- The group algebra of a Raite group G give us another perpetite on representations of G-not as immediately helpful for calculating character & hiding irreducibles, but canceptually important.
- . Def: The grap dylbra of G is the vector space (G = { ∑ ageg, ag ∈ C}, with the product $e_g \cdot e_h = e_{gh}$ (Lextend by linearly) - this is a (noncommutative) ring. $(\sum_g e_g)(\sum_g e_g) = \sum_g (\sum_h e_h b_{h'g}) e_g$ (commutative iff G is abelian)

As a vector space his is the same as the regular rep?; the new thing is the multiplication.

- · An action of G on a vector space V (a reproculation) is a homom. e: G-> GL(V) and extendo by liverity to an algebra homomorphism (ie. linear map of vector spaces + multiplicative: ring homom-) $CG \longrightarrow End(V)$ by rapping basis elements eg $\mapsto e(g)$
- + extend linearly: Eagles -> Eagles); to chede it's compatible with multiplication, using (bi) heavily it's enough to check for basis deneals: eg. en = egh -> (gh) = (g) op(h). V
- \Rightarrow $\xrightarrow{\text{Prop}}$ a G-representation is the same thing as a (left) $\xrightarrow{\text{CG-module}}$, namely a vector space V + an action $\text{CG} \times \text{V} \rightarrow \text{V}$ given by a ring hom. $\text{CG} \rightarrow \text{Enl}(V)$,
 - · Ex: The regular reprocedation of G corresponds to CG as a module over itself!

 (operation of CG is left-multiplication)

Since we haven't learned much about rings and modules, we want pursue his in depth. There is however one vice rout walk seeing:

Gion a finite group G, let V1, ..., Vr he the irreducible rep- of G.

Each of these gives a ring homon. (G-s End (Vi); taking higher, we get a map $\mathbb{C}G \longrightarrow \bigoplus_{i=1}^{n} End(V_i)$. ($\subseteq End(\bigoplus_{i=1}^{n} V_i)$: subsing of block diagonal linear operators on $\bigoplus_{i=1}^{n} V_i$)

This may is again a ring homomorphism (product in CG - composition of End's).

- Prop: If $V_1, ..., V_r$ are the irred-reps of G, this map $CG \longrightarrow \bigoplus_{i=1}^r End(V_i)$ is an isomorphism of ings.
- Pf: Le already hour it à a homomorphism, so le just ned to check it's bijective.

 The map is injective: assume Eagleg ECG belongs to the ternel, then \forall ired rp. $\geq a_g e_i(g) = 0$, here \forall representation $g \in \mathcal{L}_{a_g} e(g) = 0$. However, for the regular rop?, the plg) are heavy indy! (\(\Sagplg) maps e, to \(\Sagplg) \) so his imple ag = 0 kg.
 - din CG = $|G| = \Sigma(\dim V_i)^2 = \dim(\bigoplus \operatorname{End}(V_i))$, so an injective line map is sujective. \square

* In the ring \oplus End(Vi), as in any direct sum of rings, the prijectors onto each summand $P_i = \begin{cases} Jd \text{ on } End(V_i) \\ 0 \text{ on } Ind(V_i), j \neq i \end{cases}$ are orthogonal idempotents: $P_i^2 = P_i$, $P_i P_j = 0$ for $i \neq j$.

Comparing with projection formulas: verve seen that $Vrep^2 V$, $\varphi_i = \frac{dm V_i}{|G|} \sum_{g} \overline{\chi_{V_i}(g)} g$; $V \rightarrow V$ is the projection onto the V_i summands. This means: the idempotents of CG corresponding to the projectors P_i under the isom. are $\pi_i = \frac{dm V_i}{|G|} \sum_{g \in G} \overline{\chi_{V_i}(g)} e_g \in CG$.

(The identities $\pi_i^2 = \pi_i$, $\pi_i \pi_j = 0$ for $i \neq j$ recover, among the Mings, the orthonorably of χ_i !)

Given a CG-mobile V, if has submodules $\pi_i V$ - these are the pieces of V consisting of the V_i summands in the decomposition of V.

Real reprostations: We've shalled actions of Finite groups on complex vector spaces, now we want to be the same for real ones.

- If V_D is a reproceeding of G are R, then it has an invariant inner product C_1 .

