#### Data Analysis via Classification Algorithms

Lydia Y. Chen

Research Staff Member IBM Research Zurich Lab, Switzerland



#### Classification Example: Email Spam

- Observe the set of emails (strings)
- Check if new emails are spam or non-spam

| From: medshop@spam.com<br>Subject: Viagra<br>cheap meds                                            | Spam    |
|----------------------------------------------------------------------------------------------------|---------|
| From: my.instructor@Zurich.ibm.com<br>Subject: important information<br>here's how to ace the test | No-spam |
| From: mike@example.org<br>Subject: you need to see this<br>how to win \$1,000,000                  | ???     |



## Classification Example: Credit Card Fraud

- Observe a set of old transactions
- Predict if new transactions are fraud or normal

| Cash advance \$1,000<br>Cash advance \$10,000<br>Flight out of the country \$1,200 | Fraud  |
|------------------------------------------------------------------------------------|--------|
| Candy bar \$1.20<br>Groceries \$67.10<br>Restaurant \$35.82                        | Normal |
| Flight out of the country \$380<br>Hotel booking \$210<br>Groceries \$69.20        | ???    |



#### Classification Example: Diabetes Diagnoses

- Observe a set of patients and their physical conditions
- Predict if new patients will have diabetes or not

| Patient Alice<br>Age 60                           | Diabetes       |
|---------------------------------------------------|----------------|
| Blood pressure 150 mmHG<br>Weight 78 kg           |                |
| Patient Bob                                       | No<br>Diabetes |
| Age 30<br>Blood pressure 120 mmHG<br>Weight 70 kg | Diabetes       |
|                                                   |                |
|                                                   |                |
| Patient Maira<br>Age 55                           | ???            |
| Blood pressure 150 mmHG<br>Weight 60 kg           |                |





#### Classification Problem

- ► Input X (observable features)
  - One to multiple
  - E.g., age, blood pressure, and weight
- Output Y (class outcomes)
  - ▶ Binary (y=1 or -1) or multiple classes (G=1,2,..k)
  - E.g., the sign of diabetes or not
- Objective
  - Optimize the conditional probability of data set

$$\max Pr(G = k \mid X = x)$$

#### **Building Classifier**

- ► Making assumptions about the data structure
- ► Choosing a classifier, e.g., linear v.s. nonlinear, generative v.s. discriminant
- Parameterizing/fitting the model (training phase), involving optimization procedures
- Classifying the new data (inference phase)

#### Classification Algorithms

#### Discriminative v.s. Generative

- ▶ Discriminative models capture  $P(Y \mid X)$  directly and generative models capture P(X), P(y)
- ▶ Generative models are computational more expensive

#### Classification Algorithms

- Logistic regression (Discriminative)
- Decision Tree (Discriminative)
- Linear Discriminant analysis (Generative)
- Quadratic Discriminant analysis (Generative)
- Support Vector Machine (Discriminative)

#### Linear Classification

- What is meant by linear classification?
  - ► The decision boundaries in the feature (input) space is linear
- May seem 'too simple', but in high-dimensions it is surprisingly powerful



#### Linear Classification

- ▶ Training data  $(x_i, y_i)$  for i = 1...N, and we wish to predict y' corresponding to new data vectors x'
- $ightharpoonup x_i \in R^n$ , and  $y_i \in \{0,1\}$
- ▶ Predicted value  $\hat{y}$  is given by taking the sign of a linear function of the input:

$$\hat{y} = sign(\theta^T x), sign(z) = \begin{cases} 0 & \text{if } z \ge 0 \\ 1 & \text{if } z < 0 \end{cases}$$

# Logistic Regression

#### Logistic Regression

- Classification based on probability
- Instead of just predicting the class, give the probability of the instance being that class
  - Directly learn conditional probability  $Pr(G = k|X = x) = p_{\theta}(x)$
- Focus on binary classification

#### Simple Example

Cancer diagnosis from tumor size.

$$x = \begin{bmatrix} x_0 \\ x \end{bmatrix} = \begin{bmatrix} 1 \\ Tummor Size \end{bmatrix}$$
$$\Longrightarrow p(x) = 0.7$$

