This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

DIALOG(R) File 347: JAPIO (c) 2000 JPO & JAPIO. All rts. reserv.

04602366 **Image available**

OPTICAL POSITION DETECTOR AND OPTICAL COORDINATE INPUT DEVICE

PUB. NO.: 06-274266 [J P 6274266 A] PUBLISHED: September 30, 1994 (19940930)

INVENTOR(s): OGAWA YASUJI

APPLICANT(s): WACOM CO LTD [486307] (A Japanese Company or Corporation), JP

(Japan)

APPL. NO.: 05-087940 [JP 9387940] FILED: March 23, 1993 (19930323)

INTL CLASS: [5] G06F-003/03

JAPIO CLASS: 45.3 (INFORMATION PROCESSING -- Input Output Units)

JAPIO KEYWORD: R098 (ELECTRONIC MATERIALS -- Charge Transfer Elements, CCD &

BBD); R131 (INFORMATION PROCESSING -- Microcomputers &

Microprocessers)

JOURNAL: Section: P, Section No. 1850, Vol. 18, No. 689, Pg. 153,

December 26, 1994 (19941226)

ABSTRACT

PURPOSE: To attain an optical coordinate input device having high detection accuracy, wireless constitution, highly economical efficiency and high operability and application ability without using an image forming optical lens for an optical position detector by extending a distance between the detector and a light source, highly accurately detecting the position of the light source, the arrival direction of light rays, or the like even in a wide range, reducing the error of linearity, and expanding an application range.

CONSTITUTION: This optical coordinate input device is provided with a photodetecting means 2 for outputting a signal relating to light detected by respective picture elements 3a on a picture element array 3, a pattern memory 4 having a pattern 4a for generating an image 5 including information relating to the light generating position on the photodetecting area by arriving light rays 13 and a signal processing means 8 for extracting the information relating to the light generating position based upon signals outputted from respective picture elements of the picture element array in the photodetecting means. The input device is also provided with a coordinate detector 42 using an optical position detector and a position indicator having a light emitting means 48 and the optical position detector detects the position indicated by the position indicator and finds out the coordinate data of the position.


```
DIALOG(R) File 345: Inpadoc/Fam. & Legal Stat
(c) 2000 EPO. All rts. reserv.
12494027
Basic Patent (No, Kind, Date): DE 4410078 Al 940929 <No. of Patents: 006>
PATENT FAMILY:
GERMANY (DE)
 Patent (No, Kind, Date): DE 4410078 Al 940929
    OPTISCHE POSITIONSERFASSUNGSEINHEIT UND OPTISCHE
      KOORDINATENEINGABEEINHEIT Optical position measuring unit and optical
      coordinate input unit (German)
    Patent Assignee: WACOM CO LTD
                                   (JP)
    Author (Inventor): OGAWA YASUJI
    Priority (No, Kind, Date): JP 9387940 A
    Applic (No, Kind, Date): DE 4410078 A 940323
           G01B-011/00; G01B-011/26; G06K-011/18; G06F-003/033
    Derwent WPI Acc No: * G 94-304106; G 94-304106
    JAPIO Reference No: * 180689P000153
    Language of Document: German
  Patent (No, Kind, Date): DE 4426355 Al 950706
    OPTISCHE POSITIONSERFASSUNGEINHEIT, OPTISCHE KOORDINATENEINGABEEINHEIT
      UND OPTISCHES POSITIONSERFASSUNGSVERFAHREN Optical system for
      determining spatial position of object (German)
    Patent Assignee: WACOM CO LTD (JP)
    Author (Inventor): OGAWA YASUJI (JP); YOICHI HIDEO (JP)
    Priority (No, Kind, Date): JP 93354442 A 931229
    Applic (No, Kind, Date): DE 4426355 A 940725
    IPC: * G01B-011/00
    Derwent WPI Acc No: * G 95-241729; G 95-241729
    Language of Document: German
JAPAN (JP)
  Patent (No, Kind, Date): JP 6274266 A2 940930
    OPTICAL POSITION DETECTOR AND OPTICAL COORDINATE INPUT DEVICE (English)
    Patent Assignee: WACOM CO LTD
    Author (Inventor): OGAWA YASUJI
    Priority (No, Kind, Date): JP 9387940 A
                                             930323
    Applic (No, Kind, Date): JP 9387940 A
    IPC: * G06F-003/03
    JAPIO Reference No: ; 180689P000153
    Language of Document: Japanese
  Patent (No, Kind, Date): JP 7200141 A2 950804
    OPTICAL POSITION DETECTION DEVICE, OPTICAL COORDINATE INPUT DEVICE, AND
      OPTICAL POSITION DETECTING METHOD (English)
    Patent Assignee: WACOM CO LTD
    Author (Inventor): OGAWA YASUJI; YOICHI HIDEO
    Priority (No, Kind, Date): JP 93354442 A 931229
    Applic (No, Kind, Date): JP 93354442 A 931229
                 G06F-003/03;
                               G01B-011/00; G06F-003/033; G06T-007/00;
      G06T-007/60
    Derwent WPI Acc No: * G 95-241729
    Language of Document: Japanese
UNITED STATES OF AMERICA (US)
  Patent (No, Kind, Date): US 5499098 A
                                          960312
    OPTICAL POSITION DETECTING UNIT AND OPTICAL COORDINATE INPUT UNIT
      UTILIZING A SUB-PORTION OF A M-SEQUENCE PATTERN (English)
    Patent Assignee: WACOM CO LTD (JP)
    Author (Inventor): OGAWA YASUJI (JP)
    Priority (No, Kind, Date): JP 9387940 A
                                             930323
    Applic (No, Kind, Date): US 215761 A
                                          940322
    National Class: * 356375000; 250222100; 250237000R
    IPC: * G01B-011/14; H01J-040/14
    Derwent WPI Acc No: * G 94-304106
    JAPIO Reference No: * 180689P000153
```

Language of Document: English

Patent (No, Kind, Date): US 5502568 A 960326

OPTICAL POSITION DETECTING UNIT, OPTICAL COORDINATE INPUT UNIT AND

OPTICAL POSITION DETECTING METHOD EMPLOYING A PATTERN HAVING A

SEQUENCE OF 1'S AND 0'S (English)
Patent Assignee: WACOM CO LTD (JP)

Author (Inventor): OGAWA YASUJI (JP); YOICHI HIDEO (JP)

Priority (No, Kind, Date): US 281129 A 940728; JP 9387940 A 930323

; JP 93354442 A 931229; US 215761 A2 940322

Applic (No, Kind, Date): US 281129 A 940728

National Class: * 356375000; 250222100; 345175000; 345179000

IPC: * G01B-011/14; H01J-040/14; G03B-019/10

Derwent WPI Acc No: * G 94-304106; G 95-241729

JAPIO Reference No: * 180689P000153

Language of Document: English

File.351:DERWENT WPI 1963-2000/UD=, UM=, & UP=200023

(c) 2000 Derwent Info Ltd

*File 351: Display format changes coming soon. Try them out now in ONTAP File 280. See HELP NEWS 280 for details.

