

TEAM ID: PNT2022TMID13322

TEAM MEMBERS:

GOWSALYA M (621319104015)

PUVIYASREE M (621319104042)

RUBADHARSHINI A K (621319104046)

SRIVIDYA R (621319104055)

TEAM MENTOR:

Mr. K. ANGURAJU AP/CSE

TEAM EVALUATOR:

Mr. C. RADHAKRISHNAN AP/CSE

INDUSTRY MENTOR:

Mr. P. SANDESH

INDEX

CHAPTER	TITLE	PG NO
1.	INTRODUCTION	4
	1.1 Project Overview	4
	1.2 Purpose	5
	1.3 Motivation	5
	1.4 Project Scope	5
2.	LITERATURE SURVEY	6
	2.1 References	6
	2.2 Problem Statement Definition	10
3.	IDEATION & PROPOSED SOLUTION	11
	3.1 Empathy map canvas	11
	3.2 Ideation & Brainstorming	11
	3.3 Proposed solution	15
	3.4 Problem solution fit	16
4.	REQUIREMENT ANALYSIS	17
	4.1 Functional requirement	17
	4.2 Non-Functional requirement	17
5.	PROJECT DESIGN	19
	5.1 Data FlowDiagram	19
	5.2 Solution &Technical Architecture	19
	5.3 User Stories	21
6.	PROJECT PANNING &SCHEDULING	22
	6.1 Sprint Planning & Estimation	22
	6.2 Spring Delivery Schedule	22
	6.3 Report fromJIRA	23

7.	CODING & SOLUTIONING	24
	7.1 Feature 1	24
	7.2 Feature 2	30
	7.3 Dataset	32
8.	TESTING	33
	8.1Test Cases	33
	8.2 User Acceptance Testing	34
9.	RESULTS	35
	9.1 Performance Metrics	35
10.	ADVANTAGES AND DISADVANTAGES	37
11.	CONCLUSION	38
12.	FUTURE SCOPE	38
13.	APPENDIX	39
	13.1 Source code 13.2 Github &Project Demo Link	

INTRODUCTION

1.1. PROJECT OVERVIEW

In today's world, many students pursue their education outside of their home countries. Generally, because students have little knowledge of the procedures, requirements, and details of the universities, they seek assistance from education consultancy firms to help them successfully secure admission to the universities that are best suited to their profile; however, they must pay a significant amount of money as consultancy fees. Aside from these education consulting firms, there are a few websites and blogs that provide information to students about admission procedures. The disadvantage of the currently available resources is that they are very limited and, in terms of accuracy and reliability, are not truly dependable. The goal of this project is to create a system using machine learning algorithms that we will call University Admission Eligibility Predictor (UAE). It will assist students in determining the likelihood of their university application being accepted. It will also assist them in identifying the universities that are best suited to their profile and providing them with information on those universities. For users to access the university eligibility predictor mechanism, a simple user interface will be created and then we created a web application that allows users to enter their academic information and receive predictions of their chances of admission to the university tier of their choice. It also provides an analysis based on the data set used that shows how the various parameters affect admissions chances. Other than password protection on the website, this project does not address web security issues.

Keywords: University Admission Eligibility Predictor (UAE), Machine Learning, Lin Regression.

1.2. PURPOSE OF THE PROJECT

This is a Requirements Specification Document for a new web-based University Admissions Predictor. This project would be AI-based application that asks for the users to input their academic transcripts data and calculates their chances of admission into the University Tier that they selected. It also provides an analysis of the data and shows how chances of admissions can depend on various factors. This document describes the scope, objectives and goals of the system. In addition to describing the non-functional requirements, this document models the functional requirements with use cases, interaction diagrams and class models. This document is intended to direct the design and implementation of the target system in an object-oriented language.

1.3. MOTIVATION

In the current world scenario, it is not enough for a student to just have an Under Graduate degree. Most employers now look for higher qualifications in their new recruits. As a result, the demands for a good higher education are at time high. A lot of students from India prefer to continue their higher education with foreign universities, especially in the United States. In order to get admitted to these foreign universities, a set of academic requirements are needed. However, because of the sheer number of universities of different levels, students are often stuck in a dilemma till the very last minute as to whether or not their applications will be accepted or not as no concrete documentation is available which lists the requirements.

1.4. PROJECT SCOPE

The scope of this project is a web application that allows users to enter their academic data and get predictions of their chances of admission in the university tier of their choosing. It also provides an analysis based on the data set used that shows how the different parameters affect the chances of admissions. Issues of web security other than password protection within the website are not part of this project.

LITERATURE SURVEY

[1] TITLE: Graduate admission prediction using machine learning

techniques (2021).

Authors: K.Jeevan Ratnakar, G. Koteswara Rao, B. DurgaPrasanth Kumar,

G.prithvi, D.Venkata Sai Eswar.

Reference Link:

https://www.researchgate.net/publication/348433004_Graduate_Admission_Predictio

n_Using_Machine_Learning

Proposed Problem:

The world markets are developing rapidly and continuously looking for the best

knowledge and experience among people. Young workers who want to stand out in their

jobs are always looking for higher degrees that can help them in improving their skills

and knowledge. As a result, the number of students applying for graduate studies has

increased in the last decade. This fact has motivated us to study the grades of students

and the possibility of admission for master's programs that can help universities in

predicting the possibility of accepting master's students submitting each year and

provide the needed resources.

Proposed solution:

The decision tree algorithm based on the test attributes like GRE, TOEFL, CGPA

are have a possibilities of a chance of admission is calculated.

Pros and cons:

Based on the different parameters that are provided in the dataset have been trained and

tested with testing data whether the student has a chance or not, if parameter missing, it

reflects on the result.

[2] TITLE: College admission prediction using Ensemble Machine Learning

models. (2021)

Authors: Vandit Manish Jain, Rihaan Satia.

