Cell – Structure and Functions

Cell as the Basic Unit of Life

- The cell is the basic structural and functional unit of all living organisms.
- It is the smallest part of the body of an organism, is capable of independent existence and is able to perform the essential functions of life.

Discovery of the Cell

- Robert Hooke observed cork cells under a simple microscope designed by him.
- He observed compartments resembling honeycombs and each compartment was separated by a wall.
- He termed each compartment as a 'cell'.
- It was the first indication that living organisms are made of cells.

Cell Theory

- In 1838, Matthias Schleiden and Theodor Schwann proposed the basic cell theory. In 1858, another scientist Virchow made an addition to the existing cell theory.
- The postulates of the modern cell theory are
 - 1. The cell is the smallest unit of structure of all living things.
 - 2. The cell is the unit of function of all living things.
 - 3. All cells arise from pre-existing cells.

Variety in Cells

On the basis of the number of cells

Single-celled	Few-celled	Multi-celled
Organisms made of a	Organisms made	Organisms made
single cell. They are	of a few hundred	of millions to
called unicellular	to few thousand	billions of cells.
organisms.	cells.	They are called
Examples: Bacteria,	Examples:	multicellular
Yeast,	Spirogyra, Volvox	organisms.
Chlamydomonas,		Examples: Man,
Amoeba,		cow, mango tree,
Paramoecium		crow

On the basis of size of cells

- Smallest cell: Examples: Bacteria (0.3–5.0 μm), red blood cells (7 μm)
- Longest cell: Example: Nerve cell in the neck of a giraffe (>3 mlong)
- Largest cell: Example: Ostrich egg (170 mm × 130 mm)

On the basis of shape of cells

- Columnar: Epithelial cells
- Spherical: Human ovum
- Oval: Fat cells
- Spherical, biconcave: Red blood cells
- Rectangular: Spirogyra
- Spiral: Sperm cell
- Rod-shaped: Bacteria
- C-shaped: Cartilage cells
- Cylindrical: Striated muscle fibre cells
- Branched: Nerve cells
- Spindle-shaped: Smooth muscle cells
- · Bean-shaped: Guard cell from a plant leaf
- Irregular: Amoeba

Amoeba is irregular in shape. It changes its shape continuously due to the presence of pseudopodia. The change in shape helps Amoeba in movement and in capturing food.

Structural Organisation of a Cell

× 1 100100				
CELL ORGANELLES				
NATURE AND OCCURRENCE	MAIN CHARACTERISTICS	MAIN FUNCTIONS		
 1. Plasma membrane/Cell membrane Forms the outermost covering in animal cells Lies next to the cell wall in plant cells Separates cellular material from its surroundings Acts as an effective barrier and regulates the entry of substances in and out of the cell 		Cell membrane		
Cell wall (in plant c Found in plant cel Situated just outsi	lls ide the plasma membrane	Cell wall		

- Mainly composed of cellulose
- Provides protection
- Gives rigidity and shape to plant cells

3. Cytoplasm

- Transparent jelly-like material
- · Centre of all metabolic activities
- Different organelles contained in it perform different functions

4. Nucleus

- Largest cell organelle
- Mostly spherical and dense
- Nuclear membrane with pores, which allow substances to enter and leave the nucleus
- Regulates cell functions
- Contains chromosomes, made of genes, which control hereditary characteristics

5. Nucleolus

- Embedded within the nucleus of the cell.
- One or more in number
- Produces ribosomes
- · Participates in protein synthesis by forming and storing RNA

6. Chromatin fibres

- · Network of thread-like structures made of DNA
- Chromosomes carry hereditary information or Genes

7. Vacuoles

- Fluid-filled membrane bound spaces
- Larger and permanent in plant cells
- Small and temporary in animal cells
- Storage of water and other substances, food, pigments and waste products
- Provides turgidity to the cells

8. Plastids

- Three kinds of plastids.
- Chromoplasts: Impart colour to flowers and fruits
- Chloroplasts: Trap solar energy for photosynthesis
- Leucoplasts: Store starch
- Chloroplasts are chromoplasts which are disc-shaped and are filled with green colour chlorophyll.

The gene is a unit of inheritance in every living organism. It is responsible for the transfer of hereditary characteristics from parents to offspring. However, the offspring may receive different characteristics due to a different combination of genes from parents.

Study of Plant and Animal Cells

Similarities between Plant and Animal Cells

Presence of cell membrane

Presence of cytoplasm

Presence of nucleus

Presence of nuclear membrane

Presence of mitochondria

Differences between Plant and Animal Cells

PLANT CELL	FEATURE	ANIMAL CELL		
Structural differences				
Presence of a definite cell wall made of cellulose	Cell wall	Absence of cell wall		
Present internal to the cell wall	Cell membrane	Forms the boundary of the cell		
Presence of one or more prominent vacuoles	Vacuoles	Presence of small and temporary vacuoles		
Presence of plastids	Plastids	Absence of plastids		
Functional differences				
Usually larger with distinct outlines	Size	Usually smaller with less distinct boundaries		
	O. damla ana			
Not so dense	Cytoplasm	Denser and more granular		
Only a thin lining of cytoplasm,	Arrangement of	Cytoplasm fills up almost the entire		
which is mostly pushed to the	cytoplasm	cell		
periphery				
Other differences				
Rectangular	Shape	Spherical		
Starch	Storage material	Glycogen		

Prokaryotic and Eukaryotic Cells

PROKARYOTIC CELL	FEATURE	EUKARYOTIC CELL
Absence of well-defined nucleus	Nucleus	Presence of well-defined nucleus with a nuclear membrane
Absent	Nucleolus	Present
Presence of a single length of only DNA	Genetic material	Presence of several lengths of DNA wound around certain proteins
Presence of smaller ribosomes	Ribosomes	Presence of larger ribosomes
Absence of other cell organelles	Cell organelles	Presence of several other cell organelles such as mitochondria, ER, chloroplasts etc.
Cell division occurs by fission or budding but not by mitosis	Cell division	Cell division occurs by mitosis or meiosis
Bacteria, blue green algae	Examples	Euglena, Amoeba, plants, animals