

Змп- задачи математического программирования

_ O X

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Направилия Вилитникае Г. Петоды полика тобального оптимума € П. Наука
- Выпрержас Г. Тробальная оптинизация кономатика статистических поделей адгосить применение - Вильнес Посклас 1986 - 166 с.
- 19 Manting 246 F. Wantseine E.P. Florier officing da Kolificheter paculotaet
- -4 Буканов Р.Г. Толок глобального клином на Пат. Знания серия Математика Кибернетика 1990 №2 - С. 23-34

Методы многокритериальной (векторной) оптимизации

Основные понятия и определения

$$\overline{F} = [f_1(\overline{x}), f_2(\overline{x}), f_3(\overline{x}), \dots f_m(\overline{x})]^T, \ \overline{x} \in \mathbb{R}^n$$

Решение задачи векторной оптимизации $\overline{x}^* \in G$ является эффективной точкой, если

$$\overline{A}\,\overline{x}^i: f_j(\overline{x}^i) \leq f_j(\overline{x}^*), \quad i = \overline{1,m}$$

Задача векторной оптимизации (ЗВО) заключается в выделении из множества **G** подмножества эффективных точек

 $\{\overline{x}^{9}\}$

<u>Частные критерии</u> могут находиться в следующих отношениях между собой:

- ✓ взаимно нейтральны, тогда процесс оптимизации можно проводить по каждому частному критерию независимо;
- проводить по любому частному критерию, а оптимальное решение по всем остальным критериям будет достигнуто автоматически;
- ✓ конкурируют, тогда <u>оптимума</u> по одной ЦФ можно достичь только за счет ущерба по какой-либо другой.

Эффективные точки называются

неулучшаемыми решениями,

а соответствующие им векторы эффекта -

множеством компромиссов.

В пространстве критериев эффективности множество точек области Парето образует оптимальную поверхность,

которая характеризуется важным свойством:

ни одно из решений в этой области не может быть улучшено ни по одному из частных критериев эффективности без ущерба для других критериев.

Общий подход к поиску оптимального решения

Все известные методы векторного синтеза прямо или косвенно сводятся к скалярному синтезу.

$$\bar{F} = [f_1(\bar{x}), f_2(\bar{x}), f_3(\bar{x}), \dots f_m(\bar{x})]^T \to \\
\Phi(\bar{x}) = \Phi(f_1(\bar{x}), f_2(\bar{x}), f_3(\bar{x}), \dots f_m(\bar{x})), \\
\bar{x} \in R^n$$

Процесс получения обобщенного критерия называют свёртыванием,

а полученный скалярный критерий – свёрткой.

Не существует единого типа свертки (мб разной)

Безусловный критерий предпочтения (БКП) означает,

что если <u>две системы</u> характеризуются двумя показателями эффективности

$${f_i^I}, {f_i^I}, i = \overline{1,m}$$

и выполняются условия -

$$f_i^I(\overline{x}) \le f_i^{II}(\overline{x}),$$
 (1)

и хотя бы одно из них строгое,

то система I является предпочтительнее системы II.

Компромисс -

соглашение, полученное <u>путем взаимной уступки</u> при столкновении противоположных интересов

БКП в общем случае не позволяет довести задачу оптимизации до конца, а дает лишь возможность найти область компромисса, внутри которой и лежит оптимальное решение.

$$g_{j}(\overline{x}) = \varphi_{j}(\overline{x}) \le C_{j}, \quad j = \overline{1, k}$$
 (2)

$$F = \left\{ f_i(\bar{X}) \right\}, \quad i = \overline{1, m}$$
 (3)

Для решения задачи воспользуемся

методами множителей Лагранжа:

$$L(\overline{x}) = F(\overline{x}) + \sum_{j=1}^{k} \lambda_{j} \cdot (\varphi_{j}(\overline{x}) - C_{j})$$

$$\frac{\partial L(\overline{x}, \overline{\lambda})}{\partial x_{i}} = \frac{\partial F(\overline{x})}{\partial x_{i}} + \sum_{j=1}^{k} \lambda_{j} \frac{\partial g_{j}(\overline{x})}{\partial x_{i}} = 0,$$

$$i = 1, 2, ..., n,$$

$$\frac{\partial L(\overline{x}, \overline{\lambda})}{\partial \lambda_{j}} = g_{j}(\overline{x}) = 0,$$

$$j = 1, 2, ..., k$$
(5)

Совместная работа проектировщика и специалиста по эффективности при формировании ТЗ и ТП

которого предстоит осуществить выбор, и набор частных критериев, при помощи которых данные альтернативы сравнивают между собой. Частные показатели эффективности образуют векторный критерий общего вида

$$\overline{F}(\overline{X}) = \left[\phi_1(\overline{X}), \phi_2(\overline{X}), \phi_3(\overline{X}), \dots \phi_m(\overline{X})\right]^{\mathsf{T}} , \tag{7.1}$$

где $\phi_k(\overline{X}), k \in [1,m]$ — скалярные частные показатели эффективности.

