Causal Geodesy: Counterfactual Estimation Along the Path Between Correlation and Causation

Kyle Schindl[†], Larry Wasserman[‡]

†Department of Statistics Iowa State University kschindl@iastate.edu

[‡]Department of Statistics & Data Science Machine Learning Department Carnegie Mellon University larry@stat.cmu.edu

Abstract

We introduce causal geodesy, a framework for studying the landscape of stochastic interventions that lie between the two extremes of performing no intervention, and performing a sharp intervention that sets an exposure equal to a specific value. We define this framework by constructing paths of distributions that smoothly interpolate between the treatment density and a point mass at the target intervention. Thus, each path starts at a purely observational (or correlational) quantity and moves into a counterfactual world. Of particular interest are paths that correspond to geodesics in some metric, i.e. the shortest path. We then consider the interpretation and estimation of the corresponding causal effects as we move along the path from correlation toward causation.

Keywords: qeodesic, dose-response, stochastic intervention, nonparametrics, optimal transport

1 Introduction

The goal of causal inference is to understand the effect of an intervention on a stochastic system. Typically, we observe an outcome Y, an exposure A and confounding variables X with joint density $p(x, a, y) = p(x)\pi(a \mid x)p(y \mid x, a)$. We then consider the counterfactual Y(a), which represents the value that Y would take under the sharp intervention "set A = a." Under standard identifiability conditions (see Section 3), the cumulative distribution F_a of Y(a) is given by

$$F_a(y) = \int_x P(Y \le y \mid A = a, X = x) dP(x).$$

However, in many practical applications, enforcing a single fixed exposure for every unit can be too rigid or unrealistic. More generally, one can consider *stochastic interventions* of the form "draw A from $Q(a \mid x)$." The distribution F_Q of the corresponding counterfactual Y(Q) is

$$F_Q(y) = \int_x \int_a P(Y \le y \mid A = a, X = x) dQ(a \mid x) dP(x).$$

Note that if we take Q to be a point mass at a, then we recover the sharp intervention Y(a). Conversely, if we perform no intervention at all, then $dQ(a \mid x) = \pi(a \mid x)$ and F_Q reduces to the distribution of Y, which can be estimated without any causal assumptions. Thus, we can think of stochastic interventions as interventions that describe the space between the null intervention and the sharp intervention "set A = a."

In this paper, we introduce a framework called *causal geodesy* for studying the landscape between these two extremes. In the sciences, "geodesy" refers to the study of fundamental properties of the Earth, such as its shape, orientation, and gravitational field. Analogously, we view each intervention distribution as a point on a statistical manifold, which allows us to use its underlying geometry to study the corresponding causal effects. To do so, we construct paths of stochastic interventions,

$$\rho_t(a \mid x): \ 0 \le t \le 1,$$

such that $\rho_0(a \mid x) = \pi(a \mid x)$ and $\rho_1(a \mid x) = \delta_{a_*}$, where δ_{a_*} is a point mass at a_* . Each path defines a smooth flow in the space of distributions, carrying us from pure observation (t=0) to a sharp causal intervention (t=1). Of particular interest are paths that correspond to geodesics with respect to some metric, i.e. the shortest path between the two extremes. We show that geodesic interventions possess many favorable properties in the estimation and interpretation of causal effects.

The remainder of the paper is organized in the following manner: In Section 2 we define all relevant notation and definitions. In Section 3 we provide a review of stochastic interventions, geodesics, and optimal transport theory. In Section 4, using the Wasserstein distance as our underlying metric, we formally establish the causal geodesy framework and its properties, including semiparametric efficiency theory, methods of estimation and inference, asymptotic properties, and a minimax lower bound on the estimation error. In Section 5, we change our focus to the Hellinger distance, which allows us to weaken some assumptions required for identification. In Section 6 we consider estimation of causal effects using marginal structural models and demonstrate an interesting trade-off between the variance of our estimator and its distance along the path. Finally, in Section 7 we validate our theoretical findings via simulation and in Section 8 we discuss our results and possible directions for future work.

2 Setup & Notation

Let $(Z_1,\ldots,Z_n)\sim P$ denote a sample of independent and identically distributed observations, where $Z_i=(X_i,A_i,Y_i)$. Here, $X_i\in\mathbb{R}^d$ are the covariates, A_i is some exposure with bounded support, and Y_i are the outcomes. We use the potential outcomes framework, such that Y(a) denotes the outcome that would be observed under A=a (Rubin, 1974). For simplicity, throughout the paper we assume $A_i\in[0,1]$, but this could be any finite interval. Let $\pi(a\mid x)$ denote the conditional density of A given X=x and let $\mu(x,a)=\mathbb{E}(Y\mid X=x,A=a)$ denote the regression function. In general, for $t\in[0,1]$ we let $\rho_t(a\mid x)$ represent a path of stochastic interventions such that $\rho_0(a\mid x)=\pi(a\mid x)$ and $\rho_1(a\mid x)=\delta_{a_*}$, where δ_{a_*} represents a point mass at a_* . However, when a path is a geodesic with respect to some metric, we use $\nu_t(a\mid x)$ to denote it. Throughout the paper we make use of the mixed $L_2(P)$ -sup norm

$$||f||_{2,\infty} = \int_x \sup_a \{f(x,a)^2\} dP(x),$$

the $L_2(P)$ norm $||f||_2^2 = \int f(z)^2 dP(z)$ for some function f(z), and given some vector valued function g and measure ω we define $||g||_{L^2(\omega)} = \int ||g(x)||_2^2 d\omega(x)$.

3 Stochastic Interventions, Geodesics, and Optimal Transport

In this section we provide a brief review of stochastic interventions, paths and geodesics, and optimal transport theory in order to provide a proper background for establishing the causal geodesy framework. In particular, we focus on providing context for causal effects under the exponentially tilted intervention distribution, as this describes a path from $\pi(a \mid x)$ to δ_{a_*} , but is not a geodesic. Thus, it provides a good comparison for geodesic interventions.

3.1 Review of Stochastic Interventions

Traditional causal inference estimands, such as the average treatment effect or dose-response curve, are defined by static, deterministic interventions — hypothetical scenarios in which every subject receives a fixed treatment level. However, these types of interventions can be problematic for a number of reasons. The first, is that they require relatively strong assumptions for identification. In particular, deterministically setting a treatment level for all subjects requires a non-zero probability of receiving treatment, i.e. $\pi(a \mid x) > 0$ for all a and x. This is known as the positivity assumption. In practice positivity is often violated, especially when treatment is continuous; for example, in a medical context if A is a dosage, then some patients will be physically unable to receive high or low levels of treatment. Moreover, even when positivity is not violated, near violations can cause the variance of causal estimators to blow up (Kish, 1992; Busso et al., 2014). Second, deterministic interventions do not necessarily describe a counterfactual world that is realistic or useful to consider. For example, if we were to consider air pollution exposure on health outcomes, it does not make much sense to describe the world in which all people are exposed to the same level of pollutant, as this is an intervention that can never be implemented. It is far more realistic to instead consider the counterfactual world in which the probability of exposure to a given level of pollutant has been slightly altered. Consequently, there has been a push in recent years to develop what are known as stochastic interventions, which can be identified under weaker assumptions and characterize a more practical counterfactual world (Kennedy, 2019; Díaz and Hejazi, 2020; Schindl et al., 2024; Levis et al., 2024; McClean et al., 2024).

A stochastic intervention is an intervention that assigns treatment randomly, based on some probability distribution. For example, if we were to assign treatment to each subject based on some probability $p \in (0,1)$ then the intervention distribution is defined as $q(a) = p^a(1-p)^{1-a}$ for $a \in \{0,1\}$. Alternatively, we could let the treatment assignment depend on the covariates, making the intervention dynamic. As an example, for $a \in \{0,1\}$ and $\delta \in (0,\infty)$, Kennedy (2019) defines the intervention

$$q_{\delta}(A = 1 \mid x) = \frac{\delta \pi(x)}{\delta \pi(x) + 1 - \pi(x)}$$

where $\pi(x) = \mathbb{P}(A=1 \mid X=x)$ and δ is a parameter representing how much the intervention Q changes the odds of receiving treatment. Under a stochastic intervention framework, we are typically interested in estimating the average outcome in the counterfactual world in which $A \sim Q(A \mid X)$, that is, $\mathbb{E}[Y(Q)]$. This can be written as a weighted average of the potential outcomes Y(a), where the weights are determined by the chosen $Q(a \mid x)$,

$$\mathbb{E}[Y(Q)] = \int_{x} \int_{a} \mathbb{E}[Y(a) \mid X = x] dQ(a \mid x) dP(x). \tag{1}$$

This type of intervention is useful because it provides a way to characterize a very descriptive and practical causal effect. For example, in the context of the incremental effects described in

Kennedy (2019) we can answer the question: what if every subject was slightly more or less likely to receive treatment? Stochastic interventions are also useful because they generalize the deterministic intervention framework. In our first example where $q(a) = p^a(1-p)^{1-a}$, if we set p = 1 or p = 0 this represents the setting in which all subjects receive a = 1 or a = 0. Thus, by plugging this choice of intervention distribution into Equation (1), we can recover the traditional estimand for the average treatment effect. The following proposition establishes the conditions under which we may identify the stochastic intervention effect, $\mathbb{E}[Y(Q)]$.

Proposition 1. Suppose the following assumptions hold:

- (i) Consistency: Y = Y(a) if A = a.
- (ii) Exchangeability: $A \perp \!\!\!\perp Y(a) \mid X \text{ for } a \in \mathbb{R}$
- (iii) Positivity: $0 < \pi(a \mid x)$ for all a and x.

Then, Equation (1) is identified as

$$\mathbb{E}[Y(Q)] = \int_{T} \int_{a} \mu(x, a) dQ(a \mid x) da dP(x)$$

where $\mu(x, a) = \mathbb{E}[Y \mid X = x, A = a]$ is the regression function.

Importantly, one major benefit of the stochastic intervention framework is that Q can be cleverly chosen such that the positivity assumption is not required for identification, thereby requiring fewer causal assumptions relative to traditional deterministic interventions. For example, one distribution used throughout much of the stochastic intervention literature is the exponentially tilted intervention distribution. That is, for $\delta \in (-\infty, \infty)$,

$$q_{\delta}(a \mid x) = \frac{\exp(\delta a)\pi(a \mid x)}{\int_{a} \exp(\delta a)\pi(a \mid x)da},\tag{2}$$

which has been used in works such as Kennedy (2019); Díaz and Hejazi (2020); McClean et al. (2024); Schindl et al. (2024); Levis et al. (2024); Rakshit et al. (2024). The exponentially tilted intervention distribution has a number of nice properties that make it a convenient choice when defining stochastic interventions. The first, is that $q_{\delta}(a \mid x)$ is absolutely continuous with respect to $\pi(a \mid x)$; consequently, the positivity assumption is not needed to identify $\mathbb{E}[Y(Q)]$. Second, the intervention distribution is a smooth function of the treatment density. While it's possible to consider intervention distributions that avoid the positivity assumption by not intervening on units with a low propensity score (i.e. $\pi(a \mid x) < \varepsilon$ for $\varepsilon > 0$, as considered in Branson et al. (2023)), this is a nonsmooth estimation problem that can yield slower convergence rates. Finally, the exponentially tilted intervention distribution has the useful property that it can recover traditional static interventions. As noted in Schindl et al. (2024), for any $a' \in [0,1]$, one can define the "reflected" exponential tilt

$$\frac{\exp(\delta a)\pi(a\mid x)\mathbb{I}(a\leq a')\int_0^{a'}\pi(a\mid x)da}{\int_0^{a'}\exp(\delta a)\pi(a\mid x)da} + \frac{\exp(-\delta a)\pi(a\mid x)\mathbb{I}(a>a')\int_{a'}^1\pi(a\mid x)da}{\int_{a'}^1\exp(-\delta a)\pi(a\mid x)da}$$
(3)

that combines a positive tilt for $a \leq a'$ with a negative tilt for a > a'. Then, taking $\delta \to \infty$ creates point mass at a', thereby allowing one to estimate $\mathbb{E}[Y(a')]$.

While the exponentially tilted intervention distribution has many attractive properties, there is no reason to think that it is the only way to define $q_{\delta}(a \mid x)$. Exponential tilts are a very

aggressive way to move the mass of a distribution. Moreover, exponential tilts are asymmetric in the way they reallocate probability mass; this may artificially inflate the importance of observations with a high (or low) likelihood of receiving treatment, since more mass is placed in these sections of the treatment support more quickly. Finally, as defined in Equation (2), exponential tilts can only apply a global re-weighting of $\pi(a \mid x)$ rather than a localized shift of probability mass, which limits the flexibility of the stochastic intervention framework. Consequently, it is both important and practically useful to consider more principled ways of moving probability mass in the context of stochastic interventions. In this paper, we consider intervention distributions defined by geodesics in the space of probability measures — the shortest path between two distributions with respect to a chosen distance metric.

3.2 Review of Paths and Geodesics

Suppose that P and Q are two probability distributions with support $\Omega \subseteq \mathbb{R}^d$. The squared Wasserstein distance $W_2^2(P,Q)$ is the minimum of $\mathbb{E}[||Y-X||^2]$ over all joint distributions for (X,Y) such that $X \sim P$ and $Y \sim Q$. Then, we may describe the family of absolutely continuous paths \mathcal{P} between P and Q by a time-dependent density $\rho_t(x)$, where $t \in [0,1]$, such that $\rho_0(x) = P$ and $\rho_1(x) = Q$. A path is said to be absolutely continuous if there exists a function $m \in L_1$ such that, for all $0 \le s \le t \le 1$,

$$W_2(\rho_s, \rho_t) \le \int_s^t m(r) dr.$$

Furthermore, an absolutely continuous path must satisfy the continuity equation

$$\frac{\partial}{\partial t}\rho_t + \nabla \cdot (\rho_t \vec{v}_t) = 0 \tag{4}$$

for some velocity field $\vec{v}_t(x)$, which describes how the probability mass moves at time t. The continuity equation ensures that probability mass is neither created nor destroyed as it is transported from P to Q. In particular, we focus on paths that minimize the distance between P and Q with respect to some metric, i.e. a geodesic.

Figure 1: Geodesic between two distributions on a statistical manifold ${\mathcal S}$

Geodesics are curves that define the shortest path between two points on a manifold with respect to a chosen metric. In the context of probability distributions, distances are typically measured using the Wasserstein, Fisher-Rao, or Hellinger metrics — each of which defines a different notion of shortest path. These are special paths of shortest length which we focus on this paper. To provide intuition for geodesics in probability spaces, we first consider those induced by the Wasserstein distance, which arises in optimal transport theory and describes how probability mass can be reallocated in the most efficient way. A fundamental result from Benamou and Brenier (2000) shows that the squared Wasserstein distance may also be written as

$$W_2^2(P,Q) = \min \left\{ \int_0^1 ||\vec{v}_t||_{\rho_t}^2 dt : \frac{\partial}{\partial t} \rho_t + \nabla \cdot (\rho_t \vec{v}_t) = 0 \right\}.$$

This variational formulation shows that the squared Wasserstein distance can be written as the minimal total kinetic energy required to transport P to Q along some continuous flow $\rho_t(x)$, and importantly, must satisfy Equation (4). When the velocity field $\vec{v}_t(x)$ is defined as the metric derivative

$$\vec{v}_t(x) = \lim_{\varepsilon \to 0} \left\{ \frac{T_{\varepsilon}(x) - x}{\varepsilon} \right\}$$

where T_{ε} is the optimal transport map from $\rho_t(x)$ to $\rho_{t+\varepsilon}(x)$, it can be shown that $W_2^2(P,Q)$ is minimized, yielding the shortest path between P and Q in a Wasserstein space. As shown by McCann (1997), this path is defined by the interpolation

$$\nu_t := \left((1 - t)\mathrm{id} + tT \right)_{\#} P \tag{5}$$

where id is the identity map. Here, for measurable function $f: \Omega \to \Omega$, $f_\#P$ is the push-forward. That is, for all measurable $S \subseteq \Omega$, $f_{\#P} = P(f^{-1}(S))$, which denotes the the distribution of f(X) where $X \sim P$. We refer the reader to Ambrosio et al. (2008) and Chewi et al. (2024) for more detail regarding geodesics in the space of probability measures. In Section 5 we consider geodesics in metrics beyond the Wasserstein distance.

3.3 Review of Optimal Transport

Now that we have established that the Wasserstein geodesic is a function of the optimal transport map from P to Q, we provide a brief overview of optimal transport theory. The $Monge\ problem$, first introduced by $Monge\ (1781)$, defines the optimal map T^* to be the solution to

$$T^* = \operatorname*{argmin}_{T \in \mathcal{T}(P,Q)} \int_{\Omega} ||x - T(x)||^2 dP(x),$$

where $\mathcal{T}(P,Q)$ is the set of Borel measurable functions $T:\Omega\to\Omega$ such that $T_\#P=Q$. That is, for all measurable $A\subseteq\Omega$, $P(T^{-1}(A))=Q(A)$. This constraint ensures that mass is perfectly transported, with no creation or destruction. A sufficient condition for ensuring that the Monge problem has a solution is for P to be absolutely continuous with respect to the Lebesgue measure. However, without this condition the Monge problem can be ill-posed, such that no mappings exist. Intuitively, a major roadblock for solving the Monge problem relates

to its deterministic handling of mass: for any any $x \in \Omega$, all mass must be sent to T(x). This leads to the Kantorovich relaxation,

$$\pi^* = \operatorname*{argmin}_{\pi \in \Pi(P,Q)} \int_{\Omega} ||x - y||^2 d\pi(x,y)$$

where $\Pi(P,Q)$ is the set of all joint probability measures on $\Omega \times \Omega$ whose marginal distributions are given by P and Q (i.e., couplings) (Kantorovich, 1948). Here, π is referred to as a transport plan (instead of a mapping), and importantly, it allows for mass to be split, where a fraction of the mass at x can be sent to multiple locations. Brenier (1991) shows that under minimal conditions, the optimal coupling π^* induces a unique optimal transport map T, such that $T(x) = \nabla \varphi(x)$ for some convex function φ .

Solving for the optimal transport map T can be difficult in d-dimensions as it requires solving a nonlinear partial differential equation, however, when P and Q are supported on \mathbb{R} the problem simplifies significantly — in fact, in this setting a closed form solution exists. Specifically, under the assumption that P and Q are absolutely continuous with respect to the Lebesgue measure (which ensures that P and Q have valid probability densities) then the optimal transport map always exists, and is defined by $T(x) = G^{-1}(F(x))$ where F and G are the cumulative distribution functions of P and Q, respectively (Villani et al., 2009). Intuitively, this map ensures that mass is transported in a monotone fashion; each quantile of P is mapped to its corresponding quantile in Q. Now that we have covered geodesics in Wasserstein spaces and optimal transport maps, in the next section we describe how these concepts can be used to describe causal interventions.

4 Causal Geodesy

In general, consider a path of densities that smoothly evolve over time, beginning at the treatment density $\pi(a \mid x)$ and gradually transitioning toward a point mass at a_* . Every such path can be thought of as a set of stochastic interventions that interpolates between "no intervention" and the target intervention. Furthermore, for each ρ_t , there exists random variables A_t such that $A_t \sim \rho_t(A \mid X)$ and $A'_t = \vec{v}_t(A_t, X)$. We refer to the study of such paths as causal geodesy.

Of particular interest are the shortest paths between our baseline and target distribution, that is, geodesics. In this section we consider the geodesic defined by the Wasserstein distance, but in Section 5 we consider probability flows in other metrics. Importantly, the Wasserstein geodesic, $\nu_t(a \mid x)$, is defined by the distribution of (1 - t)A + tT(A) where $A \sim \pi(A \mid X)$ and T is the optimal transport map between $\pi(a \mid x)$ and ν_1 . Intuitively, we can see that the Wasserstein geodesic linearly interpolates between the natural treatment value A and the intervention defined by T(A). In the special case that ν_1 is a point mass at a_* , it can be shown that $\nu_t(a \mid x)$ has a simple form, which we define in the following lemma. Henceforth, we refer to this as the Wasserstein intervention.

Lemma 1. Let $\nu_1(a \mid x) = \delta_{a_*}$. Then, for $t \neq 1$

$$\nu_t(a \mid x) = \frac{1}{1-t} \pi \left(\frac{a - ta_*}{1-t} \mid x \right).$$

This intervention corresponds to moving a subject from their natural value A to $(1-t)A + ta_*$.

The Wasserstein intervention has a number of properties that make it convenient to use. Similar to exponentially tilted intervention distributions, $\nu_t(a \mid x)$ is both a smooth function of $\pi(a \mid x)$ and provides a smooth interpolation between static interventions. When t = 0, then we don't intervene, and when t = 1, we deterministically set the treatment assignment to $a_* = 1$. However, the Wasserstein intervention provides a more interpretable parametrization of the transition between distributions. Under exponentially tilted intervention distributions, the tilting parameter δ represents the rate of change in log-likelihood ratios, i.e.

$$\delta = \frac{\partial}{\partial a} \left\{ \log \left(\frac{q_{\delta}(a \mid x)}{\pi(a \mid x)} \right) \right\},\,$$

which can be difficult to interpret. Meanwhile, the Wasserstein intervention provides a consistent interpretation where $t \in [0,1]$ represents the linear interpolation between the distribution of A and a_* . In later sections, we will show that the Wasserstein intervention has many favorable properties when it comes to estimation and inference as well.

Figure 2: Intervention distributions defined by the exponential tilt and the Wasserstein geodesic, where t=0 represents no intervention. Note that $q_{\delta}(a \mid x)$ as defined in Equation (2) can be parameterized to represent a path between $\pi(a \mid x)$ and δ_{a_*} by letting $\delta = t/(1-t)$.

One drawback of the Wasserstein intervention is that $\nu_t(a \mid x)$ will place mass on zerodensity portions of $\pi(a \mid x)$ if they exist, as illustrated in Figure 2. Consequently, the positivity assumption is required for identification. However, we will later address this concern by considering flows using other metrics that are better able to avoid the positivity assumption, such as the Hellinger distance. First, we establish a few theoretical properties of incremental effects under the Wasserstein intervention, i.e., $\mathbb{E}[Y(\nu_t)]$. By Proposition 1, it is clear that the Wasserstein incremental effect is identified under assumptions (i), (ii), and (iii) as

$$\psi_w(t) = \int_x \int_a \mu(x, a) \nu_t(a \mid x) da \, dP(x).$$

With $\psi_w(t)$ identified, we now develop semiparametric efficiency theory for causal effects for the Wasserstein incremental effect. The following theorem establishes the efficient influence function for $\psi_w(t)$. Later, we analyze the nonparametric efficiency bound and its properties. **Theorem 1.** For $t \neq 1$, the efficient influence function of $\psi_w(t)$ under a nonparametric model is given by

$$\varphi_w(Z;t) = \frac{\nu_t(A \mid X)}{\pi(A \mid X)} \left(Y - \mu(X, A) \right) + \mu(X, \lambda_A) - \psi_w(t)$$
(6)

where $\lambda_A = (1-t)A + ta_*$.

Theorem 1 shows that the efficient influence function decomposes into three pieces. The first term, $\nu_t(A \mid X)/\pi(A \mid X)(Y-\mu(X,A))$, behaves much like an inverse-propensity weighted residual that up or down weights each outcome by how much the Wasserstein intervention deviates from the natural assignment. The second term, $\mu(X,\lambda_A)$, smoothly interpolates the regression function between the observed exposure A (when t=0) and the target exposure a_* (when t=1). Finally, subtracting $\psi_w(t)$ centers the expression such that $\varphi_w(Z;t)$ is mean zero.

An important property of the efficient influence function is that it defines the nonparametric efficiency bound. That is to say, the variance of the efficient influence function represents a nonparametric analogue of the Cramer-Rao lower bound, such that (loosely speaking) no other estimator can have a smaller mean squared error (van der Vaart, 2000). Therefore, analyzing the variance of $\varphi_w(Z;t)$ can help us better understand the behavior of the Wasserstein incremental effect, and also when estimation may become more or less difficult in a nonparametric model. The following corollary establishes the nonparametric efficiency bound for the Wasserstein incremental effect.

Corollary 1. The variance of the efficient influence function $\varphi_w(Z;t)$, is given by

$$\sigma_w^2(t) = \mathbb{E}\left[\left(\frac{\nu_t(A\mid X)}{\pi(A\mid X)}\right)^2 \mathbb{V}(Y\mid X, A) + \mathbb{V}_{\nu_t}(\mu(X, A)\mid X)\right]$$
(7)

where \mathbb{V}_{ν_t} represents the variance under the conditional density $\nu_t(a \mid x)$.

In Corollary 1 we observe a similar phenomenon to that of the incremental effect under the exponentially tilted intervention distribution described in Schindl et al. (2024). That is to say, the behavior of $\sigma_w^2(t)$ is dominated by the ratio ν_t/π . By inspection, we can see that this ratio becomes problematic as $t \to 1$ since ν_t approaches a point-mass. Consequently, when t is close to one the ratio ν_t/π becomes unbounded. In fact, we will show that this is a problem for any path between π and δ_{a_*} . This exemplifies a theme found throughout the paper: as we move from the observational setting into a counterfactual world, estimation should necessarily become more difficult and uncertain. To further explore this idea, in the following sections we establish an estimator for the Wasserstein incremental effect, and then derive a minimax lower bound on the estimation error of $\mathbb{E}[Y(\rho_t)]$ where ρ_t is any path between π and δ_{a_*} . We will show that among the set of all paths, using the Wasserstein geodesic results in a better minimax error rate.

4.1 Estimation of the Wasserstein Incremental Effect

In order to estimate the incremental effect under the Wasserstein intervention, we use the one-step estimator. That is, the plug-in estimator plus the efficient influence function, given by

$$\widehat{\psi}_w(t, a_*) = \frac{1}{n} \sum_{i=1}^n \left(\frac{\widehat{\nu}_t(A_i \mid X_i)}{\widehat{\pi}(A_i \mid X_i)} \left(Y_i - \widehat{\mu}(X_i, A_i) \right) + \widehat{\mu}(X_i, (1-t)A_i + ta_*) \right).$$

The estimator $\widehat{\psi}_w(t, a_*)$ has a very straightforward interpretation. Namely, when t=0 then $\widehat{\psi}(t, a_*)$ is simply the sample average of the outcomes, $\frac{1}{n}\sum_{i=1}^n Y_i$. This neatly follows from the fact that when t=0, we are in a correlational framework and require no causal assumptions to estimate $\psi_w(t, a_*)$. When $t\to 1$, then $\widehat{\psi}(t, a_*)\approx \frac{1}{n}\sum_{i=1}^n\widehat{\mu}(X_i, a_*)$, i.e. the sample average of the regression function evaluated at $A_i=a_*$, our sharp intervention. In practice, μ can be flexibly estimated using any regression estimator, and under certain smoothness assumptions π can as well. Otherwise, one could take semiparametric approach to estimating π , such as the method outlined in Hansen (2004) and implemented in Kennedy et al. (2017). We provide a more detailed discussion of convergence rates and estimation properties in Section 4.3.

