Processamento Paralelo para Treinamento de Deep Neural Networks

Alisson Hayasi da Costa¹ 726494, Theodosio Banevicius¹ 619825

¹Departamento de Computação Universidade Federal de São Carlos (UFSCar)

1. Problema

As Redes Neurais Artificiais (RNAs) são sistemas computacionais inspirados no sistema nervoso humano cujo objetivo é simular a capacidade de aprendizado humana. São formadas por unidades de processamento, denominadas neurônios artificiais, que realizam o processamento e computação de funções matemáticas. Esses neurônios, são interligados através de conexões com pesos associados que simulam as sinapses biológicas [Haykin 2009, Gama et al. 2011].

O campo do *Deep Learning* (DL), é um sub-campo do Aprendizado de Máquina (AM) que faz uso dos modelos e técnicas tradicionais das RNAs, porém, com abordagens e estratégias mais poderosas, ampliando as capacidades de abstração e generalização das RNAs. Podemos definir o termo *Deep Learning*, como, um conjunto de técnicas e classes de algoritmos de aprendizado de máquina que, utilizam de múltiplas camadas de unidades de processamento, não lineares e organizados de forma hierárquica, resultando em um aprendizado com diversos níveis de representação e abstração [Goodfellow et al. 2016, Deng and Yu 2014].

A grande capacidade das *Deep Neural Networks* (DNNs) de lidar com imensos volumes de dados fez delas ferramentas essenciais para múltiplas áreas do conhecimento, principalmente na era *Big Data*. Contudo, não apenas desenvolver a melhor rede para uma tarefa em questão é um trabalho difícil, como também, custoso. Isso porque, para aprimorar o desempenho de uma DNN devesse encontrar uma combinação de hiperpârametros na qual o erro do modelo naquela tarefa se torne mínimo.

Uma boa combinação pode ser encontrada através de um processo conhecido como *tuning*. Isto é, vários hiperparâmetros são definidos, ajustados e seus resultados são comparados constantemente em cada treinamento a fim de encontrar as melhores ou melhor a combinação de hiperparâmetros e valores possível [Goodfellow et al. 2016, Deng and Yu 2014]. Entretanto, DNNs projetadas para dados em larga escala possuem um imenso número de neurônios, tornando cada vez mais custosa a solução do problema. Em alguns casos, o treinamento de certos modelos podem alcançar dias ou até mesmo semanas [Park 2009, Ben-Nun and Hoefler 2018]

Portanto, a fim de possibilitar o uso de estratégias de treinamento tão importantes, apresentamos nesse trabalho os benefícios da computação paralela no treinamento de redes neurais profundas.

2. Solução

A programação concorrente permite a execução de processos de maneira simultânea. Há diversas formas de se implementar a programação concorrente e paralela para otimizar o tempo de treinamento de redes neurais, as três principais formas são *Data Parallelism*, *Model Parallelism* e *Task Parallelism* [Huqqani et al. 2013, Ben-Nun and Hoefler 2018, Park 2009].

O *Data Parallelism* consiste em dividir os dados em diferentes módulos. No caso dos modelos de *Deep Learning*, estes dados podem ser o conjunto de treinamento que é dividido entre vários modelos de mesma configuração. Portanto, cada *thread* possui os mesmos modelos, porém, dados específicos. Tal estratégia geralmente é implementada para computação de matrizes ou estimativa de parâmetros em, principalmente, redes neurais convolucionais [Park 2009, Ben-Nun and Hoefler 2018].

Já o *Model Parallelism* consiste em enviar os mesmos dados para diferentes módulos, onde cada módulo possui uma parcela diferente do modelo. Portanto, cada *thread* realiza uma computação, porém, todas as *threads* compõem um único modelo. Tal estratégia geralmente é implementada para estimar o comportamento de diversos modelos em diferentes configurações simultaneamente [Huqqani et al. 2013].

