

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ. 2021–2022 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 9 КЛАСС

Тестовые задания

- **1.** Пусть некоторая физическая величина выражается формулой $\frac{kx^2}{F}$, где k коэффициент жёсткости, x расстояние, F сила. Эта физическая величина имеет размерность
 - А) времени
 - Б) скорости
 - В) работы
 - Г) силы
 - Д) длины
- **2.** Камешек бросили с балкона дома. Может ли он за последовательные равные промежутки времени пройти пути, равные 1 м, 1 м, 3 м, 5 м? Сопротивление воздуха отсутствует.
 - А) Может, если его бросили вертикально вверх.
 - Б) Может, если его бросили вертикально вниз.
 - В) Может, если его бросили в горизонтальном направлении.
 - Γ) Нет, такое невозможно.
- **3.** В два одинаковых котелка налиты одинаковые количества воды при одинаковой температуре. Один котелок расположен на уровне моря, а второй находится высоко в горах. Выберите правильное утверждение.
 - А) К котелку, находящемуся на уровне моря, необходимо подвести большее количество теплоты, чем к находящемуся в горах, чтобы довести воду до кипения.
 - Б) К котелку, находящемуся в горах, необходимо подвести большее количество теплоты, чем к находящемуся на уровне моря, чтобы довести воду до кипения.
 - В) К обоим котелкам необходимо подвести одинаковое количество теплоты, чтобы довести воду до кипения.

Всероссийская олимпиада школьников по физике. 2021–2022 уч. г. Муниципальный этап. 9 класс

4. Экспериментатор собрал электрическую цепь (см. рисунок), в которой один из контактов лампочки $\mathcal I$ был подключён к отрицательному полюсу батарейки. После этого он переставил лампочку таким образом, что один из её контактов оказался соединённым с положительным полюсом батарейки. Как изменится яркость свечения лампочки $\mathcal I$?

- А) увеличится
- Б) уменьшится
- В) не изменится
- Γ) ответ зависит от сопротивления резистора R
- **5.** В электрической цепи, схема которой изображена на рисунке, R = 3 кОм, показание амперметра I = 1 мА. Чему равна цена деления идеального вольтметра, если его стрелка отклонилась на 30 делений?

- А) 10 мВ/дел
- Б) 100 мВ/дел
- В) 1 В/дел
- Г) 10 В/дел
- Д) 90 В/дел

Задания с кратким ответом

Задача 6

Первую четверть пути тело прошло со скоростью в 1000 раз меньшей, чем оставшиеся 3/4 пути. Во сколько раз больше средняя скорость на всём пути, чем скорость на первой четверти пути? Ответ округлите до целого числа.

Задачи 7-8

Вася и Маша, находясь в аэропорту, становятся на траволатор (горизонтальная «дорожка»-транспортёр), который движется со скоростью 0,8 м/с. Поскольку Васе скучно, он сразу же начинает бежать вперёд, в направлении к концу траволатора и, достигнув его за 40 с, тут же разворачивается и бежит обратно к Маше.

- 7. В течение какого времени Вася приближался к Маше? Ответ выразите в секундах, округлите до целого числа.
- **8.** На каком расстоянии от начала траволатора встретятся школьники? Ответ выразите в метрах, округлите до целого числа.

Задачи 9-11

Две машины едут по прямой дороге навстречу друг другу с одинаковыми скоростями. Дорога проходит через мост длиной 600 м, и каждая машина въезжает на мост со своей стороны. На мосту скорости машин тоже одинаковы, но меньше, чем вне моста. На графике показана зависимость расстояния L между машинами от времени t. К сожалению, график был обрезан слева, и числа на вертикальной оси не сохранились.

- **9.** Найдите скорость машин на мосту. Ответ выразите в км/ч, округлите до целого числа.
- **10.** Чему равна скорость машин вне моста? Ответ выразите в км/ч, округлите до целого числа.
- **11.** Найдите расстояние между машинами в начальный момент времени. Ответ выразите в м, округлите до целого числа.

Задача 12

Однажды Скрудж Макдак нашёл необычное сокровище, которое снаружи выглядело как куб, сделанный из чистого золота. Но оказалось, что внутри золотого куба есть полость, тоже в форме куба, заполненная серебром. Средняя плотность сокровища оказалась равной $12000~{\rm kr/m^3}$, тогда как плотность золота равна $19300~{\rm kr/m^3}$, а плотность серебра $10500~{\rm kr/m^3}$. Стенки золотой части сокровища имеют везде одинаковую толщину h. Найдите отношение толщины стенок h к длине ребра L всего сокровища. Ответ округлите до сотых долей.

Задачи 13-15

На край симметричной пустой тумбочки, стоящей на двух опорах, положили небольшой однородный брусок массой 1 кг, как показано на рисунке. Сила давления правой опоры тумбочки на пол в 1,2 раза больше силы давления левой опоры на пол.

- **13.** Найдите массу тумбочки. Ответ выразите в кг, округлите до целого числа.
- **14.** Какое среднее давление оказывает тумбочка на пол, если площадь сечения каждой опоры равна 40 см^2 ? Ускорение свободного падения равно 10 м/c^2 . Ответ выразите в Па, округлите до целого числа.
- **15.** Брусок какой массы нужно дополнительно положить на левый край тумбочки, чтобы сила давления правой опоры тумбочки на пол стала в 1,2 раза меньше силы давления левой опоры на пол? Ответ выразите в кг, округлите до десятых долей.

Задачи 16-18

К одному концу невесомой нити прикреплён железный куб объёмом 1 дм³, а к другому концу прикреплено очень лёгкое пластиковое ведро, в которое налита вода. Нить перекинута через блок, и система подвешена так, как показано на рисунке. При этом железный куб полностью погружён в воду и не касается стенок и дна ведра, а система находится в равновесии. Трение отсутствует. Плотность воды 1 г/см³, плотность железа 7,8 г/см³.

- **16.** Сколько литров воды находится в ведре? Ответ округлите до десятых долей.
- 17. Что произойдёт, если налить в ведро ещё немного воды?
 - А) Ведро и куб останутся на своих местах.
 - Б) Ведро будет двигаться вверх, куб вниз, пока система не придёт в равновесие.
 - В) Ведро будет двигаться вниз, куб вверх, пока система не придёт в равновесие.
- 18. Что произойдёт, если из ведра испарится немного воды?
 - А) Ведро и куб останутся на своих местах.
 - Б) Ведро будет двигаться вверх, куб вниз, пока система не придёт в равновесие.
 - В) Ведро будет двигаться вниз, куб вверх, пока система не придёт в равновесие.

