Shortest Path Problem

Bellman Ford Algorithm

Shortest Path Problems

- What is shortest path?
 - shortest length between two vertices for an unweighted graph:
 - smallest cost between two vertices for a weighted graph:

Shortest Path Problems

Input:

- Directed graph G = (V, E)
- Weight function $w : E \rightarrow R$
- Weight of path $p = \langle v_0, v_1, \dots, v_k \rangle$

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

• Shortest-path weight from u to v:

$$\delta(\mathbf{u}, \mathbf{v}) = \min$$
 $\begin{cases} w(\mathbf{p}) : \mathbf{u} & \stackrel{p}{\sim} \mathbf{v} \text{ if there exists a path from } \mathbf{u} \text{ to } \mathbf{v} \end{cases}$ otherwise

• Shortest path u to v is any path p such that $w(p) = \delta(u, v)$

Variants of Shortest Paths

Single-source shortest path

• G = (V, E) \Rightarrow find a shortest path from a given source vertex s to each vertex $v \in V$

Single-destination shortest path

- Find a shortest path to a given destination vertex t from each vertex v
- Reverse the direction of each edge ⇒ single-source

Single-pair shortest path

- Find a shortest path from u to v for given vertices u and v
- Solve the single-source problem

All-pairs shortest-paths

Find a shortest path from u to v for every pair of vertices u and v

Optimal Substructure of Shortest Paths

Given:

- A weighted, directed graph G = (V, E)
- A weight function w: $E \rightarrow \mathbf{R}$,

• A subpath of p: $p_{i,j} = \langle v_i, v_{i+1}, \dots, v_j \rangle$, with $1 \le i \le j \le k$

Then: \mathbf{p}_{ij} is a shortest path from \mathbf{v}_i to \mathbf{v}_j

Proof:
$$p = v_1 \xrightarrow{p_{1i}} v_i \xrightarrow{p_{ij}} v_j \xrightarrow{p_{jk}} v_k$$

$$w(p) = w(p_{1i}) + w(p_{ij}) + w(p_{jk})$$

Assume $\exists p_{ij}'$ from v_i to v_j with $w(p_{ij}') < w(p_{ij})$

$$\Rightarrow$$
 w(p') = w(p_{1i}) + w(p_{ij}') + w(p_{jk}) < w(p) contradiction!

Using BFS

Generalization of BFS to handle weighted graphs

- Direct Graph G = (V, E), edge weight $f_n : w : E \rightarrow R$
- In BFS w(e)=1 for all $e \in E$

Weight of path $p = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$ is

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

Single Source Shortest Path Problem

- Given a graph and a start vertex s
 - Determine distance of every vertex from s
 - Identify shortest paths to each vertex
 - Express concisely as a "shortest paths tree"
 - Each vertex has a pointer to a predecessor on shortest path

Triangle Inequality

Lemma 1: for a given vertex $s \in V$ and for every edge $(u,v) \in E$,

• $\delta(s,v) \le \delta(s,u) + w(u,v)$

Proof: shortest path $s \rightsquigarrow v$ is no longer than any other path.

• in particular the path that takes the shortest path $s \sim v$ and then takes cycle (u,v)

Initialization

```
Alg.: INIT (G, s)
```

- **1. for** each $v \in V$
- 2. do d[v] $\leftarrow \infty$
- 3. $\pi[v] \leftarrow NIL$
- 4. $d[s] \leftarrow 0$
- All the shortest-paths algorithms start with INIT
- Maintain d[v] for each $v \in V$
- d[v] is called the shortest-path weight estimate and it is the upper bound on $\delta(s, v)$

Relaxation

 Relaxing an edge (u, v) = testing whether we can improve the shortest path to v found so far by going through u

If d[v] > d[u] + w(u, v)we can improve the shortest path to v \Rightarrow update d[v] and $\pi[v]$

RELAX(u, v)

```
1. if d[v] > d[u] + w(u, v)

2. then d[v] \leftarrow d[u] + w(u, v)

3. \pi[v] \leftarrow u
```

- All the single-source shortest-paths algorithms
 - start by calling INIT
 - then relax edges
- The algorithms differ in the order and how many times they relax each edge (it affects the correctness and time complexity of the algorithm)

Properties of Relaxation

Algorithms differ in

- how many times they relax each edge, and
- > the order in which they relax edges

Question: How many times each edge is relaxed in BFS?

