

1713

PATENT APPLICATION
Mo-6608
LeA 34,892

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICATION OF)
ERICH FUCHS) GROUP NO.: 1713
SERIAL NUMBER: 10/053,166)
FILED: JANUARY 15, 2002) EXAMINER: R. A. LEE
TITLE: RUBBER MIXTURES FOR ROLL)
COVERINGS)

COMMUNICATION

Commissioner for Patents
P. O. Box 1450
Alexandria, VA 22313-1450

Sirs:

As stated in Applicant's Response and Amendment dated August 18, 2003,
Applicant herein encloses a certified translation of the Priority Document.

Respectfully submitted,

By

Jennifer R. Seng
Attorney for Applicant
Reg. No. 45,851

Bayer Polymers LLC
100 Bayer Road
Pittsburgh, Pennsylvania 15205-9741
(412) 777-3879

FACSIMILE PHONE NUMBER:
(412) 777-3902
lo/SENG/jrs138

I hereby certify that this correspondence is being deposited
with the United States Postal Service as first class mail in an
enveloped addressed to: Commissioner for Patents,
Alexandria, VA 22313-1450 Date 09/04/03

Jennifer R. Seng, Reg. No. 45,851

Name of applicant, assignee or Registered Representative

Signature

September 4, 2003
Date

RECEIVED
SEP 10 2003
RJC 1700

JRS
9/16/03

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

RECEIVED
SEP 10 2003

TC 1700

DECLARATION

I, Paul David Churchill Clarke, BA. MITI., translator to Taylor and Meyer of 20 Kingsmead Road, London SW2 3JD, England, do solemnly and sincerely declare as follows:

1. That I am well acquainted with the English and German languages;
2. That the following is a true translation made by me into the English language of German Patent Application No. 101 02 047.3;
3. That all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardise the validity of the application or any patent issued thereon.

Signed this eleventh day of August 2003,

Harrogate, HG2 0HA, England

FEDERAL REPUBLIC OF GERMANY

Certificate of Priority for Filing of a Patent Application

Filing number: 101 02 047.3

Filing date: 17th January 2001

Applicant/Proprietor: Bayer Aktiengesellschaft, Leverkusen/Germany

Title: Rubber mixtures for roll coverings

IPC: C 08 L, C 08 K, C 08 J

**The attached papers are a true and accurate reproduction of the original documents
for this patent application.**

Munich, 22nd November 2001

**On behalf of the President of the German
Patent and Trade Mark Office**

(signature)

Wallner

Rubber mixtures for roll coverings

This invention relates to a rubber mixture containing a carboxylated nitrile rubber, a metal salt of an acrylate, a liquid acrylate, a silane, optionally together with further additives, to a process for the production thereof and to use for mouldings of all kinds, 5 in particular roll coverings.

Rolls with a covering of rubber are used in many applications, *inter alia* in the printing and textiles industry, in machinery, such as fax machines, and in the steel and 10 papermaking industries.

Prior application DE-A-199 42 743 discloses a rubber mixture containing a nitrile rubber, a metal salt of an acrylate, a liquid acrylate, a silane, optionally together with further additives, to a process for the production thereof and use for mouldings of all 15 kinds, in particular roll coverings. A carboxylated nitrile rubber is, however, not disclosed.

Especially in the steel and papermaking industries, roll coverings are exposed to extreme stresses. In such applications, the coverings are primarily required to exhibit 20 a combination of the following properties:

- low compression set
- low abrasion
- slight swelling in the media used
- good thermal and chemical resistance
- excellent adhesion between the covering and metal substrate
- slight heat build-up on exposure to stress.

We have now found that a rubber mixture containing a nitrile rubber, which 30 furthermore contains a metal salt of an acrylate, a liquid acrylate and a silane, is particularly suitable as a starting material for rubber coverings for rolls.

The present invention accordingly provides a rubber mixture containing

- a) one or more carboxylated nitrile rubbers
- b) one or more metal salts of an acrylate
- 5 c) one or more liquid acrylates optionally applied onto a support,
- d) from 0.01 to 10 phr of one or more silanes, and
- c) optionally further additives and/or fillers.

