Report

第25組:吳東鴻、曾靖驊、孫念恩、謝富丞、鄭益和

1. What environments the members are using?

● 使用 Python 3

2. Basic statistic visualization of the data?

(1) Iris

● 原始資料:iris.csv

● 程式:iris.py

● 執行程式所產生的檔案:iris_data_quality_report.csv,preprocessed_iris.csv

Basic statistic visualization :

iris data quality report.csv 資料如下:

1	Continuous Features										
2	Feature	Count	Miss%	Card	Min	1st Qrt	Mean	Median	3rd Qrt	Max	Std Dev
3	sepal length	150	0	35	4.3	5.1	5.84	5.8	6.4	7.9	0.83
4	sepal width	150	0	23	2	2.8	3.05	3	3.3	4.4	0.43
5	petal length	150	0	43	1	1.6	3.76	4.35	5.1	6.9	1.76
6	petal width	150	0	22	0.1	0.3	1.2	1.3	1.8	2.5	0.76
7											
8	Categorical Features										
9	Feature	Count	Miss%	Card	Mode	Mode Freq	Mode%	2nd Mode	2nd Mode	2nd Mode%	
10	class	150	0	3	Iris-setosa	50	33.33	Iris-versicolor	50	33.33	

說明:計算 Continuous Features 之個數、資料遺失率、相異值個數、最小值、第一四分位數、算術平均數、中位數、第三四分位數、最大值及標準差。計算 Categorical Features 之個數、資料遺失率、相異值個數、最常出現的值、最常出現的值之個數、最常出現的值之百分比、第二常出現的值、第二常出現的值之個數、第二常出現的值之百分比。

● Training data and testing data: preprocessed_iris.csv 為 iris.csv 經前處理 過資料,可做為 training data 與 testing data

(2) Google play store

● 原始資料:googleplaystore.csv

● 程式: googleplaystore.py

執行程式所產生的檔案: googleplaystore_data_quality_report.csv, preprocessed_googleplaystore.csv

Basic statistic visualization :

googleplaystore_data_quality_report.csv 資料如下:

1	Continuous	Features										
2	Feature	Count	Miss%	Card	Min	1st Qrt	Mean	Median	3rd Qrt	Max	Std Dev	
3	Rating	10841	13.6	39	1	4	4.19	4.3	4.5	5	0.52	
4	Reviews	10841	0	6001	0	38	444111.9	2094	54768	78158306	2927494	
5	Size	10841	0	477	0.01M	4.9M	21.51M	13.0M	30.0M	100.0M	22.59М	
6	Installs	10841	0	21	+0.0	1000.0+	15462912.	100000.0+	5000000.0	100000000	85021647.	42+
7	Price	10841	0	92	\$0.00	\$0.00	\$1.03	\$0.00	\$0.00	\$400.00	\$15.95	
8												
9	Categorical	Features										
10	Feature	Count	Miss%	Card	Mode	Mode Freq	Mode%	2nd Mode	2nd Mode	2nd Mode?	%	
11	App name	10841	0	9660	ROBLOX	9	0.08	CBS Sports	8	0.07		
12	Category	10841	0.01	33	FAMILY	1972	18.19	GAME	1144	10.55		
13	Туре	10841	0.01	2	Free	10040	92.62	Paid	800	7.38		
14	Content Ra	10841	0	6	Everyone	8715	80.39	Teen	1208	11.14		
15	Genres	10841	0.01	119	Tools	842	7.77	Entertainm	623	5.75		
16	Last Updat	10841	0	1377	3-Aug-18	326	3.01	2-Aug-18	304	2.8		
17	Current Ve	10841	0.07	2831	Varies with	1459	13.47	1	809	7.47		
18	Android Ve	10841	0.02	.33	4.1 and up	2451	22.61	4.0.3 and u	1501	13.85		

● Data: preprocessed_googleplaystore.csv 為 googleplaystore.csv 經第一步 前處理過的 data

(3) Google play store user reviews

● 原始資料:googleplaystore user reviews.csv

● 程式:googleplaystore_user_reviews.py

執行程式所產生的檔案:
 googleplaystore_user_reviews_data_quality_report.csv,
 preprocessed_googleplaystore_user_reviews.csv

Basic statistic visualization :

googleplaystore_user_reviews_data_quality_report.csv 資料如下:

1	Continuous Features										
2	Feature	Count	Miss%	Card	Min	1st Qrt	Mean	Median	3rd Qrt	Max	Std Dev
3	Sentiment Polarity	64295	41.78	6492	-1	0	0.18	0.15	0.4	1	0.35
4	Sentiment Subjectivity	64295	41.78	4694	0	0.36	0.49	0.51	0.65	1	0.26
5											
6	Categorical Features										
7	Feature	Count	Miss%	Card	Mode	Mode Freq	Mode%	2nd Mode	2nd Mode	2nd Mode?	76
8	App name	64295	0	1074	CBS Sports	320	0.5	Angry Bird	320	0.5	
9	Translated Review	64295	41.78	27995	Good	247	0.66	Nice	173	0.46	
10	Sentiment	64295	41.78	3	Positive	23998	64.11	Negative	8271	22.1	

● Data: preprocessed_googleplaystore_user_reviews.csv 為 googleplaystore_user_reviews.csv 經第一步前處理過的 data

接著我們針對(2)中的 preprocessed_googleplaystore.csv 和(3)中的 preprocessed_googleplaystore_user_reviews.csv 進行第二步的前處理以產生最後的 training data 與 testing data:

原始資料: preprocessed_googleplaystore.csv, preprocessed_googleplaystore_user_reviews.csv

