

Radar Systems

Lecture 4. Target Radar Cross Section

구 자 열

Generic Radar Block Diagram

Definition of Radar Cross Section (RCS or σ)

RCS = LIM
$$f = 10^{-2}$$
 $f = 10^{-2}$ (Unit: Area)

Figure by MIT OCW.

Radar Cross Section is the area intercepting that amount of power which, if radiated isotropically, produces the same received power in the radar.

Factors Determining RCS

Threat's View of the Radar Range Equation

차 례

- What are typical levels of radar cross section?
 - On what do these depend?
- What contributes to radar cross section?
 - What are the scattering mechanisms?
 - What are typical signature contributors?
- How can target radar cross section be determined?
 - Measurement
 - Prediction

Radar Cross Section of Sphere

Rayleigh Region

 $\lambda >> a$ $\sigma = k / \lambda^4$

Resonance or Mie

Region

Oscillations
Backscattered wave
interferes with
creeping wave

Optical Region

 $\lambda << a$ $\sigma = \pi a^2$ Surface and edge scattering occur

Figure by MIT OCW.

Backscatter of Short Pulse from Sphere

Radius of sphere is equal to the radar wavelength

Radar Cross Section of Typical RV

Radar Cross Section of Cessna 150L

Examples of Radar Cross Sections

	Square meters
Small, single engine aircraft	1
Four passenger jet	2
Large fighter	6
Medium jet airliner	40
Jumbo jet	100
Helicopter	3
Small open boat	0.02
Small pleasure boat (20-30 ft)	2
Cabin cruiser (40-50 ft)	10
Ship(5,000 tons displacement, L Band)	10,000
Automobile / Small truck	100 - 200
Bicycle	2
Man	1
Birds	10 ⁻² - 10 ⁻³
Insects	10 ⁻⁴ - 10 ⁻⁵

차 례

- What are typical levels of radar cross section?
 - On what do these depend?
- What contributes to radar cross section?

- What are the scattering mechanisms?
- What are typical signature contributors?
- How can target radar cross section be determined?
 - Measurement
 - Prediction

RCS Target Contributors

- Types of RCS Contributors
 - Structural (Body shape, Control surfaces, etc.)
 - Avionics (Altimeter, Seeker, GPS, etc.)
 - Propulsion (Engine inlets and exhausts, etc.)

Scattering Mechanisms for an Arbitrary Target

Measured RCS of C-29 Aircraft Model

Full Scale C-29 BAE Hawker 125-800

Methods of Radar Cross Section Calculation

RCS Method	Approach to Determine Surface Currents	
Finite Difference-	Solve Differential Form of Maxwell's	
Time Domain (FD-TD)	Equation's for Exact Fields	
Method of Moments	Solve Integral Form of Maxwell's	
(MoM)	Equation's for Exact Currents	
Geometrical Optics	Current Contribution Assumed to Vanish	
(GO)	Except at Isolated Specular Points	
Physical Optics	Currents Approximated by Tangent	
(PO)	Plane Method	
Geometrical Theory of	Geometrical Optics with Added Edge	
Diffraction (GTD)	Current Contribution	
Physical Theory of	Physical Optics with Added Edge	
Diffraction (PTD)	Current Contribution	

RCS Prediction Techniques Family Tree

Description of Sample Cases on Video

FD-TD Simulation of Scattering by Strip

- Gaussian pulse plane wave incidence
- E-field polarization (E_y plotted)
 Phenomena: specular reflection

FD-TD Simulation of Scattering by Strip

- Gaussian pulse plane wave incidence
- E-field polarization (E_y plotted)
 Phenomena: leading edge diffraction

FD-TD Simulation of Scattering by Strip

- Gaussian pulse plane wave incidence
- H-field polarization (H_y plotted)
 Phenomena: trailing edge diffraction

Monostatic RCS of a Square Plate

FD-TD Simulation of Scattering by Cylinder

- Gaussian pulse plane wave incidence
- E-field polarization (E_y plotted)
 Phenomena: specular reflection

FD-TD Simulation of Scattering by Cylinder

- Gaussian pulse plane wave incidence
- H-field polarization (H_y plotted)
 Phenomena: creeping wave

FD-TD Simulation of Scattering by Cavity

- Sinusoidal plane wave incidence
- E-field polarization (E_y plotted)
 Phenomena: standing wave

차 례

- What are typical levels of radar cross section?
 - On what do these depend?
- What contributes to radar cross section?
 - What are the scattering mechanisms?
 - What are typical signature contributors?
- How can target radar cross section be determined?
 - Measurement
 - Prediction

Techniques for RCS Analysis

Full Scale Measurements

Target on support

- Foam column mounting
 - Dielectric properties of styrofoam close to those of free space
- Metal pylon mounting
 - Metal pylon shaped to reduce radar reflections
 - Background subtraction can be used

Derived from: http://www.af.mil/shared/media/photodb/photos/050805-F-0000S-003.jpg

Johnson Generic Aircraft Model (JGAM)

Compact Range RCS Measurement

Radar Reflectivity Laboratory (Pt. Mugu) / AFRL Compact Range (WPAFB)

Scale Model Measurement

MQM-107 Drone in 0.29, 0.034, and 0.01 scaled sizes

Scaling of Targets for RCS Measurements

	T	
QUANTITY	FULL-SCALE	SUBSCALE
LENGTH	L	L' = L/S
TIME	t	t' = t/S
FREQUENCY	f	f' = Sf
WAVELENGTH	λ	λ' = λ / S
CONDUCTIVITY	g	g' = Sg
PERMITTIVITY	ε	$\varepsilon' = \varepsilon$
PERMEABILITY	μ	μ' = μ
RCS	σ	$\sigma' = \sigma/S^2$
	- 4	

Electromagnetic Scattering

- TWO STEP PROCESS TO DETERMINE SCATTERED FIELD
 - DETERMINE INDUCED SURFACE CURRENTS
 - CALCULATE FIELD RADIATED BY CURRENTS

RCS Prediction Approaches

- High frequency approximations
 - Physical theory of diffraction

- Advantages
 - Reduced computational requirements
 - Arbitrary, complex geometries
- Disadvantages
 - Neglects some scattering
 - Applicable only to large, smooth geometries
- Codes
 - Xpatch

- Exact numerical approaches
 - Method of Moments

- Advantages
 - Exact formulation
- Disadvantages
 - Computationally intensive
- Codes
 - CARLOS
 - CICERO (Body of revolution)
 - FISC
 - FERM

Measured and Calculated RCS of JGAM

Signature Analysis Approaches

X-band air vehicle targets

	69	Measurement		Prediction		
		Full Scale	Subscale	High Frequency	Exact	
	Body Shape					
	Surface Details					
Applicability	Inlet/ Exhaust					
Wateriai	Materials					
	Antennas					
	Cost					
No issues Some Issues Significant Issues						

Q & A

