Efecto de la edad y cohorte sobre la participación en actividades relacionadas con la salud. Encuesta SHARE

Descripción de share. "lorem ipsum blablabla"

Variable dependiente: Participación que indica si se ha participado al menos en alguna de las siguientes actividades.

La variable participacion toma los valores 0 y 1. Algunos descriptivos

Efecto edad sobre participación

Veamos las tablas de edad (en grupos de edad) y participación

```
##
                age_cat
## participacion (50,55] (55,60] (60,65] (65,70] (70,75] (75,80] (80,85]
##
       no_partic
                    6992
                             8038
                                     7734
                                             6849
                                                      6029
                                                              4929
                                                                      3413
##
       partic
                    5989
                             6552
                                     6637
                                             5520
                                                      4243
                                                              2779
                                                                      1494
##
                age_cat
##
  participacion (85,90]
                         (90,105]
##
       no_partic
                    1522
                               495
##
       partic
                     502
                               109
##
                age_cat
##
  participacion (50,55]
                          (55,60] (60,65] (65,70] (70,75] (75,80] (80,85]
       no_partic 0.5386
##
                          0.5509 0.5382 0.5537
                                                   0.5869
                                                           0.6395
                                                                    0.6955
##
                  0.4614
                          0.4491 0.4618 0.4463 0.4131
                                                           0.3605
                                                                    0.3045
       partic
                age_cat
## participacion (85,90] (90,105]
##
       no_partic 0.7520
                            0.8195
##
       partic
                  0.2480
                            0.1805
```

Gráficamente

participacion disminuye conforme aumenta la edad y esta disminución tiene un ritmo mayor a partir de los 70 años. Esto es compatible con un efecto cuadrático de la edad.

Para comprobarlo podemos calcular la proporción de participación en cada nivel de edad, y lo hacemos para cada ola. Esto se puede hacer calculándolo directamente.

```
# lo hacemos con la edad categorizada para que no salga una tabla muy grande
with(share.clean.paises.3.olas,tapply(participacion, list(age_cat,id_ola),function(x)mean(x=="partic",n")
```

```
##
             Ola 1 Ola 2 Ola 4
## (50,55]
            0.4234 0.4686 0.4892
## (55,60]
            0.4070 0.4503 0.4810
## (60,65]
            0.4058 0.4613 0.4983
## (65,70]
            0.3746 0.4223 0.5119
## (70,75]
            0.3366 0.4019 0.4687
## (75,80]
            0.3089 0.3300 0.4142
            0.2535 0.2931 0.3404
## (80,85]
            0.2198 0.2615 0.2536
## (85,90]
## (90,105] 0.1833 0.1301 0.2050
```

Lo que viene a continuación es sólo aclaratorio, y lo único que dice es que los modelos de regresión (lineales y logísticos) con predictores categóricos se pueden usar para calcular medias. A veces es mejor hacerlo así, ya que aparte de las medias nos dan también significación estadística y contrastes de diferencias de medias

Una forma equivalente de calcular la proporción de participación en cada categoría de edad y ola es considerar un modelo de regresión logística donde añadimos la interacción entre age_cat e id_ola

```
mod1 <- glm(participacion ~ age_cat * id_ola,family=binomial,data=share.clean.paises.3.olas)</pre>
# y ahora
share.clean.paises.3.olas$pred <- predict(mod1,newdata=share.clean.paises.3.olas,type="response")</pre>
with(share.clean.paises.3.olas,tapply(pred,list(age_cat,id_ola),mean))
##
             Ola 1 Ola 2 Ola 4
## (50,55]
            0.4234 0.4686 0.4892
## (55,60]
           0.4070 0.4503 0.4810
## (60,65]
            0.4058 0.4613 0.4983
## (65,70]
           0.3746 0.4223 0.5119
## (70,75]
           0.3366 0.4019 0.4687
## (75,80]
            0.3089 0.3300 0.4142
## (80,85]
            0.2535 0.2931 0.3404
## (85,90] 0.2198 0.2615 0.2536
## (90,105] 0.1833 0.1301 0.2050
```

Es decir, un modelo de regresión logística dónde consideramos las interacciones nos da una manera equivalente de calcular las medias de las proporciones, pero con la ventaja de que podemos ver la significativad.

Hasta aquí la aclaración

Gráficos de participación por edad y ola

Efecto cohortes

Podemos hacer un gráfico similar para las cohortes. Las cohortes consideradas son las siguientes.

```
table(share.clean.paises.3.olas$dn003_cat)
```

```
##
   (1900,1920] (1920,1930] (1930,1935] (1935,1940] (1940,1945] (1945,1950]
##
                                               11800
##
          1736
                      10464
                                    9103
                                                            13080
                                                                        15437
##
   (1950,1955] (1955,1960] (1960,1965]
##
         13026
                       6052
                                     122
```

La tabla cruzada con edad es.

```
with(share.clean.paises.3.olas,table(age_cat,dn003_cat))
```

dn003_cat

##	age_cat	(1900,1920]	(1920,1930]	(1930,1935]	(1935,1940]	(1940,1945]
##	(50,55]	0	0	0	0	0
##	(55,60]	0	0	0	0	1005
##	(60,65]	0	0	0	1020	6136
##	(65,70]	0	0	835	5603	5552
##	(70,75]	0	689	4387	4890	387
##	(75,80]	0	3882	3644	287	0
##	(80,85]	259	4549	237	0	0
##	(85,90]	840	1289	0	0	0
##	(90,105]	637	55	0	0	0
##	(dn003_cat				
##	age_cat	(1945,1950]	(1950,1955]	(1955,1960]	(1960,1965]	
##	(50,55]	1149	6246	5565	122	
##	(55,60]	6985	6255	487	0	
##	(60,65]	6818	525	0	0	
##	(65,70]	485	0	0	0	
##	(70,75]	0	0	0	0	
##	(75,80]	0	0	0	0	
##	(80,85]	0	0	0	0	
##	(85,90]	0	0	0	0	
##	(90,105]	0	0	0	0	

Gráficos de participación por cohortes y ola

Efecto de la edad y cohorte en cada ola

Gráficos de participación por edad, cohorte y ola

Viendo el gráfico de líneas al unir los puntos

