

Machine Learning in Precision Medicine

Linear Regression & Regularization

Prof. Dr. Christoph Lippert

Dr. Stefan Konigorski

Digital Health & Machine Learning

Formalities

All lecture and exercise materials are now available at https://open.hpi.de/courses/MLPrecisionMedicineSoSe2019.

Further news and information through our mailing list, where you also submit your exercise solutions.

Further questions regarding formalities?

Contents of today: Linear Regression

- Introduction
- Maximum likelihood estimation
- Polynomial curve fitting
- Solutions to overfitting
- Regularizes least squares

What is a linear (regression) model?

What is a linear (regression) model?

What is a linear (regression) model?

 \longrightarrow linear in parameters (e.g. x^3 could be redefined as z).

What is the likelihood?

What is the likelihood? Probability of data given parameters: $p(\mathcal{D}|\boldsymbol{\theta})$

What is the likelihood? Probability of data given parameters: $p(\mathcal{D}|\boldsymbol{\theta})$

What is the rationale behind using maximum likelihood as a criterion for finding the best line fitting 2D data points?

What is the likelihood? Probability of data given parameters: $p(\mathcal{D}|\boldsymbol{\theta})$

What is the rationale behind using maximum likelihood as a criterion for finding the best line fitting 2D data points?

How do you obtain the maximum likelihood values for your parameters (= MLE, maximum likehood estimates)?

What is the likelihood? Probability of data given parameters: $p(\mathcal{D}|\boldsymbol{\theta})$

What is the rationale behind using maximum likelihood as a criterion for finding the best line fitting 2D data points?

How do you obtain the maximum likelihood values for your parameters (= MLE, maximum likehood estimates)?

Set first derivative (w.r.t. each parameter of interest) of the log-likelihood to 0, solve.

What do you need to know to write out the likelihood?

What do you need to know to write out the likelihood?

- Model
- Distribution (pdf) of model, whether points are iid (i.e. whether pdf of all points factorizes into product of single points)

• and ...

What do you need to know to write out the likelihood?

- Model
- Distribution (pdf) of model, whether points are iid (i.e. whether pdf of all points factorizes into product of single points)
- and ...
- that's all! Easy to get closed form, once you know (i.e. assume) a specific parametric distribution.

• Setting: data \mathcal{D} consisting of N data points $\{\mathbf{x}_n, y_n\}_{n=1}^N$, where \mathbf{x}_n contains D features $\mathbf{x}_n = (x_{n1}, \dots, x_{nD})$.

• Setting: data \mathcal{D} consisting of N data points $\{\mathbf{x}_n, y_n\}_{n=1}^N$, where \mathbf{x}_n contains D features $\mathbf{x}_n = (x_{n1}, \dots, x_{nD})$.

• In matrix formulation:
$$\mathbf{X} = \begin{bmatrix} x_{11} & \dots & x_{1D} \\ \vdots & \ddots & \vdots \\ x_{N1} & \dots & x_{ND} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_N \end{bmatrix}.$$

• Setting: data \mathcal{D} consisting of N data points $\{\mathbf{x}_n, y_n\}_{n=1}^N$, where \mathbf{x}_n contains D features $\mathbf{x}_n = (x_{n1}, \dots, x_{nD})$.

• In matrix formulation:
$$\mathbf{X} = \begin{bmatrix} x_{11} & \dots & x_{1D} \\ \vdots & \ddots & \vdots \\ x_{N1} & \dots & x_{ND} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_N \end{bmatrix}.$$

• Assumption: linear model $y_n = \mathbf{x}_n \cdot \boldsymbol{\beta} + \epsilon_n$ with $\boldsymbol{\beta} \in \mathbb{R}^D$, $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$.

• Setting: data \mathcal{D} consisting of N data points $\{\mathbf{x}_n, y_n\}_{n=1}^N$, where \mathbf{x}_n contains D features $\mathbf{x}_n = (x_{n1}, \dots, x_{nD})$.

• In matrix formulation:
$$\mathbf{X} = \begin{bmatrix} x_{11} & \dots & x_{1D} \\ \vdots & \ddots & \vdots \\ x_{N1} & \dots & x_{ND} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_N \end{bmatrix}.$$

- Assumption: linear model $y_n = \mathbf{x}_n \cdot \boldsymbol{\beta} + \epsilon_n$ with $\boldsymbol{\beta} \in \mathbb{R}^D$, $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$.
- Aim: Learn parameters by maximizing the likelihood.

