Álgebra Universal e Categorias

2. Álgebra Universal

2.1. Sejam $A=\{0,a,b,c,d,e,f,g,1\}$, $B=\{0,a,b,c,f,d,1\}$ e (A,\leq) o c.p.o. correspondente ao diagrama de Hasse a seguir representado. Considere as álgebras $\mathcal{A}=(A;(f^{\mathcal{A}})_{f\in\{\wedge,\vee,\delta,0,1\}})$ e $\mathcal{B}=(B;(f^{\mathcal{B}})_{f\in\{\wedge,\vee,\delta,0,1\}})$ de tipo (2,2,1,0,0), onde as operações binárias de \mathcal{A} e \mathcal{B} são definidas por

$$x \wedge^{\mathcal{A}} y = \inf\{x,y\} \in x \vee^{\mathcal{A}} y = \sup\{x,y\}, \forall x,y \in A,$$

$$x \wedge^{\mathcal{B}} y = \inf\{x, y\} \in x \vee^{\mathcal{B}} y = \sup\{x, y\}, \forall x, y \in B,$$

as operações unárias são definidas pelas tabelas a seguir indicadas e $0^{\mathcal{A}}=0^{\mathcal{B}}=0$ e $1^{\mathcal{A}}=1^{\mathcal{B}}=1$.

- (a) Dê exemplo de um reduto de A que seja:
 - i. um semigrupo.

A álgebra \mathcal{A} é do tipo (O_1,τ_1) , onde $O_1=\{\wedge,\vee,\delta,0,1\}$ e $\tau_1:O_1\to\mathbb{N}_0$ é a aplicação definida por $\tau_1(\wedge)=\tau_1(\vee)=2$, $\tau_1(\delta)=1$ e $\tau_1(0)=\tau_1(1)=0$. Uma álgebra $\mathcal{C}=(C;F)$ de tipo (O_2,τ_2) diz-se um reduto de \mathcal{A} se C=A, $O_2\subseteq O_1$ e, para qualquer $f\in O_2$, $\tau_1(f)=\tau_2(f)$ e $f^{\mathcal{C}}=f^{\mathcal{A}}$.

A álgebra $\mathcal{C}=(C;\{\wedge_{\mathcal{C}}\})$ do tipo $(\{\wedge\};\tau_2)$, onde $C=A,\,\tau_2:\{\wedge\}\to\mathbb{N}_0$ é a função definida por $\tau_2(\wedge)=2$ e $\wedge_{\mathcal{C}}$ é a operação binária em C definida por

$$x \wedge_{\mathcal{C}} y = x \wedge_{\mathcal{A}} y, \ \forall_{x,y \in C},$$

é um reduto de \mathcal{A} , uma vez que respeita as condições indicadas anteriormente. A álgebra \mathcal{C} é um semigrupo, pois a operação $\wedge_{\mathcal{A}}$ é associativa e, portanto, a operação $\wedge_{\mathcal{C}}$ também é associativa.

ii. um reticulado.

A álgebra \mathcal{A} é do tipo (O_1,τ_1) , onde $O_1=\{\wedge,\vee,\delta,0,1\}$ e $\tau_1:O_1\to\mathbb{N}_0$ é a aplicação definida por $\tau_1(\wedge)=\tau_1(\vee)=2$, $\tau_1(\delta)=1$ e $\tau_1(0)=\tau_1(1)=0$. Uma álgebra $\mathcal{C}=(C;F)$ de tipo (O_2,τ_2) diz-se um reduto de \mathcal{A} se C=A, $O_2\subseteq O_1$ e, para qualquer $f\in O_2$, $\tau_1(f)=\tau_2(f)$ e $f^{\mathcal{C}}=f^{\mathcal{A}}$.

A álgebra $\mathcal{C}=(C;\{\wedge_{\mathcal{C}},\vee_{\mathcal{C}}\})$ de tipo $(\{\wedge,\vee\};\tau_2)$, onde $C=A,\,\tau_2:\{\wedge,\vee\}\to\mathbb{N}_0$ é a função definida por $\tau_2(\wedge)=\tau_2(\vee)=2$ e $\wedge_{\mathcal{C}},\,\vee_{\mathcal{C}}$ são as operações binárias em C definidas por

$$x \wedge_{\mathcal{C}} y = x \wedge_{\mathcal{A}} y$$
 e $x \vee_{\mathcal{C}} y = x \vee_{\mathcal{A}} y$, $\forall_{x,y \in \mathcal{C}}$,

é um reduto de \mathcal{A} , pois respeita as condições indicadas anteriormente. A álgebra \mathcal{C} é um reticulado, pois as operações $\wedge_{\mathcal{A}}$ e $\vee_{\mathcal{A}}$ são associativas, comutativas, idempotentes e satisfazem a lei da absorção e, portanto, as operações $\wedge_{\mathcal{C}}$ e $\vee_{\mathcal{C}}$ satisfazem as mesmas propriedades.

- (b) Para cada um dos conjuntos C a seguir indicados, diga se C é um subuniverso de \mathcal{A} :
 - i. $C = \emptyset$.

Um subconjunto S de A diz-se um subuniverso de A se, para todo o símbolo de operação $h \in \{\land, \lor, \delta, 0, 1\}$ de aridade $n, n \in \{0, 1, 2\}$, e para todo $(a_1, \ldots, a_n) \in S^n$, temos

$$h^{\mathcal{A}}(a_1,\ldots,a_n)\in S.$$

O conjunto \emptyset não é um subuniverso de \mathcal{A} , pois $0^{\mathcal{A}}$ é uma operação nulária de \mathcal{A} e $0^{\mathcal{A}} = 0 \notin \emptyset$.

ii. $C = \{0, f, d, 1\}.$

Um subconjunto S de A diz-se um subuniverso de A se, para todo o símbolo de operação $h \in \{\land, \lor, \delta, 0, 1\}$ de aridade $n, n \in \{0, 1, 2\}$, e para todo $(a_1, \ldots, a_n) \in S^n$, temos

$$h^{\mathcal{A}}(a_1,\ldots,a_n)\in S.$$

O conjunto $C = \{0, f, d, 1\}$ não é um subuniverso de \mathcal{A} , pois $f, d \in C$ e $f \wedge_{\mathcal{A}} d = c \notin C$.

iii. $C = \{0, a, b, c, f, d, 1\}.$

Um subconjunto S de A diz-se um subuniverso de A se, para todo o símbolo de operação $h \in \{\land, \lor, \delta, 0, 1\}$ de aridade $n, n \in \{0, 1, 2\}$, e para todo $(a_1, \ldots, a_n) \in S^n$, temos

$$h^{\mathcal{A}}(a_1,\ldots,a_n)\in S.$$

O conjunto $C = \{0, a, b, c, f, d, 1\}$ é um subuniverso de \mathcal{A} , pois:

- $-0^{A}=0, 1^{A}=1 \in C$:
- para quaisquer $x, y \in C$, $x \wedge_{\mathcal{A}} y, x \vee_{\mathcal{A}} y \in C$;
- para qualquer $x \in C$, $\delta^{\mathcal{A}}(x) \in C$.
- (c) Diga se \mathcal{B} é uma subálgebra de \mathcal{A} .

A álgebra \mathcal{A} é do tipo (O,τ) , onde $O=\{\wedge,\vee,\delta,0,1\}$ e $\tau:O\to\mathbb{N}_0$ é a aplicação definida por $\tau(\wedge)=\tau(\vee)=2,\,\tau(\delta)=1$ e $\tau(0)=\tau(1)=0.$ Uma álgebra $\mathcal{C}=(C;F)$ de tipo (O,τ) diz-se uma subálgebra de \mathcal{A} se C é um subuniverso de \mathcal{A} e, para qualquer $h\in O$ de aridade $n,\,n\in\{0,1,2\}$,

$$h^{\mathcal{C}}(a_1,\ldots,a_n)=h^{\mathcal{A}}(a_1,\ldots,a_n), \ \forall (a_1,\ldots,a_n)\in C^n.$$

A álgebra \mathcal{B} não é uma subálgebra \mathcal{A} , pois, embora \mathcal{B} seja do mesmo tipo da álgebra \mathcal{A} e \mathcal{B} seja um subuniverso de \mathcal{A} , tem-se $\delta^{\mathcal{B}}(f) \neq \delta^{\mathcal{A}}(f)$.

2.2. Para cada $n \in \mathbb{N}$, seja $\mathcal{A}_n = (A_n; (f^{\mathcal{A}_n}, 0^{\mathcal{A}_n}))$ a álgebra de tipo (1,0), onde $A_n = \{0,1,2,\ldots,2n\}$, $0^{\mathcal{A}_n} = 0$ e $f^{\mathcal{A}_n}: A_n \to A_n$ é a operação definida por

$$f^{\mathcal{A}_n}(x) = \begin{cases} x+2 & \text{se} \quad x \in \{0, 1, 2, \dots, 2n-2\} \\ 1 & \text{se} \quad x = 2n-1 \\ 0 & \text{se} \quad x = 2n \end{cases}$$

Para cada $n \in \mathbb{N}$, determine todos os subuniversos de \mathcal{A}_n

Seja S um subuniverso de \mathcal{A}_n . Então $S\subseteq A_n$ e S é fechado para todas as operações de \mathcal{A}_n . Como S é fechado para a operação $0^{\mathcal{A}_n}$, segue que $0\in S$. O conjunto S também é fechado para a operação $f^{\mathcal{A}_n}$, donde resulta que

$$f^{\mathcal{A}_n}(0) = 2 \in S, f^{\mathcal{A}_n}(2) = 4 \in S, \dots, f^{\mathcal{A}_n}(2n-2) = 2n \in S.$$

Se o conjunto S não tem inteiros ímpares, temos $S=\{0,2,4,\ldots,2n\}$. Caso S tenha um número ímpar, então, atendendo a que S é fechado para a operação $f^{\mathcal{A}_n}$, segue que $\{1,3,5,\ldots,2n-1\}\subseteq S$, pelo que S=A.

Assim, os únicos subuniversos de A_n são $\{0, 2, 4, \dots, 2n\}$ e A_n .

2.3. Sejam $\mathcal{R}=(R;\wedge,\vee)$ um reticulado e $a\in R$. Mostre que $I_a=\{x\in R:x\vee a=a\}$ é um subuniverso de \mathcal{R} .

Sejam $\mathcal{R} = (R; \land, \lor)$ um reticulado e, para cada $a \in R$, seja $I_a = \{x \in R : x \lor a = a\}$.

O conjunto $I_a = \{x \in R : x \lor a = a\}$ é um subuniverso de \mathcal{R} se $I_a \subseteq R$ e I_a é fechado para as duas operações de \mathcal{R} .

Por definição de I_a , tem-se $I_a \subseteq R$.

Além disso, para quaisquer $x,y\in I_a$, tem-se $x,y\in R$, $x\vee a=a$ e $y\vee a=a$, donde segue que $x\vee y\in I_a$, pois:

- $x \lor y \in R$ ($x, y \in R$ e R é fechado para a operação \lor);
- $-(x \lor y) \lor a = x \lor (y \lor a) = x \lor a = a.$

Considerando que $x=x\wedge a$ e $y=y\wedge a$, também temos $x\wedge y\in I_a$, uma vez que:

- $x \wedge y \in R$ ($x, y \in R$ e R é fechado para a operação \wedge);
- $-(x \wedge y) \vee a = ((x \wedge a) \wedge (y \wedge a)) \vee a = ((x \wedge y) \wedge a) \vee a = a.$

O conjunto I_a é fechado para as operações \land e \lor e, portanto, S é um subuniverso de \mathcal{R} .

2.4. (a) Considere o grupo $(\mathbb{Z},+)$ visto como uma álgebra de tipo (2). Dê um exemplo de uma subálgebra de $(\mathbb{Z},+)$ que não seja um grupo.

A álgebra $(\mathbb{N},+)$ é uma subálgebra de $(\mathbb{Z},+)$, mas $(\mathbb{N},+)$ não é um grupo, pois $(\mathbb{N},+)$ não tem elemento neutro.

(b) Mostre que toda a subálgebra de um grupo finito visto como uma álgebra de tipo (2), é ainda um grupo.

Sejam $\mathcal{G}=(G;\cdot^{\mathcal{G}})$ uma álgebra do tipo (2) tal que \mathcal{G} é um grupo finito e $\mathcal{S}=(S,\cdot^{\mathcal{S}})$ uma subálgebra de \mathcal{G} .

Como \mathcal{S} é uma subálgebra de \mathcal{G} , então \mathcal{S} é uma álgebra do tipo (2), tem-se $S \subseteq G$, $S \neq \emptyset$, S é fechado para a operação \mathcal{S} é uma operação binária em S tal que, para quaisquer $x, y \in S$, $x \cdot \mathcal{S}$ $y = x \cdot \mathcal{S}$

A álgebra ${\mathcal S}$ é um grupo se:

- (i) a operação $\cdot^{\mathcal{S}}$ é associativa;
- (ii) $\exists_{u \in S} \forall_{s \in S} \ s \cdot^{S} u = s = u \cdot^{S} s$;
- (iii) $\forall_{s \in S} \exists_{s' \in S} \ s \cdot^{S} s' = u = s' \cdot^{S} s$.
- (i) Uma vez que $\cdot^{\mathcal{G}}$ é uma operação associativa, então, atendendo a que $S\subseteq G$ e à definição de $\cdot^{\mathcal{S}}$, é imediato que a operação $\cdot^{\mathcal{S}}$ também é associativa.
- (ii) Mostremos que existe $u \in S$ tal que, para todo $s \in S$, $s \cdot^S u = s = u \cdot^S s$. Seja $s \in S$. Como S é fechado para a operação $\cdot^{\mathcal{G}}$, então, para todo $n \in \mathbb{N}$, $s^n \in S$. Uma vez que S é finito, existem $i,j \in \mathbb{N}$ tais que $i \neq j$ e $s^i = s^j$. Admitamos, sem perda de generalidade que i < j. Uma vez que $j-i \in \mathbb{N}$, então $s^{j-i} = 1_G \in S$. Então existe $u = 1_G \in S$ tal que, para todo $s \in S$, $s \cdot^S u = s \cdot^{\mathcal{G}} u = s = u \cdot^{\mathcal{G}} s = u \cdot^S s$.
- (iii) Resta mostrar que, para todo $s \in S$, existe $s' \in S$ tal que $s \cdot^{\mathcal{S}} s' = 1_G = s' \cdot^{\mathcal{S}} s$. Ora, em (ii) foi provado que, dado $s \in G$, existem $i,j \in \mathbb{N}$ tais que i < j e $s^{j-i} \in S$. Além disso, também ficou provado que, para todo $n \in \mathbb{N}_0$, $s^n \in S$. Então, considerando que $s^{j-i-1} \in S$ (pois $j-i-1 \in \mathbb{N}_0$) e

$$s \cdot^{\mathcal{S}} s^{j-i-1} = s \cdot^{\mathcal{G}} s^{j-i-1} = s^{j-i} = 1_G = s^{j-i} = s^{j-i-1} \cdot^{\mathcal{G}} s = s^{j-i-1} \cdot^{\mathcal{S}} s,$$

conclui-se que todo o elemento de S admite inverso em S.

Portanto, $S = (S; \cdot^S)$ é um grupo.

- 2.5. Uma álgebra $\mathcal{A}=(A;F)$ diz-se mono-unária se F é formado por uma única operação e essa operação é unária. Uma subálgebra $\mathcal{B}=(B;G)$ de \mathcal{A} diz-se uma subálgebra própria se $B\subsetneq A$.
 - (a) Para cada inteiro n > 0, dê exemplo de uma álgebra mono-unária $\mathcal{A}_n = (\{0,1,...,n-1\};f)$ que não admita subálgebras próprias.

Sejam $n \in \mathbb{N}$ e $\mathcal{A}_n = (A_n; f^{\mathcal{A}})$ a álgebra de tipo (1), onde $f^{\mathcal{A}_n} : A_n \to A_n$ é a operação unária definida por

$$f^{\mathcal{A}_n}(x) = \left\{ \begin{array}{ll} x+1 & \text{se } x \in \{0,1,\ldots,n-2\} \\ 0 & \text{se } x=n-1 \end{array} \right.$$

Seja $\mathcal{S}=(S;f^{\mathcal{S}})$ uma subálgebra de \mathcal{A}_n . Então \mathcal{S} é uma álgebra do mesmo tipo de \mathcal{A}_n , $\emptyset \neq S \subseteq A_n$, S é fechado para a operação $f^{\mathcal{A}_n}$ e, para todo $x \in S$, $f^{\mathcal{S}}(x)=f^{\mathcal{A}_n}(x)$.

Como $S \neq \emptyset$, consideremos $s \in S$. Uma vez que S é fechado para a operação $f^{\mathcal{A}_n}$, segue que, para todo $k \in \mathbb{N}_0$, $(f^{\mathcal{A}_n})^k(s) \in S$ e, portanto, $\{0,1,...,n-1\} \subseteq S$. Logo $S = A_n$ e, portanto, \mathcal{A}_n não admite subálgebras próprias.

(b) Mostre que qualquer álgebra mono-unária infinita tem subálgebras próprias.

Seja $\mathcal{A}=(A;f)$ uma álgebra mono-unária infinita. No sentido de se fazer a prova por redução ao absurdo, admitamos que \mathcal{A} não admite subálgebras próprias. Como $A\neq\emptyset$, consideremos $a\in A$ e a subálgebra de \mathcal{A} gerada por $\{f(a)\}$. Uma vez que \mathcal{A} não admite subálgebras próprias, então $A=\operatorname{Sg}^{\mathcal{A}}(\{f(a)\})$. Logo, para todo $x\in A$, tem-se $x=f^k(a)$, para algum $k\in\mathbb{N}$. Em particular, tem-se $a=f^r(a)$, para algum $r\in\mathbb{N}$. Logo $A=\{a,f(a),\ldots,f^{r-1}(a)\}$ e, portanto, A é finito (contradição). Por conseguinte, toda a álgebra mono-unária infinita tem subálgebras próprias.

- 2.6. Considere a álgebra \mathcal{A} definida no exercício 2.1.
 - (a) Dê exemplo de conjuntos $X, Y \subseteq A$ tais que:
 - i. $X \neq Y \in Sg^{\mathcal{A}}(X) = Sg^{\mathcal{A}}(Y)$.

Sejam
$$X = \emptyset$$
 e $Y = \{0\}$. Tem-se $X \neq Y$ e $Sg^{\mathcal{A}}(\emptyset) = \{0, 1\} = Sg^{\mathcal{A}}(\{0\})$.

ii. $|X| = 2 e Sq^{A}(X) = A$.

Dado $X \subseteq A$, tem-se $Sg^{\mathcal{A}}(X) = \bigcup_{k \in \mathbb{N}_0} X_k$, onde

- $-X_0 = X$
- $X_{i+1} = X_i \cup \{h^A(x) \mid h^A \text{ é operação } n\text{-ária em } A \text{ e } x \in (X_i)^n, n \in \{0, 1, 2\}\}.$

Sendo $X = \{f, q\}$, tem-se

- $-X_0 = \{f, q\};$
- $X_1 = \{f, g\} \cup \{0, f \land^{\mathcal{A}} g = a, f \lor^{\mathcal{A}} g = 1, \delta^{\mathcal{A}}(f) = d, \delta^{\mathcal{A}}(g) = e\};$
- $X_2 = \{0, a, d, e, f, g, 1\} \cup \{d \wedge^{\mathcal{A}} f = c, d \wedge^{\mathcal{A}} e = b\};$
- $X_3 = X_2 = \{0, a, b, c, d, e, f, g, 1\},\$
- e, portanto, $Sq^{\mathcal{A}}(X) = A$.
- (b) Determine $Sg^{\mathcal{A}}(\{e\})$ e $Sg^{\mathcal{A}}(\{f,g\})$.
 - $Sg^{\mathcal{A}}(\{e\})$

Dado $X\subseteq A$, tem-se $Sg^{\mathcal{A}}(X)=\bigcup_{k\in\mathbb{N}_0}X_k$, onde

- $-X_0=X$
- $X_{i+1} = X_i \cup \{h^{\mathcal{A}}(x) | h^{\mathcal{A}} \text{ \'e operação } n\text{-\'aria em } \mathcal{A} \text{ e } x \in (X_i)^n, n \in \{0, 1, 2\}\}.$

Sendo $X = \{e\}$, tem-se

- $X_0 = \{e\}$:
- $X_1 = \{e\} \cup \{0, \delta^{\mathcal{A}}(e) = g, 1\};$
- $X_2 = X_1 = \{0, e, q, 1\}.$
- e, portanto, $Sg^{A}(\{e\}) = \{0, e, g, 1\}.$

Logo

$$\mathcal{S}g^{\mathcal{A}}(\{e\}) = (\{0, e, g, 1\}, (f^{\mathcal{S}g^{\mathcal{A}}(\{e\})})_{f \in \{\land, \lor, \delta, 0, 1\}}),$$

onde, para toda o símbolo de operação n-ário $f \in \{\land, \lor, \delta, 0, 1\}, n \in \{0, 1, 2\}$, tem-se

$$f^{\mathcal{S}g^{\mathcal{A}}(\{e\})}(a_1,\ldots,a_n) = f^{\mathcal{A}}(a_1,\ldots,a_n), \ \forall (a_1,\ldots,a_n) \in Sg^{\mathcal{A}}(\{e\}))^n.$$

• $Sq^{\mathcal{A}}(\{f,q\})$

Da alínea anterior, sabe-se que $Sg^{\mathcal{A}}(\{f,g\}) = A$. Logo $\mathcal{S}g^{\mathcal{A}}(\{f,g\}) = \mathcal{A}$.

- 2.7. Sejam $\mathcal{A} = (A; F)$ uma álgebra e $X, Y \subseteq A$. Mostre que:
 - (a) $X \subseteq Sq^{\mathcal{A}}(X)$.

Imediato, uma vez que $Sg^{\mathcal{A}}(X)$ é o menor subuniverso de \mathcal{A} que contém X.

(b) $X \subseteq Y \Rightarrow Sq^{\mathcal{A}}(X) \subseteq Sq^{\mathcal{A}}(Y)$.

Admitamos que $X \subseteq Y$. Considerando que $Y \subseteq Sg^{\mathcal{A}}(Y)$, segue que $X \subseteq Sg^{\mathcal{A}}(Y)$. Então, atendendo a que $Sg^{\mathcal{A}}(X)$ é o menor subuniverso de \mathcal{A} que contém X, conclui-se que $Sg^{\mathcal{A}}(X) \subseteq Sg^{\mathcal{A}}(Y)$.

- (c) $Sg^{\mathcal{A}}(Sg^{\mathcal{A}}(X)) = Sg^{\mathcal{A}}(X)$.
 - Por (a), temos $Sg^{\mathcal{A}}(X)\subseteq Sg^{\mathcal{A}}(Sg^{\mathcal{A}}(X))$. Por outro lado, $Sg^{\mathcal{A}}(X)$ é um subuniverso de \mathcal{A} e $Sg^{\mathcal{A}}(X)\subseteq Sg^{\mathcal{A}}(X)$. Então, considerando que $Sg^{\mathcal{A}}(Sg^{\mathcal{A}}(X))$ é o menor subuniverso de \mathcal{A} que contém $Sg^{\mathcal{A}}(X)$, concluímos que $Sg^{\mathcal{A}}(Sg^{\mathcal{A}}(X))\subseteq Sg^{\mathcal{A}}(X)$. Portanto $Sg^{\mathcal{A}}(Sg^{\mathcal{A}}(X))=Sg^{\mathcal{A}}(X)$.
- (d) $Sg^{\mathcal{A}}(X) = \bigcup \{ Sg^{\mathcal{A}}(Z) \mid Z \text{ \'e subconjunto finito de } X \}.$

Para cada conjunto finito Z tal que $Z \subseteq X$, tem-se $Sg^{\mathcal{A}}(Z) \subseteq Sg^{\mathcal{A}}(X)$. Por conseguinte,

$$\int \{Sg^{\mathcal{A}}(Z) \mid Z \text{ \'e subconjunto finito de } X\} \subseteq Sg^{\mathcal{A}}(X).$$

A inclusão contária também é válida. De facto, para cada $x \in A$, se $x \in Sg^{\mathcal{A}}(X)$, tem-se $x \in Sg^{\mathcal{A}}(Z)$, para algum conjunto finito $Z \subseteq X$. Logo $x \in \bigcup \{Sg^{\mathcal{A}}(Z) \mid Z \text{ é subconjunto finito de } X\}$. Portanto,

$$Sg^{\mathcal{A}}(X) \subseteq \bigcup \{Sg^{\mathcal{A}}(Z) \mid Z \text{ \'e subconjunto finito de } X\}.$$

Desta forma, provámos que $Sg^{\mathcal{A}}(X) = \bigcup \{Sg^{\mathcal{A}}(Z) \mid Z \text{ \'e subconjunto finito de } X\}.$

2.8. (a) Seja $\mathcal{A}=(\{e,a,b,c,d\};*^{\mathcal{A}},c^{\mathcal{A}})$ a álgebra de tipo (2,0), onde $A=\{e,a,b,c,d\},\ c^{\mathcal{A}}=d$ e $*^{\mathcal{A}}$ é a operação definida por

Sejam $X = \{b\}$ e $Y = \{c\}$. Diga, justificando, se $Sg^{\mathcal{A}}(X) \cup Sg^{\mathcal{A}}(Y) = Sg^{\mathcal{A}}(X \cup Y)$.

Dado $Z\subseteq A$, tem-se $Sg^{\mathcal{A}}(Z)=\bigcup_{k\in\mathbb{N}_0}Z_k$, onde

- $Z_0 = Z$;
- $Z_{i+1} = Z_i \cup \{h^{\mathcal{A}}(z) \mid h^{\mathcal{A}} \text{ \'e operaç\~ao } n\text{-\'aria em } \mathcal{A} \text{ e } z \in (Z_i)^n, n \in \{0,2\}\}.$

Sendo $X = \{b\}$, tem-se:

$$X_0 = \{b\}; X_1 = \{b\} \cup \{d\}; X_2 = \{b, d\} \cup \{e\}; X_3 = X_2 = \{b, d, e\}.$$

Logo,
$$Sg^{A}(\{b\}) = \{b, d, e\}.$$

Sendo $Y = \{c\}$, tem-se:

$$Y_0 = \{c\}; Y_1 = \{c\} \cup \{d, e\}; Y_2 = Y_1 = \{c, d, e\}.$$

Logo,
$$Sg^{A}(\{b\}) = \{c, d, e\}.$$

Sendo $X \cup Y = \{b, c\}$, tem-se

$$(X \cup Y)_0 = \{b, c\}; (X \cup Y)_1 = \{b, c\} \cup \{a, d, e\}; (X \cup Y)_2 = X_1.$$

Logo, $Sg^{\mathcal{A}}(\{b,c\}) = \{a,b,c,d,e\}.$

Portanto,
$$Sg^{A}(X) \cup Sg^{A}(Y) = \{b, c, d, e\} \neq \{a, b, c, d, e\} = Sg^{A}(X \cup Y).$$

(b) Seja $\mathcal{B} = (B; F)$ uma álgebra unária. Mostre que, para quaisquer $X, Y \subseteq B$,

$$Sg^{\mathcal{B}}(X) \cup Sg^{\mathcal{B}}(Y) = Sg^{\mathcal{B}}(X \cup Y).$$

Seja $\mathcal{B} = (B; F)$ uma álgebra unária.

Para quaisquer $X,Y\subseteq B$, tem-se $X\subseteq Sg^{\mathcal{B}}(X\cup Y)$ e $Y\subseteq Sg^{\mathcal{B}}(X\cup Y)$, donde segue que

$$Sg^{\mathcal{B}}(X) \subseteq Sg^{\mathcal{B}}(X \cup Y) \in Sg^{\mathcal{B}}(Y) \subseteq Sg^{\mathcal{B}}(X \cup Y)$$

e, portanto, $Sq^{\mathcal{B}}(X) \cup Sq^{\mathcal{B}}(Y) \subseteq Sq^{\mathcal{B}}(X \cup Y)$.

No sentido de provar a inclusão contrária, comecemos por mostrar que sendo $\mathcal B$ uma álgebra unária, o conjunto $Sg^{\mathcal B}(X)\cup Sg^{\mathcal B}(Y)$ é um subuniverso de $\mathcal B$. De facto, como $Sg^{\mathcal B}(X)$ e $Sg^{\mathcal B}(Y)$ são

subuniversos de B, tem-se $Sg^{\mathcal{B}}(X) \subseteq B$ e $Sg^{\mathcal{B}}(Y) \subseteq B$, pelo que $Sg^{\mathcal{B}}(X) \cup Sg^{\mathcal{B}}(Y) \subseteq B$. Além disso, para qualquer $x \in B$ e para qualquer operação unária $f^{\mathcal{B}}$ de \mathcal{B} , temos

```
\begin{array}{ll} x \in Sg^{\mathcal{B}}(X) \cup Sg^{\mathcal{B}}(Y) \\ \Rightarrow & x \in Sg^{\mathcal{B}}(X) \text{ ou } x \in Sg^{\mathcal{B}}(Y) \\ \Rightarrow & f^{\mathcal{B}}(x) \in Sg^{\mathcal{B}}(X) \text{ ou } f^{\mathcal{B}}(x) \in Sg^{\mathcal{B}}(Y) \quad (Sg^{\mathcal{B}}(X) \in Sg^{\mathcal{B}}(X) \text{ são subuniversos de } \mathcal{B}) \\ \Rightarrow & f^{\mathcal{B}}(x) \in Sg^{\mathcal{B}}(X) \cup Sg^{\mathcal{B}}(Y). \end{array}
```

Para concluir que $Sg^{\mathcal{B}}(X \cup Y) \subseteq Sg^{\mathcal{B}}(X) \cup Sg^{\mathcal{B}}(Y)$, basta ter em conta que, para quaisquer $X, Y \subseteq B$, temos $X \subseteq Sg^{\mathcal{B}}(X)$ e $Y \subseteq Sg^{\mathcal{B}}(Y)$, pelo que

$$X \cup Y \subseteq Sq^{\mathcal{B}}(X) \cup Sq^{\mathcal{B}}(Y)$$

e, portanto, $Sg^{\mathcal{B}}(X) \cup Sg^{\mathcal{B}}(Y)$ é um subuniverso de \mathcal{B} que contém $X \cup Y$. Então, considerando que $Sg^{\mathcal{B}}(X \cup Y)$ é o menor subuniverso de \mathcal{B} que contém $X \cup Y$, segue que

$$Sg^{\mathcal{B}}(X \cup Y) \subseteq Sg^{\mathcal{B}}(X) \cup Sg^{\mathcal{B}}(Y).$$

Assim, $Sg^{\mathcal{B}}(X) \cup Sg^{\mathcal{B}}(Y) = Sg^{\mathcal{B}}(X \cup Y)$.

2.9. Seja $\mathcal{A} = (\{a, b, c, d\}, f)$ a álgebra de tipo (1) onde f é a operação definida por

(a) Determine todas as relações de congruência em A.

Para toda a congruência Θ de uma álgebra \mathcal{A} , tem-se $\Theta = \bigvee \{\Theta(x,y) \, | \, (x,y) \in \Theta \}$. Assim, no sentido de determinarmos todas as congruências de \mathcal{A} , começamos por determinar as congruências principais de \mathcal{A} , obtendo-se:

- $\theta(x,x) = \triangle_A$, para qualquer $x \in A$.
- $\Theta(a,b) = \Theta(b,a) = \triangle_A \cup \{(a,b),(b,a),(c,b),(b,c),(a,c),(c,a)\}.$
- $\Theta(a,c) = \Theta(c,a) = \triangle_A \cup \{(a,c),(c,a)\};$
- $\Theta(a,d) = \Theta(d,a) = \triangle_A \cup \{(a,d),(d,a),(c,d),(d,c),(a,c),(c,a)\};$
- $\Theta(b,c) = \Theta(c,b) = \triangle_A \cup \{(c,b),(b,c),(a,b),(b,a),(a,c),(c,a)\} = \Theta(a,b);$
- $\Theta(b,d) = \Theta(d,b) = \triangle_A \cup \{(b,d),(d,b)\};$
- $\Theta(c,d) = \Theta(d,c) = \triangle_A \cup \{(c,d),(d,c),(a,d),(d,a),(a,c),(c,a)\} = \Theta(a,d).$

Apresentamos a justificação de que $\Theta(a,b) = \triangle_A \cup \{(a,b),(b,a),(c,b),(b,c),(a,c),(c,a)\}$, sendo as restantes justificações semelhantes.

Por definição de $\Theta(a,b)$, $\Theta(a,b)$ é a menor congruência em \mathcal{A} que contém $\{(a,b)\}$. Então $(a,b) \in \Theta(a,b)$, $\Theta(a,b)$ é uma relação de equivalência (é reflexiva, simétrica e transitiva) e satisfaz a propriedade de substituição (ou seja, para quaisquer $x,y \in A$, $(x,y) \in \Theta(a,b) \Rightarrow (f^{\mathcal{A}}(x),f^{\mathcal{A}}(y)) \in \Theta(a,b)$. Uma vez que $\Theta(a,b)$ é reflexiva, temos $\Delta_A \subseteq \Theta(a,b)$. Como $(a,b) \in \Theta(a,b)$ e $\Theta(a,b)$ é simétrica, também temos $(b,a) \in \Theta(a,b)$. Atendendo a que (a,b), $(b,a) \in \Theta(a,b)$ e $\Theta(a,b)$ satisfaz a propriedade de substituição, $(f^{\mathcal{A}}(a),f^{\mathcal{A}}(b))=(c,b) \in \Theta(a,b)$ e $(f^{\mathcal{A}}(b),f^{\mathcal{A}}(a))=(b,c) \in \Theta(a,b)$. Dado que (c,b), $(b,c) \in \Theta(a,b)$, então, novamente pela propriedade de substituição, $(f^{\mathcal{A}}(b),f^{\mathcal{A}}(c))=(b,a) \in \Theta(a,b)$ e $(f^{\mathcal{A}}(c),f^{\mathcal{A}}(b))=(a,b) \in \Theta(a,b)$. Considerando que (a,b), $(b,c) \in \Theta(a,b)$ e (c,b), $(b,a) \in \Theta(a,b)$, então, por transitividade, (a,c), $(c,a) \in \Theta(a,b)$. Pela propriedade de substituição segue que $(f^{\mathcal{A}}(a),f^{\mathcal{A}}(c))=(c,a) \in \Theta(a,b)$ e $(f^{\mathcal{A}}(c),f^{\mathcal{A}}(a))=(a,c) \in \Theta(a,b)$. A relação $\Theta=\Delta_A\cup\{(a,b),(b,a),(c,b),(b,c),(a,c),(c,a)\}$ é uma relação de equivalência e satisfaz a propriedade de substituição, logo Θ é uma congruência em \mathcal{A} que contém $\{(a,b)\}$; além disso Θ é a menor congruência em \mathcal{A} que contém $\{(a,b)\}$. Por conseguinte, $\Theta(a,b)=\Theta$. Uma relação de congruência é simétrica, pelo que também se tem $\Theta(b,a)=\Theta$.

No sentido de determinarmos as restantes congruências, calculamos o supremo das congruências principais duas a duas:

- $\Theta(x,x) \vee \theta = \theta$, para qualquer $\theta \in \text{Con}(\mathcal{A})$. Imediato, pois $\Theta(x,x) \subseteq \theta$.
- $\Theta(a,b) \vee \Theta(a,c) = \Theta(a,b)$. Imediato, pois $\Theta(a,c) \subseteq \Theta(a,b)$.

- $\Theta(a,b) \vee \Theta(a,d) = \Theta(a,b) \cup \Theta(a,d) \cup \{(b,d),(d,b)\} = \nabla_A$. A relação $\Theta(a,b) \vee \Theta(a,d)$ é a menor congruência em $\mathcal A$ que contem $\Theta(a,b)$ e $\Theta(a,d)$; logo $\Theta(a,b) \cup \Theta(a,d) \subseteq \Theta(a,b) \vee \Theta(a,d)$. Uma vez que $(b,a),(a,d) \in \Theta(a,b) \cup \Theta(a,d)$ e a relação $\Theta(a,b) \vee \Theta(a,d)$ é transitiva, então $(b,d) \in \Theta(a,b) \vee \Theta(a,d)$. Considerando que a relação é simétrica também se tem $(d,b) \in \Theta(a,b) \cup \Theta(a,d)$. A relação $\Theta(a,b) \cup \Theta(a,d) \cup \{(b,d),(d,b)\}$ é uma relação de equivalência e satisfaz a propriedade de substituição; esta relação é a menor congruência em $\mathcal A$ que contem $\Theta(a,b)$ e $\Theta(a,d)$.
- $\Theta(a,b) \vee \Theta(b,d) = \Theta(a,b) \cup \Theta(b,d) \cup \{(a,d),(d,a),(c,d),(c,d)\} = \nabla_A$. A relação $\Theta(a,b) \vee \Theta(b,d)$ é a menor congruência em \mathcal{A} que contem $\Theta(a,b)$ e $\Theta(b,d)$; logo $\Theta(a,b) \cup \Theta(b,d) \subseteq \Theta(a,b) \vee \Theta(b,d)$. Uma vez que $(a,b),(b,d),(c,b),(b,d) \in \Theta(a,b) \cup \Theta(b,d)$ e a relação $\Theta(a,b) \vee \Theta(b,d)$ é transitiva, tem-se $(a,d),(c,d) \in \Theta(a,b) \cup \Theta(b,d)$. Considerando que a relação é simétrica também se tem $(d,a),(d,c) \in \Theta(a,b) \cup \Theta(b,d)$. A relação $\Theta(a,b) \cup \Theta(b,d) \cup \{(a,d),(d,a),(c,d),(c,d)\}$ é uma relação de equivalência e satisfaz a propriedade de substituição; esta relação é a menor congruência em \mathcal{A} que contem $\Theta(a,b) \in \Theta(b,d)$.
- $\Theta(a,c) \vee \Theta(a,d) = \Theta(a,d)$. Imediato, pois $\Theta(a,c) \subseteq \Theta(a,d)$.
- $\Theta(a,c) \vee \Theta(b,d) = \Theta(a,c) \cup \Theta(b,d)$.
- $\Theta(a,d) \vee \Theta(b,d) = \Theta(a,d) \cup \Theta(b,d) \cup \{(a,d),(d,a),(b,c),(c,b)\} = \nabla_A$.

