

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

پردازش تصویر در حوزه فرکانس

Image Processing in Frequency Domain

تبديلات تصوير

- تبدیل تصویر به معنای انتقال تصویر از فضای اصلی به فضای نگاشت (مانند فرکانس) است
- هدف از تبدیل تصویر دستیابی به مشخصههایی از تصویر است که در فضای نگاشت مشخص تر هستند
 - یک تبدیل باید دارای خصوصیات زیر باشد:
 - توانایی بازسازی و بازیابی سیگنال اولیه وجود داشته باشد
 - پایدار باشد

تبدیل فوریه گسسته 2D

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{+j2\pi(ux/M + vy/N)}$$

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y)e^{-j2\pi(ux/M + vy/N)}$$

$$Magnitude = |F(u, v)| = \sqrt{Re^{2}(u, v) + Im^{2}(u, v)}$$

$$Phase = \varphi(u, v) = atan2(Im(u, v), Re(u, v))$$

$$f(x) = \frac{1}{N} \sum_{v=0}^{N-1} F(v) e^{+j2\pi vx/N}$$

$$F(v) = \sum_{x=0}^{N-1} f(x)e^{-j2\pi vx/N}$$

$$f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{+j2\pi(ux/M + vy/N)}$$

تبديل فوريه

فیلتر در حوزه فرکانس

- ابتدا تبدیل فوریه تصویر محاسبه میشود
 - سپس تبدیل فوریه پردازش میشود
- سپس تبدیل معکوس فوریه محاسبه میشود

فیلتر در حوزه فرکانس

كاهش نويز

• مدل نویز جمعشونده:

$$g(x,y) = f(x,y) + n(x,y)$$

- دستگاههای تصویربرداری مختلف دارای مدلهای نویز متفاوتی هستند
 - نویز گاوسی متداول ترین نویز است

n(x,y)

كاهش نويز

نویز متناوب

• این نوع نویز وابستگی مکانی دارد و با یک الگوی خاص در تصویر تکرار میشود

نویز متناوب

استخراج شكل

Shape Extraction

تشخیص خط

تشخيص دايره

تشخيص لبه

- شکلهای مورد نظر در مرز اشیاء قرار دارند و به همین دلیل نخستین گام در بسیاری از الگوریتمهای تشخیص شکل، تشخیص مرز اشیاء و لبههای تصویر است
 - یک لبه، مجموعهای از پیکسلهایی به هم پیوسته است که روی مرز دو ناحیه قرار دارند

تشخيص لبه

لبەھاى نويزى

لبههای نویزی

لبههای نویزی

لبههای نویزی

- حضور مقدار کمی نویز می تواند به میزان زیادی کار تشخیص لبه را توسط مشتق گیری سخت نماید
- هموارسازی تصویر قبل از استفاده از مشتق در کاربردهایی که نویز با چنین سطحی تصویر را تخریب میکند ضروری است
 - به طور ویژه، هموارسازی در جهت عمود بر جهت لبهیابی بسیار موثر است

