ठोस अवस्था

पाठ्यपुस्तक के अभ्यास प्रश्न

(c) CaF₂ (d) Na₂O

बहुविकल्पीय प्रश्न
प्रश्न 1. एक कार केन्द्रित धन संकुलन (bcc) व्यवस्था में परमाणुओं की संख्या होती है –
(a) 1
(b) 2
(c) 4
(d) 6
प्रश्न 2. एक यौगिक A व B के क्रिस्टलीकरण से घनीय संरचना बनाता है जिसमें हैं परमाणु घने के कार्नर पर स्थित है तथा B परमाणु प्रत्येक फलक के केन्द्रों पर स्थित है। यौगिक का सूत्र है –
(a) AB ₁
(b) A ₂ B
(c) AB ₂
(d) A_2B_3
प्रश्न 3. निम्न में से कौन-सा उदाहरण समूह 13-15 का नहीं हैं?
(a) InSb
(b) GaAs
(c) CdSe
(d) AIP
प्रश्न 4. एक घट्कोणीय निविड़ संकुलन (hcp) की इकाई कोष्ठिका में कुल परमाणुओं की संख्या होगी-
(a) 4
(b) 6
(c) 8
(d) 12
प्रश्न 5. निम्न संरचनाओं में किस ऋणायन की सर्वाधिक समन्वय संख्या हैं?
(a) NaCl
(b) ZnS

प्रश्न 6. शॉदकी त्रुटियाँ प्राप्त होती हैं जबकि -

- (a) क्रिस्टल जालक से असमान संख्या में धनायन एवं ऋणायन पलायन कर जाते हैं।
- (b) क्रिस्टल जालक से समान संख्या में धनायन एवं ऋणायन पलायन कर जाते हैं।
- (c) एक आयन अपनी सामान्य स्थिति छोड़कर अन्तराकाशी स्थल में चला जाता है।
- (d) क्रिस्टल का घनत्व बढ़ जाता है।

प्रश्न 7. एक P-प्रकार का पदार्थ वैद्युतीय रूप से

- (a) धनात्मक
- (b) ऋणात्मक
- (c) उदासीन
- (d) P-अशुद्धियों की सान्द्रता पर निर्भर है।

प्रश्न 8. समन्वयक संख्या 8 निम्न में से किस धनायन के लिए होगी।

- (a) CsCl
- **(b)** ZnS
- (c) NaCl
- (d) Na₂O

प्रश्न 9. निम्न में से कौन-सा संक्रमण धातु यौगिक अनुचुम्बकीय (Paramagnetic) प्रवृत्ति का है?

- (a) MnO
- **(b)** NiO
- **(c)** VO
- **(d)** Mn₂O₃

प्रश्न 10. एक षटकोणीय आद्य एकक कोष्ठिका (Primitive unit cell) में चतुष्फलकीय एवं अष्टफलकीय छिद्रों (Voids) की संख्या क्रमशः होगी-

- (a) 8, 4
- **(b)** 6, 6
- **(c)** 2,1
- (d) 12, 6

उत्तरमाला

- **1.** (b)
- **2.** (b)
- **3.** (c)
- **4.** (b)
- **5.** (d)
- **6.** (b)

- **7.** (c)
- **8.** (a)
- **9.** (c)
- **10.**(d)

अति लघूत्तात्मक प्रश्न

प्रश्न 1. ठोस कठोर क्यों होते हैं?

उत्तर: ठोसों में अवयवी परमाणुओं अथवा अणुओं अथवा आयनों की स्थितियाँ नियत होती हैं, अर्थात् ये गित के लिए स्वतन्त्र नहीं होते हैं। ये केवल अपनी माध्य स्थितियों के चारों ओर दोलन करते हैं। इसका कारण इनके मध्य उपस्थित प्रबल अन्तरापरमाण्वीय अथवा अन्तराअणुक अथवा अन्तराआयनिक बलों की उपस्थित है। इसलिए ठोस कठोर होते है।

प्रश्न 2. ठोसों का आयतन निश्चित क्यों होता है ?

उत्तर: ठोसों में अवयवी कण अपनी माध्य स्थितियों पर प्रबल संसंजक आकर्षण बलों द्वारा बँधे रहते हैं। नियत ताप पर अन्तरकणीय दूरियाँ अपरिवर्तित रहती हैं जिससे ठोसों का आयतन निश्चित होता है।

प्रश्न 3. ठोस A, अत्यधिक कठोर तथा ठोस एवं गलित दोनों अवस्थाओं में विद्युत्रोधी है और अत्यन्त उच्च ताप पर पिघलता है। यह किस प्रकार का ठोस है?

उत्तर: सहसंयोजक अथवा नेटवर्क ठोस; चूँिक यह गलित अवस्था में भी विद्युत् का चालन नहीं करता है।

प्रश्न 4. किस प्रकार के ठोस विद्युत् चालक, आघातवर्थ्य और तन्य होते हैं ?

उत्तर: धात्विक ठोस विद्युत् चालक, आघातवर्थ्य और तन्य होते हैं।

प्रश्न 5. 'जालक बिन्दु' से आप क्या समझते हैं ?

उत्तर: प्रत्येक जालक बिन्दु (lattice point) ठोस के एक अवयवी कण को प्रदर्शित करता है। यह अवयवी कण एक परमाणु, अणु (परमाणुओं का समूह) अथवा आयन हो सकता है।

प्रश्न 6. एकक कोष्ठिका को अभिलाक्षणित करने वाले पैरामीटरों के नाम बताइए।

उत्तर: एकक कोष्ठिका के निम्नलिखित पैरामीटर होते हैं-(i) तीनों किनारों की विमाएँ a, b एवं c, जो परस्पर लम्बवत् हो भी सकती हैं और नहीं भी। (ii) कोरों के मध्य कोण α (B और C के मध्य), B (a और c के मध्य) और γ (a और b के मध्य)।

प्रश्न 7. एक अणु की वर्ग निविड संकुलित परत में द्विविमीय उपसहसंयोजन संख्या क्या है ?

उत्तर: द्विविमीय वर्ग निविड संकुलित परत में प्रत्येक परमाणु चार निकटवर्ती परमाणुओं के सम्पर्क में रहता है। अत: इसकी उपसहसंयोजन संख्या 4 है।

प्रश्न 8. निम्नलिखित में से किस जालक में उच्चतम संकुलन क्षमता है -

- 1. (i) सरल घनीय
- 2. (ii) अन्त:केन्द्रित घन
- 3. (iii) षट्कोणीय निविड संकुलित जालक?

उत्तर: जालक में संकुलन क्षमताएँ निम्न प्रकार हैं –

- **1.** सरल घनीय = 52.4%
- 2. अन्त:केन्द्रित घन = 68%
- 3. षट्कोणीय निविड संकुलन = 74%

अत: षट्कोणीय निविड संकुलन की संकुलन क्षमता उच्चतम है।

प्रश्न 9. अक्रिस्टलीय' पद को परिभाषित कीजिए। अक्रिस्टलीय ठोसों के कुछ उदाहरण दीजिए।

उत्तर: अक्रिस्टलीय ठोस (Amorphous Solids) -वे ठोस पदार्थ जिनमें सम्पूर्ण क्रिस्टल में अवयवी कण (परमाणु, अणु या आयन) निश्चित ज्यामिति में व्यवस्थित नहीं होते हैं अक्रिस्टलीय ठोस कहलाते हैं। अक्रिस्टलीय ठोस असमाकृतिक कणों से बने होते हैं। इन ठोसों में अवयवी कणों की व्यवस्था केवल लघु परासी व्यवस्था (short range arrangement) होती है। यहाँ पर व्यवस्था और आवर्ती पुनरावृत पैटर्न केवल अल्प दूरियों तक देखा जाता है। इस प्रकार के ठोसों की संरचना द्रवों के सदृश होती है।

उदाहरण -काँच, रबर, प्लास्टिक आदि।

लघूत्तरात्मक प्रश्न

प्रश्न 1. निम्नलिखित को अक्रिस्टलीय तथा क्रिस्टलीय ठोसों में वर्गीकृत कीजिए – पॉलियूरिथेन, नैफ्थेलीन, बेन्जोइक अम्ल, टेफ्लॉन, पोटैशियम नाइट्रेट, सेलोफेन, पॉलिवाइनिल क्लोराइड, रेशा काँच, ताँबा।

उत्तर: अक्रिस्टलीय ठोस (Amorphous solids) — पॉलियूरिथेन, टेफ्लॉन, सेलोफेन, पॉलिवाइनिल क्लोराइड तथा रेशा काँच। क्रिस्टलीय ठोस (Crystalline solids) -नैफ्थेलीन, बेन्जोइक अम्ल, पोटैशियम नाइट्रेट तथा ताँबा।

प्रश्न 2. काँच को अतिशीतित द्रव क्यों माना जाता है?

उत्तर: काँच एक अक्रिस्टलीय ठोस हैं। द्रवों के समान इसमें प्रवाह की प्रवृत्ति होती है, यद्यपि यह प्रवाह बहुत मन्द होता है। अत: इसे आभासी ठोस (pseudo solid) अथवा अतिशीतित द्रव (super-Cooled liquid) कहा जाता है। इस तथ्य के प्रमाणस्वरूप पुरानी इमारतों की खिड़िकयों और दरवाजों में जड़े शीशे निरअपवाद रूप से शीर्ष की अपेक्षा अधस्तल में किंचित मोटे पाए जाते हैं। यह इसलिए होता है; क्योंकि काँच प्रवाह की प्रकृति के कारण अत्यधिक मन्दता से नीचे प्रवाहित होकर अधस्तल भाग को किचित मोटा कर देता है।

प्रश्न 3. एक ठोस के अपवर्तनांक का सभी दिशाओं में सभान मान प्रेक्षित होता है। इस ठोस की प्रकृति पर टिप्पणी कीजिए। क्या यह विदलन गुण प्रदर्शित करेगा?

उत्तर: ठोस के अपवर्तनांक का सभी दिशाओं में समान मान प्रेक्षित होता है; इसका अर्थ है कि यह समदैशिक (isotropic) है तथा इसलिए यह अक्रिस्टलीय (armorphous) है। अक्रिस्टलीय ठोस होने के कारण तेज धार वाले औजार से काटने पर, यह अनियमित सतहों वाले दो टुकड़ों में कट जाएगा। दूसरे शब्दों में यह स्पष्ट विदलन गुण प्रदर्शित नहीं करेगा।

प्रश्न 4. उपस्थित अन्तराण्विक बलों की प्रकृति के आधार पर निम्नलिखित ठोसों को विभिन्न संवर्गों में वर्गीकृत कीजिए-पोटैशियम सल्फेट, टिन, बैजीन, यूरिया, अमोनिया, जल, जिंक सल्फाइड, ग्रेफाइट, रूबीडिराम, आर्गन, सिलिकॉन कार्बाइड।

उत्तरः आण्विक ठोस (Molecular solids)-बैन्जीन, यूरिया, अमोनिया, जल, आर्गन। आयनिक ठोस (Ionic solids) — पोटेशियम सल्फेट, जिंक सल्फाइड। धात्विक ठोस (Metallic solids) — रूबीडियम, टिन। सहसंयोजक अथवा नेटवर्क ठोस (Covalent or Network solids) -ग्रेफाइट, सिलिकॉन कार्बाइड।

प्रश्न 5. आयनिक ठोस गलित अवस्था में विद्युत् चालक होते हैं। परन्तु ठोस अवस्था में नहीं, व्याख्या कीजिए।

उत्तर: गिलत अवस्था में अथवा जल में घोलने पर आयिनक ठोस । वियोजित होकर मुक्त आयन देते हैं। इन भुक् आयनों की जाित के कारण विद्युत्-चालन सम्भव होता है। यद्यपि ठोस अवस्था में, चूंिक आयन गित के लिए मुक्त नहीं होते अपितु परस्पर प्रल विद्युत्थैतिक आकर्षण दल द्वारा जुड़े रहते हैं; अत: ठोस अवस्था में ये विद्युत्रोधी होते हैं।

प्रश्न 6. एक यौगिक षट्कोणीय निविड़ संलि संरचना बनाता है। इसके 0.5 मोल में कुल रिक्तियों की संख्या कितनी है ? उनमें से कितनी रिक्तियाँ चतुष्फलकीय हैं ?

उत्तर: हम जानते हैं कि यदि निविड संकुलन में परमाणुओं की संख्या = N तो चतुष्फलकीय रिक्तियों की संख्या = 2N अष्टफलकीय रिक्तियों की संख्या = N अत: 0:5 मोल में परमाणुओं की संख्या = 0.5 × 6.022 × 10²³ = 3.011 × 10²³ परमाणु अष्टफलकीय रिक्तियों की संख्या = निविड संकुलन में परमाणुओं की संख्या = 3.011 × 10²³ चतुष्फलकीय रिक्तियों की संख्या = 2 × निविड संकुलन में परमाणुओं की संख्या = 2 × 3.011 × 10²³ = 6.022 × 10²³ कुल रिक्तियों की संख्या = 3.011 × 10²³ + 6.022 × 10²³ = 9.033 × 10²³ रिक्तियाँ उत्तर

प्रश्न 7. एक यौगिक दो तत्वों M और N से बना है। तत्व N, ccp संरचना बनाता है और M के परमाणु चतुष्फलकीय रिक्तियों के $\frac{1}{3}$ भाग को अध्यासित करते हैं। यौगिक का सूत्र क्या है ?

उत्तर:

```
माना, ccp में परमाणुओं की संख्या = x चतुष्फलकीय रिक्तियों की संख्या = 2x अतः तत्व N के परमाणुओं की संख्या = x चूँिक तत्व M चतुष्फलकीय रिक्तियों का \frac{1}{3} वाँ भाग अध्यासित करता है। अतः उपस्थित M परमाणुओं की संख्या = 2x \times \frac{1}{3} = \frac{2}{3}x M व N का अनुपात, = M: N
```

=
$$\frac{2x}{3}$$
: x
= 2x: 3x = 2: 3
यौगिक का सूत्र = M₂N₃ उत्तर

प्रश्न 8. एक तत्व का मोलर द्रव्यमान 2.7 × 10⁻² kg mol⁻¹ है, यह 405 pm लम्बाई की भुजा वाली घनीय एकक कोष्ठिका बनाता है। यदि उसका घनत्व 2.7 × 10³ kg m⁻³ है तो घनीय एकक कोष्ठिका की प्रकृति क्या है ?

