Minsterul Educației, Cercetării și Inovării Societatea de Științe Matematice din România Inspectoratul Școlar al Județului Constanța

A 60-a Olimpiadă Națională de Matematică Mangalia -13 aprilie 2009

CLASA a XII-a – SOLUŢII ŞI BAREMURI DE CORECTARE

Problema 1. Fie funcția $f:[0,1] \to \mathbb{R}$ derivabilă cu derivata continuă astfel încât

$$\int_0^1 (f'(x))^2 dx \le 2 \int_0^1 f(x) dx.$$

Să se determine f știind că $f(1)=-\frac{1}{6}.$

Soluție și barem: Avem

$$0 \le \int_0^1 (f'(x) + x)^2 dx = \int_0^1 (f'(x))^2 dx + 2 \int_0^1 x f'(x) dx + \frac{1}{3} =$$

$$= \int_0^1 (f'(x))^2 dx + 2x f(x)|_0^1 - 2 \int_0^1 f(x) dx + \frac{1}{3} =$$

$$= \int_0^1 (f'(x))^2 dx - 2 \int_0^1 f(x) dx \le 0,$$

deci $\int_0^1 (f'(x) + x)^2 dx = 0$. 4 puncte

Din continuitatea funcției f', rezultă că f'(x) = -x. Aşadar,

$$f(x) = -\frac{x^2}{2} + a, \ \forall x \in [0, 1].$$
 2 puncte

Din condiția $f(1)=-\frac{1}{6}$, obținem $a=\frac{1}{3}$, deci $f(x)=-\frac{x^2}{2}+\frac{1}{3}$ 1 punct

Problema 2. Fie $(A, +, \cdot)$ un inel comutativ finit. Notăm cu d numărul divizorilor lui zero, iar cu n numărul elementelor nilpotente ale inelului. Să se arate că:

- 1. dacă x şi y sunt nilpotente, atunci x + y şi $x \cdot y$ sunt nilpotente.
- 2. n divide d.

(Un element $x \in A$ se numeşte divizor al lui zero dacă există $a \in A, a \neq 0$ astfel încât $x \cdot a = 0$. Un element $y \in A$ se numeşte nilpotent dacă există $k \in \mathbb{N}^*$ astfel încât $y^k = 0$).

Soluţie şi barem:

- 2. Notăm cu U(A) mulțimea elementelor inversabile ale lui A și cu N(A) mulțimea elementelor nilpotente ale lui A. Observăm că dacă $x \in N(A)$, atunci $1+x \in U(A)$: există k astfel încât $x^{2k+1}=0$, deci

$$(1+x)\cdot(1-x+...+x^{2k})=1+x^{2k+1}=1.$$
 1 punct

Mai mult, dacă $x, y \in N(A)$, atunci

$$(1+x)\cdot(1+y) = 1+x+y+x\cdot y = 1+z,$$

unde $z = x + y + x \cdot y \in N(A)$. Prin urmare $(\{1 + x | x \in N(A)\}, \cdot)$ este subgrup cu n elemente al grupului $(U(A), \cdot)$ 1 punct

Rezultă că U(A) are q-d elemente, unde q este numărul elementelor lui A. Din teorema lui Lagrange obținem că n divide q-d. **1 punct**

Problema 3. Să se determine numerele naturale $n \geq 2$ cu proprietatea că în inelul $(\mathbb{Z}_n, +, \cdot)$ exact un element nu se poate scrie ca sumă de două pătrate.

Dacă k ar fi par, atunci k=2l. Fiindcă $\widehat{l}\neq \widehat{k}$, rezultă că $\widehat{l}\in S$. Cum $\widehat{2}\in S$, ar rezulta că $\widehat{k}=\widehat{2}\cdot\widehat{l}\in S$, absurd. Deci k este impar. **1 punct**

Problema 4. Să se determine toate funcțiile $f:[0,1] \to [0,1]$ continue și bijective cu proprietatea că

$$\int_0^1 g(f(x))dx = \int_0^1 g(x)dx,$$

pentru orice funcție continuă $g:[0,1]\to\mathbb{R}$.

Soluție și barem: Funcția f este strict monotonă. Presupunem mai întâi că f este strict crescătoare. Atunci pentru orice $c \in [0,1]$ să considerăm funcția

$$g_c(x) = \begin{cases} x - c, & x \in [0, c) \\ 0, & x \in [c, 1]. \end{cases}$$

Relația $\int_0^1 g_c(f(x)) dx = \int_0^1 g_c(x) dx$ este echivalentă cu

$$\int_0^{f^{-1}(c)} (f(x) - c) dx = \int_0^c (x - c) dx,$$

adică

$$\int_0^{f^{-1}(c)} f(x)dx = cf^{-1}(c) - \frac{c^2}{2}.$$
 3 puncte

Notând $f^{-1}(c) = t$, obţinem

$$\int_0^t f(x)dx = tf(t) - \frac{f^2(t)}{2} \Rightarrow$$

$$\Rightarrow \int_0^t (f(x) - x)dx = -\frac{(f(t) - t)^2}{2}.$$
1 punct

Notând cu h(x) = f(x) - x pentru $x \in [0, 1]$, relația de mai sus devine

$$\int_{0}^{t} h(x)dx = -\frac{h(t)^{2}}{2}, \forall t \in [0, 1].$$
 (1)

Observăm că h este continuă și că h(0) = h(1) = 0. Fie t_0 un punct de minim global al lui h. Dacă $h(t_0) < 0$, atunci $t_0 < 1$. Mai mult, există $\delta > 0$ astfel încât h(x) < 0 pentru orice $x \in [t_0, t_0 + \delta]$. Așadar,

$$\int_0^{t_0+\delta} h(x)dx < \int_0^{t_0} h(x)dx \Rightarrow$$

$$\Rightarrow -\frac{h(t_0+\delta)^2}{2} < -\frac{h(t_0)^2}{2} \Rightarrow h(t_0+\delta) < h(t_0).$$