Nitrile rubbers are taken to mean diene/(meth)acrylonitrile copolymers. Preferred
10 dienes in this connection are isoprene and in particular butadiene. The copolymers
have a content of copolymerised acrylonitrile and/or methacrylonitrile units of 5 to 60,
preferably of 10 to 50 wt.%.

Hydrogenated nitrile rubbers are furthermore explicitly subsumed within this term.
15 For the purposes of this invention, "hydrogenated nitrile rubber" or "HNBR" should
be taken to mean nitrile rubbers, the C=C double bonds of which have been partially
or entirely hydrogenated in a selective manner (*i.e.* without hydrogenation of the C≡N
triple bond). Preferred hydrogenated nitrile rubbers are those having a degree of
hydrogenation, relative to the C=C double bonds originating from the butadiene, of at
20 least 75, preferably of at least 95, in particular of at least 98%. The degree of
hydrogenation may be determined by NMR and IR spectroscopy.

Carboxylated nitrile rubbers are taken to mean nitrile rubbers which bear acid
(-COOH) or ester (-COOR) side groups. The production of such carboxylated nitrile
25 rubbers is described, for example, in EP-A1-0 933 381 or US-A-5,157,083. The
carboxylated nitrile rubber described in CA-2,304,501 is, however, particularly
suitable.

The hydrogenation of nitrile rubber is known; US-A 3,700,637, DE-A-2 539 132,
30 DE-A-3 046 008, DE-A-3 046 251, DE-A-3 227 650, DE-A-3 329 974, EP-A-
111 412, FR-B-2 540 503. Hydrogenated nitrile rubber is distinguished by elevated
tear strength, slight abrasion, low residual deformation after exposure to compressive

or tensile stresses and good oil resistance, but above all by remarkable stability on exposure to thermal and oxidative stresses. Hydrogenated carboxylated nitrile rubbers are accordingly preferred for the purposes of the invention. The hydrogenated, carboxylated nitrile rubber described in CA-2,304,501 is very particularly suitable.

5

Preferred mixtures are those in which the carboxylated nitrile rubber is selected from the group consisting of carboxylated NBR, partially hydrogenated carboxylated NBR and completely hydrogenated carboxylated NBR or mixtures of two or more of the members of the group.

10

Suitable nitrile rubbers generally have Mooney viscosities (DIN 53 523, ML 1+4) of 25 to 100 MU, in particular of 40 to 80 MU.

It is known to add metal salts of an acrylate to mixtures containing nitrile rubbers.

15

Suitable acrylates may be in unsubstituted or substituted form. Examples of substituted acrylates are methacrylates.

Suitable acrylates are known to the person skilled in the art from EP-A1-0 319 320, in particular page 3, lines 16 to 35, from US-A-5,208,294, in particular column 2, lines 20 25 to 40, from US-A-4,983,678, in particular column 2, lines 45 to 62. Zinc acrylate, zinc diacrylate and zinc dimethacrylate may in particular be mentioned in this connection.

It may be advantageous to add the metal salt of the acrylate together with a scorch retarder. Compounds which may be considered for this purpose are, for example, hindered phenols, such as methyl-substituted aminoalkylphenols, in particular 2,6-di-25 tert.-butyl-4-dimethylaminomethylphenol.

Any acrylate known to the person skilled in the art which is liquid at room 30 temperature may be considered as the liquid acrylate.

Trimethylolpropane trimethacrylate (TRIM), butanediol dimethacrylate (BDMA) and ethylene glycol dimethacrylate (EDMA) are particularly preferred.

In order to achieve better incorporability, it may be advantageous to use the liquid acrylate bound on a support. Supports which may be considered are for example silicates, precipitated silicas, clays, carbon black, talcum or polymers. Mixtures containing 5 to 50 wt.% of support are generally used.

It is prior art to use silanes as reinforcing additives. Vinylsilanes, such as vinyltrimethoxysiloxane or vinyltris(2-methoxyethoxy)silane, are used for peroxide vulcanisation. These silanes are commercially available.

The silanes are used in quantities ranging from 0.01 to 10 phr, preferably in the range from 1 to 3 phr.

phr is taken to mean parts by weight per 100 parts by weight of rubber.

Unremarkably, mixtures of various silanes may also be used.

It may also be advantageous to use the entire quantity of silane or also a proportion in a form applied onto a support.

Suitable supports are any fillers disclosed in this invention, which may optionally be pretreated.

