Performance of the DEMO Algorithm on the Bi-objective BBOB Test Suite

Tea Tušar ^{1,2} Bogdan Filipič ² GECCO, July 20, 2016

¹DOPHIN Group Inria Lille – Nord Europe Villeneuve d'Ascq, France

²Department of Intelligent Systems Jožef Stefan Institute Ljubljana, Slovenia Outline

The DEMO algorithm

Experiments

Results

Conclusions

2

The DEMO algorithm

The DEMO algorithm

Differential Evolution for Multiobjective Optimization (DEMO)

- · Similar to NSGA-II
- Differential evolution (DE) used to search the decision space
- · Immediate replacement of dominated parents

3

The DEMO algorithm

- 1. Evaluate the initial population \mathcal{P} of *popSize* random individuals.
- 2. While stopping criterion not met, do:
 - 2.1 For each individual P_i (i = 1, ..., popSize) from P repeat:
 - Create candidate C from parent P_i using DE/1/rand/bin.
 - · Evaluate the candidate.
 - If the candidate dominates the parent, the candidate replaces the parent. If the parent dominates the candidate, the candidate is discarded. Otherwise, the candidate is added to the population.
 - 2.2 If the population has more than *popSize* individuals, apply environmental selection to get the best *popSize* individuals.
 - 2.3 Randomly enumerate the individuals in \mathcal{P} .
- 3. Return nondominated individuals from \mathcal{P} .

4

Parameters popSize, F and CR $X_{2} \uparrow \qquad \qquad P_{i3}$ $P_{i} \qquad P_{i2}$ $Y_{i} \qquad \qquad P_{i1}$

Parameters popSize, F and CR $x_{2} \xrightarrow{\text{DECISION SPACE}} P_{i3}$ $P_{i} \xrightarrow{P_{i1}} P_{i2} P_{i3}$ $P_{i1} + F(P_{i2} - P_{i3})$

Environmental selection

Four variants

- $NSGA-II \rightarrow DEMO^{NS-II}$
- SPEA2 \rightarrow DEMO^{SP2}
- $IBEA_{HD} \rightarrow DEMO^{IB_{HD}}$
- $\mathsf{IBEA}_{\varepsilon+} \to \mathsf{DEMO}^{\mathsf{IB}_{\varepsilon+}}$

a

Experiments

Experimental setup

Problem suite bbob-biobj

- 55 bi-objective functions
- 10 instances
- 5 out of 6 dimensions (2-D, 3-D, 5-D, 10-D, 20-D, 40-D)

DEMO

- First population sampled from $[-5,5]^D$
- Exploration limited to [-100, 100]^D
- Environmental selection = NS-II
- popSize = 100
- Crossover probability CR = 0.3
- Scaling factor F = 0.5

10

Parameter tuning

Environmental selection	Population size	Crossover probability <i>CR</i>	Scaling factor <i>F</i>
NS-II	100	0.3	0.5
SP2	100	0.3	0.5
IB_{HD}	100	0.3	0.5
NS-II	$\lfloor 100 \ln(D) \rfloor$	0.3	0.5
NS-II	20 <i>D</i>	0.3	0.5
NS-II	$\lfloor 100 \ln(D) \rfloor$	0.1	0.5
NS-II	[100 ln(<i>D</i>)]	0.5	0.5
NS-II	$\lfloor 100 \ln(D) \rfloor$	0.7	0.5
NS-II	[100 ln(<i>D</i>)]	0.9	0.5

Results

11

12

Results for environmental selection

Results for population size

Chosen setting

- Environmental selection = NS-II
- popSize = |100 ln(D)|
- Crossover probability CR = 0.9
- Scaling factor F = 0.5

15

Summary 1 Sphere/Sphere 1 Sphere/Sphere 1 Dibbob-biobj fill 2 Sep. Ellipsoid/Attractive sector 1 Dibbob-biobj fill 3 Instances 1 Dibbob-biobj fill 3 Instances 1 Dibbob-biobj fill 3 Instances 1 Dibbob-biobj fill 3 Schwefel/Schwefel 3 Instances 1 Dibbob-biobj fill 3 Schwefel/Schwefel 3 Instances 1 Dibbob-biobj fill 3 Schwefel/Schwefel 4 Dibbob-biobj fill 4 Dibbob-biobj fill 5 Schwefel/Schwefel 4 Dibbob-biobj fill 5 Schwefel/Schwefel 5 Schwefel/Schwefel 5 Dibbob-biobj fill 5

CPU timing experiment

- Windows 7 computer with Intel(R) Core(TM) i5-2410M CPU @ 2.60GHz with 1 processor and 4 cores
- 10D function evaluations on the entire *bbob-biobj* test suite took 9 seconds
- Time per function evaluation:

$$2-D$$
 1.82×10^{-4} s

3-D
$$1.21 \times 10^{-4}$$
 s

5-D
$$1.45 \times 10^{-4} \text{ s}$$

10-D
$$1.09 \times 10^{-4} \text{ s}$$

20-D
$$3.64 \times 10^{-4} \text{ s}$$

· DEMO implemented in C++

17

	Conclusions
Conclusions	 Experimented with DEMO on the new bbob-biobj test suite Performed some parameter tuning Almost no difference between environmental selection NS-II and SP2 Results might be different with an archive Should try increasing population size during evolution Surprisingly poor performance on the sphere problem, but good performance on some more difficult problems
	18