130 Final Exam Cheat Sheet

Heating Problem

 $\frac{dT}{dt} = -k(T - T_o)$ $T_o = \text{outside temperature}$

Mixing Problem

$$\begin{aligned} \frac{dA}{dt} &= c_1 r_1 - \frac{A}{V} r_2 \\ V &= V_0 + (r_1 - r_2) t \\ c_1, \text{ solution mixture in } \\ r_1, \text{ in rate} \end{aligned}$$

Inner Product Spaces

- 1. $\langle v, v \rangle \geq 0$ Furthermore, $\langle v, v \rangle = 0 \leftrightarrow v = 0$
- 2. $\langle v, u \rangle = \langle u, v \rangle$
- 3. $\langle ku, v \rangle = k \langle u, v \rangle$
- 4. $\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle$
- $||v|| = \langle v, v \rangle$

 r_2 , out rate

 $\cos^{-1}\left(\frac{\langle v, u \rangle}{||v||||u||}\right)$

Gram-Schmidt

$$v_{1} = x_{1}$$

$$v_{2} = x_{2} - \frac{\langle x_{2}, v_{1} \rangle}{||v_{1}||^{2}} v_{1}$$

$$\vdots$$

$$v_{n} = x_{m} - \sum_{k=1}^{m-1} \frac{\langle x_{m}, v_{k} \rangle}{||v_{k}||^{2}} v_{k}$$

Variation of Parameters

$$\begin{split} F(x) &= y'' + y' \\ y_h &= b_1 y_1(x) + b_2 y_2(x), y_1 y_2 \text{ are L.I.} \\ y_p &= u_1(x) y_1(x) + u_2(x) y_2(x) \\ u_1 &= \int^t -\frac{y_2 F(t) dt}{w[y_1, y_2](t)} \\ u_2 &= \int^t \frac{y_1 F(t) dt}{w[y_1, y_2](t)} \\ y &= y_h + y_p \end{split}$$

ODEs —	
1st Order Linear	Use integrating factor, $I = e^{\int P(x)dx}$
Separable:	$\int P(y)dy/dx = \int Q(x)$
HomogEnEous:	dy/dx = f(x, y) = f(xt, yt) sub $y = xV$ solve, then sub $V = y/x$
Exact:	If $M(x,y) + N(x,y) dy/dx = 0$ and $M_y = N_x$ i.e. $\langle M, N \rangle = \nabla F$ then $\int_x M + \int_y N = F$
Order Reduction	Let $v = dy/dx$ then check
	other types
	If purely a function of y, $\frac{dv}{dx} = v \frac{dv}{dy}$
Variation of Parameters:	When $y'' + a_1 y' + a_2 y = F(x)$
	F contains $\ln x$, $\sec x$, $\tan x$,
	÷
Bernoulli	$y' + P(x)y = Q(x)y^{n}$
Cauchy-Euler	$x^{n}y^{n} + a_{1}x^{n-1}y^{n-1} + \cdots + a_{n-1}y^{n-2} + a_{n}y = 0$ guess $y = x^{r}$
3 Cases:	
1) Distinct real roots	$y = ax^{r_1} + bx^{r_2}$
2) Repeated real roots3) Distinct complex roots	$y = Ax^{r} + y_{2}$ $Guess \ y_{2} = x^{r}u(x)$ $Solve \ for \ u(x) \ and \ choose$ $one \ (A = 1, C = 0)$ $y = B_{1}x^{a}\cos(b\ln x) + B_{2}x^{a}\sin(b\ln x)$
	22 311(0111 4)

Series Solution

$$y'' + p(x)y' + q(x)y = 0$$
Useful when $p(x), q(x)$ not constant
$$Guess y = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

$$\frac{e^x \sum_{n=0}^{\infty} x^n/n!}{\sin x \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}}$$

$$\frac{\cos x \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}}{\cos x^{n-1}}$$

Systems

$\vec{x}' = A\vec{x}$	
A = Ax $A is diagonalizable$	$\vec{x}(t) = a_1 e^{\lambda_1 t} \vec{v_1} + \cdots +$
	$a_n e^{\lambda_n t} \vec{v_n}$
A is not diagonalizable	$\vec{x}(t) = a_1 e^{\lambda_1 t} \vec{v_1} + a_2 e^{\lambda t} (\vec{w} + \vec{v_1})$
	$t\vec{v})$
	where $(A - \lambda I)\vec{w} = \vec{v}$
	\vec{v} is an Eigenvector w/ value
	λ
	i.e. \vec{w} is a generalized Eigen-
	vector
$\vec{x}' = A\vec{x} + \vec{B}$	Solve y_h
	$\vec{x_1} = e^{\lambda_1 t} \vec{v_1}, \vec{x_2} = e^{\lambda_2 t} \vec{v_2}$
	$ec{X} = [ec{x_1}, ec{x_2}]$
	$ec{X}ec{u}'=ec{B}$
	$y_p = \vec{X}\vec{u}$
	$y = y_h + y_p$

Matrix Exponentiation

$$A^n = SD^n S^{-1}$$

D is the diagonalization of A

Laplace Transforms

$$\overline{L[f](s)} = \int_0^\infty e^{-sx} f(x) dx$$

$$\begin{array}{lll} f(t) = t^n, n \geq 0 & F(s) = \frac{n!}{s^n + 1}, s > 0 \\ f(t) = e^{at}, a \; constant & F(s) = \frac{1}{s - a}, s > a \\ f(t) = \sin bt, b \; constant & F(s) = \frac{b}{s^2 + b^2}, s > 0 \\ f(t) = \cos bt, b \; constant & F(s) = \frac{s}{s^2 + b^2}, s > 0 \\ f(t) = t^{-1/2} & F(s) = \frac{\pi}{s^{1/2}}, s > 0 \\ f(t) = \delta(t - a) & F(s) = e^{-as} \\ f' & L[f'] = sL[f] - f(0) \\ f'' & L[f''] = s^2 L[f] - sf(0) - f'(0) \\ L[e^{at}f(t)] & L[f](s - a) \\ L[u_a(t)f(t - a)] & L[f]e^{-as} \end{array}$$

Gaussian Integral

$$\int_{-\infty}^{+\infty} e^{-1/2(\vec{x}^T A \vec{x})} = \frac{\sqrt{2\pi^n}}{\sqrt{\det A}}$$

Complex Numbers

Systems of equations If $\vec{w_1} = \vec{u(t)} + i\vec{v(t)}$ is a solution, $\vec{x_1} = \vec{u(t)}, \vec{x_2} = \vec{v(t)}$ are solutions i.e. $\vec{x_h} = c_1\vec{x_1} + c_2\vec{x_2}$

Euler's Identity

$$e^{ix} = \cos x + i\sin x$$

Vector Spaces

$$v_1, v_2 \in V$$

- 1. $v_1 + v_2 \in V$
- $2. \ k \in \mathbb{F}, kv_1 \in V$
- 3. $v_1 + v_2 = v_2 + v_1$
- 4. $(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$
- 5. $\forall v \in V, 0 \in V \mid 0 + v_1 = v_1 + 0 = v_1$
- 6. $\forall v \in V, \exists -v \in V \mid v + (-v) = (-v) + v = 0$
- 7. $\forall v \in V, 1 \in \mathbb{F} \mid 1 * v = v$
- 8. $\forall v \in V, k, l \in \mathbb{F}, (kl)v = k(lv)$
- 9. $\forall k \in \mathbb{F}, k(v_1 + v_2) = kv_1 + kv_2$
- 10. $\forall v \in V, k, l \in \mathbb{F}, (k+l)v = kv + lv$