Nom: Correcteur: Note:

Soit E et F deux \mathbb{K} -ev de dimensions respectives p et n, et de bases respectives \mathscr{B} et \mathscr{C} . Soit $u \in \mathscr{L}(E,F)$. Définir $\mathrm{Mat}_{\mathscr{B},\mathscr{C}}(u)$. Quelles sont ses dimensions?

Soit E et F deux \mathbb{K} -ev de dimensions respectives n et p. Soient \mathscr{B} et \mathscr{B}' deux bases de E et \mathscr{C} et \mathscr{C}' deux bases de F. Soit $u \in \mathscr{L}(E,F)$.

Exprimer $\mathrm{Mat}_{\mathscr{B}',\mathscr{C}'}(u)$ en fonction de $\mathrm{Mat}_{\mathscr{B},\mathscr{C}}(u)$ et de matrices de passage. Un schéma sera vivement apprécié.

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $C \in \mathcal{M}_{p,q}(\mathbb{K})$. Exprimer ${}^t(AC)$ en fonction de tA et de tC , puis démontrer ce résultat.

Soit $f: x \mapsto \frac{e^x}{\sqrt{1+x}}$, notons \mathscr{C}_f sa courbe représentative. Déterminer l'équation de la tangente à \mathscr{C}_f en 0 ainsi que sa position relative par rapport à \mathscr{C}_f au voisinage de 0.