CLASS

Cosmological Linear Anisotropy Solving System

Markus Mosbech Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University

Les Karellis, France, 17-30 Aug 2025

Visit http://class-code.net/for more info!

(ロ) (個) (重) (重) (重) のQで

class in Les Karellis

What to expect in this *advanced* lecture:

Theory: What is class based upon?

Coding: Structure of class

• Coding: Essential rules and conventions

Coding: Implementing features (C and python)
 Coding: Using MontePython/Cobaya with class

We will learn the theory behind class and the fundamental rules of its code base.

2/20

class Theory

- 1 Fundamental layout of Einstein-Boltzmann solvers
- 2 Essential steps for each module
- 3 A few details for each of these steps

 $\begin{array}{c|c} \text{Homogeneous background} \\ H(a), \rho_i(a), D(a), \dots \end{array} \longrightarrow \begin{array}{c|c} \text{Homogeneous thermodynamics} \\ x_e(z), T_b(z), c_s(z), \dots \end{array}$

◆ロト ◆個ト ◆ 恵ト ◆恵ト ・恵 ・ 釣り○

◆ロト ◆個ト ◆ 重ト ◆ 重ト ・ 重 ・ からぐ

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q ()

4 ロト 4 团 ト 4 필 ト 4 필 ト 9 Q Q

Essential steps in Einstein-Boltzmann solver

Let's make a journey through each module!

Essential steps in Einstein-Boltzmann solver

Module 1. Input

Read in input files, take care of shooting.

```
h = 0.7

#H0 = 70

Omega_m = 0.3

#omega_m = 0.14

sigma8=0.8
```

Special care for equivalent/unknown parameters

Terminal Python wrapper file xxx.ini input init(...) (parser) .set(...) struct file content fc; (all parameter names/values stored as arrays of strings) input read from file(...) input_read_parameters(...) (assign all default values + interprete input + update some parameters) Only relevant parameters get stored in the structures of each module

For indirect parameters, use shooting method

Repeated calls of input_read_parameters(...), class executions, from input_read_from_file(...) until shooting target is met.

For indirect parameters, use shooting method

Repeated calls of $input_read_parameters(...)$, class executions, from $input_read_from_file(...)$ until shooting target is met.

Example:

How would you code the input parameter θ_s ? Use approximate formula \rightarrow inflexible, inaccurate

For indirect parameters, use shooting method

Repeated calls of $input_read_parameters(...)$, class executions, from $input_read_from_file(...)$ until shooting target is met.

Example:

How would you code the input parameter θ_s ? Use approximate formula \rightarrow inflexible, inaccurate

Try out a few values and narrow down (Example: User wants $100\theta_s = 1.04325$)

h	$100\theta_s$
0.7	1.0522492086422521
0.65	1.0270326366580724
0.68215616173	1.0437999980620178
0.68110138476	1.0432819283581667
0.68103637942	1.0432499363679562
0.68103650871	1.0432499921072458
0.68103652701	1.0432500079710365
•••	

For indirect parameters, use shooting method

Repeated calls of input_read_parameters(...), class executions, from input_read_from_file(...) until shooting target is met.

Example:

How would you code the input parameter θ_s ? Use approximate formula \rightarrow inflexible, inaccurate

Try out a few values and narrow down (Example: User wants $100\theta_s = 1.04325$)

h	$100\theta_s$
0.7	1.0522492086422521
0.65	1.0270326366580724
0.68215616173	1.0437999980620178
0.68110138476	1.0432819283581667
0.68103637942	1.0432499363679562
0.68103650871	1.0432499921072458
0.68103652701	1.0432500079710365

In practice, use more sophisticated Ridder's method / Newton's method

For shooting parameters, establish mapping between *target parameter*, *unknown parameter* and *level*. Currently:

target parameter	unknown parameter	level
$100 \times \theta_s$	h	thermodynamics
$\Omega_{ m dcdm}$	$ ho_{ m dcdm}^{ m ini}$	background
<u>σ</u> 8	A_{S}	spectra
	•••	•••

... plus a few others (alternative parametrizations of decaying CDM, quintessence parameters).

This is what is used e.g. in models of early dark energy!

If you need to add such parameters: see how it is done e.g. for 100*theta_s and replicate the structure!

Special exception $\tau_{\rm reio} \leftrightarrow z_{\rm reio}$ only concerns reionization and is done independently in thermodynamics.c New Special exception: $\sigma_8 \leftrightarrow A_s$ can be very simply analytically re-scaled

(multiplicative property), therefore done independently in input.c

◆ロト ◆園 ▶ ◆ 豊 ト ◆ 豊 ・ 夕 Q G

Budget equation:

$$\sum_{X} \Omega_X = 1 + \Omega_k$$

To avoid over-constraining the input, one of the last three (Omega_Lambda, Omega_fld, Omega_scf) must be left unspecified and class will assign it using budget equation.

