Lecture2.md 28/10/2019

Lecture 2: Model Bias & Variance

Noisy Data & Overfitting

Data can introduce challenges into our model fitting algorithms. Given a model that is *too expressive*, i.e. too high dimensionality, our model may overfit and instead of just capturing the underlying pattern/ equation, it may also fit the noise.

To show this we will use the equation

(1)

 $\$y(x) = \sin(2\pi x)$

Clearly if we were to set our basis functions to $\phi = \sin(2\pi x)$ we could easily fit with one dimension $\phi = 1$ resulting in $f(\text{w},x) = \omega_0\sin(2\pi x)$ However, we will look at a more generalised approach as in most practical applications we would not have, a such an obvious underlying function or b the underlying function known to us.

Instead we seek to find a good approximation using the polynomial basis set. Formally we wish to *solve* the following

(2)

 $s=\sum_{i=0}^{M-1} w_ix^i$

We know that such an approximation is possible via the *Maclaurin series*, $\sin(ax) = ax - \frac{a^3x^3}{3!} + \frac{a^5x^5}{5!} + \frac{a^7x^7}{7!} + \cdots$ in our case with $a = 2\pi$, $a = 2\pi$

^{*}These notes were heavily influenced by those of Dr. Iain Styles, University of Birmingham, School of Computer Science