उत्तर:

घनत्व,
$$d=\frac{Z\times M}{a^3\times N_A}$$

अथवा $Z=\frac{d\times a^3\times N_A}{M}$
यहाँ, M (तत्व का मोलर द्रव्यमान)
 $=2\cdot7\times10^{-2}\,\mathrm{kg\,mol^{-1}}$
 a (भुजा की लम्बाई) = 405 pm = 405 × 10⁻¹² m
 $=4\cdot05\times10^{-10}\,\mathrm{m}$
 d (घनत्व) = $2\cdot7\times10^3\,\mathrm{kg\,m^{-3}}$
 N_A (आवोगाद्रो संख्या) = $6\cdot022\times10^{23}\,\mathrm{mol^{-1}}$
इन मानों को उपर्युक्त व्यंजक में प्रतिस्थापित करने पर,
 $(2\cdot7\times10^3\,\mathrm{kg\,m^{-3}})\,(4\cdot05\times10^{-10}\,\mathrm{m})^3$
 $Z=\frac{(6\cdot022\times10^{23}\,\mathrm{mol^{-1}})}{(2\cdot7\times10^{-2}\,\mathrm{kg\,mol^{-1}})}$
 $=\frac{(4\cdot05)^3\times6\cdot022\times10^{-4}}{10^{-2}}$
= $66\cdot430\times6\cdot022\times10^{-2}=4$

चूँकि प्रति एकक कोष्ठिका में तत्व के 4 परमाणु उपस्थित हैं। अतः घनीय एकक कोष्ठिका फलक-केन्द्रित (fcc) अथवा घनीय निविड संकुलित (ccp) होनी चाहिए।

प्रश्न 9. निम्नलिखित किस प्रकार का स्टॉइकियोमीटी दोष दर्शाते हैं -

- 1. ZnS
- 2. AgBr?

उत्तर:

- 1. Zns फ्रेंकेल दोष दर्शाता है, क्योंकि इसके आयनों के आकार में बहुत अधिक अन्तर होता है।
- 2. AgBr फ्रेंकेल तथा शॉकी दोनों प्रकार के दोष दर्शाता है।

प्रश्न 10. समझाइए कि एक उच्च संयोजी धनायन को अशुद्धि की तरह मिलाने पर आयनिक ठोस में रिक्तिकाएँ किस प्रकार प्रविष्ट होती हैं ?

उत्तर: जब एक उच्च संयोजी धनायन को आयनिक ठोस में अशुद्धि की तरह मिलाया जाता है तो वास्तविक धनायन का कुछ स्थल उच्च संयोजी धनायन द्वारा अध्यासित हो जाता है। प्रत्येक उच्च संयोजी धनायन दो या अधिक वास्तविक धनायनों को प्रतिस्थापित करके एक वास्तविक धनायन के स्थल को अध्यासित कर लेता है तथा अन्य स्थल रिक्त ही रहते हैं।

अध्यासित धनायनी रिक्तिकाएँ = [उच्च संयोजी धनायनों की संख्या × वास्तविक धनायन तथा उच्च संयोजी धनायन की संयोजकताओं का अन्तर]

प्रश्न 11. जिन आयनिक ठोसों में धातु आधिक्य दोष के कारण ऋणायनिक रिक्तिका होती है; वे रंगीन होते हैं। इसे उपयुक्त उदाहरण की सहायता से समझाइए।

उत्तर: धातु आधिक्य दोष के कारण ऋणायनिक रिक्तिका वाले ठोस रंगीन होते हैं, क्योंकि ठोसों की सतह पर धातु के परमाणु जम जाते | हैं और आयनन के पश्चात् क्रिस्टल में विसरित हो जाते हैं एवं धातु आयन के साथ प्राप्त इलेक्ट्रॉन ऋणायनिक रिक्तिका को अध्यासित कर लेते हैं। जब इन इलेक्ट्रॉन पर श्वेत प्रकाश पड़ता है तो वे उचित तरंगदैर्ध्य को अवशोषित करके उत्तेजित हो जाते हैं तथा उच्च ऊर्जा स्तर पर पहुँच जाते हैं जिसके परिणामस्वरूप ठोस रंगीन दिखाई देते हैं।

उदाहरण – LiCI का गुलाबी होना, NaCl का पीला दिखाई देना, आदि।

प्रश्न 12. वर्ग 14 के तत्व को n-प्रकार के अर्द्धचालक में उपयुक्त अशुद्धि द्वारा अपमिश्रित करके रूपान्तरित करना है। यह अशुद्धि किस वर्ग से सम्बन्धित होनी चाहिए ?

उत्तर: n-प्रकार के अर्द्धचालक को बनाने के लिए उसमें इलेक्ट्रॉन की अधिकता होनी चाहिए। तभी n-प्रकार के अर्द्धचालक बनते है। अतः वर्ग 14 के तत्व को n-प्रकार के अर्द्धचालक में बदलने के लिये वर्ग 15 के तत्वों के साथ अपमिश्रित करना चाहिए।

प्रश्न 13. काँच, क्वार्ट्ज जैसे ठोस से किस प्रकार भिन्न है? किन परिस्थितियों में क्वार्ट्ज को काँच में रूपान्तरित किया जा सकता है?

उत्तर: काँच, अक्रिस्टलीय ठोस है, जिसमें अवयवी कणों की व्यवस्था लघु परास की होती है जबकि कार्ट्ज, क्रिस्टलीय ठोस है, जिसमें अवयवी कणों की व्यवस्था दीर्घ परासी प्रकार की होती है। क्वार्ट्ज को पिघलाकर एवं तुरन्त ठण्डा करने पर यह काँच में परिवर्तित हो जाता है।

प्रश्न 14. सोना (परमाणु त्रिज्या = 0.144 nm) फलक केन्द्रित एकक कोष्ठिका में क्रिस्टलीकृत होता है। इसकी कोष्ठिका के कोर की लम्बाई ज्ञात कीजिए।

हल : फलक केन्द्रित घनीय (fcc) संरचना के लिए, एकक कोष्ठिका के कोर की लम्बाई, $a=2\sqrt{2}r$ यहाँ r परमाणु त्रिज्या है। $a=2\sqrt{2}\times(0-144\ \text{nm})$ = $2\times1.414\times0.144=0.407\ \text{nm}$ उत्तर

प्रश्न 15. बैण्ड सिद्धान्त के आधार पर (i) चालक एवं रोधी (ii) चालक एवं अर्द्धचालक में क्या अन्तर होता है ?

उत्तर: (i) चालक एवं रोधी में अन्तर

(ii) चालक एवं अर्द्धचालक में अन्तर

प्रश्न 16. ऐलुमीनियम घनीय निविड संकुलित संरचना में क्रिस्टलीकृत होता है। इसका धात्विक अर्द्धव्यास 125 pm है।

(i) एकक कोष्ठिका के कोर की लम्बाई ज्ञात कीजिए।

(ii) 1.0 cm³ ऐलुमीनियम में कितनी एकक कोष्ठिकाएँ होंगी ?

```
उत्तर: (i) एक fcc एकक कोष्ठिका के लिए r = \frac{a}{2\sqrt{2}}

\therefore a = 2\sqrt{2r} = 2 \times 1.414 \times 125

= 353.5 \text{ pm}

(ii) एकक कोष्ठिका का आयतन = a^3

= (3.535 \times 10-8 \text{ cm})^3

= 442 \times 10-25 \text{ cm}^3

442 \times 10^{-25} \text{ cm}^3 आयतन

= 1 एकक कोष्ठिका का आयतन

अतः 1 \text{ cm}^3 आयतन में एकक कोष्ठिकाओं की संख्या

= \frac{1}{442 \times 10^{-25}}

= 2.26 \times 10^{22} एकक कोष्ठिका उत्तर
```

प्रश्न 17. यदि NaCl को SrCl₂ के 10-3 मोल % से डोपित किया जाये तो धनायनों की रिक्तियों का सान्द्रण क्या होगा?

```
उत्तर: NaCl को SrCl_2 के 10^{-3} mol % से डोपित करते हैं। अर्थात् 100 भाग NaCl में = 10^{-3} mol SrCl_2 1 भाग NaCl में = \frac{10^{-3}}{100} mol SrCl_2 = 10^{-5} mol SrCl_2 = 6.022 \times 10^{23} \times 10^5 SrCl_2 = 6.022 \times 10^{23} \times 10^5 SrCl_2 चूँकि प्रत्येक Sr^{2+} आयन एक रिक्ति उत्पन्न करता है, अतः रिक्तियाँ = 6.022 \times 10^{18} उत्तर
```

प्रश्न 18.

निम्नलिखित ठोसों का वर्गीकरण आयनिक, धात्विक, आण्विक, सहसंयोजक या अक्रिस्टलीय में कीजिए –

- (i) टेट्राफॉस्फोरस डेकॉक्साइड (P4O10)
- (ii) अमोनियम फॉस्फेट [(NH₄)₃PO₄]
- (iii) SiC
- (iv) I₂
- (v) P₄
- (vi) प्लास्टिक
- (vii) ग्रेफाइट
- (viii) पीतल
- (ix) Rb

(x) LiBr

(xi) Si

उत्तर: आयनिक ठोस-(NH_4) $_3PO_4$ तथा LiBr धात्विक ठोस-पीतल, Rb आण्विक ठोस – P_4 O_{10} , I_2 , P_4 सहसंयोजक ठोस – ग्रेफाइट, SiC, Si अक्रिस्टलीय – प्लास्टिक।

प्रश्न 19. किसी क्रिस्टल की स्थिरता उसके गलनांक के परिमाण द्वारा प्रकट होती है।' टिप्पणी कीजिए। पाठ्य पुस्तक में दिये गए आँकड़ों की सहायता से जल, एथिल ऐल्कोहॉल, डाइएथिल ईथर तथा मेथेन के गलनांक एकत्र कीजिए। इन अणुओं के मध्य अन्तराआण्विक बलों के बारे में आप क्या कह सकते हैं?

उत्तर: गलनांक उच्च होने पर अवयवी कणों को एक साथ बाँधे रखने वाले बल प्रबल होंगे, परिणामस्वरूप स्थायित्व अधिक होगा।

पाठ्य – पुस्तक में दिये गए ऑकड़ों के आधार पर इन पदार्थों के गलनांक निम्नलिखित हैं –

जल = 273 K

एथिल ऐल्कोहॉल = 155.7 K

डाइएथिल ईथर = 156.8K

मेथेन = 90.5K

जल तथा एथिल ऐल्कोहॉल में अन्तराआण्विक बल मुख्यतः हाइड्रोजन बन्ध के कारण होते हैं। ऐल्कोहॉल की तुलना में जल उच्च गलनांक प्रदर्शित करता है, क्योंकि एथिल ऐल्कोहॉल अणुओं में हाइड्रोजन बन्ध जल के समान प्रबल नहीं होता है। डाइएथिल ईथर एक ध्रुवी अणु है। इसमें उपस्थित अन्तराआण्विक बल द्विध्रुव-द्विध्रुव आकर्षण बल है। मेथेन एक अध्रुवी अणु है। इसमें केवल दुर्बल वाण्डर वाल्स बल (लण्डन प्रकीर्णन बल) होते हैं।

प्रश्न 20. निम्नलिखित जालकों में से प्रत्येक की एकक कोष्ठिका में कितने जालक बिन्दु होते हैं।

- (i) फलक-केन्द्रित घनीय
- (ii) फलक-केन्द्रित चतुष्कोणीय
- (iii) अन्तःकेन्द्रित एकक ?

उत्तर: (i) फलक केन्द्रित घनीय (Face centred cubic)-फलक केन्द्रित घनीय एकक कोष्ठिका में कुल जालक बिन्दु (lattice point) 14 होते हैं एवं अवयवी कणों या परमाणुओं की संख्या 4 होती है। 8 (कोने पर स्थित परमाणु) $\times \frac{1}{8}$ (परमाणु प्रति कोना) + 6 (फलक केन्द्रित परमाणु) $\times \frac{1}{2}$ (परमाणु प्रति फलक) = $8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$ (परमाणु या अवयवी कण)

- (ii) फलक केन्द्रित चतुष्कोणीय (Face centred tetragonal) इसमें भी कुल जालक बिन्दु (lattice point) 14 एवं अवयवी कणों की संख्या 4 होती है।
- (iii) अन्त:केन्द्रित जालक (Body centred lattice)-इसमें कुल जालक बिन्दुओं की संख्या 10 होती है एवं अवयवी कणों की संख्या निम्न प्रकार से है –
- 8 (कोने) $\times \frac{1}{8}$ (परमाणु प्रति कोना) + 1 (अन्तःकेन्द्र) $\frac{1}{8}$ 1(परमाणु प्रति अन्तःकेन्द्र) = 1 + 1 = 2 (परमाणु या अवयवी कण)

प्रश्न 21. समझाइए -

- (i) धात्विक एवं आयनिक क्रिस्टलों में समानता एवं विभेद का आधार।
- (ii) आयनिक ठोस कठोर एवं भंगुर होते हैं।

उत्तर: (i) धात्विक एवं आयनिक क्रिस्टलों में समानताएँ (Similarities in Metallic and Ionic Crystals)

- (a) दोनों ही क्रिस्टलों में स्थिर विद्युत् आकर्षण बल होता है। आयनिक क्रिस्टलों में यह धनायन एवं ऋणायनों के मध्य होता है जबकि धातुओं में यह संयोजी इलेक्ट्रॉनों (valence electrons) तथा करनेल (Kernels) के मध्य होता है।
- (b) दोनों के गलनांक उच्च होते हैं।
- (c) दोनों स्थितियों में बन्ध अदैशिक (Non-directional) होता है।

धात्विक एवं आयनिक क्रिस्टलों के मध्य विभेद

धात्विक क्रिस्टल (Metallic Crystal)	आयनिक क्रिस्टल (Ionic Crystal)
 (i) धातु में संयोजी इलेक्ट्रॉन बैंधे नहीं होते, अपितु मुक्त रहते हैं अत: ये टोस अवस्था में भी विद्युत् का चालन करते हैं। 	(i) इनमें आयन दोस अवस्था में गति करने के लिए स्वतन्त्र नहीं होते, अत: ये दोस अवस्था में कुचालक होते हैं। गलित एवं जलीय विलयन में ये विद्युत् का चालन करते हैं क्योंकि इस अवस्था में आयन मुक्त हो जाते हैं।
(ii) इस प्रकार के क्रिस्टल में बन्ध प्रबल व दुर्बल दोनों प्रकार के हो सकते हैं। यह इनमें उपस्थित संयोजी इलेक्ट्रॉन की संख्या एवं करने के आकार पर निर्भर करता है।	(ii) आयिनक ठोस कठोर व भंगुर होते हैं क्योंिक इनमें प्रबल स्थिर विद्युत् आकर्षण बल उपस्थित होता है एवं बंध अदिशात्मक होते हैं।

प्रश्न 22. चाँदी का क्रिस्टलीकरण fee जालक में होता है। यदि इसकी कोष्ठिका के कोरों की लम्बाई 4.07 × 10-8cm तथा घनत्व 10.5 g cm-3 हो तो चाँदी का परमाण्विक द्रव्यमान ज्ञात कीजिए।

उत्तर:

दिया है, fcc जालक में प्रति एकक कोष्टिका में परमाणुओं की संख्या (Z) = 4
 कोर की लम्बाई (a) = $4\cdot0.7 \times 10^{-8}$ cm
 घनत्व (d) = $10\cdot5$ g/cm³
 आयोगाद्रो संख्या (N_A) = $6\cdot0.22 \times 10^{23}$ mol⁻¹
 परमाण्विक द्रव्यमान (M) = ?

एकक कोष्टिका का घनत्व, $d = \frac{Z \times M}{a^3 \times N_A}$

यहाँ M टोस का मोलर द्रव्यमान है। 'a' एकक कोष्टिका के कोर की लम्बाई है।

$$M = \frac{d \times a^3 \times N_A}{Z}$$

$$= \frac{(10.5 \,\mathrm{g \, cm^{-3}}) \times (4.07 \times 10^{-8} \,\mathrm{cm})^3}{\times (6.022 \times 10^{23} \,\mathrm{mol^{-1}})}$$

$$= \frac{4262.98 \times 10^{-1}}{4} = \frac{4262.98}{40}$$

$$= 106.57 \,\mathrm{g \, mol^{-1}}$$

प्रश्न 23. एक घनीय ठोस दो तत्वों P एवं Q से बना है। घन के कोनों पर Q परमाणु एवं अन्त:केन्द्र पर P परमाणु स्थित हैं। इस यौगिक का सूत्र क्या है ? P एवं Q की उप-सहसंयोजन संख्या क्या है?

उत्तर: प्रति एकक कोष्ठिका में P परमाणुओं की संख्या = 1 × 1 = 1

प्रति एकक कोष्ठिका में Q परमाणुओं की संख्या = $8 \times \frac{1}{8} = 1$

अतः यौगिक का सूत्र PQ है।

P तथा Q प्रत्येक की उप-सहसंयोजन संख्या = 8 उत्तर

प्रश्न 24. नायोबियम का क्रिस्टलीकरण अन्तःकेन्द्रित घनीय संरचना में होता है। यदि इसका घनत्व 8.55 g cm-3 हो तो इसके परमाण्विक द्रव्यमान 93u का प्रयोग करके परमाणु त्रिज्या की गणना कीजिए।

उत्तर: दिया गया है, bcc जालक में प्रति एकक कोष्ठिका में परमाणुओं की संख्या (Z) = 2

घनत्व '
$$d' = 8.55 \, \mathrm{g/cm^3}$$
परमाण्विक द्रव्यमान (M) = 93 u
आवोगाद्रो संख्या (N_A) = $6.022 \times 10^{23} \, \mathrm{mol^{-1}}$
परमाण् त्रिज्या (r) = 7

$$d = \frac{Z \times M}{a^3 \times N_A}$$

$$= \frac{2 \times 93 \, \mathrm{g \, mol^{-1}}}{(a)^3 \times 6022 \times 10^{23} \, \mathrm{mol^{-1}}}$$

$$= \frac{2 \times 93}{8.55 \times 6022 \times 10^{23} \, \mathrm{cm^3}}$$

$$= 3.613 \times 10^{-23}$$

$$= 3.613 \times 10^{-23}$$

$$= 3.613 \times 10^{-24}$$

$$= 3.6$$

प्रश्न 25. विश्लेषण द्वारा ज्ञात हुआ कि निकिल ऑक्साइड का सूत्र Ni_{0.98} O_{1.00} है। निकिल आयनों का कितना अंश Ni²⁺ और Ni³⁺ के रूप में विद्यमान है? उत्तर:

निकिल ऑक्साइड का सूत्र $= Ni_{0.98}O_{1.00}$ माना कि Ni²¹ आयनों की संख्या = x. Ni²⁺ पर आवेश =+2x तो Ni³⁺ आयर्नो की संख्या = 0.98 - x. अतः N{3+ पर आवेश = +3 {0.98-x} ऑक्साइड आयर्नो पर आवेश =-2, चूँकि यौगिक पर कुल आवेश शून्य है अत: +2x+3(0.98-x)-2=02x+2.94-3x-2=0-x = -0.94Ni²⁺ अस्यनों का प्रतिशत = $\frac{0.94}{0.98} \times 100 = 96\%$ Ni³⁺ आयर्नो का प्रतिशत = 100-96 = 4% उसर

प्रश्न 26. निम्नलिखित को p – प्रकार या n – प्रकार के अर्द्ध-चालकों में वर्गीकृत कीजिए – (i) In से डोपित Ge (ii) B से डोपित Si.

उत्तर: (i) Ge आवर्त सारणी के वर्ग 14 से सम्बन्धित है तथा In वर्ग 13 का तत्व है। अत: Ge को In से डोपित करने पर एक इलेक्ट्रॉन – न्यून छिद्र बन जाता है इसलिए यह p-प्रकार का अर्द्ध-चालक है। (ii) Si वर्ग 14 का तत्व है तथा B वर्ग 13 का तत्व है। B से डोपित Si में एक इलेक्ट्रॉन न्यून छिद्र बन जाता है। अत: यह p – प्रकार का अर्द्ध-चालक है।

प्रश्न 27. एक तत्व की कोष्ठिका की संरचना अंतः केन्द्रित घन (bcc) है। कोष्ठिका की कोर लम्बाई 288 pm हैतथा घनत्व 7.2g cm⁻³ है। ज्ञात कीजिए कि 208 g तत्व में कितने परमाणु हैं? उत्तर:

bcc संरचना के लिए, Z = 2

एकक कोष्टिका की कोर लम्बाई, a = 288 pm, तत्व का घनत्व d $= 7.2 \, \mathrm{g \ cm^{-3}}$

$$= 288 \times 10^{-10} \, \mathrm{cm}$$

$$d = \frac{Z \times m}{a^3 \times \mathrm{N_A}}$$
 $7.2 \, \mathrm{g \, cm^{-3}} = \frac{2 \times m}{(288 \times 10^{-10} \, \mathrm{cm})^3 \times (6.022 \times 10^{23} \, \mathrm{mol^{-1}})}$ $m = 51.8 \, \mathrm{g \, mol^{-1}}$ मोल अवधारणा के अनुसार तत्त्व के $51.8 \, \mathrm{g} = 6.022 \times 10^{23} \, \mathrm{trupy}$ 6.022×10^{23}

$$\therefore 208 \text{ g} \quad \overline{\text{तत्व}} = \frac{6.022 \times 10^{23}}{51.8} \times 208 परमाणु = 24.17 \times 10^{23} परमाणु$$

प्रश्न 28. X-किरण विवर्तन अध्ययन द्वारा पता चला कि ताँबा 3.608 × 10⁻⁸ cm कोष्ठिका कोर के साथ fee एकक कोष्ठिका में क्रिस्टलित होता है। एक दूसरे प्रयोग में ताँबे का घनत्व 8.92 g cm⁻ 3 ज्ञात किया गया। ताँबे का परमाण्विक द्रव्यमान ज्ञात कीजिए।

उत्तर: कोर लम्बाई, a = 3.608 × 10⁻⁸ cm
घनत्व d = 8.92 g cm⁻³
fcc जालक के लिए, Z = 4
d =
$$\frac{Z \times m}{a^3 \times N_A}$$
 या m = $\frac{d \times a^3 \times N_A}{Z}$
m = $\frac{(8.92 \text{ g cm}^{-3}, x(3.608 \times 10^{-8} \text{ cm})^3 \times (6.022 \times 10^{23} \text{ mol}^{-1})}{4}$
= 63.1 g mol⁻¹
अत: ताँबे का परमाणु द्रव्यमान = 63.1

निबन्धात्मक प्रश्न

प्रश्न 1. निम्नलिखित में विभेद कीजिए -

- (i) षट्कोणीय और एकनताक्ष एकक कोष्ठिका।
- (ii) फलक केन्द्रित और अन्त्य केन्द्रित एकक कोष्ठिका।

उत्तर: (i) षट्कोणीय एकक कोष्ठिका एवं एकनताक्ष एकक कोष्ठिका में अन्तर

गुण	षद्कोणीय एकक कोष्टिका	एकनताक्ष एकक कोन्डिका
(i) त्रिविम जालकों की संख्या	1	2
(ii) सम्भव विविधताएँ	आद्य	आद्य एवं अन्त्य केन्द्रित
(iii) कोर लम्बाई	$a = b \neq c$	$a \neq b \neq c$
(iv) अक्षीय कोंण	$\alpha = \beta = 90^\circ$, $\gamma = 120^\circ$	$\alpha = \gamma = 90^\circ$, $\beta \neq 120^\circ$
(v) उदाहरण	ग्रेफाइट, ZnO, CdS	गन्थक, Na ₂ SO ₄ .10H ₂ O

(ii) फलक केन्द्रित एकक कोष्ठिका एवं अंत्य केन्द्रित एकक कोष्ठिका में अन्तर

गुण -	फलक केन्द्रित एकक कोष्टिका	अत्य केन्द्रित एकक कोष्ठिका
(i) जालक बिन्दुओं की स्थिति	सभी कोनों पर तथा प्रत्येक फलक के केन्द्रों पर।	सभी कोनों पर तथा दोनों अन्त्य फलकों के केन्द्र पर।
(ii) प्रति एकक कोष्टिका परमाणुओं की संख्या	$8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$	$8 \times \frac{1}{8} + 2 \times \frac{1}{2} = 2$
(iii) चित्र		

प्रश्न 2. स्पष्ट कीजिए कि एक घनीय एकक कोष्ठिका के -(i) कोने और (ii) अन्तःकेन्द्र पर उपस्थित परमाणु का कितना भाग सन्निकट कोष्ठिका से सहभाजित होता है ?

उत्तर: (i) घनीय एकक कोष्ठिका के कोने का प्रत्येक परमाणु आठ निकटवर्ती एकक कोष्ठिका के मध्य सहभाजित होता है। चार एकक कोष्ठिकाएँ समान परत में और चार एकक कोष्ठिकाएँ ऊपरी (अथवा निचली) परत में होती हैं; अत: एक परमाणु का $\frac{1}{8}$ वाँ भाग एक विशिष्ट एकक कोष्ठिका से सम्बन्धित रह सकता है।

(ii) अन्त:केन्द्र का परमाणु पूर्णतया उस एकक कोष्ठिका से सम्बन्धित होता है जिसमें वह उपस्थित होता है। यह किसी सन्निकट कोष्ठिका से सहभाजित नहीं होता।

प्रश्न 3. जब एक ठोस को गर्म किया जाता है तो किस प्रकार का दोष उत्पन्न हो सकता है ? इससे कौन-से भौतिक गुण प्रभावित होते हैं और किस प्रकार ?

उत्तर: ठोस को गर्म करने पर क्रिस्टल में रिक्तिको दोष (vacancy defect) उत्पन्न हो जाता है। इसका कारण यह है कि गर्म करने पर कुछ जालक स्थल (lattice sites) रिक्त हो जाते हैं। इस दोष के परिणामस्वरूप पदार्थ का घनत्व कम हो जाता है; क्योंकि कुछ परमाणु अथवा आयन क्रिस्टल को पूर्णतया त्याग देते हैं।

प्रश्न 4. किस प्रकार के पदार्थों से अच्छे स्थायी चुम्बक बनाए जा सकते हैं, लौह चुम्बकीय अथवा फेरीचुम्बकीय ? अपने उत्तर का औचित्य बताइए।

उत्तर: लौह – चुम्बकीय पदार्थों से अच्छे स्थायी चुम्बक बनाए जा सकते हैं। इसका कारण यह है कि ठोस अवस्था में लौह चुम्बकीय पदार्थों के धातु आयन छोटे खण्डों में एक साथ समूहित हो जाते हैं, इन्हें डोमेन (Domains) कहा जाता है। इस प्रकार प्रत्येक डोमेन एक छोटे चुम्बक की तरह व्यवहार करता है। लौह-चुम्बकीय पदार्थ के अचुम्बकीय टुकड़े में डोमेन अनियमित रूप से अभिविन्यासित होते हैं और उनका चुम्बकीय आघूर्ण निरस्त हो जाता है। पदार्थ को चुम्बकीय क्षेत्र में रखने पर सभी डोमेन चुम्बकीय क्षेत्र की दिशा में अभिविन्यासित हो जाते हैं। और प्रबल चुम्बकीय प्रभाव उत्पन्न होता है। चुम्बकीय क्षेत्र को हटा लेने पर भी डोमेनों का क्रम बना रहता है और लौह चुम्बकीय पदार्थ स्थायी चुम्बक बन जाते हैं।

प्रश्न 5. यदि आपको किसी अज्ञात धातु का घनत्व एवं एकक कोष्ठिका की विमाएँ ज्ञात हैं तो क्या आप उसके परमाण्विक द्रव्यमान की गणना कर सकते हैं ? स्पष्ट कीजिए।

उत्तर:

।परमाणु का द्रव्यमान × प्रति एकक कोष्टिका परमाणुओं की संख्या

एकक कोष्टिका का आयतन

$$d = \frac{\text{परमाण्विक द्रव्यमान } (M) \times Z}{\text{आवोगादो संख्या } \times (कोर लम्बाई)^3}$$

$$= \frac{M \times Z}{N_A \times a^3} \quad \text{and} \quad M = \frac{d \times N_A \times a^3}{Z}$$

किसी अज्ञात धातु का घनत्व एवं एकक कोष्ठिका की विमाएँ ज्ञात होने पर उपर्युक्त सूत्र की सहायता से उसके परमाण्विक द्रव्यमान की गणना की जा सकती है।

प्रश्न 6. निम्नलिखित युगलों के पदों (शब्दों) में कैसे विभेद करोगे ?

- (i) षट्कोणीय निविड संकुलन एवं घनीय निविड संकुलन
- (ii) क्रिस्टल जालक एवं एकक कोष्ठिका?
- (iii) चतुष्फलकीय रिक्ति एवं अष्टफलकीय रिक्ति ?

उत्तर: (i) षट्कोणीय निविड संकुलन एवं घनीय निविड संकुलन में अन्तर

	षद्कोणीय निविड संकुलन	धनीय निविष्ठ संकुलन
2. 3.	इस संकुलन से चतुष्फलकीय रिक्ति का आच्छादन होता है। यहाँ तृतीय परत के गोले प्रथम परत के साथ पूर्णत: सरेखित होते हैं तथा चतुर्थ परत के गोले, द्वितीय परत के साथ सरेखित होते हैं। यह पैटर्न AB-AB प्रकार का पैटर्न होता है। यह व्यवस्था Mg तथा Zn में पायी जाती है।	इस संकुलन से अष्टफलकीय रिक्ति का आच्छादन होता है। यहाँ चतुर्थ परत के गोले प्रथम परत तथा पाँचवीं परत के गोले द्वितीय परत के साथ सरेखित होते हैं। उ. यह पैटर्न ABC-ABC प्रकार का होता है। यह व्यवस्था Cu, Ag, Au आदि में पायी जाती है।
	А ССС	
	^ (88)	· A φ

(ii) क्रिस्टल जालक एवं एकक कोष्ठिका में अन्तर

क्रिस्टल जालक (Crystal Lattice)	एकक कोष्ठिका (Unit Cell)
क्रिस्टलीय द्येसों का मुख्य अभिलक्षण अवयवी कणों का नियमित और पुनरावृत पैटर्न है। यदि क्रिस्टल में अवयवी कणों की त्रिविमीय व्यवस्था को आरेख के रूप में निरूपित किया जाए, जिसमें प्रत्येक बिन्दु को चित्रित किया गया हो तो इस व्यवस्था को क्रिस्टल जालक कहते हैं। कुल 14 प्रकार के त्रिविमीय जालक सम्भव हैं।	यह क्रिस्टल जालक का लघुतम भाग है। जब क्रिस्टल जालक बनाना हो तो एकक कोष्टिका को विभिन्न दिशाओं में पुनरावृत किया जाता है।

(iii) चतुष्फलकीय रिक्ति एवं अष्टफलकीय रिक्ति में अन्तर

चतुष्फलकीय रिक्ति (Tetrahedral Void)	अष्टफलकीय रिक्ति (Octahedral Void)
इसका निर्माण चार गोलों के केन्द्र को मिलाने पर होता है। चतुष्फलकीय रिक्ति को त्रिण्या (r) निविद्ध संकुलन में परमाणुओं की त्रिज्या (R)	 इसका निर्माण छ: गोलों के केन्द्र को मिलाने पर होता है। अष्टफलकीय रिक्ति की त्रिज्या (r) = 0.414 निविड संकुलन में परमाणुओं को त्रिज्या (R)
चतुष्फलकीय रिक्ति की आकृति	3. अष्टफलकीय रिक्ति को आकृति

प्रश्न 7. निम्नलिखित के लिए धातु के क्रिस्टल में संकुलन क्षमता की गणना कीजिए –

- (i) सरल घनीय
- (ii) अन्त:केन्द्रित घनीय
- (iii) फल केन्द्रित घनीय।

उत्तरः कृपया अनुच्छेद संख्या 1.9 में देखें।

प्रश्न 8. यदि अष्टफलकीय रिक्ति की त्रिज्या r हो तथा निविड़ संकुलन में परमाणुओं की त्रिज्या R हो तो r एवं R में सम्बन्ध स्थापित कीजिए।

उत्तर: अष्टफलकीय रिक्ति को प्रस्तुत चित्र में गोले के द्वारा दिखाया गया है। रिक्ति के ऊपर तथा नीचे उपस्थित गोले चित्र में नहीं दिखाये गये हैं।

माना परमाणु की त्रिज्या 'R' तथा रिक्ति की त्रिज्या 'P' है तथा 'a' कोर की लम्बाई है। यहाँ ABC एक समकोण त्रिभुज है अतः पाइथागोरस सिद्धान्त के अनुसार,

प्रश्न 9. अर्द्धचालक क्या होते हैं ? दो मुख्य अर्द्धचालकों को वर्णन कीजिए एवं उनकी चालकता क्रियाविधि में विभेद कीजिए।

उत्तर: अर्द्ध-चालक (Semiconductors)-वे ठोस जिनकी चालकता 10⁻⁶ से 104 Ω⁻¹ m⁻¹ तक के मध्यवर्ती परास में होती है, अर्द्धचालक कहलाते हैं। इनमें चालक बैण्ड एवं संयोजक बैण्ड के मध्य ऊर्जा अन्तराल कम होता है। अतः कुछ इलेक्ट्रॉन चालक बैण्ड में जा सकते हैं एवं कुछ नहीं। ताप को बढ़ाने पर इन इलेक्ट्रॉन की ऊर्जा बढ़ जाती है और इलेक्ट्रॉन आसानी से संयोजक बैण्ड में आ-जा सकते हैं। | अतः ताप बढ़ाने पर अर्द्ध-चालकों की चालकता बढ़ जाती है।

सिलिकन एवं जर्मेनियम इस प्रकार का व्यवहार प्रदर्शित करते हैं। अतः इन्हें आन्तर-अर्द्ध चालक (Intrinsic semiconductor) कहते हैं। इनमें उचित अशुद्धि को उपयुक्त मात्रा में मिलाने से इनकी चालकता बढ़ जाती है। इसे अपिमश्रण (doping) कहते हैं। इससे दो प्रकार के अर्द्ध-चालक बनते हैं। इनकी चालकता क्रियाविधि निम्नलिखित है –

- n प्रकार के अर्द्ध चालक (n-type semicon ductor)
- p प्रकार के अर्द्ध चालक (p-type semicon ductor)

दोनों के लिए अनुच्छेद 1:17:3 का भाग के उपभाग (क) व (ख) देखें।

प्रश्न 10. नॉन-स्टॉइकियोमीट्री क्यूप्रस ऑक्साइड, Cu₂O प्रयोगशाला में बनाया जा सकता है। इसमें कॉपर तथा ऑक्सीजन का अनुपात 2:1 से कुछ कम है। क्या आप इस तथ्य की व्याख्या कर सकते हैं कि यह पदार्थ p-प्रकार का अर्द्धचालक है ?

उत्तर: क्यूप्रस ऑक्साइड (Cu₂O) में कॉपर तथा ऑक्सीजन का अनुपात 2 : 1 से कुछ कम होना यह प्रदर्शित करता है कि कुछ क्यूप्रस (Cu⁺) आयन, क्यूप्रिंक (Cu²⁺) आयनों से प्रतिस्थापित हो गए हैं। विद्युत् उदासीनता को बनाए रखने के लिए प्रत्येक दो Cu⁺ आयन एक Cu²⁺ आयन से प्रतिस्थापित होंगे तथा एक छिद्र निर्मित होगा। चूंकि चालन इन धनावेशित छिद्रों की उपस्थिति के कारण होगा; अतः यह एक p-प्रकार का अर्द्ध-चालक है।

प्रश्न 11. फेरिक ऑक्साइड, ऑक्साइड आयन के षट्कोणीय निविड़ संकुलन में क्रिस्टलीकृत होता है जिसकी तीन अष्टफलकीय रिक्तियों में से दो पर फेरिक आयन होते हैं। फेरिक ऑक्साइड का सूत्र ज्ञात कीजिए।

उत्तर: माना संकुलन में ऑक्साइड आयनों (O2-) की संख्या N है।

: अष्टफलकीय रिक्तियों की संख्या = N

चूँकि दो-तिहाई अष्ट्रफलकीय रिक्तियाँ फेरिक आयनों द्वारा अध्यासित हैं, इसलिए उपस्थित फेरिक आयनों की संख्या

$$=\frac{2}{3}\times N=\frac{2N}{3}$$

∴ Fe³⁺ तथा O²⁻ का अनुपात,

$$Fe^{3+}: O^{2-} = \frac{2N}{3}: N=2:3$$

अतः फेरिक ऑक्साइड का सूत्र Fe₂O₃ है।

प्रश्न 12. उचित उदाहरणों द्वारा निम्नलिखित पदों को परिभाषित कीजिए –

- (i) शॉट्की दोष
- (ii) फेंकेल दोष
- (iii) अन्तराकाशी दोष
- (iv) F-केन्द्र।

उत्तर: (i) शॉट्की दोष (Schottky Defect)-इस प्रकार के दोष में धनायन एवं ऋणायन बराबर संख्या में आयिनक ठोसों से लुप्त हो जाते हैं तथा उस स्थान पर रिक्तिका का निर्माण हो जाता है। यह उन पदार्थीं द्वारा दिखाया जाता है जिनमें धनायनों एवं ऋणायनों का आकार लगभग समान होता है। इस दोष के कारण ठोसों के घनत्व में कमी आ जाती है एवं इनकी चालकता बढ़ जाती है। उदाहरण-NaCl, KCl, CsCl, AgBr आदि।

(ii) फ्रेंकेल दोष (Frenkel Defect)-इस प्रकार के दोष में लघुतर आयन अपने स्थान को छोड़कर अन्तरकाशी

स्थान में आ जाता है। इसे विस्थापन दोष भी कहते हैं। इससे घनत्व परिवर्तित नहीं होता। यह उन ठोसों के द्वारा दिखाया जाता है जिनमें आयनों के आकार में अधिक अन्तर होता है। उदाहरण-ZnS, AgCl, AgBr और Agl आदि।

(iii) अन्तराकाशी दोष (Interstitial Defect)-जब अवयवी कण जैसे परमाणु अथवा अणु बाहर से आकर ठोसों के अन्तराकाशी स्थल को ग्रहण कर लेते हैं तब अन्तराकाशी दोष उत्पन्न होता है। इससे पदार्थ को घनत्व बढ़ जाता है। यह दोष अनआयनिक ठोसों में पाया जाता है।

(iv) F-केन्द्र (F-Centre)–िनर्मुक्त इलेक्ट्रॉन द्वारा विसरित होकर क्रिस्टल के ऋणायनिक स्थल को अध्यासित करने पर F-केन्द्र बनता है। अर्थात् अयुग्मित इलेक्ट्रॉनों द्वारा भरी ऋणायनिक रिक्तिका को F-केन्द्र कहते हैं। यह रंग के लिए उत्तरदायी होता है। उदाहरण-NaCI का पीला होना, LiCI का गुलाबी होना, KCI का बैंगनी होना आदि।

प्रश्न 13.

निम्नलिखित को उचित उदाहरणों से समझाइए -

- (i) लौहचुम्बकत्व
- (ii) अनुचुम्बकत्व
- (iii) फेरी- चुम्बकत्व
- (iv) प्रति लौहचुम्बकत्व
- (v) 12-16 और 13-15 वर्गों के यौगिक।
- (vi) पायरोविद्युत्ता

उत्तर: (i) से (iv) तक के उत्तर हेतु कृपया अनुच्छेद 1.18 के क्रमशः (3), (2), (4), तथा (5) को देखें।

(v) 12-16 और 13-15 वर्गों के यौगिक — वर्ग 12 के तत्वों और वर्ग 16 के तत्वों से बने यौगिक 12-16 यौगिक कहलाते हैं; जैसे-ZnS, HgTe आदि। वर्ग 13 के तत्वों और वर्ग 15 के तत्वों से बने यौगिक 13-15 यौगिक कहलाते हैं; जैसे — GaAs, AIP आदि।

(vi) पायरोविद्युत्ता (Pyroelectricity)-वे डिस्टल जिन्हें गर्म करने पर विद्युत प्रवाह उत्पन्न होता है पायरोविद्युत् क्रिस्टल (Pyro electric crystals) कहलाते हैं तथा उत्पन्न विद्युत पायरोविद्युत् (Pyroelectricity) कहलाती है तथा यह प्रभाव पायरोविद्युत् प्रभाव या पायरोविद्युत्ता कहलाता है। इसका कारण क्रिस्टल को गर्म करने में परमाणुओं की नियमित व्यवस्था परिवर्तन है।

अन्य महत्वपूर्ण प्रश्न एवं उत्तर

अति लघूत्तरीय प्रश्न

प्रश्न 1. अक्रिस्टलीय सिलिको कार्ट्ज से किस प्रकार भिन्न होती है ?

उत्तर: अक्रिस्टलीय सिलिका में SiO4 टेट्राहेड़ा परस्पर अनियमित रूप से जुड़े होते हैं, जबकि कार्ट्ज में ये नियमित क्रम में जुड़े रहते हैं।

प्रश्न 2. आण्विक क्रिस्टलीय ठोसों में किस प्रकार के आकर्षणकारी बल उपस्थित होते हैं ?

उत्तर: प्रकीर्णन बल, द्विध्रुव अन्त:क्रियाएँ तथा हाइड्रोजन बन्ध।

प्रश्न 3. किसी पदार्थ को अक्रिस्टलीय किस प्रकार बनाया जा सकता है ?

उत्तर: किसी पदार्थ को पिघलाकर उसे तुरन्त ठण्डा करने पर यह अक्रिस्टलीय हो जाता है।

प्रश्न 4. अतिशीतित द्रव या आभासी ठोस क्या है?

उत्तर: अक्रिस्टलीय ठोसों को अतिशीतित द्रव या आभासी ठोस (Pseudo solids) कहा जाता है।

प्रश्न 5. किस प्रकार के ठोस विषमदैशिक प्रकृति प्रदर्शित करते हैं?