 $\implies$  Patient that 70% chance of tumor being malignant

#### Probability to Classification

- Logistic regression model assumes

  - $p_{\theta} = g(\theta^T x)$   $g(Z) = \frac{1}{1 + \exp(-Z)}$
- Assume a threshold and
  - Predict y = 1, if  $p_{\theta} \ge 0.5$
  - ightharpoonup Predict y = 0, if  $p_{\theta} < 0.5$





#### Assumptions to Model

► Logisitic regression model

$$p_{\theta}(x) = \frac{1}{1 + \exp(-\theta^{T}x)}$$

$$\log \frac{Pr(y = 1 \mid x; \theta)}{Pr(y = 0 \mid x; \theta)} = \theta_{0} + \theta_{1}x_{1} + \dots + \theta_{d}x_{d}$$

► In other words, logistic regression assumes that the log odds is a linear function of

#### Comparison with Linear Regression on Indicators

- Similarities:
  - ▶ Both attempt to estimate  $Pr(G = k \mid X = x)$
  - ▶ Both have linear classification boundaries
- Differences:
  - Linear regression on indicator matrix: approximate  $Pr(G = k \mid X = x)$  by a linear function of x  $Pr(G = k \mid X = x)$  is not guaranteed to fall between 0 and 1 and to sum up to 1
  - Logistic regression:  $Pr(G = k \mid X = x)$  is a nonlinear function of x. It is guaranteed to range from 0 to 1 and to sum up to 1.

#### Fitting Logistic Regression

- Criteria: find parameters that maximize the conditional likelihood of G given X using the training data.
  - ▶ Denote  $p_k(x_i; \theta) = Pr(G = k | X = x_i; \theta)$ .
  - ▶ Given the first input x1, the posterior probability of its class being  $g_1$  is  $Pr(G = g1 \mid X = x1)$ .
- Since samples in the training data set are independent, the posterior probability for the N samples each having class  $g_i$ ,  $i=1,2,\ldots,N$ , given their inputs  $x_1,x_2,\ldots,x_N$  is:

$$\prod_{i=1}^{N} Pr(G = g_i \mid X = x_i)$$

#### Conditional Log Likelihood

$$\max \prod_{i=1}^{N} Pr(G = g_i \mid X = x_i) = \max \log \prod_{i=1}^{N} Pr(G = g_i \mid X = x_i)$$

► The conditional log-likelihood of the class labels in the training data set is

$$L(\theta) = \sum_{i=1}^{N} \log Pr(G = g_i \mid X = x_i)$$
$$= \sum_{i=1}^{N} \log p_{g_i}(x_i; \theta))$$

i denotes the index of data

## Derivation of $L(\theta)$ for Binary Classifier

- ► For binary classification, if  $g_i = 1$ , denote  $y_i = 1$ ; if  $g_i = 2$ , denote  $y_i = 0$ .
- Let  $p_1(x; \theta) = p(x; \theta)$ , then  $p_2(x; \theta) = 1 p_1(x; \theta) = 1 p(x; \theta)$
- Since K = 2, the parameters  $\theta = \{\beta_{10}, \beta_1\}$ . We denote  $\beta = (\beta_{10}, \beta_1)^T$

## Derivation of $L(\theta)$ for Binary Classifier

If 
$$y_i = 1$$
, i.e.,  $g_i = 1$ , 
$$\log p_{g_i}(x; \beta) = \log p_1(x; \beta)$$
$$= 1 \cdot \log p_1(x; \beta)$$
$$= v_i \cdot \log p_1(x; \beta)$$

▶ If 
$$y_i = 0$$
, i.e.,  $g_i = 2$ ,

$$\log p_{g_i}(x;\beta) = \log p_2(x;\beta)$$

$$= 1 \cdot \log (1 - p_1(x;\beta))$$

$$= (1 - y_i) \cdot \log (1 - p(x;\beta))$$

Since either  $y_i = 0$  or  $1 - y_i = 0$ , we have

$$\log p_{g_i}(x;\beta) = y_i \cdot \log p(x;\beta) + (1-y_i) \cdot \log (1-p(x;\beta))$$

