Analisis de viga isostática

Análisis Numérico para Ingeniería 2do Cuatrimestre 2020

Integrantes:

- Cazorla Martínez, Nicolás
- Coria, Emilia
- Correa Guzmán, Esteban Martín
- D'Amico, Stefanía

Profesor a cargo: Álvarez, Francisco José

INTRODUCCIÓN AL PROBLEMA

Dada una viga isostáticamente determinada se calculará a través de métodos numéricos la deformación que esta sufre al someterla a un conjunto de fuerzas.

Se entiende por viga isostática al sistema que puede resolverse utilizando únicamente las ecuaciones del equilibrio de la estática que se basan en las leyes de Newton y en la condición de equilibrio.

CASO A ANALIZAR: Viga empotrada o con apoyo triple

Dicho sistema posee únicamente tres grados de libertad y se resuelve mediante las siguientes ecuaciones:

$$\Sigma$$
 Fextx=0

$$\Sigma$$
 Mextz=0

PLANTEO NUMÉRICO DEL PROBLEMA

Variables a tener en cuenta para la resolución:

- 1. Largo de la viga (10 metros).
- 2. Apreciación del peso de la viga (despreciable).
- 3. Medidas de la sección transversal de la viga (viga cuadrada de 0.1 metro de lado).
- 4. Fuerzas puntuales aplicadas (cantidad, posición, ángulo y módulo).
- 5. Módulo de Young del material (210 MPa).

PLANTEO NUMÉRICO DEL PROBLEMA

Vector de variables v(i):

X	у	y'		
v(1)	v(2)	v(3)		

Vector de derivadas vp(i):

1	y'	y"			
vp(1)	vp(2)	vp(3)			

Condiciones de borde: v(1)=v(2)=v(3)=0

$$vp(2)=((Mz)/(E*Izz))*(1+(v(2))**2)**3/2$$

Euler Simple

Basado en los primeros dos términos de la serie de Taylor: $y(x_0+h)=y(x_0)+y'(x_0).h+(y''(\xi).h^2)/2!$

- Sencillo.
- \bullet Error local O(h²).
- Error global aumenta a medida que nos alejamos del valor inicial.
- Puede corregirse utilizando h pequeño.

Euler Modificado

Basado en los primeros tres términos de la serie de Taylor:

$$y_{n+1} = y_n + h.y'_n + (h^2.y''_n) / 2! + (h^3.y'''(\xi))/3!$$

 $y_{n+1} = y_n + h.(y'_{n+1} + y'_n)/2 + O(h^3)$

- Mejora con respecto a Euler simple, realiza promedio de dos derivadas.
- \bullet Error local O(h³).
- La derivada de extremo derecho se calcula en función de y_{n+1.}

Runge-Kutta de Cuarto orden

Expresión general:

$$k_1 = h.f(x_n, y_n)$$

$$k_2 = h.f(x_n + h/2, y_n + k_1/2)$$

$$k_3 = h.f(x_n + h/2, y_n + k_2/2)$$

$$k_4 = h.f(x_n + h, y_n + k_3)$$

$$y_{n+1} = y_n + \frac{1}{2}(k_1 + 2k_2 + 2k_3 + k_4)$$

- \bullet Error local del orden (h⁵).
- ❖ Error global de orden (h⁴).

Runge-Kutta Fehlberg

Expresión general:

```
\begin{aligned} k_1 &= h.f(x_n, y_n) \\ k_2 &= h.f(x_n + h/4, y_n + k_1/4) \\ k_3 &= h.f(x_n + 3h/8, y_n + 3k_1/32 + 9k_2/32)) \\ k_4 &= h.f(x_n + 12h/13, y_n + 1932k_1/2197 - 7200k_2/2197 + 7296k_3/2197))) \\ k_5 &= h.f(x_n + h, y_n + 439k_1/216 - 8k_2 + 3680k_3/513 - 845k_4/4104))) \\ k_6 &= h.f(x_n + h/2, y_n - 8k_1/27 + 2k_2 - 3544k_3/2565 - 1859k_4/4104 - 11k_5/40))) \\ y_{n+1} &= y_n + 25k_1/216 + 1408k_3/2565 + 2197k_4/4104 - k_5/5 \\ E &= k_1/360 - 128k_3/4275 - 2197k_4/75240 + k_5/50 + 2k_6/55 \end{aligned}
```

- Incorpora fórmula para estimar el error en cada paso.
- Realiza seis evaluaciones funcionales por iteración.

Análisis de resultados: Reacciones de vínculo

Fx=2.18E-6 N

Fy=9.999 N

Mz=129.99 Nm

Resultados obtenidos numéricamente

STRIAN - Structural Analyser

Análisis de resultados: Euler Simple

Elástica de la viga con h=0.5

Elástica de la viga con h=0.1

Elástica de la viga con h=0.01

Análisis de resultados: Euler Modificado

Elástica de la viga con h = 0.5

Elástica de la viga con h = 0.1

Elástica de la viga con h = 0.01

Análisis de resultados: Runge-Kutta-4

Elástica de la viga con h = 0.5

Elástica de la viga con h = 0.1

Elástica de la viga con h = 0.01

Análisis de resultados: Runge-Kutta-Fehlberg

Elástica de la viga con h = 0.5

Elástica de la viga con h = 0.1

Elástica de la viga con h = 0.01

Comparación de resultados con h=0.5

Euler Simple Euler Modificado		RK4		RKF			
X	Y	X	Y	X	Y	X	Y
9.000000 9.500000 10.00000	-2.527421 -2.801150 -3.080171	9.000000 9.500000 10.00000	-2.629820 -2.898708 -3.170223		-2.626976 -2.895386 -3.166414	9.000000 9.500000 10.00000	-2.626976 -2.895386 -3.166414

Comparación de resultados con h=0.1

Euler Simple Eu		Euler Modifi	cado	RK4		RKF		
X	Y	X	Y	X	Y	X	Y	
9.800000	-2.986364 -3.040941 -3.095582	9.700000 9.800000 9.900000	-3.058002	9.700000 9.800000 9.900000	-3.003629 -3.057856 -3.112125	9.700000 9.800000 9.900000	-3.003629 -3.057856 -3.112125	

Comparación de resultados con h=0.01

Euler Simple Euler Modificado		RK4		RKF			
X	Y	X	Y	X	Y	X	Y
9.980000 9.990000 10.00000	-3.153957 -3.159391 -3.164824	9.980000 9.990000 10.000000	-3.155557 -3.160986 -3.166416		-3.155555 -3.160985 -3.166414	9.980000 9.990000 10.00000	-3.155555 -3.160985 -3.166414

Tabla comparativa de error

Tomando como referencia al valor obtenido por RK6 con h=0.01

	Euler Simple			Euler Modificado			RK4			RKF		
h	0.5	0.1	0.01	0.5	0.1	0.01	0.5	0.1	0.01	0.5	0.1	0.01
% error	2.72	2.23	5.02E-2	0.12	1.70	6.31E-6	0	1.71	0	0	1.71	0

Conclusión

- Todos los métodos dan un error relativamente pequeño
- RK6 y RK4 dan los mismos resultados, pero con mayor esfuerzo computacional
- ❖ El error obtenido en Euler Simple con h=0.01 es pequeño, y para las medidas de la viga el error en el desplazamiento es aceptable (<0.002m), por lo cual es una buena opción</p>