

MTH223A

Yvette Fajardo-Lir

Conjugacy

Normal Subgroups

Quotient Groups

MTH223A LECTURE NOTES CHAPTER 5

Yvette Fajardo-Lim

Mathematics and Statistics Department De La Salle University - Manila

Outline

MTH223A

Yvette Fajardo-Lin

Conjugac

Conjugacy Class Normal Subgroup Quotient Groups

- Conjugacy
 - Conjugacy Classes
 - Normal Subgroups
 - Quotient Groups

Outline

MTH223A

Yvette Faiardo-Lin

Conjugacy Conjugacy Classes

Conjugacy Classe Normal Subgroup Quotient Groups

- Conjugacy
 - Conjugacy Classes
 - Normal Subgroups
 - Quotient Groups

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classes Normal Subgroups

Definition

If $a, b \in G$, we say that b is conjugate to a if there exists $x \in G$ with $b = x^{-1}ax$.

- In D_4 we have a^3 conjugate to a, since with x = b we have $b^{-1}ab = bab = a^3bb = a^3$.
- In any group G, the only element conjugate to the identity is itself, since for all $x \in G$ we have $x^{-1}ex = x^{-1}x = e$.

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classes Normal Subgroups Quotient Groups

Definition

If $a, b \in G$, we say that b is conjugate to a if there exists $x \in G$ with $b = x^{-1}ax$.

- In D_4 we have a^3 conjugate to a, since with x = b we have $b^{-1}ab = bab = a^3bb = a^3$.
- 2 In any group G, the only element conjugate to the identity is itself, since for all $x \in G$ we have $x^{-1}ex = x^{-1}x = e$

MTH223A

Yvette Fajardo-Lim

Conjugacy
Conjugacy Classes
Normal Subgroups
Quotient Groups

Definition

If $a, b \in G$, we say that b is conjugate to a if there exists $x \in G$ with $b = x^{-1}ax$.

- In D_4 we have a^3 conjugate to a, since with x = b we have $b^{-1}ab = bab = a^3bb = a^3$.
- 2 In any group G, the only element conjugate to the identity is itself, since for all $x \in G$ we have $x^{-1}ex = x^{-1}x = e$.

MTH223A

Yvette Fajardo-Lim

Conjugacy Cla

Conjugacy Classes
Normal Subgroups
Quotient Groups

Theorem

Conjugacy is an equivalence relation on G.

Definition

The equivalence classes for the relation of conjugacy are called **conjugacy classes** of G; we write \mathbf{C}_g for the conjugacy class containing the element g.

MTH223A

Yvette Fajardo-Lim

Conjugacy
Conjugacy Classes
Normal Subgroups
Quotient Groups

Theorem

Conjugacy is an equivalence relation on G.

Definition

The equivalence classes for the relation of conjugacy are called **conjugacy classes** of G; we write \mathbf{C}_g for the conjugacy class containing the element g.

MTH223A

Yvette Fajardo-Lim

Conjugacy Classes
Normal Subgroups

Theorem

If $g \in G$ then $\mathbf{C}_g = \{g\}$ if and only if $g \in Z(G)$.

Corollary

G is abelian if and only if $C_q = \{g\}$ for all $g \in G$.

MTH223A

Yvette Fajardo-Lim

Conjugacy
Conjugacy Classes
Normal Subgroups
Quotient Groups

Theorem

If $g \in G$ then $\mathbf{C}_g = \{g\}$ if and only if $g \in Z(G)$.

Corollary

G is abelian if and only if $\mathbf{C}_g = \{g\}$ for all $g \in G$.

MTH223A

Yvette Fajardo-Lim

Conjugacy Classes

Theorem

If $g, h \in G$ and h is conjugate to g, then o(h) = o(g).

MTH223A

Yvette Fajardo-Lim

Conjugacy Classes
Normal Subgroups

Theorem

If $g, h \in G$ and h is conjugate to g, then o(h) = o(g).

Example

In D₄ the elements a and a³ are conjugate, and each has order 4.

