§2.6 矩阵的初等变换

数学系 梁卓滨

2017 - 2018 学年 I

初等行变换

初等行变换

- 交换第 *i* 行和第 *j* 行:
- 第 i 行乘以 k 倍 (k ≠ 0):
- 第 i 行加上第 j 行的 l 倍:

初等行变换

- 交换第 i 行和第 j 行:
- 第 i 行乘以 k 倍 (k≠0):
- 第 i 行加上第 j 行的 l 倍:

- 交换第 i 列和第 j 列:
- 第 i 列乘以 k 倍 (k≠0):
- 第 i 列加上第 j 列的 l 倍:

初等行变换

- 交换第i行和第j行: $r_i \leftrightarrow r_j$
- 第 i 行乘以 k 倍 (k≠0):
- 第 i 行加上第 j 行的 l 倍:

- 交换第 i 列和第 j 列:
- 第 i 列乘以 k 倍 (k ≠ 0):
- 第 i 列加上第 i 列的 l 倍:

初等行变换

- 交换第 i 行和第 j 行: r_i ↔ r_j
- 第 i 行乘以 k 倍 (k ≠ 0): k × r_i
- 第 i 行加上第 j 行的 l 倍:

- 交换第 i 列和第 j 列:
- 第 i 列乘以 k 倍 (k ≠ 0):
- 第 i 列加上第 i 列的 l 倍:

初等行变换

- 交换第 i 行和第 j 行: r_i ↔ r_j
- 第 i 行乘以 k 倍 (k ≠ 0): k × r_i
- 第 i 行加上第 j 行的 l 倍: $r_i + lr_j$

- 交换第 i 列和第 j 列:
- 第 i 列乘以 k 倍 (k ≠ 0):
- 第 i 列加上第 j 列的 l 倍:

初等行变换

- 交换第 i 行和第 j 行: r_i ↔ r_j
- 第 i 行乘以 k 倍 (k ≠ 0): k × r_i
- 第 i 行加上第 j 行的 l 倍: $r_i + lr_j$

- 交换第 i 列和第 j 列: C_i ↔ C_j
- 第 i 列乘以 k 倍 (k ≠ 0):
- 第 *i* 列加上第 *i* 列的 *l* 倍:

初等行变换

- 交换第 i 行和第 j 行: r_i ↔ r_j
- 第 i 行乘以 k 倍 (k ≠ 0): k × r_i
- 第 i 行加上第 j 行的 l 倍: $r_i + lr_j$

- 交换第 i 列和第 j 列: C_i ↔ C_j
- 第 i 列乘以 k 倍 (k ≠ 0): k × c_i
- 第 i 列加上第 j 列的 l 倍:

初等行变换

- 交换第 i 行和第 j 行: r_i ↔ r_j
- 第 i 行乘以 k 倍 (k ≠ 0): k × r_i
- 第 i 行加上第 j 行的 l 倍: $r_i + lr_j$

- 交换第 i 列和第 j 列: $C_i \leftrightarrow C_j$
- 第 i 列乘以 k 倍 (k ≠ 0): k × c_i
- 第 i 列加上第 j 列的 l 倍: c_i + lc_j

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$

$$c_2-c_3$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

注 变换前后是两个不同的矩阵. 故用 " \rightarrow ". 而不用 "="。

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

注 变换前后是两个不同的矩阵,故用 "→",而不用 "="。区别行列式的变换:

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

注 变换前后是两个不同的矩阵,故用 "→",而不用 "="。区别行列式的变换:

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

注 变换前后是两个不同的矩阵,故用 "→",而不用 "="。区别行列式 的变换:

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

注 变换前后是两个不同的矩阵,故用 "→",而不用 "="。区别行列式 的变换:

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_2 - 3r_1}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

注 变换前后是两个不同的矩阵,故用 "→",而不用 "="。区别行列式的变换:

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_2 - 3r_1} - \begin{vmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{vmatrix}$$

$$\begin{pmatrix}
3 & 0 & 1 \\
1 & -1 & 2 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & -1 & 2 \\
3 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_2 - 3r_1}
\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -5 \\
0 & 1 & 1
\end{pmatrix}$$

$$\xrightarrow{c_2 - c_3}
\begin{pmatrix}
1 & -3 & 2 \\
0 & 8 & -5 \\
0 & 0 & 1
\end{pmatrix}$$

注 变换前后是两个不同的矩阵,故用 "→",而不用 "="。区别行列式的变换:

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_2 - 3r_1} - \begin{vmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{vmatrix}$$

$$c_2 - c_3$$

$$\begin{pmatrix}
3 & 0 & 1 \\
1 & -1 & 2 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & -1 & 2 \\
3 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix}
\xrightarrow{r_2 - 3r_1}
\begin{pmatrix}
1 & -1 & 2 \\
0 & 3 & -5 \\
0 & 1 & 1
\end{pmatrix}$$

$$\xrightarrow{c_2 - c_3}
\begin{pmatrix}
1 & -3 & 2 \\
0 & 8 & -5 \\
0 & 0 & 1
\end{pmatrix}$$

注 变换前后是两个不同的矩阵,故用 "→",而不用 "="。区别行列式 的变换:

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_1 \leftrightarrow r_2} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{r_2 - 3r_1} - \begin{vmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{vmatrix}$$

$$\xrightarrow{c_2 - c_3} - \begin{vmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{vmatrix}$$

$$\begin{pmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \xrightarrow{r_2 - 3r_1} \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{pmatrix}$$
$$\xrightarrow{c_2 - c_3} \begin{pmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{pmatrix}$$

注 变换前后是两个不同的矩阵,故用 "→",而不用 "="。区别行列式 的变换:

$$\begin{vmatrix} 3 & 0 & 1 \\ 1 & -1 & 2 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{\underline{r_1 \leftrightarrow r_2}} - \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} \xrightarrow{\underline{r_2 - 3r_1}} - \begin{vmatrix} 1 & -1 & 2 \\ 0 & 3 & -5 \\ 0 & 1 & 1 \end{vmatrix}$$

$$\frac{\underline{c_2 - c_3}}{-1} - \begin{vmatrix} 1 & -3 & 2 \\ 0 & 8 & -5 \\ 0 & 0 & 1 \end{vmatrix} = -8$$

矩阵的初等变换

定义 对单位矩阵 I 施以一次初等变换得到的矩阵, 称为初等矩阵。

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对I 施以第一种初等行变换($r_i \leftrightarrow r_j$)得到的矩阵:

定义 对单位矩阵 I 施以一次初等变换得到的矩阵, 称为初等矩阵。

• 对I 施以第一种初等行变换($r_i \leftrightarrow r_j$)得到的矩阵:

定义 对单位矩阵 I 施以一次初等变换得到的矩阵, 称为初等矩阵。

• 对I 施以第一种初等行变换($r_i \leftrightarrow r_j$)得到的矩阵:

初等矩阵।

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对I 施以第一种初等行变换($r_i \leftrightarrow r_j$)得到的矩阵:

注 I(ij) 也是对 I 施以第一种初等列变换($C_i \leftrightarrow C_j$)得到的矩阵。

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对I 施以第二种初等行变换($k \times r_i$)得到的矩阵:

$$\begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 1 & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix} i \vec{\uparrow} \xrightarrow{k \times r_i} (k \neq 0)$$

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对I施以第二种初等行变换($k \times r_i$)得到的矩阵:

$$\begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 1 & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix} i \vec{\uparrow} \xrightarrow{k \times r_i} \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & k & \\ & & & 1 & \\ & & & \ddots & \\ & & & 1 \end{pmatrix} i \vec{\uparrow} \vec{\uparrow}$$

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对I 施以第二种初等行变换($k \times r_i$)得到的矩阵:

$$\begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 1 & \\ & & & \ddots & \\ & & & & \ddots & \\ \end{pmatrix} i \not\uparrow \overline{\uparrow} \xrightarrow{k \times r_i} \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & & 1 & & \\ & & & k & & \\ & & & 1 & & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix} i \not\uparrow \overline{\uparrow} =: I(i(k))$$

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对I 施以第二种初等行变换($k \times r_i$)得到的矩阵:

$$\begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 1 & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix} i \not\uparrow_{\overline{1}} \xrightarrow{k \times r_i} \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 1 & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix} i \not\uparrow_{\overline{1}} =: I(i(k))$$

注 I(i(k)) 也是对 I 施以第二种初等列变换 $(k \times c_i)$ 得到的矩阵。

初等矩阵Ⅲ

定义 对单位矩阵 I 施以一次初等变换得到的矩阵, 称为初等矩阵。

• 对I 施以第三种初等行变换 ($r_i + lr_i$) 得到的矩阵:

初等矩阵Ⅲ

定义 对单位矩阵 I 施以一次初等变换得到的矩阵, 称为初等矩阵。

• 对I 施以第三种初等行变换($r_i + lr_i$)得到的矩阵:

初等矩阵Ⅲ

定义 对单位矩阵 I 施以一次初等变换得到的矩阵, 称为初等矩阵。

• 对I 施以第三种初等行变换($r_i + lr_i$)得到的矩阵:

初等矩阵Ⅲ

定义 对单位矩阵 I 施以一次初等变换得到的矩阵,称为初等矩阵。

• 对I 施以第三种初等行变换($r_i + lr_i$)得到的矩阵:

注 I(ij(l)) 也是对 I 施以第三种初等列变换($c_i + lc_i$)得到的矩阵。

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\begin{matrix} r_1 \leftrightarrow r_2 \\ \vec{\otimes} c_1 \leftrightarrow c_2 \end{matrix}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\xrightarrow{\vec{x}_1 \leftrightarrow c_2}
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{k \times r_2}
\begin{pmatrix}
1 & 0 & 0 \\
0 & k & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\xrightarrow{\vec{y}_{C_1} \leftrightarrow C_2}
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{k \times r_2}
\begin{pmatrix}
1 & 0 & 0 \\
0 & k & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\xrightarrow{\vec{y}_{c_1} \leftrightarrow c_2}
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{k \times r_2}
\begin{pmatrix}
1 & 0 & 0 \\
0 & k & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 + lr_3}
\begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\xrightarrow{\vec{\mathfrak{g}} c_1 \leftrightarrow c_2}
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{k \times r_2}
\begin{pmatrix}
1 & 0 & 0 \\
0 & k & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{\vec{\mathfrak{g}} c_3 + lc_1}
\begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} = I(12)$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \xrightarrow{k \times r_2} \begin{pmatrix}
1 & 0 & 0 \\
0 & k & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \xrightarrow{\vec{r}_1 + lr_3} \begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\vec{g}_{C_3 + lC_1} \xrightarrow{\vec{g}_{C_3 + lC_1}} \begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} = I(12)$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \xrightarrow{k \times r_2} \begin{pmatrix}
1 & 0 & 0 \\
0 & k & 0 \\
0 & 0 & 1
\end{pmatrix} = I(2(k))$$

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \xrightarrow{\vec{r}_1 + lr_3} \begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\vec{g}_{C_3} + lc_1 \qquad \begin{pmatrix}
1 & 0 & l \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(12)$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{k \times r_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(2(k))$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\vec{r}_1 + lr_3} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(13(l))$$

$$\vec{g}_{C_3 + lC_1} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I(13(l))$$

设
$$A = (a_{ij})_{3\times 3}$$
,计算以下矩阵的乘积:

• I(12)A

• I(2(k))A

•
$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

•
$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

•
$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ & & & \end{pmatrix}$$

•
$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \end{pmatrix}$$

•
$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

I(2(k))A

•
$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $r_1 \leftrightarrow r_2$

•
$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $r_1 \leftrightarrow r_2$

•
$$I(2(k))A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

•
$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $r_1 \leftrightarrow r_2$

•
$$I(2(k))A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{22} & a_{23} \\ a_{23} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{22} & a_{23} \\ a_{23} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{22} & a_{23} \\ a_{23} & a_{23} \\ a_{22} & a_{23} \\ a_{23} & a_{23} \\ a_{23} & a_{23} \\ a_{24} & a_{24} \\ a_{24} & a_{25} \\ a_{25} & a_{25} \\ a$$

•
$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $r_1 \leftrightarrow r_2$

•
$$I(2(k))A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ & & & \end{pmatrix}$$

•
$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $r_1 \leftrightarrow r_2$

•
$$I(2(k))A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \end{pmatrix}$$

•
$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $r_1 \leftrightarrow r_2$

•
$$I(2(k))A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

•
$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $r_1 \leftrightarrow r_2$

•
$$I(2(k))A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 结果将 A 作变换 $k \times r_2$

果将 A 作变换 k × r₂

•
$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $r_1 \leftrightarrow r_2$

•
$$I(2(k))A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

•
$$I(13(l))A = \begin{pmatrix} 10 & l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11}a_{12}a_{13} \\ a_{21}a_{22}a_{23} \\ a_{31}a_{32}a_{33} \end{pmatrix}$$

•
$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $r_1 \leftrightarrow r_2$

•
$$I(13(l))A = \begin{pmatrix} 10 & l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11}a_{12}a_{13} \\ a_{21}a_{22}a_{23} \\ a_{31}a_{32}a_{33} \end{pmatrix} = \begin{pmatrix} 10 & l \\ 010 \\ 001 \end{pmatrix}$$

•
$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 结果将 A 作变换 $r_1 \leftrightarrow r_2$

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & 0 & 0 \end{pmatrix}$

•
$$I(2(k))A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= 3 \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= 3 \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= 3 \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= 3 \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= 3 \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= 3 \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= 3 \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

•
$$I(13(l))A = \begin{pmatrix} 10 \ l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11}a_{12}a_{13} \\ a_{21}a_{22}a_{23} \\ a_{31}a_{32}a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} + la_{31}a_{12} + la_{32}a_{13} + la_{33} \\ a_{11}a_{12} + la_{22}a_{13} + la_{23}a_{13} \end{pmatrix}$$

•
$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 结果将 A 作变换 $r_1 \leftrightarrow r_2$

 $(1 \ 0 \ 0)(q_1, q_2, q_3) (q_1, q_2, q_3)$

•
$$I(2(k))A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= \langle a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= \langle a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= \langle a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$= \langle a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

•
$$I(13(l))A = \begin{pmatrix} 10 \ l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11}a_{12}a_{13} \\ a_{21}a_{22}a_{23} \\ a_{31}a_{32}a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} + la_{31}a_{12} + la_{32}a_{13} + la_{33} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$

•
$$I(12)A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $r_1 \leftrightarrow r_2$

•
$$I(13(l))A = \begin{pmatrix} 10 \ l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11}a_{12}a_{13} \\ a_{21}a_{22}a_{23} \\ a_{31}a_{32}a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} + la_{31}a_{12} + la_{32}a_{13} + la_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

•
$$I(2(k))A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
 结果将 A 作变换 $k \times r_2$

•
$$I(13(l))A = \begin{pmatrix} 10 \ l \\ 010 \\ 001 \end{pmatrix} \begin{pmatrix} a_{11}a_{12}a_{13} \\ a_{21}a_{22}a_{23} \\ a_{31}a_{32}a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} + la_{31}a_{12} + la_{32}a_{13} + la_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$43 + la_{31}a_{32}a_{33} + la_{32}a_{33} + la_{32}a_{33} + la_{33}a_{32}a_{33} + la_{33}a_{33}a_{33} + la_{33}a_{32}a_{33} + la_{33}a_{33}a_{33} + la_{33}a_{3$$

设
$$A = (a_{ij})_{3\times 3}$$
,计算以下矩阵的乘积:

AI(12)

 \bullet AI(2(k))

AI(31(l))

$$\bullet \ AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

AI(31(l))

$$\bullet \ AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\bullet \ AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} \\ a_{22} \\ a_{32} \end{pmatrix}$$

$$\bullet \ AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} \\ a_{22} & a_{21} \\ a_{32} & a_{31} \end{pmatrix}$$

$$\bullet \ AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

$$\bullet \ AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $c_1 \longleftrightarrow c_2$

AI(2(k))

$$\bullet \ AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $c_1 \leftrightarrow c_2$

$$\bullet \ AI(2(k)) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• AI(31(l))

$$\bullet \ AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $c_1 \longleftrightarrow c_2$

$$\bullet \ AI(2(k)) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\bullet \ AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $c_1 \longleftrightarrow c_2$

$$\bullet \ AI(2(k)) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix}$$

$$\bullet \ AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $c_1 \longleftrightarrow c_2$

$$\bullet \ AI(2(k)) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & ka_{12} \\ a_{21} & ka_{22} \\ a_{31} & ka_{32} \end{pmatrix}$$

$$\bullet \ AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $c_1 \longleftrightarrow c_2$

$$\bullet \ AI(2(k)) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & ka_{12} & a_{13} \\ a_{21} & ka_{22} & a_{23} \\ a_{31} & ka_{32} & a_{33} \end{pmatrix}$$

$$\bullet \ AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

 $\bullet AI(2(k)) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & ka_{12} & a_{13} \\ a_{21} & ka_{22} & a_{23} \\ a_{31} & ka_{32} & a_{33} \end{pmatrix}$

•
$$AI(2(k)) = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{21} & ka_{22} & a_{23} \\ a_{31} & ka_{32} & a_{33} \end{pmatrix}$$

$$43 + ka_{32} + ka_{33} + ka$$

• AI(31(l))

结果将 A 作变换 $C_1 \leftrightarrow C_2$

•
$$AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$
 结果将 A 作变换 $C_1 \leftrightarrow C_2$

$$\bullet \ AI(2(k)) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & ka_{12} & a_{13} \\ a_{21} & ka_{22} & a_{23} \\ a_{31} & ka_{32} & a_{33} \end{pmatrix}$$

