Introduction to STAN

 $\ \ \, \text{A probabilistic programming language}$

Songpeng Zu

13 October 2020

Content¹

An introduction to STAN, a well-designed and easily used tool, for statistical modeling.

- What is STAN.
- How STAN works.
- How to write a STAN script.
- How to run it and analyze the result.

¹https://github.com/beyondpie/intro_to_stan

What is STAN 2

- A programming language
 - It supports array data structure, while loops, and conditionals.
 - The syntax much like C++. But no need to worry about C++.
 - STAN itself is written in C++.
 - A model written in STAN needs to be compiled.
- Specifically designed for the statistical modeling
 - · Vector, matrix and their operations
 - A series of probabilistic functions
 - A series of blocks to describe a statistical model.
 - Support sampling, maximum likelihood estimation and variational inference.

²https://mc-stan.org

STAN script

```
// A typical stan script is composed by several modules/blocks.
functions {}
data {
  int N;
  real y[N];
  real<lower=0> sigma_y
transformed data {}
parameters {real mu;}
transformed parameters {}
model {
 mu \sim normal(0.0, 1.0);
  for (n in 1:N) { y[n] ~ normal(mu, sigma y);}
generated quantities {
  // unused in the model
  // generate replicated data or monitor convergence
  real square mu;
  square mu = mu * mu; }
```

MCMC Sampling in STAN

- Hamiltonian Monte Carlo (HMC) provides a general sampling procedure for Bayesian inference: using the derivatives of the density function.
- HMC and its adaptive variant the no-U-turn sampler (NUTS) [Hoffman and Gelman, 2014] are used in STAN. NUTS is the default one.
- You DON'T need to write the derivatives in STAN.

HMC in STAN

- Sampling goal: $p(\theta|y)$, the posterior distribution given data y.
- HMC introduces auxiliary momentum variables ρ . $p(\rho,\theta)=p(\rho|\theta)p(\theta).$ In STAN, $p(\rho|\theta)\sim\mathcal{N}(0,M),$ is independent of θ
- Parameters in HMC [See Chapter 15 in STAN Reference Manual]
 - The discretization time ϵ^3 will be automatically optimized during warmup to match an acceptance rate parameter δ (default is 0.8). Increasing δ will force the sampler to use small step sizes, and increase the effective sample size per iteration.
 - The M^{-1} (default a diagonal matrix) is estimated during warmup⁴.
 - Number of steps taken L is dynamically adapted during sampling (and during warmup) in NUTS, which is controlled by a predefined parameter treedepth.

³STAN also allows step-size jitter, which means "jittered" randomly during sampling to avoid poor interactions. Default is 0, producing no jitter.

⁴STAN supports *Euclidean HMC*. M could be configured by the user.

Bounded parameters transformation

Besides auto-tuning the parameters in HMC (NUTS), STAN will transform the bounded variables to an unconstrained ones in the backend.

The basis idea is to set a one-to-one transformation y = f(x):

$$p_Y(y) = p_X(f^{-1}(y))|detJ_{f^{-1}}(y)|$$

Transformations: examples

- $y = \log(x a)$ if x has lower bound a.
- $y = logit(x) = log \frac{x}{1-x}$ if $x \in (0,1)$.
- $y = logit(\frac{x-a}{b-a})$ if $x \in (a,b)$.
- $\bullet \ \ \text{If} \ x \ \text{is ordered, then} \ y_k = \log(x_k x_{k-1}).$
- If $x_k>0, \sum_k^K x_k=1$, then $y_k=logit(z_k)-log(\frac{1}{K-k}); z_k=\frac{x_k}{1-\sum_{k=1}^{K-1}x_k}, z\in\mathcal{R}^{K-1}.$
- When x is a correlation matrix, find the upper triangular w such that $x=ww^T$, which can be done Cholesky decomposion. Then an inverted transformation is designed on w [See chapter 10 in STAN Referenc Manual for details].

STAN Math Library

- STAN owns a mathematical library [Carpenter et al., 2015] named STAN Math Library that can automatically get the gradients (not the numerical approximation) and support matrix operations, linear algebra, most common probability functions and so on.
- It's a C++, reverse-mode automatic differentiation library. Not limited to STAN, and designed to be extensive, efficient, scalable and so on.