Reference Link: https://www.irjet.net/archives/V8/i12/IRJET-V8I1266.pdf

Proposed Problem:

Educational organizations have always played an important and vital role in

society for development and growth of any individual. There are different college

prediction apps and websites being maintained contemporarily, but using themis tedious

tosome extent, due to the lack of articulate information regarding colleges, and the time

consumed in searching the best deserving college. The problem statement, hence being

tackled, is to design a college prediction/prediction system and to provide a probabilistic

insight into college administration for overall rating, cut-offs of the colleges, admission

intake and preferences of students. Also, it helps students avoid spending time and

money on counsellor and stressful research related to finding a suitable college.

It has always been a troublesome process for students in finding the perfect

university and course for their further studies. At times they do know which stream they

want to get into, but it is not easy for them to find colleges based on their academic

marks and other performances. We aim to develop and provide a place which would

give a probabilistic output as to how likely it is to get into a university given upon their

details.

Proposed solution:

Linear regression model is a method used as response for only a single feature,

it is based on supervised learning.

Pros and cons:

Every year millions of students apply to universities to begin their educational

life. So, every year we have to Change.

[3] TITLE: Prediction for university admission to students using Machine

Learning (2020)

Authors: Chithra Apoorva D A, Malepati ChanduNath, Peta Rohith, Bindu Shree.S,

Swaroop.S

Reference Link:

https://www.ijrte.org/wpcontent/uploads/papers/v8i6/F9043038620.pdf

Proposed Problem:

In today's education world there are many number of students who want to

pursue higher education after engineering or any graduate degree course. Higher

education in the sense, some people want to do M. Tech through GATE or through any

educational institute entrance examination and some people want to do MBA through

CAT or through any respective educational institute entrance examination and some

people want to do Masters in abroad universities. We are focusing on only the students

who want to pursue their higher education in abroad universities. Students who want to

do masters in America have to write GRE (Graduate Records Examination) and

TOEFL/IELTS (Test of English as a Foreign Language/International English Language

Testing System). Once they have attended the exams they have to prepare their SOP

(statement of purpose) and LOR (letter of recommendation) which are one of the crucial

factors they have to consider.

Proposed solution:

Bayesian Networks Algorithm have been used to create a decision support

network for evaluating the application submitted by foreign students of the university.

Pros and cons:

Previous research done in this area used Naive Bayes algorithm but the main

drawback is they didn't consider all the factors which will contribute in the Student

admission process like TOEFL/SOP, LOR and UG.

[4] TITLE: The Predictive validity of admission criteria for college

assignment in Saudi Universities (2020)

Authors: Abdulaziz Althewini.

Reference Link: https://files.eric.ed.gov/fulltext/EJ1249542.pdf

Proposed Problem:

Admission criteria can be used to predict Saudi student performance in college,

but significant differences across several studies exists. This study explores the

predictive power of admission criteria for college assignment using King Saud bin

Abdul aziz University for Health Sciences as a model. Scores from high school and

standardized tests were collected for 1,595 students. Data were analysed with

multinomial logistic and multivariate linear regression. A formula was generated to

determine student college assignment based on their admission criteria profile.

The results showed that all admission criteria were significant predictors of

college assignment but accounted for only 21.1% of the variance. Based on the results

of this study, admission criteria may not be reliable predictors of college assignment on

their own, and additional criteria for measuring student success are needed.

The current study is unique because existing literature only uses student GPA as

an outcome, while this study uses college assignment.

Proposed solution:

The college assignment using King Saud bin Abdul aziz University. Data were

analyzed with multinomial logistic and multivariate linear regression.

Pros and cons:

Scores from high school and standardized tests were collected for 1,595 students.

Based on the results of this study, admission criteria may not be reliable for prediction

for the admission in their dream university.

2.2. PROBLEM STATEMENT

- The problem statement is to develop a college prediction system that will offer a
 probabilistic perspective on college administration for factors including overall
 rating, college cut-offs, admission intake, and student preferences.
- Finding the ideal college and course for continuing their education has always been difficult for students. Sometimes students are certain of the stream they want to enter, but finding universities that match their academic standing and other achievements is difficult for them.
- Our goal is to create and offer a location that would provide a probabilistic output of how likely it is for someone to be admitted to a university given their information.

Fig. 2.2(a). Problem Statement

Problem	I am	I'm trying to	But	Because	Which makes me feel
Statement (PS)	(Customer)				
Students are	student	meet different	It takes a	we go to	sad
often worried		alumni, staff,	long time.	college	
about their		and colleges		directly,	
chances of		for choosing		whether it	
admission to a		the right		checks	
University		universities.		eligibility or	
				not for studies	
				based on our	
				profile.	
students are	student	collect	we can get	Nobody knows	join the college
confused to		information	partial	perfect	without satisfaction.
select the perfect		based on their	information	information	
university and		courses,	about their	for all courses	
want to required		placement,	selected	should be	
courses about		coaching, etc.	university.	proper	
their studies.				coaching or	
				conduct	
				curricular	
				activities for	
				students, even	
				how they	
				perform the	
				projects.	

