TO 160

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Mack, David H.
- (ii) TITLE OF INVENTION: COMPUTER-AIDED VISUALIZATION OF EXPRESSION COMPARISON
- (iii) NUMBER OF SEQUENCES: 2
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Joe Liebeschuetz of Townsend and Townsend and Crew LLP
 - (B) STREET: Two Embarcadero Center, Eighth Floor
 - (C) CITY: San Francisco
 - (D) STATE: CA
 - (E) COUNTRY: USA
 - (F) ZIP: 94111-3834
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 09/020,743
 - (B) FILING DATE: 09-FEB-1998
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Liebeschuetz, Joe
 - (B) REGISTRATION NUMBER: 37,505
 - (C) REFERENCE/DOCKET NUMBER: 018547034800US
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (650) 326-2400
 - (B) TELEFAX: (650) 326-2422
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2691 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GGAGACAGAC	AGACAGCTGG	CAAGAGGCAG	CCTGGGGGCC	ACAGCTGCTT	CAGCAGACCT	60
CATGGCTGAG	TGAGCCTCCC	CTGGGCCCAG	CACCCCACCT	CAGCATGGTC	CAAGCCCATG	120
GGGGGCGCTC	CAGAGCACAG	CCGTTGACCT	TGTCTTTGGG	GGCAGCCATG	ACCCAGCCTC	180
CGCCTGAAAA	AACGCCAGCC	AAGAAGCATG	TGCGACTGCA	GGAGAGGCGG	GGCTCCAATG	240
TGGCTCTGAT	GCTGGACGTT	CGGTCCCTGG	GGGCCGTAGA	ACCCATCTGC	TCTGTGAACA	300
CACCCGGGA	GGTCACCCTA	CACTTTCTGC	GCACTGCTGG	ACACCCCCTT	ACCCGCTGGG	360
CCCTTCAGCG	CCAGCCACCC	AGCCCCAAGC	AACTGGAAGA	AGAATTCTTG	AAGATCCCTT	420
CAAACTTTGT	CAGCCCCGAA	GACCTGGACA	TCCCTGGCCA	CGCCTCCAAG	GACCGATACA	480
AGACCATCTT	GCCAAATCCC	CAGAGCCGTG	TCTGTCTAGG	CCGGGCACAG	AGCCAGGAGG	540
ACGGAGATTA	CATCAATGCC	AACTACATCC	GAGGCTATGA	CGGGAAGGAG	AAGGTCTACA	600
TTGCCACCCA	GGGCCCCATG	CCCAACACTG	TGTCGGACTT	CTGGGAGATG	GTGTGGCAAG	660
AGGAAGTGTC	CCTCATTGTC	ATGCTCACTC	AGCTCCGAGA	GGGCAAGGAG	AAATGTGTCC	720
ACTACTGGCC	CACAGAAGAG	GAAACCTATG	GACCCTTCCA	GATCCGCATC	CAGGACATGA	780
AAGAGTGCCC	AGAATACACT	GTGCGGCAGC	TCACCATCCA	GTACCAGGAA	GAGCGCCGGT	840
CAGTAAAGCA	CATCCTCTTT	TCGGCCTGGC	CAGACCATCA	GACACCAGAA	TCAGCTGGGC	900
CCCTGCTGCG	CCTAGTGGCA	GAGGTGGAGG	AGAGCCCGGA	GACAGCCGCC	CACCCGGGC	960
CTATCGTAGT	CCACTGCAGT	GCAGGGATTG	GCCGGACGGG	CTGCTTCATC	GCCACGCGAA	1020
TTGGCTGTCA	ACAGCTGAAA	GCCCGAGGAG	AAGTGGACAT	TCTGGGTATT	GTGTGCCAAC	1080
TGCGGCTAGA	CAGAGGGGG	ATGATCCAGA	CGGACGAGCA	GTACCAGTTC	CTGCACCACA	1140
CTTTGGCCCT	GTATGCAGGC	CAGCTGCCTG	AGGAACCCAG	CCCCTGACCC	CTGCCACCCT	1200
CCGGTGGCCC	AGGTGCCTAC	CTCCCTCAAG	CCTGGGAAGT	CACAGGAAGC	AGCAGCAGTA	1260
AGGACAAGGG	GCCGGATTCC	AGGTCTTCAA	CACTGGCCAC	TCCTCTGCTT	CCTCTGTTGG	1320
CCCCAGATGG	ACAGTAAGGG	GAACCTCCAA	TGTCTCTCTG	AACTTAAAGA	CAGGAGCTGG	1380
CATTTATGAC	AGACAAAGAA	AGAAGCCCAG	GTGTCCTGGT	GTTCTCTGAG	ACACTCTTTG	1440
TGAGCTTCAG	TTTCCTGTTC	TATAACATGA	ACATAAGTGC	TTAGCTGCCA	TGAGGGAAAA	1500
GTAATGAGAG	AAGTTTCTAG	AAGCCACTCC	AGCCACTCCT	TCCTGGGGCT	GACAAAAGGG	1560
TGATTCCAAG	ATCATCCTTC	ACCCGAGGTC	CTGCCCAAGC	ACAGGCCAGA	TGCAAGAATG	1620
GGGAAAAGTC	TGGTCCTGAT	CTCCAAGTCT	CAACATCCTA	TCAGTGACTC	TGCTCCCTGA	1680
CCACACATCG	GAAGGGCTGG	ATGACCCCAA	TCAAAAGAAA	GAACAAGGAC	TCTGGTTACC	1740

