School of Physics B. Tech. (Sem-II)

Mid-Term Examination (Even Semester) 2024-25

Entry No:

Date: 18.03.2025

2 4 B E C 0 5 5

Total Number of Questions: [03]

Total Number of Pages: [02]

Course Title: Engineering Physics Course Code: PHL BS102

Time Allowed: 1.5 hours

Instructions / NOTE

i. Attempt All Questions.

ii. Support your answer with neat freehand sketches/diagrams, wherever appropriate.

iii. Assume any missing data to suit the case/ derivation / answer

	Section -A (Multiple Choice Questions)		
Q. 1	(i) The condition under which the line integral of electric field \vec{E} does not vanish is (a) \vec{E} is irrotational (b) \vec{E} is conservative (c) \vec{E} is non-conservative (d) \vec{E} is discontinuous	[1]	CO1
	(ii) For any vector F, the equation representing Stokes theorem is given as: (a) $\int (\vec{\nabla} \cdot \vec{F}) d\tau = \oint (\vec{\nabla} \times \vec{F}) \cdot d\vec{a}$ (b) $\int (\vec{\nabla} \cdot \vec{F}) d\tau = \oint \vec{F} \cdot d\vec{a}$ (c) $\int (\vec{\nabla} \times \vec{F}) \cdot d\vec{a} = \oint \vec{F} \cdot d\vec{l}$ (d) $\int_a^b (\vec{\nabla} T) \cdot d\vec{l} = T(b) - T(a)$	[1]	CO1
	 (iii) If a uniform electric field is acting at right angles to the magnetic field in some region of space, then a charged particle q released at rest will follow (a) circular path (b) cycloid path (c) elliptical path (d) hyperbolic path 	[1]	CO1
	(iv) The equation of continuity in electromagnetism represents the conservation of (a) electric charge (b) electric current (c) volume charge density (d) volume current density	[1]	COI

Max Marks: [20]

Section -B (Short Answer/ Numerical Type Questions)						
 Q. 2 (a) Use Gauss's law to find the electric field (E) inside solid sphere of radius R carrying a charge density varies as ρ = kr, for the r from the centre and some constant k. Plot E vs r. (b) The potential in a certain region of space is given by the function xy²z³ with respect to some 	[2]	CO1, CO2				
reference point. Find the y-component of the electric field at $(-1, 3, 2)$.	[2]	CO2				
(c) Three charges are situated at the corners of a square (side a), as shown in the figure. How much work does it take to bring in another charge +q, from far away and place it in the fourth corner?	[2]	CO2				
(d) Why do "Magnetic forces do no work". Support your answer with mathematical explanation.	[2]	CO1				
Section -C (Long Answer Questions)						
Q. 3 (a) Define line, surface and volume charge distributions. Find the electric field intensity at distance z above the center of the flat circular disk of radius a which carries a uniform surface charge σ.						
(b) What is displacement current? How does the concept of displacement current leads to the modification in Ampere circuital law?	[4]	COI				

- CO1. To know the vocabulary and concepts of Physics as it applies to: Electricity and Magnetism and Modern Physics.
- CO2. To develop the mathematical description of these concepts and principles to build up problem solving skills in Electrodynamics and Modern Physics

$$\int E \cdot dI = -\frac{d\Phi_R}{dI}$$

School of Physics B. Tech. (Sem-II) Major Examination (Even Semester) 2024-25

Entry No: Date: 22.07.2025 24800055

Total Number of Pages: [02]

Total Number of Questions: [03]

Course Title: Engineering Physics Course Code: PHL BS102

Time Allowed: 3 hours

Instructions/ NOTE:

i. Attempt All Questions. Question No. 3 has internal choice for each part.

ii. Support your answer with neat freehand sketches/ diagrams, wherever appropriate.

iii. Assume any missing data to suit the case/ derivation/ answer.

