HEXFET® Power MOSFET

V _{DSS}	R _{DS(on)} max	Qg
30V	3.2m $Ω$	36nC

TO-220AB IRLB8743PbF

G	D	S
Gate	Drain	Source

International IOR Rectifier

Applications

- Optimized for UPS/Inverter Applications
- High Frequency Synchronous Buck Converters for Computer Processor Power
- High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial use

Benefits

- Very Low RDS(on) at 4.5V V_{GS}
- Ultra-Low Gate Impedance
- Fully Characterized Avalanche Voltage and Current
- Lead-Free

Absolute Maximum Ratings

·	Parameter	Max.	Units	
V _{DS}	Drain-to-Source Voltage	30	V	
V _{GS}	Gate-to-Source Voltage	± 20		
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	150@		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	110	A	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	78	7 ^	
I _{DM}	Pulsed Drain Current ①	620	Ī	
P _D @T _C = 25°C	Maximum Power Dissipation ®	140	w	
P _D @T _C = 100°C	Maximum Power Dissipation ®	68	7 'V	
	Linear Derating Factor	0.90	W/°C	
T _J	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting torque, 6-32 or M3 screw ♥	10lbf•in (1.1N·m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ©		1.11	
$R_{\theta CS}$	Case-to-Sink, Flat Greased Surface	0.5		°C/W
$R_{\theta JA}$	Junction-to-Ambient ®		62	

International
Rectifier

Static @ T_J = 25°C (unless otherwise specified)

_	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta \mathrm{BV}_{\mathrm{DSS}}/\Delta \mathrm{T}_{\mathrm{J}}$	Breakdown Voltage Temp. Coefficient		17		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		2.5	3.2		V _{GS} = 10V, I _D = 40A ③
			3.5	4.2	mΩ	V _{GS} = 4.5V, I _D = 32A ③
V _{GS(th)}	Gate Threshold Voltage	1.35	1.8	2.35	V	V - V I - 100uA
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Coefficient		-7.7		mV/°C	$V_{DS} = V_{GS}, I_D = 100\mu A$
I _{DSS}	Drain-to-Source Leakage Current	_		1.0		$V_{DS} = 24V, V_{GS} = 0V$
				100	μΑ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage	_		100	- A	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage	_		-100	nA	V _{GS} = -20V
gfs	Forward Transconductance	190			S	$V_{DS} = 15V, I_D = 32A$
Q_g	Total Gate Charge		36	54		
Q _{gs1}	Pre-Vth Gate-to-Source Charge	_	9.1			$V_{DS} = 15V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		4.2		nC	$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge	_	13			$I_D = 32A$
Q_{godr}	Gate Charge Overdrive	_	13			
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})	_	17.2			
Q _{oss}	Output Charge		21		nC	$V_{DS} = 16V, V_{GS} = 0V$
R _G	Gate Resistance		0.85	1.5	Ω	
t _{d(on)}	Turn-On Delay Time		23			V _{DD} = 15V, V _{GS} = 4.5V ^③
t _r	Rise Time		92	l —		$I_D = 32A$
t _{d(off)}	Turn-Off Delay Time	_	25	_	ns	$R_G = 1.8\Omega$
t _f	Fall Time		36			
C _{iss}	Input Capacitance		5110			V _{GS} = 0V
C _{oss}	Output Capacitance		960		pF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		440			f = 1.0 MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units	
E _{AS}	Single Pulse Avalanche Energy ^②		310	mJ	
I _{AR}	Avalanche Current ①		32	Α	
E _{AR}	Repetitive Avalanche Energy ①		14	mJ	

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			150@		MOSFET symbol
	(Body Diode)			.00 -		showing the
I _{SM}	Pulsed Source Current			620	^	integral reverse
	(Body Diode) ①			020		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 32A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time	l	29	44	ns	$T_J = 25^{\circ}C$, $I_F = 32A$, $V_{DD} = 15V$
Q _{rr}	Reverse Recovery Charge		49	74	nC	di/dt = 200Α/μs ③
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

International TOR Rectifier

IRLB8743PbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

International TOR Rectifier

Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

2.5 (A) $\frac{1.5}{1.0}$ $\frac{1.5}$

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12. On-Resistance vs. Gate Voltage

Fig 13a. Unclamped Inductive Test Circuit

Fig 13b. Unclamped Inductive Waveforms 6

Fig 13c. Maximum Avalanche Energy vs. Drain Current

Fig 14a. Switching Time Test Circuit

Fig 14b. Switching Time Waveforms

International TOR Rectifier

IRLB8743PbF

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 16. Gate Charge Test Circuit

Vgs
Vgs(th)
Qgodr Qgd Qgs2 Qgs1

Fig 17. Gate Charge Waveform

International IOR Rectifier

TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

VIEW A-A

- SI.

 DIMENSIONING AND TOLERANCING AS PER ASME Y14,5 M- 1994,
 DIMENSION'S ARE SHOWN IN INCHES [MILLIMETERS].
 LEAD DIMENSION AND FINISH UNCONTROLLED IN L1.
 DIMENSION D, D1 & E DO NOT INCLIDE MOLD FLASH, MOLD FLASH
 SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE
 MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
 DIMENSION b1, b3 & c1 APPLY TO BASE METAL ONLY.
 CONTROLLING DIMENSION: INCHES.
- CONTROLLING DIMENSION : INVESTIGATION DIMENSIONS E,H1,D2 & E1 DIMENSION E X X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

SYMBOL	MILLIM	ETERS	RS INCHES		
	MIN.	IIN, MAX, MIN, MAX,		NOTES	
Α	3.56	4.83	.140	.190	
A1	0.51	1.40	.020	.055	
A2	2.03	2.92	.080	,115	
b	0.38	1.01	.015	.040	
ь1	0.38	0.97	.015	.038	5
b2	1.14	1.78	.045	.070	
b3	1,14	1.73	.045	.068	5
с	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	11.68	12.88	.460	.507	7
Ε	9.65	10.67	.380	.420	4,7
E1	6.86	8.89	.270	.350	7
E2	-	0.76	-	.030	8
е	2.54	2.54 BSC ,100 BSC 5.08 BSC .200 BSC			
e1	5.08	BSC	.200 BSC		
H1	5.84	6.86	.230	.270	7,8
L	12.70	14,73	.500	.580	
L1	3,56	4.06	.140	.160	3
øΡ	3.54	4.08	.139	.161	
Q	2.54	3.42	.100	.135	

LEAD ASSIGNMENTS HEXFET ICBTs, CoPACK 1,- GATE 2.- COLLECTOR 3.- EMITTER DIODES 1.- ANODE 2.- CATHODE 3.- ANODE

TO-220AB packages are not recommended for Surface Mount Application.

SECTION C-C & D-D

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

International

TOR Rectifier

IRLB8743PbF

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19, 2000 IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead - Free"

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- $\ \, \mathbb{O} \,$ Starting T_J = 25°C, L = 0.61mH, R_G = 25 $\Omega,$ I_{AS} = 32A.
- ③ Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ④ Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 78A.
- ⑤ When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- **©** R_{θ} is measured at T_J approximately 90°C.
- This is only applied to TO-220AB pakcage.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.04/2009