

Page 1 of 74

APPLICATION CERTIFICATION FCC Part 15C
On Behalf of

Massage Chair Model No.: OS-Bello, OGI-2206B

XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD

FCC ID: YMX-2206B

Prepared for : XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO.,

LTD

Address : (5/F) NO.168, QIANPU ROAD, SIMING DISTRICT, XIAMEN,

CHINA

Prepared by : Shenzhen Accurate Technology Co., Ltd.

Address : 1/F., Building A, Changyuan New Material Port, Science & Industry

Park, Nanshan District, Shenzhen, Guangdong, P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20190945

Date of Test : June 26-June 29, 2019

Date of Report : July 2, 2019

TABLE OF CONTENTS

Descri	iption	Page
Test P	Report Certification	
	E OF CONTENTS	2
	ENERAL INFORMATION	
1.1.	Description of Device (EUT)	
1.2.	Accessory and Auxiliary Equipment	
1.3. 1.4.	Description of Test Facility	
	•	
	EASURING DEVICE AND TEST EQUIPMENT	
	PERATION OF EUT DURING TESTING	
3.1.	Operating Mode	
3.2.	Configuration and peripherals	
	EST PROCEDURES AND RESULTS	
5. 20	DB BANDWIDTH TEST	
5.1.	Block Diagram of Test Setup	
5.2.	The Requirement For Section 15.247(a)(1)	
5.3.	EUT Configuration on Test	
5.4. 5.5.	Operating Condition of EUT Test Procedure	
5.6.	Test Result	
	ARRIER FREQUENCY SEPARATION TEST	
6.1.	Block Diagram of Test Setup	
6.2.	The Requirement For Section 15.247(a)(1)	
6.3.	EUT Configuration on Test	
6.4.	Operating Condition of EUT	
6.5.	Test Procedure	
6.6.	Test Result	
	UMBER OF HOPPING FREQUENCY TEST	
7.1.	Block Diagram of Test Setup	
7.2.	The Requirement For Section 15.247(a)(1)(iii)	
7.3. 7.4.	EUT Configuration on Test	
7.4. 7.5.	Test Procedure	
7.6.	Test Result	
	WELL TIME TEST	
8.1.	Block Diagram of Test Setup	
8.2.	The Requirement For Section 15.247(a)(1)(iii)	
8.3.	EUT Configuration on Test	
8.4.	Operating Condition of EUT	
8.5.	Test Procedure	
8.6.	Test Result	
9. M	AXIMUM PEAK OUTPUT POWER TEST	33
9.1.	Block Diagram of Test Setup	33

9.2.	The Requirement For Section 15.247(b)(1)	33
9.3.	EUT Configuration on Test	
9.4.	Operating Condition of EUT	
9.5.	Test Procedure	
9.6.	Test Result	34
10. RA	ADIATED EMISSION TEST	40
10.1.	Block Diagram of Test Setup	40
10.2.	The Limit For Section 15.247(d)	
10.3.	Restricted bands of operation	
10.4.	EUT Configuration on Test	42
10.5.	Operating Condition of EUT	43
10.6.	Test Procedure	43
10.7.	Data Sample	44
10.8.	Test Results	
11. BA	AND EDGE COMPLIANCE TEST	57
11.1.	Block Diagram of Test Setup	57
11.2.	The Requirement For Section 15.247(d)	
11.3.	EUT Configuration on Test	
11.4.	Operating Condition of EUT	57
11.5.	Test Procedure	58
11.6.	Test Result	58
12. AC	C POWER LINE CONDUCTED EMISSION TEST	69
12.1.	Block Diagram of Test Setup	69
12.2.	Test Limits	
12.3.	EUT Configuration on Test	70
12.4.	Operating Condition of EUT	70
12.5.	Test Procedure	70
12.6.	Data Sample	71
12.7.	Test Results	71
13. AN	TENNA REQUIREMENT	
13.1.	The Requirement	
13.1.	Antenna Construction.	

Report No.: ATE20190945

Page 4 of 74

Test Report Certification

Applicant : XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP CO., LTD

Address : (5/F) NO.168, QIANPU ROAD, SIMING DISTRICT, XIAMEN,

CHINA

Manufacturer : XIAMEN OGAWA INTELLIGENT HEALTH EQUIPMENT CO.,LTD

Address : THREE FLOOR NO 38-40, TIANYANG ROAD, JIMEI ZONE,

XIAMEN T:3521880

Product : Massage Chair

Model No. : OS-Bello, OGI-2206B

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test:	June 26-June 29, 2019
Date of Report :	July 2, 2019
Prepared by :	(St. Fang. Fing. Fitter)
Approved & Authorized Signer:	Temm!
	(Sean Liu, Manager)

Page 5 of 74

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

Model Number : OS-Bello, OGI-2206B

(Note: We hereby state that these models are identical in interior structure, electrical circuits and components, just model name is

different. Therefore only model OS-Bello is for tests.)

