

Algoritmo Genético - GA

- Algoritmos Genéticos (GA de Genetic Algorithm) aplicam uma abordagem evolutiva (seleção natural das espécies) para a aprendizagem de máquina indutiva.
- O GA tem sido aplicado com sucesso em problemas que são difíceis de resolver através de técnicas convencionais de otimização como:
 - □ Problemas de programação da produção;
 - □ Problemas de otimização de portfólio;
 - □ Problemas de logística ("caixeiro viajante") ou TSP;
 - □ Problemas de roteamento em redes;
 - □ Problemas de classificação em finanças etc.

Inspiração do Algoritmo Genético

Charles Darwin

"As espécies evoluem pelo principio da seleção natural e sobrevivência do mais apto", 1859

Seleção Natural + Genética = Otimização

- As técnicas de otimização, geralmente, apresentam:
 - Espaço de busca: onde estão todas as possíveis soluções do problema. Nesse espaço de busca há um ponto ou conjunto de pontos que fornece a solução ótima;
 - □ Função objetivo: utilizada para avaliar as soluções produzidas, associando a cada uma delas uma nota (que representa sua aptidão).
- A teoria da evolução começou a partir da conceituação integrada da seleção natural com a genética.
- O GA é um subconjunto de um ramo muito maior da computação, conhecido como **Computação Evolutiva**.

GA - Características Gerais

- Utilizam uma codificação do conjunto de observações (indivíduos) e não os próprios dados (atributos ou variáveis);
- Vasculham várias regiões do espaço de busca de cada vez;
- Utilizam informações diretas de qualidade, em contraste com as derivadas utilizadas nos métodos tradicionais de otimização;
- Utilizam regras de transição probabilísticas e não regras determinísticas;
- Podem ser considerados como métodos que trabalham com buscas paralelas randômicas direcionadas.
- Utilizam apenas informações de custo e recompensa, não requerendo nenhuma outra informação auxiliar (como por exemplo o gradiente).
- Otimizam funções contínuas e discretas e também problemas multiobjetivo.

GA – Características Gerais

- São fáceis de serem implementados em computadores.
- Adaptam-se bem a computadores paralelos.
- São facilmente combinados com outras técnicas.
- Funcionam com parâmetros contínuos ou discretos.
- Consistem em tentar encontrar várias soluções e usar a informação obtida para conseguir soluções cada vez melhores.
- Manipulam uma população de indivíduos que são as possíveis soluções do problema.
- Os indivíduos são combinados (crossover) uns com os outros, produzindo gerações descendentes que podem sofrer ou não mutações.
- As populações evoluem através de sucessivas gerações até encontrar a solução ótima (população ideal).

GA - Limitações

- Não são adequados para todos os problemas, especialmente os que são simples e para os quais informações derivadas estão disponíveis.
- O valor de aptidão é calculado repetidamente, o que pode ser custoso do ponto de vista computacional para alguns problemas.
- Sendo estocástico (probabilístico), não há garantia sobre a otimização ou da qualidade da solução.
- Se não for implementado corretamente, o GA pode não convergir para a solução ideal.

GA – Aplicações

- Alocação de Tarefas.
- Configuração de Sistemas Complexos.
- Seleção de Rotas.
- Problemas de Otimização e de Aprendizagem de Máquina.
- Problemas cuja solução seja um estado final e não um caminho.
- São especialmente interessantes em problemas difíceis de otimizar de forma convencional (com técnicas heurísticas).
- Se uma técnica tradicional puder ser empregada, normalmente achará a melhor solução mais rápido, porém:
 - □ Existem muitos problemas práticos aos quais técnicas determinísticas tradicionais não podem ser aplicadas.
 - ☐ Técnicas tradicionais têm natureza serial.
 - □ Algoritmos Genéticos têm natureza paralela.

GA – Terminologia

- Indivíduo
 - □ Um simples membro da população.
- Cromossomo e Genoma
 - □ Coleção de genes que caracteriza os indivíduos.
 - ☐ Estrutura de dados que codifica a solução de um problema.
- Genótipo
 - □ Na biologia, representa a composição genética contida no Genoma.
 - □ No GA, representa a informação contida no cromossomo ou genoma.
- Fenótipo
 - ☐ Objeto ou estrutura construída a partir das informações do genótipo.
 - ☐ É o cromossomo decodificado (apresentando os atributos reais).
 - □ Se o cromossomo codifica as características de um edifício, então o fenótipo é o edifício construído.
- Gene
 - □ Codifica um simples parâmetro do problema.

