

Making Innovation

CifrisCloud

Daniele Ballo

d.ballo@eustema.it

Key Management System vs

Homomorphic Encryption

- Introduzione
- Key Management System
- Modelli
- The three states of data
- Homomorphic Encryption

Key Offering

Big Data & Al

Data Governance, Big Data Architecture, Data Analytics & Visualization

Digital Media

Customer Engagement, UX
Design, Cloud & Headless
Content Architecture

Knowledge Engineering

Document & Process Automation, Enterprise Search

Enterprise

Microservices & Serveless architecture,
Continuous Integration, Cloud native
design pattern

Cloud Computing

Cloud Migration & Integration, Edge & Hybrid, DevOps

ICT Consultancy

Innovation Management, Continuous Improvement, Change Management

Cloud Computing

- Poste Italiane

- Poligrafico

Principali tecnologie

Amazon AWS
Microsoft Azure
Google CP
Open Shift
Kubernetes
Terraform

Microsoft Partner

Gold Application Integration Gold Data Analytics Gold Application Development Silver Windows and Devices

Introduzione

Cloud Computing

La distribuzione di servizi di calcolo, come server, risorse di archiviazione, database, rete, software, analisi e

intelligence, tramite Internet.

Cloud Computing

La distribuzione di servizi di calcolo, come server, risorse di archiviazione, database, rete, software, analisi e

intelligence, tramite Internet.

Scalabilità

Tipi di Cloud Computing

Cloud pubblico

Cloud privato

Cloud ibrido

Tipi di servizi

Infrastruttura distribuita come servizio (laaS, Infrastructure as a service)

Piattaforma distribuita come servizio (PaaS, Platform as a Service)

Elaborazione serverless

Software come un servizio (SaaS, Software as a Service)

Tipi di servizi

Statistiche

Utilizzo del cloud computing:

• Il 41% delle imprese dell'UE ha utilizzato il cloud computing nel 2021, soprattutto per ospitare i propri sistemi di posta elettronica e archiviare file in formato elettronico.

• Il 73% di queste imprese ha utilizzato servizi cloud sofisticati relativi alle applicazioni software di sicurezza, all'hosting dei database aziendali o alla piattaforma informatica per lo sviluppo, il test o la distribuzione delle applicazioni.

Rispetto al 2020, l'uso del cloud computing è aumentato di 5 punti percentuali.

Statistiche

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Cloud_computing_-_statistics_on_the_use_by_enterprises

Key Management System

KMS - Storia

- IV o V secolo a.C.
- 2006, Amazon, Elastic Compute (EC2)
- 2010, Key Management Interoperability Protocol

- 2013, Amazon Key Management Service
- Microsoft, Azure Key Vault
- 2017, Google, Cloud Key Management

- prodotti di gestione delle chiavi legacy (non rimpiazzabili)
- opzioni di crittografia disponibili su una base di servizi in-the-cloud

- soluzioni cloud native
- password, stringhe di connessione e altri secret

KMS - Definizioni

Cryptographic Module

È "un insieme di hardware, software, firmware, o una loro combinazione che implementa la logica o i processi crittografici, compresi gli algoritmi crittografici, ed è contenuto all'interno del 'confine crittografico' del modulo, che è un perimetro contiguo esplicitamente definito che stabilisce i limiti fisici del modulo." [RFC4949], [NIST FIPS 140-2].

Esempi

- Trusted Platform Module (TPM)
- Smartcard
- Hardware Security Modules (HSM)

KMS - Definizioni

FIPS (Federal Information Processing Standard) 140-2 e ISO/IEC 15408 Common Criteria for Information Technology Security Evaluation (Common Criteria o CC) sono standard internazionali per certificare i livelli di protezione dei moduli crittografici.

Nota:

I regolatori di varie industrie (in particolare il settore finanziario) richiedono che solo i moduli crittografici certificati FIPS 140-2 siano usati per proteggere dati e processi critici.
Il livello di protezione dipende dall'uso del modulo crittografico.

