### INTRODUCCION A LOS MODELOS COMPUTACIONALES 25 enero 2016

Alumno/a D....

### Cuestiones.-

1) (2 puntos) En un modelo de análisis discriminante lineal tenemos la siguiente regla de decisión.

$$Si (\mathbf{m_2} - \mathbf{m_1})^{\mathrm{T}} \mathbf{\Sigma}^{-1} \mathbf{x} + 1/2 (\mathbf{m_1}^{\mathrm{T}} \mathbf{\Sigma}^{-1} \mathbf{m_1} - \mathbf{m_2}^{\mathrm{T}} \mathbf{\Sigma}^{-1} \mathbf{m_2}) - \ln \frac{P(C_1)}{P(C_2)} > 0$$

entonces 
$$\mathbf{x} \in C_1$$

Indique brevemente como hemos llegado a esta regla de decisión. ¿Qué significado tienen  $P(C_1)$  y  $P(C_2)$ ? Cuál sería la decisión en el caso de que el vector asociado a un patrón sea  $\mathbf{x}^T = (-1, -1)$ ,  $\mathbf{m}_1^T = (-1, -1)$ 

(2,2) 
$$\mathbf{m}_2^{\mathrm{T}} = (-2,-2) \ \boldsymbol{\Sigma}^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
, sabiendo además que tenemos 50 patrones de la clase 1 y 50 de la

clase 2 de la muestra de entrenamiento.

# Solución.- Por una parte

$$((-2,-2)-(2,2))\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}\begin{pmatrix} -1 \\ -1 \end{pmatrix} = 0$$

y por otra

$$(2,2) \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 0$$

$$\begin{pmatrix} -2, -2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} -2 \\ -2 \end{pmatrix} = 0$$

como además

$$-\ln\frac{P(C_1)}{P(C_2)} = -\ln\frac{0.5}{0.5} = 0$$

Tenemos que la ecuación es 0 y por tanto  $\mathbf{x}$  está en la función de decisión y no podemos decidir a qué clase pertenece

**2)** (**1 punto**) ¿Qué es el margen en la metodología SVM? ¿Cuáles son las ecuaciones de los dos hiperplanos del margen H <sup>+</sup> y H<sup>-</sup>?

## Solución

El margen es la distancia entre los dos hiperplanos del margen H + y H-.

Sus ecuaciones son:

$$H +: < w \cdot x^+ > + b = 1$$

H: 
$$< w \cdot x > + b = -1$$

donde  $x^+ y x^-$ , son los puntos de datos que están más cerca del hiperplano  $\langle \mathbf{w} \cdot \mathbf{x} \rangle + \mathbf{b} = 0$ 

3) (1 punto) ¿Qué diferencias existen entre las redes MLP y la redes RBF? Escriba dos modelos sencillos de dichas redes. Cite y explique alguno de los algoritmos de entrenamiento de estas redes.

**Ejercicio 1.-** (**2 puntos**) Para la red de Hopfield ilustrada a continuación, dibuje el diagrama de transiciones posibles y luego determine los puntos fijos, o estados estables de la red.



#### Solución.-

Para la unidad elegida, se calcula la suma de los pesos de las conexiones sólo a los vecinos activos, si los hay. Si la suma es > 0, entonces la unidad elegida se convierte en activa, de lo contrario, se vuelve inactiva. Si suponemos que los tres nodos están activos tenemos de inicio  $X = [1 \ 1 \ 1]$ , para los nodos 1, 2 y 3. La suma de las conexiones para  $x_1$  es -2+(-1)=-3, por lo que se hace inactiva. la suma de las conexiones para  $x_2$  tiene ahora como -2+1=-1, luego se hace inactiva. La suma de las conexiones para  $x_3$  es -1+1 luego sigue activa. De esta forma el estado estable es  $X = [-1 \ -1 \ 1]$ .