- 程式: Preprocess_csvs.py
- 執行程式所產生的檔案: preprocessed_googleplaystore.csv, preprocessed_googleplaystore_user_reviews.csv(會覆蓋掉以前的)
- Training data and testing data: preprocessed_googleplaystore.csv 及 preprocessed_googleplaystore_user_reviews.csv 經過第二步的前處理,可 做為 training data 與 testing data

3. Data preprocessing methods?

檢查所有的 data quality reports,根據理論,因為每個 feature 的 missing rate 都沒有大於 60%,且每個 feature 的 Cardinality 都比 1 大,因此沒有必要把任何的 feature 刪除,且每個 feature 的 missing rate 都小於 50%,故採取 Imputation 的方法,也就是對於每個 instance,若碰到有任何 feature 是 missing 的,continuous feature 用算術平均數(Mean),categorical feature 用最常出現的值(Mode)填補上去,以上為第一步的前處理,主要目的是讓所有的 missing value 消失。至於第二步的前處理,是將非必要的一些符號拿掉以讓資料看起來乾淨一點(例如我們將 preprocessed_googleplaystore.csv 中,Installs 的+拿掉,Price 的\$拿掉等),並且把 preprocessed_googleplaystore.csv 的 Installs,Price,Category,Rating 及 Reviews 這些 features 放到 preprocessed_googleplaystore_user_reviews.csv(用 App 來做對應),以利之後的分析。

4. How you generate decision tree and random forest models?

- 原始資料:
 - i. preprocessed iris.csv
 - ii. preprocessed googleplaystore.csv
 - iii. preprocessed googleplaystore user reviews.csv
- 程式:
 - i. Data visualization.py 圖像化分析
 - ii. iris dtree.py 分析 iris dataset
 - iii. google dtree install.py 分析 google play store app 的 installs
 - iv. google dtree rating.py 分析 google play store app 的 rating
- 執行程式所產生的檔案:
 - i. iris_output.png
 - ii. google_output[1-4].png

首先對兩個 dataset 做圖像化分析,

(1) Iris dataset

圖 1. 利用 Python Seaborn 產生三種不同 class 在各 feature 下的散布圖

- 利用圖像化分析 Iris dataset,可以發現三筆不同的 class (Iris 的種類) 在各種 feature 下的分布算是相當分散,應能順利分辨三種 class,因此能用所有 feature 來產生 decision tree。
- Decision tree 在這組 data 中使用到的是 Classifier,因為只有三種 class; criterion 設定為 entropy,max_depth 設為 3 避免 overfitting。
- 切割 Training data 和 Testing data 的比例為 7:3,利用 sklearn 中的 train test split 做分割。
- 最後以 sklearn.metrics 中的 accuracy_score 簡單評估本 model 的好壞。

(2) Google play store dataset

和 Iris dataset 一樣做圖像化分析處理完畢的 preprocessed_googleplaystore.csv (以下簡稱 googleplaystore.csv)以及 preprocessed_googleplaystore_user_reviews.csv (以下簡稱 googleplaystore_user_review.csv)。

在這裡做兩種預測 Installs 以及 Rating。

1. Installs 分析

首先對 googleplaystore.csv 用 Seaborn 做圖像化分析,

圖 2. googleplaystore.csv 中,各 feature 和 Install 數的關聯散布圖 註: 這裡 feature 只取可數值化的部分,Category 中共有 33 筆不同資料,以 0~32 作編號。

接著我們分析 googleplaystore_user_review.csv,觀察其中 App column,可以發現此 data 可能為 googleplaystore.csv 中的部分 App 的 review 内容以及語意分析。 故將 googleplaystore.csv 中 Installs 數、Rating、Category 等資料以 App 為 index 加在 googleplaystore_user_review.csv 各 row 的後面方便作分析。

圖 3. googleplaystore_user_review.csv 中,各 feature 和 Install 數的關聯散布 圖

註: Rating 經過處理 (*100)

- Installs 數為一離散值 (因原本資料無詳細下載數),以 Classifier 做 Decision Tree
- 可以看到,高 Installs 數的 data (圖 2.中偏向紫色的 data),較可能為 Rating 較高 (4~5)、Reviews 較多、Price 為免費 (Price=0)的部分 data,和 Category、Sentiment (Review 語意的正向性)並無明顯關聯。
- 圖 3. 的結果和圖 2. 的預估相同,因資料的重複性可能造成有不太一樣的結果,需兩方比較。
- 因此取 Rating、Reviews、Price 做 Decision Tree model。

2. Rating 分析

對兩個 csv file 做和 Installs 相同的分析步驟

圖 3. googleplaystore.csv 中,各 feature 和 Rating 的關聯散布圖

圖 4. googleplaystore_user_review.csv 中,各 feature 和 Rating 的關聯散布圖

- 從圖 3.、圖 4.中,一樣可以看到和 Installs 類似的結果
- 即 Rating 和 Installs、Price、Reviews 的相關性較高
- 故一樣以此三 Features 做 Decision Tree model
- 因 Rating 為一連續的資料,故以 Regressor 建 Decision Tree model
- 最後以 r2 score 簡單評估本 model 的好壞

因為 Installs 和 Rating 都與 Sentiment 無明顯關聯,故以 googleplaystore.csv 的資料建 decision tree model。

5. Generate Random Forest

- 原始資料:
 - i. preprocessed_iris.csv
 - ii. preprocessed_googleplaystore.csv
- 程式:
 - i. Iris_RF.py 建 Iris dataset 的 Random forest

- ii. Google Rating RF Install.py 建 Google dataset 的 Install 數 RF model
- iii. Google_Rating_RF_Rating.py 建 Google dataset 的 Rating 數 RF model

