Algorithms Chapter 1 Preliminaries

Associate Professor: Ching-Chi Lin

林清池 副教授

chingchi.lin@gmail.com

Department of Computer Science and Engineering National Taiwan Ocean University

Outline

- Mathematical Notions and Terminology
- Definitions, Theorems, and Proofs
- Types of Proof

Sets_{1/3}

- ▶ A set is a group of objects represented as a unit.
- Sets may contain any type of object, including numbers, symbols, and even other sets.
- The objects in a set are called its elements or members.
- One way to describe sets formally is by listing its elements inside braces.
- ▶ Thus the set {7, 21, 57} contains the elements 7, 21, and 57.

Sets_{2/3}

- The symbols ∈ and ∉ denote set membership and non-membership, respectively.
- We write 7∈ {7, 21, 57} and 8∉ {7, 21, 57}.
- For two sets A and B, we say that A is a **subset** of B, written $A \subseteq B$, if every member of A is also a member of B.
- We say that A is a **proper subset** of B, written $A \subsetneq B$, if A is a subset of B and not equal to B.
- ▶ Let $A = \{7, 21\}$ and $B = \{7, 21, 57\}$. Then, we can write $A \subseteq B$ and $A \subseteq B$.
- ▶ The set of **natural numbers** *N* is {1, 2, 3,...}.

Sets_{3/3}

- The set with 0 members is called the **empty set** and is written ϕ .
- A set containing elements according some rule is denoted by $\{n \mid \text{rule about } n\}$.
 - ▶ $\{n \mid n = m^2 \text{ for some } m \in N \}$ the set of perfect squares.
- ▶ The union of A and B, written $A \cup B$, is the set we get by combining all the elements in A and B into a single set.
- ▶ The **intersection** of A and B, written $A \cap B$, is the set of elements that are in both A and B.
- ▶ The **complement** of *A*, written *A*, is the set of all elements under consideration that are **not** in *A*.

Venn diagram

▶ The next two **Venn diagrams** depict the union and intersection of sets *A* and *B*.

Sequences

- ▶ A **sequence** of objects is a list of these objects in some order.
 - We usually designate a sequence by writing the list within parentheses.
 - ▶ In a set the order doesn't matter, but in a sequence it does.
- For example:
 - ▶ The sequence 7, 21, 57 would be written (7, 21, 57).
 - ▶ Hence (7,21,57) is not the same as (57, 7, 21).
- Repetition does matter in a sequence, but it doesn't matter in a set.
 - ▶ Thus (7,7,21,57) is different from (7,21,57) and (57, 7, 21).
 - ▶ The set {7, 21, 57} is identical to the set {7, 7, 21, 57}.

Tuples and power sets

- Finite sequences often are called tuples.
 - ▶ A sequence with *k* elements is a *k*-tuple.
 - ▶ Thus (7,21,57) is a 3-tuple.
 - ▶ A 2-tuple is also called a pair.
- ▶ The **power set** of *A* is the set of all subsets of *A*.
- For example:
 - If A is the set $\{O, I\}$, the power set of A is the set $\{\phi, \{O\}, \{I\}, \{O, I\}\}$.
 - ► The set of all pairs whose elements are Os and 1s is {(0, 0), (0, 1), (1, 0), (1, 1)}.

Cartesian product

- ▶ The Cartesian product of A and B, written A x B, is the set of all pairs wherein the first element is a member of A and the second element is a member of B.
- For example:
 - If $A = \{I, 2\}$ and $B = \{x, y, z\}$, then $A \times B = \{(I, x), (I, y), (I, z), (2, x), (2, y), (2, z)\}$.
- We can also take the Cartesian product of k sets, A_1 , A_2 ,..., A_k , written $A_1 \times A_2 \times ... \times A_k$.
- For example:
 - ▶ If $A = \{I, 2\}$ and $B = \{x, y, z\}$, then $A \times B \times A = \{(1, x, 1), (1, x, 2), (1, y, 1), (1, y, 2), (1, z, 1), (1, z, 2),$ $(2, x, 1), (2, x, 2), (2, y, 1), (2, y, 2), (2, z, 1), (2, z, 2)\}.$

Outline

- Mathematical Notions and Terminology
- **▶** Definitions, Theorems, and Proofs
- Types of Proof

Definitions, theorems, and proofs

- Theorems and proofs are the heart and soul of mathematics, and definitions are its spirits.
- These three entities are central to every mathematical subjects, including algorithms.
- In this class, you are expected to pick up the ability of reading and writing a concrete proof.

