Regolazione e Controllo dei Sistemi Meccanici — 30-01-2004

Numero di matricola

_	_	$= \alpha - 1$	$=\beta-1$	$= \gamma - 1$	_

Figure 1: Modello dell' ascensore

Si consideri il modello dinamico di un ascensore illustrato in fig.1 e descritto dalle seguenti equazioni:

$$\left\{ \begin{array}{l} J\ddot{\theta} = KR\left(z-\theta R\right) + CR\left(\dot{z}-\dot{\theta}R\right) + C_m(t) - m\,g\,R \\ M\,\ddot{z} = -K\left(z-\theta R\right) - C\left(\dot{z}-\dot{\theta}R\right) + Mg \end{array} \right.$$

dove R=0.25[m] è il raggio della puleggia, $J=10+\frac{\alpha}{100}[Kgm^2]$ il suo momento di inerzia, M=1000[Kg] la massa della cabina, $m=500+\frac{\alpha}{10}[kg]$ la massa del contrappeso, $C=100+\frac{\beta}{20}[Nsec/m]$ e $K=500+\frac{\gamma}{10}[N/m]$ rispettivamente il coefficiente di smorzamento viscoso e la costante elastica del cavo.

Si desidera controllare la quota z della cabina, agendo sulla coppia motrice $C_m(t)$ in modo da compensare la forza di gravità e verificare le seguenti specifiche:

- A Errore a regime nullo nell'inseguimento di riferimenti di posizione e velocità assegnati.
- B Inseguimento di un profilo di accelerazione costante unitario con un errore minore di $0.1 \ m/sec^2$.
- C Supponendo che la massa M abbia un' incertezza del 10% rispetto al suo valore nominale dovuta, alla presenza di un utente, la quota a regime vari entro $\pm 1cm$.
- D Risposta al gradino con sovraelongazione minore del 5% e con un tempo di assestamento non superiore a $0.15\;sec.$
- E Attenuazione di un fattore superiore a 1000 dei disturbi di misura con contenuto frequenziale maggiore di 1.5kHz.

Soluzione

Il sistema descritto risulta in forma lineare e può essere messo in forma di stato dopo aver valutato il punto di equilibrio facendo attenzione alla presenza dell'accelerazione di gravità. L'ingresso di equilibrio del sistema risulta essere $C_m = gR(m-M)$, che porta il sistema nella configurazione $\bar{\theta} = 0$ (scelto in modo arbitrario) e $z\bar{e}ta = Mg/K$. Effettuando un opportuno cambiamento di variabili $x_1 = \theta - \bar{\theta}, x_2 = z - \bar{z}, x_3 = \dot{\theta} = \dot{x}_1$ e $x_4 = \dot{z} = \dot{x}_2$. Si ottiene il seguente sistema dove,

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \frac{-KR^2}{J} & \frac{KR}{M} & \frac{-CR^2}{M} & \frac{CR}{M} \\ \frac{KR}{M} & \frac{-K}{M} & \frac{CR}{M} & \frac{-C}{M} \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{J} \\ 0 \end{bmatrix},$$

 $e \mathbf{C} = [0 \ 1 \ 0 \ 0].$

La fuzione di trasferimento per il sistema risulta

$$G(s) = \frac{R(Cs + K)}{s^{2}[JMs^{2} + (JC + CR^{2}M)s + (KJ + KR^{2}M)]}$$

Sostituendo i valori numerici (con i parametri α , β , γ nulli)si ottiene:

$$G(s) = 1.25 \cdot 10^{-3} \frac{(s+10)}{s^2(s^2 + 0.3625s + 3.625)}$$

Il sistema ha uno zero in $s_z = -10$ due poli in $s_p = 0$ e due poli complessi coniugati in $s_{p1,2} = -0.1813 \pm 1.8953j$. Poichè il sistema risulta a fase minima, il progetto del controllore può essere affrontato operando sui diagrammi di Bode.