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classes Normal Subgroups

Theorem

If $g, h \in G$ and h is conjugate to g, then o(h) = o(g).

Example

In D_4 the elements a and a^3 are conjugate, and each has order 4.

Remark

The converse need not be true, for example, in \mathbb{Z}_4 the elements [1] and [3] both have order 4, but they are not conjugate as the group is abelian.

MTH223A

Yvette Fajardo-Lim

Conjugacy
Conjugacy Classe:
Normal Subgroups
Quotient Groups

Theorem

If $g, h \in G$ and h is conjugate to g, then o(h) = o(g).

Example

In D₄ the elements a and a³ are conjugate, and each has order 4.

Remark

The converse need not be true, for example, in \mathbb{Z}_4 the elements [1] and [3] both have order 4, but they are not conjugate as the group is abelian.

MTH223A

Yvette Fajardo-Lim

Conjugacy
Conjugacy Classe:
Normal Subgroups
Quotient Groups

Theorem

If $g, h \in G$ and h is conjugate to g, then o(h) = o(g).

Example

In D₄ the elements a and a³ are conjugate, and each has order 4.

Remark

The converse need not be true, for example, in \mathbb{Z}_4 the elements [1] and [3] both have order 4, but they are not conjugate as the group is abelian.

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classes

Normal Subgroup
Quotient Groups

Theorem

If $g, h \in G$ and $h = x^{-1}gx$, then $C_G(h) = x^{-1}C_G(g)x$.

If
$$G = D_4$$
 we have $b^{-1}ab = a3$, and $C_G(a) = \{e, a, a^2, a^3\} = C_G(a^3)$; thus $b^{-1}C_G(a)b = \{b^{-1}eb, b^{-1}ab, b^{-1}a^2b, b^{-1}a^3b\} = \{e, a^3, a^2, a\} = b^{-1}C_G(a^3)b$.

MTH223A

Yvette Fajardo-Lim

Conjugacy
Conjugacy Classes
Normal Subgroups
Quotient Groups

Theorem

If $g, h \in G$ and $h = x^{-1}gx$, then $C_G(h) = x^{-1}C_G(g)x$.

If
$$G = D_4$$
 we have $b^{-1}ab = a3$, and $C_G(a) = \{e, a, a^2, a^3\} = C_G(a^3)$; thus $b^{-1}C_G(a)b = \{b^{-1}eb, b^{-1}ab, b^{-1}a^2b, b^{-1}a^3b\} = \{e, a^3, a^2, a\} = b^{-1}C_G(a^3)b$.

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classes Normal Subgroups Quotient Groups

Example

We shall determine the conjugacy classes in $G = D_3$. We know that {e} is one conjugacy class; from a previous exercise $Z(G) = \{e\}$, so this is the only conjugacy class of order 1. Of the remaining elements, a and a² have order 3 while the rest have order 2; thus $\{a, a^2\}$ must be a conjugacy class, as must $\{b, ab, a^2b\}$ (otherwise there would be a class of order 1). To check this, note that $b^{-1}ab = bab = a2$ so that $a^2 \in \mathbf{C}_a$, while $(a2)^{-1}ba^2 = aba^2 = ba = a^2b$ and $a^{-1}ba = a^2ba = ab$ so that a^2b , $ab \in \mathbf{C}_h$. Thus we do indeed have three conjugacy classes C_e, C_a and C_h, of sizes 1, 2 and 3. Note that the centralizer sizes of representative elements are $|C_G(e)| = |G| = 6, |C_G(a)| = |\{e, a, a^2\}| = 3$ and $|C_G(b)| = |\{e, b\}| = 2$.

