

Pertemuan I

Tim TPB Alpro

Kontrak Belajar

KOM PSISI NILAI EVALUASI

Komponen Penilaian	Persentasi Nilai
Praktikum	10%
Tugas Individu (4x)	10 %
Kuis	10 %
UTS	10 %
UAS	10 %
<u>Proyek</u>	50%

Detail penilaian proyek

Rubrik Proyek

Komponen Penilaian	Presentase	Pelaksanaan
Asistensi Proposal	20%	Week 7 – 8
Dokumen Proposal	10%	Week 9
Presentasi Proposal	10%	Week 9
Progress 1	20%	Week 10 – 15
Progress 2	20%	Week 10 – 15
Demo Proyek	10%	Week 16
Laporan Akhir Proyek	10%	Week 16

Catatan Penting

- Semua Assignment di LMS (Kuis, UTS, UAS) di kerjakan dengan safe exam browser. Artinya harus menggunakan komputer dengan sistem operasi windows, atau sistem operasi mac os
- Dikerjalan dengan aplikasi safe exam browser :
 - https://safeexambrowser.org/download_en.html

1. Overview Perkuliahan

- 1.1 Algoritme
- 1.2 Arsitektur Komputer
- 1.3 Pengantar Python
- 1.4 Interpreter dan Compiler

Algoritme

Algoritme

Kemampuan manusia untuk berpikir dengan akal tentang suatu permasalahan menghasilkan sebuah solusi, dapat dibuktikan dan dapat diterima akal (logis)

Logika

Identik dengan masuk

akal dan penalaran

Ilmu yang memberikan
prinsip-prinsip yang
harus diikuti agar dapat
berpikir valid menurut
aturan yang berlaku

Penalaran

salah satu bentuk pemikiran.

Pemikiran

Pengetahuan tak langsung yang didasarkan pada pernyataan langsung. Pemikiran mungkin benar dan mungkin juga tak benar

Syarat Algoritme

Input

Informasi yang akan diperoleh dari komputer

Logika

Merencanakan proses program. Terdiri dari sejumlah instruksi yang mengubah input menjadi output yang diinginkan

Output

Data yang harus diberikan pada komputer

Domain Algoritma

Representasi formal dari suatu algoritma dengan menggunakan bahasa pemrograman yang bisa dimengerti oleh komputer

Aktivitas menjalankan langkah-langkah dalam Proses algoritma

Prosedur untuk menyelesaikan masalah. Seringkali satu masalah dapat diselesaikan dengan lebih dari satu cara (banyak kemungkinan)

Algoritma

Motivasi untuk membuat algoritma

Masalah

Bagaimana caranya menukar isi masing-masing gelas?

Sediakan gelas Kosong

X

kopi

- 1. petani dan domba naik kapal
- 2. menurunkan domba kesebrang
- 3. petani kembali ke sebelah
- 4. bawa sayurnya kekapal
- 5. sayur di turunkan di darat domba naik kapal
- 6. domba di turunkan di sebrang serigala naik ke kapal
- 7. berangkat ke sebrang turunkan serigala kembali dengan sendiri
- 8. domba dibertangkat ke sebrang bersama petani
- 9. domba dan petani turun bersama

- 1. cowo mreah dan cowo biru naik ke kapal untuk kesebran
- 2. pasangan merah naik kapal
- 3. pasangan kesebrang yang turun cowo
- 4. si cewe kembali ke sebrang menjemput cewe biru
- 5. cewe biru dan merah pergi kesebrang dan yang turun cewe merah
- 6. si cewe kembali untuk menjemput si cowo biru
- 7. pasangan biru berangkat kesebrang lalu cowo biru turun di sebrang
- 8. cewe biru menjemput cewe hijau menyebrang kemudian cewe biru turun
- 9. cewe hijau kembali menjemput cowo hijau menyebrang dan turun bersama

Arsitektur Komputer

Ciri-ciri Algoritme

Input

Algoritma dapat memiliki nol atau lebih inputan dari luar

Outpu

Algoritma harus memiliki minimal satu buah output keluaran

Definete

Algoritma memiliki instruksiinstruksi yang jelas dan tidak ambigu

Finite

algoritma harus memiliki titik berhenti (stopping role)

Effective

Algoritma sebisa mungkin harus dapat dilaksanakan dan efektif. Contoh instruksi yang tidak efektif adalah: A = A + 0 atau A = A * 1

Independent Tidak bergantung pada bahasa pemrograman apapun.

Struktur Algoritme

Runtunan (sequence)

- Sebuah runtunan terdiri dari sejumlah instruksi.
- Urutan dari instruksi menentukan hasil akhir dari suatu algoritma
- Bila urutan penulisan berubah maka mungkin juga hasil akhirnya berubah

Contoh

(4+3)*7=49

4+(3*7) = 25

Ex: Algoritma penukaran dua bilangan bulat

- 1. Deklarasikan A, B, dan C sebagai bilangan bulat
- 2. Masukkan nilai A dan B
- 3. Masukkan nilai A ke dalam C
- 4. Masukkan nilai B ke dalam A
- 5. Masukkan nilai C ke dalam B
- 6. Selesai

Struktur Algoritme

Pemilihan (selection)

- Instruksi yang dikerjakan dengan kondisi tertentu
- Kondisi adalah persyaratan yang dapat bernilai benar atau salah

Ex: Algoritma penentuan bilangan bulat

- 1. Tentukan nilai untuk variabel x
- 2. Jika x habis dibagi 2, maka lakukan langkah 4
- 3. Jika tidak, maka lakukan langkah 5
- 4. Cetak nilai x
- 5. Selesai

Struktur Algoritme

Pengulangan (repetition)

 Kegiatan mengerjakan sebuah atau sejumlah aksi yang sama sebanyak jumlah yang ditentukan atau sesuai dengan kondisi yang diinginkan

Ex:

- 1. Atur nilai x menjadi 1
- 2. Tambahkan nilai x saat ini dengan 1
- 3. Ketika x kurang dari 10, lakukan langkah 2
- 4. Selesai

Pengantar Python

- "Python is easy to use, **powerful**, and **versatile**, making it a great choice for beginners and experts alike."
- How to install python:
 - 1. Download Anaconda (which includes Python): https://www.anaconda.com/download/
 - 2. Run the installer and follow the installation instructions
 - 3. Run editor (visual studio code/pycharm) and create your first Python program "helloworld.py"

Interpreter dan Compiler

Interpreter

Program komputer yang berfungsi melakukan eksekusi pada sejumlah instruksi yang ditulis dalam suatu bahasa pemrograman tanpa terlebih dahulu menyusunnya menjadi program bahasa mesin.

Compiler

Sebuah program komputer yang berguna untuk menerjemahkan semua code pada suatu file yang ditulis dalam bahasa pemrograman tertentu menjadi bahasa mesin.

Python is an experiment in how much freedom programmers need. Too much freedom and nobody can read another's code; too little and expressiveness is endangered.

- Guido van Rossum

Terima Kasih

