STAT 666 J&R Theorem 1

Maggie Buffum May 28, 2019

Theorem 1. Consider the ridge traces $\{\hat{\beta}_R^i(k); k \geq 0\}$, and their variances $\{Var(\hat{\beta}_R^i(k)); k \geq 0\}$, and the derivatives $\{dVar(\hat{\beta}_R^i(k))/dk; k \geq 0\}$, for $1 \leq i \leq p$. Then,

(i) Variances are given by $\{Var(\hat{\beta}_R^i(k)) = \sigma^2 \mathbf{a}_i' \mathbf{D}(\delta_i^2/(\delta_i^2 + k)^2) \mathbf{a}_i; 1 \le i \le p\}$, each monotone decreasing with increasing k.

Consider the ridge regression form $\{(\mathbf{Z}'\mathbf{Z} + k\mathbf{I}_P)\omega = \mathbf{Z}'\mathbf{Y}_0\}$. Written in correlation form (that is, centered and scaled to the unit), the ridge solutions are found by solving $\{(\mathbf{D}_{\delta}^2 + k\mathbf{I}_p)\theta = \mathbf{D}_{\delta}\mathbf{W}\}$, which yields $\hat{\theta}_R(k) = \mathbf{D}(\delta_i(\delta_i^2 + k))\mathbf{W}$ and $\hat{\omega}_R(k) = \mathbf{Q}\hat{\theta}_R(k)$, where $\mathbf{D}(\delta_i(\delta_i^2 + k))$ is a diagonal matrix with $\delta_i(\delta_i^2 + k)$ along the diagonals and $\mathbf{P}\mathbf{D}_{\delta}\mathbf{Q}'$ diagonalizes \mathbf{Z} .

Now we have that $\hat{\beta}_R(k) = \mathbf{A}\hat{\theta}_R(k)$. It's easy to see that

$$Var(\hat{\theta}_R(k)) = \sigma^2 \mathbf{D}(\delta_i^2/(\delta_i^2 + k)^2) \implies Var(\hat{\beta}_R(k)) = \sigma^2 \mathbf{A} \mathbf{D}(\delta_i^2/(\delta_i^2 + k)^2) \mathbf{A}'.$$

The monotonicity of $Var(\hat{\beta}_R^i(k))$ is proven in (ii) by showing that the derivative of $Var(\hat{\beta}_R^i(k))$ is negative with respect to k.

(ii) Rates of change in $\{Var(\hat{\beta}_R^i(k))\}$; $1 \le i \le p$ are given by

$$\{dVar(\hat{\beta}_R^i))/dk = -2\sigma^2 \mathbf{a}_i' \mathbf{D}(\delta_i^2/(\delta_i^2 + k)^3) \mathbf{a}_i < 0; \ 1 \le i \le p\}$$

independently of \mathbf{Y} .

Using the chain rule, it's clear that

$$\begin{aligned} \{dVar(\hat{\beta}_R^i(k))/dk &= (d/dk)\sigma^2\mathbf{a}_i'\mathbf{D}(\delta_i^2/(\delta_i^2+k)^2)\mathbf{a}_i\} \\ &= \{(d/dk)\sigma^2\mathbf{a}_i'\mathbf{D}(\delta_i^2(\delta_i^2+k)^{-2})\mathbf{a}_i\} \\ &= \{-2\sigma^2\mathbf{a}_i'\mathbf{D}(\delta_i^2(\delta_i^2+k)^{-3})\mathbf{a}_i\} \\ &= \{-2\sigma^2\mathbf{a}_i'\mathbf{D}(\delta_i^2/(\delta_i^2+k)^3)\mathbf{a}_i\} \end{aligned}$$

(iii) The negative functions $\{dVar(\hat{\beta}_R^i(k))/dk; \ 1 \leq i \leq p\}$ are monotone increasing as k increases for $k \geq 0$, their values progressing from large to small in magnitude.

Taking the second derivative of $Var(\hat{\beta}_R^i(k))$ with respect to k, we have (similar to [ii]),

$$d^{2}Var(\hat{\beta}_{R}^{i}(k))/dk^{2} = (d^{2}/dk^{2}) - \sigma^{2}\mathbf{a}_{i}'\mathbf{D}(\delta_{i}^{2}/(\delta_{i}^{2}+k)^{3})\mathbf{a}_{i}$$
$$= 6\sigma^{2}\mathbf{a}_{i}'\mathbf{D}(\delta_{i}^{2}/(\delta_{i}^{2}+k)^{4})\mathbf{a}_{i}.$$

Therefore, $\{dVar(\hat{\beta}_R^i(k))/dk\}$ are monotone increasing functions of k.