

Ayudantía 3

3 de abril de 2020

Profesores C. Riveros - J. Salas

Tamara Cucumides y Bernardo Barías

Pregunta 1

Sean P y S fórmulas en lógica de predicados. Considere que x no es variable libre en S y demuestre las siguientes equivalencias lógicas:

- $(\exists x P(x)) \land S \equiv \exists x (P(x) \land S)$
- $(\forall x P(x)) \lor S \equiv \forall x (P(x) \lor S)$
- $\blacksquare (\exists x P(x)) \to S \equiv \forall x (P(x) \to S)$

Solución

 $(\exists x P(x)) \land S \equiv \exists x (P(x) \land S)$

$$\mathcal{I} \models (\exists x P(x)) \land S$$

$$\leftrightarrow \exists a \in \mathcal{I}(\text{dom}) \text{ tal que } P(a) \text{ y } \mathcal{I} \models S$$

$$\leftrightarrow \exists a \in \mathcal{I}(\text{dom}) \text{ tal que } \mathcal{I} \models P(a) \land S$$

$$\leftrightarrow \mathcal{I} \models \exists x (P(x) \land S)$$

■ $(\forall x P(x)) \lor S \equiv \forall x (P(x) \lor S)$ Primero vamos de izquierda a derecha:

$$\begin{split} \mathcal{I} &\models (\forall x P(x)) \vee S \\ \leftrightarrow \forall a \in \mathcal{I}(\text{dom}) \ P(a) \ \text{o} \ \mathcal{I} \models S \\ \text{sin pérdida de generalidad} \ \forall a \in \mathcal{I}(\text{dom}) \ P(a) \\ \leftrightarrow \mathcal{I} \models \forall x P(x) \\ \to \mathcal{I} \models \forall x P(x) \vee S \end{split}$$

Ahora la otra dirección:

$$\begin{split} \mathcal{I} &\models \forall x (P(x) \vee S) \\ &\leftrightarrow \forall a \in \mathcal{I}(\mathrm{dom})(P(a) \vee S) \\ &\text{sin pérdida de generalidad } \forall a \in \mathcal{I}(\mathrm{dom}) \ P(a) \\ &\leftrightarrow \mathcal{I} \models \forall x P(x) \\ &\to \mathcal{I} \models (\forall x P(x)) \vee S \end{split}$$

 $\blacksquare (\exists x P(x)) \to S \equiv \forall x (P(x) \to S)$

$$\mathcal{I} \models (\exists x P(x)) \to S$$

$$\leftrightarrow \mathcal{I} \models \neg (\exists x P(x)) \lor S$$

$$\leftrightarrow \mathcal{I} \models (\forall x \neg P(x)) \lor S$$

Usamos la equivalencia del inciso anterior y tenemos

$$\leftrightarrow \mathcal{I} \models \forall x (\neg P(x) \lor S)$$

$$\leftrightarrow \mathcal{I} \models \forall x (P(x) \to S)$$

Pregunta 2

a) Demuestre que la siguiente oración es satisfacible:

$$\varphi = \forall x_1 \forall x_2 \forall y_1 \forall y_2 (x_1 = y_1 \land x_2 = y_2 \land P(x_1, x_2)) \rightarrow P(y_1, y_2)$$

Para esto dé una interpretación \mathcal{I} tal que $\mathcal{I} \models \varphi$

b) Demuestre que la siguiente oración es una tautología:

$$\varphi = (\exists x P(x) \to \forall y Q(y)) \to \forall x \forall y (P(x) \to Q(y))$$

Para esto muestre que para toda interpretación \mathcal{I} se cumple $\mathcal{I} \models \varphi$

Solución

- a) Debemos encontrar una interpretación \mathcal{I} tal que $\mathcal{I} \models \varphi$. Proponemos la siguiente:
 - $\mathcal{I}(dom) = \mathbb{N}$
 - $\mathcal{I}(P(x,y)) = x \le y$

Ahora debemos demostrar que $\mathcal{I} \models \varphi$. Veamos entonces que para todo $x_1, x_2, y_1, y_2 \in \mathbb{N}$, si $x_1 = y = 1$, $x_2 = y_2$ y $x_1 \leq y_1$, entonces $x_2 \leq y_2$.

