Задачата (с лека модификация), която казах че ще разпиша

Иво Стратев

9 октомври 2019 г.

Да се намери алгебричния вид на числото

$$\left(\frac{8 - 8\sqrt{3}i}{-4\sqrt{3} + 4i}\right)^{463}$$

Решение:

Нека
$$z=rac{8-8\sqrt{3}i}{-4\sqrt{3}+4i}.$$
 Тогава

$$z = \frac{8(1 - \sqrt{3}i)}{4(-\sqrt{3} + i)} = 2 \cdot \frac{1 - \sqrt{3}i}{-\sqrt{3} + i} = 2 \cdot \frac{(1 - \sqrt{3}i)(-\sqrt{3} - i)}{(-\sqrt{3} + i)(-\sqrt{3} - i)} = 2 \cdot \frac{-\sqrt{3} - i + 3i - \sqrt{3}}{3 - i^2} = 2 \cdot \frac{-2\sqrt{3} + 2i}{4} = -\sqrt{3} + i$$

Търсим тригонометричния вид на z:

$$Re(z) = -\sqrt{3} < 0$$

$$Im(z) = 1 \ge 0$$

$$|z| = \sqrt{3+1} = 2$$

$$y = Arg(z)$$

$$\sin(x) = |\sin(y)| = \left|\frac{Im(z)}{|z|}\right| = \left|\frac{1}{2}\right| = \frac{1}{2}$$

$$x \in \left[0, \frac{\pi}{2}\right)$$

$$x = \frac{\pi}{6}$$

$$y = \pi - x = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$

Така значи
$$z=|z|(\cos(Arg(z))+isin(Arg(z)))=2\left(\cos\left(\frac{5\pi}{6}\right)+i\sin\left(\frac{5\pi}{6}\right)\right).$$

От първата формула на Моавър, знаем че

$$z^n = |z|^n (\cos(n.Arg(z)) + isin(n.Arg(z)))$$
 за $n \in \mathbb{N}^+$

Нека сега разгледаме частния случай когато $Arg(z) = \frac{p}{a}\pi$.

Тоест
$$\frac{p}{q}\in\mathbb{Q}\cap[0,2)$$
. Така $n.Arg(z)=n\frac{p}{q}\pi$. Сега делим с частно и остатък np на $2q$. Тоест $np=2qk+r$ и $k\in\mathbb{Z}$ и $r\in\mathbb{Z}$ и $0\leq r<2q$. Така $n.Arg(z)=n\frac{p}{q}\pi=(2qk+r)\frac{\pi}{q}=2k\pi+\frac{r}{q}\pi$.

Също така имаме $0 \le r < 2q$ или $0 \le \frac{r}{a}\pi < 2\pi$. Тоест $\frac{r}{a}\pi \in [0, 2\pi)$.

Следователно в този случай $z^n = |z|^n \left(\cos\left(\frac{r}{a}\pi\right) + i\sin\left(\frac{r}{a}\pi\right)\right).$

В задачата, която решаваме

$$n = 463$$

$$p = 5$$

$$q = 6$$

$$np=463.5=400.5+50.5+13.5=2000+250+65=2315=2400-85=2400-60-25=12.200-12.5-12.2-1=12(200-7)-1=12.193-1=12.192+12-1=12.192+11.$$
 Значи

$$k = 192$$

$$r = 1^{-1}$$

Следователно $z^{463}=2^{463}\left(\cos\left(\frac{11\pi}{6}\right)+i\sin\left(\frac{11\pi}{6}\right)\right)$. Превръщаме в алгебричен вид.

$$\frac{11\pi}{6} = 2\pi - \frac{\pi}{6}$$

Числото се намира в четвърти квадрант в комплексната равнина. Тогава $Re(z^{463}) \ge 0$ и $Im(z^{463}) < 0$. И значи

$$z^{463} = 2^{463} \left(\cos \left(\frac{\pi}{6} \right) - i \sin \left(\frac{\pi}{6} \right) \right) = 2^{463} \left(\frac{\sqrt{3}}{2} + i \left(-\frac{1}{2} \right) \right) = 2^{462} (\sqrt{3} - i).$$

Отговор:

$$2^{462}\sqrt{3} + i(-2^{462}).$$