International Journal of Applied Mathematics & Statistical Sciences (IJAMSS); ISSN (P): 2319–3972; ISSN (E): 2319–3980 Vol. 11, Issue 2, Jul–Dec 2022; 1–12 © IASET

ON FUZZY SUB IS-ALGEBRAS

Sundus Najah Jabir

Faculty of Education, Kufa, University, Iraq

ABSTRACT

In this paper we study sub IS-, algebra, fuzzy sub IS-, algebra, normal sub IS-algebra, fuzzy normal sub IS-algebra of fuzzy sub IS-algebra.

KEYWORDS: BCI-Algebras, Semigroup, IS-Algebra, Sub IS-Algebra, IS-Algebra Homomorphism, The Cartesian Product, Fuzzy Sub IS-Algebra, Normal Sub IS-Algebra

Article History

Received: 26 Jul 2022 | Revised: 27 Jul 2022 | Accepted: 28 Jul 2022

1. INTRODUCTION

In 1996, K. Iseki introduced the notion of BCK/BCI- algebras. For the general development of BCK/BCI- algebras [6], In [2] introduced a new class of algebras related to BCI- algebras and semi groups called a BCI- semi group. In this paper we study a new type of fuzzy sub IS-algebra are normal sub IS-algebra, fuzzy normal sub IS-algebra and fuzzy normal sub IS-algebra of fuzzy sub IS-algebra.

2. PRELIMINARY

We review some definitions that will be useful in our results.

Definition 2.1: A Semi group is an ordered pair (G,\cdot) , where G is a non-empty set and "." is an associative binary operation on G. [3]

Definition 2.2 A BCI- algebra is triple (G, *, 0) where G is a non-empty set "*" is binary operation on $G, 0 \in G$ is an element such that the following axioms are satisfied for all $s, t, r \in G$:

- ((s *t) *(s *r)) *(r *t) = 0,
- (s *(s *t) *t = 0,
- s *s = 0,
- s *t = 0 and t *s = 0 implies = t

If 0 *s = 0 for all $s \in G$ then G is called BCK-algebra. [1]

Definition 2.3: An IS-algebra is a non-empty set with two binary operation "*" and "." and constant 0 satisfying the axioms:

- (G,*, 0) is a BCI-algebra.
- (G, .) is a Semi group,
- s.(t *r) = (s.t) *(s.r) and (s *t).r = (s.r) *(t.r), for all $s, t, r \in G$. [6]

Example 2.4: let G={0,a,b,c} define "*" operation and multiplication "." by the following tables:

*	0	a	b	c
0	0	0	b	b
a	a	0	c	b
b	b	b	0	0
С	С	b	a	0

	0	a	b	c
0	0	0	0	0
a	0	a	0	a
b	0	0	b	b
c	0	a	b	С

Then by routine calculations we can see that G is an IS-algebra.[6]

Definition 2.5: Let G and Y be IS-algebra a mapping $f: G \to Y$ is called an IS-algebra homomorphism (briefly homomorphism) if f(x * y) = f(x) * f(y) and f(xy) = f(x)f(y) for all $x, y \in G$.

Let $f: G \to Y$ IS-algebra homomorphism. Then the set $\{x \in G : f(x) = 0\}$ is called the kernel of f, and denote by Kerf. Moreover, the set $\{f(x) \in Y : x \in G\}$ is called the image of f and denote by Im f. [4]

Definition 2.6: Let and μ be the fuzzy subsets in a set G, the Cartesian product

$$\times \mu$$
: $G \times G \longrightarrow [0, 1]$ is defined by $(x, \mu)(x, y) = \min\{(x), \mu(y)\}$ for all $x, y \in G$. [9]

Definition 2.7: Let G be a non-empty set a fuzzy subset \sim of G is a function $\mu: G \rightarrow [0, 1]$. [10]

Definition 2.8: Let \sim and \in be a fuzzy sets on G. Define the fuzzy set \sim ∩€ as follows: $(\sim \cap \in)(x) = \min\{\sim(x), \in (x)\}$ for all $x \in G$.[5]

Definition 2.9: Let \sim and € be a fuzzy sets on G. Define the fuzzy set \sim \bigcup € as follows:

$$(\sim \bigcup \notin)(x) = \max\{\sim(x) \notin (x)\}$$
 for all $x \in G$.[5]

3. MAIN RESULTS

In this section, we find some results about fuzzy sub IS-algebra, normal sub IS-algebra, fuzzy normal sub IS-algebra and fuzzy normal sub IS-algebra of fuzzy sub IS-algebra.

