《制造业信息化导论》

第三章

产品技术信息化

第三章 产品技术信息化

ñ

企业信息流的 "Y"模型

第三章产品技术信息化

- 3.1 产品技术信息化概述
- 3.2 产品设计信息化单元系统
- 3.3 制造技术信息化单元系统
- 3.4 产品技术信息化平台

本章思考题

3.1 产品技术信息化概述

- 3.1.1 案例
- 3.1.2 产品生命周期
- 3.1.3 产品技术信息化模型
- 3.1.4 企业对产品研发和设计信息化的 需求

案例1: 复杂制造装备的产品技术信息化

工业汽轮机是一种具有重要战略意义的动力装备,主要 用于冶金、石油、电站、舰船 中驱动。

产品设计学

热力学 流体力学

材料力学

振动理论

弹性力学

塑性力学

摩擦学

机械学

材料科学

测量学

CAD

液压传动

工业设计学

曲面造型

控制理论

有限元分析 电子学 制造工程学 软件编程 微机原理

合理化技术

工业汽轮机产品设计、

制造和维护过程

工业汽轮机产品设计

第三章 产品技术信息化

案例2: 家具的设计和制造的集成化

- 在家具卖场,某家具公司的经销商与顾客一起利用 CAD系统设计个性化的家具,然后将订单直接发送给生产部门。
- CAM系统将CAD系统产生的产品数据转化为加工程序,控制机器将原木或坯钢切割成适当的构件,并由传输线自动送到装配车间进行组装,然后送到油漆车间根据订单选择油漆,由机器人自动喷涂。
- •整个过程为期5天。该系统适用于从几把椅子到2000万美元订单的任何需求。

案例3: 饮料瓶的产品技术信息化

- 娃哈哈集团每开发一种新饮料,就需要一种新 瓶型、瓶坯,2副模具;一套新模具开发往往需 要经过多次试模才能完成。
- •在这方面, 娃哈哈集团对信息化的需求是: 缩 短饮料瓶的设计和模具制造周期, 使新饮料快 速上市; 在保证质量的同时, 降低耗材, 节省 生产成本。

案例3: 饮料瓶的产品技术信息化

- 应用三维CAD系统进行模具开发设计。开展了设计合理化,建立了企业常用的通用件库、模块库,按腔数、节距和注塑机型号等进行了模具的系列化,构建了模块化饮料瓶模具开发平台,提高了模具设计的效率。
- 应用CAPP系统进行模具工艺设计。在模具结构模块化工作的基础上, 开展了工艺的标准化和模块化,提高了工艺设计和制造效率。
- 模具型腔件是饮料瓶模具最重要的零件。对于型腔件,利用<u>UG实现</u> CAD/CAM一体化。
- 利用三坐标测量机测量型腔件精度。
- 实施DNC, 扩大CAD/CAM/CAT技术的应用范围, 提高数控机床的效率。
- 应用PDM,实现产品数据、刀库和NC程序等的集中统一管理,使产品设计和制造信息可以充分共享。
- 开发并实施了生产管理系统,实现了产品设计、制造与生产管理的一体化。

娃哈哈集团概况

产品:饮料、饮料瓶、精密模具、饮料生产设备、灌装输送线等

娃哈哈精机公司

饮料机械制造装备:加工中心、三坐标测量机等

娃哈哈精机公司

饮料机械设计软件: CAD、CAE、CAPP、CAM、CAT、PDM等

饮料瓶模具甩图纸应用

第三章 产品技术信息化

饮料瓶模具"甩图纸"

1新饮料=1瓶型=1瓶坯=2模具=N次试模

年产1300万吨饮料 = 年消耗20亿个饮料瓶 节省: 瓶坯1克 = 原料2000吨 = 成本2400万 能耗降低 = 节约时间 = 提高产能

"甩图纸" = 新产品设计开发的无纸化(过程)

= 新模具开发一次成功率(效率)

= 瓶型瓶坯的优化(效益)