A relação $\Theta(a,d) \vee \Theta(b,d)$ é a menor congruência em $\mathcal A$ que contem $\Theta(a,d)$ e $\Theta(b,d)$; logo $\Theta(a,d) \cup \Theta(b,d) \subseteq \Theta(a,d) \vee \Theta(b,d)$. Uma vez que $(a,d),(d,b),(c,d),(d,b) \in \Theta(a,b) \cup \Theta(b,d)$ e a relação $\Theta(a,d) \vee \Theta(b,d)$ é transitiva, tem-se $(a,b),(c,b) \in \Theta(a,b) \cup \Theta(b,d)$. Considerando que a relação é simétrica também se tem $(b,a),(b,c) \in \Theta(a,b) \cup \Theta(b,d)$. A relação $\Theta(a,d) \cup \Theta(b,d) \cup \{(a,d),(d,a),(b,c),(c,b)\}$ é uma relação de equivalência e satisfaz a propriedade de substituição; esta relação é a menor congruência em $\mathcal A$ que contem $\Theta(a,d)$ e $\Theta(b,d)$.

Considerando que $\Theta(a,c) \vee \Theta(b,d)$ e ∇_A são distintas das congruências principais, calculemos o supremo de cada uma destas congruências com as congruências já determinadas:

- $\nabla_A \vee \theta = \nabla_A$, para qualquer $\theta \in \text{Con}(A)$;
- $(\Theta(a,c) \vee \Theta(b,d)) \vee \triangle_A = \Theta(a,c) \vee \Theta(b,d);$
- $(\Theta(a,c) \vee \Theta(b,d)) \vee \Theta(a,b) = \nabla_A$;
- $(\Theta(a,c) \vee \Theta(b,d)) \vee \Theta(a,c) = \Theta(a,c) \vee \Theta(b,d);$
- $(\Theta(a,c) \vee \Theta(b,d)) \vee \Theta(a,d) = \Theta(a,c) \cup \Theta(b,d) \cup \Theta(a,d) \cup \{(a,b),(b,a),(b,c),(c,b)\} = \nabla_A;$
- $(\Theta(a,c) \vee \Theta(b,d)) \vee \Theta(b,d) = \Theta(a,c) \vee \Theta(b,d)$.

Considerando os cálculos anteriores, temos

$$Con(\mathcal{A}) = \{ \triangle_A, \Theta(a, b), \Theta(a, c), \Theta(a, d), \Theta(b, d), \Theta(a, c) \vee \Theta(b, d), \nabla_A \}.$$

O reticulado $(Con(\mathcal{A},\subseteq)$ pode ser representado pelo diagrama de Hasse seguinte

(b) Para cada $\theta \in \text{Con}(A)$, determine a álgebra quociente A/θ .

Sejam $\mathcal{A}=(A;F)$ uma álgebra do tipo (O,τ) e θ uma congruência em \mathcal{A} . A álgebra quociente \mathcal{A} módulo θ é a álgebra $\mathcal{A}/\theta=(A/\theta,F)$ do tipo (O,τ) tal que, para cada $n\in\mathbb{N}_0$ e $f\in O_n$,

$$f^{\mathcal{A}/\theta}([a_1]_{\theta},\ldots,[a_n]_{\theta}) = [f^{\mathcal{A}}(a_1,\ldots,a_n)]_{\theta}.$$

Assim,

• sendo $\theta = \triangle_A$, temos $\mathcal{A}/\theta = (A/\theta, f^{\mathcal{A}/\theta})$ onde

$$A/\theta = \{[a]_{\theta}, [b]_{\theta}, [c]_{\theta}, [d]_{\theta}\}, \text{ com } [a]_{\theta} = \{a\}, [b]_{\theta} = \{b\}, [c]_{\theta} = \{c\}, [d]_{\theta} = \{d\}, [d]_{\theta} = \{$$

e

$$f^{\mathcal{A}/\theta}: A/\theta \rightarrow A/\theta$$

$$[a]_{\theta} \mapsto [f^{\mathcal{A}}(a)]_{\theta} = [c]_{\theta}$$

$$[b]_{\theta} \mapsto [f^{\mathcal{A}}(b)]_{\theta} = [b]_{\theta}$$

$$[c]_{\theta} \mapsto [f^{\mathcal{A}}(c)]_{\theta} = [a]_{\theta}$$

$$[d]_{\theta} \mapsto [f^{\mathcal{A}}(d)]_{\theta} = [d]_{\theta}$$

• sendo $\theta = \Theta(a,b)$, temos $\mathcal{A}/\theta = (A/\theta, f^{\mathcal{A}/\theta})$ onde

$$A/\theta = \{[a]_{\theta}, [d]_{\theta}\}, \text{ com } [a]_{\theta} = [b]_{\theta} = [c]_{\theta} = \{a, b, c\}, [d]_{\theta} = \{d\},$$

е

$$f^{\mathcal{A}/\theta}: A/\theta \rightarrow A/\theta$$

$$[a]_{\theta} \mapsto [f^{\mathcal{A}}(a)]_{\theta} = [c]_{\theta} = [a]_{\theta}$$

$$[d]_{\theta} \mapsto [f^{\mathcal{A}}(d)]_{\theta} = [d]_{\theta}$$

• sendo $\theta = \Theta(a,c)$, temos $\mathcal{A}/\theta = (A/\theta, f^{\mathcal{A}/\theta})$ onde

$$A/\theta = \{[a]_{\theta}, [b]_{\theta}, [d]_{\theta}\}, \text{ com } [a]_{\theta} = [c]_{\theta} = \{a, c\}, [b]_{\theta} = \{b\}, [d]_{\theta} = \{d\}, [d]_{\theta}$$

e

$$f^{\mathcal{A}/\theta}: A/\theta \rightarrow A/\theta$$

$$[a]_{\theta} \mapsto [f^{\mathcal{A}}(a)]_{\theta} = [c]_{\theta} = [a]_{\theta}$$

$$[b]_{\theta} \mapsto [f^{\mathcal{A}}(b)]_{\theta} = [b]_{\theta}$$

$$[d]_{\theta} \mapsto [f^{\mathcal{A}}(d)]_{\theta} = [d]_{\theta}$$

• sendo $\theta = \Theta(b,d)$, temos $\mathcal{A}/\theta = (A/\theta, f^{\mathcal{A}/\theta})$ onde

$$A/\theta = \{[a]_{\theta}, [b]_{\theta}, [c]_{\theta}\}, \text{ com } [a]_{\theta} = \{a\}, [b]_{\theta} = \{b, d\}, [c]_{\theta} = \{c\}, [c$$

e

$$f^{\mathcal{A}/\theta}: A/\theta \rightarrow A/\theta$$

$$[a]_{\theta} \mapsto [f^{\mathcal{A}}(a)]_{\theta} = [c]_{\theta}$$

$$[b]_{\theta} \mapsto [f^{\mathcal{A}}(b)]_{\theta} = [b]_{\theta}$$

$$[c]_{\theta} \mapsto [f^{\mathcal{A}}(c)]_{\theta} = [a]_{\theta}$$

• sendo $\theta = \Theta(a,d)$, temos $\mathcal{A}/\theta = (A/\theta,f^{\mathcal{A}/\theta})$ onde

$$A/\theta = \{[a]_{\theta}, [b]_{\theta}\}, \text{ com } [a]_{\theta} = \{a, c, d\} = [c]_{\theta} = [d]_{\theta}, [b]_{\theta} = \{b\},$$

e

$$f^{\mathcal{A}/\theta}: A/\theta \to A/\theta$$

$$[a]_{\theta} \mapsto [f^{\mathcal{A}}(a)]_{\theta} = [c]_{\theta} = [a]_{\theta}$$

$$[b]_{\theta} \mapsto [f^{\mathcal{A}}(b)]_{\theta} = [b]_{\theta}$$

• sendo $\theta = \Theta(a,c) \vee \Theta(b,d)$, temos $\mathcal{A}/\theta = (A/\theta,f^{\mathcal{A}/\theta})$ onde

$$A/\theta = \{[a]_{\theta}, [b]_{\theta}\}, \text{ com } [a]_{\theta} = \{a, c\} = [c]_{\theta}, [b]_{\theta} = \{b, d\} = [d]_{\theta},$$

e

$$f^{\mathcal{A}/\theta}: A/\theta \rightarrow A/\theta$$

$$[a]_{\theta} \mapsto [f^{\mathcal{A}}(a)]_{\theta} = [c]_{\theta} = [a]_{\theta}$$

$$[b]_{\theta} \mapsto [f^{\mathcal{A}}(b)]_{\theta} = [b]_{\theta}$$

• sendo $\theta = \nabla_A$, temos $\mathcal{A}/\theta = (A/\theta, f^{\mathcal{A}/\theta})$ onde

$$A/\theta = \{[a]_{\theta}\}, \text{ com } [a]_{\theta} = \{a, b, c, d\} = [b]_{\theta} = [c]_{\theta} = [d]_{\theta},$$

е

$$\begin{array}{ccc} f^{\mathcal{A}/\theta}: A/\theta & \to & A/\theta \\ [a]_{\theta} & \mapsto & [f^{\mathcal{A}}(a)]_{\theta} = [c]_{\theta} = [a]_{\theta} \end{array}$$

2.10. Sejam $\mathcal{R}=(R;\wedge,\vee)$ um reticulado e $\theta\in\mathrm{Con}\mathcal{R}$. Mostre que, para quaisquer $a,b,c\in R$, se $a\leq c\leq b$ e $(a,b)\in\theta$, então $(a,c)\in\theta$ e $(b,c)\in\theta$.

Sejam $\mathcal{R}=(R;\wedge,\vee)$ um reticulado, $\theta\in\mathrm{Con}\mathcal{R}$ e $a,b,c\in R$ tais que $a\leq c\leq b$ e $(a,b)\in\theta$. Como $\theta\in\mathrm{Con}\mathcal{R}$, então θ é uma relação de equivalência e satisfaz a propriedade de substituição. Uma vez que θ é reflexiva, tem-se $(c,c)\in\theta$. Considerando que $(a,b),(c,c)\in\theta$ e θ satisfaz a propriedade de substituição segue que $(a\wedge c,b\wedge c)\in\theta$ e $(a\vee c,b\vee c)\in\theta$, ou seja, $(a,c)\in\theta$ e $(c,b)\in\theta$. Atendendo a que θ é simétrica e $(c,b)\in\theta$, também se tem $(b,c)\in\theta$. Portanto, $(a,c)\in\theta$ e $(b,c)\in\theta$.

2.11. Considere o reticulado $\mathcal{N}_5=(N_5;\wedge,\vee)$ representado pelo diagrama de Hasse

Mostre que o reticulado das congruências de \mathcal{N}_5 pode ser representado pelo diagrama de Hasse seguinte

Dada uma álgebra $\mathcal{A}=(A;F)$ e $\theta\in \mathrm{Con}(\mathcal{A})$, tem-se $\theta=\bigvee\{\Theta(A,b)\,|\,(a,b)\in\theta\}$. Assim sendo, no sentido de determinarmos o reticulado de congruências de \mathcal{N}_5 , comecemos por determinar as congruências principais de \mathcal{N}_5 . Para a determinação de congruências num reticulado recorremos à seguinte caracterização - se $\mathcal{R}=(R;\wedge,\vee)$ é um reticulado, então $\theta\in \mathrm{Eq}(R)$ é uma congruência em \mathcal{R} se e só se são satisfeitas as condições seguintes:

- (1) cada classe de θ é um sub-reticulado de \mathcal{R} ;
- (2) cada classe de θ é um subconjunto convexo de R;
- (3) as classes de equivalência de θ são fechadas para quadriláteros (i.e. sempre que a,b,c,d são elementos de R distintos tais que a < b, c < d e

$$(a \lor d = b \ e \ a \land d = c) \ ou \ (b \lor c = d \ e \ b \land c = a),$$

então $a \theta b$ sse $c \theta d$).

Recorrendo à caracterização anterior, concluímos que:

- $\theta(a,a) = \triangle_{N_5}$ uma vez que a menor congruência que identifica um elemento com ele mesmo é a relação identidade.
- $\Theta(a,1)$ é a conguência tal que $N_5/\Theta(a,1)=\{\{a,b,1\},\{0,c\}\}$. Como $(a,1)\in\Theta(a,1)$ e as classes de equivalência de uma congruência são conjuntos convexos, segue que $(a,b),(1,b)\in\Theta(a,1)$. Considerando que $(1,b)\in\Theta(a,1)$ e as classes de equivalência de $\Theta(a,1)$ são fechadas para quadriláteros, temos $(c,0)\in\Theta(a,1)$. Na partição $\{\{a,b,1\},\{0,c\}\}$, as classes são fechadas para quadriláteros, são sub-reticulados de \mathcal{N}_5 e são conjuntos convexos, logo a relação de equivalência associada a esta partição é uma congruência. Esta é a menor congruência que contem $\{(a,1)\}$, portanto $\Theta(a,1)$ é a conguência que define o conjunto quociente indicado.
- $\Theta(a,0)$ é a conguência tal que $N_5/\Theta(a,0)=\{\{a,b,0\},\{c,1\}\}\}$. De facto, como $(a,0)\in\Theta(a,0)$ e as classes são fechadas para quadriláteros, segue que $(c,1)\in\Theta(a,0)$. Como $(c,1)\in\Theta(a,0)$, e novamente porque as classes são fechadas para quadriláteros, temos $(b,0)\in\Theta(a,0)$. Na partição $\{\{a,b,0\},\{c,1\}\}\}$, as classes são fechadas para quadriláteros, são sub-reticulados de \mathcal{N}_5 e são conjuntos convexos, logo a relação de equivalência associada a esta partição é uma congruência. Esta é a menor congruência que contem $\{(a,0)\}$, portanto $\Theta(a,0)$ é a conguência que define o conjunto quociente indicado.
- $\Theta(a,b)$ é a conguência tal que $N_5/\Theta(a,b)=\{\{a,b\},\{c\},\{0\},\{1\}\}\}$. Na partição $\{\{a,b\},\{c\},\{0\},\{1\}\}\}$, as classes são fechadas para quadriláteros, são sub-reticulados de \mathcal{N}_5 e são conjuntos convexos, logo a relação de equivalência associada a esta partição é uma congruência. Esta é a menor congruência que contem $\{(a,b)\}$, portanto $\Theta(a,b)$ é a conguência que define o conjunto quociente indicado.

- $\Theta(a,c) = \nabla_{N_5}$. Considerando que $(a,c) \in \Theta(a,c)$, tem-se $\{a,c\} \subseteq [c]_{\Theta(a,c)}$. Então, considerando que as classes de uma congruência em \mathcal{N}_5 são sub-reticulados de \mathcal{N}_5 , segue que $0,1 \in [c]_{\Theta(a,c)}$. Atendendo a que $0,1 \in [c]_{\Theta(a,c)}$ e as classes são conjuntos convexos, conclui-se que todos os elementos de N_5 pertencem à classe $[c]_{\Theta(a,c)}$. Portanto, $\Theta(a,c) = \nabla_{N_5}$.
- $\Theta(0,b) = \Theta(a,0)$. Tem-se $(0,b) \in \Theta(0,b)$, pelo que $0,b \in [b]_{\Theta(0,b)}$. Então, considerando que as classes de equivalência de $\Theta(0,b)$ são conjuntos convexos, segue que $a \in [b]_{\Theta(0,b)}$. Logo $(a,0) \in \Theta(b,0)$, donde resulta que $\Theta(a,0) \subseteq \Theta(b,0)$. Como $(0,b) \in \Theta(a,0)$, também temos $\Theta(0,b) \subseteq \Theta(a,0)$.
- $\Theta(0,c) = \Theta(a,1)$. Como $(0,c) \in \Theta(0,c)$ e as classes são fechadas para quadriláteros, tem-se $(a,1) \in \Theta(0,c)$. Logo $\Theta(a,1) \subseteq \Theta(0,c)$. Também se tem $(0,c) \in \Theta(a,1)$, pelo que $\Theta(0,c) \subseteq \Theta(a,1)$.
- $\Theta(0,1) = \nabla_{N_5}$. Como $(0,1) \in \Theta(0,1)$, tem-se $0,1 \in [1]_{\Theta(0,1)}$. Considerando que as classes são conjuntos convexos, resulta que $[1]_{\Theta(0,1)} = \{0,a,b,c,1\}$. Portanto, $\Theta(0,1) = \nabla_{N_5}$.
- $\Theta(b,c) = \nabla_{N_5}$. Considerando que $(b,c) \in \Theta(b,c)$, tem-se $\{b,c\} \subseteq [b]_{\Theta(b,c)}$. Então, considerando que as classes de uma congruência em \mathcal{N}_5 são sub-reticulados de \mathcal{N}_5 , segue que $0,1 \in [b]_{\Theta(b,c)}$. Atendendo a que $0,1 \in [b]_{\Theta(b,c)}$ e que as classes são conjuntos convexos, conclui-se que todos os elementos de N_5 pertencem à classe $[b]_{\Theta(b,c)}$. Portanto, $\Theta(b,c) = \nabla_{N_5}$.
- $\Theta(b,1) = \Theta(a,1)$. Tem-se $(b,1) \in \Theta(b,1)$. Logo, como as classes são fechadas para quadriláteros, também se tem $(0,c) \in \Theta(b,1)$. Por conseguinte, $\Theta(a,1) = \Theta(0,c) \subseteq \Theta(b,1)$. Como $(b,1) \in \Theta(a,1)$, também temos $\Theta(b,1) \subseteq \Theta(a,1)$.
- $\Theta(c,1) = \Theta(a,0)$. Tem-se $(c,1) \in \Theta(c,1)$. Então, como as classes são fechadas para quadriláteros, $(a,0) \in \Theta(c,1)$. Assim, $\Theta(a,0) \subseteq \Theta(c,1)$. Atendendo a que $(c,1) \in \Theta(a,0)$, segue que $\Theta(c,1) \subseteq \Theta(a,0)$.
- $\theta(x,x) = \triangle_{N_5}$, para todo $x \in N_5$. Uma vez que a menor congruência que identifica um elemento com ele mesmo é a identidade.
- $\Theta(x,y) = \Theta(y,x)$, para todos $x,y \in N_5$. As congruências são relações de equivalência e, portanto, são simétricas.

Considerando que:

• todas as congruências principais são iguais a alguma das congruências de

$$\{\Theta(a,0), \Theta(a,a), \Theta(a,b), \Theta(a,c), \Theta(a,1)\},\$$

- qualquer congruência é supremo de congruências principais,
- qualquer supremo de duas congruências de $\{\Theta(a,0),\Theta(a,a),\Theta(a,b),\Theta(a,c),\Theta(a,1)\}$ é uma destas 5 congruências,

concluímos que $\mathrm{Con}\mathcal{N}_5=\{\Theta(a,0),\Theta(a,a),\Theta(a,b),\Theta(a,c),\Theta(a,1)\}$. O diagrama de Hasse indicado resulta da comparação entre as classes de congruência.

Nota: As congruências podem ser determinadas por um processo alternativo, considerando o facto de se tratarem de relações de equivalência que satisfazem a propriedade de substituição.