Como hemos encontrado una interpretación $\mathcal{I} \models \varphi$, entonces φ es satisfacible.

b) Para probar que φ es una tautología, la reescribiremos mediante equivalencias lógicas. Veamos que la fórmula tiene la siguiente estructura:

$$\alpha \to \beta$$

con $\alpha = (\exists x P(x) \to \forall y Q(y))$ y $\beta = \forall x \forall y (P(x) \to Q(y))$. Intentaremos reescribir esta formula para que quede como $\alpha \to \alpha$ lo cual es una tautología. Para eso basta demostrar que $\alpha \equiv \beta$.

$$(\exists x P(x) \to \forall y Q(y)) \equiv (\neg(\exists x P(x)) \lor \forall y Q(y))$$
$$\equiv ((\forall x \neg P(x)) \lor (\forall y Q(y)))$$

Ahora como P(x) no tiene libre a la variable x y Q(y) no tiene libre a y, tenemos

$$\equiv (\forall x \forall y (\neg P(x) \lor Q(y)))$$

$$\equiv (\forall x \forall y (P(x) \to Q(y))) = \beta$$

Con lo que queda demostrado que φ es tautología

Pregunta 3

Sean $\varphi_1, \varphi_2, \varphi$ fórmulas en LP definidas de la siguiente forma:

$$\begin{array}{lll} \varphi_1 &=& \forall x \forall y \forall z. (R(x,y) \land R(y,z)) \rightarrow R(x,z) \\ \varphi_2 &=& \forall x \forall y. (R(x,y) \land R(y,x)) \rightarrow x = y \\ \varphi_3 &=& \forall x \exists y. R(x,y) \rightarrow \exists y \forall x. R(x,y) \end{array}$$

Demuestre que ninguna de las afirmaciones es consecuencia lógica de las otras dos.

Solución

Para esta pregunta nos piden demostrar los 3 casos:

 $\bullet \{\varphi_1, \varphi_2\} \not\models \varphi_3$

Recordemos que $\Sigma \models \alpha$ si para cualquier interpretación \mathcal{I} tal que $\mathcal{I} \models \Sigma$ se cumple que $\mathcal{I} \models \alpha$. De lo anterior, si $\{\varphi_1, \varphi_2\} \not\models \varphi_3$, entonces existe al menos una interpretación que satisface φ_1 y φ_2 pero no satisface φ_3 .

Si construimos \mathcal{I}_1 tal que

- $\mathcal{I}_1(dom) := \mathbb{N}$
- $\mathcal{I}_1(R(x,y)) := x \leq y$

y podemos ver que la interpretación \mathcal{I}_1 hace verdad φ_1, φ_2 pero no a φ_3 .

 $\bullet \{\varphi_2, \varphi_3\} \not\models \varphi_1$

Análogamente al item anterior, podemos construir \mathcal{I}_2 tal que:

- $\mathcal{I}_2(dom) := \{1, 2, 3\}$
- $\mathcal{I}_2(R(x,y)) := x y = 1$

y podemos ver que la interpretación \mathcal{I}_2 hace verdad φ_2, φ_3 pero no a φ_1 .

- $\{\varphi_1, \varphi_3\} \not\models \varphi_2$ Por último, construimos \mathcal{I}_3 tal que
 - $\mathcal{I}_3(dom) := \{1, 2, 3\}$
 - $\mathcal{I}_3(R(x,y)) := x + y < 10$

y podemos ver que la interpretación \mathcal{I}_3 hace verdad φ_1, φ_3 pero no a φ_2 .

Pregunta 4

Todo gato es querido por al menos un perro.

Ningún perro quiere a un reptil

Por lo tanto, ningún gato es reptil.