兩個 Dataset 皆以以下方法建 Random Forest model:

- 在這裡我應用的是 Bootstrapping 做 resample 後產生許多 subsample。
- 此 subsample 中的 data row,因取樣後重新放回後再次取樣,因此可能會有 重複 data row 的情況發生,也因此在同一個 training set 下建立了許多不同 的 decision tree。
- 用這些 subsample,並從 Features 中隨機取幾個 Feature,搭配產生出許多 Decision Tree,這裡我產生出 100 個隨機樹。
- 對每個 Decision Tree 餵入這 100 個 Testing data,得到各 data row 的預測結果,因此每個 data row 會有 100 個預測結果。
- 接著利用眾數的方式取 100 個結果中出現最多的數字,以此做為該 data row 的最終預測值。即以 100 張票投票的方式產生最終預測結果。
- Price 的部分雖然有 Installs 數高集中在 Price = 0 的趨勢,但推測此 data 中大部分為免費(Price 為 0)的 APP,和 Installs 數較低的免費 App 混雜在一起,因此無法做很好的分割。經測試後發現在 RF model 下移除 Price 這個 feature會有比較好的效果(accuracy 將近 1.5 倍),故我們在這裡(RF model)決定不採用 Price 這個 feature。

6. The performance?

- Decision Tree:
 - iris
 - 讀入檔案名稱: preprocessed iris.csv
 - 程式名稱:iris dtree.py
 - 執行後產生檔案: iris .pdf

- Google play store (Installs)
- 讀入檔案名稱:preprocessed_googleplaystore.csv
- 程式名稱:google_dtree_install.py
- 執行後產生檔案:Google_play_store_(Installs).pdf

- Google play store (Rating)
- 讀入檔案名稱:preprocessed_googleplaystore.csv
- 程式名稱:google_dtree_rating.py
- 執行後產生檔案:Google_play_store_(Rating).pdf

- Random Forest:
 - 讀入檔案:
 - preprocessed_iris.csv
 - preprocessed_googleplaystore.csv
 - 程式:
 - Iris_RF.py
 - ◆ Google_Rating_RF_Install.py
 - ◆ Google_Rating_RF_Rating.py
 - Iris, evaluated by accuracy score

```
In [9]: ### Evaluate accuracy of RF ###

print("Accuracy Evaluate: ", end="")
print(accuracy_score(y_test, vote_list))

Accuracy Evaluate: 1.0
```

■ Google play store (Installs), evaluated by accuracy score

```
In [9]: ### Evaluate accuracy of RF ###

print("Evaluate by accuracy score: ", end="")
print(accuracy_score(y_test, vote_list))

Evaluate by accuracy score: 0.3128023919543354
```

■ Google play store (Rating), evaluated by r2-score

```
| 143 # In[9]:
| 144 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 145 | 1
```

Decision tree Part

```
iris\_K\text{-}fold
```

validation_dtree_iris_K_fold.py

			True Condition		
		Iris-setosa	Iris-versicolor	Iris-virginica	Precision
Predicted	Iris-setosa	50	0	0	1
Condition	Iris-versicolor	0	47	4	0.9215
	Iris-virginica	0	3	46	0.9387
	Recall	1	0.94	0.92	

iris_resub

validation_dtree_iris_resub.py

			True Condition		
		Iris-setosa	Iris-versicolor	Iris-virginica	Precision
Predicted	Iris-setosa	50	0	0	1
Condition	Iris-versicolor	0	47	1	0.9791
	Iris-virginica	0	3	49	0.9423
	Recall	1	0.94	0.98	

Accuracy = 0.9733

Google_install_K-fold

validation_dtree_google_install_K_fold.py

				True	Condition			
		<=1000	<=10000	<=100000	<=1000000	<=10000000	>10000000	Precision
Predicted	<=1000	2528	428	8	1	0	0	0.8534
Condition	<=10000	150	848	273	12	1	0	0.6604
	<=100000	2	224	1205	545	15	0	0.6052
	<=1000000	0	2	95	1245	474	16	0.6795
	<=10000000	0	0	0	119	952	100	0.8129
	>10000000		0	0	0	102	318	0.7571
	Recall	0.9432	0.5657	0.7621	0.6477	0.6165	0.7327	

Google_install_ resub

validation_dtree_google_install_resub.py

				True	Condition			
		<=1000	<=10000	<=100000	<=1000000	<=10000000	>10000000	Precision
Predicted	<=1000	2532	432	8	1	0	0	0.8516
Condition	<=10000	146	763	120	4	1	0	0.7379
	<=100000	2	304	1412	627	19	0	0.5972
	<=1000000	0	0	41	1162	446	13	0.6991
	<=10000000	0	0	0	128	958	64	0.8330
	>10000000	0	0	0	0	120	357	0.7484
	Recall	0.9447	0.5090	0.8931	0.6045	0.6204	0.8225	

Accuracy = 0.7436

rating_K-fold

validation_dtree_google_rating_K_fold.py

							1
				True Condition			
		<=3	<=4.5	<=5	Precision		
Predicted	<=3	0	0	0	0	0	nan
Condition	<=3.5	0	0	0	0	0	nan
	<=4	73	101	275	494	158	0.2497
	<=4.5	288	413	1268	5016	1513	0.5902
	<=5	0	0	6	24	31	0.5081
	Recall	0	0	0.1775	0.9063	0.018	

rating_resub

validation_dtree_google_rating_resub.py

		<=3	<=3.5	<=4	<=4.5	<=5	Precision
Predicted	<=3	0	0	0	0	0	nan
Condition	<=3.5	0	0	0	0	0	nan
	<=4	66	99	248	388	70	0.2847
	<=4.5	295	415	1295	5105	1582	0.5873
	<=5	0	0	6	41	50	0.5154
	Recall	0	0	0.1601	0.9224	0.0293	

