Greatest Common Divisor (GCD)

Theorem

 $\forall a, b \in \mathbb{Z}$:

- 1). $D_a \cap D_b \neq \emptyset$, in fact: $1 \in D_a \cap D_b$
- 2). $a \neq 0$ or $b \neq 0 \implies D_a \cap D_b$ is finite

Proof

Assume $a, b \in \mathbb{Z}$

 $1 \in D_a$ and $1 \in D_b$

 $\therefore 1 \in D_a \cap D_b$ and $D_a \cap D_b \neq \emptyset$

AWLOG: $a \neq 0$

 D_a is finite

 $\therefore D_a \cap D_b$ is finite

Definition

Let $a,b\in Z$ and $a\neq 0$ or $b\neq 0$. To say that $d\in \mathbb{Z}$ is the *greatest common divisor* of a and b, denoted (a,b) or $\gcd(a,b)$, means:

- 1). $d \in D_a \cap D_b$
- 2). $\forall c \in D_a \cap D_b, c \leq d$

By convention, (0,0) = 0.

Theorem

$$\forall a, b \in \mathbb{Z}, a \neq 0 \text{ or } b \neq 0 \implies (a, b) \in \mathbb{Z} +$$

Proof

Assume $a, b \in \mathbb{Z}$ AWLOG: $a \neq 0$ $1 \in D_a \cap D_b$ $(a, b) \geq 1$ $\therefore (a, b) \in \mathbb{Z}^+$

Theorem

$$\forall a, b \in \mathbb{Z}, (a, b) = (|a|, |b|)$$

Proof

Assume $a, b \in \mathbb{Z}$

Case 1:
$$a = b = 0$$

 $|0| = 0$
 $(0,0) = (|0|,|0|) = 0$
Case 2: $a \neq 0$ or $b \neq 0$
 $D_a = D_{-a} = D_{|a|}$
 $D_b = D_{-b} = D_{|b|}$
 $D_a \cap D_b = D_{|a|} \cap D_{|b|}$
 $\therefore (a,b) = (|a|,|b|)$

Theorem

Let $a.b \in \mathbb{Z}, a \neq 0$ or $b \neq 0$. (a,b) is the least positive integer that is an integer linear combination of a and b:

$$(a,b) = \min\{ma + nb \in \mathbb{Z}^+ \mid m, n \in \mathbb{Z}\}\$$

Proof

Let $d = \min\{ma + nb \in \mathbb{Z}^+ \mid m, n \in \mathbb{Z}\}$, which must exist because at least one of the following must be true:

$$\begin{array}{rcl}
 1a + 0b & > & 0 \\
 (-1)a + 0b & > & 0 \\
 0a + 1b & > & 0 \\
 0a + (-1)b & > & 0
 \end{array}$$

 $\begin{array}{l} \exists\,m,n\in\mathbb{Z},d=ma+nb\\ \text{By the division algorithm, }\exists\,q,r\in\mathbb{Z},a=qd+r,\text{where }0\leq r< d\\ r=a-qd=a-q(ma+nb)=(1-qm)a-(qn)b\\ \text{So }r\text{ is also an integer linear combination of }a\text{ and }b\\ \text{Thus, by the minimality of }d\text{, it must be the case that }r=0\\ a=qd\\ d\mid a\\ \text{By similar argument, }d\mid b \end{array}$

Now, assume $c \in \mathbb{Z}^+, c \mid a$ and $c \mid b$ $\forall m, n \in \mathbb{Z}, c \mid ma + nb$ So, $c \mid d$ Thus, $c \leq d$ $\therefore (a, b) = d$

Corollary: Bézout's Theorem

$$\forall\,a,b\in\mathbb{Z},\exists\,m,n\in\mathbb{Z},(a,b)=ma+nb$$

Proof

Assume
$$a, b \in \mathbb{Z}$$

Case 1: $a = b = 0$

Assume $m, n \in \mathbb{Z}$
 $(0, 0) = 0$
 $m0 + n0 = 0 = (0, 0)$

Case 2: $a \neq 0$ or $b \neq 0$

$$(a, b) = \min\{ma + nb \in \mathbb{Z}^+ \mid m, n \in \mathbb{Z}\}$$
 $\therefore \exists m, n \in \mathbb{Z}, (a, b) = ma + nb$

Given a and b, Euclid's algorithm can be used to find (a,b) and then reversed to find m and n.

Example

Let a = 616 and b = 24

$$616 = 25 \cdot 24 + 16$$

$$24 = 1 \cdot 16 + 8$$

$$16 = 2 \cdot 8 + 0$$

$$8 = 1 \cdot 24 - 1 \cdot 16$$

$$= 1 \cdot 24 - 1 \cdot (616 - 25 \cdot 24)$$

$$= -1 \cdot 616 + 26 \cdot 24$$

$$m=-1$$
 and $n=26$

Theorem

 $\forall a, b \in \mathbb{Z}$, the set of integer linear combinations of a and b is the same as the set of integer multiples of (a, b).