- 1. 实施CAD/CAM/CAT等提高模具开发的效率
- 2. 实施CAE优化瓶坯和吹塑成型工艺提高效益

应用数字化手段提高模具开发的效率

第三章 产品技术信息化

应用数字化手段提高型腔件的设计制造效

模具型腔件CAD/CAM/PDM

UG: CAD、NC程序生成及模拟; PDM: 刀库管理、NC程序管理

应用数字化手段提高型腔件的设计制造效率

NC→CAM

技术部门通过Windows Commander将NC程序传输至数控机床

应用数字化手段提高型腔件的设计制造效率

应用三坐标测量机和光学投影测量机实现对零件的CAT

应用数字化手段提高型腔件的设计制造效 下一步:DNC 窗口(W) 帮助(H) _ 8 × 如 如 如 数 以 贴 险 · B M ? _|# X -18 X MARTH HITTH STOP ASSON TARGE PART ENGRY BART ENGRY THE THE MARTH SAND affin affin units water water wally am □ № 产品大类 4 (Aluminum Wheels) (SPOKES SERIES) 5 N10 G43 图 天津核理化研究院生产管理系统 - Microsoft Internet Explores _ 6 × 以 □ \$ 201(-) 6 N15 #1=(文件(E) 编辑(E) 查看(Y) 收棄(A) 工具(I) 帮助(H) 160 雪 []工序1 **工程符号 代码形态 等**[]工序2 シ后退・→・② ③ ③ ③ 数素 画収歳夫 ②媒体 ③ ⑤・④ 図 回 ❷ ② 🖥 🕥 🗓 🏠 🔾 € □工序3* 8 N25 N3=9 ⊕ ∰ 209(-) ⊕ ∰ 210(-) ⊕ ∰ 212(-) ⊕ ∰ 213(-) ← 输入中发。直接搜索 ▼ 冷转到 链接 ** 9 N30 #4=6 N35 #5=5 CAXA 计划 车间 检验 库房 成本核算 11 N40 #8=0 12 N45 WHIL 1 214(-) 215(-) 13 N50 #6= 14 N55 #7=1 设备负荷统计 E 216(-) 15 N60 G10L 设备负荷统计表(单位:小时) 16 N65 ZO. 2004-8-30 9:00:00-2004-9-30 9:00:00 1 224(-) 17 N70 G017 18 N75 G41 (SUV(4X4) SERIES) 安海模式 (MESH SERIES) 19 N80 X-4 (DISH SERIES) 20 N85 G17 (NEW DESIGNS SERIES) 21 N90 G1 (Die Casting Products) 19 20 21 22 23 24 25 26 27 28 29 30 22 N95 G2 AUTOMOBILE(-) C0520B: 仪表车床 23 N100 G1 24 N105 G2 Home Appliances & Tools(-) CA6140*1500:车床 25 N110 G1 ① Others(-) 26 N115 G2 CK6150AX1000:数控车 27 N120 G1 28 N125 GO CL-20:数控车床 29 N130 X31 N135 #1 30 CM6125:车床 31 N140 END 32 N145 MOS CSM6150:车床 "體产品结构树 > 文档树 € 查询 DZQ-400/2:多功能真空 包裝机 @ **1** GZ4025A: 卧式带锯床 M1412:万能外圆磨 Coutput Babug M1432A:外因磨床 MG602:万能工具磨床

明年将实施DNC系统, 实现对数控机床的直接控制

雨课堂 Rain Classroom

对瓶型进行强度、刚度、屈曲等分析,实现了瓶型的设计优化

POLYFLOW Grid Time Index: 0.18475901 Jul 03, 2009 FLUENT/Post 1.2

不同工艺条件、瓶坯结构、瓶坯壁厚的吹塑成型过程仿真

第三章 产品技术信息化

通过不同工艺参数的吹塑成型仿真结果的对比, 优化成型工艺参数

单选题 3分

前面的例子中,哪种技术能优化瓶型和瓶坯,提 高效益?

- (A) CAD
- B CAM
- CAE
- CAT

3.1.2 产品生命周期

- (1) 产品的市场生命周期
- (2) 产品的个体生命周期

(1) 产品的市场生命周期

基于原始创新的产品的市场生命周期

- 例如,电子管收音机早已退出市场,晶体管收音机现在正在退出市场,而 集成电路收音机成为收音机市场的主流。
- 集成电路收音机本身有许多品种,不同企业在按定单或按预测进行生产。
- 对于不同的产品,其市场生命周期的过程基本相似。差别主要在于产品的 创新模式:原始创新、集成创新和跟随创新。

第三章 产品技术信息化

(2) 产品的个体生命周期

其中存在批次和实例之分

第三章 产品技术信息化

3.1.2 产品的生命周期

从"产品"的产生过程到"产品"的产生过程+使用过程

第三章 产品技术信息化

3.