Variational Analysis

Daniel Mao

Copyright © 2020 - 2022 Daniel Mao All Rights Reserved.

Contents

1	Sen	ni-Continuity	1		
	1.1	Definitions	1		
	1.2	Properties	1		
2	Sub	Subgradients			
	2.1	Definitions and Examples	3		
	2.2	Basic Properties	4		
	2.3	Calculus of Sub-Differentials	5		
	2.4	Subdifferentiation and Differentiation	5		
3	Qua	asigradients	7		
	3 1	Definitions	7		

ii *CONTENTS*

Chapter 1

Semi-Continuity

1.1 Definitions

DEFINITION 1.1 (Lower Semi-Continuous - 1). Let f be a function from \mathbb{E} to \mathbb{R}^* . Let x_0 be a point in \mathbb{E} . We say that f is **lower semi-continuous** at point x_0 if for any sequence $(x_n)_{n\in\mathbb{N}}$ that converges to x_0 , we have $f(x) \leq \liminf_{n\to\infty} f(x_i)$.

DEFINITION 1.2 (Lower Semi-Continuous - 2). Let f be a function from \mathbb{E} to \mathbb{R}^* . We say that f is **lower semi-continuous** if and only if epi(f) is closed.

PROPOSITION 1.3. The two definitions of lower semi-continuity are equivalent.

DEFINITION 1.4 (Upper Semi-Continuous). Let X be a topological space. Let f be a extended real-valued function on X. Let x_0 be a point in X. We say that f is **upper semi-continuous** at point x_0 if for any positive number ε , there exists some neighborhood \mathcal{N} of x_0 such that $f(x) \leq f(x_0) + \varepsilon$ for any $x \in \mathcal{N}$ when $f(x_0) \neq -\infty$; or if $\lim_{x \to x_0} f(x) = -\infty$ when $f(x_0) = -\infty$.

1.2 Properties

PROPOSITION 1.5 (Supremum). The supremum of a collection of lower semi-continuous functions is again lower semi-continuous. i.e., Let $\{f_i\}_{i\in I}$ be a collection of lower semi-continuous functions where I is some index set. Then the function F given by $F := \sup_{i\in I} f_i$ is lower semi-continuous.

Proof.

$$\begin{split} &(x,\alpha) \in \operatorname{epi}(F) \\ \iff \sup_{i \in I} f_i(x) \leq \alpha \\ \iff \forall i \in I, f_i(x) \leq \alpha \\ \iff \forall i \in I, (x,\alpha) \in \operatorname{epi}(f_i) \\ \iff (x,\alpha) \in \bigcap_{i \in I} \operatorname{epi}(f_i). \end{split}$$

So $\operatorname{epi}(F) = \bigcap_{i \in I} \operatorname{epi}(f_i)$. Since f_i are lower semi-continuous, $\operatorname{epi}(f_i)$ are closed. Since $\operatorname{epi}(f_i)$ are closed, $\bigcap_{i \in I} \operatorname{epi}(f_i)$ is closed. That is, $\operatorname{epi}(F)$ is closed. Since $\operatorname{epi}(F)$ is closed, F is lower semi-continuous.

PROPOSITION 1.6. A function is continuous at a point if and only if it is both upper and lower semi-continuous there.

Chapter 2

Subgradients

2.1 Definitions and Examples

DEFINITION 2.1 (Sub-Differential). Let f be a proper function from \mathbb{E} to \mathbb{R}^* . We define the **sub-differential** of f, denoted by ∂f , to be a function from \mathbb{E} to $\mathcal{P}(\mathbb{R}^*)$ given by

 $\partial f(x) := \bigg\{ v \in \mathbb{E} : \forall y \in \mathbb{E}, \langle v, y - x \rangle \le f(y) - f(x) \bigg\}.$

DEFINITION 2.2 (Subdifferentiable). Let f be a proper function from \mathbb{E} to \mathbb{R}^* . Let x be a point in \mathbb{E} . We say that f is **subdifferentiable** at point x if $\partial f(x) \neq \emptyset$.

DEFINITION 2.3 (Subgradient). Let f be a proper function from \mathbb{E} to \mathbb{R}^* . We define the **subgradients** of f to be the elements of $\partial f(x)$.

EXAMPLE 2.4. Let C be a non-empty closed convex set in \mathbb{E} . Let x be some point in \mathbb{E} . Then

$$\partial \delta_C(x) = N_C(x)$$

where δ_C denotes the indicator function of C and N_C denotes the normal cone to C.

Proof. If $x \notin C$, then $\partial \delta_C(x) = N_C(x) = \emptyset$. Else, let u be an arbitrary point in \mathbb{E} . Then

$$u \in \partial \delta_C(x)$$

$$\iff \forall y \in \mathbb{E}, \delta_C(y) - \delta_C(x) \ge \langle u, y - x \rangle$$

$$\iff \forall y \in C, \delta_C(y) - \delta_C(x) \ge \langle u, y - x \rangle$$

$$\iff \forall y \in C, 0 - 0 \ge \langle u, y - x \rangle$$

$$\iff \forall y \in C, \langle u, y - x \rangle \le 0$$

$$\iff \forall y \in C - x, \langle u, y \rangle \le 0$$

$$\iff u \in N_C(x).$$

2.2 Basic Properties

PROPOSITION 2.5 (Domain of the Subdifferential). Let f be a proper, convex, and lower semi-continuous function from \mathbb{E} to \mathbb{R}^* .

