Rajalakshmi Engineering College

Name: Pratiba S

Email: 241901080@rajalakshmi.edu.in

Roll no: 241901080 Phone: 7200010194

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23221_Python Programming

REC_Python_Week 7_MCQ

Attempt: 1 Total Mark: 20 Marks Obtained: 19

Section 1: MCQ

1. Which function is used to create a Pandas DataFrame?

Answer

pd.DataFrame()

Status: Correct Marks: 1/1

2. In NumPy, how do you access the first element of a one-dimensional array arr?

Answer

arr[0]

Status: Correct Marks: 1/1

3. What is the primary purpose of Pandas DataFrame?

Answer

To store data in tabular form for analysis and manipulation

Status: Correct Marks: 1/1

4. What will be the output of the following code snippet?

```
import numpy as np
arr = np.array([1, 2, 3])
result = np.concatenate((arr, arr))
print(result)
```

Answer

[1 2 3 1 2 3]

Status: Correct Marks: 1/1

5. What is the purpose of the following NumPy code snippet?

```
import numpy as np
arr = np.zeros((3, 4))
print(arr)
```

Answer

Displays a 3x4 matrix filled with zeros

Status: Correct Marks: 1/1

241901080

241901080

6. In the DataFrame created in the code, what is the index for the row containing the data for 'Jack'?

import pandas as pd

```
data = {'Name': ['Tom', 'Jack', 'nick', 'juli'],
'marks': [99, 98, 95, 90]}
```

```
df = pd.DataFrame(data, index=['rank1',
            'rank2',
            'rank3'.
            'rank4'])
    print(df)
    Answer
    rank2
    Status: Correct
                                                                      Marks: 1/1
    7. What does NumPy stand for?
    Answer
    Numerical Python
    Status: Correct
                                                                      Marks: 1/1
    8. Which NumPy function is used to create an identity matrix?
    Answer
    numpy.identity()
    Status: Correct
                                                                      Marks: 1/1
    9. Minimum number of argument we require to pass in pandas series?
    Answer
    0
    Status: Wrong
                                                                      Marks: 0/1
    10. What is the output of the following code?
    import numpy as np
    a = np.arange(10)
aranç.بر..
print(a[2:5])
```

Answer

[2, 3, 4]

Status: Correct Marks: 1/1

11. What is the result of the following NumPy operation?

import numpy as np arr = np.array([1, 2, 3]) r = arr + 5 print(r)

Answer

[6 7 8]

Status: Correct Marks: 1/1

12. What does the np.arange(10) function in NumPy do?

Answer

Creates an array with values from 1 to 9

Status: Correct Marks: 1/1

13. Which of the following is a valid way to import NumPy in Python?

Answer

import numpy as np

Status: Correct Marks: 1/1

14. Which NumPy function is used to find the indices of the maximum and minimum values in an array?

Answer

argmax() and argmin()

Status: Correct Marks: 1/1

15. What is the primary data structure used in NumPy for numerical computations?

Answer

Array

Status: Correct Marks: 1/1

16. The important data structure of pandas is/are _____

Answer

Both Series and Data Frame

Status: Correct Marks: 1/1

17. Which NumPy function is used to calculate the standard deviation of an array?

Answer

numpy.std()

Status: Correct Marks: 1/1

18. What is the output of the following NumPy code snippet?

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
r = arr[arr > 2]
print(r)

Answer

[3 4 5]

Status: Correct Marks: 1/1

19. What will be the output of the following code?

import pandas as pnd import pandas as pnd pnd.Series([1,2], index= ['a','b','c'])

Answer

Value Error

Status: Correct Marks: 1/1

20. What is the output of the following NumPy code?

arr = np.array([1, 2, 3, 4, 5]) r = arr[2:4] r = arr[2:4]print(r)

Answer

[3 4]

Marks: 1/1 Status: Correct

241901080

241901080

24,190,1080

241901080

241901080

241901080

Rajalakshmi Engineering College

Name: Pratiba S

Email: 241901080@rajalakshmi.edu.in

Roll no: 241901080 Phone: 7200010194

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23221_Python Programming

REC_Python_Week 7_COD

Attempt : 1 Total Mark : 50

Marks Obtained: 46.5

Section 1 : Coding

1. Problem Statement

Sita works as a sales analyst and needs to analyze monthly sales data for different cities. She receives lists of cities, months, and corresponding sales values and wants to create a pandas DataFrame using a MultiIndex of cities and months.