Bluetooth version : BT 4.0 for BT classic mode

Frequency Range : 2402MHz-2480MHz

Number of Channels : 79

Antenna Gain(Max) : 2dBi

Antenna type : PCB Antenna

Modulation mode : GFSK, π /4 DQPSK, 8DPSK

Trade Mark : Osaki

Power supply : AC 110-120V \sim 60Hz

1.2.General Disclaimer

The test results presented in this report relate only to the object tested. The information supplied by the customer can affect the validity of results.

1.3. Accessory and Auxiliary Equipment

N/A

1.4.Description of Test Facility

EMC Lab : Recognition of accreditation by Federal Communications

Commission (FCC)

The Designation Number is CN1189 The Registration Number is 708358

Listed by Innovation, Science and Economic Development

Canada (ISEDC)

The Registration Number is 5077A-2

Accredited by China National Accreditation Service for

Conformity Assessment (CNAS)

The Registration Number is CNAS L3193

Accredited by American Association for Laboratory

Accreditation (A2LA)

The Certificate Number is 4297.01

Name of Firm • Shenzhen Accurate Technology Co., Ltd.

Site Location . 1/F., Building A, Changyuan New Material Port, Science

& Industry Park, Nanshan District, Shenzhen, Guangdong,

P.R. China

1.5. Measurement Uncertainty

Radiated Emission Expanded Uncertainty : U=2.66dB, k=2

(9kHz-30MHz)

Radiated Emission Expanded Uncertainty : U=4.28dB, k=2

(30MHz-1000MHz)

Radiated Emission Expanded Uncertainty : U=4.98dB, k=2

(1G-18GHz)

Radiated Emission Expanded Uncertainty : U=5.06dB, k=2

(18G-26.5GHz)

Conduction Emission Expanded Uncertainty : U=2.72dB, k=2

(Mains ports, 9kHz-30MHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Type	S/N	Calibrated dates	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 05, 2019	One Year
EMI Test Receiver	Rohde&Schwarz	ESR	101817	Jan. 05, 2019	One Year
Spectrum Analyzer	Rohde&Schwarz	FSV-40	101495	Jan. 05, 2019	One Year
Pre-Amplifier (Radiated Emission)	Compliance Direction	RSU-M2	38322	Jan. 05, 2019	One Year
Pre-Amplifier (Radiated Emission)	Agilent	8447D	294A10619	Jan. 05, 2019	One Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 05, 2019	One Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 05, 2019	One Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 05, 2019	One Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 05, 2019	One Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 05, 2019	One Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 05, 2019	One Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 05, 2019	One Year
RF Coaxial Cable (Conducted Emission)	SUHNER	N-2m	No.2	Jan. 05, 2019	One Year
RF Coaxial Cable (Radiated Emission)	RESENBERGER	N-12m	No.11	Jan. 05, 2019	One Year
RF Coaxial Cable (Radiated Emission)	RESENBERGER	N-0.5m	No.12	Jan. 05, 2019	One Year
RF Coaxial Cable (Radiated Emission)	SUHNER	N-2m	No.13	Jan. 05, 2019	One Year
RF Coaxial Cable (Radiated Emission)	SUHNER	N-0.5m	No.15	Jan. 05, 2019	One Year
RF Coaxial Cable (Radiated Emission)	SUHNER	N-2m	No.16	Jan. 05, 2019	One Year
RF Coaxial Cable (Radiated Emission)	RESENBERGER	N-6m	No.17	Jan. 05, 2019	One Year

Conducted Emission Measurement Software: ES-K1 V1.71

Radiated Emission Measurement Software: EZ_EMC V1.1.4.2

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping

3.2. Configuration and peripherals

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d) Section 15.209	Radiated Emission Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.207	AC Power Line Conducted Emissions Limits Test	Compliant
Section 15.203	Antenna Requirement	Compliant

Report No.: ATE20190945 Page 10 of 74

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.247(a)(1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Test

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

5.5.Test Procedure

- 5.5.1.Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 5.5.2. The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.
- 5.5.3.RBW shall be in the range of 1% to 5% of the OBW and VBW shall be approximately three times RBW.
- 5.5.4.The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

5.6.Test Result

Channel	Frequency (MHz)		∏/4-DQPSK 20dB Bandwidth		Result
	(=-===)	(MHz)	(MHz)	(MHz)	
Low	2402	0.882	1.212	1.212	Pass
Middle	2441	0.876	1.224	1.212	Pass
High	2480	0.876	1.224	1.212	Pass

The spectrum analyzer plots are attached as below.

