Équations du deuxième degré

Une **équation du deuxième degré** est une <u>équation</u> constituée de termes **avec des x**², des x et des nombres. Exemple : $2x^2+3x+4=0$.

Résolution d'une équation du deuxième degré

Considérons l'équation $ax^2+bx+c=0$.

Nous devons chercher à exprimer les éventuelles solutions de cette équation en fonction des coefficients *a*, *b* et *c* afin d'obtenir des formules permettant de calculer les solutions à partir de ces trois coefficients.

Pour cela, commençons par factoriser l'expression de gauche afin d'obtenir une équation-produit.

Technique

1. On factorise par a ($a\neq 0$, car sinon, ce serait une <u>équation du premier degré</u>).

$$a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right) = 0$$

2. On multiplie et on divise le terme du milieu par 2 puis on ajoute et on soustrait $\frac{\delta}{4a^2}$ afin de faire apparaître le résultat du développement de la <u>première identité remarquable</u>.

$$a\left(x^{2} + 2 \times \frac{b}{2a}x + \frac{c}{a}\right) = 0$$

$$a\left(x^{2} + 2 \times \frac{b}{2a}x + \frac{b^{2}}{4a^{2}} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right) = 0$$

3. On factorise avec la première identité remarquable et on simplifie ce qui reste à droite.

$$a\left(\frac{x^{2} + 2 \times \frac{b}{2a}x + \left(\frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{4ac}{4a^{2}}}{4a^{2}}\right) = 0$$

$$a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right) = 0$$

Forme canonique

Pour simplifier la suite du calcul, posons $\Delta=b^2-4ac$. (Δ est une lettre grecque qui se lit "delta").

On obtient $a\left(\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right)$, puis en appliquant la <u>distributivité</u> avec a, on obtient :

$$a\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a}$$

Cette expression s'appelle **la forme canonique** de ax^2+bx+c .

Différents cas

Reprenons la forme

$$a\left(\underbrace{\left(x+\frac{b}{2a}\right)^2-\underbrace{-\frac{\Delta}{4a^2}}}\right)=0$$

Nous remarquons que:

- **1.** Si Δ<0, l'équation n'a pas de solution, car la <u>différence</u> d'un nombre positif et d'un nombre strictement négatif ne peut pas être nulle.
- 2. Si Δ =0, l'équation devient $\left(x + \frac{b}{2a}\right)^2 = 0$. Donc : $x = -\frac{b}{2a}$.
- **3.** Si Δ>0, nous pouvons faire une nouvelle factorisation, en utilisant cette fois la <u>troisième</u> <u>identité remarquable</u>.

 $a \left(\left(x + \frac{b}{2a} \right)^2 - \left(\frac{\sqrt{\Delta}}{2a} \right)^2 \right) = 0$ On fait d'abord apparaître la différence de deux carrés :

Puis on factorise : $a\left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right)\left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right) = 0$

On obtient deux solutions qui sont $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Conclusion et méthode de résolution

Pour résoudre une équation de la forme ax²+bx+c=0, on pourrait faire tous les calculs ci-dessus en remplaçant a, b et c par les coefficients de notre équation, ce qui marcherait, mais serait très long. Pour gagner du temps, on utilisera directement les formules ci-dessus avec la méthode suivante :

- **1.** On calcule le nombre $\Delta = b^2 4ac$.
- 2. On regarde le signe de delta.
- Si Δ <0, l'équation n'a pas de solution.
- Si Δ =0, l'équation possède une solution que l'on calcule avec la formule $x = -\frac{b}{2a}$.
- Si $\Delta{>}0,$ l'équation possède deux solutions que l'on calcule avec les formules

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Exemple

Pour l'équation $-2x^2+3x+4=0$:

- **1.** On calcule delta. $\Delta = 3^2 4 \times (-2) \times 4 = 9 + 32 = 41$.
- **2.** Comme delta est positif, il y a deux solutions : $x_1 = \frac{-3 \sqrt{41}}{-4} \approx 2.35$ et $x_2 = \frac{-3 + \sqrt{41}}{-4} \approx -0.85$.

Combien de solutions admet l'équation 4x²-16x+16=0?

Inéquation du deuxième degré

Nous allons maintenant apprendre à résoudre des inéquations du deuxième degré.

Ce sont des <u>inéquations</u> de la forme $ax^2+bx+c\le 0$, $ax^2+bx+c\ge 0$ ou $ax^2+bx+c\ge 0$, Pour cela, commençons par nous intéresser à l'allure de la courbe de la fonction $f(x)=ax^2+bx+c$ en fonction de ses coefficients.

Allure de la courbe de $f(x)=ax^2+bx+c$

Une fonction $f: x \mapsto ax^2 + bx + c$ se représente par une courbe appelée **parabole**.

Si le nombre a devant x^2 est positif, le sommet est en bas et les branches sont tournées vers le haut. Sinon, c'est le contraire.

La parabole touche l'axe des abscisses autant de fois que l'équation $ax^2+bx+c=0$ possède de solutions.

Méthode

Pour résoudre une inéquation du second degré :

- 1. On résout l'équation ax²+bx+c=0.
- 2. On trace au brouillon l'allure de la courbe.
- **3.** On lit les solutions graphiquement.

Exemple

Inéquation $x^2+x-1≥0$.

• 1. On résout l'équation $x^2+x-1=0$.

On obtient deux solutions : $x_1 = \frac{-1 - \sqrt{5}}{2} \simeq -1.62$ et $x_2 = \frac{-1 + \sqrt{5}}{2} \simeq 0.62$.

