

Session 4

Heredity II

Fast Recapping

- ♦ Mendelian inheritance is a set of primary tenets, underlies much of genetics, relating to the transmission of hereditary characteristics from parent organisms to their children.
- ♦ Why did he select a pea plant for his experiments?
 - The pea plant can be easily grown and maintained.
 - They are naturally self-pollinating but can also be cross-pollinated.
 - It is an annual plant, therefore, many generations can be studied within a short period of time.
 - It has several contrasting characters.
- ♦ Mendel conducted two experiments: Monohybrid Cross & Dihybrid Cross to determine the laws of inheritance.

♦ He *Considered 7 main contrasting traits in the plants*. Then, conducted both the experiments to determine laws of inheritance.

♦ Mendel's Laws

Mendel discovered that by crossing: white flower and purple flower. The result was a hybrid offspring, rather than being a mix of the two colors, the offspring was purple flowered -----> [F1]

♦ Mendel's Conclusions

■ Conceived the idea of heredity units, which he called "factors" => "Genes", Characteristics are Dominant - هنانه & Recessive - منانه , Each parent has a gene pair in each cell for each trait studied, One member of the gene pair segregates into a gamete, Each gamete only carries one member of the gene pair, Gametes unite randomly and irrespective of the other gene pairs.

♦ Genetics Definitions

- <u>Allele</u>: one alternative form of a given allelic pair.
- Allelic pair: the combination of two alleles which comprise the gene pair.
- **Genotype:** the **specific allelic combination** for a certain gene.

♦ Mendel's Laws of Inheritance

■ Law of Segregation:

Alleles are separated during the gametes formation, so that each gamete carries only one allele for each gene

■ Law of Independent Assortment::

Segregation of alleles for gene occurs independently to any other gene

Principle of Dominance:

Recessive alleles will be masked by dominant alleles

♦ For the F2 generation, there are three combinations of genotypes:

♦ Law of Dominance

■ In a heterozygous HD, the allele which masks the other is referred to as dominant, while the allele that is masked is referred to as recessive.

♦ Mendel's 1st Law (segregation)

■ States that a diploid organism passes a randomly selected allele to its offspring, such that the offspring receives one allele from each parent.

The [22] generation was created by selfing the F1 Generations.

■ Monohybrid Cross:

As HZ and HD individuals are phenotypically identical (3:1) ratio.

♦ Mendel's 2nd Law(Independent Assortment)

- Independent assortment allows the calculation of genotypic and phenotypic ratios based on the probability of individual gene combinations.
- It states that genes do not influence each other with regard to the sorting of alleles into gametes: every possible combination of alleles for every gene is equally likely to occur.
- It can be illustrated by the dihybrid cross.
- **Dihybrid Cross**: a cross between two parents that express different traits for two characteristics.

Consider the characteristics of seed color and seed texture for two pea plants: one that ha: Green, wrinkled seeds (yyrr) and another has Yellow, round seeds (YYRR). As each parent is homozygous.

- The law of segregation indicates that the gametes for the green/wrinkled plant are all **yr**, while the gametes for the yellow/round plant are all YR. Therefore, the F1 generation of offspring all are **YyRr**.
- For the F2 generation, the law of segregation requires that each gamete receive either an R allele or an r allele along with either a Y allele or a y allele.
- The law of independent assortment states that a gamete into which an rallele is sorted would be equally likely to contain either a Yallele or a yallele.
- Thus, there are four equally likely gametes that can be formed when the YyRr heterozygote is self-crossed as follows: YR, Yr, yR, yr.

 Arranging these gametes along the top and left of a 4 × 4 Punnett square gives us 16 equally likely genotypic combinations.

■ From these genotypes, we infer a phenotypic ratio of: 9:3:3:1
9 round/yellow: 3 round/green: 3 wrinkled/yellow: 1 wrinkled/green.

Resulting genotypes: 9/16 R-Y-: 3/16 R-yy: 3/16 mY-: 1/16 myyResulting phenotypes: 9/160: 3/160: 3/160: 1/160

Comparison	Law of Segregation	Law of Independent Assortment
Meaning	It denotes the theory of the separation of copies of genes before reproduction.	It denotes those multiple genes pertaining to similar traits can be passed on to the offspring without any segregation before.
Ratio of offspring	3:1 is the ratio.	9:3:3:1 is the ratio.
States about	Segregation of alleles	Behavior and end result of alleles
Number of alleles	Only one allele of one gene is passed on to the offspring.	Multiple genes pertaining to similar traits can be passed on to the offspring.