

J.R. Esteban

ANÁLISIS MATEMÁTICO

GRADO EN CC. MATEMÁTICAS, GRUPO 721, 2018-2019

Ejercicios 1 a 7

- **1.** A. Sea $\langle \, \cdot \, , \, \cdot \, \rangle$ un producto escalar en un espacio vectorial sobre \mathbb{R} y sea $\| \, \cdot \, \|$ la norma asociada. Demostrar las siguientes identidades:
 - 1. Identidad del paralelogramo.

$$\left\| \frac{x+y}{2} \right\|^2 + \left\| \frac{x-y}{2} \right\|^2 = \frac{\|x\|^2 + \|y\|^2}{2}$$

 $2. \ \ Identidad \ de \ polarizaci\'on.$

$$\langle x, y \rangle = \left\| \frac{x+y}{2} \right\|^2 - \left\| \frac{x-y}{2} \right\|^2$$

Interpretar geométricamente estas identidades.

B. Supongamos ahora que E es un espacio vectorial sobre $\mathbb R$ dotado de una norma $\|\cdot\|$ que satisface la Identidad del Paralelogramo. Teniendo en cuenta la Identidad de Polarización definimos

$$B(x,y) = \left\| \frac{x+y}{2} \right\|^2 - \left\| \frac{x-y}{2} \right\|^2,$$

que, obviamente, satisface $B(x,x) = \|x\|^2$, así como B(x,y) = B(y,x) y B(x,0) = 0.

1. Demostrar la identidad

$$2B(x,y) = B(x+z,y) + B(x-z,y).$$

Comprobar que, en particular, se verifica

$$2B(x,y) = B(2x,y)$$

y también

$$B(x + z, y) = B(x, y) + B(z, y)$$
.

2. Demostrar que todos los $p, q \in \mathbb{N}, q \neq 0$, satisfacen

$$B(p x, y) = p B(x, y), \qquad q B(\frac{x}{q}, y) = B(x, y).$$

Teniendo en cuenta que para cada yfijo la función $x \to B(x,y)$ es continua, concluir que

$$B(\lambda x, y) = \lambda B(x, y)$$
 para todo $\lambda \in \mathbb{R}, \lambda > 0$.

3. Demostrar que todo $\lambda \in \mathbb{R}$, $\lambda < 0$ satisface

$$\lambda B(x,y) - B(\lambda x,y) = \lambda B(0,y) = 0.$$

En conclusión, $B(x\,,y)$ es un producto escalar en E y su norma asociada es la norma original $\|\cdot\|$ de E .

2. Considérense las funciones

$$A(x,y) = \max \left\{ 2|x|, \sqrt{x^2 + y^2} \right\},$$

$$B(x,y) = \max \{ |x - y|, |y| \},$$

definidas en \mathbb{R}^2 .

Demostrar que estas funciones son normas en \mathbb{R}^2 . Dibujar la bola unidad de cada una de ellas. Comprobar que para A(x,y) la desigualdad triangular no es estricta, incluso para vectores que no son linealmente independientes.

- **3.** Sea (X, d) un espacio métrico.
- A. Demostrar que la métrica satisface las siguientes propiedades:
- 1.

$$|d(x,y) - d(y,z)| \le d(x,z)$$
.

En particular, para cada $y \in X$ fijo, la función $d(\cdot\,,y)$ es uniformemente continua en X .

- 2. Si $x, y \in B(c, r)$ entonces d(x, y) < 2r.
- 3. Si $B(x,r) \cap B(y,s) \neq \emptyset$ entonces d(x,y) < r+s
 - B. Dado un subconjunto A de X, se define

$$\operatorname{dist}(x, A) = \inf \left\{ d(x, a) : a \in A \right\}.$$

1. Demostrar que todos los $x, y \in X$ satisfacen

$$|\operatorname{dist}(x,A) - \operatorname{dist}(y,A)| \le d(x,y).$$

En particular, la función dist (\cdot, A) es uniformemente continua en X.

2. Supongamos que existe $x_0 \in X$ tal que $d(x_0, A) > 0$.

Demostrar que si $L \ge 0$ satisface

$$|\operatorname{dist}(x,A) - \operatorname{dist}(y,A)| \le L d(x,y),$$
 para todos los $x, y \in X$,

entonces $L \geq 1$.

C.