Set Items Description

?s pn=jp 7076902

s1 0 PN=JP 7076902

?t s1/5

1/5/1

>>>Item 1 is not within valid item range

?s pn=jp 6274266

S2 0 PN=JP 6274266

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-274266

(43)公開日 平成6年(1994)9月30日

(51)Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

G06F 3/03

330 Z 7165-5B

審査請求 未請求 請求項の数16 FD (全 15 頁)

(21)出願番号

特顧平5-87940

(22)出願日

平成5年(1993)3月23日

(71)出願人 000139403

株式会社ワコム

埼玉県北埼玉郡大利根町豊野台2丁目510

番地1

(72)発明者 小川 保二

東京都豊島区池袋2-47-5 オンダビル

株式会社ワコム東京支社内

(74)代理人 弁理士 田宮 寛祉

(54)【発明の名称】 光学式位置検出装置および光学式座標入力装置

(57)【要約】

【目的】 光学式位置検出装置で結像用光学レンズを利用せず、検出装置と光源の距離を広くとり、広範囲であっても高精度に光源位置や光線の到来方向等を検出し、直線性の誤差を小さくし応用範囲を拡大する。検出精度が高くワイヤレスでかつ経済性の高い、操作性と応用性が高い光学式座標入力装置を実現する。

【構成】 画素配列 (3,33) の各画素3aが検出した光に関する信号を出力する受光手段(2,22,32) と、受光手段の受光領域の前方位置に配置され、到来する光線13によって受光領域の上に光線の発生位置に関する情報を含む像5を生じさせるパターン4aを有するパターン部材(4,24,34) と、受光手段の画素配列の各画素が出力した信号に基づいて光線の発生位置に関する情報を抽出する信号処理手段8とを備える。光学式位置検出装置を用いた座標検出装置42と、発光手段48を有する位置指示器(43,62) を備え、発光手段の光線に基づき光学式位置検出装置は位置指示器によって指示される位置を検出し当該位置の座標データを求める。

【特許請求の範囲】

【請求項1】 受光領域を形成する画素配列を備え、こ の画素配列の各画素が検出した光に関する信号を出力す る受光手段と、この受光手段の前記受光領域の前方位置 に配置され、到来する光線によって前記受光領域の上に 前記光線の発生位置に関する情報を含む像を生じさせる パターンを有するパターン部材と、前記受光手段の前記 画素配列の前記各画素が出力した前記信号に基づいて前 記光線の発生位置に関する前記情報を抽出する信号処理 手段とを備えることを特徴とする光学式位置検出装置。 【請求項2】 請求項1記載の光学式位置検出装置にお いて、前記パターン部材は全体的に透明部材であり、前 記パターンは透明な前記パターン部材に設けられた遮光

1

【請求項3】 請求項1記載の光学式位置検出装置にお いて、前記受光手段の前記画素配列は1次元の受光領域 を形成し、前記パターン部材の前記パターンは前記画素 配列の配列方向に交差する方向に延びる線状形態を有す ることを特徴とする光学式位置検出装置。

部であることを特徴とする光学式位置検出装置。

【請求項4】 請求項3記載の光学式位置検出装置にお いて、前記受光手段の前記画素配列は、分解能が検出可 能範囲の1/N(Nは自然数)になるようにN個程度の 画素で形成されることを特徴とする光学式位置検出装 置。

【請求項5】 請求項1記載の光学式位置検出装置にお いて、前記パターン部材の前記パターンはM系列の特性 を有することを特徴とする光学式位置検出装置。

【請求項6】 請求項5記載の光学式位置検出装置にお いて、前記パターンは太線と細線をM系列の順番で組み 合わせたものであることを特徴とする光学式位置検出装 30 置。

【請求項7】 請求項5または6記載の光学式位置検出 装置において、前記M系列では周期が2のk乗マイナス 1 (kは自然数)であり、前記受光手段の前記画素配列 はk個程度の画素で形成されることを特徴とする光学式 位置検出装置。

【請求項8】 請求項1記載の光学式位置検出装置にお いて、前記受光手段の前記画素配列は2次元の受光領域 を形成し、前記パターン部材の前記パターンはM平面の 特性を有することを特徴とする光学式位置検出装置。

【請求項9】 請求項8記載の光学式位置検出装置にお いて、前記パターンは大丸と小丸を格子の交点にM平面 の順番で組み合わせたものであることを特徴とする光学 式位置検出装置。

【請求項10】 請求項8または9記載の光学式位置検 出装置において、前記M平面では周期が2のmn乗マイ ナス1 (m, nは自然数)であり、前記受光手段の前記 画素配列はm行n列程度の数の画素で形成されることを 特徴とする光学式位置検出装置。

式位置検出装置において、前記パターン部材の前記パタ ーンは1次元の前記画素配列の配列方向に直交する方向 に延びる線状形態を有し、前記光線の通過ルートのいず れかの箇所に前記受光手段の前記受光領域での光強度を 高めるべく前記画素配列の配列方向に直交する前記方向 について前記光線を集光する一方向限定集光手段を少な くとも1つ配置したことを特徴とする光学式位置検出装

【請求項12】 請求項11記載の光学式位置検出装置 において、前記一方向限定集光手段はシリンドリカルレ ンズであることを特徴とする光学式位置検出装置。

【請求項13】 請求項1~12のいずれか1項に記載 された少なくとも1台の光学式位置検出装置によって構 成される座標検出装置と、発光手段を有する位置指示器 とを備え、前記発光手段の発する光線に基づいて前記光 学式位置検出装置は前記位置指示器によって指示される 位置を検出し、当該位置の座標データを求めることを特 徴とする光学式座標入力装置。

【請求項14】 請求項13記載の光学式座標入力装置 において、前記座標検出装置の上で定義される2次元平 面での位置座標を求めるため2台の前記光学式位置検出 装置が設けられ、この2台の光学式位置検出装置のそれ ぞれで得られる前記発光手段の位置に関するデータに基 づいてかつ三角測量の演算を適用して前記位置指示器に よって指示される位置の前記2次元平面での座標値を求 めることを特徴とする光学式座標入力装置。

【請求項15】 請求項13または14記載の光学式座 標入力装置において、前記位置指示器は変調手段を含み 前記発光手段は変調によって制御情報を含む光線を発 し、さらに前記座標検出装置は前記制御情報を含む前記 光線を受光する制御用受光部を備えることを特徴とする

【請求項16】 請求項13~15のいずれか1項記載 の光学式座標入力装置において、前記座標検出装置の上 で定義される2次元平面に直交する軸方向に関する他の 前記光学式位置検出装置を付加し、前記2台の光学式位 置検出装置と組み合わせて3次元での位置検出を行うよ うに構成したことを特徴とする光学式座標入力装置。 【発明の詳細な説明】

