Exceptional Control Flow: Signals and Nonlocal Jumps

Computer Systems

Oct. 29, 2018

Troels Henriksen

Based on slides by:

Randal E. Bryant and David R. O'Hallaron

ECF Exists at All Levels of a System

- Exceptions
 - Hardware and operating system kernel software
- Process Context Switch
 - Hardware timer and kernel software
- Signals
 - Kernel software and application software
- Nonlocal jumps
 - Application code

Previous Lecture

This Lecture

Textbook

Today

- Shells
- Signals
- Nonlocal jumps

Linux Process Hierarchy

Shell Programs

A shell is an application program that runs programs on behalf of the user.

```
    sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
    csh/tcsh BSD Unix C shell
    bash "Bourne-Again" Shell (default Linux shell)
```

```
int main()
{
    char cmdline[MAXLINE]; /* command line */

    while (1) {
        /* read */
        printf("> ");
        Fgets(cmdline, MAXLINE, stdin);
        if (feof(stdin))
            exit(0);

        /* evaluate */
        eval(cmdline);
    }
}
```

Execution is a sequence of read/evaluate steps

Simple Shell eval Function

```
void eval(char *cmdline)
    char *argv[MAXARGS]; /* Argument list execve() */
   char buf[MAXLINE]; /* Holds modified command line */
            /* Should the job run in bg or fg? */
   int bg;
   pid t pid; /* Process id */
   strcpy(buf, cmdline);
   bg = parseline(buf, argv);
   if (arqv[0] == NULL)
        return; /* Ignore empty lines */
   if (!builtin command(argv)) {
       if ((pid = Fork()) == 0) { /* Child runs user job */
           if (execve(argv[0], argv, environ) < 0) {</pre>
               printf("%s: Command not found.\n", argv[0]);
               exit(0);
       /* Parent waits for foreground job to terminate */
   if (!bq) {
           int status:
           if (waitpid(pid, &status, 0) < 0)</pre>
               unix error("waitfg: waitpid error");
       }
       else
           printf("%d %s", pid, cmdline);
    return:
```

Reaping Child Processes

Idea

- When process terminates, it still consumes system resources
 - Examples: Exit status, various OS tables
- Called a "zombie"
 - Living corpse, half alive and half dead

Reaping

- Performed by parent on terminated child (using wait or waitpid)
- Parent is given exit status information
- Kernel then deletes zombie child process

What if parent doesn't reap?

- If any parent terminates without reaping a child, then the orphaned child will be reaped by init process (pid == 1)
- So, only need explicit reaping in long-running processes
 - e.g., shells and servers

Zombie Example

```
void fork7() {
   if (fork() == 0) {
      /* Child */
      printf("Terminating Child, PID = %d\n", getpid());
      exit(0);
   } else {
      printf("Running Parent, PID = %d\n", getpid());
      while (1)
            ; /* Infinite loop */
   }
}
```

```
linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
  PID TTY
                   TIME CMD
              00:00:00 tcsh
 6585 ttyp9
 6639 ttyp9
           00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY
                   TIME CMD
 6585 ttyp9
              00:00:00 tcsh
 6642 ttyp9
              00:00:00 ps
```

ps shows child process as "defunct" (i.e., a zombie)

Killing parent allows child to be reaped by init

Nonterminating Child Example

```
linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
                   TIME CMD
  PID TTY
              00:00:00 tcsh
 6585 ttyp9
 6676 ttyp9
               00:00:06 forks
               00:00:00 ps
 6677 ttyp9
linux> kill 6676 ←
linux> ps
 PID TTY
                   TIME CMD
 6585 ttyp9
               00:00:00 tcsh
 6678 ttyp9
               00:00:00 ps
```

Child process still active even though parent has terminated

Must kill child explicitly, or else will keep running indefinitely

Problem with Simple Shell Example

- Our example shell correctly waits for and reaps foreground jobs
- But what about background jobs?
 - Will become zombies when they terminate
 - Will never be reaped because shell (typically) will not terminate
 - Will create a memory leak that could run the kernel out of memory

ECF to the Rescue!