Questi moduli sono spesso sotto forma dei cosiddetti moduli di sicurezza hardware (HSM) usati per gestire, generare e conservare in modo sicuro le chiavi crittografiche.

KMS - Definizioni

KMS

Un sistema di gestione delle chiavi è un sistema che è costruito intorno a un modulo crittografico e sfrutta la funzionalità crittografica e la gestione del ciclo di vita delle chiavi per collegare applicazioni e servizi.

Il NIST¹ definisce il KMS come "a system for the management of cryptographic keys and their metadata" (ad esempio generazione, distribuzione, memorizzazione, backup, archivio, recupero, uso, revoca e distruzione).

1 - [NIST SP [800-57] Part1]

KMS – *YOK

BYOK (Bring Your Own Key)

HYOK (Hold Your Own Key)

CYOK (Control Your Own Key)

Modelli

1. Quali sistemi KMS sono già in uso nell'organizzazione?

2. Quali sono i risultati funzionali, operativi e di business desiderati per l'uso del servizio cloud?

Servizi cloud e schemi KMS

- (A) è un servizio cloud che sfrutta un KMS (incluso HSM) all'interno dello stesso cloud;
- (B) espande il modello (A) per permettere di importare elementi chiave da un KMS esterno;

Servizi cloud e schemi KMS

(C) è un KMS in-the-cloud con un HSM dedicato (privato) che è sotto il controllo del proprietario organizzazione, ma è fisicamente ospitato all'interno dei centri dati del fornitore di cloud;

Servizi cloud e schemi KMS

(D) descrive un KMS on-premises che viene utilizzato per l'integrazione/gestione KMS multi-cloud che può essere ospitato in sede o nel cloud ed è collegato a un modulo crittografico in sede come un HSM o una crypto card.

Sistemi KMS cloud considerati per questo studio:

- Alibaba Cloud
- AWS
- Azure
- Google Cloud
- IBM

KMS costruito e di proprietà del fornitore del servizio

• KMS è parte integrante del servizio oppure può essere fornito separatamente all'interno dello stesso fornitore di servizi cloud

Algoritmi e moduli crittografici scelti e gestiti dal fornitore del cloud

Proprietà

- Tutti i componenti hardware e software sono sotto il controllo del fornitore, e il KMS è tipicamente una "scatola nera" per il cliente, a parte la documentazione pubblica
- In genere, ha una separazione dei compiti limitata o assente tra il servizio cloud e le caratteristiche del KMS
- Modello meno distruttivo per l'applicazione degli SLA (Service Level Agreement)
- L'ambiente cloud ha, o può avere, accesso ai dati in chiaro del cliente
- Questo modello può avere una bassa estensibilità delle funzioni KMS al di fuori del provider, anche se spesso fornisce una facile estensione ad altri servizi all'interno dello stesso
- Il costo è comunemente incorporato nel servizio cloud che il cliente acquista, ed è quindi nascosto, difficile da discernere, o assunto come zero

Proprietà

- Il costo è guidato dalla competenza tecnica necessaria per amministrare e far funzionare le funzioni KMS
- Tempo di implementazione più veloce
- Tipicamente, alte prestazioni
- Tipicamente, alta scalabilità
- Non sensibile alla latenza
- Può supportare l'evoluzione verso altri modelli KMS del cloud
- Il supporto FIPS è limitato dal KMS del cloud
- In genere, non può supportare i requisiti per key ceremony

Sfide

Differenze di progettazione tra i fornitori di cloud → conoscenze e competenze tecniche per ogni fornitore di cloud

Spesso il modello amministrativo non distingue tra l'amministratore del servizio e l'amministratore del KMS → scarsa separazione dei compiti

La semplicità di implementazione e il set di funzioni disponibili per il consumatore possono mitigare la necessità di sviluppare molta conoscenza tecnica del dominio e carico amministrativo

I dettagli su algoritmi e protocolli specifici non sono visibili all'utente → documentazione

Si ha poco o nessun controllo sulla configurazione o sulle azioni del KMS, → non soddisfa i requisiti di conformità come il periodo di rotazione delle chiavi o la revoca e il recupero