GFSK Mode

Date: 26.JUN.2019 11:23:42

Date: 26.JUN.2019 11:24:14

Date: 26.JUN.2019 11:24:57

∏/4-DQPSK Mode

Date: 26.JUN.2019 11:27:27

Date: 26.JUN.2019 11:26:02

Page 14 of 74

Date: 26.JUN.2019 11:25:34

8DPSK Mode

Date: 26.JUN.2019 11:28:04

Date: 26.JUN.2019 11:28:31

Date: 26.JUN.2019 11:28:54

Report No.: ATE20190945 Page 16 of 74

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Test

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

Report No.: ATE20190945
Page 17 of 74

6.5.Test Procedure

- 6.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- $6.5.2. Set\ RBW$ of spectrum analyzer to 30 kHz and VBW to 100 kHz. Adjust Span to 3MHz.
- 6.5.3. Set the adjacent channel of the EUT Maxhold another trace.
- 6.5.4. Measurement the channel separation

6.6.Test Result

GFSK Mode

Channel	Frequency	Channel	Limit	Result
Chamie	(MHz)	Separation(MHz)	(MHz)	Nesuit
Lovy	2402	1.002	25KHz or 2/3*20dB	Dogg
Low	2403	1.002	bandwidth	Pass
Middle	2440	1.002	25KHz or 2/3*20dB	Pass
Middle	2441	1.002	bandwidth	rass
High	2479	1.002	25KHz or 2/3*20dB	Pass
nigii	2480	1.002	bandwidth	rass

∏/4-DOPSK Mode

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402 2403	1.002	25KHz or 2/3*20dB bandwidth	Pass
Middle	2440 2441	1.008	25KHz or 2/3*20dB bandwidth	Pass
High	2479 2480	0.996	25KHz or 2/3*20dB bandwidth	Pass

8DPSK Mode

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.020	25KHz or 2/3*20dB	Dogg
Low	2403	1.020	bandwidth	Pass
Middle	2440	1.002	25KHz or 2/3*20dB	Pass
Middle	2441	1.002	bandwidth	rass
High	2479	1.002	25KHz or 2/3*20dB	Pass
Trigii	2480	1.002	bandwidth	rass

The spectrum analyzer plots are attached as below.

GFSK Mode

Date: 26.JUN.2019 13:30:05

Date: 26.JUN.2019 13:30:55

Date: 26.JUN.2019 13:31:25

$\Pi/4$ -DQPSK Mode

Date: 26.JUN.2019 13:33:21

Middle channel

Date: 26.JUN.2019 13:32:50

Date: 26.JUN.2019 13:32:19

Page 21 of 74

8DPSK Mode

Date: 26.JUN.2019 13:34:03

Date: 26.JUN.2019 13:34:41

Page 22 of 74

Date: 26.JUN.2019 13:35:17

Report No.: ATE20190945 Page 23 of 74

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Test

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as RBW=100 kHz, VBW=300 kHz.
- 7.5.3.Max hold, view and count how many channel in the band.

7.6.Test Result

Total number of	Measurement result(CH)	Limit(CH)	Result
hopping channel	79	≥15	Pass

The spectrum analyzer plots are attached as below.

Number of hopping channels (GFSK Mode)

Date: 26.JUN.2019 11:43:50

Number of hopping channels (∏/4-DQPSK Mode)

Date: 26.JUN.2019 11:42:42

Number of hopping channels (8DPSK Mode)

Date: 26.JUN.2019 11:41:18

Report No.: ATE20190945

Page 26 of 74

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(a)(1)(iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Test

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

8.5. Test Procedure

- 8.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=5ms, 10ms, 15ms. Get the pulse time.
- 8.5.4.Repeat above procedures until all frequency measured were complete.

8.6.Test Result

Pass.

GFSK Mode (Worse case)

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)		
DH1	2441	0.440	140.8	400		
A period to	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$					
DH3	2441	1.700	272.0	400		
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pu	ulse time \times (1600/(4*)	79))×31.6		
DH5	2441	2.970	316.8	400		
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$						

Π /4-DQPSK Mode (Worse case)

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
DH1	2441	0.450	144.0	400	
A period to	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$				
DH3	2441	1.720	275.2	400	
A period to	ransmit time = 0.4×79 =	31.6 Dwell time = pu	ulse time \times (1600/(4*)	79))×31.6	
DH5	2441	3.000	320.0	400	
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$					

8DPSK Mode (Worse case)

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
DH1	2441	0.450	144.0	400	
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$					
DH3	2441	1.710	273.6	400	
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$					
DH5	2441	3.000	320.0	400	
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				79))×31.6	

Note: We tested GFSK mode and $\Pi/4$ -DQPSK & 8DPSK mode the low, middle and high channel and recorded the worse case data for all test mode.

