AS/AD Model

Prof. Lutz Hendricks

Econ520

March 9, 2017

Objectives

In this section you will learn

- 1. how to put IS/LM and labor market clearing together
- 2. how to derive aggregate supply and demand curves
- 3. how to analyze policies and shocks
- 4. why the economy tends towards potential output in the long run

Aggregate Supply (AS)	

Aggregate Supply

The aggregate supply curve is simply the labor market clearing condition

Recall

$$Y^{s} = F\left(W/P^{e}, z\right) \tag{1}$$

$$=F\left(\frac{P}{P^e}\frac{1}{1+m},z\right) \tag{2}$$

F is upward sloping in W/P^e .

Properties of AS

```
Holding constant P^e: Y \uparrow \Longrightarrow P \uparrow Intuition:
```

Holding constant $Y: P^e \uparrow \Longrightarrow P \uparrow$ Intuition:

When $P = P^e$: $Y = Y_n$ and $u = u_n$ these values define Y_n, u_n .

Shifters of AS

```
Labor market policies (z); e.g., unemployment insurance
Production costs + competition (m); e.g., oil prices
Price expectations (P^e)
```

Aggregate Supply

What shifts AS?

Aggregate	Demand	(AD)	

Aggregate Demand

- AD combines IS and LM
- ► Recall:
 - ► IS: Y = C(Y T) + I(Y, i) + G► LM: M/P = YL(i)
- ► Combine the two, so that *i* is eliminated

AD:
$$Y = Y(M/P, G, T)$$
 (3)

- ▶ This is downward sloping: $P \uparrow \Longrightarrow Y \downarrow$
- Intuition: ...

Deriving AD

The linear case:

- ► IS: $Y = Y_0 + a_1 Y a_2 i$
- ► LM: $M/P = L_0 \alpha i$ (assuming that money demand does not depend on Y)

$$LM: i = (L_0 - M/P)/\alpha$$

ΑD

$$Y(1-a_1) = Y_0 - a_2(L_0 - M/P)/\alpha \tag{4}$$

$$Y = \frac{Y_0 + a_2(M/P - L_0)/\alpha}{1 - a_1} \tag{5}$$

Deriving AD Graphically

Trace out intersection of IS/LM as $P \uparrow$.

AD Shifters

- Anything that shifts IS or LM left shifts AD left (towards lower Y)
- Examples

```
    IS: G ↓, T ↑, C<sub>0</sub> ↓
    LM: M ↓
```

- ► These are exactly the shocks that reduce *Y* in the short-run model
- ▶ AD really collects all short-run equilibria, one for each *P*.

Equilibrium

Equilibrium summary

Curve	Equation	Shifters
AS	$Y = F\left(\frac{P}{P^e} \frac{1}{1+m}, z\right)$	$m\uparrow,P^e\uparrow,z$
AD	Y = C(Y - T) + G + I(Y, i) M/P = YL(i)	$M/P\uparrow,G\uparrow,T\downarrow$

Short run: Pe given.

Medium run: $P^e \rightarrow P$.

Transition Towards Medium-run

Expectations adjust towards $P^e = P$ AS shifts up $Y \rightarrow Y_n$

Analyzing the Model

- 1. Start with the medium run:
 - 1.1 vertical supply: $Y = Y_n$
 - 1.2 on the point of the AD curve where $P = P^e$
- 2. Apply a shock
 - 2.1 find the new medium run $(P^e = P)$
 - 2.2 Y_n only changes if m or z were shocked
 - 2.3 find the new short-run (P^e unchanged)
- 3. Transition
 - 3.1 AS curve shifts towards new medium run equilibrium

Applications

Monetary Expansion

Medium run:

Short run:

Transition:

▶ AS shifts toward Y_n .

Monetary Expansion

Result

Money is neutral in the medium run:

- ► *M* affects prices, but not any real variables
- Doubling M doubles P

This is why we could ignore money in the long-run growth analysis.

Intuition

Empirical Evidence

Estimated macro models imply:

- the peak effect of monetary policy hits after nearly 1 year
- it takes several years for the real effects to wear off

Why Monetary Policy Is Hard

Suppose the economy is hit by an adverse AD shock The Fed counters by expanding M There is a long lag between the increase in M and the shift in AD What happens?

The shock: $G \downarrow$.

Medium run:

- ► AS:
- AD:

Short run:

- AS:
- AD:

Transition:

 \triangleright AS shifts towards Y_n

Short run:

- Y ↓
- ▶ I ambiguous $(Y \downarrow \text{ but } i \downarrow)$

Medium run:

- Y returns to natural level
- $ightharpoonup I \uparrow$: crowding in

Long run:

 $K \uparrow \Longrightarrow Y \uparrow$

This is the source of current disagreement: how to trade off the short run pain against the long run gain.

Summary

	Short run		Medium run			
	Y	i	P	Y	i	P
$M \uparrow$	↑	↓	↑	_	_	↑
$G \uparrow$	↑	↑	↑	_	↑	↑

Short-run effects of shocks differ from medium-run effects.

Intuition: In the short run, wages do not fully adjust (b/c P^e is sticky).

Adverse Supply Shock

- Example: permanent increase in the price of oil
- ▶ Main effect: given wages, prices must rise
- ▶ Model as increase in markup: $m \uparrow$.

Adverse Supply Shock

Adverse Supply Shock

Medium run:

Short run:

Transition: AS shifts towards Y_n .

Stagflation

Demand shocks: output and prices move together. Supply shocks: output and prices move against each other. Stagflation:

adverse supply shock creates stagnation and inflation.

Stabilization Policy

How should policy respond to recessions?

Case 1: Adverse demand shock

Stabilization Policy

Case 2: Adverse supply shock Two policy options:

- 1. Stabilize prices
- 2. Stabilize output

Stabilizing Prices

Stabilizing Output

Stabilization Policy

What happens if policy makers misdiagnose the source of the shock?

Historical examples?

Reading

Blanchard/Johnson, Macroeconomics, 6th ed, ch. 7