Answer: Only once!

Properties of Relaxation

Given:

- An edge weighted directed graph G = (V, E) with edge weight function $(w:E \rightarrow R)$ and a source vertex $s \in V$
- G is initialized by INIT(G, s)

```
Lemma 2: Immediately after relaxing edge (u,v), d[v] \le d[u] + w(u,v)
```

- Lemma 3: For any sequence of relaxation steps over E,
 - (a) the invariant $d[v] \ge \delta(s,v)$ is maintained
 - (b) once d[v] achieves its lower bound, it never changes.

Properties of Relaxation

Lemma 4: Let $s \sim u \rightarrow v$ be a shortest path from s to v for $some u, v \in V$

- Suppose that a sequence of relaxations including
 RELAX(u,v) were performed on E
- If $d[u] = \delta(s, u)$ at any time prior to RELAX(u, v)
- then $d[v] = \delta(s, v)$ at all times after **RELAX**(u, v)

Dijkstra's Algorithm For Shortest Paths

```
DIJKSTRA(G, s)
   INIT(G, s)
   S \leftarrow \emptyset > set of discovered nodes
   Q \leftarrow V[G]
   while Q \neq \text{do} do
       u \leftarrow EXTRACT-MIN(Q)
        S \leftarrow S \cup \{u\}
      for each v \in Adj[u] do
           RELAX(u, v) > May cause
                            > DECREASE-KEY(Q, v, d[v])
```


Bellman Ford

• Dijkstra's SSSP algorithm requires all edge weights to be non-negative.

 Bellman Ford Algorithm can handle negative weight edges. It can even detect negative cycles.

Bellman Ford — Basic Idea

- Consider each edge (u,v) and see if u offers v a cheaper path from s
 - compare d[v] to d[u] + w(u,v)
- Repeat this process |V| 1 times to ensure that accurate information propagates from s, no matter what order the edges are considered in

Bellman Ford Algorithm

- INIT(G, s);
- **for** i := 1 to |V[G]| 1 **do**
- **for** each (u, v) in E[G] **do**
- Relax(u, v)
- for each (u, v) in E[G] do
- **if** d[v] > d[u] + w(u, v) **then**
- return false
- return true

Time Complexity is O(VE).

Bellman Ford Algorithm

- First nested for-loop performs |V|-1 relaxation passes;
 relax every edge at each pass
- Last for-loop checks the existence of a negative-weight cycle reachable from s
 - So if Bellman-Ford has not converged after V(G) 1 iterations, then there cannot be a shortest path tree, so there must be a negative weight cycle.

- Converges in just 2 relaxation passes
- Values you get on each pass & how early converges depend on edge process order
- d value of a vertex may be updated more than once in a pass

Another Look

Note: This is essentially **dynamic programming**.

d(i, j) is the cost of the shortest path from s to vertex i with at most j edges in it (i.e. number of hops)

Let d(i, j) = cost of the shortest path from s to i that is at most j hops.

$$d(i, j) = \begin{cases} 0 & \text{ if } i = s \land j = 0 \\ \infty & \text{ if } i \neq s \land j = 0 \\ \min(\{d(k, j-1) + w(k, i) : i \in Adj(k)\} \cup \{d(i, j-1)\}) & \text{ if } j > 0 \end{cases}$$

	i →				
	Z	u	V	X	y
	1	2	3	4	
0	0	∞	∞	∞	∞
1	0	6	∞	7	∞
2	0	6	4	7	2
3	0	2	4	7	2
4	0	2	4	7	-2
	0 1 2 3 4				1 2 3 4

