

2021 서울시 빅데이터 캠퍼스 공모전

이륜차 사고 데이터 분석을 통한 사고발생구역 및 취약지 예측

TEAM 이사방 권미래 권혜정 전민철 홍준기

[목차]

 01
 02
 03
 04
 05

 기획 배경
 분석 방법론
 분석 과정
 분석 결과
 결론

01 기획 배경 - 현황

[그림1] 서울시 교통사고 사망자 대비 이륜차사고 사망자 (단위: 명)

출처: 도로교통공단

[그림2] 2016~2020년 이륜차 교통사고 건수 (단위: 건)

출처: 도로교통공단

- 대책 시행으로 연도별 서울시 전체 교통사고 사망자 수는 감소하는 추세를 보이고 있음.
- 하지만 이륜차사고 사망자 수는 2020년 기준, 전체 교통사고 사망자 대비 23%를 차지하며 증가하는 추세를 보이고 있음.
- 사망자 수 이외에도 사고 건수는 2020년에 21,258건을 기록하며 근 5년 중에서 가장 높은 수치를 기록하고 있음.

01 기획 배경 - 문제 제시

코로나로 인한 **배달 수요의 증가**로 자연스레 **이륜차 등록대수도 증가**하는 추세를 보이고 있음.

- 음식 서비스 거래액은 전년 동월 대비 72.5%증가
- 서울시의 이륜차 등록대수는 2020년을 기준으로 454,448대로 최고치를 기록함.
- 삼성교통안전문화연구소에 따르면
 배달용 오토바이 1대당 연간 2회 이상의
 교통사고가 발생함.

실제로, 코로나로 인한 배달 사업이 확장됨에 따라 서울시 이륜차 사고 사망자 3명 중 1명은 배달 노동자임.

출처: 동아일보 2021.08.12

즉, 배달 수요 증가와 이륜차 사고 증가의 연관성이 확인되었으므로 이를 반영한 정책 및 방안이 필요함.

01 기획 배경 - 프로젝트 목표

- 국민생명 지키기 3대 프로젝트 및 10대 핵심과제의 일환으로 교통사고 예방 분야에서 정부는 다음과 같이 제시하였음.
 - ✓ 고속도로, 이륜차 등 취약 분야에 대한 대책을 강화하고, 보행자 중심의 교통체계로 전환하기 위해 관련 제도를 중점 개선
 - ✓ 최근 **배달문화 확산** 등으로 증가하고 있는 **이륜차 사고 예방**을 위해 **불법행위를 감시**하는 공익제보단을 확대·운영 (1,000명 →2,000명)
 - ✓ 22년까지 교통·산재·자살 등 국민생명 관련 3대 분야에서 사망자 절반 줄이기

출처: 대한민국 정책브리핑

서울시, 2021년까지 교통사고사망자 절반 이상 줄인다

출처: 서울특별시 교통운영과 2017.04.11

> 서울시, '교통안전 위협' 무등록 및 불법개조 이륜자동차 특별단속 실시 출처: 서울특별시 도시교통실 택시정책과 2020.10.15

정부와 서울시 역시, 교통사고 예방에 힘쓰고 있으며, 특히 <mark>이륜차 사고 예방</mark>에 관심이 있음을 확인.

따라서 본 프로젝트에서는 이륜차 사고 데이터 분석을 통해 사고발생구역 및 취약지를 예측하여, 서울시의 <mark>이륜차 사망자 수를 감소</mark>시키고자 함.

02 분석 방법론 - 프로세스

02 분석 방법론 - 변수 선정

- TAAS(교통사고분석시스템)에서 제공하는 '2020년 이륜차 교통사고 데이터'를 기반으로 행정동을 추림.
 - ✓ 12,323개의 이륜차 교통사고를 분석한 결과, 총 25개의 자치구, 209개의 행정동이 나옴.
 - *이때 개포1동, 개포2동과 같이 나누어져 있는 행정동도 TAAS 상에는 개포동으로 표현되어 있어 데이터의 일관성을 맞추기 위해 통일하여 표현함. 즉, 209개의 행정동이지만 실제로는 209개 이상의 행정동을 포함하고 있음.

