EE5801: CSP Lab/EE5301: DSP Lab EE3701: Communication Systems Lab (Aug – Nov 2022)

Lecture 4

Today's Topics

- Review of decimation and interpolation
- Cascading decimator and interpolator
- Time and Frequency domain plots from matlab simulation
- Generalizing decimation and interpolation to any factor M or L

Review of decimation and interpolation

Decimation

Interpolation

Review of decimation and interpolation (contd..)

Note : For downsampling with factor 2, $\left|X_d(e^{j\omega})\right| = \frac{1}{2}\left|X_f(e^{j\omega})\right|$ For downsampling with factor M, $\left|X_d(e^{j\omega})\right| = \frac{1}{M}\left|X_f(e^{j\omega})\right|$

Cascading of decimator and interpolator

$$T_2 = \frac{T_1}{L} = \frac{MT}{L}$$

$$|Y(e^{j\omega})| = |X_u(e^{j\omega})| = \frac{L}{M}|X(e^{j\omega})|$$

$$T_2 = \frac{T_1}{L} = \frac{MT}{L}$$

$$T_2 = \frac{T_1}{L} = \frac{MT}{L}$$

$$|Y(e^{j\omega})| = |X_u(e^{j\omega})| = \frac{L}{M}|X(e^{j\omega})|$$

$$|X_u(e^{j\omega})| = |X_d(e^{j\omega})| = \frac{1}{M}|X(e^{j\omega})|$$

Example-1:

$$x[n] = 1 * \sin(2\pi f n/f_s)$$

Signal parameters:

•
$$f = 100Hz$$
, $\omega = \frac{2\pi f}{f_s} = \frac{\pi}{6}$

• Sampling frequency $f_S = 1200 \ Hz$

LPF has cutoff freq $f_c = 300~Hz$, $\omega_{cutoff} = \frac{\pi}{2} = \frac{3\pi}{6}$

Example-2:

$$x[n] = 1 * \sin(2\pi f_0 n/f_s) + 0.5 * \sin(2\pi f_1 n/f_s) + 0.3 * \sin(2\pi f_2 n/f_s)$$

Signal parameters:

- $f_0 = 100Hz$, $f_1 = 500Hz$, $f_2 = 400Hz$
- $\omega_0 = \frac{\pi}{6}$, $\omega_1 = \frac{5\pi}{6}$, $\omega_2 = \frac{4\pi}{6}$, $\omega_{cutoff} = \frac{3\pi}{6}$
- Sampling frequency $f_S = 1200 \ Hz$

Observation

- If input signal to decimator has **BW less than** $\frac{2\pi}{M}$ then, interpolator can reconstruct the input signal completely.
- If input signal to decimator has **BW more than** $\frac{2\pi}{M}$ then, only the information with in the BW limit can be reconstructed with the interpolator. i.e. the interpolator can reconstruct the signal which is input to downsampler.

Generalizing decimation and interpolation to any factor M or L

- **Note:** 1. We will generalize here for M = L
 - 2. Sampling frequency of x[n] and h[n] should be same.

Generalizing decimation and interpolation to any factor M or L

• Ex-1: Let decimation and interpolation factors are M = L = 3, what are the filter gain and cutoff frequency of anti-aliasing filter and anti-imaging filter?

Ans: For anti-aliasing filter, gain = 1, cutoff frequency $\omega_c = \pi/3$. For anti-imaging filter, gain = 3, cutoff frequency $\omega_c = \pi/3$.

• Ex-2: Let decimation and interpolation factors are M = L = 4, what are the filter gain and cutoff frequency of anti-aliasing filter and anti-imaging filter?

Ans: For anti-aliasing filter, gain = 1, cutoff frequency $\omega_c = \pi/4$. For anti-imaging filter, gain = 4, cutoff frequency $\omega_c = \pi/4$.

Reference

Discrete Time Signal Processing by Alan V. Oppenheim and Ronald W.
 Schafer - <u>link</u>