Apprentissage non supervisé

Quentin Fortier

January 16, 2025

Classification supervisée/non supervisée

Définition

Un algorithme de classification est un algorithme qui permet d'associer à chaque donnée une classe (une espèce de fleur, un chiffre...)

Classification supervisée/non supervisée

Définition

Un algorithme de classification est un algorithme qui permet d'associer à chaque donnée une classe (une espèce de fleur, un chiffre...)

Il y a deux types d'algorithmes de classification :

 Classification supervisée : on connaît les classes de certaines données (données d'entraînement) qui permettent de prédire la classe d'une nouvelle donnée.

Exemples: k plus proches voisins, ID3.

 Classification non supervisée : Il n'y a pas de donnée d'entraînement et l'ensemble des classes possibles n'est pas connue à l'avance..

 $\underline{\mathsf{Exemples}}$: k-moyennes, classification hiérarchique ascendante.

Exemple : il semble y avoir k=3 classes de données parmi ces points.

Définition

Le centre (ou : isobarycentre) d'un ensemble de vecteurs x_1,\ldots,x_n est le vecteur

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Dans tout le cours, on note d la distance euclidienne.

Définition

La variance (ou : moment d'inertie) V(X) d'un ensemble de vecteur X est définie par

$$V(X) = \sum_{x \in X} d(x, \overline{X})^2$$

La variance mesure la variation par rapport à la moyenne : plus V(X) est petit, plus les vecteurs de X sont proches du barycentre \overline{X} .

Soit X un ensemble de données et un entier k.

Objectif

On veut trouver un partitionnement de X en k sous-ensembles X_1, \ldots, X_k (classes ou *clusters*) minimisant l'inertie I:

$$I = \sum_{i=1}^{k} V(X_i)$$

Plus l'inertie est petite, plus les données sont proches du centre de leur classe et plus le partitionnement est bon.

Algorithme des *k*-moyennes

Objectif: partitionnner X en classes X_1 , ..., X_k .

• Soit $c_1, ..., c_k$ des vecteurs choisis aléatoirement.

Algorithme des *k*-moyennes

Objectif: partitionnner X en classes X_1 , ..., X_k .

- **9** Soit $c_1, ..., c_k$ des vecteurs choisis aléatoirement.
- ② Associer chaque donnée x à la classe X_i telle que $d(x,c_i)$ soit minimum.

Algorithme des *k*-moyennes

Objectif: partitionnner X en classes X_1 , ..., X_k .

- Soit $c_1, ..., c_k$ des vecteurs choisis aléatoirement.
- ② Associer chaque donnée x à la classe X_i telle que $d(x,c_i)$ soit minimum.
- **3** Recalculer les centres des classes $c_i = \overline{X_i}$.

Algorithme des *k*-moyennes

Objectif: partitionnner X en classes X_1 , ..., X_k .

- Soit $c_1, ..., c_k$ des vecteurs choisis aléatoirement.
- ② Associer chaque donnée x à la classe X_i telle que $d(x,c_i)$ soit minimum.
- **3** Recalculer les centres des classes $c_i = \overline{X_i}$.
- Si les centres ont changé, revenir à l'étape 2.

Algorithme des *k*-moyennes

Objectif: partitionnner X en classes X_1 , ..., X_k .

- Soit $c_1, ..., c_k$ des vecteurs choisis aléatoirement.
- ② Associer chaque donnée x à la classe X_i telle que $d(x,c_i)$ soit minimum.
- **3** Recalculer les centres des classes $c_i = \overline{X_i}$.
- Si les centres ont changé, revenir à l'étape 2.

Théorème (HP)

L'algorithme des k-moyennes termine (pas de boucle infinie).

Preuve:

Théorème (HP)

L'algorithme des k-moyennes termine (pas de boucle infinie).

Preuve:

On montre que I est un variant de boucle : I décroît strictement à chaque itération et ne peut prendre qu'un nombre fini de valeurs, donc le nombre d'itérations est fini.

Théorème (HP)

L'algorithme des k-moyennes termine (pas de boucle infinie).

Preuve:

On montre que I est un variant de boucle : I décroît strictement à chaque itération et ne peut prendre qu'un nombre fini de valeurs, donc le nombre d'itérations est fini.

- Il existe un nombre fini de partitions de X en k classes, donc l'inertie I peut prendre qu'un nombre fini de valeurs.
- ullet Il suffit donc de montrer que I décroît strictement à chaque itération.

Preuve (suite):

Il suffit donc de montrer que ${\it I}$ décroît strictement à chaque itération :

• Réassigner x de X_i à X_j si $d(x, c_i) > d(x, c_j)$ fait diminuer I.

