Problem 1 (8.5). Let $R = \mathbb{Z}[\sqrt{-5}]$. Show that $2, 3, 1 + \sqrt{-5}, 1 - \sqrt{-5}$ are irreducibles of R and no two of which are associate in R, and that $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ are two distinct factorizations of 6 into irreducibles in R. So R is not a UFD.

Proof. The only units of R will be elements $a + b\sqrt{-5}$ wherein $\frac{1}{a^2 + 5b^2} \in \mathbb{Z}$. However this will not happen for any elements except ± 1 . Therefore $2, 3, 1 + \sqrt{-5}, 1 - \sqrt{-5}$ are not associates.

- The norm of 2 is 4. Since the norm is multiplicative if xy = 2 then the product of their norms must be 4. Since we're throwing out associates we must have N(x) = N(y) = 2. However this cannot occur in R. Therefore 2 is irreducible.
- As above the norm of 3 is 9. For the same reasoning for xy = 3 to hold we must have N(x) = N(y) = 3 but this cannot happen in R. Therefore 3 is irreducible.
- The norm of $1 + \sqrt{-5}$ is 6. As such if $xy = 1 + \sqrt{-5}$ holds we must have N(x) = 2 and N(y) = 3 or vice versa. However no such elements exist. Therefore $1 + \sqrt{-5}$ is irreducible.
- The norm of $1 \sqrt{-5}$ is 6. As such if $xy = 1 \sqrt{-5}$ holds we must have N(x) = 2 and N(y) = 3 or vice versa. However no such elements exist. Therefore $1 \sqrt{-5}$ is irreducible.

Using this we have $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ which are two distinct factorizations of 6 in R which implies that R is not a UFD.

Problem 2 (9.1). Prove that every irreducible element of a UFD is a prime.

Proof. Let R be a UFD and $r \in R$ irreducible. Then consider $a, b \in R$ such that r|ab. This implies that cr = ab for some $c \in R$. As R is a UFD take the factorization for both sides and we get $t_1 \cdots t_s r = p_1 \cdots p_n q_1 \cdots q_m$. As r is irreducible and factorizations are unique it must be that r is an associate of something on the right. Thus either $r|p_i$ or $r|q_j$ it then follows that r|a or r|b respectively which implies that r is in fact prime.

Problem 3 (9.3). Give an example of a UFD which is not a PID.

Proof. Consider $\mathbb{Z}[x]$. This is a UFD because \mathbb{Z} is a UFD. However the ideal $\langle x^2 - 1, x \rangle$ cannot be generated by a single polynomial. Therefore $\mathbb{Z}[x]$ is a PID which is not a UFD.

Problem 4 (9.4). 1. Determine whether the following polynomials are irreducible in the rings indicated and prove your assertions. For those that are reducible, determine their factorization into irreducibles.

- (a) $x^3 + x + 1$ in $\mathbb{Z}_3[x]$.
- (b) $x^4 + 1$ in $\mathbb{Z}_5[x]$.
- (c) $x^4 + 10x^2 + 1$ in $\mathbb{Z}[x]$.
- (d) $x^4 4x^3 + 6$ in $\mathbb{Z}[x]$.
- (e) $x^6 + 30x^5 15x^3 + 6x 120$ in $\mathbb{Z}[x]$.
- (f) $x^2 + y^2 + xy + 1$ in $\mathbb{Q}[x, y]$.
- 2. Prove that the following polynomials are irreducible in $\mathbb{Z}[x]$.

- (a) $x^4 + 4x^3 + 6x^2 + 2x + 1$ (Substitute x 1 for x).
- (b) $\frac{(x+2)^p-2^p}{x}$ where p is an odd prime.
- (c) $\prod_{1}^{n}(x-i)-1$, where $n \in \mathbb{Z}_{>0}$
- 3. Find all irreducible polynomials of degree ≤ 3 in $\mathbb{Z}_2[x]$, and the same for $\mathbb{Z}_3[x]$.
- 4. Prove that if n is composite number, then $\sum_{i=0}^{n-1} x^i$ is reducible over \mathbb{Z} .

