U18C0018 Shubham Shekhaliya DWDM TUTORIAI -1

- 1. Generate the histograms for the frequency of values in the dataset uploaded to the classroom and study statistical characteristics like Mean, Mode, Median, Variance of any sample (Histograms can be generated in Excel/Python/Orange, etc).
- 2. Perform skewness analysis for the data and decide the suitable missing value replacement for the ratio scale and interval scale numerical data attributes.
- 3. Perform Missing value replacement by Mean, Mode, Median on the A attributes. Intentionally remove two values from that attribute and find the value of the X and Y for given data using mean value replacement (perform the operation on first 12 records).
- 4. Perform Noise identification, Outlier detection using histogram and try to remove the outliers and check the statistical characteristics again.

Mean	20.1076087	Mean	59.7345756	Mean	102.1324009	Mean	102.925179
Mode	23.1	Mode	#N/A	Mode	#N/A	Mode	#N/A
Median	21.5	Median	60.6020407	Median	105.6084021	Median	101.426575
Variance	49.6659854	Variance	132.553093	Variance	241.8311821	Variance	231.757566

2)

DWDM-TUT-1.py

import pandas as pd import math from copy import deepcopy from pyod.models.hbos import HBOS

print("Imports loaded")

fname = "Histograms.csv"

df = pd.read_csv(fname)

skewness analysis
print(f"Skewness\n{df.skew()}") print("")
kurtosis analysis
print(f"Kurtosis\n{df.kurt()}")

А			В				С		D		
Mean	50.6321332	ı	Mean	65.5445133		Mean	50.85133371		Mean	50.2115392	
Mode	#N/A	ı	Mode	#N/A		Mode	#N/A		Mode	#N/A	
Median	50.6737108	ı	Median	65.8987969		Median	51.65488244		Median	49.7266847	
Variance	25.635211	1	Variance	25.8619987		Variance	235.387254		Variance	27.3395164	
Left Skew			Multimodal			IQ20			IQ100		

cmd: python DWDM-TUT-1.py

```
Imports loaded
Skewness
A
B
C
               -0.060298
                0.166426
               -0.036257
                0.662782
Left Skew
Multimodal
               -0.615309
               -0.043677
IQ20
                0.274567
IQ100
                0.249707
dtype: float64
Kurtosis
               -0.292248
ABCD
                0.063429
               -0.304000
                1.711042
Left Skew
               -0.499210
Multimodal
               -1.164263
               -0.297661
-0.278870
IQ20
IQ100
dtype: float64
```

3)

4)