

DIVIDE AND CONQUER

- Recursive algorithms solve a given problem by calling themselves recursively. They follow a divide-andconquer approach:
 - break the problem into several subproblems that are similar to the original problem but smaller in size,
 - solve the sub-problems recursively,
 - combine these solutions to create a solution to the original problem.

DIVIDE AND CONQUER

- The divide-and-conquer paradigm has three steps at each level of the recursion:
- Divide the problem into several subproblems.
- Conquer the sub-problems by solving them recursively. If the sub-problem sizes are small enough, then solve the sub-problem straightforwardly.
- 3. Combine the solutions to the sub-problems into the solution for the original problem.

DIVIDE AND CONQUER

- The merge sort algorithm is an example of divide-and-conquer approach:
- Divide: Divide an n element sequence to be sorted into two subsequences of n/2 elements each.
- 2. Conquer: Sort the two subsequences recursively using merge sort.
- 3. Combine: Merge the two sorted subsequences to get the answer.

MERGE SORT

The **DIVIDE** step

		_ _	5
5 2 4 6 1 3 2 6		5 2	2
	5246	4 6	4
			6
	1326	1 2	1
		1 3	3
		ماد	2
		26	6 5/28

MERGE SORT

- 5 The Conquer step:
- sort the two subsequences
- recursively using merge sort.
- 6 1 Recursion goes on until our
- subsequences come down to length one. Then they are
- 2 sorted and we have nothing to
- 6 do.

MERGE SORT

 In Lecture 1, we analyzed the merge sort algorithm and found that the time complexity is:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

which we said that can be solved and gives:

$$T(n) = O(n \log n)$$

 At the end of this lecture we will prove it using the so called Master theorem.

MATRIX MULTIPLICATION

• Let A and B be two $n \times n$ matrices. The product of A and B is defined as C = AB, where for $1 \le i, j \le n$,

$$C[i, j] = \sum_{k=1}^{n} A[i, k] \times B[k, j]$$

MATRIX MULTIPLICATION

o If n is a power of 2, we can partition each of A and B into four $(n/2) \times (n/2)$ matrices and express the product of A and B in terms of these $(n/2) \times (n/2)$ matrices as:

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \times \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

MATRIX MULTIPLICATION

o If we treat A and B as 2×2 matrices, whose elements are $(n/2) \times (n/2)$ matrices, then the C can be expressed in terms of sums and products of these $(n/2) \times (n/2)$ matrices:

$$\begin{split} C_{11} &= A_{11} \times B_{11} + A_{12} \times B_{21} \\ C_{12} &= A_{11} \times B_{12} + A_{12} \times B_{22} \\ C_{21} &= A_{21} \times B_{11} + A_{22} \times B_{21} \\ C_{22} &= A_{21} \times B_{12} + A_{22} \times B_{22} \end{split}$$

MATRIX MULTIPLICATION

 Recursive algorithm for matrix multiplication:

MATRIX MULTIPLICATION

- Analysis of the recursive algorithm for matrix multiplication.
 - If n = 1, we do only one scalar multiplication $\rightarrow T(1) = \mathcal{O}(1)$
 - For n > 1, each recursive call multiplies two $n/2 \times n/2$ matrices contributing T(n/2) time. There are 8 such recursive calls $\rightarrow 8T(n/2)$.
 - Four matrix additions take $\Theta(4n^2/4) = \Theta(n^2)$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 8T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$

STRASSEN ALGORITHM

- In 1969, Strassen proposed an algorithm which is faster than the recursive matrix multiplication. It has four steps:
 - Step 1. Divide input matrices A and B into $n/2 \times n/2$ matrices.
 - Step 2. Create 10 matrices $S_1, S_2, \dots S_{10}$, each of which is sum or difference of the matrices created at Step 1.
 - Step 3. Using matrices from Step 1 and Step 2 compute 7 matrices $P_{\it b}$, $P_{\it 25}$... $P_{\it 77}$
 - Step 4. Compute C_{1p} , C_{1p} , C_{2p} , C_{2p} by adding and subtracting various combinations of P_i matrices.