III. Assume any missing data to suit the case/ derivation/ answer.)	
Section -A (Very Short Answer Questions)		
Q. 1 (i) What is the de-Broglie wavelength (in Å) of an electron accelerated through 100 V? (ii) What physical quantity does the curl of magnetic field \vec{H} represent? (iii) Define Fermi level in semiconductors. (iv) What should be the appropriate Gaussian surface for an infinitely long straight wire? (v) For which property of \vec{B} does its curl has non-vanishing character? (vi) The quantity $ \psi(x,t) ^2$ represents, where $\psi(x,t)$ is the wavefunction. (vii) If a charge q_o is carried from infinity to a point having electrical potential as $V(r)$, then the amount of work done will be (viii) What type of relationship exists between density of states and energy E in 1D.	[1] [1] [1] [1] [1] [1]	CO1 CO4 CO2 CO1 CO3 CO2
Section –B (Short Answer/ Numerical Type Questions)		
(ii) Write any two conclusions of the Davisson-Germer experiment. (iii) Show that $\nabla \cdot \vec{B} = 0$. (iii) Calculate the speed of an electromagnetic wave in a medium having dielectric constant as 5 and relative permeability as 5. (iv) What will be the magnitude and direction of the electric field at point P between the two plates as shown in figure? (v) Define expectation value. How is the expectation value of momentum represented mathematically? (vi) What are commutators? Find the commutator $[x, p_x]$.	[2] [2] [2] [2] [2] [2]	CO3 CO2 CO3 CO1 CO3 CO4
Section -C (Long Answer Questions)		
 (i) A uniformly charged ring of radius r and linear charge density λ lies in the XY-plane. Find the electric field at a point at perpendicular distance z above the centre of the ring. OR State Gauss's law in electrostatics. Use it to find the electric field due to a uniformly charged solid sphere of radius R and charge density ρ at the points (i) inside and (ii) outside the sphere. (ii) Define volume current density. Suppose the current density in a wire with circular cross-section of radius a is proportional to the distance s from the axis as J = ks (for 		CO1, CO2
Obtain the differential form of Faraday's law of electromagnetic induction. Give its physical significance.		

TOO Y	•
•	

(iii) What is the Compton Effect? Derive an expression for the Compton wavelength shift. OR Define phase and group velocities. Establish relation between them.	[4]	CO1, CO3
(iv) What is wave function? Derive the time-dependent Schrödinger wave equation. OR Derive the energy eigenvalues for a particle confined in a one-dimensional infinite	[4]	CO2, CO3
potential well of width L . (v) Explain the band theory of solids. How can conductors, semiconductors and insulators be classified on the basis of band theory? OR	[4]	CO3,
Define density of states and derive its expression for free electron gas confined in one dimensional box of infinite walls.		

- CO1. To know the vocabulary and concepts of Physics as it applies to: Electricity and Magnetism and Modern Physics.
- CO2. To develop the mathematical description of these concepts and principles to build up problem solving skills in Electrodynamics and Modern Physics
- CO3. To gain confidence to develop methods in Quantum Mechanics to understand Physics problems in reallife situations to benefit their future career.
- CO4. To apply Modern Physics concepts for understanding problems related to free electron theory and band theory of solids.

School of Physics

B. Tech. 2nd Semester, Minor-II Exam Course Title: Engineering Physics

Course Code: PHL BS102

Total Marks: 20

Note: Attempt all questions. Each question carries 04 marks.

Time: 1hr

Date: 15-04-24

Q. No.1:(a): Find the magnetic field of an infinite uniform surface current $K = K x^{\hat{}}$, flowing over the x y plane? [2 Marks]

(b): Obtain differential form of Faraday's Law $\nabla XE = -\partial B\partial t$

[2 Marks]

OR

Discuss briefly the limitation of amperes circuital law and derive the modified Ampere's Circuital law.

[4 Marks]

Q. No.2: (a) Consider current I is uniformly distributed over a wire of circular cross section, with radius a. Find the volume current density J. [2 Marks]

(b): Suppose the current density in the wire is proportional to the distance from the axis, J = ks (for some constant k). Find the total current in the wire. [2 Marks]

OR

(a) Write the electric field and magnetic field in terms of scalar and vector potential.

[2 Marks]

(b) Write the biot- Savart law for surface current and volume current.

2 Marks

Q. No.3: Find the magnetic field a distance z above the center of a circular loop of radius R, which carries a steady current I?

[4 Marks]

Q. No.4: State and derive the equation of continuity.

[4Marks]

Q. No.5: Find the magnetic field a distance s from a long straight wire carrying a steady current I, using Biot-Savart Law. [4 Marks]

School of Physics

B. Tech. 1st Semester, Minor-1 Exam

Course Title: Engineering Physics

Course Code: PHL BS102

Total Marks: 20

Time: 1hr

Date: 27-02-24

Note: Attempt any 05 questions. Each question carries 04 marks.

