IMDb

Movie Recommendation System

Marissa F., Vishal N., Alex Q., Neha T., Abbie A.

Data Description & System Objective

- Dataset: export from IMDb
 - Distributed into tables on movie data and their ratings
 - ~ 20M rows of data
 - Films from 1894 2019
- Project objective: ingest large dataset using AWS and provide end users a recommendation
 - Intake selected preferences
 - Recommendation driven by ratings and machine learning.

What to watch

Fan favorites

This week's top TV and movies

Requirements

Business Requirements and Attributes

Business Requirement ID	Functional/Technical	Business Requirement	Rationale	Source
1	Technical	Collect IMBD movie data.	This data will be used for predictive analysis.	Kaggle
2	Technical	Merge applicable tables to build single datasource.	This will allow for comprehensive analysis of all data.	Python
3	Functional	Populate single dataset to AWS	Store data in secure and faster environment	AWS
4	Technical	Wrangle data to remove duplicate entries, keeping only original langauge and title.	Remove duplicates that may weaken analysis	Python
5	Functional	Remove incomplete data, data with low number of votes for ratings (dependent variable), and more recent years only (as determined by quality of earlier movie data).	Ensure high quality data is used	Python
6	Functional	Perform basic statistical analysis to understand data.	Understand linkages and relationships between variables.	Python
7	Functional	Use data to make predictive recommendations on movies.	Utilize findings to recommend movies based on various preferences.	Python
8	Technical	Test model	Ensure model works	Python
9	Functional	Deploy model using AWS	Share with others!	AWS
10	Technical	Ensure application should shows horizontal scale	Fast computing speed	AWS

Program Development

Data Preparation

- Combine 4 tables, selecting relevant variables to include in models
- Convert csv into Pyspark dataframe
- Remove redundant entries
 - Redundancies caused by movies translated into various languages
- Delete entries without ratings
 - This is a key variable for modeling
- Export cleaned data into parquet files for

consumption

Filtering data in PySpark for original titles, and removing rows with NA, filtering for movies with less than 250 votes (numVotes) import pandas as pd import numpy as np from pyspark.sql.functions import lit, when, col, regexp extract movies_df_1 = movies_df.filter(movies_df["isOriginalTitle"] == '1') movies df 1.show() titleId ordering title region language types | attributes | isOriginalTitle | |tt0000001 Carmencita \N original 1|tt0000001 short \N original |tt0000002| 1 Le clown et ses c... \N| \N| 1|tt0000002 short Le clown |tt0000003| Pauvre Pierrot \N| \N original 1|tt0000003 short |tt0000004 \N original \N| 1|tt0000004 Un bon bock \N| short |tt0000005 Blacksmith Scene \N| \N original 1|tt0000005 short Blac |tt0000006 Chinese Opium Den \N original 1|tt0000006 Chine short \N original \N 1|tt0000007 |tt0000007 2 | Corbett and Court... \N| short | Corbett tt0000008 4 Edison Kinetoscop... \N original \N 1|tt0000008 short Edison K |tt0000009| Miss Jerry \N| \N original 1|tt0000009 movie |tt0000010| \N original 1|tt0000010 11 La sortie de l'us.. short Exiting

```
Figure 2. Exporting code in PySpark

1. Parquet export code
2. CSV export code

[ ] #partitioned file
    movies_df_2.write.parquet("drive/My Drive/Unstructured Final Project/MoviesDatasetParquet")
    #csv
    movies_df_2.coalesce(1).write.mode("overwrite")\
    .format("com.databricks.spark.csv")\
    .option("header", "true")\
    .option("sep", "|")\
    .save('drive/My Drive/Unstructured Final Project/my_output_csv')
```

Data Exploration & Analytics

Highest Rated Content on IMDb

Most Popular Content on IMDb

Available Content

Popular Content

Machine Learning in PySpark to provide a recommendation for successful movies

Predictor Variables:

- 1. Title Type: TV Series, movie, short film.
- 2. Number of Votes
- 3. Year
- 4. Movie Runtime
- 5. Genre

Output:

Predicts whether a movie can be classified as a success or not.

