NETWORKING

A. Vocabulary

B. Network design

C. Transit Gateway

Transit Gateway provides Hub and Spoke design for connecting VPC and onpremises networks.

Hub and spoke design with AWS Transit Gateway

Manages service	Yes (high availability and scalability).
Charges	Per hour for the number of connections and the
	amount of traffic.
Routing	Dynamic
	Requires routers to discover routing paths
	<u>Static</u>
	Routes configured before traffic can be routed
IP addresses	IPv4 and IPv6
Logs	Transit Gateway Flow Logs to CloudWatch, Amazon
	S3, Kinesis Data Firehose

Example - No Internet Access

- 1. Connect the VPC to the Transit Gateway

 Attachment 'Co' through an Elastic Network Interface (like a network card).
- 2. Add a route for the Transit Gateway. In this case, 10.0.0.0/8 includes 10.X.0.0/16 (10.0.0.0/8 -> 10.0.0.0/10.255.255.255 / 10.X.0.0/16 -> 10.X.0.0/10.X.255.255). Use this tool
- 3. Configure the Transit Gateway route table to route the traffic to the correct VPN.

Example - With Internet Access

Internet access is obtained using the NAT Gateway in the PUBLIC subnet 3. The NAT Gateway is NOT in a separate VPC.

VPC 1 and VPC 2 route table sends all traffic 0.0.0.0/0 (except local one) to:

- Transit Gateway for VPC 1
- NAT Gateway for VPC 2

The **Transit Gateway** is responsible to route the traffic between VPC 1 and VPC 2. The **NAT Gateway** routes VPC 1 traffic back to the **Transit Gateway**, and all other

traffic 0.0.0.0/0 to the Internet Gateway

This design is cheaper and simpler to use.

For redundancy, you can run a NAT Gateway for each Availability zone.

D. Peering

If you need network traffic to flow between AWS Regions or different AWS accounts, you can create a transit gateway peering connection between transit gateways. Traffic **DOES NOT** traverse the public internet (more secure)

VPC 1 and VPC 2 belongs to a different region and account than VPC 3.

Transit Gateway A routing (same idea for B):

- 10.X.0.0/16 to the corresponding VPC
- 11.1.0.0/16 to the **Transit Gateway** B.

E. LAB - Creating a Virtual Private Cloud

1. Creating the VPC

Go to the VPC Dashboard (search VPC) -> Create VPC

Action -> Edit VPC Settings

DNS resolution	Whether DNS resolution through the Amazon DNS server is supported for the VPC.
DNS hostnames	Any EC2 instances that are launched into the VPC now automatically receive a DNS hostname.

2. Creating the public subnet

In the VPC Dashboard -> Subnets -> Create Subnet

Choose the VPC it belongs to:

The CIDR block of the subnet should be included in the VPC CIDR block.

Action -> Edit Subnet Settings

Determines if, when you launch an EC2 instance, the primary network interface is assigned a public IPv4 address or IPv6 address by default. You can override this setting at instance level.

3. Creating the private subnet

Same step, but without editing the Subnet Settings.

Remark: Now, there is hardly any difference between the 2 subnets. One will become public once it has a connection to the internet gateway.

4. Creating an Internet Gateway

In the VPC Dashboard -> Internet Gateway -> Create Internet Gateway.

Nothing special there.

Now we need to attach the Internet Gateway to the VPC.

Action -> Attach to VPC

The Internet Gateway is attached, but no routing is configured yet.

5. Configuring routing tables

In the VPC Dashboard -> Route tables -> Create route table.

The public subnet has now access to the public internet.

F. Creating a security group for the application server

In the VPC Dashboard -> Security Groups -> Create security group.

Attach the security group to the VPC.

Define the inbound traffic rules

We allow all inbound traffic on port 80.

G. Launching an application server in the public subnet

Go to the EC2 Dashboard (search EC2) -> Instances -> Launch instances

Choose the type of instance required for the workload.

Network settings -> Edit

You must link your instance with the VPC.

Then you choose the subnet (Public here)
Auto-assign public IP -> This is where you can override the choice made in E.1
(DNS Hostnames).