December 22, 2016

### Group 735

Dániel Bolgár Filip Marić Nicolas Silvani Simon Bjerre Krogh

Institut for elektroniske systemer Aalborg Universitet Danmark





Group 735

Communication

Force estimati

Improvements

Communication

Force estimation



Teleoperation of a surgical robot using force feedback

Group 735

#### Communication

orce estimati

Improvements

► Requirement for force feedback: 1000 Hz



Teleoperation of a surgical robot using force feedback

Group 735

#### Communication

Force estimati

Improvement

► Requirement for force feedback: 1000 Hz

► Maximum for the initial system: 100 Hz



Teleoperation of a surgical robot using force feedback

Group 735

### Communication

Force estima

- ► Requirement for force feedback: 1000 Hz
- ► Maximum for the initial system: 100 Hz
- ► Our approach:



Teleoperation of a surgical robot using force feedback

Group 735

#### Communication

Force estimati

- ► Requirement for force feedback: 1000 Hz
- ► Maximum for the initial system: 100 Hz
- ► Our approach:
  - Reducing the size of exchanged data



Teleoperation of a surgical robot using force feedback

Group 735

#### Communication

Force estimat

- ► Requirement for force feedback: 1000 Hz
- ► Maximum for the initial system: 100 Hz
- ► Our approach:
  - ► Reducing the size of exchanged data
  - Changing the transport protocol



Teleoperation of a surgical robot using force feedback

Group 735

#### Communication

Force estimati

- ► Requirement for force feedback: 1000 Hz
- Maximum for the initial system: 100 Hz
- ► Our approach:
  - Reducing the size of exchanged data
  - Changing the transport protocol
- ► Results: maximum of 638 Hz



Group 735

Communicatio

Force estimation

Improvements

Communication

Force estimation



## Force estimation model

Teleoperation of a surgical robot using force feedback

Group 735

Force estimation

- ▶ Model approach
- ► Nonlinearities in the EndoWrist dynamics
  - ► Hammerstein Wiener Models



Figure: Hammerstein-Wiener model.



# Force estimation model

Teleoperation of a surgical robot using force feedback

Group 735

Communicat

Force estimation

Improvemen

- ► Linear model
  - Choice of inputs affects model quality
  - ► Inputs: effort, velocity
  - Outputs: force
- ► Black-box identification
  - ► Subspace identification
  - ► Hankel singular value analysis

Include picture with effort force fit here!!



Group 735

Force estimation

► Input and output nonlinearities

- ► Effort
- ► Force

Include picture with effort force fit here!!



## Force estimation model

Hammerstein Wiener Models

Teleoperation of a surgical robot using force feedback

Group 735

Communicat

Force estimation

Improvomonto

- Nonlinearities
  - ► Deadzone nonlinearities
  - ► Input/Output -saturation



Group 735

Communication

Force estimation





Teleoperation of a surgical robot using force feedback

Group 735

Improvements

► Modeling for additional outputs allows correction of the model using an estimator



Teleoperation of a surgical robot using force feedback Group 735

Ciroup 70

Communication

Force estimation

- Modeling for additional outputs allows correction of the model using an estimator
- ► A multiple output model that adequatley captures the dynamics of the system could be used in a Kalman filter to create a state estimate



Teleoperation of a surgical robot using force feedback Group 735

- Modeling for additional outputs allows correction of the model using an estimator
- ► A multiple output model that adequatley captures the dynamics of the system could be used in a Kalman filter to create a state estimate
- ▶ The state estimates can be used in a state feedback loop to change system dynamics



Teleoperation of a surgical robot using force feedback Group 735

Group 73

Communicatio

Force estimati

- Modeling for additional outputs allows correction of the model using an estimator
- ► A multiple output model that adequatley captures the dynamics of the system could be used in a Kalman filter to create a state estimate
- ► The state estimates can be used in a state feedback loop to change system dynamics
- ► This means that reference following capabilities can be added to the system, dispite the nonlinear characteristics of the dynamics



Teleoperation of a surgical robot using force feedback

Group 735

Force estimation

Improvements

► The hypothesis was tested in simulation



Teleoperation of a surgical robot using force feedback

Group 735

Communicatio

Force estimation

- ► The hypothesis was tested in simulation
- Simulation results show that full reference following is possible despite the input nonlinearities in the system



Teleoperation of a surgical robot using force feedback Group 735

- ► The hypothesis was tested in simulation
- Simulation results show that full reference following is possible despite the input nonlinearities in the system
- ▶ While the transient behaviour of the reference value is replicated, offsets and parasitic gains need to be compensated



Teleoperation of a surgical robot using force feedback

Group 735

Communicatio

Force estimati

- ► The hypothesis was tested in simulation
- Simulation results show that full reference following is possible despite the input nonlinearities in the system
- ▶ While the transient behaviour of the reference value is replicated, offsets and parasitic gains need to be compensated
- ► Could be implemented with improved model, doesn't improve estimate of current one.