Examen parcial Tecnologia industrial 1r Batxillerat

1. (1,25 pts)

En la transmissió per corretja de la figura, la politja petita, de diàmetre d_1 , gira a una velocitat angular ω_1 , accionada per un motor que li aplica un parell Γ_1 . Si el rendiment de la transmissió és $\eta = 1$, què se'n pot dir, del parell Γ_2 que actua sobre la politja gran, de diàmetre $d_2 > d_1$, i de la velocitat angular ω_2 d'aquesta politja? a) $\omega_2 < \omega_1$; $\Gamma_2 = \Gamma_1$ c) $\omega_2 > \omega_1$; $\Gamma_2 < \Gamma_1$ b) $\omega_2 < \omega_1$; $\Gamma_2 > \Gamma_1$ d) $\omega_2 > \omega_1$; $\Gamma_2 = \Gamma_1$

2. (1,5 pts)

El cotxe de joguina de la figura, de massa m = 1,3 kg, disposa d'un motor elèctric que acciona les rodes posteriors mitjançant una transmissió per corretja. La politja 1, de diàmetre $d_1 = 14$ mm, és solidària a l'eix del motor, i la politja 2, de diàmetre $d_2 = 46$ mm, és solidària a les rodes posteriors, que són de radi r = 30 mm. Determineu:

- a) La relació de la transmissió per corretja definida per $\tau = \omega_2/\omega_1$, en què ω_1 i ω_2 són les velocitats angulars de rotació de les politges 1 i 2, respectivament. [0,5 punts]
- b) La velocitat angular ω_1 del motor quan el cotxe avança a velocitat $v_0 = 0.2$ m/s.

3. (1,25 pts)

$n_1 = 160 \text{ min}^{-1}$
$z_1 = 23$
$z_2 = 12$
$z_3 = 41$

Al tren d'engranatges de la figura, les tres rodes dentades tenen $z_1 = 23$, $z_2 = 12$ i $z_3 = 41$ dents, respectivament. Si la roda 1 gira a n_1 = 160 min⁻¹, a quina velocitat n_3 gira la roda 3?

- a) 306,7 min-1
- c) 285,2 min⁻¹
- **b)** 46,83 min⁻¹
- **d)** 89,76 min⁻¹

4. (1,25 pts)

En la transmissió per corretja de la figura, la politja petita és de diàmetre d_1 = 140 mm i gira a una velocitat angular ω_1 = 93 rad/s. Quina és la velocitat v de la corretja?

- a) 6,51 m/s
- c) 6510 m/s
- **b)** 1,505 m/s
- d) 13,02 m/s

5. (1,25 pts)

Un motor elèctric proporciona un parell motor constant Γ = 2,1 Nm girant a una velocitat angular constant ω = 150 rad/s. Determineu el rendiment electromecànic del motor si la potència elèctrica que consumeix en aquesta situació és $P_{\rm e}$ = 470 W.

- a) 0,32
- **c**) 1

- **b)** 0,67
- **d)** 1,49

6. (1 pt)

Una càrrega de massa m s'eleva a velocitat constant v mitjançant un cable que passa per la politja A i es cargola sobre el tambor B, accionat per un motor elèctric. Si es duplica la velocitat d'elevació, v' = 2v, com varien el parell motor Γ i la potència P que desenvolupa el motor?

- a) Tant Γ com P no varien.
- b) Tant Γ com P es dupliquen.
- c) Γ no varia i P es duplica.
- d) Γ es duplica i P no varia.

7. (2,5 pts)

z _P = 11	z _C = 36
$\eta = 0.97$	r = 0.3 m
v = 85 km/h	$\Gamma_{\rm P}$ = 12 Nm

La figura representa la transmissió per cadena d'una motocicleta. Sobre el pinyó P, de $z_{\rm P}$ = 11 dents, hi actua el parell $\Gamma_{\rm p}$ provinent del motor. La corona C, de $z_{\rm C}$ = 36 dents, és solidària a la roda del darrera, que és de radi r = 0,3 m.

Quan la motocicleta circula per una carretera horitzontal a velocitat constant v = 85 km/h, el parell que actua sobre el pinyó és $\Gamma_{\rm p}$ = 12 N·m.

- b) Determineu les velocitats angulars de rotació, $\omega_{\rm c}$ i $\omega_{\rm p}$, de la corona i del pinyó, respectivament. [1 punt]
- c) Determineu el parell Γ_{c} que la roda fa sobre la corona, si el rendiment de la transmissió és η = 0,97. [1 punt]
- d) Determineu la força tangencial F_{T} que el terra fa sobre la roda al punt J de contacte.

[0,5 punts]