Reverse-Mode Automatic Differentiation: an example

$$f(y, \mu, \sigma) = -\frac{1}{2} (\frac{y-\mu}{\sigma})^2 - \log \sigma - \frac{1}{2} \log 2\pi$$

Figure 1: Expression graph of the normal log densityfunction (carpenter2015stan)

How to use STAN?

- Firstly, we need to write the STAN script ended with .stan to describe the data we have, the parameters, and the joint distribution of the parameters and the data.
- Secondly, we need to compile and run the codes, and analyze the results.

Show me an example

Let's consider a simple example.

- Suppose we have N binary observations y_1, y_2, \dots, y_N . They are the i.i.d samples from a Bernoulli distribution under the parameter θ .
- Our goal is to infer θ .

Set up the STAN env in R.

```
library(cmdstanr)
# Note: the cmdstan home path is from my computer.
set cmdstan path(path = paste(Sys.getenv("HOME"),
                 "softwares",
                 "cmdstan-2.23.0", sep = "/"))
library(bayesplot)
library(posterior)
cmdstan_path()
[1] "/Users/beyondpie/softwares/cmdstan-2.23.0"
cmdstan_version()
[1] "2.23.0"
```

STAN script

```
bern mod <- cmdstan model("bernoulli.stan",
                           ## STAN need to be complied.
                           compile = TRUE)
## show the content in the stan script.
bern mod$print()
data {
  int<lower=0> N;
  int<lower=0,upper=1> y[N];
parameters {
  real<lower=0,upper=1> theta;
model {
    // uniform prior on interval 0, 1
  theta \sim beta(1,1);
  y ~ bernoulli(theta);
```

Let's feed it some data I

Summary of the sampling in STAN

variable	mean	sd	rhat	ess_bulk
theta	0.2523255	0.1232632	1.001693	1425.133

Posterior draws I

How about variational inference?

How about MLE estimation?

Result Summary

```
bayesplot_grid(
  mcmc_hist(bern_mcmc$draws("theta"), binwidth = 0.02) +
  vline_at(bern_mle$mle(), size = 1.2),
  mcmc_hist(bern_vb$draws("theta"), binwidth = 0.02) +
  vline_at(bern_mle$mle(), size = 1.2),
  titles = c("MCMC", "VI"),
  xlim = c(0,1))
```

MCMC

STAN Materials

STAN Functions

 Use this as the reference materials. When you want some functions, just search it.

• The STAN Language Sytanx

 You can scan this if you want to know the whole picture of STAN syntax.

The User Guide

- After the introduction, you could read this document smoothly.
- Lots of examples cover different statistical modelings.
- It could be a good material to learn statistical models.

Summary

- STAN is designed as a statistical programming language.
 - Rich of elements, such as matrix operations, probabilistic functions.
 - The clear structures of the blocks for describing a model.
 - Efficiency: C++ backend, multi-thread support, GPU support and map-reduce support.
- STAN provides a general and solid inference framework.
 - Uses NUTS and HMC for sampling.
 - Uses ADVI for variational inference.
 - Use L-BFGS for optimization, such as MLE estimation.
- STAN has lots of APIs in both R and Python. For R,
 - cmdstanr, cmdstan for compiling and run the latest STAN.
 - bayesplot, posterior for analyzing and visualizing the results.
 - rstan as a united interface but not support the latest STAN.
 - brms and rstanamrs simplify the process of writing STAN scripts.

Thanks!

- You can find this presentation at https://github.com/beyondpie/intro_to_stan.
- Any suggestions or Pull Requests are welcome.

Bob Carpenter, Matthew D Hoffman, Marcus Brubaker, Daniel Lee, Peter Li, and Michael Betancourt. The stan math library: Reverse-mode automatic differentiation in c++. arXiv preprint arXiv:1509.07164, 2015.

arXiv:1509.07164, 2015.

Matthew D Hoffman and Andrew Gelman. The no-u-turn sampler:

Learn. Res., 15(1):1593-1623, 2014.

adaptively setting path lengths in hamiltonian monte carlo. J. Mach.