Karthik Srinivasan

New Haven, CT

Email: karthik.srinivasan@vale.edu

LinkedIn: https://www.linkedin.com/in/karthikvasan99/

OBJECTIVE

PhD candidate in Biomedical Engineering with expertise in machine learning, computational biology, and statistical modeling. Passionate about applying ML techniques to biological problems, including applications in bioinformatics. I enjoy tackling challenging problems with real-world impact and have a strong ability to quickly learn new skills. This has allowed me to contribute to diverse fields, including quantum computation, cosmology, and bioinformatics, leading to multiple publications.

EDUCATION

YALE UNIVERSITY

New Haven, CT

August 2023 - Present

Ph.D. in Biomedical Engineering

Focus: Analyzing microbiomes using a statistical physics based machine learning model

Relevant Coursework: Deep Learning Theory and Applications (RNNs, CNNs, LLMs, VAEs, GANs, Diffusion models)

UNIVERSITY OF FLORIDA

Gainesville, FL

Master of Science in Physics

January 2021- August 2023

Focus: Effect of Chern-Simons coupling during inflation

Bachelor of Technology in Engineering Physics

CGPA: 3.91/4

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

Chennai, Tamil Nadu

July 2016 - May 2020

Focus: Quantum algorithms, Schwinger effect in bouncing universes, Gravitational wave astronomy

CGPA: 8.38/10

WORK EXPERIENCE

HUMAN FRONTIER COLLECTIVE SPECIALIST - GEN AI, SCALE AI

June 2025 - August 2025

- Designed and evaluated complex, domain-specific challenge sets to rigorously test generative AI models and refine their performance.
- Collaborated with Scale researchers in interdisciplinary sessions to identify model limitations, analyze behaviors, and inform future research directions.

RESEARCH EXPERIENCE

GRADUATE RESEARCH ASSISTANT, YALE UNIVERSITY

August 2023 - Present

Identifying environmental dimensionality of microbiomes using Machine Learning

- Analyzed large microbiome datasets from Microbiomap using a machine learning model
- Devised a metric based on model performance to quantify the environmental dimensionality of microbiomes
- Implemented the Consumer Resource Model to simulate in-silico microbiomes and applied Markov Chain Monte Carlo to explore the parameter space
- Developed a public repository for the project https://github.com/karthik-vale/niche-dimensionality

Designing host-associated microbiomes using the consumer-resource model

- Developed a generative mechanistic machine learning model for analyzing biological sequence data
- Performed sample specific statistical analysis via bootstrapping of generative model
- Biased sampling of the latent space via Monte Carlo methods to explore unobserved phenotypic regions
- Developed a public repository for the project: https://github.com/karthik-yale/host_microbe
- DOI: https://doi.org/10.1128/msystems.01068-24, No. of citations: 2

GRADUATE RESEARCH ASSISTANT, UNIVERSITY OF FLORIDA

January 2021 - July 2023

Gravitational wave probes of massive gauge bosons at the cosmological collider

- We considered Chern-Simons interaction between the inflaton and light like particles
- Using the in-in formalism in Quantum Field Theory in Curved Spacetime, we computed the two-point and three-point correlation functions for both scalar and tensor perturbations
- Using Numerical Integration with High-performance Cluster-computers and analytical approximations using special functions we predicted the gravitational wave spectrum that could be observed by gravitational wave interferometers
- DOI: https://doi.org/10.1088/1475-7516/2023/02/013, No. of citations: 32

Parity-odd and even trispectrum from axion inflation

- We extended the in-in formalism to compute the four-point function to study parity-violation in early universe
- Chern-Simons interaction could explain baryon asymmetry which is captured in the parity odd four-point function
- Using Numerical Integration with High-performance Cluster-computers we found parity-odd signal is non-vanishing
- DOI: https://doi.org/10.1088/1475-7516/2023/05/018, No. of citations: 42

UNDERGRADUATE RESEARCH INTERN, IISER KOLKATA

Summer/Winter 2018

Efficient quantum algorithm for solving traveling salesman problem: An IBM quantum experience

- Developed a quantum algorithm to solve the traveling salesman problem on a quantum computer
- Implemented the algorithm on a quantum computer via IBM quantum experience (currently IBM quantum platform)
- The algorithm theoretically achieves a quadratic speedup in compute time over the best classical algorithms
- DOI: https://doi.org/10.48550/arXiv.1805.10928, No. of citations: 126

Nondestructive discrimination of a new family of highly entangled quantum states

- Proposed a new set of highly entangled states which can be used as an orthonormal bases of error correction and measurement based quantum computing
- We designed circuits using IBM quantum experience to produce and distinguish these states non-destructively
- Using Quantum State Tomography we showed that the states were preserved
- DOI: https://doi.org/10.1007/s11128-018-1976-9, No. of citations: **61**

PERSONAL PROJECTS

Protease-Resistant Insulin Design | RFdiffusion, Pepsickle

Spring 2025

- Mapped protease-cleavage hotspots on human insulin using Pepsickle and structural PDB references.
- Generated carrier-protein designs with RFdiffusion that sterically shield labile residues, yielding lower cleavage scores.
- **Visualized & validated** 3-D models (Jupyter/PyMOL) and shared the full computational pipeline in a public repository: https://github.com/karthik-yale/ProteaseResistantInsulin

Thermodynamic Manifold Inference

Fall 2022

- **Re-implemented** the Thermodynamic Manifold Inference (TMI) algorithm from the original Phys. Rev. Research paper, including gradient-based training, out-of-sample embedding, and performance logging.
- **Applied** the model to the full MNIST dataset (70 k images), compressing 784-dimensional inputs to a 2-D manifold while retaining high reconstruction fidelity.
- Released a open-source codebase and tutorial notebook: https://github.com/karthikvasan99/TMI MNIST

Higgs Boson Classification Challenge | Scikit-learn

Fall 2022

- Engineered feature pipelines (polynomial basis expansion, PCA) for CERN's Higgs Boson Machine-Learning dataset.
- **Benchmarked** Support Vector, Random Forest, and Gradient Boosting classifiers; tuned hyper-parameters via exhaustive grid search to maximize ROC-AUC.
- Published reproducible code and results: https://github.com/karthikvasan99/higgs-boson-classification

ADDITIONAL

Coding: Proficient with **Python** Tensorflow, PyTorch, Scikit-learn, Pandas, Numpy, Torch, Scipy, Matplotlib, Seaborn, BioPython and **Mathematica**, Experienced in **R**, **C++**, **C**, **Git**, **MATLAB** and **HPC** environments

SUMMER SCHOOLS

ICTS gws2019, Summer school on gravitational wave astronomy

Summer 2019

- Four courses were taught over a period of two weeks by leading researchers in the field of gravitational wave astronomy
- Advanced General Relativity was taught by Sudipta Sarkar from IIT Gandhinagar
- Primordial Black Holes was taught by Teruaki Suyama from Tokyo Institute of Technology
- Post Newtonian sources of Gravitational Waves was taught by Luc Blanchet from Institute of Astrophysics, Paris
- Self force and Radiation Reaction in General Relativity was taught by Adam Pound from University of Southampton

NIUS, Summer school on gravitational wave astronomy

Summer 2017

- The camp was conducted by Tata Institute of Fundamental Research and Homi Bhabha Centre for Science Education
- It consisted of 40 lectures on topics such as Quantum Mechanics, Quantum computing, advanced topics in Astronomy, Thermodynamics, etc.
- Completed a 30 hour long lab course that covered mechanics, electricity, magnetism and optics