STRASSEN ALGORITHM

o Strassen algorithm matrix computation:

Step 1:
$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$
, $B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$

$$\begin{array}{lll} \textbf{Step 2:} & S_1 = B_{12} - B_{22} & S_2 = A_{11} + A_{12} \\ & S_3 = A_{21} + A_{22} & S_4 = B_{21} - B_{11} \\ & S_5 = A_{11} + A_{22} & S_6 = B_{11} + B_{22} \\ & S_7 = A_{12} - A_{22} & S_8 = B_{21} + B_{22} \\ & S_9 = A_{11} - A_{21} & S_{10} = B_{11} + B_{12} \end{array}$$

STRASSEN ALGORITHM

o Strassen algorithm matrix computation:

Step 3:
$$P_1 = A_{11}S_1$$
 $P_2 = S_2B_{22}$ $P_3 = S_3B_{11}$ $P_4 = A_{22}S_4$ $P_5 = S_5S_6$ $P_6 = S_7S_8$ $P_7 = S_9S_{10}$

Step 4:
$$C_{11} = P_5 + P_4 - P_2 + P_6$$

 $C_{12} = P_1 + P_2$
 $C_{21} = P_3 + P_4$
 $C_{22} = P_1 + P_5 - P_3 - P_7$
 $C_{22} = P_1 + P_5 - P_3 - P_7$

STRASSEN ALGORITHM

Strassen algorithm matrix computation - check:

$$\begin{split} C_{12} &= P_1 + P_2 = A_{11}S_1 + S_2B_{22} \\ &= A_{11}B_{12} - A_{11}B_{22} + A_{11}B_{22} + A_{12}B_{22} \\ &= A_{11}B_{12} + A_{12}B_{22} \end{split}$$

$$\begin{split} C_{21} &= P_3 + P_4 = S_3 B_{11} + A_{22} S_4 \\ &= A_{21} B_{11} + A_{22} B_{11} + A_{22} B_{21} - A_{22} B_{11} \\ &= A_{21} B_{11} + A_{22} B_{21} \end{split}$$

STRASSEN ALGORITHM

- o Strassen algorithm analysis.
 - If n = 1, we do only one scalar multiplication $\rightarrow T(1) = \Theta(1)$
 - For n > 1, at step 2 each recursive call multiplies two n/2×n/2 matrices contributing T(n/2) time. There are 7 such recursive calls
 → 7T(n/2). The number of additions is 18.
 - Matrix additions take $\Theta(18n^2/4) = \Theta(n^2)$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 7T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$

SOLVING RECURRENCES

- A recurrence is an equation that describes a function in terms of its value in smaller inputs.
- There are three main methods for solving recurrences:
 - In the substitution method, we guess a bound and then use induction to prove it.
 - The recursion tree method converts the recurrence into a tree and uses bounding summations.
 - The master method provides bounds for recurrences of the form:

$$T(n) = aT(n/b) + f(n)$$

THE MASTER METHOD

 The master method depends on the following theorem:

THEOREM* (Master theorem)

Let $a \ge 1$, b > 1 and c > 1 be constants, and let T(n) be defined on the nonnegative integers by the recurrence:

$$T(n) = \begin{cases} b & \text{if } n = 1\\ aT(n/c) + bn & \text{if } n > 1 \end{cases}$$

* Simplified version

THE MASTER METHOD

• (theorem continuation)

Then, if n is a power of c, T(n) has the following asymptotic bounds:

$$T(n) = \begin{cases} O(n), & \text{if } a < c, \\ O(n \log n), & \text{if } a = c, \\ O(n^{\log_c a}), & \text{if } a > c, \end{cases}$$

THE MASTER METHOD

- Lets find the solution for our algorithms:
 - MERGE SORT.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

we have a=c, therefore (according to the second row)

$$T(n) = O(n \log n)$$

THE MASTER METHOD

- Lets find the solution for our algorithms:
 - RECURSIVE MATRIX MULTIPLICATION.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 8T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$

we have a=8>c=2, therefore (according to the third row)

$$T(n) = O(n^{\log_c a}) = O(n^{\log_2 8}) = O(n^3)$$

THE MASTER METHOD

- Lets find the solution for our algorithms:
 - STRASSEN ALGORITHM.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 7T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$

we have a=7>c=2, therefore (according to the third row)

$$T(n) = O(n^{\log_c a}) = O(n^{\log_2 7}) = O(n^{2.81})$$

VINOGRAD ALGORITHM

- The Vinograd algorithm is a variant of the Strassen algorithm which requires (the same) 7 multiplications, but only 15 additions/subtractions.
- Vinograd algorithm complexity is the same, but the reduced number of additions/subtractions has practical significance.

DISCUSSION

- There are two key issues when efficiently applying Strassen algorithm to arbitrary matrices.
 - First the constraint that the matrix size be a power of 2 must be handled.
 - o One solution zero padding.
 - The second key issue for efficiency of Strassen algorithm is controlling the depth of recursion.
 - \circ For small n, Strassen algorithm is actually slower!

DISCUSSION

- Matrix multiplication is a fundamental operation and is critical when attempting to speed up scientific computations.
- The performance of matrix multiplication is dependent on two elements:
- √the operation count and
- ✓ the memory reference count.
- Minimizing both of these factors will produce an optimal algorithm.

THAT'S ALL FOR TODAY!