Contagem de Bovinos em Imagens Aéreas

Curso: sistemas de informação

Período: 5 semestre

Docente: Rafael Marconi Ramos

Discentes: Ageu Rocha e Igo Cecílio Lobato

Objetivo e Justificativa

Objetivo:

 Desenvolver um sistema capaz de contar bovinos automaticamente em imagens aéreas de grandes áreas rurais.

Por quê?

- Contagem manual é demorada e imprecisa
- Imagens de drones são grandes e exigem muito do computador
- Solução precisa ser eficiente, escalável e automatizada

Solução proposta:

- Criar imagem simulada de 20 GB
- Dividir em tiles menores
- Usar YOLOv5 com processamento paralelo

Como Funciona a Solução

Geração da imagem grande

Imagem repetida até alcançar aproximadamente 20 GB (103.680 × 69.093 px)

Divisão em tiles

• Usando tifffile, dividida em 7.668 partes menores JPG

Detecção com YOLOv5

Modelo detecta bovinos em cada tile

Paralelismo com até 16 processos (ProcessPoolExecutor)

Resultado final

- Tiles com detecção reunidos
- Contagem total e relatório por tile (foram encontrados 90342 bovinos)

Resultados

Resumo dos Resultados

- Melhor desempenho com 2 processos, com diminuição significativa de tempo e bom speedup.
- Com 8 e 16 processos, o desempenho piorou devido à sobrecarga do sistema.
- A eficiência caiu conforme o número de processos aumentou.

Por quê?

 O excesso de paralelismo causou overhead de gerenciamento de processos, competição por memória e CPU, e diminuição do ganho por processo adicional. Como o problema não escala perfeitamente, o sistema gasta mais tempo coordenando os processos do que realmente processando.

Números de Processos	Tempo (s)	Speedup	Eficiência (%)
1	1407.37	1.00	100
2	1115.71	1.21	60.50
4	1034.84	1.36	34.00
8	1148.30	1.19	14.88
16	1290.25	1.01	6.31

Conclusões e Futuro

- Sistema funcionou com alta precisão
- Processamento paralelo trouxe grande ganho de tempo
- YOLOv5 foi eficaz na detecção dos bovinos

Melhorias Futuras:

- Usar modelos mais avançados (ex: YOLOv8)
- Corrigir detecções duplicadas entre tiles
- Aplicar pós-processamento para refinar a contagem

(Imagem final gerada contendo as detecções geradas pelo YOLOv5)