

Introdução à Química-Física

Aula 8

Critical constants

	p _c /atm	$V_{\rm c}/({\rm cm}^3~{\rm mol}^{-1})$	T _c /F
Ammonia, NH ₃	111	73	406
Argon, Ar	48	75	151
Benzene, C ₆ H ₆	49	260	563
Carbon dioxide, CO2	73	94	304
Hydrogen, H ₂	13	65	33
Methane, CH4	46	99	191
Oxygen, O ₂	50	78	155
Water, H ₂ O	218	55	647

800 $P_{\rm T} = P_{\rm benzeno} + P_{\rm tolueno}$ Solução Ideal 600 Pressão (mmHg) 400 $P_{\rm benzeno}$ 200 P_{tolueno} 0,20,4 0,6 0,0 0,8 1,0

Mistura binária de líquidos voláteis

$$P_{A} = x_{A} P_{A}^{0}$$
$$P_{B} = x_{B} P_{B}^{0}$$

$$P_{T} = P_{A} + P_{B}$$

 $P_{T} = x_{A} P_{A}^{0} + x_{B} P_{B}^{0}$
 $P_{T} = x_{A} (P_{A}^{0} - P_{B}^{0}) + P_{B}^{0}$

A pressão de vapor de uma mistura binária de líquidos voláteis

The vapor pressure of a binary liquid mixture

$$p_{total} = p_{1} + p_{2}$$

$$p_{total} = x_{1}p_{1}^{*} + x_{2}p_{2}^{*}$$

$$p_{total} = x_{1}p_{1}^{*} + (1 - x_{1})p_{2}^{*} \Leftrightarrow p_{total} = x_{1}p_{1}^{*} + p_{2}^{*} - x_{1}p_{2}^{*}$$

$$\Leftrightarrow p_{total} = (p_{1}^{*} - p_{2}^{*})x_{1} + p_{2}^{*}$$

$$Y = m x + b$$

A pressão de vapor de uma mistura (p_{total}) (soma das pressões parciais do componente 1 (p_1) e do componente 2 (p_2)) varia linearmente com a fracção molar da solução líquida (x).

Lei de Raoult

$$p_1 = x_1 p_1^*$$

p₁ é a pressão parcial do componente 1
 p₁* pressão de vapor do componente 1
 puro

$$p_2 = x_2 p_2^*$$

p₂ é a pressão parcial do componente 2

p₂* pressão de vapor do componente 2

puro

$$p_2 = y_2 p_{total}$$

What is the total vapor pressure of the mixture of 50,00 g of methanol and 100,00 g of ethanol? And which is the vapor composition?

Suponha que mistura 50,00 g de metanol com 100,00 g de etanol. Qual a composição do gás que se evapora desta mistura a 20 °C?

Vapor pressures of methanol and ethanol, at 20 °C:

$$p^*_{\text{met}} = 12,50 \text{ kPa } p^*_{\text{et}} = 5,90 \text{ kPa}$$

What is the total vapor pressure of the mixture of 50,00 g of methanol and 100,00 g of ethanol? And which is the vapor composition?

Suponha que mistura 50,00 g de metanol com 100,00 g de etanol. Qual a composição do gás que se evapora desta mistura a 20 °C?

Vapor pressures of methanol and ethanol, at 20 °C:

$$p^*_{\text{met}} = 12,50 \text{ kPa } p^*_{\text{et}} = 5,90 \text{ kPa}$$

$$n_{met} = 50,00 \text{ g} / 32,00 \text{ gmol}^{-1}$$

$$n_{et} = 100,00 g / 46,00 gmol^{-1}$$

$$n_{met} = 1,5625 \text{ mol}$$

$$n_{et} = 2,174 \text{ mol}$$

$$x_{met} = 0.418$$

Diagrama de equilíbrio líquido- vapor da mistura binária metanol-etanol a 20 °C

n _{met} =	1,56 mol
n _{et} =	2,17 mol
x _{met} =	0,42

$$p_1 = x_1 p_1^*$$

$$p_2 = x_2 p_2^*$$

$$p_{total} = p_1 + p_2$$

$$p_1 = y_1 p_{total}$$
 $y_1 = p_1 / p_{total}$

p ₁ *=	12,5 kPa				
p ₂ *=	5,9 kPa				
				p_{Total}/kP	
	X_1	p ₁ /kPa	p _{2/} kPa	а	y ₁
	0,00	0,00	5,90	5,90	0,00
	0,20	2,50	4,72	7,22	0,346
	0,42	5,23	3,43	8,66	0,603
	0,50	6,25	2,95	9,20	
	0,60				
	0,70				
	0,80				
	1,00				

at 20 °C

Diagrama de equilíbrio líquido- vapor da mistura binária metanol-etanol a 20 °C

Vapor-liquid equilibrium for the binary mixture metanol-etanol, at 20 °C

p total vs x1
ptotal vs y1

n _{met} =	1,56 mol
n _{et} =	2,17 mol
x _{met} =	0,42

p ₁ *=	12,5	kPa			
p ₂ *=	5,9 kPa				
				p_{Total}/kP	
	X_1	p ₁ /kPa	p _{2/} kPa	a	y ₁
	0,00	0,00	5,90	5,90	0,00
	0,20	2,50	4,72	7,22	0,35
	0,42	5,23	3,43	8,66	0,60
	0,50	6,25	2,95	9,20	0,68
	0,60	7,50	2,36	9,86	0,76
	0,70	8,75	1,77	10,52	0,83
	0,90	11,23	0,60	11,83	0,95
	1,00	12,50	0,00	12,50	1,00

Responda às questões que se seguem com base nos dados de equilíbrio líquidovapor para a mistura binária, metanol, CH_3OH (1) / etanol, C_2H_5OH , (2), a 25°C, indicados na figura abaixo:

- a) Determine as pressões de vapor do etanol e do metanol puros, a 25°C.
- b) Determine a composição do vapor em equilíbrio com a solução contendo 55% de metanol.
- c) Represente no mesmo gráfico o vapor em equilíbrio com a solução contendo 55% de metanol, e represente também a tie-line correspondente. Marque no gráfico a região do líquido.

p _{exp} / kPa	X ₁	y ₁	Ptotal (Lei de Raoult)
12,3	0	0	12,300
12,51	0,0895	0,2716	14,429
18,61	0,1981	0,4565	17,013
21,63	0,3193	0,5934	19,896
24,01	0,4232	0,6815	22,368
25,92	0,5119	0,744	24,478
29,96	0,6069	0,805	26,738
30,12	0,7135	0,8639	29,274
31,75	0,7934	0,9048	31,175
34,15	0,9102	0,959	33,954
36,09	1	1	36,090

Diagrama de equilibrio liquido-vapor para o sitema binário metiletilacetona (1)/tolueno(2) 40 ◆ P-X 35 30 P-Y Ptotal KPa 25 20 △ ptotal(Lei de Raoult) 15 Poly. (P-X) 10 5 Poly. (P-Y) 0,0000 0,2000 0,4000 0,6000 0,8000 1,0000 Poly. (ptotal(Lei de Raoult)) X1,Y1

Mistura binária de líquidos voláteis

Mistura binária de líquidos voláteis

- a. Identifique as curvas de equilíbrio, a zona de líquido, de vapor e de coexistência das duas fases.
- b. Classifique o tipo de desvios à lei de Raoult e relacione o tipo de comportamento observado com as forças intermoleculares.

Mistura binária de líquidos voláteis