• Setting: data \mathcal{D} consisting of N data points $\{\mathbf{x}_n, y_n\}_{n=1}^N$, where \mathbf{x}_n contains D features $\mathbf{x}_n = (x_{n1}, \dots, x_{nD})$.

• In matrix formulation:
$$\mathbf{X} = \begin{bmatrix} x_{11} & \dots & x_{1D} \\ \vdots & \ddots & \vdots \\ x_{N1} & \dots & x_{ND} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_N \end{bmatrix}.$$

- Assumption: linear model $y_n = \mathbf{x}_n \cdot \boldsymbol{\beta} + \epsilon_n$ with $\boldsymbol{\beta} \in \mathbb{R}^D$, $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$.
- Aim: Learn parameters by maximizing the likelihood.
- Just to make sure: what are the parameters to be learned?

• Taking the logarithm, we obtain

$$\ln p(\mathbf{y}|\boldsymbol{\theta}, \sigma^2) = \sum_{n=1}^{N} \ln \mathcal{N}\left(y_n \,\middle|\, \mathbf{x}_n \cdot \boldsymbol{\beta}, \sigma^2\right)$$
$$= -\frac{N}{2} \ln 2\pi \sigma^2 - \frac{1}{2\sigma^2} \underbrace{\sum_{n=1}^{N} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2}_{\text{Sum of squares}}$$

• Taking the logarithm, we obtain

$$\ln p(\mathbf{y}|\boldsymbol{\theta}, \sigma^2) = \sum_{n=1}^{N} \ln \mathcal{N} \left(y_n \, \middle| \, \mathbf{x}_n \cdot \boldsymbol{\beta}, \sigma^2 \right)$$
$$= -\frac{N}{2} \ln 2\pi \sigma^2 - \frac{1}{2\sigma^2} \underbrace{\sum_{n=1}^{N} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2}_{\text{Sum of squares}}$$

• The likelihood is maximized when the squared error is minimized.

• Taking the logarithm, we obtain

$$\ln p(\mathbf{y}|\boldsymbol{\theta}, \sigma^2) = \sum_{n=1}^{N} \ln \mathcal{N} \left(y_n \, \middle| \, \mathbf{x}_n \cdot \boldsymbol{\beta}, \sigma^2 \right)$$

$$= -\frac{N}{2} \ln 2\pi \sigma^2 - \frac{1}{2\sigma^2} \underbrace{\sum_{n=1}^{N} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2}_{\text{Sum of squares}}$$

- The likelihood is maximized when the squared error is minimized.
- Least squares and maximum likelihood are equivalent.

• Taking the logarithm, we obtain

$$\ln p(\mathbf{y}|\boldsymbol{\theta}, \sigma^2) = \sum_{n=1}^{N} \ln \mathcal{N} \left(y_n \, \middle| \, \mathbf{x}_n \cdot \boldsymbol{\beta}, \sigma^2 \right)$$

$$= -\frac{N}{2} \ln 2\pi \sigma^2 - \frac{1}{2\sigma^2} \underbrace{\sum_{n=1}^{N} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2}_{\text{Sum of squares}}$$

- The likelihood is maximized when the squared error is minimized.
- Least squares and maximum likelihood are equivalent.
- Question: which assumption do you make using least squares to learn parameter values?

• Taking the logarithm, we obtain

$$\ln p(\mathbf{y}|\boldsymbol{\theta}, \sigma^2) = \sum_{n=1}^{N} \ln \mathcal{N} \left(y_n \, \middle| \, \mathbf{x}_n \cdot \boldsymbol{\beta}, \sigma^2 \right)$$

$$= -\frac{N}{2} \ln 2\pi \sigma^2 - \frac{1}{2\sigma^2} \underbrace{\sum_{n=1}^{N} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2}_{\text{Sum of squares}}$$

- The likelihood is maximized when the squared error is minimized.
- Least squares and maximum likelihood are equivalent.
- Question: which assumption do you make using least squares to learn parameter values?
- i.e. MLEs under linear model are (relatively) robust against wrong distribution assumption!

Linear Regression Maximum Likelihood and Least Squares

$$\underset{\beta}{\operatorname{argmin}} \frac{1}{2} \sum_{n=1}^{N} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2$$

Linear Regression Maximum Likelihood and Least Squares

How would the estimated regression line change?

