# **COMP330 Assignment 1 Report**

Name: Benjamin Rendell Student ID: 44655010

Features implemented in this assignment:

| Feature                   | Mark | Check if used |
|---------------------------|------|---------------|
| Height map modelling      | 20%  | X             |
| Trees                     | 5%   | X             |
| Textured terrain          | 10%  | X             |
| Multiple textures         | 5%   |               |
| Player movement (simple)  | 10%  | X             |
| Player movement (complex) | 15%  |               |
| First-person perspective  | 10%  | X             |
| camera                    |      |               |
| + zoom                    | 5%   | X             |
| Third person orthographic | 5%   |               |
| camera                    |      |               |
| + zoom                    | 10%  |               |
| Directional light         | 5%   | X             |
| Point light               | 5%   |               |
| Smooth shading            | 10%  |               |
| Screen-space effects      | 5%   |               |
| Transparency              | 5%   |               |
| <b>TOTAL</b> (max 100%)   |      |               |

## Heightmap Terrain



## Implemented in:

• terrain.js:1-111 – initialisation and render code for terrain and heightmap

## Trees



- tree.js:1-179 initialisation and render code for a single tree
- main.js:166-178 store tree count in array and set their y positions on heightmap
- main.js:260-262 render tree array

## Simple Player Movement





- player.js:1-95 initialisation code for player
- player.js:88-95 initialises player's current position & heading using .json file
- player.js:140-167 render code for player
- input.js:1-87 Registers keyboard inputs using a global superclass inputManager for inserting controls to the scene.
- player.js:100-114 player control logic & math, player translates based on current yaw rotation.
- player.js:116-128 level bounds logic, prevents player from moving outside of terrain.
- player.js:130-140 calculate player's height based on their current position using the heightmap.

First-Person Camera



- player.js:173-198 initialisation and render code for an empty object
- main.js:194-207 camera update math & logic to move camera based on player
- main.js:232-241 calculate camera's projection matrix
- main.js:244-251 calculate player's view matrix; bind cameras focus point to the empty object.
- player.js:181-186 math and update logic to move empty object at center of the player's view port.

**Directional Lighting** 



All the screenshots were taken after lighting was implemented so all the screenshots are displaying my final lighting model

- main.js:41-70 fragment shader code
- main.js:56-62 basic math for implementing directional lighting.
- main.js:146-152 initalises shader location, intensity, reflection and ambience variables. These control where and how the directional light is displayed. I've chosen to shine the light across the vector(-1, 5, 0), this angles the light as seen in the image above.

#### Zoom



## Implemented in:

- input.js:66-84 onwheel event detection
- player.js:181-186 empty object position offset
- main.js:194-214 alters camera distance variable based on mousewheel flags and emptyOffset value.

## **Texturing**



- main.js:5-23 2D uv coordinates
- main.js:41-70 parse 2D uv coordinates to texture2D then apply colour and shading
- texture.js:10-25 fixed variable names and values to enable both textures and colours to render.
- terrain.js:12-109 applies uv mapping to each terrain tile to enable the terrain to render.
- main.js:154-263 instantiates and parses textures to render functions

- tree.js:173-176 applies blank texture, to enable rendering
- grid.js:72-75 applies blank texture, to enable rendering
- player.js:165-168 applies blank texture, to enable rendering