GPS 응용 코드의사거리(Code Pseudorange)기반

단독 측위(Point Positioning)

목차

- 단독측위(Point Positioning, PP)의 정의
 - aka. standalone positioning
 - ► 기준국 혹은 보정정보 없이 하나의 수신기로 3차원 위치를 계산
- 관측방정식
- GPS 관련 파일 다루기
 - ▶ 데이터 형식과 구조
- 최소제곱 추정 (Least-Squares Estimation, LSE) 복습
- 3월내로 단독측위 알고리즘 구현
 - ► 30초 단위 24시간 데이터
 - ▶ 1초 단위 1시간 데이터

단독측위 관측방정식

■ 코드의사거리(PR) 관측방정식

$$PR = \rho + c (\delta t_r - \delta t^s) + T + I + M + \delta_r + \delta^s + \varepsilon$$

- ρ: Geometric(instantaneous or true) range; c: Speed of light
- δt_r: Receiver clock offset; δt^s: Satellite clock offset
- T: Tropospheric delay; I: Ionospheric delay; M: Multipath error
- δ_r : Receiver hardware bias; δ^s : Satellite hardware bias
- ε: Random noise
- 3월에는 코드의사거리 관측값만을 다룰 예정임
 - C/A or C1
 - ▶ 3월 이후, 아래와 같은 관측값과 관측방정식이 필요할 수 있음
 - 반송파위상과 그 관측방정식
 - 도플러와 평활화(smoothing)
 - 이중주파수와 무전리층(IF, Ionosphere-Fee) 조합

단독측위 관측방정식 ⇒ 항법해

- Geometric range p
 - ▶ 궤도력 혹은 위성의 3차원 좌표 € 항법메시지
 - ▶ 미지수: 안테나 좌표는 최소제곱추정에서 산출함
- Clock offsets \(\delta t_r\) \(\delta t^s\)
 - ► 위성시계 오프셋 € 항법메시지
 - ▶ 미지수: 수신기시계 오프셋은 최소제곱추정에서 산출함
- Other errors IT M δ_r δ^s
 - ► Ionospheric and tropospheric errors

 별도 강의에서 다름
 - Multipath and hardware biases ⇒ 당분간 무시함
- 단순화된 항법해를 위한 관측방정식 \bigcirc PR = ρ + c δt_r + ϵ

Handling of Measurements

- Measurements from observation RINEX files
 - Measurements = Observables = Observations (?)
- Conversion of observation RINEX files to QM format
 - QM: Quick Measurement
- Structure of QM file: four-column data
 - Column #1: [gs] GPS week second; tt(time-tag)
 - Column #2: [PRN] PRN ID
 - Column #3: [obsType] Observation Type
 - Column #4: [obs] Measurement

QM: PRN, obsType

Constellations denoted by the first digit of 3-digit satellite ID

```
► 100's GPS GPS
```

- 200's BeiDou BDS
- 300's GLONASS GLO
- 400's Galileo GAL
- obsType denoted by 3-digit [ABC]
 - A: Satellite constellation (1, 2, 3, 4, 5, 6, ...)
 - B: Signal type (1: carrier phases; 2: code pseudo-ranges, 3: Doppler, 4: SNR)
 - C: Frequency (1, 2, 5)
- obsType GPS
 - ► 111, 112: L1/L2 Carrier phase measurements
 - 120, 121, 122: C1/P1/P2 Code pseudo-range measurements
 - 131, 132: D1/D2 Doppler measurements
 - ► 141, 142: S1/S2 SNR measurements

HW #1

ReadQM

- ReadQM.m
 - Input: QMfile
 - Output: arrQM, FinalPRNs, FinalTTs
 - arrQM: 4-column array in the same format as QMfile
 - FinalPRNs: List of PRN ID
 - FinalTTs: List of time-tag

PlotQM

- PlotQM.m
 - Input: arrQM, prn, obsType
 - Output: Figure
 - Conditions: gs (GPS Week Second) should be converted to hours
 - Hours of Day

궤도력 처리

- 궤도력(ephemeris) 정의 by Merriam-Webster
 - "ephemeris": a tabular statement of the assigned places of a celestial body for regular intervals; plural: ephemerides
- 궤도력 종류
 - ► SP3 궤도력
 - Precise (정밀)
 - Rapid (신속)
 - Ultra-rapid (초신속)
 - ► 방송 궤도력 (broadcast)
 - RINEX or 실시간 디코딩으로 확보
- 항법 RINEX 파일
 - ▶ 항법 RINEX 파일의 종류
 - Receiver-generated .vs. Internation GNSS Service (IGS)
 - suwn0320.15n .vs. brdc0320.15n
 - brdc for BRoaDCast
 - ► IGS에서 내려 받기 → 다음 슬라이드

IGS FTP

- International GNSS Service
 - http://igs.org or http://www.igs.org
- IGS has four Global Data Centers: GDC

Global Data Center

Institution	Abbreviation	Country
Institut Geographique National	IGN	France
Korean Astronomy and Space Science Institute	KASI	Korea
Crustal Dynamics Data Information System	CDDIS	USA
Scripps Institution of Oceanography	SIO	USA

- CDDIS
 - https://cddis.nasa.gov/archive/gnss/data/daily
 - Directory hierarchy: daily ⇒ YYYY ⇒ DOY ⇒ YRo

항법 RINEX 파일 구조

PRN	Epoch					
ID/	Year	Month	//Day//	Hour	Minute	Second

DDN & Freeh	SV clock bias	SV clock drift	SV clock drift rate	
PRN + Epoch	(s)	(s/s)	(s/s ²)	
IODE	C_{rz}	Δn	M_0	
IODE	(rad)	(rad/s)	(rad)	
C_{uc}	e	C_{us}	\sqrt{a}	
(rad)	(-)	(rad)	(\sqrt{m})	
toe	Cic	Ω_0	C_{is}	
(GPS Week Sec.)	(rad)	(rad)	(rad)	
i_0	C_{rc}	ω	$\dot{\Omega}$	
(rad)	(rad)	(rad)	(rad/s)	
\dot{i}	Codes on L2 channel	GPS Week Number	L2 P data flag	
(rad/s)		(-)		
SV accuracy	SV health	T_{GD}	IODC	
(m)		(s)		
Tx time of message	Fit interval			
(GPS Week Sec.)	(h)	spare	spare	

항법 RINEX 파일 처리

ReadEPH.p

- Conversion of navigation RINEX to an array
- Refer to a separate handout for the array structure
- Usage: eph = ReadEPH('brdc0320.15n')

PickEPH.p

- Returns the nearest row number for the input time-tag
- ieph = PickEPH(eph, PRN, tt)

	ReadEPH:	ReadEPH:	ReadEPH:	ReadEPH:
#	190121	190124	190124	201214
	GPS	BDS	GAL	QZSS
1	t_{oe}	t_{oe}	t_{oe}	t_{oe}
2	PRN	PRN	PRN	PRN
3	a	a	a	a
4	b	b	b	b
5	c	c	c	c
6	T_{GD}	T_{GD1} B1/B3	B_{GD} E5a/E1	T_{GD}
7		T_{GD2} B2/B3	B_{GD} E5b/E1	
8	IODE	IODE	IODE	IODE
9	IODC	IODC		IODC
10	\sqrt{a}	\sqrt{a}	\sqrt{a}	\sqrt{a}
11	e	e	ϵ	e
12	i_0	i_0	i_0	i_0
13	ω	ω	ω	ω
14	Ω_0	Ω_0	Ω_0	Ω_0
15	M_0	M_0	M_0	M_0
16	i	i	i	i
17	$\dot{\Omega}$	Ω	Ω	Ω
18	Δn	Δn	Δn	Δn
19	SV Health	SV Health	SV Health	SV Health
20	C_{uc}	C_{uc}	C_{uc}	C_{uc}
21	$C_{\!us}$	C_{us}	C_{us}	C_{us}

P-Codes Part #1

- HW #2
 - ReadEPH.p
 - PickEPH.p
- HW #3
 - ReadSP3.p
 - Get2ENDsp3.p
- Conversions of date and time
 - jd2gwgs.p function [gw, gs] = jd2gwgs(JD)
 - date2jd.p function [jd] = date2jd(yr4, month, day, hh, mm, ss)
 - date2gwgs function [gw, gs] = date2gwgs(yy, mo, dd, h, m, s)

GetSatPos (x^s, y^s, z^s) 검증

- Truth or reference provided by SP3 files
 - File format: igswwwwd.sp3 (eg, "igs18300.sp3")
 - Sampled at 15-minute
- ReadSP3.p
 - Reads in a SP3 file into an array
 - function [sp3_array] = ReadSP3(sp3_File)
 - Necessary subroutines, or subsidiary functions
 - function [gw, gs] = date2gwgs(yr, mon, day, hr, min, sec)
 - function [jd] = date2jd(yr, mon, day, hr, min, sec)
 - function [gw, gs] = jd2gwgs(JD)
 - function [s] = Get2ENDsp3(sp3_fid)

HW #2

CompEPH.m

- To compare satellite ephemeris from navigation RINEX and SP3 files
- CompEPH.m
 - Input: arrQM, sp3, eph, prn
 - Output: Figure

119	64800	-22054563.890 -22054563.860 -0.030	-5431403.651 -5431404.150 0.499	13961657.056 13961656.778 0.278	` '
119	65700	-23133593.610 -23133593.557 -0.053	-6449672.766 -6449673.261 0.495	11658317.920 11658317.587 0.333	` '
119	66600	-24039474.501 -24039474.434 -0.067	-7255807.996 -7255808.475 0.479	9157347.184 9157346.789 0.395	` ,
119	67500	-24735314.368 -24735314.280 -0.088	-7865218.644 -7865219.093 0.449	6501690.077 6501689.638 0.439	, ,
119	68400	-25189315.155 -25189315.028 -0.127	-8300350.235 -8300350.651 0.416	3736556.783 3736556.337 0.446	` '

신호전달시간 보정 (1/2)

- 보정 필요성
 - ▶ 신호전달시간(signal transmission time, STT, τ) 동안 지구자전에 의해 수신기 기준으로의 위성위치가 달라지기 때문에 GetSatPos 결과를 재계산 해야 함
 - ightharpoonup ightharpoonup 기준으로의 회전각 ightharpoonup $\omega_E au$
 - ► Z-축에 대한 오일러 회전

$$\begin{bmatrix} \cos \omega_E \tau & \sin \omega_E \tau & 0 \\ -\sin \omega_E \tau & \cos \omega_E \tau & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- STT는 대략 70~90 ms(milli-sec)에 해당 🗢 7×10⁻⁶ radians
 - $\omega_E \tau$ 값이 매우 작기 때문에 간략화 가능 $\Im \cos(\omega_E \tau) \cong 1$; $\sin(\omega_E \tau) \cong \omega_E \tau$
 - ► 만약 STT를 무시한다면, 비록 그 크기가 매우 작다고 하더라도 측위 결과에 대략 10~20m 수준의 오차가 발생하고,
 - ► 이는 주로 동서(east-west) 방향으로 나타남

신호전달시간 보정 (2/2)

