

UNIVERSITATEA TRANSILVANIA DIN BRAŞOV

FACULTATEA DE INGINERIE ELECTRICĂ ȘI ȘTIINȚA CALCULATOARELOR

MEMORIU CALCULE ACȚIONAREA HIDRAULICĂ A ROBOȚILOR INDUSTRIALI

Autor: Student Andrei-Constantin BORICEAN Programul de studii: Robotică Grupa 4LF801A

> Coordonatori științifici: Prof. Dr. Ing. Ovidiu FILIP Prof. Dr. Ing. Tudor Ion DEACONESCU

Proiectarea 2D/3D a unui cilindru hidraulic

CUPRINS

Date de intrare	4
Calcule + date inițiale	5
1.Calculul puterii minime necesare acționării	5
2. Calculul diametrului tijei cilindrului	6
2.1 Calculul de dimensionare	6
2.2 Calculul de verificare la solicitarea de flambaj	7
Calculul diametrului pistonului cilindrului	8
4. Calculul debitelor de alimentare a cilindrului hidraulic	10
5. Calculul grosimii pereților cilindrului hidraulic	10
6. Calculul diametrului nominal al circuitelor de transport și al aparatelor hidraulice	11
7. Frânarea pistoanelor la capetele de cursă	13

Date de intrare

	Г					
Poziția de lucru		В				
lucru \hat{I} nclinată Unghiul de lucru [°] $I5$ Lungimea cursei s [cm] $2 \times (5 + n)$ Lungimea părții libere a cilindrului L [cm] $2 \times s + 8$ Lungimea de flambaj l_f [cm] $2 \times L$ $m = \max$ a ansamblului mobil [kg] $50 \times n$ $F_{I avans}$ [daN] $\mu \times m \times g \times cos\alpha + m \times g \times sin\alpha$ $F_{I retragere}$ $0.6 \times (\mu \times m \times g \times cos\alpha - m \times g \times sin\alpha)$ [daN] v_{avans} [m/min] $I0 \times (n + 1) / (4 \times n)$	Metodă de prindere					
lucru \hat{I} nclinată Unghiul de lucru [°] $I5$ Lungimea cursei s [cm] $2 \times (5 + n)$ Lungimea părții libere a cilindrului L [cm] $2 \times s + 8$ Lungimea de flambaj l_f [cm] $2 \times L$ $m = \max$ a ansamblului mobil [kg] $50 \times n$ $F_{I avans}$ [daN] $\mu \times m \times g \times cos\alpha + m \times g \times sin\alpha$ $F_{I retragere}$ $0.6 \times (\mu \times m \times g \times cos\alpha - m \times g \times sin\alpha)$ [daN] v_{avans} [m/min] $I0 \times (n + 1) / (4 \times n)$						
Unghiul de lucru [°] 15 Lungimea $ cursei s [cm] $ $2 \times (5 + n)$ Lungimea părții libere a cilindrului L [cm] $2 \times s + 8$ Lungimea de flambaj l_f [cm] $ 2 \times L$ $ m = masa ansamblului mobil [kg] 50 \times n F_{1 avans} [daN] \mu \times m \times g \times cos\alpha + m \times g \times sin\alpha F_{1 retragere} 0,6 \times (\mu \times m \times g \times cos\alpha - m \times g \times sin\alpha) [daN] v_{avans} [m/min] 10 \times (n+1)/(4 \times n) $	Poziția de	e				
lucru [°]15Lungimea cursei s [cm] $2 \times (5 + n)$ Lungimea părții libere a cilindrului L [cm] $2 \times s + 8$ Lungimea de flambaj l_f [cm] $2 \times L$ $m = masa ansamblului$ mobil [kg] $50 \times n$ $F_{1 avans}$ [daN] $\mu \times m \times g \times cosa + m \times g \times sina$ $F_{1 retragere}$ [daN] $0,6 \times (\mu \times m \times g \times cosa - m \times g \times sina)$ [daN] $10 \times (n+1)/(4 \times n)$	lucru	Inclinată				
Lungimea cursei s [cm] $2 \times (5 + n)$ Lungimea părții libere a cilindrului L [cm] $2 \times s + 8$ Lungimea de flambaj l_f [cm] $2 \times L$ $m = masa ansamblului$ $mobil [kg] 50 \times n F_{1 \text{ avans}} [daN] \mu \times m \times g \times \cos \alpha + m \times g \times \sin \alpha F_{1 \text{ retragere}} [daN] v_{avans} [m/min] 10 \times (n + 1) / (4 \times n)$	Unghiul de					
cursei s [cm] $2 \times (5 + n)$ Lungimea părții libere a cilindrului L $2 \times s + 8$ [cm] $2 \times s + 8$ Lungimea de flambaj l_f [cm] $2 \times L$ $m = masa ansamblului$ $50 \times n$ $F_{1 avans}$ [daN] $\mu \times m \times g \times cos\alpha + m \times g \times sin\alpha$ $F_{1 retragere}$ $0,6 \times (\mu \times m \times g \times cos\alpha - m \times g \times sin\alpha)$ [daN] ν_{avans} [m/min]	lucru [°]	15				
Lungimea părții libere a cilindrului L [cm] $2 \times s + 8$ Lungimea de flambaj l_f [cm] $2 \times L$ $m = masa ansamblului$ $mobil [kg]$ $50 \times n$ $F_{1 avans}$ [daN] $\mu \times m \times g \times cos\alpha + m \times g \times sin\alpha$ $F_{1 retragere}$ $0,6 \times (\mu \times m \times g \times cos\alpha - m \times g \times sin\alpha)$ [daN] v_{avans} [m/min] $10 \times (n + 1) / (4 \times n)$	Lungimea	2 (5)				
[cm] $2 \times s + 8$ Lungimea de $1 \times L$ m = masa ansamblului mobil [kg] $50 \times n$ $F_{1 avans} [daN] \qquad \mu \times m \times g \times cos\alpha + m \times g \times sin\alpha$ $F_{1 retragere} \qquad 0,6 \times (\mu \times m \times g \times cos\alpha - m \times g \times sin\alpha)$ [daN] $v_{avans} [m/min] \qquad 10 \times (n+1)/(4 \times n)$	cursei s [cm]	$2 \times (3 + n)$				
Lungimea de flambaj l_f [cm] $ 2 \times L $ $ m = \text{masa ansamblului} $ $ mobil [kg] $	Lungimea părții libere a cilindrului L					
flambaj l_f [cm] $m = \text{masa ansamblului}$ $mobil [kg]$ $50 \times n$ $F_{1 \text{ avans}}$ [daN] $F_{1 \text{ retragere}}$ $[daN]$ v_{avans} [m/min]	[cm]	$2 \times s + 8$				
flambaj l_f [cm] $m = \text{masa ansamblului}$ $mobil [kg]$ $50 \times n$ $F_{1 \text{ avans}}$ [daN] $F_{1 \text{ retragere}}$ $[daN]$ v_{avans} [m/min]	Lungimes de					
$m = masa ansamblului$ $50 \times n$ $F_{1 avans} [daN]$ $\mu \times m \times g \times cos\alpha + m \times g \times sin\alpha$ $F_{1 retragere}$ $0,6 \times (\mu \times m \times g \times cos\alpha - m \times g \times sin\alpha)$ $[daN]$ $10 \times (n+1)/(4 \times n)$		$2 \times L$				
mobil [kg] $50 \times n$ $F_{1 avans}$ [daN] $\mu \times m \times g \times cos\alpha + m \times g \times sin\alpha$ $F_{1 retragere}$ $0.6 \times (\mu \times m \times g \times cos\alpha - m \times g \times sin\alpha)$ [daN] $10 \times (n+1)/(4 \times n)$	·					
$F_{1 avans} [\text{daN}] \qquad \qquad \mu \times m \times g \times cos\alpha + m \times g \times sin\alpha$ $F_{1 retragere} \qquad \qquad 0,6 \times (\mu \times m \times g \times cos\alpha - m \times g \times sin\alpha)$ $[\text{daN}] \qquad \qquad 10 \times (n+1)/(4 \times n)$		50 × n				
$F_{1 retragere} \qquad \qquad 0,6 \times (\mu \times m \times g \times cos\alpha - m \times g \times sin\alpha)$ [daN] $v_{avans} [\text{m/min}] \qquad \qquad 10 \times (n+1)/(4 \times n)$	moon [kg]	30 × n				
[daN] $v_{avans} \text{ [m/min]} \qquad 10 \times (n+1)/(4 \times n)$	F _{1 avans} [daN]	$\mu \times m \times g \times cos\alpha + m \times g \times sin\alpha$				
v_{avans} [m/min] $10 \times (n+1)/(4 \times n)$	F ₁ retragere	$0.6 \times (\mu \times m \times g \times \cos\alpha - m \times g \times \sin\alpha)$				
	[daN]					
$v_{retragere}$ [m/min] $1.3 \times v_{avans}$	v _{avans} [m/min]	$10\times(n+1)/(4\times n)$				
	Vretragere [m/min]	$1.3 \times v_{avans}$				