• Derivative w.r.t. a single weight entry β_i

$$\frac{d}{d\beta_d} \ln p(\mathbf{y}|\boldsymbol{\beta}, \sigma^2) = \frac{d}{d\beta_d} \left[-\frac{N}{2} \ln 2\pi\sigma^2 - \frac{1}{2\sigma^2} \sum_{n=1}^{N} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2 \right]$$

• Derivative w.r.t. a single weight entry β_i

$$\frac{d}{d\beta_d} \ln p(\mathbf{y}|\boldsymbol{\beta}, \sigma^2) = \frac{d}{d\beta_d} \left[-\frac{N}{2} \ln 2\pi\sigma^2 - \frac{1}{2\sigma^2} \sum_{n=1}^N (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2 \right]$$
$$= \left[\frac{1}{\sigma^2} \sum_{n=1}^N x_{nd} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta}) \right]$$

• Derivative w.r.t. a single weight entry β_i

$$\frac{d}{d\beta_d} \ln p(\mathbf{y}|\boldsymbol{\beta}, \sigma^2) = \frac{d}{d\beta_d} \left[-\frac{N}{2} \ln 2\pi\sigma^2 - \frac{1}{2\sigma^2} \sum_{n=1}^N (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2 \right]$$
$$= \left[\frac{1}{\sigma^2} \sum_{n=1}^N x_{nd} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta}) \right]$$

• Set gradient w.r.t. β to zero [vector holding the derivatives $\forall \beta_d$]

$$\nabla_{\boldsymbol{\beta}} \ln p(\mathbf{y}|\boldsymbol{\beta}, \sigma^2) =$$

• Derivative w.r.t. a single weight entry β_i

$$\frac{d}{d\beta_d} \ln p(\mathbf{y}|\boldsymbol{\beta}, \sigma^2) = \frac{d}{d\beta_d} \left[-\frac{N}{2} \ln 2\pi\sigma^2 - \frac{1}{2\sigma^2} \sum_{n=1}^N (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2 \right]$$
$$= \left[\frac{1}{\sigma^2} \sum_{n=1}^N x_{nd} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta}) \right]$$

• Set gradient w.r.t. β to zero [vector holding the derivatives $\forall \beta_d$]

$$\nabla_{\pmb{\beta}} \ln p(\mathbf{y}|\pmb{\beta}, \sigma^2) = \frac{1}{\sigma^2} \sum_{n=1}^N \mathbf{x}_n^{\mathrm{T}}(y_n - \mathbf{x}_n \cdot \pmb{\beta}) = \mathbf{0}$$
 (where $\mathbf{0}$ is a vector of 0s)

• Set gradient w.r.t. β to zero [vector holding the derivatives $\forall \beta_d$]

$$\nabla_{\pmb{\beta}} \ln p(\mathbf{y}|\pmb{\beta},\sigma^2) = \frac{1}{\sigma^2} \sum_{n=1}^{N} \mathbf{x}_n^{\mathrm{T}}(y_n - \mathbf{x}_n \cdot \pmb{\beta}) = \mathbf{0} \quad \text{ (where } \mathbf{0} \text{ is a vector of 0s)}$$

• Set gradient w.r.t. β to zero [vector holding the derivatives $\forall \beta_d$]

$$\nabla_{\boldsymbol{\beta}} \ln p(\mathbf{y}|\boldsymbol{\beta}, \sigma^2) = \frac{1}{\sigma^2} \sum_{n=1}^{N} \mathbf{x}_n^{\mathrm{T}}(y_n - \mathbf{x}_n \cdot \boldsymbol{\beta}) = \mathbf{0} \quad \text{ (where } \mathbf{0} \text{ is a vector of 0s)}$$

• In matrix formulation: $\frac{1}{\sigma^2} \mathbf{X}^{\mathrm{T}} (\mathbf{y} - \mathbf{X} \cdot \boldsymbol{\beta}) = \mathbf{0}.$

• Set gradient w.r.t. β to zero [vector holding the derivatives $\forall \beta_d$]

$$\nabla_{\boldsymbol{\beta}} \ln p(\mathbf{y}|\boldsymbol{\beta}, \sigma^2) = \frac{1}{\sigma^2} \sum_{n=1}^{N} \mathbf{x}_n^{\mathrm{T}}(y_n - \mathbf{x}_n \cdot \boldsymbol{\beta}) = \mathbf{0}$$
 (where $\mathbf{0}$ is a vector of 0s)

