EXERCICES — CHAPITRE 3

Images et antécédents

Exercice 1 -

1. Sur la figure ci-dessous, on donne la courbe représentative \mathscr{C}_f d'une fonction f. Déterminer graphiquement (aucune justification n'est demandée) :

- (a) l'image de 3 par f,
- (b) f(9) et f(0),
- (c) l'ordonnée du point de \mathscr{C}_f d'abscisse 5,
- (d) les éventuels antécédents de -7 par f,
- (e) les solutions de l'équation f(x) = 0,
- (f) le tableau de signes de f,
- (g) le tableau de variation de f,
- (h) le maximum de f et pour quelle valeur il est atteint,
- (i) la solution de l'inéquation f(x) > 5.

- 2. Soit g la fonction définie sur [-1;8] par $g(x) = (x-3)^2 16$.
 - (a) Développer, réduire et ordonner g(x).
 - (b) Factoriser g(x).
 - (c) Déterminer algébriquement en utilisant la forme de g(x) qui convient le mieux :
 - i. l'image de 3 par g,

- ii. x tel que g(x) = 0,
- iii. les antécédents de −7 par g.
- (d) Donner un tableau de valeurs de le fonction g pour des valeurs allant de -1 à 8.
- (e) Tracer \mathscr{C}_g sur le graphique ci-dessus.
- (f) Résoudre graphiquement f(x) = g(x).

Exercice 2 – Déterminer, dans chacun des cas,

- 1. l'image de -2; 0 et 3 par la fonction f définie sur \mathbf{R} par $f(x) = 3x^2 + 5x + 1$,
- 2. l'image de -3; 0 et 1 par la fonction g définie sur $\mathbb{R} \setminus \left\{ \frac{3}{2} \right\}$ par $g(x) = \frac{4x+1}{2x-3}$,
- 3. l'image de -1; 0 et 3 par la fonction h définie sur \mathbf{R} par h(x) = (2x 5)(3x + 1).

Exercice 3 – Déterminer, dans chacun des cas, si c'est possible,

- 1. les antécédents de 2; -1 et 0 par la fonction f définie sur \mathbf{R} par f(x) = -2x,
- 2. les antécédents de 2; -1 et 0 par la fonction g définie sur **R** par g(x) = 5x + 1,
- 3. les antécédents de 2 et 0 par la fonction h définie sur \mathbf{R} par $h(x) = 2x^2 + 1$,
- 4. les antécédents de 2; -1 et 0 par la fonction i définie sur $\mathbb{R} \setminus \{\frac{2}{3}\}$ par $i(x) = \frac{2x+1}{3x-2}$,
- 5. les antécédents de 5 et 1 par la fonction j définie sur \mathbf{R} par $f(x) = x^2 + 5x + 5$.

Parité, monotonie et bornes

Exercice 4 – Soit $f(x) = \sqrt{x^2 + 1}$.

- 1. Déterminer l'ensemble de définition de f.
- 2. Montrer que f est paire. Que peut-on en déduire sur sa représentation graphique?

Exercice 5 – Étudier la parité de la fonction f dans les cas suivants.

- 1. f définie sur **R** par f(x) = 3x.
- 2. f définie sur **R** par $f(x) = x^2 + x$.
- 3. f définie sur **R** par $f(x) = x^3 2x$.
- 4. f définie sur **R** par $f(x) = \sqrt{2x^2 + 3}$.
- 5. f définie $\sup_{3} \mathbf{R} \setminus \{-2, 2\}$ par

$$f(x) = \frac{3}{x^2 - 4}.$$

- 6. f définie sur $\mathbb{R} \setminus \{2\}$ par $f(x) = \frac{1}{2-x}$.
- 7. f définie sur \mathbf{R}^* par $f(x) = 1 \frac{1}{x^2}$.

Exercice 6 – Soit f la fonction définie sur **R** par $f(x) = \frac{1}{1+x^2}$.

- 1. Étudier la parité de f.
- 2. On admet que f est décroissante sur $[0; +\infty[$. En déduire, d'après la question précédente, le sens de variation de f sur $]-\infty;0]$. Dresser alors le tableau de variation de f sur R.
- 3. Montrer que pour tout réel x, $0 \le f(x) \le 1$.