Por fim, o *Task Parallelism* é semelhante ao *Model Parallelism*, contudo, ao invés de cada *thread* possuir uma parcela diferente do modelo, ela compreende um modelo totalmente diferente. Tal estratégia geralmente é implementada quando o objetivo é acelerar o treinamento de redes neurais profundas e realizar comparações de desempenho (*Deep Learning*) [Park 2009]. Portanto, nesse trabalho, utilizaremos a estratégia de *Task Parallelism*, afinal, o objetivo é otimizar o treinamento de *Deep Neural Networks*.

3. Resultados

Como estratégia adotada neste trabalho foi de *Task Parallelism*, cada modelo é treinado e testado em uma *thread* específica. Para evitar problemas durante a execução do código e o programa continuar trabalhando ao mesmo tempo que as redes são treinadas, foi um utilizado um método para garantir que o programa principal só continue em execução após o treinamento das *threads* terem sido finalizados (ou seja, o treinamento ter sido concluído).

Os experimentos foram feitos utilizando a linguagem de programação *Python 3.6.5* em conjunto com as bibliotecas de aprendizado de máquina e científica *keras* (v2.1.5), *TensorFlow* (v1.8.0), *scikit-learn* (0.19.1), *numpy* (v1.14.5) e as biblioteca padrão *threading*, *time* e *os* da linguagem.

```
from keras.datasets import mnist
from keras.utils import to_categorical
import tensorflow as tf
import numpy, time, os, threading
```

O programa possui dois arquivos principais. O arquivo main.py que contém o fluxo principal do programa, carrega os dados, cria as threads e realiza não apenas o processo de treinamento, como também de teste. E, o arquivo model.py que cria em forma de classes os diferentes modelos, assim como, as operações correspondentes.

No arquivo main.py, há 4 módulos.

- load_data(): responsável por carregar os dados utilizados para o treinamento e teste das redes neurais. Neste caso, os dados utilizados são as imagens de dígitos manuscritos do banco de dados MNIST.
- training_process(): responsável por criar as threads de treinamento, executá-las e coordená-las. Neste método, é feito tanto o treinamento em múltiplas threads como em uma única thread, a fim de comparar a diferença de tempo.
- test_process(): responsável por criar as threads de teste, executá-las e coordená-las. Neste método, assim como no training_process() é feito tanto o teste em múltiplas threads como em uma única thread, a fim de comparar a diferença de tempo.
- main (): módulo principal do programa que realiza tanto a instanciação dos modelos quanto a chamada dos outros métodos.

3.1. Método main()

O método main () começa definindo uma seed padrão para reprodutibilidade nos experimentos. Em seguida, é chamado o método load_data() que carrega os dados do *MNIST* e retorna os exemplos (x) e as classes dos respectivos exemplos (y) para o treinamento (x_train, y_train) e teste (x_test, y_test). Após, são instanciados os três modelos implementados no arquivo model.py.

```
numpy.random.seed(1)
x_train, y_train, x_test, y_test = load_data()

small_MLP = SmallMLP()
medium_MLP = MediumMLP()
big_MLP = BigMLP()
```

Os modelos adotados são Deep Feedforward Networks com três camadas intermediárias e uma de saída. O número de neurônios em cada camada é apresentado na Tabela 1

Modelos	Neurônios nas Intermediárias	Neurônios na Saída	Total Neurônios
SmallMLP	196	10	598
MediumMLP	392	10	1186
BigMLP	784	10	2352

Tabela 1. Dimensão das Deep Feedforward Networks implementadas

Logo após a instanciação dos modelos, é utilizado o método de objeto train_and_test_operations.py que retorna as operações de treinamento e teste dos modelos.

```
small_MLP_train, small_MLP_test = small_MLP.train_and_test_operations()
medium_MLP_train, medium_MLP_test = medium_MLP.train_and_test_operations()
big_MLP_train, big_MLP_test = big_MLP.train_and_test_operations()
```

As operações são estão colocadas em listas correspondentes que, por sua vez, são enviadas como parâmetros para os métodos training_process() e test_process(), respectivamente.

```
training_process(train_operations, x_train, y_train)
test_process(test_operations, x_test, y_test)
```

