Homological Algebra — Exercise Page #1

Elad Tzorani – 316266477

May 4, 2021

Exercise 1 (2.9). Let T = (V, E) be a tree. Prove that if $T_i = (V_i, E_i)$ are m subtrees of T such that $V_i \cap V_j \neq \emptyset$ for all i, j then $\bigcap_{i \in [m]} V_i \neq \emptyset$.

Solution. Assume towards a contradiction this isn't the case and let $n \in [m]$ be minimal such that there are $i_1, \ldots, i_n \in [m]$ for which $\bigcap_{i \in [n]} V_{i_j} = \emptyset$.

For every $j \in [n]$ let

$$x_j \in \bigcap_{\substack{j' \in [n] \\ j' \neq j}} V_{i_j},$$

and consider the minimal subtree T' = (V', E') of T that contains each x_j . Notice that T' is finite. Any tree has two leaves so in particular there's $v \in V'$ of degree 1. By minimality of T' there's $j_1 \in [n]$ for which $v = x_{j_1}$. WLOS assume $j_1 = 1$.

Lemma 0.1. There's $u_1 \in V'$ closest to x_1 and such that $\deg(u_1) \geq 3$.

Proof. Otherwise, T' is linear so we can embed $\iota: T' \hookrightarrow \mathbb{R}^1$. Numbering the x_j such that $d(x_1, x_i) > d(x_1, x_j)$ for i > j we may choose $\iota(x_i) = i$, and send each path $x_i \to x_{i+1}$ to [i, i+1] with constant speed.

Denote by $p_{j,k}$ the shortest path from x_j to x_k in T'. Consider

$$p_{1,2}, p_{2,3}, \ldots, p_{n-1,n}, p_{n,1}.$$

Each two such paths intersect, since $p_{j,k}, p_{k,\ell}$ both contain x_k . Hence each two $\iota\left(p_{j,j+1}\right)$ (where the indexes are considered (mod n)) intersect. By Helly's theorem, all of them intersect. Hence all the $p_{j,j+1}$ intersect. For $j,k\in[n]$ take $\ell\in[n]\setminus\{j,k\}$ (which we can since $n\geq 3$). We have $x_j,x_k\in V_{i_\ell}$ hence $p_{j,k}\subseteq T_{i_\ell}$ since T_{i_ℓ} is connected. In particular, $p_{j,j+1}\subseteq T_{i_{j-1}}$. We get

$$\varnothing \neq \bigcap_{j \in [n]} p_{j,j+1} \subseteq \bigcap_{j \in [n]} T_{i_j}$$

hence all the V_{i_j} intersect, a contradiction.

Now, let $u_1 \in V'$ closest to x_1 and such that $\deg(u_1) \geq 3$. Assume first that there's x_j on the path p from x_1 to u_1 , for j > 1. Then $x_1 \in V_{i_j}$ and $x_k \in V_{i_j}$

for all $k \in [n] \setminus \{j\}$. Since x_j is on the path from x_1 to x_k for any such k, we get $x_j \in V_{i_j}$, a contradiction. We get that the path p from x_1 to u_1 doesn't contain any x_j for $j \neq 1$.

Assume now that $u_1 \notin V_{i_1}$. Since $\deg(u_1) \geq 3$ there are different edges $(u_1, f), (u_1, g)$ in T'. By minimality, there are $j, k \in [n]$ such that u_1 lies on the path from x_j to x_k . Then, $x_j, x_k \in V_{i_1}$ so by connectedness $u_1 \in V_{i_1}$, a contradiction.

We got that $u_1 \in V_{i_1}$, and we want to show

$$u_1 \in \bigcap_{j \in [n]} V_{i_j},$$

which would give a contradiction. Let $j \in [n] \setminus \{1\}$. Since $n \geq 3$ there's $k \in [n] \setminus \{1, j\}$. Then $x_1, x_k \in V_{i_j}$. By choice of u_1 and by connectedness of T' we get $u_1 \in V_{i_j}$.