Now that we have established an estimator for the Wasserstein incremental effect we would like to establish asymptotic normality and a rate of convergence. However, as first highlighted in Schindl et al. (2024), traditional methods of analysis can fail in the causal geodesy framework. Typically, in order to establish asymptotic normality, one would consider the remainder from the von Mises expansion,

$$R_2(\widehat{P}, P) = \psi(\widehat{P}) - \psi(P) + \int \psi(z; \widehat{P}) dP(z).$$

Then, one would bound $R_2(\widehat{P}, P)$ via $L_2(P)$ norms of so-called doubly robust products of errors. However, when the remainder is a function of the ratio $\nu_t(a \mid x)/\pi(a \mid x)$, things can become problematic — namely, as $t \to 1$ the $L_2(P)$ norm can explode. We formalize this problem in the following proposition.

Proposition 2. Let $\rho_t(a \mid x)$ be some path between $\pi(a \mid x)$ and some distribution Q. Then,

$$\left| \left| \frac{\widehat{\rho}_t}{\widehat{\pi}} - \frac{\rho_t}{\pi} \right| \right|_2^2 \ge \mathbb{E} \left[\left(1 - \sqrt{\frac{\chi^2(\widehat{\rho}_t \parallel \widehat{\pi})}{\chi^2(\rho_t \parallel \pi)}} \right)^2 \chi^2(\rho_t \parallel \pi) \right].$$

Intuitively, Proposition 2 shows that as $\rho_t(a \mid x)$ approaches a point-mass (i.e., our sharp intervention), the χ^2 divergence between ρ_t and π diverges and any estimation error becomes magnified. A key consequence of this fact is that any analysis of convergence rates for sharp causal interventions under a stochastic intervention must explicitly account for the role of t. Intuitively, the closer t is to one, the closer we move toward a deterministic intervention, and the more heavily we must rely on our assumptions about the counterfactual world. This reflects the fact that the parameter is pathwise differentiable for all t < 1 but not uniformly over all t. In this setting, small errors are magnified such that the cost of being wrong is greater. Ignoring this dependence can lead to inaccurate coverage and imprecise statistical inference. In the following section, we further explore this idea by establishing a minimax lower bound on the estimation error in terms of the χ^2 divergence between ρ_t and π .

4.2 Minimax Lower Bound

In this section we establish a minimax lower bound for the estimation error for a general stochastic intervention,

$$\psi_{\rho}(t) = \int_{T} \int_{a} \mu(x, a) \rho_{t}(a \mid x) da \, dP(x)$$

where ρ_t describes some path from $\pi(a \mid x)$ to δ_{a_*} . Specifically, for our loss function we consider the integrated squared error across $0 \le t < 1$, i.e., across the entire incremental effect curve.

This loss function is quite natural, as typically practitioners are interested in describing a range of estimates, instead of one single t (see Kennedy (2019); McClean et al. (2024); Schindl et al. (2024)). We find that the minimax error can be lower bounded by the χ^2 divergence between ρ_t and π , integrated across t. Later, we consider how this lower bound behaves when the Wasserstein geodesic is used.

Theorem 2. Let \mathcal{P} denote a model where $0 < \mathbb{V}(Y \mid X = x, A = a) < \infty$ for all a, x. Then, for a general stochastic intervention

$$\rho_t(a \mid x) = \frac{f_t(\pi(a \mid x))}{\int_a f_t(\pi(a \mid x))da} \tag{8}$$

where $f(\cdot)$ is some smooth function, for $s \in [0,1)$, the minimax error is lower bounded as

$$\inf_{\widehat{\psi}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P} \left[\left(\int_{0}^{s} \left(\widehat{\psi}_{t} - \psi_{P}(t) \right)^{2} dt \right)^{1/2} \right] \ge \frac{C}{\sqrt{n}} \sqrt{\int_{0}^{s} \left(1 + \mathbb{E} \left[\chi^{2}(\rho_{t} \mid\mid \pi) \right] \right) dt}$$
(9)

for some universal constant C.

There are several important consequences of Theorem 2. First, we can see that the estimation error scales with the χ^2 divergence between ρ_t and π , integrated along the path between π and δ_{a_*} . Since ρ_t approaches a point-mass as $t \to 1$, it follows that practitioners should take into account the range of t they are interested in considering relative to their sample size. Second, we can clearly see that statistical analysis of stochastic interventions must explicitly depend on t, otherwise they risk misstating the true rate of convergence, leading to inaccurate inference. Finally, we can see that Theorem 2 is agnostic to the path chosen; however, some paths may yield better minimax rates than others. In the following theorem, we show that the Wasserstein geodesic controls the minimax lower bound defined in Equation (9).

Theorem 3. Let $F(s) = \int_0^s (1 + \mathbb{E} \left[\chi^2(\rho_t \mid\mid \pi) \right] dt)$ for $s \in [0, 1)$. Then, for any path ρ_t between $\pi(a \mid x)$ and some distribution Q, it follows that

$$\int_{0}^{s} \left(1 + \mathbb{E}\left[\left(\frac{W_{2}^{2}(\rho_{t}, \pi)}{9C_{P}} \right)^{2} \right] \right) dt \leq F(s) \leq 1 + \sup_{s} ||\nabla r_{s}||_{2, \infty} \left(\int_{0}^{s} \mathbb{E}\left[||\vec{v}_{t}||_{L^{2}(\rho_{t})}^{2} \right] dt \right)^{1/2}$$

where for the lower bound ρ_t must satisfy the Poincaré inequality, $\mathbb{V}_{\rho_t}(g) \leq C_P \mathbb{E}_{\rho_t} [||\nabla g||_2^2]$ for all locally Lipschitz $g \in L^2(\rho_t)$ for some constant C_P , and $r_t(a, x) = \rho_t(a \mid x)/\pi(a \mid x)$.

By Theorem 3 we can begin to see the benefit of using a geodesic over other paths between π and δ_{a_*} . Specifically, because $\rho_t = \nu_t$ minimizes $W_2^2(\rho_t, \pi)$ across all choices of ρ_t , it is clear that the Wasserstein geodesic provides a better minimax error rate than other paths. Furthermore, it is also clear that the Wasserstein geodesic directly controls the rate at which F(s) grows. Note that

$$\left(\int_0^1 \mathbb{E}\left[||\vec{v}_t||_{L^2(\rho_t)}^2\right] dt\right)^{1/2}$$

is exactly the Benamou-Brenier formulation of the Wasserstein distance, so it is also minimized by choosing ρ_t to be the Wasserstein geodesic. Now that we have established a minimax lower bound in terms of the Wasserstein geodesic, in the next section we establish asymptotic normality, and also a rate of convergence that explicitly depends on t.

4.3 Asymptotic Distribution & Convergence Rate

When establishing asymptotic properties of the incremental effect under the exponentially tilted intervention distribution, it is necessary to impose stronger conditions on the remainder term from the von Mises expansion. Notably, for some function f(x, a), Schindl et al. (2024) use mixed $L_2(P)$ -sup norms of the form

$$||f||_{2,\infty}^2 = \int_x \sup_a \left\{ f(x,a)^2 \right\} dP(x)$$

on $R_2(\widehat{P},P)$ in order to establish asymptotic normality. Requiring a uniform bound across the treatment density takes the sting out of the dependence on δ by requiring π to be estimated well across its entire support. With this type of constraint in place, the von Mises remainder under the exponential tilt does not blow up as $\delta \to \infty$ (or equivalently, as $t \to 1$). In the case of $\nu_t(a \mid x)$, we show that the Wasserstein incremental effect does not require mixed $L_2(P)$ -sup norms — in fact, it doesn't suffer from any dependence on t, and does not require a modified rate of convergence. In what follows, we formally establish the asymptotic distribution and convergence rate for the Wasserstein incremental effect estimator, assuming standard sample-splitting arguments (Chernozhukov et al., 2018).

Theorem 4. Suppose that Y is bounded above with probability one, that positivity holds across the entire treatment support, and $\int_{-\infty}^{\infty} \frac{\partial}{\partial a} \log(\pi(a \mid x)) da < \infty$. Then, for $t \neq 1$ if

(i)
$$||\widehat{\pi} - \pi||_2 = o_P(1)$$
 and $||\widehat{\mu} - \mu||_2 = o_P(1)$

(ii)
$$||\widehat{\pi} - \pi||_2 \cdot ||\widehat{\mu} - \mu||_2 = o_P(n^{-1/2})$$

then as $n \to \infty$, it follows that

$$\frac{\sqrt{n}}{\sigma_w(t)} \left(\widehat{\psi}_w(t) - \psi_w(t) \right) \stackrel{d}{\longrightarrow} N(0,1)$$

where $\sigma_w^2(t) = \mathbb{V}(\varphi_w(Z;t))$ is the nonparametric efficiency bound defined in Corollary 1.

The assumption that $\int_{-\infty}^{\infty} \frac{\partial}{\partial a} \log(\pi(a \mid x)) da < \infty$ is a weaker version of the assumption that $\pi(a \mid x)$ is uniformly bounded from above, since this allows for peaks over small intervals, as long as their total mass is small. Theorem 4 establishes several more benefits of using the Wasserstein geodesic to estimate the incremental effect over other paths. First, we can see that estimating the Wasserstein incremental effect does not require a compromised rate of convergence, unlike the exponential tilt, which has a $\sqrt{n/\delta}$ convergence rate. Second, under ν_t we do not require mixed $L_2(P)$ -sup norms when estimating our nuisance functions, thereby relaxing the strictness imposed on the estimation error. The difference between constraints lies in the rate at which the remainder $R_2(\widehat{P}, P)$ grows. Under the exponential tilt, it follows that $R_2(\widehat{P}, P) = O(\delta)$ and $\sigma_e(\delta) = O(\sqrt{\delta})$, so the remainder is growing at a faster rate. Meanwhile, under the Wasserstein intervention $R_2(\widehat{P}, P) = O((1-t)^{-1})$ and $\sigma_w(t) = O((1-t)^{-1})$. Thus, as long as $||\widehat{\pi} - \pi||_2 \cdot ||\widehat{\mu} - \mu||_2 = o_P(n^{-1/2})$, then it follows that

$$\frac{\sqrt{n}}{\sigma_w(t)} \left[R_2(\widehat{P}, P) \right] = o_P(1).$$

Thus, $R_2(\widehat{P}, P)$ and $\sigma_w(t)$ negate each other, allowing for looser constraints on $R_2(\widehat{P}, P)$. Finally, we can see that the Wasserstein intervention allows for flexible rates of estimation, in

the sense that it has a product of errors in μ and π only, unlike under the exponential tilt, which also requires that

$$||\widehat{\pi} - \pi||_{2,\infty}^2 = o_P\left(\sqrt{\delta/n}\right)$$

for asymptotic normality. This extra remainder term necessitates that π be estimated at a fixed $(\delta/n)^{-1/4}$ rate, whereas under ν_t we can flexibly estimate π or μ at different rates, as long as their product of errors is $o_P(n^{-1/2})$. Thus, while the Wasserstein intervention has the drawback of requiring the positivity assumption for identification, it has several significant benefits when it comes to estimation and inference. In the next section, we consider geodesics in metrics other than the Wasserstein distance, which will allow us to weaken our dependence on the positivity assumption.

5 Paths and Overlap

Now that we have established the statistical properties of the Wasserstein intervention, we want to consider paths that avoid overlap problems. In other words, we seek a geodesic ν_t such that

$$\frac{\nu_t(a\mid x)}{\pi(a\mid x)} < \infty$$

for all $a \in [0,1]$. To achieve this, we need to change our geometric perspective. Under the Wasserstein metric, the distance between two distributions is measured how by far mass must physically travel. However, this is by no means the only way to measure how close two distributions are. Another interesting metric is the Hellinger distance,

$$H^{2}(P,Q) = \frac{1}{2} \int_{x} \left(\sqrt{p(x)} - \sqrt{q(x)} \right)^{2} dx.$$

Note that in some settings, this is equivalent to the Fisher-Rao distance, so the two names are often used interchangeably when describing geodesics. Importantly, under the mapping $p(x) \to \sqrt{p(x)}$, it follows that P and Q are embedded onto a unit sphere in L^2 -space. Thus, in this spherical representation, we can think of differences in the distribution of P and Q as differences in the angle or orientation, rather than focusing on spatial shifts between them. Consequently, under this spherical geometry we now obtain a different geodesic to describe the shortest path between P and Q, one that will better avoid the overlap condition.

Proposition 3. (Srivastava and Klassen, 2016) Under the Hellinger distance $H^2(P,Q)$, the geodesic between P and Q is defined as

$$\nu_t(x) = \left(\frac{\sin((1-t)\theta)}{\sin(\theta)}\sqrt{p(x)} + \frac{\sin(t\theta)}{\sin(\theta)}\sqrt{q(x)}\right)^2$$

where
$$\theta = \arccos\left(\int_x \sqrt{p(x)q(x)}dx\right)$$
.

There are a few interesting points to note regarding Proposition 3. One, is that $H^2(P,Q)$ is not well defined when Q is a point mass, so we cannot directly take the same approach as we did when defining the Wasserstein geodesic. However, in practice this is not a problem,

as we can simply take a smooth approximation of a point mass. For example, we could say $Q \sim \mathcal{N}(a_*, \varepsilon^2)$ and take $\varepsilon \to 0$. It is also important to note that the Hellinger geodesic requires positivity in a neighborhood of a_* , otherwise it would not be possible to place mass around Q. However, this is a much weaker positivity requirement than that of the Wasserstein geodesic, and can be realistic in many real-world scenarios.

Figure 3: Exponential tilt vs the Hellinger geodesic, where t=0 represents no intervention.

As shown in Figure 3, we can see that the Hellinger geodesic moves mass more efficiently compared to the exponential tilt. For each incremental t, it is clear that ν_t gets meaningfully closer to δ_{a_*} . Meanwhile, under the exponentially tilted intervention distribution the flow of mass is very asymmetric — there is little progress for most values of t, then as t approaches one, progress is made all at once. Furthermore, we can see that the Hellinger geodesic is a much sharper intervention for intermediate values of t; that is to say, more probability mass is located in the neighborhood of $a_* = 1$. Finally, we can see that the Hellinger geodesic respects zero-density sections of $\pi(a \mid x)$, as long as positivity holds around a_* .

To formalize this notion, suppose that $\pi(a \mid x) > 0$ in some neighborhood of a_* . Then, under assumptions (i), (ii), it follows that $\mathbb{E}[Y(\nu_t)]$ is identified as

$$\psi_h(t) = \int_x \int_a \mu(x, a) \nu_t(a \mid x) da \, dP(x)$$

where we use the subscript h to note that we are using the Hellinger geodesic to evaluate $\mathbb{E}[Y(\nu_t)]$. Again, now that we have identified the Hellinger incremental effect, we again want to establish the efficient influence function and one-step estimator for $\psi_h(t)$.

Theorem 5. Suppose $t \neq 1$. Then, the efficient influence function of $\psi_h(t)$ under a nonparametric model is given by $\varphi_h(Z;t) = D_Y + D_\mu + D_Q + D_\theta + D_\psi$, where

$$D_{Y} = \frac{\nu_{t}(A \mid X)}{\pi(A \mid X)} \Big(Y - \mu(X, A) \Big)$$

$$D_{\mu} = \left(\frac{\sin((1 - t)\theta)}{\sin(\theta)} \right)^{2} \Big(\mu(X, A) - \mathbb{E}[\mu(X, a) \mid X] \Big)$$

$$D_{Q} = \frac{\sin((1 - t)\theta)\sin(t\theta)}{\sin^{2}(\theta)} \left(\mu(X, A) \frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid X)}} - \mathbb{E}\left[\mu(X, A) \frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid X)}} \mid X \right] \right)$$

$$D_{\theta} = -\frac{1}{2sin(\theta)} \left(\frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid X)}} - \mathbb{E}\left[\frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid X)}} \mid X \right] \right) \frac{\partial}{\partial \theta} \left\{ \mathbb{E}_{\nu_t} \left[\mu(X, A) \mid X \right] \right\}$$

$$D_{\psi} = \mathbb{E}_{\nu_t} \left[\mu(X, A) \mid X \right] - \psi_h(t)$$

such that $\theta = \arccos(\int_a \sqrt{\pi(a \mid X)q(a)}da)$ and q is the density of $\mathcal{N}(a_*, \varepsilon^2)$ or some other approximation of δ_{a_*} .

Intuitively, the decomposition established in Theorem 5 describes the directions in which $\psi_h(t)$ is sensitive to perturbations in the data-generating process. D_Y is the usual inverse-probability-weighted residual, D_μ measures the sensitivity of $\mu(x,a)$ itself, weighted by how far along the path we are from $\pi(a \mid x)$ to q(a), D_Q is a cross term that captures the contribution of $\mu(x,a)$ as weighted by $\pi(a \mid x)$, q(a), and the curvature of the path, D_θ accounts for variation how the direction of the Hellinger path itself shifts with $\pi(a \mid x)$ (note that θ itself is a random variable that depends on the estimated treatment distribution), and finally D_ψ centers the influence function.

Now that we have derived the efficient influence function for $\psi_h(t)$, we establish the conditions required for estimation and inference, where we again use the one-step estimator. Under the Hellinger geodesic, like the exponential tilt, we require mixed $L_2(P)$ -sup norms to establish asymptotic normality. Furthermore, we require that $\pi(a \mid x)$ is reasonably well behaved in a neighborhood of a_* , in a way we soon formalize. Thus, there appears to be some tradeoff between relaxing the positivity assumption and the strength of the constraint required on the estimation error.

Theorem 6. Suppose Y is bounded above with probability one. Then, for $t \neq 1$ and some $\eta > 0$, if

- (i) $\pi(a \mid x) > \pi_{\min} > 0$ for all $a \in [a_* + \eta, a_* \eta]$.
- (ii) For all $a \in [a_* \eta, a_* + \eta]$, $\exists some L > 0$ such that $|\pi(a \mid x) \pi(a_* \mid x)| \le L|a a_*|$.

(iii)
$$\sqrt{n\varepsilon\mathbb{E}[(\sin(t\theta)/\sin(\theta))^2]} \to \infty$$
.

(iv)
$$||\widehat{\pi} - \pi||_{2,\infty} = o_P(1)$$
 and $||\widehat{\mu} - \mu||_{2,\infty} = o_P(1)$.

$$(v) ||\widehat{\pi} - \pi||_{2,\infty} \left(||\widehat{\mu} - \mu||_{2,\infty} + ||\widehat{\pi} - \pi||_{2,\infty} \right) = o_P((n\varepsilon \mathbb{E}[(\sin(t\theta)/\sin(\theta))^2])^{-1/2}).$$

Then, as $n \to \infty$,

$$\frac{\sqrt{n}}{\sigma_h(t)} \left(\widehat{\psi}_h(t) - \psi_h(t) \right) \stackrel{d}{\longrightarrow} N(0, 1)$$

where $\sigma_h^2(t) = \mathbb{V}(\varphi_h(Z;t))$ is the nonparametric efficiency bound defined in Lemma 3.

By Theorem 6 we find a similar story to the incremental effect as defined under the exponential tilt. Namely, there is now a reduced rate of convergence, given by $(n\varepsilon\mathbb{E}[(\sin(t\theta)/\sin(\theta))^2])^{1/2}$, as well as a doubly-robust product of errors in mixed $L_2(P)$ -sup norms. Furthermore, the Hellinger geodesic requires positivity in a neighborhood of a_* , as well as Lipschitz continuity for asymptotic normality to hold. In terms of the modified rate of convergence, neither

pathway dominates the other without additional assumptions, since θ is a random variable. However, if ε is chosen such that

$$\varepsilon > \delta_t \mathbb{E} \left[\left(\frac{\sin(t\theta)}{\sin(\theta)} \right)^2 \right]^{-1}$$

for some parameterization of the exponential tilt (e.g. $\delta_t = t/(1-t)$), then the Hellinger geodesic has a larger effective sample size. We compare these two pathways further in Section 7 via simulation. Now that we have formally established theoretical properties for the Wasserstein and Hellinger geodesics, in the next section we compare and contrasts the benefits of each method.

5.1 Comparing Paths

In this section, we compare each of the paths between $\pi(a \mid x)$ and δ_{a_*} discussed, making sure to weigh the costs and benefits of each. Broadly speaking, there are three different points of comparison worth discussing: the required positivity assumption, the effective sample size of each path, and the flexibility of estimation (i.e. do nuisance functions have to be estimated at fixed rates). We outline these points in Table 1.

Path	Positivity Requirement	Effective Sample Size	Flexible Rate
Exp. Tilt	Neighborhood of a_*	$\sqrt{n/\delta}$	No
Wasserstein	Global positivity	\sqrt{n}	Yes
Hellinger	Neighborhood of a_*	$\sqrt{n\varepsilon\mathbb{E}[(\sin(t\theta)/\sin\theta)^2]}$	No

Table 1: Comparison of Paths

There is an important but subtle point regarding the positivity requirement for the exponential tilt. If no target is specified (i.e. δ_{a_*}), then (assuming a bounded treatment support) the exponential tilt defines a path between $\pi(a \mid x)$ and the highest point at which positivity holds, i.e. $a' = \sup_a \{a : \pi(a \mid x) > 0\}$. Notably, a' does not need to be known, which is a major benefit of estimating the incremental effect under the exponentially tilted intervention distribution. However, if one wants to specify a sharp intervention using the reflected exponential tilt defined in Equation (3), then positivity is required in a neighborhood of a_* . By Table 1 we can see that the Wasserstein geodesic has the significant benefit of having a larger effective sample size as well as having flexible rates of estimation, but at the cost of requiring global positivity. We further compare the exponential tilt and Hellinger geodesic via simulation in Section 7.

5.2 Extensions and Future Work

In the case of the Wasserstein geodesic, a promising direction for future work could be to establish a path that avoids putting mass in regions where $\pi(a \mid x)$ is small. For example, it may be possible to leverage the theory of optimal transport around a barrier, following the work of Cavalletti (2012) and Igbida et al. (2018). This could allow for a relaxation of the global positivity requirement on the Wasserstein incremental effect while still maintaining its favorable estimation benefits. However, defining optimal transport maps around a barrier is more complicated than the usual optimal transport maps and there does not seem to be closed form expressions for the geodesic.

6 Marginal Structural Models

In this section we consider modeling paths of interventions using marginal structural models. Typically, a marginal structural model refers to a parametric model for $\mathbb{E}[Y(a)]$, where Y(a) is the counterfactual for the sharp intervention A=a (Robins et al., 2000). For example, one could consider a simple linear model such as $\mathbb{E}[Y(a)]=\beta_0+\beta_1a$. In this section, we define a new class of marginal structural models indexed by t and a_* . By defining a parametric model along the path between $\pi(a \mid x)$ and δ_{a_*} , we can leverage our position on the path to obtain a more precise estimate of $\mathbb{E}[Y(a_*)]$. The idea is to fit our model when t is close to zero—where the variance of the estimate of the causal effect is the smallest—and then extrapolate out toward t=1.

To motivate this idea we begin with a simple example. Suppose that $X \sim \text{Uniform}[-3,3]$, $A \mid X = x \sim N(x,1)$, and $Y = X + A + \varepsilon$ where $\varepsilon \sim N(0,1)$. Consider the point mass intervention δ_2 and let ν_t denote the Wasserstein intervention. The left plot of Figure 4 shows $\chi^2(\nu_t \mid\mid \pi)$, which explodes as t gets near 1 but is small when t is near zero. Meanwhile, the right plot shows ψ_t , which is linear across t. Thus, if we estimate ψ_t when t small and linearly extrapolate this estimator to t = 1, we obtain a low variance estimate of $\mathbb{E}[Y(a_*)]$. However, this approach requires a model of how ψ_t changes with t and a_* . In this example, ψ_t is linear, but we can use more general models.

Figure 4: The left plot shows $\chi^2(\nu_t, \pi)$ as a function of t. We see this blows up as t increases which implies that the variance of $\hat{\psi}_t$ explodes. The right plot shows ψ_t which we see is linear.

More generally, consider a path of stochastic interventions $(\rho_t : 0 \le t \le 1)$ that connect $\pi(a \mid x)$ to δ_{a_*} . As before, we define $\psi_t \equiv \psi(a_*, t) = \mathbb{E}[Y(\rho_t)]$ to be the mean of the counterfactual. Suppose we specify a parametric model $m_t \equiv m(a_*, t, \beta)$ for $\psi(a_*, t)$ such that when t = 0, $m(a_*, 0, \beta) = \mathbb{E}[Y]$, and when t = 1, $m(a_*, 1, \beta) = \mathbb{E}[Y(a)]$ where Y(a) is the counterfactual for the usual sharp intervention A = a. Thus, $m(a_*, 1, \beta) = \mathbb{E}[Y(a)]$ is a conventional marginal structural model while $m(a_*, t, \beta)$ represents an extended marginal structural model connecting $\mathbb{E}[Y]$ to a model for $\mathbb{E}[Y(a)]$, thereby maintaining the spirit of geodesic interventions in a parametric setting.

To be concrete, we focus on the model

$$m(a_*, t, \beta) = \mu + t \sum_{j=1}^k \beta_j \phi_j(a)$$

where $\mu = \mathbb{E}[Y]$ and ϕ_1, \dots, ϕ_k are given basis functions. In previous sections we provided a nonparametric estimate $\widehat{\psi}_t$ of ψ_t . Importantly, we may use this estimate to fit our parametric model. Specifically, fix a value $t \in [0,1]$ and a function h(a) and define $\widehat{\beta}_t$ by

$$\widehat{\beta}_t = \arg\min_{\beta} \int_0^1 \int_0^t (\widehat{\psi}(a, s) - m(a, s, \beta))^2 ds \, h(a) da \tag{10}$$

where $\widehat{\psi}(a,s)$ is the nonparametric estimator of ψ_s and we suppose $a \in [0,1]$. This defines a family of estimators $(\widehat{\beta}_t : 0 \le t \le 1)$ for β , which, in turn, yields a family of estimators for $\mathbb{E}[Y(a_*)]$, namely, $\widehat{\psi}_*(t) = m(a_*, 1, \widehat{\beta}_t)$. With this setup defined, we now want to find h and t that yield the most accurate estimator. Choosing h to optimize the estimator requires solving a Fredholm integral equation, which is typically analytically intractable (Robins, 2000). Instead, one usually chooses a convenient h(a) such as h(a) = 1. Alternatively, one could also select h from some specified class of functions as in Kennedy et al. (2015).

An interesting phenomenon arises when considering consider how to choose t. As t is made larger, we are using more information to estimate β in Equation (10). However, the larger t is made, the more the variance of $\widehat{\psi}_t$ also grows. Thus, there is some tradeoff between the precision of our marginal structural model estimator and how far along the path between $\pi(a \mid x)$ and δ_{a_*} we travel. To make this intuition more precise, in the following proposition we solve for $\widehat{\beta}_t$.

Proposition 4. Let $L(\beta) = \int_0^1 \int_0^t (\widehat{\psi}(a,s) - m(a,s,\beta))^2 ds \, h(a) da$. Then, the minimizer of $L(\beta)$ is

$$\widehat{\beta}_t = \frac{3}{t^3} \left(\int_0^1 \phi(a)\phi(a)^T h(a) da \right)^{-1} (\widehat{\nu}_{t,1}, \dots, \widehat{\nu}_{t,k})$$
(11)

where $\widehat{\nu}_{t,j} = \int_0^1 \{ \int_0^t s(\widehat{\psi}_s(a) - \widehat{\mu}) ds \} h(a) \phi_j(a) da$.

To build some intuition for Proposition 4, consider the simple linear model $m(s, a, \beta) = \mu + t\beta\phi(a)$. Then, it follows that Equation (11) simplifies to

$$\widehat{\beta}_t = \frac{3\int_0^1 \int_0^t s(\widehat{\psi}_s(a) - \widehat{\mu}) ds \phi(a) h(a) da}{t^3 \int_0^1 \phi^2(a) h(a) da}.$$

When t is small, the estimator blows up due to the denominator. Meanwhile, when t gets large the variance of the numerator increases since the variance of $\widehat{\psi}_s(a)$ increases with s. Asymptotically, it can be shown that the variance of $\widehat{\beta}_t$ is

$$V_{t} = \frac{9}{t^{6}} \left(\int_{0}^{1} \phi(a)\phi(a)^{T}h(a)da \right)^{-1} C \left(\int_{0}^{1} \phi(a)\phi(a)^{T}h(a)da \right)^{-1}$$

where the (j, k)th element of C is defined by

$$C_{jk} = \int_0^t \int_0^t \int_0^1 \int_0^1 ss'h(a)h(a')\phi_j(a)\phi_k(a') \text{Cov}[\widehat{\psi}_s(a), \widehat{\psi}_{s'}(a')] da \, da' \, ds \, ds'.$$

This latter term depends on the particular choice of path. For the Wasserstein intervention, the asymptotic covariance $\text{Cov}[\widehat{\psi}_s(a), \widehat{\psi}_{s'}(a')]$ is equal to $\mathbb{E}[\varphi_w(Z; s, a)\varphi_w(Z; s', a')]$ where we recall that $\varphi_w(Z; s, a)$ is defined as in Theorem 1. There does not appear to be a closed-form solution for the choice of t that minimizes V_t , so this must be solved for numerically.

Using marginal structural models to leverage geodesic interventions is a promising approach. In addition to possible reducing variance, we also expect that the estimators are less susceptible to unobserved confounding since the effect of unobserved confounding disappears as $t \to 0$. This is a potentially very rich area that deserves further exploration.

7 Simulations

In this section we validate our theoretical findings via simulation. We generate data such that

$$Y(a) = a + (X_1 + X_2) \exp(-a(X_1 + X_2)) + \varepsilon$$

where $A \mid X_1, X_2 \sim N_{[-1,5]}(X_1 + X_2, 1)$ is a truncated Normal, $X_1, X_2 \sim$ Exponential(1), and $\varepsilon \sim N(0,1)$, slightly modifying the simulation setting from other works in the causal inference literature (Hirano and Imbens, 2004; Moodie and Stephens, 2012; Balakrishnan et al., 2025). Here, we let the treatment be drawn from a truncated Normal to ensure the exponentially tilted intervention distribution becomes a point-mass at $a_* = 5$ as $t \to 1$. In this setting, we know that

$$\mathbb{E}[Y(a)] = a + \frac{2}{(1+a)^3}$$

so as $t \to 1$ the estimated incremental effect should approach $(5+2/6^3) \approx 5$ as the intervention distributions approach a point mass.

First, we compare the estimated incremental effect curves across the Wasserstein, exponential tilt, and Hellinger intervention distributions. By Figure 5, we can see that each incremental effect curve starts and ends at the same point, as each of the intervention distributions move along the path from $\mathbb{E}[Y]$ to $\mathbb{E}[Y(5)]$. However, each effect curve has a different curvature, corresponding to the different ways each path moves through probability space. Interestingly, the Wasserstein incremental effect curve appears to be linear, which further underscores that the Wasserstein geodesic provides a more interpretable intervention than other paths. Under the exponential tilt or Hellinger geodesic, for example, it is less clear how to interpret how far along the path to δ_{a_*} we are, or the meaning of any curvature in the effect curve. A promising direction for future research could be to characterize the slope and curvature of these paths, following other works considering derivative effects (Hines et al., 2021, 2024).

Figure 5: Incremental effect curves under each path between $\pi(a \mid x)$ and δ_{a_*}

Next, we compare the estimated effect curves, empirical coverage, the interval width of each intervention distribution. In what follows, we let n = 250, repeat each simulation 2,500

times, and use 5-fold cross-validation for estimation. We use flexible, ensemble models to predict $\mu(x,a)$ using the SuperLearner package in R (Polley et al., 2019). To reduce the computational burden of our simulation, we plug in the true density of $\pi(a \mid x)$. From Figure 6, we can see a few takeaways. First, is that the true effect curves shown in Figure 5 and estimated effect curves in Figure 6 are very similar, until t is sufficiently close to one. Then, the effect curves start to diverge. The reason for this is two-fold: first, the variance of the estimators is blowing up (as shown in the interval width plot), and second, there is more numerical instability close to t=1 when we calculate ratios such as $\nu_t(a\mid x)/\pi(a\mid x)$. In the case of the coverage plot, we can see that each of the estimators provides approximately $1-\alpha$ coverage until t=1/2, at which point coverage starts to drop. This is primarily an artifact of the sample size used (chosen for computational convenience); as n increases, it can be shown that coverage holds more uniformly across t.

Figure 6: Estimated incremental effect curves (left), empirical coverage (middle), and interval widths (right) for the Wasserstein geodesic, exponential tilt, and Hellinger geodesic.

8 Discussion & Conclusion

In this paper we introduced causal geodesy, a framework for defining smooth paths of stochastic interventions that interpolate between the observed treatment density and a point-mass. Each of these paths defines a causal effect curve that moves from a purely correlational quantity to a sharp causal intervention. In particular, we considered the shortest paths between these distributions, i.e. geodesics, with respect to the Wasserstein and Hellinger distances. We showed that the Wasserstein intervention has many favorable estimation properties, including double-robustness (in terms of $L_2(P)$ norms), flexible rates of nuisance function estimation, no reduction in the effective sample size, and a better minimax error rate than other paths. Meanwhile, the Hellinger geodesic relaxes positivity requirements and remains identifiable under weaker support conditions, while still maintaining many favorable estimation properties. Finally, we introduced novel marginal structural model estimators of the incremental effect curve that exploit the behavior of $\psi(t)$ as $t \to 1$ in order to obtain a low-variance estimate of sharp causal interventions.

Within the causal geodesy framework, there are many open questions and avenues for future work. First, in this paper we only consider a single intervention; it would be mathematically interesting and useful to extend this framework to longitudinal or time-varying interventions. Second, defining new paths (e.g. considering optimal transport maps around an obstacle) that are better able to naturally avoid holes in the treatment density would relax the dependence on positivity. Third, in this paper we only consider paths from P to Q where Q is a point-mass; however, generalizing this framework for any distribution Q would define novel causal effect curves. For example, in this setting if Q is defined to be a uniform distribution, it represents a "null" treatment density in which all exposures are distributed equally, which would provide an interesting point of comparison to the observational regime. Finally, it would be interesting to further explore dose-response curve estimation using geodesic interventions.

References

- L. Ambrosio, N. Gigli, and G. Savaré. *Gradient flows: in metric spaces and in the space of probability measures.* Springer Science & Business Media, 2008.
- S. Balakrishnan, E. Kennedy, and L. Wasserman. Conservative inference for counterfactuals. Journal of Causal Inference, 13(1):20230071, 2025. doi: doi:10.1515/jci-2023-0071. URL https://doi.org/10.1515/jci-2023-0071.
- J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the monge-kantorovich mass transfer problem. *Numerische Mathematik*, 84(3):375–393, 2000.
- Z. Branson, E. H. Kennedy, S. Balakrishnan, and L. Wasserman. Causal effect estimation after propensity score trimming with continuous treatments. arXiv preprint arXiv:2309.00706, 2023.
- Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Communications on pure and applied mathematics, 44(4):375–417, 1991.
- M. Busso, J. DiNardo, and J. McCrary. New evidence on the finite sample properties of propensity score reweighting and matching estimators. *Review of Economics and Statistics*, 96(5):885–897, 2014.
- F. Cavalletti. Optimal transport with branching distance costs and the obstacle problem. SIAM Journal on Mathematical Analysis, 44(1):454–482, 2012.
- V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and J. Robins. Double/debiased machine learning for treatment and structural parameters. *The Econometrics Journal*, 21(1):C1–C68, 01 2018. ISSN 1368-4221. doi: 10.1111/ectj.12097. URL https://doi.org/10.1111/ectj.12097.
- S. Chewi, T. Le Gouic, C. Lu, T. Maunu, P. Rigollet, and A. Stromme. Exponential ergodicity of mirror-langevin diffusions. In *Proceedings of the 34th International Conference on Neural Information Processing Systems*, NIPS '20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.
- S. Chewi, J. Niles-Weed, and P. Rigollet. Statistical optimal transport. arXiv preprint arXiv:2407.18163, 2024.
- I. Díaz and N. S. Hejazi. Causal mediation analysis for stochastic interventions. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 82(3):661–683, 2020.
- B. E. Hansen. Nonparametric conditional density estimation. *Unpublished manuscript*, 695, 2004.
- O. Hines, K. Diaz-Ordaz, and S. Vansteelandt. Parameterising the effect of a continuous exposure using average derivative effects. arXiv preprint arXiv:2109.13124, 2021.
- O. Hines, K. Diaz-Ordaz, and S. Vansteelandt. Optimally weighted average derivative effects, 2024. URL https://arxiv.org/abs/2308.05456.

- K. Hirano and G. W. Imbens. The Propensity Score with Continuous Treatments, chapter 7, pages 73-84. John Wiley & Sons, Ltd, 2004. ISBN 9780470090459. doi: https://doi.org/10.1002/0470090456.ch7. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/0470090456.ch7.
- N. Igbida et al. Optimal partial mass transportation and obstacle monge—kantorovich equation. Journal of Differential Equations, 264(10):6380–6417, 2018.
- L. V. Kantorovich. On a problem of monge. *Uspekhi Matematicheskikh Nauk*, 3(2):225–226, 1948.
- E. H. Kennedy. Nonparametric causal effects based on incremental propensity score interventions. *Journal of the American Statistical Association*, 114(526):645–656, 2019.
- E. H. Kennedy, M. M. Joffe, and D. S. Small. Optimal restricted estimation for more efficient longitudinal causal inference. *Statistics & probability letters*, 97:185–191, 2015.
- E. H. Kennedy, Z. Ma, M. D. McHugh, and D. S. Small. Non-parametric methods for doubly robust estimation of continuous treatment effects. *Journal of the Royal Statistical Society.* Series B (Statistical Methodology), 79(4):1229–1245, 2017. ISSN 13697412, 14679868. URL https://www.jstor.org/stable/26773159.
- L. Kish. Weighting for unequal pi. Journal of Official Statistics, 8(2):183, 1992.
- A. W. Levis, E. H. Kennedy, A. McClean, S. Balakrishnan, and L. Wasserman. Stochastic interventions, sensitivity analysis, and optimal transport. arXiv preprint arXiv:2411.14285, 2024.
- R. J. McCann. A convexity principle for interacting gases. *Advances in mathematics*, 128(1): 153–179, 1997.
- A. McClean, Z. Branson, and E. H. Kennedy. Nonparametric estimation of conditional incremental effects. *Journal of Causal Inference*, 12(1):20230024, 2024.
- G. Monge. Mémoire sur la théorie des déblais et des remblais. *Mem. Math. Phys. Acad. Royale Sci.*, pages 666–704, 1781.
- E. E. Moodie and D. A. Stephens. Estimation of dose—response functions for longitudinal data using the generalised propensity score. *Statistical Methods in Medical Research*, 21 (2):149–166, 2012. doi: 10.1177/0962280209340213. URL https://doi.org/10.1177/0962280209340213. PMID: 20442194.
- E. Polley, E. LeDell, C. Kennedy, S. Lendle, and M. van der Laan. Package 'superlearner'. *CRAN*, 2019.
- P. Rakshit, A. Levis, and L. Keele. Local effects of continuous instruments without positivity, 2024. URL https://arxiv.org/abs/2409.07350.
- J. M. Robins. Marginal structural models versus structural nested models as tools for causal inference. In *Statistical models in epidemiology*, the environment, and clinical trials, pages 95–133. Springer, 2000.
- J. M. Robins, M. A. Hernan, and B. Brumback. Marginal structural models and causal inference in epidemiology. 2000.

- D. B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies. *Journal of educational Psychology*, 66(5):688, 1974.
- K. Schindl, S. Shen, and E. H. Kennedy. Incremental effects for continuous exposures. arXiv preprint arXiv:2409.11967, 2024.
- A. Srivastava and E. P. Klassen. Functional and shape data analysis, volume 1. Springer, 2016.
- A. B. Tsybakov. Introduction to Nonparametric Estimation. Springer, 2009.
- A. W. van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.
- C. Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

SUPPLEMENTARY MATERIAL

Appendix A: Contains all proofs from the main text, including:

```
Appendix A.1: Proof of Lemma 1.
```

Appendix B: Contains derivations used in the simulations, including:

```
Appendix B.1: Derivation of a closed-form expression for the \theta defined in Section 7.
```

Appendix B.2: Derivation of a closed-form expression for $\frac{\partial}{\partial \theta} \mathbb{E}_{\nu_t} [\mu(X, A) \mid X]$.

A Proofs

A.1 Proof of Lemma 1

Proof: Proof of Lemma 1 follows directly from Lemma 6.2 of Chewi et al. (2024). That is, if μ is a density on \mathbb{R}^d , $T: \mathbb{R}^d \to \mathbb{R}^d$ is a diffeomorphism, and $\nu = T_{\#}\mu$, then the density of ν is given by

$$\nu(T(x)) = \frac{\mu(x)}{|\det \nabla T(x)|}.$$

Recall by Equation (5) that the Wasserstein geodesic between P and some target distribution Q is given by

$$\nu_t = ((1-t)id + tT^*)_{\#}P.$$

Let F_t represent the function $(1-t)\mathrm{id} + tT^*$, which is diffeomorphic for $t \neq 1$. In this setting $P = \pi(a \mid x)$ and $Q = \delta_{a_*}$. Since our target is a point mass at a_* , it follows that the optimal transport map T^* maps every point in the support of $\pi(a \mid x)$ to a_* . Thus, we now have that $F_t(a) = (1-t)a + ta_*$. So, as long as $t \neq 1$ we can see that

$$\nu_t(a \mid x) = \pi(F_t^{-1}(a) \mid x) \left| \frac{\partial}{\partial a} F_t^{-1}(a) \right| = \frac{1}{1 - t} \pi \left(\frac{a - ta_*}{1 - t} \mid x \right)$$

since $\frac{\partial}{\partial a}F_t^{-1}(a) = \frac{1}{1-t}$.

A.2 Proof of Theorem 1

Proof: Here, we derive the efficient influence function for the incremental effect under the Wasserstein intervention,

$$\nu_t(a \mid x) = \frac{1}{1-t} \pi \left(\frac{a - ta_*}{1-t} \mid x \right),$$

which is defined by $\psi_w(t) = \int_x \int_a \mu(x, a) \nu_t(a \mid x) p(x) da dx$. Thus, we can derive a candidate influence function for $\mathbb{IF}(\psi_w(t))$ by evaluating

$$\int_{\mathcal{T}} \int_{a} \Big\{ \mathbb{IF}(\mu(x,a)) \nu_{t}(a \mid x) p(x) + \mu(x,a) \mathbb{IF}(\nu_{t}(a \mid x)) p(x) + \mu(x,a) \nu_{t}(a \mid x) \mathbb{IF}(p(x)) \Big\} da dx$$

From here, we use known derivations of the following influence functions,

$$\mathbb{IF}(\mu(x,a)) = \frac{\delta_X(x)\delta_A(a)}{\pi(a\mid x)p(x)} \Big(Y - \mu(x,a)\Big)$$
 (i)

$$\mathbb{IF}(\pi(a \mid x)) = \frac{\delta_X(x)}{p(x)} \left(\delta_A(a) - \pi(a \mid x)\right) \tag{ii}$$

$$\mathbb{IF}(p(x)) = \delta_X(x) - p(x), \tag{iii}$$

where we say $\delta_X(x)$ is a point-mass at X = x and similarly, $\delta_A(a)$ at A = a. Clearly, by plugging in (i) to the first term we can see that

$$\int_x \int_a \left\{ \frac{\delta_X(x)\delta_A(a)}{\pi(a\mid x)p(x)} \Big(Y - \mu(x,a) \Big) \right\} \nu_t(a\mid x)p(x)da \, dx = \frac{\nu_t(A\mid X)}{\pi(A\mid X)} \Big(Y - \mu(X,A) \Big).$$

For the second term, we make a change in variables, $z = (a - ta_*)/(1 - t)$. This allows us to write

$$\int_{x} \int_{a} \mu(x, a) \mathbb{IF}(\nu_{t}(a \mid x)) p(x) da dx = \frac{1}{1 - t} \int_{x} \int_{z} \mu(x, \lambda_{z}) \mathbb{IF}(\pi_{t}(z \mid x)) p(x) dz dx$$

where we define $\lambda_z = (1-t)z + ta_*$. Then, plugging in (ii), we find

$$\frac{1}{1-t} \int_{x} \int_{z} \mu(x,\lambda_{z}) \mathbb{IF}(\pi(z\mid x)) p(x) dz dx = \mu(X,\lambda_{A}) - \int_{z} \mu(X,\lambda_{z}) \pi(z\mid X) dz$$
$$= \mu(X,\lambda_{A}) - \int_{a} \mu(X,a) \nu_{t}(a\mid X) da.$$

Finally, note that

$$\int_{x} \int_{a} \mu(x, \lambda_{a}) \nu_{t}(a \mid x) \mathbb{IF}(p(x)) da dx = \int_{x} \int_{a} \mu(x, \lambda_{a}) \nu_{t}(a \mid x) \Big\{ \delta_{X}(x) - p(x) \Big\} da dx$$
$$= \int_{a} \mu(X, a) \nu_{t}(a \mid X) da - \psi_{w}(t).$$

Putting everything together, we can see that our candidate influence function is given by

$$\mathbb{IF}(\psi) = \left\{ \frac{\nu_t(A \mid X)}{\pi(A \mid X)} \left(Y - \mu(X, A) \right) + \mu(X, \lambda_A) - \psi_w(t) \right\}.$$

From here, we want to show that the von Mises expansion is a second order product of errors. Recall that for two distributions, P and \widehat{P} , the remainder term in the von Mises expansion is given by

$$R_2(\widehat{P}, P) = \mathbb{E}_P \left[\phi(Z; \widehat{P}) - \psi(P) \right]$$

where $\phi(Z; P) = \varphi(Z; P) - \psi(P)$. For notational convenience, we use the shorthand script $\pi_a = \pi(a \mid X)$, $\mu_a = \mu(X, a)$, and $\nu_t = \nu_t(a \mid X)$. Then, it follows that

$$R_2(\widehat{P}, P) = \mathbb{E}\left[\frac{\widehat{\nu}_t(A \mid X)}{\widehat{\pi}(A \mid X)} \left(Y - \widehat{\mu}(X, A)\right) + \widehat{\mu}(X, \lambda_A) - \psi(P)\right].$$

From here, we make a few manipulations. First, by the law of iterated expectations,

$$\mathbb{E}\left[\frac{\widehat{\nu}_{t}(A\mid X)}{\widehat{\pi}(A\mid X)}\Big(Y-\widehat{\mu}(X,A)\Big)\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{\widehat{\nu}_{t}(A\mid X)}{\widehat{\pi}(A\mid X)}\Big(Y-\widehat{\mu}(X,A)\Big)\right]\mid X,A\right]$$

$$= \mathbb{E}\left[\mathbb{E}\left[\frac{\widehat{\nu}_{t}(A\mid X)}{\widehat{\pi}(A\mid X)}\Big(\mu(X,A)-\widehat{\mu}(X,A)\Big)\right]\mid X,A\right]$$

$$= \mathbb{E}\left[\frac{\widehat{\nu}_{t}(A\mid X)}{\widehat{\pi}(A\mid X)}\Big(\mu(X,A)-\widehat{\mu}(X,A)\Big)\right]$$

$$= \mathbb{E}\left[\int_{a}\frac{\widehat{\nu}_{t}}{\widehat{\pi}_{a}}\left(\mu_{a}-\widehat{\mu}_{a}\right)\pi_{a}da\right].$$

Next, observe that

$$\mathbb{E}\Big[\widehat{\mu}(X,\lambda_A) - \psi(P)\Big] = \mathbb{E}\left[\int_a \widehat{\mu}(X,\lambda_a)\pi_a da - \psi(P)\right]$$
$$= \mathbb{E}\left[\int_a \widehat{\mu}_a \nu_t da - \psi(P)\right]$$
$$= \mathbb{E}\left[\int_a (\widehat{\mu}_a - \mu_a) \nu_t da\right].$$

Now, putting everything together, it follows that

$$R_{2}(\widehat{P}, P) = \mathbb{E}\left[\int_{a} \frac{\widehat{\nu}_{t}}{\widehat{\pi}_{a}} \left(\mu_{a} - \widehat{\mu}_{a}\right) \pi_{a} da + \int_{a} \left(\widehat{\mu}_{a} - \mu_{a}\right) \nu_{t} da\right]$$

$$= \mathbb{E}\left[\int_{a} \left(\mu_{a} - \widehat{\mu}_{a}\right) \left(\frac{\widehat{\nu}_{t}}{\widehat{\pi}_{a}} \pi_{a} - \nu_{t}\right) da\right]$$

$$= \mathbb{E}\left[\int_{a} \left(\mu_{a} - \widehat{\mu}_{a}\right) \left(\frac{\widehat{\nu}_{t}}{\widehat{\pi}_{a}} - \frac{\nu_{t}}{\pi_{a}}\right) \pi_{a} da\right].$$

Since we have arrived at a second-order product of differences, we also confirm that our candidate influence function is indeed the efficient influence function. \Box

A.3 Proof of Corollary 1

Proof: First, note that since the efficient influence function is mean zero, we just need to evaluate $\mathbb{E}[\varphi_w^2(Z;t)]$ in order to obtain the nonparametric efficiency bound, where

$$\varphi_w(Z;t) = \frac{\nu_t(A \mid X)}{\pi(A \mid X)} \Big(Y - \mu(X, A) \Big) + \mu(X, \lambda_A) - \psi_w(t)$$

and $\lambda_A = (1-t)A + ta_*$. Immediately, we can see that the cross terms are zero since

$$\mathbb{E}[Y - \mu(X, A)] = \mathbb{E}[\mathbb{E}[Y - \mu(X, A) \mid X, A]] = 0,$$

and therefore, for any function f(X,A), it is clear that

$$\mathbb{E}[f(X,A)(Y - \mu(X,A))] = \mathbb{E}[f(X,A)\mathbb{E}[(Y - \mu(X,A) \mid X,A)] = 0.$$
 (12)

Next, it follows that the first term simplifies to

$$\mathbb{E}\left[\left(\frac{\nu_t(A\mid X)}{\pi(A\mid X)}\left(Y - \mu(X, A)\right)\right)^2\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{\nu_t^2(A\mid X)}{\pi^2(A\mid X)}\left(Y - \mu(X, A)\right)^2 \mid X, A\right]\right]$$
$$= \mathbb{E}\left[\frac{\nu_t^2(A\mid X)}{\pi^2(A\mid X)}\mathbb{E}\left[\left(Y - \mu(X, A)\right)^2 \mid X, A\right]\right]$$
$$= \mathbb{E}\left[\frac{\nu_t^2(A\mid X)}{\pi^2(A\mid X)}\mathbb{V}(Y\mid X, A)\right].$$

Finally, observe that

$$\mathbb{E}\left[\left(\mu(X,\lambda_{A}) - \psi_{w}(t)\right)^{2}\right] = \mathbb{E}\left[\int_{a}\left(\mu(X,\lambda_{a}) - \mathbb{E}\left[\int_{\mathcal{A}}\mu(X,a)\nu_{t}(a\mid X)da\right]\right)^{2}\pi(a\mid X)da\right]$$

$$= \mathbb{E}\left[\int_{u}\left(\mu(X,u) - \mathbb{E}\left[\int_{\mathcal{A}}\mu(X,a)\nu_{t}(a\mid X)da\right]\right)^{2}\nu_{t}(u\mid X)du\right]$$

$$= \mathbb{E}\left[\mathbb{V}_{\nu_{t}}(\mu(X,A)\mid X)\right]$$

where in the second equality we use the change of variables $u = (1 - t)a + ta_*$. Putting everything together we can see that the variance of the efficient influence estimator is given by

$$\mathbb{V}(\varphi_w(Z;t)) = \mathbb{E}\left[\left(\frac{\nu_t(A\mid X)}{\pi(A\mid X)}\right)^2 \mathbb{V}(Y\mid X,A) + \mathbb{V}_{\nu_t}(\mu(X,A)\mid X)\right].$$

