「om S. Bertalan

© (256) 613-3760 | ▼TBertal1@jhu.edu | ★TomSB.net | © TSBertalan | ® Tom-Bertalan-00764640

Machine learning and dynamical systems researcher specialized in neural system identification and unsupervised representations. Proficient in handling high-dimensional time-series data for both offline parameter optimization and online execution.

SKILLS

Libraries, frameworks, & tools

- Python/C++
- NumPy+SciPy+Matplotlib
- Pytorch/TensorFlow/Keras
- Linux and shell scripting
- Git/Subversion
- VSCode/Eclipse+PyDev
- Scikit-Learn

Areas of Expertise and Training

- Computer vision
- · Dimension reduction and representation learning
- Deep learning and ML
- · Probabilistic modeling and theory
- Nonlinear dynamics of time series data
- · Scientific computing
- Research presentation and dissemination
- · Trainee and peer mentoring

Other Skills and Interests

- · Home automation with Arduino. Raspberry Pi, and 3D printing
- Solo and orchestral violin performance
- · Windsurfing and small-boat sailing

PROFESSIONAL EXPERIENCE AND RESEARCH AREAS

Johns Hopkins University

Baltimore, MD 3/2020-Present

POSTDOCTORAL FELLOW

- Time Series and PDE Analysis with Neural ODEs
 - Advanced neural DEs for time serie, including CNNs for PDEs; with a novel loss function for Hamiltonian systems.
 - Cut RNN inference burn-in from 25 to 5 samples through manifold learning.
 - Derived custom gradients for nets with constraints; put forward theory on error scaling laws, plus biomanufacturing applications.

· Biophysical Experiment and Simulation Enhancement

- Led a team of biophysics and ML experts in creating a suite of Python/MATLAB simulation and data processing tools.
- Created a GUI for Bayesian experimental design; mentored team members on its use and maintenance.

· Robotic Systems Development and Upgrades

- Developed a variational autoencoder for end-to-end robotic localization.
- Used Blender to create synthetic datasets for multi-view synthesis.
- Upgraded rover with IMU and RealSense, resulting in enhanced odometry for RTAB-MAP SLAM.
- Engineered a two-step training protocol for real-time (>10hz) onboard neural segmentation of drivable space by U-net, leveraging both open and custom datasets.
- Constructed GPS-navigable hexacopter from 3D-printed parts.
- Estimated depth and segmentation by pre-trained transformer networks in simulation.
- Optimized projective geometry settings for enhanced point cloud segmentation.
- Streamlined depth-segmentation pipeline for GPU-exclusive, 10Hz execution.

· Special Projects and Innovations

POSTDOCTORAL ASSOCIATE

- Automated conversion of seminar announcements to ICS files with OpenAI API, including curation of a 19.7k-word dataset.
- Administered lab GPU server for maximum uptime, ease of access for multiple concurrent users.
- Wrote specifications and solicited bids for an upcoming multi-GPU training server destined for datacenter colocation.

The Massachusetts Institute of Technology

Cambridge, MA

3/2018-3/2020

· Autonomous Vehicle Design and Pathfinding

- Developed a model AV with fimrware-level speed sensing and control, and noise-rejecting communication protocols.
- Crafted a jerk-minimizing path planner capapable of planing up to two lane switches ahead at 47 mph.
- Leveraged Ipopt and CppAD to push a model-predictive path follower to 67 ms latency in simulation.
- Taught summer courses on OpenCV, ROS, and CNNs for lane detection, path following, and traffic sign recognition.
- Wrote wrapper APIs for using video games as robotic simulations.
- Detected dashcam obstacles via windowed SVM.
- Designed compute board mounting brackets in CAD for 3D printing.

· Nonlinear dynamics in neuroscience

- Wrote object-oriented library for fine- and coarse-grained simulation of neuronal dynamics.
- Analyzed bifurcation and resonance behavior of a mammalian circadian rhythm model.
- Played a key role in acquiring a \$1.8M grant for an industry-academic partnership.