Help her to implement this task and calculate total sales for each city.

Input Format

The first line of input consists of an integer value, n, representing the number of records.

The second line of input consists of n space-separated city names.

The third line of input consists of n space-separated month names.

The fourth line of input consists of n space-separated float values representing sales for each city-month combination.

Output Format

The first line of output prints: "Monthly Sales Data with MultiIndex:"

The next lines print the DataFrame with MultiIndex (City, Month) and their corresponding sales values.

The following line prints: "\nTotal Sales Per City:"

The final lines print the total sales per city, computed by grouping the sales data on city names.

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 4 NYC NYC LA LA Jan Feb Jan Feb 100 200 300 400

Output: Monthly Sales Data with MultiIndex:

Sales
City Month
NYC Jan 100.0
Feb 200.0
LA Jan 300.0
Feb 400.0

Total Sales Per City:

Sales

City

LA 700.0

NYC 300.0

Answer

import pandas as pd import sys

```
data = sys.stdin.read().split()
n = int(data[0])
cities = data[1 : 1 + n]
months = data[1 + n : 1 + 2 * n]
sales = list(map(float, data[1 + 2 * n : 1 + 3 * n]))
index = pd.MultiIndex.from_tuples(zip(cities, months), names=["City", "Month"])
df = pd.DataFrame({'Sales': sales}, index=index)
print("Monthly Sales Data with MultiIndex:")
print(df)
print("\nTotal Sales Per City:")
print(df.groupby(level="City").sum())
```

Status: Partially correct Marks: 9/10

2. Problem Statement

Sita is analyzing her company's daily sales data to find all sales values that are multiples of 5 and exceed 100. She wants to filter these specific sales values from the list.

Help her to implement the task using the numpy package.

Formula:

To filter sales values:

Select all values s from sales such that (s % 5 == 0) and (s > 100)

Input Format

The first line of input consists of an integer value, n, representing the number of sales entries.

The second line of input consists of n floating-point values, sales, separated by spaces, representing daily sales figures.

Output Format

The output prints: filtered_sales

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 5

50.0 100.0 105.0 150.0 99.0

Output: [105. 150.]

Answer

import numpy as np
n = int(input())
sales = np.array(list(map(float, input().split())))
filtered_sales = sales[(sales % 5 == 0) & (sales > 100)]
print(filtered_sales)

Status: Correct Marks: 10/10

3. Problem Statement

A company tracks the monthly sales data of various products. You are given a table where each row represents a product and each column represents its monthly sales in sequential months.

Your task is to compute the cumulative monthly sales for each product using numpy, where the cumulative sales for a month is the total sales from month 1 up to that month.

Input Format

The first line of input consists of two integer values, products and months, separated by a space.

Each of the next products lines consists of months integer values representing the monthly sales data of a product.

Output Format

The first line of output prints: "Cumulative Monthly Sales:"

The second line of output prints: the 2D numpy array cumulative_array that contains the cumulative sales data for each product.

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 2 4 10 20 30 40 5 15 25 35 Output: Cumulative Monthly Sales: [[10 30 60 100] [5 20 45 80]]

Answer

import numpy as np products, months = map(int, input().split()) sales_data = [list(map(int, input().split())) for _ in range(products)] sales_array = np.array(sales_data) cumulative_array = np.cumsum(sales_array, axis=1) print("Cumulative Monthly Sales:") print(cumulative_array)

Status: Correct Marks: 10/10

4. Problem Statement

Rekha works in hospital data management and receives patient records with missing or incomplete data. She needs to clean the records by performing the following tasks:

Calculate the mean of the available Age values. Replace any missing (NaN) values in the Age column with this mean age. Remove any rows where the Diagnosis value is missing (NaN). Reset the Data Frame index after removing these rows.

Implement this data cleaning task using the pandas package.

Input Format

The first line of input contains an integer n representing the number of patient records.

The second line contains the CSV header — comma-separated column names (e.g., "Name,Age,Diagnosis,Gender").

The next n lines each contain one patient record in comma-separated format.

Output Format

The first line of output is the text:

Cleaned Hospital Records:

The next lines print the cleaned pandas DataFrame (as produced by print(cleaned_df)).

This will include the updated values of the Age column (with missing ages filled by the mean age), and any rows with missing Diagnosis removed.

The DataFrame will be displayed using the default pandas print() representation.