Further additives which may be considered are, for example, vulcanisation activators known to the person skilled in the art, in particular metal oxides, such as zinc oxide or magnesium oxide, antioxidants, such as alkyl-substituted diphenylamines, mercapto-benzimidazoles, unsaturated ethers, such as Vulkazon® AFD (Bayer AG, DE) or cyclic, unsaturated acetals, such as Vulkazon® AFS/LG (Bayer AG, DE). Further additives which may be mentioned are:

- plasticisers, in particular carboxylic acid esters, such as sebacic acid and the derivatives thereof or trimellitic acid and the derivatives thereof
- processing auxiliaries, in particular stearic acid the derivatives thereof, such as zinc stearate or polymers, such as polyethylene/vinyl acetate (Levapren® from Bayer AG, DE) or polyethylene/vinyl acrylate (VAMAC® from DuPont).

It may furthermore be advantageous to incorporate fillers into the rubber mixture according to the invention. These fillers may or may not have a reinforcing action.

10

Fillers which may be mentioned by way of example are:

- carbon blacks, such as MT, GPF, SRF and, especially, FEF, carbon blacks,
- metal oxides, such as titanium dioxide (especially as a white pigment)
- silicates, such as sodium aluminium silicate
- silicas, in particular precipitated silicas

15

Improved abrasion is suitably achieved by preferably using so-called active fillers according to proposal ISO 5794, appendix D, part 1, for example published on page 535 of *Handbuch für die Gummiindustrie*, published by Bayer AG, 1992, Leverkusen.

- clays, mica, talcum.

20

Pigments may furthermore be added.

25

The quantities of the individual components in the mixture are a function of the intended purpose of the mixture and may be determined by some preliminary testing.

The substances are generally used in the following quantities (in each case in phr = parts per hundred parts of rubber):

30

- metal salt of an acrylate 10 to 120 phr, preferably 10 to 85 phr, in particular 20 to 65 phr,

- liquid acrylate 5 to 80 phr, in particular 20 to 60 phr, in each case calculated without support,

5 - antioxidant 0 to 4 phr,

- retarder 0 to 2 phr,

- metal oxides, such as ZnO, 0 to 30 phr,

10 - fillers 0 to 150 phr, preferably active fillers,

- silanes 0 to 10 phr,

15 - plasticisers 0 to 20 phr,

- processing auxiliaries 0 to 2 phr.

20 The present invention also provides vulcanisable mixtures containing the rubber mixtures according to the invention, as well as a process for the production of the rubber mixtures according to the invention and vulcanisable rubber mixtures, wherein the components are mixed in a mixing unit.

25 The mixtures are advantageously produced in a laboratory kneader (for example GK 1.5 E from Krupp Elastomertechnik, Hamburg), cooling water temperature in the range from 10 to 50°C, rotary speed of paddle in the range from 5 to 70 rpm, piston pressure 6 bar, filling level of kneader 50 to 95%, relative to the kneader chamber volume.

30 The following mixing sequence is advantageous: initially introduce rubber, add remaining constituents after 0.5 to 5 minutes' running, empty the kneader at a batch temperature of <130°C. The peroxide is preferably subsequently incorporated on a

roll mill (Krupp Elastomertechnik, Hamburg), roll diameter 200 mm, working width 350 mm) at a cooling water temperature of 10 to 50°C.

Vulcanisable mixtures are produced from the mixtures according to the invention by
5 adding vulcanising agents to the rubber mixtures according to the invention. Suitable
vulcanising agents are peroxide systems and combinations of peroxide systems and
zinc peroxide (supported or polymer-bound, active substance content 30 to 50%).

Preferred peroxide systems comprise

10 dialkyl peroxides,
ketal peroxides,
aralkyl peroxides,
peroxide ethers,
peroxide esters, such as for example
15 di-tert.-butyl peroxide
bis(tert.-butylperoxyisopropyl)benzene,
dicumyl peroxide,
2,5-dimethyl-2,5-di-(tert.-butylperoxy)hexane,
2,5-dimethyl-2,5-di-(tert.-butylperoxy)-3-hexene,
20 1,1-bis(tert.-butylperoxy)-3,3,5-trimethylcyclohexane,
benzoyl peroxide,
tert.-butylcumyl peroxide and
tert.-butyl perbenzoate.