 $\begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} a_{21} & ka_{22} & a_{23} \\ a_{31} & ka_{32} & a_{33} \end{pmatrix}$ 结果将 A 作变换 $k \times c_2$

$$\bullet \ AI(31(l)) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

•
$$AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$
 结果将 A 作变换 $C_1 \leftrightarrow C_2$

$$(a_{11} \ a_{12} \ a_{13})(1 \ 0 \ 0) \ (a_{11} \ ka_{12} \ a_{13})$$

•
$$AI(31(l)) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

•
$$AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$
 结果将 A 作变换 $C_1 \leftrightarrow C_2$

$$\bullet \ AI(2(k)) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & ka_{12} & a_{13} \\ a_{21} & ka_{22} & a_{23} \\ a_{31} & ka_{32} & a_{33} \end{pmatrix}$$

$$\begin{pmatrix} a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{31} & ka_{32} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $k \times c_2$

•
$$AI(31(l)) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix}$$

$$\bullet \ AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$

结果将 A 作变换 $c_1 \longleftrightarrow c_2$

$$\bullet \ AI(31(l)) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$$

•
$$AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$
 结果将 A 作变换 $C_1 \leftrightarrow C_2$

•
$$AI(31(l)) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} + la_{11} \\ a_{21} & a_{22} & a_{23} + la_{21} \\ a_{31} & a_{32} & a_{33} + la_{31} \end{pmatrix}$$

•
$$AI(12) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{12} & a_{11} & a_{13} \\ a_{22} & a_{21} & a_{23} \\ a_{32} & a_{31} & a_{33} \end{pmatrix}$$
 结果将 A 作变换 $C_1 \leftrightarrow C_2$

•
$$AI(31(l)) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 & l \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} + la_{11} \\ a_{21} & a_{22} & a_{23} + la_{21} \\ a_{31} & a_{32} & a_{33} + la_{31} \end{pmatrix}$$

结果将 A 作变换 $c_1 + lc_3$

设 $A \in m \times n$ 矩阵,则

设 $A \neq m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵

设 $A \neq m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵:

$$A \xrightarrow{r_i \leftrightarrow r_j} , A \xrightarrow{k \times r_i} , A \xrightarrow{r_i + lr_j}$$

设 $A \neq m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵:

$$A \xrightarrow{r_i \leftrightarrow r_j} I(ij)A, \qquad A \xrightarrow{k \times r_i} \qquad , \qquad A \xrightarrow{r_i + lr_j}$$

设 $A \neq m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵:

$$A \xrightarrow{r_i \leftrightarrow r_j} I(ij)A, \qquad A \xrightarrow{k \times r_i} I(i(k))A, \qquad A \xrightarrow{r_i + lr_j}$$

设 $A \neq m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵:

$$A \xrightarrow{r_i \leftrightarrow r_j} I(ij)A, \qquad A \xrightarrow{k \times r_i} I(i(k))A, \qquad A \xrightarrow{r_i + lr_j} I(ij(l))A$$

设 $A \neq m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵:

$$A \xrightarrow{r_i \leftrightarrow r_j} I(ij)A, \qquad A \xrightarrow{k \times r_i} I(i(k))A, \qquad A \xrightarrow{r_i + lr_j} I(ij(l))A$$

$$A \xrightarrow{c_i \leftrightarrow c_j}$$
 , $A \xrightarrow{k \times c_i}$, $A \xrightarrow{c_j + lc_i}$

设 $A \neq m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵:

$$A \xrightarrow{r_l \leftrightarrow r_j} I(ij)A, \qquad A \xrightarrow{k \times r_l} I(i(k))A, \qquad A \xrightarrow{r_l + lr_j} I(ij(l))A$$

$$A \xrightarrow{c_i \leftrightarrow c_j} AI(ij), \qquad A \xrightarrow{k \times c_i} \qquad , \qquad A \xrightarrow{c_j + lc_i}$$

设 $A \neq m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵:

$$A \xrightarrow{r_l \leftrightarrow r_j} I(ij)A, \qquad A \xrightarrow{k \times r_l} I(i(k))A, \qquad A \xrightarrow{r_l + lr_j} I(ij(l))A$$

$$A \xrightarrow{c_i \leftrightarrow c_j} AI(ij), \qquad A \xrightarrow{k \times c_i} AI(i(k)), \qquad A \xrightarrow{c_j + lc_i}$$

设 $A \neq m \times n$ 矩阵. 则

性质 1 对 A 作初等 $\overline{1}$ 变换等价于对 $\overline{1}$ 大乘 相应种类的初等矩阵:

$$A \xrightarrow{r_l \leftrightarrow r_j} I(ij)A, \qquad A \xrightarrow{k \times r_l} I(i(k))A, \qquad A \xrightarrow{r_l + lr_j} I(ij(l))A$$

$$A \xrightarrow{c_i \leftrightarrow c_j} AI(ij), \qquad A \xrightarrow{k \times c_i} AI(i(k)), \qquad A \xrightarrow{c_j + lc_i} AI(ij(l))$$

设A是 $m \times n$ 矩阵,则

性质 1 对 A 作初等 行 变换等价于对 A 左乘 相应种类的初等矩阵:

$$A \xrightarrow{r_i \leftrightarrow r_j} I(ij)A, \qquad A \xrightarrow{k \times r_i} I(i(k))A, \qquad A \xrightarrow{r_i + lr_j} I(ij(l))A$$

性质 2 对
$$A$$
 作初等 \overline{O} 变换等价于对 A 右乘 相应种类的初等矩阵:
$$A \xrightarrow{c_i \leftrightarrow c_j} AI(ij), \qquad A \xrightarrow{k \times c_i} AI(i(k)), \qquad A \xrightarrow{c_j + lc_i} AI(ij(l))$$

注 性质 1 中的初等矩阵是 $n \times n$,而性质 2 中的初等矩阵是 $m \times m$

$$I(ij(l)) = \begin{pmatrix} 1 & & & & & & & & \\ & & 1 & \cdots & \cdots & l & & & \\ & & & \ddots & & \vdots & & & \\ & & & \ddots & & \vdots & & & \\ & & & & 1 & & & \\ & & & & \ddots & & \\ & & & & & 1 & & \\ \end{pmatrix}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

$$I(ij(l)) = \begin{pmatrix} 1 & & & & & & & & & \\ & \ddots & & & & & & \\ & & 1 & \cdots & \cdots & l & & \\ & & \ddots & & \vdots & & \\ & & \ddots & \vdots & & \\ & & & 1 & & \\ & & & & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_{n-2} \end{pmatrix}$$

$$F(l) = \begin{pmatrix} 1 & & & & & & & & \\ 1 & & \ddots & & & & & & \\ & & 1 & \cdots & \cdots & l & & & \\ & & \ddots & & \vdots & & & \\ & & \ddots & & \vdots & & & \\ & & & \ddots & \vdots & & \\ & & & & \ddots & \vdots & & \\ & & & & \ddots & \vdots & & \\ & & & & & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

$$(1) = \begin{pmatrix} 1 & \cdots & \varepsilon_i & \cdots & \cdots & \cdots \\ 1 & \ddots & & & & & & \\ & \ddots & & & & & \\ & & 1 & \cdots & \cdots & l \\ & & \ddots & & \vdots & & \\ & & \ddots & & \vdots & & \\ & & & 1 & & \\ & & & & \ddots & \vdots \\ & & & & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

$$l)) = \begin{pmatrix} \varepsilon_1 & \cdots & \varepsilon_l & \cdots & \cdots & \varepsilon_n \\ 1 & \ddots & & & & & & \\ & \ddots & & & & & \\ & & 1 & \cdots & \cdots & l \\ & & \ddots & & \vdots & & \\ & & & \ddots & \vdots & & \\ & & & & 1 & & \\ & & & & \ddots & \vdots & \\ & & & & 1 & & \\ & & & & \ddots & \vdots & \\ & & & & 1 & & \\ & & & & 1 & & \\ \end{pmatrix}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

$$I(ij(l)) = \begin{pmatrix} 1 & \cdots & \varepsilon_{i} & \cdots & \cdots & \varepsilon_{j} + l\varepsilon_{j} & \cdots & \varepsilon_{n} \\ & \ddots & & & & & & \\ & & 1 & \cdots & \cdots & l & & & \\ & & \ddots & & \vdots & & & \\ & & & \ddots & \vdots & & & \\ & & & 1 & & & \\ & & & & \ddots & \vdots & & \\ & & & & 1 & & \\ & & & & & 1 \end{pmatrix} = (\varepsilon_{1}, \cdots \varepsilon_{i} & \cdots, \varepsilon_{j} + l\varepsilon_{i}, \cdots, \varepsilon_{n})$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

$$I(ij(l)) = \begin{pmatrix} \varepsilon_1 & \cdots & \varepsilon_i & \cdots & \cdots & \varepsilon_j + l\varepsilon_j & \cdots & \varepsilon_n \\ 1 & \ddots & & & & & & & \\ & & 1 & \cdots & \cdots & l & & & \\ & & \ddots & & \vdots & & & \\ & & & \ddots & \vdots & & & \\ & & & 1 & & & & \\ & & & & \ddots & \vdots & & \\ & & & & 1 & & & \\ & & & & \ddots & \vdots & & \\ & & & & 1 & & & \\ & & & & & \ddots & \\ & & & & 1 & & \\ \end{pmatrix} = (\varepsilon_1, \cdots , \varepsilon_i \cdots , \varepsilon_j + l\varepsilon_i, \cdots , \varepsilon_n)$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