- In matrix formulation: $\frac{1}{\sigma^2}\mathbf{X}^{\mathrm{T}}(\mathbf{y} \mathbf{X} \cdot \boldsymbol{\beta}) = \mathbf{0}.$
- Solving for β yields: $\beta_{\mathsf{ML}} =$

• Set gradient w.r.t. β to zero [vector holding the derivatives $\forall \beta_d$]

$$\nabla_{\boldsymbol{\beta}} \ln p(\mathbf{y}|\boldsymbol{\beta}, \sigma^2) = \frac{1}{\sigma^2} \sum_{n=1}^{N} \mathbf{x}_n^{\mathrm{T}}(y_n - \mathbf{x}_n \cdot \boldsymbol{\beta}) = \mathbf{0} \quad \text{ (where } \mathbf{0} \text{ is a vector of 0s)}$$

- In matrix formulation: $\frac{1}{\sigma^2} \mathbf{X}^T (\mathbf{y} \mathbf{X} \cdot \boldsymbol{\beta}) = \mathbf{0}.$
- ullet Solving for eta yields: $eta_{\mathsf{ML}} = \underbrace{(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}}_{\mathsf{Pseudo inverse of }\mathbf{X}}\mathbf{y}$

• Set gradient w.r.t. β to zero [vector holding the derivatives $\forall \beta_d$]

$$\nabla_{\boldsymbol{\beta}} \ln p(\mathbf{y}|\boldsymbol{\beta}, \sigma^2) = \frac{1}{\sigma^2} \sum_{n=1}^{N} \mathbf{x}_n^{\mathrm{T}} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta}) = \mathbf{0} \quad \text{ (where } \mathbf{0} \text{ is a vector of 0s)}$$

- ullet In matrix formulation: $rac{1}{\sigma^2} \mathbf{X}^{\mathrm{T}} (\mathbf{y} \mathbf{X} \cdot oldsymbol{eta}) = \mathbf{0}.$
- Solving for $\boldsymbol{\beta}$ yields: $\boldsymbol{\beta}_{\mathsf{ML}} = \underbrace{(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}}_{\mathsf{Pseudo inverse of }\mathbf{X}} \mathbf{y}$
- Question: what happened to $\frac{1}{\sigma^2}$?

• Set gradient w.r.t. β to zero [vector holding the derivatives $\forall \beta_d$]

$$\nabla_{\boldsymbol{\beta}} \ln p(\mathbf{y}|\boldsymbol{\beta}, \sigma^2) = \frac{1}{\sigma^2} \sum_{n=1}^{N} \mathbf{x}_n^{\mathrm{T}} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta}) = \mathbf{0} \quad \text{ (where } \mathbf{0} \text{ is a vector of 0s)}$$

- In matrix formulation: $\frac{1}{\sigma^2} \mathbf{X}^T (\mathbf{y} \mathbf{X} \cdot \boldsymbol{\beta}) = \mathbf{0}.$
- ullet Solving for eta yields: $eta_{\mathsf{ML}} = \underbrace{(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}}_{\mathsf{Pseudo inverse of }\mathbf{X}}\mathbf{y}$
- Question: what happened to $\frac{1}{\sigma^2}$?
- Learn parameter values for σ^2 similarly.

• The above can be extended to more general functions of \mathbf{x}_n that are linear in $\boldsymbol{\beta}$. For simplicity, focus here on $\mathbf{x}_n = x$ (i.e. one feature).

For example:

• The above can be extended to more general functions of \mathbf{x}_n that are linear in $\boldsymbol{\beta}$. For simplicity, focus here on $\mathbf{x}_n = x$ (i.e. one feature).

For example:

ullet Use the polynomials up to degree M to construct new features

$$f(x, \boldsymbol{\beta}) = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_M x^M$$

= $\boldsymbol{\phi}(x) \cdot \boldsymbol{\beta}$

with
$$\phi(x) = (1, x, x^2, \dots, x^M)$$
, $\phi_m(x) = x^m$, $\beta = (\beta_0, \beta_1, \dots, \beta_M)^T \in \mathbb{R}^M$.

• The above can be extended to more general functions of \mathbf{x}_n that are linear in $\boldsymbol{\beta}$. For simplicity, focus here on $\mathbf{x}_n = x$ (i.e. one feature).