Тогда задача многокритернальной (векторной) оптимизации записывается в следующем виде:

найти
$$\min_{\bar{X} \in \Omega_{\bar{X}}} \bar{F}(\bar{X}) = \bar{F}(\bar{X}^*)$$
. (7.2)

где Ω_{X} — множество допустимых значений вектора варыпруемых параметров $\overline{X} \in \mathbb{R}^{n}$.

Принято считать, что решение задачи (7.2) $\overline{X} \in \Omega_X$ является

Основная сложность логического анализа многокритериальных задач

состоит в том, что в них, в отличие от однокритериальных задач, появляется эффект несравнимости вариантов (исходов).

Несравнимость исходов является формой неопределённости, которая связана со стремлением ЛПР "достичь противоречивых целей" и может быть названа ценностной неопределённостью.

Выбор между несравнимыми исходами является сложной концептуальной проблемой и составляет основное содержание теории векторной оптимизации

Например, если исходы оцениваются по двум критериям (ищется минимум)

- и есть два вектора оценок $F_1 = [f_1(X_1), f_2(X_1)] = [2, 5]$ и $F_2 = [f_1(X_2), f_2(X_2)] = [3, 2]$.
- Вариант X₁ лучше по первому критерию, а вариант X₂ лучше по второму критерию, т.е. варианты X₁ и X₂ несравнимы между собой

7.2. Методы скаляризации векторных критериев оптимальности

7.2.1. Метод взвешенных сумм

Большинство методов векторного синтеза прямо или косвенно сводятся к скалярному синтезу, то есть имеющиеся компоненты векторного критерия оптимальности каким-либо способом объединяются в обобщенный скалярный критерий. Если указанный критерий получен в результате комплексного учета физических зависимостей между частными показателями эффективности, то оптимальное решение будет являться объективным. Однако, поскольку учесть все взаимозависимости между частными показателями внутри обобщенного критерия весьма сложно, а иногла и невозможно, обобщенный скалярный критерий, образованный путем формальной свертки составляющих векторного критерия

показателя эффективности: обычно коэффициенты важностей нормируются,

т.е. подчиняются условию $\sum_{i=1}^{\infty} \lambda_i = 1$.

Очевидно, что вид свертки (7.4) и результат ее минимизации будет зависеть от заданных величин λ_i , т.е. имеет место параметрический закон $f_{i_B} = f_a\left(\lambda_1^i, \dots, \lambda_n^i\right)$, который называют *весовой поверхностью*. Она содержит только точки оптимальной поверхности.

Таким образом, к недостаткам рассмотренного метода относятся:

Методы скаляризации векторных критериев Метод рабочих характеристик

Состоит в том, что ищется минимум одного из частных критериев (например, f_1) при всех остальных показателях эффективности, переведенных в разряд ограничений типа равенств, т.е.:

$$\min_{\overline{x} \in \Omega} f_1(\overline{x}) \quad npu \quad f_i(\overline{x}) = f_{i0}, i = \overline{2, m}$$

$$f_{1\min} = \Phi_p(f_{20}, f_{30}, \dots, f_{m0})$$

<u>Принцип максимина</u> <u>Метод последовательных уступок (МПУ)</u>

МПУ является одним из наиболее простых и эффективных алгоритмов решения многокритериальных оптимизационных задач.

Он состоит в последовательном <u>«подтягивании»</u> тех <u>нормированных</u> частных критериев, численные значения которых <u>на этапе предварительного решения задачи</u> оказались <u>«наихудшими»</u> (неудовлетворительными).

В основе данного метода лежит понятие компромисса.

Рис. 1.

На рис. 1 показан процесс принятия компромиссного решения в задаче с двумя критериями $U = \Phi(x, y)$ и $V = \Psi(x,y)$

Лпр-лицо, принимающее решение

В ходе процесса решения **ЛПР**, постепенно, шаг за шагом уступая своему первоначальному выбору $(\Phi_{\text{max}}, \Psi_{\text{max}})$, приходит к приемлемому результату.

Дуга *АВ* представляет собой границу области неулучшаемых решений по Парето.

