Détection de fraude bancaire

Projet de certification – Implémentation d'un modèle de ML pour la néobanque Fluzz

Contexte & Objectifs

Augmentation des transactions frauduleuses dans les néobanques

Les clients sont facturés pour des achats qu'ils n'ont pas réalisés. Le coût final est supporté par la banque.

Objectifs du projet

- Analyser les transactions historiques pour détecter des schémas frauduleux
- Concevoir un modèle prédictif robuste et éthique
- Déployer un service de détection avec tableau de bord

Cycle de vie des données

- Acquisition & Stockage: collecte des données, base interne sécurisée
- **Préparation** : nettoyage, normalisation, gestion valeurs manquantes
- **Transformation** : PCA déjà appliquée, feature engineering
- **Entraînement**: orchestration via Airflow pipeline
- **Déploiement** : FastAPI, Docker / Kubernetes
- **Supervision** : Prometheus & Grafana
- **Réentraînement** : intégration de nouveaux jeux de données, amélioration continue

Jeu de données

Nombre de lignes: 284807Nombre de colonnes: 31

- Time contient le montant et l'horodatage de chaque transaction depuis la première du dataset
- Amount représente le coût de la transaction
- V1 à V28 sont des data pré-process
- Aucune valeurs null

Colonne	Null	Туре
Time	0	Float
V1 - V28	0	Float
Amount	0	Float
Class	0	Int

Proportion des classes

- 284 807 transactions, 31 variables, données anonymisées
- Extrêmement déséquilibré : ~0,17 % de fraudes

Jeu de données

Analyse sur Amount

- Présente de valeurs aberrantes (box écraser vers le bas)
- La plupart des valeurs sont petites
- Utilisation d'un StandardScaler pour atténuer les données aberrantes

Jeu de données

Corrélation avec les valeurs V1 à V28

- Les valeurs V1 à V28 n'ont aucune corrélation entre-elle ce qui découle d'une bonne transformation préalable
- Les variables Amount et Time ont une forte corrélation avec certaines variables (Vxx)

Feature Engineering

- Vérifier que la suppression des variables Amount et Time sur les différents modèles à analyser
- La création de variables temporel est limitée car l'origine temporelle du jeu de données n'est pas connue (potentiel biais)

Évaluation des models

Models

- Régression logistique
- Random Forest
- MLP

Scoring

- Jeu de données déséquilibrer, donc priorité donnée au Recall (ne pas laisser passer une fraude), Précision (ne pas accuser à tort une transaction normale), F1 (équilibre entre Recall et Précision) et le PR-AUC
- Utilisation de la **matrice de confusion** pour évaluer l'équilibre entre **faux positifs (FP)** et **faux négatifs (FN)**.

Technique de mise en place

- Augmenter le dataset avec SDV (GaussianCopula)
- 2. Mise en place de **Pipelines**
- 3. Optimisation hyperparamètres **GridSearchCV** + **StratifiedKFold**
- 4. Training final avec **StratifiedKFold**
- 5. Vérification des différents scores
 - Dataset déséquilibrer, donc grande importance au Recall (ne pas laisser passer une fraude), Précision (ne pas accuser à tort une transaction normale.), F1 (équilibre entre Recall et Précision) et le PR-AUC
 - b. Utilisation de la matrice de confusion pour évaluer le compromis entre faux positifs (FP) et faux négatifs (FN).

Utilisation de SDV

Model	F1	Précison	Rappel	PR-AUC
Régression Logistique	0.12	0.06	0.87	0.70
Random Forest	0.81	0.97	0.70	0.80
MLP	0.80	0.90	0.70	0.78
Régression Logistique + SDV	0.11	0.05	0.88	0.53
Random Forest + SDV	0.92	0.95	0.89	0.92
MLP + SDV	0.81	0.81	0.81	0.84

Après SDV + optimisation

Model	F1	Précison	Rappel	PR-AUC
Régression Logistique	0.11	0.05	0.88	0.53
Random Forest	0.87	0.84	0.90	0.90
MLP	0.82	0.82	0.82	0.85

Analyse

- Random Forest est le meilleur compromis
 - Recall au dessus des autres
 - **F1 score** équilibrer
 - Moins de détection de faux négatif

Détection de drift

- Métriques surveillées : Précision, Recall, F1 et PR-AUC
- **Déclencheurs** : baisse des performances par rapport au modèle précédent
- **Action** : alerte Grafana → réentraînement via pipeline Airflow
- Traçabilité : versioning du modèle (MLflow)

Biais identifiés

- Dataset très limité : seulement deux jours de données, ce qui réduit fortement la représentativité.
- **Données déjà traitées en amont** : application préalable de la PCA, ce qui peut entraîner une sur-utilisation ou une redondance de variables déjà exploitées.
- **Données personnelles** : le dataset est déjà dépourvu de données personnelles.

Sécurité

- Dataset déjà anonymisé (PCA); seules les variables "Amount" et "Time" restent exploitables
- Datacenter interne à l'entreprise, couvrant l'intégralité des demandes en matière de sécurité
- Application du principe du moindre privilège pour la gestion des accès et droits utilisateurs
- Conformité RGPD :
 - Conservation des données limitée au strict nécessaire (minimisation des données)
 - Droit d'accès, de rectification et de suppression garantit aux clients
 - Traçabilité et auditabilité des traitements mis en place

Pipeline Airflow

Airflow - Pipeline proposé

- Préparation des données d'entrée : nettoyage, transformation et mise en forme des données brutes.
- Entraînement du modèle : lancement du training selon les configurations définies.
- **Sauvegarde et versioning** : stockage du modèle entraîné avec gestion des versions.

Grafana - Indicateurs de suivi

- Taux d'échec des tâches : proportion de jobs qui n'aboutissent pas.
- **Durée des tâches** : temps moyen/maximum d'exécution des jobs.
- Échecs de validation des données : par exemple en cas de détection de *drift* ou d'anomalies.

Pipeline API

FastAPI - API de vérification

- Vérification de la transaction entrante : chaque transaction est analysée par le modèle avant validation.
- Blocage en cas de fraude : si une anomalie est détectée,
 la transaction est automatiquement refusée.

Prometheus & Grafana - Alertes clés

- Volumétrie des requêtes : suivi du nombre de requêtes traitées par le système.
- Temps de traitement du modèle : identifier d'éventuels ralentissements ou goulets d'étranglement.
 Nombre de fraudes par heure : surveillance en temps

réel pour identifier des pics inhabituels.

Industrialisation et déploiement

2 pipelines distincts:

- Airflow → training, scoring, monitoring (Prometheus + Grafana)
- FastAPI → service de prédiction temps réel + monitoring (Prometheus + Grafana)
- **Conteneurisation Docker** → isolation, portabilité, reproductibilité
- CI/CD avec GitHub Actions → build & push des images Docker, déploiement automatisé sur Kubernetes
- Déploiement interne sur Kubernetes :
 - Rolling updates pour assurer le zéro downtime
 - Scalabilité (adapter la charge automatiquement)
 - Haute disponibilité (réplicas, tolérance aux pannes)

Supervision intégrée avec Prometheus & Grafana sur un seul container

Conclusion & Perspectives

- Prochain modèle candidat : XGBoost
 - a. Modèle reconnu pour son efficacité sur des jeux de données déséquilibrés avec un temps d'entraînement inférieur à RandomForest
- **Objectif**: tester XGBoost et comparer aux modèles actuels