25 The quantities of peroxide are in the range from 1 to 10 phr, preferably in the range
from 4 to 8 phr, relative to rubber. The quantities of zinc peroxide are in the range
from 1 to 10 phr, preferably in the range from 4 to 8 phr, relative to rubber.
Combinations of peroxide and zinc peroxide generally yield a higher level of
vulcanisation and hardness. Vulcanisation may proceed at temperatures of 100 to
30 200°C, preferably of 130 to 180°C, optionally under a pressure of 10 to 200 bar. After
vulcanisation, the vulcanisates may be conditioned by being kept at elevated
temperature.

The peroxides may advantageously also be used in polymer-bound form. Such systems are commercially available, such as for example Polydispersion T(VC) D-40 P from Rhein Chemie Rheinau GmbH, DE (= polymer-bound di-tert.-butylperoxy-isopropylbenzene).

Vulcanisation may also be achieved by high-energy radiation.

For the purposes of the invention, vulcanisation means that less than 10, preferably less than 5 wt.%, relative to rubber, is extractable by 10 hours' extraction in a Soxhlet apparatus with toluene as the extracting agent.

The optimum quantity of vulcanising agent is readily determined by preliminary testing. It is known in this connection that the required quantity of peroxide is indirectly proportional to the residual double bond content of the rubber.

The mixing unit used may be any mixing unit for rubbers known to the person skilled in the art, in particular kneaders and roll mills.

Care must be taken in this connection that the rubber is not degraded during the mixing operation. It may be advantageous to provide cooling during the mixing operation. In order to avoid scorching, the peroxide and zinc peroxide are frequently added as the final component, optionally in a separate mixing operation.

The present invention also provides the use of the rubber mixtures according to the invention for the production of mouldings of any kind, in particular coverings for rolls, very particularly rolls for the papermaking, textiles, printing and steel industry.

Rolls generally consist of a metal core of variable diameter. The metal core generally consists of steel of variable composition, onto which the vulcanisable rubber mixture is applied using processes conventional in the prior art and then vulcanised. Good adhesion between the covering and metal and within the covering is essential in this

connection. It may be advantageous to improve adhesion between the covering and metal by means of coupling agents such as dispersions/solutions of halogenated polymers, optionally with crosslinking agents/fillers/pigments. These substances are commercially available.

5

The rubber mixtures according to the invention are particularly suitable for roll applications because, once vulcanised, they combine excellent hardness and excellent mechanical properties in the range from above 20 Shore D to DIN 53 506, even at elevated service temperatures, with good resistance to abrasion, heat, water and basic chemicals. This balanced range of properties cannot be achieved according to the prior art. The rubber mixtures according to the invention are, of course, also suitable for the production of other mouldings, such as profiles, belts, rings, seals, damping elements *etc..*

10

15 For this reason, the present invention also provides mouldings, in particular rolls and belts, which may be produced using a rubber mixture according to the invention.

It is unremarkable to the person skilled in the art to fine tune the properties of the mixtures according to the invention by adding further polymers, such as BR, NR, IIR, IR, EPDM, EPM, CR, SBR, AEM, ACM or fluoropolymers.

20

The following Examples are intended to illustrate the invention without limiting it.

Examples

Measurement methods

5	Residual double bond content	IR spectroscopy
	Mooney viscosity (ML 1+4 (100°C))	ASTM D 1646 (stated in MU)
	Volatile constituents (wt.%)	ASTM D 1416
	Ash content (wt.%)	ASTM D 1416
10	Acrylonitrile (ACN) content (wt.% bound in polymer)	in accordance with method below:

Brief description of method for determining ACN

15 The rubber is analysed by being pyrolysed in a stream of oxygen on a catalyst at 900°C. The unconsumed oxygen is absorbed in a copper reduction reactor and the resultant NO-X gases are reduced to nitrogen. The CO₂ is then removed from the stream of gas under analysis in an Na₂CO₃/NaOH trap, while any water is removed in an MgClO₄ trap. The change in thermal conductivity of the gas under analysis relative to the carrier gas stream is a measure of the nitrogen content of the sample.
20

Apparatus for the above method

- 25
- NA 2000 model protein analyser, Fisons
 - Micro model microbalance, Sartorius
 - Evaluation unit, Digital, DECpc Lpx 433 dx with interfaces to NA 2000 and balance interface, and EAGER 200 software.