- Solution: Exceptional control flow
 - The kernel will interrupt regular processing to alert us when a background process completes
 - In Unix, the alert mechanism is called a signal

Today

- Shells
- Signals
- Nonlocal jumps

Signals

- A signal is a small message that notifies a process that an event of some type has occurred in the system
 - Akin to exceptions and interrupts
 - Sent from the kernel (sometimes at the request of another process) to a process
 - Signal type is identified by small integer ID's (1-30)
 - Only information in a signal is its ID and the fact that it arrived

ID	Name	Default Action	Corresponding Event
2	SIGINT	Terminate	User typed ctrl-c
9	SIGKILL	Terminate	Kill program (cannot override or ignore)
11	SIGSEGV	Terminate	Segmentation violation
14	SIGALRM	Terminate	Timer signal
17	SIGCHLD	Ignore	Child stopped or terminated

Signal Concepts: Sending a Signal

- Kernel sends (delivers) a signal to a destination process by updating some state in the context of the destination process
- Kernel sends a signal for one of the following reasons:
 - Kernel has detected a system event such as divide-by-zero (SIGFPE) or the termination of a child process (SIGCHLD)
 - Another process has invoked the kill system call to explicitly request the kernel to send a signal to the destination process

Signal Concepts: Receiving a Signal

- A destination process receives a signal when it is forced by the kernel to react in some way to the delivery of the signal
- Some possible ways to react:
 - Ignore the signal (do nothing)
 - Terminate the process (with optional core dump)
 - Catch the signal by executing a user-level function called signal handler
 - Akin to a hardware exception handler being called in response to an asynchronous interrupt:

Signal Concepts: Pending and Blocked Signals

- A signal is pending if sent but not yet received
 - There can be at most one pending signal of any particular type
 - Important: Signals are not queued
 - If a process has a pending signal of type k, then subsequent signals of type k that are sent to that process are discarded
- A process can block the receipt of certain signals
 - Blocked signals can be delivered, but will not be received until the signal is unblocked
- A pending signal is received at most once

Signal Concepts: Pending/Blocked Bits

- Kernel maintains pending and blocked bit vectors in the context of each process
 - pending: represents the set of pending signals
 - Kernel sets bit k in **pending** when a signal of type k is delivered
 - Kernel clears bit k in **pending** when a signal of type k is received
 - blocked: represents the set of blocked signals
 - Can be set and cleared by using the sigprocmask function
 - Also referred to as the signal mask.

Sending Signals: Process Groups

Every process belongs to exactly one process group

Sending Signals with /bin/kill Program

/bin/kill program sends arbitrary signal to a process or process group

Examples

- bin/kill -9 24818 Send SIGKILL to process 24818
- /bin/kill -9 -24817 Send SIGKILL to every process in process group 24817

```
linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817
linux> ps
  PID TTY
                   TIME CMD
24788 pts/2
               00:00:00 tcsh
24818 pts/2
               00:00:02 forks
24819 pts/2
               00:00:02 forks
24820 pts/2
               00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps
  PID TTY
                   TIME CMD
24788 pts/2
               00:00:00 tcsh
24823 pts/2
               00:00:00 ps
linux>
```

Sending Signals from the Keyboard

- Typing ctrl-c (ctrl-z) causes the kernel to send a SIGINT (SIGTSTP) to every job in the foreground process group.
 - SIGINT default action is to terminate each process
 - SIGTSTP default action is to stop (suspend) each process

20

Example of ctrl-c and ctrl-z

```
bluefish> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107
<types ctrl-z>
Suspended
bluefish> ps w
  PID TTY
              STAT
                     TIME COMMAND
27699 pts/8 Ss
                     0:00 -tcsh
28107 pts/8
                    0:01 ./forks 17
28108 pts/8
           T 0:01 ./forks 17
28109 pts/8
            R+
                    0:00 ps w
bluefish> fq
./forks 17
<types ctrl-c>
bluefish> ps w
  PID TTY
              STAT
                     TIME COMMAND
27699 pts/8 Ss
                     0:00 -tcsh
28110 pts/8
           R+
                     0:00 ps w
```

STAT (process state) Legend:

First letter:

S: sleeping

T: stopped

R: running

Second letter:

s: session leader

+: foreground proc group

See "man ps" for more details

Sending Signals with kill Function

```
void fork12()
{
   pid t pid[N];
   int i;
    int child status;
    for (i = 0; i < N; i++)
        if ((pid[i] = fork()) == 0) {
            /* Child: Infinite Loop */
            while(1)
        }
    for (i = 0; i < N; i++) {
        printf("Killing process %d\n", pid[i]);
        kill(pid[i], SIGINT);
    for (i = 0; i < N; i++) {
        pid t wpid = wait(&child status);
        if (WIFEXITED(child_status))
            printf("Child %d terminated with exit status %d\n",
                   wpid, WEXITSTATUS(child status));
        else
            printf("Child %d terminated abnormally\n", wpid);
                                                                     forks.c
```

Receiving Signals

Suppose kernel is returning from an exception handler and is ready to pass control to process p

Receiving Signals

- Suppose kernel is returning from an exception handler and is ready to pass control to process p
- Kernel computes pnb = pending & ~blocked
 - The set of pending nonblocked signals for process p
- If (pnb == 0)
 - Pass control to next instruction in the logical flow for p
- Else
 - Choose least nonzero bit k in pnb and force process p to receive signal k
 - The receipt of the signal triggers some action by p
 - Repeat for all nonzero k in pnb
 - Pass control to next instruction in logical flow for p

Default Actions

- Each signal type has a predefined default action, which is one of:
 - The process terminates
 - The process stops until restarted by a SIGCONT signal
 - The process ignores the signal

Installing Signal Handlers

- The signal function modifies the default action associated with the receipt of signal signum:
 - handler_t *signal(int signum, handler_t *handler)
- Different values for handler:
 - SIG_IGN: ignore signals of type signum
 - SIG_DFL: revert to the default action on receipt of signals of type signum
 - Otherwise, handler is the address of a user-level signal handler
 - Called when process receives signal of type signum
 - Referred to as "installing" the handler
 - Executing handler is called "catching" or "handling" the signal
 - When the handler executes its return statement, control passes back to instruction in the control flow of the process that was interrupted by receipt of the signal

Signal Handling Example

```
void sigint_handler(int sig) /* SIGINT handler */
{
    printf("So you think you can stop the bomb with ctrl-c, do you?\n");
    sleep(2);
    printf("Well...");
    fflush(stdout);
    sleep(1);
    printf("OK. :-)\n");
    exit(0);
int main()
{
    /* Install the SIGINT handler */
    if (signal(SIGINT, sigint handler) == SIG ERR)
        unix error("signal error");
    /* Wait for the receipt of a signal */
    pause();
    return 0;
                                                                     sigint.c
```

Signals Handlers as Concurrent Flows

A signal handler is a separate logical flow (not process) that runs concurrently with the main program

Another View of Signal Handlers as Concurrent Flows

Nested Signal Handlers

Handlers can be interrupted by other handlers

Blocking and Unblocking Signals

Implicit blocking mechanism

- Kernel blocks any pending signals of type currently being handled.
- E.g., A SIGINT handler can't be interrupted by another SIGINT

Explicit blocking and unblocking mechanism

sigprocmask function

Supporting functions

- sigemptyset Create empty set
- sigfillset Add every signal number to set
- sigaddset Add signal number to set
- sigdelset Delete signal number from set

Temporarily Blocking Signals

```
sigset_t mask, prev_mask;
Sigemptyset(&mask);
Sigaddset(&mask, SIGINT);

/* Block SIGINT and save previous blocked set */
Sigprocmask(SIG_BLOCK, &mask, &prev_mask);

* /* Code region that will not be interrupted by SIGINT */

/* Restore previous blocked set, unblocking SIGINT */
Sigprocmask(SIG_SETMASK, &prev_mask, NULL);
```

Safe Signal Handling

- Handlers are tricky because they are concurrent with main program and share the same global data structures.
 - Shared data structures can become corrupted.
- We'll explore concurrency issues later in the term.
- For now here are some guidelines to help you avoid trouble.

