Математический анализ—2 Коллоквиум

Лектор: Зароднюк Алёна Владимировна оригинальный LATEX by Винер Даниил @danya_vin

Авторы текущего документа: Жуков Андрей | github Мелисов Тимур | github

Версия от 28 октября 2025 г.

Содержание

1	Осн	овные определения	4
	1.1	Определение (замкнутого) бруса (координатного промежутка, параллепипеда)	4
	1.2	Определение меры (объема) бруса	4
	1.3	Определение разбиения бруса	4
	1.4	Определение диаметра множества в \mathbb{R}^n	4
	1.5	Определение ограниченного множества в \mathbb{R}^n	Ę
	1.6	Определение масштаба (диаметра) разбиения	5
	1.7	Определения отмеченных точек и размеченного разбиения	5
	1.8	Определение интегральной суммы Римана	5
	1.9	Определение интегрируемой по Риману функции на замкнутом брусе в \mathbb{R}^n	٠
	1.10	Определение множества меры нуль по Лебегу	6
	1.11	Определение внутренней точки множества	6
	1.12	Определение внешней точки множества	6
	1.13	Определение граничной точки множества	6
	1.14	Определение изолированной точки множества	6
	1.15	Определение предельной точки множества	6
	1.16	Определение точки прикосновения множества	6
	1.17	Определение открытого множества	7
	1.18	Определение замкнутого множества	7
	1.19	Определение компакта	7
		Определение колебания функции на множестве	7
		Определение колебания функции в точке	7
	1.22	Определение непрерывности функции в точке и на множестве	7
	1.23	Определение выполненения свойства почти всюду	7
	1.24	Определение пересечения двух разбиений	8
	1.25	Определение измельчения разбиения	8
	1.26	Определение верхней и нижней суммы Дарбу	8
	1.27	Определение верхнего и нижнего интеграла Дарбу	8
		Определение допустимого множества	ę.
		Определение интеграла Римана по допустимому множеству	ę.
		Определение сходимости функциональной последовательности в точке	ę.

	1.31	Определение множества сходимости функциональной последовательности	9
	1.32	Определение предельной функции функциональной последовательности	9
	1.33	Определение поточечной сходимости функциональной последовательности на множестве	10
	1.34	Определение равномерной сходимости функциональной последовательности на множестве	10
	1.35	Определение поточечной сходимости функционального ряда на множестве	10
	1.36	Определение равномерной сходимости функционального ряда на множестве	10
		Определение абсолютной сходимости сходимости функционального ряда на множестве	10
2	Осн	овные формулировки	11
	2.1	Свойства меры бруса в \mathbb{R}^n	11
	2.2	Необходимое условие интегрируемости функции по Риману	11
	2.3	Свойства интеграла Римана	11
	2.4	Свойства множества меры нуль по Лебегу	11
	2.5	Критерий замкнутости множества в \mathbb{R}^n	11
	2.6	Теорема о компактности замкнутого бруса в \mathbb{R}^n	12
	2.7	Критерий компактности в \mathbb{R}^n	12
	2.8	Теорема Вейерштрасса о непрерывной функции на компакте	12
	2.9	Теорема о связи непрерывности функции в точке с колебанием	12
			12
			12
		Теорема об интегралах Дарбу как пределах интегральных сумм Дарбу	12
		Критерий Дарбу интегрируемости функции на замкнутом брусе	12
		Утверждение о независимости определения допустимого множества от выбора бруса	13
		Теорема Фубини о переходе к повторному интегралу	13
		Супремальный критерий равномерной сходимости функциональной последовательности	13
		Критерий Коши равномерной сходимости функциональной последовательности	13
		Теорема о почленном переходе к пределу для функциональной последовательности	13
		Теорема о непрерывности предельной функции	13
		Утверждение о неравномерной сходимости фун. послед. при наличии разрыва	
			14
		Утверждение о неравномерной сходимости фун. послед. при наличии расходимости в точке	14
		Теорема о почленном интегрировании функциональной последовательности	14
		Теорема о почленном дифференцировании функциональной последовательности	14
		Критерий Коши равномерной сходимости функционального ряда	14
		Необходимое условие равномерной сходимости функционального ряда	14
		Сравнительный признак равномерной сходимости функционального ряда	15
	2.27	Мажорантный признак Вейерштрасса о равномерной сходимости функционального ряда	15
3	Воп	росы на доказательство	16
	3.1	Необходимое условие интегрирования	16
	3.2	Свойства интеграла Римана	16
	3.3	Свойства множества меры нуль по Лебегу	17
	3.4	Критерий замкнутости	18
	3.5	Теорема о компактности замкнутого бруса	19
		Критерий компактности в \mathbb{R}^n	20
	3.6		
	3.7	Теорема Вейерштрасса о непрерывной функции на компакте	21
	3.8	Теорема о связи непрерывности функции в точке с колебанием	22
	3.9	Свойства интегральных сумм Дарбу	23
		3.9.1 Нижняя сумма Дарбу не больше верхней	23
		3.9.2 Монотонность сумм относительно измельчений разбиения	23

	3.9.3 Никакая нижняя сумма Дарбу не больше какой-либо верхней суммы на том же брусе	23
3.10	Теорема об интегралах Дарбу как пределах интегральных сумм Дарбу	23
3.11	Критерий Дарбу интегрируемости функции на замкнутом брусе	24
3.12	Утверждение о независимости определения допустимого множества от выбора бруса	25
3.13	Теорема Фубини о переходе к повторному интегралу	26
3.14	Супремальный критерий равномерной сходимости функциональной последовательности \dots	2
3.15	Критерий Коши равномерной сходимости функциональной последовательности	2
3.16	Теорема о почленном переходе к пределу для функциональной последовательности \dots	28
3.17	Теорема о непрерывности предельной функции	28
3.18	Утверждение о неравномерной сходимости фун. послед. наличии разрыва	29
3.19	Утверждение о неравномерной сходимости фун. послед. при наличии расходимости в точке	30
3.20	Теорема о почленном интегрировании функциональной последовательности	30
3.21	Теорема о почленном дифференцировании функциональной последовательности	3
3.22	Сравнительный признак равномерной сходимости функционального ряда	33
3.23	Мажорантный признак Вейерштрасса о равномерной сходимости функционального ряда	33

1 Основные определения

1.1 Определение (замкнутого) бруса (координатного промежутка, параллепипеда)

Определение. Замкнутый брус (координатный промежуток) в \mathbb{R}^n — множество, описываемое как

$$I = \{x \in \mathbb{R}^n \mid a_i \leqslant x_i \leqslant b_i, i \in \{1, n\}\}$$
$$= [a_1, b_1] \times \ldots \times [a_n, b_n]$$

Примечание. $I = \{a_1, b_1\} \times \ldots \times \{a_n, b_n\}$, где $\{a_i, b_i\}$ может быть отрезком, интервалом и т.д.

Пример брусов размерности с 1 по 3

1.2 Определение меры (объема) бруса

Определение. Мера бруса — его объём:

$$\mu(I) = |I| = \prod_{i=1}^{n} (b_i - a_i)$$

1.3 Определение разбиения бруса

Определение. Пусть I — замкнутый, невырожденный брус и $\bigcup_{i=1}^k I_i = I$, где I_i попарно не имеют общих внутренних точек. Тогда набор $\mathbb{T} = \{I_i\}_{i=1}^k$ называется разбиением бруса I

1.4 Определение диаметра множества в \mathbb{R}^n

Определение. Диаметр произвольного ограниченного множества $M\subset\mathbb{R}^n$ будем называть

Пример диаметра для разных ограниченных множеств (Для всех тр \ddot{e} х он равен d)

1.5 Определение ограниченного множества в \mathbb{R}^n

Определение. Множество $M \subset \mathbb{R}^n$ называется *ограниченным*, если

$$\exists x_0 \in \mathbb{R}^n$$
 и $\exists r > 0$, такой что $M \subset B_r(x_0)$

1.6 Определение масштаба (диаметра) разбиения

Определение. Масштаб разбиения $\mathbb{T}=\{I_i\}_{i=1}^k$ — число $\lambda(\mathbb{T})=\Delta_{\mathbb{T}}=\max_{1\leqslant i\leqslant k}d(I_i)$

1.7 Определения отмеченных точек и размеченного разбиения

Определение. Пусть $\forall \ I_i$ выбрана точка $\xi_i \in I_i$. Тогда, набор $\xi = \{\xi_i\}_{i=1}^k$ будем называть **отмеченными точками** Определение. Размеченное разбиение — пара (\mathbb{T}, ξ)

1.8 Определение интегральной суммы Римана

Пусть I — невырожденный, замкнутый брус, функция $f:I \to \mathbb{R}$ определена на I

Определение. Интегральная сумма Римана функции f на (\mathbb{T},ξ) — величина

$$\sigma(f, \mathbb{T}, \xi) := \sum_{i=1}^{k} f(\xi_i) \cdot |I_i|$$

Пример интегрирования в \mathbb{R}^2 по определению

1.9 Определение интегрируемой по Риману функции на замкнутом брусе в \mathbb{R}^n

Определение. Функция f интегрируема по Риману на замкнутом брусе I $(f:I \to \mathbb{R}),$ если

$$\exists A \in \mathbb{R} : \forall \varepsilon > 0 \ \exists \delta > 0 : \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < \delta : \ \text{верно} \ |\sigma(f, \mathbb{T}, \xi) - A| < \varepsilon$$

Тогда A называется $\kappa pamным$ интегралом Pumaha и

$$A = \int_{I} f(x) dx = \int \dots \int_{I} f(x_1, \dots, x_n) dx_1 \dots dx_n$$

1.10 Определение множества меры нуль по Лебегу

Определение. Множество $M \subset \mathbb{R}^n$ будем называть **множеством меры 0 по Лебегу**, если $\forall \varepsilon > 0$ существует не более чем счетный набор (замкнутых) брусов $\{I_i\}$ и выполняются:

•
$$M \subset \bigcup_i I_i$$

$$\bullet \ \sum_{i} |I_{i}| < \varepsilon \quad \forall \, \varepsilon > 0$$

1.11 Определение внутренней точки множества

Определение. Пусть имеется $M \subset \mathbb{R}^n$. Точку $x_0 \in M$ будем называть *внутренней* точкой M, если

$$\exists \varepsilon > 0 : B_{\varepsilon}(x_0) \subset M$$

1.12 Определение внешней точки множества

Определение. Точку $x_0 \in \mathbb{R}^n$ будем называть *внешней* точкой M, если

$$\exists \, \varepsilon > 0 : B_{\varepsilon}(x_0) \subset (\mathbb{R}^n \setminus M)$$

1.13 Определение граничной точки множества

Определение. Точку $x_0 \in \mathbb{R}^n$ будем называть *граничной* точкой M, если

$$\forall \varepsilon > 0 : (B_{\varepsilon}(x_0) \cap M) \neq \emptyset \wedge B_{\varepsilon}(x_0) \cap (\mathbb{R}^n \setminus M) \neq \emptyset$$

1.14 Определение изолированной точки множества

Определение. Точку $x_0 \in M$ будем называть *изолированной* точкой M, если

$$\exists \varepsilon > 0 : \overset{\circ}{B_{\varepsilon}}(x_0) \cap M = \varnothing$$

1.15 Определение предельной точки множества

Определение. Точку $x_0 \in \mathbb{R}^n$ будем называть *предельной* точкой M, если

$$\forall \, \varepsilon > 0 : \overset{\circ}{B_{\varepsilon}} (x_0) \cap M \neq \varnothing$$

1.16 Определение точки прикосновения множества

Определение. Точку $x_0 \in \mathbb{R}^n$ будем называть точкой прикосновения M, если

$$\forall \varepsilon > 0: B_{\varepsilon}(x_0) \cap M \neq \emptyset$$

1.17 Определение открытого множества

Определение. Множество $M\subset\mathbb{R}^n$ называется $\mathit{открытым}$, если все его точки внутренние

1.18 Определение замкнутого множества

Определение. Множество $M\subset R^n$ называется замкнутым, если $\mathbb{R}^n\setminus M$ — открыто

1.19 Определение компакта

Определение. Множество $K \subset \mathbb{R}^n$ называется *компактом*, если из \forall его покрытия открытыми множествами можно выделить конечное подпокрытие

1.20 Определение колебания функции на множестве

Определение. Колебанием функции f на множестве $M \subset \mathbb{R}^n$ будем называть число $\omega(f, M)$:

$$\omega(f,M) = \sup_{x,y \in M} |f(x) - f(y)| = \sup_{x \in M} f(x) - \inf_{y \in M} f(y)$$

1.21 Определение колебания функции в точке

Определение. Колебанием функции f в точке $x_0 \in M \subset \mathbb{R}^n$ будем называть число

$$\omega(f,x_0) := \lim_{r \to 0+} \omega(f,B_r^M(x_0)),$$
 где $B_r^M = B_r(x_0) \cap M$

1.22 Определение непрерывности функции в точке и на множестве

Определение. Функция $f:M\subset\mathbb{R}^n;\ f:M\to\mathbb{R}$ непрерывна в точке $x_0,$ если

1. Через колебание:

$$f$$
 — непрерывна в точке $x_0 \iff \omega(f, x_0) = 0$

2. Классическое определение:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall x \in M \$$
такого что $|x - x_0| < \delta$ верно $|f(x) - f(x_0)| < \varepsilon$

На множестве:

- 1. Непрервына на множестве всюду непрерывность в каждой точке.
- 2. Непрерывно на множестве почти всюду непрерывность выполняется везде кроме множества меры нуль.

