

Tarea 4

11 de octubre de 2023

 2° semestre 2023 - Profesores G. Diéguez - S. Bugedo - N. Alvarado - B. Barías

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 21:59:59 del 18 de octubre a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template LATEX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Canvas es el lugar oficial para realizarla.

Problemas

Problema 1

Sea A un conjunto cualquiera, y sean R_1 y R_2 relaciones de equivalencia sobre A.

Demuestre que $R_1 \cup R_2$ es una relación de equivalencia si y solo si $R_1 \cup R_2 = R_1 \circ R_2$.

Solución

- (\Rightarrow) Supongamos que $R_1 \cup R_2$ es una relación de equivalencia. Demostraremos que $R_1 \cup R_2 = R_1 \circ R_2$ haciendo la contención en ambas direcciones:
 - \subseteq : sea $(x,y) \in R_1 \cup R_2$. Tenemos 2 casos:
 - o $(x,y) \in R_1$: como R_2 es una relación de equivalencia, es refleja, y entonces $(x,x) \in R_2$. Luego, por definición de composición, tenemos que $(x,y) \in R_1 \circ R_2$.
 - \circ $(x,y) \in R_2$: similarmente, como R_1 es una relación de equivalencia, es refleja, y entonces $(y,y) \in R_1$. Luego, por definición de composición, tenemos que $(x,y) \in R_1 \circ R_2$.
 - \supseteq : sea $(x,y) \in R_1 \circ R_2$. Por definición de composición, existe $z \in A$ tal que $(x,z) \in R_2$ y $(z,y) \in R_1$. Luego, tenemos que $(x,z) \in R_1 \cup R_2$ y $(z,y) \in R_1 \cup R_2$. Como $R_1 \cup R_2$ es una relación de equivalencia, es transitiva, y entonces $(x,y) \in R_1 \cup R_2$.
- (\Leftarrow) Supongamos que $R_1 \cup R_2 = R_1 \circ R_2$. Para demostrar que $R_1 \cup R_2$ es una relación de equivalencia debemos mostrar que es refleja, simétrica y transitiva:
 - Refleja: sea $x \in A$. Como R_1 es refleja, tenemos que $(x, x) \in R_1$, y entonces $(x, x) \in R_1 \cup R_2$.
 - Simétrica: sean $x, y \in A$ tales que $(x, y) \in R_1 \cup R_2$, de donde se tiene que $(x, y) \in R_1 \vee (x, y) \in R_2$. Como R_1 y R_2 son relaciones de equivalencia, son simétricas, y entonces $(y, x) \in R_1 \vee (y, x) \in R_2$. De esto último concluimos que $(y, x) \in R_1 \cup R_2$, y por lo tanto la relación es simétrica.
 - Transitiva: sean $x, y, z \in A$ tales que $(x, y) \in R_1 \cup R_2$ e $(y, z) \in R_1 \cup R_2$. Debemos demostrar que $(x, z) \in R_1 \cup R_2$. Tenemos 4 casos en cuanto a la pertenencia de cada par a R_1 o a R_2 :
 - \circ $(x,y) \in R_1$ e $(y,z) \in R_1$: como R_1 es una relación de equivalencia, es transitiva, y entonces $(x,z) \in R_1$, por lo que $(x,z) \in R_1 \cup R_2$.
 - $(x,y) \in R_2$ e $(y,z) \in R_2$: análogo al caso anterior.
 - \circ $(x,y) \in R_2$ e $(y,z) \in R_1$: por definición de composición, tenemos que $(x,z) \in R_1 \circ R_2$, y como $R_1 \cup R_2 = R_1 \circ R_2$, se cumple que $(x,z) \in R_1 \cup R_2$.

 \circ $(x,y) \in R_1$ e $(y,z) \in R_2$: como ambas relaciones son simétricas, tenemos que $(z,y) \in R_2$ e $(y,x) \in R_1$. Por definición de composición se tiene que $(z,x) \in R_1 \circ R_2$, y como $R_1 \cup R_2 = R_1 \circ R_2$, se cumple que $(z,x) \in R_1 \cup R_2$. Esto significa que $(z,x) \in R_1 \vee (z,x) \in R_2$, y como ambas relaciones son simétricas, $(x,z) \in R_1 \vee (x,z) \in R_2$. Concluimos que $(x,z) \in R_1 \cup R_2$.

Pauta (6 pts.)

- (\Rightarrow) 1.5 ptos. por cada contención.
- (\Leftarrow) 1 pto. por cada propiedad.

Puntajes parciales y soluciones alternativas a criterio del corrector.

