

QCM DE MATHÉMATIQUES - LILLE

Répondre en cochant la ou les cases correspondant à des assertions vraies (et seulement celles-ci).

Ces questions ont été écrites par Arnaud Bodin, Barnabé Croizat et Christine Sacré de l'université de Lille. Relecture de Guillemette Chapuisat.

Ce travail a été effectué en 2021-2022 dans le cadre d'un projet Hilisit porté par Unisciel.

Ce document est diffusé sous la licence *Creative Commons – BY-NC-SA – 4.0 FR*. Sur le site Exo7 vous pouvez récupérer les fichiers sources.

Arithmétique

Arnaud Bodin, Barnabé Croizat, Christine Sacré

1 Arithmétique

1.1 pgcd | Facile

Question 1

On considère a = 28 et b = 42. Quelles sont les affirmations vraies?

 \square [Faux] Les diviseurs communs à a et à b sont : 1, 2, 7.

 \Box [Faux] 14 est un diviseur de a mais pas de b.

 \square [Vrai] 6 est un diviseur de b mais pas de a.

 \square [Vrai] 84 est un multiple de a et de b.

Explications: Les diviseurs communs à a et à b sont : 1, 2, 7 et 14. Le ppcm de a et b est 84.

Question 2

Quelles sont les valeurs qui correspondent à la division euclidienne a = bq + r de a par b?

 \Box [Vrai] a = 48, b = 7, q = 6, r = 6

 \Box [Vrai] a = 101, b = 11, q = 9, r = 2

 \Box [Faux] a = 56, b = 9, q = 5, r = 11

 \Box [Faux] a = 123, b = 10, q = 13, r = -7

Explications: $48 = 7 \times 6 + 6$

 $101 = 11 \times 9 + 2$

 $56 = 9 \times 6 + 2$. Attention $56 = 9 \times 5 + 11$, mais on n'a pas $0 \le 11 \le 9 - 1$, donc cette écriture n'est pas la division euclidienne de 56 par 9.

 $123 = 10 \times 12 + 3$. Attention $123 = 10 \times 13 + (-7)$, mais on n'a pas $0 \le -7 \le 10 - 1$, donc cette écriture n'est pas la division euclidienne de 123 par 10.

Question 3

Quelles sont les affirmations vraies?

□ [Vrai] 456 est divisible par 3.

☐ [Faux] 754 est divisible par 4.

☐ [Faux] 5552 est divisible par 5.

☐ [Faux] 987 est divisible par 9.

Explications: Critère de divisibilité par 3: la somme des chiffres est divisible par 3.

Critère de divisibilité par 2 : le dernier chiffre est pair.

Pour décider si un entier est divisible par 4 : diviser l'entier par 2 et appliquer le critère de divisibilité

par 2.

Critère de divisibilité par 5 : le dernier chiffre est 0 ou 5.

Critère de divisibilité par 9 : la somme des chiffres est divisible par 9.

Question 4

Quel est le reste *r* dans la division euclidienne de 145 par 13?

- \Box [Faux] r = 0
- \square [Vrai] r = 2
- \Box [Faux] r = 7
- \Box [Faux] r = -11

Explications : La division euclidienne de 145 par 13 nous donne l'écriture : $145 = 13 \times 11 + 2$. Le reste r est donc 2.

Il est vrai que $145 = 13 \times 12 - 11$, mais cela ne correspond pas à une division euclidienne puisque le reste r n'est pas compris entre 0 et 13 - 1 = 12.

1.2 pgcd | Moyen

Question 5

Soit a = bq + r la division euclidienne de a par b. Quelle condition définit le reste r?

- \square [Faux] $0 \le r < a$
- \square [Vrai] $0 \le r < b$
- \square [Faux] $0 \le r \le q$
- \square [Faux] $0 \le r < q$

Explications : Dans la division euclidienne, on a $0 \le r \le b-1$, c'est-à-dire $0 \le r < b$ puisque r est un entier. Cela permet d'avoir l'unicité du quotient q et du reste r.

Question 6

Pour a = 220 et b = 60, quelles sont les affirmations vraies?

- \square [Faux] ppcm(a, b) = 440.
- \Box [Faux] 440 est un multiple commun à a et b.
- \square [Vrai] 10 est un diviseur commun à a et b.
- \square [Vrai] pgcd(a, b) = 20.

Explications: Le plus grand diviseur commun à a = 220 et b = 60 est pgcd(220,60) = 20 (on peut l'obtenir via l'algorithme d'Euclide, on en dressant les listes exhaustives des diviseurs communs à 220 et 60). Puisque 10 est un diviseur de 20, 10 est bien un diviseur commun à a et b (ce qui se voit sur l'écriture des deux nombres : ils finissent par 0).

En revanche 440 n'est pas un multiple de b=60 (on a $60\times 7=420$ et $60\times 8=480$). On peut d'ailleurs calculer que ppcm $(a,b)=\frac{a\times b}{\operatorname{pgcd}(a,b)}=660$.

