Prova del 29/07/2016

Traccia E

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- (a) la media aritmetica, la media armonica e la media geometrica;
- (b) la mediana e la moda.

X	f	X*f	χ^2	X ² *f
4	24	96	16	384
0	20	0	0	0
9	18	162	81	1458
5	38	190	25	950
	100	448	•	2792

a) Calcolo media aritmetica, media armonica e media geometrica:

$$M(X) = \frac{\sum X * f}{\sum f} = \frac{448}{100} = 4,4800$$

Ma(X) = impossibile, perché una della X è uguale a 0

Mg(X) = nulla, perché una della X è uguale a 0

b) Calcolo della mediana e della moda:

Sui dati dell'esercizio precedente calcolare:

- (a) lo scarto quadratico medio;
- (b) il coefficiente di simmetria Skewness di Pearson, commentandolo brevemente.
- a) Calcolo dello scarto quadratico medio:

$$V(X) = M(X^2) - m(X)^2 = 2792/100 - 4,48^2 = 7,8496$$

 $\sigma(X) = RADQ(V(X)) = 2,8017$

b) Calcolo del coefficiente Skewness di Pearson:

$$Sk = (M(X)-moda)/\sigma(X) = -0,1856$$

La distribuzione presenta una asimmetria a sinistra.

ESERCIZIO 3

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

$$p = 0.2$$

 $n = 5$

Χ	P(X)
0	0,32768
1	0,4096
2	0,2048
3	0,0512
4	0,0064
5	0,00032
	1

CREO I VETTORI CON I DATI:

fertilizzante=c(40, 48, 25, 68, 55, 61) crescita=c(740, 890, 480, 1300, 1000, 1100)

DISEGNO IL GRAFICO DEI PUNTI:

plot(fertilizzante, crescita)

EFFETTUO LA REGRESSIONE LINEARE:

rettafertilizzante=lm(crescita~fertilizzante)

AGGIUNGO LA RETTA DELLA REGRESSIONE AL GRAFICO

abline(rettafertilizzante, col="blue")

DISEGNO I SEGMENTI FRA LA RETTA INTERPOLANTE E I PUNTI:

segments(fertilizzante, fitted(rettafertilizzante), fertilizzante, crescita, lty=2)

AGGIUNGO UN TITOLO:

title(main="Regressione lineare fra fertilizzante e crescita")

VISUALIZZO I RISULTATI DELLA REGRESSIONE LINEARE

summary (rettafertilizzante)

I PARAMETRI TROVATI SONO a=5,8386 E b=18,4342

QUINDI IL MODELLO TEORICO SARA':

Y' = 5,58386 + 18,4342 * fertilizzante

EFFETTO L'ANALISI DEI RESIDUI

plot(fitted(rettafertilizzante), residuals(rettafertilizzante)) abline(0, 0)

L'analisi dei residui conferma che questi si distribuiscono in maniera uniforme e apparentemente casuale attorno all'asse zero, quindi si può confermare l'ipotesi di distribuzione casuale degli stessi, con media nulla e incorrelazione.

CALCOLO IL COEFFICIENTE DI CORRELAZIONE LINEARE:

R=cor(fertilizzante, crescita)

R

R E' PARI A 0.9961549 E CONFERMA CHE C'E' UNA FORTE RELAZIONE LINEARE DIRETTA FRA LE DUE VARIABILI

CALCOLO IL COEFFICIENTE DI DETERMINAZIONE:

R2=R^2

R2

R2 E' PARI A 0.9923247 QUINDI IL MODELLO TEORICO USATO SI ADATTA MOLTO BENE AI VALORI OSSERVATI

```
# CREO IL VETTORE DELLE X:
k=c(0:5)

# CALCOLO I VALORI DELLA VARIABILE BINOMIALE:
dbinom(k, 5, 0.2)

# LA MEDIANA E':
qbinom(0.5, 5, 0.2)

# IL PRIMO QUARTILE CORRISPONDE AL 25% DELLA DISTRIBUZIONE:
qbinom(0.25, 5, 0.2)

# IL TERZO QUARTILE CORRISPONDE AL 75% DELLA DISTRIBUZIONE:
qbinom(0.75, 5, 0.2)
```

Prova del 29/07/2016

Traccia F

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- (a) la media aritmetica, la media armonica e la media geometrica;
- (b) la mediana e la moda.