Algoritmo de Aprendizado

- Passo 1:
 - □ Inicializar uma população **P** de **n** indivíduos como uma solução potencial.
- Passo 2:
 - □ Até que uma condição de término especificada for satisfeita:
 - 2a: Use a função de seleção para avaliar cada indivíduo da solução atual. Se um indivíduo passa pelos critérios de seleção, ele permanece em P, em caso contrário não.
 - 2b: A população agora contém m (m <= n) indivíduos. Use operadores genéticos (cruzamento & mutação) para criar (n m) novos indivíduos e adicioná-los à população.

Representação Genética Digital

- Uma técnica comum para a representação de conhecimento genético é transformar os atributos dos indivíduos em cadeias binárias.
- Por exemplo, podemos representar a faixa de renda como uma seqüência de dois bits para a atribuição de:
 - □ "00" a 20-30k,
 - □ "01" a 30-40k e,
 - □ "11" a 50-60k.
- Da mesma forma poderiam ser binariamente codificados os outros atributos.

Modelagem do GA

- Indivíduos X Atributos (estados);
- Cada indivíduo possui um <u>código genético</u> (conjunto de atributos);
- Esse código é chamado <u>cromossomo</u> (características do indivíduo);
- Tradicionalmente, um cromossomo é um vetor de bits representando os atributos reais;
- Vetor de bits nem sempre é o ideal. Exemplos:
 - □ Números reais, (2.345, 4.3454, 5.1, 3.4)
 - □ Cadeias de bits, (111011011)
 - □ Números de inteiros, (1,4,2,5,2,8)
 - □ ou outra estrutura de dados.

Operador Genético – Selection Seleção

- Seleção é o princípio básico para o direcionamento da evolução de uma dada população.
- A seleção serve para substituir indivíduos a serem descartados (mais fracos) por indivíduos que passam no teste de seleção com altas pontuações (mais fortes).
- Os melhores indivíduos (maior aptidão) são selecionados para gerar descendentes (filhos) através de cruzamento e mutação.
- O processo de seleção garante que a qualidade geral da população aumenta a cada época de treinamento (evolução ou otimização).
- Existem vários métodos de seleção.

Principais Métodos de Seleção

- Roleta
- Torneio
- Proporcional à Aptidão
- Amostragem Universal Estocástica

Indivíduo	Aptidão Absoluta	Aptidão Relativa
1	2	0,052631579
2	4	0,105263158
3	5	0,131578947
4	9	0,236842105
5	18	0,473684211
Total	38	1

Método da Roleta

- Coloca-se os indivíduos em uma roleta, dando a cada um uma "fatia" proporcional à sua aptidão relativa.
- Depois roda-se a agulha da roleta. O indivíduo em cuja fatia a agulha parar permanece para a próxima geração.
- Repete-se o sorteio quantas vezes forem necessárias para selecionar a quantidade desejada de indivíduos.

Pop. | Cromossomos |
$$\chi$$
 | $f(x)$ | Prob. de seleção | $A_1 = 11001$ | 25 | 625 | 54,5% | $A_2 = 01111$ | 15 | 225 | 19,6% | $A_3 = 01110$ | 14 | 196 | 17,1% | $A_4 = 01010$ | 10 | 100 | 8,7%

Probabilidade de seleção proporcional a aptidão $p_i = \frac{f(x_i)}{\sum_{k=1}^{N} f(x_k)}$

Amostragem Universal Estocástica

- SUS Stochastic Universal Sampling;
- Semelhante à Roleta, mas para selecionar k indivíduos utiliza k agulhas igualmente espaçadas, girando-as em conjunto uma só vez;
- Apresenta resultados menos variantes que a Roleta.

