

Universidad de Costa Rica

ESCUELA DE Ingeniería Eléctrica

PROYECTO# 2.

Sistemas de Potencia.

Estudiante:

Royer Méndez Ramírez - A43333 Valeria Mora Torres - B75122 Marcelo Abad Garro - B10001 Profesor: Dr. Gustavo Valverde Mora

Sistemas de Potencia.

IE-0469

San José, 30 de noviembre de 2021 Considere el siguiente sistema de potencia:

Figura 1: Figura 1: Sistema de 2 áreas de Kundur.

1. Respuesta corta:

- a) Revisar los modelos y parámetros de los generadores, sistema de excitación y PSS en el archivo $kundur\ syst\ NOPSS.dat$
- b) Modelo de los generadores.
 - $\mathbf{R}/$ El orden del modelo se obtiene al sumar la cantidad de las constantes de tiempo más 2 (este 2 proviene de la ecuación diferencial de la velocidad y del ángulo). Como cada generador cuenta con 4 constantes de tiempo $(T'_{do}, T''_{do}, T'_{qo} \text{ y } T''_{qo})$, entonces se dice que tienen modelo de 6to orden.
- c) Simulación sin perturbaciones y determinar la potencia de salida de los 4 generadores.

Potencias activas de los generadores:

• G_1 : 700.0951 MW, G_2 : 699.9990 MW, G_3 : 718.9999 MW, G_3 : 699.9992 MW

Figura 2: Potencias Activas de los generadores.

Ing. Eléctrica 2 Proyecto# 2

Potencias reactivas de los generadores:

• G_1 : 185.0466 Mvar, G_2 : 234.6285 Mvar, G_3 : 175.9687 Mvar, G_3 : 202.0304 Mvar

Figura 3: Potencias Reactivas.

t(s) Elaboración

- propia mediante el software de simulación Ramses
- d) Condición de sobreexcitación o subexcitación?
 - ${f R}/{f L}$ os valores de las potencias reactivas "Q" en la sección anterior son positivos, eso quiere decir que producen potencia reactiva. Esto se traduce en que operan en condición de **sobre-excitación**
- e) Con base en las matrices A, B, C, D, siendo la señal de entrada "u" la tensión de referencia de G_1 ; indique la señal de salida "y"

 ${\bf R}/$ Con base en la información brindada en las matrices, la señal de salida "y" es la velocidad ω del generador 1. Esta se obtiene a partir de la matriz "C", la cual es la encargada de relacionar los estados con las salidas (la matriz "D" no se considera en este caso ya que es una matriz de ceros).

2. Con un aumento del 1% en la carga L9. Determinar la estabilidad del sistema y la frecuencia de oscilación.

La simulación del aumento del 1% en la carga L9 hizo que el sistema se volviera inestable (Figura 4) Cuya frecuencia de oscilación se pudo obtener por medio de la inversa del periodo de las oscilaciones:

$$T = Amp_2 - Amp_1 = 26,3829s - 24,7314s = 1,65150s \tag{1}$$

$$f_{osc} = 1/T = 1/1,65150 = 0,60551Hz (2)$$

La Figura 5 muestra la misma curva del sistema inestable, con los datos utilizados para calcular la frecuencia.

Ing. Eléctrica 3 Proyecto# 2

Figura 4: Simulación con el aumento del 1 % en la carga L9

Figura 5: Datos de las oscilaciones utilizados para obtener la frecuencia de oscilación

Elaboración propia mediante el software de simulación Ramses

3. A partir de las matrices A, B y C del sistema y la lista de estados dados, determine en Python:

a) Los autovalores del sistema:

R: Trabajando con las matrices A.txt, B.txt, C.txt y con el archivo

Two_Area_Kundur_System.py proveído fué posible extraer los datos en formato .txt de las matrices A, B y C y transformarlos en matrices manipulables por python, una vez hecho esto fué posible obtener los autovalores. Se obtuvo un total de 66 autovalores, los cuales se muestran a continuación:

Ing. Eléctrica 4 Proyecto# 2

Pos	Autovalor	Pos	Autovalor	Pos	Autovalor	Pos	Autovalor	Pos	Autovalor	Pos	Autovalor
1	-0.1+0.0j	2	-0.1+0.0j	23	-15.776+0.0j	24	-13.892+0.0j	45	-0.500+0.0j	46	-0.556+0.0j
3	0.0+0.0j	4	-0.1+0.0j	25	-0.691 + 6.775j	26	-0.691-6.775j	47	-0.555+0.0j	48	-0.555+0.0j
5	-0.1+0.0j	6	-181.443+0.0j	27	-0.696+6.965j	28	-0.696-6.965j	49	0.00011 + 0.0j	50	-0.015+0.0j
7	-145.041+0.0j	8	-200.000+0.0j	29	0.090+3.811j	30	0.090-3.811j	51	-0.015+0.0j	52	-0.015+0.0j
9	-93.974+0.0j	10	-96.596+0.0j	31	-5.510+0.0j	32	-5.340+0.0j	53	-1.0+0.0j	54	-0.185+0.0j
11	-97.643+0.0j	12	-66.894+0.0j	33	-4.553+0.0j	34	-4.925+0.357j	55	-50.0+0.0j	56	-19.999+0.0j
13	-15.389+22.396j	14	-15.389-22.396j	35	-4.925-0.357j	36	-4.932+0.307j	57	-1.0+0.0j	58	-0.185+0.0j
15	-17.087+16.779j	16	-17.087-16.779j	37	-4.932-0.307j	38	-4.812 + 0.0j	59	-50.0+0.0j	60	-1.0+0.0j
17	-30.525+0.081j	18	-30.525-0.081j	39	-1.662+0.0j	40	-1.943+0.0j	61	-0.185+0.0j	62	-50.0+0.0j
19	-25.736+0.347j	20	-25.736-0.347j	41	-2.000+0.0j	42	-1.983+0.0j	63	-1.0+0.0j	64	-0.185+0.0j
21	-25.214+0.0j	22	-21.663+0.0j	43	-0.059+0.177j	44	-0.059-0.177j	65	-50.0+0.0j	66	-200.000+0.0j

b) Amortiguamientos y frecuencias correspondientes a cada autovalor se muestran a continuación:

Posicion	Amort.	Frec.	Posicion	Amort.	Frec.	Posicion	Amort.	Frec.	Posicion	Amort.	Frec.
1	1	0	2	1	0	33	1	0	34	0.99738	0.0568615
3	nan	0	4	1	0	35	0.99738	-0.0568615	36	0.998068	0.0488659
5	1	0	6	1	0	37	0.998068	-0.0488659	38	1	0
7	1	0	8	1	0	39	1	0	40	1	0
9	1	0	10	1	0	41	1	0	42	1	0
11	1	0	12	1	0	43	0.317019	0.0282702	44	0.317019	-0.0282702
13	0.56633	3.56448	14	0.56633	-3.56448	45	1	0	46	1	0
15	0.713503	2.67052	16	0.713503	-2.67052	47	1	0	48	1	0
17	0.999996	0.0129934	18	0.999996	-0.0129934	49	-1	0	50	1	0
19	0.999909	0.0552846	20	0.999909	-0.0552846	51	1	0	52	1	0
21	1	0	22	1	0	53	1	0	54	1	0
23	1	0	24	1	0	55	1	0	56	1	0
25	0.101583	1.0784	26	0.101583	-1.0784	57	1	0	58	1	0
27	0.0994691	1.10855	28	0.0994691	-1.10855	59	1	0	60	1	0
29	-0.0237923	0.606691	30	-0.0237923	-0.606691	61	1	0	62	1	0
31	1	0	32	1	0	63	1	0	64	1	0
						65	1	0	66	1	0

c) Identifique los 5 modos de oscilación más importantes según los cálculos del punto b)

 ${f R}/$ Los modos de oscilación mas importantes son los que tienen amortiguamiento (ξ) menor al 5%, los que tienen la razón de amortiguamiento (ξ) negativa, y los que tienen el amortiguamiento más bajo que se acerque al 0.05 PU (5%). Con base en los datos obtenidos en la sección b), las siguientes fueron las razones de amortiguamiento más importantes y sus modos de oscilación correspondientes:

Orden	Raz. Amrt.	Modos de osc.
1	-0.0238	$0.0907{+}3.8120\mathrm{j}\ , 0.0907{-}3.8120\mathrm{j}$
2	0.0995	-0.6963+6.9652j, $-0.6963-6.9652j$
3	0.1016	-0.6919+6.7758j, $-0.6919-6.7758j$
4	0.3170	-0.0594+0.1776j, $-0.0594-0.1776j$
5	0.5663	-15.3895+22.3963j, $-15.3895-22.3963j$

d) Clasifique los 5 modos encontrados en el punto c) según el valor de la frecuencia.

A cada modo de oscilación de los encontrados en el punto c) les corresponden las siguientes frecuencias, respectivamente:

Orden	Frecuencia (Hz)	Tipo de frecuencia
1	0.606691	Interarea alta, generadores de un subgrupo que oscilan entre ellos mismos
2	1.10855	Local, modo de ángulo de rotor, tipo generador o planta vs resto del sistema
3	1.0784	Local, modo de ángulo de rotor, tipo generador o planta vs resto del sistema
4	0.0282702	Interarea baja, generadores que oscilan contra generadores de otro grupo
5	3.56448	Local, modo torsional, oscilaciones entre turbina y generador

e) Factores de participación de los modos del punto c), estados que más afectan a los modos de interés. Indique el valor de tolerancia utilizado.

R: A continuación se indican los estados que más afectan a los modos de interés encontrados en la sección c). Se eligió un valor de tolerancia (τ) de **0.75**:

Modo 1		Modo 2		Modo 3		Mode	Modo 5		
Estado	FP	Estado	FP	Estado	FP	Estado	FP	Estado	FP
$\delta(G1)$	0.86486	$\delta(G3)$	0.849998	$\delta(G1)$	0.846928	$\omega(G1)$	0.998232	Psif (G4)	1.0
$\omega(G1)$	0.868891	$\omega(G3)$	0.83008	$\omega(G1)$	0.828223	X02 (G1)	0.867071		
$\delta(G3)$	0.995423	$\delta(G4)$	1.0	$\delta(G2)$	1.0	Omega (G2)	1.0		
$\omega(G3)$	1.0	$\omega(G4)$	0.978407	$\omega(G2)$	0.979041	X02 (G2)	0.868608		
$\delta(G4)$	0.872486					$\omega(G3)$	0.760906		
$\omega(G4)$	0.876565								

f) Grafique las formas de modo (normalizadas) para los modos del punto c). Muestre claramente el procedimiento para lograr estas gráficas.

R/ Las formas de modo obtenidas se pueden apreciar en la Figura 6, Figura 7 y Figura 8.

Estas formas fueron obtenidas por medio de la matriz de autovectores derechos. Los autovectores derechos que se utilizaron para realizar las gráficas fueron los autovectores que corresponden a cada uno de los modos de oscilación de la sección 3.c)

Para representar cada modo de oscilación gráficamente se siguió el siguiente procedimiento:

- Se hizo uso únicamente el autovector derecho relacionado a la variable de estado de la frecuencia de cada uno de los cuatro generadores.
- Esto quiere decir que a cada uno de los cinco vectores de formas de modos se le asigna un vector de cuatro entradas correspondientes a los autovectores de las frecuencias de cada generador.
- Debido a que cada autovector es un numero imaginario, se procede a sacar la magnitud de cada uno de los cinco vectores de formas de modos, quedando así cinco vectores de formas de modos representados cada uno por las magnitudes de las velocidades de los cuatro generadores.
- A continuación se normaliza cada uno de los vectores de formas de modos (que se encuentran
 en forma de magnitudes) entre el elemento mas alto de magnitud del autovector correspondiente a cada modo de oscilación. Al hacer esto cada uno de los cinco vectores de formas de
 modo quedan ya normalizados con números entre cero y uno.

• Se procede a obtener la grafica de cada una de las cinco formas de modo.

