Data Optimized
- ∘ Версия Rev. 0: до 2,4 Мбит/с в направлении "вниз" и 153 кбит/с "вверх"
- Версия Rev. A: до 3,1 Мбит/с "вниз" и 1,8 Мбит/с "вверх"
- Версия Rev. В: до 14,7 Мбит/с "вниз" с использованием нескольких несущих

3. CDMA2000 1xEV-DV (IS-2000 Rel. C) — объединение голоса и данных:

- o 1x Evolution-Data/Voice
- Теоретическая скорость до 3,1 Мбит/с
- Не получил широкого коммерческого внедрения

Сети четвертого поколения (4G)

Сети 4G были разработаны для обеспечения высокоскоростного широкополосного доступа в Интернет с поддержкой мобильности и качества обслуживания для мультимедийных приложений.

LTE (Long-Term Evolution)

LTE — стандарт беспроводной высокоскоростной передачи данных, разработанный 3GPP. Несмотря на то, что первые версии LTE не полностью соответствовали требованиям IMT-Advanced для 4G, термин "4G LTE" широко используется в маркетинговых целях.

Ключевые характеристики:

- Использование технологии OFDMA (Orthogonal Frequency-Division Multiple Access) в направлении "вниз"
- Использование SC-FDMA (Single-Carrier FDMA) в направлении "вверх"
- Гибкая полоса частот: 1,4, 3, 5, 10, 15 или 20 МГц
- Многочисленные частотные диапазоны (более 40 диапазонов определено)
- Многоантенные технологии МІМО
- Полностью IP-ориентированная архитектура
- Низкие задержки (менее 10 мс)

Архитектура сети LTE:

- Радиосеть E-UTRAN (Evolved UTRAN):
 - Базовые станции eNodeB (evolved NodeB)
 - Отсутствие контроллеров (функции распределены между базовыми станциями)
- Опорная сеть EPC (Evolved Packet Core):
 - MME (Mobility Management Entity) управление мобильностью
 - S-GW (Serving Gateway) обслуживающий шлюз
 - P-GW (PDN Gateway) шлюз к внешним сетям
 - HSS (Home Subscriber Server) база данных абонентов

Эволюция LTE:

1. **Release 8 (2008)** — первый стандарт LTE:

- Теоретическая скорость до 300 Мбит/с "вниз" и 75 Мбит/с "вверх"
- Поддержка МІМО 4×4 в направлении "вниз"
- Задержки менее 10 мс
- FDD (Frequency-Division Duplex) и TDD (Time-Division Duplex) варианты

2. Release 9 (2009) — малые улучшения:

- Усовершенствования MBMS
- Поддержка позиционирования абонентов
- Улучшения в Home eNodeB (малые соты)

3. **Release 10 (2011)** — LTE-Advanced:

- Соответствие требованиям IMT-Advanced для сетей 4G
- Агрегация несущих (Carrier Aggregation) до 100 МГц
- Расширенное использование МІМО (до 8×8)
- Скорость до 1 Гбит/с "вниз" и 500 Мбит/с "вверх"
- Улучшенная поддержка гетерогенных сетей (HetNet)
- Координированная многоточечная передача (CoMP)

4. **Release 11 (2012)** — улучшения LTE-Advanced:

- Улучшения в координации межсотовых помех (elCIC)
- Улучшения в адаптации канала
- Развитие технологии СоМР

5. **Release 12 (2014)** — дальнейшие улучшения:

- Малые соты и двойная связность (Dual Connectivity)
- Агрегация несущих FDD и TDD
- 3D MIMO (трехмерные диаграммы направленности)
- Передача голоса по сети LTE (VoLTE) и WiFi (VoWiFi)

6. **Release 13 (2015)** — предварительный этап к 5G:

- LTE для устройств межмашинного взаимодействия (LTE-M)
- Узкополосный Интернет вещей (NB-IoT)
- LTE в нелицензируемом спектре (LTE-U, LAA)
- Повышение спектральной эффективности

7. **Release 14 (2017)** — последний релиз LTE перед 5G:

- Дальнейшие улучшения для IoT
- Поддержка связи V2X (Vehicle-to-Everything)
- Повышение максимальной скорости передачи
- Улучшения для критически важных коммуникаций

WiMAX (Worldwide Interoperability for Microwave Access)

WiMAX — технология беспроводной связи, основанная на стандарте IEEE 802.16. Мобильный WiMAX (IEEE 802.16e) и WiMAX 2 (IEEE 802.16m) рассматривались как технологии 4G, альтернативные LTE.

Ключевые характеристики:

- Использование технологии OFDMA
- Поддержка фиксированного и мобильного доступа
- Частотные диапазоны: 2,3, 2,5, 3,5 ГГц и другие
- Полоса частот: от 1,25 до 20 МГц
- Дальность действия: до нескольких километров
- Скорость передачи данных: до 75 Мбит/с в ранних версиях

Эволюция WiMAX:

1. **IEEE 802.16 (2001)** — первая версия стандарта:

- Фиксированный беспроводной доступ
- Диапазон 10-66 ГГц
- Требование прямой видимости

2. **IEEE 802.16a/d (2004)** — расширение стандарта:

- Диапазон 2-11 ГГц
- Не требует прямой видимости
- Улучшенная поддержка QoS

3. **IEEE 802.16e (2005)** — мобильный WiMAX:

- Поддержка мобильности до 120 км/ч
- Увеличение дальности действия
- Улучшенная устойчивость к многолучевому распространению

4. **IEEE 802.16m (2011)** — WiMAX 2:

- Соответствие требованиям IMT-Advanced для сетей 4G
- Скорость до 1 Гбит/с для фиксированных станций
- Скорость до 100 Мбит/с для мобильных станций
- Поддержка МІМО и расширенные методы модуляции
- Обратная совместимость с IEEE 802.16e

Сравнение WiMAX и LTE:

- Обе технологии используют схожие технические принципы (OFDMA, MIMO)
- LTE получил более широкое распространение благодаря поддержке операторов мобильной связи
- WiMAX часто применялся для фиксированного беспроводного доступа
- WiMAX был доступен раньше, но LTE быстро догнал его по возможностям
- В конечном итоге LTE стал доминирующей технологией 4G

Сравнительная характеристика поколений мобильной связи

Характеристика	3G (UMTS)	3.5G (HSPA+)	4G (LTE)	4G+ (LTE- Advanced)
Год внедрения	2001- 2003	2007-2009	2010-2012	2013-2015

Характеристика	3G (UMTS)	3.5G (HSPA+)	4G (LTE)	4G+ (LTE- Advanced)
Максимальная скорость "вниз"	384 кбит/ с - 2 Мбит/с	14-42 Мбит/с	100-300 Мбит/с	300-1000 Мбит/с
Максимальная скорость "вверх"	128-384 кбит/с	5,8-11 Мбит/с	50-75 Мбит/с	150-500 Мбит/с
Задержка	100-500 мс	50-100 мс	10-30 мс	<10 мс
Основная технология	WCDMA	HSPA, HSPA+	OFDMA/SC-FDMA	OFDMA c Carrier Aggregation
Ширина канала	5 МГц	5 МГц	1,4-20 МГц	До 100 МГц (агрегация)
Архитектура	Частично пакетная	Преимущественно пакетная	Полностью IP	Полностью IP
Основные услуги	Голос, данные	Интернет, мультимедиа	Высокоскоростной Интернет, HD видео	Ultra HD видео, дополненная реальность

Тенденции развития и переход к 5G

По мере развития технологий 3G и 4G и приближения к их теоретическим пределам, стала очевидной необходимость разработки нового поколения мобильной связи — 5G, которое должно обеспечить:

- 1. Сверхвысокие скорости передачи данных до 20 Гбит/с
- 2. Сверхнизкие задержки менее 1 мс
- 3. Массовое подключение устройств до 1 миллиона устройств на 1 км²
- 4. Высокую энергоэффективность увеличение срока службы батарей в 10 раз
- 5. **Улучшенную покрывающую способность** включая глубокое проникновение в здания
- 6. Поддержку различных сценариев использования:
 - eMBB (enhanced Mobile Broadband) расширенный мобильный широкополосный доступ
 - URLLC (Ultra-Reliable Low-Latency Communications) сверхнадежная связь с низкими задержками
 - mMTC (massive Machine-Type Communications) массовая межмашинная связь

Стандартизация 5G началась в Release 15 3GPP (2018 год) и продолжается в последующих релизах, при этом многие операторы используют инфраструктуру 4G LTE в качестве основы для внедрения первых сетей 5G (режим NSA — Non-Standalone).