Course Keeping Stability Model Tests of a USCG Notional Design of a 120 FT WPB Hull

P. Ward Brown and Walter E. Klosinski

Davidson Laboratory Stevens Institute of Technology Castle Point Station Hoboken, NJ 07030

Final Report March 1998

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

Prepared for:

U.S. Department of Transportation United States Coast Guard Systems, (G-S) Washington, DC 20593-0001 19980410 060

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

The contents of this report reflect the views of the Coast Guard Research & Development Center. This report does not constitute a standard, specification, or regulation.

CHATTER OF TELLOPMENT CONTROL OF THE PROPERTY OF THE PROPERTY

Marc B. Mandler
Technical Director
United States Coast Guard
Research & Development Center
1082 Shennecossett Road
Groton, CT 06340-6096

Technical Report Documentation Page

1. Report No. CG-D-07-98	2. Government Accession No.	3. Recipient's Catalog No.					
4. Title and Subtitle		5. Report Date March 1998					
Course Keeping Stability Model Tests of a loft of a 120 FT WPB Hull	USCG Notional Design	Performing Organization Code Project No. 9208					
7. Author(s)		8. Performing Organization Report No.					
P. Ward Brown, Walter E. Klosinski		R&DC 30/94					
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)					
Davidson Laboratory Stevens Institute of Technology Castle Point Station		11. Contract or Grant No. DTCG23-85-C-20060					
Hoboken, NJ 07030		13. Type of Report and Period Covered					
12. Sponsoring Agency Name and Address		Final Report					
U.S. Department of Transportation United States Coast Guard Systems, (G-S) Washington, DC 20593-0001		14. Sponsoring Agency Code Boat Engineering Branch (ELC-024) USCG Engineering and Logistics Center 2401 Hawkins Point Road Baltimore, MD 21226-5000					

15. Supplementary Notes

The Coast Guard technical point of contact and COTR is Jim White (860-441-2734) of the U.S. Coast Guard Research and Development Center.

16. Abstract

Directional stability tests were performed on a 1/18 scale model of the hull of a 120 ft WPB notional design. Captive model tests were performed to add to a data base of basic hydrodynamic information about planing hulls. This information is required for the study of the dynamic stability, course keeping, maneuvering and control of planing hulls.

Straight course and rotating arm tests, at two radii, were conducted at the Froude scale equivalent of 12.5 and 35 knots. The two radii correspond to dimensionless angular velocities, L/R, of 0.206 and 0.412. The model was free to trim. The three force components and two moment components, as well as heave and trim, were measured. The yaw angle was varied from -6 to +12 degrees, in either 3 or 6 degree increments. The roll angle was varied from -10 to +20 degrees, in 10 degree increments. Most of the tests were conducted at a displacement corresponding to 135 long tons full size. Rudders were added and the appended hull tested on straight course and at an L/R of 0.206. Straight course rudder effectiveness tests were performed at rudder angles of 0 to 15 degrees in 5 degree increments. A limited number of bare hull tests were conducted at a displacement of 155 long tons, and at an L/R of 0.206. Underwater photographs and video recordings were made of all runs both on straight course and on the rotating arm.

	18. Distribution Statement							
ol boat	This document is available to the U.S. public through the National Technical Information Service, Springfield, VA 22161.							
20. SECURITY CLASSIF	. (of this page)	21. No. of Pages	22. Price					
UNCLAS	SSIFIED							
		ctional stability Ol boat This document is averaged the National Technic	ctional stability of boat FT WPB This document is available to the U.S. pub the National Technical Information Service Springfield, VA 22161. 20. SECURITY CLASSIF. (of this page) 21. No. of Pages					

Form DOT F 1700.7 (8/72)

METRIC CONVERSION FACTORS

asures	Symbol		Ë	. ⊆ :	± 5	ζĒ		in ²	yd ²	, iE			20	Q				tl oz	υ	t d	ŧ	gg	#3 **	yď³			Å		1		
Metric Me	To Find		inches	inches	reet	miles		square inches	square yards	square miles	acres		onuces	spunod	short tons			fluid ounces	cnbs	pints	quarts	gallons	cubic feet	cubic yards			Fahrenheit	temperature	212°F	200 100°C	
ons from l	Multiply By	Н	0.04	0.4		0.6		0.16		0.4 8	j.	IGHT)	0.035	2.2	Ξ:		Ш	0.03	0.125	2.1	1.06	0.26	35	. .		E (EXACT)	9/5 (then	add 32)	98.6	120, 160	
Approximate Conversions from Metric Measures	When You Know	LENGTH	millimeters	centimeters	meters	kilometers	AREA	square centimeters	square meters	square kilometers	nectares(10,000 m)	MASS (WEIGHT)	grams	kilograms	tonnes (1000 kg)		VOLUME	milliliters	liters	liters	liters	liters	cubic meters	cubic meters		TENDERATURE (EXACT)	Celsius	temperature	32	-40°F 0 4 40 180	
	Symbol	7.10				 E <u>\$</u>		5 cm ²		km ²		1.		, k	-	101		Ē	-	-	-		E.		14	_	ပ္စ				
52 53	0 21	S 6	 	81			91	S		* I	13					101	6	11111	 			9		s 			ε	5		cu	
9	'!' ' ' 8	" " "	' ' 7	' ' .	' '	' '''	6	'1'	'!'	111	5	l' '		!' <u> </u> '	4	'1'	יויןיויי	3	'	' 'I	111	יןי <u>ן</u>	2	ויוי	' ' 	'l'	1	1' '1	inch	es	
sures	Symbol		E	СШ	Ε	Ę			2 '	m ²		<u> </u>		Ō	kg	+		Ē	Ē	Ē	_	_	_	_	e E	, E		ပ			
fetric Mea	To Find		centimeters	centimeters	meters	kilometers		square centimeters	square meters	square meters	square kilometer: hoctore	rectal es		grams	kilograms	tonnes	Í	milliliters	milliliters	milliliters	liters	liters	liters	liters	cubic meters	cubic meters	XACT)	Celsius	temperature		
sions to M	Multiply By	LENGTH	* 2.5	30	6.0	1.6	AREA	6.5	0.09	8.0		t Ö	MASS (WEIGHT)	28	0.45	6.0	VOLUME	5	15	30	0.24	0.47	0.95	3.8	0.03	0.76	TEMPERATURE (EXACT)	5/9 (after	subtracting 32)		
Approximate Conversions to Metric Measures	Symbol When You Know	÷	inches	feet	yards	miles		square inches	square feet	square yards	square miles		2	onuces	spunod	short tons (2000 lb)		teaspoons	tablespoons	fluid ounces	cnps	pints	quarts	gallons	cubic feet	cubic yards	TEMF		temperature	2.54 (exactly).	Þ
Appro	Symbol N		.⊑	=	yq	Ē		in ²	ft ²	y d 2	Ē			02	q			tsp	tbsp	fl oz	O	ŧ	ŧ	gal	#3	yd ³		₽ °		*1 in = 2.	

R-2570

TABLE OF CONTENTS

INTRODUCTION									•		•	•	•	•	•	•	•	•	1
MODEL											•							•	2
TEST FACILIT	IES .													•			•	•	3
Straight	Course T	ests				•				•	•		•			•	•	•	3
Rotating	Arm Test	s											•		•			•	3
APPARATUS AN	D INSTRU	MENT	ATION	١.											•		•	•	4
TEST PROCEDU	RE			•							•			•				•	6
TEST PROGRAM	١																•	•	8
DATA PROCESS	SING .										•					•	•	•	10
Air Tares	·											•	•	٠		•			11
Wetted Ar	ea								•		•		•		•			•	11
RESULTS .														•				•	12
CONCLUDING F	REMARKS														•	•	•		13
REFERENCES											•					•	•		14
						TA	BLE	S											
TABLE 1	HULL CH	ARACT	ERIS	TICS	3.					•	•	•		٠	•		•	•	15
TABLE 2	BARE HUI	LL TE	STS	RUN	DIF	RECT	ORY	' .	•		•	•	•	•	•	•	•	•	16
TABLE 3	APPENDE	D HUL	L TE	STS	RUN	1 DI	REC	CTOF	RY.						•	•	•	•	21
TABLE 4	RUDDER !	EFFEC	TIVE	NES	S TE	STS	RL	JN [DIRE	CTC	ORY	•	•	•	•	•	•	•	23
TABLE 5	BARE HU	LL RE	SULT	S, I	L/R	= 0), 1	35	LON	NG 7	TONS	· .			•	•	•	•	24
TABLE 6	BARE HU	LL RE	SULT	s, I	L/R	= 0	0.20	06,	135	5 LC	ONG	TON	IS	•	•	•	•	•	26
TABLE 7	BARE HU	LL RE	SULT	s,	L/R	= 0	0.41	12,	135	5 LC	ONG	TON	IS	•	•	•	•	•	28
TABLE 8	SUPPLEM	ENTAL	BAF	E H	ULL	RES	SULT	ΓS,	L/F	? =	0.4	112,	13	35 L	ONG	TO	NS	•	30
TABLE 9	BARE HU	LL RE	SULT	s,	L/R	= (0.20	06,	155	5 L(ONG	TON	IS	•	•	•	•	•	31
TABLE 10	APPENDE													•	•	•	٠	•	33
TABLE 11	APPENDE																		35
TABLE 12	RUDDER	EFFE	CTIVE	NES	SR	ESUI	LTS	, L	/R =	= 0	, 13	35 l	ONC	S TO	ONS	•	•	•	37
TABLE 13	BARE HU	LL S	TATIO	RO	LL I	RESI	JLT:	s,	L/R	= 1	0.2	06,	13	5 L(ONG	TON	IS.	•	38
TABLE 14	BARE HU	ILL RI	ESULT	rs,	L/R	= (0,	135	LO	NG	TON	s, A	XES	S A	•	•	•	•	39
TABLE 15	BARE HL	ILL R	ESUL	rs,	L/R	= (0.2	06,	13	5 L	ONG	TO	VS,	AXI	ES A	٩.	•	•	41
TABLE 16	BARE HL	JLL R	ESUL	rs,	L/R	= 1	0.4	12,	13	5 L	ONG	TO	NS,	AXI	ES /	۹.	•	•	43
TABLE 17	SUPPLEM	1ENTA	L RES	SULT	s,	L/R	=	0.4	12,	13	5 L	ONG	TO	NS,	AXI	ES A	٠.	•	45
TADLE 10		8 L D	EQI 11 .	rs	I /R	=	0.2	06	15	5 1	ONG	TO	NS.	AX	ES /	Α.			46

R-2570

TABLE 19	APPENDED HULL RESULTS, $L/R = 0$, 135 LONG TONS, AXES A	48
TABLE 20	APPENDED HULL RESULTS, $L/R = 0.206$, 135 LONG TONS, AXES A	50
TABLE 21	RUDDER EFFECTIVENESS RESULTS, L/R = 0, 135 LONG TONS, AXES A	52
TABLE 22	STATIC ROLL RESULTS, $L/R = 0.206$, 135 LONG TONS, AXES A	53
TABLE 23	BARE HULL RESULTS, $L/R = 0$, 135 LONG TONS, AXES B	54
TABLE 24	BARE HULL RESULTS, $L/R = 0.206$, 135 LONG TONS, AXES B	56
TABLE 25	BARE HULL RESULTS, $L/R = 0.412$, 135 LONG TONS, AXES B	58
TABLE 26	SUPPLEMENTAL RESULTS, $L/R = 0.412$, 135 LONG TONS, AXES B	60
TABLE 27	BARE HULL RESULTS, $L/R = 0.206$, 155 LONG TONS, AXES B	61
TABLE 28	APPENDED HULL RESULTS, $L/R = 0$, 135 LONG TONS, AXES B	63
TABLE 29	APPENDED HULL RESULTS, $L/R = 0.206$, 135 LONG TONS, AXES B	65
TABLE 30	RUDDER EFFECTIVENESS RESULTS, L/R = 0, 135 LONG TONS, AXES B	67
TABLE 31	STATIC ROLL RESULTS, $L/R = 0.206$, 135 LONG TONS, AXES B	68
TABLE 32	NON-DIMENSIONAL, BARE, $L/R = 0$, 135 LONG TONS, AXES A	69
TABLE 33	NON-DIMENSIONAL, BARE, $L/R = 0.206$, 135 LONG TONS, AXES A .	70
TABLE 34	NON-DIMENSIONAL, BARE, $L/R = 0.412$, 135 LONG TONS, AXES A .	72
TABLE 35	NON-DIMENSIONAL, SUPPLEMENT, L/R = 0.412, 135 LONG TONS, AXES A	73
TABLE 36	NON-DIMENSIONAL, BARE, $L/R = 0.206$, 155 LONG TONS, AXES A .	74
TABLE 37	NON-DIMENSIONAL, APPENDED, $L/R = 0$, 135 LONG TONS, AXES A .	76
TABLE 38	NON-DIMENSIONAL, APPENDED, L/R = 0.206, 135 LONG TONS, AXES A	78
TABLE 39	NON-DIMENSIONAL, BARE, $L/R = 0$, 135 LONG TONS, AXES B	80
TABLE 40	NON-DIMENSIONAL, BARE, $L/R = 0.206$, 135 LONG TONS, AXES B .	81
TABLE 41	NON-DIMENSIONAL, BARE, $L/R = 0.412$, 135 LONG TONS, AXES B .	83
TABLE 42	NON-DIMENSIONAL, SUPPLEMENT, $L/R = 0.412$, 135 LONG TONS, AXES B	84
TABLE 43	NON-DIMENSIONAL, BARE, $L/R = 0.206$, 155 LONG TONS, AXES B .	85
TABLE 44	NON-DIMENSIONAL, APPENDED, $L/R = 0$, 135 LONG TONS, AXES B .	87
TABLE 45	NON-DIMENSIONAL, APPENDED, L/R = 0.206, 135 LONG TONS, AXES B	89
TABLE 46	NON-DIMENSIONAL RUDDER EFFECT, L/R = 0, 135 LONG TONS, AXES A&B	91
	FIGURES	
FIGURE 1	ROTATING ARM TEST AT 12.5 KNOTS	92
FIGURE 2	120 FT WPB PROFILE	93
FIGURE 3	120 FT WPB BODY LINES	94
FIGURE 4	UNDERWATER PHOTOGRAPH IN TURN AT 35 KNOTS	95
FIGURE 5	RUDDER DRAWING	96
FIGURE 6	PIVOT BOX	97

APPENDICES

	<u>Page</u>
APPENDIX A	CHRONOLOGICAL LISTING OF STRAIGHT COURSE RUNS A1
APPENDIX B	CHRONOLOGICAL LISTING OF ROTATING ARM RUNSB1
APPENDIX C	AXES SYSTEMS AND AIR TARES C1 Axes Systems C1 Measurement Axes Set C1 Free-to-trim testing C2 Body Coordinate System A C2 Body Coordinate System B C3 Normalization C4 Air Tares C5
TABLE C	AIR TARE TEST RESULTS
APPENDIX D	GRAPHICAL PRESENTATION OF THE BARE HULL DATAD-1
Figure D-1.	X' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.000 and a speed of 12.5 knotsD-4
Figure D-2.	X' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.206 and a speed of 12.5 knots
Figure D-3.	X' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.412 and a speed of 12.5 knotsD-6
Figure D-4.	X' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of -10 degrees and a speed of 12.5 knotsD-7
Figure D-5.	X' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 0 degrees and a speed of 12.5 knots
Figure D-6.	X' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 10 degrees and a speed of 12.5 knotsD-9
Figure D-7.	X' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 20 degrees and a speed of 12.5 knotsD-10
Figure D-8.	X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of -6 degrees and a speed of 12.5 knotsD-11
Figure D-9.	X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 0 degrees and a speed of 12.5 knotsD-12
Figure D-10.	X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 6 degrees and a speed of 12.5 knotsD-13
Figure D-11.	X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 9 degrees and a speed of 12.5 knots

<u>Page</u>		
D-15	X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 12 degrees and a speed of 12.5 knots	Figure D-12.
D-16	X' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.000 and a speed of 35 knots	Figure D-13.
D-17	X' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.206 and a speed of 35 knots	Figure D-14.
D-18	X' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.412 and a speed of 35 knots	Figure D-15.
D-19	X' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of -10 degrees and a speed of 35 knots .	Figure D-16.
D-20	X' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 0 degrees and a speed of 35 knots	Figure D-17.
D-21	X' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 10 degrees and a speed of 35 knots	Figure D-18.
D-22	X' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 20 degrees and a speed of 35 knots	Figure D-19.
D-23	X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of -6 degrees and a speed of 35 knots	Figure D-20.
D-24	X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 0 degrees and a speed of 35 knots	Figure D-21.
D- 2 5	X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 6 degrees and a speed of 35 knots	Figure D-22.
D-26	X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 9 degrees and a speed of 35 knots	Figure D-23.
D-27	X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 12 degrees and a speed of 12.5 knots	Figure D-24.
D-28	Y' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.000 and a speed of 12.5 knots	Figure D-25.
D-29	Y' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB	Figure D-26.

<u>Page</u>

Figure D-27.	Y' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.412 and a speed of 12.5 knotsD-30
Figure D-28.	Y' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of -10 degrees and a speed of 12.5 knotsD-31
Figure D-29.	Y' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 0 degrees and a speed of 12.5 knots
Figure D-30.	Y' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 10 degrees and a speed of 12.5 knotsD-33
Figure D-31.	Y' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 20 degrees and a speed of 12.5 knotsD-34
Figure D-32.	Y' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of -6 degrees and a speed of 12.5 knotsD-35
Figure D-33.	Y' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 0 degrees and a speed of 12.5 knotsD-36
Figure D-34.	Y' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 6 degrees and a speed of 12.5 knotsD-37
Figure D-35.	Y' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 9 degrees and a speed of 12.5 knotsD-38
Figure D-36.	Y' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 12 degrees and a speed of 12.5 knotsD-39
Figure D-37.	Y' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.000 and a speed of 35 knotsD-40
Figure D-38.	Y' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.206 and a speed of 35 knotsD-41
Figure D-39.	Y' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.412 and a speed of 35 knotsD-42
Figure D-40.	Y' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of -10 degrees and a speed of 35 knotsD-43
Figure D-41.	Y' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB

	<u>Page</u>
Figure D-42.	Y' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 10 degrees and a speed of 35 knotsD-45
Figure D-43.	Y' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 20 degrees and a speed of 35 knotsD-46
Figure D-44.	Y' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of -6 degrees and a speed of 35 knotsD-47
Figure D-45.	Y' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 0 degrees and a speed of 35 knotsD-48
Figure D-46.	Y' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 6 degrees and a speed of 35 knotsD-49
Figure D-47.	Y' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 9 degrees and a speed of 35 knotsD-50
Figure D-48.	Y' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 12 degrees and a speed of 35 knotsD-51
Figure D-49.	K' versus Phi with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.000 and a speed of 12.5 knotsD-52
Figure D-50.	K' versus Phi with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.206 and a speed of 12.5 knotsD-53
Figure D-51.	K' versus Phi with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.412 and a speed of 12.5 knotsD-54
Figure D-52.	K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of -6 degrees and a speed of 12.5 knotsD-55
Figure D-53.	K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 0 degrees and a speed of 12.5 knotsD-56
Figure D-54.	K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 6 degrees and a speed of 12.5 knots
Figure D-55.	K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 9 degrees and a speed of 12.5 knotsD-58
Figure D-56.	K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB

<u>Page</u>
Figure D-57. K' versus L/R with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of -10 degrees and a speed of 12.5 knotsD-60
Figure D-58. K' versus L/R with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 0 degrees and a speed of 12.5 knotsD-61
Figure D-59. K' versus L/R with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 10 degrees and a speed of 12.5 knotsD-62
Figure D-60. K' versus L/R with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 20 degrees and a speed of 12.5 knotsD-63
Figure D-61. K' versus Phi with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.000 and a speed of 35 knotsD-64
Figure D-62. K' versus Phi with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.206 and a speed of 35 knotsD-65
Figure D-63. K' versus Phi with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.412 and a speed of 35 knotsD-66
Figure D-64. K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of -6 degrees and a speed of 35 knotsD-67
Figure D-65. K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 0 degrees and a speed of 35 knotsD-68
Figure D-66. K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 6 degrees and a speed of 35 knotsD-69
Figure D-67. K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 9 degrees and a speed of 35 knotsD-70
Figure D-68. K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 12 degrees and a speed of 35 knotsD-71
Figure D-69. K' versus L/R with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of -10 degrees and a speed of 35 knotsD-72
Figure D-70. K' versus L/R with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 0 degrees and a speed of 35 knotsD-73
Figure D-71. K' versus L/R with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB

Notional Design at a Phi of 10 degrees and a speed of 35 knots......D-74

<u>Page</u>

Figure D-72.	K' versus L/R with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 20 degrees and a speed of 35 knotsD-75
Figure D-73.	N' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.000 and a speed of 12.5 knotsD-76
Figure D-74.	N' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.206 and a speed of 12.5 knotsD-77
Figure D-75.	N' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.412 and a speed of 12.5 knotsD-78
Figure D-76.	N' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of -10 degrees and a speed of 12.5 knotsD-79
Figure D-77.	N' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 0 degrees and a speed of 12.5 knots
Figure D-78.	N' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 10 degrees and a speed of 12.5 knotsD-81
Figure D-79.	N' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 20 degrees and a speed of 12.5 knotsD-82
Figure D-80.	N' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of -6 degrees and a speed of 12.5 knotsD-83
Figure D-81.	N' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 0 degrees and a speed of 12.5 knotsD-84
Figure D-82.	N' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 6 degrees and a speed of 12.5 knotsD-85
Figure D-83.	N' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 9 degrees and a speed of 12.5 knotsD-86
Figure D-84.	N' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 12 degrees and a speed of 12.5 knotsD-87
Figure D-85.	N' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.000 and a speed of 35 knotsD-88
Figure D-86.	N' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.206 and a speed of 35 knots

<u>Page</u>

Figure D-87.	N" versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.412 and a speed of 35 knots	D-90
Figure D-88.	N' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of -10 degrees and a speed of 35 knots	D-91
Figure D-89.	N' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 0 degrees and a speed of 35 knots	D-92
Figure D-90.	N' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 10 degrees and a speed of 35 knots	D-93
Figure D-91.	N' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 20 degrees and a speed of 35 knots	D-94
Figure D-92.	N' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of -6 degrees and a speed of 35 knots	D-95
Figure D-93.	N' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 0 degrees and a speed of 35 knots	D-96
Figure D-94.	N' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 6 degrees and a speed of 35 knots	D-97
Figure D-95.	N' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 9 degrees and a speed of 35 knots	D-98
Figure D-96.	N' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 12 degrees and a speed of 35 knots	D-99

NOMENCLATURE

b	maximum beam over upper chines, ft
CG	center of gravity
CM	center of moments, pivot point in free-to-trim tests
Cv	velocity coefficient, V/√(gb)
Fn∀	volume Froude Number, $V/\sqrt{(g\nabla^{1/3})}$
g	acceleration due to gravity, 32.17 fps ²
K	roll moment, 1b-ft, see Appendix C
М	pitch moment, 1b-ft, see Appendix C
N	yaw moment, lb-ft, see Appendix C
L	LOA, length overall, ft
L/b	length-beam ratio
LBP	length between perpendiculars, ft
LCG	longitudinal position of the center of gravity (CG),
	measured from the aft perpendicular parallel to the baseline, ft
LCM	longitudinal position of the center of moments (CM),
	measured from the aft perpendicular parallel to the baseline, ft
LOA	length overall, ft
L/R	non-dimensional turn rate
q	dynamic pressure, $\frac{1}{2}\rho V^2$
R	radius of turn, ft
SKWL	static keel wetted length, ft, see page 12
TD	transom draft, depth of keel at transom below still water level, ft
V	velocity, fps
Vk	speed, knots
VCG	vertical height of the center of gravity above the baseline, ft
VCM	vertical height of the center of moments above the baseline, ft
W	specific weight of water, 62.28 lb/cu.ft fresh water at 71.5°F
	(test condition), 64.00 lb/cu.ft salt water at 59°F (standard
	condition).
Χ	longitudinal force, lb, see Appendix C
Υ	lateral force, lb, see Appendix C
Z	vertical force, lb, see Appendix C
ϕ	roll angle, degrees, see Appendix C
Θ	trim angle, degrees, see Appendix C

β	yaw angle, degrees, see Appendix C
ρ	density of water, w/g, slugs per cu.ft
Δ	displacement, 1b
\triangle	volumetric displacement, Δ/w , cu.ft
Ω	rate of turn, radians per second

Non-dimensional quantities

Forces		Moment	s
X'	X/qb²	Κ'	K/qb³
Υ'	Y/qb²	м'	M/qb ³
Z'	Z/qb²	N'	N/qb ³

Sign Convention

The sign conventions are discussed in Appendix C and vary with the axes system being used. The sense of some quantities that in this report are invariant under the various transformations are summarized here.

The trim is positive in the bow up sense and is zero when the afterbody keel is horizontal. The baseline has a positive inclination of 0.76 degrees relative to the afterbody keel. Therefore when the trim is zero the trim of the baseline is 0.76 degrees.

The heave is the height of the tow point above the still water surface, is positive vertically upward, and is zero when the tow point is at the still water level. The towpoint is coincident with the center of moments (CM).

The transom draft (TD) is the depth of the keel at transom below the still water surface, is positive vertically downward, and is zero when the keel at transom is at the still water level.

The resultant velocity is a horizontal vector, positive forward in the stern-to-bow sense, and is zero when the boat is at rest.

EXECUTIVE SUMMARY

A number of undesirable stability and maneuvering characteristics have occurred on various boat designs, including Coast Guard boats, during the past twenty years. The 30 ft. SRB had a roll-pitch-yaw instability problem, and the prototype 47 ft MLB rolled excessively in a high speed turn. One of the basic reasons for problems of this nature is the lack of understanding of the hydrodynamics associated with high speed craft that are doing anything but traveling in a straight line. This report takes a step toward rectifying this situation.

This report presents the results of a series of directional stability tests which were performed on a 1/18 scale model of the hull of a 120 ft WPB notional design. The design is a precursor of the Heritage class patrol boat design. Captive model tests were performed to add to a basic data base of hydrodynamic information about planing hulls. This information is required for the study of the dynamic stability, course keeping, maneuvering and control of planing hulls.

Straight course and rotating arm tests, at two radii, were conducted at the Froude scale equivalent of 12.5 and 35 knots. The model was free to trim and heave. Variations in the yaw angle and roll angle were studied, but constrained in surge, sway, roll and yaw. The lateral and longitudinal forces, and roll and yaw moments, were measured. Most of the tests were conducted at a design displacement of 135 long tons. The model was towed from a point corresponding to the longitudinal center of gravity of the design. A limited number of tests were conducted at a displacement corresponding to 155 long tons. Rudder effectiveness tests were performed on a straight course.

A more in depth analysis of the data, involving the use of symmetry arguments and mathematical curve fitting techniques, together with a comparison with other planing hull stability data, remains to be done. This will involve curve fitting mathematical expressions to the hydrodynamic data, and inserting these expressions into equations of motion. The solution of these equations will provide predictions of turning and maneuvering trajectories. A comparison of the trajectories for various planing boat designs will give insight into those hull characteristics that are desirable, as well as, those characteristics that are undesirable.

INTRODUCTION

The Davidson Laboratory is conducting a series of planing boat studies in support of the U.S. Coast Guard's pursuit of R&D projects which will enable it to evaluate advanced marine vehicles and advanced technologies which enhance the effectiveness of ship resources. The experimental results obtained at the Davidson Laboratory are intended to contribute to a relevant technical data base for the evaluation of vessels which are in service and for designs which are being considered for service.

The objective of this research is to obtain basic hydrodynamic information about planing hulls through the use of captive model tests. This information is required for the study of the transverse stability, yaw/roll stability, course keeping, maneuvering and control, and seakeeping and the loss of speed in a seaway of planing hulls.

The research results presented in this report are concerned with the directional stability of the 120 ft WPB Notional Design hull. The course keeping stability tests of the hull were made under a number of conditions including parametric variations in displacement (135 and 155 long tons), yaw angle, roll angle, and rudder deflection. The model was tested at speeds corresponding to 12.5 and 35 knots on straight course, and in turning circles of five and ten boat lengths.

The Coast Guard cautions the reader that the data contained herein only apply to the model tested, as defined by the body lines drawing presented in Figure 3 of this report.

This report is the last in a series of planing hull reports which were prepared under Contract DTCG23-85-C-20060. Funding limitations require that this report be published in two parts. Part I (this volume) contains a description of the model tests and a tabulation of the test data. It was prepared by the Davidson Laboratory. Part II (a companion volume) presents the data in graphical form and discusses the curves drawn through the data. It is being prepared by the USCG R&D Center.

MODEL

The 1/18-scale model of the 120 ft WPB is shown under test in Figure 1. The model was previously fabricated and used for resistance and seakeeping tests^{1,2,3}. The profile and body lines are presented on Figures 2 and 3. The model hull was made of fiberglass and epoxy to USCG specifications. Internal body frames and cut-out decks were included to make the model rigid but lightweight. A lower deck, made of marine plywood, was installed inside the model and extended for about a third of the model's length. This deck was used for attaching weights, instrumentation, and the apparatus which connected the model to the overhead towing carriage.

The model was towed free-to-pitch through a pitch pivot box (see Figure 6) which had its axis located at the Center of Moments (CM), see page 5. This center coincided with the Design LCG but was slightly above the Design VCG, see Table 1.

The bottom of the model was striped to assist in determining the keel and chine wetted lengths from the underwater photographs, see Figure 4. Lines were ruled along the keel, and the upper and lower chines, and tick marks were placed along these lines at one inch intervals. Every fifth line was connected from chine to chine. The origin of this system is the upper chine at the transom.

A thin mylar strip was fastened to the lower chine of the 120 ft WPB to ensure sharp edges on the scaled model. The spray rail built into the 120 ft WPB at the upper chine was V-shaped in cross-section, which resulted in a sharp edge, and therefore no mylar strip was required at the upper chine.

Two adjustable brass rudders were made according to the drawing supplied to the Davidson Laboratory by the Coast Guard, see Figure 5. Simplified constant thickness rudder sections were used, 0.375 inches thick model scale. Note that the rudders are perpendicular to the bottom of the hull as shown on Figure 5. To maintain the watertight integrity of the hull, and for ease of removal, the rudders were mounted on two thin plates which fastened to the outside of the hull rather than penetrating the hull. These rudders were adjustable over the range of rudder deflection from -15 to +15 degrees in five degree increments

Hull characteristics are presented in Table 1.

TEST FACILITIES

Straight Course Tests

Straight course tests were conducted in the Davidson Laboratory Tank 3 which is 313 ft long, 12 ft wide and 5.5 ft deep. A monorail above the water extends down the tank's length. A towing carriage rides on this rail and is attached to the model below it through the heave poles. The carriage is towed by a steel cable driven by an electric motor at one end of the tank. The model is accelerated up to the required constant speed, and data are acquired in a 50 ft data trap. The signals from the instrumentation are transmitted by overhead cables to shore-based signal conditioning equipment and thence to an on-line computer for processing and storage.

The signal conditioning equipment provides for dc amplification, and zero-offset adjustment, of the signals from the instrumentation, so as to get suitable input levels to the computer. In addition, the input to the computer is displayed on an oscillograph. This oscillograph makes a time-history record of each run, which is monitored to ensure the satisfactory quality of the data that is being obtained. The signals from the instrumentation were not filtered.

Underwater photographs were taken using a water-tight camera box and a large underwater mirror. The rail in Tank 3 is equipped with a counter system which indicates the exact location of the carriage. This system is used to determine when the model is opposite the camera and to fire the camera and flash lights. A color video camera was mounted ahead of the model and off the port side of the model. All runs were monitored on a shore based monitor, and a video recording was made of each run.

Rotating Arm Tests

The rotating arm tests were carried out in Davidson Laboratory Tank 2 which is 75 ft by 75 ft and 4.5 ft deep. The rotating arm is mounted above the water on a central shaft, and is driven by an electric motor and gear box mounted above the shaft. A towing carriage rides on this arm and is attached to the model below it by heave poles. The towing carriage can be slid radially along the arm so as to vary the radius of turn. The model is accelerated up

to the required constant speed, and data are acquired in a data trap spanning 90 degrees of arc set up in the fourth quadrant. The signals from the instrumentation are transmitted through slip rings on the shaft to shore-based signal conditioning equipment and thence to an on-line computer for processing and storage. The model setup on the rotating arm is shown on Figure 1.

Underwater black and white photographs were taken of each test run. The underwater camera was mounted in a vertical, surface piercing, water—tight transparent camera box, with the camera axis horizontal. A mirror set at 45 degrees was positioned on the floor of the tank opposite the camera and underneath the path of the model. This arrangement gave a view from directly underneath the hull looking upward. Flash units on the floor of the tank were used to illuminate the model. The camera and flash were triggered by the passage of the model over the mirror. The drive shaft in Tank 2 is equipped with a shaft encoder which indicates the position of the arm. This feature makes it relatively easy to detect when the model is well positioned over the mirror. The resulting photograph includes the run number and a side view of the hull, as well as the principal pressure area. An example of an underwater picture is included as Figure 4.

A color video camera was mounted ahead of the model and off the port side of the model. All runs were monitored on a shore based monitor, and a video recording was made of each run.

Two sets of prints of all the underwater photographs, in an 8" by 10" format, have been sent to the U.S. Coast Guard R&D Center at Avery Point, Connecticut. All of the negatives are on file at the Davidson Laboratory.

APPARATUS AND INSTRUMENTATION

A pitch and roll pivot box, with provision for setting and locking the trim and roll angles, was mounted in the model. This pivot box is shown on Figure 6. For all these stability tests the model was free to trim and heave, but was fixed in roll and yaw. The pitch axis was located 42.9 ft forward of the aft perpendicular and 8.81 ft above the baseline. Here and hereafter in this report, values are generally given in terms of full-size equivalents unless stated otherwise.

The meaning of the terms "full-size" and "model scale" as used in this report specifically, and at the Davidson Laboratory generally, may need clarification. The difference may be illustrated by reference to the Hull Characteristics given in Table 1. This Table shows, for example, that the LOA of the hull tested is 118.79 ft full-size and 79.19 inches model scale. To take another example, the data trap used for the straight course tests was discussed in a previous section. This data trap was 50 ft long at model scale corresponding to 900 ft full-size: in either case the length of the data trap was of the order of $7\frac{1}{2}$ hull lengths.

The pitch axis coincided with the Design LCG and was positioned as low in the model as the pivot box would allow. The intersection of the pitch axis with the plane of symmetry of the hull forms the origin for the balance coordinate system, and is referred to as the Center of Moments, CM. Lateral force, yaw moment, longitudinal force and roll moment were measured in these tests, as indicated in the sketch in Appendix C, where the various axis systems used to present the data are also described and discussed. The balance coordinate system coincides with the Body Coordinate System A as defined by the U.S. Coast Guard for use with these tests, with two exceptions: a) the origin of the measurement axes is located at the center of moments, which is 1.16 ft above the Design CG origin specified for Systems A and B, and b) the measurement x axis lies in the plane of symmetry of the hull, parallel to the water surface, but points toward the stern. The forces and moments are reported in all three coordinate systems: in balance axes, in the specified Body Coordinate System A, the specified Body Coordinate System B, and in non-dimensional form for both systems A and B.

A five-component balance was attached above the pivot box. A graduated plate on top of the balance was included for setting the yaw angle, and the balance rotated with the model in yaw but not in either roll or trim. Heave was measured at the pitch pivot by a linear differential transformer attached to the heave poles. An inclinometer mounted in the model measured the trim of the keel in the straight course tests. However, since this inclinometer is affected by radial acceleration on the rotating arm, a rotary differential transformer mounted on the pitch axis was used to measure the trim during the turning tests. The five-component balance was attached to twin vertical heave poles in a standard free-to-heave apparatus, which included provision for counter-weighting. The free-to-heave apparatus was mounted on

a standard towing carriage which was either run on the Tank 3 rail, or attached to the Tank 2 arm. Thus the identical test apparatus was used for both the straight course and rotating arm tests. The model was towed at constant speed in the straight course tests, and at constant angular velocity in the rotating arm tests.

TEST PROCEDURE

After the apparatus was setup, the instrumentation was calibrated in place, prior to testing. Known loads and moments were applied to the five component balance, and known displacements to the motion transducers. Combinations of loads and moments were applied to the balance in both the positive and negative sense. The following ranges of calibration were covered:

 Drag
 0 to 15 lb

 Side-force
 0 to 50 lb

 Roll moment
 -10.5 to +10.5 lb-ft

 Yaw moment
 -12.5 to +12.5 lb-ft

 Trim
 -3 to +9 degrees

 Heave
 0 to 10 inches

During calibration, the outputs from the balance transducers were fed to the on-line computer where a multiple linear regression was performed. The resulting coefficients were stored for use during data collection. These coefficients represent the sensitivity of each channel. The gains in the signal conditioning equipment were adjusted so that the sensitivities were of the order of 150 counts per unit of applied load. The calibrations were checked daily by the application of deadweights at a compound angle which caused simultaneous deflections in all the balance transducers.

The water temperature was maintained at a value of 71.5°F which was checked twice daily.

Data acquisition and processing was carried out by the on-line Masscomp computer using a program package designed by the Davidson laboratory known as DAP5. This program digitizes the analog signals from the instrumentation at 250 Hz and records them on disk in digital form during the test run. After the run the processing programs are called upon to process the data according

to user specified parameters. The steady state values are the arithmetic means of the digitized data taken in the data trap, and the number of points averaged varies with the speed and radius of turn:

Full Size Speed	Straight	Model radio	us of turn
knots	Course	32 ft	16 ft
0.0	5,000	5,000	5,000
12.5	2,510	2,524	1,262
35.0	897	901	451

Table A - Number of points averaged at each speed and radius

The model was setup for test in the following sequence. With the model locked at zero trim, that is with the afterbody keel horizontal, and at zero roll, the yaw angle was set by rotating the model in the horizontal plane; then the roll angle was set by rolling the model about its longitudinal axis. Zeros were taken with the model in the air at the required yaw and roll angles, and at zero trim. The model was then lowered into the water, the trim released, and a zero speed run was made to measure the hydrostatic forces and moments acting on the model. The model was then accelerated up to the required speed, data were acquired in the data trap, and the results were converted into engineering units and stored in the computer. An underwater photograph was taken at the end of the data trap, the model was decelerated and returned for the next run. The rotating arm tests were run in the clockwise direction. Speeds were computed from the time taken to travel through the data trap. Running plots of the measured data were made at tankside to monitor the results.

Air tares were run on the rotating arm with the model at zero trim in air, covering the test ranges of speed, radius, and yaw and roll angle, in order to determine the centrifugal and aerodynamic forces and moments. These air tares were later subtracted from the total forces and moments measured with the model in the water, in order to obtain the total of the hydrodynamic and hydrostatic forces and moments. Air tares were not taken on straight course.

TEST PROGRAM

The directional stability tests were run on straight course and on the rotating arm at 32 ft and 16 ft radius, model scale. The radius of the turn is measured in the horizontal plane from the center of the shaft to the tow point at the centerline of the model. The non-dimensional angular velocity, r'= L/R, where L refers to the LOA of 118.79 ft, and R is the radius of the turn, provides a convenient means of identifying the non-dimensional radius. Tests on straight course, and at model radii of 32 ft and 16 ft, correspond to non-dimensional angular velocities of 0, 0.206, and 0.412 respectively.

The stability characteristics of the bare hull at a displacement of 135 long tons, and at speeds of 12.5 and 35 knots, were determined at combined values of yaw angle and roll angle, on both straight course and in turns. Yaw angles ranged from -6 to +12 degrees, and roll angles from -10 to +20 degrees. These tests were repeated for the appended hull with the rudders fixed at zero deflection.

The rudder effectiveness was measured on straight course at a displacement of 135 long tons, and at speeds of 12.5 and 35 knots, and with both the yaw angle and the roll angle set to zero. The tests were made at rudder angles of 0, 5, 10, and 15 degrees.

A limited investigation of the effects of displacement on the bare hull stability characteristics was made at L/R= 0.206, by increasing the displacement to 155 long tons, and repeating the tests at 12.5 and 35 knots.

The stability tests were run at speeds of 12.5 and 35 knots, with the LCG at 42.9 ft, generally in accordance with the following test matrix:

	Straight Course	Rotating Arm
Configuration Displacement, long tons	Bare hull	Bare hull 135
Rate of turn, L/R Yaw angle, degrees	0 0, 6, 9, 12	0.206, 0.412
Roll angle, degrees	0, 10, 20	-10, 0, 10, 20
Yaw angle, degrees Roll angle, degrees	-6 -20, -10, 0	

<u>s</u>	traight Course	Rotating Arm
Configuration		Bare hull
Displacement, long tons		155
Rate of turn, L/R		0.206
Yaw angle, degrees		-6, 0, 6, 9, 12
Roll angle, degrees		-10, 0, 10, 20
Configuration	Appended hull	Appended hull
Displacement, long tons	135	135
Rate of turn, L/R	0	0.206
Rudder deflection, degrees	0	0
Yaw angle, degrees	0, 6, 9, 12	-6, 0, 6, 9, 12
Roll angle, degrees	0, 10, 20	-10, 0, 10, 20
Rudder Deflection, degrees	0, 5, 10, 15	
Yaw angle, degrees	0	
Roll angle, degrees	0	

The precise combination of test conditions is summarized by the Bare Hull Tests Run Directory in Table 2, and the Appended Hull Tests Run Directory in Table 3.

The model was tested free to trim and heave, and the measured quantities included: the longitudinal and lateral forces, the roll and yaw moments, the trim and heave, and the velocity. The heave is defined as the height of the tow point above the still water surface. The draft of the keel at the transom was calculated from the trim and heave, and is included in the tables of results as the "transom draft" (TD).

Tests at the 16 ft model radius at 35 knots, with -6 degrees of yaw, at either zero roll or with the model rolled 10 degree, overloaded the balance. Consequently tests were run over a range of increasing speeds up to the maximum possible without overloading, so that the data could later be extrapolated. This supplement included a velocity sweep from 7.3 knots to 28 knots at zero roll combined with yaw angles of -5 and -6 degrees, and a roll sweep from -10 to 20 degrees at 17.5 knots and -6 degrees yaw.

The static roll stability was measured at zero speed, and at displacements of 135 and 155 long tons, over a range of roll angles from -20 degrees to +20 degrees.

