

Europäisches Patentamt

European Patent Office

Office européen des brevets

11 Publication number:

0 266 926 B1

(12)

EUROPEAN PATENT SPECIFICATION

(3) Date of publication of patent specification: 19.08.92 (5) Int. Cl.⁵: G06K 17/00

(21) Application number: 87309111.0

2 Date of filing: 15.10.87

- Production of Personalized identity cards.
- Priority: 31.10.86 US 925610
- Date of publication of application:11.05.88 Bulletin 88/19
- Publication of the grant of the patent: 19.08.92 Bulletin 92/34
- Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI LU NL SE
- (56) References cited:

WO-A-86/04170

DE-C- 1 269 829

FR-A- 1 476 405

FR-A- 2 379 860

GB-A- 2 073 661

GB-A- 2 091 638

GB-A- 2 164 909

US-A- 3 809 263

US-A- 4 058 056

IBM TECHNICAL DISCLOSURE BULLETIN, vol. 15, no. 4, September 1972, pages 1196,1197,

New York, US; H.S.BJORKLUND et al.:

"Carrousel random-access device"

- 73 Proprietor: THORN EMI Malco, Incorporated 9800 Reisterstown Road Garrison Maryland 21055(US)
- Inventor: Linden, Lawrence Franklin 2281 Route 94 Woodbine Maryland 21797(US)
- Representative: Marsh, Robin Geoffrey et al THORN EMI Patents Limited Central Research Laboratories Dawley Road Hayes, Middlesex UB3 1HH(GB)

266 926 B1

EP 0 266

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

This invention relates to a system for personalization of integrated circuits (I.C.) microchip cards.

1

Known identification cards include a microchip, the memory of which is programmable with personalized data unique to a particular user of the card, and also a magnetic stripe, which can be encoded with corresponding data. Additionally, the card may also be traditionally embossed or printed with human-readable information

Commercially and economically viable systems for implementing the personalization of these cards are necessarily required to operate smoothly and continuously to produce an optimum number of personalized cards per unit time.

However, the volume of data to be programmed into the microchip and/or the complexity of the programming required can vary considerably for different cards and consequently the time required to program each microchip can typically vary between 10 and 60 seconds, thereby resulting in irregular flow of cards through the system, thus reducing the card output.

It is therefore an object of the present invention to provide a system for personalization of I.C. microchip cards, which system is capable of accommodating variable programming times of the microchip without causing unacceptable interruptions in the flow of cards through the system.

According to the present invention as defined in claims 1 and 8 there is provided a system for personalization of I.C. microchip cards, said system comprising a plurality of stations arranged in sequence and adapted to receive respective cards and programme the microchips of said cards with personalized data; in-feed means for feeding respective cards to said stations for programming; out-feed means for feeding said programmed cards away from said stations; means for moving said stations relative to said in-feed means and said outfeed means, such that respective ones of said stations in said sequence are successively and repeatedly brought into register with said in-feed means and said out-feed means; means for controlling the speed of movement of said plurality of stations between successive registrations with the in-feed means and the out-feed means, in dependence on the time required for programming said cards; and

means-for-controlling-the-rate-of-in-feed-of-said-cards into said plurality of stations, in dependence upon the speed of movement of the plurality of stations, thereby to establish a substantially continuous flow of cards through the system from said in-feed means to said out-feed means.

Preferably, the stations are arranged in a cir-

cular formation and the in-feed and out-feed means are arranged relative to the stations so that cards are fed in, and out of, each station radially of the formation.

The formation can then be rotated relative to the in-feed and out-feed means, so that a card is individually fed into a station and another card is fed out of an adjacent station each time the formation is rotated through an angle of 360 */number of stations.

In this way, the stations progressively and simultaneously program the microchips of the cards, as they rotate from the in-feed means to the out-feed means at a rotational speed dependent on the required programming time, so that, when the card is fed out of the station, the programming is complete.

Preferably the cards are fed through an encoder device for encoding a magnetic stripe, provided on the card, with information corresponding to the programmable data, prior to being fed into a station for programming of the microchip.

Additionally, the programmed card can be fed from the station to a device for affixing human-readable information to the card, by, for example, embossing or printing.

The present invention as defined in claim 9 also provides a method for personalizing of integrated circuit microchip cards, said method comprising:-

in-feed means supplying respective cards to a plurality of stations arranged in sequence for programming;

programming, at the stations, the microchips of said cards with personalized data;

out-feed means feeding said programmed cards away from said stations;

moving said stations relative to said in-feed means and said out-feed means, such that respective ones of said stations in said sequence are successively and repeatedly brought into register with said in-feed means and said out-feed means;

controlling the rate of in-feed of said cards into said plurality of stations, in dependence upon the speed of movement of said plurality of stations, thereby to establish a substantially continuous flow of cards through the system from said in-feed means to said out-feed means.