Preuve (suite):

Il suffit donc de montrer que ${\it I}$ décroît strictement à chaque itération :

- Réassigner x de X_i à X_j si $d(x, c_i) > d(x, c_j)$ fait diminuer I.
- Recalculer les centres des classes fait diminuer I, d'après le lemme suivant :

Lemme

Si X est un ensemble de vecteurs alors $f:y\mapsto \sum_{x\in X}d(x,y)^2$ est minimum pour $y=\overline{X}$.

Question

Comment choisir le nombre k de classes ?

Question

Comment choisir le nombre k de classes ?

On peut calculer l'inertie obtenue pour différentes valeurs de k.

Question

Comment choisir le nombre k de classes ?

On peut calculer l'inertie obtenue pour différentes valeurs de k. Cependant, plus k est grand, plus l'inertie diminue jusqu'à valoir 0 si k est égal au nombre de données (ce qui n'a aucun intérêt.

Question

Comment choisir le nombre k de classes ?

On peut calculer l'inertie obtenue pour différentes valeurs de k. Cependant, plus k est grand, plus l'inertie diminue jusqu'à valoir 0 si k est égal au nombre de données (ce qui n'a aucun intérêt. On choisit donc la plus grande valeur de k pour laquelle l'inertie diminue de facon significative.

Méthode du coude (*elbow method*) : On choisit la plus grande valeur $\overline{\text{de }k}$ pour laquelle l'inertie diminue de façon significative.

On choisit k = 3 ou k = 4.

Algorithme des k-moyennes : Non optimalité

L'algorithme des k-moyennes converge toujours, mais pas forcément vers un minimum global de l'inertie (seulement vers un minimum local).

Question

Donner un exemple d'exécution de l'algorithme des k-moyennes qui ne donne pas un clustering d'inertie optimale.

Algorithme des k-moyennes : Classification de nouvelles données

On peut utiliser l'algorithme des k-moyennes pour classifier une nouvelle donnée x : on associe x à la classe dont le centre est le plus proche de x.

Algorithme des k-moyennes : Limites

L'algorithme des k-moyennes ne marche que sur des données linéairement séparables (pouvant être séparées par un hyperplan).

Algorithme des k-moyennes : Interprétations

Les centres obtenus à la fin de l'algorithme donnent des informations sur les constituants des classes.

Voici par exemple les centres obtenus avec $k=10\ \mathrm{sur}$ des chiffres manuscrits :

Algorithme des k-moyennes : Interprétations

Il est également intéressant de regarder l'équation des frontières de décision, pour savoir quels sont les attributs qui permettent de discriminer les données.

Si par exemple l'équation de la frontière de décision entre les classes 1 et 2 est ax+by=0 avec $a\gg b$, alors l'attribut x est plus discriminant que y pour pouvoir distinguer les classes 1 et 2.

Une image est souvent représentée par une matrice dont chaque élément (pixel) est un triplet de valeurs entre 0 et 255 (rouge, vert, bleu).

Une image est souvent représentée par une matrice dont chaque élément (pixel) est un triplet de valeurs entre 0 et 255 (rouge, vert, bleu).

Question

Combien y a t-il de couleurs différentes possibles ?

On peut souhaiter limiter le nombre de couleurs différentes :

- Sur un écran avec un nombre plus limité de couleurs (console...)
- Pour diminuer la taille de l'image : si on utilise k couleurs, on peut utiliser stocker un entier entre 1 et k pour chaque pixel au lieu de trois entiers entre 0 et 255.

On applique l'algorithme des k-moyennes sur les pixels pour obtenir k couleurs différentes (ici k=8) et on remplace chaque pixel par la couleur la plus proche.

Classification hiérarchique ascendante (CHA)

Classification hiérarchique ascendante

Entrée : Des données X

Sortie: Une partition de X en classes

Mettre chaque $x \in X$ dans une classe différente

Tant que nécessaire :

Fusionner les deux classes les plus proches

Classification hiérarchique ascendante (CHA)

On peut choisir d'arrêter l'algorithme à un certain nombre de classes ou quand la distance minimum entre deux classes est supérieure à un certain seuil.

Classification hiérarchique ascendante (CHA)

On peut choisir d'arrêter l'algorithme à un certain nombre de classes ou quand la distance minimum entre deux classes est supérieure à un certain seuil.

Exemples de distances entre classes A et B :

- Distance minimum : $\min_{a \in A, b \in B} d(a, b)$.
- Distance maximum : $\max_{a \in A, b \in B} d(a, b)$.
- Distance moyenne : $\frac{1}{|A||B|} \sum_{a \in A} \int_{b \in B} d(a, b)$.
- ...

 x_2 x_9 x_3 x_4 x_7 x_8 x_1 x_5 x_6