Question 7

Grâce à l'application de l'algorithme d'Euclide, on obtient pour a = 630 et b = 165:

- \square [Vrai] pgcd(a, b) = pgcd(165, 135)
- \square [Vrai] pgcd(a, b) = pgcd(135,30)
- \square [Faux] pgcd(a, b) = pgcd(30, 0)
- \square [Vrai] pgcd(a, b) = 15

Explications: L'algorithme d'Euclide nous donne:

$$630 = 165 \times 3 + 135$$
$$165 = 135 \times 1 + 30$$
$$135 = 30 \times 4 + \boxed{15}$$
$$30 = 15 \times 2 + 0$$

Ainsi on a:

$$pgcd(a, b) = pgcd(165, 135) = pgcd(135, 30) = pgcd(30, 15) = pgcd(15, 0) = 15$$

En revanche, $pgcd(30, 0) = 30 \neq pgcd(a, b)$.

Question 8

Soit a > 0 un entier strictement positif dont le reste dans la division euclidienne par 8 est r = 5. Quelles sont les affirmations vraies?

- \Box [Faux] a est pair.
- \square [Vrai] *a* est impair.
- \square [Faux] *a* est nécessairement divisible par 13.
- \square [Vrai] (a-5) est un multiple de 8.

Explications: Puisque le reste dans la division euclidienne de a par 8 est 5, on peut écrire a = 8k + 5, avec k un nombre entier (positif car a > 0).

On peut réécrire a = 8k + 5 = 2(4k + 2) + 1: ainsi a est impair.

Pour k = 0, on a a = 5 qui n'est pas divisible par 13 (ou aussi pour k = 2 avec a = 21 par exemple). Puisqu'on a (a - 5) = 8k, cela signifie que (a - 5) est bien un multiple de 8.

Question 9

Pour a = 24 et b = 8, on a :

- \square [Faux] ppcm(a, b) = 8.
- \square [Vrai] ppcm(a, b) = 24.
- \square [Vrai] *a* est un multiple de *b*.
- \Box [Faux] *a* est dans la liste des diviseurs de *b*.

Explications : a étant un multiple de b (on a 24 = 8 × 3), on a immédiatement pgcd(a, b) = b et ppcm(a, b) = a.

1.3 pgcd | Difficile

Question 10

On considère a, b et d des entiers tels que d|a et d|b. Quelles sont les affirmations vraies?

- \Box [Vrai] d|a+b
- \Box [Vrai] d|a-b
- \square [Vrai] $d|a \times b$
- \Box [Faux] $d|\frac{a}{\hbar}$

Explications : L'affirmation $d|\frac{a}{b}$ est fausse et n'a même pas toujours de sens. Le reste est vrai.

Question 11

On considère a, b et n des entiers tels que a|n et b|n. Quelles sont les affirmations vraies?

- \Box [Faux] a + b|n
- \Box [Faux] $a \times b | n$
- \Box [Faux] $a + b|n^2$
- \square [Vrai] $a \times b | n^2$

Explications: Si a|n et b|n alors ab divise $n \times n = n^2$. Les autres affirmations sont fausses. Trouver des contre-exemples, du style : 2|12 et 3|12 mais 2+3 ne divise pas 12.

Question 12

Soit a_1 un entier dont le reste dans la division euclidienne par 5 est $r_1 = 2$. Soit a_2 un entier dont le reste dans la division euclidienne par 5 est $r_2 = 3$. Quelles sont alors les affirmations vraies?

- \square [Vrai] Le reste de la division euclidienne de $a_1 + a_2$ par 5 est 0.
- \square [Faux] Le reste de la division euclidienne de $a_1 + a_2$ par 5 est 5.
- \square [Vrai] Le reste de la division euclidienne de $2a_1 + 2a_2$ par 5 est 0.
- \square [Vrai] L'écriture décimale de $2a_1 + 2a_2$ finit par le chiffre 0.

Explications: Les divisions euclidiennes par 5 nous donnent: $a_1 = 5k_1 + 2$ et $a_2 = 5k_2 + 3$. On a ainsi:

$$a_1 + a_2 = 5(k_1 + k_2) + 5 = 5(k_1 + k_2 + 1) + 0$$

La dernière écriture correspond bien à la division euclidienne de $a_1 + a_2$ par 5 car le reste (c'est 0) est bien compris entre 0 et 4.

De même, on calcule :

$$2a_1 + 2a_2 = 2 \times 5(k_1 + k_2 + 1) = 5(2k_1 + 2k_2 + 2) = 10(k_1 + k_2 + 1)$$

Aussi $2a_1 + 2a_2$ est un entier divisible par 5 et par 10, donc son écriture décimale se termine par 0.

Question 13

Soit a > 0 un entier impair qui est un multiple de 3. Quelles sont alors les affirmations vraies?

- \Box [Faux] *a* est un multiple de 6.
- ☐ [Faux] L'écriture décimale de *a* finit nécessairement soit par 7 soit par 9.
- \square [Vrai] pgcd(a, 3) = 3.

 \square [Vrai] ppcm(a,3) = a.

Explications: Les multiples positifs de 3 s'écrivent 3N, avec N un entier positif. Si N=2k est pair, alors 3N=6k est un entier pair. Donc a, notre entier impair multiple de 3, s'écrit a=3N avec N=2k+1 un nombre impair; ou encore a=3(2k+1)=6k+3.

Le reste de la division euclidienne de *a* par 6 est 3. Donc *a* n'est pas un multiple de 6.

