超大型積體電路設計 VLSI Design Homework II

系所:電子所碩二

中文姓名:李聖謙

學號:111063517

授課老師:謝志成

Outline

1. Please use the combination of CMOS to sketch the transistor-level schematic and stick
diagram of the following compound gate function from those inputs A, B, C and D. (20%) 3
(a) $Y = A \cdot B \cdot C + D$
(b) $Y = (A+B) \cdot (C+D)$
(c) $Y = A \cdot C + B \cdot C'$
(d) $Y = A \oplus B \oplus C$
Discussion:
2. Based on problem 1(a),1(b), please finish DRC and LVS verification. You must attach
the pictures on your report which contain layout, DRC result and LVS result. (20%)
(a) Y = A·B·C+D
Discussion:
(b) Y = (A+B) · (C+D)
Discussion: 11
3. Run simulation to answer the following question. Using the two-transfer curve you
simulated under 180nm and 14nm process respectively in HW1, calculate the value of $V_{\rm IL}$,
$V_{\rm IH}$, $V_{\rm OL}$, $V_{\rm OH}$ and $NM_{\rm H}$ and $NM_{\rm L}$ in 3 process corners (TT, SS, FF). Please comment on the
differences. (30%)
(a) TT
(b) SS
(c) FF
Discussion: 15
4. Run simulation to answer the following question, use VDD = 1V. (30%)
(a) Please design two 2-input NAND gate
(b) Using the 2-input NAND designed in (a) with VDD = 1V
Discussion: 25

- 1. Please use the combination of CMOS to sketch the transistor-level schematic and stick diagram of the following compound gate function from those inputs A, B, C and D. (20%)
- (a) $Y = A \cdot B \cdot C + D$

Figure 1 Schematic

Figure 2 Stick diagram

(b) $Y = (A+B) \cdot (C+D)$

Figure 3 Schematic

Figure 4 Stick diagram

(c) $Y = A \cdot C + B \cdot C'$

Figure 5 Schematic

Figure 6 Stick diagram

(d) $Y = A \oplus B \oplus C$

Figure 7 Schematic

Figure 8 Stick diagra

Y = A + B + C	ABCY								
	0	0	0	0					
	0	0	ī	ı	Y = ABC + ABC' + ABC' + ABC'				
C 00 01 11 10	0	ı	0	ī	= A(BC+B'C')+ A'(BC'+B'C)				
0 0 1 0 1	0	١	ı	0	= H(BC+BC)+ H(BC+BO)				
0 1 0 1 0	ı	0	0	1					
'	ı	0	1	0					
	ı	1	o	0					
	١	ı	l	ī					

Figure 9 Simplify 3-inputs XOR

由真值表畫出卡諾圖後可得知 3-inputs XOR 的最簡布林函數為 Y=ABC+AB'C'+A'BC'+A'B'C,將 A 提出後得到 Y=A(BC+B'C')+A'(BC'+B'C)可以使整個電路的 MOS 減少使用 4 顆(2 顆 NMOS,2 顆 PMOS)。

Figure 10 Schematic(Not simplified)

- 2. Based on problem 1(a),1(b), please finish DRC and LVS verification. You must attach the pictures on your report which contain layout, DRC result and LVS result. (20%)
- (a) $Y = A \cdot B \cdot C + D$

Figure 11 Schematic

Figure 12 Layout

Figure 13 DRC

Figure 14 LVS

I. DRC:

- i. Metel and metal distance at least 0.23u
- ii. Poly and poly distance at least 0.25u
- iii. Pmos 需要用 nwell 完整的包覆起來

II. LVS

- i. Schematic 的名字要 label 好與 layout 要匹配,不只是 input 和 output, wire 的名字也要 label 好。
- ii. 在畫 schematic 時,pmos 和 nmos 的 base 端都要接在一起,而不是接到 source,之前我一直認為接到 source 可以防止 body effect,但 LVS 後才知道如果在串連的 mos 這麼做會形成多餘的節點。

