ECE 371 Materials and Devices

10/03/19 - Lecture 12
Thermal Equilibrium and Intrinsic
Semiconductors

General Information

Homework 4 assigned, due Tuesday 10/15

Please do not plot by hand – use Matlab or Excel

Midterm solutions posted

Reading for next time: 4.2

Fermi-Dirac Distribution

Describes the probability that an available state is filled at a given energy and temperature

Fig. 13.4. Fermi–Dirac distribution as a function of $E/E_{\rm F}$ for different temperatures.

$$f_F(E) = \frac{1}{e^{(E-E_F)/kT} + 1}$$

*E_F is the Fermi energy

Probability of Non-Occupation

Figure 3.34 | The probability of a state being occupied, $f_F(E)$, and the probability of a state being empty, $1 - f_F(E)$.

- The probability of non-occupation (i.e. of finding an empty state) is $1 f_F(E)$
- Applicable to holes

Boltzmann Approximation

Figure 3.35 | The Fermi-Dirac probability function and the Maxwell-Boltzmann approximation.

- Approximation to the Fermi-Dirac distribution when the energy of interest (E) is far above the Fermi energy
- Useful to simplify expressions for carrier density
- Applicable to LEDs under low-level injection and some electronic devices. Not typically applicable to diode lasers.

Carrier Density vs. Energy

Fig. 13.5. Density of states (ρ_{DOS}), Fermi-Dirac distribution function (f_F) and carrier concentration (n) as a function of energy for a 3D, 2D, and 1D system. The shaded areas represent the total carrier concentration in the conduction band.

hole density

$$p = \int g_v(E)[1 - f_F(E)] dE$$

Example

TEST YOUR UNDERSTANDING

TYU 3.5 Assume that the Fermi energy level is 0.35 eV above the valence band energy. Let T = 300 K. (a) Determine the probability of a state being empty of an electron at $E = E_v - kT/2$. (b) Repeat part (a) for an energy state at $E = E_v - 3kT/2$. $[_{L-01} \times 70^{\circ}\xi (q) :_{L-01} \times 07^{\circ}8 (r) :_{SUV}]$

(a)

$$f_F(E) \approx e^{-(E-E_F)/kT}$$

Goals in Chapter 4

- <u>Thermal equilibrium:</u> no external forces such as voltages, electric fields, magnetic fields, or temperature gradients
- Derive thermal equilibrium concentrations for electrons (n_0) and holes (p_0)
- Discuss intrinsic (pure) semiconductors
- Discuss how impurities (dopants) change the properties of semiconductors
- Determine n₀ and p₀ as a function of dopant concentration
- Determine E_F as a function of dopant concentration

Electron and Hole Concentrations

Figure 4.1 (a) Density of states functions, Fermi–Dirac probability function, and areas representing electron and hole concentrations for the case when E_F is near the midgap energy; (b) expanded view near the conduction-band energy; and (c) expanded view near the valence-band energy.

Equilibrium Carrier Concentrations

Thermal Equilibrium: no external forces (e.g., voltages, electric fields, magnetic fields, temperature gradients, act on the semiconductor. Properties are time independent.

Equilibrium electron and hole concentrations:

$$n_0 = N_c \exp\left[\frac{-(E_c - E_F)}{kT}\right]$$

$$p_0 = N_v \exp\left[\frac{-(E_F - E_v)}{kT}\right]$$

Effective density of states:

$$N_c = 2\left(\frac{2\pi m_n^* kT}{h^2}\right)^{\frac{3}{2}}$$
 $N_v = 2\left(\frac{2\pi m_p^* kT}{h^2}\right)^{\frac{3}{2}}$

$$N_v = 2\left(\frac{2\pi m_p^* kT}{h^2}\right)^{\frac{3}{2}}$$

	N _c (cm ⁻³)	N _v (cm ⁻³)	m _n */m ₀	m _p */m ₀
Si	2.8e19	1.04e19	1.08	0.56
GaAs	4.7e17	7.0e18	0.067	0.48
Ge	1.04e19	6.0e18	0.55	0.37

Exercise 4.1

EXERCISE PROBLEM

Ex 4.1 Determine the probability that a quantum state at energy $E = E_c + kT$ is occupied by an electron, and calculate the electron concentration in GaAs at T = 300 K if the Fermi energy level is 0.25 eV below E_c .

[Ans.
$$f_{\rm F}(E) = 2.36 \times 10^{-5}$$
, $n_0 = 3.02 \times 10^{13} \, {\rm cm}^{-3}$]

Intrinsic Carrier Concentration

- Intrinsic semiconductor: no impurities
- # electrons in conduction band = # holes in valence band
- n_i is the intrinsic carrier concentration
- E_{Fi} is the intrinsic Fermi level
- E_q is the band gap energy

$$n_i^2 = N_c N_v \exp\left[-\frac{E_g}{kT}\right]$$

T = 300 K	E _g (eV)	n _i (cm ⁻³)	
Si	1.12	1.5e10	
GaAs	1.42	1.8e6	
Ge	0.66	2.4e13	

Intrinsic Fermi Level (E_{Fi})

$$E_{Fi} - E_{midgap} = \frac{3}{4}kT \ln \left(\frac{m_p^*}{m_n^*}\right)$$

$$m_n^* = m_p^* \Rightarrow E_{Fi}$$
 is at midgap

 $m_n^* < m_p^* \Rightarrow E_{Fi}$ is above midgap

 $m_n^* > m_p^* \Rightarrow E_{Fi}$ is below midgap

 E_{Fi} must shift away from the band with the higher DOS (m*) to maintain $n_0 = p_0$