C. 说明如何修改这段代码好让它能可靠地工作。将测试语句改成:

return strlen(s) > strlen(t);

2.27 这个函数是对确定无符号加法是否溢出的规则的直接实现。

```
/* Determine whether arguments can be added without overflow */
int uadd_ok(unsigned x, unsigned y) {
   unsigned sum = x+y;
   return sum >= x;
}
```

2.28 本题是对算术模 16 的简单示范。最容易的解决方法是将十六进制模式转换成它的无符号十进制值。对于非零的 x 值,我们必须有 $(-\mbox{$^{1}\!\!\!/} x) + x = 16$ 。然后,我们就可以将取补后的值转换回十六进制。

x		$-\frac{u}{4}x$	
十六进制	十进制	十进制	十六进制
0	0	0	0
5	5	11	В
8	8	8	8
D	13	3	3
F	15	1	1

2.29 本题的目的是确保你理解了补码加法。

情况	$x + {}^{t}_{5} y$	x + y	y	x
1	5	-27	-15	-12
	[00101]	[100101]	[10001]	[10100]
2	-16	-16	-8	-8
	[10000]	[110000]	[11000]	[11000]
2	-1	-1	8	-9
	[11111]	[111111]	[01000]	[10111]
3	7	7	5	2
	[00111]	[000111]	[00101]	[00010]
4	-16	16	4	12
	[10000]	[010000]	[00100]	[01100]

2.30 这个函数是对确定补码加法是否溢出的规则的直接实现。

```
/* Determine whether arguments can be added without overflow */
int tadd_ok(int x, int y) {
   int sum = x+y;
   int neg_over = x < 0 && y < 0 && sum >= 0;
   int pos_over = x >= 0 && y >= 0 && sum < 0;
   return !neg_over && !pos_over;
}</pre>
```

- 2.31 通过学习 2.3.2 节, 你的同事可能已经学到补码加会形成一个阿贝尔群, 因此表达式 (x+y)-x 求 值得到 y, 无论加法是否溢出, 而 (x+y)-y 总是会求值得到 x。
- 2.32 这个函数会给出正确的值,除了当 y 等于 TMin 时。在这个情况下,我们有-y 也等于 TMin,因此函数 tadd_ok 会认为只要 x 是负数时,就会溢出,而 x 为非负数时,不会溢出。实际上,情况恰恰相反:当 x 为负数时,tsub ok(x, TMin)为 1;而当 x 为非负时,它为 0。

这个练习说明,在函数的任何测试过程中, TMin 都应该作为一种测试情况。

2.33 本题使用非常小的字长来帮助你理解补码的非。

对于 w=4,我们有 $TMin_4=-8$ 。因此-8 是它自己的加法逆元,而其他数值是通过整数非来取非的。