पूर्ण अंख्याएँ

अध्याय 2

2.1 भूमिका

जैसा कि हम जानते हैं, जब हम गिनना प्रारंभ करते हैं तब हम 1, 2, 3, 4,... का प्रयोग करते हैं। जब हम गिनती प्रारंभ करते हैं, ये हमारे सम्मुख प्राकृतिक रूप से आती हैं। इसीलिए, गणितज्ञ इन गणन (गिनती गिनने वाली) संख्याओं (Counting Numbers) को प्राकृत संख्याएँ (Natural Numbers) कहते हैं।

पूर्ववर्ती और परवर्ती

दी हुई एक प्राकृत संख्या में अगर 1 जोड़ दें, तो आप अगली प्राकृत संख्या प्राप्त कर सकते हैं। अर्थात् आप उसका परवर्ती (successor) प्राप्त कर लेते हैं।

16 का परवर्ती 16 + 1 = 17, 19 का परवर्ती 19 +1 = 20 है और इस प्रकार आगे भी चलता रहेगा।

संख्या 16 संख्या 17 से ठीक पहले आती है। हम कहते हैं कि 17 का पूर्ववर्ती (predecessor) 17-1=16 है, 20 का पूर्ववर्ती 20-1=19 है, इत्यादि।

प्रयास कोजिए 🔍

- 1. 19; 1997; 12000; 49; 100000; 2440701; 100199 और 208090 के पूर्ववर्ती और परवर्ती लिखिए।
- 2. क्या कोई ऐसी प्राकृत संख्या है जिसका कोई पूर्ववर्ती नहीं है?
- क्या कोई ऐसी प्राकृत संख्या है जिसका कोई परवर्ती नहीं है? क्या कोई अंतिम प्राकृत संख्या है?

संख्या 3 का एक पूर्ववर्ती है और एक परवर्ती है। 2 के बारे में आप क्या सोचते हैं? इसका परवर्ती 3 है और पूर्ववर्ती 1 है। क्या 1 के परवर्ती और पूर्ववर्ती दोनों हैं? हम अपने स्कूल के बच्चों की संख्या को गिन सकते हैं, हम किसी शहर में रहने वाले व्यक्तियों की संख्या को भी गिन सकते हैं। संपूर्ण भारत में रहने वाले व्यक्तियों की संख्या को गिन सकते हैं। संपूर्ण विश्व के व्यक्तियों की संख्या को भी गिना जा सकता है। हो सकता है कि हम आकाश (आसमान) में स्थित तारों या अपने सिर के बालों की संख्या को गिन न पाएँ, परंतु यदि हम इन्हें गिन पाएँ, तो इनके लिए भी कोई संख्या अवश्य होगी। फिर हम ऐसी संख्या में 1 जोड़ कर उससे बड़ी संख्या प्राप्त कर लेते हैं। ऐसी स्थिति में हम दो व्यक्तियों के सिरों के कुल बालों की संख्या तक को लिख सकते हैं।

अब यह शायद स्पष्ट है कि सबसे बड़ी कोई प्राकृत संख्या नहीं है। उपरोक्त प्रश्नों के अतिरिक्त, हमारे सम्मुख अनेक अन्य प्रश्न आते हैं जब हम प्राकृत संख्याओं के साथ कार्य करते हैं। आप ऐसे कुछ प्रश्नों के बारे में सोच सकते हैं और अपने मित्रों के साथ उनकी चर्चा कर सकते हैं। आप इन प्रश्नों में से अनेक के उत्तरों को संभवत: ज्ञात नहीं कर पाएँगे!

2.2 पूर्ण संख्याएँ

हम देख चुके हैं कि प्राकृत संख्या 1 का कोई पूर्ववर्ती नहीं होता है। प्राकृत संख्याओं के संग्रह (Collection) में हम 0 (शून्य) को 1 के पूर्ववर्ती के रूप में सम्मिलित करते हैं।

प्राकृत संख्याएँ शून्य के साथ मिलकर पूर्ण संख्याओं (Whole numbers) का संग्रह बनाती हैं।

प्रयास कीजिए 🔍

- 1. क्या सभी प्राकृत संख्याएँ पूर्ण संख्याएँ भी हैं?
- 2. क्या सभी पूर्ण संख्याएँ प्राकृत संख्याएँ भी हैं?
- 3. सबसे छोटी पूर्ण संख्या कौन-सी है?
- 4. सबसे बड़ी पूर्ण संख्या कौन-सी है?

अपनी पिछली कक्षाओं में, आप पूर्ण संख्याओं पर सभी मूलभूत संक्रियाएँ, जैसे—जोड़, व्यवकलन, गुणा और भाग (विभाजन) करना सीख चुके हैं। आप यह भी जानते हैं कि इनका प्रश्नों को हल करने में किस प्रकार अनुप्रयोग किया जाता है। आइए, इन संक्रियाओं को एक संख्या रेखा पर करें। परंतु ऐसा करने से पहले, आइए ज्ञात करें कि संख्या रेखा क्या होती है।

2.3 संख्या रेखा

एक रेखा खींचिए। इस पर एक बिंदु अंकित कीजिए। इस बिंदु को 0 नाम दीजिए। 0 के दाईं ओर एक अन्य बिंदु अंकित कीजिए। इसे 1 नाम दीजिए।

0 और 1 से नामांकित इन बिंदुओं के बीच की दूरी एक मात्रक दूरी (unit distance) कहलाती है। इसी रेखा पर 1 के दाईं ओर 1 मात्रक दूरी पर एक बिंदु अंकित कीजिए और 2 से नामांकित कीजिए। इसी विधि का प्रयोग करते हुए, संख्या रेखा पर एक-एक मात्रक दूरी पर बिंदुओं को 3, 4, 5, ... से नामांकित करते रहिए। आप दाईं ओर किसी भी पूर्ण संख्या तक जा सकते हैं।

नीचे दी हुई रेखा पूर्ण संख्याओं के लिए संख्या रेखा है :

बिंदु 2 और 4 के बीच की दूरी क्या है? निश्चित रूप से यह दूरी 2 मात्रक है। क्या आप बिंदु 2 और 6 तथा 2 और 7 के बीच की दूरियों को बता सकते हैं?

