Live Session 09

Week	Date	Plan
09	03/15	Complex designs
10	03/22	Ratio estimation
11	03/29	Categorical data analysis
12	04/05	Project Presentations
13	04/12	Review/Lab 13
14	04/18	Final Exam

Lab 8

- The exercise is to talk about what happens when the cluster and strata statements are in or out
- Missing weight statement
- wt= M/m
- wt=11426/64

Example (Cluster Design)

- Source: Analyzes the data in Example 5.6 of Sampling: Design and Analysis, 2nd ed. by S. Lohr. Copyright 2008 by Sharon Lohr
- Cluster designs are often used in educational studies, since students are naturally clustered in to classrooms or schools.
 Consider a population of 187 high school algebra classes in a city. An investigator takes an SRS of 12 of those classes and give each student in the sampled classes a test about function knowledge. The data are given in the file algebra.csv
- Weights for each observation = 187/12

Example (Cluster Design)

• **Source :** Analyzes the data in Example 5.6 of Sampling: Design and Analysis, 2nd ed. by S. Lohr. Copyright 2008 by Sharon Lohr

• Estimate the mean score in the population!

```
filename algebra
'C:\Users\Mahesh\Desktop\algebra.csv';
data algebra;
   infile algebra delimiter= ',' firstobs = 2;
   input class Ni score;
   sampwt = 187/12;
run;
proc surveymeans data=algebra total = 187 ;
   cluster class;
   var score;
   weight sampwt;
run;
```

The SURVEYMEANS Procedure

Data Summary						
Number of Clusters						
Number of Observations	299					
Sum of Weights	4659.41667					

Statistics							
Variable N Mean Std Error of Mean 95% CL for Mean							
score	299	62.568562	1.491578	59.2856211	65.8515026		

Example (Two-stage Design)

- Source: Analyzes the data in Exercise 5.6 of Sampling: Design and Analysis, 2nd ed. by S. Lohr. Copyright 2008 by Sharon Lohr
- An inspector samples cans from a truckload of canned creamed corn to estimate the total number of worm fragments in the truckload. The truck has 580 cases; each case contains 24 cans. The inspector samples 12 cases at random, and subsample 3 cans randomly from each selected case.

	1	2	3	4	5	6	7	8	9	10	11	12
Can1	1	4	0	3	4	0	5	3	7	3	4	0
Can2	5	2	1	6	9	7	5	0	3	1	7	0
Can3	7	4	2	6	8	3	1	2	5	4	9	0

```
data worms;
do case = 1 to 12;
do can = 1 to 3;
input worms @@;
wt = (580/12)*(24/3);
output;
end;
end;
cards;
                 proc surveymeans data=worms total = 580 sum
1 5 7
                 clsum;
4 2 4
                 weight wt;
0 1 2
                 cluster case;
3 6 6
                 var worms;
4 9 8
                 run;
0 7 3
5 5 1
3 0 2
7 3 5
```

3 1 4

4 7 9

0 0 0

Estimation from two-stage designs (with no stratification)

• Suppose there are N_i SSU's in the i^{th} PSU, and M PSU's in the population. If you sample m PSU's and n_i of the N_i SSU's, then the probability of selection is

$$\frac{m}{M}\frac{n_i}{N_i}$$

Then the weight for the jth SSU in the ith PSU is

$$w_{ij} = \frac{M}{m} \frac{N_i}{n_i}$$

The SURVEYMEANS Procedure

Data Summary				
Number of Clusters	12			
Number of Observations	36			
Sum of Weights	13920			

Statistics							
Variable Sum Std Dev 95% CL for Sun							
worms	50653	8467.867441	32015.6828	69290.9839			

Estimation from two-stage designs (with no stratification)

