| STAT201B Lecture 6 Minimal Sufficiency

1 Minimal Sufficiency

关于 minimal sufficiency 的更多论述, 见 STA3020 Lecture 4, 包括:

- minimal sufficient 的定义
- · Lehmann-Scheffé theorem
- · Bahadur's theorem
- Exponential family 的 minimal sufficient statistic

1.1 Definition: Minimal Sufficiency

若对于任意其他 sufficient statistic S(X), T(X) 为 a function of S(X), 即 T = f(S) for some f 则 T(X) 为 minimal sufficient

⚠ Remark ∨

- T = f(S) 表示了两件事:
 - 关于 S 的 knowledge implies 关于 T 的 knowledge
 - T 提供了 greater reduction of data, 除非 f 为 one-to-one

注: 换言之,
$$T(x)=T(y)$$
 \Rightarrow $T(x)=T(y)$ $\xrightarrow{T(x)}$ $T(x)$ \Rightarrow $T(x)=T(y)$ \Rightarrow $T(x)=T(y)$ \Rightarrow $T(x)$ \Rightarrow $T(x)$ 的一个 value 所 包含。 (x_i, t_i, t_i)

• Minimal sufficient statistic 仍然不是 unique 的 (通过 one-to-one mapping preserve)

| 1.2 Theorem: Lehmann-Scheffé theorem (补充)

令:

•
$$X_1,\ldots,X_n \overset{i.i.d.}{\sim} f(\cdot|\theta)$$
, 其中 $\theta \in \Theta$

•
$$T = T(X)$$
 为一个 statistics

若:

$$T(x) = T(x') \iff rac{f(x| heta)}{f(x'| heta)} ext{ is invariant over } heta, orall x, x' \in \Omega$$

则 T 为 minimal sufficient for heta

∧ Remark ∨

换言之, 当且仅当 T(X) 的 value 变化时, likelihood function 中关于 θ 的信息才会变

|2 Exponential Family 的 Minimal Sufficiency

2.1 Definition: Exponential family

关于 exponential family 的更多论述, 见 STA3020 Lecture 3, 包括:

- Exponential family, parameter space, canonical form, curved exponential family 的定义
- Exponential family 的例子
- Exponential family 的性质

d-parameter exponential family:

一个 d-parameter exponential family 的 pmf/pdf 满足以下形式:

$$egin{aligned} f(oldsymbol{x},oldsymbol{ heta}) &= h(oldsymbol{x}) \cdot c(oldsymbol{ heta}) \cdot exp\left[\sum_{i=1}^d \eta_i(oldsymbol{ heta}) T_i(oldsymbol{x})
ight] \ &= h(oldsymbol{x}) \cdot exp\left[\sum_{i=1}^d \eta_i(oldsymbol{ heta}) T_i(oldsymbol{x}) - A(oldsymbol{ heta})
ight] \end{aligned}$$

其中,

- $h(\boldsymbol{x}) \geq 0$
- $c(\boldsymbol{\theta}) \geq 0$
- $T_1(m{x}),\ldots,T_d(m{x})$ 为关于 $m{x}=(x_1,\ldots,x_n)$ 的 real value functions, 且不取决于 $m{ heta}$
- $\eta_1(\pmb{\theta}),\dots,\eta_d(\pmb{\theta})$ 为关于 $\pmb{\theta}=(\theta_1,\dots,\theta_m)$ 的 real value functions, 且不取决于 \pmb{x}

full rank exponential family:

若:

- $\eta(\Theta) = \{\eta_1(\boldsymbol{\theta}), \dots, \eta_d(\boldsymbol{\theta})\}$ 在 \mathbb{R}^d 中有 non-empty interior
- $T_1(\boldsymbol{x}), \dots, T_d(\boldsymbol{x})$ 为 linearly independent

则该 exponential family 被称为 full rank

⚠ Remark ∨

若 $\eta(\Theta)$ 仅包含 \mathbb{R}^s (s < d) 中的 open set, 则该 exponential family 被称为 curved exponential family with dimension s

≡ Example ∨

- 1. $\mathcal{N}(\mu,\mu), \mu > 0$ 构成一个 curved exponential family
- 2. $\mathcal{N}(\mu, \mu^3), \mu > 0$ 构成一个 curved exponential family

一个curved exponential family 的例子

若 random sample X_1, \dots, X_n i.i.d. 取自 normal distribution $\mathcal{N}(B, B^3)$, 其中 $\mathcal{D} = \{B\} \in \mathbb{R}^4$ 未知, \mathbb{P} sample 构成 $- \wedge$ curved exponential family

