

# Introduction to Artificial Intelligence - 00 Course Information



#### **Module Lecturer**

- Leo Chen (BSc, MSc, PhD, CEng, FIMechE, FHEA, SMIEEE, MIET)
  Senior Lecturer in Engineering Design
  School of Engineering , Newcastle University , United Kingdom
- Email: leo.chen@newcastle.ac.uk
- https://www.ncl.ac.uk/engineering/staff/profile/leochen.html#background



#### **Research Interests**

- Artificial Intelligence
- Industry 4.0 and Digital Manufacturing
- Robotics and Autonomous Systems
- Data Analytics

#### **Contents**

- General Information
- Timetable
- Module Contents
- Text Book





#### **Module Contents**

- 1. Introduction
- 2. Global Optimisation and Evolutionary Search
- 3. Artificial Neural Networks and Learning Systems
- 4. Fuzzy Logic and Fuzzy Systems
- 5. Some other AI Approaches
- 6. Al-driven Design Automation
- 7. Al in Applications
- 8. Laboratory Handbook

**FAQ** 

Reference

**Appendix** 



#### **Text Book**

ISBN 9781498760669 Published July 23, 2018 by CRC Press 504 Pages 13 Color & 297 B/W Illustrations

For more information visit: www.crcpress.com/9781498760669

# Computational Intelligence Assisted Design

In Industrial Revolution 4.0

#### Yi Chen and Yun Li

Design evaluation



**Design evolution** 





#### **Source Codes of Text Book**

 Yi Chen, Yun Li, (2018), Computational Intelligence Assisted Design (In the Era of Industry 4.0), CRC Press (ISBN 978-1-4987-6066-9)
 https://www.taylorfrancis.com/books/9781498760676

#### 1) IEEE Code Ocean

https://codeocean.com/2018/09/11/computational-intelligence-assisted-design-lpar-ciad-rpar-in-the-era-of-industry-4-0-book-matlab-codes-colon-test-functions/code

#### 2) Mathworks File Exchange

https://ww2.mathworks.cn/matlabcentral/fileexchange/68483-ciad-book-testfunctions

# **FAQ**

- 1. Useful Links
- 2. Assessment
- 3. Templates
- 4. Topic Selection
- 5. Submission
- 6. How to Access This File
- 7. MATLAB Learning Resources
- 8. Acronyms



# **FAQ**

- 9. Reading List
- 10. Al Documentaries
- 11. Case Studies
- 12. HPC Resource
- 13. Al tools
- 14. Al Strategies
- 15. DeepLearning Framework
- 16. Events



# **FAQ**

# 17. Datasets

# **FAQ 1-Useful Links**

#### [1] Ethics guidelines for trustworthy Al

https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

## [2] Related Journals

- IEEE Transactions on Evolutionary Computation
- IEEE Transactions on Emerging Topics in Computational Intelligence
- IEEE Transactions on Neural Networks and Learning Systems
- Applied Soft Computing



#### **FAQ 2-Assessment**

# (1) Report 40%

- 20% C1- **Literature Survey:** Ability to consult literature, summarise information and comprehensively use knowledge
- 20% C2- Technical Content & Quality of Analysis: The design plan is correct, the technical route is reasonable, and the experimental design, calculation, analysis and processing are scientific
- 20% C3- Presentation& Figures: Technical terms are accurate, symbols are unified, diagrams are complete, clean and correct, and citations are standardised
- 20% C4- Writing: Words are fluent, with or without perspective extraction, comprehensive generalisation ability
- 20% C5- **Organisation & Structure:** The overall effect, whether the workload is full, whether the paper length meets the requirements

#### **FAQ 2-Assessment**

# (2) Presentation 60%: Understanding & Achievement

- 20% **Structure**, is the presentation well structured?
- 20% **Delivery**, in a professional manner, Timing < 15mins
- 20% **Teamwork**, support each other and project management
- 20% **Problem solving**, how did the team workout the problem
- 20% Individual performance

NB. The assignment project can be undertaken **in pairs**, but the **report** needs to be written **individually** in English, about 15 pages in total (including references and figures).

# **FAQ 2- Submission File List**

- 1. A technical report (Compulsory);
- 2. A presentation in a video (Compulsory);
- The PowerPoint file go with the video in 2 (Compulsory);
- 4. Other supporting files (e.g. Plagiarism Checking Report, MATLAB/Python Codes, Models, Data, etc.) (**Optional**).