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classes Normal Subgroups Quotient Groups

Example

We shall determine the conjugacy classes in $G = D_3$. We know that {e} is one conjugacy class; from a previous exercise $Z(G) = \{e\}$, so this is the only conjugacy class of order 1. Of the remaining elements, a and a² have order 3 while the rest have order 2; thus $\{a, a^2\}$ must be a conjugacy class, as must $\{b, ab, a^2b\}$ (otherwise there would be a class of order 1). To check this, note that $b^{-1}ab = bab = a2$ so that $a^2 \in \mathbf{C}_a$, while $(a2)^{-1}ba^2 = aba^2 = ba = a^2b$ and $a^{-1}ba = a^2ba = ab$ so that a^2b , $ab \in \mathbf{C}_h$. Thus we do indeed have three conjugacy classes C_e, C_a and C_h, of sizes 1, 2 and 3. Note that the centralizer sizes of representative elements are $|C_G(e)| = |G| = 6, |C_G(a)| = |\{e, a, a^2\}| = 3$ and $|C_G(b)| = |\{e, b\}| = 2$.

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classe Normal Subgroup Quotient Groups

Example

Take $G = D_3$ and g = b, so that $C_G(g) = \{e, b\}$. We let x run through the elements of G, and compute the conjugate $x^{-1}gx$ and the right coset $C_G(g)x$. We obtain the following.

X	$x^{-1}gx$	$C_G(g)x$
e	b	{ <i>e</i> , <i>b</i> }
b	b	{ e, b}
а	ab	$\{a, a^2b\}$
a ² b	ab	$\{a,a^2b\}$
a ²	a²b	$\{a^2,ab\}$
ab	a²b	$\{a^2, ab\}$

Thus each distinct conjugate $x^{-1}gx$ corresponds to a distinct right coset $C_G(g)x$.

Outline

MTH223A

Yvette Fajardo-Lin

Conjugacy Conjugacy Classes Normal Subgroups Quotient Groups

- Conjugacy
 - Conjugacy Classes
 - Normal Subgroups
 - Quotient Groups

MTH223A

Yvette Fajardo-Lim

Conjugacy
Conjugacy Classes
Normal Subgroups
Quotient Groups

Definition

The subgroup H of a group G is called a **normal subgroup** if $g^{-1}hg$ for all $h \in H$ and $g \in G$; we write $H \triangleleft G$ if this condition is satisfied.

- If $G = D_4$, then $H = \{e, b\}$ is not a normal subgroup since $a^{-1}ba = a^3ba = a^2b \notin H$.
- ② If $G = D_4$, then $H = \{e, a^2\}$ is a normal subgroup, since for all $g \in G$ we have $g^{-1}eg = e$ and $g^{-1}a^2g = a^2$, as $a^2 \in Z(G)$.

MTH223A

Yvette Fajardo-Lim

Conjugacy
Conjugacy Classes
Normal Subgroups
Quotient Groups

Definition

The subgroup H of a group G is called a **normal subgroup** if $g^{-1}hg$ for all $h \in H$ and $g \in G$; we write $H \triangleleft G$ if this condition is satisfied.

- If $G = D_4$, then $H = \{e, b\}$ is not a normal subgroup, since $a^{-1}ba = a^3ba = a^2b \notin H$.
- If $G = D_4$, then $H = \{e, a^2\}$ is a normal subgroup, since for all $g \in G$ we have $g^{-1}eg = e$ and $g^{-1}a^2g = a^2$, as $a^2 \in Z(G)$.

MTH223A

Yvette Fajardo-Lim

Conjugacy
Conjugacy Classes
Normal Subgroups
Quotient Groups

Definition

The subgroup H of a group G is called a **normal subgroup** if $g^{-1}hg$ for all $h \in H$ and $g \in G$; we write $H \triangleleft G$ if this condition is satisfied.

- If $G = D_4$, then $H = \{e, b\}$ is not a normal subgroup, since $a^{-1}ba = a^3ba = a^2b \notin H$.
- ② If $G = D_4$, then $H = \{e, a^2\}$ is a normal subgroup, since for all $g \in G$ we have $g^{-1}eg = e$ and $g^{-1}a^2g = a^2$, as $a^2 \in Z(G)$.

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classes Normal Subgroups Quotient Groups

- Every subgroup of an abelian group is normal because if gh = hg for any g and h then $g^{-1}hg = h$.
- 2 {e} and G are normal subgroups of G.
- 3 $Z(G) \triangleleft G$ because if $h \in Z(G)$ then $g^{-1}hg = h$ for all $g \in G$.
- A normal subgroup is a union of conjugacy classes of G.

