Digital Logic Design

Lecture 6 & 7

Overview

- Canonical and Standard Forms (Minterms, Maxterms, Conversions)
- How to write minterms/maxterms from truth table
- Writing a function in terms of its minterms/ maxterms
- Properties of minterms /maxterms.
- Literal cost
- Gate input cost

Canonical Forms

- Boolean functions expressed as a sum of minterms or product of maxterms are said to be in canonical form.
- It is useful to specify Boolean functions in a form that:
 - Allows comparison for equality.
 - Has a correspondence to the truth tables
- Canonical Forms in common usage:
 - Sum of Products (SOP)
 - Product of Sums (POS)

Minterms

- Minterms are AND terms with every variable present in either original or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g.,), there are 2^n minterms for n variables.
- **Example:** Two variables (X and Y)produce $2 \times 2 = 4$ combinations:

XY (both complemented)

XY (X complemented, Y normal)

XY (**X** normal, **Y** complemented)

XY (both normal)

- Thus there are <u>four minterms</u> of two variables.
- A literal is a complemented variable if the corresponding bit of the related binary combination is 0 and is an uncomplemented variable if it is 1.

Maxterms

- Maxterms are OR terms with every variable in either original or complemented form.
- Given that each binary variable may appear normal (e.g., x) or complemented (e.g., \overline{x}), there are 2^n maxterms for n variables.
- **Example:** Two variables (X and Y) produce $2 \times 2 = 4$ combinations:

X + Y (both normal)

X + Y (x normal, y complemented)

 $\overline{X} + Y$ (x complemented, y normal)

 $\overline{\mathbf{X}} + \overline{\mathbf{Y}}$ (both complemented)

Maxterms and Minterms

 Examples: Two variable minterms and maxterms.

Index	Minterm	Maxterm
0	$\overline{\mathbf{x}}\overline{\mathbf{y}}$	x + y
1	x y	$x + \overline{y}$
2	хy	$\overline{\mathbf{x}} + \mathbf{y}$
3	ху	$\overline{x} + \overline{y}$

The index above is important for describing which variables in the terms are true and which are complemented.

Standard Order

- Minterms and maxterms are designated with a subscript
- The subscript is a number, corresponding to a binary pattern
- The bits in the pattern represent the complemented or normal state of each variable listed in a standard order.
- All variables will be present in a minterm or maxterm and will be listed in the <u>same order</u> (usually alphabetically)
- Example: For variables a, b, c:
 - Maxterms: $(a + b + \overline{c})$, (a + b + c)
 - Terms: (b + a + c), a \bar{c} b, and (c + b + a) are NOT in standard order.
 - Minterms: $a \bar{b} c$, a b c, $\bar{a} \bar{b} c$
 - Terms: (a + c), \bar{b} c, and $(\bar{a} + b)$ do not contain all variables

Purpose of the Index

The <u>index</u> for the minterm or maxterm, expressed as a binary number, is used to determine whether the variable is shown in the true form or complemented form.

For Minterms:

- "1" means the variable is "Not Complemented" and
- "0" means the variable is "Complemented".

For Maxterms:

- "0" means the variable is "Not Complemented" and
- "1" means the variable is "Complemented".

Index Example in Three Variables

- Example: (for three variables)
- Assume the variables are called X, Y, and Z.
- The standard order is X, then Y, then Z.
- The Index 0 (base 10) = 000 (base 2) for three variables). All three variables are complemented for minterm 0 ($\overline{X}, \overline{Y}, \overline{Z}$) and no variables are complemented for Maxterm 0 (X,Y,Z).
 - Minterm 0, called m_0 is $\overline{X}\overline{Y}\overline{Z}$.
 - Maxterm 0, called M_0 is (X + Y + Z).
 - Minterm 6?
 - Maxterm 6 ?

Index Examples – Four Variables

Index Binary Minterm Maxterm

i	Pattern	$\mathbf{m_i}$	$\mathbf{M_i}$
0	0000	abcd	a+b+c+d
1	0001	abcd	?
3	0011	?	a+b+c+d
5	0101	abcd	$a+\overline{b}+c+\overline{d}$
7	0111	?	$a+\overline{b}+\overline{c}+\overline{d}$
10	1010	$a \bar{b} c \bar{d}$	$\bar{a} + b + \bar{c} + d$
13	1101	abcd	?
15	1111	abcd	$\bar{a} + \bar{b} + \bar{c} + \bar{d}$

Minterm and Maxterm Relationship

- Review: DeMorgan's Theorem $\overline{x \cdot y} = \overline{x} + \overline{y}$ and $\overline{x + y} = \overline{x} \cdot \overline{y}$
- Two-variable example:

$$\mathbf{M}_2 = \overline{\mathbf{x}} + \mathbf{y}$$
 and $\mathbf{m}_2 = \mathbf{x} \cdot \overline{\mathbf{y}}$

Thus M_2 is the complement of m_2 and vice-versa.