Calcule + date inițiale

n = 2 (numărul din grupă) $\mu = 0.4$ $g = 9.81 [m/s^2]$ $\alpha = 15^{\circ}$ $s = 2 \times (5 + n) = 2 \times 7 = 14$ [cm] $L = 2 \times s + 8 = 2 \times 14 + 8 = 36$ [cm] $l_f = 2 \times L = 2 \times 36 = 72$ [cm] $m = 50 \times n = 50 \times 2 = 100$ [kg] $F_{1 \text{ avans}} = \mu \times m \times g \times \cos\alpha + m \times g \times \sin\alpha = 0.4 \times 100 \times 9.81 \times \cos15^{\circ} + 100 \times 9.81 \times \sin15^{\circ}$ $F_{1 \text{ avans}} = 632.93 \text{ [daN]}$ $F_{1 \text{ retragere}} = 0.6 \times (\mu \times m \times g \times \cos\alpha - m \times g \times \sin\alpha)$ $= 0.6 \times (0.4 \times 100 \times 9.81 \times \cos 15^{\circ} - 100 \times 9.81 \times \sin 15^{\circ})$ $F_{1 \text{ retragere}} = 75.08 \text{ [daN]}$ $v_{avans} = 10 \times (n + 1) / (4 \times n) = 10 \times (2 + 1)/(4 \times 2) = 3.75 \text{ [m/min]}$ $v_{retragere} = 1.3 \times v_{avans} = 1.3 \times 3.75 = 4.88 \text{ [m/min]}$

1.Calculul puterii minime necesare acționării

Se ia în considerare numai sarcina exterioară maximă pe direcția avansului (F_{avans} sau F_{retragere}) și viteza cu care trebuie să înainteze ansamblul mobil sub sarcină (v_{avans} sau v_{retragere}). Se numește *putere minimă* deoarece ia în considerare doar forța principală ce acționează asupra mecanismului.

$$P_{min} = max \left(\frac{F_{avans} \cdot v_{avans}}{6000}; \frac{F_{retragere} \cdot v_{retragere}}{6000} \right)$$
 [kW]

unde: $F \rightarrow [daN]$ și $v \rightarrow [m/min]$

$$P_{min} = \max\left(\frac{632.93 \cdot 3.75}{6000}; \frac{75.08 \cdot 4.88}{6000}\right) = \max(0.4; 0.06) = \frac{0.4}{6000}$$
 [kW]

P_{min} < 1 kW → acționare cu pompă cu debit constant

2. Calculul diametrului tijei cilindrului

2.1 Calculul de dimensionare

$$d = \sqrt{\frac{4 \cdot F_{avans}}{\pi \cdot \sigma_a}} \qquad [cm]$$

unde $F_{avans} \rightarrow [daN]$; $\sigma_a = tensiunea$ admisibilă la compresiune/tracțiune $\rightarrow [daN/cm^2]$.