For example:

ullet Use the polynomials up to degree M to construct new features

$$f(x, \boldsymbol{\beta}) = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_M x^M$$

= $\boldsymbol{\phi}(x) \cdot \boldsymbol{\beta}$

with
$$\phi(x) = (1, x, x^2, \dots, x^M)$$
, $\phi_m(x) = x^m$, $\beta = (\beta_0, \beta_1, \dots, \beta_M)^T \in \mathbb{R}^M$.

• Then, these polynomials can be used to predict \mathbf{y} with $\mathbf{y} = \boldsymbol{\phi}\left(x\right) \cdot \boldsymbol{\beta} + \boldsymbol{\epsilon}$.

• The above can be extended to more general functions of \mathbf{x}_n that are linear in $\boldsymbol{\beta}$. For simplicity, focus here on $\mathbf{x}_n = x$ (i.e. one feature).

For example:

ullet Use the polynomials up to degree M to construct new features

$$f(x, \boldsymbol{\beta}) = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_M x^M$$

= $\boldsymbol{\phi}(x) \cdot \boldsymbol{\beta}$

with
$$\phi(x) = (1, x, x^2, \dots, x^M)$$
, $\phi_m(x) = x^m$, $\beta = (\beta_0, \beta_1, \dots, \beta_M)^T \in \mathbb{R}^M$.

- Then, these polynomials can be used to predict y with $\mathbf{y} = \phi(x) \cdot \boldsymbol{\beta} + \boldsymbol{\epsilon}$.
- Similarly, ϕ can be any feature mapping (\rightarrow call ϕ_m basis functions, see next lecture).

The degree M of the polynomial is crucial.

(C.M. Bishop, Pattern Recognition and Machine Learning)

The degree M of the polynomial is crucial.

(C.M. Bishop, Pattern Recognition and Machine Learning)

The degree M of the polynomial is crucial.

(C.M. Bishop, Pattern Recognition and Machine Learning)

The degree M of the polynomial is crucial.

(C.M. Bishop, Pattern Recognition and Machine Learning)

Question: So how should you choose the best M?

Question: So how should you choose the best M?

Idea: Fit regression model for any M, compute mean squared error (MSE), choose M with lowest MSE.

Question: So how should you choose the best M?

Idea: Fit regression model for any M, compute mean squared error (MSE), choose M with lowest MSE.

Problems?

Question: So how should you choose the best M?

Idea: Fit regression model for any M, compute mean squared error (MSE), choose M with lowest MSE.

Problems? Overfitting!

- Split sample in training and test set.
- Choose M based on test error.

НРІ

- Split sample in training and test set.
- ullet Choose M based on test error.

(C.M. Bishop, Pattern Recognition and Machine Learning)

• Intuition? Interpretation?

How do you compute the test error?

- Split sample in training and test set.
- ullet Choose M based on test error.

(C.M. Bishop, Pattern Recognition and Machine Learning)

• Intuition? Interpretation?

- Split sample in training and test set.
- ullet Choose M based on test error.

(C.M. Bishop, Pattern Recognition and Machine Learning)

• Intuition? Interpretation?

How do you compute the test error?

Cross validation:

- Split sample in training and test set.
- ullet Choose M based on test error.

(C.M. Bishop, Pattern Recognition and Machine Learning)

• Intuition? Interpretation?

How do you compute the test error?

Cross validation:

- ullet randomly assign samples (\mathbf{x}_n,y_n) to S sets of equal size
- for each set $s \in S$ (e.g. S = 4) and $m \in [1, ..., M]$:
 - ullet train model on S-1 remaining sets
 - ullet predict on s and compute MSE or root MSE $E_{\rm RMS}.$
- ullet compute average MSE for degree m.
- pick m with lowest MSE.

What else can you do to improve model, i.e. learn better weights, find better curve fit, and be less prone to overfitting?

Linear Regression Get more data

Linear Regression Get more data

Others ways to avoid overfitting and fit complex model for limited number of observations?

Linear Regression Get more data

Others ways to avoid overfitting and fit complex model for limited number of observations? **Regularization of weights**

Regularize the regression weights β .

 $\text{Loss function:} \qquad \text{E}_2(\beta) = \underbrace{\frac{1}{2} \sum_{n=1}^N (y_n - \mathbf{x}_n \cdot \beta)^2}_{\text{squared error}} \quad + \quad \underbrace{\frac{\lambda}{2} \sum_{d=1}^D \beta_d^2}_{l_2\text{-norm regularizer}}$

where $||m{\beta}||^2 = \sqrt{\sum_{d=1}^D \beta_d^2}$ is the l_2 -norm of $m{\beta}$.