+ label	+ features	+ titleType	isAdult	startYear	runtimeMinutes	genres	numVotes	Success
	(1330,[45,1188,13		0.0		1	Documentary,Short		!!!
	(1330,[221,1188,1 (1330,[22,1188,13				1	Animation,Comedy, Comedy,Short	1207.0 1934.0	!!!
	(1330,[616,1188,1 (1330,[45,1188,13	short short	0.0		1 1	Short,Sport Documentary,Short		!!!
0.0	(1330,[45,1188,13 (1330,[785,1188,1		0.0	1895	1	Documentary,Short Action,Documentar		!!!
0.0	(1330, 45, 1188, 13	short	0.0	1895	1	Documentary,Short	1447.0	0
	(1330,[22,1188,13 (1330,[101,1188,1		0.0		1 2	Comedy,Short Animation,Short		!!!
only sh	+ nowing top 10 rows	+	·	·		 	·	++

Approach:

- 1. Set a threshold of an average rating >= 6.4 to determine whether the movie is successful.
- 2. Encode your feature variables (strings/categorical).
- 3. Transform your input variables into a vector of features that your model can work with.
- 4. Fit your model on the training sets and predict it on the test sets.

Model Evaluation & Performance

titleType	numVotes	runTimeMinutes	startYear	genres	Success	prediction	probability
movie	457.0	136	2010	Drama	0	0.0	[0.67225970212625
movie	323.0	88	2002	Drama	0	0.0	[0.74367873307500
movie	430.0	79	2001	Drama	0	0.0	[0.72900975776502
movie	2855.0	93	2001	Drama	0	0.0	[0.70419785400695
movie	2577.0	97	2001	Drama	0	0.0	[0.69970649230874
movie	337.0	108	2001	Drama	0	0.0	[0.69153701751024
movie	888.0	116	2001	Drama	0	0.0	[0.67896847572049
movie	493.0	89	2000	Drama	0	0.0	[0.71222581254970
movie	2176.0	91	2000	Drama	0	0.0	[0.70479379287038
movie	748.0	92	2000	Drama	0	0.0	[0.70758704334167
movie	258.0	97	2000	Drama	0	0.0	[0.70241694037393
movie	887.0	98	2000	Drama	0	0.0	[0.69926183413203
movie	2048.0	98	2000	Drama	0	0.0	[0.69586695669028
movie	269.0	99	2000	Drama	0	0.0	[0.69973173436651
movie	2857.0	103	2000	Drama	0	0.0	[0.68671986477920
movie	541.0	105	2000	Drama	0	0.0	[0.69088690434452
movie	300.0	108	2000	Drama	0	0.0	[0.68753460196145
movie	1014.0	115	2000	Drama	0	0.0	[0.67577226830311
movie	307.0	139	2000	Drama	0	0.0	[0.64388864504795
movie	302.0	55	1999	Drama	0	0.0	[0.77131689963880
movie	1245.0	84	1999	Drama	0	0.0	[0.73479982404407
movie	712.0	89	1999	Drama	0	0.0	[0.73004469720506
movie	275.0	90	1999	Drama	0	0.0	[0.72999083882833
movie	564.0	90	1999	Drama	0	0.0	[0.72920057599836
movie	831.0	90	1999	Drama	0	0.0	[0.72846918075243
ogisti movie	and 289.0	92	1999	Drama	0	0.0	[0.72744965878850

True/Predicted	▼ Positive	V Negative V	Total
Positive	6,34	1 3,207	16,451
Negative	2,59	410,110	5,801
Total	8,93	13,317	22,252

Metrics	
Sensitivity/Recall	66.4%
Specificity	79.6%
Precision	71.0%
Accuracy	73.9%

- Preferred model based on results: Logistic Regression from MLib in PySpark
- The outcome probabilities are shown for the combination of features in our data.
- The model has scope for improvement, either through the addition of more relevant predictor variables and additional data.

