Le routage

1. Introduction au routage et protocole IP

1.1 Fondamentaux du routage

Le routage est le mécanisme fondamental qui permet aux informations de transiter d'un réseau à un autre. Pour bien comprendre ce concept, nous devons explorer :

- Comment les données sont organisées au niveau de la couche 3
- Quel matériel permet la communication entre réseaux
- Comment les machines communiquent entre différents réseaux

Note importante : Bien que nous mentionnions la commande ifconfig dans ce cours, celleci n'est plus installée par défaut sur les distributions récentes Debian/RedHat. Vous pouvez l'installer via :

- Debian/Ubuntu: sudo apt-get install net-tools
- RedHat/CentOS: sudo yum install net-tools

A noter que sur windows, toutes les informations seront obtenues avec les simples commandes ipconfig et netstat disponibles sur toutes les éditions.

1.2 Le protocole IP

Qu'est-ce qu'un protocole IP?

Un protocole est essentiellement un langage permettant aux machines de communiquer entre elles. Pour la couche 3 du modèle OSI, nous utilisons le protocole IP (Internet Protocol), qui définit la manière dont les données sont formatées et transmises.

Les composants essentiels

Dans sa forme la plus basique, le protocole IP nécessite deux informations fondamentales :

- L'adresse IP source (émetteur)
- L'adresse IP destination (récepteur)

Le masque réseau dans IP

Une question importante se pose : devons-nous inclure le masque réseau dans l'en-tête IP ? Pour répondre à cette question, analysons un exemple concret :

Imaginons une machine A (192.168.0.1/24) souhaitant communiquer avec une machine B (192.168.1.1/24) :

- La machine A doit d'abord déterminer si B est sur son réseau
- Pour cela, A examine sa propre plage d'adresses (192.168.0.0 à 192.168.0.255)
- A constate que 192.168.1.1 n'appartient pas à sa plage
- A en déduit que B est sur un autre réseau et qu'il faut utiliser la couche 3

Cette analyse révèle que le masque de B n'est pas nécessaire pour la communication - seule l'adresse IP suffit.

1.3 Format du datagramme IP

Le datagramme (ou paquet) IP organise les informations de manière structurée. Sa structure de base est la suivante :

+	-+-		+		+		+
En-tête IP		Adresse IP		Adresse IP	- 1	Données	
(autres info)		Source		Destination			
+	-+-		+		+		+

Particularité de l'en-tête IP

Une caractéristique intéressante de l'en-tête IP est la position de l'adresse de destination, qui n'est pas au début de l'en-tête. Ceci peut sembler contre-intuitif, surtout si l'on compare avec la couche 2 où l'adresse MAC de destination est placée en premier.

Cette différence s'explique par le processus de traitement des paquets :

- À la couche 2, la machine doit rapidement déterminer si la trame lui est destinée
- À la couche 3, ce contrôle a déjà été effectué par la couche 2
- La position de l'adresse IP de destination est donc moins critique
- Ce positionnement permet d'optimiser le traitement avec les informations de la couche 4