# **Problems**

## **Problem 1**

Find the currents going through R2 and R4 in the following circuit



#### Solution



Mesh equations:

$$egin{aligned} (2I_1+2I_3)+(8I_1+8I_2)&=40\ (8I_2+8I_1)+(6I_2)+(6I_2-6I_3)&=0\ (2I_3+2I_1)+(6I_3-6I_2)+(2I_3)+(3I_3)&=20\ \ 10I_1+8I_2+2I_3&=40 \end{aligned}$$

Hence,

$$8I_1 + 20I_2 - 6I_3 = 0 \ 2I_1 - 6I_2 + 13I_3 = 20$$

which leads to,

[0.70422535]]

$$I_1 = 6,34$$
A,  $I_2 = -2,75$ A,  $I_3 = -0,71$ A

Finally

$$I_{R2} = I_1 + I_3 = 5,63 \mathrm{A} \ I_{R4} = I_3 - I_2 = 2,04 \mathrm{A}$$

```
In [2]: from numpy.linalg import solve

In [5]: A=np.matrix('10,8,2;8,20,-6;2,-6,13')
    b=np.matrix('40;0;20')
    x=solve(A,b)
    print(x)

    [[ 6.33802817]
       [-2.74647887]
       [-0.70422535]]

In [2]: A=np.matrix('10,-8,-2;-8,20,-6;-2,-6,13')
    b=np.matrix('40;0;-20')
    x=solve(A,b)
    print(x)

    [[6.33802817]
    [2.74647887]
```

In [4]: (6.33802817-0.70422535)\*2+(6.33802817-2.74647887)\*8

Out[4]: 40.00000004

## **Problem 2**

Find the current going through R4 in the following circuit



#### **Solution**



Mesh equations

$$egin{split} (1I_1) + (2I_1 + 2I_2) &= 20 \ (2I_2 + 2I_1) + (1I_2) + (1I_2 - 1I_3) &= 0 \ I_3 &= 2mA \end{split}$$

Then,

$$3I_1 + 2I_2 = 20$$
  
 $2I_1 + 4I_2 - I_3 = 0$   
 $I_3 = 2$ 

The solution to the system of equations is,

$$I_1=9,5{\rm mA},I_2=-4,25{\rm mA},I_3=2{\rm mA}$$

Then

$$I_{R4} = I_3 - I_2 = 6,25 \mathrm{mA}$$

```
In [7]: A=np.matrix('3,2,0;2,4,-1;0,0,1')
b=np.matrix('20;0;2')
x=solve(A,b)
print(x)

[[ 9.5 ]
      [-4.25]
      [ 2. ]]
```

### **Problem 3**

Find the current and voltage drop in through R4 in the following circuit. How many nodes are there?



#### **Solution**

Let's apply mesh analysis for the three lower meshes and the outer loop, assuming they are all clockwise. The equations are:

$$egin{aligned} I_1(40+15)+I_2(-15)&=15\ I_2&=0.1\ I_2(-10)+I_3(20)+I_4(10)&=0\ I_2(4)+I_3(10)+I_4(20+10+4)&=15 \end{aligned}$$

$$I_{R4} = I_3 + I_4 = 0.29A$$

$$\Delta V_{R4} = I_{R4}R_4 = 0.29 imes 10 = 2.9 V$$

Alternative solution: Let's combine R3 and R4 as they are in parallel, so

 $R_{eq}=(R_3R_4)/(R_3+R_4)=100/20=5\Omega$ . It is not required, but we simplify the analysis as we now require 3 equations instead of 4. Now there are only 3 meshes. Using the outer loop instead of mesh 3

$$egin{aligned} I_1(40+15) + I_2(-15) + I_3(0) &= 15 \ I_2 &= 0.1 \ I_2(5+4) + I_3(20+5+4) &= 15 \end{aligned}$$

The net current is going though  $R_4$  is then  $I_{R_4}=(I_2+I_3)R_{eq}/R_4=0.29A$ , which is the same as our previous result.

### **Problem 4**

Find the Thevenin's equivalent between A and B



#### **Solution**

To calculate  $V_{th}$ , let us choose the the two lower meshes and the outer loop, then

$$55I_1 - 15I_2 = 17,4$$
  
 $I_2 = 0,1$   
 $14I_2 + 40I_3 = 17,4$ 

Then

$$I_1 = 0.34 \text{ A}; I_2 = 0.1 \text{ A}; I_3 = 0.4 \text{ A}$$

Hence

$$V_{th}=10\Omega\cdot(0.4+0.1)\mathrm{A}=5V$$

Now  $R_{th}$ :



There is a short circuit for the  $40\Omega$  and  $15\Omega$  resistors, so they do not contribute. Everything comes down to two resistors in parallel with values  $10\Omega$  and  $(25+4)\Omega$ 

$$R_{th}=rac{10\Omega\cdot(26+4)\Omega}{10\Omega+(26+4)\Omega}=7,5\Omega$$

## **Problem 5**

Find the Thevenin's equivalent between A and B



#### **Answer**

```
In [11]: A=np.matrix('22,-20,-20;0,1,0;-20,25,75')
b=np.matrix('40;2;0')
x=solve(A,b)
print(x)

[[4. ]
       [2. ]
       [0.4]]
```

$$I_1 = 4 \text{mA}; I_2 = 2 \text{mA}; I_3 = 0.4 \text{mA}$$

Hence

$$V_{th}=40k\Omega\cdot I_3=16V$$

```
In [12]: 40*0.4
Out[12]: 16.0
```



$$R_{th}=11.84k\Omega$$

```
In [11]: parallel1=20*2/(20+2)
    series1=parallel1+10+5
    parallel2=(series1)*40/(series1+40)
    print(parallel2)
```

11.84