

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIORSERTIFIKAAT

GRADE/GRAAD 12

JUNE/JUNIE 2023

TECHNICAL MATHEMATICS P2/TEGNIESE WISKUNDE V2 MARKING GUIDELINE/NASIENRIGLYN

MARKS/PUNTE: 150

This marking guideline consists of 17 pages./ *Hierdie nasienriglyn bestaan uit 17 bladsye*.

NOTE:

- Continuous accuracy (CA) applies only where indicated in this marking guideline.
- Assuming values/answers in order to solve a problem is unacceptable.

LET WEL:

- Volgehoue akkuraatheid (CA) is slegs van toepassing soos aangedui in hierdie nasienriglyn.
- Aanvaarding van waardes/antwoorde om 'n probleem op te los, is onaanvaarbaar.

MARKING CODES / NASIENKODES		
M	Method/Metode	
A	Accuracy/Akkuraatheid	
AO	Answer only/Slegs antwoord	
CA	Consistent accuracy/Deurlopende akkuraatheid	
F	Formula/Formule	
Ι	Identity/Identiteit	
R	Rounding/Afronding	
S	Simplification/Vereenvoudiging	
ST	Statement/Bewering	
RE	Reason/Rede	
ST RE	Statement and correct reason/Bewering en korrekte rede	
SF	Substitution correctly in correct formula/Korrekte vervanging in die korrekte formule	
NPU	No penalty for omitting units/Geen penalisering vir eenhede uitgelaat	

1.6	$m_{CM} = \frac{-5 - 0}{-2 - 3} = 1$		✓ grad CA ✓ product/ produk A ✓ conclusion/
	$m_{AB} \times m_{CM} = -1 \times 1 = -1$		gevolgtrekking
	∴CM ⊥ AB		
			(3)
1.7	grad of line = $m_{CM} = 1$		✓ grad. CA
	$y - y_1 = m(x - x_1) OR/OF$	y = mx + c	
	y-5=1(x-(-2))	5=1(-2)+c	✓ SF A
		()	✓ equation/vergelyking
	$\therefore y = x + 7$		CA
			(3)
			[16]

4.1	$(1 + \cos r)(1 - \cos r) - 1 - \cos^2 r$	✓ S A
7.1	$(1+\cos x)(1-\cos x) = 1-\cos^2 x$	√I A
	$=\sin^2 x$	(2)
4.2	$\cos^2(2\pi - x)\tan^2 x$	$\checkmark \cos^2 x$
	$\frac{\sin(180^\circ + x)\csc(180^\circ - x)}{\sin(180^\circ + x)\csc(180^\circ - x)}$	$\sqrt{\frac{\sin^2 x}{\cos^2 x}}$
	$\cos^2 x \sin^2 x$	$\sqrt{-\sin x}$
	$= \frac{\cos^2 x \frac{\sin^2 x}{\cos^2 x}}{(-\sin x)(\csc x)}$	\checkmark cosec x
	$-(-\sin x)(\csc x)$	
		√ -1
	$\cos^2 x \sin^2 x$	$\checkmark -\sin^2 x$
	$=\frac{\cos^2 x \frac{\sin^2 x}{\cos^2 x}}{(-1)}$	
	$\begin{bmatrix} - \\ (-1) \end{bmatrix}$	
	$=-\sin^2 x$	(6)
4.3	$LHS/LK = \cot x + \tan x$	
	$=\frac{\cos x}{1+\sin x}$	$\sqrt{\frac{\cos x}{\cos x}}$
	$\equiv \frac{1}{\sin x} + \frac{1}{\cos x}$	$\sin x$
	$\cos^2 x + \sin^2 x$	$\sqrt{\frac{\sin x}{}}$
	$=\frac{1}{(\sin x)(\cos x)}$	$\cos x$
	1	✓ S
	$=\frac{1}{(\cdot \cdot $	
	$=\frac{1}{(\sin x)(\cos x)}$	$\int \cos^2 x + \sin^2 x = 1$
	$= \operatorname{cosec} x \operatorname{Sec} x = \operatorname{RHS} / RK$	(4)
		(4)
		[12]