Задача 19

В теплоизолированном сосуде сначала смешивают три порции воды массами 100 г, 200 г и 300 г с начальными температурами 3 °C, 80 °C и 60 °C соответственно. После установления теплового равновесия в сосуд добавляют две новые порции воды — массой 500 г при температуре 30 °C и массой 400 г при температуре 80 °C. Определите конечную температуру в сосуде. Вода из сосуда не выливается, теплоёмкостью сосуда и потерями теплоты можно пренебречь. Ответ выразите в градусах Цельсия, округлите до целого числа.

Задачи 20-21

Участок цепи, схема которого показана на рисунке, состоит из семи одинаковых резисторов сопротивлением 420 Ом каждый и идеальных соединительных проводов. Через этот участок течёт постоянный ток силой I = 100 мA.

- **20.** Какое напряжение покажет идеальный вольтметр, если его выводы подключить к точкам B и G? Вольтметр показывает напряжение без учёта знака. Ответ выразите в вольтах, округлите до целого числа.
- 21. Какая тепловая мощность выделяется во всём участке цепи? Ответ выразите в ваттах, округлите до десятых долей.

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ. 2021–2022 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 9 КЛАСС

Решения и критерии оценивания

Тестовые задания

- **1.** Пусть некоторая физическая величина выражается формулой $\frac{kx^2}{F}$, где k коэффициент жёсткости, x расстояние, F сила. Эта физическая величина имеет размерность
 - А) времени
 - Б) скорости
 - В) работы
 - Г) силы
 - Д) длины
- **2.** Камешек бросили с балкона дома. Может ли он за последовательные равные промежутки времени пройти пути, равные 1 м, 1 м, 3 м, 5 м? Сопротивление воздуха отсутствует.
 - А) Может, если его бросили вертикально вверх.
 - Б) Может, если его бросили вертикально вниз.
 - В) Может, если его бросили в горизонтальном направлении.
 - Г) Нет, такое невозможно.
- **3.** В два одинаковых котелка налиты одинаковые количества воды при одинаковой температуре. Один котелок расположен на уровне моря, а второй находится высоко в горах. Выберите правильное утверждение.
 - А) К котелку, находящемуся на уровне моря, необходимо подвести большее количество теплоты, чем к находящемуся в горах, чтобы довести воду до кипения.
 - Б) К котелку, находящемуся в горах, необходимо подвести большее количество теплоты, чем к находящемуся на уровне моря, чтобы довести воду до кипения.
 - В) К обоим котелкам необходимо подвести одинаковое количество теплоты, чтобы довести воду до кипения.

4. Экспериментатор собрал электрическую цепь (см. рисунок), в которой один из контактов лампочки \mathcal{I} был подключён к отрицательному полюсу батарейки. После этого он переставил лампочку таким образом, что один из её контактов оказался соединённым с положительным полюсом батарейки. Как изменится яркость свечения лампочки \mathcal{I} ?

- А) увеличится
- Б) уменьшится
- В) не изменится
- Γ) ответ зависит от сопротивления резистора R
- **5.** В электрической цепи, схема которой изображена на рисунке, R = 3 кОм, показание амперметра I = 1 мА. Чему равна цена деления идеального вольтметра, если его стрелка отклонилась на 30 делений?

- А) 10 мВ/дел
- Б) 100 мВ/дел
- В) 1 В/дел
- Г) 10 В/дел
- Д) 90 В/дел

Ответы:	1	2	3	4	5
	Л	A	A	В	Б

По 2 балла за каждый правильный ответ. Максимум за тестовые задания 10 баллов.

Задания с кратким ответом

Задача 6

Первую четверть пути тело прошло со скоростью в 1000 раз меньшей, чем оставшиеся 3/4 пути. Во сколько раз больше средняя скорость на всём пути, чем скорость на первой четверти пути? Ответ округлите до целого числа. (5 баллов)

Ответ: 4

Максимум за задачу 5 баллов.

Задачи 7-8

Вася и Маша, находясь в аэропорту, становятся на траволатор (горизонтальная «дорожка»-транспортёр), который движется со скоростью 0,8 м/с. Поскольку Васе скучно, он сразу же начинает бежать вперёд, в направлении к концу траволатора и, достигнув его за 40 с, тут же разворачивается и бежит обратно к Маше.

- **7.** В течение какого времени Вася приближался к Маше? Ответ выразите в секундах, округлите до целого числа. (**4 балла**)
- **8.** На каком расстоянии от начала траволатора встретятся школьники? Ответ выразите в метрах, округлите до целого числа. (**5 баллов**)

Ответ:

7	8
40	64

Максимум за задачу 9 баллов.

Задачи 9-11

Две машины едут по прямой дороге навстречу друг другу с одинаковыми скоростями. Дорога проходит через мост длиной 600 м, и каждая машина въезжает на мост со своей стороны. На мосту скорости машин тоже одинаковы, но меньше, чем вне моста. На графике показана зависимость расстояния L между машинами от времени t. К сожалению, график был обрезан слева, и числа на вертикальной оси не сохранились.

Всероссийская олимпиада школьников по физике. 2021–2022 уч. г. Муниципальный этап. 9 класс

- **9.** Найдите скорость машин на мосту. Ответ выразите в км/ч, округлите до целого числа. (**5 баллов**)
- **10.** Чему равна скорость машин вне моста? Ответ выразите в км/ч, округлите до целого числа. (**6 баллов**)
- **11.** Найдите расстояние между машинами в начальный момент времени. Ответ выразите в м, округлите до целого числа. **(4 балла)**

Ответ:

9	10	11
45	90	1800

Максимум за задачу 15 баллов.

Задача 12

Однажды Скрудж Макдак нашёл необычное сокровище, которое снаружи выглядело как куб, сделанный из чистого золота. Но оказалось, что внутри золотого куба есть полость, тоже в форме куба, заполненная серебром. Средняя плотность сокровища оказалась равной 12000 кг/м^3 , тогда как плотность золота равна 19300 кг/м^3 , а плотность серебра 10500 кг/м^3 . Стенки золотой части сокровища имеют везде одинаковую толщину h. Найдите отношение толщины стенок h к длине ребра L всего сокровища. Ответ округлите до сотых долей. (6 баллов)

Ответ: 0,03

Максимум за задачу 6 баллов.

Задачи 13-15

На край симметричной пустой тумбочки, стоящей на двух опорах, положили небольшой однородный брусок массой 1 кг, как показано на рисунке. Сила давления правой опоры тумбочки на пол в 1,2 раза больше силы давления левой опоры на пол.