[0001] 40

光学式座標入力装置。

【産業上の利用分野】本発明は光学式位置検出装置およ び光学式座標入力装置に関し、特に、点光源の発する光 を利用して点光源の位置または点光源からの光線の到来 方向を検出する光学式位置検出装置、およびこの光学式 位置検出装置を応用して構成され、例えばコンピュータ の入力手段であるデジタイザに利用される光学式座標入 力装置に関する。

[0002]

【従来の技術】位置や方向等を検出するための装置とし 【請求項11】 請求項3~7のいずれか1記載の光学 50 て、従来では、PSD(半導体位置検出装置:Position

50

Sensitive Light Detector)が知られている。PSDは、受光面に照射されたスポット状の光の受光面上での位置を検出できる光センサである。このPSDを利用すれば、点光源と組み合わせることにより、当該点光源の存在位置を検出する位置検出装置、点光源からの光線の到来方向を検出する方向検出装置、点光源と検出装置本体の距離を計測するための距離計測装置等を作ることができる(トランジスタ技術 1990年8月号 「PSDを使った距離検出装置の製作」)。

【0003】また光学的に位置情報を得る装置を開示する従来技術文献として特開平5-19954号公報が存在する。この装置では、XY座標面が設定される操作テーブル上で発光素子を備えた移動体を移動させると共に、操作テーブルのX軸方向の辺の中央部およびY軸方向の辺の中央部にそれぞれX受光部とY受光部を設け、各受光部で前記移動体の発光素子からの光を光学レンズで結像させ、各受光部における結像位置情報を利用して前記移動体のX座標値およびY座標値を求めるように構成されている。従って、光信号の授受を利用して位置情報を得るための構成を有する。

[0004]

【発明が解決しようとする課題】PSDを利用して点光 源の位置等を検出するためには、点光源からの光をスポ ット状の光に変換して検出用受光面に照射させなければ ならない。スポット状の光を作るためには、光学レンズ を設け、集光して結像させることが必要である。PSD では、受光面に照射されるスポット状の光の径が大きく なると位置検出の精度が悪くなるので、所望の径のスポ ット光を作ることのできる精度の良い光学レンズが必要 である。また別の観点でみると、精度の良い位置検出を 30 行うためには、受光面を有する検出装置本体と点光源と の距離が、所望のスポット径の光を得ることが可能なピ ントの合う範囲に限定されることになる。上記のごと く、従来の位置検出装置に利用されるPSDは、集光性 能の良い光学レンズが必要であり、検出受光面からの点 光源までの距離が制限されるので、経済的ではなく、使 用条件に大きな制限があった。

【0005】またPSDによる位置検出では、検出用受光面の例えば左右両端に存在する2つの電流端子から分割状態で取り出される2つの電流値と所定の演算式とに基づいて、検出用受光面でのスポット状の光の照射位置が求められる。分割された2つの電流値の大小関係がスポット状の光の照射位置に関する情報を含んでいる。分割作用で得られる2つの電流値は、電流路となる半導体領域の抵抗値に比例して分割されるので、照射位置に正確に対応する2つの分割電流値を得るためには、電流路となる半導体領域において前記抵抗値が均等に分布していることが必要である。しかしながら、従来では、製造技術上の制限から抵抗値に関しかかる均等な分布を得ることが困難であった。このため、従来のPSDにおいて

位置検出の直線性について1%程度の誤差を伴うのが一般的であった。この程度の誤差は、例えばPSDをカメラのオートフォーカスに利用する場合には許容される誤差である。しかしながら、位置検出の精度についてさらに高い精度が必要な場合にはPSDの検出信号について

補正を行うことが必要であった。この補正は製造された PSDのすべてについて行わなければならず、すべての PSDのそれぞれについてかかる補正を行うことは非常 に面倒である。

4

【0006】また上記のごとくPSDによる位置検出では2つの電流端子から取り出される2つの分割電流値と所定の演算式とに基づいて位置検出を行うので、電流端子から取り出される検出信号としての値はアナログ値であり、この値を用いて例えば割り算を含む所定演算のディジタル処理をコンピュータで行うには、精度に応じた高価なA/D変換器が必要になるという不具合があった。

【0007】前記文献(特開平5-19954号公報) に開示される光学式座標情報出力装置においても、移動 20 体の位置を得るための情報は発光素子からの光を受光手 段の受光部に光学レンズを用いてスポット形状にて結像 させることが必要であるため、PSDの場合と同様に、 検出できる位置精度の観点から集光性能が高い光学レン ズが必要であるという不具合を有する。

【0008】本発明の第1の目的は、光学レンズを利用して結像させる必要がなく、そのため検出装置と光源との間の距離を広くとることができ、かつ広範囲であっても高精度に光源位置や光線の到来方向等を検出でき、さらに直線性に関する誤差を小さくでき、応用範囲が極めて広い光学式位置検出装置を提供することにある。

【0009】本発明の第2の目的は、前述の光学式位置 検出装置を利用することにより、検出精度が高く、コー ドレスでかつ経済性の高い、さらに操作性および応用性 が向上した光学式座標入力装置を提供することにある。 【0010】

【課題を解決するための手段】本発明に係る光学式位置 検出装置は、次のように構成される。

【0011】受光領域を形成する画素配列を備え、この画素配列の各画素が検出した光に関する信号を出力する受光手段と、この受光手段の受光領域の前方位置に配置され、到来する光線によって受光領域の上に前記光線の発生位置に関する情報を含む像を生じさせるパターンを有するパターン部材と、受光手段の画素配列の各画素が出力した前記信号に基づいて前記光線の発生位置に関する情報を抽出する信号処理手段とを備えるように構成される。前述の光線の発生位置は光線の到来方向として捉えることもでき、所要の処理を行うことで光線の到来方向を検出することが可能である。

【0012】前記の構成において、好ましくは、パターン部材は全体的に透明部材であり、前記パターンは透明

な前記パターン部材に設けられた遮光部である。またパターンの形成方法として、反対に全体的に遮光部材である板材にスリットを設けるようにしてもよい。

【0013】前記の構成において、好ましくは、受光手段の画素配列は1次元の受光領域を形成し、パターン部材のパターンは画素配列の配列方向に交差する方向に延びる線状形態を有する。

【0014】前期の構成において、好ましくは、受光手段の画素配列は、分解能が検出可能範囲の1/N(Nは自然数)になるようにN個程度の画素で形成されることを特徴とする。

【0015】前記の構成において、好ましくは、パターン部材のパターンはM系列の特性を有する。

【0016】前記の構成において、好ましくは、パターンは太線と細線をM系列の順番で組み合わせたものである。

【0017】前記の構成において、好ましくは、M系列では周期が2^k -1 (kは自然数)であり、受光手段の 画素配列はk個程度の画素で形成される。

【0018】前記の構成において、好ましくは、受光手 20 段の画素配列は2次元の受光領域を形成し、バターン部 材のパターンはM平面の特性を有する。

【0019】前記の構成において、好ましくは、パターンは大丸と小丸を格子の交点にM平面の順番で組み合わせたものである。

【0020】前記の構成において、好ましくは、M平面では周期が2ⁿⁿ-1 (m, nは自然数)であり、受光手段の画素配列はm行n列程度の数の画素で形成されることを特徴とする。