The spectrum analyzer plots are attached as below.

GFSK Mode

Date: 26.JUN.2019 13:48:02

Date: 26.JUN.2019 13:48:41

Page 29 of 74

DH5 Middle channel

Date: 26.JUN.2019 13:49:35

∏/4-DQPSK Mode

2-DH1 Middle channel

Date: 26.JUN.2019 13:47:19

Date: 26.JUN.2019 13:46:50

2-DH5 Middle channel

Date: 26.JUN.2019 13:46:12

8DPSK Mode

3-DH1 Middle channel

Date: 26.JUN.2019 13:44:36

Date: 26.JUN.2019 13:45:06

Page 32 of 74

Date: 26.JUN.2019 13:45:44

Report No.: ATE20190945 Page 33 of 74

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(b)(1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Test

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz, for GFSK mode. Set RBW of spectrum analyzer to 3MHz and VBW to 10MHz, for other mode.
- 9.5.3. Measurement the maximum peak output power.

9.6.Test Result

GFSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits (dBm/W)	Result
Low	2402	0.27/0.0011	21 / 0.125	Pass
Middle	2441	1.91/ 0.0016	21 / 0.125	Pass
High	2480	2.12/ 0.0016	21 / 0.125	Pass

∏/4-DQPSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits (dBm / W)	Result
Low	2402	-1.94 / 0.0006	21 / 0.125	Pass
Middle	2441	0.63 / 0.0012	21 / 0.125	Pass
High	2480	1.14 / 0.0013	21 / 0.125	Pass

8DPSK Mode

ODI DII MOGO				
Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits (dBm / W)	Result
Low	2402	-1.24 / 0.0008	21 / 0.125	Pass
Middle	2441	1.08 / 0.0013	21 / 0.125	Pass
High	2480	1.51 / 0.0014	21 / 0.125	Pass

The spectrum analyzer plots are attached as below.

GFSK Mode

Date: 26.JUN.2019 11:35:31

Date: 26.JUN.2019 11:35:54

Date: 26.JUN.2019 11:36:13

$\Pi/4$ -DQPSK Mode

Date: 26.JUN.2019 11:37:53

Date: 26.JUN.2019 11:37:36

High channel

Date: 26.JUN.2019 11:37:15

8DPSK Mode

Date: 26.JUN.2019 11:38:24

Date: 26.JUN.2019 11:38:44

Page 39 of 74

Date: 26.JUN.2019 11:39:02

10. RADIATED EMISSION TEST

10.1.Block Diagram of Test Setup

10.1.1.Block diagram of connection between the EUT and peripherals

10.1.2.Semi-Anechoic Chamber Test Setup Diagram

(B)Radiated Emission Test Set-Up, Frequency 30MHz-1GHz

(C) Radiated Emission Test Set-Up. Frequency above 1GHz

10.2. The Limit For Section 15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4.EUT Configuration on Test

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

Report No.: ATE20190945

Page 43 of 74

10.5. Operating Condition of EUT

10.5.1. Setup the EUT and simulator as shown as Section 10.1.

10.5.2. Turn on the power of all equipment.

10.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

10.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.1 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the Worse case position data was reported.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worse case emissions are reported.

Page 44 of 74

10.7.Data Sample

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	48.69	-13.35	35.34	46	-10.66	QP

Frequency(MHz) = Emission frequency in MHz

Reading($dB\mu\nu$) = Uncorrected Analyzer/Receiver reading

Factor (dB/m) = Antenna factor + Cable Loss - Amplifier gain

Result($dB\mu v/m$) = Reading($dB\mu v$) + Factor(dB/m)

Limit $(dB\mu v/m) = Limit$ stated in standard

Margin (dB) = Result(dB μ v/m) - Limit (dB μ v/m)

QP = Quasi-peak Reading

Calculation Formula:

 $Margin(dB) = Result (dB\mu V/m) - Limit(dB\mu V/m)$

Result($dB\mu V/m$)= Reading($dB\mu V$)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

10.8.Test Results

Pass.

Note: 1.We tested GFSK, ∏/4-DQPSK & 8DPSK Mode and recorded the Worse case data (GFSK mode) for all test mode.

2. Testing is carried out with frequency rang 9kHz to the tenth harmonics, which above 3th Harmonics are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

The measurements greater than 20dB below the limit from 9kHz to 30MHz and 18 to 26.5GHz.

The spectrum analyzer plots are attached as below.

