Intégrales impropres/ Intégrales à paramètres

Jérémy Meynier

Exercice 1

Soit $I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^4)^n}$. Prouver l'existence et donner la limite de I_n

Exercice 2

Soit
$$I = \int_0^{+\infty} \frac{\sin(x)}{x} dx$$

- 1. I est-elle convergente?
- 2. I est-elle absolument convergente?

Exercice 3

Montrer que
$$\int_0^1 \frac{\ln(t)}{t-1} dt = \sum_{k=1}^\infty \frac{1}{k^2}$$

Exercice 4

Soit
$$f: t \in]0, 1[\mapsto \frac{1}{t^2} - \frac{1}{\arctan^2(t)}]$$

- 1. Montrer que f est intégrable sur]0,1]
- 2. Donner un équivalent de $\int_x^1 \frac{1}{\arctan^2(t)} dt$ quand $x \to 0^+$

Exercice 5

Soit
$$F(x) = \int_0^\infty \frac{\arctan(xt)}{t(1+t^2)} dt$$

- 1. Donner le domaine de définition de F
- 2. Étudier la continuité de F
- 3. Étudier le caractère C^1 de F
- 4. Trouver F à l'aide d'une décomposition en éléments simples

Jérémy Meynier 2

Exercice 6

On pose
$$f(x) = \int_{x}^{\infty} \frac{e^{-t}}{t} dt$$

- 1. Chercher $\lim_{x\to+\infty}$
- 2. À l'aide d'une intégration par parties, donner un équivalent de f en $+\infty$
- 3. Déterminer un équivalent de f(x) pour $x \to 0^+$

Exercice 7

Soient
$$a, b \in \mathbb{R}^{+*}$$
. Montrer que $\int_0^1 \frac{t^{a-1}}{1+t^b} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{a+nb}$

Exercice 8

Étudier l'intégrabilité de f sur I dans les cas suivants :

1.
$$f(t) = \frac{1}{e^t + t^2 e^{-t}}, I = \mathbb{R}^{+*}$$

2.
$$f(t) = \frac{t^{\alpha} - 1}{\ln(t)}, I =]0, 1[$$

3.
$$f(t) = \frac{1}{\arccos(t)}$$
, $I = [0, 1]$

4.
$$f(t) = \frac{\sqrt{t}\sin(\frac{1}{t^2})}{\ln(1+t)}, I = \mathbb{R}^{+*}$$

Exercice 9

Pour
$$x > 0$$
 et $n \in \mathbb{N}^*$, on pose $I_n(x) = \int_0^{+\infty} \frac{\mathrm{d}t}{(x+t^2)^n}$

- 1. Calculer $I_1(x)$
- 2. Montrer que $I_n \in C^1(]0, +\infty[)$
- 3. Calculer $I'_n(x)$ en fonction de $I_{n+1}(x)$
- 4. En déduire $I_n(x)$