Pour k = 2 par exemple, on a $a = 6 \times 2 + 3 = 15$ qui est un entier impair, multiple de 3, dont l'écriture décimale ne finit ni par 7 ni par 9.

La liste des diviseurs de 3 se réduit à 1 et 3. Puisque 3 divise a, 3 est un multiple commun à 3 et a : on a donc pgcd(a,3) = 3. Par conséquent, on a aussi ppcm(a,3) = a de sorte que pgcd $(a,3) \times$ ppcm $(a,3) = a \times 3$.

Question 14

Soient a et b deux entiers positifs tels que pgcd(a, b) = 10 et ppcm(a, b) = 140. Quelles sont les affirmations vraies?

- \square [Vrai] pgcd(2a, 2b) = 20
- \square [Faux] ppcm(2a, 2b) = 70
- \square [Faux] pgcd(2a, 2b) = 10
- □ [Vrai] ppcm(2a, 2b) = 280

Explications: On utilise la relation $pgcd(a, b) \times ppcm(a, b) = a \times b$ pour obtenir $ab = 10 \times 140 = 1400$. On a alors $pgcd(2a, 2b) = 2 \times pgcd(a, b) = 2 \times 10 = 20$. Mais on obtient aussi

$$pgcd(2a, 2b) \times ppcm(2a, 2b) = (2a) \times (2b) = 4 \times ab = 5600$$

donc

$$\operatorname{ppcm}(2a, 2b) = \frac{5600}{\operatorname{pgcd}(2a, 2b)} = \frac{5600}{20} = 280$$

Remarquez qu'on a donc $ppcm(2a, 2b) = 2 \times ppcm(2a, 2b)$, et plus généralement ppcm(na, nb) = |n| ppcm(a, b).

1.4 Théorème de Bézout | Facile

Question 15

Soient deux entiers a, b tels que pgcd(a, b) = 1. Quelles sont les affirmations vraies?

- \square [Faux] a et b sont des nombres premiers.
- \square [Vrai] a et b sont des nombres premiers entre eux.
- \square [Vrai] Il existe $u, v \in \mathbb{Z}$ tels que au + bv = 1.
- \square [Vrai] Il existe $u, v \in \mathbb{Z}$ tels que au + bv = 2.

Explications : pgcd(a, b) = 1 est la définition de a et b sont des nombres premiers entre eux. Le théorème de Bézout affirme qu'il existe $u, v \in \mathbb{Z}$ tels que au + bv = 1. En multipliant cette égalité par 2, on obtient a(2u) + b(2v) = 2.

Question 16

Soient a, b, c des entiers tels que a|bc. Dans le lemme de Gauss, quelle est la condition pour pouvoir conclure que a|c?

	[Vrai] $\operatorname{pgcd}(a, b) = 1$
	[Faux] $\operatorname{pgcd}(a,c) = 1$
	[Faux] $\operatorname{pgcd}(b,c) = 1$
	[Faux] a , b et c sont des nombres premiers.
Expli	cations: Lemme de Gauss: si $a bc$ et $pgcd(a,b) = 1$ alors $a c$.
-	tion 17
Soit a	a et b deux entiers tels que $pgcd(a, b) = 4$. Alors on peut trouver deux entiers u et v tels que :
	[Faux] au - bv = 2
	[Faux] au + bv = 2
	[Vrai] $au - bv = 4$
	[Vrai] $au + bv = 12$
pgcd(Le th l'on p	cations: Une égalité $au \pm bv = 2$ nous indiquerait que tout diviseur de a et b diviserait 2 donc $(a,b)=1$ ou 2, ce qui n'est pas le cas ici. éorème de Bézout nous garantit l'existence de deux entiers U et V tels que $aU + bV = 4$. Si prend $v = -V$, on obtient $au - bv = 4$. Si l'on multiplie l'égalité de Bézout par 3, on a alors $(3U) + b \times (3V) = 3 \times 4 = 12$.
1.5	Théorème de Bézout Moyen
Ques	tion 18
	at deux entiers positifs $a,b,$ on calcule le pgcd de a et b par l'algorithme d'Euclide. La première est d'écrire la division euclidienne de a par $b:a=bq+r$. Quelle est la second étape?
	[Faux] La division de a par r .
	[Vrai] La division de b par r .
	[Faux] La division de q par r .
	[Faux] Cela dépend des valeurs de a et b .
_	cations: Une conséquence de l'égalité est que $pgcd(a,b) = pgcd(b,r)$. On remplace donc a par b par r dans l'étape suivante, c'est-à-dire qu'on fait la division euclidienne de b par r .
•	tion 19 at deux entiers positifs a, b et $d = \operatorname{pgcd}(a, b)$. Quelles sont les affirmations vraies?
	[Faux] Il existe $u, v \in \mathbb{Z}$ uniques tels que $au + bv = d$.
	[Vrai] Il existe $u, v \in \mathbb{Z}$ tels que $au + bv = d$.
	[Faux] Il existe $u, v \in \mathbb{N}$ uniques tels que $au + bv = d$.
	[Faux] Il existe $u, v \in \mathbb{N}$ tels que $au + bv = d$.

