

- 1.实验报告如有雷同,雷同各方当次实验成绩均以0分计。
- 2. 当次小组成员成绩只计学号、姓名登录在下表中的。
- 3.在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按0分计。
- 4.实验报告文件以 PDF 格式提交。

院系	计算机学院		班 级	软工15	<u>E</u>		组长	崔子潇
学号	19308024		<u>19335040</u> <u>193352</u>		19335286			
学生	崔子潇		丁维力		<u>郑有为</u>			
	实验							
崔子潇		连线,解决实验中遇到 果,写实验报告。	<u> 的问题,</u>	分析结	丁维力	-	<u>C2 和路由器相关接</u> <u>。</u>	<u>操作,分析解决问</u>
郑有为		PC1 和交换机相关操作	,分析解	决问题。				

【实验题目】RIP路由协议实验

【实验目的】(请思考后补齐)

- 1.掌握在路由器和交换机上配置 RIPv2,并能够比较与 RIPv1 的不同。
- 2.通过 WireShark 抓包,理解 RIPv2 在正常情况下的报文和异常情况下毒性反转的机制。
- 3.通过 debug 技术,了解 RIP 的工作状态。

【实验要求】

重要信息信息需给出截图,注意实验步骤的前后对比。

【实验记录】(如有实验拓扑请自行画出)

【实验内容】

- 1. 在实验设备上完成 P243 实验 7-2 并测试实验网连通性。
- 2. 通过实验观察 RIP V1 和 V2 的区别 (重点在 VLSM 上) 给出分析过程与结果 (实验 IP 采用 10.10.x.0 网段)
- 3. 学会使用 Debug ip packet 和 Debug ip rip 命令,并对 debug 信息做分析。
- 4. 观察试验拓扑中链路状态发生改变时路由表的前后信息对比及 debug 信息的变化。

【实验一:书上实验】

步骤 1:

(1) 按照拓扑图配置 PC1 和 PC2 的 IP 地址、子网掩码、网关并测试其连通性。

结果:不能 ping 通。

(2) 在路由器 1 上执行 show ip route 命令,记录路由表信息:

结果:无路由信息。

步骤 2: 交换机基本配置

```
Password:
9-55750-1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
9-55750-1#config)#viarl on commands, one per line. End with CNTL/Z.
9-55750-1#config)#viarl one per line. End with CNTL/Z.
9-55750-1#config)#viar one per line. End with CNTL/Z.
9-55750(config)#viarl exit
$5750(config)#viarl exit
$5750(config)#viarl exit
$5750(config)#viarl exit
$5750(config)#viarl exit
$5750(config)#interface gio/1
$5750(config)#interface gio/5
$5750(config)#interface viarl one
$5750(config)#inte
```

步骤 3:路由器 1 基本配置

步骤 4: 路由器 2 基本配置

```
Router2(config)#in gi 0/1
Router2(config-if-GigabitEthernet 0/1)#ip address 192.168.3.1 255.255.255.0
Router2(config-if-GigabitEthernet 0/1)#no shutdown
Router2(config-if-GigabitEthernet 0/1)#exit
Router2(config)#in serial 2/0
Router2(config-if-Serial 2/0)#ip address 192.168.2.2 255.255.255.0
Router2(config-if-Serial 2/0)#no shutdown
```

步骤 5: 交换机配置 RIPv2 路由协议

```
S5750(config)#router rip
S5750(config-router)#version 2
S5750(config-router)#network 192.168.1.0
S5750(config-router)#network 192.168.5.0
```

步骤 6: 路由器 1 配置 RIPv2 路由协议

```
Router1(config)#
Router1(config)#router rip
Router1(config-router)#version 2
Router1(config-router)#no auto-summary
Router1(config-router)#network 192.168.1.0
Router1(config-router)#network 192.168.2.0
Router1(config-router)#exit
```

步骤 7: 路由器 2 配置 RIPv2 路由协议

```
Router2(config)#route rip
Router2(config-router)#version 2
Router2(config-router)#no auto-summary
Router2(config-router)#network 192.168.2.0
Router2(config-router)#network 192.168.3.0
Router2(config-router)#exit
```

这时,验证交换机和两台路由器的路由表信息:


```
|S5750(config)#show ip route
 Codes: C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
                N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
                E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default
 Gateway of last resort is no set
          192.168.1.0/24 is directly connected, VLAN 10
         192.168.1.2/32 is local host.

192.168.2.0/24 [120/1] via 192.168.1.1, 00:03:30, VLAN 10

192.168.3.0/24 [120/2] via 192.168.1.1, 00:03:30, VLAN 10

192.168.5.0/24 is directly connected, VLAN 50

192.168.5.1/32 is local host.
 C
 C
 55750(config)#
Router1(config)#show ip route
Codes: C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default
 Gateway of last resort is no set
         192.168.1.0/24 is directly connected, GigabitEthernet 0/1 192.168.1.1/32 is local host. 192.168.2.0/24 is directly connected, Serial 2/0
         192.168.2.1/32 is local host.
192.168.3.0/24 [120/1] via 192.168.2.2, 00:02:42, Serial 2/0
192.168.5.0/24 [120/1] via 192.168.1.2, 00:02:52, GigabitEthernet 0/1
 Router1(config)#
Router2#show ip route
Codes: C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
               E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default
Gateway of last resort is no set
R 192.168.1.0/24 [120/1] via 192.168.2.1, 00:09:34, Serial 2/0
C 192.168.2.0/24 is directly connected, Serial 2/0
         192.168.2.2/32 is local host.
192.168.3.0/24 is directly connected, GigabitEthernet 0/1
C
         192.168.3.1/32 is local host.
         192.168.5.0/24 [120/2] via 192.168.2.1, 00:02:07, Serial 2/0
Router2#
```

