Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних

циклічних алгоритмів»

Варіант<u>22</u>

Виконав студент	ІП-13, Музичук Віталій Андрійович		
•	(шифр, прізвище, ім'я, по батькові)		
Перевірив			
1 1	(прізвище, ім'я, по батькові)		

Лабораторна робота 3 Дослідження ітераційних циклічних алгоритмів

Мета — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 22

Із заданою точністю обчислити значення математичної константи е:

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

Постановка задачі

Для обчислення константи e з заданою точністю нам необхідно застосувати ітераційний цикл, щоб знайти частину нескінченної прогресії, де n-ний член визначається за формулою $\frac{1}{i!}$. Цикл працює допоки модуль різниці останнього і передостаннього члена більший за задане число **accuracy**. Якщо твердження справедливе, то до константи e додаємо наступний член послідовності та продовжуємо цикл, якщо ж ні — ми знайшли шукане число, тому дія циклу припиняється і виводиться значення e.

Побудова математичної моделі

Складемо таблицю змінних

Змінна	Тип	Ім'я	Призначення
Задана точність обчислення	Дійсний	accuracy	Початкове значення
Передостанній член ряду	Дійсний	previous	Проміжне значення
Поточний член ряду	Дійсний	current	Проміжне значення
Різниця між останнім та передостаннім членом ряду	Дійсний	difference	Проміжне значення

Алгоритми та структури даних. Основи алгоритмізації

Значення константи	Дійсний	e	Кінцеве значення
Значення факторіалу	Цілий	fact	Проміжне значення
Ітераційна змінна	Цілий	i	Ітераційна змінна

- 1. Для факторіалу числа будемо користуватися змінною **fact**, яка буде обчислюватися кожну ітерацію за формулою **fact** := **fact** * i.
- 2. Поточний член ряду (current) визначається за формулою 1 / fact
- 3. Передостанній (**previous**) член буде переприсвоюватися під час виконання циклу **previous** := **current**
- 4. Значення difference визначаємо за формулою Abs(current previous)
- 5. Значення константи e визначаємо за формулою $e := e + \mathbf{current}$
- 6. Для знаходження модуля числа будемо використовувати функцію Abs().

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначаємо основні дії
- Крок 2. Вводимо данні та декларуємо змінні
- Крок 3. Деталізуємо дію знаходження difference
- Крок 4. Деталізуємо дію ітераційного циклу

Псевдокод

крок 1

початок

вводимо данні та декларуємо змінні знаходимо **difference**

деталізація дії циклу

виведення е

кінець

крок 2

початок

введення accuracy

e := 1

i := 1

fact := 1

previous := 0

current := 1 / fact

знаходимо difference

знаходження константи е

виведення е

кінець

крок 3

початок

введення accuracy

e := 1

i := 1

fact := 1

previous := 0

current := 1 / fact

difference = Abs(current - previous)

деталізація дії циклу

виведення *е*

кінець

крок 4

початок

```
введення accuracy
```

```
e := 1
i := 1
fact := 1
previous := 0
current := 1 / fact
difference = Abs(current - previous)
поки difference > accuracy
e := e + current
i := i + 1
fact := fact * i
previous := current
```

current := 1 / fact

difference := Abs(current - previous)

все повторити

виведення *е*

кінець

Блок-схема

Крок 1

Крок 3

Випробування алгоритму:

Ţ	Дія
1	Початок
1 I	Введення: difference := 0.01
	e := 1
	i := 1
	fact := 1
	previous := 0
6	current := 1
7	difference := 1
8	e := 2
9 i	i := 2
10 f	fact := 2
11 p	previous := 1
12 c	current $:= 0.5$
13 c	difference := 0.5
14 ε	e := 2.5
15 i	i := 3
16 f	fact := 6
17 r	previous := 0.5
18 c	current := 0.166666666667
19 d	difference := 0.3333333333
20 ε	e := 2.666666667
21 i	i := 4
22 f	fact := 24
23 r	previous := 0.1666666666667
24 0	current := 0.04166666666667
25	difference := 0.125
26 e	e := 2.70833333334
27 i	i := 5
28 f	fact := 120
29 r	previous := 0.041666666666667
30 c	current := 0.008333333333
31 (difference := 0.0333333333
32 ε	e := 2.716666666667
33 i	i := 6
34 f	fact := 720
35 p	previous := 0.008333333333
36	current := 0.001388888888888889
37	difference := 0.006944444445

38 Виведення: *e* := 2.716666666667

Висновки:

Ми дослідили оператори повторення дій та набули практичних навичок їх використання під час складання циклічних програмних специфікацій, закріпили вміння декомпозувати задачу. В результаті виконання лабораторної роботи ми отримали алгоритм для обчислення суми відрізка нескінченного ряду.