Section 3.1

Independent- and Dependent-Variable Transformations

Time Shifting (Translation)

Time shifting (also called translation) maps the input function x to the output function y as given by

$$y(t) = x(t - b),$$

where b is a real number.

- Such a transformation shifts the function (to the left or right) along the time axis.
- If b > 0, y is *shifted to the right* by |b|, relative to x (i.e., delayed in time).
- If b < 0, y is shifted to the left by |b|, relative to x (i.e., advanced in time).

Time Shifting (Translation): Example

Time Reversal (Reflection)

Time reversal (also known as reflection) maps the input function x to the output function y as given by

$$y(t) = x(-t)$$
.

Geometrically, the output function y is a reflection of the input function x about the (vertical) line t = 0.

Time Compression/Expansion (Dilation)

Time compression/expansion (also called dilation) maps the input function x to the output function y as given by

$$y(t) = x(at),$$

where a is a strictly positive real number.

- Such a transformation is associated with a compression/expansion along the time axis.
- If a > 1, y is *compressed* along the horizontal axis by a factor of a, relative to x.
- If a < 1, y is expanded (i.e., stretched) along the horizontal axis by a factor of $\frac{1}{a}$, relative to x.

Time Compression/Expansion (Dilation): Example

Time Scaling (Dilation/Reflection)

Time scaling maps the input function x to the output function y as given by

$$y(t) = x(at),$$

where a is a *nonzero* real number.

- compression/expansion along the time axis) and/or time reversal.
- If |a| > 1, the function is *compressed* along the time axis by a factor of |a|.
- If |a| < 1, the function is *expanded* (i.e., stretched) along the time axis by a factor of $\left|\frac{1}{a}\right|$.
- If |a|=1, the function is neither expanded nor compressed.

Such a transformation is associated with a dilation (i.e.,

- If a < 0, the function is also time reversed.
- Dilation (i.e., expansion/compression) and time reversal *commute*.
- Time reversal is a special case of time scaling with a = -1; and time compression/expansion is a special case of time scaling with a > 0.

Time Scaling (Dilation/Reflection): Example

Combined Time Scaling and Time Shifting

Consider a transformation that maps the input function x to the output function y as given by

$$y(t) = x(at - b),$$

where a and b are real numbers and $a \neq 0$.

- The above transformation can be shown to be the combination of a time-scaling operation and time-shifting operation.
- Since time scaling and time shifting *do not commute*, we must be particularly careful about the order in which these transformations are applied.
- The above transformation has two distinct but equivalent interpretations:
 - first, time shifting x by b, and then time scaling the result by a;
 - \blacksquare first, time scaling x by a, and then time shifting the result by b/a.
- Note that the time shift is not by the same amount in both cases.
- In particular, note that when time scaling is applied first followed by time shifting, the time shift is by b/a, not b.

013-2020 Michael D. Adams

Combined Time Scaling and Time Shifting: Example

time shift by 1 and then time scale by 2

time scale by 2 and then time shift by $\frac{1}{2}\,$

Two Perspectives on Independent-Variable Transformations

- A transformation of the independent variable can be viewed in terms of
 - the effect that the transformation has on the *function*; or
 - the effect that the transformation has on the *horizontal axis*.
- This distinction is important because such a transformation has *opposite* effects on the function and horizontal axis.
- **The Example 1.1** For example, the (time-shifting) transformation that replaces t by t-b(where b is a real number) in x(t) can be viewed as a transformation that
 - shifts the function *x right* by *b* units; or
 - shifts the horizontal axis left by b units.
- In our treatment of independent-variable transformations, we are only interested in the effect that a transformation has on the *function*.
- If one is not careful to consider that we are interested in the function perspective (as opposed to the axis perspective), many aspects of independent-variable transformations will not make sense.

Amplitude Scaling

Amplitude scaling maps the input function x to the output function y as given by

$$y(t) = ax(t),$$

where a is a real number.

Geometrically, the output function y is expanded/compressed in amplitude and/or reflected about the horizontal axis.

Amplitude Shifting

Amplitude shifting maps the input function x to the output function y as given by

$$y(t) = x(t) + b,$$

where *b* is a real number.

Geometrically, amplitude shifting adds a vertical displacement to x.

ш

Combined Amplitude Scaling and Amplitude Shifting

- We can also combine amplitude scaling and amplitude shifting transformations.
- Consider a transformation that maps the input function x to the output function y, as given by

$$y(t) = ax(t) + b,$$

where a and b are real numbers.

Equivalently, the above transformation can be expressed as

$$y(t) = a\left[x(t) + \frac{b}{a}\right].$$

- The above transformation is equivalent to:
 - If it is amplitude scaling x by a, and then amplitude shifting the resulting function by b; or
 - first amplitude shifting x by b/a, and then amplitude scaling the resulting function by a.

