Classification Tutorial- Decision tree solution

Decision tree for the following dataset

	Hair	Height	Weight	Lotion	Result
Sarah	blonde	average	light	no	sunburned
Dana	blonde	tall	average	yes	none
Alex	brown	short	average	yes	none
Annie	blonde	short	average	no	sunburned
Emily	red	average	heavy	no	sunburned
Pete	brown	tall	heavy	no	none
John	brown	average	heavy	no	none
Katie	blonde	short	light	yes	none

Not related to classification result

Nome	Hair	Height	Weight	Lotion	Result
Sarah /	blonde	average	light	no	sunburned
Dana	blonde	tall	average	yes	none
Alex	brown	short	average	yes	none
Annie	blonde	short	average	no	sunburned
Emily	red	average	heavy	no	sunburned
Pete	brown	tall	heavy	no	none
John	brown	average	heavy	no	none
Katie	blonde	short	light	yes	none

Hair	Height	Weight	Lotion	Result
blonde	average	light	no	sunburned
blonde	tall	average	yes	none
brown	short	average	yes	none
blonde	short	average	no	sunburned
red	average	heavy	no	sunburned
brown	tall	heavy	no	none
brown	average	heavy	no	none
blonde	short	light	yes	none

Attributes and values

• Hair : Blonde, Red, Brown

Height : Average, Toll, Short

• Weight : Light, Average, Heavy

Lotion Yes, No

$$Entropy(t) = -\sum_{j} p(j|t)log_2p(j|t)$$

(NOTE: p(j|t) is the relative frequency of class j at node t).

Hair	Height	Weight	Lotion	Result
blonde	average	light	no	sunburned
blonde	tall	average	yes	none
brown	short	average	yes	none
blonde	short	average	no	sunburned
red	average	heavy	no	sunburned
brown	tall	heavy	no	none
brown	average	heavy	no	none
blonde	short	light	yes	none

Entropy Calculation for whole dataset

Hair	Height	Weight	Lotion	Result
blonde	average	light	no	sunburned
blonde	tall	average	yes	none
brown	short	average	yes	none
blonde	short	average	no	sunburned
red	average	heavy	no	sunburned
brown	tall	heavy	no	none
brown	average	heavy	no	none
blonde	short	light	yes	none

$$Entropy(t) = -\sum_{j} p(j|t)log_2p(j|t)$$

(NOTE: p(j|t) is the relative frequency of class j at node t).

Result			
sunburned	none		
3	5		

Entropy(Result)	Entropy(3,5)
	Entropy(3/8, 5/8)
	Entropy(0.375,0.625)
	= - (0.375 * log2 0.375) - (0.625 * log2 0.625)
	= - (0.375 * -1.4150) — (0.625 * -0.6780)
	=0.9525

STEP 2:

Calculate information gain for each attribute

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent node, p, is split into k partitions; n_i is number of records in partition i

Hair	Height	Weight	Lotion	Result
blonde	average	light	NO	sunburned
blonde	tall	average	yes	none
brown	short	average	yes	none
blonde	short	average	No	sunburned
red	average	heavy	no	sunburned
brown	tall	heavy	No	none
brown	average	heavy	no	none
blonde	short	light	yes	none

ENTROPY of partitions based on hair attribute

Hair	Height	Weight	Lotion	Result
blonde	average	light	no	sunburned
blonde	tall	average	yes	none
brown	short	average	yes	none
blonde	short	average	no	sunburned
red	average	heavy	no	sunburned
brown	tall	heavy	no	none
brown	average	heavy	no	none
blonde	short	light	yes	none

$$\left(\sum_{i=1}^{n} \frac{n_i}{n} Entropy(i)\right)$$

		Resu	lt		
		sunbu rned	none		
	blonde	2	2	4	
Hair	brown	0	3	3	
	red	1	0	1	
		3	5	8	

Entropy(Result, Hair)

= P(blonde)" Entropy(2,2) + P(brown)* Entropy(0,3)+ P(red)* Entropy(1,0)

(4/8) * Entropy(2,2) + (3/8) * Entropy(0,3) + (1/8) * Entropy(1,0)

= (0.50 *1) + (0.38 *0) + (0.13 *0)

=0.5

INFORMATION GAIN for splitting based on hair attribute

Hair	Height	Weight	Lotion	Result
blonde	average	light	no	sunburned
blonde	tall	average	yes	none
brown	short	average	yes	none
blonde	short	average	no	sunburned
red	average	heavy	no	sunburned
brown	tall	heavy	no	none
brown	average	heavy	no	none
blonde	short	light	yes	none