Accuracy = 0.5593

Random forest Part

iris_K-fold

validation_RF_iris_K_fold.py

			True Condition		
		Iris-setosa	Iris-versicolor	Iris-virginica	Precision
Predicted	Iris-setosa	50	0	0	1
Condition	Iris-versicolor	0	45	2	0.9574
	Iris-virginica	0	5	48	0.9056
	Recall	1	0.9	0.96	

Accuracy = 0.9533

iris_resub

validation_RF_iris_resub.py

			True Condition		
		Iris-setosa	Iris-versicolor	Iris-virginica	Precision
Predicted	Iris-setosa	50	0	0	1
Condition	Iris-versicolor	0	47	2	0.9591
	Iris-virginica	0	3	48	0.9411
	Recall	1	0.94	0.96	

Accuracy = 0.9666

Google_install_K-fold

validation_RF_google_install_K_fold.py

				True	Condition			
		<=1000	<=10000	<=100000	<=1000000	<=10000000	>10000000	Precision
Predicted	<=1000	2323	349	55	31	12	0	0.8386
Condition	<=10000	97	512	227	33	7	0	0.5844
	<=100000	8	144	499	194	17	0	0.5788
	<=1000000	239	468	782	1520	868	205	0.3723
	<=10000000	13	26	18	140	586	79	0.6798
	>10000000	0	0	0	4	54	150	0.7211
	Recall	0.8667	0.3415	0.3156	0.7908	0.3795	0.3456	

Google_install_ resub

validation_RF_google_install_resub.py

```
class = ['<=1000', '<=10000', '<=100000', '<=1000000', '<=10000000', '<=10000000', 'other']

[[2099 239 90 52 25 2]
        [ 63 375 130 64 63 7]
        [ 16 42 310 59 40 4]
        [ 502 843 1051 1747 1113 371]
        [ 0 0 0 0 303 6]
        [ 0 0 0 0 44]]

precision = [0.83725568 0.53418803 0.6581741 0.31046739 0.98058252 1. ]

recall = [0.78320896 0.25016678 0.19607843 0.90894901 0.19624352 0.10138249]

accuracy = 0.5049689440993789
```

		True Condition						
		<=1000	<=10000	<=100000	<=1000000	<=10000000	>10000000	Precision
Predicted	<=1000	2099	239	90	52	25	2	0.8372
Condition	<=10000	63	375	130	64	63	7	0.5341
	<=100000	16	42	310	59	40	4	0.6581
	<=1000000	502	843	1051	1747	1113	371	0.3104
	<=10000000	0	0	0	0	303	6	0.9805
	>10000000	0	0	0	0	0	44	1
	Recall	0.7832	0.2501	0.1960	0.9089	0.1962	0.1013	

Accuracy = 0.5049

Google_rating_K-fold

validation_RF_google_rating_K_fold.py

		<=3	<=3.5	<=4	<=4.5	<=5	Precision
Predicted	<=3	4	12	35	53	14	0.0338
Condition	<=3.5	21	16	72	181	48	0.0473
	<=4	63	105	324	778	249	0.2132
	<=4.5	253	322	932	3878	1204	0.5885
	<=5	20	59	186	644	187	0.1706
	Recall	0.0110	0.0311	0.2091	0.7007	0.1098	

Google_rating_resub

validation_RF_google_rating_K_fold.py

		<=3	<=3.5	<=4	<=4.5	<=5	Precision
Predicted	<=3	4	15	25	45	17	0.0377
Condition	<=3.5	13	17	78	174	50	0.0512
	<=4	51	92	306	777	242	0.2084
	<=4.5	271	327	955	3943	1198	0.5890
	<=5	22	63	185	595	195	0.1839
	Recall	0.0110	0.0330	0.1975	0.7125	0.1145	

Accuracy = 0.4622

7. Conclusion?

Decision tree iris 的部分,我們藉由 decision tree 可以得知,petal 是決定不同 的三種花的主要關鍵,我們判斷可能是因為 petal 的長度及寬度才是決定不同 種類 iris 大小的原因,所以同一個品種的花瓣最大的長度以及寬度是類似的, 而不同種的則會有些微的差異;至於 decision tree 的 google play store 部分, 因為有先看過散步圖之後,才決定拿 install rating 做預測目標並進行分析,一 開始 depth 設成 3 的時候,會只有 review 决定,而到了 depth=4 的時候才有 其他的參數來決定這棵 tree,故我們的 decision tree 不同於 iris 的 depth=3, 而選擇了 4。而由上述可知,不管目標是 install 還是 rating, review 都是決定 分類的關鍵因素,為此我們推估為:因為 review 的次數越多,代表有安裝這 app 的人數也越多,所以才會有足夠的 review 數量。而 rating 之所以也會有 關係,也是因為其實 review 的個數也會影響 rating 的高低,因為畢竟不同人 使用相同的 app 感官也不同,但能夠從大家給的 rating 中得知這個 app 的好 壞。至於 random forest 與 confusion matrix 的部分, iris 的預測效果非常顯著, 正確率非常高,但反觀 google play store 的部分,預測的結果卻只有約5成, 但我們覺得這已經算是非常高的預測準確率了。因為就一般人而言,去做評 價的個數越多,但表其中也有可能會有反串的人,或著是刁民故意雞蛋裡挑 骨頭,因此我們認為能夠達到五成的命中率是已經非常高的了,因為若是舊 表面上來看的話,代表我們已經能夠預測接近 50%的人的思考,而超過五成 也代表能預測一般人的想法,所以我們覺得這個也算是成功的例子,畢竟人 的想法不可能跟花一樣都是固定的。

