1. Definiciones

1.1. Varianza

Definición 1.1. (Varianza). Sea X una variable aleatoria con esperanza finita. La varianza de X se define por

$$Var(X) = E[(X - E[X])^2]$$
(1)

Definición 1.2. (Desviación estándar). La desviación estándar de X se define por

$$\sigma_X = \sqrt{Var(X)} \tag{2}$$

1.2. Covarianza

Definición 1.3. (Covarianza) La covarianza es una medida de cómo varían conjuntamente dos variables aleatorias.

Sean X e Y dos variables aleatorias de varianzas finitas definidas sobre el mismo espacio de probabilidad (Ω, A, P) . La covarianza de X e Y se define por

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$

$$= E[XY] - E[X]E[Y]$$
(3)

Interpretación de la covarianza:

- Si $S_{xy} > 0$ hay dependencia directa (positiva), es decir, a grandes valores de X corresponden grandes valores de Y.
- Si $S_{xy} < 0$ hay dependencia inversa (negativa), es decir, a grandes valores de X corresponden pequeños valores de Y.
- Si $S_{xy} = 0$ no hay dependencia lineal entre $X \in Y$.

Figura 1: Covarianza

Definición 1.4. (Covarianza muestral)

$$S_{xy} = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
(4)

$$\bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \qquad \bar{y} = \frac{1}{n} \cdot \sum_{i=1}^{n} y_i$$
 (5)

Definición 1.5. (Coeficiente de Correlación de Pearson)

$$\rho_{xy} = \frac{S_{xy}}{S_x \cdot S_y}
= \frac{\sum_{i=1}^n (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2 \cdot \sum_{i=1}^n (y_i - \bar{y})^2}$$
(6)

Figura 2: Coeficiente de Correlación de Pearson