证明:

$$f(x|\theta) = \left(\frac{1}{\sqrt{2\tau}}\right)^n \frac{\left(\frac{1(\theta>0)}{\theta^{3\eta/2}} \exp\left\{-\frac{n}{2\theta}\right\}\right)}{c(\theta)} \exp\left\{-\frac{1}{2\theta^3}\sum_{i=1}^n X_i^2 + \frac{1}{\theta^2}\sum_{i=1}^n X_i\right\}$$

≔ Example ∨

问题:

证明 $X \sim Exponential(\lambda)$ 为指数族

解答:

$$f(x,\lambda) = \lambda \cdot e^{-\lambda x} \cdot \mathbf{1}(x \geq 0)$$

因此有

≡ Example ∨

问题:

证明 $X \sim Binomial(n, p)$ 为指数族

解答:

$$\begin{split} f(x,p) &= \binom{n}{x} \cdot p^x \cdot (1-p)^{n-x} \\ &= \binom{n}{x} \cdot exp\{x \ logp + (n-x) \cdot log(1-p)\} \\ &= \binom{n}{x} \cdot exp\left\{ \left(log\frac{p}{1-p}\right)x + n \cdot log(1-p)\right\} \\ &= \binom{n}{x} \cdot (1-p)^n \cdot exp\left\{ \left(log\frac{p}{1-p}\right) \cdot x\right\} \end{split}$$

因此有

$$h(x)=inom{n}{x},\quad c(p)=(1-p)^n,\quad \eta(p)=lograc{p}{1-p},\quad T(x)=x$$

∧ Remark ∨

严谨来说, density function 应该还要包括 (与 support 相关的) indicator function

≔ Example ∨

问题:

证明 $X \sim \mathcal{N}(\mu, \sigma^2)$ (μ 和 σ^2 均未知) 为指数族

解答:

$$\begin{split} f(x;\mu,\sigma^2) &= \frac{1}{\sqrt{2\pi}\sigma} exp \left\{ -\frac{(x-\mu)^2}{2\sigma^2} \right\} \\ &= \frac{1}{\sqrt{2\pi}\sigma} exp \left\{ -\frac{x^2}{2\sigma^2} + \frac{2\mu x}{2\sigma^2} - \frac{\mu^2}{2\sigma^2} \right\} \\ &= \frac{1}{\sqrt{2\pi}} \cdot \left(\frac{1}{\sigma} \cdot exp \left\{ -\frac{\mu^2}{2\sigma^2} \right\} \right) \cdot exp \left\{ -\frac{x^2}{2\sigma^2} + \frac{\mu x}{\sigma^2} \right\} \end{split}$$

因此有

$$h(x) = rac{1}{\sqrt{2\pi}}, \quad c(heta) = rac{1}{\sigma} \cdot exp\left\{-rac{\mu^2}{2\sigma^2}
ight\}, \quad \eta(heta)^T = \left(-rac{1}{2\sigma^2},rac{\mu}{\sigma^2}
ight), \quad T(x)^T = (x^2,x)$$

: Example ∨

Poisson exponential family

岩 random sample X_1, \dots, X_n i.i.d. 取自 Poisson distribution $Poi(\lambda)$, 其中 $O=\{\lambda\}$ 未知, 图 sample 构成一个 exponential family

「中上民义城
$$f(x|\theta) = \iint_{\mathbb{R}} \frac{1}{x_{i}!} \lambda^{x_{i}} e^{-\lambda} \cdot 1_{\{X_{i} \in \mathcal{N}\}}$$

$$= \exp\{\log\left[\left(\iint_{\mathbb{R}} \frac{1}{x_{i}!}\right) \lambda^{\frac{2}{n}} x_{i} e^{-n\lambda}\right] \cdot 1_{\{X_{i} \in \mathcal{N}\}}$$

$$= \exp\{-\frac{n}{n}\log(x_{i}!) + \log(\lambda) \cdot \left(\frac{n}{n}x_{i}\right) - n\lambda \cdot 1_{\{X_{i} \in \mathcal{N}\}}$$

$$= \exp\{-\frac{n}{n}\log(x_{i}!) \cdot 1_{\{X_{i} \in \mathcal{N}\}} \cdot \exp\{-n\lambda \cdot \frac{1}{n}\cos(\lambda) \cdot \left(\frac{n}{n}x_{i}\right) \cdot \frac{1}{n}\cos(\lambda) \cdot \left(\frac{n}{n}x_{i}\right) \cdot \frac{1}{n}\cos(\lambda) \cdot \left(\frac{n}{n}x_{i}\right) \cdot \frac{1}{n}\cos(\lambda) \cdot \left(\frac{n}{n}x_{i}\right) \cdot \frac{1}{n}\cos(\lambda) \cdot \frac{1}{n}\cos($$