附錄:螢幕截圖,因為第一跟第二部分都只會產生.csv 檔,所以無法截圖,

因此每個成員的圖都將從第三部分的 dicision tree 開始截

成員一:吳東鴻

Р3

iris:

Google play store (Installs)

Google play store (rating)

24 25 27 分別代表: iris、Google play store (Installs)、Google play store (rating)

28 29 代表 random forest 的 iris_K-fold、iris_resub

```
| In [31]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_RF_google_install_K_fold.py', wdir='C:/Users/k8567/Desktop/program4目前最新/
program4')
 class = ['<=1000', '<=10000', '<=100000', '<=1000000', '<=10000000', 'other']
   97
       461 215
                  38
                       16
                             21
   15 125 417
                 195
                        27
                             01
       575 865 1554
 [ 322
                       966
                           256]
        16
             13
                 102
                       475
                            601
     0
         0
                        40
                           11311
precision = [0.83563176 0.55609168 0.53530167 0.3424416 0.70895522 0.71974522]
recall = [0.83656716 0.30774366 0.26392405 0.80853278 0.30784187 0.26096998]
accuracy = 0.5449461474730737
In [32]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_RF_google_install_resub.py', wdir='C:/Users/k8567/Desktop/program4目前最新/
program4')
 class = ['<=1000', '<=10000', '<=100000', '<=1000000', '<=10000000', 'other']
[[2493
       348
              68
                   27
                        13
                             21
       767
             141
                   11
         28
             796
                  49
                        8
                             01
 [ 118 355 575 1835
                      548 1591
                      972
                             11]
     0
         0
               a
                    a
                           261]]
precision = [0.84479837 0.77789047 0.90045249 0.51114206 0.98880977 0.99618321]
recall = [0.93022388 0.51201602 0.50379747 0.95473465 0.62994167 0.60277136]
accuracy = 0.7377796188898095
In [33]:
 IPython console History log
        Permissions: RW End-of-lines: CRLF Encoding: ASCII Line: 1 Column: 1 Memory: 44%
```

31 32 代表 random forest 的 Google_install_K-fold、Google_install_resub

```
In [33]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_RF_google_rating_K_fold.py', wdir='C:/Users/k8567/Desktop/program4目前最新/
program4')
 class = ['<=3', '<=3.5', '<=4', '<=4.5', '<=5']
        10
             24
                       19]
                      51]
   63 104 310 775 258]
[ 262 328 957 3925 1176]
[ 19 58 182 623 197]]
precision = [0.05309735 0.04575163 0.20529801 0.59040313 0.18257646]
recall = [0.0166205  0.02723735  0.20012912  0.70963659  0.11581423]
accuracy = 0.4610604805302403
In [34]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_RF_google_rating_resub.py', wdir='C:/Users/k8567/Desktop/program4目前最新/
program4')
class = ['<=3', '<=3.5', '<=4', '<=4.5', '<=5']
   88
              9
                  23
    9 226
             19
                  31
                         81
   20
        58 946 126
                       331
 [ 237 217
           548 5308
                      748]
                       905]]
precision = [0.66666667 0.77133106 0.79966188 0.75205441 0.91414141]
recall = [0.24376731 0.43968872 0.61071659 0.95968179 0.53203998]
accuracy = 0.7739229494614748
In [35]:
 IPython console
             History log
        Permissions: RW End-of-lines: CRLF Encoding: ASCII Line: 1 Column: 1 Memory: 45 %
```

33 34 代表 random forest 的 Google_rating_K-fold Google_rating_resub

```
In [35]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_dtree_iris_K_fold.py', wdir='C:/Users/k8567/Desktop/program4目前最新/
 class = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
[[50 0 0]
0.90384615]
                       0.9375
In [36]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_dtree_iris_resub.py', wdir='C:/Users/k8567/Desktop/program4目前最新/
program4')
 class = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
[[50 0 0]
 [ 0 47 1]
[ 0 3 49]]
precision = [1. 0.94 0.98]
                      0.97916667 0.94230769]
accuracy = 0.973333333333333334
In [37]:
 IPython console History log
      Permissions: RW End-of-lines: CRLF Encoding: UTF-8 Line: 1 Column: 1 Memory: 44%
```

35 36 代表 decision tree 的 iris_K-fold、iris_resub

```
In [37]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_dtree_google_install_K_fold.py', wdir='C:/Users/k8567/Desktop/program4目前最
新/program4')
 class = ['<=1000', '<=10000', '<=100000', '<=1000000', '<=10000000', 'other']
[[2532 433
   146 878 395 16
2 187 1079 505
           87 1079 505 16 0]
0 97 1283 486 16]
0 0 117 974 140]
[ 0 0 0 0 66 277]]
precision = [0.85109244 0.61142061 0.60313024 0.68172157 0.79122665 0.80758017]
recall = [0.94477612 0.58611482 0.68291139 0.66753382 0.63123785 0.63972286]
accuracy = 0.7273198011599006
In [38]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_dtree_google_install_resub.py', wdir='C:/Users/k8567/Desktop/program4目前最
新/program4')
 class = ['<=1000', '<=10000', '<=100000', '<=1000000', '<=10000000', 'other']
[[2532 432
     46 762 120 4 1
2 304 1411 627 19
[ 2 304 1411 627 19 0]
[ 0 0 41 1162 446 13]
[ 0 0 0 128 957 64]
[ 0 0 0 0 120 356]]
precision = [0.85166498 0.73765731 0.5971223 0.69915764 0.83289817 0.74789916]
recall = [0.94477612 0.50867824 0.89303797 0.60457856 0.62022035 0.8221709 ] accuracy = 0.7435791217895609
In [39]:
 IPython console History log
Permissions: RW End-of-lines: CRLF Encoding: UTF-8 Line: 1 Column: 1 Memory: 45 %
```

