

Synchrotron techniques for materials characterization

Berit Zeller-Plumhoff

Data-Driven Analysis and Design of Materials
Universität Rostock

What is your background?

Why are you joining the lecture?

Aim of the lecture:

You will be familiar with synchrotron radiation-based techniques used for materials characterization and understand their underlying principles. Moreover, you can assess the requirements for a successful measurement and would be able to plan and analyse an experiment given a certain question.

About us

Berit Zeller-Plumhoff

BSc. + MSc. Mathematics

PhD Materials Science/ Bioengineering

Industrial secondment

Postdoc Head of Department

Application Engineer

Carsten Wickmann

Universität Rostock

B. Sc. + M. Sc. + IWE mechanical engineering

PhD
structure mechanics,
fatigue of materials

Research assistant fatigue of weldments, numerical simulations, fotogrammetry

since 01.10.2024 research assistant CDMA

since 01.08.2024 professorship CDMA

Motivation

http://photon-science.desy.de/facilities/petra_iii/index_eng.html

Do you have experience in X-ray techniques and image processing?

What are you interested in?

About the lecture

- 2 SWS Lecture (english) R115: Fundamentals and theory
- 2 SWS Tutorial (english) R109 (PC-Pool): Programming with Jupyter Notebooks to perform calculations, generate graphs and perform image processing
- Excursion to DESY in January 2025
- Inverted classroom for last 30%
- Exam: written exam of 120 minutes
- If you have questions, comments or feedback, please contact us: berit.zeller-plumhoff@uni-rostock.de, carsten.wickmann@uni-rostock.de

Lecture content

Date	Lecture content	Comment
15.10.2024	Introduction and overview	
23.10.2024	Generation, interaction and detection of X-rays	
30.10.2024	X-ray computed tomography	
06.11.2024	X-ray computed tomography	Start at 9:00 am sharp
13.11.2024	Propagation-based phase contrast	
20.11.2024	X-ray microscopy	need to move date
27.11.2024	cancelled	
04.12.2024	X-ray diffraction - Small angle X-ray scattering	
11.12.2024	X-ray absorption and fluorescence spectroscopy	
18.12.2024	Image processing	

Lecture content

Date	Lecture content	Comment
08.01.2025	DESY excursion	
15.01.2025	Image processing	
22.01.2025	Image processing	
29.01.2025	Outlook: neutrons and exam preparation and questions	

Literatur

- Literature: J. Als-Nielsen, Elements of Modern X-ray Physics, 2nd Ed., Kaptl. 9
- A number of papers that will be made available via StudIP

Synchrotron techniques for materials characterizeration

X-ray generation and detection

http://photon-science.desy.de/facilities/flash/the_free_electron_laser/ undulator/index_eng.html

https://www.konicaminolta.com/healthcare/products/dr/dr30/inde x.html

Interaction of X-rays with matter

https://en.wikipedia.org/wiki/Mass_attenuation_coefficient

X-ray computed tomography

from www.shutterstock.com

X-ray computed tomography Phase contrast imaging

FIG. 3 Images of air bubbles and glass fibres in a polymer glue ('Tarzan's grip', Tarzan's Grip Products, Milperra, NSW, Australia). This is a similar sample to that reported in ref. 8 and corresponds to an almost pure phase object. Source—object distance $R_{\rm c}$ was 200 mm, and object—image distances were $R_2=1\,{\rm mm}$ (panel a; 15-s exposure) and $1,200\,{\rm mm}$ (panel b: 8-min exposure). The tube voltage used was 60 kV. Image b shows black/white contrast at edges of bubbles and also at edges of fibres, corresponding to additional contrast over that expected for a normal absorption contrast image (a).

Taken from Wilkins et al., Phase-contrast imaging using polychromatic hard X-rays, Nature, volume 384, pages 335–338 (1996)

Nominal line width 50 200 nm

Visualized 3D volume of photonic glass sample; bead diameter ~2 µm

Slide courtesy of Dr. Imke Greving

X-ray diffraction

[hkl] \Lambda

Taken from Marrow et al. (2016) https://doi.org/10.1016/j.carbon.2015.09.058

Small angle X-ray scattering

Svergun & Koch: Rep. Prog. Phys. 66 (2003) 1735–1782

X-ray fluorescence

Taken from Deng J. et al., Scientific Reports 7, 445 (2017)

Image processing

Image-based modelling

Zeller-Plumhoff B, et al. 2017. J. R. Soc. Interface 14: 20170635.

Zeller-Plumhoff B, et al. 2017. J. R. Soc. Interface 14: 20160992.

Outlook: neutron techniques

https://www.psi.ch/de/niag/what-is-neutron-imaging

Motivation: Magnesium-based implants

Global impant market 2019: several billion €

Magnesium-based implants

- Biocompatibility
- Biodegradability
 - Temporal support of bone
 - Local change of chemical environment
 - Influence of ionic components
 - Influence of proteins and cells
 - > Influence of intermetallic phases and impurities
- Development of a predictive model of magnesium biodegradation and the tissue response

Investigating biodegradable bone implants

J. Gonzalez et al., Bioactive Materials (2018)

Zimmermann et al., Scientific Reports (2016)

Investigating biodegradable bone implants

Implant:

- Degradation
 - Morphology
 - Structure
 - Chemical composition

Bone

- Growth
 - Morphology
 - Ultrastructure
 - Chemical composition
 - Biomechanical properties

High-resolution computed tomography P05 beamline at PETRA III

Materials Design and Characterization

• FOV: 7.4 x 2mm

Resolution < 1µm

 Additional space for in situ experiments and sample environments

Degradation rates in vitro vs ex vivo

Diana Krüger et al., Bioactive Materials 2021; Diana Krüger et al., Magnesium and alloys 2021

Static SRµCT ex vivo

Diana Krüger et al., Bioactive Materials 2021

Diana Krüger *et al.*, Bioactive Materials 2021 Iskhakova and Cwieka and *et al.*, Bioactive Materials 2024

In situ loading experiments

- Testing of the bone-implant interface
- Step-wise loading
 - → Force increment: 2.5 N, 9 steps

Courtesy of Stefan Bruns and Julian Moosmann, Hereon

In situ push-out experiments - Ultimate Loading Force

- Depending on the degradation the integration into bone is changing
- Mg-xGd requires longer time for a good mechanical performance
- BIC or BV/TV aren't good predictors for all implant types

Bruns et al., Bioactive Materials (2023)