Fall 2016, EECE 5644, Homework #2

Prof: Jennifer Dy, Deniz Erdogmus

TA: Sadegh Salehi, Hongfu Liu

For your convenience, these problems from the textbook are provided in the following pages. Some sub-problems have been removed. Use the provided problem statements.

- 2.1 (10 pts) Problem 2.12 from Duda's book.
- 2.2 (10 pts) Problem 3.1 from Duda's book. Skip (c) (removed from the problem statements below)
- 2.3 (10 pts) Problem 3.2 from Duda's book. Skip (b) (removed from the problem statements below)
- 2.4 (20 pts) Problem 3.3 from Duda's book.
- **2.5** (10 pts) Problem 3.4 from Duda's book.
- 2.6 (40 pts) Problem 3.17 from Duda's book.

- 12. Let $\omega_{max}(\mathbf{x})$ be the state of nature for which $P(\omega_{max}|\mathbf{x}) \geq P(\omega_i|\mathbf{x})$ for all i, $i = 1, \ldots, c$.
 - (a) Show that $P(\omega_{max}|\mathbf{x}) \geq 1/c$.
 - (b) Show that for the minimum-error-rate decision rule the average probability of error is given by

$$P(error) = 1 - \int P(\omega_{max}|\mathbf{x})p(\mathbf{x}) d\mathbf{x}.$$

- (c) Use these two results to show that $P(error) \le (c-1)/c$.
- (d) Describe a situation for which P(error) = (c 1)/c.
- 1. Let x have an exponential density

$$p(x|\theta) = \begin{cases} \theta e^{-\theta x} & x \ge 0\\ 0 & \text{otherwise.} \end{cases}$$

- (a) Plot $p(x|\theta)$ versus x for $\theta = 1$. Plot $p(x|\theta)$ versus θ , $(0 \le \theta \le 5)$, for x = 2.
- (b) Suppose that n samples x_1, \ldots, x_n are drawn independently according to $p(x|\theta)$. Show that the maximum-likelihood estimate for θ is given by

$$\hat{\theta} = \frac{1}{\frac{1}{n} \sum_{k=1}^{n} x_k}.$$

2. Let x have a uniform density

$$p(x|\theta) \sim U(0, \theta) = \begin{cases} 1/\theta & 0 \le x \le \theta \\ 0 & \text{otherwise.} \end{cases}$$

(a) Suppose that n samples $\mathcal{D} = \{x_1, \dots, x_n\}$ are drawn independently according to $p(x|\theta)$. Show that the maximum-likelihood estimate for θ is $\max[\mathcal{D}]$ —that is, the value of the maximum element in \mathcal{D} .

- 3. Maximum-likelihood methods apply to estimates of prior probabilities as well. Let samples be drawn by successive, independent selections of a state of nature ω_i with unknown probability $P(\omega_i)$. Let $z_{ik} = 1$ if the state of nature for the kth sample is ω_i and $z_{ik} = 0$ otherwise.
 - (a) Show that

$$P(z_{i1},\ldots,z_{in}|P(\omega_i)) = \prod_{k=1}^n P(\omega_i)^{z_{ik}} (1-P(\omega_i))^{1-z_{ik}}.$$

(b) Show that the maximum-likelihood estimate for $P(\omega_i)$ is

$$\hat{P}(\omega_i) = \frac{1}{n} \sum_{k=1}^n z_{ik}.$$

Interpret your result in words.

4. Let \mathbf{x} be a d-dimensional binary (0 or 1) vector with a multivariate Bernoulli distribution

$$P(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^{d} \theta_i^{x_i} (1 - \theta_i)^{1 - x_i},$$

where $\boldsymbol{\theta} = (\theta_1, \dots, \theta_d)^t$ is an unknown parameter vector, θ_i being the probability that $x_i = 1$. Show that the maximum-likelihood estimate for $\boldsymbol{\theta}$ is

$$\hat{\boldsymbol{\theta}} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k}.$$

17. The purpose of this problem is to derive the Bayesian classifier for the *d*-dimensional multivariate Bernoulli case. As usual, work with each class separately, interpreting $P(\mathbf{x}|\mathcal{D})$ to mean $P(\mathbf{x}|\mathcal{D}_i, \omega_i)$. Let the conditional probability for a given category be given by

$$P(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^{d} \theta_i^{x_i} (1 - \theta_i)^{1 - x_i},$$

and let $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ be a set of *n* samples independently drawn according to this probability density.

(a) If $\mathbf{s} = (s_1, \dots, s_d)^t$ is the sum of the *n* samples, show that

$$P(\mathcal{D}|\boldsymbol{\theta}) = \prod_{i=1}^{d} \theta_i^{s_i} (1 - \theta_i)^{n - s_i}.$$

(b) Assuming a uniform prior distribution for θ and using the identity

$$\int_{0}^{1} \theta^{m} (1 - \theta)^{n} d\theta = \frac{m! n!}{(m + n + 1)!},$$

show that

$$p(\boldsymbol{\theta}|\mathcal{D}) = \prod_{i=1}^{d} \frac{(n+1)!}{s_i!(n-s_i)!} \theta_i^{s_i} (1-\theta_i)^{n-s_i}.$$

- (c) Plot this density for the case d = 1, n = 1 and for the two resulting possibilities for s_1 .
- (d) Integrate the product $P(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathcal{D})$ over $\boldsymbol{\theta}$ to obtain the desired conditional probability

$$P(\mathbf{x}|\mathcal{D}) = \prod_{i=1}^{d} \left(\frac{s_i+1}{n+2}\right)^{x_i} \left(1 - \frac{s_i+1}{n+2}\right)^{1-x_i}.$$

(e) If we think of obtaining $P(\mathbf{x}|\mathcal{D})$ by substituting an estimate $\hat{\boldsymbol{\theta}}$ for $\boldsymbol{\theta}$ in $P(\mathbf{x}|\boldsymbol{\theta})$, what is the effective Bayesian estimate for $\boldsymbol{\theta}$?