Problema 2

- 1. Sean A, B y C subconjuntos de \mathbb{N} . Diremos que una función $f: A \to B$ es creciente si dados $x, y \in A$ tales que x < y, se tiene que f(x) < f(y).
 - a) (1.5 ptos.) Demuestre que si f es creciente, entonces es inyectiva.
 - b) (1.5 ptos.) ¿Es cierto que si $f: A \to B$ y $g: B \to C$ son crecientes, entonces $g \circ f$ es invectiva? Demuestre o dé un contraejemplo.
- 2. (3 ptos.) Dados conjuntos A y B cualesquiera, denotamos como A^B al conjunto de todas las funciones de B en A:

$$A^B = \{f \mid f \colon B \to A\}$$

Sean A, B y C conjuntos cualesquiera tales que $B \cap C = \emptyset$. Demuestre que

$$A^{B \cup C} \approx A^B \times A^C$$

Debe usar la definición de equinumerosidad vista en clases; vale decir, debe encontrar una función biyectiva entre ambos conjuntos (y demostrar que lo es).

Solución

1. a) Demostraremos que si f es creciente, entonces es inyectiva. Sea f una función creciente y supongamos por contradicción que no es inyectiva; vale decir, que existen $x_1, x_2 \in A$ tales que $x_1 \neq x_2$ y $f(x_1) = f(x_2)$. Sin pérdida de generalidad, supongamos que $x_1 < x_2$. Luego, como f es creciente, se cumple que

$$f(x_1) < f(x_2)$$

Esto claramente es una contradicción. Concluimos que f es inyectiva.

b) Demostraremos que esta afirmación es verdadera. Sean $f: A \to B$ y $f: B \to C$ funciones crecientes, y $x_1, x_2 \in A$ tales que $x_1 < x_2$. Como f es creciente, entonces

$$f(x_1) < f(x_2)$$

Además, como $f(x_1), f(x_2) \in B$ y g es creciente, tenemos que

$$g(f(x_1)) < g(f(x_2))$$

$$\Leftrightarrow (g \circ f)(x_1) < (g \circ f)(x_2)$$

Con esto hemos demostrado que $g \circ f$ es creciente. Por el inciso anterior podemos concluir que $g \circ f$ es inyectiva.

2. Para demostrar que $A^{B\cup C}\approx A^B\times A^C$ vamos a construir una función biyectiva

$$w \colon A^B \times A^C \to A^{B \cup C}$$

La función w toma como entrada el par de funciones $(f,g) \in A^B \times A^C$ y entrega como salida una función $z \in A^{B \cup C}$, donde

$$w((f,g))(x) = z(x) = \begin{cases} f(x) & \text{si } x \in B \\ g(x) & \text{si } x \in C \end{cases}$$

Por simplicidad escribiremos w(f,g) para referirnos a w((f,g)).

Para mostrar que w es función debemos demostrar que si $w(f,g) = z_1$ y $w(f,g) = z_2$ entonces $z_1 = z_2 = z$, y que z es una función de $A^{B \cup C}$. Ya que z_1 y z_2 dependen únicamente de f y g, entonces $z_1 = z_2$. Además, como B y C son conjuntos disjuntos, si $x \in B \cup C$ se sigue que su imagen es única y por lo tanto z es función. Concluimos que w es función.

Además, para todo par $(f,g) \in A^B \times A^C$ podemos construir una función z, por lo que w es una función total.

Para demostrar que w es inyectiva, supongamos que $w(f_1, g_1) = w(f_2, g_2) = z$. Debemos demostrar que $(f_1, g_1) = (f_2, g_2)$. Por la construcción de w tenemos que

$$w(f_1, g_1)(x) = \begin{cases} f_1(x) & \text{si } x \in B \\ g_1(x) & \text{si } x \in C \end{cases}$$

$$w(f_2, g_2)(x) = \begin{cases} f_2(x) & \text{si } x \in B \\ g_2(x) & \text{si } x \in C \end{cases}$$

De lo anterior concluimos que necesariamente $f_1 = f_2$ y $g_1 = g_2$, por lo que w es invectiva.

Para demostrar que w es sobreyectiva, supongamos que $z \in A^{B \cup C}$. Debemos mostrar que existen f y g tales que w(f,g) = z. Para esto, tomamos f tal que f(x) = z(x) cuando $x \in B$ y g tal que g(x) = z(x) cuando $x \in C$. Concluimos que w es sobreyectiva.

Pauta (6 pts.)

- 1. a) 1.5 por la demostración correcta.
 - b) 1.0 pto. por demostrar que $g \circ f$ es creciente.
 - 0.5 ptos. por concluir que es inyectiva.
- 2. 1.5 pto. por construir la función w.
 - 0.5 ptos. por demostrar que w es función (total).
 - ullet 0.5 ptos. por demostrar que w es inyectiva.
 - ullet 0.5 ptos. por demostrar que w es sobreyectiva.

Puntajes parciales y soluciones alternativas a criterio del corrector.