Fig. 2.2(b). Defining Problem Statement

IDEATION & PROPOSED SOLUTION

3.1. EMPATHY MAP CANVAS

Fig. 3.1. Emphathy Map

3.2. IDEATION AND BRAIN STORMING

STEP 1: TEAM COLLABORATION & SELECTING THE PROBLEM STATEMENT

Fig. 3.2(a) Team Collaboration

Fig. 3.2(b) Selecting the problem statement

STEP 2: Brainstorm, Idea Listing, and Grouping

Fig. 3.2(c) Brain storm

Fig. 3.2(d) Idea Listing and Grouping

STEP 3: IDEA PRIORITIZATION

Fig. 3.2(e) Idea Prioritization

3.3. PROPOSED SOLUTION

S.No.	Parameter	Description					
1.	Problem Statement	Statistically, after completing schooling, the					
		students are facing problems while choosing the					
		university and they don't have much of an idea					
		about the procedures, requirements and details of					
		the universities, they seek help from the					
		education consultancy firms to help them					
		successfully secure the admission in the					
		universities which are best suitable for their					
		profiles. For this, they have to invest huge					
		amount of money as consultancy fees.					
2.	Solution description	The main objective of this project is to help the					
		students to save their time and money that they					
		have to spend at the education consultancy firms					
		and also provide a accurate prediction of					
		admission using parameters like GRE etc.					
3.	Uniqueness	Students get immediate and accurate results on					
		their admission by providing their details. It helps					
		them to identify their dream university with less					
		effort.					
4.	Social Impact	It helps student in making the right decision for					
		choosing the universities. It cuts the cost of					
		consultancy services by creating a direct					
		connection between students and					
		universities.					

5.	Business Model	Universities are under immense pressure to				
		admit more students and ensure student success.				
		To overcome this pressure, they can make use of				
		predictive models which help them to ease the				
		intake process of students and improve				
		efficiency				
6.	Scalability of the Solution	This solution includes the status of application				
		and list of universities that is eligible for students				
		profile by applying various ML models.				

Fig. 3.3 Proposed Solution

3.4. PROBLEM SOLUTION FIT

Fig. 3.4 Problem Solution Fit

REQUIREMENT ANALYSIS

4.1. FUNCTIONAL REQUIREMENT

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration User Confirmation	Users can register through Form in the web application. Users can register through phone numbers. Registration through Gmail. Confirmation via Email and OTP.
FR-3	User Login	Log in with your credentials.
FR-4	User Details	Submit the required documents for the admission prediction process GRE and TOEFL Mark sheet Statement Of Purpose(SOP) CV or Resume Letter of Recommendation CGPA
FR-5	User prediction	 Place all the relevant documents in the website's appropriate places by uploading them. Based on the uploaded documents, the system would predict the necessary information. The shortlisting universities should be displayed based on their submitted documents on the website to the user. Users can easily select a particular university and search for all the essential information about the selected university.

Fig. 4.1.Functional Requirements

4.2. NON-FUNCTIONAL REQUIREMENT

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The system should be user-friendly and get the shortlisted university based on the user profiles.
NFR-2	Security	 The system should allow users to authenticate and authorize themselves, and only approved users should be able to use the site's services. It has to facilitate two-step verification for the user's data security.

NFR-3	Reliability	The system must be capable of handling any failure or crash rapidly and recovering.
NFR-4	Performance	 Indexes in the database can be used to speed up the search and filter process. The website must quickly respond to the request and handle it efficiently.
NFR-5	Availability	The required information can be viewed at any time, from any location, with an internet connection.
NFR-6	Scalability	 The system must be able to effectively handle a reasonable volume of user traffic. Also must handle several concurrent users' data.

Fig. 4.2.Non-Functional Requirements

PROJECT DESIGN

5.1. DATAFLOW DIAGRAM

Fig. 5.1. Dataflow Diagram

5.2. TECHNICAL ARCHITECTURE

Fig. 5.2. Technical Architecture

5.3. SOLUTION ARCHITECTURE

Fig. 5.3. Solution Architecture

5.4. USER STORIES

User Type	Requirement Number (Epic)		Acceptance criteria	Priority	Release	
Customer	Registration	USN-1	As a user, I can register my details for the application by entering email, password.	I can access my profile/ dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the applicatio.	I can receive confirmation email & click confirm	High	Sprint-1
	Login	USN-3	As a user, I can login the webpage by email and password.	I can access various pages and search required information regarding universities.	High	Sprint-1
		As a user, I can view the list of universities details for apply eligible or not.	I can search universities details.	High	Sprint-1	
		USN-5	As a user, I can search course offered in universities.	I can access the course details.	High	Sprint-1
		USN-6	As a user, I can view the placement details, alumni and placement coaching.	I can access the placement details.	Low	Sprint-2
		USN-7	As a user, I can view the how many company come to campus, status of previous year placed in company.	I can access the campus company details.	Low	Sprint-2
		USN-8	As a user, I can view the recent news about university.	I can access the latest news.	Medium	Sprint-1
		USN-9	As a user, I can submit a contact form with my questions and clarifications.	I can clear my doubt's.	Medium	Sprint-2
		USN-10	As a user, I can view the recent achievements, introduce new courses and non technical events	I can search all details about university.	Low	Sprint-3
dmin		USN-11	As an admin, I provide an update on university news.	I can view the updated information.	Medium	Sprint-3
		USN-12	As an admin, I upload the recent cutoff for eligibility prediction.	I can gauge my admission prospects.	Medium	Sprint-3

Fig. 5.4. User stories

PROJECT PLANNING AND SCHEDULING

6.1. SPRINT PLANNING & ESTIMATION

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register my details for the application by entering email, password.	2	High	Puviyasree M
Sprint-1		USN-2	As a user, I will receive confirmation email once I have registered for the application.	1	High	Gowsalya M
Sprint-1	Login	USN-3	As a user, I can login the webpage by email and password.	2	High	Gowsalya M
Sprint-1	Dashboard	USN-4	As a user, I can view the list of universities details for apply eligible or not.	2	High	Srividya R
Sprint-1		USN-5	As a user, I can search course offered in universities.	1	High	Rubadharshini A K
Sprint-2		USN-6	As a user, I can view the placement details, alumni and placement coaching.	1	Low	Rubadharshini A K
Sprint-2		USN-7	As a user, I can view the how many company come to campus, status of previous year placed in company.	1	Low	Srividya R
Sprint-1		USN-8	As a user, I can view the recent news about university.	2	Medium	Gowsalya M
Sprint-2		USN-9	As a user, I can submit a contact form with my questions and clarifications.	1	Medium	Rubadharshini A K
Sprint-3		USN-10	As a user, I can view the recent achievements, introduce new courses and non technical events.	1	Low	Srividya R

Fig. 6.1. Sprint planning & Estimation

6.2. SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	15	6 Days	31 Oct 2022	05 Nov 2022	15	05 Nov 2022
Sprint-3	15	6 Days	07 Nov 2022	12 Nov 2022	15	12 Nov 2022
Sprint-4	15	6 Days	14 Nov 2022	19 Nov 2022	15	19 Nov 2022

Fig. 6.2. Sprint Delivery Schedule

6.3. REPORTS FROM JIRA

CODING & SOLUTION

7.1. FEATURE 1

Analysed university admission statistics

➤ Developed tools for matching university (in percentile) using CGPA, GRE (Verbal, Quantitative, Analytical Writing) scores.