- Since DeMorgan's Theorem holds for n variables, the above holds for terms of n variables
- giving:

$$\mathbf{M}_{i} = \overline{\mathbf{m}}_{i \text{ and }} \mathbf{m}_{i} = \overline{\mathbf{M}}_{i}$$

Thus M_i is the complement of m_i.

Function Tables for Both

Minterms of2 variables

x y	m_0	\mathbf{m}_1	m_2	m_3
0 0	1	0	0	0
01	0	1	0	0
10	0	0	1	0
11	0	0	0	1

Maxterms of 2 variables

ху	$\mathbf{M_0}$	M_1	M_2	M_3
0 0	0	1	1	1
0 1	1	0	1	1
10	1	1	0	1
11	1	1	1	0

Each column in the maxterm function table is the complement of the column in the minterm function table since M_i is the complement of m_i.

Minterms for Three Variables

X	Y	Z	Product Term	Symbol	m _o	m,	m ₂	m ₃	m ₄	m ₅	m ₆	m ₇
0	0	0	$\overline{X}\overline{Y}\overline{Z}$	$m_{_0}$	1	0	0	0	0	0	0	0
0	0	1	$\overline{X}\overline{Y}Z$	m_1	0	1	0	0	0	0	0	0
0	1	0	$\overline{X}Y\overline{Z}$	m_2	0	0	1	0	0	0	0	0
0	1	1	$\overline{X}YZ$	m_3	0	0	0	1	0	0	0	0
1	0	0	$X\overline{Y}\overline{Z}$	$m_{_4}$	0	0	0	0	1	0	0	0
1	0	1	$X\overline{Y}Z$	m_{5}	0	0	0	0	0	1	0	0
1	1	0	$XY\overline{Z}$	m_6	0	0	0	0	0	0	1	0
1	1	1	XYZ	m_7	0	0	0	0	0	0	0	1

Maxterms for Three Variables

X	Y	Z	Sum Term	Symbol	\mathbf{M}_{0}	$\mathbf{M_1}$	M_2	M_3	M_4	M_5	M_6	M_7
0	0	0	X + Y + Z	M_0	0	1	1	1	1	1	1	1
0	0	1	$X + Y + \overline{Z}$	M_1	1	0	1	1	1	1	1	1
0	1	0	$X + \overline{Y} + Z$	M_2	1	1	0	1	1	1	1	1
0	1	1	$X + \overline{Y} + \overline{Z}$	M_3	1	1	1	0	1	1	1	1
1	0	0	$\overline{X} + Y + Z$	M_4		1	1	1	0	1	1	1
1	0	1	$\overline{X} + Y + \overline{Z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{X} + \overline{Y} + Z$	M_6	1	1	1	1	1	1	0	1
1	1	1	$\overline{X} + \overline{Y} + \overline{Z}$		1	1	1	1	1	1	1	0

Observations

- In the function tables:
 - Each minterm has one and only one 1 present in the 2^n terms (in a row) (a minimum of 1s). All other entries are 0.
 - Each <u>max</u>term has one and only one 0 present in the 2^n terms (in a row) All other entries are 1 (a <u>max</u>imum of 1s).
- We can implement any function by "ORing" the minterms corresponding to "1" entries in the function table. These are called the minterms of the function.
- We can implement any function by "ANDing" the maxterms corresponding to "0" entries in the function table. These are called the maxterms of the function.
- This gives us two <u>canonical forms</u>:
 - Sum of Products (SOP)
 - Product of Sums (POS)

for stating any Boolean function.

