Algebraic Topology - Dunkin's Torus 2 -

KYB

Thrn, it's a Fact
mathrnfact@gmail.com

September 14, 2021

Overview

The Fundamental Group The Fundamental Group

Review of Groups

Let G and G' be groups.

• A homomorphism $f: G \to G'$ is a map such that $f(x \cdot y) = f(x) \cdot f(y)$ (preserving operations) for all $x, y \in G$.

Assume f is a homomorphism.

- f(e) = e' where e and e' are identities of G and G', respectively
- $f(x^{-1}) = f(x)^{-1}$ where $f(x)^{-1}$ where $f(x)^{-1}$ denotes the inverse.
- The kernel of f is the set $f^{-1}(e')$; it is a subgroup of G.
- The image of f is a subgroup of G'.
- An injective homomorphism is called a monomorphism.
- A surjective homomorphism is called a epimorphism.
- A bijective homomorphism is called an isomorphism.

Review of Groups

Let H be a subgroup of G.

- Fix $x \in G$. The set $xH = \{xh : h \in H\}$ is called a *left coset*; similarly Hx is called a *right coset*.
- The set of all left coset $\{xH : x \in G\}$ forms a partition of G; $\{Hx : x \in G\}$ forms also a partition of G.
- A subgroup H is called a normal subgroup of G is xH = Hx for all $x \in G$.

Assume H is a normal subgroup of G, and denote $G/H = \{xH : x \in G\}$.

• We can define a well-defined operation on G/H by

$$(xH) \cdot (yH) = (x \cdot y)H,$$

and this operation makes G/H a group. This group G/H is called the *quotient* of G by H.

- The map $f: G \to G/H$ by f(x) = xH is an epimorphism with kernel H.
- Conversely, if $f: G \to G'$ is an epimorphism, then its kernel N is a normal subgroup of G, and f induces an isomorphism $G/N \to G'$ that carries xN to f(x) for each $x \in G$.

In general, a subgroup is not a normal subgroup of G. In this case, we denote G/H the collection of right cosets of H in G.

Definition

Let X be a space; let x_0 be a point of X.

- A path in X that begins and ends at x_0 is called a *loop* bases at x_0 .
- The set of path homotopy classes of loops based at x_0 , with the operation *, is called the *fundamental group* of X relative to the base point x_0 . It is denoted by $\pi_1(X, x_0)$.

Example

- $\pi_1(\mathbb{R}^n, x_0)$ is the trivial group.
- More generally, if X is any convex subset of \mathbb{R}^n , then $\pi_1(X, x_0)$ is the trivial group.
- In particular, the unit ball $B^n=\{x\in\mathbb{R}^n: x_1^2+\cdots+x_n^2\leqslant 1\}$ has trivial fundamental group.

Definition

Let α be a path in X from x_0 to x_1 . We define a map

$$\hat{\alpha}:\pi_1(X,x_0)\to\pi_1(X,x_1)$$

by the equation

$$\hat{\alpha}([f]) = [\overline{\alpha}] * [f] * [\alpha]$$

Theorem (52.1)

The map $\hat{\alpha}$ is a group isomorphism.

Corollary (52.2)

If X is path connected and x_0 and x_1 are two points of X, then $\pi_1(X,x_0)$ is isomorphism to $\pi_1(X,x_1)$.

Let C be the path component of X containing x_0 . Then $\pi_1(C,x_0)=\pi_1(X,x_0)$, since all loops and homotopies in X that are based at x_0 must lie in C. Thus $\pi_1(X,x_0)$ depends on only the path component of X containing x_0 . For this reason, it is usual to deal with only path-connected spaces when studying the fundamental group.

Remark

If X is path connected, all the groups $\pi_1(X,x)$ are isomorphic. So we want to say "the fundamental group of X" without mentioning of a base point x. But there is no natural way of identifying $\pi_1(X,x_0)$ with $\pi_1(X,x_1)$; different paths α and β from x_0 to x_1 may give rise to different isomorphisms between these groups.

Definition

A space X is said to be *simply connected* if it is a path-connected space and if $\pi_1(X, x_0)$ is the trivial group for some $x_0 \in X$, and hence for every $x_0 \in X$. We often express the fact that $\pi_1(X, x_0)$ is the trivial group by writing $\pi_1(X, x_0) = 0$.