Figura 6: Forma de Modo 1 (Izq), Forma de Modo 2 (Der)

Figura 7: Forma de Modo 3 (izq), Forma de Modo 4 (der)

Figura 8: Forma de Modo $5\,$

Ing. Eléctrica 7 Proyecto# 2

4. Para los modos de oscilación inestables, determine:

- a La frecuencia de oscilación. Compare el resultado del análisis modal con el obtenido en Parte 2.
 - $\mathbf{R}/$ A partir de la matriz de autovalores calculada en la parte 3, se puede determinar mediante python los modos de oscilación inestables. Estos son:
 - 1. 0.090721 + 3.811951j
 - 2. 0.090721-3.811951j

Estos corresponden a un valor de frecuencia de oscilación igual a 0.60669092 Hz. Comparando este dato con el obtenido en la parte 2, el cual correspondió a una frecuencia de 0.60551 Hz, se tiene un porcentaje de error de 0.1946%, lo que indica una muy buena exactitud de los datos estimados en la parte 2.

- b Los residuos asociados
 - $\mathbf{R}/$ Los residuos del sistema se obtienen a partir de la función de transferencia, esto por medio del comando de python $[\mathbf{R}, \lambda, \mathbf{d}] = \text{signal.residue}(\mathbf{b}, \mathbf{a})$. Seguidamente, al determinar los índices de los modos de oscilación inestables, se pueden obtener los residuos asociados a estos, los cuales son:
 - 1. -0.0008607510940372721 -0.001991694949047481
 - 2. -0.0008607510940372721 + 0.001991694949047481
- c La compensación en grados que debe proveer el PSS si sabe que la realimentación es positiva.
 - $\mathbf{R}/$ Primero se obtiene el ángulo del residuo asociado al modo de oscilación inestable θ_{Ri} , este corresponde a -113,37°. Por lo tanto, se aplica la regla $(\theta_{Ri}+360^\circ)$ 180°. De esta forma, resolviendo el problema en python, se obtiene que la compensación que debe proveer el PSS para una realimentación positiva es igual a 66.627°.
- d Los parámetros del PSS para amortiguar correctamente el modo de oscilación inestable.

Mediante la sintonización del PSS se obtienen los siguientes parámetros necesarios para amortiguar el modo de oscilación inestable:

- \bullet N = 2
- a = 0.29096977396817775
- \bullet T = 0.48632735592309995
- aT = 0.14150656082748592
- $T_w = 10$

De esta forma se tiene la función del lazo PSS:

$$H_{PSS}(s) = K_{PSS} \left(\frac{T_w s}{1 + T_w s} \right) \left(\frac{1 + T s}{1 + a T s} \right)^N \tag{3}$$

$$H_{PSS}(s) = K_{PSS} \left(\frac{10s}{1+10s}\right) \left(\frac{1+0.4863s}{1+0.1415s}\right)^2 \tag{4}$$

5.

Al instalar el PSS, de acuerdo con lo obtenido en el punto 4, en los generadores 1 y 3 y variando la ganancia K_{pss} en ambos generadores, se obtiene gráficamente el comportamiento del sistema respecto a la velocidad de los rotores, partiendo del valor del sistema, inicialmente se obtiene un comportamiento inestable como se muestra en la Figura 9, así como la coordinación en la oscilación de los generadores 1-2 y 3-4.

Figura 9: Gráfica de comportamiento oscilante para valores K_{pss} menores a 10

Comprobando por simulación que los PSS en G1 y G3 estabilizan el sistema para algún valor de K_{pss} se observa que para valores en el rango de 100 y 200 se obtiene una respuesta que tiende a estabilizarse sin embargo entre mayor sea el valor seleccionado la perturbación inicial va a ser mayor y tardará mas en estabilizarse, en Figura 10 se puede observar el comportamiento gráfico de como al manipular los valores de K_{pss} en los generadores G1 y G3 ahora el sistema tiende a estabilizarse como se muestra respecto a la velocidad de los rotores y respecto a la potencia activa en Figura 11.

Figura 10: Gráfica que tiende a estabilizarse para valor de K_{pss} de 150 respecto a la potencia activa de los generadores

Figura 11: Gráfica que tiende a estabilizarse para valor de K_{pss} de 150 respecto a la velocidad del rotor en los generadores