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 5

PatientID,Name,Age,Diagnosis

1,John Doe,45,Flu

2,Jane Smith,,Cold

3,Bob Lee,50,

4,Alice Green,38,Fever

5,Tom Brown,,Infection

Output: Cleaned Hospital Records:

PatientID Name Age Diagnosis

0 1 John Doe 45.000000 Flu

1 2 Jane Smith 44.333333 Cold

2 4 Alice Green 38.000000 Fever

3 5 Tom Brown 44.333333 Infection

Answer

import pandas as pd import sys

```
import numpy as np
# Read all input at once for better performance
data = sys.stdin.read().splitlines()
# Extract the number of records and header
n = int(data[0])
header = data[1].split(',')
# Read the next n lines as data rows
records = [line.split(',') for line in data[2:2 + n]]
# Create a DataFrame
df = pd.DataFrame(records, columns=header)
# Convert 'Age' to float for computation, handling empty strings as NaN
df['Age'] = pd.to_numeric(df['Age'], errors='coerce')
# Compute the mean of the 'Age' column (ignoring NaNs)
mean_age = df['Age'].mean()
# Replace missing Age values with the mean
df['Age'].fillna(mean_age, inplace=True)
# Remove rows with missing 'Diagnosis'
df = df[df['Diagnosis'].notna() & (df['Diagnosis'] != ")]
 # Reset index
df.reset_index(drop=True, inplace=True)
# Output
print("Cleaned Hospital Records:")
print(df)
```

5. Problem Statement

Status: Partially correct

Alex is a data scientist analyzing the relationship between two financial indicators over time. He has collected two time series datasets representing daily values of these indicators over several months. Alex

Marks: 7.5/10

wants to understand how these two indicators correlate at different time lags to identify possible leading or lagging behaviors.

Your task is to help Alex compute the cross-correlation of these two time series using numpy, so he can analyze the similarity between the two signals at various time shifts.

Input Format

The first line of input consists of space-separated float values representing the first time series, array1.

The second line of input consists of space-separated float values representing the second time series, array2.

Output Format

The first line of output prints: "Cross-correlation of the two time series:"

The second line of output prints: the 1D numpy array cross_corr representing the cross-correlation of array1 and array2 across different lags.

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 1.0 2.0 3.0 4.0 5.0 6.0

Output: Cross-correlation of the two time series:

[6. 17. 32. 23. 12.]

Answer

```
import numpy as np
array1 = np.array(list(map(float, input().split())))
array2 = np.array(list(map(float, input().split())))
cross_corr = np.correlate(array1, array2, mode='full')
print("Cross-correlation of the two time series:")
print(cross_corr)
```

Status: Correct Marks: 10/10

Rajalakshmi Engineering College

Name: Pratiba S

Email: 241901080@rajalakshmi.edu.in

Roll no: 241901080 Phone: 7200010194

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23221_Python Programming

REC_Python_Week 7_CY

Attempt : 1 Total Mark : 50 Marks Obtained : 50

Section 1: Coding

1. Problem Statement

Rekha is a meteorologist analyzing rainfall data collected over 5 years, with monthly rainfall recorded for each year. She wants to find the total rainfall each year and also identify the month with the maximum rainfall for every year.

Help her to implement the task using the numpy package.

Formula:

Yearly total rainfall = sum of all 12 months' rainfall for each year

Month with max rainfall = index of the maximum rainfall value within the 12 months for each year (0-based index)

Input Format

The input consists of 5 lines.

Each line contains 12 floating-point values separated by spaces, representing the rainfall data (in mm) for each month of that year.

Output Format

The first line of output prints: yearly_totals

The second line of output prints: max_rainfall_months

Refer to the sample output for the formatting specifications.

Sample Test Case

```
Input: 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 Output: [78. 90. 102. 114. 126.] [11 11 11 11]
```

Answer

```
import numpy as np
data = []
for _ in range(5):
    row = list(map(float, input().split()))
    data.append(row)
rainfall = np.array(data)
yearly_totals = np.sum(rainfall, axis=1)
max_rainfall_months = np.argmax(rainfall, axis=1)
print(yearly_totals)
print(max_rainfall_months)
```

Status: Correct Marks: 10/10

2. Problem Statement

Arjun is monitoring hourly temperature data recorded continuously for multiple days. He needs to calculate the average temperature for each day based on 24 hourly readings.

Help him to implement the task using the numpy package.

