SlotMarketSQL

Zack Horton, Virginia Maguire, Tanner Street, and Yutong Zhang Group A26

Problem

- Models for stock price and volatility forecasts are crucial for day traders.
- However, many traders do not have the skill set to build and interface with these models.

Solution

- Forecast daily closing prices
- Forecast daily volatilities
- Chatbot for easy info access

Data:

Historical closing prices (Yahoo Finance)

Scope:

- 2022-02-22 to 2024-02-21
- Stocks in the S&P 500

SlotMarketSQL helps day traders make informed decisions

Ticker	Stock	current_price	forecasted_price	forecasted_price_change	percent_change	current_volatility	forecasted_volatility	forecasted_volatility_change	model_error_last_week	model_mda_last_week
xyl	xylem inc.	124.099998	111.671234	-12.428764	-10.01512	0.007417	0.015811	113.160105	110.922851	42.857143
yum	yum! brands	133.949997	128.791183	-5.158813	-3.851298	0.004823	0.010888	125.77327	126.736209	57.142857
zbra	zebra technologies	271.929993	261.986816	-9.943176	-3.656521	0.011846	0.028328	139.128409	247.513789	57.142857
zbh	zimmer biomet	124.980003	120.568626	-4.411377	-3.529666	0.000231	0.014593	6228.137813	120.531616	42.857143
zts	zoetis	186.550003	181.352402	-5.197601	-2.786171	0.002227	0.017044	665.448184	182.485736	28.571429

SlotMarketSQL helps day traders make informed decisions

LSTM model outputs

IICKer	STOCK	current_price	Torecasted_price	Torecasted_price_cnange	percent_cnange
xyl	xylem inc.	124.099998	111.671234	-12.428764	-10.01512
yum	yum! brands	133.949997	128.791183	-5.158813	-3.851298
zbra	zebra technologies	271.929993	261.986816	-9.943176	-3.656521
zbh	zimmer biomet	124.980003	120.568626	-4.411377	-3.529666
zts	zoetis	186.550003	181.352402	-5.197601	-2.786171
,					

moa	Torecasted_volatility_cnange	Torecasted_volatility	current_volatility
	113.160105	0.015811	0.007417
	125.77327	0.010888	0.004823
	139.128409	0.028328	0.011846
	6228.137813	0.014593	0.000231
	665.448184	0.017044	0.002227
L_{L}			

Garch model outputs

LSTM performance metrics

LSTM Overview

LSTM Architecture Experimentation

Parameters Tested:

- 1. Number of epochs
- 2. Input sequence length
- 3. Number of LSTM Units
- 4. Dropout Rate
- 5. Number of LSTM Stacks

Procedure:

- 1. Randomly select three stocks
- Perform walk-forward validation with varying parameters
- 3. Parameters that achieve lowestMSE are chosen

LSTM Final Architecture

Final Parameter Results:

- **Epochs** = 5
- Input Length = 7
- 3. **LSTM Units** = 15 per stack
- **Dropout Rate** = 15%
- LSTM Stacks = 6

Layer (type)	Output Shape	Param #			
input_1 (InputLayer)	[(None, 7, 1)]	0			
lstm (LSTM)	(None, 7, 15)	1020			
dropout (Dropout)	(None, 7, 15)	0			
lstm_1 (LSTM)	(None, 7, 15)	1860			
dropout_1 (Dropout)	(None, 7, 15)	0			
lstm_2 (LSTM)	(None, 7, 15)	1860			
dropout_2 (Dropout)	(None, 7, 15)	0			
lstm_3 (LSTM)	(None, 7, 15)	1860			
dropout_3 (Dropout)	(None, 7, 15)	0			
lstm_4 (LSTM)	(None, 7, 15)	1860			
dropout_4 (Dropout)	(None, 7, 15)	0			
lstm_5 (LSTM)	(None, 15)	1860			
dropout_5 (Dropout)	(None, 15)	0			
dense (Dense)	(None, 1)	16			
Total params: 10336 (40.38 KB)					

Non-trainable params: 0 (0.00 Byte)

LSTM: Predicting Closing Prices

- Model trained to predict first day of 2024 (1/2/24)
- Evaluate each day in 2024:
 - Update model with the previous day's information (1/2/24)
 - 2. Predict the next day's closing price (1/3/24)
- Provides more long-term view of performance

Actual vs Predicted Closing Stock Price for Apple

LSTM: Comparing the Model to the Baseline

The baseline model of using previous day's closing price generally performs better than the LSTM models.

