

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Capítulo 6

Outros tópicos de E/S

Introdução

- Conexões de E/S
 - Conexão entre processador e memória normalmente chamadas de barramentos (fios paralelos)
 - A maioria das conexões de E/S hoje seja mais próxima de linhas seriais dedicadas

Componentes de Interconexão

- Barramento: canal de comunicação compartilhado
 - Conjunto paralelo de fios para dados e sincronização da transferência de dados
 - Pode se tornar um gargalo!
- Desempenho é limitado por fatores físicos
 - Comprimento dos fios, número de conexões
- Alternativa: conexões seriais de alta velocidade

Tipos de Barramentos

- Entre processador-memória
 - Pequenos e de alta velocidade
 - Projetados para se acoplar a organização de memória
- Barramentos de E/S
 - Mais compridos, permitindo múltiplas conexões
 - Especificados por padrões para garantir interoperabilidade
 - Conectados ao barramento do processador-memória através de bridge (ponte)

Exeplos de Barramento de E/S

Characteristic	Firewire (1394)	USB 2.0	PCI Express	Serial ATA	Serial Attached SCSI
Intended use	External	External	Internal	Internal	External
Devices per channel	63	127	1	1	4
Basic data width (signals)	4	2	2 per lane	4	4
Theoretical peak bandwidth	50 MB/sec (Firewire 400) or 100 MB/sec (Firewire 800)	0.2 MB/sec (low speed), 1.5 MB/sec (full speed), or 60 MB/sec (high speed)	250 MB/sec per lane (1x); PCle cards come as 1x, 2x, 4x, 8x, 16x, or 32x	300 MB/ sec	300 MB/sec
Hot pluggable	Yes	Yes	Depends on form factor	Yes	Yes
Maximum bus length (copper wire)	4.5 meters	5 meters	0.5 meters	1 meter	8 meters
Standard name	IEEE 1394, 1394b	USB Implementors Forum	PCI-SIG	SATA-IO	T10 committee

FIGURE 6.8 Key characteristics of five dominant I/O standards.

Copyright © 2013 Elsevier Inc. All rights reserved

Organização Servidor Intel

Gerenciamento de E/S

- E/S é mediada pelo Sistema Operacional (SO)
 - Diversos programas compartilham recursos de E/S
 - Necessário proteção e agendamento
 - E/S geram interrupções assíncronas
 - Mesmo mecanismo que as exceções
 - Programação de E/S é complicado e toma tempo
 - SO provê abstrações para os programas

Comandos de E/S

- Controlador de E/S (hardware) gerencia dispositivo
 - Transfere dados para/de dispositivo
 - Sincroniza operações com software
- Registradores de comando
 - Faz com que o dispositivo faça algo
- Registradores de status
 - Indica o que o dispositivo está fazendo e ocorrências de erros
- Registradores de dados
 - Escrita: transfere dados para o dispositivo
 - Leitura: transfere dados de um dispositivo

Acesso a Registradores de E/S

- E/S Mapeada em Memória
 - Registradores são endereçados no mesmo espaço da memória
 - Decodificador de endereço os diferencia
 - SO usa mecanismo de tradução de endereço para torná-los acessíveis ao kernel
- Instruções de E/S
 - Instruções específicas para acessar registradores de E/S
 - Só podem ser executadas no modo kernel
 - Exemplo: x86

Transferencia de Dados de E/S

- E/S por polling e interrupção
 - CPU transfere dados entre memória e registradores de dados de E/S
 - Gasta tempo para dispositivos de alta velocidade
- DMA (Direct memory access)
 - SO provê endereço inicial na memória
 - Controlador de E/S tranfere para/de memória autonomamente
 - Controlador gera interrupção no término ou erro

Interação Cache/DMA

- Se DMA escreve em um bloco de memória que está na cache
 - Cópia do cache ser torna "velha" (inválida)
- Se cache é write-back e bloco foi alterado, DMA lê bloco da memória
 - Lê dados desatualizados
- Precisa garantir coerência de cache
 - Tirar blocos da cache se estes serão usados pelo DMA
 - Ou utilizar posições de memória que não podem ser colocadas em cache

Medindo Desempenho de E/S

- Desempenho de E/S depende
 - Hardware: CPU, memória, controladores, barramentos
 - Software: sistema operacional, sistema de gerenciamento de banco de dados, aplicação
 - Carga: taxa e padrões de requisição
- Projeto de sistema de E/S pode balancear entre tempo de resposta e vazão

Benchmarks

- Transações
 - Acesso a pequenos blocos de dados em um DBMS
 - Custo geral por transação
 - Transaction Processing Council (TPC) benchmarks (<u>www.tcp.org</u>)
- SPEC System File System (SFS)
 - Carga de trabalho de servidor NFS sintética
 - Baseada em medidas reais
- SPEC Web Server benchmark
 - Mede sessões de usuários simultâneos, dados requisitados de vazão/sessão

Referências

 Seções 6.5 a 6.7 - Organização e Projeto de Computadores - A Interface Hardware/Software, David A. Patterson & John L. Hennessy, Campus, 4 edição, 2013.