Chemicals & solvents for the above method

30

Methionine from Hekatech

Formulation constituents for the invention

Therban® test product KA 8837	Bayer AG	20% RDB, 34% ACN, 55 MU
Therban® C 3446	Bayer AG	HNBR with 4% RDB, 34% ACN, 58 MU
Therban XT test product KA 8889	Bayer AG	HNBR with 3.5% RDB, 32% ACN, 74 MU, carboxylic acid 5%
Zinkoxyd aktiv	Bayer AG	Active zinc oxide
Magnesium oxide paste	Treffert Rheinau GmbH	Magnesium oxide paste
Rhenofit DDA-70	Rhein Chemie Rheinau GmbH	Diphenylamine derivative
Vulkanox® ZMB 2	Bayer AG	Zinc methylmercaptobenzimidazole
Tronox® R-UF	McGee	Titanium dioxide, rutile type
Vulkasil® S	Bayer AG	Precipitated silica
Sartomer SR633	Sartomer	Zinc diacrylate with added retarder
Sartomer SR634	Sartomer	Zinc dimethacrylate with added retarder
Rhenofit® TRIM/S	Rhein Chemie Rheinau GmbH	Trimethylolpropane trimethacrylate 70%/bound to silica 30%
Ethanox 703	Albemarle, BE	2,6-di-tert.-butyl-4-(dimethyl- amino)phenol
Polydispersion T(VC) D-40 P	Rhein Chemie Rheinau GmbH	Di-(tert.-butylperoxyisopropyl)- benzene, polymer-bound
Zinc peroxide 55%	Riedel de Haan	Zinc peroxide (on filler)
Silquest RC-1 (silane)	UCC	Vinylsilane
Armeen 18 D	Flexys	Octadecylamine

Production of the mixtures

- 5 The mixtures were produced in a GK 1.5 E laboratory kneader (Krupp Elastomer-technik, Hamburg), cooling water temperature 50°C, rotational speed of paddle

50 rpm, piston pressure 6 bar, filling level of kneader 70-80%, relative to the kneader chamber volume.

5 **Mixing sequence:** Initially introduce rubber, add remaining constituents after 1 minute's running, empty the kneader at a temperature of <130°C. The peroxide was subsequently incorporated on a roll mill (Krupp Elastomertechnik, roll diameter 200 mm, working width 350 mm) at a cooling water temperature of 40°C.

10 The sheets for determining mechanical properties were crosslinked/vulcanised under the stated conditions in a vulcanising press (Krupp Elastomertechnik) between Teflon films.

Testing of the mixtures

<u>Value:</u>		<u>Properties:</u>	<u>Test standard:</u>
	<u>Dimension</u>		
ML 1+4, 100°C	MU	Mooney viscosity	DIN 53523, part 3
MS-T5, 120°C	min	Mooney scorch behaviour (time to 5 MU above minimum)	DIN 53523, part 4
<u>MDR rheometer</u>		Vulcanisation profile	DIN 53529, part 3
Minimum, maximum, Max.-Min.	<u>S'dNm</u>	Minimum/maximum torque, max./min. difference	
T10, T50, T80, T90	min	Time to 10%, 50%, 80%, 90% conversion	
F	MPa	Tensile strength	DIN 53504
D	%	Elongation at break	DIN 53504
S xxx	MPa	Modulus at xxx% elongation	DIN 53504
H	Shore A/D	Hardness	DIN 53505
E	%	Rebound elasticity	DIN 53512

Example 1:

Mixtures 1a to 1e were produced as described in the "production of the mixtures" section from the starting materials described in Table 1 and were tested.

5

The test results are shown in Table 2.

