

Theory of Machines and Languages

Fatemeh Deldar

1403-1404

- Regular Expressions for Regular Languages
 - For every regular language, there should exist a corresponding regular expression
- Generalized transition graph (CTG)
 - ➤ A generalized transition graph is a transition graph whose edges are labeled with regular expressions

Example

- □ A complete GTG is a graph in which all edges are present
 - \triangleright We put missing edges and label them with \emptyset

□ A two-state complete GTG

□ When a GTG has more than two states, we can *remove one state at a time* until only two states are left

□ A three-state complete GTG

To remove q_2 :

- Create an edge from q_1 to q_1 and label it $e + af^*b$
- Create an edge from q_1 to q_3 and label it $h + af^*c$
- Create an edge from q_3 to q_1 and label it $i + df^*b$
- Create an edge from q_3 to q_3 and label it $g + df^*c$

Example

Find a regular expression for the language

■ Example (Cont.)

Example

Consider the following generalized transition graph.

- (a) Find an equivalent generalized transition graph with only two states.
- (b) What is the language accepted by this graph?

Regular Grammars

A grammar G = (V, T, S, P) is said to be **right-linear** if all productions are of the form

$$A \to xB$$

$$A \to x$$

where $A, B \in V$, and $x \in T^*$. A grammar is said to be **left-linear** if all productions are of the form

$$A \to Bx$$

or

$$A \to x$$
.

A regular grammar is one that is either right-linear or left-linear.

Regular Grammars

Example

The grammar $G_1 = (\{S\}, \{a, b\}, S, P_1)$, with P_1 given as

$$S \rightarrow abS|a$$

is right-linear. The grammar $G_2 = (\{S, S_1, S_2\}, \{a, b\}, S, P_2)$, with productions

$$S \rightarrow S_1 ab,$$

 $S_1 \rightarrow S_1 ab | S_2,$
 $S_2 \rightarrow a,$

is left-linear. Both G_1 and G_2 are regular grammars.

Regular Grammars

Example

$$S \to A,$$
 $A \to aB|\lambda,$
 $B \to Ab$

- Although every production is either in rightlinear or left-linear form, the grammar itself is neither right-linear nor left-linear, and therefore is not regular
- But this grammar is a linear grammar
 - A linear grammar is a grammar in which at most one variable can occur on the right side of any production, without restriction on the position of this variable
- A regular grammar is always linear, but not all linear grammars are regular