Introduction to Quantum Computing 量子計算入門

Rod Van Meter rdv@tera.ics.keio.ac.jp

Sept. 28-30, 2004 @会津大学(U. Aizu)

with help from 伊藤公平(K. Itoh),阿部英介(E. Abe) and slides from Reagan Moore(SDSC),藤沢(T. Fujisawa,NTT)

Factoring Larger Numbers Time to Factor an N-bit Number age of the Universe 100 years one year one day 100 secs one second 100 1000 10000 100000

What's a Quantum Computer?

- Uses quantum mechanical effects to accelerate computation
- Can calculate a function on all possible input values at the same time
- Getting a useful answer out is the hard part
- Most famous result is Shor's algorithm for factoring large numbers

Course Outline

• Lecture 1: Introduction

• Lecture 2: Quantum Algorithms, Quantum Computational Complexity Theory

• Lecture 3: Devices and Technologies

• Lecture 4: Quantum Computer Architecture

• Lecture 5: Quantum Networking, Wrapup

What's Hot

- Mobile & ubiquitous computing
- Robotics
- Supercomputing
- (Computer systems)
- Quantum computing!

Today's Outline

- Introductions
- What's Hot: the world we live in (or, why quantum computing is interesting)
- What's a Qubit?
- Reversible computing and unitary transforms
- What's quantum computing (QC) good for?
 - intro to algorithms, technologies, networking

Wearable Computers

Honda's ASIMO

Mars Rovers

Parallels w/ QC

- Seductive, science fiction-like topic
- Long time between vision and reality
- Convergence of many technologies necessary
- Reality might not look like original vision
- Very big impact when successful

Supercomputing

- A Quantum Computer is a type of Supercomputer
- Today, more about Big Data than Big Processors

Two Paths to Scalability Caltech Cosmic Cube, 64 processors (8086/7) 3MFLOPS, 8MB RAM, \$9M, 1976 Two choices: Make it bigger, or figure out how to connect more than one smaller unit hopefully achieving both speed and storage capacity increases

TeraShake Simulation Parameters

- $600 \text{km} \times 300 \text{km} \times 100 \text{km}$
- Spatial resolution d_v = 200m
- Mesh Dimensions
 3000 x 1500 x 500 = 2.25 Gpoints
- Temporal Resolution d_t = 0.01s
- Maximum Frequency = 0.5 Hz
- Simulated time = 200s
- Number of time steps = 20,000

TeraShake Simulation Output

- 4D WaveField
 - Each mesh snapshot 27GBytes
 - 20,000 time steps potentially 540TBytes
 - Run at SDSC DataStar, planned for August
 - Output 2,000 time steps or ~ 60TBytes in 20 hours
 - Digital Library registration and archival with SDSC Storage Resource Broker
- Surface Data for Synthetic Seismograms
 1 TByte

Astronomy is Facing a Data Avalanche Multi-Terabyte 1 microSky (DPOSS) (soon: multi-Petabyte) sky surveys and archives over a broad range of wavelengths Billions of detected sources. hundreds of measured attributes per source

Supercomputing is Big Data

Supercomputing today is not about processing power *per se*. It is about turning enormous amounts of raw data into useful information.

Quantum computing will, indeed, *must*, open new fields of applications, mostly heavily mathematical. QC will probably be of minimal use on existing SC applications.

量子計算とは?

- ひとつの量子は同時に二つの所にある。
 - 誰も見ていない時だけ!
 - 有名なgedankenexperiment: Schroedinger's cat
 - Superposition (重ね合わせ)
- その重ね合わせを使って、ちょう並列計算できるようになっている。

アウトライン

- 量子計算とは?
- 量子計算の基本
- 量子計算のアルゴリズム
- 具体的な実験/技術
- 量子ネットワーク
- 量子コンピューターシステム研究

量子計算は何に使えるか?

- 素因数分解(Shor's algorithm): 量子計算すると:O(L^3) for L-bit number 古典的な計算方法だと:O(2^L)
- 検索(Grover's algorithm): O(sqrt(N)) to search N items (N=2^L)
- Quantum Key Distribution: 物理学のせいで、絶対セキュア

量子計算の基本

- Superposition, phase, and the ket notation
- Entanglement
- 1 and 2-qubit gates
- Measurement and decoherence

Schroedinger's Cat

Schroedinger's Cat

- If an atom decays, poison is released and the cat dies
- Set up so that probability of atom decaying is 50%
- Is the cat dead or alive?
- When observed, the wave function collapses and the cat "chooses" to be either dead or alive

Superposition (重ね合わせ) and ket Notation

- Qubit state is a vector
 - two complex numbers
- | 0> means the vector for 0; 1> means the vector for 1; 00> means two bits, both 0; 010> is three bits, middle one is 1; etc.
- A qubit may be partially both!
 (just like the cat, but stay tuned for measurement...)
 complex numbers are wave fn amplitude;
 square is probability of 0 or 1