Report No.: ATE20190945

Page 45 of 74

Below 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019-BT #141

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2402MHz Model: OS-Bello Manufacturer: OGAWA Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 19/06/29/ Time: 9/43/21 Engineer Signature:

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	78.5644	53.15	-27.49	25.66	40.00	-14.34	QP	200	41	
2	88.5336	50.12	-27.43	22.69	43.50	-20.81	QP	200	66	
3	187.7831	52.13	-25.30	26.83	43.50	-16.67	QP	200	96	
4	241.8377	53.15	-23.71	29.44	46.00	-16.56	QP	200	221	
5	354.6911	51.48	-19.14	32.34	46.00	-13.66	QP	200	63	
6	373.8861	50.13	-18.71	31.42	46.00	-14.58	QP	200	103	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019-BT #140

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2402MHz Model: OS-Bello

Manufacturer: OGAWA

Report NO.:ATE20190945 Note:

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 19/06/29/ Time: 9/42/25 Engineer Signature: Distance: 3m

70.0 dBuV/m limit1: 60

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	50.8171	51.46	-26.33	25.13	40.00	-14.87	QP	100	115	
2	78.2888	62.13	-27.50	34.63	40.00	-5.37	QP	100	201	
3	88.8452	60.12	-27.43	32.69	43.50	-10.81	QP	100	332	
4	115.6321	56.44	-27.36	29.08	43.50	-14.42	QP	100	93	
5	240.1442	50.21	-23.72	26.49	46.00	-19.51	QP	100	221	
6	350.9721	47.46	-19.28	28.18	46.00	-17.82	QP	100	103	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019-BT #142

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2441MHz Model: OS-Bello Manufacturer: OGAWA Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 19/06/29/ Time: 9/43/33 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	78.5644	53.15	-27.49	25.66	40.00	-14.34	QP	200	110	
2	88.5336	50.12	-27.43	22.69	43.50	-20.81	QP	200	55	
3	187.7831	52.64	-25.30	27.34	43.50	-16.16	QP	200	312	
4	241.8377	53.45	-23.71	29.74	46.00	-16.26	QP	200	119	
5	354.6911	50.35	-19.14	31.21	46.00	-14.79	QP	200	62	
6	373.8861	50.31	-18.71	31.60	46.00	-14.40	QP	200	103	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019-BT #143

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2441MHz Model: OS-Bello Manufacturer: OGAWA Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 19/06/29/ Time: 9/44/26 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	75.5858	54.78	-27.67	27.11	40.00	-12.89	QP	100	201	
2	78.5644	61.40	-27.49	33.91	40.00	-6.09	QP	100	331	
3	88.5336	59.64	-27.43	32.21	43.50	-11.29	QP	100	96	
4	111.2483	58.96	-27.29	31.67	43.50	-11.83	QP	100	221	
5	170.7878	53.50	-26.08	27.42	43.50	-16.08	QP	100	63	
6	362.2479	48.99	-18.88	30.11	46.00	-15.89	QP	100	103	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019-BT #145

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2480MHz Model: OS-Bello Manufacturer: OGAWA Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 19/06/29/ Time: 9/46/30 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	78.2888	51.49	-27.50	23.99	40.00	-16.01	QP	200	20	
2	88.5336	50.15	-27.43	22.72	43.50	-20.78	QP	200	133	
3	113.2199	47.68	-27.32	20.36	43.50	-23.14	QP	200	218	
4	208.6579	51.64	-24.14	27.50	43.50	-16.00	QP	200	93	
5	218.4097	50.13	-24.03	26.10	46.00	-19.90	QP	200	332	
6	364.8025	48.65	-18.83	29.82	46.00	-16.18	QP	200	89	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019-BT #144

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2480MHz Model: OS-Bello Manufacturer: OGAWA Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 19/06/29/ Time: 9/45/19 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	78.5644	61.79	-27.49	34.30	40.00	-5.70	QP	100	103	
2	88.5336	59.64	-27.43	32.21	43.50	-11.29	QP	100	93	
3	111.2483	59.64	-27.29	32.35	43.50	-11.15	QP	100	221	
4	167.2249	53.12	-26.29	26.83	43.50	-16.67	QP	100	201	
5	238.4626	52.15	-23.75	28.40	46.00	-17.60	QP	100	54	
6	371.2679	47.46	-18.75	28.71	46.00	-17.29	QP	100	93	

Report No.: ATE20190945

Page 51 of 74

Above 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019-BT #113

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2402MHz Model: OS-Bello

Manufacturer: OGAWA

Note: Report NO.:ATE20190945

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2019/06/26 Time: 14:27:27 Engineer Signature:

Distance: 3m

Page 52 of 74

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019-BT #114

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2402MHz Model: OS-Bello Manufacturer: OGAWA

Radiation Test Date

Note: Report NO.:ATE20190945

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2019/06/26 Time: 14:28:29 Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019-BT #116

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2441MHz Model: OS-Bello Manufacturer: OGAWA