MTH223A

Yvette Faiardo-Lim

Conjugacy
Conjugacy Classes
Normal Subgroups
Quotient Groups

- Every subgroup of an abelian group is normal because if gh = hg for any g and h then $g^{-1}hg = h$.
- 2 {e} and G are normal subgroups of G.
- ③ $Z(G) \triangleleft G$ because if $h \in Z(G)$ then $g^{-1}hg = h$ for all $g \in G$.
- A normal subgroup is a union of conjugacy classes of G.

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classes Normal Subgroups Quotient Groups

- Every subgroup of an abelian group is normal because if gh = hg for any g and h then $g^{-1}hg = h$.
- 2 {e} and G are normal subgroups of G.
- **3** $Z(G) \triangleleft G$ because if $h \in Z(G)$ then $g^{-1}hg = h$ for all $g \in G$.
- A normal subgroup is a union of conjugacy classes of G.

MTH223A

Yvette Fajardo-Lim

Conjugacy
Conjugacy Classes
Normal Subgroups
Quotient Groups

- Every subgroup of an abelian group is normal because if gh = hg for any g and h then $g^{-1}hg = h$.
- 2 {e} and G are normal subgroups of G.
- **3** $Z(G) \triangleleft G$ because if $h \in Z(G)$ then $g^{-1}hg = h$ for all $g \in G$.
- A normal subgroup is a union of conjugacy classes of G.

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classes Normal Subgroups Quotient Groups

Example

The conjugacy classes of D_3 are $\{e\}$, $\{a, a^2\}$, and $\{b, ab, a^2b\}$. If $H \triangleleft G$, then H must be a union of some of these, including \mathbf{C}_e ; there are four possibilities:

$$\mathbf{C}_e, \quad \mathbf{C}_e \cup \mathbf{C}_a, \quad \mathbf{C}_e \cup \mathbf{C}_b, \quad \mathbf{C}_e \cup C_a \cup \mathbf{C}_b$$

However, $|\mathbf{C}_e \cup \mathbf{C}_b| = 1 + 3 = 4$, which does not divide |D6| = 6, so this cannot be a subgroup; the remaining three are in fact all subgroups: we have

$$\mathbf{C}_e = \{e\}, \mathbf{C}_e \cup \mathbf{C}_a = \{e, a, a^2\} \text{ and } \mathbf{C}_e \cup C_a \cup \mathbf{C}_b.$$

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classes Normal Subgroups Quotient Groups

Example

Suppose that we are given a group G of order 12 with four conjugacy classes, \mathbf{C}_e , \mathbf{C}_a , \mathbf{C}_b , and \mathbf{C}_c ; we are told that $|C_G(a)|=4$ and $C_G(b)=C_G(c)$, and are asked to show that G can only have one possible proper non-trivial normal subgroup. We identify the class sizes: $|\mathbf{C}_e|=1$ since $\mathbf{C}_e=\{e\}; |\mathbf{C}_a|=\frac{12}{4}=3;$ and as $|\mathbf{C}_b|=|\mathbf{C}_c|$ and the sum of the class sizes is |G|=12, we must have $|\mathbf{C}_b|=|\mathbf{C}_c|=4$. The only possible combination of 1,3,4,4 including 1 which gives a factor of 12 other than 1 or 12 is 1+3=4; so the only possible proper non-trivial normal subgroup is $\mathbf{C}_e \cup \mathbf{C}_a$.

MTH223A

Yvette Faiardo-Lim

Conjugacy Conjugacy Classes Normal Subgroups Quotient Groups

Theorem

If H is a subgroup of G, then $H \triangleleft G$ if and only if the left and right cosets of H in G are the same.

Example

We saw that in D_4 the left and right cosets of the subgroup $H = \{e, b\}$ were different, so this gives another way of seeing that H is not a normal subgroup.

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classes Normal Subgroups Quotient Groups

Theorem

If H is a subgroup of G, then $H \triangleleft G$ if and only if the left and right cosets of H in G are the same.

