Punkte Korrektur Note:

Wintersemester 2014/15 Prof. Dr. Florian Heß // Dietrich Kuhn Carl von Ossietzky Universität Oldenburg

Klausur zum Modul EINFÜHRUNG IN DIE ZAHLENTHEORIE UND COMPUTERALGEBRA

Name:	nit so < n.									
Studie	ngang:									
ŀ	Die Klausur bestel können. Bitte prüf Seiten). Am Ende	en Sie	die V	ollstän	digkeit	Ihres E	Exempl	ars (es		
1	Es sind keine Hi Notizen – erlaubt. nanden, ausgescha	Bitte	legen	Sie Ihr			oder s	onstige		, falls vor-
I	Bei der Korrektur Rückseiten) gewert oerücksichtigt wer	tet. Fa	lls eine	Bearb	eitung	nicht di	irekt ur	iter der		
gov st	Das Entfernen der zung erfolgt aussc b.ä., kein Bleistift	hließli	ch mit	dokur				_		
I	Alle Schritte müsse Folgerungen werde verden.		ikte al	ogezoge	en. Vor	herige .	Aufgab	enteile		verwendet
	Erklärung: Mir i ler Klausur füh		kannt,	dass	Täusc	hungsv	ersuc	he zun		bestehen
	T-2P+2P)	ır Ker	ntnis	genomi	nen.					
							J)	Interscl	hrift)	
	_	. 11. 11	OA HOL	150 119	zueß Je	D RELLE	190 ye	pun [Sei $K=0$
	Aufgabe	1	2	3	4	5	K	В	M	

(Prof. Dr. F. Heß)

1. Aufgabe: p-adische Zahlen (9P=2P+2P+2P+3P)

- a) Für welche p konvergiert $\sum_{i=0}^{\infty} \left(\frac{10}{11}\right)^i$ in \mathbb{Q}_p ? Was ist dann der Grenzwert?
- b) Zeigen Sie $\lim_{n\to\infty} \frac{p^n}{p^n+1} = 0$ und $\lim_{n\to\infty} \frac{1}{p^n+1} = 1$ in \mathbb{Q}_p , wobei p eine Primzahl ist. Wie sieht es mit der Konvergenz bezüglich des archimedischen Betrags von \mathbb{Q} aus?
- c) Seien $a, b \in \mathbb{Q}$. Geben Sie eine konkrete Folge an, welche bezüglich eines nichtarchimedischen Betrags von \mathbb{Q} gegen a und bezüglich des archimedischen Betrags von \mathbb{Q} gegen b konvergiert.
- d) Zeigen Sie: Für $p, n \in \mathbb{Z}^{\geq 1}$ mit p Primzahl und $p \equiv 1 \mod n$ gibt es mindestens ein Element $x \in \mathbb{Z}_p$ mit $x^n = 1$ und $x^m \neq 1$ für alle $m \in \mathbb{Z}^{\geq 1}$ mit m < n.

2. Aufgabe: Ganzheit und Primideale (14P=2P+3P+2P+4P+3P)

Sei $K = \mathbb{Q}[\rho]$ mit Ring der ganzen Zahlen \mathfrak{o}_K , wobei ρ eine Nullstelle des Polynoms $f = x^3 + x^2 - 2x + 8$ ist, welches über \mathbb{Q} irreduzibel ist. Zeigen Sie:

- a) Die Diskriminante der Gleichungsordnung $\mathbb{Z}[\rho]$ ist betraglich gleich $4\cdot 503$.
- b) Die Elemente ω_1 , ω_2 , ω_3 mit $\omega_1 = 1$, $\omega_2 = \rho$ und $\omega_3 = (\rho^2 + \rho)/2$ bilden eine Ganzheitsbasis von \mathfrak{o}_K .
- c) Die Diskriminante von \mathfrak{o}_K ist betraglich gleich 503.
- d) Bestimmen Sie die Restklassengrade und Verzweigungsindizes der Primideale von \mathfrak{o}_K über 3 und 5.
- e) Bestimmen Sie die Restklassengrade und Verzweigungsindizes der Primideale von \mathfrak{o}_K über 2.

