Computer Graphics

2. Transformations

I-Chen Lin
National Yang Ming Chiao Tung University

Intended Learning Outcomes

- On completion of this chapter, a student will be able to:
 - Identify the basic transformations for 3D objects.
 - ▶ Apply the basic transformations for object movement in a 3D scene.

Explain and write the pseudo codes in OpenGL style with a sequence of transformations.

Outline

- Introduce standard transformations
 - Rotation
 - ► Translation
 - Scaling
 - Shear
- Derive homogeneous coordinate transformation matrices
- Learn to build arbitrary transformation matrices from simple transformations

General Transformations

► A transformation maps points to other points and/or vectors to other vectors

Affine Transformations

- ► A transformation that **preserves** lines and parallelism
 - maps parallel lines to parallel lines

- Characteristic of many physically important transformations
 - ► Rigid body transformations: rotation, translation
 - Scaling, shear

Translation

Using the homogeneous coordinate representation in some frame note that this expression is in

$$\mathbf{p} = [x y z 1]^{\mathsf{T}}$$

$$\mathbf{p}' = [x' y' z' 1]^{\mathsf{T}}$$

$$\mathbf{d} = [d_x d_y d_z 0]^{\mathsf{T}}$$

Hence p' = p + d or

$$x'=x+d_{X}$$

$$y'=y+d_{Y}$$

$$z'=z+d_{Z}$$

note that this expression is in four dimensions and expresses point = vector + point

Translation Matrix

We can also express translation using a 4 x 4 matrix T in homogeneous coordinates

$$p'=Tp$$

where

$$T = T(d_x, d_y, d_z) =$$

$$\begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Why do we use a matrix form instead of vector addition?

Rotation (2D)

- Consider rotation about the origin by q degrees
 - radius stays the same, angle increases by q

trigonometric identities

$$\sin(\theta + \varphi) = \sin\theta\cos\phi + \cos\theta\sin\phi$$
$$\cos(\theta + \varphi) = \cos\theta\cos\phi - \sin\theta\sin\phi$$

$$x' = x \cos \theta - y \sin \theta$$

 $y' = x \sin \theta + y \cos \theta$

Rotation about the z axis

- Rotation about z axis in three dimensions
 - leaves all points with the same z
 - Equivalent to rotation in two dimensions in planes of constant z

$$x' = x \cos \theta - y \sin \theta$$
$$y' = x \sin \theta + y \cos \theta$$
$$z' = z$$

or in homogeneous coordinates

$$p'=R_z(\theta)p$$

Rotation Matrix

$$\mathbf{R} = \mathbf{R}_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation about x and y axes

- ► Same argument as for rotation about *z* axis
 - For rotation about x axis, x is unchanged
 - For rotation about y axis, y is unchanged

$$\mathbf{R} = \mathbf{R}_{\chi}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R} = \mathbf{R}_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling

Expand or contract along each axis (fixed point of origin)

$$x' = s_{x}x$$

$$y' = s_{y}y$$

$$z' = s_{z}z$$

$$p' = Sp$$

$$S = S(s_{x}, s_{y}, s_{z}) = \begin{bmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Reflection

corresponds to negative scale factors

Inverses

Compute inverse matrices by general formulas, or use simple geometric observations

- ► Translation: $T^{-1}(d_x, d_y, d_z) = T(-d_x, -d_y, -d_z)$
- ► Rotation: $R^{-1}(q) = R(-q)$
 - ► Holds for any rotation matrix
 - Since $cos(-\theta) = cos(\theta)$; $sin(-\theta) = -sin(\theta)$

$$\mathbf{R}^{-1}(q) = \mathbf{R}^{\mathsf{T}}(q)$$

► Scaling: $S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$

Shear

► Equivalent to pulling faces in opposite directions

Shear Matrix

Consider simple shear along x axis

$$x' = x + y \cot \theta$$
$$y' = y$$
$$z' = z$$

$$\mathbf{H}(\theta) = \begin{bmatrix} 1 & \cot \theta & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Concatenation

► Form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices.

 $for\ each\ i$ or M=ABCD, $ABCDp_i$, $for\ each\ i$ Mp_i

Order of Transformations

- Note that matrix on the right is the first applied
- Mathematically, the following are equivalent

$$p' = ABCp = A(B(Cp))$$

Note many references use column matrices to represent points. In terms of column matrices

$$p'^T = p^T C^T B^T A^T$$

General Rotation about the Origin

Decompose into the concatenation of rotations about the x, y, and z axes

$$R(\theta) = R_z(\theta_z) R_y(\theta_y) R_x(\theta_x)$$

 θ_x , θ_y , θ_z are rotation angles with respect to the corresponding axes.