Очевидно, что с каждой уступкой длина просматриваемой части границы Парето будет сокращаться, т.е.:

$$AB \supset A_1B \supset A_1B_2 \supset A_3B_2 \supset A_3B_4 \supset A_5B_4 \supset \dots$$

Когда пара (Φ_n , Ψ_n), полученная на n-м шаге итерационного алгоритма, станет для ЛПР удовлетворительной по всем значениям частных критериев (U, V), процесс поиска оптимального решения заканчивается.

Рассмотрим структуру алгоритма МПУ на конкретных примерах

Пример 1. Выбор и покупка ноутбука. Основные критерии выбора:

- 1. Размер диагонали экрана, дюймы
- 2. Объем оперативной памяти, Гб
- 3. Объем жесткого диска, Гб
- 4. Объем видеопамяти (видеокарты), Гб
- 5. Максимальная тактовая частота процессора, ГГц
- 6. Вес, кг
- 7. Цена, руб.

Производитель модели	Значение критерия №						
	1	2	3	4	5	6	7
1. Acer Aspire	15.6	4	500	1	1.7	2.3	19900
2. Asus	17.3	4	750	2	до 2.58	2.8	22500
3. Dell Inspiron	15.6	4	500	2	1.8	3.2	21000

Какой ноутбук приобрести, чтобы он был <u>легким</u>, с наилучшим <u>быстродействием</u>, максимальным <u>объемом памяти</u>, удобным <u>экраном</u> и относительно <u>недорогим</u>?

Первые 5 критериев должны принимать максимальные, а последние два – минимальные значения.

Приведем далее рассуждения потенциального покупателя

По критерию № 2 все модели **эквивалентны**, поэтому исключаем данный критерий из рассмотрения.

Все модели находятся примерно в одинаковой стоимостной категории.

Модель № 3 обладает наибольшим весом при не доминирующих значениях критериев № 1÷5.

Поэтому, если **главной целью** является <u>минимальный</u> вес ноутбука, данную модель можно сразу исключить из рассмотрения.

Модель № 1 является <u>легкой</u> и относительно <u>недорогой</u>, однако проигрывает по критериям № 4, 5 при прочих практически одинаковых значениях других показателей. Модель № 2 превосходит конкурентов по критериям № 1, 3, 5, однако она является <u>самой дорогой</u> в приведенной категории

Применим принцип максимина.

Расставим показатели эффективности в порядке уменьшения их приоритета при покупке, например:

№ критериев: 5, 4, 3, 1, 6, 7.

Пронормируем частные критерии, разделив на максимальные значения показателей в каждом столбце таблицы.

Получим следующие векторы эффекта:

Модель № 1: [0.6589, 0.5, 0.6667, 0.9017, 0.7187, 0.8844]

Модель № 2: [1.0, 1.0, 1.0, 1.0, 0.8750, 1.0]

Модель № 3: [0.6977, 1.0, 0.6667, 0.9017, 1.0, 0.9333]

Итак, согласно **безусловному критерию предпочтения**, наиболее выгодной (по заданному набору показателей) является Модель № 2

График в системе координат критериев № 6, 7

Пример 2. Проектируется авиационный комплекс (АК).

Критериями эффективности АК являются:

- 1. Время барражирования ЛА без дозаправки топливом t_6
- 2. Дальность обнаружения воздушного объекта R
- 3. Количество каналов сопровождения цели РЛС **п** (канальность РЛС)
- 4. Дальность полета управляемых средств оснащения Г
- Количество средств оснащения на борту ЛА N

Требуется, чтобы <u>все частные критерии</u> имели максимально возможные значения.

Решение

$$R \uparrow : egin{cases} P_{ ext{nepedamuka}} \uparrow
ightarrow P_{ ext{nompedamemga}} \uparrow
ightarrow m_{ ext{JA}} \uparrow \ U
ightarrow U
ightarrow U
ightarrow D_{ ext{packpыва антенны}} \uparrow
ightarrow C_X \uparrow
ightarrow m_{ ext{monnusa}} \uparrow
ightarrow t_{ ext{6}} \downarrow 0$$

I. Первая проектная проработка.

Критериям Φ_1 - Φ_4 придаются минимально приемлемые значения и выявляется максимальное значение критерия Φ_{5max} : $N = N_{max}$.

Затем при тех же значениях критериев Φ_2 - Φ_4 придается минимальное значение критерию Φ_5 и находится величина Φ_{1max} : $t_6 = t_{6 max}$.

Далее, сохраняя <u>минимальные величины</u> критериев Φ_1 , Φ_3 , Φ_4 , Φ_5 , ищется <u>максимальное значение</u> критерия Φ_{2max} : $R = R_{max}$ и т.д.