1.23 Определение выполненения свойства почти всюду

Определение. Если какое-то свойство не выполняется лишь на множестве меры нуль, то говорят, что это свойство выполняется почти всюду

1.24 Определение пересечения двух разбиений

Определение. Пусть $\mathbb{T}_1=\{I_k^1\}$ и $\mathbb{T}_2=\{I_m^2\}$ — два разбиения бруса $I\subset\mathbb{R}^n.$

Пересечением разбиений $(\mathbb{T}_1 \cap \mathbb{T}_2)$ будем называть множество всех брусов $\{I_{ij}\}: \forall I_{ij}$ выполняется

- $\bullet \ \exists k : I_{ij} \in \{I_k^1\}$
- $\bullet \ \exists m: I_{ij} \in \{I_m^2\}$
- $\{I_{ij}\}$ разбиение бруса I

1.25 Определение измельчения разбиения

Определение. Разбиение $\mathbb{T}_1=\{I_k^1\}$ будем называть измельчением разбиения $\mathbb{T}_2=\{I_m^2\}$, если $\forall k \; \exists m: I_k^1 \in I_m^2 \implies \mathbb{T}=\mathbb{T}_1\cap \mathbb{T}_2$ является измельчением \mathbb{T}_1 и \mathbb{T}_2

Рис. 1: Пересечение разбиений \mathbb{T}_1 и \mathbb{T}_2

1.26 Определение верхней и нижней суммы Дарбу

Определение. Пусть I — замкнутый брус, $f:I\mapsto \mathbb{R},$ $\mathbb{T}=\{I_i\}_{i=1}^K$ — разбиение бруса I, $m_i=\inf_{I_i}(f),$ и $M_i=\sup_{I_i}(f)$

Тогда числа $\underline{S}(f,\mathbb{T})=\sum_{i=1}^K m_i|I_i|$ и $\overline{S}(f,\mathbb{T})=\sum_{i=1}^K M_i|I_i|$ будем называть нижней и верхней суммой Дарбу соответственно

1.27 Определение верхнего и нижнего интеграла Дарбу

Определение. Верхним и нижним интегралом Дарбу будем называть числа соответственно

$$\overline{\mathcal{I}} := \inf_{\mathbb{T}} \overline{\mathbf{S}}(f, \mathbb{T}) \qquad \underline{\mathcal{I}} := \sup_{\mathbb{T}} \underline{\mathbf{S}}(f, \mathbb{T})$$

1.28 Определение допустимого множества

Определение. Множество $D \subset \mathbb{R}^n$ называется допустимым, если

- D ограниченно
- \bullet ∂D множество меры нуль по Лебегу

1.29 Определение интеграла Римана по допустимому множеству

Определение. Пусть $D \subset \mathbb{R}^n$ — допустимое множество, $f:D \to \mathbb{R}$. Тогда, интегралом Римана f по D называется число \mathcal{I} :

$$\mathcal{I} = \int_{D} f(\overline{x}) d\overline{x} = \int_{I \supset D} f \cdot \chi_{D}(\overline{x}) d\overline{x}, \text{ где } \chi_{D} = \begin{cases} 1, \overline{x} \in D \\ 0, \overline{x} \not\in D \end{cases}$$

Если $\mathcal{I} < \infty$, то $f \in \mathcal{R}(D)$

Закрашенная область не вносит вклад в объем так как $f(x)\cdot\chi_D=0$

1.30 Определение сходимости функциональной последовательности в точке

Пусть $X \subset \mathbb{R}$ и $f_n : X \to \mathbb{R} \ \forall n \in \mathbb{N}$.

Определение. Последовательность функций $\{f_n(x)\}_{n=1}^{\infty}$ сходится в точке $x_0 \in X$, если сходится соответствующая числовая последовательность $\{f_n(x_0)\}_{n=1}^{\infty}$:

$$x_0 \in X, \forall \varepsilon > 0 \ \exists N : \forall n > N \hookrightarrow |f_n(x_0) - a_{x_0}| < \varepsilon \Longrightarrow a_{x_0} = \lim_{n \to \infty} f_n x_0$$

1.31 Определение множества сходимости функциональной последовательности

Определение. Множество $D \subset X$ точек, в которых последовательность функций $\{f_n(x)\}_{n=1}^{\infty}$ сходится называется множеством сходимости

1.32 Определение предельной функции функциональной последовательности

Определение. Пусть $D \subset X$ — множество сходимости $\{f_n(x)\}_{n=1}^{\infty}$ и $\forall x \in D$ $f_n(x) \to f(x)$. Тогда, $f(x) = \lim_{n \to \infty} f_n(x)$ будем называть npedenhoù функцией $\{f_n(x)\}$

1.33 Определение поточечной сходимости функциональной последовательности на множестве

Определение. $D \subset \mathbb{R}, f, f_n : D \to \mathbb{R}$. Будем говорить, что $\{f_n(x)\}$ сходится поточечно к f(x) на D, если

$$\forall x \in D, \forall \varepsilon > 0 \ \exists N : \ \forall n > N \hookrightarrow |f_n(x) - f(x)| < \varepsilon$$

Обозначение: $f_n(x) \xrightarrow{D} f(x)$

1.34 Определение равномерной сходимости функциональной последовательности на множестве

Определение. Пусть $D \subset \mathbb{R}; \ f_n, f: D \longrightarrow \mathbb{R}.$ Будем говорить, что $\{f_n(x)\}$ сходится равномерно к f(x) на D, Если

$$\forall \varepsilon > 0 \ \exists N : \ \forall n > N, \, \forall x \in D \$$
такое, что $|f_n(x) - f(x)| < \varepsilon$

Обозначение: $f_n \stackrel{D}{\rightrightarrows} f$

1.35 Определение поточечной сходимости функционального ряда на множестве

Пусть $D \subset \mathbb{R}, f_n, S: D \to \mathbb{R} \ (\forall n \in \mathbb{N}),$ а также $S_k(x) = \sum_{n=1}^k f_n(x)$ — частичные суммы функционального ряда

Определение. Если $\exists S(x): S_k \stackrel{D}{\longrightarrow} S$, то будем говорить, что функциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится поточечно к S(x) на D

1.36 Определение равномерной сходимости функционального ряда на множестве

Пусть $D\subset\mathbb{R},\,f_n,S:D\to\mathbb{R}\ (\forall n\in\mathbb{N}),$ а также $S_k(x)=\sum_{n=1}^kf_n(x)$ — частичные суммы функционального ряда

Определение. Если $\exists S(x): S_k \stackrel{D}{\rightrightarrows} S$, то будем говорить, что функциональный ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно к S(x)

1.37 Определение абсолютной сходимости сходимости функционального ряда на множестве

Определение. Ряд $\sum_{n=1}^{\infty} f_n(x)$ сходится абсолютно, если

$$\forall x_0 \in \sum_{n=1}^{\infty} f_n(x_0)$$
 — сходится абсолютно

2 Основные формулировки

$\mathbf{2.1}$ Свойства меры бруса в \mathbb{R}^n

1. Однородность: $\mu(I_{\lambda a,\lambda b}) = \lambda^n \cdot \mu(I_{a,b})$, где $\lambda \geqslant 0$

2. **Аддитивность:** Пусть I, I_1, \dots, I_k — брусы

Тогда, если $\forall i,j\,I_i,I_j$ не имеют общих внтренних точек, и $\bigcup_{i=1}^k I_i=I$, то

$$|I| = \sum_{i=1}^{k} |I_i|$$

3. Монотонность: Пусть I — брус, покрытый конечной системой брусов, то есть $I \subset \bigcup_{i=1}^k I_i$, тогда

$$|I| < \sum_{i=1}^{k} |I_i|$$

2.2 Необходимое условие интегрируемости функции по Риману

Теорема. Пусть I — замкнутый брус

$$f \in \mathcal{R}(I) \implies f$$
 ограничена на I

2.3 Свойства интеграла Римана

1. Линейность.

$$f, g \in \mathcal{R}(I) \implies (\alpha f + \beta g) \in \mathcal{R}(I) \ \forall \alpha, \beta \in \mathbb{R}$$

И верно, что:

$$\int_{I} (\alpha f + \beta g) dx = \alpha \int_{I} f dx + \beta \int_{I} g dx$$

2. Монотонность

$$f, g \in \mathcal{R}(I); \ f|_{I} \leqslant g|_{I} \implies \int_{I} f dx \leqslant \int_{I} g dx$$

3. Оценка интеграла (сверху)

$$f \in \mathcal{R}(I) \implies \left| \int_{I} f dx \right| \leqslant \sup_{I} |f| |I|$$

11

2.4 Свойства множества меры нуль по Лебегу

1. В определении множества меры нуль можно использовать открытые брусы

2. M — множество меры нуль, $L \subset M \Longrightarrow L$ — множество меры нуль

3. Не более чем счетное объединение множеств меры нуль является множеством меры нуль

2.5 Критерий замкнутости множества в \mathbb{R}^n

Теорема. M — замкнуто \iff M содержит все свои предельные точки

2.6 Теорема о компактности замкнутого бруса в \mathbb{R}^n

Теорема. Пусть $I \subset \mathbb{R}^n$ — замкнутый брус $\Longrightarrow I$ — компакт

$\mathbf{2.7}$ Критерий компактности в \mathbb{R}^n

Теорема. Пусть $K \subset \mathbb{R}^n$. K — компакт $\iff K$ замкнуто и ограниченно

2.8 Теорема Вейерштрасса о непрерывной функции на компакте

Теорема. Пусть $K \subset \mathbb{R}^n$ — компакт и функция $f: K \mapsto \mathbb{R}$ - непрерывная. Тогда f на K достигает наибольшего и наименьшего значений

2.9 Теорема о связи непрерывности функции в точке с колебанием

Теорема. Пусть $x_0 \in M \subset \mathbb{R}^n$; $f: M \mapsto \mathbb{R}$. f — непрерывна в точке $x_0 \iff \omega(f, x_0) = 0$

2.10 Критерий Лебега интегрируемости функции по Риману

Теорема. Если $I \subset \mathbb{R}^n$ — замкнутый невырожденный брус, $f: I \to \mathbb{R}$, то $f \in R(I) \iff f$ ограничена и непрерывна почти всюду на I

2.11 Свойства интегральных сумм Дарбу

1.

$$\underline{\mathbf{S}}(f,\mathbb{T}) = \inf_{\xi} \sigma(f,\mathbb{T},\xi) \leq \sup_{\xi} \sigma(f,\mathbb{T},\xi) = \overline{\mathbf{S}}(f,\mathbb{T})$$

2. Пусть $\tilde{\mathbb{T}}$ — измельчение разбиения \mathbb{T} , тогда

$$\underline{S}(f, \mathbb{T}) \leq \underline{S}(f, \tilde{\mathbb{T}}) \leq \overline{S}(f, \tilde{\mathbb{T}}) \leq \overline{S}(f, \mathbb{T})$$