Minterm Function Example

• Example: Find $F_1 = m_1 + m_4 + m_7$

•
$$\mathbf{F1} = \overline{\mathbf{x}} \ \overline{\mathbf{y}} \ \mathbf{z} + \mathbf{x} \ \overline{\mathbf{y}} \ \overline{\mathbf{z}} + \mathbf{x} \ \mathbf{y} \ \mathbf{z}$$

хуz	index	\mathbf{m}_1	+	m ₄	+	m ₇	$=\mathbf{F}_1$
000	0	0	+	0	+	0	= 0
001	1	1	+	0	+	0	= 1
010	2	0	+	0	+	0	= 0
011	3	0	+	0	+	0	= 0
100	4	0	+	1	+	0	= 1
101	5	0	+	0	+	0	= 0
110	6	0	+	0	+	0	= 0
111	7	0	+	0	+	1	= 1
	1					Chapt	er 2 - Part 1

Minterm Function Example

- $F(A, B, C, D, E) = m_2 + m_9 + m_{17} + m_{23}$
- F(A, B, C, D, E) =

Maxterm Function Example

Example: Implement F1 in maxterms:

$$\begin{split} F_1 &= M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6 \\ F_1 &= (x + y + z) \cdot (x + \overline{y} + z) \cdot (x + \overline{y} + \overline{z}) \\ &\cdot (\overline{x} + y + \overline{z}) \cdot (\overline{x} + \overline{y} + z) \\ & \underline{x} \, \underline{y} \, z \, | \, i \, | \, M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6 = F1 \\ \hline 0 \, 0 \, 0 \, 0 \, 0 \, 0 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \, = 0 \\ 0 \, 0 \, 1 \, 1 \, 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \, = 1 \\ 0 \, 1 \, 0 \, 2 \, 1 \cdot 0 \cdot 1 \cdot 1 \cdot 1 \, = 1 \\ 0 \, 1 \, 0 \, 2 \, 1 \cdot 0 \cdot 1 \cdot 1 \cdot 1 \, = 0 \\ 0 \, 1 \, 1 \, 3 \, 1 \cdot 1 \cdot 0 \cdot 1 \cdot 1 \, = 0 \\ 1 \, 0 \, 0 \, 4 \, 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \, = 1 \\ 1 \, 0 \, 1 \, 5 \, 1 \cdot 1 \cdot 1 \cdot 1 \cdot 0 \cdot 1 \, = 0 \\ 1 \, 1 \, 0 \, 6 \, 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \, = 1 \\ 1 \, 1 \, 0 \, 6 \, 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \, = 1 \end{split}$$

Maxterm Function Example

- $F(A,B,C,D) = M_3 \cdot M_8 \cdot M_{11} \cdot M_{14}$
- F(A, B,C,D) =

Canonical Sum of Minterms

- Any Boolean function can be expressed as a Sum of Products.
 - For the function table, the <u>minterms</u> used are the terms corresponding to the 1's
 - For expressions, <u>expand</u> all terms first to explicitly list all minterms. Do this by "ANDing" any term missing a variable v with a term $(v + \overline{v})$.
- Example: Implement $f = x + \overline{x} \overline{y}$ as a sum of minterms.

First expand terms: $\mathbf{f} = \mathbf{x}(\mathbf{y} + \overline{\mathbf{y}}) + \overline{\mathbf{x}} \ \overline{\mathbf{y}}$ Then distribute terms: $\mathbf{f} = \mathbf{x}\mathbf{y} + \mathbf{x}\overline{\mathbf{y}} + \overline{\mathbf{x}} \ \overline{\mathbf{y}}$ Express as sum of minterms: $\mathbf{f} = \mathbf{m}_3 + \mathbf{m}_2 + \mathbf{m}_0$

Another SOP Example

- Example: $F = A + \overline{B} C$
- There are three variables, A, B, and C which we take to be the standard order.
- Expanding the terms with missing variables:

- Collect terms (removing all but one of duplicate terms):
- Express as SOP:

Shorthand SOP Form

From the previous example, we started with:

$$F = A + \overline{B} C$$

We ended up with:

$$F = m_1 + m_4 + m_5 + m_6 + m_7$$

This can be denoted in the formal shorthand:

$$F(A,B,C) = \Sigma_m(1,4,5,6,7)$$

Note that we explicitly show the standard variables in order and drop the "m" designators.