### Binary Classifier of Logistic Regression

Assumptions of Logistic Regression

$$p(x; \beta) = Pr(G = 1 \mid X = x) = \frac{\exp(\beta^T x)}{1 + \exp(\beta^T x)}$$
  
 $1 - p(x; \beta) = Pr(G = 2 \mid X = x) = \frac{1}{1 + \exp(\beta^T x)}$ 

The conditional likelihood

$$L(\beta) = \sum_{i=1}^{N} \log p_{g_i}(x_i; \beta)$$

Put together

$$L(\beta) = \sum_{i}^{N} y_{i} \beta^{T} x_{i} - \log (1 + \exp \beta^{T} x_{i})$$

#### Finding $\beta$

How to solve  $\max_{\beta} L(\beta) = \max_{\beta} \sum_{i}^{N} y_{i} \beta^{T} x_{i} - \log (1 + \exp \beta^{T} x_{i})$ 

- ► Non-linear optimization
- Stochastic gradient decent

- ▶ Diabetes data set. Input X is two dimensional. X₁ and X₂ are the two principal components of the original 8 variables.
- ► Class 1: without diabetes; Class 2: with diabetes.
- ► Applying logistic regression, we obtain

$$\beta = (0.7679, -0.6816, -0.3664)^T$$

▶ The posterior probabilities

$$Pr(G = 1 \mid X = x) = \frac{\exp(0.77 - 0.68x_1 - 0.37x_2)}{1 + \exp(0.77 - 0.68x_1 - 0.37x_2)}$$

$$Pr(G = 2 \mid X = x) = \frac{1}{1 + \exp(0.77 - 0.68x_1 - 0.37x_2)}$$

The classification rule

$$G(x) = \begin{cases} 0 & \text{if } 10.77 - 0.68x_1 - 0.37x_2 \ge 0\\ 1 & \text{if } 10.77 - 0.68x_1 - 0.37x_2 < 0 \end{cases}$$



Solid line: decision boundary obtained by logistic regression. Dash line: decision boundary obtained by LDA (next topic).

## Discriminant Analysis

#### Gaussian Discriminant Analysis

- Assume distribution of underlaying data
- Robust for multi-classes analysis
- Classifiers can be obtained by closed form solutions
- ightharpoonup And, we look into  $X = (X_1, X_2 \dots X_D)$

#### Notion

- ▶ The prior probability of class k is  $\pi_k$ 
  - $\blacktriangleright$   $\pi_k$  is usually estimated simply by empirical frequencies of the training set

$$\pi_k = \frac{\text{no. of samples in class k}}{\text{Total no. of samples}}$$

- ▶ The class-conditional density of X in class G = k is  $f_k(x)$
- Computing the posterior probability

$$Pr(G = k \mid X = x) = \frac{f_k(x)\pi_k}{\sum_{l=1}^{K} f_k(x)\pi_l}$$

Obtain classifier By MAP (the Bayes rule for 0-1 loss)

$$G(x) = \arg \max_{k} Pr(G = k \mid X = x)$$
  
=  $\arg \max_{k} f_{k}(x)\pi_{k}$ 

### Linear Discriminant Analysis

► Assumption 1: multivariate gaussian distribution

$$f_k(x) = \frac{1}{(2\pi)^{p/2}} \exp\left(-\frac{1}{2}(x - \mu_k)^T \sum_{k=0}^{-1} (x - \mu_k)\right)$$

E.g., Bivariate normal distribution

$$\mu_k = (0,0)$$
, and  $\Sigma_k = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 

- ▶ Assumption 2:  $\Sigma_k = \Sigma$ ,  $\forall k$ 
  - ► The Gaussian distributions are shifted versions of each other.