• Suppose there are N_i SSU's in the i^{th} PSU, and M PSU's in the population. If you sample m PSU's and n_i of the N_i SSU's, then the probability of selection is

$$\frac{m}{M}\frac{n_i}{N_i}$$

Then the weight for the jth SSU in the ith PSU is

$$w_{ij} = \frac{M}{m} \frac{N_i}{n_i}$$

Estimation from two-stage designs (with stratification)

• Suppose there are N_{hi} SSU's in the i^{th} PSU, and M_h PSU's in the h^{th} stratum. If you sample m_h PSU's and n_{hi} of the N_{hi} SSU's, then the probability of selection is

$$\frac{m_h}{M_h}\frac{n_{hi}}{N_{hi}}.$$

and the weights are
$$w_{ij} = \frac{M_h}{m_h} \frac{N_{hi}}{n_{hi}}$$

Data Analysis for two-stage designs in SAS

- PROC SURVEYMEANS can be used for analysis of two or more-than-two-stage (called multistage) designs
 - You must specify the weights
 - If there are strata, they must be specified as usual
 - You must specify the primary sampling unit identifier
- Even if there are more than two stages, you only need to specify the PSU's, though weights based on all stages must be incorporated.

Email Task

A large manufacturing company has policies against employees using their email system for certain purposes. For example:

non-work communication,

ones discussing certain types of proprietary information, etc.).

Each email can be classified into one of 4 categories:

a non-violation, or one of 3 categories of violation.

Though the company has automated monitoring in place, they would like to supplement this for accuracy by sampling the emails and having a human inspector.

Going forward, they will produce estimates of the proportion of emails in each categories each month based on the sample results.

Categories: a, b, c, d

This will allow them to both monitor the policy violation rate over time, and to compare results with their automated monitoring system.

Email Task

- Suppose that the company realizes that there seem to be more policy violations on Fridays than other days of the week.
- They decide to select two Fridays each month at random, and two non-Fridays each month at random, and select 50 emails from each day.
- What kind of design is this?
 - stratified, two-stage design
- What is probability of selection?
 - For Fridays
 - (2/# of Fridays in month)*(50/#of emails in selected day)
 - For other days
 - (2/# of non-Fridays in month)*(50/#of emails in selected day)
- What is weight?
 - reciprocals of above

Data Table

Stratumid Fri or non-Fri)	Psuid (days)	Ssuid (emails)	Cat (a,b,c, or d)	wt1	wt2	base wt
1	1	1	а			
1	1	50	b			
1	2	1	a			
1	2	50	С			
2	1	1	a			
2	1	50	a			
2	2	1	a			
2	2	50	d			

Probabilities of selection for Fridays

```
Suppose 4 Fridays
 Prob of selecting a Fri
                   2/4 = 1/2
                   wt1 = 2
1<sup>st</sup> selected Friday has 200 emails
   prob of selecting an email =
                   50/200 = 1/4
                   wt2 = 4
                   basewt = 2*4=8
2<sup>nd</sup> selected Friday has 250 emails
   prob of selecting an email =
                   50/250 = 1/5
                   wt2 = 5
                   basewt = 2*5 = 10
```

Data Table with weights for Fri

Stratumid Fri or non-Fri)	Psuid (days)	Ssuid (emails)	Cat (a,b,c, or d)	wt1	wt2	base wt
1	1	1	a	2	4	8
				<mark></mark>		
1	1	50	b	<mark>2</mark>	4	8
1	2	1	a	<mark>2</mark>	<mark>5</mark>	<mark>10</mark>
				<mark></mark>		<mark></mark>
1	2	50	С	<mark>2</mark>	<mark>5</mark>	<mark>10</mark>
2	1	1	a			
2	1	50	a			
2	2	1	a			
2	2	50	d			

Probabilities of selection for non-Fri

```
Suppose 16 non-Fridays
 Prob of selecting a non-Fri
                  2/16 = 1/8
                  wt1 = 8
1<sup>st</sup> selected non-Friday has 400 emails
   prob of selecting an email =
                  50/400 = 1/8
                  wt2 = 8
                  basewt = 8*8=64
2<sup>nd</sup> selected non-Friday has 500 emails
   prob of selecting an email =
                  50/500 = 1/10
                  wt2 = 10
                  basewt = 8*10 = 80
```

