ORIE 4630: Spring Term 2019 Homework #4 Solutions

Question 1. [10 points]

Output from line 5:

This plot of the log prices shows non-stationarity. The mean is not constant, nor is the variance constant.

Output from line 6:

The plot of the log gross returns shows non-stationarity. Although the mean appears to be constant, there is volatility clustering, particularly in the years 2008-2009, so the variance is not constant.

Question 2. [5 points]

Output from line 7:

The plot of the sample ACF shows evidence serial correlation; for example, it appears from the plot that $\rho(1)$ is non-zero, since $\hat{\rho}(1)$ is beyond the error bars.

Question 3. [5 points]

Output from line 8:

```
> Box.test(Returns$UTX, lag=12, type="Ljung-Box")
Box-Ljung test
data: Returns$UTX
X-squared = 40.228, df = 12, p-value = 6.589e-05
```

The test does show evidence of serial correlation. Since the p-value is very small, there is extremely strong evidence against the null hypothesis $H_0: \rho(1) = \cdots = \rho(12) = 0$ in favor of the alternative hypothesis $H_A:$ at least one of $\rho(1), \ldots, \rho(12)$ is non-zero.

Question 4. [15 points]

Output from line 14:

```
> fit
Call:
arima(x = Returns$UTX, order = c(1, 0, 0))
```

Coefficients:

```
ar1 intercept
-0.0622 3e-04
s.e. 0.0184 3e-04
```

sigma^2 estimated as 0.000215: log likelihood = 8206.15, aic = -16406.3

Output from line 15:

The plot of the sample ACF based on the residuals from the AR(1) model shows evidence of serial correlation; for example, it appears from the plot that both $\rho(2)$ and $\rho(3)$ are non-zero, since both $\hat{\rho}(2)$ and $\hat{\rho}(3)$ are beyond the standard error bars.

Output from line 16:

> Box.test(fit\$residuals, lag=7, type="Ljung-Box", fitdf=1)

Box-Ljung test

data: fit\$residuals
X-squared = 20.529, df = 6, p-value = 0.002228

The test does show evidence of serial correlation. Since the p-value 0.002228 is small, there is strong evidence against the null hypothesis $H_0: \rho(1) = \cdots = \rho(7) = 0$ in favor of the alternative hypothesis $H_A:$ at least one of $\rho(1), \ldots, \rho(7)$ is non-zero.

If the AR(1) model was appropriate, then the disturbances in the model, i.e., the ϵ_t s, should be a white noise process. The residuals from the model, i.e., the $\hat{\epsilon}_t$ s, which estimate the ϵ_t s, show evidence of autocorrelation. Hence, there is evidence from the plot and the test that the ϵ_t s are not a white noise process, so the returns appear not to follow an AR(1) model.

Question 5. [15 points]

Output from line 32:

> fit

Call:

arima(x = Returns\$UTX, order = c(4, 0, 0))

Coefficients:

```
intercept
          ar1
                    ar2
                             ar3
                                      ar4
      -0.0619
               -0.0413
                         0.0397
                                  -0.0303
                                                3e-04
       0.0185
                 0.0185
                         0.0185
                                   0.0185
                                                2e-04
s.e.
```

 $sigma^2$ estimated as 0.000214: log likelihood = 8212.7, aic = -16413.41

Output from line 33:

The plot of the sample ACF based on the residuals from the AR(4) model shows evidence of serial correlation; it appears from the plot that $\rho(5)$ is non-zero, since $\hat{\rho}(5)$ is beyond the error bars..

Output from line 34:

```
> Box.test(fit$residuals, lag=15, type="Ljung-Box", fitdf=4)
```

Box-Ljung test

data: fit\$residuals
X-squared = 29.628, df = 11, p-value = 0.001812

The test shows evidence of serial correlation. Since the *p*-value 0.001812 is small, there is evidence against the null hypothesis $H_0: \rho(1) = \cdots = \rho(15) = 0$ in favor of the alternative hypothesis $H_A:$ at least one of $\rho(1), \ldots, \rho(15)$ is non-zero.