可以发现,三台机器中的路由表都含有 R 条目。交换机可以通过路由器 R1 的 RIP 包得知去 192.168.2.0 和 192.168.3.0 的路径。同理,两台路由器也可以通过学习得知发到其他网段的路由信息。

步骤 8: 测试网络的连通性


```
C:\Users\Administrator>ping 192.168.3.22

正在 Ping 192.168.3.22 具有 32 字节的数据:
来自 192.168.3.22 的回复: 字节=32 时间=37ms TTL=61
来自 192.168.3.22 的回复: 字节=32 时间=38ms TTL=61
来自 192.168.3.22 的回复: 字节=32 时间=37ms TTL=61
来自 192.168.3.22 的回复: 字节=32 时间=38ms TTL=61

192.168.3.22 的回复: 字节=32 时间=38ms TTL=61

192.168.3.22 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 37ms,最长 = 38ms,平均 = 37ms
```

结果:可以ping通。

(1) 将此时的路由表和步骤 1 的路由表进行比较。

步骤1的路由表中不含有任何表项。而此时的三个路由表中均可以有C条目和R条目,分别为端口绑定的网段信息以及RIP路由协议自动学习生成出来的动态路由表。

(2) 分析 traceroute 的结果

```
C:\Users\Administrator>ping 192.168.5.11
正在 Ping 192.168.5.11 具有 32 字节的数据:
来自 192.168.5.11 的回复: 字节=32 时间=39ms TTL=61
来自 192.168.5.11 的回复: 字节=32 时间=40ms TTL=61
来自 192.168.5.11 的回复: 字节=32 时间=37ms TTL=61
来自 192.168.5.11 的回复: 字节=32 时间=37ms TTL=61
192.168.5.11 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 37ms,最长 = 40ms,平均 = 38ms
C:\Users\Administrator>tracert 192.168.5.11
通过最多 30 个跃点跟踪
到 DESKTOP-BVAQLT3 [192.168.5.11] 的路由:
                                        <1 毫秒 192.168.3.1
          <1 臺秒
                         <1 臺秒
                       42 ms
                                     42 ms
                                               192. 168. 2. 1
          41 ms
                       50 ms
                                     50 ms
          50 ms
                                               192.168.1.
                                               DESKTOP-BVAQLT3 [192.168.5.11]
          46 ms
                       46 ms
                                     46 ms
跟踪完成。
```

在 PC2 ping PC1 的过程中,先经过路由器 2(网关为 192. 168. 3. 1),再经过路由器 1(192. 168. 2. 1),再经过交换机(192. 168. 1. 2),最后到达目的主机。这一过程中,显示的 IP 地址均为流经的路由器或交换机的入口 IP 地址。

(3) 进行拔线实验,通过 Wireshark 测试报文变化的时间差,观察毒性反转现象。 分别拔下了不同的线后,在 Wireshark 过滤出 RIPv2 的包如下:

	Current filter: ip.addr =	224.0.0.9			
No.	Time	Source	Destination	Protocol	Length Info
	85 65.776458	192.168.5.1	224.0.0.9	RIPv2	66 Request
	104 66.774625	192.168.5.1	224.0.0.9	RIPv2	66 Request
Т	116 67.611315	192.168.5.1	224.0.0.9	RIPv2	106 Response
	117 67.784385	192.168.5.1	224.0.0.9	RIPv2	66 Request
	446 91.221883	192.168.5.1	224.0.0.9	RIPv2	106 Response
	470 97.612013	192.168.5.1	224.0.0.9	RIPv2	106 Response
	485 101.662205	192.168.5.1	224.0.0.9	RIPv2	66 Response
	496 107.422282	192.168.5.1	224.0.0.9	RIPv2	86 Response
	564 127.612752	192.168.5.1	224.0.0.9	RIPv2	106 Response
	570 130.872584	192.168.5.1	224.0.0.9	RIPv2	66 Response
	588 135.992868	192.168.5.1	224.0.0.9	RIPv2	66 Response
	652 151.503184	192.168.5.1	224.0.0.9	RIPv2	106 Response
	675 157.615627	192.168.5.1	224.0.0.9	RIPv2	106 Response
	712 187.616500	192.168.5.1	224.0.0.9	RIPv2	106 Response
	713 189.553987	192.168.5.1	224.0.0.9	RIPv2	66 Response
	728 194.924046	192.168.5.1	224.0.0.9	RIPv2	86 Response
	763 217.617238	192.168.5.1	224.0.0.9	RIPv2	106 Response
L	851 247.617990	192.168.5.1	224.0.0.9	RIPv2	106 Response

