[19] 中华人民共和国国家知识产权局

「12] 发明专利申请公开说明书

「21] 申请号 200510045306. X

[51] Int. Cl.

CO7D 241/12 (2006.01)

CO7D 401/14 (2006.01)

A61K 31/496 (2006.01) A61P 9/10 (2006.01)

A61P 7/02 (2006.01)

A61P 3/06 (2006.01)

[43] 公开日 2006年5月24日

[11] 公开号 CN 1775762A

[22] 申请日 2005.12.6

[21] 申请号 200510045306. X

[71] 申请人 山东大学

地址 250012 山东省济南市历下区文化西路 44 号

[72] 发明人 刘新泳 徐文方 程先超 李 锦

[74] 专利代理机构 济南金迪知识产权代理有限公司 代理人 宁钦亮

权利要求书4页 说明书12页

[54] 发明名称

川芎嗪酰基哌嗪衍生物、制备方法和药物组合 物与应用

[57] 摘要

川芎嗪酰基哌嗪衍生物、制备方法和药物组合物与应用,属于川芎类衍生物药物技术领域。 川芎嗪酰基哌嗪衍生物具有如上结构通式,用 N - 酰基哌嗪通过对 2 - 氯甲基 - 3, 5, 6 - 三甲基吡嗪盐酸盐的哌嗪环的烃化反应,得川芎嗪酰基哌嗪衍生物 A6 - 8, 16 - 28, 30, 32 - 36; 用 2 - (1 - 哌嗪基甲基) - 3, 5, 6 - 三甲基吡嗪通过对 2 - 氯甲基 - 3, 5, 6 - 三甲基吡嗪盐酸盐的哌嗪环的酰化反应,得川芎嗪酰基哌嗪衍生物 A1 - 5, 9 - 15, 29, 31, 37, 38; 用氨水对化合物 A1 进行氨解,得川芎嗪酰基哌嗪衍生物 A39。 川芎嗪酰基哌嗪衍生物与药用辅料制成不同剂型的药物组合物,用于制备血管内皮细胞修复与保护药物或抗血小板凝集药物。

$$\bigvee_{N} \bigvee_{N} \bigvee_{N} \bigvee_{N} R$$

1. 川芎嗪酰基哌嗪衍生物, 其特征在于, 具有如下结构通式;

其中 RCO-为乙酰水杨酰基、烟酰基、异烟酰基、[2-(4-氯苯氧基)-2-甲基-]丙酰基、肉桂酰基、4-氟肉桂酰基、4-氯肉桂酰基、4-溴肉桂酰基、4-甲氧基肉桂酰基、4-甲氧基肉桂酰基、2,5-二甲氧基肉桂酰基、乙酰阿魏酰基、3-硝基肉桂酰基、呋喃甲酰基、3,4,5-三甲氧基苯甲酰基、苯甲酰基、2-甲氧基苯甲酰基、4-甲氧基苯甲酰基、4-氯苯甲酰基、4-甲氧基苯甲酰基、4-氯苯甲酰基、2,4-二氯苯甲酰基、2-碘苯甲酰基、4-碘苯甲酰基、4-硝基苯甲酰基、3,5-二硝基苯甲酰基、苯乙酰基、4-硝基苯乙酰基、β-苯丙酰基、苯磺酰基、4-甲基苯磺酰基、甲基磺酰基、乙氧羰基、氯乙酰基、苯乙二酮基或水杨酰基。

2. 如权利要求 1 所述的川芎嗪酰基哌嗪衍生物, 其特征在于, 具有如下结构之一:

٠. 	如权利安水工州处时川与除航垄州操制生物,共特征住了,共有如下结构				
	NO.	结构	NO.	结构	
	A1		A2		
	A3		A4		
	A 5		A 6	JN N N N N N N N N N N N N N N N N N N	
	A7		A8	TN N N Br	
	A9		A10	INI NON O	
	A11	I'L O'TOO	A12	INT NON TO	
	A13		A14	TNT NO YOUR	

A15	XNX NO2	A16	
A17		A18	
A19		A20	
A21		A22	
A23		A24	
A25		A26	
A27		A28	INT NO2
A29	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$	A30	
A31	XNX NO2	A32	
A33	N N N N N N N N N N N N N N N N N N N	A34	N N N N N N N N N N N N N N N N N N N
A35	O==== O====	A36	

3. 权利要求 2 所述川芎嗪酰基哌嗪衍生物的制备方法, 其特征在于,

将中间体 N-酰基哌嗪 3 和中间体 2-氯甲基-3,5,6-三甲基吡嗪盐酸盐 2 用甲苯溶解,再加入三乙胺、碘化钠,加热回流 10h,过滤,滤液减压蒸干,得油状物,然后经分离、纯化得川芎嗪酰基哌嗪衍生物 A6-8,16-28,30,32-36;反应式如下:

将中间体 2-(1-哌嗪基甲基)-3,5,6-三甲基吡嗪 4 用二氯甲烷溶解,加入无水碳酸钠,滴加有机酰氯的二氯甲烷溶液,回流 10h,过滤,滤液蒸干,得油状物,然后经分离、纯化得川芎嗪酰基哌嗪衍生物 A1-5,9-15,29,31,37,38;反应式如下:

将 2- (4-乙酰水杨酰基-1-哌嗪基甲基)-3,5,6-三甲基吡嗪 A1 与氨水混合,室温搅拌 5h,氯仿提取,提取液蒸干,得油状物,快速柱层析分离,得川芎嗪酰基哌嗪衍生物 A39,反应式如下:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

4. 如权利要求 3 所述川芎嗪酰基哌嗪衍生物的制备方法,其特征在于,所述中间体 2-氯甲基-3,5,6-三甲基吡嗪盐酸盐 2 是按如下方法制备的:

将川芎嗪三水合物、冰醋酸和 30%过氧化氢的混合物于 70℃加热反应 4h,补充加入 等量 30%过氧化氢,反应 4h, TLC 监测至反应完全,冷却至室温,以 50%氢氧化钠溶液

调节 pH=10,三氯甲烷提取,无水硫酸钠干燥,过滤,蒸去三氯甲烷,得到川芎嗪单氮氧化合物粗品;加入醋酐,加热回流 2.5h,TLC 监测至反应完全,减压蒸除过量的醋酐,得到黑色浆状川芎嗪乙酰化物,冷却后加入 20%氢氧化钠溶液,放置过夜,三氯甲烷提取,无水硫酸钠干燥,过滤,减压蒸除溶剂,得 2-羟甲基-3, 5, 6-三甲基吡嗪粗品 1,以正己烷重结晶,得黄色针状结晶,将 2-羟甲基-3, 5, 6-三甲基吡嗪 1 用二氯甲烷溶解,取氯化亚砜,在冰浴条件下逐滴加入二氯甲烷溶液,冰浴反应 30min,再室温反应 2.5h,TLC 监测反应完全,减压蒸除溶剂,得黄色固体 2-氯甲基-3, 5, 6-三甲基吡嗪盐酸盐 2,反应式如下:

5. 如权利要求 3 所述川芎嗪酰基哌嗪衍生物的制备方法, 其特征在于, 所述中间体 N-酰基哌嗪 3 是按如下方法制备的:

有机羧酸和氯化亚砜在圆底烧瓶中加热回流反应 5h, 蒸除过量氯化亚砜, 残余物进行减压蒸馏, 得酰氯衍生物; 六水哌嗪与冰醋酸在圆底烧瓶中搅拌至溶解, 室温下滴加已合成的酰氯衍生物, 搅拌 2h, 加水, 再用氢氧化钠溶液调 pH=12, 冷却放置, 过滤除去少量双酰化产物, 滤液用三氯甲烷提取, 水洗至中性, 蒸除三氯甲烷后得白色或黄色固体, 用苯-石油醚重结晶得精品 N-酰基哌嗪 3;

上述的有机羧酸是: 乙酰水杨酸、烟酸、异烟酸、2-(4-氯苯氧基)-2-甲基丙酸、肉桂酸、4-卤代肉桂酸、4-甲基肉桂酸、4-甲氧基肉桂酸、2,5-二甲氧基肉桂酸、3,4-二甲氧基肉桂酸、2,3-二甲氧基肉桂酸、乙酰阿魏酸、3-硝基肉桂酸、呋喃甲酸、3,4,5-三甲氧基苯甲酸、苯甲酸、2-甲氧基苯甲酸、4-甲氧基苯甲酸、3,4-二甲氧基苯甲酸、2-氯苯甲酸、3-氯苯甲酸、4-氯苯甲酸、2-碘苯甲酸、4-碘苯甲酸、4-硝基苯甲酸、3,5-二硝基苯甲酸、苯乙酸、4-硝基苯乙酸、β-苯丙酸、苯磺酸、4-甲基苯磺酸、甲基磺酸、乙酸或氯乙酸。

6. 如权利要求 3 所述川芎嗪酰基哌嗪衍生物的制备方法,其特征在于,所述中间体 2-(1-哌嗪基甲基)-3,5,6-三甲基吡嗪4是按如下方法制备的:

将无水哌嗪用三氯甲烷溶解,冰浴条件下向此溶液中滴加中间体 2-氯甲基-3,5,6-三甲基吡嗪盐酸盐 2 的三氯甲烷溶液,室温反应 5h,用氨水洗涤,有机层用无水硫酸钠干燥,过滤,蒸除溶剂,得黑色油状物粗品,正己烷重结晶,得白色结晶。

- 7. 川芎嗪酰基哌嗪衍生物药物组合物,含有权利要求1所述的川芎嗪酰基哌嗪衍生物,与药用辅料制成不同剂型的药物。
- 8. 权利要求 1 所述的川芎嗪酰基哌嗪衍生物的应用,用于制备血管内皮细胞修复与保护药物或抗血小板凝集药物。

川芎嗪酰基哌嗪衍生物、制备方法和药物组合物与应用

(一) 技术领域

本发明涉及一种治疗心脑血管疾病药物和制备方法,具体涉及川芎嗪酰基哌嗪类衍生物、制备方法及该衍生物与辅剂组成药物组合物,属于川芎类衍生物药物技术领域。

(二)背景技术

心脑血管疾病是严重危害人类健康的常见病、多发病,随着社会人口的的老龄化,发病率日益上升。令人担忧的是随着社会竞争的日益激烈,心脑血管疾病的发病年龄也越来越年轻,已不再是老年人的专利。据统计,全球每年有 1600 万人死于各类心脑血管疾病,是威胁人类健康的头号杀手,已被世界卫生组织列为当前全组织范围总体工作重点之一。目前临床上用于治疗心脑血管疾病的药物很多,但普遍存在特异性差、毒副作用较大等的缺点,因此研制开发新型、高效、低毒的心脑血管药物仍是药物研究的热点。

川芎(Ligusticum Wallichii Franch)为伞形科植物川芎的干燥根茎,是祖国医学实践证明疗效显著的首位活血化淤中草药,具有活血化淤、行气定痛之功效,广泛用于缺血性心脑血管疾病的治疗,其主要活性成分是川芎生物碱。川芎 I 号生物碱,又名川芎嗪(Ligustrazine,Lig),化学名为 2,3,5,6-四甲基吡嗪,简称四甲吡嗪(Tetramethylpyrazine,TMP),结构见下图。

药理学研究证明,川芎嗪具有扩张血管、解除血管平滑肌痉挛、增加冠脉血流、降低血液黏度、防止血栓形成、改善脑缺血以及抑制血小板聚集等多种作用,参见郭军,孟华,王骊丽等,川芎嗪的药动-药效学研究近况,南京中医药大学学报(自然科学版),2002,18(5):318-320;和吴文元,川芎嗪治疗周围动脉粥样硬化闭塞症疗效观察,实用中医药杂志,2002,18(8):5-6。

川芎嗪在人体内的药代动力学研究发现,口服 300mg 磷酸川芎嗪胶囊(相当于川芎嗪 174.4mg),30min 左右达到血药浓度的最高峰 3.114±0.902µg/ml,随即药物由中央室向周边室快速分布,半衰期为 0.4855±0.118h,中央室表观分布容积为 17.76L,总表观分布容积为 66.77L,同时药物在体内迅速消除,其消除半衰期为 2.894±0.558h,给药后 3h,血药浓度降到约 0.5µg/ml,参见蔡伟,董善年,楼雅卿,正常人口服磷酸川芎嗪的药代动力学研究,药学学报,1989,24(12):881-886。研究结果表明,川芎嗪具有容易被氧化、吸收迅速、分布广泛和主要在肝内迅速消除的特点,在体内生物利用度低,半衰期短,为保持有效的药物治疗浓度必须频繁给药,易造成体内积蓄中毒,参见叶云鹏,王世真,江骥,人体尿中川芎嗪代谢产物的研究,中国医学科学院学报,1996,18(4):288-291。因此,以川芎嗪为先导药物,进行化学结构的改造和修饰,改善其药代动力学参数,提高其疗效,对研制和开发新型高效、低毒的川芎嗪类心脑血管疾病治疗药物具有重要的意义。

(三) 发明内容

本发明针对现有技术的不足,提供一种川芎嗪酰基哌嗪衍生物及其制备方法。 本发明的另一任务是提供一种含有川芎嗪酰基哌嗪衍生物的药物组合物与应用。 本发明的技术方案如下:

1. 川芎嗪酰基哌嗪衍生物

本发明的川芎嗪酰基哌嗪衍生物具有如下结构通式:

其中 RCO-为乙酰水杨酰基、烟酰基、异烟酰基、[2-(4-氯苯氧基)-2-甲基-]丙酰基、肉桂酰基、4-氟肉桂酰基、4-氯肉桂酰基、4-溴肉桂酰基、4-甲基肉桂酰基、4-甲氧基肉桂酰基、2,5-二甲氧基肉桂酰基、3,4-二甲氧基肉桂酰基、2,3-二甲氧基肉桂酰基、乙酰阿魏酰基、3-硝基肉桂酰基、呋喃甲酰基、3,4,5-三甲氧基苯甲酰基、苯甲酰基、2-甲氧基苯甲酰基、4-甲氧基苯甲酰基、4-氯苯甲酰基、4-甲氧基苯甲酰基、4-氯苯甲酰基、2,4-二氯苯甲酰基、2-碘苯甲酰基、4-碘苯甲酰基、4-硝基苯甲酰基、3,5-二硝基苯甲酰基、苯乙酰基、4-硝基苯乙酰基、β-苯丙酰基、苯磺酰基、4-甲基苯磺酰基、甲基磺酰基、乙氧羰基、氯乙酰基、苯乙二酮基或水杨酰基。

设计原理如下:

二苯甲基哌嗪类钙通道阻滞剂药物如氟桂嗪(Flunarizine)、桂利嗪(Cinnarizine)等 是重要的心脑血管疾病治疗药物,结构式如下:

根据药物化学中的生物电子等排原理,用川芎嗪替代氟桂嗪和桂利嗪分子结构中的肉桂基,保留哌嗪环不变,并根据药物化学中的拼合原理,在哌嗪环的另一个氮原子上引入一些有效药物基团,如乙酰水杨酰基、烟酰基、异烟酰基、[(4-氯苯氧基)-2-甲基-]丙酰基、肉桂酰基、呋喃甲酰基、没食子酰基、取代苯甲酰基、川芎嗪基等,以发挥药物的加合或协同作用,增强药效,设计合成了化合物 A1-29;在哌嗪环的氮原子上引入苯乙酰基、苯丙酰基、苯乙二酮基、苯基和苯乙基以考察苯环与哌嗪氮原子之间碳链长度和羰基数目对活性的影响,设计合成了 A30-32、A38;在哌嗪环氮原子上引入磺酰基、乙氧羰基等基团以进一步研究构效关系,设计合成了 A33-37;将 A1 氨解,暴露出苯环上的羟基,以考察活性的变化,设计合成了 A39。

上述的 A1-A39 是本发明合成的目标化合物的代号, 具体结构见表 1。

表 1.本发明目标化合物 A1-39 的结构

NO.	结构	NO.	物 A1-39 的结构 结构
A1		A2	INT NON N
A3		A4	
A5		A6	TNT NON TO F
A7		A8	N N N N Br
A9		A10	
A11		A12	
A13		A14	
A15	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	A16	
A17		A18	
A19		A20	
A21		A22	N CI CI

A23	I'N CI CI	A24	
A25	XNX N N CI CI	A26	
A27		A28	IN NO2
A29	$\begin{array}{c} NO_2 \\ NO_2 \\ NO_2 \\ NO_3 \end{array}$	A30	
A31	N N N N NO2	A32	
A33	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	A34	N N N N N N N N N N N N N N N N N N N
A35		A36	
A37	N N N CI	A38	
A39	N N O OH		

2. 川芎嗪酰基哌嗪衍生物的合成路线如下:

$$3H_2O$$
 H_2O_2 (30%) $ACOH$ N AC_2O D $ACOH$ N AC_2O D $ACOH$ D $ACOH$ D $ACOH$ $ACOH$

方法 1:

方法 2:

- 3. 川芎嗪酰基哌嗪衍生物中间体的制备方法
- 3.1 中间体 2-氯甲基-3, 5, 6-三甲基吡嗪盐酸盐(2)的制备方法

将川芎嗪三水合物、冰醋酸和 30%过氧化氢的混合物于 70℃加热反应 4h, 补充加入等量 30%过氧化氢,反应 4h, TLC 监测至反应完全,冷却至室温,以 50%氢氧化钠溶液调节 pH=10,三氯甲烷提取,无水硫酸钠干燥,过滤,蒸去三氯甲烷,得到川芎嗪单氮氧化合物粗品。加入醋酐,加热回流 2.5h, TLC 监测至反应完全,减压蒸除过量的醋酐,得到黑色浆状川芎嗪乙酰化物,冷却后加入 20%氢氧化钠溶液,放置过夜,三氯甲烷提取,无水硫酸钠干燥,过滤,减压蒸除溶剂,得 2-羟甲基-3,5,6-三甲基吡嗪(1)粗品,以正己烷重结晶,得黄色针状结晶(1)。将 2-羟甲基-3,5,6-三甲基吡嗪(1)用二氯甲烷溶解,取氯化亚砜,在冰浴条件下逐滴加入二氯甲烷溶液,冰浴反应 30min,再室温反应 2.5h,TLC 监测反应完全,减压蒸除溶剂,得黄色固体 2-氯甲基-3,5,6-三甲基吡嗪盐酸盐(2)。以上试剂浓度均为重量百分比。

3.2 中间体 N-酰基哌嗪(3)的制备方法

有机羧酸和氯化亚砜在圆底烧瓶中加热回流反应 5h,蒸除过量氯化亚砜,残余物进行减压蒸馏,得酰氯衍生物。六水哌嗪与冰醋酸在圆底烧瓶中搅拌至溶解,室温下滴加已合成的酰氯衍生物,搅拌 2h,加入水,再用氢氧化钠溶液调 pH=12,冷却放置,过滤除去少量双酰化产物,滤液用三氯甲烷提取,水洗至中性,蒸除三氯甲烷后得白色或黄色固体,用苯-石油醚重结晶得精品 N-酰基哌嗪(3)。

上述 3.2 的有机羧酸是: 乙酰水杨酸、烟酸、异烟酸、2-(4-氯苯氧基)-2-甲基丙酸、肉桂酸、4-卤代肉桂酸、4-甲基肉桂酸、4-甲氧基肉桂酸、2,5-二甲氧基肉桂酸、3,4-

二甲氧基肉桂酸、2,3-二甲氧基肉桂酸、乙酰阿魏酸、3-硝基肉桂酸、呋喃甲酸、3,4,5-三甲氧基苯甲酸、苯甲酸、2-甲氧基苯甲酸、4-甲氧基苯甲酸、3,4-二甲氧基苯甲酸、2-氯苯甲酸、3-氯苯甲酸、4-氯苯甲酸、2-碘苯甲酸、4-碘苯甲酸、4-硝基苯甲酸、3,5-二硝基苯甲酸、苯乙酸、4-硝基苯乙酸、β-苯丙酸、苯磺酸、4-甲基苯磺酸、甲基磺酸、乙酸或氯乙酸。