Proof. 1. (a)
$$x^3 + x + 1 = (x+2)(x^2 + x + 2)$$

- (b) $x^4 + 1 = (x^2 + 2)(x^2 + 3)$
- (c) The polynomial has no roots. As such it must be the product of two degree two irreducibles. However the only way this could occur is if a + b = 10 and ab = 1 which cannot happen with integers. Thus $x^4 + 10x^2 + 1$ is irreducible.
- (d) This polynomial is irreducible by Eisenstein's Criterion with p=1.
- (e) This polynomial is irreducible by Eisenstein's Criterion with p=3.
- (f) First consider the polynomial in $\mathbb{Z}[x,y]/(y-1)$. Then the polynomial we get is x^2+x+1 . The roots of the original are then forced to be ± 1 for x. However this is not the case and as such by Gauss' Lemma the polynomial is irreducible. Consider $\mathbb{Z}[x,y]/(y-1)$. Get x^2+x+1 root must be either ± 1 . Use Gauss' lemma.
- 2. (a) Substitute x-1 for x in the polynomial and it simplifies to x^4-2x+2 . Then it is
- irreducible by Eisenstein's Criterion with p=2.
 - (b) First we simplify the polynomial

$$\frac{(x+2)^p - 2^p}{x} = \frac{\sum_{0}^{p} {p \choose i} x^i 2^{p-i} - 2^p}{x}$$
$$= \frac{\sum_{1}^{p} {p \choose i} x^i 2^{p-i}}{x}$$
$$= \sum_{0}^{p-1} {p \choose i+1} x^i 2^{p-(i+1)}$$

Now since p is prime we can use Eisenstein's Criterion with p=2 to get that the polynomial is irreducible.

- (c) From $\prod_{1}^{n}(x-i)-1$ we can deduce that $a_{n}=1$ and $a_{0}=(-1)^{n}n!-1$. This implies that a_{0} will be prime and as such the polynomial will irreducible.
- 3. For $\mathbb{Z}_2[x]$ we have

$$x, x + 1, x^2 + x + 1, x^3 + x + 1, x^3 + x^2 + 1$$

For $\mathbb{Z}_3[y]$ we have

$$y, y + 1, y + 2, 2y, 2y + 1, 2y + 2, y^{2} + 1, y^{2} + y + 2, y^{2} + 2y + 2, 2y^{2} + 2, 2y^{2} + y + 1,$$

$$2y^{2} + 2y + 1, y^{3} + 2y + 1, y^{3} + 2y + 2, y^{3} + y^{2} + 2, y^{3} + y^{2} + y + 2, y^{3} + y^{2} + 2y + 1, y^{3} + 2y^{2} + 1,$$

$$y^{3} + 2y^{2} + y + 1, y^{3} + 2y^{2} + 2y + 2, 2y^{3} + y + 1, 2y^{3} + y + 2, 2y^{3} + y^{2} + 2, 2y^{3} + y^{2} + y + 1, 2y^{3} + y^{2} + 2y + 2,$$

$$2y^{3} + 2y^{2} + 1, 2y^{3} + 2y^{2} + y + 2, 2y^{3} + 2y^{2} + 2y + 1$$

4. If n = ab is composite we can rewrite it as

$$\sum_{0}^{n-1} x^{i} = \frac{x^{ab} - 1}{x - 1}$$

$$= \frac{x^{a} - 1)(x^{ab - a}) + \dots + 1}{x - 1}$$

$$= (x^{a-1} + \dots + 1)(x^{ab - a} + \dots + 1)$$

which implies that f is reducible.

Problem 5 (9.5). Let R be a PID and $a, b \in R$. Prove that if a, b are relatively prime, then (a) + (b) = R, and a^i, b^j are relatively prime for all $i, j \in \mathbb{Z}_{>0}$.

Proof. Let R be a PID and $a, b \in R$ such that a and b are relatively prime. Then 1 is a gcd of a and b. However this means that there exists $\alpha, \beta \in R$ such that $\alpha a + \beta b = 1 \in (a) + (b)$ (Prop 8.11) implying that (a) + (b) = 1.

Now we will show that a^i and b are relatively prime. We have the case where i=1 be assumption. Next assume that we have $\alpha a^i + b = 1$. Then if we square both sides we get

$$\alpha^{2}a^{2i} + \beta^{2}b^{2} + \alpha a^{i}\beta b + \beta b\alpha a^{i}\beta b = (\alpha^{2}a^{i-1})a^{i+1} + (\beta b + \alpha a^{i}\beta + \alpha a^{i}\beta)b = 1$$

which shows that a^{i+1} is relatively prime to b with the assumption that a^i is relatively prime to b. Therefore a^i is relatively prime to b where $i \in \mathbb{Z}_{>0}$. To get arbitrary powers of b just set a := b and $b := a^i$ and repeat the process.

