Learning to Fail: Failure Plans and Predictions for Crowd Navigation

Patrick Naughton¹ and Ishani Chatterjee²

Abstract—When navigating in the presence of humans, mobile robots need robust, efficient ways of dealing with highly stochastic dynamic obstacles. This problem is often addressed by building a (implicit or explicit) model of possible human trajectories and planning the robot's motion based on this model to avoid collisions. We call this a success controller. However, such controllers typically assume that their goal is feasible, without considering cases in which humans may move to block the robot's path. This can lead to the robot simply stopping, continuously replanning to an infeasible goal, or, in the worst case, colliding with a pedestrian. This work seeks to explicitly address this deficiency by creating a classifier that examines the robot's trajectory to determine whether or not it believes the robot can efficiently achieve its goal point. Additionally, we develop a failure controller that the robot executes if the classifier determines that it cannot reach its goal. This controller safely guides the robot to a different location from which it can replan. We show that this failure controller results in fewer intrusions near people in a crowded scene than simply relying on the success controller.

I. INTRODUCTION

The contributions of this work are:

- 1) A classifier that determines whether or not a robot is likely to reach its goal in a given scene.
- 2) A failure controller that safely guides the robot to a stable position from which it can initiate replanning.

II. RELATED WORK

Several methods use explicit models of human behavior to achieve smooth, predictable robot navigation among pedestrians. Trautman et al. model the interaction between the robot and pedestrians as an extension of an interactive Gaussian process that accommodates multiple goals [1]. The social forces model treats humans and the robot in question as masses subject to Newtonian dynamics and applies fictitious forces to them to predict and plan trajectories [2]. It recomputes these forces and their effects on robot motion at each time step to determine how the robot should move. These techniques however rely on hand-crafted models of human behavior to achieve their results and handle unexpected or uncooperative human actions by simply replanning using the same model. The social forces model in particular does not demonstrate robust navigation plans and will sometimes exhibit oscillatory behavior in more crowded or narrow areas [2].

Another approach uses inverse reinforcement learning to learn latent, possibly stochastic social rules humans observe when navigating in crowds [3]. This method uses example

Some text

trajectories recorded from humans or gathered from teleoperated runs. This approach however is extremely unlikely to observe failed trajectories where a human attempts to execute some navigation plan and is forced to completely abort their initial goal. If a human attempts to overtake someone else, for example, they have many contingency options in the case where the other person is either intentionally or unintentionally uncooperative. For example, they could use verbal communication or body language to more explicitly communicate their intentions, options which are not available to many mobile robots. For this reason, inverse reinforcement learning will likely be unable to formulate a useful model for navigation when situations such as these occur.

Reinforcement learning has successfully been applied to the social robot navigation problem using a variety of different models [4], [5]. Reinforcement learning is particularly suited to this application as noted in [4] because it is extremely difficult to specify what the optimal action for a robot to take is, but it is comparatively easy to alert the robot when it performs a socially unacceptable or unsafe action. Previous work has focused on using reinforcement learning to develop policies that generate optimal (in terms of time) paths to a robot's goal in the presence of humans or other autonomous agents. These policies however generally assume the goal is reachable and do not make contingency plans if that assumption turns out to be incorrect. Additionally, the agent is explicitly given a goal to reach by the experimenters; we wish to navigate in the case of failure at which point there is no obvious goal.

The above methods all either deal with failure at execution time by simply replanning or do not consider failure to reach the goal at all. We depart from this paradigm by designing a controller specifically targeted at producing trajectories when the robot's original goal is no longer reachable.

III. PROBLEM STATEMENT

We consider a robot that strings together different motion primitives and controllers to generate a navigation policy to reach some overall goal. Motion primitives are basic actions the robot can take which are guaranteed to succeed, for example, drive forward one meter. Controllers are more complicated actions that may fail, for example, barging past a group of pedestrians. These controllers can be used by the robot in specific situations to navigate in a scene. We refer to the controller that guides the robot a *success controller*. This work is concerned with detecting and handling the failure of these controllers. Specifically, we develop a *failure controller* that corresponds to a given success controller. This failure

 $^{^{1}}$ Notes patrickrnaughton@wustl.edu

²Ishani notes ichatter@andrew.cmu.edu

Fig. 1: Model architecture

controller directs the robot if it is determined at execution time that the success controller is unlikely to achieve its goal.

Additionally, we would like to rigorously determine at execution time whether or not the success controller is likely to succeed. In this framework, the robot can decide at each time step whether it should begin using the failure controller. Once it switches to the failure controller, it cannot switch back to the success controller until the planner generates a new plan.

IV. APPROACH

We begin with a fixed success controller. In this work, we consider one specific controller for barging into a group of people at the end of a corridor. While the experiments and results here only concern this controller, the framework can be extended to include other controllers as well, for example, to overtake or cross in front of pedestrians. In order to train this controller, we first generate example runs in which the robot can reach its goal using the RVO2 simulator [6], [7]. We employ a neural network architecture based on the one presented in [5] to allow the network to handle variable input sizes. The state of the robot is characterized by ... In addition, we include an LSTM at the end of our network so that the robot can learn the sequence of actions. Figure 1 shows the overall architecture of the network. The output of the network has five nodes which are interpreted as the x and y coordinates of the mean, the x and y standard deviations, and the correlation between x and y of a Gaussian distribution of the next location of the robot conditioned on its current state.

We split the approach into two distinct parts: First, we consider just determining whether or not the robot should switch to its failure controller. Given this

- A. Determining When To Switch
- B. Failure Controller

V. RESULTS VI. CONCLUSIONS ACKNOWLEDGMENT

REFERENCES

- [1] P. Trautman, J. Ma, R. Murray, and A. Krause, "Robot navigation in dense human crowds: the case for cooperation in: Robotics and automation (icra)," in 2013 IEEE International Conference On, 2013, pp. 2153–2160.
- [2] G. Ferrer, A. Garrell, and A. Sanfeliu, "Social-aware robot navigation in urban environments," in 2013 European Conference on Mobile Robots. IEEE, 2013, pp. 331–336.
- [3] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, "Socially compliant mobile robot navigation via inverse reinforcement learning," *The International Journal of Robotics Research*, vol. 35, no. 11, pp. 1289–1307, 2016.
- [4] Y. F. Chen, M. Everett, M. Liu, and J. P. How, "Socially aware motion planning with deep reinforcement learning," in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 1343–1350.
- [5] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, "Crowd-robot interaction: Crowd-aware robot navigation with attention-based deep reinforcement learning," arXiv preprint arXiv:1809.08835, 2018.
- [6] J. van den Berg, S. J. Guy, J. Snape, M. C. Lin, and D. Manocha, "Rvo2 library: Reciprocal collision avoidance for real-time multi-agent simulation," 2011.
- [7] S. Stvel, "Python rvo2," https://github.com/sybrenstuvel/Python-RVO2/, 2017