

Python数据分析——第2周

DATAGURU专业数据分析社区

法律声明

【声明】本视频和幻灯片为炼数成金网络课程的教学资料,所有资料只能在课程内使用,不得在课程以外范围散播,违者将可能被追究法律和经济责任。

课程详情访问炼数成金培训网站

http://edu.dataguru.cn

关注炼数成金企业微信

■ 提供全面的数据价值资讯,涵盖商业智能与数据分析、大数据、企业信息化、数字化技术等, 各种高性价比课程信息,赶紧掏出您的手机关注吧!

本周内容

- ◆ 条件语句
- ◆ 循环语句
 - While语句
 - For语句
 - Break语句
 - Continue语句
- ◆ 常用函数
- ◆ 自定义函数

条件语句

◆ Python条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块

循环语句

◆ 循环语句允许我们执行一个语句或语句组多次

循环语句

循环类型	描述
while 循环	在给定的判断条件为 true 时执行循环体,否则退出循环体。
for 循环	重复执行语句
嵌套循环	你可以在while循环体中嵌套for循环

控制语句	描述
break 语句	在语句块执行过程中终止循环,并且跳出整个循环
continue 语句	在语句块执行过程中终止当前循环,跳出该次循环,执行下一次循环。
pass 语句	pass是空语句,是为了保持程序结构的完整性。

While语句

◆ while 语句用于循环执行程序,即在某条件下,循环执行某段程序,以处理需要重复处理的相同任务

For语句

◆ for循环可以遍历任何序列的项目,如一个列表或者一个字符串

嵌套循环

◆ Python for 循环嵌套语法

```
for iterating_var in sequence:
   for iterating_var in sequence:
     statements(s)
   statements(s)
```

◆ Python while 循环嵌套语法

```
while expression:
    while expression:
       statement(s)
    statement(s)
```

break 语句

◆ Python break语句,就像在C语言中,打破了最小封闭for或while循环

continue 语句

◆ Python continue 语句跳出本次循环,而break跳出整个循环。

pass 语句

- ◆ Python pass是空语句,是为了保持程序结构的完整性。
- ◆ pass 不做任何事情,一般用做占位语句。

数学函数

函数	返回值(描述)
abs(x)	返回数字的绝对值,如abs(-10) 返回 10
<u>ceil(x)</u>	返回数字的上入整数,如math.ceil(4.1) 返回 5
cmp(x, y)	如果 x < y 返回 -1, 如果 x == y 返回 0, 如果 x > y 返回 1
exp(x)	返回e的x次幂(e ^x),如math.exp(1) 返回2.718281828459045
fabs(x)	返回数字的绝对值,如math.fabs(-10) 返回10.0
floor(x)	返回数字的下舍整数,如math.floor(4.9)返回 4
log(x)	如math.log(math.e)返回1.0,math.log(100,10)返回2.0
log10(x)	返回以10为基数的x的对数,如math.log10(100)返回 2.0
max(x1, x2,)	返回给定参数的最大值,参数可以为序列。
min(x1, x2,)	返回给定参数的最小值,参数可以为序列。
modf(x)	返回x的整数部分与小数部分,两部分的数值符号与x相同,整数部分以浮点型表示。
pow(x, y)	x**y 运算后的值。
round(x [,n])	返回浮点数x的四舍五入值,如给出n值,则代表舍入到小数点后的位数。
sqrt(x)	返回数字x的平方根,数字可以为负数,返回类型为实数,如math.sqrt(4)返回 2+0j

随机函数

函数	描述
choice(seq)	从序列的元素中随机挑选一个元素,比如 random.choice(range(10)),从0到9中随机 挑选一个整数。
randrange ([start,] stop [,step])	从指定范围内,按指定基数递增的集合中获取一个随机数,基数缺省值为1
random()	随机生成下一个实数,它在[0,1)范围内。
seed([x])	改变随机数生成器的种子seed。如果你不了解其原理,你不必特别去设定seed,Python会帮你选择seed。
shuffle(lst)	将序列的所有元素随机排序
uniform(x, y)	随机生成下一个实数,它在[x,y]范围内。

三角函数

函数	描述
acos(x)	返回x的反余弦弧度值。
asin(x)	返回x的反正弦弧度值。
atan(x)	返回x的反正切弧度值。
atan2(y, x)	返回给定的 X 及 Y 坐标值的反正切值。
cos(x)	返回x的弧度的余弦值。
hypot(x, y)	返回欧几里德范数 sqrt(x*x + y*y)。
sin(x)	返回的x弧度的正弦值。
tan(x)	返回x弧度的正切值。
degrees(x)	将弧度转换为角度,如 degrees(math.pi/2) ,返回 90.0
radians(x)	将角度转换为弧度

