Exam Conflicts: Check your course and exam schedule for Midterm and Final and report any conflicts via the Exam Conflicts Form.

WACM Explains... Linux - Intermediate: Monday 4/11 5:30-7:00pm in CS1240

Week 4

ASSIGNMENTS

x2 available soon

p2 available soon

h3 available soon and due before 10pm on Monday 2/18

Peer Mentors: will help students practice Git and GitHub commands

Module: Week 4 (start on week 5 before next week)

THIS WEEK

- AVL Summary (from Week 3 outline)
- Red-Black Tree
 - insert
 - lookup
 - o delete
- Git and GitHub (x2)
 - version control
 - centralized and decentralized

NEXT WEEK

- B-Tree
 - 2-3 Tree
 - 2-3-4 Tree
 - o B+ Tree
- x2 due next week

Red-Black Trees (RBT)

RBT:

A BST that stays balanced

```
Example:

Black node ( ) circle

Red Node [ ] square

(draw a red black tree)

(5)

(2) (7)

(1) (4) [6] [8]
```

Red-Black Tree Properties

root property

red property

black property

Red-Black Tree Operations

print

lookup

insert

delete

Inserting into a Red-Black Tree

Goal:
If T is Empty
If T is Non-Empty
Which of the properties might be violated as a result of inserting a red leaf node?
root property
black property
red property

Non-Empty Case 1: K's parent P is black

Non-Empty Case 2: K's parent P is red

Fixing an RBT	
Tri-Node Restructuring if	-
Recoloring is done if	

RBT Insert Practice I

1. Start with an empty RBT, show the RBT that results from inserting 7 and 14.
2. Redraw the tree from above and then show the result from inserting 18.
3. Redraw the tree from above and then show the result from inserting 23.
4. Redraw the tree from above and then show the result from inserting 1 and 11.
5. Redraw the tree from above and then show the result from inserting 20.

RBT Insert Practice II

6. Redraw the tree from the previous page and then show the result from inserting 29.	
7. Insert the same list of values into an empty BST: 7, 14, 18, 23, 1, 11, 20, 29	
What does this demonstrate about the differences between a BST and RBT?	

RBT Practice III

 $8.\,\mbox{Show}$ the result from inserting 25 in the RBT below.

9. Redraw the tree from above and then show the result from inserting 27.

Cascading Fixes

Fixing an RBT UPDATED!
Recoloring is done if P's sibling S is red
Tri-Node Restructuring is done if P's sibling S null

Return to previous page and cascade the fixes.

RBT Complexity

print			
lookup			
insert			
delete			

RBT Delete Practice

Delete as from BST and then fix RBT properties

Visualize inserts and deletes at:
 https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

Insert 9, 8, 5, 4, 3, 2, 6, 1,

Practice deleting

- red leaf nodes
- red interior
- can red nodes have a single child? (I don't think so)
- black interior
- black with one child
- black leaf nodes

Delete Practice SOLUTION PAGE

Delete 1, 3, 5, or 7

It d is a red leaf return null

Delete 2, 4, 6, or 8

if I has I children:

- Node i = inOrderPredessor (d)

- d. Key = i.key

- delete(i) > red leaf
> exactly one

> exactly one child Solack leaf of Most difficu

Delete 6

if I has exactly I child

= change the link from the parent to d's child

- Set the color of ds child to black

RBT Delete II

deleting a black leat Delete 9

- There are 6 cases

- Need to understand this case, but not the Solution

- Option(): read about it

Version Control

Version Control systems

https://bitbucket.org/product/version-control-software

> git is what most people Use > others available

Distributed vs Centralized ____ One Owner, stored in one pace

anyone owns the files & there history

What is git?

-Open Source Version Control Software

Repository: a data Structure that contains a set or commit objects L75er of 6/8 Ly 40 Chr ID Ly Links to other commit Objects

(-ithub: Online Server host

Git and GitHub

git commands

- clone get a copy of all files and all commits (changes) to those files
- status
- log
- init
- config
- add
- commit
- push
- pull

GitHub (in-class exercise)

- 1. create a GitHub.com account with wisc.edu (remember your GitHub user name)
- 2. install Student Pack (unlimited free private repositories)
- 3. create a private repository
- 4. Remote connect to your CS account (has git installed already)
- 5. clone your repository to your your CS account
- 6. CREATE SOME NEW CONTENT
- 7. add
- 8. commit
- 9. push your changes to your GitHub.com repository
- 10. add a classmate as a collaborator to your repo