#### **Notes:**

- Your video may be generated from a Powerpoint presentation with audio narration.
- It is recommended that you read the guides on how to do a narrated Powerpoint and how to generate a video from it before you start:
  - 1) Record a slide show with narration https://support.office.com/en-us/article/record-a-slide-show-with-narration-and-slide-timings-0b9502c6-5f6c-40ae-b1e7-e47d8741161c#officeversion=office\_365
  - **2) Turn your presentation into a video** https://support.office.com/en-gb/article/turn-your-presentation-into-a-video-c140551f-cb37-4818-b5d4-3e30815c3e83

# **FAQ 3-Templates**

#### Report template

Link: https://pan.baidu.com/s/1tYjjjcbCv8fb8cipj5Ppew

Code: a4ne

Also available via:

https://github.com/LeoYiChen/i4AI/blob/master/i4AI%20template-technical%20report%2020201001.docx

#### PowerPoint template

Choose your own PowerPoint template in 16:9 aspect ratio.

# **FAQ 4-Topic Selection**

- 1. In the **scope** of the module, select an area interested you most;
- 2. In the selected **area**, choose an AI approach to apply it in a case in your research;
- 3. To finalise a **topic**, which should discuss how to utilise the AI approach or algorithm to design, analyse, optimise and solve your case;
- 4. Avoid Plagiarism (e.g. checking via Turnitin, <25%)

# **Examples:**

 Spatio-Temporal Evolutionary Analysis of the Township Enterprises of Beijing Suburbs using Computational Intelligence Assisted Design Framework

https://www.nature.com/articles/s41599-018-0081-0

 Pareto-Optimality Solution Recommendation Using Multi-objective Artificial Wolf-pack Algorithm

https://ieeexplore.ieee.org/document/7916207/authors#authors

- Cross-Scale Analysis of Nickel Superalloy Fatigue using Markov State Model-Molecular Dynamics Method
- How Can Artificial Intelligence Help with Space Missions A Case Study:
  Computational Intelligence Assisted Design of Space Tether for Payload Orbital
  Transfer under Uncertainties

# **FAQ 5- Submission**

(1) Deadline: Week 14, Friday, 11/Dec/2020 @17:00

(2) Submit All in a Zip file to: leo.chen@newcastle.ac.uk

if > 50M, submit via online storage.



# **FAQ 6-How to Access This File**

Link: https://pan.baidu.com/s/1uz7sZx5DxL4vuQKu3BVZcA

Code: 3hof

# **FAQ 7-MATLAB Learning Resources**

http://www.mathworks.co.uk/academia/classroom-resources

## FAQ 8 - Acronym

- MPP MATLAB Parallel Programming
- MPI Message Passing Interface
- FMI Functional Mockup Interface
- PP Parallel Programming
- CIAD Computational Intelligence Aided Design
- CI Computational Intelligence
- AI Artificial Intelligence
- **i4** Industry 4.0
- STEM Science, Technology, Engineering and Mathematics

# **FAQ 8 - Machine Learning Glossary**

#### EN:

https://developers.google.cn/machine-learning/glossary

Home > Products > Machine Learning > Glossary



# Machine Learning Glossary

This glossary defines general machine learning terms, plus terms specific to TensorFlow.



**Note:** Unfortunately, as of April 2019 we no longer update non-English versions of Machine Learning Crash Course. Please see the English version (the version you are currently reading) for the most up-to-date content.



**Did You Know?** 

You can filter the glossary by choosing a topic from the Glossary dropdown in the top navigation bar.

# 9.1 Reading List – Evolutionary Computation

- [1] Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Boston, MA, USA
- [2] Holland, J.J. 1992. Genetic algorithm. Scientific American Magazine, pp. 44–5
- [3] Michalewicz, Z. 1996. Genetic Algorithm + Data Structures = Evolution Programs (3rd ed.). Springer-Verlag, New York, USA
- [4] Mitsuo Gen, Runwei Cheng, Genetic Algorithms and Engineering Optimization, Wiley Series in Engineering Design and Automation, 2000, John Wiley & Sons