A.4 Proof of Proposition 2

Proof: In this proof, our goal is to derive a lower bound for the $L_2(P)$ norm

$$\left| \left| \frac{\widehat{\rho}_t}{\widehat{\pi}} - \frac{\rho_t}{\pi} \right| \right|_2^2 = \mathbb{E} \left[\int_a \left(\frac{\widehat{\rho}_{t,a}}{\widehat{\pi}_a} - \frac{\rho_{t,a}}{\pi_a} \right)^2 \pi_a da \right]$$

in terms of the χ^2 divergence between ρ_t and π . For notational convenience, define $\hat{f}_a = \hat{\rho}_{t,a}/\hat{\pi}_a$ and $f_a = \rho_{t,a}/\pi_a$. Then, we can see that

$$\int_{a} \left(\frac{\widehat{\rho}_{t,a}}{\widehat{\pi}_{a}} - \frac{\rho_{t,a}}{\pi_{a}}\right)^{2} \pi_{a} da = \int_{a} \left(\widehat{f}_{a} - f_{a}\right)^{2} \pi_{a} da
= \int_{a} \left(\left(\widehat{f}_{a} - 1\right) - \left(f_{a} - 1\right)\right)^{2} \pi_{a} da
= \int_{a} \left(\widehat{f}_{a} - 1\right)^{2} \pi_{a} da + \int_{a} (f_{a} - 1)^{2} \pi_{a} da - 2 \int_{a} (\widehat{f}_{a} - 1)(f_{a} - 1) \pi_{a} da
= \chi^{2}(\widehat{\rho}_{t} \mid\mid \widehat{\pi}) + \chi^{2}(\rho_{t} \mid\mid \pi) - 2 \int_{a} (\widehat{f}_{a} - 1)(f_{a} - 1) \pi_{a} da$$

where the last equality follows by the definition of the χ^2 divergence. From here, observe that by the Cauchy-Schwarz inequality,

$$\int_{a} (\widehat{f}_{a} - 1)(f_{a} - 1)\pi_{a} da \leq \left(\int_{a} (\widehat{f}_{a} - 1)^{2} \pi_{a} da\right)^{1/2} \left(\int_{a} (f_{a} - 1)^{2} \pi_{a} da\right)^{1/2} \\
= \sqrt{\chi^{2}(\widehat{\rho}_{t} \mid\mid \widehat{\pi}) \chi^{2}(\rho_{t} \mid\mid \pi)}.$$

Consequently, it follows that

$$\int_{a} \left(\frac{\widehat{\rho}_{t,a}}{\widehat{\pi}_{a}} - \frac{\rho_{t,a}}{\pi_{a}} \right)^{2} \pi_{a} da \geq \chi^{2}(\widehat{\rho}_{t} \parallel \widehat{\pi}) + \chi^{2}(\rho_{t} \parallel \pi) - 2\sqrt{\chi^{2}(\widehat{\rho}_{t} \parallel \widehat{\pi})}\chi^{2}(\rho_{t} \parallel \pi)}$$

$$= \left(\sqrt{\chi^{2}(\widehat{\rho}_{t} \parallel \widehat{\pi})} - \sqrt{\chi^{2}(\rho_{t} \parallel \pi)} \right)^{2}$$

$$= \left(1 - \sqrt{\frac{\chi^{2}(\widehat{\rho}_{t} \parallel \widehat{\pi})}{\chi^{2}(\rho_{t} \parallel \pi)}} \right)^{2} \chi^{2}(\rho_{t} \parallel \pi)$$

and so

$$\left\| \left\| \frac{\widehat{\rho}_t}{\widehat{\pi}} - \frac{\rho_t}{\pi} \right\|_2^2 \ge \mathbb{E} \left[\left(1 - \sqrt{\frac{\chi^2(\widehat{\rho}_t \parallel \widehat{\pi})}{\chi^2(\rho_t \parallel \pi)}} \right)^2 \chi^2(\rho_t \parallel \pi) \right]$$

A.5 Proof of Theorem 2

Proof: In this proof our goal is to establish a minimax lower bound for the estimation error of the incremental effect under some general stochastic intervention

$$q(a \mid x) = \frac{f(\pi(a \mid x))}{\int_{a} f(\pi(a \mid x)) da}$$
(13)

where $f(\cdot)$ is some smooth function. Thus, our proof will follow closely to that of Theorem 2 of Schindl et al. (2024). Let P_0 and P_1 denote distributions in \mathcal{P} such that $P_0 = \bigotimes_{i=1}^n P_{0i}$ and $P_1 = \bigotimes_{i=1}^n P_{1i}$. By Tsybakov (2009) we know that if

$$H^2(P_0, P_1) \le \alpha < 2$$

and $\psi(p_{0i}) - \psi(p_{1i}) \ge s > 0$ for a functional $\psi : \mathcal{P} \to \mathbb{R}$ for all i = 1, ..., n then,

$$\inf_{\widehat{\psi}} \sup_{P \in \mathcal{P}} \mathbb{E}_P \left[\ell \left(\widehat{\psi} - \psi(P) \right) \right] \ge \ell(s/2) \left(\frac{1 - \sqrt{\alpha(1 - \alpha/4)}}{2} \right)$$

for any monotonic non-negative loss function ℓ . In order to prove this lower bound, our goal is to define a null density and fluctuated alternative that are different enough to exhibit some separation in the incremental effect ψ , but similar enough that they cannot be reliably distinguished from each other. Thus, for some $\varepsilon > 0$, we consider

$$p_0(z) = p(y \mid x, a)p(a \mid x)p(x)$$

$$p_1(z) = \left[p(y \mid x, a)(1 + \varepsilon\phi_y(z; p))\right]p(a \mid x)p(x)$$

where we define

$$\phi_y(z;p) = \frac{q(a \mid x)}{p(a \mid x)} (y - \mu(x,a))$$

as well as

$$\phi_{q,\mu}(z;p) = q(a \mid x) \frac{f'(p(a \mid x))}{f(p(a \mid x))} \left(\mu(x,a) - \int_{a} \mu(x,a)q(a \mid x)da \right)$$

$$\phi_{c}(z;p) = \frac{\int_{a} \mu(x,a)f'(p(a \mid x))p(a \mid x)da}{\int_{a} f(p(a \mid x))da} - \int_{a} \mu(x,a)q(a \mid x)da \left(\frac{\int_{a} f'(p(a \mid x))p(a \mid x)da}{\int_{a} f(p(a \mid x))da} \right)$$

$$\phi_{\psi}(z;p) = \int \mu(x,a)q(a \mid x)da - \psi$$

such that $\varphi(z;p) = \phi_y(z;p) + \phi_{q,\mu}(z;p) - \phi_c(z;p) + \phi_{\psi}(z;p)$. With these definitions in place, we will first evaluate the functional separation. Applying the von Mises expansion, we can see that

$$\psi(p_0) - \psi(p_1) - R_2(p_0, p_1) = -\int \varphi(z; p_0) p_1(z) dz.$$

Recall that by Schindl et al. (2024), the remainder from the von Mises expansion $R_2(p_0, p_1)$ under the general stochastic intervention defined in Equation (13) is given by $\mathbb{E}[R_1 - R_2 + R_3 + R_4 \cdot R_5]$ where

$$R_{1} = \frac{1}{\int_{a} f(p_{0}(a \mid X)) da} \int_{a} \left(\frac{f(p_{0}(a \mid X))}{p_{0}(a \mid X)} - \frac{f(p_{1}(a \mid X))}{p_{1}(a \mid X)} \right) \left(\mu_{1}(X, a) - \mu_{0}(X, a) \right) p_{1}(a \mid X) da$$

$$R_{2} = \frac{\int_{a} f(p_{0}(a \mid X)) \mu_{0}(X, a) da}{\int_{a} f(p_{1}(a \mid X)) da \left(\int_{a} f(p_{0}(a \mid X)) da \right)^{2}} \left(\int_{a} \left(f(p_{1}(a \mid X)) - f(p_{0}(a \mid X)) \right) da \right)^{2}$$

$$R_{3} = \frac{\int_{a} f(p_{0}(a \mid X)) \mu_{0}(a \mid X) da}{\left(\int_{a} f(p_{0}(a \mid X)) da \right)^{2}} \int_{a} r(a, X) da - \frac{1}{\int_{a} f(p_{0}(a \mid X)) da} \int_{a} r(a, X) \mu_{0}(X, a) da$$

$$R_{4} = \int_{a} \left(f(p_{1}(a \mid X)) \mu_{1}(X, a) - f(p_{0}(a \mid X)) \mu_{0}(X, a) \right) da$$

$$R_{5} = \left(\frac{1}{\int_{a} f(p_{0}(a \mid X)) da} - \frac{1}{\int_{a} f(p_{1}(a \mid X)) da} \right)$$

and r(a, X) is defined by the Taylor expansion where the difference $f(p_1(a \mid X)) - f(p_0(a \mid X))$ is equal to

$$f'(p_0(a \mid X))(p_1(a \mid X) - p_0(a \mid X)) + \underbrace{f''(p^*(a \mid X))(p_1(a \mid X) - p_0(a \mid X))^2}_{r(a,X)}$$

where $p^*(a \mid X)$ is between $p_1(a \mid X)$ and $p_0(a \mid X)$. Importantly, it follows that $R_2(p_0, p_1) = 0$ since under the null and fluctuated densities $p_0(a \mid X) = p_1(a \mid X)$, so all terms evaluate to zero. Next, by plugging in the definition of $p_1(z)$ we can see that

$$-\int \varphi(z; p_0) p_1(z) dz = -\int \varphi(z; p_0) \Big[p(y \mid x, a) (1 + \varepsilon \phi_y(z; p)) \Big] p(a \mid x) p(x) dz$$

$$= -\int \varphi(z; p) p(z) dz - \varepsilon \int \Big(\varphi(z; p_0) \phi_y(z; p) \Big) p(y \mid x, a) p(a \mid x) p(x) dz$$

$$= -\varepsilon \int \Big(\varphi(z; p_0) \phi_y(z; p) \Big) p(y \mid x, a) p(a \mid x) p(x) dz$$

where the final equality follows since $\varphi(\cdot)$ is mean-zero. Next, by expanding out $\varphi(z; p_0)\phi_y(z; p)$ it follows that

$$-\varepsilon \int \left(\varphi(z; p_0)\phi_y(z; p)\right) p(y \mid x, a) p(a \mid x) p(x) dz = -\varepsilon \int \phi_y(z; p)^2 p(z) dz,$$

since each of the cross terms are zero. That is,

$$\int \phi_y(z; p) \phi_{q,\mu} p(z) dz = 0$$

$$\int \phi_y(z; p) \phi_{\psi} p(z) dz = 0$$

$$\int \phi_y(z; p) \phi_c p(z) dz = 0.$$

Thus, the functional separation evaluates to

$$|\psi(p_0) - \psi(p_1)| = \varepsilon \left| \int \phi_y(z; p)^2 p(z) dz \right|.$$

From here, we simply need to bound the integral of $\phi_y(z;p)^2$. Observe that

$$\int \phi_y(z;p)^2 p(z) dz = \mathbb{E}\left[\left(\frac{q(A\mid X)}{p(A\mid X)}\right)^2 \mathbb{V}(Y\mid X,A)\right]$$
$$\geq \sigma_{\min}^2 \mathbb{E}\left[\left(\frac{q(A\mid X)}{p(A\mid X)}\right)^2\right]$$
$$= \sigma_{\min}^2 \left(1 + \mathbb{E}\left[\chi^2(q\mid p)\right]\right)$$

where we assume $\sigma_{\min}^2 \leq \mathbb{V}(Y \mid X = x, A = a)$ for all x and a.

Now that we have satisfied the functional separation requirement, we consider the χ^2 divergence between the null density and fluctuated alternative. This will be useful as the χ^2 divergence upper bounds the Hellinger distance, such that for P_0 and P_1 , $H^2(P_0, P_1) \leq$

 $\sqrt{\chi^2(P_0, P_1)}$. Thus, by proving $\sqrt{\chi^2(P_0, P_1)} < \alpha$, for some $\alpha < 2$, then this inequality must also hold for $H^2(P_0, P_1)$. However, since for product measures $P_0 = \bigotimes_{i=1}^n p_{0i}$ and $P_1 = \bigotimes_{i=1}^n p_{1i}$,

$$\chi^{2}(P_{0}, P_{1}) = \prod_{i=1}^{n} \left(1 + \chi^{2}(p_{0i}, p_{1i}) \right) - 1,$$

it will be more convenient to work with a log-transformed χ^2 divergence. Thus, we may equivalently show that $\log(\prod_{i=1}^n (1 + \chi^2(p_{0i}, p_{1i}))) < \log(\alpha^2 + 1)$ for some $\alpha < 2$. From here, following the same arguments as Schindl et al. (2024), it can be shown that

$$\chi^{2}(p_{1}, p_{0}) = \varepsilon^{2} \int \phi_{y}(z; p)^{2} p_{0}(z) dz \leq (\varepsilon \sigma_{\max})^{2} \left(1 + \mathbb{E}\left[\chi^{2}(q \mid\mid p)\right]\right)$$

where here we assume $\mathbb{V}(Y \mid X = x, A = a) \leq \sigma_{\max}^2$ for all x and a. Thus, it follows that

$$\log \left(\prod_{i=1}^{n} \left(1 + \chi^{2}(p_{0i}, p_{1i}) \right) \right) = \sum_{i=1}^{n} \log \left(1 + \chi^{2}(p_{0i}, p_{1i}) \right)$$

$$\leq n \log \left(1 + \varepsilon^{2} \sigma_{\max}^{2} \left(1 + \mathbb{E} \left[\chi^{2}(q \mid\mid p) \right] \right) \right)$$

$$\leq n \varepsilon^{2} \sigma_{\max}^{2} \left(1 + \mathbb{E} \left[\chi^{2}(q \mid\mid p) \right] \right)$$

where the last inequality follows since for all $x \in \mathbb{R}$, $\log(1+x) \leq x$. From here, we can see that

$$n\varepsilon^2 \sigma_{\max}^2 \left(1 + \mathbb{E}\left[\chi^2(q \mid\mid p)\right]\right) < \log(\alpha^2 + 1)$$

for some $\alpha < 2$, which clearly holds when

$$\varepsilon^2 < \frac{\log(\alpha^2 + 1)}{n\sigma_{\max}^2 \left(1 + \mathbb{E}\left[\chi^2(q \mid\mid p)\right]\right)}.$$

Therefore, we may set $\varepsilon^2 = (n\sigma_{\max}^2 \left(1 + \mathbb{E}\left[\chi^2(q\mid\mid p)\right]\right))^{-1}$ to achieve the inequality. Putting everything together, since

$$s = \varepsilon \sigma_{\min}^{2} \left(1 + \mathbb{E} \left[\chi^{2}(q \parallel p) \right] \right) = \frac{\sigma_{\min}^{2} \left(1 + \mathbb{E} \left[\chi^{2}(q \parallel p) \right] \right)}{\sqrt{n \sigma_{\max}^{2} \left(1 + \mathbb{E} \left[\chi^{2}(q \parallel p) \right] \right)}} = \frac{\sigma_{\min}^{2}}{\sigma_{\max}} \sqrt{\frac{1 + \mathbb{E} \left[\chi^{2}(q \parallel p) \right]}{n}}$$

we can see that

$$\inf_{\widehat{\psi}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P} \left[\ell \left(\widehat{\psi} - \psi(\delta) \right) \right] \ge \ell \left(\frac{1}{2} \cdot \frac{\sigma_{\min}^{2}}{\sigma_{\max}} \sqrt{\frac{1 + \mathbb{E} \left[\chi^{2}(q \mid\mid p) \right]}{n}} \right) \left(\frac{1 - \sqrt{\alpha(1 - \alpha/4)}}{2} \right).$$

From here, we shift our focus to absolutely continuous paths between $\pi(a \mid x)$ and δ_{a_*} . Thus, we assume the stochastic intervention defined in Equation (13) can be parameterized by t, i.e.

$$q_t(a \mid x) = \frac{f_t(\pi(a \mid x))}{\int_a f_t(\pi(a \mid x)) \ da}.$$

Then, we consider the squared error across all $t \neq 1$ as our loss function, as this described the error across the entire incremental effect curve. Then, it follows that

$$\inf_{\widehat{\psi}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P} \left[\left(\int_{t} \left(\widehat{\psi}_{t} - \psi_{P}(t) \right)^{2} dt \right)^{1/2} \right] \geq \frac{C}{\sqrt{n}} \sqrt{\int_{t} \left(1 + \mathbb{E} \left[\chi^{2}(q_{t} \mid\mid \pi) \right] \right) dt}$$

where

$$C = \frac{1}{2} \cdot \frac{\sigma_{\min}^2}{\sigma_{\max}} \left(\frac{1 - \sqrt{\alpha(1 - \alpha/4)}}{2} \right).$$

A.6 Proof of Lemma 2 and Theorem 3

In order to proceed with the proof of Theorem 3, we first establish and prove a technical lemma that upper bounds the derivative of the χ^2 divergence between $\pi(a \mid x)$ and $\rho_t(a \mid x)$ with respect to t, i.e. the time derivative.

A.6.1 Proof of Lemma 2

Lemma 2. Let $r_t(a \mid x) = \rho_t(a \mid x)/\pi(a \mid x)$ be the ratio between the reference density $\pi(a \mid x)$ and the absolutely continuous path $\rho_t(a \mid x)$. Then, the time derivative of the χ^2 divergence between ρ_t and π is bounded above by

$$\frac{\partial}{\partial t} \left\{ 1 + \chi^2(\rho_t \mid\mid \pi) \right\} \le 2 \left\| \vec{v}_t(a \mid x) \right\|_{L^2(\rho_t)} \cdot \left\| \nabla r_t(a \mid x) \right\|_{L^2(\rho_t)}.$$

where $\vec{v}_t(a \mid x)$ is the velocity.

Proof: Our goal here is to understand how the expression $\mathbb{E}\left[1+\chi^2(\rho_t\mid\mid\pi)\right]$ grows with t. First, recall that for a fixed x,

$$1 + \chi^2(\rho_t \mid\mid \pi) = \int_a \frac{\rho_t^2(a \mid x)}{\pi(a \mid x)} da = \int_a r_t^2(a \mid x) \pi(a \mid x).$$

where $r_t(a \mid x) = \rho_t(a \mid x)/\pi(a \mid x)$. Thus, we can see that

$$\frac{\partial}{\partial t} \left\{ 1 + \chi^2(\rho_t \mid\mid \pi) \right\} = 2 \int_a r_t(a \mid x) \left\{ \frac{\partial}{\partial t} r_t(a \mid x) \right\} \pi(a \mid x) da$$
$$= -2 \int_a r_t(a \mid x) \nabla \cdot (\rho_t(a \mid x) \vec{v}_t(a \mid x)) da$$

where $\vec{v}_t(a \mid x)$ is a velocity field and the last equality follows since $\rho_t(a \mid x)$ is an absolutely continuous path, and therefore must satisfy the continuity equation $\frac{\partial}{\partial t}\rho_t + \nabla \cdot (\rho_t \vec{v}_t) = 0$, and so,

$$\left\{ \frac{\partial}{\partial t} r_t(a \mid x) \right\} = \frac{1}{\pi(a \mid x)} \left\{ \frac{\partial}{\partial t} \rho_t(a \mid x) \right\} = -\frac{\nabla \cdot (\rho_t(a \mid x) \vec{v}_t(a \mid x))}{\pi(a \mid x)}.$$

From here, note that since our path is defined by the flow of probability across the support of a (and not x), the divergence operator $\nabla \cdot (\rho_t(a \mid x)\vec{v}_t(a \mid x))$ simplifies to a partial derivative with respect to a. Therefore, we may simply integrate by parts to see that

$$\int_{a} r_{t}(a \mid x) \nabla \cdot (\rho_{t}(a \mid x) \vec{v}_{t}(a \mid x)) da = \left\{ \left[r_{t}(a \mid x) \cdot \rho_{t}(a \mid x) \vec{v}_{t}(a \mid x) \right]_{0}^{1} - \int_{a} (\rho_{t}(a \mid x) \vec{v}_{t}(a \mid x)) \nabla r_{t}(a \mid x) da \right\}$$

where without loss of generality we assume $a \in [0, 1]$. Next, observe that

$$\left[r_t(a\mid x)\cdot\rho_t(a\mid x)\vec{v}_t(a\mid x)\right]_0^1=0$$

since there is no mass flowing out of the boundaries, and therefore the velocity is zero. Putting everything together, we can see that the time derivative of $1 + \chi^2(\rho_t \mid\mid \pi)$ is given by

$$\frac{\partial}{\partial t} \left\{ 1 + \chi^2(\rho_t \parallel \pi) \right\} = 2 \int_a (\rho_t(a \mid x) \vec{v_t}(a \mid x)) \nabla r_t(a \mid x) da.$$

Next, observe that by a simple application of the Cauchy-Schwarz inequality it follows that

$$\frac{\partial}{\partial t} \left\{ 1 + \chi^2(\rho_t \mid\mid \pi) \right\} \le 2 \left(\int_a v_t^2(a \mid x) \rho_t(a \mid x) da \right)^{1/2} \left(\int_a |\nabla r_t(a \mid x)|^2 \rho_t(a \mid x) da \right)^{1/2} \\
= 2 \left| |\vec{v}_t(a \mid x)| \right|_{L^2(\rho_t)} \cdot ||\nabla r_t(a \mid x)||_{L^2(\rho_t)}.$$

Consequently, by applying the Cauchy-Schwarz inequality a second time we arrive at a final bound:

$$\mathbb{E}\left[1 + \chi^{2}(\rho_{t} \mid\mid \pi)\right] \leq \mathbb{E}\left[2\left|\left|\vec{v}_{t}(a \mid X)\right|\right|_{L^{2}(\rho_{t})} \cdot \left|\left|\nabla r_{t}(a \mid X)\right|\right|_{L^{2}(\rho_{t})}\right]$$

$$\leq 2\mathbb{E}\left[\left|\left|\vec{v}_{t}\right|\right|_{L^{2}(\rho_{t})}^{2}\right]^{1/2} \mathbb{E}\left[\left|\left|\nabla r_{t}\right|\right|_{L^{2}(\rho_{t})}^{2}\right]^{1/2}.$$

A.6.2 Proof of Theorem 3

Proof: Our goal in this proof is to upper and lower bound

$$\int_0^s \left(1 + \mathbb{E} \left[\chi^2(\rho_t \mid\mid \pi) \right] dt \right) = \int_0^s \mathbb{E} \left[\int_a \frac{\rho_t^2(a \mid X)}{\pi(a \mid X)} da \right] dt \tag{14}$$

for some $0 \le s < 1$ to show that Equation (14) is well behaved when ρ_t is a geodesic. Observe that we may write Equation (14) as

$$F(s) = \int_0^s \mathbb{E}\left[G(t)\right] dt \tag{15}$$

where $G(t) = \int_a \frac{\rho_t^2(a|X)}{\pi(a|X)} da$. Furthermore, note that by the fundamental theorem of calculus, it follows that

$$G(b) - G(a) = \int_{a}^{b} \frac{\partial}{\partial t} G(t) dt.$$

Therefore, we may substitute into Equation (15) to see that

$$F(s) = \int_0^s \mathbb{E}\left[G(0) + \int_0^t \frac{\partial}{\partial u} G(u) du\right] dt.$$

From here, plugging in the upper bound of the time-derivative of G(u) as shown in Lemma 2, it follows that

$$\begin{split} F(s) &\leq \int_0^s \mathbb{E}\left[G(0)\right] dt + 2 \int_0^s \mathbb{E}\left[\int_0^t ||\vec{v}_u(a \mid X)||_{L^2(\rho_u)} \cdot ||\nabla r_u(a \mid X)||_{L^2(\rho_u)} du\right] dt \\ &= s \mathbb{E}\left[G(0)\right] + 2 \int_0^s (s-u) \mathbb{E}\left[||\vec{v}_u||_{L^2(\rho_u)} \cdot ||\nabla r_u||_{L^2(\rho_u)}\right] du \\ &\leq s \mathbb{E}\left[G(0)\right] + 2 \int_0^s (s-u) \mathbb{E}\left[||\vec{v}_u||_{L^2(\rho_u)}^2\right]^{1/2} \mathbb{E}\left[||\nabla r_u||_{L^2(\rho_u)}^2\right]^{1/2} du \end{split}$$

where the second equality follows by Fubini's theorem wherein we interchange the order of integration and the last line follows by applying the Cauchy-Schwarz inequality. From here, we bound the expectation containing ∇r_u . Observe that

$$\mathbb{E}\left[||\nabla r_u||_{L^2(\rho_u)}^2\right]^{1/2} = \mathbb{E}\left[\int_a |\nabla r_t(a\mid X)|^2 \rho_t(a\mid X) da\right]^{1/2} \le \mathbb{E}\left[\sup_a |\nabla r_u(a\mid X)|^2\right]^{1/2}$$

since $\int_a \rho_t(a \mid x) = 1$. This yields an upper bound of

$$F(s) \le s\mathbb{E}\left[G(0)\right] + 2\sup_{u} ||\nabla r_u||_{2,\infty} \int_0^s (s-u)\mathbb{E}\left[||\vec{v}_u||_{L^2(\rho_u)}^2\right]^{1/2} du.$$

Finally, note that $s\mathbb{E}\left[G(0)\right] \leq 1$ and furthermore, by applying the Cauchy-Schwarz inequality, that

$$\int_{0}^{s} (s-u) \mathbb{E}\left[||\vec{v}_{u}||_{L^{2}(\rho_{u})}^{2}\right]^{1/2} du \leq \left(\int_{0}^{s} (s-u)^{2} du\right)^{1/2} \left(\int_{0}^{s} \mathbb{E}\left[||\vec{v}_{u}||_{L^{2}(\rho_{u})}^{2}\right] du\right)^{1/2} \\
\leq \frac{1}{2} \left(\int_{0}^{s} \mathbb{E}\left[||\vec{v}_{u}||_{L^{2}(\rho_{u})}^{2}\right] du\right)^{1/2}.$$

Putting everything together, we have that

$$F(s) \le 1 + \sup_{s} ||\nabla r_s||_{2,\infty} \left(\int_0^s \mathbb{E} \left[||\vec{v}_t||_{L^2(\rho_t)}^2 \right] dt \right)^{1/2}.$$

In order to derive a lower bound on Equation (14), we simply apply an already established inequality between the χ^2 divergence the Wasserstein distance. By Theorem 3 in the supplementary material of Chewi et al. (2020), it follows that if q is some distribution on \mathbb{R}^d with finite Poincaré constant $C_P > 0$, then for any measure $p \in \mathcal{P}_2(\mathbb{R}^d)$ we have that

$$W_2^2(p,q) \le 9C_P \sqrt{\chi^2(p \mid \mid q)}.$$

Therefore, as long as ρ_t satisfies the Poincaré inequality

$$\mathbb{V}_{\rho_t}(g) \le C_P \mathbb{E}_{\rho_t} \left[||\nabla g||_2^2 \right]$$

for all locally Lipschitz $g \in L^2(\rho_t)$ it follows that

$$\mathbb{E}\left[\left(\frac{W_2^2(\rho_t, \pi)}{9C_P}\right)^2\right] \leq \mathbb{E}\left[\chi^2(\rho_t \parallel \pi)\right].$$

A.7 Proof of Theorem 4

Proof: In order to prove asymptotic normality of the incremental effect under the Wasserstein intervention, we consider the decomposition

$$\widehat{\psi}_w(t) - \psi_w(t) = (P_n - P)\{\varphi_w(Z; t, P)\} + (P_n - P)\{\varphi_w(Z; t, \widehat{P}) - \varphi_w(Z; t, P)\} + R_2(\widehat{P}, P)$$

where $R_2(\widehat{P}, P) = \psi_w(t; \widehat{P}) - \psi_w(t; P) + \int \varphi_w(z; t, \widehat{P}) dP(z)$. To facilitate ease of reading, we split this proof into three parts corresponding to each term in the decomposition. For the first term, we will show that Lindeberg's condition holds in order to apply the Central Limit Theorem. For the second term, i.e., the empirical process term, we show that it is of order $o_P((1-t)^{-1})$. Finally, for the third term we will show the bias $R_2(\widehat{P}, P)$ is a second-order product of errors that vanishes with $\sqrt{n}/\sigma_w(t)$. In all parts, we make sure to establish an explicit dependence on the path parameter t.