A título de exemplo, calculemos $\Theta(a,0)$ seguindo esse outro processo. Atendendo a que $\Theta(a,0)$ é a menor congruência que contém $\{a,0\}$, tem-se $(a,0)\in\Theta(a,0)$. Como $\Theta(a,0)$ é reflexiva, $\triangle_{N_5}\subseteq\Theta(a,0)$. Uma vez que $(a,0)\in\Theta(a,0)$ e $\Theta(a,0)$ é simétrica, também se tem $(0,a)\in\Theta(a,0)$. Como $(a,0),(c,c)\in\Theta(a,0)$ e $\Theta(a,0)$ satisfaz a propriedade de subsituição, segue que

$$(a \land c, 0 \land c) = (0, 0) \in \Theta(a, 0) \text{ e } (a \lor c, 0 \lor c) = (1, c) \in \Theta(a, 0).$$

Como $(1,c)\in\Theta(a,0)$ e $\Theta(a,0)$ é simétrica, tem-se $(c,1)\in\Theta(a,0)$. Dado que $(c,1),(b,b)\in\Theta(a,0)$, então, pela propriedade de substituição, temos

$$(c \land b, 1 \land b) = (0, b) \in \Theta(a, 0) \in (c \lor b, 1 \lor b) = (1, 1) \in \Theta(a, 0).$$

Dado que $(0,b)\in\Theta(a,0)$, também temos $(b,0)\in\Theta(a,0)$, uma vez que a relação é simétrica. Considerando que

$$(a,0), (0,b), (b,0), (0,a) \in \Theta(a,0),$$

então, por transitividade, temos $(a,b),(b,a)\in\Theta(a,0)$. A relação

$$\Theta = \triangle_{N_5} \cup \{(a,0), (0,a), (c,1), (1,c), (0,b), (b,0), (a,b), (b,a)\}$$

é uma relação de equivalência e satisfaz a propriedade de substituição (verificar), logo é uma congruência em N_5 que contém $\{(a,0)\}$; além disso Θ é a menor congruência em N_5 que contém $\{(a,0)\}$. Assim, $\Theta(a,0)=\Theta$ e, portanto, $N_5/\Theta(a,0)=\{\{0,a,b\},\{c,1\}\}$.

2.12. Considere o anel $\mathcal{Z}=(\mathbb{Z};+,\cdot,-,0)$. Para cada $q\in\mathbb{Z}$, seja \equiv_q a relação de equivalência definida em \mathbb{Z} por

$$r \equiv_q s$$
 sse $r - s = qk$, para algum $k \in \mathbb{Z}$.

Mostre que, para cada $q \in \mathbb{Z}$, a relação \equiv_q é uma congruência em \mathcal{Z} .

A relação \equiv_q é uma congruência em $\mathcal Z$ se é uma relação de equivalência e satisfaz a propriedade de substituição. Considerando que já é referido que \equiv_q é uma relação de equivalência, resta provar que a relação \equiv_q satisfaz a propriedade de substituição, ou seja, temos de provar que, para qualquer operação n-ária $f \in \{+,\cdot,-,0\}$, $n \in \{0,1,2\}$, é satisfeita a seguinte propriedade

$$(\forall_{i\in\{1,\ldots,n\}} a_i \equiv_q b_i) \Rightarrow f(a_1,\ldots,a_n) \equiv_q f(b_1,\ldots,b_n).$$

- (1) A relação \equiv_q é uma relação reflexiva e $0 \in \mathbb{Z}$, pelo que $0 \equiv_q 0$.
- (2) Para quaisquer $a_1, b_1 \in \mathbb{Z}$,

$$\begin{array}{lll} a_1 \equiv_q b_1 & \Rightarrow & a_1-b_1=qk, \text{ para algum } k \in \mathbb{Z} \\ & \Rightarrow & -a_1-(-b_1)=q(-k), \text{ com } -k \in \mathbb{Z} \\ & \Rightarrow & -a_1 \equiv_q -b_1. \end{array}$$

(3) Para quaisquer $a_1, b_1, a_2, b_2 \in \mathbb{Z}$,

$$\begin{array}{ll} (a_1 \equiv_q b_1 \ \mathrm{e} \ a_2 \equiv_q b_2) & \Rightarrow & a_1 - b_1 = qk \ \mathrm{e} \ a_2 - b_2 = qk', \ \mathrm{para} \ \mathrm{alguns} \ k, k' \in \mathbb{Z} \\ & \Rightarrow & (a_1 + a_2) - (b_1 + b_2) = q(k + k'), \ \mathrm{com} \ k + k' \in \mathbb{Z} \\ & \Rightarrow & (a_1 + a_2) \equiv_q (b_1 + b_2). \end{array}$$

(4) Para quaisquer $a_1, b_1, a_2, b_2 \in \mathbb{Z}$,

```
\begin{array}{lll} (a_1 \equiv_q b_1 \ \mbox{e} \ a_2 \equiv_q b_2) & \Rightarrow & a_1 - b_1 = qk \ \mbox{e} \ a_2 - b_2 = qk', \ \mbox{para alguns} \ k, k' \in \mathbb{Z} \\ & \Rightarrow & a_1 = b_1 + qk \ \mbox{e} \ a_2 = b_2 + qk', \ \mbox{para alguns} \ k, k' \in \mathbb{Z} \\ & \Rightarrow & (a_1 a_2) = b_1 b_2 + q(b_1 k' + b_2 k + qk k'), \ \mbox{com} \ b_1 k' + b_2 k + qk k' \in \mathbb{Z} \\ & \Rightarrow & a_1 a_2 - b_1 b_2 = q(b_1 k' + b_2 k + qk k'), \ \mbox{com} \ b_1 k' + b_2 k + qk k' \in \mathbb{Z} \\ & \Rightarrow & (a_1 a_2) \equiv_q (b_1 b_2). \end{array}
```

De (1), (2), (3) e (4) conclui-se que \equiv_q satisfaz a propriedade de subsituição. Logo \equiv_q é uma congruência em $\mathcal Z$

2.13. Seja $\mathcal{S}=(S;\cdot)$ um semigrupo. Um subconjunto não vazio I de S diz-se um *ideal* de \mathcal{S} se, para quaisquer $s\in S$ e $i\in I$, tem-se $is\in I$ e $si\in I$. Mostre que, para qualquer ideal I, $I^2\cup\triangle_S$ é uma congruência em \mathcal{S} , designada a *congruência de Rees induzida por I*.

Representemos $I^2 \cup \triangle_S$ por θ . Pretende-se provar que θ é uma congruência em S, ou seja, que θ é uma relação de equivalência em S que satisfaz a propriedade de substituição.

(i) θ é reflexiva

Uma vez que $\triangle_S \subseteq \theta$, é imediato que θ é reflexiva.

(ii) θ é simétrica

Para quaisquer $x, y \in S$,

$$\begin{array}{lll} (x,y) \in \theta & \Rightarrow & (x,y) \in I^2 \text{ ou } (x,y) \in \triangle_S \\ \Rightarrow & (x \in I \text{ e } y \in I) \text{ ou } (x=y) \\ \Rightarrow & (y \in I \text{ e } x \in I) \text{ ou } (y,x) \in \triangle_S \\ \Rightarrow & (y,x) \in I^2 \text{ ou } (y,x) \in \triangle_S \\ \Rightarrow & (y,x) \in \theta \end{array}$$

(iii) θ é transitiva

Para quaisquer $x, y, z \in S$

$$(x,y) \in \theta \land (y,z) \in \theta \quad \Rightarrow \quad ((x,y) \in I^2 \text{ ou } (x,y) \in \triangle_S) \text{ e } ((y,z) \in I^2 \text{ ou } (y,z) \in \triangle_S)$$

$$\Rightarrow \quad ((x,y) \in I^2 \text{ e } (y,z) \in I^2) \text{ ou } ((x,y) \in I^2 \text{ e } (y,z) \in \triangle_S)$$

$$\text{ ou } ((x,y) \in \triangle_S \text{ e } (y,z) \in I^2) \text{ ou } ((x,y) \in \triangle_S \text{ e } (y,z) \in \triangle_S)$$

$$\Rightarrow \quad (x,y,z \in I) \text{ ou } (x,y \in I \text{ e } y = z) \text{ ou } (x = y \text{ e } y,z \in I)$$

$$\text{ ou } (x = y \text{ e } y = z)$$

$$\Rightarrow \quad (x,z \in I) \text{ ou } (x,z \in I) \text{ ou } (x,z \in I) \text{ ou } (x = z)$$

$$\Rightarrow \quad (x,z) \in I^2 \text{ ou } (x,z) \in \triangle_S$$

$$\Rightarrow \quad (x,z) \in \theta.$$

(iv) θ satisfaz a propriedade de substituição

Para quaisquer $x, y, z, w \in S$,

$$(x,y) \in \theta \text{ e } (z,w) \in \theta \quad \Rightarrow \quad ((x,y) \in I^2 \text{ ou } (x,y) \in \triangle_S) \text{ e } ((z,w) \in I^2 \vee (z,w) \in \triangle_S)$$

$$\Rightarrow \quad ((x,y) \in I^2 \text{ e } (z,w) \in I^2) \text{ ou } ((x,y) \in I^2 \text{ e } (z,w) \in \triangle_S)$$

$$\vee ((x,y) \in \triangle_S \wedge (z,w) \in I^2) \vee ((x,y) \in \triangle_S \text{ e } (z,w) \in \triangle_S)$$

$$\Rightarrow \quad (x,y,z,w \in I) \text{ ou } (x,y \in I \text{ e } z=w) \text{ ou } (x=y \text{ e } z,w \in I)$$
 ou
$$(x=y \text{ e } z=w)$$

$$\Rightarrow \quad (x \cdot z \in I \text{ e } y \cdot w \in I) \text{ ou } (x \cdot z \in I \text{ e } y \cdot w \in I) \text{ ou } (x \cdot z \in I \text{ e } y \cdot w \in I)$$
 ou
$$(x \cdot z=y \cdot w)$$

$$\Rightarrow \quad (x \cdot z,y \cdot w) \in I^2 \text{ ou } (x \cdot z,y \cdot w) \in \triangle_S$$

$$\Rightarrow \quad (x \cdot z,y \cdot w) \in \theta.$$

De (i), (ii), (iii), (iv) conclui-se que θ é uma congruência em S.

2.14. Seja $\mathcal{A}=(A;F)$ uma álgebra de tipo $(O;\tau)$. Mostre que $\triangle_A=\{(a,a)\,|\,a\in A\}$ e $\nabla_A=\{(a,b)\,|\,a,b\in A\}$ são congruências em \mathcal{A} .

A relação \triangle_A é uma relação de equivalência. Assim sendo, resta provar que \triangle_A satisfaz a propriedade de substituição.

Seja $f \in O_n$. Para quaisquer $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$,

$$\begin{array}{lll} (a_1,b_1)\in\triangle_A\ \ \mathrm{e}\ \dots\ \mathrm{e}\ (a_n,b_n)\in\triangle_A & \Rightarrow & a_1,\dots,a_n,b_1,\dots,b_n\in A\ \mathrm{e}\ a_1=b_1\ \mathrm{e}\ \dots\ \mathrm{e}\ a_n=b_n\\ & \Rightarrow & f^{\mathcal{A}}(a_1,\dots,a_n),\ f^{\mathcal{A}}(b_1,\dots,b_n)\in A\\ & & \quad \mathrm{e}\ f^{\mathcal{A}}(a_1,\dots,a_n)=f^{\mathcal{A}}(b_1,\dots,b_n)\ (f^{\mathcal{A}}\ \mathrm{\acute{e}}\ \mathrm{uma}\ \mathrm{opera}\varsigma\tilde{\mathrm{ao}}\ \mathrm{em}\ A)\\ & \Rightarrow & (f^{\mathcal{A}}(a_1,\dots,a_n),f^{\mathcal{A}}(b_1,\dots,b_n))\in\triangle_A. \end{array}$$

Logo \triangle_A satisfaz a propriedade de substituição e, portanto, \triangle_A é uma congruência em \mathcal{A} .

A relação ∇_A é uma relação de equivalência. Resta provar que ∇_A satisfaz a propriedade de substituição.

Seja $f \in O_n$. Para quaisquer $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$,

$$\begin{array}{ll} (a_1,b_1) \in \nabla_A \text{ e } \dots \text{ e } (a_n,b_n) \in \nabla_A & \Rightarrow & a_1,\dots,a_n,b_1,\dots,b_n \in A \\ & \Rightarrow & f^{\mathcal{A}}(a_1,\dots,a_n), f^{\mathcal{A}}(b_1,\dots,b_n) \in A \ (f^{\mathcal{A}} \text{ é uma operação em } A) \\ & \Rightarrow & (f^{\mathcal{A}}(a_1,\dots,a_n), f^{\mathcal{A}}(b_1,\dots,b_n)) \in \nabla_A \ (\text{ definição de } \nabla_A). \end{array}$$

Logo ∇_A satisfaz a propriedade de substituição e, portanto, ∇_A é uma congruência em \mathcal{A} .

2.15. Sejam $\mathcal{A}=(\{1,2,3,4,5\};*^{\mathcal{A}},c^{\mathcal{A}})$ e $\mathcal{B}=(\{1,2\};*^{\mathcal{B}},c^{\mathcal{B}})$ as álgebras de tipo (2,0) cujas operações nulárias são dadas por $c^{\mathcal{A}}=2$, $c^{\mathcal{B}}=1$ e cujas operações binárias são definidas por

Seja $\alpha:\{1,2\} \to \{1,2,3,4,5\}$ a aplicação definida por $\alpha(1)=2$ e $\alpha(2)=3$. Mostre que a aplicação α é um monomorfismo de $\mathcal B$ em $\mathcal A$. Justifique que $\mathcal B$ é isomorfa a uma subálgebra de $\mathcal A$.

A aplicação α é:

- um monomorfismo de \mathcal{B} em \mathcal{A} se α é um homomorfismo e se é injetiva;
- um homomorfismo de \mathcal{B} em \mathcal{A} se é compatível com todos os símbolos de operação, ou seja, se para todo o símbolo de operação $f \in \{0, *\}, n \in \{0, 2\},$

$$\alpha(f^{\mathcal{B}}(a_1,\ldots,a_n))=(f^{\mathcal{A}}(\alpha(a_1),\ldots,\alpha(a_n));$$

• injetiva se, para quaisquer $a,b\in\{1,2\}$,

$$\alpha(a) = \alpha(b) \Rightarrow a = b.$$

Facilmente verificamos que α é um homomorfismo de \mathcal{B} em \mathcal{A}_1 pois:

- $\alpha(c^{\mathcal{B}}) = \alpha(1) = 2 = c^{\mathcal{A}};$
- $\alpha(1 *^{\mathcal{B}} 1) = \alpha(2) = 3 = 2 *^{\mathcal{A}} 2 = \alpha(1) *^{\mathcal{A}} \alpha(1);$
- $\alpha(1 *^{\mathcal{B}} 2) = \alpha(2) = 3 = 2 *^{\mathcal{A}} 3 = \alpha(1) *^{\mathcal{A}} \alpha(2);$
- $\alpha(2 *^{\mathcal{B}} 2) = \alpha(1) = 2 = 3 *^{\mathcal{A}} 3 = \alpha(2) *^{\mathcal{A}} \alpha(2);$
- $\alpha(2 *^{\mathcal{B}} 1) = \alpha(2) = 3 = 3 *^{\mathcal{A}} 2 = \alpha(2) *^{\mathcal{A}} \alpha(1)$.

A aplicação também é injetiva, uma vez que, para quaisquer $x,y\in B$, tem-se $\alpha(x)\neq\alpha(y)$ sempre que $x\neq y$ $(1\neq 2$ e $\alpha(1)\neq\alpha(2))$.

Uma vez que α é um monomorfismo de $\mathcal B$ em $\mathcal A$, tem-se $\mathcal B\cong\alpha(\mathcal B)$; de facto, como α é um monomorfismo de $\mathcal B$ em $\mathcal A$, a aplicação $\beta:B\to\alpha(B)$ definida por $\beta(x)=\alpha(x)$, para todo $x\in B$, é um isomorfismo de $\mathcal B$ em $\alpha(\mathcal B)$. Por outro lado, como a álgebra $\mathcal B$ é uma subálgebra de si mesma e α é um homomorfismo de $\mathcal B$ em $\mathcal A$, $\alpha(\mathcal B)$ é uma subálgebra de $\mathcal A$. Portanto, a álgebra $\mathcal B$ é isomorfa a uma subálgebra de $\mathcal A$.

2.16. Sejam \mathcal{A} , \mathcal{B} e \mathcal{C} álgebras do mesmo tipo. Mostre que se $\alpha \in \operatorname{Hom}(\mathcal{A},\mathcal{B})$ e $\beta \in \operatorname{Hom}(\mathcal{B},\mathcal{C})$, então $\beta \circ \alpha \in \operatorname{Hom}(\mathcal{A},\mathcal{C})$.

Sejam \mathcal{A} , \mathcal{B} e \mathcal{C} álgebras de tipo (O, τ) , $\alpha \in \operatorname{Hom}(\mathcal{A}, \mathcal{B})$ e $\beta \in \operatorname{Hom}(\mathcal{B}, \mathcal{C})$. Pretendemos mostrar que $\beta \circ \alpha$ é um homomorfismo de \mathcal{A} em \mathcal{C} .

Uma vez que α é uma função de A em B e β é uma função de B em C, então, por definição de composição de funções, $\beta \circ \alpha$ é uma função de A em C. Além disso, prova-se que $\beta \circ \alpha$ é compativel com todos os símbolos de operação. De facto, para quaisquer $n \in \mathbb{N}_0$, $f \in O_n$ e $(a_1, \ldots, a_n) \in A^n$,

```
\begin{array}{lll} (\beta \circ \alpha)(f^{\mathcal{A}}(a_1, \ldots, a_n)) & = & \beta(\alpha(f^{\mathcal{A}}(a_1, \ldots, a_n))) \\ & = & \beta(f^{\mathcal{B}}(\alpha(a_1), \ldots, \alpha(a_n))) \\ & = & f^{\mathcal{C}}(\beta(\alpha(a_1)), \ldots, \beta(\alpha(a_n))) \\ & = & f^{\mathcal{C}}((\beta \circ \alpha)(a_1), \ldots, (\beta \circ \alpha)(a_n)). \end{array} \qquad \begin{array}{l} (\alpha \ \text{\'e} \ \text{homomorfismo de } \mathcal{A} \ \text{em } \mathcal{B}) \\ (\beta \ \text{\'e} \ \text{homomorfismo de } \mathcal{B} \ \text{em } \mathcal{C}) \end{array}
```

Logo $\beta \circ \alpha$ é um homomorfismo de \mathcal{A} em \mathcal{C} .

2.17. Sejam \mathcal{A} e \mathcal{B} álgebras do mesmo tipo. Mostre que se $\alpha:\mathcal{A}\to\mathcal{B}$ é um isomorfismo, então α^{-1} é um isomorfismo de \mathcal{B} em \mathcal{A} .

Sejam \mathcal{A} e \mathcal{B} álgebras de tipo (O, τ) e $\alpha : \mathcal{A} \to \mathcal{B}$ um isomorfismo.

Como α é um isomorfismo, então α é uma aplicação bijetiva e, portanto, admite inversa $\alpha^{-1}:B\to A$. A função α^{-1} também é bijetiva, pelo que, para provar que α^{-1} é um isomorfismo, resta mostrar que α^{-1} é um homomorfismo de $\mathcal B$ em $\mathcal A$.

Para quaisquer $n \in \mathbb{N}_0$, $f \in O_n$ e $(b_1, \dots, b_n) \in B^n$, tem-se

$$\begin{array}{lll} \alpha^{-1}(f^{\mathcal{B}}(b_1,\ldots,b_n)) &=& \alpha^{-1}(f^{\mathcal{B}}(\alpha(a_1),\ldots,\alpha(a_n))) & (\alpha \text{ \'e sobrejetiva, logo } \forall b_i \in B \; \exists a_i \in A, \; b_i = \alpha(a_i)) \\ &=& \alpha^{-1}(\alpha(f^{\mathcal{A}}(a_1,\ldots,a_n))) & (\alpha \text{ \'e um homomorfismo de } \mathcal{A} \text{ em } \mathcal{B}) \\ &=& (\alpha^{-1} \circ \alpha)(f^{\mathcal{A}}(a_1,\ldots,a_n)) \\ &=& f^{\mathcal{A}}(a_1,\ldots,a_n)) \\ &=& f^{\mathcal{A}}(\alpha^{-1}(b_1),\ldots,\alpha^{-1}(b_n))). \end{array}$$

Logo α^{-1} é um homomorfismo de \mathcal{B} em \mathcal{A} .

