Data Structures and Algorithms

Practice Sheet

Topic: Binary Trees beyond searching and sorting

- 1. You are given a sequence $\langle x_0, \ldots, x_{n-1} \rangle$ of n numbers. Design a suitable data structure which can perform each of the following operations in $O(\log n)$ time for any $0 \le i \le j < n$.
 - Report_sum(i, j): Report the sum of all numbers $\{x_i, ..., x_j\}$.
 - $Update(i, \Delta)$: Add Δ to the current value of x_i .
- 2. You are given a sequence $S = \langle b_0, \dots, b_{n-1} \rangle$ of n bits. Design a suitable data structure which can perform each of the following operations in $O(\log n)$ time for any $0 \le i < n$.
 - $Report_longest_sequence$: Report the length of the longest contiguous subsequence of 1s in the sequence S.
 - $Flip_bit(i)$: Flip bit b_i .
- 3. You are given an initial sequence $\langle x_0, \ldots, x_{n-1} \rangle$ of n numbers. Design an efficient data structure for maintaining the sequence under the following operations. You need to guarantee $O(\log n)$ time complexity for each operation.
 - Report(i): Report the i th element of the sequence.
 - Insert(i, x): Insert an element x at ith place in the sequence.
 - Delete(i): Delete ith element of the sequence.

Hint: Use a red-black tree. What should be the key used for the red-black tree? You will have to suitably augment each node suitably with additional information so as to help you perform the above operations efficiently.