3. $\forall \mathbb{T}_1, \mathbb{T}_2 : \underline{S}(f, \mathbb{T}_1) \leq \overline{S}(f, \mathbb{T}_2)$

2.12 Теорема об интегралах Дарбу как пределах интегральных сумм Дарбу

Теорема. Пусть $I\subset \mathbb{R}^n$ — замкнутый брус, а $f:I\mapsto \mathbb{R}$ — ограничена. Тогда:

$$\overline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \overline{\mathbf{S}}(f, \mathbb{T}) \qquad \text{ } \mathbf{M} \qquad \underline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \underline{\mathbf{S}}(f, \mathbb{T})$$

2.13 Критерий Дарбу интегрируемости функции на замкнутом брусе

Теорема. $I \in \mathbb{R}^n$ — замкнутый брус, $f: I \mapsto \mathbb{R}, f \in \mathcal{R}(I) \Longleftrightarrow f$ — ограничена на I и $\underline{\mathcal{I}} = \overline{\mathcal{I}}$

2.14 Утверждение о независимости определения допустимого множества от выбора бруса

Пусть $I_1 \supset D, I_2 \supset D$, тогда

$$\int_{I_1} f \cdot \chi_D \mathrm{d}x \, \, \mathbf{u} \, \int_{I_2} f \cdot \chi_D \mathrm{d}x$$

либо существуют и равны, либо оба не существуют вообще

2.15 Теорема Фубини о переходе к повторному интегралу

Пусть имеются $I_x \subset \mathbb{R}^n, I_y \subset \mathbb{R}^m, I_x \times I_y \subset \mathbb{R}^{m+n}$ — замкнутые брусы, $f: I_x \times I_y \to \mathbb{R}, f \in \mathcal{R}(I_x \times I_y)$ и \forall фиксированного $x \in I_x \implies f(x,y) \in \mathcal{R}(I_y) \Longrightarrow$

$$\int_{I_x \times I_y} f(\overline{x}, \overline{y}) d\overline{x} d\overline{y} = \int_{I_x} \left(\int_{I_y} f(\overline{x}, \overline{y}) d\overline{y} \right) d\overline{x} = \int_{I_x} d\overline{x} \int_{I_y} f(\overline{x}, \overline{y}) d\overline{y}$$

Примечание. аналагочино, если взять для \forall фиксированного $y \in I_y$

2.16 Супремальный критерий равномерной сходимости функциональной последовательности

Теорема.
$$f_n \stackrel{D}{\rightrightarrows} f \Longleftrightarrow \lim_{n \to \infty} \left(\sup_{D} |f_n(x) - f(x)| \right) = 0$$

2.17 Критерий Коши равномерной сходимости функциональной последовательности

Теорема.
$$f_n(x) \stackrel{D}{\rightrightarrows} f(x) \Longleftrightarrow \forall \, \varepsilon > 0 \,\, \exists N: \,\, \forall n,m>N, \, \forall x \in D \hookrightarrow |f_n(x) - f_m(x)| < \varepsilon$$

Примечание. Отрицание Критерия Коши:

$$f_n(x) \stackrel{D}{\not\to} f(x) \Longleftrightarrow \exists \varepsilon_0 > 0 \ \forall N: \ \exists n, m > N, \ \exists x_0 \in D \ |f_n(x) - f_m(x)| \geqslant \varepsilon_0$$

2.18 Теорема о почленном переходе к пределу для функциональной последовательности

Теорема. Пусть $f_n, f: D \longrightarrow \mathbb{R}, \ x_0$ — предельная точка $D, \ f_n \stackrel{D}{\rightrightarrows} f, \ \forall n \in \mathbb{N} \ \exists \lim_{x \to x_0} f_n(x) = c_n$

Тогда,

$$\exists \lim_{n \to \infty} c_n = \lim_{x \to x_0} f(x)$$

$$\left(\text{или } \lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x) \right) = \lim_{x \to x_0} \left(\lim_{n \to \infty} f_n(x) \right) \right)$$

13

2.19 Теорема о непрерывности предельной функции

$$\left.\begin{array}{l} f_n,f:D\longrightarrow\mathbb{R},\\ \\ \text{Теорема.}\ \Pi\text{усть имеется}\ f_n\stackrel{D}{\rightrightarrows}f,\\ \\ \forall n\in\mathbb{N}\ f_n\in C(D) \end{array}\right\}\Longrightarrow f\in C(D)$$

2.20 Утверждение о неравномерной сходимости фун. послед. при наличии разрыва

$$\left.\begin{array}{l} f_n\in C\left([a;b)\right),\\ \\ \textbf{Теорема.} \ \Pi \text{усть имеется} \ f\in C((a;b)) + \text{разрыв в т.} a,\\ \\ f_n\stackrel{[a;b)}{\longrightarrow} f \end{array}\right\} \Longrightarrow f_n\stackrel{(a;b)}{\not\Longrightarrow} f$$

То есть будет поточечная сходимость, но не будет равномерной:

$$f_n \xrightarrow{(a;b)} f$$
, но не $f_n \stackrel{(a;b)}{\Longrightarrow} f$

2.21 Утверждение о неравномерной сходимости фун. послед. при наличии расходимости в точке

$$\begin{array}{c} f_n \in C\left([a;b)\right) \\ \textbf{Теорема.} \ \Pi \text{усть имеется} \ f_n \overset{(a;b)}{\longrightarrow} f \\ \not \exists \lim_{n \to \infty} f_n(a) \end{array} \right\} \Longrightarrow f_n \overset{(a;b)}{\not \Longrightarrow} f$$

2.22 Теорема о почленном интегрировании функциональной последовательности

$$\begin{array}{c} f_n,f:[a;b]\to\mathbb{R}\\ \\ \textbf{Теорема.} \ \Pi \text{усть имеется} \ f_n\stackrel{[a;b]}{\rightrightarrows}f\\ \\ f_n\in\mathcal{R}([a;b])\forall n\in\mathbb{N} \end{array} \} \Longrightarrow f\in\mathcal{R}([a;b]) \ \text{и} \ \lim_{n\to\infty}\int\limits_a^b f_n(x)\mathrm{d}x = \int\limits_a^b f(x)\mathrm{d}x$$

2.23 Теорема о почленном дифференцировании функциональной последовательности

$$f_n, f, g: [a;b] \to \mathbb{R}$$

$$f_n \in D([a;b])$$

$$\exists c \in [a;b]: \exists \lim_{n \to \infty} f_n(c)$$

$$\exists g(x): \ f'_n \overset{[a;b]}{\Rightarrow} g(x)$$
 \Longrightarrow $\exists f: \ f_n \overset{[a;b]}{\Rightarrow} f$
$$\oplus f'(x) = g(x)$$

2.24 Критерий Коши равномерной сходимости функционального ряда

Теорема. Пусть
$$f_n:D\to\mathbb{R}\ \forall n\in\mathbb{N},\,\sum_{n=1}^\infty f_n(x)\stackrel{D}{\rightrightarrows}$$
 тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists N : \ \forall m > k > N \ \forall x \in D \hookrightarrow |S_m(x) - S_k(x)| = \left| \sum_{n=k+1}^m f_n(x) \right| < \varepsilon$$

2.25 Необходимое условие равномерной сходимости функционального ряда

Следствие. Пусть
$$\sum_{n=1}^{\infty} f_n(x) \stackrel{D}{\rightrightarrows}$$
 $\Longrightarrow f_n(x) \stackrel{D}{\rightrightarrows} 0$

2.26 Сравнительный признак равномерной сходимости функционального ряда

$$\begin{array}{l} \displaystyle \sum_{n=1}^{\infty} a_n(x) \text{ и } \sum_{n=1}^{\infty} b_n(x): \\ \displaystyle \exists N \ \forall n>N \ \forall x \in D \ |a_n(x)| \leqslant b_n(x) \\ \displaystyle \sum_{n=1}^{\infty} b_n(x) \overset{D}{\Rightarrow} \end{array} \\ \begin{array}{l} \displaystyle \sum_{n=1}^{\infty} a_n(x) \overset{D}{\Rightarrow} \text{ и } \sum_{n=1}^{\infty} a_n(x) \text{ сходится абсолютно } D \end{array}$$

2.27 Мажорантный признак Вейерштрасса о равномерной сходимости функционального ряда

Следствие. Из признака сравнения.
$$\begin{vmatrix} \sum_{n=1}^\infty a_n(x): \\ \exists N \ \forall n>N \ \sup_D |a_n(x)|\leqslant M_n \\ \sum_{n=1}^\infty M_n - \text{сходится} \end{vmatrix} \Longrightarrow \sum_{n=1}^\infty a_n \overset{D}{\rightrightarrows}$$

3 Вопросы на доказательство

3.1 Необходимое условие интегрирования.

Теорема. Пусть I — замкнутый брус.

$$f \in \mathcal{R}(I) \implies f$$
 ограничена на I

Доказательство. От противного.

1. $f \in \mathcal{R}(I) \implies \exists A \in \mathbb{R}$, такая что $\forall \varepsilon > 0$, а значит для $\varepsilon = 1$ тоже:

$$\exists \delta > 0 \colon \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} \leqslant \delta \text{ верно } |\sigma(f, \mathbb{T}, \xi) - A| < 1$$

Отсюда

$$A-1 < \sigma < A+1 \implies \sigma$$
 ограничена

2. С другой стороны, так как предположили, что f — неограничена на I

$$\forall \mathbb{T} = \{I_i\}_{i=1}^k \quad \exists i_0 \colon f$$
 неограничена на I_{i_0}

Тогда рассмотрим интегральную сумму

$$\sigma(f, \mathbb{T}, \xi) = \sum_{i \neq i_0} f(\xi_i) \cdot |I_i| + f(\xi_{i_0}) \cdot |I_{i_0}|$$

Выбором подходящего ξ_{i_0} можно сделать $f(\xi_{i_0})$ сколь угодно большой $\implies \sigma$ будет не ограничена - противоречние

Из противоречния пунктов 1 и 2 следует, что

$$f \in \mathcal{R}(I) \implies f$$
 ограничена на I

3.2 Свойства интеграла Римана

1. Линейность.

$$f, g \in \mathcal{R}(I) \implies (\alpha f + \beta g) \in \mathcal{R}(I) \ \forall \alpha, \beta \in \mathbb{R}$$

И верно, что:

$$\int_{I} (\alpha f + \beta g) dx = \alpha \int_{I} f dx + \beta \int_{I} g dx$$

Доказательство.

$$f \in \mathcal{R}(I): \exists A_f, \text{что} \quad \forall \varepsilon > 0 \,\exists \delta_1 > 0 \,\, \forall (\mathbb{T}, \xi): \, \Delta_{\mathbb{T}} < \delta_1 \quad \text{ верно} \, \left| \sigma(f, \mathbb{T}, \xi) - \int_I f \mathrm{d}x \right| =: |\sigma_f - A_f| < \frac{\varepsilon}{|\alpha| + |\beta| + 1}$$

$$g \in \mathcal{R}(I): \exists A_g, \text{что} \quad \forall \varepsilon > 0 \,\exists \delta_2 > 0 \,\, \forall (\mathbb{T}, \xi): \, \Delta_{\mathbb{T}} < \delta_2 \quad \text{ верно} \, \left| \sigma(g, \mathbb{T}, \xi) - \int_I g \mathrm{d}x \right| =: |\sigma_g - A_g| < \frac{\varepsilon}{|\alpha| + |\beta| + 1}$$

Тогда $\forall (\mathbb{T}, \xi) \colon \Delta_{\mathbb{T}} < min(\delta_f, \delta_g) = \delta :$

$$|\sigma(\alpha f + \beta g, \mathbb{T}, \xi) - \alpha A_f + \beta A_g| = \left| \sum_{i} (\alpha f(\xi_i) + \beta g(\xi_i)) \cdot |I_i| - \alpha A_f - \beta A_g \right| \leq$$

$$\leq |\alpha| \cdot |\sigma_f - A_f| + |\beta| \cdot |\sigma_g - A_g| < (|\alpha| + |\beta|) \frac{\varepsilon}{|\alpha| + |\beta| + 1} < \varepsilon$$