उत्तर: क्रिस्टलीय ठोस विषमदैशिक प्रकृति प्रदर्शित करते हैं।

प्रश्न 6. क्रिस्टलीय ठोसों के शीतलन वक्र असतत् होते हैं, क्यों ?

उत्तर: क्रिस्टलीय ठोसों के शीतलन वक्र असतत् होते हैं क्योंकि क्रिस्टलन के दौरान जब अवयवी कण एक-दूसरे के निकट आते हैं तो ऊर्जा ऊष्मा के रूप में मुक्त होती है परिणामस्वरूप ताप में कमी नहीं हो पाती है और क्रिस्टलन पूर्ण होने तक ताप लगभग स्थिर रहता है।

प्रश्न 7. विषमदैशिकता किसे कहते हैं ? कारण बताइए।

उत्तर: क्रिस्टलीय ठोसों के कुछ गुण जैसे-विद्युत् चालकता, अपवर्तनांक आदि के मान भिन्न-भिन्न दिशाओं से ज्ञात करने पर भिन्न-भिन्न प्राप्त होते हैं। क्रिस्टलीय ठोसों की यह प्रवृत्ति विषमदैशिकता कहलाती है।

प्रश्न 8. किस प्रकार के ठोसों में विद्युत् चालकता, आघातवर्ध्यता का गुण तथा तन्यता पायी जाती है ?

उत्तर: यह सभी गुण धात्विक ठोसों में पाये जाते हैं।

प्रश्न 9. यदि तीन तत्व P, Q तथा R एक घनीय ठोस जालक में क्रिस्टलीकृत हैं जिसमें P परमाणु कोनों पर,Q परमाणु घन के केन्द्र पर तथा R परमाणु घन के फलक केन्द्रों पर उपस्थित हैं तो यौगिक का सूत्र क्या होगा?

उत्तर: प्रति एकक कोष्ठिका में P परमाणुओं की संख्या $= 8 \times \frac{1}{8} = 1$ प्रति एकक कोष्ठिका में Q परमाणुओं की संख्या = 1

प्रति एकक कोष्ठिका में R परमाणुओं की संख्या = $6 \times \frac{1}{2} = 3$

अत: सूत्र PQR₃ है।

प्रश्न 10. hep तथा ccp की उपसहसंयोजन संख्या क्या है ?

उत्तर: दोनों स्थितियों में 12.

प्रश्न 11. त्रिविम जालक क्या है ?

उत्तर: दिक्स्थान में बिन्दुओं की एक नियमित त्रिविमीय व्यवस्था त्रिविम जालक कहलाती है।

प्रश्न 12. (i) अन्तःकेन्दित घनीय कोष्ठिका

(ii) फलक केन्द्रित घनीय कोष्ठिका बनाने के लिए किसी तत्व में इसकी एकक कोष्ठिका से कितने परमाणु सम्बद्ध हो सकते हैं ?

उत्तर: (i) अन्त:केन्द्रित घनीय कोष्ठिका = 2 (ii) फलक केन्द्रित घनीय कोष्ठिका = 4

प्रश्न 13. NaCI क्रिस्टल में CI⁻ आयन fcc व्यवस्था में हैं। इसकी एकक कोष्ठिका में CI- आयनों की संख्या की गणना कीजिए।

उत्तर: प्रति एकक कोष्ठिका में CI⁻ आयनों की संख्या = $8 \times \frac{1}{8}$ (कोनों पर) + $6 \times \frac{1}{2}$ (फलक केन्द्रों पर) = 1 + 3 = 4

प्रश्न 14. एक धातु fce संरचना में क्रिस्टलीकृत है। इसकी मात्रक कोष्ठिका में कितने धातु परमाणु उपस्थित हैं ?

उत्तर: 4.

प्रश्न 15. बर्फ की प्रकृति छिद्रयुक्त (Porous) क्यों होती है ?

उत्तर: क्योंकि H₂O अणुओं में अन्तर-आण्विक हाइड्रोजन आबंधन के कारण बर्फ की संरचना खुले पिंजड़े (Open Cage) की तरह होती है।

प्रश्न 16. आण्विक ठोसों में आबंधन बलों (binding forces) की प्रकृति क्या होती है ? उदाहरण दें।

उत्तर: आण्विक ठोसों में आबंधन बल वाण्डरवाल्स आकर्षण बल होते हैं जो कि प्रबल बल होते हैं। उदाहरण-नैफ्थेलीन, आयोडीन आदि।

प्रश्न 17. यदि किसी एकक कोष्ठिका में कण सभी कोनों एवं सभी फलकों पर स्थित हैं तो इसका क्या नाम होगा ?

उत्तर: इस प्रकार की कोष्ठिका फलक केन्द्रित घनीय कोष्ठिका (face centred cubic) कहलाती है।

प्रश्न 18. सबसे अधिक ब्रेवे जालकों की संख्या किस क्रिस्टल समुदाय की होती है ?

उत्तर: सबसे अधिक ब्रेवे जालकों की संख्या विषम- लम्बाक्ष क्रिस्टल समुदाय में होती है और ये चार होती हैं।

प्रश्न 19. सात क्रिस्टल समूहों को कितने त्रिविम जालकों (ब्रेवे जालको) में विभाजित किया गया है ?

उत्तर: सात क्रिस्टल समूहों को कुल 14 ब्रेवे जालकों में विभाजित किया गया है।

प्रश्न 20. ग्रेफाइट की एकक कोष्ठिका षट्कोणीय होती है। इसके पैरामीटर बताइये।

उत्तर: ग्रेफाइट की एकक कोष्ठिका षट्कोणीय होती है। इसके पैरामीटर निम्न प्रकार हैं – $a=b_4^4c$, $\alpha=\beta=90^\circ$, $\gamma=120^\circ$

प्रश्न 21. ccp तथा licp संरचना वाली धातुओं के उदाहरण दें।

उत्तर: Be, Mg, Cd, Zn आदि hcp संरचना वाली धातुएँ हैं जबिक Fe, Ni, Cu, Ag आदि ccp संरचना वाली धातुएँ हैं।

प्रश्न 22. Ihcp तथा ccp संरचना वाली धातुओं के गलनांक उच्च होते हैं, क्यों ?

उत्तर: hcp तथा ccp संरचना वाली धातुओं की संकुलन क्षमता अधिक (.74%) होती है। अतः इनमें धातु परमाणु एक-दूसरे के निकटतम होते हैं, जिसके कारण अन्तर परमाण्वीय बल अर्थात् धात्विक बन्ध प्रबल होते हैं फलस्वरूप इनका गलनांक उच्च होता है।

प्रश्न 23. जिंक-ब्लैण्ड में किस प्रकार की ज्यामिति पायी जाती

उत्तर: घनीय।

प्रश्न 24. बोरिक अम्ल किस प्रकार की ज्यामिति रखता है ?

उत्तर: त्रिनताक्ष।

प्रश्न 25. आयनिक क्रिस्टल के त्रिज्या अनुपात से आप क्या समझते हैं ?

उत्तर:

प्रश्न 26. सीमान्त त्रिज्या अनुपात से क्या तात्पर्य है?

उत्तर: त्रिज्या अनुपात की वह सीमा जिसके मान में कमी या अधिकता होने पर क्रिस्टल की संरचना अस्थायी हो जाती है।

प्रश्न 27. एक यौगिक AB₂ CaF₂ प्रकार की क्रिस्टल संरचना प्राप्त करता है। इसके क्रिस्टल में A²+ तथा B⁻ आयनों की उपसहसंयोजन संख्या लिखिए।

उत्तर: A²⁺ की उपसहसंयोजन संख्या = 8 B⁻ की उपसहसंयोजन संख्या = 4

प्रश्न 28. रिक्तिका को परिभाषित कीजिए।

उत्तर: किसी क्रिस्टल के अन्तर्गत संकुलित धातु परमाणुओं अथवा । आयनों के मध्य उपस्थित रिक्त स्थान रिक्तिका कहलाते हैं।

प्रश्न 29. एक घनीय निविड संकुलित संरचना की एकक कोष्ठिका में चतुष्फलकीय रिक्तियों की संख्या बताइए।

उत्तर: एकक कोष्ठिका में 8 चतुष्फलकीय रिक्तियाँ होती हैं।

प्रश्न 30. फलक केन्द्रित घनीय मात्रक कोष्ठिका में परमाणु गोले की त्रिज्या एवं घन के किनारे की लम्बाई में सम्बन्ध दीजिए।

उत्तर:

$$a = \frac{4r}{\sqrt{2}}$$

प्रश्न 31. काय केन्द्रित मात्रक कोष्ठिका में परमाणु गोले की त्रिज्या एवं धन के किनारे की लम्बाई में सम्बन्ध दीजिए।

उत्तर:

$$a = \frac{4r}{\sqrt{3}}$$

प्रश्न 32. एक घनीय निविड संकुलित संरचना की एकक कोष्ठिका में अष्टफलकीय रिक्तियों की संख्या बताइए।

उत्तर:

एकक कोष्ठिको में 4 अष्ट्रफलकीय रिक्तियाँ उपस्थित होती हैं।

प्रश्न 33. चतुष्फलकीय रिक्ति में रिक्ति की त्रिज्या एवं गोले की त्रिज्या में सम्बन्ध बताइए।

उत्तर:

$$\frac{I'({\rm Rea})}{I'({\rm परमाण})} = 0.225.$$

प्रश्न 34. अष्टफलकीय रिक्ति में रिक्ति की त्रिज्या एवं गोले की त्रिज्या के मध्य सम्बन्ध लिखिए।

उत्तर:

$$\frac{r_{(\overline{\chi}\overline{\eta}\overline{\eta})}}{r_{(\overline{\chi}\overline{\chi}\overline{\eta}\overline{\eta})}} = 0.414.$$

प्रश्न 35. समन्वय संख्या क्या होती है? निम्नलिखित में परमाणुओं की समन्वय संख्या क्या होगी :

- (a) bcc संरचना
- (b)fcc संरचना ?

उत्तर: समन्वय संरचना (Coordination number)-किसी क्रिस्टल में नियत कण के निकटतम पड़ोसी कणों की संख्या को समन्वय संख्या या उप-सहसंयोजन संख्या कहते हैं।

- (a) bcc संरचना में, उप-सहसंयोजन संख्या = 8
- (b) fec संरचना में, उप-सहसंयोजन संख्या = 12

प्रश्न 36. किसी तत्व में (bcc) इकाई सेल में कितने परमाणु होते हैं ?

उत्तर: bcc इकाई सेल में कुल आठ परमाणु होते हैं।

प्रश्न 37. CaF₂ क्रिस्टल जालक में Ca²+ एवं F- आयनों की उप-सहसंयोजन संख्या कितनी होती है ?

उत्तर: CaF₂ क्रिस्टल जालक में Ca²+ आयन की उप-सहसंयोजन संख्या = 8 F⁻ आयन की उप-सहसंयोजन संख्या = 4

प्रश्न 38. ताप बढ़ाने पर धातु की संरचना में परिवर्तन सम्भव है, एक उदाहरण दीजिए।

उत्तर: सामान्य ताप (25°C) पर Sr की ccp संरचना होती है। 350°C पर यह संरचना hep हो जाती है और 600°C पर यह संरचना bcc में परिवर्तित हो जाती है।

प्रश्न 39. अन्त:केन्दित घनीय (bcc) संरचना वाली धातुओं का घनत्व कम होता है। जबकि licp और ccp संरचना वाली धातुओं का घनत्व अधिक होता है, क्यों?

उत्तर: bcc संरचना की संकुलन क्षमता 68% होती है। अर्थात् इसमें 32% स्थान खाली होता है। अतः घनत्व कम होगा जबकि hcp तथा ccp जालकों में संकुलन क्षमता 74% होती है अर्थात् केवल 26% स्थान ही खाली होता है। इसलिए bcc संरचना का घनत्व कम और hcp एवं ccp संरचना के घनत्व अधिक होते हैं।

प्रश्न 40. क्रिस्टल में बिन्दु त्रुटि से आप क्या समझते हैं?

उत्तर: क्रिस्टलीय ठोस में परमाणुओं या आयनों की अनियमित व्यवस्था के कारण उत्पन्न त्रुटियाँ अपूर्णता या बिन्दु त्रुटि कहलाती हैं।

प्रश्न 41. क्रिस्टल में अन्तराकाशी क्या होते हैं ?

उत्तर: जब कुछ अवयवी कण (परमाणु अथवा अणु) अन्तराकाशी स्थल पर पाए जाते हैं अर्थात् जब ये कण सामान्य रिक्त अन्तराकाशी रिक्तिकाओं को भर देते हैं, तब इन्हें अन्तराकाशी कहा जाता है।

प्रश्न 42. ताप बढ़ने पर धातुओं की चालकता कम क्यों हो जाती है ?

उत्तर: ताप के बढ़ने से ऊष्मीय कम्पन बढ़ जाते हैं जिससे प्रतिरोध बढ़ जाता है, अतः चालकता कम हो जाती है।

प्रश्न 43. AgI का क्रिस्टलीकरण ZnS संरचना में होता है तो Ag⁺ आयनों द्वारा चतुष्फलकीय छिद्रों का कितना अंश भरा जायेगा ?

उत्तर: उपस्थित छिद्रों का आधा अंश।

प्रश्न 44. NaCI के एक क्रिस्टल का रंग पीला दिखाई दे रहा है, इसका कारण लिखिये।

उत्तर: NaCl के एक क्रिस्टल का रंग F- केन्द्र(धातु आधिक्य दोष) के कारण पीला दिखाई देता है।

प्रश्न 45. किस तापक्रम परास पर अधिकतर धातुएँ अतिचालक हो जाती हैं?

उत्तर: 2K-5K पर।

प्रश्न 46. उस तत्व का नाम बताइए जिसके साथ सिलिकॉन अपमिश्रित होकर n- प्रकार का अर्द्धचालक देता है।

उत्तर: फॉस्फोरस।

प्रश्न ४७. दाब विद्युत् क्या है ?

उत्तर: जब किसी नेट द्विध्रुव आघूर्ण युक्त अचालक क्रिस्टल पर यांत्रिकी प्रतिबल लगाया जाता है तो क्रिस्टल विकृत हो जाता है और आयनों के विस्थापन के कारण विद्युत् या विद्युत् ध्रुवणता उत्पन्न हो जाती है। यह विद्युत् ध्रुवणता दाब विद्युत् कहलाती है।

प्रश्न 48. अपमिश्रण क्या है ? यह क्यों किया जाता है ?