Exercice 7 – Tracer une courbe susceptible de représenter graphiquement la fonction f, dont le tableau de variations est donné ci-dessous.

Exercice 8 – Soit f une fonction définie sur \mathbf{R}_{+} dont voici le tableau de variation. Les affirmations suivantes sont-elles vraies ou fausses?

- 1. f est croissante sur [-1;3].
- 2. f est décroissante sur $[2; +\infty[$.
- 3. $\forall x \in [0;2], f(x) \leq 1$.
- 4. $\forall x \in \mathbf{R}_+, f(x) \leq 3$.

- 5. $\exists x \in \mathbf{R}_+, f(x) < 0.$
- 6. $\exists x \in \mathbf{R}_+, f(x) = 4.$
- 7. $f(2) \le f(3)$.
- 8. $f(1) \ge f(2)$.

Exercice 9 – f est une fonction définie sur **R**. Pour chaque implication, dire si elle est vraie ou fausse. Justifier la réponse.

- 1. Si f est croissante sur [0;2], alors f est croissante sur [0;1].
- 2. Si f(0) < f(1), alors f est croissante sur [0;1].
- 3. Si f a un maximum en 1 sur [0;1], alors f est croissante sur [0;1].
- 4. Si f n'est pas croissante sur [0;1], alors f est décroissante sur [0;1].

Composition de fonctions

Exercice 10 – 1. Donner le domaine de définition ainsi que la forme des fonctions $f \circ g$, $g \circ f$, $f \circ f$ et $g \circ g$ pour les fonctions f et g définies de la façon suivante.

- (a) $f(x) = 2x^2 x$ et g(x) = 3x + 2,
- (b) $f(x) = 1 x^3$ et $g(x) = \frac{1}{x}$,
- (c) $f(x) = \sqrt{2x+3}$ et $g(x) = x^2 + 2$
- 2. Donner le domaine de définition ainsi que la forme de la fonction $f \circ g \circ h$ pour les fonctions f, g et h définies de la façon suivante.
 - (a) f(x) = x + 1, g(x) = 2x et h(x) = x 1,
 - (b) $f(x) = \sqrt{x-1}$, $g(x) = x^2 + 2$ et h(x) = x + 3.
- 3. Donner le domaine de définition des fonctions h suivantes et les mettre sous la forme $f \circ g$ où f et g sont à définir.
 - (a) $h(x) = \frac{x^2}{x^2 + 4}$,
 - (b) $h(x) = \sqrt{x^2 + 1}$
- 4. Vérifier si les affirmations suivantes sont vraies ou fausses.
 - (a) Si g est une fonction paire et $h = f \circ g$ alors, h est aussi une fonction paire.
 - (b) Si *g* est une fonction impaire et $h = f \circ g$, alors *h* est aussi une fonction impaire.

Exercice 11 – Déterminer le domaine de définition des fonctions suivantes.

- 1. $x^4 5x^2 + 2x + 1$
- 2. $x + \sqrt{x}$
- 4. $\sqrt{x^2 + 3x 10}$

- 8. $\sqrt{x^2-3x-18}$
- o. $\sqrt{x^2 3x 18}$ 9. $\frac{1}{x} + \sqrt{x}$ 10. $\sqrt{x+7} + \sqrt{2x^2 3x 9}$

- 14. $\sqrt{x+1} + \frac{1}{8-x^3}$

Bijection

Exercice 12 – Montrer que la fonction f définie sur \mathbf{R} par f(x) = -3x + 4 est une bijection de \mathbf{R} dans \mathbf{R} .

Exercice 13 – Conjecturer, d'après les graphes, si les fonctions suivantes sont bijectives. On précisera bien les ensembles de départ et d'arrivée.

Exercice 14 – Soit $f: [1; +\infty[\rightarrow [0; +\infty[$ telle que $f(x) = x^2 - 1$. f est-elle bijective?

Exercice 15 – On définit l'application $f: x \mapsto \frac{\mathbb{R} \setminus \{-1\}}{1+x}$ Déterminer $f \circ f$ et en déduire que f est une bijection de $\mathbb{R} \setminus \{-1\}$ sur $\mathbb{R} \setminus \{-1\}$.