Questo modello non garantisce la totale privacy dei dati del cliente dal fornitore di cloud provider, poiché il CSP (Cloud Service Provider) ha le chiavi

Cloud Native → generazione di chiavi (root) che hanno origine con un KMS esterno

- Si ha una "proprietà" delle chiavi
- No integrazione del KMS esterno con il KMS del cloud → il KMS esterno agisce solo come una struttura di generazione di chiavi
 - In alcuni casi d'uso il provider può essere costretto a fare chiamate al KSM esterno → potenziali implicazioni per la gestione degli incidenti e impatto della latenza sulle prestazioni

Proprietà

- I componenti hardware e software del cloud sono sotto il controllo del fornitore; il cliente controlla un KMS esterno al cloud e tipicamente lo usa per la generazione della chiave root e l'importazione nel KMS del cloud
- Chiara separazione dei compiti per la generazione della chiave root
- Minimo potenziale di impatto sugli SLA del cloud, sebbene il processo di importazione della chiave esterna possa avere un impatto sulle operazioni di recupero
- L'ambiente in-the-cloud ha, o può avere, accesso ai dati in chiaro del cliente
- Questo modello può avere una bassa estensibilità delle funzioni KMS al di fuori del fornitore, sebbene spesso fornisce una facile estensione ad altri servizi all'interno dello stesso provider

Proprietà

- Costo determinato dal prezzo delle licenze per la funzionalità di importazione delle chiavi, dal numero di chiavi importate e dalla gestione del KMS esterno da cui vengono importate le chiavi
- Il tempo di implementazione è tipicamente determinato dall'acquisizione e dalla configurazione del KMS esterno che sarà utilizzato per la generazione e l'importazione delle chiavi.
- Le prestazioni sono tipicamente le stesse del modello KMS nativo
- La scalabilità è tipicamente la stessa del modello KMS nativo
- La sensibilità alla latenza è tipicamente la stessa del modello KMS nativo
- Soddisfa i key ceremony del cliente per le chiavi root

Sfide

- Tutte le sfide del modello Cloud Native si applicano
- Il fornitore di cloud potrebbe supportare solo un insieme limitato di produttori di hardware per la generazione di chiavi esterne → può essere necessario acquisire hardware/software KMS compatibili → tempi di implementazione maggiori
- Le chiavi generate utilizzando il KMS esterno potrebbero non essere utili come copie di backup. I fornitori possono aggiungere metadati critici alle chiavi che il consumatore ha importato, rendendo le chiavi originali inutili per le operazioni di ripristino.

KMS è esterno al servizio cloud

- Hardware (di proprietà dell'utente o del provider) è fornito esclusivamente per l'uso da parte dell'utente
- Servizi HSM cloud dedicato o co-locazione

- Gestione del KMS da parte dell'utente

Proprietà

- Alto grado di controllo e configurazione del cliente
- Separazione dei compiti per le attività del KMS e del servizio cloud, così come all'interno del KMS
- Può supportare l'unificazione del KMS in un unico punto di gestione
- Key non condivise → nessun dato in chiaro del consumatore è esposto al provider
- Massima portabilità poiché la maggior parte o tutte le funzioni KMS sono implementate al di fuori del servizio in-the-cloud

Proprietà

- Costo più alto spesso determinato dalla scelta del KMS
- Lunghi tempi di implementazione
- Limitazioni delle prestazioni
- Limitazioni di scalabilità
- Impatto di latenza
- Conformità FIPS guidata dal cliente per tutte le chiavi
- Key ceremony

Sfide

- Modello poco comune → disponibilità non garantita
- Implicazioni livello di servizio → malfunzionamenti
- Garantisce la segretezza → incompatibile con SaaS o con sistemi che elaborano i dati

Richieste competenze per la gestione del KMS

Multi-Cloud Key Management Systems (MCKMS)

 Capacità di fondere approcci per implementazioni KMS e servizi cloud

 Ci sono servizi cloud esistenti che supportano un KMS esterno, quindi è possibile