Data Table with Fri & non-Fri weights

Stratumid Fri or non-Fri)	Psuid (days)	Ssuid (emails)	Cat (a,b,c, or d)	wt1	wt2	base wt
1	1	1	a	<mark>2</mark>	4	8
				<mark></mark>		<mark></mark>
1	1	50	b	2	4	8
1	2	1	a	<mark>2</mark>	<mark>5</mark>	<mark>10</mark>
				<mark></mark>	<mark></mark>	<mark></mark>
1	2	50	С	<mark>2</mark>	<mark>5</mark>	<mark>10</mark>
2	1	1	a	8	8	<mark>64</mark>
					<mark></mark>	
2	1	50	a	8	8	<mark>64</mark>
2	2	1	a	8	<mark>10</mark>	<mark>80</mark>
				<mark></mark>		<u></u>
2	2	50	d	8	<mark>10</mark>	<mark>80</mark>

SAS code for estimates (without fpc)

```
proc surveymeans data = email ;
title 'analysis of stratified cluster design without
fpc';
class cat;
strata stratumid;
cluster psuid;
weight basewt;
var cat;
run;
```

Proc Survey means without fpc

The SURVEYMEANS Procedure

Data Summary					
Number of Strata	2				
Number of Clusters	4				
Number of Observations	200				
Sum of Weights	8100				

Class Level Information						
CLASS Variable	Levels	Values				
cat	4	abcd				

Statistics								
Variable Level		N	N Mean	Std Error of Mean	95% CL for Mean			
cat	а	125	0.697531	0.217054	0	1.00000000		
	b	25	0.024691	0.025115	0	0.13275191		
	С	25	0.030864	0.030635	0	0.16267680		
	d	25	0.246914	0.222548	0	1.00000000		

Large standard errors without fpc

SAS code for estimates (with fpc)

```
data strsizes;
stratumid = 1; _total_= 4; output;
stratumid = 2; _total_ = 16; output;
proc surveymeans data = email total = strsizes;
title 'analysis of stratified cluster design with fpc';
class cat;
strata stratumid;
cluster psuid;
weight basewt;
var cat;
run;
```

Proc Survey means with fpc

D	ata Sun	nmar	у				
Number of Strata				2			
Number of Clusters Number of Observations Sum of Weights				4			
			ns	200			
				8100			
Clas	s Level	Infor	mat	tion			
CLASS Variable		Lev	els	Value	s		
cat		4		abco	i		
				St	atistics		
Variable	Level	N		Mean	Std Error of Mean	95%	6 CL for Mear
cat	а	125	0.6	97531	0.203030	0	1.00000000
	b	25	0.0	24691	0.017822	0	0.10137139
	С	25	0.030864		0.021743	0	0.12441520
	d	25	0.246914		0.208166	0	1.00000000

Everything the same except confidence intervals.

SAS code not accounting for clustering

```
data strsizes;
stratumid = 1; total =900; output;
stratumid = 2; total = 7200; output;
proc surveymeans data = email total = strsizes;
title 'analysis as if it was NOT a two-stage design';
strata stratumid;
weight basewt;
var cat;
run;
```

Proc Surveymeans without clustering (as if not a 2-stage design)

Statistics										
Variable cat	Level	N	Mean 0.697531	Std Error of Mean 0.041375	95% CL for Mean					
		125			0.61593943	0.77912230				
	b	25	0.024691	0.004076	0.01665260	0.0327301				
	С	25	0.030864	0.005054	0.02089782	0.04083058				
	d	25	0.246914	0.041326	0.16541752	0.32840964				

Great confidence intervals! BUT they are not true --- don't fool yourself