数学常量

常量	描述
pi	数学常量 pi (圆周率 , 一般以π来表示)
е	数学常量 e, e即自然常数 (自然常数)。

转义字符

转义字符	描述
\(在行尾时)	续行符
//	反斜杠符号
\'	单引号
\"	双引号
\a	响铃
\b	退格(Backspace)
\e	转义
\000	空
\n	换行
\v	纵向制表符
\t	横向制表符
\r	回车
\f	换页
\oyy	八进制数,yy代表的字符,例如:\o12代表 换行
\xyy	十六进制数,yy代表的字符,例如:\x0a代表 换行
\other	其它的字符以普通格式输出

DATAGURU专业数据分析社区

字符串运算符

操作符	描述	实例
+	字符串连接	a + b 输出结果: HelloPython
*	重复输出字符串	a*2 输出结果:HelloHello
[]	通过索引获取字符串中字符	a[1] 输出结果 e
[:]	截取字符串中的一部分	a[1:4] 输出结果 ell
in	成员运算符 - 如果字符串中包含给定的字符返回 True	H in a 输出结果 1
not in	成员运算符 - 如果字符串中不包含给定的字符返回 True	M not in a 输出结果 1
r/R	原始字符串 - 原始字符串: 所有的字符 串都是直接按照字面的意思来使用, 没有转义特殊或不能打印的字符。 原始字符串除在字符串的第一个引号前加上字母"r"(可以大小写)以外,与普通字符串有着几乎完全相同的语法。	print r'\n' prints \n 和 print R'\n'prints \n
%	格式字符串	

字符串格式化

符号	描述
%c	格式化字符及其ASCII码
%s	格式化字符串
%d	格式化整数
%u	格式化无符号整型
%o	格式化无符号八进制数
%x	格式化无符号十六进制数
%X	格式化无符号十六进制数 (大写)
%f	格式化浮点数字,可指定小数点后的精度
%e	用科学计数法格式化浮点数
%E	作用同%e,用科学计数法格式化浮点数
%g	%f和%e的简写
%G	%f 和 %E 的简写
%p	用十六进制数格式化变量的地址

字符串格式化

符号	功能
*	定义宽度或者小数点精度
-	用做左对齐
+	在正数前面显示加号(+)
<sp></sp>	在正数前面显示空格
#	在八进制数前面显示零('0'),在十六进制前面显示'0x'或者'0X'(取决于用的是'x'还是'X')
0	显示的数字前面填充'0'而不是默认的空格
%	'%%'输出一个单一的'%'
(var)	映射变量(字典参数)
m.n.	m 是显示的最小总宽度,n 是小数点后的位数 (如果可用的话)

日期与时间

◆ 系统时间的记录方法

◆ 时间元组

序 号	字段	值
0	4位数年	2008
1	月	1到12
2	日	1到31
3	小时	0到23
4	分钟	
5	秒	0到61 (60或61 是闰秒)
6	一周的第几日	0到6 (0是周一)
7	一年的第几日	1到366 (儒略历)
8	夏令时	-1, 0, 1, -1是决定是否为 夏令时的旗帜

序 号	属性	值
0	tm_year	2008
1	tm_mon	1 到 12
2	tm_mday	1到31
3	tm_hour	0 到 23
4	tm_min	0 到 59
5	tm_sec	0 到 61 (60或61 是闰秒)
6	tm_wday	0到6 (0是周一)
7	tm_yday	1到 366(儒略历)
8	tm_isdst	-1, 0, 1, -1是决定是否为夏 令时的旗帜

Python自定义函数

◆ 自定义函数

- 函数代码块以def关键词开头,后接函数标识符名称和圆括号()。
- 任何传入参数和自变量必须放在圆括号中间。圆括号之间可以用于定义参数。
- 函数的第一行语句可以选择性地使用文档字符串—用于存放函数说明。
- 函数内容以冒号起始,并且缩进。
- Return[expression]结束函数,选择性地返回一个值给调用方。不带表达式的return相当于返回 None。

Python自定义函数

◆ 参数

- 必备参数
- 命名参数
- 缺省参数
- 不定长参数

◆ 变量

- 全局变量
- 局部变量

Python模块

- ◆ 模块让你能够有逻辑地组织你的Python代码段。
- ◆ 把相关的代码分配到一个 模块里能让你的代码更好用,更易懂。
- ◆ 模块也是Python对象,具有随机的名字属性用来绑定或引用。
- ◆ 简单地说,模块就是一个保存了Python代码的文件。模块能定义函数,类和变量。模块里也能包含可执行的代码。