Uma vez que α^{-1} é um homomorfismo e bijetiva, então α^{-1} é um isomorfismo de \mathcal{B} em \mathcal{A} .

- 2.18. Sejam $\mathcal{A}=(A;F)$, $\mathcal{B}=(B;G)$ álgebras do mesmo tipo e $\alpha\in \mathrm{Hom}(\mathcal{A},\mathcal{B})$. Mostre que:
 - (a) Se A_1 é um subuniverso de \mathcal{A} , então $\alpha(A_1)$ é um subuniverso de \mathcal{B} .

Seja A_1 um subuniverso de \mathcal{A} . Então

- (1) $A_1 \subseteq A$;
- (2) para qualquer símbolo de operação f de aridade $n, n \in \mathbb{N}_0$, e para qualquer $(a_1, \ldots, a_n) \in (A_1)^n$, $f^{\mathcal{A}}(a_1, \ldots, a_n) \in A_1$.

Pretende-se provar que $\alpha(A_1)$ é um subuniverso de \mathcal{B} , ou seja, pretende-se mostrar que as seguintes condições são satisfeitas:

- (i) $\alpha(A_1) \subseteq B$;
- (ii) para qualquer símbolo de operação f de aridade $n, n \in \mathbb{N}_0$, e para qualquer $(b_1, \ldots, b_n) \in \alpha(A_1)^n$, $f^{\mathcal{B}}(b_1, \ldots, b_n) \in \alpha(A_1)$.

Prova de (i): uma vez que $A_1 \subseteq A$ e α é uma função de A em B, é imediato que $\alpha(A_1) \subseteq B$.

Prova de (ii): Sejam f um símbolo de operação de aridade n e $(b_1,\ldots,b_n)\in\alpha(A_1)^n$.

Como $b_1, \ldots, b_n \in \alpha(A_1)$, tem-se

$$b_1 = \alpha(a_1), \ldots, b_n = \alpha(a_n), \text{ para alguns } a_1, \ldots, a_n \in A_1.$$

Então

$$f^{\mathcal{B}}(b_1,\ldots,b_n) = f^{\mathcal{B}}(\alpha(a_1),\ldots,\alpha(a_n))$$

= $\alpha(f^{\mathcal{A}}(a_1,\ldots,a_n)). (\alpha \in \text{Hom}(\mathcal{A},\mathcal{B}))$

Atendendo a que $a_1,\ldots,a_n\in A_1$, $f^{\mathcal{A}}$ é uma operação n-ária em A e A_1 é um subuniverso de \mathcal{A} , tem-se $f^{\mathcal{A}}(a_1,\ldots,a_n)\in A_1$; logo $\alpha(f^{\mathcal{A}}(a_1,\ldots,a_n))\in \alpha(A_1)$; portanto, $f^{\mathcal{B}}(b_1,\ldots,b_n)\in \alpha(A_1)$.

Da prova de (i) e de (ii), conclui-se que $\alpha(A_1)$ é um subuniverso de \mathcal{B} .

(b) Se B_1 é um subuniverso de \mathcal{B} , então $\alpha^{\leftarrow}(B_1)$ é um subuniverso de \mathcal{A} .

Seja B_1 um subuniverso de \mathcal{B} . Então

- (1) $B_1 \subseteq B$;
- (2) para qualquer símbolo de operação f de aridade n, $n \in \mathbb{N}_0$, e para qualquer $(b_1, \ldots, b_n) \in (B_1)^n$, $f^{\mathcal{B}}(b_1, \ldots, b_n) \in (B_1)$.

Pretendemos mostrar que $\alpha^{\leftarrow}(B_1)$ é um subuniverso de \mathcal{A} , ou seja, temos de provar que

- (i) $\alpha^{\leftarrow}(B_1) \subseteq A$;
- (ii) para qualquer símbolo de operação f de aridade $n, n \in \mathbb{N}_0$, e para qualquer $(a_1, \ldots, a_n) \in (\alpha^{\leftarrow}(B_1))^n, f^{\mathcal{A}}(a_1, \ldots, a_n) \in \alpha^{\leftarrow}(B_1)$.

Prova de (i): Por definição de $\alpha^{\leftarrow}(B_1)$, tem-se $\alpha^{\leftarrow}(B_1) = \{a \in A \mid \alpha(a) \in B_1\}$. Logo $\alpha^{\leftarrow}(B_1) \subseteq A$.

Prova de (ii): Para qualquer símbolo de operação f de operação de aridade $n, n \in \mathbb{N}_0$, e qualquer $(a_1, \ldots, a_n) \in (\alpha^{\leftarrow}(B_1))^n$, tem-se

$$\alpha(f^{\mathcal{A}}(a_1,\ldots,a_n)) = f^{\mathcal{B}}(\alpha(a_1),\ldots,\alpha(a_n)) \quad \mathbf{e} \quad (\alpha(a_1),\ldots,\alpha(a_n)) \in (B_1)^n.$$

Então, como B_1 é subuniverso de \mathcal{B} , temos $f^{\mathcal{B}}(\alpha(a_1),\ldots,\alpha(a_n)) \in B_1$. Logo $\alpha(f^{\mathcal{A}}(a_1,\ldots,a_n)) \in B_1$ e, portanto, $f^{\mathcal{A}}(a_1,\ldots,a_n) \in \alpha^{\leftarrow}(B_1)$.

De (i) e (i) conclui-se que $\alpha^{\leftarrow}(B_1)$ é um subuniverso de \mathcal{A} .

2.19. Sejam \mathcal{A} e \mathcal{B} álgebras do mesmo tipo e $\alpha, \beta \in \text{Hom}(\mathcal{A}, \mathcal{B})$. Mostre que

$$Eq(\alpha, \beta) = \{ a \in A \mid \alpha(a) = \beta(a) \}$$

é um subuniverso de A. A este subuniverso chama-se equalizador de α e β .

O conjunto $\text{Eq}(\alpha, \beta) = \{a \in A \mid \alpha(a) = \beta(a)\}\$ é um subuniverso de \mathcal{A} se:

- (i) Eq $(\alpha, \beta) \subseteq A$;
- (ii) para qualquer símbolo de operação f de aridade n, $n \in \mathbb{N}_0$, e para qualquer $(a_1, \ldots, a_n) \in \operatorname{Eq}(\alpha, \beta)^n$, $f^{\mathcal{A}}(a_1, \ldots, a_n) \in \operatorname{Eq}(\alpha, \beta)$.

Prova de (i): Imediato, pela definição de $\mathrm{Eq}(\alpha,\beta)$.

Prova de (ii): para qualquer símbolo de operação f de aridade n, $n \in \mathbb{N}_0$, e para qualquer $(a_1, \ldots, a_n) \in \mathrm{Eq}(\alpha, \beta)^n$, tem-se $f^{\mathcal{A}}(a_1, \ldots, a_n) \in A$. Além disso,

$$\alpha(f^{\mathcal{A}}(a_1,\ldots,a_n)) = f^{\mathcal{B}}(\alpha(a_1),\ldots,\alpha(a_n)) \quad (\alpha \in \operatorname{Hom}(\mathcal{A},\mathcal{B}))$$

$$= f^{\mathcal{B}}(\beta(a_1),\ldots,\beta(a_n)) \quad (a_1,\ldots,a_n \in \operatorname{Eq}(\alpha,\beta))$$

$$= \beta(f^{\mathcal{A}}(a_1,\ldots,a_n)) \quad (\beta \in \operatorname{Hom}(\mathcal{A},\mathcal{B}))$$

Logo $f^{\mathcal{A}}(a_1,\ldots,a_n) \in \operatorname{Eq}(\alpha,\beta)$.

- 2.20. Sejam \mathcal{A} , \mathcal{B} álgebras do mesmo tipo e $\alpha \in \operatorname{Hom}(\mathcal{A}, \mathcal{B})$. Mostre que α é injetiva se e só se $\ker \alpha = \triangle_A$.
 - \Rightarrow) Admitamos que α é injetiva.

A relação $\ker \alpha$ é uma relação de equivalência em A, logo $\triangle_A \subseteq \ker \alpha$. Por outro lado, para quaisquer $x,y \in A$,

$$\begin{array}{rcl} (x,y) \in \ker \alpha & \Rightarrow & \alpha(x) = \alpha(y) \\ & \Rightarrow & x = y \\ & \Rightarrow & (x,y) \in \triangle_A. \end{array}$$

Assim, $\ker \alpha \subseteq \triangle_A$. Portanto, $\ker \alpha = \triangle_A$.

 \Leftarrow) Consideremos, por hipótese, que $\ker \alpha = \triangle_A$. Então, para quaisquer $x, y \in A$,

$$\alpha(x) = \alpha(y) \Rightarrow (x, y) \in \ker \alpha \Rightarrow (x, y) \in \triangle_A \Rightarrow x = y.$$

Logo α é injetiva.

- 2.21. Sejam \mathcal{A} , \mathcal{B} e \mathcal{C} álgebras do mesmo tipo. Mostre que:
 - (a) $A \times B \simeq B \times A$.

Seja $\alpha:A\times B\to B\times A$ a aplicação definida por $\alpha(a,b)=(b,a)$, para qualquer $(a,b)\in A\times B$. Mostremos que α é um isomorfismo.

1) A aplicação α está bem definida. De facto, para qualquer $(a,b) \in A \times B$, tem-se $a \in A$ e $b \in B$, pelo que $\alpha(a,b) = (b,a) \in B \times A$. Além disso, para quaisquer $(a,b), (a',b') \in A \times B$,

$$(a,b) = (a',b') \Rightarrow a = a' \in b = b' \Rightarrow (b,a) = (b',a') \Rightarrow \alpha(a,b) = \alpha(a',b').$$

2) A aplicação α é injetiva, pois, para quaisquer $(a,b),(a',b')\in A\times B$,

$$\alpha(a,b) = \alpha(a',b') \Rightarrow (b,a) = (b',a') \Rightarrow a = a' \text{ e } b = b' \Rightarrow (a,b) = (a',b').$$

- 3) Claramente, a aplicação α também é sobrejetiva, pois, para todo $(b,a) \in B \times A$, existe $(a,b) \in A \times B$ tal que $\alpha(a,b) = (b,a)$.
- 4) A aplicação α é compativel com todos os símbolos de operação, pois, para qualquer símbolo de operação f de aridade n, $n \in \mathbb{N}_0$, e para qualquer $((a_1,b_1),\ldots,(a_n,b_n)) \in (A\times B)^n$,

$$\alpha(f^{\mathcal{A}\times\mathcal{B}}((a_1,b_1)\dots,(a_n,b_n))) = \alpha(f^{\mathcal{A}}(a_1,\dots,a_n),f^{\mathcal{B}}(b_1,\dots,b_n))$$

$$= (f^{\mathcal{B}}(b_1,\dots,b_n),f^{\mathcal{A}}(a_1,\dots,a_n))$$

$$= f^{\mathcal{B}\times\mathcal{A}}((b_1,a_1),\dots,(b_n,a_n)))$$

$$= f^{\mathcal{B}\times\mathcal{A}}(\alpha(a_1,b_1)\dots,\alpha(a_n,b_n)).$$

De 1), 2), 3) e 4) conclui-se que α é um isomorfismo de $\mathcal{A} \times \mathcal{B}$ em $\mathcal{B} \times \mathcal{A}$ e, portanto, $\mathcal{A} \times \mathcal{B} \simeq \mathcal{B} \times \mathcal{A}$.

(b) $A \times (B \times C) \simeq (A \times B) \times C$.

Seja $\alpha: A \times (B \times C) \to (A \times B) \times C$ a aplicação definida por $\alpha(a,(b,c)) = ((a,b),c)$, para qualquer $(a,(b,c)) \in A \times (B \times C)$. Mostremos que α é um isomorfismo.

1) A aplicação α está bem definida. De facto, para qualquer $(a,(b,c)) \in A \times (B \times C)$, tem-se $a \in A$, $b \in B$, $c \in C$, pelo que $\alpha(a,(b,c)) = ((a,b),c) \in (A \times B) \times C$. Além disso, para quaisquer $(a,(b,c)),(a',(b',c')) \in A \times (B \times C)$,

$$(a, (b, c)) = (a', (b', c')) \Rightarrow a = a', (b, c) = (b', c')$$

$$\Rightarrow a = a', b = b', c = c'$$

$$\Rightarrow (a, b) = (a', b'), c = c'$$

$$\Rightarrow ((a, b), c) = ((a', b'), c')$$

$$\Rightarrow \alpha(a, (b, c)) = \alpha(a', (b', c')).$$

2) A aplicação α é injetiva, pois, para quaisquer $(a,(b,c)),(a',(b',c')) \in A \times (B \times C)$,

$$\begin{array}{lll} \alpha(a,(b,c)) = \alpha(a',(b',c')) & \Rightarrow & ((a,b),c) = ((a',b'),c') \\ & \Rightarrow & (a,b) = (a',b'),c = c' \\ & \Rightarrow & a = a',b = b',c = c' \\ & \Rightarrow & a = a',(b,c) = (b',c') \\ & \Rightarrow & (a,(b,c)) = (a',(b',c')). \end{array}$$

- 3) Claramente, a aplicação também é sobrejetiva, pois, para todo $((a,b),c) \in (A \times B) \times C$, existe $(a,(b,c)) \in A \times (B \times C)$ tal que $\alpha(a,(b,c)) = ((a,b),c)$.
- 4) A aplicação é compativel com todos os símbolos de operação, pois, para qualquer símbolo de operação f de aridade $n, n \in \mathbb{N}_0$, e para qualquer $((a_1, (b_1, c_1)), \dots, (a_n, (b_n, c_n))) \in (A \times (B \times C))^n$,

$$\begin{array}{ll} & \alpha(f^{\mathcal{A}\times(\mathcal{B}\times C)}((a_1,(b_1,c_1))\dots,(a_n,(b_n,c_n)))) \\ = & \alpha(f^{\mathcal{A}}(a_1,\dots,a_n),f^{\mathcal{B}\times C}((b_1,c_1),\dots,(b_n,c_n))) \\ = & \alpha(f^{\mathcal{A}}(a_1,\dots,a_n),(f^{\mathcal{B}}(b_1,\dots,b_n),f^{\mathcal{C}}(c_1,\dots,c_n))) \\ = & ((f^{\mathcal{A}}(a_1,\dots,a_n),f^{\mathcal{B}}(b_1,\dots,b_n)),f^{\mathcal{C}}(c_1,\dots,c_n)) \\ = & (f^{\mathcal{A}\times\mathcal{B}}((a_1,b_1),\dots,(a_n,b_n)),f^{\mathcal{C}}(c_1,\dots,c_n)) \\ = & f^{(\mathcal{A}\times\mathcal{B})\times\mathcal{C}}(((a_1,b_1),c_1),\dots,((a_n,b_n),c_n)) \\ = & f^{(\mathcal{A}\times\mathcal{B})\times\mathcal{C}}(\alpha(a_1,(b_1,c_1)),\dots,\alpha(a_n,(b_n,c_n))). \end{array}$$

De 1), 2), 3) e 4) conclui-se que α é um isomorfismo de $\mathcal{A} \times (\mathcal{B} \times \mathcal{C})$ em $(\mathcal{A} \times \mathcal{B}) \times \mathcal{C}$ e, portanto, $\mathcal{A} \times (\mathcal{B} \times \mathcal{C}) \simeq (\mathcal{A} \times \mathcal{B}) \times \mathcal{C}$.

- 2.22. Sejam \mathcal{A} uma álgebra e $\theta, \rho \in \text{Con} \mathcal{A}$.
 - (a) Mostre que a aplicação $\alpha: \mathcal{A} \to \mathcal{A}/\theta \times \mathcal{A}/\rho$ definida por $\alpha(a) = ([a]_{\theta}, [a]_{\rho})$ é um homomorfismo.

Para qualquer símbolo de operação f de aridade $n, n \in \mathbb{N}_0$, e para quaisquer $a_1, \ldots, a_n \in A$,

$$\alpha(f^{\mathcal{A}}(a_{1},...,a_{n})) = ([f^{\mathcal{A}}(a_{1},...,a_{n})]_{\theta}, [f^{\mathcal{A}}(a_{1},...,a_{n})]_{\rho})
= (f^{\mathcal{A}/\theta}([a_{1}]_{\theta},...,[a_{n}]_{\theta}), f^{\mathcal{A}/\rho}([a_{1}]_{\rho},...,[a_{n}]_{\rho}))
= f^{\mathcal{A}/\theta \times \mathcal{A}/\rho}(([a_{1}]_{\theta},[a_{1}]_{\rho}),...,([a_{n}]_{\theta},[a_{n}]_{\rho}))
= f^{\mathcal{A}/\theta \times \mathcal{A}/\rho}(\alpha(a_{1}),...,\alpha(a_{n})).$$

Logo α é compatível com qualquer operação e, portanto, α é um homomorfismo de \mathcal{A} em $\mathcal{A}/\theta \times \mathcal{A}/\rho$.

(b) Mostre que $\ker \alpha = \theta \cap \rho$. Conclua que α é injetiva se e só se $\theta \cap \rho = \triangle_A$.

Para quaisquer $a, b \in A$,

$$\begin{split} (a,b) \in \ker \alpha & \Leftrightarrow & \alpha(a) = \alpha(b) \\ & \Leftrightarrow & ([a]_{\theta}, [a]_{\rho}) = ([b]_{\theta}, [b]_{\rho}) \\ & \Leftrightarrow & [a]_{\theta} = [b]_{\rho} \ \mathbf{e} \ [a]_{\theta} = [b]_{\rho} \\ & \Leftrightarrow & (a,b) \in \theta \ \mathbf{e} \ (a,b) \in \rho \\ & \Leftrightarrow & (a,b) \in \theta \cap \rho. \end{split}$$

Logo $\ker \alpha = \theta \cap \rho$.

A função α é injetiva se e só se $\ker \alpha = \triangle_A$. Considerando o que foi provado em 2.20 segue que α é injetiva se e só se $\theta \cap \rho = \triangle_A$.

- (c) Mostre que α é sobrejetiva se e só se $\theta \circ \rho = \nabla_A$.
 - \Rightarrow) Admitamos que α é sobrejetiva. Pretendemos provar que $\theta \circ \rho = \nabla_A$.

Uma vez que que θ e ρ são relações binárias em A, $\theta \circ \rho$ é uma relação binária em A e, portanto, $\theta \circ \rho \subseteq \nabla_A$.

Sejam $a,b\in A$. Então $([a]_{\theta},[b]_{\rho})\in A/\theta\times A/\rho$. Considerando que α é sobrejetiva, existe $c\in A$ tal que $\alpha(c)=([a]_{\theta},[b]_{\rho})$, donde segue que $([c]_{\theta},[c]_{\rho})=([a]_{\theta},[b]_{\rho})$ e, por conseguinte, $[c]_{\theta}=[a]_{\theta}$ e $[c]_{\rho}=[b]_{\rho}$. Assim, $(c,a)\in \theta$ e $(b,c)\in \rho$, pelo que $(b,a)\in \theta\circ \rho$. Assim, para quaisquer $a,b\in A$, $(b,a)\in \theta\circ \rho$, ou seja, $\nabla_A\subseteq \theta\circ \rho$.

Considerando que $\theta \circ \rho \subseteq \nabla_A$ e $\nabla_A \subseteq \theta \circ \rho$, tem-se $\nabla_A = \theta \circ \rho$.

 \Leftarrow) Admitamos que $\nabla_A = \theta \circ \rho$.

Pretende-se provar que α é sobrejetiva.

Seja $([a]_{\theta},[b]_{\rho})\in A/\theta\times A/\rho$. Para quaisquer $a,b\in A$, tem-se $(b,a)\in \nabla_A$ e, uma vez que $\nabla_A=\theta\circ\rho$, $(b,a)\in\theta\circ\rho$. Então existe $c\in A$ tal que $(b,c)\in\rho$ e $(c,a)\in\theta$. Assim, $[a]_{\theta}=[c]_{\theta}$, $[b]_{\rho}=[c]_{\rho}$ e, portanto, $([a]_{\theta},[b]_{\rho})=([c]_{\theta},[c]_{\rho})$. Logo, para qualquer $([a]_{\theta},[b]_{\rho})\in A/\theta\times A/\rho$, existe $c\in A$ tal que $([a]_{\theta},[b]_{\rho})=\alpha(c)$, ou seja, α é sobrejetiva.

- 2.23. Sejam $\mathcal{A}=(A;(f^{\mathcal{A}})_{f\in O}),\ \mathcal{B}=(B;(f^{\mathcal{B}})_{f\in O})$ e $\mathcal{C}=(C;(f^{\mathcal{C}})_{f\in O})$ álgebras de tipo (O,τ) , $\alpha_1\in \mathrm{Hom}(\mathcal{A},\mathcal{B})$ e $\alpha_2\in \mathrm{Hom}(\mathcal{A},\mathcal{C})$. Seja $\alpha:A\to B\times C$ a aplicação definida por $\alpha(a)=(\alpha_1(a),\alpha_2(a))$, para todo $a\in A$.
 - (a) Mostre que α é um homomorfismo de \mathcal{A} em $\mathcal{B} \times \mathcal{C}$.

Para qualquer símbolo de operação f de aridade n e para quaisquer $a_1, \ldots, a_n \in A$,

$$\alpha(f^{\mathcal{A}}(a_{1},\ldots,a_{n})) = (\alpha_{1}(f^{\mathcal{A}}(a_{1},\ldots,a_{n})), \alpha_{2}(f^{\mathcal{A}}(a_{1},\ldots,a_{n})))
\stackrel{*}{=} (f^{\mathcal{B}}(\alpha_{1}(a_{1}),\ldots,\alpha_{1}(a_{n})), f^{\mathcal{C}}(\alpha_{2}(a_{1}),\ldots,\alpha_{2}(a_{n})))
= f^{\mathcal{B}\times\mathcal{C}}((\alpha_{1}(a_{1}),\alpha_{2}(a_{1})),\ldots,(\alpha_{1}(a_{n}),\alpha_{2}(a_{n})))
= f^{\mathcal{B}\times\mathcal{C}}(\alpha(a_{1}),\ldots,\alpha(a_{n})).$$

A aplicação α é compatível com todos os símbolos de operação, logo α é um homomorfismo de $\mathcal A$ em $\mathcal B \times \mathcal C$.

- (*) $\alpha_1 \in \text{Hom}(\mathcal{A}, \mathcal{B}) \text{ e } \alpha_2 \in \text{Hom}(\mathcal{A}, \mathcal{C}).$
- (b) Mostre que $\ker \alpha = \ker \alpha_1 \cap \ker \alpha_2$.

Para quaisquer x, y,

```
\begin{array}{lll} (x,y) \in \ker \alpha & \Leftrightarrow & x,y \in A \ \mathrm{e} \ \alpha(x) = \alpha(y) \\ & \Leftrightarrow & x,y \in A \ \mathrm{e} \ (\alpha_1(x),\alpha_2(x)) = (\alpha_1(y),\alpha_2(y)) \\ & \Leftrightarrow & x,y \in A \ \mathrm{e} \ \alpha_1(x) = \alpha_1(y) \ \mathrm{e} \ \alpha_2(x) = \alpha_2(y) \\ & \Leftrightarrow & (x,y) \in \ker \alpha_1 \ \mathrm{e} \ (x,y) \in \ker \alpha_2 \\ & \Leftrightarrow & (x,y) \in \ker \alpha_1 \cap \ker \alpha_2. \end{array}
```

Logo $\ker \alpha = \ker \alpha_1 \cap \ker \alpha_2$.

(c) Mostre que se α é um epimorfismo, então α_1 e α_2 são epimorfismos e

$$\mathcal{A}/(\ker \alpha_1 \cap \ker \alpha_2) \cong \mathcal{A}/\ker \alpha_1 \times \mathcal{A}/\ker \alpha_2.$$

Comecemos por mostrar que se α é um epimorfismo, então α_1 e α_2 são epimorfismos. Uma vez que α_1 e α_2 são homomorfismos, resta provar que α_1 e α_2 são funções sobrejetivas. Seja $b \in B$. Como $C \neq \emptyset$, existe $c \in C$. Logo $(b,c) \in B \times C$. Considerando que α é um epimorfismo de $\mathcal A$ em $\mathcal B \times \mathcal C$, existe $a \in A$ tal que $\alpha(a) = (b,c)$, i.e., existe $a \in A$ tal que $(\alpha_1(a),\alpha_2(a)) = (b,c)$. Logo, para todo $b \in B$, existe $a \in A$ tal que $\alpha_1(a) = b$. Assim, α_1 é sobrejetiva. De modo análogo, prova-se que α_2 é sobrejetiva.

Pelo 1º Teorema do Isomorfismo, tem-se

$$\mathcal{A}/\ker\alpha\cong\alpha(\mathcal{A}),\ \mathcal{A}/\ker\alpha_1\cong\alpha_1(\mathcal{A})\ e\ \mathcal{A}/\ker\alpha_2\cong\alpha_2(\mathcal{A}).$$

Uma vez que α , α_1 e α_2 são sobrejetivas, vem que

$$\mathcal{A}/(\ker \alpha) \cong \mathcal{B} \times \mathcal{C}, \ \mathcal{A}/(\ker \alpha_1) \cong \mathcal{B} \in \mathcal{A}/(\ker \alpha_2) \cong \mathcal{C}.$$

Assim,

$$\mathcal{A}/(\ker \alpha) \cong \mathcal{A}/(\ker \alpha_1) \times \mathcal{A}/(\ker \alpha_2).$$

Considerando o que foi provado na alínea anterior segue que

$$\mathcal{A}/(\ker \alpha_1 \cap \ker \alpha_2) \cong \mathcal{A}/(\ker \alpha_1) \times \mathcal{A}/(\ker \alpha_2).$$

- 2.24. Sejam \mathcal{A} uma álgebra e $\theta, \theta^* \in \mathrm{Con}\mathcal{A}$. Mostre que (θ, θ^*) é um par de congruências fator em \mathcal{A} se e só se $\theta \cap \theta^* = \triangle_A$ e $\theta \circ \theta^* = \nabla_A$.
 - \Rightarrow) Sejam $\theta, \theta^* \in \text{Con}\mathcal{A}$ tais que (θ, θ^*) é um par de congruências fator em \mathcal{A} . Então:
 - (1) $\theta \cap \theta^* = \triangle_A$; (2) $\theta \vee \theta^* = \nabla_A$; (3) $\theta \circ \theta^* = \theta^* \circ \theta$.

Pretende-se provar que:

- (i) $\theta \cap \theta^* = \triangle_A$; (ii) $\theta \circ \theta^* = \nabla_A$.
- De (1) é imediato (i). De (3) segue que $\theta \circ \theta^* = \theta \vee \theta^*$ (Teorema 2.3.14). Então, por (2), tem-se (ii).
- \Leftarrow) Reciprocamente, admitamos que θ e θ^* são congruências em $\mathcal A$ tais que:
- (i) $\theta \cap \theta^* = \triangle_A$; (ii) $\theta \circ \theta^* = \nabla_A$.

Pretende-se mostrar que:

- (1) $\theta \cap \theta^* = \triangle_A$; (2) $\theta \vee \theta^* = \nabla_A$; (3) $\theta \circ \theta^* = \theta^* \circ \theta$.
- De (i) é imediato (1). Uma vez que $\theta \circ \theta^* = \nabla_A$, tem-se $\theta^* \circ \theta \subseteq \theta \circ \theta^*$, pelo que $\theta \circ \theta^* = \theta^* \circ \theta$ e $\theta \circ \theta^* = \theta \vee \theta^*$ (Teorema 2.3.14). Assim, tem-se (3). De $\theta \circ \theta^* = \theta \vee \theta^*$ e de (ii) segue (2).
- 2.25. Seja $\mathcal{A} = (\{a,b,c,d\};f^{\mathcal{A}})$ a álgebra de tipo (1) onde $f^{\mathcal{A}}:\{a,b,c,d\} \rightarrow \{a,b,c,d\}$ é a operação definida por

(a) Determine $\Theta(a,b)$ e $\Theta(a,d)$. Justifique que $(\Theta(a,b),\Theta(a,d))$ é um par de congruências fator.

Comecemos por determinar $\Theta(a, b)$ e $\Theta(a, d)$.

A relação $\Theta(a,b)$ é a menor congruência em $\mathcal A$ que contém $\{(a,b)\}$. Então $(a,b)\in\Theta(a,b)$, $\Theta(a,b)$ é uma relação de equivalência (i.e., é reflexiva, simétrica e transitiva) e satisfaz a propriedade de substituição. Considerando que $\Theta(a,b)$ é reflexiva, tem-se $\triangle_A\subseteq\Theta(a,b)$. Uma vez que $(a,b)\in\Theta(a,b)$ e $\Theta(a,b)$ é simétrica segue que $(b,a)\in\Theta(a,b)$. Como $(a,b),(b,a)\in\Theta(a,b)$ e $\Theta(a,b)$ satisfaz a propriedade de substituição, tem-se

$$(f^{\mathcal{A}}(a), f^{\mathcal{A}}(b)) = (c, d) \in \Theta(a, b), (f^{\mathcal{A}}(b), f^{\mathcal{A}}(a)) = (d, c) \in \Theta(a, b),$$

Considerando que $(c,d), (d,c) \in \Theta(a,b)$, então, novamente pela propriedade de substituição, temos

$$(f^{\mathcal{A}}(c), f^{\mathcal{A}}(d)) = (a, b) \in \Theta(a, b), (f^{\mathcal{A}}(d), f^{\mathcal{A}}(c)) = (b, a) \in \Theta(a, b).$$

Então, $\triangle_A \cup \{(a,b),(b,a),(c,d),(d,c)\} \subseteq \Theta(a,b)$. A relação $\triangle_A \cup \{(a,b),(b,a),(c,d),(d,c)\}$ é uma congruência em \mathcal{A} que contém $\{(a,b)\}$ e é a menor congruência nestas condições. Assim, $\Theta(a,b) = \triangle_A \cup \{(a,b),(b,a),(c,d),(d,c)\}$.

De modo análogo, obtem-se $\Theta(a,d) = \triangle_A \cup \{(a,d),(d,a),(c,b),(b,c)\}.$

Uma par (θ_1, θ_2) de congruências em \mathcal{A} diz-se um par de congruências factor se satisfaz as seguintes condições:

(i)
$$\theta_1 \cap \theta_2 = \triangle_A$$
; (ii) $\theta_1 \vee \theta_2 = \nabla_A$; (iii) $\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1$.

Então, atendendo a que;

- $\Theta(a,b) \cap \Theta(a,d) = \{(a,a), (b,b), (c,c), (d,d)\} = \triangle_A;$
- $-\Theta(a,b) \vee \Theta(a,d) = \Theta(a,b) \cup \Theta(a,d) \cup \{(a,c),(c,a),(b,d),(d,b)\} = \nabla_A;$
- $-\Theta(a,b) \circ \Theta(a,d) = \Theta(a,b) \cup \Theta(a,d) \cup \{(a,c),(d,b),(c,a),(b,d)\} = \Theta(a,d) \circ \Theta(a,b),$

conclui-se que $(\Theta(a,b),\Theta(a,d))$ é um par de congruências fator.

(Em alternativa pode-se mostrar que $(\Theta(a,b),\Theta(a,d))$ é um par de congruências fator recorrendo à caracterização referida no exercício 2.24.)

(b) Justifique que existem álgebras \mathcal{A}_1 e \mathcal{A}_2 não triviais tais que $\mathcal{A} \cong \mathcal{A}_1 \times \mathcal{A}_2$. Dê exemplo de álgebras \mathcal{A}_1 e \mathcal{A}_2 nas condições indicadas e determine a álgebra $\mathcal{A}_1 \times \mathcal{A}_2$.

Sejam $\theta_1 = \Theta(a,b)$, $\theta_2 = \Theta(a,d)$, $\mathcal{A}_1 = \mathcal{A}/\theta_1$ e $\mathcal{A}_2 = \mathcal{A}/\theta_2$. Uma vez que \mathcal{A} é não trivial e $\theta_1,\theta_2 \in \operatorname{Con} \setminus \{\nabla_A\}$, então \mathcal{A}_1 e \mathcal{A}_2 são álgebras não trivias. Como (θ_1,θ_2) é um par de congruências fator, tem-se $\mathcal{A} \cong \mathcal{A}_1 \times \mathcal{A}_2$ (Teorema 2.5.5).

Tem-se $\mathcal{A}_1=\mathcal{A}/\theta_1=(A/\theta_1;f^{\mathcal{A}/\theta_1})$, onde $A/\theta_1=\{[a]_{\theta_1},[c]_{\theta_1}\}$ (pois $\theta_1=\Theta(a,b)=\triangle_A\cup\{(a,b),(b,a),(c,d),(d,c)\}$ e, portanto, $[a]_{\theta_1}=[b]_{\theta_1}$ e $[c]_{\theta_1}=[d]_{\theta_1}$), e $f^{\mathcal{A}/\theta_1}:A/\theta_1\to A/\theta_1$ é a operação definida por

$$f^{\mathcal{A}/\theta_1}([a]_{\theta_1}) = [f^{\mathcal{A}}(a)]_{\theta_1} = [c]_{\theta_1},$$

$$f^{\mathcal{A}/\theta_1}([c]_{\theta_1}) = [f^{\mathcal{A}}(c)]_{\theta_1} = [a]_{\theta_1}.$$

No caso da álgebra $\mathcal{A}_2 = \mathcal{A}/\theta_2 = (A/\theta_2; f^{\mathcal{A}/\theta_2})$, tem-se $A/\theta_2 = \{[a]_{\theta_2}, [c]_{\theta_2}\}$ (pois $\theta_2 = \Theta(a,d) = \Delta_A \cup \{(a,d),(d,a),(c,b),(b,c)\}$ e, portanto, $[a]_{\theta_1} = [d]_{\theta_1}$ e $[c]_{\theta_1} = [b]_{\theta_1}$), e $f^{\mathcal{A}/\theta_2} : A/\theta_2 \to A/\theta_2$ é a operação definida por

$$f^{\mathcal{A}/\theta_2}([a]_{\theta_2}) = [f^{\mathcal{A}}(a)]_{\theta_2} = [c]_{\theta_2},$$

$$f^{\mathcal{A}/\theta_2}([c]_{\theta_1}) = [f^{\mathcal{A}}(c)]_{\theta_2} = [a]_{\theta_2}.$$

Assim, $A_1 \times A_2 = (A/\theta_1 \times A/\theta_2; f^{A_1 \times A_2})$, onde

$$A/\theta_1\times A/\theta_2=\{([a]_{\theta_1},[a]_{\theta_2}),([a]_{\theta_1},[c]_{\theta_2}),([c]_{\theta_1},[a]_{\theta_2}),([c]_{\theta_1},[c]_{\theta_2})\}$$

e $f^{\mathcal{A}_1 \times \mathcal{A}_2}: (A/\theta_1 \times A/\theta_2) o (A/\theta_1 \times A/\theta_2)$ é a operação definida por

$$\begin{split} f^{\mathcal{A}_1 \times \mathcal{A}_2}([a]_{\theta_1}, [a]_{\theta_2}) &= (f^{\mathcal{A}_1}([a]_{\theta_1}), f^{\mathcal{A}_2}([a]_{\theta_2})) = (f^{\mathcal{A}/\theta_1}([a]_{\theta_1}), f^{\mathcal{A}/\theta_2}([a]_{\theta_2})) = ([c]_{\theta_1}, [c]_{\theta_2}), \\ f^{\mathcal{A}_1 \times \mathcal{A}_2}([a]_{\theta_1}, [c]_{\theta_2}) &= (f^{\mathcal{A}_1}([a]_{\theta_1}), f^{\mathcal{A}_2}([c]_{\theta_2})) = (f^{\mathcal{A}/\theta_1}([a]_{\theta_1}), f^{\mathcal{A}/\theta_2}([c]_{\theta_2})) = ([c]_{\theta_1}, [a]_{\theta_2}), \\ f^{\mathcal{A}_1 \times \mathcal{A}_2}([c]_{\theta_1}, [a]_{\theta_2}) &= (f^{\mathcal{A}_1}([c]_{\theta_1}), f^{\mathcal{A}_2}([a]_{\theta_2})) = (f^{\mathcal{A}/\theta_1}([c]_{\theta_1}), f^{\mathcal{A}/\theta_2}([a]_{\theta_2})) = ([a]_{\theta_1}, [c]_{\theta_2}), \\ f^{\mathcal{A}_1 \times \mathcal{A}_2}([c]_{\theta_1}, [c]_{\theta_2}) &= (f^{\mathcal{A}_1}([c]_{\theta_1}), f^{\mathcal{A}_2}([c]_{\theta_2})) = (f^{\mathcal{A}/\theta_1}([c]_{\theta_1}), f^{\mathcal{A}/\theta_2}([c]_{\theta_2})) = ([a]_{\theta_1}, [a]_{\theta_2}). \end{split}$$

2.26. (a) Mostre que toda a álgebra finita com um número primo de elementos é diretamente indecomponível.

Seja $\mathcal{A}=(A;F)$ uma álgebra de tipo (O,τ) , onde |A|=n, com $n\in\mathbb{N}$ e n primo. Sejam $\mathcal{A}_1=(A_1;G)$ e $\mathcal{A}_2=(A_2;H)$ álgebras de tipo (O,τ) tais que $\mathcal{A}\cong\mathcal{A}_1\times\mathcal{A}_2$. Como \mathcal{A} é finita, então \mathcal{A}_1 e \mathcal{A}_2 são finitas e tem-se $|A|=|A_1\times A_2|=|A_1|\times |A_2|$. Como |A|=n e n é primo, segue que $|A_1|=1$ ou $|A_2|=1$; logo \mathcal{A}_1 é a álgebra trivial ou \mathcal{A}_2 é a álgebra trivial. Portanto, a álgebra \mathcal{A} é diretamente indecomponível.

(b) Seja $\mathcal{A}=(A;f^{\mathcal{A}})$ a álgebra tal que $A=\{x\in\mathbb{N}\,|\,x\leq 5\}$ e $f^{\mathcal{A}}$ é a operação unária em A definida por

$$f^{\mathcal{A}}(x) = \left\{ \begin{array}{ll} 1 & \text{se} & x \in \{2,4\} \\ 2 & \text{se} & x \in \{1,3,5\} \end{array} \right.$$

i. Sejam θ_1 e θ_2 as congruências de $\mathcal A$ definidas por $\theta_1=\Theta(1,2)$ e $\theta_2=\Theta(3,5)$. Determine θ_1 e θ_2 . Verifique que $\theta_1,\theta_2\in\mathrm{Con}\mathcal A\setminus\{\triangle_A\}$ e $\theta_1\cap\theta_2=\triangle_A$.

