1 5 **		الدورة العادية 2020			وزارة التربية الولحنية (120 التربية الولحنية (120 التربية الولحنية الولحنية الولحنية (120 الدون الدون الدون ال		
	(ssssssssssssssss	NS 24			
4	جاز	مدة الإنـ		الرياضيات		المادة	
9		شعبة العلوم الرياضية (أ) و (ب)			الشعبة أو المسلك		

- المدة الزمنية لإنجاز الموضوع هي 4 ساعات.
- يتكون الموضوع من (5) صفحات مرقمة من 1/5 إلى 5/5
 - يتكون الموضوع من أربعة تمارين مستقلة فيما بينها.
- المترشح ملزم بانجاز التمرين3 و التمرين4 و الاختيار بين انجاز إما التمرين1 و إما التمرين2
 - على المترشح أن ينجز في المجموع ثلاثة (3) تمارين:
 - (التمرين 1 و يتعلق بالحسابيات (اختياري)
 - {و إما

 - التمرين 3 و يتعلق بالأعداد العقدية (إجباري)
 - التمرين 4 و يتعلق بالتحليل (إجباري)

لا يسمح باستعمال الآلة الحاسبة كيفما كان نوعها

اختر وأنجز إما التمرين| وإما التمرين2

و أنجز إجباريا التمرين3 و التمرين4

التمرين1: (3.5 نقط/ اختياري) (إذا اخترت إنجاز التمرين1 فلا تنجز التمرين2)

 $(D): 7x^3 - 13y = 5$ نعتبر في ¢ ¢ نعتبر في

(D) من ϕ من ϕ من (x,y) حلا للمعادلة (D)

0.5 أ) بين أن x و 13 أوليان فيما بينهما.

 x^{12} ° 1 [13] : ب) استنتج أن

 $x^3 \circ 10$ [13] بين أن: [13] 1

0.5 د) استنتج أن: [13] 3 ° 0.5

صفحة	11	
	2	NS 24

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 - الموضوع - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب)

 $otag c
ightharpoonup \phi
ightharpoonup \phi$ و استنتج من الأسئلة السابقة أن المعادلة (D) لا تقبل حلا في ϕ

1

التمرين2: (3.5 نقطة/اختياري) (إذا اخترت إنجاز التمرين2 فلا تنجز التمرين1)

نرمز بالرمز $M_2(;)$ لمجموعة المصفوفات المربعة من الرتبة الثانية.

نذكر أن
$$(i^*, ')$$
 حلقة غير تبادلية و واحدية وحدتها $I = \begin{cases} 00 \\ 0 \\ 0 \end{cases}$ و أن $I = \{i^*, ', '\}$ زمرة تبادلية.

- $\left(M_{2}(\mathsf{i}),\mathsf{i}\right)$ بین أن E جزء مستقر من $\left(0.5\right)$
 - E بين أن الضرب غير تبادلي في E 0.5

$$("x\hat{1};)("y\hat{1};*); \begin{cases} \overset{a}{\text{cl}} & \overset{z}{x} \overset{\ddot{0}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c$$

2.5 يين أن (E,') زمرة غير تبادلية.

$$F = \frac{1}{1}M(x) = \frac{3}{1}(x^2 + \frac{10}{1}) = \frac{3}{1}(x^2 + \frac{10}{1})$$

$$(E, ')$$
 نحو $(i *, ')$ نحو $(i *,$

1 با استنتج أن (F,') زمرة تبادلية يجب تحديد عنصرها المحايد.

التمرين3: (3.5 نقط/إجباري)

لیکن m عدد عقدی غیر منعدم.

الجزء الأول:

$$(E)$$
 : z^3 - $2mz^2$ + $2m^2z$ - $m^3=0$ ، z المعادلة ذات المجهول \pm

((E) المعادلة m المعادلة (E) المعادلة المعادلة (E) المعادلة المعادلة (E)

m المخالفين للحل و z_2 حلي المعادلة (E) المخالفين للحل -2

$$\frac{1}{z_1} + \frac{1}{z_2} = \frac{1}{m}$$
 نحقق أن: 0.25

$$z_2$$
 و z_1 و الشكل الجبري $m=1+e^{irac{p}{3}}$ و و 0.5

صفحة	ال	
	3	NS 24

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 - الموضوع - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب)