시군구	사고내용	사망자수	중상자수	경상자수	부상신고자수	도로형태	가해운전자 차종	가해운전자 상해정도	피해운전자 차종	피해운전자 상해정도
서울특별시 강남구 개포동	중상사고	0	1	0	0	교차로 - 교차로횡단보도내	이륜	상해없음	보행자	중상
서울특별시 강남구 개포동	중상사고	0	1	0	0	단일로 - 기타	이륜	중상		
서울특별시 강남구 개포동	경상사고	0	0	1	0	단일로 - 기타	이륜	경상	화물	상해없음
서울특별시 강남구 개포동	중상사고	0	1	0	0	교차로 - 교차로부근	이륜	중상	승용	상해없음
서울특별시 강남구 개포동	중상사고	0	1	1	0	교차로 - 교차로부근	이륜	상해없음	승용	경상

[표1] TAAS_2020년 이륜차 교통사고 데이터셋의 일부

- ✓ 시군구에서 자치구와 행정동을 추출한 뒤, 이를 기반으로 각 행정동의 사망/중상/경상자수를 집계함.
- ✓ 도로형태 칼럼을 교차로, 단일로 나누어 분석하여 추출함. 이때 기타는 알 수 없으므로 제외함.
- ✓ 가해자 운전자 차종이 이륜이거나 피해자 운전자 차종이 이륜인 것만을 분석하여 이륜차 교통사고에 집중함.

02 분석 방법론 - 변수 선정

- 01 **사망/경상/중상자수**: 사망자수와 더불어 경상자/중상자수는 사망자가 될 수 있는 잠재적인 가능성을 가지고 있기에 선정함.
- **02** 거주 인구수: 거주 인구수가 많을수록 통행량이 많아지며, 이는 사고에 유의미한 결과를 미칠 것으로 생각해 선정함.
- 03 1인 가구수: 1인 가구수는 배달을 가장 많이 이용한 가구로, 1인 가구수가 많은 곳에서 이륜차 사고가 발생할 확률이 높을 것으로 생각해 선정함.
- **04** 교차로/단일: 지역 내 교통 및 도로 상황에 따른 복잡함이 사고에 영향을 줄 것으로 생각해 선정함.
- **05 도로 면적**: 도로 면적이 이륜차 사고에 영향을 미칠 것이라 생각해 선정함.
 - ✓ 거주인구와 1인가구 역시 앞서 언급한 대로 데이터의 일관성을 맞추기 위해 합산하여 계산함(개포동의 경우 개포1동과 개포2동의 거주인계를 합산하여 계산함).
 - ✓ 도로면적 = 행정동별 면적 * 각 행정동에 해당하는 구별 도로율

자치구	행정 동	경상자수	사망자수	중상자수	거주인구	1인가구	도로면적	교차로	단일
강남구	개포동	30	0	19	48280.46	3888	1.242666	34	13
강남구	논현동	113	0	40	44834.08	11739	0.641376	53	74
강남구	대치동	88	1	34	83775.69	6426	0.830016	62	60
강남구	도곡동	52	0	19	56573	3280	0.481032	36	29
강남구	삼성 동	53	0	33	24537.46	5669	0.749844	32	47
강남구	세 곡동	17	1	13	44701.31	4891	1.499688	3	7
강남구	수서동	13	1	9	15549.23	3083	0.337194	14	16
강남구	신사동	40	1	19	16984.08	2047	0.445662	15	33
강남구	압구정동	20	1	7	27502.08	1822	0.596574	7	10
강남구	역삼 동	190	1	56	73176.38	17470	0.8253	116	113
강남구	일원동	16	0	12	58023.92	5481	1.117692	8	15
강남구	청담 동	40	3	22	27874.54	3203	0.549414	16	36

