Obstacle Detection and avoidance for UAV

Our Task is To Avoid Obstacle in front of our drone with Minimum Computation and High FPs using Stereo Vision Camera .

ABSTRACT OF WHAT WE DID:

- > Object search in small projections, Rather than full frame.
- > Disparity Based on ORB pixel-Matching.
- > Avoiding Objects Based on Distance calculated

OUR APPROACH

Projecting Drone on the Image it captures.

First, we need to Project Drone on the Image it captures.

Centre Projection is the Projection of Drone on the Image. It corresponds to the front of the drone projection. Any object in this projection lies in front of the drone.

Left Projection is the Projection of Drone on the image left to the Centre Projection. Any object in this projection appears to be on the left side of our drone.

Right Projection is the projection of Drone on the image right to the Centre Projection. Any object in this projection appears to be on the right side of our drone.

FLOWCHART OF OUR ALGORITHM.

EXPERIMENTS AND RESULTS

Graph of Disparity(pixel shifts of descriptors) v/s Actual Distance.

Curve fitting

ORB FEATURES MATCHING ON LEFT AND RIGHT FRAME

COMPARISON B/W OUR ALGORITHM AND DISPARITY MAP ON OUR DATASET

REFERENCES

For ORB:

https://medium.com/analytics-vidhya/introduction-to-orb-oriented-fast-and-rotated-brief-4220e 8ec40cf

FOR PROJECTIONS:

https://www.pyimagesearch.com/2015/01/19/find-distance-camera-objectmarker-using-python-opency/