→ per il KMS estendersi su molti cloud

→ per il cloud estendersi su molte scelte di KMS

Multi-Cloud Key Management Systems (MCKMS)

Proprietà

 Costo, complessità, controllo, tempo di implementazione, scala, prestazioni e interoperabilità sono in funzione degli altri modelli KMS nel cloud implementati

- Tolleranza agli errori grazie alla capacità di sfruttare un KMS cloud come backup di un altro KMS nel cloud
- Può avere l'effetto collaterale di accelerare l'adozione di ulteriori servizi in-the-cloud grazie agli investimenti in competenze e risorse

Multi-Cloud Key Management Systems (MCKMS)

Sfide

- Modello generalmente riservato a un approccio strategico alla gestione delle chiavi
- Richiede la più ampia gamma di competenze, il più tempo per la progettazione e l'implementazione, e il più alto costo in capitale (licenze) e/o costi operativi
- Fornisce il maggior grado di portabilità, tolleranza agli errori e scalabilità grazie allo sfruttamento di più fornitori di cloud pubblici

Analisi sugli scenari di crittografia (at Rest, in Motion, in Use)

Analisi sugli scenari di crittografia (at Rest, in Motion, in Use)

Analisi sugli scenari di crittografia (at Rest, in Motion, in Use)

Analisi sugli scenari di crittografia (at Rest, in Motion, in Use)

Databases, Corporate Apps

Cloud Apps

Mobile Apps

DATA IN USE

Homomorphic Encryption

Perché Homomorphic Encryption?

Come garantire la privacy?

 affidarsi a hardware fidato sul lato server (Goldreich e Ostrovsky, 1996)

 hardware sicuro limita la capacità di calcolo del server cloud (Sahai, 2008)

• GC (*garbled circuits*) per una secure two-party computation (Yao 1982; Kolesnikov et al. 2009; Goldwasser et al. 2013)

Homomorphic Encryption

Come garantire la privacy?

• GC + FHE (Gennaro et al. 2010)

- Twin Cloud (Bugiel et al 2011)
- Cloud computing basato su token (reza Sadeghi et al. 2010)

Homomorphic Encryption - Definizioni

Gruppo:

Sia G un insieme non vuoto su cui è definita una operazione binaria, cioè un'applicazione \bullet : G \times G \rightarrow G. Allora (G, \bullet) risulta un *gruppo* se:

- i. l'applicazione è associativa;
- ii. esiste elemento neutro;
- iii. esiste elemento inverso.

Homomorphic Encryption - Definizioni

Omomorfismo:

Siano (G, \bullet) e (H, *) due gruppi muniti di due distinti operazioni binarie. Un'applicazione f : G \rightarrow H è detta *omomorfismo* di gruppi se:

$$f(a \bullet b) = f(a) * f(b)$$

Homomorphic Encryption - Definizioni

Schema di HE:

Uno schema crittografico a chiave pubblica che calcola un'operazione sui testi cifrati che è equivalente a qualche operazione binaria sui corrispondenti testi in chiaro.

Se $\mathbf{M} \in (\mathbf{H}, \bullet)$ è l'insieme dei testi in chiaro da crittografare con una chiave pubblica pk in uno spazio di cifratura (\mathbf{C}, \otimes) , si ha che $\forall m_1, m_2 \in \mathbf{M}$:

Encrypt
$$(m_1 \bullet m_2, pk) = \text{Encrypt } (m_1, pk) \otimes \text{Encrypt } (m_2, pk) = c_1 \otimes c_2$$
.