संख्या रेखा पर आप देखेंगे कि संख्या 7 संख्या 4 के दाईं ओर स्थित है और संख्या 7 संख्या 4 से बड़ी है, अर्थात् 7 > 4 है। संख्या 8 संख्या 6 के दाईं ओर स्थित है और 8 > 6 है। इन प्रेक्षणों के आधार पर, हम कह सकते हैं कि दो पूर्ण संख्याओं में से वह संख्या बड़ी होती है, जो संख्या रेखा पर अन्य संख्या के दाईं ओर स्थित होती है। हम यह भी कह सकते हैं कि बाईं ओर की पूर्ण संख्या छोटी होती है। उदाहरणार्थ, 4 < 9 है; 4, 9 के बाईं ओर स्थित है। इसी प्रकार, 12 > 5; 12, 5 के दाईं ओर स्थित है।

आप 10 और 20 के बारे में क्या कह सकते हैं?

30, 12 और 18 की संख्या रेखा पर स्थितियाँ देखिए। कौन-सी संख्या सबसे बाईं ओर स्थित है? क्या आप 1005 और 9756 में से बता सकते हैं कि कौन-सी संख्या दूसरी संख्या के दाईं ओर स्थित है? संख्या रेखा पर 12 के परवर्ती और 7 के पूर्ववर्ती को दर्शाइए।

संख्या रेखा पर योग

पूर्ण संख्याओं के योग को संख्या रेखा पर दर्शाया जा सकता है। आइए 3 और 4 के योग को देखें।

तीर के सिरे पर बिंदु 3 है। 3 से प्रारंभ कीजिए। चूँिक हमें इस संख्या में 4 जोड़ना है, इसलिए हम दाईं ओर चार कदम 3 से 4, 4 से 5, 5 से 6 और 6 से 7 चलते हैं, जैसा कि ऊपर दिखाया गया है। चौथे कदम के अंतिम तीर के सिरे पर बिंदु 7 है। इस प्रकार, 3 और 4 का योग 7 है। अर्थात् 3+4=7 है।

प्रयास कीजिए 🔍

संख्या रेखा का प्रयोग करके, 4+5; 2+6; 3+5 और 1+6 को ज्ञात कीजिए।

गणित

व्यवकलन (घटाना) : दो पूर्ण संख्याओं के व्यवकलन को भी संख्या रेखा पर दर्शाया जा सकता है। आइए 7 – 5 ज्ञात करें।

तीर के सिरे पर बिंदु 7 है। 7 से प्रारंभ कीजिए। चूँकि 5 को घटाया जाना है, इसलिए हम बाईं ओर 1 मात्रक वाले पाँच कदम चलते हैं। हम बिंदु 2 पर पहुँचते हैं। हमें 7 – 5 = 2 प्राप्त होता है।

प्रयास कीजिए

संख्या रेखा का प्रयोग करके 8-3; 6-2 और 9-6 ज्ञात कीजिए।

गुणन (गुणा): अब हम संख्या रेखा पर पूर्ण संख्याओं के गुणन को देखते हैं।

आइए 4×3 ज्ञात करें

0 से प्रारंभ कीजिए और दाईं ओर एक बार में 3 मात्रकों के बराबर के कदम चिलए। ऐसे चार कदम चिलए। आप कहाँ पहुँचते हैं? आप 12 पर पहुँच जाएँगे। इसिलए हम कहते हैं कि $4 \times 3 = 12$ है।

प्रयास कीजिए 🔾

संख्या रेखा का प्रयोग करके, 2×6 ; 3×3 और 4×2 को ज्ञात कीजिए।

प्रश्नावली 2.1

- 1. 10999 के बाद अगली तीन प्राकृत संख्याएँ लिखिए।
- 2. 10001 से ठीक पहले आने वाली तीन पूर्ण संख्याएँ लिखिए।
- 3. सबसे छोटी पूर्ण संख्या कौन सी है?
- 4. 32 और 53 के बीच में कितनी पूर्ण संख्याएँ हैं?
- 5. निम्न के परवर्ती लिखिए :
 - (a) 2440701 (b) 100199 (c) 1099999 (d) 2345670
- 6. निम्न के पूर्ववर्ती लिखिए:
 - (a) 94 (b) 10000 (c) 208090 (d) 7654321
- 7. संख्याओं के निम्नलिखित युग्मों में से प्रत्येक के लिए, संख्या रेखा पर कौन सी पूर्ण संख्या अन्य संख्या के बाई ओर स्थित है। इनके बीच में उपयुक्त चिह्न (>, <) का प्रयोग करते हुए इन्हें लिखिए:

- (a) 530, 503
- (b) 370, 307
- (c) 98765, 56789
- (d) 9830415, 10023001
- 8. निम्नलिखित कथनों में से कौन-से कथन सत्य हैं और कौन-से कथन असत्य हैं :
 - (a) शून्य सबसे छोटी प्राकृत संख्या है।
 - (b) 400, संख्या 399 का पूर्ववर्ती है।
 - (c) शून्य सबसे छोटी पूर्ण संख्या है।
 - (d) 600, संख्या 599 का परवर्ती है।
 - (e) सभी प्राकृत संख्याएँ पूर्ण संख्याएँ हैं।
 - (f) सभी पूर्ण संख्याएँ प्राकृत संख्याएँ हैं।
 - (g) दो अंकों की पूर्ण संख्या का पूर्ववर्ती एक अंक की संख्या कभी नहीं हो सकती है।
 - (h) 1 सबसे छोटी पूर्ण संख्या है।
 - (i) प्राकृत संख्या 1 का कोई पूर्ववर्ती नहीं होता।
 - (j) पूर्ण संख्या 1 का कोई पूर्ववर्ती नहीं होता।
 - (k) पूर्ण संख्या 13, संख्याओं 11 और 12 के बीच में स्थित है।
 - (1) पूर्ण संख्या 0 का कोई पूर्ववर्ती नहीं होता।
 - (m) दो अंकों की संख्या का परवर्ती सदैव दो अंकों की एक संख्या होती है

2.4 पूर्ण संख्याओं के गुण

जब हम पूर्ण संख्याओं पर होने वाली विभिन्न संक्रियाओं को निकटता से देखते हैं, तो उनमें अनेक गुण देखने को मिलते हैं। इन गुणों से हमें इन संख्याओं को अच्छी प्रकार से समझने में सहायता मिलती है। साथ ही, ये गुण कई संक्रियाओं को बहुत सरल भी बना देते हैं।

इन्हें कीजिए 🐋

आपकी कक्षा के प्रत्येक विद्यार्थी को कोई भी दो पूर्ण संख्याएँ लेकर उन्हें जोड़ने को कहा जाए। क्या परिणाम सदैव एक पूर्ण संख्या आता है? आपके योग इस प्रकार के हो सकते हैं:

7	+	8	=	15, एक पूर्ण संख्या
5	+ 1	5	<u></u>	10, एक पूर्ण संख्या
0	+	15	=	15, एक पूर्ण संख्या
	+		=	
	+		=	

पूर्ण संख्याओं के ऐसे ही 5 और युग्म लेकर योग ज्ञात कीजिए। क्या योग सदैव एक पूर्ण संख्या है?

क्या आपको पूर्ण संख्याओं का कोई ऐसा युग्म प्राप्त हुआ जिनका योग एक पूर्ण संख्या नहीं है? ऐसी कोई दो पूर्ण संख्याएँ प्राप्त करना संभव नहीं है, जिनका योग एक पूर्ण संख्या न हो। हम कहते हैं कि दो पूर्ण संख्याओं का योग एक पूर्ण संख्या होती है। चूँकि पूर्ण संख्याओं को जोड़ने से पूर्ण संख्या ही प्राप्त होती है, इसलिए पूर्ण संख्याओं का संग्रह योग के अंतर्गत **संवृत (Closed)** है। यह पूर्ण संख्याओं के योग का संवृत गुण (Closure property) कहलाता है।

क्या पूर्ण संख्याएँ गुणन (गुणा) के अंतर्गत भी संवृत हैं? आप इसकी जाँच किस प्रकार करेंगे?

आपके गुणन इस प्रकार हो सकते हैं:

7	×	8	=	56, एक पूर्ण संख्या
5	×	5	=	25, एक पूर्ण संख्या
0	×	15	=	0, एक पूर्ण संख्या
	×		=	
	×	٠	=	

दो पूर्ण संख्याओं का गुणनफल भी एक पूर्ण संख्या ही होती है। अतः हम कह सकते हैं कि पूर्ण संख्याओं का संग्रह (निकाय) गुणन के अंतर्गत संवृत है।

संवृत गुण : पूर्ण संख्याएँ योग के अंतर्गत तथा गुणन के अंतर्गत संवृत होती हैं।

सोचिए, चर्चा कीजिए और लिखिए:

1. पूर्ण संख्याएँ व्यवकलन (घटाने) के अंतर्गत संवृत नहीं होती हैं। क्यों? आपके व्यवकलन इस प्रकार के हो सकते हैं:

6		2	=	4, एक पूर्ण संख्या
7	_	8	=	?, एक पूर्ण संख्या नहीं
5) –	4	7.	1, एक पूर्ण संख्या
3	-	9	4	?, एक पूर्ण संख्या नहीं

अपनी ओर से कुछ और उदाहरण लीजिए और उपरोक्त कथन की पुष्टि कीजिए।

2. क्या पूर्ण संख्याएँ विभाजन (भाग) के अंतर्गत संवृत हैं? नहीं। निम्न सारणी को देखिए :

8	÷	4	=	2, एक पूर्ण संख्या
5	÷	7	=	$\frac{5}{7}$, एक पूर्ण संख्या नहीं
12	÷	3	=	4, एक पूर्ण संख्या
6	÷	5	=	$rac{6}{5}$, एक पूर्ण संख्या नहीं

अपनी ओर से कुछ और उदाहरण लेकर, उपरोक्त कथन की पुष्टि कीजिए।

पूर्ण संख्याएँ

शून्य द्वारा विभाजन

एक संख्या से विभाजन (भाग देने) का अर्थ है कि उस संख्या को बार-बार घटाना।

आइए 8 ÷ 2 ज्ञात करें।

8 में से 2 को बार-बार घटाइए।

कितनी बार घटाने पर हम 0 तक पहुँचे हैं? चार-बार।

इसलिए, हम $8 \div 2 = 4$ लिखते हैं।

इस विधि से $24 \div 8$ और $16 \div 4$ ज्ञात कीजिए। आइए अब $2 \div 0$ को ज्ञात करने का प्रयत्न करें।

प्रत्येक बार घटाने पर हमें 2 पुन: प्राप्त होता है। क्या यह प्रक्रिया कभी समाप्त होगी? नहीं।

हम कहते हैं कि $2 \div 0$ परिभाषित नहीं है।

आइए $7 \div 0$ ज्ञात करने का प्रयत्न करें।

पुन: हमें घटाने के किसी भी स्तर पर 0 नहीं प्राप्त होता है।

हम कहते हैं कि $7 \div 0$ परिभाषित नहीं है।

 $5 \div 0$ और $16 \div 0$ के लिए भी इसकी जाँच कीजिए।

पूर्ण संख्याओं का शून्य से विभाजन परिभाषित नहीं है।

गणित

योग और गुणन की क्रमविनिमेयता

संख्या रेखा के निम्नलिखित चित्र क्या दर्शाते हैं? दोनों स्थितियों में, हम 5 पर पहुँचते हैं।

अत: 3+2 और 2+3 बराबर हैं। दोनों से एक ही उत्तर 5 प्राप्त होता है। इसी प्रकार, 5+3 और 3+5 भी बराबर हैं।

इसी प्रकार, 4 + 6 और 6 + 4 के लिए भी यही करने का प्रयत्न कीजिए। क्या यह तब भी सत्य है। जब हम किन्हीं दो पूर्ण संख्याओं को जोड़ते हैं, आपको पूर्ण संख्याओं का कोई भी ऐसा युग्म नहीं मिलेगा जिसमें संख्याओं के जोड़ने का क्रम बदलने पर योग भिन्न-भिन्न प्राप्त हों।

हम कहते हैं कि पूर्ण संख्याओं के लिए योग क्रमविनिमेय (commutative) है। यह गुण योग की क्रमविनिमेयता कहलाता है।

अपने मित्रों के साथ चर्चा कीजिए :

आपके घर पर एक छोटा उत्सव है। आप मेहमानों के लिए, कुर्सियों की 6 पंक्तियाँ बनाते हैं, जिनमें से प्रत्येक पंक्ति में 8 कुर्सियाँ हैं। कमरा इतना चौड़ा नहीं है कि उसमें 8 कुर्सियों वाली पंक्तियाँ समा सकें। आप यह निर्णय लेते हैं कि कुर्सियों की 8 पंक्तियाँ बनाएँ, जिनमें से

प्रत्येक पंक्ति में 6 कुर्सियाँ हों। क्या आपको और अधिक कुर्सियों की आवश्यकता पड़ेगी?

क्या गुणन का भी क्रमविनिमेयता गुण होता है? संख्याओं 4 और 5 को अलग-अलग क्रमों में गुणा कीजिए। आप देखेंगे कि $4 \times 5 = 5 \times 4$ है।

क्या यह संख्याओं 3 और 6 तथा 5 और 7 के लिए भी सत्य हैं?

आप दो पूर्ण संख्याओं को किसी भी क्रम में गुणा कर सकते हैं।

हम कहते हैं कि पूर्ण संख्याओं के लिए गुणन क्रमविनिमेय है।

इस प्रकार, पूर्ण संख्याओं के लिए, योग और गुणन दोनों ही क्रमविनिमेय हैं।

जाँच कीजिए:

- (i) पूर्ण संख्याओं के लिए, व्यवकलन (घटाना) क्रमविनिमेय नहीं है। इसकी जाँच संख्याओं के तीन विभिन्न युग्म लेकर कीजिए।
- (ii) क्या (6 ÷ 3) वहीं है जो (3 ÷ 6) है? पूर्ण संख्याओं के कुछ और युग्म लेकर अपने उत्तर की पुष्टि कीजिए।

योग और गुणन की सहचारिता

निम्नलिखित चित्रों को देखिए:

(a)
$$(2+3)+4=5+4=9$$

(b)
$$2 + (3 + 4) = 2 + 7 = 9$$

उपरोक्त में, (a) के अनुसार आप पहले 2 और 3 को जोड़कर प्राप्त योग में 4 जोड़ सकते हैं।

साथ ही, (b) के अनुसार आप पहले 3 और 4 को जोड़कर प्राप्त योग में 2 जोड़ सकते हैं।

क्या दोनों परिणाम समान नहीं हैं?

हम यह भी प्राप्त करते हैं कि

$$(5+7)+3=12+3=15$$
 तथा $5+(7+3)=5+10=15$ है।

इसलिए,
$$(5+7)+3=5+(7+3)$$
 हुआ।

यह पूर्ण संख्याओं के योग का साहचर्य गुण (associative property) कहलाता है। संख्या 2, 8 और 6 के लिए इस गुण की जाँच कीजिए।

उदाहरण 1 : संख्या 234, 197 और 103 को जोड़िए।

= 234 + 300

= 534

ध्यान दीजिए कि जोड़ने की सुविधा के लिए, हम किस प्रकार संख्याओं के समूह बनाते हैं।

🛅 इस खेल को खेलिए :

आप और आपका मित्र इस खेल को खेल सकते हैं।

आप 1 से 10 तक में से कोई संख्या बोलिए। अब आपका मित्र इस संख्या में 1 से 10 तक की कोई भी संख्या जोड़ता है। इसके बाद आपकी बारी है। आप बारी-बारी से दोनों खेलिए। जो पहले 100 तक पहुँचता है वही जीतेगा। यदि आप सदैव जीतना चाहते हैं, तो आपकी युक्ति या योजना क्या होगी?

निम्नलिखित आकृतियों द्वारा प्रदर्शित गुणन तथ्यों को देखिए (आकृति 2.1):

(a) और (b) में, बिंदुओं की संख्याओं को गिनिए। आपको क्या प्राप्त होता है? दोनों में बिंदुओं की संख्याएँ बराबर हैं। (a) में, हमारे पास प्रत्येक खाने (box) में 2×3 बिंदु हैं। इसलिए, बिंदुओं की कुल संख्या $(2 \times 3) \times 4 = 24$ है।

(b) में, प्रत्येक खाने में 3×4 बिंदु हैं। इसिलए बिंदुओं की कुल संख्या $2 \times (3 \times 4) = 24$ है। इस प्रकार, $(2 \times 3) \times 4 = 2 \times (3 \times 4)$ है। इसी प्रकार, आप देख सकते हैं कि $(3 \times 5) \times 4 = 3 \times (5 \times 4)$ है।

इसी को $(5 \times 6) \times 2$ और $5 \times (6 \times 2)$ तथा $(3 \times 6) \times 4$ और $3 \times (6 \times 4)$ के लिए प्रयास कीजिए।

यह पूर्ण संख्याओं के गुणन का सहचारी या साहचर्य गुण कहलाता है। सोचिए और ज्ञात कीजिए :

कौन-सा गुणन सरल है और क्यों?