➤ Languages : Python

> Tools/IDE : Anaconda

Libraries : Numpy ,Pandas, Scikit learn

```
IMPORT STATEMENTS
```

```
In [3]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

DATA READING AND ANALYSIS

```
In [4]: import os, types
         import pandas as pd
         from botocore.client import Config
         import ibm_boto3
         def __iter__(self): return 0
         # The following code accesses a file in your IBM Cloud Object Storage. It includes your credentials.
         # You might want to remove those credentials before you share the notebook.
         cos_client = ibm_boto3.client(service_name='s3'
             ibm_api_key_id='ut2IQbYkK0twq-ioJvvPu_OEsnzdL3IHAE_keFMVan8Q',
             ibm_auth_endpoint="https://iam.cloud.ibm.com/oidc/token",
             config=Config(signature_version='oauth'),
             endpoint url='https://s3.private.us.cloud-object-storage.appdomain.cloud')
         bucket = 'universityeligiblitypredictor-donotdelete-pr-hrjenb83oc8tgu'
         object_key = 'Admission_Predict.csv'
         body = cos_client.get_object(Bucket=bucket,Key=object_key)['Body']
         # add missing __iter__ method, so pandas accepts body as file-like object
if not hasattr(body, "__iter__"): body.__iter__ = types.MethodType( __iter__, body )
         data = pd.read_csv(body)
        data.head()
```

Out[4]: Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA Research Chance of Admit

```
In [5]: data.drop(["Serial No."], axis=1, inplace=True)
In [6]: data.head()
Out[6]:
          GRE Score TOEFL Score University Rating SOP LOR CGPA Research Chance of Admit
        0
               337
                           118
                                           4 4.5
                                                                               0.92
                                                   45
                                                        9.65
                                                                   1
        1
               324
                           107
                                           4 4.0
                                                   4.5
                                                        8.87
                                                                               0.76
        2
                316
                           104
                                              3.0
                                                   3.5
                                                        8.00
                                                                               0.72
        3
               322
                           110
                                           3 3.5 2.5
                                                        8.67
                                                                               0.80
        4
               314
                           103
                                           2 2.0 3.0
                                                       8.21
                                                                  0
                                                                               0.65
In [7]: data.describe()
Out[7]:
              GRE Score TOEFL Score University Rating
                                                      SOP
                                                                LOR
                                                                         CGPA
                                                                                Research Chance of Admit
                        400.000000
                                        400.000000 400.000000 400.000000 400.000000 400.000000
                                                                                             400.000000
        count 400,000000
        mean 316.807500 107.410000
                                         3.087500
                                                   3.400000
                                                             3.452500
                                                                       8.598925
                                                                                 0.547500
                                                                                               0.724350
          std
             11.473646
                          6.069514
                                         1.143728
                                                   1.006869
                                                             0.898478
                                                                       0.596317
                                                                                0.498362
                                                                                               0.142609
         min 290.000000
                        92.000000
                                                                                0.000000
                                                                                               0.340000
                                         1.000000
                                                   1.000000
                                                             1.000000
                                                                       6.800000
         25% 308.000000
                        103.000000
                                         2.000000
                                                   2.500000
                                                             3.000000
                                                                       8.170000
                                                                                 0.000000
                                                                                               0.640000
         50% 317.000000
                         107.000000
                                         3.000000
                                                   3.500000
                                                             3.500000
                                                                       8.610000
                                                                                1.000000
                                                                                               0.730000
         75% 325.000000
                        112.000000
                                         4.000000
                                                   4.000000
                                                             4.0000000
                                                                       9.062500
                                                                                 1.000000
                                                                                               0.830000
         max 340.000000 120.000000
                                         5.000000
                                                   5.000000
                                                             5.000000
                                                                       9.920000
                                                                                 1.000000
                                                                                               0.970000
 In [8]: data.info()
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 400 entries, 0 to 399
          Data columns (total 8 columns):
               Column
                                     Non-Null Count Dtype
           ---
                -----
                                       -----
            0
                GRE Score
                                      400 non-null
                                                         int64
                TOEFL Score
                                      400 non-null
                                                         int64
               University Rating 400 non-null
                                                         int64
            2
               SOP
                                      400 non-null
                                                         float64
            3
            4
               LOR
                                      400 non-null
                                                         float64
            5
                CGPA
                                      400 non-null
                                                         float64
            6
                Research
                                       400 non-null
                                                         int64
                Chance of Admit
                                      400 non-null
                                                         float64
           dtypes: float64(4), int64(4)
           memory usage: 25.1 KB
 In [9]: data.isnull().sum()
Out[9]: GRE Score
                                   a
           TOEFL Score
                                   0
          University Rating
           SOP
                                   0
           LOR
          CGPA
                                   0
          Research
                                   0
           Chance of Admit
          dtype: int64
```

VISUALIZATION

```
In [10]: plt.scatter(data['GRE Score'],data['CGPA'])
    plt.title('CGPA vs GRE Score')
    plt.xlabel('GRE Score')
    plt.ylabel('CGPA')
    plt.show()
```



```
In [12]: data[data.CGPA >= 8.5].plot(kind='scatter', x='GRE Score', y='TOEFL Score',color="BLUE")

plt.xlabel("GRE Score")
 plt.ylabel("TOEFL SCORE")
 plt.title("CGPA>=8.5")
 plt.grid(True)

plt.show()
```


TRAIN-TEST SPLIT

```
In [19]: X=data.drop(['Chance of Admit '],axis=1) #input data_set
         y=data['Chance of Admit '] #output Labels
In [20]: from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15)
         MODELING AND TRAINING
In [21]: from sklearn.preprocessing import MinMaxScaler
         scaler=MinMaxScaler()
         X_train[X_train.columns] = scaler.fit_transform(X_train[X_train.columns])
         X_test[X_test.columns] = scaler.transform(X_test[X_test.columns])
         X_train.head()
Out[21]:
              GRE Score TOEFL Score University Rating SOP LOR
                                                                 CGPA Research
         237
                   0.78
                           0.785714
                                              1.00 0.875 1.000 0.766026
         380
                   0.64
                           0.428571
                                              0.50 0.625 0.750 0.653846
                                                                            1.0
         303
                   0.66
                           0.535714
                                              0.50 0.625 0.625 0.560897
                                                                            1.0
                                              0.25 0.375 0.625 0.471154
         232
                   0.44
                           0.535714
                                                                            0.0
                   0.58
                           0.500000
                                              0.50 0.625 0.375 0.490385
In [22]: from sklearn.ensemble import GradientBoostingRegressor
         rgr = GradientBoostingRegressor()
         rgr.fit(X_train,y_train)
Out[22]: GradientBoostingRegressor()
In [23]: rgr.score(X_test,y_test)
```

```
In [25]: from sklearn.metrics import mean_squared error, r2 score,mean_absolute error
                     import numpy as np
                      print('Mean Absolute Error:', mean_absolute_error(y_test, y_predict))
                      print('Mean Squared Error:', mean_squared_error(y_test, y_predict))
                     print('Root Mean Squared Error:', np.sqrt(mean_squared_error(y_test, y_predict)))
                      Mean Absolute Error: 0.04973753431860638
                      Mean Squared Error: 0.004656562702634293
                      Root Mean Squared Error: 0.06823901158893125
In [26]: y_train = (y_train>0.5)
                     y_test = (y_test>0.5)
In [27]: from sklearn.linear_model._logistic import LogisticRegression
                      lore = LogisticRegression(random_state=0, max_iter=1000)
                     lr = lore.fit(X_train, y_train)
In [28]: y_pred = lr.predict(X_test)
In [29]: from sklearn.metrics import accuracy_score, recall_score, roc_auc_score, confusion_matrix
                      print('Accuracy Score:', accuracy_score(y_test, y_pred))
                     print('Recall Score:', recall_score(y_test, y_pred))
print('ROC AUC Score:', roc_auc_score(y_test, y_pred))
                     print('Confussion Matrix:\n', confusion_matrix(y_test, y_pred))
                      Accuracy Score: 0.916666666666666
                     Recall Score: 1.0
                      Confussion Matrix:
                       [[ 1 5]
                       [ 0 54]]
              SAVING THE MODELS
In [30]: import pickle
In [31]: pickle.dump(lr, open("university.pkl", "wb")) #logistic regression model pickle.dump(rgr, open("university_percent.pkl", "wb")) #regression model
              HOSTING THE MODEL
In [32]: import pickle
In [33]: !pip install ibm watson machine learning
               Requirement already satisfied: ibm_watson_machine_learning in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (1.0.257)
              Requirement already satisfied: importib-metadata in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm_watson_machine_learning) (4.8.2)
Requirement already satisfied: requests in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm_watson_machine_learning) (2.26.0)
              Requirement already satisfied: pandas(1.5.0,>=0.24.2 in /opt/conda/envs/Python3.9/site-packages (from ibm_watson_machine_learning) (1.3.4)
Requirement already satisfied: pandas(1.5.0,>=0.24.2 in /opt/conda/envs/Python3.9/site-packages (from ibm_watson_machine_learning) (1.3.4)
Requirement already satisfied: packaging in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm_watson_machine_learning) (0.3.3)
Requirement already satisfied: packaging in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm_watson_machine_learning) (21.3)
              Requirement already satisfied: tabulate in /opt/conda/envs/Python-3.9/11b/python3/9/site-packages (from ibm_watson_machine_learning) (0.8.9)
Requirement already satisfied: tabulate in /opt/conda/envs/Python-3.9/lib/python3/9/site-packages (from ibm_watson_machine_learning) (0.8.9)
Requirement already satisfied: certifi in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm_watson_machine_learning) (0.822.9.24)
Requirement already satisfied: urllib3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm_watson_machine_learning) (1.26.7)
Requirement already satisfied: jmespath(1.0.0,>=0.7.1 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos-sdk=2.11.*->ibm_watson_machine_learning)
Requirement already satisfied: bm-cos-sdk-satransfer=e2.11.0 in /opt/conda/envs/Python3.9/site-packages (from ibm-cos-sdk=2.11.*->ibm_watson_machine_learning)
Requirement already satisfied: bm-cos-sdk-satransfer=e2.11.0 in /opt/conda/envs/Python3.9/site-packages (from ibm-cos-sdk=2.11.*->ibm_watson_machine_learning)
              Requirement already satisfied: python-dateutil(3.0.0,>=2.1 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from ibm-cos-sdk-core==2.11.0->ibm-cos-sdk== learning) (2.8.2)

Requirement already satisfied: pytx>=2017.3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from pandas<1.5.0,>=0.24.2->ibm_watson_machine_learning) (2.8.2)
              Requirement already satisfied: numpy>=1.17.3 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from pandas<1.5.0,)=0.24.2->ibm_watson_machine_learning) (Requirement already satisfied: six>=1.5 in /opt/conda/envs/Python-3.9/lib/python3.9/site-packages (from python-dateutil<3.0.0,>=2.1->ibm-cos-sdk-core==2.11.0->ibm on_machine_learning) (1.15.0)
```

```
In [35]: from ibm_watson_machine_learning import APIClient
In [36]: uml_credentials = {
            "url": "https://us-south.ml.cloud.ibm.com",
            "apikey": "dGIxSW08kkFMfQYJQUrNhrU9VA3OHtAczqSBGZzLxtcw"
        client = APIClient(uml_credentials)
idr = []
            for i in space['resources']:
              idr.append(i['metadata']['id'])
           return idr
In [39]: space_uid = guid_from_space_name(client, "IBMprojectmodels")
        print(space_uid)
        ['edd34dfe-25ab-4fb6-9e5c-e74cf6f9b1e5']
In [40]: client.set.default_space(space_uid[0])
Out[401: 'SUCCESS'
In [41]: client.software_specifications.list()
        NAME
                                  ASSET TD
                                                                     TYPE
                                  0062b8c9-8b7d-44a0-a9b9-46c416adcbd9 base
        default py3.6
        kernel-spark3.2-scala2.12
                                  020d69ce-7ac1-5e68-ac1a-31189867356a base
        pytorch-onnx_1.3-py3.7-edt 069ea134-3346-5748-b513-49120e15d288 base
        scikit-learn_0.20-py3.6
                                  09c5a1d0-9c1e-4473-a344-eb7b665ff687 base
        In [51]: software_uid = client.software_specifications.get_uid_by_name('runtime-22.1-py3.9')
          print(software_uid)
          12b83a17-24d8-5082-900f-0ab31fbfd3cb
In [54]: software_uid = client.software_specifications.get_uid_by_name('runtime-22.1-py3.9')
          print(software_uid)
          meta_props={
               client.repository.ModelMetaNames.NAME: "logistic_model",
               client.repository.ModelMetaNames.SOFTWARE_SPEC_UID: software_uid,
               client.repository.ModelMetaNames.TYPE: "scikit-learn_1.0"
          12b83a17-24d8-5082-900f-0ab31fbfd3cb
In [55]: #model_details =client.repository.store_model(model=lr,meta_props={
    #client.repository.ModelMetaNames.NAME: "logistic_model",
          #client.repository.ModelMetaNames.SOFTWARE_SPEC_UID: software_uid,
          #client.repository.ModelMetaNames.TYPE: "scikit-learn_0.23"
          #model_id = client.repository.get_model_uid(model_details)
In [56]: model_details = client.repository.store_model(model=1r, meta_props=meta_props, tra
```

7.2. FEATURE 2

Index.html

```
C: > Desktop > DESERVE > Final Deliverable > templates > \ Demo2.html
  1 {% extends 'index.html' %}
      {% block body %}
  3
      <html lang="en">
  4
      <head>
          <meta charset="UTF-8">
          <meta name="viewport" content="width=device-width, initial-scale=1.0">
          <title>Document</title>
          <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css">
  8
          k rel="stylesheet" type="text/css" rel="noopener" target="_blank" href="../static/css/styles.css">
  9
  10
      </head>
 11
              <div class="inner">
 12
                  <div class="photo">
 13
                      <img src="../static/img/interface.svg">
 14
                      <h1>UNIVERSITY ADMIT ELIGIBLITY PREDICTOR</h1>
 15
 16
 17
 18
                  </div>
                  <div class="user-form">
 19
                      <h1>Welcome! Enter the details given below </h1><br>
 20
 21
                      <form action="/" method="post">
 22
                          <i class="fas fa-graduation-cap &nbsp;"></i></i></or>
                          <i class="fas fa-book-open"></i></i></or>
                         <input type="number" placeholder=" TOEFL SCORE [50-120]" name="2" min="50" max="120" required>
 25
26
                        <i class="fas fa-school"></i></i>
                        <input type="number" placeholder=" UNIVERSITY RATING [1-5]" name="3" min="1" max="5" required>
27
28
                         <i class="fas fa-book-reader"></i>
                        <input type="number" placeholder=" SOP [1-5]" min="1" max="5" name="4" required>
                         <i class="fas fa-file-alt"></i>
                         <input type="number" placeholder=" LOR [1-5]" min="1" max="5" name="5" required>
 31
                         <i class="fas fa-user-graduate"></i></i>
 32
 33
                         <input type="number" placeholder=" CGPA [4-10]" min="4" max="10" name="6" required>
 34
 35
                         kh2>  Do u have research Experience?</h2>
 36
                             <input type="radio" checked="checked" name="7" value="1" >
37
 38
                             <span class="checkmark">Yes</span>
 39
40
                             <input type="radio" checked="checked" name="7" value="0">
41
42
                             <span class="checkmark">No</span>
                         <div class="action-btn">
45
                             <button class="btn primary" >CHECK</button>
46
47
                             <!--<button class="btn">Sign In</button>-->
                         </div>
49
                     </form>
                 </div>
50
51
              </div>
52
      </body>
53
     </html>
     {% endblock %}
```

Chance.html

```
C: > Desktop > DESERVE > Final Deliverable > templates > ↔ chance.html
     {% extends 'index.html' %}
      {% block body %}
  3
     <html lang="en">
  4
     <head>
          <meta charset="UTF-8">
  6
          <meta name="viewport" content="width=device-width, initial-scale=1.0">
          <title>Document</title>
          <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css">
          <link rel="stylesheet" type="text/css" rel="noopener" target="_blank" href="../static/css/styles.css">
  9
 10
 11
      <body>
              <div class="inner">
 12
 13
                  <div class="photo1">
                      <img src="../static/img/slider-4.png">
 14
 15
                       <br>
                  </div>
 16
                   <div class="user-form">
 17
 18
                       <h1>Congratulations &#128525;</h1><br>
 19
                       <img src="../static/img/happy.jpg"><br>
                       <h1 class="card-title">You Have Chance!</h1><br>
 20
 21
                       <h1 class="card-text">The model has predicted that you have <strong>{{content[0]}}%</strong> chance</h
                   </div>k/div>
 22
 23
      </body>
 24
      </html>
      {% endblock %}
```

NoChance.html