DATA PROCESSING

The test data were processed to meet several U.S. Coast Guard requirements. These include: 1) a tabulation of the "raw" data on a day by day, run by run basis; 2) the presentation of the data in Body Coordinate System A and System B, and in non-dimensional form; and 3) an explanation of how the lateral and longitudinal forces, and the yaw and roll moments are calculated.

These requirements are met in the following manner. 1) Each run is automatically given a unique, 3-digit, sequence number, and therefore a listing of the run numbers and test conditions satisfies the need for a run by run record. This list is presented in Appendices A and B which are Chronological Run Directories of the straight course tests and the rotating arm tests respectively. The run numbers are assigned sequentially by the computer, and a "run" signifies a data taking event which is not necessarily a run down the tank. The straight course runs were given a prefix of "1" so that these runs lie in the 1000-series. Rotating arm runs at L/R = 0.206 (model radius 32 ft) are distinguished by a prefix "2" and lie in the 2000-series. Similarly runs at L/R = 0.412 (model radius 16 ft) are prefixed by "3" and lie in the 3000-series. The raw data were taken to be the measured model data corrected for air tares, these data are presented in Tables 5 to 13.

2) The measured data were transformed to the modified body axes system, Body Coordinate System A with origin at the Design CG. This is an orthogonal axes set which rotates with the body in yaw but maintains a vertical and horizontal orientation. These results are presented in Tables 14 to 22.

These data were in turn transformed to Body Coordinate System B, with origin at the Design CG. This is a true body axes system which is fixed in the body and rotates with it in yaw, roll, and trim. The results in Axes B are presented in Tables 23 to 31. Finally the data were non-dimensionalized: forces were normalized with respect to the product of the dynamic pressure and the square of the beam, while moments were normalized with respect to the product of the dynamic pressure and the cube of the beam. The

non-dimensional results are presented in Tables 32 to 38 for Coordinate System A, and in Tables 39 to 45 for Coordinate System B.

3) The various axes systems are described in Appendix C, together with the transformation equations and the non-dimensionalizing scheme. The analysis of the air tares is also presented in Appendix C. The presentation of the data at various stages, together with the transformation equations, provides a clear audit trail between the raw data and the final results, and illustrates the data reduction process.

Air Tares

The first step in the analysis of rotating arm data is to remove the inertia effects due to angular acceleration. The inertia forces are measured by running the model in air above the water surface. The observed results are largely due to centrifugal acceleration and are spoken of as air tares. Because of the dominant effect of centrifugal force, the air tares are resolved into forces parallel with and normal to the resultant velocity vector. A regression analysis of the data is performed and equations are adopted to describe the air tare forces and moments, as described in Appendix C. As a check on this procedure the calculated air tares are removed from the observed air tares and the residuals examined. These were sufficiently small to indicate that a satisfactory fit had been obtained. The air tares calculated from the equations in Appendix C are subtracted from all the rotating arm data with the model in the water, before being presented as "Results Without Air Tares" in the tables of results.

Wetted Area

Underwater pictures were used to record the wetted area of the hull in both the straight course and rotating arm tests. An example of one of these photographs taken in a turn at 35 knots is included as Figure 4. Two sets of prints of all the underwater photographs, in an 8" by 10" format, have been supplied to the U.S. Coast Guard R&D Center at Avery Point, Connecticut, for measurement and analysis. All of the negatives are on file at the Davidson Laboratory.

Since the underwater pictures were not measured at the Davidson Laboratory neither the wetted lengths nor the wetted areas are included in the tabulated results.

A quantity known as the "static keel wetted length" (SKWL) was calculated from the trim and the transom draft. The dynamic wetted lengths at keel and chine measured from the underwater photographs may be correlated with the static keel wetted length. The static keel wetted length is defined by the intersection of the still water surface with the keel profile in the running condition and does not allow for the wave rise at the keel. The SKWL is shown in Sketch A:

Sketch A

RESULTS

The chronological lists of the straight course and rotating arm runs, with their test parameters, are presented in Appendices A and B respectively, for a total of 467 good data points. Directories to the runs are included in Tables 2 and 3 for the bare hull and appended hull configurations respectively. The directory of the rudder tests is in Table 4. Each page in these tables refers to runs at one combination of turn rate and load, and identifies the combination of roll angle and yaw angle at which each run was made at speeds of 0, 12.5 and 35 knots.

The measured model test data are presented in Tables 5 to 13. Each of these tables refers to tests at one combination of turn rate and load, and includes data for the three test speeds of 0, 12.5, and 35 knots. The runs on the rotating arm have been corrected for air tares. The data are sorted into a

hierarchy of speed, roll angle, and yaw angle. The tabulated values include: the run number, the roll angle, the yaw angle, the longitudinal force X, the lateral force Y, the vertical force Z, the pitch moment M, the roll moment K, the yaw moment N, the trim, the transom draft TD, the static keel wetted length SKWL, and the speed.

It may be noted that finite values of pitch moment are tabulated even though the model was free to trim. This is due to the offset of the model CG below the pitch axis, CM, and is discussed in the "Free-to-trim testing" section of Appendix C.

In the case of the straight course rudder tests at zero roll and yaw, Table 12, the value of the rudder deflection is tabulated in place of the roll and yaw angles. For the appended hull with rudders, we define a vector along the rudder stock axis that it directed out from the hull. The rudder deflection angle δ is defined to be positive in a clockwise sense looking in the direction of the vector. Thus the positive deflection of the rudders will be seen to increase the lateral force to starboard. In all other appended hull tests the rudders were at zero deflection.

The straight course tests of the appended hull were the first tests conducted. The magnitudes of the forces and moments were initially over estimated, and consequently the gain of the instrumentation was set too low. This applies to Runs 1111 to 1148 in Table 10. The instrumentation was re-calibrated with greater sensitivity, and the tests were repeated: Runs 1209 et seq in Table 10. The results repeated so well that both sets are reported.

Turns at 35 knots at the smallest radius, at -6 degrees of yaw, and 0 and 10 degrees of roll, overloaded the balance. Supplemental tests in the vicinity of this condition are reported in Table 8.

The measured model results converted to Coordinate System A are presented in Tables 14 to 22, and in Body Coordinate System B in Tables 23 to 31. The corresponding non-dimensional results are tabulated in Tables 32 to 38 and in Tables 39 to 45 for Systems A and B respectively.

CONCLUDING REMARKS

The object of this report is to present the results of stability tests of the 120 ft WPB on straight course and on the rotating arm. An analysis of this data set, while desirable, it is outside the scope of this report.

There is very little information in the current literature on the maneuvering characteristics of planing boats. Therefore this study makes a significant contribution to the planing boat technology base that is being developed by the U.S. Coast Guard.

The results of this investigation provide an extensive data base for studying the course keeping stability, maneuvering, and control characteristics of the USCG 120 ft WPB design.

It is recommended that these data be analyzed and used as a basis for developing a modern planing boat maneuvering simulator.

REFERENCES

- Klosinski, Walter E., and Brown, P. Ward: "Resistance and Seakeeping Model Tests of Two USCG Notional Designs of 110 ft and 120 ft WPB Hulls" Davidson Laboratory Report 2548, February 1987. USCG R&D Report CG-D-16-93
- Klosinski, Walter E., and Brown, P. Ward: "Additional Resistance and Seakeeping Model Tests of a USCG 120 ft Notional WPB Design," Davidson Laboratory Report 2561, February 1987. USCG R&D Report CG-D-17-93
- 3. Klosinski, Walter E., and Brown, P. Ward: "Additional Seakeeping Model Tests of Two USCG Notional Designs of 110 ft and 120 ft WPB Hulls" Davidson Laboratory Report 2587, February 1987.

 USCG R&D Report CG-D-18-93

TABLE 1

HULL CHARACTERISTICS

	Full-Size	1/18 Model Scale
Displacement		
Half load	135.0 <i>L</i> -tons	50.43 lb
Full load	155.0 <i>L</i> -tons	57.90 lb
LOA	118.79 ft	79.19 in
LBP	110.0 ft	73.33 in
Maximum beam at upper chine	21.1 ft	14.07 in
Design Center of Gravity		
LCG forward of AP	42.90 ft	28.60 in
VCG above baseline	7.57 ft	5.05 in
Test Center of Gravity		
LCG forward of AP	42.90 ft	28.60 in
VCG above baseline at 135 L-tons	8.02 ft	5.35 in
VCG above baseline at 155 L-tons	8.12 ft	5.41 in
Test Center of Moments		
LCM forward of AP	42.90 ft	28.60 in
VCM above baseline	8.81 ft	5.875 in
Rudder Characteristics		
Root chord.	35.0 in	1.56 in
Tip chord	20.0 in	1.11 in
Span	42.0 in	2.33 in
Lateral area of each rudder	1155.0 sq.in	3.56 sq.in
Total area	2310.0 sq.in	7.13 sq.in
Rudder post fwd of Station 10	37.00 in	2.06 in
Rudder root outboard of CL	51.00 in	2.83 in
Constant model rudder thickness	3.33 in	0.185 in
Inclination of Baseline		
at zero trim of afterbody	0.76 deg	0.76 deg

TABLE 2.1

BARE HULL TESTS RUN DIRECTORY
Displacement 135 long tons, LCG 42.9 ft

L/R = 0 (Straight Course)

Speed	= 0	knots
-------	-----	-------

ROLL	YAW:	-6°	-3°	0°	3°	6°	9°	11°	12°
-20°		1325							
-10°		1322							
o°		1328		1272	1318	1275	1278	1314 1316	1281
10°				1285	1320	1289	1292	1310	1295
20°				1298	1312	1301	1306		1309
			Spee	d = 12.	5 knots				
ROLL	YAW:	-6°	-3°	0°	3°	6°	9°	11°	12°
-20°		1326							
-10°		1323							
0°		1329		1273		1276	1279		1282 1283
10°				1286		1290	1293		1296
20°				1299		1302	1307		1310
			Spe	ed = 35	knots				
ROLL	YAW:	-6°	-3°	0°	3°	6°	9°	11°	12°
-20°		1327							
-10°		1324							
0°		1330		1274	1319	1277	1280	1315 1317	1284
10°				1287 1288	1321	1291	1294		1297
20°				1300	1313	1305	1308		1311

TABLE 2.2

BARE HULL TESTS RUN DIRECTORY
Displacement 135 long tons, LCG 42.9 ft

L/R = 0.206 (32 ft radius)

Speed = 0 knots

	YAW:	-6°	-3°	0°	3°	6°	9°	12°
ROLL -10°		2198 2200		2137		2153	2175	2195
0°		2202		2133 2135		2146 2147		2192
10°		2205		2140		2156	2178	2188
20°		2208 2210		2143		2160	2181	2184 2185
			Spee	ed = 12.	5 knots	;		
	YAW:	-6°	-3°	0°	3°	6°	9°	12°
ROLL -10°		2201		2138		2154	2176	2196
0°		2203		2134		2150 2151	2173	2193
10°		2206		2141		2157	2179	2189
20°		2209		2144		2161	2182	2186
			Sp	eed = 35	knots			
ROLL	YAW:	-6°	-3°	0°	3°	6°	9°	12°
-10°		2199		2139		2155	2177	2197
0°		220 4 25 5 6		2136 2557		2152 2558	2174	2194 2559
10°		2212		2142		2158	2180	2190 2191
20°		2211		2145		2162	2183	2187

TABLE 2.3a

BARE HULL TESTS RUN DIRECTORY Displacement 135 long tons, LCG 42.9 ft

L/R = 0.412 (16 ft radius)

Speed	= 0	knots
-------	-----	-------

			•					
DOL 1	YAW:	-6°	-3°	0°	3°	6°	9°	12°
ROLL -10°		3322 3373		3319		3337	3356	3359
0°		3380		3310		3334	3352 3353	3363
10°		3387		3313		3340	3349	3365
20°		3 391 3 3 92		3316		3343	3346	3368
			Spee	ed = 12.	5 knots	3		
ROLL	YAW:	-6°	-3°	0°	3°	6°	9 °	12°
-10°		3323		3320		3338	3357	3360
0°		3 38 1 3382		3311		3335	3354	3363
10°		3388		3314		3341	3350	3366
20°		3393		3317		3344	3347	3369
			Spe	eed = 35	knots			
ROLL	YAW:	-6°	-3°	0°	3°	6°	9°	12°
-10°		3375		3321		3339	3358	3361
0°		*		3312		3336	3355	3364
10°		*		3315		3342	3351	3367
20°		3395		3318		3345	3348	3371

^{*} Overloaded roll moment - see table 2.3b

TABLE 2.3b

BARE HULL TESTS RUN DIRECTORY Displacement 135 long tons, LCG 42.9 ft

L/R = 0.412 (16 ft radius)

Yaw	=	-5°

	SPEED: 0 knots	7.3	12.5	15	17.5	22.8	26	28
ROLL 0°	3432		3429	3434	3 43 0	3431		3433
Yaw = -6°								
	SPEED: 0 knots	7.3	12.5	15	17.5	22.8	26	28
ROLL -10°	3406				3407			
0°	3 4 03 3404 3436	3441	3435	3440	3405 3412 3437	3384 3438	3385 3390	
10°	3408				3409			
20°	3410				3411	•	3394	

TABLE 2.4

BARE HULL TESTS RUN DIRECTORY

Displacement 155 long tons, LCG 42.9 ft

L/R = 0.206 (32 ft radius)

Speed = 0 knots

	YAW:	-6°	-3°	0°	3°	6°	9°	12°	
ROLL -10°		2529		2461		2479	2482	2506	
0°		2442 2526		2458		2476	2485	2503	
10°		2523		2464		2473	2488 2489	2509 2510	
20°		2520		2467 2518		2470 2516	2492	2513	
	Speed = 12.5 knots								
	YAW:	-6°	-3°	0°	3°	6°	9°	12°	
ROLL -10°		2530		2462		2480	2483	2507	
0°		2527		2459		2477	2486	2504	
10°		2524		2465		2474	2490	2511	
20°		2521		2468		2471	2493	2514	
	Speed = 35 knots								
	YAW:	-6°	-3°	0°	3°	6°	9°	12°	
ROLL -10		2531		2463		2481	2484	2508	
0		2528		2460		2478	2487	2505	
10		2525		2466		2475	2491	2512	
20		2522		2469 2519		2472 2517	2494	2515	

TABLE 3.1

APENDED HULL TESTS RUN DIRECTORY
Displacement 135 tons, LCG 42.9 ft

L/R = 0 (Straight Course)

Speed	- 0	knots
Speed	- 0	RIDLO

			•					
ROLL -10°	YAW:	-6°	-3°	0°	3°	6 °	9°	12°
0°				1111 1209		1114 1219	1117 1222	1120 1225
10°				1215 1123 1228		1126 1231	1129 123 4	1132 1237
20°				1137 1240	1252	1140 1243	1143 1246	11 4 6 1249
			Spee	ed = 12.	.5 knots	5		
ROLL -10°	YAW:	-6°	-3°	0°	3°	6°	9 °	12°
0°				1112 1210 1216		1115 1220	1118 1223	1121 1226
10°				1124 1229		1127 12 3 2	1130 1235	1133 1238
20°				1138 1241	1253	1141 1244	1144 1247	1147 1250
			Sp	eed = 3	5 knots			
ROLL -10°	YAW:	-6°	-3°	0°	3°	6°	9°	12°
0°				1113 1217		1116 1221	1119 1224	1122 1227
10°				1218 1125 1136		1128 1135 1233	1131 1236	1134 1239
20°				1230 1139 1242	1254	1142 1245	1145 1248	1148 1251

TABLE 3.2

APENDED HULL TESTS RUN DIRECTORY Displacement 135 tons, LCG 42.9 ft

L/R = 0.206 (32 ft radius)

Speed = 0 knots

DOL 1	YAW:	-6°	-3°	0°	3°	6°	9°	12°
ROLL -10°		2274		2216		2241	2251	2271
0°		2280		2213		2245	2248	2267
10°		2283		2228		2238	2254	2264
20°		2286		2232		2235	2257	2261
			Spee	ed = 12.	5 knots	•		
ROLL	YAW:	-6°	-3°	0°	3°	6°	9°	12°
-10°		2278	2276	2217		2242 2243	2252	2272
0°		2281		2214		22 46	2249	2268
10°		2284		2229		2239	2255	2265
20°		2287		2233		2236	2258	2262
			Spe	eed = 35	knots			
ROLL	YAW:	-6°	-3°	0°	3°	6°	9°	12°
-10°		2279	2278	2218		2244	2253	2273
0°		2282		2215		2247	2250	2269
10°		2285		2230		2240	2256	2266
20°		2289		2234		2237	2260	2263

TABLE 4

RUDDER EFFECTIVENESS TESTS RUN DIRECTORY Displacement 135 tons, LCG 42.9 ft

L/R = 0 (Straight Course)

Roll = Yaw = 0°

Speed = 0 knots

Rudder angle: 0° 5° 10° 15°

1209 1263 1259 1255

Speed = 12.5 knots

Rudder angle: 0° 5° 10° 15°

1210 1265 1261 1256

Speed = 35 knots

Rudder angle: 0° 5° 10° 15°

1217 1264 1260 1257

1218 1262 1258

TABLE 5.1

BARE HULL RESULTS, L/R = 0
Displacement 135 long tons

Run F	Roll deg	Yaw deg	Х 1b	Y 1b	Z 1b	K 1b-ft	M lb-ft	N 1b-ft	Trim deg	TD inch	SKWL inch	Speed fps
					SP	EED = 0	knots					
1325	-20	-6	0.2	-0.1	50.43	4.02	-0.01	0.1	-0.4	2.81	71.7	0.00
1322	-10	-6	0.3	0.0	50.43	2.53	-0.02	0.1	-0.3	2.81	71.6	0.00
1328 1272 1318 1275 1278 1316 1281 1314	0 0 0 0 0 0	-6 0 3 6 9 11 12	0.3 0.2 0.2 0.2 0.2 0.2 0.2	-0.1 0.0 0.0 0.0 0.0 0.0 0.0	50.43 50.43 50.43 50.43 50.43 50.43 50.43	-0.12 -0.11 -0.09 -0.11 -0.11 -0.06 -0.08 -0.04	-0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02	0.1 0.1 0.1 0.1 0.1 0.1	-0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	2.83 2.79 2.82 2.83 2.79 2.86 2.79 2.80	71.7 71.6 71.6 71.6 71.6 71.7 71.6 71.6	0.00 0.00 0.00 0.00 0.00 0.00 0.00
1285 1320 1289 1292 1295	10 10 10 10	0 3 6 9	0.3 0.2 0.3 0.2 0.2	0.0 0.0 0.0 0.0	50.43 50.43 50.43 50.43 50.43	-2.77 -2.75 -2.73 -2.72 -2.71	-0.02 -0.02 -0.02 -0.02 -0.02	0.1 0.1 0.1 0.1	-0.2 -0.2 -0.2 -0.2 -0.2	2.84 2.84 2.86 2.85	71.5 71.5 71.5 71.5 71.5	0.00 0.00 0.00 0.00
1298 1312 1301 1306 1309	20 20 20 20 20	0 3 6 9 12	0.3 0.3 0.2 0.2	0.0 0.0 0.0 0.0	50.43 50.43 50.43 50.43 50.43	-4.20 -4.19 -4.18 -4.16 -4.14	-0.02 -0.02 -0.02 -0.02 -0.02	0.1 0.1 0.1 0.1	-0.2 -0.2 -0.2 -0.2 -0.2	2.83 2.82 2.83 2.81 2.83	71.4 71.4 71.4 71.3 71.4	0.00 0.00 0.00 0.00
					SPEE	D = 12.	5 knots					
1326	-20	-6	2.3	-1.0	50.43	3.89	-0.03	-1.2	0.0	3.21	71.6	4.98
1323	-10	-6	2.3	-0.8	50.43	2.39	-0.03	-1.7	0.0	3.27	71.6	4.97
1329 1273 1276 1279 1282 1283	0 0 0 0	-6 0 6 9 12 12	2.3 2.1 2.3 2.4 2.4	-0.9 0.0 1.0 1.7 2.9 2.8	50.43 50.43 50.43	-0.02 -0.10 -0.22 -0.25 -0.22 -0.24	-0.03 -0.03 -0.03	-1.9 0.1 2.5 4.2 6.4 6.3	0.1 0.0 0.1 0.0 0.0	3.29 3.20 3.28 3.27 3.31 3.33		4.98 4.97 4.98 4.98 4.97 4.98
1286 1290 1293 1296	10 10 10 10	0 6 9 12	2.2 2.3 2.3 2.4	-0.1 1.0 1.7 2.6	50.43 50.43 50.43 50.43		-0.03 -0.03 -0.03 -0.03	0.1 2.2 3.8 5.8	0.1 0.1 0.0	3.25 3.29 3.31 3.33		4.98 4.97 4.98 4.98
1299 1302 1307 1310	20 20 20 20	0 6 9 12	2.1 2.3 2.4 2.4	-0.1 1.1 1.9 2.8	50.43 50.43 50.43 50.43		-0.03 -0.03 -0.03 -0.03	-0.2 1.6 2.8 4.3	0.2 0.2 0.2 0.1	3.18 3.26 3.29 3.30	71.3	

TABLE 5.2

BARE HULL RESULTS, L/R = 0
Displacement 135 long tons

Run No.	Ro11 deg	Yaw deg	X 1b	Y 1b	Z 1b	K lb-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	SKWL inch	Speed fps
					SPE	ED = 35	knots					
1327	-20	-6	8.0	-9.6	50.43	2.16	-0.10	0.0	2.0	3.43	67. 5	13.94
1324	-10	-6	7.7	-8.8	50.43	0.40	-0.10	-2.4	1.9	3.44	67.7	13.93
1274		0	7.5	0.3 5.3	50.43 50.43	-0.16 0.56	-0.09 -0.10	0.5 3.7	1.7	3.33 3.45	6 8. 1	13.93 13.93
1319 1277	0	3 6	7.6 8.1	11.1	50.43	1.31	-0.12	4.8	2.3	3.66	67.2	13.95
1280		9	8.6	17.8	50.43	2.33	-0.14	3.3	2.8	3.97	66.2	13.93
1317		11	9.0	22.3	50.43	3.01	-0.15	1.8	3.2	4.19	65.2	13.92
1284	0	12	9.3	25.3	50.43	3.42	-0.16	0.5	3.5	4.32	64.2	13.94
1315	0	12	9.2	25.1	50.43	3.42	-0.16	0.6	3.5	4.27	64.2	13.92
1287	10	0	7.8	-0.5	50.43	-2.29	-0.10	-2.4	1.9	3.40	67.9	13.93
1288		Ö	7.7	-0.5	50.43	-2.29	-0.10	-2.4	1.8	3.37	67.9	13.92
1321		3	7.6	5.0	50.43	-1.51	-0.10	1.5	1.9	3.36	67.7	13.95
1291	10	6	7.7	10.3	50.43	-0.53	-0.11	2.4	2.1	3.48	67.2	13.93
1294	10	9	7.8	15.7	50.43	0.83	-0.13	0.0	2.8	3.73	65.5	13.92
1297	10	12	8.1	20.3	50.43	1.95	-0.14	-0.2	3.0	3.73	64.3	13.95
1300 1313 1305 1308 1311	20 20 3 20	0 3 6 9	8.2 8.1 8.0 7.5 7.2	-1.1 4.9 11.9 18.0 21.0	50.43 50.43 50.43 50.43 50.43	-3.83 -3.29 -2.35 -1.09 0.00	-0.10 -0.10 -0.11 -0.13 -0.13	-2.9 -0.9 -1.8 -2.6 -1.8	2.1 2.0 2.4 2.8 2.7	3.46 3.41 3.54 3.60 3.35	67.4 67.4 66.4 64.9 64.1	13.93 13.90 13.93 13.94 13.93
1311	20	12	1 . 2	21.0	30.70	0.00	٠٠					

TABLE 6.1

BARE HULL RESULTS, L/R = 0.206, WITHOUT AIR TARES
Displacement 135 long tons

Run No.	Ro11 deg	Yaw deg	X 1b	Y 1b	Z 1b	K lb-ft	M lb-ft	N 1b-ft	Trim deg	TD inch	SKWL inch	Speed fps
					SPI	EED = 0	knots					
2198 2137 2153 2175 2195	-10 -10 -10 -10 -10	-6 0 6 9	0.2 0.2 0.2 0.2 0.2	-0.2 -0.1 -0.1 -0.1	50.43 50.43 50.43 50.43 50.43	2.10 2.15 2.32 2.12 2.18	-0.03 -0.03 -0.03 -0.03 -0.03	0.0 0.0 0.1 0.0 0.1	0.0 0.0 0.1 0.1	2.99 2.84 2.98 2.99 3.00	71.3 71.0 71.2 71.2 71.2	0.00 0.00 0.00 0.00
2202 2133 2135 2147 2146 2192	0 0 0 0 0	-6 0 0 6 6	0.2 0.2 0.2 0.2 0.2 0.2	-0.2 0.0 -0.1 -0.1 -0.1	50.43 50.43 50.43 50.43 50.43	-0.50 -0.37 -0.42 -0.44 -0.45 -0.48	-0.03 -0.03 -0.03 -0.03 -0.03 -0.03	0.0 -0.1 0.0 0.1 0.1	-0.1 -0.1 -0.1 -0.1 -0.1 0.0	2.92 2.82 2.81 2.88 2.88 2.94	71.4 71.2 71.2 71.3 71.3 71.3	0.00 0.00 0.00 0.00 0.00
2205 2140 2156 2178 2188	10 10 10 10 10	-6 0 6 9	0.2 0.2 0.2 0.2 0.2	-0.1 -0.1 -0.1 -0.1	50.43 50.43 50.43 50.43 50.43	-3.13 -3.10 -2.88 -3.09 -3.14	-0.03 -0.03 -0.03 -0.03 -0.03	0.0 0.0 0.1 0.1	-0.1 -0.1 -0.1 0.0 0.0	2.90 2.75 2.93 2.92 2.93	71.4 71.1 71.3 71.3 71.3	0.00 0.00 0.00 0.00 0.00
2208 2210 2143 2160 2181 2184	20 20 20 20 20 20	-6 -6 0 6 9	0.2 0.2 0.2 0.2 0.1	-0.2 -0.1 -0.1 -0.1 -0.1	50.43 50.43 50.43 50.43 50.43	-4.65 -4.64 -4.47 -4.56 -4.50	-0.02 -0.02 -0.02 -0.02 -0.02 -0.03	0.0 0.0 0.0 0.1 0.1	-0.1 -0.1 -0.1 -0.1 -0.1	2.78 2.78 2.64 2.83 2.83 2.83	71.2 71.2 70.9 71.2 71.2 71.2	0.00 0.00 0.00 0.00 0.00
					SPEE	D = 12.	5 k no ts					
2201 2138 2154 2176 2196	-10 -10 -10 -10	-6 0 6 9	2.1 2.2 2.5 2.6 2.8	-1.4 -0.1 1.0 1.7 2.8	50.43 50.43 50.43 50.43 50.43		-0.04 -0.04 -0.05 -0.06 -0.06	-4.6 -1.8 0.1 0.9 1.9	0.3 0.4 0.6 0.7 0.8	3.42 3.34 3.58 3.69 3.82	71.5 71.0 71.1 71.1 71.1	4.98 4.98 4.97 4.99 4.98
2203 2134 2150 2151 2173 2193	0 0 0 0 0	-6 0 6 6 9	2.0 2.2 2.4 2.4 2.4 2.6	-0.1 0.8		-0.28 -0.45 -0.47 -0.57		-5.0 -2.0 0.2 0.2 1.0 2.2	0.2 0.3 0.5 0.5 0.5	3.39 3.34 3.50 3.50 3.59 3.69	71.6 71.2 71.2 71.2 71.2 71.2	4.96 5.00 4.95 4.96 4.93 4.97
2206 2141 2157 2179 2189	10 10 10 10	-6 0 6 9	2.1 2.2 2.4 2.5 2.6	-1.8 -0.2 0.8 1.6 2.3	50.43 50.43 50.43		-0.05	-5.0 -2.0 0.1 0.8 1.9	0.2 0.3 0.5 0.5	3.37 3.24 3.48 3.55 3.61	71.5 71.1 71.2 71.1 71.2	4.98 4.99 4.98 4.98 4.98

TABLE 6.2

BARE HULL RESULTS, L/R = 0.206, WITHOUT AIR TARES
Displacement 135 long tons

Run No.	Ro11 deg	Yaw deg	Х 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	SKWL inch	Speed fps
					SPEE) = 12.5	5 knots					
2209 2144 2161 2182 2186	20 20	-6 0 6 9 12	2.0 2.2 2.5 2.4 2.6	-1.7 -0.1 1.2 2.1 3.1	50.43 50.43 50.43 50.43 50.43	-4.54 -4.41 -4.51 -4.57 -4.60	-0.03 -0.04 -0.05 -0.05 -0.05	-5.0 -2.2 -0.6 -0.1 0.6	0.1 0.3 0.5 0.5	3.25 3.12 3.41 3.47 3.52	71.4 70.9 71.1 71.0 71.1	4.98 4.98 4.98 4.97 4.99
					SPE	ED = 35	knots					
2199 2139 2155 2177 2197	-10 -10 -10	-6 0 6 9 12	7.3 7.4 8.5 9.0 9.8	-10.3 0.3 12.5 20.6 28.3	50.43 50.43 50.43 50.43 50.43	-0.07 0.86 0.37 -0.37 -1.06	-0.12 -0.12 -0.14 -0.17 -0.21	-12.0 -5.8 -4.1 -8.2 -12.7	2.5 2.4 3.0 3.8 4.7	3.92 3.71 4.29 4.77 5.31	67.3 67.0 66.5 64.7 62.3	13.94 14.02 13.84 13.90 13.91
2204 2556 2136 2557 2152 2558 2174 2194 2559	6 0 6 0 7 0 2 0 8 0 4 0	-6 -6 0 0 6 6 9 12	7.7 7.1 7.2 7.3 7.7 7.7 8.0 8.5 8.6	-13.3 -13.0 -1.2 -0.8 10.2 10.6 16.7 23.6 23.7	50.43 50.43 50.43 50.43 50.43 50.43 50.43	-1.60 -1.66 -1.09 -1.17 -0.72 -0.81 -0.78 -0.79	-0.11 -0.12 -0.11 -0.11 -0.14 -0.16 -0.18	-20.6 -20.5 -9.1 -8.9 -5.5 -5.5 -7.3 -10.4 -10.3	2.2 2.3 2.1 2.2 2.8 2.9 3.4 3.9 4.0	3.88 3.86 3.61 3.70 4.09 4.07 4.35 4.66 4.65	68.0 67.8 67.5 67.6 66.6 66.3 65.2 63.5 63.1	13.86 13.95 13.93 13.95 13.84 13.95 13.87 13.90 13.95
2212 2142 2158 2180 2190 2191	2 10 3 10 0 10 0 10	9 12	8.8 7.8 7.4 7.5 7.7 7.6	-16.1 -2.3 8.9 15.3 19.8 19.9	50.43 50.43 50.43 50.43 50.43	-2.85 -3.06 -2.32 -1.82 -1.31	-0.11 -0.10 -0.12 -0.14 -0.15	-25.9 -11.6 -5.1 -6.1 -7.5 -7.5	2.1 1.8 2.3 2.9 3.1 3.1	3.96 3.38 3.73 3.96 4.03 4.03	68.5 68.0 67.3 66.1 65.0 65.0	13.94 13.88 13.94 13.90 13.92
221° 214! 216; 218; 218	5 20 2 20 3 20	0 6 9	8.8 7.9 7.6 7.5 6.8	-13.3 -1.7 9.8 16.5 20.0	50.43 50.43 50.43 50.43 50.43	-4.95 -4.83 -4.51 -3.84 -2.97	-0.13 -0.10 -0.10 -0.11 -0.11	-18.4 -12.5 -7.2 -6.5 -5.9	2.7 2.0 2.1 2.3 2.3	4.04 3.38 3.55 3.59 3.45	67.0 67.3 67.5 67.1 66.5	13.95 13.96 13.91 13.88 13.94

TABLE 7.1

BARE HULL RESULTS, L/R = 0.412, WITHOUT AIR TARES
Displacement 135 long tons

Run F No.	Roll deg	Yaw deg	Х 1Ь	Y 1b	Z 1b	K 1b-ft	M lb-ft	N 1b-ft	Trim deg	TD inch	SKWL inch	Speed fps
					SP	EED = 0	knots					
3322 3373 3319 3337 3356 3359	-10 -10 -10 -10 -10	-6 -6 0 6 9	0.2 0.2 0.2 0.2 0.2 0.2	0.0 0.0 0.0 -0.1 -0.0 0.0	50.43 50.43 50.43 50.43 50.43 50.43	2.18 2.17 2.16 2.16 2.09 2.15	-0.03 -0.03 -0.03 -0.03 -0.03 -0.03	0.1 -0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	2.92 2.86 2.92 2.86 2.88 2.88	71.3 71.2 71.3 71.1 71.1	0.00 0.00 0.00 0.00 0.00
3380 3310 3334 3352 3363	0 0 0 0	-6 0 6 9	0.2 0.1 0.2 0.2 0.2	-0.1 -0.1 -0.0 -0.0	50.43 50.43 50.43 50.43 50.43	-0.48 -0.47 -0.47 -0.51 -0.49	-0.03 -0.03 -0.03 -0.03 -0.03	0.0 0.0 0.0 0.0 0.1	-0.1 -0.1 -0.1 -0.1	2.81 2.88 2.80 2.81 2.83	71.3 71.3 71.3 71.3 71.2	0.00 0.00 0.00 0.00
3387 3313 3340 3349 3365	10 10 10 10	-6 0 6 9	0.1 0.2 0.2 0.2 0.2	0.0 0.0 -0.0 -0.0	50.43 50.43 50.43 50.43 50.43	-3.14 -3.10 -3.18 -3.12 -3.18	-0.02 -0.03 -0.03 -0.03 -0.03	-0.0 0.0 0.0 0.0 0.1	-0.2 -0.1 -0.1 -0.1	2.77 2.86 2.82 2.82 2.82	71.3 71.3 71.2 71.2 71.2	0.00 0.00 0.00 0.00 0.00
3392 3316 3343 3346 3368	20 20 20 20 20	-6 0 6 9	0.1 0.1 0.2 0.2 0.2	0.0 0.0 -0.1 -0.1 0.0	50.43 50.43 50.43 50.43 50.43	-4.61 -4.50 -4.49 -4.54 -4.58	-0.02 -0.02 -0.02 -0.02 -0.02	-0.0 0.1 0.0 0.1 0.1	-0.2 -0.1 -0.1 -0.1	2.65 2.76 2.72 2.73 2.73	71.2 71.2 71.1 71.1 71.1	0.00 0.00 0.00 0.00 0.00
					SPEE	D = 12.	5 knots					
3323 3320 3338 3357 3360	-10 -10 -10 -10	-6 0 6 9	2.1 2.3 2.7 2.9 3.2	-2.2 -0.1 1.3 2.2 3.3	50.43 50.43 50.43 50.43 50.43	2.29 1.96 1.52 1.23 1.00	-0.03 -0.04 -0.06 -0.06 -0.07	-8.8 -4.0 -1.6 -1.2 -1.0	0.0 0.4 0.7 0.9 1.1	3.29 3.42 3.56 3.72 3.90	71.7 71.3 70.8 70.7 70.6	4.98 4.98 4.98 4.98 5.00
3381 3382 3311 3335 3354 3362	0 0 0 0	-6 -6 0 6 9	2.0 2.0 2.2 2.5 2.7 3.0	-2.8 -2.8 -0.4 1.0 1.7 2.5	50.43 50.43 50.43 50.43 50.43	-0.17 -0.14 -0.36 -0.55 -0.67 -0.80	-0.03 -0.03 -0.04 -0.05 -0.06	-9.4 -9.3 -4.4 -1.6 -0.9 -0.3	0.0 0.0 0.3 0.5 0.7	3.20 3.21 3.38 3.46 3.57 3.73	71.6 71.6 71.3 71.0 70.9 70.8	4.97 4.94 4.97 4.99 4.99
3388 3314 3341 3350 3366	10 10 10 10	-6 0 6 9 12	2.1 2.4 2.6 2.8 2.9	-3.0 -0.3 1.2 2.0 2.7	50.43 50.43 50.43 50.43	-2.76 -2.83 -2.92 -2.83 -2.87	-0.03 -0.04 -0.05 -0.06 -0.06	-9.3 -4.5 -1.9 -1.1 -0.4	0.0 0.3 0.6 0.7	3.16 3.37 3.44 3.54 3.59	71.6 71.3 70.9 70.8 70.8	5.00 4.97 4.98 4.99 4.98

TABLE 7.2

BARE HULL RESULTS, L/R = 0.412, WITHOUT AIR TARES
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	SKWL i n ch	Speed fps
					SPEE) = 12.	5 knots					
3393 3317 3344 3347 3369	20 20 20 20 20	-6 0 6 9	2.0 2.3 2.6 2.9 3.0	-2.2 -0.2 1.7 2.7 3.7	50.43 50.43 50.43 50.43 50.43	-4.54 -4.51 -4.59 -4.67 -4.75	-0.03 -0.04 -0.05 -0.05 -0.06	-8.2 -4.7 -2.6 -2.1 -1.9	0.0 0.3 0.5 0.7	3.04 3.29 3.33 3.48 3.55	71.4 71.2 70.8 70.7 70.7	4.98 4.98 4.99 4.97 4.97
					SPE	ED = 35	knots					
3375 3321 3339 3358 3361	-10 -10 -10 -10 -10	-6 0 6 9 12	7.7 7.4 8.6 9.4 10.2	-13.4 0.9 16.6 25.2 34.4	50.43 50.43 50.43 50.43 50.43	-0.30 -0.25 -1.55 -2.49 -3.83	-0.11 -0.13 -0.17 -0.20 -0.24	-30.4 -15.3 -16.2 -20.6 -27.3	2.2 2.6 3.7 4.5 5.6	3.79 3.98 4.52 5.01 5.60	67.9 67.0 64.2 61.7 57.3	14.00 13.97 13.98 14.01 14.00
3312 3336 3355 3364	0	0 6 9 12	7.4 7.9 8.5 8.9	-2.3 12.8 19.8 27.3	50.43 50.43 50.43 50.43	-1.69 -1.98 -2.20 -2.46	-0.11 -0.15 -0.17 -0.19	-20.6 -15.1 -17.8 -21.3	2.2 3.1 3.6 4.3	3.75 4.13 4.38 4.72	67.8 65.6 63.7 61.3	13.86 13.98 13.88 13.89
3315 3342 3351 3367	10 10	0 6 9 12	7.9 7.6 7.7 7.6	-4.9 9.8 16.3 21.4	50.43 50.43 50.43 50.43	-2.95 -3.08 -2.48 -1.75	-0.08 -0.11 -0.13 -0.13	-26.7 -14.4 -13.6 -13.9	1.4 2.2 2.6 2.8	3.37 3.56 3.70 3.75	69.0 67.1 66.3 65.3	13.99 13.98 13.99 14.01
3395 3318 3345 3348 3371	20 20 20	-6 0 6 9 12	8.7 7.9 7.6 7.4 7.2	-10.3 -2.5 9.5 15.5 20.7	50.43 50.43 50.43 50.43	-5.79 -5.30 -4.77 -4.06 -3.12	-0.12 -0.09 -0.09 -0.08 -0.07	-24.7 -25.4 -16.1 -13.3 -10.4	2.6 1.7 1.6 1.5	3.74 3.41 3.14 3.08 2.93	66.4 68.2 68.0 68.0	13.99 14.00 13.93 14.00 13.91

TABLE 8 SUPPLEMENTAL BARE HULL RESULTS, L/R = 0.412, WITHOUT AIR TARES Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M lb-ft	N 1b-ft	Trim deg	TD i n ch	SKWL inch	Speed fps
					SPEED	= 0 to	28 kno	ts				
3428 3429 3434 3430 3431 3433	0 0 0 0 0	-5 -5 -5 -5 -5 -5	0.1 2.1 3.2 4.2 5.5 6.5	-0.1 -2.2 -3.4 -4.5 -7.4 -12.8	50.43 50.43 50.43 50.43 50.43	-0.48 -0.23 -0.20 -0.29 -0.83 -0.69	-0.03 -0.03 -0.05 -0.08 -0.10 -0.08	0.0 -8.2 -13.1 -17.2 -23.8 -34.2	-0.1 0.0 0.5 1.3 1.9 1.3	2.82 3.23 3.63 4.10 4.16 3.67	71.3 71.6 71.3 70.5 69.5 69.8	0.00 4.94 5.98 6.94 9.05 11.08
3406 3403 3436 3408 3391 3410	-10 0 0 10 20 20	-6 -6 -6 -6 -6	0.1 0.1 0.1 0.1 0.1	-0.1 -0.1 -0.1 0.0 0.0 0.3	50.43 50.43 50.43 50.43 50.43	2.13 -0.50 -0.54 -3.14 -4.59 -4.58	-0.03 -0.03 -0.02 -0.03 -0.02 -0.02	0.0 0.0 0.0 -0.0 -0.0	0.0 -0.1 -0.2 -0.1 -0.2 -0.3	2.82 2.74 2.81 2.72 2.64 2.58	71.0 71.1 71.4 71.1 71.2 71.2	0.00 0.00 0.00 0.00 0.00
3441 3435 3440	0 0 0	-6 -6 -6	0.6 2.0 3.1	-0.6 -2.7 -4.2	50.43 50.43 50.43	-0.44 -0.27 -0.22	-0.02 -0.03 -0.04	-2.4 -9.4 -15.3	-0.2 0.0 0.4	2.92 3.19 3.62	71.5 71.6 71.5	2.92 4.97 5.99
3407 3405 3412 3437 3409 3411	0	-6 -6 -6 -6 -6	4.3 4.3 4.3 4.4 4.7	-4.5 -5.6 -5.6 -5.7 -6.0 -3.7	50.43 50.43 50.43 50.43 50.43	2.01 -0.24 -0.24 -0.35 -2.85 -4.95	-0.08 -0.08 -0.08 -0.08 -0.08	-17.3 -20.1 -20.1 -20.2 -21.1 -16.7	1.4 1.4 1.3 1.3 1.3	4.09 4.05 4.08 4.13 4.02 3.93	70.3 70.3 70.5 70.6 70.4 70.1	7.02 7.03 7.01 7.06 7.02 7.02
3384 3438		-6 -6	5.2 5.6	-7.9 -9.1	50.43 50.43	-0.61 -0.89	-0.10 -0.10	-25.4 -27.0	1.9	4.24 4.19	69.5 69.5	8.6 6 9.06
3385 3390 3394	10	-6 -6 -6	5.9 6.5 6.8	-12.9 -13.8 -8.9	50.43 50.43 50.43	-0.59 -3.02 -5.18	-0.09 -0.09 -0.10	-34.4 -35.0 -26.1	1.5 1.6 1.9	3.87 3.82 3.83	69.8 69.5 68.6	10.22 10.42 10.41

