

みんな大好きメルカトル図法

- 地形の形状はだいたい正しく描画される
- 距離や面積の比率が正しくない
- 基準となる赤道から離れるほど拡大される
- 真球の場合 $\frac{1}{\cos \varphi}$ だけ拡大

地点	緯度	拡大率
赤道直下	0.0	100.0 %
那覇	26.2	111.5 %
東京	35.7	123.1 %
札幌	43.1	137.0 %
ヘルシンキ	60.2	201.2 %

横メルカトル図法

- 子午線を基準線とし横方向のメルカトル図法
- メルカトル図法の特徴である基準線近くであれば 形状はもちろん距離、面積比率はほぼ誤差なし
- 逆を言うと、当然ながら基準線から遠いと誤差大
- 基準となる子午線を多数設定し、地域ごとに別々の 横メルカトル図法を使おうという考えもある
 - 平面直角座標系(測量座標系)やUTM
- ただ、地域ごとに適用させる座標系が異なり面倒

斜軸メルカトル図法

- 弓状の日本列島
- 基準線を斜めに設定したら、いい感じに全国を ひとつの座標系で対応できるのでは
- 平面直角座標系のような精度を求めると狭い範囲に
- ほどほど誤差を許容し、ほどほど広い範囲
- よさそうな軸を探索してみた
 - 基準点 $\lambda_c = 110.0, \varphi_0 = 0.0, \alpha = 31.3^\circ$
 - α は北から時計回りに測った角度

斜軸の探索

許容する拡大率を0.1%とする(概ね±400km) まず地球を真球とみなし、基準線を赤道した通常のメルカトル図法を考える 許容誤差0.1%であるため、中心線における縮尺係数 $k_0=0.9990$ すると 縮尺係数 k = 1.0010 となる緯度は $\varphi = \cos^{-1} \frac{1}{(2-k_0)/k_0}$ となる 許容緯度 φ を満たす帯を作成し、適度な間隔で帯状の点を地心直交座標系 (XYZ座標系)に変換 三次元座標に対し、オイラーの回転行列で X 軸で θ だけ回転し、 Z' 軸で λ_c だけ回転させると $(0, \lambda_c)$ を中心線と赤道の交点とし、 傾斜角 θ の帯が得られる 得られた回転後の XYZ 座標系から真球の緯度経度に再変換する この緯度を楕円体の更成緯度とみなし、地理緯度に変換し、楕円体に対応 地理緯度と経度で得られた帯ポリゴンを GeoCSV で出力(ここまで Ruby) ogr2ogr で GeoCSV から GeoPackage に変換 Rでパラメータを変えた多数の帯ポリゴンと日本ポリゴンの共通部分の面積を 計算し、より妥当なパラメータを探索

探索した斜軸 (EPSG:3857)

背景地図:Natural Earth

探索した斜軸 (proj=omerc)

今回の CRS 定義

- QGIS の場合は設定から「カスタム投影法」で 定義可能
- +proj=omerc +datum=WGS84 +lonc=110 +lat_0=0 +alpha=31.3
 +k_0=0.9990

誤差の評価

|1-k| < 0.001 だと距離で0.1%、面積で0.2%程度

地名	距離比率	面積比率
稚内	99.999 %	99.998 %
佐渡	99.879 %	99.758 %
東京	99.975 %	99.949 %
銚子	100.030 %	100.060 %
八丈島	100.160 %	100.319 %
父島	101.383 %	102.785 %
大阪	99.889 %	99.779 %
福岡	99.958 %	99.916 %
対馬	100.049 %	100.098 %
那覇	99.896 %	99.793 %

メリットとデメリット

- 基本的にはデータ CRS は何でもよい
 - 緯度経度でもメルカトルでも位置を特定できれば内部で 描画 CRS に変換されるし、他データと重ね合わせ可能
 - 面積などは \$area, \$length, \$perimeter で計算可能
- ただいくつかの処理はデータ座標系でパラメータを 指定する必要がある(バッファ作成など)
- 縮尺誤差が許容できるのであれば、あり……?
- ソフトにより独自 CRS を利用できない可能性もある
- 座標的な「上」が北とは限らない
 - もっとも横メルカトルも異なる