- (a) $(6 \times 5) \times 3$ या $6 \times (5 \times 3)$
- (b) $(9 \times 4) \times 25$ या $9 \times (4 \times 25)$

उदाहरण 2 : 14 + 17 + 6 को दो विधियों से ज्ञात कीजिए।

यहाँ आपने योग के साहचर्य और क्रमविनिमेय गुणों के संयोजन (combination) को प्रयोग किया है। क्या आप सोचते हैं कि क्रमविनिमेय और साहचर्य गुण के प्रयोग से परिकलन कुछ सरल हो जाते हैं?

प्रयास कीजिए 🔍

7 + 18 + 13 और 16 + 12 + 4 को ज्ञात कीजिए।

गुणन का साहचर्य गुण निम्नलिखित प्रकार के प्रश्नों को हल करने में उपयोगी होता है:

उदाहरण 3 : 12×35 को ज्ञात कीजिए।

 $12 \times 35 = (6 \times 2) \times 35 = 6 \times (2 \times 35) = 6 \times 70 = 420$

इस उदाहरण में, हमने साहचर्य गुण का उपयोग, सबसे छोटी सम संख्या को 5 के गुणज (multiple) से गुणा कर, सरलता से उत्तर प्राप्त करने

के लिए किया है।

उदाहरण 4 : $8 \times 1769 \times 125$ को ज्ञात कीजिए।

 $8 \times 1769 \times 125 = 8 \times 125 \times 1769$ (आप यहाँ किस गुण का प्रयोग

कर रहे हैं?)

 $= (8 \times 125) \times 1769 = 1000 \times 1769 = 1769000$

प्रयास कीजिए 🔍

ज्ञात कीजिए:

 $25 \times 8358 \times 4$; $625 \times 3759 \times 8$

सोचिए, चर्चा कीजिए और लिखिए:

क्या $(16 \div 4) \div 2 = 16 \div (4 \div 2)$ है?

क्या विभाजन के लिए साहचर्य गुण लागू होता है? नहीं।

अपने मित्रों के साथ चर्चा कीजिए। क्या $(28 \div 14) \div 2$ और $28 \div (14 \div 2)$ बराबर हैं?

इन्हें कीजिए 👟

योग पर गुणन का वितरण

6 सेमी $\times\,8$ सेमी मापों का एक आलेख (graph) कागज लीजिए जिसमें

1 सेमी × 1 सेमी मापों वाले वर्ग बने हों।

आपके पास कुल कितने वर्ग हैं?

क्या यह संख्या 6 × 8 है?

अब इस कागज़ को 6 सेमी $\times 5$ सेमी और 6 सेमी $\times 3$ सेमी मापों वाले दो भागों में काट लीजिए, जैसा कि आकृति में दिखाया गया है:

वर्गों की संख्या : क्या यह 6 × 5 है?

वर्गों की संख्या : क्या यह 6×3 है?

दोनों भागों में कुल मिलाकर कितने वर्ग हैं?

क्या यह $(6 \times 5) + (6 \times 3)$ है? क्या इसका अर्थ है कि $6 \times 8 = (6 \times 5) + (6 \times 3)$ है? लेकिन, $6 \times 8 = 6 \times (5 + 3)$ है। क्या यह दर्शाता है कि $6 \times (5 + 3) = (6 \times 5) + (6 \times 3)$ इसी प्रकार, आप पाएँगे कि $2 \times (3 + 5) = (2 \times 3) + (2 \times 5)$ है।

इसे योग पर गुणन का वितरण (या बंटन) गुण (distributive property of multiplication over addition) कहते हैं।

वितरण (या बंटन) गुण का प्रयोग करके $4 \times (5+8)$; $6 \times (7+9)$ और $7 \times (11+9)$ को ज्ञात कीजिए।

सोचिए, चर्चा कीजिए और लिखिए:

अब निम्नलिखित गुणन प्रक्रिया को देखिए और चर्चा कीजिए कि क्या हम संख्याओं का गुणन करते समय योग पर गुणन के वितरण गुण की अवधारणा का प्रयोग करते हैं?

425

×136

 $2550 \quad \longleftarrow \ 425 \times 6$

(6 इकाइयों से गुणा)

 $12750 \quad \longleftarrow \quad 425 \times 30$

(3 दहाइयों से गुणा)

425 00 ← 425 × 100

(1 सौ से गुणा)

57800

 \leftarrow 425 × (6 + 30 100)

उदाहरण 5 : एक स्कूल की कैंटीन (Canteen) प्रतिदिन लंच (lunch) के लिए 20 रु और दूध के लिए ₹ 4 लेती है। इन मदों में आप 5 दिनों में कुल कितना व्यय करते हैं?

हल

: इसे दो विधियों से ज्ञात किया जा सकता है।

विधि 1 : लंच के लिए 5 दिन की राशि ज्ञात कीजिए। दूध के लिए 5 दिन की राशि ज्ञात कीजिए।

दूव के लिए 5 दिन का सारा ज्ञात फिर इन्हें जोडिए।

लंच की लागत =₹5 × 20

दूध की लागत =₹5×4

कुल लागत = ₹
$$(5 \times 20) + ₹ (5 \times 4) = ₹ (100 + 20)$$

= ₹ 120

विधि 2 : एक दिन की कुल राशि ज्ञात कीजिए।

फिर इसे 5 से गुणा कीजिए।

एक दिन के (लंच + दूध) की लागत = ₹ (20 + 4)

5 दिन की कुल लागत = 5 × ₹ (20 + 4) = ₹ (5 × 24)

= ₹ 120

यह उदाहरण दर्शाता है कि

 $5 \times (20 + 4) = (5 \times 20) + (5 \times 4) \$

यह योग पर गुणन के वितरण का सिद्धांत है।

उदाहरण 6 : वितरण गुण का प्रयोग करते हुए, 12 × 35 ज्ञात कीजिए।

 $12 \times 35 = 12 \times (30 + 5) = 12 \times 30 + 12 \times 5$

= 360 + 60 = 420

उदाहरण 7 : सरल कीजिए : $126 \times 55 + 126 \times 45$

= 12600

प्रयास कीजिए 🔾

वितरण गुण का प्रयोग करते हुए, 15×68 , 17×23 और $69 \times 78 + 22 \times 69$ के मान ज्ञात कीजिए।

तत्समक अवयव (योग और गुणन के लिए)

पूर्ण संख्याओं का संग्रह प्राकृत संख्याओं के संग्रह से किस रूप में भिन्न है? यह केवल पूर्ण संख्याओं के संग्रह में 'शून्य' की उपस्थिति के कारण है। इस संख्या 'शून्य' की योग में विशेष भूमिका है। इसका अनुमान लगाने का प्रयत्न कीजिए।

निम्नलिखित सारणी आपकी सहायता करेगी:

,	7	+	0	=	7
	5	+	0	=	5
	0	+	15	=	15
(0	+	26	=	26
(\mathbf{C}	+		=	

जब आप शून्य को किसी पूर्ण संख्या में जोड़ते हैं, तो क्या परिणाम प्राप्त होता है? परिणाम स्वयं वही पूर्ण संख्या होती है। इसी कारण, शून्य को पूर्ण संख्याओं के योग के लिए तत्समक अवयव (identity element) (या तत्समक) कहते हैं। शून्य को पूर्ण संख्याओं के लिए योज्य तत्समक (additive identity) भी कहते हैं।

गुणन की संक्रिया में भी शुन्य की एक विशेष भूमिका है। किसी भी पूर्ण संख्या को शुन्य से गुणा करने पर शुन्य ही प्राप्त होता है।

उदाहरणार्थ. निम्नलिखित प्रतिरूप को देखिए :

$$5 \times 6 = 30$$

 $5 \times 5 = 25$
 $5 \times 4 = 20$
 $5 \times 3 = 15$

देखिए कि किस प्रकार गुणनफल में कमी हो रही है? क्या आप कोई प्रतिरूप देख रहे हैं?

 $5 \times 3 = 15$ $5 \times 2 = ...$

क्या आप अंतिम चरण का अनुमान लगा सकते हैं? क्या यही प्रतिरूप अन्य पूर्ण संख्याओं के लिए भी सत्य

है? इसको दो अलग-अलग पूर्ण संख्याओं को लेकर ज्ञात

 $5 \times 1 = ...$

करने का प्रयत्न कीजिए। $5 \times 0 = ?$

आपको पूर्ण संख्याओं के लिए एक योज्य तत्समक प्राप्त हुआ। किसी पूर्ण संख्या में शुन्य जोडने पर या शुन्य में पूर्ण संख्या जोडने पर वहीं पूर्ण संख्या प्राप्त होती है। ऐसी ही स्थिति पूर्ण संख्याओं के लिए गुणनात्मक तत्समक (multiplicative identity) की है। निम्नलिखित सारणी को देखिए:

7	×	1	=	7
5	×	1	=	5
1	×	12		12
1	×	100	=	100
1	×		=	

आप सही सोच रहे हैं। पूर्ण संख्याओं के गुणन के लिए, 1 तत्समक अवयव या तत्समक है। दूसरे शब्दों में, पूर्ण संख्याओं के लिए, 1 गुणनात्मक तत्समक है।

प्रश्नावली 2.2

- 1. उपयुक्त क्रम में लगाकर योग ज्ञात कीजिए :
 - (a) 837 + 208 + 363
- (b) 1962 + 453 + 1538 + 647
- 2. उपयुक्त क्रम में लगाकर गुणनफल ज्ञात कीजिए :
 - (a) $2 \times 1768 \times 50$
- (b) $4 \times 166 \times 25$
- (c) $8 \times 291 \times 125$
- (d) $625 \times 279 \times 16$
- (e) $285 \times 5 \times 60$
- (f) $125 \times 40 \times 8 \times 25$
- 3. निम्नलिखित में से प्रत्येक का मान ज्ञात कीजिए :
 - (a) $297 \times 17 + 297 \times 3$
- (b) $54279 \times 92 + 8 \times 54279$
- (c) $81265 \times 169 81265 \times 69$ (d) $3845 \times 5 \times 782 + 769 \times 25 \times 218$
- 4. उपयुक्त गुणों का प्रयोग करके गुणनफल ज्ञात कीजिए :
 - (a) 738×103
- (b) 854×102
- (c) 258×1008
- (d) 1005×168

- 5. किसी टैक्सी-डाइवर ने अपनी गाडी की पेट्रोल टंकी में सोमवार को 40 लीटर पेट्रोल भरवाया। अगले दिन. उसने टंकी में 50 लीटर पेट्रोल भरवाया। यदि पेट्रोल का मूल्य ₹44 प्रति लीटर था, तो उसने पेट्रोल पर कुल कितना व्यय किया?
- 6. कोई दुधवाला एक होटल को सुबह 32 लीटर दुध देता है और शाम को 68 लीटर दूध देता है। यदि दूध का मूल्य ₹45 प्रति लीटर है, तो दुधवाले को प्रतिदिन कितनी धनराशि प्राप्त होगी?
- 7. निम्न को सुमेलित (match) कीजिए :
 - (i) $425 \times 136 = 425 \times (6 + 30 + 100)$ (a) गुणन की क्रमविनिमेयता
- - (ii) $2 \times 49 \times 50 = 2 \times 50 \times 49$
- (b) योग की क्रमविनिमेयता
- (iii) 80 + 2005 + 20 = 80 + 20 + 2005 (c) योग पर गुणन का वितरण

