Warmyp

46% of surveyed adults had a day 35% of surveyed adults had a cert 12% had both a day and a cert.

what percent of screyed adults have no cert nor dogs?

re the region

an question is: P((DUC)') = P1 - P(DUC).

 $P(DUC) = P(D) + P(C) - P(D \cap C)$.46 + .35 - .12 = 0.69

P((DUC)') = 1 - 0.69 = 0.31

31% of sureyed have neither

Day 1/1, Cat

Exan next Wednesday

* Sections 6.1, 6.2, 6.3, 6.4 7.1, 7.2, 7.3, 7.4

La topics include:

- & counting decision algorithm
 - permutations and combinations
 - w repetition vs WO repetition
- * probability relative frequency
 - experimental probability vs Heoretical probability

- finding probability through counting thigh among of overlap between all sections &

- · usual cevier nuderials and schedule in practice questions available on Mondai Friday
- Webassigns for 7.2, 7.3, 7.4 are due Sonday after exam DO THEM BEFORE

Some sure	of apple/and	I roid wers	Found
	Iplane	Android	205
feest man	128	77	203
Sophomoce	120	80	200
Thnior	99	81	180
Senior	U(21	327	788
but he lost some information.			
but we remember early results that 37% of freshman used Android			
44% " suphomae"			
40% juniors 45% serios			
1) Recover missing deala # condroids users			
for each class P(android) = # iphone + #android			
for Juniors: $0.40 = \frac{X}{120 + X} \Rightarrow \frac{0.4(120 + X) = X}{48 + .4X = X}$			
	120 + X	48 + -4X	= 0.6 X
for Seniors? $0.45 = \frac{81}{X + 81} \Rightarrow X + 81 = \frac{81}{6.45}$			
X + 81 = 180			
ll a		x = 99	

1) What's probability of surveyed students having an iphare?

P(Iphare) = #iphare = 461 \times 0.59

3) What percent of surveyed students were and aid users or seniors?

 $= \frac{327 + 180 - 81}{788} = \frac{99 + 81 + 80 + 89 + 77}{788} \approx 0.54$

Pecall that if outcomes are equally likely, the modelled probability of an event E is $P(E) = \frac{n(E)}{n(S)} = \frac{H}{H} \text{ of favorable outcomes}$

7.4 is just "let's use our counting techniques from the pter 6 to calculate probability"

In the game craps, the first coll of dice can instantly betermine ancience of the game.

If the Sum is 7 or 11, immediate win IF. the Sum is 2, 3, or 12, immediate loss

Wheel's probability of a win on first coll?

= number of colls with sum 7 or 17

= number of colls possible

number of colls possible

36

sum of 7: (1,6), (2,5), (3,4), (4,3), (5,2), (6,1)sum of 11: (6,5), (5,6)

Probability of a loss on first cell?

= multiple of sum of 2,3,0,12 =
$$\frac{1}{12} \approx 0.0833$$

Sum of 2: (1,1) c(1,1)? 21 Sum of 3: (1,2), (2,1) 41 Sum of 12: (6,6) 51

1,1 12 13 14 15 16
21 22 23 24 25 26
31 32 33 --41 42 .
51 52 .

61 62

What's the probability of being dealt 5

Cards and have exactly 1 pair?

- each card has a value (18 values)

- total of 52 cards

P(exactly 1) =
$$\frac{11}{11}$$
 hands of 1 pair

thanks of 5 cards = $((52, 5) = \frac{P(52, 5)}{5!}$

Combinations

Step 1: What value is an pair? $(52-5)! = 5!$

step 3: What are values of other each ? $((4,2) = \frac{13}{2} = 6)$

Then are other sails ? $((4,2) = \frac{13}{2} = 6)$

13 · $((4,2) \cdot ((12,3) \cdot 4)^2 = 13 \cdot \frac{11}{2! \cdot 2!} \cdot \frac{12!}{9! \cdot 3!}$

$$\frac{13 \cdot 6 \cdot (\frac{12!}{9!3!}) \cdot 4^{3}}{(52!/(52-5)!5!)}$$

Suppose a seller has 3 yellow marbles 5 silver 4 cod', eyes 2 snow balls 1 green You can lary 4 chosen randomly. 1 Probability of getting exactly 1 cert's eyes # sets of 4 morber = 4.0 (11,3)

total sets of 4 morber = (15,4) total sets of 4 morbles 0000 Step1: Cal's eye : 4 Step2' Cheose be cemaining: C(11,3) (Bloom set of 3, with none bey cut's eyes) $= \frac{4(11!/8! \cdot 3!)}{15!/11!} = \frac{4 \cdot 11! \cdot 11! \cdot 4!}{15! \cdot 8! \cdot 3!}$ $= 4 \cdot 11.10.9.4 = 0.483$ 15.14.13.12

3)
$$P(\geq 1 \text{ cod's eye})$$

= $P(\text{exordity } 1) + P(\text{exordity } 2) + P(\text{exordity } 4)$

= $P((\text{no cod's eyes})^{1})$

= $1 - P(\text{O cod's eyes})$

= $1 - \frac{P(\text{O cod's eye})}{\text{total sech of } 4}$

= $1 - \frac{C(11, 4)}{C(15, 4)}$

= $1 - \frac{11! / 4! 7!}{15! / 4! 11!}$

= $1 - \frac{11! 11! }{15! 4! 11!} = 1 - \frac{11 \cdot 10 \cdot 9 \cdot 8}{15 \cdot 14 \cdot 13 \cdot 12} = 0.76$