الجزء الثاني:

$$(O;u,v)$$
 المستوى العقدي منسوب إلى معلم متعامد ممنظم ومباشر

$$b=me^{-irac{p}{3}}$$
 و $a=me^{irac{p}{3}}$ و التوالي: $a=me^{irac{p}{3}}$

$$A$$
 الدوران الذي زاويته $\frac{\exp \ddot{0}}{2}$ و يحول P الدوران الذي زاويته $\frac{2 \ddot{0}}{2}$

$$B$$
 و يحول A إلى $\frac{\exp \ddot{0}}{2}$ و يحول A إلى Q و مركز الدوران الذي زاويته $\frac{2}{0}$

$$O$$
و B مركز الدوران الذي زاويته $\frac{\ddot{c}}{\dot{c}} \frac{\ddot{c}}{2}$ و يحول \dot{c} الدوران الذي زاويته

بين أن النقط
$$O$$
 و A غير مستقيمية.

$$r=mrac{\sqrt{2}}{2}\;e^{-irac{7p}{12}}$$
 . وأن لحق $P=mrac{\sqrt{2}}{2}\;e^{irac{7p}{12}}$. وأن لحق $P=mrac{\sqrt{2}}{2}\;e^{irac{7p}{12}}$. وأن لحق $P=mrac{\sqrt{2}}{2}\;e^{irac{7p}{12}}$

$$q=m\sqrt{2} \, \sin \frac{\cancel{e}^{7}p}{\cancel{e}^{1}} \frac{\ddot{o}}{\dot{\phi}}$$
 .0.5 بين أن لحق Q هو:

دان.
$$(PR)$$
 و (OQ) و أن المستقيمين $OQ = PR$ و أن $OQ = PR$ عامدان.

التمرين 4: (13 نقطة/إجباري)

الجزء الأول:

نعتبر الدالة f المعرفة على المجال I = [0; + Y] بما يلي:

$$f(x) = x^3 \ln \frac{x}{6} + \frac{1 \ddot{0}}{x \dot{0}}, \quad D; + Y \quad \text{(a)} \quad x \quad \text{(b)} = 0$$

و ليكن
$$C$$
 ($\begin{vmatrix} \vec{l} & \vec{l} & \vec{l} \\ \vec{l} & \vec{l} \end{vmatrix} = 1$ منحناها في معلم متعامد ممنظم C (نأخذ: C) و ليكن

بين أن: [x,x+1] ، بين أن: t a ln(t) ، بين أن: المنتهية على الدالة [x,x+1] ، بين أن:

(P)
$$("x\hat{1} \ \); + \ \ \)$$
 ; $\frac{1}{r+1} < ln \frac{x}{x} + \frac{1}{r} \frac{\ddot{0}}{r} < \frac{1}{r}$

0.5 من العبارة
$$(P)$$
 بين أن الدالة f قابلة للاشتقاق على اليمين في (P) 0.5

باستعمال العبارة
$$(P)$$
 بين أن المنحنى (C) يقبل فر عا شلجميا يتم تحديد اتجاهه.

الصفحة		
4	NS 24	

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 - الموضوع - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب)

: و أن الدالة p;+ و الدالة f قابلة للاشتقاق على p;+ و الدالة f

$$("x\hat{1} \ \ \ \ \ \ \ \)$$
; $f'(x) = 3x^2 \frac{\partial}{\partial x} \ln \frac{\partial}{\partial x} + \frac{1 \ddot{0}}{x \dot{\overline{p}}} \frac{1}{3(1+x) \frac{\ddot{0}}{\overline{p}}}$

((P) باستنتج أن الدالمة
$$f$$
 تزايدية قطعا على I (يمكن استعمال العبارة f 0.5

$$f$$
 ب) اعط جدول تغیرات f

$$g(x) = \frac{f(x)}{x}$$
 نضع: $p; + Y$ [الكل x من المجال] -4

 *_1 م استنتج أن الدالة *_2 تزايدية قطعا على

a بين أن المعادلة
$$g(x)=1$$
 تقبل على $\frac{*}{1}$ ، حلا وحيدا نرمز إليه بالرمز $g(x)=1$