Canonical Product of Sums

- Any Boolean Function can be expressed as a <u>Product of Sums (POS)</u>.
 - For the function table, the maxterms used are the terms corresponding to the 0's.
 - For an expression, expand all terms first to explicitly list all maxterms. Do this by first applying the second distributive law, "ORing" terms missing variable v with a term equal to V V and then applying the distributive law again.
- Example: Convert to product of sums:

$$f(x,y,z) = x + \overline{x} \, \overline{y}$$

Apply the distributive law:

$$x + \overline{x} \overline{y} = (x + \overline{x})(x + \overline{y}) = 1 \cdot (x + \overline{y}) = x + \overline{y}$$

Add missing variable z:

$$x + \overline{y} + z \cdot \overline{z} = (x + \overline{y} + z) (x + \overline{y} + \overline{z})$$

Express as POS: $f = M_2 \cdot M_3$

Another POS Example

Convert to Product of Sums:

$$f(A,B,C) = A \overline{C} + BC + \overline{A} \overline{B}$$

Use $x + y z = (x+y) \cdot (x+z)$ with $x = (A \overline{C} + B C)$, $y = \overline{A}$, and $z = \overline{B}$ to get:

$$f = (A \overline{C} + B C + \overline{A})(A \overline{C} + B C + \overline{B})$$

• Then use $x + \overline{x}y = x + y$ to get:

$$f = (\overline{C} + BC + \overline{A})(A\overline{C} + C + \overline{B})$$

and a second time to get:

$$f = (\overline{C} + B + \overline{A})(A + C + \overline{B})$$

Rearrange to standard order,

$$f = (\overline{A} + B + \overline{C})(A + \overline{B} + C)$$
 to give $f = M_5 \cdot M_2$

Function Complements

- The complement of a function expressed as a sum of products is constructed by selecting the minterms missing in the sum-of-products canonical forms.
- Alternatively, the complement of a function expressed by a Sum of Products form is simply the Product of Sums with the same indices.
- Example: Given $F(x, y, z) = \Sigma_m(1,3,5,7)$ $\overline{F}(x, y, z) = \Sigma_m(0,2,4,6)$ $\overline{F}(x, y, z) = \Pi_M(1,3,5,7)$

Conversion Between Forms

- To convert between sum-of-products and productof-sums form (or vice-versa) we follow these steps:
 - Find the function complement by swapping terms in the list with terms not in the list.
 - Change from products to sums, or vice versa.
- Example: Given F as before: $F(x, y, z) = \Sigma_m(1, 3, 5, 7)$
- Form the Complement: $F(x,y,z) = \Sigma_m(0,2,4,6)$
- Then use the other form with the same indices this forms the complement again, giving the other form of the original function: $F(x,y,z) = \Pi_M(0,2,4,6)$

Standard Forms

- Standard Sum-of-Products (SOP) form:
 equations are written as an OR of AND terms
- Standard Product-of-Sums (POS) form:
 equations are written as an AND of OR terms
- Examples:
 - SOP: $ABC + \overline{A}\overline{B}C + B$
 - POS: $(A+B) \cdot (A+\overline{B}+\overline{C}) \cdot C$
- These "mixed" forms are neither SOP nor POS
 - $\bullet (A B + C) (A + C)$
 - \bullet ABC+AC(A+B)

Standard Sum-of-Products (SOP)

- A sum of minterms form for n variables can be written down directly from a truth table.
 - Implementation of this form is a two-level network of gates such that:
 - The first level consists of *n*-input AND gates, and
 - The second level is a single OR gate (with fewer than 2^n inputs).
- This form often can be simplified so that the corresponding circuit is simpler.

Standard Sum-of-Products (SOP)

- A Simplification Example:
- $F(A,B,C) = \Sigma m(1,4,5,6,7)$
- Writing the minterm expression: $F = \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C$
- Simplifying:

$$\mathbf{F} =$$

Simplified F contains 3 literals compared to 15 in minterm F

AND/OR Two-level Implementation of SOP Expression

The two implementations for F are shown below – it is quite apparent which is simpler!

SOP and POS Observations

- The previous examples show that:
 - Canonical Forms (Sum-of-products, Product-of-Sums), or other standard forms (SSOP, SPOS) differ in complexity
 - Boolean algebra can be used to manipulate equations into simpler forms.
 - Simpler equations lead to simpler two-level implementations
- Questions:
 - How can we attain a "simplest" expression?
 - Is there only one minimum cost circuit?
 - The next part will deal with these issues.

