Eyelid Gestures for People with Motor Impairments.

By Mingming Fan, Zhen Li, Franklin Mingzhe Li

Shreyansh Singh 2020CS10385

Atharv Dabli 2020CS10328

What the paper is about?

- According to Census 2011, there are 26.8 million people with disabilities in India, making up 2.21 percent of the total population.
- Some of the disabilities (like motor neuron disease) causes even affect in speech.
- Difficulty in communication, and controlling day to day systems.

Problem:

How can we improve human-human and human-computer interaction for people with motor impairments?

What the paper is about?

- Existing Technologies and ideas :
 - Eye-trackers (motion of the eyes)
 - Brain-computer interfaces
 - Mechanical devices (e.g., joysticks, trackballs)
 - heavy, intrusive, expensive, limited in functions supported (e.g., text entry).
- Can we use something as simple and cheap as a smartphone cameras for making improvements in interaction?

Image courtesy: en.wikipedia.org/wi ki/Eye_tracking

What the paper is about?

 It turns out we can use our eyelids to make a series of gestures, much <u>more than just a</u> <u>wink!</u>

 Earlier - only eyeball movements and blinks.

The paper discusses what gestures we can do with just a pair of eyelids, algorithm to detect these gestures, and how algorithm performs in real scenario.

Eyelid Gesture Design

- Four Eyelid states :
 - both eyelids open
 - both eyelids close
 - only the right eyelid close
 - only the left eyelid close.
- Duration of an eyelid state :
 Short and long both states may be adjusted according to user
- Gesture delimiter: 'both eyelids open'
 to label the start and end of an eyelid gesture.

 Analogy: Like a full stop at the end of an English Sentence.

Eyelid Gesture Design

These are the nine eyelid gestures that the algorithm detects. Here B denotes both eyelids closed, O means both eyelids open and R, L denotes left and right eyelid closed respectively. Addition of '-' denotes long duration else it is short duration.

 Images are collected from the front camera of a smartphone which are then used to generate a stream of probability pairs of each eye being open (P_L, P_R) with time using Google Mobile Vision API.

- Noise in the generated stream of probabilities, especially when one eye is open and other eye is closed.
- When one eye is closed, the probability of other eye being open also drops.

 Both Long Duration and Short Duration Gestures are classified using different SVM Classifiers.

Resampled Data

SVM - Support Vector Machine algorithm is a popular supervised machine learning classification algorithm.

How do we test our algorithm?

- The participants sat on a wheelchair and smartphone is placed in front of them.
- Training data is collected for each of the four eyelid states and nine eyelid gestures
- They had to perform the eyelid gesture shown on screen.
- The app showed each eyelid gesture ten times randomly.
- This is then used to train and test the model.
 Some variation is added in the training and testing data by changing rooms, position of participant etc.
- Participants include 12 healthy individuals and 4 with severe motor impairments.

Results for healthy individuals

User-dependent eyelid gesture evaluation:

- Five samples were used to train and rest 5 were used to test the classifier.
- The overall accuracy is 0.76 (SD = .19)

	R	L	В	R-	L-	В-	B-R-	B-L-	вов
R	47	0	7	8	0	0	0	1	6
L	4	56	7	1	5	2	2	0	8
В	0	0	46	0	0	0	0	0	0
R-	3	0	0	44	0	5	3	1	2
L-	0	0	0	0	46	4	1	7	0
B-	0	0	0	0	1	45	4	2	0
B-R-	0	0	0	6	0	1	47	1	1
B-L-	0	0	0	1	6	2	1	47	0
вов	0	1	0	0	0	0	0	0	34
N/A	6	3	0	0	2	1	2	1	9

Confusion Matrix

User-independent eyelid gesture evaluation:

- The data of one user is used for testing and rest participants' data for training.
- The overall accuracy is 0.68 (SD = .17)

	R	L	В	R-	L-	В-	B-R-	B-L-	вов
R	47	2	7	15	0	3	3	1	7
L	2	53	6	3	13	2	0	0	10
В	0	0	45	0	0	0	0	0	0
R-	3	0	1	36	0	9	4	1	1
L-	0	1	0	0	42	4	0	6	0
B-	0	0	1	4	0	34	10	1	0
B-R-	0	0	0	0	0	2	38	1	0
B-L-	0	0	0	0	3	0	1	46	0
вов	0	0	0	0	0	0	0	0	28
N/A	8	4	0	2	2	6	4	4	14

Confusion Matrix

Results for people with motor impairments

User-dependent eyelid gesture evaluation:

- Five samples were used to train and rest 5 were used to test the classifier.
- The overall accuracy is 0.76 (SD = .15)

	R	L	В	R-	L-	B-	B-R-	B-L-	вов
R	15	1	0	2	0	1	0	0	4
L	0	16	0	1	1	0	0	0	0
В	0	0	19	0	0	0	0	0	0
R-	0	0	0	12	0	0	0	0	0
L-	0	0	0	0	17	0	0	2	0
B-	0	0	0	1	1	19	0	4	0
B-R-	1	0	0	2	0	0	20	2	0
B-L-	0	0	0	0	1	0	0	11	0
вов	0	0	1	0	0	0	0	0	7
N/A	4	3	0	2	0	0	0	1	9

Confusion Matrix

User-independent eyelid gesture evaluation:

- The data of one user is used for testing and rest participants' data for training.
- The overall accuracy is 0.69 (SD = .20)

	R	L	В	R-	L-	B-	B-R-	B-L-	вов
R	10	0	0	3	0	1	0	0	1
L	2	15	0	2	3	0	0	0	0
В	0	0	17	0	0	0	0	0	0
R-	0	0	0	11	1	0	0	0	0
L-	0	2	0	0	13	0	0	1	0
B-	3	0	2	1	1	19	2	6	1
B-R-	2	0	0	2	0	0	18	0	0
B-L-	0	2	0	0	1	0	0	11	0
вов	0	0	1	0	0	0	0	1	11
N/A	3	1	0	1	1	0	0	1	7

Confusion Matrix

Interacting with smartphone using eyelid gestures

- App navigation happens at three levels: between apps, between tabs/screens in an app, and between containers in a tab/screen of an app.
- Less used commands like switching apps were assigned complex eyelid gestures (B-R-, B-L-).
- In addition to navigation, BOB is used for selecting an item.

Interacting with smartphone using eyelid gestures

Navigating through apps

Multitasking

Source: https://www.youtube.com/watch?v=GgpW4tmvdM0

Interacting with smartphone using eyelid gestures

Mode switching with eyelid gestures

(Example - Password can be viewed by right blink)

Source:

https://www.youtube.com/watch?v=GgpW4tmvdM0

Future Work

- Eyelid states: Half-closed eyelids could also be included in design space which would result in more eyelid gestures.
- Duration of eyelid states: Other levels of duration that users could reasonably distinguish to uncover more eyelid gestures might be added.
- User-defined eyelid gesture design: The eyelid gestures could be modified as per user's need.
- Electronic devices: This could be further used to control other devices like TVs, ACs and tablets.

Conclusion

- We were able to improve human-computer interaction for both able-bodies and physically challenged people, with a not bulky or expensive instrument.
- We used just a camera and designed some algorithms to solve a real world problem.

Thank You

Q/A