Relativistic N-particle energy shift in finite volume:

Auxiliary

NIKOLAS SCHLAGE schlage@hiskp.uni-bonn.de

FERNANDO ROMERO-LÓPEZ

fernando.romero@uv.es

AKAKI RUSETSKY rusetsky@hiskp.uni-bonn.de

CARSTEN URBACH urbach@hiskp.uni-bonn.de

December 22, 2020

Contents

1	Phaseshift Fits	2
2	Mass Fit	4
3	Energy Shift Fits to Order L^{-5} 3.1 Fits without Exponentially Suppressed Corrections	5 5 7
4	Bare Energy Shift Fits to Order L^{-6} 4.1 Non-Relativistic Fits without Exponentially Suppressed Corrections (rel. c. \times ; exp. c. \times). 4.2 Non-Relativistic Fits with Exponentially Suppressed Corrections (rel. c. \times ; exp. c. \checkmark). 4.3 Relativistic Fits without Exponentially Suppressed Corrections (rel. c. \checkmark ; exp. c. \times) 4.4 Relativistic Fits with Exponentially Suppressed Corrections (rel. c. \checkmark ; exp. c. \checkmark)	9 10 16 22 28
5	Global Energy Shift Fits to Order L^{-6} without Priors 5.1 Global Fits without Exponentially Suppressed Corrections	34 34 35
6		36 36 37
7	Energy Shift Fits to Order L^{-6} with Substituted Effective Range Parameter	40
8	Bare Energy Shift Fits to Order L^{-6} with Substituted Effective Range Parameter	41
9	Global Energy Shift Fits to Order L^{-6} with Substituted Effective Range Parameter 9.1 Global Energy Shift Fits without Priors	43 43 43
10	Bare Energy Shift Fits to Order L^{-6} with Substituted Threshold Amplitude	44
11	Global Energy Shift Fits to Order L^{-6} with Substituted Threshold Amplitude 11.1 Global Energy Shift Fits without Priors	46 46 46
12	Global Energy Shift Fits to Order L^{-6} with Substituted Effective Range Parameter as well as Threshold Amplitude 12.1 Global Energy Shift Fits without Priors	47 47

1 Phaseshift Fits

The S-wave phase shift is determined by

$$\cot(\delta) = \frac{Z_{00}(1, q^2)}{\pi^{3/2}q} \quad \text{with} \quad q = \frac{Lk}{2\pi}.$$
 (1)

Here, the variable k can be calculated from the correlator fit results for $E_1 \equiv M_{\phi}$ and E_2 according to

$$E_2(L) = 2\sqrt{k^2 + M_\phi(L)^2} \qquad \Leftrightarrow \qquad k = \sqrt{\left(\frac{E_2(L)}{2}\right)^2 - M_\phi(L)^2}.$$
 (2)

The effective range expansion reads

$$k \cot(\delta) = -\frac{1}{a_0} + \frac{r_0 k^2}{2} - P r_0^3 k^4 + \mathcal{O}(k^6), \tag{3}$$

where a_0 denotes the S-wave scattering length, r_0 the S-wave effective range parameter and P the S-wave shape parameter. Considering this expansion, in the following four different models are fitted to the corresponding data provided by Eq. (1) and (2). Using $\cot(x) = \tan(x)^{-1}$ the different models read

(Ia)
$$\delta(k) = \arctan \left[\left(-\frac{1}{a_0 k} + \frac{r_0 k}{2} \right)^{-1} \right],$$

(Ib)
$$\left[k \cot(\delta)\right] \left(k^2\right) = -\frac{1}{a_0} + \frac{r_0 k^2}{2},$$

(IIa)
$$\delta(k) = \arctan \left[\left(-\frac{1}{a_0 k} + \frac{r_0 k}{2} - P r_0^3 k^3 \right)^{-1} \right],$$

(IIb)
$$\left[k \cot(\delta) \right] \left(k^2 \right) = -\frac{1}{a_0} + \frac{r_0 k^2}{2} - P r_0^3 \left(k^2 \right)^2.$$

fit model	L	a_0	r_0	P	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.407(17)	-274(23)	_	14.63/17 = 0.86	0.62
	[7, 24]	0.418(23)	-300(42)	_	14.12/16 = 0.88	0.59
	[8, 24]	0.505(36)	-535(74)	_	3.44/15 = 0.23	1.00
(Ia)	[9, 24]	0.507(41)	-540(103)	_	3.44/14 = 0.25	1.00
, ,	[10, 24]	0.529(47)	-614(132)	_	3.07/13 = 0.24	1.00
	[11, 24]	0.528(49)	-609(150)	_	3.07/12 = 0.26	1.00
	[12, 24]	0.514(54)	-545(216)	_	3.00/11 = 0.27	0.99
	[6, 24]	0.419(16)	-285(21)	_	28.20/17 = 1.66	0.04
	[7, 24]	0.428(20)	-309(36)	_	26.94/16 = 1.68	0.04
	[8, 24]	0.504(38)	-536(78)	_	4.95/15 = 0.33	0.99
(Ib)	[9, 24]	0.507(45)	-544(111)	_	4.94/14 = 0.35	0.99
	[10, 24]	0.531(60)	-627(158)	_	4.08/13 = 0.31	0.99
	[11, 24]	0.531(66)	-626(188)	_	4.08/12 = 0.34	0.98
	[12, 24]	0.521(86)	-581(303)	_	4.03/11 = 0.37	0.97
	[6, 24]	0.483(36)	-534(93)	0.000049(19)	10.13/16 = 0.63	0.86
	[7, 24]	0.579(52)	-890(138)	0.0000329(92)	4.09/15 = 0.27	1.00
	[8, 24]	0.525(56)	-633(249)	0.00(0.12)	3.37/14 = 0.24	1.00
(IIa)	[9, 24]	0.542(64)	-738(311)	0.00(0.27)	3.28/13 = 0.25	1.00
	[10, 24]	0.497(66)	-374(374)	0.00(0.56)	2.98/12 = 0.25	1.00
	[11, 24]	0.373(16)	0(45)	0.00000(0.00012)	9.95/11 = 0.90	0.53
	[12, 24]	0.401(13)	0.0(8.6)	0.00000(0.00014)	5.47/10 = 0.55	0.86
	[6, 24]	0.474(33)	-494(89)	0.000052(35)	19.96/16 = 1.25	0.22
	[7, 24]	0.588(72)	-918(173)	0.000031(11)	5.93/15 = 0.40	0.98
	[8, 24]	0.531(78)	-664(296)	0.00(0.2)	4.71/14 = 0.34	0.99
(IIb)	[9, 24]	0.56(11)	-820(407)	0.00(0.3)	4.43/13 = 0.34	0.99
	[10, 24]	0.51(24)	-462(521)	0.00(0.26)	4.03/12 = 0.34	0.98
	[11, 24]	0.380(14)	0(34)	0.00000000(5.8e-07)	21.35/11 = 1.94	0.03
	[12, 24]	0.402(13)	0.0(1.7)	0.0000000049(0)	9.91/10 = 0.99	0.45

Table 1: Results from the different S-wave fits.

2 Mass Fit

fit intvl	M_{∞}	c_M	χ^2/ndof	<i>p</i> -value
[6, 24]	0.20441(15)	0.19079(84)	134.17/17 = 7.89	0.00
[7, 24]	0.20393(16)	0.2007(13)	42.87/16 = 2.68	2.93e - 04
[8, 24]	0.20368(17)	0.2107(22)	13.13/15 = 0.88	0.59
[9, 24]	0.20352(18)	0.2201(48)	8.20/14 = 0.59	0.88
[10, 24]	0.20345(19)	0.2251(61)	6.52/13 = 0.50	0.93
[11, 24]	0.20341(20)	0.2284(92)	6.28/12 = 0.52	0.90
[12, 24]	0.20342(23)	0.227(15)	6.27/11 = 0.57	0.85
[13, 24]	0.20355(25)	0.208(22)	4.73/10 = 0.47	0.91
[14, 24]	0.20365(29)	0.188(34)	4.16/9 = 0.46	0.90
[15, 24]	0.20358(32)	0.205(47)	3.91/8 = 0.49	0.87
[16, 24]	0.20362(37)	0.195(71)	3.87/7 = 0.55	0.79

Table 2: Results obtained from the single particle mass fits.

3 Energy Shift Fits to Order L^{-5}

3.1 Fits without Exponentially Suppressed Corrections

shift	fit intvl	a_0	χ^2/ndof	<i>p</i> -value
	[8, 24]	0.2734(52)	156.67/16 = 9.79	0.00
	[9, 24]	0.3126(68)	72.16/15 = 4.81	1.84e - 09
	[10, 24]	0.3358(81)	44.18/14 = 3.16	5.53e - 05
	[11, 24]	0.3525(92)	30.17/13 = 2.32	4.45e - 03
	[12, 24]	0.384(12)	15.29/12 = 1.27	0.23
	[13, 24]	0.400(14)	11.21/11 = 1.02	0.43
	[14, 24]	0.421(18)	7.42/10 = 0.74	0.69
ΔE_2	[15, 24]	0.426(20)	7.09/9 = 0.79	0.63
	[16, 24]	0.438(24)	6.34/8 = 0.79	0.61
	[17, 24]	0.430(30)	6.13/7 = 0.88	0.52
	[18, 24]	0.433(37)	6.11/6 = 1.02	0.41
	[19, 24]	0.458(45)	5.30/5 = 1.06	0.38
	[20, 24]	0.515(59)	3.26/4 = 0.81	0.52
	[21, 24]	0.503(84)	3.22/3 = 1.07	0.36
	[22, 24]	0.44(12)	2.49/2 = 1.25	0.29
	[8, 24]	0.2815(38)	208.62/16 = 13.04	0.00
	[9, 24]	0.3304(55)	71.73/15 = 4.78	2.19e - 09
	[10, 24]	0.3424(63)	55.59/14 = 3.97	6.86e - 07
	[11, 24]	0.3682(88)	36.96/13 = 2.84	4.20e - 04
	[12, 24]	0.3755(92)	31.83/12 = 2.65	1.47e - 03
	[13, 24]	0.400(12)	19.52/11 = 1.77	0.05
	[14, 24]	0.441(16)	4.66/10 = 0.47	0.91
ΔE_3	[15, 24]	0.448(18)	3.96/9 = 0.44	0.91
	[16, 24]	0.450(20)	3.88/8 = 0.49	0.87
	[17, 24]	0.455(27)	3.83/7 = 0.55	0.80
	[18, 24]	0.476(33)	2.62/6 = 0.44	0.85
	[19, 24]	0.488(40)	2.40/5 = 0.48	0.79
	[20, 24]	0.486(48)	2.40/4 = 0.60	0.66
	[21, 24]	0.521(73)	2.04/3 = 0.68	0.56
	[22, 24]	0.477(98)	1.56/2 = 0.78	0.46
	·	·		<u> </u>

Table 3: Results from the bare ΔE_2 - and ΔE_3 -fit to order L^{-5} without exponentially suppressed corrections.

.1.*0	C1 · 1 1		9 / 1 c	. 1
shift	fit intvl	a_0	χ^2/ndof	
	[8, 24]	0.2788(44)	191.19/16 = 11.95	0.00
	[9, 24]	0.3070(53)	118.50/15 = 7.90	0.00
	[10, 24]	0.3464(70)	45.07/14 = 3.22	3.97e - 05
	[11, 24]	0.3571(81)	38.60/13 = 2.97	2.32e - 04
	[12, 24]	0.379(10)	24.62/12 = 2.05	0.02
	[13, 24]	0.388(11)	21.52/11 = 1.96	0.03
	[14, 24]	0.425(15)	8.18/10 = 0.82	0.61
ΔE_4	[15, 24]	0.429(18)	7.92/9 = 0.88	0.54
	[16, 24]	0.428(19)	7.86/8 = 0.98	0.45
	[17, 24]	0.423(24)	7.77/7 = 1.11	0.35
	[18, 24]	0.456(29)	4.56/6 = 0.76	0.60
	[19, 24]	0.494(40)	2.72/5 = 0.54	0.74
	[20, 24]	0.511(50)	2.43/4 = 0.61	0.66
	[21, 24]	0.586(74)	0.70/3 = 0.23	0.87
	[22, 24]	0.69(15)	0.10/2 = 0.05	0.95
	[8, 24]	0.2625(43)	178.37/16 = 11.15	0.00
	[9, 24]	0.2711(46)	157.02/15 = 10.47	0.00
	[10, 24]	0.3445(79)	39.37/14 = 2.81	3.20e - 04
	[11, 24]	0.3501(86)	36.57/13 = 2.81	4.83e - 04
	[12, 24]	0.376(11)	21.24/12 = 1.77	0.05
	[13, 24]	0.380(11)	20.47/11 = 1.86	0.04
	[14, 24]	0.410(14)	8.77/10 = 0.88	0.55
ΔE_5	[15, 24]	0.415(19)	8.60/9 = 0.96	0.48
	[16, 24]	0.422(21)	8.19/8 = 1.02	0.42
	[17, 24]	0.412(26)	7.84/7 = 1.12	0.35
	[18, 24]	0.451(33)	4.18/6 = 0.70	0.65
	[19, 24]	0.489(42)	2.54/5 = 0.51	0.77
	[20, 24]	0.509(60)	2.29/4 = 0.57	0.68
	[21, 24]	0.593(90)	0.87/3 = 0.29	0.83
	[22, 24]	0.68(14)	0.25/2 = 0.12	0.88

Table 4: Results from the bare ΔE_4 - and ΔE_5 -fit to order L^{-5} without exponentially suppressed corrections.

3.2 Fits with Exponentially Suppressed Corrections

shift	fit intvl		2 /n d o f	
SIIIIU		a_0	χ^2/ndof	
	[8, 24]	0.2911(58)	129.61/16 = 8.10	0.00
	[9, 24]	0.3283(74)	59.35/15 = 3.96	3.27e - 07
	[10, 24]	0.3495(87)	37.23/14 = 2.66	6.82e - 04
	[11, 24]	0.3650(98)	25.77/13 = 1.98	0.02
	[12, 24]	0.394(13)	13.51/12 = 1.13	0.33
	[13, 24]	0.408(15)	10.28/11 = 0.93	0.51
	[14, 24]	0.428(18)	7.17/10 = 0.72	0.71
ΔE_2	[15, 24]	0.432(21)	6.94/9 = 0.77	0.64
	[16, 24]	0.443(25)	6.32/8 = 0.79	0.61
	[17, 24]	0.434(31)	6.06/7 = 0.87	0.53
	[18, 24]	0.436(37)	6.05/6 = 1.01	0.42
	[19, 24]	0.462(46)	5.27/5 = 1.05	0.38
	[20, 24]	0.518(60)	3.27/4 = 0.82	0.51
	[21, 24]	0.505(84)	3.22/3 = 1.07	0.36
	[22, 24]	0.44(12)	2.49/2 = 1.25	0.29
	[8, 24]	0.3009(42)	167.19/16 = 10.45	0.00
	[9, 24]	0.3468(60)	57.03/15 = 3.80	8.12e - 07
	[10, 24]	0.3572(68)	45.50/14 = 3.25	3.39e - 05
	[11, 24]	0.3796(92)	32.14/13 = 2.47	2.29e - 03
	[12, 24]	0.3863(97)	27.99/12 = 2.33	5.56e - 03
	[13, 24]	0.409(12)	17.38/11 = 1.58	0.10
	[14, 24]	0.449(16)	4.29/10 = 0.43	0.93
ΔE_3	[15, 24]	0.454(18)	3.77/9 = 0.42	0.93
	[16, 24]	0.456(21)	3.74/8 = 0.47	0.88
	[17, 24]	0.460(28)	3.71/7 = 0.53	0.81
	[18, 24]	0.480(33)	2.59/6 = 0.43	0.86
	[19, 24]	0.491(40)	2.40/5 = 0.48	0.79
	[20, 24]	0.489(48)	2.39/4 = 0.60	0.66
	[21, 24]	0.523(73)	2.04/3 = 0.68	0.56
	[22, 24]	0.479(99)	1.56/2 = 0.78	0.46

Table 5: Results from the bare ΔE_2 - and ΔE_3 -fit to order L^{-5} with exponentially suppressed corrections.

			9.4	
shift	fit intvl	a_0	χ^2/ndof	<i>p</i> -value
	[8, 24]	0.2963(49)	158.02/16 = 9.88	0.00
	[9, 24]	0.3228(58)	98.63/15 = 6.58	$2.38e{-14}$
	[10, 24]	0.3598(74)	37.57/14 = 2.68	6.05e - 04
	[11, 24]	0.3687(86)	33.28/13 = 2.56	1.54e - 03
	[12, 24]	0.388(11)	22.01/12 = 1.83	0.04
	[13, 24]	0.396(12)	19.58/11 = 1.78	0.05
	[14, 24]	0.432(15)	7.90/10 = 0.79	0.64
ΔE_4	[15, 24]	0.435(18)	7.77/9 = 0.86	0.56
	[16, 24]	0.433(19)	7.66/8 = 0.96	0.47
	[17, 24]	0.428(24)	7.54/7 = 1.08	0.38
	[18, 24]	0.460(30)	4.44/6 = 0.74	0.62
	[19, 24]	0.498(40)	2.67/5 = 0.53	0.75
	[20, 24]	0.514(51)	2.39/4 = 0.60	0.66
	[21, 24]	0.589(75)	0.68/3 = 0.23	0.88
	[22, 24]	0.69(15)	0.10/2 = 0.05	0.95
	[8, 24]	0.2773(47)	154.39/16 = 9.65	0.00
	[9, 24]	0.2855(50)	136.75/15 = 9.12	0.00
	[10, 24]	0.3566(84)	33.86/14 = 2.42	2.16e - 03
	[11, 24]	0.3612(91)	32.05/13 = 2.47	2.37e - 03
	[12, 24]	0.385(11)	19.53/12 = 1.63	0.08
	[13, 24]	0.388(12)	18.99/11 = 1.73	0.06
	[14, 24]	0.418(15)	8.46/10 = 0.85	0.58
ΔE_5	[15, 24]	0.421(20)	8.38/9 = 0.93	0.50
	[16, 24]	0.427(22)	8.05/8 = 1.01	0.43
	[17, 24]	0.416(27)	7.65/7 = 1.09	0.36
	[18, 24]	0.455(33)	4.09/6 = 0.68	0.67
	[19, 24]	0.492(43)	2.50/5 = 0.50	0.78
	[20, 24]	0.513(61)	2.26/4 = 0.56	0.69
	[21, 24]	0.596(91)	0.86/3 = 0.29	0.84
	[22, 24]	0.68(14)	0.25/2 = 0.12	0.88

Table 6: Results from the bare ΔE_4 - and ΔE_5 -fit to order L^{-5} with exponentially suppressed corrections.

4 Bare Energy Shift Fits to Order L^{-6}

$$\Delta E_{N} = {N \choose 2} \frac{4\pi a_{0}}{ML^{3}} \left\{ 1 - \left(\frac{a_{0}}{\pi L} \right) \mathcal{I} + \left(\frac{a_{0}}{\pi L} \right)^{2} \left[\mathcal{I}^{2} + (2N - 5) \mathcal{J} \right] \right.$$

$$\left. - \left(\frac{a_{0}}{\pi L} \right)^{3} \left[(2N - 7) \mathcal{I} \mathcal{J} + \mathcal{I}^{3} + (5N^{2} - 41N + 63) \mathcal{K} + 8(N - 2) (2\mathcal{Q} + \mathcal{R}) \right] \right.$$

$$\left. + (4N - 6) \frac{\pi a_{0}^{2} r_{0}}{L^{3}} + (4N - 9) \frac{\pi a_{0}}{M^{2}L^{3}} - \frac{24Ma_{0}}{\sqrt{2\pi ML}} \exp\left(-ML \right) \right\}$$

$$\left. + {N \choose 3} \left\{ \frac{32\pi a_{0}^{4}}{ML^{6}} \left(3\sqrt{3} - 4\pi \right) \left(\ln(ML)^{2} - \Gamma'(1) - \ln(4\pi) \right) - \frac{\bar{\mathcal{T}}}{6L^{6}} \right\}$$

$$(4)$$

4.1 Non-Relativistic Fits without Exponentially Suppressed Corrections (rel. c. \times ; exp. c. \times)

shift	fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>n</i> -value
	[6, 24]	0.3216(64)	-204(4)	_	79.12/17 = 4.65	
	[7, 24]	0.3580(95)	-229(6)	_	52.98/16 = 3.31	7.60e - 06
	$[8,\ 24]$	0.407(12)	-285(10)	_	17.00/15 = 1.13	0.32
	[9, 24]	0.430(16)	-319(17)	_	12.31/14 = 0.88	0.58
	[10, 24]	0.461(21)	-367(23)	_	7.64/13 = 0.59	0.87
ΔE_2	[11, 24]	0.474(26)	-390(32)	_	6.73/12 = 0.56	0.87
	[12, 24]	0.482(34)	-410(75)	_	6.62/11 = 0.60	0.83
	[13, 24]	0.493(43)	-448(124)	_	6.45/10 = 0.64	0.78
	[14, 24]	0.482(60)	-400(439)	_	6.39/9 = 0.71	0.70
	[15, 24]	0.491(78)	-447(833)	_	6.36/8 = 0.80	0.61
	[16, 24]	0.46(10)	-227(6083)	_	6.18/7 = 0.88	0.52
	[6, 24]	0.3416(56)	-294(10)	-190877(10203)	95.81/18 = 5.32	1.29e - 12
	[7, 24]	0.3751(76)	-282(10)	-228485(14076)	53.81/17 = 3.17	1.06e - 05
	[8, 24]	0.4079(96)	-284(10)	-279971(20376)	23.49/16 = 1.47	0.10
	[9, 24]	0.412(12)	-283(10)	-282893(21419)	23.08/15 = 1.54	0.08
	[10, 24]	0.414(12)	-283(10)	-281992(21797)	22.67/14 = 1.62	0.07
ΔE_3	[11, 24]	0.414(12)	-283(10)	-282447(25286)	22.67/13 = 1.74	0.05
	[12, 24]	0.413(12)	-284(10)	-290703(27372)	22.06/12 = 1.84	0.04
	[13, 24]	0.411(12)	-284(10)	-345174(39018)	18.27/11 = 1.66	0.08
	[14, 24]	0.408(12)	-285(10)	-550405(71796)	6.72/10 = 0.67	0.75
	[15, 24]	0.408(12)	-285(10)	-618563(92961)	5.39/9 = 0.60	0.80
	[16, 24]	0.408(12)	-285(10)	-655672(120399)	5.15/8 = 0.64	0.74

Table 7: Results obtained from the **non-relativistic** bare ΔE_2 - and ΔE_3 -fit to order L^{-6} **without** exponentially suppressed corrections. In case of the ΔE_3 -fit the a_0 and r_0 bootstrap samples obtained from the ΔE_2 -fit within the interval [8, 24] serve as priors.

shift	fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3406(60)	-297(10)	-174360(10144)	99.45/18 = 5.53	2.79e - 13
	[7, 24]	0.3743(79)	-286(10)	-214137(13980)	57.98/17 = 3.41	2.26e - 06
	[8, 24]	0.4037(96)	-282(10)	-255362(18407)	28.48/16 = 1.78	0.03
	[9, 24]	0.418(11)	-282(10)	-275474(21611)	21.60/15 = 1.44	0.12
	[10, 24]	0.415(12)	-282(10)	-274059(21252)	20.91/14 = 1.49	0.10
ΔE_4	[11, 24]	0.415(12)	-283(10)	-271798(21638)	20.39/13 = 1.57	0.09
	[12, 24]	0.413(12)	-283(10)	-281866(23119)	19.08/12 = 1.59	0.09
	[13, 24]	0.412(12)	-283(10)	-286356(25249)	18.89/11 = 1.72	0.06
	[14, 24]	0.408(12)	-285(10)	-377632(38257)	8.99/10 = 0.90	0.53
	[15, 24]	0.408(12)	-284(10)	-394578(51054)	8.74/9 = 0.97	0.46
	[16, 24]	0.408(12)	-284(10)	-390816(58799)	8.72/8 = 1.09	0.37
	[6, 24]	0.3108(52)	-305(10)	-130868(7181)	153.92/18 = 8.55	0.00
	[7, 24]	0.3506(71)	-289(10)	-173283(10735)	88.85/17 = 5.23	$9.89e{-12}$
	[8, 24]	0.4021(99)	-282(10)	-243520(17993)	33.06/16 = 2.07	0.01
	[9, 24]	0.417(11)	-283(10)	-271020(21287)	19.32/15 = 1.29	0.20
	[10, 24]	0.414(12)	-284(10)	-268722(20999)	18.64/14 = 1.33	0.18
ΔE_5	[11, 24]	0.415(12)	-284(10)	-267146(21229)	17.50/13 = 1.35	0.18
	[12, 24]	0.412(12)	-284(10)	-273415(21576)	16.19/12 = 1.35	0.18
	[13, 24]	0.412(12)	-284(10)	-273479(22036)	16.19/11 = 1.47	0.13
	[14, 24]	0.408(12)	-285(10)	-312905(26290)	9.09/10 = 0.91	0.52
	[15, 24]	0.408(12)	-285(10)	-318660(39175)	9.05/9 = 1.01	0.43
	[16, 24]	0.408(12)	-285(10)	-334283(46931)	8.69/8 = 1.09	0.37

Table 8: Results obtained from the **non-relativistic** bare ΔE_4 - and ΔE_5 -fit to order L^{-6} **without** exponentially suppressed corrections. Here, the a_0 and r_0 bootstrap samples obtained from the previous ΔE_2 -fit within the interval [8, 24] serve as priors.

shift	fit intvl	a_0	r_0	$\bar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3216(64)	-204(4)	_	79.12/17 = 4.65	5.49e - 10
	[7, 24]	0.3580(95)	-229(6)	_	52.98/16 = 3.31	7.60e - 06
	[8, 24]	0.407(12)	-285(10)	_	17.00/15 = 1.13	0.32
	$[9,\ 24]$	0.430(16)	-319(17)	_	12.31/14 = 0.88	0.58
	[10, 24]	0.461(21)	-367(23)	_	7.64/13 = 0.59	0.87
ΔE_2	[11, 24]	0.474(26)	-390(32)	_	6.73/12 = 0.56	0.87
	[12, 24]	0.482(34)	-410(75)	_	6.62/11 = 0.60	0.83
	[13, 24]	0.493(43)	-448(124)	_	6.45/10 = 0.64	0.78
	[14, 24]	0.482(60)	-400(439)	_	6.39/9 = 0.71	0.70
	[15, 24]	0.491(78)	-447(833)	_	6.36/8 = 0.80	0.61
	[16, 24]	0.46(10)	-227(6083)	_	6.18/7 = 0.88	0.52
	[6, 24]	0.3406(57)	-313(16)	-204871(14605)	95.32/18 = 5.30	1.58e - 12
	[7, 24]	0.3750(77)	-304(16)	-251921(20400)	54.39/17 = 3.20	8.58e - 06
	[8, 24]	0.411(10)	-307(16)	-319505(29396)	22.63/16 = 1.41	0.12
	[9, 24]	0.426(14)	-314(16)	-354647(40323)	20.08/15 = 1.34	0.17
	[10, 24]	0.435(15)	-316(16)	-365906(43587)	18.09/14 = 1.29	0.20
ΔE_3	[11, 24]	0.440(16)	-320(17)	-367421(45888)	17.00/13 = 1.31	0.20
	[12, 24]	0.439(16)	-320(17)	-370407(46082)	16.81/12 = 1.40	0.16
	[13, 24]	0.436(16)	-319(17)	-406394(50686)	14.39/11 = 1.31	0.21
	[14, 24]	0.431(16)	-319(17)	-573465(74415)	5.37/10 = 0.54	0.86
	[15, 24]	0.431(16)	-318(17)	-623543(92977)	4.57/9 = 0.51	0.87
	[16, 24]	0.430(16)	-318(17)	-646686(118769)	4.47/8 = 0.56	0.81

Table 9: Results obtained from the **non-relativistic** bare ΔE_2 - and ΔE_3 -fit to order L^{-6} **without** exponentially suppressed corrections. In case of the ΔE_3 -fit the a_0 and r_0 bootstrap samples obtained from the ΔE_2 -fit within the interval [9,24] serve as priors.

shift	fit intvl	a_0	r_0	$\bar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3395(61)	-297(16)	-172246(12688)	93.63/18 = 5.20	$3.20e{-12}$
	[7, 24]	0.3727(81)	-293(16)	-217909(18118)	57.14/17 = 3.36	3.09e - 06
	[8, 24]	0.406(10)	-301(16)	-281178(26384)	28.71/16 = 1.79	0.03
	[9, 24]	0.432(13)	-315(16)	-348072(38974)	18.12/15 = 1.21	0.26
	[10, 24]	0.433(15)	-315(16)	-350498(41243)	18.08/14 = 1.29	0.20
ΔE_4	[11, 24]	0.440(15)	-320(17)	-362566(44203)	15.56/13 = 1.20	0.27
	[12, 24]	0.438(16)	-320(17)	-363139(43560)	15.34/12 = 1.28	0.22
	[13, 24]	0.437(16)	-320(17)	-363584(43959)	15.33/11 = 1.39	0.17
	[14, 24]	0.431(16)	-319(17)	-429817(49004)	8.14/10 = 0.81	0.62
	[15, 24]	0.431(16)	-318(17)	-435289(57780)	8.11/9 = 0.90	0.52
	[16, 24]	0.432(16)	-318(17)	-426839(64176)	8.01/8 = 1.00	0.43
	[6, 24]	0.3102(52)	-290(16)	-123179(8493)	135.43/18 = 7.52	0.00
	[7, 24]	0.3475(71)	-279(16)	-161810(12593)	79.74/17 = 4.69	4.27e - 10
	[8, 24]	0.405(11)	-300(16)	-268580(27134)	33.50/16 = 2.09	0.01
	[9, 24]	0.431(13)	-316(17)	-341000(38374)	16.75/15 = 1.12	0.33
	[10, 24]	0.432(15)	-316(17)	-343608(40787)	16.71/14 = 1.19	0.27
ΔE_5	[11, 24]	0.437(15)	-320(17)	-354263(42981)	13.93/13 = 1.07	0.38
	[12, 24]	0.435(16)	-320(17)	-353067(42383)	13.76/12 = 1.15	0.32
	[13, 24]	0.436(16)	-320(17)	-352956(42551)	13.67/11 = 1.24	0.25
	[14, 24]	0.430(16)	-318(17)	-376327(42096)	8.40/10 = 0.84	0.59
	[15, 24]	0.431(16)	-318(17)	-373128(49734)	8.39/9 = 0.93	0.50
	[16, 24]	0.430(16)	-318(17)	-383985(55655)	8.20/8 = 1.03	0.41

Table 10: Results obtained from the **non-relativistic** bare ΔE_4 - and ΔE_5 -fit to order L^{-6} **without** exponentially suppressed corrections. Here, the a_0 and r_0 bootstrap samples obtained from the previous ΔE_2 -fit within the interval [9, 24] serve as priors.

shift	fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3216(64)	-204(4)	_	79.12/17 = 4.65	5.49e - 10
	[7, 24]	0.3580(95)	-229(6)	_	52.98/16 = 3.31	7.60e - 06
	[8, 24]	0.407(12)	-285(10)	_	17.00/15 = 1.13	0.32
	[9, 24]	0.430(16)	-319(17)	_	12.31/14 = 0.88	0.58
	[10,24]	0.461(21)	-367(23)	_	7.64/13 = 0.59	0.87
ΔE_2	[11, 24]	0.474(26)	-390(32)	_	6.73/12 = 0.56	0.87
	[12, 24]	0.482(34)	-410(75)	_	6.62/11 = 0.60	0.83
	[13, 24]	0.493(43)	-448(124)	_	6.45/10 = 0.64	0.78
	[14, 24]	0.482(60)	-400(439)	_	6.39/9 = 0.71	0.70
	[15, 24]	0.491(78)	-447(833)	_	6.36/8 = 0.80	0.61
	[16, 24]	0.46(10)	-227(6083)	_	6.18/7 = 0.88	0.52
	[6, 24]	0.3403(57)	-357(20)	-240712(17783)	94.42/18 = 5.25	2.30e - 12
	[7, 24]	0.3744(77)	-342(20)	-292538(24417)	54.57/17 = 3.21	8.04e - 06
	[8, 24]	0.410(10)	-335(20)	-359427(33768)	23.64/16 = 1.48	0.10
	[9, 24]	0.428(14)	-340(20)	-399399(45144)	20.64/15 = 1.38	0.15
	[10, 24]	0.445(17)	-351(21)	-447974(58319)	17.10/14 = 1.22	0.25
ΔE_3	[11, 24]	0.474(20)	-373(23)	-532540(84004)	10.64/13 = 0.82	0.64
	[12, 24]	0.475(21)	-373(23)	-532930(84450)	10.62/12 = 0.89	0.56
	[13, 24]	0.471(21)	-372(23)	-542406(82349)	9.79/11 = 0.89	0.55
	[14, 24]	0.462(21)	-368(23)	-649609(89316)	4.03/10 = 0.40	0.95
	[15, 24]	0.462(21)	-367(23)	-675748(102020)	3.76/9 = 0.42	0.93
	[16, 24]	0.462(21)	-368(23)	-680174(123446)	3.75/8 = 0.47	0.88

Table 11: Results obtained from the **non-relativistic** bare ΔE_2 - and ΔE_3 -fit to order L^{-6} **without** exponentially suppressed corrections. In case of the ΔE_3 -fit the a_0 and r_0 bootstrap samples obtained from the ΔE_2 -fit within the interval [10, 24] serve as priors.

shift	fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3379(61)	-351(20)	-206495(16050)	95.20/18 = 5.29	1.66e - 12
	[7, 24]	0.3715(82)	-344(20)	-260647(22655)	59.95/17 = 3.53	1.07e - 06
	[8, 24]	0.406(10)	-340(20)	-327077(31423)	31.38/16 = 1.96	0.01
	[9, 24]	0.436(13)	-345(20)	-400171(43887)	18.96/15 = 1.26	0.22
	[10, 24]	0.444(17)	-349(21)	-425060(56013)	18.31/14 = 1.31	0.19
ΔE_4	[11, 24]	0.465(19)	-370(23)	-503380(74544)	12.07/13 = 0.93	0.52
	[12, 24]	0.468(20)	-371(23)	-508942(77066)	11.89/12 = 0.99	0.45
	[13, 24]	0.470(21)	-371(23)	-510122(78189)	11.68/11 = 1.06	0.39
	[14, 24]	0.461(21)	-367(23)	-536097(74180)	7.64/10 = 0.76	0.66
	[15, 24]	0.462(21)	-368(23)	-529910(78358)	7.57/9 = 0.84	0.58
	[16, 24]	0.463(21)	-367(23)	-516320(82405)	7.27/8 = 0.91	0.51
	[6, 24]	0.3066(53)	-345(21)	-144496(12038)	135.02/18 = 7.50	0.00
	[7, 24]	0.3444(75)	-341(21)	-199053(18379)	84.94/17 = 5.00	$5.02e{-11}$
	[8, 24]	0.407(12)	-346(21)	-322472(35259)	37.03/16 = 2.31	2.08e - 03
	[9, 24]	0.436(13)	-349(21)	-398655(46294)	17.98/15 = 1.20	0.26
	[10, 24]	0.446(17)	-355(22)	-429180(59930)	17.15/14 = 1.23	0.25
ΔE_5	[11, 24]	0.460(18)	-368(23)	-479646(70534)	12.03/13 = 0.93	0.52
	[12, 24]	0.463(20)	-369(23)	-488859(74467)	11.81/12 = 0.98	0.46
	[13, 24]	0.467(21)	-369(23)	-493377(76231)	11.33/11 = 1.03	0.42
	[14, 24]	0.459(21)	-366(23)	-495369(71988)	8.06/10 = 0.81	0.62
	[15, 24]	0.460(21)	-367(23)	-484434(75430)	7.74/9 = 0.86	0.56
	[16, 24]	0.460(21)	-367(23)	-488475(78241)	7.70/8 = 0.96	0.46

Table 12: Results obtained from the **non-relativistic** bare ΔE_4 - and ΔE_5 -fit to order L^{-6} **without** exponentially suppressed corrections. Here, the a_0 and r_0 bootstrap samples obtained from the previous ΔE_2 -fit within the interval [10, 24] serve as priors.

4.2 Non-Relativistic Fits with Exponentially Suppressed Corrections (rel. c. \times ; exp. c. \checkmark)

shift	fit intvl	a_0	r_0	$\bar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3332(68)	-144(3)	_	67.89/17 = 3.99	4.96e - 08
	[7, 24]	0.3654(98)	-168(5)	_	47.60/16 = 2.97	5.49e - 05
	[8, 24]	0.411(13)	-223(9)	_	15.57/15 = 1.04	0.41
	[9, 24]	0.432(16)	-256(17)	_	11.69/14 = 0.83	0.63
	[10, 24]	0.461(21)	-305(24)	_	7.50/13 = 0.58	0.87
ΔE_2	[11, 24]	0.474(26)	-328(34)	_	6.71/12 = 0.56	0.88
	[12, 24]	0.480(34)	-347(79)	_	6.62/11 = 0.60	0.83
	[13, 24]	0.491(42)	-386(131)	_	6.45/10 = 0.65	0.78
	[14, 24]	0.480(59)	-335(451)	_	6.39/9 = 0.71	0.70
	[15, 24]	0.488(77)	-384(850)	_	6.36/8 = 0.80	0.61
	[16, 24]	0.46(10)	-156(6126)	_	6.19/7 = 0.88	0.52
	[6, 24]	0.3531(60)	-223(9)	-162697(10010)	79.80/18 = 4.43	$9.30e{-10}$
	[7, 24]	0.3828(79)	-217(9)	-189218(13240)	47.07/17 = 2.77	1.19e - 04
	[8, 24]	0.4126(98)	-222(9)	-228435(18586)	21.76/16 = 1.36	0.15
	[9, 24]	0.416(12)	-222(9)	-229885(19225)	21.50/15 = 1.43	0.12
	[10, 24]	0.418(12)	-222(9)	-228319(19703)	21.05/14 = 1.50	0.10
ΔE_3	[11, 24]	0.419(12)	-222(9)	-226558(23721)	21.03/13 = 1.62	0.07
	[12, 24]	0.418(13)	-222(9)	-234163(26068)	20.55/12 = 1.71	0.06
	[13, 24]	0.415(13)	-223(9)	-286015(38262)	17.15/11 = 1.56	0.10
	[14, 24]	0.412(13)	-223(9)	-484985(71481)	6.33/10 = 0.63	0.79
	[15, 24]	0.412(13)	-223(9)	-548752(92544)	5.15/9 = 0.57	0.82
	[16, 24]	0.412(13)	-223(9)	-582235(120132)	4.96/8 = 0.62	0.76

Table 13: Results obtained from the **non-relativistic** bare ΔE_2 - and ΔE_3 -fit to order L^{-6} with exponentially suppressed corrections. In case of the ΔE_3 -fit the a_0 and r_0 bootstrap samples obtained from the ΔE_2 -fit within the interval [8, 24] serve as priors.

shift	fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3510(63)	-226(9)	-145791(9651)	84.90/18 = 4.72	1.17e - 10
	[7, 24]	0.3811(82)	-220(9)	-174100(12789)	51.80/17 = 3.05	$2.21e{-05}$
	[8, 24]	0.4082(98)	-220(9)	-204848(16509)	26.52/16 = 1.66	0.05
	[9, 24]	0.422(11)	-221(9)	-220069(19188)	20.39/15 = 1.36	0.16
	[10, 24]	0.418(12)	-221(9)	-219590(18796)	19.77/14 = 1.41	0.14
ΔE_4	[11, 24]	0.420(12)	-222(9)	-216756(19277)	19.06/13 = 1.47	0.12
	[12, 24]	0.417(12)	-222(9)	-226172(21177)	18.03/12 = 1.50	0.11
	[13, 24]	0.417(12)	-222(9)	-229960(23748)	17.91/11 = 1.63	0.08
	[14, 24]	0.413(12)	-223(9)	-318549(37504)	8.73/10 = 0.87	0.56
	[15, 24]	0.413(12)	-223(9)	-332677(50457)	8.56/9 = 0.95	0.48
	[16, 24]	0.413(13)	-223(9)	-327498(58405)	8.53/8 = 1.07	0.38
	[6, 24]	0.3211(55)	-229(9)	-108658(6797)	135.07/18 = 7.50	0.00
	[7, 24]	0.3576(74)	-220(9)	-139511(9740)	80.78/17 = 4.75	$2.79e{-10}$
	[8, 24]	0.406(10)	-219(9)	-193476(15960)	30.95/16 = 1.93	0.01
	[9, 24]	0.421(11)	-222(9)	-215524(18845)	18.42/15 = 1.23	0.24
	[10, 24]	0.417(12)	-222(9)	-214315(18472)	17.83/14 = 1.27	0.21
ΔE_5	[11, 24]	0.419(12)	-223(9)	-212373(18739)	16.51/13 = 1.27	0.22
	[12, 24]	0.416(12)	-223(9)	-218524(19409)	15.50/12 = 1.29	0.22
	[13, 24]	0.416(12)	-223(9)	-218254(20061)	15.50/11 = 1.41	0.16
	[14, 24]	0.413(12)	-223(9)	-257011(24851)	8.87/10 = 0.89	0.54
	[15, 24]	0.413(12)	-223(9)	-260276(38275)	8.86/9 = 0.98	0.45
	[16, 24]	0.412(13)	-223(9)	-274800(46319)	8.55/8 = 1.07	0.38

Table 14: Results obtained from the **non-relativistic** bare ΔE_4 - and ΔE_5 -fit to order L^{-6} **with** exponentially suppressed corrections. Here, the a_0 and r_0 bootstrap samples obtained from the previous ΔE_2 -fit within the interval [8, 24] serve as priors.

shift	fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3332(68)	-144(3)	_	67.89/17 = 3.99	4.96e - 08
	[7, 24]	0.3654(98)	-168(5)	_	47.60/16 = 2.97	5.49e - 05
	[8, 24]	0.411(13)	-223(9)	_	15.57/15 = 1.04	0.41
	$[9,\ 24]$	0.432(16)	-256(17)	_	11.69/14 = 0.83	0.63
	[10, 24]	0.461(21)	-305(24)	_	7.50/13 = 0.58	0.87
ΔE_2	[11, 24]	0.474(26)	-328(34)	_	6.71/12 = 0.56	0.88
	[12, 24]	0.480(34)	-347(79)	_	6.62/11 = 0.60	0.83
	[13, 24]	0.491(42)	-386(131)	_	6.45/10 = 0.65	0.78
	[14, 24]	0.480(59)	-335(451)	_	6.39/9 = 0.71	0.70
	[15, 24]	0.488(77)	-384(850)	_	6.36/8 = 0.80	0.61
	[16, 24]	0.46(10)	-156(6126)	_	6.19/7 = 0.88	0.52
	[6, 24]	0.3523(60)	-239(15)	-175774(15149)	79.61/18 = 4.42	1.00e-09
	[7, 24]	0.3828(80)	-236(15)	-210664(20219)	47.56/17 = 2.80	1.00e - 04
	[8, 24]	0.415(10)	-242(15)	-263800(28118)	21.01/16 = 1.31	0.18
	[9, 24]	0.428(14)	-251(16)	-289575(36963)	19.18/15 = 1.28	0.21
	[10, 24]	0.436(15)	-253(17)	-297661(39778)	17.36/14 = 1.24	0.24
ΔE_3	[11, 24]	0.442(16)	-258(17)	-297604(42158)	16.15/13 = 1.24	0.24
	[12, 24]	0.441(16)	-258(17)	-300545(42524)	15.99/12 = 1.33	0.19
	[13, 24]	0.438(16)	-257(17)	-335753(47843)	13.77/11 = 1.25	0.25
	[14, 24]	0.433(16)	-256(17)	-499910(72898)	5.17/10 = 0.52	0.88
	[15, 24]	0.433(16)	-255(17)	-547289(91690)	4.45/9 = 0.49	0.88
	[16, 24]	0.433(16)	-255(17)	-568097(117834)	4.37/8 = 0.55	0.82

Table 15: Results obtained from the **non-relativistic** bare ΔE_2 - and ΔE_3 -fit to order L^{-6} **with** exponentially suppressed corrections. In case of the ΔE_3 -fit the a_0 and r_0 bootstrap samples obtained from the ΔE_2 -fit within the interval [9,24] serve as priors.

shift	fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3498(64)	-223(15)	-142299(12837)	80.14/18 = 4.45	8.11e-10
	[7, 24]	0.3795(84)	-225(15)	-176390(17505)	51.04/17 = 3.00	$2.91e{-05}$
	[8, 24]	0.410(10)	-236(16)	-226596(24728)	26.74/16 = 1.67	0.04
	[9, 24]	0.434(13)	-252(16)	-280922(35690)	17.63/15 = 1.18	0.28
	[10, 24]	0.435(15)	-252(17)	-282105(37265)	17.61/14 = 1.26	0.23
ΔE_4	[11, 24]	0.441(15)	-258(17)	-292488(40101)	15.00/13 = 1.15	0.31
	[12, 24]	0.440(16)	-257(17)	-293457(39593)	14.83/12 = 1.24	0.25
	[13, 24]	0.440(16)	-257(17)	-293591(40242)	14.83/11 = 1.35	0.19
	[14, 24]	0.434(16)	-255(17)	-359433(46218)	8.04/10 = 0.80	0.62
	[15, 24]	0.433(16)	-255(17)	-363268(55570)	8.02/9 = 0.89	0.53
	[16, 24]	0.434(16)	-255(17)	-353838(62340)	7.91/8 = 0.99	0.44
	[6, 24]	0.3203(55)	-213(15)	-98774(8627)	118.75/18 = 6.60	1.11e-16
	[7, 24]	0.3544(74)	-207(15)	-126723(12202)	72.59/17 = 4.27	7.69e - 09
	[8, 24]	0.409(11)	-235(16)	-213982(25081)	31.33/16 = 1.96	0.01
	[9, 24]	0.433(13)	-253(17)	-274134(35092)	16.41/15 = 1.09	0.36
	[10, 24]	0.434(15)	-253(17)	-275553(36798)	16.40/14 = 1.17	0.29
ΔE_5	[11, 24]	0.439(15)	-258(17)	-284761(38891)	13.57/13 = 1.04	0.40
	[12, 24]	0.437(16)	-257(17)	-284265(38322)	13.45/12 = 1.12	0.34
	[13, 24]	0.438(16)	-257(17)	-283820(38548)	13.33/11 = 1.21	0.27
	[14, 24]	0.432(16)	-254(17)	-308153(38474)	8.32/10 = 0.83	0.60
	[15, 24]	0.433(16)	-255(17)	-303422(46884)	8.29/9 = 0.92	0.51
	[16, 24]	0.432(16)	-255(17)	-313601(53267)	8.13/8 = 1.02	0.42

Table 16: Results obtained from the **non-relativistic** bare ΔE_4 - and ΔE_5 -fit to order L^{-6} **with** exponentially suppressed corrections. Here, the a_0 and r_0 bootstrap samples obtained from the previous ΔE_2 -fit within the interval [9, 24] serve as priors.

shift	fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3332(68)	-144(3)	_	67.89/17 = 3.99	4.96e - 08
	[7, 24]	0.3654(98)	-168(5)	_	47.60/16 = 2.97	5.49e - 05
	[8, 24]	0.411(13)	-223(9)	_	15.57/15 = 1.04	0.41
	[9, 24]	0.432(16)	-256(17)	_	11.69/14 = 0.83	0.63
	[10,24]	0.461(21)	-305(24)	_	7.50/13 = 0.58	0.87
ΔE_2	[11, 24]	0.474(26)	-328(34)	_	6.71/12 = 0.56	0.88
	[12, 24]	0.480(34)	-347(79)	_	6.62/11 = 0.60	0.83
	[13, 24]	0.491(42)	-386(131)	_	6.45/10 = 0.65	0.78
	[14, 24]	0.480(59)	-335(451)	_	6.39/9 = 0.71	0.70
	[15, 24]	0.488(77)	-384(850)	_	6.36/8 = 0.80	0.61
	[16, 24]	0.46(10)	-156(6126)	_	6.19/7 = 0.88	0.52
	[6, 24]	0.3519(60)	-278(20)	-210647(18886)	79.05/18 = 4.39	1.25e - 09
	[7, 24]	0.3822(80)	-269(20)	-249056(24789)	47.80/17 = 2.81	9.23e - 05
	[8, 24]	0.415(10)	-268(20)	-300847(33144)	21.90/16 = 1.37	0.15
	[9, 24]	0.430(14)	-274(20)	-330188(42293)	19.71/15 = 1.31	0.18
	[10, 24]	0.446(17)	-286(22)	-370086(53777)	16.58/14 = 1.18	0.28
ΔE_3	[11, 24]	0.474(20)	-312(24)	-442540(77546)	10.34/13 = 0.80	0.67
	[12, 24]	0.475(21)	-313(24)	-442768(77966)	10.33/12 = 0.86	0.59
	[13, 24]	0.471(21)	-310(24)	-453179(76207)	9.55/11 = 0.87	0.57
	[14, 24]	0.463(21)	-306(24)	-561291(84805)	3.96/10 = 0.40	0.95
	[15, 24]	0.462(21)	-305(24)	-586184(98219)	3.72/9 = 0.41	0.93
	[16, 24]	0.462(21)	-305(24)	-589326(120505)	3.71/8 = 0.46	0.88

Table 17: Results obtained from the **non-relativistic** bare ΔE_2 - and ΔE_3 -fit to order L^{-6} **with** exponentially suppressed corrections. In case of the ΔE_3 -fit the a_0 and r_0 bootstrap samples obtained from the ΔE_2 -fit within the interval [10, 24] serve as priors.

shift	fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3484(64)	-273(20)	-176777(16598)	81.88/18 = 4.55	4.01e - 10
	[7, 24]	0.3785(85)	-270(20)	-217938(22378)	53.62/17 = 3.15	$1.14e{-05}$
	[8, 24]	0.410(11)	-272(20)	-270054(30144)	29.12/16 = 1.82	0.02
	[9, 24]	0.438(13)	-280(20)	-328753(40999)	18.40/15 = 1.23	0.24
	[10, 24]	0.445(17)	-285(22)	-346908(51020)	17.95/14 = 1.28	0.21
ΔE_4	[11, 24]	0.465(19)	-308(24)	-415730(68236)	11.93/13 = 0.92	0.53
	[12, 24]	0.468(20)	-309(24)	-420323(70454)	11.75/12 = 0.98	0.47
	[13, 24]	0.470(21)	-310(24)	-420714(71591)	11.52/11 = 1.05	0.40
	[14, 24]	0.461(21)	-304(24)	-449250(68151)	7.64/10 = 0.76	0.66
	[15, 24]	0.462(21)	-305(24)	-442134(72936)	7.55/9 = 0.84	0.58
	[16, 24]	0.463(21)	-305(24)	-427745(77444)	7.23/8 = 0.90	0.51
	[6, 24]	0.3169(56)	-263(21)	-121765(12501)	119.26/18 = 6.63	$1.11e{-16}$
	[7, 24]	0.3516(77)	-265(21)	-164277(18164)	77.46/17 = 4.56	1.08e - 09
	[8, 24]	0.411(12)	-277(21)	-264948(33368)	34.49/16 = 2.16	4.66e - 03
	[9, 24]	0.438(13)	-284(21)	-326923(43197)	17.53/15 = 1.17	0.29
	[10, 24]	0.446(17)	-290(23)	-349872(54547)	16.92/14 = 1.21	0.26
ΔE_5	[11, 24]	0.459(18)	-305(23)	-394213(64431)	11.97/13 = 0.92	0.53
	[12, 24]	0.463(20)	-307(24)	-402136(67825)	11.73/12 = 0.98	0.47
	[13, 24]	0.467(20)	-307(24)	-405545(69505)	11.24/11 = 1.02	0.42
	[14, 24]	0.459(21)	-303(24)	-410176(65382)	8.07/10 = 0.81	0.62
	[15, 24]	0.461(21)	-304(24)	-398108(69372)	7.71/9 = 0.86	0.56
	[16, 24]	0.460(21)	-304(24)	-401879(72627)	7.68/8 = 0.96	0.47

Table 18: Results obtained from the **non-relativistic** bare ΔE_4 - and ΔE_5 -fit to order L^{-6} **with** exponentially suppressed corrections. Here, the a_0 and r_0 bootstrap samples obtained from the previous ΔE_2 -fit within the interval [10, 24] serve as priors.

4.3 Relativistic Fits without Exponentially Suppressed Corrections (rel. c. \checkmark ; exp. c. \times)

shift	fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3216(64)	-166(3)	_	79.12/17 = 4.65	5.49e - 10
	[7, 24]	0.3580(95)	-195(6)	_	52.98/16 = 3.31	7.60e - 06
	$[8,\ 24]$	0.407(12)	-256(10)	_	17.00/15 = 1.13	0.32
	[9, 24]	0.430(16)	-291(17)	_	12.31/14 = 0.88	0.58
	[10, 24]	0.461(21)	-341(24)	_	7.64/13 = 0.59	0.87
ΔE_2	[11, 24]	0.474(26)	-365(33)	_	6.73/12 = 0.56	0.87
	[12, 24]	0.482(34)	-385(76)	_	6.62/11 = 0.60	0.83
	[13, 24]	0.493(43)	-424(126)	_	6.45/10 = 0.64	0.78
	[14, 24]	0.482(60)	-375(441)	_	6.39/9 = 0.71	0.70
	[15, 24]	0.491(78)	-423(836)	_	6.36/8 = 0.80	0.61
	[16, 24]	0.46(10)	-201(6088)	_	6.18/7 = 0.88	0.52
	[6, 24]	0.3416(56)	-260(10)	-132748(8976)	95.81/18 = 5.32	$1.29e{-12}$
	[7, 24]	0.3751(76)	-251(10)	-157680(12197)	53.81/17 = 3.17	1.06e - 05
	[8, 24]	0.4079(96)	-254(10)	-196009(17503)	23.49/16 = 1.47	0.10
	[9, 24]	0.412(12)	-254(10)	-197260(18125)	23.08/15 = 1.54	0.08
	[10, 24]	0.414(12)	-254(10)	-195403(18654)	22.67/14 = 1.62	0.07
ΔE_3	[11, 24]	0.414(12)	-254(10)	-195883(23049)	22.67/13 = 1.74	0.05
	[12, 24]	0.413(12)	-254(10)	-204590(25589)	22.06/12 = 1.84	0.04
	[13, 24]	0.411(12)	-255(10)	-259939(38155)	18.27/11 = 1.66	0.08
	[14, 24]	0.408(12)	-256(10)	-466492(71683)	6.72/10 = 0.67	0.75
	[15, 24]	0.408(12)	-255(10)	-534520(92804)	5.39/9 = 0.60	0.80
	[16, 24]	0.408(12)	-255(10)	-571768(120461)	5.15/8 = 0.64	0.74

Table 19: Results obtained from the **relativistic** bare ΔE_2 - and ΔE_3 -fit to order L^{-6} **without** exponentially suppressed corrections. In case of the ΔE_3 -fit the a_0 and r_0 bootstrap samples obtained from the ΔE_2 -fit within the interval [8, 24] serve as priors.

shift	fit intvl	a_0	r_0	$\bar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3406(60)	-263(10)	-116442(8599)	99.45/18 = 5.53	2.79e - 13
	[7, 24]	0.3743(79)	-254(10)	-143610(11724)	57.98/17 = 3.41	2.26e - 06
	[8, 24]	0.4037(96)	-253(10)	-173118(15414)	28.48/16 = 1.78	0.03
	[9, 24]	0.418(11)	-253(10)	-187307(17963)	21.60/15 = 1.44	0.12
	[10, 24]	0.415(12)	-253(10)	-187341(17553)	20.91/14 = 1.49	0.10
ΔE_4	[11, 24]	0.415(12)	-254(10)	-184706(18068)	20.39/13 = 1.57	0.09
	[12, 24]	0.413(12)	-254(10)	-195727(20274)	19.08/12 = 1.59	0.09
	[13, 24]	0.412(12)	-254(10)	-200611(23120)	18.89/11 = 1.72	0.06
	[14, 24]	0.408(12)	-255(10)	-293464(37332)	8.99/10 = 0.90	0.53
	[15, 24]	0.408(12)	-255(10)	-310433(50399)	8.74/9 = 0.97	0.46
	[16, 24]	0.408(12)	-255(10)	-306618(58437)	8.72/8 = 1.09	0.37
	[6, 24]	0.3108(52)	-268(10)	-83175(5956)	153.92/18 = 8.55	0.00
	[7, 24]	0.3506(71)	-255(10)	-111715(8813)	88.85/17 = 5.23	$9.89e{-12}$
	[8, 24]	0.4021(99)	-252(10)	-161937(14794)	33.06/16 = 2.07	0.01
	[9, 24]	0.417(11)	-254(10)	-183149(17620)	19.32/15 = 1.29	0.20
	[10, 24]	0.414(12)	-254(10)	-182433(17193)	18.64/14 = 1.33	0.18
ΔE_5	[11, 24]	0.415(12)	-255(10)	-180396(17459)	17.50/13 = 1.35	0.18
	[12, 24]	0.412(12)	-255(10)	-187955(18356)	16.19/12 = 1.35	0.18
	[13, 24]	0.412(12)	-255(10)	-188032(19129)	16.19/11 = 1.47	0.13
	[14, 24]	0.408(12)	-255(10)	-228718(24271)	9.09/10 = 0.91	0.52
	[15, 24]	0.408(12)	-255(10)	-234508(37990)	9.05/9 = 1.01	0.43
	[16, 24]	0.408(12)	-256(10)	-250368(46174)	8.69/8 = 1.09	0.37

Table 20: Results obtained from the **relativistic** bare ΔE_4 - and ΔE_5 -fit to order L^{-6} **without** exponentially suppressed corrections. Here, the a_0 and r_0 bootstrap samples obtained from the previous ΔE_2 -fit within the interval [8, 24] serve as priors.

shift	fit intvl	a_0	r_0	$\bar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3216(64)	-166(3)	_	79.12/17 = 4.65	5.49e - 10
	[7, 24]	0.3580(95)	-195(6)	_	52.98/16 = 3.31	7.60e - 06
	[8, 24]	0.407(12)	-256(10)	_	17.00/15 = 1.13	0.32
	$[9,\ 24]$	0.430(16)	-291(17)	_	12.31/14 = 0.88	0.58
	[10, 24]	0.461(21)	-341(24)	_	7.64/13 = 0.59	0.87
ΔE_2	[11, 24]	0.474(26)	-365(33)	_	6.73/12 = 0.56	0.87
	[12, 24]	0.482(34)	-385(76)	_	6.62/11 = 0.60	0.83
	[13, 24]	0.493(43)	-424(126)	_	6.45/10 = 0.64	0.78
	[14, 24]	0.482(60)	-375(441)	_	6.39/9 = 0.71	0.70
	[15, 24]	0.491(78)	-423(836)	_	6.36/8 = 0.80	0.61
	[16, 24]	0.46(10)	-201(6088)	_	6.18/7 = 0.88	0.52
	[6, 24]	0.3406(57)	-279(16)	-147549(13669)	95.32/18 = 5.30	1.58e - 12
	[7, 24]	0.3750(77)	-273(16)	-181518(18822)	54.39/17 = 3.20	8.58e - 06
	[8, 24]	0.411(10)	-277(16)	-234325(26802)	22.63/16 = 1.41	0.12
	[9, 24]	0.426(14)	-286(17)	-262938(35766)	20.08/15 = 1.34	0.17
	[10, 24]	0.435(15)	-288(17)	-270584(38578)	18.09/14 = 1.29	0.20
ΔE_3	[11, 24]	0.440(16)	-292(17)	-269739(40736)	17.00/13 = 1.31	0.20
	[12, 24]	0.439(16)	-293(17)	-273149(41183)	16.81/12 = 1.40	0.16
	[13, 24]	0.436(16)	-292(17)	-310500(46915)	14.39/11 = 1.31	0.21
	[14, 24]	0.431(16)	-291(17)	-479805(72661)	5.37/10 = 0.54	0.86
	[15, 24]	0.431(16)	-290(17)	-529933(91628)	4.57/9 = 0.51	0.87
	[16, 24]	0.430(16)	-290(17)	-553173(117915)	4.47/8 = 0.56	0.81

Table 21: Results obtained from the **relativistic** bare ΔE_2 - and ΔE_3 -fit to order L^{-6} **without** exponentially suppressed corrections. In case of the ΔE_3 -fit the a_0 and r_0 bootstrap samples obtained from the ΔE_2 -fit within the interval [9,24] serve as priors.

shift	fit intvl	a_0	r_0	$\bar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3395(61)	-263(16)	-115141(11606)	93.63/18 = 5.20	$3.20e{-12}$
	[7, 24]	0.3727(81)	-261(16)	-148317(16266)	57.14/17 = 3.36	3.09e - 06
	[8, 24]	0.406(10)	-271(16)	-198111(23469)	28.71/16 = 1.79	0.03
	[9, 24]	0.432(13)	-287(16)	-253866(34474)	18.12/15 = 1.21	0.26
	[10, 24]	0.433(15)	-287(17)	-255727(36048)	18.08/14 = 1.29	0.20
ΔE_4	[11, 24]	0.440(15)	-293(17)	-265106(38697)	15.56/13 = 1.20	0.27
	[12, 24]	0.438(16)	-292(17)	-266494(38180)	15.34/12 = 1.28	0.22
	[13, 24]	0.437(16)	-292(17)	-267034(38909)	15.33/11 = 1.39	0.17
	[14, 24]	0.431(16)	-291(17)	-335881(45391)	8.14/10 = 0.81	0.62
	[15, 24]	0.431(16)	-290(17)	-341427(54994)	8.11/9 = 0.90	0.52
	[16, 24]	0.432(16)	-290(17)	-332821(61905)	8.01/8 = 1.00	0.43
	[6, 24]	0.3102(52)	-255(16)	-76066(7771)	135.43/18 = 7.52	0.00
	[7, 24]	0.3475(71)	-245(16)	-101723(11298)	79.74/17 = 4.69	4.27e - 10
	[8, 24]	0.405(11)	-270(16)	-185932(23730)	33.50/16 = 2.09	0.01
	[9, 24]	0.431(13)	-288(17)	-247376(33891)	16.75/15 = 1.12	0.33
	[10, 24]	0.432(15)	-288(17)	-249380(35557)	16.71/14 = 1.19	0.27
ΔE_5	[11, 24]	0.437(15)	-293(17)	-257903(37546)	13.93/13 = 1.07	0.38
	[12, 24]	0.435(16)	-292(17)	-257592(36889)	13.76/12 = 1.15	0.32
	[13, 24]	0.436(16)	-292(17)	-257067(37096)	13.67/11 = 1.24	0.25
	[14, 24]	0.430(16)	-290(17)	-282872(37250)	8.40/10 = 0.84	0.59
	[15, 24]	0.431(16)	-290(17)	-279611(45994)	8.39/9 = 0.93	0.50
	[16, 24]	0.430(16)	-290(17)	-290663(52568)	8.20/8 = 1.03	0.41

Table 22: Results obtained from the **relativistic** bare ΔE_4 - and ΔE_5 -fit to order L^{-6} **without** exponentially suppressed corrections. Here, the a_0 and r_0 bootstrap samples obtained from the previous ΔE_2 -fit within the interval [9, 24] serve as priors.

shift	fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3216(64)	-166(3)	_	79.12/17 = 4.65	5.49e - 10
	[7, 24]	0.3580(95)	-195(6)	_	52.98/16 = 3.31	7.60e - 06
	[8, 24]	0.407(12)	-256(10)	_	17.00/15 = 1.13	0.32
	[9, 24]	0.430(16)	-291(17)	_	12.31/14 = 0.88	0.58
	[10,24]	0.461(21)	-341(24)	_	7.64/13 = 0.59	0.87
ΔE_2	[11, 24]	0.474(26)	-365(33)	_	6.73/12 = 0.56	0.87
	[12, 24]	0.482(34)	-385(76)	_	6.62/11 = 0.60	0.83
	[13, 24]	0.493(43)	-424(126)	_	6.45/10 = 0.64	0.78
	[14, 24]	0.482(60)	-375(441)	_	6.39/9 = 0.71	0.70
	[15, 24]	0.491(78)	-423(836)	_	6.36/8 = 0.80	0.61
	[16, 24]	0.46(10)	-201(6088)	_	6.18/7 = 0.88	0.52
	[6, 24]	0.3403(57)	-324(20)	-184233(16997)	94.42/18 = 5.25	2.30e - 12
	[7, 24]	0.3744(77)	-311(20)	-223002(23068)	54.57/17 = 3.21	8.04e - 06
	[8, 24]	0.410(10)	-306(20)	-274894(31592)	23.64/16 = 1.48	0.10
	[9, 24]	0.428(14)	-312(20)	-307041(40897)	20.64/15 = 1.38	0.15
	[10, 24]	0.445(17)	-324(21)	-348017(52459)	17.10/14 = 1.22	0.25
ΔE_3	[11, 24]	0.474(20)	-348(23)	-419199(75850)	10.64/13 = 0.82	0.64
	[12, 24]	0.475(21)	-348(23)	-419363(76236)	10.62/12 = 0.89	0.56
	[13, 24]	0.471(21)	-346(24)	-430611(74623)	9.79/11 = 0.89	0.55
	[14, 24]	0.462(21)	-342(24)	-541724(83896)	4.03/10 = 0.40	0.95
	[15, 24]	0.462(21)	-341(24)	-568068(97565)	3.76/9 = 0.42	0.93
	[16, 24]	0.462(21)	-341(24)	-572527(120098)	3.75/8 = 0.47	0.88

Table 23: Results obtained from the **relativistic** bare ΔE_2 - and ΔE_3 -fit to order L^{-6} **without** exponentially suppressed corrections. In case of the ΔE_3 -fit the a_0 and r_0 bootstrap samples obtained from the ΔE_2 -fit within the interval [10, 24] serve as priors.

shift	fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3379(61)	-318(20)	-150569(14972)	95.20/18 = 5.29	1.66e - 12
	[7, 24]	0.3715(82)	-312(20)	-192088(20819)	59.95/17 = 3.53	1.07e - 06
	[8, 24]	0.406(10)	-311(20)	-244364(28656)	31.38/16 = 1.96	0.01
	[9, 24]	0.436(13)	-317(20)	-304354(39574)	18.96/15 = 1.26	0.22
	[10, 24]	0.444(17)	-322(21)	-325533(49790)	18.31/14 = 1.31	0.19
ΔE_4	[11, 24]	0.465(19)	-344(23)	-394147(66903)	12.07/13 = 0.93	0.52
	[12, 24]	0.468(20)	-346(23)	-398404(68982)	11.89/12 = 0.99	0.45
	[13, 24]	0.470(21)	-346(23)	-398541(70033)	11.68/11 = 1.06	0.39
	[14, 24]	0.461(21)	-341(23)	-428780(66854)	7.64/10 = 0.76	0.66
	[15, 24]	0.462(21)	-342(24)	-422321(71779)	7.57/9 = 0.84	0.58
	[16, 24]	0.463(21)	-341(24)	-408253(76397)	7.27/8 = 0.91	0.51
	[6, 24]	0.3066(53)	-310(21)	-99095(11152)	135.02/18 = 7.50	0.00
	[7, 24]	0.3444(75)	-308(21)	-140660(16755)	84.94/17 = 5.00	$5.02e{-11}$
	[8, 24]	0.407(12)	-316(21)	-239395(31719)	37.03/16 = 2.31	2.08e - 03
	[9, 24]	0.436(13)	-322(21)	-302882(41764)	17.98/15 = 1.20	0.26
	[10, 24]	0.446(17)	-328(22)	-328922(53324)	17.15/14 = 1.23	0.25
ΔE_5	[11, 24]	0.460(18)	-342(23)	-373103(63166)	12.03/13 = 0.93	0.52
	[12, 24]	0.463(20)	-343(23)	-380545(66356)	11.81/12 = 0.98	0.46
	[13, 24]	0.467(21)	-343(23)	-383572(67932)	11.33/11 = 1.03	0.42
	[14, 24]	0.459(21)	-339(23)	-389139(63918)	8.06/10 = 0.81	0.62
	[15, 24]	0.460(21)	-341(24)	-377494(68000)	7.74/9 = 0.86	0.56
	[16, 24]	0.460(21)	-341(24)	-381698(71389)	7.70/8 = 0.96	0.46

Table 24: Results obtained from the **relativistic** bare ΔE_4 - and ΔE_5 -fit to order L^{-6} **without** exponentially suppressed corrections. Here, the a_0 and r_0 bootstrap samples obtained from the previous ΔE_2 -fit within the interval [10, 24] serve as priors.

4.4 Relativistic Fits with Exponentially Suppressed Corrections (rel. c. \checkmark ; exp. c. \checkmark)

shift	fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3332(68)	-108(3)	_	67.89/17 = 3.99	4.96e - 08
	[7, 24]	0.3654(98)	-135(5)	_	47.60/16 = 2.97	5.49e - 05
	$[8,\ 24]$	0.411(13)	-194(9)	_	15.57/15 = 1.04	0.41
	[9, 24]	0.432(16)	-228(18)	_	11.69/14 = 0.83	0.63
	[10, 24]	0.461(21)	-279(25)	_	7.50/13 = 0.58	0.87
ΔE_2	[11, 24]	0.474(26)	-303(35)	_	6.71/12 = 0.56	0.88
	[12, 24]	0.480(34)	-322(81)	_	6.62/11 = 0.60	0.83
	[13, 24]	0.491(42)	-361(132)	_	6.45/10 = 0.65	0.78
	[14, 24]	0.480(59)	-310(454)	_	6.39/9 = 0.71	0.70
	[15, 24]	0.488(77)	-359(854)	_	6.36/8 = 0.80	0.61
	[16, 24]	0.46(10)	-130(6131)	_	6.19/7 = 0.88	0.52
	[6, 24]	0.3531(60)	-190(9)	-100393(8906)	79.80/18 = 4.43	$9.30e{-10}$
	[7, 24]	0.3828(79)	-186(9)	-115428(11568)	47.07/17 = 2.77	1.19e - 04
	[8, 24]	0.4126(98)	-193(9)	-142521(15920)	21.76/16 = 1.36	0.15
	[9, 24]	0.416(12)	-193(9)	-142619(16311)	21.50/15 = 1.43	0.12
	[10, 24]	0.418(12)	-193(9)	-140021(17053)	21.05/14 = 1.50	0.10
ΔE_3	[11, 24]	0.419(12)	-193(9)	-138157(22038)	21.03/13 = 1.62	0.07
	[12, 24]	0.418(13)	-193(9)	-146184(24842)	20.55/12 = 1.71	0.06
	[13, 24]	0.415(13)	-194(9)	-198920(37830)	17.15/11 = 1.56	0.10
	[14, 24]	0.412(13)	-194(9)	-399251(71625)	6.33/10 = 0.63	0.79
	[15, 24]	0.412(13)	-194(9)	-462900(92588)	5.15/9 = 0.57	0.82
	[16, 24]	0.412(13)	-194(9)	-496514(120356)	4.96/8 = 0.62	0.76

Table 25: Results obtained from the **relativistic** bare ΔE_2 - and ΔE_3 -fit to order L^{-6} **with** exponentially suppressed corrections. In case of the ΔE_3 -fit the a_0 and r_0 bootstrap samples obtained from the ΔE_2 -fit within the interval [8, 24] serve as priors.

shift	fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3510(63)	-192(9)	-84152(8188)	84.90/18 = 4.72	1.17e - 10
	[7, 24]	0.3811(82)	-189(9)	-100960(10698)	51.80/17 = 3.05	$2.21e{-05}$
	[8, 24]	0.4082(98)	-191(9)	-120785(13719)	26.52/16 = 1.66	0.05
	[9, 24]	0.422(11)	-193(9)	-130328(15767)	20.39/15 = 1.36	0.16
	[10, 24]	0.418(12)	-192(9)	-131255(15431)	19.77/14 = 1.41	0.14
ΔE_4	[11, 24]	0.420(12)	-193(9)	-127947(16079)	19.06/13 = 1.47	0.12
	[12, 24]	0.417(12)	-193(9)	-138258(18843)	18.03/12 = 1.50	0.11
	[13, 24]	0.417(12)	-193(9)	-142376(22199)	17.91/11 = 1.63	0.08
	[14, 24]	0.413(12)	-194(9)	-232583(37020)	8.73/10 = 0.87	0.56
	[15, 24]	0.413(12)	-193(9)	-246736(50142)	8.56/9 = 0.95	0.48
	[16, 24]	0.413(13)	-193(9)	-241481(58351)	8.53/8 = 1.07	0.38
	[6, 24]	0.3211(55)	-194(9)	-57587(5655)	135.07/18 = 7.50	0.00
	[7, 24]	0.3576(74)	-187(9)	-75390(7984)	80.78/17 = 4.75	2.79e - 10
	[8, 24]	0.406(10)	-190(9)	-110136(12957)	30.95/16 = 1.93	0.01
	[9, 24]	0.421(11)	-194(9)	-126138(15357)	18.42/15 = 1.23	0.24
	[10, 24]	0.417(12)	-193(9)	-126441(14949)	17.83/14 = 1.27	0.21
ΔE_5	[11, 24]	0.419(12)	-194(9)	-123968(15270)	16.51/13 = 1.27	0.22
	[12, 24]	0.416(12)	-194(9)	-131310(16668)	15.50/12 = 1.29	0.22
	[13, 24]	0.416(12)	-194(9)	-130990(17715)	15.50/11 = 1.41	0.16
	[14, 24]	0.413(12)	-194(9)	-171046(23401)	8.87/10 = 0.89	0.54
	[15, 24]	0.413(12)	-194(9)	-174333(37505)	8.86/9 = 0.98	0.45
	[16, 24]	0.412(13)	-194(9)	-189087(45926)	8.55/8 = 1.07	0.38

Table 26: Results obtained from the **relativistic** bare ΔE_4 - and ΔE_5 -fit to order L^{-6} with exponentially suppressed corrections. Here, the a_0 and r_0 bootstrap samples obtained from the previous ΔE_2 -fit within the interval [8, 24] serve as priors.

shift	fit intvl	a_0	r_0	$\bar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3332(68)	-108(3)	_	67.89/17 = 3.99	4.96e - 08
	[7, 24]	0.3654(98)	-135(5)	_	47.60/16 = 2.97	5.49e - 05
	[8, 24]	0.411(13)	-194(9)	_	15.57/15 = 1.04	0.41
	$[9,\ 24]$	0.432(16)	-228(18)	_	11.69/14 = 0.83	0.63
	[10, 24]	0.461(21)	-279(25)	_	7.50/13 = 0.58	0.87
ΔE_2	[11, 24]	0.474(26)	-303(35)	_	6.71/12 = 0.56	0.88
	[12, 24]	0.480(34)	-322(81)	_	6.62/11 = 0.60	0.83
	[13, 24]	0.491(42)	-361(132)	_	6.45/10 = 0.65	0.78
	[14, 24]	0.480(59)	-310(454)	_	6.39/9 = 0.71	0.70
	[15, 24]	0.488(77)	-359(854)	_	6.36/8 = 0.80	0.61
	[16, 24]	0.46(10)	-130(6131)	_	6.19/7 = 0.88	0.52
	[6, 24]	0.3523(60)	-206(15)	-114190(14333)	79.61/18 = 4.42	1.00e-09
	[7, 24]	0.3828(80)	-205(15)	-137183(18832)	47.56/17 = 2.80	1.00e - 04
	[8, 24]	0.415(10)	-213(15)	-176736(25749)	21.01/16 = 1.31	0.18
	[9, 24]	0.428(14)	-222(17)	-196974(32676)	19.18/15 = 1.28	0.21
	[10, 24]	0.436(15)	-225(17)	-201597(35088)	17.36/14 = 1.24	0.24
ΔE_3	[11, 24]	0.442(16)	-231(17)	-198986(37370)	16.15/13 = 1.24	0.24
	[12, 24]	0.441(16)	-231(17)	-202320(38045)	15.99/12 = 1.33	0.19
	[13, 24]	0.438(16)	-229(17)	-238880(44603)	13.77/11 = 1.25	0.25
	[14, 24]	0.433(16)	-228(17)	-405296(71610)	5.17/10 = 0.52	0.88
	[15, 24]	0.433(16)	-227(17)	-452729(90724)	4.45/9 = 0.49	0.88
	[16, 24]	0.433(16)	-227(17)	-473628(117290)	4.37/8 = 0.55	0.82

Table 27: Results obtained from the **relativistic** bare ΔE_2 - and ΔE_3 -fit to order L^{-6} with exponentially suppressed corrections. In case of the ΔE_3 -fit the a_0 and r_0 bootstrap samples obtained from the ΔE_2 -fit within the interval [9,24] serve as priors.

shift	fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3498(64)	-190(15)	-81439(11913)	80.14/18 = 4.45	8.11e-10
	[7, 24]	0.3795(84)	-193(15)	-104130(15875)	51.04/17 = 3.00	$2.91e{-05}$
	[8, 24]	0.410(10)	-207(16)	-141826(22044)	26.74/16 = 1.67	0.04
	[9, 24]	0.434(13)	-224(17)	-185831(31390)	17.63/15 = 1.18	0.28
	[10, 24]	0.435(15)	-224(17)	-186677(32327)	17.61/14 = 1.26	0.23
ΔE_4	[11, 24]	0.441(15)	-231(17)	-194262(34827)	15.00/13 = 1.15	0.31
	[12, 24]	0.440(16)	-230(17)	-195955(34529)	14.83/12 = 1.24	0.25
	[13, 24]	0.440(16)	-230(17)	-196113(35605)	14.83/11 = 1.35	0.19
	[14, 24]	0.434(16)	-228(17)	-264587(43177)	8.04/10 = 0.80	0.62
	[15, 24]	0.433(16)	-227(17)	-268475(53329)	8.02/9 = 0.89	0.53
	[16, 24]	0.434(16)	-227(17)	-258868(60591)	7.91/8 = 0.99	0.44
	[6, 24]	0.3203(55)	-177(15)	-48328(8090)	118.75/18 = 6.60	1.11e-16
	[7, 24]	0.3544(74)	-174(15)	-64095(11184)	72.59/17 = 4.27	7.69e - 09
	[8, 24]	0.409(11)	-205(16)	-129769(21892)	31.33/16 = 1.96	0.01
	[9, 24]	0.433(13)	-225(17)	-179652(30784)	16.41/15 = 1.09	0.36
	[10, 24]	0.434(15)	-225(17)	-180669(31800)	16.40/14 = 1.17	0.29
ΔE_5	[11, 24]	0.439(15)	-230(17)	-187689(33671)	13.57/13 = 1.04	0.40
	[12, 24]	0.437(16)	-230(17)	-187950(33115)	13.45/12 = 1.12	0.34
	[13, 24]	0.438(16)	-230(17)	-187028(33429)	13.33/11 = 1.21	0.27
	[14, 24]	0.432(16)	-226(17)	-213806(34107)	8.32/10 = 0.83	0.60
	[15, 24]	0.433(16)	-227(17)	-208980(43690)	8.29/9 = 0.92	0.51
	[16, 24]	0.432(16)	-227(17)	-219345(50725)	8.13/8 = 1.02	0.42

Table 28: Results obtained from the **relativistic** bare ΔE_4 - and ΔE_5 -fit to order L^{-6} with exponentially suppressed corrections. Here, the a_0 and r_0 bootstrap samples obtained from the previous ΔE_2 -fit within the interval [9, 24] serve as priors.

shift	fit intvl	a_0	r_0	$\bar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3332(68)	-108(3)	_	67.89/17 = 3.99	4.96e - 08
	[7, 24]	0.3654(98)	-135(5)	_	47.60/16 = 2.97	5.49e - 05
	[8, 24]	0.411(13)	-194(9)	_	15.57/15 = 1.04	0.41
	[9, 24]	0.432(16)	-228(18)	_	11.69/14 = 0.83	0.63
	[10,24]	0.461(21)	-279 (25)	_	7.50/13 = 0.58	0.87
ΔE_2	[11, 24]	0.474(26)	-303(35)	_	6.71/12 = 0.56	0.88
	[12, 24]	0.480(34)	-322(81)	_	6.62/11 = 0.60	0.83
	[13, 24]	0.491(42)	-361(132)	_	6.45/10 = 0.65	0.78
	[14, 24]	0.480(59)	-310(454)	_	6.39/9 = 0.71	0.70
	[15, 24]	0.488(77)	-359(854)	_	6.36/8 = 0.80	0.61
	[16, 24]	0.46(10)	-130(6131)	_	6.19/7 = 0.88	0.52
	[6, 24]	0.3519(60)	-245(20)	-149859(18239)	79.05/18 = 4.39	1.25e - 09
	[7, 24]	0.3822(80)	-239(20)	-176363(23665)	47.80/17 = 2.81	9.23e - 05
	[8, 24]	0.415(10)	-239(20)	-214347(31266)	21.90/16 = 1.37	0.15
	[9, 24]	0.430(14)	-246(20)	-237014(38470)	19.71/15 = 1.31	0.18
	[10, 24]	0.446(17)	-259(22)	-269834(48305)	16.58/14 = 1.18	0.28
ΔE_3	[11, 24]	0.474(20)	-287(24)	-329167(69678)	10.34/13 = 0.80	0.67
	[12, 24]	0.475(21)	-287(25)	-329157(70065)	10.33/12 = 0.86	0.59
	[13, 24]	0.471(21)	-285(25)	-341303(68917)	9.55/11 = 0.87	0.57
	[14, 24]	0.463(21)	-280(25)	-453305(80074)	3.96/10 = 0.40	0.95
	[15, 24]	0.462(21)	-279(25)	-478396(94430)	3.72/9 = 0.41	0.93
	[16, 24]	0.462(21)	-279(25)	-481562(117757)	3.71/8 = 0.46	0.88

Table 29: Results obtained from the **relativistic** bare ΔE_2 - and ΔE_3 -fit to order L^{-6} **with** exponentially suppressed corrections. In case of the ΔE_3 -fit the a_0 and r_0 bootstrap samples obtained from the ΔE_2 -fit within the interval [10, 24] serve as priors.

shift	fit intvl	a_0	r_0	$\bar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
	[6, 24]	0.3484(64)	-240(20)	-117036(15652)	81.88/18 = 4.55	$4.01e{-10}$
	[7, 24]	0.3785(85)	-239(20)	-146605(20752)	53.62/17 = 3.15	$1.14e{-05}$
	[8, 24]	0.410(11)	-243(20)	-185555(27652)	29.12/16 = 1.82	0.02
	[9, 24]	0.438(13)	-252(20)	-232127(37005)	18.40/15 = 1.23	0.24
	[10, 24]	0.445(17)	-258(22)	-247225(45129)	17.95/14 = 1.28	0.21
ΔE_4	[11, 24]	0.465(19)	-282(24)	-306571(60843)	11.93/13 = 0.92	0.53
	[12, 24]	0.468(20)	-284(24)	-309836(62652)	11.75/12 = 0.98	0.47
	[13, 24]	0.470(21)	-284(24)	-309136(63765)	11.52/11 = 1.05	0.40
	[14, 24]	0.461(21)	-278(24)	-341895(61363)	7.64/10 = 0.76	0.66
	[15, 24]	0.462(21)	-279(25)	-334470(66988)	7.55/9 = 0.84	0.58
	[16, 24]	0.463(21)	-279(25)	-319581(72114)	7.23/8 = 0.90	0.51
	[6, 24]	0.3169(56)	-229(21)	-72994(11706)	119.26/18 = 6.63	$1.11e{-16}$
	[7, 24]	0.3516(77)	-232(21)	-103226(16698)	77.46/17 = 4.56	1.08e - 09
	[8, 24]	0.411(12)	-248(21)	-180241(30054)	34.49/16 = 2.16	$4.66e{-03}$
	[9, 24]	0.438(13)	-257(21)	-230396(38923)	17.53/15 = 1.17	0.29
	[10, 24]	0.446(17)	-263(23)	-249534(48225)	16.92/14 = 1.21	0.26
ΔE_5	[11, 24]	0.459(18)	-279(24)	-287732(57307)	11.97/13 = 0.92	0.53
	[12, 24]	0.463(20)	-281(24)	-293852(59988)	11.73/12 = 0.98	0.47
	[13, 24]	0.467(20)	-281(24)	-295735(61503)	11.24/11 = 1.02	0.42
	[14, 24]	0.459(21)	-276(24)	-303915(57704)	8.07/10 = 0.81	0.62
	[15, 24]	0.461(21)	-278(25)	-291088(62454)	7.71/9 = 0.86	0.56
	[16, 24]	0.460(21)	-278(25)	-295008(66367)	7.68/8 = 0.96	0.47

Table 30: Results obtained from the **relativistic** bare ΔE_4 - and ΔE_5 -fit to order L^{-6} with exponentially suppressed corrections. Here, the a_0 and r_0 bootstrap samples obtained from the previous ΔE_2 -fit within the interval [10, 24] serve as priors.

5 Global Energy Shift Fits to Order L^{-6} without Priors

5.1 Global Fits without Exponentially Suppressed Corrections

fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
[6, 24]	0.3116(39)	-198(2)	-79077(2852)	289.02/73 = 3.96	0.00
[7, 24]	0.3489(57)	-217(5)	-121069(6913)	177.26/69 = 2.57	$1.79e{-11}$
[8, 24]	0.3968(82)	-247(8)	-199650(14697)	107.05/65 = 1.65	7.96e - 04
[9, 24]	0.428(11)	-291(14)	-301721(33767)	66.18/61 = 1.08	0.30
[10, 24]	0.438(15)	-320(21)	-362327(52137)	52.83/57 = 0.93	0.63
[11, 24]	0.475(19)	-393(27)	-567872(90850)	39.60/53 = 0.75	0.91
[12, 24]	0.493(24)	-420(45)	-674072(154147)	37.27/49 = 0.76	0.89
[13, 24]	0.499(31)	-428(81)	-709696(242840)	35.55/45 = 0.79	0.84
[14, 24]	0.463(42)	-265(304)	-346307(430995)	32.73/41 = 0.80	0.82
[15, 24]	0.490(57)	-417(422)	-639768(673014)	30.71/37 = 0.83	0.76
[16, 24]	0.505(72)	-490(727)	-827472(965137)	27.13/33 = 0.82	0.75

Table 31: Results from the **non-relativistic** global energy shift fit (ΔE_N -fit with N=2,3,4,5) without exponentially suppressed corrections.

fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
[6, 24]	0.3116(39)	-159(2)	-30068(1789)	289.02/73 = 3.96	0.00
[7, 24]	0.3489(57)	-183(5)	-59655(5182)	177.26/69 = 2.57	$1.79e{-11}$
[8, 24]	0.3968(82)	-217(8)	-120209(11999)	107.05/65 = 1.65	7.96e - 04
[9, 24]	0.428(11)	-263(15)	-209301(29700)	66.18/61 = 1.08	0.30
[10, 24]	0.438(15)	-292(21)	-265422(46637)	52.83/57 = 0.93	0.63
[11, 24]	0.475(19)	-368(28)	-454224(82982)	39.60/53 = 0.75	0.91
[12, 24]	0.493(24)	-396(46)	-551507(143457)	37.27/49 = 0.76	0.89
[13, 24]	0.499(31)	-404(82)	-583974(228596)	35.55/45 = 0.79	0.84
[14, 24]	0.463(42)	-239(306)	-238156(412970)	32.73/41 = 0.80	0.82
[15, 24]	0.490(57)	-393(424)	-518404(646454)	30.71/37 = 0.83	0.76
[16, 24]	0.505(72)	-466(730)	-698698(930182)	27.13/33 = 0.82	0.75

Table 32: Results from the **relativistic** global energy shift fit (ΔE_N -fit with N=2,3,4,5) without exponentially suppressed corrections.

5.2 Global Fits with Exponentially Suppressed Corrections

fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
[6, 24]	0.3227(41)	-138(2)	-59994(2405)	264.13/73 = 3.62	0.00
[7, 24]	0.3564(59)	-156(4)	-90257(6000)	166.68/69 = 2.42	$4.68e{-10}$
[8, 24]	0.4013(84)	-186(7)	-151441(13007)	103.75/65 = 1.60	1.60e - 03
[9, 24]	0.430(11)	-228(15)	-235725(30825)	65.31/61 = 1.07	0.33
[10, 24]	0.439(15)	-255(22)	-286929(47814)	52.29/57 = 0.92	0.65
[11, 24]	0.474(19)	-331(28)	-472297(84213)	39.52/53 = 0.75	0.92
[12, 24]	0.491(24)	-359(48)	-565633(144682)	37.28/49 = 0.76	0.89
[13, 24]	0.497(31)	-366(85)	-594921(229840)	35.57/45 = 0.79	0.84
[14, 24]	0.461(42)	-195(314)	-245971(414270)	32.74/41 = 0.80	0.82
[15, 24]	0.488(57)	-353(434)	-526506(648243)	30.72/37 = 0.83	0.76
[16, 24]	0.503(71)	-429(743)	-707541(932637)	27.14/33 = 0.82	0.75

Table 33: Results from the **non-relativistic** global energy shift fit (ΔE_N -fit with N=2,3,4,5) with exponentially suppressed corrections.

fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
[6, 24]	0.3227(41)	-100(2)	-7432(1352)	264.13/73 = 3.62	0.00
[7, 24]	0.3564(59)	-122(4)	-26164(4300)	166.68/69 = 2.42	$4.68e{-10}$
[8, 24]	0.4013(84)	-156(7)	-70172(10438)	103.75/65 = 1.60	1.60e - 03
[9, 24]	0.430(11)	-200(15)	-142405(26874)	65.31/61 = 1.07	0.33
[10, 24]	0.439(15)	-227(22)	-189799(42507)	52.29/57 = 0.92	0.65
[11, 24]	0.474(19)	-305(29)	-359011(76572)	39.52/53 = 0.75	0.92
[12, 24]	0.491(24)	-334(48)	-443857(134298)	37.28/49 = 0.76	0.89
[13, 24]	0.497(31)	-342(86)	-470216(215938)	35.57/45 = 0.79	0.84
[14, 24]	0.461(42)	-169(316)	-138700(396605)	32.74/41 = 0.80	0.82
[15, 24]	0.488(57)	-328(437)	-406206(622156)	30.72/37 = 0.83	0.76
[16, 24]	0.503(71)	-405(746)	-579916(898269)	27.14/33 = 0.82	0.75

Table 34: Results from the **relativistic** global energy shift fit (ΔE_N -fit with N=2,3,4,5) with exponentially suppressed corrections.

6 Global Energy Shift Fits to Order L^{-6} with Priors

6.1 Non-Relativistic Global Fits

fit intvl	a_0	r_0	$\bar{\mathcal{T}}$	χ^2/ndof	p-value
[6, 24]	0.3269(41)	-204(6)	-95417(3132)	403.21/56 = 7.20	0.00
[7, 24]	0.3649(54)	-229(7)	-148708(6039)	200.08/53 = 3.78	0.00
[8, 24]	0.4087(77)	-246(8)	-216929(10870)	97.02/50 = 1.94	$7.61e{-05}$
[9, 24]	0.4252(92)	-273(9)	-273327(18454)	56.58/47 = 1.20	0.16
[10, 24]	0.420(11)	-279(10)	-275576(19856)	46.18/44 = 1.05	0.38
[11, 24]	0.421(11)	-280(10)	-273865(20343)	44.45/41 = 1.08	0.33
[12, 24]	0.419(11)	-281(10)	-275764(20984)	43.93/38 = 1.16	0.23
[13, 24]	0.421(12)	-280(10)	-275037(21834)	43.02/35 = 1.23	0.17
[14, 24]	0.416(12)	-282(10)	-305285(26175)	36.78/32 = 1.15	0.26
[15, 24]	0.414(12)	-283(10)	-283120(37431)	33.60/29 = 1.16	0.25
[16, 24]	0.414(12)	-284(10)	-286338(43291)	28.58/26 = 1.10	0.33

Table 35: Results from the **non-relativistic** global energy shift fit (ΔE_N -fit with N=3,4,5) **without** exponentially suppressed corrections. Here, the a_0 and r_0 bootstrap samples obtained from the corresponding ΔE_2 -fit within the interval [8, 24] serve as priors.

6.2 Relativistic Global Fits

fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
[6, 24]	0.3278(40)	-167(5)	-41906(2577)	406.64/56 = 7.26	0.00
[7, 24]	0.3653(53)	-196(7)	-81823(4916)	200.50/53 = 3.78	0.00
[8, 24]	0.4086(76)	-216(8)	-132615(8843)	97.00/50 = 1.94	7.64e - 05
[9, 24]	0.4251(91)	-244(9)	-182054(15429)	56.59/47 = 1.20	0.16
[10, 24]	0.420(11)	-250(9)	-186411(16514)	46.18/44 = 1.05	0.38
[11, 24]	0.421(11)	-251(10)	-184347(16908)	44.45/41 = 1.08	0.33
[12, 24]	0.419(11)	-252(10)	-187053(17956)	43.93/38 = 1.16	0.23
[13, 24]	0.421(12)	-251(10)	-185414(18939)	43.02/35 = 1.23	0.17
[14, 24]	0.416(12)	-253(10)	-217906(24094)	36.78/32 = 1.15	0.26
[15, 24]	0.414(12)	-254(10)	-196530(36034)	33.60/29 = 1.16	0.25
[16, 24]	0.414(12)	-255(10)	-200051(42206)	28.58/26 = 1.10	0.33

Table 36: Results from the **relativistic** global energy shift fit (ΔE_N -fit with N=3,4,5) **without** exponentially suppressed corrections. Here, the a_0 and r_0 bootstrap samples obtained from the corresponding ΔE_2 -fit within the interval [8, 24] serve as priors.

fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
[6, 24]	0.3221(45)	-73.0(60)	+7389(3311)	211.00/55 = 3.84	0.00
[7, 24]	0.3568(63)	-103.0(82)	-12623(6750)	130.87/52 = 2.52	9.77e - 09
[8, 24]	0.4044(88)	-134.6(88)	-48680(11602)	67.30/49 = 1.37	0.04
[9, 24]	0.420(10)	-144(20)	-65054(27260)	48.60/46 = 1.06	0.37
[10, 24]	0.420(12)	-164(25)	-92376(34204)	43.01/43 = 1.00	0.47
[11, 24]	0.421(12)	-132(43)	-49080(54062)	40.14/40 = 1.00	0.46
[12, 24]	0.419(12)	-107(56)	-24559(66091)	39.30/37 = 1.06	0.37
[13, 24]	0.418(12)	+30(88)	+130486(93976)	33.23/34 = 0.98	0.51
[14, 24]	0.413(12)	+432(188)	+549652(193558)	21.67/31 = 0.70	0.89
[15, 24]	0.413(12)	+490(224)	+614552(230324)	21.26/28 = 0.76	0.81
[16, 24]	0.413(12)	+506(277)	+615738(282634)	20.08/25 = 0.80	0.74

Table 37: Results from the **relativistic** global energy shift fit (ΔE_N -fit with N=3,4,5) with exponentially suppressed corrections. Here, the a_0 bootstrap samples obtained from the corresponding ΔE_2 -fit within the interval [8, 24] serve as priors.

fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
[6, 24]	0.3386(42)	-104(5)	-13477(2589)	353.82/56 = 6.32	0.00
[7, 24]	0.3728(54)	-134(6)	-42446(4623)	185.00/53 = 3.49	$1.11e{-16}$
[8, 24]	0.4133(76)	-156.2(71)	-79302(7975)	93.43/50 = 1.87	1.91e - 04
[9, 24]	0.4290(92)	-184.9(86)	-122668(13554)	55.16/47 = 1.17	0.19
[10, 24]	0.424(11)	-190.1(90)	-128566(14540)	44.41/44 = 1.01	0.45
[11, 24]	0.425(11)	-191.8(92)	-126127(14964)	42.36/41 = 1.03	0.41
[12, 24]	0.423(11)	-192.0(92)	-128598(16386)	41.95/38 = 1.10	0.30
[13, 24]	0.426(12)	-191.6(93)	-126233(17501)	40.97/35 = 1.17	0.22
[14, 24]	0.420(12)	-193(9)	-158770(23172)	35.26/32 = 1.10	0.32
[15, 24]	0.418(12)	-193(9)	-136895(35439)	32.16/29 = 1.11	0.31
[16, 24]	0.418(12)	-193.9(93)	-140303(41783)	27.39/26 = 1.05	0.39

Table 38: Results from the **relativistic** global energy shift fit (ΔE_N -fit with N=3,4,5) **with** exponentially suppressed corrections. Here, the a_0 and r_0 bootstrap samples obtained from the corresponding ΔE_2 -fit within the interval [8, 24] serve as priors.

fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
$\overline{[6,24]}$	0.3223(46)	-73.0(59)	+7398(3312)	209.30/55 = 3.81	0.00
[7, 24]	0.3563(63)	-101.7(83)	-11629(6746)	131.06/52 = 2.52	9.19e - 09
[8, 24]	0.4055(89)	-134.9(87)	-49381(11637)	66.90/49 = 1.37	0.05
[9, 24]	0.430(12)	-165(20)	-97673(32183)	45.22/46 = 0.98	0.50
[10, 24]	0.435(14)	-190(24)	-136303(40043)	38.98/43 = 0.91	0.65
[11, 24]	0.441(15)	-187(39)	-129511(61114)	35.22/40 = 0.88	0.68
[12, 24]	0.440(15)	-175(49)	-112189(71398)	34.91/37 = 0.94	0.57
[13, 24]	0.439(16)	-77(77)	+16881(97263)	30.09/34 = 0.89	0.66
[14, 24]	0.431(16)	+240(166)	+396798(189789)	20.78/31 = 0.67	0.92
[15, 24]	0.432(16)	+265(197)	+435601(225450)	20.45/28 = 0.73	0.85
[16, 24]	0.431(16)	+256(240)	+412585(276592)	19.38/25 = 0.78	0.78

Table 39: Results from the **relativistic** global energy shift fit (ΔE_N -fit with N=3,4,5) with exponentially suppressed corrections. Here, the a_0 bootstrap samples obtained from the corresponding ΔE_2 -fit within the interval [9, 24] serve as priors.

fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
[6, 24]	0.3350(41)	-90(5)	-3644(2847)	274.43/56 = 4.90	0.00
[7, 24]	0.3686(54)	-119.3(63)	-28962(5310)	156.78/53 = 2.96	$3.40e{-12}$
[8, 24]	0.4125(79)	-148.4(73)	-69957(9137)	84.57/50 = 1.69	1.62e - 03
[9, 24]	0.4375(96)	-198(13)	-149418(21051)	53.77/47 = 1.14	0.23
[10, 24]	0.439(12)	-214(15)	-173460(26515)	41.02/44 = 0.93	0.60
[11, 24]	0.444(13)	-226(16)	-189012(31201)	36.62/41 = 0.89	0.67
[12, 24]	0.444(14)	-226(17)	-189029(31547)	36.42/38 = 0.96	0.54
[13, 24]	0.447(14)	-225(17)	-187358(31721)	35.17/35 = 1.00	0.46
[14, 24]	0.440(15)	-223(17)	-206721(33392)	31.26/32 = 0.98	0.50
[15, 24]	0.439(15)	-225(17)	-182800(42332)	28.27/29 = 0.97	0.50
[16, 24]	0.437(15)	-225(17)	-184307(47916)	24.18/26 = 0.93	0.57

Table 40: Results from the **relativistic** global energy shift fit (ΔE_N -fit with N=3,4,5) **with** exponentially suppressed corrections. Here, the a_0 and r_0 bootstrap samples obtained from the corresponding ΔE_2 -fit within the interval [9, 24] serve as priors.

fit intvl	a_0	r_0	$ar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value
[6, 24]	0.3225(45)	-73(6)	+7342(3310)	208.67/55 = 3.79	0.00
[7, 24]	0.3567(62)	-102(8)	-12235(6765)	129.92/52 = 2.50	$1.31e{-08}$
[8, 24]	0.4053(88)	-135(9)	-49718(11680)	66.81/49 = 1.36	0.05
[9, 24]	0.431(12)	-168(21)	-101922(33253)	44.99/46 = 0.98	0.51
[10, 24]	0.443(15)	-207(25)	-165483(45346)	37.19/43 = 0.86	0.72
[11, 24]	0.464(18)	-253(38)	-254958(78870)	30.04/40 = 0.75	0.87
[12, 24]	0.469(19)	-255(43)	-259927(88164)	29.55/37 = 0.80	0.80
[13, 24]	0.468(20)	-200(65)	-167499(112832)	26.37/34 = 0.78	0.82
[14, 24]	0.457(21)	+15(142)	+151859(196141)	20.06/31 = 0.65	0.93
[15, 24]	0.459(21)	+2(163)	+151645(228949)	19.54/28 = 0.70	0.88
[16, 24]	0.459(21)	-30(197)	+95391(278601)	18.53/25 = 0.74	0.82

Table 41: Results from the **relativistic** global energy shift fit (ΔE_N -fit with N=3,4,5) with exponentially suppressed corrections. Here, the a_0 bootstrap samples obtained from the corresponding ΔE_2 -fit within the interval [10, 24] serve as priors.

fit intvl		m and a second	$\bar{\mathcal{T}}$	χ^2/ndof	
110 1110 V1	a_0	r_0	1	χ / Πασι	<i>p</i> -varue
[6, 24]	0.3374(41)	-91(5)	-4682(2910)	322.47/56 = 5.76	0.00
[7, 24]	0.3736(54)	-122(6)	-33412(5500)	189.67/53 = 3.58	0.00
[8, 24]	0.4201(77)	-147(7)	-72893(9508)	94.67/50 = 1.89	1.40e - 04
[9, 24]	0.4452(96)	-200(14)	-161335(22782)	56.17/47 = 1.20	0.17
[10, 24]	0.450(12)	-234(18)	-216760(31039)	42.05/44 = 0.96	0.56
[11, 24]	0.468(16)	-277(22)	-302075(53509)	30.91/41 = 0.75	0.87
[12, 24]	0.472(18)	-281(23)	-309272(57798)	30.21/38 = 0.80	0.81
[13, 24]	0.476(17)	-278(23)	-307148(55184)	28.67/35 = 0.82	0.77
[14, 24]	0.468(18)	-276(23)	-313208(53834)	26.29/32 = 0.82	0.75
[15, 24]	0.468(19)	-279(23)	-285287(60349)	23.51/29 = 0.81	0.75
[16, 24]	0.465(20)	-277(24)	-280075(64591)	20.46/26 = 0.79	0.77

Table 42: Results from the **relativistic** global energy shift fit (ΔE_N -fit with N=3,4,5) with exponentially suppressed corrections. Here, the a_0 and r_0 bootstrap samples obtained from the corresponding ΔE_2 -fit within the interval [10, 24] serve as priors.

7 Energy Shift Fits to Order L^{-6} with Substituted Effective Range Parameter

In a relativistic approach it can be shown that the one-loop value of the effective range parameter reads

$$r_0 = -\frac{1}{M^2 a_0} + \frac{20}{3\pi M}. (5)$$

Substituting this expression into Eq. (4) provides the N-particle ground state model only depending on two fit-parameters (scattering length a_0 and threshold amplitude $\bar{\mathcal{T}}$):

$$\Delta E_{N} = {N \choose 2} \frac{4\pi a_{0}}{ML^{3}} \left\{ 1 - \left(\frac{a_{0}}{\pi L}\right) \mathcal{I} + \left(\frac{a_{0}}{\pi L}\right)^{2} \left[\mathcal{I}^{2} + (2N - 5)\mathcal{J}\right] - \left(\frac{a_{0}}{\pi L}\right)^{3} \left[(2N - 7)\mathcal{I}\mathcal{J} + \mathcal{I}^{3} + (5N^{2} - 41N + 63)\mathcal{K} + 8(N - 2)(2\mathcal{Q} + \mathcal{R}) \right] - (4N - 6) \frac{\pi a_{0}^{2}}{L^{3}} \left(\frac{1}{M^{2} a_{0}} - \frac{20}{3\pi M}\right) + (4N - 9) \frac{\pi a_{0}}{M^{2}L^{3}} - \frac{24Ma_{0}}{\sqrt{2\pi ML}} \exp\left(-ML\right) \right\} + {N \choose 3} \left\{ \frac{32\pi a_{0}^{4}}{ML^{6}} \left(3\sqrt{3} - 4\pi \right) \left(\ln(ML)^{2} - \Gamma'(1) - \ln(4\pi) \right) - \frac{\bar{\mathcal{T}}}{6L^{6}} \right\}.$$
(6)

8 Bare Energy Shift Fits to Order L^{-6} with Substituted Effective Range Parameter

shift	fit intvl	a_0	$\bar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value	$r_{0,\mathrm{ptb}}$	$ar{\mathcal{T}}_{ ext{ptb}}$
	[6, 24]	0.2748(39)	_	185.50/18 = 10.31	0.00	-77(1)	25403(724)
	[7, 24]	0.3007(51)	_	110.84/17 = 6.52	$8.88e{-16}$	-70(1)	30417(1035)
	[8, 24]	0.3210(68)	_	86.06/16 = 5.38	$1.32e{-11}$	-65(2)	34662(1471)
	[9, 24]	0.3504(83)	_	42.83/15 = 2.86	1.67e - 04	-58(2)	41302(1959)
	[10, 24]	0.3672(94)	_	29.20/14 = 2.09	0.01	-55(2)	45358(2325)
ΔE_2	[11, 24]	0.381(10)	_	21.03/13 = 1.62	0.07	-53(2)	48831(2566)
	[12, 24]	0.406(13)	_	11.79/12 = 0.98	0.46	-49(2)	55450(3554)
	[13, 24]	0.419(16)	_	9.42/11 = 0.86	0.58	-47(2)	59058(4513)
	[14, 24]	0.436(19)	_	6.95/10 = 0.70	0.73	-45(2)	63947(5576)
	[15, 24]	0.440(21)	_	6.81/9 = 0.76	0.66	-44(3)	65126(6219)
	[16, 24]	0.450(25)	_	6.31/8 = 0.79	0.61	-43(3)	68120(7571)
	[6, 24]	0.3523(60)	+20983(1801)	77.77/18 = 4.32	2.09e-09	-58(1)	41752(1426)
	[7, 24]	0.3818(80)	+40520(4030)	47.69/17 = 2.81	9.57e - 05	-53(1)	49036(2059)
	[8, 24]	0.412(10)	+68969(7223)	24.28/16 = 1.52	0.08	-48(1)	57101(2776)
	[9, 24]	0.413(13)	+70092(14910)	24.27/15 = 1.62	0.06	-48(2)	57378(3615)
	[10, 24]	0.413(13)	+71786(18213)	24.25/14 = 1.73	0.04	-48(2)	57378(3615)
ΔE_3	[11, 24]	0.413(13)	+61388(22298)	23.60/13 = 1.82	0.04	-48(2)	57378(3615)
	[12, 24]	0.415(13)	+56601(22577)	21.77/12 = 1.81	0.04	-48(2)	57935(3633)
	[13, 24]	0.413(13)	+556(36544)	17.97/11 = 1.63	0.08	-48(2)	57378(3615)
	[14, 24]	0.408(13)	-209768(72409)	6.67/10 = 0.67	0.76	-49(2)	55997(3571)
	[15, 24]	0.408(13)	-276794(93120)	5.36/9 = 0.60	0.80	-49(2)	55997(3571)
	[16, 24]	0.407(13)	-313596(120148)	5.13/8 = 0.64	0.74	-49(2)	55723(3562)

Table 43: Results obtained from the **relativistic** bare ΔE_2 - and ΔE_3 -fit to order L^{-6} with exponentially suppressed corrections, using Eq. (6) as fit model for different fit intervals. In case of the ΔE_3 -fit the a_0 bootstrap samples obtained from the ΔE_2 -fit within the interval [12, 24] serve as priors.

shift	fit intvl	a_0	$\bar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value	$r_{0,\mathrm{ptb}}$	$ar{\mathcal{T}_{ ext{ptb}}}$
	[6, 24]	0.3500(63)	+16957(1129)	78.64/18 = 4.37	1.48e-09	-58(1)	41208(1487)
	[7, 24]	0.3784(82)	+29327(2616)	49.72/17 = 2.92	4.67e - 05	-53(1)	48167(2091)
	[8, 24]	0.4047(99)	+46063(4510)	27.66/16 = 1.73	0.03	-49(1)	55095(2699)
	[9, 24]	0.419(12)	+58779(7407)	22.79/15 = 1.52	0.09	-47(2)	59058(3386)
	[10, 24]	0.413(13)	+49133(11358)	21.55/14 = 1.54	0.09	-48(2)	57378(3615)
ΔE_4	[11, 24]	0.414(13)	+54184(13944)	21.15/13 = 1.63	0.07	-48(2)	57656(3624)
	[12, 24]	0.415(13)	+39707(16725)	18.71/12 = 1.56	0.10	-48(2)	57935(3633)
	[13, 24]	0.414(13)	+33680(21955)	18.53/11 = 1.68	0.07	-48(2)	57656(3624)
	[14, 24]	0.409(13)	-64177(38413)	8.92/10 = 0.89	0.54	-49(2)	56272(3580)
	[15, 24]	0.409(13)	-80886(52065)	8.70/9 = 0.97	0.47	-49(2)	56272(3580)
	[16, 24]	0.409(13)	-76764(60158)	8.68/8 = 1.08	0.37	-49(2)	56272(3580)
	[6, 24]	0.3202(55)	+11913(647)	119.82/18 = 6.66	0.00	-65(1)	34490(1188)
	[7, 24]	0.3544(73)	+20617(1474)	72.22/17 = 4.25	8.93e - 09	-58(1)	42251(1744)
	[8, 24]	0.402(10)	+41940(3799)	31.37/16 = 1.96	0.01	-50(1)	54362(2708)
	[9, 24]	0.418(11)	+50836(4739)	20.13/15 = 1.34	0.17	-47(2)	58776(3097)
	[10, 24]	0.412(13)	+42442(9161)	18.99/14 = 1.36	0.17	-48(2)	57101(3606)
ΔE_5	[11, 24]	0.414(13)	+47606(10497)	17.95/13 = 1.38	0.16	-48(2)	57656(3624)
	[12, 24]	0.412(13)	+34552(14114)	16.05/12 = 1.34	0.19	-48(2)	57101(3606)
	[13, 24]	0.412(13)	+34494(16480)	16.05/11 = 1.46	0.14	-48(2)	57101(3606)
	[14, 24]	0.408(13)	-11595(23962)	9.07/10 = 0.91	0.53	-49(2)	55997(3571)
	[15, 24]	0.408(13)	-17279(38847)	9.03/9 = 1.00	0.43	-49(2)	55997(3571)
	[16, 24]	0.407(13)	-33644(47460)	8.67/8 = 1.08	0.37	-49(2)	55723(3562)

Table 44: Results obtained from the **relativistic** bare ΔE_4 - and ΔE_5 -fit to order L^{-6} with exponentially suppressed corrections, using Eq. (6) as fit model for different fit intervals. Here, the a_0 bootstrap samples obtained from the ΔE_2 -fit within the interval [12, 24] serve as priors.

9 Global Energy Shift Fits to Order L^{-6} with Substituted Effective Range Parameter

9.1 Global Energy Shift Fits without Priors

fit intvl	a_0	$\bar{\mathcal{T}}$	χ^2/ndof	<i>p</i> -value	$r_{0,\mathrm{ptb}}$	$ar{\mathcal{T}}_{ ext{ptb}}$
[6, 24]	0.2859(27)	8067(298)	393.35/74 = 5.32	0.00	-73.89(81)	27496(524)
[7, 24]	0.3126(36)	12978(675)	247.91/70 = 3.54	0.00	-66.69(90)	32872(762)
[8, 24]	0.3412(52)	22099(1858)	181.81/66 = 2.75	$9.10e{-13}$	-60(1)	39162(1198)
[9, 24]	0.3698(63)	30446(2326)	106.15/62 = 1.71	$4.11e{-04}$	-55(1)	46002(1572)
[10, 24]	0.3753(76)	21753(6300)	77.17/58 = 1.33	0.05	-54(1)	47381(1923)
[11, 24]	0.3900(89)	29203(7439)	65.04/54 = 1.20	0.14	-51(1)	51165(2339)
[12, 24]	0.412(11)	42559(12695)	50.38/50 = 1.01	0.46	-48(2)	57101(3052)
[13, 24]	0.429(13)	47838(15430)	41.32/46 = 0.90	0.67	-46(2)	61910(3755)
[14, 24]	0.444(17)	36432(24748)	32.93/42 = 0.78	0.84	-44(2)	66315(5081)
[15, 24]	0.448(18)	59668(38784)	31.28/38 = 0.82	0.77	-43(2)	67515(5428)
[16, 24]	0.453(21)	67913(47179)	27.66/34 = 0.81	0.77	-43(2)	69031(6403)

Table 45: Results from the **relativistic** global energy shift fit (ΔE_N -fit with N=2,3,4,5) with exponentially suppressed corrections.

9.2 Global Energy Shift Fits with Priors

fit intvl	a_0	$\bar{\mathcal{T}}$	χ^2/ndof	p-value	$r_{0,\mathrm{ptb}}$	$ar{\mathcal{T}}_{ ext{ptb}}$
[6, 24]	0.3193(38)	11703(448)	212.35/56 = 3.79	0.00	-65.07(91)	34296(821)
[7, 24]	0.3378(46)	17367(877)	150.86/53 = 2.85	$2.50e{-11}$	-60.94(98)	38385(1050)
[8, 24]	0.3594(58)	28857(2229)	114.49/50 = 2.29	5.74e - 07	-57(1)	43451(1407)
[9, 24]	0.3908(73)	40486(2967)	64.72/47 = 1.38	0.04	-51(1)	51376(1924)
[10, 24]	0.3883(87)	31085(7311)	57.19/44 = 1.30	0.09	-52(1)	50720(2276)
[11, 24]	0.409(11)	45287(9172)	44.86/41 = 1.09	0.31	-49(2)	56272(3030)
[12, 24]	0.414(11)	40462(13274)	40.89/38 = 1.08	0.34	-48(2)	57656(3067)
[13, 24]	0.421(12)	41721(15102)	37.17/35 = 1.06	0.37	-47(2)	59623(3402)
[14, 24]	0.417(13)	5289(23168)	32.73/32 = 1.02	0.43	-47(2)	58495(3650)
[15, 24]	0.415(13)	22959(36083)	30.49/29 = 1.05	0.39	-48(2)	57935(3633)
[16, 24]	0.413(13)	15858(42520)	26.54/26 = 1.02	0.43	-48(2)	57378(3615)

Table 46: Results from the **relativistic** global energy shift fit (ΔE_N -fit with N=3,4,5) with exponentially suppressed corrections. Here, the a_0 bootstrap samples obtained from the corresponding ΔE_2 -fit (also substituted r_0 , see Table 43) within the interval [12,24] serve as priors.

10 Bare Energy Shift Fits to Order L^{-6} with Substituted Threshold Amplitude

shift	fit intvl	a_0	r_0	χ^2/ndof	<i>p</i> -value	$r_{0,\mathrm{ptb}}$	$ar{\mathcal{T}_{ ext{ptb}}}$
ΔE_2	[6, 24]	0.3332(68)	-108(3)	67.89/17 = 3.99	4.96e - 08	-62(1)	37347(1527)
	[7, 24]	0.3654(98)	-135(5)	47.60/16 = 2.97	5.49e - 05	-56(2)	44914(2412)
	[8, 24]	0.411(13)	-194(9)	15.57/15 = 1.04	0.41	-48(2)	56824(3598)
	[9, 24]	0.432(16)	-228(18)	11.69/14 = 0.83	0.63	-45(2)	62779(4653)
	[10, 24]	0.461(21)	-279(25)	7.50/13 = 0.58	0.87	-42(2)	71491(6516)
	[11, 24]	0.474(26)	-303(35)	6.71/12 = 0.56	0.88	-40(3)	75579(8294)
	[12, 24]	0.480(34)	-322(81)	6.62/11 = 0.60	0.83	-40(4)	77505(10982)
	[13, 24]	0.491(42)	-361(132)	6.45/10 = 0.65	0.78	-39(4)	81098(13876)
	[14, 24]	0.480(59)	-310(454)	6.39/9 = 0.71	0.70	-40(6)	77505(19054)
	[15, 24]	0.488(77)	-359(854)	6.36/8 = 0.80	0.61	-39(8)	80110(25281)
	[16, 24]	0.46(10)	-130(6131)	6.19/7 = 0.88	0.52	-42(11)	71181(30949)
	[6, 24]	0.3521(60)	-35(1)	77.89/18 = 4.33	2.00e-09	-58(1)	41704(1425)
ΔE_3	[7, 24]	0.3814(80)	-46(2)	47.78/17 = 2.81	9.29e - 05	-53(1)	48934(2056)
	[8, 24]	0.413(10)	-57(2)	22.69/16 = 1.42	0.12	-48(1)	57378(2782)
	[9, 24]	0.425(14)	-65(6)	21.33/15 = 1.42	0.13	-46(2)	60761(4006)
	[10, 24]	0.439(17)	-76(8)	18.86/14 = 1.35	0.17	-44(2)	64830(5024)
	[11, 24]	0.496(25)	-122(11)	9.65/13 = 0.74	0.72	-38(2)	82758(8345)
	[12, 24]	0.514(29)	-131(12)	8.14/12 = 0.68	0.77	-36(3)	88874(10031)
	[13, 24]	0.505(32)	-122(23)	7.73/11 = 0.70	0.74	-37(3)	85789(10874)
	[14, 24]	0.485(33)	-67(50)	3.47/10 = 0.35	0.97	-39(3)	79128(10770)
	[15, 24]	0.484(33)	-61(58)	3.41/9 = 0.38	0.95	-39(3)	78802(10748)
	[16, 24]	0.485(33)	-66(68)	3.39/8 = 0.42	0.91	-39(3)	79128(10770)

Table 47: Results obtained from the **relativistic** bare ΔE_2 - and ΔE_3 -fit to order L^{-6} **with** exponentially suppressed corrections. In case of the ΔE_2 -fit the model does not depend on the threshold amplitude $\bar{\mathcal{T}}$ since this parameter only occurs for N>2 (thus no substitution by the expression from perturbation theory). In case of the ΔE_3 -fit the a_0 bootstrap samples obtained from the ΔE_2 -fit within the interval [12, 24] serve as priors.

shift	fit intvl	a_0	r_0	χ^2/ndof	<i>p</i> -value	$r_{0,\mathrm{ptb}}$	$ar{\mathcal{T}}_{ ext{ptb}}$
	[6, 24]	0.3491(64)	-26.06(76)	77.45/18 = 4.30	2.39e - 09	-59(1)	40996(1507)
	[7, 24]	0.3784(85)	-33(1)	50.41/17 = 2.97	$3.64e{-05}$	-53(1)	48167(2167)
	[8, 24]	0.410(11)	-42(2)	27.02/16 = 1.69	0.04	-48(2)	56548(3038)
	[9, 24]	0.436(14)	-49(3)	17.65/15 = 1.18	0.28	-45(2)	63947(4110)
	[10, 24]	0.441(18)	-52(6)	17.50/14 = 1.25	0.23	-44(2)	65422(5343)
ΔE_4	[11, 24]	0.471(22)	-68(7)	11.68/13 = 0.90	0.55	-41(2)	74626(6974)
	[12, 24]	0.487(28)	-78(12)	10.81/12 = 0.90	0.55	-39(3)	79782(9176)
	[13, 24]	0.495(30)	-84(13)	10.16/11 = 0.92	0.52	-38(3)	82425(9993)
	[14, 24]	0.477(32)	-55(32)	7.76/10 = 0.78	0.65	-40(3)	76539(10271)
	[15, 24]	0.481(32)	-67(37)	7.43/9 = 0.83	0.59	-40(3)	77828(10357)
	[16, 24]	0.485(33)	-80(39)	6.89/8 = 0.86	0.55	-39(3)	79128(10770)
	[6, 24]	0.3162(57)	-22.76(45)	112.09/18 = 6.23	$1.33e{-15}$	-66(1)	33633(1216)
	[7, 24]	0.3503(78)	-27.73(79)	72.54/17 = 4.27	7.83e - 09	-58(2)	41279(1841)
	[8, 24]	0.408(12)	-38(1)	33.20/16 = 2.07	0.01	-49(2)	55997(3297)
	[9, 24]	0.436(14)	-41(1)	17.26/15 = 1.15	0.30	-45(2)	63947(4110)
	[10, 24]	0.443(19)	-43(5)	16.99/14 = 1.21	0.26	-44(2)	66017(5665)
ΔE_5	[11, 24]	0.464(21)	-52(5)	12.07/13 = 0.93	0.52	-42(2)	72424(6558)
	[12, 24]	0.480(28)	-60(10)	11.31/12 = 0.94	0.50	-40(3)	77505(9044)
	[13, 24]	0.489(30)	-65(10)	10.37/11 = 0.94	0.50	-39(3)	80439(9872)
	[14, 24]	0.474(31)	-48(20)	8.27/10 = 0.83	0.60	-40(3)	75579(9888)
	[15, 24]	0.482(32)	-66(26)	7.46/9 = 0.83	0.59	-40(3)	78152(10379)
	[16, 24]	0.482(33)	-66(32)	7.46/8 = 0.93	0.49	-40(3)	78152(10703)

Table 48: Results obtained from the **relativistic** bare ΔE_4 - and ΔE_5 -fit to order L^{-6} **with** exponentially suppressed corrections. Here, the a_0 bootstrap samples obtained from the ΔE_2 -fit within the interval [12, 24] serve as priors.

11 Global Energy Shift Fits to Order L^{-6} with Substituted Threshold Amplitude

11.1 Global Energy Shift Fits without Priors

fit intvl	a_0	r_0	χ^2/ndof	<i>p</i> -value	$r_{0,\mathrm{ptb}}$	$ar{\mathcal{T}}_{ ext{ptb}}$
[6, 24]	0.2494(22)	-22.18(76)	680.67/74 = 9.20	0.00	-86.23(87)	20924(373)
[7, 24]	0.2933(34)	-26(1)	324.62/70 = 4.64	0.00	-71.77(96)	28938(675)
[8, 24]	0.3332(53)	-35(2)	207.30/66 = 3.14	$1.11e{-16}$	-62(1)	37347(1192)
[9, 24]	0.3654(64)	-36(2)	113.01/62 = 1.82	8.17e - 05	-56(1)	44914(1577)
[10, 24]	0.3711(83)	-25(7)	82.64/58 = 1.42	0.02	-55(1)	46326(2076)
[11, 24]	0.3873(94)	-29(7)	67.66/54 = 1.25	0.10	-52(2)	50459(2453)
[12, 24]	0.412(12)	-37(10)	51.07/50 = 1.02	0.43	-48(2)	57101(3329)
[13, 24]	0.428(14)	-35(11)	41.60/46 = 0.90	0.66	-46(2)	61622(4034)
[14, 24]	0.441(18)	-21(18)	33.00/42 = 0.79	0.84	-44(2)	65422(5343)
[15, 24]	0.448(20)	-39(29)	31.30/38 = 0.82	0.77	-43(2)	67515(6031)
[16, 24]	0.454(23)	-43(34)	27.66/34 = 0.81	0.77	-43(3)	69336(7027)

Table 49: Results from the **relativistic** global energy shift fit (ΔE_N -fit with N=2,3,4,5) with exponentially suppressed corrections.

11.2 Global Energy Shift Fits with Priors

fit intvl	a_0	r_0	χ^2/ndof	<i>p</i> -value	$r_{0,\mathrm{ptb}}$	$ar{\mathcal{T}}_{ ext{ptb}}$
[6, 24]	0.3013(36)	-22.55(44)	260.11/56 = 4.64	0.00	-69.58(96)	30538(734)
[7, 24]	0.3244(44)	-27.19(83)	180.40/53 = 3.40	$8.88e{-16}$	-64(1)	35400(964)
[8, 24]	0.3531(61)	-38(2)	129.16/50 = 2.58	6.28e - 09	-58(1)	41941(1453)
[9, 24]	0.3872(74)	-40(2)	68.48/47 = 1.46	2.20e - 02	-52(1)	50433(1932)
[10, 24]	0.3861(95)	-34(7)	62.24/44 = 1.41	0.04	-52(2)	50147(2471)
[11, 24]	0.409(11)	-42(7)	47.58/41 = 1.16	0.22	-49(2)	56272(3030)
[12, 24]	0.415(13)	-40(12)	43.89/38 = 1.15	0.24	-48(2)	57935(3633)
[13, 24]	0.438(14)	-43(11)	29.87/35 = 0.85	0.71	-45(2)	64535(4129)
[14, 24]	0.465(20)	-44(17)	20.07/32 = 0.63	0.95	-41(2)	72737(6260)
[15, 24]	0.468(22)	-59(24)	19.33/29 = 0.67	0.91	-41(2)	73678(6929)
[16, 24]	0.465(23)	-54(30)	18.46/26 = 0.71	0.86	-41(3)	72737(7198)

Table 50: Results from the **relativistic** global energy shift fit (ΔE_N -fit with N=3,4,5) with exponentially suppressed corrections. Here, the a_0 bootstrap samples obtained from the corresponding ΔE_2 -fit (see Table 47) within the interval [12, 24] serve as priors.

12 Global Energy Shift Fits to Order L^{-6} with Substituted Effective Range Parameter as well as Threshold Amplitude

12.1 Global Energy Shift Fits without Priors

fit intvl	a_0	χ^2/ndof	<i>p</i> -value	$r_{0,\mathrm{ptb}}$	$ar{\mathcal{T}}_{ ext{ptb}}$
[6, 24]	0.2112(14)	8248.17/75 = 109.98	0.00	-103.71(78)	15005(202)
[7, 24]	0.3250(36)	2235.11/71 = 31.48	0.00	-63.75(83)	35532(792)
[8, 24]	0.3835(59)	408.93/67 = 6.10	0.00	-52.44(97)	49474(1527)
[9, 24]	0.4002(69)	183.45/63 = 2.91	$1.06e{-13}$	-50(1)	53877(1863)
[10, 24]	0.4052(78)	117.82/59 = 2.00	8.47e - 06	-49(1)	55231(2131)
[11, 24]	0.4108(92)	86.32/55 = 1.57	4.45e - 03	-48(1)	56769(2547)
[12, 24]	0.423(11)	61.93/51 = 1.21	0.14	-47(1)	60190(3134)
[13, 24]	0.433(12)	49.48/47 = 1.05	0.37	-45(2)	63070(3499)
[14, 24]	0.458(15)	27.68/43 = 0.64	0.97	-42(2)	70563(4625)
[15, 24]	0.458(18)	26.56/39 = 0.68	0.94	-42(2)	70563(5549)
[16, 24]	0.460(20)	24.89/35 = 0.71	0.90	-42(2)	71181(6192)

Table 51: Results from the **relativistic** global energy shift fit (ΔE_N -fit with N=2,3,4,5) with exponentially suppressed corrections.