# 9.2 Reading List – Artificial Neural Network

- [1] 邱锡鹏,神经网络与深度学习(Neural Networks and Deep Learning), https://nndl.github.io/
- [2] Michael Nielsen, Neural Networks and Deep Learning, http://neuralnetworksanddeeplearning.com/
- [3] Machine Learning with MATLAB (PDF version), <a href="https://www.mathworks.com/content/dam/mathworks/ebook/gated/machine-learning-ebook.pdf">https://www.mathworks.com/content/dam/mathworks/ebook/gated/machine-learning-ebook.pdf</a>
- [4] Statistical learning methods, 统计学习方法(第2版)[李航] [笔记, 代码, notebook, 参考文献, Errata, lihang], <a href="https://github.com/SmirkCao/Lihang">https://github.com/SmirkCao/Lihang</a>
- [5] Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong, Mathematics for Machine Learning, <a href="https://mml-book.github.io/">https://mml-book.github.io/</a>
- [6] 周志华, 机器学习, 清华大学出版社

# 9.2 Reading List – Artificial Neural Network

- [7] **动手学深度学习,** 2020 年 05月08日, <u>https://zh.d2l.ai</u>
- [8] Deep Reinforcement Learning, CS 285 at UC Berkeley,
- http://rail.eecs.berkeley.edu/deeprlcourse/
- [9] 吴恩达, deeplearning.ai
- [10] 李宏毅, 一天搞懂深度学习
- [11] 深度学习框架的来龙去脉
- https://zhuanlan.zhihu.com/p/59086302
- [12] PyTorch vs Tensorflow for Your Python Deep Learning Project
- https://realpython.com/pytorch-vs-tensorflow/
- [13] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
- http://www.deeplearningbook.org/

# 神经网络与深度学习 (邱锡鹏,复旦大学)

- 第1章是绪论,介绍人工智能、机器学习、深度学习的概要,使读者对相关知识进行全面的了解。
- 第 2、3 章介绍了机器学习的基础知识。
- 第4、5、6章分别讲述三种主要的神经网络模型:前馈神经网络、卷积神经网络和循环神经网络。 在第6章中略提了下图网络的内容。
- 第7章介绍神经网络的优化与正则化方法。
- 第8章介绍神经网络中的注意力机制和外部记忆。
- 第9章简要介绍了一些无监督学习方法。
- 第10章中介绍一些和模型独立的机器学习方法:集成学习、协同学习、多任务学习、迁移学习、 终生学习、小样本学习、元学习等。这些都是目前深度学习的难点和热点问题。
- 第 11 章介绍了概率图模型的基本概念,为后面的章节进行铺垫。
- 第 12 章介绍两种早期的深度学习模型:玻尔兹曼机和深度信念网络。
- 第 13 章介绍最近两年发展十分迅速的深度生成模型: 变分自编码器和对抗生成网络。
- ▶ 第 14 章介绍了深度强化学习的知识。
- 第 15 章介绍了应用十分广泛的序列生成模型。

# 9.3 Reading List – Fuzzy Logic

[1] Zadeh, L.A. 2008. Is there a need for fuzzy logic? Information Sciences 178: 2751–2779.

[2] Zadeh, L.A. 1965. Fuzzy Sets. Information and Control 8: 338–353, https://www.sciencedirect.com/science/article/pii/S001999586590241X

#### 9.4 Others

- [1] 清华大学2020年春季的课程-《高级机器学习》
- [2] <u>Data Science Infographic</u> <u>https://github.com/dataprofessor/infographic</u>
- [3] AI-Expert-Roadmap https://github.com/AMAI-GmbH/AI-Expert-Roadmap



#### 10. Al Documentaries

•\00-Course info\FAQ-10 Documentaries

#### 11. Case Studies

- 2020年度最佳的23个的机器学习项目
- Google-Recreating historical Streets

https://ai.googleblog.com/2020/10/recreating-historical-streetscapes.html

Rə工具集:

https://re.city/#14.25/40.74094/-73.98798

- 微软模拟飞行
- Tesla from Autopilot to Full Self-Driving(FSD)
- 飞桨PaddleOCR超轻量中英文识别 <a href="https://github.com/PaddlePaddle/PaddleOCR">https://github.com/PaddlePaddle/PaddleOCR</a>
- PP-YOLO 对铁轨进行缺陷检测

https://github.com/paddlepaddle/paddledetection

#### 11. Case Studies

• Keytap - 通过监听你敲击键盘的声音,就能还原出你输入的内容

https://github.com/ggerganov/kbd-audio

https://ggerganov.github.io/jekyll/update/2018/11/30/keytap-description-and-thoughts.html

# **12. HPC Resource**

■ 12.1 DGUT HPC