X	f	X*f	Χ²	X ² *f
3	40	120	9	360
1	19	19	1	19
0	15	0	0	0
6	46	276	36	1656
	120	415	<u>-</u>	2035

a) Calcolo media aritmetica, media armonica e media geometrica:

$$M(X) = \frac{\sum X * f}{\sum f} = \frac{415}{120} = 3,4583$$

Ma(X) = impossibile, perché una della X è uguale a 0

Mg(X) = nulla, perché una della X è uguale a 0

b) Calcolo della mediana e della moda:

$$X60^{\circ} = < mediana = < X61^{\circ} : me = 3$$

Sui dati dell'esercizio precedente calcolare:

- (a) lo scarto quadratico medio;
- (b) il coefficiente di simmetria Skewness di Pearson, commentandolo brevemente.
- a) Calcolo dello scarto quadratico medio:

$$V(X) = M(X^2) - m(X)^2 = 2035/120 - 3,4583^2 = 4,9983$$

 $\sigma(X) = RADQ(V(X)) = 2,2357$

b) Calcolo del coefficiente Skewness di Pearson:

$$Sk = (M(X)-moda)/\sigma(X) = -1,1369$$

La distribuzione presenta una asimmetria a sinistra.

ESERCIZIO 3

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

$$p = 0.3$$

 $n = 5$

X	P(X)
0	0,16807
1	0,36015
2	0,3087
3	0,1323
4	0,02835
5	0,00243
	1

CREO I VETTORI CON I DATI:

fertilizzante=c(20, 25, 30, 65, 60, 70) crescita=c(100, 140, 170, 390, 300, 370)

DISEGNO IL GRAFICO DEI PUNTI:

plot(fertilizzante, crescita)

EFFETTUO LA REGRESSIONE LINEARE:

rettafertilizzante=lm(crescita~fertilizzante)

AGGIUNGO LA RETTA DELLA REGRESSIONE AL GRAFICO

abline(rettafertilizzante, col="blue")

DISEGNO I SEGMENTI FRA LA RETTA INTERPOLANTE E I PUNTI:

segments(fertilizzante, fitted(rettafertilizzante), fertilizzante, crescita, lty=2)

AGGIUNGO UN TITOLO:

title(main="Regressione lineare fra fertilizzante e crescita")

VISUALIZZO I RISULTATI DELLA REGRESSIONE LINEARE

summary (rettafertilizzante)

I PARAMETRI TROVATI SONO a=-1.6 E b=5.48

QUINDI IL MODELLO TEORICO SARA':

Y' = -1,6 + 5,48 * fertilizzante

EFFETTO L'ANALISI DEI RESIDUI

plot(fitted(rettafertilizzante), residuals(rettafertilizzante)) abline(0, 0)

L'analisi dei residui conferma che questi si distribuiscono in maniera uniforme e apparentemente casuale attorno all'asse zero, quindi si può confermare l'ipotesi di distribuzione casuale degli stessi, con media nulla e incorrelazione.

CALCOLO IL COEFFICIENTE DI CORRELAZIONE LINEARE:

R=cor(fertilizzante, crescita)

R

R E' PARI A 0.9851909 E CONFERMA CHE C'E' UNA FORTE RELAZIONE LINEARE DIRETTA FRA LE DUE VARIABILI

CALCOLO IL COEFFICIENTE DI DETERMINAZIONE:

R2=R^2

R2

R2 E' PARI A 0.9706012 QUINDI IL MODELLO TEORICO USATO SI ADATTA MOLTO BENE AI VALORI OSSERVATI

```
# CREO IL VETTORE DELLE X:
k=c(0:5)

# CALCOLO I VALORI DELLA VARIABILE BINOMIALE:
dbinom(k, 5, 0.3)

# LA MEDIANA E':
qbinom(0.5, 5, 0.3)

# IL PRIMO QUARTILE CORRISPONDE AL 25% DELLA DISTRIBUZIONE:
qbinom(0.25, 5, 0.3)

# IL TERZO QUARTILE CORRISPONDE AL 75% DELLA DISTRIBUZIONE:
qbinom(0.75, 5, 0.3)
```

Prova del 29/07/2016

Traccia G

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- (a) la media aritmetica, la media armonica e la media geometrica;
- (b) la mediana e la moda.