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2019/06/26 Time: 14:31:04 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2441.021	90.18	-6.20	83.98	1	1	peak	200	332	
2	4882.324	42.56	1.07	43.63	74.00	-30.37	peak	200	106	

Page 54 of 74

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019-BT #115

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2441MHz Model: OS-Bello Manufacturer: OGAWA Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2019/06/26 Time: 14:29:53 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2441.021	98.56	-6.20	92.36	1	1	peak	150	321		
2	4882.324	45.04	1.07	46.11	74.00	-27.89	peak	150	106		

Page 55 of 74

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019-BT #117

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2480MHz Model: OS-Bello Manufacturer: OGAWA Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2019/06/26 Time: 14:32:49 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)		Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2480.034	87.94	-6.04	81.90	1	1	peak	200	221	
2	4960.044	45.99	1.50	47.49	74.00	-26.51	peak	200	101	

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019-BT #118

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2480MHz Model: OS-Bello Manufacturer: OGAWA Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2019/06/26 Time: 14:33:59 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2480.034	99.03	-6.04	92.99	1	1	peak	150	44		
2	4960.044	50.21	1.50	51.71	74.00	-22.29	peak	150	101		

Report No.: ATE20190945

Page 57 of 74

11.BAND EDGE COMPLIANCE TEST

11.1.Block Diagram of Test Setup

11.2.The Requirement For Section 15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.EUT Configuration on Test

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4. Operating Condition of EUT

- 11.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

11.5.Test Procedure

- 11.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 11.5.3. The band edges was measured and recorded.

11.6.Test Result

Note: Both hopping-on mode and hopping-off mode had been pre-tested, and only the Worse case was recorded in the test report.

Conducted Band Edge Result

Non-hopping mode

Non-hopping mode			
Frequency	Result of Band Edge	Limit of Band Edge	Result
(MHz)	(dBc)	(dBc)	
	GFSK Mo	ode	
2402.0	44.50	> 20dBc	Pass
2480.0	56.18	> 20dBc	Pass
	Π/4-DQPSK	Mode	1
2402.0	48.96	> 20dBc	Pass
2480.0	55.45	> 20dBc	Pass
	8DPSK M	ode	
2402.0	47.72	> 20dBc	Pass
2480.0	54.13	> 20dBc	Pass

The spectrum analyzer plots are attached as below.

Page 59 of 74

Date: 26.JUN.2019 11:45:14

Date: 26.JUN.2019 11:46:30

Date: 26.JUN.2019 11:47:56

Date: 26.JUN.2019 11:47:14

6 MHz/

Date: 26.JUN.2019 11:48:45

Date: 26.JUN.2019 11:49:25

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

3. Display the measurement of peak values.

Test Procedure:

The EUT and its simulators are placed on a turntable, which is 0.1 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the Worse case position data was reported.

Let the EUT work in TX (Hopping off, Hopping on) modes measure it. We select 2402MHz, 2480MHz TX frequency to transmit(Hopping off mode). We select 2402-2480MHz TX frequency to transmit(Hopping on mode).

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 2.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 3.All modes of operation were investigated and the worse case (GFSK mode) emissions are reported.

The spectrum analyzer plots are attached as below.

Report No.: ATE20190945

Page 63 of 74

Non-hopping mode ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019-BT #129

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2402MHz(GFSK)

Model: OS-Bello Manufacturer: OGAWA

Note: Report NO.:ATE20190945

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2019/06/26 Time: 14:48:20 Engineer Signature:

Distance: 3m

Note: Average measurement with peak detection at No.2&4

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019-BT #130

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2402MHz(GFSK)

Model: OS-Bello Manufacturer: OGAWA

Note: Report NO.:ATE20190945

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2019/06/26 Time: 14:49:27 Engineer Signature:

Distance: 3m

									limit1:	
100						******				
90									*******	
80										
70					********					************
60						*********	3		********	
							X			
50		**********				******				
50 40			************			L	o o			
	rankiyorninjoodhaan ki	horough and angle according	waxaabhadaasa	elugischiosonillippipuspikan	ramonskriptavarskriptavlje.	h.v.M.V.V.Milita		Londendo	, quadra servicidado	host washing a state of
40		horoughpadagelanin, dhong	wancan Harbenson	elrafindsherneddfffelfrafildin	enwardrede selvele Hel	h./W/WHENH		Louised	. Anna by Tarena Tarah	nol-visibnoper/dess
40 30 20.0		horizational factorial action although	wancan Herbenser	elugiadiscendlippipus phin	eenwardenstandenstade HA	h.nh.v.nh.		Loodyndy	opsaplen-salph	2440.0 MI
40 30 20.0	0	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin		Height (cm)	Degree (deg.)	2440.0 MI
40 30 20.0	0 2300.000 Freq.	Reading				Margin				