Tipp: Zeigen Sie unter Benutzung der Minimalpolynome von ω_2 und ω_3 folgende Aussage: Ist \mathfrak{p} ein Primideal von \mathfrak{o}_K über 2, so gilt $\omega_2, \omega_3 \in \mathbb{Z} + \mathfrak{p}$. Leiten Sie daraus den Wert des Restklassengrads von \mathfrak{p} ab. Für diesen Aufgabenteil dürfen Sie ohne Beweis benutzen, daß das Minimalpolynom von ω_3 gleich $x^3 - 2x^2 + 3x - 10$ ist.

Hinweis: Sie können verwenden, daß 503 eine Primzahl ist.

3. Aufgabe: Klassen- und Einheitengruppe (11P=5P+2P+2P+2P)

Sei $K = \mathbb{Q}[\sqrt{-13}]$ und \mathfrak{o}_K der Ring der ganzen Zahlen von K.

- a) Zeigen Sie, daß 2 in K verzweigt und 3 in K träge ist.
- b) Zeigen Sie, daß $\mathrm{Pic}(\mathfrak{o}_K)$ von der Klasse des über der 2 liegenden Primideals von \mathfrak{o}_K erzeugt wird.
- c) Zeigen Sie $\operatorname{Pic}(\mathfrak{o}_K) \cong \mathbb{Z}/2\mathbb{Z}$.
- d) Zeigen Sie $\mathfrak{o}_K^{\times} = \{-1, 1\}.$

4. Aufgabe: Eigenschaften von Dededindringen (9P=2P+3P+2P+2P)

Beweisen Sie die folgenden Aussagen:

- a) Sei K ein algebraischer Zahlkörper und \mathfrak{o}_K der Ring der ganzen Zahlen von K. Falls es nur endlich viele Primzahlen gibt, so besitzt \mathfrak{o}_K nur endlich viele Primideale.
- b) Ein semilokaler Dedekindring ist ein Hauptidealring.
- c) Es gibt einen algebraischen Zahlkörper K, so daß sein Ring \mathfrak{o}_K der ganzen Zahlen kein Hauptidealring ist.

Kombinieren Sie diese Aussagen zu einem Widerspruchsbeweis für die Existenz unendlich vieler Primzahlen.

5. Aufgabe (7P = 7.1P)

Kreuzen Sie an, ob folgende Aussagen richtig oder falsch sind. Für falsche Angaben gibt es Punktabzüge, die Gesamtpunktzahl kann nicht negativ werden.

Uneindeutige Markierungen werden als falsch gewertet!

Mit K wird ein algebraischer Zahlkörper und mit \mathfrak{o}_K sein Ring der ganzen Zahlen bezeichnet.

		richtig	falsch
a)	\mathfrak{o}_K besitzt als \mathbb{Z} -Modul immer eine Basis.		
b)	Eine Primzahl p ist genau dann in K verzweigt, wenn p die Diskriminante von \mathfrak{o}_K teilt.		
c)	Es gibt Ideale von \mathfrak{o}_K , die nicht durch zwei Elemente von \mathfrak{o}_K erzeugt werden können.		
d)	Ein $x \in \mathfrak{o}_K$ ist genau dann eine Einheit von \mathfrak{o}_K , wenn $N_{K/\mathbb{Q}}(x)$ eine Einheit in \mathbb{Z} ist.		
e)	\mathfrak{o}_K besitzt ein Primideal, welches kein maximales Ideal ist.		
f)	Die Klassengruppe von \mathfrak{o}_K ist stets endlich.		
g)	Die Einheitengruppe von \mathfrak{o}_K ist stets endlich.		