Buyun Liang

☑ liang664@umn.edu

★ buyunliang.org

Google Scholar

GitHub

EDUCATION

University of Minnesota, Twin Cities

Minneapolis, MN, USA

M.Sc in Computer Science | Advisor: Prof. Ju Sun

Aug 2020 - Jun 2023 (expected)

• GPA: 4.0/4.0

University of Minnesota, Twin Cities

Minneapolis, MN, USA

M.Sc in Materials Science (Ph.D. Track) | Advisor: Prof. Ilja Siepmann

Sep 2018 - Aug 2020

o GPA: 3.66/4.0 | GPA of AI-related courses: 4.0/4.0

Nanjing University

Nanjing, Jiangsu, China

B.Sc in Physics (Elite Program)

Sep 2014 - Jul 2018

o GPA: 89.6/100 | Rank: 11/159

RESEARCH INTERESTS

- Optimization for ML & DL [1,2,3,5,6,7]: Optimization software for deep learning with nontrivial constraints
- Robustness in Vision Recognition [2,7]: Reliable and general robust evaluation for DL models against attacks
- AI for Science & Engineering [3,4]: Developing AI for scientific domains (e.g., topology optimization)

PUBLICATIONS

Preprints.....

- [1] **Buyun Liang**, Hengyue Liang, Tim Mitchell, Ying Cui, Ju Sun. *NCVX: A General-Purpose Optimization Solver for Machine Learning, and Practical Techniques*. Under review at IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). [slides][website][tutorial proposal 1] [tutorial proposal 2]
- [2] Hengyue Liang, **Buyun Liang**, Ying Cui, Tim Mitchell, Ju Sun. *Optimizers Matter in Adversarial Robustness*. Under review at IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). [paper][slides]
- [3] **Buyun Liang**, Ryan de Vera, Hengyue Liang, Tim Mitchell, Ying Cui, Qizhi He, Ju Sun. *Deep Structural Optimization with Principled Constrained Optimization*. Under review at Transactions on Machine Learning Research (TMLR).
- [4] **Buyun Liang**, Bhargav Joshi, Taihui Li, Roger Rusack, Ju Sun. *Using Neural Networks to Predict Radiation Damage to Lead Tungstate Crystals at the CERN LHC*. Under review at Nature Machine Intelligence. [paper]
- [5] **Buyun Liang**, Tim Mitchell, Ju Sun. *NCVX*: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning. ArXiv preprint arXiv:2111.13984. [paper]

Conferences & Workshops

- [6] **Buyun Liang**, Tim Mitchell, Ju Sun. *NCVX: A General-Purpose Optimization Solver for Constrained Machine and Deep Learning*. In Neural Information Processing Systems (NeurIPS) Workshop on Optimization for Machine Learning (OPT 2022). [paper][poster]
- [7] Hengyue Liang, **Buyun Liang**, Ying Cui, Tim Mitchell, Ju Sun. *Optimization for Robustness Evaluation beyond* ℓ_p *Metrics*. In Neural Information Processing Systems (NeurIPS) Workshop on Optimization for Machine Learning (OPT 2022). [paper][poster]
- [8] J. Ilja Siepmann, Jingyi L. Chen, **Buyun Liang**, Krishnan Mahesh. *Effect of Non-Condensable Gas on the Thermophysical Properties of Bubbly Water and on Bubble Collapse Dynamics Probed by Molecular Simulations*. In 33rd Symposium on Naval Hydrodynamics, Osaka, Japan, 18-23 October 2020. [paper]

RESEARCH EXPERIENCE

Optimization Software for Constrained Machine and Deep Learning.....

NCVX: A General-Purpose Solver for Constrained Deep Learning

Advisors: Prof. Ju Sun, Prof. Tim Mitchell

Apr 2021 - Sep 2022

- o Created a software package called NCVX PyGRANSO for constrained optimization in machine & deep learning
- Initiated and hosted multiple interdisciplinary collaborations about robustness in vision recognition and AI for science, where PyGRANSO served as the backbone method; Published or submitted **6 papers** [1,2,3,5,6,7] based on this solver
- Released a **first-author paper** [5] about the software announcement; Published another **first-author paper** [6] about the expanded version with detailed examples of constrained deep learning

Constrained Deep Learning & Robustness for Vision Recognition.....

