

Author: Nikita Kitaev, Lukaz Kaiser, Anselm Levskaya

Institue : Google Research

Paper: https://arxiv.org/abs/2001.04451

github: https://github.com/lucidrains/reformer-pytorch

Arix uploaded date: 18 Feb 2020 / ICLR 2020

Contents

- Abstract
- Introduction
- Method
- Experiements
- Conclusion

Abstract

Reformer: The efficient transformer

-problem

- Transformer attention structure $O(n^2)$ complexity problem
- Feed Foward Layer memory problem -> all outputs of attention layer applied (512 inside -2048)
- N-stacked Residual connection memory problem -> gradient check point

-Contribution

- Attend on similar pair
- Point out that 1) high-impact word pairs are similar to each other in the embedding space, and 2) these pairs can be quickly found using Locality-Sensitive Hashing (LSH).
- Chunking data point
- Data point chunking can reduce memory regardless feed-forward layer position
- Reversible layer
- Residual connection can be converted as reversible (Back propagation, recover weight)

Locality-Sensitive Hahsing

가까운 값들끼리 가까운 Hash값을 가지도록 Hashing하는 방법

-> Locality-Sensitive Hashing

- An operation that compares actual data values is absolutely necessary.
- The comparison operation can be approximated as an operation on the hash value.

- Locality-Sensitive Hahsing
 - How to machine can make locality-sensitive hash?
 - Projection method

Shared plane -> close value (+ - sign)

- Locality-Sensitive Hahsing
 - Angular LSH

Locality-Sensitive Hahsing

■ X1 = (3,4) X2 = (-12,5) X1' = (3/5, 4/5) X2' = (-12/13, 5/13) Hash X1 = (1, 4, 2) Hash X2 = (2, 2, 3)

•
$$Y1 = (4,3)$$
 $Y' = (4/5, 3/5)$ Hash $Y1 = (1,4,2)$

$$Hash X1 = Hash Y1$$

- Reversible Network
 - Residual connection (Resnet or Transformer)

$$y = x + F(x)$$
 x -> y possible but y -> x

$$x = (x1,x2)$$
 $y = (y1,y2)$ pair representation

$$y_1 = x_1 + F(x_2), y_2 = x_2 + G(y_1)$$

$$egin{aligned} x_2 &= y_2 - G(y_1) \ x_1 &= y_1 - F(x_2) \end{aligned}$$
 -> reversible calculation !

Assumption

Query
$$(Q) = Key(K)$$

- -If dataset is enough, not decrease performance of transformer
- LSH Attentin to Transformer
 - Q = K (each data query)

- LSH applied on each data point & Bucketing

Chunking

- Attention weight calculation
- 1. Two data point should be in same bucket (same color)
- 2. Two data point should be in same chunck or end point attention should be the next chuck of start point attention
- 3. Q=K -> Self-attention always large weight -> not allow self-attention

Linear complexity

data point length: 1

chunk number: c

chunked part length: 1/c

Attentio number is portion of $1 \times (21/c)^2$

if c is large then, approximation to linear complexity

Feed Foward Network with Reversible Network

Memory reduce from reversible network

$$y_1 = x_1 + F(x_2), y_2 = x_2 + G(y_1)$$

$$y_1 = x_1 + Attention(x_2)$$

$$y_2 = x_2 + FeedForward(y_1)$$

• 64K sequence -> 16K chunk! (each chunck has 4 data)

Model Type	Memory Complexity	Time Complexity
Transformer	$\max(bld_{ff},bn_hl^2)n_l$	$(bld_{ff} + bn_h l^2)n_l$
Reversible Transformer	$\max(bld_{ff},bn_hl^2)$	$(bn_h ld_{ff} + bn_h l^2)n_l$
Chunked Reversible Transformer	$\max(bld_{model}, bn_h l^2)$	$(bn_h ld_{ff} + bn_h l^2)n_l$
LSH Transformer	$\max(bld_{ff},bn_hln_rc)n_l$	$(bld_{ff} + bn_h n_r lc)n_l$
Reformer	$\max(bld_{model}, bn_h ln_r c)$	$(bld_{ff} + bn_h n_r lc)n_l$

Ų

Assumption prove

- Three main assumption
 - 1. Reformer structure Q = K
 - 2. Reformer attention block -> reversible layer
 - 3. LSH attention -> not decrease performance of transformer & Linear complexity
- Assumption 1 : O= K

Assumption prove

Assumption 2: Reversible layer

- No significant difference

Assumption prove

Assumption 3: LSH attention

More parallel hashes -> lower gap from full attention

Assumption prove

Assumption 3: LSH attention

- Performance (bits per dimension)
- Consistent speed on length

Appendix

- Angular LSH
- Magnitude / norm
- Angular LSH -> Transformer Layer normalization (scale is not important)
- cosine similiarty -> Comparison between Euclidean space and Spherical space

LSH validty

Eval Train	Full Attention	LSH-8	LSH-4	LSH-2	LSH-1
Full Attention	100%	94.8%	92.5%	76.9%	52.5%
LSH-4	0.8%	100%	99.9%	99.4%	91.9%
LSH-2	0.8%	100%	99.9%	98.1%	86.8%
LSH-1	0.8%	99.9%	99.6%	94.8%	77.9%

End of presentation