Machine Learning for Software Engineering

Luigi Ciuffreda – 0351898 - Università di Roma Tor Vergata a.a. 2023/2024

AGENDA

- Introduzione (Contesto, obiettivo dello studio)
- Progettazione (Strumenti utilizzati, etc..)
- Variabili (Classificatori, tecniche, metriche)
- Risultati
- Conclusioni
- Minacce alla validità
- Link utili

INTRODUZIONE – Contesto

Le aziende spendono miliardi di dollari ogni anno per gestire i bug nel software, un costo che potrebbe essere drasticamente ridotto attraverso tecniche avanzate di previsione. Il testing, sebbene cruciale per garantire qualità e affidabilità, è spesso un processo costoso e complesso che richiede un'enorme quantità di risorse.

• **Soluzione:** usare il machine learning che fornisce una soluzione più efficiente, sfruttando i dati storici per identificare automaticamente le parti del codice più a rischio di contenere bug. Questo approccio consente ai team di sviluppo di focalizzare i loro sforzi di testing sulle aree più critiche del software, migliorando la qualità complessiva e ottimizzando l'uso delle risorse.

INTRODUZIONE – Obiettivi dello Studio

Costuire un dataset che unisca tutte le informazioni sulla storia passata.

Valutare le prestazioni dei modelli al variare delle tecniche utilizzate.

Individuare quali sono le tecniche migliori che aumentano l'accuratezza dei classificatori.

PROGETTAZIONE – Strumenti Utilizzati

Per sapere se una classe è stata buggy oppure no, possiamo utilizzare vari strumenti che ci permettono di analizzare e tracciare i problemi nei progetti.

Per analizzare i progetti di **BOOKKEEPER** e **ZOOKEEPER** utilizziamo i seguenti strumenti:

- JIRA: Fornisce una visione dettagliata delle revisioni e delle modifiche che hanno risolto i bug, aiutando a identificare le classi che sono state buggy.
- **Git:** Version Control System usato per raccogliere i commit.
- WEKA: software utilizzato per la creazione e implementazione di modelli di machine learning
- ACUME: utilizzato per il calcolo della metrica NPofB20

PROGETTAZIONE - Individuazione Classi Buggy

- Come otteniamo i dati relativi alla bugginess delle classi?
 - i progetti considerati utilizzando il sistema di *issue tracking* JIRA, che riporta informazioni riguardanti tutti i bug scoperti e la loro soluzione in dei ticket.
- Ogni bug ha un ciclo di vita:

- Le classi in cui il bug è presente sono buggy dalla relase IV alla realease FV.
- L'insieme di release che vanno dalla IV ad OV viene chiamato Affected Version (AV)
- Ogni classe che viene associata ad un ticket, deve essere etichettata come buggy dall'introduzione del bug (IV) fino al momento in cui viene risolto (FV).
- I valori di **OV** e di **FV** sono riportati sempre nei ticket di Jira, visto che indicano la creazione del ticket e la risoluzione dello stesso.

PROGETTAZIONE - Individuazione Classi Buggy

- PROBLEMA: non tutti i ticket JIRA contengono l'indicazione relativa alla IV, che però è necessaria per il labeling delle classi.
- SOLUZIONE: assumiamo esista una proporzionalità fissa tra l'intervallo di tempo (IV,OV) e l'intervallo (OV,FV).
- La tecnica che ci permette di calcolare il valore di IV viene chiamata **proportion**, che permette di calcolare una costante di proporzionalità *p*, per tutti i ticket in cui IV è nota viene definita nel seguente modo:

$$p = \frac{FV - IV}{FV - OV}$$

• Per tutti gli altri ticket la IV la calcoliamo così:

$$IV = FV - (FV - OV) * p$$

PROGETTAZIONE – Metriche Scelte

Il dataset utilizzato per addestrare i modelli di predizione è composto dalle seguenti metriche:

Nome	Descrizione	
Size(LOC)	Numero di linee di codice.	
LOC Touched	Somma delle LOC modificate.	
NR	Numero di revisioni.	
Nfix	Numero di correzioni di difetti.	
Max LOC Touched	Massimo delle linee di codice aggiunte in una singola revisione.	
Churn	Valore assoluto della differenza tra linee aggiunte e rimosse	
maxChurn	Massima variazione di linee di codice su tutte le revisioni.	
AverageChurn	Media della variazione di linee di codice su tutte le revisioni.	
Max LOC Added	Massimo delle linee di codice aggiunte in una singola revisione.	
Age	Età della classe.	