Explications : Il existe $u, v \in \mathbb{Z}$ tels que au + bv = d. u et v ne sont pas uniques. Comme a, b, d > 0, $d \le a$ et $d \le b$ alors soit u soit v sera négatif.

Question 20

Pour a=453 et b=201, l'algorithme d'Euclide (étendu) fournit des coefficients de Bézout u et v tels que $au+bv=\operatorname{pgcd}(a,b)$ avec :

- □ [Faux] u = 4, v = -9, pgcd(a, b) = 1.
- \Box [Faux] u = -12, v = 27, pgcd(a, b) = 51.
- \Box [Faux] u = 1, v = -2, pgcd(a, b) = 51
- \Box [Vrai] u = 4, v = -9, pgcd(a, b) = 3.

Explications: L'algorithme d'Euclide nous fournit:

$$453 = 2 \times 201 + 51$$

$$201 = 3 \times 51 + 48$$

$$51 = 1 \times 48 + 3$$

$$48 = 16 \times 3 + 0$$

Ainsi on a pgcd(a, b) = 3. En remontant cet algorithme, on obtient :

$$3 = 51 - 48 = 201 \times (-1) + 51 \times 4 = 453 \times 4 + 201 \times (-9)$$

Question 21

Pour les entiers a, b suivants, les u, v donnés sont-ils des coefficients de Bézout, c'est-à-dire tels que au + bv = pgcd(a, b)?

- \Box [Faux] a = 7, b = 11, u = 2, v = -3
- \Box [Faux] a = 20, b = 55, u = 6, v = -2
- \Box [Vrai] a = 28, b = 12, u = 1, v = -2
- \square [Vrai] a = 36, b = 15, u = -2, v = 5

Explications: Pour a = 7, b = 11, u = 2, v = -3, on a pgcd(a, b) = 1 et $au + bv = -19 \neq 1$.

Pour a = 20, b = 55, u = 6, v = -2, on a pgcd(a, b) = 5 et $au + bv = 10 \neq 5$.

Pour a = 28, b = 12, u = 1, v = -2, on a pgcd(a, b) = 4 et au + bv = 4.

Pour a = 36, b = 15, u = -2, v = 5, on a pgcd(a, b) = 3 et au + bv = 3.

Question 22

Pour a = 41 et b = 7, on a notamment l'égalité $a \times (-3) + b \times 18 = 3$. Que peut-on en conclure?

- \square [Faux] pgcd(a, b) = 3.
- \square [Vrai] pgcd(a, b) est un diviseur de 3.
- \square [Vrai] Comme 3 ne divise pas 7 alors a et b sont premiers entre eux.
- \Box [Faux] -3 et 18 sont premiers entre eux.

Explications: Comme pgcd(a, b) divise a et b, il divise aussi $a \times (-3) + b \times 18 = 3$. Donc pgcd(a, b) est un diviseur de 3: c'est donc soit 3, soit 1. Mais puisque 3 ne divise pas b (ni a d'ailleurs), on a donc pgcd(a, b) = 1: a et b sont premiers entre eux.

Enfin, les nombres -3 et 18 sont divisibles par 3.

Question 23

Soit deux nombres entiers a et b tels que $5a^2 - 4b^2 = 1$. Quelles sont les affirmations vraies?

	[Vrai] $pgcd(a^2, b^2) = 1$.
	[Vrai] $\operatorname{pgcd}(5a, 4b) = 1$.
	[Faux] 5 divise $4b^2$.
П	[Vrai] 4 divise $5a^2 - 1$.
4b = 1	cations: L'égalité fournie peut s'écrire sous les formes $5 \times a^2 + (-4) \times b^2 = 1 = a \times (5a) + (-b) \times 1$. Ce sont notamment des identités de Bézout pour les couples (a^2, b^2) et $(5a, 4b)$ qui son premiers entre eux. Etait un diviseur de $4b^2$, il diviserait $(5a^2 - 4b^2)$ et donc 1 ce qui est impossible.
	ayant $5a^2 - 1 = 4b^2$, le nombre $5a^2 - 1$ est bien un multiple de 4.
	ml. (au) and a D. (au) D. (Cintle
	Théorème de Bézout Difficile
-	tion 24 es sont les affirmations vraies concernant l'algorithme d'Euclide?
	[Faux] Il se peut que le processus n'aboutisse pas à cause d'un nombre infini de divisions à effectuer.
	[Faux] Il se peut que le processus ne fournisse pas le pgcd correct.
	[Vrai] Le pgcd est le dernier reste non nul.
	[Vrai] L'algorithme étendu permet en plus de calculer des coefficients de Bézout.
_	cations : L'algorithme d'Euclide fournit un résultat <i>correct</i> en un nombre <i>fini</i> d'étapes. La remon e l'algorithme d'Euclide permet de calculer des coefficients de Bézout.
Quest	tion 25
Soit r	un entier tel que $5n$ soit un multiple de 7. Quelles sont alors les affirmations vraies?
	[Vrai] n est un multiple de 7.
	[Faux] 5 divise 7n.
	[Vrai] 7 divise n.
	[Faux] 35 divise n.
à dire En re	cations: D'après le lemme de Gauss, puisque $7 5n$ et que $pgcd(5,7) = 1$, on a $7 n$: ceci reviente que n est un multiple de 7. vanche si l'on prend $n = 7$, on constate que $5n = 35$ est bien multiple de 7 mais que 5 ne divise $n = 49$ et que 35 ne divise pas $n = 7$.
-	tion 26 at 5 entiers relatifs a, b, c, u, v tels que $au + bv = 1$ et $a bc$. Quelles sont alors les affirmations $a = a + bc$?
	[Faux] $\operatorname{pgcd}(a,c) = 1$.
	[Vrai] $\operatorname{pgcd}(a, b) = 1$.
	[Vrai] $a c$.
	[Vrai] $\operatorname{pgcd}(a,c) = a $.

