

COURSE DESCRIPTION FORM

INSTITUTION National University of Computers and Emerging Sciences

BS Computer Science

PROGRAM (S) TO BE

EVALUATED

A. Course Description

(Fill out the following table for each course in your computer science curriculum. A filled-out form should not be more than 2-3 pages.)

Course Code	CS1002	
Course Title	Programming Fundamentals	
Credit Hours	3+1	
Prerequisites by Course(s) and Topics	None	
Assessment Instruments with Weights (homework, quizzes, midterms, final, programming assignments, lab work, etc.)	Mid-1:15 Mid-2:15 Assignment: 10 (Three Assignments) Quizzes: 10 (Three Quizzes) Final:50	
Course Coordinator	Muhammad Shahzad	
URL (if any)		
Current Catalog Description		
Textbook (or Laboratory Manual for Laboratory Courses)	Name: C How to Program with an Introduction to C Global Edition - 7th Edition Authors: Paul Deitel, Harvey Deitel Publisher: Pearson	
	Name: Problem Solving and Program Design in C - 7th Edition Authors: Maureen Sprankle , Jim Hubbard Publisher: Prentice Hall	
Reference Material	Name: Working with C / Let us C	

Author(s): YashwantKanetkar Publisher: BPB Publications

Name: Waite Group's Turbo C - Programming for the PC Authors: Robert Lafore Publisher: SAMS

Course Goals

A. Course Learning Outcomes (CLOs)	Level
CLO 1: Describe fundamental concepts of structured and procedural programming, use pseudo-codes and simple programs to understand control structures, iterative structures and functions using C language.	C3, PLO1
CLO 2: Examine code writing, compiling, debugging and program execution.	C3, PLO5
CLO 3: Justify problem solving techniques and analytical thinking by identifying the concepts and properties of algorithms.	C5, PLO2
CLO 4: Design basic problems of the real world through small/medium size programs given as course projects.	C6, PLO5

PLO 1	Computing	Apply knowledge of mathematics, natural sciences,	
PLO 1	Knowledge	computing fundamentals, and a computing	
	Kilowieuge		
		specialization to the solution of complex computing	
		problems.	╄
PLO 2	Problem	Identify, formulate, research literature, and analyse	~
	Analysis	complex computing problems, reaching	
		substantiated conclusions using first principles of	
		mathematics, natural sciences, and computing	
		sciences.	
PLO 3	Design/Develop	Design solutions for complex computing problems	
	Solutions	and design systems, components, and processes that	
		meet specified needs with appropriate consideration	
		for public health and safety, cultural, societal, and	
		environmental considerations.	
PLO 4	Investigation&	Conduct investigation of complex computing	
	Experimentatio	problems using research-based knowledge and	
	n	research-based methods	
PLO 5	Modern Tool	Create, select, and apply appropriate techniques,	T,
	Usage	resources and modern computing tools, including	

		prediction and modelling for complex computing problems.	
PLO 6	Society Responsibility	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal, and cultural issues relevant to context of complex computing problems.	
PLO 7	Environment and Sustainability	Understand and evaluate sustainability and impact of professional computing work in the solution of complex computing problems	
PLO 8	Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of computing practice.	
PLO 9	Individual and Team Work	Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.	
PLO 10	Communication	Communicate effectively on complex computing activities with the computing community and with society at large.	
PLO 11	Project Management and Finance	Demonstrate knowledge and understanding of management principles and economic decision making and apply these to one's own work as a member or a team.	
PLO 12	Life Long Learning	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological changes.	

C. Relation between CLOs and PLOs (CLO: Course Learning Outcome, PLOs: Program Learning Outcomes) **PLOs** CL Os

Topics Covered in the Course, with Number of Lectures on Each Topic (assume 15-week instruction and one-hour lectures)

Week	Topics		CLO	Assessment
Week 1		Discussion of the course outline, Introduction to problem solving, what is algorithm, how to write pseudo code, programming structures, problem solving with the sequential structures and, Basic Flowchart, IPO and PAC	1	
Week 2		Problem solving with decisions and iterative structures, Basic Computer Organization, Intro to IDE (compiled program, text editors, debuggers, etc.), Program structure and Execution, First Program with Input and Output	1,2	Project Announcemen t
Week 3	2.	Constant, Variables, Keywords, Escape sequence Format Specifiers, Data types, Data manipulation Library, Linking, Compiling & Loading	2,3	Quiz no 1 Assignment 1 Friday Release Week 3
Week 4	1. 2.	Decision Control Structures: If statements and if-else statement Basic switch statements Some working examples	2,3	
Week 5	1. 2.	Nested if statements & switch statements Logical & Conditional Operators Working examples	2,3,5	Assignment 1 submission Monday Week 5
Week 6	MID I Examination			N 012 110 E
Week 7	1. 2. 3.	Introduction to Loops Design For, while and do-while loops Some working examples	2,3,5	Assignment 2 Friday Release Week 7
Week 8	1. 2. 3.	Nested Loops Break and Continue Statement Working examples	2,3,4,5	

Week 9	 Introduction to 1D Arrays Multiple subscripted arrays Working examples 	2,3,4,5	Assignment 2 submission Monday Week 9
			Quiz no 3
Week 10	 Functions: Declaration, Definition and Calling, passing values to functions, Passing arrays to functions Standard library string functions 2D array of characters 	2,3,4,5	
Week 11	MID II Examination		
Week 12	 Recursion Introduction to Structures and Structure array Working examples 	3,4,5	Assignment 3 Friday Release Week 12
Week 13	 Nested structures, Passing structure function Filing in C Introduction to pointers 	3,4,5,6	
Week 14	 Pointers and Arrays Dynamic memory allocation Void pointers Examples 	2,3,4,5, 6	Assignment 3 submission Monday Week 14
Week 15	Revision	3,5	Project Submissions in 12 th LAB and Finalization of Sessional marks
Week 16	Final Exam		marks
Week 1	Problem solving with sequential structure using Scratch		
Week 2	Problem solving with the decision and iterative structures using Scratch		

	Week 3	Introduction to IDE and Basic Announce Programming Constructs Project
Laboratory Projects/Experime nts Done in the Course	Week 4	Introduction of operators and math.h library functions
	Week 5	Basic Decision Structure (if, if- else and Switch Statements)
	Week 6	THEORY MID I Examination
	Week 7	Nested Decision Structures
	Week 8	Iterative Statements in C
	Week 9	Lab Mid
	Week 10	Nested Iterations, Arrays Multiple Dimension Array (2D,3D) in C
	Week 11	THEORY MID II Examination
	Week 12	Functions, Strings and Recursion
	Week 13	Introduction to Structures & Nested Structure
	Week 14	Introduction to file processing and basic operations on files and Introduction to Pointers
	Week 15	Accessing Arrays using pointer Dynamic Memory Management
	Week 16	Project Submission
Programming Assignments Done in the Course	Assignment related to Functions, Arrays, Pointers, Structures, Dynamic Memory and File Processing will be done	
Class Time Spent on (in credit hours)	Theory	Problem Analysis Solution Design
	15%	50% 30% 5%
Oral and Written Communications	pages and to main include only main	required to submit at least _1_ written reports of typically _2_ ke _1_ oral presentations of typically _10_ minute's duration. erial that is graded for grammar, spelling, style, and so forth, as well content, completeness, and accuracy.

Instructor Name	
Instructor Signature	

Date _____