- 13. Найдите массу тумбочки. Ответ выразите в кг, округлите до целого числа. (4 балла)
- 14. Какое среднее давление оказывает тумбочка на пол, если площадь сечения каждой опоры равна 40 см²? Ускорение свободного падения равно 10 м/с². Ответ выразите в Па, округлите до целого числа. (3 балла)
- 15. Брусок какой массы нужно дополнительно положить на левый край тумбочки, чтобы сила давления правой опоры тумбочки на пол стала в 1,2 раза меньше силы давления левой опоры на пол? Ответ выразите в кг, округлите до десятых долей. (6 баллов)

Ответ:	13	

13	14	15
10	13750	2,2

Максимум за задачу 13 баллов.

Задачи 16-18

К одному концу невесомой нити прикреплён железный куб объёмом 1 дм³, а к другому концу прикреплено очень лёгкое пластиковое ведро, в которое налита вода. Нить перекинута через блок, и система подвешена так, как показано на рисунке. При этом железный куб полностью погружён в воду и не касается стенок и дна ведра, а система находится в равновесии. Трение отсутствует. Плотность воды 1 г/см³, плотность железа 7,8 г/см³.

Всероссийская олимпиада школьников по физике. 2021–2022 уч. г. Муниципальный этап. 9 класс

- **16.** Сколько литров воды находится в ведре? Ответ округлите до десятых долей. **(7 баллов)**
- 17. Что произойдёт, если налить в ведро ещё немного воды? (2 балла)
 - А) Ведро и куб останутся на своих местах.
 - Б) Ведро будет двигаться вверх, куб вниз, пока система не придёт в равновесие.
 - В) Ведро будет двигаться вниз, куб вверх, пока система не придёт в равновесие.
- 18. Что произойдёт, если из ведра испарится немного воды? (2 балла)
 - А) Ведро и куб останутся на своих местах.
 - Б) Ведро будет двигаться вверх, куб вниз, пока система не придёт в равновесие.
 - В) Ведро будет двигаться вниз, куб вверх, пока система не придёт в равновесие.

"	TD	٦.
` ,	ın	

16	17	18
5,8	В	Б

Максимум за задачу 11 баллов.

Задача 19

В теплоизолированном сосуде сначала смешивают три порции воды массами 100 г, 200 г и 300 г с начальными температурами 3 °C, 80 °C и 60 °C соответственно. После установления теплового равновесия в сосуд добавляют две новые порции воды — массой 500 г при температуре 30 °C и массой 400 г при температуре 80 °C. Определите конечную температуру в сосуде. Вода из сосуда не выливается, теплоёмкостью сосуда и потерями теплоты можно пренебречь. Ответ выразите в градусах Цельсия, округлите до целого числа. (7 баллов)

Ответ: 54

Максимум за задачу 7 баллов.

Задачи 20-21

Участок цепи, схема которого показана на рисунке, состоит из семи одинаковых резисторов сопротивлением 420 Ом каждый и идеальных соединительных проводов. Через этот участок течёт постоянный ток силой I = 100 мA.

- **20.** Какое напряжение покажет идеальный вольтметр, если его выводы подключить к точкам B и G? Вольтметр показывает напряжение без учёта знака. Ответ выразите в вольтах, округлите до целого числа. (5 баллов)
- **21.** Какая тепловая мощность выделяется во всём участке цепи? Ответ выразите в ваттах, округлите до десятых долей. **(4 балла)**

Ответ:	20	21
	6	0,6

Максимум за задачу 9 баллов.

Всего за работу – 85 баллов.

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ. 2021–2022 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 10 КЛАСС

Тестовые задания

1. Автомобиль движется по горизонтальной круговой трассе с переменной скоростью. Векторы ускорения автомобиля в пяти различных точках показаны на рисунке (четыре ненулевых вектора имеют одинаковую длину). В какой из этих точек скорость автомобиля наибольшая по модулю?

- A) 1
- Б) 2
- B) 3
- Γ) 4
- Д) 5

2. Человек хочет перебросить мяч через тонкую вертикальную стену высотой *h*. Человека интересует, на какое максимальное расстояние он может отойти от стены, если модуль начальной скорости мяча при броске фиксирован и равен *V*. Модуль ускорения свободного падения равен *g*, бросок совершается с уровня земли. Проанализируйте приведённые ниже варианты ответов к этой задаче и укажите, какой из них может быть правильным.

- A) $\frac{gh^2}{V^2}$
- Б) $\frac{V^2}{g}$
- $B) \frac{V^4}{g^2h}$
- Γ) $\sqrt{\frac{V^2h}{g}}$
- Д) $\frac{V^2}{g}\sqrt{1-\frac{2gh}{V^2}}$
- E) $\frac{V^2}{g} \cdot \frac{V^2}{V^2 + 2gh}$

Всероссийская олимпиада школьников по физике. 2021–2022 уч. г. Муниципальный этап. 10 класс

3. Деревянный брусок массой 2m прикрепляют к подвешенной вертикально лёгкой пружине (рисунок слева), в результате чего её длина увеличивается на L_1 . Затем брусок распиливают на две одинаковые части, массы которых равны m, а пружину разрезают пополам. После этого собирают новую конструкцию, показанную на рисунке справа. Суммарная деформация пружин во втором случае оказалась равной L_2 . Выберите правильное утверждение.

- A) $L_1 = L_2$
- Б) $L_1 > L_2$
- B) $L_1 < L_2$
- **4.** Ртутные термометры, предназначенные для измерения высоких температур, имеют запаянные капилляры, в которых пространство над столбиком ртути заполнено азотом при давлении до 20 атмосфер. Это сделано для того, чтобы избежать:
 - А) испарения
 - Б) конденсации
 - В) кипения
 - Г) кристаллизации
 - Д) ионизации

Всероссийская олимпиада школьников по физике. 2021–2022 уч. г. Муниципальный этап. 10 класс

5. Электрическая цепь состоит из четырёх резисторов, идеального источника питания с напряжением на выводах 120 В и идеального вольтметра. Что показывает вольтметр? Сопротивления резисторов указаны на схеме (см. рисунок).

- A) 20 B
- Б) 30 B
- B) 40 B
- Γ) 50 B
- Д) 70 В

Задания с кратким ответом

Задачи 6-7

На участке AB река имеет ширину 240 м и глубину 3 м, а на участке CD — ширину 120 м и глубину 5 м. Во время ледохода поверхность реки на участке AB покрыта мелкими льдинами на 48%. Считайте, что скорость движения воды одинакова во всех точках рассматриваемого поперечного сечения реки.

- **6.** Какая часть поверхности реки покрыта льдинами на втором участке CD? Ответ выразите в процентах, округлите до целого числа.
- **7.** Какой должна быть доля покрытия льдом первого участка, чтобы на реке возник ледовый затор, то есть не осталось свободной поверхности воды? Ответ выразите в процентах, округлите до целого числа.

