Why Deep Learning?

Deeper is Better?

Layer X Size	Word Error Rate (%)	
1 X 2k	24.2	
2 X 2k	20.4	
3 X 2k	18.4	
4 X 2k	17.8	
5 X 2k	17.2	
7 X 2k	17.1	

Not surprised, more parameters, better performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Fat + Short v.s. Thin + Tall

Shallow

Deep

這個表現比較好

Fat + Short v.s. Thin + Tall

Layer X Size	Word Error Rate (%)	Layer X Size	Word Error Rate (%)	
1 X 2k	24.2			
2 X 2k	20.4	\//	Why?	
3 X 2k	18.4	VVIIY:		
4 X 2k	17.8			
5 X 2k	17.2	1 X 3772	22.5	
7 X 2k	17.1	→ 1 X 4634	22.6	
		1 X 16k	22.1	

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

Deep → Modularization

Don't put everything in your main function.

http://rinuboney.github.io/2015/10/18/theoretical-motivations-deep-learning.html

模組化: 把問題切成比較小的問題

Deep → Modularization

Each basic classifier can have sufficient training examples.

Deep → Modularization

Modularization can be trained by little data Deep → Modularization Classifier Girls with long hair Boy or Girl? Classifier Boys with Little data fine Basic **Image** Classifier Classifier Girls with short hair Long or short? Classifier Boys with Sharing by the short hair following classifiers as module

沒有足夠的data才需要做深度學習,讓機器舉一反三

Deep → Modularization → Less training data?

The most basic classifiers

Use 1st layer as module to build classifiers

Use 2nd layer as module

Modularization - Image

Deep → Modularization

The most basic classifiers

Use 1st layer as module to build classifiers

Use 2nd layer as module

Reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In *Computer Vision–ECCV 2014* (pp. 818-833)

 The hierarchical structure of human languages what do you think

Phoneme: hh w aa t d uw y uw th ih ng k Tri-phone: t-d+uw d-uw+y uw-y+uw y-uw+th

t-d+uw1 t-d+uw2 t-d+uw3 d-uw+y1 d-uw+y2 d-uw+y3

State:

- The first stage of speech recognition
 - Classification: input → acoustic feature, output → state

Each state has a stationary distribution for acoustic features

Gaussian Mixture Model (GMM)

Each state has a stationary distribution for acoustic features

- In HMM-GMM, all the phonemes are modeled independently
 - Not an effective way to model human voice

Vu, Ngoc Thang, Jochen Weiner, and Tanja Schultz. "Investigating the Learning Effect of Multilingual Bottle-Neck Features for ASR." *Interspeech*. 2014.

Output of hidden layer reduce to two dimensions

先觀察人的舌頭在哪個位置

- ➤ The lower layers detect the manner of articulation
- All the phonemes share the results from the same set of detectors.
- Use parameters effectively

Universality Theorem

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer (given **enough** hidden neurons)

Yes, shallow network can represent any function.

However, using deep structure is more effective.

Analogy

Logic circuits

- Logic circuits consists of gates
- A two layers of logic gates can represent any Boolean function.
- Using multiple layers of logic gates to build some functions are much simpler

less gates needed

Neural network

- Neural network consists of neurons
- A hidden layer network can represent any continuous function.
- Using multiple layers of neurons to represent some functions are much simpler

less parameters

less data?

This page is for EE background.

Analogy

• E.g. *parity check*

For input sequence with d bits,

Two-layer circuit need O(2^d) gates.

With multiple layers, we need only O(d) gates.

More Analogy

More Analogy

More Analogy - Experiment

Different numbers of training examples

比較多的layer的結果:有次序的崩壞(剪窗花剪壞)、表現較好

End-to-end training:

What each function should do is learned automatically

- Speech Recognition
- Shallow Approach

Each box is a simple function in the production line:

- Speech Recognition
- Deep Learning

Less engineering labor, but machine learns more

- Image Recognition

:hand-crafted

Shallow Approach

http://www.robots.ox.ac.uk/~vgg/research/encod ing_eval/ monkey? classification pooling [monkey, dog, tree, ...] encoding feature extr.

:learned from data

End-to-end Learning - Image Recognition

Reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In *Computer Vision–ECCV* 2014 (pp. 818-833)

Deep Learning

Complex Task ...

Very similar input, different output

Very different input, similar output

Complex Task ...

A. Mohamed, G. Hinton, and G. Penn, "Understanding how Deep Belief Networks Perform Acoustic Modelling," in ICASSP, 2012.

 Speech recognition: Speaker normalization is automatically done in DNN

Complex Task ...

A. Mohamed, G. Hinton, and G. Penn, "Understanding how Deep Belief Networks Perform Acoustic Modelling," in ICASSP, 2012.

 Speech recognition: Speaker normalization is automatically done in DNN

MNIST

To learn more ...

- Do Deep Nets Really Need To Be Deep? (by Rich Caruana)
- http://research.microsoft.com/apps/video/default.aspx?id= 232373&r=1

Do deep nets really need to be deep?

Rich Caruana Microsoft Research

Lei Jimmy Ba MSR Intern, University of Toronto

Thanks also to: Gregor Urban, Krzysztof Geras, Samira Kahou, Abdelrahman Mohamed, Jinyu Li, Rui Zhao, Jui-Ting Huang, and Yifan Gong Yes!

Thank You

Any Questions?

To learn more ...

- Deep Learning: Theoretical Motivations (Yoshua Bengio)
 - http://videolectures.net/deeplearning2015_bengio_the oretical motivations/
- Connections between physics and deep learning
 - https://www.youtube.com/watch?v=5MdSE-N0bxs
- Why Deep Learning Works: Perspectives from Theoretical Chemistry
 - https://www.youtube.com/watch?v=klbKHlPbxiU