

CS 247 – Scientific Visualization Lecture 8: Scalar Field Visualization, Pt. 1

Markus Hadwiger, KAUST

Reading Assignment #4 (until Feb 26)

Read (required):

- Real-Time Volume Graphics book, Chapter 5 until 5.4 inclusive (*Terminology, Types of Light Sources, Gradient-Based Illumination, Local Illumination Models*)
- Paper:
 Marching Cubes: A high resolution 3D surface construction algorithm,
 Bill Lorensen and Harvey Cline, ACM SIGGRAPH 1987
 [> 18,600 citations and counting...]

https://dl.acm.org/doi/10.1145/37402.37422

Read (optional):

 Paper: Flying Edges, William Schroeder et al., IEEE LDAV 2015

https://ieeexplore.ieee.org/document/7348069

Quiz #1: Feb 26

Organization

- First 30 min of lecture
- No material (book, notes, ...) allowed

Content of questions

- Lectures (both actual lectures and slides)
- Reading assignments (except optional ones)
- Programming assignments (algorithms, methods)
- Solve short practical examples

Scalar Fields

Programming Assignments Schedule (tentative)

Assignment 0:	Lab sign-up: join discord, setup github account + get repo Basic OpenGL example	until	Feb 5
Assignment 1:	Volume slice viewer	until	Feb 18
Assignment 2:	Iso-contours (marching squares)	until	Mar 2
Assignment 3:	Iso-surface rendering (marching cubes)	until	Mar 23
Assignment 4:	Volume ray-casting, part 1	until	Apr 13
	Volume ray-casting, part 2	until	Apr 20
Assignment 5:	Flow vis, part 1 (hedgehog plots, streamlines, pathlines)	until	May 4
Assignment 6:	Flow vis, part 2 (LIC with color coding)	until	May 14

Programming Assignment 2

Programming Assignment 2 + 3

Programming Assignment 2 + 3

Programming Assignment 3

Scalar Fields are Functions

- •1D scalar field: $\Omega \subseteq R \to R$
- •2D scalar field: $\Omega \subseteq \mathbb{R}^2 \to \mathbb{R}$
- •3D scalar field: $\Omega \subseteq \mathbb{R}^3 \to \mathbb{R}$
 - → volume visualization!

more generally: $\Omega \subseteq$ n-manifold

Basic Visualization Strategies

Mapping to geometry

- Function plots
- Height fields
- Isocontours/isolines, isosurfaces

Color mapping

Specific techniques for 3D data

- Indirect volume visualization
- Direct volume visualization
- Slicing

Visualization methods depend heavily on dimensionality of domain

Function Plots and Height Fields (1)

Function plot for a 1D scalar field

$$\{(x, f(x))|x \in \mathbb{R}\}$$

- Points
- 1D manifold: line

Function Plots and Height Fields (1)

Function plot for a 1D scalar field

$$\{(s, f(s)) | s \in \mathbb{R}\}$$

- Points
- 1D manifold: line

Function Plots and Height Fields (2)

Function plot for a 2D scalar field

$$\{(x, f(x))|x \in \mathbb{R}^2\}$$

- Points
- 2D manifold: surface

Surface representations

- Wireframe
- Hidden lines
- Shaded surface

Function Plots and Height Fields (2)

Function plot for a 2D scalar field

$$\{(s,t,f(s,t)) | (s,t) \in \mathbb{R}^2\}$$

- Points
- 2D manifold: surface

Surface representations

- Wireframe
- Hidden lines
- Shaded surface

Color Mapping / Color Coding

Map scalar value to color

- Color table (e.g., array with RGB entries)
- Procedural computation; manual specification

With opacity (alpha value "A"): 1D transfer function (RGBA table, ...)

Color Mapping / Color Coding

Map scalar value to color

- Color table (e.g., array with RGB entries)
- Procedural computation; manual specification

With opacity (alpha value "A"): 1D transfer function (RGBA table, ...)