[표2] 완성된 전체 데이터셋의 일부

03 분석 과정 - 상관관계 분석

- ▶ 변수들 간의 범위를 맞춰 주기 위해 Min-Max 정규화를 이용하여 0과 1사이의 값으로 스케일링한 뒤, **상관관계**를 파악함.
 - ✓ 209개의 행정동을 군집화한 뒤, 분석하기 위해 다음과 같이 군집화할 기준 변수를 선정함.
 - 비교적 낮은 상관관계를 보인 사망자수와 도로면적은 분석에서 제외시키기로 함.
 - 이후 인명 피해라는 공통점이 있는 변수(경상/중상) 중에 <mark>잠재적인 사망자</mark>를 줄이고자 하는 연구 목적을 위해 <mark>중상자수</mark>를 기준으로 분석하기로 함.
 - 인구 변수를 중요하게 생각하여 <mark>거주인구</mark>, 1인가구를 모두 선택하며, 도로 변수인 교차로와 단일 중, 조금 더 높게 나온 <mark>교차로</mark>를 선택함.

03 **분석 과정** - 군집화

- 🔪 군집화된 행정동을 추리기 위해 K-means clustering을 사용함.
 - ✓ K-means clustering algorithm은 주어진 데이터를 k개의 클러스터로 묶는 알고리즘으로, **각 클러스터와 거리 차이의 분산을 최소화**하는 방식임.
 - ✓ 앞서 상관관계 분석을 통해 중상자수와 가장 높은 상관관계를 보였던 상위 3개 변수인 <mark>거주인구, 1인가구, 교차로</mark>를 선택하여 군집화를 진행함.
 - ✓ 적절한 K-means clustering의 군집 수를 찾기 위해 elbow method를 이용하였음.

[그림8] 중상자수_1인가구 elbow method 결과

[그림9] 중상자수_교차로 elbow method 결과

03 **분석 과정** - 군집화

- k를 3으로 둔 뒤, K-means clustering을 진행함.
 - ✓ 1개부터 12개까지 반복 학습을 한 결과, 군집 내 분산(SSE)이 완만하게 줄어드는 지점(k)인 3을 골라 군집화를 진행하였음.
 - ✓ 군집2의 경우 중상자수와 거주인구, 1인가구, 교차로와의 높은 상관관계를 가지는 것을 확인할 수 있었음.

03 분석 과정 - 군집화 결과

- 3개의 군집 결과, 중상자와 높은 관계를 가지는 **군집2**를 골라 분석을 진행하였음.
 - ✓ 서울시 자치구 25개, 행정동 209개에서 자치구 11개, 행정동 12개로 추려졌음.

TL+I T	해저도
자치구	행정동
강남구	역삼동
강동구	천호동
강서구	화곡동
관악구	낙성대동
관악구	신림동
구로구	구로동
금천구	독산동
노원구	상계동
동작구	상도동
서초구	서초동
송파구	잠실동
양천구	목동
양천구	신월동
양천구	신정동
중랑구	면목동

자치구	행정동
강남구	역삼동
강동구	천호동
강북구	수유동
강서구	화곡동
관악구	낙성대동
관악구	신림동
구로구	구로동
금천구	독산동
노원구	상계동
동작구	상도동
서초구	서초동
송파구	잠실동
양천구	신정동
중랑구	면목동

자치구	행정 동
강남구	역삼동
강동구	천호동
강북구	리아동
강북구	수유동
강서구	화곡동
관악구	낙성대동
관악구	신림동
구로구	구로동
금천구	독산동
노원구	상계동
서초구	서초동
송파구	잠실 동
양천구	신정동
중랑구	면목동

자치구	행정동	경상자수	사망자수	중상자수	거주인구	1인가구	도로면적	교차로	단일
강남구	역삼동	190	1	56	73176	17470	0.825	116	113
강동구	천호동	87	2	61	89455	15332	0.747	78	65
강서구	화 곡동	182	0	74	200851	30986	1.486	125	108
관악구	낙성대동	194	1	91	17055	6341	0.577	141	88
관악구	신림동	237	4	99	21836	11942	0.137	157	129
구로구	구로동	132	1	52	120521	21516	1.149	101	61
금천구	가산동	40	0	18	22024	9775	0.522	21	21
노원구	상계동	165	1	72	207516	20848	3.718	143	89
서초구	서초동	103	0	51	103334	12821	1.705	78	72
송파구	잠실동	133	2	77	150095	10383	1.977	71	80
양천구	신정동	100	1	54	177796	14359	1.935	68	63
중랑구	면 목동	210	0	75	139351	22193	1.563	133	118

