TensorFlow Extended Part 1

Data Validation & Transform

Armen Donigian

Who am I?

- Computer Science Undergrad degree @UCLA
- Computer Science Grad degree @USC
- 15+ years experience as Software & Data Engineer
- Computer Science Instructor
- Mentor @Udacity Deep Learning Nanodegree
- Real-time wagering algorithms @GamePlayerNetwork
- Differential GPS corrections @Jet Propulsion Laboratory, landing sequence for Mars Curiosity
- Years of experience in design, implementation & productionalization of machine learning models for several FinTech underwriting businesses
- Currently, head of personalization & recommender systems @Honey
- Available for Consulting (donigian@LevelUpInference.com)

Goals, Breadth vs Depth...

Goal: Provide context of the *requirements*, *tools* & *methodologies* involved with developing a production grade machine learning pipeline.

Slides will provide you with breadth.

Notebooks will provide you with *depth* (i.e. implementation details).

Lesson Roadmap

Day 1: Part 1

- Overview of TFX: What problems it can help you solve (30 mins)
 - a. What is TFX & Why Should You Care?
 - b. What can you leverage? TFX Ecosystem
 - c. Which problems can TFX help you solve?
 - d. TFX Components

10 min Break

- TensorFlow Data Validation Overview (45 mins)
 - a. Review most common real world challenges!
 - i. Which TFDV methods help you solve them
 - b. What are common types of Skews?
 - c. Dataset Overview
 - d. Schema Inference & Validation
 - e. How to Visualize Data at scale?
 - f. How to detect Data Anomalies?

10 min Break

Day 1: Part 2

- TensorFlow Transform Overview (40 mins)
 - a. Review most common real world transformations!
 - b. Apache Beam & TFT
 - c. Pre-processing using TFT
 - i. TFT Analyzers
 - d. How to use Apache Beam effectively?
 - e. Load dataset, pre-process & train model

10 min Break

- Example Case Study integrating TF Data Validation & Transform (35 mins)
 - a. Review End to End TFDV & TFMA Notebooks

TensorFlow Extended Overview

TensorFlow Extended (TFX)

TFX is...

- A general purpose machine learning platform implemented @Google
- A set of gluable components into one platform simplifying the development of end to end ML pipelines.
- An open source solution to reduce the time to production from months to weeks while minimizing custom, fragile solutions filled with tech debt.
- Used by Google to create & deploy their machine learning models.

Why Should You Care?

Real World ML Use Cases What you first think? **VS...** Data ML Monitoring Verification Code Configuration **Data Collection Analysis Tools** ML Code **Takeaway:** Doing machine learning in real Machine Resource world is HARD! Management **Feature Extraction** Serving Infrastructure Building custom solutions is expensive, duplicative, fragile & leads to tech debt. **Process Management** Tools Hidden Technical Debt in Machine Learning Systems

What Can I Leverage: TFX Ecosystem

Machine Learning Platform Overview

Link to TFX paper

Open Source

Not Public Yet

What Could Go Wrong...

In no particular order...

- What errors are in the data? Finding errors in GBs or TBs w/ O(1000s) of features is hard!
- How do I standardize data input pipeline when there are tens of diverse data storage systems with different formats?
- How do I gain an <u>understanding (analysis or visualization) of GBs or TBs</u> w/ O(1000s) of features?
 - What is a reasonable data schema? How can I define a training vs serving context?
 - Does new data conform to previously inferred schema (validation)?
 - How can I detect when a signal is available in training but not in serving?
- Which data significantly affects the performance of the model?
- How different are the training vs test vs serving sets?
 - Are these differences important? How can I define constraints on distribution of values?
- Which data characteristics do we want to alert on? How sensitive should the alerts be?
- Which part of the data is problematic?
- How can I apply data transformations to GBs or TBs w/ O(1000s) of features in a scalable way?
- How to backfill data with a fix to a known issue?

Click links above to find related research papers & projects.

TFX Pipeline

Components API is also available...

- <u>ExampleGen</u> ingests and splits the input dataset.
- <u>StatisticsGen</u> calculates statistics for the dataset.
- <u>SchemaGen</u> SchemaGen examines the statistics and creates a data schema.
- <u>ExampleValidator</u> looks for anomalies and missing values in the dataset.
- <u>Transform</u> performs feature engineering on the dataset.
- <u>Trainer</u> trains the model using TensorFlow <u>Estimators</u>
- <u>Evaluator</u> performs deep analysis of the training results.
- <u>ModelValidator</u> ensures that the model is "good enough" to be pushed to production.
- <u>Pusher</u> deploys the model to a serving infrastructure.
- <u>TensorFlow Serving</u> for serving.

Components

Data Ingestion	TF Data Validation	TF Transform	TF Estimator	TF Model Analysis	Validation Outcome Good	TF Serving
	StatisticsGen			Evaluator		
	StatisticsGen			Lvaidatoi		
ExampleGen	SchemaGen	Transform			Pusher	I Model Server
	Example Validator			Model Validator		

TensorFlow Data Validation

TensorFlow Data Validation Overview

Better Data, Better Models	Automated schema generation	Integration with Facets (<u>live demo</u>)	Anomaly detection
Compute summary statistics for train/test data	Input feature value ranges	Identify train/test/validation set skew	Detect missing values
Drift detection	Type imputation	Unexpected feature values	Out of range values
Training-Serving skew detection	Environment specific schema	Feature by feature analysis	Wrong feature types
	Schema validation	Compare statistics across two or more data sets	Correct non-conforming data
		Supports visualization of large datasets responsively	

Real World Challenges	What to keep in mind?	How TFDV can help?	
Data contains anomalies	Data anomalies can impact some learners more negatively than others, as well as interpretability & analysis.	tfdv.display_anomalies()	
How to visualize high dimensional data Visualization not only useful for story easier to detect patterns & relations		Integration with <u>Facets</u> , <u>tfdv.visualize_statistics()</u>	
Missing or incomplete data dictionary	Inferring schema for hundreds or thousands of features is challenging!!!	tfdv.infer_schema() tfdv.display_schema()	
Schema Validation	Ensuring features have proper type, range of values, missing values etc (train, eval & serving sets)	tfdv.validate_statistics() validate_instance()	
Need to determine data distribution	Computing summary statistics on at scale is challenging!	tfdv.generate statistics from csv() tfdf.generate statistics from tfrecord()	
Train - Serving Skew	Schema skew, Feature skew, Distribution skew	Previous methods will find skew due to faulty sampling, 3pd dependencies or other causes.	
Categorical feature drift over time	Monitor features during serving for feature drift	L-infinity distance supported	
Common helper methods		get_categorical_numeric_features() get_categorical_features() get_multivalent_features() tfdv.write_schema_text() tfdv.load_schema_text()	

Real World Challenges	What to keep in mind?	How TFDV can help?	
Labels with invalid data	Be skeptical of labels as you are of features.	tfdv.display_anomalies()	
Features with different order of magnitudes	Some learners are sensitive to these differences.	Compare min/max values across features (norm)	
Bugs causing uniformly distributed data (ex 1)	Row numbers, globally incrementing, many unique values which occur w/ same frequency.	Observe output of <u>visualize_statistics()</u>	
Bugs causing uniformly distributed data (ex 2)	Row numbers, globally incrementing, many unique values which occur w/ same frequency.	Observe output of <u>visualize_statistics()</u>	
Unbalanced Feature	Unbalanced features could be expected, but if a feature always has the same value you may have a data bug.	In a Facets Overview, choose "Non-uniformity" from the "Sort by" dropdown.	

TensorFlow Data Validation Visualized

source

Schema Skew

Training schema != Serving data schema

Expected deviations (like target) should be specified via *Environments* field in schema.

default_environment, in_environment or not_in_environment

Scenario:

- Suppose you found a new feature which improved offline model performance
- But after model was deployed to production, online model performance was poor
- After debugging, you discovered that the new feature added wasn't available during serving time

Feature Skew

Feature values during *Training* differ compared to feature values during *Serving*.

Example:

Scenario 1: 3rd Party Dependency

 Data coming from 3rd party systems may & will likely differ between time you train model compared to time model is in production for serving.

Scenario 2: Different code paths between Training vs Serving

- During model training, you're experimenting with various feature engineering methods & algo's
- Unless you have a reproducible & repeatable pipeline which is identical, feature skew will be present.

Distribution Skew

Feature value distribution during <u>Training</u> differ compared to <u>Serving</u>.

Example:

Scenario 1: Often when you're starting a new product, there is a lack of data available for ML.

- You acquire (purchase, crawl etc) data to build initial mode
- After you launch product, the data you collect is unlikely to match distribution of initial training corpus

Scenario 2: You're dealing with a large dataset (does not fit into RAM)

You choose a faulty sampling technique to sub-sample the data

Dataset

Bucket Features

pickup_hour

pickup_month

pickup_day_of_week

dropoff_month

dropoff_hour

dropoff_day_of_week

Dense Float Features

trip_distance

passenger_count

tip_amount

Vocab Features

Categorical Features

bucketize

scale_to_z_score

Transformations

Target to predict: fare_amount

Schema Inference

Works well, especially when...

- Large number of features
- Little or no knowledge of data dictionary
- File formats (CSV for instance), don't contain type info
- Non-conforming rows
- Poor semantics
 - o Think "0001" vs 0001

Data type imputation is as important as missing value imputation

```
# infer schema from training data
schema = tfdv.infer_schema(statistics=train_stats, infer_feature_shape=False)
tfdv.display_schema(schema=schema)
```

	Type	Presence	Valency	Domain
Feature name				
'trip_distance'	FLOAT	required	single	-
'pickup_day_of_week'	INT	required	single	-
'vendor_id'	INT	required	single	-
'tip_amount'	FLOAT	required	single	1
'dropoff_hour'	INT	required	single	-
'dropoff_month'	INT	required	single	2
'pickup_hour'	INT	required	single	-
'pickup_month'	INT	required	single	1
'fare_amount'	FLOAT	required	single	-
'passenger_count'	INT	required	single	-
'dropoff_day_of_week'	INT	required	single	-
'payment_type'	INT	required	single	1
'trip_type'	INT	required	single	-

Freeze Schema

Useful for later usage, serving model via TF Serving.

Human readable, useful for inspection.

Easy to compare & validate against changes in the future.

Freeze Schema

We want to persist our schema so that it can be used by other team members as well as the rest of the TensorFlow Transform & Serving pipeline.

```
In [17]: from tensorflow.python.lib.io import file_io
    from google.protobuf import text_format

file_io.recursive_create_dir(OUTPUT_DIR)
    schema_file = os.path.join(OUTPUT_DIR, 'schema.pbtxt')
    tfdv.write_schema_text(schema, schema_file)

!cat {schema_file}
```

```
feature {
  name: "trip distance"
  value count {
    min: 1
    max: 1
  type: FLOAT
  presence {
   min fraction: 1.0
    min count: 1
feature {
  name: "pickup_day_of_week"
 value count {
    min: 1
    max: 1
  type: INT
  presence
```

Visualize Data

Sanity checks...

- Feature min, max, mean, mode, median
- Randomly assigned values
- Feature correlations
- Class Imbalance
- Variance within each feature, avoid rarely occurring categoricals
- Sanity check data w/ domain knowledge
- Feature contains enough non-missing values (>80% of rows populated)
- Histograms of features (numerical & categorical)
- Feature Cardinality
- Plot of feature moving average

Visualize Data

Sanity checks...

- How big of a difference is there between training vs evaluation sets?
- Does this difference matter?
- Which values are available in training but not in evaluation?
- Can you think of a column which would always be missing in training vs serving?

```
# compute stats over evaluation dataset
eval_stats = tfdv.generate_statistics_from_csv(data_location = EVAL_DATA)
# compare stats of train vs eval data
tfdv.visualize statistics(lhs statistics=eval stats, rhs statistics=train stats,
                            lhs name='EVAL DATA.SET', rhs name='TRAIN DATASET')
   Sort by
   Feature order
                                                Feature search (regex enabled)
                        float(3)
   Features:  int(10)
      ■ EVAL DATA.SET ■ TRAIN DATASET
                                                                                       Chart to show
     Numeric Features (13)
                                                                                       Standard
           count
                   missina
                               mean
                                       std dev
                                                  zeros
                                                              min
                                                                     median
                                                                                      □log □expand □per
     trip distance
           8.000
                       0%
                                9.41
                                          4.95
                                                  2.49%
                                                                         8.7
                                                                                 69.42
                                                                        8.65
                                                                                101.87
          7,999
                                9.35
                                          4.96
                                                  2.61%
     pickup_day_of_week
           8.000
                                4.18
                                          1.95
          7,999
                       0%
                                4.18
                                          1.95
     vendor id
                                                                                    2
           8.000
                       0%
                                1.85
                                          0.36
                                                                                         1K
                                          0.36
                                                                          2
                                                                                    2
           7,999
                                1.85
     tip amount
           8.000
                       0%
                                2.47
                                          3.98
                                                 62.39%
                                                              -0.99
                                                                          0
                                                                                  82.5
           7,999
                       0%
                                 2.4
                                          3.82
                                                    63%
                                                              -0.8
                                                                          0
                                                                                   63
     dropoff_hour
           8,000
                               12.93
                                          5.86
                                                  3.09%
                                                                         13
                                                                                   23
23
                                                                         13
           7.999
                                           5.9
                                                  2.83%
                                                                0
                               13.04
     dropoff_month
           8,000
                       0%
                                1.72
                                          0.73
           7.999
                                1.72
                                          0.72
     pickup hour
           8,000
                       0%
                               12.67
                                          5.75
                                                  2.63%
                                                                         13
                                                                                   23
                                                                         13
                                                                                   23
                                                                0
          7.999
                       0%
                               12.83
                                          5.78
                                                  2.18%
     pickup month
                                1.72
           8,000
                       0%
                                          0.73
           7,999
                                1.72
                                          0.72
```

Data Anomalies

Sanity checks...

- Identify constraints & check whether dataset violates it or not
- Environments allow you to define slightly different schemas for each use case
 - Label will not exist in for serving set

```
# update the schema based on the observed anomalies.
vendor_id = tfdv.get_feature(schema, 'vendor_id')
# we want feature vendor_id to be populated in at least 50% of the examples
vendor_id.presence.min_fraction = 0.5

# validate eval stats after updating the schema
updated_anomalies = tfdv.validate_statistics(eval_stats, schema)
tfdv.display_anomalies(updated_anomalies)
```

No anomalies found.

```
# all features are by default in both TRAINING, EVAL and SERVING environments
schema.default_environment.append('TRAINING')
schema.default_environment.append('EVAL')
schema.default_environment.append('SERVING')

# indicate that 'fare_amount' feature is not in SERVING environment.
tfdv.get_feature(schema, 'fare_amount').not_in_environment.append('SERVING')
serving_anomalies_with_env = tfdv.validate_statistics(
    serving_stats, schema, environment='SERVING')

tfdv.display_anomalies(serving_anomalies_with_env)
```

No anomalies found.

TFDV Exercises

TensorFlow Data Transform

Performs Feature Engineering

TensorFlow Transform

Apache Beam and TFX

- Framework for running batch & streaming data processing jobs
- TFX libraries use Beam for running jobs locally or on compute clusters
 - Direct runner (single node dev)
 - Runners in large deployments orchestrated via <u>Kubernetes</u> or Apache Mesos
- TFX uses <u>Beam Python API</u>
 - Python 2.x now, 3 coming soon
- TFX example on Kubeflow Pipelines

Feature Engineering @ Scale	Transformations
Transform data before it goes into a model. Output is exported as a TensorFlow graph, used for both training & serving.	tft.scale_by_min_max(), tft.scale_to_0_1(), tft.scale_to_z_score()
Create feature embeddings & enriching text features	tft.tfidf(), tft.ngrams(), tft.hash_strings()
Builds transformations into TF graph for your model, so same transformations are applied for train & serving.	Convert strings to integers by generating a vocabulary over all input values
Vocabulary generation	tft.compute_and_apply_vocabulary(), tft.string_to_int()
Normalize values & Bucketization	tft. <u>bucketize()</u>

TensorFlow Transform Visualized

Pre-processing with tf.Transform

tf.Transform works on data at any size! tft.min is an example of one of many <u>analyzers</u> which can run over your entire dataset.

User defined function...
Replace missing values

```
def preprocessing(inputs):
    """tf.transform's callback function for preprocess inputs.
    Args:
      inputs: map from feature keys to raw not-yet-transformed features.
    Returns:
      Map from string feature key to transformed feature operations.
                                                      List of column names which
    outputs = {}
                                                       contain floats
    for key in DENSE FLOAT FEATURE KEYS:
      # Preserve this feature as a dense float, setting nan's to the mean.
      outputs[transformed name(key)] = tft.scale to z score(
          fill in missing(inputs[key]))
    for key in VOCAB FEATURE KEYS:
                                                       Note usages of tft.*
      # Build a vocabulary for this feature.
      outputs[
          transformed name(key) | = tft.compute and apply vocabulary(
              fill in missing(inputs[key]),
              top k=VOCAB SIZE,
                                                   List of column names which contain
              num oov buckets=00V SIZE)
                                                   values which can be split into bins
    for key in BUCKET FEATURE KEYS:
        outputs[transformed name(key)] = tft.bucketize(
          fill in missing(inputs[key]), FEATURE BUCKET COUNT)
    for key in CATEGORICAL FEATURE KEYS:
        outputs[transformed name(key)] = fill in missing(inputs[key])
    fare amount = fill in missing(inputs[LABEL KEY])
    outputs[transformed name(LABEL KEY)] = fare amount
    return outputs
```

Transform using Apache Beam Pipeline

Steps of our pipeline:

- 1) Read in data using CSV reader
- 2) Transform raw training data using a preprocessing pipeline
 - Scale numeric data
 - Replaces missing values
 - Bucketize feature values
- 3) Shuffling data before to improve training
- 4) Output result as TFRecords

```
schema = read schema(schema file)
raw feature spec = get raw feature spec(schema)
raw schema = dataset schema.from feature spec(raw feature spec)
raw data metadata = dataset metadata.DatasetMetadata(raw schema)
with beam. Pipeline (argv=pipeline args) as pipeline:
    with tft beam.Context(temp dir=working dir):
        if input handle.lower().endswith('csv'):
            # read raw train data from csv file
            csv coder = make csv coder(schema)
            raw data = (
                pipeline
                  'ReadFromText' >> beam.io.ReadFromText(
                    input handle, skip header lines=1)
                  'ParseCSV' >> beam.Map(csv coder.decode))
        if transform dir is None:
            # analyze and transform raw training data to produced transform fn
            transform fn = (
                (raw data, raw data metadata)
                 ('Analyze' >> tft beam.AnalyzeDataset(preprocessing)))
            # write transform fn as tf.graph
                transform fn
                ('WriteTransformFn' >>
                   tft beam.WriteTransformFn(working dir)))
        else:
            transform fn = pipeline | tft beam.ReadTransformFn(transform dir)
        # shuffling the data before to improve training
        shuffled data = raw data | 'RandomizeData' >> beam.transforms.Reshuffle()
        # get data and schema separately from the raw data metadata
        (transformed data, transformed metadata) = (
          ((shuffled data, raw data metadata), transform fn)
            'Transform' >> tft beam.TransformDataset())
        # write transformed train data to sink
        coder = example proto coder.ExampleProtoCoder(transformed metadata.schema)
         = (
          transformed data
            'SerializeExamples' >> beam.Map(coder.encode)
            'WriteExamples' >> beam.io.WriteToTFRecord(
              os.path.join(working dir, outfile prefix), file name suffix='.gz')
```

Using Pre-processed data to train a model

tf.Transform prevents train/serve skew!

We do this by creating input functions

Training input function contains the labels... while serving input function does not.

```
def input fn(filenames, tf transform dir, batch size=200):
    """Generates features and labels for training or evaluation.
    Args:
    filenames: [str] list of CSV files to read data from.
    tf transform dir: directory in which the tf-transform model was written
      during the preprocessing step.
    batch size: int First dimension size of the Tensors returned by input fn
    Returns:
    A (features, indices) tuple where features is a dictionary of
     Tensors, and indices is a single Tensor of label indices.
    metadata dir = os.path.join(tf transform dir,
                              transform fn io.TRANSFORMED METADATA DIR)
    transformed metadata = metadata io.read metadata(metadata dir)
    transformed feature spec = transformed metadata.schema.as feature spec()
    transformed features = tf.contrib.learn.io.read batch features(
      filenames, batch size, transformed feature spec, reader= gzip reader fn)
    # we pop the label because we do not want to use it as a feature while we're
    # training.
   return transformed features, transformed features.pop(
      transformed name(LABEL KEY))
```

Put it all together...

Train, Evaluate, Transform & Export model.

```
def train and maybe evaluate(hparams):
   """Run the training and evaluate using the high level API.
   Args:
   hparams: Holds hyperparameters used to train the model as name/value pairs.
   Returns:
   The estimator that was used for training (and maybe eval)
   schema = read schema(hparams.schema file)
                                               Using input function
   train input = lambda: input fn(
     hparams.train files,
                                               defined earlier
     hparams.tf transform dir,
     batch size=TRAIN BATCH SIZE
   eval input = lambda: input fn(
                                            High level API which simplifies train
     hparams.eval files,
     hparams.tf transform dir.
                                            evaluate, predict & serving of TF
     batch size=EVAL BATCH SIZE
                                            models.
   train spec = tf.estimator.TrainSpec(
     train input, max steps=hparams.train steps)
   serving receiver fn = lambda: example serving receiver fn(
     hparams.tf transform dir. schema)
```

```
serving receiver fn = lambda: example serving receiver fn(
 hparams.tf transform dir, schema)
exporter = tf.estimator.FinalExporter('nyc-taxi', serving receiver fn)
eval spec = tf.estimator.EvalSpec(
  eval input,
  steps=hparams.eval steps,
  exporters=[exporter],
  name='nvc-taxi-eval')
run config = tf.estimator.RunConfig(
  save checkpoints steps=999, keep checkpoint max=1)
serving model dir = os.path.join(hparams.output dir, SERVING MODEL DIR)
run config = run config.replace(model dir=serving model dir)
estimator = build estimator(
 hparams.tf transform dir,
  # Construct layers sizes with exponetial decay
  hidden units=[
      max(2, int(FIRST DNN LAYER SIZE * DNN DECAY FACTOR**i))
      for i in range(NUM DNN LAYERS)
  config=run config)
tf.estimator.train and evaluate(estimator, train spec, eval spec)
return estimator
```

TFT Exercises

Next Steps:

Work through <u>TFDV</u> & <u>TFT</u> Notebooks