2.5 पूर्ण संख्याओं में प्रतिरूप

हम संख्याओं को बिंदुओं द्वारा प्रारंभिक आकारों के रूप में व्यवस्थित करेंगे। जो आकार हम लेंगे वे हैं (1) एक रेखा, (2) एक आयत, (3) एक वर्ग और (4) एक त्रिभुज। प्रत्येक संख्या को इन आकारों में से एक आकार में व्यवस्थित करना चाहिए। कोई अन्य आकार नहीं होना चाहिए।

- प्रत्येक संख्या को एक रेखा के रूप में व्यवस्थित किया जा सकता है: संख्या 2 को इस प्रकार दिखाया जा सकता है संख्या 3 को इस प्रकार दिखाया जा सकता है 🐍 इत्यादि
- कुछ संख्याओं को आयतों के रूप में दर्शाया जा सकता है। उदाहरणार्थ, संख्या 6 को आयत के रूप में दर्शाया जा सकता है। ध्यान दीजिए कि यहाँ 2 पंक्तियाँ और 3 स्तंभ हैं।
- कुछ संख्याओं जैसे 4 और 9 को वर्गों के रूप में भी दर्शाया जा सकता है;

कुछ संख्याओं को त्रिभुजों के रूप में भी दर्शाया जा सकता है। उदाहरणार्थ,

ध्यान दीजिए कि त्रिभुज की दो भुजाएँ अवश्य बराबर होनी चाहिए। नीचे से प्रारंभ करते हुए पंक्तियों में बिंदुओं की संख्या 4, 3, 2, 1 जैसी होनी चाहिए। सबसे ऊपर की पंक्ति में केवल एक बिंदु होना चाहिए।

अब सारणी को पूरा कीजिए :

संख्या	रेखा	आयत	वर्ग	त्रिभुज
2	हाँ	नहीं	नहीं	नहीं
3	हाँ	नहीं	नहीं	हाँ
4	हाँ	हाँ	हाँ	नहीं
5	हाँ	नहीं	नहीं	नहीं
6				
7				
8				
9				
10			2	
11				
12				
13				

प्रयास कीजिए 🔍

- 1. कौन सी संख्याएँ केवल रेखा के रूप में दर्शाई जा सकती हैं?
- 2. कौन सी संख्याएँ वर्गों के रूप में दर्शाई जा सकती हैं?
- 3. कौन सी संख्याएँ आयतों के रूप में दर्शाई जा सकती हैं?
- 4. प्रथम सात त्रिभुजाकार संख्याओं को लिखिए (अर्थात् वे संख्याएँ जिन्हें त्रिभुजों के रूप में व्यवस्थित किया जा सकता है) 3, 6, ...
- 5. कुछ संख्याओं को दो आयतों के रूप में दर्शाया जा सकता है। उदाहरणार्थ,

इसी प्रकार के कम से कम पाँच उदाहरण दीजिए।

प्रतिरूपों को देखना

प्रतिरूपों को देखने से आपको सरलीकरण की प्रक्रियाओं के लिए कुछ मार्गदर्शन मिल सकता है।

निम्नलिखित का अध्ययन कीजिए:

(a)
$$117 + 9 = 117 + 10 - 1 = 127 - 1 = 126$$

(b)
$$117 - 9 = 117 - 10 + 1 = 107 + 1 = 108$$

(c)
$$117 + 99 = 117 + 100 - 1 = 217 - 1 = 216$$

(d)
$$117 - 99 = 117 - 100 + 1 = 17 + 1 = 18$$

क्या यह प्रतिरूप 9,99,999, ... प्रकार की संख्याओं के जोडने या घटाने में आपकी सहायता करता है?

यहाँ एक और प्रतिरूप दिया जा रहा है :

(a)
$$84 \times 9 = 84 \times (10 - 1)$$

(b)
$$84 \times 99 = 84 \times (100 - 1)$$

(c)
$$84 \times 999 = 84 \times (1000 - 1)$$

क्या आपको किसी संख्या को 9,99,999, ...के प्रकार की संख्याओं से गणा करने की एक संक्षिप्त विधि प्राप्त होती है?

ऐसी संक्षिप्त विधियाँ आपको अनेक प्रश्न मस्तिष्क में ही (मौखिक रूप से) हल करने में सहायता करती हैं।

निम्नलिखित प्रतिरूप आपको किसी संख्या को 5 या 25 या 125 से गुणा करने की एक आकर्षक विधि बताता है।

(आप इन संख्याओं को आगे भी बढ़ाने के बारे में सोच सकते हैं।)

(i)
$$96 \times 5 = 96 \times \frac{10}{2} = \frac{960}{2} = 480$$

(ii)
$$96 \times 25 = 96 \times \frac{100}{4} = \frac{9600}{4} = 2400$$

(iii)
$$96 \times 125 = 96 \times \frac{1000}{8} = \frac{96000}{8} = 12000$$

आगे आने वाला प्रतिरूप क्या सुझाव दे रहा है?

(i)
$$64 \times 5 = 64 \times \frac{10}{2} = 32 \times 10 = 320 \times 1$$

(ii)
$$64 \times 15 = 64 \times \frac{30}{2} = 32 \times 30 = 320 \times 3$$

(iii)
$$64 \times 25 = 64 \times \frac{50}{2} = 32 \times 50 = 320 \times 5$$

(iv)
$$64 \times 35 = 64 \times \frac{70}{2} = 32 \times 70 = 320 \times 7$$

प्रश्नावली 2.3

1. निम्नलिखित में से किससे शुन्य निरूपित नहीं होगा?

