FUNCIÓN DELTA DE DIRAC - $\delta(t)$

1	$\delta(t) = \begin{cases} 0 & \text{si } t \neq 0 \\ \infty & \text{si } t = 0 \end{cases}$	$\int_{-\infty}^{\infty} \delta(t)dt = \int_{-a}^{a} \delta(t)dt = 1 , a > 0$	
	$\phi(t)$ es una función continua en un intervalo I y cero fuera de ella		
2	$\int_{-\infty}^{\infty} \delta(t)\phi(t)dt = \phi(0) \ , \ 0 \in I$		
3	$\int_{-\infty}^{\infty} \delta(t - t_0) \phi(t) dt = \int_{-\infty}^{\infty} \delta(t) \phi(t + t_0) dt = \phi(t_0) , t_0 \in I$		
4	$\int_{-\infty}^{\infty} \delta(t - t_0) g(t) dt = \begin{cases} g(t_0) & \text{si } a < t_0 < b \\ 0 & \text{si } t_0 \notin [a, b] \end{cases}$		
5	$\int_{a}^{b} \delta(t - t_0) dt = \begin{cases} 1 & si a < t_0 < b \\ 0 & si t_0 \notin [a, b] \end{cases}$		
6	$f(t)\delta(t)=f(0)\delta(t)$, siendo $f(t)$ continua en $t=0$		
7	$t\delta(t) = 0$, $\delta(at) = \frac{1}{ a }\delta(t)$, $\delta(-t) = \delta(t)$		
8	$\int_{-\infty}^{\infty} \delta'(t) \phi(t) dt = -\int_{-\infty}^{\infty} \delta(t) \phi'(t) = -\phi'(0)$		
9	$\int_{-\infty}^{\infty} \delta'(t-t_0)\phi(t)dt = -\phi'(t_0)$		
10	$\int_{-\infty}^{\infty} \delta^{(n)}(t)\phi(t)dt = (-1)^n \int_{-\infty}^{\infty} \delta(t) \phi^{(n)}(t) = (-1)^n \phi^{(n)}(0)$		
11	$\int_{-\infty}^{\infty} f'(t) \phi(t) dt = -\int_{-\infty}^{\infty} f(t) \phi'(t) dt$		
12	$[f(t)\delta(t)]' = f(t)\delta'(t) + f'(t)\delta(t)$		
13	$f(t)\delta'(t) = f(0)\delta'(t) - f'(0)\delta(t)$		
14	$\delta(t) = \frac{d \ u(t)}{dt}$	$\delta^{(n)}(t) = \frac{d^n \delta(t)}{dt^n} , n = 1, 2, \dots$	

ALGUNAS FÓRMULAS DE LA MATEMÁTICA

2	$\operatorname{sen}(a+b) = \operatorname{sen}(a)\cos(b) + \operatorname{sen}(b)\cos(a)$ $\operatorname{sen}(a-b) = \operatorname{sen}(a)\cos(b) - \operatorname{sen}(b)\cos(a)$ $\cos(a+b) = \cos(a)\cos(b) - \operatorname{sen}(a)\operatorname{sen}(b)$ $\cos(a-b) = \cos(a)\cos(b) + \operatorname{sen}(a)\operatorname{sen}(b)$ $\operatorname{sen}(a+b) + \operatorname{sen}(a-b) = 2\operatorname{sen}(a)\cos(b)$ $\operatorname{sen}(a+b) - \operatorname{sen}(a-b) = 2\operatorname{sen}(b)\cos(a)$ $\cos(a+b) + \cos(a-b) = 2\cos(a)\cos(b)$		
3	$\cos(a+b) - \cos(a-b) = -2 \sin(a) \sin(b)$ $\cos(2a) = \cos^{2}(a) - \sin^{2}(a)$ $\cos(2a) = 2\cos^{2}(a) - 1$ $\cos(2a) = 1 - 2\sin^{2}(a)$ $\sin(2a) = 2\sin(2a)$ $\sin(2a) = 2\sin(2a)$	en(a)cos(a)	
4	$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx \qquad \qquad \int_{a}^{b} f(x)dx = -$	$\int_{-a}^{-b} f(-y) dy$	
5	$\int_{-L}^{L} f(x)dx = 0 \text{ si } f \text{ es } \mathbf{impar} \text{ en } [-L, L]$		
6	$\int_{-L}^{L} f(x)dx = 2 \int_{0}^{L} f(x)dx \text{si } f \text{ es } \mathbf{par} \text{ en } [-L, L]$		
7	$\int te^{bt}dt = \frac{e^{bt}(bt-1)}{b^2} + C$		
8	$\int t^2 e^{bt} dt = \frac{e^{bt} (b^2 t^2 - 2bt + 2)}{b^2} + C$		
9	$\int t \cos(at)dt = \frac{\cos(at) + at \sin(at)}{a^2} + C$		
10	$\int t \operatorname{sen}(at)dt = \frac{\operatorname{sen}(at) - at \operatorname{cos}(at)}{a^2} + C$		
11	$\int e^{bt} \cos(at) dt = \frac{e^{bt} (a \operatorname{sen}(at) + b \cos(at))}{a^2 + b^2} + C$		
12	$\int e^{bt} \operatorname{sen}(at)dt = \frac{-e^{bt}(a\cos(at) - b\operatorname{sen}(at))}{a^2 + b^2} + C$		