Definition 3.1: A fuzzy set ~ defined on G is called a fuzzy sub IS-algebra of G if it satisfies the following conditions:

1)
$$\sim (x_1 * x_2) \ge \min \{ \sim (x_1), \sim (x_2) \},$$

2) $\sim (x_1 x_2) \ge \min \{ \sim (x_1), \sim (x_2) \} \ \forall \ x_1, x_2 \in G$

Proposition 3.2: Let \sim and \in be fuzzy IS-algebra of G. Then $\sim \cap \in$ is a fuzzy IS-algebra of G.

Proof: Let \sim and \in are the fuzzy sub IS-algebra and let $x, y \in \sim \cap \in$ then

$$(\sim \cap \in)(xy) = \min\{\sim (xy), \in ((xy))\}$$

$$\geq \min\{\min\{\sim (x), \sim (y)\}, \min\{\in (x), \in (y)\}\} \quad [by \text{ hypothesis }]$$

$$= \min\{\min\{\sim (x), \in (x)\}, \min\{\sim (y), \in (y)\}\}$$

$$= \min\{(\sim \cap \in)(x), (\sim \cap \in)(y)\}.$$

so,

$$(\sim \cap \in)(x * y) = \min\{\sim (x * y), \in ((x * y))\}$$

$$\geq \min\{\min\{\sim (x), \sim (y)\}, \min\{\in (x), \in (y)\}\} \quad [by \text{ hypothesis }]$$

$$= \min\{\min\{\sim (x), \in (x)\}, \min\{\sim (y), \in (y)\}\}$$

$$= \min\{(\sim \cap \in)(x), (\sim \cap \in)(y)\}.$$

Hence [~] ∩€ is a fuzzy sub IS-algebra.

Proposition 3.3: Let \sim and € are fuzzy sub IS-algebra of G then $\sim \bigcup €$ is a fuzzy sub IS-algebra of G if $\sim \subset €$ or $€ \subset \sim$.

Proof: Let \sim and \in are the fuzzy sub IS-algebra, and let $x, y \in \sim \bigcup \in$ then

$$(\sim \bigcup \in)(xy) = \max\{\sim(xy), \in ((xy))\}$$

$$\geq \max\{\min\{\sim(x), \sim(y)\}, \min\{\in (x), \in (y)\}\} \quad [by \ hypthoses]$$

$$= \min\{\max\{\sim(x), \in (x)\}, \max\{\sim(y), \in (y)\}\} \quad [\sim \subseteq \in \ or \in \subseteq \sim]$$

$$= \min\{(\sim \bigcup \in)(x), (\sim \bigcup \in)(y)\}.$$

so,

$$(\sim \bigcup \in)(x^*y) = \max\{\sim(x^*y), \in ((x^*y))\}$$

$$\geq \max\{\min\{\sim(x), \sim(y)\}, \min\{\in(x), \in (y)\}\} \quad [by \ hypthoses]$$

$$= \min\{\max\{\sim(x), \in (x)\}, \max\{\sim(y), \in (y)\}\} \quad [\sim \subseteq \in \ or \in \subseteq \sim]$$

$$= \min\{(\sim \bigcup \in)(x), (\sim \bigcup \in)(y)\}.$$

Hence $\mu \cup$ is a fuzzy sub IS-algebra.

Proposition 3.4: Let G be a IS-algebra and let μ , ν , be a fuzzy sub IS-algebra then μ^{\times} is a fuzzy sub IS-algebra of $G \times G$.

Proof: Let \sim and \in are fuzzy IS-algebra \ni $(x_1, y_1), (x_2, y_2) \in G \times G$ then

$$(\sim \times \in)((x_{1}, y_{1}).(x_{2}, y_{2})) = (\sim \times \in)((x_{1}.x_{2}, y_{1}.y_{2}))$$

$$= \min\{\sim (x_{1}.x_{2}), \in (y_{1}.y_{2})\}$$

$$\geq \min\{\min\{\sim (x_{1}), \sim (x_{2})\}, \min\{\in (y_{1}), \in (y_{2})\}\}$$

