PROBABILIDAD Y ESTADÍSTICA

Docente: Nidia Quintero Peña

2-2020

Taller 12. TEORÍA DE PROBABILIDAD.

DOS VARIABLES ALEATORIAS DISCRETAS

1. Demuestre que la siguiente función satisface las propiedades de una función de masa de probabilidad conjunta.

Х	у	$F_{XY}(x,y)$
1.5	2	1/8
1.5	3	1/4
2.5	4	1/2
3	5	1/8

- 2. Con los datos del ejercicio 1 resolver:
 - a. Grafica de la función de masa de probabilidad conjunta.
 - b. Calcule P(X < 2.5, Y < 3)
 - c. Calcule P(X < 2.5)
 - d. Calcule P(1 < X < 3, Y = 5)
 - e. Calcule P(X > 1.8, Y > 4.7)
 - f. Determine E(X) y E(Y)
 - g. Determine la distribución de probabilidad marginal de la variable aleatoria X y de la variable aleatoria Y.
 - h. Determine la distribución de probabilidad condicional de Y dado que X = 1.5.
 - i. Determine la distribución de probabilidad condicional de X dado que Y = 2.
 - j. Determine la media condicional de Y dado que X = 1.5.
 - k. Determine la media condicional de X dado que Y = 2.
 - I. Determine si las variables aleatorias X, Y son independientes.
 - m. Determine la media de la variable g(X,Y) = 3X+2Y.
 - 3. Se tiene la función de masa de probabilidad conjunta $f_{xy}(x,y) = c x^2 y$; con x = 1, 2, 3; y = 3, 4. Determine el valor de c para que $f_{xy}(x,y)$ cumpla las propiedades de probabilidad conjunta.