उत्तर: किसी क्रिस्टल जालक में अशुद्धि मिलाने की क्रिया अपिमश्रण कहलाती है। अपिमश्रणे उचित अशुद्धि को उपयुक्त मात्रा में मिलाकर किया जाता है। उदाहरणार्थ-प्रति 10⁵ सिलिकॉन परमाणुओं में एक बोरॉन परमाणु मिलाने पर Si की चालकता साधारण ताप पर 10³ गुना बढ़ जाती है।

प्रश्न 49. अर्द्धचालकों का विद्युत् चालन ताप के साथ किस प्रकार परिवर्तित होता है ?

उत्तर: विद्युत् चालकता ताप-वृद्धि के साथ बढ़ती है; क्योंकि संयोजकता बैण्ड से अधिक इलेक्ट्रॉन चालक बैण्ड पर कूद सकते हैं।

प्रश्न 50. पदार्थ की अतिचालकता को परिभाषित कीजिए।

उत्तर: पदार्थ का वह गुण, जिसके कारण एक निश्चित ताप पर उसमें इलेक्ट्रॉनों के प्रवाह में कोई प्रतिरोध न हो, अतिचालकता कहलाता है।

प्रश्न 51. AgCI में फेंकेल दोष क्यों पाया जाता है?

उत्तर: क्योंकि AgCI में धनायनों तथा ऋणायनों के आकार में बहुत अधिक अन्तर होता है इस कारण धनायन रिक्तिकाओं को ग्रहण कर लेते

प्रश्न 52. ZnO गर्म करने पर पीला क्यों दिखाई पड़ता है ?

उत्तर: ZnO गर्म करने पर ऑक्सीजन का ह्रास करता है तथा ऋणायनों के रिक्त स्थल इलेक्ट्रॉनों द्वारा अध्यासित हो जाते हैं जो दृश्य क्षेत्र से प्रकाश अवशोषित करके पूरक रंग; जैसे-पीला रंग विकिरित करते हैं।

प्रश्न 53. वर्ग 13 या 15 की अशुद्धियों के साथ वर्ग 14 के तत्वों के ठोस विलयन असामान्य विद्युतीय गुण प्रदर्शित करते पाए जाते हैं। क्यों ?

उत्तर: इसका कारण यह है कि इन अशुद्धियों की उपस्थिति से इलेक्ट्रॉनों को आधिक्य अथवा धनात्मक छिद्रों का निर्माण हो जाता है जो विद्युत् चालन में वृद्धि कर देते हैं।

प्रश्न 54. पीजो-विद्युत् क्रिस्टल क्या हैं?

उत्तर: ऐसे क्रिस्टल जिनमें द्विध्रुव आघूर्ण रहता है, यान्त्रिक बल लगाने पर विकृत (deformed) हो जाते हैं। इस विकृति के फलस्वरूप आयनों के विस्थापन के कारण ही विद्युत् प्रवाहित होने लगती है। इसी कारण ऐसे क्रिस्टलों को पीजो-विद्युत् क्रिस्टल कहते हैं। इसके विपरीत क्षेत्र के प्रभाव में भी ये क्रिस्टल यान्त्रिकीय बल उत्पन्न होने के कारण विकृत हो जाते हैं।

प्रश्न 55. फेरोविद्युत् क्रिस्टल क्या हैं?

उत्तर: कुछ ऐसे भी क्रिस्टलीय पदार्थ होते हैं जो द्विध्रुव विद्युत्-क्षेत्र की अनुपस्थित में भी एक विशेष दिशा में व्यवस्थित हो जाते हैं। जब विद्युत् क्षेत्र लगाया जाता है तो इन द्विध्रुव के अभिविन्यास की दिशा बदल जाती है। ऐसे गुण को फेरोविद्युत् गुण तथा ऐसे क्रिस्टलों को फेरोविद्युत् क्रिस्टल कहते हैं। ऐसे क्रिस्टलीय पदार्थों के उदाहरण KH2PO4 तथा BaTiO3 हैं।

प्रश्न 56. क्रिस्टलीय ठोसों के घनत्व पर शॉट्की तथा फ्रेंकेल दोषों का क्या प्रभाव होता है ?

उत्तर: शॉट्की दोष की स्थिति में घनत्व घट जाता है, जबकि फ्रेंकेल दोष की स्थिति में यह समान ही रहता है।

प्रश्न 57. धातुओं की चालकता ताप-वृद्धि से घट क्यों जाती है?

उत्तर: ताप-वृद्धि से धातुओं में इलेक्ट्रॉनों के प्रवाह के पथ में करनेल (Kernel) कम्पन करना प्रारम्भ कर देते हैं जिससे प्रवाह में अवरोध उत्पन्न हो जाता है तथा उनकी चालकता घट जाती है।

प्रश्न 58. शुद्ध सिलिकन जो एक कुचालक है, गर्म करने पर अर्द्ध-चालक की भाँति व्यवहार करने लगता है, क्यों ?

उत्तर: शुद्ध सिलिकॉन में मुक्त इलेक्ट्रॉन नहीं होते; इसीलिए यह कुचालक होता है, परन्तु उच्च ताप पर इलेक्ट्रॉन गति के लिए स्वतन्त्र हो जाते हैं जिसके कारण यह अर्द्धचालक की भाँति व्यवहार करने लगता है।

लघु उत्तरीय प्रश्न

प्रश्न 1. जब घन की सभी 12 भुजाओं के कोनों पर परमाणु स्थित होते हैं तो प्रति एकक कोष्ठिका में कितने परमाणु उपस्थित होते है?

उत्तर: चूँकि घन के केवल 8 कोने होते हैं; अतः प्रति एकक कोष्ठिका में परमाणुओं की संख्या = $8 \times \frac{1}{8} = 1$.

प्रश्न 2. एक घन की एकक कोष्ठिका में A परमाणु कोनों पर तथा B परमाणु फलक केन्द्रों पर हैं तथा प्रत्येक एकक कोष्ठिका में 2 कोनों से A परमाणु विलुप्त हैं। यौगिक को सरल सूत्र क्या होगा ?

```
उत्तर: कोनों पर A परमाणुओं की संख्या = 8 कोनों से विलुप्त A परमाणुओं की संख्या = 2 उपस्थित परमाणुओं की संख्या = 8 – 2 = 6 प्रति एकक कोष्ठिका में A परमाणुओं की संख्या = \frac{6}{8} = \frac{3}{4} प्रति एकक कोष्ठिका में B परमाणुओं की संख्या = 6 \times \frac{1}{2} = 3 यौगिक का सूत्र = A3/4 B = AB4 उत्तर
```

प्रश्न 3. एक घन की एकक कोष्ठिका में X परमाणु कोनों पर, Y परमाणु धन के केन्द्र पर तथा 0 परमाणु कोरों के केन्द्र पर उपस्थित है। यौगिक का पूरा सूत्र क्या होगा?

उत्तर: चूँकि घन में 8 कोने होते हैं तथा प्रत्येक कोने पर X परमाणु उपस्थित हैं। कोने पर परमाणु अपने कुल भाग का 1/8 भाग सम्पूरित करता है। अतः

X परमाणुओं की संख्या प्रति एकक कोष्ठिका में = 8 × $\frac{1}{8}$ = 1
Y परमाणु केन्द्र पर उपस्थित हैं अतः इसकी संख्या =1
चूँिक घन में 12 कोर होते हैं तथा O परमाणु प्रत्येक कोर के केन्द्र में उपस्थित हैं। प्रत्येक कोर पर परमाणु अपने कुल भाग का केवल 1/4 भाग सम्पूरित करता है। अतः
O परमाणुओं की संख्या प्रति एकक कोष्ठिका में = 12 × $\frac{1}{8}$ = 3
यौगिक का सूत्र =XYO3 उत्तर

प्रश्न 4. एक यौगिक में तत्व x एवं y उपस्थित हैं। x तत्व घन में कोनों पर उपस्थित है जबकि y तत्व केवल दो विपरीत फलकों के मध्य में उपस्थित है। यौगिक का सूत्र बताइए।

उत्तर: किसी भी घन में कुल 8 कोने होते हैं। परमाणु X घन के प्रत्येक कोने पर उपस्थित होते हैं। अतः X परमाणुओं की संख्या प्रति एकक कोष्ठिका में

$$= 8 \times \frac{1}{8} = 1$$

Y परमाणु केवल दो विपरीत फलकों के मध्य में उपस्थित हैं तथा फलक पर परमाणु केवल 1/2 भाग ही सहभाजित करता है। अतः

Y परमाणुओं की संख्या प्रति एकक कोष्ठिका में = $2 \times \frac{1}{2} = 1$ यौगिक का सूत्र = XY उत्तर

प्रश्न 5. एक यौगिक में तत्व A कोने पर, B घन के केन्द्र पर तथा c आधे कोरों पर स्थित है। यौगिक का सूत्र बताइए।

उत्तर: एक घन में कुल 8 कोने हैं। अतः A परमाणुओं की संख्या प्रति एकक कोष्ठिका में $= 8 \times \frac{1}{8} = 1$ B घन के केन्द्र पर है। अतः B परमाणुओं की संख्या प्रति एकक कोष्ठिका में = 1 C आधे कोरों पर स्थित हैं चूँिक कुल कोरों की संख्या 12 होती है। तथा C केवल आधे कोरों पर हैं। अतः C परमाणुओं की संख्या प्रति एकक कोष्ठिका में $= 6 \times \frac{1}{4} = \frac{3}{4}$ अतः यौगिक का सूत्र $= ABC_{3/2}$ या $A_2B_2C_3$ उत्तर

प्रश्न 6. एक यौगिक का सूत्र क्या है जिसमें y तत्व ccp जालक बनाता है और x के परमाणु चतुष्फलकीय रिक्तियों का 2/3 भाग घेरते है ?

उत्तर: ccp जालक में, अणुओं की संख्या = N चतुष्फलकीय रिक्तियों की संख्या = 2N तत्व 'Y' के परमाणुओं की संख्या = N तत्व 'X' के परमाणु की संख्या = $\frac{2}{3}$ × 2N यौगिक $X_{4N/3}$: Y_N अत: सूत्र = X_4Y_3

प्रश्न 7. मिश्रित ऑक्साइडों की एक घनीय निविड संकुलित संरचना में जालक ऑक्साइड-आयनों से मिलकर बना है, चतुष्फलकीय रिक्तियों का 1/8वाँ भाग द्विसंयोजी आयनों (A²⁺) से अध्यासित है, जबिक अष्टफलकीय रिक्तियों का 1/2वाँ भाग त्रिसंयोजी आयनों (B³⁺) से अध्यासित है। ऑक्साइड का सूत्र क्या है ?

उत्तर: घनीय निविड संकुलित संरचना में एक अष्टफलकीय तथा दो चतुष्फलकीय रिक्तियाँ प्रत्येक परमाणु से सम्बद्ध होकर जालक बनाती हैं। इसीलिए, प्रति एकक कोष्ठिका में ऑक्साइड आयनों की संख्या = 1 जालक में प्रति ऑक्साइड आयन चतुष्फलकीय रिक्तियों की संख्या = $1 \times 2 = 2$ द्विसंयोजी (A^{2+}) आयनों की संख्या = $\frac{1}{8} \times 2 = \frac{1}{4}$ जालक में प्रति ऑक्साइड आयन अष्टफलकीय रिक्तियों की संख्या = $1 \times 1 = 1$ त्रिसंयोजी (B^{3+}) आयनों की संख्या = $1 \times \frac{1}{2} = \frac{1}{2}$ यौगिक का सूत्र = $A_{1/4}$ $B_{1/2}$ O पूर्ण संख्या सूत्र = $A_{B_2O_4}$ उत्तर

प्रश्न 8. एक ठोस दो तत्वों X तथा Y से बना है। परमाणु X/fcc संरचना में हैं। परमाणु Y समस्त अष्टफलकीय स्थलों तथा एकान्तरीय चतुष्फलकीय स्थलों को अध्यासित करते हैं। यौगिक का सूत्र क्या है ?

उत्तर: प्रत्येक X परमाणु के लिए एक अष्टफलकीय तथा दो चतुष्फलकीय स्थल होते हैं। अष्टफलकीय स्थलों में Y परमाणुओं की संख्या = प्रति X परमाणु 1 चूंकि एकान्तरीय (अर्थात् आधी) चतुष्फलकीय रिक्तियाँ अध्यासित हैं, अतः चतुष्फलकीय स्थलों में Y परमाणुओं की संख्या। = प्रति X परमाणु 1 कुल Y परमाणु = 2 प्रति X परमाणु अत: यौगिक का सूत्र = XY2 उत्तर

प्रश्न 9. एक ठोस जो कि A और B के मध्य बन्धों के द्वारा बनता है। इस ठोस में A तथा B तत्व निम्न प्रकार से व्यवस्थित हैं —

- (i) अणु Accp जालक बनाता है।
- (ii) अणु B सभी अष्टफलकीय रिक्तियों एवं आधी चतुष्फलकीय रिक्तियों में व्यवस्थित है। ठोस का सूत्र बताइए।

उत्तर: हम जानते हैं कि घनीय निविड संकुलित संरचना में, अणु जो कि जालक बनाते हैं, की संख्या = N कुल अष्टफलकीय रिक्तियों की संख्या = N कुल चतुष्फलकीय रिक्तियों की संख्या = 2N अतः तत्व A की संख्या = N तत्व B की संख्या, अष्टफलकीय रिक्तियों में = N चतुष्फलकीय रिक्तियों में = $2N \times \frac{1}{2} = N$ कुल संख्या = N + N = 2N तत्व A : तत्व B

 $A_N:B_{2N}$

अतः यौगिक = AB2. उत्तर

प्रश्न 10. आयनिक त्रिज्या अनुपात से आपको क्या तात्पर्य है ? सीमान्त त्रिज्या अनुपात के आधार पर आयनिक यौगिकों की संरचना की परिकल्पना किस प्रकार की जाती है ?

