4.1.4. Метод Риддерса (С. J. F. Ridders)

Рассмотренный ранее метода хорд основан на замене исходной заданной функции f(x) прямой проходящей через две точки на функции f(a) и f(b). Идея метода Риддерса заключается в

замене непрерывной исходно заданной функции f(x) на отрезке

[a, b] экспоненциальной функцией. Таким образом, нахождение решения будет заключаться в определении координаты точки $x = x_0$, полученной путем пересечения оси абсцисс Ох с экспоненциальной функцией, проходящей через три точки A(a; f(a)),

C(c; f(c)) и B(b; f(b)). Для построения экспоненциальной функции необходимо ввести третью дополнительную точку c, в качестве третьей точки в методе Риддерса выбирается середина локализованного интервала [a, b] вычисляемая по формуле:

$$c = \frac{a+b}{2}.$$

На концах локализованного интервала и найденной средней точки определяются значения функции, т.е. f(a), f(b) и f(c). Через определенные значения функции (точки A, C и B) строится экспоненциальная зависимость, на рис. 22 она нанесена пунктирной линией.

Рис. 22 - Начало процесса уточнения корня по методу Риддерса

Координата точки пересечения (x_0) экспоненты с осью абсцисс определяется по формуле:

$$x_0 = c + (c - a) \cdot \frac{\operatorname{sign}[f(a) - f(b)] \cdot f(c)}{\sqrt{f(c)^2 - f(a) \cdot f(b)}},$$

где функция sign(x) определяет знак числа x с помощью следующего выражения

$$\operatorname{sign}(x) = \begin{cases} -1, & \text{при } x < 0, \\ 0, & \text{при } x = 0, \\ 1, & \text{при } x > 0. \end{cases}$$

Полученное значение x_0 разбивает интервал локализации [a, b] на два под интервала [a, x_0] и [x_0 , b], для каждого под интервала проводится проверка на смену знака функции. В качестве нового интервала для продолжения процесса уточнения выбирается тот, на концах которого функция f(x) принимает значения разных знаков. Для случая рассмотренного ранее выбирается отрезок [x_0 , b], так как $f(x_0) \cdot f(b) < 0$ см. рис. 23.

Процесс нахождения следующего приближения к корню представлен на рис. 24. Он заключается в определении середины нового интервала, координаты точки c_1 . Последующего определения значений функции в точках a_1 , c_1 и b_1 . Через найденные точки A_1 , C_1 и B_1 проводится новая экспоненциальная функция и определяется новое приближение x_1 , как точка пересечения экспоненты с осью абсцисс и т.д.

Основным достоинством метода Риддерса является, тот факт, что он обладает сверхлинейной сходимостью. Порядок сходимости метода Риддерса $\alpha = \sqrt{2} \approx 1,4142$, что позволяет за каждые две итерации удвоить количество значащих цифр в получаемом результате расчета. Также метод Риддерса не накладывает, каких либо ограничений на вид заданной функции f(x), при этом метод обладает всеми преимуществами рассмотренных ранее методов, т.е. безусловной сходимостью.

Рис. 24 – Второе приближение метода Риддерса

 $A_1 = f(a_1) < 0$

 $\dot{b} = b_1$

 $x_0=a$

Пример. На локализованном интервале [1; 1,5] уточнить корень нелинейного уравнения

$$x^3 - \frac{x^2 + x}{5} = 1,2$$

до точности $\varepsilon = \delta = 10^{-3}$ с помощью метода Риддерса.

Решение. Вначале вычисляется координата середины заданного интервала

$$c = \frac{1+1,5}{2} = 1,25$$

и значения функции на концах заданного интервала, а также во вновь найденной точке

$$f(1) = 1^{3} - \frac{1^{2} + 1}{5} - 1, 2 = -0.6,$$

$$f(1,25) = 1,25^{3} - \frac{1,25^{2} + 1,25}{5} - 1, 2 = 0,190625,$$

$$f(1,5) = 1,5^{3} - \frac{1,5^{2} + 1,5}{5} - 1, 2 = 1,425.$$

Прежде чем воспользоваться формулой для определения координаты точки пересечения экспоненты с осью абсцисс определяется знак разности f(a) - f(b) = -2,025, поскольку результат меньше нуля, то первый множитель В числителе sign[f(a)-f(b)] принимает значение -1.

Подставляем определенные значения в формулу для определения искомой неизвестной

$$x_0 = 1,3497612 + (1,3497612 - 1)$$
$$\cdot \frac{-1 \cdot 0,190625}{\sqrt{0,190625^2 - (-0,6) \cdot 1,425}} = 1,1995224$$

и вычисляем значение функции во вновь найденной точке

$$f(1,1995224) = 1,1995224^{3} - \frac{1,1995224^{2} + 1,1995224}{5} - 1,2 = -0,0017377.$$

Найденное значение функции в точке x_0 позволяет выполнить анализ интервалов $[a, x_0]$ и $[x_0, b]$, а также выделить тот под интервал, на котором происходит смены знака функции. В рассматриваемом случае знак функции меняется на интервале $[x_0, b]$, таким образом, осуществляется перенос точки a на место найденной x_0 . В результате заданный первоначальный интервал сузился до [1,1995224;1,5].

Для вновь определенного интервала проводится повторное вычисление координаты середины интервала

$$c_1 = \frac{1,1995224 + 1,5}{2} = 1,3497612$$

и значение функции в этой точке

$$f(1,3497612) = 1,3497612^{3} - \frac{1,3497612^{2} + 1,3497612}{5} - 1,2 = 0,6247463.$$

Перед определением координаты точки пересечения экспоненты с осью абсцисс проводится анализ знака первого члена в числителе, который, как и ранее является отрицательным. Находим точку пересечения экспоненты с осью абсцисс

$$x_1 = 1,3497612 + (1,3497612 - 1,1995224) \cdot \frac{-1 \cdot 0,6247463}{\sqrt{0,6247463^2 - (-0,0017377) \cdot 1,425}} = 1,1999967$$

и значение функции в точке x_1

$$f(1,1999967) = 1,1999967^{3} - \frac{1,1999967^{2} + 1,1999967}{5} - 1,2 = -0,0000119.$$

Проводится проверка на достижение полученным решением заданной точности

$$|x_1 - x_0| < \varepsilon$$
,
 $|1,1999967 - 1,1995224| = 0,0004743 < 0,001$.

Как видим необходимое условие достижения решения с заданной точностью выполнено. Далее проверяется достаточное условие по достижению значением функции в точке x_1 заданной точности

$$|f(x_1)| < \delta$$
,

Таблица 10 — Решение нелинейного уравнения методом Риддерса.

k	а	f(a)	b	f(b)	С
0	1	-0,6	1,5	1,425	1,25
1	1,1995224	-0,0017377	1,5	1,425	1,3497612

<u>k</u>	f(c)	sign(x)	x	f(x)
0	0,1906250	-1	1,1995224	-0,0017377
1	0,6247463	-1	1,1999967	-0,0000119

$$|-0.0000119| < 0.001.$$

Видим, что и достаточное условие сходимости для полученного решения также выполнено.

Процесс нахождения решения нелинейного уравнения методом Риддерса представлен в таблице 10.

В итоге для достижения решения с требуемой точностью сверхлинейному методу потребовалось всего две итерации.

Точное решение заданного нелинейного уравнения соответствует $x^* = 1, 2$.

Ответ. Данное нелинейное уравнение на рассматриваемом интервале имеет решение x = 1,1999967, которое получено с точностью $\varepsilon = 0,001$ за две итерации.