(
$$ln\frac{3}{2}=1.5$$
 و $ln2=0.7$ و أن المجال]], 2[ينتمي إلى المجال]], 2[ينتمي إلى المجال]

a و 0 هي:
$$f(x)=x$$
 استنتج أن الحلول الوحيدة للمعادلة $f(x)=x$

(
$$(C)$$
حدد نصف المماس على اليمين في النقطة O و الفرع الشلجمي للمنحنى

بين أن الدالة
$$f$$
 تقابل من I نحو I (نرمز بالرمز f^{-1} لتقابلها العكسي) 0.25

الجزء الثاني:

$$u_{n+1} = f^{-1}(u_n)$$
 ، 4 من 10 من 10 من يعتبر المتتالية $(u_n)_{n=0}$ المعرفة بما يلي:

("
$$n\hat{\mathbf{l}} \ \mathbf{Y}$$
) ; $0 < u_n < \mathbf{a}$: 1 0.5

ب) استنتج أن المتتالية
$$(u_n)_{n^3 \ 0}$$
 تزايدية قطعا.

ج) بين أن المتتالية
$$(u_n)_{n^3 \ 0}$$
 متقاربة.

$$\lim_{n \oplus + \mathbb{Y}} u_n$$
 2.5 0.5

الجزء الثالث:

$$("x\hat{1}\ I)$$
 ; $F(x)=\sum_{x=0}^{1}f(t)dt$:نعتبر الدالة F المعرفة على المجال I بما يلي:

الصفحة 5 5	NS 24	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 – الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب)	
		F(x) أدرس حسب قيم x ، إشارة أ -1	0.5
		F' بين أن الدالة F قابلة للاشتقاق على I و حدد مشتقتها الأولى	0.5
		I استنتج أن F تناقصية قطعا على ا	0.25
		$("x\hat{1} [1;+¥])$; $F(x)$ £ $(1-x)ln$ 2 أ) بين أن: 2	0.5
		$\lim_{x \oplus + \mathbb{Y}} F(x)$ استنتج (ب	0.25
		3- أ) باستعمال مكاملة بالأجزاء، بين أن:	0.5
		$("x\hat{1} \ \ D; + \ \ \) ; F(x) = \frac{\ln 2}{4} - \frac{x^4}{4} \ln \xi + \frac{1 \ddot{0}}{x \dot{\theta}} + \frac{1}{4} \grave{0}_x \frac{t^3}{t+1} dt$	
	($\frac{t^3}{1+t} = t^2 - t + 1 - \frac{1}{1+t}$: الأحظ أن : $b; + $ [الأحظ أن t^3 كن t^3 كن t^3 كن كن t^3 كن	0.5
	("xÎ	p; +	0.5
		$\mathbf{\delta}_0^{-1}f(t)dt$: ثم استنتج قیمة $\lim_{x \ \mathbb{O}^+} F(x)$ د) احسب	0.5
		$v_n=\overset{k=n-1}{\overset{\alpha}{a}}\underset{k=0}{\overset{\alpha}{\xi}}F\overset{2}{\overset{\alpha}{\xi}}\frac{k+1}{\overset{\square}{\phi}}F\overset{2}{\overset{\square}{\xi}}\overset{N}{\overset{\square}{\xi}}$ -4 کال عدد صحیح طبیعی غیر منعدم n نضع:	
		$\{0,1,,,,,,n-1\}$ ن من $\{0,1,,,,,,n-1\}$ عدد صحیح طبیعی $\{0,1,,,,,,n-1\}$ انه لکل عدد صحیح طبیعی $\{0,1,,,,,,n-1\}$	0.5
		$-\frac{1}{2n}f^{\underbrace{\approx}2k+1}_{\underbrace{\stackrel{\circ}{\circ}}{\cancel{o}}} F^{\underbrace{\approx}2k+1}_{\underbrace{\stackrel{\circ}{\circ}}{\cancel{o}}} F^{\underbrace{\approx}2k+1}_{\underbrace{\stackrel{\circ}{\circ}}{\cancel{o}}} F^{\underbrace{\approx}k}_{\underbrace{\stackrel{\circ}{\circ}}{\cancel{o}}} -\frac{1}{2n}f^{\underbrace{\approx}k}_{\underbrace{\stackrel{\circ}{\circ}}{\cancel{o}}} $	
		$\left("n\hat{\mathbf{I}} \ \mathbf{Y}^* \right)$; $-\frac{1}{2n} \overset{k=n}{\overset{k}{o}} f \overset{k=n}{\overset{k=n}{o}} f \overset{k}{\overset{k}{o}} \mathbf{t} v_n \mathbf{t} - \frac{1}{2n} \overset{k=n-1}{\overset{k}{\overset{n}{o}}} f \overset{k}{\overset{k}{\overset{o}{\overset{n}{o}}}} \overset{\ddot{o}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}}}}{\overset{\dot{c}}}{\overset{\dot{c}}{\overset{\dot{c}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}{\overset{\dot{c}}}}}}{\overset{\dot{c}}}}}}{\overset{\dot{c}}}}}}}}}}$	0.5

ج)- بين أن المتتالية العددية v_n $_{n\hat{1}\,\hat{4}\,\hat{4}}$ متقاربة ثم حدد نهايتها. ا**نتهى**

0.25

 $(\frac{2k+1}{2n} < \frac{k+1}{n})$ (لاحظ أن:

إنتباه: إذا أنجز المترشح التمرينين الاختياريين (بشكل كلي أو جزئي) تحتسب له فقط أحسن نقطة محصلة من بين النقطتين و ليس مجموع النقطتين.

سلم	عناصر الإجابة	رین1	التمر
التنقيط			
0.5	إذا كان d قاسما مشتركا موجبا للعددين x و 13 فإنه قاسم مشترك للعددين 13 و δ ، و منه	(أ	-1
	d = 1		
0.5	الما أولي و لا يقسم x و نطبق مبر هنة فيرما x	ب)	
1	$2'$ 7° 1 [13] ك x^3 ° 2′ 5 [13] ك النينا: $7x^3$ ° 5 [13] ك النينا:	(ح	
0.5	x^{12} ° 3 [13] و منه $(x^3)^4$ ° 10 $(x^3)^4$ ° 10 [13] دينا	(7	
1	اذا كان (x,y) و (x,y) حلا للمعادلة (D) فإنه حسب السؤال 1- لدينا (x,y) و		-2
	x ¹² ° 3 [13] و هذا غير ممكن.		

سلم	عناصر الإجابة	ىن2	التمر
التنقيط			
0.5	$ig(M_2(i),')$ استقرار E في	(أ	
0.5	E البرهان على عدم تبادلية الضرب في	ب)	-1
0.5	التحقق	ج)	
0.5	زمرة غير تبادلية $(E,')$		-2
0.5	j تشاکل	(-3
1	رمرة تبادلية $j=F$ و $j=(i,*,')$ زمرة تبادلية $j=(i,*,')$	Ĺ)	
	j (1)= I العنصر المحايد هو		

قيط	سلم التن	عناصر الإجابة	التمرين3
			الجزء الأول:
		(E) Û $(z-m)(z^2-mz+m^2)=0$ لاينا:	
	$\frac{1-i\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}m=e^{-irac{p}{3}}m$ و $\frac{1+i\sqrt{3}}{2}m=e^{irac{p}{3}}m$ و $m=e^{-irac{p}{3}}m$ و $m=e^{-irac{p}{3}}m$	-1

2	NR 24	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 - عناصر الإجابة - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب)			
	0.25	$\frac{1}{z_1} + \frac{1}{z_2} = \frac{z_1 + z_2}{z_1 z_2} = \frac{m}{m^2}$ البينا:	(أ		2
	0.5	$z_2=\sqrt{3}rac{\cancel{x}\sqrt{3}}{2}$ - $irac{1\ddot{0}}{2\dot{\overline{x}}}$ و $z_1=i\sqrt{3}$ نجد $z_1=i\sqrt{3}$	ب)		-2
	Į.	الجزء الثاني:		I	
	0.25	النقط O و A و B غير مستقيمية			-1
	1	حساب p حساب	Ó		-2
	1 -	حساب <i>r</i>	(,		
	0.5	qحساب q	ڊ)		
		O.25 $OQ=PR$ و نستنتج أن: $Q=PR$ و نستنتج أن:			-3
	0.5				

0.25.....(*OQ*)^ (*PR*)