TABLE 9.1

BARE HULL RESULTS, L/R = 0.206, WITHOUT AIR TARES
Displacement 155 long tons

Run No.	Roll deg	Y aw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	SKWL inch	Speed fps
					SPE	ED = 0	knots					
2529 2461 2479 2482 2506	-10 -10 -10 -10 -10	-6 0 6 9	0.3 0.3 0.3 0.3	-0.1 -0.1 -0.1 -0.1	57.90 57.90 57.90 57.90 57.90	2.35 2.13 2.13 2.15 2.32	-0.03 -0.03 -0.03 -0.03 -0.04	0.0 0.0 0.0 0.0 0.1	0.1 0.1 0.1 0.1 0.2	3.25 3.28 3.26 3.27 3.29	71.4 71.5 71.5 71.6 71.4	0.00 0.00 0.00 0.00 0.00
2442 2526 2458 2476 2485 2503	0 0 0 0	-6 -6 0 6 9	0.0 0.3 0.3 0.3 0.3	0.0 -0.1 0.0 -0.1 -0.1	57.90 57.90 57.90 57.90 57.90 57.90	0.00 -0.58 -0.51 -0.60 -0.56 -0.58	-0.03 -0.03 -0.03 -0.03 -0.03 -0.03	0.0 0.0 0.0 0.0 0.1 0.1	-0.1 0.0 0.0 0.0 0.0	3.10 3.18 3.22 3.21 3.22 3.20	71.6 71.5 71.6 71.6 71.6 71.5	0.00 0.00 0.00 0.00 0.00
2523 2464 2473 2488 2489 2510	10 10 10 10 10	-6 0 6 9 9	0.3 0.3 0.3 0.3 0.3	-0.1 -0.1 -0.1 -0.2 -0.1	57.90 57.90 57.90 57.90 57.90 57.90	-3.42 -3.29 -3.22 -3.33 -3.24 -3.45	-0.03 -0.03 -0.03 -0.03 -0.03 -0.03	0.0 0.1 0.1 0.2 0.1	0.0 0.0 0.0 0.0 0.0	3.18 3.20 3.21 3.23 3.20 3.22	71.5 71.6 71.6 71.6 71.6 71.5	0.00 0.00 0.00 0.00 0.00
2520 2467 2518 2470 2516 2492 2513	20	-6 0 0 6 6 9	0.3 0.3 0.3 0.3 0.3 0.3	-0.1 -0.1 -0.1 -0.1 -0.0 -0.1	57.90 57.90 57.90 57.90 57.90 57.90 57.90	-4.90 -5.03 -4.91 -5.01 -4.95 -5.04 -4.94	-0.03 -0.03 -0.03 -0.03 -0.03 -0.03	0.1 0.0 0.1 0.1 0.0 0.1	0.0 0.0 0.0 0.0 0.1 0.0	3.14 3.13 3.14 3.16 3.13 3.17	71.5 71.5 71.5 71.5 71.5 71.5 71.5	0.00 0.00 0.00 0.00 0.00 0.00
					SPEE	ED = 12.	5 knots					
2530 2462 2480 2483 2507	-10 -10 -10	0 6 9	2.4 2.6 2.9 3.1 3.5	-1.5 0.1 1.3 2.1 3.5	57.90	2.32 1.95 1.66 1.53 1.55	-0.04 -0.05 -0.06 -0.06 -0.07	-5.3 -2.0 -0.0 1.0 2.1	0.4 0.5 0.7 0.7	3.70 3.80 3.91 4.01 4.20	71.7 71.5 71.5 71.5 71.4	4.97 5.00 4.99 4.96 4.99
2527 2459 2477 2486 2504	0 0	0 6 9	2.3 2.6 2.8 3.0 3.2	-1.8 0.0 1.1 1.8 2.8	57.90 57.90	-0.67 -0.70	-0.04 -0.05 -0.05 -0.05 -0.06	-5.8 -2.1 0.1 1.1 2.4	0.3 0.4 0.6 0.6 0.7	3.66 3.74 3.86 3.91 4.03	71.5	4.97 5.01 4.94 4.96 4.93
2524 2465 2474 2490 2511	5 10 4 10 5 10	0 6 9	2.4 2.6 2.8 2.9 3.1	-2.0 -0.2 1.2 1.9 2.9	57.90 57.90 57.90	-3.03 -3.05	-0.05	-5.7 -2.1 -0.0 0.9 2.0	0.3 0.4 0.5 0.5	3.72 3.82 3.84	71.6 71.5 71.6	4.96

TABLE 9.2

BARE HULL RESULTS, L/R = 0.206, WITHOUT AIR TARES
Displacement 155 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	SK W L inch	Speed fps
					SPEE	D = 12.	5 knots					
2521 2468 2471 2493 2514	20 20 20 20 20	-6 0 6 9	2.4 2.5 2.8 3.0 3.1	-1.9 -0.1 1.5 2.5 3.6	57.90 57.90 57.90 57.90 57.90	-4.75 -4.93 -4.97 -5.06 -4.96	-0.04 -0.04 -0.05 -0.05 -0.05	-5.7 -2.4 -0.6 -0.0 0.8	0.3 0.4 0.6 0.6 0.7	3.62 3.64 3.75 3.82 3.90	71.7 71.6 71.4 71.4 71.5	4.97 4.96 4.98 5.00 4.98
					SPE	ED = 35	knots					
2531 2463 2481 2484 2508	-10 -10 -10 -10 -10	-6 0 6 9	8.4 9.4 10.3 11.2	-12.0 0.4 14.7 23.0 31.6	57.90 57.90 57.90 57.90 57.90	-0.12 0.62 0.05 -0.54 -1.15	-0.14 -0.13 -0.16 -0.19 -0.24	-12.0 -6.8 -5.8 -9.0 -13.2	3.0 2.7 3.5 4.3 5.4	4.34 4.26 4.77 5.28 5.87	66.9 67.4 66.3 64.4 61.4	13.94 13.93 13.92 13.91 13.95
2528 2460 2478 2487 2505	0 0 0 0	-6 0 6 9	9.0 8.2 8.7 9.2 9.9	-15.2 -0.9 12.6 19.5 26.7	57.90 57.90 57.90 57.90 57.90	-1.74 -1.34 -1.06 -1.11 -1.10	-0.13 -0.13 -0.16 -0.18 -0.21	-21.9 -10.1 -7.1 -9.4 -12.1	2.5 2.5 3.3 3.8 4.5	4.24 4.12 4.56 4.83 5.16	67.9 67.8 66.3 64.9 62.8	13.89 13.89 13.86 13.91
2525 2466 2475 2491 2512	10 10 10 10	-6 0 6 9	9.9 8.7 8.4 8.7 8.6	-18.1 -2.1 11.6 18.3 23.2	57.90 57.90 57.90 57.90 57.90	-3.30 -3.15 -2.78 -2.27 -1.78	-0.12 -0.11 -0.13 -0.14 -0.17	-28.7 -12.2 -7.2 -6.6 -9.6	2.4 2.0 2.7 3.0 3.6	4.30 3.91 4.16 4.32 4.42	68.4 68.5 67.2 66.5 64.3	13.93 13.89 13.94 13.94 13.98
2522 2469 2519 2472 2517 2494 2515	20 20 20 20 20 20 20	-6 0 0 6 6 9	10.3 9.0 9.0 8.6 8.7 8.5	-16.3 -1.5 -1.7 12.6 12.2 19.9 23.7	57.90 57.90 57.90 57.90 57.90 57.90 57.90	-5.24 -5.44 -5.24 -4.89 -4.71 -4.29 -3.25	-0.13 -0.11 -0.11 -0.12 -0.12 -0.12 -0.13	-23.8 -14.4 -14.5 -8.9 -8.7 -7.9 -7.6	2.9 2.3 2.3 2.4 2.4 2.6 2.8	4.43 3.98 3.99 3.93 3.94 3.97 3.93	67.4 68.0 68.0 67.6 67.5 67.2 66.2	13.96 13.92 13.96 13.91 13.96 13.89

TABLE 10.1

APPENDED HULL RESULTS, L/R = 0
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	SKWL inch	Speed fps
					SPE	EED = 0	knots	•				
1111 1209 1215 1114 1219 1117 1222 1120	0 0 0 0	0 0 0 6 6 9 9 12 12	0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.3	0.0 0.0 0.0 0.1 0.0 0.1 0.0	50.43 50.43 50.43 50.43 50.43 50.43 50.43 50.43	-0.02 -0.11 -0.10 -0.01 -0.04 -0.01 -0.07 -0.01	-0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02	0.1 0.1 0.1 0.1 0.1 0.1 0.1	-0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	2.82 2.83 2.81 2.82 2.85 2.80 2.84 2.86 2.83	71.7 71.6 71.6 71.7 71.7 71.6 71.6 71.6	0.00 0.00 0.00 0.00 0.00 0.00 0.00
1123 1228 1126 1231 1129 1234 1132	10 10 10 10 10 10 10 10	0 6 6 9 9 12	0.3 0.3 0.2 0.3 0.2 0.3 0.2	0.0 0.0 0.0 0.0 0.0 0.0	50.43 50.43 50.43 50.43 50.43 50.43 50.43	-2.64 -2.74 -2.66 -2.71 -2.65 -2.72 -2.66 -2.70	-0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02	0.1 0.1 0.1 0.1 0.1 0.1	-0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2	2.90 2.84 2.88 2.88 2.92 2.89 2.89 2.86	71.6 71.5 71.6 71.6 71.6 71.6 71.6	0.00 0.00 0.00 0.00 0.00 0.00 0.00
1137 1240 1252 1140 1243 1143 1246 1146 1211	20 22 20 20 20 33 20 33 20 55 20 56 20 11	6 9 9 12 12	0.3 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.3	-0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0	50.43 50.43 50.43 50.43 50.43 50.43 50.43 50.43	-4.17 -4.14 -4.15 -4.05 -4.14 -4.04 -4.13 -4.06 -4.17 -4.14	-0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02	0.1 0.2 0.1 0.1 0.1 0.1 0.1	-0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2	2.86 2.85 2.81 2.86 2.85 2.87 2.85 2.83 2.83 2.84	71.4 71.4 71.4 71.4 71.4 71.4 71.4 71.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
					SPE	ED = 12.	5 knots					
111: 1210 1210 1111: 1220 1111: 122: 112: 122:	0 0 6 0 5 0 0 0 8 0 3 0	0 0 6 6 0 9 9 0 12	2.2 2.2 2.3 2.4 2.4 2.3 2.4 2.4	0.0 0.0 1.4 1.5 2.4 2.4 3.6 3.4	50.43	0.00 -0.14 -0.10 -0.21 -0.26 -0.28 -0.40 -0.27 -0.43	-0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03	0.2 0.2 0.2 1.6 1.7 3.0 3.1 5.1	0.0 0.0 0.0 0.0 0.0 0.0	3.23 3.22 3.27 3.27 3.33 3.29 3.35 3.33		
112 122 112 123	9 10 7 10	0 6	2.2 2.2 2.4 2.3	-0.1 0.0 1.5 1.5	50.43 50.43	-2.56 -2.66	-0.03	0.0 0.1 1.2 1.2	0.1	3.30 3.24 3.34 3.29	71.5 71.6	4.97 4.98

TABLE 10.2

APPENDED HULL RESULTS, L/R = 0
Displacement 135 long tons

Real Roll Roll Yaw Care Roll Rol	·												
1130													•
1235						SPEE	D = 12.	5 knots					
1241 20 0 2.2 -0.1 50.43 -4.03 -0.03 -0.2 0.2 3.20 71.3 4.98 1253 20 3 2.2 0.7 50.43 -4.11 -0.03 0.3 0.2 3.22 71.3 4.98 1244 20 6 2.3 1.6 50.43 -4.25 -0.03 0.6 0.2 3.29 71.3 4.98 1244 20 6 2.3 1.6 50.43 -4.25 -0.03 0.6 0.2 3.29 71.3 4.98 1244 20 9 2.4 2.5 50.43 -4.26 -0.03 1.4 0.2 3.33 71.4 4.98 1247 20 9 2.4 2.5 50.43 -4.35 -0.03 1.5 0.2 3.30 71.4 4.98 1147 20 12 2.5 3.5 50.43 -4.36 -0.03 2.8 0.2 3.35 71.5 4.97 1250 20 12 2.4 3.5 50.43 -4.36 -0.03 2.8 0.2 3.35 71.5 4.97 1250 20 12 2.4 3.5 50.43 -0.02 -0.09 0.7 1.7 3.36 68.1 13.93 1217 0 0 7.9 0.3 50.43 -0.13 -0.10 0.7 1.8 3.37 68.0 13.95 1218 0 0 7.9 0.3 50.43 -0.13 -0.10 0.7 1.8 3.37 68.0 13.94 1119 0 9 9.3 21.1 50.43 0.03 -0.12 -1.7 2.4 3.71 67.0 13.92 1221 0 6 8.6 13.3 50.43 0.03 -0.12 -1.7 2.4 3.71 67.0 13.92 1221 0 6 8.6 14.0 50.43 0.14 -0.12 -2.2 2.4 3.72 66.9 13.94 1119 0 9 9.3 21.1 50.43 0.24 -0.14 -5.8 2.9 4.00 66.1 13.97 1222 0 12 10.1 29.0 50.43 0.85 -0.16 -9.1 3.5 4.33 64.5 13.93 1227 0 12 10.0 29.1 50.43 0.85 -0.16 -9.1 3.5 4.33 64.5 13.93 1227 0 12 10.0 29.1 50.43 -2.18 -0.10 -1.9 1.9 3.46 67.9 13.94 1128 10 6 8.2 12.9 50.43 -2.18 -0.10 -1.9 1.9 3.44 67.7 13.94 1128 10 6 8.2 12.9 50.43 -1.68 -0.12 -4.1 2.4 3.64 66.7 13.93 1230 10 0 8.1 -0.5 50.43 -2.18 -0.10 -1.9 1.9 3.44 67.7 13.94 1128 10 6 8.2 12.9 50.43 -1.68 -0.12 -4.1 2.4 3.64 66.7 13.93 1230 10 0 8.1 -0.5 50.43 -1.52 -0.12 -4.1 2.4 3.64 66.7 13.93 1231 10 6 8.3 13.5 50.43 -1.52 -0.12 -4.1 2.4 3.64 66.8 13.92 1331 10 6 8.5 12.9 50.43 -1.52 -0.12 -4.1 2.4 3.64 66.8 13.92 1331 10 6 8.5 13.5 50.43 -0.92 -0.10 -1.8 1.9 3.41 67.7 13.94 1128 10 6 8.5 13.5 50.43 -0.09 -0.10 -1.8 1.9 3.41 67.7 13.94 1128 10 6 8.5 13.9 50.43 -0.15 -0.15 -10.9 3.2 3.89 63.6 13.95 1233 10 6 8.5 1.3 50.43 -0.09 -0.10 -1.8 1.9 3.41 67.7 13.94 1242 20 0 8.6 -1.3 50.43 -0.09 -0.10 -1.9 1.9 3.2 3.89 63.6 13.92 1331 10 6 8.6 18.8 50.43 -0.20 -0.11 -0.15 -10.9 3.2 3.89 63.6 13.92 1332 10 6 8.6 14.4 50.43 -3.76 -0.11 -0.77 3.2 3.74 65.8 13.92 1424 20 0 8.6 -1.3 50.43 -3.76 -0.11 -0.15 -11.0 3.2 3.76 63.0 13.94 1424 20 0 8 8.1	1235 1133	10 10	9 12	2.3	2.3 3.3	50.43 50.43	-2.83 -2.74	-0.03 -0.03	2.4 4.2	0.1	3.32 3.37	71.6 71.7	4.98 4.98
1113	1241 1253 1141 1244 1144 1247 1147	20 20 20 20 20 20 20	0 3 6 9 9	2.2 2.4 2.3 2.4 2.4 2.5	-0.1 0.7 1.6 1.6 2.5 2.5 3.5	50.43 50.43 50.43 50.43 50.43 50.43	-4.03 -4.11 -4.16 -4.25 -4.26 -4.35 -4.36	-0.03 -0.03 -0.03 -0.03 -0.03 -0.03	-0.2 0.3 0.6 0.6 1.4 1.5 2.8	0.2 0.2 0.2 0.2 0.2 0.2	3.20 3.22 3.29 3.26 3.33 3.30 3.35	71.3 71.3 71.3 71.3 71.4 71.4	4.98 4.97 4.98 4.98 4.98 4.98 4.97
1217 0 0 7.9 0.3 50.43 -0.13 -0.10 0.7 1.8 3.37 68.0 13.95 1218 0 0 7.9 0.3 50.43 -0.11 -0.10 0.7 1.8 3.39 68.0 13.94 1116 0 6 8.6 13.3 50.43 0.03 -0.12 -1.7 2.4 3.71 67.0 13.92 1221 0 6 8.6 14.0 50.43 0.014 -0.12 -2.2 2.4 3.72 66.9 13.94 1119 0 9 9.2 21.5 50.43 0.24 -0.14 -5.7 2.9 4.00 66.1 13.97 1224 0 9 9.2 21.5 50.43 0.25 -0.14 -5.8 2.9 4.01 66.0 13.93 1122 0 12 10.0 29.1 50.43 -2.18 -0.10 -1.9 1.9 3.46 <th></th> <th></th> <th></th> <th></th> <th></th> <th>SPE</th> <th>ED = 35</th> <th>knots</th> <th></th> <th></th> <th></th> <th></th> <th></th>						SPE	ED = 35	knots					
1136 10 0 8.1 -0.8 50.43 -2.11 -0.10 -1.9 1.9 3.43 67.9 13.93 1230 10 0 8.1 -0.5 50.43 -2.20 -0.10 -1.8 1.9 3.41 67.7 13.94 1128 10 6 8.2 12.9 50.43 -1.68 -0.12 -4.1 2.4 3.64 66.7 13.93 1135 10 6 8.2 12.9 50.43 -1.68 -0.12 -4.1 2.4 3.64 66.8 13.92 1233 10 6 8.3 13.5 50.43 -1.52 -0.12 -4.4 2.4 3.64 66.8 13.92 1131 10 9 8.6 18.8 50.43 -1.20 -0.14 -8.9 3.0 3.88 64.8 13.94 1236 10 9 8.5 19.3 50.43 -0.92 -0.14 -9.0 3.0 3.81 64.4 13.94 1134 10 12 9.0 23.8 <td>1217 1218 1116 1221 1119 1224 1122</td> <td>0 0 0 0 0</td> <td>0 6 6 9 9</td> <td>7.9 7.9 8.6 8.6 9.3 9.2</td> <td>0.3 0.3 13.3 14.0 21.1 21.5 29.0</td> <td>50.43 50.43 50.43 50.43 50.43 50.43</td> <td>-0.13 -0.11 0.03 0.14 0.24 0.52 0.85</td> <td>-0.10 -0.10 -0.12 -0.12 -0.14 -0.14</td> <td>0.7 0.7 -1.7 -2.2 -5.7 -5.8 -9.1</td> <td>1.8 1.8 2.4 2.4 2.9 2.9 3.5</td> <td>3.37 3.39 3.71 3.72 4.00 4.01 4.33</td> <td>68.0 67.0 66.9 66.1 66.0 64.5</td> <td>13.95 13.94 13.92 13.94 13.97 13.93 13.93</td>	1217 1218 1116 1221 1119 1224 1122	0 0 0 0 0	0 6 6 9 9	7.9 7.9 8.6 8.6 9.3 9.2	0.3 0.3 13.3 14.0 21.1 21.5 29.0	50.43 50.43 50.43 50.43 50.43 50.43	-0.13 -0.11 0.03 0.14 0.24 0.52 0.85	-0.10 -0.10 -0.12 -0.12 -0.14 -0.14	0.7 0.7 -1.7 -2.2 -5.7 -5.8 -9.1	1.8 1.8 2.4 2.4 2.9 2.9 3.5	3.37 3.39 3.71 3.72 4.00 4.01 4.33	68.0 67.0 66.9 66.1 66.0 64.5	13.95 13.94 13.92 13.94 13.97 13.93 13.93
1242 20 0 8.6 -1.0 50.43 -3.69 -0.10 -1.9 2.1 3.49 67.3 13.95 1254 20 3 8.4 6.3 50.43 -3.76 -0.11 -3.7 2.3 3.49 66.8 13.93 1142 20 6 8.6 14.4 50.43 -3.50 -0.13 -7.2 2.7 3.74 65.8 13.92 1245 20 6 8.5 14.8 50.43 -3.26 -0.13 -7.3 2.7 3.66 65.6 13.95 1145 20 9 8.1 20.2 50.43 -3.02 -0.14 -11.6 3.2 3.76 63.0 13.94 1248 20 9 8.1 20.9 50.43 -2.66 -0.14 -11.7 3.2 3.73 62.7 13.92 1148 20 12 7.9 24.0 50.43 -2.37 -0.14 -12.3 3.1 3.51 62.1 13.94 1214 20 12 8.0 24.9<	1136 1230 1128 1135 1233 1131 1236 1134	10 10 10 10 10 10 10 10	0 6 6 9 9	8.1 8.2 8.2 8.3 8.6 8.5 9.0	-0.8 -0.5 12.9 13.5 18.8 19.3 23.8	50.43 50.43 50.43 50.43 50.43 50.43 50.43	-2.11 -2.20 -1.68 -1.68 -1.52 -1.20 -0.92 -0.51	-0.10 -0.10 -0.12 -0.12 -0.12 -0.14 -0.14	-1.9 -1.8 -4.1 -4.1 -4.4 -8.9 -9.0 -10.9	1.9 1.9 2.4 2.4 2.4 3.0 3.0 3.2	3.43 3.41 3.64 3.64 3.88 3.81 3.89	67.9 67.7 66.7 66.8 66.6 64.8 64.4 63.6	13.93 13.94 13.93 13.92 13.92 13.94 13.94 13.95
	1242 1254 1142 1245 1145 1248 1148	2 20 2 20 2 20 6 20 6 20 8 20 8 20 4 20	0 3 6 6 9 9 12	8.6 8.4 8.6 8.5 8.1 7.9	-1.0 6.3 14.4 14.8 20.2 20.9 24.0 24.9	50.43 50.43 50.43 50.43 50.43 50.43 50.43	-3.69 -3.76 -3.50 -3.26 -3.02 -2.66 -2.37 -1.96	-0.10 -0.11 -0.13 -0.13 -0.14 -0.14 -0.14	-1.9 -3.7 -7.2 -7.3 -11.6 -11.7 -12.3 -12.5	2.1 2.3 2.7 2.7 3.2 3.2 3.1 3.1	3.49 3.74 3.66 3.76 3.73 3.53 3.51	67.3 66.8 65.8 65.6 63.0 62.7 62.4 62.1	13.95 13.93 13.95 13.95 13.94 13.92 13.92

TABLE 11.1

APPENDED HULL RESULTS, L/R = 0.206, WITHOUT AIR TARES
Displacement 135 long tons

Run No.	Ro11 deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M lb-ft	N 1b-ft	Trim deg	TD inch	SK WL inch	Speed fps
					SPE	ED = 0	knots					
2274 2216 2241 2251 2271		-6 0 6 9 12	0.2 0.2 0.2 0.3	-0.1 -0.1 -0.1 -0.1	50.43 50.43 50.43 50.43 50.43	2.13 2.12 2.18 2.13 2.11	-0.03 -0.03 -0.03 -0.03 -0.03	-0.1 0.0 0.1 0.1 0.1	0.0 0.0 0.0 0.0	3.00 2.95 3.01 3.03 3.04	71.3 71.3 71.3 71.3 71.3	0.00 0.00 0.00 0.00 0.00
2280 2213 2245 2248 2267	0 0	-6 0 6 9	0.1 0.1 0.1 0.2 0.3	-0.1 -0.2 -0.1 -0.1	50.43 50.43 50.43 50.43 50.43	-0.53 -0.54 -0.48 -0.49 -0.51	-0.03 -0.03 -0.03 -0.03 -0.03	0.1 0.0 0.0 0.1 0.0	-0.1 -0.1 -0.1 -0.1	2.94 2.89 2.95 2.95 2.96	71.5 71.3 71.4 71.4 71.4	0.00 0.00 0.00 0.00 0.00
2283 2228 2238 2254 2264	10 10 10	-6 0 6 9 12	0.2 0.3 0.2 0.2 0.2	-0.1 0.1 -0.1 -0.1	50.43 50.43 50.43 50.43 50.43	-3.11 -3.64 -3.09 -3.14 -3.18	-0.03 -0.03 -0.03 -0.03 -0.03	0.1 0.1 0.1 0.1	-0.1 -0.1 0.0 0.0 -0.1	2.92 2.88 2.95 2.96 2.95	71.4 71.3 71.3 71.4 71.4	0.00 0.00 0.00 0.00
2286 2232 2235 2257 2261	2 20 5 20 7 20	-6 0 6 9	0.2 0.2 0.2 0.3 0.2	-0.1 -0.1 -0.1 -0.1	50.43 50.43 50.43 50.43 50.43	-4.53 -4.53 -4.47 -4.55 -4.51	-0.02 -0.02 -0.02 -0.02 -0.02	0.1 0.0 0.1 0.1	-0.1 -0.1 -0.1 -0.1	2.83 2.80 2.82 2.87 2.86	71.4 71.2 71.2 71.3 71.3	0.00 0.00 0.00 0.00
					SPEE	D = 12.	5 knots					
2278 2276 2217 2249 2259 2278	6 -10 7 -10 2 -10 2 -10	0 6 9	2.0 2.1 2.2 2.5 2.7 3.0	-1.3 -0.0 0.2 1.6 2.4 3.6	50.43 50.43 50.43 50.43 50.43	2.12 1.92 1.77 1.41 1.19 0.95	-0.04 -0.04 -0.05 -0.05 -0.05	-4.7 -2.4 -2.5 -1.3 -0.6 0.2	0.2 0.3 0.4 0.6 0.6	3.40 3.46 3.42 3.61 3.72 3.82	71.6 71.4 71.3 71.2 71.3 71.3	4.98 4.96 4.99 4.98 4.98 4.98
228 221 224 224 226	4 0 6 0 9 0	0 6 9	2.1 2.1 2.3 2.6 2.6	-1.6 0.1 1.3 2.2 2.9	50.43 50.43 50.43 50.43 50.43	-0.39 -0.70 -0.94 -1.05 -1.13	-0.03 -0.04 -0.04 -0.05 -0.05	-5.3 -2.5 -1.5 -0.6 0.0	0.1 0.3 0.4 0.5 0.5	3.41 3.38 3.55 3.63 3.68	71.7 71.3 71.3 71.3 71.4	4.98 4.96 4.99 4.99 4.99
228 222 223 224 225 226	9 10 9 10 3 10 5 10	0 6 6 9	2.2 2.3 2.4 2.4 2.5 2.5	-1.6 0.3 1.6 1.6 2.3 3.1		-2.91 -3.56 -3.31 1.42 -3.36 -3.45	-0.05	-5.5 -2.6 -1.5 -1.3 -0.9 -0.1	0.1 0.3 0.5 0.5 0.5	3.40 3.39 3.53 3.60 3.60		4.98 4.95 5.00

TABLE 11.2

APPENDED HULL RESULTS, L/R = 0.206, WITHOUT AIR TARES
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	SKWL inch	Speed fps
					SPEE	D = 12.	5 knots					
2287 2233 2236 2258 2262	20 20 20 20 20	-6 0 6 9	2.1 2.2 2.4 2.6 2.5	-1.6 0.1 1.8 2.8 3.7	50.43 50.43 50.43 50.43 50.43	-4.55 -4.68 -4.92 -5.08 -5.12	-0.03 -0.04 -0.05 -0.05 -0.05	-5.3 -2.9 -1.8 -1.6 -1.0	0.1 0.3 0.5 0.6 0.5	3.31 3.32 3.45 3.56 3.58	71.5 71.2 71.1 71.1 71.2	4.98 4.98 4.99 4.98 4.98
					SPE	ED = 35	knots					
2279 2277 2218 2253 2273	-10 -10 -10	-6 -3 0 9 12	7.8 7.9 7.5 10.0 10.9	-11.1 -0.3 1.5 22.8 33.0	50.43 50.43 50.43 50.43 50.43	0.70 0.09 -0.14 -1.67	-0.13 -0.12 -0.12 -0.12 -0.16	-9.0 -9.3 -9.3 -6.6 -9.9	2.6 2.3 2.3 2.5 3.4	4.01 3.89 3.84 4.25 4.82	67.3 67.7 67.6 68.1 66.9	13.91 13.90 13.89 13.91 13.89
2282 2215 2247 2250 2269	0 0 0	-6 0 6 9	8.4 7.3 8.5 8.8 10.2	-13.7 0.3 14.0 18.0 27.5	50.43 50.43 50.43 50.43 50.43	-1.01 -2.10 -3.35 -2.35 -2.12	-0.12 -0.11 -0.14 -0.13 -0.09	-17.5 -12.2 -14.5 -7.4 2.9	2.3 2.2 3.0 2.7 1.6	3.98 3.72 4.23 4.13 3.85	68.0 67.7 66.5 67.3 69.6	13.96 13.88 13.95 13.97 13.90
2285 2230 2240 2244 2256 2266	10 10 10 10 10	-6 0 6 6 9	9.2 7.7 8.0 8.9 8.2 8.1	-16.1 -0.9 13.4 16.1 15.8 21.4	50.43 50.43 50.43 50.43 50.43	-2.31 -4.13 -4.82 -2.31 -3.47 -3.18	-0.11 -0.13 -0.14 -0.10 -0.12	-22.9 -15.0 -15.3 -12.6 -6.7 -7.9	2.1 2.1 2.8 3.0 2.0 2.3	3.99 3.71 4.01 4.35 3.67 3.74	68.5 68.0 66.5 66.8 68.0 67.5	13.94 13.85 13.94 13.91 13.94 13.95
2289 2234 2237 2260 2263	20 20 20	-6 0 6 9 12	9.3 8.1 8.1 8.0 7.7	-14.5 -0.6 13.6 16.8 22.4	50.43 50.43 50.43 50.43 50.43	-3.87 -5.61 -6.58 -5.19 -4.72	-0.10 -0.10 -0.11 -0.09 -0.08	-24.5 -14.1 -14.4 -9.0 -5.3	2.1 2.1 2.4 1.7	3.83 3.69 3.77 3.40 3.19	68.2 67.8 67.0 68.2 68.6	13.94 13.91 13.92 13.94 13.92

TABLE 12

RUDDER EFFECTIVENESS RESULTS, L/R = 0, WITHOUT AIR TARES

Displacement 135 long tons

Roll = Yaw = 0 deg

Run No.	Rudder δ deg	Х 1b	Y 1b	Z 1b	K lb−ft	M lb-ft	N lb-ft	Trim deg	TD inch	SKWL inch	Speed fps
110.	deg	,,,	, 5					,			
				SP	EED = 0	Knots					
1215	0	0.3	0.0	50.43	-0.10	-0.02	0.1	-0.3	2.81	71.6	0.00
1263	5	0.3	0.0	50.43	-0.08	-0.02	0.1	-0.3 -0.3	2.87 2.88	71.7 71.7	0.00
1259 1255	10 15	0.3	0.0	50.43 50.43	-0.09 -0.07	-0.02 -0.02	0.1	-0.3	2.84	71.7	0.00
1255	15	0.5	0.0	30140	0.0.	0.02					
				SPEE	D = 12.	5 knots					
1210	0	2.2	0.0	50.43	-0.14	-0.03	0.2	0.0	3.22	71.6	4.98
1265	5	2.3	0.4	50.43	-0.19	-0.03	-0.6	0.0	3.21	71.6	4.98
1261	10	2.3	0.6	50.43	-0.24	-0.03	-1.0	0.0	3.23	71.6	4.98
1256	15	2.4	0.7	.50.43	-0.28	-0.02	-1.3	-0.3	3.07	71.9	4.97
				SPE	ED = 35	knots					
								4.0	0.07	60.0	12.05
1217	0 5	7.9	0.3	50.43 50.43	-0.13 -1.00	-0.10 -0.10	0.7 -3.8	1.8	3.37 3.37	68.0 68.0	13.95 13.95
1264 1260	5 10	8.1 8.3	2.8	50.43	-1.29	-0.10	-5.4	1.8	3.36	68.0	13.94
1262	10	8.3	2.8	50.43	-1.29	-0.10	-5.4	1.8	3.37	68.1	13.92
1257	15	9.5	3.8	50.43	-1.57	-0.03	-8.0	0.0	2.77	71.0	13.94
1258	15	9.4	3.8	50.43	-1.57	-0.03	-7.9	0.0	2.77	71.0	13.94

TABLE 13

BARE HULL STATIC ROLL RESULTS, L/R = 0.206

Speed = 0 knots

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M lb-ft	N 1b-ft	Trim deg	TD inch	SKWL inch	Speed fps
				DI	SPLACEM	ENT = 1	35 long	tons				
2554 2553 2552 2551 2550 2555 2543 2544 2546 2545 2547	-21 -16 -11 -5 -3 0 0 5 10	0 0 0 0 0 0 0 0 0 0 0 0	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	-0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1	50.43 50.43 50.43 50.43 50.43 50.43 50.43 50.43 50.43	3.75 3.17 2.34 0.91 0.34 -0.51 -0.49 -1.65 -3.14 -3.31 -4.12 -4.48	-0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03	0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1	0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.89 2.93 2.94 2.90 2.88 2.87 2.87 2.86 2.86 2.86 2.81 2.75	70.9 70.9 71.0 71.1 71.1 71.2 71.2 71.1 71.1 71.1	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
2548 2549	20 21	0	0.2	-0.1 -0.1	50.43	-4.48 -4.59	-0.02	0.0	-0.1	2.74	71.0	0.00
				DI	SPLACEM	IENT = 1	55 long	tons				
2541 2540 2539 2538 2542 2532 2533 2534 2535 2536 2537	-20 -16 -10 -5 -3 0 5 10 16 20 21	0 0 0 0 0 0 0 0 0	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	-0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1	57.90 57.90 57.90 57.90 57.90 57.90 57.90 57.90 57.90 57.90	3.91 3.34 2.13 0.82 0.23 -0.58 -1.98 -3.32 -4.37 -4.91 -5.03	-0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03	0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.0	0.3 0.2 0.2 0.1 0.0 0.0 0.1 0.1	3.27 3.24 3.20 3.19 3.18 3.17 3.18 3.16 3.12 3.11	71.2 71.3 71.4 71.5 71.5 71.5 71.5 71.5 71.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

TABLE 14.1

BARE HULL RESULTS, L/R = 0, AXES A
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	Х 1b	Y 1b	Z 1b	K 1b-ft	M lb-ft	N 1b-ft	Trim deg	TD inch	Speed fps
					SPEE	0 = 0 ki	nots				
1325	-20	-6	-0.2	-0.1	-50.43	5.20	-0.02	0.10	-0.4	2.81	0.00
1322	-10	-6	-0.3	0.0	-50.43	3.13	-0.02	0.10	-0.3	2.81	0.00
1328 1272 1318 1275 1278 1316 1281 1314	0 0 0 0 0 0	-6 0 3 6 9 11 12	-0.3 -0.3 -0.2 -0.2 -0.2 -0.2 -0.2	-0.1 0.0 0.0 0.0 0.0 0.0 0.0	-50.43 -50.43 -50.43 -50.43 -50.43 -50.43 -50.43	-0.13 -0.11 -0.09 -0.11 -0.11 -0.06 -0.08 -0.03	-0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03	0.10 0.10 0.10 0.10 0.10 0.10 0.10	-0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	2.83 2.79 2.82 2.83 2.79 2.86 2.79 2.80	0.00 0.00 0.00 0.00 0.00 0.00 0.00
1285 1320 1289 1292 1295	10 10 10 10	0 3 6 9	-0.3 -0.2 -0.3 -0.2 -0.2	0.0 0.0 0.0 0.0	-50.43 -50.43 -50.43 -50.43	-3.37 -3.35 -3.33 -3.32 -3.31	-0.03 -0.04 -0.03 -0.04 -0.04	0.10 0.10 0.10 0.10 0.10	-0.2 -0.2 -0.2 -0.2 -0.2	2.84 2.84 2.84 2.86 2.85	0.00 0.00 0.00 0.00 0.00
1298 1312 1301 1306 1309	20 20 20 20 20	0 3 6 9 12	-0.3 -0.3 -0.2 -0.2 -0.2	0.0 0.0 0.0 0.0	-50.43 -50.43 -50.43 -50.43	-5.39 -5.38 -5.37 -5.35 -5.33	-0.03 -0.03 -0.04 -0.04 -0.04	0.11 0.11 0.10 0.10 0.10	-0.2 -0.2 -0.2 -0.2 -0.2	2.83 2.82 2.83 2.81 2.83	0.00 0.00 0.00 0.00
					SPEED	= 12.5	knots				
1326	-20	-6	-2.3	-1.0	-50.43	5.02	0.08	-1.25	0.0	3.21	4.98
1323	-10	-6	-2.3	-0.8	-50.43	2.94	0.08	-1.73	0.0	3.27	4.97
1329 1273 1276 1279 1282 1283	0 0 0	0 6 9	-2.3 -2.1 -2.3 -2.3 -2.4 -2.4	0.0 1.0 1.7	-50.43 -50.43 -50.43	-0.10 -0.15 -0.13 -0.02	0.07 0.07 0.07 0.08 0.09 0.09	-1.90 0.10 2.50 4.20 6.40 6.30	0.0 0.1 0.0 0.0	3.20 3.28 3.27 3.31	4.98 4.97 4.98 4.98 4.97 4.98
1286 1290 1293 1296	10 10		-2.2 -2.3 -2.3 -2.4	-0.1 1.0 1.7 2.6	-50.43 -50.43	-3.14 -3.10	0.07		0.1 0.1	3.31	4.98
1299 1302 1307 1310	20 20	0 6 9 12	-2.3 -2.4	-0.1 1.1 1.9 2.8	-50.43 -50.43	-5.20 -5.18	0.06 0.07	1.65 2.85	0.2 0.2	3.26 3.29	4.98 4.97

TABLE 14.2

BARE HULL RESULTS, L/R = 0, AXES A
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	Speed fps
					SPEED	= 35 k	nots				
1327	-20	-6	-8.0	-9.6	-50.43	2.73	0.26	-0.16	2.0	3.43	13.94
1324	-10	-6	-7.7	-8.8	-50.43	0.41	0.26	-2.46	1.9	3.44	13.93
1274 1319 1277 1280 1317 1284 1315	0 0 0 0 0 0 10	0 3 6 9 11 12 12	-7.5 -7.6 -8.1 -8.6 -9.0 -9.3 -9.2	0.3 5.3 11.1 17.8 22.3 25.3 25.1 -0.5	-50.43 -50.43 -50.43 -50.43 -50.43 -50.43 -50.43	-0.14 0.93 2.07 3.56 4.55 5.16 5.15 -2.93 -2.93	0.27 0.26 0.25 0.24 0.23 0.22 0.21	0.50 3.68 4.76 3.22 1.69 0.37 0.47	1.7 1.9 2.3 2.8 3.2 3.5 3.5	3.33 3.45 3.66 3.97 4.19 4.32 4.27 3.40 3.37	13.93 13.95 13.95 13.92 13.94 13.92 13.93 13.93
1288 1321 1291 1294 1297	10 10 10 10 10	0 3 6 9 12	-7.7 -7.6 -7.7 -7.8 -8.1	5.0 10.3 15.7 20.3	-50.43 -50.43 -50.43 -50.43	-1.77 -0.44 1.29 2.72	0.26 0.24 0.18 0.18	1.58 2.46 0.03 -0.19	1.9 2.1 2.8 3.0	3.36 3.48 3.73 3.73	13.95 13.93 13.92 13.95
1300 1313 1305 1308 1311	20 20 20 20 20	0 3 6 9 12	-8.2 -8.1 -8.0 -7.5 -7.2	-1.1 4.9 11.9 18.0 21.0	-50.43 -50.43 -50.43 -50.43	-5.09 -4.16 -2.77 -1.12 0.17	0.26 0.27 0.22 0.15 0.14	-2.70 -0.72 -1.65 -2.50 -1.71	2.1 2.0 2.4 2.8 2.7	3.46 3.41 3.54 3.60 3.35	13.93 13.90 13.93 13.94 13.93