3.3 中间体 2- (1-哌嗪基甲基) -3, 5, 6-三甲基吡嗪 (4) 的制备方法

将无水哌嗪用三氯甲烷溶解,冰浴条件下向此溶液中滴加中间体(2)的三氯甲烷溶液,室温反应 5h, TLC 监测反应完全,用氨水洗涤,有机层用无水硫酸钠干燥,过滤,蒸除溶剂,得黑色油状物粗品,正己烷重结晶,得白色结晶。

4. 川芎嗪酰基哌嗪衍生物 A1-A39 的制备方法

用中间体 2-氯甲基-3, 5, 6-三甲基吡嗪盐酸盐(2)通过对中间体 N-酰基哌嗪(3)的哌嗪环的烃化反应,然后经分离、纯化得川芎嗪酰基哌嗪衍生物 A6-8,16-28,30,32-36;用有机酰氯通过对中间体 2-(1-哌嗪基甲基)-3, 5, 6-三甲基吡嗪(4)的哌嗪环的酰化反应,然后经分离、纯化得川芎嗪酰基哌嗪衍生物 A1-5,9-15,29,31,37,38;用氨水对化合物 A1 进行氨解,经分离、纯化得川芎嗪酰基哌嗪衍生物 A39。

(1) 合成方法:

方法 1: 川芎嗪酰基哌嗪衍生物 A6-8,16-28,30,32-36 的制备方法

将 2-氯甲基-3, 5, 6-三甲基吡嗪盐酸盐(2)、N-酰基哌嗪(3)用甲苯溶解,再加入三乙胺、碘化钠,加热回流 10h, TLC 监测反应完全,过滤,滤液减压蒸干,得油状物,快速柱层析分离,正己烷重结晶。

方法 2: 川芎嗪酰基哌嗪衍生物 A1-5,9-15,29,31,37,38 的制备方法

将 2-(1-哌嗪基甲基)-3, 5, 6-三甲基吡嗪(4)用二氯甲烷溶解,加入无水碳酸钠, 滴加有机酰氯的二氯甲烷溶液,回流 10h, 过滤,滤液蒸干,得油状物,快速柱层析分离, 得粗品,正己烷重结晶。

方法 3: 川芎嗪酰基哌嗪衍生物 A39 的制备方法(该法将用中间体 2 和 3 制得的 A1 进行 氢解)

将 2- (4-乙酰水杨酰基-1-哌嗪基甲基)-3,5,6-三甲基吡嗪(A1)与氨水混合,室温搅拌 5h,氯仿提取,提取液蒸干,得油状物,快速柱层析分离。

- (2) 分离纯化,按下列方法之一或同时使用:
 - ①快速柱层析分离,洗脱溶剂系统为:氯仿/丙酮。
 - ②直接用有机溶剂重结晶。

优选的,上述的有机溶剂是正己烷。

5. 川芎嗪酰基哌嗪衍生物药物组合物

本发明的川芎嗪酰基哌嗪衍生物药物组合物,含有上述的川芎嗪酰基哌嗪衍生物,川 芎嗪酰基哌嗪衍生物与药用辅料制成不同剂型的药物。

6. 川芎嗪酰基哌嗪衍生物的应用

川芎嗪酰基哌嗪衍生物用于制备血管内皮细胞(VECs)的修复与保护药物,或抗血小板凝集药物。

川芎嗪酰基哌嗪衍生物的血小板凝集实验:取柠檬酸三钠(3.8%)0.3ml 提前放入试

管。

方法: 取药物浓度为 0.2 mmol/L 进行血小板凝集实验。向 41 组家兔(每组两只)心脏取血,每只 9 ml,分别注入 3 支试管中,2.7 ml/支,每种药物设 6 个平行组。向 40 组血液中加入血小板聚集剂(ADP) $40 \mu \text{M/ml}$,另一组为空白对照,然后分别加入 T MP 与 38 种衍生物 A1-38,最终浓度为 0.2 mmol/L,另一组为阳性对照。对血液样本进行离心沉淀(270 g,5 min),取出上层血浆,为富血小板血浆,把余下的血浆再离心沉淀(1000 g,10 min),吸取上清液,为贫血小板血浆(platelet penurious plasma,PPP),置于 37 ℃恒温槽内待测。采用 PPP 自动平衡血小板聚集仪测定血小板聚集率。血小板凝集率以 \overline{A} %表示(n=3)。测试过程按编制程序进行,由微电脑控制。测试样本在 1.5 h 内检测完毕,川芎嗪及其酰基哌嗪衍生物 A1-A38 的血小板凝集率见表 2。

表 2 川芎嗪及其酰基哌嗪衍生物 A1-A39 的血小板凝集率				
No.	血小板凝集率(0.2mmol/L)	No.	血小板凝集率(0.2mmol/L)	
空白	0.73±2.93	A20	26.06±5.58	
ADP	39.77±3.69	A21	29.06±4.67	
A1	3.02±3.78	A22	27.24±4.97	
A2	5.08±1.45	A23	24.74±6.43	
A3	6.07±6.48	A24	25.62±2.09	
A4	13.68±5.17	A25	16.08±6.83	
A5	13.14±6.52	A26	25.45±5.54	
A6	10.33 ± 7.54	A27	25.17±8.79	
A7	11.28±9.09	A28	28.64±7.24	
A8	12.28±9.27	A29	15.67±2.98	
A9	9.12±3.76	A30	25.59±1.85	
A10	5.99±3.73	A31	18.24±3.16	
A11	9.78±3.51	A32	13.29±4.95	
A12	6.13±7.23	A33	24.49±7.04	
A13	8.78±1.97	A34	25.13±5.83	
A14	5.84±4.21	A35	33.51±3.95	
A15	13.07±5.54	A36	15.25±6.89	
A16	21.76±5.87	A37	24.89±4.29	
A17	14.26±4.43	A38	26.11±5.07	
A18	28.46±8.57	A39	16.71±2.13	
A19	24.27±2.76	TMP	7.86±4.17	

表 2 川芎嗪及其酰基哌嗪衍生物 A1-A39 的血小板凝集率

TMP一川芎嗪。

由表 2 的结果可以看出,阳性对照药物川芎嗪在 0.2 mmol.L-1 时的血小板凝集率为 7.86%,引入有效药物基团的化合物如 A1(乙酰水杨酰基,3.02%)、A2(烟酰基,5.08%)、A3(异烟酰基,6.07%)、A10(4-甲氧基肉桂酰基,5.99%)、A12(3,4-二甲氧基肉桂酰基,6.13%)、A14(乙酰阿魏酰基,5.84%)的血小板凝集率均低于川芎嗪,呈现出较高的活性,其中 A1(乙酰水杨酰基,3.02%)活性最好;随着苯环与羰基之间亚甲基(-CH₂-)

