Named Entity Recognition with Bidirectional LSTM-CNNs

Zhen Cheng

Named Entity Recognition

- Input: x sentence/list of words
- Output: y*
 list of tags(e.g. BIOES, BIO, YN, etc)
- Definition:

$$y^* = \underset{y \in \text{GEN}(x)}{\operatorname{arg max}} (\sum_{i=1}^n \operatorname{score}(y_i | y_1, \cdots, y_{i-1}))$$

Named Entity Recognition

Previous approaches:

- Traditional methods:
 - SVM
 - Perceptron
 - Conditional Random Fields (Lafferty et al., 2001)

Disadvantage: depends on the choice of features

- Previous neural network model:
 - Depends on word embedding
 - Fixed size local windows

Disadvantages:

- Unable to capture the character level features
- Only contextual information

BiLSTM-CNN Model

BiLSTM-CNN Model

BILSTM-CNN Model

Contributions:

- Automatically detect both words and character features
- Propose a new method of encoding partial lexicons

Features:

- Word embedding using Collobert et al. (2011b)
- Add capitalization feature & Lexicons
- Extracting character features using a CNN
- Sequence-labeling with BiLSTM

Dataset:

- CoNLL-2003
- OntoNotes 5.0

Word Embedding

- Using 50-dimensional word embedding by Collobert et al. (2011b)
 - Stanford's GloVe embeddings
 - Google's word2vec embeddings case sensitive and fewer punctuations
- All words are lower-cased before passing through the lookup table
- The pre-trained embeddings are allowed to be modified during training

Word Embeddings	CoNLL-2003	OntoNotes
Random 50d	$87.77 (\pm 0.29)$	$83.82 (\pm 0.19)$
Random 300d	$87.84 (\pm 0.23)$	$83.76 (\pm 0.37)$
GloVe 6B 50d	$91.09 (\pm 0.15)$	$86.25 (\pm 0.24)$
GloVe 6B 300d	$90.71 (\pm 0.21)$	$86.26 (\pm 0.30)$
Google 100B 300d	$90.60 (\pm 0.23)$	$85.34 (\pm 0.25)$
Collobert 50d	91.62 (± 0.33)	86.28 (± 0.26)
Our GloVe 50d	$91.41 (\pm 0.21)$	$86.24 (\pm 0.35)$
Our Skip-gram 50d	$90.76 (\pm 0.23)$	$85.70 (\pm 0.29)$

Add capitalization feature

- Using a separate lookup table to add a capitalization feature
 - ALLCAPS
 - Upperinitial
 - lowercase
 - MixedCaps
 - Noinfo
- Compared with character type features & character-level CNN

Lexicons

• SENNA lexicons & DBpedia lexicons

Category	SENNA	DBpedia
Location	36,697	709,772
Miscellaneous	4,722	328,575
Organization	6,440	231,868
Person	123,283	1,074,363
Total	171,142	2,344,578

Text	Hayao	Tada	,	commander	of	the	Japanese	North	China	Area	Army
LOC	_	_	_	_	_	В	I	_	S	_	_
MISC	_	_	_	S	В	В	I	S	S	S	S
ORG	_	_	_	_	_	В	I	В	I	I	E
PERS	В	E	_	_	_	_	_	_	S	_	_

Extracting character features using a CNN

- 25-dimensions character embedding
 - Padding both sides of the words
 - Randomly initialize using uniform distribution in [-0.5, 0.5]
 - Add PADDING & UNKNOWN tokens
- Character type
 - Upper case
 - Lower case
 - Punctuation
 - other

Extracting character features using a CNN

- Character-level BiLSTM is not better than CNN and has much more time consuming
- Character-level CNNs can replace hand-crafted character features in some cases
- But systems with weak lexicons may benefit from character features