Entanglementとは? 絡み付き

• 二つのqubitのvalue (0,1)は相手次第である

$ 00\rangle + 11\rangle$			
$\sqrt{2}$	Bit0 Bit1		
	0	0	50%
どちかを測定すると、	0	1	0%
相手のvalueは決まる。	1	0	0%
0でも1でもの確率は50%だが、 (0,1)と(1,0)の確率は0!	1	1	50%

Measurement and Decoherence (測定と位相緩和)

- Qubitを測定すると、重ね合わせがなくなります。必ず1か0かどちかの結果になります。
- その重ね合わせは計算に大事なので、計算がおわってから測定する。
- 偶然に測定されると、decoherence(位相緩和)と呼ぶ。この場合は、計算は失敗である。

制御NOT, Entanglement

必ずしも,「上のレールがqubit
$$A$$
 、下のレールがqubit Bの情報を運んでいる」わけではないことに注意 B B B B

qubit Aの情報とqubit Bの情報は不可分

In Layman's Terms

- "Unitary" implies "reversible"
- Necessary to preserve quantum state
- Deleting information requires energy, creates entropy
- Reversible computing also making inroads in classical computing
- Same number of outputs as inputs

Unitary演算

Schrödinger equation

$$\frac{\partial |\Psi\rangle}{\partial t} = -iH |\Psi\rangle$$
 $\begin{cases} \hbar = 1 \text{ (Planck定数)} \\ H \text{ (系のHamiltonian)} \end{cases}$

状態ベクトルの時間発展

$$\begin{split} \left| \Psi \right\rangle &\to \exp \left(-iHt \right) \left| \Psi \right\rangle = U \left| \Psi \right\rangle & \text{Sorry, not "dagger" but "dollar"!} \\ & U : \text{unitary}演算子 & UU^{\$} = U^{\$}U = 1 \\ & \left(AB \right)^{\$} = B^{\$}A^{\$} & \left(U \left| \Psi \right\rangle \right)^{\$} = \left\langle \Psi \right| U^{\$} \end{split}$$

1-qubitの量子状態の変化

$$|\Psi\rangle = {}_{0}|0\rangle + {}_{0}|1\rangle \overrightarrow{U}_{1}|1\rangle 0\rangle + {}_{1}|1\rangle \overrightarrow{U}_{2}|2\rangle 0\rangle + {}_{2}|1\rangle \overrightarrow{U}_{3}\cdots$$

Reversible Gates

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 &$$

$$R_{y}(\pi/2) R_{z}(\pi) = -iH \qquad R_{y}(\pi/2) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} R_{z}(\pi) = \begin{bmatrix} -i & 0 \\ 0 & i \end{bmatrix} = -iZ$$
Time

量子計算の特徴

- 状態の重ね合わせによる量子並列性
- 振幅と位相の非局所性
- Entanglement
- Unitary変換による多様な演算
- 測定による状態の収縮

古典計算機をしのぐ高速計算の可能性? 量子アルゴリズムの発明

通常,「測定」は「標準基底による測定」を指す

現実の測定では,他の基底でしか測定できないことがありうる

アウトライン

- 量子計算とは?
- 量子計算の基本
- 量子計算のアルゴリズム
- 具体的な実験
- 量子ネットワーク
- 量子コンピューターシステム研究

量子アルゴリズム

- Deutsch-Jozsa(D-J)のアルゴリズム - Proc. R. Soc. London A, 439, 553 (1992)
- Groverの検索アルゴリズム
 - Phys. Rev. Lett., 79, 325 (1997)
- Shorの素因数分解アルゴリズム - SIAM J. Comp., 26, 1484 (1997)

D. Deutsch

L. K. Grover

P. W. Shor

Shorの素因数分解アルゴリズム

 $66554087 = ?6703 \times 9929$

古典的な方法では、指数オーダーの時間を要する素因 数分解アルゴリズムしか知られていない

古典的には、O(2^L)

量子Four ier変換を使って、0(L^3)

一番有名な量子計算のアルゴリズム

Groverの検索アルゴリズム

 $N=2^n$ 個のfileの中から、所望のfile " β "

古典的には,順番にfileを調べて , 平均N/2回程度の操作が必要

Groverのアルゴリズムでは、N 個のfile(状態)の重ね合わせから、出発して \sqrt{N} 回程度のunitary演算Gを実行することで,ほぼ所望のfileに到達

$$|\Psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle \longrightarrow i \approx |\beta\rangle$$

量子Four ier変換

FFTの量子計算版
$$\mid j \rangle$$
 $\overline{\mathit{QFT}}_{\scriptscriptstyle N}$ $\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \exp\left(2\pi i j k / N\right) \mid k \rangle$

