Lecture Notes for

Neural Networks and Machine Learning

Stable Diffusion

Logistics and Agenda

- Logistics
 - None
- · Agenda
 - Stable Diffusion
 - Final Project Town Hall

Stable Diffusion

Recall StyleGAN

- A latent sample was chosen that initialized a "mapping network"
- Processing of this vector took place and representations "A" were added to a synthesis network
- Noise was systematically added to the network activations
 - Why?

Comparative Overview

A great resource for understanding at high level: https://jalammar.github.io/illustrated-stable-diffusion/

The Diffusion Process, Simplified

Guiding Example: Predict noise sample in an image

Now we could generate great looking images from noise!!

Departure to Latent Space

Departure to **Latent Space** Our approach starts with the analysis of already trained diffusion models in pixel space: Fig. 2 shows the rate-distortion trade-off of a trained

Rombach et al., 2022, https://arxiv.org/pdf/2112.10752.pdf

- Start with a nice auto encoder
- Train noise prediction in latent space
- Perform diffusion in Latent Space
- Generate new images...

Examples of Diffusion in Latent Space

	ď			
'n		應		
		-	6	
	٦	1	B	(i)

CelebA-H	Q 256 ×	256		FFH	Q 256 × 256		
Method	FID↓	Prec. ↑	Recall ↑	Method	FID ↓	Prec. ↑	Recall ↑
DC-VAE [63]	15.8	-	-	ImageBART [21]	9.57	-	
VQGAN+T. [23] (k=400)	10.2	-	-	U-Net GAN (+aug) [77]	10.9 (7.6)	-	
PGGAN [39]	8.0	-	-	UDM [43]	5.54	-	
LSGM [93]	7.22	-	-	StyleGAN [41]	4.16	0.71	0.46
UDM [43]	7.15	-		ProjectedGAN [76]	3.08	0.65	0.46

Method	FID↓	IS↑	Precision [†]	Recall↑	$N_{ m params}$	
BigGan-deep [3] ADM [15] ADM-G [15]	6.95 10.94 <u>4.59</u>	$\frac{203.6 \pm 2.6}{100.98}$ 186.7	0.87 0.69 <u>0.82</u>	0.28 0.63 0.52	340M 554M 608M	250 DDIM steps 250 DDIM steps
LDM-4 (ours) LDM-4-G (ours)	10.56 3.60	$103.49 \scriptstyle{\pm 1.24} \\ \textbf{247.67} \scriptstyle{\pm 5.59}$	0.71 0.87	$\frac{0.62}{0.48}$	400M 400M	250 DDIM steps 250 steps, c.f.g [32], $s = 1.5$

LDM-5" (ours, 200-s) 4.02 0.04 0.52 LDM-4 (ours, 200-s) 2.55 0.00 0.48

Table 1. Evaluation metrics for unconditional image synthesis.

But how do we use this for going from text to images?

Rambach et al., 2022, nign-nesolution image synthesis with Latent Dillusion Models https://arxiv.org/pai/2112.10732.pai

Conditioning for Denoising, Overview

Unpacking "Text Conditioning"

Employ text embeddings in model denoising

Full Convolutional Network, Noise Predictor

Now model denoising is sensitive to the content within it!

Are all text embeddings created equal?

No! We need embeddings that are good for images...

Stable Diffusion

High-performance image generation using Stable Diffusion in KerasCV

Authors: fchollet, lukewood, divamgupta

Date created: 2022/09/25 Last modified: 2022/09/25

Description: Generate new images using KerasCV's StableDiffusion model.

view in Colab • GitHub source

LukeWood Luke Wood

KerasCV Author, Full Time Keras team member & Machine Learning researcher @ Google, Part Time UCSD Ph.D student

(PRO)

Final Project

One Idea from Dr. Stephanie Langin-Hooper SMU Meadows Professor

