Erasmus School of Economics

MOOC Econometrics

Lecture 6.3 on Time Series:

Specification and Estimation

Dick van Dijk, Philip Hans Franses, Christiaan Heij

Erasmus University Rotterdam

Univariate time series model

- Forecast: $\hat{y}_t = F(PY_{t-1})$ where $PY_{t-1} = \{y_{t-1}, y_{t-2}, \dots, y_1\}$.
- Find forecast model F so that $\varepsilon_t = y_t \hat{y}_t$ uncorrelated with PY_{t-1} .
- Popular choice: F linear function of p past values:

$$\widehat{y}_t = \alpha + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p}.$$

- $y_t = \hat{y}_t + \varepsilon_t = \alpha + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p} + \varepsilon_t$.
- AR(p) model, because ε_t is white noise.

Forecasting

- Past values of time series \rightarrow Model \rightarrow Forecast future values
- Notation:

 y_t : time series of interest (t = 1, ..., n)

 x_t : time series possible explanatory factor (restrict to one)

 $PY_{t-1} = \{y_{t-1}, y_{t-2}, \dots, y_1\}$: past information on y at time t

$$PX_{t-1} = \{x_{t-1}, x_{t-2}, \dots, x_1\}$$

Univariate time series forecast model: $\hat{y}_t = F(PY_{t-1})$

Forecast model with explanatory factor: $\hat{y}_t = F(PY_{t-1}, PX_{t-1})$

- Aim: Optimal use of past information to get best forecasts.
- Wish: Forecast error $\varepsilon_t = y_t \widehat{y}_t$ uncorrelated with past information.

 Lecture 6.3, Slide 2 of 13, Erasmus School of Economics

Test question

- Forecast: $\hat{y}_t = \alpha + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p}$.
- Forecast error $\varepsilon_t = y_t \widehat{y}_t$ uncorrelated with y_s for all s < t.

Test

Show that ε_t is white noise, i.e., ε_t is uncorrelated with ε_s for all $t \neq s$.

Answer:

- Without loss of generality, consider case s < t.
- $\varepsilon_s = y_s \alpha \sum_{i=1}^p \beta_j y_{s-j}$ linear function of y_r , $r \le s < t$.
- ε_t is uncorrelated with y_r for all r < t, so also uncorrelated with ε_s .

Estimation

- Forecast error: $\varepsilon_t = y_t \alpha \sum_{i=1}^p \beta_i y_{t-i}$.
- Minimize sum of squared forecast errors: $\sum_{t=p+1}^{n} \varepsilon_t^2$.
- OLS!
- Estimation of ARMA models: Maximum Likelihood.

Lecture 6.3, Slide 5 of 13, Erasmus School of Economics

Granger causality

- Two variables of interest: y_t and x_t .
- Make ADL model for each variable:

$$y_t = \alpha + \sum_{j=1}^{p} \beta_j y_{t-j} + \sum_{j=1}^{r} \gamma_j x_{t-j} + \varepsilon_t.$$

$$x_t = \alpha^* + \sum_{j=1}^{p^*} \beta_j^* x_{t-j} + \sum_{j=1}^{r^*} \gamma_j^* y_{t-j} + \varepsilon_t^*.$$

- x_t helps to predict y_t if $\gamma_j \neq 0$ for some j y_t helps to predict x_t if $\gamma_j^* \neq 0$ for some j
- x_t is Granger causal for y_t if it helps to predict y_t , whereas y_t does not help to predict x_t .
- Test $H_0: \gamma_j^* = 0$ for all $j = 1, \dots, r^*$ by means of F-test.
- Note: Two ADL equations are estimated by SOLTS, per equation, Economics

Time series model with explanatory factor

- Forecast: $\hat{y}_t = F(PY_{t-1}, PX_{t-1})$.
- Find F such that $\varepsilon_t = y_t \hat{y}_t$ uncorrelated with PY_{t-1} and PX_{t-1} .
- Popular choice: linear *F*:

$$\widehat{y}_t = \alpha + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p} + \gamma_1 x_{t-1} + \ldots + \gamma_r x_{t-r}.$$

- $y_t = \hat{y}_t + \varepsilon_t = \alpha + \sum_{j=1}^p \beta_j y_{t-j} + \sum_{j=1}^r \gamma_j x_{t-j} + \varepsilon_t$. Autoregressive Distributed Lag model: ADL(p, r).
- Estimation: minimize $\sum_{t=m+1}^{n} \varepsilon_t^2$, where $m = \max(p, r) \to \text{OLS!}$

