Доказать, что функция

$$F(x) = \prod_{n=1}^{\infty} [1 + f_n(x)] \quad (|f_n(x)| < 1).$$

непрерывна на интервале (a, b).

3109. Найти выражение для производной функции

$$F(x) = \prod_{n=1}^{\infty} [1 + f_n(x)].$$

Каковы достаточные условня существования $F^{t}(x)$? 3110. Доказать, что если 0 < x < y, то

$$\lim_{n\to\infty}\frac{x(x+1)\ldots(x+n)}{y(y+1)\ldots(y+n)}=0.$$

§ 10. Формула Стирлинга

Для вычисления n1 при больших значениях n полезна формула Стирлинга

$$n! = \sqrt{2\pi n} n^n e^{-n+\theta_n/12n}$$
 $(0 < \theta_n < 1)$.

Пользуясь формулой Стирлинга, приближенно вычислить:

3111. lg 100! 3112. 1·3·5. . . 1999.

3113.
$$\frac{1 \cdot 3 \cdot 5 \cdot \cdot \cdot 99}{2 \cdot 4 \cdot 6 \cdot \cdot \cdot 100}$$
. 3114. C_{100}^{40} .

3115.
$$\frac{100!}{20! \ 30! \ 50!}$$
.

3116.
$$\int_0^1 (1-x^2)^{50} dx$$
. 3117. $\int_0^{2\pi} \sin^{200} x dx$.

3118. Вывести асимптотическую формулу для произведения

$$(2n-1)!! = 1 \cdot 3 \cdot 5 \dots (2n-1).$$

3119. Приближенно вычислить C_{2n}^n , если n велико.

3120. Пользуясь формулой Стирлинга, найти следующие пределы:

a)
$$\lim_{n\to\infty} \sqrt[n^2]{n!}$$
; 6) $\lim_{n\to\infty} \frac{n}{\sqrt[n]{n!}}$;

B)
$$\lim_{n\to\infty} \frac{n}{\sqrt{(2n-1)!!}}$$
; r) $\lim_{n\to\infty} \frac{\ln n!}{\ln n^n}$.