

Projeto e Construção de Circuitos Eletrônicos

Conceitos Fundamentais

A Lei de Ohm estabelece que a corrente elétrica (I) que passa por um condutor é diretamente proporcional à tensão (V) aplicada e inversamente proporcional à resistência (R) do material, expressa pela fórmula $V = I \times R$.

A equação P=V×I estabelece que a potência elétrica é o produto da tensão e da corrente, significando que a energia consumida ou convertida em um circuito aumenta conforme aumentam esses dois parâmetros.

$$V = R \times I$$
 $P = V \times I$

Resistores:

Resistores:

Capacitores:

Aluminium Electrolytic Capacitor

PCB Mount Electrolytic Capacitor (Radial)

Wired Ended Electrolytic Capacitor (Axial)

Surface Mount Electrolytic Capacitor

Motor Run Capacitor

Dipped Silver Mica Capacitor

Suppressor Capacitor

Three Terminal Capacitor

Solid Chip **Tantalum** Capacitor

Surface Mount Radial Ceramic Ceramic Capacitor

Capacitor (Monolithic)

Ceramic Disc Capacitor

Polyester Capacitor (Film, Mylar)

Polypropylene Capacitor

Memory Back-up Capacitor

Trimmer Capacitor

Polystyrene Capacitor

Solid Tantalum **Polarized Capacitor**

Indutores:

Diodos:

Diodos:

Transistor Bipolar de Junção (BJT)

- Características Técnicas:

Estrutura com três regiões dopadas (emissor, base e coletor) e funcionamento baseado na injeção e recombinação de portadores minoritários.

Disponíveis nas configurações NPN e PNP, o que influencia na polaridade dos sinais e na forma de acionamento.

- Aplicações Típicas:

Amplificação de Sinais: Utilizados em amplificadores de áudio e RF, onde a linearidade é crucial.

Circuitos de Comutação: Empregados em drivers de baixa potência, chaves eletrônicas e circuitos lógicos analógicos.

Transistor Bipolar de Junção (BJT)

$$I_e = I_c + I_b$$

$$I_c = \beta \cdot I_b$$

Transistor Bipolar de Junção (BJT)

Transistores de Efeito de Campo (FET)

Os FETs são amplamente utilizados devido à alta impedância de entrada e eficiência em comutação rápida.

a) MOSFET (Metal-Oxide Semiconductor FET)

Características Técnicas:

Alta impedância de entrada e disponíveis em canais N e P, tipicamente utilizados em comutação.

Aplicações Típicas:

Fontes Chaveadas, Inversores, Drivers de LED e Circuitos de Comutação. Circuitos Útil em aplicações que exigem baixa perda e alta eficiência.

Transistores de Efeito de Campo (FET)

a) MOSFET

Transistores de Efeito de Campo (FET)

b) JFET (Junction FET)

Características Técnicas:

Gate(G)

Gate(G)

Gate(G)

Source(S)

N-channel JFET

P-channel JFET

Menor ruído e operação em regime linear, indicado para estágios iniciais de amplificação.

Aplicações Típicas:

Amplificadores de Sinais de Baixa Potência: Onde a linearidade e o baixo ruído são fundamentais, como em pré-amplificadores de áudio.

Polarização MOSFET canal n

Biasing of n-channel eMOSFET (ON Switch)

Biasing of n-channel eMOSFET (ON Switch)

Driver para MOSFET

Transistor Bipolar de Porta Isolada (IGBT)

- Características Técnicas:

Combina a facilidade de acionamento dos MOSFETs (portas isoladas) com a robustez e capacidade de corrente dos BJTs.

Adequado para operar em alta tensão e alta corrente, com

eficiência em comutação.

- Aplicações Típicas:

Acionamento de motores industriais, inversores e conversores de energia.

Embalagens de transistor:

Reguladores lineares de tensão:

DISPOSITIVO	SAÍDA	ENTRADA	TEMPERATURA
LM7805	5,0V	7 to 20	0 to 125 °C
LM7806	6,0V	8 to 20	0 to 125 °C
LM7808	8,0V	10.5 to 23	0 to 125 °C
LM7809	9,0V	11.5 to 24	0 to 125 °C
LM7810	10,0V	12.5 to 25	0 to 125 °C
LM7812	12,0V	14.5 to 27	0 to 125 °C
LM7815	15,0V	17.5 to 30	0 to 125 °C
LM7818	18,0V	20.5 to 33	0 to 125 °C
LM7824	24,0V	26.5 to 39	0 to 125 °C

Professor Ricardo Kerschbaumer

Reguladores lineares de tensão:

$$V_s = 1,25 \cdot \left(1 + \frac{R_2}{R_1}\right) + I_{aj} \cdot R_2$$

Reguladores lineares de tensão:

Reguladores de tensão chaveados:

Conversores de tensão:

Produzem tensão negativa a partir de uma fonte positiva.