Definitions

- Definitions describe the objects and notions that we use.
 - Precision is essential to any mathematical definition.
 - When defining some object we must make clear what constitutes that object and what does not.

For example:

- ▶ A set is a group of objects represented as a unit.
- ▶ The objects in a set are called its **elements** or **members**.
- ▶ A **tree** graph is a connected graph without cycles.

Proofs

- After we have defined various objects and notions, we usually make mathematical statements about them.
 - A statement expresses that some object has a certain property.
 - ▶ The statement mayor may not be true.
 - ▶ The statements must be precise without any ambiguity.
- A proof is a convincing logical argument that a statement is true.
 - In mathematics an argument must be airtight, that is, convincing in an absolute sense.
 - A mathematician demands proof beyond any doubt.

Theorems, lemmas, and corollaries

- ▶ A theorem is a mathematical statement proved true. Generally we reserve the word for statements of special interest.
- **Lemmas** are the proved statements that are interesting only for their assistance in the proof of another statement.
- Occasionally a theorem or its proof may allow us to conclude easily that other, related statements are true. These statements are called corollaries of the theorem.

Finding Proofs

- ▶ The only way to determine the truth or falsity of a mathematical statement is with a mathematical proof.
- Unfortunately, finding proofs isn't always easy.
 - ▶ It can't be reduced to a simple set of rules or processes.
- ▶ However, some helpful general strategies are available.
 - Carefully read the statement you want to prove.
 - Make sure you understand all the notation.
 - Rewrite the statement in your own words.
 - Break it down and consider each part separately.
 - Experimenting with examples.
 - Try to find an object that fails to have the property, called a counterexample.

Multipart statements_{1/2}

- ▶ One frequently occurring type of multipart statement has the form "P if and only if Q", often written "P iff Q".
 - ▶ Both *P* and *Q* are mathematical statements.
 - ▶ The first part is "P only if Q," which means: If P is true, then Q is true, written $P \Rightarrow Q$.
 - ▶ The second is "P if Q," which means: If Q is true, then P is true, written $P \Leftarrow Q$.
 - ▶ We write "P if and only if Q" as $P \Leftrightarrow Q$.
 - ▶ To prove a statement of this form you must prove each of the two directions.

Multipart statements_{2/2}

- Another type of multipart statement states that two sets A and B are equal.
 - ▶ The first part states that *A* is a subset of *B*.
 - ▶ The second part states that *B* is a subset of *A*.
- To show that A = B, we must prove the following two statements.
 - ▶ Every member of *A* also is a member of *B*.
 - Every member of B also is a member of A.

An example for finding $Proofs_{1/2}$

- Suppose that you want to prove the statement "For every graph G, the sum of the degrees of all the nodes in G is an even number".
- First, pick a few graphs and observe this statement.

$$sum = 2 + 2 + 2 = 6$$

$$sum = 3 + 2 + 4 + 3 + 2$$
$$= 14$$

An example for finding Proofs_{2/2}

Next, try to find a counterexample, that is, a graph in which the sum is an odd number.

Every time an edge is added, the sum increases by 2.

- Can you now begin to see why the statement is true and how to prove it?
- If you are still stuck trying to prove the statement, try to prove a **special case** of the statement.
 - First try for k = 1, as well as k = 2, k = 3, k = 4 and so on.

Writing proofs

▶ A well-written proof is a sequence of statements, wherein each one follows by simple reasoning from previous statements in the sequence.

- Carefully writing a proof is important.
 - ▶ Enable a reader to understand it.
 - Make sure that it is free from errors.

Tips for producing a proof

Be patient.

Researchers sometimes work for weeks or even years to find a single proof.

Come back to it.

Look over the statement you want to prove, think about it a bit, leave it, and then return a few minutes or hours later.

Be concise.

- ▶ Good mathematical notation is useful for expressing ideas concisely.
- But be sure to include enough of your reasoning when writing up a proof so that the reader can easily understand what you are trying to say.

An example for producing a proof

Theorem : For every graph G, the sum of the degrees of all the nodes in G is an even number.