(a) 拔下路由器 1 和交换机的线

查看 485 和 496 的数据包,这里并没有发生毒性反转。496 只有两段(第二第三段路由)的原因是因为第一段路由已经被 485 获取了。这时我们拔下了线,由于我们刚启动就拔线了,因此 RIP 并未完全配置稳定,此时拔线不会产生毒性反转。

其中的 Metric 表示跳数。


```
Frame 496: 86 bytes on wire (688 bits), 86 bytes captured (688 bits) on interface \Device\NPF_{EBC28BE2-6340-4CBB-87CD-F4EB4A236F0F},
> Ethernet II, Src: RuijieNe_15:57:29 (58:69:6c:15:57:29), Dst: IPv4mcast_09 (01:00:5e:00:00:09)
> Internet Protocol Version 4, Src: 192.168.5.1, Dst: 224.0.0.9

∨ User Datagram Protocol, Src Port: 520, Dst Port: 520
    Source Port: 520
    Destination Port: 520
    Length: 52
    Checksum: 0xcf64 [unverified]
    [Checksum Status: Unverified]
     [Stream index: 7]
  ∨ [Timestamps]
       [Time since first frame: 41.645824000 seconds]
       [Time since previous frame: 5.760077000 seconds]
    UDP payload (44 bytes)

    Routing Information Protocol

    Command: Response (2)
    Version: RIPv2 (2)

▼ IP Address: 192.168.2.0. Metric: 2
       Address Family: IP (2)
       Route Tag: 0
       IP Address: 192.168.2.0
       Netmask: 255.255.255.0
       Next Hop: 0.0.0.0

▼ IP Address: 192.168.3.0, Metric: 3
       Address Family: IP (2)
       Route Tag: 0
       IP Address: 192.168.3.0
       Netmask: 255.255.255.0
       Next Hop: 0.0.0.0
      Metric: 3
```

(b) 拔下路由器 2 和 PC2 的线 查看 564 的包,发现跳数为 16,发生毒性反转。

(c) 拔下路由器 1 和交换机的线 查看 652 的包,发现跳数为 16,发生毒性反转。

(d) 不拔线

查看 1802 的包, 跳数为 3, 没发生毒性反转。

注意:前 851 个包的时间间隔不稳定是 30s, 因为拔线会导致 RIPv2 包重发。之后我们停止拔线,可以看到每隔 30 秒回自动发送一个 RIPv2 包。

(4) 捕获数据包,分析 RIP 封装结构。

直接看上面的 1802 的包。RIP 是封装在 UDP 当中的,底层为 IP 和以太网。版本号为 IPv2。下面的三个分别表示路由经过的三个网段时的相关信息(子网掩码、下一跳、跳数等)。

RIP包在PC1和PC2上均可以捕获到。

rip						
No.	Time	Source	Destination	Protocol	Length Info	
Г	29 12.340639	192.168.5.1	224.0.0.9	RIPv2	106 Response	
	36 42.341302	192.168.5.1	224.0.0.9	RIPv2	106 Response	
	54 72.341957	192.168.5.1	224.0.0.9	RIPv2	106 Response	
L	60 102.342605	192.168.5.1	224.0.0.9	RIPv2	106 Response	

rip	rip					
No.	Time	Source	Destination	Protocol	Length	Info
_ 170	24.365186	192.168.3.1	224.0.0.9	RIPv2	110	Response
34	54.365801	192.168.3.1	224.0.0.9	RIPv2	110	Response
48	84.366371	192.168.3.1	224.0.0.9	RIPv2	110	Response

【实验二: 用 10.10.X.0 重做 RIPv2】

步骤 1:

重新配置 IP 地址、子网掩码和网关:

PC1: 10.10.5.11 255.255.255.0 10.10.5.1 PC2: 10.10.3.22 255.255.255.0 10.10.3.1 依然 ping 不通,路由表无信息,同上个实验。

步骤 2: 交换机基本配置

```
Password:
9-55750-1#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
9-55750-1(configuration commands, one per line. End with CNTL/Z.
9-55750-1(configuration commands, one per line. End with CNTL/Z.
9-55750-1(configuration)#exit
19-55750-1(configuration)#exit
19-
```

步骤 3: 路由器 1 基本配置


```
Router1(config)#in gi 0/1
Router1(config-if-GigabitEthernet 0/1)#ip address 10.10.1.1 255.255.255.0
Router1(config-if-GigabitEthernet 0/1)#no shutdown
Router1(config-if-GigabitEthernet 0/1)#exit
Router1(config)#in serial 2/0
Router1(config-if-Serial 2/0)#ip address 10.10.2.1 255.255.252
Router1(config-if-Serial 2/0)#no shutdown
Router1(config-if-Serial 2/0)#
```

步骤 4: 路由器 2 基本配置

```
Router2(config)#in gi 0/1
Router2(config-if-GigabitEthernet 0/1)#ip address 10.10.3.1 255.255.255.0
Router2(config-if-GigabitEthernet 0/1)#no shut down

% Invalid input detected at '^' marker.

Router2(config-if-GigabitEthernet 0/1)#no shutdown
Router2(config-if-GigabitEthernet 0/1)#exit
Router2(config)#in serial 2/0
Router2(config)#in serial 2/0)#ip address 10.10.2.2 255.255.252
Router2(config-if-Serial 2/0)#no shutdown
Router2(config-if-Serial 2/0)#
```

