Problem 1

Claim. For sets $A, B, \mathcal{P}(A) \cup \mathcal{P}(B) \subset \mathcal{P}(A \cup B)$.

Proof.

$$x \in \mathcal{P}(A) \cup \mathcal{P}(B) \implies (x \in \mathcal{P}(A)) \lor (x \in \mathcal{P}(B))$$

$$\implies (x \subseteq A) \lor (x \subseteq B)$$

$$\implies (x \subseteq (A \cup B)) \lor (x \subseteq (A \cup B))$$

$$\implies x \subseteq (A \cup B)$$

$$\implies x \in \mathcal{P}(A \cup B)$$

$$(1)$$

Note that (1) relies that for sets $A, B, C, A \subseteq B$ and $B \subseteq C$ implies that $A \subseteq C$. This follows from $x \in A \implies x \in B \implies x \in C$, so $\forall x \in A, x \in C \implies A \subseteq C$.

Equality is not true in general. Take $A = \{\emptyset\}$, $B = \{\{\emptyset\}\}$. $\{\emptyset, \{\emptyset\}\}\} \in \mathcal{P}(A \cup B)$, but is not in either $\mathcal{P}(A)$ nor $\mathcal{P}(B)$. In fact, equality holds if and only if at least one of A and B is the empty set.

Problem 2

Claim. For sets $A, B, A \neq B \implies \mathcal{P}(A) \neq \mathcal{P}(B)$.

Proof. For sets A, B,

$$A \neq B \iff A \neq B$$

$$\iff \neg((A \subseteq B) \land (B \subseteq A))$$

$$\iff \neg(A \subseteq B) \lor \neg(B \subseteq A)$$

$$\iff \neg(\forall x \in A, x \in B) \lor \neg(\forall x \in B, x \in A)$$

$$\iff \exists x | (x \in A) \land (x \notin B) \lor \exists x | (x \notin A) \land (x \in B).$$

$$\iff ((\{x\} \in \mathcal{P}(A)) \land (\{x\} \notin \mathcal{P}(B))) \lor ((\{x\} \notin \mathcal{P}(A)) \land (\{x\} \in \mathcal{P}(B)))$$

$$\iff \mathcal{P}(A) \neq \mathcal{P}(B)$$

Note that the conclusion of $\mathcal{P}(A) \neq \mathcal{P}(B)$ follows the same procedures as the opening of the proof, but in reverse.

Problem 3

Claim. For sets $A, B, C, A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Proof.

$$(m,n) \in A \times (B \cap C) \iff (m \in A) \land (n \in (B \cap C))$$

$$\iff (m \in A) \land ((n \in B) \land (n \in C))$$

$$\iff ((m \in A) \land (n \in B)) \land ((m \in A) \land (n \in C))$$

$$\iff (m,n) \in A \times (C) \land (m,n) \in A \times C$$

$$\iff (m,n) \in (A \times B) \cap (A \times C)$$

$$(1)$$

Note that (1) follows from the fact that $P^P = P$ for any statement P as well as the commutativity and associativity of \wedge .

Problem 4

Claim. For injective functions $f: S \to T$ and $g: T \to U$, $g \circ f$ is also injective.

Proof.

$$(g \circ f)(x) = (g \circ f)(x') \tag{1}$$

$$\implies g(f(x)) = g(f(x')) \tag{2}$$

$$\implies f(x) = f(x') \tag{3}$$

$$\implies \qquad x = x' \tag{4}$$

Note that we can jump from (2) to (3) and (3) to (4) because g and f are injective, meaning that $\forall x, x', g(x) = g(x') \iff x = x'$.

Problem 5

For functions $f: S \to T$ and $g: T \to S$ such that $g \circ f = id_S$, prove or disprove the following.

 \mathbf{a}

Claim. f is injective.

Proof. If
$$\exists s, s' \in S | f(s) = f(s')$$
, $g(f(s)) = id_S(s) = s$ and $g(f(s')) = id_S(s') = s'$. We then have that $g(f(s)) = g(f(s')) \implies s = s'$ as $f(s) = f'(s)$.

b, c

Claim. f is surjective and g is injective.

This is false. Consider this counterexample to both:

\mathbf{d}

Claim. g is surjective.

Proof. $\forall s \in S, (g \circ f)(s) = id_S(s) = s$. We also have that $(g \circ f)(s) = g(f(s))$, so that $\forall s \in S, \exists t = f(s) \in T | g(t) = s$.

Problem 6

A function $f:A\to B$ can be expressed as its graph $\Gamma(f)$, which is the just the set $\{(a,f(a))|a\in A\}$. Then, all functions $f:A\to B$ are sets containing elements of the form $(a,b)\in A\times B$. This implies that $\Gamma(f)\in \mathcal{P}(A\times B)$, which exists by the axiom of power sets.

Note that we put (a, b) as shorthand for a set $\{\{a\}, \{a, b\}\}\$, and that products such as $A \times B$ are defined as all such $(a, b), a \in A, b \in B$.

Then, by the axiom of specification, we pull out only the elements of $\mathcal{P}(A \times B)$ where it is a valid function graph.

$$\{\Gamma \in \mathcal{P}(A \times B) | (\forall a \in A, \exists (x,y) \in \Gamma \text{ s.t. } a = x) \land (\neg \exists a \in A \text{ s.t. } (a,y), (a,y') \in \Gamma, y \neq y') \}.$$

The set above is exactly B^A if we equate functions and their graphs.

Problem 7

There are m^n elements in B^A , as each element of A must be sent to an element in B, of which there are m. This is equivalent to making choosing 1 from m n times, so that there are m^n total choices for the function.

Problem 8

Proof. To show that W is surjective, we can furnish a function $f:A\to B$ such that W(f)=A' for any set $A'\in\mathcal{P}(A)$. This function's graph is given exactly by

$$\Gamma(f) = \{(a, 1) | a \in A'\} \cup \{(a, 0) | a \in A \setminus A'\}.$$

In other words, for a function $f: A \to B$ such that

$$f(a) = \begin{cases} 1 & a \in A' \\ 0 & a \in A \setminus A' \end{cases}$$

To show that W is injective, we will show that if $f, g \in B^A$ satisfy $W(f) = W(g) = A' \in \mathcal{P}(A)$ then f = g. To show that f = g, we need to demonstrate that $\forall a \in A, f(a) = g(a)$. Since we have that $A' \cup A \setminus A' = A$ and $A' \cap A \setminus A' = \emptyset$, we have two cases for a.

Firstly, if $a \in A'$, then $a \in f^{-1}(\{1\}) \implies f(a) = f(f^{-1}(1)) = 1$. Similarly, $a \in g^{-1}(\{1\}) \implies g(a) = 1$ such that f(a) = g(a).

Secondly, if $a \in A \setminus A'$, then $a \notin f^{-1}(\{1\}) \implies f(a) \neq f(f^{-1}(1)) \neq 1$. Similarly, $a \notin g^{-1}(\{1\}) \implies g(a) \neq 1$. However, both f(a) and g(a) are still members of B, meaning that they must be both equal to 0.

Thus, we have that $\forall a \in A, f(a) = g(a) \implies f = g$ and so W is injective. W is now shown to be both injective and surjective, so it must be bijective.