Programowanie obiektowe – lista 2

1. Oblicz (bez komputera) wartości następujących wyrażeń:

34678 ^ 34678	3,14 + 1	13 % 3	0xa - 012
123456 + ~123456	4 > 3 > 2	0xf & 0x8	1 << 4
8 >> 1	1/2	3 == 3 == 3	1 + 1e-50 - 1
-1 < 2 & 1 < 2	0 - 1u > 0	~(-1)	Oxff ^ OxfO
300 << 1	11218917 1	11218917 & 1	Oxff Oxaa

Następnie porównaj swoje rozwiązania z wartościami wygenerowanymi przez Twój komputer. Uwaga: wszystkie powyższe przykłady można rozwiązać w pamięci.

2. Wartość najmniejszej liczby typu int dostepna jest w stałej symbolicznej INT_MIN (zdefiniowanej w standardowym pliku nagłówkowym climits). Standard języka C++ przewiduje, że wartość wyrażenia std::abs(INT_MIN) jest nieokreślona. W moim komputerze (gcc 4.5 na Ubuntu Linux 11.4) wyrażenie to ma typ zmiennopozycyjny (sic!), natomiast wartość wyrażenia abs(INT_MIN) jest ujemna. Sprawdź wartość (typ?) wyrażenia std::abs(INT_MIN) w Twojej maszynie. Jaką wartość ma wyrażenie -INT_MIN? Czy domyślasz się, jaka jest przyczyna tych zjawisk?

Wskazówka: Czy istnieje tyle samo dodatnich i ujemnych liczb typu int?

3. Oblicz wartości wyrażeń:

(a)
$$4\sum_{j=1}^{n} \frac{(-1)^{j+1}}{2j-1}$$
 (b) $2\prod_{j=1}^{n} \frac{4j^2}{4j^2-1}$ (c) $\sqrt{8\sum_{j=1}^{n} \frac{1}{(2j-1)^2}}$

dla n=10~000~000. Porównaj otrzymane wartości z liczbą π .

4. Archimedes wyznaczył przybliżoną wartość π na podstawie długości obwodów wielokątów foremnych wpisanych i opisanych na kole o promieniu 1. Rozpoczął od sześciokąta i kolejno podwajał liczbę boków wielokąta. Pomysł ten prowadzi do wzoru rekurencyjnego, który można zapisać w 2 matematycznie równoważnych postaciach:

(a)
$$t_0 = \frac{1}{\sqrt{3}}, \qquad t_{i+1} = \frac{\sqrt{t_i^2 + 1} - 1}{t_i}, \qquad \pi \approx 6 \times 2^i \times t_i, \qquad i = 0, 1, \dots, \quad (1)$$

(b)
$$t_0 = \frac{1}{\sqrt{3}}, \qquad t_{i+1} = \frac{t_i}{\sqrt{t_i^2 + 1} + 1}, \qquad \pi \approx 6 \times 2^i \times t_i, \qquad i = 0, 1, \dots, (2)$$

Sprawdź, jakie każda z tych metod daje przybliżenie π dla $i=0,1,\ldots,30$. Jak błąd metody zmienia się wraz z i?