【0021】前記の構成において、好ましくは、パター 30 ン部材のパターンは1次元の画素配列の配列方向に直交する方向に延びる線状形態を有し、光線の通過ルートのいずれかの箇所に受光手段の受光領域での光強度を高めるべく画素配列の配列方向に直交する方向について光線を集光する一方向限定集光手段を少なくとも1つ配置する。

【0022】前記の構成において、好ましくは、一方向 限定集光手段はシリンドリカルレンズである。

【0023】また本発明に係る光学式座標入力装置は、 前述した各構成を有する少なくとも1台の光学式位置検 40 出装置によって構成される座標検出装置と、発光手段を 有する位置指示器とを備え、発光手段の発する光線に基 づいて光学式位置検出装置は位置指示器によって指示さ れる位置を検出し、当該位置の座標データを求めるよう に構成される。

【0024】前記の構成において、好ましくは、座標検出装置の上で定められた2次元平面での位置座標を求めるため2台の光学式位置検出装置が設けられ、この2台の光学式検出装置のそれぞれで得られる発光手段の位置(光線方向)に関するデータに基づいてかつ三角測量の

演算を適用して位置指示器によって指示される位置の2次元平面での座標値を求めることを特徴とする。

【0025】前記の構成において、好ましくは、位置指示器は変調手段を含み、発光手段は変調手段による変調によって制御情報を含む光線を発し、さらに座標検出装置は制御情報を含む光線を受光する制御用受光部を備えるように構成される。

【0026】前記の構成において、好ましくは、座標検 出装置の上で定められる2次元平面に対して直交する軸 方向に関する他の光学式位置検出装置を付加し、前記の 2台の光学式位置検出装置と組み合わせて3次元での位 置検出を行うように構成される。

[0027]

【作用】本発明の光学式位置検出装置によれば、受光手段の前方位置にパターン部材を配置し、望ましくは点光源から受光手段に対して光線を発することにより受光手段の受光部に所定形状を有するパターンの投影像を作る。このパターンの投影像はパターンの影の像であってもよいし、光による像であってもよい。受光部は複数の画素(光電変換素子)の配列で形成され、直線状または平面状の配列にて形成される。受光部に形成される像に応じて各画素の出力信号強度が異なるので、すべての画素の出力信号を用いて所定の演算を信号処理手段で行うことにより、点光源の位置あるいは点光源から来る光線の到来方向を検出する。この光学式位置検出装置では、受光部に像を形成するにあたって結像させる必要がなく、そのため結像用光学レンズを用いる必要がないために、光学レンズに関連する制限を受けない。

【0028】パターン部材に設けられるバターンは任意なものを用いることができる。受光手段の画素配列の画素数に応じて、画素数が多いときには簡単なパターンを用いることができ、画素数が少ないときには例えばM系列またはM平面の特性を有するパターンを用いる。また受光手段の各画素の出力信号の強度関係に基づいて点光源の位置等を検出するための処理には任意の処理を用いることができる。

【0029】上記の光学式位置検出装置は、応用範囲が広く、例えばカメラのオートフォーカス等に利用される 距離計測装置、監視対象物の傾斜角度検出装置、機械的 装置における対象物の追尾装置等に利用することができる。

【0030】もっとも望ましい応用例としてはデジタイザとして利用される座標入力装置であって光学的に構成されるものである。この座標入力装置は光を利用するために本質的にコードレスの構成となる。また前記光学式位置検出装置の有する特徴によって位置指示器を移動させる入力用操作テーブルの入力面を非常に広くすることができる。入力面を形成する2次元座標面の座標を求めるには望ましくは三角測量の手法を用いる。この場合、2つの光学式位置検出装置が必要である。さらに他の光

6

学式位置検出装置を付加することにより、3次元の座標 検出を行えるデジタイザを作ることも可能である。

[0031]

【実施例】以下に、本発明の実施例を添付図面に基づい て説明する。

【0032】図1~図5は本発明に係る光学式位置検出 装置の第1の実施例を説明するための図である。図1は 基本的構成を示す斜視図、図2は位置検出の原理を説明 するための図、図3は信号処理装置の内部構成を示す 図、図4はCCDリニアセンサの各画素における信号強 10 度の関係を説明するための図、図5は信号処理の内容を 説明するためのフローチャートである。

【0033】図1および図2において、1は例えば点状 の光源、2は受光手段であるCCDリニアセンサであ る。光源1には例えば小型電球や各種LEDランプが用 いられる。CCDリニアセンサ2は、その中央部の横方 向に直線状に配列された例えば2048個のCCD画素 (以下説明の便宜上画素という)からなる画素列3を備 える。なお受光手段の画素は一般的に光電変換機能を有 する素子を意味するものとする。かかるCCDリニアセ 20 ンサとして例えば「東芝TCD133D」が市販され る。CCDリニアセンサ2で、直線状の画素列3は直線 状受光部を形成している。CCDリニアセンサ2の画素 数については、目的に応じて任意の数を選択することが できるが、分解能が検出可能範囲の1/N(Nは自然 数)になるようにN個程度の画素で形成されることが望 ましい。CCDリニアセンサ2からは各画素3aで検出 された画素信号が出力される。光源1は、CCDリニア センサ2の直線状画素列3に対し臨んでいる。光源1と CCDリニアセンサ2との間にはパターン部材4が配置 30 される。パターン部材4は、例えば透明フィルムや透明 プラスチック板で形成され、さらに例えばその中央部に 1本の線状遮光部4aが設けられる。この線状遮光部4 aがパターンを形成する。このパターン部材4と光源1 から出射される光線13とに基づいてCCDリニアセン サ2の受光面には遮光部4aすなわちパターンの影5が 投影される。直線状の影5は、直線状画素列3に対して 望ましくは直交するように投影される。従って線状遮光 部4aの描かれる方向は、画素列3の配列方向に対し交 差する方向である。6は光源1に発光用電力を供給する 電源で、一般的に電池が使用される。

【0034】点状光源1は、予め設定された区間7にお いて図示される方向(図中、左右方向)に移動すること ができるように構成される。光源1を移動させるための 駆動装置には従来知られた任意の装置を用いることがで き、その図示は省略される。パターン部材4およびCC Dリニアセンサ2は固定されているので、光源1が移動 することによって当該移動に応じてCCDリニアセンサ 2の受光部における影5が移動する。

【0035】図2に示す距離L1,L2は、目的に応じ 50 から左への方向と定義する)で最小値を探し、この最小

て任意に設定される。これらの距離を適宜に設定するこ とにより、光源1の検出可能な移動範囲を定めることが

8

【0036】図1に示す構成において、CCDリニアセ ンサ2とパターン部材4は影5の投影位置に基づいて光 源1の位置に関する情報を得ることを可能とし、信号処 理装置8での後述する所定の信号処理を経て区間7にお ける光源1の位置を検出することができる。また視点を 変えれば、光学式位置検出装置は光源1からの光線13 の到来方向に依存して光源1の位置を検出できるので、 光線方向検出装置として捉えることもできる。特に光源 1の移動区間7を設定しなければ、影5の投影位置は光 線13の到来方向のみに関与する。ここで便宜上CCD リニアセンサ2 (一般的に受光手段) とパターン部材4 の組を光線方向検出部28と呼ぶ。