Explications : au + bv = 1 est une identité de Bézout qui garantit que pgcd(a, b) = 1. D'après le lemme de Gauss, puisque a|bc, on a alors a|c.

Puisque a|c, |a| est un diviseur de c. Or c'est le plus grand diviseur de a: donc |a| = pgcd(a,c). Un contre-exemple pour établir que pgcd(a,c) n'est pas nécessairement égal à 1 peut par exemple être a=5, b=7 (bien premiers entre eux) et c=10. On a bien a|bc mais pgcd(a,c)=5. Plus généralement, on peut toujours respecter la condition a|bc avec c=a, ce qui contredit pgcd(a,c)=1 dès que a n'est pas égal à ± 1 .

1.7 Nombres premiers | Facile

Question 27

Les entiers suivants	sont-ils des nombres premiers?
□ [Vrai] 107	
□ [Vrai] 113	

□ [Faux] 145

□ [Faux] 153

Explications: 107 et 113 sont des nombres premiers; $145 = 5 \times 29$; $153 = 3^2 \times 17$.

Question 28

Quelles sont les affirmations vraies?

☐ [Faux] Tout no	ombre imp	pair supérieu	ır à 3 e	st premier.
------------------	-----------	---------------	----------	-------------

☐ [Vrai] Tout nombre premier supérieur à 3 est impair.

□ [Vrai] Il existe une infinité de nombres premiers impairs.

☐ [Faux] Il existe une infinité de nombres premiers pairs.

Explications: Par exemple 9 est un nombre impair qui n'est pas premier. Le seul nombre premier pair est 2, tous les autres sont impairs et il y en a une infinité.

Question 29

Les entiers suivants sont-ils des nombres premiers?

□ [Faux] 161

□ [Faux] 169

□ [Faux] 171

□ [Vrai] 179

Explications: On a $161 = 7 \times 23$, $169 = 13^2$ et 171 est divisible par 9 (car la somme de ses chiffres fait 9).

En revanche, 179 n'est pas divisible par 2, 3, 5, 7, 11, 13 ce qui garantit sa primalité.

1.8 Nombres premiers | Moyen

Question 30

Quelles sont les affirmations vraies?

- \square [Vrai] La somme de deux nombres premiers ≥ 3 n'est jamais un nombre premier.
- \square [Vrai] Le produit de deux nombres premiers ≥ 3 n'est jamais un nombre premier.
- \square [Faux] Il existe un nombre premier $p \ge 3$ tel que p + 1 soit aussi premier.
- \square [Vrai] Il existe un nombre premier $p \ge 3$ tel que p + 2 soit aussi premier.

Explications: Le produit de deux nombres premiers n'est jamais un nombre premier (par définition de ce qu'est un nombre premier). Pour la somme, cela peut arriver, par exemple 2+3=5, mais pour deux nombres premiers ≥ 3 , ils sont impairs, donc la somme est paire et n'est pas un nombre premier. De même si $p \geq 3$ est premier, il est impair, donc p+1 est pair et n'est pas premier. Par contre pour p=11 alors p+2=13 est aussi premier, d'autres exemples sont 17 et 19 ou bien 101 et 103.

Question 31

Soient p un nombre premier et a, b des entiers avec p|ab. Par application du lemme d'Euclide, quelles sont les affirmations vraies ?

- \square [Faux] p divise a et p divise b.
- \square [Vrai] *p* divise *a* ou *p* divise *b*.
- \square [Faux] p divise a ou p divise b, mais pas les deux en même temps.
- \square [Faux] p ne divise ni a, ni b.

Explications: Lemme d'Euclide: Si p premier et p|ab, alors p|a ou p|b. Les autres affirmations sont fausses. Voici des contre-exemples: $2|(3 \times 4)$ mais 2 ne divise pas 3, mais divise bien 4; $2|(4 \times 6)$ et 2|4 et 2|6.

Question 32

Soit n un entier tel que $n^2 - 1$ est un multiple de 11. Quelles sont les affirmations vraies?

- \square [Faux] 11 divise n-1.
- \Box [Faux] 11 divise n + 1.
- \square [Vrai] (11 divise n-1) ou (11 divise n+1).
- \square [Faux] (11 divise n-1) et (11 divise n+1).

Explications: 11 est premier et divise $n^2 - 1 = (n-1)(n+1)$. D'après le lemme d'Euclide, soit 11|(n-1), soit 11|(n+1).

Pour n = 10, on a $11 | (10^2 - 1)$ mais 11 ne divise pas 10 - 1 = 9.

