Task 7

- What happens with the margin if some features are not known precisely?
- E.g., span lengths are decided at network design phase but the actual values in the field may be slightly different
- Ref paper:

Th3D.5.pdf OFC 2020 © OSA 2020

How Uncertainty on the Fiber Span Lengths Influences QoT Estimation Using Machine Learning in WDM Networks

J. Pesic⁽¹⁾, M. Lonardi⁽¹⁾, N. Rossi⁽²⁾, T. Zami⁽²⁾, E. Seve⁽¹⁾ and Y. Pointurier⁽¹⁾
(1) Nokia Bell Labs France, (2) Nokia France
jelena.pesic@nokia-bell-labs.com

Task 7

- 7. Evaluate the impact of uncertain fiber span length
 - a) Define function extract_UNCERTAIN_features() (take inspiration from function extract_features() in task 2a), that generates span length features with a random error chosen in a normal distribution with 0 mean and std dev sigma passed in input
 - See details in the skeleton code

Hints:

To obtain the new dataset with features including the error, you should define new span lengths:

$$new \ span \ length = old \ span \ length + error$$

where

$$error = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x}{\sigma}\right)^2}$$

Task 7

- 7. Evaluate the impact of uncertain fiber span length
 - b) Consider NN algorithm only and redo training and performance evaluation using a new dataset with uncertain features, where error in span length is introduced with std dev = to 5%, 10%, 15% of the maximum span length across all lightpaths. Specifically, after reading the dataset (task 1b), for each error std dev, the steps are:
 - generate features matrix (new function from task 7a)
 - scale, split the dataset and train a new NN (task 3b)
 - predict and evaluate performance (task 6b)

Task 7a)-b): expected outputs

5%*max_span_length	10%*max_span_length	15%*max_span_length
*******	********	********
Total number of iterations: 1750	Total number of iterations: 1750	Total number of iterations: 1750
Current loss: 0.064	Current loss: 0.064	Current loss: 0.069
Best loss: 0.064	Best loss: 0.064	Best loss: 0.069
Training time [s]: 5.429	Training time [s]: 5.429	Training time [s]: 8.025
Final training R2 score is: 0.971	Final training R2 score is: 0.971	Final training R2 score is: 0.969
Final training MSE is: 0.128	Final training MSE is: 0.128	Final training MSE is: 0.137
*******	*******	********
MSE: 0.12 dB	MSE: 0.12 dB	MSE: 0.13 dB
Max error: 1.28 dB	Max error: 1.28 dB	Max error: 1.34 dB
Minimal margin to avoid	Minimal margin to avoid	Minimal margin to avoid
disruptions 1.0 dB	disruptions 1.0 dB	disruptions 1.0 dB
Error histogram	Error histogram	Error histogram
-1.1 dB: 1 times	-1.1 dB: 1 times	-1.1 dB: 1 times
-1.0 dB: 1 times	-1.0 dB: 1 times	-1.0 dB: 1 times
-0.7 dB: 1 times	-0.7 dB: 1 times	-0.7 dB: 4 times

Task 7a)-b): expected outputs