Possibly more advanced in the future

- default: Omega_Lambda is automatically adjusted
- if you pass Omega_Lambda, Omega_fld is automatically adjusted
- if you pass Omega_Lambda and Omega_fld: Omega_scf is automatically adjusted (if you allow, by setting to -1)

This allows whatever combination.

E.g. to get Λ plus a DE fluid:

 ${\tt Omega_Lambda=0.2, Omega_scf=0} \quad {\tt or} \quad {\tt Omega_fld=0.3, Omega_scf=0}$

Helpful output by setting background verbose >= 2

Essential steps in Einstein-Boltzmann solver

Module 2. Background

Get all background quantities as function of a scale factor a.

This also gives mapping $a \leftrightarrow z \leftrightarrow t \leftrightarrow \text{conf.time}$

Let's formalize problem!

Three types of parameters:

- $\{A\}$ are analytical functions of scale factor and $\{B\}$ quantities.
- $\{B\}$ need to be integrated over, and are used to compute $\{A\}$
- $\{C\}$ also need to be integrated over, but are not used to compute $\{A\}$.

Let's formalize problem!

Three types of parameters:

- $\{A\}$ are analytical functions of scale factor and $\{B\}$ quantities.
- $\{B\}$ need to be integrated over, and are used to compute $\{A\}$
- $\{C\}$ also need to be integrated over, but are not used to compute $\{A\}$.

ΛCDM and many simple extensions:

- $\{A\} = \{\rho_i(a), p_i(a), H(a), ..., \}$ with e.g. $H(a) = \left(\sum_X \rho_X(a) \frac{K}{a^2}\right)^{1/2}$
- $\{B\} = \{\}$ (eliminated since v3.0)
- $\{C\} = \{t, \tau, r_s, D, f\}$ with e.g. $\frac{dt}{da} = 1/H(a)$, $\frac{dr_s}{da} = c_s(a)/(a \cdot H(a))$

Let's formalize problem!

Three types of parameters:

- $\{A\}$ are analytical functions of scale factor and $\{B\}$ quantities.
- $\{B\}$ need to be integrated over, and are used to compute $\{A\}$
- $\{C\}$ also need to be integrated over, but are not used to compute $\{A\}$.

Example of DE/DM/DR fluid:

- $\{A\} = \{\rho_i(a), p_i(a), H(a), ..., w_{\text{fld}}(a)\}$
- $\{B\} = \{\rho_{\text{fld}}\}$ with $\frac{d\rho_{\text{fld}}}{da} = -3(1 + w_{\text{fld}}(a))\rho_{\text{fld}}$

Let's formalize problem!

Three types of parameters:

- $\{A\}$ are analytical functions of scale factor and $\{B\}$ quantities.
- $\{B\}$ need to be integrated over, and are used to compute $\{A\}$
- $\{C\}$ also need to be integrated over, but are not used to compute $\{A\}$.

Exemple of extended cosmology with quintessence ϕ :

- $\{A\} = \{\rho_i, p_i, H, ..., V(\phi), \rho_{\phi}(\phi, \phi')\}$ with e.g. $\rho_{\phi}(\phi, \phi') = \frac{1}{2}(\phi')^2 + V(\phi)$
- $\{B\} = \{\phi, \phi'\}$ with $\frac{d\phi}{da} = \phi'/[aH(a)]$, $\frac{d\phi'}{da} = -2\phi' aV(\phi)/H(a)$

Let's formalize problem!

Three types of parameters:

- $\{A\}$ are analytical functions of scale factor and $\{B\}$ quantities.
- $\{B\}$ need to be integrated over, and are used to compute $\{A\}$
- $\{C\}$ also need to be integrated over, but are not used to compute $\{A\}$.

Also Cold Dark Matter decaying into Dark Radiation...

- $\{A\} = \{\rho_i, p_i, H, ...\}$
- $\{B\} = \{\rho_{\text{dcdm}}, \rho_{\text{dr}}\}\ \text{with}\ \frac{d\rho_{\text{dcdm}}}{da} = -3\rho_{\text{dcdm}} \Gamma(a)/H(a) \cdot \rho_{\text{dcdm}}$

Small details:

- Quantities as $D_A(z)$, $D_L(z)$, r_s , t_{age} can be derived after all A,B,C are computed
- Takes care of NCDM integration of phase-space distribution
- Useful checks & output
- ullet ightarrow Budget equation output at verbosity level 2

Essential steps in Einstein-Boltzmann solver

Module 3. Thermodynamics

Get all thermodynamics quantities as function of a time variable (class \rightarrow redshift z) after integrating differential equations like recombination equations:

$$\frac{dx_e}{dz}$$
, $\frac{dT_b}{dz}$ = excitation, ionization, heating, ...