Example

We saw that in D_4 the left and right cosets of the subgroup $H = \{e, b\}$ were different, so this gives another way of seeing that H is not a normal subgroup.

MTH223A

Yvette Fajardo-Lim

Conjugacy
Conjugacy Classes
Normal Subgroups
Quotient Groups

Corollary

If G is a finite group and H is a subgroup of index 2 in G so that $|H| = \frac{1}{2}|G|$, then $H \triangleleft G$.

- 1 If $G = D_3$ then we have seen that $H = \{e, a, a^2\}$ is a normal subgroup of G, and its index in G is 2.
- ② If $G = D_4$ then the subgroup $H = \{e, a, a^2, a^3\}$ is a normal subgroup, since its index in G is 2. We may statistically as follows: clearly $g^{-1}hg \in H$ for all $g, h \in H$, so it suffices to consider $g \notin H$; then $g = a^ib, h = a^j$, and $g^{-1}hg = (a^ib)^{-1}a^ja^ib = b^{-1}(a^i)^{-1}a^ja^ib = b^{-1}(a^-ia^ja^i)b = b^{-1}a^jb = a^j \in H$

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classes Normal Subgroups Quotient Groups

Corollary

If G is a finite group and H is a subgroup of index 2 in G so that $|H| = \frac{1}{2}|G|$, then $H \triangleleft G$.

- If $G = D_3$ then we have seen that $H = \{e, a, a^2\}$ is a normal subgroup of G, and its index in G is 2.
- If $G = D_4$ then the subgroup $H = \{e, a, a^2, a^3\}$ is a normal subgroup, since its index in G is 2. We may see this directly as follows: clearly $g^{-1}hg \in H$ for all $g, h \in H$, so it suffices to consider $g \notin H$; then $g = a^ib, h = a^i$, and $g^{-1}hg = (a^ib)^{-1}a^ia^ib = b^{-1}(a^i)^{-1}a^ia^ib = b^{-1}(a^{-1}$

MTH223A

Yvette Fajardo-Lim

Conjugacy
Conjugacy Classes
Normal Subgroups
Quotient Groups

Corollary

If G is a finite group and H is a subgroup of index 2 in G so that $|H| = \frac{1}{2}|G|$, then $H \triangleleft G$.

- If $G = D_3$ then we have seen that $H = \{e, a, a^2\}$ is a normal subgroup of G, and its index in G is 2.
- If $G = D_4$ then the subgroup $H = \{e, a, a^2, a^3\}$ is a normal subgroup, since its index in G is 2. We may see this directly as follows: clearly $g^{-1}hg \in H$ for all $g, h \in H$, so it suffices to consider $g \notin H$; then $g = a^ib, h = a^j$, and $g^{-1}hg = (a^ib)^{-1}a^ja^ib = b^{-1}(a^i)^{-1}a^ja^ib = b^{-1}(a^-ia^ja^i)b = b^{-1}a^jb = a^j \in H$

Outline

MTH223A

Yvette Fajardo-Lin

Conjugacy Conjugacy Class Normal Subgroup Quotient Groups

- Conjugacy
 - Conjugacy Classes
 - Normal Subgroups
 - Quotient Groups

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classe Normal Subgroup Quotient Groups

Theorem

If $\phi: G \to H$ is a homomorphism, then $Ker \phi \lhd G$.

Theoren

If H is a normal subgroup of G, the set G/H of cosets of H in G is a group under the binary operation above; there is a homomorphism $\phi: G \to H$ defined by $\phi(g) = Hg$, and $\ker \phi = H$.

Example

If $G = D_4$ and $H = \{e, b\}$, we know that H is not a normal subgroup of G; we cannot define a binary operation on the set of right cosets of H as above, as $Ha = \{a, a^3b\}, Ha^2 = \{a^2, a^2b\}, but aa^2 = a^3 and$

MTH223A

Yvette Fajardo-Lim

Conjugacy
Conjugacy Classe
Normal Subgroup
Quotient Groups

Theorem

If $\phi: G \to H$ is a homomorphism, then $Ker \phi \lhd G$.