 (start time any lines product G(0,1), and let C_1 , $C_2 > \frac{1}{|G|} \sum_{g \in G} G(g_1, g_2)$).

 ~> the elements of G then act by orthogonal transformations (isometries).
- This implies complete reducibility: every representation/IR splits into diech sum of irreducibles. (same pf as complex case: if $U_0 \subset V_0$ invariant subspace (subsep.) then $V_0 = U_0 \oplus U_0^{\perp}$)
- However, Schur's learna fails.

 Ex: the action of \mathbb{Z}_n' on \mathbb{R}^2 by ntations, k acting by $\binom{\cos \frac{2\pi i k}{n} \sin \frac{2\pi i k}{n}}{\sin \frac{2\pi i k}{n}}$ is irreducible as a rep. one \mathbb{R} . However this representation has automorphisms that aren't multiples of \mathbb{Z}_n' any station of \mathbb{R}^2 is \mathbb{Z}_n' -equivariant.

Therefore, a let of the heavy we've developed over C unit apply directly to rp's over R.

Instead, the key idea (just like when we disused operators on R-vect-space) is complexification.

We have a map $\{real\ rep^{ns}\ V\} \longrightarrow \{complex\ rp^{ns}\}$

V₆ 1 → V=V₆Q_RC = V₆⊕iV₆. (G acts by g(v+iw) = gv + i gw).

ie given basis (ej) of Vo, ej+0i (=ej) basis of V; g acts by same matrix on Vo and V.

Def: A complex up. V of G is called real if there exists a up. one IR, Vo, st. $V = V_0 C$ Necessary condition: χ_V must take real values!

becomes: the matrix of g; V-1V in suitable lais has real entries.

This is also not a sufficient condition.

Ex: the quaternion group $Q = \{\pm 1, \pm i, \pm j, \pm k\}$, $i^2 = j^2 = k^2 = ijk-1$ acts on C^2 by $\pm 1 \mapsto \pm 1d$, $\pm i \mapsto \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $\pm j \mapsto \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\pm k \mapsto \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$

 $\chi(\pm 1) = \pm 2$, all others have $\chi = 0$: so χ takes real values.

However this dres not come from a 2-dimensional real representation: $Q \not\leftarrow GL(2,R)$. (this is because a real representation of a finite group has an invariant inner product, so we'd get $Q \hookrightarrow O(2)$, with -1 acting by -Id, but only 2 elements of O(2) square to -Id (rotations by $\pm 30^{\circ}$) while we need 6 such elements for $\pm i$, $\pm j$, $\pm k$.)

To use character etc. to classify rep^{2S}/R , we need to understand which rep^E one C are real! We'll figure this out now for irreducible reps. on C. However, becase: if V_0 is an irreducible over C, then $V=V_0\otimes C$ can still be reducible over C. ($Ex: Z_n'$ stations of R^2).

Prop: A complex representation V is real iff there exists a G-equivariant, complex antilinear map $\tau: V \to V$ (i.e. $\tau(\lambda v) = \overline{\lambda} \tau(v)$) such that $\tau^2 = id$.

The one dischool is clear; if $V=V_0 \otimes_R C$, let $T(v+i\omega)=V-i\omega$ for $V, \omega \in V_0$: complex conjugation! In apposite disection, given T, $v \in V$ decomposes into $Re(v)=\frac{v+\tau(v)}{2}$ and $i Tm(v)=\frac{v-\tau(v)}{2}$ which belong to the ± 1 eigenspaces of T. Let $V_0=\ker(\tau-id)$, which is an R-subspace of V (not a C-subspace!) and, so R-linear maps, $Ti=-i\tau$ so iV_0 is the -1-eigenpace, and $V=V_0 \oplus iV_0=V_0 \oplus iV_0$.

The above was just linear algebra, but G-equivariance of τ implies that the eigenspace $V_0 = \ker(\tau - 1)$ is preserved by G, hence a subrep. ove IR (similarly for iV₀).

