Семинар 1 (Темы: Конус)

def 1.1. Сдвигом комплекса K[n] назовём комплекс с членами K[n]ⁱ = Kⁿ⁺ⁱ и дифференциалами d[n]ⁱ = $(-1)^n d^{i+n}$ **def 1.2.** Конусом C[f][•] морфизма комплексов f[•] : K[•] \rightarrow L[•] называется комплекс с объектами C[f]ⁱ = Kⁱ⁺¹ \oplus Lⁱ и дифференциалами dⁱ = $\begin{pmatrix} -d_K^{i+1} & 0 \\ f & d_K^i \end{pmatrix}$.

Простая выкладка (индексы опущены для простоты) показывает корректность определения:

$$d^{2} = \begin{pmatrix} -d & 0 \\ f & d \end{pmatrix}^{2} = \begin{pmatrix} d^{2} & 0 \\ -fd + df & d^{2} \end{pmatrix} = 0$$

Prop 1.3. Для морфизма комплексов $f: K \to L$ следующая последовательность точна.

$$0 \longrightarrow L \xrightarrow{i} C(f) \xrightarrow{\pi} K[1] \longrightarrow 0$$
 (1)

Доказательство. Приведённая последовательность расщепима в каждом члене.

Thr 1.4. f - квазиизоморфизм тогда и только тогда, когда C(f) - ацикличен.

Доказательство. Применим лемму о зигзаге ?? к последовательности (1).

Дадим ещё несколько определений.

def 1.5. K• – расщепимый комплекс, если

$$\exists s^i \colon K^i \to K^{i-1} : dsd = d$$

def 1.6. K^{\bullet} – стягиваемый, если $id_{K^{\bullet}} \sim 0$

Ех 1.7 (простейший стягиваемый комплекс).

$$\ldots \to 0 \to M \stackrel{id}{\to} M \to 0 \to \ldots$$
 (2)

Ех 1.8 (простейший расщепимый комплекс).

$$\dots \to 0 \to M \to 0 \to \dots$$
 (3)

№ он не стягиваемый

Prop 1.9. $(K^{\bullet} - cmягиваемый) \Rightarrow (K^{\bullet} - pacщепимый)$

Ргор 1.10. Любой стягиваемый комплекс является суммой сдвигов комплексов вида 1.7.

Prop 1.11. K^{\bullet} – стягиваемый \Leftrightarrow K^{\bullet} – расщепимый и ацикличный.

Prop 1.12. K^{\bullet} – ограниченный расщепимый комплекс \Rightarrow $K^{\bullet} \overset{qis}{\sim} H^{\bullet}(K^{\bullet})$. Иными словами любой расщепимый комплекс представляется в виде суммы комплексов вида 2 и 3.

def 1.13. Морфизм комплексов $f: K^{\bullet} \to L^{\bullet}$ называется гомотопической эквивалентностью, если $\exists f: L^{\bullet} \to K^{\bullet}$ такой что $fg \sim id_{K^{\bullet}}$ и $gf \sim id_{L^{\bullet}}$

Prop 1.14. f - гомотопическая эквивалентность \Leftrightarrow C(f) - стаягиваем.

¹ Воспользуемся введённым ранее понятием комплекса морфизмов ??.²

$$\begin{split} \underline{Hom}(\mathsf{K}^{\bullet},\mathsf{L}^{\bullet})^{\mathfrak{i}} &= \prod_{n \in \mathbb{Z}} Hom(\mathsf{K}^{n},\mathsf{L}^{n+\mathfrak{i}}) \\ \partial \colon & \quad \mathfrak{g}^{\mathfrak{m}} = df^{\mathfrak{m}} - (-1)^{\mathfrak{i}} f^{\mathfrak{m}+1} d \\ & \quad f \in \underline{Hom}(\mathsf{K}^{\bullet},\mathsf{L}^{\bullet})^{\mathfrak{i}} \\ & \quad \partial \colon f \mapsto \mathfrak{q} \end{split}$$

Com 1.15 (Циклы комплекса морфизмов). 3 В случае $\mathfrak{i}=0$ циклами морфизма комплексов будут просто морфизмы комплексов

$$Z^{0}(\underline{\text{Hom}}(K^{\bullet}, L^{\bullet})) = \text{Hom}(K^{\bullet}, L^{\bullet})$$
$$df^{n} = f^{n+1}d$$

 $A \ \partial x \ i > 0 \ это \ будут \ морфизмы \ в \ сдвинутые комплексы, то есть$

$$Z^{i}(\underline{\text{Hom}}(K^{\bullet}, L^{\bullet})) = \text{Hom}(K^{\bullet}, L^{\bullet}[i])$$

Com 1.16 (Границы комплекса морфизмов). В случае i=0 выражение для дифференциала принимает вид \mathfrak{d} : $f^m\mapsto g^m=df^m-f^{m+1}d$. Образом такого отображения будет гомотопный нулю морфизм. При i>0 получим гомотопные нулю морфизмы в сдвинутый комплекс.

$$B^{i}(Hom(K^{\bullet}, L^{\bullet})) = \{f \in Hom(K^{\bullet}, L^{\bullet}[i]) \mid f \sim 0\}$$

Com 1.17 (Когомологии комплекса морфизмов). *Наконец, когомологиями комплекса морфизмов будут гомото*пический классы эквивалентности морфизмов комплексов.

$$H^{i}(\underline{Hom}(K^{\bullet}, L^{\bullet})) = \underline{Hom}_{\mathfrak{K}(\mathcal{A})}(K^{\bullet}, L^{\bullet}[i])$$

Теперь можем доказывать утверждение 1.14.