X	f	X*f	χ^2	X ² *f
2	14	28	4	56
4	15	60	16	240
1	10	10	1	10
0	11	0	0	0
	50	98	•	306

a) Calcolo media aritmetica, media armonica e media geometrica:

$$M(X) = \frac{\sum X * f}{\sum f} = \frac{98}{50} = 1,9600$$

Ma(X) = impossibile, perché una della X è uguale a 0

Mg(X) = nulla, perché una della X è uguale a 0

b) Calcolo della mediana e della moda:

$$X25^{\circ} = < mediana = < X26^{\circ} : me = 2$$

Sui dati dell'esercizio precedente calcolare:

- (a) lo scarto quadratico medio;
- (b) il coefficiente di simmetria Skewness di Pearson, commentandolo brevemente.
- a) Calcolo dello scarto quadratico medio:

$$V(X) = M(X^2) - m(X)^2 = 306/50 - 1,96^2 =$$
 2,2784
$$\sigma(X) = RADQ(V(X)) =$$
 1,5094

b) Calcolo del coefficiente Skewness di Pearson:

$$Sk = (M(X)-moda)/\sigma(X) = -1,3515$$

La distribuzione presenta una asimmetria a sinistra.

ESERCIZIO 3

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

$$p = 0,25$$

 $n = 5$

X	P(X)
0	0,23730469
1	0,39550781
2	0,26367188
3	0,08789063
4	0,01464844
5	0,00097656
	1

Media =
$$np = 1,25$$

Varianza = $npq = 0,9375$

CREO I VETTORI CON I DATI:

fertilizzante=c(13, 21, 29, 60, 58, 64) crescita=c(170, 280, 360, 760, 700, 800)

DISEGNO IL GRAFICO DEI PUNTI:

plot(fertilizzante, crescita)

EFFETTUO LA REGRESSIONE LINEARE:

rettafertilizzante=lm(crescita~fertilizzante)

AGGIUNGO LA RETTA DELLA REGRESSIONE AL GRAFICO

abline(rettafertilizzante, col="blue")

DISEGNO I SEGMENTI FRA LA RETTA INTERPOLANTE E I PUNTI:

segments(fertilizzante, fitted(rettafertilizzante), fertilizzante, crescita, lty=2)

AGGIUNGO UN TITOLO:

title(main="Regressione lineare fra fertilizzante e crescita")

VISUALIZZO I RISULTATI DELLA REGRESSIONE LINEARE

summary (rettafertilizzante)

I PARAMETRI TROVATI SONO a = 13.6906 E b = 12.1953

QUINDI IL MODELLO TEORICO SARA':

Y' = 13.6906 + 12.1953 * fertilizzante

EFFETTO L'ANALISI DEI RESIDUI

plot(fitted(rettafertilizzante), residuals(rettafertilizzante)) abline(0, 0)

L'analisi dei residui conferma che questi si distribuiscono in maniera uniforme e apparentemente casuale attorno all'asse zero, quindi si può confermare l'ipotesi di distribuzione casuale degli stessi, con media nulla e incorrelazione.

CALCOLO IL COEFFICIENTE DI CORRELAZIONE LINEARE:

R=cor(fertilizzante, crescita)

R

R E' PARI A 0.9988598 E CONFERMA CHE C'E' UNA FORTE RELAZIONE LINEARE DIRETTA FRA LE DUE VARIABILI

CALCOLO IL COEFFICIENTE DI DETERMINAZIONE:

R2=R^2

R2

R2 E' PARI A 0.9977208 QUINDI IL MODELLO TEORICO USATO SI ADATTA MOLTO BENE AI VALORI OSSERVATI

CREO IL VETTORE DELLE X: k=c(0:5)

CALCOLO I VALORI DELLA VARIABILE BINOMIALE: dbinom(k, 5, 0.25)

LA MEDIANA E': qbinom(0.5, 5, 0.25)

IL PRIMO QUARTILE CORRISPONDE AL 25% DELLA DISTRIBUZIONE: qbinom(0.25, 5, 0.25)

IL TERZO QUARTILE CORRISPONDE AL 75% DELLA DISTRIBUZIONE: qbinom(0.75, 5, 0.25)

Prova del 29/07/2016

Traccia H

ESERCIZIO 1

Sulla distribuzione di frequenze presentata in tabella, calcolare:

- (a) la media aritmetica, la media armonica e la media geometrica;
- (b) la mediana e la moda.

