Friday, January 10, 2025 8:59 AM

Therem: The maps 40, 40 are isomorphisms of wings.

c" = 2" (511... 5") & H, (Cha), w = 6 (f , ... f) = H (((p)) ; 2/2) Shipel-Whitney obsses

Proof of lemma: Za acto by permutetion on monomials.

R[z],... za) a fee f-module on $E_{z_1,...,z_n}^{\ell_1} = \sigma(\ell_1,...\ell_n)$ all permulation

(enny diagram (ly ... ly) la hoxes

Understanding product of Young degrams (excognagle's ordering:
symmetwrition of monouncide (liz: > la) > (m, 2... > m.)

well brearly ordered commutative mount by > my (+ coordinate - wise)

We have an incuaring filitation on symmetric polynomials F, = < all ymmetited monomiel conceptules

To Young disposer ye < >> Hours digun to Vous disposer on Ex

 $F_{\lambda_1} \cdot F_{\lambda_2} \subseteq F_{\lambda_1 + \lambda_2}$

Associated gooded object with copied to this filtration: $\sigma(l_1,...l_n) \cdot \sigma(m_1,...m_n) = \sigma(l_1+m_1,...l_n+m_n)$ In the actual R[7,...7.] In these are towns in lower fibbetions.

The ascociated gooded object is easily seen to be a polynomial viry R[x₁,..., y_n]

The poses of x; is li-li-1.

A polynomical R-algebra is a free committation R-algebra.

So if an associated gooded object of an R-algebra A is polynomial, R[x₁,..., x_n]

Then so is A.

R[x₁,..., x_n]

Ay upo matative brusomy plan of committative R-algebras, followed, induces = on associated gooded.

brading well-ordered. By (transfinite) induction, =.

New Section 1 Page 4

let us docur a proof of the Theorem. We give a cut-humpont
of BU(m). Describing the open cells:
of BU(m). Describing the open cells: V C C n-dim nector whopen.
how vectored by convention) Base change = vou operations. History
Base change = vou opocations. mx as mutix (each use
Reduced some edular form. (By convention, #0 entires)
PREF Child owns our arbitrary & C
pholed areas our arbitrary EC
{ all $V \in C^{\otimes 00}$ den $V = n$ with given RREF all choice of photological subvertibilities.
wheel
Z (N for Some N
of IN for some N A a a topologial pass ceren-dimensional Encloser was