• Now, let V be an irreducible complex rep. of G, such that X_V takes values in R. Then $X_V = \overline{X_V} = X_{V^\#}$, so $V \simeq V^\#$ as G-reps.

let $\varphi: V \xrightarrow{\sim} V^*$ such an iso. (by schur φ is unique up to multiplication by some $\lambda \in \mathbb{C}^*$): Recall: a linear map $\varphi: V \rightarrow V^*$ determines a bilinear form $B: V \times V \rightarrow \mathbb{C}$, $B(v, \omega) = \varphi(v)(\omega)$. $B(gv, g\omega) = \varphi(gv)(g\omega)$ vs. $B(v, \omega) = (\varphi(v) \circ g')(g\omega) = (g\varphi)(v)(g\omega) \rightarrow B$ is G-invt iff φ is equivt. $C \in G$ -action on V^*

Here: Valmits a Ginvavat bilinear form B, unique up to scaling, and nondeg. if nonzero. Now, recall $B \in (V \otimes V)^e = Sym^2 V^e \oplus \lambda^2 V^e$, i.e. the symmetric and show parts of B $\left(=\frac{1}{2}\left(B(v,w) \pm B(w,v)\right)\right)$ are also invariant. By uniqueness, one of these is zero and the other is nondegenerate; i.e. B is either symmetric or show.

The symmetric case corresponds to real repts; the steen symmetric acceptance of

- Prop: An irreducible complex reprosestation V of a finite grap G is real iff V carries a G G-invariant nondegenerate symmetric bilinear form $B: V \times V \to \mathbb{C}$.
- Pf: Assume $V = V_0 \otimes_R \mathbb{C}$ is real. Then V_0 has an invariant real inner product B; extend \mathbb{C} -bilinearly: $B(V_1+iW_1,V_2+iW_2) := B(V_1,V_2)+i B(W_1,V_2)+i B(W_1,W_1)-B(V_2,W_2)$. defines a nondegenerate symmetric bilinear form on V.
 - Conversely: B: $V * V \to C$ determines an isom. $\varphi . V \to V^{\infty}$ (C. liear, equivariant); choosing an invariant Hernitian inverpolated H on V, we also have a C-antilinear equivariant bijection $V \to V^{\infty}$. Composing one with the inverse of the other gives a C-antilhear equivariant map $\tau : V \to V$, characterized by : $H(\tau(v), w) = B(v, w)$. τ^2 is now an equivariant C-linear isom. $V \to V$, hence $\tau^2 = \lambda$ Id by Schw. A calculation: $H(\tau^2(v), v) = B(\tau(v), v) = B(v, \tau(v)) = H(\tau(v), \tau(v)) > 0$ shows $\lambda \in \mathbb{R}_+$; replacing H by $\lambda^{1/2}H$ we can arrange $\tau^2 = id$. Thus V is real by the previous prop.
- In the other case where the invariant bilinear form B is steen-symmetric, the same agrinest gives a C-artilinear equivariant bijective map $J: V \rightarrow V$ which now satisfies $J^2=-id$. This is a quaternianic structure on V, i.e. describes a tructure of H-module on V when H= quaternians $= \{a+bi+cj+dk/a,b,c,d\in\mathbb{R}\}$ $i^2=j^2=k^2=ijk=-1$ "division algebra" (noncommutative analogue of a field: H is a noncommutative ring steely normal element has a multiplicative inverse). $H=C1\oplus Cj$ with ji=-ij, $j^2=-1$, so an H-module is the same thing as a C-vector space + antilinear map j st. $j^2=-id$.
- EX: the regular rg. V of S3 is real. This can be seen directly if we notice that $S_3 \simeq D_3$ acts on $V_0 = \mathbb{R}^2$ by rotations and reflections, and $V_0 \otimes_{\mathbb{R}} \mathbb{C} \simeq V$... or more abstractly by obscring $V'' \simeq V$, and $\Lambda^2 V'' \simeq U'$ has no trivial summand herce \exists invariant street-symmetric $B \in \Lambda^2 V''$, but $Syn^2 V'' \simeq U \otimes V$ has a trivial summand giving an invariant symmetric bilinear form $B \in Syn^2 V'' \in Applying the above.$
- EX: The 2-dim reprobable of the quaterian grap on \mathbb{C}^2 is quaterianic.

 (\rightleftharpoons should isom. $H \cong \mathbb{C} \oplus \mathbb{C} j \cong \mathbb{C}^2$ with mobile shuchen $j(z_1 + z_2j) = -\overline{z}_2 + \overline{z}_1j$)