Modele la afirmación anterior usando lógica de predicados y demuestre que es verdadera o que es falsa.

Solución

Primero modelamos las 3 afirmaciones en lógica de predicados. Para esto construimos los siguientes predicados:

- G(x) := x es gato
- P(x) := x es perro
- $\blacksquare R(x) := x \text{ es reptil}$
- Q(x,y) := x quiere a y

Y usando los predicados anteriores, modelamos el problema:

- $\varphi_1 := \forall x \exists y (G(x) \to (P(y) \land Q(y,x)))$
- $\varphi_2 := \forall x \forall y ((P(x) \land R(y)) \rightarrow \neg Q(x,y))$
- $\bullet \varphi := \forall x (G(x) \to \neg R(x))$

Ahora, para demostrar que la conclusión es válida, debemos demostrar que $\{\varphi_1, \varphi_2\} \models \varphi$. Para esto, debemos tomar una valuación cualquiera \mathcal{I} que satisfaga φ_1 y φ_2 , y mostrar que también satisface a φ .

Sea \mathcal{I} tal que $\mathcal{I} \models \varphi_1 \land \varphi_2$. Supongamos por contradicción que $\mathcal{I} \not\models \varphi$ ($\mathcal{I} \models \neg \varphi$).

$$\neg \varphi \equiv \forall x (G(x) \to \neg R(x))
\equiv \exists x \neg (\neg G(x) \lor \neg R(x))
\equiv \exists x (G(x) \land R(x))$$
(1)

Si hacemos instanciación existencial de la ecuación (1) tenemos que existe un $a \in \mathcal{I}(dom)$ tal que

$$\mathcal{I} \models G(a) \land R(a) \tag{2}$$

Por otro lado, podemos hacer instanciación universal en φ_1 , y se cumple para x=a (el mismo elemento a anterior):

$$\mathcal{I} \models \exists y (G(a) \to (P(y) \land Q(y, a)))$$

y haciendo instanciación existencial a lo anterior, obtenemos que existe un $b_a \in \mathcal{I}(dom)$ tal que

$$\mathcal{I} \models G(a) \to (P(b_a) \land Q(b_a, a)) \tag{3}$$

De la misma forma, podemos hacer instanciación universal en la fórmula φ_2 y como se cumple para todo $x \in \mathcal{I}(dom)$ entonces se cumple para $x = b_a$:

$$\mathcal{I} \models \forall y ((P(b_a) \land R(y)) \to \neg Q(b_a, y))$$

Y como lo anterior se cumple para cualquier $y \in \mathcal{I}(dom)$, entonces también se cumple para y = a:

$$\mathcal{I} \models ((P(b_a) \land R(a)) \to \neg Q(b_a, a))$$

$$\Rightarrow \mathcal{I} \models \neg (P(b_a) \land R(a)) \lor \neg Q(b_a, a)$$

$$\Rightarrow \mathcal{I} \models \neg (P(b_a) \land R(a) \land Q(b_a, a))$$
(4)

Si juntamos (2) y (3) obtenemos que

$$\mathcal{I} \models [\neg G(a) \lor (P(b_a) \land Q(b_a, a))] \land G(a) \land R(a)$$

Pero notemos que

$$(\neg A \lor B) \land A \equiv (\neg A \land A) \lor (B \land A)$$

$$\equiv B \land A$$

Luego, de lo anterior tenemos que

$$\mathcal{I} \models (P(b_a) \land Q(b_a, a)) \land G(a) \land R(a)$$

$$\Rightarrow \mathcal{I} \models P(b_a) \land Q(b_a, a) \land R(a)$$
(5)

Y juntando (4) y (5) tenemos que

$$\mathcal{I} \models \neg [P(b_a) \land Q(b_a, a) \land R(a)] \land [P(b_a) \land Q(b_a, a) \land R(a)] \equiv 0$$

Lo cual es una contradicción, ya que ninguna interpretación satisface a 0. Entonces, concluimos que \mathcal{I} debe satisfacer φ .