VERSION 2C61A6A TOM S BERTALAN Tom@TomSB.NET Princeton UniversityPrinceton, NJNSF RESEARCH ASSISTANT9/2012-3/2018

· Robotic Hardware, Integration, and Computer Vision Software Development

- Built a differential-drive rover for resarch in particle-filter SLAM via LIDAR, against a ROS baseline.
- Modeled robot in Gazebo for fast algorithm prototyping.
- Architected an OpenCV library inspired by TensorFlow 1 for compile-time optimization of graph-structed pipelines.

High-Performance Computation for Neuroscience and Behavioral Ecology

- Coarse-grained bifurcation analysis of simulations of up to several thousand Biological neurons, using measure-orthogonal polynomial expansion..
- Used OpenMP to accelerate C++ object-oriented simulation animal social dynamics.

The University of AlabamaTuscaloosa, ALSTUDENT RESEARCH ASSISTANT9/2009-5/2012

High-Performance Computing Cluster Development

- Created a 10-node Beowulf cluster from scratch in PHP using surplus hardware.
- Explored CUDA for PDE acceleration.
- Built a social network for collaborative storywriting on a LAMP stack.

Advanced Simulation Techniques

- Simulated hierarchy formation in social animals, generating hypotheses for future wet-lab experiments.
- Wrote and presented a multigrid subsufrace-flow solver.

EDUCATION & TRAINING

 Johns Hopkins University 	2020 - Present
Postdoctoral Fellow	ChBE
 The Massachusetts Institute of Tech 	nnology 2018 - 2020
Postdoctoral Associate	ME
 Princeton University 	2012 - 2018
NSF Research Fellow	PhD & MA, ChBE
 The University of Alabama 	2008 - 2012
Student Research Assistant	BS ChBF: Minor in Math

Awards

- Princeton Program in Plasma Science and Technology research and academic fellowship
- National Science Foundation research fellowship
- William R. Schowalter fund for scholarly conferences
- National merit finalist scholarship
- · University honors program and president's list
- $\Phi H \Sigma$, $\Omega X E$, and $T B \Pi$ honor societies

Teaching

Institutions

- Volunteered in a recurring summer course for high-school seniors and freshmen on employing ROS, OpenCV, and CNNs for lane detection and traffic sign recognition.
- Supervised operations and measurment activities in junior Chemical & Biological Engineering practicum.
- · Instructed in recitation, office hours, and grading as assistant instructor for senior differential equations course.

SELECTED PUBLICATIONS

A longer list of 19 publications and 21 presentations is available upon request.

Implementation and (Inverse Modified) Error Analysis for implicitly-templated ODE netsAiging Zhu, Beibei Zhu, Tom Bertalan, Yifa Tang, Ioannis Kevrekidis

Under Review arXiv:2303.17824

Transformations between deep neural networks

<u>Tom Bertalan</u>, Felix Dietrich, Ioannis Kevrekidis

Under Review arXiv:2007.05646

Certified Invertibility in Neural Networks via Mixed-Integer Programming

Tianqi Cui, <u>Tom Bertalan</u>, George J. Pappas, Manfred Morari, Ioannis Kevrekidis, Mahyar Fazlyab

L4DC 2023 — PMLR

Learning emergent PDEs in a learned emergent space

 $\textit{Felix Kemeth}, \underline{\textit{Tom Bertalan}}, \textit{Thomas Thiem}, \textit{Seungjoon Moon}, \textit{Carlo Laing}, \textit{Ioannis Kevrekidis}$

2022 Nature Comm.

Initializing LSTM internal states via manifold learning

Felix Kemeth, Tom Bertalan, Nikolaos Evangelou, Tianqi Cui, Saurabh Malfani, Ioannis Kevrekidis

2021 Chaos

2023

Local conformal autoencoder for standardized data coordinates

Erez Peterfreund, Ofir Lindenbaum, Felix Dietrich, <u>Tom Bertalan</u>, Matan Gavish, Ioannis Kevrekidis, Ronald Coifman

2020 PNAS

On Learning Hamiltonian Systems from Data

<u>Tom Bertalan</u>, Felix Dietrich, Igor Mezic, and Ioannis Kevrekidis

2019 Chaos