- 신호전달시간 보정 절차
 - 보다 정확한 결과 산출을 위해서는 <u>반복 계산이 필요하지만</u>, 1차적으로 다음과 같이 단순화 할 수 있음
 - ► C/A 코드의사거리 관측값을 빛의 속도로 나눈 값으로 STT를 산출한 다음,
 - ► STT를 보정한 수신시각(corrected time, tc)로 위성 위치를 다시 계산함 STT = obs/CCC; tc = gs STT; vec_sat = GetSatPos(eph, icol, tc);

```
MATLAB function: vec_sat = RotSatPos(vec_sat, STT);
function [SatPos] = RotSatPos(SatPos, STT)
ome_e = 7.2921151467e-5; %: Earth Rotation Rate [rad/s]
rota = ome_e * STT;
R_e = [ cos(rota) sin(rota) 0; -sin(rota) cos(rota) 0; 0 0 1];
SatPos = R_e * SatPos'; %: 1X3 (row vector) conversion
```

상대성효과 및 Tgd 보정

■ 상대성효과(relativity effect, dRel)를 보정하는 두 가지 방법

1.
$$\delta t^{s} = a + b(t - t_{oe}) + c(t - t_{oe})^{2} + \delta t_{REL}^{s}$$

$$\delta t_{REL}^{s} = F \times e \times A^{\frac{1}{2}} \times \sin E_{k}$$

$$F = \frac{-2 \times \mu^{\frac{1}{2}}}{c^{2}} = -4.442807633 \times 10^{-10} \sec/\sqrt{m}$$

2.
$$\delta t_{REL}^{s} = -2 \frac{\vec{r} \cdot \vec{v}}{C^2}$$

- T_{gd}는 항법메시지(eph)에서 바로 추출
 - Tgd = eph(ieph, 6);
- 최종적으로, dRel and T_{gd}는 다음 두 식으로 처리 가능:

 dtSat = a + b*(tc toe) + c*(tc toe)^2 + dRel Tgd;

 com = rho + x(4) CCC*dtSat + dTrop + dIono;

이온층 오차 계산 - GIM

- 주어진 GIM 파일에서 이온층 오차를 계산하는 절차
 - Read a GIM file and save the contents in three arrays
 - function [Lat, Lon, TEC] = ReadGIM(GIM_file)
 - Compute ionospheric delays from three arrays and two position vectors
 - function [dIono] = IonoGIM(Lat, Lon, TEC, vec_sat, vec_site, tt)
- IonoGIM에 필요한 사항들
 - IPP location and OF
 - function [llh_ipp, OF] = GetLLipp(vec_site, vec_sat, iono_hgt)
 - Elevation angle, zenith angle, IPP location, and Obliquity Factor (OF)
 - VTEC at IPP though spatial interpolation
 - function [VTECgim] = GetVTECgim(Lat, Lon, TEC, lat, lon, tt)
 - spline.m
 - ► VTEC **STEC**

대류권 오차 계산 - GPT

- GPT로 대류권 오차를 계산하는 절차
 - Obtain a pressure estimate from Global Pressure Temperature model
 - function [pres, temp, undu] = gpt_v1(dmjd, dlat, dlon, dhgt)
 - function [dTropZ] = TropGPTh(vec_site, gw, gs)
 - ZHD = (2.2779 * p) / (1 0.00266 * cosd(2*lat) 0.00028 * hgt/1000);
 - Compute ZHD and covert it to SHD
 - function [dTrop] = ZHD2SHD(gw, gs, vec_site, el, ZHD)
 - [gmfh, ~] = GMF(gw, gs, pos, ele); SHD = ZHD*gmfh;
- ZHD2SHD에 필요한 사항
 - Global Mapping Function
 - function [gmfh, gmfw] = gmf_f_hu(dmjd, dlat, dlon, dhgt, zd)

매트랩 함수, 데이터, 그리고 문서

Klobuchar Model

ReadGIM

IONEX

Spatial Interpolation

TropGPTh, GPT

GMF

misc

Klobuchar Model_Coding Procedures.PDF

ReadGIM.p, igsg0320.15i

ionex1.PDF

GetVTECgim.p, spline.m

gpt_v1.m

gmf_f_hu.m

today2.p