

Esercitazione 1 - Progetto guidato di un circuito

Esercizio 1 - Rilevamento della velocità dei veicoli

- ▼ Creatore originale: @Giacomo Dandolo
 - @<Utente>(<Data>): <Descrizione della modifica>

Obiettivo

Diagramma temporale del circuito da creare

Si vuole realizzare il comportamento del <u>diagramma temporale</u> attraverso un circuito logico.

▼ Logica della realizzazione

La logica della realizzazione è:

- 1. generare un segnale Q che va a 1 nell'intervallo di tempo tra i due segnali dei sensori S1 e S2, utilizzando un componente che viene impostato (SET) dal segnale del sensore S1 e resettato (RESET) dal segnale del sensore S2. Il componente utilizzato è un Flip-Flop SR, poiché permette di impostare (S = SET) e resettare (R = RESET) il valore Q in uscita;
- 2. misurare la durata della fase in cui Q è a 1.

Il componente utilizzato è un clock accoppiato ad un contatore, che permette di contare (e quindi misurare) la durata della fase;

- 3. confrontare la durata con una soglia.
 - a. Durata superiore alla soglia: velocità inferiore al limite;
 - b. Durata inferiore alla soglia: velocità superiore al limite, bisogna attivare la telecamera.

Il componente utilizzato è un comparatore, che permette di confrontare l'ingresso A con l'ingresso B aritmeticamente, portando una delle tre uscite (>, <, =) a 1.

▼ Descrizione del circuito

Circuito in analisi

Analizziamo le varie parti:

- (1) II FF-SR è impostato per eseguire SET quando $S_1=1$, mentre eseguire RESET quando $S_2=1$, in modo da, rispettivamente, iniziare o terminare la conta.
- (2) Si utilizza il FF-D sincrono con un clock CK per sincronizzare l'uscita Q del FF-SR, in modo da evitare che ci siano inconsistenze nei periodi di conta.
- (3) Impostando che il tempo di clock sia $T_{
 m CK}=10ms$, si imposta come soglia ${
 m CNTR}=6$:

$$egin{cases} X = 0 & ext{CNTR} \geq 6 \ X = 1 & ext{CNTR} < 6 \end{cases}$$

- (4) Se il segnale $Q_0=\overline{Q}=1$, il segnale di CLR viene attivato, poiché il segnale di RESET è impostato a 1, e si è quindi resettato il valore del counter di tempo. Se il segnale $Q_1=1$ oppure $Q_2=1$, si ha che $\mathrm{FZ}=1$.
- (5) Se i segnali $\overline{Q}=0$ (segnale di SET è impostato a 1, si sta ancora contando), X=1 e $\mathrm{FZ}=1$ hanno i valori definiti, allora si deve attivare la telecamera. Per attivarla, si usano due FF-D:
 - il primo FF-D sincrono permette di memorizzare il valore di $Y_0=\mathrm{FZ}\cdot\overline{Q}\cdot X$, portando in uscita $Y_1=\overline{Y_0}$;

- il secondo FF-D sincrono permette di memorizzare il valore di $Y_1=Y_2.$ Si definisce $T=Y_1\cdot Y_2.$

$$egin{cases} T=0 & ext{telecamera disattivata} \ T=1 & ext{telecamera attivata} \end{cases}$$

Questa implementazione utilizza due FF-D perché si utilizza un comparatore che imposta X=1quando ${\rm CNTR}<6$, ma la telecamera si deve attivare quando ${\rm CNTR}=6$. Grazie al clock, il quale sincronizza tutto il circuito, è necessario che sia Y_1 che Y_2 siano uguali a 1 nello stesso periodo di clock, ossia quando $Y_0=1$ per due periodi di clock successivi.

Esercizio 2 - Calcolo della frequenza massima

- ▼ Creatore Originale: @Giacomo Dandolo
 - @Giacomo Dandolo (13/04/2025): aggiunti i collegamenti ad argomenti di teoria.
 - @<Utente>(<Data>): <Descrizione della modifica>

Obiettivo

Negli esercizi precedenti abbiamo considerato $T_{\rm CK}=10~{
m ms}$ come periodo di clock, con frequenza di clock $F_{\rm CK}=\frac{1}{T_{\rm CK}}=100~{
m Hz}$. L'errore di misura, però, risulta molto grande, dell'ordine di $\pm 10~{
m ms}$, ed è quindi molto elevato. Conviene, quindi, utilizzare una frequenza di clock più alta.

Qual è la massima frequenza di clock $F_{
m max}$?

▼ Tempistiche del circuito

Riportiamo le tempistiche del circuito:

- tempo di propagazione della porta OR: $t_{
 m OR}=1~{
 m ns};$
- tempo di propagazione della porta AND: $t_{
 m AND}=2~{
 m ns}$;

- tempo di propagazione del comparatore: $t_{
 m comp}=10~{
 m ns}$;
- FF-D e contatore:
 - tempo di propagazione del clock;

$$t_{\text{CK-O}} = 1 \text{ ns}$$

o tempo di setup;

$$t_{\rm SH} = 0.8 \; {\rm ns}$$

tempo di hold.

$$t_{
m H} = 0.5 \; {
m ns}$$

▼ Calcolo della frequenza massima

Si devono considerare i vari percorsi da Q a D per i vari flip-flop per il calcolo della <u>frequenza massima</u> $F_{\rm max}$, facendo in modo di trovare il percorso con il tempo di percorrenza maggiore.

Visualizzazione dei percorsi su cui calcolare il tempo di percorrenza

(1)

$$t_1 = t_{\text{CK-Q}} + t_{\text{OR}} = 1 \text{ ns} + 1 \text{ ns} = 2 \text{ ns}$$

(2)

$$t_2 = t_{\mathrm{CK-Q}} + t_{\mathrm{OR}} + t_{\mathrm{AND}} = 1 \; \mathrm{ns} + 1 \; \mathrm{ns} + 2 \; \mathrm{ns} = 4 \; \mathrm{ns}$$

(3)

$$t_3 = t_{ ext{CK-Q}} + t_{ ext{comp}} + t_{ ext{AND}} = 1 \text{ ns} + 10 \text{ ns} + 2 \text{ ns} = 13 \text{ ns}$$

Si ottiene che il tempo di clock minimo è t_3 sommato a $t_{\rm SU}$, essendo t_3 il percorso di costo massimo in termini di tempo tra quelli definiti.

$$T_{ ext{CK}} \geq T_{ ext{CK, min}} = t_3 + t_{ ext{SU}} = 1 ext{ ns} + 10 ext{ ns} + 2 ext{ ns} + 0.8 ext{ ns} = 13.8 ext{ ns}$$

Dopo il calcolo di $T_{
m CK,\,min}$, si può definire la frequenza massima $F_{
m max}$.

$$F_{ ext{CK}} = rac{1}{T_{ ext{CK}}} \leq F_{ ext{max}} = rac{1}{T_{ ext{CK, min}}} = 72.5 ext{ MHz}$$

▼ Verifica delle violazioni di hold

Visualizzazione dei percorsi su cui verificare la condizione di hold

(1)

$$t_{
m CK ext{-}Q}=1~{
m ns}>t_H=0.5~{
m ns}$$

Dato che la condizione di hold è verificata, non ci possono essere violazioni.