Features	BLS	TM	BLSTN	M-CNN	BLSTM-CNN + lex			
reatures	CoNLL OntoNotes		CoNLL	OntoNotes	CoNLL	OntoNotes		
none	$76.29 (\pm 0.29)$	$77.77 (\pm 0.37)$	$83.38 (\pm 0.20)$	$82.53 (\pm 0.40)$	87.77 (± 0.29)	$83.82 (\pm 0.19)$		
emb	$88.23 (\pm 0.23)$	$82.72 (\pm 0.23)$	$90.91 (\pm 0.20)$	$86.17 (\pm 0.22)$	91.62 (\pm 0.33)	$86.28 (\pm 0.26)$		
emb + caps	$90.67 (\pm 0.16)$	$86.19 (\pm 0.25)$	$90.98 (\pm 0.18)$	$86.35 (\pm 0.28)$	91.55 (± 0.19)*	86.28 (± 0.32)*		
emb + caps + lex	91.43 (\pm 0.17)	86.21 (\pm 0.16)	91.55 (± 0.19)*	86.28 (± 0.32)*	91.55 (± 0.19)*	86.28 (± 0.32)*		
emb + char	-	-	$90.88 (\pm 0.48)$	$86.08 (\pm 0.40)$	$91.44 (\pm 0.23)$	86.34 (\pm 0.18)		
emb + char + caps	-	-	$90.88 (\pm 0.31)$	86.41 (± 0.22)	$91.48 (\pm 0.23)$	$86.33 (\pm 0.26)$		

Sequence-labeling with BiLSTM

 A BiLSTM model can take into account an effectively infinite amount of context on both sides of a word.

Training

- Preprocessing
 - Digit sequences -> 0
 - Group sentences by word length
 - Shuffle
- Hyper-parameter Optimization(Two rounds)
 - Perform random search
 - Perform Optunity's implementation of particle swarm

Hyper-parameter	CoNLL	-2003 (Round 2)	OntoNotes 5.0 (Round 1)					
11yper-parameter	Final	Range	Final	Range				
Convolution width	3	[3, 7]	3	[3, 9]				
CNN output size	53	[15, 84]	20	[15, 100]				
LSTM state size	275	[100, 500]	200	$[100, 400]^{10}$				
LSTM layers	1	[1, 4]	2	[2, 4]				
Learning rate	0.0105	$[10^{-3}, 10^{-1.8}]$	0.008	$[10^{-3.5}, 10^{-1.5}]$				
Epochs ¹¹	80	-	18	-				
Dropout ¹²	0.68	[0.25, 0.75]	0.63	[0, 1]				
Mini-batch size	9	_13	9	[5, 14]				

Round	CoNLL-2003	OntoNotes 5.0
1	$93.82 (\pm 0.15)$	84.57 (\pm 0.27)
2	94.03 (\pm 0.23)	$84.47 (\pm 0.29)$

Training

• Labeling score:

$$S([x]_1^T, [i]_1^T, \theta') = \sum_{t=1}^T \left(A_{[i]_{t-1}, [i]_t} + [f_{\theta}]_{[i]_t, t} \right)$$

• Objective function:

$$\log P([y]_1^T \mid [x]_1^T, \theta') = S([x]_1^T, [y]_1^T, \theta') - \log \sum_{\forall [j]_1^T} e^{S([x]_1^T, [j]_1^T, \theta')}$$

Inference: Viterbi

Method: SGD + dropout

OntoNotes 5.0 CoNLL-2003 **Dropout** Dev Test Dev Test $93.72 (\pm 0.10)$ $90.76 (\pm 0.22)$ $82.02 (\pm 0.49)$ $84.06 (\pm 0.50)$ 0.10 $93.85 (\pm 0.18)$ $90.87 (\pm 0.31)$ $83.01 (\pm 0.39)$ $84.94 (\pm 0.25)$ 0.30 $94.08 (\pm 0.17)$ $91.09 (\pm 0.18)$ $83.61 (\pm 0.32)$ $85.44 (\pm 0.33)$ 0.50 $94.19 (\pm 0.18)$ $84.35 (\pm 0.23)$ **86.36** (\pm 0.28) $91.14 (\pm 0.35)$ 0.63 $84.47 (\pm 0.23)$ $86.29 (\pm 0.25)$ **94.31** (\pm 0.15) **91.23** (\pm 0.16) 0.68 0.70 **94.31** (\pm 0.24) $91.17 (\pm 0.37)$ **84.56** (\pm 0.40) $86.17 (\pm 0.25)$ 0.90 $94.17 (\pm 0.17)$ $90.67 (\pm 0.17)$ $81.38 (\pm 0.19)$ $82.16 (\pm 0.18)$