37 38 代表 decision tree 的 Google_install_K-fold、Google_install_resub

40 代表 decision tree 的 Google_rating_K-fold

```
In [44]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_dtree_google_rating_resub.py', wdir='C:/Users/k8567/Desktop/program4目前最新/
program4')
class = ['<=3', '<=3.5', '<=4', '<=4.5', '<=5']
                        01
                  11
  356 509 1544 5520 1694]
         0
              0
                        0]]
precision = [
                   nan
                              nan 0.15151515 0.57362569
                                                                nan]
recall = [0.
accuracy = 0.5721830985915493
C:/Users/k8567/Desktop/program4目前最新/program4/
validation_dtree_google_rating_resub.py:82: RuntimeWarning: invalid value encountered
in longlong_scalars
 accurate = 0
In [45]:
IPython console History log
        Permissions: RW End-of-lines: CRLF Encoding: UTF-8 Line: 91 Column: 1 Memory: 44%
```

44 代表 decision tree 的 Google_rating_resub

45 為 data visualization 的部分

iric:

Google play store (Installs)

Google play store (rating)

123分別代表: iris、Google play store (Installs)、Google play store (rating)

```
ɪn [ɜ]: runtile( u:/users/көэь//uesктор/program4日刖取初/program4/
       Google_Rating_RF_Rating.py', wdir='C:/Users/k8567/Desktop/program4目前最新/program4')
       Evaluate by r2-score: -0.47346187965055075
       In [4]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
       validation_RF_iris_K_fold.py', wdir='C:/Users/k8567/Desktop/program4目前最新/program4')
       class = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
       confusionm matrix
      [[50. 0. 0.]
[ 0. 46. 3.]
        [ 0. 4. 47.]]
      precision = [1. 0 recall = [1. 0.92 0.94]
                                0.93877551 0.92156863]
       accuracy = 0.9533333333333333333
       In [5]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
       validation_RF_iris_resub.py', wdir='C:/Users/k8567/Desktop/program4目前最新/program4')
       class = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
       [[50 0 0]
       [ 0 48 2]
[ 0 2 48]]
      precision = [1. 0.96 0.96]
recall = [1. 0.96 0.96]
accuracy = 0.97333333333333334
       In [6]:
        IPython console History log
P5
           Permissions: RW End-of-lines: CRLF Encoding: ASCII Line: 1 Column: 1 Memory: 48%
```

45代表 random forest 的 iris K-fold、iris resub

```
In [8]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_RF_google_install_K_fold.py', wdir='C:/Users/k8567/Desktop/program4目前最新/
program4')
 class = ['<=1000', '<=10000', '<=100000', '<=1000000', '<=10000000', 'other']
[[2318
        345
                   27
                        12
                              21
 [ 100
        480
            228
                   34
                        10
                              31
                 176
                              01
     9
        132
             446
                        19
   250
                       922 2251
        535 837 1555
          6
               6 126
                       542
                             681
          0
                        38
                            13511
precision = [0.83773039 0.56140351 0.57033248 0.35962072 0.72170439 0.76271186]
recall = [0.86492537 0.32042724 0.28227848 0.80905307 0.35126377 0.31177829]
accuracy = 0.5671085335542668
In [9]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_RF_google_install_resub.py', wdir='C:/Users/k8567/Desktop/program4目前最新/
program4')
 class = ['<=1000', '<=10000', '<=100000', '<=1000000', '<=10000000', '<=10000000', 'other']
[[2163
                   52
                              2]
            126
                   33
                        17
                              2]
        463
     8
         28
             414
                   56
                        29
                              4]
   448
        734
             948 1780 1128
                            3291
     0
          0
               1
                    1
                       344
                             20]
          0
                    a
                         0
                             76]]
precision = [0.83000767 0.65954416 0.76808905 0.33165642 0.93989071 1.
recall = [0.80708955 0.30907877 0.26202532 0.92611863 0.22294232 0.17551963]
accuracy = 0.5426677713338857
In [10]:
             History log
 IPython console
                        End-of-lines: CRLF Encoding: ASCII
                                                           Line: 1 Column: 1 Memory: 47%
```

8 9 代表 random forest 的 Google_install_K-fold、Google_install_resub

```
In [10]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_RF_google_rating_K_fold.py', wdir='C:/Users/k8567/Desktop/program4目前最新/
class = ['<=3', '<=3.5', '<=4', '<=4.5', '<=5']
              23
                   48
   14
         20
              69 154
                        511
             308
                  774 249]
 [ 275 324 962 3928 1206]
         58
                  627
            187
                       18111
precision = [0.03809524 0.06493506 0.20796759 0.5867065 0.16963449]
recall = [0.01108033 0.03891051 0.19883796 0.71017899 0.106408 ]
accuracy = 0.4599212924606462
In [11]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_RF_google_rating_resub.py', wdir='C:/Users/k8567/Desktop/program4目前最新/
orogram4')
class = ['<=3', '<=3.5', '<=4', '<=4.5', '<=5']
          4
[[ 84
                         21
                   20
                          5]
    8
              27
                   23
                        51]
   25
         69 965 164
 [ 240 207 517 5261 732]
        10
              33
                  63
                       911]]
precision = [0.71794872 0.7804878 0.75745683 0.75621676 0.89226249]
recall = [0.23268698 0.43579767 0.62298257 0.95118423 0.53556731]
accuracy = 0.771023198011599
In [12]:
IPython console History log
       Permissions: RW End-of-lines: CRLF Encoding: ASCII Line: 1 Column: 1 Memory: 49 %
```