X	f	X*f	χ^2	X ² *f
0	10	0	0	0
5	15	75	25	375
3	9	27	9	81
1	6	6	1	6
	40	108	_'	462

a) Calcolo media aritmetica, media armonica e media geometrica:

$$M(X) = \frac{\sum X * f}{\sum f} = \frac{108}{40} = 2,7000$$

Ma(X) = impossibile, perché una della X è uguale a 0

Mg(X) = nulla, perché una della X è uguale a 0

b) Calcolo della mediana e della moda:

Sui dati dell'esercizio precedente calcolare:

- (a) lo scarto quadratico medio;
- (b) il coefficiente di simmetria Skewness di Pearson, commentandolo brevemente.
- a) Calcolo dello scarto quadratico medio:

$$V(X) = M(X^2) - m(X)^2 = 462/40 - 2,7^2 = 4,2600$$

 $\sigma(X) = RADQ(V(X)) = 2,0640$

b) Calcolo del coefficiente Skewness di Pearson:

$$Sk = (M(X)-moda)/\sigma(X) = -1,1144$$

La distribuzione presenta una asimmetria a sinistra.

ESERCIZIO 3

Lo schema da utilizzare è quello della v.c. Binomiale con parametri:

$$p = 0.4$$

 $n = 5$

X	P(X)
0	0,07776
1	0,2592
2	0,3456
-	,
3	0,2304
4	0,0768
5	0,01024
	1

CREO I VETTORI CON I DATI:

fertilizzante=c(40, 64, 18, 56, 15, 16) crescita=c(1000, 1650, 450, 1400, 380, 400)

DISEGNO IL GRAFICO DEI PUNTI:

plot(fertilizzante, crescita)

EFFETTUO LA REGRESSIONE LINEARE:

rettafertilizzante=lm(crescita~fertilizzante)

AGGIUNGO LA RETTA DELLA REGRESSIONE AL GRAFICO

abline(rettafertilizzante, col="blue")

DISEGNO I SEGMENTI FRA LA RETTA INTERPOLANTE E I PUNTI:

segments(fertilizzante, fitted(rettafertilizzante), fertilizzante, crescita, lty=2)

AGGIUNGO UN TITOLO:

title(main="Regressione lineare fra fertilizzante e crescita")

VISUALIZZO I RISULTATI DELLA REGRESSIONE LINEARE

summary (rettafertilizzante)

I PARAMETRI TROVATI SONO a = -10.9214 E b = 25.5767

QUINDI IL MODELLO TEORICO SARA':

Y' = -10.9214 + 25.5767 * fertilizzante

EFFETTO L'ANALISI DEI RESIDUI

plot(fitted(rettafertilizzante), residuals(rettafertilizzante)) abline(0, 0)

L'analisi dei residui conferma che questi si distribuiscono in maniera uniforme e apparentemente casuale attorno all'asse zero, quindi si può confermare l'ipotesi di distribuzione casuale degli stessi, con media nulla e incorrelazione.

CALCOLO IL COEFFICIENTE DI CORRELAZIONE LINEARE:

R=cor(fertilizzante, crescita)

R

R E' PARI A 0.9995991 E CONFERMA CHE C'E' UNA FORTE RELAZIONE LINEARE DIRETTA FRA LE DUE VARIABILI

CALCOLO IL COEFFICIENTE DI DETERMINAZIONE:

R2=R^2

R2

R2 E' PARI A 0.9991983 QUINDI IL MODELLO TEORICO USATO SI ADATTA MOLTO BENE AI VALORI OSSERVATI

```
# CREO IL VETTORE DELLE X:
k=c(0:5)

# CALCOLO I VALORI DELLA VARIABILE BINOMIALE:
dbinom(k, 5, 0.4)

# LA MEDIANA E':
qbinom(0.5, 5, 0.4)

# IL PRIMO QUARTILE CORRISPONDE AL 25% DELLA DISTRIBUZIONE:
qbinom(0.25, 5, 0.4)

# IL TERZO QUARTILE CORRISPONDE AL 75% DELLA DISTRIBUZIONE:
qbinom(0.75, 5, 0.4)
```