Then $x_e(z) \to \kappa'(z)$ (Thomson scattering rate)

- $\rightarrow \kappa(z)$ (Optical depth)
- $ightarrow \exp(-\kappa(z))$ (factor for Integrated Sachs-Wolfe effect)
- \rightarrow g(z) (visibility function for Sachs-Wolfe effect)
- \rightarrow g'(z) (factor for Doppler effect)

Simplest model of recombination is the Saha equation.

It is well known that a non-relativistic ($T \ll m$) species in thermal equilibrium obeys

$$n(\mu, T) \approx ge^{\mu/T} \left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T}$$
 (1)

Thus we find using complete thermal equilibrium with $\mu_{\text{ionized}} + \mu_e = \mu_{\text{rec}}$ that

$$\frac{n_e n_{\rm ionized}}{n_{\rm rec}} \approx \left(\frac{m_e T}{2\pi}\right)^{3/2} e^{-E_{\rm bind}/T} \times \underbrace{\left[e^{\mu_{\rm ionized} + \mu_e - \mu_{\rm rec}} \left(\frac{g_e g_{\rm ionized}}{g_{\rm rec}}\right) \left(\frac{m_{\rm ionized}}{m_{\rm rec}}\right)^{3/2}\right]}_{\approx 1}$$

This gives
$$\frac{x_e^2}{1 - x_e} \approx \left(\frac{1.1 \cdot 10^{-10}}{n_{\rm H,0}/T_{\rm cmb,0}^3}\right) \left(\frac{\rm eV}{T}\right)^{3/2} \exp(39.9 - 13.6 \frac{\rm eV}{T})$$
 (2)

and thus recombination at $T \approx \frac{13.6 \text{eV}}{39.9} \approx 0.34 \text{eV} \rightarrow z \approx 1400$.

◆ロト ◆回 ト ◆ 直 ト ◆ 直 ・ か Q ○

Simplest model of recombination is the Saha equation.

It is well known that a non-relativistic ($T \ll m$) species in thermal equilibrium obeys

$$n(\mu, T) \approx ge^{\mu/T} \left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T}$$
 (1)

Thus we find using complete thermal equilibrium with $\mu_{\text{ionized}} + \mu_e = \mu_{\text{rec}}$ that

$$\frac{n_e n_{\rm ionized}}{n_{\rm rec}} \approx \left(\frac{m_e T}{2\pi}\right)^{3/2} e^{-E_{\rm bind}/T} \times \underbrace{\left[e^{\mu_{\rm ionized} + \mu_e - \mu_{\rm rec}} \left(\frac{g_e g_{\rm ionized}}{g_{\rm rec}}\right) \left(\frac{m_{\rm ionized}}{m_{\rm rec}}\right)^{3/2}\right]}_{\approx 1}$$

This gives
$$\frac{x_e^2}{1 - x_e} \approx \left(\frac{1.1 \cdot 10^{-10}}{n_{\rm H,0}/T_{\rm cmb,0}^3}\right) \left(\frac{\rm eV}{T}\right)^{3/2} \exp(39.9 - 13.6 \frac{\rm eV}{T}) \tag{2}$$

and thus recombination at $T \approx \frac{13.6 {\rm eV}}{39.9} \approx 0.34 {\rm eV} \to z \approx 1400$. This is of course wrong...

- 4 ロ M 4 個 M 4 画 M 4 画 M 9 9 0

Simplest model of recombination is the Saha equation.

It is well known that a non-relativistic ($T \ll m$) species in thermal equilibrium obeys

$$n(\mu, T) \approx ge^{\mu/T} \left(\frac{mT}{2\pi}\right)^{3/2} e^{-m/T}$$
 (1)

Thus we find using complete thermal equilibrium with $\mu_{\text{ionized}} + \mu_{\ell} = \mu_{\text{rec}}$ that

$$\frac{n_e n_{\rm ionized}}{n_{\rm rec}} \approx \left(\frac{m_e T}{2\pi}\right)^{3/2} e^{-E_{\rm bind}/T} \times \underbrace{\left[e^{\mu_{\rm ionized} + \mu_e - \mu_{\rm rec}} \left(\frac{g_e g_{\rm ionized}}{g_{\rm rec}}\right) \left(\frac{m_{\rm ionized}}{m_{\rm rec}}\right)^{3/2}\right]}_{\approx 1}$$

This gives
$$\frac{x_e^2}{1 - x_e} \approx \left(\frac{1.1 \cdot 10^{-10}}{n_{\rm H,0}/T_{\rm cmb,0}^3}\right) \left(\frac{\rm eV}{T}\right)^{3/2} \exp(39.9 - 13.6 \frac{\rm eV}{T}) \tag{2}$$

and thus recombination at $T \approx \frac{13.6 {\rm eV}}{39.9} \approx 0.34 {\rm eV} \to z \approx 1400$. This is of course wrong...

recombination is a non-equilibrium process

The effective multi-level atom is the basis for recombination codes.