数目的增多(如化合物 A30、A31、A32),血小板凝集率显著降低,活性增强;肉桂酰基的烯键饱和后血小板凝集率变化不大;苯环引入甲氧基后血小板凝集率变化不大(如 A18、A19、A20);苯环引入卤素或硝基等取代基后,活性变化规律不明显。化合物 A1 暴露出羟基后(A39)血小板凝集率升高。

(四) 具体实施方式

下面实施例中的提到的试剂浓度均为重量百分比,快速柱层析分离中洗脱溶剂均为体积比。

实施例 1.中间体 2-氯甲基-3,5,6-三甲基吡嗪盐酸盐(2)的制备

将川芎嗪三水合物(30.4g,160mmol)、冰醋酸(40ml)和30%过氧化氢(18ml,160mmol)的混合物于70℃加热反应4h,补充加入30%过氧化氢(18ml,160mmol),继续反应4h,TLC监测至反应完全,冷却至室温,以50%氢氧化钠溶液调节pH=10,三氯甲烷提取,无水硫酸钠干燥,过滤,蒸去三氯甲烷,得到川芎嗪单氮氧化合物粗品。然后加入醋酐(15.1 ml,160mmol),加热回流2.5h,TLC监测至反应完全后,减压蒸除过量的醋酐,得到黑色浆状川芎嗪乙酰化物,冷却后加入20%氢氧化钠溶液(155ml),放置过夜,三氯甲烷提取(150ml,30ml×5次),无水硫酸钠干燥,过滤,减压蒸除溶剂,得到2-羟甲基-3,5,6-三甲基吡嗪(1)粗品,以正己烷重结晶,得黄色针状结晶2-羟甲基-3,5,6-三甲基吡嗪(1)15.5g,产率64%,mp:88~89℃。

将所得的 2-羟甲基-3, 5, 6-三甲基吡嗪(1)结晶(15.5g,102mmol)用二氯甲烷(300ml)溶解,取氯化亚砜(7.4ml,102mmol),在冰浴条件下逐滴加入二氯甲烷溶液,冰浴反应30min,再室温反应 2.5h, TLC 监测反应完全,减压蒸除溶剂,得黄色固体 2-氯甲基-3, 5,6-三甲基吡嗪盐酸盐(2)21.1g,产率为100%,mp:102~105℃。

实施例 2.中间体 N-酰基哌嗪 (3) 的制备

取羧酸(100mmol)和氯化亚砜(200mmol)至圆底烧瓶中,安装冷凝管和干燥管,加热回流反应 5h,蒸除过量氯化亚砜,残余物进行减压蒸馏,得酰氯衍生物。

将六水哌嗪(11.7g,60mmol)置于圆底烧瓶中,加入冰醋酸(50ml),搅拌至溶解,室温下滴加上面合成的酰氯(50mmol),滴加完毕,搅拌 2h,向反应液中加入水(50ml),再用氢氧化钠溶液调 pH=12,冷却放置,过滤除去少量双酰化产物,滤液用三氯甲烷提取5次,合并提取液,水洗至中性,用无水硫酸钠干燥,蒸除三氯甲烷后得白色或黄色固体,用苯-石油醚重结晶得精品 N-酰基哌嗪(3),产率为 70~90%。

实施例 3.中间体 2- (1-哌嗪基甲基) -3, 5, 6-三甲基吡嗪 (4) 的制备

将无水哌嗪(50g,580mmol)用三氯甲烷(300ml)溶解,冰浴条件下向此溶液中滴加 2-氯甲基-3,5,6-三甲基吡嗪盐酸盐(20.7g,100mmol)的三氯甲烷(100ml)溶液,室温反应 5h,TLC 监测反应完全,反应液用 4mol/L 氨水洗涤(100ml×3 次),有机层用无水硫酸钠干燥,过滤,蒸除溶剂,得黑色油状物粗品 19g,产率为 86%,不经纯化可直接用于终产物的合成。取少量粗品用正己烷重结晶,得白色结晶中间体 2-(1-哌嗪基甲基)-3,5,6-三甲基吡嗪(4)。

实施例 4.2-(4-乙酰水杨酰基-1-哌嗪基甲基)-3,5,6-三甲基吡嗪(A1)的制备

将实施例 3 制备的中间体 2-(1-哌嗪基甲基)-3,5,6-三甲基吡嗪(4)(10mmol)用二氯甲烷(100ml)溶解,加入无水碳酸钠(1.06g,10mmol),在室温下向此混合物中滴加

乙酰水杨酰氯(10mmol)的二氯甲烷(100ml)溶液,回流 10h, 过滤, 滤液蒸干, 快速柱分离, 得 2-(4-乙酰水杨酰基-1-哌嗪基甲基)-3, 5, 6-三甲基吡嗪(A1), 洗脱剂为氯仿: 丙酮=3: 1, 油状物, 产率为 48%。

光谱分析数据: **IR(KBr, cm⁻¹):** 2920.52 (CH), 1766.95 (C=O), 1640.86 (C=O), 1606.93 (C=N), 1195.56 (C=O); ¹**H-NMR (CDCl₃**, δ **ppm):** 7.29 (m, 1H, Ar-H), 7.19 (dd, 1H, Ar-H), 7.14 (t, 1H, Ar-H, J=7.42 Hz), 7.05 (d, 1H, Ar-H, J=8.12 Hz), 3.18-3.66 (m, 10H, CH₂), 2.47(s, 3H, CH₃), 2.37(s, 3H, CH₃), 2.34 (s, 3H, CH₃), 2.16 (t, 3H, COCH₃, J=4.98 Hz); **ESI-MS:**383.3 (M+1)。

实施例 5.2-(4-烟酰基-1-哌嗪基甲基)-3,5,6-三甲基吡嗪(A2)的制备

如实施例 4 所述的方法,所不同的是将实施例 3 制备的中间体 2-(1-哌嗪基甲基)-3,5,6-三甲基吡嗪(4)与烟酰氯反应,洗脱剂为氯仿: 丙酮=1: 1,正己烷重结晶,得白色晶体 2-(4-烟酰基-1-哌嗪基甲基)-3,5,6-三甲基吡嗪(A2),产率为 44%,mp: 120-121 $\mathbb C$ 。

