### CSE5319-001

# SPEC TOPS THEORY / ALGORITHMS

Name: Venkata Susanth Bondalapati

Uid: 1001945746

Q1.

| focle          | Paper                      | Scinors                                                                                                         | Spare Ligard.                                         |
|----------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| (1, -1)        |                            |                                                                                                                 | (0,1) (1,0)                                           |
| (0,1)<br>(0,1) | (o,1)                      | (1,0)                                                                                                           | (-1, -1) $(-1, -1)$                                   |
|                | (1, -1)<br>(1, 9)<br>(0,1) | $ \begin{array}{cccc} (1, -1) & (0, 1) \\ (1, 0) & (-1, -1) \\ (0, 1) & (1, 0) \\ (1, 0) & (0, 1) \end{array} $ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |

this is correlated equilbrium

```
payoff 0.44444
distribution is:
              0.444444 b payoff
                                            0.555556 objective is
        0.138889)
0.194444)
0.0555556)
                     0)
                     0)
                     0)
        0.0555556)
0.0555556)
                     0)
                     0)
        0.0555556)
0.0555556)
                     0)
        0.0555556)
        0.0277778)
0.194444)
          0.111111)
(5 5 0)
Model has been successfully processed
```

## this is coarse correlated equilibria = 0.5

```
payoff
                   0.5 b payoff
                                           0.5 objective is
z distribution is:
0)
               0.5)
                  0)
                  0)
                  0)
              0.25)
                  0)
                  0)
                  0)
                 0)
0)
0)
                 0)
                 0)
                 0)
                  0)
                  0)
              0.25)
                 0)
                  0)
                  0)
                 0)
                  0)
(5 4 0)
(5 5 0)
Model has been successfully processed
```

## Q2 gambit Nash equilibrium



#### correlated equilibria

```
a payoff 5 b payoff 4 objective is 9
z distribution is:
(1 1 0)
(1 2 1)
(2 1 0)
(2 2 0)
Model has been successfully processed
```

#### Q3

To compute expected cost per agent in mixed Nash equilibrium Roughgarden 178 is modified for six agents with six edges.

```
***to get the output run the file Q3.cpp in c ++
// Analyze expected cost per agent for mixed Nash equilibrium.
// Roughgarden, p.178
//Q3 finding expected cost per agent
#include <stdio.h>
int main() {
 int binChoice[6];
 int i,sum=0;
 int ballCount[6];
 // Generate each mapping for 6 agents to 6 edges
 for (binChoice[0]=0; binChoice[0]<6; binChoice[0]++)
  for (binChoice[1]=0; binChoice[1]<6; binChoice[1]++)</pre>
   for (binChoice[2]=0; binChoice[2]<6; binChoice[2]++)</pre>
     for (binChoice[3]=0; binChoice[3]<6; binChoice[3]++)</pre>
          for (binChoice[4]=0; binChoice[4]<6; binChoice[4]++)
           for (binChoice[5]=0; binChoice[5]<6; binChoice[5]++) {</pre>
      // Clear the edges
      for (i=0;i<6;i++)
       ballCount[i]=0;
      // Count agents for each edge
      for (i=0;i<6;i++)
       ballCount[binChoice[i]]++;
      // Accumulate c(x)=x costs
      for (i=0;i<6;i++)
       sum+=ballCount[i]*ballCount[i];
 // 6 agents * number of choices for choosing bin simultaneously
 printf("expected cost per agent= \%10.6 \text{f/n}",((double) sum)/(6*6*6*6*6*6));
                                        Output
result:
                                       /tmp/dDDtCzLBE4.o
                                       expected cost per agent=
                                                                 1.833333
```

| Q 4·). | Agent                                 | J = 6           | 4 2          | 5            |          | ~12 = 0 |
|--------|---------------------------------------|-----------------|--------------|--------------|----------|---------|
| •      |                                       | 2-151           | Agut 3       | Cs)          |          |         |
|        | Agus ch                               | oice with the p | ayoffs Tills | ) ' '        | W 145    | ٤ Ti    |
|        | 4(1)                                  |                 | 12(1)        | (5(9)        | . 10     | 2       |
|        | (1(0)                                 |                 | (1)21        | 4            | L6(2) 11 | 3       |
|        | L, (1)                                | 1               |              | L4 (0) (s(v) |          | 1 3     |
|        | (, (0)                                | <u>s</u>        | 19 800007    | Ly (0)       | 460)11   |         |
|        | , , , , , , , , , , , , , , , , , , , | 12(2)           | (2(9)        | (0)          | (0       |         |
|        |                                       | 1241            | (0)(1)       |              | 4(-) 11  | 1       |
|        |                                       | 1 / 4           |              | L4 (1) (5(2) | 1.       | LS      |
|        |                                       | 10(2)           |              | 4(1)         | 40) 11   |         |