```
C: > Desktop > DESERVE > Final Deliverable > templates > ♦ noChance.html
  1 {% extends 'index.html' %}
       {% block body %}
       <html lang="en">
       <head>
  5
           <meta charset="UTF-8">
           <meta name="viewport" content="width=device-width, initial-scale=1.0">
  6
  7
           <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css">
  8
  9
           <link rel="stylesheet" type="text/css" rel="noopener" target="_blank" href="../static/css/styles.css">
 10
       </head>
 11
       <body>
 12
               <div class="inner">
                   <div class="photo1">
 13
                       <img src="../static/img/social-girl.svg">
 14
 15
                       <br>
                   </div>
 16
                   <div class="user-form">
 17
                       <h1>SO SORRY! &#128532;</h1><br>
 18
 19
                       <img src="../static/img/sad.jpg"><br>
 20
                       <h1 class="card-title">You Have LOW Chance!</h1><br>
 21
                       <h1 class="card-text">The model has predicted that you have <strong>{{content[0]}}%</strong> chance</h</pre>
 22
                   </div>
 23
               </div>
 24
       </body>
 25
       </html>
```

7.3. DATASET

1	Serial No.									
2	1	337	118	4	4.5	4.5	9.65	1	0.92	
3	2	324	107	4	4	4.5	8.87	1	0.76	
4	3	316	104	3	3	3.5	8	1	0.72	
5	4	322	110	3	3.5	2.5	8.67	1	0.8	
6	5	314	103	2	2	3	8.21	0	0.65	
7	6	330	115	5	4.5	3	9.34	1	0.9	
8	7	321	109	3	3	4	8.2	1	0.75	
9	8	308	101	2	3	4	7.9	0	0.68	
10	9	302	102	1	2	1.5	8	0	0.5	
11	10	323	108	3	3.5	3	8.6	0	0.45	
12	11	325	106	3	3.5	4	8.4	1	0.52	
13	12	327	111	4	4	4.5	9	1	0.84	
14	13	328	112	4	4	4.5	9.1	1	0.78	
15	14	307	109	3	4	3	8	1	0.62	
16	15	311	104	3	3.5	2	8.2	1	0.61	
17	16	314	105	3	3.5	2.5	8.3	0	0.54	
18	17	317	107	3	4	3	8.7	0	0.66	
19	18	319	106	3	4	3	8	1	0.65	
20	19	318	110	3	4	3	8.8	0	0.63	
21	20	303	102	3	3.5	3	8.5	0	0.62	
22	21	312	107	3	3	2	7.9	1	0.64	

TESTING

8.1. TESTCASES

Test case	Feature Type	Component	Test Scenario	Prerequisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status
Login Page-TC	UI	Home Page	Verify the UI elements in Home Page		Enter URL and click & Go Verify Home Page with below UI elements: a) GRE Score b) TOEFL Score O' University Rating d) SOP e) LOR f) CGPA	http://127.0.0.1:5000/	The application should show below UI Elements: a) GRE b) TOEFL c) University Rating d) SOP e) LOR f) CGPA g) Research	Working as expected	PASS
Login Page-TC	UI	Home Page	Verify the UI elements in Home Page		Enter URL and click & go Click the text box to enter the scores We the image displayed Click submit button to know the prediction	http://127.0.0.1:5000/	Should be able to enter the scores The image should be displayed on the right side. We can know the chance of admission.	Working as expected	PASS
Login Page-TC 003	Functional	Web Page	Verify the user is able to predict the chance of admit		1.Enter URL (http://127.0.0.1:5000/) and click and go. 2. Enter the scores in the given fields. 3. Click on submit button, once you have entered all the scores.	a) GRE -339 b) TOEFL -110 c) University Rating- 5 d) SOP -5 e) LOR -5 f) CGPA-8 g) Research - yes	The application should show "You have a 79.5% chance to get admission"	Result: 79.5%	PASS
Login Page-TC 004	Functional	Web Page	Verify the user is able to predict the chance of admit		1.Enter URL (http://127.0.0.1-5000/) and click and go. 2. Enter the scores in the given fields. 3. Click on submit button, once you have entered all the scores.	a) GRE -330 b) TOEFL -119 c) University Rating -4 d) SOP -5 e) LOR -4 f) CGPA-8 g) Research - No	The application should show <u>"You</u> have a 61.6% chance to get admission"	Result: 61.6%	PASS
Login Page-TC 005	Functional	Web Page	Verify the user is able to predict the chance of admit		1.Enter URL (http://127.0.0.1:5000/) and click and go. 2. Enter the scores in the given fields. 3. Click on submit button, once you have entered all the scores.	a) GRE -300 b) TOEFL -100 c) University Rating -3 d) SOP -3 e) LOR -2 f) CGPA-4 g) Research - yes	The application should show <u>"You</u> don't have a chance"	Result: 43.6%	FAIL
Login Page-TC 006	Functional	Web Page	Verify the user is able to predict the chance of admit		1.Enter URL (http://127.0.0.1:5000/) and click and go. 2. Enter the scores in the given fields. 3. Click on submit button, once you have entered all the scores.	a) GRE -250 b) TOEFL-60 c) University Rating -3 d) SOP -3 e) LOR -2 f) CGPA-4 g) Research - No	The application should show <u>"You</u> don't have a chance"	Result: 38.8%	FAIL

8.2. USER ACCEPTANCE TESTING

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	0	1	0	1	2
Duplicate	1	0	0	1	2
External	0	0	1	0	1
Fixed	0	0	2	0	2
Not Reproduced	0	1	0	0	1
Skipped	0	0	0	0	0
Won't Fix	0	1	1	0	2
Totals	1	3	4	2	10

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

•				
Section	Total Cases	Not Tested	Fail	Pas s
View homepage	12	0	3	9
Enter the scores	20	0	5	15
Click submit button	3	0	0	3
Image displayed	10	0	3	7
Selecting from drop down	5	0	0	5
Final report output	35	0	10	25
Version control	4	0	2	2

RESULTS

9.1. PERFORMANCE METRICS

10.1. ADVANTAGES

- 1. **Reach to geographically scattered student:** One of the important objectives of the admission system is to communicate with all the students scattered geographically.
- 2. **Reducing time in activities:** Reduce the time taken to process the applications of students, admit a student, conduct the online examination, verify student marks, and send call letters to selected students.
- 3. Centralized data handling: Transfer the data smoothly to all the departments involved and handle the data centralized way.
- 4. **Paperless admission with reduced manpower:** Reduce the manpower needed to perform all the admission and administration tasks by reducing the paper works Cost cutting. Reduce the cost involved in the admission process.
- **5. Operational efficiency:** Improve operational efficiency by improving the quality of the process.

10.2. DISADVANTAGES

- 1. Required active internet connection.
- 2. System will provide inaccurate results if data entered incorrectly.
- 3. Other factors such as changes in policies by the university or by the country can also affect chances of admissions in a way that is beyond the scope of this project.
- 4. Admissions also depend on the individual university's policy regarding the intake of foreign students and is not modelled by our system.

11. CONCLUSION

Every year millions of students apply to universities to begin their educational life. Most of them don't have proper resources, or prior knowledge and are not cautious, which in turn creates a lot of problems as applying to the wrong university/college, which further wastes their time, money, and energy. With the help of our project, we have tried to help out such students who are finding difficulty finding the right university for them. It is very important that a candidate should apply to colleges that he/she has a good chance of getting into, instead of applying to colleges that they may never get into. This will help in the reduction of costs as students will be applying to only those universities that they are highly likely to get into. Our prepared models work to a satisfactory level of accuracy and may be of great assistance to such people. This is a project with good future scope, especially for students of our age group who want to pursue their higher education in their dream college/University.

13. FUTURE WORK

From the proposed work we are able to identify only the chance to get a seat and we are not able to identify which university we are obtaining. So, in the future, we can develop a representation, which gives us a list of universities to which we can obtain admission.

14. APPENDIX

14.1. Source Code