Pour n = 12, on a $11|12^2 - 1$ mais 11 ne divise pas 12 + 1 = 13.

Et si 11 divisait n-1 et n+1 alors 11 diviserait n+1-(n-1)=2.

Question 33

À l'aide d'une calculatrice, quelle est l'écriture de la décomposition en produit de facteurs premiers de N = 111111?

- \square [Faux] $N = 11 \times 10101$.
- \square [Faux] $N = 3 \times 11 \times 3367$.

 $\Box \quad [Faux] N = 7 \times 33 \times 481.$

 \square [Vrai] $N = 3 \times 7 \times 11 \times 13 \times 3713$.

Explications: Les entiers 10101, 3367 et 481 sont des multiples de 13!

Question 34

Soit $p \ge 3$ un nombre premier et p = 4q + r le résultat de sa division euclidienne par 4. On peut alors avoir :

 \Box [Faux] r = 0

 \square [Vrai] r = 1

 \Box [Faux] r = 2

 \square [Vrai] r = 3

Explications : Un nombre premier ≥ 3 est nécessairement impair. Ceci exclut donc les possibilité r=0 et r=2 qui correspondent à des nombres pairs.

On peut à titre d'exemple obtenir pour p = 3 que r = 3; et pour p = 5 que r = 1.

Question 35

Soit p un nombre premier tel que 10 . On note <math>A le chiffre des dizaines et B le chiffre des unités de l'écriture décimale de p. Quelles sont les affirmations vraies?

 \square [Vrai] *A* peut être pair.

 \square [Faux] *B* peut être pair.

 \square [Vrai] On peut avoir A = B.

 \square [Faux] On peut avoir B = 9 - A.

Explications: Pour p = 23 qui est premier, on a bien A = 2 qui est pair.

Si le chiffre des unités B est pair, alors p est pair ce qui est impossible pour un nombre premier ≥ 3 . Pour p=11 premier, on a bien A=B (les autres nombres avec deux chiffres identiques sont justement les multiples de 11, et ne sont donc pas premiers).

Si B=9-A, alors la somme des chiffres de p vaut A+B=9: ainsi p est divisible par 9, ce qui contredit sa primalité.

1.9 Nombres premiers | Difficile

Question 36

Les entiers suivants ont été factorisés correctement. Quelles sont les écritures qui sont des décompositions en facteurs premiers?

 \Box [Faux] $3025 = 1^3 \times 5^2 \times 11^2$

 \Box [Faux] 1836 = $2^2 \times 3 \times 3^2 \times 17$

 \Box [Faux] 1444716 = $2^2 \times 7^3 \times 9^2 \times 13$

 \Box [Vrai] 13 915 = 5 × 11² × 23

Explications : Chaque facteur doit être de la forme $p_i^{\alpha_i}$ avec p_i un nombre premier (donc pas 1 ni 9) et $\alpha_i > 0$. En plus les p_i doivent être deux à deux distincts. Avec ces contraintes la décomposition est unique (à l'ordre des facteurs près).

Question 37

Soient $a = 5^3 \times 11^2 \times 13^5 \times 19$ et $b = 5^5 \times 7^4 \times 11 \times 19$ Quelles sont les affirmations vraies?

- □ [Faux] $pgcd(a, b) = 5^3 \times 7^4 \times 11 \times 13^5 \times 19$
- \square [Faux] pgcd(a, b) = $5 \times 11 \times 19$
- \Box [Vrai] ppcm $(a, b) = 5^5 \times 7^4 \times 11^2 \times 13^5 \times 19$
- \square [Faux] ppcm $(a, b) = 5^5 \times 11^2 \times 19$

Explications: Pour le pgcd, on garde le plus petit exposant des décompositions de a et b; pour le ppcm, on garde le plus grand exposant.

$$pgcd(a, b) = 5^3 \times 11 \times 19$$

$$ppcm(a, b) = 5^5 \times 7^4 \times 11^2 \times 13^5 \times 19$$

Question 38

Soit $a = 79475 = 5^2 \times 11 \times 17^2$. Quelles sont les affirmations vraies?

- \Box [Faux] pgcd(a, 75) = 3×5^2
- \square [Vrai] pgcd(a, 75) = 5^2
- \square [Faux] ppcm $(a,75) = 3 \times 11 \times 17^2$
- □ [Faux] 75|*a*

Explications : On a $75 = 3 \times 5^2$. En utilisant les décompositions en produits de facteurs premiers, on obtient :

$$pgcd(a,75) = 5^2 = 25$$
; $ppcm(a,75) = 3 \times 5^2 \times 11 \times 17^2$

Enfin *a* n'est pas divisible par 3 donc il n'est pas divisible par $75 = 3 \times 25$.

Question 39

Soit $p \ge 5$ un nombre premier et $N = (p+3)^2 - p^2$. Quelles sont les affirmations vraies?

- \square [Faux] 2|N.
- \square [Vrai] 3|N.
- \square [Faux] 6|N.
- \square [Vrai] p ne divise pas N.

Explications: En développant, on constate que N = 6p + 9 = 6(p + 1) + 3 = 3(2p + 3). N est donc un multiple de 3, non divisible par 6 (le reste dans la division euclidienne par 6 est 3). N est impair (produit de deux nombres impairs) et n'est donc pas divisible par 2.

