# Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

## ОТЧЕТ Лабораторная работа №5

по курсу «Методы машинного обучения» на тему «Линейные модели, SVM и деревья решений»

Выполнил: студент группы ИУ5-21М Жизневский П.И.

### Лабораторная работа №5

Цель работы: Изучить линейные модели, SVM и деревья решений.

#### Задание

Требуется выполнить следующие действия:

- 1. Выбрать набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train\_test\_split разделите выборку на обучающую и тестовую.
- 4. Обучите одну из линейных моделей, SVM и дерево решений. Оцените качество модели с помощью трех подходящих для задачи метрик. Сравните качество полученных моделей.
- 5. Произведите для каждой модели подбор одного гиперпараметра с использованием GridSearchCV и кросс-валидации.
- 6. Повторите пункт 4 для найденных оптимальных значения гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.

#### Полкпючаем бибпиотеки:

```
In [0]: from google.colab import files
        from datetime import datetime
        import graphviz
        import matplotlib.pyplot as plt
        import numpy as np
        import pandas as pd
        from sklearn.linear_model import Lasso, LinearRegression
        from sklearn.metrics import mean_absolute_error
        from sklearn.metrics import median_absolute_error, r2_score
        from sklearn.model_selection import GridSearchCV
        from sklearn.model_selection import ShuffleSplit
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        from sklearn.svm import NuSVR
        from sklearn.tree import DecisionTreeRegressor
        from sklearn.tree import export_graphviz, plot_tree
        # Enable inline plots
        %matplotlib inline
        # Set plots formats to save high resolution PNG
        from IPython.display import set_matplotlib_formats
        set_matplotlib_formats("retina")
```

```
In [0]: #3azpysum ∂amacem uploaded = files.upload()
```

Выбрать файлы Райл не выбран

Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving datasets  $\underline{418778}\underline{1048669}\underline{cbb20}.csv$  to datasets  $\underline{418778}\underline{1048669}\underline{cbb20}.csv$ 

#### Предварительная подготовка данных

```
In [0]: data = pd.read_csv("Measurement_summary.csv")
```

#### Проверим типы данных в датасете:

```
In [47]: data.dtypes
Out[47]: Measurement date
                               object
                                 int64
         Station code
         Address
                               object
         Latitude
                               float64
                               float64
         Longitude
         S02
                               float64
         NO2
                               float64
         03
                               float64
         CO
                               float64
         PM10
                               float64
                               float64
         dtype: object
```

Содержимое датасета:

### In [48]: data.head()

#### Out[48]:

|   | Measurement date | Station code | Address                                        | Latitude  | Longitude  | SO2   | NO2   | О3    | СО  | PM10 | PM2.5 |
|---|------------------|--------------|------------------------------------------------|-----------|------------|-------|-------|-------|-----|------|-------|
| 0 | 2017-01-01 00:00 | 101          | 19, Jong-ro 35ga-gil, Jongno-gu, Seoul, Republ | 37.572016 | 127.005007 | 0.004 | 0.059 | 0.002 | 1.2 | 73.0 | 57.0  |
| 1 | 2017-01-01 01:00 | 101          | 19, Jong-ro 35ga-gil, Jongno-gu, Seoul, Republ | 37.572016 | 127.005007 | 0.004 | 0.058 | 0.002 | 1.2 | 71.0 | 59.0  |
| 2 | 2017-01-01 02:00 | 101          | 19, Jong-ro 35ga-gil, Jongno-gu, Seoul, Republ | 37.572016 | 127.005007 | 0.004 | 0.056 | 0.002 | 1.2 | 70.0 | 59.0  |
| 3 | 2017-01-01 03:00 | 101          | 19, Jong-ro 35ga-gil, Jongno-gu, Seoul, Republ | 37.572016 | 127.005007 | 0.004 | 0.056 | 0.002 | 1.2 | 70.0 | 58.0  |
| 4 | 2017-01-01 04:00 | 101          | 19, Jong-ro 35ga-gil, Jongno-gu, Seoul, Republ | 37.572016 | 127.005007 | 0.003 | 0.051 | 0.002 | 1.2 | 69.0 | 61.0  |

Удалим текстовый столбец Address, преобразуем дату в числовой формат

```
In [49]: data["Measurement date"] = pd.to_datetime(data["Measurement date"]).astype(np.int64)/1000000

data = data.drop(["Address"], axis=1)
data
```