Guidelines for Writing Safe Handlers

- G0: Keep your handlers as simple as possible
 - e.g., Set a global flag and return
- G1: Call only async-signal-safe functions in your handlers
 - printf, sprintf, malloc, and exit are not safe!
- G2: Save and restore errno on entry and exit
 - So that other handlers don't overwrite your value of errno
- G3: Protect accesses to shared data structures by temporarily blocking all signals.
 - To prevent possible corruption
- G4: Declare global variables as volatile
 - To prevent compiler from storing them in a register
- G5: Declare global flags as volatile sig_atomic_t
 - flag: variable that is only read or written (e.g. flag = 1, not flag++)
 - Flag declared this way does not need to be protected like other globals

Async-Signal-Safety

- Function is async-signal-safe if either reentrant (e.g., all variables stored on stack frame, CS:APP3e 12.7.2) or non-interruptible by signals.
- Posix guarantees 117 functions to be async-signal-safe
 - Source: "man 7 signal"
 - Popular functions on the list:
 - exit, write, wait, waitpid, sleep, kill
 - Popular functions that are not on the list:
 - printf, sprintf, malloc, exit
 - Unfortunate fact: write is the only async-signal-safe output function

Safely Generating Formatted Output

Use the reentrant SIO (Safe I/O library) from csapp.c in your handlers.

```
    ssize_t sio_puts(char s[]) /* Put string */
    ssize_t sio_putl(long v) /* Put long */
    void sio_error(char s[]) /* Put msg & exit */
```

```
void sigint_handler(int sig) /* Safe SIGINT handler */
{
    Sio_puts("So you think you can stop the bomb with ctrl-
c, do you?\n");
    sleep(2);
    Sio_puts("Well...");
    sleep(1);
    Sio_puts("OK. :-)\n");
    _exit(0);
}
```

int ccount = 0; void child_handler(int sig) { int olderrno = errno; pid t pid; if ((pid = wait(NULL)) < 0)</pre> Sio error("wait error"); ccount--; Sio_puts("Handler reaped child "); Sio putl((long)pid); Sio_puts(" \n"); sleep(1); errno = olderrno; void fork14() { pid t pid[N]; int i; ccount = N;Signal(SIGCHLD, child_handler); for (i = 0; i < N; i++) { if ((pid[i] = Fork()) == 0) { Sleep(1); exit(0); /* Child exits */ } while (ccount > 0) /* Parent spins */

Correct Signal Handling

- Pending signals are not queued
 - For each signal type, one bit indicates whether or not signal is pending...
 - ...thus at most one pending signal of any particular type.
- You can't use signals to count events, such as children terminating.

whaleshark> ./forks 14
Handler reaped child 23240
Handler reaped child 23241

forks.c

Correct Signal Handling

- Must wait for all terminated child processes
 - Put wait in a loop to reap all terminated children

```
void child_handler2(int sig)
{
    int olderrno = errno;
    pid t pid;
    while ((pid = wait(NULL)) > 0) {
        ccount--:
        Sio_puts("Handler reaped child ");
        Sio_putl((long)pid);
        Sio_puts(" \n");
    if (errno != ECHILD)
        Sio_error("wait error");
                                       whaleshark> ./forks 15
    errno = olderrno;
                                       Handler reaped child 23246
                                       Handler reaped child 23247
                                       Handler reaped child 23248
                                       Handler reaped child 23249
                                       Handler reaped child 23250
                                       whaleshark>
```

Portable Signal Handling

- Ugh! Different versions of Unix can have different signal handling semantics
 - Some older systems restore action to default after catching signal
 - Some interrupted system calls can return with errno == EINTR
 - Some systems don't block signals of the type being handled
- Solution: sigaction

```
handler_t *Signal(int signum, handler_t *handler)
{
    struct sigaction action, old_action;

    action.sa_handler = handler;
    sigemptyset(&action.sa_mask); /* Block sigs of type being handled */
    action.sa_flags = SA_RESTART; /* Restart syscalls if possible */

    if (sigaction(signum, &action, &old_action) < 0)
        unix_error("Signal error");
    return (old_action.sa_handler);
}</pre>
```

