Etude du comportement des structures sous l'effet d'un séisme TIPE

Maryam Moustaghfir

N 26117

|ロト4回ト4ミト4ミト ミ かくぐ

Maryam Moustaghfir N 26117 1 / 23

- 1 Hypothèses
- 2 Etude dynamique de la poutre
- 3 Modélisation expérimentale
- **4** Conclusion
- **6** Annexes

Maryam Moustaghfir N 26117 2 / 23

Quel est le but derrière cette étude ?

Figure 1: Le pont Golden Gate

Maryam Moustaghfir N 26117 3 / 23

- 1 Hypothèses
- 2 Etude dynamique de la poutre
- 3 Modélisation expérimentale
- 4 Conclusion
- 6 Annexes

Maryam Moustaghfir N 26117 5 / 23

(a) modèle adopté de la poutre

(b) schéma équivalent du pont suspendu

Figure 2

Maryam Moustaghfir N 26117 6 / 23

Figure 3: modèle du pont

- Le tablier est modélisé à une poutre rectangulaire de longueur L, largeur b , et hauteur h tel que h , b << L (hypothèse de résistance des matériaux).
- La poutre repose simplement à ses deux extrémités .
- Flexion sous l'effet d'un chargement linéique q .
- ► Raideur linéique uniforme .

Maryam Moustaghfir N 26117 7 / 23

- 1 Hypothèses
- 2 Etude dynamique de la poutre
- 3 Modélisation expérimentale
- 4 Conclusion
- 6 Annexes

Maryam Moustaghfir N 26117 8 / 23

L'équilibre mécanique d'un petit tronçon de longueur dx sous l'action du moment M(x) donne:

$$M = \iint_{S} \sigma_{xx} y dS = \frac{E}{R} \int_{-h/2}^{h/2} b y^{2} dy = \frac{EI}{R}$$

- M : le moment de flexion à l'abscisse x résultant du changement de q.
- E : module d'Young
- R : rayon de courbure
- σ_{xx} : contrainte de traction
- I : le moment quadratique où $I = \frac{bh^3}{12}$

Figure 4: Troncon

Maryam Moustaghfir N 26117 9 / 23

Dans l'hypothèse des faibles flexions :

$$\frac{1}{R} = \frac{\frac{d^2 y}{dx^2}}{(1 + \frac{dy}{dx}^2)^{3/2}} \approx \frac{d^2 y}{dx^2}$$

L'équation différentielle de la déformée devient:

$$EI\frac{d^2y}{dx^2} = -M(x)$$

L'équilibre des moments et des forces donnés :

$$V(x) = rac{dM}{dx}$$
 et $q(x) = -rac{dV}{dx}$

On obtient:

$$EI\frac{d^4y}{dx^4} = q(x)$$

Figure 5: Tronçon

Maryam Moustaghfir N 26117 10 / 23

La masse linéique m(x) étant égale à ρS , la force d'inertie linéique q(x) induite par la vibration sera :

$$q(x) = -m(x)\gamma(x) = -\rho S \frac{d^2y}{dt^2}, \gamma(x) = \frac{d^2y}{dt^2}$$

où $\gamma(x)$ est l'accélération induite par la vibration .

L'équation différentielle des vibrations libres :

$$EI\frac{d^4y}{dx^4} = -\rho S\frac{d^2y}{dt^2}$$

▶ En tenant compte de la suspension l'équa-diff des vibrations libres devient:

$$EI\frac{\partial^4 y}{\partial x^4} + \rho S\frac{\partial^2 y}{\partial t^2} + Ky = 0$$

Maryam Moustaghfir N 26117 11 / 23

Les solutions sinusoîdales dans le temps sont (n entier):

$$y(x,t) = \sin(\frac{n\pi x}{L})\cos(\omega_n t)$$

$$\omega_n^2 = \frac{EI}{m} (\frac{n\pi}{L})^4 + \frac{K}{m}$$

$$\omega_n^2 = \frac{EI}{m} (\frac{n\pi}{L})^4 + \frac{K}{m} \qquad f_n = \frac{1}{2\pi} \sqrt{\frac{EI}{m}} (\frac{n\pi}{L})^4 + \frac{K}{m}$$

