Pontificia Universidad Católica del Perú

Escuela de Posgrado

Análisis Complejo

ESPACIOS MÉTRICOS (SEMANA 4)

1. En el espacio métrico (X, d), probar que

$$\rho(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

es una distancia en X.

- 2. Las distancias d y ρ se dice que son equivalentes en X si cada una genera el mismo conjunto de abiertos. Demuestre que d y ρ son equivalentes si y solo si para cada $\epsilon > 0$ existe δ tal que $d(x,y) < \delta$ implica $\rho(x,y) < \epsilon$, y viceversa. Verifique las condiciones en el ejercicio 1.
- 3. Analizar si la equivalencia entre dos metricas es lo mismo que afirmar que una métrica es continua repecto a la otra, y viceversa.
- 4. Considere el conjunto A de los números complejos cuyas partes real e imaginaria son racionales. Describrir el interior, la clausura y la fontera de A.
- 5. Un conjunto se dice discreto cuanto todos sus elementos son discretos. Probar que cada conjunto discreto de C es contable: finito o biyectivo con los naturales (numerable).
- 6. Un punto de acumulación de A es el límite de una sucesión en A, pero formada por infinitos puntos. Probar que $A' = \{x : x \text{ es un punto de acumulación de } A\}$ es cerrado.
- 7. Probar que A es cerrado (abierto) si y solo si A es igual a su clausura \overline{A} (interior int(A)).
- 8. Considere $A \subset X$ en el espacio (X,d). Probar que G es abierto en el espacio métrico inducido (A,d) si y solo si $G = A \cap B$ para algún abierto B en (X,d).
- 9. Probar que los intervalos son los unicos subconjuntos conexos de \mathbb{R} (A es un intervalo si por cada $a, b \in A$ el segmento $[a, b] = \{x : a \leq x \leq b\}$ está incluido en A).
- 10. Probar que la unión de dos regiones es una región si y solo si tienen algún punto en común (una región es un abierto conexo y no vacío).
- 11. Considere los conjuntos $A = \{(0,y): -1 \le y \le 1\}$ y $B = \{(x, \operatorname{sen}\left(\frac{1}{x}\right)): x > 0\}$ ¿La unión $A \cup B$ es conexa?
- 12. Consider $E = \{(x, \frac{1}{n}) : 0 \le x \le 1, n \in \mathbb{N}\} \cup ([0, 1] \times \{0\})$. Describir las componentes de E (una componente es un conjunto conexo maximal respecto a la inclusión).
- 13. Considere una sucesión de Cauchy, analizar la convergencia de la sucesión cuando admita alguna subsucesión convergente.
- 14. Utilizar el límite inferior para probar que cada sucesión limitada admite una subsucesión convergente.
- 15. Demuestre que la propiedad Heine-Borel también se puede expresar de la siguiente manera: cada colección de conjuntos cerrados con una intersección vacía contiene una subcolección finita con intersección vacía.
- 16. Utilice la compacidad para demostrar que un conjunto cerrado de números reales tiene un máximo.
- 17. Si $K_1 \supset K_2 \supset \cdots$ es una sucesión decresiente de compactos no vacios, probar que la intersercción $\cap_n K_n$ es no vacia.
- 18. Considere las sucesiones $x = (x_n)$ de soporte finito $(x_k \neq 0 \text{ solo para un conjunto finito}) y defina la distancia <math>d(x,y) = \max\{|x_n y_n|\}$. ¿Es este espacio métrico completo? Analizar si este espacio es totalmente acotado.
- 19. Analizar si la unión finita de conjuntos compactos es compacto.
- 20. Construir un homeomorfismo entre el disco |z| < 1 y todo el plano \mathbb{C} .
- 21. ¿Cuál de las siguientes funciones son uniformemente continuas en la recta real entera: sen(x), xsen(x), $xsen(x^2)$ $\sqrt{|x|}sen(x)$?