Proof.

- ▶ Every edge in *G* is connected to two nodes.
- ▶ Each edge contributes 1 to the degree of each node to which it is connected.
- ▶ Therefore each edge contributes 2 to the sum of the degrees of all the nodes.
- ▶ Hence, if *G* contains *e* edges, then the sum of the degrees of all the nodes of *G* is 2*e*, which is an even number.

Outline

- Mathematical Notions and Terminology
- Definitions, Theorems, and Proofs
- Types of Proof

Types of proof

- Several types of arguments arise frequently in mathematical proofs.
 - Proof by construction.
 - Proof by contradiction.
 - Proof by induction.
- Note that a proof may contain more than one type of argument.
 - Because the proof may contain within it several different subproofs.

Proof by construction_{1/2}

- ▶ A graph is said to be *k*-regular if every node in the graph has degree *k*.
- Theorem : For each even number n greater than 2, there exists a 3-regular graph G(V, E) with n nodes.
- Proof.
 - ▶ Let *n* be an even number greater than 2.
 - ▶ The set $V = \{0, 1, ..., n 1\}$.

Proof by construction_{2/2}

- ► The set $E = \{(i, i + 1) | \text{ for } 0 \le i \le n 2\}$ $\cup \{(n - 1, 0)\}$ $\cup \{(i, i + n/2) | \text{ for } 0 \le i \le n/2 - 1\}.$
- ▶ The edges described in the top and middle lines of E go between adjacent pairs around the circle.
- The edges described in the bottom line of *E* go between nodes on opposite sides of the circle.
- ▶ This mental picture clearly shows that every node in *G* has degree 3.

Proof by contradiction

- In this kind of arguments, we first **assume** that the theorem to prove is **false**.
- ▶ Then we show that this assumption leads to an obviously false consequence, called a **contradiction**.
- We use this type of reasoning frequently in everyday life.
 - Jack just came in from outdoors and he is completely dry.
 - ▶ We want to prove that It's not raining.
 - If it were raining, Jack would be wet.(assume false) (contradiction)
 - ▶ Therefore, it must not be raining.

An example for proof by contradiction

- ▶ A number is **rational** if it is a fraction *m/n* where *m* and *n* are integers.
- ▶ Theorem: $\sqrt{2}$ is irrational.
- Proof.
 - Assume for a contradiction that $\sqrt{2} = \frac{m}{n}$ is rational, where m and n are relatively prime integers.
 - $\sqrt{2} = \frac{m}{n}$ => $n\sqrt{2} = m$ => $2n^2 = m^2$.
 - Since m^2 is even, m must be even as well.
 - Let m = 2k. Then we have $2n^2 = (2k)^2 = 4k^2$, which implies $n^2 = 2k^2$.
 - Since n^2 is even, n is even.
 - ▶ Both *m* and *n* are even, a **contradiction** to our assumption.

Proof by induction

- An advanced method to show that all elements of an infinite set have a specified property.
- ▶ Suppose that our goal is to prove that P(k) is true for each natural number $k \in \{1, 2, 3, ...\}$.
- ▶ The format for writing down a proof by induction is as follows.
 - **Basis:** Prove that P(1) is true.
 - ▶ Induction step: For each $i \ge 1$, assume that P(i) is true and use this assumption to show that P(i+1) is true.
- \triangleright P(1) is true: basis.
- \triangleright P(2) is true: P(1) is true + induction step.
- \triangleright P(3) is true: P(2) is true + induction step.

An example for proof by induction

▶ For each $n \ge 1$, we have

$$1^{2} + 2^{2} + 3^{2} + ... + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
.

- Proof.
 - ▶ The basis: For n = 1, $1^2 = 1 = \frac{1(1+1)(2\times 1+1)}{6}$.
 - ▶ Induction step: For each $k \ge 1$, assume that the formula is true for n = k and show that it is true for n = k + 1.

$$\sum_{i=1}^{k+1} i^2 = \sum_{i=1}^{k} i^2 + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 = \frac{k(k+1)(2k+1) + 6(k+1)^2}{6}$$
$$= \frac{(k+1)(2k^2 + 7k + 6)}{6} = \frac{(k+1)(k+2)(2(k+1) + 1)}{6}$$