Preferably, in the method, said stations are arranged in a circular formation relative to said infeed means and said out-feed means, and the cards-are-fed-into,-and-out-of,-the_stations_radially of the formation and said formation is rotated relative to said in-feed means and out-feed means.

Preferably, the method comprises encoding a magnetic stripe, provided on each card, with information corresponding to the programmable data for said card, said encoding of said magnetic

35

stripes being implemented prior to said cards being fed into said stations for programming.

Also, the method may comprise producing an output record indicative of the personalized data programmed into the microchip of each card.

The invention will now be further described by way of example only with reference to the accompanying drawings, wherein:-

Figure 1 is a block diagram illustrating the sequence of functions of the system,

Figure 2 shows schematically a plan view of the in-feed part of the system prior to the programming,

Figure 3 shows schematically a plan view of a programming module comprising a plurality of programming stations,

Figure 4 shows a perspective view of the programming module in Figure 3,

Figure 5 shows schematically a plan view of the out-feed part of the system after programming, Figure 6 shows schematically a plan view of an alternative embodiment for the programming module, and

Figure 7 shows schematically a part of the embodiment shown in Figure 6 in more detail.

A summary of the functions of a system for personalization of I.C. microchip cards is shown in Figure 1. A feed mechanism 1 feeds plastic cards including a blank magnetic stripe and an unprogrammed microchip into an encoder 2, which encodes the magnetic stripe of each card with personalized data from a magnetic or optical tape or disk 3, via a central controller 4. The encoded stripe is then read and ejected at 5, if the encoding is not correct. Correctly encoded cards are then fed to a personalization module 6, consisting of up to sixty I.C. write stations 7 for programming the microchip of the cards with data corresponding to the cardholder whose identification has already been encoded on the magnetic stripe and verifying the accuracy of the personalization data in the microchip. The module moves relative to the infeed and out-feed lines of the cards, at a speed in dependence on the programming time, as described herein below. When the programming of each card is complete, it is optionally fed to a verifier 8, which verifies that the magnetic encoding and the programming correspond, and any incorrect cards are ejected at 9. The magnetically encoded and programmed cards may then optionally be provided with human-readable information by an embosser or printer 10 before being fed out of the system at 11. As an option, formatted output data 45 may be recorded on magnetic or optical media or a printed copy.

Figures 2 to 5 show one construction of a system for implementing the above-described functions.

In Figure 2, the in-feed part of the system includes a receptacle 12 for retaining blank cards, such as at 13, stacked horizontally and face to face. A spring-loaded sliding pressure bar 14 pushes the stack up to a feed mechanism 15.

The feed mechanism 15 consists of a slider crank mechanism attached to two feed fingers capable of pulling a single card from the stack. The card will then be fed into a series of rotating nip rollers 16. The slider crank mechanism will be driven by a stepped motor 17 programmed for a single revolution when given a signal from a central controller 4. In this way, a single card is fed on demand.

The rollers 16 will be spaced slightly less than a card length apart, and at least one set will be in contact with the card at all times. The nip rollers will be turning constantly and are driven by a series of flat belts and pulleys, (not shown). The main driver will be an independent synchronous motor. The line speed of the card is preferably 15 ips, or 38,1 cm/s.

A three-track encoder write head 19 mounted on the centerline of one set of nip rollers will encode up to three tracks of personalized information on the magnetic stripe of the card. The information for each card is input to the write head 19 via the central controller 4. A rubber backing roller 20 opposite the write head 19 will apply pressure against the card and write head 19 to insure good contact. A three-track read head 21 with a similar rubber roller 22, will be located on the next set of rollers and will verify that the card has been properly encoded.

A solenoid operated eject gate 23 discharges cards rejected for encoding errors between the read and write head outputs. The rejected cards will be accumulated in a spring loaded discharge receptacle 24 similar to the infeed receptable 12. The last set of nip rollers will be controlled by a magnetic clutch 25 allowing the card to stop until a rotatable indexing table of a personalization module shown in Figure 3 is in position to accept the card. The line speed of the last nip roller is preferably 30 ips to ensure a fast insertion into a personalization module, shown in Figures 3 and 4.

Referring now to Figures 3 and 4, a variable speed D.C. motor 26 will drive a cam driven indexer 27 which in turn will drive a circular table 28. A number, preferably sixty, I.C. read/write stations, each for receiving and programming a card are positioned—at—equal—angular—spacing—around—theperiphery of the table 28, all identical to the four stations shown in Figure 3, such that cards can enter and exit the stations along the radius of the table. The drive motor 26 is preferably geared so that the index angle is equal to 360°/number of stations and the maximum speed is at least one

15

20

25

index per second. Approximately 50% of the index cycle is dwell time (ie .50 sec.) to allow for the cards to be inserted and extracted from the stations.

Each station, such as 29, has a feed mechanism to clamp and pull a card, such as at 30, into the station. In the same motion, a set of contacts 31 extends and connects to the microchip of the card 30. The same mechanism disengages the contacts and pushes the card out when the card is exited from the station, as described below.

Each station 29 consists of its own microprocessor 32 and buffer 33, connected to a data transfer coupler 34a and 34b in communication with the central controller 4. The coupler may be an optical coupler or any other appropriate coupler, such as mechanical, serial or parallel.

The microchip in the card 30 can now be programmed with personalized input data delivered to the individual I.C. read/write station 29 from the control unit 18 to match the magnetically encoded information already on the card 29. This information is delivered to the individual I.C. read/write station via an optical coupler 34a, 34b mounted dead center with the rotary table 28. A transmitter receiver 34a suspended over the table delivers the information from the central controller 4 to a transmitter receiver 34b on the table which connects to the I.C. writers. The information is directed to specific I.C. read/write stations via a multi-drop, ethernet or similar protocol. The magnetically encoded microchip card is programmed with the data which corresponds to the same information previously encoded on the magnetic stripe. This I.C. programming typically takes from 10 to 60 seconds depending upon the data volume and complexity of the programming requirement.

The central controller 4 can thus vary the index speed of the table 28, in dependence on the programming required, and thereby effectively control the time interval between the station 29 registering with the in-feed part of the system and the out-feed part respectively, so that the card 30 is fully programmed when it is exited from the station.

A read-after-write function is also performed at the station to verify the accuracy of the personalization data in the microchip. The status of the chip can be communicated to the central controller 4 via the optical coupler 34a and 34b.

Each I.C. read/write station will progressively and simultaneously perform the programming function. The number of work stations is determined by the data content and programming time requirement of a nominal chip so as to achieve the maximum throughput whereby the said throughput is limited only by the maximum magnetic encoding speed.

As shown in Figure 5, once programming is

complete, nip rollers at the out-feed point assist in removal of the card from the station, preferably at a speed of 30 ips, or 76,2 cm/s. The card is fed to a chip/stripe verifier 35 consisting of a buffer and a magnetic stripe reader to check that the programmed data corresponds to the magnetically encoded data. The card is preferably slowed down to a speed of 15 ips, or 38,1 cm/s, at this stage.

A verification that the correct sequential card was personalized in the chip personalization module is made by storing selected unique data from each chip personalized into the verification buffer. Selected unique data previously encoded on the magnetic stripe of each card is also read by the separate magnetic stripe reader. The selected unique data, such as a primary account number, encoded on the magnetic stripe is compared with selected unique data in the verification buffer for each sequential card processed. The entire device is halted by the central controller 4 if the unique data is not identical between the magnetic stripe and the chip, and an error display is actuated on the central controller unit 4.

Another eject gate 36 is positioned immediately after the verifier 35 to eject incorrect cards into another receptable 37. A clutch controller nip roller 38 controls feeding of the correct cards into an embosser or printer 39 if human readable information is required to be affixed to the card.

The embossing or printing can be achieved in a number of ways. In the perferred embodiment 3,600 cards/hour are produced, so that the encoded and personalized microchip cards could be fed directly into a 3,600 card/hour embossing machine. However, standard embossers are traditionally limited to 1,800 cards/hour. Therefore, an alternative method is to remove encoded personalized microchip cards from the system and place them in two or more 1,800 cards/hour embossing machines. The secondary embossing machines or units obtain the necessary embossing information from the encoding on the magnetic stripe to complete the embossing of the card. The overall throughput with such secondary embossing machines would be 3,600 cards/hour or greater, based on the number the secondary embossing machines used.

The human readable information may be affixed to the cards by any suitable technique including embossing, ink jet printing, thermal printing, or laser printing, and the card motion in this section will be determined by the chosen technique.

For example, an indexing belt could move a card one character length at a time past a number of daisy wheel type embossers (one for each line of characters). Individual cards will probably be at each of the daisy wheels at any one time with each card at a different stage of embossing.

40

50

A continuous roller feed, similar to the encoding operation could be used for ink jet or laser printing.

A set of nip rollers 40 will take a finished card 41 and slide it onto the end of a horizontal stack of cards located in another receptacle 42 similar to the infeed. A spring loaded slide 43 will keep a minimal pressure on the stack to keep the cards orderly.

If no readable information is required on the cards, the embossing/printing stage is not utilised and the encoded and programmed cards are fed straight to the receptacle 30. The receptacle preferably has a capacity of 500 non-embossed or 375 embossed cards.

It can thus be envisaged that in the event that a certain chip architecture may require a greater write/read time than the nominal chip, the index speed of the rotary table can be slowed down allowing more time for programming. The card infeed will be a demand feed type; thus the rate of card feeding speed will be controlled by the speed of the table so as to provide a constant flow through the device. The I.C. read/write stations are also equipped with replaceable PROM control chips so that different chip card architectures can be accommodated without changing overall control software of the system.

The present system also provides, as an option, a formatted output record which can be on magnetic or optical media (tape or disk), as well as a printed copy. The outpu record from each magnetically encoded and properly programmed microchip card is obtained by reading the personalized data on each chip and a unique integrated circuit chip identification number contained in the chip fed into a buffer memory under the control of the central controller unit 4. The data is formatted under the control of software in the system. The customer selected output record is then serially written on tape or disk by output hardware. A printed copy of the selected formatted output record can also be optionally printed out by a line printer connected to this device which is similarly managed by the controller unit and the software in the system.

Each card is personalized to a particular customer. If rejected in the personalization process, the customer information is handled differently depending on where the failure occurs.

If a read/write failure occurs the customer information that was to be assigned to that card is simply reassigned to the next card fed into the system.

Should an error occur in the personalization or a mismatch is indicated by the verifier, the associated customer information can be stored in a memory and at the end of a run, all the similarly rejected cards can be rerun together.

If a card is damaged or improperly embossed or printed after the stripe and chip have been personalized, the files are searched for the customer information. Another card can then be run through the system and programmed with the previous card information. All output records are updated to show the change.

The use of a rotary table provides a relatively simple and preferred mechanical handling approach for concurrent personalization of a multiple number of cards.

However, alternative non-rotary constructions could be used, such as a sliding table which can slide back and forth perpendicular to the card flow. The I.C. stations would be mounted side by side and the table would successively position each of them in line with the in-feed and out-feed positions. Another alternative is an indexing conveyor, which could be mounted in line with the card flow, with the overall operation being very similar to that of the rotary table.

Figures 6 and 7 show an alternative embodiment of the personalization module shown in Figures 3 and 4.

Referring now to Figures 6 and 7, the I.C. read/write stations 50, located in a circular formation, are now disposed in a vertical plane rather than a horizontal plane, as shown in Figures 3 and 4, with the direction of the cardflow being perpendicular to the vertical plane of the formation.

As each I.C. station 50 is aligned with the flow of the cards, a card 51 is fed, on demand from the central controller 4, by in-feed rollers 52, simultaneously with the disabling of a write solenoid 53. As card 51 enters a slot 54 in the I.C. station, it pushes card 55, the microchip of which is now programmed by the station, out through out-feed rollers 56, which are continuously rotating.

Once the programmed card 55 is out of the station and card 51 to be programmed is positioned in the station, the write solenoid 53 is reenabled and the in-feed rollers 51 are disenabled by the central controller 4. This embodiment therefore has the advantage of a combined in-feed and out-feed mechanism, thereby simplifying the system.

The magnetic encoding and optionally the embossing of the cards could be performed in a separate location to the personalization module, and then the magnetically encoded, and optionally, embossed-cards-could-be-fed_into_the_personalization module for programming of the microchip of each card, in accordance with the individual data encoded on each magnetic stripe.

Claims

15

20

25

 A system for personalization of integrated circuit microchip cards, said system comprising:-

a plurality of stations (7) arranged in sequence and adapted to receive respective cards and to programme the microchips of said cards with personalized data;

in-feed means (1) for feeding respective cards to said stations (7) for programming;

out-feed means (11) for feeding said programmed cards away from said stations (7);

means (6) for moving said stations (7) as one unit relative to said in-feed means (1) and said out-feed means (11), such that respective ones of said stations (7) in said sequence are successively and repeatedly brought into register with said in-feed means (1) and said out-feed means (11);

means (26) for controlling the speed of movement of said plurality of stations between successive registrations with the in-feed means (1) and the out-feed means (11), in dependence on the time required for programming said cards; and

means (4) for controlling the rate of in-feed of said cards into said plurality of stations (7), in dependence upon the speed of movement of the plurality of stations (7), thereby to establish a substantially continuous flow of cards through the system from said in-feed means (1) to said out-feed means (11).