Proof

 $\therefore L = M$

Assume
$$a,b\in\mathbb{Z}$$
 Let $d=(a,b)$ Let $L=\{ma+nb\mid m,n\in\mathbb{Z}\}$ Let $M=\{kd\mid k\in\mathbb{Z}\}$ Assume $\ell\in L$ Assume $m\in M$ $\exists\, m,n\in\mathbb{Z},\ell=ma+nb$ $\exists\, k\in\mathbb{Z},kd=m$ $d\mid a$ and $d\mid b$ $\exists\, r,s\in\mathbb{Z},ra+sb=d$ $m=k(ra+sb)=(kr)a+(ks)b$ $d\mid \ell$ But, by closure, $kr,ks\in\mathbb{Z}$ $horizontal m\in L$ $horizontal m\in L$

Theorem

Let $a, b \in \mathbb{Z}$ such that $a \neq 0$ or $b \neq 0$. $d = (a, b) \iff$

- 1). $d \mid a$ and $d \mid b$
- 2). $\forall c \in \mathbb{Z}, c \mid a \text{ and } c \mid b \implies c \mid d$

Proof

$$\implies$$
 Assume $d = (a, b)$

By definition, $d \mid a$ and $d \mid b$

Assume $c \in \mathbb{Z}$

Assume $c \mid a$ and $c \mid b$

$$\exists m, n \in \mathbb{Z}, ma + nb = d$$

$$c \mid ma + nb$$

$$\therefore c \mid d$$

Assume the above two conditions hold.

$$d \in D_a \cap D_b$$

Let $c \in \mathbb{Z}$, $c \mid a$ and $c \mid b$

$$c \mid d$$

$$c \leq d$$

$$\therefore d = (a, b)$$

Theorem

$$\forall a, b, c \in \mathbb{Z}, (a + cb, b) = (a, b)$$

Proof

Assume $a,b,c\in\mathbb{Z}$

$$\implies$$
 Assume $x \in D_{a+cb} \cap D_b$

$$x \mid a + cb \text{ and } x \mid b$$

$$x \mid 1(a+cb)-cb$$

$$x \mid a$$

$$x \mid a \text{ and } x \mid b$$

$$\therefore x \in D_a \cap D_b$$

$$\iff$$
 Assume $x \in D_a \cap D_b$

$$x\mid a \text{ and } x\mid b$$

$$x \mid 1a + cb$$

$$x\mid a+cb \text{ and } x\mid b$$

$$\therefore x \in D_{a+cb} \cap D_b$$

So
$$D_{a+cb} \cap D_b = D_a \cap D_b$$

$$\therefore (a+cb,b) = (a,b)$$

Theorem

Let $a, b \in \mathbb{Z}$ and d = (a, b):

$$\forall c \in \mathbb{Z} - \{0\}, c \mid a \text{ and } c \mid b \implies \left(\frac{a}{c}, \frac{b}{c}\right) = \frac{d}{c}$$

Proof

Assume $c \in \mathbb{Z}, c \neq 0$ Assume $c \mid a$ and $c \mid b$

Case 1:
$$a = b = 0$$

$$(a,b) = (0,0) = 0$$
$$0 = \frac{0}{c}$$
$$\therefore (\frac{0}{c}, \frac{0}{c}) = \frac{0}{c}$$

Case 2: $a \neq 0$ or $b \neq 0$

Since $(a,b)=(|a|\,,|b|)$, AWLOG: $a,b\geq 0$

$$c \mid d$$
, since $c \mid a$ and $c \mid b$

$$\exists m, n \in \mathbb{Z}, ma + nb = d$$

$$\exists h, k, \ell \in \mathbb{Z}, a = hc, b = kc, \text{ and } d = \ell c$$

$$m(hc) + n(kc) = \ell c$$

$$(mh + nk)c = \ell c$$

$$mh + nk = \ell$$

Let
$$e = (h, k)$$

$$\exists r \in \mathbb{Z}, \ell = mh + nk = re$$

$$\exists s,t\in\mathbb{Z},h=se\text{ and }k=te$$

$$mse + nte = re$$

$$msec + ntec = rec$$

But
$$sec = hc = a$$
 and $tec = kc = b$ and $rec = \ell c = d$

So
$$ec \mid a$$
 and $ec \mid b$

So
$$ec \leq d$$

So
$$ec \leq rec$$

But
$$r \neq 0$$
, since $rec = d \neq 0$

So
$$r=1$$
 and $\ell=e=(h,k)$

But
$$c \neq 0$$
, so $h = \frac{a}{c}$, $k = \frac{b}{c}$, and $\ell = \frac{d}{c}$

$$\therefore (\frac{a}{c}, \frac{b}{c}) = \frac{d}{c}$$

$$\therefore \left(\frac{a}{c}, \frac{b}{c}\right) = \frac{d}{c}$$