Condutores:

Fio Esmaltado

Descrição: Fio de cobre com isolamento por camada de esmalte.

Aplicação: Enrolamentos de transformadores, motores e indutores, onde as

propriedades magnéticas e térmicas são determinantes.

Fio de Cobre Nu

Descrição: Condutor sem isolamento, geralmente utilizado onde o isolamento é provido por outras técnicas (solda, conexões, etc.).

Aplicação: Instalações industriais e soldagens diretas.

Fio Isolado de Cobre

Descrição: Fio revestido com materiais isolantes (PVC, XLPE, etc.), garantindo proteção contra curto-circuitos e interferências.

Aplicação: Redes internas de eletrodomésticos, instalações residenciais e circuitos eletrônicos.

Fio de Alumínio (Nu ou Isolado)

Descrição: Alternativa ao cobre, oferecendo menor peso e custo, porém com menor condutividade.

Aplicação: Linhas de distribuição aérea, redes de energia e grandes instalações onde a redução de peso é importante.

Condutores:

Cabo Simples

Descrição: Condutor único com isolamento.

Aplicação: Fiações internas e conexões de baixa corrente.

Cabo Paralelo

Descrição: Composto por dois ou mais condutores dispostos paralelamente.

Aplicação: Sistemas de baixa tensão, comunicação e circuitos de controle (ex.: cabos paralelos usados em impressoras antigas).

Cabo PP (Polipropileno)

Descrição: Cabo flexível com isolamento em polipropileno, oferecendo boa resistência térmica e mecânica.

Aplicação: Instalações elétricas residenciais e em automação industrial.

Condutores:

Cabo Flexível

Descrição: Projetado para suportar movimentos e curvaturas constantes.

Aplicação: Equipamentos móveis, eletrodomésticos portáteis e aplicações onde a mobilidade do condutor é essencial.

Par Trançado

- **1. Descrição:** Dois condutores trançados para cancelamento de ruídos eletromagnéticos.
- **2. Aplicação:** Redes de dados e telefonia (ex.: cabos UTP e STP usados em Ethernet).

Cabo Coaxial

Descrição: Composto por um condutor central, camada dielétrica e blindagem metálica.

Aplicação: Transmissão de sinais de RF, TV, internet e sistemas de vídeo.

Condutores:

Cabo de Fibra Óptica

Descrição: Utiliza fibras de vidro ou plástico para transmitir sinais via luz.

Aplicação: Redes de comunicação, internet de alta velocidade e telecomunicações.

Cabo Blindado

Descrição: Possui camada metálica (ou malha de fios) para proteção contra interferências eletromagnéticas.

Aplicação: Ambientes industriais e instalações onde há forte presença de ruídos eletromagnéticos.

Cabo Flat/Ribbon

Descrição: Condutores dispostos paralelamente em formato de fita.

Aplicação: Conexões internas de computadores, equipamentos eletrônicos e sistemas embarcados.

Impedância e efeito pelicular:

A impedância de um condutor é a combinação da resistência com a reatância (indutiva e/ou capacitiva) que o cabo apresenta em uma determinada frequência.

Linha de transmissão

O efeito pelicular é a tendência da corrente alternada se concentrar na superfície do condutor, reduzindo a área efetiva de condução e aumentando a resistência em altas frequências.

Alimentação de circuitos integrados:

Diferenças entre Vcc, Vdd, Vss, AGND, VGND, AVCC, DVCC etc.

Alimentação de circuitos integrados:

Vcc e Vee

Vcc (Voltage Common Collector):

- Usado originalmente em circuitos bipolares, indica alimentação positiva aplicada ao coletor dos transistores NPN.
- Hoje é sinônimo geral de tensão positiva de alimentação em circuitos analógicos ou digitais.

Vee (Voltage Emitter Emitter):

 Tensão negativa aplicada ao emissor dos transistores bipolares, indicando alimentação negativa ou referência negativa em circuitos analógicos e amplificadores operacionais.