步骤 5: 交换机配置 RIPv2 路由协议

```
9-55750-1#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
9-55750-1(config)#interface gi0/1
9-55750-1(config-if-GigabitEthernet 0/1)#exit
9-55750-1(config)#interface vlan 10
9-55750-1(config-if-VLAN 10)#ip address 10.10.1.2 255.255.255.0
9-55750-1(config-if-VLAN 10)#exit
9-55750-1(config)#interface vlan 50\
% Invalid input detected at '^' marker.

9-55750-1(config)#interface vlan 50
9-55750-1(config-if-VLAN 50)#ip address 10.10.5.1 255.255.255.0
9-55750-1(config-if-VLAN 50)#exit
9-55750-1(config)#exit
```

步骤 6: 路由器 1 配置 RIPv2 路由协议

```
Router1(config)#router rip
Router1(config-router)#network 10.10.1.0 255.255.255.0
Router1(config-router)#network 10.10.2.0 255.255.255.252
Router1(config-router)#exit
Router1(config)#
```

步骤 7: 路由器 2 配置 RIPv2 路由协议

```
Router2(config-if-Serial 2/0)#router rip
Router2(config-router)#version 2
Router2(config-router)#network 10.10.2.0 255.255.255.252
Router2(config-router)#network 10.10.3.0 255.255.255.0
```

这时,验证交换机和两台路由器的路由表信息:


```
9-55750-1#show ip route
Codes: C - connected, S - static, R - RIP, B - BGP
               O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default
Gateway of last resort is no set
C 10.10.1.0/24 is directly connected, VLAN 10
          10.10.1.2/32 is local host.
         10.10.2.0/30 [120/1] via 10.10.1.1, 00:00:42, VLAN 10 10.10.3.0/24 [120/2] via 10.10.1.1, 00:00:42, VLAN 10 10.10.5.0/24 is directly connected, VLAN 50
R
R
          10.10.5.1/32 is local host.
9-55750-1#
Router1#show ip route
Codes: C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
                N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default
Gateway of last resort is no set
C 10.10.1.0/24 is directly connected, GigabitEthernet 0/1
C
          10.10.1.1/32 is local host.
          10.10.2.0/30 is directly connected, Serial 2/0
10.10.2.1/32 is local host.
10.10.3.0/24 [120/1] via 10.10.2.2, 00:04:46, Serial 2/0
10.10.5.0/24 [120/1] via 10.10.1.2, 00:01:05, GigabitEthernet 0/1
C
C
 Router2#show ip route
 Codes: C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
                N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default
 Gateway of last resort is no set
R 10.10.1.0/24 [120/1] via 10.10.2.1, 00:04:10, Serial 2/0
           10.10.2.0/30 is directly connected, Serial 2/0
          10.10.2.2/32 is local host.
10.10.3.0/24 is directly connected, GigabitEthernet 0/1
10.10.3.1/32 is local host.
           10.10.5.0/24 [120/2] via 10.10.2.1, 00:00:13, Serial 2/0
 Router2#
```

可以看出,均有R条目,分析同上个实验。

步骤 8: 测试网络的连通性

可以 ping 通:


```
C:\Users\Administrator>ping 10.10.5.11

正在 Ping 10.10.5.11 具有 32 字节的数据:
来自 10.10.5.11 的回复: 字节=32 时间=39ms TTL=61
来自 10.10.5.11 的回复: 字节=32 时间=37ms TTL=61
来自 10.10.5.11 的回复: 字节=32 时间=38ms TTL=61
来自 10.10.5.11 的回复: 字节=32 时间=39ms TTL=61

10.10.5.11 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 37ms,最长 = 39ms,平均 = 38ms
```

- (1) **将此时的路由表和步骤 1 的路由表进行比较。** 同上个实验。
- (2) 分析 traceroute 的结果

```
C:\Users\Administrator>tracert 10.10.5.11
通过最多 30 个跃点跟踪
到 DESKTOP-BVAQLT3 [10.10.5.11] 的路由:
                <1 臺秒
                         <1 臺秒 10.10.3.1
 23
                               10. 10. 2. 1
      42 ms
               42 ms
                        42 ms
      49 ms
               54 ms
                        50 ms
                               10.10.1.2
      47 ms
               46 ms
                        46 ms
                              DESKTOP-BVAQLT3 [10.10.5.11]
跟踪完成。
```

分析同上个实验。

(3) 进行拔线实验,通过 Wireshark 测试报文变化的时间差,观察毒性反转现象。

No.	Time	Source	Destination	Protocol	Length	Info
Г	2 0.993591	10.10.5.1	224.0.0.9	RIPv2	66	Response
	3 5.266345	10.10.5.1	224.0.0.9	RIPv2	66	Response
	17 15.523910	10.10.5.1	224.0.0.9	RIPv2	106	Response
	20 31.594239	10.10.5.1	224.0.0.9	RIPv2	106	Response
	27 45.534397	10.10.5.1	224.0.0.9	RIPv2	106	Response
	35 60.064974	10.10.5.1	224.0.0.9	RIPv2	106	Response
	39 75.535044	10.10.5.1	224.0.0.9	RIPv2	106	Response
	42 83.985305	10.10.5.1	224.0.0.9	RIPv2	66	Response
	47 105.535657	10.10.5.1	224.0.0.9	RIPv2	106	Response
	50 114.215869	10.10.5.1	224.0.0.9	RIPv2	66	Response
	54 135.536340	10.10.5.1	224.0.0.9	RIPv2	106	Response
	63 165.536834	10.10.5.1	224.0.0.9	RIPv2	106	Response
	69 195.537421	10.10.5.1	224.0.0.9	RIPv2	106	Response
	75 225.537959	10.10.5.1	224.0.0.9	RIPv2	106	Response
	81 255.538637	10.10.5.1	224.0.0.9	RIPv2	106	Response
L	91 285.539150	10.10.5.1	224.0.0.9	RIPv2	106	Response