```
app.py X
C; > Desktop > sample > Final Deliverable > ♠ app,py > ♦ index
 1 from flask import Flask, render_template, redirect, url_for, request
  2 import requests
  3
  4 app = Flask( name )
  6 @app.route("/", methods = ['POST', 'GET'])
  7 def index():
          if request.method == 'POST':
  8
  9
              arr = []
 10
              for i in request.form:
 11
                  val = request.form[i]
                  if val == '':
 12
 13
                    return redirect(url_for("demo2"))
 14
                  arr.append(float(val))
 15
                  print(arr)
 16
 17
              API_KEY = "dGIxSW08kkFMfQYJQUrNhrU9VA3OHtAczqSBGZzLxtcw"
 18
 19
              token_response = requests.post('https://iam.cloud.ibm.com/identity/token', data={
 20
                  "apikey": API_KEY,
 21
                  "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'
 22
 23
              mltoken = token_response.json()["access_token"]
 24
              header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken}
 25
              payload_scoring = {
                  "input_data": [{"fields":[ 'GRE Score',
 26
 27
                                              'TOEFL Score',
 28
                                              'University Rating',
 29
                                              'SOP',
 30
                                              'LOR',
 31
                                              'CGPA',
                                              'Research'],
 32
 33
                                  "values": [arr]
 34
                                  }]
 35
 36
              response scoring = requests.post(
 37
 38
                   https://us-south.ml.cloud.ibm.com/ml/v4/deployments/9834b7d9-ae44-4b96-a013-385bc8cfaddf/predictions?version=2022-11-16',
 39
                  json=payload_scoring,
```

```
app.py X
C: > Desktop > sample > Final Deliverable > 🌵 app.py > 🕅 index
 33
                                 "values": [arr]
 34
                                 }]
 35
 36
 37
              response scoring = requests.post(
 38
                 https://us-south.ml.cloud.ibm.com/ml/v4/deployments/9834b7d9-ae44-4b96-a013-385bc8cfaddf/predictions?version=2022-11-16',
 39
                 json=payload_scoring,
 40
                 headers=header
 41
              ).json()
 42
             result = response_scoring['predictions'][0]['values']
 43
 44
 45
             if result[0][0] > 0.5:
 46
              return redirect(url_for('chance', percent=result[0][0]*100))
 47
              else:
 48
              return redirect(url_for('no_chance', percent=result[0][0]*100))
 49
          else:
             return redirect(url_for("demo2"))
 50
 51
      @app.route("/home")
 52
 53
      def demo2():
 54
       return render_template("Demo2.html")
 55
 56
     @app.route("/chance/<percent>")
 57
      def chance(percent):
 58
      return render_template("chance.html", content=[percent])
 59
 60 @app.route("/nochance/<percent>")
 61
      def no_chance(percent):
      return render_template("noChance.html", content=[percent])
 63
 64 @app.route('/<path:path>')
 65
     def catch_all():
      return redirect(url for("demo2"))
 67
 68 if __name__ == "__main__":
 69 app.run()
```

14.2. GitHub and Project Demo Link

GitHub Link: https://github.com/IBM-EPBL/IBM-Project-2733-1658481948

Project Demo link: https://www.youtube.com/watch?v=Nb4oQv5Or-k