TABLE 15.1

BARE HULL RESULTS, L/R = 0.206, AXES A
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K lb-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	Speed fps
					SPEE	D = 0 ki	nots				
2198 2137 2153 2175 2195	-10 -10 -10 -10 -10	-6 0 6 9	-0.2 -0.2 -0.2 -0.2 -0.2	-0.2 -0.1 -0.1 -0.1	-50.43 -50.43 -50.43 -50.43 -50.43	2.69 2.75 2.92 2.72 2.78	-0.06 -0.06 -0.07 -0.07 -0.07	0.00 -0.00 0.10 -0.00 0.10	0.0 0.0 0.1 0.1	2.99 2.84 2.98 2.99 3.00	0.00 0.00 0.00 0.00
2202 2133 2135 2147 2146 2192	0 0 0 0	-6 0 0 6 6	-0.2 -0.2 -0.2 -0.2 -0.2 -0.2	-0.2 0.0 -0.1 -0.1 -0.1	-50.43 -50.43 -50.43 -50.43 -50.43	-0.52 -0.37 -0.43 -0.45 -0.46 -0.49	-0.05 -0.05 -0.05 -0.05 -0.05 -0.06	0.00 -0.10 0.00 0.10 0.10	-0.1 -0.1 -0.1 -0.1 -0.1 0.0	2.92 2.82 2.81 2.88 2.88 2.94	0.00 0.00 0.00 0.00 0.00
2205 2140 2156 2178 2188	10 10	-6 0 6 9 12	-0.2 -0.2 -0.2 -0.2 -0.2	-0.1 -0.1 -0.1 -0.1	-50.43 -50.43 -50.43 -50.43	-3.74 -3.71 -3.49 -3.70 -3.75	-0.05 -0.05 -0.05 -0.06 -0.06	0.00 0.00 0.10 0.10	-0.1 -0.1 -0.1 0.0 0.0	2.90 2.75 2.93 2.92 2.93	0.00 0.00 0.00 0.00
2208 2210 2143 2160 2181 2184	20 20 20 20	-6 -6 0 6 9	-0.2 -0.2 -0.2 -0.2 -0.1 -0.2	-0.2 -0.1 -0.1 -0.1 -0.1	-50.43 -50.43 -50.43 -50.43 -50.43	-5.86 -5.84 -5.67 -5.76 -5.70 -5.73	-0.05 -0.05 -0.05 -0.05 -0.06 -0.06	0.01 0.01 0.01 0.11 0.10 0.11	-0.1 -0.1 -0.1 -0.1 -0.1	2.78 2.78 2.64 2.83 2.83 2.83	0.00 0.00 0.00 0.00 0.00
					SPEED	= 12.5	knots				
2201 2138 2154 2176 2196	-10 -10 -10	-6 0 6 9	-2.1 -2.2 -2.5 -2.6 -2.8	-1.4 -0.1 1.0 1.7 2.8		2.59 2.57 2.56 2.21 2.20	0.04 0.03 0.03 0.03 0.04	-4.60 -1.82 0.05 0.84 1.81	0.3 0.4 0.6 0.7 0.8	3.42 3.34 3.58 3.69 3.82	4.98 4.98 4.97 4.99 4.98
2203 2134 2150 2151 2173 2193	0 0 0 0 0 0 0	-6 0 6 6 9	-2.2 -2.4 -2.4	-1.7 -0.1 0.8 0.8 1.5 2.3	-50.43 -50.43 -50.43	-0.29 -0.40 -0.42 -0.47	0.04 0.04	-2.00 0.18 0.18 0.97	0.3 0.5 0.5 0.5	3.34 3.50 3.50 3.59	4.95 4.96 4.93
2206 2141 2151 2179 2189	1 10 7 10 9 10	0 6	-2.4 -2.5	-1.8 -0.2 0.8 1.6 2.3	-50.43 -50.43 -50.43	-3.49 -3.24 -3.37	0.04 0.04 0.05	-1.97 0.11 0.80	0.3 0.5 0.5	3.24 3.48 3.55	4.99 4.98 4.98

TABLE 15.2

BARE HULL RESULTS, L/R = 0.206, AXES A
Displacement 135 long tons

Run No.	Roll deg	Y aw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	Speed fps
					SPEED	= 12.5	knots				
2209 2144 2161 2182 2186	20 20 20 20 20	-6 0 6 9	-2.0 -2.2 -2.5 -2.4 -2.6	-1.7 -0.1 1.2 2.1 3.1	-50.43 -50.43 -50.43 -50.43 -50.43	-5.84 -5.61 -5.62 -5.62 -5.59	0.05 0.04 0.04 0.04 0.05	-4.92 -2.15 -0.57 -0.08 0.70	0.1 0.3 0.5 0.5	3.25 3.12 3.41 3.47 3.52	4.98 4.98 4.98 4.97 4.99
					SPEED	= 35 k	nots				
2199 2139 2155 2177 2197	-10 -10 -10 -10 -10	-6 0 6 9	-7.3 -7.4 -8.5 -9.0 -9.8	-10.3 0.3 12.5 20.6 28.3	-50.43 -50.43 -50.43 -50.43 -50.43	-0.16 1.48 1.82 1.63 1.46	0.20 0.21 0.16	-12.06 -5.89 -4.28 -8.39 -13.01	2.5 2.4 3.0 3.8 4.7	3.92 3.71 4.29 4.77 5.31	13.94 14.02 13.84 13.90 13.91
2204 2556 2136 2557 2152 2558 2174 2194 2559	0 0 0 0 0 0 0 0	-6 -6 0 0 6 6 9 12 12	-7.7 -7.1 -7.2 -7.3 -7.7 -7.7 -8.0 -8.5 -8.6	-13.3 -13.0 -1.2 -0.8 10.2 10.6 16.7 23.6 23.7	-50.43 -50.43 -50.43 -50.43 -50.43 -50.43 -50.43	-2.51 -2.56 -1.17 -1.22 -0.02 -0.08 0.37 0.83 0.81	0.19 0.22 0.21 0.17 0.17 0.14 0.12	-20.51 -20.42 -9.07 -8.88 -5.53 -5.54 -7.38 -10.56 -10.46	2.2 2.3 2.1 2.2 2.8 2.9 3.4 3.9 4.0	3.88 3.86 3.61 3.70 4.09 4.07 4.35 4.66 4.65	13.86 13.95 13.93 13.95 13.84 13.95 13.87 13.90 13.95
2212 2142 2158 2180 2190 2191	10 10 10 10 10	-6 0 6 9 12 12	-8.8 -7.8 -7.4 -7.5 -7.7	-16.1 -2.3 8.9 15.3 19.8 19.9	-50.43 -50.43 -50.43 -50.43 -50.43	-4.54 -3.82 -2.32 -1.39 -0.57		-25.75 -11.46 -5.00 -6.05 -7.45 -7.46	2.1 1.8 2.3 2.9 3.1 3.1	3.96 3.38 3.73 3.96 4.03 4.03	13.94 13.88 13.94 13.90 13.92
2211 2145 2162 2183 2187	20 20 20 20 20	-6 0 6 9	-8.8 -7.9 -7.6 -7.5 -6.8	-13.3 -1.7 9.8 16.5 20.0	-50.43 -50.43 -50.43 -50.43	-7.01 -6.13 -5.07 -3.96 -2.87		-6.38	2.7 2.0 2.1 2.3 2.3	4.04 3.38 3.55 3.59 3.45	13.95 13.96 13.91 13.88 13.94

TABLE 16.1

BARE HULL RESULTS, L/R = 0.412, AXES A
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M lb-ft	N 1b-ft	Trim deg	TD inch	Speed fps
					SPEE	0 = 0 kr	nots				·
3322 3373 3319 3337 3356 3359	-10 -10 -10 -10 -10	-6 -6 0 6 9	-0.2 -0.2 -0.2 -0.2 -0.2 -0.2	0.0 0.0 0.0 -0.1 -0.0 0.0	-50.43 -50.43 -50.43 -50.43 -50.43	2.78 2.77 2.76 2.76 2.69 2.75	-0.06 -0.06 -0.06 -0.06 -0.06 -0.06	0.10 -0.00 -0.00 -0.00 -0.00 0.10	0.0 0.0 0.0 0.0 0.0	2.92 2.86 2.92 2.86 2.88 2.88	0.00 0.00 0.00 0.00 0.00
3380 3310 3334 3352 3363	0 0 0 0	-6 0 6 9 12	-0.2 -0.1 -0.2 -0.2 -0.2	-0.1 -0.1 -0.0 -0.0	-50.43 -50.43 -50.43 -50.43 -50.43	-0.49 -0.48 -0.47 -0.51 -0.49	-0.05 -0.06 -0.05 -0.05 -0.05	0.00 0.00 0.00 0.00 0.10	-0.1 -0.1 -0.1 -0.1	2.81 2.88 2.80 2.81 2.83	0.00 0.00 0.00 0.00 0.00
3387 3313 3340 3349 3365	10 10 10 10	-6 0 6 9	-0.1 -0.2 -0.2 -0.2 -0.2	0.0 0.0 -0.0 -0.0	-50.43 -50.43 -50.43 -50.43	-3.74 -3.70 -3.78 -3.72 -3.78	-0.05 -0.05 -0.05 -0.05 -0.05	0.00 0.00 0.00 0.00 0.10	-0.2 -0.1 -0.1 -0.1	2.77 2.86 2.82 2.82 2.82	0.00 0.00 0.00 0.00
3392 3316 3343 3346 3368	20 20 20 20 20	-6 0 6 9	-0.1 -0.1 -0.2 -0.2 -0.2	0.0 0.0 -0.1 -0.1 0.0	-50.43 -50.43 -50.43 -50.43	-5.80 -5.69 -5.69 -5.74 -5.77	-0.05 -0.06 -0.05 -0.05 -0.05	0.00 0.10 0.01 0.11 0.10	-0.2 -0.1 -0.1 -0.1	2.65 2.76 2.72 2.73 2.73	0.00 0.00 0.00 0.00
					SPEED	= 12.5	knots				
3323 3320 3338 3357 3360	-10 -10 -10	-6 0 6 9	-2.1 -2.3 -2.7 -2.9 -3.2	-2.2 -0.1 1.3 2.2 3.3	-50.43 -50.43 -50.43 -50.43	2.74 2.56 2.22 1.98 1.83	0.07 0.04 0.04 0.04 0.04	-8.78 -4.03 -1.66 -1.28 -1.00	0.0 0.4 0.7 0.9 1.1	3.29 3.42 3.56 3.72 3.90	4.98 4.98 4.98 4.98 5.00
3381 3382 3311 3335 3354 3362	0 0 0	-6 -6 0 6 9	-2.0 -2.2 -2.5	-2.8 -2.8 -0.4 1.0 1.7 2.5	-50.43 -50.43 -50.43	-0.33 -0.39 -0.48 -0.55	0.06 0.04 0.05 0.04	-9.35 -4.39 -1.62 -0.93	0.0 0.3 0.5 0.7	3.21 3.38 3.46	4.94 4.97 4.99 4.99
3388 3314 3341 3350 3366	10 10 10	-6 0 6 9 12	-2.4 -2.6 -2.8	-3.0 -0.3 1.2 2.0 2.7	-50.43 -50.43 -50.43	-3.46 -3.44 -3.30	0.06 0.05 0.05	-4.47 -1.89 -1.11	0.3 0.6 0.7	3.37 3.44 3.54	4.97 4.98 4.99

TABLE 16.2

BARE HULL RESULTS, L/R = 0.412, AXES A
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M lb-ft	N 1b-ft	Trim deg	TD inch	Speed fps
					SPEED	= 12.5	knots				
3393 3317 3344 3347 3369	20 20 20 20 20	-6 0 6 9	-2.0 -2.3 -2.6 -2.9 -3.0	-2.2 -0.2 1.7 2.7 3.7	-50.43 -50.43 -50.43 -50.43 -50.43	-5.88 -5.72 -5.67 -5.68 -5.70	0.06 0.05 0.05 0.05 0.05	-8.11 -4.64 -2.57 -2.08 -1.80	0.0 0.3 0.5 0.7 0.8	3.04 3.29 3.33 3.48 3.55	4.98 4.98 4.99 4.97 4.97
					SPEED	= 35 k	nots				
3375 3321 3339 3358 3361	-10 -10 -10 -10 -10	-6 0 6 9 12	-7.7 -7.4 -8.6 -9.4 -10.2	-13.4 0.9 16.6 25.2 34.4	-50.43 -50.43 -50.43 -50.43	-0.60 0.42 0.18 -0.17 -0.90	0.18 0.15 0.12	-30.40 -15.41 -16.39 -20.82 -27.70	2.2 2.6 3.7 4.5 5.6	3.79 3.98 4.52 5.01 5.60	14.00 13.97 13.98 14.01 14.00
3312 3336 3355 3364	0 0 0	0 6 9 12	-7.4 -7.9 -8.5 -8.9	-2.3 12.8 19.8 27.3	-50.43 -50.43 -50.43 -50.43	-1.84 -1.10 -0.84 -0.58	0.16 0.15	-20.55 -15.19 -17.86 -21.46	2.2 3.1 3.6 4.3	3.75 4.13 4.38 4.72	13.86 13.98 13.88 13.89
3315 3342 3351 3367	10 10 10 10	0 6 9 12	-7.9 -7.6 -7.7 -7.6	-4.9 9.8 16.3 21.4	-50.43 -50.43 -50.43 -50.43	-3.89 -3.02 -1.98 -0.91	0.23 0.19	-26.60 -14.32 -13.57 -13.88	1.4 2.2 2.6 2.8	3.37 3.56 3.70 3.75	13.99 13.98 13.99 14.01
3395 3318 3345 3348 3371	20 20 20 20 20	-6 0 6 9 12	-8.7 -7.9 -7.6 -7.4 -7.2	-10.3 -2.5 9.5 15.5 20.7	-50.43 -50.43 -50.43 -50.43	-7.65 -6.65 -5.35 -4.25 -2.97	0.28 0.27 0.27	-24.47 -25.16 -15.92 -13.14 -10.25	2.6 1.7 1.6 1.5	3.74 3.41 3.14 3.08 2.93	13.99 14.00 13.93 14.00 13.91

TABLE 17

SUPPLEMENTAL BARE HULL RESULTS, L/R = 0.412, AXES A

Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	Speed fps
					SPEED =	0 to 2	8 knots	\$			
3428 3429 3434 3430 3431 3433	0 0 0 0	-5 -5 -5 -5 -5 -5	-0.1 -2.1 -3.2 -4.2 -5.5 -6.5	-0.1 -2.2 -3.4 -4.5 -7.4 -12.8	-50.43 -50.43 -50.43 -50.43 -50.43	-0.49 -0.39 -0.43 -0.60 -1.34 -1.57	0.08	0.00 -8.16 -13.13 -17.21 -23.74 -34.14	-0.1 0.0 0.5 1.3 1.9 1.3	2.82 3.23 3.63 4.10 4.16 3.67	0.00 4.94 5.98 6.94 9.05 11.08
3406 3403 3436 3408 3391 3410	-10 0 0 10 20 20	-6 -6 -6 -6 -6	-0.1 -0.1 -0.1 -0.1 -0.1	-0.1 -0.1 -0.1 0.0 0.0	-50.43 -50.43 -50.43 -50.43 -50.43	2.73 -0.51 -0.55 -3.74 -5.78 -5.75	-0.07 -0.06 -0.05 -0.06 -0.05 -0.04	0.00 0.00 0.00 0.00 0.00 0.10	0.0 -0.1 -0.2 -0.1 -0.2 -0.3	2.82 2.74 2.81 2.72 2.64 2.58	0.00 0.00 0.00 0.00 0.00
3441 3435 3440	0 0 0	-6 -6 -6	-0.6 -2.0 -3.1	-0.6 -2.7 -4.2	-50.43 -50.43 -50.43	-0.49 -0.46 -0.51	-0.02 0.06 0.10		-0.2 0.0 0.4	2.92 3.19 3.62	2.92 4.97 5.99
3407 3405 3412 3437 3409 3411	-10 0 0 0 10 20	-6 -6 -6 -6 -6	-4.3 -4.3 -4.3 -4.3 -4.4	-4.5 -5.6 -5.6 -5.7 -6.0 -3.7	-50.43 -50.43 -50.43 -50.43 -50.43	2.31 -0.63 -0.63 -0.74 -3.87 -6.38	0.08 0.09 0.09 0.10	-17.36 -20.08 -20.08 -20.18 -21.02 -16.61	1.4 1.4 1.3 1.3 1.3	4.09 4.05 4.08 4.13 4.02 3.93	7.02 7.03 7.01 7.06 7.02 7.02
3384 3438	0	-6 -6	-5.2 -5.6	-7.9 -9.1	-50.43 -50.43	-1.16 -1.52		-25.33 -27.01	1.9 1.9	4.24 4.19	8.66 9.06
3385 3390 3394	0 10 20	-6 -6 -6	-5.9 -6.5 -6.8	-12.9 -13.8 -8.9	-50.43 -50.43 -50.43	-1.48 -4.55 -6.95	0.21	-34.33 -34.84 -25.95	1.5 1.6 1.9	3.87 3.82 3.83	10.22 10.42 10.41

TABLE 18.1

BARE HULL RESULTS, L/R = 0.206, AXES A
Displacement 155 long tons

Run No.	Ro11 deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	Speed fps
					SPEE	0 = 0 ki	nots				
2529 2461 2479 2482 2506	-10 -10 -10 -10 -10	-6 0 6 9	-0.3 -0.3 -0.3 -0.3 -0.3	-0.1 -0.1 -0.1 -0.1	-57.9 -57.9 -57.9 -57.9 -57.9	3.04 2.82 2.82 2.84 3.01	-0.07 -0.07 -0.07 -0.07 -0.08	-0.00 -0.00 -0.00 -0.00 0.10	0.1 0.1 0.1 0.1 0.2	3.25 3.28 3.26 3.27 3.29	0.00 0.00 0.00 0.00
2442 2526 2458 2476 2485 2503	0 0 0 0	-6 -6 0 6 9	0.0 -0.3 -0.3 -0.3 -0.3	0.0 -0.1 0.0 -0.1 -0.1	-57.9 -57.9 -57.9 -57.9 -57.9 -57.9	0.00 -0.59 -0.51 -0.61 -0.57 -0.58	-0.07 -0.06 -0.06 -0.06 -0.06 -0.07	0.00 0.00 0.00 0.00 0.10	-0.1 0.0 0.0 0.0 0.0 0.1	3.10 3.18 3.22 3.21 3.22 3.20	0.00 0.00 0.00 0.00 0.00
2523 2464 2473 2488 2489 2510	10 10 10 10 10	-6 0 6 9 12	-0.3 -0.3 -0.3 -0.3 -0.3	-0.1 -0.1 -0.1 -0.2 -0.1	-57.9 -57.9 -57.9 -57.9 -57.9 -57.9	-4.12 -3.99 -3.92 -4.04 -3.94 -4.15	-0.06 -0.06 -0.06 -0.06 -0.06 -0.07	0.01 0.11 0.11 0.21 0.11	0.0 0.0 0.0 0.0 0.0	3.18 3.20 3.21 3.23 3.20 3.22	0.00 0.00 0.00 0.00 0.00
2520 2467 2518 2470 2516 2492 2513	20 20 20 20 20 20 20	-6 0 0 6 6 9	-0.3 -0.3 -0.3 -0.3 -0.3 -0.3	-0.1 -0.1 -0.1 -0.1 -0.0 -0.1	-57.9 -57.9 -57.9 -57.9 -57.9 -57.9	-6.27 -6.40 -6.28 -6.38 -6.32 -6.41 -6.31	-0.06 -0.06 -0.06 -0.07 -0.06 -0.06	0.11 0.01 0.11 0.11 0.01 0.11	0.0 0.0 0.0 0.0 0.1 0.0	3.14 3.13 3.14 3.14 3.16 3.13 3.17	0.00 0.00 0.00 0.00 0.00 0.00
					SPEED	= 12.5	knots				
2530 2462 2480 2483 2507	-10 -10 -10 -10 -10	-6 0 6 9	-2.4 -2.6 -2.9 -3.1 -3.5	-1.5 0.1 1.3 2.1 3.5	-57.9 -57.9 -57.9 -57.9 -57.9	2.45	0.04 0.04 0.04 0.05 0.05	-5.30 -2.03 -0.06 0.92 2.09	0.4 0.5 0.7 0.7	3.80 3.91	4.97 5.00 4.99 4.96 4.99
2527 2459 2477 2486 2504	0 0 0	0 6	-2.3 -2.6 -2.8 -3.0 -3.2	-1.8 0.0 1.1 1.8 2.8	-57.9 -57.9 -57.9 -57.9 -57.9	-0.48 -0.59 -0.58	0.04 0.05 0.04 0.06 0.06	-5.77 -2.10 0.08 1.07 2.35	0.6	3.74 3.86 3.91	4.97 5.01 4.94 4.96 4.93
2524 2465 2474 2490 2511			-2.4 -2.6 -2.8 -2.9 -3.1	-2.0 -0.2 1.2 1.9 2.9	-57.9 -57.9 -57.9 -57.9	-3.77 -3.64 -3.61		0.01	0.5 0.5	3.72 3.82 3.84	4.97 4.96

TABLE 18.2

BARE HULL RESULTS, L/R = 0.206, AXES A
Displacement 155 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	Speed fps
					SPEED	= 12.5	knots				
2521 2468 2471 2493 2514	20 20 20 20 20	-6 0 6 9	-2.4 -2.5 -2.8 -3.0 -3.1	-1.9 -0.1 1.5 2.5 3.6	-57.9 -57.9 -57.9 -57.9 -57.9	-6.24 -6.30 -6.24 -6.27 -6.09	0.05 0.04 0.04 0.05 0.05	-5.61 -2.34 -0.56 0.02 0.90	0.3 0.4 0.6 0.6 0.7	3.62 3.64 3.75 3.82 3.90	4.97 4.96 4.98 5.00 4.98
					SPEED	= 35 k	nots				
2531 2463 2481 2484 2508	-10 -10 -10 -10 -10		-8.4 -8.4 -9.4 -10.3 -11.2	-12.0 0.4 14.7 23.0 31.6	-57.9 -57.9 -57.9 -57.9 -57.9	-0.23 1.34 1.74 1.71 1.69	0.20 0.18 0.15	-12.03 -6.91 -5.95 -9.27 -13.53	3.0 2.7 3.5 4.3 5.4	4.34 4.26 4.77 5.28 5.87	13.94 13.93 13.92 13.91 13.95
2528 2460 2478 2487 2505	0 0 0 0	-6 0 6 9	-9.0 -8.2 -8.7 -9.2 -9.9	-15.2 -0.9 12.6 19.5 26.7	-57.9 -57.9 -57.9 -57.9 -57.9	-2.78 -1.40 -0.19 0.24 0.73	0.21 0.16 0.14	-21.87 -10.08 -7.19 -9.46 -12.25	2.5 2.5 3.3 3.8 4.5	4.24 4.12 4.56 4.83 5.16	13.89 13.89 13.86 13.91
2525 2466 2475 2491 2512	10 10 10 10	-6 0 6 9 12	-9.9 -8.7 -8.4 -8.7 -8.6	-18.1 -2.1 11.6 18.3 23.2	-57.9 -57.9 -57.9 -57.9 -57.9	-5.22 -3.99 -2.69 -1.72 -0.91		-6.61	2.4 2.0 2.7 3.0 3.6	4.30 3.91 4.16 4.32 4.42	13.93 13.89 13.94 13.94 13.98
2522 2469 2519 2472 2517 2494 2515	20 20 20 20 20 20 20 20	-6 0 0 6 6 9	-10.3 -9.0 -9.0 -8.6 -8.7 -8.5 -8.1	-16.3 -1.5 -1.7 12.6 12.2 19.9 23.7	-57.9 -57.9 -57.9 -57.9 -57.9 -57.9	-7.66 -6.90 -6.72 -5.44 -5.29 -4.37	0.27	-8.56 -7.73	2.9 2.3 2.4 2.4 2.6 2.8	4.43 3.98 3.99 3.93 3.94 3.97 3.93	13.96 13.92 13.96 13.91 13.96 13.89

TABLE 19.1

APPENDED HULL RESULTS, L/R = 0, AXES A

Displacement 135 long tons Trim TD Speed K M N Υ Z **Ro11** X Run Yaw fps 1b-ft deg inch 1b-ft 1b-ft 1b 16 16 No. deg deg SPEED = 0 knots -0.3 2.82 0.00 -0.020.10 -50.43 -0.02-0.3 0.0 1111 0 0 -0.32.83 0.00 0.10 -0.021209 0 0 -0.3 0.0 -50.43-0.11-0.3 0.00 2.81 -0.3 -50.43 -0.10 -0.020.10 0.0 1215 0 0 0.00 -0.020.10 -0.3 2.82 -50.43-0.016 -0.3 0.0 1114 0 -0.32.85 0.00 0.10 -0.02-50.43-0.031219 0 6 -0.30.1 -0.32.80 0.00 -0.020.10 -50.43-0.011117 0 9 -0.30.0 -0.3 2.84 0.00 -0.030.10 9 -0.2 0.1 -50.43-0.060 1222 0.10 -0.3 2.86 0.00 -0.02-50.43-0.0112 -0.3 0.0 1120 0 0.00 -0.3 2.83 -0.020.10 -50.43-0.041225 12 -0.30.1 0 0.00 -0.2 2.90 -0.030.10 -50.43-3.241123 10 0 -0.30.0 -0.22.84 0.00 -0.3 0.0 -50.43-3.34-0.030.10 1228 10 0 -0.03 -0.2 2.88 0.00 0.10 -50.43-3.261126 10 6 -0.3 0.0 2.88 0.00 -0.04-0.2 -3.310.10 -0.20.0 -50.4310 6 1231 0.00 -0.2 2.92 -3.25-0.030.10 -0.3 0.0 -50.431129 10 9 0.10 -0.22.89 0.00 -50.43-3.32-0.041234 10 9 -0.20.0 2.89 0.00 -0.03-0.20.10 12 -0.3 0.0 -50.43-3.261132 10 -0.22.86 0.00 -50.43 -3.30 -0.030.10 1237 10 12 -0.3 0.1 0.00 -0.2 2.86 -50.43 -5.37-0.03 0.11 -0.3 -0.1 0 1137 20 0.00 0.11 -0.2 2.85 -5.33 -0.03-0.3 0.0 -50.431240 20 0 0.00 0.20 -0.2 2.81 -50.43-5.34-0.041252 20 3 -0.20.0 0.00 2.86 -0.030.11 -0.2-0.3 0.0 -50.43-5.241140 20 6 0.00 -0.22.85 0.0 -50.43 -5.33 -0.040.10 20 6 -0.2 1243 -50.43-5.23 -0.030.11 -0.22.87 0.00 9 -0.3 0.0 1143 20 -0.22.85 0.00 0.10 -50.43-5.31-0.04-0.20.1 1246 20 9 -0.2 2.83 0.00 -0.030.11 -50.43-5.251146 20 12 -0.3 0.0 0.00 2.83 0.11 -0.10.0 -50.43-5.36-0.041211 20 12 -0.3 0.00 -50.43-5.33-0.030.11 -0.2 2.84 -0.3 0.0 1249 20 12 SPEED = 12.5 knots3.23 4.98 0.0 0.20 -2.2 0.0 -50.430.00 0.08 0 0 1112 4.98 3.22 -50.43-0.140.08 0.20 0.0 -2.21210 0 0 0.0 4.98 0.20 0.0 3.22 -50.43-0.100.08 -2.20.0 0 0 1216 3.27 4.98 1.60 0.0 0.08 -50.43-0.111115 0 6 -2.3 1.4 3.27 4.98 0.0 -50.430.09 1.70 -2.41.5 -0.161220 6 0 4.98 3.00 0.0 3.33 -50.43 -0.11 0.09 2.4 0 9 -2.41118 4.97 3.10 0.0 3.29 -50.43-0.230.08 2.4 1223 0 9 -2.3 3.35 4.98 0.0 5.10 -2.43.6 -50.43-0.020.09 1121 0 12 4.98 0.09 5.00 0.0 3.33 -50.43-0.201226 0 12 -2.4 3.4 4.98 3.30 0.07 0.03 0.1 -50.43-3.0610 -2.2-0.11124 0 4.97 0.1 3.24 0.07 0.13 -2.2 0.0 -50.43-3.161229 10 0 4.98 1.23 0.1 3.34 -50.43 0.08 -3.161127 10 6 -2.41.5 4.97 3.29 1.23 0.1 -2.3 1.5 -50.43-3.250.07 1232 10 6

TABLE 19.2

APPENDED HULL RESULTS, L/R = 0, AXES A
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	Х 1b	Y 1b	Z 1b	K 1b-ft	M lb-ft	N lb-ft	Trim deg	TD inch	Speed fps
					SPEED :	= 12.5	knots				
1130 1235 1133 1238	10 10 10 10	9 9 12 12	-2.4 -2.3 -2.4 -2.4	2.3 2.3 3.3 3.3	-50.43 -50.43 -50.43 -50.43	-3.20 -3.28 -3.12 -3.23	0.08 0.07 0.09 0.09	2.43 2.43 4.23 4.33	0.1 0.1 0.0 0.0	3.34 3.32 3.37 3.34	4.98 4.98 4.98 4.98
1138 1241 1253 1141 1244 1144 1247 1147 1250	20 20 20 20 20 20 20 20 20	0 0 3 6 6 9 9 12 12	-2.2 -2.2 -2.4 -2.3 -2.4 -2.4 -2.5 -2.4	-0.1 -0.1 0.7 1.6 1.6 2.5 2.5 3.5 3.5	-50.43 -50.43 -50.43 -50.43 -50.43 -50.43 -50.43	-5.22 -5.23 -5.25 -5.25 -5.34 -5.29 -5.38 -5.32 -5.44	0.05 0.05 0.05 0.07 0.06 0.07 0.07 0.07	-0.25 -0.15 0.35 0.65 0.65 1.45 1.55 2.86 2.95	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	3.23 3.20 3.22 3.29 3.26 3.33 3.30 3.35 3.33	4.97 4.98 4.97 4.98 4.98 4.98 4.97 4.97
					SPEED	= 35 k	nots				
1113 1217 1218 1116 1221 1119 1224 1122 1227	0 0 0 0 0 0 0		-7.8 -7.9 -7.9 -8.6 -8.6 -9.3 -9.2 -10.1	0.5 0.3 0.3 13.3 14.0 21.1 21.5 29.0 29.1	-50.43 -50.43 -50.43 -50.43 -50.43 -50.43 -50.43	0.01 -0.11 -0.09 0.95 1.10 1.69 2.00 2.85 3.18	0.29 0.29 0.28 0.28 0.28 0.27 0.27	0.70 0.70 0.70 -1.75 -2.25 -5.79 -5.89 -9.25 -9.35	1.7 1.8 1.8 2.4 2.9 2.9 3.5 3.5	3.36 3.37 3.39 3.71 3.72 4.00 4.01 4.33 4.29	13.93 13.95 13.94 13.92 13.94 13.97 13.93 13.93 13.94
1125 1136 1230 1128 1135 1233 1131 1236 1134 1239	10 10 10 10 10 10	0 0 6 6 6 9 12 12	-8.1 -8.1 -8.2 -8.2 -8.3 -8.6 -8.5 -9.0	-0.7 -0.8 -0.5 12.9 13.5 18.8 19.3 23.8 24.4	-50.43 -50.43 -50.43 -50.43 -50.43 -50.43	-2.83 -2.77 -2.84 -1.41 -1.41 -0.53 -0.22 0.50 0.91	0.21 0.22	-8.88	3.0	3.88 3.81	13.94 13.93 13.94 13.92 13.92 13.94 13.94 13.95 13.92
1139 1242 1254 1142 1245 1145 1248 1148 1214	20 20 20 20 20 20 20 3 20 3 20 20 20 20 20 20 20 20 20 20 20 20 20	0 0 3 6 6 9 12 12	-8.5 -8.6 -8.4 -8.6 -8.5 -8.1 -7.9 -8.0	-1.3 -1.0 6.3 14.4 14.8 20.2 20.9 24.0 24.9 25.0	-50.43 -50.43 -50.43	-4.54 -3.76 -3.49 -2.90 -2.50 -2.01	0.29 0.26 0.23 0.23 0.15 0.15 0.15	-1.69 -3.52	2.1 2.3 2.7 2.7 3.2 3.1 3.1	3.49 3.74 3.66 3.76 3.73 3.53 3.51	13.93 13.92 13.95 13.94 13.92 13.92

TABLE 20.1

APPENDED HULL RESULTS, L/R = 0.206, AXES A
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	Speed fps
					SPEE	0 = 0 ki	nots				
2274 2216 2241 2251 2271	-10 -10 -10 -10 -10	-6 0 6 9	-0.2 -0.2 -0.2 -0.3 -0.3	-0.1 -0.1 -0.1 -0.1 -0.1	-50.43 -50.43 -50.43 -50.43 -50.43	2.73 2.72 2.78 2.73 2.71	-0.06 -0.06 -0.06 -0.05 -0.05	-0.10 -0.00 0.10 0.10 0.10	0.0 0.0 0.0 0.0	3.00 2.95 3.01 3.03 3.04	0.00 0.00 0.00 0.00 0.00
2280 2213 2245 2248 2267	0 0 0 0	-6 0 6 9	-0.1 -0.1 -0.1 -0.2 -0.3	-0.1 -0.2 -0.1 -0.1	-50.43 -50.43 -50.43 -50.43 -50.43	-0.54 -0.56 -0.49 -0.50 -0.52	-0.06 -0.06 -0.05 -0.04	0.10 0.00 0.00 0.10 0.00	-0.1 -0.1 -0.1 -0.1	2.94 2.89 2.95 2.95 2.96	0.00 0.00 0.00 0.00 0.00
2283 2228 2238 2254 2264	10 10 10 10	-6 0 6 9 12	-0.2 -0.3 -0.2 -0.2 -0.2	-0.1 0.1 -0.1 -0.1	-50.43 -50.43 -50.43 -50.43 -50.43	-3.72 -4.24 -3.70 -3.75 -3.79	-0.05 -0.04 -0.06 -0.06 -0.05	0.10 0.10 0.10 0.10 0.10	-0.1 -0.1 0.0 0.0 -0.1	2.92 2.88 2.95 2.96 2.95	0.00 0.00 0.00 0.00 0.00
2286 2232 2235 2257 2261	20 20 20 20 20	-6 0 6 9	-0.2 -0.2 -0.2 -0.3 -0.2	-0.1 -0.1 -0.1 -0.1	-50.43 -50.43 -50.43 -50.43	-5.73 -5.73 -5.67 -5.75 -5.71	-0.05 -0.05 -0.05 -0.04 -0.05	0.11 0.01 0.11 0.11	-0.1 -0.1 -0.1 -0.1	2.83 2.80 2.82 2.87 2.86	0.00 0.00 0.00 0.00
					SPEED	= 12.5	knots				
2278 2276 2217 2242 2252 2272	-10 -10 -10 -10 -10 -10	-6 -3 0 6 9	-2.0 -2.1 -2.2 -2.5 -2.7 -3.0	-1.3 -0.0 0.2 1.6 2.4 3.6	-50.43 -50.43 -50.43 -50.43 -50.43	2.63 2.52 2.39 2.12 1.95 1.80	0.04 0.03 0.03 0.05 0.06	-4.70 -2.43 -2.53 -1.36 -0.68 0.19	0.2 0.3 0.4 0.6 0.6	3.40 3.46 3.42 3.61 3.72 3.82	4.98 4.96 4.99 4.98 4.98 4.98
2281 2214 2246 2249 2268	0	-6 0 6 9	-2.1 -2.1 -2.3 -2.6 -2.6	-1.6 0.1 1.3 2.2 2.9	-50.43 -50.43 -50.43 -50.43		0.06 0.04 0.04 0.05 0.06		0.1 0.3 0.4 0.5 0.5	3.41 3.38 3.55 3.63 3.68	4.98 4.96 4.99 4.99 4.99
2284 2229 2239 2243 2255 2265	10 10 10 10	-6 0 6 6 9	-2.2 -2.3 -2.4 -2.4 -2.5 -2.5	-1.6 0.3 1.6 1.6 2.3 3.1	-50.43	-4.14 -3.81 0.92 -3.81	0.04 0.04 0.05	-2.58 -1.50 -1.30 -0.91	0.1 0.3 0.5 0.5 0.5	3.40 3.39 3.53 3.60 3.60 3.63	5.00

TABLE 20.2

APPENDED HULL RESULTS, L/R = 0.206, AXES A
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	Х 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	Speed fps
					SPEED	= 12.5	knots				
2287 2233 2236 2258 2262	20 20 20 20 20	-6 0 6 9	-2.1 -2.2 -2.4 -2.6 -2.5	-1.6 0.1 1.8 2.8 3.7	-50.43 -50.43 -50.43 -50.43 -50.43	-5.84 -5.86 -5.99 -6.09 -6.07	0.05 0.04 0.03 0.04 0.05	-5.22 -2.85 -1.78 -1.49 -0.91	0.1 0.3 0.5 0.6 0.5	3.31 3.32 3.45 3.56 3.58	4.98 4.98 4.99 4.98 4.98
					SPEED) = 35 k	nots				
2279 2277 2218 2253 2273	-10 -10 -10 -10 -10		-7.8 -7.9 -7.5 -10.0	-11.1 -0.3 1.5 22.8 33.0	-50.43 -50.43 -50.43 -50.43	0.55 0.67 0.56 0.48 0.39	0.20 0.24 0.21 0.36 0.33	-9.05 -9.39 -9.42 -6.82 -10.19	2.6 2.3 2.3 2.5 3.4	4.01 3.89 3.84 4.25 4.82	13.91 13.90 13.89 13.91 13.89
2282 2215 2247 2250 2269	0 0 0 0	-6 0 6 9	-8.4 -7.3 -8.5 -8.8 -10.2	-13.7 0.3 14.0 18.0 27.5	-50.43 -50.43 -50.43 -50.43	-1.95 -2.08 -2.38 -1.11 -0.22	0.21	-17.40 -12.21 -14.52 -7.50 2.83	2.3 2.2 3.0 2.7 1.6	3.98 3.72 4.23 4.13 3.85	13.96 13.88 13.95 13.97 13.90
2285 2230 2240 2244 2256 2266	10 10 10 10 10 10	-6 0 6 6 9	-9.2 -7.7 -8.0 -8.9 -8.2 -8.1	-16.1 -0.9 13.4 16.1 15.8 21.4	-50.43 -50.43 -50.43 -50.43 -50.43	-4.00 -4.79 -4.52 -1.82 -3.00 -2.33	0.25 0.20		2.1 2.1 2.8 3.0 2.0 2.3	3.99 3.71 4.01 4.35 3.67 3.74	13.94 13.85 13.94 13.91 13.94 13.95
2289 2234 2237 2260 2263	20 20 20 20 20	-6 0 6 9	-9.3 -8.1 -8.1 -8.0 -7.7	-14.5 -0.6 13.6 16.8 22.4	-50.43 -50.43 -50.43 -50.43	-6.00 -6.84 -6.89 -5.29 -4.46	0.26 0.23 0.29		2.1 2.1 2.4 1.7	3.83 3.69 3.77 3.40 3.19	13.94 13.91 13.92 13.94 13.92

TABLE 21

RUDDER EFFECTIVENESS RESULTS, L/R = 0, AXES A

Displacement 135 long tons

Roll = Yaw = 0 deg

Run No.	Rudder δ deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	Speed fps
				SPEE	D = 0 k	nots				
1215 1263 1259 1255	0 5 10 15	-0.3 -0.3 -0.3	0.0 0.0 0.0	-50.43 -50.43 -50.43 -50.43	-0.10 -0.08 -0.09 -0.07	-0.02 -0.02 -0.02 -0.02	0.10 0.10 0.10 0.10	-0.3 -0.3 -0.3	2.81 2.87 2.88 2.84	0.00 0.00 0.00 0.00
				SPEED	= 12.5	knots				
1210 1265 1261 1256	0 5 10 15	-2.2 -2.3 -2.3 -2.4	0.0 0.4 0.6 0.7	-50.43 -50.43 -50.43 -50.43	-0.14 -0.16 -0.20 -0.23	0.08 0.08 0.08 0.12	0.20 -0.60 -1.00 -1.30	0.0 0.0 0.0 -0.3	3.22 3.21 3.23 3.07	4.98 4.98 4.98 4.97
				SPEED) = 35 k	nots				
1217 1264 1260 1262 1257 1258	0 5 10 10 15	-7.9 -8.1 -8.3 -8.3 -9.5	0.3 2.0 2.8 2.8 3.8 3.8	-50.43 -50.43 -50.43 -50.43 -50.43	-0.11 -0.86 -1.10 -1.10 -1.31	0.29 0.30 0.32 0.32 0.58 0.57	0.70 -3.81 -5.41 -5.41 -8.00 -7.90	1.8 1.8 1.8 0.0 0.0	3.37 3.37 3.36 3.37 2.77 2.77	13.95 13.95 13.94 13.92 13.94 13.94

TABLE 22

BARE HULL STATIC ROLL RESULTS, L/R = 0.206, AXES A Speed = 0 knots

Run	Roll	Yaw	X	Y	Z	K	M	N 15 ft	Trim	TD	Speed
No.	deg	deg	16	16	1b	1b-ft	1b-ft	1b-ft	deg	inch	fps
				DIS	PLACEMENT	T = 135	long to	ons			
2554	-21	0	-0.3	-0.1	-50.43	4.99	-0.06	-0.01	0.1	2.89	0.00
2553	-16	0	-0.3	-0.1	-50.43	4.12	-0.06	-0.00	0.1	2.93	0.00
2552	-11	0	-0.3	-0.1	-50.43	3.00	-0.06	-0.00	0.1	2.94	0.00
2551	-5	0	-0.3	-0.1	-50.43	1.21	-0.05	0.00	0.0	2.90	0.00
2550	-3	0	-0.3	-0.1	-50.43	0.51	-0.05	0.00	0.0	2.88	0.00
2555	0	0	-0.2	-0.1	-50.43	-0.52	-0.06	0.00	0.0	2.87	0.00
2543	0	0	-0.3	-0.1	-50.43	-0.50	-0.05	0.00	0.0	2.87	0.00
2544	5	0	-0.3	-0.1	-50.43	-1.96	-0.05	0.10	0.0	2.87	0.00
2546	10	0	-0.3	-0.1	-50.43	-3.75	-0.05	0.11	0.0	2.86	0.00
2545	10	0	-0.3	-0.1	-50.43	-3.92	-0.05	0.11	0.0	2.86	0.00
2547	16	0	-0.3	-0.1	-50.43	-5.09	-0.05	0.11	0.0	2.81	0.00
2548	20	0	-0.2	-0.1	-50.43	-5.68	-0.05	0.11	-0.1	2.75	0.00
2549	21	0	-0.3	-0.1	-50.43	-5.84	-0.04	0.01	-0.1	2.74	0.00
				DIS	PLACEMEN	T = 155	long t	ons			
2541	-20	0	-0.3	-0.1	-57.90	5.27	-0.08	-0.01	0.3	3.27	0.00
2540	-16	0	-0.3	-0.1	-57.90	4.43	-0.08	-0.00	0.2	3.27	0.00
2539	-10	0	-0.3	-0.1	-57.90	2.82	-0.08	-0.00	0.2	3.24	0.00
2538	-5	0	-0.3	-0.1	-57.90	1.16	-0.07	0.00	0.1	3.20	0.00
2542	-3	0	-0.3	-0.1	-57.90	0.43	-0.07	0.10	0.1	3.19	0.00
2532	0	0	-0.3	-0.1	-57.90	-0.59	-0.06	0.00	0.0	3.18	0.00
2533	5	0	-0.3	-0.1	-57.90	-2.34	-0.06	0.10	0.0	3.17	0.00
2534	10	0	-0.3	-0.1	-57.90	-4.02	-0.07	0.11	0.1	3.18	0.00
2535	16	0	-0.3	-0.1	-57.90	-5.48	-0.07	0.01	0.1	3.16	0.00
2536	20	0	-0.3	-0.1	-57.90	-6.28	-0.07	0.11	0.1	3.12	0.00
2537	21	0	-0.3	-0.1	-57.90	-6.47	-0.06	0.11	0.0	3.11	0.00

