# Lecture 10: Other forms of learning Metric, Rank, Recommend, Embedding

Guangzong Chen

University of Pittsburgh

July 13, 2025

## Table of Contents

- Metric Learning
- 2 Learning to Rank
- 3 Learning to Recommend
- 4 Word Embeddings

# Metric Learning

Most frequently used metrics of similarity (or dissimilarity) between two feature vectors are **Euclidean distance** and **cosine similarity**.

#### Euclidean distance

$$d^{2}(x,x') = \langle x - x', x - x' \rangle$$

We can modify Euclidean distance to make to parametrizable and learn metrics from data

#### Modified Euclidean distance

$$d_A^2(x,x') = \|x - x'\|_A = (x - x')^T A(x - x') = \langle x - x', x - x' \rangle_A$$

## Example

Euclidean distance A 
$$\stackrel{\text{def}}{=}$$
  $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 
Weighted A  $\stackrel{\text{def}}{=}$   $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 

#### Definition - Metric

- $d(x,x') \leq d(x,x') + d(x',z)$  triangle inequality

In order to satisfy the definition of metric, A should be positive semi-definite. To satisfy the third condition, we can define a new metric which is d'(x,x')=d(x,x')+d(x',x).

# **Training**

We need to create two sets. The first set S is such that a pair of examples  $(x_i, x_k)$  belong to S if  $x_i$  and  $x_k$  are similar.

The second set D is such that a pair of examples  $(x_i, x_k)$  belongs to set D if  $x_i$  and  $x_k$  are dissimilar.

## Optimization Problem

$$\min_{\mathsf{A}} \sum_{(\mathsf{x}_i,\mathsf{x}_k) \in \mathcal{S}} \left\| \mathsf{x} - \mathsf{x}' \right\|_{\mathsf{A}}^2 \text{ such that } \sum_{(\mathsf{x}_i,\mathsf{x}_k) \in \mathcal{D}} \left\| \mathsf{x} - \mathsf{x}' \right\|_{\mathsf{A}} \geq c$$

### Riemannian Metric

Riemannian Metric is very related to this topic. They are almost defined in the same way. A Riemannian Metric defines the inner product of two vectors in the **tangent space**.

#### Riemannian Metric

$$g(X,Y) = \sum g_{ij} x_i x_j$$

Also, a metric actually is a mapping from  $\mathbb{R}^n \times \mathbb{R}^n$  to  $\mathbb{R}$ , which defined as

$$g: R^n \times R^n \to R$$
.

**This is a tensor**. This may be the reason that modern machine learning frameworks use the word "tensor", such as TensorFlow and Pytorch.

# **Problem Settings**



- Query q: search keywords
- 2 Document: A paper, page, article
- Ollection of documents: A set of documents

Features of documents are different if the query is different.

The feature  $x_{ij}$  is calculated from document  $x_i$  and query  $q_j$ . For a query  $q_j$ , we have a collection of documents  $X_j$  and the corresponding score of the documents  $Y_i$ .

Our training data contains a set of collection of documents. Problem:

Given a new query  $q_k$  and a set of documents, the task is to determine the rank of each document. (Sort the document)

The feature of document  $x_{ik}$  is known.

## Methods

- Pointwise Considered documents in the collection as unrelated. Then build a regression model to predict the score of each document.
- Pairwise The idea is from sorting.
- Listwise Build a metric, then minimize the metric.

# Pairwise - Sorting

- Bubble Sort
- Selection Sort
- Quick Sort

To sort an array, all we need is a function that can compare two elements in the array.

The idea here remains the same: We construct a model capable of determining which document should be given a higher rank in the list. Training the model inside each query of documents.

What is the difference between the pointwise method and pairwise method?

## Recommendation System

Problem settings: We have user information and their preference. Give a new thing, will they like it? Youtube, Tiktok.

|                         |       | us                    | er                    | movie   |     |      |     |  | rated movies |     |      |     |  |      |                  |   |                  |
|-------------------------|-------|-----------------------|-----------------------|---------|-----|------|-----|--|--------------|-----|------|-----|--|------|------------------|---|------------------|
|                         | Ed    | Al                    | Zak                   | <br>It  | Up  | Jaws | Her |  | It           | Up  | Jaws | Her |  | 1    |                  |   |                  |
|                         | $x_1$ | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | <br>x21 | x22 | x23  | x24 |  | x40          | x41 | x42  | X43 |  | x99  | x <sub>100</sub> | y |                  |
| $\mathbf{x}^{(1)}$      | 1     | 0                     | 0                     | <br>1   | 0   | 0    | 0   |  | 0.2          | 0.8 | 0.4  | 0   |  | 0.3  | 0.8              | 1 | y <sup>(1)</sup> |
| $x^{(2)}$               | 1     | 0                     | 0                     | <br>0   | 1   | 0    | 0   |  | 0.2          | 0.8 | 0.4  | 0   |  | 0.3  | 0.8              | 3 | y <sup>(2)</sup> |
| x <sup>(3)</sup>        | 1     | 0                     | 0                     | <br>0   | 0   | 1    | 0   |  | 0.2          | 0.8 | 0.4  | 0.7 |  | 0.3  | 0.8              | 2 | y <sup>(3)</sup> |
| x(4)                    | 0     | 1                     | 0                     | <br>0   | 0   | 1    | 0   |  | 0            | 0   | 0.7  | 0.1 |  | 0.35 | 0.78             | 3 | y <sup>(4)</sup> |
| <b>x</b> <sup>(5)</sup> | 0     | 1                     | 0                     | <br>0   | 0   | 0    | 1   |  | 0            | 0   | 0.7  | 0.1 |  | 0.35 | 0.78             | 1 | y <sup>(5)</sup> |
| x <sup>(6)</sup>        | 0     | 0                     | 1                     | <br>1   | 0   | 0    | 0   |  | 0.8          | 0   | 0    | 0.6 |  | 0.5  | 0.77             | 4 | y <sup>(6)</sup> |
|                         |       |                       |                       | <br>    |     |      |     |  |              |     |      |     |  |      |                  |   |                  |
| <b>x</b> <sup>(D)</sup> | 0     | 0                     | 0                     | <br>0   | 0   | 1    | 0   |  | 0            | 0   | 1    | 0   |  | 0.95 | 0.85             | 5 | y <sup>(D)</sup> |

Figure 1: Example for sparse feature vectors  $\mathbf{x}$  and their respective labels y.

## **Factorization Machines**

#### Model

The factorization machine model is defined as follows:

$$f(x) \stackrel{\text{def}}{=} b + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=i+1}^{D} (v_i v_j) x_i x_j$$

where b and  $w_i$ ,  $i=1,\ldots D$  are scalar parameters similar to those used in linear regression. Vectors  $v_i$ ,  $i=1,\ldots D$ , are k-dimensional vectors of factors. k is a hyperparameter and is usually much smaller than D.

#### Loss Function

The loss function can be squared error loss (for regression) or hinge loss. For classification with  $y \in \{-1, +1\}$ , with hinge loss or logistic loss the prediction is made as y = sign(f(x)).

# Denoising Autoencoders (DAE)

- A Denoising autoencoder is a neural network that reconstruct its input from bottleneck layer.
- For recommander model, the denoising autoencoder is to reconstruct those removed item.
- Imagine you possess a list encompassing the preferences of various users. Presently, you are faced with a situation where you only possess partial data related to a new user.

# Word Embeddings

- word2vec skip-gram or CBOW
- ② The dataset are generated from unlabeled text.

**Example:** "I almost finished reading the book on machine learning." Let's denote words in a skip-gram like this:  $[x_{-3}, x_{-2}, x_{-1}, x, x_{+1}, x_{+2}, x_{+3}]$ . In our above example of the sentence,  $x_{-3}$  is the one-hot vector for "finished,"  $x_{-2}$  corresponds to "reading," x is the skipped word  $(\cdot), x_{+1}$  is "on" and so on. A skip-gram with window size 5 will look like this:  $[x_{-2}, x_{-1}, x, x_{+1}, x_{+2}]$ .



Figure 2: The skip-gram model with window size 5 and the embedding layer of 300 units.