Python的包

- ◆ 包是一个分层次的文件目录结构,它定义了一个由模块及子包,和子包下的子包等组成的Python的应用环境。
- ◆ 考虑一个在Phone目录下的pots.py文件。这个文件有如下源代码:

```
def Pots():
   print "I'm Pots Phone"
```

- ◆ 同样地,我们有另外两个保存了不同函数的文件:
 - Phone/Isdn.py 含有函数Isdn()
 - Phone/G3.py 含有函数G3()
- ◆ 现在 , 在Phone目录下创建file __init__.py :
 - Phone/__init__.py

```
from Pots import Pots
from Isdn import Isdn
from G3 import G3
```

Python文件的读取与输出

- ◆ 打印到屏幕——print
- ◆ 读取键盘输入——input、raw_input
- ◆ 打开文件——open

```
file object = open(file_name [, access_mode][, buffering])
```

◆ 关闭文件——close

```
fileObject.close();
```

◆ 写入文件——write

```
fileObject.write(string);
```

◆ 读取字符串——read

```
fileObject.read([count]);
```

Open函数

模式	描述
r	以只读方式打开文件。文件的指针将会放在文件的开头。这是默认模式。
rb	以二进制格式打开一个文件用于只读。文件指针将会放在文件的开头。这是默认模式。
r+	打开一个文件用于读写。文件指针将会放在文件的开头。
rb+	以二进制格式打开一个文件用于读写。文件指针将会放在文件的开头。
W	打开一个文件只用于写入。如果该文件已存在则将其覆盖。如果该文件不存在,创建新文件。
wb	以二进制格式打开一个文件只用于写入。如果该文件已存在则将其覆盖。如果该文件不存在,创建新文件。
W+	打开一个文件用于读写。如果该文件已存在则将其覆盖。如果该文件不存在,创建新文件。
wb+	以二进制格式打开一个文件用于读写。如果该文件已存在则将其覆盖。如果该文件不存在,创建新文件。
а	打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。也就是说,新的内容将会被写入到已有内容之后。如果该文件不存在,创建新文件进行写入。
ab	以二进制格式打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。也就是说,新的内容将会被写入到已有内容之后。如果该文件不存在,创建新文件进行写入。
a+	打开一个文件用于读写。如果该文件已存在,文件指针将会放在文件的结尾。文件打开时会是追加模式。如果该文件不存在,创建新文件用于读写。
ab+	以二进制格式打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。如果该文件不存在,创建新文件用于读写。

File对象的属性

属性	描述
file.closed	返回true如果文件已被关闭,否则返回false。
file.mode	返回被打开文件的访问模式。
file.name	返回文件的名称。
file.softspace	如果用print输出后,必须跟一个空格符,则返回false。否则返回 true。

Python异常处理

- ◆ 异常即是一个事件,该事件会在程序执行过程中发生,影响了程序的正常执行
- ◆ 捕捉异常可以使用try/except语句。

```
try:
try:
                                              <语句>
<语句> #运行别的代码
                                              finally:
except <名字>:
                                              <语句>
                                                     #退出 try 时总会执行
<语句>
          #如果在 try 部份引发了'name'异常
                                              raise
except <名字>, <数据>:
       #如果引发了'name'异常,获得附加的数据
<语句>
else:
           #如果没有异常发生
<语句>
                                              try:
                                                You do your operations here;
try:
                                                You do your operations here;
                                              except ExceptionType, Argument:
                                               You can print value of Argument here...
except (Exception1[, Exception2[,...ExceptionN]]]):
  If there is any exception from the given exception list,
  then execute this block.
else:
  If there is no exception then execute this block.
```

炼数成金逆向收费式网络课程

- ◆ Dataguru (炼数成金)是专业数据分析网站,提供教育,媒体,内容,社区,出版,数据分析业务等服务。我们的课程采用新兴的互联网教育形式,独创地发展了逆向收费式网络培训课程模式。既继承传统教育重学习氛围,重竞争压力的特点,同时又发挥互联网的威力打破时空限制,把天南地北志同道合的朋友组织在一起交流学习,使到原先孤立的学习个体组合成有组织的探索力量。并且把原先动辄成于上万的学习成本,直线下降至百元范围,造福大众。我们的目标是:低成本传播高价值知识,构架中国第一的网上知识流转阵地。
- ◆ 关于逆向收费式网络的详情,请看我们的培训网站 http://edu.dataguru.cn

DATAGURU专业数据分析社区

FAQ时间