Доказательство. Применим функтор Hom(X,) к короткой точной последовательности

$$0\,\longrightarrow\, L\,\longrightarrow\, C(f)\,\longrightarrow\, K[1]\,\longrightarrow\, 0$$

$$0 \, \longrightarrow \, \underline{\text{Hom}}(X,L) \, \longrightarrow \, \underline{\text{Hom}}(X,C(f)) \, \longrightarrow \, \underline{\text{Hom}}(K[1]) \, \longrightarrow \, 0$$

Имея теперь короткую точную последовательность комплексов, естественно применить лемму о зигзаге ??. Получим длинную точную последовательность когомологий комплексов морфизмов, которые в силу 1.17 являются просто гомотопическими классами эквивалентности морфизмов в сдвинутый комплекс, то есть

$$\operatorname{Hom}_{{\mathfrak K}({\mathcal A})}(X,C(f)[-1]) \, \longrightarrow \, \operatorname{Hom}_{{\mathfrak K}({\mathcal A})}(X,K) \, \stackrel{\cong}{\longrightarrow} \, \operatorname{Hom}_{{\mathfrak K}({\mathcal A})}(X,L) \, \longrightarrow \, \operatorname{Hom}_{{\mathfrak K}({\mathcal A})}(X,C(f)) \, \longrightarrow \, \dots$$

Lem 1.18. Короткой точной последовательности комплексов соответсвует длинная точная последовательность морфизмов в гомотопической категории

$$0 \to \mathsf{K}^{\bullet} \to \mathsf{L}^{\bullet} \to \mathsf{M}^{\bullet} \to 0$$

$$\ldots \to \operatorname{Hom}_{{\mathfrak K}({\mathcal A})}(X, K^{\bullet}) \to \operatorname{Hom}_{{\mathfrak K}({\mathcal A})}(X, L^{\bullet}) \to \operatorname{Hom}_{{\mathfrak K}({\mathcal A})}(X, M^{\bullet}) \to \operatorname{Hom}_{{\mathfrak K}({\mathcal A})}(X, M^{\bullet}[1]) \ldots$$

Ргор 1.19 (Тактическая цель). Проективная резольвента – строгий функтор

$$\mathcal{P} \colon \mathcal{A} \to \mathcal{K}(\mathcal{A})$$
$$A \mapsto \mathsf{P}_{\bullet}(A)$$

¹существует более прямое доказательство этого утверждения, получаемое перемножением соответсвующих матриц морфизмов, см.

 $^{^2}$ Это конструкция представляет собой 'внутренний' $\underline{\text{Hom}}$. Обычный функтор $\underline{\text{Hom}}_{\mathcal{A}}$ действует из \mathcal{A} в кататегорию абелевых групп, а $\underline{\text{Hom}}$ из категории комплексов в категорию комплексов

 $^{^3}$ і-ые циклы комплекса морфизмов это морфизмы комплексов первого комплекса в сдвиг на $^{\mathrm{i}}$ второго

Lem 1.20. Пусть P_{\bullet} – проективная резольвента M, K_{\bullet} – какая-то резольвента N, также пусть есть морфизм $f \colon M \to N$. Тогда $\exists g_{\bullet} \colon P_{\bullet} \to K_{\bullet}$, такой, что $H^0(g_{\bullet}) = f$

Доказательство. Просто построим этот морфизм комплексов. Дополним проективный комплекс до ацикличного. Далее доказательство будем проводить по индукции. В силу проективности можем поднять f_{ϵ} вдоль эпиморфизма из крайнего члена резольвенты K_{\bullet} до морфизма f_0 . Аналогично далее все морфизмы диагональные морфизмы вида $f_i \circ d_{i-1}^P$ поднимаются вдоль эпиморфизмов вида d_{i-1}^K : $K_{i-1} \twoheadrightarrow d_{i-1}^K K_{i-1}$.

Lem 1.21. Любой морфизм из ограниченного справа комплекса из проективных объектов в ацикличный гомотопен нулю.

Доказательство. Крайний морфизм строится по проективности P_0 поднятием вдоль эпиморфизма на $d_1 = \ker d_1$. Получили базу индукции $f_0 = d_1 h_0 - 0$.

Пусть теперь все гомотопии до i-й построены и $f_{i-1} = h_{i-2}d - dh_{i-1}$ Рассмотри разность образов вертикальной и диагональной стрелок

$$g_i = f_i - h_{i-1}d_{i+1}$$

$$d_ig_i = d(f_i - h_{i-1}d) = f_{i-1}d - dh_{i-1}d = (h_{i-2}d - dh_{i-1})d - dh_{i-1}d = dh_{i-1}d - dh_{i-1}d = 0$$