#### Gaussian Distributions: Univariate



#### Gaussian Distributions: Bivariate



## Optimal Classifier G(x)

$$G(x) = \arg \max_{k} Pr(G = k \mid X = x)$$

$$= \arg \max_{k} f_{k}(x)\pi_{k} = \arg \max_{k} \log (f_{k}(x)\pi_{k})$$

$$= \arg \max_{k} [-\log((2\pi)^{p/2}|\Sigma|^{1/2})$$

$$-\frac{1}{2}(x - \mu_{k})^{T}\Sigma^{-1}(x - \mu_{k}) + \log (\pi_{k})]$$

$$= \arg \max_{k} -\frac{1}{2}(x - \mu_{k})^{T}\Sigma^{-1}(x - \mu_{k}) + \log (\pi_{k})$$

## Optimal Classifier G(x)

▶ Define the linear discriminant function

$$G(x) = \arg\max_{k} \left[ x^{T} \Sigma^{-1} \mu_{k} - \frac{1}{2} \mu_{k}^{T} \Sigma^{-1} \mu_{k} + \log(\pi_{k}) \right]$$

► Then Classification rule

$$G(x) = \arg\max_{k} \delta_k(x)$$

 $\triangleright$  The decision boundary between class k and l is:

$$\{x:\delta_k(x)=\delta_l x\}$$

Or equivalently the following holds

$$\log \frac{\pi_k}{\pi_l} - \frac{1}{2} (\mu_k + \mu_l)^T \Sigma^{-1} (\mu_k - \mu_l) + x^T \Sigma^{-1} (\mu_k - \mu_l) = 0$$

#### A Numerical Example

- ▶ Binary classification (k = 1, l = 2)
  - ► Define  $a_0 = \log \frac{\pi_1}{\pi_2} \frac{1}{2}(\mu_1 + \mu_2)^T \Sigma^{-1}(\mu_1 \mu_2)$
  - ► Define  $(a_1, a_2, \dots a_D)^T = \Sigma^{-1}(\mu_1 \mu_2)$
  - Classify to class 1 if  $a + \sum_{j=1}^{D} a_j x_k > 0$ ; to class 2 otherwise
- Example
  - $\pi_1 = \pi_2 = 0.5$ ,  $\mu_1 = (0,0)^T$ , and  $\mu_2 = (0,0)^T$
  - $\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 0.56 \end{bmatrix}$
  - Decision boundary

$$5.56 - 2.00x_1 + 3.56x_2 = 0$$



#### Estimating Gaussian Distributions

▶ We need to estimate the Gaussian distribution

$$\hat{\pi_k} = N_k/N,$$

$$\hat{\mu_k} = \sum_{g_i=k} x^{(i)}/N_k$$

$$\hat{\Sigma} = \sum_{k=1}^K \sum_{g_i=k} (x^{(i)} - \hat{\mu_k})(x^{(i)} - \hat{\mu_k})^T/(N - K)$$

 $N_k$  is the number of class-k samples  $x^{(i)}$  denotes the  $i^{(th)}$  sample vector

#### Diabetes Data Set

- ► Two input variables computed from the principal components of the original 8 variables.
- Prior probabilities:  $\hat{\pi_1} = 0.651$ ,  $\hat{\pi_2} = 0.349$   $\hat{\mu_1} = (-0.43, -0.19)^T$ ,  $\hat{\mu_2} = (0.75, 0.36)^T$  $\Sigma = \begin{bmatrix} 1.79 & -0.15 \\ -0.15 & 1.66 \end{bmatrix}$
- Classification rules:

$$G(x) = \begin{cases} 1 & 0.77 - 0.67x_1 - 0.39x_2 \ge 0 \\ 2 & \text{otherwise} \end{cases}$$

## Example

The scatter plot follows. Without diabetes: stars (class 1), with diabetes: circles (class 2). Solid line: classification boundary obtained by LDA. Dash dot line: boundary obtained by linear regression of indicator matrix.



#### Contour Plot

Contour plot for the density (mixture of two Gaussians) of the diabetes data



#### Poor Results of LDA

- ▶ LDA is not necessarily bad when the assumptions about the density functions are violated.
- ▶ In certain cases, LDA may yield poor results.

#### Poor Results of LDA

.



Left: The true within class densities are Gaussian with identical covariance matrices across classes. Right: The true within class densities are mixtures of two Gaussians

#### Poor Results of LDA

.