Inoltre, per qualsiasi coppia di testi cifrati

$$c_1 = \text{Encrypt}(m_1, pk), \qquad c_2 = \text{Encrypt}(m_2, pk)$$

chiave segreta sk e chiave pubblica pk

Decrypt
$$(c_1 \otimes c_2, sk) = m_1 \cdot m_2$$

RSA

$$\mathbf{E}(\mathbf{x}) = \mathbf{x}^{e} \mod \mathbf{m}$$

$$\mathbf{E}(\mathbf{x}_1) \cdot \mathbf{E}(\mathbf{x}_2) = \mathbf{x}_1^e \mathbf{x}_2^e \mod \mathbf{m} = (\mathbf{x}_1 \mathbf{x}_2)^e \mod \mathbf{m} = \mathbf{E} (\mathbf{x}_1 \cdot \mathbf{x}_2)$$

Paillier

$$pk = (n, g), r \in \mathbf{Z}^*$$
 (casuale), $m \in \mathbf{Z}$

Encrypt
$$(m, pk) = g^m r^n \pmod{n^2}$$

$$c_1 = \text{Encrypt } (m_1, pk) = g^{m1} r_1^n \mod n^2$$

 $c_2 = \text{Encrypt } (m_2, pk) = g^{m2} r_2^n \mod n^2$

$$c_1c_2 = g^{m1} r_1^n g^{m2} r_2^n = g^{m1+m2} (r_1r_2)^n \mod n^2 = c_3$$

ElGamal (p = 2q + 1)

e-voting protocal (UniCrypt, 2017)

$$E: G_q \rightarrow G_q \times G_q$$

$$\mathbf{E}(\mathbf{m}) = (\mathbf{g}^{\mathrm{r}}, \mathbf{m} * \mathbf{h}^{\mathrm{r}})$$

x: chiave segreta

h: chiave pubblica

g: generatore

m: messaggio

r: num casuale

$$\mathbf{E}: (\mathbf{G}_{\mathsf{q}}, *) \rightarrow (\mathbf{G}_{\mathsf{q}} \times \mathbf{G}_{\mathsf{q}}, *)$$

$$\mathbf{E}(\mathbf{m}_{1}) * \mathbf{E}(\mathbf{m}_{2}) = (\mathbf{g}^{r1}, \mathbf{m}_{1} * \mathbf{h}^{r1})(\mathbf{g}^{r2}, \mathbf{m}_{2} * \mathbf{h}^{r2})$$

$$= (\mathbf{g}^{r1+r2}, \mathbf{m}_{1} * \mathbf{m}_{2} * \mathbf{h}^{r1+r2})$$

$$= \mathbf{E}(\mathbf{m}_{1} * \mathbf{m}_{2})$$

ElGamal (p = 2q + 1)

$$\mathbf{E}: \mathbf{Z}_{\mathbf{q}} \to \mathbf{G}_{\mathbf{q}} \times \mathbf{G}_{\mathbf{q}}$$

$$E(m_1) * E(m_2) = (g^{r1}, g^{m1} * h^{r1})(g^{r2}, g^{m2} * h^{r2})$$

= $(g^{r1+r2}, g^{m1}g^{m2} * h^{r1+r2})$
= $E(m_1 + m_2)$

Sander, 1999

Boneh–Goh–Nissim (BGN), 2005

Melchor, 2008

Gentry, 2009

Per criptare **m**, si scelgono a caso **q** (grande) e **r** (piccolo).

$$c = pq + 2r + m$$

 $m = (c \mod p) \mod 2$

$$c_1 = q_1 p + 2r_1 + m_1$$
 e $c_2 = q_2 p + 2r_2 + m_2$

Somma:
$$c_1 + c_2 = (q_1 + q_2)p + 2(r_1 + r_2) + (m_1 + m_2)$$

 $c_1 + c_2 \mod p = 2(r_1 + r_2) + (m_1 + m_2)$

Molt:
$$c_1 * c_2 = (c_1q_2 + q_1c_2 - q_1q_2)p + 2(2r_1r_2 + r_1m_2 + m_1r_2) + m_1 * m_2$$

 $c_1 * c_2 mod p = 2(2r_1r_2 + ...) + m_1 * m_2$

Zhang – 2014

KeyGen_{ε}(λ)

→ (pk, sk)

Encrypt_s(m, pk)

 \rightarrow c = Encrypt_s(m, pk)

Decrypt_s(c, sk)

 \rightarrow m = Decrypt_s(c, sk)