光谱分析数据: IR (KBr, cm⁻¹): 2916.66 (CH), 1630.39 (C=O), 1590.11 (C=C), 1567.99 (C=N); ¹H-NMR(CDCl₃, δ ppm): 8.65 (m, 2H, Ar-H), 7.73 (m, 1H, Ar-H), 7.34 (m, 1H, Ar-H), 3.42-3.77 (m, 10H, CH₂), 2.57(s, 3H, CH₃), 2.49(s, 3H, CH₃), 2.47 (s, 3H, CH₃); ESI-MS: 326.5 (M+1)。

实施例 6. 2-[4-[2-(4-氯苯氧基)-2-甲基-]丙酰基-1-哌嗪基甲基]-3, 5, 6-三甲基吡嗪(A4)的制备

如实施例 4 所述的方法,所不同的是将实施例 3 制备的中间体 2-。(1-哌嗪基甲基)-3,5,6-三甲基吡嗪(4)与 2-(4-氯苯氧基)-2-甲基丙酰氯反应,洗脱剂为氯仿: 丙酮=5: 1,正己烷重结晶,得白色晶体 2-[4-[2-(4-氯苯氧基)-2-甲基-]丙酰基 $_7$ 1-哌嗪基甲基]-3,5,6-三甲基吡嗪(A4),产率为 49%,mp: 100-101 $\mathbb C$ 。

光谱分析数据: **IR(KBr, cm⁻¹):** 2937.20 (CH), 1629.32 (C=O), 1596.54 (C=C), 1578.56 (C=N), 1242.16 (C-O), 1002.05 (C-O); ¹**H-NMR(CDCl₃**, δ **ppm):** 7.19 (m, 2H, Ar-H), 6.75 (m, 2H, Ar-H), 3.80 (s, 2H, CH₂), 3.63 (s, 2H, CH₂), 3.50 (s, 2H, CH₂), 2.51(s, 3H, CH₃), 2.48(s, 3H, CH₃), 2.46(s, 3H, CH₃), 2.41 (s, 2H, CH₂), 2.19 (s, 2H, CH₂), 1.62 (s, 6H, C(CH₃)₂); **ESI-MS:** 417.6(M+1)。

实施例 7.2-[4-[(E)-3, 4-二甲氧基肉桂酰基]-1-哌嗪基甲基]-3, 5, 6-三甲基吡嗪(A12)的制备

如实施例 4 所述的方法,所不同的是将实施例 3 制备的中间体 2-(1-哌嗪基甲基)-3,5,6-三甲基吡嗪(4)与(E)-3,4-二甲氧基肉桂酰氯反应,洗脱剂为氯仿: 丙酮=2: 1,得油状物 2-[4-[(E)-3,4-二甲氧基肉桂酰基]-1-哌嗪基甲基]-3,5,6-三甲基吡嗪(A12),产率为 52%。

光谱分析数据: IR(KBr,cm⁻¹): 2935.64 (CH), 1645.14 (C=O), 1597.84 (C=C), 1513.44 (C=N), 1262.19 (C-O), 1024.92 (C-O), 999.80 (=CH); ¹H-NMR(CDCl₃, δ ppm): 7.59 (d, 1H, =CH, J=15.34Hz), 7.09 (dd, 1H, Ar-H, J=8.29Hz), 7.02 (d, 1H, Ar-H, J=1.57Hz), 6.84 (d, 1H, Ar-H, J=8.29Hz), 6.70 (d, 1H, =CH, J=15.34Hz), 3.90 (6H, OCH₃), 2.52-3.65 (m, 10H, CH₂), 2.57(s, 3H, CH₃), 2.53(s, 3H, CH₃), 2.48 (s, 3H, CH₃); ESI-MS: 411.5 (M+1)。

实施例 8.2-(4-乙酰阿魏酰基-1-哌嗪基甲基)-3,5,6-三甲基吡嗪(A14)的制备

如实施例 4 所述的方法,所不同的是将实施例 3 制备的中间体 2-(1-哌嗪基甲基)-3,5,6-三甲基吡嗪(4)与乙酰阿魏酰氯反应,洗脱剂为氯仿:丙酮=2:1,得油状物 2-(4-乙酰阿魏酰基-1-哌嗪基甲基)-3,5,6-三甲基吡嗪(A14),产率为42%。

光谱分析数据: **IR(KBr,cm⁻¹):** 2920.41 (CH), 1765.60 (C=O), 1648.46 (C=O), 1603.67 (C=C), 1509.17 (C=N), 1260.13 (C-O), 1196.81 (C-O), 1001.28 (=CH); ¹H-NMR(CDCl₃, δ **ppm):** 7.61 (d, 1H, =CH, J=15.38Hz), 7.12 (d, 1H, Ar-H, J=9.79Hz), 7.07 (s, 1H, Ar-H), 7.03(d, 1H, Ar-H, J=8.14Hz), 6.79 (d, 1H, =CH, J=15.38Hz), 3.86 (s, 3H, OCH₃), 2.50 - 3.80 (m, 10H, CH₂), 2.58(s, 3H, CH₃), 2.55(s, 3H, CH₃), 2.50 (s, 3H, CH₃), 2.32 (s, 3H, COCH₃); **ESI-MS:** 439.6 (M+1)。

实施例 9. 2-[4-(3, 5-二硝基苯甲酰基)-1-哌嗪基甲基]-3, 5, 6-三甲基吡嗪(A29)的制备

如实施例 4 所述的方法,所不同的是将实施例 3 制备的中间体 2-(1-哌嗪基甲基)-3,5,6-三甲基吡嗪(4)与 3,5-二硝基苯甲酰氯反应,洗脱剂为氯仿: 丙酮=5: 1,正己烷重结晶,得淡黄色晶体 2-[4-(3,5-二硝基苯甲酰基)-1-哌嗪基甲基]-3,5,6-三甲基吡嗪(A29),产率为 45%,mp: 198-199 \mathbb{C} 。

光谱分析数据: **IR(KBr,cm⁻¹):** 2951.71 (CH), 1639.02 (C=O), 1591.30 (C=C), 1542.23 (NO₂), 1344.54 (NO₂); ¹**H-NMR(CDCl₃**, δ **ppm):** 9.09 (s,1H, Ar-H), 8.59 (d, 2H, Ar-H,J=1.68Hz), 2.66-3.84 (m,10H, CH₂), 2.53(s, 3H, CH₃), 2.50(s, 3H, CH₃), 2.49 (s, 3H, CH₃); **ESI-MS:** 415.5 (M+1)。