La matriz de transición de estados es  $W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$  y matricialmente tenemos

$$W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ -1 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$

$$W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

luego se deduce que  $(1,1,1) \Leftrightarrow (-1,-1,1)$ 

$$W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

$$W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ -3 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$

luego se deduce que  $(1,1,-1) \Leftrightarrow (-1,-1,-1)$ 

$$W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

$$W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \\ 2 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

luego se deduce que  $(-1,1,-1) \Rightarrow (-1,1,1)$  que es un estado estable

$$W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$

$$W = \begin{pmatrix} 0 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ -2 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$

luego se deduce que  $(1,-1,1) \Rightarrow (1,-1,-1)$  que es un estado estable

**Ejercicio 1.- (2 puntos)** Considere los tres vectores bidimensionales linealmente separables de la siguiente figura. Encuentre el SVM lineal que separa de manera óptima las clases al maximizar el margen.



## Solución

Todos los puntos son vectores soporte el hiperplano de margen  $H^+$  es la línea que pasa por los dos puntos positivos. El hiperplano de margen  $H^-$  es la recta que pasa por el punto negativo y es paralela a  $H^+$ . La función de decisión es la recta que está entre  $H^+$  y  $H^-$ . Esta recta tiene por ecuación -x + 2 = 0.

# Ejercicio.- (2 puntos) apartados a y b

Supongamos que para detectar cierta enfermedad, hacemos un test. Definimos cuatro variables: E = presencia de la enfermedad, que toma los valores Si, No

T = resultado del test, que toma los valores. Positivo, Negativo

F = presencia de fiebre en el enfermo, que toma los valores. Si, No

A= amígdalas inflamadas. Si, No

I= garganta irritada. Si, No

Entre las variables establecemos una relación de influencia causal;



Se pide;

- a) ¿Cuál es la probabilidad de que una persona cuyo test de positivo y tenga fiebre, padezca la enfermedad?
- b) ¿Cuál es la probabilidad de que una persona cuyo test de positivo, padezca la enfermedad?
- c) ¿Cuál es la probabilidad de que una persona con amígdalas inflamadas y que no tenga fiebre padezca la enfermedad?
- d) ¿Cuál es la probabilidad de que una persona con test positivo y con garganta irritada tenga la enfermedad?

### Solución.-

P(E|T∩F) = 
$$\frac{P(E \cap T \cap F)}{P(T \cap F)} = \frac{P(E)P(T \cap F \mid E)}{P(T)P(F)} = \frac{P(E)P(T \mid E)P(F \mid E)}{P(T)P(F)} = \frac{P(E)P(T \mid E)P(F \mid E)}{P(T)P(F)} = \frac{0.003*0.892*0.980}{0.9937*0.0199} = 0.1326$$

P(T) = P(T \cap (E \cup E^c)) = P(E)P(T \setminus E) + P(E^c)P(T \setminus E^c) = 0.003\*0.892 + 0.997\*0.994 = 0.9937

P(F) = P(F \cap (E \cup E^c)) = P(E)P(F \setminus E) + P(E^c)P(F \setminus E^c) = 0.003\*0.980 + 0.997\*0.017 = 0.01988

b)

P(E \cap T) = \frac{P(E \cap T)}{P(T)} = \frac{P(E)P(T \setminus E)}{P(E)P(T \setminus E) + P(E^c)P(T \setminus E^c)} = \frac{0.003\*0.992}{0.003\*0.892 + 0.997\*0.994} = \frac{0.0029}{0.9937} = 0.002918

P(T) = P(T \cap (E \cup E^c)) = P(E)P(T \setminus E) + P(E^c)P(T \setminus E^c) = 0.003\*0.892 + 0.997\*0.994 = 0.9937

c)

$$P(E \mid A \cap F^{c}) = \frac{P(E \cap A \cap F^{c})}{P(A \cap F^{c})} = \frac{P(E \cap F^{c})P(A \mid E \cap F^{c})}{P(F^{c})P(A \mid F^{c})} = \frac{P(E \cap F^{c})P(A \mid F^{c})}{P(A \mid F^{c})} = \frac{P(E \cap F^{c})P(F^{c} \mid F^{c})}{P(A \mid F^{c})} = \frac{P(E \cap F^{c})P(F \mid F^{c})P(F^{c} \mid F^{c})}{P(A \mid F^{c})} = \frac{P(E \cap F^{c})P(A \mid F^{c})}{P(A \mid F^{c})}$$