Regularize the regression weights β .

$$\text{Loss function:} \qquad \text{E}_2(\boldsymbol{\beta}) = \underbrace{\frac{1}{2} \sum_{n=1}^N (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2}_{\text{squared error}} \quad + \quad \underbrace{\frac{\lambda}{2} \sum_{d=1}^D \beta_d^2}_{l_2\text{-norm regularizer}}$$

where
$$||m{\beta}||^2 = \sqrt{\sum_{d=1}^D \beta_d^2}$$
 is the l_2 -norm of $m{\beta}$.

What effect does this have? How will the learned weights be different?

Regularize the regression weights β .

$$\text{Loss function:} \qquad \text{E}_2(\beta) = \underbrace{\frac{1}{2} \sum_{n=1}^N (y_n - \mathbf{x}_n \cdot \beta)^2}_{\text{squared error}} \quad + \quad \underbrace{\frac{\lambda}{2} \sum_{d=1}^D \beta_d^2}_{l_2\text{-norm regularizer}}$$

where $||\pmb{\beta}||^2 = \sqrt{\sum_{d=1}^D \beta_d^2}$ is the l_2 -norm of $\pmb{\beta}$.

What effect does this have? How will the learned weights be different?

- Penalizes large weights.
- ullet Reduces the complexity of the function that associates ${f x}$ with ${f y}$, i.e. learn parsimonious model.
- Also known as shrinkage methods.

Loss function:

$$\mathbf{E}_{2}(\boldsymbol{\beta}) = \underbrace{\frac{1}{2} \sum_{n=1}^{N} (y_{n} - \mathbf{x}_{n} \cdot \boldsymbol{\beta})^{2}}_{\text{squared error}} + \underbrace{\frac{\lambda}{2} \sum_{d=1}^{D} \beta_{d}^{2}}_{l_{2}\text{-norm regularizer}}$$

$$\mathbf{E}_2(\boldsymbol{\beta}) = \underbrace{\frac{1}{2} \sum_{n=1}^{N} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2}_{\text{squared error}} \quad + \quad \underbrace{\frac{\lambda}{2} \sum_{d=1}^{D} \beta_d^2}_{l_2\text{-norm regularizer}}$$

Quiz: How to chose an optimal λ ?

$$\mathbf{E}_2(\boldsymbol{\beta}) = \underbrace{\frac{1}{2} \sum_{n=1}^{N} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2}_{\text{squared error}} \quad + \quad \underbrace{\frac{\lambda}{2} \sum_{d=1}^{D} \beta_d^2}_{l_2\text{-norm regularizer}}$$

Quiz: How to chose an optimal λ ?

Answer: Look at the test error!

$$\mathrm{E}_2(\boldsymbol{\beta}) = \underbrace{\frac{1}{2} \sum_{n=1}^{N} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2}_{\text{squared error}} \quad + \quad \underbrace{\frac{\lambda}{2} \sum_{d=1}^{D} \beta_d^2}_{l_2\text{-norm regularizer}}$$

Quiz: How to chose an optimal λ ?

Answer: Look at the test error!

Minimize the loss function
$$E_2(\beta) = \underbrace{\frac{1}{2} \sum_{n=1}^N (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2}_{\text{squared error}} + \underbrace{\frac{\lambda}{2} \sum_{d=1}^D \beta_d^2}_{l_2\text{-norm regularizer}}$$

$$\text{Minimize the loss function } E_2(\boldsymbol{\beta}) = \underbrace{\frac{1}{2} \sum_{n=1}^N (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2}_{\text{squared error}} \quad + \quad \underbrace{\frac{\lambda}{2} \sum_{d=1}^D \beta_d^2}_{l_2\text{-norm regularizer}}$$

ullet Derivative w.r.t. a single weight entry eta_i

$$\frac{d}{d\beta_d} \left[\frac{1}{2} \sum_{n=1}^{N} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2 + \frac{\lambda}{2} \sum_{d=1}^{D} \beta_d^2 \right]$$

$$\text{Minimize the loss function } E_2(\beta) = \underbrace{\frac{1}{2} \sum_{n=1}^N (y_n - \mathbf{x}_n \cdot \beta)^2}_{\text{squared error}} \quad + \quad \underbrace{\frac{\lambda}{2} \sum_{d=1}^D \beta_d^2}_{l_2\text{-norm regularizer}}$$

