Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektronických měření

PROTOKOL O MĚŘENÍ

Název úlohy
OSCILÁTOR S WIENOVÝM ČLÁNKEM

Číslo úlohy
201-4R

Zadání

- 1. Navrhněte oscilátor s Wienovým článkem RC, operačním zesilovačem MA 741CN a žárovkovou stabilizací napětí, požadován rozsah frekvencí $f_{min}=300~Hz$ až $f_{max}=7~kHz$. Napájecí napětí volte $\pm 15~V,~C_1=C_2=220~nF$.
- 2. Sestavte navržený oscilátor, nastavte jeho optimální režim a změřte:
 - (a) skutečný frekvenční rozsah, změřený s vypočítanými a zapojenými součástkami
 - (b) závislost velikosti výstupního napětí na frekvenci, v rozsahu fmin až fmax a sestrojte graf
- 3. Vypočítejte procentní chybu změny výstupního napětí oscilátoru při přelaďování frekvence a sestavte graf na PC.
- 4. Změřte maximální frekvenci, při které ještě nedochází ke znatelné změně velikosti nebo tvaru výstupního napětí.

Poř. č.	PŘÍJMENÍ a Jméno				Třída	Skupina	Školní rok	ζ	
26	VYKYDAL Jan				4A	3	2014	/2015	
Datum měření		Datum odevzdání Počet listů			Klasifikace				
						příprava	meření	protokol	obhajoba
11.3.		23.4.		6					
Protokol o měření obsahuje: Teoretický úvod					Tabulky naměřených a vypočtených hodnot				
			Schéma		Vz	Vzor výpočtu			
			Tabulka použitých přístrojů		Gr	afy			

Závěr

Postup měření

Teoretický úvod

Wienův článek

Wienův článek je složený RC obvod, který vznikl spojením horní a dolní propusti tvořené RC prvky. Když tedy došlo ke spojení dolní a horní propusti v jeden dvojbran, tak vznikla pásmová propust tvořená právě články RC. Důležitou vlastností tohoto zapojení je, že má fázoví posun při mezní (rezonanční) frekvenci $f_0 \varphi = 0$. Pokud má vstupní signál nižší frekvenci než je mezní frekvence tohoto zapojení, tak se zapojení chová jako dolní propust, výstupní napětí předbíhá vstupní a $\varphi = \frac{\pi}{2}$. Pro frekvence vstupního signálu vyšších než je frekvence rezonanční se obvod chová jako dolní propust a vstupní napětí se zpožďuje za výstupním o $\varphi = -\frac{\pi}{2}$. Uvedené fázové posuny φ předpokládají použití ideálních součástek. Hodnoty součástek Wienova článku se počítají stejně jako hodnoty součástek horní nebo dolní RC propusti. Nejlepších parametrů ale zapojení dosahuje tehdy, pokud se použijí rezistory o stejné jmenovité hodnotě a kondenzátory o stejné jmenovité hodnotě.

Vztah pro výpočet mezní frekvence Wienova článku:

$$f_0 = \frac{1}{2\pi RC} \Rightarrow R = \frac{1}{2\pi f_0 C} \tag{1}$$

kde:

Neinvertující zesilovač s OZ

Neinvertující zesilovač s OZ je zapojení, které zesiluje vstupní signál a přitom neobrací fázi vstupního signálu. Jeho předností je velký vstupní odpor v řádů několika $M\Omega$. Tento zesilovač je nutnou součástí oscilátoru, který umožňuje splnění rezonančních podmínek. První podmínkou je aby zesílení v toto obvodu bylo rovno jedné. To je ale jen ideální případ, v praxi musí být zesílení nepatrně vyšší než jedna, protože v obvodu vznikají ztráty. Další podmínkou je podmínka fázová, který říká, že součet všech fázových posunů v obvodu mísí být roven nebo větší jedné. Po splnění těchto podmínek a po připojení Wienova článku jako kladné zpětné vazby by mělo docházek k neztlumenému kmitání obvodu. Použité měřící zapojení má ještě jednu vychytávku a tou je nahrazení jednoho ze zpětnovazebních rezistorů OZ žárovkou. To umožňuje proudovou stabilizaci výstupního signálu. Má to ovšem dle mého názoru jeden háček a to je jest to, že když si změříme pomocí digitálního multimetru odpor žárovky a s jeho pomocí vypočítáme druhý zpětnovazební rezistor. Alespoň dle návodu v popisu úlohy. To je ale ohromná chyba, protože s průchodem elektrického proudu dochází ke změně odporu vlákna žárovky a tudíž i ke změně nastaveného pracovního bodu zesilovače. My sice tento jev používáme pro stabilizaci výstupního proudu, ale musíme si uvědomit, že odpor žárovky ze kterého vycházíme pro výpočet zesílení zesilovače se s průchodem klidového proudu (rozuměj proudu při běžné činnosti obvodu) značně změní.

Vztah pro výpořet mezní frekvence použitého integračního článku:

$$a_u = 20 \log \frac{R_{ZP}}{R_Z} \Rightarrow R_{ZP} = R_Z 10^{\frac{a_u}{20}}$$
 (2)

kde:

Obvod je dále opatřen tranzistorovým zesilovačem Pracujícím ve třídě B, který slouží k výkonovému posílení výstupního signálu.