817

CTTGCCCTCC	ACCCATGTGT	CATAAGAGTA	GGCTACAGAG	GTGACCAGGC	CTGGCAGTTG	1800
AAATCTCTGG	AAGAGGGAAC	ATGTGGGGAC	TACTCAGAGG	CAAAGAGGAG	CTGCTCCTGC	1860
CTCCATGGTT	GCTGGCCACT	CCCACCAACT	ACTCTTAGGG	AGGCTAAGCA	GTCTCTGTTT	1920
TGCTTCCATG	GCTCAAATAA	TACCCTGGGT	ATGCAGGACC	CACTATACCT	TGCATTTGCT	1980
GGTACACCTA	GAGAGCTTGG	CTGTTTCCAA	AAACAATCAG	GGTCATAACC	ATCCATGCAG	2040
ACATGGAGGC	TCGGCTGAAC	CAGGACTCCT	CACTGTCTAC	CTGAGAGAAT	GAGCACCCCT	2100
CATCCATCTC	AGCATCAACA	CAATTTCCAG	GGGACCTCAG	GTCTACCTCA	GGACTGAACG	2160
CCACACCTCA	GGATTCCTCC	TCCTTGAATC	TGAGACTGGC	TGCCCATTCT	GAGATGGGGA	2220
TGAAGGTAAG	ATGCCGCATC	ACCAGGCACG	CCGCCCCTGA	CAGCTGCCTT	GATACCAGCT	2280
CTCTGTGGAA	ACCCCGAGG	AGTTGGATCT	GGAGAACAGC	TGGGCCTCCT	CACTCAGGAC	2340
TTCTCTCCTG	AAGAACACGC	AGTGCTAAAA	CTGAGGATGA	TTTCCCTAAT	GCTTCTGCTT	2400
GGCCTTATGG	AGGAGCTGCT	CCTTCCTTAC	AGCCTTGGGG	ATGGACTTGC	CCACACCTCC	2460
ACCTCCCCTG	AGCCCTGTGA	GAGGCACGAC	TGTCTATGCC	AATGAGGCTC	GGTGGGGGC	2520
TCTCAAGTGC	CTGATCCTGC	CCTGGGCTCA	GAGCCAGCCC	AGAGGGAAGC	AACTGCACAG	2580
CCCCACAGGC	CCTCCCTGGC	ACTGTCCCCC	CAACCCCATC	TCAGAGCTCA	GAGGGTACAA	2640
GCTCCAGAAC	AGTAACCAAG	TGGGAAAATA	AAGACTTCTT	GGATGACTGA	C	2691

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 360 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: protein
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Val Gln Ala His Gly Gly Arg Ser Arg Ala Gln Pro Leu Thr Leu 1 5 10 15

Ser Leu Gly Ala Ala Met Thr Gln Pro Pro Pro Glu Lys Thr Pro Ala 20 25 30

Lys Lys His Val Arg Leu Gln Glu Arg Arg Gly Ser Asn Val Ala Leu 35 40 45

Met Leu Asp Val Arg Ser Leu Gly Ala Val Glu Pro Ile Cys Ser Val 50 55 60

B

1/10

Asn Thr Pro Arg Glu Val Thr Leu His Phe Leu Arg Thr Ala Gly His Pro Leu Thr Arg Trp Ala Leu Gln Arg Gln Pro Pro Ser Pro Lys Gln Leu Glu Glu Phe Leu Lys Ile Pro Ser Asn Phe Val Ser Pro Glu Asp Leu Asp Ile Pro Gly His Ala Ser Lys Asp Arg Tyr Lys Thr Ile Leu Pro Asn Pro Gln Ser Arg Val Cys Leu Gly Arg Ala Gln Ser Gln 135 Glu Asp Gly Asp Tyr Ile Asn Ala Asn Tyr Ile Arg Gly Tyr Asp Gly Lys Glu Lys Val Tyr Ile Ala Thr Gln Gly Pro Met Pro Asn Thr Val 170 Ser Asp Phe Trp Glu Met Val Trp Gln Glu Glu Val Ser Leu Ile Val 185 Met Leu Thr Gln Leu Arg Glu Gly Lys Glu Lys Cys Val His Tyr Trp Pro Thr Glu Glu Glu Thr Tyr Gly Pro Phe Gln Ile Arg Ile Gln Asp 210 Met Lys Glu Cys Pro Glu Tyr Thr Val Arg Gln Leu Thr Ile Gln Tyr 230 235 Gln Glu Glu Arg Arg Ser Val Lys His Ile Leu Phe Ser Ala Trp Pro Asp His Gln Thr Pro Glu Ser Ala Gly Pro Leu Leu Arg Leu Val Ala Glu Val Glu Glu Ser Pro Glu Thr Ala Ala His Pro Gly Pro Ile Val 275 Val His Cys Ser Ala Gly Ile Gly Arg Thr Gly Cys Phe Ile Ala Thr Arg Ile Gly Cys Gln Gln Leu Lys Ala Arg Gly Glu Val Asp Ile Leu Gly Ile Val Cys Gln Leu Arg Leu Asp Arg Gly Gly Met Ile Gln Thr Asp Glu Gln Tyr Gln Phe Leu His His Thr Leu Ala Leu Tyr Ala Gly 345 Gln Leu Pro Glu Glu Pro Ser Pro