• **2.** a et Δ sont positifs. Allure de la courbe :

• **3.** On prend les valeurs de x pour lesquelles la courbe est au-dessus de l'axe des abscisses.

$$S = \left[-\infty; \frac{-1 - \sqrt{5}}{2} \right] \cup \left[\frac{-1 + \sqrt{5}}{2}; +\infty \right]$$

Quelles sont les solutions de l'inéquation $x^2 - 7x + 12 < 0$?

Exercice 1

Pour connaître le nombre de solutions d'une équation du deuxième degré on doit calculer delta.

Quelle est la formule de delta?

Exercice 2

On souhaite calculer delta pour connaître le nombre de solutions de l'équation $2x^2-x-5=0$.

Quels sont les nombres a, b et c que l'on doit utiliser?

Exercice 3

On aimerait savoir si l'équation -x²-x+1=0 admet des solutions.

Combien fait delta?

Exercice 4

Combien de solutions possède l'équation $x^2+4x+4=0$?

Exercice 5

Combien de solutions possède l'équation $x^2=x+1$?

Exercice 6

On considère la fonction f définie sur \Re par $f(x)=x^2+x-1$. Combien de fois sa courbe touche t-elle l'axe des abscisses?

Exercice 7

Quelle est l'allure de la courbe représentative de la fonction $f(x)=-2x^2+x-1$?

Exercice 8

Complète l'algorithme suivant :

Entrer a, b, c

 $b^2-4ac->d$

si (

afficher "Les branches de la parabole sont tournées vers le haut et le sommet est en bas." **sinon**

afficher "Les branches de la parabole sont tournées vers le bas et le sommet est en haut."

fin si

si () afficher "La parabole coupe deux fois l'axe des abscisses."

si () afficher "La parabole coupe une fois l'axe des abscisses."

si () afficher "La parabole ne coupe jamais l'axe des abscisses."

Exercice 9

Quelles sont les solutions de l'inéquation $-2x^2-3x+4<0$?

Exercice 10

Quelles sont les solutions de l'inéquation – $3x^2 + 2x - 1 > 2x^2 + x - 3$?

Exercice 11

Quelles sont les solutions de l'inéquation $\frac{-10x^2 + 5x + 1}{x^2 + 10x + 1} \ge 0$?

Exercice 12

On souhaite écrire le trinôme $x^2-10x+34$ sous forme canonique.

Exercice 13

On souhaite écrire le trinôme $13x^2+26x+65$ sous forme canonique.

Exercice 14

Quelle est la forme canonique du trinôme $3x^2-30x-102$?

Exercice 15

Quelles sont les coordonnées du sommet de la parabole de la fonction $f(x)=3x^2-30x-102$?

Exercice 16

En additionnant les âges de Orphée et Orthense on trouve 44.

En multipliant leurs âges on trouve 468.

Orphée est plus jeune que Orthense.

Quel âge a Orphée?

Exercice 17

Combien mesure la longueur d'un rectangle de <u>périmètre</u> 68 centimètres et d'<u>aire</u> 280 cm²?

Exercice 18

La somme des carrés de trois <u>nombres entiers naturels</u> consécutifs est égale à 7502.

Exercice 19

TUC est un triangle rectangle en T.

TU = 10 cm et TC = 6 cm.

R est un point de (TU) et S un point de (TC) tel que TS=RU.

Question

Est-il possible de placer les points S et R de manière à ce que les aires du triangle TRS et du quadrilatère SRUC soient égales?

Exercice 20

Les papas de Pimpim et Orphée font une course de vélo de 120 kms de long. Ils partent en même temps.

Le papa de Pimpim roule 2 km/h plus vite que le papa de Orphée et arrive 30 minutes avant.

A quelle vitesse moyenne, arrondie à 0,01 km/h près, a roulé le papa de Pimpim?

Mémento

Équations et inéquations

Équation ax + b = 0; Signe de ax + b ($a \neq 0$)

• Équation ax + b = 0

L'équation ax + b = 0 a une solution unique $x = -\frac{b}{a}$

$$x = -\frac{b}{a}$$

● Signe de ax + b

a > 0 La fonction $f: x \mapsto ax + b$ est **croissante**

<i>x</i> −∞	- ∞			+ ∞	
ax + b		_	0	+	

a < 0 | La fonction $f: x \mapsto ax + b$ est décroissante

x	- ∞		$-\frac{b}{a}$		+ ∞
ax + b	E19.17	+	0	_	

Équation $ax^2 + bx + c = 0$; Signe de $ax^2 + bx + c$ ($a \neq 0$)

 $\Delta = b^2 - 4ac$ est le **discriminant** de l'équation. On distingue trois cas selon la valeur de Δ

$$\Delta > 0$$

L'équation a deux solutions

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}; \ x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

Signe de $ax^2 + bx + c$ (on suppose $x_1 < x_2$)

x	- ∞	\boldsymbol{x}_1		x_2	+ ∞
$ax^2 + bx + c$	signe	0	signe	0	signe
	de a	1	de(-a)		de a

$$\Delta = 0$$

L'équation a une solution unique:

$$x_0 = -\frac{b}{2a}$$

$$ax^2 + bx + c = a(x - x_0)^2$$

Signe de $ax^2 + bx + c$

x	-∞		x_0		+ ∞
$ax^2 + bx + c$		signe de a	0	signe de a	

$$\Delta < 0$$

L'équation n'a pas de solution dans R

 $ax^2 + bx + c$ a, pour tout x réel, le signe de a