$$= \min\{\min\{\sim (x_{1}), \in (y_{1})\}, \min\{\sim (x_{2}), \in (y_{2})\}\}$$

$$= \min\{(\sim \times \in)(x_{1}, y_{1}), (\sim \times \in)(x_{2}, y_{2})\}$$

$$(\sim \times \in)((x_{1}, y_{1})^{*}(x_{2}, y_{2})) = (\sim \times \in)((x_{1}^{*}x_{2}, y_{1}^{*}y_{2}))$$

$$= \min\{\sim (x_{1}^{*}x_{2}), \in (y_{1}^{*}y_{2})\}$$

$$\geq \min\{\min\{\sim (x_{1}), \sim (x_{2})\}, \min\{\in (y_{1}), \in (y_{2})\}\}$$

$$= \min\{\min\{\sim (x_{1}), \in (y_{1})\}, \min\{\sim (x_{2}), \in (y_{2})\}\}$$

$$= \min\{(\sim \times \in)(x_{1}, y_{1}), (\sim \times \in)(x_{2}, y_{2})\}$$

Hence ~ ×€ is a fuzzy sub IS-algebra.

Definition 3.5: A fuzzy sub IS-algebra ildet of G is said to be normal fuzzy sub IS-algebra if there exists $x \in G$ such that ildet(x) = 1.

Remark 3.6: A fuzzy sub IS-algebra μ of G is said to be normal fuzzy sub IS-algebra if and only if μ (0) = 1.

Proof:

Let μ be a normal fuzzy sub IS-algebra of G then

there exists $x \in G$ such that $\mu(x) = 1$ since $\mu(0) \ge \mu(x) \quad \forall \ x \in G$ so $\mu(0) \ge 1$ then $\mu(0) = 1$.

Conversely, it is clear.

Proposition 3.7: Let μ and are normal fuzzy sub IS-algebra of G then $\mu \cap$ be a normal fuzzy sub IS-algebra of G.

Proof:

Let μ and ν are normal fuzzy sub IS-algebra of G then

 $\mu \cap v$ is a fuzzy sub IS-algebra of G [by Proposition (3.2)] also $\mu(0) = 1$ and (0) = 1 so $(\sim \cap \in (0)) = \min \{\sim (0), \in (0)\} = 1$

therefore $(\sim \bigcap \in)$ is a normal fuzzy sub IS-algebra.

Proposition 3.8: Let \sim and \in are normal fuzzy sub IS-algebra of G then \sim \cup € be a normal fuzzy sub IS-algebra of G if \sim \subseteq € or € \subseteq \sim .

Proof:

Let μ and $\$ are normal fuzzy sub IS-algebra of G such that $\ \sim \ \subseteq \$ $\$ or $\$ $\$ $\$ $\$ then

~ $\bigcup \nu$ is a fuzzy sub IS-algebra of G [by Proposition (3.3)]

also
$$\mu(0) = 1$$
 and $(0) = 1$ so

Impact Factor (JCC): 6.6810 NAAS Rating 3.45

$$(\sim \bigcup \in (0), \in (0)) = \max \{\sim (0), \in (0)\} = 1$$

therefore $\sim \bigcup \nu$ is a normal fuzzy sub IS-algebra.

Proposition 3.9: Let μ and be a normal fuzzy sub IS-algebra then $\sim \times \in$ is a normal fuzzy sub IS-algebra.

Proof:

Let μ and are normal fuzzy sub IS-algebra of G then,

since μ and are fuzzy sub IS-algebra

so [by Proposition (3.4)] ~×€ is a fuzzy sub IS-algebra

Now,

$$(\sim \times \notin')(0,0) = \min \{\sim (0), \notin (0)\} = \min \{1,1\} = 1$$

[since μ , ν are normal fuzzy sub IS-algebra]

Hence ~×€ is normal fuzzy sub IS-algebra.

Definition 3.10: Let G be a IS-algebra and μ a fuzzy set on X. Then μ is called a fuzzy normal sub IS-algebra of G if it satisfies the following conditions:

- 1) \sim is a fuzzy sub IS algebra of G.
- 2) $\sim (x * y) = \sim (y * x) \quad \forall x, y \in G \setminus \{0\}$
- 3) $\neg (xy) = \mu(yx) \quad \forall x, y \in G.$

Proposition 3.11: Let μ and are fuzzy normal sub IS-algebra of G then ~ \bigcap € be a fuzzy normal sub IS-algebra.