If the AR(4) model was appropriate, then the disturbances in the model, i.e., the ϵ_t s, should be a white noise process. The residuals from the model, i.e., the $\hat{\epsilon}_t$ s, which estimate the ϵ_t s, show evidence of autocorrelation. Hence, there is evidence from the plot and the test that the ϵ_t s are not a white noise process; the AR(4) model for the returns is not supported.

Question 6. [15 points]

Output from line 53:

> fit

Call:

arima(x = Returns\$UTX, order = c(0, 0, 5))

Coefficients:

```
ma1
                     ma2
                              ma3
                                        ma4
                                                  ma5
                                                        intercept
                -0.0367
                                    -0.0322
      -0.0636
                           0.0456
                                              -0.0467
                                                             3e-04
       0.0185
                  0.0185
                           0.0185
                                     0.0179
                                               0.0186
                                                             2e-04
s.e.
```

 $sigma^2$ estimated as 0.0002135: log likelihood = 8215.85, aic = -16417.7

Output from line 54:

The plot of the sample ACF based on the residuals from the AR(5) model shows no evidence of serial correlation; none of $\hat{\rho}(1), \ldots, \hat{\rho}(12)$ are beyond the error bars.

Output from line 55:

```
> Box.test(fit$residuals, lag=13, type="Ljung-Box", fitdf=5)
Box-Ljung test
data: fit$residuals
X-squared = 10.667, df = 8, p-value = 0.2213
```

The test shows no evidence of serial correlation. Since the *p*-value 0.2213 is large, there is no evidence against the null hypothesis $H_0: \rho(1) = \cdots = \rho(13) = 0$ in favor of the alternative hypothesis $H_A:$ at least one of $\rho(1), \ldots, \rho(13)$ is non-zero.

If the MA(5) model was appropriate, then the disturbances in the model, i.e., the ϵ_t s, should be a white noise process. The residuals from the model, i.e., the $\hat{\epsilon}_t$ s, which estimate the ϵ_t s, show no evidence of autocorrelation. Hence, there is no evidence from the plot and the test that the ϵ_t s are not a white noise process, so the MA(5) model for the returns is supported.

Question 7. [5 points]

The AR(4) model has AIC=-16413.41, while the MA(5) model has AIC=-16417.7. A smaller value of AIC indicates better fit, so the MA(5) model would be preferred.

Question 8. [10 points]

Output from line 64:

```
> auto.arima(Returns$UTX, max.p=20, max.q=20, d=0, ic="aic")
Series: Returns$UTX
ARIMA(2,0,4) with zero mean
```

Coefficients:

```
ar1
                                             ma3
                   ar2
                            ma1
                                     ma2
                                                       ma4
      0.3626
              -0.8254
                        -0.4254
                                                  -0.0572
                                 0.8118
                                          0.0010
      0.0746
               0.0809
                         0.0764
                                 0.0839
                                          0.0242
                                                    0.0218
s.e.
```

```
sigma^2 estimated as 0.000214: log likelihood=8215.72 AIC=-16417.44 AICc=-16417.41 BIC=-16375.57
```

The model identified by the auto.arima() function is the ARMA(2,2) model having zero mean. The ARMA(2,4) model has AIC=-16417.44, while the MA(5) model has AIC=-16417.7. Thus, based on the AIC information criterion, preference would be for the MA(5) model.

9. [10 points]

Output from line 68:

> fc

	Point	Forecast	Lo 75	Hi 75	Lo 90	Hi 90
2929		115.6406	114.5621	116.7191	114.0984	117.1827
2930		115.5484	114.0454	117.0514	113.3992	117.6975
2931		115.5451	113.7246	117.3656	112.9420	118.1481
2932		115.5949	113.4883	117.7016	112.5827	118.6072
2933		115.5541	113.2038	117.9044	112.1934	118.9147
2934		115.5635	112.9931	118.1339	111.8881	119.2388
2935		115.5763	112.7993	118.3533	111.6056	119.5471

The point prediction for period t=2932 is \$115.5949; the 75% prediction interval is (112.9931, 118.1339).

10. [10 points]

Output from line 71:

