H&K LINEAR ALGEBRA SOLUTIONS

JAEMINOH

CHAPTER 6

4. Invariant Subspaces.

Problem 8.

Let $\mathcal{B} = \{\alpha_1, \dots, \alpha_n\}$ be an ordered basis for V. Let $\mathcal{B}_i = span(\alpha_i)$. Since every subspace of V is invariant under T, $T\alpha_i = c_i\alpha_i$ for some scalar c_i . Let $W_i = span(\alpha_1 + \alpha_i)$, $\beta_i = \alpha_1 + \alpha_i$. $T\beta_i = c_1\alpha_1 + c_i\alpha_i = k\beta_i$. So $c_1 = c_i = k$. Therefore, $T\alpha_i = c_1\alpha_i$ for all i. So T is a scalar multiple of the identity operator.

Problem 10.

Let p be a minimal polynomial for A. From non-triangulability of A, we can say that p has degree 2 irreducible factor since every degree 3 real coefficient polynomial has at least one real zero. Then irreducible factor of p splits into distinct linear factors over \mathbb{C} . So, minimal polynomial for A splits into distinct linear factors over \mathbb{C} which is equivalent to A is diagonalizable.

Problem 12.

First assume t is an eigenvalue of T. Then there exists $\alpha \in V \setminus 0$ such that $T\alpha = t\alpha$. It is easy to observe that $f(T)\alpha = f(t)\alpha$. So f(t) is an eigenvalue of linear operator f(T).

Conversely, assume c is an eigenvalue of f(T). So there exists nonzero vector $\alpha \in V$. Consider the equation f(x) = c. There is $t \in F$ which satisfies that equatio since F is algebraically closed. From f(t) = c, f(x) - c = (x - t)q(x). So $(T - tI)q(T)\alpha = 0$. If $q(T)\alpha \neq 0$, we are done. If $q(T)\alpha = 0$, q(T) has 0 as eigenvalue. So we can find $s \in F$ such that q(s) = 0. Then q(x) = (x - s)r(x), $q(T)\alpha = (T - sI)r(T)\alpha = 0$. If $r(T)\alpha \neq 0$, we are done. If not \cdots . By repeating (such process is finite since f has finite degree), we can conclude that t is an eigenvalue for T. When f is degree 1, it is trivial.

Date: May 1, 2020.

1