Proof:

Let μ and are fuzzy normal sub IS-algebra of G,

then $\sim \bigcap \in$ is a fuzzy sub IS-algebra of G [by Proposition (3.2)]

Now,

$$(\sim \cap \in)(xy) = \min\{\sim (xy), \in (xy)\}\$$

= $\min\{\sim (yx), \in (yx)\}\ [\sim, \in are\ fuzzy\ normal\ subIS - algebra]\ so,$
= $(\sim \cap \in)(yx)$, $\forall x, y \in G$.

$$(\sim \cap \in)(x * y) = \min\{\sim (x * y), \in (x * y)\}$$

$$= \min\{\sim (y * x), \in (y * x)\}[\sim \in \text{are fuzzy normal sub IS - algebra}]$$

$$= (\sim \cap \in)(y * x) \qquad \forall x, y \in G \setminus \{0\}.$$

therefore $\sim \bigcap \in$ is a fuzzy normal sub IS-algebra.

Proof:

Suppose that μ and μ are fuzzy normal sub IS-algebra

then μ and are fuzzy sub IS-algebra then

~ U€ be a fuzzy sub IS-algebra [by Proposition (3.3)]

Now,

$$(\sim \bigcup \in)(xy) = \max\{\sim (xy), \in (xy)\}$$

$$= \max\{\sim (yx), \in (yx)\}$$

$$= (\sim \bigcup \in)(yx) \quad \forall x, y \in G.$$
[by hypothesis]

so,

$$(\sim \bigcup \in)(x^*y) = \max\{\sim (x^*y), \in (x^*y)\}$$

$$= \max\{\sim (y^*x), \in (y^*x)\}$$
 [by hypothesis]
$$= (\sim \bigcup \in)(y^*x) \quad \forall x, y \in G \setminus \{0\}.$$

Hence ~ U€ is a fuzzy normal sub IS-algebra.

Proposition 3.13: Let $\}$ and \sim are fuzzy normal sub IS-algebra of G then $\} \times \sim$ is a fuzzy normal sub IS-algebra of $G \times G$.

Proof:

Let μ and μ be a fuzzy normal sub IS-algebra of G and let

$$(x_1,x_2), (y_1,y_2) \in G \times G \text{ where } x_1,x_2,y_1,y_2 \in G \ni x = (x_1,x_2), y = (y_1,y_2)$$

then and μ be a fuzzy sub IS-algebra of G so

 $\times \mu$ is a fuzzy sub IS-algebra [by Proposition (3.4)]

now,

$$(\} \times \sim)(xy) = (\} \times \sim)((x_1, x_2) \cdot (y_1, y_2))$$

$$= (\} \times \sim)(x_1 y_1, x_2 y_2)$$

$$= \min\{\} (x_1 y_1), \sim (x_2 y_2)\}$$

$$= \min\{\} (y_1 x_1), \sim (y_2 x_2)\} \quad [\}, \sim \text{ are fuzzy normal subIS-algebra}]$$

$$= (\} \times \sim)((y_1, y_2) \cdot (x_1, x_2))$$

$$= (\} \times \sim)(yx)$$

and so,

let
$$(x_1, x_2)$$
, $(y_1, y_2) \in G \times G$ where $x_1, x_2, y_1, y_2 \in G \setminus \{0\}$
such that $x = (x_1, x_2)$, $y = (y_1, y_2) \in G \times G$
 $(\} \times \sim)(x^* y) = (\} \times \sim)((x_1, x_2)^*(y_1, y_2))$
 $= (\} \times \sim)(x_1^* y_1, x_2^* y_2)$
 $= \min\{\}(x_1^* y_1), \sim(x_2^* y_2)\}$
 $= \min\{\}(y_1^* x_1), \sim(y_2^* x_2)\}[\}, \sim are fuzzy normal subIS-algebras]$
 $= (\} \times \sim)((y_1, y_2)^*(x_1, x_2))$
 $= (\} \times \sim)(y^* x)$

therefore $\} \times \sim$ is a fuzzy normal sub IS-algebra.