سلم التنقيط		عناصر الإجابة		التمرين4	
	الجزء الأول:				
0.5	0.25	5		-1	
0.0	0.2	$\frac{1}{x+1} < ln \frac{\ddot{e}}{\ddot{x}} + \frac{1 \ddot{o}}{x \dot{\overline{\phi}}} < \frac{1}{x}$ التأطير:		-	
0.5		$\lim_{x \otimes 0^+} \frac{f(x)}{x} = 0$ الذينا: $\frac{x^2}{1+x} < \frac{f(x)}{x} < x$	(1)	-2	
0.5		$\lim_{x \oplus + \frac{1}{4}} \frac{f(x)}{x} = + \frac{1}{4} \text{إذن} \frac{x^2}{1+x} < \frac{f(x)}{x}$ ادينا:	ب)		
0.5		يقبل فرعا شلجميا في اتجاه محور الأراتيب (C)			
0.75	0.25	الدالة قابلة للاشتقاق	(أ		
0.73	0.25	f'(x) حساب			
0.5		$ln_{\mathbf{c}}^{\mathbf{a}} + \frac{1 \ddot{\mathbf{o}}}{x \dot{\overline{\mathbf{o}}}} \frac{1}{3(1+x)} > ln_{\mathbf{c}}^{\mathbf{a}} + \frac{1 \ddot{\mathbf{o}}}{x \dot{\overline{\mathbf{o}}}} \frac{1}{1+x} > 0$.	ب)	-3	
		f'(x) > 0 إذن:			
0.25		f جدول تغیرات f	(ج		
0.75		عساب g'(x) عساب g'(x)	(1	-4	

7 7 11	
الصفحة 3 NR 24	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 - عناصر الإجابة
3 NR 24	- مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب)

	$ln\ddot{\mathbf{g}}$ ا الخن: $1 + \frac{1\ddot{\mathbf{o}}}{x\dot{\mathbf{o}}} + \frac{1\ddot{\mathbf{o}}}{2(1+x)} > ln\ddot{\mathbf{g}}$ ا الخن: $1 + \frac{1\ddot{\mathbf{o}}}{x\dot{\mathbf{o}}} + \frac{1\ddot{\mathbf{o}}}{1+x} > 0$		
	0.25 $g'(x) > 0$		
	مبر هنة القيم الوسيطية تعطي وجود a و الرتابة القطعية للدالة g تعطي وحدانيته a	(,,	
0.5	0.25 أو كذلك g تقابل من $y;+$ إلى $y;+$ إلى $y;+$	ب)	
	نتحقق من (2)< 1< و(1) يتحقق من (1)		
0.5	$f(x)=x \ \hat{\mathbf{U}} \ x=0 \ x$ ()چول المعادلة: أوج	(7	
0.5	إنشاء المنحنى	(1	-5
0.25	I تقابل من I نحو f		الجزء الثاني
0.5	$c^{-1}(0) = 0 c^{-1}(0) = 0 c^{-1}(0) = 0$; د	*
0.5	$f^{-1}(0)=0$ و $f^{-1}(a)=a$ و کون $f^{-1}(a)=a$ و الترجع و $f^{-1}(a)=a$		-1
0.5	g (D; a D= D; 1[(أ	
0.5	0 < g(x) < 1 من أجل $0 < x < a$ من أجل	<i>(</i>	-2
0,5	$0 < u_n < f^{-1}(u_n) = u_{n+1}$ اِذْن: $0 < f(u_n) < u_n$ فإن $0 < u_n < a$ اِذْن	ب)	
0.25	متتالية تزايدية و مكبورة	(ح	
	إذا وضعنا: $u_n + \lim_{n \to + \pm} u_n$ فإن $l = \lim_{n \to + \pm} u_n$ لأن		
0.5	(" n^3 1); $0 < u_0 < u_n < a$		-3
	$f\left(x ight) = x$ و بما أن f^{-1} متصلة على $\left[0;a ight]$ (و بالخصوص في f) فإن f هي حل المعادلة		
	$l=\mathrm{a}$ اِذن		
		٤:	الجزء الثالث
0.5	x^3 اذن $f(x)^3$ موجبة من أجل 1 $x \pm 1$ و سالبة من أجل 1 $f(x)^3$ ا	(أ	
	Iقابلة للاشتقاق على F		
0.5		ب)	-1
	0.25 (" $x\hat{1} I$); $F'(x) = -f(x)$		
0.25	$F'(x) = 0 \hat{U} x = 0$ $g("x\hat{I} I)$; $F'(x) = -f(x) < 0$	ج)	
0.5	$\grave{\mathrm{O}}_{\!\!1}^{x}f(t)dt^{3}$ (x- 1) $ln2$ ادينا: $(x^{3} \ 1; \ f(x)^{3} \ ln2$	(1	-2
0.25	$\lim_{x \in \mathbb{R}^+ \Psi} F(x) = - \Psi$	ب)	
0.5	مكاملة بالأجزاء	(أ	
0.5	$\grave{O}_{x}^{1} \frac{t^{3}}{t+1} dt = \frac{5}{6} - \ln 2 - \frac{x^{3}}{3} + \frac{x^{2}}{2} - x + \ln(1+x)$	ب)	-3
0.5	المتساوية	ج)	