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent node, p, is split into k partitions; n_i is number of records in partition i

$$= 0.9525 - 0.50$$

$$=0.4525$$

ENTROPY of partitions based on height attribute

Hair	Height	Weight	Lotion	Result
blonde	average	light	no	sunburned
blonde	tall	average	yes	none
brown	short	average	yes	none
blonde	short	average	no	sunburned
red	average	heavy	no	sunburned
brown	tall	heavy	no	none
brown	average	heavy	no	none
blonde	short	light	yes	none

$$\left(\sum_{i=1}^{n} \frac{n_i}{n} Entropy(i)\right)$$

		Result			
		sunbu rned	none		
	short	1	2	3	
Height	average	2	1	3	
_	tall	0	2	2	
		3	5	8	

Entropy(Result, Height)

= P(short)* Entropy(1,2) + P(average)* Entropy(2,1) + P(tall)* Entropy(0,2)

(3/8) * Entropy(1,2) + (3/8) * Entropy(2,1) + (2/8) * Entropy(0,2)

= (0.38 * 0.9182) + (0.38 * 0.9182) + (0.25 * 0)

=0.6930

INORMATION GAIN for splitting based on height attribute

Hair	Height	Weight	Lotion	Result
blonde	average	light	no	sunburned
blonde	tall	average	yes	none
brown	short	average	yes	none
blonde	short	average	no	sunburned
red	average	heavy	no	sunburned
brown	tall	heavy	no	none
brown	average	heavy	no	none
blonde	short	light	yes	none

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent node, p, is split into k partitions; n_i is number of records in partition i

= 0.9525 - 0.6930

= 0.2595

ENTROPY of partitions based on weight attribute

Hair	Height	Weight	Lotion	Result
blonde	average	light	no	sunburned
blonde	tall	average	yes	none
brown	short	average	yes	none
blonde	short	average	no	sunburned
red	average	heavy	no	sunburned
brown	tall	heavy	no	none
brown	average	heavy	no	none
blonde	short	light	yes	none

/ k		1
1	Fintro	py(i)
14	n	(1) Y
i=1		

		Resu	lt		
		sunbu rned	none		
+	Light	1	1	2	
Weight	average	1	2	3	
>	heavy	1	2	3	
		3	5	8	

Entropy(Result,Weight)

= P(light)" Entropy(1,I) + P(average)* Entropy(1,2)+ P(heavy)* Entropy(1,2)

= (2/8) * Entropy(1,1) + (3/8) * Entropy(1,2) + (3/8) * Entropy(1,2)

= (0.25 * 1) + (0.38 * 0.9182) + (0.38 * 0.9182)

=0.9430

INFORMATION GAIN for splitting based on weight attribute

Hair	Height	Weight	Lotion	Result
blonde	average	light	no	sunburned
blonde	tall	average	yes	none
brown	short	average	yes	none
blonde	short	average	no	sunburned
red	average	heavy	no	sunburned
brown	tall	heavy	no	none
brown	average	heavy	no	none
blonde	short	light	yes	none

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent node, p, is split into k partitions; n_i is number of records in partition i

$$=0.9525 - 0.9430$$

= 0.0095

ENTROPY of partitions based on lotion attribute

Hair	Height	Weight	Lotion	Result	
blonde	average	light	no	sunburned	
blonde	tall	average	yes	none	
brown	short	average	yes	none	
blonde	short	average	no	sunburned	
red	average	heavy	no	sunburned	
brown	tall	heavy	no	none	
brown	average	heavy	no	none	
blonde	short	light	yes	none	
$\left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$					

		Result			
		sunbu rned	none		
Lotion	yes	0	3	3	
_	NO	3	2	5	
		3	5	8	

Entropy(Result,Lotion)

= $P(yes)^*$ Entropy(0,3) + $P(no)^*$ Entropy(3,2)

(3/8) * Entropy(0,3) + (5/8)* Entropy(3,2)

= (0.38 * 0) + (0.625 * 0.9709)

= 0.6068

INFORMATION GAIN for splitting based on lotion attribute

Hair	Height	Weight	Lotion	Result
blonde	average	light	no	sunburned
blonde	tall	average	yes	none
brown	short	average	yes	none
blonde	short	average	no	sunburned
red	average	heavy	no	sunburned
brown	tall	heavy	no	none
brown	average	heavy	no	none
blonde	short	light	yes	none

