Detection of sentence modality on French automatic speech-to-text transcriptions

Luiza Orosanu, Denis Jouvet

INRIA-Loria, Nancy, France Multispeech Team

- Context
- 2 Approach
- 3 Experiments
- 4 Conclusions and future work

Context

Objective: state from the automatic transcription if the sentence is a question or a statement

Context

Two types of questions

- expressed with interrogative forms
 - * qu'est ce qu'on doit comprendre ?
 - * est ce que vous souhaitez une confrontation ?
 - * quelles sont les grandes annonces hein à attendre ?
- perceived as questions only through the intonation

Context

- study several approaches
 - * prosodic classifier: uses intonation
 - * linguistic classifier: uses the linguistic information
 - * combined classifier: uses both types of information

- Context
- 2 Approach
- 3 Experiments
- 4 Conclusions and future work

Prosodic features (#10)

- generally, a question has a final rising pitch
- we compute 10 prosodic features that take into account
 - * the duration
 - * the energy
 - * the pitch

of the last prosodic group of the sentence

Prosodic features (#10)

Features vector

class	{0=statement; 1=question}		
	VNDurNorm	= the duration of the last syllable (normalized)	
S _S	VNLogENorm	= the logarithm of the energy of the last syllable (normalized)	
Prosodic Features	VNF0Delta	$= \mbox{ the F0 difference between the last syllable and the first} \\ \mbox{ syllable}$	
.i	VNF0Slope	= the F0 slope on the last syllable	
pos	VNF0SlopeT2	= VNF0Slope * VNDurNorm ²	
Pro	globalSlopeSlope	= the F0 slope on the longest ending F0 slope	
	globalSlopeLength	= the length of the longest ending F0 slope	
	globalSlopeDelta	 the F0 difference between the beginning and the end of the longest ending F0 slope 	
	globalSlopeSlopeT2	= globalSlopeSlope * globalSlopeLength ²	
	lastF0Level	= the last F0 level (normalized by speaker)	

Linguistic features (#3)

- iP: the interrogative patterns
 - ightarrow indicate the presence or absence of an interrogative pattern in a phrase
 - * quel
 - * quelle
 - * quels
 - * quellles
 - * comment
 - * combien

- * pourquoi
- * est ce que
- * est ce qu'
- * qu' est ce
- * qu' est ce que
- * qu' est ce qu'

Linguistic features (#3)

- the probability of the sentence being a question
 - * with respect to two reference language models

$$LLR(sentence) = Log\left(\frac{P(sentence|LM-question)}{P(sentence|LM-statement)}\right)$$

- * LLR \geq 0 \rightarrow likely to be a question
- \ast LLR < 0 \rightarrow likely to be a statement

| we apply the lexical language models on the sequence of words

| synLLR | we apply the syntactic language models on the sequence of POS tags

Combined linguistic-prosodic features (3L-10P)

Features vector

class	{0=statement; 1=question}		
	lexLLR	= the lexical log-likelihood ratio	
31	synLLR	= the syntactic log-likelihood ratio	
	iP	= presence or absence of interrogative pattern	
	VNDurNorm	= the duration of the last syllable (normalized)	
	VNLogENorm	= the logarithm of the energy of the last syllable (normalized)	
	VNF0Delta	= the F0 difference between the last syllable and the first syllable	
10P	VNF0Slope	= the F0 slope on the last syllable	
	VNF0SlopeT2	= VNF0Slope * VNDurNorm ²	
	globalSlopeSlope	= the F0 slope on the longest ending F0 slope	
	globalSlopeLength	= the length of the longest ending F0 slope	
	globalSlopeDelta	= the F0 difference between the beginning and the end of the longest ending F0 slope	
	globalSlopeSlopeT2	= globalSlopeSlope * globalSlopeLength ²	
	lastF0Level	= the last F0 level (normalized by speaker)	

- Context
- 2 Approach
- 3 Experiments
 - Setups for experiments
 - Results
- 4 Conclusions and future work

- Context
- 2 Approach
- 3 Experiments
 - Setups for experiments
 - Results
- 4 Conclusions and future work