Lindeberg's Condition: In this section we wish to show that for all $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E}\left[\varphi_i^2 \mathbb{I}\{|\varphi_i| > \varepsilon s_n\}\right] = 0$$

where $s_n^2 = \sum_{i=1}^n \mathbb{V}(\varphi_i(Z_i))$. In order to show this condition holds, we first establish a lower bound on the variance of the efficient influence function. First, observe that under the assumption that $0 < \sigma_{\min}^2 \leq \mathbb{V}(Y \mid X, A)$ it follows that

$$\mathbb{V}(\varphi_t(Z)) \ge \sigma_{\min}^2 \mathbb{E}\left[\left(\frac{\nu_t(A \mid X)}{\pi(A \mid X)}\right)^2\right].$$

Then, assuming positivity holds, and that $\pi(a \mid x)$ is uniformly bounded from above (i.e. that $\pi(a \mid x) \leq \pi_{\max} < \infty$ for all a, x) it follows that

$$\mathbb{E}\left[\left(\frac{\nu_t(A\mid X)}{\pi(A\mid X)}\right)^2\right] = \frac{1}{(1-t)^2} \mathbb{E}\left[\int_a \frac{\pi^2(\frac{a-ta_*}{1-t}\mid X)}{\pi(a\mid X)} da\right] \ge \frac{1}{(1-t)^2} \frac{\pi_{\min}^2}{\pi_{\max}}$$

Therefore, we may lower bound s_n^2 as

$$s_n^2 = \sum_{i=1}^n \mathbb{V}(\varphi_i(Z_i)) \ge \frac{n}{(1-t)^2} \left(\frac{\sigma_{\min}^2 \pi_{\min}^2}{\pi_{\max}} \right),$$

which yields the inequality

$$\mathbb{E}\left[\varphi_i^2 \mathbb{I}\{|\varphi_i| > \varepsilon s_n\}\right] \le \mathbb{E}\left[\varphi_i^2 \mathbb{I}\left\{|\varphi_i| > \varepsilon \frac{\sqrt{n}}{1-t} \left(\frac{\sigma_{\min} \pi_{\min}}{\sqrt{\pi_{\max}}}\right)\right\}\right]. \tag{16}$$

From here, our goal is to establish the conditions under which the indicator function described in Equation (16) converges to zero as $n \to \infty$ as this will imply Lindeberg's condition holds. Thus, we now establish upper bounds for each term in φ_i . First, we note that under the assumption that $|Y| \leq C$ with probability one, it follows that

$$\mu(X, A) = \mathbb{E}[Y \mid X, A] \le C,$$

so any terms containing the regression function $\mu(X,A)$ can easily be bounded. Next, we must establish a bound on $\nu_t(A_i \mid X_i)/\pi(A_i \mid X_i)$, which could become problematic as $t \to 1$. Observe that

$$\frac{\nu_t(A_i \mid X_i)}{\pi(A_i \mid X_i)} = \frac{1}{1-t} \frac{\pi(\frac{A_i - ta_*}{1-t} \mid X_i)}{\pi(A_i \mid X_i)} \le \frac{1}{1-t} \left(\frac{\pi_{\max}}{\pi_{\min}}\right).$$

Consequently, it can be shown that $|\varphi_i| \leq \frac{4C}{1-t}$ and furthermore that

$$\mathbb{I}\left\{\frac{4C}{1-t} > \varepsilon \frac{\sqrt{n}}{1-t} \left(\frac{\sigma_{\min} \pi_{\min}}{\sqrt{\pi_{\max}}}\right)\right\} \to 0$$

as $n \to \infty$ since the 1/(1-t) terms cancel out. Therefore, by applying the "squeeze" and dominated convergence theorems in conjunction, it follows that

$$\lim_{n\to\infty} \left\{ \frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E}\left[\varphi_i^2 \mathbb{I}\{|\varphi_i| > \varepsilon s_n\}\right] \right\} = 0.$$

Remark 1. Note that instead of assuming $\pi(a \mid x)$ is uniformly bounded from above, we could equivalently assume that $\pi(a \mid x)$ has finite total variation, i.e., there exists some $M < \infty$ such that for all x,

$$\int_{-\infty}^{\infty} \left| \frac{\partial}{\partial a} \log \left(\pi(a \mid x) \right) \right| da < M.$$

Then, if we define $u = (a - ta_*)/(1 - t)$ it follows that

$$\frac{\nu_t(a\mid x)}{\pi(a\mid x)} = \frac{1}{1-t} \frac{\pi(u\mid x)}{\pi(a\mid x)} = \frac{1}{1-t} \exp\left(\int_a^u \frac{\partial}{\partial z} \log\left(\pi(z\mid x)\right) dz\right) \le \frac{\exp(M)}{1-t}.$$

Then, it follows that $\nu_t(a \mid x)/\pi(a \mid x) \propto 1/(1-t)$ without an explicit upper bound on $\pi(a \mid x)$. This allows for large peaks in the treatment density on small intervals, as long as the total mass remains small. However, since using the uniform bound $\pi(a \mid x) \leq \pi_{\text{max}} < \infty$ greatly simplifies and streamlines the proof of asymptotic normality, we use this assumption for the remainder of the proof.

Empirical Process Term: In this section, we consider the asymptotics of the empirical process term,

$$(P_n - P)\{\varphi_w(Z; t, \widehat{P}) - \varphi_w(Z; t, P)\}.$$

Specifically, we will show that the $L_2(P)$ norm of $\varphi_w(Z;t,\widehat{P}) - \varphi_w(Z;t,P)$ is $o_P((1-t)^{-1})$. To proceed, observe that $\varphi_w(Z;t,\widehat{P}) - \varphi_w(Z;t,P) = D_1 + D_2 + D_3$ after grouping together like terms, where

$$D_{1} = \left(\frac{\widehat{\nu}_{t}(A \mid X)}{\widehat{\pi}(A \mid X)} - \frac{\nu_{t}(A \mid X)}{\pi(A \mid X)}\right) Y$$

$$D_{2} = \frac{\nu_{t}(A \mid X)}{\pi(A \mid X)} \mu(X, A) - \frac{\widehat{\nu}_{t}(A \mid X)}{\widehat{\pi}(A \mid X)} \widehat{\mu}(X, A)$$

$$D_{3} = \widehat{\mu}(X, \lambda_{A}) - \mu(X, \lambda_{A})$$

Then, applying the triangle inequality, it follows that

$$||\varphi_w(Z;t,\widehat{P}) - \varphi_w(Z;t,P)||_2 \le ||D_1||_2 + ||D_2||_2 + ||D_3||_2.$$

We now show each of these terms is $o_P((1-t)^{-1})$. First, observe that

$$\left\| \frac{\widehat{\nu}_t}{\widehat{\pi}} - \frac{\nu_t}{\pi} \right\|_2 = \left\| \frac{\widehat{\nu}_t - \nu_t}{\pi} + \widehat{\nu}_t \left(\frac{1}{\widehat{\pi}} - \frac{1}{\pi} \right) \right\|_2 \le \left\| \frac{\widehat{\nu}_t - \nu_t}{\pi} \right\|_2 + \left\| \widehat{\nu}_t \left(\frac{1}{\widehat{\pi}} - \frac{1}{\pi} \right) \right\|_2.$$

Then, we can see that

$$\begin{aligned} \left\| \frac{\widehat{\nu}_t - \nu_t}{\pi} \right\|_2 &= \mathbb{E} \left[\int_a \frac{(\widehat{\nu}_{t,a} - \nu_{t,a})^2}{\pi_a} da \right]^{1/2} \\ &\stackrel{(i)}{=} \frac{1}{1 - t} \mathbb{E} \left[\int_a \frac{(\widehat{\pi}_z - \pi_z)^2}{\pi_a} da \right]^{1/2} \\ &\stackrel{(ii)}{=} \frac{1}{\sqrt{1 - t}} \mathbb{E} \left[\int_u \frac{(\widehat{\pi}_u - \pi_u)^2}{\pi_{\lambda_u}} du \right]^{1/2} \\ &= \frac{1}{\sqrt{1 - t}} \mathbb{E} \left[\int_u \frac{(\widehat{\pi}_u - \pi_u)^2}{\pi_{\lambda_u}} \frac{\pi_u}{\pi_u} du \right]^{1/2} \\ &\leq \frac{1}{\pi_{\min} \sqrt{1 - t}} ||\widehat{\pi} - \pi||_2 \end{aligned}$$

where in (i) we define $z = (a - ta_*)/(1 - t)$ and in (ii) we apply the change of variables $a = (1 - t)u + ta_*$. Next, it follows that

$$\left\| \widehat{\nu}_t \left(\frac{1}{\widehat{\pi}} - \frac{1}{\pi} \right) \right\|_2 = \mathbb{E} \left[\int_a \widehat{\nu}_{t,a}^2 \left(\frac{(\widehat{\pi}_a - \pi_a)^2}{(\widehat{\pi}_a \pi_a)^2} \right) \pi_a da \right]^{1/2} \le \frac{1}{1 - t} \left(\frac{\pi_{\max}}{\pi_{\min}^2} \right) ||\widehat{\pi} - \pi||_2.$$

Thus, assuming that $|Y| \leq C$ with probability one, then it follows that $||D_1||_2 = o_P((1-t)^{-1})$ under the assumption that $||\widehat{\pi} - \pi||_2 = o_P(1)$. Next, observe that

$$D_2 = \left(\frac{\nu_t(A \mid X)}{\pi(A \mid X)} - \frac{\widehat{\nu}_t(A \mid X)}{\widehat{\pi}(A \mid X)}\right) \mu(X, A) + \frac{\widehat{\nu}_t(A \mid X)}{\widehat{\pi}(A \mid X)} \Big(\mu(X, A) - \widehat{\mu}(X, A)\Big),$$

and so,

$$||D_2||_2 \le \left| \left| \left(\frac{\nu_t(A \mid X)}{\pi(A \mid X)} - \frac{\widehat{\nu}_t(A \mid X)}{\widehat{\pi}(A \mid X)} \right) \mu(X, A) \right| \right|_2 + \left| \left| \frac{\widehat{\nu}_t(A \mid X)}{\widehat{\pi}(A \mid X)} \left(\mu(X, A) - \widehat{\mu}(X, A) \right) \right| \right|_2.$$

The first term can be shown to be $o_P((1-t)^{-1})$ following the exact same steps as in the bound of $||D_1||_2$, after noting that $|\mu(X,A)| \leq C$ with high probability. For the second term, we can see that, using the shorthand $\mu_a = \mu(X,a)$,

$$\begin{split} \left\| \frac{\widehat{\nu}_{t}(A \mid X)}{\widehat{\pi}(A \mid X)} \Big(\mu(X, A) - \widehat{\mu}(X, A) \Big) \right\|_{2} &= \mathbb{E} \left[\int_{a} \left(\frac{\widehat{\nu}_{t, a}}{\widehat{\pi}_{a}} (\mu_{a} - \widehat{\mu}_{a}) \right)^{2} \pi_{a} da \right]^{1/2} \\ &\leq \frac{1}{1 - t} \left(\frac{\pi_{\max}}{\pi_{\min}} \right) \mathbb{E} \left[\int_{a} (\mu_{a} - \widehat{\mu}_{a})^{2} \pi_{a} da \right]^{1/2} \\ &= \frac{1}{1 - t} \left(\frac{\pi_{\max}}{\pi_{\min}} \right) ||\widehat{\mu} - \mu||_{2}, \end{split}$$

and so, $||D_2||_2 = o_P((1-t)^{-1})$ as long as $||\widehat{\pi} - \pi||_2 = o_P(1)$ and $||\widehat{\mu} - \mu||_2 = o_P(1)$. Finally, we can see that

$$||D_3||_2 = \mathbb{E} \left[\int_a (\widehat{\mu}(X, \lambda_a) - \mu(X, \lambda_a))^2 \pi_a da \right]^{1/2}$$

$$= \mathbb{E} \left[\int_u (\widehat{\mu}(X, u) - \mu(X, u))^2 \frac{\nu_{t, u}}{\pi_u} \pi_u du \right]^{1/2}$$

$$= \sqrt{\frac{1}{1 - t} \left(\frac{\pi_{\text{max}}}{\pi_{\text{min}}} \right)} \mathbb{E} \left[\int_u (\widehat{\mu}(X, u) - \mu(X, u))^2 \pi_u du \right]^{1/2}$$

$$= \sqrt{\frac{1}{1 - t} \left(\frac{\pi_{\text{max}}}{\pi_{\text{min}}} \right)} ||\widehat{\mu} - \mu||_2$$

and so, $||D_3||_2 = o_P((1-t)^{-1})$ as long as $||\widehat{\mu} - \mu||_2 = o_P(1)$. Putting everything together, it now follows that

$$||\varphi_w(Z;t,\widehat{P}) - \varphi_w(Z;t,P)||_2 = o_P\left(\frac{1}{1-t}\right)$$

as long as $||\hat{\pi} - \pi||_2 = o_P(1)$ and $||\hat{\mu} - \mu||_2 = o_P(1)$ hold.

Remainder Bound: Finally, in order to establish asymptotic normality we must bound the remainder term. Recall by Theorem 1 that the remainder term from the von Mises expansion under the Wasserstein intervention is given by

$$R_2(\widehat{P}, P) = \mathbb{E}\left[\int_a (\mu_a - \widehat{\mu}_a) \left(\frac{\widehat{\nu}_{t,a}}{\widehat{\pi}_a} - \frac{\nu_{t,a}}{\pi_a}\right) \pi_a da\right].$$

Therefore, by applying the Cauchy-Schwarz inequality, we can immediately see that

$$R_2(\widehat{P}, P) \leq \mathbb{E}\left[\int_a (\mu_a - \widehat{\mu}_a)^2 \pi_a da\right]^{1/2} \mathbb{E}\left[\int_a \left(\frac{\widehat{\nu}_{t,a}}{\widehat{\pi}_a} - \frac{\nu_{t,a}}{\pi_a}\right)^2 \pi_a da\right]$$

$$\lesssim \frac{1}{1-t} ||\widehat{\mu} - \mu||_2 \cdot ||\widehat{\pi} - \pi||_2$$

where the second inequality follows by the derivations in the empirical process term section.

Asymptotics: Now that we have considered each term in the decomposition of $\widehat{\psi}_w(t) - \psi_w(t)$ we can formally establish asymptotic normality. After showing Lindeberg's condition holds, it follows that the first term converges in distribution to a standard Normal, i.e.,

$$\frac{\sqrt{n}}{\sigma_w(t)} \Big[(P_n - P) \{ \varphi_w(Z; t, P) \} \Big] \xrightarrow{d} N(0, 1).$$

For the second term, i.e., the empirical process term, we note that $\sigma_w(t) = O((1-t)^{-1})$. Then, since we showed that the $L_2(P)$ norm of $\varphi_w(Z;t,\widehat{P}) - \varphi_w(Z;t,P)$ is $o_P((1-t)^{-1})$ under the assumption that $||\widehat{\pi} - \pi||_2 = o_P(1)$ and $||\widehat{\mu} - \mu||_2 = o_P(1)$, it follows that

$$\frac{\sqrt{n}}{\sigma_w(t)} \left[(P_n - P) \{ \varphi_w(Z; t, \widehat{P}) - \varphi_w(Z; t, P) \} \right] = o_P(1).$$

Finally, we proved that the remainder from the von Mises expansion is bounded by

$$R_2(\widehat{P}, P) \lesssim \frac{1}{1-t} ||\widehat{\mu} - \mu||_2 \cdot ||\widehat{\pi} - \pi||_2.$$

Therefore, if we assume $||\widehat{\pi} - \pi||_2 \cdot ||\widehat{\mu} - \mu||_2 = o_P(n^{-1/2})$, then it follows that

$$\frac{\sqrt{n}}{\sigma_w(t)} \left[R_2(\widehat{P}, P) \right] = o_P(1),$$

and consequently that

$$\frac{\sqrt{n}}{\sigma_w(t)} \left(\widehat{\psi}_w(t) - \psi_w(t) \right) \stackrel{d}{\longrightarrow} N(0,1),$$

thereby completing the proof of Theorem 4.

A.8 Proof of Proposition 3

Proof: The definition of the Hellinger (Fisher-Rao) geodesic follows directly by Srivastava and Klassen (2016) (see section 4.3.2). However, for posterity we prove that $\nu_t(x)$ is a valid density for all $t \in [0, 1]$, since this is not obvious upon inspection. Recall that the geodesic ν_t is defined as

$$\nu_t(x) = \left(\frac{\sin((1-t)\theta)}{\sin(\theta)}\sqrt{p(x)} + \frac{\sin(t\theta)}{\sin(\theta)}\sqrt{q(x)}\right)^2$$

where $\theta = \arccos(\int_x \sqrt{p(x)q(x)}dx)$. Then, expanding the square it follows that $\int_x \nu_t(x)dx$ is equal to

$$\frac{\sin((1-t)\theta)^2}{\sin(\theta)^2} \int_x p(x)dx + \frac{\sin(t\theta)^2}{\sin(\theta)^2} \int_x q(x)dx + \frac{2\sin((1-t)\theta)\sin(t\theta)}{\sin(\theta)^2} \int_x \sqrt{p(x)q(x)}dx.$$

From here, note that $\int_x \sqrt{p(x)q(x)} = \cos(\theta)$. Then, if p(x) and q(x) are valid densities such that $\int_x p(x) = \int_x q(x) = 1$, we can see that

$$\int_{x} \nu_t(x)dx = \frac{\sin((1-t)\theta)^2 + \sin(t\theta)^2 + 2\sin((1-t)\theta)\sin(t\theta)\cos(\theta)}{\sin(\theta)^2}.$$

From here, we leverage several trigonometric properties to complete the proof. First, let $a = (1 - t)\theta$ and $b = t\theta$ such that $\theta = a + b$. Then, it follows that the numerator $S := \sin((1 - t)\theta)^2 + \sin(t\theta)^2 + 2\sin((1 - t)\theta)\sin(t\theta)\cos(\theta)$ may be written as

$$S = \sin(a)^{2} + \sin(b)^{2} + 2\sin(a)\sin(b)\cos(a+b)$$

$$= \sin(a)^{2} + \sin(b)^{2} + 2\sin(a)\sin(b)\left(\cos(a)\cos(b) - \sin(a)\sin(b)\right)$$

$$= \sin(a)^{2} + \sin(b)^{2} + 2\sin(a)\sin(b)\cos(a)\cos(b) - 2\sin(a)^{2}\sin(b)^{2}.$$

Similarly, it follows that the denominator can be written as

$$\sin(\theta)^{2} = [\sin(a+b)]^{2}$$

$$= [\sin(a)\cos(b) + \cos(a)\sin(b)]^{2}$$

$$= \sin(a)^{2}\cos(b)^{2} + 2\sin(a)\sin(b)\cos(a)\cos(b) + \cos(a)^{2}\sin(b)^{2}$$

$$= \sin(a)^{2} (1 - \sin(b)^{2}) + 2\sin(a)\sin(b)\cos(a)\cos(b) + (1 - \sin(a)^{2})\sin(b)^{2}$$

$$= \sin(a)^{2} + \sin(b)^{2} + 2\sin(a)\sin(b)\cos(a)\cos(b) - 2\sin(a)^{2}\sin(b)^{2}.$$

Consequently, we have that for all $t \in [0, 1]$,

$$\int_{x} \nu_t(x) dx = \frac{\sin(a)^2 + \sin(b)^2 + 2\sin(a)\sin(b)\cos(a)\cos(b) - 2\sin(a)^2\sin(b)^2}{\sin(a)^2 + \sin(b)^2 + 2\sin(a)\sin(b)\cos(a)\cos(b) - 2\sin(a)^2\sin(b)^2} = 1,$$

thereby confirming that $\nu_t(x)$ is a valid density.

A.9 Proof of Theorem 5

Proof: First, recall that the incremental effect under the Hellinger geodesic is defined by $\psi_h(t) = \int_x \int_a \mu(x,a) \nu_t(a \mid x) p(x) \, da \, dx$. Then, it follows that the influence function for $\psi_h(t)$ can be decomposed as $\mathbb{IF}(\psi_h(t)) = V_1 + V_2 + V_3$ where

$$V_1 = \int_x \int_a \mathbb{IF}(\mu(x, a)) \nu_t(a \mid x) p(x) \, da \, dx,$$

$$V_2 = \int_x \int_a \mu(x, a) \mathbb{IF}(\nu_t(a \mid x)) p(x) \, da \, dx, \quad \text{and}$$

$$V_3 = \int_x \int_a \mu(x, a) \nu_t(a \mid x) \mathbb{IF}(p(x)) \, da \, dx.$$

Next, recall by Proposition 3 that the definition of the Hellinger geodesic is given by

$$\nu_t(a \mid x) = \alpha_t(u(x))\pi(a \mid x) + 2\gamma_t(u(x))\sqrt{\pi(a \mid x)q(a)} + \beta_t(u(x))q(a)$$

where we define

$$\alpha_t(u(x)) = \left(\frac{\sin((1-t)\theta)}{\sin(\theta)}\right)^2, \ \gamma_t(u(x)) = \frac{\sin((1-t)\theta)\sin(t\theta)}{\sin^2(\theta)}, \ \text{ and } \ \beta_t(u(x)) = \left(\frac{\sin(t\theta)}{\sin(\theta)}\right)^2$$

such that $\theta = \arccos(u(x))$ and $u(x) = \int_a \sqrt{\pi(a \mid x)q(a)}da$. Note that since our target distribution is a point mass at δ_{a_*} (which we approximate with $\mathcal{N}(a_*, \varepsilon^2)$ as $\varepsilon \to 0$), we may treat q(a) as a known distribution that doesn't depend on the data. With that in mind, we can see that

$$\mathbb{IF}(\nu_t(a \mid x)) = \left\{ \mathbb{IF}(\alpha_t(u(x)))\pi(a \mid x) + \alpha_t(u(x))\mathbb{IF}(\pi(a \mid x)) + 2\mathbb{IF}(\gamma_t(u(x)))\sqrt{\pi(a \mid x)}q(a) + 2\gamma_t(u(x))\sqrt{q(a)}\mathbb{IF}(\sqrt{\pi(a \mid x)}) + \mathbb{IF}(\beta_t(u(x)))q(a) \right\}$$

since we are treating q(a) as fixed. From here, recall that $\mathbb{IF}(\pi(a \mid x)) = \frac{\delta_X(x)}{p(x)} (\delta_A(a) - \pi(a \mid x))$. Using this, we can see that

$$\begin{split} \mathbb{IF}(\alpha_t(u(x))) &= \alpha_t'(u(x)) \mathbb{IF}(u(x)) \\ &= \alpha_t'(u(x)) \int_a \frac{\sqrt{q(a)}}{2\sqrt{\pi(a\mid x)}} \frac{\delta_X(x)}{p(x)} \left(\delta_A(a) - \pi(a\mid x)\right) da \\ &= \frac{\alpha_t'(u(x))}{2} \frac{\delta_X(x)}{p(x)} \left(\frac{\sqrt{q(A)}}{\sqrt{\pi(A\mid x)}} - \int_a \sqrt{\pi(a\mid x)q(a)} da\right) \\ &= \frac{\alpha_t'(u(x))}{2} \frac{\delta_X(x)}{p(x)} \left(\frac{\sqrt{q(A)}}{\sqrt{\pi(A\mid x)}} - u(x)\right). \end{split}$$

Consequently, following similar steps for $\mathbb{IF}(\gamma_t(u))$, $\mathbb{IF}(\beta_t(u))$, and $\mathbb{IF}(\sqrt{\pi(a\mid x)})$, it can be shown that

$$\mathbb{IF}(\nu_{t}(a \mid x)) = \left\{ \frac{\alpha'_{t}(u(x))}{2} \frac{\delta_{X}(x)}{p(x)} \left(\frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid x)}} - u(x) \right) \pi(a \mid x) + \alpha_{t}(u(x)) \frac{\delta_{X}(x)}{p(x)} \left(\delta_{A}(a) - \pi(a \mid x) \right) + \gamma'_{t}(u(x)) \frac{\delta_{X}(x)}{p(x)} \left(\frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid x)}} - u(x) \right) \sqrt{\pi(a \mid x)q(a)} + \gamma_{t}(u(x)) \frac{\sqrt{q(a)}}{\sqrt{\pi(a \mid x)}} \frac{\delta_{X}(x)}{p(x)} \left(\delta_{A}(a) - \pi(a \mid x) \right) + \frac{\beta'_{t}(u(x))}{2} \frac{\delta_{X}(x)}{p(x)} \left(\frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid x)}} - u(x) \right) q(a) \right\}.$$

Putting everything together, we can see that

$$\begin{split} V_2 &= \left\{ \frac{\alpha_t'(u(X))}{2} \left(\frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid X)}} - u(X) \right) \int_a \mu(X, a) \pi(a \mid X) da + \right. \\ &\left. \alpha_t(u(X)) \left(\mu(X, A) - \int_a \mu(X, a) \pi(a \mid X) da \right) + \right. \\ &\left. \gamma_t'(u(X)) \left(\frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid X)}} - u(X) \right) \int_a \mu(X, a) \sqrt{\pi(a \mid X) q(a)} da + \right. \\ &\left. \gamma_t(u(X)) \left(\mu(X, A) \frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid X)}} - \int_a \mu(X, a) \sqrt{\pi(a \mid X) q(a)} da \right) + \right. \\ &\left. \frac{\beta_t'(u(X))}{2} \left(\frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid X)}} - u(X) \right) \int_a \mu(X, a) q(a) da \right\}. \end{split}$$

Note that we can further simplify this expression by grouping together the α_t' , γ_t' , and β_t' terms. To see this, we define $m_1 = \int_a \mu(X,a)\pi(a\mid X)da$, $m_2 = \int_a \mu(X,a)\sqrt{\pi(a\mid X)q(a)}da$, and $m_3 = \int_a \mu(X,a)q(a)da$. Then, it follows that

$$\int_{a} \mu(X, a) \nu_{t}(a \mid X; u(X)) da = \alpha_{t}(u(X)) m_{1} + 2\gamma_{t}(u(X)) m_{2} + \beta_{t}(u(X)) m_{3}.$$

