# Kompleksna eksponentna preslikava in kaos

Lenart Miklavič

Fakulteta za matematiko in fiziko

27. maj 2025

## Hiperbolični aksiom

#### Aksiom 1

Za poljubno premico p in točko na A, ki ni na njej, obstaja natanko ena premica q, ki gre skozi A in ne seka premice p.

#### Aksiom 2

Obstajata premica p in točka A, ki ni na njej, tako, da obstajata vsaj dve premici q in r, ki gresta skozi A in ne sekata premice p.

## Hiperbolična metrika

$$l_{\mathbb{D}}(\gamma) \coloneqq \int_{\gamma} \rho_{\mathbb{D}}(z) |\mathrm{d}z| = \int_{a}^{b} \frac{2|\gamma'(t)|}{1 - |\gamma(t)|^{2}} \,\mathrm{d}t$$

$$d_{\mathbb{D}}(z,w)\coloneqq\inf_{\gamma}l_{\mathbb{D}}(\gamma)$$

### Ocena za gostoto

Naj bo R oddaljenost od roba:  $R \coloneqq \inf\{|z-w| : w \in \partial U\}$ 

$$\frac{1}{2R} \le \rho_U(z) \le \frac{2}{R}$$



# $\boxed{\mathbb{C} \setminus (-\infty, 0]}$



# Desna polrvnina



ŝ



## Delovanje eksponentne preslikave



## Občutljivost na začetne pogoje

### Dodatni izrek

Naj bo  $W\subset\mathbb{C}$  odprta in neprazna. Potem za neskončno mnogo  $n\in\mathbb{N}$  velja  $f^n(W)\cap(-\infty,0]\neq\emptyset$ .

## Občutljivost na začetne pogoje

Naj bo  $X\subseteq\mathbb{C}$  in d metrika na X. Zvezna preslikava  $f\colon X\to X$  je občutljiva na začetne pogoje, če obstaja tak  $\delta>0$ , da za vsako odprto množico  $U\subseteq X$  obstajata  $x,y\in U$ , da velja  $d(f^n(x),f^n(y))>\delta$  za nek  $n\in\mathbb{N}$ .

### Občutljivost v sferični metriki

Zvezna preslikava  $f\colon \mathbb{C} \to \mathbb{C}$  je občutljiva na začetne pogoje glede na sferično metriko, če obstajata  $\delta>0$  in R>0, tako da za vsako odprto in neprazno množico  $U\subset \mathbb{C}$  obstajata  $z,w\in U$  ter  $n\geq 0$ , da velja  $|f^n(z)|\leq R$  in  $|f^n(z)-f^n(w)|\geq \delta$ .