Amendment to the Claims

<u>12</u>	9. (new) A method of making mesoporous silica materials, comprising the steps of
(a)	combining a silica precursor with an aqueous solvent, an acid and a surfactant
having an	ammonium cation into a silica precursor solution,
(b)	templating the silica precursor with the surfactant and obtaining the mesoporous
material fr	om the templated silica precursor,
(c)	forming said silica precursor solution into a preform; and
(d)	rapidly evaporating said aqueous solvent from said preform for obtaining the
mesoporo	as material, wherein the improvement comprises:
	(i) providing said aqueous solvent in an amount resulting in complete
hydrolysis	and providing said acid in an amount maintaining a hydrolyzed precursor and
avoiding g	relation or precipitation; and
	(ii) providing said surfactant and said silica precursor are in a mole ratio that
is above a	lower mole ratio that produces a non-porous silica phase and below an upper mole
ratio that p	produces a lamellar phase.
130	0. (new) The method as recited in claim 129, wherein said lower mole ratio is about
<u>0.05.</u>	
13	1. (new) The method as recited in claim 129, wherein said upper mole ratio is about
0.3.	
132	2. (new) The method as recited in claim 129, wherein said acid is added in an
amount res	sulting in a pH of said silica precursor solution of from about 1 to about 4.
133	3. (new) The method as recited in claim 132, wherein said pH is about 2.

134. (new) The method as recited in claim 129, wherein the step of forming includes		
diluting with an alcohol.		
135. (new) The method as recited in claim 134, wherein said alcohol is ethanol.		
136. (new) The method as recited in claim 129, wherein said aqueous solvent, said		
acid, and said surfactant are premixed before combining with said silica precursor.		
137. (new) The method as recited in claim 129, wherein said mesoporous material is in		
a geometric form selected from the group consisting of fiber, powder, and film.		
138. (new) The method as recited in claim 129, wherein said forming is spin-casting.		
139. (new) The method as recited in claim 129, wherein said forming is spraying.		
140. (new) The method as recited in claim 129, further comprising adding a pre-		
polymer or a polymer to said silica precursor solution making a pituitous mixture.		
141. (new) The method as recited in claim 129, wherein said forming is drawing.		
142. (new) The method as recited in claim 129, wherein said forming is squeegeeing.		
143. (new) The method as recited in claim 129, further comprising the step of adding a		
metal compound to the silica precursor solution.		
144. (new) The method as recited in claim 143, wherein said metal compound is		
selected from the group consisting of metal halide, metal nitrate, and combinations thereof.		
145. (new) The method as recited in claim 144, wherein said metal halide is a metal		
chloride.		
146. (new) The method as recited in claim 144, wherein said metal is selected from		
the group of aluminum, iron and combinations thereof.		
147. (new) The method as recited in claim 129, wherein said silica precursor is an		
alkoxide silica precursor or a tetrachlorosilane.		

148.	(new) The method as recited in claim 129, wherein said aqueous solvent amount
is characteriz	ed by a ratio of said aqueous solvent to said silica precursor of about 7.
149.	(new) The method as recited in claim 129, wherein said acid amount is
characterized	by a ratio of said acid to said silica precursor of about 0.1.
150.	(new) The method as recited in claim 129, further comprising adding a swelling
agent to the s	ilica precursor solution.
151.	(new) The method as recited in claim 150, wherein said swelling agent is 1,3,5-
trimethylbenz	zene.
152.	(new) The method as recited in claim 129, further comprising the step of
calcining the	mesoporous material.
153.	(new) A method of making a mesoporous silica film, comprising the steps of
(a)	combining a silica precursor with an aqueous solvent, an acid and a surfactant
having an am	monium cation into a silica precursor solution,
(b)	templating the silica precursor with the surfactant and obtaining the mesoporous
material from	the templated silica precursor,
(c)	forming said silica precursor into a preform; and
(d)	rapidly evaporating said aqueous solvent from said preform for obtaining the
mesoporous n	naterial, wherein the improvement comprises:
	(i) said silica precursor is tetraethoxysilane;
	(ii) providing said aqueous solvent in a superstoichiometric amount and
providing said	d acid in an amount maintaining a hydrolyzed precursor and avoiding gelation or
precipitation;	

	(iii) providing said surfactant and said silica precursor in a mole ratio that is
above a lowe	r mole ratio that produces a non-porous silica phase and below and upper mole ratio
that produces	a lamellar phase; and
	(iv) said forming includes diluting with an alcohol.
154.	(new) The method as recited in claim 153, further comprising adding a pre-
polymer or a	polymer to said silica precursor solution making a pituitous mixture.
155.	(new) The method as recited in claim 153, wherein said rapidly evaporating is by
spin-casting.	
156.	(new) A method of making a mesoporous film on a substrate, the method
comprising th	e steps of:
(a)	combining a silica precursor with an aqueous solvent, an acid catalyst and an
ammonium ca	ationic surfactant into a precursor solution;
(b)	dispensing said precursor solution onto the substrate;
(c)	forming a film by evaporation of the solvent in less than 5 minutes; and
(d)	heating the film on the substrate to a temperature sufficient to decompose the
surfactant, the	ereby producing a mesoporous film on the substrate.
157.	(new) The method of claim 156 wherein the precursor solution is a silica
precursor solu	ation and wherein the surfactant and the silica precursor solution are in a mole ratio
that is above a	a lower mole ratio that produces a non-mesoporous silica phase and below an upper
mole ratio tha	t produces a lamellar phase.
158.	(new) The process of claim 156, wherein the film exhibits an index of refraction
between 1.16	and that of silica.
159.	(new) A process to form mesostructured films, comprising:

167.	(new) A process to form a mesoporous structure, comprising:
(a)	preparing a precursor sol containing a soluble source of silica, an alcohol and
water solvent	, an ammonium cationic surfactant, and an acid catalyst, wherein said solvent is
provided in a	n amount resulting in complete hydrolysis and said acid catalyst is in an amount to
maintain a hy	drolyzed precursor and to avoid gelation or precipitation in said precursor sol;
(b)	forming the precursor sol into a preform;
(c)	evaporating said solvent from the preform at a rate that forms a mesostructured
material; and	
(d)	calcining the mesostructured material to form a mesoporous structure.
168.	(new) The process of claim 167, wherein said precursor sol contains alcohol
which is a by	product of hydrolysis, and said mesoporous structure is a film.
169.	(new) The process of claim 167, wherein said preform is a droplet, said alcohol is
a byproduct of hydrolysis, and said sol is spray dried to form a powder.	
170.	(new) The process of claim 167, wherein said drying is preformed in less than 5
minutes.	
171.	(new) The process of claim 167, wherein said precursor sol contains dilutant
alcohol, and v	wherein the mesoporous structure is a film.
172.	(new) The process of claim 167, wherein the mesoporous structure is a film and
wherein the fi	lm exhibits an index of refraction of between 1.16 and that of silica.
173	(new) The process of claim 167, wherein the said precursor sol contains alcohol
which is a by	product of hydrolysis, and wherein said mesostructure is a film.
174.	(new) The process of claim 173, wherein the film exhibits an index of refraction
of between 1.	16 and that of silica.

175.	(new) The process of claim 167, wherein said preform is a droplet, wherein said
alcohol is a b	yproduct of hydrolysis, and wherein said precursor sol is spray dried.
176.	(new) The process of claim 167, wherein said evaporating is performed in less
than 5 minute	es.
177.	(new) The process of claim 167, wherein said soluble source of silica includes a
silica alkoxid	e precursor or tetrachlorosilane.
178.	(new) A process to form a mesoporous structure, comprising:
(a)	preparing a precursor sol containing a soluble source of silica, an alcohol and
water solvent	, an ammonium cationic surfactant, and an acid catalyst, wherein said solvent is
provided in a	n amount resulting in complete hydrolysis and said acid is in amount to maintain a
hydrolyzed p	recursor and to avoid gelation or precipitation in said precursor sol;
(b)	forming the precursor sol into a preform;
(c)	evaporating said solvent from the preform at a rate that forms a mesostructured
material, whe	erein said mesostructured material contains surfactant; and
(d)	calcining the mesostructured material to form a mesoporous structure.
179.	(new) A process to form a mesostructure, comprising:
(a)	preparing a precursor sol containing a soluble source of silica, water and alcohol
solvent, an ar	nmonium cationic surfactant and an acid catalyst; and
(b)	evaporating said solvent in less than 5 minutes to cause the formation of a
mesostructure	e, wherein said mesostructure contains surfactant.
180.	(new) The process of claim 179, wherein the mesostructure is a film, and wherein
the film exhib	pits an index of refraction of between 1.16 and that of silica.
181.	(new) A process to form a mesostructure, comprising:

(a)	preparing a precursor sol containing a soluble source of silica, a water and alcohol
solvent, an ar	nmonium cationic surfactant and an acid catalyst, and
(b)	evaporating said solvent in less than 5 minutes to cause the formation of a
mesostructure	<u>e.</u>
182.	(new) The process of claim 181, wherein said solvent is evaporated in less than 1
minute.	
183.	(new) The process of claim 181, wherein said solvent is evaporated in less than
10 seconds.	
184.	(new) The process of claim 183, wherein the mesostructure is a film, and wherein
the film exhib	pits an index of refraction of between 1.16 and that of silica.
185.	(new) The process of claim 181, wherein the said precursor sol contains both
dilutant alcoh	ol and alcohol which is a byproduct of hydrolysis, and wherein said mesostructure
<u>is a film.</u>	
186.	(new) The process of claim 181, wherein said preform is a droplet, said alcohol is
a byproduct o	f hydrolysis, and said sol is spray dried.
187.	(new) The process of claim 181, wherein the ammonium cationic surfactant
further includ	es alkyl triethylammonium chloride or bromide surfactants with different chain
lengths.	

188. - 189.

(canceled)