- 1. Demostrar que si A es compacto en X, entonces para cada $x \in X$ existe algún $a \in A$ tal que dist (x, A) = d(x, a).
- 2. Observese que $A \subset \big\{x \in X : \operatorname{dist}(x,A) = 0\big\}$. Demostrar que A es cerrado si y sólo si

(2)
$$\left\{ x \in X : \operatorname{dist}(x, A) = 0 \right\} \subset A.$$

- 4. Sean E un espacio vectorial sobre $\mathbb R$ y d una distancia en E .
- A. Demostrar que son equivalentes:
- 1. Existe una norma $\|\cdot\|$ en E tal que $d(x,y)=\|x-y\|$.
- 2. La función d satisface:

(3)
$$\begin{cases} d(\lambda x, \lambda y) = |\lambda| d(x, y), \\ d(x + z, y + z) = d(x, y), \end{cases}$$

en todos los $x, y, z \in E$ y $\lambda \in \mathbb{R}$.

B. Comprobar que las funciones

$$\begin{split} d_1(x,y) &= \min\left\{1 \,, |x-y|\right\}, \\ d_2(x,y) &= |x-y| + \left||x| - |y|\right| \end{split}$$

son distancias en \mathbb{R} y que definen los mismos abiertos en \mathbb{R} que la distancia estándar |x-y|. Estudiar si estas dos distancias satisfacen las identidades en (3).

- 5. Considérese el espacio vectorial $\mathbb{R}^{m \times n}$ formado por las matrices $m \times n$ de

$$\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{traza} \mathbf{A}^{\mathrm{T}} \mathbf{B}$$

$$\left|\operatorname{traza} \mathbf{A}^{\!\scriptscriptstyle T} \mathbf{B}\right|^2 \leq \operatorname{traza} \mathbf{A}^{\!\scriptscriptstyle T} \mathbf{A} \, \cdot \, \operatorname{traza} \mathbf{B}^{\!\scriptscriptstyle T} \mathbf{B}$$

- B. Supongamos ahora que m=n. Demostrar:
- 1. $\left|\operatorname{traza} \mathbf{A}\right|^2 \leq n \operatorname{traza} \mathbf{A}^{\mathsf{T}} \mathbf{A}$.
- 2. $\operatorname{traza} \mathbf{A}^2 < \operatorname{traza} \mathbf{A}^T \mathbf{A}$.

3.

 ${\sf C}. \,$ Seguimos suponiendo que m=n . Considérense los subespacios vectoriales S_n y K_n formados por las matrices simétricas y antisimétricas, respectivamente.

- 1. Demostrar que \mathcal{K}_n es el complemento ortogonal de \mathcal{S}_n .
- 2. Dada $\mathbf{A} \in \mathbb{R}^{n \times n}$, ¿cuál es su proyección ortogonal sobre S_n ?
- Calcular la distancia entre $\mathbf{A} \in \mathbb{R}^{n \times n}$ y el subespacio \mathcal{S}_n .
- **6.** Consideremos en \mathbb{R}^n la norma

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p},$$

donde $1 \le p < +\infty$.

- A. Dados $1 \le p < q < +\infty$, demostrar:
- 1. Si $||x||_p = 1$, entonces $||x||_q \le 1$.
- 2. Para todo $x \in \mathbb{R}^n$, se verifica

$$||x||_q \le ||x||_p.$$

B. Demostrar que para todo $0 < \alpha < 1$ se verifica

$$\left|a^{\alpha}-b^{\alpha}\right| \leq |a-b|^{\alpha}$$
, en todos los $0 < a, b \in \mathbb{R}$.

C. Sea ahora

$$||x||_{\infty} = \max \{|x_i| : i = 1, 2, \dots, n\}$$

Demostrar que todo $x \in \mathbb{R}^n$ satisface

$$\lim_{p \to +\infty} \|x\|_p = \|x\|_{\infty}.$$

A. tal que A. Supongamos que K es cerrado y sea $x_0 \notin K$. Demostrar que existe $k \in K$

$$||x_0 - k|| \le ||x_0 - \xi||$$
 para todo $\xi \in K$.

Es decir, este $k \in K$ satisface

$$||x_0 - k|| = \operatorname{dist}(x_0, K).$$

B. Supongamos que K es, además, convexo y consideremos el subespacio

$$H_k = \left\{ \xi \in \mathbb{R}^n : \langle \xi - k, x_0 - k \rangle \le 0 \right\}.$$

Demostrar que $K \subset H_k$.