CC4102 - Control 2

Profs. Pablo Barceló y Gonzalo Navarro 29 de Noviembre de 2018

P1 (2.0 pt)

Analizaremos un par de variantes de la estructura Union-Find, donde partimos con n elementos separados y realizamos $m \ge n$ operaciones Find (note que las operaciones Union son a lo más n-1).

- 1. Modifique el análisis de la clase para mostrar que el costo de las operaciones es $O(n \log n + m)$.
- 2. Demuestre que, si se hacen todos los Union antes de todos los Find, el costo total es O(m).

P2 (2.0 pt)

Dado un arreglo A[1..n], se quiere construir otro arreglo NSV[1..n], llamado "next smaller value". Concretamente, $NSV[i] = \min\{j > i, A[j] < A[i]\}$, suponiendo $A[n+1] = -\infty$.

Diseñe un algoritmo de tiempo O(n) para construir NSV y use técnicas de análisis amortizado para demostrar que su complejidad es O(n).

P3 (2.0 pt)

La compresión LZ78 consiste en crear un diccionario de frases vistas en el texto. Al principio el diccionario tiene sólo la frase número 0, que corresponde a la cadena vacía. Si, en el paso g, ya se ha comprimido T[1..i-1], se busca el prefijo más largo de T[i..n] que sea igual a una frase ya conocida. Digamos que ese prefijo es T[i..j-1], igual a la frase número f (el prefijo más largo puede ser vacío, j=i). Entonces el compresor emite el par $\langle f, T[j] \rangle$, crea una nueva frase g=T[i..j] (es decir, la frase g es la frase f más el carácter T[j]), y continúa la compresión desde $i \leftarrow j+1$, en el paso g+1. Considere el texto terminado por un carácter especial \$.

Por ejemplo, si T = lalaralalarila, su corte en frases es lalaralalarila. La salida del compresor sería (0,1)(0,a)(1,a)(0,r)(2,1)(5,a)(3,r)(0,i)(3,\$).

Considerando que el alfabeto es constante, dé un algoritmo de tiempo O(n) para realizar la compresión LZ78 de T[1..n]. Hint: use una estructura adecuada para almacenar las frases ya conocidas.

Tiempo: 2.0 horas Con una hoja de apuntes Responder en hojas separadas