54.00

-7.82

AVG

150

103

Note: Average measurement with peak detection at No.2&4

-6.27

46.18

52.45

4

2400.000

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019-BT #120

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2480MHz(GFSK)

Model: OS-Bello Manufacturer: OGAWA

Note: Report NO.:ATE20190945

Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2019/06/26 Time: 14:36:51 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2483.500	40.76	-5.89	34.87	74.00	-39.13	peak	200	93		
2	2483.500	31.45	-5.89	25.56	74.00	-48.44	QP	200	118		
3	2500.000	40.91	-5.81	35.10	74.00	-38.90	peak	200	63		
4	2500.000	31.15	-5.81	25.34	74.00	-48.66	QP	200	103		

Note: Average measurement with peak detection at No.2&4

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019-BT #119

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: TX 2480MHz(GFSK)

Model: OS-Bello Manufacturer: OGAWA

Note: Report NO.:ATE20190945 Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2019/06/26 Time: 14:35:40 Engineer Signature: Distance: 3m

2483.500 46.15 -5.8940.26 74.00 -33.74peak 150 66 2 -22.41 150 2483.500 37.48 -5.8931.59 54.00 AVG 96 3 2500.000 39.76 -5.8133.95 74.00 -40.05peak 150 332 4 2500.000 30.21 -5.81 24.40 54.00 -29.60 AVG 150 106

Note: Average measurement with peak detection at No.2&4

Report No.: ATE20190945

Site: 1# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

Page 67 of 74

Hopping mode ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No.: FRANK2019-BT #132 Polarization: Horizontal

Distance: 3m

Standard: FCC Part 15C 3M Radiated Power Source: AC 120V/60Hz

 Test item:
 Radiation Test
 Date: 2019/06/26

 Temp.(C)/Hum.(%) 25 C / 55 %
 Time: 14:55:41

 EUT:
 Massage Chair
 Engineer Signature:

Mode: HOPPING(GFSK)

Model: OS-Bello

Manufacturer: OGAWA

Note: Report NO.:ATE20190945

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	40.68	-6.32	34.36	74.00	-39.64	peak	200	103	
2	2390.000	31.45	-6.32	25.13	54.00	-28.87	AVG	200	93	
3	2400.000	40.85	-6.27	34.58	74.00	-39.42	peak	200	221	
4	2400.000	31.85	-6.27	25.58	54.00	-28.42	AVG	200	93	
5	2483.500	41.32	-5.89	35.43	74.00	-38.57	peak	200	221	
6	2483.500	32.54	-5.89	26.65	54.00	-27.35	AVG	200	21	
7	2500.000	41.19	-5.81	35.38	74.00	-38.62	peak	200	33	
8	2500.000	32.45	-5.81	26.64	54.00	-27.36	AVG	200	210	

Note: Average measurement with peak detection at No.2&4&6&8

Report No.: ATE20190945

Page 68 of 74

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: FRANK2019-BT #135

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Massage Chair Mode: HOPPING(GFSK)

Model: OS-Bello Manufacturer: OGAWA

Note: Report NO.:ATE20190945 Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2019/06/26 Time: 15:01:25 Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	47.78	-6.32	41.46	74.00	-32.54	peak	150	108	
2	2390.000	38.48	-6.32	32.16	54.00	-21.84	AVG	150	120	
3	2400.000	59.89	-6.27	53.62	74.00	-20.38	peak	150	332	
4	2400.000	50.97	-6.27	44.70	54.00	-9.30	AVG	150	93	
5	2483.500	42.34	-5.89	36.45	74.00	-37.55	peak	150	201	
6	2483.500	33.64	-5.89	27.75	54.00	-26.25	AVG	150	221	
7	2500.000	42.65	-5.81	36.84	74.00	-37.16	peak	150	63	
8	2500.000	33.54	-5.81	27.73	54.00	-26.27	AVG	150	103	

Note: Average measurement with peak detection at No.2&4&6&8

12.AC POWER LINE CONDUCTED EMISSION TEST

12.1.Block Diagram of Test Setup

12.1.1.Block diagram of connection between the EUT and simulators

12.1.2.Test System Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 0.1m : from other units and other metal planes support units.

12.2.Test Limits

Frequency	Conducted L	imit dB(μV)
(MHz)	Quasi-peak Level	Average Level
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *
0.50 - 5.00	56.0	46.0
5.00 - 30.00	60.0	50.0

NOTE1: The lower limit shall apply at the transition frequencies.

NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

12.3.EUT Configuration on Test

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

12.4. Operating Condition of EUT

- 12.4.1. Setup the EUT and simulator as shown as Section 12.1.
- 12.4.2. Turn on the power of all equipment.
- 12.4.3.Let the EUT work in test mode and measure it.

