

Aprendizaje por refuerzo multiagente en entornos competitivos Atari: Transferencia de conocimiento de Pong a Quadrapong

Juan Manuel Camacho Lugo

Trabajo Final de Máster (Área 4)

PDC: Luis Esteve Elfau

PRA: Ismael Benito Altamirano

Máster Universitario de Ciencia de Datos (UOC)

¿Qué problema queremos resolver?

Queremos enseñar a varios agentes a trabajar en un entorno complejo sin tener que aprender como hacerlo desde cero , partiendo de lo aprendido en un entorno simple.

El aprendizaje por refuerzo permite a los agentes aprender mediante recompensas.

- Interactuar
- Maximizar la recompensa acumulada
- Aprender la mejor estrategia o política

El aprendizaje por refuerzo multiagente, introduce coordinación, cooperación y nuevos desafíos.

- Varios agentes, mismo entorno
- Metas por equipos o globales
- Encontrar equilibrio de los agentes

La transferencia de conocimiento acelera el aprendizaje en nuevos entornos.

- Reducir tiempo de entrenamiento
- Facilitar la adaptación al nuevo entorno
- Mejorar la exploración del nuevo entorno

Entorno Pong / Quadrapong

ESPACIO DE OBSERVACIONES	ESPACIO DE ACCIONES DE PONG	ESPACIO DE ACCIONES DE QUADRAPONG
 Imagen RGB (210,160,3) 210 píxeles alto 160 píxeles ancho 3 canales de color (rojo, verde, azul) 	 0: no hacer nada 1: disparar / "sacar o servir la pelota" 2: mover hacia la derecha 3: mover hacia la izquierda 4: mover hacia la derecha mientras saca 5: mover hacia la izquierda mientras saca 	 0: no hacer nada 1: disparar / "sacar o servir la pelota" 2: mover hacia arriba 3: mover hacia la derecha 4: mover hacia la izquierda 5: mover hacia abajo

Modelo empleado Pong / Quadrapong

- Implementación optimizada de PPO, para redes neuronales convolucionales (modelo propio por agente)
- Wrappers (reducir color, redimensionar, apilar frames)

Entrenamiento

DISEÑO	CICLO APRENDIZAJE	RECOMPENSAS
 Simétrico Competitivo Alternando entre agentes Self-Play 5000 rondas (Pong) 2000 rondas (Quadrapong) 	 Carga de modelos preentrenados Observación del estado Selección de acción Interacción con el entorno Almacenamiento de experiencia Actualización de política Repetición de ciclo 	 Punto a favor, recibe +1 Punto en contra, recibe -1 Stalling (no sacar tras dos segundos), recibe -1

Entrenamiento Quadrapong

MODELO SIN TRANSFERENCIA DE CONOCIMIENTO	MODELO CON TRANSFERENCIA DE CONOCIMIENTO
Entrenamiento desde cero	 TRANSFER LEARNING: (reconocer objetos, seguir la pelota, devolverla,) FINE-TUNING: Entrenamiento adicional (adaptación a entorno / tareas)

RESULTADOS PONG (EVALUACIÓN CADA 100 RONDAS)

- Recompensas altamente relacionadas de forma inversa
- Impactos con tendencia ascendente ("progreso en aprendizaje")

RESULTADOS PONG (EVALUACIÓN EN 5 PARTIDAS)

- Impactos con tendencia al aumento ("mejora en la capacidad de predicción")
- Victorias con patrón oscilante ("alcanzando habilidades similares")

RESULTADOS QUADRAPONG

- Inestabilidad en el rendimiento (equipo 1, comportamientos extraños)
- Evolución más estable ("cierto beneficio de la transferencia de conocimiento")

RESULTADOS QUADRAPONG

- Impactos con gran variabilidad e inestabilidad ("3 con comportamientos irregulares")
- Patrones de impactos con cierto equilibro, ausencia de picos extremos ("estabilizándose al final, posible presencia de algo de equilibrio")

RESULTADOS QUADRAPONG

- A nivel de equipos se mantiene inestabilidad en los impactos ("posible aprendizaje al final del entrenamiento")
- Distribución más estable y uniforme ("parece evolucionar controladamente, posible inicio de convergencia")

CONCLUSIONES

LOGRO DE OBJETIVOS	PLANIFICACIÓN Y METODOLOGÍA
 No podemos confirmar la eficacia de la transferencia de conocimiento (resultados no concluyentes) Objetivo abordado, pero no cumplido completamente 	 Modelo inicial DQN sin resultados funcionales tras múltiples intentos (nuevo enfoque PPO) Entrenamientos extremadamente lentos (tiempo insuficiente para entrenamientos más largos) Alta demanda de recursos Dificultad para realizar repeticiones

TRABAJOS FUTUROS

AMPLIAR RONDAS DE ENTRENAMIENTO

EXPLORAR FUNCIONES DE RECOMPENSA ALTERNATIVAS

ESTUDIAR AGENTES HETEROGÉNEOS

APLICAR A ENTORNO REALES

Consolidar estrategias robustas

Fomentar cooperación o especialización

Modelos o algoritmos distintos

Robótica, logística o gestión del tráfico

Muchas gracias por su atención

Juan Manuel Camacho Lugo jcamacholu@uoc.edu