Capstone 2: Yelp

Dan Duda Springboard Career Track

Problem Statement

I will build a restaurant recommendation system for users utilizing a combination of two methods: content-based filtering and collaborative filtering.

UPDATED: Provide insight as to whether a user would like (give a rating greater than 3) as well as if a user would give a rating greater than the business' average. This will to also identify which attributes would impact that result as well.

The Data

- Yelp Public Dataset for Yelp Challenge
 - o Round 13
- 12 Metropolitan Areas
- 156,000 Local Businesses
- Recommendation System is the Goal

Cleaning The Data

- Read in necessary JSON files using Pandas
 - o review.json
 - o business.json
 - o User.json
- Converted to .csv format
- Removed empty user_id data
- Only kept business data within the 'Food' or 'Restaurant' categories
- Issues with computation power and timeliness of running code on such large files
 - Reduced dataset to just Arizona businesses and other datasets related to Arizona.

	business_id	review_cool	review_funny	review_id	review_stars	review_useful	user_id	review_year	review_month	review_weekday	-
0	qxfWhZ42eDKm8chZDax4dQ	0	0.0	AmoSgZBvCuPc_tZNpHwtsA	5.0	1.0	DzZ7piLBF-WshsposflgtA	2017		Monday	
1	EL41z-hv/CeYHqA6PyWQ		0.0	vzMklQm34QW8CYaHdV- 2mQ	5.0	1.0	jAVISgESL-DI6_ISFINGA	2017		Wednesday	
2	vhU91MDgUuk4Cr9Kpj1Nw	0	0.0	p9U8-8j9tF8qHa-wgaDKJg	1.0	2.0	1BcNXW9_Y16TlofFVpFqIA	2015		Thursday	
3	x55HGqgk0KY2jFWU-L,rrA		0.0	RKSH2ZQHyBNgJwQ84IKMFg	40	0.0	pHKISjytTmPOLrP952_32w	2018	9	Tuesday	
4	qaPSbg690KaXSav6xsSV4Q	0	0.0	IWinoppaEcMt5DrreAURDQ	1.0	4.0	U2sN2-HGvh27FyXXFM48g	2013		Tuesday	

Columns in Merged and cleaned Dataset

- Columns were a merging of:
 - User data,
 - Business data
 - Many of which were attributes of the businesses,
 - Review data

Columns in our data file are: business id review cool review funny review id review stars review useful user id review year review month review weekday attributes DogsAllowed attributes DriveThru attributes GoodForKids attributes GoodForMeal attributes HasTV attributes NoiseLevel attributes OutdoorSeating attributes RestaurantsAttire attributes RestaurantsDelivery attributes_RestaurantsGoodForGroups attributes RestaurantsPriceRange2 attributes RestaurantsReservations

attributes RestaurantsTableService attributes RestaurantsTakeOut attributes Smoking attributes WheelchairAccessible attributes WiFi categories city is open latitude longitude name bus review count bus stars state cuisine user_average_stars cool user review count useful yelping since

Data Exploration

 Frequency of restaurants based on local locations.

- This is a histogram plot showing the percentage distribution of reviews per user.
 - We can see the majority of users actually have 3 or less reviews. There is a noticeable spike for 10+ reviews.
- It seems most Yelper's are either very active or not very active, with little room between.

- A distribution of average stars by user
- Potential bias to keep in mind as majority of users give fairly high ratings
- Average Stars Given by Users: 3.781

- The percentage distribution of reviews per business
- A noticeable jump in the number of businesses that have 20 or more reviews
 - o Over 50%

- This is a distribution of the most popular categories and their frequency in which they appear within our businesses
- There are a fair amount of businesses that have just one category tag, such as Restaurants or Food, which is why we see such high frequencies for those categories.

- A breakdown of the most common cuisine types
- This was done by identifying the 10 most common types and then specifying the remainder as "Others"
- You can see there are a lot of "Others" which can be related to the large variety of cuisine types in Arizona.

Important Statistics

- Median value:
 - o 4.000000
- Mean value:
 - 0 3.771028
- Standard deviation value:
 - 0 1.363917

• .10% sparsity of the matrix resulted in the change in project goal.

- Number of users :
 - o **62446**
- Number of reviews :
 - o 301731
- Number of ratings :
 - **301731**
- Average reviews/ratings per user:
 - 4.83187

Machine Learning

- Two separate questions being explored:
 - Would a user like a restaurant?
 - Give a rating greater than 3
 - Would a user give a rating greater than the business' average rating?
- These questions were addressed by utilizing classification systems
 - KNN, ADAboost, SVM, Random Forest, Decision Tree
- More insights to be discovered than just the questions?
 - Which restaurant features provide the greatest impact on whether a user would like it?

Question 1: Would a User Like a Restaurant?

• Features to be used for our models

model_type	model_name	features	accuracy
knn	knn3	10	0.60927
knn	knn5	10	0.62693
adaboost	abc	10	0.75497
logistic_regression	lr1	10	0.75055
random_forest	rfc	10	0.75276
decision_tree	dtc	8	0.7351

- ADAboost Classifier was most accurate model
 - ~75% accuracy

Deeper Dive Into ADAboost Model Question 1 Model

Attribute	Result	Description		
Accuracy	.755	How often classifier is correct	77 True	75 False
Error (misclassification rate)	.245	How often classifier is incorrect	Negatives	Positives
Sensitivity	.8804	When actual value is positive, how often is classifier correct	36 False Negatives	265 True Positives
Specificity	.5066	When actual value is negative, how often is classifier correct		

Question 2: Would a User Give a Rating Greater Than the Businesses Average?

 Features to be used for our model 	•	Features to	be used for	our models	s.
---	---	-------------	-------------	------------	----

• The 10 with the greatest impact

model_type	model_name	features	accuracy
knn	knn3	10	0.50773
knn	knnc	10	0.51214
adaboost	abc2	10	0.64459
logistic_regression	lr	10	0.59823
random_forest	rfc	10	0.62914
decision_tree	dtc	8	0.64238

 ADAboost Classifier was most accurate model

~65% accuracy

Deeper Dive Into ADAboost Model Question 2 Model

Attribute	Result	Description		
Accuracy	.645	How often classifier is correct	136 True	93False
Error (misclassification rate)	.355	How often classifier is incorrect	Negatives	Positives
Sensitivity	.696	When actual value is positive, how often is classifier correct	68 False Negatives	156True Positives
Specificity	.594	When actual value is negative, how often is classifier correct		

Conclusion

- Changed goal due to data and computational issues.
 - Original matrix had .10% Sparsity, too sparse to predict from
- Question 1: Would a user like a restaurant?
 - ADAboost Model was most accurate
 - 10 features
 - ~75% accuracy
- Question 2: Would a user give a rating greater than the businesses average?
 - ADAboost Model was most accurate
 - 10 features
 - ~65% accuracy
- Future Work:
 - Utilize big data entities to work with original data files
 - Test for User Average Star bias
 - Could result in impacting Yelp Challenge on a larger scale