HENRY GAVA SALVAIA - 825122158 PEDRO HENRIQUE - 824224330 KAMILLY - 82513794 JOÃO PEDRO - 824222452

ATIVIDADE DE SISTEMAS COMPUTACIONAIS E SEGURANÇA

Professor(a): [Robson Calvetti]
Data de Entrega: [03/04/2025]

RESUMO

Este trabalho apresenta uma análise sobre os principais sistemas de criptografia, abordando exemplos históricos e algoritmos modernos. O objetivo é compreender a evolução dos mecanismos de segurança e sua aplicação nos dias atuais.

1. INTRODUÇÃO

A segurança da informação é um aspecto essencial para a proteção de dados sigilosos. Ao longo da história, diversos métodos criptográficos foram desenvolvidos para garantir a confidencialidade das informações. Este trabalho analisa a evolução da criptografia, abordando desde os primeiros sistemas até os algoritmos modernos.

2. EXEMPLOS HISTÓRICOS DO USO DA CRIPTOGRAFIA

2.1 Escítala Espartana

Os espartanos usavam um bastão chamado escítala para enviar mensagens secretas. Um pedaço de couro ou papiro era enrolado no bastão, e a mensagem era escrita. Quando desenrolado, parecia uma sequência aleatória de letras, sendo legível apenas ao ser enrolado em um bastão de mesmo diâmetro.

2.2 Código de Navajo

Durante a Segunda Guerra Mundial, o exército dos EUA usou a língua dos nativos Navajos como um código para comunicações militares. Como a língua não tinha escrita formal e era desconhecida pelos inimigos, isso criou um sistema criptográfico altamente seguro.

Pontos-chave:

- Considerado um dos códigos mais seguros da história
- Criado por nativos americanos Navajo recrutados pelo exército
- Nunca foi decifrado pelos inimigos

3. ALGORITMOS DE CRIPTOGRAFIA COM CHAVES SIMÉTRICAS

Os algoritmos simétricos utilizam a mesma chave para criptografar e descriptografar os dados, sendo mais rápidos e eficientes. No entanto, exigem que as partes compartilhem a chave de maneira segura.

3.1 AES (Advanced Encryption Standard)

O AES é um dos algoritmos mais utilizados atualmente para proteger dados sigilosos. Ele opera com chaves de 128, 192 ou 256 bits, garantindo alto nível de segurança.

Usado em:

- Transações bancárias online
- Wi-Fi seguro (WPA2)
- Proteção de arquivos e senhas

3.2 Blowfish

O Blowfish é um algoritmo simétrico desenvolvido para ser rápido e seguro, permitindo chaves de até 448 bits. É amplamente utilizado na proteção de dados sensíveis.

Usado em:

- Ferramentas de criptografia de senhas (bcrypt)
- Segurança de redes e VPNs

4. ALGORITMOS DE CRIPTOGRAFIA COM CHAVES ASSIMÉTRICAS

Diferente da criptografia simétrica, a criptografia assimétrica utiliza um par de chaves:

- Chave pública: usada para criptografar a informação
- Chave privada: usada para descriptografar a informação

Isso aumenta a segurança e elimina a necessidade de compartilhar uma chave secreta.

4.1 RSA (Rivest-Shamir-Adleman)

O RSA é amplamente utilizado para assinaturas digitais e criptografia de dados. Sua segurança se baseia na dificuldade de fatorar números primos grandes.

Usado em:

- Certificados digitais (SSL/TLS)
- Assinaturas digitais
- Proteção de e-mails

4.2 ECC (Elliptic Curve Cryptography)

A criptografia de Curvas Elípticas (ECC) proporciona um nível de segurança semelhante ao RSA, mas com chaves menores, tornando-a mais eficiente.

Usado em:

- Criptografia para dispositivos móveis
- Blockchain e criptomoedas
- Certificados de segurança modernos

5. CONCLUSÃO

A evolução da criptografia demonstra sua importância para a proteção de informações sensíveis. O uso de algoritmos modernos garante segurança e confiabilidade em diversas aplicações.