Trạm không gian

Trạm không gian SPASTA có M điểm đỗ cho các tàu. Các điểm đỗ được đánh số từ 1 đến M, mỗi điểm đỗ chỉ cho một tàu đỗ. Một đoàn tàu gồm K tàu của hành tinh AZ xin được cập bến. Ban điều hành trạm thông báo, chi phí để tàu đỗ ở điểm đỗ thứ i $(1 \le i \le M)$ là T + i đồng và hiện tại có n điểm đỗ $b_1, b_2, \ldots, b_n (1 \le b_1, b_2, \ldots, b_n \le M)$ không được đỗ vì đã có tàu cập bến.

Yêu cầu: Cho M, n, b_1 , b_2 , ..., b_n , hãy tính chi phí ít nhất để toàn bộ K tàu của hành tinh AZ được cập bến hoặc đưa ra thông báo trạm không gian không thể đáp ứng yêu cầu cập bến của đoàn tàu.

Dữ liệu: Vào từ file văn bản SPASTA.INP có dạng:

- Dòng đầu tiên chứa bốn số nguyên dương M, K, n và T ($T \le 10^9$);
- Đòng thứ hai gồm n số b₁, b₂, ..., b_n là các điểm đỗ đã có tàu cập bến. Các số đôi một khác nhau và có giá trị trong đoạn [1, M].

Kết quả: Ghi ra file văn bản SPASTA.OUT gồm một dòng chứa một số là chi phí ít nhất để toàn bộ *K* tàu của hành tinh AZ được cập bến hoặc đưa ra số -1 nếu trạm không gian không thể đáp ứng yêu cầu cập bến của đoàn tàu.

Ràng buộc:

- Có 40% số test ứng với 40% số điểm của bài có: $M \le 10^3$; K = 1; $n \le 10^3$;
- Có 30% số test khác ứng với 30% số điểm của bài có: $M \le 10^6$; $K \le 10^6$; $n \le 10^5$;
- 30% số test còn lại ứng với 30% số điểm của bài có: $M \le 10^9$; $K \le 10^9$; $n \le 10^5$.

Ví dụ:

SPASTA.INP	SPASTA.OUT
10 2 4 10	28
8 1 4 2	

SPASTA.INP	SPASTA.OUT
10 10 4 10	-1
1 5 2 8	