【0037】CCDリニアセンサ2の各画素3aの出力 信号は、信号処理装置8からの読込み処理に応じて信号 処理装置8に供給される。信号処理装置8は、図3に示 すように、例えば8ビットA/D変換器9とマイクロコ ンピュータ10とシリアルインターフェース11によっ て構成される。A/D変換器9はCCDリニアセンサ2 から供給されるアナログ信号をディジタル信号に変換 し、マイクロコンピュータ10では図5のフローチャー トで示される処理手順が実行され、画素列3の上での影 5の投影位置すなわち光源1の位置が求められる。マイ クロコンピュータ10で求められた光源1の位置に関す るデータは、シリアルインターフェース11を経由して RS232C出力コネクタに送られる。

【0038】次に図4および図5を参照して光源1の位 置を求める処理について詳しく説明する。 図4におい て、横軸は画素の位置を示し、縦軸は信号強度を表して いる。図4においてはCCDリニアセンサ2において影 5が投影される箇所、特に便宜上画素番号がi~i+1 4の画素に関する信号強度が示されている。図4から明 らかなように影5が投影される箇所に位置する画素の信 号強度は低くなっており、それ以外の箇所の位置する画 素の信号強度は相対的に大きな信号強度である。なお、 影5が投影されていない箇所に位置する画素の信号強度 は、理想的なものとして変動のない一定値として示され ている。

【0039】図5に示すように、マイクロコンピュータ 10は送られてきたCCDリニアセンサ2の直線状に配 列された各画素の出力信号を読み込みそれぞれをバッフ ァメモリ (BUF [i:i=0~2047]) に格納す る (ステップS1)。2048個の画素データBUF [i] に関して、まず0から2047への方向(直線状 画素列において左から右への方向と定義する) で最小値 を探し、この最小値に対応する i をLMINとする。次に、 2047から0への反対方向(直線状画素列において右

値に対応するiをRMINとする(ステップS2)。

9

【0040】次のステップS3では、まずΣBUF [i:i=LMIN-50~LMIN-20]を計算しその値を30 で割って左半分の所定領域の平均値を求め、次に∑BU F[i:i=RMIN+20~RMIN+50]を計算しその値を3 0で割って右半分の所定領域の平均値を求め、最後に、 得られた2つの平均値の平均を求めてこれをVM とす る。ステップS3は、影5が投影された結果、信号強度 がもっとも低下した画素の当該信号強度を見つけるため の前処理である。この処理では、単純に信号強度がもっ とも小さい画素を選択するのではなく、信号強度の変動 を考慮して、最小信号強度を、最小信号強度をとるLMIN とRMINの位置をほぼ中心として対称な位置に存在する高 原部の領域を適当に選択し、それぞれの平均値を求め、 さらにこれらの平均値を求めることにより、当該平均値 を利用して下記のステップS4で最小であると考えられ る信号強度に対応する画素の位置を求めている。

【0041】ステップS4では、ステップS3で得られ た平均値Vmを利用して最小信号強度に対応する画素の 位置を求める。この画素の位置の算出について、本実施 20 例の処理では精度を10倍に高めた補間処理が行われ る。ステップS4で示された式の左辺の演算では、図4 に示した斜線領域の面積を求めた後にその半分の面積S Q1を求めており、当該式の右辺との関係において、式 全体としては、面積SQ1に等しい面積となる位置をx 1として求めることが可能である。この位置×1は、図 4において位置x1に対応する一点鎖線12を示すと斜 協領域の面積を二等分する線になっており、従って位置 x1が、予め定められた1次元座標軸において補間演算 に基づいて求められた光源1の正確な位置である。 ただ し図4に示しているように、影5が投影されていない箇 所に位置する画素群の一定の信号強度は、ステップS3 の処理に基づいて得られた平均値Vmとして表されてい る.

【0042】上記のごとくして、点状光源1から出射される光線13とパターン部材4の遮光部4aとによってCCDリニアセンサ2の受光部である画素列3の上に影5が投影され、画素列3上の影5の位置を各画素3aの出力信号に基づいてかつ適宜な補間演算を適用することにより求めると、予め設定された範囲(区間7)における点状光源1の位置を極めて高い分解能で求めることができる。従って、例えば点状光源1を移動する物体に取り付けるように構成すれば、上記のごとく光学的に当該物体の位置を検出することができる。

【0043】前記の実施例は次のように変更できる。パターン部材4には例えば遮光部を有する透明フィルムを用いたが、図6に示すようにスリット14が形成された遮光プレート15を使用することもできる。この場合には、CCDリニアセンサ2において影の投影箇所は形成されず、明るい照明箇所に基づいて位置を求める。

【0044】 遮光部4 aの形状は直線形状に限定されず、任意の形状を選択することができる。同様に光源1の形状も点状に限定されず、例えば直線状遮光部4 aに対して平行な線状の光源であってもよい。

【0045】CCDリニアセンサ2の受光部である画素列3における影5の投影位置の変化で光源1の位置を正確に検出できるのであるから、反対に、光源1を固定状態としかつ光線方向検出部28を可動の構造にして、光線方向検出部28の位置を検出するという構成にすることも可能である。

【0046】次に、図7~図10に基づいて本発明に係る光学式位置検出装置の第2の実施例について説明する。この実施例では、受光手段の構成を簡素化することを図っている。各図において前記第1実施例で説明した要素と同じ要素には同一の符号を付している。

【0047】図7において光源21には点状の赤外線LEDを使用し、受光手段にはリニアアレイ光センサ22を使用する。リニアアレイ光センサ22は、直線状に配列された例えば64個のセル(実質的に前記画素と同じ)を有する。かかるリニアアレイ光センサ22として例えばテキサス・インスツルメンツ社のTSL214が市販されている。リニアアレイ光センサ22の受光部の前側には赤外線通過フィルタ23が配置される。赤外線LED21と赤外線通過フィルタ23を用いるのは外乱光を除去するためである。

【0048】光源21とリニアアレイ光センサ22との 間にはパターン部材24が配置される。このパターン部 材24には透明な部材に進光部として例えばM系列のパ ターンが描かれている。M系列パターンを拡大して示す と図8のようになる。このM系列パターンは複数の太線 26と細線27を組合せて構成される。太線の中心と細 線の中心の間隔は一定であり、パターン線数は例えば1 28本である。太線を1、細線を0として符号化する と、この符号はデータ伝送のフレーム同期信号等でよく 使用されるM系列の並びとなる。M系列の例として一周 期が(000100110101111) であるM系列を示すことができ る。M系列の特徴は、連続するNビットがすべて異なる 点にある。例えば4ビットの場合には、連続する4ビッ トの符号は $2^4 - 1 = 15$ 通りの相異なる符号を得るこ とができる。一般的にM系列で周期が2k -1(kは自 然数)であるとき、リニアアレイ光センサ22の画素配 列はk個程度の画素で形成される。