Marvam Moustaghfir N 26117 12 / 23

- 1 Hypothèses
- 2 Etude dynamique de la poutre
- 3 Modélisation expérimentale
- 4 Conclusion
- 6 Annexes

Maryam Moustaghfir N 26117 13 / 23

GBF 1

Plaque électronique

GBF 2

Vibreur de Melde + accéléromètre + poutre

montage

	f	Acc	Am										
	Hz	m/s^²	m										
	10,00	12,56	0,00314										
	11,00	12,00	0,002479						Π				
2	12,00	15,41	0,002675		6				/\				
	13,00	20,70	0,003062							\neg			
	14,00	28,60	0,003648		5					\			
	15,00	40,92	0,004547	k				/					
	15,50	48,00	0,004995		4			/			\		
	15,70	52,57	0,005332	\ \									
1	16,00	55,52	0,005422	/									
П	16,20	67,00	0,006382		3								
0	16,40	68,85	0,0064	,		_							
1	16,50	62,34	0,005725		2								
12	17,00	64,40	0,005571										
3	17,50	68,00	0,005551		1								
4	18,00	59,85	0,004618										
5	19,00	60,04	0,004158		0								
16	20,00	48,10	0,003006										
17	21,00	32,62	0,001849			10	12	14	16	18	20	22	
8	22,00	33,49	0,00173	,									
19	23,00	29,13	0,001377		résonance sans masse								

valeurs sans masse

Maryam Moustaghfir N 26117 16 / 23

i	f		
	Hz	m/s^²	m
0	4,000	1,400	0,002187
1	4,500	1,970	0,002432
2	5,000	2,600	0,0026
3	5,500	3,600	0,002975
4	6,000	4,000	0,002778
5	6,500	5,910	0,003497
	7,000	7,830	0,003995
	7,500	8,970	0,003987
	7,700	9,680	0,004082
)	8,000	11,20	0,004375
10	8,300	8,460	0,00307
11	8,500	7,390	0,002557
12	9,000	5,410	0,00167
13	9,500	6,130	0,001698
14	10,00	7,000	0,00175

valeurs avec masse

Maryam Moustaghfir N 26117 17 / 23

- 1 Hypothèses
- 2 Etude dynamique de la poutre
- 3 Modélisation expérimentale
- 4 Conclusion
- 5 Annexes

Maryam Moustaghfir N 26117 18 / 23

MERCI POUR VOTRE ATTENTION!

Maryam Moustaghfir N 26117 19 / 23

- 1 Hypothèses
- 2 Etude dynamique de la poutre
- 3 Modélisation expérimentale
- 4 Conclusion
- 6 Annexes

4□ > 4圖 > 4 를 > 4 를 > 9 Q @

Maryam Moustaghfir N 26117 19 / 23

Annexe I

Figure 6: Code Arduino

Annexe II

Figure 7: Code Arduino

Annexe III

Figure 8: Code Arduino

Annexe IV

Démonstrations

4 D > 4 B > 4 B > 4 B > 9 4 C

Maryam Moustaghfir N 26117 23 / 23

ona d'y +(E')4 Y=0 Horn V(x/= As exp(kix) - freef(kin) - Asexf(km) au an encore. | /(x/) = a co (k'x) + bom (k'x) + c sh(k'x/) dch(kx) a b.c.d de constants

4□ > 4回 > 4 直 > 4 直 > 直 9 Q Q

. Démonstration V(x) = -dT et q(x)= -dV

Topin le triètre du Franch réceivons l'équilibre méchnique du Brongen de l'engueur de soumne auchongement lincique que la S'esquilibre du força s'esnit!

John Jalul - dv

Secretarios de nomento par raport a Pour un du triche,

-V + gdx + V + dV = 0

son my engent le term du reand ordre deter gona!

- Equation différentielle des mode propres de vibrations

en pece (K) = c Sait

En separant & variables yout = Y explines, on trous.

Maryam Moustaghfir

1 Dore