[표3] 중상자수_거주인구 군집2 [표4] 중상자수_1인가구 군집2 [표5] 중상자수_교차로 군집2

[표6] 공통된 군집의 데이터셋

	경상자수	사망자수	중상자수	거주인구	1인가구	도로면적	교차로	단일
전체 행정동	41.68	0.42	18.49	42000.94	5862.60	0.63	27.86	24.68
군집화된 행정동	147.75	1.08	65.00	110250.73	16163.83	1.36	102.67	83.92

[표7] 데이터셋 변수 대비 중상자수 비교

군집화된 행정동의 경우, 전체 데이터셋의 평균보다 각 변수에서 월등히 높은 값을 보임. 즉, **제대로 군집화가 되었음**을 확인함.

03 **분석 과정** - 취약지 파악

[그림13] 군집 행정동 시각화

한국산업안전보건공단에서 제공하는 '이륜차 사고 다발 구역' 좌표를 군집 행정동 위에 나타내어 취약지를 파악함.

[그림14] 이륜차 사고 다발 구역 시각화

03 분석 과정 - 버퍼 생성

[그림15] 이륜차 사고 다발 구역 버퍼 시각화

- 사고에 영향을 미치는 외부 환경적 특징은 유사할 것이라 전제 하에 다음과 같이 분석을 진행함.
 - ✓ 이륜차 사고 다발 구역의 사고 건수에 따라 버퍼의 크기를 조정하여 특성을 분석함. *버퍼란 중심점을 기준으로 원형으로 그려지는 영역을 의미함
 - ✓ 사고 다발 구역의 사고 건수를 크게 5단계로 나누었으며, 3_5건을 50m로 기준으로 한 단계씩 커질 때마다 버퍼의 크기를 25m 늘려 분석함.각 단계당, 균등하게 나누기 위해 다음과 같이 설정함. (3_5건, 6_9건, 10_13건, 14_18건, 19_26건)
 - ✓ 사고 다발 구역을 버퍼의 중심으로 잡고 반경 50m 범위 내에 있는 건물(공동주택, 단독주택), 횡단보도, 신호등의 위치 정보를 QGIS 상에 표시

03 분석 과정 - 버퍼 생성 결과

- 버퍼에 따른 단독주택, 공동주택, 횡단보도, 신호등의 개수를 파악함.
 - ✓ 교차로는 QGIS 상에서 도로 공간 데이터로 확인이 가능하며, 이와 더불어 도로 교통 시설물인 신호등, 횡단보도를 추가적으로 살펴봄.
 - ✓ 1인 가구의 80%가 단독주택, 다세대주택, 아파트에 거주한다는 통계 자료에 착안해, **거주인구와 1인가구 변수**를 대신할 수 있도록 **단독주택, 공동주택을** 사용함. 출처: 인구주택총조사(통계청), 2019

버퍼	버퍼 개수	단 독주 택	공동 주택	횡단보도	신호등
3_5	37	93	87	125	203
6_9	25	192	77	119	194
10_13	14	100	73	83	120
14_18	3	29	18	24	33
19_26	4	131	23	61	55

버퍼	단독주택	공동 주택	횡단보도	신호등
3_5	2.51	2.35	3.38	5.49
6_9	7.68	3.08	4.76	7.76
10_13	7.14	5.21	5.93	8.57
14_18	9.67	6.00	8.00	11.00
19_26	32.75	5.75	15.25	13.75

[표8] 버퍼 당 전체 개수

[표9] 버퍼 당 기준별 평균 개수

- 버퍼에 따른 그리드를 생성하여 분석하기에 용이한 그리드를 선정함.
 - ✓ 버퍼 3_5의 경우 100m * 100m의 그리드가 생성되지만, 버퍼 10_13만 되어도 200m * 200m가 되어 사고 장소를 특정하기에 어려웠음
 - ✓ 버퍼 3_5의 경우 100m *100m의 그리드가 생성되어 해당 그리드 내에 단독주택, 공동주택, 횡단보도, 신호등 등의 특징을 분석하기에 용이했음.