Consequently,

$$V_{2} = \left\{ \frac{1}{2} \frac{\partial}{\partial u} \left\{ \int_{a} \mu(X, a) \nu_{t}(a \mid X; u(X)) da \right\} \left(\frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid X)}} - u(X) \right) + \alpha_{t}(u(X)) \left(\mu(X, A) - \int_{a} \mu(X, a) \pi(a \mid X) da \right) + \gamma_{t}(u(X)) \left(\mu(X, A) \frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid X)}} - \int_{a} \mu(X, a) \sqrt{\pi(a \mid X) q(a)} da \right) \right\}.$$

Finally, following the same steps as in Theorem 1 we know that $V_1 = \frac{\nu_t(A|X)}{\pi(A|X)}(Y - \mu(X,A))$ and $V_3 = \int_a \mu(X,a)\nu_t(a \mid X)da - \psi_h(t)$, which yields our candidate influence function of $\mathbb{IF}(\psi_h(t)) = D_Y + D_\mu + D_Q + D_u + D_\psi$, where

$$D_{Y} = \frac{\nu_{t}(A \mid X)}{\pi(A \mid X)} \Big(Y - \mu(X, A) \Big)$$

$$D_{\mu} = \alpha_{t}(u(X)) \Big(\mu(X, A) - \mathbb{E}[\mu(X, a) \mid X] \Big)$$

$$D_{Q} = \gamma_{t}(u(X)) \left(\mu(X, A) \frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid X)}} - \mathbb{E}\left[\mu(X, A) \frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid X)}} \mid X \right] \right)$$

$$D_{u} = \frac{1}{2} \left(\frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid X)}} - u(X) \right) \frac{\partial}{\partial u(X)} \Big\{ \mathbb{E}_{\nu_{t}} \left[\mu(X, A) \mid X \right] \Big\}$$

$$D_{\psi} = \mathbb{E}_{\nu_{t}} \left[\mu(X, A) \mid X \right] - \psi_{h}(t).$$

Note that we can establish an more easily interpretable expression for D_u by parameterizing α_t , γ_t , and β_t with respect to $\theta = \arccos(u)$ instead of u(x). Then, it follows that

$$\frac{\partial}{\partial u(X)} \Big\{ \mathbb{E}_{\nu_t} \left[\mu(X, A) \mid X \right] \Big\} = -\frac{1}{\sin(\theta)} \frac{\partial}{\partial \theta} \Big\{ \mathbb{E}_{\nu_t} \left[\mu(X, A) \mid X \right] \Big\}.$$

However, for the rest of the proof, we will keep α_t , γ_t , and β_t parameterized with respect to u(x), as it will be more convenient to apply Taylor approximation arguments. Now, we show that the remainder term in the von Mises expansion of our candidate influence function yields a second order product of errors. It can be shown that

$$R_{2}(\widehat{P}, P) = \left\{ \mathbb{E} \left[\int_{a} \frac{\widehat{\nu}_{t}}{\widehat{\pi}_{a}} (\mu_{a} - \widehat{\mu}_{a}) \pi_{a} da + \widehat{\alpha}_{t} \left(\int_{a} \widehat{\mu}_{a} \pi_{a} da - \int_{a} \widehat{\mu}_{a} \widehat{\pi}_{a} da \right) \right] + \\ \mathbb{E} \left[\widehat{\gamma}_{t} \left(\int_{a} \widehat{\mu}_{a} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}} \pi_{a} da - \int_{a} \widehat{\mu}_{a} \sqrt{q_{a} \widehat{\pi}_{a}} da \right) \right] + \\ \mathbb{E} \left[\frac{1}{2} \int_{a} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}} (\pi_{a} - \widehat{\pi}_{a}) da \int_{a} \widehat{\mu}_{a} \widehat{\nu}'_{t} da \right] + \\ \mathbb{E} \left[\int_{a} \widehat{\mu}_{a} \widehat{\nu}_{t} da - \int_{a} \mu_{a} \nu_{a} da \right] \right\}$$

where we use the shorthand $\widehat{u} = \int_a \sqrt{\widehat{\pi}(a \mid X)q(a)} da$, $\widehat{\alpha}_t = \alpha_t(\widehat{u})$, $\widehat{\gamma}_t = \gamma_t(\widehat{u})$, and $\widehat{\beta}_t = \beta_t(\widehat{u})$. From here, we make a few algebraic manipulations. Note that if we define

$$R_1 := \widehat{\alpha}_t \left(\int_a \widehat{\mu}_a \pi_a da - \int_a \widehat{\mu}_a \widehat{\pi}_a da \right) = \widehat{\alpha}_t \int_a \widehat{\mu}_a \left(\pi_a - \widehat{\pi}_a \right) da$$

and

$$R_2 := \widehat{\gamma}_t \left(\int_a \widehat{\mu}_a \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} \pi_a da - \int_a \widehat{\mu}_a \sqrt{q_a \widehat{\pi}_a} da \right) = \widehat{\gamma}_t \int_a \widehat{\mu}_a \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} \left(\pi_a - \widehat{\pi}_a \right) da,$$

we can group together like terms to see that

$$\begin{split} R_1 + R_2 &= \widehat{\alpha}_t \int_a \widehat{\mu}_a \left(\pi_a - \widehat{\pi}_a \right) da + \widehat{\gamma}_t \int_a \widehat{\mu}_a \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} \left(\pi_a - \widehat{\pi}_a \right) da \\ &= \int_a \widehat{\mu}_a \left(\pi_a - \widehat{\pi}_a \right) \left(\widehat{\alpha}_t + \widehat{\gamma}_t \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} \right) da \\ &= \int_a \widehat{\mu}_a \left(\pi_a - \widehat{\pi}_a \right) \left(\frac{\widehat{\nu}_t}{\widehat{\pi}_a} - \widehat{\gamma}_t \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} - \widehat{\beta}_t \frac{q_a}{\widehat{\pi}_a} \right) da \\ &= \int_a \frac{\widehat{\nu}_t}{\widehat{\pi}_a} \widehat{\mu}_a \pi_a da - \int_a \widehat{\mu}_a \widehat{\nu}_t da + \int_a \widehat{\mu}_a \left(\widehat{\pi}_a - \pi_a \right) \left(\widehat{\gamma}_t \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} + \widehat{\beta}_t \frac{q_a}{\widehat{\pi}_a} \right) da \end{split}$$

where the second to last equality follows since $\hat{\nu}_t/\hat{\pi}_a = \hat{\alpha}_t + 2\hat{\gamma}_t\sqrt{q_a}/\sqrt{\hat{\pi}_a} + \hat{\beta}_tq_a/\hat{\pi}_a$. From here, we make a few cancellations. Observe that all of the terms $R_2(\hat{P}, P)$ not included in R_1 and R_2 are given by

$$\mathbb{E}\left[\int_{a}\frac{\widehat{\nu}_{t}}{\widehat{\pi}_{a}}\mu_{a}\pi_{a}da - \int_{a}\frac{\widehat{\nu}_{t}}{\widehat{\pi}_{a}}\widehat{\mu}_{a}\pi_{a}da - \frac{1}{2}\int_{a}\frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}}(\widehat{\pi}_{a} - \pi_{a})da\int_{a}\widehat{\mu}_{a}\widehat{\nu}'_{t}da + \int_{a}\widehat{\mu}_{a}\widehat{\nu}_{t}da - \int_{a}\mu_{a}\nu_{a}da\right].$$

Thus, after canceling with the first two terms in $R_1 + R_2$, the remainder simplifies to

$$R_{2}(\widehat{P}, P) = \left\{ \mathbb{E} \left[\int_{a} \left(\frac{\widehat{\nu}_{t}}{\widehat{\pi}_{a}} - \frac{\nu_{t}}{\pi_{a}} \right) \mu_{a} \pi_{a} da - \frac{1}{2} \int_{a} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}} (\widehat{\pi}_{a} - \pi_{a}) da \int_{a} \widehat{\mu}_{a} \widehat{\nu}'_{t} da \right] + \mathbb{E} \left[\int_{a} \widehat{\mu}_{a} (\widehat{\pi}_{a} - \pi_{a}) \left(\widehat{\gamma}_{t} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}} + \widehat{\beta}_{t} \frac{q_{a}}{\widehat{\pi}_{a}} \right) da \right] \right\}.$$

Now, in order to collect like terms, observe that $\frac{\widehat{\nu}_t}{\widehat{\pi}_a} - \frac{\nu_t}{\pi_a}$ can be decomposed as

$$(\widehat{\alpha}_t - \alpha_t) + 2\widehat{\gamma}_t \left(\frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} - \frac{\sqrt{q_a}}{\sqrt{\pi_a}} \right) + 2\frac{\sqrt{q_a}}{\sqrt{\pi_a}} (\widehat{\gamma}_t - \gamma_t) + \widehat{\beta}_t \left(\frac{q_a}{\widehat{\pi}_a} - \frac{q_a}{\pi_a} \right) + \frac{q_a}{\pi_a} \left(\widehat{\beta}_t - \beta \right).$$

First, we consider the terms containing $\frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} - \frac{\sqrt{q_a}}{\sqrt{\pi_a}}$ and $\frac{q_a}{\widehat{\pi}_a} - \frac{q_a}{\pi_a}$. Observe that

$$R_{3} := \widehat{\beta}_{t} \int_{a} \left(\frac{q_{a}}{\widehat{\pi}_{a}} - \frac{q_{a}}{\pi_{a}} \right) \mu_{a} \pi_{a} da + \widehat{\beta}_{t} \int_{a} \frac{q_{a}}{\widehat{\pi}_{a}} \widehat{\mu}_{a} \left(\widehat{\pi}_{a} - \pi_{a} \right) da$$

$$= -\widehat{\beta}_{t} \int_{a} \mu_{a} q_{a} \pi_{a} \left(\frac{\widehat{\pi}_{a} - \pi_{a}}{\widehat{\pi}_{a} \pi_{a}} \right) da + \widehat{\beta}_{t} \int_{a} \frac{q_{a}}{\widehat{\pi}_{a}} \widehat{\mu}_{a} \left(\widehat{\pi}_{a} - \pi_{a} \right) da$$

$$= \widehat{\beta}_{t} \int_{a} \frac{q_{a}}{\widehat{\pi}_{a}} \left(\widehat{\pi}_{a} - \pi_{a} \right) \left(\widehat{\mu}_{a} - \mu_{a} \right) da$$

and furthermore that

$$\begin{split} R_4 &:= 2\widehat{\gamma}_t \int_a \left(\frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} - \frac{\sqrt{q_a}}{\sqrt{\pi_a}} \right) \mu_a \pi_a da + \widehat{\gamma}_t \int_a \widehat{\mu}_a \left(\widehat{\pi}_a - \pi_a \right) \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} da \\ &\stackrel{(i)}{=} -2\widehat{\gamma}_t \int_a \left(\widehat{\pi}_a - \pi_a \right) \frac{\sqrt{q_a} \mu_a \pi_a}{\left(\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a} \right) \sqrt{\widehat{\pi}_a \pi_a}} da + \widehat{\gamma}_t \int_a \widehat{\mu}_a \left(\widehat{\pi}_a - \pi_a \right) \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} da \\ &= \widehat{\gamma}_t \int_a \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} \left(\widehat{\pi}_a - \pi_a \right) \left(\widehat{\mu}_a - \mu_a + \mu_a - 2 \frac{\mu_a \sqrt{\pi_a}}{\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a}} \right) da \\ &= \widehat{\gamma}_t \int_a \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} \left(\widehat{\pi}_a - \pi_a \right) \left(\left(\widehat{\mu}_a - \mu_a \right) + \mu_a \left(1 - \frac{2\sqrt{\pi_a}}{\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a}} \right) \right) da \\ &= \widehat{\gamma}_t \int_a \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} \left(\widehat{\pi}_a - \pi_a \right) \left(\left(\widehat{\mu}_a - \mu_a \right) + \mu_a \left(\frac{\sqrt{\widehat{\pi}_a} - \sqrt{\pi_a}}{\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a}} \right) \right) da \\ &\stackrel{(ii)}{=} \widehat{\gamma}_t \int_a \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} \left(\widehat{\pi}_a - \pi_a \right) \left(\left(\widehat{\mu}_a - \mu_a \right) + \mu_a \left(\frac{\widehat{\pi}_a - \pi_a}{\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a}} \right) \right) da \end{split}$$

where (i) and (ii) follow since

$$\frac{1}{\sqrt{\widehat{\pi}_a}} - \frac{1}{\sqrt{\pi_a}} = \frac{\sqrt{\pi_a} - \sqrt{\widehat{\pi}_a}}{\sqrt{\widehat{\pi}_a \pi_a}} = \frac{\pi_a - \widehat{\pi}_a}{(\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a})\sqrt{\widehat{\pi}_a \pi_a}} = -\frac{\widehat{\pi}_a - \pi_a}{(\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a})\sqrt{\widehat{\pi}_a \pi_a}}.$$

Thus, we can see that both of these terms can be written as second-order products of errors. Now, the only terms in the remainder not yet considered are given by

$$\mathbb{E}\left[\int_{a}\left(\widehat{\alpha}_{t}-\alpha_{t}+2\frac{\sqrt{q_{a}}}{\sqrt{\pi_{a}}}(\widehat{\gamma}_{t}-\gamma_{t})+\frac{q_{a}}{\pi_{a}}\left(\widehat{\beta}_{t}-\beta\right)\right)\mu_{a}\pi_{a}da-\frac{1}{2}\int_{a}\frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}}(\widehat{\pi}_{a}-\pi_{a})da\int_{a}\widehat{\mu}_{a}\widehat{\nu}_{t}'da\right].$$

To proceed, we define the function $f_t(u) = \alpha_t(u)\pi_a + 2\sqrt{q_a\pi_a}\gamma_t(u) + q_a\beta_t(u)$ such that

$$f_t(\widehat{u}) - f_t(u) = (\widehat{\alpha}_t - \alpha_t)\pi_a + 2\sqrt{q_a\pi_a}(\widehat{\gamma}_t - \gamma_t) + q_a(\widehat{\beta}_t - \beta).$$

Importantly, note that $f'_t(u) = \frac{\partial}{\partial u}\nu_t(a \mid x; u(x))$. Then, by the mean value theorem, there exists some ξ_a between \widehat{u} and u such that $f_t(\widehat{u}) - f_t(u) = f'(\xi_a)(\widehat{u} - u)$. Consequently, we can see that

$$\mathbb{E}\left[\int_{a} \left(\widehat{\alpha}_{t} - \alpha_{t} + 2\frac{\sqrt{q_{a}}}{\sqrt{\pi_{a}}}(\widehat{\gamma}_{t} - \gamma_{t}) + \frac{q_{a}}{\pi_{a}}\left(\widehat{\beta}_{t} - \beta\right)\right) \mu_{a} \pi_{a} da\right] = \mathbb{E}\left[\left(\widehat{u} - u\right) \int_{a} \mu_{a} f'_{t}(\xi_{a}) da\right]$$

which can be further simplified to

$$\mathbb{E}\left[\int_{a} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}} \frac{\sqrt{\widehat{\pi}_{a}}}{\sqrt{\widehat{\pi}_{a}} + \sqrt{\pi_{a}}} (\widehat{\pi}_{a} - \pi_{a}) da \int_{a} \mu_{a} f'_{t}(\xi_{a}) da\right]$$

since $\widehat{u} - u = \int_a \sqrt{q_a} (\sqrt{\widehat{\pi}_a} - \sqrt{\pi_a}) da$ and $(\sqrt{\widehat{\pi}_a} - \sqrt{\pi_a}) (\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a}) = \widehat{\pi}_a - \pi_a$. Then, it follows that the remaining terms can be defined by

$$R_5 := \mathbb{E}\left[\int_a \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} (\widehat{\pi}_a - \pi_a) \left(\frac{\sqrt{\widehat{\pi}_a}}{\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a}} \int_a \mu_a \left[\frac{\partial}{\partial u} \nu_t\right]_{\xi_a} da - \frac{1}{2} \int_a \widehat{\mu}_a \left[\frac{\partial}{\partial \widehat{u}} \widehat{\nu}_t\right]_{\widehat{u}} da\right) da\right].$$

Finally, note that

$$\frac{\sqrt{\widehat{\pi}_a}}{\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a}} = \frac{1}{2} + \frac{\sqrt{\widehat{\pi}_a} - \sqrt{\pi_a}}{2(\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a})} = \frac{1}{2} + \frac{\widehat{\pi}_a - \pi_a}{2(\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a})^2},$$

and so

$$R_{5} = \left\{ \mathbb{E} \left[\frac{1}{2} \int_{a} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}} (\widehat{\pi}_{a} - \pi_{a}) da \left\{ \int_{a} \left[\frac{\partial}{\partial u} \nu_{t} \right]_{\xi_{a}} (\mu_{a} - \widehat{\mu}_{a}) da \right\} \right] +$$

$$\mathbb{E} \left[\frac{1}{2} \int_{a} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}} (\widehat{\pi}_{a} - \pi_{a}) da \left\{ \int_{a} \widehat{\mu}_{a} \left(\left[\frac{\partial}{\partial u} \nu_{t} \right]_{\xi_{a}} - \left[\frac{\partial}{\partial \widehat{u}} \widehat{\nu}_{t} \right]_{\widehat{u}} \right) da \right\} \right] +$$

$$\mathbb{E} \left[\frac{1}{4} \int_{a} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}} \frac{(\widehat{\pi}_{a} - \pi_{a})^{2}}{(\sqrt{\widehat{\pi}_{a}} + \sqrt{\pi_{a}})^{2}} da \int_{a} \mu_{a} \left[\frac{\partial}{\partial u} \nu_{t} \right]_{\xi_{a}} da \right] \right\}.$$

Note that $\left[\frac{\partial}{\partial u}\nu_t\right]_{\xi_a} - \left[\frac{\partial}{\partial \widehat{u}}\widehat{\nu}_t\right]_{\widehat{u}}$ is indeed a difference in nuisance functions since ξ_a is between \widehat{u} and u, so as $\widehat{u} \to u$ then

$$\left[\frac{\partial}{\partial u}\nu_t\right]_{\xi_a} - \left[\frac{\partial}{\partial \widehat{u}}\widehat{\nu}_t\right]_{\widehat{u}} \to 0.$$

We can see this a bit more clearly by observing that

$$\left[\frac{\partial}{\partial u}\nu_t\right]_{\xi_a} - \left[\frac{\partial}{\partial \widehat{u}}\widehat{\nu}_t\right]_{\widehat{u}} = \left(\left[\frac{\partial}{\partial u}\nu_t\right]_{\xi_a} - \left[\frac{\partial}{\partial u}\nu_t\right]_{\widehat{u}}\right) + \left(\left[\frac{\partial}{\partial u}\nu_t\right]_{\widehat{u}} - \left[\frac{\partial}{\partial \widehat{u}}\widehat{\nu}_t\right]_{\widehat{u}}\right).$$

Then, again it follows by the mean value theorem that there exists some ξ_a^* between ξ_a and \hat{u} such that

$$\left(\left[\frac{\partial}{\partial u} \nu_t \right]_{\xi_a} - \left[\frac{\partial}{\partial u} \nu_t \right]_{\widehat{u}} \right) = \left(\left[\frac{\partial^2}{\partial u^2} \nu_t \right]_{\xi_a^*} \right) (\xi_a - \widehat{u}) = \left(\left[\frac{\partial^2}{\partial u^2} \nu_t \right]_{\xi_a^*} \right) \zeta_a(u - \widehat{u})$$

where the last equality holds for some $\zeta_a \in [0,1]$, since ξ_a is between \hat{u} and u. Finally, it follows that

$$\left(\left[\frac{\partial}{\partial u} \nu_t \right]_{\widehat{u}} - \left[\frac{\partial}{\partial \widehat{u}} \widehat{\nu}_t \right]_{\widehat{u}} \right) = \alpha_t(\widehat{u})(m_1 - \widehat{m}_1) + 2\gamma_t(\widehat{u})(m_2 - \widehat{m}_2) + \beta_t(\widehat{u})(m_3 - \widehat{m}_3),$$

which we can further write as

$$(m_1 - \widehat{m}_1) = \int_a (\mu_a - \widehat{\mu}_a) \pi_a da + \int_a \widehat{\mu}_a (\pi_a - \widehat{\pi}_a) da,$$

$$(m_2 - \widehat{m}_2) = \int_a (\mu_a - \widehat{\mu}_a) \sqrt{\pi_a q_a} da + \int_a \widehat{\mu}_a \sqrt{q_a} \left(\frac{\pi_a - \widehat{\pi}_a}{\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a}} \right) da, \quad \text{and} \quad (m_3 - \widehat{m}_3) = \int_a (\mu_a - \widehat{\mu}_a) q_a da.$$

Thus, putting everything together, it follows that

$$R_{2}(\widehat{P}, P) = \left\{ \mathbb{E} \left[\widehat{\beta}_{t} \int_{a} \frac{q_{a}}{\widehat{\pi}_{a}} \left(\widehat{\pi}_{a} - \pi_{a} \right) \left(\widehat{\mu}_{a} - \mu_{a} \right) da \right] + \\ \mathbb{E} \left[\widehat{\gamma}_{t} \int_{a} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}} \left(\widehat{\pi}_{a} - \pi_{a} \right) \left(\left(\widehat{\mu}_{a} - \mu_{a} \right) + \mu_{a} \left(\frac{\widehat{\pi}_{a} - \pi_{a}}{\left(\sqrt{\widehat{\pi}_{a}} + \sqrt{\pi_{a}} \right)^{2}} \right) \right) da \right] + \\ \mathbb{E} \left[\frac{1}{2} \int_{a} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}} (\widehat{\pi}_{a} - \pi_{a}) da \left\{ \int_{a} \left[\frac{\partial}{\partial u} \nu_{t} \right]_{\xi_{a}} (\mu_{a} - \widehat{\mu}_{a}) da \right\} \right] + \\ \mathbb{E} \left[\frac{1}{2} \int_{a} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}} (\widehat{\pi}_{a} - \pi_{a}) da \left\{ \int_{a} \widehat{\mu}_{a} \left(\left[\frac{\partial}{\partial u} \nu_{t} \right]_{\xi_{a}} - \left[\frac{\partial}{\partial \widehat{u}} \widehat{\nu}_{t} \right]_{\widehat{u}} \right) da \right\} \right] + \\ \mathbb{E} \left[\frac{1}{4} \int_{a} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}} \frac{(\widehat{\pi}_{a} - \pi_{a})^{2}}{(\sqrt{\widehat{\pi}_{a}} + \sqrt{\pi_{a}})^{2}} da \int_{a} \mu_{a} \left[\frac{\partial}{\partial u} \nu_{t} \right]_{\xi_{a}} da \right] \right\}$$

which can be further decomposed by plugging in the previously discussed expressions for $\left(\left[\frac{\partial}{\partial u}\nu_t\right]_{\xi_a}-\left[\frac{\partial}{\partial \widehat{u}}\widehat{\nu}_t\right]_{\widehat{u}}\right)$.

A.10 Proof of Lemma 3 and Theorem 6

In order to proceed with the proof of Theorem 6, we first prove a technical lemma that lower and upper bounds the variance of the efficient influence function of the Hellinger incremental effect. With these bounds in place, we can determine how $\varphi_h(Z;t)$ scales as $t \to 1$ and $\varepsilon \to 0$.

A.10.1 Proof of Lemma 3

Lemma 3. Suppose that

- (i) $\pi(a \mid x) \geq \pi_{\min} > 0$ for all $a \in [a_* + \eta, a_* \eta]$ and for some $\eta > 0$.
- (ii) For all $a \in [a_* \eta, a_* + \eta]$, $\exists some L > 0$ such that $|\pi(a \mid x) \pi(a_* \mid x)| \le L|a a_*|$.
- (iii) $|Y| \leq C$ almost surely.
- (iv) $\mathbb{V}(Y \mid X, A) \ge \sigma_{\min}^2 > 0$.

Then, as $\varepsilon \to 0$,

$$\mathbb{V}(\varphi_h(Z;t)) = O\left(\frac{1}{\varepsilon}\mathbb{E}\left[\left(\frac{\sin(t\theta)}{\sin(\theta)}\right)^2\right]\right)$$

where $\theta = arccos(\int_a \sqrt{\pi(a \mid X)q(a)}da)$.

Proof: Recall by Theorem 5 that the efficient influence function under the Hellinger geodesic

is given by $\mathbb{IF}(\psi_h(t)) = D_Y + D_u + D_Q + D_u + D_{\psi}$, where

$$D_{Y} = \frac{\nu_{t}(A \mid X)}{\pi(A \mid X)} \left(Y - \mu(X, A) \right)$$

$$D_{\mu} = \alpha_{t}(u(X)) \left(\mu(X, A) - \mathbb{E}[\mu(X, a) \mid X] \right)$$

$$D_{Q} = \gamma_{t}(u(X)) \left(\mu(X, A) \frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid X)}} - \mathbb{E}\left[\mu(X, A) \frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid X)}} \mid X \right] \right)$$

$$D_{u} = \frac{1}{2} \left(\frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid X)}} - u(X) \right) \frac{\partial}{\partial u(X)} \left\{ \mathbb{E}_{\nu_{t}} \left[\mu(X, A) \mid X \right] \right\}$$

$$D_{\psi} = \mathbb{E}_{\nu_{t}} \left[\mu(X, A) \mid X \right] - \psi_{h}(t).$$

Our goal is to upper and lower bound the nonparametric efficiency bound, i.e. $\mathbb{V}(\varphi_h(Z;t))$. Therefore, we begin by evaluating all cross terms. First, following the proof of Corollary 1 we know that

$$\mathbb{E}[D_Y D_{\mu}] = \mathbb{E}[D_Y D_Q] = \mathbb{E}[D_Y D_{\psi}] = \mathbb{E}[D_Y D_u] = 0.$$

Next, it can also be shown that $\mathbb{E}[D_{\mu}D_{\psi}] = \mathbb{E}[D_{Q}D_{\psi}] = \mathbb{E}[D_{u}D_{\psi}] = 0$ since

$$\mathbb{E}[D_u \mid X] = \mathbb{E}\left[\frac{1}{2} \frac{\partial \{\mathbb{E}_{\nu_t} \left[\mu(X,A) \mid X\right]\}}{\partial u(X)} \left(\int_a \left\{ \sqrt{\pi(a \mid X)q(a)} - \sqrt{\pi(a \mid X)q(a)} \right\} da \right) \right] = 0,$$

$$\mathbb{E}[D_\mu \mid X] = \mathbb{E}\left[\alpha_t(u(X)) \left(\int_a \mu(X,a)\pi(a \mid X)da - \int_a \mu(X,a)\pi(a \mid X)da \right) \right] = 0, \text{ and}$$

$$\mathbb{E}[D_Q \mid X] = \mathbb{E}\left[\gamma_t(u(X)) \left(\int_a \mu(X,a)\sqrt{q(a)\pi(a \mid X)}da - \int_a \mu(X,a)\sqrt{q(a)\pi(a \mid X)}da \right) \right] = 0.$$

Consequently, the law of iterated expectations yields $\mathbb{E}[D_{\mu}D_{\psi}] = \mathbb{E}[D_{\psi}\mathbb{E}[D_{\mu} \mid X]] = 0$, and similarly for $\mathbb{E}[D_{Q}D_{\psi}]$ and $\mathbb{E}[D_{u}D_{\psi}]$. Next, observe that $\mathbb{E}[D_{\mu}D_{Q}]$, $\mathbb{E}[D_{\mu}D_{u}]$, and $\mathbb{E}[D_{Q}D_{u}]$ are all covariance terms that need not be zero. Thus, we can see that $\mathbb{V}(\varphi_{h}(Z;t))$ is given by

$$\mathbb{E}[D_Y^2 + \alpha_t^2 D_{\mu}^2 + \gamma_t^2 D_Q^2 + D_u^2 + D_{\psi}^2] + 2\text{Cov}(D_u, D_{\mu}) + 2\text{Cov}(D_u, D_Q) + 2\text{Cov}(D_{\mu}, D_Q).$$

Now, we proceed with bounding $V(\varphi_h(Z;t))$.

