10. Aufgabenblatt

(Besprechung in den Tutorien 09.01.2023–13.01.2023)

Aufgabe 1. O-Notation

Welche der folgenden Beziehungen sind korrekt?

- (a) $n^{10} \in O((1,001)^n)$
- (b) $2^n + n \in O(2^n \cdot n)$
- (c) $3^n \in O(2^n \cdot n^3)$
- (d) $(\ln n)^2 \in O(\sqrt{n})$

Aufgabe 2. Nichtdeterministische Turing-Maschinen

(a) Geben Sie eine nichtdeterministische Turing-Maschine M an, sodass:

$$T(M) = \{ww \mid w \in \{0, 1\}^*\}.$$

(b) Zeigen Sie, dass die folgende Sprache in NP liegt:

 $B := \{w \in \{0,1\}^* \mid w \text{ ist keine Binärdarstellung einer Primzahl}\}.$

Geben Sie dafür die prinzipielle Arbeitsweise einer nichtdeterministischen Turing-Maschine M mit T(M) = B und $time_M(n) \in O(n^c)$ an, wobei $c \in \mathbb{N}$.

Hinweis: Sie dürfen verwenden, dass die Sprache

$$L = \{ w \# a \# b \in \{0, 1, \#\} \mid w, a, b \in \{0, 1\}^* \text{ und } w = a \circ b \}$$

in P ist, wobei o zwei Binärzahlen multipliziert.

Aufgabe 3. 2-Coloring

Betrachten Sie das 2-Coloring-Problem.

2-Coloring

Eingabe: Ein ungerichteter Graph G = (V, E).

Frage: Gibt es eine totale Funktion $f: V \to \{1, 2\}$, sodass für jede Kante $\{u, v\} \in E$ gilt, dass $f(u) \neq f(v)$?

- 1. Zeigen Sie, dass 2-Coloring in NP liegt.
- 2. Zeigen Sie, dass 2-Coloring in P liegt.

Aufgabe 4. PROBLEME IN NP

Zeigen Sie, dass die folgenden Probleme in NP liegen.

1. **VERTEX COVER**

Eingabe: Ein ungerichteter Graph G = (V, E) und $k \in \mathbb{N}$.

Frage: Gibt es eine Knotenmenge $X \subseteq V$ der Größe höchstens k, sodass für jede Kante $e \in E$ gilt, dass $e \cap X \neq \emptyset$?

2. CYCLE COLORING

Eingabe: Ein ungerichteter Graph G = (V, E).

Frage: Gibt es eine totale Funktion $f: V \to \{1, 2, 3\}$, sodass

- für jede Kante $\{u,v\} \in E$ gilt: $f(u) \neq f(v)$ und
- jeder Kreis in G enthält drei Knoten v_1 , v_2 und v_3 mit $f(v_1) = 1$, $f(v_2) = 2$ und $f(v_3) = 3$?