PROGETTAZIONE - Valutazione dei Classificatori

• Per valutare i classificatori, utilizziamo la tecnica di validazione «walk-forward», adatta per dati temporali come le serie storiche. Il dataset viene suddiviso in gruppi ordinati temporalmente secondo le release: in ogni iterazione, il training set (insieme di dati utilizzato per addestrare il modello) comprende le prime (k-1) release, mentre il test set (insieme di dati utilizzato per valutare la performance del modello) è costituito dalla k-esima release.

VARIABILI – Classificatori, tecniche, metriche

Classificatori	Tecniche	Metriche
IBK	Nessun Filtro	Precision
Naive Bayes	Feature Selection (Best First)	Recall
Random Forest	Sampling (SMOTE)	AUC
	Sensitive Learning (CFN = 10*CFP)	Карра
	Sensitive Threshold	NPofB20

RISULTATI – Bookkeeper: Precision

Le **combinazioni migliori** sono:

IBK con NO_SAMPLING e SMOTE, con COST_SENSITIVE e SENZA, NO_SELECTION.
RF con NO_SELECTION, con NO_SAMPLING, SMOTE, NO_COST_SENSITIVE

Le **peggiori combinazioni** sono:

NB con NO_SAMPLING, NO_SELECTION, SENSITIVE_LEARNING; RF con SMOTE, NO_SELECTION e BEST_FIRST, SENSITIVE_THRESHOLD e SENSITIVE LEARNING

RISULTATI – Bookkeeper: Recall

Le **migliori combinazioni** sono: RF con BEST_FIRST, NO_SELECTION, SENSITIVE_LEARNING, SENSITIVE_THRESHOLD.

Le combinazioni peggiori sono:
IBK sia con COST_SENSITIVE che
senza, con BEST_FIRST,
NO_SELECTION sia con
NO_SAMPLING che con SMOTE

RISULTATI – Bookkeeper: NPofB20

Le migliori combinazioni sono:
IBK con BEST_FIRST, NO_SAMPLING,
SMOTE, sia con COST_SENSITIVE che
SENZA. RF con BEST_FIRST con
NO_COST_SENSITIVE e
SENSITIVE_THRESHOLD

Le combinazioni peggiori invece sono:
IBK con NO_SELECTION,NO_SAMPLING
e SMOTE, SENSITIVE_LEARNING,
NO_COST_SENSITIVE,
SENSITIVE_THRESHOLD;
RF con NO_SELECTION, NO_SAMPLING
e SMOTE, SENSITIVE_LEARNING,
NO_COST_SENSITIVE,
SENSITIVE THRESHOLD

RISULTATI – Bookkeeper: AUC

Le combinazioni migliori sono:
RF con BEST_FIRST /NO_SELECTION,
NO_SAMPLING e SMOTE, e
NO_COST_SENSITIVE/SENSITIVE_LE
ARNING.

Le **combinazioni peggiori** sono:
NB con BEST_FIRST/NO_SELECTION,
NO_SAMPLING/SMOTE, con
SENSITIVE_THRESHOLD.

RISULTATI – Bookkeeper: Kappa

Le combinazioni migliori sono:
IBK con BEST_FIRST/ NO_SELECTION,
NO_SAMPLING e SMOTE e sotto
NO_COST_SENSITIVE,SENSITIVE_LEARNIN
G, SENSITIVE_THRESHOLD. RF con
NO_SAMPLING/ SMOTE con
NO_COST_SENSITIVE.

Le **peggiori combinazioni** invece sono:
RF con BEST_FIRST/NO_SELECTION,
NO_SAMPLING/ SMOTE,
SENSITIVE_LEARNING/SENSITIVE_THRES
HOLD

RISULTATI – ZooKeeper: Precision

Le **combinazioni migliori** sono:

NO_COST_SENSITIVE

IBK con
NO_SELECTION,NO_SAMPLING/SMOTE,
con
NO_COST_SENSITIVE/SENSITIVE_LEARNIN
G/SENSITIVE_THRESHOLD;
RF con NO_SELECTION,
NO_SAMPLING/SMOTE e

Invece le **combinazioni peggiori** le abbiamo con NB in tutte le possibili combinazioni; RF con SENSITIVE_THRESHOLD, BEST_FIRST, NO SAMPLING e SMOTE.

RISULTATI – ZooKeeper: Recall

Le **combinazioni migliori** sono:

RF con NO_SELECTION,NO_SAMPLING/SMOTE, SENSITIVE_THRESHOLD/SENSITIVE_LEARNING; IBK con

NO_SELECTION,NO_SAMPLING/SMOTE, SENSITIVE_THRESHOLD/SENSITIVE_LEARNING, NO_COST_SENSITIVE.