Alimentação de circuitos integrados:

Tensões Específicas para Circuitos Analógicos e Digitais:

AVCC (Analog VCC)

- •Alimentação positiva exclusiva para circuitos analógicos dentro de sistemas mistos.
- •Separada da DVCC para evitar ruídos provenientes dos circuitos digitais.

DVCC (Digital VCC)

- •Alimentação positiva exclusiva para circuitos digitais em sistemas mistos.
- •Normalmente separada da AVCC para garantir estabilidade e integridade dos sinais digitais, reduzindo interferências cruzadas (crosstalk).

Alimentação de circuitos integrados:

Vdd e Vss

Vdd (Voltage Drain Drain):

- Utilizado em tecnologia MOS (CMOS, NMOS, PMOS), representa a tensão positiva aplicada ao terminal dreno dos MOSFETs tipo N.
- Comumente encontrado em circuitos digitais CMOS e microcontroladores.

Vss (Voltage Source Source):

- Em circuitos MOS indica a referência negativa ou terra (0 V) aplicada ao terminal fonte dos MOSFETs tipo N.
- Equivalente ao "ground" (GND) em sistemas digitais CMOS.

Diferentes Tipos de Terra (GND):

AGND (Analog Ground)

- •Terra analógico, utilizado para circuitos analógicos.
- •Deve ser mantido separado do terra digital para minimizar interferências e ruídos nos sinais analógicos, especialmente em sistemas mistos (analógico/digital).

DGND (Digital Ground)

- •Terra digital, específico para circuitos digitais.
- •Separado do AGND para evitar que ruídos gerados por circuitos digitais afetem os circuitos analógicos sensíveis.

VGND (Virtual Ground)

- •Terra virtual, criado artificialmente em amplificadores operacionais ou circuitos de referência onde não há conexão direta com o terra físico.
- •Comumente usado em fontes simétricas, amplificadores e conversores analógico-digitais.

Ruídos e interferências

O ruído induzido e gerado em placas eletrônicas ocorre principalmente devido as características dos semicondutores (principalmente ruído térmico) e interferência eletromagnética entre trilhas próximas, loops de terra inadequados e componentes que realizam chaveamento rápido.

Este tipo de ruído pode ser induzido magneticamente (acoplamento indutivo), através de variações rápidas de corrente, ou capacitamente (acoplamento capacitivo), devido a variações rápidas de tensão entre trilhas adjacentes. Trilhas muito extensas ou mal projetadas atuam como antenas, captando e irradiando ruidos.

Fontes chaveadas também são uma fonte comum de ruídos.

Como reduzir os ruídos

Para minimizar esses efeitos, recomenda-se o uso de layouts cuidadosos com planos de terra sólidos, capacitores de desacoplamento próximos aos componentes ativos, blindagem adequada e separação física entre circuitos sensíveis e ruidosos.

Elementos externos também podem ser responsáveis pela geração e indução de ruídos, assim o uso de filtros nas entradas e a separação física das fontes de ruído é sempre importante

Capacitores de desacoplamento:

A principal finalidade dos capacitores de desacoplamento é fornecer um caminho curto para ruídos e transientes de alta frequência gerados durante as comutações rápidas de dispositivos digitais ou variações rápidas de consumo em circuitos analógicos.

Geralmente valores entre 10 nF a 100 nF (cerâmicos) próximos aos terminais do CI. Capacitores eletrolíticos ou de tântalo (1 µF a 47 µF) são usados para filtragem adicional em linhas de alimentação gerais. multicamada Tipos utilizados:

Capacitores de desacoplamento:

Devem ser colocados o mais próximo possível dos terminais de alimentação e GND dos componentes ativos, especialmente em circuitos digitais, analógicos sensíveis

e de RF.

Filtros passivos:

Filtros Capacitivos

Função: Reduzem ruídos de alta frequência por meio da baixa impedância dos capacitores, desviando ruídos para o terra.

Aplicações Típicas: Capacitores eletrolíticos (baixa frequência) e cerâmicos multicamada (alta frequência) são empregados próximos às fontes e circuitos

integrados.

Filtros passivos:

Filtros Indutivos (Chokes)

Função: Limitam variações rápidas de corrente por meio de alta impedância para altas frequências, bloqueando ruídos e transientes.

Aplicações Típicas: Indutores tipo bobina toroidal, bead de ferrite (ferrite beads), utilizados especialmente em linhas de alimentação de circuitos digitais e RF.

