

FORECASTING SERIES DE TIEMPO

Applied Mathematics and Actuary Training

FORECASTING

Lección 4 — Transformaciones y Suavizamiento

TRANSFORMACIONES

CUIDADO!! CON INTERPRETACIONES

lied Mathematics and Actuary Training

CAJA DE HERRAMIENTAS DEL FORECASTER TRANSFORMACIÓN LOGARÍTMICA

SERIE TEMPORAL

 $\{x_t\}$

TRANSFORMACIÓN

$$y_t = \log(\mathbf{x}_t)$$

INTERPRETABLE:

CAMBIOS RELATIVOS O PORCENTUALES

Sea
$$y = \log_{10}(x)$$

 $y' = \log_{10}(x')$

$$con: y' = y + 1 \Rightarrow x' = 10x$$

MODELO ADITIVO

MODELO MULTIPLICATIVO

$$x_t = m'_t \, s'_t \, z'_t$$

$$y_t = \ln(x_t)$$

$$= \ln(m'_t) + \ln(s'_t) + \ln(z'_t)$$

$$= m_t + s_t + z_t$$

TRANSFORMA EN:

Transformación BoxCox (Auto Lambda)

BOX-COX

TRANSFORMACIÓN **PODEROSA!**

ESCALA ORIGINAL

BOX-COX INVERSA 1950

$$x_t = \begin{cases} e^{y_t} & \text{si } \lambda = 0 \\ (\lambda y_t + 1)^{1/\lambda} & \text{si } \lambda \neq 0 \end{cases}$$

AJUSTE POR SESGO

$$x_t = \begin{cases} e^{y_t} \left[1 + \frac{\sigma_h^2}{2} \right] & si \ \lambda = 0 \\ (\lambda y_t + 1)^{1/\lambda} \left[1 + \frac{\sigma_h^2 (1 - \lambda)}{2(\lambda y_t + 1)^2} \right] & si \ \lambda \neq 0 \end{cases}$$

$$s_t : Estacionalidad en tiempo t$$

$$z_t : Error residual en tiempo t$$

$$\sigma_h^2 : Varianza en predicción h pasos$$

$$Transformaciones y Suavizamiento | Lección 4$$

 x_t : Serie Original a tiempo t

 y_t : Serie Transformada a tiempo t

 m_t : Tendencia en tiempo t

 s_t : Estacionalidad en tiempo t

SUAVIZAMIENTO EXPONENCIAL SIMPLE

IDEA BÁSICA Estimación Actual

PROMEDIO PONDERADO Observaciones anteriores

Pesos decrecen exponencialmente

MÉTODO: Estimar μ_t por medio de:

$$f_t = \alpha x_t + (1 - \alpha) f_{t-1}$$
 con $f_1 = x_1$ y $0 < \alpha < 1$

 f_t : Promedio Móvil Ponderado Exponencialmente α : Parámetro de suavizamiento

lpha pprox 1 Poco suavizamiento lpha pprox 0 Mucho suavizamiento Estándar lpha = 0.2

Otra forma útil de verlo es haciendo sustituciones:

Para
$$f_{t-1} = \alpha x_{t-1} + (1 - \alpha) f_{t-2} \Rightarrow f_t = \alpha x_t + \alpha (1 - \alpha) x_{t-1} + (1 - \alpha)^2 f_{t-2}$$

Sustituyendo sucesivamente llegamos a:

$$f_t = \alpha x_t + \alpha (1 - \alpha) x_{t-1} + \alpha (1 - \alpha)^2 x_{t-2} + \alpha (1 - \alpha)^3 x_{t-3} + \cdots$$

Por último podemos verlo como:

$$f_t = \alpha(x_t - f_{t-1}) + f_{t-1}$$
 en donde $x_t - f_{t-1}$ representa el error de predicción a un paso

CAJA DE HERRAMIENTAS DEL FORECASTER MÉTODO HOLT-WINTERS

SUAVIZAMIENTO EXPONENCIAL

Se queda Corto

PROMEDIO PONDERADO (PP)

Ajustado por: Nivel, Pendiente y Estacionalidad

HOLT-WINTERS FORMA ESTACIONAL ADITIVA

Ecuaciones actualización x_t con periodo p

$$a_t = \alpha(x_t - s_{t-p}) + (1 - \alpha)(a_{t-1} + b_{t-1})$$
 PP entre (Observación más reciente) y (Pronóstico Previo del nivel)

$$b_t = \beta (a_t - a_{t-1}) + (1 - \beta)b_{t-1}$$

PP entre (Pendiente anterior) y (Diferencia entre niveles estimados t y t-1)

$$s_t = \gamma (x_t - a_t) + (1 - \gamma) s_{t-p}$$

PP entre (Estimación Anterior de Efecto Estacional) y (Diferencia entre observación y nivel estimado)

ECUACIÓN DE PRONÓSTICO:

$$\hat{x}_{n+k|n} = a_n + kb_n + s_{n+k-p}$$

HOLT-WINTERS FORMA ESTACIONAL MULTIPLICATIVA

Ecuaciones actualización x_t con periodo p

$$a_t = \alpha \left(\frac{x_t}{s_{t-p}}\right) + (1 - \alpha)(a_{t-1} + b_{t-1})$$

$$b_t = \beta (a_t - a_{t-1}) + (1 - \beta)b_{t-1}$$

$$s_t = \gamma \left(\frac{x_t}{a_t}\right) + (1 - \gamma) s_{t-p}$$

ECUACIÓN DE PRONÓSTICO:

$$\hat{x}_{n+k|n} = (a_n + kb_n)s_{n+k-p}$$

 a_t : Nivel estimado a tiempo t $(a_1 = x_1)$

 b_t : Pendiente estimada a tiempo t

 s_t : Efecto estacional estimado a tiempo t

 $\hat{x}_{n+k|n}$: Pronóstico para la serie en el tiempo n+k dado que conocemos la serie hasta tiempo n

Transformaciones y Suavizamiento | Lección 4

FORECASTING SERIES DE TIEMPO

Transformaciones y Suavizamiento | Lección 4