What is claimed is:

7	An image	processing	apparatus	for	generating
 .	WII TINGAC	DIOCESSINA	apparatus	TOT	deneraring

- 2 new image data having pixel values having all color
- 3 information for each interpolation point set on a
- 4 two-dimensional plane, from original image data made up
- 5 of many pixels which are arrayed in a matrix on the
- 6 two-dimensional plane and each of which has only a pixel
- 7 value representing a predetermined color information
- 8 level obtained by an image sensor having individual
- 9 color filters, comprising:
- a replacement unit for, for a pixel value of a
- 11 pixel that need not be replaced by another pixel value
- 12 among pixel values contained in the original image data,
- 13 adding replacement information representing
- 14 non-replacement of the pixel value to the pixel value,
- 15 and outputting the pixel value as replacement
- 16 information-added image data, and for a pixel value of a
- 17 pixel that needs to be replaced by another pixel value,
- 18 replacing the pixel value by a predetermined pixel value,
- 19 adding replacement information indicating replacement of
- 20 the pixel value to the replaced pixel value, and
- 21 outputting the pixel value as replacement
- 22 information-added image data; and
- an interpolation unit for outputting
- 24 interpolated pixel values having all color information
- 25 by interpolating a pixel value at an interpolation point

- 26 for each color information on the basis of a
- 27 predetermined arithmetic expression from pixel values of
- 28 pixels of the same color falling within a predetermined
- 29 interpolation region containing the interpolation point
- 30 among all replacement information-added image data
- 31 output from said replacement unit, and when replacement
- 32 information of any pixel used for calculation indicates
- 33 replacement, using an arithmetic expression different
- 34 from the arithmetic expression.
 - 2. An apparatus according to claim 1, further
 - 2 comprising:
 - 3 a compensation value calculation unit for
 - 4 calculating a pixel compensation value for compensating
 - 5 for a pixel value at the interpolation point based on a
- 6 predetermined arithmetic expression from pixel values of
- 7 a plurality of pixels which are positioned around the
- 8 interpolation point and fall within a compensation
- 9 region wider than and including the interpolation region,
- 10 and when replacement information of any pixel used for
- 11 calculation indicates replacement, calculating the pixel
- 12 compensation value based on an arithmetic expression
- 13 different from the arithmetic expression; and
- 14 a compensation unit for compensating for the
- 15 interpolated pixel value at the interpolation point
- 16 output from said interpolation unit for each color
- 17 information using the pixel compensation value at the

- 18 interpolation point calculated by said compensation
- 19 value calculation unit, and outputting the interpolated
- 20 pixel value as a new pixel value having all color
- 21 information at the interpolation point.
 - 3. An apparatus according to claim 1, wherein
- 2 said replacement unit determines whether to replace each
- 3 pixel value, on the basis of defect information
- 4 indicating presence/absence of a defect of each pixel of
- 5 the image sensor.
 - 4. An apparatus according to claim 1, wherein
- 2 said replacement unit replaces a pixel value using a
- 3 pixel value of a pixel of the same color positioned
- 4 neighboring the pixel.
 - 5. An apparatus according to claim 2, wherein
- 2 said compensation value calculation unit calculates a
- 3 pixel compensation value at an interpolation point using
- 4 a pixel value having color information as a
- 5 representative of a luminance component of original
- 6 image data among pixels falling within the compensation
- 7 region.
 - 6. An apparatus according to claim 1, wherein
- 2 when target calculation pixels used to calculate the
- 3 interpolated pixel value include a pixel whose

- 4 replacement information indicates, an arithmetic
- 5 expression is used, which has a reduced weight
- 6 coefficient comparing to a normal arithmetic expression
- 7 for calculating the interpolated pixel value, or has a
- 8 weight coefficient of 0 for the pixel or a plurality of
- 9 target calculation pixels including the pixel.
 - 7. An apparatus according to claim 2, wherein
- 2 when target calculation pixels used to calculate the
- 3 pixel compensation value include a pixel whose
- 4 replacement information indicates replacement, an
- 5 arithmetic expression is used, which has a reduced
- 6 weight coefficient comparing to a normal arithmetic
- 7 expression for calculating the pixel compensation value,
- 8 or has a weight coefficient of 0 for the pixel or a
- 9 plurality of target calculation pixels including the
- 10 pixel.
 - 8. An apparatus according to claim 2, wherein
 - 2 when target calculation pixels used to calculate the
 - 3 pixel compensation value include a pixel whose
 - 4 replacement information indicates replacement, said
 - 5 compensation value calculation unit outputs a pixel
 - 6 compensation value indicating non-compensation.
 - 9. An apparatus according to claim 1, wherein

2 said apparatus further comprises a region

- 3 value calculation unit for sequentially receiving pixel
- 4 values forming the replacement information-added image
- 5 data output from said replacement unit in parallel with
- 6 each other by a predetermined number of pixel lines as
- 7 pixel blocks for single pixel columns to form a
- 8 sub-matrix from a predetermined number of pixel blocks
- 9 received successively, calculating logical OR of
- 10 replacement information and sums of pixel values of
- 11 pixels included in respective regions set in advance on
- 12 the sub-matrix as region values of the respective
- 13 regions, and parallel-outputting the respective region
- 14 values in synchronism with reception of the pixel block,
- 15 and
- 16 an interpolation unit selectively uses the
- 17 respective region values parallel-output from said
- 18 region value calculation unit to sequentially calculate,
- 19 for each sub-matrix, interpolated pixel values at an
- 20 interpolation point on a sub-matrix to be processed.
 - 10. An apparatus according to claim 2, wherein
 - 2 said apparatus further comprises a region
 - 3 value calculation unit for sequentially receiving pixel
 - 4 values forming the replacement information-added image
 - 5 data output from said replacement unit in parallel with
 - 6 each other by a predetermined number of pixel lines as
 - 7 pixel blocks for single pixel columns to form a
 - 8 sub-matrix from a predetermined number of pixel blocks

25

received successively, calculating logical OR of 9 replacement information and sums of pixel values of 10 11 pixels included in respective regions set in advance on the sub-matrix as region values of the respective 12 13 regions, and parallel-outputting the respective region 14 values in synchronism with reception of the pixel block, 15 an interpolation unit selectively uses the respective region values parallel-output from said 16 region value calculation unit to sequentially calculate, 17 for each sub-matrix, interpolated pixel values at an 18 interpolation point on a sub-matrix to be processed, and 19 20 a compensation value calculation unit selectively uses the respective region values 21 parallel-output from said region value calculation unit 22 to sequentially calculate, for each sub-matrix, a pixel 23 compensation value at the interpolation point on the 24

11. An apparatus according to claim 1, wherein said apparatus further comprises a defect 2 3 information generation unit for using relative pixel 4 position information with respect to an immediately 5 preceding defective pixel position as information 6 indicating a defective pixel position of the image sensor to determine whether each pixel forming the 7 original image data is a defective pixel, and outputting 8 a determination result as defect information to said 9

sub-matrix to be processed

10	replacement unit in synchronism with the each pixel, and
11	said replacement unit determines whether to
12	replace a pixel value on the basis of the defect
13	information from said defect information generation unit
14	in accordance with whether each pixel value included in
15	the original image data corresponds to a defective pixel.