Schémata

Schéma č. 1: Měřící zapojení oscilátoru s Wienovým článkem

Tabulka použitých přístrojů

Označení v zapojení	Přístroj	Typ	Evidenční číslo
Z_1	symetrický zdroj	TESLA BK-125	0149
_	milivoltmetr	BM-312	0068
_	multimetr	MY-64	0650
_	multimetr	MY-64	0658
M_1	měřící systém unima	_	_
R_{ZP}	odporová dekáda	P33	0928
R_1	odporová dekáda	P33	0103
R_2	odporová dekáda	P33	0035
_	osciloskop	GOS-620	19 - 0024/01

Tabulka č. 1: Použité přístroje

Postup měření

Zapojení obvodu

- \bullet U použitých kondenzátorů si spočítáme geometrický průměr jejich skutečných hodnot. $C=\sqrt{C_1\cdot C_2}.$
- Dopočítáme si hodnoty rezistorů dle vztahu číslo (1).
- Změříme si odpor vlákna žárovky.
- Zapojíme obvod dle schématu č. 1.

Měření skutečného frekvenčního rozsahu

- K obvodu připojíme na výstup milivoltmetr a najdeme mezní frekvenci měněním hodnoty spřažených potenciometrů R_1 a R_2 .
- ullet Poté si spočítáme jakému napětí na výstupu odpovídá pokles o 3 dB.
- \bullet Pomocí regulování hodnoty potenciometrů R_1 a R_2 nastavíme na výstup napětí které jsme spočítali.
- Z osciloskopu odečteme horní a dolní frekvenci.

závislost velikosti výstupního napětí na frekvenci

- $\bullet\,$ Postupně měníme hodnotu potenciometrů R_1 a $R_2.$
- Přitom odečítáme z osciloskopu výstupní napětí a výstupní frekvenci
- Získané údaje vyneseme do grafu.

Tabulky naměřených a vypočítaných hodnot

měřená veličina	hodnota	jednotky
C_1	34, 16	[nF]
C_2	32, 1	[nF]
R_{ZP}	1333	$[\Omega]$
R_{min}	16	$[k\Omega]$
R_{max}	689	$[\Omega]$

Tabulka č. 2: Vypočítané a naměřená hodnoty

mezní frekvence	naměřená hodnota
$f_{min} [Hz]$	285,71
$f_{max} [Hz]$	7042, 25

Tabulka č. 3: Naměřené parametry oscilátoru

f[Hz]	$U_{OUT}[V]$
50	7,2
250	2,4
285	7,4
444	7,4
744	7,4
833	7,4
1176	7,4
2560	7,5
6250	7,4
7142	7,3
8333	6,8
10 k	3,6
22 k	4, 1

Tabulka č. 4: Závislost výstupního napětí na frekvenci $U_{OUT} = f(f)$

Vzory výpočtů

Výpočet geometrického průměru kondenzátoru C:

$$C = \sqrt{C_1 \cdot C_2} = \sqrt{34, 16 \cdot 32, 1} \doteq 33,09 \ nF$$

Výpočet odporu rezistoru R_1 a R_2 provádíme dosazením do upraveného vztahu (1) pro dolní frekvenci

$$R = \frac{1}{2\pi f_0 C} = \frac{1}{2\pi \cdot 300 \cdot 33,09 \cdot 10^{-9}} \doteq \underline{16 \ k\Omega}$$

Výpočet odporu rezistoru R_1 a R_2 provádíme dosazením do upraveného vztahu (1) pro horní frekvenci

$$R = \frac{1}{2\pi f_0 C} = \frac{1}{2\pi \cdot 7000 \cdot 33.09 \cdot 10^{-9}} \doteq \frac{689 \ \Omega}{2\pi \cdot 7000 \cdot 33.09 \cdot 10^{-9}}$$

Střední hodnota výstupního napětí $U_{OUT_{AV}}$:

$$U_{OUT_{AV}} = \frac{U_{OUT_{MAX}} - U_{OUT_{MIN}}}{2} = \frac{7, 4 - 7, 3}{2} \underline{7, 35 \ V}$$

Výpočet procentní chyba výstupního napětí:

$$\delta_f = \frac{U_{OUT_{MAX}} - U_{OUT_{M}IN}}{U_{OUT_{AV}}} \cdot 100 = \frac{7, 4 - 7, 3}{7, 35} \cdot 100 \doteq \underline{1, 36 \%}$$

Grafy

Graf č. 1: Měření závislosti výstupního napětí na frekvenci $U_{OUT} = f(f)$

Závěr

Chyby měřících přístrojů

Procentuální chyby použitého osciloskopu je ± 3 %. Kondenzátory jsme měřili pomocí měřiče RLC, jehož chyby se pohybuje okolo 1 %. Největší chybu obvodu jsme způsobili měřením odporu žárovky pomocí DMM, tento problém je popsán v teoretickém úvodu.

Zhodnocení

- 1. Navrhl jsem a zrealizoval oscilátor s Wienovým článkem. Pomocí výše uvedených vztahů jsem dopočítal hodnoty součástek.
- 2. Navržený oscilátor jsem zrealizoval na měřícím přípravku. Změřil sem skutečný frekvenční rozsah a závislost výstupního napětí na nastavené frekvenci. Tyto údaje jsou shrnuty v tabulkách číslo 4.
- 3. Vypočítal jsme procentuální chybu výstupního napětí $\delta_f = 1, 36 \%$. A vytvořil jsem na PC graf závislosti výstupního napětí na nastavené rezonanční frekvenci. V grafu jde krásně vidět propouštěné pásmo a také i prudký pokles výstupního napětí.
- 4. Díle byla změřena maximální frekvence, při které je zapojení schopno fungovat tak, že na výstupu je nezkreslený kosinový napěťový průběh. Tyto frekvence jsou shrnuty v tabulce číslo 3. Maximální frekvence dosáhla hodnoty $7,042\ kHz$.