2.17 Soit a un entier.

Si a s'écrit $\overline{a_r a_{r-1} \dots a_2 a_1 a_0}$ en base 10, on a :

$$a = a_r \cdot 10^r + a_{r-1} \cdot 10^{r-1} + \dots + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0$$

Désignons par a^* le nombre formé par les n derniers chiffres de a. Alors

$$a^* = a_{n-1} \cdot 10^{n-1} + a_{n-2} \cdot 10^{n-2} + \dots + a_2 \cdot 10^2 + a_1 \cdot 10 + a_0$$

On remarque ensuite que :

$$\begin{aligned} a - a^* &= a_r \cdot 10^r + a_{r-1} \cdot 10^{r-1} + \ldots + a_{n+1} \cdot 10^{n+1} + a_n \cdot 10^n \\ &= a_r \cdot (5 \cdot 2)^r + a_{r-1} \cdot (5 \cdot 2)^{r-1} + \ldots + a_{n+1} \cdot (5 \cdot 2)^{n+1} + a_n \cdot (5 \cdot 2)^n \\ &= a_r \cdot 5^r \cdot 2^r + a_{r-1} \cdot 5^{r-1} \cdot 2^{r-1} + \ldots + a_{n+1} \cdot 5^{n+1} \cdot 2^{n+1} + a_n \cdot 5^n \cdot 2^n \\ &= 2^n \cdot \left(a_r \cdot 5^r \cdot 2^{r-n} + a_{r-1} \cdot 5^{r-1} \cdot 2^{r-n-1} + \ldots + a_{n+1} \cdot 5^{n+1} \cdot 2 + a_n \cdot 5^n \right) \end{aligned}$$

de sorte que $2^n \mid (a - a^*)$, c'est-à-dire $a \equiv a^* \mod 2^n$.

On conclut en remarquant que les assertions suivantes sont équivalentes :

- 1) a est divisible par 2^n ;
- 2) $a \equiv 0 \mod 2^n$;
- 3) $a^* \equiv 0 \mod 2^n$;
- 4) a^* est divisble par 2^n .