2. Монотонность

$$f,g \in \mathcal{R}(I); \ f \leqslant g$$
 на $I \implies \int_I f \mathrm{d}x \leqslant \int_I g \mathrm{d}x$

Доказательство.

$$f \in \mathcal{R}(I) \implies \exists A_f \in \mathbb{R} \colon \forall \, \varepsilon > 0 \,\, \exists \delta : \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < \delta, \,\, \text{выполняется} \,\, |\sigma_f - A_f| < \varepsilon$$

Аналогично для $g \in \mathcal{R}(I)$, тогда:

$$\begin{cases} A_f - \varepsilon < \sigma_1 < A_f + \varepsilon \\ A_g - \varepsilon < \sigma_2 < A_g + \varepsilon \\ \sigma_f \leqslant \sigma_g \end{cases}$$

Отсюда

$$A_f - \varepsilon < \sigma_f \leqslant \sigma_g < A_g + \varepsilon \implies A_f - \varepsilon < A_g + \varepsilon \implies A_f < A_g + 2\varepsilon \qquad \forall \varepsilon > 0$$

3. Оценка интеграла (сверху)

$$f \in \mathcal{R}(I) \implies \left| \int_{I} f dx \right| \leqslant \sup_{I} |f| |I|$$

Доказательство. По необходимому условию для интегрируемости функции (см. ниже)

$$f \in \mathcal{R}(I) \implies f$$
 Ограничена на
$$I$$

$$\implies -\sup_{I} |f| \leqslant f \leqslant \sup_{I} |f|$$

Тогда,

$$\begin{split} -\int_{I} \sup |f| \mathrm{d}x &\leqslant \int_{I} f \mathrm{d}x &\leqslant \int_{I} \sup |f| dx \\ -\sup_{I} |f| |I| &\leqslant \int_{I} f \mathrm{d}x &\leqslant \sup_{I} |f| |I| \end{split}$$

3.3 Свойства множества меры нуль по Лебегу

1. Если в определении $\{I_i\}$ заменить на открытые брусы, то определение останется верным.

Доказательство. Пусть $\{I_i\}$ — открытые брусы, тогда $\forall \varepsilon>0$ \exists не более чем счетный набор $\{I_i\}$: $M\subset\bigcup_i I_i$ и $\sum |I_i|<\varepsilon$

Пусть $\{\bar{I}_i\}$ — открытые брусы + границы = замкнутые брусы I_i , причём объем "добавленных" плоскостей будет нулевой, так как объем бруса n-1 размерности, будет нулевым для объема бруса размерности n

$$M\subset \bigcup_i I_i\subset \bigcup_i ar{I}_i,$$
 при этом $|I_i|=|ar{I}_i|$

Если

$$\forall \varepsilon \ \exists \{I_i\} : M \subset \bigcup_i I_i : \sum_i |I_i| < \varepsilon$$

TO

$$\forall\,\varepsilon\,\,\exists\{\bar{I}_i\}:M\subset\bigcup_i\bar{I}_i:\sum_i|\bar{I}_i|<\varepsilon$$

Докажем в обратную сторону. Мы хотим увеличить замкнутый брус в два раза и увеличенный брус взять открытым.

Пусть $\{I_i\}$ — набор замкнутых брусов

$$I_i = [a_i^1, b_i^1] \times \ldots \times [a_i^n, b_i^n], \quad V_i = \sum_i |I_i| < \frac{\varepsilon}{2^n}$$

Так как $\left(\frac{a_i^k}{2}, \frac{b_i^k}{2}\right)$ — центр i-го бруса в k-ом измерении, увеличить изначальный брус в два раза по этому измерению можно сдвинувшись от центра не на половину, а на целую сторону, то есть на $b_i^k - a_i^k$

Таким образом:

$$\tilde{I}_{i} = \left(\frac{a_{i}^{1} + b_{i}^{1}}{2} - (b_{i}^{1} - a_{i}^{1}); \frac{a_{i}^{1} + b_{i}^{1}}{2} + (b_{i}^{1} - a_{i}^{1})\right) \times \dots \times \left(\frac{a_{i}^{n} + b_{i}^{n}}{2} - (b_{i}^{n} - a_{i}^{n}); \frac{a_{i}^{n} + b_{i}^{n}}{2} + (b_{i}^{n} - a_{i}^{n})\right)$$

$$\implies V_{2} = \sum_{i} |\tilde{I}_{i}| = 2^{n} \cdot V_{1} < \varepsilon$$

2. Если $M\subset\mathbb{R}^n$ - множество меры нуль по Лебегу, то из $L\subset M\implies L$ - множество меры нуль по Лебегу

Доказательство. Докажем по транзитивности

$$\forall \, arepsilon \, > 0, \, \, \exists$$
 не более чем счетный набор $\{I_i\}: L \subset M \subset \bigcup_i I_i \implies L \subset \bigcup_i I_i$

По условию нам дано, что для $M\subset\bigcup_i I_i$ верно $\sum_i |I_i|<\varepsilon$, и тоже самое выполнено и для $L\subset\bigcup_i I_i$, тогда L по определнию является множеством меры нуль по Лебегу

3. Не более чем счетное объединение множеств меры нуль по Лебегу, тоже является множеством меры нуль по Лебегу

Доказательство. пусть $M = \bigcup_i^\infty M_k$ - объединение не более чем счетного числа множеств $\forall k \ M_k$ - множество меры нуль по Лебегу $\implies \forall k, \ \forall \, \varepsilon > 0 \ \exists \{I_i\}_{i=1}^\infty$ по определению множества меры нуль для них верно

- $M_k \subset \bigcup_{i=1}^{\infty} I_i^{k-1}$
- $\bullet \ \sum_i |I_i| < \varepsilon_k \quad \ \forall \, \varepsilon_k > 0$

Отсюда получаем $M=\bigcup_i^\infty M_k\subset \bigcup_i^\infty I_i^k$ и $\sum_{k=1}^\infty \sum_{i=1}^\infty |I_i^k|<\sum_{k=1}^\infty \varepsilon_k$ - если теперь взять $\varepsilon_k=rac{\varepsilon}{2^k},$ то мы получим

$$\sum_{k=1}^{\infty} \varepsilon_k = \sum_{k=1}^{\infty} \frac{\varepsilon}{2^k} < \varepsilon$$

3.4 Критерий замкнутости

Теорема. M — замкнуто \iff M содержит **все** свои предельные точки

Доказательство. Докажем необходимость и достаточность

 $^{^{1}}I_{i}^{k}$ - это i-ый для $M_{k},$ а не степень

- 1. (Heoбxoдимость) Докажем \Longrightarrow от противного
 - Пусть x_0 предельная для M и $x_0 \notin M$. Тогда, $\forall \, \varepsilon > 0 \, \stackrel{\circ}{B_{\varepsilon}} (x_0) \cap M \neq \varnothing$ и $x_0 \in \mathbb{R}^n$
 - По условию M замкнуто, то есть $\mathbb{R}^n \setminus M$ открыто \Longrightarrow все его точки внутренние и $\exists r>0$:

$$B_r(x_0) \subset \mathbb{R}^n \setminus M \Longrightarrow B_r(x_0) \subset \mathbb{R}^n \setminus M \text{ if } \stackrel{\circ}{B_r}(x_0) \cap M = \varnothing$$

Пришли к противоречию $\Longrightarrow M$ содержит все свои предельные точки

2. (Достаточность) Докажем \Leftarrow

Пусть y_0 — не является предельной для M, то есть $y_0 \in \mathbb{R}^n \setminus M \Longrightarrow \exists r > 0$:

$$\begin{cases} \mathring{B_r}(y_0) \cap M = \varnothing \\ y_0 \in \mathbb{R}^n \setminus M \end{cases} \Longrightarrow B_r(y_0) \subset \mathbb{R}^n \setminus M$$

 $\Longrightarrow \mathbb{R}^n \backslash M$ — открытое и состоит из всех точек, не являющихся предельными $\Longrightarrow M$ — замкнуто по определению

3.5 Теорема о компактности замкнутого бруса

Теорема. Пусть $I\subset \mathbb{R}^n$ — замкнутый брус $\Longrightarrow I$ — компакт

Доказательство. Пойдем от противного

Пусть
$$I = [a_1; b_1] \times \ldots \times [a_n; b_n]$$

- 1. Положим, что I не компакт. Значит, существует его покрытие $\{A_{\alpha}\}$ открытые множества, такие что $I \subset \{A_{\alpha}\}$, не допускающее выделения конечного подклорытия
- 2. Поделим каждую сторону пополам. Тогда, $\exists I_1$, такой что не допускает конечного подпокрытия. Иначе, I компакт
- 3. Аналогично, повторим процесс и получим систему вложенных брусов:

$$I\supset I_1\supset I_2\supset\ldots$$

То есть на каждой стороне возникает последовательность вложенных отрезков, которые стягиваются в точку $a = (a_1, \dots, a_n)$

Последовательность вложенных брусов в \mathbb{R}^2 : на каждом шаге выбираем квадрат, что по предположению нельзя покрыть(выделен цветом) и делим его на 4 части. В итоге стягиваются в точку.

При этом,
$$\exists a = \bigcap_{i=1}^{\infty} I_i$$

4.
$$a \in I \Longrightarrow a \in \bigcup A_{\alpha} \Longrightarrow \exists \alpha_0 : a \in \underbrace{A_{\alpha_0}}_{\text{открытое}} \Longrightarrow \exists \varepsilon > 0 : B_{\varepsilon}(a) \subset A_{\alpha_0}$$

5. Из построения получили, что $I \supset I_1 \supset \ldots \supset a \Longrightarrow \exists N : \forall n > N \ I_n \subset B_{\varepsilon}(a) \subset A_{\alpha_0}$ Получается, что $\forall n > N \ I_n$ покрывается одним лишь A_{α_0} из системы $\{A_{\alpha}\}$ Получаем противоречие тому, что любое I_n не допускает конечного подпокрытия, а у нас получилось, что $I_n \in A_{\alpha_0} \forall n > N \Longrightarrow I$ — компакт

Примечание. Любое ограниченное множество можно вписать в замкнутый брус. Потому что можно вокруг него описать шарик, который точно можно вписать в брус

3.6 Критерий компактности в \mathbb{R}^n

Теорема. $K \subset \mathbb{R}^n$. K — компакт $\iff K$ замкнуто и ограниченно

Доказательство. Докажем необходимость ()

• Ограниченность. K — компакт $\Longrightarrow \forall \{A_{\alpha}\}_{\alpha \in \mathbb{N}}$ — можно выделить конечное подпокрытие \Longrightarrow \Longrightarrow Пусть $\{A_{\alpha}\}=\{B_n(0)\}_{n=1}^{\infty} \Longrightarrow \exists N \in \mathbb{N}: \forall n > N \ K \subset \bigcup_{n=1}^N B_n(0)$ и так как $B_n(0)$ — вложены шары \Longrightarrow $K \subset B_N(0) \Longrightarrow$ по определению K — ограничено

Пример покрытия K вокруг точки 0 с помощью шаров

• Замкнутость. Пойдем от противного. K — компакт, тогда возьмем $\{B_{\frac{\delta(x)}{2}}(0)\}_{x \in K}$ — покрытие открытыми шарами, где $\delta(x) = \rho(x,x_0)$. x_0 — предельная точка, которая $\notin K$ (или же $\in \mathbb{R}^n \setminus K$)

Так как
$$K$$
 — компакт, $\exists x_1,\dots,x_s:K\subset\bigcup_{i=1}^sB_{\frac{\delta(x_i)}{2}}(x_i)$ Пусть $\delta=\min_{1\leqslant i\leqslant s}\delta(x_i)$, тогда

$$B_{\frac{\delta}{2}}(x_0) \cap \bigcup_{i=1}^{s} B_{\frac{\delta(x_i)}{2}}(x_i) = \varnothing \Longrightarrow B_{\frac{\delta}{2}}(x_0) \subset \mathbb{R}^n \setminus K$$
$$\Longrightarrow B_{\frac{\delta}{2}}(x_0) \cap K = \varnothing$$

Значит, x_0 не является предельной точкой K, что противоречит нашему предположению

Пример как мы строим $B_{\frac{\delta}{2}}$ вокруг точки x_0 . Синие точки - середины отрезков на которых они лежат

Доказательство. Докажем достаточность

K — замкнуто и ограничено $\Longrightarrow \exists r>0: B_r(0)\supset K\Longrightarrow \exists I$ — замкнутый брус, такой что

$$K \subset I$$
 и $I = [-r; r]^n$

Пусть $\{A_{\alpha}\}_{{\alpha}\in\mathbb{N}}$ — произвольное покрытие открытыми множествами для K. Тогда, $I\subset\{A_{\alpha}\}\cup\underbrace{\{\mathbb{R}^n\setminus K\}}_{\text{открыто}}$. Так как I — компакт, то \exists конечное подпокрытие

$$\{A_{lpha_i}\}_{i=1}^m \cup \{\mathbb{R}^n \setminus K\} \supset I \supset K$$
 — покрытие для I

Значит, $K\subset \{A_{\alpha_i}\}_{i=1}^m$ — конечное и $\{A_{\alpha}\}$ — произвольное, тогда K — компакт по определению

Строим замкнутый брус вокруг точки 0, пользуясь существованием конечного покрытия покрываем наш компакт K

3.7 Теорема Вейерштрасса о непрерывной функции на компакте

Теорема. Пусть $K \in \mathbb{R}^n$ — компакт и функция $f: K \mapsto \mathbb{R}$ - непрерывная. Тогда f на K достигает наибольшее и наименьшее значения.