Recommendation System

- Based on weighted ratings
 - \circ (v/(v+m) * R) + (m/(m+v) * C)
 - v = number of votes for the movie
 - m = minimum number of votes to be considered (in Python, in the 10th percentile. In PySpark, over 100 votes)
 - R = Average Rating of the movie
 - C = Average Rating across all movies.
- Three user inputs
 - Genre of choice
 - Type (i.e. movie, TV show, videogame)
 - Age

Built in Python with a For Loop and Function

```
for i in range(0,len(movies)) :
    v = movies.numVotes[i]
    m = np.percentile(movies.averageRating, q = .10)
    C = movies['averageRating'].mean()
    R = movies.averageRating[i]
    movies.WeightedRating[i] = (v/(v+m) * R) + (m/(m+v) * C)
```

```
def recommend(genrechoice, typechoice, agechoice = 0):
   PossMovie = movies[movies['genres'].str.contains(genrechoice)]
   PossMovie = PossMovie[PossMovie['titleType'].str.contains(typechoice)]
   if (agechoice == "Old" or agechoice == 'old' or agechoice == "OLD"):
        PossMovie = PossMovie[PossMovie.startYear <= 2000]
   if (agechoice == "New" or agechoice == 'new' or agechoice == "NEW"):
        PossMovie = PossMovie[PossMovie.startYear > 2000]
   else:
        PossMovie = PossMovie
   Ordered = PossMovie.sort_values(by="WeightedRating", ascending = False)
   Ordered = Ordered[['title', 'genres', 'titleType', 'startYear', 'WeightedRating']]
   Top5 = Ordered[:5]
   return Top5
```

	title	genres	titleType	startYear	WeightedRating
45122	Shibu	Comedy	movie	2019	9.391544
59808	CM101MMXI Fundamentals	Comedy,Documentary	movie	2013	9.199900
67251	The Weight of Chains 2	Comedy, Documentary, History	movie	2014	8.996412
75873	10 Days Before the Wedding	Comedy, Drama, Musical	movie	2018	8.890196
34554	Anbe Sivam	Adventure,Comedy,Drama	movie	2003	8.799735

Built in PySpark with a UDF and spark.sql

```
def weighted(v, m, C, R) :
  return (v/(v+m) * R) + (m/(m+v) * C)
weighted udf = udf(weighted, FloatType())
WeightedRating = weighted udf(movies.numVotes, movies.MinimumVotes, movies.AverageTotalRating, movi
WeightedRating
Column<b'weighted(numVotes, MinimumVotes, AverageTotalRating, averageRating)'>
movies = movies.withColumn("WeightedRating", WeightedRating.cast(FloatType()))
movies = movies.select('title','titleType','startYear','genres','averageRating','WeightedRating')
movies.show(10)
```

```
movies.createOrReplaceTempView("movies_sql")
recommendations sql = spark.sql('''
 SELECT title, titleType, startYear, genres, WeightedRating
 FROM movies sql
 WHERE genres LIKE '%Comedy%' AND titleType = 'movie' AND (startYear > 2000)
 ORDER BY WeightedRating desc
 LIMIT (5)
recommendations_sql.show()
              title|titleType|startYear| genres|WeightedRating|
CM101MMXI Fundame... | movie | 2013.0 | Comedy, Documentary | 9.193336
```

|The Weight of Cha... | movie | 2014.0 | Comedy, Documentar... | 8.780598 | Nuvvu Naaku Nachchav | movie | 2001.0 | Comedy, Family, Mus... | 8.628696 |

Shibu

Anbe Sivam

movie

2019.0| Comedy|

movie | 2003.0 | Adventure, Comedy, ... | 8.782449 |

8.924001

Findings & Conclusions

- Number of people voting on a movie is the most influential factor in a high scoring film
 - Popular films are perceived as good films
- The most popular movie genre is drama
- Deep categorical variables such as directors and actors could add value to the model via creating dummy columns for important figures in each area.
- Further Improvements for Deployment
 - Serialize the models and use a Flask API to generate a usable web app. A user could visit the website, select a genre, type, and the age of the film. The user would see the movie recommendations given by the model.