主要包的分析与上一个实验一样,下面分析和时间有关的内容:

路由器每隔 30 秒会发 RIPv2 包,在拔线的瞬间也会发送 RIPv2 包。但这个包只会发送断掉的网段信息,而 30 秒的周期包会显示所有网段的连接状态。

周期包:

拔线瞬间的包 (毒性反转):

(4) 捕获数据包,分析 RIP 封装结构。

分析同上个实验,不再赘述。两台机器都可以捕获到。

【实验三: 用 10.10.X.0 重做 RIPv1】

步骤 1:

重新配置 IP 地址、子网掩码和网关:

PC1: 10.10.5.11 255.255.255.0 10.10.5.1 PC2: 10.10.3.22 255.255.255.0 10.10.3.1 依然 ping 不通,路由表无信息,同上个实验。

步骤 2: 交换机基本配置


```
Password:
9-55750-1#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
9-55750-1(config)#hostname 55750
55750(config)#vlan 10
55750(config-vlan)#exit
55750(config)#vlan 50
55750(config-vlan)#exit
55750(config)#interface gi0/1

55750(config-if-GigabitEthernet 0/1)#switchport access vlan 10

55750(config-if-GigabitEthernet 0/1)#exit
55750(config)#interface gi0/5
S5750(config-if-GigabitEthernet 0/5)#switchport access vlan 50
S5750(config-if-GigabitEthernet 0/5)#exit
S5750(config)#interface vlan 10
55750(config-if-VLAN 10)#*Jan 13 09:10:06: %LINEPROTO-5-UPDOWN: Line protocol on
 Interface VLAN 10, changed state to up.
55750(config-if-VLAN 10)#ip address 10.10.1.2 255.255.255.0
S5750(config-if-VLAN 10)#no shutdown
S5750(config-if-VLAN 10)#exit
S5750(config)#interface vlan 50
55750(config-if-VLAN 50)#*Jan 13 09:10:48: %LINEPROTO-5-UPDOWN: Line protocol on
 Interface VLAN 50, changed state to up.
55750(config-if-VLAN 50)#ip address 10.10.5.1 255.255.255.0
55750(config-if-VLAN 50)#no shutdown
S5750(config-if-VLAN 50)#exit
55750(config)#
55750(config)#exit
55750#*Jan 13 09:11:31: %SYS-5-CONFIG_I: Configured from console by console
55750#show ip route
          C - connected, S - static, R - RIP, B - BGP
          O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
           E1 - OSPF external type 1, E2 - OSPF external type 2
           i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
           ia - IS-IS inter area, * - candidate default
Gateway of last resort is no set
      10.10.1.0/24 is directly connected, VLAN 10
10.10.1.2/32 is local host.
10.10.5.0/24 is directly connected, VLAN 50
C
      10.10.5.1/32 is local host.
```

步骤 3:路由器 1 基本配置

```
Router1(config)#in gi 0/1
Router1(config-if-GigabitEthernet 0/1)#ip address 10.10.1.1 255.255.255.0
Router1(config-if-GigabitEthernet 0/1)#no shutdown
Router1(config-if-GigabitEthernet 0/1)#exit
Router1(config)#in serial 2/0
Router1(config-if-Serial 2/0)#ip address 10.10.2.1 255.255.255.252
Router1(config-if-Serial 2/0)#no shutdown
Router1(config-if-Serial 2/0)#
```

步骤 4: 路由器 2 基本配置

```
Router2(config)#in gi 0/1
Router2(config-if-GigabitEthernet 0/1)#ip address 10.10.3.1 255.255.255.0
Router2(config-if-GigabitEthernet 0/1)#no shutdown
Router2(config-if-GigabitEthernet 0/1)#exit
Router2(config)#in serial 2/0
Router2(config-if-Serial 2/0)#ip address 10.10.2.2 255.255.252
Router2(config-if-Serial 2/0)#no shutdown
```

步骤 5: 交换机配置 RIPv2 路由协议


```
S5750#config term
Enter configuration commands, one per line. End with CNTL/Z.
S5750(config)#router rip
S5750(config-router)#version 1
S5750(config-router)#network 10.10.1.0 255.255.255.0
S5750(config-router)#network 10.10.5.0 255.255.255.0
S5750(config-router)#
S5750(config-router)#
S5750(config)#
S5750(config)#
S5750(config)#
S5750(config)#exit
S5750#show in route
```

步骤 6: 路由器 1 配置 RIPv2 路由协议

```
Router1(config)#router rip
Router1(config-router)#version 1
Router1(config-router)#no auto-summary
Router1(config-router)#network 10.10.1.0 255.255.255.0
Router1(config-router)#network 10.10.2.0 255.255.255.252
```

步骤 7: 路由器 2 配置 RIPv2 路由协议

```
Router2(config)#router rip
Router2(config-router)#version 1
Router2(config-router)#no auto-summary
Router2(config-router)#network 10.10.2.0 255.255.255.252
Router2(config-router)#network 10.10.3.0 255.255.255.0
```

这时,验证交换机和两台路由器的路由表信息:

```
Codes: C - connected, S - static, R - RIP, B - BGP

O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set

C 10.10.1.0/24 is directly connected, VLAN 10

C 10.10.1.2/32 is local host.

R 10.10.2.0/24 [120/1] via 10.10.1.1, 00:00:42, VLAN 10

R 10.10.3.0/24 [120/2] via 10.10.1.1, 00:00:40, VLAN 10

C 10.10.5.0/24 is directly connected, VLAN 50

C 10.10.5.1/32 is local host.
```

```
Router1#show ip route

Codes: C - connected, S - static, R - RIP, B - BGP

O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set

C 10.10.1.0/24 is directly connected, GigabitEthernet 0/1

C 10.10.1.1/32 is local host.

C 10.10.2.0/30 is directly connected, Serial 2/0

C 10.10.2.1/32 is local host.

R 10.10.3.0/30 [120/1] via 10.10.2.2, 00:11:13, Serial 2/0

R 10.10.5.0/24 [120/1] via 10.10.1.2, 00:10:45, GigabitEthernet 0/1

Router1#
```


步骤 8: 测试网络的连通性

```
C:\Users\Administrator>ping 10.10.3.22
正在 Ping 10.10.3.22 具有 32 字节的数据:
来自 10.10.1.1 的回复: 无法访问目标网。
```

可以看出, ping 不通。

这个实验中,对RIPv1使用了不连续网段且没有使用自动汇总,因此ping不通。如果启用了自动汇总,由于子网掩码不通,它们依然处于不连续网段,因此ping不通。

不连续网段的含义是子网掩码不同。在本次实验中采用了 255. 255. 255. 0 和 255. 255. 255. 252。

如果需要 ping 通,则需要更改子网掩码均为 255. 255. 255. 0。再次进行步骤 2-步骤 7 的配置,只是要更改子网掩码。此外还要注意,配置过程中不能加入 no auto-summary 一句。

```
C:\Users\Administrator>ping 10.10.5.11

正在 Ping 10.10.5.11 具有 32 字节的数据:
来自 10.10.5.11 的回复: 字节=32 时间=40ms TTL=61
来自 10.10.5.11 的回复: 字节=32 时间=36ms TTL=61
来自 10.10.5.11 的回复: 字节=32 时间=40ms TTL=61
来自 10.10.5.11 的回复: 字节=32 时间=40ms TTL=61

10.10.5.11 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 4,丢失 = 0(0% 丢失),
往返行程的估计时间(以毫秒为单位):
最短 = 36ms,最长 = 40ms,平均 = 39ms
```

可以 ping 通。

2968 2302.004705	10.10.1.1	255.255.255	RIPv1	66 Request
2986 2303.004346	10.10.1.1	255.255.255.255	RIPv1	66 Request
2996 2304.004380	10.10.1.1	255.255.255.255	RIPv1	66 Request
3089 2311.584719	10.10.1.1	255.255.255.255	RIPv1	66 Response
3124 2336.115043	10.10.1.1	255.255.255.255	RIPv1	66 Response
3132 2366.115662	10.10.1.1	255.255.255.255	RIPv1	66 Response
3153 2396.116034	10.10.1.1	255.255.255.255	RIPv1	66 Response
3208 2429.447688	10.10.1.1	255.255.255.255	RIPv1	66 Request
3221 2430.446636	10.10.1.1	255.255.255.255	RIPv1	66 Request
3229 2431.446702	10.10.1.1	255.255.255.255	RIPv1	66 Request
3265 2432.616633	10.10.1.1	255.255.255.255	RIPv1	66 Response
3455 2462.617060	10.10.1.1	255.255.255.255	RIPv1	66 Response
3463 2487.797530	10.10.1.1	255.255.255.255	RIPv1	66 Response
3466 2492.617650	10.10.1.1	255.255.255.255	RIPv1	86 Response
3609 2777.349191	10.10.5.1	255.255.255.255	RIPv1	66 Request
3610 2778.343008	10.10.5.1	255.255.255.255	RIPv1	66 Request
3612 2779.343028	10.10.5.1	255.255.255.255	RIPv1	66 Request
3613 2779.433117	10.10.5.1	255.255.255.255	RIPv1	106 Response
3623 2809.436299	10.10.5.1	255.255.255.255	RIPv1	106 Response
3642 2839.443963	10.10.5.1	255.255.255.255	RIPv1	106 Response
3652 2869.444443	10.10.5.1	255.255.255.255	RIPv1	106 Response
3663 2899.445004	10.10.5.1	255.255.255.255	RIPv1	106 Response
3682 2929.445592	10.10.5.1	255.255.255.255	RIPv1	106 Response

WireShark 也可以抓到相关的包。

【实验思考题】

(1) 查看交换机端口 0/1 所属的 VLAN 应当使用哪条命令?

(2) 如何查看 RIP 版本号和发布到的网段?


```
S5750(config)#show ip protocols
Routing Protocol is "rip"
  Sending updates every 30 seconds
  Invalid after 180 seconds, flushed after 120 seconds
Outgoing update filter list for all interface is: not set
Incoming update filter list for all interface is: not set
  Redistribution default metric is 1
  Redistributing:
  Default version control: send version 2, receive version 2
     Interface
                                              Send Recv
     VLAN 10
     VLAN 50
   Routing for Networks:
     192.168.1.0 255.255.255.0
192.168.5.0 255.255.255.0
   Distance: (default is 120)
S5750(config)#show ip rip database
192.168.1.0/24
                       auto-summary
192.168.1.0/24
[1] directly connected, VLAN 10
192.168.2.0/24
                      auto-summary
192.168.2.0/24
      [1] via 192.168.1.1 VLAN 10 00:26
192.168.3.0/24
                       auto-summary
192.168.3.0/24
[2] via 192.168.1.1 VLAN 10 00:26
192.168.5.0/24 auto-summary
192.168.5.0/24
     [1] directly connected, VLAN 50
55750(config)#
```

- (3) RIPv1 的广播地址是 255. 255. 255. 255, RIPv2 的组播地址是 224. 0. 0. 9。
- (4) 使用 10.10. X.0 的 IP 地址重做本次实验。

参见实验二和三。

```
Router2(config)#show ip route

Codes: C - connected, S - static, R - RIP, B - BGP

0 - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, * - candidate default

Gateway of last resort is no set

R 10.10.1.0/30 [120/1] via 10.10.2.1, 00:38:16, Serial 2/0

C 10.10.2.0/30 is directly connected, Serial 2/0

C 10.10.3.0/24 is local host.

C 10.10.3.1/32 is local host.

R 10.10.5.0/30 [120/2] via 10.10.2.1, 00:37:34, Serial 2/0
```

在实验三中,路由器对两个子网掩码的配置分别为 24 位和 30 位。最后路由器的可变子网掩码中,被统一为 30 位。

- (5) RIPv1 必须使用路由自动汇总,不支持不连续网络。RIPv2 支持不连续的网络吗? 参见实验三。RIPv1 必须使用路由自动汇总,不支持不连续网络。RIPv2 必须关闭路由自动汇总才能支持不连续网络,否则不支持。
- (6) RIPv1 对路由没有标记的功能,RIPv2 可以对路由打标记(tag),用于过滤和做策略。

通过 WireShark 抓包即可得知,在 RIPv1 中,找不到 Tag 项,而在 RIPv2 中,可以找到 Tag 项。


```
【Wireshark · 分组 1802 · 实验网
 Frame 1802: 106 bytes on wire (848 bits), 106 bytes captured (848 bits) on interface \Device\NPF_{EBC28BE2-6340-4CBB-87CD-F4EB4A236F0F
 Ethernet II, Src: RuijieNe_15:57:29 (58:69:6c:15:57:29), Dst: IPv4mcast_09 (01:00:5e:00:00:09)
> Internet Protocol Version 4, Src: 192.168.5.1, Dst: 224.0.0.9
 User Datagram Protocol, Src Port: 520, Dst Port: 520
Routing Information Protocol
    Command: Response (2)
    Version: RIPv2 (2)
  IP Address: 192.168.1.0, Metric: 1
       Address Family: IP (2)
      Route Tag: 0
       IP Address: 192.168.1.0
      Netmask: 255.255.255.0
      Next Hop: 0.0.0.0
      Metric: 1
  V IP Address: 192.168.2.0, Metric: 2
       Address Family: IP (2)
      Route Tag: 0
       IP Address: 192.168.2.0
      Netmask: 255.255.255.0
      Next Hop: 0.0.0.0
      Metric: 2
  ✓ IP Address: 192.168.3.0, Metric: 3
       Address Family: IP (2)
      Route Tag: 0
       IP Address: 192.168.3.0
      Netmask: 255.255.255.0
      Next Hop: 0.0.0.0
      Metric: 3
```

【其他问题】

1. 通过实验观察 RIP V1 和 V2 的区别(重点在 VLSM 上)给出分析过程与结果(实验 IP 采用 10.10.x.0 网段)

在实验二、三中均已完成相关任务。关于 VLSM:

RIPv1 支持有类地址,不支持 VLSM,不会再路由信息中发送子网掩码,因此学习到的路由的子网掩码是由接收端口所处的网段决定的。RIPv2 支持无类地址,支持 VLSM 发送信息中包括子网掩码。

可以用 WireShark 抓包观察:


```
Source Address: 10.18.5.1
Destination Address: 255.255.255.255

Viser Datagram Protocol, Snc Port: 520
Source Port: 520
Destination Port: 520
Length: 72
Checksum: 0x.618 [unverified]
[Checksum: 0x.618 [unverified]
[Stream index: 1]
> [Timestamps]
UDP payload (64 bytes)

Routing Information Protocol
Command: Response (2)
Version: RIPM (1)

VIP Address: 10.10.1.0, Metric: 1
Address Family: IP (2)
IP Address: 10.10.2.0, Metric: 2
Address Family: IP (2)
IP Address: 10.10.2.0
Metric: 2

VIP Address: 10.10.3.0, Metric: 3

Address Family: IP (2)
IP Address: 10.10.3.0, Metric: 3

Address Family: IP (2)
IP Address: 10.10.3.0, Metric: 3

Address Family: IP (2)
IP Address: 10.10.3.0, Metric: 3

Address Family: IP (2)
IP Address: 10.10.3.0, Metric: 3

Address Family: IP (2)
IP Address: 10.10.3.0
```

```
☑ Wireshark · 分组 1802 · 实验网
  Frame 1802: 106 bytes on wire (848 bits), 106 bytes captured (848 bits) on interface \Device\NPF_{EBC28BE2-6340-4CBB-87CD-F4EB4A236F0F
  Ethernet II, Src: RuijieNe_15:57:29 (58:69:6c:15:57:29), Dst: IPv4mcast_09 (01:00:5e:00:00:09)
> Internet Protocol Version 4, Src: 192.168.5.1, Dst: 224.0.0.9
 User Datagram Protocol, Src Port: 520, Dst Port: 520

    Routing Information Protocol

    Command: Response (2)
    Version: RIPv2 (2)
  IP Address: 192.168.1.0, Metric: 1
      Address Family: IP (2)
      Route Tag: 0
       IP Address: 192.168.1.0
      Netmask: 255.255.255.0
       Next Hop: 0.0.0.0
      Metric: 1
  V IP Address: 192.168.2.0, Metric: 2
      Address Family: IP (2)
      Route Tag: 0
       IP Address: 192.168.2.0
      Netmask: 255.255.255.0
      Metric: 2

▼ IP Address: 192.168.3.0, Metric: 3
      Address Family: IP (2)
      Route Tag: 0
       IP Address: 192.168.3.0
      Netmask: 255.255.255.0
       wext חסף: ש.ש
      Metric: 3
```

2. 学会使用 debug ip packet 和 debug ip rip 命令,并对 debug 信息做分析。

使用 debug ip packet,可以实时的显示收到的 IP 报文,包括 IP 地址,端口号,目的 IP 地址以及一些其他 IP 的信息。

使用 debug ip rip,可以实时的显示发送以及接收到的路由信息。显示的信息包括: RIP 报文 所在的 IP 报文的源地址和目的地址,RIP 报文所在的 UDP 报文的源端口号和目的端口号,RIP 报文头的内容。


```
ROUTE Tedebug 1p rip

ROUTE TEDEBug 1p rip
```

3. 观察试验拓扑中链路状态发生改变时路由表的前后信息对比及 debug 信息的变化。 拔线前的路由表如下:

先进入 debug 模式, 然后拔线:

·算机网络实验报告

```
*Jun
*Jun
*Jun
*Jun
Jun
Jun
₹Jun
*Jun
*Jun
*Jun
*Jun
*Jun
*Jun
₹Jun
*Jun
*Jun
*Jun
*Jun
*Jun
Jun
Jun
*Jun
*Jun
*Jun
*Jun
*Jun
*Jun
Jun
₹Jun
* Jun
Jun
Jun
₹Jun
*Jun
*Jun
*Jun
*Jun
Jun
Jun
*Jun
*Jun
*Jun
*Jun
*Jun
Jun
Jun
*Jun
*Jun
*Jun
*Jun
*Jun
*Jun
Jun
Jun
ะวินท
Jun
Jun
```

退出 debug 模式,显示拔线后的路由表:

```
Router1#show ip route
Codes: C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
            E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default
Gateway of last resort is no set
       10.10.1.0/24 is directly connected, GigabitEthernet 0/1 10.10.1.1/32 is local host.
       10.10.2.0/24 is directly connected, Serial 2/0
       10.10.2.1/32 is local host.
R
       10.10.5.0/24 [120/1] via 10.10.1.2, 00:02:26, GigabitEthernet 0/1
Router1#
```

可以看出,拔线过后的一段时间内,路由器会收到断开的 RIP 信号。此时,由于毒性 反转,路由器会先将其跳数置为16,过一段时间如果还没有恢复,则发现是断开了。因 此,要从路由表中删除这个条目。

本次实验完成后,请根据组员在实验中的贡献,请实事求是,自评在实验中应得的分数。(按百分制)

学号	学生	自评分
19308024	崔子潇	100
19335286	郑有为	100
19335040	丁维力	100

【交实验报告】

上传实验报告:

截止日期(不迟于): 1周之内

上传包括两个文件:

- (1) 小组实验报告。上传文件名格式: 小组号_Ftp 协议分析实验.pdf (由组长负责上传) 例如: 文件名 "10_Ftp 协议分析实验.pdf" 表示第 10 组的 Ftp 协议分析实验报告
- (2)小组成员实验体会。每个同学单独交一份只填写了实验体会的实验报告。只需填写自己的 学号和姓名。

文件名格式: 小组号_学号_姓名_ Ftp 协议分析实验.pdf (由组员自行上传)

例如: 文件名 " $10_05373092_{张三}$ Ftp 协议分析实验.pdf" 表示第 10 组的 Ftp 协议分析实验报告。

注意: 不要打包上传!