즉, 버퍼 3_5는 **사고 발생의 최소 단위**로써 가장 많은 버퍼가 생성되어 특징을 분석하기에 용이하리라 생각되며, 적절한 그리드 반경이 생성되어 **그리드 내의 도로 공간 데이터를 분석하기에 용이함**을 확인할 수 있었음.

03 분석 과정 - 그리드 생성

[그림19] 군집 행정동 평균 충족 그리드

- > 3_5 버퍼 안에 존재하는 공통주택, 단독주택, 신호등, 횡단보도 숫자의 평균을 내어 그리드를 생성함.
 - ✓ 최소한의 위험부터 방지하자는 목적으로, 기존의 사고 다발 구역을 포함한 취약지 예측을 위해 3_5 버퍼가 가진 특징을 중심으로 취약지를 예측하고자 함.
 - ✓ 군집 행정동을 버퍼의 지름과 동일한 100m * 100m 그리드 폴리곤으로 레이어를 만든 후, 각 그리드 내에서 존재하는 *해당 특징들
 (공동주택, 단독주택, 신호등, 횡단보도)이 평균을 넘긴다면 사고가 발생했던 구역 만큼의 특징을 가지기에 위험군이라고 파악할 수 있음.
 * 단독주택: 2.51개, 공동주택: 2.35개, 횡단보도: 3.38개, 신호등: 5.49개 이상

공동주택 조건 충족 격자 신호등 조건 충족 격자 횡단보도 조건 충족 경자

04 분석 결과 - 정규화

- 이후, 전체 군집 행정동에서의 (그리드 내의 숫자/해당 레이어의 전체 객체의 수)를 연산해 정규화를 진행함.
 - ✓ 정규화 수치를 합산한 결과를 QGIS 상에 Heatmap을 통해 4구간으로 나누어 표현함.
 - ✓ 가장 상위의 구간 즉 4구간에서 사고 발생 구역과 가장 유사한 특징을 가지거나 그 이상의 위험이 예상될 수 있는 지역이라는 결론을 도출함.

* 1구간: 0.01-0.12, 2구간: 0.12-0.23 3구간: 0.23-0.34, 4구간: 0.34-0.45

✓ 정규화 수식

$$f(k) = \sum_{j=1}^{4} y_{kj}$$
 $f(k) = k$ 번째 지역의 정규화 값 합산 $k(관찰지역수) = 1, 2, 3, \cdots, n$ $y_{kj} = k$ 번째 지역의 j 특성 정규화 값 $j=1, 2, 3, 4$ $y_{kj} = \frac{x_{kj}}{\sum_{j=1}^{4} x_{kj}}$ $x_{ki} = k$ 번째 지역의 j 특성 실제 분포 개수 $y=1, 2, 3, 4$

Heatmap을 통한 정규화 결과, 강서구의 <mark>화곡1동</mark>, 구로구의 <mark>구로3동</mark>과 <mark>구로4동</mark>이 도출됨.

04 분석 결과 - 히트맵 결과

04 분석 결과 - 화곡1동

가로공원길76길

[그림22] 화곡1동 그리드

곰달래로15길

04 분석 결과 - 구로3동

디지털로27길

[그림23] 구로3동 그리드

04 분석 결과 - 구로4동

RAB TOTALS

OR TOTALS

도림로3길

[그림24] 구로4동 그리드

05 결론

[사진1] 화곡1동 예측 취약지 중 일부

[사진2] 구로3동 예측 취약지 중 일부

[사진3] 구로4동 예측 취약지 중 일부

분석 결과, 사거리이면서 횡단보도와 신호등이 미비하거나 교차로가 많이 있음을 확인할 수 있었음.

이는 <mark>운전자의 시야가 좁아지는 곳</mark>으로 **주변의 교통상황을 파악하기 어려워 보임**을 확인할 수 있었음.