Table 1

Mixture	Mixture 1a	Mixture 1b	Mixture 1c	Mixture 1d	Mixture 1e
Therban C3446(a)	100	75	50	-	-
Therban XT KA8889	-	25	50	100	100
Vulkasil S	30	30	30	30	30
Vinylsilane (Silquest RC-1)	2	2	2	2	2
Tronox R-UF	3	3	3	3	3
Rhenofit DDA-70	1.3	1.3	1.3	1.3	1.3
Vulkanox ZMB-2	0.5	0.5	0.5	0.5	0.5
Rhenofit TRIM/S	15	15	15	15	15
Sartomer SR 633	15	15	15	15	-
Sartomer SR 634	-	-	-	-	15
Ethanox 703	1	1	1	1	1
Zinc peroxide	6	6	6	6	6
Polydispersion T (VC) D-40 P	6	6	6	6	6
Armeen 18 D	3	3	3	3	3
Total parts by weight	179.8	179.8	179.8	179.8	179.8
Density (g/cm ³)	1.19	1.20	1.20	1.21	1.20

10

Table 2

Mixture properties	Mixture 1a	Mixture 1b	Mixture 1c	Mixture 1d	Mixture 1e
MS-T5/120°C	>45	>45	>45	>45	>45
<u>MDR rheometer</u> 160°C/run time 40 min					
Minimum (S'dNm)	1.3	1.3	1.5	1.9	1.8
Maximum	65.7	74.8	73.8	52.9	55.8
Max.-Min.	64.4	73.5	72.2	51.0	54.1
T10 (min)	3.1	3.2	3.1	3.6	3.7
T50	6.6	6.4	6.0	6.4	7.4
T80	15.2	14.3	13.0	12.7	17.0
T90	21.7	20.6	19.1	18.5	24.2
<u>MDR rheometer</u> 180°C/run time 10 min					
Minimum (S'dNm)	1.0	1.0	1.2	1.4	1.3
Maximum	61.7	69.9	62.6	41.3	35.3
Max.-Min.	60.7	68.9	61.4	39.9	33.9
T10 (min)	0.7	0.7	0.7	0.7	0.8
T50	1.1	1.0	1.0	1.0	1.6
T80	2.4	2.2	2.0	1.9	3.5
T90	3.4	3.2	3.0	2.9	5.0
<u>Vulcanisation 30 min</u> 160°C					
F (MPa)	23.4	25.5	25.3	36.2	35.6
D (%)	325	285	205	245	270
S 50 (MPa)	4.5	8.3	10.8	9.1	9.2
S 100 (MPa)	7.3	12.3	16.5	17.3	16.2
H 23°C (Sh. A)	90	94	93	92	92
H 23°C (Sh. D)	39	48	49	46	49
E 23°C (%)	45	44	40	34	34
Tear propagation resistance to DIN 53515 (N/mm)	25	29	27	21	28

Example 2

Mixtures 2a to 2e were produced in a similar manner to Example 1 from the starting materials described in Table 3 and were tested.

5

The results are shown in Table 4.

Table 3

Mixture	Mixture 2a	Mixture 2b	Mixture 2c	Mixture 2d	Mixture 2e
Therban KA 8837	100	100	-	-	50
Therban XT KA8889	-	-	100	100	50
Zinkoxyd Aktiv	2	2	-	-	-
MgO paste	2	2	-	-	-
Vulkasil S	50	50	50	50	50
Vinylsilane (Silquest RC-1)	2	2	2	2	2
Tronox R-UF	3	3	3	3	3
Rhenofit DDA-70	1.3	1.3	1.3	1.3	1.3
Vulkanox ZMB-2	0.5	0.5	0.5	0.5	0.5
Rhenofit TRIM/S	30	30	30	30	30
Sartomer SR 633	30	-	30	-	30
Sartomer SR 634	-	30	-	30	-
Ethanox 703	1	1	1	1	1
Zinc peroxide	-	-	6	6	6
Polydispersion T (VC) D-40 P	6	6	6	6	6
Armeen 18 D	3	3	3	3	3
Total parts by weight	230.8	227.8	229.8	229.8	229.8
Density (g/cm ³)	1.27	1.27	1.29	1.29	1.29

