Pandas as a Data wrangler toolbox

- Free Python course on <u>https://www.datacamp.com/</u>
- Pandas Cheat Sheet
- Pandas Data
 Manipulations Notebooks
 from course resources

Pandas CheatSheet

Advanced Indexing Also see NumPy Arrays Selecting >>> df3.loc[:,(df3>1).any()] Select cols with any vals >1 >>> df3.loc(:,(df3>1).all()) Select cols with vals > 1 >>> df3.loc[:,df3.ismull().any()] Select cols with NaN Select cols without NaN >>> df3.loc[:,df3.notnull().all()] Indexing With Isin >>> df[(df.Country.isin(df2.Type))] Find same elements >>> df3.filter(items="a","b"]) Filter on values >>> df.select(lambda x: not x%5) Select specific elements Where >>> s.where(s > 0) Subset the data >>> df6.query('second > first') Query Data Frame Settina/Resettina Index Set the index >>> df.set index("Country") Reset the Index Rename DataFrame Reindexina >>> s2 = s.reindex(['a','c','d','e','b']) Backward Filling Forward Filling >>> df.reindex(range(4), >>> s3 = s.reindex(range(5), method='ffill') method='bfill') Capital Population Country 11190846 Belgium Brussels 2 India. Menr Delhi 1303171035 Brazilia 207847528 3 Brazil Brazilia 207847528 4 MultiIndexing

>>> arrays = [np.array([1,2,3]),

>>> tuples = list(zip(*arrays))

>>> df2.set index(["Date", "Type"])

np.array([5,4,3])]

>>> index = pd.MultiIndex.from tuples(tuples,

>>> df5 = pd.DataFrame(np.random.rand(3, 2), index=arrays)

>>> df6 = pd.DataFrame(np.random.rand(3, 2), index=index)

names=['first', 'second'])

Combining Data datar dana 2 X1 11.402 . 20.784 NaN 1,303 99,906 d 20.784 Merge X2 X3 >>> pd.merge(data1, 11,432 20,784 data2. how='left', 1.303 NaN on="X1") 99,906 NaN X2 X3 >>> pd.merge(data1, data2. 11,432 20,784 how-'right', 1.303 NaN on="X1") NaN 20,784 >>> pd.merge(data1, X2 X3 data2. 11,432 20,784 hose 'inner', on="X1") 1.303 NaN X2 X3 >>> pd.merge(data1, 11,432 20,784 data2. 1.303 NaN how='outer', on="X1") 99,906 NaN NaN 20,784 Join >>> data1.join(data2, how="right") Concatenate Vertical >>> s.append(s2) Horizontal/Vertical >>> pd.concat([s,s2],axis=1, keys=['One','Two'])

>>> pd.concat([data1, data2], axis=1, join='inner')

Pandas CheatSheet

	Drie	Thos	Whe
0	2016-03-01		11.432
I	2016-03-02	ŀ	13.031
2	2016-03-01	c	20,784
3	2016-03-03	1	99,905
4	2016-03-02		1.303
5	2016-03-03	c	20.784

		Date	Vertical in	Charysticas	
	0	2016-03-01	Type	1	
	I	2016-03-02	Type	Ь	
	2	2016-03-01	Тура	C	
	3	2016-03-03	Тура	1	
+	4	2016-03-02	Тура	1	
	5	3016-03-03	Тура	C	
	6	2016-05-01	Yaha	11.432	
	7	2016-03-02	Value	13.051	
	5	2016-03-01	Yelson .	20,784	
	9	2016-03-03	Value	99,505	
	10	2016-03-02	Yaha	1303	
	11	2016-03-03	Water	20.784	

>>> df2.set index(["Date", "Type"])

Duplicate Data

```
>>> s3.unique()
                                                       Return unique values
                                                       Check duplicates
>>> df2.duplicated('Type')
>>> df2.drop_duplicates('Type', keep='last')
                                                       Drop duplicates
>>> df.index.duplicated()
                                                      Check Index duplicates
```

Grouping Data

```
Aggregation
>>> df2.groupby(by=['Date','Type']).mean()
>>> df4.groupby(level=0).sum()
>>> df4.groupby(level=0).agg(('a':lambda x:sum(x)/len(x),
                                      'b': np.sum})
 Transformation
>>> custom@um = lambda x: (x+x%2)
```

>>> df4.groupby(level=0).transform(customSum)

Iteration

```
(Column-Index, Series) pairs
>>> df.iteritems()
                                     (Row-Index, Series) pairs
>>> df.iterrows()
```

Missing Data

>>> df.dropna() >>> df3.fillna(df3.mean())	Drop Na N values FII Na N values with a predetermined value
>>> df2.replace("a", "f")	Replace values with others

Dates

```
>>> df2['Date'] = pd.to_datetime(df2['Date'])
>>> df2['Date'] = pd.date_range('2000-1-1',
                                      pariods-6,
                                      frag='M')
>>> dates = [datetime(2012,5,1), datetime(2012,5,2)]
>>> index = pd.DatetineIndex(dates)
>>> index = pd.date_range(datetime(2012,2,1), end, freq="BM")
```

Visualization

Also see Matplotlib

Pandas Check-list

Know how to do group by

Know how to slice-and-dice

Know how to check any missing values

... more advanced techniques and usage ...

DataFrame Basics

But at the end, we need

an Analytical Mind to effectively use it as a toolbox

Learning by doing