Upper Bound: First, observe that

$$\mathbb{E}\left[\left(\frac{\nu_t(A\mid X)}{\pi(A\mid X)}\right)^2\right] = \mathbb{E}\left[\left(\frac{\left(\sqrt{\alpha_t\pi(A\mid X)} + \sqrt{\beta_tq(A)}\right)^2}{\pi(A\mid X)}\right)^2\right]$$
$$= \mathbb{E}\left[\left(\alpha_t + 2\sqrt{\alpha_t\beta_t}\left(\frac{q(A)}{\pi(A\mid X)}\right)^{1/2} + \beta_t\frac{q(A)}{\pi(A\mid X)}\right)^2\right]$$

where for notational convenience we write $\alpha_t = \alpha_t(u(X))$ and $\beta_t = \beta_t(u(X))$, which further simplifies to

$$\mathbb{E}\left[\alpha_t^2 + \frac{6\alpha_t\beta_t q(A)}{\pi(A\mid X)} + \left(\frac{\beta_t q(A)}{\pi(A\mid X)}\right)^2 + 4\alpha_t^{3/2} \left(\frac{\beta_t q(A)}{\pi(A\mid X)}\right)^{1/2} + 4\sqrt{\alpha_t} \left(\frac{\beta_t q(A)}{\pi(A\mid X)}\right)^{3/2}\right]. \tag{17}$$

From here, we would like to bound the expected ratios of $q(A)/\pi(A \mid X)$. Observe that

$$\mathbb{E}\left[\beta_t^2 \left(\frac{q(A)}{\pi(A\mid X)}\right)^2\right] = \mathbb{E}\left[\beta_t^2 \int_{a_*-\eta}^{a_*+\eta} \frac{q_a^2}{\pi_a} da\right] \leq \mathbb{E}\left[\frac{\beta_t^2}{\pi_{\min}} \int_{a_*-\eta}^{a_*+\eta} q_a^2 da\right]$$

where we use the assumption that positivity holds in some neighborhood of a_* , that is, for some $\eta > 0$ that $\pi(a \mid X) > 0$ for all $a \in [a_* - \eta, a_* + \eta]$, as well as the fact that $q(a) \approx 0$ for all $a \notin [a_* - \eta, a_* + \eta]$. Now, we use our approximation of δ_{a_*} , i.e., $\mathcal{N}(a_*, \varepsilon^2)$, to see that

$$\begin{split} \int_{a_* - \eta}^{a_* + \eta} q_a^2 da &\stackrel{(i)}{=} \frac{1}{2\pi\varepsilon^2} \int_{-\eta}^{\eta} \exp\left(-\frac{u^2}{\varepsilon^2}\right) du \\ &\stackrel{(ii)}{=} \frac{1}{2\pi\varepsilon^2} \frac{\varepsilon}{\sqrt{2}} \int_{-\sqrt{2}\eta/\varepsilon}^{\sqrt{2}\eta/\varepsilon} \exp\left(-\frac{w^2}{2}\right) dw \\ &= \frac{1}{2\sqrt{2}\pi\varepsilon} \left(\sqrt{2\pi} \cdot \frac{1}{\sqrt{2\pi}}\right) \int_{-\sqrt{2}\eta/\varepsilon}^{\sqrt{2}\eta/\varepsilon} \exp\left(-\frac{w^2}{2}\right) dw \\ &\leq \frac{1}{2\sqrt{\pi}\varepsilon} \end{split}$$

where in (i) we use the change of variables $u = a - a_*$, in (ii) we use the change of variables $u = \varepsilon w/\sqrt{2}$, and the inequality follows since

$$\frac{1}{\sqrt{2\pi}} \int_{-\sqrt{2}\eta/\varepsilon}^{\sqrt{2}\eta/\varepsilon} \exp\left(-\frac{w^2}{2}\right) dw \le \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left(-\frac{w^2}{2}\right) dw = 1.$$

Similarly, we can see that

$$\mathbb{E}\left[\left(\frac{q(A)}{\pi(A\mid X)}\right)^{3/2}\right] = \mathbb{E}\left[\int_{a_*-\eta}^{a_*+\eta} \frac{q_a^{3/2}}{\pi_a^{1/2}} da\right]$$

$$\leq \mathbb{E}\left[\frac{1}{\pi_{\min}^{1/2}} \left(\frac{1}{\sqrt{2\pi\varepsilon^2}}\right)^{3/2} \int_{-\eta}^{\eta} \exp\left(-\frac{3}{4} \frac{u^2}{\varepsilon^2}\right) du\right]$$

$$\leq \frac{2^{1/4}}{\pi^{1/4} \sqrt{3\pi_{\min}\varepsilon}}.$$

Next, observe that by the Cauchy-Schwarz inequality,

$$\mathbb{E}\left[\left(\frac{q(A)}{\pi(A\mid X)}\right)^{1/2}\right] = \mathbb{E}\left[\int_{a}\sqrt{q_{a}\pi_{a}}da\right] \leq \mathbb{E}\left[\left(\int_{a}q_{a}da\right)^{1/2}\left(\int_{a}\pi_{a}da\right)^{1/2}\right] = 1$$

since $\int_a q_a da = \int_a \pi_a da = 1$. Similarly, it follows that $\mathbb{E}\left[\frac{q(A)}{\pi(A|X)}\right] = \int_a q_a da = 1$. Putting everything together, it follows that

$$\mathbb{E}\left[\left(\frac{\nu_t(A\mid X)}{\pi(A\mid X)}\right)^2\right] \leq \mathbb{E}\left[\alpha_t^2 + 6\alpha_t\beta_t + \frac{\beta_t^2}{\pi_{\min}}\frac{1}{2\sqrt{\pi}\varepsilon} + 4\alpha_t^{3/2}\beta_t^{1/2} + \frac{2^{9/4}\sqrt{\alpha_t}\beta_t^{3/2}}{\pi^{1/4}\sqrt{3\pi_{\min}\varepsilon}}\right].$$

Now, we establish bounds on α_t , β_t , and γ_t . First, observe that $\theta \in (0, \pi/2]$. This follows since $\theta = \arccos(\int_a \sqrt{\pi(a \mid x)}q(a)da)$, so by applying the Cauchy-Schwarz inequality we can see that

$$0 \le \int_a \sqrt{\pi(a \mid x)q(a)} da \le \left(\int_a \pi(a \mid x) da\right)^{1/2} \left(\int_a q(a) da\right)^{1/2} = 1.$$

Thus, for all $\theta \in (0, \pi/2]$ and $t \in [0, 1]$ it can be shown that

$$0 \le \alpha_t = \left(\frac{\sin((1-t)\theta)}{\sin(\theta)}\right)^2 \le 1$$
$$0 \le \beta_t = \left(\frac{\sin(t\theta)}{\sin(\theta)}\right)^2 \le 1$$
$$0 \le \gamma_t = \frac{\sin((1-t)\theta)\sin(t\theta)}{\sin^2(\theta)} \le \frac{1}{2}.$$

From here, we can see that under the assumption that $|Y| \leq C$ with high probability, it follows that

$$\mathbb{E}\left[\alpha_t^2 D_\mu^2\right] \le \mathbb{E}\left[\left(\mu(X, A) - \mathbb{E}[\mu(X, a) \mid X]\right)^2\right] = \mathbb{E}\left[\mathbb{V}(\mu(X, A) \mid X)\right] \le C^2$$

$$\mathbb{E}\left[\gamma_t^2 D_Q^2\right] \le \frac{1}{4} \mathbb{E}\left[\mathbb{V}\left(\mu(X, A) \left(\frac{q(A)}{\pi(A \mid X)}\right)^{1/2} \mid X\right)\right] \le \frac{C^2}{4},$$

$$\mathbb{E}[D_u^2] \le \frac{1}{4} \mathbb{E}\left[\left(\frac{\partial}{\partial u(X)} \left\{\mathbb{E}_{\nu_t}\left[\mu(X, A) \mid X\right]\right\}\right)^2\right] \le \frac{9C^2}{4}, \text{ and }$$

$$\mathbb{E}[D_\psi^2] = \mathbb{E}\left[\left(\mathbb{E}_{\nu_t}\left[\mu(X, A) \mid X\right] - \psi_h(t)\right)^2\right] = \mathbb{V}\left(\mathbb{E}_{\nu_t}\left[\mu(X, A) \mid X\right]\right) \le C^2.$$

Finally, we must bound the covariance terms. Recall that for any random variables U and V that

$$|Cov(U, V)| \le \sqrt{V(U)V(V)}$$
.

Thus, it follows that

$$\mathbb{E}[D_{\mu}, D_Q] = \operatorname{Cov}\left(\alpha_t \mu(X, A), \gamma_t \mu(X, A) \left(\frac{q(A)}{\pi(A \mid X)}\right)^{1/2}\right) \le \sqrt{C^2 \cdot \frac{C^2}{4}} = \frac{C^2}{2}$$

and similarly that $\mathbb{E}[D_u D_Q] \leq \frac{3C^2}{4}$ and $\mathbb{E}[D_u D_\mu] \leq \frac{3C^2}{2}$. Putting everything together, it follows that

$$\mathbb{V}(\varphi_h(Z;t)) \leq \mathbb{E}\left[\frac{C^2}{\varepsilon} \left(\alpha_t^2 \varepsilon + 6\alpha_t \beta_t \varepsilon + \frac{\beta_t^2}{\pi_{\min}} \frac{1}{2\sqrt{\pi}} + 4\alpha_t^{3/2} \beta_t^{1/2} \varepsilon + \frac{2^{9/4} \sqrt{\alpha} \beta_t^{3/2} \sqrt{\varepsilon}}{\pi^{1/4} \sqrt{3\pi_{\min}}} + 10\varepsilon\right)\right].$$

Lower Bound: In order to establish a lower bound, we can immediately drop the D^2_{μ} , D^2_{Q} , D^2_{u} , and D^2_{ψ} terms from $\mathbb{V}(\varphi_h(Z;t))$, which yields a lower bound of

$$\mathbb{E}\left[\left(\frac{\nu_t(A\mid X)}{\pi(A\mid X)}\right)^2\mathbb{V}(Y\mid X,A)\right] + 2\mathrm{Cov}\left(D_u,D_\mu\right) + 2\mathrm{Cov}\left(D_u,D_Q\right) + 2\mathrm{Cov}\left(D_\mu,D_Q\right).$$

Then, assuming that $\mathbb{V}(Y \mid X, A) \geq \sigma_{\min}^2 > 0$, and by dropping out the lower order terms from Equation (17), it follows that

$$\mathbb{E}\left[\left(\frac{\nu_t(A\mid X)}{\pi(A\mid X)}\right)^2\mathbb{V}(Y\mid X,A)\right] \geq \sigma_{\min}^2\mathbb{E}\left[\left(\frac{\beta_tq(A)}{\pi(A\mid X)}\right)^2\right] = \sigma_{\min}^2\mathbb{E}\left[\beta_t^2\int_a\frac{q_a^2}{\pi_a}da\right].$$

Next, we assume that $\pi(a \mid x)$ is Lipschitz continuous in a neighborhood of a_* . That is, for all $a \in [a_* - \eta, a_* + \eta]$, there exists some L > 0 such that

$$|\pi(a \mid x) - \pi(a_* \mid x)| \le L|a - a_*| \le L\eta.$$

This allows us to say that $\pi(a \mid x) \leq \pi(a_* \mid x) + L\eta$. Therefore, it follows that

$$\int_{a} \frac{q_{a}^{2}}{\pi_{a}} da \ge \int_{a_{*}-\eta}^{a_{*}+\eta} \frac{q_{a}^{2}}{\pi_{a}} da \ge \frac{1}{\pi(a_{*} \mid X) + L\eta} \int_{a_{*}-\eta}^{a_{*}+\eta} q_{a}^{2} da.$$

From here, observe that

$$\int_{a_* - \eta}^{a_* + \eta} q_a^2 da = \frac{1}{2\sqrt{\pi}\varepsilon} \left(\frac{1}{\sqrt{2\pi}} \int_{-\sqrt{2}\eta/\varepsilon}^{\sqrt{2}\eta/\varepsilon} \exp\left(-\frac{u^2}{2}\right) du \right) = \frac{1}{2\sqrt{\pi}\varepsilon} \left(2\Phi(\sqrt{2}\eta/\varepsilon) - 1 \right)$$

where $\Phi(\cdot)$ is the cumulative distribution function for a standard Normal random variable. Then, using the one-sided Gaussian tail bound

$$1 - \Phi(u) \le \exp\left(-\frac{u^2}{2}\right)$$

it follows that

$$2\Phi(\sqrt{2}\eta/\varepsilon) - 1 = 1 - 2\left(1 - \Phi(\sqrt{2}\eta/\varepsilon)\right) \ge 1 - 2\exp\left(-\frac{\eta^2}{\varepsilon^2}\right).$$

Furthermore, note that we may remove the dependence on X from our bound by again leveraging the Lipschitzness of $\pi(a \mid X)$. Observe that

$$\pi(a \mid X) \ge \pi(a_* \mid X) - L|a - a_*|.$$

Then, it follows that

$$1 \ge \int_{a_* - \eta}^{a_* + \eta} \pi(a \mid X) da \ge \int_{a_* - \eta}^{a_* + \eta} \pi(a_* \mid X) - L|a - a_*| = 2\eta \pi(a_* \mid X) - L\eta^2,$$

so by rearranging it follows that

$$\pi(a_* \mid X) \le \frac{1 + L\eta^2}{2\eta}.$$

Thus, we can now see that

$$\mathbb{E}\left[\left(\frac{\nu_t(A\mid X)}{\pi(A\mid X)}\right)^2 \mathbb{V}(Y\mid X,A)\right] \geq \frac{2\eta\sigma_{\min}^2}{1+3L\eta^2} \frac{\mathbb{E}\left[\beta_t^2\right]}{2\sqrt{\pi}\varepsilon} \left[1-2\exp\left(-\frac{\eta^2}{\varepsilon^2}\right)\right]$$

Finally, we can leverage our results from the upper bound to see that

$$|2\operatorname{Cov}(D_u, D_\mu) + 2\operatorname{Cov}(D_u, D_Q) + 2\operatorname{Cov}(D_\mu, D_Q)| \le \frac{11C^2}{2}$$

Therefore, putting everything together, it follows that

$$\mathbb{V}(\varphi_h(Z;t)) \ge \frac{2\eta\sigma_{\min}^2}{1 + 3Ln^2} \frac{\mathbb{E}\left[\beta_t^2\right]}{2\sqrt{\pi}\varepsilon} \left[1 - 2\exp\left(-\frac{\eta^2}{\varepsilon^2}\right)\right] - \frac{11C^2}{2}.$$

A.10.2 Proof of Theorem 6

Proof: In this proof we establish the conditions required for asymptotic normality of the incremental effect under the Hellinger geodesic. We closely follow the proof of Theorem 4, splitting the proof into three sections for ease of readability.

Lindeberg's Condition: Again, we wish to show that for all h > 0,

$$\lim_{n \to \infty} \frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E}\left[\varphi_i^2 \mathbb{I}\{|\varphi_i| > h s_n\}\right] = 0$$

where $s_n^2 = \sum_{i=1}^n \mathbb{V}(\varphi_i(Z_i))$. First, we may directly apply Lemma 3 to see that

$$s_n^2 \ge \frac{n\mathbb{E}\left[\beta_t\right]}{\varepsilon} \left(\frac{2\eta\sigma_{\min}^2}{1 + 3L\eta^2} \frac{1}{2\sqrt{\pi}} \left[1 - 2\exp\left(-\frac{\eta^2}{\varepsilon^2}\right)\right] - \frac{11C^2\varepsilon}{2\mathbb{E}\left[\beta_t\right]}\right)$$

where without loss of generality we assume t > 0 in order to factor out $\mathbb{E}[\beta_t]$ since $\beta_t = 0$ then t = 0. Now, we establish upper bounds for each term in φ_i , as defined in Theorem 5. To do so, observe that

$$\frac{q(A_i)}{\pi(A_i \mid X_i)} \stackrel{(i)}{\leq} \frac{q(A_i)}{\pi_{\min}} \stackrel{(ii)}{\leq} \frac{1}{2\pi_{\min}\sqrt{\pi\varepsilon}} =: \frac{1}{B\varepsilon}$$

where in (i) we use the assumption that $\pi(A_i \mid X_i) \geq \pi_{\min} > 0$ for all $A_i \in [a_* - \eta, a_* + \eta]$ coupled with the fact that $q(A_i) \approx 0$ for all $A_i \notin [a_* - \eta, a_* + \eta]$, and in (ii) we upper bound $q(A_i)$ using the Gaussian density function. Using this inequality along with the assumption that $|Y| \leq C$ almost surely, it can be shown that

$$|\varphi_i| \le \frac{\beta_t}{\varepsilon} \cdot C \left[\frac{6\varepsilon}{\beta_t} + 4\sqrt{\frac{\alpha\varepsilon}{B\beta_t}} + \frac{2}{B} + \frac{3}{2}\sqrt{\frac{\varepsilon}{B}} + \frac{1}{2\beta_t}\sqrt{\frac{\varepsilon}{B}} + \frac{\varepsilon}{2\beta_t} \right].$$

Thus, for a sufficiently small ε (such that we can ignore constants) we can see that

$$\mathbb{E}\left[\varphi_i^2 \mathbb{I}\{|\varphi_i| > hs_n\}\right] \leq \mathbb{E}\left[\varphi_i^2 \mathbb{I}\left\{\frac{1}{\varepsilon} \gtrsim h\left(\frac{n\mathbb{E}\left[\beta_t\right]}{\varepsilon}\right)^{1/2}\right\}\right].$$

Therefore, it follows that

$$\lim_{n \to \infty} \mathbb{I} \left\{ \frac{1}{\varepsilon} \gtrsim h \left(\frac{n \mathbb{E} \left[\beta_t \right]}{\varepsilon} \right)^{1/2} \right\} \to 0$$

as long as $\sqrt{n\varepsilon\mathbb{E}\left[\beta_{t}\right]} \to \infty$. Thus, applying the squeeze and dominated convergence theorems in conjunction, it follows that Lindeberg's condition holds, i.e.,

$$\lim_{n \to \infty} \left\{ \frac{1}{s_n^2} \sum_{k=1}^n \mathbb{E}\left[\varphi_i^2 \mathbb{I}\{|\varphi_i| > h s_n\}\right] \right\} = 0.$$

Empirical Process Term: In this section, we consider $(P_n - P)\{\varphi(Z; \widehat{P}) - \varphi(Z; P)\}$, i.e. the empirical process term. To proceed, observe that $\varphi(Z; \widehat{P}) - \varphi(Z; P)$ can be written as the summation of

$$\begin{split} D_1 &= \left(\frac{\widehat{\nu}_t(A\mid X)}{\widehat{\pi}(A\mid X)} - \frac{\nu_t(A\mid X)}{\pi(A\mid X)}\right)Y, \\ D_2 &= \frac{\nu_t(A\mid X)}{\pi(A\mid X)}\mu(X,A) - \frac{\widehat{\nu}_t(A\mid X)}{\widehat{\pi}(A\mid X)}\widehat{\mu}(X,A), \\ D_3 &= \alpha_t\left(\widehat{\mu}(X,A) - \mu(X,A)\right) + \widehat{\mu}(X,A)\left(\widehat{\alpha}_t - \alpha_t\right), \\ D_4 &= \alpha_t\left(\int_a \mu(X,a)\pi(a\mid X)da - \int_a \widehat{\mu}(X,a)\widehat{\pi}(a\mid X)da\right) + (\alpha_t - \widehat{\alpha}_t)\int_a \widehat{\mu}(X,a)\widehat{\pi}(a\mid X)da, \\ D_5 &= \widehat{\gamma}_t\widehat{\mu}(X,A)\left(\sqrt{\frac{q(A)}{\widehat{\pi}(A\mid X)}} - \sqrt{\frac{q(A)}{\pi(A\mid X)}}\right) + \sqrt{\frac{q(A)}{\pi(A\mid X)}}\left(\widehat{\gamma}_t\widehat{\mu}(X,A) - \gamma_t\mu(X,A)\right), \\ D_6 &= (\gamma_t - \widehat{\gamma}_t)\int_a \mu(X,a)\sqrt{q(a)\pi(a\mid X)}da, \\ D_7 &= \widehat{\gamma}_t\left(\int_a \mu(X,a)\sqrt{q(a)\pi(a\mid X)}da - \int_a \widehat{\mu}(X,a)\sqrt{q(a)\widehat{\pi}(a\mid X)}da\right), \\ D_8 &= \int_a \widehat{\mu}(X,a)\left(\widehat{\nu}_t(a\mid X) - \nu_t(a\mid X)\right)da + \int_a \nu_t(a\mid X)\left(\widehat{\mu}(X,a) - \mu(X,a)\right)da, \\ D_9 &= \frac{1}{2}\frac{\sqrt{q(A)}}{\sqrt{\widehat{\pi}(A\mid X)}}\left(\frac{\partial}{\partial \widehat{u}(X)}\left\{\int_a \widehat{\mu}(X,a)\widehat{\nu}_t(a\mid X)da\right\} - \frac{\partial}{\partial u(X)}\left\{\int_a \mu(X,a)\nu_t(a\mid X)da\right\}\right), \\ D_{10} &= \frac{1}{2}\frac{\partial}{\partial u(X)}\left\{\int_a \mu(X,a)\nu_t(a\mid X)da\right\}\left(\frac{\sqrt{q(A)}}{\sqrt{\widehat{\pi}(A\mid X)}} - \frac{\sqrt{q(A)}}{\sqrt{\pi(A\mid X)}}\right), \\ D_{11} &= \frac{1}{2}\frac{\partial}{\partial u(X)}\left\{\int_a \mu(X,a)\nu_t(a\mid X)da\right\}\left(u(X) - \widehat{u}(X)\right), \quad \text{and} \\ D_{12} &= \frac{1}{2}\widehat{u}(X)\left(\frac{\partial}{\partial u(X)}\left\{\int_a \mu(X,a)\nu_t(a\mid X)da\right\} - \frac{\partial}{\partial \widehat{u}(X)}\left\{\int_a \widehat{\mu}(X,a)\widehat{\nu}_t(a\mid X)da\right\}\right) \right). \end{split}$$

after grouping together like terms. Our goal is to show that $||\varphi(Z; \widehat{P}) - \varphi(Z; P)||_2 = o_P(\varepsilon^{-1/2})$, however for brevity's sake we highlight the bounds for only a handful of terms, since each bound follows in a similar manner. Before we proceed, we note again that α_t is a function of $u = \int_a \sqrt{\pi_a q_a} da$, that is,

$$\alpha_t(u) = \left(\frac{\sin((1-t)\arccos(u))}{\sin(\arccos(u))}\right)^2,$$

where we use analogous definitions for $\gamma_t(\cdot)$ and $\beta_t(\cdot)$. Then, by the mean value theorem, there exists some ξ_a between \hat{u} and u such that

$$\alpha_t(\widehat{u}) - \alpha_t(u) = \alpha_t'(\xi)(\widehat{u} - u)$$

$$= \alpha_t'(\xi_a) \left(\int_a \left(\sqrt{\widehat{\pi}_a} - \sqrt{\pi_a} \right) \sqrt{q_a} da \right)$$

$$= \alpha_t'(\xi_a) \int_a \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a}} (\widehat{\pi}_a - \pi_a) da.$$

Similarly, it follows that

$$\beta_t(\widehat{u}) - \beta_t(u) = \beta_t'(\xi_a) \int_a \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a}} (\widehat{\pi}_a - \pi_a) da \quad \text{and}$$
$$\gamma_t(\widehat{u}) - \gamma_t(u) = \gamma_t'(\xi_a) \int_a \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a}} (\widehat{\pi}_a - \pi_a) da.$$

With this in mind, we begin by considering $||D_1||_2$. Observe that

$$\frac{\widehat{\nu}_{t,a}}{\widehat{\pi}_a} - \frac{\nu_{t,a}}{\pi_a} = \frac{(\widehat{\alpha}_t \widehat{\pi}_a + 2\sqrt{\widehat{\alpha}_t \widehat{\beta}_t \widehat{\pi}_a q_a} + \widehat{\beta}_t q_a)\pi_a - (\alpha_t \pi_a + 2\sqrt{\alpha_t \beta_t \pi_a q_a} + \beta_t q_a)\widehat{\pi}_a}{\widehat{\pi}_a \pi_a}$$

which further decomposes into

$$\left\{ (\widehat{\alpha}_t - \alpha_t) + \frac{q_a}{\pi_a} \left(\frac{(\widehat{\beta}_t - \beta_t)\pi_a + \beta_t(\pi_a - \widehat{\pi}_a)}{\widehat{\pi}_a} \right) + 2\sqrt{\frac{q_a}{\pi_a}} \left(\frac{\sqrt{\alpha_t \beta_t}(\pi_a - \widehat{\pi}_a)}{\widehat{\pi}_a} \right) + \frac{2\sqrt{q_a}}{\widehat{\pi}_a} \left(\sqrt{\widehat{\alpha}_t \widehat{\beta}_t} (\sqrt{\widehat{\pi}_a} - \sqrt{\pi_a}) + \sqrt{\widehat{\beta}_t \pi_a} (\sqrt{\widehat{\alpha}_t} - \sqrt{\alpha_t}) + \sqrt{\alpha_t \pi_a} (\sqrt{\widehat{\beta}_t} - \sqrt{\beta_t}) \right) \right\}.$$