• Derivative w.r.t. a single weight entry β_i

$$\frac{d}{d\beta_d} \left[\frac{1}{2} \sum_{n=1}^N (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2 + \frac{\lambda}{2} \sum_{d=1}^D \beta_d^2 \right] = \sum_{n=1}^N -x_{nd} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta}) + \lambda \beta_d$$

Minimize the loss function
$$E_2(\beta) = \underbrace{\frac{1}{2} \sum_{n=1}^{N} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2}_{\text{squared error}} + \underbrace{\frac{\lambda}{2} \sum_{d=1}^{D} \beta_d^2}_{l_2\text{-norm regularizer}}$$

• Derivative w.r.t. a single weight entry β_i

$$\frac{d}{\mathrm{d}\beta_d} \left[\frac{1}{2} \sum_{n=1}^N (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2 + \frac{\lambda}{2} \sum_{d=1}^D \beta_d^2 \right] = \sum_{n=1}^N -x_{nd} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta}) + \lambda \beta_d$$

• Set gradient w.r.t. β to zero [vector holding the derivatives $\forall \beta_d$]

$$\nabla_{\boldsymbol{\beta}} \mathrm{E}_2(\boldsymbol{\beta}) = \sum_{n=1}^N \mathbf{X}^{\mathrm{T}} (\mathbf{x}_n \cdot \boldsymbol{\beta} - y_n) + \lambda \boldsymbol{\beta} = \mathbf{0}$$

Minimize the loss function
$$E_2(\beta) = \underbrace{\frac{1}{2} \sum_{n=1}^{N} (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2}_{\text{squared error}} + \underbrace{\frac{\lambda}{2} \sum_{d=1}^{D} \beta_d^2}_{l_2\text{-norm regularizer}}$$

• Derivative w.r.t. a single weight entry β_i

$$\frac{d}{d\beta_d} \left[\frac{1}{2} \sum_{n=1}^N (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2 + \frac{\lambda}{2} \sum_{d=1}^D \beta_d^2 \right] = \sum_{n=1}^N -x_{nd}(y_n - \mathbf{x}_n \cdot \boldsymbol{\beta}) + \lambda \beta_d$$

• Set gradient w.r.t. β to zero [vector holding the derivatives $\forall \beta_d$]

$$\nabla_{\boldsymbol{\beta}} \mathbf{E}_{2}(\boldsymbol{\beta}) = \sum_{n=1}^{N} \mathbf{X}^{\mathrm{T}} (\mathbf{x}_{n} \cdot \boldsymbol{\beta} - y_{n}) + \lambda \boldsymbol{\beta} = \mathbf{0}$$

$$\Longrightarrow \boldsymbol{\beta}_{Ridge} = \left(\mathbf{X}^{\mathrm{T}} \mathbf{X} + \lambda \mathbf{I} \right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}$$

A more general regularization:

$$\mathbf{E}_{q}(\boldsymbol{\beta}) = \underbrace{\frac{1}{2} \sum_{n=1}^{N} (y_{n} - \mathbf{x}_{n} \cdot \boldsymbol{\beta})^{2}}_{\text{squared error}} + \underbrace{\frac{\lambda}{2} \sum_{d=1}^{D} |\beta_{d}|^{q}}_{l_{q}\text{-norm regularizer}}$$

(C.M. Bishop, Pattern Recognition and Machine Learning)

A more general regularization:

$$\mathrm{E}_q(\boldsymbol{\beta}) = \underbrace{\frac{1}{2} \sum_{n=1}^N (y_n - \mathbf{x}_n \cdot \boldsymbol{\beta})^2}_{\text{squared error}} + \underbrace{\frac{\lambda}{2} \sum_{d=1}^D |\beta_d|^q}_{l_q\text{-norm regularizer}}$$

- l_1 : Lasso \rightarrow feature selection, sparse solution
- l_2 : Ridge \rightarrow shrinks weights to 0
- Linear combination of l_1 and l_2 : Elastic net

Linear Regression Summary

- Maximum likelihood in linear regression
- Polynomial linear regression
- Cross-classification
- ullet Regularized regression with $\it l_2$ -norm (ridge regression)

Questions?