Sunt 2019

Singular BGG complexes over isotropic 2- Grassmanian - Denis Husadžiā

Completed Hopf algebroid over 2(19)
of formal def. operators on a Lie group G
- Martina Stoyic

W(g²) Hopf aly , $\hat{\chi}_{1}$, $\hat{\chi}_{n}$ non-comm, "coolumbes" $\hat{S}(g^{*}) \rightarrow as \quad algebra \quad k[[\hat{J}_{1}, -, \hat{J}_{n}]]$ $\rightarrow as \quad coalgebra, "doal to W(g^{L}),$ - needs completion $\hat{\otimes}$

- So we have a problem with the action

S(g*)" "" "" "(gL) since (putting L=U(gL), H=LV)

(H&H)&L -> L

I H&(H&L)-> L

Diffw (Gise) = Jw (Gise) # U(gL)

Localisation approach to u.c. flag variety
- Zoran Skoda

-ncg opprænch -> space (-> "objects" on space

Tangent lift of Poisson structures-Korolina Wojerechowice

Que (+-alaebrus dunumical sustions	
On Ct-algebrus, dynamical systems and classifications - Karen Strong	
·	