Why?

Did not use exogenous variables

Used the same architecture for all stocks

Fine-tuned parameters on only 3 stocks

GARCH: Predicting Volatility

- Volatility measure of the amount of uncertainty involved in the size of changes in a stock's value
- GARCH Generalized Autoregressive Conditional Heteroskedasticity
- GARCH(1,1): look at yesterday's data
- Models not fine-tuned or evaluated for scope purposes

Actual vs Predicted Closing Stock Price for Amazon

Slot Filling and Parsing

"What 10 stocks are expected to have the highest increase in price for tomorrow?"

Transformer Encoder*

"o select-stock o o o o order-by-forecasted_price_change-desc select-forecasted price o o o o"

SlotParser**

SELECT stock, forecasted_price, forecasted_price_change FROM stock_data ORDER BY forecasted_price_change DESC LIMIT 10

Training Dataset

- 32 starter questions
- 25 permutations per starter from ChatGPT
- 2,365 examples in total with regex help

Transformer Encoder

• 8,747,163 weights

Model Evaluation

- 94% output token accuracy
- 93% slot-filling accuracy

^{*} no pre-trained embeddings or transformers were used for slot filling

^{**} SlotParser is a custom function we developed explicitly for this project

Future Work

Forecasts: LSTM & Garch

Use Exogenous Variables

Include data such as previous day high/low, market trends, and trading volume.

Optimize Architecture for All Stocks Independently

Not all stocks will have the same patterns and therefore different model structures may improve performance

Hypertune Garch Model

Automated data pulls & model updates

SlotMarketSQL Application

Incorporating Filtering Capability

Allow for the application to return filtered tables based on user conditions.

Test pre-trained embedding models (GloVe, BERT)

Consider Using LLMs

Remove the dependency to hand-label queries for training & be able to handle more complex user requests.

Questions?

Figure 1: Average mean squared error from walk-forward validation across varying numbers of epochs for TSLA

Figure 2: Average mean squared error from walk-forward validation across varying numbers of epochs for UNH

Figure 3: Average mean squared error from walk-forward validation across varying numbers of epochs for ETR

Input Sequence Length	Average MSE [10 ⁻³]
7	2.57
14	3.88
28	3.84

Table 1: Average mean squared error from walk-forward validation across varying input sequence lengths.

Stock	Number of LSTM Units	Dropout Rate
TSLA	90	10%
UNH	100	0%
ETR	50	15%

Table 2: Number of LSTM units and dropout rate selected from Keras hyperparameter searches for each stock.

Figure 4: Average mean squared error from walk-forward validation across varying numbers of LSTM units and dropout rates.

Figure 5: Average mean squared error from walk-forward validation across varying numbers of LSTM stacks.

Layer (type)	Output Shape	Param #			
input_1 (InputLayer)	[(None, 7, 1)]	0			
lstm (LSTM)	(None, 7, 15)	1020			
dropout (Dropout)	(None, 7, 15)	0			
lstm_1 (LSTM)	(None, 7, 15)	1860			
dropout_1 (Dropout)	(None, 7, 15)	0			
lstm_2 (LSTM)	(None, 7, 15)	1860			
dropout_2 (Dropout)	(None, 7, 15)	0			
lstm_3 (LSTM)	(None, 7, 15)	1860			
dropout_3 (Dropout)	(None, 7, 15)	0			
lstm_4 (LSTM)	(None, 7, 15)	1860			
dropout_4 (Dropout)	(None, 7, 15)	0			
lstm_5 (LSTM)	(None, 15)	1860			
dropout_5 (Dropout)	(None, 15)	0			
dense (Dense)	(None, 1)	16			
Total params: 10336 (40.38 KB) Trainable params: 10336 (40.38 KB) Non-trainable params: 0 (0.00 Byte)					

