Карты карно

Тарасенко Алексей Романович

30 мая 2025 г.

1. Карты карно

Сами по себе карты карно представляют собой матрицу, построенную по уже заранее определённому шаблону. Эту матрицу необходимо заполнить в соответствии с заданной логической функцией. Образцы карт карно для 2-х и 3-х переминых соответственно:

1.1. Образцы

$x_1 \backslash x_2$		0] 1			
0	f	(0,0)	f(0	,1)		
1	f	(1,0)	f(1	,1)		
$x_1 \backslash x_2 x_3$		00		01	11	10
0		f(0,0,0)		f(0,0,1)	f(0,1,1)	f(0,1,0)
1		f(1,0,0)		f(1,0,1)	f(1,1,1)	f(1,1,0)

1.2. Примеры

Для примеры я возьму элементарные функции выраженные через СДНФ и СКНФ.

Пример 1:
$$\overline{x_1} \wedge x_2 \vee x_1 \wedge x_2$$

Заполненная карта карно для функции $f_1(x)$:

После чего создадим матрицу (1), в которой будут записанные все значения x_1x_2 , которым соответствует значение 1 определённой нами булевой функции.

$$\begin{array}{c|cc}
x_1 & x_2 \\
\hline
0 & 1 \\
1 & 1
\end{array}$$

Запишем элемент с неизменным значением - x_2 . Тогда наша новая формула - просто x_2 . Построим таблицу истинности.

x_1	x_2	$f_2(x_2)$
0	0	0
0	1	1
1	0	0
1	1	1

Как видно, значения функции f_2 повторяют значения функции f_1 , но f_2 игнорирует 1-й аргумент.

Это связанно с тем, что в нашей матрице (1) значения x_2 остаються неизменными, в то время как значения x_1 пробегают все возможные значения, а значит, независимо от того, какие значения принимает x_1 , функция будет истинна пока x_2 принимает значение 1.

В этом и заключаеться смысл карт карно. Матрица построенна таким образом, что объединения собирают в себе неизменность некоторых переменных при полном пробегании значений других. Это позволяет исключить ненужные переменные из формул.

Рассмотрим более сложный пример, уже с тремя переменными:

Пример 2:
$$(\overline{x_1} \wedge x_2 \wedge x_3) \vee (\overline{x_1} \wedge x_2 \wedge \overline{x_3}) \vee \overline{x_1} \wedge \overline{x_2} \wedge x_3) \vee (\overline{x_1} \wedge \overline{x_2} \wedge \overline{x_3}) \vee (x_1 \wedge \overline{x_2} \wedge x_3) \vee (x_1 \wedge x_2 \wedge x_3)$$

Также строим матрицу (2.1):

Помеченные черным элементы здесь также стоит принимать как объединённые, вполне позволительно представить матрицу как торус, и посему объединять элементы, как бы разорванные друг от друга. Воспринимать данную матрицу стоит как развёртку, так что знакомым с 3D моделированием людям тут будет слегка проще понять аналогию. Итак, наша задача разными способами выделить нужны нам единицы в фигуры, больше пересечений - меньше оптимизации и смысла в данной работе. Фигуры что мы можем использовать это квадрат, прямоугольник 1х2, и прямоугольник 1х4.

Чтобы не запутаться, вот весь чётко сформулированный список требований, которым дожна удовлетворять группировка:

- 1. Группы прямоугольники с размером $2^n\times 2^m, n,m\in Z$
- 2. Размеры групп $2^k, k \in \mathbb{Z}$
- 3. Группы могут оборачиваться по краям таблицы, как будто она на торе.
- 4. Каждая 1-ца может входить в несколько групп

В нашем случае я возьму синую и красную группы:

x_1	x_2	x_3	x_1	x_2	x_3
0	0	1	0	0	0
0	1	1	0	0	1
1	0	1	0	1	0
1	1	1	0	1	1

Из первой таблицы - $\overline{x_1}$ (Если повторяються нули, то нужно взять отрицания данного аргумента).

Из второй таблицы - x_3

Объедиие: $\overline{x_1} \lor x_3$

Как видите, наша длинная формула свернулась до такой вот короткой записи, осталось только это проверить:

x_1	x_2	x_3	f()
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Всё совпало с матрицей (2.1), а значит мы получили верный ответ. На этом всё.

2. Заключение

В данной работе я объяснил и на премерах показал алгорит работы с картами карно, этого объяснения должно быть достаточно для примерного понимания их работы.