Enfin, si p|N, on a p|(6p + 9) et donc p|9. Puisque p est premier, cela signifie que p = 3 ce qui est impossible car $p \ge 5$.

1.10 Congruences | Facile

Question 40

Quelles sont les affirmations vraies?

- \Box [Faux] 31 \equiv 6 [12]
- \Box [Vrai] $42 \equiv 16 [13]$
- \square [Faux] $25 \equiv -11$ [14]
- \square [Vrai] 158 \equiv 8 [15]

```
Explications: 12 ne divise pas 31-6=25; en fait 31 \equiv 7 [12]. 13 divise 42-16=26; en fait 42 \equiv 16 \equiv 3 [13]. 14 ne divise pas 25-(-11)=36; en fait 25 \equiv +11 \equiv -3 [14]. 15 divise 158-8=150; en fait 158=15\times 10+8\equiv 8 [15].
```

Question 41

Quelles sont les affirmations vraies?

- \Box [Faux] 456 789 \equiv 0 [2]
- \Box [Vrai] 43 210 \equiv 0 [5]
- \Box [Faux] 23769 \equiv 3 [9]
- \Box [Faux] $10326 \equiv 8[10]$

Explications: 456 789 est impair, donc n'est pas congru à 0 modulo 2.

43 210 est divisible par 5 donc congru à 0 modulo 5.

23 769 est divisible par 9 (la somme des chiffres est divisible par 9) donc congru à 0 modulo 9.

 $10326 \equiv 6 \lceil 10 \rceil$, réduire modulo 10 c'est garder le chiffre des unités.

Question 42

Si $x \equiv 2$ [5], alors on a:

- \square [Vrai] $x^2 \equiv 2x$ [5]
- \Box [Faux] $3x \equiv -1$ [5]
- \square [Vrai] $x + 1 \equiv 3$ [5]
- \Box [Faux] $10x \equiv 2[5]$

Explications : D'après les propriétés arithmétiques des congruences et notre congruence initiale $x \equiv 2 \lceil 5 \rceil$:

en ajoutant $1: x + 1 \equiv 2 + 1 = 3$ [5],

en multipliant par $3:3x \equiv 3 \times 2 = 6 \equiv 1$ [5],

en multipliant par $10: 10x \equiv 10 \times 2 = 20 \equiv 0$ [5],

Enfin on calcule : $x^2 \equiv 2 \times 2 \equiv 2x$ [5].

Question 43

Parmi les nombres n ci-dessous, lequel vérifie à la fois $n \equiv 5$ [14] et $n \equiv 1$ [8]?

- \square [Faux] n = 47
- \square [Faux] n = 57
- \square [Vrai] n = 89
- \Box [Faux] n = 103

Explications: On a bien $89 \equiv 5$ [14] $(89 = 14 \times 6 + 5)$ et $89 \equiv 1$ [8] $(89 = 8 \times 11 + 1)$. On calcule que $47 \equiv 7$ [8], $57 \equiv 1$ [14] et $103 \equiv 7$ [8].

1.11 Congruences | Moyen

Question 44

Soient $a \equiv 2$ [13] et $b \equiv 7$ [13]. Quelles sont les affirmations vraies?

- □ [Vrai] $a + b \equiv 9$ [13]
- \square [Vrai] $ab \equiv 1$ [13]
- $\Box \quad \text{[Vrai] } a^2 \equiv -9 \, [13]$
- \square [Vrai] $b^3 \equiv 5$ [13]

Explications: Tout est vrai! Modulo 13, on a bien:

$$a + b = 2 + 7 = 9 \equiv 9$$
,

$$ab = 2 \times 7 = 14 \equiv 1$$
,

$$a^2 = 2^2 = 4 \equiv -9$$
,

$$b^3 = 7^3 = 343 \equiv 5.$$

Question 45

Soient $a \equiv b$ [n] et $c \equiv d$ [n]. Quelles sont les affirmations vraies?

- \square [Faux] $a + b \equiv c + d [n]$
- \square [Vrai] $a + c \equiv b + d [n]$
- \square [Vrai] $a^2 \equiv b^2 [n]$
- \square [Vrai] $c^2 \equiv d^2 [n]$

Explications: $a + c \equiv b + d[n]$ et $a^k \equiv b^k[n]$ et aussi $c^k \equiv d^k[n]$.

Question 46

Soit n un entier premier avec 3. On peut alors affirmer :

- \Box [Faux] $2n \equiv 1$ [3]
- \square [Faux] $2n \equiv -1$ [3]
- \square [Vrai] $n^2 \equiv 1$ [3]
- \square [Faux] $n^2 \equiv -1$ [3]

Explications: Puisque n n'est pas un multiple de 3, on a soit $n \equiv 1$ [3] (cas 1) soit $n \equiv 2 \equiv -1$ [3] (cas 2). Dans le cas 1, on a $2n \equiv 2 \equiv -1$ [3], et dans le cas 2 on a $2n \equiv -2 \equiv 1$ [3]. Dans les deux cas, on aura $n^2 \equiv 1$ [3].