Método do Torneio

- Utiliza sucessivas disputas para realizar a seleção;
- Para selecionar *k* indivíduos, realiza *k* disputas, cada disputa envolvendo *n* indivíduos escolhidos ao acaso;
- O indivíduo de maior aptidão na disputa é selecionado;
- É muito comum utilizar *n* = 3.
- Combinam pais selecionados para produção de filhos.

Operador Genético – Crossover **FEAUSP** Cruzamento

- Os indivíduos mais frequentemente utilizados para o cruzamento são os que são destinados a ser eliminados da população.
- Crossover cria (pela reprodução) novos indivíduos para a população através da combinação de partes de dois indivíduos da população atual.
- Combina as informações genéticas de dois indivíduos (pais) para gerar novos indivíduos (filhos).
- Versões mais comuns criam sempre dois filhos para cada operação.

One-Point Crossover

Operador de Cruzamento

- É o operador genético principal;
- Responsável por gerar novos indivíduos diferentes (sejam melhores ou piores) a partir de indivíduos existentes;
- Aplicado a cada par de indivíduos com alta probabilidade (normalmente entre 0,6 e 0,99).
- Abordagens para cruzamento:
 - □ Cruzamento Um-Ponto
 - ☐ Cruzamento Multi-Pontos
 - □ Cruzamento Uniforme

Operador de Cruzamento

O crossover é aplicado com uma dada probabilidade denominada *taxa de crossover* (60% a 90%)

Se o crossover for aplicado os pais trocam suas caldas gerando dois filhos, caso contrário os dois filhos serão cópias exatas dos pais.

Crossover Uniforme

- O *filho*1 têm 50% de chance de adquirir um bit do *pai*1 e 50% de chance de adquirir um bit do *pai*2
- O *filho*2 leva o que sobra do *pai*1 e *pai*2

Operador Genético – *Mutation* **FEAUSP Mutação**

- Mutação é aplicada com moderação para elementos escolhidos para a eliminação.
- A mutação pode ser aplicada aleatoriamente trocando bits (ou valores de atributo) dentro de um único elemento.
- É um operador genético secundário;
- Operador randômico de manipulação;
- Introduz e mantém a variedade genética da população;
- Garante a possibilidade de se alcançar qualquer ponto do espaço de busca:
- Se seu uso for exagerado, reduz a evolução a uma busca totalmente aleatória;
- Begin mutation Logo um indivíduo sofre mutações com probabilidade baixa (normalmente entre 0,001 e 0,1).

Operador de Mutação

Mutação inverte os valores dos bits.

A mutação é aplicada com dada probabilidade, denominada *taxa* de mutação (~1%), em cada um dos bits do cromossomo.

Antes da 01101 mutação

Depois 0 0 1 0 1

Aqui, apenas o 2º bit passou no teste de probabilidade.

A taxa de mutação não deve ser nem muito alta nem muito baixa, mas o suficiente para assegurar a diversidade de cromossomos na população.

Parâmetros Genéticos do Algoritmo

- Tamanho da população
- Função de seleção ou objetivo
- Taxa de cruzamento
- Taxa de mutação
- Intervalo de geração
- Critério de parada

Critérios de Parada

- Número de gerações.
- Encontrou a solução (quando esta é conhecida).
- Perda de diversidade.
- Convergência
 - □ Nas últimas *k* gerações não houve melhora significativa da aptidão:
 - Média
 - Máxima

Algoritmo de Aprendizado

- Passo 1:
 - □ Inicializar uma população P de n indivíduos como uma solução potencial.
- Passo 2:
 - ☐ Até que uma condição de término especificada for satisfeita:
 - 2a: Use a função de seleção para avaliar cada indivíduo da solução atual. Se um indivíduo passa pelos critérios de seleção, ele permanece em P, em caso contrário não.
 - 2b: A população agora contém m (m <= n) indivíduos. Use operadores genéticos (cruzamento & mutação) para criar (n m) novos indivíduos e adicioná-los na população.