Commutative?

Rotation about a Fixed Point other than the Origin

- 1. Move fixed point to origin
- 2. Rotate
- 3. Move fixed point back

$$\mathbf{M} = \mathbf{T}(p_f) \mathbf{R}(q) \mathbf{T}(-p_f)$$

Rotation about an Arbitrary Axis

Rotate around an axis vector u.

$$v = u/|u| = [\alpha_x, \alpha_y, \alpha_z]^T$$

$$\cos\phi_{x} = \alpha_{x}$$

$$\cos \phi_{\rm v} = \alpha_{\rm v}$$

$$\cos \phi_z = \alpha_z$$

$$\cos^2\phi_x + \cos^2\phi_v + \cos^2\phi_z = 1$$

Hint: What we already have are rotations around x, or y, or z axes.

Rotation about an Arbitrary Axis

- 1. Rotate the axis vector to match z (x or y) axis. [R_{axis}]
- 2. Rotate around z axis. $[R_z(\theta)]$
- 3. Rotate the axis vector back. $[R_{axis}^{-1}]$

$R_{x}(\theta_{x})$

$R_y(\theta_y)$

Rotation about an Arbitrary Axis

$$M = R_{axis}^{-1} R_z(\theta) R_{axis}$$

$$= R_x(-\theta_x) R_y(-\theta_y) R_z(\theta) R_y(\theta_y) R_x(\theta_x)$$

Instancing

In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size

▶ We apply an *instance transformation* to its vertices to

Hierarchical structure

>	In addition to separate instances, plenty of objects consist of hierarchical sub-components, e.g. skeletons, desk lamps, excavators, etc.	

Hierarchical structure (cont.)

Hierarchical structure (cont.)

Hierarchical structure (cont.)

Hierarchical transformation

Hierarchical transformation (cont.)

Hierarchical transformation (cont.)

There are common sub-transformation.

We can avoid redundant matrix multiplication by stack

Matrix in OpenGL style (Legacy)

```
.....
"Draw the base"
glRotate(\theta_a);
glPushMatrix();
"Draw the dark blue arm"
glPopMatrix();
glTranslate(\mathbf{d}_1);
glRotate(\theta_h);
glPushMatrix();
"Draw the light blue arm"
glPopMatrix();
glTranslate(d<sub>2</sub>);
glRotate(\theta_c);
glPushMatrix();
"Draw the lampshade"
glPopMatrix();
```


How to deal with branches?

Matrix in OpenGL style (Modern)

```
"Draw the base"
MatA = glm::rotate(Mat, \theta_a);
"Pass the MatA"
"Draw the dark blue arm"
Mat1 = glm::translate(MatA, d_1);
MatB = glm::rotate(Mat1, \theta_h);
"Pass the MatB"
"Draw the light blue arm"
Mat2 = glm::translate(MatB, d_2);
MatC = glm::rotate(Mat2, \theta_c);
"Pass the MatC"
"Draw the lampshade"
```


How to deal with branches?

A Modern-OpenGL Example

Given a box located at the origin, What's the result with the following trans?

```
glm::mat4 model = glm::mat4(1.0f);
model = glm::rotate(model, glm::radians(45.0f), glm::vec3(0.0f, 0.0f, 1.0f));
model = glm::translate(model, glm::vec3(0.0f, 0.8f, 0.0f));
model = glm::rotate(model, glm::radians(30.0f), glm::vec3(0.0f, 1.0f, 0.0f));
model = glm::scale(model, glm::vec3(0.5f, 0.5f, 0.5f));
//For all i, BoxPts(i) = model * BoxPts(i)
```


Direction of instruction execution

A Modern-OpenGL Example (cont.)

```
glm::mat4 model = glm::mat4(1.0f);
model = glm::rotate(model, glm::radians(45.0f), glm::vec3(0.0f, 0.0f, 1.0f)); m*R_{r}(45^{o})
model = glm::translate(model, glm::vec3(0.0f, 0.8f, 0.0f));
                                                                               m*T(0, 0.8, 0)
model = glm::rotate(model, glm::radians(30.0f), glm::vec3(0.0f, 1.0f, 0.0f));
                                                                                   m*R_{v}(30^{o})
model = glm::scale(model, glm::vec3(0.5f, 0.5f, 0.5f));
                                                                          m*S(0.5, 0.5, 0.5)
//For all i, BoxPts(i) = model * BoxPts(i)
                                                                                 m*BoxPt(i)
 R_z(45^\circ)^*T(0, 0.8, 0)^*R_v(30^\circ)^*S(0.5, 0.5, 0.5)^*BoxPts(i)
```