Therefore if a, b are relatively prime then (a) + (b) = R and a^i, b^j are relatively prime for $i, j \in \mathbb{Z}_{>0}$.

Problem 6 (9.6). 1. Let F be a finite field of order q and f(x) a polynomial of degree n. Prove that the quotient ring F[x]/(f(x)) has q^n elements.

- 2. Show that $f(x) = x^3 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$ and that $K = \mathbb{Z}_2/(f(x))$ is a field. Find a generator of the cyclic group K^X .
- *Proof.* 1. We proceed by induction. Suppose that $\deg f = 0$. Then (f) = F[x] implies that $F[x]/(f) \cong F[x]/F[x] = \{0\}$ which shows that the order is one.

Now assume that if deg $g \leq n$ then F[x]/(f) is of order $q^{\deg g}$. Then suppose that deg f = n + 1. In the case where f is reducible by Proposition 9.23 we have

$$f = f_1^{n_1} \cdots f_k^{n_k}$$

where $\sum n_i = (n+1)$ and $n_i \leq n$ and that $F[x]/(f) \cong F[x]/(f_1^{n_1} \times \cdots \times f_k^{n_k})$ The order of $F[x]/(f_i^{n_i i})$ is q^{n_i} by our inductive hypothesis which implies that $|F[x]/(f)| = q^{n_1} \cdots q^{n_k} = q^{n+1}$.

However if f is irreducible, then F[x]/(f) is the n+1th degree field extension and which the field with q^{n+1} elements.

Therefore if deg f = n then the order of F[x]/(f) is q^n where F is the field with q elements.

2. We listed f as an irreducible above. This implies K is a degree 3 field extension. The generator is x.

 $x, x^2, x + 1, x^2 + x, x^2 + x + 1, x^2 + 1, 1$

Problem 7 (G4). Let $G = GL(2, \mathbb{F}_p)$ be the group of invertible 2×2 matrices with entries in the finite field \mathbb{F}_p , where p is prime.

- 1. Show that G has order $(p^2-1)(p^2-p)$.
- 2. Show that for p = 2 the group G is isomorphic to the symmetric group S_3 .
- *Proof.* 1. For the first column there are p^2 possibilities to choose. However both values cannot be zero so we end up with $p^2 1$ choices for the first column. For the second column there are also p^2 choices but we must avoid the p multiples of the first column. As such there are $p^2 p$ choices for the second column and as such the order of G is $(p^2 1)(p^2 p)$.
 - 2. The order of G is 6. The only groups of order 6 are \mathbb{Z}_6 and S_3 . However we have

$$\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right) = \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right) \neq \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

which implies that G is not abelian. Therefore $G \cong S_3$.

Problem 8 (G5). Let G be the group of units of the ring $\mathbb{Z}/247\mathbb{Z}$.

- 1. Determine the order of G.
- 2. Determine the structure of G (as in the classification theorem for finitely generated abelian groups). (Hint: Use the Chinese Remainder Theorem).

Proof. 1. The order of G is $\varphi(247) = \varphi(13 \cdot 19) = (12)(18) = 216$.

2. By the Chinese Remainder Theorem we have that $\mathbb{Z}_{247} \cong \mathbb{Z}_{13} \times \mathbb{Z}_{19}$. This implies that $\mathbb{Z}_{247}^X = (\mathbb{Z}_{13} \times \mathbb{Z}_{19})^X$. For each component is 2. Thus the largest order in \mathbb{Z}_{247}^X is lcm(12,18) = 36. By the structure theorem for finite abelian groups there the only possible structure for \mathbb{Z}_{247} is $\mathbb{Z}_{36} \oplus \mathbb{Z}_{6}$.

Problem 9 (G8). List all abelian groups of order 8 up to isomorphism. Identify which groups on your list is isomorphic to each of the following groups of order 8. Justify your answer.

- 1. $(\mathbb{Z}/15\mathbb{Z})^* = the group of units of the ring <math>\mathbb{Z}/15\mathbb{Z}$.
- 2. The roots of the equation $z^8 1 = 0$ in \mathbb{C} .
- 3. \mathbb{F}_8^+ = the additive group of the field \mathbb{F}_8 with eight elements.

Proof. By the structure theorem for finite abelian groups there are three possibilities for groups of order 8. They are

$$\mathbb{Z}_8, \mathbb{Z}_2 \oplus \mathbb{Z}_4, \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$$

- 1. The elements of \mathbb{Z}_{15}^X are $\{1, 2, 4, 7, 8, 11, 13, 14\}$. The orders respectively are 1, 4, 2, 4, 4, 2, 4, 2 which implies that the structure of the group is $\mathbb{Z}_2 \oplus \mathbb{Z}_4$.
- 2. The group of roots is generated by $e^{\frac{\pi i}{4}}$. As such the structure is \mathbb{Z}_8 .
- 3. The field with 8 elements has characteristic two. As such all elements in the additive group will have order 2. Therefore the structure is $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

Problem 10 (R4). Let \mathbb{F} be a field and let $R = \mathbb{F}[X,Y]$ be the ring of polynomials in X and Y with coefficients from \mathbb{F} .

- 1. Show that $M = \langle X+1, Y-2 \rangle$ is a maximal ideal of R.
- 2. Show that $P = \langle X + Y + 1 \rangle$ is a prime ideal of R.
- 3. Is P a maximal ideal of R. Justify your answer.
- *Proof.* 1. In $F[x,y]/\langle x+1,y-2\rangle$ we have that x+1=0 and y-2=0 which implies that x=-1 and y=2 in the quotient. As such any polynomial can be reduced to an element in F and as such the quotient is a field. Therefore $\langle x+1,y-2\rangle$ is a maximal ideal.
 - 2. As above in F[x,y]/P we get the relation that X+Y+1=0. Since F[x,y] is an integral domain the only way to get zero divisors in F[x,y]/P would be if there are two nonzero polynomials that multiplied to X+Y+1. However this cannot happen because the degree of X+Y+1=0. Therefore the quotient F[x,y]/P is an integral domain and as such P is a prime ideal.
 - 3. It is not a maximal ideal. Note that $X \notin P$ which means that $\langle X, X+Y+1 \rangle = \langle X, Y+1 \rangle$ is an distinct ideal containing P. However this ideal is not all of F[x,y]. Therefore P is not maximal.

Problem 11 (R6). Let R be a commutative ring with identity and let I and J be ideals of R.

1. Define

$$(I:J) = \{r \in R | rx \in I, \forall x \in J\}$$

Show that (I:J) is an ideal of R containing I.

2. Show that if P is a prime ideal of R and $x \notin P$, then $(P : \langle x \rangle) = P$, where $\langle x \rangle$ denotes the principal ideal generated by x.

Proof. 1. Let $f \in I$. Then $fg \in I$ for all $g \in J$ as I is an ideal. Therefore $I \subseteq I : J$.

2. We know that $P \subseteq P : \langle x \rangle$ by the previous part of the problem. Let $f \in P : \langle x \rangle$. Then $fx \in P$ however since P is prime and $x \notin P$ it follows that $f \in P$ and as such $P : \langle x \rangle \subseteq P$. Therefore $P = P : \langle x \rangle$ when P is prime and $x \notin P$.

Problem 12 (R7). Let R be a commutative ring with identity, and let I and J be ideals of R.

- 1. Define what is meant by the sum I + J and the product IJ of the ideals I and J.
- 2. If I and J are distinct maximal ideals, show that I + J = R and $I \cap J = IJ$.

Proof. 1. For a commutative ring we have

$$I + J = \{f + g | f \in I, g \in J\}$$

and

$$IJ = \{ fg | f \in I, g \in J \}$$

2. Since $I \subseteq I + J$, I, J are distinct, and I is maximal it follows that I + J = R.

Next we'll show that $I \cap J = IJ$. Let $fg \in IJ$ where $f \in I$ and $g \in J$. Then $fg \in I$ and $fg \in J$ which implies that $fg \in I \cap J$ and as such $IJ \subseteq I \cap J$.

Now suppose that $f \in I \cap J$. Then since I, J are maximal there exists $g \in I$ and $h \in J$ such that 1 = g + h. Multiply by f to get f = fg + fh. We know that $fg \in IJ$ since $f \in J$ and $g \in I$. We also have that $fh \in IJ$ as $f \in I$ and $h \in J$. This implies that $fg + fh = f \in IJ$ and as such $I \cap J \subseteq IJ$.

Therefore $I \cap J = IJ$ and I + J = R.