Lecture 6.3, Slide 6 of 13, Erasmus School of Economics

Consequences of non-stationarity

- Regression assumption A2 not satisfied: regressors y_{t-j} are random.
- Standard OLS *t* and *F*-tests hold true in large enough samples provided all variables in equation are <u>stationary</u>.
- So: First test for non-stationarity before any estimation.
- AR(1): $y_t = \alpha + \beta y_{t-1} + \varepsilon_t$, test $H_0: \beta = 1$ against $H_1: -1 < \beta < 1$.
- Rewrite: $\Delta y_t = y_t y_{t-1} = \alpha + (\beta 1)y_{t-1} + \varepsilon_t = \alpha + \rho y_{t-1} + \varepsilon_t$ where $\rho = \beta - 1$
- So: $\Delta y_t = \alpha + \rho y_{t-1} + \varepsilon_t$, test $H_0: \rho = 0$ against $H_1: \rho < 0$.
- Reject H₀ of non-stationarity if $t_{\widehat{\rho}} < -2.9$ (not conventional -1.65!).

Test question

Test

Rewrite the AR(2) model $y_t = \alpha + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \varepsilon_t$ as $\Delta y_t = \delta + \rho y_{t-1} + \gamma \Delta y_{t-1} + \varepsilon_t$, and express the parameters (δ, ρ, γ) in terms of $(\alpha, \beta_1, \beta_2)$.

Answer:

•
$$\Delta y_t = y_t - y_{t-1}$$

= $\alpha + (\beta_1 - 1)y_{t-1} + \beta_2 y_{t-2} + \varepsilon_t$
= $\alpha + (\beta_1 + \beta_2 - 1)y_{t-1} - \beta_2 y_{t-1} + \beta_2 y_{t-2} + \varepsilon_t$
= $\alpha + (\beta_1 + \beta_2 - 1)y_{t-1} - \beta_2 (y_{t-1} - y_{t-2}) + \varepsilon_t$
= $\alpha + (\beta_1 + \beta_2 - 1)y_{t-1} - \beta_2 \Delta y_{t-1} + \varepsilon_t$

• So: $\delta = \alpha$, $\rho = \beta_1 + \beta_2 - 1$, and $\gamma = -\beta_2$.

Lecture 6.3, Slide 9 of 13, Erasmus School of Economics

Summary of Specification and Estimation

- AR model for y_t :
 - Step 1: Perform ADF test on y_t .
 - ightarrow Non-stationarity rejected ightarrow model y_t
 - ightarrow Non-stationarity not rejected ightarrow take Δy_t and perform ADF test on Δy_t
 - Step 2: Estimate AR model for stationary series by OLS.
- ADL model for y_t with explanatory factor x_t :
 - Step 1: Perform ADF tests on y_t and x_t .
 - \rightarrow Take difference until non-stationarity is rejected.
 - Step 2: Estimate ADL model for stationary series by OLS.
- One exception: if x_t and y_t are cointegrated.

Augmented Dicky-Fuller test

- Two types of test equations: with or without deterministic trend.
- Test without deterministic trend if data no clear trend direction:

$$\Delta y_t = \alpha + \rho y_{t-1} + \gamma_1 \Delta y_{t-1} + \ldots + \gamma_L \Delta y_{t-L} + \varepsilon_t$$

- Reject H₀ of non-stationarity if $t_{\hat{\rho}} < -2.9$
- Test with deterministic trend if data clear trend direction:

$$\Delta y_t = \alpha + \beta t + \rho y_{t-1} + \gamma_1 \Delta y_{t-1} + \ldots + \gamma_L \Delta y_{t-L} + \varepsilon_t$$

- ullet Reject H_0 of non-stationarity if $t_{\widehat{
 ho}} < -3.5$
- Choice lag L: serial correlation check, or AIC/BIC (see Lecture 3).
 Lecture 6.3, Slide 10 of 13, Erasmus School of Economics

Cointegration and error correction model

- x_t and y_t are cointegrated if both series are non-stationary, but a linear combination (say $y_t cx_t$) is stationary.
- $y_t = cx_t$: long-run equilibrium.
- Engle-Granger test for cointegration:
 - \rightarrow Step 1: OLS in $y_t = \alpha + \beta x_t + \varepsilon_t \rightarrow b$ and residuals e_t
 - ightarrow Step 2: Cointegrated if ADF test on e_t rejects non-stationarity $\Delta e_t = \alpha + \rho e_{t-1} + \gamma_1 \Delta e_{t-1} + \ldots + \gamma_L \Delta e_{t-L} + \omega_t$ Critical value $t_{\widehat{\rho}}$: -3.4 (if extra term βt : -3.8)
- Error Correction Model (ECM): if x_t and y_t cointegrated, estimate $\Delta y_t = \alpha + \beta_1 (y_{t-1} b x_{t-1}) + \beta_2 \Delta y_{t-1} + \beta_3 \Delta x_{t-1} + \varepsilon_t$ (or more lags for Δy_t and Δx_t)

TRAINING EXERCISE 6.3

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Lecture 6.3, Slide 13 of 13, Erasmus School of Economics