下面证明: $A \xrightarrow{c_j + lc_i} AI(ij(l))$ 。其余类似。

1. 将 I(ij(l)) 和 A 写成分块矩阵的形式:

$$(ij(l)) = \begin{pmatrix} \varepsilon_1 & \cdots & \varepsilon_i & \cdots & \cdots & \varepsilon_j + l\varepsilon_j & \cdots & \varepsilon_n \\ 1 & & & & & & & \\ & & \ddots & & & & \\ & & & \ddots & & \vdots & & \\ & & & & \ddots & \vdots & & \\ & & & & \ddots & \vdots & & \\ & & & & & \ddots & \vdots & \\ & & & & & \ddots & \vdots & \\ & & & & & \ddots & \vdots & \\ & & & & & \ddots & \vdots & \\ & & & & & \ddots & \vdots & \\ & & & & & \ddots & \vdots & \\ & & & & & \ddots & \vdots & \\ & & & & & \ddots & \vdots & \\ & & & & & \ddots & \vdots & \\ & & & & & & \ddots & \vdots & \\ & & & & & & \ddots & \vdots & \\ & & & & & & \ddots & \vdots & \\ & & & & & & \ddots & \vdots & \\ & & & & & & \ddots & \vdots & \\ & & & & & & \ddots & \vdots & \\ & & & & & & & \ddots & \vdots & \\ & & & & & & & \ddots & \vdots & \\ & & & & & & & \ddots & \vdots & \\ & & & & & & & \ddots & \vdots & \\ & & & & & & & & \ddots & \vdots & \\ & & & & & & & & \ddots & \vdots & \\ & & & & & & & & & \ddots & \vdots & \\ & & & & & & & & & \ddots & \vdots & \\ & & & & & & & & & & & \ddots & \vdots & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & &$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

下面证明: $A \xrightarrow{c_j + lc_i} AI(ij(l))$ 。其余类似。

1. 将 I(ij(l)) 和 A 写成分块矩阵的形式:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = (A_1, A_2, \dots, A_n)$$

下面证明: $A \xrightarrow{c_j + lc_i} AI(ij(l))$ 。其余类似。

1. 将 *I(ij(l)*) 和 A 写成分块矩阵的形式:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = (A_{1}, A_{2}, \dots, A_{n})$$
 容易验证 $A\varepsilon_{i} = A_{i}$

AI(ij(l))

$$AI(ij(l)) = A(\varepsilon_1, \dots, \varepsilon_i, \dots, \varepsilon_j + l\varepsilon_i, \dots, \varepsilon_n)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \atop i \text{ th} \qquad \qquad \uparrow \atop j \text{ th}$$

$$AI(ij(l)) = A(\varepsilon_1, \dots, \varepsilon_i, \dots, \varepsilon_j + l\varepsilon_i, \dots, \varepsilon_n)$$

$$\uparrow_{i \text{th}} \qquad \uparrow_{j \text{th}}$$

$$= (A\varepsilon_1, \dots, A\varepsilon_i, \dots, \dots, A(\varepsilon_j + l\varepsilon_i), \dots, A\varepsilon_n)$$

$$AI(ij(l)) = A(\varepsilon_{1}, \dots, \varepsilon_{i}, \dots, \varepsilon_{j} + l\varepsilon_{i}, \dots, \varepsilon_{n})$$

$$\downarrow_{i \text{ th}} \qquad \uparrow_{j \text{ th}}$$

$$= (A\varepsilon_{1}, \dots, A\varepsilon_{i}, \dots, \dots, A(\varepsilon_{j} + l\varepsilon_{i}), \dots, A\varepsilon_{n})$$

$$= (A\varepsilon_{1}, \dots, A\varepsilon_{i}, \dots, \dots, A\varepsilon_{j} + lA\varepsilon_{i}, \dots, A\varepsilon_{n})$$

$$AI(ij(l)) = A(\varepsilon_{1}, \dots, \varepsilon_{i}, \dots, \varepsilon_{j} + l\varepsilon_{i}, \dots, \varepsilon_{n})$$

$$\downarrow^{\uparrow} \qquad \uparrow^{\uparrow}_{j \text{th}}$$

$$= (A\varepsilon_{1}, \dots, A\varepsilon_{i}, \dots, \dots, A(\varepsilon_{j} + l\varepsilon_{i}), \dots, A\varepsilon_{n})$$

$$= (A\varepsilon_{1}, \dots, A\varepsilon_{i}, \dots, \dots, A\varepsilon_{j} + lA\varepsilon_{i}, \dots, A\varepsilon_{n})$$

$$= (A_{1}, \dots, A_{i}, \dots, \dots, A_{j} + lA_{i}, \dots, A_{n})$$

$$AI(ij(l)) = A(\varepsilon_1, \dots, \varepsilon_i, \dots, \varepsilon_j + l\varepsilon_i, \dots, \varepsilon_n)$$

$$\downarrow_{i \text{th}}^{\uparrow} \qquad \downarrow_{j \text{th}}^{\uparrow}$$

$$= (A\varepsilon_1, \dots, A\varepsilon_i, \dots, \dots, A(\varepsilon_j + l\varepsilon_i), \dots, A\varepsilon_n)$$

$$= (A\varepsilon_1, \dots, A\varepsilon_i, \dots, \dots, A\varepsilon_j + lA\varepsilon_i, \dots, A\varepsilon_n)$$

$$= (A_1, \dots, A_i, \dots, \dots, A_j + lA_i, \dots, A_n)$$

$$= 交換 A 的 i, j 列$$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\sharp p (i \neq j)$}$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\sharp p (i \neq j)$}$

证明

• I(ij)I(ij) =

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$

证明

• $I(ij)I(ij) = I \cdot I(ij) \cdot I(ij) =$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$

证明

• $I(ij)I(ij) = I \cdot I(ij) \cdot I(ij) = I$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

- $I(ij)^{-1} = I(ij)$
- $I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

$$I(ij)^{-1} = I(ij)$$

•
$$I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$$

证明

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j}$$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

$$I(ij)^{-1} = I(ij)$$

•
$$I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$$

证明

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

$$I(ij)^{-1} = I(ij)$$

•
$$I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) =$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

$$I(ij)^{-1} = I(ij)$$

•
$$I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\sharp p (i \neq j)$}$$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) =$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

$$I(ij)^{-1} = I(ij)$$

•
$$I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

$$I(ij)^{-1} = I(ij)$$

•
$$I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$$

证明

I(ij)I(ij) = *I* · *I(ij)* · *I(ij)* = *I*, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$, 这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i}$$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

$$I(ij)^{-1} = I(ij)$$

•
$$I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$$

证明

I(ij)I(ij) = *I* · *I(ij)* · *I(ij)* = *I*, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$, 这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

$$I(ij)^{-1} = I(ij)$$

•
$$I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$$

• I(ij(l))I(ij(-l)) =

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

$$I(ij)^{-1} = I(ij)$$

•
$$I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$$

• $I(ij(l))I(ij(-l)) = I \cdot I(ij(l)) \cdot I(ij(-l)) =$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

$$I(ij)^{-1} = I(ij)$$

•
$$I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$$

• $I(ij(l))I(ij(-l)) = I \cdot I(ij(l)) \cdot I(ij(-l)) = I$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

$$I(ij)^{-1} = I(ij)$$

•
$$I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$$

• $I(ij(l))I(ij(-l)) = I \cdot I(ij(l)) \cdot I(ij(-l)) = I$, 这是利用:

$$I \xrightarrow{c_j + lc_i} * \xrightarrow{c_j - lc_i}$$

性质 初等矩阵都是可逆,且其逆矩阵仍为初等矩阵。事实上:

$$I(ij)^{-1} = I(ij)$$

•
$$I(ij(l))^{-1} = I(ij(-l)), \ \mbox{\downarrow} + (i \neq j)$$

证明

I(ij)I(ij) = I · I(ij) · I(ij) = I, 这是利用:

$$I \xrightarrow{c_i \leftrightarrow c_j} * \xrightarrow{c_i \leftrightarrow c_j} I$$

• $I(i(k))I(i(\frac{1}{k})) = I \cdot I(i(k)) \cdot I(i(\frac{1}{k})) = I$,这是利用:

$$I \xrightarrow{k \times c_i} * \xrightarrow{\frac{1}{k} \times c_i} I$$

• $I(ij(l))I(ij(-l)) = I \cdot I(ij(l)) \cdot I(ij(-l)) = I$, 这是利用:

$$I \xrightarrow{c_j + lc_i} * \xrightarrow{c_j - lc_i} I$$

定理 任何矩阵 $A_{m \times n}$,经过有限次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}_{m \times n}$$

定理 任何矩阵 $A_{m \times n}$,经过有限次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}_{m \times n}$$

即,除左上角为 r 阶单位矩阵,其余元素均为零。

定理 任何矩阵 $A_{m \times n}$,经过有限次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为 r 阶单位矩阵,其余元素均为零。

定理 任何矩阵 $A_{m \times n}$,经过有限次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为r阶单位矩阵,其余元素均为零。该形式称为A的等价标准形。

定理 任何矩阵 $A_{m \times n}$,经过有限次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为r阶单位矩阵,其余元素均为零。该形式称为A的等价标准形。

注 r 取值范围:

§2.6 矩阵的初等变换

定理 任何矩阵 $A_{m \times n}$,经过有限次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为r阶单位矩阵,其余元素均为零。该形式称为A的等价标准形。

注r取值范围: 0 ≤ r,

定理 任何矩阵 $A_{m \times n}$,经过有限次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为r阶单位矩阵,其余元素均为零。该形式称为A的等价标准形。

注 r 取值范围: $0 \le r$, $r \le m$

定理 任何矩阵 $A_{m \times n}$,经过有限次初等变换后,总可以化为如下形式的矩阵:

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

即,除左上角为r阶单位矩阵,其余元素均为零。该形式称为A的等价标准形。

注 r 取值范围: $0 \le r$, $r \le m \le n$

例 4 × 3 矩阵 (* * * * * *) 所有可能的等价标准形是什么?

