Electrodinámica

Objetivo

Reconocer y resolver ejercicios tipo examen de admisión asociados con conceptos de electrodinámica.

Electrodinámica

Parte de la física encargada del estudio de las cargas eléctricas en movimiento dentro de un conductor.

Corriente eléctrica: movimiento de las cargas negativas a través de un conductor.

Intensidad de la corriente eléctrica

Cantidad de carga que pasa por cada sección de un conductor en un segundo:

Isabel= quiere tacos
$$I = \frac{q}{t}$$

I=intensidad de la corriente eléctrica C/s=ampere=A q= cara eléctrica coulomb C t= tiempo que tarda en pasar la carga (s)

Fuerza electromotriz:

Si se desea que una corriente fluya continuamente debe existir un suministro constante de electrones en un extremo del mismo y una salida de ellos por el otro.

Pilas: dispositivo que transforma la energía química en eléctrica

Generadores: transforma la anergia mecánica en eléctrica

Pilas en serie y paralelo

Batería: agrupamiento de dos o más pilas en serie o en paralelo

Serie: unir polo positivo con negativo de la otra sucesivamente.

Paralelo: enlazar por una parte todos los polos positivos y, por la otra todos los negativos.

Resistencia eléctrica:

Oposición que presenta al paso de la corriente o flujo de electrones. Unidad de medida es el ohm $1\Omega = \frac{1V}{1A}$

La resistencia de un alambre conductor a una determinada temperatura es directamente proporcional a su longitud e inversamente proporcional al área de su sección transversal

$$R = \rho \frac{L}{A}$$

- Resistencia
- Resistividad
- Longitud
- Área sección transversal

Mide la oposición al movimiento de las cargas en un material cualquiera.

- a) Resistividad
- b) Amperímetro
- c) Resistencia laminar
- d) Resistencia eléctrica

Ley de Ohm

La intensidad que pasa por un conductor en un circuito es directamente proporcional a la diferencia de potencial aplicado a sus extremos e inversamente proporcional a la resistencia del conductor.

Viva la Reina Isabel

$$I = \frac{V}{R} : V = RI$$

V=voltaje R=resistencia I=intensidad

Un tostador eléctrico tiene una resistencia de 30 Ω cuando está caliente. ¿Cuál será la intensidad de la corriente que fluirá al conectarlo a una línea de 120 V?

A) 4 A

B) 5 A

C) 8 A

D) 10 A

Determinar la intensidad de la corriente eléctrica a través de una resistencia de 50 Ω al aplicarle una diferencia de potencial de 120 V.

- A) 2.5 A
- B) 2.4 A
- C) 3.5 A
- D) 3.4 A

Un alambre conductor deja pasar 7 A al aplicarle una diferencia de potencial de 110 V. ¿Cuál es su resistencia?

- A) 15.5 A
- B) 15.7 A
- C) 17.5 A
- D) 17.3 A

Resistencias en serie, paralelo, mixto

- Serie: elementos conductores están unidos uno a continuación del otro.
- Paralelo: los conductores se hallan separados en dos o más ramales y la corriente se divide en cada uno de ellos.

 Mixto: conductores se conectan tanto en serie como en paralelo.

Resistencias en serie, paralelo, mixto

$$R_e = R_1 + R_2 + \cdots R_n$$

 $V = V_1 + V_2 + V_3$

$$\frac{1}{R_e} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

$$V = V_1 = V_2 = V_3$$

Resistencia mixta

Se calculan las resistencias por partes

Calcular la resistencia equivalente de tres resistencias cuyos valores son: R1 = 3 Ω , R2 = 6Ω , R3 = 8Ω , conectadas en serie.

- $17~\Omega$
- B) 18 Ω C) 20 Ω
- 27Ω

Por un cable que tiene una resistencia eléctrica de $10~\Omega$, circula una corriente eléctrica de 10~A. ¿Cuál es el voltaje en el cable?

A) 100 V

B) 20 V

C) 10 V

D) 1 V

Si se conectan en paralelo dos resistores de 1 Ω cada uno, la resistencia equivalente tiene un valor de:

A. 1Ω B. $1/4 \Omega$ C. 2Ω D. $1/2 \Omega$

Calcular el valor de la resistencia que se debe conectar en paralelo con una resistencia de 12 Ω para que la resistencia equivalente del circuito se reduzca a 8 Ω .

- A) 12Ω
- Β) 24 Ω
- C) 44Ω
- D) 14 Ω

Determina la resistencia total del circuito que se representa en la imagen

A) 2.41Ω

B) 4.4Ω

C) 12 Ω

D) 1.90 Ω

En un aparato eléctrico, la unidad de corriente eléctrica se mide en:

- A. Ampere
- B. Watt
- C. Hertz
- D. Volt

Potencia eléctrica

Potencia eléctrica: Rapidez con que se realiza un trabajo. Energía que consume una maquina o cualquier dispositivo eléctrico en un segundo.

- P=VI
- P=W/t
- $P = I^2 R$
- $P = \frac{V^2}{R}$

Una resistencia eléctrica de 9 Ω disipa una energía de 100 J cada segundo, ¿Cuál es el voltaje en los extremos de la resistencia?

A)30 V

B) 900 V

C) 11.1 V

D) 90 V

Cuando en los extremos de una resistencia se pasa una diferencia de potencial de 120 V, esta irradia calor a razón de 250W. Determinar el valor de la resistencia.

- a) 55.7Ω
- b) 57.6 Ω
- c) 65.7Ω
- d) 67.6Ω

Seleccionar el modelo matemático que expresa la potencia eléctrica en función de la tensión y la corriente eléctrica de un resistor.

A.P=
$$\frac{V^2}{R}$$

B.P= $\frac{V}{I}$
C.P= IV
D.P= RI^2

Relacionar el concepto con el modelo matemático

correspondiente

A. 1A, 2B, 3C, 4D

B. 1B, 2C, 3A, 4D

C.1B, 2D, 3C, 4A

D. 1A, 2C, 3D, 4B

Concepto

- Modelo matemático
- Resistencia total en serie
- 2. Resistencia total en paralelo
- A. $R_T = R_1 + R_2 + R_3$

В.

- 3. Arreglo de resistencias en serie
- 4. Arreglo de resistencias en paralelo
- $C.\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2}$
- D. $R_1 R_2 R_3$

Relacionar el concepto con la definición que le corresponde.

Λ	10	20	2 V	1D
А.	IC,	ZU,	, 3A,	4D

B. 1C, 2D, 3B, 4A

C. 1D, 2C, 3A, 4B

D. 1D, 2C, 3B, 4A

Concepto	Definición		
 Conductividad Circuito eléctrico Efecto Joule Intensidad de corriente eléctrica 	 A. Fenómeno por el que los electrones en movimiento de una corriente eléctrica impactan contra el material a través del cual están siendo conducidos. B. Cantidad de carga que pasa por un conductor por unidad de tiempo C. Constante que mide la capacidad de un material de conducir la corriente eléctrica D. Red de componentes eléctricos unidos mediante conductores a una batería o generador de energía eléctrica 		

Una licuadora de 350 W se conecta a un generador de 100 V. Calcular la intensidad de corriente y la resistencia.

A.
$$I=3.5 A$$
, $R=28.57\Omega$

B.
$$I=3.5 \text{ A}, R=20.45 \Omega$$

C.
$$I=2.5 A$$
, $R=28.57 \Omega$

D.
$$I=3.0 \text{ A}, R=30 \Omega$$

¿Te gustó la clase? Sigue mis redes;

- El Profe Damian
- **El Profe Damian**
- **El Profe Damian**

