Proving Uniqueness

Contents

Uniqueness

2 Exercises with Quantifiers

Uniqueness

Introduction

At times, one wishes to show that there exists exactly one value of x in the universe of discourse for which P(x) is true.

"There exists a unique x such that P(x)."

denoted as

$$(\exists!x)P(x).$$

This uniqueness statement can be rephrased as

or
$$(\exists x)P(x) \land (\forall x_1)(\forall x_2)[P(x_1) \land P(x_2) \Rightarrow x_1 = x_2],$$

$$\text{ot lest one} \qquad \text{ot most one} \qquad (\exists x_1)\left[P(x_1) \land (\forall x_2)\left(P(x_2) \Rightarrow x_1 = x_2\right)\right].$$

Examples

• $(\exists ! x \in \mathbb{R})(7x - 1 = 0)$ is true because

• $(\exists! x \in \mathbb{Z})(7x - 1 = 0)$ is false because there is no integer x for which 7x - 1 = 0.

Examples (cont')

• $(\exists ! x \in \mathbb{R})(x^2 - 8x + 16 = 0)$ is true because

$$x^{2} - 8x + 16 = 0$$

$$\iff (x - 4)^{2} = 0$$

$$\iff x - 4 = 0$$

$$\iff x = 4.$$

There exist a unique solution.

• $(\exists ! x \in \mathbb{R})(x^2 - 8x + 12 = 0)$ is false because

$$(\text{due to non-uniques}) \iff (x-4)^2-4=0 \\ \iff (x-4)^2=4 \\ \iff (x-4=-2)\vee(x-4=2) \\ \iff (x=2)\vee(x=6).$$
 There are two solutions.

Examples: Mixed with Universal Quantifier

• $(\forall a > 0)(\exists ! x > 0)(x^2 = a)$ is true.

Proof. Let $a_0 > 0$ be arbitrary. Then $(\exists ! x > 0)(x^2 = a_0)$ is true because

$$\sqrt{a_0}$$
 is a positive real number such that $(\sqrt{a_0})^2=a_0$ and

if x is a positive real number such that $x^2=a_0$, then $x=\sqrt{a_0}$, discarding the negative square root.

Since a_0 is an arbitrary positive real number, $(\forall a > 0)(\exists !x > 0)(x^2 = a)$ is true.

Q. How about
$$(\forall a>0)(\exists! x \in \mathbb{R})(z^2=a)$$
 or $(\forall a \in \mathbb{R})(\exists! x>0)(z^2=a)$?

Existence

Homework (1/26; due Wed 2/2)

Section 3: # 11, 12, 14

Exercises with Quantifiers

Example: Order in mixed quantifiers

Consider the following webpages:

P(x,y): It has a lank to y.

- · (Yx)(Zy) P(x,y)
- · (JX) (Yy) P(X,y)

Example: Negation of multiply quantified sentences

Let f be a function from \mathbb{R} to \mathbb{R} and let $a \in \mathbb{R}$.

To say that f is continuous at a means that