【0049】パターン部材24と光源21との間にはシリンドリカルレンズ25が配置される。シリンドリカルレンズ25は光源21からの光の強度を強めるために設けられ、リニアアレイ光センサ22での検出感度を増強させる。シリンドリカルレンズ25によれば横方向(長手方向)には集光されず、縦方向にのみ集光され、これによって光源21からの光を強める。すなわちシリンド50 リカルレンズ25は一定方向限定集光手段である。また

信号処理装置8のハード構成は基本的に図3に示した構成と同じである。この信号処理装置8では光源21の位置を求めるため図10に示される処理が実行される。

【0050】図9によって第2実施例に係る光学式位置検出装置の位置検出原理について説明する。本実施例の光学式位置検出装置によれば、特殊な遮光パターン(例えばM系列)を有するパターン部材24を用いることによって受光手段の画素数を非常に少なくすることが可能となる。すなわち64個のセルを有するリニアアレイ光センサ22を用いて区間7を移動する光源21の位置を高い分解能で検出することができる。かかる検出が可能となる理由は次の通りである。

【0051】図9に示すように、区間7において光源2 1の位置としてA1, A2を想定する。リニアアレイ光 センサ22の受光部である直線状セル列に投影される影 は、光源21が位置A1に存在する時にはパターン部材 24の領域24aに属するパターン像であり、光源21 が位置A2に存在する時にはパターン部材24の領域2 4bに属するパターン像である。領域24aに属するパ ターン像と領域24bに属するパターン像は、前述の通 20 りM系列のパターンを用いているため、全く異なる。換 言すれば、リニアアレイ光センサ22の受光部に投影さ れるパターン像を検出しこれをデコードすると、区間7 における光源21の位置を一義的に決定することができ る。このように例えばM系列パターンを有したパターン 部材24を用いることによって、画素数が相対的に少な い受光手段を用いて光源21の位置を検出することがで きる。なお図9では、シリンドリカルレンズ25と赤外 線通過フィルタ23の図示を省略している。

【0052】図10に従って、信号処理装置8のマイクロコンピュータ10で実行される位置を検出するための処理を説明する。

【0053】ステップS11では、64個のセル(画素)それぞれの出力信号を読込み、各検出値を滑らかな曲線で補間し、10倍に拡大した640個の値をバッファメモリBUF[i:i=0~639]に格納する。次に、640個の検出値の平均値を求め、その値をVn1とする(ステップS12)。この平均値を利用しi=0~639の全要素に対して、BUF[i]≥Vn1であればA[i]=400とし、こうしてA[i:i=0~639]を求める(ステップS13)。

【0054】ステップS14では、iについて0から639に向かってA[i]が最初に1から0に変化する箇所を求め、この箇所から連続する0の数をカウントする。そして1が表れた箇所で、カウントした値をB[j]とし、連続した0における中心のiの値をC[j]とする。jの初期値は0であり、j=j+1としてiが639になるまで上記のカウント動作を繰り返す。

【0055】ステップS14でN個のB[j]が得られると、次のステップS15で、BまたはCに格納されたデータの数をN(=j)とし、さらにステップS16で、j=0~N-1の全要素に対してB[j]中から最大値を選択してこれをBMAXとし、同様に最小値を選択してこれをBMINとする。そして、すべてのB[j]に対して、ステップS16に示された不等関係式に基づきD[j]=1とD[j]=0を決定する。D[j]=1はM系列パターンの太線に対応する影の信号を意味し、D[j]=0はM系列パターンの細線に対応する影の信号を意味し、D[j]=0はM系列パターンの細線に対応する影の信号を意味している。ステップS17では、前記のC[j]のうちもっとも319に近いものを2つ探して小さい方をC[JL]、大きい方をC[JR]とする。

【0056】ステップS18で、D[j:j=JL-3~ JL+3]はM系列の座標コードとなるので、この座標コードを変換表を用いての二進値に変換しXLに格納する。同様に、D[j:j=JR-3~JR+3]の座標コードと変換表を用いて二進値を求め、その値をXRに格納する(ステップS19)。ステップS20では、補間式に基づいて補間座標値Xが算出される。補間式で得られた補間座標値Xは、シリアルインターフェース11を通して出力される(ステップS21)。

【0057】上記のごとくM系列の符号で形成されたパターンを利用することにより、相対的に少ない画素数を有する受光手段を用いて光学的に光源21の位置を高い精度で検出することができる。

【0058】前述の第1実施例および第2実施例は、1次元の位置検出を行う光学式位置検出に関するものであった。次に、同様な光学的構成を利用した2次元の位置検出を行うことのできる実施例について説明する。

【0059】図11~図15に基づいて本発明に係る光学式位置検出装置の第3の実施例について説明する。各図において前記の第1および第2の実施例で説明した要素と実質的に同一の要素には同一の符号を付している。この実施例では、2次元平面に関して光源1が移動する時に当該光源1の位置を検出することができる。

【0060】図11において31は光源1が移動できる2次元平面であり、32は受光手段のCCDエリアセンサである。CCDエリアセンサ32は、基本構造はCCDリニアセンサと同じであり、単に画素の配列位置を平面状にしたものである。33はCCD画素からなる受光面である。光源1とCCDエリアセンサ32との間にはパターン部材34が適宜な位置に配置される。パターン部材34の構成および機能は前記パターン部材24と実質的に同じである。CCDエリアセンサ32の各画素の検出信号は順次に信号処理装置8に送られる。図11において、光源1に対して電力を供給する電源および光源1の位置を変えるための駆動装置の図示は省略されてい

【0061】パターン部材34には、第2の実施例で説明したM系列パターンを2次元に拡張したパターンが描かれている。かかる2次元M系列パターンの一部の例を図12に示す。図12において、縦軸方向および横軸方向にそれぞれ太線26と細線27の組合せによってM系列パターンが描かれている。

【0062】図11に示した構成によれば、2次元平面31において光源1が移動する時、パターン部材34における光源1の位置に応じた一部のM系列パターンの影がCCDエリアセンサ32の受光面33に投影される。受光面33に投影されるM系列パターンの影は光源1の位置に対応して一義的に定まる。従って、CCDエリアセンサ32で検出された各画素の信号を読出し、M系列パターンの縦軸方向と横軸方向のそれぞれを独立に演算してM系列パターンを求める。この演算には第2実施例で説明した位置算出処理が実行される。このようにして2次元平面31における光源1の位置について、横軸方向の座標位置と縦軸方向の座標位置を求めることによって光源1の位置を求めることができる。