Proposition 3.14: Let G be a IS-algebra and \sim , } be two fuzzy sets in G such that $\sim \times$ } is a fuzzy sub IS-algebra of $G \times G$. Then:

- 1) either $\sim (x) \leq \sim (0)$ or $\{(x) \leq \}(0)$ for all $x \in G$.
- 2) If $\sim (x) \leq \sim (0)$ for all $x \in X$ then either $\sim (x) \leq \{0\}$ or $\{x\} \leq \{0\}$.
- 3) If $\{(x) \le \}(0)$ for all $x \in X$ then either $\neg(x) \le \neg(0)$ or $\{(x) \le \neg(0)\}$.
- 4) either \sim or $\}$ is a fuzzy sub IS-algebra of G .

Proposition 3.15: Let $\sim \times$ be a fuzzy normal sub IS-algebra of G then either $\}$ or \sim is a fuzzy normal sub IS-algebra of G.

Proof:

Let $\sim \times$ } be a fuzzy normal sub IS-algebra of G

so $\sim \times$ } be a fuzzy sub IS-algebra of G

then by use Proposition (3.14), either $\}$ or \sim is a fuzzy sub IS-algebra of G

if } be a fuzzy sub IS-algebra of G

so [by (3.14)]
$$(x) \le \sim (0)$$

to prove } is a normal

let $x_1, x_2 \in X$ then

Now, let $x_1, x_2 \in G/\{0\}$

$$\begin{cases} (x_1 \cdot x_2) &= \min\{\sim(0), \}(x_1 \cdot x_2)\} \\ &= (\sim \times \})(0, x_1 \cdot x_2) \\ &= (\sim \times \})((0, x_1) \cdot (0, x_2)) \\ &= (\sim \times \})((0, x_2) \cdot (0, x_1)) \quad [\sim \times \} \text{ is a fuzzy normal sub IS - algebra }] \\ &= (\sim \times \})(0, x_2 \cdot x_1) \\ &= \min\{\sim(0), \}(x_2 \cdot x_1)\} \\ &= \}(x_2 \cdot x_1) \qquad \forall x_1 \cdot x_2 \in G \setminus \{0\} .$$

Hence } is a fuzzy normal sub IS-algebra.

In similar way, if $\sim \times$ is a fuzzy normal sub IS-algebra and \sim is a fuzzy sub IS-algebra.

We can prove that ~ is a fuzzy normal sub IS-algebra.

Definition 3.16: Let G be a IS-algebra, ~ and € are fuzzy sub IS-algebra of G such that ~ ⊆€ then ~ is called fuzzy normal sub IS-algebra of fuzzy sub IS-algebra€ if:

- (1) $\sim (y * x) \ge \min \{\sim (x * y), \notin (y)\}$
- (2) $\sim (yx) \ge \min \{\sim (xy), \notin (y)\}$, $\forall x, y \in X$.

Proposition 3.17: Let G be a IS-algebra and let \sim and $\}$ be fuzzy normal sub IS-algebra of fuzzy sub IS-algebra \in . Then $\sim \bigcap \}$ is a fuzzy normal sub IS-algebra of \in .

Proof:

Let ~ and } are fuzzy normal sub IS-algebra of fuzzy sub IS-algebra€.

Then $\sim \bigcap$ is a fuzzy sub IS-algebra [by Proposition (3.2)]

Now, let $x, y \in X$, since

$$\sim (y * x) \ge \min\{ \sim (x * y), \notin (y) \}, \} (y * x) \ge \min\{ \} (x * y), \notin (y) \}$$
 and

$$\sim (yx) \ge \min\{ \sim (xy), \notin (y) \}, \ \} (yx) \ge \min\{ \} (xy), \notin (y) \}$$

therefore

Impact Factor (JCC): 6.6810 NAAS Rating 3.45

1)
$$(\sim \cap \})(yx) = \min\{\sim (yx), \}(yx)\}$$

 $\geq \min\{\min\{\sim (xy), \}(y)\}, \min\{\}(xy), \}(y)\}\}$
 $= \min\{\min\{\sim (xy), \}(xy)\}, \min\{\}(y), \}(y)\}$
 $= \min\{(\sim \cap \})(xy), \}(y)\}$

and,

2)
$$(\sim \bigcap \})(y*x) = \min \{ \sim (y*x), \} (y*x) \}$$

 $\geq \min \{ \min \{ \sim (x*y), \notin (y) \}, \min \{ \} (x*y), \notin (y) \} \}$
 $= \min \{ \min \{ \sim (x*y), \} (x*y) \}, \min \{ \notin (y), \notin (y) \}$
 $= \min \{ (\sim \bigcap \}) (x*y), \notin (y) \}$

Hence \sim ∩ } is a fuzzy normal sub IS-algebra of \in .