(b) $Y = (A+B) \cdot (C+D)$

Figure 15 Schematic

Figure 16 Layout

Figure 17 DRC

Figure 18 LVS

I. DRC:

- i. Nwell and VDD metal distance at least 0.5u
- ii. Mos 如果是串聯形式則不需要在中間打 metal 否則 DRC 會出現空接的報錯。
- iii. 在輸出端的 inverter 使用 metal 接到 poly 上,這裡的 contact 如果與 drain 端的 metal 太近也會報錯(至少要 0.24u)。

II. LVS

- i. 如果電路有少接在 DRC 可能會通過,但 LVS 會報錯,例如開路的話在 initial number of objects 的 layout 與 source 會對不上。
- ii. 如果一開始 icfb 產生的 netlist 檔還未加入 mos 的 size 只顯示 NM, LVS 也會報錯顯示找不到 MOS。

- 3. Run simulation to answer the following question. Using the two-transfer curve you simulated under 180nm and 14nm process respectively in HW1, calculate the value of $V_{\rm IL}$, $V_{\rm IH}$, $V_{\rm OL}$, $V_{\rm OH}$ and $NM_{\rm H}$ and $NM_{\rm L}$ in 3 process corners (TT, SS, FF). Please comment on the differences. (30%)
- (a) TT

180nm:

Figure 19 180nm inverter VTC

$$V_{\rm IL} = 0.460 \, {\rm V}, \quad V_{\rm IH} = 0.544 \, {\rm V},$$

$$V_{\rm OL} = 0 \, {\rm V}, \quad V_{\rm OH} = 1 \, {\rm V}$$

$$NM_{\rm L} = V_{\rm IL} - V_{\rm OL} = 0.460 \, {\rm V},$$

$$NM_{\rm H} = V_{\rm OH} - V_{\rm IH} = 0.546 \, {\rm V}$$

14nm:

Figure 20 14nm inverter VTC

$$V_{\rm IL} = 0.356 \text{V}, \quad V_{\rm IH} = 0.445 \text{V},$$

 $V_{\rm OL} = 0 \text{V}, \quad V_{\rm OH} = 0.8 \text{V}$
 $NM_{\rm L} = V_{\rm IL} - V_{\rm OL} = 0.356 \text{V},$
 $NM_{\rm H} = V_{\rm OH} - V_{\rm IH} = 0.355 \text{V}$

(b) SS

180nm:

Figure 21 180nm inverter VTC

$$V_{\rm IL} = 0.474 \, {\rm V}, \quad V_{\rm IH} = 0.527 \, {\rm V}$$

$$V_{\rm OL} = 0 \, {\rm V}, \quad V_{\rm OH} = 1 \, {\rm V}$$

$$NM_{\rm L} = V_{\rm IL} - V_{\rm OL} = 0.474 \, {\rm V}$$

$$NM_{\rm H} = V_{\rm OH} - V_{\rm IH} = 0.473 \, {\rm V}$$

14nm:

Figure 22 14nm inverter VTC

$$V_{\rm IL} = 0.349 \, {\rm V}, \quad V_{\rm IH} = 0.451 \, {\rm V}$$
 $V_{\rm OL} = 0 \, {\rm V}, \quad V_{\rm OH} = 0.8 \, {\rm V}$
 $NM_{\rm L} = V_{\rm IL} - V_{\rm OL} = 0.349 \, {\rm V}$
 $NM_{\rm H} = V_{\rm OH} - V_{\rm IH} = 0.349 \, {\rm V}$

(c) FF

180nm:

Figure 23 180nm inverter VTC

$$V_{\rm IL} = 0.451 \text{V}, \quad V_{\rm IH} = 0.552 \text{V}$$

$$V_{\rm OL} = 0 \text{V}, \quad V_{\rm OH} = 1 \text{V}$$

$$NM_{\rm L} = V_{\rm IL} - V_{\rm OL} = 0.451 \text{V}$$

$$NM_{\rm H} = V_{\rm OH} - V_{\rm IH} = 0.448 \text{V}$$

14nm:

Figure 24 14nm inverter VTC

$$V_{\rm IL} = 0.349 \, {\rm V}, \quad V_{\rm IH} = 0.552 \, {\rm V}$$

$$V_{\rm OL} = 0 \, {\rm V}, \quad V_{\rm OH} = 0.8 \, {\rm V}$$

$$NM_{\rm L} = V_{\rm IL} - V_{\rm OL} = 0.349 \, {\rm V}$$

$$NM_{\rm H} = V_{\rm OH} - V_{\rm IH} = 0.451 \, {\rm V}$$

I. 180nm:

TT : Black SS : Blue FF : Red 由 figure19,21,23 可知在 180nm 的製程下, V_{IL} 的大小順序為 SS>TT>FF,而 V_{IH} 的大小為 FF>TT>SS,原因是因為在 SS 時模擬元件在低電壓高溫使開關速度下降,FF 模擬元件在高電壓低溫開關速度上升。

Figure 25 180nm Compare VTC (Before modify pmos size)

Figure 26 為調整 Vin = Vout 的情形,VTC 的趨勢一樣是 V_{IL} 的大小順序為 SS>TT>FF, V_{IH} 的大小為 FF>TT>SS。

Figure 26 Compare VTC (After modify pmos size, Vin=Vout)

II. 14nm

由 figure19,21,23,27 可知在 14nm 的製程下, V_{IL} 的大小順序與 180nm 相同為 SS>TT>FF,而 V_{IH} 的大小為 SS>FF>TT,與 180nm 不同。

Figure 27 14nm Compare VTC (Before modify pmos size)

Figure 28 為調整 Vin = Vout 的情形,VTC 與未調整的不同, V_{IL} 變成 TT>SS=FF, V_{IH} 也一樣,所以在 process corner 的模擬下可以發現,14nm 製程的電壓穩定度相對於 180nm 較小,讓元件在不同的環境下較不容易損壞。

Figure 28 14nm Compare VTC (After modify pmos size, Vin=Vout)

- **4.** Run simulation to answer the following question, use VDD = 1V. (30%)
- (a) Please design two 2-input NAND gate.

V(in) = 0.5 VV(Y) = 0.5 V One design with (W/L) $n=3\mu m/0.2\mu m$ and (W/L) p= your design, the other design with L=14nm, nfinn and nfinp = your design. Connect the two inputs together to run the transfer curve, the transition point should be Vout = 0.5VDD@Vin = 0.5VDD (Only in TT corner). (15%)

Figure 29 2-inputs NAND gate 180nm schematic

Table 1 180nm pMOS size

Figure 30 180nm VTC (v(a)為 v(a)與 v(b)相接)

Figure 31 2-inputs NAND gate 14nm schematic (Connect the two inputs)

nfinn	4
nfinp	1

Table 2 14nm size

Figure 32 14nm VTC

(b) Using the 2-input NAND designed in (a) with VDD = 1V.

Input signal (A or B) = 0V - 1V @ 2MHz with rising time / falling time =0.1ns and a loading capacitor Cload = 1.5pF at output.

180nm:

		Case 1		Case 2			
Input A		CLK		1V			
Input B		1V		CLK			
Corner	TT	SS	FF	TT	SS	FF	
t_{pHL}	3.1ns	7.3ns	2.4ns	3.2ns	7.2ns	2.4ns	
$t_{ m pLH}$	4ns	9ns	3ns	4ns	9ns	3ns	
$t_{\rm r}$	5.66ns	11.8ns	4.46ns	5.62ns	11.6ns	4.36ns	
t_{f}	4.13ns	9.48ns	3.31ns	4.2ns	9.5ns	3.34ns	

Table 3 180nm

由 Table3 可知在兩個 case 中 TT,SS,FF 皆是 $t_{pHL} < t_{pLH}$,在 t_r 和 t_f 的比較上也是相同的結果,Case1 和 Case2 相比,Case1 的 t_{pHL} 和 t_{pLH} 的差異不大,但 t_r 在 Case1 的時間皆大於 Case2, t_f 則相反。

在 Casel 的 NAND 中,input A 為 CLK 的頻率在在電壓零時 pmos 導通,電壓為一時 nmos 導通,input B 為直流電壓 1V,所以 pmos 一直維持截止,而 nmos 一直導通。 t_{pLH} 是 falling input 電壓 0.5V 到 rising output 電壓 0.5V 的時間,所以要計算 input A 的 pmos 的 propagation delay, t_{pLH} 則是 rising input 電壓 0.5V 到 falling output 電壓 0.5V 的時間,需要計算 contamination dealy。