4×3矩阵等价标准形的一般形式是

$$D = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & & \\ & & & 0 \end{pmatrix}_{A\times}$$

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 0 & \\ & & & \ddots & \\ & & & 0 \end{pmatrix} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

$$O = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}_{A \times 3} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

其中 $0 \le r \le 3$

$$D = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}_{A\times 3} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 0 & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}_{A \times A} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 0 & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}_{A \times A} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & & 0 & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}_{A \times A} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow[r_3 - r_1]{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow[r_3 - r_1]{} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 \\ 0 & -1 \\ 0 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 \\ 0 & -1 \\ 0 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ c_4 - \frac{3}{2}c_1 \end{pmatrix}$$

$$\frac{1}{2} \times r_1$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ c_4 - \frac{3}{2}c_1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ c_4 - \frac{3}{2}c_1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{r_3 - r_2}$$

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ c_4 - \frac{3}{2}c_1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix}
\xrightarrow{r_2 - 2r_1}
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{c_2 - \frac{1}{2}c_1}
\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
c_4 - \frac{3}{2}c_1
\end{pmatrix}
\xrightarrow{c_3 - c_1}
\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{\frac{1}{2} \times r_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{r_3 - r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$c_3-c_2$$

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix}
\xrightarrow{r_2 - 2r_1}
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{c_2 - \frac{1}{2}c_1}
\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{r_3 - r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{c_3 - c_2}
\begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
c_4 - \frac{3}{2}c_1
\end{pmatrix} \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow[c_4-c_2]{c_3-c_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
c_3 - c_1 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$c_3 - c_2 \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow[c_4-c_2]{c_3-c_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix}
\xrightarrow{r_2 - 2r_1}
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{c_2 - \frac{1}{2}c_1}
\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
c_4 - \frac{3}{2}c_1
\end{pmatrix}
\begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\xrightarrow{r_3 - r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{c_3 - c_2}
\xrightarrow{c_4 - c_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\xrightarrow{(-1) \times r_2}$$

例 通过初等变换,求出
$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix} \xrightarrow{c_2 - \frac{1}{2}c_1} \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
c_4 - \frac{3}{2}c_1
\end{pmatrix} \begin{pmatrix}
2 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{2} \times r_1} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix} \xrightarrow{r_3 - r_2} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -1 & -1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow[c_4-c_2]{c_3-c_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow[(-1)\times r_2]{(-1)\times r_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2}$$

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1}$$

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$c_2 - 4c_1$$

例 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\xrightarrow{c_2-4c_1} \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 0 & -2 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\xrightarrow[c_3-3c_1]{c_2-4c_1} \begin{cases} 1 & 0 \\ 0 & 2 \\ 0 & -2 \end{cases}$$

例 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\xrightarrow[c_3-3c_1]{c_2-4c_1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & -2 & -2 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\xrightarrow[\substack{c_2-4c_1\\ c_3-3c_1\\ c_4-5c_1} \begin{pmatrix} 1 & 0 & 0\\ 0 & 2 & 2\\ 0 & -2 & -2 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$(1 \quad 0 \quad 0 \quad 0 \quad)$$

$$\begin{array}{c}
c_{2}-4c_{1} \\
c_{3}-3c_{1} \\
c_{4}-5c_{1}
\end{array}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_{3}+r_{2}}$$

例 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\xrightarrow{c_4 - 5c_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix}
0 & 2 & 2 & 3 \\
1 & 4 & 3 & 5 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_1 \leftrightarrow r_2}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
1 & 2 & 1 & 2
\end{pmatrix}
\xrightarrow{r_3 - r_1}
\begin{pmatrix}
1 & 4 & 3 & 5 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}$$

$$\xrightarrow{c_2 - 4c_1}
\xrightarrow{c_3 - 3c_1}
\xrightarrow{c_4 - 5c_1}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\frac{c_2 - 4c_1}{c_3 - 3c_1} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{c_3-c_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\frac{c_2 - 4c_1}{c_3 - 3c_1} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\frac{c_3 - c_2}{c_4 - \frac{3}{2}c_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\frac{c_2 - 4c_1}{c_3 - 3c_1} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\frac{c_3 - c_2}{c_4 - \frac{3}{2}c_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\frac{c_2 - 4c_1}{c_3 - 3c_1} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow[c_4-\frac{3}{2}c_2]{c_4-\frac{3}{2}c_2} \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 2 & 0 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\frac{1}{2}\times r_2}$$

例 通过初等变换,求出
$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 0 & 2 & 2 & 3 \\ 1 & 4 & 3 & 5 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 1 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 4 & 3 & 5 \\ 0 & 2 & 2 & 3 \\ 0 & -2 & -2 & -3 \end{pmatrix}$$

$$\frac{c_2 - 4c_1}{c_3 - 3c_1} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & -2 & -2 & -3
\end{pmatrix}
\xrightarrow{r_3 + r_2} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\frac{c_3 - c_2}{c_4 - \frac{3}{2}c_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\frac{1}{2} \times r_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

例 通过初等变换,求出 $\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$ 的等价标准形

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1}$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1}$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$

$$r_2 \leftrightarrow r_3$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$

$$\xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} 1 & 0 \\ 0 & -5 \\ 0 & 0 \end{pmatrix}$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$

$$\xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} 1 & 0 \\ 0 & -5 \\ 0 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{5} \times r_2}$$

例 通过初等变换,求出
$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix}$$
 的等价标准形

$$\begin{pmatrix} 1 & 3 \\ -1 & -3 \\ 2 & 1 \end{pmatrix} \xrightarrow{r_2 + r_1} \begin{pmatrix} 1 & 3 \\ 0 & 0 \\ 0 & -5 \end{pmatrix} \xrightarrow{c_2 - 3c_1} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & -5 \end{pmatrix}$$

$$\xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} 1 & 0 \\ 0 & -5 \\ 0 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{5} \times r_2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$P_s \cdots P_2 P_1 A$$

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t$$

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

从而存在 m 阶初等矩阵 $P_1, P_2, ..., P_s$ 与 n 阶初等矩阵 $O_1, O_2, ..., O_t$ 使得

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

定理 设 $A \in n$ 阶方阵,则

● A 可逆的充分必要条件是 A 的等价标准形是 I

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

- A 可逆的充分必要条件是 A 的等价标准形是 I
- A 可逆的充分必要条件是 A 可以表示成一些初等矩阵的乘积

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

定理 设 $A \in n$ 阶方阵.则

- A 可逆的充分必要条件是 A 的等价标准形是 I
- A 可逆的充分必要条件是 A 可以表示成一些初等矩阵的乘积

证明 |A| ≠ 0

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

从而存在 m 阶初等矩阵 P_1 , P_2 , ..., P_s 与 n 阶初等矩阵 Q_1 , Q_2 , ..., Q_t 使得

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

- A 可逆的充分必要条件是 A 的等价标准形是 I
- A 可逆的充分必要条件是 A 可以表示成一些初等矩阵的乘积

证明
$$|A| \neq 0 \iff |D| \neq 0$$

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

从而存在 m 阶初等矩阵 P_1 , P_2 , ..., P_s 与 n 阶初等矩阵 Q_1 , Q_2 , ..., Q_t 使得

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

- A 可逆的充分必要条件是 A 的等价标准形是 I
- A 可逆的充分必要条件是 A 可以表示成一些初等矩阵的乘积

证明
$$|A| \neq 0 \iff |D| \neq 0 \iff r = n$$
,

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

- A 可逆的充分必要条件是 A 的等价标准形是 I
- A 可逆的充分必要条件是 A 可以表示成一些初等矩阵的乘积

证明
$$|A| \neq 0 \iff |D| \neq 0 \iff r = n, D = I_n$$

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

从而存在 m 阶初等矩阵 P_1, P_2, \ldots, P_s 与 n 阶初等矩阵 Q_1, Q_2, \ldots, Q_t 使得

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

定理 设 $A \in n$ 阶方阵,则

- A 可逆的充分必要条件是 A 的等价标准形是 I
- A 可逆的充分必要条件是 A 可以表示成一些初等矩阵的乘积

证明
$$|A| \neq 0 \iff |D| \neq 0 \iff r = n, D = I_n$$

此时 $P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = I_n$

$$A_{m \times n} \xrightarrow{-$$
系列初等变换 $D_{m \times n} = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$