Proof:

Let \sim and $\}$ are fuzzy normal sub IS-algebra of fuzzy sub IS-algebra \in .

~ U€ is a fuzzy sub IS-algebra[by Proposition (3.3)]

Now, let $x, y \in G$ then

1)
$$(\sim \bigcup \})(yx) = \max \{\sim (yx), \} (yx)\}$$

 $\geq \max \{\min \{\sim (xy), \notin (y)\}, \min \{\} (xy), \notin (y)\} \}$
 $= \min \{\max \{\sim (xy), \} (xy)\}, \max \{\notin (y), \notin (y)\} [\sin ce \sim \subseteq \} \ or \ \} \subseteq \sim]$
 $= \min \{(\sim \bigcup \})(xy), \notin (y)\}$

and so,

2)
$$(\sim \bigcup \})(y^*x) = \max \{\sim (y^*x), \} (y^*x)\}$$

 $\geq \max \{\min \{\sim (x^*y), \in (y)\}, \min \{\} (x^*y), \in (y)\} \}$
 $= \min \{\max \{\sim (x^*y), \} (x^*y)\}, \max \{\in (y), \in (y)\} [\sim \subseteq \} \ or \ \} \subseteq \sim]$
 $= \min \{(\sim \bigcup \})(x^*y), \in (y)\}$

Hence $\sim \bigcup$ } is a fuzzy normal sub IS-algebra of €.

Proof:

Let \sim and $\}$ are fuzzy normal sub IS-algebra of \in .

```
let (x_1,x_2), (y_1,y_2) \in G \times G such that x = (x_1,x_2), y = (y_1,y_2)
so \{\cdot, \cdot, \cdot\} are fuzzy sub IS-algebra of G,
then \notin \times \notin is a fuzzy sub IS-algebra [by Proposition (3.9)]
then \sim \times } is a fuzzy sub IS-algebra of G \times G [by Proposition (3.9)] .
Now, to prove \sim \times } is a fuzzy normal sub IS-algebra of \in \times \in
(\sim \times )(yx) = (\sim \times )((y_1, y_2)(x_1, x_2))
                 =(\sim \times )(y_1x_1,y_2x_2)
                  = \min\{\sim(y_1x_1), \}(y_2x_2)\}
                  \geq \min\{\min\{\sim(x_1,y_1),\notin(y_1)\},\min\{\}(x_2,y_2),\notin(y_2)\}\}
                  = \min \{ \min \{ \sim (x, y_1), \} (x, y_2) \}, \min \{ \in (y_1), \in (y_2) \} \}
                  = \min\{(\sim \times\})((x_1, x_2)(y_1, y_2)), \in \times \in (y_1, y_2)\}
                  = \min\{(\sim \times\})(xy), \in \times \in (y)\}
and so,
(\sim \times)(y^*x) = (\sim \times)((y_1, y_2)^*(x_1, x_2))
                      =(\sim\times\})(y_1*x_1,y_2*x_2)
                      = \min\{ \sim (y_1 * x_1), \} (y_2 * x_2) \}
                      \geq \min\{\min\{\neg(x_1 * y_1), \notin(y_1)\}, \min\{\}(x_2 * y_2), \notin(y_2)\}\}
                      = \min \{ \min \{ \sim (x_1 * y_1), \} (x_2 * y_2) \}, \min \{ \in (y_1), \in (y_2) \} \}
                      = \min\{(\sim \times\})((x_1, x_2) * (y_1, y_2)), \in \times \in (y_1, y_2)\}
                      = \min\{(\sim \times\})(x * y) \notin \times \{(y)\}
```

Hence $\sim \times$ } is a fuzzy normal sub IS-algebra of $\in \times \in$.

Proposition 3.20: Let $f: G \to Y$ be a homomorphism if \sim is a normal fuzzy sub IS-algebra of Y then \sim^f is a normal fuzzy sub IS-algebra of G.

Proposition 3.21: Let $f: G \to Y$ be a homomorphism if \sim is a fuzzy normal sub IS-algebra of a fuzzy sub IS-algebra \in .