Доказательство. • Ограниченность. От противного: пусть существует последовательность $\{x^k\} \subset K: |f(x^k)| > k$. Из ограниченности K следует ограниченность последовательности $\{x^k\}$, и как следствие ограничены по-

следовательности отдельных коордиант:

$$|x_i^k| = \sqrt{|x_i^k|^2} \leqslant \sqrt{\sum_{i=1}^n |x_i^k|^2} = ||x^k|| \leqslant C$$
 для некоторого C

По теореме Больцано-Вейерштрасса у $\{x_1^k\}$ существует сходящаяся подпоследовательность $x_1^{k_{j_1}} \to a_1, j_1 \to \infty$. Для последовательности $\{x_2^{k_{j_1}}\}$ существует сходящаяся последовательность $x_2^{k_{j_2}} \to a_2, j_2 \to \infty$. И т.д. Получаем сходящуюся подпоследовательность:

$$x^{k_j} = (x_1^{k_j}, x_2^{k_j}, \dots, x_n^{k_j}) \to (a_1, a_2, \dots, a_n) = a$$

Точка a — предельная для K. В силу замкнутости K т. $a \in K$. А из непрерывности функции f получаем $f(x^{k_j}) \to f(a)$. А с другой стороны, $f(x^{k_j}) \to \infty$ из выбора исходной последовательности. **противоречие**

• Достижение наибольшего (наименьшего) значения. Итак, мы доказали, что f — ограничена на K. Выберем последовательность $\{x^k\}$:

$$\sup_{K} f - \frac{1}{k_{j}} \le f(x^{k_{j}}) \le \sup_{K} f$$

в силу непрерывности f:

$$\sup_{K} f \le f(a) \le \sup_{K} f$$

Получаем $f(a) = \sup_K f$, т.е. максимальное значение достиигается в точке x=a. Для $\inf_K f$ доказательство аналогично

3.8 Теорема о связи непрерывности функции в точке с колебанием

Теорема. Пусть $x_0 \in M \subset \mathbb{R}^n; \ f: M \mapsto \mathbb{R}. \ f$ — непрерывна в точке $x_0 \iff \omega(f,x_0) = 0$

Доказательство.

• Необходимость

 $f - \text{ непрерывна в т. } x_0 \in M \implies \forall \, \varepsilon > 0 \,\, \exists \delta > 0 : \,\, \forall x \in B_\delta(x_0) \cap M = B^M_\delta(x_0) \implies |f(x) - f(x_0)| < \frac{\varepsilon}{3}$ Рассмотрим $\omega(f, x_0) := \lim_{\delta \to 0+} \omega(f, B^M_\delta(x_0))$:

$$\omega(f, B_{\delta}^{M}(x_{0})) = \sup_{x, y \in B_{\delta}(x_{0})} |f(x) - f(y)| \le \sup_{x \in B_{\delta}(x_{0})} |f(x) - f(x_{0})| + \sup_{y \in B_{\delta}(x_{0})} |f(y) - f(x_{0})| \le \frac{2\varepsilon}{3} < \varepsilon$$

При
$$\varepsilon \to 0 \implies \delta \to 0$$
 и $\omega(f, B^M_\delta(x_0)) \to 0$, т.е. $\omega(f, x_0) = 0$

• Достаточность

Пусть $0 = \omega(f, x_0) := \lim_{\delta \to 0+} \omega(f, B_{\delta}^M(x_0))$, т.е.

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \quad \forall x, y \in B_{\delta}^{M}(x_{0}) \quad \sup_{x, y \in B_{\delta}^{M}(x_{0})} |f(x) - f(y)| < \varepsilon$$

Получаем, что

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x \in B_{\delta}^{M}(x_{0}) \implies |f(x) - f(x_{0})| < \varepsilon \implies$$

3.9 Свойства интегральных сумм Дарбу

3.9.1 Нижняя сумма Дарбу не больше верхней

Теорема.

$$\underline{\mathbf{S}}(f,\mathbb{T}) = \int_{\xi} \sigma(f,\mathbb{T},\xi) \leq \sup_{\xi} \sigma(f,\mathbb{T},\xi) = \overline{\mathbf{S}}(f,\mathbb{T})$$

Доказательство.

$$\underline{\mathbf{S}}(f, \mathbb{T}) = \sum_{i=1}^{K} m_i |I_i| = \sum_{i} \inf_{\xi_i} (f(\xi_i)) |I_i| = \inf_{\xi} \sum_{i} f(\xi_i) |I_i| = \inf_{\xi} \sigma(f, \mathbb{T}, \xi) \leq \sup_{\xi} \sigma(f, \mathbb{T}, \xi) = \sum_{i} (f(\xi_i)) |I_i| = \sum_{i} M_i |I_i| = \overline{\mathbf{S}}(f, \mathbb{T})$$

3.9.2 Монотонность сумм относительно измельчений разбиения

Теорема. Пусть $\tilde{\mathbb{T}}$ — измельчение разбиения \mathbb{T} , тогда

$$\underline{S}(f, \mathbb{T}) \leq \underline{S}(f, \tilde{\mathbb{T}}) \leq \overline{S}(f, \tilde{\mathbb{T}}) \leq \overline{S}(f, \mathbb{T})$$

Доказательство. Если $L \subset M$, то $\inf L \ge \inf M$ и $\sup L \le \sup M$, тогда:

$$\underline{\mathbf{S}}(f, \mathbb{T}) \leq \underline{\mathbf{S}}(f, \tilde{\mathbb{T}}) \leq \underline{\mathbf{S}}(f, \tilde{\mathbb{T}}) \leq \overline{\mathbf{S}}(f, \mathbb{T})$$

3.9.3 Никакая нижняя сумма Дарбу не больше какой-либо верхней суммы на том же брусе

Теорема. $\forall \mathbb{T}_1, \mathbb{T}_2 : \underline{S}(f, \mathbb{T}_1) \leq \overline{S}(f, \mathbb{T}_2)$

Доказательство. $\forall \mathbb{T}_1, \mathbb{T}_2$ рассмотрим $\tilde{\mathbb{T}} = \mathbb{T}_1 \cap \mathbb{T}_2$, тогда по 6.3:

$$S(f, \mathbb{T}_1) \leq S(f, \tilde{\mathbb{T}}) \leq \overline{S}(f, \tilde{\mathbb{T}}) \leq \overline{S}(f, \mathbb{T}_2)$$

3.10 Теорема об интегралах Дарбу как пределах интегральных сумм Дарбу

Теорема. Пусть $I\subset\mathbb{R}^n$ — замкнутый брус, а $f:I\mapsto\mathbb{R}$ — ограничена. Тогда:

$$\overline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \overline{\mathbf{S}}(f, \mathbb{T}) \qquad \text{ } \mathbf{u} \qquad \underline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \underline{\mathbf{S}}(f, \mathbb{T})$$

 \mathcal{A} оказательство. Докажем, что $\underline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \underline{\mathbf{S}}(f,\mathbb{T}) \quad (=\sup_{\mathbb{T}} \underline{\mathbf{S}}(f,\mathbb{T}))$

- 1. f-ограничена на $I \implies \exists C > 0 : \forall x \in I \quad |f(x)| \leqslant C$
- 2. т.к. по определению $\underline{I} = \sup_{\mathbb{T}} \underline{\mathbf{S}}(f, \mathbb{T}),$ то $\forall \, \varepsilon > 0 \,\, \exists \, \mathbb{T}_1 = \{I_i^1\}_{i=1}^{m_1}: \,\, \underline{\mathcal{I}} \varepsilon < \underline{\mathbf{S}}(f, \mathbb{T}_1) \leqslant \underline{\mathcal{I}} < \underline{\mathcal{I}} + \varepsilon$
- 3. Пусть $G = \bigcup_{i=1}^{m_1} \partial I_i^1$ объединение границ брусов $I_i^1 \in \mathbb{T}_1$ (без повторов). Тогда G множество меры нуль по Лебегу (т.к. границы мн-ва меры нуль по Лебегу)

4. Пусть \mathbb{T}_2 - произвольное разбиение $I: \mathbb{T}_2 = \{I_i^2\}_{i=1}^{m_2}$ Рассмотрим два множества брусов:

$$A=\{I_i^2\in\mathbb{T}_2:I_i^2\cap G\neq\varnothing\} \qquad \text{и}\qquad B=\mathbb{T}_2\setminus A \implies$$
 $\forall\,\varepsilon>0\,\,\exists\delta(\varepsilon)>0:\forall\,\mathbb{T}_2:\Delta_{\mathbb{T}_2}<\delta$ верно, что $\sum_{I_i^2\in A}|I_i^2|<\varepsilon$

т.к. наши брусочки I_i^2 по построению лежат в G, а по 3 пункту оно множество меры нуль.

разбиение T_1

 Γ раница G бруса T_1 Какое-то разбиение T_2

Как прошлые разбиения и граница Gвыглядят на одном рисунке

Как выглядят множества A и B

5. С другой стороны $\forall I_i^2 \in B$ верно, что $I_i^2 \in \mathbb{T}_1 \cap \mathbb{T}_2$

Хотим рассмотреть

$$|\underline{\mathcal{I}} - \underline{\mathbf{S}}(f, \mathbb{T}_2)| = |I - \underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) + \underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) - \underline{\mathbf{S}}(f, \mathbb{T}_2)| \leqslant \underbrace{|I - \underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2)|}_* + \underbrace{|\underline{\mathbf{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) - \underline{\mathbf{S}}(f, \mathbb{T}_2)|}_{**}$$

$$< \varepsilon + 2C \varepsilon = \varepsilon (1 + 2C)$$

* из пункта 2: $\underline{\mathcal{I}} - \varepsilon < \underline{\mathrm{S}}(f, \mathbb{T}_1) \leqslant \underline{\mathrm{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2) \leqslant \underline{\mathcal{I}} < \underline{\mathcal{I}} + \varepsilon \implies |\underline{\mathcal{I}} - \underline{\mathrm{S}}(f, \mathbb{T}_1 \cap \mathbb{T}_2)| < \varepsilon$

** Пояснение ниже

$$\begin{split} |\underline{\mathbf{S}}(f,\mathbb{T}_1\cap\mathbb{T}_2) - \underline{\mathbf{S}}(f,\mathbb{T}_2)| &= \left|\sum_{I_i^2\in B} m_i |I_i^2| + \sum_{I_i\in\mathbb{T}_1\cap A} m_i |I_i^2| - \sum_{I_i^2\in B} m_i |I_i^2| - \sum_{I_i^2\in A} m_i |I_i^2| \right| &\quad \Pi e p e x o d \ c \ p a в н о м \ no \ n y н к т y \ 5 \\ &\leqslant \left|\sum_{I_i\in\mathbb{T}_1\cap A} m_i |I_i^2| \right| + \left|\sum_{I_i^2\in A} m_i |I_i^2| \right| \\ &\leqslant 2 \left|\sum_{I_i^2\in A} m_i |I_i^2| \right| &\quad C n e \partial y o u u \ddot{u} \ n e p e x o d \ no \ n y н \kappa m y \ 4 \\ &\leqslant 2 C \varepsilon \end{split}$$