【0063】前記第3の実施例では2次元のM系列パターンを用いたため、受光手段であるCCDエリアセンサ32の受光面を形成する画素の数を相対的に少なくすることができた。本実施例ではCCDエリアセンサ32の画素数は縦32、横32で、全部で1024個の画素が矩形の受光面33を形成している。前記第1の実施例のごとく、例えば十字形の遮光部が形成されたパターン部材を用いても2次元平面での位置を検出することができる。この場合には相対的に画素数の多い受光手段を用いることが必要となる。

【0064】図13は2次元M系列パターンの他の例を示す。これはM平面と呼ばれる2次元系列を利用したものである。M平面については、宮川洋、岩垂好裕、今井秀樹共著、1973年、昭晃堂発行「符号理論」に詳しい。この2次元M系列パターンでは、小丸と大丸がM平面の順序で並んでいる。一般的にM平面で、その周期が200-1 (m,nは自然数)であるとき、CCDエリアセンサ32の画素配列はm行n列程度の数の画素で形成されることが望ましい。図13の2次元M系列パターンを使用する場合には、信号処理装置8では、光源1の位置を求めるために図14および図15に示される処理が行われる。図14および図15は一連のフローチャートである。

【0065】図14および図15を参照して光源1の位置を求める処理について説明する。ステップS31ではCCDエリアセンサ32のすべての画素の検出信号(32×32)を読込み、バッファメモリBUF[i, j:i=0~31,j=0~31]に格納する。次に、BUF[i,j]の各行と各列の要素の和を求め、それぞれVBUF[i:i=0~31]とHBUF[j:j=0~31]に格納する(ステップS32)。ステップS3

3では、VBUF[i]およびHBUF[j]のそれぞれについて谷に相当する場所を求め、VP[i:i=0~谷の数-1]をHP[i:i=0~谷の数-1]を格納する。これらのVP, HPに関して、谷の場所は、まず値が最小の所を求め、これを最初の谷の位置とし、次にその近傍の値をデータ精度の最大値で置き換える。全データが最大値になるまでこれを繰り返す。その後、昇順に並べ換える。

【0066】VPとVHのそれぞれに対して、値が15 に近いものを5個ずつ選び、その中で最小のものの添字 の値をVI、HIとする (ステップS34) 。画素情報 を格納した前記のBUF[i,j]の中から谷近傍の5 ×5=25個の和の値を求め、それらを所定値(AV) と比較して、所定値以上のときにはD[i,j]を "1"とし、所定値よりも小さいときにはD[i,j] を"0"にしてディジタル化する(ステップS35)。 こうして得られたD[i,j]はM平面の座標コードで あるので、変換表を使って座標(DX,DY)に変換す る (ステップS36)。次のステップS37では、VP とVHのそれぞれに対して、値が15にもっとも近いも のを2つ探して、小さい方をVPLおよびHPL、大き い方をVPRおよびHPRとする。こうして得られた上 記の各値を用いてステップS38に示された補間式に基 づいて補間座標値(X,Y)を算出する。求められた補 間座標値X、Yの値をシリアルインターフェースを通し て出力する(ステップS39)。

【0067】次に、図16~図19を参照して、前述した光学式位置検出装置の構成を利用して構成される光学式座標入力装置の第1実施例について説明する。この実施例で利用される光学式位置検出装置は、前述された第1実施例または第2実施例で説明した1次元の位置検出装置であり、当該位置検出装置の光線方向検出部28が2組使用される。図16は光学式座標入力装置を上方から見た図、図17は座標検出装置の要部構成を示すブロック図、図18は位置指示器の構成を示すブロック図、図19はx,yの各座標値を求める三角測量の計算を説明するための図である。

【0068】図16において光学式座標入力装置41 は、座標検出装置42と位置指示器43からなる。座標 検出装置42は、操作テーブル上に位置指示器43を移 動させるための入力面44を有し、入力面44の上辺部 両端の角部の箇所に光線方向検出部28A,28Bが設 けられる。光線方向検出部28A,28Bは、前述した 1次元光学式位置検出装置の第1実施例または第2実施 例で説明された光線方向検出部28と同一の構成を有す る。45は光線方向検出部28A,28Bのそれぞれの 光取入れ面である。また上辺部の中央位置に制御用受光 部46が設けられる。47は出力コネクタである。

【0069】他方、位置指示器43は入力面44上で定 50 められたXY2次元座標平面において位置を指示する装

置であり、所定箇所に点状発光素子48を備えると共に例えば2つの操作スイッチ(押しボタン)49を備える。発光素子48から出射される光線13は光線方向検出部28A,28Bと制御用受光部46に受光される。光学式座標入力装置41を使用する操作者は位置指示器43を入力面44上で移動させ、操作スイッチ49を操作する。発光素子48の存在位置が、位置指示器43によって指示された座標位置P(x,y)である。光線方向検出部28A,28Bは発光素子48の発する光を受け、例えば前述の影と画素列との位置関係に基づいて当該発光素子48の存在位置に関する情報を得る。

【0070】図17に示されるように、光線方向検出部28A、28Bの検出作用で得られたそれぞれの信号は座標演算部50に入力される。座標演算部50は、前述した信号処理装置8に相当するものであり、光線方向検出部28A、28Bで検出された画素情報に基づいて位置指示器43の入力面44における座標位置P(x,y)を算出する。この演算には三角測量の手法が用いられる。三角測量に関する演算は後で説明する。座標演算部50で求められた、位置指示器43で指示された座標位置のデータP(x,y)はインターフェース部52を経由して出力される。また制御用受光部46で得られる光情報は、位置指示器43の発光素子48から出射された変調光に含まれる制御情報である。受光部46の検出した信号は復調部51で復調され、得られた制御情報はインターフェース部52を経由して出力される。

【0071】図18において、位置指示器43はその内部に発振器53と発振器53に電力を供給する電池54を備える。2つの操作スイッチ49を適宜に操作することにより発振器53の発振条件(周波数等)を変え、その出力信号に変調をかけることができる。この変調操作により制御情報が発振器53の出力信号に含まれる。発光素子48は、変調された出力信号で駆動されて発光する。従って、発光素子48から出射される光には変調に基づく制御情報が含まれている。

【0072】図19において44aは入力面44の上で 定められたXY座標面であり、44bはXY座標面44 aにおける対角線である。またOは原点である。ここ で、XY座標面44aにおける位置P(x,y)の座標 値x,yの求め方を説明する。XY座標面44aは1辺 40 の長さがLの正方形であると仮定し、位置P(x,y) に関し、対角線44bに対して角度 θ , ψ を図示のごと く定める。この結果図19に示されるように、光線方向 検出部28A,28Bのそれぞれの直線状受光部におい て $\tan \psi$, $\tan \theta$ が定められる。ただし、各角部からそ れぞれの直線受光部までの距離を単位長さとする。これ らの値 $\tan \psi$, $\tan \theta$ を用いることにより、位置P (x,y)の座標値x,yは次のように求められる。 【0073】図19で $\tan(\pi/4-\theta)=x/y$ と $\tan(\pi/4-\theta)=(L-y)/x$ が成立する。これらの 50