- 2. A system as claimed in Claim 1 wherein said stations (7) are arranged in a circular formation relative to said in-feed means (1) and said out-feed means (11), to provide feeding of the cards into, and out of, the stations (7) radially of the formation and said formation is rotatable relative to said in-feed means (1) and out-feed means (11).
- A system as claimed in Claim 1 or 2 wherein said stations (7) are positioned at equal angular spacings around the periphery of said formation.
- 4. A system as claimed in any one of Claims 1 to 3 and including a device (2) for encoding a magnetic stripe, provided on each card, with information corresponding to the programmable data for said card, said encoding of said magnetic stripes being implemented prior to said cards being fed into said stations for programming.
- 5. A system as claimed in any one of the preceding Claims and including a device for affixing human-readable information to the cards.

- A system as claimed in any one of the preceding Claims and including means for producing an output record indicative of the personalized data programmed into the microchip of each card.
- 7. A system as claimed in any one of the preceding Claims wherein each of said stations is provided with a replaceable PROM control chip to enable different chip card architectures to be utilised without the necessity of changing overall control software of the system.
- 8. A system for personalization of integrated circuit microchip cards, said system comprising:-

a rotary personalization module comprising a plurality of stations (50) sequentially arranged in a circular formation in a plane perpendicular to the flow of said cards through said system, said stations each being adapted to receive respective cards and programme the microchips of said cards with personalized data:

a card-feed mechanism (52) for supplying respective cards for programming to said stations (50) and for conveying programmed cards away from said stations (50);

means for rotating said module relative to said card-feed mechanism, such that respective ones of said stations in said sequence are successively and repeatedly brought into register with said card-feed mechanism; and

means for controlling the speed of rotation, and thus of successive registrations of said respective ones of said stations with said cardfeed mechanism, in dependence on the time required for programming said cards;

said card-feed mechanism arranged for feeding an unprogrammed card into a station in register with the mechanism, and further arranged such that, on programming of a card in said station, the programmed card is urged out of said station by action of the in-fed unprogrammed card entering the station thereby conveying said programmed card away from said station.

A method for personalizing integrated circuit microchip cards, said method comprising:-

programming, at the stations, the microchips of said cards with personalized data;

out-feed means (11) feeding said programmed cards away from said stations (7);

moving said stations (7) as one unit relative to said in-feed means (1) and said out-

50

25

30

35

feed means, such that respective ones of said stations in said sequence are successively and repeatedly brought into register with said infeed means and said out-feed means;

controlling the speed of movement of said plurality of stations between successive registrations with said in-feed means (1) and said out-feed means (11), in dependence upon the time required for programming said cards; and

controlling the rate of in-feed of said cards into said plurality of stations, in dependence upon the speed of movement of said plurality of stations, thereby to establish a substantially continuous flow of cards through the system from said in-feed means to said out-feed means.

- 10. A method as claimed in Claim 9 wherein said stations are arranged in a circular formation relative to said in-feed means and said outfeed means, and the cards are fed into, and out of, the stations radially of the formation and said formation is rotated relative to said in-feed means and out-feed means.
- 11. A method as claimed in Claim 9 or 10, comprising encoding a magnetic stripe, provided on each card, with information corresponding to the programmable data for said card, said encoding of said magnetic stripes being implemented prior to said cards being fed into said stations for programming.
- 12. A method as claimed in any one of Claims 9 to 11 comprising producing an output record indicative of the personalized data programmed into the microchip of each card.

