Enhanced Entity Relationship Modeling

©2001 Irwin Levinstein

Basic concept: Subset/Superset

- · Examples:
 - Some Employees are Hourly
 - Some Employees are Managers
 - All Employees are either technical, clerical, or managerial
 - All employees are either Hourly or Salaried

Why is this Important?

- Subsets may have different attributes:
 - tech employee has SPECIALTY
 - Hourly employee has OVERTIME
- Subsets may participate in different relationships:
 - managerial employee manages unit
 - hourly employee belongs to a union

ISA = Inheritance

- MANAGER gets all attribs of EMPLOYEE
- can participate in all relations EMPLOYEE participates in.
- this is called INHERITANCE:
- every MANAGER is also an EMPLOYEE.
- All of this is idea of "ISA" or
 "Superclass/Subclass"

Specialization and Generalization

- Specialization defines SETS of Subclasses on a Class.
 - Each SET called a Specialization
- Generalization unites several entities into a Set of Sub-Classes, making a new class.
- Subclasses in a Specialization may be disjoint or overlap
- Entities in class may be total or partial members of the specialization

Kinds Of Specialization

- Condition (Predicate) defined involves several attributes
 - EX: (Job_type='Managerial' and Salary > 100K ⇒ 'Upper_Managerial' subclass)
- Attribute Defined: only one Attribute involved ⇒ 'Clerical' subclass)
 - EX: (Job_type in ('Secretary, Receptionist, Clerk)
- · User Defined
 - User places entity in subclass when entity is created

[©]2001 Irwin Levinstein

Generalization

- Build Up Superclass from SubClasses
- Diagram Looks the same as in Specialization
- Process goes in reverse direction

Generalization

- Ex: Company buys Steel and Paper Mills and merges Databases
- Attributes of FACTORY: INTERSECTION of attributes of the Subclasses.

©2001 Irwin Levinstein

Specialization Lattice

- · Overlapping Specialization
- Specializations of Specializations
- · Multiple Inheritance

Lattice Example

- Student graduates and so is Alumnus
- Returns to School and so is a Student too
- Gets TA position and so is an Employee

Converting an EER-Diagram To a Relational Schema

[©]2001 Irwin Levinstein

Summary

- 3 Solutions
 - super/sub tables
 - subtables only
 - one big table
- · None is perfect
- Part of reason for development of Object Relational Databases