Math 4329 Mock Midterm 03

Name:				
Student	ID:			

Number	Max Possible	Points
1	20	
2	30	
3	15	
4	20	
5	15	
Total	100	

1. (20 pts) (Quadrature Rules)

(a) Find c_1 and c_2 in the following quadrature formula:

$$\int_{-1}^{1} f(x)dx \approx c_1 f(-1) + c_2 f(1)$$

so that is exact for all polynomials of the largest degree possible. What is the degree of precision for this formula ?

- (b) i. Approximate $\int_{-1}^{1} x^8 dx$ using the two point Gaussian quadrature rule with nodes $\pm 3^{-1/2}$ and weights 1.
 - ii. Calculate the exact integral $\int_{-1}^{1} x^8 dx$ and compare the error between the true value and the approximation obtained in 1(b)i.

2. (30 pts) Gaussian Elimination

(a) Use Gaussian elimination with back substitution to solve the system:

$$2x_1 + x_2 + 3x_3 = 1$$
$$2x_1 + 6x_2 + 8x_3 = 3$$
$$6x_1 + 8x_2 + 18x_3 = 5$$

Please specify the multipliers m_{21} , m_{31} and m_{32} .

- (b) Use the multipliers from the previous part (b) to form the LU factorization of the coefficient matrix of the linear system.
- **3.** (15 pts) Consider the following table:

where $x_{i+1} = x_i + h$, i = 0, 1, ..., 3...

(a) Approximate f'(0.5) using $D_h^+ f(0.5)$ and h = 0.1.

(b) Compute $D_h^{(2)} f(0.5)$ using the Central Difference Formula and step size h = 0.2. Note: You may use the following formula for Central Difference Formula:

$$D_h^{(2)}f(x_1) = \frac{D_h^+ f(x_1) - D_h^- f(x_1)}{h}$$

(c) Compare the answer from (b) with the following approximation :

$$D_h^{(2)}f(x_1) = \frac{f(x_2) - 2f(x_1) + f(x_0)}{h^2},$$

with $x_1 = 0.5$, h = 0.2.

4. (20 pts) Consider the Jacobi and Gauss Seidel methods applied to solve the following system:

$$3x_1 - x_2 = -4,$$

$$2x_1 + 5x_2 = 2.$$

Compute
$$\mathbf{x}_J^{(k)}$$
, $\mathbf{x}_{GS}^{(k)}$ for $k = 1, 2$ with initial guess $\mathbf{x}^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Do we have convergence?

5. (15 pts) State whether the following statement is true or false: Consider the following linear system:

$$x + y = 0$$
$$x + \frac{801}{800}y = 1.$$

The solution computed using Gaussian Elimination on a computer with three digits of significance is x = -800, y = 800.