从而存在 m 阶初等矩阵 P_1, P_2, \ldots, P_s 与 n 阶初等矩阵 O_1, O_2, \ldots, O_t 使得

$$P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$$

定理 设 $A \in n$ 阶方阵,则

- A 可逆的充分必要条件是 A 的等价标准形是 I
- A 可逆的充分必要条件是 A 可以表示成一些初等矩阵的乘积

证明
$$|A| \neq 0 \iff |D| \neq 0 \iff r = n, D = I_n$$

此时 $P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = D = I_n$

$$A = P_1^{-1} P_2^{-1} \cdots P_s^{-1} Q_t^{-1} \cdots Q_2^{-1} Q_1^{-1}$$

$$A_{n \times n} \xrightarrow{-$$
系列初等变换 $D = I_n$

$$A_{n imes n} \xrightarrow{- imes D} D = I_n$$
 \downarrow $P_s \cdots P_2 P_1 A Q_1 Q_2 \cdots Q_t = I_n$

$$A_{n \times n} \xrightarrow{-$$
 系列初等变换 $D = I_n$ \downarrow $P_s \cdots P_2 P_1 A \ Q_1 Q_2 \cdots Q_t \ Q_t \ Q_1 Q_2 \cdots Q_t \ P_s \cdots P_2 P_1 A = I_n$

$$A_{n \times n} \xrightarrow{-$$
系列初等变换 $D = I_n$ \downarrow $P_s \cdots P_2 P_1 A \ Q_1 Q_2 \cdots Q_t = I_n$ \downarrow $Q_1 Q_2 \cdots Q_t P_s \cdots P_2 P_1 A = I_n$

$$A_{n \times n} \xrightarrow{-\overline{\text{A}}} D = I_n$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

假设 $A_{n\times n}$ 是可逆方阵,则

$$A_{n \times n} \xrightarrow{-\overline{\text{APNN}}} D = I_n$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad$$

<u>启发</u> 1. 可逆矩阵 初等行变换 单位矩阵

- <u>启发</u> 1. 可逆矩阵 初等行变换 单位矩阵
 - 2. 记录下把 A 变成单位阵这一过程中,所用到过"初等行变换",就可 算出逆矩阵:

$$Q_1Q_2\cdots Q_tP_s\cdots P_2P_1=A^{-1}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\bigvee_{r_3-2r_1}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\bigvee r_3-2r_1$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\bigvee r_3-2r_1$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix}$$

$$\bigvee_{r_2-r_3}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:
$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\bigvee_{r_3-2r_1}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix}$$

$$\bigvee r_2-r_3$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\downarrow_{r_2-r_3} \\
\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 2 & 1 & -1 \\
0 & 0 & 1 & -2 & 0 & 1
\end{pmatrix}$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} = (A : I)$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 2 & 0 & 1 \end{pmatrix}$$

 $\bigvee r_3-2r_1$

$$\downarrow_{r_2-r_3} \\
\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 2 & 1 & -1 \\
0 & 0 & 1 & -2 & 0 & 1
\end{pmatrix}$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \qquad = \qquad (A : I)$$

$$\downarrow r_{3-2r_{1}} \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix} = (P_1A : P_1I)$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 2 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix} = (A : I)$$

$$\downarrow_{r_3-2r_1} \qquad \qquad \downarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix} = (P_1A \vdots P_1I) = (P_1A \vdots P_1)$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix}$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

示例求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
的逆矩阵。步骤如下:
$$\begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 2 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix} \qquad \Longrightarrow \qquad (A : I)$$

$$\downarrow r_{3}-2r_{1} \qquad \qquad \downarrow \downarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & -2 & 0 & 1 \end{pmatrix} \qquad \Longrightarrow \qquad (P_{1}A : P_{1}I) = (P_{1}A : P_{1})$$

$$\downarrow r_{2}-r_{3} \qquad \qquad \downarrow \downarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 2 & 1 & -1 \\ 0 & 0 & 1 & | & -2 & 0 & 1 \end{pmatrix} \implies (P_{2}P_{1}A : P_{2}P_{1})$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} = (A : I)$$

$$\downarrow_{I_3 - 2I_1} \qquad \qquad \downarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix} = (P_1A \vdots P_1I) = (P_1A \vdots P_1)$$

$$\downarrow_{r_2-r_3}$$

 $\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & 2 & 0 & -1 \end{pmatrix} = (P_2 P_1 A : P_2 P_1) = (I : P_2 P_1)$

$$\mathbb{M} A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} = (A : I)$$

$$\downarrow r_{3-2r_{1}} \qquad \qquad \downarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix} = (P_1 A : P_1 I) = (P_1 A : P_1)$$

$$\downarrow_{I_2 - I_3} \qquad \qquad \downarrow \downarrow$$

 $\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix} = (P_2 P_1 A : P_2 P_1) = (I : P_2 P_1)$

$$\begin{pmatrix} 0 & 0 \\ 1 & -1 \\ 0 & 1 \end{pmatrix}$$

则
$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

示例 求
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$
 的逆矩阵。步骤如下:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} = (A : I)$$

$$\downarrow r_{3-2r_{1}} \qquad \qquad \downarrow \downarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix} = (P_1A \vdots P_1I) = (P_1A \vdots P_1)$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & -2 & 0 & 1 \end{pmatrix} = \underbrace{(P_2 P_1)}_{A^{-1}} A : \underbrace{P_2 P_1}_{A^{-1}}) = (I : P_2 P_1)$$

$$\mathbb{M} A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -1 \\ -2 & 0 & 1 \end{pmatrix}$$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

 $(A : I) \xrightarrow{-\text{系列初等<mark>行</mark>变换}} (I : B)$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

 $(A : I) \xrightarrow{-\text{SM}} (I : B)$

则此时 B 就是 A^{-1}

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

 $(A : I) \xrightarrow{-\text{SM}} (I : B)$

则此时 B 就是 A^{-1}

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A : I) \xrightarrow{-SMN \Leftrightarrow f \to b} (I : B)$$

则此时 B 就是 A^{-1}

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A \vdots I) \xrightarrow{-\overline{S}\overline{M}\overline{M}} (I \vdots B)$$

则此时 B 就是 A^{-1}

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix}$$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A \vdots I) \xrightarrow{-\text{\vec{A}} \to 0} (I \vdots B)$$

则此时 B 就是 A^{-1}

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix}$$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A \vdots I) \xrightarrow{-\text{A}} (I \vdots B)$$

则此时 B 就是 A^{-1}

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A \vdots I) \xrightarrow{-\overline{S}\overline{M}} (I \vdots B)$$

则此时 B 就是 A^{-1}

$$\begin{pmatrix}
* & * & * \\
* & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
* & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & * & * \\
0 & * & *
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & * & * \\
0 & 1 & * \\
0 & * & *
\end{pmatrix}$$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A \vdots I) \xrightarrow{-\overline{x}\overline{y}} (I \vdots B)$$

则此时 B 就是 A^{-1}

$$\begin{pmatrix}
* & * & * \\
* & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
* & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & * & * \\
0 & * & *
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & 0 & *
\end{pmatrix}$$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A : I) \xrightarrow{-\overline{A} = \overline{A} = \overline{A}} (I : B)$$

则此时 B 就是 A^{-1}

$$\begin{pmatrix}
* & * & * \\
* & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
* & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & * & * \\
0 & * & *
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & 0 & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{pmatrix}$$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A : I) \xrightarrow{-\text{SM}} (I : B)$$

则此时 B 就是 A^{-1}

$$\begin{pmatrix}
* & * & * \\
* & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
* & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & * & * \\
* & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & * & * \\
0 & * & *
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & * & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & 0 & *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & * & * \\
0 & 1 & * \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A : I) \xrightarrow{-\text{SM}} (I : B)$$

则此时 B 就是 A^{-1}

1 欠通过行受换符 A 化为单位矩阵的步骤:
$$\begin{pmatrix}
* * * * * * \\
* * * * *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 * * * \\
* * * *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 * * * \\
0 * * *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 * * * \\
0 * * *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 * * * \\
0 1 * *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 * * * \\
0 1 * *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 * * * \\
0 1 * *
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 * * * \\
0 1 * \\
0 0 1
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 * * * \\
0 1 0 \\
0 0 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 * * 0 \\
0 1 0 \\
0 0 1
\end{pmatrix}$$

