Criterios de Convergencia*

https://lelopezm.wordpress.com

Criterio	Serie	Condición(es) de la convergencia	Condición(es) de la divergencia	Comentario
Término <i>n</i> -ésimo	$\sum_{n=1}^{\infty} a_n$		$\lim_{n\to\infty}a_n\neq 0$	Este criterio no sirve para demostrar la con- vergencia
Series geométricas	$\sum_{n=0}^{\infty} ar^n$	r < 1	$ r \ge 1$	Suma: $S = \frac{a}{1 - r}$
Series telescópicas	$\sum_{n=1}^{\infty} (b_n - b_{n+1})$	$\lim_{n\to\infty}b_n=L$		Suma: $S = b_1 - L$
Series p	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	<i>p</i> > 1	0	
Series alternadas o alternantes	$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$	$0 < a_{n+1} \le a_n$ $y \lim_{n \to \infty} a_n = 0$		Residuos: $ R_N \le a_{N+1}$
Integral (f continua, positiva y decreciente)	$\sum_{n=1}^{\infty} a_n,$ $a_n = f(n) \ge 0$	$\int_{1}^{\infty} f(x) dx $ converge	$\int_{1}^{\infty} f(x) dx \text{ diverge}$	Residuo: $0 < R_N < \int_N^\infty f(x) dx$
Raíz	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty} \sqrt[n]{ a_n } < 1$	$\lim_{n \to \infty} \sqrt[n]{ a_n } > 1 \text{ o}$ $= \infty$	El criterio no es conclu- yente si $\lim_{n\to\infty} \sqrt[n]{ a_n } = 1.$
Cociente	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$	$\left \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right > 1 \text{ o} \right $ $= \infty$	El criterio no es concluyente si $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right = 1.$
Comparación directa $(a_n, b_n > 0)$	$\sum_{n=1}^{\infty} a_n$	$0 < a_n \le b_n$ $y \sum_{n=1}^{\infty} b_n \text{ converge}$	$0 < b_n \le a_n$ $y \sum_{n=1}^{\infty} b_n \text{ diverge}$	
Comparación en el límite $(a_n, b_n > 0)$	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ $y \sum_{n=1}^{\infty} b_n \text{ converge}$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ $y \sum_{n=1}^{\infty} b_n \text{ diverge}$	

^{*}Tomado de: Larson R., et. al. (2010). Cálculo 1. Edición 9. Cengage Learning. pp. $646\,$