A - Lucky 7

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 100 points

Problem Statement

Given is a three-digit integer N. Does N contain the digit 7?

If so, print 'Yes'; otherwise, print 'No'.

Constraints

• $100 \le N \le 999$

Input

Input is given from Standard Input in the following format:

N

Output

If N contains the digit 7, print 'Yes'; otherwise, print 'No'.

Sample Input 1

117

Sample Output 1

Yes

117 contains 7 as its last digit.

Sample Input 2

Sample Output 2

No

123 does not contain the digit 7.

Sample Input 3

777

Sample Output 3

Yes

B - FizzBuzz Sum

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 200 points

Problem Statement

Let us define the **FizzBuzz sequence** a_1, a_2, \ldots as follows:

- If both 3 and 5 divides $i, a_i = \text{FizzBuzz}$.
- If the above does not hold but 3 divides $i, a_i = \text{Fizz}$.
- If none of the above holds but 5 divides $i, a_i = \mathrm{Buzz}$.
- If none of the above holds, $a_i = i$.

Find the sum of all numbers among the first N terms of the FizzBuzz sequence.

Constraints

• $1 < N < 10^6$

Input

Input is given from Standard Input in the following format:

N

Output

Print the sum of all numbers among the first N terms of the FizzBuzz sequence.

Sample Input 1

15

Sample Output 1

60

The first 15 terms of the FizzBuzz sequence are:

1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11, Fizz, 13, 14, FizzBuzz

Among them, numbers are 1, 2, 4, 7, 8, 11, 13, 14, and the sum of them is 60.

1000000

Sample Output 2

266666333332

Watch out for overflow.

C - Sum of gcd of Tuples (Easy)

Time Limit: 2 sec / Memory Limit: 1024 MB

 $\mathsf{Score}: 300\,\mathsf{points}$

Problem Statement

Find
$$\sum_{a=1}^K \sum_{b=1}^K \sum_{c=1}^K \gcd(a,b,c)$$
.

Here gcd(a, b, c) denotes the greatest common divisor of a, b, and c.

Constraints

- $1 \le K \le 200$
- *K* is an integer.

Input

Input is given from Standard Input in the following format:

K

Output

Print the value of $\sum_{a=1}^K \sum_{b=1}^K \sum_{c=1}^K \gcd(a,b,c)$.

Sample Input 1

2

Sample Output 1

9

$$\gcd(1,1,1) + \gcd(1,1,2) + \gcd(1,2,1) + \gcd(1,2,2) \\ + \gcd(2,1,1) + \gcd(2,1,2) + \gcd(2,2,1) + \gcd(2,2,2) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 2 = 9$$

Thus, the answer is 9.

200

Sample Output 2

D-RGB Triplets

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 400 points

Problem Statement

We have a string S of length N consisting of 'R', 'G', and 'B'.

Find the number of triples (i, j, k) $(1 \le i < j < k \le N)$ that satisfy both of the following conditions:

- $S_i
 eq S_j, S_i
 eq S_k$, and $S_j
 eq S_k$.
- $j-i \neq k-j$.

Constraints

- $1 \le N \le 4000$
- S is a string of length N consisting of 'R', 'G', and 'B'.

Input

Input is given from Standard Input in the following format:

 $N \ S$

Output

Print the number of triplets in question.

Sample Input 1

4 RRGB

Sample Output 1

1

Only the triplet (1, 3, 4) satisfies both conditions. The triplet (2, 3, 4) satisfies the first condition but not the second, so it does not count.

39

RBRBGRBGGBBRRGBBRRRBGGBRBGBRBBBGBBB

Sample Output 2

E - Sum of gcd of Tuples (Hard)

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 500 points

Problem Statement

Consider sequences $\{A_1, \ldots, A_N\}$ of length N consisting of integers between 1 and K (inclusive).

There are K^N such sequences. Find the sum of $\gcd(A_1,\ldots,A_N)$ over all of them.

Since this sum can be enormous, print the value modulo $(10^9 + 7)$.

Here $\gcd(A_1,\ldots,A_N)$ denotes the greatest common divisor of A_1,\ldots,A_N .

Constraints

- $2 \le N \le 10^5$
- $1 < K < 10^5$
- All values in input are integers.

Input

Input is given from Standard Input in the following format:

N K

Output

Print the sum of $\gcd(A_1,\ldots,A_N)$ over all K^N sequences, modulo (10^9+7) .

Sample Input 1

3 2

Sample Output 1

9

$$\gcd(1,1,1) + \gcd(1,1,2) + \gcd(1,2,1) + \gcd(1,2,2) \\ + \gcd(2,1,1) + \gcd(2,1,2) + \gcd(2,2,1) + \gcd(2,2,2) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 2 = 9$$

Thus, the answer is 9.

3 200

Sample Output 2

10813692

Sample Input 3

100000 100000

Sample Output 3

742202979

Be sure to print the sum modulo $(10^9 + 7)$.

F - Select Half

Time Limit: 2 sec / Memory Limit: 1024 MB

Score: 600 points

Problem Statement

Given is an integer sequence A_1, \ldots, A_N of length N.

We will choose exactly $\left\lfloor \frac{N}{2} \right\rfloor$ elements from this sequence so that no two adjacent elements are chosen.

Find the maximum possible sum of the chosen elements.

Here |x| denotes the greatest integer not greater than x.

Constraints

- $2 \le N \le 2 \times 10^5$
- $|A_i| \le 10^9$
- All values in input are integers.

Input

Input is given from Standard Input in the following format:

Output

Print the maximum possible sum of the chosen elements.

Sample Input 1

Sample Output 1

12

Choosing 2, 4, and 6 makes the sum 12, which is the maximum possible value.

```
5
-1000 -100 -10 0 10
```

Sample Output 2

0

Choosing -10 and 10 makes the sum 0, which is the maximum possible value.

Sample Input 3

Sample Output 3

5000000000

Watch out for overflow.

Sample Input 4

```
27
18 -28 18 28 -45 90 -45 23 -53 60 28 -74 -71 35 -26 -62 49 -77 57 24 -70 -93 69 -99 59 57 -
49
```

Sample Output 4