Segunda e Terceira Gerações

Segunda Geração

		\mathcal{A}	$f(\lambda)$
1	1 1 0 1 1	27	729
2	1 1 0 0 0	24	576
3	10111	23	529
4	10101	21	441

 $f(\mathbf{r})$

Terceira Geração

		$\boldsymbol{\mathcal{X}}$	f(x)
1	11011	27	729
2	10111	23	529
3	01111	15	225
4	0 0 1 1 1	7	49

Quarta e Quinta Gerações

Quarta Geração

		X	f(x)
1	11111	31	961
2	1 1 0 1 1	27	729
3	10111	23	529
4	10111	23	529

Quinta Geração

		\mathcal{X}	f(x)
1	11111	31	961
2	1 1 1 1 1	31	961
3	1 1 1 1 1	31	961
4	10111	23	529

Passo 1 do Aprendizado Genético

- Este passo inicializa uma população P de n indivíduos.
- O algoritmo modifica os indivíduos da população até que uma condição de terminação seja satisfeita.
- A condição pode exigir, por exemplo, que todos os indivíduos da população satisfaçam alguns critérios mínimos.
- Uma outra alternativa para finalização é definir um número fixo de iterações do processo de aprendizagem.

Passo 2A do Aprendizado Genético

- Inicialmente é aplicada uma função de seleção, para avaliar cada indivíduo atualmente na população.
- A cada iteração, os indivíduos que não satisfaçam os critérios de seleção são eliminados da população.
- O resultado final de uma sessão de aprendizagem genética supervisionada é, de acordo com a função de seleção, um conjunto de indivíduos da população que melhor representa os dados de treinamento.

Passo 2B do Aprendizado Genético

- São então acrescentados novos indivíduos à população para substituir quaisquer indivíduos eliminados na etapa 2A.
- Novos indivíduos são formadas a partir de indivíduos excluídos anteriormente pela aplicação de operações de:
 - □Cruzamento e
 - □Mutação.

Exemplo – População Inicial

Elemento População	Faixa de Renda	Seguro de Vida	Seguro Cartão de Crédito	Sexo	Idade
1	20-30k	Não	Sim	Masculino	30-39
2	30k-40k	Sim	Não	Feminino	50-59
3	?	Não	Não	Masculino	40-49
4	30k-40k	Sim	Sim	Masculino	40-49

Um ponto de interrogação (?) na população significa que é uma condição que "não faz diferença", o que implica que o atributo não é importante para o processo de aprendizagem.

Dados de Treinamento para o Aprendizado Genético

Elemento de Treinamento	Faixa de Renda	Seguro de Vida	Seguro Cartão de Crédito	Sexo	Idade
1	30-40k	Sim	Sim	Masculino	30-39
2	30-40k	Sim	Não	Feminino	40-49
3	50-60k	Sim	Não	Feminino	30-39
4	20-30k	Não	Não	Feminino	50-59
5	20-30k	Não	Não	Masculino	20-29
6	30-40k	Não	Não	Masculino	40-49

Objetivo e Condição

- Nosso objetivo é criar um modelo capaz de diferenciar os indivíduos que possuem seguro de vida daqueles que não possuem.
- Exigimos que após cada iteração do algoritmo, exatamente dois elementos de cada classe (seguro de vida = sim) e (seguro de vida = não) permanecem na população.

Função de Seleção

- Seja N o número de casamentos dos valores de atributos de entrada E com instâncias de treinamento de sua própria classe.
- 2. Seja M o número de casamentos dos valores de atributos de entrada para todas as instâncias de treinamento das classes concorrentes.
- 3. Adicione 1 para M.
- 4. Divida N por M.

Nota: quanto maior a pontuação de seleção, menor será a taxa de erro para a solução.

To both Itab	1	20-30k	Não	Sim	Masculino	30-39
--------------	---	--------	-----	-----	-----------	-------

- 1. Faixa de renda = 20-30k casa com instâncias de treinamento 4 e 5.
- Sem casamento para Seguro de cartão de crédito =
 Sim
- 3. Sexo = Masculino casa com instâncias de treinamento 5 e 6.
- 4. Não há casamentos para Idade = 30-39.
- 5. $\therefore N = 4$

Dados de Treinamento para o Aprendizado Genético

Elemento de Treinamento	Faixa de Renda	Seguro de Vida	Seguro Cartão de Crédito	Sexo	Idade
1	30-40k	Sim	Sim	Masculino	30-39
2	30-40k	Sim	Não	Feminino	40-49
3	50-60k	Sim	Não	Feminino	30-39
4	20-30k	Não	Não	Feminino	50-59
5	20-30k	Não	Não	Masculino	20-29
6	30-40k	Não	Não	Masculino	40-49

