AMENDMENTS TO THE CLAIMS

1 (Currently Amended) A method for verifying scan chain equivalency 2 between two representations of a circuit design having at least one scannable state 3 element, at least one scan-out pin and at least one output pin, comprising: 4 for each representation of the circuit design, loading each scannable state element 5 with a symbolic expression that characterizes a logical location of said 6 scannable element in the circuit design; and 7 for each representation of the circuit design, performing a scan shift operation to 8 verify a content value for each [the] scannable state [-]element [contents] 9 at said scan-out pin and said output pin of the design. 1 2. (Original) The method of claim 1, wherein the two representations of 2 a circuit design comprise a switch-level netlist and an RTL netlist. 1 3. (Original) The method of claim 1, wherein the two representations of 2 a circuit design comprise a transistor level implementation and a behavioral level 3 description. 1 4. (Original) The method of claim 1, wherein the two representations of 2 a circuit design comprise RTL and schematic models of a memory circuit. 1 5. (Original) The method of claim 1, wherein the two representations of 2 a circuit design comprise a first RTL model of a storage circuit and a second RTL model 3 of a storage circuit. 1 6. The method of claim 1, wherein the two representations of (Original) 2 a circuit design comprise a SPICE-level netlist and a gate level description. 1 7. (Original) The method of claim 1, wherein said loading of each 2 scannable state element with a symbolic expression comprises simulating said circuit 3 design in a functional mode for a first minimum threshold number of cycles by applying 4 symbolic expressions to at least a first input for said circuit design.

l	8.	(Previously I	Presented)	The method of claim 7, wherein said first	
2	minimum threshold number comprises a maximum sequential depth of all scannable				
3	state-elements on all paths from all primary inputs in said circuit design.				
1	9.	(Original)	The method o	f claim 1, wherein said loading and	
2	performing ste	performing steps are implemented with a symbolic simulator to check scan chain			
3	equivalency with respect to complete scan chain connectivity from primary input to				
4	primary output, logical location of all scannable state elements, scan chain length and				
5	scan chain order.				
1	10.	(Original)	The method o	f claim 1, wherein said loading and	
2	performing steps are implemented with a symbolic simulator to obtain complete				
3	coverage.				
1	11.	(Original)	The method o	f claim 1, wherein said scan shift operation	
2	comprises simulating a sequence of scan clocks equal to a multiple of the number of				
3	scannable state-elements in the circuit design.				
1	12-20.	(Cancelled)			
1	21.	(Previously I	Presented)	A method for verifying scan chain	
2	equivalency between two representations of a circuit design having at least one scannabl				
3	state element, at least one scan-out pin and at least one output pin, comprising:				
4	for each representation of the circuit design, loading each scannable state elemen				
5	with a symbolic expression that characterizes a logical location of said				
6	scannable element in the circuit design;				
7	for each representation of the circuit design, performing a scan shift operation to				
8	generate scan-out pin values at said scan-out pin; and				
9	comparing scan-out pin values from each representation of the circuit design to				
10	verify scan chain equivalency between the two representations of the				
11	circuit design.				