TABLE 23.1

BARE HULL RESULTS, L/R = 0, AXES B
Displacement 135 long tons

Run No.	Roll deg	Y aw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N lb-ft	Trim deg	TD inch	Speed fps
					SPEED :	= 0 kno	ts				
1325	-20	-6	0.12	17.15	-47.42	5.20	-0.06	0.11	-0.4	2.81	0.00
1322	-10	-6	0.10	8.76	-49.66	3.13	-0.05	0.12	-0.3	2.81	0.00
1328 1272 1318 1275 1278 1316 1281 1314	0 0 0 0 0 0	-6 0 3 6 9 11 12	0.10 0.10 0.20 0.20 0.20 0.20 0.20	-0.10 0.00 0.00 0.00 0.00 0.00 0.00	-50.43 -50.43 -50.43 -50.43 -50.43 -50.43 -50.43	-0.13 -0.11 -0.09 -0.11 -0.11 -0.06 -0.08 -0.03	-0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03	0.10 0.10 0.10 0.10 0.10 0.10 0.10	-0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	2.83 2.79 2.82 2.83 2.79 2.86 2.79 2.80	0.00 0.00 0.00 0.00 0.00 0.00 0.00
1285 1320 1289 1292 1295	10 10 10 10	0 3 6 9 12	0.19 0.29 0.19 0.29 0.29	-8.76 -8.76 -8.76 -8.76 -8.66	-49.66 -49.66 -49.66 -49.66 -49.68	-3.38 -3.36 -3.34 -3.33 -3.31	-0.02 -0.03 -0.02 -0.03 -0.03	0.08 0.08 0.08 0.08 0.08	-0.2 -0.2 -0.2 -0.2 -0.2	2.84 2.84 2.86 2.85	0.00 0.00 0.00 0.00 0.00
1298 1312 1301 1306 1309	20 20 20 20 20	0 3 6 9 12	0.19 0.19 0.29 0.29 0.29	-17.25 -17.25 -17.25 -17.25 -17.25	-47.39 -47.39 -47.39 -47.39 -47.39	-5.39 -5.38 -5.37 -5.35 -5.33	-0.01 -0.01 -0.02 -0.02 -0.02	0.06 0.06 0.06 0.06 0.06	-0.2 -0.2 -0.2 -0.2 -0.2	2.83 2.82 2.83 2.81 2.83	0.00 0.00 0.00 0.00 0.00
					SPEED =	12.5 kr	nots				
1326	-20	-6	-1.63	16.32	-47.76	5.03	0.48	-1.09	0.0	3.21	4.98
1323	-10	-6	-1.63	7.97	-49.83	2.96	0.37	-1.65	0.0	3.27	4.97
1329 1273 1276 1279 1282 1283	0 0 0 0	-6 0 6 9 12 12	-1.54 -1.43 -1.54 -1.63 -1.73	-0.90 0.00 1.00 1.70 2.90 2.80	-50.46 -50.45 -50.46 -50.46 -50.46	-0.05 -0.10 -0.19 -0.19 -0.10 -0.13	0.07 0.07 0.07 0.08 0.09 0.09	-1.90 0.10 2.50 4.20 6.40 6.30	0.1 0.0 0.1 0.0 0.0	3.29 3.20 3.28 3.27 3.31 3.33	4.98 4.97 4.98 4.98 4.97 4.98
1286 1290 1293 1296	10	0 6 9 12	-1.44 -1.54 -1.54 -1.73	-8.86 -7.78 -7.09 -6.20	-49.67 -49.87 -49.99 -50.14	-3.20 -3.17 -3.16 -3.10	0.08 0.45 0.73 1.09	0.07 2.13 3.71 5.68	0.1 0.1 0.1 0.0	3.25 3.29 3.31 3.33	4.98 4.97 4.98 4.98
1299 1302 1307 1310	20 20	0 6 9 12	-1.25 -1.45 -1.55 -1.64	-17.35 -16.23 -15.47 -14.63	-48.07		1.01	-0.24 1.45 2.58 3.99	0.2 0.2 0.2 0.1	3.26	4.98 4.98 4.97 4.97

TABLE 23.2

BARE HULL RESULTS, L/R = 0, AXES B
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1bft	Trim deg	TD inch	Speed fps
					SPEED =	35 kno	ts				
1327	-20	- 6	-5.56	8.34	-50.98	2.73	0.25	0.06	2.0	3.43	13.94
1324	-10	-6	-5.35	0.14	-51.49	0.52	0.68	-2.36	1.9	3.44	13.93
1274	0	0	-5.33	0.30	-50.71	-0.16	0.27	0.49	1.7	3.33	13.93
1319	0	3	-5.25	5.30	-50.73	0.75	0.26	3.72	1.9	3.45	13.93
1277	0	6	-5.40	11.10	-50.79	1.82	0.25	4.86	2.3	3.66	13.95
1280	0	9	-5.45	17.80	-50.87	3.35	0.24	3.44	2.8	3.97	13.93
1317	0	11	-5.50	22.30	-50.93	4.42	0.23	2.00	3.2	4.19	13.92
1284	0	12	-5.53	25.30	-50.98	5.12	0.22	0.75	3.5	4.32	13.94
1315	0	12	-5.43	25.10	-50.97	5.10	0.21	0.85	3.5	4.27	13.92
1287	10	0	-5.45	-9.30	-49.88	-2.82	-0.16	-2.45	1.9	3.40	13.93
1288	10	0	-5.44	-9.30	-49.87	-2.82	-0.15	-2.45	1.8	3.37	13.92
1321	10	3	-5.25	-3.88	-50.83	-1.85	0.51	1.42	1.9	3.36	13.95
1291	10	6	-5.17	1.33	-51.77	-0.56	0.66	2.35	2.1	3.48	13.93
1294	10	9	-4.65	6.64	-52.77	1.29	0.20	0.07	2.8	3.73	13.92
1297	10	12	-4.78	11.16	-53.61	2.73	0.18	-0.05	3.0	3.7 3	13.95
1300	20	0	-5.67	-18.40	-47.34	-4.95	-0.76	-2.87	2.1	3.46	13.93
1313	20	3	-5.66	-12.76	-49.38	-4.12	-0.06	-0.96	2.0	3.41	13.90
1305	20	6	-5.21	-6.19	-51.80	-2.67	-0.41	-1.77	2.4	3.54	13.93
1308	20	9	-4.35	-0.46	-53.89	-0.96	-0.73	-2.46	2.8	3.60	13.94
1311	20	12	-4.14	2.37	-54.89	0.27	-0.45	-1.65	2.7	3.35	13.93

TABLE 24.1

BARE HULL RESULTS, L/R = 0.206, AXES B
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	Speed fps
					SPEED :	= 0 kno	ts				
2198 2137 2153 2175 2195	-10 -10 -10 -10 -10	-6 0 6 9	0.47 0.47 0.56 0.56 0.56	8.56 8.66 8.66 8.66	-49.70 -49.68 -49.68 -49.68 -49.68	2.69 2.75 2.91 2.72 2.77	-0.07 -0.07 -0.09 -0.08 -0.09	0.03 0.02 0.13 0.03 0.13	0.0 0.0 0.1 0.1	2.99 2.84 2.98 2.99 3.00	0.00 0.00 0.00 0.00 0.00
2202 2133 2135 2147 2146 2192	0 0 0 0	-6 0 0 6 6	0.38 0.38 0.38 0.38 0.38	-0.20 0.00 -0.10 -0.10 -0.10	-50.43 -50.43 -50.43 -50.43 -50.43	-0.52 -0.37 -0.43 -0.45 -0.46 -0.49	-0.05 -0.05 -0.05 -0.05 -0.05 -0.06	-0.00 -0.10 -0.00 0.10 0.10	-0.1 -0.1 -0.1 -0.1 -0.1	2.92 2.82 2.81 2.88 2.88 2.94	0.00 0.00 0.00 0.00 0.00
2205 2140 2156 2178 2188	10 10 10 10	-6 0 6 9 12	0.38 0.38 0.38 0.47 0.47	-8.86 -8.86 -8.86 -8.86 -8.86	-49.65 -49.65 -49.65 -49.64 -49.64	-3.74 -3.71 -3.49 -3.70 -3.75	-0.06 -0.06 -0.04 -0.05 -0.05	-0.03 -0.03 0.07 0.06 0.06	-0.1 -0.1 -0.1 0.0 0.0	2.90 2.75 2.93 2.92 2.93	0.00 0.00 0.00 0.00 0.00
2208 2210 2143 2160 2181 2184	20 20 20 20 20 20	-6 -6 0 6 9	0.38 0.38 0.38 0.38 0.48 0.47	-17.44 -17.34 -17.34 -17.34 -17.34	-47.32 -47.35 -47.35 -47.35 -47.35	-5.85 -5.84 -5.67 -5.76 -5.70 -5.73	-0.07 -0.07 -0.07 -0.03 -0.04 -0.04	-0.04 -0.04 -0.05 0.05 0.06	-0.1 -0.1 -0.1 -0.1 -0.1	2.78 2.78 2.64 2.83 2.83 2.83	0.00 0.00 0.00 0.00 0.00
				•	SPEED =	12.5 km	ots				
2201 2138 2154 2176 2196			-1.15 -1.15 -1.25 -1.31 -1.46	7.39 8.67 9.74 10.43 11.50	-49.94 -49.71 -49.53 -49.42 -49.24	2.68 2.60 2.56 2.19 2.15	0.83 0.34 0.01 -0.12 -0.29	-4.47 -1.74 0.12 0.88 1.85	0.3 0.4 0.6 0.7 0.8	3.42 3.34 3.58 3.69 3.82	4.98 4.98 4.97 4.99 4.98
2203 2134 2150 2151 2173 2193	0 0 0	0 6	-1.14 -1.23 -1.24 -1.24 -1.29 -1.44	-0.09 0.78 0.79	-50.46 -50.47 -50.47 -50.47 -50.48	-0.49	0.04 0.04 0.04	-4.97 -2.00 0.18 0.18 0.96 2.14	0.2 0.3 0.5 0.5 0.5	3.39 3.34 3.50 3.50 3.59 3.69	4.96 5.00 4.95 4.96 4.93 4.97
2206 2141 2157 2179 2189	10 10 10	0 6	-1.24 -1.23 -1.24 -1.38 -1.53		-49.66	-3.45 -3.24 -3.38	-0.31 0.04 0.17	-4.93 -2.01 0.03 0.71 1.78	0.5	3.24 3.48	4.98 4.99 4.98 4.98 4.98

TABLE 24.2

BARE HULL RESULTS, L/R = 0.206, AXES B
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y lb	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	Speed fps
				;	SPEED =	12.5 km	ots				
2209 2144 2161 2182 2186	20 20 20 20 20	-6 0 6 9	-1.23 -1.23 -1.34 -1.29 -1.53	-18.85 -17.35 -16.14 -15.30 -14.37	-46.83 -47.39 -47.84 -48.14 -48.48	-5.76 -5.57 -5.61 -5.62 -5.61	-1.67 -0.73 -0.20 -0.04 0.25	-4.72 -2.13 -0.66 -0.21 0.53	0.1 0.3 0.5 0.5	3.25 3.12 3.41 3.47 3.52	4.98 4.98 4.98 4.97 4.99
					SPEED =	35 kno	ts				
2199 2139 2155 2177 2197	-10 -10 -10 -10 -10	-6 0 6 9	-4.47 -4.64 -5.12 -4.96 -4.91	-1.28 9.08 21.11 29.11 36.73	-51.78 -49.95 -47.94 -46.64 -45.44	0.53 1.80 2.10 2.29 2.69	1.20 0.92 1.59	-11.84 -5.68 -4.05 -8.08 -12.59	2.5 2.4 3.0 3.8 4.7	3.92 3.71 4.29 4.77 5.31	13.94 14.02 13.84 13.90 13.91
2204 2556 2136 2557 2152 2558 2174 2194 2559	0 0 0 0 0 0 0	-6 -6 0 0 6 6 9 12	-5.12 -4.44 -4.71 -4.72 -4.50 -4.50 -4.32 -4.33 -4.42	-13.25 -13.02 -1.25 -0.82 10.17 10.60 16.73 23.57 23.73	-50.76 -50.74 -50.73 -50.74 -50.81 -50.82 -50.88 -50.95	-1.45 -1.46 -0.72 -0.76 0.32 0.27 0.91 1.69 1.68	0.19 0.22 0.21 0.17 0.17 0.14 0.12	-8.93 -5.52 -5.53	2.2 2.3 2.1 2.2 2.8 2.9 3.4 3.9 4.0	3.88 3.86 3.61 3.70 4.09 4.07 4.35 4.66 4.65	13.86 13.95 13.93 13.95 13.84 13.95 13.87 13.90 13.95
2212 2142 2158 2180 2190 2191	10 10 10 10 10	-6 0 6 9 12 12	-6.32 -5.58 -4.74 -4.25 -4.24	-24.63 -11.11 -0.03 6.26 10.65	-47.25 -49.55 -51.53 -52.69 -53.49 -53.51	-3.25 -3.31 -2.05 -1.00 -0.07 -0.06		-6.06 -7.39	2.1 1.8 2.3 2.9 3.1 3.1	3.96 3.38 3.73 3.96 4.03 4.03	13.94 13.88 13.94 13.90 13.92
2211 2145 2162 2183 2187	20 20 20 20 20	-6 0 6 9 12	-5.79 -5.50 -5.11 -4.80 -4.14	-29.94 -18.97 -8.19 -1.81 1.47	-43.24 -47.11 -51.02 -53.36 -54.51	-5.90 -5.53 -4.71 -3.62 -2.55		-6.25	2.7 2.0 2.1 2.3 2.3	4.04 3.38 3.55 3.59 3.45	13.95 13.96 13.91 13.88 13.94

TABLE 25.1

BARE HULL RESULTS, L/R = 0.412, AXES B
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	Speed fps
			v.		SPEED :	= 0 kno	ts				
3322 3373 3319 3337 3356 3359	-10 -10 -10 -10 -10 -10	-6 -6 0 6 9	0.47 0.47 0.47 0.47 0.47	8.76 8.76 8.76 8.66 8.76 8.76	-49.66 -49.66 -49.66 -49.68 -49.66 -49.66	2.78 2.77 2.76 2.76 2.69 2.75	-0.08 -0.07 -0.07 -0.07 -0.07 -0.08	0.12 0.02 0.02 0.02 0.02 0.12	0.0 0.0 0.0 0.0 0.0	2.92 2.86 2.92 2.86 2.88 2.88	0.00 0.00 0.00 0.00 0.00
3380 3310 3334 3352 3363	0 0 0 0	-6 0 6 9	0.38 0.48 0.38 0.38 0.38	-0.10 -0.10 -0.00 -0.00 0.00	-50.43 -50.43 -50.43 -50.43 -50.43	-0.49 -0.48 -0.47 -0.51 -0.49	-0.05 -0.06 -0.05 -0.05 -0.05	-0.00 -0.00 -0.01 -0.01 0.09	-0.1 -0.1 -0.1 -0.1	2.81 2.88 2.80 2.81 2.83	0.00 0.00 0.00 0.00
3387 3313 3340 3349 3365	10 10 10 10	-6 0 6 9	0.39 0.38 0.38 0.38 0.38	-8.76 -8.76 -8.76 -8.76 -8.76	-49.66 -49.66 -49.66 -49.66 -49.66	-3.74 -3.70 -3.78 -3.72 -3.79	-0.05 -0.06 -0.06 -0.06 -0.04	-0.03 -0.03 -0.03 -0.03 0.07	-0.2 -0.1 -0.1 -0.1	2.77 2.86 2.82 2.82 2.82	0.00 0.00 0.00 0.00 0.00
3392 3316 3343 3346 3368	20 20 20 20 20	-6 0 6 9	0.39 0.48 0.38 0.38 0.38	-17.25 -17.25 -17.34 -17.34 -17.25	-47.39 -47.39 -47.35 -47.35 -47.39	-5.80 -5.69 -5.69 -5.74 -5.77	-0.06 -0.04 -0.07 -0.03 -0.03	-0.04 0.05 -0.04 0.05 0.05	-0.2 -0.1 -0.1 -0.1	2.65 2.76 2.72 2.73 2.73	0.00 0.00 0.00 0.00
					SPEED =	12.5 kr	nots				
3323 3320 3338 3357 3360	-10 -10 -10 -10 -10	-6 0 6 9	-1.43 -1.25 -1.45 -1.46 -1.56	6.60 8.68 10.04 10.91 11.99	-50.07 -49.71 -49.49 -49.35 -49.17	2.86 2.64 2.26 2.01 1.86	1.59 0.73 0.32 0.25 0.20	-8.60 -3.91 -1.57 -1.20 -0.92	0.0 0.4 0.7 0.9 1.1	3.29 3.42 3.56 3.72 3.90	4.98 4.98 4.98 4.98 5.00
3381 3382 3311 3335 3354 3362	0 0 0 0	-6 -6 0 6 9	-1.33 -1.33 -1.23 -1.42 -1.43 -1.54	-2.81 -2.83 -0.40 1.00 1.69 2.47	-50.45 -50.45 -50.46 -50.47 -50.48 -50.50	-0.24 -0.21 -0.31 -0.44 -0.53 -0.62	0.06 0.06 0.04 0.05 0.04 0.04	-9.45 -9.35 -4.40 -1.63 -0.95 -0.37	0.0 0.0 0.3 0.5 0.7 0.9	3.20 3.21 3.38 3.46 3.57 3.73	4.97 4.94 4.97 4.99 4.99
3388 3314 3341 3350 3366	10 10 10	-6 0 6 9 12	-1.43 -1.43 -1.44 -1.53 -1.62	-11.70 -9.06 -7.59 -6.81 -6.15	-49.17 -49.65 -49.92 -50.06 -50.18	-3.39 -3.27	-0.30 -0.16	-9.23 -4.47 -1.95 -1.18 -0.50	0.0 0.3 0.6 0.7	3.16 3.37 3.44 3.54 3.59	

TABLE 25.2

BARE HULL RESULTS, L/R = 0.412, AXES B
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	Speed fps
	3	0			SPEED =	12.5 km	ots				
3393 3317 3344 3347 3369	20 20 20 20 20	-6 0 6 9	-1.33 -1.33 -1.52 -1.64 -1.64	-19.32 -17.44 -15.66 -14.76 -13.75	-46.66 -47.36 -48.01 -48.36 -48.73	-5.77 -5.63 -5.61 -5.63 -5.65	-2.75 -1.58 -0.87 -0.71 -0.62	-7.71 -4.48 -2.55 -2.11 -1.86	0.0 0.3 0.5 0.7 0.8	3.04 3.29 3.33 3.48 3.55	4.98 4.99 4.99 4.97 4.97
					SPEED =	35 kno	ts				
3375 3321 3339 3358 3361	-10 -10 -10 -10 -10	-6 0 6 9 12	-5.05 -4.47 -4.67 -4.74 -4.56	-4.37 9.71 25.20 33.73 42.82	-52.31 -49.85 -47.29 -45.92 -44.49	0.97 1.32 1.46 1.74 2.18	2.84 2.98 3.72	-29.89 -15.09 -16.05 -20.42 -27.20	2.2 2.6 3.7 4.5 5.6	3.79 3.98 4.52 5.01 5.60	14.00 13.97 13.98 14.01 14.00
3312 3336 3355 3364	0 0 0	0 6 9 12	-4.83 -4.50 -4.60 -4.39	-2.27 12.81 19.83 27.28	-50.75 -50.85 -50.93 -51.02	-0.78 -0.07 0.52 1.31	0.16 0.15	-20.62 -15.23 -17.87 -21.42	2.2 3.1 3.6 4.3	3.75 4.13 4.38 4.72	13.86 13.98 13.88 13.89
3315 3342 3351 3367	10 10 10 10	0 6 9 12	-6.03 -5.00 -4.74 -4.46	-13.67 0.84 7.23 12.22	-49.06 -51.69 -52.85 -53.74	-2.88 -2.28 -1.18 -0.04	-2.29 -2.18	-26.38 -14.28 -13.48 -13.73	1.4 2.2 2.6 2.8	3.37 3.56 3.70 3.75	13.99 13.98 13.99 14.01
3395 3318 3345 3348 3371	20 20 20 20 20	-6 0 6 9 12	-5.69 -5.76 -5.55 -5.41 -5.34	-27.08 -19.72 -8.43 -2.75 2.15	-44.26 -46.80 -50.89 -52.94 -54.69	-6.20 -5.56 -4.69 -3.72 -2.60	-8.43 -5.26	-23.46 -23.99 -15.24 -12.59 -9.82	2.6 1.7 1.6 1.5	3.74 3.41 3.14 3.08 2.93	13.99 14.00 13.93 14.00 13.91

TABLE 26

SUPPLEMENTAL BARE HULL RESULTS, L/R = 0.412, AXES B
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	Х 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	Speed fps
140.	ueg	ueg	10	, 5	,,,	10 10					
				S	PEED = 0	to 28	knots				
3428	0	-5	0.48	-0.10	-50.43	-0.49	-0.06	-0.00	-0.1	2.82	0.00
3429	0	-5	-1.43	-2.23	-50.45	-0.28	0.07	-8.16	0.0	3.23	4.94
3434	0	-5	-2.08	-3.42	-50.49	-0.14		-13.14	0.5	3.63	5.98
3430	0	-5	-2.37	-4.52	-50.55	0.02		-17.22	1.3	4.10	6.94
3431	0	-5	-3.11	-7.42	-50.63	-0.24		-23.78	1.9	4.16	9.05
3433	0	-5	-4.66	-12.79	-50.63	-0.35	0.24	-34.17	1.3	3.67	11.08
3406	-10	-6	0.57	8.66	-49.68	2.73	-0.07	0.02	0.0	2.82	0.00
3403	0	-6	0.48	-0.10	-50.43	-0.51	-0.06	-0.00	-0.1	2.74	0.00
3436	0	-6	0.39	-0.10	-50.43	-0.55	-0.05	-0.00	-0.2	2.81	0.00
3408	10	-6	0.48	-8.76	-49.66	-3.74	-0.06	-0.03	-0.1	2.72	0.00
3391	20	-ô	0.39	-17.25	-47.39	-5.78	-0.06	-0.04	-0.2	2.64	0.00
3410	20	-6	0.30	-16.97	-47.49	-5.75	-0.02	0.06	-0.3	2.58	0.00
3441	0	-6	-0.08	-0.64	-50.43	-0.46	-0.02		-0.2	2.92	2.92
3435	0	-6	-1.33	-2.71	-50.45	-0.33	0.06		0.0	3.19	4.97
3440	0	-6	-2.06	-4.21	-50.48	-0.20	0.10	-15.33	0.4	3.62	5.99
3407	-10	-6	-2.39	4.33	-50.57	2.96	3.08	-16.98	1.4	4.09	7.02
3405	0	-6	-2.39	-5.61	-50.56	0.13		-20.09	1.4	4.05	7.03
3412	0	-6	-2.48	-5.63	-50.55	0.10		-20.09	1.3	4.08	7.01
3437	0	-6	-2.48	-5.67	-50.55	-0.01		-20.20	1.3	4.13	7.06
3409	10	-6	-2.58	-14.71	-48.74	-3.11		-20.85	1.3	4.02	7.02
3411	20	-6	-2.79	-20.79	-46.25	-5.75	-5.66	-15.86	1.4	3.93	7.02
3384	0	-6	-2.85	-7.94	-50.62	0.02	0.09	-25.36	1.9	4.24	8.66
3438	0	-6	-3.21	-9.11	-50.63	-0.26	0.12	-27.05	1.9	4.19	9.06
3385	0	-6	-3.94	-12.92	-50.62	-0.13	0.18	-34.36	1.5	3.87	10.22
3390	10	-6	-4.38	-22.34	-47.50	-3.12		-34.50	1.6	3.82	10.42
3394	20	-6	-4.42	-25.68	-44.60	-5.73	-8.80	-24.73	1.9	3.83	10.41

TABLE 27.1

BARE HULL RESULTS, L/R = 0.206, AXES B
Displacement 155 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	Speed fps
					SPEED =	= 0 kno1	ts				
2529 2461 2479 2482 2506	-10 -10 -10 -10 -10	-6 0 6 9	0.57 0.57 0.57 0.57 0.67	9.96 9.96 9.96 9.96 10.05	-57.04 -57.04 -57.04 -57.04 -57.02	3.04 2.82 2.82 2.84 3.01	-0.08 -0.08 -0.08 -0.08 -0.11	0.03 0.03 0.03 0.03 0.13	0.1 0.1 0.1 0.1 0.2	3.25 3.28 3.26 3.27 3.29	0.00 0.00 0.00 0.00
2442 2526 2458 2476 2485 2503	0 0 0 0 0	-6 -6 0 6 9	0.67 0.47 0.47 0.47 0.47	0.00 -0.10 0.00 -0.10 -0.10 0.00	-57.90 -57.90 -57.90 -57.90 -57.90	0.00 -0.59 -0.51 -0.61 -0.57 -0.58	-0.07 -0.06 -0.06 -0.06 -0.06 -0.07	0.00 -0.01 -0.01 -0.01 0.09 0.09	-0.1 0.0 0.0 0.0 0.0 0.1	3.10 3.18 3.22 3.21 3.22 3.20	0.00 0.00 0.00 0.00 0.00
2523 2464 2473 2488 2489 2510	10 10 10 10 10	-6 0 6 9 9	0.47 0.47 0.47 0.47 0.47	-10.15 -10.15 -10.15 -10.25 -10.15	-57.00 -57.00 -57.00 -56.98 -57.00	-4.12 -3.99 -3.92 -4.04 -3.94 -4.15	-0.07 -0.05 -0.05 -0.03 -0.05 -0.06	-0.04 0.06 0.06 0.16 0.06 0.05	0.0 0.0 0.0 0.0 0.0	3.18 3.20 3.21 3.23 3.20 3.22	0.00 0.00 0.00 0.00 0.00
2520 2467 2518 2470 2516 2492 2513	20 20 20 20 20 20 20	-6 0 0 6 6 9	0.47 0.47 0.47 0.47 0.57 0.47	-19.90 -19.90 -19.90 -19.90 -19.80 -19.90	-54.37 -54.37 -54.37 -54.37 -54.41 -54.37	-6.27 -6.40 -6.28 -6.38 -6.32 -6.41 -6.31	-0.05 -0.08 -0.05 -0.05 -0.09 -0.05	0.04 -0.05 0.04 0.04 -0.06 0.04 0.04	0.0 0.0 0.0 0.0 0.1 0.0	3.14 3.13 3.14 3.14 3.16 3.13 3.17	0.00 0.00 0.00 0.00 0.00 0.00
	•				SPEED =	12.5 kr	nots				
2530 2462 2480 2483 2507	-10 -10 -10 -10	-6 0 6 9 12	-1.21 -1.29 -1.37 -1.62 -1.76	8.58 10.17 11.34 12.11 13.49	-57.32 -57.04 -56.85 -56.72 -56.50	3.02 2.70 2.45 2.34 2.42	0.95 0.38 0.04 -0.12 -0.32	-5.15 -1.94 0.01 0.98 2.14	0.4 0.5 0.7 0.7	3.91 4.01	4.97 5.00 4.99 4.96 4.99
2527 2459 2477 2486 2504	0 0 0	-6 0 6 9 12	-1.21 -1.39 -1.38 -1.62 -1.77	-1.80 0.02 1.08 1.78 2.75	-57.94 -57.95	-0.44 -0.59 -0.60	0.04 0.06	-2.11 0.06 1.05	0.6	3.74 3.86 3.91	4.94 4.96
2524 2465 2474 2490 2511	10 10 10	-6 0 6 9 12	-1.31 -1.39 -1.48 -1.62 -1.66	-8.89 -8.21	-57.03 -57.27 -57.40	-3.73 -3.64 -3.63	-0.32 0.04 0.20	-2.12 -0.08 0.80	0.4 0.5 0.5	3.72 3.82 3.84	4.97 4.97 4.96

TABLE 27.2

BARE HULL RESULTS, L/R = 0.206, AXES B
Displacement 155 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M lb-ft	N lb-ft	Trim deg	TD inch	Speed fps
					SPEED =	12.5 kn	ots				
2521 2468 2471 2493 2514	20 20 20 20 20	-6 0 6 9	-1.31 -1.29 -1.38 -1.62 -1.66	-21.60 -19.91 -18.41 -17.48 -16.46	-53.79 -54.41 -54.97 -55.31 -55.69	-6.14 -6.26 -6.23 -6.27 -6.11	-1.91 -0.81 -0.21 0.01 0.31	-5.39 -2.33 -0.68 -0.14 0.68	0.3 0.4 0.6 0.6 0.7	3.62 3.64 3.75 3.82 3.90	4.97 4.96 4.98 5.00 4.98
					SPEED =	: 35 kno	ots				
2531 2463 2481 2484 2508	-10 -10 -10 -10 -10	-6 0 6 9	-4.63 -4.93 -5.11 -5.15 -4.96	-1.64 10.47 24.59 32.80 41.36	-59.52 -57.36 -55.01 -53.70 -52.39	0.56 1.75 2.18 2.53 3.13	1.38 1.19 1.73	-11.81 -6.68 -5.69 -8.92 -13.06	3.0 2.7 3.5 4.3 5.4	4.34 4.26 4.77 5.28 5.87	13.94 13.93 13.92 13.91 13.95
2528 2460 2478 2487 2505	0 0 0 0	-6 0 6 9	-5.73 -4.93 -4.62 -4.57 -4.50	-15.22 -0.87 12.63 19.52 26.68	-58.32 -58.27 -58.37 -58.45 -58.56	-1.54 -0.83 0.31 0.99 1.85	0.21 0.16 0.14	-21.99 -10.14 -7.18 -9.41 -12.13	2.5 2.5 3.3 3.8 4.5	4.24 4.12 4.56 4.83 5.16	13.89 13.89 13.86 13.91
2525 2466 2475 2491 2512	10 10 10 10	-6 0 6 9 12	-6.74 -5.94 -4.92 -4.87 -4.20	-27.93 -12.18 1.29 7.91 12.68	-54.34 -57.00 -59.43 -60.64 -61.52	-3.64 -3.40 -2.25 -1.28 -0.17		-28.35 -12.09 -7.23 -6.64 -9.55	2.4 2.0 2.7 3.0 3.6	4.30 3.91 4.16 4.32 4.42	13.93 13.89 13.94 13.94 13.98
2522 2469 2519 2472 2517 2494 2515	20 20 20 20 20 20 20	-6 0 0 6 6 9	-6.63 -5.93 -5.93 -5.43 -5.53 -5.07 -4.45	-35.33 -21.31 -21.50 -8.08 -8.52 -1.20 2.30	-49.33 -54.28 -54.22 -59.09 -58.93 -61.60 -62.87	-6.14 -6.14 -5.95 -4.95 -4.81 -3.91 -2.61	-4.70	-8.38	2.9 2.3 2.3 2.4 2.4 2.6 2.8	4.43 3.98 3.99 3.93 3.94 3.97 3.93	13.96 13.92 13.96 13.91 13.96 13.89

TABLE 28.1

APPENDED HULL RESULTS, L/R = 0, AXES B
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M lb-ft	N 1b-ft	Trim deg	TD inch	Speed fps
					SPEED :	= 0 kno	ts				
1111 1209 1215 1114 1219 1117 1222 1120 1225	0 0 0 0 0 0 0	0 0 0 6 6 9 9 12	0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.10	0.00 0.00 0.00 0.10 0.00 0.10 0.00 0.10	-50.43 -50.43 -50.43 -50.43 -50.43 -50.43 -50.43 -50.43	-0.02 -0.11 -0.10 -0.01 -0.03 -0.01 -0.06 -0.01 -0.04	-0.02 -0.02 -0.02 -0.02 -0.02 -0.03 -0.02 -0.02	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	-0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3	2.82 2.83 2.81 2.82 2.85 2.80 2.84 2.86 2.83	0.00 0.00 0.00 0.00 0.00 0.00 0.00
1123 1228 1126 1231 1129 1234 1132 1237	10 10 10 10 10 10 10	0 6 6 9 9 12	0.19 0.19 0.29 0.19 0.29 0.19 0.19	-8.76 -8.76 -8.76 -8.76 -8.76 -8.76 -8.66	-49.66 -49.66 -49.66 -49.66 -49.66 -49.66 -49.68	-3.25 -3.35 -3.27 -3.32 -3.26 -3.33 -3.27 -3.30	-0.02 -0.02 -0.03 -0.02 -0.03 -0.02 -0.02	0.08 0.08 0.08 0.08 0.08 0.08 0.08	-0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2	2.90 2.84 2.88 2.88 2.92 2.89 2.89 2.86	0.00 0.00 0.00 0.00 0.00 0.00
1137 1240 1252 1140 1243 1143 1246 1146 1211 1249	20 20 20 20	0 0 3 6 6 9 9 12 12	0.19 0.29 0.19 0.29 0.19 0.29 0.19 0.28 0.19	-17.34 -17.25 -17.25 -17.25 -17.25 -17.25 -17.15 -17.25 -17.25	-47.36 -47.39 -47.39 -47.39 -47.39 -47.42 -47.39 -47.39 -47.39	-5.37 -5.33 -5.34 -5.24 -5.33 -5.23 -5.31 -5.25 -5.36 -5.33	-0.01 -0.01 0.02 -0.01 -0.02 -0.01 -0.02 -0.01 -0.02	0.06 0.06 0.16 0.06 0.06 0.06 0.06 0.06	-0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2	2.86 2.85 2.81 2.86 2.85 2.85 2.83 2.83 2.84	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
					SPEED =	12.5 kr	nots				
1112 1210 1216 1115 1220 1118 1223 1121		0 0 6 6 9 9 12	-1.53 -1.53 -1.53 -1.63 -1.73 -1.73 -1.63 -1.73	0.00 0.00 0.00 1.40 1.50 2.40 2.40 3.60 3.40	-50.45 -50.45 -50.46 -50.46 -50.46 -50.46 -50.46	-0.09	0.08 0.08 0.08 0.09 0.09 0.09 0.09	0.20 0.20 0.20 1.60 1.70 3.00 3.09 5.10 4.99	0.0 0.0 0.0 0.0 0.0 0.0	3.23 3.22 3.27 3.27 3.33 3.29 3.35 3.33	4.98 4.98 4.98 4.98 4.98 4.97 4.98 4.98
1124 1229 1127 1232	10	0 0 6 6	-1.44 -1.44 -1.64 -1.54	-8.86 -8.76 -7.29 -7.28	-49.67 -49.69 -49.95 -49.95	-3.18	0.28	0.07 1.15	0.1 0.1 0.1 0.1	3.30 3.24 3.34 3.29	4.97 4.98

TABLE 28.2

APPENDED HULL RESULTS, L/R = 0, AXES B
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K lb-ft	M 1b-ft	N 1b-ft	Trim deg	TD inch	Speed fps
				5	SPEED =	12.5 km	ots				
1130 1235 1133 1238	10 10 10 10	9 9 12 12	-1.64 -1.54 -1.73 -1.73	-6.50 -6.50 -5.51 -5.51	-50.09 -50.09 -50.26 -50.26	-3.23 -3.31 -3.18 -3.29	0.49 0.48 0.81 0.83	2.33 2.33 4.11 4.20	0.1 0.1 0.0 0.0	3.34 3.32 3.37 3.34	4.98 4.98 4.98 4.98
1138 1241 1253 1141 1244 1144 1247 1147 1250	20 20 20 20 20 20 20 20 20	0 0 3 6 6 9 9 12	-1.35 -1.35 -1.35 -1.55 -1.45 -1.55 -1.65 -1.55	-17.35 -17.35 -16.60 -15.76 -15.76 -14.91 -14.91 -13.97 -13.97	-47.38 -47.66 -47.97 -47.97 -48.27 -48.62 -48.62	-5.21 -5.22 -5.26 -5.26 -5.35 -5.31 -5.40 -5.37 -5.49	-0.06 -0.03 0.14 0.26 0.25 0.53 0.56 1.01	-0.33 -0.24 0.23 0.51 0.51 1.26 1.35 2.57 2.67	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	3.23 3.20 3.22 3.29 3.26 3.33 3.30 3.35 3.33	4.97 4.98 4.97 4.98 4.98 4.98 4.97 4.97
					SPEED =	35 kno	ts				
1113 1217 1218 1116 1221 1119 1224 1122 1227	0 0 0 0 0 0 0 0	0 0 6 6 9 9 12	-5.63 -5.64 -5.64 -5.81 -5.81 -6.06 -5.96 -6.33 -6.23	0.50 0.30 0.30 13.30 14.00 21.10 21.50 29.00 29.10	-50.72 -50.73 -50.73 -50.83 -50.83 -50.92 -50.91 -51.04 -51.03	-0.02 -0.14 -0.12 1.04 1.23 2.06 2.37 3.52 3.87	0.29 0.29 0.28 0.28 0.28 0.27 0.27	0.70 0.69 0.69 -1.70 -2.19 -5.67 -5.75 -9.01 -9.09	1.7 1.8 1.8 2.4 2.9 2.9 3.5 3.5	3.36 3.37 3.39 3.71 3.72 4.00 4.01 4.33 4.29	13.93 13.95 13.94 13.92 13.94 13.97 13.93 13.93
1125 1136 1230 1128 1135 1233 1131 1236 1134 1239	10 10 10 10	0 0 6 6 6 9 9 12	-5.75 -5.75 -5.75 -5.41 -5.41 -5.51 -5.27 -5.17 -5.50	-9.50 -9.60 -9.31 3.88 3.88 4.47 9.68 10.17 14.59 15.19	-49.86 -49.84 -49.89 -52.27 -52.27 -52.38 -53.38 -53.46 -54.29 -54.39	-2.75 -2.68 -2.76 -1.18 -1.18 -0.97 0.05 0.37 1.25 1.67			1.9 1.9 2.4 2.4 3.0 3.0 3.2	3.46 3.43 3.41 3.64 3.64 3.88 3.81 3.89 3.85	13.94 13.93 13.94 13.92 13.92 13.94 13.94 13.95 13.92
1139 1242 1254 1142 1245 1145 1248 1148 1214	20 20 20 20 20 20 20 20 20 20 20 20	0 0 3 6 6 9 9 12 12	-5.97 -6.07 -5.70 -5.54 -5.44 -4.60 -4.60 -4.59 -4.59	-18.59 -18.31 -11.46 -3.86 -3.48 1.58 2.24 5.16 6.01 6.10	-47.28 -47.39 -49.90 -52.72 -52.85 -54.71 -54.95 -55.99 -56.30 -56.34	-4.94 -4.85 -4.35 -3.33 -3.05 -2.10 -1.69 -1.18 -0.70 -0.68	-0.39 -1.04 -2.27 -2.30 -3.85 -3.87 -4.07	-3.62 -6.91	2.3 2.7 2.7 3.2 3.2 3.1 3.1	3.74 3.66 3.76	13.94 13.95 13.92 13.95 13.94 13.92 13.92 13.94 13.93

TABLE 29.1

APPENDED HULL RESULTS, L/R = 0.206, AXES B
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K lb-ft	M lb-ft	N 1b-ft	Trim deg	TD inch	Speed fps
					SPEED :	= 0 kno1	ts				
2274 2216 2241 2251 2271	-10 -10 -10 -10 -10	-6 0 6 9 12	0.47 0.47 0.47 0.37 0.37	8.66 8.66 8.66 8.66	-49.68 -49.68 -49.68 -49.68 -49.68	2.73 2.72 2.77 2.72 2.70	-0.05 -0.07 -0.08 -0.08 -0.08	-0.07 0.02 0.12 0.12 0.12	0.0 0.0 0.0 0.0	3.00 2.95 3.01 3.03 3.04	0.00 0.00 0.00 0.00 0.00
2280 2213 2245 2248 2267	0 0 0	-6 0 6 9	0.48 0.48 0.48 0.38 0.28	-0.10 -0.20 -0.10 -0.10 -0.10	-50.43 -50.43 -50.43 -50.43 -50.43	-0.54 -0.56 -0.49 -0.50 -0.52	-0.06 -0.06 -0.06 -0.05 -0.04	0.10 -0.00 -0.00 0.10 -0.00	-0.1 -0.1 -0.1 -0.1	2.94 2.89 2.95 2.95 2.96	0.00 0.00 0.00 0.00 0.00
2283 2228 2238 2254 2264	10 10 10 10	-6 0 6 9 12	0.38 0.28 0.47 0.47 0.38	-8.86 -8.66 -8.86 -8.86 -8.86	-49.65 -49.68 -49.64 -49.64 -49.65	-3.72 -4.24 -3.70 -3.75 -3.79	-0.04 -0.03 -0.05 -0.05 -0.04	0.07 0.06 0.06 0.06 0.07	-0.1 -0.1 0.0 0.0 -0.1	2.92 2.88 2.95 2.96 2.95	0.00 0.00 0.00 0.00
2286 2232 2235 2257 2261	20 20 20 20 20	-6 0 6 9	0.38 0.38 0.38 0.28 0.38	-17.34 -17.34 -17.34 -17.34 -17.34	-47.35 -47.35 -47.35 -47.35 -47.35	-5.73 -5.73 -5.67 -5.75 -5.71	-0.03 -0.07 -0.03 -0.02 -0.03	0.05 -0.04 0.06 0.05 0.05	-0.1 -0.1 -0.1 -0.1	2.83 2.80 2.82 2.87 2.86	0.00 0.00 0.00 0.00
					SPEED =	12.5 kr	nots				
2278 2276 2217 2242 2252 2272	-10 -10 -10 -10 -10 -10	-6 -3 0 6 9	-1.14 -1.19 -1.15 -1.25 -1.50 -1.75	7.48 8.76 8.97 10.34 11.12 12.29	-49.91 -49.69 -49.66 -49.43 -49.30 -49.10	2.71 2.57 2.44 2.15 1.97 1.79	0.85 0.45 0.46 0.26 0.16 0.02	-4.58 -2.34 -2.44 -1.28 -0.61 0.25	0.2 0.3 0.4 0.6 0.6	3.40 3.46 3.42 3.61 3.72 3.82	4.98 4.96 4.99 4.98 4.98 4.98
2281 2214 2246 2249 2268	0	-6 0 6 9	-1.33 -1.13 -1.23 -1.48 -1.53	-1.60 0.10 1.30 2.19 2.88	-50.46 -50.46 -50.47 -50.47 -50.48	-0.42 -0.65 -0.81 -0.88 -0.93	0.06 0.04 0.04 0.05 0.06	-5.28 -2.51 -1.54 -0.66 0.02	0.1 0.3 0.4 0.5 0.5	3.41 3.38 3.55 3.63 3.68	4.98 4.96 4.99 4.99
2284 2229 2239 2243 2255 2265	10 10 10 10	-6 0 6 6 9 12	-1.43 -1.33 -1.24 -1.24 -1.38 -1.43	-10.33 -8.47 -7.19 -7.20 -6.50 -5.74	-49.75 -49.98 -49.98 -50.10	-3.77 0.95 -3.79		-1.27 -0.99		3.40 3.39 3.53 3.60 3.60 3.63	4.96 4.98 4.95 5.00