• Parameters update: fixed learning rate

BiLSTM-CNN Exception

According to different feature set trials failed:

• CoNLL: 5-10%

• OntoNotes: 1.5%

• Lower learning rate reduces failure rate

Performance

Entity		Co	NL	L									(Onto	Note	es								
Tag Lexicon Match	TOC	MISC	ORG	PER	Not NE	CARDINAL	DATE	MONEY	ORDINAL	PERCENT	QUALITY	TIME	TOC	FAC	GPE	NORP	ORG	PERSON	EVENT	LANG	LAW	PRODUCT	WORK	Non-NE
LOC																								
MISC																								
ORG																								
PER																								
Any																								

Lexicon	Matching	Encoding	CoNLL-2003	OntoNotes
No lexicon	-	-	$83.38 (\pm 0.20)$	$82.53 (\pm 0.40)$
SENNA	Exact	YN	$86.21 (\pm 0.39)$	$83.24 (\pm 0.33)$
SENNA	Exact	BIOES	$86.14 (\pm 0.48)$	$83.01 (\pm 0.52)$
	Exact	YN	$84.93 (\pm 0.30)$	$83.15 (\pm 0.26)$
	Exact	BIOES	$85.02 (\pm 0.23)$	$83.39 (\pm 0.39)$
DBpedia	Partial	YN	$85.72 (\pm 0.45)$	$83.25 (\pm 0.33)$
	Partial	BIOES	$86.18 (\pm 0.56)$	83.97 (± 0.38)
	Collobert	's method	$85.01 (\pm 0.31)$	$83.24 (\pm 0.26)$
Both	Best con	nbination	87.77 (± 0.29)	$83.82 (\pm 0.19)$

Performance

Model		CoNLI	L-2003	OntoNotes 5.0				
Model	Prec. Recall F1		Prec.	Recall	F1			
FFNN + emb + caps + lex	89.54	89.80	$89.67 (\pm 0.24)$	74.28	73.61	$73.94 (\pm 0.43)$		
BLSTM	80.14	72.81	$76.29 (\pm 0.29)$	79.68	75.97	$77.77 (\pm 0.37)$		
BLSTM-CNN	83.48	83.28	$83.38 (\pm 0.20)$	82.58	82.49	$82.53 (\pm 0.40)$		
BLSTM-CNN + emb	90.75	91.08	$90.91 (\pm 0.20)$	85.99	86.36	$86.17 (\pm 0.22)$		
BLSTM- $CNN + emb + lex$	91.39	91.85	91.62 (\pm 0.33)	86.04	86.53	86.28 (± 0.26)		
Collobert et al. (2011b)	-	-	88.67	-	-	-		
Collobert et al. (2011b) + lexicon	-	-	89.59	-	-	-		
Huang et al. (2015)	-	-	90.10	-	-	-		
Ratinov and Roth (2009) ¹⁸	91.20	90.50	90.80	82.00	84.95	83.45		
Lin and Wu (2009)	-	-	90.90	-	-	-		
Finkel and Manning (2009) ¹⁹	-	-	-	84.04	80.86	82.42		
Suzuki et al. (2011)	-	-	91.02	-	-	-		
Passos et al. (2014) ²⁰	-	-	90.90	-	-	82.24		
Durrett and Klein (2014)	-	-	-	85.22	82.89	84.04		
Luo et al. (2015) ²¹	91.50	91.40	91.20	-	-	-		