Data for LM training

Textual corpus GigaWord

- extraction of statements : sentences ending with a '.' [#16M]
- extraction of questions : sentences ending with a '?' [#89K]

word sequences

question	à quel moment le raid a décidé d'intervenir?
statement	nous sommes ensemble pour 60 minutes.

the lexical language models of questions and statements

part-of-speech (POS) sequence

question	PRP PRO: REL NOM DET: ART NOM VER: pres VER: pper PRP VER: infi
statement	PRO: PER VER: pres ADV PRP NUM NOM

the syntactic language models of questions and statements

Data for training and evaluating the classifiers

- Audio corpus: Ester, Etape, Epac
 - * training set : 300h of speech (manually transcribed)
 - evaluation set : 22h of speech (manually transcribed)
 - Ester&Epac: French broadcast news, collected from radio channels (prepared speech, plus interviews)
 - Etape: debates collected from various French radio and TV channels (spontaneous speech)
- Data sets of questions and statements
 - → sentences ending with a '?', respectively with a '.'

	#questions	#affirmations
training	10.0K	10.0K
evaluation	0.8K	7.0K

Question / Statement classification

4 classifiers

- * LR (logistic regression)
- * J48 (decision tree)
- * JRip (decision rules)
- * MLP (multi-layer perceptron)

evaluate classifier using

- * features extracted from manual transcriptions
 - \rightarrow ideal conditions 0% word error rate
- * features extracted from automatic transcriptions
 - \rightarrow real conditions 26% word error rate

performance

$$\frac{1}{H} = \frac{1}{2} * \left(\frac{1}{\text{ccQuestions}} + \frac{1}{\text{ccStatements}} \right)$$

 ${\it ccQuestions} = {\it percentage} \ {\it of} \ {\it correctly} \ {\it classified} \ {\it questions}$ ${\it ccStatements} = {\it percentage} \ {\it of} \ {\it correctly} \ {\it classified} \ {\it statements}$

- Context
- 2 Approach
- 3 Experiments
 - Setups for experiments
 - Results
- 4 Conclusions and future work

Results on manual transcriptions

Analysis of the average classifier's performance when applied on manual transcriptions

- \Rightarrow the linguistic classifiers outperform the prosodic classifiers
- \Rightarrow the combination of linguistic and prosodic features does not provide any significant improvement on manual transcripts

Results on automatic transcriptions

Analysis of the average classifier's performance when applied on automatic transcriptions

- ⇒ the linguistic classifiers outperform the prosodic classifiers
- \Rightarrow 3% performance loss between the manual and the automatic transcriptions
- \Rightarrow the combination of linguistic and prosodic features provides a slight improvement on automatic transcription

Best results on manual and automatic transcriptions

 Confusion matrix between questions and statements obtained on manual transcriptions (MLP, H=75.05%)

	number	classified as	classified as
		question	statement
question	831	603	228
statement	7005	1559	5446

ccQuestions=72.56% ccStatements=77.74%

 Confusion matrix between questions and statements obtained on automatic transcriptions (MLP, H=73.50%)

	number	classified as question	classified as statement
question	831	611	220
statement	7005	1863	5142

ccQuestions=73.60% ccStatements=73.41%

Impact of different feature combinations

Analysis of the average performance obtained with the MLP classifier when using different feature combinations on automatic and manual transcriptions

- ⇒ the most important linguistic feature is the lexical log-likelihood ratio (lexLLR)
- \Rightarrow the best results are obtained when combining all features

Assess the performance loss when the sentence boundaries are not perfect

- → change the predefined sentence boundaries
 - * by shifting each boundary (left and right) with a random value of $\{-300, -200, -100, +100, +200, +300\}$ ms
 - * by shifting each boundary (left and right) with a random value of $\{-1000, -800, -600, -400, -200, +200, +400, +600, +800, +1000\}$ ms
 - * by finding the longest silence-enclosed sentence

Reference sentence:

"que fallait -il faire" [947090,948370]