实施例 10.2-(4-氯乙酰基-1-哌嗪基甲基)-3,5,6-三甲基吡嗪(A37)的制备

如实施例 4 所述的方法,所不同的是将实施例 3 制备的中间体 2-(1-哌嗪基甲基)-3,5,6-三甲基吡嗪(4)与氯乙酰氯反应,洗脱剂为氯仿:丙酮=3:1,正己烷重结晶,得淡黄色晶体 2-(4-氯乙酰基-1-哌嗪基甲基)-3,5,6-三甲基吡嗪(A37),产率为 34%,mp:76-77 $^{\circ}$ C。

光谱分析数据: **IR(KBr,cm⁻¹):** 2941.71 (CH), 1668.60 (C=O), 1654.54 (C=N); ¹**H-NMR** (**CDCl₃**, δ **ppm):** 4.06 (s, 2H, ClCH₂), 3.51-3.67 (m, 10H, CH₂), 2.59 (s, 3H, CH₃), 2.51(s, 3H, CH₃), 2.49 (s, 3H, CH₃); **ESI-MS:** 297.5 (M+1)。

实施例 11.2-[4-[(E)-4-氟肉桂酰基]-1-哌嗪基甲基]-3,5,6-三甲基吡嗪(A6)的制备

将实施例 1 制备的中间体 2-氯甲基-3,5,6-三甲基吡嗪盐酸盐(2)(10mmol)、实施例 2 制备的中间体 N-(4-氟肉桂酰基)哌嗪(10mmol)用甲苯(70ml)溶解,再加入三乙胺(4.17ml,30mmol)、碘化钠(催化量),加热回流 10h,TLC 监测反应完全,过滤,滤液减压蒸干,得油状物,快速柱分离,洗脱剂为氯仿:丙酮=1:2,正己烷重结晶,得 2-[4-[(E)-4-氟肉桂酰基]-1-哌嗪基甲基]-3,5,6-三甲基吡嗪(A6),白色晶体,产率为 61%,mp: 107-108 \mathbb{C} 。

光谱分析数据: **IR(KBr,cm⁻¹):** 2917.54 (CH), 1647.23 (C=O), 1601.33 (C=C), 1510.10 (C=N), 986.65 (=CH); ¹**H-NMR(CDCl₃**, δ **ppm):** 7.62 (d, 1H, =CH, J=15.41Hz), 7.49 (m, 2H, Ar-H), 7.05 (t, 2H, Ar-H, J=8.57Hz), 6.78 (d, 1H, =CH, J=15.41Hz), 2.50-3.72 (m, 10H, CH₂), 2.58(s, 3H, CH₃), 2.53(s, 3H, CH₃), 2.49 (s, 3H, CH₃); **ESI-MS:** 369.4 (M+1)。

实施例 12.2-(4-呋喃甲酰基-1-哌嗪基甲基)-3,5,6-三甲基吡嗪(A16)的制备

如实施例 11 所述的方法,所不同的是将实施例 1 制备的中间体(2)与实施例 2 制备的中间体 N-呋喃甲酰基哌嗪反应,洗脱剂为氯仿: 丙酮=3: 1,正己烷重结晶,得淡黄色晶体 2-(4-呋喃甲酰基-1-哌嗪基甲基)-3,5,6-三甲基吡嗪(A16),产率为 51%,mp: 100-102 \mathbb{C} 。

光谱分析数据: **IR** (**KBr,cm**-¹): 3098.74 (=CH), 2948.27 (CH), 1621.05 (C=O), 1581.79 (C=C), 1292.18(C-O), 1023.80(C-O); ¹**H-NMR(CDCl₃**, δ **ppm)**: 7.46 (1H, furan -2-H), 6.97 (1H, furan-4-H, J=3.32Hz), 6.47 (1H, furan-3-H, J₂₋₃=1.57Hz, J₃₋₄=3.13 Hz), 2.50-3.78 (m, 10H, CH₂), 2.59(s, 3H, CH₃), 2.56(s, 3H, CH₃), 2.49 (s, 3H, CH₃); **ESI-MS**: 315.3 (M+1). **实施例 13.** 2-[4-(3,4,5-三甲氧基苯甲酰基)-1-哌嗪基甲基]-3,5,6-三甲基吡嗪(A17)的制备

如实施例 11 所述的方法, 所不同的是将实施例 1 制备的中间体 (2) 与实施例 2 制备的中间体 N-3, 4, 5-三甲氧基苯甲酰基哌嗪反应, 洗脱剂为氯仿: 丙酮=3: 1, 得 2-[4-(3, 4, 5-三甲氧基苯甲酰基)-1-哌嗪基甲基]-3, 5, 6-三甲基吡嗪 (A17), 油状物, 产率为 44%。

光谱分析数据: **IR(KBr, cm⁻¹):** 2939.22 (CH), 1636.18 (C=O), 1583.82 (C=C), 1505.51 (C=N), 1231.28 (C-O), 1127.39 (C-O); ¹H-NMR(CDCl₃,δ ppm): 6.62 (s, 2H, Ar-H), 3.85-3.87 (9H, OCH₃), 2.56-3.66 (m, 10H, CH₂), 2.59(s, 3H, CH₃), 2.50(s, 3H, CH₃), 2.48 (s, 3H, CH₃); **ESI-MS:** 415.3 (M+1)。

实施例 14. 2-[4-(4-甲氧基苯甲酰基)-1-哌嗪基甲基]-3, 5, 6-三甲基吡嗪(A20)的制备 如实施例 11 所述的方法,所不同的是将实施例 1 制备的中间体(2)与实施例 2 制备的中间体 N-(4-甲氧基苯甲酰基)哌嗪反应,洗脱剂为氯仿:丙酮=8:1,正己烷重结晶,得淡黄色晶体 2-[4-(4-甲氧基苯甲酰基)-1-哌嗪基甲基]-3, 5, 6-三甲基吡嗪(A20),产率为 45%,mp: 82-85°C。

光谱分析数据: IR(KBr,cm⁻¹): 2921.16 (CH), 1621.72 (C=O), 1573.75 (C=C), 1514.22 (C=N), 1245.92 (C-O), 1033.00 (C-O); ¹H-NMR(CDCl₃,δppm): 7.37 (d, 2H, Ar- H, J=8.68Hz), 6.90 (d, 2H, Ar-H, J=8.67Hz), 3.82 (3H, OCH₃), 3.60-3.70 (m, 10H, CH₂), 2.57(s, 3H, CH₃), 2.49(s, 3H, CH₃), 2.47 (s, 3H, CH₃); ESI-MS: 355.4 (M+1)。

实施例 15.2-[4-(2-氯苯甲酰基)-1-哌嗪基甲基]-3,5,6-三甲基吡嗪(A22)的制备

如实施例 11 所述的方法,所不同的是将实施例 1 制备的中间体(2)与实施例 2 制备的中间体 N-(2-氯苯甲酰基)哌嗪反应,洗脱剂为氯仿:丙酮=3: 1,正己烷重结晶,得淡黄色晶体 2-[4-(2-氯苯甲酰基)-1-哌嗪基甲基]-3, 5, 6-三甲基吡嗪(A22),产率为 50%,mp: 148 $\mathbb C$ 。