Все критерии нормируют, т.е. вычисляют отношения:

$$f_i = \frac{\Phi_i}{\Phi_{i\max}}, \quad i = \overline{1,5}$$

II. Проектирование. В результате находятся численные значения всех нормированных частных критериев.

Частные критерии располагают в ряд. Допустим, оказалось, что

$$f_2^{(1)} > f_1^{(1)} > f_4^{(1)} > f_5^{(1)} > f_3^{(1)}$$

III. Корректировка проекта.

Задаваясь, например, условием:

$$f_3^{(2)} = f_5^{(2)} = f_4^{(1)},$$

получим новый набор численных величин критериев:

$$f_1^{(2)}, f_2^{(2)}, f_3^{(2)}, f_4^{(2)}, f_5^{(2)}$$

Поскольку мы <u>увеличили</u> значения критериев f_3 и f_5 , то значения каких-то или всех остальных критериев уменьшились.

Если при этом различие между минимальным и остальными критериями невелико, то найденное решение близко к оптимальному.

Иначе этап III следует повторить.

Критериями эффективности являются:

- 1. Полный угловой сектор качания зеркала $\phi_1 = 2 \ \phi$
- 2. Число полных циклов качания зеркала в секунду $oldsymbol{\phi}_2 = oldsymbol{F}$

Мощность Р электродвигателя привода сканера определяется соотношением :

$$P = \frac{\pi^2 m l^2}{3 \eta} \cdot \varphi^2 \cdot F^3,$$

где m – масса зеркала; l – размер зеркала в направлении, перпендикулярном оси качания; η – $K\Pi \mathcal{L}$ привода.

Необходимо найти максимальные значения критериев ϕ_1 и ϕ_2 , обеспечивающие наибольший угловой сектор осмотра сканера.

Техническими требованиями на проектирование предусмотрены такие величины m, l, η, P , при которых

$$\varphi^2 \cdot F^3 = 1.8 \times 10^7 \Rightarrow$$

$$\varphi = \sqrt{\frac{1.8 \times 10^7}{F^3}}; \quad F = \left(\frac{1.8 \times 10^7}{\varphi^2}\right)^{\frac{1}{3}}$$

Минимально допустимыми величинами параметров являются:

$$2 \varphi_{\min} = 10 [мрад]; \quad F_{\min} = 10 [\Gamma y]$$
 $\varphi_{opt} = ? \quad F_{opt} = ?$

Решение

Прежде всего надо найти <u>область компромисса</u>, в которой следует искать оптимальное решение задачи

Подставляя в уравнение связи минимально допустимые значения критериев, получим:

$$\varphi_{\text{max}} = \sqrt{\frac{1.8 \times 10^7}{10^3}} = 134.16 [\text{мрад}];$$

$$F_{\text{max}} = \left(\frac{1.8 \times 10^7}{5^2}\right)^{1/3} = 89.63 [\Gamma \text{ц}]$$

Перейдем к <u>нормированным частным критериям</u> вместо натуральных:

$$f_{1} = \frac{\varphi}{\varphi_{\text{max}}} = \frac{\varphi}{134.16}, \quad f_{2} = \frac{F}{F_{\text{max}}} = \frac{F}{89.63}$$

$$(f_{1} \cdot \varphi_{\text{max}})^{2} \cdot (f_{2} \cdot F_{\text{max}})^{3} = 1.8 \times 10^{7} \rightarrow f_{1}^{2} \cdot f_{2}^{3} = \frac{1.8 \times 10^{7}}{(134.16)^{2} \cdot (89.63)^{3}} \rightarrow f_{1}^{2} \cdot f_{2}^{3} \approx 1.4 \times 10^{-3}$$

Минимально допустимыми величинами нормированных критериев будут:

$$f_{1 \min} = 5/134.16 \approx 0.0373;$$
 $f_{2 \min} = 10/89.63 \approx 0.1116$

Применяя принцип равенства, полагая $f_{1\,opt} = f_{2\,opt}$, из уравнения связи нормированных критериев находим:

$$f_{1 \, opt} = f_{2 \, opt} = (1.4 \times 10^{-3})^{1/5} \approx 0.2682$$

После возвращения от **нормированных** критериев к **натуральным** получаем:

$$\Phi_{1\,opt} = 2 \cdot \varphi_{opt} = 2 \cdot 134.12 \cdot 0.2682 \approx 72 \, [\text{мрад}];$$
 $\Phi_{2\,opt} = F_{opt} = 89.63 \cdot 0.2682 \approx 24 \, [\Gamma \text{ц}] \; .$

Полученная эффективная точка $\left[\Phi_{1\,opt},\Phi_{2\,opt}\right]$ и будет являться решением исходной оптимизационной задачи.