1	20-30k	Não	Sim	Masculino	30-39

- 1. Sem casamento para Faixa de Renda = 20-30k
- Seguro de cartão de crédito = Sim casa com uma instância de treinamento.
- Sexo = Masculino casa com instância de treinamento 1.
- 4. Idade = 30-39 casa com instâncias de treinamento 1 e 3.
- $5. \therefore M = 4$
- 6. Adicionar 1 a M \rightarrow M+1 = 5
- 7. \therefore F (1) = 4/5 = 0,8
- 8. Similarmente F (2) = 0.86, F (3) = 1.2, F (4) = 1.0
- 9. Manter elementos 3 e 4 que possuem maior pontuação!

Segunda Geração da População

Elemento População	Faixa de Renda	Seguro de Vida	Seguro Cartão de Crédito	Sexo	ldade
1	20-30k	Não	Não	Feminino	50-59
2	30k-40k	Sim	Sim	Masculino	30-39
3	?	Não	Não	Masculino	40-49
4	30k-40k	Sim	Sim	Masculino	40-49

Aplicação do Modelo (Fase de Teste)

- Para utilizar o modelo, pode-se comparar um novo indivíduo desconhecido (dados de teste) com os indivíduos da população final.
- Uma técnica simples é dar ao indivíduo desconhecido a mesma classificação do indivíduo da população para o qual ele é muito semelhante.
- O algoritmo, em seguida, escolhe um dos m indivíduos e dá ao indivíduo desconhecido a classificação do indivíduo escolhido aleatoriamente.

Algoritmo Genético & Cluster Não Supervisionado

- Suponha que há objetos de dados P dentro do espaço onde cada objeto de dados consiste em valores de atributos n.
- Suponha m aglomerados são desejados.
- O modelo irá gerar k possíveis soluções.
- Uma solução específica contém m pontos n-dimensionais, onde cada ponto é o melhor elemento representante de um dos grupos m.

Operação de Cruzamento

- A operação de cruzamento é realizada por elementos móveis (pontos n-dimensionais) de solução para solução Si Sj.
- Existem várias possibilidades para a execução de operações de mutação.
- Uma maneira de transformar a solução Si é trocar uma ou mais coordenadas do ponto dos elementos dentro de Si.

Função de Seleção

- Uma função de seleção aplicável para solução Sj é a <u>distância</u> <u>euclidiana média</u> dos objetos P no espaço n-dimensional a partir de seu objeto mais próximo dentro de Sj.
- Tomamos cada objeto I em P e calculamos a distância euclidiana de I a cada um dos objetos m em Sj.
- Os valores mais baixos representam melhores pontuações de seleção.
- Uma vez que a aprendizagem genética termina, a melhor das soluções possíveis k é selecionada como a solução final.
- Cada objeto, no espaço n-dimensional é atribuído ao agrupamento associado com o objeto mais próximo na solução final.

Conjunto de Entrada

Objeto	X	Υ
1	1,0	1,5
2	1,0	4,5
3	2,0	1,5
4	2,0	3,5
5	3,0	2,5
6	5,0	6,0

Função de Seleção para GA **FEAUSP** Não Supervisionado

- Aplicamos a função de seleção para os dados de treinamento.
- Instruímos o algoritmo para começar com um conjunto de soluções que consiste em três soluções plausíveis (k = 3).
- Com m = 2, P = 6, e k = 3, o algoritmo gera o conjunto inicial de soluções.
- Um elemento no espaço de solução contém um único ponto de dados representativos para cada cluster.
- Por exemplo, os pontos de dados para a solução são S1 (1,0,1,0) e (5.0,5.0).

