108 - Clustering

Ⅰ聚类

- 定义: 给定一个包含 n 个元素的集合 U, k-clustering 是将 U 划分为 k 个非空子集 C_1, \ldots, C_k
- 定义: k-clustering 的间隔是不同聚类中任意两点之间的最小距离
- **目标**:在所有可能的 k-clustering 中,找到拥有 maximum possible spacing 的聚类,即找到一个使得不同聚类之间的最小距离最大化的聚类

I 贪心算法实现聚类

- 1. 选择两个具有最小距离 $d(p_i, p_i)$ 的对象 p_i 和 p_i
- 2. 用边 $e = (p_i, p_j)$ 连接它们
- 3. 继续这样做,直到我们得到 k 个聚类
- 4. 如果正在考虑的边 e 连接了已经在同一组件中的两个对象 p_i 和 p_i ,则跳过它

这其实和 Kruskal 算法计算最小生成树几乎一样:

- 1. 选择具有最小代价 $d(p_i, p_j)$ 的边 (p_i, p_j)
- 2. 将该边包含在输出中
- 3. 继续这样做,直到我们连接所有节点
- 4. 如果正在考虑的边e引入了一个循环,则跳过它

(上面的看看就行了)

因此,我们便得到了算法

■ Kruskal算法用于聚类

- 1. 选择具有最小代价 $d(p_i, p_i)$ 的边 (p_i, p_i)
 - 最小代价就是最短距离,使用什么距离度量则根据实际要求来决定
- 2. 将该边包含在输出中
- 3. 在还剩余 k-1 条边时停止
 - 这和我们生成了 MST 之后移除 k-1 条代价最高的边是一样的
- 4. 如果正在考虑的边e引入了一个循环,则跳过它

| 算法正确性

Lemma:设 C_1,\ldots,C_k 是通过在最小生成树T中删除k-1条代价最高的边所形成的k个连通分量。这些连通分量构成了最大间隔的k-聚类

设 $C = \{C_1, \ldots, C_k\}$, C 显然是一个聚类 将最小生成树中 k-1 条最昂贵的边按照非递增顺序排列: $e_{k-1}, e_{k-2}, \ldots, e_1$ 那么 C 的 spacing 就是 e_1 的代价

设 $C' = \{C'_1, \ldots, C'_k\}$ 是任何其他 k-聚类(并非通过在最小生成树 T 中删除 k-1 条代价最高的边所形成的 k 个连通分量)

由于其是其他聚类,因此存在一个 C 中的聚类 C_r ,它不包含在 C' 的任何聚类中 这意味着存在属于 C_r 的点 p_i 和 p_j ,它们分别属于 C' 中的不同聚类。所以我们不妨设 $p_i \in C_i'$, $p_j \in C_j'$ 在 p_i 到 p_j 的路径上,设 p 是 C_i' 的最后一个节点,p' 是 C_j' 的第一个节点 那么 (p,p') 的代价至多是 e_1 这是因为被删除的边的代价最小是 e_1 ,而 (p,p') 的代价不可能大于 e_1

而边 (p,p') 相对于聚类 C' 是一条跨越边,其距离至少是 d(p,p'),从而因此,C' 的间隔不大于 C 的间隔