Material	$\sigma_a [daN/cm^2]$	Material	$\sigma_a [daN/cm^2]$
OL60	1200	40Cr10	2105
OLC 45	1389	13CrNi35	2427
OLC 60	1578	41MoCr11	2000

$$d = \sqrt{\frac{4.632.93}{\pi \cdot 1389}} = 0.76 \text{ [cm]}$$

• Se adoptă apoi valoarea normalizată cea mai apropiată:

$$d_N > d$$

$$d_N = 10,\, 12,\, 16,\, 20,\, 25,\, 32,\, 40,\, 50,\, 63,\, 80,\, 100,\, 120 \ mm.$$

$$d_N = 10 \, [mm]$$

2.2 Calculul de verificare la solicitarea de flambaj

Relația forței critice de flambaj (relația lui Euler)

$$F_{cr} = \frac{\pi^2 \cdot E \cdot I_{min}}{l_f^2} \qquad [daN]$$

unde E = modulul de elasticitate al materialului tijei (Eotel = 2.1×106 daN/cm2); $I_{min} = momentul$ de inerție minim al tijei (cm⁴);

$$I_{\min} = \frac{\pi \cdot d_N^4}{64} \qquad [cm^4]$$

unde $d_N \rightarrow [cm];$

 l_f = lungimea de flambaj;

Verificare:

$$I_{min} = \frac{\pi \cdot 1^4}{64} = 0.049 \text{ [cm}^4\text{]}$$

$$F_{cr} = \frac{\pi^2 \cdot 2.1 \cdot 10^6 \cdot 0.049}{72^2} = 195.91 \text{ [daN]}$$

$$F_{cr} > F_{avans} \qquad 195.91 > 632.93 \text{ [daN] } \textcolor{red}{NU \text{ se verifică}}$$

Pentru $d_N = 12$ [mm]

$$I_{min} = \frac{\pi \cdot 1.2^4}{64} = 0.10 \text{ [cm}^4\text{]}$$

$$F_{cr} = \frac{\pi^2 \cdot 2.1 \cdot 10^6 \cdot 0.10}{72^2} = 399.81 \text{ [daN]}$$

$$F_{cr} > F_{avans} \qquad 399.81 > 632.93 \text{ [daN] } \textcolor{red}{NU \text{ se verifică}}$$

Pentru $d_N = 16$ [mm]

$$I_{min} = \frac{\pi \cdot 1.6^4}{64} = 0.32 \text{ [cm}^4\text{]}$$

$$F_{cr} = \frac{\pi^2 \cdot 2.1 \cdot 10^6 \cdot 0.32}{72^2} = 1279.39 \text{ [daN]}$$

$$F_{cr} > F_{avans}$$
 1279.39 > 632.93 [daN] Se verifică!

$$\frac{Fcr}{F_{avans}} \ge 3.5$$
 $\frac{1279.39}{632.93} = 2.02 \ge 3.5$ NU se verifică

Pentru $d_N = 20$ [mm]

$$I_{min} = \frac{\pi \cdot 2^4}{64} = 0.79 \text{ [cm}^4\text{]}$$

$$F_{cr} = \frac{\pi^2 \cdot 2.1 \cdot 10^6 \cdot 0.79}{72^2} = 3158.50 \text{ [daN]}$$

$$F_{cr} > F_{avans}$$
 3158.50 > 632.93 [daN] Se verifică!

$$\frac{Fcr}{F_{avans}} \ge 3.5$$
 $\frac{3158.50}{632.93} = 4.99 \ge 3.5$ Se verifică!

$$d_{N} = 20 [mm]$$

$$I_{min} = 0.79 \text{ [cm}^4\text{]}$$

$$F_{cr} = 3158.50 \text{ [daN]}$$

3. Calculul diametrului pistonului cilindrului

Deoarece forțele rezistente interioare din cilindru nu pot fi calculate cu exactitate, se ia în considerare numai rezistența exterioară (F_{avans}) și se adoptă o presiune preliminară pe piston conform tabelului:

Favans [daN]	p [bar]
100200	20
200500	35
5001000	50
10002000	100
20005000	120
>5000	150

$$D = \sqrt{\frac{4 \cdot F_{avans}}{\pi \cdot p}} \quad [cm]$$

unde $F_{avans} \rightarrow [daN]$; $p \rightarrow [bar]$.

