Nombre de la asignatura: Electrónica de Potencia

LGAC: Control de procesos industriales

Tiempo de dedicación del estudiante a las actividades:

DOC (48) - TIS (20) - TPS (100) - 168 horas totales - 6 Créditos

1. Historia de la asignatura.

Fecha revisión/actualización	Participantes	Observaciones, cambios y justificación.
Marzo de 2017. Instituto Tecnológico de	M.C. Francisco Javier Gómez González	Primera versión como curso básico del programa de posgrado.
Veracruz	M.C. José Luis Fernando Palomeque Loyo	

2. Prerrequisitos y correquisitos.

Se establecen las relaciones anteriores o posteriores que tiene esta asignatura con otras.

• Electrónica Analógica y Electrónica Digital

3. Objetivo dela asignatura.

El estudiante analizará los principales dispositivos electrónicos bajo los conceptos de electrónica depotencia y el control de la energía eléctrica para lograr la capacidad de análisis y diseño de lasdiferentes topologías relativas a la conversión de la energía.

4. Aportaciones al perfil del graduado.

Herramientas modernas para el análisis y solución de problemas en el área de la electrónica depotencia.

5. Contenido temático.

Se establece el temario (temas y subtemas) que conforman los contenidos delprograma de estudio, debiendo estar organizados y secuenciados. Además de que los temas centralesconduzcan a lograr el objetivo de la materia.

UNIDAD	TEMA	SUBTEMAS
I	Dispositivos semiconductores de potencia	1.1 Introducción 1.2 SCR, TRIAC, MOSFET, IGBT, GTO. 1.2.1 Funcionamiento 1.2.2 Curva característica 1.2.3 Hoja de datos 1.2.4 Limitacion di/dt
		1.2.5 Limitacion di/dt 1.3 Dispositivos inteligentes de potencia "Smart Power"
II	Rectificadores controlados	2.1 Rectificadores de media onda.2.2 Rectificadores de onda completa2.3 Cargas R, C,L.

III	Convertidores	3.1 Convertidores DC-AC	
		3.2 Convertidores AC-DC 3.3 Convertidores DC-DC	
		3.4 Convertidores AC-AC	
IV	Inversores	 4.1 Análisis en media onda 4.2 Conmutación de carga en el inversor demedia onda 4.3 Inversor tipo puente en una fase 4.4 Control de voltaje en inversores de una fase 4.5 Inversor de corriente 	
		4.6 Inversor de voltaje	
		4.7 Inversor trifásico de onda cuadrada	
		4.8 Inversor EPWM	
		4.9 Inversor SPWM	
		4.10 Técnicas avanzadas de modulación	
V	Aplicaciones	5.1 Análisis matemático en armónicos ydistorsión	
		5.2 La FFT y el análisis armónico enconvertidores	
		5.3 Espectros de corriente de E/S	
		5.4 Espectros de voltaje en E/S	
		5.5 Estándares americanos y europeos sobrecompensación	
		de armónicos.	
VI	Filtros de	6.1 Diseño de filtros de salida	
	Entrada/Salida	6.2 Diseño de filtros de entrada	
		6.3 Filtros EMI	

6. Metodología de desarrollo del curso.

Se establecen las estrategias y las actividades que seanfuncionales y adecuadas para lograr el aprendizaje de los estudiantes.

El curso se imparte con horas clase frente a grupo. Con estrategias de enseñanza como exposición ymaterial desarrollado, así como estrategias de aprendizaje para el procesamiento de la información, análisis y síntesis de la información por medio de la técnica de aprendizaje basado en problemas (PBLen sus siglas en inglés) o bien para el proyecto se usa la técnica de aprendizaje basado en proyecto, asímismo se aprovecha como estrategia de aprendizaje el propio portafolio de evidencias y se complementacon prácticas de laboratorio experimentales, Además si la cantidad de alumnos lo permite se introduceel aprendizaje colaborativo.

7. Sugerencias de evaluación.

Se expondrán las estrategias, los procedimientos y las actividades deevaluación que, retomados de la experiencia de los cuerpos académicos, sean adecuados para unaevaluación correcta.

- Evaluar con exámenes
- Tareas individuales y colaborativas.
- Prácticas individuales y colaborativas.
- Exposición
- Proyecto (opcional)

8. FUENTES DE INFORMACIÓN

Se enumerarán la bibliografía y el software de apoyo recomendado, además de las fuentes de información de distinta índole (hemerográficas, videográficas, electrónicas, etc.).

- 1. Dewan & Strauhgen, Power Semiconductor Circuits, Wiley, 1975.
- 2. Rashid M., Power Electronic Circuit, Devices and Application, PH, 1988
- 3. Bedford & Hoft, Principios de Circuitos Convertidores, Wiley, 1964
- 4. Pelly, Thyristor Phase-Controlled Converted and Cycloconvertes, Wiley, 1971
- 5. Sen, Principles of Electronic Machines and Power Electronics, Wiley, 1989
- 6. Lilen Henry, Tiristores y TRIACS, Marcombo Editores
- 7. Raimshaw R., Electrónica de Potencia, Marcombo Editores
- 8. Lander C., Power Electronics, McGraw Hill
- 9. GE, Thyristor Manual
- 10. Bose Bilmak, Microcomputer Control of Power Electronics and Drives, IEEE Press

9. Actividades propuestas

Se deberán desarrollar las prácticas que se consideren necesarias por tema.

UNIDAD	PRACTICAS	
I	Practica 1. Identificación de características de dispositivos de conmutación.	
	Análisis de la respuesta en la frecuencia y en potencia.	
	Práctica 2. Técnicas de conmutación.	
II	Práctica 3. Diseño de un rectificador monofásico controlado, con variación	
	de carga (R,RL, RLC).	
	Práctica 4. Identificación de parámetros de desempeño en los rectificadores	
	controlados.	
	Práctica 5. Diseño y análisis de un rectificador controlado trifásico.	
III	Práctica 6. Análisis y diseño de un convertidor de CD-CA, monofásico.	
	Práctica 7. Análisis y diseño de un convertidor de CA-CD	
IV	Práctica 8. Diseño y análisis de un inversor Trifásico.	
	Práctica 9. Diseño y análisis de los parámetros de desempeño de un	
	inversor ante variaciones de carga y señal de entrada.	
V	Practica 10. Análisis de la generación de armónicos en un inversor.	
	Práctica 11. Análisis de la generación de armónicos en un inversor.	
VI	Práctica 12. Reducción de interferencia de radio frecuencia (RFI) por medio	
	de filtros de entrada y de salida.	
	Práctica 13. Reducción y compensación de ruido EMI (interferencia	
	electromagnética).	

10. Nombre y firma de los catedráticos responsables.

M.C. Francisco Javier Gomez Gonzalez	
M.C. José Luis Fernando Palomeque Loyo	,