例 QFT_sを実行する量子回路

$$R_k = \begin{bmatrix} 1 & 0 \\ 0 & \exp(2\pi i I 2^k) \end{bmatrix}$$

QFT₈の行列表示
$$QFT_8 = \frac{1}{\sqrt{8}}\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^1 & \omega^2 & \omega^3 & \omega^4 & \omega^5 & \omega^6 & \omega^7 \\ 1 & \omega^2 & \omega^4 & \omega^6 & 1 & \omega^2 & \omega^4 & \omega^6 \\ 1 & \omega^3 & \omega^6 & \omega^1 & \omega^4 & \omega^7 & \omega^2 & \omega^5 \\ 1 & \omega^4 & 1 & \omega^4 & 1 & \omega^4 & 1 & \omega^4 \\ 1 & \omega^5 & \omega^2 & \omega^7 & \omega^4 & \omega^1 & \omega^6 & \omega^3 \\ 1 & \omega^6 & \omega^4 & \omega^2 & 1 & \omega^6 & \omega^4 & \omega^2 \\ 1 & \omega^7 & \omega^6 & \omega^5 & \omega^4 & \omega^3 & \omega^2 & \omega^1 \end{bmatrix} \qquad \omega = \exp\left(2\pi i/8\right) = \sqrt{i}$$

アウトライン

- 量子計算とは?
- 量子計算の基本
- 量子計算のアルゴリズム
- 具体的な実験(慶應を含めて)
- 量子ネットワーク
- 量子コンピューターシステム研究

Physical Realization Cavity QED Magnetic resonance Jum pulse gate Superconductor

量子計算の実行

- IBM, Stanford, Berkeley, MIT (solution NMR)
- NEC (Josephson junction charge)
- Delft (JJ flux)
- 慶應 (silicon NMR, quantum dot)
- Caltech, Berkeley (quantum dot)
- Australia (ion trap, linear optics)
- Many others (cavity QED, Kane NMR, ...)
- All schemes so far have drawbacks

Problems

- Coherence time
 - nanoseconds for quantum dot, superconducting systems
- Gate time
 - NMR-based systems slow (100s of Hz to low kHz)
- Gate quality
 - generally, 60-70% accurate
- Interconnecting qubits
- Scaling number of qubits
 - largest to date 7 qubits, most 1 or 2

アウトライン

- 量子計算とは?
- 量子計算の基本
- 量子計算のアルゴリズム
- 具体的な実験
- 量子ネットワーク
- 量子コンピューターシステム研究

Quantum Key Distribution

- Bennett & Brassard, BB84 protocol
- Key distribution only, not data encryption
- Requires authenticated (not encrypted) classical channel to complete protocol
- Many, many places working on this!
 - BBN, Harvard, Boston U. for DARPA
 - MagiQ Technologies
 - CERN
 - 東大

量子ネットワーク

- Quantum Key Distribution (QKD)
- Teleportation
- (Superdense coding)
- All discovered by Charles Bennett (IBM) & associates

Teleportation

- 奇妙なことですが...
- 計算する前に、entangled pairをshareする- 一つを持って、一つを相手に送る
- 計算して(結果はAとよぶ)、持っているqubitlcentangleして、測定して、古典的な結果を相手に送る
- 相手はその結果を使って、少し<u>量</u>子計算して 、Aが出て来る。

アウトライン

- 量子計算とは?
- 量子計算の基本
- 量子計算のアルゴリズム
- 具体的な実験
- 量子ネットワーク
- 量子コンピューターシステム研究 (私の研究を含めて)

The Challenge

- How do we build real, non-abstract, usable quantum computing systems?
- More immediately, how do we find the problems and establish a program to build these systems?

Quantum Computing <u>Systems</u> Research

- 本当の量子コンピュータを作る為に、 研究すべきことがまだまだ沢山ある
- Berkeley, Oxford, NIST, MIT で研究されているが、研究所の数は少ない

Systems Areas

- Logic/Analog
- Microarchitecture
- System Architecture
- Operating Systems
- Compilers/Languages
- Networking & I/O

Wrap-Up

- Qubits: superposition, entanglement, and phase interference give great power
- Algorithms:
 - search (0(sqrt(N))
 - Factoring (O(L^3))
- Experiments: many kinds under way
- Networking: many experimental quantum key distribution (QKD) systems being built
- Systems: just beginning

References

- Nielsen & Chuang, Quantum Computation and Quantum Information (esp. Chapter 1)
- 林正人,
- Williams, Ultimate Zero and One
- 上坂、量子コンピュータの基礎数理

関東の研究所

- 慶應:
 - 伊藤: http://www.appi.keio.ac.jp/ltoh_group/
 - 江藤: http://www.phys.keio.ac.jp/staff/eto/eto-jp.html
- 東大:
 - ERATO 今井プロジェクト: http://www.qci.jst.go.jp/
 - 村尾: http://eve.phys.s.u-tokyo.ac.jp/indexj.htm
- RIKEN
- NEC/Tsukuba
- NTT/Atsugi (全ては50人!):
 - http://www.brl.ntt.co.jp/J/organization/psrl/psrl.html
 - http://www.brl.ntt.co.jp/cs/ninri-g/paradigm/indexj.html
- NII 国立情報科学研究所: 根本、松本

Tomorrow & Beyond

- Begin filling in details
- Algorithms (factoring, search)
- Technologies (ion traps and more)
- Architecture (how do you turn a technology into a system?)
- Networking (quantum key distribution, teleportation)