D =
$$\sqrt{\frac{4.632.93}{\pi.50}}$$
 = 4.01 [cm]

• Se adoptă valoarea normalizată cea mai apropiată:

$$D_N > D$$

 $D_N = 25, 32, 40, 50, 63, 80, 100, 125, 160, 200, 250, 300 \text{ mm}.$

$$D_N = 50 [mm]$$

Rotunjirea mărimii diametrului pistonului la o valoare imediat superioară este recomandată din mai

multe motive:

- se asigură un plus de forță la tijă, care va compensa diferența dintre forțele perturbatoare reale și cele ipotetice, luate în calcul;
- elementele de etanșare standardizate au adesea dimensiuni radiale mari, ceea ce, în cazul unui piston cu diametru mic, ar conduce la imposibilitatea prelucrării locașelor de montare.
 - Se recalculează presiunea efectivă de lucru:

$$p_{ef} = \frac{4 \cdot F_{avans}}{\pi \cdot D_N^2 \cdot \eta_{mh}}$$
 [bar]

unde $F_{avans} \rightarrow [daN]; D_N \rightarrow [cm]; \eta_{mh}$ reprezintă randamentul mecano-hidraulic al motorului, acesta având valori cuprinse între 0.85 și 0.95.

$$\eta_{mh} = 0.9$$

$$p_{ef} = \frac{4.632.93}{\pi \cdot 5^2 \cdot 0.9} = 35.82 \text{ [bar]}$$

4. Calculul debitelor de alimentare a cilindrului hidraulic

$$Q_1 = \frac{1}{10} \cdot v_{avans} \cdot \frac{\pi \cdot D_N^2}{4 \cdot \eta_v}$$
 [l/min]

$$Q_2 = \frac{1}{10} \cdot v_{retragere} \cdot \frac{\pi \cdot (D_N^2 - d_N^2)}{4 \cdot \eta_v}$$
 [l/min]

unde $v_{avans, retragere} \rightarrow [m/min]; D_N \rightarrow [cm]; d_N \rightarrow [cm]; \eta_v reprezintă randamentul volumic, cu valori cuprinse între 0,82 și 0,89.$

$$\eta_{\rm v} = 0.85$$

$$Q_1 = \frac{1}{10} \cdot 3.75 \cdot \frac{\pi \cdot 5^2}{4 \cdot 0.85} = 8.66$$
 [l/min]

$$Q_2 = \frac{1}{10} \cdot 4.88 \cdot \frac{\pi \cdot (5^2 - 2^2)}{4 \cdot 0.85} = 9.47 \text{ [l/min]}$$

$$Q_{min} = min(8.66; 9.47) = 8.66 > 0.1$$
 Se verifică!

5. Calculul grosimii pereților cilindrului hidraulic

Cilindrul hidraulic poate fi considerat un tub cu diametrul interior DN, solicitat de o presiune interioară p. Tensiunea admisibilă suportată de cilindru este:

$$\sigma_a = \frac{\sigma_c}{c}$$

unde $\sigma_c \rightarrow$ limita de curgere a materialului cilindrului [daN/cm²]; (σ_c oțel = 2400 daN/cm²); c – un coeficient de siguranță (c = 2,5).

$$\sigma_a = \frac{2400}{2.5} = \frac{960}{960} [daN/cm^2]$$

• Pe baza teoriei tensiunilor tangențiale maxime, mărimea necesară a diametrului exterior al cilindrului (D_e) este:

$$D_e = D_N \cdot \sqrt{\frac{\sigma_a}{\sigma_a - 2 \cdot p}}$$
 [cm]

$$D_e = 5 \cdot \sqrt{\frac{960}{960 - 2 \cdot 35.82}} = 5.20$$
 [cm]

• Grosimea peretelui cilindrului va fi:

$$g = \frac{D_e - D_N}{2}$$
 [cm]

$$g = \frac{5.20 - 5}{2} = 0.1$$
 [cm]

Se recomandă utilizarea valorii de $0.4 \text{ [cm]} \rightarrow 4 \text{ [mm]}$ pentru grosimea peretelui cilindrului!

