Clase a Clase

Electromagnetismo Intermedio LFIS322

Clase	Fecha	Tema/Lecturas	Detalle
1	13/08	Griffiths: Capítulo 1 –	Introduction. Vectors, Index Notation for
1	13/00	saltarse sección 1.1.5	Scalar and Cross Products. The Symbols
			δ_{ij} and ε_{ijk} . Differential Vector Calculus.
			Gradient.
2	20/08	Griffiths: Terminar de leer	Divergence and Curl. Divergence of Curl,
		Capítulo 1.	and Curl of Gradient. Gauss and Stokes
			Theorem. From E^{\rightarrow} to Φ . Delta Functions
			as Singular Distributions of Charge.
3	23/08		Properties of Delta Functions. Delta
			Function in Spherical Coordinates. The
			Laplacian of 1/r. Coulomb's Law and
4	27/08	Griffitha Dandan 59 a 92	Calculation of the Electric Field.
4	27/08	Griffiths: Desde p. 58 a 82	Deriving the Electrostatic Equations from Coulomb's Law. Scalar Potential, and E
			$= -\delta V$. Examples of use of Gauss's Law.
			Boundary Conditions for Electric Field.
			Conductors.
5	30/08	Griffiths: from p.82 to the	Electrostatic Energy for Discrete and
		end of chap 2.	Continuous Charge Distributions. Energy
			as $f E ^2$. Comments on Self Energy. Force
			Computed by the Method of Virtual
			Displacement. Generalized Capacitance, Capacitors.
			Capacitors.
6	03/09	Material parcial en	Uniqueness of Solutions. Green's
		Griffiths: p. 110-120	Theorem. Green's Functions for the
		(puedes consultar Jackson	Dirichlet, Neumann and Mixed BV
		secciones 1.9 y 1.10, pero	Problems.
		no es necesario)	
7	06/09		Example of Dirichlet Green's Function.
			Mean Value Theorem. Images and
			Conducting Spheres. Separation of
			Variables for Laplace's Equation in Cartesian Coordinates.
8	10/09	Griffiths: p.121-137	Method of images – Separation of
	10/07	51111111111111111111111111111111111111	variables
9	13/09	Griffiths: p. 136 -145	The Case of Axial Symmetry, Finding the
		_	Basic Solutions r^l P_l and $r^{-(l+1)}P_l$.
			Generating Function for Legendre
			Polynomials.

10	24/09	Ejercicios	
11	27/09	Primera Prueba	
12	01/10	Griffiths: p.146-155	Multipole expansion
13	04/10	Griffiths: p.202-232	Dipoles, Quadrupoles. Azimuthal Symmetry. Magnetostatics, Charge Conservation and Magnetic Force.
14	08/10		Biot-Savart Law. Magnetic Potential for Loops. Deriving the Basic Equations from the "Inverse Square Law". The Vector Potential A and the Coulomb Gauge ∇ . A = 0.
15	11/10	Griffiths: p. 285-310	Ampere's Law. Boundary Conditions for Magnetic Fields. Multipole Expansion of the Magnetic Field, Magnetic Dipoles.
16	22/10	Griffiths: p. 310-328	Electromotive Force and Faraday's Law. Inductance, Energy in Magnetic Fields, Maxwell Equations.
17	25/10	J: p. 142-143, and J: p. 168-177	Energy in an External Electric Field. And Basics of Magnetostatics.
18	29/10	J: p. 143-155	Dielectrics. The Polarization Vector P and the Effective Charge Density and Surface Charge. The Modified Gauss' Law in Terms of D and the Free Charge Density. Slits in Dielectrics. The Field of a Polarized Sphere. Clausius-Mossoti Equation.
19	05/11	Jackson: p. 187-191	Magnetic materials. Qualitative Discussion of Diamagnetism Paramagnetism and Ferro Magnetism. The Magnetization Vector M and its Effective Currents. The Magnetic Field Strength H .
20	08/11	Jackson: p. 191-197; p. 209- 213	Boundary Value Problems in Magnetostatics with and without Magnetic Materials. Magnetic Potential Φ_M . A Uniformly Magnetized Sphere. And Faraday's Law for Fixed Circuits.
21	12/11	Ejercicios	
22	15/11	Segunda Prueba	
23		Jackson: p. 217-219; p.236-237	Faraday's Law for Moving Circuits. The Electromotive Force or emf. Maxwell's Equations. Energy Conservation, Energy in the Electromagnetic Field and Energy Flow. Poynting's Theorem and the Poynting Vector S.
24	19/11	Jackson: p. 238-239	Momentum in the Electromagnetic Field. The Electromagnetic Stress Tensor T_{ij} .

	I	T	
			Examples: Pressure, Force on a Conductor
			and Force on a Solenoid. Derivation of the
			Conservation Law.
25	22/11		Example: Spinning up a Charged
			Cylinder. Conservation of Angular
			Momentum and Flux of Angular
			Momentum.
26	26/11	Jackson: p. 219-226	Solutions of Maxwell Equations in Terms
		_	of Potentials. Gauge Transformations. The
			Lorentz Gauge and the Wave Equations
			for the Potentials. Green's Functions for
			the Wave Equation.
27	29/11		Derivation of the Lienard-Wiechert
			Potentials. The Fields of an Arbitrarily
			Moving Charge. The Fields of a Charge
			Moving with Constant Velocity.
28	03/12	Griffiths p. 435 -	Electric Dipole Radiation. Magnetic
		1	dipole radiation. Radiation from an
			arbitrary source.
29	06/12		Radiation from an arbitrary source.
			Power radiated by a point charge.
			Radiation reaction.
30	10/12	Ejercicios	
31	13/12	Tercera Prueba	
32	17/12	Recuperativas	
33	20/12	Prueba Especial	
			L