_		T.	. 1124	1.20.01	- 0.0		
2	I ne time	<i>I</i> for a	satellite to	orbit the	Earth is	given	by

$$T = \sqrt{\left(\frac{KR^3}{M}\right)}$$

where R is the distance of the satellite from the centre of the Earth, M is the mass of the Earth, and K is a constant.

(a) Determine the SI base units of K.

(b) Data for a particular satellite are given in Fig. 2.1.

quantity	measurement	uncertainty
T	$8.64 \times 10^4 s$	± 0.5%
R	$4.23 \times 10^{7} \mathrm{m}$	± 1%
М	$6.0 \times 10^{24} \text{kg}$	± 2%

Fig. 2.1

Calculate K and its actual uncertainty in SI units.

$$K = \dots \pm \dots$$
 SI units [4]