Lemma (52.3)

In a simply connected space X, any two paths having the same initial and final points are path homotopic.

Suppose $h: X \to Y$ is a continuous map such that $f(x_0) = y_0$, denoted by $h: (X, x_0) \to (Y, y_0)$. If f is a loop in X based at x_0 , then $h \circ f: I \to Y$ is a loop in Y based at y_0 . The correspondence $f \mapsto h \circ f$ gives rise to a map carrying $\pi_1(X, x_0)$ into $\pi_1(Y, y_0)$.

Definition

Let $h:(X,x_0)\to (Y,y_0)$ be a continuous map. Define

$$h_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

by the equation

$$h_*([f]) = [h \circ f].$$

Them map h_* is called the homomorphism induced by h, relative to the base point x_0 .

Theorem (52.4)

If $h:(X,x_0)\to (Y,y_0)$ and $k:(Y,y_0)\to (Z,z_0)$ are continuous, then $(k\circ h)_*=k_*\circ h_*$. If $i:(X,x_0)\to (X,x_0)$ is the identity map, then i_* is the identity homomorphism.

Corollary (52.5)

If $h:(X,x_0) \to (Y,y_0)$ is a homeomorphism of X with Y, then h_* is an isomorphism of $\pi_1(X,x_0)$ with $\pi_1(Y,y_0)$.

Ex 52.1

A subset A of \mathbb{R}^n is said to be *star convex* if for some point a_0 of A, all the line segments joining a_0 to other points of A lie in A.

- (a) Find a star convex set that is not convex.
- (b) Show that if A is star convex, A is simply connected.

Ex 52.2

Let α be a path in X from x_0 to x_1 ; let β be a path in X from x_1 to x_2 . Show that if $\gamma = \alpha * \beta$, then $\hat{\gamma} = \hat{\beta} \circ \hat{\alpha}$.

Ex 52.3

Let x_0 and x_1 be points of the path-connected space X. Show that $\pi_1(X,x_0)$ is abelian if and only if for every pair α and β of paths from x_0 to x_1 , we have $\hat{\alpha} = \hat{\beta}$.

Ex 52.4

Let $A \subset X$; Suppose $r: X \to A$ is a continuous map such that r(a) = a for each $a \in A$. (The map r is called a *retraction* of X onto A). If $a_0 \in A$, show that

$$r_*:\pi_1(X,\mathfrak{a}_0)\to\pi_1(A,\mathfrak{a}_0)$$

is surjective.

Ex 52.5

Let A be a subspace of \mathbb{R}^n ; let $h:(A,a_0)\to (Y,y_0)$. Show that if h is extendable to a continuous map of \mathbb{R}^n into Y, then h_* is the trivial homomorphism. (the homomorphism that maps everything to the identity element).

Ex 52.6

Show that if X is path-connected, the homomorphism induced by a continuous map is independent of base point, up to isomorphisms of the groups involved. More precisely, let $h: X \to Y$ be continuous, with $h(x_0) = y_0$ and $h(x_1) = y_1$. Let α be a path in X from x_0 to x_1 , and let $\beta = h \circ \alpha$. Show that

$$\hat{\beta} \circ (h_{x_0})_* = (h_{x_1})_* \circ \hat{\alpha}.$$

This equation expresses the fact that the following diagram of maps "commutes."

$$\begin{array}{ccc} \pi_1(X,x_0) & \xrightarrow{(h_{x_0})_*} & \pi_1(Y,y_0) \\ & & & \downarrow \beta \\ \pi_1(X,x_1) & \xrightarrow{(h_{x_1})_*} & \pi_1(Y,y_1) \end{array}$$

Ex 52.7

Let G be a topological group with operation \cdot and identity element x_0 . Let $\Omega(G,x_0)$ denote the set of all loops in G bases at x_0 . If $f,g\in\Omega(G,x_0)$, let us define a loop $f\otimes g$ by the rule

$$(f \otimes g)(s) = f(s) \cdot g(s).$$

- (a) Show that this operation makes the set $\Omega(G, x_0)$ into a group.
- (b) Show that this operation induces a group operation \otimes on $\pi_1(G, x_0)$.
- (c) Show that the two group operations * and \otimes on $\pi_1(G, x_0)$ are the same.
- (d) Show that $\pi_1(G, x_0)$ is abelian.