RÉALISER UN POINTAGE, UN PERÇAGE ET UN AL

É SAGE

Sommaire

Initiation	Perfectionnement					
Domaine d'application 2 Principe et définition 2	Faire un pointage 3 Faire un perçage 3					
Vocabulaire2	r ane un perçage					
Hygiène et sécurité2						

Documentation complémentaire

• Guide pratique de l'Usinage : Fraisage, Hachette.

INITIATION

I. DOMAINE D'APPLICATION

Le pointage permet, à l'aide d'un foret à centrer, le guidage concentrique du foret par rapport à l'axe du trou. Le pointage est donc très important.

Le perçage permet, à l'aide d'un foret, de réaliser un trou :

• pour une ébauche;

• pour un taraudage; • pour un passage de vis.

II. PRINCIPE ET DÉFINITION

Le pointage permet un positionnement précis des trous à percer.

III. VOCABULAIRE

• Foret à centrer • Pointage • Centrage

IV. HYGIÈNE ET SÉCURITÉ

Vérifier le bon affûtage du foret avant de commencer une opération.

Il faut travailler avec des conditions de coupe adaptées pour éviter les copeaux en fil qui peuvent attraper les doigts.

V. FAIRE UN POINTAGE

1. Les types de forets

Il existe principalement deux types de forets pour le pointage.

Foret à centrer Foret à pointer (pour trous de centrage)

PERFECTIONNEMENT

2. Mise en œuvre d'un pointage

Il est important d'employer un foret à pointer ou à centrer qui soit proportionnel au diamètre du trou à percer.

Le foret à centrer doit être manipulé avec précaution. Il nécessite : • une lubrification ;

• des débourrages fréquents ; • une vitesse de coupe adaptée.

Le foret à pointer est plus rigide, et peut généralement effectuer le pointage en une seule passe.

Par un calcul judicieux de la profondeur du pointage, on peut aussi effectuer le chanfrein du trou.

Dans un souci de sécurité, il est parfois possible d'affûter le téton afin de le raccourcir ; il devient alors plus rigide et donc moins cassant.

VI. FAIRE UN PERÇAGE

Sauf pour le perçage de certains matériaux particuliers, on utilise des outils comprenant deux listels de guidage et deux goujures hélicoïdales décroissantes, avec, en général, une pointe d'angle au sommet de 120°. Ces forets sont soit à queue conique, soit à queue cylindrique.

PERFECTIONNEMENT

1. Les types de forets

1.1 - Le foret à queue conique

Ce type de foret tolère de gros efforts sur le corps de l'outil.

1.2 - Le foret à queue cylindrique

Ce type de foret peut être abloqué dans un mandrin de perçage ou par un portepince.

1.3 - Le foret à plaquettes, à queue conique ou cylindrique

Ce type de foret permet l'utilisation de grandes vitesses d'avance. Il est souvent accompagné d'un arrosage au centre.

2. Mise en œuvre d'un perçage

Pour réaliser un perçage, il faut avoir auparavant réalisé un pointage.

Pour des gros diamètres, vous pouvez faire un avant-trou pour gagner du temps, ou lorsque votre machine n'est pas assez puissante.

Tableau des vitesses de coupe pour le perçage

Perçage, alésage												
	Forets et alésoirs ARS								Tarauds ARS			
			Perçage Alésage									
Matière	Rr MPa	γ	V60 m/min	Angle pointe	Angle hélice	Ø < 10 f mm/tf	Ø > 10 f mm/tf	V60 m/min	a mm	Ø < 20 f mm/tf	V60 m/min	lubrifiant
Acier S235	500	25°	25	135°	30°	0,025	> 0,05	12,5	> 0,20	0,3	12	Huile de coupe
Acier inox	500	25°	20	120°	30°	0,02	> 0,04	8	> 0,20	0,15	6	Huile soluble

PERFECTIONNEMENT

Acier 35CD4	1100	25°	22	120°	30°	0,012	> 0,03	9	> 0,20	0,17	10	Huile de coupe
PVC	60		60	135°	30°	0,02		non	non	non	15	Air comprimé
Nylon PA6	80	0°	30	100°	30°	0,02		non	non	non	15	Air comprimé
Plexi PMMA	78	0°	40	140°	30°	0,02		non	non	non	10	Air comprimé
Laiton UZ30	400	18°	45	120°	15°	0,02	> 0,03	30	> 0,20	0,4	13	À sec
Bronze UE 12P	200	10°	20	120°	30°	0,037	> 0,03	12	> 0,20	0,9	7	Huile de coupe
Dural AU4G	280	35°	65	140°	30°	0,032	> 0,06	30	> 0,20	0,4	18	Pétrole

Rappel de la formule rotation

$$n = \frac{Vc \times 1000}{\pi \times d}$$

Rappel de la formule avance

$$V_f = n \times f_Z \times Z$$