TABLE 29.2

APPENDED HULL RESULTS, L/R = 0.206, AXES B
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1 b	K 1b-ft	M lb-ft	N 1b-ft	Trim deg	TD inch	Speed fps
140.	ueg	ueg	, 0						203		
					SPEED =	12.5 km	ots				
2287	20	-6	-1.33	-18.76	-46.87	-5.76	-1.76	-5.01	0.1	3.31	4.98
2233 2236	20 20	0 6	-1.23 -1.24	-17.16 -15.57	-47.45 -48.04	-5.81 -5.95	-0.97 -0.62	-2.79 -1.81	0.3	3.32 3.45	4.98 4.99
2258	20	9	-1.40	-14.65	-48.39	-6.05	-0.52	-1.55	0.6	3.56	4.98
2262	20	12	-1.43	-13.81	-48.69	-6.05	-0.31	-1.00	0.5	3.58	4.98
					SPEED =	: 35 kna	ts				
2279	-10	-6	-4.87	-2.10	-51.96	1.08	1.76	-8.83	2.6	4.01	13.91
2277	-10	-3	-5.19	8.54	-50.06	1.17	1.85	-9.16	2.3	3.89	13.90
2218	-10	9	-4.84 -7.11	10.29 31.28	-49.73 -46.19	1.06 0.87	1.84	-9.20 -6.61	2.3 2.5	3.84 4.25	13.89 13.91
2253 2273	−10 −10	12	-7.17	41.33	-44.59	1.13	2.08	-9.92	3.4	4.82	13.89
		_			50 04	4 00	0.00	17 10	0.0	2 00	10.06
2282 2215	0	-6 0	-5.74 -4.73	-13.73 0.29	-50.81 -50.74	-1.02 -1.44		-17.48 -12.30	2.3	3.98 3.72	13.96 13.88
2215	0	6	-5.21	14.00	-50.88	-1.43		-14.64	3.0	4.23	13.95
2250	ō	9	-5.72	17.95	-50.87	-0.66	0.26	-7.55	2.7	4.13	13.97
2269	0	12	-8.07	27.47	-50.81	-0.34	0.47	2.82	1.6	3.85	13.90
2285	10	-6	-6.72	-24.64	-47.27		-3.64		2.1	3.99	13.94
2230	10	0	-5.22	-9.75	-49.82	-4.05		-14.92	2.1	3.71	13.85 13.94
2240 2244	10 10	6 6	-4.89 -5.61	4.36 6.97	-52.38 -52.92	-3.56 -1.00		-15.35 -12.50	2.8 3.0	4.01 4.35	13.94
2256	10	9	-5.75	6.76	-52.32	-2.68	-0.89	-6.72	2.0	3.67	13.94
2266	10	12	-5.44	12.29	-53.74	-1.90	-1.14	-7.90	2.3	3.74	13.95
2289	20	-6	-6.82	-30.97	-42.82	-4.78		-23.18	2.1	3.83	13.94
2234	20	0	-5.61	-17.90	-47.52	-6.13		-13.45	2.1	3.69	13.91
2237	20 20	· 6	-5.34 -5.81	-4.63 -1.55	-52.38 -53.42	-6.09 -4.90	-4.80 -2.83	-13.85 -8.63	2.4	3.77 3.40	13.92 13.94
2260 2263	20	12	-5.81 -5.84	3.71	-55.29	-4.30 -4.26	-1.54	-5.12	1.4	3.19	13.92
_											

TABLE 30

RUDDER EFFECTIVENESS RESULTS, L/R = 0, AXES B
Displacement 135 long tons
Roll = Yaw = 0 deg

Run	Rudder 8		Y	Z	K	M	N	Trim	TD	Speed
No.	deg	1b	1b	16	1b-ft	1b-ft	lb-ft	deg	inch	fps
				SPEED	= 0 kn	ots				
1215 1263 1259 1255	0 5 10 15	0.10 0.10 0.10 0.10	0.00 0.00 0.00	-50.43 -50.43 -50.43 -50.43	-0.10 -0.08 -0.09 -0.07	-0.02 -0.02 -0.02 -0.02	0.10 0.10 0.10 0.10	-0.3 -0.3 -0.3	2.81 2.87 2.88 2.84	0.00 0.00 0.00 0.00
				SPEED =	12.5 k	nots				
1210 1265 1261 1256	0 5 10 15	-1.53 -1.63 -1.63 -2.00	0.00 0.40 0.60 0.70	-50.45 -50.46 -50.46 -50.45	-0.14 -0.15 -0.19 -0.22	0.08 0.08 0.08 0.12	0.20 -0.60 -1.00 -1.30	0.0 0.0 0.0 -0.3	3.22 3.21 3.23 3.07	4.98 4.98 4.98 4.97
				SPEED	= 35 kr	ots				
1217 1264 1260 1262 1257 1258	0 5 10 10 15	-5.64 -5.84 -6.04 -6.04 -8.83 -8.73	0.30 2.00 2.80 2.80 3.80 3.80	-50.73 -50.74 -50.75 -50.75 -50.55	-0.14 -0.69 -0.85 -0.85 -1.20	0.29 0.30 0.32 0.32 0.58 0.57	0.69 -3.84 -5.45 -5.45 -8.02 -7.92	1.8 1.8 1.8 0.0 0.0	3.37 3.37 3.36 3.37 2.77	13.95 13.95 13.94 13.92 13.94 13.94

TABLE 31

BARE HULL STATIC ROLL RESULTS, L/R = 0.206, AXES B

Speed = 0 knots

Run No.	Roll deg	Yaw deg	X 1b	Y 1b	Z 1b	K 1b-ft	M lb-ft	N 1b-ft	Trim deg	TD inch	Speed fps
				DISPL	ACEMENT	= 135 1	ong ton	s			
2554 2553 2552 2551 2550 2555 2543 2544 2546 2545 2547 2548 2549	-21 -16 -11 -5 -3 0 5 10 10 16 20 21	0 0 0 0 0 0 0 0 0 0	0.46 0.46 0.46 0.37 0.37 0.37 0.37 0.37 0.37 0.38 0.28	17.98 13.80 9.52 4.30 2.54 -0.10 -0.10 -4.49 -8.86 -8.86 -14.00 -17.34 -18.17	-47.12 -48.50 -49.52 -50.25 -50.37 -50.43 -50.23 -49.65 -49.65 -48.45 -47.35 -47.04	4.99 4.12 3.00 1.21 0.51 -0.52 -0.50 -1.96 -3.75 -3.92 -5.09 -5.68 -5.84	-0.08 -0.08 -0.07 -0.06 -0.05 -0.05 -0.05 -0.04 -0.04 -0.04 -0.03 -0.06	0.04 0.03 0.01 0.00 -0.00 -0.00 0.08 0.06 0.05 0.06	0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1	2.89 2.93 2.94 2.90 2.88 2.87 2.87 2.86 2.86 2.81 2.75 2.74	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
2040	_,		••••		ACEMENT		ong ton	s			
2541 2540 2539 2538 2542 2532 2533 2534 2535 2536 2537	-20 -16 -10 -5 -3 0 5 10 16 20 21	0 0 0 0 0 0 0 0 0	0.77 0.67 0.67 0.57 0.57 0.47 0.57 0.57 0.57	19.71 15.86 9.96 4.95 2.93 -0.10 -5.15 -10.15 -16.05 -19.90 -20.84	-54.44 -55.68 -57.03 -57.69 -57.82 -57.90 -57.67 -57.00 -55.63 -54.37 -54.02	5.27 4.43 2.82 1.16 0.43 -0.59 -2.34 -4.02 -5.48 -6.28 -6.47	-0.11 -0.09 -0.09 -0.07 -0.06 -0.06 -0.06 -0.06 -0.05	0.06 0.05 0.03 0.01 0.10 -0.01 0.08 0.06 -0.05 0.04	0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.1 0.1	3.27 3.24 3.20 3.19 3.18 3.17 3.18 3.16 3.12	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Run No.	Roll deg	Yaw deg	Χ'	Υ'	z'	· K¹	M'	N'	Trim deg
			SPEED = 12	2.5 knots	, Cv = 0.8	309, Volum	e FN = 0	.908	
1326	-20	-6	-0.0697	-0.0303	-1.5288	0.1297	0.0020	-0.0324	0.0
1323	-10	-6	-0.0700	-0.0243	-1.5349	0.0763	0.0021	-0.0448	0.0
1329 1273 1276 1279 1282 1283	0 0 0 0	-6 0 6 9 12 12	-0.0697 -0.0639 -0.0697 -0.0697 -0.0730 -0.0728	-0.0273 0.0000 0.0303 0.0515 0.0883 0.0849	-1.5288 -1.5349 -1.5288 -1.5288 -1.5349 -1.5288	-0.0021 -0.0026 -0.0039 -0.0034 -0.0005 -0.0012	0.0019 0.0018 0.0019 0.0022 0.0023 0.0023	-0.0491 0.0026 0.0646 0.1086 0.1661 0.1629	0.1 0.0 0.1 0.0 0.0
1286 1290 1293 1296	10 10 10 10	0 6 9 12	-0.0667 -0.0700 -0.0697 -0.0728	-0.0030 0.0304 0.0515 0.0788	-1.5288 -1.5349 -1.5288 -1.5288	-0.0828 -0.0814 -0.0801 -0.0783	0.0017 0.0019 0.0019 0.0023	0.0033 0.0578 0.0989 0.1507	0.1 0.1 0.1 0.0
1299 1302 1307 1310	20 20 20 20	0 6 9 12	-0.0637 -0.0697 -0.0730 -0.0730	-0.0030 0.0333 0.0578 0.0852	-1.5288 -1.5288 -1.5349 -1.5349	-0.1354 -0.1344 -0.1344 -0.1345	0.0012 0.0015 0.0017 0.0020	-0.0039 0.0427 0.0741 0.1130	0.2 0.2 0.2 0.1
			SPEED =	35 knots,	Cv = 2.2	66, Volume			
1327	-20	-6	-0.0310	-0.0371	-0.1951	0.0090	0.0009	-0.0005	2.0
1324	-10	-6	-0.0298	-0.0341	-0.1954	0.0013	0.0009	-0.0081	1.9
1274 1319 1277 1280 1317 1284 1315	0 0 0 0 0 0	0 3 6 9 11 12	-0.0291 -0.0294 -0.0313 -0.0333 -0.0349 -0.0360 -0.0357	0.0012 0.0205 0.0429 0.0690 0.0865 0.0979 0.0974	-0.1954 -0.1954 -0.1948 -0.1954 -0.1957 -0.1957	-0.0005 0.0031 0.0068 0.0118 0.0150 0.0170	0.0009 0.0008 0.0008 0.0008 0.0007 0.0007	0.0016 0.0122 0.0157 0.0107 0.0056 0.0012 0.0016	1.7 1.9 2.3 2.8 3.2 3.5 3.5
1287 1288 1321 1291 1294 1297		0 0 3 6 9 12	-0.0302 -0.0299 -0.0294 -0.0298 -0.0303 -0.0313	-0.0019 -0.0019 0.0193 0.0399 0.0609 0.0784	-0.1954 -0.1957 -0.1948 -0.1954 -0.1957 -0.1948	-0.0097 -0.0097 -0.0058 -0.0014 0.0043 0.0090	0.0009 0.0009 0.0008 0.0008 0.0006 0.0006	-0.0076 -0.0076 0.0052 0.0081 0.0001 -0.0006	1.9 1.8 1.9 2.1 2.8 3.0
1300 1313 1305 1308 1311	20 20 20	0 3 6 9 12	-0.0318 -0.0315 -0.0310 -0.0290 -0.0279	-0.0043 0.0191 0.0461 0.0696 0.0814		-0.0168 -0.0138 -0.0092 -0.0037 0.0006	0.0009 0.0009 0.0007 0.0005 0.0005	-0.0089 -0.0024 -0.0055 -0.0082 -0:0057	2.4

TABLE 33.1

NON-DIMENSIONAL BARE HULL RESULTS, L/R = 0.206, AXES A

Displacement 135 long tons

Run No.	Roll deg	Yaw deg	x'	Υ'	Z'	Κ'	M'	N'	Trim deg
		;	SPEED = 1	2.5 knots	, $Cv = 0$	809, Volum	ne FN = 0	.908	
2201 2138 2154 2176 2196	-10 -10 -10 -10 -10	-6 0 6 9	-0.0631 -0.0657 -0.0746 -0.0783 -0.0860	-0.0423 -0.0029 0.0302 0.0511 0.0841	-1.5288 -1.5288 -1.5349 -1.5227 -1.5288	0.0671 0.0664 0.0666 0.0569 0.0568	0.0010 0.0009 0.0009 0.0009 0.0010	-0.1189 -0.0472 0.0013 0.0215 0.0468	0.3 0.4 0.6 0.7 0.8
2203 2134 2150 2151 2173 2193	0 0 0 0	-6 0 6 6 9	-0.0606 -0.0651 -0.0722 -0.0719 -0.0742 -0.0803	-0.0521 -0.0026 0.0240 0.0241 0.0453 0.0691	-1.5411 -1.5166 -1.5474 -1.5411 -1.5600 -1.5349	-0.0111 -0.0074 -0.0104 -0.0108 -0.0124 -0.0131	0.0011 0.0011 0.0010 0.0010 0.0011 0.0012	-0.1295 -0.0513 0.0048 0.0048 0.0256 0.0560	0.2 0.3 0.5 0.5 0.5
2206 2141 2157 2179 2189	10 10 10 10	-6 0 6 9	-0.0631 -0.0654 -0.0713 -0.0756 -0.0800	-0.0545 -0.0057 0.0241 0.0481 0.0690	-1.5288 -1.5227 -1.5288 -1.5288 -1.5288	-0.0922 -0.0899 -0.0838 -0.0871 -0.0875	0.0012 0.0011 0.0009 0.0012 0.0014	-0.1278 -0.0508 0.0029 0.0207 0.0488	0.2 0.3 0.5 0.5
2209 2144 2161 2182 2186	20 20 20 20 20	-6 0 6 9	-0.0601 -0.0657 -0.0743 -0.0729 -0.0796	-0.0514 -0.0029 0.0363 0.0634 0.0930	-1.5288 -1.5288 -1.5288 -1.5349 -1.5227	-0.1510 -0.1450 -0.1453 -0.1459 -0.1441	0.0012 0.0011 0.0011 0.0010 0.0014	-0.1273 -0.0555 -0.0146 -0.0022 0.0181	0.1 0.3 0.5 0.5

TABLE 33.2 $\label{eq:NON-DIMENSIONAL BARE HULL RESULTS, L/R = 0.206, AXES A Displacement 135 long tons$

Run No.	Roll deg	Yaw deg	x'	Υ'	Z'	K'	м'	N'	Trim deg
			SPEED =	35 knots,	Cv = 2.20	66, Volume	FN = 2.	541	
2199	-10	-6	-0.0284	-0.0397	-0.1951	-0.0005	0.0006	-0.0398	2.5
2139	-10	0	-0.0284	0.0010	-0.1929	0.0048	0.0006	-0.0192	2.4
2155	-10	6	-0.0332	0.0489	-0.1979	0.0061	0.0007	-0.0143	3.0
2177	-10	9	-0.0350	0.0800	-0.1962	0.0054	0.0005	-0.0278	3.8
2197	-10	12	-0.0379	0.1099	-0.1960	0.0048	0.0004	-0.0431	4.7
2204	0	-6	-0.0303	-0.0519	-0.1974	-0.0084	0.0008	-0.0685	2.2
2556	0	-6	-0.0276	-0.0503	-0.1948	-0.0084	0.0006	-0.0673	2.3
2136	0	0	-0.0280	-0.0048	-0.1954	-0.0039	0.0007	-0.0300	2.1
2557	0	0	-0.0283	-0.0032	-0.1948	-0.0040	0.0007	-0.0293	2.2
2152	0	6	-0.0300	0.0399	-0.1979	-0.0001	0.0006	-0.0185	2.8
2558	0	6	-0.0299	0.0410	-0.1948	-0.0003	0.0006	-0.0183	2.9
2174	0	9	-0.0313	0.0654	-0.1971	0.0012	0.0005	-0.0246	3.4
2194	0	12	-0.0329	0.0917	-0.1962	0.0028	0.0004	-0.0350	3.9
2559	0	12	-0.0334	0.0917	-0.1948	0.0027	0.0004	-0.0345	4.0
2212	10	-6	-0.0342	-0.0621	-0.1951	-0.0150	0.0011	-0.0850	2.1
2142	10	0	-0.0303	-0.0090	-0.1951	-0.0126	0.0009	-0.0378	1.8
2158	10	6	-0.0290	0.0348	-0.1968	-0.0077	0.0007	-0.0167	2.3
2180	10	9	-0.0290	0.0593	-0.1951	-0.0046	0.0005	-0.0200	2.9
2190	10	12	-0.0298		-0.1962	-0.0019	0.0005	-0.0247	3.1
2191	10	12	-0.0297	0.0772	-0.1957	-0.0019	0.0005	-0.0247	3.1
2211	20	-6	-0.0342	-0.0515	-0.1948	-0.0231	0.0008	-0.0596	2.7
2145	20	0	-0.0306		-0.1946	-0.0202	0.0008	-0.0404	2.0
2162	20	6	-0.0297		-0.1960	-0.0168	0.0008	-0.0233	2.1
2183	20	9	-0.0293	0.0646	-0.1968	-0.0132	0.0007	-0.0212	2.3
2187	20	12	-0.0265	0.0775	-0.1951	-0.0095	0.0005	-0.0190	2.3

TABLE 34

NON-DIMENSIONAL BARE HULL RESULTS, L/R = 0.412, AXES A

Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X'	Υ'	Z'	K'	M †	N'	Trim deg
		5	SPEED = 1	2.5 knots	, Cv = 0.8	809, Volum	e FN = 0	.908	
3323 3320 3338 3357 3360	-10 -10 -10 -10 -10	-6 0 6 9	-0.0636 -0.0687 -0.0829 -0.0885 -0.0963	-0.0666 -0.0027 0.0393 0.0661 0.0985	-1.5288 -1.5288 -1.5288 -1.5288 -1.5166	0.0709 0.0661 0.0573 0.0512 0.0468	0.0018 0.0011 0.0011 0.0009 0.0009	-0.2271 -0.1041 -0.0429 -0.0331 -0.0258	0.0 0.4 0.7 0.9 1.1
3381 3382 3311 3335 3354 3362	0 0 0 0	-6 -6 0 6 9	-0.0608 -0.0615 -0.0659 -0.0765 -0.0821 -0.0907	-0.0854 -0.0873 -0.0121 0.0303 0.0510 0.0744	-1.5349 -1.5536 -1.5349 -1.5227 -1.5227 -1.5227	-0.0094 -0.0088 -0.0102 -0.0124 -0.0143 -0.0162	0.0016 0.0016 0.0012 0.0013 0.0011 0.0011	-0.2453 -0.2456 -0.1140 -0.0417 -0.0240 -0.0090	0.0 0.0 0.3 0.5 0.7
3388 3314 3341 3350 3366	10 10 10 10	-6 0 6 9	-0.0631 -0.0720 -0.0799 -0.0851 -0.0881	-0.0896 -0.0090 0.0363 0.0600 0.0805	-1.5166 -1.5349 -1.5288 -1.5227 -1.5288	-0.0916 -0.0898 -0.0889 -0.0849 -0.0851	0.0018 0.0015 0.0012 0.0013 0.0014	-0.2391 -0.1160 -0.0489 -0.0285 -0.0108	0.0 0.3 0.6 0.7
3393 3317 3344 3347 3369	20 20 20 20 20	-6 0 6 9 12	-0.0606 -0.0687 -0.0795 -0.0890 -0.0916	-0.0666 -0.0057 0.0515 0.0813 0.1141	-1.5288 -1.5288 -1.5227 -1.5349 -1.5349	-0.1520 -0.1478 -0.1461 -0.1476 -0.1480	0.0015 0.0012 0.0014 0.0014 0.0013	-0.2098 -0.1201 -0.0662 -0.0541 -0.0468	0.0 0.3 0.5 0.7 0.8
			SPEED =	35 knots,	Cv = 2.2	66, Volume	= FN = 2.	541	
3375 3321 3339 3358 3361	-10 -10 -10 -10 -10	-6 0 6 9	-0.0294 -0.0286 -0.0331 -0.0360 -0.0392	-0.0514 0.0035 0.0639 0.0967 0.1321	-0.1934 -0.1943 -0.1940 -0.1932 -0.1934	-0.0020 0.0014 0.0006 -0.0006 -0.0029	0.0008 0.0006 0.0005 0.0004 0.0002	-0.0995 -0.0506 -0.0538 -0.0680 -0.0906	2.2 2.6 3.7 4.5 5.6
3312 3336 3355 3364	0 0 0	0 6 9 12	-0.0291 -0.0305 -0.0330 -0.0346	-0.0089 0.0493 0.0774 0.1063	-0.1974 -0.1940 -0.1968 -0.1965	-0.0062 -0.0036 -0.0028 -0.0019	0.0007 0.0005 0.0005 0.0004	-0.0686 -0.0498 -0.0595 -0.0713	2.2 3.1 3.6 4.3
3315 3342 3351 3367	10 10 10	0 6 9 12	-0.0305 -0.0293 -0.0296 -0.0291	-0.0190 0.0377 0.0626 0.0818	-0.1937 -0.1940 -0.1937 -0.1932	-0.0127 -0.0099 -0.0065 -0.0030	0.0011 0.0007 0.0006 0.0005	-0.0872 -0.0470 -0.0445 -0.0454	1.4 2.2 2.6 2.8
3395 3318 3345 3348 3371	20	-6 0 6 9 12	-0.0333 -0.0304 -0.0296 -0.0284 -0.0278	-0.0396 -0.0097 0.0367 0.0595 0.0805	-0.1937 -0.1934 -0.1954 -0.1934 -0.1960	-0.0251 -0.0218 -0.0177 -0.0139 -0.0099	0.0008 0.0009 0.0009 0.0009	-0.0802 -0.0823 -0.0526 -0.0430 -0.0340	2.6 1.7 1.6 1.5

TABLE 35

SUPPLEMENTAL NON-DIMENSIONAL BARE HULL RESULTS, L/R = 0.412, AXES A
Displacement 135 long tons

Run No.	Roll deg	Yaw deg		Υ'	Z'	Κ'	М'	N'	Trim deg	Cv
				SPE	ED Cv =	0.48 to	1.7			
3429 3434 3430 3431 3433	0 0 0 0	-5 -5 -5	-0.0670 -0.0653 -0.0501	-0.0688 -0.0720 -0.0706 -0.0682 -0.0784	-1.0602 -0.7872 -0.4629	-0.0077 -0.0080 -0.0105	0.0017 0.0011 0.0009	-0.2144 -0.2355 -0.2291 -0.1859 -0.1783	0.0 0.5 1.3 1.9	0.804 0.974 1.130 1.474 1.804
3441 3435 3440	0 0 0	-6	-0.0608	-0.0567 -0.0824 -0.0883	-1.5349	-0.0118	0.0016	-0.1796 -0.2427 -0.2738	-0.2 0.0 0.4	0.476 0.809 0.975
3407 3405 3412 3437 3409 3411	-10 0 0 0 10 20	-6 -6 -6 -6	-0.0653 -0.0657 -0.0648 -0.0670	-0.0690 -0.0853 -0.0862 -0.0856 -0.0919 -0.0568	-0.7672 -0.7716 -0.7607 -0.7694	-0.0081 -0.0082 -0.0095 -0.0503	0.0011 0.0012 0.0012 0.0013	-0.2259 -0.2606 -0.2621 -0.2597 -0.2736 -0.2162	1.4 1.4 1.3 1.3 1.4	1.143 1.145 1.142 1.150 1.143 1.143
3384 3438	0			-0.0796 -0.0834				-0.2166 -0.2110	1.9 1.9	1.410 1.475
3385 3390 3394	0 10 20	-6	-0.0448	-0.0930 -0.0952 -0.0616	-0.3492	-0.0269	0.0012	-0.2108 -0.2058 -0.1536	1.5 1.6 1.9	1.664 1.697 1.695

TABLE 36.1

NON-DIMENSIONAL BARE HULL RESULTS, L/R = 0.206, AXES A

Displacement 155 long tons

Run No.	Roll deg	Yaw deg	Χ'	Υ'	Z'	Κ'	м'	N'	Trim deg
			SPEED = 1	2.5 knots	, $Cv = 0$.	809, Volum	ne FN = 0	.887	
2530 2462 2480 2483 2507	-10 -10 -10 -10 -10	-6 0 6 9 12	-0.0725 -0.0772 -0.0861 -0.0946 -0.1068	-0.0457 0.0035 0.0393 0.0635 0.1050	-1.7623 -1.7412 -1.7482 -1.7694 -1.7482	0.0757 0.0680 0.0630 0.0615 0.0639	0.0010 0.0010 0.0010 0.0014 0.0013	-0.1376 -0.0522 -0.0015 0.0240 0.0538	0.4 0.5 0.7 0.7
2527 2459 2477 2486 2504	0 0 0 0	-6 0 6 9	-0.0695 -0.0769 -0.0848 -0.0915 -0.1003	-0.0548 0.0006 0.0332 0.0543 0.0852	-1.7623 -1.7343 -1.7838 -1.7694 -1.7910	-0.0133 -0.0123 -0.0155 -0.0150 -0.0154	0.0011 0.0013 0.0011 0.0015 0.0017	-0.1497 -0.0537 0.0021 0.0278 0.0619	0.3 0.4 0.6 0.6 0.7
2524 2465 2474 2490 2511	10 10 10 10	-6 0 6 9 12	-0.0722 -0.0781 -0.0838 -0.0885 -0.0951	-0.0605 -0.0060 0.0363 0.0574 0.0871	-1.7552 -1.7623 -1.7623 -1.7694 -1.7552	-0.1032 -0.0979 -0.0945 -0.0942 -0.0958	0.0012 0.0013 0.0013 0.0016 0.0015	-0.1457 -0.0536 0.0003 0.0234 0.0538	0.3 0.4 0.5 0.5
2521 2468 2471 2493 2514	20 20 20 20 20	-6 0 6 9	-0.0725 -0.0754 -0.0834 -0.0900 -0.0951	-0.0579 -0.0031 0.0454 0.0751 0.1084	-1.7623 -1.7694 -1.7552 -1.7412 -1.7552	-0.1620 -0.1643 -0.1614 -0.1608 -0.1576	0.0012 0.0011 0.0010 0.0014 0.0014	-0.1456 -0.0610 -0.0146 0.0006 0.0234	0.3 0.4 0.6 0.6 0.7

TABLE 36.2

NON-DIMENSIONAL BARE HULL RESULTS, L/R = 0.206, AXES A

Displacement 155 long tons

Run No.	Roll deg	Yaw deg	X'	Υ' ΄	Z'	Κ'	м'	N'	Trim deg
			SPEED =	35 knots,	Cv = 2.2	66, Volume	FN = 2.	484	
2531 2463 2481 2484 2508	-10 -10 -10 -10 -10	-6 0 6 9 12	-0.0327 -0.0327 -0.0366 -0.0400 -0.0434	-0.0463 0.0014 0.0569 0.0893 0.1222	-0.2240 -0.2243 -0.2247 -0.2250 -0.2237	-0.0008 0.0044 0.0058 0.0057 0.0056	0.0006 0.0007 0.0006 0.0005 0.0003	-0.0397 -0.0228 -0.0197 -0.0307 -0.0446	3.0 2.7 3.5 4.3 5.4
2528 2460 2478 2487 2505	0 0 0 0	-6 0 6 9	-0.0352 -0.0320 -0.0341 -0.0360 -0.0383	-0.0593 -0.0034 0.0492 0.0764 0.1037	-0.2256 -0.2250 -0.2256 -0.2266 -0.2250	-0.0093 -0.0046 -0.0006 0.0008 0.0024	0.0009 0.0007 0.0005 0.0005 0.0003	-0.0727 -0.0334 -0.0239 -0.0316 -0.0406	2.5 2.5 3.3 3.8 4.5
2525 2466 2475 2491 2512	10 10 10 10	-6 0 6 9	-0.0385 -0.0341 -0.0326 -0.0336 -0.0332	-0.0700 -0.0082 0.0448 0.0709 0.0891	-0.2243 -0.2256 -0.2240 -0.2240 -0.2227	-0.0173 -0.0133 -0.0089 -0.0057 -0.0030	0.0011 0.0010 0.0007 0.0006 0.0004	-0.0942 -0.0401 -0.0236 -0.0218 -0.0316	2.4 2.0 2.7 3.0 3.6
2522 2469 2519 2472 2517 2494 2515	20 20 20 20 20 20 20	-6 0 0 6 6 9	-0.0399 -0.0351 -0.0351 -0.0333 -0.0340 -0.0327 -0.0314	-0.0630 -0.0057 -0.0064 0.0487 0.0472 0.0769 0.0922	-0.2234 -0.2247 -0.2247 -0.2234 -0.2250 -0.2234 -0.2256	-0.0252 -0.0228 -0.0222 -0.0179 -0.0175 -0.0144 -0.0102	0.0010 0.0009 0.0009 0.0008 0.0008 0.0007 0.0005	-0.0773 -0.0469 -0.0472 -0.0289 -0.0284 -0.0255 -0.0250	2.9 2.3 2.3 2.4 2.4 2.6 2.8

TABLE 37.1

NON-DIMENSIONAL APPENDED HULL RESULTS, L/R = 0, AXES A

Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X'	Υ'	Z'	К'	м'	N'	Trim deg
			SPEED = 1	2.5 knots	$, C_{V} = 0.8$	809, Volum	ne FN = 0	.908	
1112	0	0	-0.0667	0.0000	-1.5288	0.0000	0.0020	0.0052	0.0
1210	0	0	-0.0667	0.0000	-1.5288	-0.0036	0.0020	0.0052	0.0
1216	0	0	-0.0667	0.0000	-1.5288	-0.0026	0.0020	0.0052	0.0
1115	0	6	-0.0697	0.0424	-1.5288	-0.0029	0.0022	0.0413	0.0
1220	0	6	-0.0728	0.0455	-1.5288	-0.0040	0.0023	0.0439	0.0
1118	0	9	-0.0728	0.0728	-1.5288	-0.0030	0.0023	0.0775	0.0
1223	0	9	-0.0700	0.0730	-1.5349	-0.0061	0.0022	0.0804	0.0
1121	0	12	-0.0728	0.1091	-1.5288	-0.0006	0.0023	0.1318	0.0
1226	0	12	-0.0728	0.1031	-1.5288	-0.0051	0.0023	0.1292	0.0
1124	10	0	-0.0667	-0.0030	-1.5288	-0.0792	0.0017	0.0007	0.1
1229	10	0	-0.0670	0.0000	-1.5349	-0.0822	0.0017	0.0033	0.1
1127	10	6	-0.0728	0.0455	-1.5288	-0.0818	0.0020	0.0317	0.1
1232	10	6	-0.0700	0.0457	-1.5349	-0.0844	0.0019	0.0318	0.1
1130	10	9	-0.0728	0.0697	-1.5288	-0.0827	0.0020	0.0627	0.1
1235	10	9	-0.0697	0.0697	-1.5288	-0.0848	0.0019	0.0627	0.1
1133	10	12	-0.0728	0.1000	-1.5288	-0.0807	0.0023	0.1093	0.0
1238	10	12	-0.0728	0.1000	-1.5288	-0.0835	0.0023	0.1119	0.0
4400	00	0	0.0670	0.0020	-1.5349	-0.1354	0.0014	-0.0064	0.2
1138	20	0	-0.0670	-0.0030 -0.0030	-1.5288	-0.1354	0.0014	-0.0038	0.2
1241	20	0 3	-0.0667	0.0213	-1.5349	-0.1364	0.0014	0.0091	0.2
1253	20		-0.0670 -0.0728	0.0213	-1.5288	-0.1357	0.0017	0.0169	0.2
1141	20 20	6 6	-0.0697	0.0485	-1.5288	-0.1380	0.0015	0.0169	0.2
1244	20	9	-0.0728	0.0465	-1.5288	-0.1368	0.0017	0.0376	0.2
1144 1247	20	9	-0.0728	0.0758	-1.5288	-0.1391	0.0017	0.0402	0.2
1147	20	12	-0.0728	0.1065	-1.5349	-0.1382	0.0019	0.0741	0.2
1250	20	12	-0.0730	0.1065	-1.5349	-0.1413	0.0017	0.0767	0.2
1230	20	12	0.0700	0.,000					

TABLE 37.2

NON-DIMENSIONAL APPENDED HULL RESULTS, L/R = 0, AXES A

Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X'	Υ'	Z'	Κ'	M¹	N'	Trim deg
			SPEED =	35 knots,	Cv = 2.2	66, Volume	FN = 2.5	541	
1113	0	0	-0.0302 -0.0305	0.0019	-0.1954 -0.1948	0.0000 -0.0004	0.0010	0.0023	1.7 1.8
1217 1218	0	0	-0.0306	0.0012	-0.1951	-0.0003	0.0010	0.0023	1.8
1116	0	6	-0.0334	0.0516	-0.1957	0.0031	0.0009	-0.0058	2.4
1221	0	6	-0.0333	0.0542	-0.1951	0.0036	0.0009	-0.0074	2.4
1119	0	9	-0.0358	0.0813	-0.1943	0.0056	0.0009	-0.0190	2.9
1224	0	9	-0.0356	0.0833	-0.1954	0.0066	0.0009	-0.0195	2.9
1122	0	12	-0.0391	0.1124	-0.1954	0.0094	0.0009	-0.0306	3.5
1227	0	12	-0.0387	0.1126	-0.1951	0.0105	0.0009	-0.0309	3.5
1125	10	0	-0.0313	-0.0027	-0.1951	-0.0093	0.0010	-0.0059	1.9
1136	10	0	-0.0314	-0.0031	-0.1954	-0.0092	0.0010	-0.0060	1.9
1230	10	0	-0.0313	-0.0019	-0.1951	-0.0094	0.0010	-0.0056	1.9
1128	10	6	-0.0318	0.0500	-0.1954	-0.0047	0.0008	-0.0134	2.4
1135	10	6	-0.0318	0.0501	-0.1957	-0.0047	0.0008	-0.0134	2.4
1233	10	6	-0.0322	0.0524	-0.1957	-0.0040	0.0008	-0.0144	2.4
1131	10	9	-0.0333	0.0727	-0.1951	-0.0017	0.0007	-0.0293	3.0
1236	10	9	-0.0329	0.0747	-0.1951	-0.0007	0.0007	-0.0297	3.0
1134	10	12	-0.0348	0.0919	-0.1948	0.0016	0.0007	-0.0359	3.2
1239	10	12	-0.0349	0.0947	-0.1957	0.0030	0.0007	-0.0364	3.2
1139	20	0	-0.0329	-0.0050	-0.1951	-0.0166	0.0009	-0.0059	2.1
1242	20	0	-0.0332	-0.0039	-0.1948	-0.0163	0.0010	-0.0056	2.1
1254	20	3	-0.0325	0.0244	-0.1954	-0.0150	0.0009	-0.0116	2.3
1142	20	6	-0.0334	0.0559	-0.1957	-0.0124	0.0008	-0.0233	2.7
1245	20	6	-0.0328	0.0572	-0.1948	-0.0115	0.0008	-0.0236 -0.0380	2.7 3.2
1145	20	9	-0.0313	0.0782	-0.1951	-0.0096	0.0005	-0.0384	3.2
1248	20	9	-0.0314	0.0811	-0.1957 -0.1957	-0.0083 -0.0066	0.0005	-0.0384	3.1
1148	20 20	12	-0.0307 -0.0310		-0.1951	-0.0051	0.0005	-0.0410	3.1
1214 1251	20	12	-0.0310		-0.1954	-0.0051	0.0005	-0.0417	3.1
1201	20	12	0.0510	0.0000	0.1004	0.0001	0.0000	0.0	٠.,

TABLE 38.1

NON-DIMENSIONAL APPENDED HULL RESULTS, L/R = 0.206, AXES A Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X'	Υ'	Z'	K'	M'	N'	Trim deg
		5	SPEED = 1	2.5 knots	, Cv = 0.8	809, Volum	ne FN = 0	.908	
2278 2276 2217 2242 2252 2272	-10 -10 -10 -10 -10	-6 -3 0 6 9	-0.0601 -0.0649 -0.0654 -0.0743 -0.0817 -0.0921	-0.0393 -0.0001 0.0063 0.0484 0.0724 0.1084	-1.5288 -1.5411 -1.5227 -1.5288 -1.5288 -1.5288	0.0681 0.0658 0.0616 0.0548 0.0505 0.0465	0.0011 0.0011 0.0009 0.0009 0.0013 0.0016	-0.1215 -0.0632 -0.0652 -0.0352 -0.0176 0.0050	0.2 0.3 0.4 0.6 0.6
2281 2214 2246 2249 2268	0 0 0 0	-6 0 6 9	-0.0631 -0.0632 -0.0680 -0.0783 -0.0796	-0.0484 0.0030 0.0393 0.0662 0.0869	-1.5288 -1.5411 -1.5227 -1.5227 -1.5227	-0.0129 -0.0180 -0.0218 -0.0230 -0.0239	0.0015 0.0010 0.0010 0.0014 0.0015	-0.1363 -0.0652 -0.0393 -0.0166 0.0011	0.1 0.3 0.4 0.5 0.5
2284 2229 2239 2243 2255 2265	10 10 10 10 10	-6 0 6 6 9	-0.0662 -0.0693 -0.0713 -0.0722 -0.0750 -0.0773	-0.0484 0.0091 0.0484 0.0486 0.0690 0.0935	-1.5288 -1.5411 -1.5288 -1.5474 -1.5166 -1.5349	-0.0936 -0.1079 -0.0985 0.0241 -0.0978 -0.0999	0.0017 0.0013 0.0009 0.0010 0.0012 0.0013	-0.1408 -0.0672 -0.0389 -0.0341 -0.0235 -0.0008	0.1 0.3 0.5 0.5 0.5
2287 2233 2236 2258 2262	20 20 20 20 20	-6 0 6 9	-0.0631 -0.0657 -0.0710 -0.0786 -0.0769	-0.0484 0.0032 0.0544 0.0845 0.1114	-1.5288 -1.5288 -1.5227 -1.5288 -1.5288	-0.1511 -0.1516 -0.1544 -0.1574 -0.1569	0.0014 0.0011 0.0009 0.0011 0.0012	-0.1350 -0.0737 -0.0458 -0.0386 -0.0236	0.1 0.3 0.5 0.6 0.5

NON-DIMENSIONAL APPENDED HULL RESULTS, L/R = 0.206, AXES A
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	Χ'	Υ'	Z'	K'	м'	N'	Trim deg
			SPEED =	35 knots,	Cv = 2.26	66, Volume	FN = 2.	541	
2279 2277 2218 2253 2273	-10 -10 -10 -10 -10	-6 -3 0 9	-0.0305 -0.0307 -0.0294 -0.0388 -0.0423	-0.0431 -0.0011 0.0059 0.0885 0.1284	-0.1960 -0.1962 -0.1965 -0.1960 -0.1965	0.0018 0.0022 0.0019 0.0016 0.0013	0.0007 0.0008 0.0007 0.0012 0.0011	-0.0300 -0.0312 -0.0313 -0.0226 -0.0339	2.6 2.3 2.3 2.5 3.4
2282 2215 2247 2250 2269	0 0 0 0	-6 0 6 9	-0.0326 -0.0286 -0.0330 -0.0338 -0.0395	-0.0530 0.0011 0.0541 0.0692 0.1069	-0.1946 -0.1968 -0.1948 -0.1943 -0.1962	-0.0064 -0.0069 -0.0079 -0.0037 -0.0007	0.0009 0.0007 0.0007 0.0009 0.0015	-0.0573 -0.0406 -0.0478 -0.0246 0.0094	2.3 2.2 3.0 2.7 1.6
2285 2230 2240 2244 2256 2266	10 10 10 10 10	-6 0 6 6 9	-0.0358 -0.0303 -0.0311 -0.0347 -0.0317	-0.0621 -0.0037 0.0518 0.0624 0.0612 0.0828	-0.1951 -0.1977 -0.1951 -0.1960 -0.1951 -0.1948	-0.0132 -0.0160 -0.0149 -0.0060 -0.0099 -0.0077	0.0011 0.0008 0.0007 0.0008 0.0009 0.0008	-0.0751 -0.0498 -0.0505 -0.0416 -0.0219 -0.0259	2.1 2.8 3.0 2.0 2.3
2289 2234 2237 2260 2263	20 20 20 20 20	-6 0 6 9	-0.0362 -0.0316 -0.0316 -0.0309 -0.0301	0.0526	-0.1951 -0.1960 -0.1957 -0.1951 -0.1957	-0.0198 -0.0227 -0.0228 -0.0175 -0.0148	0.0011 0.0009 0.0008 0.0010 0.0010	-0.0801 -0.0461 -0.0473 -0.0292 -0.0171	2.1 2.1 2.4 1.7

