

BLG 231E DIGITAL CIRCUITS MIDTERM SOLUTIONS

<u>Please show ALL work</u>. Answers with no supporting explanations or work will be given no partial credit. If we cannot read or follow your solution, no partial credit will be given. PLEASE BE NEAT!

QUESTION 1 (30 Points):

Note that Parts (a), (b), and (c) below are <u>not</u> related.

a) [10 points]

i. Since X is negative, its most significant bit is 1.

To obtain the **largest possible** binary X, we should fill in the blanks with 1s. X = 1111 1111

Since X is negative, to obtain its decimal value, we should take its

2's complement. X = 1111 1111 1's 0000 0000

+1 0000 0001 \rightarrow Decimal X = -1

ii. To obtain the **largest possible** binary X, we should fill in the blanks with 0s. $X = 1000 \ 1000$

Since X is negative, to obtain its decimal value, we should take its 2's

complement. $X = 1000 \ 1000$ 1's 0111 0111

+1 0111 1000

Decimal $|X| = 64 + 32 + 16 + 8 = 120 \rightarrow X = -120$

b) [10 Points]

You do not need to convert hexadecimal numbers to decimal!

4-bit binary, signed number A = \$A, is not decimal 10!

A = \$A = 1010 (Negative) B = \$7C = 0111 1100 (Positive)

Since A is a 4-bit number and it is shorter than B, we must extend it from 4 bits to 8 bits.

Since A is a negative number (most significant bit is 1), its high-order part is filled with 1s.

8-bit A = 1111 1010

To perform the **binary** operation Z = A - B using the **2's complement** system, we take 2's complement of B and add it to A.

B = 0111 1100 A 1111 1010 1's 1000 0011 + -B 1000 0100 +1 1000 0100: -B 10111 1110

Result is positive.

We subtract a positive number (B) from a negative number (A), and the result is positive. **Overflow occurred**.

negative – positive \rightarrow positive

c) [10 Points]

Since the result is **positive**, and **overflow occurs**, A is negative, and B is positive.

Remember: negative – positive \rightarrow positive

The result should be negative but it cannot be represented using 8 bits.

The range of signed integers that can be represented with 8 bits: -128 to +127

The largest decimal result that yields this result is -129. A - B < -129

The largest possible value of B is +127.

A - $127 < -129 \rightarrow$ largest possible decimal A = -2.

Binary X= 1111 1111
Decimal X= -1

Binary X= 1000 1000

Decimal X= -120

BLG 231E DIGITAL CIRCUITS MIDTERM (Question 2 of 3)

OUESTION 2 (35 Points):

Note that Parts (a), (b), and (c) below are not related.

- a) [10 points] For each of the three expressions below, decide which term (if any) can be eliminated without adding a new term to the expression, and write it in the blank space provided next to the expression, and explain why:
 - $(\overline{A} + B + C)(A + D)(B + C + D)$: (B + C + D) (consensus with respect to A) i.
 - $A \, \overline{B} \, C + \overline{A} \, B \, D + B \, C \, \overline{D}$: No terms can be eliminated. ii.

The consensus with respect to B is $A C \overline{D}$, consensus with respect to D is $\overline{A} B C$. However, these do not appear in the expression. Nothing can be eliminated.

b) [10 points] Prove the theorem given below, using Boolean algebra without using the absorption theorem (Do not use it!). **State which axiom/theorem** you used next to each step. Show all steps.

$$AB(AB + C\overline{D}) = AB$$

c) [15 points] Minimize the Boolean expression given below, using Boolean algebra. Use as few steps as possible. State which axiom/theorem you used next to each step. Show all steps.

(**Note:** To show complements, put a bar over literals, such as $\overline{X_1}$.) $\overline{Z = f}(X_1, X_2, X_3, X_4, X_5, X_6) = X_1 \overline{X_2} + X_2 X_3 X_4 + \overline{X_1} X_2 X_3 + X_5 X_6 + X_1 X_3 + X_5 = ?$

We immediately observe that the X_5X_6 term is redundant: $X_5X_6+X_5=X_5(1+X_6)$. Since $1+X_6=1$, the expression evaluates to X_5 .

$$Z = X_1\overline{X_2} + X_2X_3X_4 + \overline{X_1}X_2X_3 + X_1X_3 + X_5$$

$$= X_1\overline{X_2} + X_2X_3X_4 + \overline{X_1}X_2X_3 + \overline{X_1}X_3 + \overline{X_2}X_3 + X_5$$

$$= X_1\overline{X_2} + X_2X_3X_4 + X_1X_3 + \overline{X_2}X_3 + \overline{X_5}$$

$$= X_1\overline{X_2} + X_2X_3 + \overline{X_1}X_3 + \overline{X_2}$$

$$= X_1\overline{X_1} + X_1\overline{X_2} + \overline{X_1}X_3 + \overline{X_2}$$

$$= X_1\overline{X_1} + X_1\overline{X_1} + \overline{X_1}X_3 + \overline{$$

be eliminated.

QUESTION 3 (35 Points):

Note that Parts (a) and (b) below are not related.

a) [20 points]

į,

Num a b c d			b	_	_		Num	_	_	_	_	
0 0000 ✓	0,2	0	0	-	0	\checkmark	0,2,8,10	-	0	-	0	ΡI
2 0 0 1 0 🗸	0,8	_	0	0	0	✓	0,8,2,10	-	0	-	0	
<u>8 1000</u> ✓	2,10	_	0	1	0	\checkmark						
10 1 0 1 0 ✓	8,10											
<u>12 1 1 0 0</u> ✓	8,12	1	_	0	0	PI						
_ 13 1 1 0 1 ✓	12,13	1	1	0	_	PI						
15 1 1 1 1 ✓	13,15	1	1	_	1	PI						

The set of all prime implicants in SOP (Sum-of-Products) form:

$$a\overline{c}\overline{d}$$
, $ab\overline{c}$, abd , $\overline{b}\cdot\overline{d}$

Essential prime implicants: $\overline{b} \cdot \overline{d}$, abd

The essential prime implicants cover all 1-generating input combinations except 1100.

To cover 1100, we can select either $a\bar{c}\bar{d}$ or $ab\bar{c}$.

Since the cost of $ab\overline{c}$ (7) is lower than cost of $a\overline{c}\overline{d}$ (8), we select $ab\overline{c}$.

The minimal covering sum with the lowest cost:

$$f(a,b,c,d) = \overline{b} \cdot \overline{d} + abd + ab\overline{c}$$

b) [15 points]

We insert NOT gates (blue circles) to convert AND and OR gates to NOR gates without changing the function of the given circuit.