Left: Decision boundary by LDA. Right: Decision boundaries obtained by modeling each class by a mixture of two Gaussian

## Quadratic Discriminant analysis

- Estimate the covariance matrix  $\Sigma_k$  separately for each class k,  $k=1,2,\ldots,K$  .
- Quadratic discriminant function:

$$\delta_k(x) = \frac{1}{2} \log |\Sigma_k| - \frac{1}{2} (x - \mu_k)^T \Sigma_k^{-1} (x - \mu_k) + \log \pi_k$$

Classification rule:

$$G(x) = \arg \max_{k} \delta_k(x)$$

- Decision boundaries are quadratic equations in x.
- ▶ QDA fits the data better than LDA, but has more parameters to estimate.

## Diabetes Data Set

- Prior probabilities:  $\pi_1 = 0.651$ ,  $\pi_2 = 0.349$
- Prior probabilities:  $\hat{\pi}_1 = 0.651$ ,  $\hat{\pi}_2 = 0.349$
- $\hat{\mu}_1 = (-0.4035, -0.1935)^T$ ,  $\hat{\mu}_2 = (0.7528, 0.3611)^T$
- $\hat{\Sigma}_1 = \begin{bmatrix} 1.6769 & -0.1461 \\ -0.1461 & 1.5964 \end{bmatrix}$
- $\hat{\Sigma}_2 = \begin{bmatrix} 2.0087 & -0.3330 \\ -0.3330 & 1.7887 \end{bmatrix}$

## Example: QDA



## LDA on Expanded Bases

- $\blacktriangleright$  Expand input space to include  $X_1, X_2, X_2$ , and  $X_2$ .
- ▶ Input is five dimensional:  $X = (X_1, X_2, X_1X_2, X_1^2, X_2^2)$ .
- Classification boundary:

$$0.65 - 0.73x_1 - 0.55x_2 - 0.006x_1x_2 - 0.07x_1^2 + 0.17x_2^2$$

▶ If the linear function on the right hand side is non-negative, classify as 1; otherwise 2

## Example: ELDA



Classification boundaries obtained by LDA using the expanded input space  $X_1, X_2, X_1X_2, X_1^2, X_1^2$ . Boundaries obtained by LDA and QDA

# Other Methods

## Other Learning Approaches

- ► Rule based methods
  - Decision Tree
  - Random Forest
- Perceptron methods
  - Support Vector Machines
  - Neural Networks

#### **Decision Tree**

► Idea: Ask a sequence of questions (as in the '20 questions' game) to infer the class



#### Decision Tree: General Ideas I

➤ Simple idea: recursively divide up the space into pieces which are as pure as possible



## Decision Tree: General Ideas II



## Decision Tree: General Ideas III



## Decision Tree: General Ideas IV



#### Decision Tree: General Ideas

- Key steps to build the tree
  - 1. A goodness of split criterion that can be evaluated for any split s of any node.
  - 2. A stop-splitting rule.
  - 3. A rule for assigning every terminal node to a class.
- How to measure if a subset of records is 'pure' or 'impure'
  - Entropy
  - Gini index
  - Classification error

#### Characteristics of Decision Tree

- Nonparametric approach
  - Can approximate any decision boundary (hyper plane) to arbitrary precision
  - A practical starting point
- ► Local, greedy learning to find a reasonable solution in reasonable time
- Relatively easy to interpret (by experts or regular users of the system)
- Data fragmentation problem: the nodes far down the tree are based on a very small fraction of the data, even only on a few data points ) typically not very reliable information

## Support Vector Machine

- Construct linear decision boundaries that explicitly try to separate the data into different classes as well as possible.
- Good separation is defined in a certain form mathematically.
- Even when the training data can be perfectly separated by hyperplanes, LDA or other linear methods developed under a statistical framework may not achieve perfect separation.

## Optimal Separating Hyperplane

► The optimal separating hyperplane separates the two classes and maximizes the distance to the closest point from either class.



## Key Ideas of SVM

- ▶ Seek large margin separator to improve generalization
- Use optimization to find optimal hyperplane with few errors via slack variables