初等变换求逆矩阵——步骤

总结 求 n 阶可逆矩阵 A 的逆矩阵 A^{-1} 的步骤:

$$(A : I) \xrightarrow{-\text{SM}} (I : B)$$

则此时 B 就是 A^{-1}

注 仅通过行变换将 A 化为单位矩阵的步骤:

$$\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & * & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & * \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & * & * \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & * & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

例 求 $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$ 的逆矩阵

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

 $r_2 - 2r_1$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_1} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{r_2-2r_1} \left(\begin{array}{ccccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \end{array} \right)$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{r_2-2r_1} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{r_2-2r_1} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{pmatrix} \xrightarrow{r_3-2r_2}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{r_2-2r_1} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{pmatrix} \xrightarrow{r_3-2r_2} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{r_2-2r_1} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{pmatrix} \xrightarrow{r_3-2r_2} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2}r_3}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{r_{2}-2r_{1}}{r_{3}+3r_{1}} \begin{pmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & -2 & | & -2 & 1 & 0 \\
0 & 2 & -2 & | & 3 & 0 & 1
\end{pmatrix} \xrightarrow{r_{3}-2r_{2}} \begin{pmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & -2 & | & -2 & 1 & 0 \\
0 & 0 & 2 & | & 7 & -2 & 1
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{2}r_{3}} \begin{pmatrix}
1 & 0 & 1 & | & 1 & 0 & 0 \\
0 & 1 & -2 & | & -2 & 1 & 0 \\
0 & 0 & 1 & | & 7/2 & -1 & 1/2
\end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{\begin{array}{c} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{array}} \xrightarrow[r_3-2r_2]{\begin{array}{c} r_3-2r_2 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{array}} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2}r_3} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 1 & 7/2 & -1 & 1/2 \end{pmatrix} \xrightarrow{r_2 + 2r_3}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{\begin{array}{c} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{array}} \xrightarrow{r_3-2r_2} \left(\begin{array}{c} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{array} \right)$$

$$\frac{r_2 + 2r_1}{r_3 + 3r_1} \begin{pmatrix} 0 & 1 & -2 & | & -2 & 1 & 0 \\ 0 & 2 & -2 & | & 3 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 + 2r_2} \begin{pmatrix} 0 & 1 & -2 & | & -2 & 1 & 0 \\ 0 & 0 & 2 & | & 7 & -2 & 1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2}r_3} \begin{pmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & -2 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & 7/2 & -1 & 1/2 \end{pmatrix} \xrightarrow{r_2 + 2r_3} \begin{pmatrix} 0 & 1 & 0 & | & 5 & -1 & 1 \\ 0 & 0 & 1 & | & 7/2 & -1 & 1/2 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3+3r_1]{\begin{array}{c}1 & 0 & 1 & 1 & 0 & 0\\0 & 1 & -2 & -2 & 1 & 0\\0 & 2 & -2 & 3 & 0 & 1\end{array}}\xrightarrow{r_3-2r_2} \begin{pmatrix}1 & 0 & 1 & 1 & 0 & 0\\0 & 1 & -2 & -2 & 1 & 0\\0 & 0 & 2 & 7 & -2 & 1\end{pmatrix}$$

$$\begin{array}{c}
r_{3}+3r_{1} \\
\hline
\begin{pmatrix}
0 & 2 & -2 & 3 & 0 & 1
\end{pmatrix}
& \begin{pmatrix}
0 & 1 & 2 & 2 & 1 & 0 \\
0 & 0 & 2 & 7 & -2 & 1
\end{pmatrix}$$

$$\xrightarrow{\frac{1}{2}r_{3}} \begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -2 & -2 & 1 & 0 \\
0 & 0 & 1 & 7/2 & -1 & 1/2
\end{pmatrix}
\xrightarrow{r_{2}+2r_{3}} \begin{pmatrix}
0 & 1 & 0 & 5 & -1 & 1 \\
0 & 0 & 1 & 7/2 & -1 & 1/2
\end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{r_2 - 2r_1}{r_3 + 3r_1} \xrightarrow{\left(\begin{array}{ccccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{array}\right) \xrightarrow{r_3 - 2r_2} \left(\begin{array}{ccccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{array}\right)$$

$$\frac{1}{3}r_3 \left(\begin{array}{cccccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{array}\right)$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$$
 的逆矩阵

 $(A : I) = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -3 & 2 & -5 & 0 & 0 & 1 \end{pmatrix}$

$$\xrightarrow[r_3+3r_1]{\begin{array}{c} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 2 & -2 & 3 & 0 & 1 \end{array}} \xrightarrow{r_3-2r_2} \left(\begin{array}{c} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 2 & 7 & -2 & 1 \end{array} \right)$$

所以 $A^{-1} = \begin{pmatrix} -5/2 & 1 & -1/2 \\ 5 & -1 & 1 \\ 7/2 & -1 & 1/2 \end{pmatrix}$

 $\xrightarrow{\frac{1}{2}r_3} \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & -2 & -2 & 1 & 0 \\ 0 & 0 & 1 & 7/2 & -1 & 1/2 \end{pmatrix} \xrightarrow{r_2 + 2r_3} \begin{pmatrix} 1 & 0 & 0 & -5/2 & 1 & -1/2 \\ 0 & 1 & 0 & 5 & -1 & 1 \\ 0 & 0 & 1 & 7/2 & -1 & 1/2 \end{pmatrix}$

例 求 $A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$ 的逆矩阵

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A \vdots I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-r_1} \begin{pmatrix} 1 & 0 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & -1 & 1 & 0 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3-2r_1]{r_2-r_1} \left(\begin{array}{cccccc} 1 & 0 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & -1 & | & -1 & 1 & 0 \end{array} \right)$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3-2r_1]{r_3-2r_1} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & -1 & -2 & 0 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3-2r_1]{r_3-2r_1} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & -1 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{(-1)\times r_3}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_3-2r_1]{\left(\begin{array}{cccccc}1&0&2&&1&0&0\\0&1&-1&&-1&1&0\\0&0&-1&&-2&0&1\end{array}\right)}\xrightarrow[(-1)\times r_3]{\left(\begin{array}{cccccc}1&0&2&&1&0&0\\0&1&-1&&-1&1&0\\0&0&1&&2&0&-1\end{array}\right)}$$

$$r_2 + r_3$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow[r_{3}-2r_{1}]{} \begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & 0 & -1 & | & -2 & 0 & 1
\end{pmatrix} \xrightarrow{(-1)\times r_{3}} \begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & 0 & 1 & | & 2 & 0 & -1
\end{pmatrix}$$

$$\xrightarrow{r_{2}+r_{3}} \begin{pmatrix}
0 & 1 & 0 & | & 1 & 1 & -1 \\
0 & 0 & 1 & | & 2 & 0 & -1
\end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A:I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{r_{2}-r_{1}}{r_{3}-2r_{1}} \begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & 0 & -1 & | & -2 & 0 & 1
\end{pmatrix} \xrightarrow{(-1)\times r_{3}} \begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & 0 & 1 & | & 2 & 0 & -1
\end{pmatrix}$$

$$\frac{r_{2}+r_{3}}{r_{1}-2r_{3}} \begin{pmatrix}
0 & 1 & 0 & | & 1 & 1 & -1 \\
0 & 0 & 1 & | & 2 & 0 & -1
\end{pmatrix}$$

● 整角大型

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{r_{2}-r_{1}}{r_{3}-2r_{1}} \begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & 0 & -1 & | & -2 & 0 & 1
\end{pmatrix} \xrightarrow{(-1)\times r_{3}} \begin{pmatrix}
1 & 0 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & 1 & 0 \\
0 & 0 & 1 & | & 2 & 0 & -1
\end{pmatrix}$$

$$\frac{r_{2}+r_{3}}{r_{1}-2r_{3}} \begin{pmatrix}
1 & 0 & 0 & | & -3 & 0 & 2 \\
0 & 1 & 0 & | & 1 & 1 & -1 \\
0 & 0 & 1 & | & 2 & 0 & -1
\end{pmatrix}$$

■ 暨南大学

例 求
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 的逆矩阵

$$\frac{r_2}{r_3}$$

 $\xrightarrow[r_3-2r_1]{} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & -1 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{(-1)\times r_3} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 & -1 \end{pmatrix}$ $\xrightarrow[r_1-2r_3]{r_2+r_3} \begin{pmatrix} 1 & 0 & 0 & | & -3 & 0 & 2 \\ 0 & 1 & 0 & | & 1 & 1 & -1 \\ 0 & 0 & 1 & | & 2 & 0 & -1 \end{pmatrix}$

所以 $A^{-1} = \begin{pmatrix} -3 & 0 & 2 \\ 1 & 1 & -1 \\ 2 & 0 & -1 \end{pmatrix}$

$$(A : I) = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 2 & 0 & 3 & 0 & 0 & 1 \end{pmatrix}$$

24/26 < ▶ △ ▽

例 求 $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$ 的逆矩阵

例 求
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1}$$

例 求
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

$$r_2-2r_3$$

例 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 12 & 2 & 100 \\ 0 - 3 & -2 & -210 \\ 0 - 2 - 3 & -201 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2}$$