उत्तर:

त्रिज्या अनुपात
$$(R_p) = \frac{r^+($$
धनायन की त्रिज्या $)}{r^-($ ऋणायन की त्रिज्या $)$

समन्वय संख्या	आकृति	सीमान्त त्रिज्या अनुपात 💤/🖝	उदाहरण
3	समतलीय त्रिकोणीय	0-155—0-225	बोरॉन ऑक्साइड
4	चतुष्फलकीय	0·2250·414	जिंक सल्फाइड
. 6	अष्टफलकीय	0.414—0.732	सोडियम क्लोराइड
8	कायकेन्द्रित घन	0.732—1.00	सीजियम क्लोराइड

प्रश्न 11. अष्टफलकीय एवं चतुष्फलकीय रिक्तियों अथवा छिद्रों से आप क्या समझते हैं ?

उत्तर: चतुष्फलकीय छिद्र – एक ही तल में स्पर्श करते हुए तीन गोलों के ऊपर यदि दूसरी सतह का एक गोला रखा जाए तो गोलों की एक चतुष्फलकीय व्यवस्था प्राप्त होती है। इस चतुष्फलक के केन्द्र पर चारों गोलों के मध्य स्थान खाली रह जाता है, जिसे चतुष्फलकीय छिद्र कहते हैं।

अष्टफलकीय छिद्र – निविड संकुलन व्यवस्था में इस प्रकार के छिद्र ऐसे छः गोलों के स्पर्श करने से बनते हैं जिनके केन्द्र एक अष्टफलक के कोनों पर होते हैं। प्रत्येक गोले के लिए एक अष्टफलकीय छिद्र होता है। सामान्यतः अष्टफलकीय छिद्र का आकार चतुष्फलकीय छिद्र से बड़ा होता है।

प्रश्न 12. एक क्रिस्टलीय ठोस का सूत्र AB₂O₄ है जिसमें ऑक्साइड आयन ccp जालक बनाता है एवं धनायन A सभी चतुष्फलकीय रिक्तियों में अध्यासित है तथा धनायन B अष्टफलकीय रिक्तियों में भरता है। बताइए कि।

- (i) धनायन A चतुष्फलकीय रिक्तियों में कितने प्रतिशत भाग अध्यासित करता है ?
- (ii) धनायन B अष्टफलकीय रिक्तियों का कितना प्रतिशत भाग अध्यासित करता है ?

उत्तर: घनीय निविड़ संकुलन में प्रत्येक ऑक्साइड आयन के लिए कुल दो चतुष्फलकीय रिक्तियाँ एवं एक अष्टफलकीय रिक्ति होती है। अतः

चार ऑक्साइड आयन के लिए कुल 8 चतुष्फलकीय व 4 अष्टफलकीय रिक्तियाँ उपस्थित हैं। आठ में से एक ही चतुष्फलकीय रिक्ति आयन A द्वारा अध्यासित, हो रही है तथा कुल 4 में से 2 अष्टफलकीय रिक्ति आयन B द्वारा अध्यासित हो रही हैं। अतः

A द्वारा अध्यासित चतुष्फलकीय रिक्ति का प्रतिशत = $\frac{1}{8}$ × 100 = 12.5% B द्वारा अध्यासित अष्टफलकीय रिक्ति का प्रतिशत = $\frac{2}{4}$ × 100 = 50% उत्तर

प्रश्न 13. एक ठोस में ऑक्साइड आयन घनीय निविड संकुलित जालक में उपस्थित है, धनायन A केवल 1/6 वां भाग चतुष्फलकीय रिक्ति को अध्यासित करता है, धनायन B केवल 1/3 वाँ भाग अष्टफलकीय रिक्ति को अध्यासित करता है। यौगिक का सूत्र बताइए।

उत्तर: घनीय निविड संकुलन में, जालक में अणुओं की संख्या = N अष्टफलकीय रिक्तियों की संख्या = N चतुष्फलकीय रिक्तियों की संख्या = 2N अत: ऑक्साइड आयनों की संख्या = N धनायन A की संख्या = $\frac{1}{6}$ × 2N = $\frac{N}{3}$ धनायन B की संख्या = $\frac{1}{3}$ × N = $\frac{N}{3}$ यौगिक A_{N/3} : B_{N/3} : O_N अत: सूत्र = ABO₃ उत्तर

प्रश्न 14. शुद्ध क्षार धातु हैलाइडों में फेंकेल दोष क्यों नहीं पाए जाते हैं ?

उत्तर: शुद्ध क्षार धातु हैलाइडों में फेंकेल दोष नहीं पाए जाते; क्योंकि क्षार धातु आयनों का आकार बड़ा होता है जो अन्तराकाशी स्थलों में नहीं आ पाता है।

प्रश्न 15. लौहचुम्बकत्व अनुचुम्बकत्व से किस प्रकार भिन्न होता है ?

उत्तर: लौहचुम्बकत्व वह गुण है जिसके कारण पदार्थ चुम्बकीय क्षेत्र की अनुपस्थिति में भी चुम्बकित रह सकता है। अनुचुम्बकत्व वह गुण है जिसके द्वारा पदार्थ चुम्बकी क्षेत्र में अयुग्मित इलेक्ट्रॉनों की उपस्थिति के कारण चुम्बकित हो जाता है तथा चु बकीय क्षेत्र हटाने पर पुनः अचुम्बकित हो जाता है।

प्रश्न 16. क्या हे ता है जब एक लौहचुम्बकीय पदार्थ को उच्च ताप पर गर्म किया जाता है ?

उत्तर: लौह चुम्बकीय पदार्थ को उच्च ताप पर गर्म करने पर यह अनुचुम्बकीय पदार्थ में परिवर्तित हो जाता है। ऐसा गर्म करने पर डोमेनों के अनियमित होने के कारण होता है।

प्रश्न 17. फेरीचुम्बकत्व को परिभाषित कीजिए।

उत्तर: जब पदार्थ में डोमेनों के चुम्बकीय आघूर्णी का संरेखण समान्तर एवं प्रतिसमान्तर दिशाओं में असमान होता है, तब पदार्थ में फेरीचुम्बकत्व देखा जाता है। ये लौहचुम्बकत्व की तुलना में चुम्बकीय क्षेत्र द्वारा दुर्बल रूप से आकर्षित होते हैं। Fe₃O₄(मैग्नेटाइट) और फेराइट; जैसे – MgFe₂O₄, ZnFe₂O₄ ऐसे पदार्थों के उदाहरण हैं।

प्रश्न 18. प्रति लौहचुम्बकीय पदार्थ तथा लघु लौहचुम्बकीय पदार्थ में अन्तर दीजिए -

उत्तर:

प्रति लौहसुम्बकीय पदार्थ	लघु लौहचुम्बकीय पदार्थ	
 इन पदार्थों का चुम्बकीय आधूर्ण शून्य होता है जबिक इन पदार्थों में अयुगिमत इलेक्ट्रॉन उपस्थित होते हैं। 	 इन पदार्थों में अयुग्मित इलेक्ट्रॉनों को उपस्थित के कारण प्रवल चुम्बकत्व की अपेक्षा की जाती है परन्तु वास्तव में चुम्बकत्व कम होता है। 	
 इसमें इलेक्ट्रॉनों का समानान्तर तथा प्रति समानान्तर चुम्बकीय आघूर्ण एक-दूसरे को प्रतिसंतुलित कर देता है। 	 इसमें चुम्बकीय आधूर्ण समानान्तर एवं प्रति- समानान्तर इस प्रकार संयोजित रहते हैं कि पदार्थ में चुम्बकीय आधूर्ण रहें। 	
उदाहरण $-$ MnO, MnO $_2$	उदाहरण FeSO₄	
 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ 	3. ↑↑↓ ↑↑↓ ↑↑	

प्रश्न 19. एक आयनिक प्रेस जिसमें ऋणायन की त्रिज्या 200 pm है। धनायन की आयनिक त्रिज्या क्या होगीः –

- 1. जो कि घनीय छिद्र में फिट हो सके ?
- 2. जो कि अष्टफलकीय छिद्र में फिट हो सके ?
- 3. जो कि चतुष्फलकीय छिद्र में फिट हो सके ?

उत्तर:

प्रश्न 20. आयनिक ठोसों की प्रकृति के आधार पर फेंकेल दोष एवं शॉट्की दोष की तुलना कीजिये।

उत्तर: शॉट्की एवं फेंकेल दोषों में अन्तर

शॉट्की दोष	फ्रेंकेल दोष		
 इस प्रकार के दौष प्रदर्शित करने वाले यौगिकों के धनायन और ऋणायन के आकार समान होते हैं। 	 इस प्रकार के दोष प्रदर्शित करने वाले यौगिकों के धनायन छोटे परन्तु ऋणायन बड़े होते हैं। 		
 यह आयनों की उच्च उपसहसंयोजन संख्या वाले ठोसों में पाया जाता है। 			

विस्तृत उत्तरीय प्रश्न

प्रश्न 1. यह मानते हुये कि परमाणु एक-दूसरे के सम्पर्क में हैं, सरल घनीय धातु के क्रिस्टल में संकुलन क्षमता की गणना कीजिये।

उत्तर: संकुलन क्षमता

जैसा कि हम जानते हैं कि क्रिस्टल जालक में अवयवी कण निविड संकुलित अवस्था में रहते हैं। उस अवस्था में कुछ स्थान खाली रह जाता है, जिसे रिक्ति (void) कहा जाता है अर्थात् किसी क्रिस्टल जालक का सम्पूर्ण स्थान अवयवी कणों द्वारा नहीं घेरा जाता है। किसी भी क्रिस्टल जालक में उपस्थित कण क्रिस्टल जालक के कुल आयतन का जितना भाग घेरते हैं, उसे क्रिस्टल जालक की संकुलन क्षमता (packing efficiency) कहा जाता है।" संकुलन क्षमता को हम निम्न सूत्र के द्वारा निकाल सकते हैं –

क्रिस्टल जालक में कर्णों या गोलों का आयतन क्रिस्टल जालक का कुल आयतन क्रिस्टल जालक में कर्णों या श्रीलों का आयतन × 100 क्रिस्टल जालक का कुल आयतन

प्रश्न 2. षट्कोणीय निकटस्थ संकुलन (hcp) का वर्णन कीजिए।

उत्तर: hcp या ccp या fcc संरचनाओं में संकुलन क्षमता परमाणु की त्रिज्या =r एक कोष्ठिका में कोर (edge या किनारे) की लम्बाई = a एक गोले का आयतन = $\frac{4}{3}$ (π r³)

चित्र 1.35. चनीय निविद्ध संकुलित संरचना स्पष्ट करने हेतु दूसरे कोरों में गोलकों को नहीं रखा गया है।

चृंकि fcc संरचना चार गोलों से बनती है अत:

चार गोलों का आयतन = $4 \times \frac{4}{3} (\pi r^3) = \frac{16}{3} (\pi r^3)$ $\triangle ABC \vec{H}_1$

$$AC^{2} = AB^{2} + BC^{2}$$

$$= a^{2} + a^{2}$$

$$AC = a\sqrt{2}$$
...(i)

यदि हम AC को देखें तो इसमें गोलों की व्यवस्था निम्न प्रकार से होती है—

अस्त: $A\dot{C} = 4r$

AC का मान समीकरण (i) में रखने पर,

या

$$4r = a\sqrt{2}$$

$$\frac{4r}{\sqrt{2}} = a$$

घन का आयतन =
$$(a)^3 = \left(\frac{4r}{\sqrt{2}}\right)^3 = \frac{64r^3}{2\sqrt{2}}$$

अतः % संकुलन क्षमता

क्रिस्टल जालक में उपस्थित कणों का आयतन क्रिस्टल जालक या एकक कोष्टिका का कुल आयतन

$$= \frac{\frac{16}{3}\pi r^3}{\frac{64r^3}{2\sqrt{2}}} \times 100 = 74\%$$

अर्थात् fcc या ccp या hcp संरचना में गोलों या कर्णो द्वारा घेरा गया कुल आयतन 74% होता है। जबकि यहाँ पर खाली बचा स्थान अर्थात् कुल रिक्तिका का आयतन 26% होता है।

प्रश्न 3. घनीय निकटस्थ संकुलन (ccp) का वर्णन कीजिए।

उत्तर: hcp या ccp या fcc संरचनाओं में संकुलन क्षमता परमाणु की त्रिज्या =r एक कोष्ठिका में कोर (edge या किनारे) की लम्बाई = a एक गोले का आयतन = $\frac{4}{3}$ (π r³)

चित्र 1.35. घनीय निविद्ध संकुलित संरचना स्पष्ट करने हेतु दूसरे कोरों में गोलकों को नहीं रखा गया है।

चूंकि fcc संरचना चार गोलों से बनती है अत:

चार गोलों का आयतन = $4 \times \frac{4}{3} (\pi r^3) = \frac{16}{3} (\pi r^3)$

∆АВСЎ,

$$AC^{2} = AB^{2} + BC^{2}$$

$$= a^{2} + a^{2}$$

$$AC = a\sqrt{2}$$
...(i)

यदि हम AC को देखें तो इसमें गोलों की व्यवस्था निम्न प्रकार से होती है—

अत:

$$A\dot{C} = 4r$$

AC का मान समीकरण (i) में रखने पर,

$$4r = a\sqrt{2}$$

$$\frac{4r}{\sqrt{2}} = a$$

घन का आयतन =
$$(a)^3 = \left(\frac{4r}{\sqrt{2}}\right)^3 = \frac{64r^3}{2\sqrt{2}}$$

अतः % संकुलन क्षमता

क्रिस्टल जालक में उपस्थित कर्णों का आयतन क्रिस्टल जालक या एकक कोष्टिका का कुल आयतन

$$= \frac{\frac{16}{3}\pi r^3}{\frac{64r^3}{2\sqrt{2}}} \times 100 = 74\%$$

अर्थात् fcc या ccp या hcp संरचना में गोलों या कर्णो द्वारा घेरा गया कुल आयतन 74% होता है। जबकि यहाँ पर खाली बचा स्थान अर्थात् कुल रिक्तिका का आयतन 26% होता है।

प्रश्न 4. निविड संकुलित जालक में चतुष्फलकीय एवं अष्टफलकीय छिद्र क्या हैं ? इन छिद्रों की त्रिज्या संकुलित धातु परमाणु गोलों की त्रिज्या से किस प्रकार सम्बन्धित है ?