光谱分析数据: IR (KBr, cm⁻¹): 2953.76 (CH), 1632.68 (C=O), 1591.87 (C=C); ¹H-NMR (CDCl₃, δ ppm): 7.35 (m, 4H, Ar-H), 2.30-3.83 (m, 10H, CH₂), 2.58(s, 3H, CH₃), 2.49(s, 3H, CH₃), 2.47 (s, 3H, CH₃); ESI-MS: 359.4 (M+1)。

实施例 16.2-[4-(4-碘苯甲酰基)-1-哌嗪基甲基]-3,5,6-三甲基吡嗪(A27)的制备

如实施例 11 所述的方法,所不同的是将实施例 1 制备的中间体 (2) 与实施例 2 制备的中间体 N-(4-碘苯甲酰基) 哌嗪反应,洗脱剂为氯仿:丙酮=5:1,正己烷重结晶,得 2-[4-(4-碘苯甲酰基)-1-哌嗪基甲基]-3,5,6-三甲基吡嗪(A27),白色晶体,产率为52

%, mp: 166-168°C.

光谱分析数据: **IR(KBr,cm⁻¹):** 2938.22 (CH), 1619.75 (C=O), 1586.17 (C=C); ¹**H-NMR** (CDCl₃, δ ppm): 7.75 (d,2H,Ar-H,J=8.26Hz), 7.14 (d, 2H, Ar-H, J=8.25Hz), 2.57 -3.65 (m, 10H, CH₂), 2.50(s, 3H, CH₃), 2.48(s, 3H, CH₃), 2.47 (s, 3H, CH₃); **ESI-MS:** 451.3 (M+1)。

实施例 17. 2-[4-(β-苯丙酰基)-1-哌嗪基甲基]-3, 5, 6-三甲基吡嗪(A32)的制备

如实施例 11 所述的方法,所不同的是将实施例 1 制备的中间体(2)与实施例 2 制备的中间体 N- (β-苯丙酰基) 哌嗪反应,洗脱剂为氯仿: 丙酮=8: 1,正己烷重结晶,得 2-[4-(β-苯丙酰基) -1-哌嗪基甲基]-3,5,6-三甲基吡嗪(A32),淡黄色晶体,产率为 47%,mp: 74-76 $\mathbb C$ 。

光谱分析数据: IR(KBr,cm⁻¹): 2935.95 (CH), 1630.00 (C=O); ¹H-NMR(CDCl₃, δ ppm): 7.27 (t,2H,Ar-H,J=5.15Hz), 7.20 (d, 3H, Ar-H, J=7.57Hz), 2.90-3.59 (m, 8H, CH₂), 2.60 (2H,CH₂), 2.56(s, 3H, CH₃), 2.49(s, 3H, CH₃), 2.48(s, 3H, CH₃), 2.44 (t, 2H, J=4.73Hz), 2.36 (t, 2H, J=4.58Hz); ESI-MS: 353.3 (M+1)。

实施例 18.2-(4-甲基磺酰基-1-哌嗪基甲基)-3,5,6-三甲基吡嗪(A35)的制备

如实施例 11 所述的方法,所不同的是将实施例 1 制备的中间体(2)与实施例 2 制备的中间体 N-甲基磺酰基哌嗪反应,洗脱剂为氯仿: 丙酮=3: 1,正己烷重结晶,得 2-(4-甲基磺酰基-1-哌嗪基甲基)-3,5,6-三甲基吡嗪(A35),白色晶体,产率为 41%,mp: 116-117℃。

光谱分析数据: **IR (KBr, cm⁻¹):** 2947.79 (CH), 1641.98 (C=C), 1324.32 (SO₂), 1161.38 (SO₂), 1132.50 (SO₂); ¹**H-NMR(CDCl₃**, δ **ppm):** 3.75 (2H, CH₂), 3.31-3.32 (m, 8H, CH₂), 2.79 (3H, SO₂CH₃), 2.57(s, 3H, CH₃), 2.54(s, 3H, CH₃), 2.49 (s, 3H, CH₃); **ESI-MS:** 299.4 (M+1)。 **实施例 19.** 2-(4-乙氧羰基-1-哌嗪基甲基)-3,5,6-三甲基吡嗪(A36)的制备

如实施例 11 所述的方法, 所不同的是将实施例 1 制备的中间体 (2) 与实施例 2 制备的中间体 N-乙氧羰基哌嗪反应, 洗脱剂为氯仿: 丙酮=4: 1, 正己烷重结晶, 得 2- (4-乙氧羰基-1-哌嗪基甲基)-3,5,6-三甲基吡嗪 (A36),淡黄色晶体,产率为 58%,mp: 94-96℃。

光谱分析数据: **IR(KBr,cm⁻¹):** 2929.29 (CH), 1702.38 (C=O), 1236.10 (C-O), 1129.85 (C-O); ¹**H-NMR(CDCl₃**, δ **ppm):** 3.44-4.13 (m, 10H, CH₂), 2.56(s, 3H, CH₃), 2.48(s, 3H, CH₃), 2.47 (s, 3H, CH₃), 2.44 (2H, CH₂), 1.24 (t, 3H, CH₃, J=7.12Hz); **ESI-MS:** 293.4 (M+1). **实施例 20.** 2- (4-水杨酰基-1-哌嗪基甲基) -3, 5, 6-三甲基吡嗪(A39)的制备

将实施例 4 制备的 2-(4-乙酰水杨酰基-1-哌嗪基甲基)-3,5,6-三甲基吡嗪(A1)10mmol 与氨水 (25-28%,50mmol) 混合,室温搅拌 5h,氯仿提取,提取液蒸干,快速柱分离,洗脱剂为氯仿: 丙酮=1:1,得 2-(4-水杨酰基-1-哌嗪基甲基)-3,5,6-三甲基吡嗪(A39),油状物,产率为 51%。

光谱分析数据: IR(KBr, cm⁻¹): 3065.70 (OH), 2919.83 (CH), 1614.15 (C=O); ¹H-NMR(CDCl3, δ ppm): 9.68 (s, 1H, OH), 7.26 (m, 1H, Ar-H), 7.20 (d, 1H, Ar-H, J=7.72Hz), 6.96 (m, 1H, Ar-H), 6.82 (t, 1H, Ar-H, J=7.33Hz), 2.58-3.70 (m, 10H, CH₂), 2.56(s, 3H, CH₃), 2.48(s, 3H, CH₃), 2.46 (s, 3H, CH₃); ESI-MS: 341.4 (M+1)。