Notes for ECE 20001 - Electric Engineering Fundementals I

Ezekiel Ulrich

August 23, 2023

These are lecture notes for fall 2023 ECE 20001 at Purdue. Modify, use, and distribute as you please.

1

Contents

Course Introduction

Equations

Charge, current, voltage, and power

(In)dependent sources, connections, resistance and Ohm's Law

3

Course Introduction

This course covers fundamental concepts and applications for electrical and computer engineers as well as for engineers who need to gain a broad understanding of these disciplines. The course starts by the basic concepts of charge, current, and voltage as well as their expressions with regards to resistors and resistive circuits. Essential concepts, devices, theorems, and applications of direct-current (DC), 1st order, and alternating-current (AC) circuits are subsequently discussed. Besides electrical devices and circuits, basic electronic components including diodes and transistors as well as their primary applications are also discussed. For more information, see the syllabus.

Equations

1.
$$P = \frac{dW}{dt} = IV$$

2.
$$I = \frac{dq}{dt}$$

3.
$$R = \frac{\rho L}{A}$$

4. Coulomb's Law: $\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}$

5. Kirchhoff's Voltage Law:

6. Ohm's Law: V = IR

Charge, current, voltage, and power

Charge: A fundemental property of matter.

Current: The rate of flow of charge.

Voltage: Related to the potential energy of charges. **Power**: The rate of doing work, or changing energy

Passive sign convention: Defines electric power flowing out of the circuit into an electrical component as positive, and power flowing into the circuit out of a component as negative. So a passive component which consumes power, such as an appliance or light bulb, will have positive power dissipation, while an active component, a source of power such as an electric generator or battery, will have negative power dissipation.

It's useful to have an idea of the components of circuit schematics (visual representations of a circuit). Below is a list of the terms that will be used in this course:

- Elements: The term elements means "components and sources."
- Elements: The term elements means "components and sources."
- Symbols: Elements are represented in schematics by symbols. Symbols for common 2-terminal elements are displayed to the right.
- Lines: Connections between elements are drawn as lines, which we often think of as "wires". On a schematic, these lines represent perfect conductors with zero resistance. Every component or source terminal touched by a line is at the same voltage.
- Dots: Connections between lines can be indicated by dots. Dots are an unambiguous indication that lines are connected. If the connection is obvious, you don't have to use a dot.

Check out the circuit schematic below and see how many components you can identify!

Current is the rate of change of charge. Voltage is the pressure from an electrical circuit's power source that pushes charged electrons

Figure 1: Common circuit symbols

(current) through a conducting loop, enabling them to do work such as illuminating a light.

(In)dependent sources, connections, resistance and Ohm's Law

Series Combination: In a series combination, the elements are connected with end to end in contact, such that current flow is equal in all the elements in the combination

Parallel Combination: When two or more resistances are connected between the same two points, they are said to be connected in parallel combination. In this case voltage is equal across all elements

Turning off a voltage source is equivalent to replacing it with a short circuit (line). Turning off a current source is equivalent to replacing it with an open circuit (broken line).

Resistance = $\rho * Lengthofresistor/crosssectionarea <math>\rho$ is the resistivity of the material

Conductance = 1/R