Data Mining: Learning from Large Data Sets - Fall Semester 2015

eholmer@student.ethz.ch melisr@student.ethz.ch pmichal@student.ethz.ch

December 23, 2015

Explore-Exploit tradeoffs in Recommender Systems

LinUCB

We implemented the LinUCB algorithm like it is given on the last slide of lecture 11 of *Data Mining:* Learning from Large Data Sets.

This means that we recommend the article from the given set of articles A_t that has the highest **UCB** value:

$$x_t = \operatorname*{argmax}_{x \in \mathcal{A}_t} \mathbf{UCB}_x$$

with

$$\mathbf{UCB}_x = M_x^{-1} b_x z_t + \alpha \sqrt{z_t^T M_x^{-1} z_t}$$

where M_x and B_x are article-specific variables, and z_t is the vector with user features. $\alpha=0.1875$ gives the best result.

Since inverting a matrix is a time expensive operation, we don't only keep M_x and b_x in memory for each article x, but also M_x^{-1} and $M_x^{-1}b_x$. Upon a right recommendation, these variables are updated arrording to

$$M_x \leftarrow M_x + z_t z_t^T$$
 and $b_x \leftarrow b_x + y_t z_t$.

where y_t denotes the reward.

Other Approaches

To capture global dependence between user and article features, we also tried a hybrid model, but didn't manage to stay within the time boundary of 15 minutes.

Member contribution

Michal Porvazník Implemented LinUCB Erik Holmer Tuned parameter Rik Melis Optimized runtime