Le **combinazioni peggiori** invece sono:

IBK con BEST_FIRST,NO_SAMPLING/SMOTE, NO_COST_SENSITIVE, SENSITIVE_LEARNING, SENSITIVE_THRESHOLD; NB con NO_SELECTION, NO_SAMPLING/SMOTE, NO_COST_SENSITIVE, SENSITIVE_LEARNING, SENSITIVE_THRESHOLD.

RISULTATI – ZooKeeper: NPofB20

Le **combinazioni migliori** sono:

IBK con NO_SELECTION,
NO_SAMPLING/SMOTE,
NO_COST_SENSITIVE_SENSITIVE
LEARNING, SENSITIVE_THRESHOLD;
RF con NO_SELECTION, NO_SAMPLING/
SMOTE, NO_COST_SENSITIVE_SENSITIVE
LEARNING, SENSITIVE_THRESHOLD.

Le **combinazioni peggiori** invece:

NB con BEST_FIRST,NO_SAMPLING/ SMOTE, NO_COST_SENSITIVE_SENSITIVE LEARNING, SENSITIVE_THRESHOLD;

RISULTATI – ZooKeeper: AUC

Le **combinazioni migliori** sono le seguenti: NB con NO_SELECTION, NO SAMPLING/ NO_SMOTE, NO_COST_SENSITIVE, SENSITIVE_LEARNING; RF con NO_SELECTION, NO SAMPLING, /SMOTE, NO_COST_SENSITIVE,

Invece le **combinazioni peggiori** sono: NB con BEST_FIRST, NO_SELECTION, NO_SAMPLING/SMOTE sotto SENSITIVE_LEARNING

RISULTATI – ZooKeeper: Kappa

Le **migliori combinazioni** sono le seguenti: IBK con NO_SELECTION,NO_SAMPLING/SMOTE, NO_COST_SENSITIVE,
SENSITIVE_LEARNING,SENSITIVE_THRESHOLD;
RE con NO_SELECTION NO_SAMPLING/

RF con NO_SELECTION,NO_SAMPLING/ SMOTE, NO_COST_SENSITIVE, SENSITIVE_LEARNING,SENSITIVE_THRESH OLD

Le **peggiori combinazioni** invece sono tutte le possibili combinazioni fatte con il classificatore NB.

CONCLUSIONI: Bookkeper

In generale, possiamo affermare che i classificatori RF e IBK mostrano prestazioni superiori rispetto agli altri, anche se le differenze non sono particolarmente marcate. Poiché il nostro obiettivo principale è massimizzare il recall, ovvero ridurre il numero di falsi negativi (FN), alcune combinazioni specifiche si rivelano particolarmente efficaci.

• BOOKKEEPER: una combinazione ottimale è utilizzare il classificatore Random Forest (RF) con le seguenti caratteristiche:

•Feature Selection: Best First.

•Sampling: No Sampling.

•Cost Sensitivity: Sensitive Learning.

Questa configurazione non solo ottimizza il recall, ma fornisce anche buoni risultati per le altre metriche.

CONCLUSIONI: Zookeeper

- **ZOOKEEPER**: Per massimizzare il recall, le configurazioni raccomandate sono:
 - •Feature Selection: No Selection.
 - •Sampling: No Sampling o SMOTE.
 - •Cost Sensitivity: Sensitive Threshold o Sensitive Learning.

Anche in questo caso, queste configurazioni garantiscono buone performance anche per le altre metriche.

Possiamo concludere che non esiste un classificatore nettamente migliore rispetto agli altri; non esiste una soluzione perfetta per ogni scenario ("*No Silver Bullet*"). Tuttavia, i risultati ottenuti su ZOOKEEPER risultano leggermente migliori, probabilmente a causa della diversa dimensione dei dataset ("*Size Matters*").

MINACCE ALLA VALIDITÀ

- Le tecniche di undersampling e oversampling non sono state incluse nella valutazione dei classificatori per evitare la perdita di informazioni e mantenere l'efficienza computazionale.
- Per limitare lo snoring:
 - L'ultima metà delle release non viene considerata
 - È stato utilizzato «incremental» che è un approccio conservativo e potrebbe approssimare le performance dei classificatori.

LINK UTILI

https://github.com/luigiciuf/ISW_2

SONAR CLOUD

https://sonarcloud.io/project/overview?id=luigiciuf_ISW_2

GRAZIE PER L'ATTENZIONE!