Distância Euclidiana

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

Pontuação de seleção de d(1.0, 1.0) e d(5.0, 5.0)

```
= min ( Raiz( |1.0 - 1.0|^2 + |1.0 - 1.5|^2), Raiz( |5.0 - 1.0|^2 + |5.0 - 1.5|^2) + min (Raiz( |1.0 - 1.0|^2 + |1.0 - 4.5|^2), Raiz( |5.0 - 1.0|^2 + |5.0 - 4.5|^2) + min (Raiz( |1.0 - 2.0|^2 + |1.0 - 1.5|^2), Raiz( |5.0 - 2.0|^2 + |5.0 - 1.5|^2) + min (Raiz( |1.0 - 2.0|^2 + |1.0 - 3.5|^2), Raiz( |5.0 - 2.0|^2 + |5.0 - 3.5|^2) + min (Raiz( |1.0 - 3.0|^2 + |1.0 - 2.5|^2), Raiz( |5.0 - 3.0|^2 + |5.0 - 2.5|^2) + min (Raiz( |1.0 - 5.0|^2 + |1.0 - 6.0|^2), Raiz( |5.0 - 5.0|^2 + |5.0 - 6.0|^2) = 0.5 + 3.5 + 1.11 + 2.69 + 2.5 + 1
```

Solução da População para Agrupamento **FEAUSP** não Supervisionado

	S1	S2	S3
Objetos da Solução	(1.0,1.0)	(3.0,2.0)	(4.0,3.0)
(População Inicial)	(5.0,5.0)	(3.0,5.0)	(5.0,1.0)
Pontuação	11.31	9.78	15.55
Objetos da Solução	(5.0,1.0)	(3.0,2.0)	(4.0,3.0)
(Segunda Geração)	(5.0,5.0)	(3.0,5.0)	(1.0,1.0)
Pontuação	17.96	9.78	11.34
Objetos da Solução	(5.0,5.0)	(3.0,2.0)	(4.0,3.0)
(Terceira Geração)	(1.0,5.0)	(3.0,5.0)	(1.0,1.0)
Pontuação	13.64	9.78	11.34

Usualmente, soluções relacionadas a agrupamento envolvem cálculo proximidade, qualquer que seja a técnica.

Solução de Primeira Geração

- Para calcular a pontuação de seleção de 11,31 para solução S1 a distância euclidiana entre cada objeto e seu ponto mais próximo de dados em S1 é somado.
- Para ilustrar isso, considere um exemplo de dados de treinamento.
- A distância euclidiana entre (1.0,1.0) e (1.0,1.5) é calculada como 0,50.
- A distância entre (5.0,5.0) e (1.0,1.5) é 5,32.
- O menor valor de 0,50 é representado na pontuação de seleção total para o S1 solução.
- S2 é a melhor solução de primeira geração.

Solução de Segunda Geração

- A segunda geração é obtida através da realização de um cruzamento (crossover) entre as soluções S1 e S3.
- O objeto da solução S1 (1.0,1.0) troca de lugar com objeto da solução S3 (5.0,1.0).
- O resultado da operação de cruzamento melhora (diminui) a pontuação de seleção para o S3, enquanto a pontuação para S1 aumenta.

Solução de Terceira Geração

- A terceira geração é obtida através da mutação S1.
- A mutação transporta a coordenada y do primeiro objeto em S1 com a coordenada x do segundo objeto.
- A mutação resulta em uma melhor pontuação de seleção para S1.
- Mutações e cruzamentos continuam até que uma condição de término seja satisfeita.
- Se a terceira geração é a última, então, a solução final é S2.

Solução para Agrupamento

- Se S2 (3.0, 2.0) e (3.0, 5.0) são a solução final, então calculam-se as distâncias entre S2 e os pontos seguintes:
 - □Objetos 1, 3 e 5, formando um primeiro cluster e objetos 2 e 6 formando segundo cluster e objeto 4 pode estar em qualquer um dos clusters.

Cluster 1 centro (3.0, 2.0)			Cluster 2 centro (3.0, 5.0)		
Objeto	X	Υ	Objeto	Χ	Y
1	1.0	1.5	2	1.0	4.5
3	2.0	1.5	4	2.0	3.5
5	3.0	2.5	6	5.0	6.0

Considerações Gerais sobre o **FEAUSP** Algoritmo Genético

- GA é útil para encontrar soluções globalmente otimizadas.
- A função de seleção determina a complexidade computacional de um Algoritmo Genético.
- GA explica seus resultados na medida em que a função de seleção é compreensível.
- A transformação dos dados para um formato adequado para um Algoritmo Genético pode ser um desafio.