3.11 Критерий Дарбу интегрируемости функции на замкнутом брусе

 $I\in\mathbb{R}^n$ — замкнутый брус, $f:I\mapsto\mathbb{R}, f\in\mathcal{R}(I)\Longleftrightarrow f$ — ограничена на I и $\underline{\mathcal{I}}=\overline{\mathcal{I}}$

- $f \in \mathcal{R}(I) \Longrightarrow$ по необходимому условию интегрируемости функции по Риману на замкнутом брусе, f ограничена на I
- Покажем, что $\underline{\mathcal{I}} = \mathcal{I}, \overline{\mathcal{I}} = \mathcal{I} \Longrightarrow \underline{\mathcal{I}} = \overline{\mathcal{I}}$

1.
$$f \in \mathcal{R}(I) \Longrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < \delta \ |\sigma(f, \mathbb{T}, \xi) - \mathcal{I}| < \varepsilon$$

$$\begin{split} 2. \ \ \underline{\mathcal{I}} &= \sup_{\mathbb{T}} \underline{\mathbf{S}}(f,\mathbb{T}) = \lim_{\Delta \to 0} \underline{\mathbf{S}}(f,\mathbb{T}) \Longrightarrow |\, \underline{\mathcal{I}} - \underline{\mathbf{S}}\,| < \varepsilon \\ \forall \, \varepsilon > 0 \ \exists \delta \ \exists \mathbb{T} : \Delta_{\mathbb{T}} < \delta : |\, \mathcal{I} - \mathbf{S}\,| < \varepsilon \end{split}$$

3.
$$\underline{\mathbf{S}}(\mathbb{T},\xi) = \inf_{\xi} \sigma(f,\mathbb{T},\xi)$$

 $\forall \mathbb{T}, \, \forall \, \varepsilon > 0 \, \exists \xi : |\underline{\mathbf{S}} - \sigma| < \varepsilon$

$$|\mathcal{I} - \mathcal{I}| \le |\mathcal{I} - \mathcal{I} - \sigma + \sigma + S - S| \le |\mathcal{I} - \sigma| + |\mathcal{I} - S| + |\sigma - S| < 3\varepsilon$$

Доказательство. Достаточность

f — ограничена и $\underline{\mathcal{I}} = \overline{\mathcal{I}}$. Имеем

$$\underline{\mathbf{S}}(f,\mathcal{T}) = \inf_{\xi} \leqslant \sigma(f,\mathbb{T},\xi) \leqslant \sup_{\xi} (f,\mathbb{T},\xi) = \overline{\mathbf{S}}(f,\mathbb{T})$$

Тогда, при $\lim_{\Delta_{\mathbb{T}}\to 0} \underline{S} = \underline{\mathcal{I}}$, $\lim_{\Delta_{\mathbb{T}}\to 0} \overline{S} = \overline{\mathcal{I}}$ получаем $\underline{\mathcal{I}} = \overline{\mathcal{I}}$ (Условие ограниченности f даёт нам возможность применять неравенство выше)

3.12 Утверждение о независимости определения допустимого множества от выбора бруса

Пусть $D \subset I_1 \subset \mathbb{R}^n, D \subset I_2 \subset \mathbb{R}^n$ - замкнутые брусы, тогда

$$\int_{I_1} f \cdot \chi_D \mathrm{d}x$$
 и $\int_{I_2} f \cdot \chi_D \mathrm{d}x$

либо существуют и равны, либо оба не существуют вообще

Как выглядят наши множества I_1, I_2, I, D

Доказательство. Введем $I = I_1 \cap I_2 \supset D$, I не пустое по построению. Покажем существование

• $f \cdot \chi_D \in \mathcal{R}(I_1) \Longrightarrow$ по критерию Лебега $f \cdot \chi_D$ ограничена на $I_1 \Longrightarrow f \cdot \chi_D$ ограничена на $D \Longrightarrow f$ ограничена на I_2

- $f \cdot \chi_D \in \mathcal{R}(I_1) \Longrightarrow$ по критерию Лебега $f \cdot \chi_D$ непрерывна почти всюду на $I_1 \Longrightarrow f \cdot \chi_D$ непрерынва почти всюду на $D \Longrightarrow$ в худшем случае для $f \cdot \chi_D$ на I_2 добавятся разрывы на $\partial D \Longrightarrow f \cdot \chi_D$ непрерынва почти всюду на I_2
- Тогда, $f \cdot \chi_D \in \mathcal{R}(I_1) \Longleftrightarrow f \cdot \chi_D \in \mathcal{R}(I_2)$

Покажем равенство

- ullet Пусть \mathbb{T}_i разбиение на $I_i:\mathbb{T}_1$ и \mathbb{T}_2 совпадают на I
- ullet Пусть ξ^i отмеченные точки для \mathbb{T}_i

$$\bullet \ \ \sigma(f\chi_D, \mathbb{T}_1, \xi^1) = \sum_j f\chi_D(\xi^1_j) |I^1_j| = \sum_j f(\xi^1_j) |I^1_j| = \sum_j f(\xi^2_j) |I^2_j| = \sum_j f\chi_D(\xi^2_j) |I^2_j| = \sigma(f\chi_D, \mathbb{T}_2, \xi^2)$$

Примечание. Все свойства интеграла Римана и критерия Лебега для бруса справедливы и для других допустимых множеств

3.13 Теорема Фубини о переходе к повторному интегралу

Пусть имеются $I_x \subset \mathbb{R}^n, I_y \subset \mathbb{R}^m, I_x \times I_y \subset \mathbb{R}^{m+n}$ — замкнутые брусы, $f: I_x \times I_y \to \mathbb{R}, f \in \mathcal{R}(I_x \times I_y)$ и \forall фиксированного $x \in I_x \Longrightarrow f(x,y) \in \mathcal{R}(I_y) \Longrightarrow$

$$\int_{I_x \times I_y} f(\overline{x}, \overline{y}) d\overline{x} d\overline{y} = \int_{I_x} \left(\int_{I_y} f(\overline{x}, \overline{y}) d\overline{y} \right) d\overline{x} = \int_{I_x} d\overline{x} \int_{I_y} f(\overline{x}, \overline{y}) d\overline{y}$$

Примечание. аналагочино, если взять для \forall фиксированного $y \in I_y$

Доказательство. Воспользуемся тем, что $f \in \mathcal{R}(I_x \times I_y), f \in \mathcal{R}(I_y)$, а также Критерием Дарбу

• $\mathbb{T}_x = \{I_i^x\}$ — разбиение на I_x , $\mathbb{T}_y = \{I_j^y\}$ — разбиение на I_y , $\mathbb{T}_{x,y} = \{I_i^x \times I_j^y\} = \{I_{ij}\}$ — разбиение на $I_x \times I_y$, и при этом верно $|I_i^x| \cdot |I_j^y| = |I_{ij}|$

$$\underline{S}(f, \mathbb{T}_{x,y}) = \sum_{i,j} \inf_{(x,y) \in I_{ij}} f(x,y) |I_{ij}| \underset{\text{puc. Hume}}{\leqslant} \sum_{i,j} \inf_{x \in I_i^x} \left(\inf_{y \in I_j^y} f(x,y) \cdot |I_j^y| \right) |I_i^x| = \sum_{i} \inf_{I_i^x} \underbrace{\left(\sum_{j} \inf_{I_j^y} f(x,y) |I_j^y| \right)}_{\underline{S}(f(y), \mathbb{T}_y)} |I_i^x|$$

$$\leqslant \sum_{i} \inf_{I_i^x} \underbrace{\left(\int_{I_y} f(x,y) dy \right)}_{g(x)} |I_i^x| \leqslant \underline{S}(g(x), \mathbb{T}_x)$$

$$\leqslant \overline{S}(g(x), \mathbb{T}_x)$$

$$\underline{\mathbf{S}}(f, \mathbb{T}_{x,y}) \leqslant \underline{\mathbf{S}}(g(x), \mathbb{T}_x) \leqslant \overline{\mathbf{S}}(g(x), \mathbb{T}_x) \leqslant \overline{\mathbf{S}}(f, \mathbb{T}_{x,y}) \Longrightarrow \exists \, \overline{\mathcal{I}} = \lim_{\delta \to 0} \underline{\mathbf{S}}(g(x), \mathbb{T}_x) = \int_{\mathbb{T}_{x,y}} f(\overline{x}, \overline{y}) \mathrm{d}\overline{x} \mathrm{d}\overline{y}$$

Примечание. Последний знак неравенства, получен аналогичными действиями для длинного неравенства выше, просто развернув в обратную сторону знаки неравенства для sup

3.14 Супремальный критерий равномерной сходимости функциональной последовательности

Теорема.
$$f_n \stackrel{D}{\rightrightarrows} f \Longleftrightarrow \lim_{n \to \infty} \left(\sup_{D} |f_n(x) - f(x)| \right) = 0$$

Доказательство. Докажем необходимость ()

Заметим, что $\sup_{D} |f_n(x) - f(x)| \ge 0$. Тогда,

$$\forall \varepsilon > 0 \ \exists N: \ \forall n > N, \forall x \in D \hookrightarrow \sup_{D} |f_n(x) - f(x)| < \varepsilon$$

$$f_n \stackrel{D}{\rightrightarrows} f \Longrightarrow \forall \, \varepsilon > 0 \, \exists N : \forall n > N, \, \forall x \in D \hookrightarrow |f_n(x) - f(x)| < \frac{\varepsilon}{2}$$

В худшем случае, $\sup_{D} |f_n(x) - f(x)| \leqslant \frac{\varepsilon}{2} < \varepsilon$

Доказательство. Докажем достаточность ()

$$\forall \, \varepsilon > 0 \,\, \exists N : \forall n > N \hookrightarrow \sup_{D} |f_n(x) - f(x)| < \varepsilon, \,\,$$
 тем более $\forall x \in D \,\,\sup \geqslant |f_n(x) - f(x)|$

Тогда,
$$f_n \stackrel{D}{\rightrightarrows} f$$

Примечание. $f \Rightarrow f \Longrightarrow f_n \longrightarrow f$, но в обратную сторону это не работает

3.15 Критерий Коши равномерной сходимости функциональной последовательности

Теорема.
$$f_n(x) \stackrel{D}{\rightrightarrows} f(x) \Longleftrightarrow \forall \, \varepsilon > 0 \,\, \exists N: \,\, \forall n,m>N, \, \forall x \in D \hookrightarrow |f_n(x)-f_m(x)| < \varepsilon$$

Доказательство. ⇒ Докажем необходимость

Так как
$$f_n(x) \stackrel{D}{\rightrightarrows} f(x)$$
, то

$$\forall \varepsilon > 0 \ \exists N : \forall n > N \ \forall x \in D \hookrightarrow |f_n(x) - f(x)| < \frac{\varepsilon}{2}$$

Рассмотрим
$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Таким образом, мы показали, что $\forall \varepsilon > 0 \ \exists N: \ \forall n,m > N, \ \forall x \in D \hookrightarrow |f_n(x) - f_m(x)| < \varepsilon$

Распишем определение равномерной сходимости:

$$\forall \varepsilon > 0 \ \exists N : \ \forall n, m > N, \ \exists x \in D : \ |f_n(x) - f_m(x)| < \frac{\varepsilon}{2}$$

Зафиксируем $x_0 \in D \Longrightarrow \exists \lim_{n \to \infty} f_n(x_0) = f(x_0)^1$

$$x_0 \in D: \forall \varepsilon > 0 \exists N: \forall n, m > N: |f_n(x_0) - f_m(x_0)| < \frac{\varepsilon}{2}$$

В худшем случае, $\forall x \in D$: при $m \to \infty \ |f_n(x) - f(x)| \leqslant \frac{\varepsilon}{2} < \varepsilon$

Тогда,

$$\forall \varepsilon > 0 \ \exists N : \ \forall n > N \ \forall x \in D \hookrightarrow |f_n(x) - f(x)| < \varepsilon$$