- 1. $dom(\partial f) \subseteq dom(f)$.
- 2. $\operatorname{ri}(\operatorname{dom}(f)) \subseteq \operatorname{dom}(\partial f)$.
- 3. $\operatorname{ri}(\operatorname{dom}(\partial f)) = \operatorname{ri}(\operatorname{dom}(f))$.
- 4. $\operatorname{cl}(\operatorname{dom}(\partial f)) = \operatorname{cl}(\operatorname{dom}(f))$.

Proof of (1). Let x be an arbitrary point in $dom(\partial f)$. We are to prove that $x \in dom(f)$. Assume for the sake of contradiction that $x \notin dom(f)$. Since $x \notin dom(f)$, $f(x) = +\infty$. Since f is proper, $\exists y \in \mathbb{E}$ such that $f(y) < +\infty$. Since $f(y) < +\infty$ and $f(x) = +\infty$, we have

$$\forall u \in \mathbb{E}, \quad f(y) - f(x) < \langle u, y - x \rangle.$$

So $\forall u \in \mathbb{E}$, $u \notin \partial f(x)$. i.e. $\partial f(x) = \emptyset$. So $x \notin \text{dom}(\partial f)$. This contradicts to the assumption that $x \in \text{dom}(\partial f)$. So the assumption that $x \notin \text{dom}(f)$ is false. i.e. $x \in \text{dom}(f)$. Since $\forall x \in \text{dom}(\partial f)$, $x \in \text{dom}(f)$, we get

$$dom(\partial f) \subseteq dom(f)$$
.

2.3 Calculus of Sub-Differentials

PROPOSITION 2.6. Let f and g be proper functions from \mathbb{E} to \mathbb{R}^* . Then $\forall x \in \mathbb{E}$, $\partial f(x) + \partial g(x) \subseteq \partial (f+g)(x)$.

Proof.

Let x be an arbitrary point in \mathbb{E} .

Let v be an arbitrary point in $\partial f(x) + \partial g(x)$.

Since $v \in \partial f(x) + \partial g(x)$, $\exists u \in \partial f(x)$, $\exists w \in \partial g(x)$ such that v = u + w.

Let y be an arbitrary point in \mathbb{E} .

Since $u \in \partial f(x)$, $f(y) \ge f(x) + \langle u, y - x \rangle$.

Since $w \in \partial g(x)$, $g(y) \ge g(x) + \langle w, y - x \rangle$.

$$(f+g)(y) = f(y) + g(y)$$

$$\geq f(x) + \langle u, y - x \rangle + g(x) + \langle w, y - x \rangle$$

$$= f(x) + g(x)\langle u + w, y - x \rangle$$

$$= (f+g)(x) + \langle v, y - x \rangle.$$

That is, $(f+g)(y) \ge (f+g)(x) + \langle v, y - x \rangle$.

This is true for any $y \in \mathbb{E}$.

So $v \in \partial (f+g)(x)$.

This is true for any $v \in \partial f(x) + \partial g(x)$.

So $\partial f(x) + \partial g(x) \subseteq \partial (f+g)$.

THEOREM 2.7. Let f and g be proper convex lower semi-continuous functions from \mathbb{E} to \mathbb{R}^* . Assume that $\operatorname{ri}(\operatorname{dom}(f)) \cap \operatorname{ri}(\operatorname{dom}(g)) \neq \emptyset$. Then $\partial(f+g) = \partial f + \partial g$.

2.4 Subdifferentiation and Differentiation

THEOREM 2.8. Let f be a proper convex function from \mathbb{R}^n to \mathbb{R}^* . Let x_0 be a point in dom(f). Let u be a point in \mathbb{R}^n . Then u is a subgradient of f at point x_0 if and only if

$$\forall d \in \mathbb{R}^n, f'(x_0; d) \ge \langle u, d \rangle.$$

Proof.

$$u \in \partial f(x_0)$$

$$\iff \forall y \in \mathbb{R}^n, \qquad f(y) \ge f(x_0) + \langle u, y - x_0 \rangle$$

$$\iff \forall d \in \mathbb{R}^n, \forall \lambda > 0, \qquad f(x_0 + \lambda d) \ge f(x_0) + \langle u, x_0 + \lambda d - x_0 \rangle$$

$$\iff \forall d \in \mathbb{R}^n, \forall \lambda > 0, \qquad \frac{f(x_0 + \lambda d) - f(x_0)}{\lambda} \ge \langle u, d \rangle$$

$$\iff \forall d \in \mathbb{R}^n, \qquad f'(x_0; d) \ge \langle u, d \rangle.$$

PROPOSITION 2.9. Let f be a proper convex function from \mathbb{R}^n to \mathbb{R}^* . Let x_0 be a point in dom(f). Assume that f is differentiable at point x_0 . Then $\nabla f(x_0)$ is the unique subgradient of f at point x_0 .

Chapter 3

Quasigradients

3.1 Definitions

DEFINITION 3.1 (Quasignadients). Let f be a quasiconvex function from \mathbb{E} to \mathbb{R}^* . Let x_0 be a point in \mathbb{E} . We define the **quasignadients** of f at point x_0 to be the vectors v such that

$$\forall x \in \mathbb{E}, \quad \langle v, x - x_0 \rangle \ge 0 \implies f(x) - f(x_0) \ge 0.$$