Ecoulement turbulent autour d'un profil d'aile

Auteur : Louis Libat

Soutenance TP2 SNMF Master 1 Mécanique UGE - UPEC

4 Janvier 2023

Sommaire

- Introduction
- 2 Modélisation
- Résolution du problème
- 4 Analyse des résultats
- Conclusion

Table of Contents

- Introduction
- 2 Modélisation
- Résolution du problème
- 4 Analyse des résultats
- Conclusion

Introduction

L'étude porte sur un écoulement :

- 2D
- turbulent
- incompressible
- Re = 6M puis Re = 1M

Le profil aérodynamique est de type NACA0020.

Figure: Profil NACA0020

Introduction - Objectifs

Les objectifs de ce projet sont les suivants :

- Construire des maillages multi-blocs structurés
- Déterminer l'influence de l'angle d'attaque (AoA) sur les performances aérodynamiques
- Étudier des régimes d'écoulements turbulents

Table of Contents

- Introduction
- 2 Modélisation
- 3 Résolution du problème
- 4 Analyse des résultats
- Conclusion

Modélisation

- 2 forces aérodynamiques : Trainée et Portance
- 2 coefficient : C_D et C_L

Figure: Caption

$$C_D = \frac{F_x}{0.5\rho U^2 L}; C_L = \frac{F_y}{0.5\rho U^2 L}; C_p = \frac{p - p_\infty}{0.5\rho U^2}$$

Modélisation

- \bullet Différentes situations en fonction de l'angle d'attaque α
- ullet Phénomène de décrochage à partir d'un angle lpha critique

Figure: C_L

Modélisation

Figure: C_D

Table of Contents

- Introduction
- 2 Modélisation
- Résolution du problème
- 4 Analyse des résultats
- Conclusion

Résolution du problème

- Construction de la géométrie
- Génération du maillage structuré multi-blocs
- Configuration des paramètres de Fluent

Géométrie

Figure: Géometrie

Maillage

Figure: Maillage

Maillage

Figure: Maillage

Maillage

Figure: Maillage

Auteur : Louis Libat (UGE) ANCS 2 4 Janvier 2023 15

Convergence en Maillage

Taille	Cd
150*150	0.012404997
300*300	0.0096408812
600*600	0.0092413842

Table: Convergence en maillage

Convergence en Résidu

 \Rightarrow Critère d'arrêt : 10^{-6}

Paramètres Fluent

Automatisation

Figure: Automatisation

Table of Contents

- Introduction
- 2 Modélisation
- 3 Résolution du problème
- 4 Analyse des résultats
- Conclusion

Variation de vitesse

Figure: Cp, Cl et Cd en fonction de la vitesse

Auteur : Louis Libat (UGE) ANCS 2 4 Janvier 2023 21/32

Coefficients aérodynamiques - Cd - Re=6M

Coefficients aérodynamiques - CI - Re=6M

23 / 32

Coefficients aérodynamiques - Cp - Re=6M

Coefficients aérodynamiques - Cd - Re=1M

Coefficients aérodynamiques - CI - Re=1M

Coefficients aérodynamiques - Cp - Re=1M

Cas instationnaire

Figure: Champ de pression

Auteur : Louis Libat (UGE) ANCS 2 4 Janvier 2023 28 / 32

Cas instationnaire

Figure: Champ de vitesse

Auteur : Louis Libat (UGE) ANCS 2 4 Janvier 2023 29 / 32

Cas instationnaire

Figure: Turbulent Intensity

Auteur : Louis Libat (UGE) ANCS 2 4 Janvier 2023 30 / 32

Table of Contents

- Introduction
- 2 Modélisation
- Résolution du problème
- 4 Analyse des résultats
- Conclusion

Conclusion

- Apparition d'un phénomène de décrochage à partir d'un angle de 20° comme établi dans la littérature
- Maillage multi-bloc structuré : Précision dans les zones proche du profil.