उत्तर: निविड़ संकुलित संरचनाएँ

ठोसों में अवयवी कण निविड संकुलित होते हैं तथा उनके मध्य न्यूनतम रिक्त स्थान पाया जाता है। इस रिक्त स्थान को रिक्ति या अन्तराकाशी स्थल (voids or interstitial spaces) कहा जाता है।

अगर अवयवी कण कठोर गोले के रूप में उपस्थित हैं तो उनके त्रिविमीय निविड़ संकुलन (Three dimensional closed packing) को निम्न प्रकार व्याख्यायित कर सकते हैं –

(क) एक विमा में निविड़ संकुलन – यहाँ गोलों को एक पंक्ति में एक-दूसरे को स्पर्श करते हुए व्यवस्थित किया जाता है। इस प्रकार की व्यवस्था में प्रत्येक गोला दो निकटवर्ती गोलों के सम्पर्क में होता है अर्थात्

इस प्रकार की व्यवस्था में गोले की उपसहसंयोजन संख्या दो (2) होती है।

चित्र 1.26. एक विमा में गोलों का निविड संकुलन

नोट—उपसहसंयोजन संख्या (Co-ordination No.)—एक कण के निकटतम गोलों की संख्या को उसकी उपसहसंयोजन संख्या कहा जाता है।

- (ख) द्विविमा में निविड संकुलन यह दो प्रकार से होता है –
- (i) वर्ग निविड़ संकुलन इस प्रकार के निविड संकुलन में कणों की द्वितीय पंक्ति को प्रथम पंक्ति के सम्पर्क | में इस तरह रखा जाता है कि द्वितीय पंक्ति के गोले प्रथम पंक्ति के गोलों के ठीक ऊपर हों तथा दोनों पंक्तियों के गोले क्षैतिज तथा साथ ही ऊध्वाधर रूप में सरेखित हों। यहाँ प्रत्येक गोला निकटवर्ती चार गोलों के सम्पर्क में रहता है। इस प्रकार इसकी उप-सहसंयोजन संख्या चार (4) होती है। इसे वर्ग निविड़ संकुलन कहा जाता है या इसे AAAA प्रकार की व्यवस्था भी कहते हैं। (चित्र 1.27)

चित्र 1.27, द्विविमा में वर्ग निविष्ठ संकुलन

(ii) षट्कोणीय निविड़ संकुलन – इस प्रकार के निविड संकुलन में कणों की द्वितीय पंक्ति को प्रथम पंक्ति के सम्पर्क में इस तरह रखा जाता है कि द्वितीय पंक्ति के गोले प्रथम पंक्ति के गोलों के अवनमनों (depressions or grooves) में ठीक प्रकार से आ जायें। इस व्यवस्था में मुक्त स्थान कम होता है और | इस प्रकार का संकलन, वर्ग निविड़ संकलन से अधिक दक्ष है। यहाँ प्रत्येक गोला निकटवर्ती छः गोलों के सम्पर्क में रहता है। अतः द्विविम षट्कोणीय निविड संकुलन की उप-सहसंयोजन संख्या छः (6) होती है। इसे ABAB प्रकार की व्यवस्था भी कहा जाता है। यहाँ तल में कुछ रिक्तियाँ (empty spaces or voids) होती हैं, जिनकी आकृति त्रिकोणीय (triangular) होती है। ये त्रिकोणीय रिक्तियाँ दो प्रकार की अर्थात् शीर्ष उध्वेमुखी (एक पंक्ति में) तथा शीर्ष अधोमुखी (दूसरी पंक्ति में) होती हैं। (चित्र 1.28)

चित्र 1.28. द्विविमा में घट्कोणीय निविड संकुलन

- (ग) त्रिविमा में निविड़ संकुलन त्रिविमीय संरचनाएँ द्विविमीय परतों को एक-दूसरे के ऊपर रखने से प्राप्त की जा सकती हैं। ये निम्न प्रकार की होती हैं –
- (i) द्विविमा वर्ग निविड़ संकुलित परतों से त्रिविम निविड़ संकुलन यहाँ द्विविम वर्ग निविड़ संकुलित परतों को एक के ऊपर एक इस प्रकार व्यवस्थित करते हैं कि गोले एक-दूसरे के ठीक ऊपर आते हैं और सभी परतों के गोले पूर्णतया क्षैतिज तथा ऊर्ध्वाधर दोनों ही रूपों में एक सीध में होते हैं। इस प्रकार जनित होने वाला जालक सामान्य घनीय जालक और उसकी एकक कोष्ठिका आद्य-घनीय एकक कोष्ठिका होती है। (चित्र 1.29)

चित्र 1.29. AAA......च्यवस्था से बनने वाला सरल घनीय जालक

- (ii) द्विविमा षट्कोणीय निविड संकुलित परतों से त्रिविम निविड संकलन इस व्यवस्था में त्रिविमीय निविड़ संकलन निम्न प्रकार से किया जाता है –
- (अ) द्वितीय परत को प्रथम परत के ऊपर रखना इस प्रकार की व्यवस्था में द्वितीय परत के गोले प्रथम परत के अवनमनों में व्यवस्थित होते हैं। चूंकि दोनों परतों के गोले विभिन्न प्रकार से सरेखित हैं इसलिए प्रथम परत को A परत व द्वितीय परत को B परत कहते हैं। यहाँ इस प्रकार की व्यवस्था में चतुष्फलकीय रिक्तियाँ बनती हैं, साथ-ही-साथ अष्टफलकीय रिक्तियाँ भी बनती हैं।

माना कि निविड़ संकुलित गोलों की संख्या = N तब, जनित अष्ट्रफलकीय रिक्तियों की संख्या = N जनित चतुष्फलकीय रिक्तियों की संख्या = 2N

प्रश्न 5. निम्न पर टिप्पणी लिखिए -

- (i) फलक केन्द्रित घनीय जालक
- (ii) काय केन्द्रित घनीय जालक
- (iii) काय केन्द्रित विषमलम्बाक्ष जालक
- (iv) आद्य त्रिनर क्षि जालक
- (v) अन्त:केन्दित द्विसमलम्बाक्ष जालक।

उत्तर:

सारणी 1.4 : विभिन्न प्रकार के 14 बेवे जालक

क्र. सं.	क्रिस्टल समूह	जालकों के प्रकार	जालकों की संख्या
1.	धनीय	आद्य, अंत:केन्द्रित, फलक केन्द्रित	3
2.	द्विसमलबाक्ष	आद्य, अंदःकेन्द्रित	2
3.	विषमलबांक्ष	आद्य, अंत:केन्द्रित, फलक केन्द्रित, अन्त्य केन्द्रित	4
4.	एकनताक्ष	आद्य, अन्त्य केन्द्रित	2
5.	षद्कोणीय	आद्य `	l
6.	त्रिसमनताक्ष 🧻	आद्यं .	1
7.	त्रिनताक्ष	आद्य	l
	-,		कुल = 14

प्रश्न 6. ठोसों को चालकता के आधार पर किस प्रकार वर्गीकृत किया गया है ? प्रत्येक प्रकार के ठोस की चालकता की व्याख्या कीजिए।

उत्तर:

विद्युतीय गुण

चालकता के आधार पर ठोसों को तीन वर्गों में वर्गीकृत किया जा सकता है –

- (i) चालक
- (ii) रोधक या विद्युतरोधी
- (iii) अर्द्धचालक
- (i) चालक वे ठोस जिनमें से विद्युत् धारा की । अधिक मात्रा प्रवाहित होती है, चालक कहलाते हैं। इनकी चालकता की परास 10⁴ से 107 ohm⁻¹ m⁻¹ के मध्य होती है। चालक दो प्रकार के होते हैं
 - (अ) धात्विक चालक (Metallic Conductors)
 - (ब) विद्युत् अपघट्य चालक (Electrolytic Conductors)

धात्विक चालकों में विद्युत् चालकता इलेक्ट्रॉनों की गतिशीलता के कारण होती है। धातु ठोस एवं गलित दोनों अवस्थाओं में विद्युत् का चालन करती है। धातुओं की चालकता प्रति परमाणु संयोजी इलेक्ट्रॉनों की संख्या पर निर्भर करती है। ताप बढ़ाने पर चालकों की चालकता कम हो जाती है। धातु से जब विद्युत् धारा का प्रवाह होता है तो उसमें कोई भी रासायनिक परिवर्तन नहीं होता है।

वहीं दूसरी ओर विद्युत् अपघट्य चालक ठोस अवस्था में बहुत ही । कम मात्रा में विद्युत् का चालन करते हैं वह भी त्रुटि के कारण। विद्युत् अपघट्य गलित अवस्था (Fused state) में तथा अपने विलयन में विद्युत् का चालन करते हैं। विद्युत् का चालन आयनों की गतिशीलता के कारण होता है।

- (ii) रोधक वे ठोस जो विद्युत् धारा प्रवाहित नहीं कर सकते, रोधक कहलाते हैं। इनकी चालकता बहुत कम 10-20 से 10-10 ohm-m- के परास के मध्य होती है। उदाहरणार्थ सल्फर, फॉस्फोरस, लकड़ी, प्लास्टिक, रबर आदि।
- (iii) अर्द्धचालक वे ठोस जिनकी चालकता चालकों एवं रोधक के मध्य की होती है, अर्द्धचालक कहलाते हैं। इनकी चालकता 10-6 से 104 ohm-! m-1 के परास के मध्य की होती है। इनकी चालकता अशुद्धि तथा जालक त्रुटियों के कारण होती है तथा ताप के साथ बढ़ती है।

प्रश्न 7. स्टॉइकियोमीट्टीक त्रुटियों का सविस्तार वर्णन कीजिए।

उत्तर:

स्टॉइिकयोमीट्री दोष – इस प्रकार के बिन्दु दोष से ठोस की स्टॉइिकयोमीट्री पर कोई प्रभाव नहीं पड़ता है अर्थात् यहाँ क्रिस्टल में धनायन एवं ऋणायन का अनुपात रासायनिक सूत्र के अनुरूप ही रहता है। यह ऐसी स्थिति में ही सम्भव है जब क्रिस्टल में धनायनों तथा ऋणायनों द्वारा अपने-अपने उचित बिन्दुओं से विचलन के फलस्वरूप छोड़ी गई रिक्तिओं की संख्या समान होती है। इससे स्टॉइिकयोमीट्री अपरिवर्तित रहती है। ऐसे दोष उच्च ताप के कारण आयनों के तापीय कम्पनों (Thermal Vibrations) के फलस्वरूप उत्पन्न होते हैं। अतः इन्हें आंतर (Intrinsic) अथवा ऊष्मागितकी दोष (Thermodynamic Defects) भी कहा जाता है। ये निम्न प्रकार के होते हैं –

(i) रिक्तिका दोष – जब किसी जालक में कुछ जालक स्थल रिक्त होते हैं तब क्रिस्टल में रिक्तिका दोष उत्पन्न होता है। इससे पदार्थ का घनत्व कम हो जाता है। यह दोष पदार्थ को गरम करने पर भी उत्पन्न होता है (चित्र 1.44)।

(ii) अन्तराकाशी दोष – जब किसी क्रिस्टलीय संरचना में अवयवी कण (परमाणु अथवा अणु) अन्तरकाशी स्थल (Interstitial Spaces) पर पाये जाते हैं तो अन्तराकाशी दोष (Interstitial Defects) उत्पन्न होता है। इस दोष से पदार्थ का घनत्व बढ़ता है। यह दोष अन-आयनिक (non-ionic) ठोसों में पाया

जाता है (चित्र 1.45)।

चित्र 1.45, अन्तराकाशी दोष

(iii) फ्रेंकेल दोष – यह दोष आयनिक ठोसों द्वारा दर्शाया जाता है। जब लघुतर आयन (साधारणतः धनायन) अपने वास्तविक स्थान से विस्थापित हो जाता है और अन्तराकाशी स्थान में आ जाता है तो इसे फेंकेल दोष कहते हैं। इसे विस्थापन दोष (displacement defect) भी कहते हैं। इस दोष में घनत्व अपरिवर्तित रहता है। यह उन ठोसों द्वारा दिखाया जाता है जिनमें आयनों के आकार में अधिक अन्तर हो। वह जालक बिन्दु जहाँ से अवयवी कण विस्थापित होता है, रिक्त हो जाता है। इसे रिक्तिका या होल (hole) कहते हैं। चूंकि इस प्रकार के दोघ में क्रिस्टल में धनायनों और ऋणायनों की संख्या और आवेश बराबर होता है। अत: यह एक स्टॉइकियोमीट्री प्रकार का दोष है। उदाहरण-ZuS, AgCI, AgBr, AgI आदि। यह दोष Zn²⁺ और Ag⁺आयन के लघु आकार के कारण होता है।

चित्र 1.46, फ्रेंकेल दोष

(iv) शॉकी दोष — यह दोष भी आधारभूत रूप से उन आयनिक ठोसों द्वारा दिखाया जाता है जिनकी उपसहसंयोजन संख्या (Co-ordination number) उच्च हो तथा धनायन एवं ऋणायन का। आकार लगभग समान (equal) हो। यह भी एक प्रकार का रिक्तिका दोष है। यहाँ विद्युत् उदासीनता बनाये रखने के लिए लुप्त होने वाले धनायनों और ऋणायनों की संख्या बराबर होती है। अत: यौगिक में छिद्र युग्म (Pair of holes) बन जाते हैं। इससे घनत्व में कमी आती है। यह दोष उन ठोसों द्वारा दिखाया जाता है जिनमें धनायन और ऋणायन के आकार लगभग समान होते हैं। उदाहरण-NaCl, KCI, CsCl, AgBr आदि। आयनिक ठोसों में इस प्रकार के दोषों की संख्या काफी महत्वपूर्ण है।

उदाहरणार्थ – कमरे के ताप पर NaCl में लगभग 10⁶ शॉटकी युगल या छिद्र युग्म प्रति सेमी³ होते हैं। एक सेमी. में लगभग 10²² आयन पाये जाते हैं। इस प्रकार प्रति 10¹⁶ आयनों में एक शॉट्की दोष उपस्थित

होता है।

चित्र 1,47. शॉट्की दोष

नोट – AgBr फ्रेंकेल एवं शॉकी दोनों प्रकार के दोषों को प्रदर्शित करता है।