A relação $\theta_1=\Theta(1,2)$ é a menor congruência em $\mathcal A$ que contém $\{(1,2)\}$. Então $(1,2)\in\Theta(1,2)$, $\Theta(1,2)$ é uma relação de equivalência (i.e. $\Theta(1,2)$ é reflexiva, simétrica e transitiva) e satistfaz a propriedade de substituição. Considerando que $\Theta(1,2)$ é reflexiva, tem-se $\Delta_A\subseteq\Theta(1,2)$. Como $(1,2)\in\Theta(1,2)$ e $\Theta(1,2)$ é simétrica, também se tem $(2,1)\in\Theta(1,2)$. Uma vez que $(1,2),(2,1)\in\Theta(1,2)$ e $\Theta(1,2)$ satisfaz a propriedade de substituição, segue que

$$(f^{\mathcal{A}}(1),f^{\mathcal{A}}(2))=(2,1),(f^{\mathcal{A}}(2),f^{\mathcal{A}}(1))=(1,2)\in\Theta(1,2).$$

Assim, $\triangle_A \cup \{(1,2),(2,1)\} \subseteq \Theta(1,2)$. A relação $\triangle_A \cup \{(1,2),(2,1)\}$ é uma congruência em \mathcal{A} e é a menor congruência em \mathcal{A} que contém $\{(1,2)\}$; portanto $\theta_1 = \Theta(1,2) = \triangle_A \cup \{(1,2),(2,1)\}$.

De modo análogo, determina-se $\theta_2 = \Theta(3,5)$ e obtem-se $\theta_2 = \Theta(3,5) = \triangle_A \cup \{(3,5),(5,3)\}.$

Claramente, tem-se $\theta_1,\theta_2\in\mathrm{Con}\mathcal{A}\setminus\{\triangle_A\}$, pois $\theta_1,\theta_2\in\mathrm{Con}\mathcal{A}$, $\theta_1\neq\triangle_A$ ($(1,2)\in\theta_1$ e $(1,2)\not\in\triangle_A$) e $\theta_2\neq\triangle_A$ ($(3,5)\in\theta_2$ e $(3,5)\not\in\triangle_A$). Também é imediato que

$$\theta_1 \cap \theta_2 = \{(1,1), (2,2), (3,3), (4,4), (5,5)\} = \triangle_A.$$

ii. Justifique que se θ e ϕ são congruências de $\mathcal A$ tais que $\mathcal A\cong \mathcal A/\theta\times\mathcal A/\phi$, então $\theta=\nabla_A$ ou $\phi=\nabla_A$.

A álgebra $\mathcal A$ tem um número primo de elementos (|A|=5). Logo, por (a), conclui-se que $\mathcal A$ é diretamente indecomponível. Então, se θ e ϕ são congruências de $\mathcal A$ tais que $\mathcal A\cong \mathcal A/\theta\times\mathcal A/\phi$, $\mathcal A/\theta$ é a álgebra trivial ou $\mathcal A/\phi$ é a álgebra trivial. No primeiro caso, tem-se $\theta=\nabla_A$; no segundo caso tem-se $\phi=\nabla_A$.

iii. Diga, justificando, se a álgebra ${\cal A}$ é subdiretamente irredutível.

A álgebra \mathcal{A} é subdiretamente irredutível se e só se \mathcal{A} é a álgebra trivial ou $\operatorname{Con} \mathcal{A} \setminus \{\triangle_A\}$ tem elemento mínimo.

A álgebra \mathcal{A} não é trivial (|A|=5). Por outro lado, da alínea (b) i., sabe-se que existem $\theta_1,\theta_2\in\mathrm{Con}\mathcal{A}\setminus\{\triangle_A\}$ tais que $\theta_1\cap\theta_2=\triangle_A$ e, portanto, $\mathrm{Con}\mathcal{A}\setminus\{\triangle_A\}$ não tem elemento mínimo. Logo \mathcal{A} não é subdiretamente irredutível.

2.27. Seja $\mathcal{A}=(A;F)$ uma álgebra cujo reticulado das congruências é representado pelo diagrama de Hasse seguinte

Justifique que:

(a) A álgebra \mathcal{A} não é congruente-distributiva.

A álgebra $\mathcal A$ é congruente-distributiva se e só se $\mathrm{Con}\mathcal A$ é um reticulado distributivo. Um reticulado é distributivo se e só se não tem qualquer sub-reticulado isomorfo a M_3 ou a N_5 .

O reticulado

é um sub-reticulado de Con A e é isomorfo a N_5 . Logo a álgebra A não é congruente-distributiva.

(b) A álgebra \mathcal{A} não é subdiretamente irredutível.

A álgebra \mathcal{A} é subdiretamente irredutível se e só se \mathcal{A} é a álgebra trivial ou $\mathrm{Con}\mathcal{A}\setminus\{\triangle_A\}$ tem elemento mínimo.

A álgebra \mathcal{A} não é trivial, pois $\operatorname{Con} \mathcal{A} \setminus \{\triangle_A\} \neq \emptyset$. Além disso, o c.p.o. $\operatorname{Con} \mathcal{A} \setminus \{\triangle_A\}$

não tem elemento mínimo. Logo, a álgebra ${\cal A}$ não é subdiretamente irredutível.

(c) Os reticulados $ConA/\theta_1$ e $ConA/\theta_3$ são isomorfos.

Pelo Teorema da Correspondência, tem-se $\mathcal{C}on\mathcal{A}/\theta_1\cong [\theta_1,\nabla_A]$ e $\mathcal{C}on\mathcal{A}/\theta_3\cong [\theta_3,\nabla_A]$. Como $[\theta_1,\nabla_A]\cong [\theta_3,\nabla_A]$ (pois a aplicação $\varphi:[\theta_1,\nabla_A]\to [\theta_3,\nabla_A]$, definida por $\varphi(\theta_1)=\theta_3$, $\varphi(\theta_4)=\theta_5$ e $\varphi(\nabla_A)=\nabla_A$, é um isomorfismo de c.p.o.'s), então $\mathcal{C}on\mathcal{A}/\theta_1\cong \mathcal{C}on\mathcal{A}/\theta_3$.

2.28. Considere o reticulado $\mathcal{N}_5=(N_5;\wedge,ee)$ representado pelo diagrama de Hasse

Sabendo que o reticulado das congruências de \mathcal{N}_5 pode ser representado pelo diagrama de Hasse seguinte

diga, justificando, se a álgebra \mathcal{N}_5 é:

(a) Congruente-modular.

Uma álgebra ${\mathcal A}$ diz-se congruente-modular se o reticulado ${\rm Con}{\mathcal A}$ é modular.

O reticulado $\mathrm{Con}\mathcal{N}_5$ é modular. De facto, um reticulado é modular se e só se não tem qualquer sub-reticulado isomorfo a N_5 . Então, como o único sub-reticulado de $\mathrm{Con}\mathcal{N}_5$ com 5 elementos é o próprio reticulado e este não é isomorfo a N_5 , concluímos que $\mathrm{Con}\mathcal{N}_5$ é modular.

(b) Diretamente indecomponível.

Uma álgebra $\mathcal{A}=(A;F)$ é diretamente indecomponível se e só se as únicas conguências fator de \mathcal{A} são \triangle_A e ∇_A . Uma congruência $\theta\in\mathrm{Con}\mathcal{A}$ diz-se uma congruência fator se existe $\theta'\in\mathrm{Con}\mathcal{A}$ tal que $\theta\circ\theta'=\theta'\circ\theta,\ \theta\vee\theta'=\nabla_A$ e $\theta\cap\theta'=\triangle_A$.

Considerando o reticulado de congruências de \mathcal{N}_5 , conclui-se que \triangle_{N_5} e ∇_{N_5} são as únicas congruências fator de \mathcal{N}_5 . De facto, se $\theta_1 \in \mathrm{Con}\mathcal{N}_5$ é uma congruência fator, então existe $\theta_2 \in \mathrm{Con}\mathcal{N}_5$ tal que: $\theta_1 \cap \theta_2 = \triangle_{\mathcal{N}_5}$; $\theta_1 \vee \theta_2 = \nabla_{\mathcal{N}_5}$; $\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1$. Então de $\theta_1 \cap \theta_2 = \triangle_{\mathcal{N}_5}$ segue que $\theta_1 = \triangle_{\mathcal{N}_5}$ ou $\theta_2 = \triangle_{\mathcal{N}_5}$. Se $\theta_1 = \triangle_{\mathcal{N}_5}$, de $\theta_1 \vee \theta_2 = \nabla_{\mathcal{N}_5}$ resulta que $\theta_2 = \nabla_{\mathcal{N}_5}$; se $\theta_2 = \triangle_{\mathcal{N}_5}$, conclui-se de modo análogo que $\theta_2 = \nabla_{\mathcal{N}_5}$.

Logo a álgebra \mathcal{A} é diretamente indecomponível.

(c) Subdiretamente irredutível.

Uma álgebra $\mathcal{A} = (A; F)$ é subdiretamente irredutível se e só se $\operatorname{Con} \mathcal{A} \setminus \{ \triangle_A \}$ tem elemento mínimo.

Considerando que $Con\mathcal{N}_5 \setminus \{\triangle_A\}$ é o c.p.o. a seguir representado

conclui-se que $\operatorname{Con}\mathcal{N}_5\setminus\{\triangle_A\}$ tem elemento mínimo (sendo esse elemento mínimo a congruência $\Theta(a,b)$. Logo o reticulado \mathcal{N}_5 é subdiretamente irredutível.

2.29. Mostre que toda a cadeia é um reticulado diretamente indecomponível.

Uma \mathcal{A} uma álgebra diz-se diretamente indecomponível se sempre que $\mathcal{A}\cong\mathcal{A}_1\times\mathcal{A}_2$, então uma das álgebras \mathcal{A}_1 ou \mathcal{A}_2 é uma álgebra trivial.

Sejam $\mathcal{R}=(R;\wedge^{\mathcal{R}},\vee^{\mathcal{R}})$ uma cadeia e $\mathcal{A}_1=(A_1;\wedge^{\mathcal{A}_1},\vee^{\mathcal{A}_1})$, $\mathcal{A}_2=(A_2;\wedge^{\mathcal{A}_2},\vee^{\mathcal{A}_2})$ álgebras do tipo (2,2) tais que $\mathcal{R}\cong\mathcal{A}_1\times\mathcal{A}_2$. Então existe um isomorfismo $\alpha:\mathcal{R}\to\mathcal{A}_1\times\mathcal{A}_2$. Uma vez que \mathcal{R} é um reticulado e $\mathcal{A}_1\times\mathcal{A}_2$ é uma imagem homomorfa de \mathcal{R} , a álgebra $\mathcal{A}_1\times\mathcal{A}_2$ é um reticulado. Para cada $i\in\{1,2\}$, tem-se

 $\mathcal{A}_i = p_i(\mathcal{A}_1 \times \mathcal{A}_2)$, onde $p_i : \mathcal{A}_1 \times \mathcal{A}_2 \to \mathcal{A}_i$ é o homomorfismo projeção. Logo as álgebras \mathcal{A}_1 e \mathcal{A}_2 também são reticulados. No sentido de provarmos, por redução ao absurdo, que \mathcal{R} é subdiretamente irredutível, admitamos que nenhuma das álgebras \mathcal{A}_1 e \mathcal{A}_2 é uma álgebra trivial. Então $|A_1|, |A_2| \geq 2$ e, portanto, existem $(a_1,a_2), (b_1,b_2) \in A_1 \times A_2$ tais que (a_1,a_2) e (b_1,b_2) são incomparáveis em $\mathcal{A}_1 \times \mathcal{A}_2$. Logo $(a_1,a_2) \wedge_{\mathcal{A}_1 \times \mathcal{A}_2} (b_1,b_2) \not\in \{(a_1,a_2),(b_1,b_2)\}$. Considerando que α é um epimorfismo, existem $x_1,x_2 \in R$ tais que $\alpha(x_1) = (a_1,a_2)$ e $\alpha(x_2) = (b_1,b_2)$. Como \mathcal{R} é uma cadeia, os elementos x_1,x_2 são comparáveis. Admitamos, sem perda de generalidade, que $x_1 \leq x_2$. Então $x_1 \wedge^{\mathcal{R}} x_2 = x_1$, donde segue que

$$\alpha(x_1 \wedge^{\mathcal{R}} x_2) = \alpha(x_1) = (a_1, a_2) \neq (a_1, a_2) \wedge_{\mathcal{A}_1 \times \mathcal{A}_2} (b_1, b_2),$$

o que contradiz a hipótese de que α é um homomorfismo. Por conseguinte, uma das álgebras \mathcal{A}_1 ou \mathcal{A}_2 tem de ser uma álgebra trivial, ficando provado que \mathcal{R} é diretamente indecomponível.

2.30. Mostre que, para cada operador $O \in \{H, S\}$, IO = OI.

$$[SI = IS]$$

Pretende-se provar que, para qualquer classe de álgebras K, SI(K) = IS(K).

Seja ${f K}$ uma classe de álgebras.

Comecemos por mostrar $SI(\mathbf{K}) \subseteq IS(\mathbf{K})$. Seja $\mathcal{A} \in SI(\mathbf{K})$. Então $\mathcal{A} \leq \mathcal{B}$, para alguma álgebra $\mathcal{B} \in \mathbf{I}(\mathcal{K})$. Uma vez que $\mathcal{B} \in I(\mathbf{K})$, tem-se $\mathcal{B} = \alpha(\mathcal{C})$, para alguma álgebra $\mathcal{C} \in \mathbf{K}$ e algum isomorfismo $\alpha : \mathcal{C} \to \mathcal{B}$. Atendendo a que $\alpha : \mathcal{C} \to \mathcal{B}$ é um isomorfismo, $\alpha^{-1} : \mathcal{B} \to \mathcal{C}$ é também um isomorfismo. Como \mathcal{A} é uma subálgebra de \mathcal{B} , $\alpha^{-1}(\mathcal{A})$ é uma subálgebra de \mathcal{C} . Então, como $\alpha(\alpha^{-1}(\mathcal{A})) = \mathcal{A}$, tem-se $\mathcal{A} \in IS(\mathbf{K})$.

Mostremos que também temos $IS(\mathbf{K})\subseteq SI(\mathbf{K})$. Seja $\mathcal{A}=(A;F)$ uma álgebra de tipo (O,τ) tal que $\mathcal{A}\in IS(\mathbf{K})$. Então $\mathcal{A}=\alpha(\mathcal{B})$, para alguma álgebra $\mathcal{B}\in S(K)$ e algum isomorfismo $\alpha:\mathcal{B}\to\mathcal{A}$. Como $\mathcal{B}\in S(\mathbf{K})$, tem-se $\mathcal{B}\leq \mathcal{C}$, para alguma álgebra $\mathcal{C}\in \mathbf{K}$. Pretendemos mostrar que $\mathcal{A}\in SI(\mathbf{K})$. Admitamos, sem perda de generalidade, que $A\cap C=\emptyset$ (se $A\cap C\neq\emptyset$, considera-se uma álgebra $\mathcal{C}'=(C';G)$ isomorfa a \mathcal{C} e tal que $C'\cap A=\emptyset$). Consideremos $D=A\cup (C\setminus B)$ e a aplicação $\delta:C\to D$ defnida por

$$\delta(c) = \left\{ \begin{array}{ll} \alpha(c) & \text{ se } c \in B \\ c & \text{ se } c \in C \setminus B \end{array} \right.$$

A aplicação δ é uma bijeção. Seja $\mathcal{D}=(D;(f^{\mathcal{D}})_{f\in O})$ a álgebra de tipo (O,τ) onde, para cada cada símbolo $f\in O_n,\,f^{\mathcal{D}}:D^n\to D$ é a função definida por

$$f^{\mathcal{D}}(d_1, \dots, d_n) = \delta(f^{\mathcal{C}}(\delta^{-1}(d_1), \dots, \delta^{-1}(d_n)).$$

A aplicação δ é um isomorfismo de \mathcal{C} em \mathcal{D} . Além disso, a álgebra $\alpha(\mathcal{B})$ é uma subálgebra de \mathcal{D} . Assim, uma vez que $\mathcal{A} = \alpha(\mathcal{B}), \ \alpha(\mathcal{B}) \leq \mathcal{D}, \ \mathcal{D} \cong \mathcal{C}$ e $\mathcal{C} \in \mathbf{K}$, concluímos que $\mathcal{A} \in SI(\mathbf{K})$. Logo, $IS(\mathbf{K}) \subseteq SI(\mathbf{K})$.

Desta forma, provámos que SI = IS.

$$[HI = IH]$$

Seja $\mathcal{A} \in IH(\mathbf{K})$. Então $\mathcal{A} = \alpha(\mathcal{B})$, para alguma álgebra $\mathcal{B} \in H(\mathbf{K})$ e algum isomorfismo $\alpha: \mathcal{B} \to \mathcal{A}$. Como $\mathcal{B} \in H(K)$, então $\mathcal{B} = \delta(\mathcal{C})$, para alguma álgebra $\mathcal{C} \in \mathbf{K}$ e algum epimorfismo $\delta: \mathcal{C} \to \mathcal{B}$. Assim, $\mathcal{A} = \alpha(\delta(\mathcal{C})) = (\alpha \circ \delta)(\mathcal{C})$. Como $\mathcal{C} \in \mathbf{K}$ e $\alpha \circ \delta$ é um homomorfismo, então $\mathcal{A} \in H(\mathbf{K})$. Uma vez que $id_C(\mathcal{C}) = \mathcal{C}$, segue que $\mathcal{A} = (\alpha \circ \delta)(id_C(\mathcal{C}))$. Assim, considerando que $id_C: C \to C$ é um isomorfismo de \mathcal{C} em \mathcal{C} , tem-se $\mathcal{A} \in HI(\mathbf{K})$. Logo $IH(\mathbf{K}) \subseteq HI(\mathbf{K})$.

Mostremos que também temos $HI(\mathbf{K})\subseteq IH(\mathbf{K})$. Seja $\mathcal{A}\in HI(\mathbf{K})$. Então $\mathcal{A}=\alpha(\mathcal{B})$, para alguma álgebra $\mathcal{B}\in I(\mathbf{K})$ e algum epimorfismo $\alpha:\mathcal{B}\to\mathcal{A}$. Como $\mathcal{B}\in I(K)$, então $\mathcal{B}=\delta(\mathcal{C})$, para alguma álgebra $\mathcal{C}\in \mathbf{K}$ e algum isomorfismo $\delta:\mathcal{C}\to\mathcal{B}$. Assim, $\mathcal{A}=\alpha(\delta(\mathcal{C}))=(\alpha\circ\delta)(\mathcal{C})$. Como $\mathcal{C}\in \mathbf{K}$ e $\alpha\circ\delta$ é um homomorfismo, tem-se $\mathcal{A}\in H(\mathbf{K})$. Como $id_A(\mathcal{A})=\mathcal{A}$, segue que $\mathcal{A}=id_A((\alpha\circ\delta)(\mathcal{C}))$. Então, considerando que $id_A:A\to A$ é um isomorfismo de \mathcal{A} em \mathcal{A} , conclui-se que $\mathcal{A}\in IH(\mathbf{K})$). Logo $HI(\mathbf{K})\subseteq IH(\mathbf{K})$.

2.31. Mostre que os operadores S, I, H e IP são idempotentes.

$$[S^2 = S]$$

Pretendemos provar que $S^2=S$, ou seja, pretende-se mostrar que, para toda a classe de álgebras \mathbf{K} , $SS(\mathbf{K})=S(\mathbf{K})$.

Seja $\mathbf K$ uma classe de álgebras. Uma vez que, para qualquer operador $O \in \{S,H,I,P,P_s\}$ e para qualquer classe de álgebras $\mathbf K'$, tem-se $\mathbf K' \subseteq O(\mathbf K')$, vem que $S(\mathbf K) \subseteq S(S(\mathbf K)) = SS(\mathbf K)$.

Resta provar que $SS(\mathbf{K}) \subseteq S(\mathbf{K})$. Seja $\mathcal{A} \in SS(\mathbf{K}) = S(S(\mathbf{K}))$. Então $\mathcal{A} \leq \mathcal{B}$, para alguma álgebra $\mathcal{B} \in S(\mathbf{K})$. Como $B \in S(\mathbf{K})$, tem-se $B \leq \mathcal{C}$, para alguma álgebra $\mathcal{C} \in \mathbf{K}$. Por conseguinte, $\mathcal{A} \leq \mathcal{C}$, para alguma álgebra $\mathcal{C} \in \mathbf{K}$. Assim, $\mathcal{A} \in S(\mathbf{K})$.

Desta forma, provámos que $SS(\mathbf{K}) = S(\mathbf{K})$.

$$[I^2 = I]$$

Pretendemos provar que $I^2=I$, ou seja, pretende-se mostrar que, para toda a classe de álgebras \mathbf{K} , $II(\mathbf{K})=I(\mathbf{K})$.

Seja $\mathbf K$ uma classe de álgebras. Uma vez que, para qualquer operador $O \in \{S,H,I,P,P_s\}$ e para qualquer classe de álgebras $\mathbf K'$, tem-se $\mathbf K' \subseteq O(\mathbf K')$, vem que $I(\mathbf K) \subseteq I(I(\mathbf K)) = II(\mathbf K)$.

Resta provar que $II(\mathbf{K})\subseteq I(\mathbf{K})$. Seja $\mathcal{A}\in II(\mathbf{K})=I(I(\mathbf{K}))$. Então $\mathcal{A}\cong\mathcal{B}$, para alguma álgebra $\mathcal{B}\in I(\mathbf{K})$. Logo $\mathcal{A}=\alpha(\mathcal{B})$ para algum isomorfismo $\alpha:\mathcal{B}\to\mathcal{A}$. Como $\mathcal{B}\in I(\mathbf{K})$, tem-se $\mathcal{B}\cong\mathcal{C}$, para alguma álgebra $\mathcal{C}\in\mathbf{K}$. Por conseguinte, $\mathcal{B}=\beta(\mathcal{C})$ para algum isomorfismo $\beta:\mathcal{C}\to\mathcal{B}$. A composição de isomorfismos, desde que esteja definida, é um isomorfismo. Assim, $\alpha\circ\beta:\mathcal{C}\to\mathcal{A}$ é um isomorfismo. Logo, como $\mathcal{A}=(\alpha\circ\beta)(\mathcal{C})$, tem-se $\mathcal{A}\cong\mathcal{C}$ e, portanto, $\mathcal{A}\in I(\mathbf{K})$.

Desta forma, provámos que $II(\mathbf{K}) = I(\mathbf{K})$.

$$[H^2 = H]$$

Pretendemos provar que $H^2=H$, ou seja, pretende-se mostrar que, para toda a classe de álgebras \mathbf{K} , $HH(\mathbf{K})=H(\mathbf{K})$.

Seja \mathbf{K} uma classe de álgebras. Uma vez que, para qualquer operador $O \in \{S, H, I, P, P_s\}$ e para qualquer classe de álgebras \mathbf{K}' , tem-se $\mathbf{K}' \subseteq O(\mathbf{K}')$, vem que $H(\mathbf{K}) \subseteq H(H(\mathbf{K})) = HH(\mathbf{K})$.

Resta provar que $HH(\mathbf{K})\subseteq H(\mathbf{K})$. Seja $\mathcal{A}\in HH(\mathbf{K})=H(H(\mathbf{K}))$. Então $\mathcal{A}=\alpha(\mathcal{B})$ para algum epimorfismo $\alpha:\mathcal{B}\to\mathcal{A}$ e para alguma álgebra $\mathcal{B}\in H(\mathbf{K})$. Como $\mathcal{B}\in H(\mathbf{K})$, tem-se $\mathcal{B}=\beta(\mathcal{C})$ para algum epimorfismo $\beta:\mathcal{C}\to\mathcal{B}$ e para alguma álgebra $\mathcal{C}\in\mathbf{K}$. A composição de epimorfismos, desde que esteja definida, é um epimorfismo. Assim, $\alpha\circ\beta:\mathcal{C}\to\mathcal{A}$ é um epimorfismo. Logo, como $\mathcal{A}=(\alpha\circ\beta)(\mathcal{C})$, tem-se $\mathcal{A}\in H(\mathbf{K})$.

Desta forma, provámos que $HH(\mathbf{K}) = H(\mathbf{K})$.

$$[(IP)^2 = IP]$$

Pretendemos mostrar que, para qualquer classe de álgebras \mathbf{K} , $IPIP(\mathbf{K}) = IP(\mathbf{K})$.

Seja \mathbf{K} uma classe de álgebras. Uma vez que, para qualquer operador $O \in \{S, H, I, P, P_s\}$ e para qualquer classe de álgebras \mathbf{K}' , tem-se $\mathbf{K}' \subseteq O(\mathbf{K}')$, vem que $IP(\mathbf{K}) \subseteq IPIP(\mathbf{K})$.

Resta mostrar que $IPIP(\mathbf{K}) \subseteq IP(\mathbf{K})$. Considerando que $PI \leq IP$, tem-se $IPIP \leq IIPP$. Então, como I é idempotente, segue que $IPIP \leq IPP$. Assim, para provar que $IPIP(\mathbf{K}) \subseteq IP(\mathbf{K})$, basta mostrar que $IPP(\mathbf{K}) \subseteq IP(\mathbf{K})$.

Seja $\mathbf K$ uma classe de álgebras. Se $\mathcal A \in IPP(\mathbf K)$, tem-se $\mathcal A = \alpha(\mathcal B)$ para alguma álgebra $\mathcal B \in PP(\mathbf K)$ e algum isomorfismo $\alpha: \mathcal B \to \mathcal A$. Como $\mathcal B \in PP(\mathbf K)$, tem-se $\mathcal B = \prod_{i \in I} \mathcal C_i$ onde, para todo $i \in I$, $\mathcal C_i \in P(\mathbf K)$. Considerando que $\mathcal C_i \in P(\mathbf K)$, tem-se $\mathcal C_i = \prod_{j \in J_i} \mathcal D_{i,j}$ onde, para todo $i \in I$ e $j \in J_i$, $\mathcal D_{i,j} \in \mathbf K$. Assim,

$$\mathcal{B} = \prod_{i \in I} \left(\prod_{j \in J_i} \mathcal{D}_{i,j} \right).$$

A correspondência

$$\delta: \prod_{s \in \bigcup_{i \in I} (\bigcup_{j \in J_i} \{(i,j)\})} D_s \to \prod_{i \in I} \left(\prod_{j \in J_i} D_{i,j}\right)$$

definida por

$$\delta(d) = ((d(i,j) \mid j \in J_i) \mid i \in I)$$

é um isomorfismo de $\prod_{s\in\bigcup_{i\in I}(\bigcup_{i\in J},\{(i,j)\})}D_s$ em $\prod_{i\in I}\Bigl(\prod_{j\in J_i}\mathcal{D}_{(i,j)}\Bigr)$.

Assim, $\mathcal{A}=(\alpha\circ\delta)(\prod_{s\in\bigcup_{i\in I}(\bigcup_{j\in J_i}\{(i,j)\})})$. Como α e δ são isomorfismos, $\alpha\circ\delta$ é um isomorfismo. Então, como $\prod_{s\in\bigcup_{i\in I}(\bigcup_{j\in J_i}\{(i,j)\})}\in P(\mathbf{K})$, tem-se $\mathcal{A}\in IP(\mathbf{K})$.

Logo, $IPP \leq IP$. Portanto, $IPIP \leq IP$.

2.32. Mostre que HS, HIP e SIP são operadores de fecho em classes de álgebras do mesmo tipo.

Mostremos que HIP é um operador de fecho. Pretendemos mostrar que, para quaisquer classes de álgebras \mathbf{K}_1 e \mathbf{K}_2 :

- (1) $\mathbf{K}_1 \subseteq HIP(\mathbf{K}_1)$;
- (2) $(HIP)^2(\mathbf{K}_1) \subseteq HIP(\mathbf{K}_1)$;
- (3) $\mathbf{K}_1 \subseteq \mathbf{K}_2 \Rightarrow HIP(\mathbf{K}_1) \subseteq HIP(\mathbf{K}_2)$.

Prova de (1): Para qualquer operador $O \in \{S, H, I, P, P_s\}$ e para qualquer classe de álgebras \mathbf{K}' , tem-se $\mathbf{K}' \subseteq O(\mathbf{K}')$. Logo, para qualquer classe de álgebras \mathbf{K}_1 , tem-se $\mathbf{K}_1 \subseteq P(\mathbf{K}_1)$, $P(\mathbf{K}_1) \subseteq IP(\mathbf{K}_1)$ e $IP(\mathbf{K}_1) \subseteq HIP(\mathbf{K}_1)$. Assim, $\mathbf{K}_1 \subseteq HIP(\mathbf{K}_1)$.

Prova de (2): Para qualquer classe de álgebras \mathbf{K}_1 , tem-se

$$HIPHIP(\mathbf{K}_1) \stackrel{(i)}{\subseteq} HIHPIP(\mathbf{K}_1) \stackrel{(ii)}{=} HHIPIP(\mathbf{K}_1) \stackrel{(iii)}{=} HIPIP(\mathbf{K}_1) \stackrel{(iv)}{=} HIP(\mathbf{K}_1).$$

(i)
$$PH \leq HP$$
; (ii) $HI = IH$; (iii) $H^2 = H$; (iv) $(IP)^2 = IP$.

Prova de (3): Para qualquer operador $O \in \{S, H, I, P, P_s\}$ e para quaisquer classes de álgebras K e K',

$$\mathbf{K} \subseteq \mathbf{K}' \Rightarrow O(\mathbf{K}) \subseteq O(\mathbf{K}').$$

Assim, para quaisquer classes de álgebras \mathbf{K}_1 e \mathbf{K}_2 , tem-se

$$\mathbf{K}_1 \subseteq \mathbf{K}_2 \quad \Rightarrow \quad P(\mathbf{K}_1) \subseteq P(\mathbf{K}_2)$$
$$\Rightarrow \quad IP(\mathbf{K}_1) \subseteq IP(\mathbf{K}_2)$$
$$\Rightarrow \quad HIP(\mathbf{K}_1) \subseteq HIP(\mathbf{K}_2).$$

De (1), (2) e (3), conclui-se que HIP é um operador de fecho.

De modo semelhante prova-se que HS e SIP são operadores de fecho.

2.33. Mostre que $SH \neq HS$, $PS \neq SP$, $PH \neq HP$.

$$[SH \neq HS]$$

Como $SH \leq HS$, temos de provar que $HS \nleq SH$. Sendo assim, tem de se provar que existe uma classe de álgebras K tal que $HS(K) \nsubseteq SH(K)$.

Seja $\mathbf{K} = \{Q\}$ com $Q = (\mathbb{Q}; +^Q, \cdot^Q, -^Q, 0^Q, 1^Q)$, onde $+^Q$, \cdot^Q , $-^Q$ são as operações usuais em \mathbb{Q} , $0^Q = 0$ e $1^Q = 1$. Se \mathcal{B} é uma álgebra homomorfa de Q, então \mathcal{B} é uma álgebra isomorfa a Q ou é uma álgebra trivial. Assim,

$$H(Q) = I(Q) \cup \{B = (B; F) \mid B \text{ \'e uma \'algebra do mesmo tipo da \'algebra } Q \in |B| = 1\}.$$

Consideremos as álgebras

$$\mathcal{Z} = (\mathbb{Z}; +^{\mathcal{Z}}, \cdot^{\mathcal{Z}}, -^{\mathcal{Z}}, 0^{\mathcal{Z}}, 1^{\mathcal{Z}})$$
, onde $+^{\mathcal{Z}}, \cdot^{\mathcal{Z}}, -^{\mathcal{Z}}$ são as operações usuais em $\mathbb{Z}, 0^{\mathcal{Z}} = 0$ e $1^{\mathcal{Z}} = 1$

e

$$\mathcal{Z}_2 = (\mathbb{Z}_2; +^{\mathcal{Z}_2}, \cdot^{\mathcal{Z}_2}, -^{\mathcal{Z}_2}, 0^{\mathcal{Z}_2}, 1^{\mathcal{Z}_2})$$
, onde $+^{\mathcal{Z}_2}, \cdot^{\mathcal{Z}_2}, -^{\mathcal{Z}_2}$ são as operações usuais em $\mathbb{Z}_2, 0^{\mathcal{Z}_2} = \overline{0}$ e $1^{\mathcal{Z}_2} = \overline{1}$.

Uma vez que $\mathcal{Z} \in S(\{Q\})$ e $\mathcal{Z}_2 \in H(\{\mathcal{Z})\}$, tem-se $\mathcal{Z}_2 \in HS(\{Q\})$. No entanto, $\mathcal{Z}_2 \notin SH(\{Q\})$ (se $\mathcal{C} \in SH(\{Q\})$, então \mathcal{C} é uma álgebra trivial ou é uma álgebra infinita).

Logo $HS(\mathbf{K}) \nsubseteq SH(\mathbf{K})$.

$$[PS \neq SP]$$

Uma vez que $PS \leq SP$, temos de provar que $SP \nleq PS$, ou seja, é necessário mostrar que existe uma classe de álgebras \mathbf{K} tal que $SP(\mathbf{K}) \not\subseteq PS(\mathbf{K})$.

Seja $\mathbf{K} = \{\mathbf{2}\}$ onde $\mathbf{2} = (\{a,b\};\wedge,\vee)$ é o reticulado representado por

O reticulado $R_1 = \mathbf{2} \times \mathbf{2}$ a seguir representado

é um elemento de $P(\mathbf{K})$. Assim, o reticulado R_2 representado por

é um elemento de $SP(\mathbf{K})$.

O reticulado R_2 não é um elemento de $PS(\mathbf{K})$. De facto, se $R' = (R'; \wedge^{R'}, \vee^{R'})$ é um elemento de $S(\mathbf{K})$, então $|R'| \in \{1,2\}$. Logo, para todo $R'' = (R''; \wedge^{R''}, \vee^{R''}) \in PS(\mathbf{K})$, tem-se $|R''| \neq 3$.

Portanto, $SP(\mathbf{K}) \nsubseteq PS(\mathbf{K})$.

 $[PH \neq HP]$

Uma vez que $PH \leq HP$, temos de provar que $HP \nleq PH$, ou seja, é necessário mostrar que existe uma classe de álgebras \mathbf{K} tal que $HP(\mathbf{K}) \nsubseteq PH(\mathbf{K})$.

Consideremos as álgebras

$$\begin{split} \mathcal{Z}_2 &= (\mathbb{Z}_2; +^{\mathcal{Z}_2}, -^{\mathcal{Z}_2}, 0^{\mathcal{Z}_2}), \\ \mathcal{Z}_3 &= (\mathbb{Z}_3; +^{\mathcal{Z}_3}, -^{\mathcal{Z}_3}, 0^{\mathcal{Z}_3}), \\ \mathcal{Z}_6 &= (\mathbb{Z}_6; +^{\mathcal{Z}_6}, -^{\mathcal{Z}_6}, 0^{\mathcal{Z}_6}) \end{split}$$

do tipo (2,1,0), onde, para cada $p \in \{2,3,6\}$, $+^{\mathcal{Z}_p}$, $-^{\mathcal{Z}_p}$, $0^{\mathcal{Z}_p}$ representam as operações usuais em \mathbb{Z}_p .

Seja $\mathbf{K} = \{\mathcal{Z}_2, \mathcal{Z}_3\}$. Tem-se

$$H(\mathbf{K}) = I(\mathbf{K}) \cup \{\mathcal{A} = (A; F) \mid \mathcal{A} \text{ \'e uma \'algebra do mesmo tipo da \'algebra } \mathcal{A} \text{ e } |A| = 1\}.$$

Como $\mathcal{Z}_2 \times \mathcal{Z}_3 \in P(\mathbf{K})$ e $\mathcal{Z}_6 \cong \mathcal{Z}_2 \times \mathcal{Z}_3$, $\mathcal{Z}_6 \in HP(\mathbf{K})$. No entanto, $\mathcal{Z}_6 \notin PH(\mathbf{K})$.

Logo $HP(\mathbf{K}) \nsubseteq PH(\mathbf{K})$.

2.34. Mostre que, se G é a classe dos grupos abelianos, então HS(G) = SH(G).

Todo o sugbrupo de um grupo abeliano é um grupo abeliano e todo o grupo é um subgrupo de si mesmo. Assim, $S(\mathbf{G}) = \mathbf{G}$.

Todo o grupo abeliano é imagem epimorfa de si mesmo e toda a imagem epimorfa de um grupo abeliano é um grupo abeliano. Logo $H(\mathbf{G}) = \mathbf{G}$.

Portanto,

$$HS(\mathbf{G}) = H(S(\mathbf{G})) = H(\mathbf{G}) = \mathbf{G} = S(\mathbf{G}) = (S(H(\mathbf{G})) = SH(\mathbf{G}).$$

2.35. Sejam $A_1, A_2, ..., A_n$ álgebras do mesmo tipo. Prove que $V(A_1, A_2, ..., A_n) = V(A_1 \times A_2 \times \cdots \times A_n)$.

Sejam
$$V_1 = V(A_1, A_2, ..., A_n)$$
 e $V_2 = V(A_1 \times A_2 \times \cdots \times A_n)$.

Por definição, V_1 é a menor variedade que contém $\{\mathcal{A}_1,\mathcal{A}_2,\ldots,\mathcal{A}_n\}$. Então, como $\mathcal{A}_1,\mathcal{A}_2,\ldots,\mathcal{A}_n\in V_1$ e V_1 é fechada para a formação de produtos diretos, tem-se $\mathcal{A}_1\times\mathcal{A}_2\times\ldots\times\mathcal{A}_n\in V_1$. Mas V_2 é a menor variedade que contém $\{\mathcal{A}_1\times\mathcal{A}_2\times\cdots\times\mathcal{A}_n\}$, pelo que $V_2\subseteq V_1$.

Por outro lado, V_2 é a menor variedade que contém $\{\mathcal{A}_1 \times \mathcal{A}_2 \times \ldots \times \mathcal{A}_n\}$. Então, como V_2 é fechada para a formação de imagens homomorfas vem que, para todo $i \in \{1,2,\ldots,n\}$, $p_i(\mathcal{A}_2 \times \mathcal{A}_2 \times \cdots \times \mathcal{A}_n) = \mathcal{A}_i \in V_2$. Como $\{\mathcal{A}_1,\mathcal{A}_2,\ldots,\mathcal{A}_n\}\subseteq V_2$ e V_1 é a menor variedade que contém $\{\mathcal{A}_1,\mathcal{A}_2,\ldots,\mathcal{A}_n\}$, conclui-se que $V_1\subseteq V_2$.

Logo $V_1 = V_2$.