12.5.Test Procedure

The EUT is put on the plane 0.1m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

Page 71 of 74

12.6.Data Sample

Frequency	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
(MHz)	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
	(dB)	(dBµV)	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
X.XX	10.5	51.1	34.2	56.0	46.0	4.9	11.8	Pass

$$\begin{split} & Frequency(MHz) = Emission \ frequency \ in \ MHz \\ & Transducer \ value(dB) = Insertion \ loss \ of \ LISN + Cable \ Loss \\ & Level(dB\mu V) = Quasi-peak \ Reading/Average \ Reading + Transducer \ value \\ & Limit \ (dB\mu V) = Limit \ stated \ in \ standard \\ & Margin = Limit \ (dB\mu V) - Level \ (dB\mu V) \end{split}$$

Calculation Formula:

Margin = Limit ($dB\mu V$) - Level ($dB\mu V$)

12.7.Test Results

Pass.

The frequency range from 150kHz to 30MHz is checked.

Maximizing procedure was performed on the six (6) highest emissions of the EUT. Emissions attenuated more than 20 dB below the permissible value are not reported.

All data was recorded in the Quasi-peak and average detection mode.

The spectral diagrams are attached as below.

CONDUCTED EMISSION STANDARD FCC PART 15 C

EUT: Massage Chair M/N:OS-Bello

XIAMEN OGAWA INTELLIGENT HEALTH EQUIPMENT CO., LTD Manufacturer:

Operating Condition: BT Communication 1#Shielding Room Test Site:

Operator: Frank Test Specification: N 120V/60Hz

Report NO.:ATE20190945 Comment: 6/26/2019 / 9:28:02AM Start of Test:

SCAN TABLE: "V 9K-30MHz fin"
Short Description: _SU _SUB_STD_VTERM2 1.70

Step Start Stop Detector Meas. IF Transducer

Frequency Frequency Width 9.0 kHz 150.0 kHz 100.0 Hz Time Bandw. QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "F-0945-1 fin"

6/26/2019 9:3	1 AM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.160000	42.40	10.5	66	23.1	QP	N	GND
0.470000	47.30	10.6	57	9.2	QP	N	GND
1.215000	32.40	10.7	56	23.6	QP	N	GND
4.740000	30.20	10.8	56	25.8	QP	N	GND
9.580000	33.20	10.9	60	26.8	QP	N	GND
13.885000	29.70	10.9	60	30.3	OP	N	GND

MEASUREMENT RESULT: "F-0945-1 fin2"

6/26/2019 9	:31AM						
Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.340000	33.50	10.6	49	15.7	AV	N	GND
0.460000	37.90	10.6	47	8.8	AV	N	GND
1.010000	22.90	10.7	46	23.1	AV	N	GND
4.910000	22.40	10.8	46	23.6	AV	N	GND
9.630000	25.20	10.9	50	24.8	AV	N	GND
13.495000	21.80	10.9	50	28.2	AV	N	GND

CONDUCTED EMISSION STANDARD FCC PART 15 C

EUT: Massage Chair M/N:OS-Bello

XIAMEN OGAWA INTELLIGENT HEALTH EQUIPMENT CO., LTD Manufacturer:

Operating Condition: BT Communication Test Site: 1#Shielding Room

Frank Operator: Test Specification: L 120V/60Hz

Report NO.:ATE20190945 Comment: Start of Test: 6/26/2019 / 9:32:19AM

SCAN TABLE: "V 9K-30MHz fin"
Short Description: _SU _SUB_STD_VTERM2 1.70

Step Start Stop Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "F-0945-2 fin"

į	6/26/2019 9:3	5AM						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.360000	40.10	10.6	59	18.6	QP	L1	GND
	0.460000	44.70	10.6	57	12.0	QP	L1	GND
	1.185000	35.00	10.7	56	21.0	QP	L1	GND
	2.740000	31.20	10.8	56	24.8	QP	L1	GND
	9.290000	31.20	10.9	60	28.8	QP	L1	GND
	13.195000	30.60	10.9	60	29.4	QP	L1	GND

MEASUREMENT RESULT: "F-0945-2 fin2"

6/26/2019 9:	35AM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.360000	33.90	10.6	49	14.8	AV	L1	GND
0.465000	36.70	10.6	47	9.9	AV	L1	GND
1.190000	25.90	10.7	46	20.1	AV	L1	GND
2.770000	20.90	10.8	46	25.1	AV	L1	GND
11.965000	23.30	10.9	50	26.7	AV	L1	GND
13.780000	23.10	10.9	50	26.9	AV	L1	GND

Page 74 of 74

13.ANTENNA REQUIREMENT

13.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

13.2.Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Max Antenna gain of EUT is 2dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

***** End of Test Report *****