10 11 代表 random forest 的 Google_rating_K-fold Google_rating_resub

```
Console 1/A 

[ 240 207 517 5261 732]
                                                                                         ■ Ø Q
[ 4 10 33 63 911]]
precision = [0.71794872 0.7804878 0.75745683 0.75621676 0.89226249]
recall = [0.23268698 0.43579767 0.62298257 0.95118423 0.53556731]
accuracy = 0.771023198011599
In [12]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_dtree_iris_K_fold.py', wdir='C:/Users/k8567/Desktop/program4目前最新/
class = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
[[50 0 0]
 [ 0 46 4]
[ 0 4 46]]
precision = [1. 0.92 0.92]
recall = [1. 0.92 0.92]
accuracy = 0.9466666666666667
In [13]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_dtree_iris_resub.py', wdir='C:/Users/k8567/Desktop/program4目前最新/
program4')
class = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
[[50 0 0]
[ 0 47 1]
[ 0 3 49]]
precision = [1.
recall = [1.
                         0.97916667 0.942307691
               0.94 0.98]
accuracy = 0.9733333333333334
In [14]:
 IPython console History log
        Permissions: RW End-of-lines: CRLF Encoding: UTF-8 Line: 1 Column: 1 Memory: 49%
```

12 13 代表 decision tree 的 iris K-fold、iris resub

```
| In [14]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_dtree_google_install_K_fold.py', wdir='C:/Users/k8567/Desktop/program4目前最
新/program4')
 class = ['<=1000', '<=10000', '<=100000', '<=1000000', '<=10000000', 'other']
[[2532 432
 [ 145 826 284
                   9
                             01
       240 1200 566
                       18
                             01
             88 1239 478
    0
         0
              0 107 948
                            981
                       98
                          319]]
precision = [0.85166498 0.65296443 0.59200789 0.68039539 0.82220295 0.76498801]
recall = [0.94477612 0.55140187 0.75949367 0.644641 0.61438756 0.73672055]
accuracy = 0.7315658657829329
In [15]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_dtree_google_install_resub.py', wdir='C:/Users/k8567/Desktop/program4目前最
新/program4')
 class = ['<=1000', '<=10000', '<=100000', '<=1000000', '<=10000000', 'other']
[[2532 432
       762 120
 [ 146
                             01
       304 1411 627
                      19
         0 41 1162 446
0 0 128 957
                            131
                            64]
                   0
                      120 356]]
precision = [0.85166498 0.73765731 0.5971223 0.69915764 0.83289817 0.74789916]
recall = [0.94477612 0.50867824 0.89303797 0.60457856 0.62022035 0.8221709 ]
accuracy = 0.7435791217895609
In [16]:
 IPython console History log
      Permissions: RW End-of-lines: CRLF Encoding: UTF-8 Line: 1 Column: 1 Memory: 49 %
```

14 15 代表 decision tree 的 Google_install_K-fold、Google_install_resub

```
In [16]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_dtree_google_rating_K_fold.py', wdir='C:/Users/k8567/Desktop/program4目前最
新/program4')
class = ['<=3', '<=3.5', '<=4', '<=4.5', '<=5']
         0
              0
                   0
                        0]
         0
              0
                   0
                        0]
        76 207 403 121]
   63
[ 298 437 1336 5091 1557]
   0
       1
                 37 23]]
                              nan 0.23793103 0.58389724 0.34328358]
precision = [
                   nan
recall = [0.
                    0.
                               0.1336346 0.92044838 0.01352146]
accuracy = 0.551056338028169
C:/Users/k8567/Desktop/program4目前最新/program4/
validation_dtree_google_rating_K_fold.py:85: RuntimeWarning: invalid value encountered
in longlong_scalars
 precision[i] = confusion_matrix_rating[i][i] / sum(confusion_matrix_rating[i])
In [17]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_dtree_google_rating_resub.py', wdir='C:/Users/k8567/Desktop/program4目前最新/
program4')
class = ['<=3', '<=3.5', '<=4', '<=4.5', '<=5']
  0
             History log
IPvthon console
                      End-of-lines: CRLF Encoding: UTF-8 Line: 1 Column: 1 Memory: 49 %
        Permissions: RW
```

16 代表 decision tree 的 Google_rating_K-fold

```
In [17]: runfile('C:/Users/k8567/Desktop/program4目前最新/program4/
validation_dtree_google_rating_resub.py', wdir='C:/Users/k8567/Desktop/program4目前最新/
program4')
class = ['<=3', '<=3.5', '<=4', '<=4.5', '<=5']
              0
    0
                        01
                  11
    5
         5
              5
[ 356 509 1544 5520 1694]
    0
         0
              0
                   0
precision = [
                               nan 0.15151515 0.57362569
                                                                nan]
                               0.00322789 0.99801121 0.
recall = [0.
accuracy = 0.5721830985915493
C:/Users/k8567/Desktop/program4目前最新/program4/
validation_dtree_google_rating_resub.py:82: RuntimeWarning: invalid value encountered
in longlong_scalars
 precision[i] = confusion_matrix_rating[i][i] / sum(confusion_matrix_rating[i])
In [18]:
             History log
IPvthon console
        Permissions: RW End-of-lines: CRLF Encoding: UTF-8 Line: 1 Column: 1 Memory: 49 %
```

