Prompt, Prefix-Tuning and Adaptors

COMP3361 — Week 9

Lingpeng Kong

Department of Computer Science, The University of Hong Kong Many materials from Stanford CS224n with special thanks!

GPT for Understanding

GPT for Understanding

Full Fine-tuning

An idea starts from initialization:

A full-supervised learning task.

Pretrained General model -> Task Specific Model

Full Fine-tuning

We fine-tune for generation task as well in the same spirit:

GPT text style transfer:

Few Shots Learning

```
Translate English to French: 

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```

Few Shots Learning

	SuperGLUI Average	E BoolQ Accuracy	CB y Accurac	CB F1	COPA Accuracy	RTE Accuracy
Fine-tuned SOTA Fine-tuned BERT-Large	89.0 69.0	91.0 77.4	96.9 83.6	93.9 75.7	94.8 70.6	92.5 71.7
GPT-3 Few-Shot	71.8	76.4	75.6	52.0	92.0	69.0
	WiC Accuracy	WSC Accuracy	MultiRC Accuracy	MultiRC F1a	ReCoRD Accuracy	ReCoRD F1
Fine-tuned SOTA Fine-tuned BERT-Large GPT-3 Few-Shot	76.1 69.6 49.4	93.8 64.6 80.1	62.3 24.1 30.5	88.2 70.0 75.4	92.5 71.3 90.2	93.3 72.0 91.1

32 examples with the context and performs no gradient updates

One-shot:

Zero-shot:

This must be the greatest movie ever!

Туре	Task	Input ([X])	Template	Answer ([Z])
	Sentiment	I love this movie.	[X] The movie is [Z].	great fantastic
Text CLS	Topics	He prompted the LM.	[X] The text is about [Z].	sports science
	Intention	What is taxi fare to Denver?	[X] The question is about [Z].	quantity city
Text-span CLS	Aspect Sentiment	Poor service but good food.	[X] What about service? [Z].	Bad Terrible
Text-pair CLS	NLI	[X1]: An old man with [X2]: A man walks	[X1]? [Z], [X2]	Yes No
Tagging	NER	[X1]: Mike went to Paris. [X2]: Paris	[X1] [X2] is a [Z] entity.	organization location
Text Generation	Summarization	Las Vegas police	[X] TL;DR : [Z]	The victim A woman
	Translation	Je vous aime.	French: [X] English: [Z]	I love you. I fancy you

Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data. The goal is a computer capable of "understanding" the contents of documents, including the contextual nuances of the language within them. The technology can then accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.

Challenges in natural language processing frequently involve speech recognition, natural language understanding, and natural language generation.

Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence, where the goal is a computer capable of "understanding" human language.

Learning is also possible?

Prefix-Tuning

Prefix-Tuning

Adaptors

Adaptors