Table 4

Mixture properties	Mixture 1a	Mixture 1b	Mixture 1c	Mixture 1d	Mixture 1e
MS-T5/120°C	>45	>45	>45	>45	>45
<u>MDR rheometer</u>					
160°C/run time 40 min					
Minimum (S'dNm)	1.6	1.5	1.4	1.5	1.5
Maximum	233.4	177.0	206.4	177.2	224.5
Max.-Min.	231.7	175.5	205.0	175.7	223.0
T10 (min)	3.0	3.6	3.7	4.2	3.5
T50	4.3	6.0	5.9	6.2	4.4
T80	7.8	13.8	10.5	11.9	6.3
T90	10.2	19.7	14.3	16.9	7.9
<u>MDR rheometer</u>					
180°C/run time 10 min					
Minimum (S'dNm)	1.3	1.3	1.0	1.2	1.2
Maximum	232.9	176.2	170.1	139.6	229.4
Max.-Min.	231.5	174.9	169.1	138.5	228.2
T10 (min)	0.6	0.7	0.7	0.9	0.7
T50	0.7	1.1	0.8	1.3	0.8
T80	0.9	2.5	1.3	2.6	0.9
T90	1.0	3.7	2.0	3.6	0.9
Vulcanisation 30 min 160°C					
F (MPa)	16.2	16.7	24.8	29.7	25.1
D (%)	63	94	48	69	33
S 20 (MPa)	11.2	9.7	18.5	21.6	24.0
S 50 (MPa)	14.2	12.7	25.7	27.6	-
S 100 (MPa)	-	-	-	-	-
H 23°C (Sh. A)	98	99	99	99	99
H 23°C (Sh. D)	64	60	68	68	70
E 23°C (%)	53	45	44	43	52
Tear propagation resistance to DIN 53515 (N/mm)	35	33	28	35	37

The rubber mixtures listed in the Examples exhibit the advantageous properties stated above.

Further improvement in mechanical properties (in particular tensile strength) and
5 hardness is achieved by blending carboxylated hydrogenated nitrile rubber with
hydrogenated/partially hydrogenated nitrile rubber or by using this carboxylated
hydrogenated nitrile rubber alone, which makes these rubber mixtures particularly
suitable for the stated applications.

Patent Claims

1. Rubber mixture containing
 - 5 a) one or more carboxylated nitrile rubbers
 - b) one or more metal salts of an acrylate
 - c) one or more liquid acrylates optionally applied onto a support,
 - d) from 0.01 to 8 phr of one or more silanes, and
 - c) optionally further additives and/or fillers.
- 10 2. Rubber mixture as claimed in claim 1, wherein the carboxylated nitrile rubber(s) are selected from the group consisting of carboxylated NBR, partially hydrogenated carboxylated NBR and completely hydrogenated carboxylated NBR or mixtures of two or more of the members of the group.
- 15 3. Rubber mixture as claimed in claim 1 or 2, wherein the metal salt of the acrylate is a Zn diacrylate or a Zn dimethacrylate or a mixture thereof.
4. Rubber mixture as claimed in one or more of claims 1 or 3, wherein the liquid acrylate is butanediol dimethacrylate or trimethylolpropane trimethacrylate or 20 a mixture thereof.
5. Rubber mixture as claimed in one or more of claims 1 to 4, wherein vinylsilane is used as the silane.
- 25 6. Rubber mixture as claimed in one or more of claims 1 to 5, wherein the mixture further more contains a silicate filler, carbon black, zinc oxide, magnesium oxide or a mixture of two or more of these components.
- 30 7. Rubber mixture as claimed in one or more of claims 1 to 6, wherein the mixture contains vulcanisation retarders and/or vulcanisation accelerators.

8. Vulcanisable rubber mixture containing a rubber mixture as claimed in one or more of claims 1 to 7.
9. Process for the production of a mixture as claimed in one or more of claims 1 to 8, wherein the components are mixed in a mixing unit.
5
10. Process for vulcanising a mixture as claimed in one or more of claims 1 to 9, wherein a peroxide (optionally in combination with zinc peroxide) is used as vulcanising agent.
10
11. Vulcanised mixture obtainable in a process as claimed in claim 10.
12. Use of a rubber mixture as claimed in one or more of claims 1 to 8 or 11 for the production of mouldings of all kinds.
15
13. Use as claimed in claim 12 for the production of roll coverings.
14. Mouldings producible using a rubber mixture as claimed in one or more of claims 1 to 8 or 11.

Rubber mixtures for roll coverings

A b s t r a c t

This invention relates to a rubber mixture containing a carboxylated nitrile rubber, a metal salt of an acrylate, a liquid acrylate, a silane, optionally together with further additives, to a process for the production thereof and to use for mouldings of all kinds, in particular roll coverings.