Properties of regular languages - The pumping lemma

CHAPTER-4 (PART 1)

Regular Languages

- Regular languages are the languages which are accepted by a Finite Automaton.
- Not all languages are regular

• $L_0 = \{a^k b^k : k \le 0\} = \{\epsilon\}$ is a regular language

• $L_1 = \{a^k b^k : k \le 1\} = \{\epsilon, ab\}$ is regular

• $L_2 = \{a^k b^k : k \le 2\} = \{\epsilon, ab, aabb\}$ is regular

• $L_3 = \{a^k b^k : k \le 3\}$ is regular

• \forall n \geq 0, L_n = {a^kb^k : k \leq n} is regular

- However L = $\{a^nb^n : n\ge 0\} = U_{n\ge 0} L_n$ doesn't seem to be a regular language at all!
- We need an infinite number of states to build this automaton!

- However L = $\{a^nb^n : n\ge 0\} = \bigcup_{n\ge 0} L_n$ doesn't seem to be a regular language at all!
- We need an infinite number of states to build this automaton!
- (Observe that you cannot use the fact that regular languages are closed under union because we have an infinite union)

Is this a proof?

```
NO! In fact consider:
```

L' = {s : s contains equal number of a and b}

L" = {s : s contains equal number of ab and ba}

L' is indeed not regular but L'' is regular!

WE NEED A MATHEMATICAL PROOF!!!

A proof that there is no FA that accepts L or L'.

Pigeonhole Principle

• If we have n holes and m pigeons (m>n) then there is a hole with at least two pigeons.

Pigeonhole Principle

• If we have n holes and m pigeons (m>n) then there is a hole with at least two pigeons.

PP and Finite Automata

• If an automaton with n states accepts a string with length m (m≥n) then for every accepting path there should be at least one repeating state.

$$s = aaba$$

PP and Finite Automata

• If an automaton with n states accepts a string with length m (m≥n) then for every accepting path there should be at least one repeating state.

$$s = aaba$$

PP and Finite Automata

• If an automaton with n states accepts a string with length m (m≥n) then for every accepting path there should be at least one repeating state.

Any string of the form aab*a should be accepted!

The pumping lemma

```
For every <u>infinite</u> <u>regular</u> language L there exists a pumping length n > 0 such that for any string s in L with length |s| \ge n we can write s = xyz with |xy| \le n and |y| \ge 1 such that xy^iz in L for every i \ge 0.
```

Proof

- If L is regular then there exists a DFA M which accepts L. Set n to be M's number of states.
- L is infinite, there exists a string s with length greater than n.
- The number of states is n, the accepting path for s is of length at most n.
- The string is of length at least n, there is a part in the path that is repeated.

Proof

- Split s into 3 parts x, y, z with y being the first repeated part.
- Since we have n states the first repetition should take place ($|y| \ge 1$) in at most n transitions ($|xy| \le n$).
- Since the path under y is a loop we can follow it as many times as we want (maybe none).
- Thus xy^iz for any $i \ge 0$ should lead us to the same accepting state as xyz.

• Given is an infinite language L.

• Given is an infinite language L.

(What if L is finite?)

- Given is an infinite language L
- If L is regular

- Given is an infinite language L
- If L is regular
- Pumping lemma holds:
 - There exists a pumping length n such that
 - for all proper strings s in L
 - there is a splitting of s in x,y,z (with the desired properties) such that
 - for all i xyⁱz is in L.

- ► Given is an infinite language L
- ► If L is regular
- ► Pumping lemma holds:
 - There exists a pumping length n such that
 - for all proper strings s in L
 - there is a splitting of s in x,y,z (with the <u>desired properties</u>) such that
 - ► for all i xyⁱz is in L.

 $|y| \ge 1$ and $|xy| \le n$

- Given is an infinite language L
- If L is regular the pumping lemma holds.
- The negation of the pumping lemma:
 - For all pumping lengths n
 - there exists a proper string s in L such that
 - for every possible splitting of s in x,y,z (with the desired properties)
 - there is an i for which xyiz is not in L.

- Given is an infinite language L
- Assume L is regular (pumping lemma holds)
- Prove the negation of the pumping lemma:
 - Fix an arbitrary pumping length n.
 - Specify a proper string s in L.
 - Show that for every possible splitting of s in x,y,z (with the desired properties),
 - there is an i for which xyiz is not in L.

- Given is an infinite language L
- Assume L is regular (pumping lemma holds)
- Prove the negation of the pumping lemma:
 - Fix an arbitrary pumping length n.
 - Specify a proper string s in L.
 - Show that for every possible splitting of s in x,y,z (with the desired properties),
 - there is an i for which xyiz is not in L.
- Contradiction!!!

- Given is an infinite language L
- Assume L is regular (pumping lemma holds)
- Prove the negation of the pumping lemma:
 - Fix an arbitrary pumping length n.
 - Specify a proper string s in L.
 - Show that for every possible splitting of s in x,y,z (with the desired properties),
 - there is an i for which xyiz is not in L.
- Contradiction!!! L is not regular

Example

• L = $\{a^nb^n : n \ge 0\}$ is not regular.

Proof:

Assume that L is regular. The pumping lemma holds!

Example

• L = $\{a^nb^n : n \ge 0\}$ is not regular.

Proof:

Fix an arbitrary pumping length *k* for L.

• L = $\{a^nb^n : n \ge 0\}$ is not regular.

Proof:

The string $s = a^k b^k$ should be in the language.

• L = $\{a^nb^n : n \ge 0\}$ is not regular.

Proof:

s is proper: |s| = 2k is greater than k

• L = $\{a^nb^n : n \ge 0\}$ is not regular.

Proof:

Consider all possible splittings of a^kb^k in the form xyz with the <u>desired</u> <u>properties</u>:

- $|xy| \le k$ and
- $|y| \ge 1$

• L = $\{a^nb^n : n \ge 0\}$ is not regular.

<u>Proof:</u>

Consider all possible splittings of a^kb^k in the form xyz with the <u>desired</u> <u>properties</u>:

- |xy| ≤ k and
- |y| ≥ 1

• L = $\{a^nb^n : n \ge 0\}$ is not regular.

<u>Proof:</u>

Consider all possible splittings of a^kb^k in the form xyz with the <u>desired</u> <u>properties</u>:

- |xy| ≤ k and
- |y| ≥ 1

• L = $\{a^nb^n : n \ge 0\}$ is not regular.

<u>Proof:</u>

Consider all possible splittings of a^kb^k in the form xyz with the <u>desired</u> <u>properties</u>

• $y = a^m$, for $1 \le m \le k$

• L = $\{a^nb^n : n \ge 0\}$ is not regular.

<u>Proof:</u>

Consider all possible splittings of a^kb^k in the form xyz with the <u>desired</u> <u>properties</u>

- $y = a^m$, for $1 \le m \le k$
- for i = 2, $xy^2z = a^{k+m}b^k$ is not in L!

aaaaaaaaabbbbbbbbb

• L = $\{a^nb^n : n \ge 0\}$ is not regular.

Proof:

Consider all possible splittings of a^kb^k in the form xyz with the <u>desired</u> <u>properties</u>

• xy²z is not in L!

CONTRADICTION!

Try it yourself

• Show that the following language is not a regular language:

$$L_{p}' = \{ab^{j}c^{j} \mid j \ge 0\}$$

• Members: a, abc, abbcc, abbbccc, ...

Try it yourself

Show that the following language is not a regular language:

$$L_{p}' = \{ab^{j}c^{j} \mid j \geq 0\}$$

- Negation of the pumping lemma (<u>reminder</u>):
 - Fix an arbitrary pumping length n.
 - Specify a proper string s in L.
 - Show that for every possible splitting of s in x,y,z (with the desired properties),
 - there is an i for which xyiz is not in L.

How to use the pumping lemma

- The pumping lemma mentions that if L is a regular language then it can be pumped.
- The contrapositive is true: If L cannot be pumped then it shouldn't be regular!

Show that L cannot be pumped to prove that L is not regular.

How not to use the pumping lemma

- The pumping lemma mentions that if L is a regular language then it can be pumped.
- The converse is not true: If a language can be pumped this doesn't mean that it is regular!

Do not try to show that L can be pumped in order to prove that L is regular.

For example consider the language

$$L_p = \{a^i b^j c^k : i,j,k \ge 0, \text{ if } i=1 \text{ then } j=k\}.$$

For example consider the language

$$L_p = \{a^i b^j c^k : i,j,k \ge 0, \text{ if } i=1 \text{ then } j=k\}.$$

1. L_p is not regular.

For example consider the language

$$L_p = \{a^i b^j c^k : i,j,k \ge 0, \text{ if } i=1 \text{ then } j=k\}.$$

1. L_p is not regular.

Proof:

• $L_p' = \{ab^jc^j : j \ge 0\}$ is not regular.

For example consider the language

$$L_p = \{a^i b^j c^k : i,j,k \ge 0, \text{ if } i=1 \text{ then } j=k\}.$$

1. L_p is not regular.

Proof:

- $L_p' = \{ab^jc^j : j \ge 0\}$ is not regular.
- $L_p' = L_p \cap L(ab*c*)$.

For example consider the language

$$L_n = \{a^i b^j c^k : i,j,k \ge 0, \text{ if } i=1 \text{ then } j=k\}.$$

1. L_n is not regular.

Proof:

- $L_n' = \{ab^jc^j : j \ge 0\}$ is not regular.
- $L_p' = L_p \cap L(ab*c*)$.
- If L_p was regular then L_p would be regular too.

For example consider the language

$$L_p = \{a^i b^j c^k : i,j,k \ge 0, \text{ if } i=1 \text{ then } j=k\}.$$

2. L_p can be pumped

For example consider the language

$$L_p = \{a^i b^j c^k : i,j,k \ge 0, \text{ if } i=1 \text{ then } j=k\}.$$

2. L_p can be pumped

Proof:

Prove that: There is a pumping length n such that for any proper s in L_p there exists a splitting xyz of s with the desired properties such that for all i xyⁱz is in L_p .

For example consider the language

$$L_p = \{a^i b^j c^k : i,j,k \ge 0, \text{ if } i=1 \text{ then } j=k\}.$$

2. L_p can be pumped

Proof:

Choose pumping length n = 2

• For example consider the language

$$L_p = \{a^i b^j c^k : i,j,k \ge 0, \text{ if } i=1 \text{ then } j=k\}.$$

2. L_{p} can be pumped

Proof:

Choose pumping length n = 2

• For i=0, j=0, k
$$\geq 2$$
 : s = c^k
Set x= ϵ , y = c, z = c^{k-1}
For every i ≥ 0 , xyⁱz is in L_n

• For example consider the language

$$L_p = \{a^i b^j c^k : i,j,k \ge 0, \text{ if } i=1 \text{ then } j=k\}.$$

2. L_p can be pumped

Proof:

Choose pumping length n = 2

• For i=0, j≥1, k ≥0 : $s = b^{j}c^{k}$ Set x= ϵ , y = b, z = $b^{j-1}c^{k}$ For every i≥0, xyⁱz is in L_n

• For example consider the language

$$L_p = \{a^i b^j c^k : i,j,k \ge 0, \text{ if } i=1 \text{ then } j=k\}.$$

2. L_p can be pumped

Proof:

Choose pumping length n = 2

• For i=1 and any $j \ge 1$: $s = ab^jc^j$ Set $x=\varepsilon$, y = a, $z = b^jc^j$

For every i≥0, xyⁱz is in L_p

For example consider the language

$$L_p = \{a^i b^j c^k : i,j,k \ge 0, \text{ if } i=1 \text{ then } j=k\}.$$

2. L_p can be pumped

Proof:

Choose pumping length n = 2

• For i=2 and any j, $k \ge 0$: $s = aab^{j}c^{k}$ Set $x=\varepsilon$, y = aa, $z = b^{j}c^{k}$

For every i≥0, xyⁱz is in L_p

For example consider the language

$$L_p = \{a^i b^j c^k : i,j,k \ge 0, \text{ if } i=1 \text{ then } j=k\}.$$

2. L_{p} can be pumped

Proof:

Choose pumping length n = 2

• For $i \ge 3$ and any j, $k \ge 0$: $s = aaa^{i-2}b^jc^k$ Set $x=\varepsilon$, y = a, z $aa^{i-2}b^jc^k$

For every i≥0, xyⁱz is in L_p

The Universe