Contours

Set of points where the scalar field s has a given value c:

$$S(c) := f^{-1}(c)$$
 $S(c) := \{x \in \mathbb{R}^n : f(x) = c\}$

Common contouring algorithms

- 2D: marching squares, marching triangles
- 3D: marching cubes, marching tetrahedra

Implicit methods

- Point-on-contour test
- Isosurface ray-casting

Contours

Set of points where the scalar field s has a given value c:

$$S(c) := f^{-1}(c)$$
 $S(c) := \{x \in \mathbb{R}^2 : f(x) = c\}$

Common contouring algorithms

- 2D: marching squares, marching triangles
- 3D: marching cubes, marching tetrahedra

bilinear interpolation

Implicit methods

- Point-on-contour test
- Isosurface ray-casting

Contours

Set of points where the scalar field s has a given value c:

$$S(c) := f^{-1}(c)$$
 $S(c) := \{x \in \mathbb{R}^3 : f(x) = c\}$

Common contouring algorithms

- 2D: marching squares, marching triangles
- 3D: marching cubes, marching tetrahedra

Implicit methods

- Point-on-contour test
- Isosurface ray-casting

What are contours?

Set of points where the scalar field s has a given value c:

$$S(c) := \{ x \in \mathbb{R}^n \colon f(x) = c \}$$

Examples in 2D:

- height contours on maps
- isobars on weather maps

Contouring algorithm:

- find intersection with grid edges
- · connect points in each cell

Example

contour levels

--- 4? --- 6-ε --- 8-ε --- 8+ε

2 types of degeneracies:

- isolated points (*c*=6)
- flat regions (*c*=8)

Basic contouring algorithms:

- cell-by-cell algorithms: simple structure, but generate disconnected segments, require post-processing
- contour propagation methods: more complicated, but generate connected contours

"Marching squares" algorithm (systematic cell-by-cell):

- process nodes in ccw order, denoted here as x_0, x_1, x_2, x_3
- compute at each node \mathbf{X}_i the reduced field $\tilde{f}(x_i) = f(x_i) (c \varepsilon)$ (which is forced to be nonzero)
- take its sign as the ith bit of a 4-bit integer
- use this as an index for lookup table containing the connectivity information:

$$\bullet \quad \tilde{f}(x_i) < 0$$

$$\circ \quad \tilde{f}(x_i) > 0$$

Alternating signs exist in cases 6 and 9.

Choose the solid or dashed line?

Both are possible for topological consistency.

This allows to have a fixed table of 16 cases.

$$\bullet \quad f(x_i) < c$$

o
$$f(x_i) \ge c$$

Alternating signs exist in cases 6 and 9.

Choose the solid or dashed line?

Both are possible for topological consistency.

This allows to have a fixed table of 16 cases.

$$\bullet \quad f(x_i) \le c$$

o
$$f(x_i) > c$$

Alternating signs exist in cases 6 and 9.

Choose the solid or dashed line?

Both are possible for topological consistency.

This allows to have a fixed table of 16 cases.

Orientability (1-manifold embedded in 2D)

Orientability of 1-manifold:

Possible to assign consistent left/right orientation

Iso-contours

- Consistent side for scalar values...
 - greater than iso-value (e.g, left side)
 - less than iso-value (e.g., *right* side)
- Use consistent ordering of vertices (e.g., larger vertex index is "tip" of arrow; if (0,1) points "up", "left" is left, ...)

not orientable

Moebius strip (only one side!)

$$\bullet \ \tilde{f}(x_i) < 0$$

•
$$\tilde{f}(x_i) < 0$$

• $\tilde{f}(x_i) > 0$

Orientability (2-manifold embedded in 3D)

Orientability of 2-manifold:

Possible to assign consistent normal vector orientation

not orientable

Moebius strip (only one side!)

Triangle meshes

- Edges
 - Consistent ordering of vertices: CCW (counter-clockwise) or CW (clockwise) (e.g., (3,1,2) on one side of edge, (1,3,4) on the other side)
- Triangles
 - Consistent front side vs. back side
 - Normal vector; or ordering of vertices (CCW/CW)
 - See also: "right-hand rule"

Topological consistency

To avoid degeneracies, use symbolic perturbations:

If level c is found as a node value, set the level to c- ε where ε is a symbolic infinitesimal.

Then:

- contours intersect edges at some (possibly infinitesimal) distance from end points
- flat regions can be visualized by pair of contours at c- ε and c+ ε
- contours are topologically consistent, meaning:

Contours are closed, orientable, nonintersecting lines.

(except where the boundary is hit)

Ambiguities of contours

What is the correct contour of c=4?

Two possibilities, both are orientable:

- connect high values ————
- connect low values

Answer: correctness depends on interior values of f(x).

But: different interpolation schemes are possible.

Better question: What is the correct contour with respect to bilinear interpolation?

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama