

Rasht - Iran

CAD slides, Dr. Saheb Zamani

allaboutcircuits.com

Digital Circuits

Acronyms

SPLD = Simple Programmable Logic Device

PAL = Programmable Array Logic

CPLD = Complex PLD

FPGA = Field Programmable Gate Array

ASIC = Application Specific IC

Common Resources

Configurable Logic Blocks (CLB)

- Memory Look-Up Table (LUT)
- AND-OR planes
- Simple gates

Input / Output Blocks (IOB)

- Bidirectional, latches, inverters, pullup/pulldowns
 Interconnect or Routing
 - Local, internal feedback, and global

Full Custom

ASIC (Application Specific IC)

- ASIC: Application-Specific Integrated Circuits
- Semi-Custom ASIC:
 - Standard Cells
 - عناصر در ردیفها چیده می شوند •
 - پورتها در بالا و پایین سلولها (تکنولوژی جدید: روی سلولها) •
 - Gate Array
 - آرایه ای از سلولهای مشابه •
 - PLD (Programmable Logic Device)

سلول های استاندارد

Mixed

Full custom & Standard cells

Gate Array (Uncommitted)

- Using a prefabricated chip with active devices like NANDgates
- Later, interconnected according to a custom order by adding metal layers in the factory environment

Gate Array (Committed)

- MPGA: mask-programmed gate array
- MPLD: mask-programmed logic device
- A base of pre-designed transistors
- Customized wiring during manufacturing process
- → Each design requires custom masks for wiring
- Mask-making costs

Programmable Logic Device

- A programmable logic device or PLD is an electronic component used to build digital circuits
- Unlike a logic gate, which has a fixed function, a PLD has an undefined function at the time of manufacture
- Before the PLD can perform in a circuit it must be programmed

Digital Technology Tradeoffs

FPGA

FPGA

Look-Up Table (LUT)

Look-Up Table (LUT)

- Output of SRAM gives the logic output
- k-input logic function =2^k size SRAM
- K-input LUT gives 2^2^k logic functions

RAM Contents				
Address				Data
Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Effects of Granularity on FPGA Density and Performance

Tradeoff

- Granularity increase → Blocks less
- More Functional Blocks → more area

Area is normally measured by total number of bits needed to implement the design. So look the example

Three implementations of $f = abd + bc\bar{d} + \bar{a}\bar{b}\bar{c}$.

Programmable Switch Matrix (PSM)

SRAM-Based FPGA

FPGA ARCHITECTURE

FPGA

die showing 20 by 20 array of logic elements and interconnect.

FPGA Architecture

Routing Criteria

• منابع اتصالی زیاد **3** اتلاف مساحت و کاهش بخش های منطقی

Terms Definition

- Wire Segment: قطعه سیمی که به یک سوییچ برنامه پذیر منتهی شده است.
 - یک یا چند سوییچ می تواند به یک wire segment وصل شده باشد.
 - Track (شیار): دنباله ای از یک یا چند wire segment در امتداد یک خط.
 - Channel: گروهی از Trackهای موازی.
- Connection Block: اتصال از ورودیها و خروجیهای یک LC به wire segmentهای کانال.
 - Switch Block: اتصال بين Switch Block اتصال بين

Routing Structure Example

Figure 28: Single- and Double-Length Lines, with Programmable Switch Matrices (PSMs)

Figure 29: Quad Lines (XC4000X only)

X9014

Cyclone FPGA

SRAM-based

E

Cyclone V Architecture

VIVI Ctringting

Advanced FPGA Architectures

The Xilinx **Zynq-7000 AP** SoC product line provides scalable performance and configuration serving a wide range of applications needs. The combination of the ARM® dual-core Cortex[™]-A9 MPCore[™] processing system and 7 series programmable logic provides a computing platform. Zynq-7000 AP SoC is ideal for solutions requiring advanced system control combined with sophisticated signal processing.