 $R_z(45^\circ)^*T(0, 0.8, 0)^*R_y(30^\circ)^*S(0.5, 0.5, 0.5)^*BoxPts(i)$

```
glm::mat4 model = glm::mat4(1.0f);

model = glm::rotate(model, glm::radians(45.0f), glm::vec3(0.0f, 0.0f, 1.0f));

model = glm::translate(model, glm::vec3(0.0f, 0.8f, 0.0f));

model = glm::rotate(model, glm::radians(30.0f), glm::vec3(0.0f, 1.0f, 0.0f))
```

model = glm::scale(model, glm::vec3(0.5f, 0.5f, 0.5f));

S(0.5, 0.5, 0.5) *BoxPt(i)

//For all i, BoxPts(i) = model * BoxPts(i)

 $R_z(45^\circ)^*T(0, 0.8, 0)^*R_y(30^\circ)^*S(0.5, 0.5, 0.5)^*BoxPts(i)$

```
glm::mat4 model = glm::mat4(1.0f);
model = glm::rotate(model, glm::radians(45.0f), glm::vec3(0.0f, 0.0f, 1.0f));
model = glm::translate(model, glm::vec3(0.0f, 0.8f, 0.0f));
model = glm::rotate(model, glm::radians(30.0f), glm::vec3(0.0f, 1.0f, 0.0f));
                                                                             R_{\nu}(30^{\circ}) * Pt'(i)
model = glm::scale(model, glm::vec3(0.5f, 0.5f, 0.5f));
//For all i, BoxPts(i) = model * BoxPts(i)
```

 $R_z(45^\circ)^*T(0, 0.8, 0)^*R_y(30^\circ)^*S(0.5, 0.5, 0.5)^*BoxPts(i)$

```
glm::mat4 model = glm::mat4(1.0f);
model = glm::rotate(model, glm::radians(45.0f), glm::vec3(0.0f, 0.0f, 1.0f)]
model = glm::translate(model, glm::vec3(0.0f, 0.8f, 0.0f));
                                                                      T(0, 0.8, 0) *Pt''(i)
model = glm::rotate(model, glm::radians(30.0f), glm::vec3(0.0f, 1.0f, 0.0f)]
                                                                                 NSTU
model = glm::scale(model, glm::vec3(0.5f, 0.5f, 0.5f));
```

//For all i, BoxPts(i) = model * BoxPts(i)

 $R_{z}(45^{\circ})*T(0, 0.8, 0)*R_{y}(30^{\circ})*S(0.5, 0.5, 0.5)*$ $\mathbf{model} = \mathbf{glm}::\mathbf{mat4}(1.0\mathbf{f});$ $\mathbf{model} = \mathbf{glm}::\mathbf{rotate}(\mathbf{model}, \mathbf{glm}::\mathbf{radians}(45.0\mathbf{f}), \mathbf{glm}::\mathbf{vec3}(0.0\mathbf{f}, 0.0\mathbf{f}, 1.0\mathbf{f}));$ $R_{z}(45^{\circ})*Pt'''(\mathbf{i})$ $\mathbf{model} = \mathbf{glm}::\mathbf{rotate}(\mathbf{model}, \mathbf{glm}::\mathbf{vec3}(0.0\mathbf{f}, 0.8\mathbf{f}, 0.0\mathbf{f}));$ $\mathbf{model} = \mathbf{glm}::\mathbf{rotate}(\mathbf{model}, \mathbf{glm}::\mathbf{radians}(30.0\mathbf{f}), \mathbf{glm}::\mathbf{vec3}(0.0\mathbf{f}, 1.0\mathbf{f}, 0.0\mathbf{f})$

model = glm::**scale**(**model**, glm::vec3(0.5f, 0.5f, 0.5f));

//For all i, BoxPts(i) = model * BoxPts(i)

Appendix

Basic Elements

- Geometry:
 - the relationships among objects in an n-dimensional space
 - Computer graphics mainly focuses on three dimensions.
- Want a minimum set of primitives from which we can build more sophisticated objects
- We will need three basic elements
 - Scalars
 - Vectors
 - Points

Vectors

- Physical definition: a vector is a quantity with two attributes
 - Direction
 - Magnitude
- Examples include
 - Force
 - Velocity
 - Directed line segments
 - Most important example for graphics
 - Can map to other types

Vector Operations

- Every vector has an inverse
 - Same magnitude but points in opposite direction
- Every vector can be multiplied by a scalar
- There is a zero vector
 - Zero magnitude, undefined orientation
- ► The sum of any two vectors is a vector
 - Use head-to-tail axiom

$$v = u + w$$

Linear Vector Spaces

- Mathematical system for manipulating vectors
- Operations
 - ► Scalar-vector multiplication $u=\alpha v$
 - \triangleright Vector-vector addition: w=u+v
- Expressions such as

$$v=u+2w-3r$$

Make sense in a vector space

Vectors Lack Position

- These vectors are identical
 - Same length and magnitude

- Vectors spaces insufficient for geometry
 - Need points

Points

- Location in space
- Operations allowed between points and vectors
 - Point-point subtraction yields a vector
 - Equivalent to point-vector addition

Affine Spaces

- Point + a vector space
- Operations
 - Vector-vector addition
 - Scalar-vector multiplication
 - Point-vector addition
 - Scalar-scalar operations
- For any point define
 - $1 \cdot P = P$
 - $ightharpoonup 0 \cdot P = 0$ (zero vector)

Lines

- Consider all points of the form
 - $P(\alpha)=P_0+\alpha \mathbf{d}$
 - ightharpoonup Set of all points that pass through P_0 in the direction of the vector ${f d}$

Parametric Form

- ▶ This form is known as the parametric form of the line
 - More robust and general than other forms
 - Extends to curves and surfaces
- ► Two-dimensional forms
 - **Explicit:** y = mx + h
 - ightharpoonup Implicit: ax + by + c = 0
 - **Parametric:**

$$x(\alpha) = \alpha x_0 + (1-\alpha)x_1$$

$$y(\alpha) = \alpha y_0 + (1-\alpha)y_1$$

Rays and Line Segments

- \triangleright $\alpha >= 0$, ray leaving P_0 in the direction **d**
- If we use two points to define v, then $P(\alpha) = Q + \alpha \ (R-Q) = Q + \alpha v = \alpha R + (1-\alpha)Q$
- \triangleright 0<=\alpha<=1, line segment joining R and Q

Convexity

- Convex iff:
 - ► for any two points in the object all points on the line segment between these points are also in the object

Convex Hull

- ightharpoonup Smallest convex object containing P_1, P_2, \dots, P_n
- Formed by "shrink wrapping" points

Planes

A plane can be defined by a point and two vectors or by three points

$$P(\alpha,\beta)=R+\alpha u+\beta v$$

$$P(\alpha,\beta)=R+\alpha(Q-R)+\beta(P-Q)$$

Triangles

for $0 <= \alpha, \beta <= 1$, we get all points in triangle

Barycentric Coordinates

► Triangle is convex so any point inside can be represented as an affine sum

$$P(a_1, a_2, a_3)=a_1P+a_2Q+a_3R$$
 where $a_1+a_2+a_3=1$, and $a_i>=0$

► The representation is called the barycentric coordinate representation of P

Normals

Every plane has a vector n normal (perpendicular, orthogonal) to it

From point-two vector form $P(\alpha,\beta)=R+\alpha u+\beta v$, we know we can use the cross product to find $n=u\times v$ and the equivalent form

$$(P(\alpha)-P) \cdot n=0$$

Dot product

- $u = [x_1, x_2, x_3]^T$
- $v = [y_1, y_2, y_3]^T$
- $u \cdot v = x_1 y_1 + x_2 y_2 + x_3 y_3 = /u//v/\cos\theta$
- Projection

$$w = (|v| \cos \theta) unit(u)$$

$$= (|v| \frac{u \cdot v}{|u||v|}) \frac{u}{|u|}$$

$$= (\frac{u \cdot v}{|u|^2}) u$$

Cross Product

- $u = [x_1, x_2, x_3]^T$
- $v = [y_1, y_2, y_3]^T$
- $|u \times v| = |u||v||\sin\theta|$

$$w = u \times v = \begin{bmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{bmatrix}$$

Linear Independence

- A set of vectors $v_1, v_2, ..., v_n$ is linearly independent if $\alpha_1 v_1 + \alpha_2 v_2 + ... \alpha_n v_n = 0$ iff $\alpha_1 = \alpha_2 = ... = 0$
- ► If a set of vectors is linearly independent, we cannot represent one in terms of the others
- ▶ If a set of vectors is linearly dependent, as least one can be written in terms of the others

Dimension

- Dimension of a space
 - ► In a vector space, the maximum number of linearly independent vectors is fixed
- Basis
 - ► In an *n*-dimensional space, any set of n linearly independent vectors form a *basis* for the space
- Given a basis v_1, v_2, \ldots, v_n , any vector v can be written as $v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n$

where the $\{\alpha_i\}$ are unique

Representation

- Need a frame of reference to relate points and objects to our physical world.
 - ► For example, where is a point? Can't answer without a reference system
 - World coordinates
 - Camera coordinates

Coordinate Systems

- \triangleright Consider a basis v_1, v_2, \ldots, v_n
- A vector is written $v = \alpha_1 v_1 + \alpha_2 v_2 + + \alpha_n v_n$
- The list of scalars $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ is the *representation* of v with respect to the given basis
- We can write the representation as a row or column array of scalars

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \dots \ \alpha_n]^T = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

Example

$$v = 2v_1 + 3v_2 - 4v_3$$

$$\mathbf{a} = [2\ 3\ -4]^{\mathrm{T}}$$

Note that this representation is with respect to a particular basis

Coordinate Systems

▶ Which is correct?

▶ Both are because vectors have no fixed location

Frames

- ▶ A coordinate system is insufficient to represent points
- If we work in an affine space we can add a single point, the *origin*, to the basis vectors to form a *frame*

Representation in a Frame

Frame determined by (P_0, v_1, v_2, v_3)

▶ Within this frame, every vector can be written as

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

Every point can be written as

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + + \beta_n v_n$$

Confusing Points and Vectors

Consider the point and the vector

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + + \beta_n v_n$$

$$v = \alpha_1 v_1 + \alpha_2 v_2 + + \alpha_n v_n$$

They appear to have the similar representations

$$\mathbf{p} = [\beta_1 \, \beta_2 \, \beta_3] \qquad \mathbf{v} = [\alpha_1 \, \alpha_2 \, \alpha_3]$$

$$\mathbf{v} = [\alpha_1 \, \alpha_3 \,$$

A Single Representation

If we define $0 \cdot P = 0$ and $1 \cdot P = P$ then we can write

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = [\alpha_1 \alpha_2 \alpha_3 0] [v_1 v_2 v_3 P_0]^T$$

$$P = P_0 + \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 = [\beta_1 \beta_2 \beta_3 1] [v_1 v_2 v_3 P_0]^T$$

Thus we obtain the four-dimensional <u>homogeneous</u> <u>coordinate</u> representation

$$\mathbf{v} = [\alpha_1 \, \alpha_2 \, \alpha_3 \, 0]^{\mathrm{T}}$$
$$\mathbf{p} = [\beta_1 \, \beta_2 \, \beta_3 \, 1]^{\mathrm{T}}$$

Homogeneous Coordinates

A three dimensional point $[x \ y \ z]$ is given as $p = [x'y'z'w]^T = [wx \ wy \ wz \ w]^T$

- We return to a three dimensional point (for w≠0) by x=x'/w; y=y'/w; z=z'/w
- ► If w=0, a vector.

► Homogeneous coordinates replaces points in three dimensions by lines through the origin in four dimensions.

Homogeneous Coordinates and Computer Graphics

- Homogeneous coordinates are key to all computer graphics systems
 - All standard transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4 x 4 matrices
 - ► Hardware pipeline works with 4 dimensional representations
 - For orthographic viewing, we can maintain w=0 for vectors and w=1 for points
 - For perspective we need a *perspective division*

Change of Coordinate Systems

Consider two representations of a the same vector with respect to two different bases. The representations are

$$\mathbf{a} = [\alpha_1 \ \alpha_2 \ \alpha_3]$$
$$\mathbf{b} = [\beta_1 \ \beta_2 \ \beta_3]$$

where

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = [\alpha_1 \alpha_2 \alpha_3] [v_1 v_2 v_3]^T$$

$$= \beta_1 u_1 + \beta_2 u_2 + \beta_3 u_3 = [\beta_1 \beta_2 \beta_3] [u_1 u_2 u_3]^T$$

Representing second basis in terms of first

► Each of the basis vectors, u1,u2, u3, are vectors that can be represented in terms of the first basis

$$\begin{aligned} u_1 &= \gamma_{11} v_1 + \gamma_{12} v_2 + \gamma_{13} v_3 \\ u_2 &= \gamma_{21} v_1 + \gamma_{22} v_2 + \gamma_{23} v_3 \\ u_3 &= \gamma_{31} v_1 + \gamma_{32} v_2 + \gamma_{33} v_3 \end{aligned}$$