Задача 8

Наполненный воздухом сферический мячик, который погружён глубоко в воду, всплывает с постоянной скоростью 50 см/с, а такой же по размерам сплошной резиновый шарик тонет со скоростью 40 см/с. С какой установившейся скоростью они будут двигаться в воде, если их соединить легкой нерастяжимой нитью? Силу сопротивления воды при движении в ней считайте пропорциональной скоростям движения тел, а силу Архимеда – одинаковой как в покое, так и при движении. Ответ выразите в см/с, округлите до целого числа.

Задача 9

Сосуд с водой при температуре 0 °С внесли в большую комнату с температурой воздуха 22 °С. За 15 минут температура воды поднялась до 2 °С. Если в такой же сосуд положить такую же массу льда при температуре 0 °С, то он растает за 10 часов. Пользуясь этими данными, определите удельную теплоту плавления льда. Удельная теплоёмкость воды 4200 Дж/(кг⋅°С), теплоёмкость сосуда считайте пренебрежимо малой. Ответ выразите в кДж/кг, округлите до целого числа.

Задача 10

Один литр воды налили в электрочайник мощностью 2 кВт и включили его. Сразу после того, как вода начинает интенсивно кипеть, чайник автоматически выключается, однако кипение продолжается ещё 15 с с постепенным уменьшением скорости выкипания воды. Ещё через 30 с (после полного прекращения кипения) температура воды в чайнике снижается на 1 °С. Считая, что скорость выкипания воды после выключения чайника равномерно уменьшается до нулевого значения, определите среднюю температуру нагревательного элемента чайника в момент его выключения. Ответ выразите в градусах Цельсия, округлите до целого числа. Масса нагревательного элемента 200 г, его удельная теплоёмкость 500 Дж/(кг·°С), удельная теплоёмкость воды 4200 Дж/(кг·°С). Считайте, что образовавшийся при кипении пар сразу же полностью покидает чайник, но полная масса выкипевшей воды намного меньше массы воды, налитой в чайник.

Задачи 11-12

Тело движется из состояния покоя вдоль прямой с постоянным ускорением. За некоторое время t_0 после начала движения тело проходит 1 м. Расстояния, проходимые телом за n-ую и (n+1)-ую секунды после этого, относятся как соответствующие натуральные числа: $\frac{S_n}{S_{n+1}} = \frac{n}{n+1}$.

- **11.** Чему равно время t_0 ? Ответ выразите в секундах, округлите до десятых долей.
- **12.** Найдите модуль ускорения a тела. Ответ выразите в м/с², округлите до целого числа.

Задачи 13-14

Система, изображённая на рисунке, состоит из лёгких блоков, невесомых и нерастяжимых нитей и двух грузов массами m=1 кг и 2m. Модуль ускорения свободного падения равен 10 m/c^2 .

- **13.** Чему равен модуль ускорения левого груза? Ответ выразите в м/c^2 , округлите до десятых долей.
- **14.** Чему равен модуль ускорения правого груза? Ответ выразите в M/c^2 , округлите до десятых долей.

Задачи 15-16

Вследствие начального толчка изначально покоившееся крошечное тело начинает движение из точки A гладкой полусферы радиусом 1 м, проезжает её вершину и достигает точки B. Точки A и B поверхности полусферы лежат в одной горизонтальной плоскости. Центральный угол $\alpha = 60^{\circ}$ Модуль ускорения свободного падения равен 10 м/c^2 .

- **15.** Найдите минимально возможное значение модуля начальной скорости тела. Ответ выразите в м/с, округлите до сотых долей.
- **16.** Найдите максимально возможное значение модуля начальной скорости тела. Ответ выразите в м/с, округлите до сотых долей.

Задачи 17-18

Электрическую цепь, схема которой изображена на рисунке, собрали из четырёх резисторов с сопротивлением 2 кОм каждый, одного резистора с сопротивлением 1 кОм, трёх идеальных источников питания с напряжениями на выводах 9 В и 12 В и идеальных проводов.

- **17.** Какой ток протекает через резистор с сопротивлением 1 кОм? Ответ выразите в мА, округлите до десятых долей.
- **18.** Какой ток протекает через источник питания с напряжением 12 В? Ответ выразите в мА, округлите до десятых долей.

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ. 2021–2022 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 10 КЛАСС

Решения и критерии оценивания

Тестовые задания

1. Автомобиль движется по горизонтальной круговой трассе с переменной скоростью. Векторы ускорения автомобиля в пяти различных точках показаны на рисунке (четыре ненулевых вектора имеют одинаковую длину). В какой из этих точек скорость автомобиля наибольшая по модулю? (2 балла)

- A) 1
- Б) 2
- B) 3
- Γ) 4
- Д) 5

2. Человек хочет перебросить мяч через тонкую вертикальную стену высотой *h*. Человека интересует, на какое максимальное расстояние он может отойти от стены, если модуль начальной скорости мяча при броске фиксирован и равен *V*. Модуль ускорения свободного падения равен *g*, бросок совершается с уровня земли. Проанализируйте приведённые ниже варианты ответов к этой задаче и укажите, какой из них может быть правильным. **(5 баллов)**

- A) $\frac{gh^2}{V^2}$
- $\mathbf{E}) \frac{V^2}{g}$
- $B) \frac{V^4}{g^2h}$
- Γ) $\sqrt{\frac{V^2h}{g}}$
- Д) $\frac{V^2}{g}\sqrt{1-\frac{2gh}{V^2}}$
- E) $\frac{V^2}{g} \cdot \frac{V^2}{V^2 + 2gh}$

Всероссийская олимпиада школьников по физике. 2021–2022 уч. г. Муниципальный этап. 10 класс

3. Деревянный брусок массой 2m прикрепляют к подвешенной вертикально лёгкой пружине (рисунок слева), в результате чего её длина увеличивается на L_1 . Затем брусок распиливают на две одинаковые части, массы которых равны m, а пружину разрезают пополам. После этого собирают новую конструкцию, показанную на рисунке справа. Суммарная деформация пружин во втором случае оказалась равной L_2 . Выберите правильное утверждение. (**2 балла**)

- A) $L_1 = L_2$
- Б) $L_1 > L_2$
- B) $L_1 < L_2$
- **4.** Ртутные термометры, предназначенные для измерения высоких температур, имеют запаянные капилляры, в которых пространство над столбиком ртути заполнено азотом при давлении до 20 атмосфер. Это сделано для того, чтобы избежать: **(2 балла)**
 - А) испарения
 - Б) конденсации
 - В) кипения
 - Г) кристаллизации
 - Д) ионизации

Всероссийская олимпиада школьников по физике. 2021–2022 уч. г. Муниципальный этап. 10 класс

5. Электрическая цепь состоит из четырёх резисторов, идеального источника питания с напряжением на выводах 120 В и идеального вольтметра. Что показывает вольтметр? Сопротивления резисторов указаны на схеме (см. рисунок). (3 балла)

- A) 20 B
- Б) 30 В
- B) 40 B
- Γ) 50 B
- Д) 70 В

Ответы:

1	2	3	4	5
В	Д	Б	В	Γ

Максимум за тестовые задания 14 баллов.