在 Case2 中的 t_f 時間都相對較長一點,我推測是因為 input B 在 nmos 離 output 端較遠,所以花的時間較長,而 t_r 則是因為 pmos 距離 output 較近,所以 delay 時間較短。

TT,SS,FF 三種 coner,也可以發現因為 SS 的 mos 開闢速度較慢所以 delay 較長,FF 開闢速度較快,delay 時間較短,TT 則界在兩者之間。

Case1:

 $t_{pHL} = 3.1 ns$ $t_{pLH} = 4 ns$ $t_r = 5.66 ns$ $t_f = 4.13 ns$

Figure 33 Case1_TT (PART)

 $t_{pHL} = 7.3 \text{ns}$ $t_{pLH} = 9 \text{ns}$ $t_r = 11.8 \text{ns}$ $t_f = 9.48 \text{ns}$

Figure 34 Case1_SS (PART)

 $t_{pHL} = 2.4 \text{ns}$ $t_{pLH} = 3 \text{ns}$ $t_r = 4.46 \text{ns}$ $t_f = 3.31 \text{ns}$

Figure 35 Case1_FF (PART)

Case2:

 $t_{pHL} = 3.2 \text{ns}$ $t_{pLH} = 4 \text{ns}$ $t_r = 5.62 \text{ns}$ $t_f = 4.2 \text{ns}$

Figure 36 Case2_TT (PART)

 $t_{pHL} = 7.2 \text{ns}$ $t_{pLH} = 9 \text{ns}$ $t_r = 11.6 \text{ns}$ $t_f = 9.5 \text{ns}$

Figure 37 Case2_SS (PART)

 t_{pHL} = 2.4ns t_{pLH} = 3ns t_{r} = 4.36ns t_{f} = 3.34ns

Figure 38 Case2_FF (PART)

14nm:

		Case 1		Case 2			
Input A		CLK		1V			
Input B		1V		CLK			
Corner	TT	SS	FF	TT	SS	FF	
$t_{ m pHL}$	3.5ns	3.4ns	3.2ns	3.4ns	3.4ns	3.2ns	
$t_{ m pLH}$	11ns	9ns	9ns	11ns	9ns	9ns	
$t_{\rm r}$	14.2ns	12.9ns	12.7ns	14.2ns	12.6ns	12.7ns	
t_{f}	4.94ns	4.8ns	4.53ns	4.9ns	4.81ns	4.53ns	

Table 4 14nm

由 Table4 與 Table3 的比較可以發現,14nm 的 delay 與 180nm 相比, t_{pHL} 的 delay 值都差不多,除了 SS 下降了許多,但三種 corner 的 t_{pLH} 值都呈現上升 的趨勢, t_r 也都呈現上升的趨勢, t_f 也是 SS 下降許多 TT,FF 沒什麼區別,由此可發現,14nm 製程的模擬上,output 端的 delay 會特別的大,我認為是因為製程變小,所以輸出電容較小,使負載電容相對變大,所以會有較長的 delay。

Case1:

Figure 39 Case1 schematic

Figure 40 Case1_TT (PART)

Figure 41 Case1_SS (PART)

Figure 42 Case1_FF (PART)

Case2:

Figure 43 Case2 schematic

Figure 44 Case2_TT (PART)

Figure 45 Case2_SS (PART)

Figure 46 Case2_FF (PART)

第一次: $t_r = 5.66ns$ $t_f = 4.13ns$ 第二次: $t_r = 5.66ns$ $t_f = 4.21ns$

Figure 47 180nm Case1_TT compare

Figure 48 14nm Case1_TT compare

由 Figure 47 和 Figure 48 可以發現一個特別的現象,不管是在 180nm 還是 14nm 製程中,在 TT 時第一次 tf和 tr的時間較短,我認為是因為第一次對電容 充放電,電容是從零開始往 VDD 或 VSS,而第二次開始因為電容內已經有上次充電後殘存的反向的電荷,所以需要較長的時間充放電,這樣的情況也會出現在 SS 和 FF 中,且 SS 較嚴重,FF 較輕微。

