

Anomaly detection in industrial environment

Goal

높은 검출 성능, 빠른 학습 및 판단속도, 가벼운 모델크기

데이터셋

- 사출성형기 AI 데이터셋
- 용해탱크 AI 데이터셋

Our process is easy

데이터 구조 파악 데이터 시각화

데이터 구조 파악

Labeled_data = 7996

moldset_labeled_Cn7

1211

1182

moldset_labeled_Rg7

Etc_Cn7

214

Cn7

>=4000

650톤 우진 2호기가 가장 많음

분석대상: CN7, RG3

데이터 시각화

Cycle_Time

Injection_Time

Filling_Time

Cushion_Position

Average_Back_Pressure

Max_Injection_Speed

Clamp_Close_Time

Max_Screw_RPM

Max_Injection_Pressure

Max_Switch_Over_Pressure

Max_Back_Pressure

PART_FACT_SERIAL

Switch_Over_Position

Plasticizing_Time

Average_Screw_RPM

Clamp_Open_Position

Barrel_Temperature_1

Barrel_Temperature_2

Barrel_Temperature_3

Barrel_Temperature_5

Barrel_Temperature_4

Barrel_Temperature_6

Mold_Temperature_3

Hopper_Temperature

Mold_Temperature_4

모델 수립 및 평가

1. AutoEncoder

- 입력과 출력을 같도록 하는 구조를 의미하는 것으로 노이즈 제거에 탁월한 비지도 머신러닝 방법론
- input에 최대한 똑같게 output이 나오도록 하는 것으로 노이즈가 없던 부분을 복원하도록 하는 문제를 설계 가능한 장점

2. Isolation Forest

- 데이터 셋을 의사결정나무 형태로 표현해 정상값을 분리하기 위해서는 깊이가 깊고 이상치 값은 의사결정나무 상단부에서 분리된다는 머신러닝 방법론
- 군집기반 이상탐지 알고리즘에 비해 계산량이 매우 적으며 강건한 모델 생성 가능


```
if_clf = IsolationForest(contamination=0.3, max_features=1.0,
max_samples=0.7, n_estimators=80, random_state=4)
if_clf.fit(X_train)
```

3. One-class SVM

- One-class SVM은 novelty detection에 서포트 벡터를 사용하는 방법
- ■기존의 서포트 벡터 방식처럼 초평면을 사용하는 것이 아닌 구를 사용하며, 정상 데이터 안에서 데이터 포인트의 밀집도를 찾아 긍정 혹은 부정으로 인식하기 때문에 확률분포가 필요하지 않음

Confusion-Matrix(사출공정)

	Predicted: Y	Predicted: N	
Actual: Y	100	2	Sensitivity(0.972)
Actual: N	0	69	Specificity(1)
	Precision(1)	NPV(0.972)	Accuracy(0.988)

X F1-Score = **0.986**

X Train Time = 0.45 sec

Confusion-Matrix(용해탱크)

	Predicted: Y	Predicted: N	
Actual: Y	195,462	14,538	Sensitivity(0.686)
Actual: N	145,289	31,778	Specificity(0.931)
	Precision(0.690)	NPV(0.686)	Accuracy(0.590)

X F1-Score = 0.710

X Train Time = 30 min

감사합니다!

