§ 8.

Extremwerte

Vereinbarung: In diesem Paragraphen sei $\emptyset \neq D \subseteq \mathbb{R}^n, f: D \to \mathbb{R}$ und $x_0 \in D$

Definition

- (1) f hat in x_0 ein lokales Maximum : $\iff \exists \delta > 0: f(x) \leq f(x_0) \ \forall x \in D \cap U_{\delta}(x_0).$ f hat in x_0 ein lokales Minimum : $\iff \exists \delta > 0: f(x) \geq f(x_0) \ \forall x \in D \cap U_{\delta}(x_0).$ lokales Extremum = lokales Maximum oder lokales Minimum
- (2) Ist D offen, f in x_0 partiell differenzierbar und $\nabla f(x_0) = 0$, so heißt x_0 ein stationärer Punkt.

Satz 8.1 (Nullstelle des Gradienten)

Ist D offen und hat f in x_0 ein lokales Extremum und ist f in x_0 partiell differenzierbar, dann ist $\nabla f(x_0) = 0$.

Beweis

f habe in x_0 ein lokales Maximum. Also $\exists \delta > 0 : U_{\delta}(x_0) \subseteq D$ und $f(x) \leq f(x_0) \ \forall x \in U_{\delta}(x_0)$. Sei $j \in \{1, \ldots, n\}$. Dann: $x_0 + te_j \in U_{\delta}(x_0)$ für $t \in (-\delta, \delta)$. $g(t) \coloneqq f(x_0 + te_j) \ (t \in (-\delta, \delta))$. $g(t) \coloneqq f(x_0 + te_j) \ (t \in (-\delta, \delta))$ ist differenzierbar in t = 0 und $g'(0) = f_{x_j}(x_0)$. $g(t) = f(x_0 + te_j) \leq f(x_0) = g(0) \ \forall t \in (-\delta, \delta)$. Analysis $1, 21.5 \implies g'(0) = 0 \implies f_{x_j}(x_0) = 0$

Satz 8.2 (Definitheit und Extremwerte)

Sei D offen, $f \in C^2(D, \mathbb{R})$ und $\nabla f(x_0) = 0$.

- (1) Ist $H_f(x_0)$ positiv definit $\implies f$ hat in x_0 ein lokales Minimum.
- (2) Ist $H_f(x_0)$ negative definit $\implies f$ hat in x_0 ein lokales Maximum.
- (3) Ist $H_f(x_0)$ indefinit $\implies f$ hat in x_0 kein lokales Extremum.

Beweis

(i), (ii) $A := H_f(x_0)$ sei positiv definit oder negativ definit oder indefinit. Sei $\varepsilon > 0$ wie in 7.2. $f \in C^2(D, \mathbb{R}) \implies \exists \delta > 0 : U_\delta(x_0) \subseteq D$ und (*) $|f_{x_j x_k}(x) - f_{x_j x_k}(x_0)| \le \varepsilon \ \forall x \in U_\delta(x_0) \ (j, k = 1, \dots, n)$. Sei $x \in U_\delta(x_0) \setminus \{x_0\}, h := x - x_0 \implies x = x_0 + h, h \neq 0$ und $S[x_0, x_0 + h] \subseteq U_\delta(x_0)$ 6.7 $\implies \exists \eta \in [0, 1] : f(x) = f(x_0 + h) = f(x_0) + 1$

 $\underbrace{h \cdot \nabla f(x_0)}_{=0} + \frac{1}{2}Q_B(h), \text{ wobei } B = H_f(x_0 + \eta h). \text{ Also: (**) } f(x) = f(x_0) + \frac{1}{2}Q_B(h). \text{ A sei positiv definit (negativ definit)} \stackrel{7.2}{\Longrightarrow} B \text{ ist positiv definit (negativ definit).} \stackrel{h\neq 0}{\Longrightarrow} Q_B(h) \stackrel{(<)}{>} 0 \stackrel{(**)}{\Longrightarrow} f(x) \stackrel{(<)}{>} f(x_0) \implies f \text{ hat in } x_0 \text{ ein lokales Minimum (Maximum).}$