Theorem

If H is a normal subgroup of G, the set G/H of cosets of H in G is a group under the binary operation above; there is a homomorphism $\phi: G \to H$ defined by $\phi(g) = Hg$, and $\ker \phi = H$.

Example

If $G = D_4$ and $H = \{e, b\}$, we know that H is not a normal subgroup of G; we cannot define a binary operation on the set of right cosets of H as above, as

 $Ha = \{a, a^3b\}, Ha^2 = \{a^2, a^2b\}, \text{ but } aa^2 = a^3 \text{ and } a^3ba^2b = a \text{ do not lie in the same right coset.}$

MTH223A

Yvette Fajardo-Lim

Conjugacy
Conjugacy Class
Normal Subgroup
Quotient Groups

Theorem

If $\phi: G \to H$ is a homomorphism, then $Ker \phi \lhd G$.

Theorem

If H is a normal subgroup of G, the set G/H of cosets of H in G is a group under the binary operation above; there is a homomorphism $\phi: G \to H$ defined by $\phi(g) = Hg$, and $\ker \phi = H$.

Example

If $G = D_4$ and $H = \{e, b\}$, we know that H is not a normal subgroup of G; we cannot define a binary operation on the set of right cosets of H as above, as $Ha = \{a, a^3b\}$, $Ha^2 = \{a^2, a^2b\}$, but $aa^2 = a^3$ and $a^3ba^2b = a$ do not lie in the same right coset.

MTH223A

Yvette Faiardo-Lim

Conjugacy
Conjugacy Classe
Normal Subgroups
Quotient Groups

Example

If $G = D_4$ and $H = \{e, a^2\}$, then we have seen that $H \triangleleft G$; thus we do have a group G/H. If we order the elements of G according to the cosets of H, the Cayley table of G naturally gives that of G/H; here we have $G/H \cong Klein 4$ -group.

G	e	а	a^2	a^3	b	ab	a^2b	
е	e	а	a^2	a^3	b	ab		
а	а	a^2	a^3	e	ab	a^2b	a^3b	b
a^2	a^2	a^3	e	а	a^2b	a^3b	b	ab
a^3	a^3	е	а	a^2	a^3b	b	ab	ab ²
b	b	a^3b	a^2b	ab	e	a^3	a^2	
ab	ab	b	a^3b	a^2b			a^3	a^2
a ² b	a ² b	ab	b	a^3b		а	е	a^3
a ³ b	a ³ b	a²b	ab	b	a^3	a^2	а	e

MTH223A

Yvette Fajardo-Lii

Conjugacy
Conjugacy Classes
Normal Subgroups
Quotient Groups

Example

	G/H	He	На	Hb	Hab
Ì	He	He	На	Hb	Hab
	На	На	He	Hab	Hb
	Hb	Hb	Hab	He	На
	Hab	Hab	Hb	На	He

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classes Normal Subgroups Quotient Groups

Theorem

The Fundamental Theorem of Homomorphism *If* $\phi: G \to G_1$ *is a homomorphism, then* $G/Ker \phi \cong \phi(G)$.

Example

Let $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}_4, +)$ be the homomorphism defined by

$$\phi(x) = \phi(4q + r) = r$$

Then $N = Ker \ \phi = \{4k + k \in Z\}$ and $G/N = \{N, N+1, N+2, N+3\}$. The mapping ψ consists the following: $N \mapsto 0, \ N+1 \mapsto 1, \ N+2 \mapsto 2, \ N+3 \mapsto 3$. Clearly, ψ is an isomorphism. Moreover, ϕ is onto, so that $\phi(\mathbb{Z}) = \mathbb{Z}_4$. The group tables for $G/N = \mathbb{Z}/N$ and $G_1 = \mathbb{Z}_4$ are shown on the next slide.

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classe Normal Subgroup Quotient Groups

Theorem

The Fundamental Theorem of Homomorphism *If* $\phi: G \to G_1$ *is a homomorphism, then* $G/Ker \phi \cong \phi(G)$.