이러한 곳을 행정동별로 파악하여 집중 관리를 한다면 이륜차 사망자 수 감소에 큰 기여를 할 수 있으리라 생각됨.

05 결론 - 기대효과

- 전 프로젝트는 이륜차 사고 증가와 연관 있는 <mark>배달 관련 변수를</mark> 고려하였으므로, 이는 배달 관련 이륜차 사고에 대한 정책이 미흡한 상황에서 <mark>정책 개선 및 예방책</mark>의 역할을 할 수 있음.
- 02 제한된 예산을 고려해 예측된 취약지를 집중적으로 하여, <mark>볼록거울의 설치</mark>를 통해 시야를 확보할 수 있으며, 배달의 특성상 야간 배달이 많은 경우 LED 표시등, 가로등을 추가 설치하며 보완할 수 있음.
- 03 더 나아가, 예측된 취약지에 이면도로 사고 방지를 위해 쓰이는 스마트 교차로 알리미 설치를 통해 이륜차 사고 예방 및 사망자 수 감소에 긍정적인 영향을 미칠 것으로 기대됨.
 - * **스마트 교차로 알리미**는 차량이 교차로에 진입하면 안내 음성 메시지와 함께 보행자에게는 차량접근 중 안내표시가, 차량운전자에게는 차량검지기를 통한 제한속도 초과여부가 문구 및 이미지로 **LED사인보드**에 표시됨. 또 이와 동시에 차량 접근 시 교차로 중심의 **바닥경광등**이 점등돼 **운전자와 보행자의 주의를 환기**시키며 **사고를 예방**할 수 있음.
- 04 사용한 변수 및 분석 과정을 <mark>타지역에 적용</mark>하여 취약지를 예측할 수 있을 것으로 기대됨.
- 05 QGIS 외에도 본 프로젝트에서 사용한 변수들을 AI 기술을 활용해 취약지를 예측할 수 있을 것으로 기대됨.

[사진4] 스마트 교차로 알리미

[사진5] 양평동의 교차로 알리미

05 **결론** - 참고 문헌 및 사용 데이터

▶ 참고 문헌

- 1. 송민수. (2020), 오토바이 배달원, 얼마나 위험한가. 비정규 노동(월간) 1월호. 16~23(8pages)
- 2. 이지선. (2020). 배달 이륜자동차 교통안전 개선 방향.한국교통연구원. 월간교통, 24-29(6 pages)
- 3. 안전감시국 생활안전팀. (2021). 이륜차 안전모 안전실태조사. 한국 소비자원, 1~15(15pages)
- 4. 이륜차 교통사고, 주말 및 야간 시간 집중 보도자료. 한국 도로교통공단(2020).

▶ 분석 툴

> 사용 데이터

번호	데이터명	기준(갱신)년도	활용 목적	출처
1	서울시 행정동 단위 거주인구 데이터	2020년	행정동별 거주인구 파악	서울특별시 빅데이터 캠퍼스
2	서울시 10m 단위 도로 구간 공간데이터	2016년	QGIS 활용	서울특별시 빅데이터 캠퍼스
3	서울특별시 교통안전시설물 횡단보도 정보	2021년	QGIS 활용	서울 열린데이터광장
4	서울시 가구원수별 가구수 통계	2020년	행정동별 1인가구수 파악	서울 열린데이터광장
5	서울시 도로 현황 (도로율) 통계	2020년	행정동별 도로 면적 산출	서울 열린데이터광장
6	서울시 행정구역 (동별) 통계	2020년	행정동별 도로 면적 산출	서울 열린데이터광장
7	서울시 행정동 경계면	2020년	QGIS 활용	국가공간정보포털 오픈마켓
8	부동산 개방 데이터 - GIS건물통합정보	2021년	QGIS 활용	국가공간정보포털 오픈API
9	이륜차 교통사고 데이터	2020년	행정동별 지표 파악	TAAS(교통사고분석시스템)
10	이륜차 사고다발구역 조회서비스	2020년	QGIS 활용	한국산업안전보건공단

감사합니다,

TEAM 이사방 권미래 권혜정 전민철 홍준기