6. Calculul diametrului nominal al circuitelor de transport și al aparatelor hidraulice

• Diametrul critic al circuitelor de transport se calculează cu relația:

$$d_{cr} = 145.7 \cdot \sqrt{\frac{Q}{v_u}}$$
 [mm]

unde $Q = max(Q_1; Q_2) \rightarrow [l/min]; v_u = viteza maximă admisibilă de curgere a fluidului (uleiului) prin conducte <math>[mm/s]$

p [bar]	25	50	100	200	320
v _u [mm/s]	3000	4000	4700	5500	6000

$$Q = max(8.66; 9.47) = 9.47$$
 [l/min]

$$v_u = 4000 \text{ [mm/s]}$$

$$d_{cr} = 145.7 \cdot \sqrt{\frac{9.47}{4000}} = 7.09 \text{ [mm]}$$

După calcularea lui d_{cr} se adoptă o valoare normalizată D_{NSTAS} din şirul: 4, 6, 8, 10, 13, 16, 20 mm.

$$D_{NSTAS} = 8 \text{ [mm]} = 0.8 \text{ [cm]}$$

• După adoptarea noului diametru este necesar să se verifice viteza de curgere a uleiului prin conducte:

$$v_{u\,rec} = \frac{10 \cdot Q}{\frac{\pi \cdot D_{N\,STAS}^2}{4}}$$
 [m/min]

unde Q \rightarrow [1/min]; $D_{N \text{ STAS}} \rightarrow$ [cm].

$$v_{u \, rec} = \frac{10.9.47}{\frac{\pi \cdot 0.8^2}{4}} = 188.4 \, [\text{m/min}]$$

$$v_{u rec} = 3140 \text{ [mm/s]} < v_u = 4000 \text{ [mm/s]}$$
 Se verifică!

• Determinarea regimului de curgere a uleiului presupune calcularea numărului lui Reynolds:

$$R_e = \frac{v_{u \, rec} \cdot D_{N \, STAS}}{v}$$

$$\text{unde } v_{u \text{ rec}} \rightarrow [\text{cm/s}]; \, D_{N \text{ STAS}} \rightarrow [\text{cm}]; \, \upsilon \rightarrow [\text{cm}^2/\text{s}].$$

Vâscozitatea cinematică a uleiului hidraulic este $v = 0.4 \text{ [cm}^2/\text{s]}$

$$R_e = \frac{314 \cdot 0.8}{0.4} = 628$$

 $R_e < R_{e\,cr} \rightarrow 628 \le 2300 \rightarrow regimul\ de\ curgere\ este laminar$

7. Frânarea pistoanelor la capetele de cursă

Energia care trebuie să fie absorbită de sistemele de frânare ale cilindrilor hidraulici se calculează cu ajutorul relațiilor următoare:

• Pentru mișcarea pe direcție înclinată:

-Avans:
$$E = \frac{m \cdot v^2}{2} - m \cdot g \cdot l_{fr} \cdot sin\alpha$$
 [J]

-Retragere:
$$E = \frac{m \cdot v^2}{2} + m \cdot g \cdot l_{fr} \cdot sin\alpha$$
 [J]

Notațiile au următoarele semnificații: m = masa ansamblului mobil (kg), v = viteza de deplasare (m/s); g = accelerația gravitațională ($g = 9,81 \text{ m/s}^2$); $l_{fr} = \text{lungimea}$ de frânare (lungimea bucșei de frânare) (m).

Diametru piston [mm]	25	32	40	50	63	80	100	125	160	200
	2	0	31			33			3	8
v _{max} [m/s]	0,5		0,4 0,3		0,25					

$$v_{avans} = 0.06 [m/s]$$

$$v_{retragere} = 0.08 [m/s]$$

$$l_{fr} = 0.033$$
 [m]

Avans:
$$E = \frac{100 \cdot 0.06^2}{2} - 100 \cdot 9.81 \cdot 0.033 \cdot sin15 = -8.2 [J]$$

Retragere:
$$E = \frac{100 \cdot 0.08^2}{2} + 100 \cdot 9.81 \cdot 0.033 \cdot sin15 = 8.7$$
 [J]

v < v_{max} → Recalculare energie absorbită

$$E_{absorbita} = E_{calculata} \cdot \frac{v}{v_{max}}$$

Avans: $E_{absorbita} = -8.2 \cdot \frac{0.06}{0.5} = -0.99 \text{ [J]}$

Retragere: $E_{absorbita} = 8.7 \cdot \frac{0.08}{0.5} = 1.39 \text{ [J]}$