TABLE 39

NON-DIMENSIONAL BARE HULL RESULTS, L/R = 0, AXES B

Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X'	Υ'	Z'	K'	м'	N'	Trim deg
		5	SPEED = 1	2.5 knots	, Cv = 0.	809, Volu	me FN = 0	.908	
1326	-20	-6	-0.0494	0.4947	-1.4477	0.1301	-0.4405	-0.0281	0.0
1323	-10	-6	-0.0496	0.2427	-1.5166	0.0769	-0.2269	-0.0428	0.0
1329 1273 1276 1279 1282 1283	0 0 0 0	-6 0 6 9 12	-0.0468 -0.0436 -0.0468 -0.0494 -0.0527 -0.0525	-0.0273 0.0000 0.0303 0.0515 0.0883 0.0849	-1.5297 -1.5357 -1.5297 -1.5296 -1.5358 -1.5296	-0.0014 -0.0026 -0.0049 -0.0049 -0.0027 -0.0034	-0.0386 0.7041 0.0294 0.0198 0.0141 0.0143	-0.0491 0.0026 0.0646 0.1085 0.1661 0.1628	0.1 0.0 0.1 0.0 0.0
1286 1290 1293 1296	10 10 10 10	0 6 9 12	-0.0437 -0.0470 -0.0468 -0.0525	-0.2686 -0.2367 -0.2149 -0.1880	-1.5058 -1.5178 -1.5154 -1.5201	-0.0828 -0.0823 -0.0816 -0.0803	1.1854 0.2107 0.1961 0.1922	0.0017 0.0554 0.0959 0.1470	0.1 0.1 0.1 0.0
1299 1302 1307 1310	20 20 20 20	0 6 9 12	-0.0380 -0.0441 -0.0473 -0.0500	-0.5260 -0.4919 -0.4710 -0.4452	-1.4364 -1.4489 -1.4631 -1.4724	-0.1353 -0.1351 -0.1356 -0.1361	0.1569 0.4077 0.3912 0.3841 ne FN = 2.	-0.0062 0.0375 0.0669 0.1037	0.2 0.2 0.2 0.1
1327	-20	-6	-0.0215	0.0323	-0.1972	0.0090	4.0007	0.0002	2.0
1324	-10	-6	-0.0207	0.0006	-0.1995	0.0017	-0.2894	-0.0078	1.9
1274 1319 1277 1280 1317 1284 1315	0 0 0 0 0	0 3 6 9 11 12	-0.0206 -0.0203 -0.0208 -0.0211 -0.0213 -0.0214 -0.0211	0.0012 0.0205 0.0429 0.0690 0.0865 0.0979	-0.1965 -0.1965 -0.1962 -0.1971 -0.1976 -0.1972 -0.1978	-0.0005 0.0025 0.0060 0.0111 0.0146 0.0169	0.5541 0.0698 0.0524 0.0696 0.1132 0.2891 0.2472	0.0016 0.0123 0.0160 0.0114 0.0066 0.0025 0.0028	1.7 1.9 2.3 2.8 3.2 3.5 3.5
1287 1288 1321 1291 1294 1297	10 10 10 10 10 10	0 0 3 6 9 12	-0.0211 -0.0211 -0.0203 -0.0200 -0.0181 -0.0184	-0.0360 -0.0361 -0.0150 0.0052 0.0258 0.0431	-0.1933 -0.1935 -0.1964 -0.2006 -0.2048 -0.2071	-0.0093 -0.0093 -0.0061 -0.0018 0.0043 0.0090	0.0645 0.0631 0.3589 0.2813 2.6584 -3.8538	-0.0081 -0.0081 0.0047 0.0078 0.0002 -0.0002	1.9 1.8 1.9 2.1 2.8 3.0
1300 1313 1305 1308 1311	20 20 20 20 20	0 3 6 9 12	-0.0220 -0.0220 -0.0202 -0.0168 -0.0161	-0.0713 -0.0496 -0.0240 -0.0018 0.0092	-0.1834 -0.1921 -0.2007 -0.2085 -0.2127	-0.0164 -0.0137 -0.0088 -0.0032 0.0009	0.2658 0.0675 0.2298 0.2975 0.2711	-0.0095 -0.0032 -0.0059 -0.0081 -0.0054	2.1 2.0 2.4 2.8 2.7

TABLE 40.1

NON-DIMENSIONAL BARE HULL RESULTS, L/R = 0.206, AXES B
Displacement 135 long tons

Run No.	Ro11 deg	Yaw deg	Χ'	Υ'	Z'	Κ' '	M' .	N'	Trim deg			
SPEED = 12.5 knots, $Cv = 0.809$, $Volume FN = 0.908$												
2201 2138 2154 2176 2196	-10 -10 -10 -10 -10	-6 0 6 9	-0.0348 -0.0347 -0.0382 -0.0395 -0.0444	0.2239 0.2628 0.2965 0.3150 0.3486	-1.5138 -1.5071 -1.5077 -1.4921 -1.4927	0.0693 0.0673 0.0665 0.0563 0.0555	-0.1849 -0.1961 0.1179 -0.1379 -0.1542	-0.1157 -0.0450 0.0030 0.0228 0.0478	0.3 0.4 0.6 0.7 0.8			
2203 2134 2150 2151 2173 2193	0 0 0 0	-6 0 6 6 9 12	-0.0347 -0.0371 -0.0382 -0.0380 -0.0399 -0.0439	-0.0521 -0.0026 0.0240 0.0241 0.0453 0.0691	-1.5419 -1.5175 -1.5486 -1.5423 -1.5612 -1.5364	-0.0089 -0.0064 -0.0105 -0.0109 -0.0129 -0.0144	-0.0083 -0.0221 0.2119 0.2123 0.0420 0.0220	-0.1297 -0.0514 0.0046 0.0046 0.0254 0.0556	0.2 0.3 0.5 0.5 0.5			
2206 2141 2157 2179 2189	10 10 10 10	-6 0 6 9	-0.0375 -0.0372 -0.0376 -0.0420 -0.0463	-0.3193 -0.2702 -0.2419 -0.2183 -0.1978	-1.4969 -1.4995 -1.5109 -1.5152 -1.5189	-0.0901 -0.0889 -0.0839 -0.0875 -0.0885	0.1665 0.1543 1.2576 0.2430 0.2084	-0.1275 -0.0518 0.0009 0.0182 0.0459	0.2 0.3 0.5 0.5			
2209 2144 2161 2182 2186	20 20 20 20 20	-6 0 6 9 12	-0.0371 -0.0374 -0.0407 -0.0391 -0.0461	-0.5715 -0.5259 -0.4892 -0.4658 -0.4339	-1.4197 -1.4365 -1.4502 -1.4652 -1.4639	-0.1491 -0.1440 -0.1450 -0.1459 -0.1445	0.3531 0.3432 0.2974 0.1707 0.4720	-0.1221 -0.0551 -0.0171 -0.0054 0.0135	0.1 0.3 0.5 0.5			

TABLE 40.2

NON-DIMENSIONAL BARE HULL RESULTS, L/R = 0.206, AXES B
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	Χ'	Υ!	Z'	Κ'	M'	N'	Trim deg
			SPEED =	35 knots,	Cv = 2.2	66, Volum	e FN = 2.	541	
2199	-10	-6	-0.0173	-0.0050	-0.2003	0.0017	-0.1918	-0.0391	2.5
2139	-10	0	-0.0178	0.0347	-0.1910	0.0059	-0.2113	-0.0185	2.4
2155	-10	6	-0.0201	0.0829	-0.1882	0.0070	-0.2279	-0.0136	3.0
2177	-10	9	-0.0193	0.1133	-0.1815	0.0076	-0.1970	-0.0268	3.8
2197	-10	12	-0.0191	0.1427	-0.1766	0.0089	-0.1865	-0.0417	4.7
2204	0	-6	-0.0200	-0.0519	-0.1987	-0.0048	-0.0116	-0.0688	2.2
2556	0	-6	-0.0171	-0.0503	-0.1960	-0.0048	-0.0092	-0.0676	2.3
2136	0	0	-0.0183	-0.0048	-0.1965	-0.0024	-0.0236	-0.0301	2.1
2557	0	0	-0.0182	-0.0032	-0.1960	-0.0025	-0.0237	-0.0294	2.2
2152	0	6	-0.0177	0.0399	-0.1994	0.0011	-0.0315	-0.0185	2.8
2558	0	6	-0.0174	0.0410	-0.1963	0.0009	-0.0306	-0.0182	2.9
2174	0	9	-0.0169	0.0654	-0.1988	0.0030	-0.0188	-0.0245	3.4
2194	0	12	-0.0168	0.0917	-0.1983	0.0056	-0.0114	-0.0347	3.9
2559	0	12	-0.0171	0.0917	-0.1969	0.0055	-0.0118	-0.0341	4.0
2212	10	-6	-0.0244	-0.0953	-0.1828	-0.0107	0.1636	-0.0845	2.1
2142	10	0	-0.0216	-0.0430	-0.1917	-0.0109	0.1514	-0.0379	1.8
2158	10	6	-0.0185	-0.0001	-0.2011	-0.0068	0.1351	-0.0169	2.3
2180	10	9	-0.0164	0.0242	-0.2039	-0.0033	0.1512	-0.0200	2.9
2190	10	12	-0.0165	0.0414	-0.2081	-0.0002	0.1568	-0.0245	3.1
2191	10	12	-0.0164	0.0418	-0.2076	-0.0002	0.1569	-0.0245	3.1
2211	20	-6	-0.0224	-0.1157	-0.1671	-0.0194	0.3487	-0.0575	2.7
2145	20	0	-0.0212	-0.0732	-0.1817	-0.0182	0.3410	-0.0391	2.0
2162	20	6	-0.0199	-0.0318	-0.1983	-0.0156	0.3288	-0.0229	2.1
2183	20	9	-0.0187	-0.0071	-0.2082	-0.0120	0.3299	-0.0208	2.3
2187	20	12	-0.0160	0.0057	-0.2109	-0.0084	0.3340	-0.0185	2.3

TABLE 41

NON-DIMENSIONAL BARE HULL RESULTS, L/R = 0.412, AXES B
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X'	Υ'	Z'	К'	' M'	N†	Trim deg
		8	SPEED = 12	2.5 knots	, Cv = 0.8	309, Volum	ne FN = 0.	.908	
3323 3320 3338 3357 3360	-10 -10 -10 -10 -10	-6 0 6 9	-0.0433 -0.0377 -0.0439 -0.0442 -0.0471	0.2000 0.2630 0.3044 0.3309 0.3607	-1.5178 -1.5071 -1.5003 -1.4960 -1.4787	0.0739 0.0682 0.0584 0.0521 0.0476	-0.1844 -0.1869 -0.2042 -0.2071 -0.2157	-0.2224 -0.1010 -0.0406 -0.0309 -0.0237	0.0 0.4 0.7 0.9
3381 3382 3311 3335 3354 3362	0 0 0 0	-6 -6 0 6 9	-0.0404 -0.0408 -0.0375 -0.0430 -0.0433 -0.0466	-0.0854 -0.0873 -0.0121 0.0303 0.0510 0.0744	-1.5356 -1.5543 -1.5359 -1.5240 -1.5243 -1.5247	-0.0062 -0.0055 -0.0081 -0.0114 -0.0136 -0.0159	-0.0066 -0.0067 -0.0101 -0.0306 -0.0451 -0.1159	-0.2454 -0.2457 -0.1142 -0.0420 -0.0244 -0.0095	0.0 0.0 0.3 0.5 0.7
3388 3314 3341 3350 3366	10 10 10 10 10	-6 0 6 9 12	-0.0430 -0.0436 -0.0436 -0.0463 -0.0492	-0.3517 -0.2756 -0.2300 -0.2056 -0.1865	-1.4787 -1.5111 -1.5133 -1.5116 -1.5213	-0.0884 -0.0876 -0.0878 -0.0841 -0.0848	0.1688 0.1633 0.1523 0.1343 0.0657	-0.2369 -0.1161 -0.0505 -0.0304 -0.0130	0.0 0.3 0.6 0.7
3393 3317 3344 3347 3369	20 20 20 20 20	-6 0 6 9	-0.0403 -0.0404 -0.0460 -0.0498 -0.0498	-0.5857 -0.5286 -0.4729 -0.4492 -0.4184	-1.4144 -1.4356 -1.4497 -1.4718 -1.4832	-0.1492 -0.1456 -0.1446 -0.1462 -0.1467	0.3559 0.3525 0.3417 0.3371 0.3355	-0.1995 -0.1158 -0.0657 -0.0548 -0.0482	0.0 0.3 0.5 0.7 0.8
			SPEED =	35 knots,	Cv = 2.2	66, Volum	ie $FN = 2$.	541	
3375 3321 3339 3358 3361	-10 -10 -10 -10 -10	-6 0 6 9	-0.0194 -0.0172 -0.0180 -0.0181 -0.0175	-0.0168 0.0374 0.0969 0.1292 0.1642	-0.2007 -0.1920 -0.1819 -0.1759 -0.1707	0.0032 0.0043 0.0048 0.0057 0.0071	-0.1842 -0.1882 -0.1857 -0.1824 -0.1789	-0.0978 -0.0496 -0.0527 -0.0667 -0.0890	2.2 2.6 3.7 4.5 5.6
3312 3336 3355 3364	0 0 0	0 6 9 12	-0.0189 -0.0173 -0.0179 -0.0171	-0.0089 0.0493 0.0774 0.1063	-0.1986 -0.1956 -0.1987 -0.1988	-0.0026 -0.0002 0.0017 0.0044	-0.0106 -0.0107 -0.0084 -0.0050	-0.0688 -0.0500 -0.0595 -0.0712	2.2 3.1 3.6 4.3
3315 3342 3351 3367	10 10	0 6 9 12	-0.0232 -0.0192 -0.0182 -0.0171	-0.0525 0.0032 0.0278 0.0468	-0.1885 -0.1988 -0.2030 -0.2059	-0.0095 -0.0075 -0.0039 -0.0001	0.1637 0.1601 0.1617 0.1639	-0.0865 -0.0468 -0.0442 -0.0449	
3395 3318 3345 3348 3371	20 20 20	-6 0 6 9 12	-0.0219 -0.0221 -0.0215 -0.0208 -0.0207	-0.1040 -0.0756 -0.0327 -0.0105 0.0084	-0.1795 -0.1972 -0.2031	-0.0203 -0.0182 -0.0155 -0.0122 -0.0086	0.3527 0.3513 0.3448 0.3412 0.3345	-0.0769 -0.0785 -0.0504 -0.0412 -0.0326	1.7 1.6 1.5

TABLE 42 SUPPLEMENTAL NON-DIMENSIONAL BARE HULL RESULTS, L/R = 0.412, AXES B Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X'	Υ'	Z'	K'	М'	N'	Trim deg	Cv	
SPEED $Cv = 0.48$ to 1.7											
3429	0	-5 -	-0.0439	-0.0688	-1.5544	-0.0073	-0.0085	-0.2145	0.0	0.804	
3434	0	-5 -	-0.0436	-0.0720	-1.0615	-0.0026	-0.0072	-0.2357	0.5	0.974	
3430	0			-0.0706					1.3	1.130	
3431	0			-0.0682					1.9	1.474	
3433	0	-5 -	-0.0286	-0.0784	-0.3101	-0.0018	-0.0071	-0.1785	1.3	1.804	
3441	0	-6 -	-0.0066	-0.0567	-4.4470	-0.0349	0.0068	-0.1800	-0.2	0.476	
3435	0	-6 -	-0.0404	-0.0824	-1.5356	-0.0086	-0.0067	-0.2429	0.0	0.809	
3440	0	-6 -	-0.0433	-0.0883	-1.0578	-0.0035	-0.0064	-0.2739	0.4	0.975	
								0.0040		4 440	
3407	-10		-0.0365		-0.7715		-0.1811		1.4	1.143	
3405	0			-0.0853			-0.0041		1.4	1.145	
3412	0			-0.0862			-0.0046		1.3	1.142	
3437	0			-0.0856			-0.0046		1.3	1.150	
3409	10			-0.2244				-0.2713	1.3	1.143	
3411	20	-6 ·	-0.0426	-0.3172	-0.7056	-0.0748	0.3571	-0.2064	1.4	1.143	
		_	0.000	0.0700	0 5074	0.0001	-0.0037	_0_2169	1.9	1.410	
3384	0			-0.0796					1.9	1.475	
3438	0	-6	-0.0294	-0.0834	-0.4638	-0.0020	-0.0044	-0.2113	1.3	1.475	
2205	0	_6	-0 0294	-0.0930	-0 3644	-0.0008	-0.0054	-0.2110	1.5	1.664	
3385	_			-0.1547				-0.2038	1.6	1.697	
3390	10			-0.1547				-0.1464	1.9	1.695	
3394	20	-0	-0.0306	-0.1781	-0.3034	0.0333	0.5550	J. 170 4	1.0	, , , , , ,	

TABLE 43.1

NON-DIMENSIONAL BARE HULL RESULTS, L/R = 0.206, AXES B
Displacement 155 long tons

Run No.	Roll deg	Yaw deg	Χ'	Υ'	Z'	Κ'	· M¹	N'	Trim deg		
SPEED = 12.5 knots, $Cv = 0.809$, Volume FN = 0.887											
2530 2462 2480 2483 2507	-10 -10 -10 -10 -10	-6 0 6 9 12	-0.0368 -0.0389 -0.0415 -0.0495 -0.0530	0.2612 0.3060 0.3425 0.3701 0.4074	-1.7446 -1.7154 -1.7164 -1.7333 -1.7058	0.0785 0.0691 0.0630 0.0609 0.0622	-0.1837 -0.1969 4.0394 -0.1204 -0.1519	-0.1338 -0.0497 0.0002 0.0254 0.0551	0.4 0.5 0.7 0.7		
2527 2459 2477 2486 2504	0 0 0 0	-6 0 6 9	-0.0368 -0.0417 -0.0425 -0.0495 -0.0546	-0.0548 0.0006 0.0332 0.0543 0.0852	-1.7633 -1.7355 -1.7853 -1.7711 -1.7930	-0.0106 -0.0112 -0.0156 -0.0157 -0.0170	-0.0073 -0.0240 0.6464 0.0557 0.0278	-0.1499 -0.0539 0.0017 0.0274 0.0615	0.3 0.4 0.6 0.6		
2524 2465 2474 2490 2511	10 10 10 10	-6 0 6 9 12	-0.0397 -0.0424 -0.0450 -0.0496 -0.0504	-0.3646 -0.3122 -0.2705 -0.2510 -0.2193	-1.7191 -1.7357 -1.7432 -1.7540 -1.7455	-0.1005 -0.0968 -0.0945 -0.0947 -0.0971	0.1676 0.1524 -0.4965 0.2550 0.2058	-0.1455 -0.0550 -0.0020 0.0207 0.0503	0.3 0.4 0.5 0.5		
2521 2468 2471 2493 2514	20 20 20 20 20	-6 0 6 9 12	-0.0399 -0.0395 -0.0417 -0.0486 -0.0504	-0.6575 -0.6085 -0.5582 -0.5256 -0.4991	-1.6372 -1.6627 -1.6663 -1.6634 -1.6882	-0.1593 -0.1631 -0.1610 -0.1607 -0.1581	0.3549 0.3452 0.3029 -0.0588 0.4479	-0.1400 -0.0608 -0.0177 -0.0035 0.0177	0.3 0.4 0.6 0.6 0.7		

TABLE 43.2

NON-DIMENSIONAL BARE HULL RESULTS, L/R = 0.206, AXES B
Displacement 155 long tons

Run No.	Ro11 deg	Yaw deg	Χ'	Υ'	Z'	K'	М'	N'	Trim deg
			SPEED =	35 knots,	Cv = 2.2	66, Volum	e FN = 2.	484	
2531 2463 2481 2484 2508	-10 -10 -10 -10 -10	-6 0 6 9	-0.0179 -0.0191 -0.0198 -0.0200 -0.0192	-0.0064 0.0406 0.0954 0.1275 0.1598	-0.2303 -0.2222 -0.2134 -0.2087 -0.2024	0.0018 0.0058 0.0072 0.0084 0.0103	-0.1909 -0.2070 -0.2090 -0.1939 -0.1841	-0.0390 -0.0221 -0.0188 -0.0296 -0.0430	3.0 2.7 3.5 4.3 5.4
2528 2460 2478 2487 2505	0 0 0 0	-6 0 6 9 12	-0.0223 -0.0192 -0.0180 -0.0179 -0.0175	-0.0593 -0.0034 0.0492 0.0764 0.1037	-0.2273 -0.2264 -0.2275 -0.2288 -0.2275	-0.0051 -0.0027 0.0010 0.0033 0.0061	-0.0122 -0.0210 -0.0223 -0.0146 -0.0086	-0.0731 -0.0336 -0.0239 -0.0314 -0.0402	2.5 2.5 3.3 3.8 4.5
2525 2466 2475 2491 2512	10 10 10 10	-6 0 6 9	-0.0261 -0.0232 -0.0190 -0.0188 -0.0162	-0.1082 -0.0475 0.0050 0.0306 0.0488	-0.2105 -0.2221 -0.2299 -0.2346 -0.2367	-0.0120 -0.0113 -0.0074 -0.0042 -0.0006	0.1643 0.1514 0.1481 0.1479 0.1638	-0.0937 -0.0402 -0.0239 -0.0219 -0.0313	2.4 2.0 2.7 3.0 3.6
2522 2469 2519 2472 2517 2494 2515	20 20 20 20 20 20 20	-6 0 0 6 6 9	-0.0256 -0.0230 -0.0230 -0.0209 -0.0215 -0.0196 -0.0173	-0.1363 -0.0827 -0.0834 -0.0312 -0.0331 -0.0046 0.0090	-0.1903 -0.2106 -0.2104 -0.2279 -0.2290 -0.2377 -0.2450	-0.0202 -0.0203 -0.0197 -0.0163 -0.0159 -0.0129 -0.0087	0.3501 0.3429 0.3430 0.3348 0.3332 0.3351 0.3410	-0.0744 -0.0454 -0.0457 -0.0283 -0.0278 -0.0249 -0.0243	2.9 2.3 2.3 2.4 2.4 2.6 2.8

TABLE 44.1

NON-DIMENSIONAL APPENDED HULL RESULTS, L/R = 0, AXES B
Displacement 135 long tons

Run	Ro11	Yaw	X'	Υ'	Z'	Κ'	M¹	N'	Trim		
No.	deg	deg							deg		
SPEED = 12.5 knots, $Cv = 0.809$, $Volume FN = 0.908$											
1112	0	0	-0.0464	0.0000	-1.5295	-0.0001	0.3819	0.0052	0.0		
1210	0	0	-0.0464	0.0000	-1.5295	-0.0037	0.3855	0.0051	0.0		
1216	0	0	-0.0464	0.0000	-1.5295	-0.0027	0.3844	0.0051	0.0		
1115	0	6	-0.0494	0.0424	-1.5296	-0.0035	0.0521	0.0413	0.0		
1220	0	6	-0.0525	0.0455	-1.5296	-0.0046	0.0532	0.0439	0.0		
1118	0	9	-0.0525	0.0728	-1.5296	-0.0040	0.0301	0.0775	0.0		
1223	0	9	-0.0496	0.0730	-1.5357	-0.0072	0.0269	0.0803	0.0		
1121	0	12	-0.0525	0.1091	-1.5296	-0.0023	0.0177	0.1318	0.0		
1226	0	12	-0.0525	0.1031	-1.5296	-0.0068	0.0181	0.1291	0.0		
1124	10	0	-0.0437	-0.2686	-1.5058	-0.0792	-1.9985	-0.0008	0.1		
1229	10	0	-0.0439	-0.2667	-1.5124	-0.0822	1.1786	0.0017	0.1		
1127	10	6	-0.0498	-0.2208	-1.5144	-0.0822	0.2462	0.0297	0.1		
1232	10	6	-0.0470	-0.2217	-1.5204	-0.0849	0.2403	0.0298	0.1		
1130	10	9	-0.0498	-0.1970	-1.5186	-0.0836	0.2108	0.0602	0.1		
1235	10	9	-0.0468	-0.1970	-1.5185	-0.0857	0.2078	0.0602	0.1		
1133	10	12	-0.0525	-0.1671	-1.5237	-0.0821	0.1983	0.1062	0.0		
1238	10	12	-0.0525	-0.1671	-1.5237	-0.0850	0.1978	0.1087	0.0		
4400	00	0	0.0410	-0.5281	-1.4422	-0.1353	0.1944	-0.0087	0.2		
1138 1241	20 20	0	-0.0412 -0.0411	-0.5260	-1.4364	-0.1353	0.1344	-0.0062	0.2		
1253	20	3	-0.0411	-0.5053	-1.4505	-0.1351	0.6107	0.0059	0.2		
1141	20	6	-0.0412	-0.4776	-1.4541	-0.1359	0.5018	0.0033	0.2		
	20	6	-0.0471	-0.4776	-1.4541	-0.1383	0.4886	0.0132	0.2		
1244 1144	20	9	-0.0441	-0.4520	-1.4635	-0.1374	0.4198	0.0326	0.2		
1247	20	9	-0.0471	-0.4520	-1.4635	-0.1374	0.4160	0.0350	0.2		
1147	20	12	-0.0504	-0.4252	-1.4798	-0.1394	0.3940	0.0668	0.2		
1250	20	12	-0.0304	-0.4252	-1.4798	-0.1426	0.3903	0.0692	0.2		
1230	20	12	-0.04/3	0.4232	1.4/30	0.1720	0.0000	0.0002	J.L		

TABLE 44.2

NON-DIMENSIONAL APPENDED HULL RESULTS, L/R = 0, AXES B
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	X'	Υ'	z'	Κ'	м'	N'	Trim deg
			SPEED =	35 knots,	$C_V = 2.2$	66, Volum	e FN = 2.	541	
1113 1217 1218 1116 1221	0 0 0 0	0 0 0 6 6	-0.0218 -0.0218 -0.0218 -0.0225 -0.0225	0.0019 0.0012 0.0012 0.0516 0.0542	-0.1965 -0.1960 -0.1963 -0.1972 -0.1966	-0.0001 -0.0005 -0.0004 0.0034 0.0040	0.4204 0.4190 0.4185 -0.1646 -0.1275	0.0023 0.0023 0.0023 -0.0056 -0.0072	1.7 1.8 1.8 2.4 2.4
1119 1224 1122 1227	0 0 0	9 9 12 12	-0.0234 -0.0231 -0.0245 -0.0241	0.0813 0.0833 0.1124 0.1126	-0.1962 -0.1973 -0.1978 -0.1974	0.0068 0.0078 0.0116 0.0128	-0.0489 -0.0470 -0.0303 -0.0292	-0.0186 -0.0190 -0.0298 -0.0300	2.9 2.9 3.5 3.5
1125 1136 1230 1128 1135 1233 1131 1236 1134 1239	10 10 10 10 10 10 10 10	0 0 6 6 6 9 9 12	-0.0222 -0.0223 -0.0222 -0.0210 -0.0214 -0.0204 -0.0200 -0.0212 -0.0213	-0.0368 -0.0372 -0.0360 0.0150 0.0151 0.0174 0.0374 0.0394 0.0564 0.0589	-0.1929 -0.1931 -0.1930 -0.2025 -0.2028 -0.2032 -0.2065 -0.2068 -0.2097 -0.2111	-0.0091 -0.0089 -0.0091 -0.0039 -0.0032 0.0002 0.0012 0.0041 0.0055	0.0254 0.0252 0.0175 0.1150 0.1150 0.1174 0.1514 0.1524 0.1552 0.1553	-0.0064 -0.0061 -0.0136 -0.0136 -0.0145 -0.0290 -0.0293 -0.0353 -0.0357	1.9 1.9 2.4 2.4 2.4 3.0 3.0 3.2
1139 1242 1254 1142 1245 1145 1248 1148 1214 1251	20 20 20 20 20 20 20 20 20 20	0 0 3 6 6 9 12 12	-0.0231 -0.0235 -0.0221 -0.0215 -0.0210 -0.0178 -0.0178 -0.0174 -0.0177	-0.0719 -0.0707 -0.0444 -0.0150 -0.0135 0.0061 0.0087 0.0200 0.0232 0.0236	-0.1829 -0.1831 -0.1933 -0.2045 -0.2042 -0.2117 -0.2132 -0.2172 -0.2178 -0.2183	-0.0163 -0.0160 -0.0144 -0.0110 -0.0069 -0.0056 -0.0039 -0.0023 -0.0022	0.2143 0.2031 0.2880 0.3279 0.3293 0.3490 0.3491 0.3501 0.3497 0.3499	-0.0067 -0.0063 -0.0120 -0.0229 -0.0364 -0.0367 -0.0385 -0.0389 -0.0396	2.1 2.3 2.7 2.7 3.2 3.1 3.1 3.1

TABLE 45.1

NON-DIMENSIONAL APPENDED HULL RESULTS, L/R = 0.206, AXES B
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	Χ'	Υ'	Z'	Κ'	М'	N'	Trim deg		
SPEED = 12.5 knots, $Cv = 0.809$, Volume $FN = 0.908$											
2278 2276 2217 2242 2252 2272	-10 -10 -10 -10 -10 -10	-6 -3 0 6 9	-0.0345 -0.0364 -0.0346 -0.0380 -0.0454 -0.0531	0.2269 0.2677 0.2708 0.3134 0.3370 0.3725	-1.5132 -1.5187 -1.4994 -1.4985 -1.4945 -1.4886	0.0701 0.0670 0.0629 0.0557 0.0509 0.0464	-0.1854 -0.1940 -0.1904 -0.2029 -0.2592 0.0862	-0.1183 -0.0609 -0.0628 -0.0332 -0.0159 0.0064	0.2 0.3 0.4 0.6 0.6		
2281 2214 2246 2249 2268	0 0 0 0	-6 0 6 9 12	-0.0402 -0.0346 -0.0371 -0.0448 -0.0461	-0.0484 0.0030 0.0393 0.0662 0.0869	-1.5296 -1.5420 -1.5237 -1.5240 -1.5240	-0.0108 -0.0168 -0.0210 -0.0227 -0.0239	-0.0111 -0.0149 -0.0260 -0.0813 2.4288	-0.1365 -0.0655 -0.0397 -0.0171 0.0006	0.1 0.3 0.4 0.5 0.5		
2284 2229 2239 2243 2255 2265	10 10 10 10 10	-6 0 6 6 9	-0.0432 -0.0408 -0.0376 -0.0382 -0.0416 -0.0435	-0.3133 -0.2589 -0.2180 -0.2211 -0.1956 -0.1747	-1.4980 -1.5203 -1.5151 -1.5335 -1.5068 -1.5292	-0.0915 -0.1067 -0.0976 0.0249 -0.0973 -0.0999	0.1643 0.1568 0.1526 0.1469 0.1290 -0.2379	-0.1403 -0.0684 -0.0406 -0.0332 -0.0254 -0.0031	0.1 0.3 0.5 0.5 0.5		
2287 2233 2236 2258 2262	20 20 20 20 20	-6 0 6 9 12	-0.0402 -0.0374 -0.0375 -0.0423 -0.0433	-0.5686 -0.5202 -0.4701 -0.4440 -0.4186	-1.4208 -1.4386 -1.4506 -1.4668 -1.4759	-0.1490 -0.1502 -0.1533 -0.1565 -0.1564	0.3523 0.3481 0.3434 0.3356 0.3138	-0.1295 -0.0723 -0.0466 -0.0402 -0.0258	0.1 0.3 0.5 0.6 0.5		

TABLE 45.2

NON-DIMENSIONAL APPENDED HULL RESULTS, L/R = 0.206, AXES B
Displacement 135 long tons

Run No.	Roll deg	Yaw deg	. X'	Υ'	Z'	Κ'	М'	N'	Trim deg
			SPEED =	35 knots,	Cv = 2.2	66, Volum	e FN = 2.	541	
2279 2277 2218 2253 2273	-10 -10 -10 -10 -10	-6 -3 0 9	-0.0189 -0.0202 -0.0188 -0.0276 -0.0279	-0.0082 0.0332 0.0401 0.1215 0.1611	-0.2019 -0.1948 -0.1938 -0.1795 -0.1737	0.0036 0.0039 0.0035 0.0029 0.0038	-0.1998 -0.2026 -0.1998 -0.2315 -0.2101	-0.0293 -0.0304 -0.0306 -0.0219 -0.0330	2.6 2.3 2.3 2.5 3.4
2282 2215 2247 2250 2269	0 0 0 0	-6 0 6 9	-0.0222 -0.0184 -0.0201 -0.0220 -0.0314	-0.0530 0.0011 0.0541 0.0692 0.1069	-0.1960 -0.1980 -0.1966 -0.1960 -0.1977	-0.0034 -0.0048 -0.0047 -0.0022 -0.0011	-0.0159 -0.0173 -0.0147 -0.0346 0.1654	-0.0575 -0.0409 -0.0483 -0.0248 0.0093	2.3 2.2 3.0 2.7 1.6
2285 2230 2240 2244 2256 2266	10 10 10 10 10	-6 0 6 6 9	-0.0260 -0.0204 -0.0189 -0.0218 -0.0222 -0.0210	-0.0953 -0.0382 0.0169 0.0271 0.0262 0.0475	-0.1829 -0.1953 -0.2027 -0.2056 -0.2041 -0.2076	-0.0095 -0.0135 -0.0117 -0.0033 -0.0088 -0.0063	0.1607 0.1596 0.1633 0.1569 0.1331 0.1438	-0.0747 -0.0499 -0.0507 -0.0414 -0.0222 -0.0260	2.1 2.8 3.0 2.0 2.3
2289 2234 2237 2260 2263	20 20 20 20 20	-6 0 6 9 12	-0.0264 -0.0218 -0.0207 -0.0225 -0.0227	-0.1198 -0.0696 -0.0180 -0.0060 0.0144	-0.1657 -0.1846 -0.2032 -0.2067 -0.2145	-0.0158 -0.0203 -0.0202 -0.0162 -0.0141	0.3484 0.3434 0.3461 0.3285 0.3015	-0.0765 -0.0446 -0.0459 -0.0285 -0.0169	2.1 2.1 2.4 1.7

TABLE 46

NON-DIMENSIONAL RUDDER EFFECTIVENESS RESULTS, L/R = 0, AXES A & B

Displacement 135 long tons

Roll = Yaw = 0 deg

Run No.	Rudder 6	s x'	Υ'	Z'	К'	М'	N'	Trim deg				
		AXES A										
		SPEED = 12.5 knots, $Cv = 0.809$, Volume FN = 0.908										
1210 1265 1261 1256	0 5 10 15	-0.0667 -0.0697 -0.0697 -0.0730	0.0000 0.0121 0.0182 0.0213	-1.5288 -1.5288 -1.5288 -1.5349	-0.0036 -0.0042 -0.0051 -0.0060	0.0020 0.0022 0.0022 0.0031	0.0052 -0.0155 -0.0259 -0.0338	0.0 0.0 0.0 -0.3				
	SPEED = 35 knots, $Cv = 2.266$, $Volume FN = 2.541$											
1217 1264 1260 1262 1257 1258	0 5 10 10 15	-0.0305 -0.0313 -0.0321 -0.0322 -0.0368 -0.0364	0.0012 0.0077 0.0108 0.0109 0.0147 0.0147	-0.1948 -0.1948 -0.1951 -0.1957 -0.1951 -0.1951	-0.0004 -0.0028 -0.0036 -0.0036 -0.0043 -0.0043	0.0010 0.0010 0.0011 0.0011 0.0019 0.0019	0.0023 -0.0125 -0.0179 -0.0179 -0.0264 -0.0261	1.8 1.8 1.8 0.0				
		AXES B										
		SPEED = 1	12.5 knot	s, Cv = 0	.809, Vol	ume FN =	0.908					
1210 1265 1261 1256	0 5 10 15	-0.0464 -0.0494 -0.0494 -0.0607	0.0000 0.0121 0.0182 0.0213	-1.5295 -1.5296 -1.5296 -1.5355	-0.0037 -0.0040 -0.0048 -0.0057	0.3855 -0.1382 -0.0830 -0.0921	0.0051 -0.0156 -0.0259 -0.0338	0.0 0.0 0.0 -0.3				
		SPEED =	35 knots	$c_{v} = 2.$	266, Volu	me FN = 2	2.541					
1217 1264 1260 1262 1257 1258	0 5 10 10 15	-0.0218 -0.0226 -0.0234 -0.0234 -0.0342 -0.0338	0.0012 0.0077 0.0108 0.0109 0.0147 0.0147	-0.1960 -0.1960 -0.1963 -0.1969 -0.1956 -0.1956	-0.0005 -0.0023 -0.0028 -0.0028 -0.0040 -0.0040	0.4190 -0.0793 -0.0584 -0.0584 -0.0723 -0.0724	0.0023 -0.0127 -0.0180 -0.0180 -0.0265 -0.0261	1.8 1.8 1.8 0.0				

FIGURE 1 120 FT WPB, 155 I-TONS 20 DEG. ROLL, 6 DEG. YAW, SPEED 12.5 KNOTS
TURNING DIAMETER 9.7 BOAT LENGTHS

FIGURE 2 120 FT WPB PROFILE

FIGURE 3 120 FT WPB BODY LINES

FIGURE 4

120 FT WPB, 135 L-TONS 10 DEG ROLL, 6 DEG YAW, SPEED 35 KNOTS TURNING DIAMETER 9.7 BOAT LENGTHS

FIGURE 5 RUDDER DRAWING

[BLANK]

APPENDIX A

CHRONOLOGICAL LISTING OF STRAIGHT COURSE RUNS

Note: The data acquisition program used during these tests automatically assigned a sequential three digit number to each test point, including calibrations and check runs, from 001 to 999. A prefix of "1" was added to the Straight Course Tests, so that their Run Numbers run from 1001 to 1330.

