- 1. Determine if the following statements are true or false.
 - (a) [2 pts] If $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{c}$, and \mathbf{a} is not the zero-vector (i.e. $\mathbf{a} \neq \mathbf{0}$), then $\mathbf{b} = \mathbf{c}$.

(b) [2 pts] If the vector **a** satisfies the equation $\mathbf{a} \cdot \mathbf{b} = 0$ for all vectors **b**, then **a** is the zero-vector.

2. [3 pts] If $\mathbf{a} = \langle 2, -1, 2 \rangle$ and $\mathbf{b} = \langle 1, -1, 2 \rangle$, find a non-zero vector \mathbf{c} such that $\mathbf{a} \cdot \mathbf{c} = \mathbf{b} \cdot \mathbf{c} = 0$.

3. [3 pts] Determine the projection vector $\operatorname{\mathsf{proj}}_{\mathbf{a}}(\mathbf{b})$ of \mathbf{b} onto \mathbf{a} where $\mathbf{a} = \langle 1, 2, 3 \rangle$ and $\mathbf{b} = \langle 1, 2, 2 \rangle$.

- 4. [3 pts] If the scalar projection of $\mathbf b$ onto $\mathbf a$ is $\|\mathsf{proj}_{\mathbf a}(\mathbf b)\| = 1$, determine the value of $\|\mathsf{proj}_{2\mathbf a}(3\mathbf b)\|$.
- 5. Consider the points P(3,1,1), Q(4,1,2), and R(4,4,1) in \mathbb{R}^3 .
 - (a) [3 pts] Find an equation for the plane containing the points P, Q, and R.
 - (b) [2 pts] Find the area of the triangle with vertices P, Q, and R.
- 6. [4 pts] Find an equation of the plane which passes through the points (2,2,1) and (-1,1,-1) and is perpendicular to the plane 2x 3y + z = 3.

7. [4 pts] Find a set of parametric equations for the line of intersection of the planes:

$$\begin{cases} 6x - 3y + z = 5\\ -x + y + 5z = 5 \end{cases}$$