Evaluate_{ε}(f, c₁,..., c_t,pk) \rightarrow C^{n} (c₁, c₂ . . . , c_n)

Decrypt_s(Evaluate_s(\boldsymbol{C} , c_i, pk), sk) = C(m₁, ..., m_t)

$$Decrypt_{\varepsilon}(Evaluate_{\varepsilon}(C, c_i, pk), sk) = C(m_1, ..., m_t)$$

Definizione:

Lo schema $\zeta = (KeyGen, Encrypt, Decrypt, Evaluate)$ è omomorfico per una classe C di circuiti se è corretto secondo l'eq. in verde per tutti i circuiti $C \subseteq C$. ζ è completamente omomorfo se è corretto per tutti i circuiti booleani.

Gentry:

- SHE su polinomi a *l*-variabili
- bootstrapping
 - o recrypt

Homomorphic Encryption - Overview

Kundan Munjal, Rekha Bhatia, A systematic review of homomorphic encryption and its contributions in healthcare industry, Springer, Aprile 2022

Homomorphic Encryption in Cloud

FHE su cloud

Servizi cloud e schemi KMS - Trust (A) (B) (C) (D) Public/Private Cloud Public/Private Cloud Public/Private Cloud Public/Private Cloud Cloud KMS Private HSM Cloud KMS Cloud KMS Cloud Cloud HSM HSM Private HSM **KMS KMS KMS** HSM HSM On Premises On Premises On Premises On Premises **CSA - Cloud Security Alliance**

Servizi cloud e schemi KMS - Trust (A) (B) (C) (D) Public/Private Cloud Public/Private Cloud Public/Private Cloud Public/Private Cloud Cloud KMS Cloud KMS Cloud KMS Private HSM Cloud Cloud **HSM** HSM Private HSM **KMS KMS KMS** HSM **HSM** Private HSM On Premises On Premises On Premises On Premises **CSA – Cloud Security Alliance**

at Rest/in Motion

Servizi cloud e schemi KMS - Trust

Servizi cloud e schemi KMS - Trust (A) (B) (C) (D) Public/Private Cloud Public/Private Cloud Public/Private Cloud Public/Private Cloud Private HSM Cloud KMS Cloud KMS Cloud KMS Cloud Cloud HSM **HSM** Private HSM **KMS KMS KMS** HSM HSM On Premises On Premises On Premises On Premises **CSA - Cloud Security Alliance**

Servizi cloud e schemi KMS - Trust

"home" KMS

Homomorphic Encryption - Sfide

1 – Riprogettazione del Cloud

Homomorphic Encryption - Sfide

Figure 1. Addition Time in BFV vs CKKS

Figure 2. Squaring Time in BFV vs CKKS

2 – Costo Computazionale

Figure 3. Multiplication Time in BFV vs CKKS

Shereen Mohamed Fawaz et al 2021 J. Phys.: Conf. Ser. 2128 012021

Homomorphic Encryption - Sfide

3 – Limiti sulle operazioni

Figure 4. Maximum Number of Sequential Multiplications in BFV and CKKS Scheme

Riferimenti

- A. Chatterjee, K. Aung, Fully Homomorphic Encryption in Real World Applications, Springer, 2019
- Cloude Security Alliance, Key Management in Cloud Services: Understanding Encryption's Desired Outcomes and Limitations, 2020
- S. M. Fawaz et al 2021 J. Phys.: Conf. Ser. 2128 012021
- K. Munjal, R. Bhatia, A systematic review of homomorphic encryption and its contributions in healthcare industry, Springer, 2022
- NISTIR 7956, Cryptographic Key Management Issues & Challenges in Cloud Services, NIST, 2013

ROMA

Via Carlo Mirabello, 7 00195 – Roma Tel.: +39 06372721 +39 06374931 Fax:+39 0637351735

NAPOLI

Centro Direzionale Via G. Porzio, 4 - Isola C/2 80143 - Napoli Tel.: +39 0816586610 Fax: +39 0816586611

MILANO

Via Roberto Lepetit, 8/10 20124 - Milano Tel.: +39 0200696431

