Par de pontos mais próximos

Algoritmos geométricos

Prof. Aurélio Hoppe

aurelio.hoppe@gmail.com

▶ Enunciado: Dados n pontos queremos encontrar dois cuja distância entre eles é mínima.

Aplicação: uma aplicação prática deste problema está no controle de tráfego aéreos: os dois aviões que estão em maior perigo de colisão são aqueles que estão mais próximos.

- ▶ Enunciado: Dados n pontos queremos encontrar dois cuja distância entre eles é mínima.
- **Entrada:** (4,5),(3,1), (2,3), (0,2), (5,4), (5,2), (1,5), (2,4), (4,0), (0,0)

▶ **Saída:** (2,3) e (2,4) que estão a 1 de distância

▶ Enunciado: Dados n pontos queremos encontrar dois cuja distância entre eles é mínima.

▶ E agora? Como descobrir a distância entre dois pontos?

Distância euclidiana:

d (p,q) =
$$\sqrt{(x_p - x_q)^2 + (y_p - y_q)^2}$$

[Algoritmo ingênuo]

- A primeira ideia de solução para este problema é:
 - □ Aplicar uma busca exaustiva em todos os pares de pontos da malha dada à procura da distância mínima.

[Algoritmo ingênuo]

Dada uma coleção P = (p₁, p₂,...,p_n) de n pontos determina a distância mínima entre pontos de P.

```
Algoritmo ingênuo ou força-bruta (PmP1)

01. D \Leftrightarrow \infty

02. Para todo i em [1..n-1] faça

03. Para todo j em [i+1..n] faça

04. D \Leftrightarrow \min\{D, d(p_i, q_j)\}

05. Devolve D
```

▶ É a melhor solução?

[Procurando melhores ideias]

- Primeira ideia: Tentar fazer incursões em dimensões menores de modo a obter ideias que sugiram soluções eficientes para dimensões maiores (R¹)
 - Ordenar os pontos e procurar o par mais próximo através de um varrimento linear destes pontos
 - Nesta estratégia o par de pontos mais próximos é necessariamente um par consecutivo no conjunto ordenado é o que permite desenvolver este algoritmo.

[Procurando melhores ideias]

Dada uma coleção $P = (p_1, p_2, ..., p_n)$ de n pontos em R^1 e devolve um par mais próximo $\{p,q\}$ em P.

```
Algoritmo ingênuo2 (PmP2)

01. Ordene p_1, ..., p_n de tal forma que p_1 \le ... \le p_n

02. D \Leftrightarrow \infty

03. Para todo i em [1..n-1] faça

04. Se distância(p_i, p_i + 1) < D então

05. D \Leftrightarrow distância(p_i, p_i + 1)}

06. p \Leftrightarrow p_i;

07. q \Leftrightarrow p_i+1;

08. Devolve \{p,q\}
```


É possível generalizar esta ideia para outras dimensões??? Não!!! 🙁

[Procurando melhores ideias]

- ▶ Segunda ideia: Versão divisão-e-conquista (R¹)
 - \square Dividimos um conjunto P de n pontos em R^1 pela sua mediana*:
 - Temos dois subconjuntos disjuntos: P_1 e P_r , (todos os pontos de P_1 estão à esquerda da mediana e os de P_r à direita)
 - O par de ponto mais próximo em P será:
 - Um par contido em P₁ ou
 - Um par contido em P_r ou
 - Um par muito particular de pontos de $P_1 \times P_r$ (ponto mais a direta de P_1 e do mais a esquerda de P_r , isto é, os dois pontos vizinhos da mediana).

[Divisão-e-conquista em R¹]

Dividir

- Compute a mediana m de P
- □ Particione P em P_1 e P_r tal que $p \le m < q \mid p \in P_1$ e $q \in P_r$

Conquistar

- \square Resolva, separadamente, o Problema do Par-mai-proximo(Pmp) para P_1 \cap P_2
 - Sejam $\{p1,p2\}$ o PmP em P_1 e $\{q1,q2\}$ o PmP em P_r

Combinar

- □ Seja D = $\min\{|p_1-p_2|, |q_1,q_2|\}$, O PmP de P é
 - $\{p_1,p_2\}$ ou $\{q_1,q_2\}$ ou $\{p_3,q_3\}$, onde $p_3 \in P_1$ e $q_3 \in P_2$
- \square Se PmP de P é {p₃,q₃}, então |p₃-q₃| < D
- Quantos pares de pontos são candidatos a $\{p_3,q_3\}$?
 - Resposta: No máximo 1 \Rightarrow p₃=m e q₃=min{q ∈ P_r}

[Divisão-e-conquista em R¹]

Dada uma coleção $P = (p_1, p_2, ..., p_n)$ de n pontos em R^1 , devolve um par mais próximo $\{p_i, q_i\}$, $i \neq i$.

```
Algoritmo divisao-e-conquista R<sup>1</sup> (PmP3)
        Se n = 1 então devolve D \Leftrightarrow \infty
01.
02.
        senão Se n = 2 então devolve distância (p_1, p_2)
03.
              senão
          m ⇔ mediana(P)
04.
05.
                   Sejam P_1 = (p \in P \mid p \le m) e P_r = (q \in P \mid q > m)
06.
                   D_1 \leftarrow PmP3(P_1)
07.
              D_r \leftarrow PmP3(P_r)
08.
              p_3 \Leftrightarrow \max(p \in P_1)
09.
                   q_3 \Leftrightarrow \min(q \in P_r)
                   D \Leftrightarrow \min(D_1, D_r, q_3-p_3)
10.
        Devolve D
11.
```


É possível aplicar o algoritmo divisão-e-conquista para o problema PmP em R²?

[Divisão-e-conquista em R²]

- ▶ Seja $P=\{p_1, p_2,...,p_n\}$ o conjunto dos n pontos em R^2
 - Se o número de pontos for menor que três, então o problema é resolvido através do algoritmo de força-bruta
 - Caso contrário em cada nível de recursividade executar as fases Dividir,
 Conquistar e Combinar, como passamos a descreve a continuação

[Divisão-e-conquista em R²]

Dividir

- \square Particione P em P_1 e P_r (mediada "m")
- Em pre-processamento ordene os pontos de P segundo as suas xcoordenadas

[Divisão-e-conquista em R²]

Conquistar

O problema deve ser resolvido recursivamente para P_1 e P_r , obtendo assim D_1 e D_r , as distâncias mínimas entre pares de pontos $\{p_1,p_2\}$ em P_1 e $\{q_1,q_2\}$ em P_r respectivamente.

[Divisão-e-conquista em R²]

Combinar

- Seja D = $min(D_1, D_r)$ e seja m uma reta tal que todo ponto de P_1 está à esquerda ou sobre m e todo ponto de P_r está à direita ou sobre m
- Pode ocorrer que o par mais próximo de $\{p,q\}$ de P seja tal que $p \in P_1$ e $q \in P_r$
 - Este par deve estar na faixa de largura 2D que tem como centro a reta m

[Divisão-e-conquista em R^2]

Combinar

- Seja P_1 '- subconjunto dos pontos de P_1 que estão a uma distância menor do que D da linha m e seja P_r ' a correspondente subconjunto de pontos de P_r
- Para cada $p \in P_l \min(D_l, D_r)$ e seja m uma reta tal que todo ponto de P_l determinar os pontos $q_i \in P_r$ tal que $d(p,q_i) < D$
- Os $q_i \in R_p$ (pontos de P_r que estão no retângulo R_p de altura 2D e largura D

No máximo quantos pares de pontos de P,' podem estar contidos no tal retângulo????

No máximo 6!!!

Em caso contrario existe um par de pontos em P_r cuja distância seria menor que D o que não pode ocorrer.

[Divisão-e-conquista em R^2]

Combinar

- Seja P_1 '- subconjunto dos pontos de P_1 que estão a uma distância menor do que D da linha m e seja P_r ' a correspondente subconjunto de pontos de P_r
- Para cada $p \in P_l \min(D_l, D_r)$ e seja m uma reta tal que todo ponto de P_l determinar os pontos $q_i \in P_r$ tal que $d(p,q_i) < D$
- Os $q_i \in R_p$ (pontos de P_r que estão no retângulo R_p de altura 2D e largura

[Divisão-e-conquista em R²]

Algoritmo PmP4(S)

- □ Dado um conjunto S = (p₁, p₂,...,p_n) de n pontos em R², devolve a distância mínima entre pontos de S
- □ Ordenar os pontos de S por abscissa e armazene num vetor V_x
- Ordenar os pontos de S por abscissa e armazene num vetor V_Y
- Retornar o par obtido pelo algoritmo Pmp4-Aux(S)

[Divisão-e-conquista em R²]

Algoritmo divisao-e-conquista R² (PmP4-Aux)

- 01. Se|S| = 2 então devolver (p_1, p_2)
- 02. Senão calcular a mediana $\rm m_{x}$ das abscissas de S. Seja r a reta vertical com abscissa $\rm m_{x}$
- 03. Dividir S em duas coleções S_1 e S_2 com [n/2] e [n/2] pontos, respectivamente. Todos os pontos de S_1 estão à esquerda de (ou sobre) a reta r e os pontos de S_2 estão à direita (ou sobre) a reta r

Obter recursivamente o Par mais Próximo

- 04. De S_1 : $(p_{i1}, p_{j1}) = PmP4-Aux(S_1)$ De S_2 : $(p_{i2}, p_{j2}) = PmP4-Aux(S_2)$
- 05. Seja D = $min\{d(p_{i1}, p_{j1}), d(p_{i2}, p_{j2})\}$
- 06. Seja F a faixa de largura 2D centrada na reta m. Procure por varredura vertical, conforme detalhado abaixo, o par de pontos $p_k \in S_1 \cap F$ e $p_1 \in S_2 \cap F$ mais próximos
- 07. Devolver: $min\{d(p_{i1}, p_{j1}), d(p_{i2}, p_{j2}), d(p_{1}, p_{k})\}$

[Divisão-e-conquista em R²]

Detalhamento do passo 06

- 0.1 Utilizando o vetor ordenado V_y , percorra os pontos $S_1 \cap F$ em ordem ascendente de ordenadas. Para cada ponto p visitado, tomamos em V_y os três pontos de $S_2 \cap F$ acima e os três pontos abaixo de p. Como observamos anteriormente, o vizinho mais próximo de p em S_2 dentro da faixa F tem que ser um destes seis pontos, devido à escolha da largura F da faixa F
- 6.2 Devolva o para (p_k, p_1) que minimiza as distâncias encontradas

[Divisão-e-conquista em R²]

Sumário

Algoritmo divisao-e-conquista (PmP4-Aux)

Pré-processamento

Construir P_x e P_y como listas ordenadas pelas coordenadas x e y

Divisão

```
Quebrar P em P_1 e P_r
```

Conquista

```
\mathbf{D_1} = \text{PmP4-Aux}(P_1)

\mathbf{D_r} = \text{PmP4-Aux}(P_r)
```

Combinação

```
D = \min(D_1, D_r)
Determinar faixa divisória e pontos
Verificar se tem algum par com distancia < D na faixa divisória
```