Properties of minterms

- The following is a summary of the most important properties of minterms:
- 1. There are 2^n minterms for n Boolean variables. These minterms can be generated from the binary numbers from 0 to 2^n 1.
- 2. Any Boolean function can be expressed as a logical sum of minterms.
- 3. The complement of a function contains those minterms not included in the original function.
- 4. A function that includes all the 2^n minterms is equal to logic 1.

Properties of maxterms

- The following is a summary of the most important properties of maxterms:
- 1. There are 2^n maxterms for n Boolean variables. These maxterms can be generated from the binary numbers from 0 to 2^n 1.
- 2. Any Boolean function can be expressed as a logical product of maxterms.
- 3. The complement of a function contains those maxterms not included in the original function.
- 4. A function that includes all the 2^n maxterms is equal to logic 1.

Literal Cost

- Literal a variable or its complement
- Literal cost the number of literal appearances in a Boolean expression corresponding to the logic circuit diagram
- Examples:

•
$$\mathbf{F} = \mathbf{B}\mathbf{D} + \mathbf{A}\,\overline{\mathbf{B}}\mathbf{C} + \mathbf{A}\,\overline{\mathbf{C}}\,\overline{\mathbf{D}}$$
 $\mathbf{L} = \mathbf{8}$

•
$$\mathbf{F} = \mathbf{B}\mathbf{D} + \mathbf{A}\mathbf{\overline{B}C} + \mathbf{A}\mathbf{\overline{B}\mathbf{\overline{D}}} + \mathbf{A}\mathbf{B}\mathbf{\overline{C}}$$
 $\mathbf{L} =$

•
$$\mathbf{F} = (\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{D})(\mathbf{B} + \mathbf{C} + \mathbf{\overline{D}})(\mathbf{\overline{B}} + \mathbf{\overline{C}} + \mathbf{D}) \mathbf{L} =$$

• Which solution is best?

Gate Input Cost

- Gate input costs the number of inputs to the gates in the implementation corresponding exactly to the given equation or equations. (G inverters not counted, GN inverters counted)
- For SOP and POS equations, it can be found from the equation(s) by finding the sum of:
 - all literal appearances
 - the number of terms excluding single literal terms,(G) and
 - optionally, the number of distinct complemented single literals (GN).

Example:

•
$$\mathbf{F} = \mathbf{B}\mathbf{D} + \mathbf{A}\,\overline{\mathbf{B}}\mathbf{C} + \mathbf{A}\,\overline{\mathbf{C}}\,\overline{\mathbf{D}}$$
 $\mathbf{G} = \mathbf{11},\,\mathbf{G}\mathbf{N} = \mathbf{14}$

•
$$F = BD + A \overline{B}C + A \overline{B} \overline{D} + AB \overline{C}$$
 $G = , GN =$

•
$$\mathbf{F} = (\mathbf{A} + \overline{\mathbf{B}})(\mathbf{A} + \mathbf{D})(\mathbf{B} + \mathbf{C} + \overline{\mathbf{D}})(\overline{\mathbf{B}} + \overline{\mathbf{C}} + \mathbf{D}) \mathbf{G} = , \mathbf{G}\mathbf{N} =$$

• Which solution is best?

Cost Criteria (continued)

- L (literal count) counts the AND inputs and the single literal OR input.
- G (gate input count) adds the remaining OR gate inputs
- GN(gate input count with NOTs) adds the inverter inputs

Cost Criteria (continued)

- Example 2:
- $\mathbf{F} = \mathbf{A} \mathbf{B} \mathbf{C} + \overline{\mathbf{A}} \overline{\mathbf{B}} \overline{\mathbf{C}}$
- L = 6 G = 8 GN = 11
- $\mathbf{F} = (\mathbf{A} + \mathbf{C})(\mathbf{B} + \mathbf{C})(\mathbf{A} + \mathbf{B})$
- L = 6 G = 9 GN = 12
- Same function and same literal cost
- But first circuit has better gate input count and better gate input count with NOTs
- Select it!

Boolean Function Optimization

- Minimizing the gate input (or literal) cost of a (a set of) Boolean equation(s) reduces circuit cost.
- We choose gate input cost.
- Boolean Algebra and graphical techniques are tools to minimize cost criteria values.
- Some important questions:
 - When do we stop trying to reduce the cost?
 - Do we know when we have a minimum cost?
- Treat optimum or near-optimum cost functions for two-level (SOP and POS) circuits first.
- Introduce a graphical technique using Karnaugh maps (K-maps, for short)