Intrinsic Channel Properties, Scattering Mechanisms, Quantum Transport Properties in Transition Metal Dichalcogenides

by

Kraig Andrews

DISSERTATION

Submitted to the Graduate School of Wayne State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

2008

MAJOR: Physics				
Approved by:				
Advisor				

Table of Contents

R	oforonces	1
1	Chapter Title 1.1 Section Title	1
	Acronyms	iii
	List of Physical Constants	vii
	List of Symbols	v
	List of Tables	iv
	List of Figures	iii
	Acknowledgments	ii
	Abstract	ii
	Quotation	ii
	Dedication	ii
	Copyright	ii

List of Figures

List of Tables

List of Symbols

Symbol	Description	Unit
A	vector potential	$\mathrm{V}\mathrm{s}\mathrm{m}^{-1}$
A	area	${ m cm}^2$
B	magnetic field	T
C	capacitance	F
E	electric field	$ m Vm^{-1}$
E	energy	eV (J)
$E_{ m F}$	Fermi energy	${ m eV}$
E_g	bandgap energy	eV
$\hat{\mathbf{H}}$	Hamiltonian	eV (joule)
I	current	A
$I_{ m ds}$	drain current	A
L	length	μm
L	channel length	μm
m	mass	kg
m^{\star}	effective mass	kg
n	carrier density	${\rm cm}^{-2}$
n	charge carrier density	${ m Ccm^{-2}}$
$\hat{\mathbf{p}}$	momentum operator	$ m kgms^{-1}$
R	resistance	$k\Omega \mu m (\Omega)$
R_c	contact resistance	$\mathrm{k}\Omega\mathrm{\mu m}$
R_H	Hall coefficient	$\mathrm{m^3C^{-1}}$
$\hat{\mathbf{s}}$	spin operator	$\hbar \; (\mathrm{J} \mathrm{s})$
T	temperature	K
T	temperature	K

V	voltage	V
$V_{ m bg}$	backgate voltage	V
$V_{ m ds}$	drain voltage	V
$V_{ m H}$	Hall voltage	V
w	channel width	μm
μ	magnetic moment	${ m eVT^{-1}}$
μ	mobility	${\rm cm^2V^{-1}s^{-1}}$
μ_e	electron mobility	${\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}$
$\mu_{ ext{FE}}$	field-effect mobility	${\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}$
$\mu_{ m H}$	Hall mobility	${\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}$
μ_p	hole mobility	${\rm cm}^2{\rm V}^{-1}{\rm s}^{-1}$
ho	resistivity	$\Omega\mathrm{cm}$
$ ho_{xx}$	longitudinal resistivity	Ω
$ ho_{xy}$	transverse resistivity	Ω
σ	conductivity	μS
σ_{xx}	longitudinal conductivity	μS
σ_{xy}	transverse conductivity	μS
au	scattering time	s
$ au_{ m q}$	quantum scattering time	s
$\Phi_{ m B}$	barrier height	eV
$\Phi_{\mathrm{B}n}$	electron barrier height	eV
$\Phi_{\mathrm{B}p}$	hole barrier height	${ m eV}$
Φ_M	metal work function	${ m eV}$
Φ_S	semiconductor work function	eV
χ	electron affinity	eV
χ_S	semiconductor electron affinity	eV
ω_c	cyclotron frequency	Hz

List of Physical Constants

Symbol	Quantity	Value
$k_{ m B}$	Boltzmann's constant	$1.38066 \times 10^{-23}\mathrm{JK^{-1}}$
		$8.61734 \times 10^{-5}\mathrm{eV}\mathrm{K}^{-1}$
ϵ_0	dielectric constant	$8.85418 \times 10^{-12} \mathrm{A}^2 \mathrm{s}^4 \mathrm{kg}^{-1} \mathrm{m}^{-3}$
e	elementary charge	$1.60218 \times 10^{-19} \mathrm{C}$
eV	electron volt	$1.60218 \times 10^{-19}\mathrm{J}$
c	speed of light	$2.99792\times10^8\mathrm{ms^{-1}}$
h	Planck's constant	$6.62607 \times 10^{-34}\mathrm{Js}$
\hbar	reduced Planck's constant	$1.05457 \times 10^{-34}\mathrm{Js}\;(h/2\pi)$
$R_{\mathrm{K-90}}$	von Klitzing constant	25812.80745555Ω
m_e	electron mass	$9.109383 \times 10^{-31} \mathrm{kg}$
$k_{ m B}T$	Thermal energy	$0.02586\mathrm{eV}\ (T=27^{\circ}\mathrm{C})$
		$0.02526\mathrm{eV}\ (T=20^{\circ}\mathrm{C})$
μ_B	Bohr magneton	$9.274009\times 10^{-24}\mathrm{JT^{-1}}$
		$5.788381 \times 10^{-5}\mathrm{eV}\mathrm{T}^{-1}$
		$e\hbar/2m_e$ (atomic units)

Source: CODATA Recommende Values of the Fundamental Physics Constants: 2014, Mohr $et\ al.^1$

Acronyms

SB Schottky barrier

References

[1] PJ Mohr, DB Newell, and BN Taylor. Codata recommended values of the fundamental constants 2014,(2015). arXiv preprint arXiv:1507.07956, 2015.