Run Number	Boat Speed knots		Roll Angle deg	Yaw Angle deg	Model Speed fps
		ended hull with rudders Displacement 135 long to			
1001 - 1110	Ca	libration and check runs	5		
1111 1112 1113	0.0 12.5 35.0		0 0 0	0 0	0.00 4.98 13.93
1114	0.0		0	6	0.00
1115	12.5		0	6	4.98
1116	35.0		0	6	13.92
1117	0.0		0	9	0.00
1118	12.5		0	9	4.98
1119	35.1		0	9	13.97
1120	0.0		0	12	0.00
1121	12.5		0	12	4.98
1122	35.0		0	12	13.93
1123	0.0		10	0	0.00
1124	12.5		10	0	4.98
1125	35.1		10	0	13.94
1126 1127 1128	0.0 12.5 35.0		10 10 10	6 6	0.00 4.98 13.93
1129	0.0		10	9	0.00
1130	12.5		10	9	4.98
1131	35.1		10	9	13.94
1132 1133 1134 1135 1136	0.0 12.5 35.1 35.0 35.0		10 10 10 10	12 12 12 6 0	0.00 4.98 13.95 13.92 13.93
1137	0.0		20	0	0.00
1138	12.5		20	0	4.97
1139	35.1		20	0	13.94

R-2570

APPENDIX A

CHRONOLOGICAL LISTING OF STRAIGHT COURSE RUNS

Run Number		Boat Speed knots		Roll Angle deg	Yaw Angle deg	Model Speed fps
		Δ	appended hull with rudders a Displacement 135 long ton	it 0° Is		
11	40 41 42	0.0 12.5 35.0		20 20 20	6 6 6	0.00 4.98 13.92
11	43 44 45	0.0 12.5 35.1		20 20 20	9 9 9	0.00 4.98 13.94
11	46 47 48	0.0 12.5 35.0		20 20 20	12 12 12	0.00 4.97 13.92
1148 - 12	208		Re-calibrated using more se	ensiti∨e	settings	3
12 12 12 12 12 12 12	209 210 211 212 213 214 215 216 217 218	0.0 12.5 NG NG NG 0.0 12.5 35.1 35.1		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0.00 4.98 0.00 13.94 0.00 4.98 13.95 13.94
12	219 220 221	0.0 12.5 35.1		0 0 0	6 6 6	0.00 4.98 13.94
13	222 223 224	0.0 12.5 35.0		0 0 0	9 9 9	0.00 4.97 13.93
1:	225 226 227	0.0 12.5 35.1		0 0 0	12 12 12	0.00 4.98 13.94
1:	228 229 230	0.0 12.5 35.1		10 10 10	0 0 0	0.00 4.97 13.94
1	231 232 233	0.0 12.5 35.0		10 10 10	6 6 6	0.00 4.97 13.92

APPENDIX A

CHRONOLOGICAL LISTING OF STRAIGHT COURSE RUNS

Run Number	Boat Speed knots		Roll Angle deg	Yaw Angle deg	Model Speed fps
	Apı	pended hull with rudders a Displacement 135 long to			
1234	0.0		10	9	0.00
1235	12.5		10	9	4.98
1236	35.1		10	9	13.94
1237	0.0		10	12	0.00
1238	12.5		10	12	4.98
1239	35.0		10	12	13.92
1240	0.0		20	0	0.00
1241	12.5		20	0	4.98
1242	35.1		20	0	13.95
1243 1244 1245	0.0 12.5 35.1		20 20 20	6 6	0.00 4.98 13.95
1246	0.0		20	9	0.00
1247	12.5		20	9	4.98
1248	35.0		20	9	13.92
1249	0.0		20	12	0.00
1250	12.5		20	12	4.97
1251	35.0		20	12	13.93
1252	0.0		20	3	0.00
1253	12.5		20	3	4.97
125 4	35.0		20	3	13.93
		RUDDER TESTS			
		Rudder deflection, deg			
1255 1256 1257 1258	0.0 12.5 35.1 35.1	15 15 15 15	0 0 0	0 0 0	0.00 4.97 13.94 13.94
1259 1260 1261 1262	0.0 35.1 12.5 35.0	10 10 10 10	0 0 0	0 0 0	0.00 13.94 4.98 13.92
1263	0.0	5	0	0	0.00
1264	35.1	5	0	0	13.95
1265	12.5	5	0	0	4.98

R-2570

APPENDIX A

CHRONOLOGICAL LISTING OF STRAIGHT COURSE RUNS

Run Number	Boat Speed knots		Roll Angle deg	Yaw Angle deg	Mode1 Speed fps
		Bare hull Displacement 135 long to	ens		
1266 - 1271		Calibration check runs			
1272	0.0		0	0	0.00
1273	12.5		0	0	4.97
1274	35.0		0	0	13.93
1275	0.0		0	6	0.00
1276	12.5		0	6	4.98
1277	35.1		0	6	13.95
1278	0.0		0	9	0.00
1279	12.5		0	9	4.98
1280	35.0		0	9	13.93
1281 1282 1283 1284	0.0 12.5 12.5 35.1		0 0 0	12 12 12 12	0.00 4.97 4.98 13.94
1285 1286 1287 1288	0.0 12.5 35.0 35.0		10 10 10 10	0 0 0	0.00 4.98 13.93 13.92
1289	0.0		10	6	0.00
1290	12.5		10	6	4.97
1291	35.0		10	6	13.93
1292	0.0		10	9	0.00
1293	12.5		10	9	4.98
1294	35.0		10	9	13.92
1295	0.0		10	12	0.00
1296	12.5		10	12	4.98
1297	35.1		10	12	13.95
1298	0.0		20	0	0.00
1299	12.5		20	0	4.98
1300	35.0		20	0	13.93
1301	0.0		20	6	0.00
1302	12.5		20	6	4.98
1303 - 1304		Calibration check runs			
1305	35.0		20	6	13.93

APPENDIX A

CHRONOLOGICAL LISTING OF STRAIGHT COURSE RUNS

Run Number	Boat Speed knots		Roll Angle deg	Yaw Angle deg	Model Speed fps
		Bare hull Displacement 135 long t	tons		
1306 1307 1308	0.0 12.5 35.1		20 20 20	9 9 9	0.00 4.97 13.94
1309 1310 1311	0.0 12.5 35.0		20 20 20	12 12 12	0.00 4.97 13.93
1312 1313	0.0 35.0		20 20	3	0.00 13.90
1314 1315	0.0 35.0		0	12 12	0.00 13.92
1316 1317	0.0 35.0		0	11 11	0.00 13.92
1318 1319	0.0 35.0		0	3 3	0.00 13.93
1320 1321	0.0 35.1		10 10	3 3	0.00 13.95
1322 1323 1324	0.0 12.5 35.0		-10 -10 -10	-6 -6 -6	0.00 4.97 13.93
1325 1326 1327	0.0 12.5 35.1		-20 -20 -20	-6 -6 -6	0.00 4.98 13.94
1328 1329 1330	0.0 12.5 35.1		0 0	-6 -6 -6	0.00 4.98 13.95

END OF STRAIGHT COURSE TESTS

[BLANK]

APPENDIX B

CHRONOLOGICAL LISTING OF ROTATING ARM RUNS

Note: The data acquisition program used during these tests automatically assigned a sequential three digit number to each test point, including calibrations and check runs, from 001 to 999. The run sequence was restarted at the begining of the Rotating Arm Tests and a prefix of "2" was added to the Tests at 32 ft Radius, and a prefix of "3" to the Tests at 16 ft Radius, so that their Run Numbers run from 2001 to 2289, from 3290 to 3441, and from 2442 to 2542

Run	Boat	Ro11	Yaw	Mode 1
Number	Speed	Angle	Angle	Speed
	knots	deg	deg	fps

Bare hull L/R = 0.206 (32 ft radius) Displacement 135 long tons

2001 - 2111		Calibration and check runs			
2112 - 2120		Air tares, bare hull			
2121 - 2132		Calibration check runs			
2133 2134 2135 2136	0.0 12.6 0.0 35.0		0 0 0	0 0 0 0	0.00 5.00 0.00 13.93
2137 2138 2139	0.0 12.5 35.3		-10 -10 -10	0 0 0	0.00 4.98 14.02
2140 2141 2142	0.0 12.5 35.1		10 10 10	0 0	0.00 4.99 13.94
2143 2144 2145	0.0 12.5 35.1		20 20 20	0 0 0	0.00 4.98 13.96
2146 2147 2148 - 2149 2150	0.0 0.0 NG 12.4		0 0 0	6 6 6	0.00 0.00 4.95
2151 2152	12.5 34.8		0	6 6	4.96 13.84
2153 2154 2155	0.0 12.5 34.8		-10 -10 -10	6 6 6	0.00 4.97 13.84

APPENDIX B

CHRONOLOGICAL LISTING OF ROTATING ARM RUNS

Run Number	Boat Speed knots		Roll Angle deg	Yaw Angle deg	Model Speed fps
		Bare hull L/R = 0.206 (32 ft r Displacement 135 lon			
2156 2157 2158	12.5		10 10 10	6 6 6	0.00 4.98 13.88
2159		Calibration check			
2160 2161 2162	12.5		20 20 20	6 6 6	0.00 4.98 13.91
2163 - 2172		Calibration check runs	;		
2173 2174			0 0	9 9	4.93 13.87
2175 2176 2177	12.5		-10 -10 -10	9 9 9	0.00 4.99 13.90
2178 2179 2180	12.5		10 10 10	9 9 9	0.00 4.98 13.94
2181 2182 2183	12.5		20 20 20	9 9	0.00 4.97 13.88
2184 2186 2187	12.5		20 20 20	12 12 12	0.00 4.99 13.94
2188 2189 2190 2191	12.5		10 10 10 10	12 12 12 12	0.00 4.98 13.90 13.92
2192 2193 2194	12.5		0 0 0	12 12 12	0.00 4.97 13.90
2195 2196 2197	12.5		-10 -10 -10	12 12 12	0.00 4.98 13.91

APPENDIX B

CHRONOLOGICAL LISTING OF ROTATING ARM RUNS

Run Number	Boat Speed knots	Roll Angl deg		Model Speed fps						
Bare hull L/R = 0.206 (32 ft radius) Displacement 135 long tons										
2198 2199 2200	0.0 35.1 NG	-10 -10	-6 -6	0.00						
2201	12.5	-10	-6	4.98						
2202 2203 2204	0.0 12.5 34.9	0 0	-6 -6 -6	0.00 4.96 13.86						
2205 2206 2207	0.0 12.5 NG, Overload in Y	10	- 6 -6	0.00 4.98						
2208 2209 2210 2211	0.0 12.5 0.0 35.1	20 20 20 20	-6 -6 -6 -6	0.00 4.98 0.00 13.95						
2212	35.1	10	-6	13.94						
	L/R = 0.20	with rudders at 0° 06 (32 ft radius) ent 135 long tons								
2213 2214 2215	0.0 12.5 34.9	0 0 0	0 0 0	0.00 4.96 13.88						
2216 2217 2218	0.0 12.5 34.9	-10 -10 -10	0 0 0	0.00 4.99 13.89						
2218 - 2227	Calibration	check runs								
2228 2229 2230	0.0 12.5 34.8	10 10 10	0 0 0	0.00 4.96 13.85						
2231 2232 2233 2234	NG 0.0 12.5 35.0	20 20 20 20		0.00 4.98 13.91						
2235 2236 2237	0.0 12.5 35.0	20 20 20 83	6	0.00 4.99 13.92						

APPENDIX B

CHRONOLOGICAL LISTING OF ROTATING ARM RUNS

Run Number	Boat Speed knots		Roll Angle deg	Yaw Angle deg	Model Speed fps
	A	ppended hull with rudders a L/R = 0.206 (32 ft radius Displacement 135 long ton	;)		
2238	0.0		10	6	0.00
2239	12.5		10	6	4.98
2240	35.1		10	6	13.94
2241 2242 2243 2244	0.0 12.5 12.4 35.0		-1 -1 10 10	6 6 6	0.00 4.98 4.95 13.91
2245	0.0		0	6	0.00
2246	12.5		0	6	4.99
2247	35.1		0	6	13.95
2248	0.0		0	9	0.00
2249	12.5		0	9	4.99
2250	35.1		0	9	13.97
2251	0.0	•	-10	9	0.00
2252	12.5		-10	9	4.98
2253	35.0		-10	9	13.91
2254	0.0		10	9	0.00
2255	12.6		10	9	5.00
2256	35.1		10	9	13.94
2257 2258 2259 2260	0.0 12.5 NG 35.1		20 20 20 20	9 9 9	0.00 4.98 13.94
2261	0.0		20	12	0.00
2262	12.5		20	12	4.98
2263	35.0		20	12	13.92
2264	0.0		10	12	0.00
2265	12.5		10	12	4.97
2266	35.1		10	12	13.95
2267	0.0		0	12	0.00
2268	12.5		0	12	4.99
2269	35.0		0	12	13.90
2270 2271 2272 2273	NG NG 12.5 34.9	B4	-10 -10 -10 -10	12 12 12 12	4.98 13.89

APPENDIX B

CHRONOLOGICAL LISTING OF ROTATING ARM RUNS

Run Number	r	Boat Speed knots	ppended hull with rudders L/R = 0.206 (32 ft radi	us)	Yaw Angle deg	Model Speed fps
			Displacement 135 long t	tons		
	2274 2275	0.0 NG		-10 -10	-6 -6	0.00
	2276 2277	12.5 35.0		-10 -10	-3 -3	4.96 13.90
	2278 2279	12.5 35.0		-10 -10	-6 -6	4.98 13.91
	2280 2281 2282	0.0 12.5 35.1		0 0 0	-6 -6 -6	0.00 4.98 13.96
	2283 2284 2285	0.0 12.5 35.1		10 10 10	-6 -6 -6	0.00 4.98 13.94
	2286 2287 2288 2289	0.0 12.5 NG 35.1		20 20 20 20	-6 -6 -6	0.00 4.98 13.94
			Bare hull L/R = 0.412 (16 ft rad Displacement 135 long			
3290 -	3299		Calibration check runs			
3300 -	3309		Air tares, bare hull			
	3310 3311 3312	0.0 12.5 34.9		0 0 0	0 0 0	0.00 4.97 13.86
	3313 3314 3315	0.0 12.5 35.2		10 10 10	0 0 0	0.00 4.97 13.99
	3316 3317 3318	0.0 12.5 35.2		20 20 20	0 0 0	0.00 4.98 14.00
	3319 3320 3321	0.0 12.5 35.1		-10 -10 -10	0 0 0	0.00 4.98 13.97

APPENDIX B

CHRONOLOGICAL LISTING OF ROTATING ARM RUNS

Run Number		Boat Speed knots		Roll Angle deg	Yaw Angle deg	Model Speed fps
			Bare hull AR = 0.412 (16 1 Displacement 135	ft radius)		
	3322 3323 3324	0.0 12.5 NG, Over	load in Y and N	-10 -10 -10	-6 -6 -6	0.00 4.98
3325 -	3333	Cal	ibration check :	runs		
	3334 3335 3336	0.0 12.5 35.2		0 0 0	6 6 6	0.00 4.99 13.98
	3337 3338 3339	0.0 12.5 35.2		-10 -10 -10	6 6	0.00 4.98 13.98
	3340 3341 3342	0.0 12.5 35.2		10 10 10	6 6 6	0.00 4.98 13.98
,	3343 3344 3345	0.0 12.5 35.0		20 20 20	6 6 6	0.00 4.99 13.93
	3346 3347 3348	0.0 12.5 35.2		20 20 20	9 9 9	0.00 4.97 14.00
	3349 3350 3351	0.0 12.5 35.2		10 10 10	9 9 9	0.00 4.99 13.99
	3352 3353 3354 3355	0.0 NG 12.5 34.9		0 0 0	9 9 9	0.00 4.99 13.88
	3356 3357 3358	0.0 12.5 35.2		-10 -10 -10	9 9 9	0.00 4.98 14.01
	3359 3360 3361	0.0 12.6 35.2		-10 -10 -10	12 12 12	0.00 5.00 14.00
	3362 3363 3364	12.5 0.0 34.9	B6	0 0 0	12 12 12	4.99 0.00 13.89

APPENDIX B

CHRONOLOGICAL LISTING OF ROTATING ARM RUNS

	•				
Run Number	Boat Speed knots		Roll Angle deg	Yaw Angle deg	Mode1 Speed fps
		Bare hul /R = 0.412 (16 1 isplacement 135	ft radius)		
3365 3366 3367	0.0 12.5 35.2		10 10 10	12 12 12	0.00 4.98 14.01
3368 3369 3370 3371	0.0 12.5 NG 35.0		20 20 20 20	12 12 12 12	0.00 4.97 13.91
3372 3373 3374 3375	NG 0.0 NG, Over 35.2	load in K	-10 -10 -10 -10	-6 -6 -6	0.00
3376 - 3379	Cal	ibration check	runs		
3380 3381 3382 3383 3384 3385 3386	0.0 12.5 12.4 NG 21.8 25.7 NG		0 0 0 0 0	-6 -6 -6 -6 -6 -6	0.00 4.97 4.94 8.66 10.22
3387 3388 3389 3390	0.0 12.6 NG 26.2		10 10 10 10	-6 -6 -6	0.00 5.00 10.42
3391 3392 3393 3394 3395	0.0 NG 12.5 26.2 35.2		20 20 20 20 20 20	-6 -6 -6 -6	0.00 4.98 10.41 13.99
3396 - 3402	Ca	libration checks	runs		
3403 3405	0.0 NG		0 0	-6 -6	0.00
3406 3407	0.0 17.7		-10 -10	-6 -6	0.00 7.02
3408 3409	0.0 17.7		10 10	-6 -6	0.00 7.02

APPENDIX B

CHRONOLOGICAL LISTING OF ROTATING ARM RUNS

Run Number	Boat Speed knots		Roll Angle deg	Yaw Angle deg	Model Speed fps
		Bare hull L/R = 0.412 (16 ft radius Displacement 135 long to			
3410 3411	0.0 17.7		20 20	-6 -6	0.00 7.02
3412	17.6		0	-6	7.01
3413 - 3427		Calibration checks runs			
3428 3429 3430 3431 3433 3434	0.0 12.4 17.5 22.8 27.9 15.0		0 0 0 0	-5 -5 -5 -5 -5	0.00 4.94 6.94 9.05 11.08 5.98
3435 3436 3437 3438 3439 3440 3441	12.5 0.0 17.8 22.8 NG 15.1 7.3	•	0 0 0 0 0	-6 -6 -6 -6 -6 -6	4.97 0.00 7.06 9.06 5.99 2.92
		Bare hull L/R = 0.206 (32 ft radiu Displacement 155 long to			
2442	0.0		0	-6	0.00
2443 - 2457		Calibration check runs			
2458 2459 2460	0.0 12.6 35.0		0 0 0	0 0 0	0.00 5.01 13.91
2461 2462 2463	0.0 12.6 35.0		-10 -10 -10	0 0 0	0.00 5.00 13.93
2464 2465 2466	0.0 12.5 34.9		10 10 10	0 0 0	0.00 4.97 13.89
2467 2468 2469	0.0 12.5 35.0		20 20 20	0 0 0	0.00 4.96 13.92

APPENDIX B

CHRONOLOGICAL LISTING OF ROTATING ARM RUNS

Run Number	Boat Speed knots		Roll Angle deg	Yaw Angle deg	Mode1 Speed fps
		Bare hull L/R = 0.206 (32 ft radiu Displacement 155 long to			
2470	0.0		20	6	0.00
2471	12.5		20	6	4.98
2472	35.1		20	6	13.96
2473	0.0		10	6	0.00
2474	12.5		10	6	4.97
2475	35.1		10	6	13.94
2476	0.0		0	6	0.00
2477	12.4		0	6	4.94
2478	34.9		0	6	13.89
2479	0.0		-10	6	0.00
2480	12.5		-10	6	4.99
2481	35.0		-10	6	13.92
2482	0.0		-10	9	0.00
2483	12.5		-10	9	4.96
2484	35.0		-10	9	13.91
2485	0.0		0	9	0.00
2486	12.5		0	9	4.96
2487	34.9		0	9	13.86
2488 2489 2490 2491	0.0 0.0 12.5 35.1		10 10 10 10	9 9 9	0.00 0.00 4.96 13.94
2492	0.0		20	9	0.00
2493	12.6		20	9	5.00
2494	35.1		20	9	13.96
2495 - 2502		Calibration check runs			
2503	0.0		0	12	0.00
2504	12.4		0	12	4.93
2505	35.0		0	12	13.91
2506	0.0		-10	12	0.00
2507	12.5		-10	12	4.99
2508	35.1		-10	12	13.95

APPENDIX B

CHRONOLOGICAL LISTING OF ROTATING ARM RUNS

Run Number	Boat Speed knots		Roll Angle deg	Yaw Angle deg	Model Speed fps
		Bare hull L/R = 0.206 (32 ft radio Displacement 155 long to			
2509	NG		10	12	0.00
2510	0.0		10	12	0.00
2511	12.5		10	12	4.98
2512	35.2		10	12	13.98
2513	0.0		20	12	0.00
2514	12.5		20	12	4.98
2515	34.9		20	12	13.89
2516	0.0	·	20	6	0.00
2517	35.0		20	6	13.91
2518	0.0		20	0	0.00
2519	35.0		20	0	13.92
2520	0.0		20	-6	0.00
2521	12.5		20	-6	4.97
2522	35.1		20	-6	13.96
2523	0.0		10	-6	0.00
2524	12.5		10	-6	4.98
2525	35.0		10	-6	13.93
2526	0.0		0	-6	0.00
2527	12.5		0	-6	4.97
2528	34.9		0	-6	13.89
2529	0.0		-10	-6	0.00
2530	12.5		-10	-6	4.97
2531	35.1		-10	-6	13.94
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542	0.0 0.0 0.0 0.0 0.0 0.0 0.0		0 5 10 16 20 21 -5 -10 -16 -20 -3	0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

APPENDIX B

CHRONOLOGICAL LISTING OF ROTATING ARM RUNS

Run Number	Boat Speed knots	A	deg	Yaw Angle deg	Mode1 Speed fps
		Bare hull L/R = 0.206 (32 ft radius) Displacement 135 long tons			
2543	0.0		0	0	0.00
2544	0.0		5	0	0.00
2545	0.0		10	0	0.00
2546	0.0	·	10	0	0.00
2547	0.0		16	0	0.00
2548	0.0		20	0	0.00
2549	0.0		21	0	0.00
2550	0.0		_3	0	0.00
2551	0.0		-5	0	0.00
2552	0.0	-	-11	0	0.00
2553	0.0		-16	0	0.00
2554	0.0	-	-21	0	0.00
2555	0.0		0	0	0.00
2556	35.1		0	-6	13.95
2557	35.1		0	0	13.95
2558	35.1		0	6	13.95
2559	35.1		0	12	13.95

END OF ROTATING ARM TESTS

[BLANK]

APPENDIX C

AXES SYSTEMS AND AIR TARES Axes Coordinate Systems and Transformations

Measurement Axes Set

The model forces and moments were measured in balance axes with origin fixed in the model at a point 28.6 inches forward of the aft perpendicular and 5.875 inches above the baseline. The orthogonal balance axes system rotates with the model in yaw, and remains parallel to the water surface with the z-axis vertical. This system is illustrated in Sketch C1 where the positive sense of the forces and moments is indicated. The hydrodynamic forces and moments acting on the hull measured in balance axes are denoted by suffix "m". The vertical force, Zm, is positive upward.

Sketch C1 Measurement Axes

- ø roll angle, positive starboard side down
- 8 trim angle, positive bow up
- β yaw angle, positive bow to starboard
- Xm longitudinal force, positive toward the stern
- Ym lateral force, positive to starboard
- Zm vertical force, positive upward
- K_m roll moment, positive starboard side down
- Mm pitch moment, positive bow up
- Nm yaw moment, positive bow to starboard

Free-to-trim testing

In free-to-trim tests of planing boats it is customary to tow the model through its center of gravity so that the pitching moment about the towpoint is zero. In the present tests of the 120 ft WPB the model CG was below the towpoint or center of moments, CM, due to model ballasting constraints. The longitudinal position of both the CM and the CG was 26.6 inches forward of the AP, as noted in Table 1. However the height of the CM was 5.875 inches above the baseline whereas the height of the CG, for the 135 \(\ell\)-ton condition, was only 5.35 inches. The CG was vertically below the CM when the baseline was horizontal and a small bow down moment developed when the model trimmed up from this position. Since the baseline has a positive inclination of 0.76 degrees relative to the afterbody keel, the trim is -0.76 degrees when the baseline is horizontal.

The magnitude of the applied moment about the model CM due to the CG offset is:

 $\Delta \ (\text{VCG-VCM}) \ \text{sin} (\theta + 0.76) \ \cos \emptyset \ , \ \text{lb-ft} \qquad (\text{C.1}$ The model scale value of the leading multiplying constant in Equation C.1 is -2.206 at the 135 ℓ -ton condition, and -2.244 at the 155 ℓ -ton condition. The applied pitching moments calculated from Equation C.1 have been tabulated in

It may be noted here that the model CG's at both displacements were slightly higher than the Design CG.

Body Coordinate System A

the pitching moment columns in Tables 5 to 13.

In order to describe the position of the hull on the surface of the water the US Coast Guard specifies a set of right-handed, orthogonal axes fixed in the body and moving with it. This system is referred to as System A and it is very similar to the measurement axes set. In System A, unlike the measurement set, the longitudinal force, XA, is positive toward the bow, and the vertical force, ZA, is positive downward. The lateral force, YA, is still positive to starboard.

In System A moments are positive in a clockwise sense looking in the positive direction of the axes. The same convention applies to angular displacements. The positive sense of the angular displacements and moments is the same in both System A and the measurement set. It may be noted that System A is a consistent right-handed orthogonal set of axes.

However the origins of the two systems do not coincide. The origin of System A is specified to be at the craft Design CG, which corresponds to a point in the model 28.6 inches forward of the AP and 5.047 inches above the baseline. The origin of the measurement system is at the test center of moments (CM), also 28.6 inches forward of the AP but 5.875 inches above the baseline. Therefore the conversion to System A involves a translation of the axes, which does not affect the magnitude of the forces but does affect the moments.

If the coordinates of the test center of moment, CM, in Axes System A are (x_A, y_A, z_A) , then the following equations are obtained for the forces and moments in the new translated System A:

$$X_A = -X_m$$
 $K_A = K_m + Z_A Y_m + Y_A Z_m$
 $Y_A = +Y_m$ $M_A = M_m + Z_A X_m - X_A Z_m$ (C.2
 $Z_A = -Z_m$ $N_A = N_m - Y_A X_m - X_A Y_m$

When the model is at -0.76 degrees pitch and zero roll, the CG is vertically below the center of moments at a distance of ℓ ft. While Axes System A yaws with the model, it does not pitch or roll, therefore the following expressions are found for the coordinates of the CG:

$$x_{A} = \ell \cos \phi \sin (\theta + 0.76)$$

$$y_{A} = -\ell \sin \phi$$

$$z_{A} = \ell \cos \phi \cos (\theta + 0.76)$$
(C.3)

In these tests the distance £ from the CM to the Design CG was 0.069 ft model scale. Equations C.2 and C.3 are used to convert the measured forces and moments into Body Coordinate System A with origin at the Design CG.

Body Coordinate System B

In order to describe the position of the hull on the surface of the water the US Coast Guard specifies a second set of right-handed, orthogonal axes fixed in the body and moving with it. The origin of this system is fixed at the Design CG. Therefore the origins of System A and System B coincide.

Coordinate System B is a right-handed body axes system, with the xz plane fixed in the plane of symmetry of the model, whose axes rotate with the model in yaw, roll and pitch. In System B the x axis is parallel to the baseline. When the model is at zero roll and -0.76 degrees pitch System B coincides with System A. Sketch C2 indicates the positive sense of the forces and moments in System B:

Sketch C2

Forces and moments in System B are obtained from those in System A by the following transformations:

$$\begin{array}{l} X_{B} = X_{A} \cos \left(\theta + 0.76\right) - Z_{A} \sin \left(\theta + 0.76\right) \\ Y_{B} = X_{A} \sin \phi \sin \left(\theta + 0.76\right) + Y_{A} \cos \phi + Z_{A} \sin \phi \cos \left(\theta + 0.76\right) \\ Z_{B} = X_{A} \cos \phi \sin \left(\theta + 0.76\right) - Y_{A} \sin \phi + Z_{A} \cos \phi \cos \left(\theta + 0.76\right) \\ K_{B} = K_{A} \cos \left(\theta + 0.76\right) - N_{A} \sin \left(\theta + 0.76\right) \\ M_{B} = K_{A} \sin \phi \sin \left(\theta + 0.76\right) + M_{A} \cos \phi + N_{A} \sin \phi \cos \left(\theta + 0.76\right) \\ N_{B} = K_{A} \cos \phi \sin \left(\theta + 0.76\right) - M_{A} \sin \phi + N_{A} \cos \phi \cos \left(\theta + 0.76\right) \\ \end{array}$$

Normalization

The forces and moments are reported in dimensional form, model scale, and in non-dimensional form. The following non-dimensionalizing scheme is used:

Dimensional Quantity	Non-Dimensional Form			
Force, F 1b	F/qb²			
Moment, M 1b-ft	M/qb ³			
Velocity, V fps	V/√(gb)			
Rate of turn,				
Ω radians/second	$\Omega/(V/L) = \Omega/(\Omega R/L) = L/R$			

where q = dynamic pressure, $\frac{1}{2} \rho V^2$, psf

b = maximum beam at chine, ft

V = velocity of pivot point, fps

g = acceleration due to gravity, fps2

R = radius of turn, ft

L = boat length overall, ft

Air Tares

When a model is tested on the rotating arm it experiences both inertia forces, due to angular acceleration, and hydrodynamic forces. The inertia forces are measured by running the model in air above the water surface. The resulting forces are largely due to centrifugal acceleration and are spoken of as air tares. The measured air tares are given in Table C.

The longitudinal and lateral forces (X and Y shown in Sketch C1) are resolved into a Side-force, acting at right angles to the velocity vector and positive to starboard, and a Drag acting parallel and opposite to the velocity vector:

Side-force =
$$Y \cos \beta - X \sin \beta$$
 (C.5)

Drag =
$$Y \sin \beta + X \cos \beta$$
 (C.6)

Expressions for the Side-force and Drag air tares (SF_a and D_a) were found from an analysis of the test data:

$$SF_a = -1.427 \text{ V}^2/\text{R}$$
 (C.7)

$$D_{a} = 0.00135 \text{ V}^{2} \tag{C.8}$$

where V = velocity, fps

R = radius of turn, ft

The longitudinal and lateral air tares $(X_a \text{ and } Y_a)$ in measurement axes are found from the side-force and drag:

$$X_a = D_a \cos \beta - SF_a \sin \beta$$
 (C.9)

$$Y_a = D_a \sin \beta + SF_a \cos \beta$$
 (C.10)

Roll moments and yaw moments were also found from the air tare data:

$$K_a = 0.089 Y_a$$
 (C.11)

$$N_a = 0.018 Y_a$$
 (C.12)

The air tares calculated from Equations C.7 to C.12 were subtracted from the measured air tares given in Table C as a check on the analysis, and the resulting small residuals are shown in the lower half of Table C.

TABLE C
AIR TARE TEST RESULTS

Run	Roll deg	Trim deg	Yaw deg	Speed fps	X 1b	Y 1b	K 1b-ft	N 1b-ft
	Rate of	turn,	L/R =	0.412	Radius of	turn = 1	6 ft (mode	1)
306 300 303 307 301 304 308 302 305	0000000000	0 0 0 0 0 0 0 0 0	-6 0 12 -6 0 12 -6 0	4.89 4.91 4.91 8.81 8.76 8.76 13.93 13.93 13.97	-0.3 0.0 0.5 -0.6 0.1 1.6 -1.6 0.3 3.9	-2.2 -2.1 -2.1 -6.9 -6.9 -6.6 -17.4 -17.3 -16.7	-0.19 -0.18 -0.17 -0.62 -0.62 -0.57 -1.58 -1.51 -1.38 -1.66	-0.1 -0.1 0.0 -0.2 -0.2 -0.5 -0.3 0.0 -0.5
309	20 Rate of				Radius of			
115 114 120 116 113 119 117 112	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	-6 0 12 -6 0 12 -6 0	4.93 4.94 4.95 8.89 8.88 8.85 13.96 13.94 13.90	-0.1 0.0 0.3 -0.3 0.1 0.8 -0.7 0.2 2.0	-1.1 -1.0 -3.5 -3.5 -3.3 -8.7 -8.6 -8.3	-0.08 -0.09 -0.10 -0.30 -0.29 -0.28 -0.80 -0.75 -0.73	0.0 0.0 -0.1 0.0 0.0 -0.3 -0.1
					Radius of			el)
306 300 303 307 301 304 308 302 305 309	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	-6 0 12 -6 0 12 -6 0 12 -6	4.89 4.91 4.91 8.81 8.76 8.76 13.93 13.93 13.97 13.99	-0.1 -0.0 0.0 -0.0 -0.1 -0.1 0.0 0.0 -0.1	-0.1 0.0 -0.0 -0.0 -0.1 0.1 -0.2 0.0 0.3 -0.0	-0.00 0.01 0.02 -0.01 -0.01 0.02 -0.05 0.03 0.13 -0.12	-0.1 -0.1 0.0 -0.1 -0.1 -0.2 0.0 0.3 -0.2
	Rate of	turn,	L/R =	0.206	Radius of	turn = 3	32 ft (mod	el)
115 114 120 116 113 119 117 112	0 0 0 0 0 0 0	00000000	-6 0 12 -6 0 12 -6 0	4.93 4.94 4.95 8.89 8.85 13.96 13.94 13.99	-0.0 -0.0 -0.0 -0.0 -0.0 -0.1 -0.1 -0.0 C6	-0.0 -0.0 0.1 0.0 0.0 0.1 -0.0 0.1	0.02 0.01 -0.01 0.01 0.02 0.02 -0.03 0.02 0.01	0.0 0.0 0.0 -0.0 0.1 0.1 -0.1 0.3

APPENDIX D

GRAPHICAL PRESENTATION OF THE BARE HULL DATA

Presentation of the Data

The data is presented graphically in the following order: Longitudinal Force Coefficient, X', Lateral Force Coefficient, Y', Roll Moment Coefficient, K', and Yaw Moment Coefficient, N'. X', Y' and N' are a function of the Yaw Angle, Psi, the Roll Angle, Phi, and the Dimensionless Angular Velocity, L/R. Since it is impossible to visualize a four dimensional space, the data is presented in a series of two dimensional plots. For example, X' is first plotted versus the Yaw Angle, Psi, with the Roll Angle, Phi, as a parameter for three successive values of the Dimensionless Angular Velocity, L/R, then versus the Yaw Angle, Psi, with the Dimensionless Angular Velocity, L/R as a parameter for four successive values of the Roll Angle, Phi, and finally versus the Dimensionless Angular Velocity, L/R with the Roll Angle, Phi, as a parameter for five successive values of the Yaw Angle, Psi, for a speed of 12.5 Knots. It is felt that these plots furnish sufficient insight into the relationship between the dependent variable X' and the independent variables Psi, Phi and L/R. The sequence of graphs is then repeated for a speed of 35 knots. The plots for Y' and N' follow this same sequence.

The Roll Moment Coefficient, K', is a function of the Roll Angle, Phi, the Yaw Angle, Psi, and the Dimensionless Angular Velocity, L/R. K' is first plotted versus the Roll Angle, Phi, with the Yaw Angle, Psi, as a parameter for three successive values of the Dimensionless Angular Velocity, L/R, then versus the Roll Angle, Phi, with the Dimensionless Angular Velocity, L/R as a parameter for five successive values of the Yaw Angle, Psi and finally versus the Dimensionless Angular Velocity, L/R, with the Yaw Angle, Psi as a parameter for four successive values of the Roll Angle, Phi, at 12.5 knots. The sequence is then repeated for a speed of 35 knots.

Uniform scales are used on the force and moment axes, so that a direct comparison may be made between the values of X' and Y', and K' and N'. Crosses are always used to represent the zero values of a parameter, and the line through these data points is always solid. Plus and minus values of a parameter are always denoted by empty and solid symbols. Thus if the Roll Angle, Phi, is a parameter, +10 degrees may be an empty square, and then -10 will be a solid square. This is done to permit the reader to spot functional symmetry, or the lack thereof.

Discussion of the Graphs

The Longitudinal Force Coefficient data are presented in Figures D-1 through D-24. The data for 12.5 knots varies from about -0.06 to -0.09. It exhibits a moderate dependence on the Yaw Angle, Psi, a small dependence on the Roll Angle, Phi, and a moderate dependence on the Dimensionless Angular Velocity, L/R. The data for 35 knots varies from about -0.025 to -0.04. There is a small dependence on the Yaw Angle, Psi, and the Dimensionless Angular Velocity, L/R, and a moderate dependence on the Roll Angle, Phi. The Longitudinal Force Coefficient has a smaller value at 35 knots than it does at 12.5 knots because the longitudinal force is divided by the square of the velocity when calculating the coefficient.

The Lateral Force Coefficient data are given in Figures D-25 through D-48. The data for 12.5 and 35 knots shows a strong , somewhat nonlinear, dependence on the Yaw Angle, Psi, and a moderate dependence on Roll Angle, Psi, and Dimensionless Angular Velocity, L/R

The Roll Moment Coefficient data are presented in Figures D-49 through D-72. The data for 12.5 knots display a strong dependence on the Roll Angle, Phi, and a small dependence on Yaw Angle, Psi, and Dimensionless Angular Velocity, L/R. The plots of K' versus Roll Angle, Phi, differ from the normal righting arm curves that naval architects are used to seeing. The righting arm curve gives the roll moment required to produce a given roll angle, whereas these curves give the equal and opposite reaction to this moment. These curves represent the moment exerted by the water on the boat. The data for 35 knots exhibit small to moderate dependence on Roll Angle, Phi, Yaw Angle, Psi, and Dimensionless Angular Velocity, L/R. This hull appears to have less transverse stability at 35 knots than it does at 12.5 knots.

The Lateral Moment Coefficient data are given in Figures D-73 through D-96. The data for 12.5 knots demonstrate a strong, nonlinear dependence on the Yaw Angle, Psi, the Roll Angle Phi, and the Dimensionless Angular Velocity, L/R. The data for 35 knots shows a moderate, nonlinear dependence on the Yaw Angle, Psi, the Roll Angle, Phi, and the Dimensionless Angular Velocity, L/R.

A more in depth analysis of the data, involving the use of symmetry arguments and mathematical curve fitting techniques would permit a more insightful discussion of the data, and the prediction of turning and maneuvering trajectories. However, this sort of analysis is beyond the scope of the work reported here.

<u>Acknowledgment</u>

Appendix D was prepared by personnel at the USCG Research and Development Center, Groton, CT. MS. Elizabeth Weaver prepared all of the graphs. Her work is particularly appreciated.

1 20 FT NOTIONAL WPB DESIGN Displacement 1 35 LTons L/R=0, Speed = 1 2.5 Knots

Figure D-1. X' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.000 and a speed of 12.5 knots.

120 FT NOTIONAL WPB DESIGN Displacement 135 LTons L/R=.206, Speed = 12.5 Knots

Figure D-2. X' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.206 and a speed of 12.5 knots.

1 20 FT NOTIONAL WPB DESIGN Displacement 1 35 LTons L/R=.412, Speed = 12.5 Knots

Figure D-3. X' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.412 and a speed of 12.5 knots.

Displacement 135 LTons ROLL ANGLE, Phi (deg) = -10, Speed = 12.5 Knots

Figure D-4. X' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of -10 degrees and a speed of 12.5 knots.

Displacement 135 LTons ROLL ANGLE, Phi (deg) = 0, Speed = 12.5 Knots

Figure D-5. X' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 0 degrees and a speed of 12.5 knots.

Displacement 135 LTons ROLL ANGLE, Phi (deg) = 10, Speed = 12.5 Knots

Figure D-6. X' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 10 degrees and a speed of 12.5 knots.

Displacement 135 LTons ROLL ANGLE, Phi (deg) = 20, Speed = 12.5 Knots

Figure D-7. X' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 20 degrees and a speed of 12.5 knots.

Displacement 135 LTons Yaw Angle, Psi (deg) = -6, Speed = 12.5 Knots

Figure D-8. X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of -6 degrees and a speed of 12.5 knots.

Displacement 1 35 LTons Yaw Angle, Psi (deg) = 0, Speed = 12.5 Knots

Figure D-9. X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 0 degrees and a speed of 12.5 knots.

Displacement 1 35 LTons Yaw Angle, Psi (deg) = 6, Speed = 1 2.5 Knots

Figure D-10. X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 6 degrees and a speed of 12.5 knots.

Displacement 1 35 LTons Yaw Angle, Psi (deg) = 9, Speed = 12.5 Knots

Figure D-11. X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 9 degrees and a speed of 12.5 knots.

Displacement 135 LTons Yaw Angle, Psi (deg) = 12, Speed = 12.5 Knots

Figure D-12. X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 12 degrees and a speed of 12.5 knots.

120 FT NOTIONAL WPB DESIGN Displacement 135 LTons L/R=0, Speed = 35 Knots

Figure D-13. X' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.000 and a speed of 35 knots.

Figure D-14. X' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.206 and a speed of 35 knots.

1 20 FT NOTIONAL WPB DESIGN Displacement 1 35 LTons L/R=.412, Speed = 35 Knots

Figure D-15. X' versus Psi with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.412 and a speed of 35 knots.

Displacement 1 35 LTons ROLL ANGLE, Phi (deg) = -10, Speed = 35 Knots

Figure D-16. X' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of -10 degrees and a speed of 35 knots.

Displacement 1 35 LTons ROLL ANGLE, Phi (deg) = 0, Speed = 35 Knots

Figure D-17. X' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 0 degrees and a speed of 35 knots.

Displacement 135 LTons ROLL ANGLE, Phi (deg) = 10, Speed = 35 Knots

Figure D-18. X' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 10 degrees and a speed of 35 knots.

1 20 FT NOTIONAL WPB DESIGN Displacement 1 35 LTons ROLL ANGLE, Phi (deg) = 20, Speed = 35 Knots

Figure D-19. X' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 20 degrees and a speed of 35 knots.

Displacement 1 35 LTons Yaw Angle, Psi (deg) = -6, Speed = 35 Knots

Figure D-20. X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of -6 degrees and a speed of 35 knots.

Displacement 1 35 LTons Yaw Angle, Psi (deg) = 0, Speed = 35 Knots

Figure D-21. X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 0 degrees and a speed of 35 knots.

Displacement 1 35 LTons Yaw Angle, Psi (deg) = 6, Speed = 35 Knots

Figure D-22. X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 6 degrees and a speed of 35 knots.

Displacement 1 35 LTons Yaw Angle, Psi (deg) = 9, Speed = 35 Knots

Figure D-23. X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 9 degrees and a speed of 35 knots.

Displacement 135 LTons Yaw Angle, Psi (deg) = 12, Speed = 35 Knots

Figure D-24. X' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 12 degrees and a speed of 12.5 knots.

Notional Design at an L/R of 0.000 and a speed of 12.5 knots.

Figure D-49. K' versus Phi with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB

1 20 FT NOTIONAL WPB DESIGN Displacement 1 35 LTons L/R=.206, Speed = 12.5 Knots

Figure D-50. K' versus Phi with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.206 and a speed of 12.5 knots.

120 FT NOTIONAL WPB DESIGN Displacement 135 LTons L/R=.412, Speed = 12.5 Knots

Notional Design at an L/R of 0.412 and a speed of 12.5 knots.

Figure D-51. K' versus Phi with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB

Displacement 135 LTons Yaw Angle, Psi = -6, Speed = 12.5 Knots

Figure D-52. K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of -6 degrees and a speed of 12.5 knots.

Displacement 135 LTons Yaw Angle, Psi = 0, Speed = 12.5 Knots

Figure D-53. K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 0 degrees and a speed of 12.5 knots.

Displacement 135 LTons Yaw Angle, Psi = 6, Speed = 12.5 Knots

Figure D-54. K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 6 degrees and a speed of 12.5 knots.

Displacement 135 LTons Yaw Angle, Psi = 9, Speed = 12.5 Knots

Figure D-55. K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 9 degrees and a speed of 12.5 knots.

Displacement 135 LTons Yaw Angle, Psi = 12, Speed = 12.5 Knots

Figure D-56. K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 12 degrees and a speed of 12.5 knots.

Displacement 135 LTons Roll Angle, Phi (deg) = -10, Speed = 12.5 Knots

Figure D-57. K' versus L/R with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of -10 degrees and a speed of 12.5 knots.

Displacement 135 LTons Roll Angle, Phi (deg) = 0, Speed = 12.5 Knots

Notional Design at a Phi of 0 degrees and a speed of 12.5 knots.

Figure D-58. K' versus L/R with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB

Displacement 135 LTons Roll Angle, Phi (deg) = 10, Speed = 12.5 Knots

Figure D-59. K' versus L/R with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 10 degrees and a speed of 12.5 knots.

Displacement 135 LTons
Roll Angle, Phi (deg) = 20, Speed = 12.5 Knots

Figure D-60. K' versus L/R with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 20 degrees and a speed of 12.5 knots.

120 FT NOTIONAL WPB DESIGN Displacement 135 LTons L/R=0, Speed = 35 Knots

Notional Design at an L/R of 0.000 and a speed of 35 knots.

Figure D-61. K' versus Phi with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB

1 20 FT NOTIONAL WPB DESIGN Displacement 1 35 LTons L/R=.206, Speed = 35 Knots

Figure D-62. K' versus Phi with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.206 and a speed of 35 knots.

Figure D-63. K' versus Phi with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at an L/R of 0.412 and a speed of 35 knots.

Displacement 135 LTons Yaw Angle, Psi = -6, Speed = 35 Knots

Figure D-64. K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of -6 degrees and a speed of 35 knots.

Displacement 135 LTons Yaw Angle, Psi = 0, Speed = 35 Knots

Figure D-65. K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 0 degrees and a speed of 35 knots.

Displacement 135 LTons Yaw Angle, Psi = 6, Speed = 35 Knots

Figure D-66. K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 6 degrees and a speed of 35 knots.

Displacement 135 LTons Yaw Angle, Psi = 9, Speed = 35 Knots

Notional Design at a Phi of 9 degrees and a speed of 35 knots.

Figure D-67. K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB

Displacement 135 LTons Yaw Angle, Psi = 12, Speed = 35 Knots

Figure D-68. K' versus Phi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 12 degrees and a speed of 35 knots.

Displacement 135 LTons Roll Angle, Phi (deg) = -10, Speed = 35 Knots

Figure D-69. K' versus L/R with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of -10 degrees and a speed of 35 knots.

Displacement 135 LTons Roll Angle, Phi (deg) = 0, Speed = 35 Knots

Figure D-70. K' versus L/R with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 0 degrees and a speed of 35 knots.

Displacement 135 LTons Roll Angle, Phi (deg) = 10, Speed = 35 Knots

Figure D-71. K' versus L/R with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 10 degrees and a speed of 35 knots.

Displacement 135 LTons Roll Angle, Phi (deg) = 20, Speed = 35 Knots

Figure D-72. K' versus L/R with Psi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 20 degrees and a speed of 35 knots.

Displacement 135 LTons ROLL ANGLE, Phi (deg) = -10, Speed = 12.5 Knots

Figure D-76. N' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of -10 degrees and a speed of 12.5 knots.

Displacement 135 LTons ROLL ANGLE, Phi (deg) = 10, Speed = 12.5 Knots

Figure D-78. N' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 10 degrees and a speed of 12.5 knots.

Displacement 135 LTons ROLL ANGLE, Phi (deg) = 20, Speed = 12.5 Knots

Figure D-79. N' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of 20 degrees and a speed of 12.5 knots.

Figure D-84. N' versus L/R with Phi as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Psi of 12 degrees and a speed of 12.5 knots.

Displacement 135 LTons ROLL ANGLE, Phi (deg) = -10, Speed = 35 Knots

Figure D-88. N' versus Psi with L/R as a parameter, for a 135 L. Ton 120 Ft. WPB Notional Design at a Phi of -10 degrees and a speed of 35 knots.

Displacement 1 35 LTons ROLL ANGLE, Phi (deg) = 10, Speed = 35 Knots