Q. No.1: Evaluate the following integrals using the properties of Dirac Delta function:

[4 Marks]

(i):
$$\int_{-\infty}^{\infty} \delta(x) dx$$

(ii):
$$\int_{-2}^{2} (2x+3) \, \delta(3x) dx$$

(iii):
$$\int_{-1}^{1} 9x^2 \delta(3x+1) dx$$

(iv):
$$\int_{-\infty}^{\infty} \ln(x+3) \, \delta(x+2) dx$$

Q. No.2: Consider a thick spherical shell carries charge density:

[4 Marks]

$$\rho = \frac{k}{r^2}; \quad (a \leqslant r \leqslant b)$$

Calculate the electric field in the three regions (i): r < a, (ii): a < r < b (iii): r > b.

- Q. No.3: Consider a long cylinder carrying a charge density that is proportional to the distance from the axis: $\rho = ks$, for some constant k. Find the electric field inside and outside the cylinder? [4 Marks]
- Q. No.4: Derive an expression for work done to assemble a group of point charges. [4 Marks]
- Q. No.5: Find the electric field at a distance z above the midpoint of a straight-line segment of length of 2L carrying uniform line charge λ ? [4 Marks]
- Q. No.6: Calculate electric field inside and outside of uniformly charged sphere of radius R carrying charge density ρ ? [4 Marks]
- Q. No.7: (a): Write mathematical form of Stokes and Gauss divergence theorem? [2 Marks]
- (b): Calculate potential at a distance z above the canter of the charge distributions as shown in figure? [2 Marks]

Two point charges

School of Physics B. Tech. (Sem-II) Major Examination (Even Semester) 2024-25

Entry No:			_						
•	2	3	b	e	(0	0	6	Total Number of Pages: [02
Date: 22.07.2025									Total Number of Questions: 103
									rotal Number of Questions: 10

Course Title: Engineering Physics Course Code: PHL BS102

Time Allowed: 3 hours Instructions/ NOTE: Max Marks: [40]

- i. Attempt All Questions. Question No. 3 has internal choice for each part.
- ii. Support your answer with neat freehand sketches/ diagrams, wherever appropriate.
- iii. Assume any missing data to suit the case/ derivation/ answer.

	Section -A (Very Short Answer Questions)									
Q. 1	(i) What is the de-Broglie wavelength (in Å) of an electron accelerated through 100 V?	[1]	CO1							
	(ii) What physical quantity does the curl of magnetic field \vec{H} represent?									
(iii) Define Fermi level in semiconductors.										
(iv) What should be the appropriate Gaussian surface for an infinitely long straight wire? (v) For which property of \vec{B} does its curl has non-vanishing character?										
	(vii) If a charge q_o is carried from infinity to a point having electrical potential as $V(r)$, then the amount of work done will be	[1] [1]	CO3							
	(viii) What type of relationship exists between density of states and energy E in 1D.	[1]	CO4							
	Section -B (Short Answer/ Numerical Type Questions)									
Q. 2	(i) Write any two conclusions of the Davisson-Germer experiment. $+\sigma$ $-\sigma$	[2]	CO3							
	(ii) Show that $\vec{\nabla} \cdot \vec{B} = 0$.	[2]	CO2							
	(III) Calculate the speed of an electromagnetic wave in a medium	[2]	CO3							
	having dielectric constant as 5 and relative permeability as 5.	[-]	000							
	(2) What will be the magnitude and direction of the electric field at	[2]	CO1							
	point P between the two plates as shown in figure?	[2]	COI							
	(v) Define expectation value. How is the expectation value of momentum represented mathematically?									
	(vi) What are commutators? Find the commutator $[x, p_x]$.	[2]	CO3							
	Section –C (Long Answer Questions)	[2]	CO4							
Q. 3										
χ	(i) A uniformly charged ring of radius r and linear charge density λ lies in the XY-plane Find the electric field at a point at perpendicular distance z above the centre of the ring.	. [4]	CO1, CO2							
	State Gauss's law in electrostatics. Use it to find the electric field due to a uniformly charged solid sphere of radius R and charge density ρ at the points (i) inside and (ii) outside the sphere.)								
	(ii) Define volume current density. Suppose the current density in a wire with circula cross-section of radius a is proportional to the distance s from the axis as $J = ks$ (fo some constant k). Find the total current in the wire.	[4]	CO1, CO2							
	Obtain the differential form of Faraday's law of electromagnetic induction. Give its physical significance.	3								

(iii) What is the Compton Effect? Derive an expression for the Compton wavelength shift. OR	[4]	CO1,
Define phase and group velocities. Establish relation between them.		000
(iv) What is wave function? Derive the time-dependent Schrödinger wave equation.	[4]	CO2,
Derive the energy eigenvalues for a particle confined in a one-dimensional infinite potential well of width L .		CO3
(v) Explain the band theory of solids. How can conductors, semiconductors and insulators be classified on the basis of band theory?	[4]	CO3,
OR		CO4
Define density of states and derive its expression for free electron gas confined in one dimensional box of infinite walls.		