#### Out[49]:

|     | Measurement date | Station code | Latitude  | Longitude  | SO2   | NO2   | О3    | со  | PM10 | PM2.5 |
|-----|------------------|--------------|-----------|------------|-------|-------|-------|-----|------|-------|
| 0   | 1.483229e+12     | 101          | 37.572016 | 127.005007 | 0.004 | 0.059 | 0.002 | 1.2 | 73.0 | 57.0  |
| 1   | 1.483232e+12     | 101          | 37.572016 | 127.005007 | 0.004 | 0.058 | 0.002 | 1.2 | 71.0 | 59.0  |
| 2   | 1.483236e+12     | 101          | 37.572016 | 127.005007 | 0.004 | 0.056 | 0.002 | 1.2 | 70.0 | 59.0  |
| 3   | 1.483240e+12     | 101          | 37.572016 | 127.005007 | 0.004 | 0.056 | 0.002 | 1.2 | 70.0 | 58.0  |
| 4   | 1.483243e+12     | 101          | 37.572016 | 127.005007 | 0.003 | 0.051 | 0.002 | 1.2 | 69.0 | 61.0  |
|     |                  |              |           |            |       |       |       |     |      |       |
| 513 | 1.485076e+12     | 101          | 37.572016 | 127.005007 | 0.004 | 0.010 | 0.029 | 0.3 | 88.0 | 14.0  |
| 514 | 1.485079e+12     | 101          | 37.572016 | 127.005007 | 0.004 | 0.009 | 0.030 | 0.3 | 62.0 | 16.0  |
| 515 | 1.485083e+12     | 101          | 37.572016 | 127.005007 | 0.005 | 0.010 | 0.031 | 0.3 | 63.0 | 16.0  |
| 516 | 1.485086e+12     | 101          | 37.572016 | 127.005007 | 0.005 | 0.009 | 0.032 | 0.3 | 63.0 | 20.0  |
| 517 | 1.485090e+12     | 101          | 37.572016 | 127.005007 | 0.005 | 0.011 | 0.031 | 0.3 | 64.0 | 17.0  |
|     |                  |              |           |            |       |       |       |     |      |       |

518 rows × 10 columns

#### In [50]: data.dtypes

Out[50]: Measurement date float64 Station code int64 float64 Latitude float64 Longitude 502 float64 NO2 float64 03 float64 CO float64 PM10 float64 PM2.5 float64

dtype: object

#### Размер датасета

In [51]: data.shape

Out[51]: (518, 10)

Проверим основные статистические характеристики набора данных:

In [52]: data.describe()

Out[52]:

|       | Measurement date | Station code | Latitude     | Longitude    | SO2        | NO2        | О3         | со         | PM10       | PM2.5      |
|-------|------------------|--------------|--------------|--------------|------------|------------|------------|------------|------------|------------|
| count | 5.180000e+02     | 518.0        | 5.180000e+02 | 5.180000e+02 | 518.000000 | 518.000000 | 518.000000 | 518.000000 | 518.000000 | 518.000000 |
| mean  | 1.484159e+12     | 101.0        | 3.757202e+01 | 1.270050e+02 | 0.004384   | 0.038784   | 0.014178   | 0.711390   | 52.490347  | 36.959459  |
| std   | 5.388408e+08     | 0.0          | 6.401066e-14 | 1.749625e-12 | 0.002610   | 0.019625   | 0.010952   | 0.419871   | 30.897017  | 27.649651  |
| min   | 1.483229e+12     | 101.0        | 3.757202e+01 | 1.270050e+02 | 0.002000   | 0.007000   | 0.002000   | 0.100000   | 4.000000   | 1.000000   |
| 25%   | 1.483694e+12     | 101.0        | 3.757202e+01 | 1.270050e+02 | 0.003000   | 0.021000   | 0.003000   | 0.400000   | 30.000000  | 14.000000  |
| 50%   | 1.484159e+12     | 101.0        | 3.757202e+01 | 1.270050e+02 | 0.004000   | 0.039000   | 0.012500   | 0.600000   | 45.000000  | 31.000000  |
| 75%   | 1.484625e+12     | 101.0        | 3.757202e+01 | 1.270050e+02 | 0.005000   | 0.054000   | 0.024000   | 0.900000   | 68.750000  | 53.000000  |
| max   | 1.485090e+12     | 101.0        | 3.757202e+01 | 1.270050e+02 | 0.051000   | 0.086000   | 0.052000   | 6.000000   | 160.000000 | 149.000000 |

Проверим наличие пропусков в данных:

#### Разделение данных

Разделим данные на целевой столбец и признаки:

```
In [0]: y = data["PM2.5"]
          X = data.drop("PM2.5", axis=1)
In [55]: print(X.head(), "\n")
          print(y.head())
             Measurement date Station code Latitude ...
                                                                   03 CO PM10
                                  101 37.572016 ... 0.002 1.2
                 1.483229e+12
                                                                             73.0
                                        101 37.572016 ... 0.002 1.2 71.0
101 37.572016 ... 0.002 1.2 70.0
101 37.572016 ... 0.002 1.2 70.0
                 1.483232e+12
                 1.483236e+12
          3
                 1.483240e+12
          4
                 1.483243e+12
                                         101 37.572016 ... 0.002 1.2
          [5 rows x 9 columns]
          0
               57.0
               59.0
               59.0
               58.0
               61.0
          Name: PM2.5, dtype: float64
In [56]: print(X.shape)
          print(y.shape)
          (518, 9)
          (518,)
```

Предобработка данных

```
In [57]: columns = X.columns
    scaler = StandardScaler()
    X = scaler.fit_transform(X)
    pd.DataFrame(X, columns=columns).describe()
```

Out[57]:

|       | Measurement date | Station code | Latitude | Longitude | SO2           | NO2           | О3            | со            | PM10          |
|-------|------------------|--------------|----------|-----------|---------------|---------------|---------------|---------------|---------------|
| count | 5.180000e+02     | 518.0        | 518.0    | 518.0     | 5.180000e+02  | 5.180000e+02  | 5.180000e+02  | 5.180000e+02  | 5.180000e+02  |
| mean  | 2.614811e-17     | 0.0          | 0.0      | 1.0       | -3.804336e-16 | -3.827912e-16 | -7.287178e-18 | 1.731776e-16  | 2.032908e-16  |
| std   | 1.000967e+00     | 0.0          | 0.0      | 0.0       | 1.000967e+00  | 1.000967e+00  | 1.000967e+00  | 1.000967e+00  | 1.000967e+00  |
| min   | -1.728710e+00    | 0.0          | 0.0      | 1.0       | -9.145276e-01 | -1.621080e+00 | -1.112951e+00 | -1.457545e+00 | -1.570936e+00 |
| 25%   | -8.643552e-01    | 0.0          | 0.0      | 1.0       | -5.309444e-01 | -9.070331e-01 | -1.021558e+00 | -7.423493e-01 | -7.286169e-01 |
| 50%   | 0.000000e+00     | 0.0          | 0.0      | 1.0       | -1.473611e-01 | 1.102776e-02  | -1.533219e-01 | -2.655521e-01 | -2.426638e-01 |
| 75%   | 8.643552e-01     | 0.0          | 0.0      | 1.0       | 2.362221e-01  | 7.760784e-01  | 8.977006e-01  | 4.496437e-01  | 5.267619e-01  |
| max   | 1.728710e+00     | 0.0          | 0.0      | 1.0       | 1.788105e+01  | 2.408187e+00  | 3.456712e+00  | 1.260797e+01  | 3.482976e+00  |

Разделим выборку на тренировочную и тестовую:

#### Обучение моделей

Напишем функцию, которая считает метрики построенной модели:

#### Линейная модель — Lasso

Запустим метод Lasso с гиперпараметром lpha=1:

Проверим метрики построенной модели:

```
In [62]: test_model(las_1)
    mean_absolute_error: 4.979494764499803
    median_absolute_error: 4.000764477258743
    r2_score: 0.9303470682835011
```

#### SVM

Запустим метод NuSVR с гиперпараметром  $\nu=0.5$ :

Проверим метрики построенной модели:

```
In [64]: test_model(nusvr_05)
    mean_absolute_error: 9.01833966598623
    median_absolute_error: 5.706304530655714
    r2_score: 0.7203051791237243
```

#### Дерево решений

Попробуем дерево решений с неограниченной глубиной дерева:

Проверим метрики построенной модели:

```
In [66]: test_model(dt_none)
    mean_absolute_error: 2.730769230769231
    median_absolute_error: 2.0
    r2_score: 0.9804172449201954
```

```
In [0]: def stat_tree(estimator):
               n_nodes = estimator.tree_.node_count
               children_left = estimator.tree_.children_left
               children_right = estimator.tree_.children_right
               node_depth = np.zeros(shape=n_nodes, dtype=np.int64)
               is_leaves = np.zeros(shape=n_nodes, dtype=bool)
               stack = [(0, -1)] # seed is the root node id and its parent depth while len(stack) > 0:
                    node_id, parent_depth = stack.pop()
                    node_depth[node_id] = parent_depth + 1
                    # If we have a test node
                    if (children_left[node_id] != children_right[node_id]):
    stack.append((children_left[node_id], parent_depth + 1))
                        stack.append((children_right[node_id], parent_depth + 1))
                    else:
                        is leaves[node id] = True
               print("Всего узлов:", n_nodes)
               print("Листовых узлов:", sum(is_leaves))
print("Глубина дерева:", max(node_depth))
               print("Минимальная глубина листьев дерева:", min(node_depth[is_leaves]))
               print("Средняя глубина листьев дерева:", node_depth[is_leaves].mean())
In [68]: stat_tree(dt_none)
          Всего узлов: 623
          Листовых узлов: 312
           Глубина дерева: 16
           Минимальная глубина листьев дерева: 3
```

Подбор гиперпараметра K

Средняя глубина листьев дерева: 9.945512820512821

#### Линейная модель — Lasso

Введем список настраиваемых параметров:

Запустим подбор параметра:

0.894

0.892

Проверим результаты при разных значения гиперпараметра на тренировочном наборе данных:

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Видно, что метод Lasso в данном случае не является лучшим вариантом, т.к. выдает плохие результаты

```
In [72]: plt.plot(param_range, gs.cv_results_["mean_test_score"]);
0.940-
0.939-
```



Проверим на примере обычной линейной регрессии:

#### **SVM**

Введем список настраиваемых параметров:

```
In [102]: param_range = np.arange(0.1, 1.01, 0.1)
    tuned_parameters = [{'nu': param_range}]
    tuned_parameters

Out[102]: [{'nu': array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])}]
```

Запустим подбор параметра:

Проверим результаты при разных значения гиперпараметра на тренировочном наборе данных:

```
In [80]: plt.plot(param_range, gs.cv_results_["mean_train_score"]);

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.4

0.6

0.8

1.0
```

Видно, что метод NuSVR справляется лучше, но не глобально.

На тестовом наборе данных картина ровно та же:

```
In [81]: plt.plot(param_range, gs.cv_results_["mean_test_score"]);
```



Проведем обучение заново с параметром 0,3

К сожалению, результаты снова ухудшились

#### Дерево решений

Введем список настраиваемых параметров:

Запустим подбор параметра:

Проверим результаты при разных значения гиперпараметра на тренировочном наборе данных:

```
In [92]: plt.plot(param_range, gs.cv_results_["mean_train_score"]);

1.00
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.70
0.65
```

Видно, что на тестовой выборке модель легко переобучается.

На тестовом наборе данных картина аналогична:

Проведем дополнительное исследование в районе пика.

```
In [103]: param_range = np.arange(7, 14, 1)
          tuned_parameters = [{'max_depth': param_range}]
          tuned_parameters
Out[103]: [{'max_depth': array([ 7, 8, 9, 10, 11, 12, 13])}]
In [109]: gs = GridSearchCV(DecisionTreeRegressor(), tuned_parameters,
                             cv=ShuffleSplit(n_splits=10), scoring="r2",
                             return_train_score=True, n_jobs=-1)
          gs.fit(X, y)
          gs.best_estimator_
Out[109]: DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=12,
                                max_features=None, max_leaf_nodes=None,
                                min_impurity_decrease=0.0, min_impurity_split=None,
                                min_samples_leaf=1, min_samples_split=2,
                                min_weight_fraction_leaf=0.0, presort='deprecated',
                                random_state=None, splitter='best')
In [110]: plt.plot(param_range, gs.cv_results_["mean_test_score"]);
           0.93
           0.92
           0.91
           0.90
           0.89
           0.87
```

Получили, что глубину дерева необходимо ограничить 12 уровнями. Проверим этот результат.

10

Вновь посмотрим статистику получившегося дерева решений.

```
In [112]: stat_tree(reg)

Всего узлов: 579
Листовых узлов: 290
Глубина дерева: 12
Минимальная глубина листьев дерева: 3
Средняя глубина листьев дерева: 9.575862068965517
```

В целом получили примерно тот же результат. Посмотрим на построенное дерево.

```
In [113]: plot_tree(reg, filled=True);
```



Данное дерево уже выглядит более наглядно. Заметно что было сгенерировано множество условий, и, можно сказать, чир модель была переобучена, с другой стороны, для задачи регресии древо и не могло быть построено иначе. Несмотря на то что на тестовой выборке древо показало свою работоспособность, лучше использовать данный метод для задач классификации.