946230	946290	++micro++	60 [ms]
946300	946350	à	50 [ms]
946360	946660	travers	300 [ms]
946670	946760	le	90 [ms]
946770	947020	monde	250 [ms]
947030	947160	<sil></sil>	130 [ms]
947230	947450	++resp++	220 [ms]
947460	947650	que	190 [ms]
947660	947920	fallait	260 [ms]
947930	948080	-il	150 [ms]
948090	948350	faire	260 [ms]
948360	948390	eh	30 [ms]
948400	948530	bien	130 [ms]
948540	948670	il	130 [ms]
948680	948870	fallait	190 [ms]
948880	949310	choisir	430 [ms]
949320	949400	++rire++	80 [ms]

Modified borders \pm 300ms: [+200,+300ms]

"que fallait -il faire eh bien il" [947290,948670]

946230	946290	++micro++	60 [ms]
946300	946350	à	50 [ms]
946360	946660	travers	300 [ms]
946670	946760	le	90 [ms]
946770	947020	monde	250 [ms]
947030	947160	<sil></sil>	130 [ms]
947230	947450	++resp++	220 [ms]
947460	947650	que	190 [ms]
947660	947920	fallait	260 [ms]
947930	948080	-il	150 [ms]
948090	948350	faire	260 [ms]
948360	948390	eh	30 [ms]
948400	948530	bien	130 [ms]
948540	948670	il	130 [ms]
948680	948870	fallait	190 [ms]
948880	949310	choisir	430 [ms]
949320	949400	++rire++	80 [ms]

Modified borders \pm 1000ms: [-400ms,-600ms] "le monde que fallait" [946690,947770]

946230	946290	++micro++	60 [ms]
946300	946350	à	50 [ms]
946360	946660	travers	300 [ms]
946670	946760	le	90 [ms]
946770	947020	monde	250 [ms]
947030	947160	<sil></sil>	130 [ms]
947230	947450	++resp++	220 [ms]
947460	947650	que	190 [ms]
947660	947920	fallait	260 [ms]
947930	948080	-il	150 [ms]
948090	948350	faire	260 [ms]
948360	948390	eh	30 [ms]
948400	948530	bien	130 [ms]
948540	948670	il	130 [ms]
948680	948870	fallait	190 [ms]
948880	949310	choisir	430 [ms]
949320	949400	++rire++	80 [ms]

Modified borders: the longest silence-enclosed sentence "que fallait -il faire eh bien il fallait choisir" [947460,949310]

946230	946290	micro	60 [ms]
		++micro++	
946300	946350	à	50 [ms]
946360	946660	travers	300 [ms]
946670	946760	le	90 [ms]
946770	947020	monde	250 [ms]
947030	947160	<sil></sil>	130 [ms]
947230	947450	++resp $++$	220 [ms]
947460	947650	que	190 [ms]
947660	947920	fallait	260 [ms]
947930	948080	-il	150 [ms]
948090	948350	faire	260 [ms]
948360	948390	eh	30 [ms]
948400	948530	bien	130 [ms]
948540	948670	il	130 [ms]
948680	948870	fallait	190 [ms]
948880	949310	choisir	430 [ms]
949320	949400	++rire++	80 [ms]

Analysis of the average performance obtained with the MLP classifier on automatic transcriptions when modifying the predefined boundaries

 \Rightarrow even if an automatic segmentation module wrongly assigns the sentence boundaries, our classifier still manages to correctly classify the question/statements entries between 69% and 72%

- Context
- 2 Approach
- 3 Experiments
- 4 Conclusions and future work

Conclusions and future work

Conclusions

- * the prosodic classifier gives poor classification results
- the linguistic classifier provides by far better results
 (72% on ASR transcripts, 74% on manual transcripts)
- the combination of prosodic and linguistic features provides a slight improvement when applied on automatic transcriptions
- * all 13 features are useful in detecting questions and statements
- * even if an automatic segmentation module wrongly assigns the sentence boundaries, our classifier still manages to correctly classify the question/statements entries between 69% and 72%

Investigate further

* the use of confidence measures inside the classifier

Thank you for your attention!