Example

Let $\phi: (\mathbb{Z}, +) \to (\mathbb{Z}_4, +)$ be the homomorphism defined by

$$\phi(x) = \phi(4q + r) = r$$

Then $N = \text{Ker } \phi = \{4k + k \in Z\}$ and $G/N = \{N, N+1, N+2, N+3\}$. The mapping ψ consists of the following: $N \mapsto 0$, $N+1 \mapsto 1$, $N+2 \mapsto 2$, $N+3 \mapsto 3$. Clearly, ψ is an isomorphism. Moreover, ϕ is onto, so that $\phi(\mathbb{Z}) = \mathbb{Z}_4$. The group tables for $G/N = \mathbb{Z}/N$ and $G_1 = \mathbb{Z}_4$ are shown on the next slide.

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classe Normal Subgroup Quotient Groups

Example

	*	Ν	N + 1	N+2	N + 3
ſ	Ν	N	N + 1	N + 2	N + 3
Ì	N + 1	N + 1	N+2	N + 3	Ν
İ	N+2	N + 2	N + 3	Ν	N + 1
	N+3	N + 3	Ν	<i>N</i> + 1	N+2

*	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Observe that each group table can be obtained from the other by replacing the entries in a table by the corresponding images or pre-images under the mapping ψ .

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classe Normal Subgroup Quotient Groups The fundamental homomorphism theorem is also known as the **First Isomorphism Theorem**. We also have the following isomorphism theorems.

Theorem

Second Isomorphism Theorem Let H be a subgroup of a group G and N be a normal subgroup of G. Then $HN/N \cong H/H \cap N$.

Theorem

Third Isomorphism Theorem Let H and K be normal subgroups of a group G, with $K \leq H$. Then $G/H \cong (G/K)/(H/K)$.

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classe Normal Subgroup Quotient Groups The fundamental homomorphism theorem is also known as the **First Isomorphism Theorem**. We also have the following isomorphism theorems.

Theorem

Second Isomorphism Theorem Let H be a subgroup of a group G and N be a normal subgroup of G. Then $HN/N \cong H/H \cap N$.

Theorem

Third Isomorphism Theorem Let H and K be normal subgroups of a group G, with $K \leq H$. Then $G/H \cong (G/K)/(H/K)$.

MTH223A

Yvette Fajardo-Lim

Conjugacy Conjugacy Classe Normal Subgroup Quotient Groups The fundamental homomorphism theorem is also known as the **First Isomorphism Theorem**. We also have the following isomorphism theorems.

Theorem

Second Isomorphism Theorem Let H be a subgroup of a group G and N be a normal subgroup of G. Then $HN/N \cong H/H \cap N$.

Theorem 1

Third Isomorphism Theorem Let H and K be normal subgroups of a group G, with $K \leq H$. Then $G/H \cong (G/K)/(H/K)$.

MTH223A

Yvette Fajardo-Lim

Conjugacy
Conjugacy Classe
Normal Subgroup
Quotient Groups

Example

Let $G = \mathbb{Z}$, $H = 5\mathbb{Z}$, $K = 10\mathbb{Z}$, with respect to addition. Since G is abelian, every subgroup is normal, so H, K are normal subgroups of G. We have

$$\begin{split} & G/H &= \mathbb{Z}/5\mathbb{Z} = \{ \ H, \ H+1, \ H+2, \ H+3, \ H+4 \ \} \cong \mathbb{Z}_5 \\ & G/K &= \mathbb{Z}/10\mathbb{Z} = \{ \ K, \ K+1, K+2, \ \dots, K+9 \ \} \cong \mathbb{Z}_{10} \\ & H/K &= 5\mathbb{Z}/10\mathbb{Z} = \{ K, \ K+5 \ \} \cong \mathbb{Z}_2 \end{split}$$

On the other hand, $(G/K)/(H/K) = \{H/K, H/K + (K+1), H/K + (K+2), H/K + (K+3), H/K + (K+4)\} \cong \mathbb{Z}_5$ which shows that $G/H \cong (G/K)/(H/K)$