OPERACIJE Z RELACIJAMI

Naj bo A neprazna množica in $R, S \subseteq A \times A$ relaciji v A. Z U_A označimo univerzalno relacijo v A. Relacije so množice, zato lahko govorimo o uniji relacij $R \cup S$, preseku relacij $R \cap S$ in razliki relacij $R \setminus S$.

Če govorimo o relacijah v množici A, potem definiramo komplement relacije R, označimo ga standardno z R^c , kot

$$R^c = \{(x, y) \mid \neg xRy\} = U_A \setminus R = (A \times A) \setminus R.$$

Inverzna relacija k R, označimo jo z R^{-1} , definiramo s predpisom

 $yR^{-1}x$ natanko tedaj, ko xRy.

Velja torej

$$R^{-1} = \{(y, x) \mid xRy\}.$$

 $Kompozitum \ relacij \ R$ in S (tudi $produkt \ relacij$), uporabljamo oznako R*S, je relacija definirana z

$$R * S = \{(x, z) \mid \exists y \in A : xRy \text{ in } ySz\}.$$

Velja torej

xR * Sz natanko tedaj, ko obstaja $y \in A$ za katerega velja xRy in ySz.

LASTNOSTI OPERACIJ Z RELACIJAMI

Znova naj bo A neprazna množica in $R, S, T \subseteq A \times A$ relacije v A. Standardno naj id $_A$ označuje relacijo identitete ali enakosti v A. Veljajo naslednje zveze.

- $(1) (R^{-1})^{-1} = R$
- (2) $(R * S)^{-1} = S^{-1} * R^{-1}$
- (3) (R * S) * T = R * (S * T)
- (4) $R * (S \cup T) = (R * S) \cup (R * T)$
- (5) $(R \cup S) * T = (R * T) \cup (S * T)$
- (6) $R * id_A = id_A * R = R$
- (7) Iz $R \subseteq S$ sledi $R * T \subseteq S * T$ in $T * R \subseteq T * S$.

Opomba. Točki (4) in (5) ne veljata za presek. Relaciji $R*(S\cap T)$ in $(R*S)\cap (R*T)$ nista nujno enaki.