17 代表 decision tree 的 Google_rating_resub

18 為 data visualization 的部分

成員三:謝富丞

Data visualization

Iris_.pdf

Google_play_store_(Installs) .pdf

Google_play_store_(Rating).pdf

Random forest

1. Iris

```
(base) D:\Downloads\Project1>python Iris_RF.py
Accuracy Evaluate: 0.933333333333333
```

2. Google app Install

```
(base) D:\Downloads\Project1>
(base) D:\Downloads\Project1>python Google_Rating_RF_Install.py
Evaluate by accuracy score: 0.31377286848463926
```

3. Google app Rating

```
(base) D:\Downloads\Project1>python Google_Rating_RF_Rating.py
Evaluate by r2-score: -0.49458338920986855
```

Validation

- 1. Iris
 - Decision tree
 - Resubstitution validation

■ K-fold cross validation

Random forest

■ Resubstitution validation

K-fold cross validation

2. Google app install

- Decision tree
 - Resubstitution validation

```
(base) D:\Downloads\Project1>python validation_dtree_google_install_resub.py

class = ['<=1000', '<=10000', '<=100000', '<=1000000', '<=1000000', '<=10000000', 'other']

[[2532 432 8 1 0 0]
        [ 146 762 120 4 1 0]
        [ 2 304 1411 627 19 0]
        [ 0 0 41 1162 446 13]
        [ 0 0 0 128 957 64]
        [ 0 0 0 0 120 356]]
        precision = [0.85166498 0.73765731 0.5971223 0.69915764 0.83289817 0.74789916]
        recall = [0.94477612 0.50867824 0.89303797 0.60457856 0.62022035 0.8221709 ]
        accuracy = 0.7435791217895609
```

■ K-fold cross validation

```
(base) D:\Downloads\Project1>python validation_dtree_google_install_K_fold.py

class = ['<=1000', '<=10000', '<=100000', '<=1000000', '<=1000000', '<=1000000', 'other']

[[2522 421 8 1 0 0]
    [155 823 278 10 1 0]
    [ 3 253 1214 562 17 0]
    [ 0 1 80 1235 480 17]
    [ 0 0 0 114 950 101]
    [ 0 0 0 0 95 315]]

precision = [0.85433604 0.6495659 0.59248414 0.6811914 0.81545064 0.76829268]

recall = [0.94104478 0.5493992 0.76835443 0.64255983 0.61568373 0.72748268]

accuracy = 0.7310480530240265
```

- Random forest
 - Resubstitution validation

```
(base) D:\Downloads\Projectl>python validation_RF_google_install_resub.py

class = ['<=1000', '<=10000', '<=100000', '<=1000000', '<=1000000', '<=10000000', 'other']

[[2255 292 89 43 20 2]
[ 53 508 125 24 13 1]
[ 4 22 481 45 11 1]
[ 368 676 883 1809 1012 297]
[ 0 0 2 1 487 21]
[ 0 0 0 0 0 111]]

precision = [0.83487597 0.70165746 0.85283688 0.35857284 0.95303327 1. ]

recall = [0.84141791 0.33911883 0.30443038 0.94120708 0.31561892 0.25635104]

accuracy = 0.5852319801159901
```

K-fold cross validation

```
(base) D:\Downloads\Project1>python validation_RF_google_install_K_fold.py

class = ['<=1000', '<=10000', '<=100000', '<=1000000', '<=1000000', '<=1000000', 'other']

[[2290 331 74 32 16 2]
        [ 95 468 204 37 7 1]
        [ 19 128 429 168 20 3]
        [ 273 565 864 1560 965 223]
        [ 3 6 9 122 488 61]
        [ 0 0 0 3 47 143]]

precision = [0.83424408 0.57635468 0.55932203 0.3505618 0.70827286 0.74093264]

recall = [0.85447761 0.31241656 0.27151899 0.81165453 0.31626701 0.33025404]

accuracy = 0.5569594034797017
```

3. Google app rating

- Decision tree
 - Resubstitution validation

K-fold cross validation

- Random forest
 - Resubstitution validation

■ K-fold cross validation

成員四:曾靖驊

P3 執行以下.py 檔 iris_dtree.py google_dtree_install.py google_dtree_rating.py

iris_.pdf:

Google_play_store_(Installs) .pdf:

Google_play_store_(Rating).pdf:

P4 執行以下.py 檔

Iris_RF.py

 ${\sf Google_Rating_RF_Install.py}$

Google_Rating_RF_Rating.py

```
C.Windowstoystem2Acmd.ose

C.Windowstoystem2Acmd
```

Р5

執行以下.py 檔

validation_dtree_google_install_K_fold.py
validation_dtree_google_install_resub.py

```
| Colored | Colo
```

執行以下.py 檔

validation_dtree_google_rating_K_fold.py validation_dtree_google_rating_resub.py validation_dtree_iris_K_fold.py

執行以下.py 檔

validation_dtree_iris_resub.py
validation_RF_google_install_K_fold.py
validation_RF_google_install_resub.py

```
28 3 1
8 3 1
1584 829 272
0 683 10
0 0 14611
4359449 0.76319176 0.87153285 0.40396476 0.98556999 1
4359449 0.76319176 0.87153285 0.40396476 0.98556999 1
4359449 0.76389615 0.3778481 0.95421496 0.4426442 0.33718245]
```

執行以下.py 檔

```
validation\_RF\_google\_rating\_K\_fold.py
validation_RF_google_rating_resub.py
validation_RF_iris_K_fold.py
```

執行以下.py 檔

validation_RF_iris_resub.py

```
2]
on = [1. 0.94 0.96]
= [1. 0.94 0.96]
```