 $^{^{1}}$ по критерию Коши для числовой последовательности $f_{n}(x_{0})$

Примечание. Отрицание Критерия Коши:

$$f_n(x) \stackrel{D}{\not\rightrightarrows} f(x) \Longleftrightarrow \exists \varepsilon_0 > 0 \ \forall N: \ \exists n,m > N, \ \exists x_0 \in D \ |f_n(x) - f_m(x)| \geqslant \varepsilon_0$$

3.16 Теорема о почленном переходе к пределу для функциональной последовательности

Теорема. Пусть $f_n, f: D \longrightarrow \mathbb{R}, \ x_0$ — предельная точка $D, \ f_n \stackrel{D}{\rightrightarrows} f, \ \forall n \in \mathbb{N} \ \exists \lim_{x \to x_0} f_n(x) = c_n$

Тогда,

$$\exists \lim_{n \to \infty} c_n = \lim_{x \to x_0} f(x)$$
(или
$$\lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x) \right) = \lim_{x \to x_0} \left(\lim_{n \to \infty} f_n(x) \right)$$

Доказательство. Сначала покажем, что $\exists \lim_{n \to \infty} c_n = c$, а потом что $\exists c = \lim_{n \to \infty} c_n$

- 1. Рассмотрим $|c_n-c| \leq \underbrace{|c_n-f_n|}_{(a)} + \underbrace{|f_n-f_m|}_{(b)} + |\underbrace{f_m-c_m|}_{(c)} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$
- (a), (c) По условию, $\forall n \in \mathbb{N} \ \exists \lim_{x \to x_0} f_n(x) = c_n$ получим

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in \overset{\circ}{B_{\delta}}(x_0) \cap D \hookrightarrow |f_n(x) - c_n| < \frac{\varepsilon}{3}$$

(b) $f_n \stackrel{D}{\rightrightarrows} f \Longrightarrow$ по Критерию Коши

$$\forall \varepsilon > 0 \ \exists N : \forall n, m > N \ \forall x \in D \hookrightarrow |f_n(x) - f_m(x)| < \frac{\varepsilon}{3}$$

Получаем, что $\forall x \in \overset{\circ}{B_{\delta}}(x_0)$

Собираем:
$$\forall \varepsilon > 0 \ \exists N : \forall n,m > N : \forall x \in \overset{\circ}{B_{\delta}}(x_0) : |c_n - c_m| < \varepsilon \Longrightarrow \exists c = \lim_{n \to \infty} c_n$$

- 2. Теперь покажем, что $\exists \lim_{x \to x_0} f(x) = c$, то есть $\forall \varepsilon > 0 \exists \delta : \forall x \in \overset{\circ}{B}_{\delta}(x_0) : |f(x) c| < \varepsilon$ Рассмотрим $|f(x) c| \leqslant \underbrace{|f(x) f_n(x)|}_{(a)} + \underbrace{|f_n(x) c_n|}_{(b)} + \underbrace{|c_n c|}_{(c)}$
 - (a) $f_n \stackrel{D}{\rightrightarrows} f(x) \Longrightarrow \forall \varepsilon > 0 \exists N_1 : \forall n > N_1 \forall x \in D : |f_n(x) f(x)| < \frac{\varepsilon}{3}$
 - (b) $\forall n \in \mathbb{N} \exists \lim_{x \to x_0} f_n(x) = c_n \Longrightarrow \forall \varepsilon > 0 \ \exists \delta : \forall x \in \overset{\circ}{B_{\delta}}(x_0) \hookrightarrow |f_n(x) c_n| < \frac{\varepsilon}{3}$
 - (с) По доказанному в п. 1 следует, что

$$\exists \lim_{n \to \infty} c_n = c \Longrightarrow \forall \, \varepsilon > 0 \, \exists N_2 \, \forall n > N_2 \hookrightarrow |c_n - c| < \frac{\varepsilon}{3}$$

Собираем:
$$\forall \varepsilon > 0 \ (\exists N = \max(N_1, N_2)) \ \exists \delta > 0 : \ \forall x \in \overset{\circ}{B_{\delta}}(x_0) : |f(x) - c| < \varepsilon$$

3.17 Теорема о непрерывности предельной функции

$$\left.\begin{array}{l} f_n,f:D\longrightarrow\mathbb{R},\\ \\ \mathbf{Teopema.} \ \Pi \text{усть имеется} \ f_n\stackrel{D}{\rightrightarrows}f,\\ \\ \forall n\in\mathbb{N} \ f_n\in C(D) \end{array}\right\}\Longrightarrow f\in C(D)$$

Доказательство. Нужно доказать, что $f \in C(D)$. Значит, надо показать, что

$$\forall x_0 \in D : \forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in B_{\delta}(x_0) \cap D \hookrightarrow |f(x) - f(x_0)|$$

Рассмотрим
$$|f(x) - f(x_0)| \le \underbrace{|f(x) - f_n(x)|}_{(1)} + \underbrace{|f_n(x) - f_n(x_0)|}_{(2)} + \underbrace{|f_n(x_0) - f(x_0)|}_{(3)} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

- 1. $f_n \stackrel{D}{\Rightarrow} f : \forall \varepsilon > 0 \ \exists N : \forall n > N, \ \forall x \in D \hookrightarrow |f_n(x) f(x)| < \frac{\varepsilon}{3}$
- 2. Так как $\forall n \in \mathbb{N}$ $f_n \in C(D) \Longrightarrow \forall x_0 \in D, \ \forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in B_\delta(x_0) \cap D \hookrightarrow |f_n(x) f_n(x_0)| < \frac{\varepsilon}{3}$
- 3. $f_n \stackrel{D}{\rightrightarrows} f : \forall \varepsilon > 0 \ \exists N : \forall n > N, \ \forall x_0 \in D \hookrightarrow |f_n(x_0) f(x_0)| < \frac{\varepsilon}{3}$

Тогда, собрав три части, получим, что $\forall x_0 \in D$

$$\forall \varepsilon > 0 \ \exists \delta > 0 : (\exists N : \forall n > N) \ \forall x \in B_{\delta}(x_0) \cap D \hookrightarrow |f(x) - f(x_0)| < \varepsilon \Longrightarrow f(x) \in C(x_0) \ \forall x_0 \in D$$
$$\Longrightarrow f(x) \in C(D)$$

3.18 Утверждение о неравномерной сходимости фун. послед. наличии разрыва

 $f_n \in C\left([a;b)\right),$ Теорема. Пусть имеется $f \in C((a;b))$ + разрыв в т.a, $f_n \stackrel{(a;b)}{\Longrightarrow} f$

То есть будет поточечная сходимость, но не будет равномерной:

$$f_n \stackrel{(a;b)}{\longrightarrow} f$$
, но не $f_n \stackrel{(a;b)}{\Longrightarrow} f$

Доказательство. От противного

- 1. Пусть $f_n \stackrel{(a;b)}{\Rightarrow} f \Longrightarrow \forall \, \varepsilon > 0 \,\, \exists N : \forall n > N \,\, \forall x \in [a;b) \hookrightarrow |f_n(x) f(x)| < \varepsilon$
- 2. $f_n \xrightarrow{[a;b)} f \Longrightarrow f_n(a) \longrightarrow f(a) \Longrightarrow \forall \varepsilon > 0 \ \exists N_2 : \forall n > N_2 \hookrightarrow |f_n(a) f(a)| < \varepsilon$
- 3. $f_n \stackrel{[a;b)}{\Rightarrow} f$, так как $\forall \varepsilon > 0 \ \exists N = \max(N_1,N_2) \ \forall n > N, \ \forall x \in [a;b) \hookrightarrow |f_n(x) f(x)| < \varepsilon$
- 4. Получаем, что

$$\begin{cases} f_n \stackrel{[a;b)}{\Rightarrow} f \\ f_n \in C([a;b)) \end{cases}$$

Тогда, по теореме о непрерывности предельной функции следует, что $f \in C([a;b))$, но f имеет разрыв в точке a. Противоречие

3.19 Утверждение о неравномерной сходимости фун. послед. при наличии расходимости в точке

$$\left.\begin{array}{l} f_n\in C\left([a;b)\right)\\ \text{Теорема.} \ \Pi \text{усть имеется} \ f_n\stackrel{(a;b)}{\longrightarrow} f\\ \not\exists \lim_{n\to\infty} f_n(a) \end{array}\right\} \Longrightarrow f_n\stackrel{(a;b)}{\not\rightrightarrows} f$$

Доказательство. От противного

1. Пусть
$$f_n \stackrel{(a;b)}{\rightrightarrows} f \Longrightarrow \forall \, \varepsilon > 0 \,\, \exists N : \forall n,m > N \,\, \forall x \in (a;b) \hookrightarrow |f_n(x) - f_m(x)| < \frac{\varepsilon}{3}$$

2. $f_n \in C([a;b))$, тогда

$$\forall x_0 \in [a;b): \ \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall x \in B_\delta(x_0) \cap [a;b) \hookrightarrow |f_n(x) - f_n(x_0)| < \frac{\varepsilon}{3}$$

В частности, это верно для $x_0 = a$:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in \mathring{B}_{\delta}(a) \cap (a;b)^2 \hookrightarrow |f_n(x) - f_n(a)| < \frac{\varepsilon}{3}$$

3. Рассмотрим

$$|f_n(a) - f_m(a)| \leqslant \underbrace{|f_n(a) - f_n(x)|}_{\text{HO II 2}} + \underbrace{|f_n(x) - f_m(x)|}_{\text{HO II 1}} + \underbrace{|f_m(x) - f_m(a)|}_{\text{HO II 2}} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

получаем, что

$$\forall \varepsilon > 0 \ \exists N(\exists \delta > 0): \ \forall n, m > N(\forall x \in \overset{\circ}{B_{\delta}}(a) \cap (a; b)) \hookrightarrow |f_n(a) - f_m(a)| < \varepsilon$$

то есть, по Критерию Коши для числовой последовательности $\exists \lim_{n \to \infty} f_n(a)$, что противоречит условию, а значит $f_n \not\rightrightarrows f$

3.20 Теорема о почленном интегрировании функциональной последовательности

$$\begin{array}{c} f_n,f:[a;b]\to\mathbb{R}\\ \\ \textbf{Теорема.} \ \Pi \text{усть имеется} \ f_n\stackrel{[a;b]}{\rightrightarrows}f\\ \\ f_n\in\mathcal{R}([a;b])\forall n\in\mathbb{N} \end{array} \} \Longrightarrow f\in\mathcal{R}([a;b]) \ \text{и} \ \lim_{n\to\infty}\int\limits_a^b f_n(x)\mathrm{d}x = \int\limits_a^b f(x)\mathrm{d}x$$

Доказательство. По Критерию Дарбу $f \in \mathcal{R}([a;b]) \Longleftrightarrow f$ — ограничена на [a;b] и $\underline{\mathcal{I}} = \overline{\mathcal{I}}$

• Покажем ограниченность

1.
$$\forall n \in \mathbb{N}: \ f_n \in \mathcal{R}([a;b]) \Longrightarrow f_n$$
 ограничена на $[a;b]$ и

$$\forall n \in \mathbb{N} \ \exists M_n \geqslant 0 \ \forall x \in [a;b] \hookrightarrow |f_n(x)| \leqslant M_n$$

2.
$$f_n \stackrel{[a;b]}{\Longrightarrow} f$$
, тогда $\forall \varepsilon > 0 \ \exists N: \ \forall n > N \ \forall x \in [a;b] \hookrightarrow |f_n(x) - f(x)| < \varepsilon$ Рассмотрим $\varepsilon = 1$, тогда $\exists N_1 = N: \ \forall x \in [a;b] \hookrightarrow |f_{N_1+1}(x) - f(x)| < 1$ Тогда, для $f(x)$ верно $\forall x \in [a;b]$

$$|f(x)| \le |f(x) - f_{N_1+1}(x)| + |f_{N_1+1}(x)| < 1 + M_{N_1+1},$$

то есть f(x) — ограничена

 $^{^2}$ верно $\forall x \in B_\delta(a) \cap [a;b)$, а потому a выколота

• Покажем интегрируемость

Напомним, что
$$\overline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \overline{\mathbf{S}}(f, \mathbb{T})$$
 и $\underline{\mathcal{I}} = \lim_{\Delta_{\mathbb{T}} \to 0} \underline{\mathbf{S}}(f, \mathbb{T})$

