Department of Computer Science University of Bristol

COMS30030 Image Processing and Computer Vision

Week 03

Shape Detection

Alessandro Masullo

Original slides from Majid Mirmehdi and Tilo Burghardt

Shape Recognition via Hough Transform

- How to detect, locate and describe simple geometrical shapes?
- Basic recognition task
- Choice of feature set and processing domain
- Detecton/Recognition algorithm

Shape Recognition via Hough Transform

- Possible applications in industry
- Many possibilities in different research fields

Source: https://stackoverflow.com/questions/22274930/detect-objects-similar-to-circles/22279177

Line Representation

Line Representation

A straight line in 2D space described by this parametric equation:

$$f(x, y, \rho_0, \theta_0) = x \cos \theta_0 + y \sin \theta_0 - \rho_0 = 0$$

can be represented in the 2D parameter space by a point (ρ_0, θ_0) , where ρ_0 is the distance between the straight line and the origin, and θ_0 is the angle between the distance vector and the positive x-direction.

Line Representation

$$f(x, y, \rho_0, \theta_0) = x \cos \theta_0 + y \sin \theta_0 - \rho_0 = 0$$

A point (x_0, y_0) in the image space is transformed into a sinusoidal curve in the parameter space. A point (θ, ρ) on this sinusoidal curve represents a straight line passing through the point (x_0, y_0) in the image space.

	point 1	point 2	point 3	point 4
θ	$\pi/2 = 1.571$	$-\pi/4 = -0.785$	0	$\pi/4 = 0.785$
ρ	1	0	1	1.4142

- If a line goes through a pixel, we can represent in the Hough Space
- All lines going through a point lie on a curve in the Hough Space

Line Detection Algorithm

- 1. Make available an n=2 dimensional array $H(\rho,\theta)$ for the parameter space;
- 2. Find the gradient image: $G(x,y) = |G(x,y)| \angle G(x,y)$;
- 3. For any pixel satisfying $|G(x,y)| > T_s$, increment all elements on the curve $\rho = x \cos \theta + y \sin \theta$ in the parameter space represented by the H array:

$$\forall \theta \mid \rho = x \cos \theta + y \sin \theta$$
$$H(\rho, \theta) = H(\rho, \theta) + 1;$$

4. In the parameter space, any element $H(\rho, \theta) > T_h$ represents a straight line detected in the image.

Line Detection using Gradient Information

This algorithm can be improved by making use of the gradient direction $\angle G$, which, in this particular case, is the same as the angle θ . Now for any point $|G(x,y)| > T_s$, we only need to increment the elements on a small segment of the sinusoidal curve. The third step in the above algorithm can be modified as:

- 1. Make n=2 dimensional array $H(\rho,\theta)$
- 2. Find the gradient image: $G(x,y) = |G(x,y)| \angle G(x,y)$;
- 3. For any pixel satisfying $|G(x,y)| > T_s$,

$$\forall \theta \mid \left(\angle G(x,y) - \Delta \theta \le \theta \le \angle G(x,y) + \Delta \theta \right)$$
$$\rho = x \cos \theta + y \sin \theta$$
$$H(\rho,\theta) = H(\rho,\theta) + 1;$$

where $\Delta\theta$ defines a small range in θ to allow some room for error in $\angle G$.

4. Any element $H(\rho, \theta) > T_h$ represents a straight line

Line Detection Example

Circle Detection Algorithm

1. For any pixel satisfying $|G(x,y)| > T_s$, increment all elements satisfying the two simultaneous equations

$$\forall r, \begin{cases} x_0 = x \pm r \cos \angle G \\ y_0 = y \pm r \sin \angle G \end{cases}$$
$$H(x_0, y_0, r) = H(x_0, y_0, r) + 1;$$

2. In the parameter space, any element $H(x_0, y_0, r) > T_h$ represents a circle with radius r located at (x_0, y_0) in the image.

Encoding Shapes Generally

General Hough Parameters

No analytical form of the targeted shape \Rightarrow Generate an approximation by calculating $\theta \& \phi$ in k points as follows:

- Prepare a table with k entries each indexed by an angle ϕ_i , $(i = 1, \dots, k)$, $\Delta \phi = 180/k$
- Define a reference point (x_c, y_c) (e.g., center of gravity) $\forall P(x, y)$ on the boundary of the shape, find

$$\begin{cases} r = \sqrt{(x - x_c)^2 + (y - y_c)^2} \\ \beta = tan^{-1} (y - y_c)/(x - x_c) \end{cases}$$

and the gradient direction $\angle G$. Add the pair (r, β) to the table entry with its ϕ closest to $\angle G$.

• Prepare a 2D Hough array $H(x_c, y_c)$ initialized to 0.

Generalised Hough Transform

- For each image point (x, y) with $|G(x, y)| > T_s$, find the table entry with its corresponding angle ϕ_j closest to $\angle G(x, y)$
- For each of the n_j pairs $(r, \beta)_i$ $(i = 1, \dots, n_j)$ in this table entry, find

$$\begin{cases} x_c = x + r \cos \beta \\ y_c = y + r \sin \beta \end{cases}$$

Increment the corresponding element in the H array by 1:

$$H(x_c, y_c) = H(x_c, y_c) + 1$$

All elements in the H table satisfying $H(x_c, y_c) > T_h$ represent the locations of the shape in the image.

Invariant Generalised Hough Transform

It is desirable to detect a certain 2D shape independent of its **orientation and scale**, as well as its location. Two additional parameters, a scaling factor S and a rotational angle θ , are needed to describe the shape. Now the Hough space becomes 4-dimensional $H(x_c, y_c, S, \theta)$.

 $\forall P(x,y)$ with |G(x,y)| > T, find the proper table entry with $\phi_j = \angle G(x,y)$. Then for each of the n_j pairs $(r,\beta)_i$ $(i=1,\cdots,n_j)$ in this table entry, do the following for all S and θ : find

$$\begin{cases} x_c = x + r S \cos(\beta + \theta) \\ y_c = y + r S \sin(\beta + \theta) \end{cases}$$

and increment the corresponding element in the 4D H array by 1:

$$H(x_d, y_c, S, \theta) = H(x_c, y_c, S, \theta) + 1$$

All elements in the H table satisfying $H(x_c, y_c, S, \theta) > T_h$ represent the scaling factor S, rotation angle θ of the shape, as well as its reference point location (x_c, y_c) in the image.

Thank you

Next lecture will be on Image Segmentation