Section 3.2

Properties of Functions

Symmetry and Addition/Multiplication

- Sums involving even and odd functions have the following properties:
 - The sum of two even functions is even.
 - The sum of two odd functions is odd.
 - The sum of an even function and odd function is neither even nor odd, provided that neither of the functions is identically zero.
- That is, the *sum* of functions with the *same type of symmetry* also has the same type of symmetry.
- Products involving even and odd functions have the following properties:
 - The product of two even functions is even.
 - The product of two odd functions is even.
 - The product of an even function and an odd function is odd.
- That is, the *product* of functions with the *same type of symmetry* is *even*, while the *product* of functions with *opposite types of symmetry* is *odd*.

Decomposition of a Function into Even and Odd Parts

Every function x has a *unique* representation of the form

$$x(t) = x_{\mathsf{e}}(t) + x_{\mathsf{o}}(t),$$

where the functions x_e and x_o are even and odd, respectively.

In particular, the functions x_e and x_o are given by

$$x_{e}(t) = \frac{1}{2} [x(t) + x(-t)]$$
 and $x_{o}(t) = \frac{1}{2} [x(t) - x(-t)]$.

- The functions x_e and x_o are called the even part and odd part of x_o respectively.
- For convenience, the even and odd parts of x are often denoted as Even $\{x\}$ and Odd $\{x\}$, respectively.

Sum of Periodic Functions

- **Sum of periodic functions.** For two periodic functions x_1 and x_2 with fundamental periods T_1 and T_2 , respectively, and the sum $y = x_1 + x_2$:
 - **The sum** y is periodic if and only if the ratio T_1/T_2 is a rational number (i.e., the quotient of two integers).
 - If y is periodic, its fundamental period is rT_1 (or equivalently, qT_2 , since $rT_1 = qT_2$), where $T_1/T_2 = q/r$ and q and r are integers and coprime (i.e., have no common factors). (Note that rT_1 is simply the least common multiple of T_1 and T_2 .)
- Although the above theorem only directly addresses the case of the sum of two functions, the case of N functions (where N > 2) can be handled by applying the theorem repeatedly N-1 times.

Right-Sided Functions

A function x is said to be right sided if, for some (finite) real constant t₀, the following condition holds:

$$x(t) = 0$$
 for all $t < t_0$

(i.e., x is only potentially nonzero to the right of t_0).

An example of a right-sided function is shown below.

A function x is said to be causal if

$$x(t) = 0$$
 for all $t < 0$.

- A causal function is a *special case* of a right-sided function.
- A causal function is not to be confused with a causal system. In these two contexts, the word "causal" has very different meanings.

Left-Sided Functions

A function x is said to be **left sided** if, for some (finite) real constant t_0 , the following condition holds:

$$x(t) = 0$$
 for all $t > t_0$

(i.e., x is *only potentially nonzero to the left of* t_0).

An example of a left-sided function is shown below.

Similarly, a function x is said to be anticausal if

$$x(t) = 0$$
 for all $t > 0$.

- An anticausal function is a *special case* of a left-sided function.
- An anticausal function is not to be confused with an anticausal system. In these two contexts, the word "anticausal" has very different meanings.

Finite-Duration and Two-Sided Functions

- A function that is both left sided and right sided is said to be **finite** duration (or time limited).
- An example of a finite duration function is shown below.

- A function that is neither left sided nor right sided is said to be two sided.
- An example of a two-sided function is shown below.

Bounded Functions

• A function x is said to be **bounded** if there exists some (*finite*) positive real constant A such that

$$|x(t)| \le A$$
 for all t

(i.e., x(t) is *finite* for all t).

For example, the sine and cosine functions are bounded, since

$$|\sin t| \le 1$$
 for all t and $|\cos t| \le 1$ for all t .

In contrast, the tangent function and any nonconstant polynomial function p (e.g., $p(t) = t^2$) are unbounded, since

$$\lim_{t\to\pi/2}|{\rm tan}\,t|=\infty\quad {\rm and}\quad \lim_{|t|\to\infty}|p(t)|=\infty.$$

Energy and Power of a Function

The energy E contained in the function x is given by

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt.$$

- A signal with finite energy is said to be an energy signal.
- The average power P contained in the function x is given by

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt.$$

A signal with (nonzero) finite average power is said to be a **power signal**.

Section 3.3

Elementary Functions

Real Sinusoidal Functions

A real sinusoidal function is a function of the form

$$x(t) = A\cos(\omega t + \theta),$$

where A, ω , and θ are *real* constants.

- Such a function is periodic with *fundamental period* $T = \frac{2\pi}{|\omega|}$ and *fundamental frequency* $|\omega|$.
- A real sinusoid has a plot resembling that shown below.