3.2. Métodos training_process() e test_process()

Tanto o método training_process () quanto o test_process () possuem um comportamento comum. Ou seja, dividem os processos de treinamento e teste de cada modelo em *threads*, iniciam as *threads* e fazem a chamada do método join () para garantir que o programa principal só continue executando após todas as *threads* acabarem (i.e, o treinamento de todos os modelos ter sido concluído) e, assim, permitir uma comparação justa entre o custo computacional em várias *threads* e única *thread*.

```
def training_process(train_operations, x_train, y_train):
       # [...]
       train threads = []
       for train_operation in train_operations: # Define as threads
           train_threads.append(threading.Thread(target = train_operation,
                                                  args = (x_train, y_train)))
       # Executando em várias threads
       for train_thread in train_threads:
           train_thread.start() # Inicia a execução das threads
       for train_thread in train_threads:
10
           train_thread.join() # Aquarda a finalização das threads
12
       # Executando um única thread
13
       train_operations[0](x_train, y_train)
14
       train_operations[1](x_train, y_train)
       train_operations[2](x_train, y_train)
17
       # [...]
```

```
def test_process(test_operations, x_test, y_test):
    # [...]
```

```
test_threads = []
       for test_operation in test_operations: # Define as threads
           test_threads.append(threading.Thread(target = test_operation,
                                                  args = (x_test, y_test))
       # Executando em várias threads
       for test_thread in test_threads:
           test thread.start() # Inicia a execução das threads
       for test_thread in test_threads:
10
           test_thread.join()  # Aguarda a finalização das threads
12
       # Execuntando em única thread
       test_operations[0](x_test, y_test)
       test operations[1](x test, y test)
15
       test_operations[2](x_test, y_test)
16
17
       # [...]
18
```

Executando todos os três modelos em 256 épocas de treinamento e tamanho de lote (*batch_size*) igual a 128, resultados significantes foram obtidos. Como mostra a Tabela 2, o treinamento das redes neurais em diferentes *threads* possui um tempo consideravelmente menor do que o treinamento em uma única *thread*, comprovando a ideia de que treinar múltiplas redes neurais profundas em diferentes *threads* é muito mais vantajoso do que realizar o treinamento em apenas uma única *thread*. Além disso, a mesma conclusão pode ser feita para o processo de teste.

Estratégia	Tempo de Treinamento	Tempo de Teste
Threads Separadas	78 minutos e 17.81 segundos	1 minuto e 38.41 segundos
Thread Única	94 minutos e 32.29 segundos3	1 minuto e 47.02 segundos

Tabela 2. Tempo de execução dos modelos em diferentes estratégias

Referências

- [Ben-Nun and Hoefler 2018] Ben-Nun, T. and Hoefler, T. (2018). Demystifying parallel and distributed deep learning: An in-depth concurrency analysis. *CoRR*, abs/1802.09941.
- [Deng and Yu 2014] Deng, L. and Yu, D. (2014). *Deep Learning: Methods and Applications*, volume 7.
- [Gama et al. 2011] Gama, J., Faceli, K., Lorena, A., and De Carvalho, A. (2011). *Inteligência artificial: uma abordagem de aprendizado de máquina*. Grupo Gen LTC.
- [Goodfellow et al. 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). *Deep Learning*. MIT Press. http://www.deeplearningbook.org.

- [Haykin 2009] Haykin, S. S. (2009). *Neural networks and learning machines*. Pearson Education, Upper Saddle River, NJ, third edition.
- [Huqqani et al. 2013] Huqqani, A. A., Schikuta, E., Ye, S., and Chen, P. (2013). Multicore and gpu parallelization of neural networks for face recognition. *Procedia Computer Science*, 18:349 358. 2013 International Conference on Computational Science.
- [Park 2009] Park, S. J. (2009). An analysis of gpu parallel computing. pages 365–369.