Interrogation nº 4 (15 minutes)

Correction de l'exercice -

1. Les solutions sont $y: x \mapsto Ke^{A(x)}$ où $K \in \mathbb{R}$ et A est une primitive de $x \mapsto \sin(x)$. Ainsi,

$$y(x) = Ke^{-\cos(x)}$$

2. Solutions de l'équation homogène :

$$y_h(x) = Ke^{\int e^x dx} = Ke^{e^x}.$$

Solution particulière par la méthode de variation de la constante :

$$y_p(x) = e^{e^x} \int e^{-e^x} \sin(e^x) e^x dx = e^{e^x} \int e^{-u} \sin(u) du,$$

par le changement de variable $u = e^x$ de classe \mathcal{C}^1 . On fait deux IPP, ou on passe en complexe :

$$\int e^{-u} \sin(u) du = \operatorname{Im} \int e^{(-1+i)u} du = \operatorname{Im} \frac{e^{(-1+i)u}}{-1+i} = \frac{1}{2} e^{-u} \operatorname{Im} (-1-i) e^{iu} = \frac{1}{2} e^{-u} (-\sin(u) - \cos(u)).$$

Ainsi, la solution générale est :

$$y(x) = Ke^{e^x} - \frac{1}{2}(\sin(e^x) + \cos(e^x)).$$

3. Le polynôme caractéristique est $X^2 - 3X + 2$, de racines 1 et 2, donc les solutions sont :

$$y(x) = \lambda e^x + \mu e^{2x}, \quad \lambda, \mu \in \mathbb{R},$$

4. Le polynôme caractéristique est $X^2 + X + 1$ qui n'a pas de racine réelle. Ses deux racines complexes sont $j = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ et $j^2 = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$. Ainsi, les solutions de l'équation homogène sont

$$y_h(x) = e^{-\frac{x}{2}} \left(\left(\lambda \cos \left(\frac{\sqrt{3}}{2} x \right) + \mu \sin \left(\frac{\sqrt{3}}{2} x \right) \right).$$

Comme 1 n'est pas racine du polynôme caractéristique, on recherche une solution particulière de la forme $y_P(x) = (ax + b)e^x$. On obtient alors

$$e^{x}((ax+b+2a)+(ax+b+a)+(ax+b))=xe^{x},$$

ce qui est réalisé si 3a = 1 et 3b + 3a = 0, soit $a = \frac{1}{3}$ et $b = -\frac{1}{3}$. Ainsi, les solutions de l'ED sont :

$$y(x) = e^{-\frac{x}{2}} \left(\lambda \cos \left(\frac{\sqrt{3}}{2} x \right) + \mu \sin \left(\frac{\sqrt{3}}{2} x \right) \right) + \frac{1}{3} (x - 1) e^{x}.$$

5. Les racines du polynôme caractéristique sont i et -i. Ainsi, les solutions de l'équation homgène sont :

$$y_h(x) = \lambda \sin(x) + \mu \cos(x).$$

On cherche dans un premier temps une solution particulière complexe de $y'' + y = e^{ix}$. Comme i est racine du polynôme caractéristique, on cherche une solution sous la forme axe^i (on peut se dispenser du terme constant qui partira dans les calculs et qu'on peut choisir arbitrairement). On obtient alors l'équation :

$$e^{ix}(-ax + 2ia + ax) = e^{ix},$$

et on pose donc $a = \frac{1}{2i} = -\frac{i}{2}$. Pour trouver une solution particulière de l'équation initiale, on prend donc la partie imaginaire :

$$y_p(x) = -\frac{1}{2}x\cos(x).$$

Ainsi, les solutions sont :

$$y(x) = \lambda \sin(x) + \left(\mu - \frac{x}{2}\right) \cos(x), \quad \lambda, \mu \in \mathbb{R}.$$

6. L'équation homogène se réécrit, sur \mathbb{R}_+^* et sur \mathbb{R}_-^* :

$$y' = \frac{1}{x^3}y,$$

donc elle admet comme solutions :

$$y(x) = Ke^{-\frac{1}{2x^2}},$$

sur chacun des deux intervalles \mathbb{R}_+^* et \mathbb{R}_-^* . On peut utiliser la méthode de variation de la constante pour trouver une solution particulière, ou alors, en comparant le second membre et l'équation homogène, deviner que $y_p(x) = \operatorname{Arctan}(x)$ convient. Ainsi, sur \mathbb{R}^* , les solutions sont :

$$y(x) = \begin{cases} K_1 e^{-\frac{1}{2x^2}} + Arctan(x) & \text{si } x < 0\\ K_2 e^{-\frac{1}{2x^2}} + Arctan(x) & \text{si } x > 0 \end{cases}$$

Cette fonction se prolonge clairement par continuité en 0 en posant y(0) = 0. Un exercice classique lié aux croissances comparées montre que le prolongement par continuité de $x \mapsto e^{-\frac{1}{x^2}}$ est de classe $\mathcal{C}^{+\infty}$, les dérivées étant toutes nulles en 0 (remarquez que cette ED est une façon de le prouver en se contentant de prouver la classe \mathcal{C}^1 : une récurrence immédiate montre alors, grâce à l'ED, qu'elle est de classe \mathcal{C}^n). Ainsi, le prolongement de y est de classe \mathcal{C}^1 et est solution de l'ED.