UgoesSky V2

Umweltdaten Auswertung

Dateien

aprs_roh_v2.txt	APRS Rohdaten von aprs.fi
aprs.txt	APRS Daten unvollstäbdige Datensätze entfernt
aprs-zeit.txt	APRS Zeitstempel cat aprs.txt grep -o 2016-07-17 > aprszeit.txt
aprs-hoehe.txt	APRS Höhe in Fuß cat aprs.txt grep -o A= > aprs-hoehe.txt
Umweltdaten.txt	Rohdaten Umwelt
Umweltdaten-Tabelle.ods	Tabelle und Diagramme

Umweltdaten.ods

Rohdaten

A	Zeit (MESZ)	Zeitstempel (kann etwas abweichen)	
В	Temperatur Innen BMP085 (in °C)	Innentemperatur BMP085	Genauigkeit: typ. ±1,0°C Auflösung: 0,1°C
С	Temperatur Außen seitlich DHT22 (in °C)	Außentemperatur seitlich DHT22	Genauigkeit: typ. ±0,5°C Auflösung: 0,1°C
D	Temperatur Innen TMP75 (in °C)	Innentemperatur TMP75	Genauigkeit: typ. ±0,5°C Auflösung: 0,0625°C
E	Temperatur Außen Unten TMP75 (in °C)	Außentemperatur unten TMP75	
F	Temperatur Außen Oben TMP75 (in °C)	Außentemperatur oben TMP75	Genauigkeit: typ. ±1,0°C Auflösung: 0,0625°C
G	Temperatur Innen TMP75 (in °C) roh	Rohwerte negative Werte falsch	=WENN(G3>100;G3-256;G3)
Н	Temperatur Außen Unten TMP75 (in °C) roh		
I	Temperatur Außen Oben TMP75 (in °C) roh		
J	Absolute Luftfeuchte (in g/kg)	Berechnet aus relativer Luftfeuchte, Temperatur und Druck	=0,622*K3/100*L3/(M3- K3/100*L3)*1000
K	Relative Luftfeuchte (in %)	Relative Luftfeuchte seitlich DHT22	Genauigkeit: typ. ±2% Auflösung: 0,1%
L	Wasserdampfpartialdurck (in Pa)	Nötig für Berechnung der absoluten Luftfeuchte	=WENN(C3<=0;4,689*(1,486+C3/1 00)^12,3;WENN(C3>0;288,68*(1,0 98+C3/100)^8,02;""))
M	IDruck (in Pa)	Druck innen BMP085	Genauigkeit: ±400Pa Auflösung: 1Pa
N	Standardatmosphäre	Druck / 101325	Auflösung: 0,0001
0	Höhe (in m)	Aus Druck berechnete Höhe	Auflösung: 0,01m
P	Spannung (ADC-Wert)	Rohwert zwischen 01023	ausgefallen
Q	Zähler	Zählervaiabler, Bereich 160 Bei Überlauf wird gespeichert	

APRS Höhe

A	Zeit (MESZ)	
В	APRS Höhe (Meter)	=C2*0,3048
С	APRS Höhe (Fuß)	

Rohdiagramm

Diagramm mit allen Werten zum kopieren

Temperatur

Temperaturkurven

Temperatur Höhe

Temperaturkurven mit Höhe

Höhe – APRS Höhe

Vergleich zwischen den Werten. Leichter Zeitoffset möglich.

Druck Höhe

Temperatur Luftfeuchte

Temperatur und Luftfeuchte

Höhe Luftfeuchte

Höhe und Luftfeuchte

Spannung Höhe

Spannung Temperatur

Interpretation

Temperatur

Vor dem Start steigt die Außentemperatur oben durch Sonnenstrahlung an. Die Außentemperatur seitlich steigt nur leicht und die Außentemperatur unten wird nicht beeinflusst.

Am Anfang erwärmt sich die Box innen, die Wärme wird aber wieder nach außen abgegeben.

Ab etwa 12 km Höhe ist der Luftdruck zu gering, dass kaum mehr Wärme nach außen abgegeben werden kann (Vakuumisolation). Deshalb steigt die Außentemperatur am Styropor stark an. Nach einiger Zeit fängt auch die Innentemperatur an zu steigen.

Die Unterschiede zwischen den einzelnen Sensoren lassen sich durch die Erwärmung des Styropors und der Sonneneinstrahlung erklären. Die Erwärmung des Styropos ist von der Dicke und der Wärmeverteilung in der Box abhängig.

Der untere Sensor wird durch die Styroporschicht von 3cm und das direkt an das Styropor gekoppelte Funkgerät am stärkstem erwärmt.

Der obere Sensor wird vermutlich hauptsächlich durch Sonneneinstrahlung erwärmt, da hier das Styropor 6cm dick ist.

Der seitliche Sensor wird am wenigsten erwärmt, da hier weder eine Wärmequelle im Innern sitzt, noch die Sonneneinstrahlung so stark ist. Zudem ist der Sensor im Gegensatz zu den anderen Weiß statt schwarz.

Luftfeuchte

In der relativen Luftfechte ist gut zu erkennen, dass der Ballon bei etwa 2,5 km die Wolken durchfliegt.

Außerdem gibt es noch Schwankungen zwischen 4km und 8km für die sich noch keine Erklärung gefunden hat.

Bis 16km sinkt die relative Luftfeuchte, bis sie bei 16km den Minimalwert erreicht hat.

Ausfall

Das System ist um etwa 16:25 nach 1:40h Flugzeit und einer Laufzeit von gut 2h ausgefallen.

Es fallen keine Auffälligkeiten in den gemessene Werten auf. Nur die Akkuspannung wurde ab dem Start nicht mehr korrekt gemessen.

Weshalb das System ausgefallen ist, ist noch nicht geklärt.