(a)
$$1 + 0$$
 (b) 0×0

(c)
$$\frac{0}{2}$$

(c)
$$\frac{0}{2}$$
 (d) $\frac{10-10}{2}$

2. यदि दो पूर्ण संख्याओं का गुणनफल शून्य है, तो क्या हम कह सकते हैं कि इनमें से एक या दोनों ही शून्य होने चाहिए? उदाहरण देकर अपने उत्तर की पुष्टि कीजिए।

- 3. यदि दो पूर्ण संख्याओं का गुणनफल 1 है, तो क्या हम कह सकते हैं कि इनमें से एक या दोनों ही 1 के बराबर होनी चाहिए? उदाहरण देकर अपने उत्तर की पुष्टि कीजिए।
- 4. वितरण विधि से ज्ञात कीजिए:
 - (a) 728×101
- (b) 5437×1001
- (c) 824×25

- (d) 4275×125
- (e) 504×35
- 5. निम्नलिखित प्रतिरूप का अध्ययन कीजिए:

 $1 \times 8 + 1 = 9$

 $12 \times 8 + 2 = 98$

 $123 \times 8 + 3 = 987$

 $1234 \times 8 + 4 = 9876$

 $12345 \times 8 + 5 = 98765$

अगले दो चरण लिखिए। क्या आप कह सकते हैं कि प्रतिरूप किस प्रकार कार्य करता है? (संकेत : 12345 = 11111 + 1111 + 111 + 11 + 1)

हमने क्या चर्चा की?

- 1. संख्याएँ 1, 2, 3,... जिनका प्रयोग हम गिनने के लिए करते हैं, प्राकृत संख्याएँ कहलाती हैं।
- 2. यदि आप किसी प्राकृत संख्या में 1 जोड़ते हैं तो आपको इसका परवर्ती मिलता है। यदि किसी प्राकृत संख्या में से 1 घटाते हैं, तो आपको इसका पूर्ववर्ती प्राप्त होता है।
- 3. प्रत्येक प्राकृत संख्या का एक परवर्ती होता है। 1 को छोड़कर प्रत्येक प्राकृत संख्या का एक पूर्ववर्ती होता है।
- 4. यदि प्राकृत संख्याओं के संग्रह में हम संख्या 0 जोड़ते हैं, तो हमें पूर्ण संख्याओं का संग्रह प्राप्त होता है। इस प्रकार संख्याएँ 0, 1, 2, 3,... पूर्ण संख्याओं का संग्रह बनाती हैं।
- 5. प्रत्येक पूर्ण संख्या का एक परवर्ती होता है। 0 को छोड़कर प्रत्येक पूर्ण संख्या का एक पूर्ववर्ती होता है।
- 6. सभी प्राकृत संख्याएँ, पूर्ण संख्याएँ भी हैं। लेकिन सभी पूर्ण संख्याएँ प्राकृत संख्याएँ नहीं हैं।
- 7. हम एक रेखा लेते हैं। इस पर एक बिंदु अंकित करते हैं जिसे 0 से नामांकित करते हैं। फिर हम 0 के दाई ओर समान अंतराल (दूरी) पर बिंदु अंकित करते जाते हैं। इन्हें क्रमश: 1, 2, 3,... से नामांकित करते हैं। इस प्रकार हमें एक संख्या रेखा प्राप्त होती है जिस पर पूर्ण संख्याओं को दर्शाया जाता है। हम इस संख्या रेखा पर आसानी से संख्याओं का जोड़, व्यवकलन, गुणा और भाग जैसी संक्रियाएँ कर सकते हैं।
- 8. संख्या रेखा पर दाईं ओर चलने पर संगत योग प्राप्त होता है जबिक बाईं ओर चलने पर संगत व्यवकलन प्राप्त होता है। शून्य (0) से प्रारंभ करके समान दूरी के कदम से गुणा प्राप्त होता है।
- 9. दो पूर्ण संख्याओं का योग हमेशा एक पूर्ण संख्या ही होता है। इसी प्रकार, दो पूर्ण संख्याओं का गुणनफल हमेशा एक पूर्ण संख्या होता है। हम कहते हैं कि पूर्ण संख्याएँ योग और

पूर्ण संख्याएँ

गुणनफल के अंतर्गत संवृत (Closed) हैं। जबिक, पूर्ण संख्याएँ व्यवकलन (घटाना) और भाग (विभाजन) के अंतर्गत संवृत नहीं हैं।

- 10. शून्य से भाग (विभाजन) परिभाषित नहीं है।
- 11. शून्य को पूर्ण संख्याओं के योग के लिए तत्समक अवयव (identity element) या (तत्समक) कहते हैं। पूर्ण संख्या 1 को पूर्ण संख्याओं के गुणन के लिए तत्समक कहते हैं।
- 12. आप दो पूर्ण संख्याओं को किसी भी क्रम में जोड़ सकते हैं। आप दो पूर्ण संख्याओं को किसी भी क्रम में गुणा (गुणन) कर सकते हैं। हम कहते हैं कि पूर्ण संख्याओं के लिए योग और गुणन क्रमविनिमेय (commutative) हैं।
- 13. पूर्ण संख्याओं के लिए योग और गुणन साहचर्य (Associative) हैं।
- 14. पूर्ण संख्याओं के लिए योग पर गुणन का वितरण (या बंटन) होता है।
- 15. पूर्ण संख्याओं के क्रमविनिमेय, साहचर्य और वितरण गुण परिकलन को आसान बनाने में उपयोगी हैं और हम अनजाने में इनका प्रयोग करते हैं।
- 16. संख्याओं के प्रतिरूप न केवल रोचक होते हैं, बल्कि मौखिक कलन में मुख्यत: उपयोगी होते हैं और संख्याओं के गुणों को भली भाँति समझने में सहायता देते हैं।