

Roll No.:	

: 111

National Institute of Technology, Delhi

Semester

Name of the Examination: B. Tech

: ECE

Branch

	of the Course : Digital Electronics Course Code : ECB 2 2 Hours Maximum Marks: 25	02
Note:	all Questions are compulsory.	
Q1.	Design a 2-bit comparator using two 1-bit comparators and basic logic gates.	3
Q2.	Implement the following function using a Multiplexer with 3 select lines. $F(a,b,c,d) = a\bar{b} + acd + d + b\bar{c}$	3
Q3.	Implement a full subtractor using a 3 to 8 line decoder.	3
Q4.	Find the minimal SOP and POS (both) for the following functions: $f(A, B, C, D) = \prod M(2,4,6,8,12,14,15). d(3,5,10,13)$	3
Q5.	Reduce the following expression using mapping and implement the real minimal expression in universal logic: $f(A, B, C, D) = \sum_{i=0}^{\infty} (0.1, 2.3, 5.7, 8.9, 10.12, 13)$	3
Q6.	Design a logic circuit with 4 inputs A,B,C,D that will produce output '1' only whenever two adjacent input variables are 1s. A and D are also to be treated as adjacent. Implement it using NOR gates only.	5
Q7.	Explain the Carry Look Ahead Adder with the help of 4-bit binary addition example. Also write the expression for respective carry out of each full adder.	5