AIDS 2k17 - część 3.

June 28, 2017

Zadanie 1. Ciąg nazywamy *nienudnym* jeżeli w każdym jego spójnym podciągu istnieje element unikalny (to znaczy taki, który występuje dokładnie raz). Napisz algorytm stwierdzający, czy ciąg jest *nienudny*.

Zadanie 2. Wariancją ciągu $A = \langle a_1, a_2 \cdots, a_n \rangle$ nazywamy:

$$V_A = \sum_{i=1}^{n-1} |a_i - a_{i+1}|$$

znaleźć taki ciąg indeksów $I=\{i_1,i_2,\ldots,i_k\}$ i $J=\{j_1,j_2,\ldots,j_{n-k}\}$, że:

- $I \cup J = \{1, 2, \dots, n\}$ oraz $I \cap J = \emptyset$
- $i_1 < i_2 < \cdots < i_k \text{ oraz } j_1 < j_2 < \cdots < j_n k$
- $V_B + V_C$ jest minimalne, gdzie $B = \{a_{i_1}, a_{i_2}, \dots, a_{i_k}\}, C = \{a_{j_1}, a_{j_2}, \dots, a_{j_{n-k}}\}$

Zadanie 3. Rozważmy ciągi operacji Insert(i), DeleteMin oraz Min(i) wykonywanych na S - podzbiorze zbioru $\{1, 2, 3, \cdots, n\}$. Obliczenia rozpoczynamy z $S = \emptyset$. Instrukcja Insert(i) wstawia liczbę i do S. Instrukcja DelMin wyznacza najmniejszy element w S i usuwa go z S. Natomiast wykonanie Min(i) polega na usunięciu z S wszystkich liczb mniejszych od i.

Niech σ będzie ciągiem instrukcji Insert(i), DeleteMin oraz Min(i) takim, że dla każdego i, $1 \leq i \leq n$, instrukcja Insert(i) występuje co najwyżej raz. Mając dany ciąg σ naszym zadaniem jest znaleźć ciąg liczb usuwanych kolejno przez instrukcje DeleteMin. Podaj algorytm rozwiązujący to zadanie. $Uwaga: zakładamy, że cały ciąg <math>\sigma$ jest znany na początku, czyli interesuje nas wykonanie go off-line.

Zadanie 4. Rozpiętością ciągu $A = \langle a_1, a_2, \cdots, a_n \rangle$ nazywamy:

$$Span(A) = max\{a_i | a_i \in A\} - min\{a_i | a_i \in A\}$$

Ułóz algorytm, który policzy:

$$\sum_{1 \leq p \leq k \leq n} Span(A_p^k)$$

gdzie:

$$A_p^k = \langle a_p, a_{p+1} \cdots a_k \rangle$$