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

Parent node, p, is split into k partitions; n_i is number of records in partition i

$$=0.9525 - 0.6068 = 0.3157$$

STEP 3:

Choose the attribute with highest information gain as the splitting node (decision node)

Entropy(Result, Hair)	= 0.9525 — 0.50	= 0.4525
Entropy(Result, Height)	= 0.9525 — 0.6930	= 0.2595
Entropy(Result, Weight)	= 0.9525 — 0.9430	= 0.0095
Entropy(Result, Lotion)	= 0.9525 — 0.6068	= 0.3157

STEP 4: DIVIDE THE DATASET BY ITS BRANCHES AND REPEAT THE SAME PROCESS ON EVERY BRANCH

All the nodes in branch Red belong to sunburned so it is leaf node with label=sunburned All the nodes in branch Brown belong to None so it is leaf node with label=None We should split branch blonde more because it is not pure yet

Hair	Height	Weight	Lotion	Result
blonde	average	light	no	sunburned
blonde	tall	average	yes	none
blonde	short	average	no	sunburned
blonde	short	light	yes	none

ENTROPY for whole of this partition,

Hair	Height	Weight	Lotion	Result
blonde	average	light	no	sunburned
blonde	tall	average	yes	none
blonde	short	average	no	sunburned
blonde	short	light	yes	none

$$Entropy(t) = -\sum_{j} p(j|t)log_2p(j|t)$$

(NOTE: p(j|t) is the relative frequency of class j at node t).

Result		
sunburned	none	
2	2	

Entropy(Result)	Entropy(2,2)
_milopy(ixesuit)	LintOpy(Z,Z)

Entropy(2/4, 2/4)

Entropy(0.5,0.5)

$$= - (0.5 * log2 0.5) - (0.5 * log2 0.5)$$

$$= - (0.5 * -1) - (0.5 * -1)$$

=1

40

ENTROPY calculation for partitioning based on attribute height

Hair	Height	Weight	Lotion	Result
blonde	average	light	no	sunburned
blonde	tall	average	yes	none
blonde	short	average	no	sunburned
blonde	short	light	yes	none

$$\left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

		Result			
		sunbu rned	none		
	short	1	1	2	
Height	average	1	0	1	
_	tall	0	1	1	
		2	2	4	

Entropy(Result, Height)

= P(short)* Entropy(I,1) + P(average)* Entropy(1,0)+ P(tall)* Entropy(0,1)

= (2/4) * Entropy(1,1) + (1/4) * Entropy(1,0) + (1/4) * Entropy(0,1)

= (0.5*1) + (0.25*0 + 0.25*0)

=0.5

Information Gain= 1 - 0.5 = 0.5

ENTROPY calculation for partitioning based on attribute weight

Hair	Height	Weight	Lotion	Result
blonde	average	light	no	sunburned
blonde	tall	average	yes	none
blonde	short	average	no	sunburned
blonde	short	light	yes	none

=0

$$\left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

		Resu	lt		
		sunbu rned	none		
Weigt	light	1	1	2	
	average	1	1	2	
		2	2	4	

= P(light)" Entropy(1,1) + P(average)* Entropy(1,1)
= (2/4) * Entropy(1,1) + (2/4)* Entropy(1,1)
= (0.5 * 1) + (0.5 * 1)

Entropy(Result,Weight)

Information Gain= 1 — 1

ENTROPY calculation for partitioning based on attribute lotion

Hair	Height	Weight	Lotion	Result
blonde	average	light	no	sunburned
blonde	tall	average	yes	none
blonde	short	average	no	sunburned
blonde	short	light	yes	none

		Result			
		sunbu rned	none		
	yes	0	2	2	
Lotion	no	2	0	2	
		2	2	4	

$$\left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

Entropy(Result,Lotion)

= $P(yes)^*$ Entropy(0,2) + $P(no)^*$ Entropy(2,0)

= (2/4) * Entropy(0,2) + (2/4) * Entropy(2,0)

= (0.5 * 0) + (0.5 * 0)

=C

Information Gain= 1 — 0= 1

Choose the attribute with highest information gain as the next decision node

Entropy(Result, Height) = 1 - 0.5 = 0.5

Entropy(Result, Weight) = 1 - 1 = 0

Entropy(Result, Lotion) = 1-0 = 1

