Aide- mémoire : Thermodynamique - Contrôle III (2016-2017)

• Equation d'état de Van der Waals

$$\left(P + \mathcal{G}^2 \frac{a}{V^2}\right) (V - \mathcal{G}b) = \mathcal{G}RT$$

• Equations différentielles de la thermodynamique

 $\begin{array}{ll} 1^{er} \ principe: & dU = \delta W + \delta Q \\ 2^{eme} \ principe & TdS \geq dU + PdV \\ (= r\'{e}versible, > irr\'{e}versible) & TdS \geq dH - VdP \\ \end{array} \qquad \begin{array}{ll} du = \delta w + \delta q \\ Tds \geq du + Pdv \\ Tds \geq dh - vdP \end{array}$

Différentielle de l'énergie interne : $dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV = \mathcal{G}c_V(V,T)dT + \varphi(V,T)dV$

Différentielle de l'enthalpie : $dH = \left(\frac{\partial H}{\partial T}\right)_P dT + \left(\frac{\partial H}{\partial P}\right)_T dP = \mathcal{G}c_P(P,T)dT + \psi(P,T)dP$

Différentielle de l'entropie : $dS = \begin{cases} \left(\frac{\partial S}{\partial T}\right)_{V} dT + \left(\frac{\partial S}{\partial V}\right)_{T} dV = 9c_{v}(V,T)\frac{dT}{T} + \alpha(V,T)dV \\ \left(\frac{\partial S}{\partial T}\right)_{P} dT + \left(\frac{\partial S}{\partial P}\right)_{T} dP = 9c_{p}(P,T)\frac{dT}{T} + \beta(P,T)dP \end{cases}$

Remarque: les fonctions $\varphi(V,T)$, $\psi(P,T)$, $\alpha(V,T)$, $\beta(P,T)$, $c_v(V,T)$ et $c_p(P,T)$ vous seront fournies

• Transformations thermodynamiques avec des gaz réels

transformation isochore (V=const): $dU = \delta Q = 9c_v dT \qquad du = \delta q = \frac{c_v}{u} dT$

transformation adiabatique réversible (S=const): dS = 0 ds=0

détente de Joule et Gay-Lussac (U=const) : $dU = \Im c_{\nu}(V,T)dT + \varphi(V,T)dV = 0$ détente de Joule – Thomson (H=const) : $dH = \Im c_{\nu}(P,T)dT + \psi(P,T)dP = 0$

<u>1^{er} principe pour des fluides en écoulement :</u>

 $\Delta H = W_{util} + Q_{ext_sys} \qquad \qquad \Delta h = w_{util} + q_{ext_sys}$

• Transitions de phase

 $\text{\'equations de Clapeyron - Clausius}: \left(\frac{\partial P}{\partial T}\right)_{L \leftrightarrow G} = \frac{r}{T(v"-v")} \qquad \left(\frac{\partial P}{\partial T}\right)_{S \leftrightarrow L} = \frac{\lambda}{T(v"-v")} \qquad \left(\frac{\partial P}{\partial T}\right)_{S \leftrightarrow G} = \frac{l}{T(v"-v")}$

r = h'' - h' = T(s'' - s') - chaleur massique de vaporisation ; λ et l - chaleur massique de fusion et de sublimation $c_v = c_n \rightarrow \infty$ lors des transitions de phases à P=const et T=const

• Machines thermiques (centrales, machine frigorifique, pompe à chaleur):

Travail massique du cycle	$w=q_1-q_2$
Chaleur massique reçu au cours de la	$q_1 = q \cdot \eta_{comb}$
combustion	
Travail utile massique des	$ \mathbf{w}_{\text{utile}} = \Delta \mathbf{h} = \mathbf{h}_{\text{fin}} - \mathbf{h}_{\text{ini}} $
turbines/pompes/compresseurs	
Puissance électrique produite par une	$N = G_{eau} \cdot w_{cycle} \cdot \eta_{mec} = G_{comb} \cdot q \cdot \eta_{tot} \text{ avec } G_{eau} \text{ et } G_{comb} - \text{ d\'ebits}$
centrale	massiques de l'eau et du combustible, respectivement, kg/s
Puissance du compresseur de la	$N=G_{fluide}$ · W_{cycle} $/\eta_{mec}$, avec G_{fluide} – débit massique du fluide
machine frigorifique	frigorigène
Rendements thermique du cycle :	
moteur	$ \eta_{th}=w/q_1 < \eta_{Carnot} < 1$ $\eta_{Carnot} = 1 - T_{II}/T_{II}$
machine frigorifique	1 -1 -121
pompe à chaleur	$e_{PAC}=q_1/w>1$; $e_{PAC}e_{PAC}=T_I/(T_I-T_{II})$
	T _I et T _{II} - températures des sources chaude et froide