- A L'errore a regime per un riferimento di posizione e di velocità costanti assegnate è nullo essendo il sistema di tipo 2.
- B Applicando il teorema del valore finale nel caso di un profilo costante di accelerazione assegnato si ottiene:

$$\lim_{s \to 0} sE(s) < 0.1;$$

$$\lim_{s \to 0} s \frac{1}{1 + CG} \frac{1}{s^3} < 0.1;$$

Poichè il sistema possiede due poli nell'origine la relazione precedente diventa:

$$K_c > 2900$$

C La specifica sull'incertezza del parametro M può essere studiata mediante la valutazione della funzione sensibilità. Partendo dall'espressione nominale dell'uscita del sistema ad anello chiuso $Y_c = G_c R = \frac{CG}{1+CG}R$ e considerandone la perturbazione $Y_c + \Delta Y_c = (G_c R + \Delta G_c)R = G_c R + \Delta G_c R$ da cui si ottiene

$$\Delta G_c = \frac{\partial G_c(M)}{\partial M} \Delta M$$

$$\Delta G_c = -\frac{C \frac{\partial G(M)}{\partial M}}{(1 + CG)^2}$$

$$\lim_{s \to 0} \left| \frac{C \frac{\partial G(M)}{\partial M}}{(1 + CG)^2} \right| \frac{M}{100}$$

$$\lim_{s \to 0} \frac{\partial G(M)}{\partial M} = -\frac{kR^3}{J + R^2M} = -0.11$$

$$\lim_{s \to 0} \left| \frac{0.11K_c}{(1 + K_cG)^2} \right| < \frac{0.01}{0.11}$$

Poichè G(s) ha due poli nell'origine questa condizione risulta verificata per ogni valore di K_c .

D La specifica sulla sovraelongazione ammette che il sistema in anello chiuso sia approssimabile con un sistema del secondo ordine con un coefficiente di smorzamento pari a $\delta \approx 0.7$ (valutabile dalla relazione $s = e^{\frac{-\pi \delta}{\sqrt{1-\delta^2}}}$). Sul diagramma di Bode significa imporre approssimativamente un margine di fase di 70^o . Inoltre la condizione sul tempo di assestamento impone che la pulsazione naturale dei

Figure 2: Diagramma di Bode del guadagno di anello con controllore costituito da un guadagno $K_c = 3000$.

poli dominanti sia $\omega_n = \frac{3}{\delta T_a} \approx 30 rad/sec$. Tale specifica si riflette nell'imporre che il diagramma di Bode delle ampiezze di $C(j\omega)G(j\omega)$ intersechi l'asse a 0db per pulsazioni superiori a 30 rad/sec.

Il controllore finora progettato non verifica questa specifica come si può notare dai diagrammi di Bode riportati in figura 2

Per rispettare questa specifica introduciamo una coppia di zeri complessi coniugati in $-0.2 \pm j0.2$ (rete anticipatrice). Il controllore progettato fino a questo punto ha la forma:

$$C(s) = K_c \frac{1 + 5s + (3.5s)^2}{d(s)}$$

dove il denominatore d(s) è necessario per rendere il controllore causale. Tale controllore rispetta la specifica come si può notare dalla figura 3.

Figure 3: Diagramma di Bode del guadagno di anello con controllore costituito da un guadagno K_c ed una rete anticipatrice.

E Per soddisfare questa specifica occorre che $|C(j\omega)G(j\omega)| < 10^{-3} |1 + C(j\omega)G(j\omega)|$ e quindi $|C(j\omega)G(j\omega)| < -60db$ per pulsazioni superiori a $\omega \approx 10000 rad/sec$.

Tale condizione può essere verificata introducendo un'azione attenuatrice con un polo in $s_{p3}=$

-1000. In figura 4 si pu'onotare che la specifica in alta frequenza 'erispettata.

Figure 4: Diagramma di Bode del guadagno di anello con controllore costituito da un guadagno K_c , una rete anticipatrice e un polo in s = -1000.

Infine per garantire la causalità del controllore senza violare le specifiche già soddisfatte è necessario inserire un ulteriore polo ad alta frequenza (s = -10000). Pertanto il controllore finale ha la seguente forma:

$$C(s) = 3000 \frac{1 + 5s + (3.5s)^2}{(1 + 0.001s)(1 + 0.0001s)}$$

;

Figure 5: Diagramma di Bode del guadagno di anello con il controllore finale.