يسم الله الرحمن الرحيم

نظریه زبانها و ماشینها

جلسه ۸

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان

معكوس

○ Reverse: $L^R = \{ w_1 ... w_k \mid w_k ... w_1 \in L \}$

را به N' اتوماتای زبان منظم A و اتوماتای متناهی $N = (Q, \Sigma, \delta, q_0, F)$. اتوماتای O را به صورت زیر میسازیم:

- همه فلش ها برعكس شوند.
- حالت شروع N، به عنوان تنها حالت پذیرش در N' در نظر گرفته شود.
 - ایجاد حالت شروع p0 به صورت:

$$\delta(p_0, \epsilon) = F$$

مثال

- تاکنون دیدیم که یک زبان منظم است اگر یک اتوماتای متناهی برای آن وجود داشته باشد.
 - اکنون قصد داریم روش دیگری برای ارائه یک زبان منظم معرفی کنیم.
 - یک روش برای توصیف زبان منظم، استفاده از مجموعه سمبلهای عبارات منظم است.
- یک عبارت منظم، یک زبان منظم را با استفاده از چند زبان ساده و برخی عملگرهای منظم توصیف می کند.

• عبارات منظم با انجام متوالی برخی قوانین بازگشتی روی اجزا پایهای و به روشی مشابه ساخت عبارات ریاضی ایجاد میشوند.

○ مثال:

$$(5+3) \times 4 = 32 =$$
Number

$$(a \cup b)a^* = \{a, b, aa, ba, aaa, baa, \ldots\} =$$
Regular language

DEFINITION 1.52

Say that R is a **regular expression** if R is

- 1. a for some a in the alphabet Σ ,
- $2. \, \varepsilon,$
- **3.** ∅,
- **4.** $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions,
- **5.** $(R_1 \circ R_2)$, where R_1 and R_2 are regular expressions, or
- **6.** (R_1^*) , where R_1 is a regular expression.

In items 1 and 2, the regular expressions a and ε represent the languages $\{a\}$ and $\{\varepsilon\}$, respectively. In item 3, the regular expression \emptyset represents the empty language. In items 4, 5, and 6, the expressions represent the languages obtained by taking the union or concatenation of the languages R_1 and R_2 , or the star of the language R_1 , respectively.

inductive definition

○ مثال براى الفباى باينرى:

First, the symbols 0 and 1 are shorthand for the sets $\{0\}$ and $\{1\}$.

So $(0 \cup 1)$ means $(\{0\} \cup \{1\})$.

برای اجتماع گاها از سمبل + استفاده میشود. مثلا:

$$R = 0 \cup 1 = 0 + 1$$

 $R=\Sigma$ باشد، ميتوان نوشت $\Sigma=\{0,1\}$ اگر الفبا

○ براى الحاق نيز:

$$R = 0 \circ 1^* = 01^* = 0(1^*)$$

○ مثال:

$$(0+1) 0 \longrightarrow \{00,10\}$$

$$(0+1)(0+\varepsilon) \longrightarrow \{00,0,10,1\}$$

○ مثال:

$$\{\varepsilon, a, aa, aaa, \ldots\}$$

$$(0+1)^*$$
 All binary strings

• عبارت زیر همه رشتههای باینری با اندازه حداقل دو که سمبل اول و آخر یکسانی دارند را تولید میکند:

$$0(0+1)*0 + 1(0+1)*1$$

- تقدم كدام عملگر بالاتر است؟ *
- تقدم كدام عملگر پايينتر است؟ +
- پرانتزها ممکن است تقدم را تغییر دهند.

○ مثال: همه رشتههایی که به aa ختم میشوند؟ (الفبای {a,b})

$$(a+b)^*aa$$

EXAMPLE **1.53**

In the following instances, we assume that the alphabet Σ is $\{0,1\}$.

 $0*10* = \{w | w \text{ contains a single 1} \}.$

EXAMPLE **1.53** ------

In the following instances, we assume that the alphabet Σ is $\{0,1\}$.

 $\Sigma^* \mathbf{1} \Sigma^* = \{ w | w \text{ has at least one 1} \}.$

EXAMPLE **1.53**

In the following instances, we assume that the alphabet Σ is $\{0,1\}$.

 Σ^* 001 $\Sigma^* = \{w | w \text{ contains the string 001 as a substring}\}.$

EXAMPLE **1.53**

In the following instances, we assume that the alphabet Σ is $\{0,1\}$.

 $1^*(01^+)^* = \{w | \text{ every 0 in } w \text{ is followed by at least one 1} \}.$

 R^{+} has all strings that are 1 or more concatenations of strings from R.

$$R^{+} \cup \varepsilon = R^{*}$$
.

EXAMPLE **1.53**

In the following instances, we assume that the alphabet Σ is $\{0,1\}$.

 $(\Sigma\Sigma)^* = \{w | w \text{ is a string of even length}\}.$

EXAMPLE **1.53** ------

In the following instances, we assume that the alphabet Σ is $\{0,1\}$.

- **6.** $(\Sigma\Sigma\Sigma)^* = \{w | \text{ the length of } w \text{ is a multiple of 3} \}.$
- 7. $01 \cup 10 = \{01, 10\}.$
- **8.** $0\Sigma^*0 \cup 1\Sigma^*1 \cup 0 \cup 1 = \{w | w \text{ starts and ends with the same symbol}\}.$
- **9.** $(0 \cup \varepsilon)1^* = 01^* \cup 1^*$.

The expression $0 \cup \varepsilon$ describes the language $\{0, \varepsilon\}$, so the concatenation operation adds either 0 or ε before every string in 1*.

EXAMPLE **1.53** ------

In the following instances, we assume that the alphabet Σ is $\{0,1\}$.

10.
$$(0 \cup \varepsilon)(1 \cup \varepsilon) = \{\varepsilon, 0, 1, 01\}.$$

11. $1^*\emptyset = \emptyset$.

Concatenating the empty set to any set yields the empty set.

12. $\emptyset^* = \{ \varepsilon \}.$

The star operation puts together any number of strings from the language to get a string in the result. If the language is empty, the star operation can put together 0 strings, giving only the empty string.

مثال

• عبارت منظمی بنویسید که زبان زیر را توصیف کند:

 $\{w \mid w \text{ ends with } b \text{ and does not contain } aa\}$

پاسخ:

$$(b \cup ab)^+$$