Patentansprüche

 System zur Personalisierung von Mikrochip-Karten mit integrierter Schaltung, umfassend:

eine Vielzahl von in Folge angeordneten Stationen (7) zum Empfang entsprechender Karten und zur Programmierung der Mikrochips der Karten mit personenbezogenen Daten:

Zuführungsmittel (1) zur Zuführung entsprechender Karten zu den Stationen (7) für die Programmierung;

Abführungsmittel (11) zur Abführung der programmierten Karten von den Stationen (7);

Mittel zur Bewegung der Stationen (7) als eine Einheit relativ zu den Zuführungsmitteln (1) und zu den Abführungsmitteln (11) derart, daß entsprechende Stationen (7) in der Folge nacheinander und wiederholt in Flucht mit den Zuführungsmitteln (1) und den Abführungsmitteln (11) gebracht werden;

Mittel (26) zur Steuerung der Bewegungsgeschwindigkeit der Vielzahl von Stationen zwischen aufeinanderfolgenden Fluchtungen mit den Zuführungsmitteln (1) und den Abführungsmitteln (11) in Abhängigkeit von der zum Programmieren der Karten erforderlichen Zeit; und

Mittel (4) zur Steuerung der Zuführungsrate der Karten in die Vielzahl von Stationen (7) in Abhängigkeit von der Bewegungsgeschwindigkeit der Vielzahl von Stationen (7), um dadurch einen weitgehend kontinuierlichen Fluß von Karten durch das System von den Zuführungsmitteln (1) zu den Abführungsmitteln (11) zu bewirken.

- 2. System nach Anspruch 1, bei dem die Stationen in kreisförmiger Formation relativ zu den Zuführungsmitteln (1) und zu den Abführungsmitteln (11) angeordnet sind, um eine Zuführung der Karten in die Stationen (7) hinein und aus den Stationen heraus radial zu der Formation zu bewirken, wobei die Formation relativ zu den Zuführungsmitteln (7) und den Abführungsmitteln (11) drehbar ist.
- System nach Anspruch 1 oder 2, bei dem die Stationen (7) mit gleichen Winkelabständen an der Peripherie der Formation angeordnet sind.
- 4. System nach einem der Ansprüche 1 bis 3, das eine Vorrichtung zur Kodierung eines auf jeder Karte vorgesehenen Magnetstreifens mit Informationen umfaßt, die den programmierbaren Daten für die Karte entsprechen, wobei die Kodierung der Magnetstreifen erfolgt, bevor die Karten zur Programmierung in die Stationen eingeführt werden.
- System nach einem der vorhergehenden Ansprüche, das eine Vorrichtung zum Anbringen von menschlich lesbaren Informationen auf den Karten enthält.
- 6. System nach einem der vorhergehenden Ansprüche, das Mittel zur Erzeugung einer Ausgangsaufzeichnung einschließt, die die in den Mikrochip jeder Karte programmierten personenbezogenen Daten angibt.
- -7:—System-nach-einem-der-vorhergehenden Ansprüche, bei dem jede Station mit einem auswechselbaren PROM-Steuer-Chip versehen ist, um die Verwendung unterschiedlicher Chip-Karten-Architekturen ohne die Notwendigkeit einer Änderung der gesamten Steuer-Software des Systems zu ermöglichen.

7

15

20

25

30

35

System zur Personalisierung von Mikrochip-Karten mit integrierter Schaltung umfassend:

Ein drehbares Personalisierungs-Modul mit einer Vielzahl von Stationen (50), die in Folge in kreisförmiger Formation in einer Ebene senkrecht zum Fluß der Karten durch das System angeordnet sind, wobei die Stationen jeweils zum Empfang entsprechender Karten und zum Programmieren der Mikrochips der Karten mit personenbezogenen Daten dienen;

einen Karten-Zuführungsmechanismus (52) zum Zuführen von entsprechenden Karten zu den Stationen (50) für die Programmierung und zum Abführen von Programmierten Karten von den Stationen (50);

Mittel zum Drehen des Moduls relativ zu dem Karten-Zuführungsmechanismus, so daß entsprechende Stationen in der Folge nacheinander und wiederholt in Flucht mit dem Karten-Zuführungsmechanismus gebracht werden; und

Mittel zur Steuerung der Drehgeschwindigkeit und damit der aufeinanderfolgenden Fluchtungen der entsprechenden Stationen mit dem Karten-Zuführungsmechanismus in Abhängigkeit von der zum Programmieren der Karten erforderlichen Zeit;

wobei der Kartenzuführungsmechanismus so angeordnet ist, daß eine nicht programmierte Karte in eine Station in Flucht mit dem Mechanismus zugeführt wird, und die Anordnung ferner so ist, daß bei beendetem Programmieren einer Karte in der Station die programmierte Karte aus der Station durch die Wirkung der der Station zugeführten unprogrammierten Karte, wenn diese in die Station eintritt, herausgetrieben wird, wodurch die programmierte Karte von der Station fortbefördert wird.