(iii) A sei indefinit und es seien $u, v \in \mathbb{R}^n$ wie in 7.2. Wegen 7.1 OBdA: ||u|| = ||v|| = 1. Dann: $x_0 + tu, x_0 + tv \in U_\delta(x_0)$ für $t \in (-\delta, \delta)$. Sei $t \in (-\delta, \delta), t \neq 0$. Mit $h := t \stackrel{(v)}{u}$ folgt aus 7.2 und $(**): f(x_0 + t \stackrel{(v)}{u}) = f(x_0) + \frac{1}{2}Q_B(t \stackrel{(v)}{u}) = f(x_0) + \frac{t^2}{2}\underbrace{Q_B(\stackrel{(v)}{u})}_{>0/<0} \stackrel{(>)}{(7.2)} f(x_0) \implies f$ hat in x_0 kein lokales Extremum.

Beispiele:

(1) $D = \mathbb{R}^2$, $f(x,y) = x^2 + y^2 - 2xy - 5$. $f_x = 2x - 2y$, $f_y = 2y - 2x$; $\nabla f(x,y) = (0,0) \iff x = y$. Stationäre Punkte: (x,x) $(x \in \mathbb{R})$.

$$f_{xx} = 2, \ f_{xy} = -2 = f_{yx}, \ f_{yy} = 2 \implies H_f(x, x) = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$

 $\det H_f(x,x) = 0 \implies H_f(x,x)$ ist weder pd, noch nd, noch id. Es ist $f(x,y) = (x-y)^2 - 5 \ge -5 \ \forall \ (x,y) \in \mathbb{R}^2$ und $f(x,x) = -5 \ \forall x \in \mathbb{R}$.

(2) $D = \mathbb{R}^2$, $f(x,y) = x^3 - 12xy + 8y^3$. $f_x = 3x^2 - 12y = 3(x^2 - 4y)$, $f_y = -12x + 24y^2 = 12(-x + 2y^2)$. $\nabla f(x,y) = (0,0) \iff x^2 = 4y, x = 2y^2 \implies 4y^4 = 4y \implies y = 0 \text{ oder } y = 1 \implies (x,y) = (0,0) \text{ oder } (x,y) = (2,1)$

$$f_{xx} = 6x$$
, $f_{xy} = -12 = f_{yx}$, $f_{yy} = 48y$. $H_f(0,0) = \begin{pmatrix} 0 & -12 \\ -12 & 0 \end{pmatrix}$

 $\det H_f(0,0) = -144 < 0 \implies H_f(0,0)$ ist indefinit $\implies f$ hat in (0,0) kein lokales Extremum.

$$H_f(2,1) = \begin{pmatrix} 12 & -12 \\ -12 & 48 \end{pmatrix}$$

12 > 0, $\det H_f(2,1) > 0 \implies H_f(2,1)$ ist positiv definit $\implies f$ hat in (2,1) ein lokales Minimum.

(3) $K := \{(x,y) \in \mathbb{R}^2 : x,y \geq 0, y \leq -x + 3\}, f(x,y) = 3xy - x^2y - xy^2$. Bestimme $\max f(K), \min f(K). \ f(x,y) = xy(3-x-y). \ K = \partial K \cup K^{\circ}. \ K$ ist beschränkt und abgeschlossen $\stackrel{3.3}{\Longrightarrow} \exists (x_1,y_1), (x_2,y_2) \in K : \max f(K) = f(x_1,y_1), \min f(K) = f(x_2,y_2). f \geq 0$ auf K, f = 0 auf ∂K , also $\min f(K) = 0$. f ist nicht konstant $\implies f(x_2,y_2) > 0 \implies (x_2,y_2) \in K^{\circ} \stackrel{8.1}{\Longrightarrow} \nabla f(x_1,x_2) = 0$. Nachrechnen: $(x_2,y_2) = (1,1); f(1,1) = 1 = \max f(K)$.