Filtros passivos:

Filtros LC (Indutor-Capacitor)

Função: Combinam capacitores e indutores em configurações como filtros passa-baixa, oferecendo maior eficiência na atenuação de ruídos em diversas frequências.

Aplicações Típicas: Fontes chaveadas, reguladores de tensão, e alimentação de sistemas analógicos sensíveis (ex.: amplificadores e conversores A/D).

Filtros passivos:

Filtros RC (Resistor-Capacitor)

Função: Suavizam transientes de alta frequência e proporcionam amortecimento, especialmente eficazes para pequenas correntes.

Aplicações Típicas: Alimentação para sensores analógicos e circuitos de referência, onde o consumo é baixo e exige estabilidade máxima.

Filtros passivos:

Filtros Pi (π) e T

Função: Estrutura combinada (C–L–C ou L–C–L), altamente eficaz na redução de interferências eletromagnéticas e ruídos provenientes de fontes chaveadas e RF.

Aplicações Típicas: Fontes de alimentação de alta eficiência, sistemas de RF, e interfaces de comunicação.

Filtros passivos:

Filtros Common-Mode (Modo Comum)

Função: Reduzem ruídos de modo comum, eliminando interferências simultâneas nas linhas de alimentação.

Aplicações Típicas: Cabos de alimentação de equipamentos industriais e eletrônica de potência, especialmente inversores e fontes chaveadas.

Filtros passivos: Filtros EMI/RFI

Função: Projetados especificamente para reduzir interferências eletromagnéticas (EMI) e de rádio frequência (RFI), comumente usando bobinas toroidais com enrolamentos balanceados.

Aplicações Típicas: Fontes chaveadas, conversores DC-DC, equipamentos industriais, e eletrônica automotiva.

Aterramento:

O aterramento de circuitos eletrônicos consiste em estabelecer um ponto de referência comum (GND) para tensões e correntes, garantindo segurança, estabilidade e redução significativa de ruídos eletromagnéticos.

Um aterramento eficiente reduz interferências entre diferentes partes do circuito, melhora a integridade de sinais analógicos e digitais, e previne riscos elétricos associados a correntes de fuga e sobretensões. Para isso, recomenda-se o uso de aterramento em ponto estrela ou planos de terra contínuos.

Aterramento:

Aterramento:

Tensão de referência:

As tensões de referência são sinais elétricos estáveis e precisos utilizados como padrão para comparação, calibração ou conversão em circuitos eletrônicos analógicos e digitais.

Essas tensões, frequentemente obtidas por circuitos integrados especializados (ex.: TL431, LM385, REF02), proporcionam estabilidade térmica e baixa variação sob diferentes condições ambientais e cargas. São essenciais em aplicações como conversores analógico-digitais (ADC), amplificadores operacionais, fontes reguladas e circuitos de medição.

Tensão de referência:

Um projeto adequado exige seleção cuidadosa dos componentes, técnicas eficazes de desacoplamento e layout apropriado, garantindo que a referência não seja afetada por ruídos ou flutuações da alimentação principal.

Cristais e osciladores de clock:

São componentes eletrônicos utilizados para gerar sinais periódicos precisos que determinam a frequência operacional de circuitos. Um cristal de clock (quartzo) é um componente passivo que oscila em frequência específica ao receber estímulo externo. Já o oscilador de clock é um dispositivo ativo que integra internamente o cristal junto a circuitos eletrônicos adicionais para fornecer diretamente uma saída pronta. Escolher adequadamente entre cristais e osciladores envolve fatores como estabilidade térmica, precisão, consumo de energia e complexidade do circuito, para garantir o desempenho ideal do sistema.

Cristais e osciladores de clock:

Sinais de clock:

Sinais e trilhas de clock em placas eletrônicas são críticos por serem fontes potenciais de interferências eletromagnéticas e crosstalk devido às suas transições rápidas e alta frequência.

Para minimizar problemas, é necessário manter essas trilhas curtas, diretas e afastadas de sinais sensíveis, utilizar planos de referência (GND) contínuos próximos às trilhas para reduzir a impedância e evitar loops de retorno.

Entradas e Saídas Analógicas e Digitais:

A impedância de entrada é um fator crítico tanto em entradas analógicas quanto digitais de microcontroladores porque define o comportamento elétrico e a integridade dos sinais recebidos.

Em entradas analógicas, uma impedância alta é essencial para evitar carregar ou distorcer o sinal medido, preservando a precisão da leitura.