Verfahren zur Personalisierung von Mikrochip-Karten mit integrierter Schaltung, umfassend:

Zuführungsmittel (1), die entsprechende Karten einer Vielzahl von in Folge angeordneten Statlonen (7) für die Programmierung zuführen;

Programmieren der Mikrochips der Karten in den Stationen mit personenbezogenen Daten:

Abführungsmittel (11), die die programmierten Karten von den Stationen (7) abführen;

Bewegen der Stationen als eine Einheit relativ zu den Zuführungsmitteln (1) und zu den Abführungsmitteln derart, daß entsprechende Stationen in der Folge nacheinander und wiederholt in Flucht mit den Zuführungsmitteln und den Abführungsmitteln gebracht werden:

Steuern der Bewegungsgeschwindigkeit der Vielzahl von Stationen zwischen aufeinanderfolgenden Fluchtungen mit den Zuführungsmitteln (1) und den Abführungsmitteln (11) in Abhängigkeit der zum Programmieren der Karten benötigten Zeit; und

Steuerung der Zuführungsrate der Karten zu der Vielzahl von Stationen in Abhängigkeit von der Bewegungsgeschwindigkeit der Vielzahl von Stationen, um dadurch einen weitgehend kontinuierlichen Fluß der Karten durch das System von den Zuführungsmitteln zu den Abführungsmitteln zu bewirken.

- 10. Verfahren nach Anspruch 9, bei dem die Stationen in kreisförmiger Formation relativ zu den Zuführungsmitteln und zu den Abführungsmitteln angeordnet sind und die Karten radial zu der Formation in die Stationen hinein und aus diesen herausgeführt werden, wobei die Formation relativ zu den Zuführungsmitteln und zu den Abführungsmitteln gedreht wird.
- 11. Verfahren nach Anspruch 9 oder 10, umfassend die Kodierung eines auf jeder Karte vorgesehenen Magnetstreifens mit Informationen, die den programmierbaren Daten für die Karte entsprechen, wobei die Kodierung der Magnetstreifen erfolgt, bevor die Karten den Stationen zur Programmierung zugeführt werden.
- 12. Verfahren nach einem der Ansprüche 9 bis 11, bei dem eine Ausgangsaufzeichnung erzeugt wird, die die in den Mikrochip jeder Karte programmierten personenbezogenen Daten angibt.

Revendications

- 40 1. Un système de personnalisation de cartes avec micropuces à circuits intégrés, ledit système comprenant :
 - plusieurs stations (7) disposées séquentiellement et adaptées pour recevoir des cartes respectives et pour programmer les micropuces desdites cartes avec des données personnalisées;
 - des moyens d'entrée (1) pour introduire des cartes respectives dans lesdites stations (7) pour une programmation;
 - des moyens de sortie (11) pour évacuer
 lesdites cartes programmées desdites stations (7);
 - des moyens (6) pour déplacer lesdites stations (7), sous forme d'une unité, par rapport auxdits moyens d'entrée (1) et auxdits moyens de sortie (11) de telle sorte que des stations respectives (7) de

8

10

20

25

35

40

45

50

55

ladite succession soient amenées successivement et de façon répétée en coîncidence avec lesdits moyens d'entrée (1) et lesdits moyens de sortie (11);

- des moyens (26) pour commander la vitesse de déplacement desdites stations entre des positions successives de coïncidence avec lesdits moyens d'entrée (1) et lesdits moyens de sortie (11), en fonction du temps nécessaire pour la programmation desdites cartes; et
- des moyens (4) pour commander la vitesse d'entrée desdites cartes dans lesdites stations (7) en fonction de la vitesse de déplacement desdites stations (7), en vue d'établir ainsi une progression sensiblement continue de cartes dans le système depuis lesdits moyens d'entrée (1) jusqu'auxdits moyens de sortie (11).
- 2. Un système tel que revendiqué dans la revendication 1, dans lequel lesdites stations (7) sont réparties dans une structure de forme circulaire par rapport auxdits moyens d'entrée (1) et auxdits moyens de sortie (11) de façon à faire entrer les cartes dans les stations (7), et à les faire sortir de celles-ci, radialement par rapport à ladite structure et cette structure peut tourner par rapport auxdits moyens d'entrée (1) et auxdits moyens de sortie (11).
- 3. Un système tel que revendiqué dans les revendications 1 ou 2, dans lequel lesdites stations (7) sont réparties à des intervalles angulaires égaux autour de la périphérie de ladite structure.
- 4. Un système tel que revendiqué dans une quelconque des revendications 1 à 3 et comportant un dispositif (2) pour coder une bande magnétique, prévue sur chaque carte, avec une information correspondant aux données programmables pour ladite carte, ledit codage desdites bandes magnétiques étant effectué avant que lesdites cartes soient introduites dans lesdites stations de programmation.
- 5. Un système tel que revendiqué dans une quelconque des revendications précédentes et comprenant un dispositif pour fixer une information lisible par l'être humain sur les cartes.
- 6. Un système tel que revendiqué dans une quelconque des revendications précédentes et comprenant des moyens pour produire un enregistrement de sortie indicateur des données personnalisées programmées dans la micropuce de chaque carte.