y-afsnit by 1 \sqrt{x} -intercepts a and $135^{\circ}/x$ -afs by 45° en 135° \sqrt{x} -intercepts a and $135^{\circ}/x$ -afs by 45° en 135° \sqrt{x} -intercept at a eindpunt by (18 g: \sqrt{y} -intercept at y-afsnit by $-100^{\circ}/x$ \sqrt{x} -intercept at y-afsnit by \sqrt{x} -intercept at y-afsnit by \sqrt{x} \sqrt{x} -intercept at y-afsnit by \sqrt{x} -intercept at y-afs		$f(x) = \cos 2x$ and $g(x) = \sin(x-30^\circ)$ for $x \in [0^\circ; 180^\circ]$	
5.2 Amplitude _g = 1 5.3 2.5 y 2.5 y 3.5 y 2.5 y 3.6 y 4.7 y-intercept at y-afsnit by 1 5.7 x-intercept at y-afsnit by 1 5.8 x 5.9 y-intercept at y-afsnit by 1 6.5 y 6.5 y 7 turning point draaipunt by (9 8.6 y 8.7 y-intercept at y-afsnit by 4 9 End point at eindpunt by (18 8.7 y-intercept at y-afsnit by 4 9 x-intercept at y-afsnit by 4 1.5 y 1			
5.2 Amplitude $_g$ = 1 5.3 2.5 y 1.5 y 1.5 y 2.5 y 1.5 y 2.5 y 1.5 y 3.6 y 4.7 y-intercept at y-afsnit by 1 5.7 y-intercept at y-afsnit by 1 6.8 y 6.9 y 6.1 y 7. intercept at y-afsnit by 1 7. intercept at y-afsnit by 1 8. intercept at y-afsnit by 1 8. intercept at y-afsnit by 1 8. intercept at y-afsnit by 3 8. intercept at y-afsnit by 3 9. intercept at y-afsnit by 3 1.5 y 1.	5.1	Period $_{c} = \frac{360^{\circ}}{1000} = 180^{\circ}$	
5.3 2.5 y 2 1.5 3 2.5 y 2 1.5 3 3 45 60 75 90 105 120 135 150 165 180 195 -0.5 -1 -1.5 -2 5.4.1 $45^{\circ} \le x \le 135^{\circ}$ 7 7 7 7 7 7 7 7 7 7 7 7 7	7.2	2	(1)
2.5 y 2 1.5 y 1.	5.2	$Amplitude_g = 1$	(1)
✓ x ≤135° C.	5.3	2 1.5 1 0.5 0 15 30 45 60 75 90 105 120 135 150 165 180 195 -0.5 -1 -1.5	f: ✓ y-intercept at / y-afsnit by 1 ✓ x-intercepts at 45° and 135° / x-afsnitte by 45° en 135° ✓ turning point at / draaipunt by (90°; -1) ✓ End point at / eindpunt by (180°; 1) g: ✓ y-intercept at / y-afsnit by -0,5 ✓ x-intercept at 30° / x-afsnit by 30 ✓ turning point at / draaipunt by (120°; 1) ✓ End point at / eindpunt by
5.4.2 1250 × .1000	5.4.1	$45^{\circ} \le x \le 135^{\circ}$	✓ 45° ≤ <i>x</i> CA ✓ <i>x</i> ≤135° CA
	5.4.2	135° ≤ x < 180°	(2) $\checkmark 135^{\circ} \le x$ CA $\checkmark x < 180^{\circ}$ CA (2) [14]