Em entradas digitais, apesar de normalmente apresentarem alta impedância, o principal cuidado é evitar que ruídos externos induzam falsos acionamentos devido à alta sensibilidade.

Entradas e Saídas Analógicas e Digitais:

Por isso, é comum utilizar resistores externos de pull-up ou pull-down, reduzindo efetivamente a impedância e tornando o sinal mais robusto.

Outra abordagem é utilizar um Buffer para garantir a

integridade do sinal.

Entradas e Saídas Analógicas e Digitais: Entradas Digitais, ruído e Schmitt trigger:

Entradas e Saídas Analógicas e Digitais:

Entradas Digitais, pull-up ou pull-down:

Entradas e Saídas Analógicas e Digitais:

Entradas Digitais, proteção:

Conectando sensores comerciais (24V).

Entradas e Saídas Analógicas e Digitais:

Entradas Digitais Acopladas e Isoladas:

Entradas e Saídas Analógicas e Digitais:

Entradas Analógicas e frequência de Nyquist :

A frequência de Nyquist é definida como metade da frequência de amostragem de um conversor analógico-digital (ADC), sendo a máxima frequência possível que pode ser corretamente representada sem gerar o efeito de aliasing (sobreposição espectral).

Segundo o Teorema de Nyquist-Shannon, para amostrar adequadamente um sinal analógico e garantir sua perfeita reconstrução digital, a taxa de amostragem deve ser no mínimo duas vezes maior que a maior frequência presente no sinal.

Entradas e Saídas Analógicas e Digitais:

Entradas Analógicas e frequência de Nyquist :

Frequências superiores à frequência de Nyquist necessitam obrigatoriamente de **filtros passa-baixa** (antialiasing) antes do ADC para evitar distorções.

Entradas e Saídas Analógicas e Digitais:

Entradas Analógicas, Filtros Ativos.

https://tools.analog.com/en/filterwizard/

Entradas e Saídas Analógicas e Digitais:

Saídas Digitais a transistor.

É necessário garantir a saturação do transistor e implementar as proteções necessárias.

Entradas e Saídas Analógicas e Digitais:

Saídas Digitais a Relé.

É necessário garantir a saturação do transistor e limitar a frequências das comutações. As proteções adequadas também são necessárias.

Entradas e Saídas Analógicas e Digitais: Saídas Analógicas.

- Saída analógica com conversor D/A: disponível em alguns microcontroladores ou em circuitos integrados conversores, como o MCP4725 por exemplo. Útil quando se necessita de precisão no sinal analógico de saída.
- Saída analógica emulada por PWM: é possível implementar na maioria dos microcontroladores, facilitando o projeto. Útil quando não se necessita muita precisão ou velocidade de variação no sinal de saída. Necessita um filtro passa baixas na saída.

Entradas e Saídas Analógicas e Digitais:

Saídas Analógicas, adequação do sinal (0 – 5V).

Entradas e Saídas Analógicas e Digitais:

Saídas Analógicas, adequação do sinal (4 – 20mA).

Proteções:

Todos os circuitos estão sujeitos a condições inesperadas de operação e dever ter as proteções necessárias para não sofrer danos. As principais proteções implementadas em circuitos são:

- Sobrecorrente ou curto circuito.
- Sobretensões ou transientes.
- Inversão de polaridade.
- Ruídos

Para a proteção contra ruídos são utilizados os filtros apresentados anteriormente.

Proteções:

Sobrecorrente ou curto circuito.

Para proteger contra sobrecorrentes ou curto circuitos são utilizados **Fusíveis ou fusíveis rearmáveis (PTC)** em série com a alimentação do circuito a ser protegido.

https://jlcpcb.com/api/file/downloadByFileSystemAccessId/8579711410764910592

Proteções:

Sobretensões ou transientes.

Para proteger contra sobretensões ou transientes pode ser utilizados **Diodos TVS** (Transient Voltage Suppressor), **Varistores** (MOV - Metal Oxide Varistor) ou até Diodos **Zener**, sempre em paralelo com o circuito que se deseja proteger.

LTVS16H5.0T5G.pdf

Proteções:

Inversão de polaridade.

Para proteger contra inversão de polaridade é utilizado um diodo em série com o circuito. Diodos Schottky são indicados por oferecer menor queda de tensão.

Se não for possível colocar um diodo em série, é possível colocar um diodo em antiparalelo precedido por um fusível.