Figure 6: Architecture of final models

```
HODL-Project - NLP_to_SQL.py
   MAX QUERY LENGTH = 50 #size of input
13
    EMBED DIM = 512 #dimension of embeddings
14
15
    DENSE DIM = 128
   NUM HEADS = 8 #number of multi-attention heads
16
   DENSE UNITS = 128 #num nodes in hidden layer
17
18
    BATCH SIZE = 64 #batch size for training transformer
19
   EPOCHS = 10 #epochs for training transformer
```

Figure 7: Hyperparameters for transformer model

```
HODL-Project - NLP_to_SQL.py
31 # CREATE VECTORIZER (OUERY & SLOTS)
32 vectorize_query_text = keras.layers.TextVectorization(
       max_tokens=None, #no maximum vocabulary
       output_sequence_length=MAX_QUERY_LENGTH, #pad or truncate output to value
       output_mode="int", #vector has index of vocabulary
       standardize="lower_and_strip_punctuation", #convert input to lowercase and rmv punctuation
       split="whitespace", #split values based on whitespace
       ngrams=1 #only look at whole words
40 vectorize slot text = keras.layers.TextVectorization(
       max tokens=None, #no maximum vocabulary
       output sequence length=MAX QUERY LENGTH,
       output_mode="int", #vector has index of vocabulary
       standardize="lower", #convert input to lowercase [can't do punctuation b/c of dashes]
       split="whitespace", #split values based on whitespace
       ngrams=1 #only look at whole words
49 # CREATE VOCABULARY AND VECTORIZED TRAINING DATA
50 vectorize_query_text.adapt(train_query) #build vocabulary
51 query_train = vectorize_query_text(train_query) #vectorized training queries
52 query_test = vectorize_query_text(test_query) #vectorized testing queries
53 QUERY VOCAB SIZE = vectorize query text.vocabulary size() #total vocabulary of queries
55 vectorize_slot_text.adapt(train_slotfilling) #build slot vocabulary
56 slots_train = vectorize_slot_text(train_slotfilling) #vectorized training slots
57 slots test = vectorize slot text(test slotfilling) #vectorized testing slots
58 SLOT_VOCAB_SIZE = vectorize_slot_text.vocabulary_size() #total vocabulary of slots
```

Figure 8: Tokenization Layers

```
HODL-Project - NLP_to_SQL.py
60 # BUILD KERAS MODEL
   inputs = keras.Input(shape=(MAX_QUERY_LENGTH,))
    embedding = PositionalEmbedding(MAX QUERY LENGTH,
                                   QUERY_VOCAB_SIZE,
                                    EMBED_DIM)
   x = embedding(inputs)
   encoder_out = TransformerEncoder(EMBED_DIM,
                                     DENSE DIM,
                                     NUM HEADS)(x)
69 x = keras.layers.Dense(DENSE_UNITS, activation="relu", name="Dense_Layer")(encoder_out)
70 x = keras.layers.Dropout(0.25, name="Dropout_Layer")(x)
   outputs = keras.layers.Dense(SLOT_VOCAB_SIZE, activation="softmax", name="Softmax_Layer")(x)
   model = keras.Model(inputs, outputs)
   print()
   print(model.summary())
   print()
    # TRAIN KERAS MODEL
   model.compile(optimizer="adam",
                  loss="sparse_categorical_crossentropy",
                  metrics=["sparse_categorical_accuracy"])
   history = model.fit(query_train, slots_train,
                    batch_size=BATCH_SIZE,
                    epochs=EPOCHS)
    # OUT-OF-SAMPLE TESTING
   model.evaluate(query_test, slots_test)
89 # SAVE MODEL
90 filename = 'sql_transformer.keras'
   model.save(filename)
92 ZipFile('model_save.zip', mode='w').write(filename)
```

Figure 9: Building keras model