Question 47

Soit k un entier et $N = 5k^2 - 10k + 4$. On peut affirmer :

- \square [Vrai] $N \equiv 4[5]$
- \square [Faux] $N \equiv 5$ [5]
- \square [Vrai] $N \equiv 5k^2$ [2]
- \square [Faux] $N \equiv 1$ [2]

Explications: Puisque $5 \equiv 10 \equiv 0$ [5], on a $5k^2 - 10k \equiv 0$ [5]. Donc $N \equiv 4$ [5]. D'autre part, puisque $10 \equiv 4 \equiv 0$ [2], on a $-10k + 4 \equiv 0$ [2]. Donc $N \equiv 5k^2$ [2]. Le cas k = 2 (ou tout autre entier pair) montre que l'on peut avoir $N \equiv 5k^2 \equiv 0$ [2].

1.12 Congruences | Difficile

Question 48

Soit p un nombre premier et x un entier. Quel(s) énoncé(s) du petit théorème de Fermat sont corrects?

- \Box [Faux] $x^p \equiv p[x]$
- \square [Vrai] $x^p \equiv x [p]$
- \square [Faux] Si p ne divise pas x, alors $x^{p-1} \equiv 0$ [x]
- \square [Faux] Si p ne divise pas x, alors $x^{p-1} \equiv 0$ [p]

Explications : Le théorème de Fermat stipule que $x^p \equiv x$ [p], et que si p ne divise pas x alors $x^{p-1} \equiv 1$ [p].

Question 49

Quelles sont les affirmations vraies?

- \Box [Faux] $2^8 \equiv 2[8]$
- \Box [Faux] $3^{12} \equiv 3$ [13]
- \Box [Faux] $18^7 \equiv 1$ [19]
- \Box [Vrai] $4^{16} \equiv 1 [17]$

Explications : 8 n'est pas un nombre premier, le petit théorème de Fermat ne s'applique pas. En fait $2^8 \equiv 0 \lceil 8 \rceil$ car $2^3 = 8 \equiv 0 \lceil 8 \rceil$.

Petit théorème de Fermat, avec p = 13, $3^{12} \equiv 1$ [13].

 $18^7 \equiv (-1)^7 \equiv -1 \equiv 18$ [19] (le calcul n'a rien à voir avec le petit théorème de Fermat).

Petit théorème de Fermat, avec p = 17, $4^{16} \equiv 1$ [17].

Ouestion 50

Soit un entier k tel que $k \equiv 2$ [7]. Quelles sont les affirmations vraies?

- \Box [Faux] $2k^2 + k \equiv k^3$ [7]
- \Box [Vrai] $3(k^4 k) \equiv 0$ [7]
- \Box [Vrai] $14k 2 \equiv 5$ [7]
- \Box [Faux] $k^{18} + k^{12} + k^6 \equiv k$ [7]

Explications: On calcule que $k^2 \equiv 4 \lceil 7 \rceil$; $k^3 \equiv 2^3 \equiv 1 \lceil 7 \rceil$ et $k^4 \equiv 2^4 \equiv 2 \lceil 7 \rceil$. On a alors:

$$2k^2 + k \equiv 2 \times 2^2 + 2 \equiv 10 \equiv 3$$
 [7].

$$k^4 \equiv k \, [7] \, \text{donc } 3(k^4 - k) \equiv 3 \times 0 \equiv 0 \, [7].$$

 $14k \equiv 7 \times 2k \equiv 0$ [7] donc $14k - 2 \equiv -2 \equiv 5$ [7].

Enfin on a $k^{18} \equiv k^{12} \equiv k^6 \equiv 1$ [7] (c'est le théorème de Fermat, ou une conséquence directe de $k^3 \equiv 1$ [7]). Donc $k^{18} + k^{12} + k^6 \equiv 3$ [7].

Question 51

Pour quel(s) entier(s) n a-t-on $10^{10} \equiv 7^{18} [n]$?

- \square [Vrai] n = 3
- \square [Faux] n = 5
- \Box [Faux] n = 7

 \square [Vrai] n = 9

Explications: On a $10 \equiv 7 \equiv 1$ [3]. Donc $10^{10} \equiv 1 \equiv 7^{18}$ [3]. $10 \equiv 0$ [5] donc $10^{10} \equiv 0$ [5]. Mais $7^{18} \equiv (7^4)^4 \times 7^2 \equiv 1^4 \times 49 \equiv -1$ [5]. $7^{18} \equiv 0$ [7] mais $10^{10} \equiv 3^{10} \equiv 3^6 \times 3^4 \equiv 1 \times 81 \equiv 4$ [7]. Enfin, on a $10^{10} \equiv 1^{10} \equiv 1$ [9], et également $7^{18} \equiv (-2)^{18} \equiv 2^{18} \equiv 8^6 \equiv (-1)^6 \equiv 1$ [9].

Question 52

Quel est le chiffre des unités de 7¹⁰⁰?

- □ [Vrai] 1
- □ [Faux] 3
- □ [Faux] 5
- □ [Faux] 9

Explications : Le chiffre des unités est donné par la congruence modulo 10. Puisque $7^2 = 49 \equiv (-1)$ [10], on a :

$$7^{100} = (7^2)^{50} \equiv (-1)^{50} \equiv 1 [10]$$