- CO1. To know the vocabulary and concepts of Physics as it applies to: Electricity and Magnetism and Modern Physics.
- CO2. To develop the mathematical description of these concepts and principles to build up problem solving skills in Electrodynamics and Modern Physics
- CO3. To gain confidence to develop methods in Quantum Mechanics to understand Physics problems in real-life situations to benefit their future career.
- CO4. To apply Modern Physics concepts for understanding problems related to free electron theory and band theory of solids.

73605068

SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA

School of Physics

Time: 3hr

B. Tech. 1st Semester, Major Exam

Course Title: Engineering Physics

Course Code: Ph	IL 1012		Time: 3nr						
Total Marks: 50			Date: 27-12-2023						
Note: Attempt any 04 questions from section B. Each question carries 10 marks									
Note: Attempt an	y 04 questions fro	m section B. Eac	,, ₄						
Section A:									
Q. No.1: Choose	the correct option	of the following:		bv: [10 Marks]					
i) The idea of dua	al nature of light fo	particles was given	-,-						
a) Planck	b) Einstein	c) de	e-Broglie	d) none of these					
ii) For relativisti	ic motion of a parti	icle, the phase ve	locity will be equal to)					
a) c	b) v/2	c) 2c/v	₽) 2v/c						
iii) Schrodinger	wave equation is	applicable to							
			c) neither for a nor	b d) both a and b					
			gives rise to an elec						
a) Maxwell	b) Ampere) Oersted	A) Faraday					
v) Maxwell cor	rected which one o	f the following lav	ws?						
Ampere's	b) Faraday's	s C	c) Gauss'	d) None of these					
vi) Conductivity	of insulator is								
a) high	b) low	c)) variable	d) None of these					
vii) Position of	Fermi level in intrir	nsic semiconducto	or is						
a) Below the co	onduction band		b) Above valance band						
c) Midway of th	e conduction and v	alance bands	d) None of t	hese					
viii) In Comptor angle	effect, the maxim	um change in wa	velength will be for p	hoto scattering at an					
a) 0°	þ)90°	c)180º	d)4	d)45°					
ix) In Davisson-	-Germer experime	nt, intensity was r	maximum for accelera	ating voltage equal to					
a)50	54	c)30	d)7						
x) Lorentz force	e is based on								
a) Dot product		p) c	b) Cross product						
c) Both dot and	d cross products	d) Ir	d) Independent of both dot and cross products						

200: 14 - n2 dec = E4. derindren

Section B:

Q. No.2: (a) Solve time independent Schrodinger's equation for a particle in one dimensional box. Show that its energy is given as:

$$E = \frac{n^2 \pi^2 \hbar^2}{2ml^2}$$
 [7 Marks]

(b) Prove the commutator $[x, p] = i\hbar$, where x and p, are position and momentum operators.

[3 Marks]

Q.No. 3: (a) Find the magnetic field, both inside and outside the wire, if the current is distributed in such a way that J is proportional to s, the distance from the axis.? [6 marks]

(b): Obtain the differential form of faradays law $\nabla X E = -\frac{\partial B}{\partial t}$ and write its integral form

[4 Marks]

Q. No. 4: Suppose the electric field in some region is found to be $\vec{E} = kr^3\hat{r}$, in spherical coordinates (k is some constant)

(a): Find the charge density ρ

[6 Marks]

(b): Find the total charge contained in a sphere of radius R, centered at the origin. [4 Marks]

Q. No.5: (a) Obtain the time-dependent and time-dependent Schrödinger wave equation for a particle [5 Marks]

(b): Classify metals, semiconductors and insulators on the basis of energy bands in detail

[5 Marks]

Q. No.6: (a): Explain Compton effect and obtain expression for change in wave length in Compton effect.

[5 Marks]

(b): Explain Drude Lorentz free electron theory in detail?

[5 Marks]