式において $\tan \theta = p$ および $\tan \psi = q$ とおくことにより、次の数1が成立する。

[0074]

【数1】

x/y=(1-p)/(1+p)=T …〇 (L-y)/x=(1-q)/(1+q)=S …〇 【0075】上記式〇、〇に基づいて、x、yをT、 S、Lで求めると、次のようになる。

[0076]

【数2】x=TL/(ST+1)y=L/(ST+1)

【0077】図16~図19に従って説明された光学式座標入力装置41では、前述した光学式位置検出装置の第1または第2の実施例の光線方向検出部28と三角測量の演算手法、および点状発光素子48を利用して、座標検出装置42の入力面44における位置指示器43の位置P(x,y)を求めるように構成される。この光学式座標入力装置41はコードレスの位置指示器を備えるデジタイザとして利用される。なお1台の光学式位置検出装置に発光素子を有する位置指示器を組み合わせ、これにより同様にして1次元の光学式座標入力装置を実現することもできる。

【0078】図20は3次元の位置検出に利用できる光学式座標入力装置の実施例を説明する。すなわち本実施例の光学式座標入力装置61は、入力面44からの高さの情報を検出することができる。図20において、図16で説明した要素と実質的に同一の要素には同一の符号を付している。

【0079】光学式座標入力装置61では、前記実施例 の座標入力装置と同様な位置に光線方向検出部28A, 28Bを備えるが、この実施例の場合、光取入れ面45 は高さに配慮して高い位置からの光線も受光できるよう にほぼ正方形の形状に形成される。また位置指示器62 はペン型の位置指示器であり、その先端に発光素子48 が設けられ、中央部に操作スイッチ49が設けられる。 【0080】この光学式座標入力装置61では、さら に、入力面44の上辺部の中央部に第3の光線方向検出 部63を設けている。この光線方向検出部63は、高さ 情報を検出するためのものである。光線方向検出部63 の光取入れ面45の大きさおよび高さは、検出しようと する高さとの関係で適宜に設定される。入力面44の上 で定められたXY座標面における位置P(x,y)の算 出については、前記実施例で説明した座標入力装置41 の場合と同じである。また高さ方向の座標ェの求め方に ついては、光線方向検出部28A, 28B等を利用して 求められたXY座標面の座標値(xの値)を利用し、こ れと組み合せて求められる。

【0081】第3実施例であるM平面パターンを利用した光学式位置検出装置を利用し、その光線方向検出部と 4個合わせることにより3次元座標入力装置を構成するこ ともできる.

[0082]

【発明の効果】以上の説明で明らかなように本発明によ れば、次の効果を奏する。

【0083】所定のパターンを有するパターン部材を設 け、受光手段の受光部に当該パターンの像を投影するこ とにより点光源の位置または光線の到来方向を検出する ように構成し、結像用の光学レンズを使用しないように したため、検出装置と光源との間の距離を広くとること ができ、かつ広範囲であっても高精度に光源位置や光線 10 ーチャートの前半部である。 の到来方向等を検出でき、さらに直線性に関する誤差を 小さくでき、応用範囲を極めて広くすることができる。 特に受光手段として比較的に安価に入手しやすいCCD リニアセンサ等のセンサを用いることができるので、経 済性も高い。またシリンドリカルレンズ等を用いること により、弱い光を発する点光源に対しても有効な位置検 出を行うことができる。

【0084】パターン部材のパターンにM系列またはM 平面の特性を有するものを使用するようにしたため、受 光手段の画素の数が比較的に少ないものでも使用するこ 20 とができ、経済性をさらに高めることができる。

【0085】本発明に係る光学式位置検出装置を2台組 み合せて構成することにより、コードレスの位置指示器 を備える2次元のデジタイザであって、結像用光学レン ズを用いないことに起因する高い検出精度および位置分 解能を有するデジタイザを容易に構築することができ る。さらに、3台の光学式位置検出装置を所要の配置関 係で組み合せることにより、同様な特性を有する3次元 の座標検出を行うことができるデジタイザを構築するこ とができる。

【図面の簡単な説明】

【図1】本発明に係る光学式位置検出装置の第1実施例 を示す構成図である。

【図2】構成要素の位置関係と影の投影箇所を示す図で ある。

【図3】信号処理装置の内部構成を示すブロック図であ

【図4】画素列における信号強度の分布状態を示す図で ある。

【図5】位置を求める処理工程を説明するためのフロー チャートである。

【図6】パターン部材の他の構成を示す斜視図である。

【図7】本発明に係る光学式位置検出装置の第2実施例 を示す構成図である。

【図8】M系列の特性を有するパターンの例を示す図で

【図9】位置検出の原理を説明するための図である。

18 【図10】位置を求める処理工程を説明するためのフロ ーチャートである。

【図11】本発明に係る光学式位置検出装置の第3実施 例を示す構成図である。

【図12】M系列の特性を有する2次元パターンの例を 示す図である。

【図13】M平面の特性を有する2次元パターンの例を 示す図である。

【図14】位置を求める処理工程を説明するためのフロ

【図15】位置を求める処理工程を説明するためのフロ ーチャートの後半部である。

【図16】本発明に係る光学式座標入力装置の第1実施 例を示す斜視図である。

【図17】座標検出装置内の回路構成を示すブロック図

【図18】位置指示器内の回路構成を示すブロック図で ある。

【図19】座標の求め方を説明するための図である。

【図20】本発明に係る光学式座標入力装置の第2実施 例を示す斜視図である。

光源

【符号の説明】

1,21

	2	CCDリニアセンサ
	3	画素列
	3 a	画素
	4, 24	パターン部材
	4 a	進光部
	5, 15	影
30	7	移動可能な区間
	8	信号処理装置
	22	リニアアレイ光センサ
	23	赤外線通過フィルタ
	25	シリンドリカルレンズ
	28	光線方向検出部
	28A, 28B	光線方向検出部
	31	移動可能な2次元平面
	32	CCDエリアセンサ
	33	受光面
40	34	パターン部材
	41,61	光学式座標入力装置
	42	座標検出装置
	43,62	位置指示器
	46	制御用受光部
	48	発光素子
	63	光線方向検出部

【図3】

21: 光原 22: リニアアレイ光センサ 23:赤外線通過フィルタ 24: パターン都材 25: シリンドリカルレンズ

【図11】

31:2次元平面 32:CCDエリアセンサ 33:受光面 34:パターン都材

【図10】

【図14】

【図15】

【図16】

28A,28B: 光線方向後出部 41: 光学式座標入力装置 42:座標檢出装置 43:位置指示器 44:入力面

45:光取入れ面 46:制御用受光部 48:発光系子

【図17】

【図19】

【図20】

61:光学式座標入力装置62:位置指示器 63:光梯方向検出部

【手続補正書】 【提出日】平成5年5月18日 【手続補正1】 【補正対象書類名】図面 【補正対象項目名】図14

【補正方法】変更 【補正内容】 【図14】