6.1	$p^2 = q^2 + r^2 - 2qr\cos P$	✓ A
	OR/OF	
	$q^2 = p^2 + r^2 - 2pr\cos Q$ \mathbf{OR}/\mathbf{OF}	
	$r^2 = p^2 + q^2 - 2pq\cos R$	
6.2		(1)
0.2	A C D	
6.2.1	$\hat{ABC} = 90^{\circ} (\angle \text{ in semi-circle} / \angle \text{ in semi-sirkel})$	✓ ST A ✓ RE (2)
6.2.2	$\stackrel{\circ}{\mathrm{BCD}} = 144^{\circ} (\text{ext.} \angle \text{ of } \Delta / \textit{buite } \angle \textit{van } \Delta)$	✓ ST A ✓ RE (2)
6.2.3	$BD^{2} = BC^{2} + CD^{2} - 2BC\Box CD \cos BCD$ $= 6^{2} + 6^{2} - 2 \times 6 \times 6 \cos 144^{\circ}$ $= 130,24922$ BD $\approx 11,41$ cm	✓ F ✓ SF
6.2.4	$\frac{BC}{AC} = \sin 54^{\circ}$ $AC = \frac{6}{\sin 54^{\circ}}$ $\approx 7,42 \text{ cm}$	✓ ratio / verh A ✓ value / waarde CA
6.2.5	Area of/ $van \Delta ABC = \frac{1}{2}AC \times BC \sin ACB$	(2) ✓ F
	$= \frac{1}{2} \times 7,42 \times 6 \times \sin 36^{\circ}$	✓ SF CA
	$\approx 13,08 \text{ cm}^2$	✓ Area CA (3)
		[14]

(3) [14]

Buite \angle NIE gelyk aan teenoorst. binne \angle NIE)

10.1	$108 \text{ km/h} = \frac{108 \text{ km}}{1 \text{ h}} \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1 \text{ h}}{3600 \text{ s}} = 30 \text{ m/s}$	✓ conversion factors / herleidingsfaktore ✓ answer / antwoord
		(2)
10.2	$v = \pi Dn$	✓ F
	20 / (0.25)	✓ conversion /
	$30 \mathrm{m/s} = \pi \times (0, 25 \mathrm{m}) \times n$	herleiding ✓ SF A
	20	✓ Sr A ✓ S
	$n = \frac{30}{0,25\pi}$	✓ answer /
	$0,25\pi$	antwoord
	29 20 may/a	
	$n \approx 38,20 \text{ rev/s}$	(5)
10.3	$\omega = 2\pi n$	√ F
	2 20 20	✓ SF CA
	$=2\pi\times38,20$	✓ answer / antwoord
	≈ 240,02 rad/s	(3)
10.4	$s = vt$ OR/OF $D = S \times T$	✓F
	$=30\times(10\mathrm{min}\times60\mathrm{s})$	✓ SF CA
	=18000m	
	=18km	✓ answer /
		antwoord (3)
10.5	$n = \frac{\text{number of revolutions}/\text{aantal revolusies}}{\text{order}}$	(3)
10.0	$n = \frac{1}{\text{time/tyd}}$	
		✓ SF CA
	$38,20 = \frac{20}{t}$	
	$t \approx 0.52 \text{ sec}$	✓ answer /
		antwoord
		(2) [15]
		[15]

11.2		
11.2	4 cm	
	10 cm	
	$4h^2 - 4dh + x^2 = 0$	✓F
	$4(4)^{2} - 4d(4) + (10)^{2} = 0$	✓SF A
	164 - 16d = 0	✓S ✓ diameter /
	d = 10, 25	<i>middellyn</i> ✓ radius
	∴ $r = 5,125$ cm	(5)
11.3		
	9,42 cm	
	8,14 cm 7,1 cm 8 cm	7 cm
	$\mathbf{A}_{\mathrm{T}} = a \left(\frac{o_1 + o_n}{2} + o_2 + o_3 + o_4 + \dots + o_{n-1} \right)$	✓F
	$113,61 = a\left(\frac{9,42+7}{2} + 8,14+6,42+7,1+8\right)$	✓SF A
	113,61 = a(37,87)	✓S
	$\therefore a = 3 \text{ cm}$ OR/OF	✓ value/waarde of a
	UN/UF	OR/OF
	$A_T = a(m_1 + m_2 + m_3 + + m_{n-1})$	✓F
	$113,61 = a \left(\frac{9,42+8,14}{2} + \frac{8,14+6,42}{2} + \frac{6,42+7,1}{2} + \frac{7,1+8}{2} + \frac{8+7}{2} \right)$	✓SF A
	113,61 = a(37,87)	✓S
	$\therefore a = 3 \text{ cm}$	✓ value of a (4)
		[18]
	TOTAL/TOTAAL:	: 150
	IOTALI	. 130