SCHOOL OF INFORMATION TECHNOLOGY & ENGINEERING QUIZ – 3 (DIGITAL ASSIGNMENT)

ITA6004 - SOFT COMPUTING

Name of the student: KAMRAN ANSARI Duration: 10 minutes
Register number: 22 MtAO 223 Slot / Date : D2/ 6/6/2023
Mark your answers in the table given below:
Question 1 2 3 4 1 5 6 7 8 9 10
A A A A A A A A A A A A A A A A A A A
A A B G BY STY DE AN B
1. The truth values of traditional set theory is and that of fuzzy set is
a) Either 0 or 1, between 0 & 1
b) Between 0 & 1, either 0 or 1
c) Between 0 & 1, between 0 & 1, where 0 and 1 inclusive d) Either 0 or 1, either 0 or 1
d) Ethici v of 1, ethici v of 1
2. The room temperature is hot. Here the hot (use of linguistic variable is used) can be
represented by a) Fuzzy Set
b) Crisp Set
c) Fuzzy & Crisp Set
d) None of the mentioned
3. The height h(A) of a fuzzy set A is defined as
$h(A) = \sup A(x)$
$a. \qquad h(A) = 0$
b. h(A) < 0
c. h(A)=1 d. h(A)<1
4. A point of a fuzzy set A is a point $x \in X$ at which $\mu A(x) = 0.5$ a. Core
b. Support
c. Cross-over
d. α-cut
5. Consider a fuzzy set old as defined below
Old = $\{(20, 0.1), (30, 0.2), (40, 0.4), (50, 0.6), (60, 0.8), (70, 1), (80, 1)\}$
Then the alpha-cut for alpha = 0.4 for the set old will be
a. {(40,0.4)}
b. {40,50, 60, 70, 80} c. {(20, 0.1), (30, 0.2)}
d. ((20, 0), (30, 0), (40, 1), (50,1), (60, 1), (70, 1), (80, 1)}

6. if $A = \{ 0.5/2, 0.3/3, 0.4/4 \}$ then A^c is

- a. { 0.5/2, 1/3, 4/4}
- b. {0.5/2, 0.7/3, 0.4/4}
- c.{0.5/2, 0.7/3, 0.6/4}
- d. None of the above
- 7. In Lamda-cut method the value of a can be
- (a) Greater than 10
- (b) Between 1 and 10
- (c) Between 0 and 1
- (d) Any value
- 8. Which of the following is not a centroid method?
- (a) Centre of gravity method (CoG)
- (b) Centre of sum method (CoS)
- (c) Centre of area method (CoA)
- (d) Centre of Mass (CoM)
- 9. Defuzzification is done to obtain
- (a) Crisp output
- (b) The best rule to follow
- (c) Precise fuzzy value
- (d) None of the above
- 10. For a fuzzy relation R

$$R = \begin{bmatrix} 0.7 & 0.2 & 0.3 \\ 0.9 & 0.5 & 1 \\ 0.8 & 0.3 & 0.7 \end{bmatrix} \lambda \text{ -cut relation for } \lambda = 0.8 \text{ is}$$

$$a) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \quad b) \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad c) \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad d) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$