الصفحة 4 NR 24	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 – عناصر الإجابة - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب)	

					_
	0.5	$0.25 \lim_{x \otimes 0^+} F(x) = \frac{5}{24}$	2		
	0.25 ک $_0^1 f(t)dt = F(0) = \lim_{x \to 0^+} F(x) = \frac{5}{24}$ متصلة على اليمين في 0 إذن:				
	0.5	$\frac{\acute{g}k}{\acute{g}}$, $\frac{2k+1}{2n}$ و متفاوتة التزايدات المنتهية على الدالة F في المجال \mathring{g}	(أ	-4	
		$ \stackrel{\text{def}}{\xi} x \hat{1} \stackrel{\text{def}}{\xi}, \frac{2k+1}{2n} \stackrel{\text{def}}{\xi} ; \qquad f \stackrel{\text{def}}{\xi} \frac{\ddot{o}}{n} f f(x) f f \stackrel{\text{def}}{\xi} \frac{2k+1}{2n} \frac{\ddot{o}}{\ddot{o}} \qquad \text{2} $			
	0.5	$rac{2k+1}{2n} < rac{k+1}{n}$ نلاحظ أن:	ب)		
	0.25	f مجاميع ريمان المرتبطة بالدالة $\frac{1}{n} \stackrel{k=n-1}{\overset{k}{a}} f \stackrel{k}{\overset{k}{\overset{k}{\otimes}}} - \frac{1}{n} \stackrel{k=n}{\overset{k}{\overset{k}{\otimes}}} - \frac{1}{n} \stackrel{k=n}{\overset{k}{\overset{k}{\otimes}}} \stackrel{0}{\overset{k}{\overset{k}{\otimes}}} = \frac{1}{n} \stackrel{k=n}{\overset{k}{\overset{k}{\otimes}}} - \frac{1}{n} \stackrel{k=n-1}{\overset{k}{\overset{k}{\otimes}}} f \stackrel{k}{\overset{k}{\overset{k}{\overset{k}{\otimes}}}} \stackrel{0}{\overset{k}{\overset{k}{\overset{k}{\otimes}}}} = \frac{1}{n} \stackrel{k=n}{\overset{k}{\overset{k}{\otimes}}} - \frac{1}{n} \stackrel{k=n-1}{\overset{k}{\overset{k}{\otimes}}} f \stackrel{k}{\overset{k}{\overset{k}{\overset{k}{\otimes}}}} \stackrel{0}{\overset{k}{\overset{k}{\overset{k}{\otimes}}}} = \frac{1}{n} \stackrel{k}{\overset{k}{\overset{k}{\otimes}}} - \frac{1}{n} \stackrel{k}{\overset{k}{\overset{k}{\overset{k}{\otimes}}}} - \frac{1}{n} \stackrel{k}{\overset{k}{\overset{k}{\overset{k}{\otimes}}}} - \frac{1}{n} \stackrel{k}{\overset{k}{\overset{k}{\overset{k}{\otimes}}}} - \frac{1}{n} \stackrel{k}{\overset{k}{\overset{k}{\overset{k}{\otimes}}}} - \frac{1}{n} \stackrel{k}{\overset{k}{\overset{k}{\overset{k}{\overset{k}{\overset{k}{\overset{k}{\overset{k}{$	(7		
		المتصلة على القطعة $\begin{bmatrix} 0,1 \end{bmatrix}$ اذن المتتاليتين المتتاليتين $f = \frac{k}{n} \frac{k}{n} \frac{\partial \ddot{b}}{\partial n}$ اذن المتتاليتين المتتاليتين و $\frac{k}{n} \frac{\partial \ddot{c}}{\partial n} \frac{\partial \ddot{c}}{\partial n}$ اذن المتتاليتين المتتاليتين و المتصلة على القطعة المتاليتين المتتاليتين المتاليتين ال			
		$F(0) = {\stackrel{1}{\mathbf{O}}}_0^1 f(x) dx = \frac{5}{24}$ لهما نفس النهاية التي هي			
		و منه المتتالية (v_n) متقاربة (خاصية تلأطير النهايات) و نهايتها $\frac{5}{48}$ - $\frac{1}{2}F(0)$			