Then, observe that

$$\left\| \frac{q_a}{\pi_a} \left(\frac{\beta_t(\pi_a - \widehat{\pi}_a)}{\widehat{\pi}_a} \right) \right\|_2 = \mathbb{E} \left[\int_a \frac{q_a^2}{\pi_a} \left(\frac{\beta_t(\pi_a - \widehat{\pi}_a)}{\widehat{\pi}_a} \right)^2 da \right]^{1/2}$$

$$\leq \mathbb{E} \left[\sup_a (\widehat{\pi}_a - \pi_a)^2 \int_a \frac{q_a^2}{\pi_a} \left(\frac{\beta_t}{\widehat{\pi}_a} \right)^2 da \right]^{1/2}$$

$$\leq \|\widehat{\pi} - \pi\|_{2,\infty} \cdot O(\varepsilon^{-1/2})$$

where the last inequality follows by applying Hölder's inequality and by Lemma 3, and where we define the mixed $L_2(P)$ -sup norm as

$$||f(x,a)||_{2,\infty}^2 = \int \sup_a f(x,a)^2 dP(x).$$

Next, it follows that

$$||\widehat{\alpha}_{t} - \alpha_{t}||_{2} = \mathbb{E}\left[\left[\alpha'_{t}(\xi)\right]^{2} \left(\int_{a} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}} + \sqrt{\pi_{a}}} \left(\widehat{\pi}_{a} - \pi_{a}\right) da\right)^{2}\right]^{1/2}$$

$$= \mathbb{E}\left[\left[\alpha'_{t}(\xi)\right]^{2} \left(\int_{a_{*} - \eta}^{a_{*} + \eta} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}} + \sqrt{\pi_{a}}} \left(\widehat{\pi}_{a} - \pi_{a}\right) da\right)^{2}\right]^{1/2}$$

$$= \mathbb{E}\left[\left[\alpha'_{t}(\xi)\right]^{2} \left(\int_{a_{*} - \eta}^{a_{*} + \eta} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}} \frac{1}{\sqrt{\widehat{\pi}_{a}} + \sqrt{\pi_{a}}} \left(\widehat{\pi}_{a} - \pi_{a}\right) \sqrt{\pi_{a}} da\right)^{2}\right]^{1/2}$$

$$\leq \mathbb{E}\left[\left[\alpha'_{t}(\xi)\right]^{2} \int_{a} \left(\widehat{\pi}_{a} - \pi_{a}\right)^{2} \pi_{a} da \int_{a_{*} - \eta}^{a_{*} + \eta} \frac{q_{a}}{\pi_{a}} \frac{1}{\left(\sqrt{\widehat{\pi}_{a}} + \sqrt{\pi_{a}}\right)^{2}} da\right]^{1/2}$$

$$\leq \frac{||(\alpha'_{t}(\xi))^{2}||_{\infty}}{2\pi_{\min}^{3/2}} ||\widehat{\pi} - \pi_{a}||_{2}$$

and so $||\hat{\alpha}_t - \alpha_t||_2 = o_P(1)$ if $||\hat{\pi} - \pi_a||_2 = o_P(1)$. Note that $||\hat{\pi} - \pi||_{2,\infty} = o_P(1)$ implies that $||\hat{\pi} - \pi_a||_2 = o_P(1)$, since the former is a stronger condition on the estimation error. By repeatedly applying these arguments to all other terms in the decomposition of $\frac{\hat{\nu}_{t,a}}{\hat{\pi}_a} - \frac{\nu_{t,a}}{\pi_a}$, it follows that

$$||D_1||_2 = o_P(\varepsilon^{-1/2})$$

as long as $|Y| \leq C$ with probability one and that $||\widehat{\pi} - \pi||_{2,\infty} = o_P(1)$. Next, following the proof of Theorem 4, it follows that

$$||D_2||_2 \le \left| \left| \left(\frac{\nu_t(A \mid X)}{\pi(A \mid X)} - \frac{\widehat{\nu}_t(A \mid X)}{\widehat{\pi}(A \mid X)} \right) \mu(X, A) \right| \right|_2 + \left| \left| \frac{\widehat{\nu}_t(A \mid X)}{\widehat{\pi}(A \mid X)} \left(\mu(X, A) - \widehat{\mu}(X, A) \right) \right| \right|_2.$$

Clearly, the first term reduces to the previous bound of $||D_1||_2$. Considering the next term, we can see that

$$\left\| \frac{\widehat{\nu}_{t}(A \mid X)}{\widehat{\pi}(A \mid X)} \Big(\mu(X, A) - \widehat{\mu}(X, A) \Big) \right\|_{2} = \mathbb{E} \left[\int_{a} \left(\frac{\widehat{\nu}_{t, a}}{\widehat{\pi}_{a}} \right)^{2} (\widehat{\mu}_{a} - \mu_{a})^{2} \pi_{a} da \right]^{1/2}$$

$$\leq \mathbb{E} \left[\sup_{a} (\widehat{\mu}_{a} - \mu_{a})^{2} \int_{a} \left(\frac{\widehat{\nu}_{t, a}}{\widehat{\pi}_{a}} \right)^{2} \pi_{a} da \right]^{1/2}$$

$$\leq \|\widehat{\mu} - \mu\|_{2, \infty} \cdot O(\varepsilon^{-1/2})$$

where again, the last inequality follows by Lemma 3. Consequently, it can be shown that $||D_2||_2 = o_P(\varepsilon^{-1/2})$ as long as $||\widehat{\pi}_a - \pi_a||_{2,\infty} = o_P(1)$ and $||\widehat{\mu}_a - \mu_a||_{2,\infty} = o_P(1)$.

The same arguments can be applied to each of the other terms in the decomposition of $\varphi(Z; \hat{P}) - \varphi(Z; P)$ without trouble. The only terms that could potentially be problematic as $\varepsilon \to 0$ are terms that contain some kind of ratio between q_a/π_a . To that end, note that

$$\begin{split} \left\| \widehat{\gamma}_{t} \widehat{\mu}(X, A) \left(\sqrt{\frac{q(A)}{\widehat{\pi}(A \mid X)}} - \sqrt{\frac{q(A)}{\pi(A \mid X)}} \right) \right\|_{2} &\leq \frac{C}{2} \mathbb{E} \left[\int_{a} \left(\sqrt{\frac{q_{a}}{\widehat{\pi}_{a}}} - \sqrt{\frac{q_{a}}{\pi_{a}}} \right)^{2} \pi_{a} da \right]^{1/2} \\ &= \frac{C}{2} \mathbb{E} \left[\int_{a} \left(\sqrt{\frac{q_{a}}{\pi_{a}}} \frac{\sqrt{\pi_{a}} - \sqrt{\widehat{\pi}_{a}}}{\sqrt{\widehat{\pi}_{a}}} \right)^{2} \pi_{a} da \right]^{1/2} \\ &= \frac{C}{2} \mathbb{E} \left[\int_{a} \frac{q_{a}}{\widehat{\pi}_{a}} (\sqrt{\pi_{a}} - \sqrt{\widehat{\pi}_{a}})^{2} da \right]^{1/2} \\ &= \frac{C}{2} \mathbb{E} \left[\int_{a} \frac{q_{a}}{\widehat{\pi}_{a}} \frac{(\widehat{\pi}_{a} - \pi_{a})^{2}}{(\sqrt{\widehat{\pi}_{a}} + \sqrt{\pi_{a}})^{2}} da \right]^{1/2} \\ &\leq \frac{C}{2} \mathbb{E} \left[\int_{a} \frac{q_{a}}{\widehat{\pi}_{a}} |\widehat{\pi}_{a} - \pi_{a}| da \right]^{1/2} \\ &\leq ||\widehat{\pi} - \pi||_{2,\infty}, \end{split}$$

and so it follows that $||D_5||_2 = o_P(1)$ as long as $||\widehat{\pi} - \pi||_{2,\infty} = o_P(1)$ and (after similarly evaluating the second term in D_5) that $||\widehat{\mu} - \mu||_{2,\infty}$. Putting everything together, it follows that $||\varphi(Z;\widehat{P}) - \varphi(Z;P)||_2 = o_P(\varepsilon^{-1/2})$.

Remainder Bound: Now, recall that $R_2(\widehat{P}, P) = R_1 + R_2 + R_3 + R_4 + R_5$ where

$$\begin{split} R_1 &= \mathbb{E}\left[\widehat{\beta}_t \int_a \frac{q_a}{\widehat{\pi}_a} \left(\widehat{\pi}_a - \pi_a\right) \left(\widehat{\mu}_a - \mu_a\right) da\right], \\ R_2 &= \mathbb{E}\left[\widehat{\gamma}_t \int_a \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} \left(\widehat{\pi}_a - \pi_a\right) \left(\left(\widehat{\mu}_a - \mu_a\right) + \mu_a \left(\frac{\widehat{\pi}_a - \pi_a}{\left(\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a}\right)^2}\right)\right) da\right], \\ R_3 &= \mathbb{E}\left[\frac{1}{2} \int_a \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} (\widehat{\pi}_a - \pi_a) da \left\{\int_a \left[\frac{\partial}{\partial u} \nu_t\right]_{\xi_a} \left(\mu_a - \widehat{\mu}_a\right) da\right\}\right], \\ R_4 &= \mathbb{E}\left[\frac{1}{2} \int_a \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} (\widehat{\pi}_a - \pi_a) da \left\{\int_a \widehat{\mu}_a \left(\left[\frac{\partial}{\partial u} \nu_t\right]_{\xi_a} - \left[\frac{\partial}{\partial \widehat{u}} \widehat{\nu}_t\right]_{\widehat{u}}\right) da\right\}\right], \quad \text{and} \\ R_5 &= \mathbb{E}\left[\frac{1}{4} \int_a \frac{\sqrt{q_a}}{\sqrt{\widehat{\pi}_a}} \frac{(\widehat{\pi}_a - \pi_a)^2}{\left(\sqrt{\widehat{\pi}_a} + \sqrt{\pi_a}\right)^2} da \int_a \mu_a \left[\frac{\partial}{\partial u} \nu_t\right]_{\xi_a} da\right]. \end{split}$$

To proceed, we bound R_1 and R_2 mixed $L_2(P)$ -sup norms (and note that the other terms follow with analogous proofs). Observe that

$$R_{1} \leq \frac{1}{\pi_{\min}} \mathbb{E} \left[\int_{a_{*}-\eta}^{a_{*}+\eta} (\widehat{\pi}_{a} - \pi_{a}) \sqrt{q_{a}} (\widehat{\mu}_{a} - \mu_{a}) \sqrt{q_{a}} da \right]$$

$$\leq \frac{1}{\pi_{\min}} \mathbb{E} \left[\int_{a} (\widehat{\pi}_{a} - \pi_{a})^{2} q_{a} da \right]^{1/2} \mathbb{E} \left[\int_{a} (\widehat{\mu}_{a} - \mu_{a})^{2} q_{a} da \right]^{1/2}$$

$$\leq \frac{1}{\pi_{\min}} \mathbb{E} \left[\sup_{a} (\widehat{\pi}_{a} - \pi_{a})^{2} \int_{a} q_{a} da \right]^{1/2} \mathbb{E} \left[\sup_{a} (\widehat{\mu}_{a} - \mu_{a})^{2} \int_{a} q_{a} da \right]^{1/2}$$

$$= \frac{1}{\pi_{\min}} ||\widehat{\pi} - \pi||_{2,\infty} \cdot ||\widehat{\mu} - \mu||_{2,\infty}.$$

Now, to bound R_2 , observe that following similar arguments, after applying the Cauchy-Schwarz inequality,

$$\mathbb{E}\left[\int_{a} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}} \left(\widehat{\pi}_{a} - \pi_{a}\right) \left(\widehat{\mu}_{a} - \mu_{a}\right) da\right] \leq \mathbb{E}\left[\int_{a} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}} \left(\widehat{\pi}_{a} - \pi_{a}\right)^{2} da\right]^{1/2} \mathbb{E}\left[\int_{a} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}} \left(\widehat{\mu}_{a} - \mu_{a}\right)^{2} da\right]^{1/2} \lesssim \left|\left|\widehat{\pi} - \pi\right|\right|_{2,\infty} \cdot \left|\left|\widehat{\mu} - \mu\right|\right|_{2,\infty}.$$

Similarly, the second term in R_2 is bounded as

$$\mathbb{E}\left[\int_{a} \frac{\sqrt{q_{a}}}{\sqrt{\widehat{\pi}_{a}}} \left(\widehat{\pi}_{a} - \pi_{a}\right) \left(\mu_{a} \left(\frac{\widehat{\pi}_{a} - \pi_{a}}{\left(\sqrt{\widehat{\pi}_{a}} + \sqrt{\pi_{a}}\right)^{2}}\right)\right) da\right] \leq \frac{C}{\pi_{\min}^{5/2}} \mathbb{E}\left[\int_{a_{*} - \eta}^{a_{*} + \eta} \sqrt{q_{a}} \left(\widehat{\pi}_{a} - \pi_{a}\right)^{2} da\right] \lesssim ||\widehat{\pi} - \pi||_{2, \infty}^{2}.$$

Putting everything together we can see that

$$R_2(\widehat{P}, P) \lesssim ||\widehat{\pi} - \pi||_{2,\infty} \left(||\widehat{\mu} - \mu||_{2,\infty} + ||\widehat{\pi} - \pi||_{2,\infty} \right).$$

Asymptotics: Again, now that we have shown Lindeberg's condition holds, it follows that

$$\frac{\sqrt{n}}{\sigma_h(t)} \Big[(P_n - P) \{ \varphi_h(Z; t, P) \} \Big] \xrightarrow{d} N(0, 1)$$

under the assumption that $\sqrt{n\varepsilon\mathbb{E}\left[\beta_{t}\right]}\to\infty$. Next, by our empirical process term results it follows that

$$\frac{\sqrt{n}}{\sigma_h(t)} \left[(P_n - P) \{ \varphi_h(Z; t, \widehat{P}) - \varphi_h(Z; t, P) \} \right] = o_P(1)$$

under the assumption that $||\widehat{\mu} - \mu||_{2,\infty} = o_P(1)$ and $||\widehat{\pi} - \pi||_{2,\infty} = o_P(1)$. Finally, since

$$R_2(\widehat{P}, P) \lesssim ||\widehat{\pi} - \pi||_{2,\infty} \left(||\widehat{\mu} - \mu||_{2,\infty} + ||\widehat{\pi} - \pi||_{2,\infty} \right)$$

it follows that

$$\frac{\sqrt{n}}{\sigma_h(t)} \left[R_2(\widehat{P}, P) \right] = o_P(1)$$

under the assumption that $||\widehat{\pi} - \pi||_{2,\infty} \left(||\widehat{\mu} - \mu||_{2,\infty} + ||\widehat{\pi} - \pi||_{2,\infty} \right) = o_P((n\varepsilon)^{-1/2}).$

A.11 Proof of Proposition 4

Proof: Recall that we define $m(a_*, t, \beta) = \mu + t \sum_{j=1}^k \beta_j \phi_j(a)$ where $\mu = \mathbb{E}[Y]$ and ϕ_1, \ldots, ϕ_k are given basis functions. Then, for some function h(a) we are interested in solving for the choice of β that minimizes

$$L(\beta) = \int_0^1 \int_0^t (\widehat{\psi}(a, s) - m(a, s, \beta))^2 ds \, h(a) da$$

where $\widehat{\psi}(a,s)$ is the nonparametric estimator of ψ_s for some $s \in [0,1)$. To proceed, let $\phi(a) = (\phi_1(a), \dots, \phi_k(a))^T$ such that $m(a_*, s, \beta) = \mu + s\phi(a)^T\beta$. Then, expanding the square it follows that

$$(\widehat{\psi}(a,s) - \mu - s\phi(a)^T\beta)^2 = (\widehat{\psi}(a,s) - \mu)^2 - 2s(\widehat{\psi}(a,s) - \mu)\phi(a)^T\beta + (s\phi(a)^T\beta)^2.$$

Consequently, we can see that differentiating $L(\beta)$ with respect to β yields

$$\frac{\partial L(\beta)}{\partial \beta} = -2 \int_0^1 \left\{ \int_0^t s(\widehat{\psi}(a,s) - \mu) ds \right\} \phi(a) h(a) da + 2 \frac{t^3}{3} \left(\int_0^1 \phi(a) \phi(a)^T h(a) da \right) \beta.$$

Then, setting the result equal to zero and solving yields

$$\beta^* = \frac{3}{t^3} \left(\int_0^1 \phi(a) \phi(a)^T h(a) da \right)^{-1} \left(\int_0^1 \left\{ \int_0^t s(\widehat{\psi}(a,s) - \mu) ds \right\} \phi(a) h(a) da \right).$$

B Simulations

B.1 Closed form expression for θ

In our simulations we make use of a closed form expression for the Hellinger affinity between $\pi(a \mid x)$ and q(a), $\theta = \arccos(\int_a \sqrt{\pi(a \mid x)q(a)}da)$, when simulating the true incremental effect curve. This greatly improves accuracy of the Monte-Carlo simulation and reduces computation time. We provide a derivation of the solution in the following proof.

Proof: Recall that $\pi(a \mid x) \sim N_{[\ell,u]}(X_1 + X_2, 2)$ and $q \sim N(a_*, \varepsilon^2)$ and note that the probability density of a truncated Normal is given by

$$f(a; \mu, \sigma, \ell, u) = \frac{\varphi\left(\frac{a-\mu}{\sigma}\right)}{\sigma\left[\Phi\left(\frac{u-\mu}{\sigma}\right) - \Phi\left(\frac{\ell-\mu}{\sigma}\right)\right]}$$

for $a \in [\ell, u]$ where $\varphi(\cdot)$ is the density of a standard Normal and $\Phi(\cdot)$ its cumulative density function. Then, if we let $Z = \Phi\left(\frac{u-\mu}{\sigma}\right) - \Phi\left(\frac{\ell-\mu}{\sigma}\right)$ and $\mu = X_1 + X_2$, it follows that

$$\int_{a} \sqrt{\pi(a \mid x)q(a)} da = \frac{1}{\sqrt{Z}} \int_{\ell}^{u} \left(\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(a-\mu)^{2}}{2}\right) \cdot \frac{1}{\sqrt{2\pi}\varepsilon} \exp\left(-\frac{(a-a_{*})^{2}}{2\varepsilon^{2}}\right) \right)^{1/2} da$$

$$= \frac{1}{\sqrt{2\pi Z\varepsilon}} \int_{\ell}^{u} \left(\exp\left(-\frac{1}{2}\left[(a-\mu)^{2} + \frac{(a-a_{*})^{2}}{\varepsilon^{2}}\right] \right) \right)^{1/2} da.$$

Now, we algebraically simplify back into a Normal density. Let $\alpha = 1$ and $\beta = 1/\varepsilon^2$. Then, we can see that

$$\alpha(a-\mu)^2 + \beta(a-a_*)^2 = (\alpha+\beta)a^2 - 2(\alpha\mu+\beta a_*)a + (\alpha\mu^2+\beta a_*^2)$$

$$= (\alpha+\beta)\left[a^2 - 2\left(\frac{\alpha\mu+\beta a_*}{\alpha+\beta}\right)a\right] + (\alpha\mu^2+\beta a_*^2)$$

$$= (\alpha+\beta)\left[\left(a - \frac{\alpha\mu+\beta a_*}{\alpha+\beta}\right)^2 - \left(\frac{\alpha\mu+\beta a_*}{\alpha+\beta}\right)^2\right] + (\alpha\mu^2+\beta a_*^2)$$

$$= (\alpha+\beta)\left(a - \frac{\alpha\mu+\beta a_*}{\alpha+\beta}\right)^2 + (\alpha\mu^2+\beta a_*^2) - \frac{(\alpha\mu+\beta a_*)^2}{\alpha+\beta}$$

and so, if we let $C = (\alpha \mu^2 + \beta a_*^2) - \frac{(\alpha \mu + \beta a_*)^2}{\alpha + \beta}$ it is clear that

$$\exp\left(-\frac{1}{2}\left[(a-\mu)^2 + \frac{(a-a_*)^2}{\varepsilon^2}\right]\right) = \exp\left(-\frac{1}{2}(\alpha+\beta)\left(a - \frac{\alpha\mu + \beta a_*}{\alpha+\beta}\right)^2\right) \exp\left(-\frac{1}{2}C\right).$$

Now, we define $\mu_* = \frac{\alpha \mu + \beta a_*}{\alpha + \beta}$ and $\sigma_*^2 = 1/2(\alpha + \beta)$. Then, it follows that

$$\int_{a} \sqrt{\pi(a \mid x)q(a)} da = \frac{\exp\left(-\frac{1}{4}C\right)}{\sqrt{2\pi Z\varepsilon}} \int_{\ell}^{u} \exp\left(-\frac{1}{2} \frac{(a-\mu_{*})^{2}}{\sigma_{*}^{2}}\right) da.$$

Finally, applying the change of variables $z = (a - \mu_*)/\sigma_*$ it follows that we may write our integral as the integral over a standard Normal density, i.e,

$$\int_{a} \sqrt{\pi(a \mid x)q(a)} da = \frac{\sqrt{2\pi}\sigma_{*} \exp\left(-\frac{1}{4}C\right)}{\sqrt{2\pi Z\varepsilon}} \int_{(\ell-\mu_{*})/\sigma_{*}}^{(u-\mu_{*})/\sigma_{*}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^{2}}{2}\right) dz$$
$$= \frac{\sigma_{*} \exp\left(-\frac{1}{4}C\right)}{\sqrt{Z\varepsilon}} \left[\Phi\left(\frac{u-\mu_{*}}{\sigma_{*}}\right) - \Phi\left(\frac{\ell-\mu_{*}}{\sigma_{*}}\right) \right].$$

To complete our proof, we plug in our definitions for μ_* , σ_* , as well as for α and β . Note that

$$C = (\alpha \mu^{2} + \beta a_{*}^{2}) - \frac{(\alpha \mu + \beta a_{*})^{2}}{\alpha + \beta} = \frac{\alpha \beta}{\alpha + \beta} (\mu - a_{*})^{2} = \frac{(\mu - a_{*})^{2}}{1 + \varepsilon^{2}}$$

and

$$\frac{u-\mu_*}{\sigma_*} = \sqrt{\frac{2}{1+\varepsilon^2}} \left[\varepsilon(u-\mu) + \frac{u-a_*}{\varepsilon} \right].$$

Thus, $\int_a \sqrt{\pi(a \mid x)q(a)} da$ reduces to

$$C_{\varepsilon} \left[\Phi \left(\sqrt{\frac{2}{1 + \varepsilon^2}} \left[\varepsilon (u - \mu) + \frac{u - a_*}{\varepsilon} \right] \right) - \Phi \left(\sqrt{\frac{2}{1 + \varepsilon^2}} \left[\varepsilon (\ell - \mu) + \frac{\ell - a_*}{\varepsilon} \right] \right) \right]$$

where $\mu = X_1 + X_2$ and

$$C_{\varepsilon} = \frac{\varepsilon \exp\left(-\frac{1}{4} \frac{(\mu - a_{*})^{2}}{1 + \varepsilon^{2}}\right)}{\sqrt{2\varepsilon(1 + \varepsilon^{2})(\Phi(u - \mu) - \Phi(\ell - \mu))}}.$$

B.2 Closed form expression for $\frac{\partial}{\partial \theta} \mathbb{E}_{\nu_t} \left[\mu(X, A) \mid X \right]$

When implementing the one-step estimator for $\psi_h(t)$, it is necessary to obtain a computable expression for $\frac{\partial}{\partial \theta} \mathbb{E}_{\nu_t} [\mu(X, A) \mid X]$. Since it is not obvious what the aforementioned expression evaluates to, we provide a derivation of its closed-form solution in the following proof.

Proof: Recall that the Hellinger geodesic is defined as

$$\nu_t(a \mid x) = \alpha_t(\theta)\pi(a \mid x) + 2\gamma_t(\theta)\sqrt{\pi(a \mid x)q(a)} + \beta_t(\theta)q(a)$$

where

$$\alpha_t(\theta) = \left(\frac{\sin((1-t)\theta)}{\sin(\theta)}\right)^2, \ \gamma_t(\theta) = \frac{\sin((1-t)\theta)\sin(t\theta)}{\sin^2(\theta)}, \ \beta_t(\theta) = \left(\frac{\sin(t\theta)}{\sin(\theta)}\right)^2,$$

and $\theta = \arccos(\int_a \sqrt{\pi(a \mid x)q(a)}da)$. Then, we can see that

$$\frac{\partial}{\partial \theta} \Big\{ \mathbb{E}_{\nu_t} \left[\mu(X, A) \mid X \right] \Big\} = \int_a \mu(X, a) \left(\frac{\partial}{\partial \theta} \Big\{ \nu_t(a \mid X; \theta) \Big\} \right) da$$

so we need to evaluate $\alpha'_t(\theta)$, $\gamma'_t(\theta)$, and $\beta'_t(\theta)$. From here, observe that if we differentiate the natural logarithm of $\alpha_t(\theta)$, i.e.,

$$\frac{\partial}{\partial \theta} \left\{ \log \left(\alpha_t(\theta) \right) \right\} = \frac{1}{\alpha_t(\theta)} \frac{\partial}{\partial \theta} \left\{ \alpha_t(\theta) \right\} = 2(1 - t)\cot((1 - t)\theta) - 2\cot(\theta)$$

then this implies that $\frac{\partial}{\partial \theta} \{\alpha_t(\theta)\} = 2\alpha_t(\theta)[(1-t)\cot((1-t)\theta) - \cot(\theta)]$. Similarly, it can be shown that

$$\frac{\partial}{\partial \theta} \{ \gamma_t(\theta) \} = \gamma_t(\theta) \Big[(1 - t)\cot((1 - t)\theta) + t\cot(t\theta) - 2\cot(\theta) \Big] \quad \text{and} \quad \frac{\partial}{\partial \theta} \{ \beta_t(\theta) \} = 2\beta_t(\theta) \Big[t\cot(t\theta) - \cot(\theta) \Big].$$

Consequently, it follows that $\frac{\partial}{\partial \theta} \{ \mathbb{E}_{\nu_t} \left[\mu(X, A) \mid X \right] \}$ is equal to

$$\left\{ 2\alpha_{t}(\theta) \Big((1-t)\cot((1-t)\theta) - \cot(\theta) \Big) \mathbb{E} \Big[\mu(X,A) \mid X \Big] + 2\gamma_{t}(\theta) \Big((1-t)\cot((1-t)\theta) + t\cot(t\theta) - 2\cot(\theta) \Big) \mathbb{E} \left[\mu(X,A) \frac{\sqrt{q(A)}}{\sqrt{\pi(A \mid X)}} \mid X \right] + 2\beta_{t}(\theta) \Big(t\cot(t\theta) - \cot(\theta) \Big) \mathbb{E}_{Q} \Big[\mu(X,A) \mid X \Big] \right\}.$$