∷ Example ∨

Gamma exponential family

岩 random sample X_1, \dots, X_n i.i.d. 取自 Gamma distribution $\Gamma(\alpha, \beta)$, 其中 $\mathcal{O} = \{\alpha, \beta\}$ 未知, 例 sample 构成一个 exponential family

: Example ∨

Student t distribution with degree of freedom B (一个反传])

若 random sample X1,--, Xn i.i.d.取自 Student t distribution to,其中日={日}未知,

则 sample 不构成一个 exponential family

证明:

$$f(x|\theta) = \prod_{k=1}^{n} \frac{\Gamma(\frac{\theta+1}{2})(1+\frac{X_{k}^{2}}{\theta})^{-\frac{\theta+1}{2}}}{\sqrt{\theta \pi} \Gamma(\frac{\theta}{2})} \cdot 1\{\theta > 0\}$$

$$= \left(\frac{\left\lceil \left(\frac{\theta+1}{2}\right)}{\sqrt{\theta\pi} \left\lceil \left(\frac{\theta}{2}\right)\right\rceil}\right)^{N} \cdot 1_{\theta} > 0\} \cdot \exp\left\{-\frac{\theta+1}{2} \sum_{i=1}^{n} \log\left(1 + \frac{X_{i}^{2}}{\theta}\right)\right\}$$

没流含开D和Xi

≔ Example ∨

Uniform distribution (一个反话))

若 random sample X,..., Xn i.i.d. 取自 Uniform distribution Unif(O,日),其中日=1日}未知,

则 sample 不构成一个 exponential family

证明:

$$f(x|\theta) = \prod_{i=1}^{n} \frac{1}{\theta} 1 \{0 \le X_i \le \theta\}$$

$$= \left(\frac{1}{\theta}\right)^n 1 \{\min X_i \ge 0\} \cdot 1 \{\max X_j \le \theta\}$$
提出分升日和Xi

| 2.2 Theorem: Exponential family 的 minimal sufficient statistic

若: $X = \{X_1, \dots, X_n\}$ 的分布来自 full rank exponential family

则: $T = (T_1, \dots, T_d)$ 为 minimal sufficient statistics

∷≣ Example ∨

问题

令 $X_1,\ldots,X_n\stackrel{i.i.d.}{\sim}\mathcal{N}(\mu,\sigma^2)$,求 μ 和 σ^2 的 minimal sufficient statistic

解答

对于 Normal random variables, 我们可以做以下变形:

$$\begin{split} f_{\mu,\sigma^2}(x_1,\dots,x_n) &= \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n \prod_{i=1}^n exp\left\{-\frac{(x_i-\mu)^2}{2\sigma^2}\right\} \\ &= \left(\frac{1}{\sqrt{2\pi}}\right)^n exp\left\{-\frac{\sum_{i=1}^n x_i^2 - 2\mu \sum_{i=1}^n x_i + \mu^2}{2\sigma^2} - n \ln\sigma\right\} \\ &= \left(\frac{1}{\sqrt{2\pi}}\right)^n exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2 - \frac{\mu}{2\sigma^2} \sum_{i=1}^n x_i + \frac{n\mu^2}{2\sigma^2} - n \ln\sigma\right\} \end{split}$$

其中:

•
$$h(\boldsymbol{x}) = \left(\frac{1}{\sqrt{2\pi}}\right)^n$$

•
$$\eta_1(oldsymbol{ heta}) = -rac{1}{2\sigma^2}$$

•
$$T_1(x) = \sum_{i=1}^n x_i^2$$

•
$$\eta_2(oldsymbol{ heta}) = -rac{\mu}{2\sigma^2}$$

ullet $T_2(oldsymbol{x}) = \sum_{i=1}^n x_i$

$$ullet A(oldsymbol{ heta}) = rac{n\mu^2}{2\sigma^2} - n\ ln\sigma$$

因此 $(T_1(m{x}),T_2(m{x}))=(\sum_{i=1}^n x_i^2,\sum_{i=1}^n x_i)$ 为 minimal sufficient statistics