Рассмотрим \mathbb{T} — разбиение [a;b]

$$|\underline{\mathbf{S}}(f, \mathbb{T}) - \overline{\mathbf{S}}(f, \mathbb{T})| \leqslant \underbrace{|\underline{\mathbf{S}}(f, \mathbb{T}) - \underline{\mathbf{S}}(f_n, \mathbb{T})|}_{(1)} + \underbrace{|\underline{\mathbf{S}}(f_n, \mathbb{T}) - \overline{\mathbf{S}}(f_n, \mathbb{T})|}_{(2)} + \underbrace{|\overline{\mathbf{S}}(f_n, \mathbb{T}) - \overline{\mathbf{S}}(f, \mathbb{T})|}_{(3)}$$

(1) Распишем в виде неравенств

$$|\underline{\mathbf{S}}(f, \mathbb{T}) - \underline{\mathbf{S}}(f_n, \mathbb{T})| \leqslant \sum_{i} |\inf_{I_i}(f) - \inf_{I_i}(f_n)||I_i| \leqslant \sum_{i} \sup_{I_i} |f - f_n| \cdot |I_i| \leqslant \sup_{[a;b]} |f - f_n| \cdot |b - a| < \frac{\varepsilon}{3}$$

Так как $f_n \stackrel{[a;b]}{
ightharpoons} f$, то по супремальному критерию:

$$\forall \varepsilon > 0 \ \exists N : \ \forall n > N \hookrightarrow \sup_{[a;b]} |f - f_n| < \frac{\varepsilon}{3|b - a|}$$

(2)
$$f_n \in \mathcal{R}([a;b]) \Longrightarrow$$

$$\forall \, \varepsilon > 0 \,\, \exists \delta > 0: \,\, \forall \, \mathbb{T}: \,\, \Delta_{\mathbb{T}} < \delta \,\, |\, \underline{\mathrm{S}}(f_n,\mathbb{T}) - \overline{\mathrm{S}}(f_n,\mathbb{T})| < \frac{\varepsilon}{3}$$

(3) Аналогично (1):
$$|\overline{\mathrm{S}}(f_n,\mathbb{T})-\overline{\mathrm{S}}(f,\mathbb{T})|\leqslant \sup_{[a;b]}|f-f_n|<rac{arepsilon}{3}$$

Получаем, что

$$\forall\,\varepsilon>0\,\,\exists\delta>0\,\,(\exists N)\,\,\forall\,\mathbb{T}:\,\,\Delta_{\mathbb{T}}<\delta\,\,(\forall n>N)\hookrightarrow |\,\underline{\mathbf{S}}(f,\mathbb{T})-\overline{\mathbf{S}}(f,\mathbb{T})|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon$$

$$\implies f(x) \in \mathcal{R}([a;b])$$

• Покажем, что $\lim_{n\to\infty}\int\limits_{-\infty}^b f_n(x)\mathrm{d}x=\int\limits_{-\infty}^b f(x)\mathrm{d}x$

Рассмотрим

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| \leqslant \int_{a}^{b} |f_{n}(x) - f(x)| dx \leqslant \sup_{[a;b]} |f_{n}(x) - f(x)| \cdot |b - a| < \varepsilon$$

Так как $f_n \stackrel{[a;b]}{\Rightarrow} f$, то $\forall \, \varepsilon > 0 \,\, \exists N: \,\, \forall n > N \,\, \sup_{[a;b]} |f_n(x) - f(x)| < rac{arepsilon}{|b-a|}$ и получаем, что

$$\forall \varepsilon > 0 \ \exists N : \ \forall n > N \hookrightarrow \left| \int_a^b f_n(x) dx - \int_a^b f(x) dx \right| < \varepsilon$$

3.21 Теорема о почленном дифференцировании функциональной последовательности

Теорема о почленном дифференцировании функ
$$\begin{cases} f_n, f, g: [a;b] \to \mathbb{R} \\ f_n \in D([a;b]) \\ \exists c \in [a;b]: \exists \lim_{n \to \infty} f_n(c) \\ \exists g(x): \ f_n' \stackrel{[a;b]}{\Rightarrow} g(x) \end{cases} \Longrightarrow \begin{matrix} \exists f: \ f_n \stackrel{[a;b]}{\Rightarrow} f \\ \oplus f'(x) = g(x) \end{cases}$$

Доказательство. Покажем существование

Теорема. (Лагранжа) $f \in C([a,b]), f \in D((a,b)) \Longrightarrow \exists c \in (a,b): f(b) - f(a) = f'(c)(b-a)$

1. Рассмотрим $\varphi(x) = f_n(x) - f_m(x)$

$$2. \ \forall n \in \mathbb{N} \ f_n \in D([a;b]) \Longrightarrow f_n \in C([a;b]) \Longrightarrow \varphi(x) \in D([a;b]) \ \text{и} \ \varphi(x) \in C([a;b])$$

3. Рассмотрим: для c из условия теоремы Лагранжа

$$\varphi(x) - \varphi(c) = \varphi'(\xi) \cdot (x - c)$$
, где $\xi \in [c; x]$ ($[x; c]$)

Тогда, $\varphi(x) = \varphi'(\xi)(c-x) + \varphi(x)$

4. Оценим
$$|\varphi(x)| \leq |\varphi'(\xi)| \cdot |c-x| + |\varphi(c)| = \underbrace{|f_n'(\xi) - f_m'(\xi)|}_{\star} \cdot |c-x| + \underbrace{|f_n(c) - f_m(c)|}_{\star\star}$$

$$\star f_n' \overset{[a;b]}{\Rightarrow} g(x) \Longrightarrow \forall \varepsilon > 0 \ \exists N_1: \ \forall n,m > N_1 \ \forall x \in [a;b] \hookrightarrow |f_n'(\xi) - f_m'(\xi)| < \frac{\varepsilon}{2|b-a|}$$

$$\star \star \ \exists \lim_{n \to \infty} f_n(c) \Longrightarrow \forall \varepsilon > 0 \ \exists N_2: \ \forall n,m > N_2 \hookrightarrow |f_n(c) - f_m(c)| < \frac{\varepsilon}{2}$$

Тогда,

$$|\varphi(x)| \leqslant |\varphi'(\xi)| \cdot |c-x| + |\varphi(c)| = \underbrace{|f_n'(\xi) - f_m'(\xi)|}_{+} \cdot |c-x| + \underbrace{|f_n(c) - f_m(c)|}_{+} < \frac{\varepsilon}{2|b-a|} \cdot |c-x| + \frac{\varepsilon}{2} < \varepsilon$$

то есть

$$\forall \varepsilon > 0 \ \exists N = \max\{N_1, N_2\} : \ \forall n, m > N \ \forall x \in [a; b] \hookrightarrow |\varphi(x)| = |f_n(x) - f_m(x)| < \varepsilon \Longrightarrow \exists f : f_n \overset{[a; b]}{\Longrightarrow} f(x) = f_n(x) + f_n(x) = f_n(x) = f_n(x) + f_n(x) = f_n($$

Доказательство. Покажем, что f'(x) = g(x)

Пусть имеется $x_0 \in [a; b]$, но он произвольный

1. Рассмотрим $\psi_n(x) = \frac{f_n(x) - f_n(x_0)}{x - x_0}$

Покажем по Критерию Коши, что $\psi_n(x) \stackrel{[a;b]}{\rightrightarrows}$

$$|\psi_n(x) - \psi_m(x)| = \left| \frac{f_n(x) - f_n(x_0) - f_m(x) + f_m(x_0)}{x - x_0} \right|$$

$$= \left| \frac{(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))}{x - x_0} \right|$$

$$= \left| \frac{\varphi(x) - \varphi(x_0)}{x - x_0} \right|$$

$$\exists \xi \in [x_0, x]$$

$$= \frac{|\varphi'(\xi)||x - x_0|}{|x - x_0|}$$

$$= |\varphi'(\xi)|$$

$$= |f'_n(\xi) - f'_m(\xi)| < \varepsilon$$

так как $f_n \stackrel{[a;b]}{\Longrightarrow}$, то есть

$$\forall \varepsilon > 0, \exists N, \forall n, m > N, \forall x \in [a, b] \hookrightarrow |f'_n(x) - f'_m(x)| < \varepsilon$$

TO $\psi \stackrel{[a;b]}{\Longrightarrow}$

2.
$$\forall n \in \mathbb{N}, \exists \lim_{x \to x_0} \psi_n(x) = \lim_{x \to x_0} \frac{f_n(x) - f_n(x_0)}{x - x_0} = f_n'(x_0), \text{ так как } f_n \in D([a,b])$$

Получаем, что $\psi_n(x) \stackrel{[a,b]}{\Rightarrow}$ и $\forall n \in \mathbb{N}, \exists \lim_{x \to x_0} \psi_n(x) = f_n'(x_0)$, тогда по теореме о почленном переходе к пределу

$$g(x_0) = \lim_{n \to \infty} f'_n(x_0)$$

$$= \lim_{n \to \infty} \lim_{x \to x_0} \psi_n(x)$$

$$= \lim_{n \to \infty} \lim_{x \to x_0} \left(\frac{f_n(x) - f_n(x_0)}{x - x_0} \right)$$

$$= \lim_{x \to x_0} \lim_{n \to \infty} \left(\frac{f_n(x) - f_n(x_0)}{x - x_0} \right)$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$= f'(x_0)$$

3.22 Сравнительный признак равномерной сходимости функционального ряда

$$\left. \begin{array}{l} \displaystyle \sum_{n=1}^{\infty} a_n(x) \text{ и } \sum_{n=1}^{\infty} b_n(x) : \\ \text{Теорема. Имеется } \exists N \; \forall n > N \; \forall x \in D \; |a_n(x)| \leqslant b_n(x) \\ \displaystyle \sum_{n=1}^{\infty} b_n(x) \overset{D}{\Rightarrow} \end{array} \right\} \Longrightarrow \sum_{n=1}^{\infty} a_n(x) \overset{D}{\Rightarrow} \text{ и } \sum_{n=1}^{\infty} a_n(x) \; \text{сходится абсолютно } D$$

Доказательство. Докажем по критерию Коши

$$(\star) \quad |a_{m+1}(x) + \ldots + a_k(x)| \leqslant |a_{m+1}(x)| + \ldots + |a_k(x)| \leqslant \sum_{\forall m, k > N \forall x \in D} b_{m+1}(x) + \ldots + b_k(x) \leqslant \sum_{\forall m, k > N \forall x \in D} \varepsilon$$

Получаем, что

$$\forall \varepsilon > 0 \ \exists \tilde{N} = \max\{N, N_1\} : \forall k > m > \tilde{N} \ \forall x \in D \hookrightarrow |a_{m+1}(x) + \ldots + a_k(x)| < \varepsilon \Longrightarrow \sum_{n=1}^{\infty} a_n(x) \overset{D}{\Longrightarrow}$$

Так как (\star) выполняется для любого $x \in D$, то $\forall x_0 \in D$ выполняется

$$\forall \varepsilon > 0 \ \exists \widetilde{N} = \max\{N, N_1\} : \forall k > m > \widetilde{N} \hookrightarrow |a_{m+1}(x)| + \ldots + |a_k(x)| < \varepsilon,$$

то есть $\sum_{n=1}^{\infty} |a_n(x_0)|$ — сходится, а значит сходится абсолютно $\forall x_0 \in D$

3.23 Мажорантный признак Вейерштрасса о равномерной сходимости функционального ряда

$$\left. \begin{array}{l} \displaystyle \sum_{n=1}^{\infty} a_n(x): \\ \\ \displaystyle \sum_{n=1}^{\infty} A_n(x) > N \sup_{D} |a_n(x)| \leqslant M_n \\ \\ \displaystyle \sum_{n=1}^{\infty} M_n - \operatorname{сходится} \end{array} \right\} \Longrightarrow \sum_{n=1}^{\infty} a_n \overset{D}{\rightrightarrows}$$

Доказательство. Если в признаке сравнения принять, что $\forall n \in \mathbb{N} \ b_n(x) = M_n = \mathrm{const}(n)$, то условие теоремы выполняется