GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA		
	Óptica Geométrica	

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Noveno Semestre	170903	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante los conocimientos de la óptica geométrica que le permitan obtener la habilidad y la aptitud para conocer, comprender y resolver problemas relacionados con el área de la óptica aplicada a la industria, a la física y en general a la ingeniería.

TEMAS Y SUBTEMAS

- 1. Ondas localmente planas. Aproximación de la óptica geométrica
 - 1.1 Aproximación de la óptica geométrica.
 - 1.2 Ondas localmente planas. Ecuación eikonal.
 - 1.3 Validez de la óptica geométrica.
 - 1.4 Ecuación de los rayos de luz.
 - 1.5 Superficies de onda.
 - 1.6 Transporte de energía.
 - 1.7 Ley de intensidades de la óptica geométrica.
 - 1.8 Ley del cuadrado de la distancia. Cáusticas.
 - 1.9 Camino óptico.
 - 1.10 Camino óptico entre superficies de onda.
 - 1.11 Teorema de Malus-Dupin.

2. Principio de fermaT. Propagación en medios inhomogéneos

- 2.1 Principio de Fermat.
- 2.2 Ejemplos de aplicación del principio de Fermat.
- 2.3 Obtención de la ecuación eikonal a partir del principio de Fermat.
- 2.4 Curvatura de los rayos de luz.
- 2.5 Propagación en medios estratificados.
- 2.6 Propagación en medios con simetría radial.
- 2.7 Propagación en medios con simetría cilíndrica.

3. Estigmatismo condiciones de ABBE y HERSCHEL

- 3.1 Definiciones básicas.
- 3.2 Estigmatismo.
- 3.3 Superficies reflectantes: puntos conjugados.
- 3.4 Superficies refractantes: puntos conjugados.
- 3.5 Condición del seno de Abbe.
- 3.6 Condición de Herschel.
- 3.7 Incompatibilidad de las condiciones de Abbe y Herschel.

4. Funciones características. Aproximación paraxial

- 4.1 Funciones características.
- 4.2 Definiciones y ecuaciones generales.
- 4.3 Sistemas ópticos de revolución.
- 4.4 Aproximación paraxial.
- 4.5 Invariante de Lagrange-Helmholtz.
- 4.6 Función característica angular de un dioptrio esférico en aprod Abbe.

orokinación paraxiacomaniación de GENERAL DE EDUCACIÓN

MEDIA SUPERIOR Y SUPERIOR

- 4.7 Función característica angular de un espejo esférico en aproximación paraxial.
- 4.8 Convenio de signos.

5. Elementos y relaciones básicas en óptica geométrica paraxial

- 5.1 Elementos cardinales de un sistema óptico centrado.
- 5.2 Relaciones básicas.
- 5.3 Sistemas ópticos compuestos.
- 5.4 Sistemas ópticos con superficies planas.

6. Óptica geométrica matricial. Diafragmas

- 6.1 Formulación matricial de la óptica paraxial.
- 6.2 Matriz de propagación en un medio homogéneo.
- 6.3 Matriz de refracción en un dioptrio.
- 6.4 Matriz de un sistema óptico compuesto.
- 6.5 Sistemas ópticos cuya matriz posee algún elemento nulo.
- 6.6 Matriz de reflexión.
- 6.7 Limitación de los rayos. Diafragmas.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor tanto en el aula como en el laboratorio, con un constante uso de aparatos y equipo de cómputo en los aspectos teórico y práctico. Fuerte trabajo extraclase de los alumnos con los aparatos y el equipo de cómputo, generando solución a problemas sobre los temas del curso. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son los retroproyectores, las videocaseteras, los programas de cómputo educativos, etc.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales y un examen final. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso. Además se considerará el trabajo extraclase, la participación durante las sesiones del curso y la asistencia a las asesorías. Esto tendrá una equivalencia del 100% en la calificación final.

BIBLIOGRAFÍA

Libros Básicos:

- Óptica Geométrica, Pedro Mejías Arias-Pedro Martínez Herrero, Editorial: Síntesis Editorial, Publicación: Agosto 2000.
- Óptica Geométrica, Primera Edición Sagrario Millan Maria, Escofet Jaume y Pérez Elisabet, Editorial Ariel, S.A. 2004.
- 3. Introduction to Geometrical Optics, Milton Katz, , World Scientific 2002.
- 4. Óptica, Hecht, Addison-Wesley Iberoamericana, 2000, Tercera Edición.

Libros de Consulta:

- 1. Óptica Básica, Daniel Malacara. "Fondo de Cultura Económica, 2004, Segunda Edición, México.
- 2. Fundamentals of optics, Francis A. Jenkins and Harvey E. White, Fourth Edition, McGraw-Hill 1985.
- 3. Introduction to matrix methods in optics A. Gerrard and J. M. Burch, , John Wiley & Sons 1975.

PERFIL PROFESIONAL DEL DOCENTE

Licenciado en Física, Maestría en Óptica y Doctorado en Óptica.

