1A Logic: Worksheet 6	5	Excellent
	4	Good
Your name:	3	Satisfactory
Logic class (A/B/C/D/E):	2	Weak
Logic class tutor:	1	Very poor

Reading

An Introduction to Formal Logic, chapters 26–29, 32–33.

1 Self-marked exercises

Do the following questions from the end-of-chapter exercises in *An Introduction to Formal Logic*. Then, when you have completed them, carefully check your answers against the answers available on the book's website at http://www.logicbook.net.

Exercises 26: last five questions.

Exercises 27: questions for the q-valuation whose domain includes Romeo.

Exercises 29: questions B3-6.

Exercises 33: odd numbers of A.

Correct your own work *in red*, for the marker to review. In the box below, note any residual queries or problems you have with these self-marked exercises (use a continuation sheet if you have more queries than you can mention here).

Queries	

2 Further exercises

- **A.** Use **QL** trees to show the following (these are called *prenexing rules*):
 - 1. $\forall x(Fx \supset Ga)$ is logically equivalent to $(\exists xFx \supset Ga)$.
 - 2. $\exists x(Fx \supset Ga)$ is logically equivalent to $(\forall xFx \supset Ga)$.
 - 3. $\forall x(Ga \supset Fx)$ is logically equivalent to $(Ga \supset \forall xFx)$.
 - 4. $\exists x(Ga \supset Fx)$ is logically equivalent to $(Ga \supset \exists xFx)$.
- **B.** Consider this argument: $(\forall x Fx \equiv \forall x Gx) : \forall x (Fx \equiv Gx)$. Is it q-valid? If so, show it is so using a tree. If not, give a q-valuation which shows that it is invalid.
- C. Consider the sentence "The Holy Roman Emperor is holy".
 - 1. Translate it into $\mathbf{QL}^{=}$ as best your can.
 - 2. Give three (consistent!) **QL**⁼ sentences which are inconsistent with the **QL**⁼ sentence you wrote down in answer to the previous question. Give natural English translations for each of these three sentences.