NCVX: A General-Purpose Solver for Machine Learning, and Practical Techniques

Advisors: Prof. Ju Sun, Prof. Tim Mitchell, Prof. Ying Cui

Dec 2021 - Dec 2022

- Proposed practical techniques (e.g., constraints-folding, reformulation, rescaling) to increase the convergence speed of PyGRANSO on large-scale problems
- Achieved state-of-the-art solution quality on a variety of constrained deep learning problems by using PyGRANSO with these practical techniques
- Designed a website https://ncvx.org for detailed tutorials to make PyGRANSO friendly to non-experts
- Submitted a first-author paper [1], an SDM23 tutorial proposal (accepted), and an ICASSP2023 tutorial proposal based on the improved algorithms and experiments; Designed slides for an ICCOPT talk; Contributed to 3 NSF funding proposals and 2 UMII seed grant proposals based on this research

Optimizers Matter in Adversarial Robustness

Advisors: Prof. Ju Sun, Prof. Tim Mitchell, Prof. Ying Cui

Dec 2021 - Dec 2022

- o Proposed an algorithmic framework that blends PyGRANSO with constraints-folding to solve both adversarial loss and robustness radius formulation in robust evaluation (RE); Achieved state-of-the-art solution quality on standard RE problems (i.e., ℓ_1 , ℓ_2 and ℓ_∞ metric) by using the new framework
- Generalized RE formulation to include adversarial attack beyond popular ℓ_p metric (e.g., ℓ_8 & LIPIS distance)
- Published a **second-author paper** [7] based on the adversarial loss formulation results; Submitted a **second-author paper** [2] based on the solution pattern analysis and experimental results from both RE formulations

Constrained Deep Learning & AI for Science and Engineering.....

Deep Structural Optimization with Principled Constrained Optimization

Advisors: Prof. Ju Sun, Prof. Qizhi He, Prof. Tim Mitchell, Prof. Ying Cui

Aug 2022 - Dec 2022

- Applied PyGRANSO to handle constrained optimization in deep structural optimization; Achieved state-ofthe-art solution quality on various topology optimization problems by using PyGRANSO
- Submitted a first-author paper [3] based on the algorithms, practical techniques, and experimental results

Machine Learning for High Energy Physics

Advisors: Prof. Ju Sun, Prof. Roger Rusack

May 2022 - Nov 2022

• Proposed a sequence-to-sequence model with teacher forcing strategy to predict laser response in ECAL crystals; Submitted a **co-first author paper** [4] based on the experimental results

Scientific Computing.

Monte Carlo & Molecular Dynamics Simulation for Multi-Phase Flow

Advisor: Prof. J. Ilja Siepmann

Nov 2018 - Aug 2020

- Performed molecular dynamics simulations to generate trajectories of particles in water-nitrogen mixture systems and calculated the corresponding physical properties (e.g., pressure and viscosity)
- Applied Gibbs Ensemble Monte Carlo methods to simulate nitrogen-water mixture, and determined the nitrogen solubility in the stretched water phase; Published a paper [8] based on the experimental results

EMPLOYMENT HISTORY

University of Minnesota, Twin Cities

Graduate Research Assistantship from CS&E Graduate Teaching Assistantship from CS&E Graduate Research Assistantship from CEMS

Graduate Teaching Assistantship from CEMS

Minneapolis, MN

Jun 2021 - Jan 2022 & May 2022 - Present

Jan 2022 - May 2022

Sep 2018 - Aug 2020

Jan 2019 - May 2019

TUTORIALS

Deep Learning with Nontrivial Constraints, accepted by SDM23 [proposal] When Deep Learning Meets Constraints, under review at ICASSP2023 [proposal]

PROFESSIONAL SERVICE

Conference Reviewer for Artificial Intelligence and Statistics (AISTATS)

Conference Reviewer for Computer Science and Application Engineering (CSAE)

TEACHING EXPERIENCE

Elementary Computational Linear Algebra

University of Minnesota

Graduate Teaching Assistant. Instructors: Prof. Ju Sun, Prof. Carl Sturtivant

Spring 2022

o Organized recitation sessions, designed quizzes, assignments and exams, and hosted office hours.

Introduction to the Science of Engineering Materials

University of Minnesota

Graduate Teaching Assistant. Instructors: Prof. Jeff Schott, Dr. Renee Christensen

Spring 2019

• Led laboratory sessions, hosted office hours, and graded homework assignments and exams.

HONORS AND AWARDS

UMII Seed Grant Awards, University of Minnesota	2021
Erling A. Dalaker Fellowship, University of Minnesota	2019
Outstanding Graduate, Nanjing University	2018
o Aegon-Industrial Fund Management Company Scholarship, Top 2%, Nanjing University	2017
 National Scholarship, Top 2%, Ministry of Education of China 	2016
\circ Elite Program Scholarship $ imes$ 3, Top 4%, Nanjing University	2015, 2016, 2017