- 7. Un système tel que revendiqué dans une quelconque des revendications précédentes, dans lequel chacune desdites stations est pourvue d'une puce de commande de mémoire PROM remplaçable pour permettre d'utiliser différentes architectures de cartes à puces sans l'obligation de changer l'ensemble du logiciel de commande du système.
- 8. Un système de personnalisation de cartes à micropuces à circuits intégrés, ledit système comprenant :
 - un module rotatif de personnalisation comprenant plusieurs stations (50) réparties séquentiellement dans une structure circulaire dans un plan perpendiculaire à la progression desdites cartes dans le système, lesdites stations étant chacune adaptées pour recevoir des cartes respectives et pour programmer les micropuces desdites cartes avec des données personnalisées;
 - un mécanisme de déplacement de cartes (52) pour introduire des cartes respectives dans lesdits postes (50) pour programmation et pour évacuer des cartes programmées desdites stations (50);
 - des moyens pour faire tourner ledit module par rapport audit mécanisme de déplacement de cartes de telle sorte que des stations respectives de ladite séquence soient amenées successivement et de façon répétée en coïncidence avec ledit mécanisme de déplacement de cartes; et
 - des moyens pour commander la vitesse de rotation, et par conséquent de coîncidences successives desdites stations respectives avec ledit mécanisme de déplacement de cartes, en fonction du temps nécessaire pour une programmation desdites cartes;
 - ledit mécanisme de déplacement de cartes étant agencé pour introduire une carte non programmée dans une station en coîncidence avec le mécanisme, et étant en outre agencé de telle sorte que, lors de la programmation d'une carte dans ladite station, la carte programmée soit poussée hors de ladite station par action de la carte non programmée qui est introduite dans la station de façon à évacuer ainsi la carte programmée de ladite station.
 - Un procédé de personnalisation de cartes avec micropuces à circuits intégrés, ledit procédé faisant intervenir des moyens d'entrée (1) pour

introduire des cartes respectives dans plusieurs stations (7) disposées successivement en vue de leur programmation et des moyens de sortie (11) pour évacuer lesdites cartes programmées desdites stations (7), ledit procédé comprenant les étapes consistant à :

- programmer, dans les stations, les micropuces desdites cartes avec des données personnalisées;
- déplacer lesdites stations (7), sous forme d'une unité, par rapport auxdits moyens d'entrée (1) et auxdits moyens de sortie de telle sorte que des stations respectives de ladite séquence soient amenées successivement et de façon répétée en coïncidence avec lesdits moyens d'entrée et lesdites moyens de sortie;
- commander la vitesse de déplacement desdites stations entre des coîncidences successives avec lesdits moyens d'entrée (1) et lesdits moyens de sortie (11) en fonction du temps nécessaire pour une programmation desdites cartes : et
- commander la vitesse d'entrée desdites cartes dans lesdites stations en fonction de la vitesse de déplacement des différentes stations, en vue d'établir une progression sensiblement continue de cartes dans le système depuis lesdits moyens d'entrée jusqu'auxdits moyens de sortie.
- 10. Un procédé tel que revendiqué dans la revendication 9, dans lequel lesdites stations sont disposées dans une structure circulaire par rapport auxdits moyens d'entrée et auxdits moyens de sortie et les cartes sont introduites dans les stations, et sorties de celles-ci, radialement par rapport à ladite structure et ladite structure est entraînée en rotation par rapport auxdits moyens d'entrée et auxdits moyens de sortie.
- 11. Un procédé tel que revendiqué dans la revendication 9 ou 10, consistant à coder une bande magnétique, prévue sur chaque carte, avec une information correspondant aux données programmables pour ladite carte, ledit codage desdites bandes magnétiques étant réalisé avant que lesdites cartes soient introduites dans lesdites stations pour une programmation.
- 12. Un procédé tel que revendiqué dans une quelconque des revendications 9 à 11, consistant à produire un enregistrement de sortie indicateur des données personnalisées programmées dans la micropuce de chaque carte.

5

10

15

20

25

30

35

40

FIG.4

