

Resumen sesión anterior

Sobrecarga de Operadores

Los operadores de suma (+) resta (-), etc, son también métodos asociados a una clase, por tanto también se puede aplicar polimorfismo para modificar el comportamiento al utilizar estos operadores

- Suma (+): _add_()
- Resta (-): _sub _ ()
- Multiplicación: _mul_()
- División: _truediv _ ()

Variables Globales

JUAN FERNANDO GONZÁLEZ GRUPOS 79,80,81 Semana 4 Sesión 3

VARIABLES GLOBALES

Una variable global es aquella que se define por fuera de todas las funciones o clases y existe el todo el contexto de un programa en python*.

En ocasiones es necesario convertir una variable local (definida en una función o clase) en una variable global.

Python permite modificar variables globales con el operador **global**

Matrices

JUAN FERNANDO GONZÁLEZ GRUPOS 79,80,81 Semana 4 Sesión 3

MATRICES 2D

Una matriz es una colección ordenada de datos. En el caso especial de las Matrices de dos dimensiones para acceder a un dato se requieren dos índices, a diferencia de los vectores donde solo se requiere un índice

	COLUMNAS							
mat	0	1	2	3	4	5	6	7
_ 0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0
A 4	0	0	0	0	0	0	0	0
5 5	0	0	0	0	0	0	0	0

SUMA DE MATRICES

Sumar:
$$\begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} a+e & b+f \\ c+g & d+h \end{pmatrix}$$

Restar:
$$\begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} a-e & b-f \\ c-g & d-h \end{pmatrix}$$

SUMA DE MATRICES

$$A_{2X3} = \begin{pmatrix} 1 & -3 & 5 \\ 4 & 7 & -2 \end{pmatrix}$$

$$B_{2X3} = \begin{pmatrix} 0 & 3 & -6 \\ -9 & 10 & 2 \end{pmatrix}$$

$$A+B=\begin{pmatrix}1&0&-1\\5&17&0\end{pmatrix}$$

$$A - B = \begin{pmatrix} 1 & -6 & 11 \\ 13 & -3 & -4 \end{pmatrix}$$

MULTIPLICACIÓN DE MATRICES

$$\boldsymbol{C_{2X3}} = \begin{pmatrix} 1 & -3 & 6 \\ 5 & 0 & -2 \end{pmatrix}$$

$$\boldsymbol{D_{3X2}} = \begin{pmatrix} 1 & -3 \\ 9 & 2 \\ 3 & 0 \end{pmatrix}$$

$$CD_{2X2} = \begin{pmatrix} (1 \cdot 1 - 3 \cdot 9 + 6 \cdot 3) & (1 \cdot -3 - 3 \cdot 2 + 6 \cdot 0) \\ (5 \cdot 1 + 0 \cdot 9 - 2 \cdot 3) & (5 \cdot -3 + 0 \cdot 2 - 2 \cdot 0) \end{pmatrix} = \begin{pmatrix} -8 & -9 \\ -1 & -15 \end{pmatrix}$$

Manejo de excepciones

JUAN FERNANDO GONZÁLEZ GRUPOS 79,80,81 Semana 4 Sesión 3

EXCEPCIONES

Cuando se genera un error en una línea de código, la ejecución de las demás instrucciones se suspende. Para evitar esta situación los lenguajes de programación permiten capturar estos errores y tomar acciones para evitar que se cierre la aplicación. Este proceso es conocido como manejo de excepciones

SIN MANEJO DE EXCEPCIONES

CON MANEJO DE EXCEPCIONES

En **python** las excepciones se manejan con los operador **try** y las opciones que nos brinda.