Problem 1

设存在元素 y 使得 x V y=1 且 x / y=0, 则

 $y = y \land 1 = y \land (x \lor x^{-}) = (y \land x) \lor (y \land x^{-}) = (x \land y) \lor (y \land x^{-}) = 0 \lor (y \land x^{-}) = y \land x^{-} = (x^{-} \land y) \lor 0 = (x^{-} \land y) \lor (x \land x^{-}) = x^{-} \land (y \lor x) = x^{-} \land (x \lor y) = x^{-} \land 1 = x^{-}$ 存在唯一的元素 $y = x^{-}$ 使得 $x \lor y = x \lor x^{-} = 1, x \land y = x \land x^{-} = 0$

Problem 2

a) 成立, 列出真值表可证

хуz	000	001	010	011	100	101	110	111
x⊕(y⊕z)	0	1	1	0	1	0	0	1
(x⊕y)⊕z	0	1	1	0	1	1	0	1

- b) 不成立, 取 x=1, y=1, z=1, 1+(1⊕1)=1+0=1, (1+1)⊕(1+1)=1⊕1=0
- c) 不成立, 取 x=1, y=1, z=0, 1⊕(1+0)=1⊕1=0, (1⊕1)+(1⊕0)=0+1=1

Problem 3

 $a \leq b \Leftrightarrow a \wedge b = a, \text{ } \emptyset \text{ } a \wedge b' = (a \wedge b) \wedge b' = a \wedge (b \wedge b') = a \wedge 0 = 0$ $a \wedge b' = 0 \Leftrightarrow a' \vee b = (a \wedge b')' = 1$ $a' \vee b = 1 \Leftrightarrow a = a \wedge 1 = a \wedge (a' \vee b) = (a \wedge a') \vee (a \wedge b) = 0 \vee (a \wedge b) = a \wedge b) \Leftrightarrow a \leq b$

Problem 4

易见⊕运算在 B 上封闭, 又对任意 x, y, z ∈ B, 有

 $(x \oplus y) \oplus z = (((x \land y') \lor (x' \land y)) \land z') \lor (((x \land y') \lor (x' \land y))' \land z)$

 $x \oplus (y \oplus z) = (x \land ((y \land z') \lor (y' \land z))') \lor (x' \land ((y \land z') \lor (y' \land z)))$

则 $(x \oplus y) \oplus z = x \oplus (y \oplus z) = (x \land y \land z) \lor (x \land y' \land z')$, ⊕满足结合性

又对任意 $x \in B$ 有 $x \oplus 0 = 0 \oplus x = 0$, 则 0 是单位元

对任意 $x \in B$ 有 $x \oplus x = x \oplus x = 0$, 任意 $x \in B$ 自身的逆元, $\langle B, \oplus \rangle$ 构成群

Problem 5

对任意 a, b, c∈B, 若 a≤c 则有 a \lor c=c, a \lor (b \land c) = (a \lor b) \land (a \lor c) = (a \lor b) \land c

Problem 6

运用数学归纳法, 当 n=2 时(a1 \vee a2)'=a1' \wedge a2', (a1 \wedge a2)'=a1' \vee a2', 即德摩根律假设对于 n=k 命题成立, 则对 n=k+1 有

- 1) $(a1 \lor a2 \lor \dots \lor ak+1)' = ((a1 \lor a2 \lor \dots \lor ak) \lor ak+1)' = (a1' \land a2' \land \dots \land ak') \land ak+1' = a1' \land a2' \land \dots \land ak' \land ak+1'$
- 2) $(a1 \land a2 \land \dots \land ak+1)' = ((a1 \land a2 \land \dots \land ak) \land ak+1)' = (a1' \lor a2' \lor \dots \lor ak') \lor ak+1' = a1' \lor a2' \lor \dots \lor ak' \lor ak+1'$

命题对 n=k+1 也成立, 由数学归纳法 n 对全部 n∈N 且 n≥2 恒成立, 证毕

Problem 7

对任意 a, b \in B, 若 a \leq b, 有 a \land b = a, a' \lor b' = (a \land b)' = a', 则 b' \leq a' 反之若 b' \leq a', 有 a' \land b' = b', a \lor b = (a' \land b')' = (b')' = b, 即 a \leq b

Problem 8

任一有限布尔代数 B 同构于 B 中所有的原子构成集合 A 的幂集代数系统 P(A) 则两个有限布尔代数同构的充分必要条件是元素个数相同已知 B1 \cong B2,B2 \cong B3, 则|B1| = |B2|, |B1| = |B3|, 则 B2 \cong B3

Problem 9

1) 0-7 之间的斐波那契数有 1, 2, 3, 5, 则 F 的真值表为

хуг	000	001	010	011	100	101	110	111
F	0	1	1	1	0	1	0	0

- 2) 由真值表可得 F = x y z + x yz + x yz + x yz + xy z
- 3) 根据真值表作卡诺图如下, 则有 $F = x^{-}y + y^{-}z$

