OPTIMIZACIÓN

Primer Cuatrimestre 2025

Entrega N°3

Se quiere resolver esl siguiente problema

$$\min_{x \in \mathbb{R}^n} \left\{ \frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1 \right\} \tag{1}$$

donde $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ y $\lambda > 0$.

Ejercicio 1 En primer lugar generaremos los datos del problema.

- (a) Construir una matriz aleatoria $A \in \mathbb{R}^{200 \times 100}$.
- (b) Generar un vector $x_{true} \in \mathbb{R}^{100}$ con solo 5 componentes distintas a cero, elegidas aleatoriamente.
- (c) Generar el vector $b = Ax_{true} + \eta$, donde η es un ruido gaussiano (con varianza pequeña).

Ejercicio 2 Implementar el algoritmo ISTA. La función debe retornar el error $||x_k - x_{true}||_2$, y el x encontrado.

Ejercicio 3 Implementar el algoritmo FISTA. La función debe retornar el error $||x_k - x_{true}||_2$, y el x encontrado.

Ejercicio 4 El objetivo ahora es comparar ambos métodos.

- (a) Medir el tiempo total de ejecución de ambos algoritmos utilizando @elapsed.
- (b) Graficar la evolución del error $||x_k x_{true}||_2$ en función del número de iteraciones, utilizando escala logarítmica en el eje y.
- (c) Comparar la velocidad de convergencia y el error final alcanzado por ambos métodos.

Ejercicio 5 Probar otras configuraciones de (m, n, λ) .