概率论

aima 范

目录

 2 . 2 . 3 . 3 . 3
 . 2 3 . 3 . 3
 3 . 3 . 3
 . 3 . 3
 . 3 3
 3
. 3
 . 3
4
 . 4
 . 4
4
 . 4

1 随机事件与概率

1.1 概率的基本性质与公式

1. 若 A,B 是随意的两个事件,有下列公式,请写出结果

$$P(A \bigcup B) = \tag{1}$$

$$P(A-B) = \tag{2}$$

$$P(B|A) = \tag{3}$$

$$P(AB) = \tag{4}$$

$$P(A\bar{B}) = \tag{5}$$

$$P(A_1 A_2 A_3 \dots A_n) = \tag{6}$$

2. 如果两个事件独立,那么下列式子:

$$P(AB) = \tag{9}$$

3. 三个事件相互独立和两两独立的区别

2 一维随机变量及其分布

2.1 一些常见的分布

- 1. 8 大分布有哪八大
- 2. 写出这些分布的某点概率或是概率密度,期望,方差

分布	中文名称	分布列 p_k 或概率密度 $f(x)$	期望	方差
H(n, N, M)			XX	XX
$P(\lambda)$				
B(1,p)				
G(p)				
B(n,p)				

分布	中文名称	概率密度	期望	方差
$E(\lambda)$				
$N(\mu,\epsilon^2)$				
U(a,b)				

- 3. 正态分布的标准化
- 4. $X \sim N(0,1) \Rightarrow -X \sim N(0,1)$

3 多维随机变量及其分布

3.1 二维随机变量

author: aimaFAN

- 1. 对于 $(X,Y) \sim p_{ij}$, 那么 $P\{X = x_i | Y = y_i\} =$
- 2. 对于二位连续型随机变量,则 F(x,y) 与 f(x,y) 的关系是,分别 F 用 f 表示, f 用 F 表示
- 3. 对于二位连续型随机变量, G 是平面上的某个区域, 则 $P\{(X,Y)$ 属于 $G\}$ =
- 4. 对于二位连续型随机变量, $f_X(x) = f_Y(y) = f_Y(y)$
- 5. 对于离散型随机变量独立性的条件是
- 6. 对于连续型随机变量独立性的条件是

3.2 多维随机变量函数的分布

- 1. Z = X + Y, $f_Z(z) =$
- 2. Z = X Y, $f_Z(z) =$
- 3. Z = XY, $f_Z(z) =$
- 4. $Z = \frac{X}{Y}, f_Z(z) =$

4 随机变量的数字特征

4.1 一维随机变量的数字特征

- 1. 对于一个连续型随机变量 X, 他的数学期望计算公式是
- 2. D(x) =
- 3. D(aX + b) =
- 4. $D(X \pm Y) =$
- 5. 如果 X 和 Y 相互独立, 那么 D(aX + bY) =
- 6. $P\{|X EX| \ge \epsilon\} =$

4.2 二维随机变量数字特征

- 1. (X,Y) 是连续型随机变量,他的概率密度是 f(x,y),那么 E(g(X,Y)) =
- 2. Cov(X,Y) =
- 3. $\rho_{xy} =$

5 大数定律与中心极限定理

5.1 大数定理

- 1. 大数定理的结论
- 2. 切比雪夫大数定律的条件
- 3. 辛钦大数定律的条件

5.2 中心极限定理

- 1. 中心极限定理的结论
- 2. 中心极限定理的条件

6 数理统计

6.1 统计量及其分布

- 1. 样本均值 $\bar{X} =$
- 2. 样本方差 $S^2 =$
- 3. 假设总体 X 的期望 $EX = \mu$, 方差 $DX = \sigma^2$, 则以下
 - (a) $E\bar{X} =$
 - (b) $D\bar{X} =$
 - (c) $E(S^2) =$
- 4. 三大分布的构成与自由度的意义
 - (a) $\chi^2(n)$, 若 $X \sim \chi^2(n)$, 那么 EX = DX =
 - (b) t(n), 已知 $t_{0.25}(n)$, 求 $t_{0.75}(n) =$
 - (c) F(n,m), 若 $F \sim F(n_1,n_2)$, 那么 $\frac{1}{F} \sim$; 已知 $F_{0.25}(n_1,n_2)$ 求 $F_{0.75}(n_2,n_1)$ 的大小
- 5. 若 $X_1, X_2, \dots X_n$ 是来自 $N(\mu, \sigma^2)$ 的若干样本,则以下
 - (a) 若 μ, σ^2 均已知,则 $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i \mu)^2 \sim$
 - (b) 若 μ 未知, σ^2 已知,则 $\sum_{i=1}^n (\frac{X_i \bar{X}}{\sigma})^2 \sim$
 - (c) 若 σ^2 未知, μ 已知,则 $\frac{\sqrt{n}(\bar{X}-\mu)}{S}\sim$,并有 $\frac{n(\bar{X}-\mu)^2}{S^2}\sim$
 - (d) 有 $\frac{(n-1)S^2}{\sigma^2}$ ~

6.2 参数的点估计

- 1. 矩估计法的步骤
- 2. 最大似然估计法的步骤
- 3. 无偏性,有效性和一致性的评价指标是什么

6.3 参数的区间估计,假设检验,两类错误

待估参数	其他参数	置信区间
μ	σ^2 已知	
μ	σ^2 未知	

- 1. $P\{接受H_0|H_0为假\}$ 是第几类错误
- 2. $P{拒绝<math>H_0|H_0$ 为真} 是第几类错误