Synchronizing Flows to Avoid Races

Simple shell with a subtle synchronization error because it assumes parent runs before child.

```
int main(int argc, char **argv)
{
    int pid;
    sigset t mask all, prev all;
    Sigfillset(&mask all);
    Signal(SIGCHLD, handler);
    initjobs(); /* Initialize the job list */
    while (1) {
        if ((pid = Fork()) == 0) { /* Child */
            Execve("/bin/date", argv, NULL);
        Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); /* Parent */
        addjob(pid); /* Add the child to the job list */
        Sigprocmask(SIG SETMASK, &prev all, NULL);
    exit(0);
                                                       procmask 1.c
```

Synchronizing Flows to Avoid Races

SIGCHLD handler for a simple shell

```
void handler(int sig)
{
    int olderrno = errno;
    sigset t mask all, prev all;
    pid t pid;
    Sigfillset(&mask all);
    while ((pid = waitpid(-1, NULL, 0)) > 0) { /* Reap child */
        Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
        deletejob(pid); /* Delete the child from the job list */
        Sigprocmask(SIG SETMASK, &prev all, NULL);
      (errno != ECHILD)
        Sio_error("waitpid error");
    errno = olderrno;
```

Corrected Shell Program without Race

```
int main(int argc, char **argv)
{
   int pid;
    sigset_t mask_all, mask_one, prev_one;
    Sigfillset(&mask all);
   Sigemptyset(&mask one);
    Sigaddset(&mask_one, SIGCHLD);
    Signal(SIGCHLD, handler);
    initjobs(); /* Initialize the job list */
   while (1) {
        Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
        if ((pid = Fork()) == 0) { /* Child process */
            Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
            Execve("/bin/date", argv, NULL);
        Sigprocmask(SIG_BLOCK, &mask_all, NULL); /* Parent process */
     addjob(pid); /* Add the child to the job list */
        Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
    exit(0);
                                                                 procmask2
```

Explicitly Waiting for Signals

Handlers for program explicitly waiting for SIGCHLD to arrive.

```
volatile sig_atomic_t pid;

void sigchld_handler(int s)
{
    int olderrno = errno;
    pid = Waitpid(-1, NULL, 0); /* Main is waiting for nonzero pid */
    errno = olderrno;
}

void sigint_handler(int s)
{
}

waitforsignal.c
```

Explicitly Waiting for Signals

```
Similar to a shell waiting
int main(int argc, char **argv) {
                                                 for a foreground job to
    sigset t mask, prev;
                                                 terminate.
    Signal(SIGCHLD, sigchld handler);
    Signal(SIGINT, sigint_handler);
    Sigemptyset(&mask);
    Sigaddset(&mask, SIGCHLD);
    while (1) {
    Sigprocmask(SIG_BLOCK, &mask, &prev); /* Block SIGCHLD */
    if (Fork() == 0) /* Child */
            exit(0):
    /* Parent */
    pid = 0;
    Sigprocmask(SIG_SETMASK, &prev, NULL); /* Unblock SIGCHLD */
    /* Wait for SIGCHLD to be received (wasteful!) */
    while (!pid)
    /* Do some work after receiving SIGCHLD */
        printf(".");
    exit(0);
                                                         waitforsignal.c
```

Explicitly Waiting for Signals

- Program is correct, but very wasteful
- Other options:

```
while (!pid) /* Race! */
  pause();
```

```
while (!pid) /* Too slow! */
    sleep(1);
```

Solution: sigsuspend

Waiting for Signals with sigsuspend

- int sigsuspend(const sigset_t *mask)
- Equivalent to atomic (uninterruptable) version of:

```
sigprocmask(SIG_BLOCK, &mask, &prev);
pause();
sigprocmask(SIG_SETMASK, &prev, NULL);
```

Waiting for Signals with sigsuspend

```
int main(int argc, char **argv) {
    sigset t mask, prev;
    Signal(SIGCHLD, sigchld handler);
    Signal(SIGINT, sigint handler);
    Sigemptyset(&mask);
    Sigaddset(&mask, SIGCHLD);
   while (1) {
        Sigprocmask(SIG BLOCK, &mask, &prev); /* Block SIGCHLD */
        if (Fork() == 0) /* Child */
            exit(0);
       /* Wait for SIGCHLD to be received */
       pid = 0;
        while (!pid)
            Sigsuspend(&prev);
       /* Optionally unblock SIGCHLD */
        Sigprocmask(SIG SETMASK, &prev, NULL);
    /* Do some work after receiving SIGCHLD */
        printf(".");
    exit(0);
                                                                sigsuspend.c
```

Today

- Shells
- Signals
- Nonlocal jumps
 - Consult your textbook. (Much less important than the rest.)

Summary

- Signals provide process-level exception handling
 - Can generate from user programs
 - Can define effect by declaring signal handler
 - Be very careful when writing signal handlers
- Nonlocal jumps provide exceptional control flow within process
 - Within constraints of stack discipline

Additional slides

Nonlocal Jumps: setjmp/longjmp

- Powerful (but dangerous) user-level mechanism for transferring control to an arbitrary location
 - Controlled to way to break the procedure call / return discipline
 - Useful for error recovery and signal handling
- int setjmp(jmp_buf j)
 - Must be called before longjmp
 - Identifies a return site for a subsequent longjmp
 - Called once, returns one or more times
- Implementation:
 - Remember where you are by storing the current register context,
 stack pointer, and PC value in jmp buf
 - Return 0

setjmp/longjmp (cont)

- void longjmp(jmp buf j, int i)
 - Meaning:
 - return from the setjmp remembered by jump buffer j again ...
 - ... this time returning i instead of 0
 - Called after setjmp
 - Called once, but never returns

longjmp Implementation:

- Restore register context (stack pointer, base pointer, PC value) from jump buffer j
- Set %eax (the return value) to i
- Jump to the location indicated by the PC stored in jump buf j

setjmp/longjmp Example

 Goal: return directly to original caller from a deeplynested function

```
/* Deeply nested function foo */
void foo(void)
{
    if (error1)
    longjmp(buf, 1);
    bar();
}

void bar(void)
{
    if (error2)
        longjmp(buf, 2);
}
```

```
jmp buf buf;
                                    setjmp/longjmp
int error1 = 0:
int error2 = 1:
                                    Example (cont)
void foo(void), bar(void);
int main()
{
   switch(setjmp(buf)) {
   case 0:
       foo();
       break;
    case 1:
       printf("Detected an error1 condition in foo\n");
       break:
    case 2:
       printf("Detected an error2 condition in foo\n");
       break:
   default:
       printf("Unknown error condition in foo\n");
   exit(0);
}
```

Limitations of Nonlocal Jumps

Works within stack discipline

 Can only long jump to environment of function that has been called but not yet completed

```
jmp buf env;
P1()
{
  if (setjmp(env)) {
    /* Long Jump to here */
  } else {
    P2();
P2()
{ . . . P2(); . . . P3(); }
P3()
  longjmp(env, 1);
```


Limitations of Long Jumps (cont.)

Works within stack discipline

Can only long jump to environment of function that has been called

but not yet completed

```
jmp buf env;
P1()
  P2(); P3();
P2()
   if (setjmp(env)) {
    /* Long Jump to here */
}
P3()
  longjmp(env, 1);
```


Bryant and O'Hanaron, computer systems. A Programmer's Perspective, Timu Ed

56

Putting It All Together: A Program That Restarts Itself When ctrl-c'd

```
#include "csapp.h"
sigimp buf buf;
                                     greatwhite> ./restart
void handler(int sig)
                                     starting
{
                                     processing...
   siglongjmp(buf, 1);
                                     processing...
}
                                     processing...
                                     restarting
int main()
                                                              .Ctrl-c
                                     processing...
{
                                     processing...
   if (!sigsetjmp(buf, 1)) {
        Signal(SIGINT, handler);
                                     restarting
    Sio_puts("starting\n");
                                     processing. --
                                                              Ctrl-c
                                     processing...
    else
                                     processing...
        Sio puts("restarting\n");
   while(1) {
    Sleep(1);
    Sio_puts("processing...\n");
   exit(0); /* Control never reaches here */
                                    restart.c
```