Задания с кратким ответом

Задачи 6-7

На участке AB река имеет ширину 240 м и глубину 3 м, а на участке CD — ширину 120 м и глубину 5 м. Во время ледохода поверхность реки на участке AB покрыта мелкими льдинами на 48%. Считайте, что скорость движения воды одинакова во всех точках рассматриваемого поперечного сечения реки.

- **6.** Какая часть поверхности реки покрыта льдинами на втором участке *CD*? Ответ выразите в процентах, округлите до целого числа. **(5 баллов)**
- 7. Какой должна быть доля покрытия льдом первого участка, чтобы на реке возник ледовый затор, то есть не осталось свободной поверхности воды? Ответ выразите в процентах, округлите до целого числа. (3 балла)

Ответ:	
--------	--

6	7
80	60

Максимум за задачу 8 баллов.

Задача 8

Наполненный воздухом сферический мячик, который погружён глубоко в воду, всплывает с постоянной скоростью 50 см/с, а такой же по размерам сплошной резиновый шарик тонет со скоростью 40 см/с. С какой установившейся скоростью они будут двигаться в воде, если их соединить легкой нерастяжимой нитью? Силу сопротивления воды при движении в ней считайте пропорциональной скоростям движения тел, а силу Архимеда — одинаковой как в покое, так и при движении. Ответ выразите в см/с, округлите до целого числа. (6 баллов)

Ответ: 5 *Максимум за задачу 6 баллов.*

Всероссийская олимпиада школьников по физике. 2021–2022 уч. г. Муниципальный этап. 10 класс

Задача 9

Сосуд с водой при температуре 0 °С внесли в большую комнату с температурой воздуха 22 °С. За 15 минут температура воды поднялась до 2 °С. Если в такой же сосуд положить такую же массу льда при температуре 0 °С, то он растает за 10 часов. Пользуясь этими данными, определите удельную теплоту плавления льда. Удельная теплоёмкость воды $4200 \, \text{Дж/(кг.°C)}$, теплоёмкость сосуда считайте пренебрежимо малой. Ответ выразите в кДж/кг, округлите до целого числа. (6 баллов)

Ответ: 352

Максимум за задачу 6 баллов.

Задача 10

Один литр воды налили в электрочайник мощностью 2 кВт и включили его. Сразу после того, вода начинает интенсивно кипеть, как автоматически выключается, однако кипение продолжается ещё 15 с с постепенным уменьшением скорости выкипания воды. Ещё через 30 с (после полного прекращения кипения) температура воды в чайнике снижается на 1 °C. Считая, что скорость выкипания воды после выключения чайника равномерно уменьшается до нулевого значения, определите среднюю температуру нагревательного элемента чайника в момент его выключения. Ответ выразите в градусах Цельсия, округлите до целого числа. нагревательного элемента 200 г, его удельная теплоёмкость 500 Дж/(кг \cdot °С), удельная теплоёмкость воды 4200 Дж/(кг \cdot °С). Считайте, что образовавшийся при кипении пар сразу же полностью покидает чайник, но полная масса выкипевшей воды намного меньше массы воды, налитой в чайник. (7 баллов)

Ответ: [260; 261]

Максимум за задачу 7 баллов.

Задачи 11-12

Тело движется из состояния покоя вдоль прямой с постоянным ускорением. За некоторое время t_0 после начала движения тело проходит 1 м. Расстояния, проходимые телом за n-ую и (n+1)-ую секунды после этого, относятся как соответствующие натуральные числа: $\frac{S_n}{S_{n+1}} = \frac{n}{n+1}$.

11. Чему равно время t_0 ? Ответ выразите в секундах, округлите до десятых долей. (**5 баллов**)

12. Найдите модуль ускорения a тела. Ответ выразите в м/с², округлите до целого числа. (**3 балла**)

Ответ: 11 12 0,5 8

Максимум за задачу 8 баллов.

Задачи 13-14

Система, изображённая на рисунке, состоит из лёгких блоков, невесомых и нерастяжимых нитей и двух грузов массами m=1 кг и 2m. Модуль ускорения свободного падения равен 10 м/c^2 .

- **13.** Чему равен модуль ускорения левого груза? Ответ выразите в м/c^2 , округлите до десятых долей. **(4 балла)**
- **14.** Чему равен модуль ускорения правого груза? Ответ выразите в м/c^2 , округлите до десятых долей. **(4 балла)**

Ответ:

13	14
2,1	8,5

Максимум за задачу 8 баллов.

Задачи 15-16

Вследствие начального толчка изначально покоившееся крошечное тело начинает движение из точки A гладкой полусферы радиусом 1 м, проезжает её вершину и достигает точки B. Точки A и B поверхности полусферы лежат в одной горизонтальной плоскости. Центральный угол $\alpha = 60^{\circ}$ Модуль ускорения свободного падения равен 10 м/c^2 .

- **15.** Найдите минимально возможное значение модуля начальной скорости тела. Ответ выразите в м/с, округлите до сотых долей. **(2 балла)**
- **16.** Найдите максимально возможное значение модуля начальной скорости тела. Ответ выразите в м/с, округлите до сотых долей. **(4 балла)**

Ответ:

15	16
1,64	2,94

Максимум за задачу 6 баллов.

Задачи 17-18

Электрическую цепь, схема которой изображена на рисунке, собрали из четырёх резисторов с сопротивлением 2 кОм каждый, одного резистора с сопротивлением 1 кОм, трёх идеальных источников питания с напряжениями на выводах 9 В и 12 В и идеальных проводов.

- **17.** Какой ток протекает через резистор с сопротивлением 1 кОм? Ответ выразите в мА, округлите до десятых долей. **(4 балла)**
- **18.** Какой ток протекает через источник питания с напряжением 12 В? Ответ выразите в мА, округлите до десятых долей. (**3 балла**)

Ответ:

17	18
1,5	4,5

Максимум за задачу 7 баллов.

Всего за работу – 70 баллов.

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ. 2021–2022 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 11 КЛАСС

Тестовые задания

- **1.** Камешек бросили с балкона дома. Может ли он за последовательные равные промежутки времени пройти пути, равные 1 м, 1 м, 3 м, 5 м? Сопротивление воздуха отсутствует.
 - А) Может, если его бросили в горизонтальном направлении.
 - Б) Может, если его бросили вертикально вниз.
 - В) Может, если его бросили вертикально вверх.
 - Γ) Нет, такое невозможно.
- **2.** На горизонтальном столе покоится в однородном поле силы тяжести тело массой m. На него начинает действовать постоянная вертикальная сила F > mg. Какую работу A_F совершит эта сила \vec{F} к тому моменту, когда тело поднимется на высоту h?

- A) $A_F = mgh$
- $\overrightarrow{\mathbf{b}}$) $A_F = -mgh$
- B) $A_F = Fh$
- Γ) $A_F = (F mg)h$

Всероссийская олимпиада школьников по физике. 2021–2022 уч. г. Муниципальный этап. 11 класс

3. Коэффициент жёсткости резинового стержня массой m равен k. На какую величину ΔL изменится длина этого стержня, если поместить его на гладкую горизонтальную поверхность и подействовать на конец стержня постоянной силой F, направленной вдоль оси стержня?

A)
$$\Delta L < \frac{F}{2k}$$

$$\Delta L = \frac{F}{2k}$$

A)
$$\Delta L = \frac{F}{2k}$$

B) $\frac{F}{2k} < \Delta L < \frac{F}{k}$
 $\Delta L = \frac{F}{k}$
 $\Delta L = \frac{F}{k}$

Д) $\Delta L > \frac{F}{k}$

$$\Delta L = \frac{F}{k}$$

$$\Delta L > \frac{F}{k}$$

4. С постоянным количеством идеального газа совершается изотермический процесс. На рисунке изображён график, который показывает изменение некоторой физической величины в зависимости от плотности р газа в этом процессе. Укажите эту физическую величину.

- A) давление p
- \mathbf{F}) объём V
- B) macca m
- Γ) температура T
- \mathcal{I}) внутренняя энергия U

Всероссийская олимпиада школьников по физике. 2021–2022 уч. г. Муниципальный этап. 11 класс

5. Луч падает под углом α на прозрачную плоскопараллельную пластинку и отражается от её верхней и нижней поверхностей. Как изменится расстояние Δx между отражёнными лучами, если: 1 – увеличить толщину пластинки d; 2 – увеличить показатель преломления n пластинки? (\uparrow – увеличится, \downarrow – уменьшится).

- A) $1 \uparrow$, $2 \uparrow$
- Б) $1 \downarrow$, $2 \uparrow$
- B) $1 \uparrow$, $2 \downarrow$
- Γ) $1-\downarrow$, $2-\downarrow$
- Д) 1 и 2 не изменится

Задания с кратким ответом

Задачи 6-7

На горизонтальную ленту транспортёра шириной 3 м, движущуюся с постоянной скоростью 3 м/с, попадает небольшая шайба, двигавшаяся перпендикулярно ленте со скоростью 4 м/с по гладкой горизонтальной поверхности, находящейся на таком же уровне, что и лента транспортёра. Между шайбой и лентой имеется (сухое) трение. В тот момент, когда шайба пересекала середину ленты, проекция её скорости на направление, перпендикулярное направлению движения ленты, была равна 2 м/c. Ускорение свободного падения равно 10 м/c^2 .

- **6.** На каком расстоянии от середины ленты шайба перестанет скользить по ленте? Ответ выразите в м, округлите до целого числа.
- 7. Каков коэффициент трения шайбы о ленту? Ответ округлите до десятых долей.

Задача 8

На горизонтальной поверхности стоит на колёсиках клин массой 2 кг, прислонённый к вертикальной стене. Внутри клина сделан канал с гладкими стенками. В этот канал влетает небольшой шарик массой 500 г, скорость которого в момент попадания в канал направлена вертикально и равна 3 м/с. Входной и выходной участки канала вертикальны. Горизонтальный участок канала расположен на 30 см ниже уровня входного отверстия. С какой скоростью будет двигаться клин после вылета шарика из выходного отверстия канала? Ускорение свободного падения равно 10 м/с². Ответ выразите в м/с и округлите до десятых долей.

Задачи 9-10

База отдыха находится в центре круглого острова, радиус которого равен 20 км. Параллельно поверхности Земли с запада на восток дует ветер со скоростью V = 14 м/c. Вертолёт с группой отдыхающих отправляется с базы на побережье. Скорость вертолёта относительно неподвижного воздуха равна 50 м/c и остаётся постоянной во время всего перелёта.

- 9. Найдите максимальное время перелёта вертолёта до побережья и обратно. Ответ выразите в секундах, округлите до целого числа.
- **10.**Найдите минимальное время перелёта вертолёта до побережья и обратно. Ответ выразите в секундах, округлите до целого числа.

Задача 11

В цилиндре под подвижным невесомым поршнем находятся один моль жидкой воды и два моля её пара. Над поршнем находится атмосферный воздух. Какое количество теплоты следует передать содержимому цилиндра, чтобы увеличить его объём в два раза? Цилиндр и поршень не проводят теплоту. Удельная теплота парообразования воды 2,3 МДж/кг, молярная теплоёмкость водяного пара при постоянном атмосферном давлении 10^5 Па равна $4R \approx 33,2$ Дж/(моль·К). Ответ выразите в кДж, округлите до целого числа.

Задачи 12-15

К выводам батарейки с ЭДС 6 В подключены три соединённые параллельно гибкие проволочки — красная, жёлтая и зелёная. По ним текут токи силой 5 А (по красной), 4 А (по жёлтой) и 3 А (по зелёной). Проволочки не выпрямлены, а смяты комком, но поскольку они покрыты изолирующим лаком, то в местах их механических контактов электрических контактов нет. Вся эта конструкция находится в однородном магнитном поле с индукцией 2 Тл. На всю красную проволочку (от места её контакта с «+» выводом батарейки до места контакта с «—» выводом батарейки действует сила Ампера, модуль которой равен 1 Н.

- 12. Какая сила Ампера действует на жёлтую проволочку? Ответ выразите в H, округлите до десятых долей.
- 13. Какая сила Ампера действует на зелёную проволочку? Ответ выразите в H, округлите до десятых долей.
- **14.**Какая сила Ампера действует на батарейку? Ответ выразите в H, округлите до десятых долей.
- **15.**Чему равно расстояние от «+» вывода батарейки до «-» вывода, если вектор, соединяющий выводы батарейки, перпендикулярен направлению магнитного поля? Ответ выразите в см, округлите до целого числа.

Задача 16

Две одинаковые бусинки с одинаковыми зарядами 5 мкКл насажены на вертикальную непроводящую гладкую спицу. Нижняя бусинка закреплена, а верхнюю удерживают на расстоянии 1 м от нижней. Затем верхней бусинке сообщают направленную вниз начальную скорость 2 м/с. На какое минимальное расстояние приблизится верхняя бусинка к нижней? Масса верхней бусинки равна 50 г. Коэффициент пропорциональности в законе Кулона равен $k = 9 \cdot 10^9 \, \text{H·m}^2/\text{K} \, \text{л}^2$, ускорение свободного падения $10 \, \text{м/c}^2$. Ответ выразите в см, округлите до целого числа.

Задачи 17-18

Электрическая цепь (*см. рисунок*) состоит из идеальной батарейки с напряжением 9 В, трёх одинаковых резисторов сопротивлением 100 Ом каждый, двух одинаковых конденсаторов и идеального амперметра. Первоначально ключ разомкнут, а конденсаторы не заряжены.

- **17.** Найдите показание амперметра сразу после замыкания ключа. Ответ выразите в мА, округлите до целого числа.
- **18.**Найдите показание амперметра спустя длительное время после замыкания ключа. Ответ выразите в мА, округлите до целого числа.

Задача 19

Найдите показание идеального амперметра в электрической цепи, схема которой изображена на рисунке, если R=1 кОм, а батарейка идеальная. Ответ выразите в мА, округлите до целого числа.

Задачи 20-22

У стремянки, показанной на рисунке, опорные стороны AC и CE шарнирно скреплены в точке C и имеют одинаковую длину. Две лёгкие нити, которые связывают опорные стороны стремянки расположены на высоте вдвое меньшей, чем точка C, и имеют длину 0,76 м. Одна из нитей BD изображена на рисунке. Мужчина массой 85,4 кг стоит на стремянке, располагаясь вертикально. Ступни его ног находятся на шестой ступеньке на высоте 1,8 м от пола (cm. pucyнок). Считайте, что пол гладкий, а лестница лёгкая. Ускорение свободного падения 10 м/c^2 .

- **20.**Чему равна суммарная сила реакции пола, действующая на левую опорную сторону стремянки? Ответ выразите в H, округлите до целого числа.
- **21.**Чему равна суммарная сила реакции пола, действующая на правую опорную сторону стремянки? Ответ выразите в H, округлите до целого числа.
- **22.**Найдите модуль силы натяжения нити BD. Ответ выразите в H, округлите до целого числа.

ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ФИЗИКЕ. 2021–2022 уч. г. МУНИЦИПАЛЬНЫЙ ЭТАП. 11 КЛАСС

Решения и критерии оценивания

Тестовые задания

- **1.** Камешек бросили с балкона дома. Может ли он за последовательные равные промежутки времени пройти пути, равные 1 м, 1 м, 3 м, 5 м? Сопротивление воздуха отсутствует.
 - А) Может, если его бросили в горизонтальном направлении.
 - Б) Может, если его бросили вертикально вниз.
 - В) Может, если его бросили вертикально вверх.
 - Γ) Нет, такое невозможно.
- **2.** На горизонтальном столе покоится в однородном поле силы тяжести тело массой m. На него начинает действовать постоянная вертикальная сила F > mg. Какую работу A_F совершит эта сила \vec{F} к тому моменту, когда тело поднимется на высоту h?

- A) $A_F = mgh$
- Б) $A_F = -mgh$
- $(B) A_F = Fh$
- Γ) $A_F = (F mg)h$
- Д) $A_F = (F + mg)h$

Всероссийская олимпиада школьников по физике. 2021–2022 уч. г. Муниципальный этап. 11 класс

3. Коэффициент жёсткости резинового стержня массой m равен k. На какую величину ΔL изменится длина этого стержня, если поместить его на гладкую горизонтальную поверхность и подействовать на конец стержня постоянной силой F, направленной вдоль оси стержня?

A)
$$\Delta L < \frac{F}{2k}$$

$$\Delta L = \frac{F}{2k}$$

A)
$$\Delta L = \frac{F}{2k}$$

B) $\frac{F}{2k} < \Delta L < \frac{F}{k}$
 $\Delta L = \frac{F}{k}$
 $\Delta L = \frac{F}{k}$

Д) $\Delta L > \frac{F}{k}$

$$\Delta L = \frac{F}{k}$$

$$\Delta L > \frac{F}{k}$$

4. С постоянным количеством идеального газа совершается изотермический процесс. На рисунке изображён график, который показывает изменение некоторой физической величины в зависимости от плотности р газа в этом процессе. Укажите эту физическую величину.

- A) давление p
- \mathbf{F}) объём V
- B) macca m
- Γ) температура T
- \mathcal{I}) внутренняя энергия U

Всероссийская олимпиада школьников по физике. 2021–2022 уч. г. Муниципальный этап. 11 класс

5. Луч падает под углом α на прозрачную плоскопараллельную пластинку и отражается от её верхней и нижней поверхностей. Как изменится расстояние Δx между отражёнными лучами, если: 1 – увеличить толщину пластинки d; 2 – увеличить показатель преломления n пластинки? (\uparrow – увеличится, \downarrow – уменьшится).

- A) $1 \uparrow$, $2 \uparrow$
- Б) $1 \downarrow$, $2 \uparrow$
- $\stackrel{\cdot}{B}$) $1-\uparrow$, $\stackrel{\cdot}{2}-\downarrow$
- $\Gamma)$ 1 $-\downarrow$, 2 $-\downarrow$
- Д) 1 и 2 не изменится

Ответы:
OIBCIDI.

1	2	3	4	5
В	В	Б	A	В

По 2 балла за каждый правильный ответ. Максимум за тестовые задания 10 баллов.

Задания с кратким ответом

Задачи 6-7

На горизонтальную ленту транспортёра шириной 3 м, движущуюся с постоянной скоростью 3 м/с, попадает небольшая шайба, двигавшаяся перпендикулярно ленте со скоростью 4 м/с по гладкой горизонтальной поверхности, находящейся на таком же уровне, что и лента транспортёра. Между шайбой и лентой имеется (сухое) трение. В тот момент, когда шайба пересекала середину ленты, проекция её скорости на направление, перпендикулярное направлению движения ленты, была равна 2 м/с. Ускорение свободного падения равно 10 м/c^2 .

- 1. На каком расстоянии от середины ленты шайба перестанет скользить по ленте? Ответ выразите в м, округлите до целого числа. (3 балла)
- **2.** Каков коэффициент трения шайбы о ленту? Ответ округлите до десятых долей. **(3 балла)**

Ответ:

6	7
1; 0,5	0,5

Максимум за задачу 6 баллов.

Задача 8

На горизонтальной поверхности стоит на колёсиках клин массой 2 кг, прислонённый к вертикальной стене. Внутри клина сделан канал с гладкими стенками. В этот канал влетает небольшой шарик массой 500 г, скорость которого в момент попадания в канал направлена вертикально и равна 3 м/с. Входной и выходной участки канала вертикальны. Горизонтальный участок канала расположен на 30 см ниже уровня входного отверстия. С какой скоростью будет двигаться клин после вылета шарика из выходного отверстия канала? Ускорение свободного падения равно 10 м/с². Ответ выразите в м/с и округлите до десятых долей. (6 баллов)

Ответ: 0,8

Максимум за задачу 6 баллов.

Задачи 9-10

База отдыха находится в центре круглого острова, радиус которого равен 20 км. Параллельно поверхности Земли с запада на восток дует ветер со скоростью V = 14 м/c. Вертолёт с группой отдыхающих отправляется с базы на побережье. Скорость вертолёта относительно неподвижного воздуха равна 50 м/c и остаётся постоянной во время всего перелёта.

- **9.** Найдите максимальное время перелёта вертолёта до побережья и обратно. Ответ выразите в секундах, округлите до целого числа. **(3 балла)**
- **10.**Найдите минимальное время перелёта вертолёта до побережья и обратно. Ответ выразите в секундах, округлите до целого числа. (**3 балла**)

Ответ:

9	10
868	833

Максимум за задачу 6 баллов.

Задача 11

В цилиндре под подвижным невесомым поршнем находятся один моль жидкой воды и два моля её пара. Над поршнем находится атмосферный воздух. Какое количество теплоты следует передать содержимому цилиндра, чтобы увеличить его объём в два раза? Цилиндр и поршень не проводят теплоту. Удельная теплота парообразования воды 2,3 МДж/кг, молярная теплоёмкость водяного пара при постоянном атмосферном давлении 10^5 Па равна $4R \approx 33,2$ Дж/(моль·К). Ответ выразите в кДж, округлите до целого числа. (5 баллов)

Ответ: [53; 54]

Максимум за задачу 5 баллов.

Задачи 12-15

К выводам батарейки с ЭДС 6 В подключены три соединённые параллельно гибкие проволочки — красная, жёлтая и зелёная. По ним текут токи силой 5 А (по красной), 4 А (по жёлтой) и 3 А (по зелёной). Проволочки не выпрямлены, а смяты комком, но поскольку они покрыты изолирующим лаком, то в местах их механических контактов электрических контактов нет. Вся эта конструкция находится в однородном магнитном поле с индукцией 2 Тл. На всю красную проволочку (от места её контакта с «+» выводом батарейки до места контакта с «—» выводом батарейки действует сила Ампера, модуль которой равен 1 Н.

- **12.**Какая сила Ампера действует на жёлтую проволочку? Ответ выразите в H, округлите до десятых долей. **(2 балла)**
- **13.**Какая сила Ампера действует на зелёную проволочку? Ответ выразите в H, округлите до десятых долей. **(2 балла)**
- **14.**Какая сила Ампера действует на батарейку? Ответ выразите в H, округлите до десятых долей. **(2 балла)**
- **15.**Чему равно расстояние от «+» вывода батарейки до «-» вывода, если вектор, соединяющий выводы батарейки, перпендикулярен направлению магнитного поля? Ответ выразите в см, округлите до целого числа. (2 балла)

O	_	-	_	_	
v	1	В	t	ı	٠

12	13	14	15
0,8	0,6	2,4	10

Максимум за задачу 8 баллов.

Задача 16

Две одинаковые бусинки с одинаковыми зарядами 5 мкКл насажены на вертикальную непроводящую гладкую спицу. Нижняя бусинка закреплена, а верхнюю удерживают на расстоянии 1 м от нижней. Затем верхней бусинке сообщают направленную вниз начальную скорость 2 м/с. На какое минимальное расстояние приблизится верхняя бусинка к нижней? Масса верхней бусинки равна 50 г. Коэффициент пропорциональности в законе Кулона равен $k = 9.10^9 \, \text{H·м}^2/\text{K} \, \text{л}^2$, ускорение свободного падения $10 \, \text{м/c}^2$. Ответ выразите в см, округлите до целого числа. (10 баллов)

Ответ: [34; 35]

Максимум за задачу 10 баллов.

Задачи 17-18

Электрическая цепь (*см. рисунок*) состоит из идеальной батарейки с напряжением 9 В, трёх одинаковых резисторов сопротивлением 100 Ом каждый, двух одинаковых конденсаторов и идеального амперметра. Первоначально ключ разомкнут, а конденсаторы не заряжены.

- **17.** Найдите показание амперметра сразу после замыкания ключа. Ответ выразите в мА, округлите до целого числа. **(4 балла)**
- **18.**Найдите показание амперметра спустя длительное время после замыкания ключа. Ответ выразите в мА, округлите до целого числа. (3 балла)

17	18
180	45

Максимум за задачу 7 баллов.

Задача 19

Найдите показание идеального амперметра в электрической цепи, схема которой изображена на рисунке, если R = 1 кОм, а батарейка идеальная. Ответ выразите в мА, округлите до целого числа. (10 баллов)

Ответ: 4

Максимум за задачу 10 баллов.

Задачи 20-22

У стремянки, показанной на рисунке, опорные стороны AC и CE шарнирно скреплены в точке C и имеют одинаковую длину. Две лёгкие нити, которые связывают опорные стороны стремянки расположены на высоте вдвое меньшей, чем точка C, и имеют длину 0.76 м. Одна из нитей BD изображена на рисунке. Мужчина массой 85.4 кг стоит на стремянке, располагаясь вертикально. Ступни его ног находятся на шестой ступеньке на высоте 1.8 м от пола (cm. pucyнок). Считайте, что пол гладкий, а лестница лёгкая. Ускорение свободного падения 10 м/c^2 .

- **20.**Чему равна суммарная сила реакции пола, действующая на левую опорную сторону стремянки? Ответ выразите в H, округлите до целого числа. (**3 балла**)
- **21.**Чему равна суммарная сила реакции пола, действующая на правую опорную сторону стремянки? Ответ выразите в H, округлите до целого числа. (**3 балла**)
- **22.**Найдите модуль силы натяжения нити BD. Ответ выразите в H, округлите до целого числа. (5 баллов)

Ответ:

20	21	22
534	320	[101; 102]

Максимум за задачу 11 баллов.

Всего за работу – 79 баллов.