1s 2s 2p 3s 3p 3d ... ionized \rightarrow 1s 2s 2p ionized

The effective multi-level atom is the basis for recombination codes.

1s 2s 2p 3s 3p 3d ... ionized \rightarrow 1s 2s 2p ionized

Reason: Intermediate transitions $(4p\rightarrow 3s)$ or $(3s\rightarrow 2p)$ are comparatively instant. Why? Direct transition $2s\rightarrow 1s$ is forbidden, and $2p\rightarrow 1s$ is immediately reversed by $1s\rightarrow 2p$. The medium is optically thick during recombination.

The effective multi-level atom is the basis for recombination codes.

1s 2s 2p 3s 3p 3d ... ionized \rightarrow 1s 2s 2p ionized

Reason: Intermediate transitions $(4p\rightarrow 3s)$ or $(3s\rightarrow 2p)$ are comparatively instant. Why? Direct transition $2s\rightarrow 1s$ is forbidden, and $2p\rightarrow 1s$ is immediately reversed by $1s\rightarrow 2p$. The medium is optically thick during recombination.

Instead, focus on $2p \to 1s$ with subsequent redshifting of photon to escape reabsorption (slow) or $2s \to 1s$ with two-photon decay (slow).

Peeble's equation

$$\dot{x_e} \approx f_{\text{photo-ion}}(T)x_{\text{rec}} - f_{\text{rec}}(T)x_ex_{\text{ionized}}$$
 (3)

Solved numerically, basis of recfast

recfast only resolves $2s \approx 2p$

recfast only resolves $2s \approx 2p$

Improvement: HyRec with EMLA resolves 2s, 2p. Even more, can do 2s, 2p, 3s, ... with *effective* rates.

Fullest code to date: CosmoRec does full numerical computation (iteratively). Comparatively slow, but highest achievable accuracy

recfast only resolves $2s \approx 2p$

Improvement: HyRec with EMLA resolves 2s, 2p. Even more, can do 2s, 2p, 3s, ... with *effective* rates.

Fullest code to date: CosmoRec does full numerical computation (iteratively). Comparatively slow, but highest achievable accuracy

Further complication: Helium (higher elements don't contribute)

User can choose to model approximate recombination and get $x_{\ell}(z)$, $T_{h}(z)$ from:

- RECFAST (Wong, Moss & Scott 2008)
- HyRec-2 (Y. Ali-Haïmoud, N. Lee)
- Possibly soon? CosmoRec (J. Chluba)

User can choose to model approximate recombination and get $x_{\ell}(z)$, $T_{h}(z)$ from:

- RECFAST (Wong, Moss & Scott 2008)
- HyRec-2 (Y. Ali-Haïmoud, N. Lee)
- Possibly soon? CosmoRec (J. Chluba)

Recombination needs one more cosmological parameter: the primordial Helium fraction Y_{He} .

- Fix it (Y_He = 0.25)
- Get it from BBN (Y_He = BBN). class has interpolation table pre-promputed with a BBN code (Parthenope), for each given value of $N_{\rm eff}$, ω_b (assumes $\mu_{\nu_e}=0$, easy to generalize).
- BBN interpolation table located in separate directory (in external/bbn/sBBN 2017.dat, update inbound)

For reionization:

- tanh with complicated argument (like CAMB)
- multi-tanh
- half tanh
- from file (either linear or tanh)

For reionization:

- tanh with complicated argument (like CAMB)
- multi-tanh
- half tanh
- from file (either linear or tanh)

Mini-shooting to find $z_{\rm reio}$ for given $\tau_{\rm reio}=\kappa_{\rm reio}$. Optical depth $\kappa(z)$ = inverse number of expected interactions $\Rightarrow \kappa'(z)=an_Hx_e\sigma_T$

We also include

- Energy injection (increases ionization, heats T_b)
 This can cause changes in scattering $\kappa(z)$ and thus be observable with CMB
- Time-dependent fundamental constants \rightarrow Causes shift in recombination due to fundamental dependencies such as $E_{\rm binding} = \frac{1}{2} \alpha^2 m_e = 13.6 {\rm eV} \, (137 \alpha)^2 \, \left(\frac{m_e}{511 {\rm keV}} \right)$ We remind ourselves $1 + z_{\rm rec} = T_{\rm rec}/T_{\rm cmb} \approx \frac{E_{\rm binding}}{12.57 {\rm meV}}$
- Computation of useful quantities $z_{rec}, z_{drag}, z_*, D_A(z_{rec}), r_s(z_{drag}), \dots$