Proof:

Let ~ is a fuzzy normal sub IS-algebra of €. Then

$$\sim^f(x) = \sim(f(x)) \le \in (f(x)) = \in^f(x)$$
 [sin ce $\sim \subseteq \in$].

and \sim^f is a fuzzy sub IS-algebra[by Proposition (3.20)]

 $extit{}^{f}$ is a fuzzy sub IS-algebra

Now, to prove \sim^f is a fuzzy normal sub IS-algebra of \notin^f thus

Impact Factor (JCC): 6.6810 NAAS Rating 3.45

so,

Hence \sim^f is a fuzzy normal sub IS-algebra of \in^f .

Proposition 3.22: Let $f: G \to Y$ be epimorphism if \sim^f is a normal fuzzy sub IS-algebra of G then \sim is a normal fuzzy sub IS-algebra of Y.

Proposition 3.23: Let $f:G \to Y$ epimorphism if \sim^f is a fuzzy normal sub IS-algebra of \notin^f . Then \sim is a fuzzy normal sub IS-algebra of V.

Proof:

Let \sim^f is a fuzzy normal sub IS-algebra of \notin^f then

since f is an epimorphism if $x \in Y \exists a \in X \text{ such that } f(a) = x$

$$\sim (x) = \sim (f(a)) = \sim^f(a) \le f(a) = f(a) =$$

and ~ is a fuzzy sub IS-algebra[by Proposition (3.22)]

Now, let $x, y \in Y \exists a, b \in G$ such that f(a) = x, f(b) = y then

$$\sim (yx) = \sim (f(b)f(a)) = \sim (f(ba)) = \sim f(ba)$$

$$\geq \min\{\sim f(ab), \notin f(b)\}$$

$$= \min\{\sim (f(ab), \notin (f(b))\}$$

$$= \min\{\sim (f(a)f(b)), \notin (y)\}$$

$$= \min\{\sim (xy), \notin (y)\}$$

and so,

```
\begin{array}{l}
\sim (y^*x) = \sim (f(b)^*f(a)) \\
= \sim (f(b^*a)) \\
= \sim f(b^*a) \\
\geq \min \{\sim f(a^*b), \in f(b)\} \\
= \min \{\sim (f(a^*b)), \in (f(b))\} \\
= \min \{\sim (f(a)^*f(b)), \in (y)\} \\
= \min \{\sim (x^*y), \in (y)\}
\end{array}
```

Hence ~ is a fuzzy normal sub IS-algebra of €.

REFERENCES

- 1. Joncelyn S. Paradero-Vilela and Mila Cawi "On KS-Semigroup Homomorphism" International Mathematical Forum, 4, no.23, 1129-1138, (2009).
- 2. K. Iseki, "An Algebra Related with a Propositional Calculus", Japan Acad., 42 1966.
- 3. K. Iseki, On BCI-algebras, Math. Seminar Notes (presently Kobe J. Math.), 8(1980),125-130.
- 4. K. H. Kim, "On structure of KS-semigroups", Int. Math. Forum, 1(2006),67-76.
- 5. L.A Zadeh, "Fuzzy Sets", Information Control, 8, 338-353, 1965.
- 6. Petrich, Mario."Introduction to Semigroups" Charles E. Merrill Publishing Company A Bell and Howell Company, USA.1973.
- 7. S. S. Ahn and H. S. Kim, A note on I-ideal in BCI-semigroups, Comm. Korean Math. Soc,11:4(1996),895-902.
- 8. Sundus Najah Jabir "Types Ideals On IS-algebras" International Journal of Mathematical Analysis Vol. 11, no. 13-16, 2017.
- 9. Williams, D. R, Prince and Husain Shamshad, "On Fuzzy KS-semigroup" International Mathematical Forum, 2, 2007, no.32, 1577-1588.
- 10. Won Kyun Jeong, "On Anti Fuzzy Prime Ideal in BCK-Algebras", Journal of the Chungcheong Mathematical Society Volume 12, August 1999.
- 11. Young Bae Jun, Xiao Long Xin and Eun Hwan Roh "A Class of algebras related to BCI-algebras and semigroups", Soochow Journal of Math., 24, no. 4,pp. 309-321,(1998).
- 12. ZHAN JIANMING and TAN ZHISONG "INTUITIONISTIC FUZZY -IDEALS OF IS-ALGEBRAS" Scientiae Mathematicae Japoniccae Online, Vol.9,(2003), 267-271.