例 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122\\212\\221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\frac{1}{5} \times r_3$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 122 & 1 & 0 & 0 \\ 014 & 2 & 1 & -2 \\ 001 & 2/52/5 - 3/5 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1 & -2 \\ 0 & 0 & 1 & 2/5 & 2/5 & -3/5 \end{pmatrix} \xrightarrow{r_2 - 4r_3}$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 1 \ 2 \ 2 \ 1 & 0 & 0 \\ 0 \ 1 \ 4 \ 2 & 1 & -2 \\ 0 \ 0 \ 1 \ 2/5 \ 2/5 \ -3/5 \end{pmatrix} \xrightarrow{r_2 - 4r_3} \begin{pmatrix} 0 \ 1 \ 0 \ 2/5 \ -3/5 \ 2/5 \\ 0 \ 0 \ 1 \ 2/5 \ 2/5 \ -3/5 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 1 \ 2 \ 2 \ 1 & 0 & 0 \\ 0 \ 1 \ 4 \ 2 & 1 & -2 \\ 0 \ 0 \ 1 \ 2/5 \ 2/5 \ -3/5 \end{pmatrix} \xrightarrow{r_2 - 4r_3} \begin{pmatrix} 0 \ 1 \ 0 \ 2/5 \ -3/5 \ 2/5 \\ 0 \ 0 \ 1 \ 2/5 \ 2/5 \ -3/5 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & -2 & -3 & -2 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 1 \ 2 \ 2 \ 1 & 0 & 0 \\ 0 \ 1 \ 4 \ 2 & 1 & -2 \\ 0 \ 0 \ 1 \ 2/5 \ 2/5 \ -3/5 \end{pmatrix} \xrightarrow{r_2 - 4r_3} \begin{pmatrix} 1 \ 2 \ 0 \ 1/5 \ -4/5 \ 6/5 \\ 0 \ 1 \ 0 \ 2/5 \ -3/5 \ 2/5 \\ 0 \ 0 \ 1 \ 2/5 \ 2/5 \ -3/5 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & 1 & 00 \\ 0 & -3 & -2 & -2 & 10 \\ 0 & -2 & -3 & -2 & 01 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 122 & 10 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 1 \ 2 \ 2 \ 1 \ 0 \ 0 \\ 0 \ 1 \ 4 \ 2 \ 1 \ -2 \\ 0 \ 0 \ 1 \ 2/5 \ 2/5 \ -3/5 \end{pmatrix} \xrightarrow{r_2 - 4r_3} \begin{pmatrix} 1 \ 2 \ 0 \ 1/5 \ -4/5 \ 6/5 \\ 0 \ 1 \ 0 \ 2/5 \ -3/5 \ 2/5 \\ 0 \ 0 \ 1 \ 2/5 \ 2/5 \ -3/5 \end{pmatrix}$$

$$r_1-2r_2$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 1 & 2 & 2 & | & 1 & 0 & 0 \\ 2 & 1 & 2 & | & 0 & 1 & 0 \\ 2 & 2 & 1 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 1 & 2 & 2 & | & 1 & 0 & 0 \\ 0 & -3 & -2 & | & -2 & 1 & 0 \\ 0 & -2 & -3 & | & -2 & 0 & 1 \end{pmatrix}$$
$$\xrightarrow{r_2 - 2r_3} \begin{pmatrix} 1 & 2 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 4 & | & 2 & 1 - 2 \\ 0 & -2 - 3 & | & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 + 2r_2} \begin{pmatrix} 1 & 2 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 4 & | & 2 & 1 - 2 \\ 0 & 0 & 5 & | & 2 & 2 - 3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 122 & 1 & 0 & 0 \\ 014 & 2 & 1 & -2 \\ 001 & 2/5 & 2/5 & -3/5 \end{pmatrix} \xrightarrow{r_2 - 4r_3} \begin{pmatrix} 120 & 1/5 & -4/5 & 6/5 \\ 010 & 2/5 & -3/5 & 2/5 \\ 001 & 2/5 & 2/5 & -3/5 \end{pmatrix}$$

$$\xrightarrow{r_1 - 2r_2} \begin{pmatrix} 100 & -3/5 & 2/5 & 2/5 \\ 010 & 2/5 & -3/5 & 2/5 \\ 001 & 2/5 & 2/5 & -3/5 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 122 \\ 212 \\ 221 \end{pmatrix}$$
 的逆矩阵

$$(A : I) = \begin{pmatrix} 122 & 100 \\ 212 & 010 \\ 221 & 001 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 122 & 100 \\ 0 - 3 - 2 & -210 \\ 0 - 2 - 3 & -201 \end{pmatrix}$$

$$\begin{pmatrix} 122 & 100 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 122 & 100 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2-2r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0-2-3 & -2 & 0 & 1 \end{pmatrix} \xrightarrow{r_3+2r_2} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1-2 \\ 0 & 0 & 5 & 2 & 2-3 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{5} \times r_3} \begin{pmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 4 & 2 & 1 & -2 \\ 0 & 0 & 1 & 2/5 & 2/5 & -3/5 \end{pmatrix} \xrightarrow{r_2-4r_3} \begin{pmatrix} 1 & 2 & 0 & 1/5 & -4/5 & 6/5 \\ 0 & 1 & 0 & 2/5 & -3/5 & 2/5 \\ 0 & 0 & 1 & 2/5 & 2/5 & -3/5 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 0 & \alpha_1 & 0 & 0 \\ 0 & 0 & \alpha_2 & 0 \\ 0 & 0 & 0 & \alpha_3 \\ \alpha_4 & 0 & 0 & 0 \end{pmatrix}$$
 的逆矩阵,其中 α_i 都不为 0 。

例 求
$$A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_4 & 0 & 0 & 0 \end{pmatrix}$$
 的逆矩阵,其中 a_i 都不为 0 。

$$(A : I) = \begin{pmatrix} 0 & a_1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & a_2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & a_3 & 0 & 0 & 1 & 0 \\ a_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_4 & 0 & 0 & 0 \end{pmatrix}$$
 的逆矩阵,其中 a_i 都不为 0 。

$$(A : I) = \begin{pmatrix} 0 & a_1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & a_2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & a_3 & 0 & 0 & 1 & 0 \\ a_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_4 \leftrightarrow r_3} * \xrightarrow{r_3 \leftrightarrow r_2} * \xrightarrow{r_2 \leftrightarrow r_1}$$

例 求
$$A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_4 & 0 & 0 & 0 \end{pmatrix}$$
 的逆矩阵,其中 a_i 都不为 0 。

$$(A : I) = \begin{pmatrix} 0 & a_1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & a_2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & a_3 & 0 & 0 & 1 & 0 \\ a_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_4 \leftrightarrow r_3} * \xrightarrow{r_3 \leftrightarrow r_2} * \xrightarrow{r_2 \leftrightarrow r_1}$$

$$\begin{pmatrix} a_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & a_1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & a_2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & a_3 & 0 & 0 & 1 & 0 \end{pmatrix}$$

例 求
$$A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_4 & 0 & 0 & 0 \end{pmatrix}$$
 的逆矩阵,其中 a_i 都不为 0 。

$$(A : I) = \begin{pmatrix} 0 & a_1 & 0 & 0 & 1000 \\ 0 & 0 & a_2 & 0 & 0100 \\ 0 & 0 & 0 & a_3 & 0010 \\ a_4 & 0 & 0 & 00001 \end{pmatrix} \xrightarrow{r_4 \leftrightarrow r_3} * \xrightarrow{r_3 \leftrightarrow r_2} * \xrightarrow{r_2 \leftrightarrow r_1}$$

$$\begin{pmatrix}
a_4 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & a_1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & a_2 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & a_3 & 0 & 0 & 1 & 0
\end{pmatrix}
\xrightarrow{\frac{1}{a_4} \times r_1}
\xrightarrow{\frac{1}{a_2} \times r_2}
\xrightarrow{\frac{1}{a_2} \times r_3}
\xrightarrow{\frac{1}{a_3} \times r_4}$$

例 求
$$A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ a_4 & 0 & 0 & 0 \end{pmatrix}$$
 的逆矩阵,其中 a_i 都不为 0 。

$$(A : I) = \begin{pmatrix} 0 & \alpha_1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & \alpha_2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \alpha_3 & 0 & 0 & 1 & 0 \\ \alpha_1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_4 \leftrightarrow r_3} * \xrightarrow{r_3 \leftrightarrow r_2} * \xrightarrow{r_2 \leftrightarrow r_1}$$

$$\begin{pmatrix} a_4 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & a_1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & a_2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & a_3 & 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{\frac{1}{a_4} \times r_1} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & \frac{1}{a_4} \\ 0 & 1 & 0 & 0 & \frac{1}{a_1} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \frac{1}{a_2} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & \frac{1}{a_3} & 0 \end{pmatrix}$$

例 求 $A = \begin{pmatrix} 0 & a_1 & 0 & 0 \\ 0 & 0 & a_2 & 0 \\ 0 & 0 & 0 & a_3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ 的逆矩阵,其中 a_i 都不为 0.