Formula:

Reshape the temperature readings into rows where each row has 24 readings (one day).

Average temperature per day = mean of 24 hourly readings in each row.

Input Format

The first line of input consists of an integer value, n, representing the total number of temperature readings.

The second line of input consists of n floating-point values separated by spaces, representing hourly temperature readings.

Output Format

The output prints: avg_per_day

Refer to the sample output for the formatting specifications.

Sample Test Case

Answer

```
import numpy as np
n = int(input())
temps = list(map(float, input().split()))
arr = np.array(temps).reshape(-1, 24)
avg_per_day = np.mean(arr, axis=1)
print(avg_per_day)
```

Status: Correct Marks: 10/10

3. Problem Statement

Rekha works as an e-commerce data analyst. She receives transaction data containing purchase dates and needs to extract the month and day from these dates using the pandas package.

Help her implement this task by performing the following steps:

Convert the Purchase Date column to datetime format, treating invalid date entries as NaT (missing).

Create two new columns:

Purchase Month, containing the month (as an integer) extracted from the Purchase Date.

Purchase Day, containing the day (as an integer) extracted from the Purchase Date. Keep the rest of the data as is.

Input Format

The first line of input contains an integer n, representing the number of records.

The second line contains the CSV header — comma-separated column names.

The next n lines each contain a transaction record in comma-separated format.

Output Format

The first line of output is the text:

Transformed E-commerce Transaction Data:

The next lines print the pandas DataFrame with:

The original columns (including Purchase Date, which is now in datetime format or NaT if invalid).

Two additional columns: Purchase Month and Purchase Day.

The output uses the default pandas DataFrame string representation as

produced by print(transformed_df).

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 3 Customer,Purchase Date Alice,2023-05-15 Bob,2023-06-20 Charlie,2023-07-01

Output: Transformed E-commerce Transaction Data:

Customer Purchase Date Purchase Month Purchase Day

0 Alice 2023-05-15 5 15 1 Bob 2023-06-20 6 20 2 Charlie 2023-07-01 7 1

Answer

import pandas as pd
import sys
n = int(input())
header = input().strip().split(',')
data = [input().strip().split(',') for _ in range(n)]
df = pd.DataFrame(data, columns=header)
df['Purchase Date'] = pd.to_datetime(df['Purchase Date'], errors='coerce')
df['Purchase Month'] = df['Purchase Date'].dt.month
df['Purchase Day'] = df['Purchase Date'].dt.day
print("Transformed E-commerce Transaction Data:")
print(df)

Status: Correct Marks: 10/10

4. Problem Statement

Arjun is developing a system to monitor environmental sensors installed in different rooms of a smart building. Each sensor records multiple temperature readings throughout the day. To compare sensor data fairly despite differing scales, Arjun needs to normalize each sensor's readings

so that they have a mean of zero and standard deviation of one.

Help him implement this normalization using numpy.

Normalization Formula:

Input Format

The first line of input consists of two integers: sensors (number of sensors) and samples (number of readings per sensor).

The next sensors lines each contain samples space-separated floats representing the sensor readings.

Output Format

The first line of output prints: "Normalized Sensor Data:"

The next lines print the normalized readings as a numpy array, where each row corresponds to a sensor's normalized values.

Refer to the sample output for the formatting specifications.

Sample Test Case

```
Input: 3 3
1.0 2.0 3.0
   4.0 5.0 6.0
   7.0 8.0 9.0
   Output: Normalized Sensor Data:
   [[-1.22474487 0.
                          1.22474487]
    [-1.22474487 0.
                          1.22474487]
    [-1.22474487 0.
                          1.22474487]]
   Answer
   import numpy as np
   sensors, samples = map(int, input().split())
   data = []
  for _ in range(sensors):
     row = list(map(float, input().split()))
```

```
data.append(row)
arr = np.array(data)
mean = arr.mean(axis=1, keepdims=True)
std = arr.std(axis=1, keepdims=True)
normalized = (arr - mean) / std
print("Normalized Sensor Data:")
print(normalized)
```

Status: Correct Marks: 10/10

241901080

5. Problem Statement

You are working as a data analyst for a small retail store that wants to track the stock levels of its products. Each product has a unique Name (such as "Toothpaste", "Shampoo", "Soap") and an associated Quantity in stock. Management wants to identify which products have zero stock so they can be restocked.

Write a Python program using the pandas library to help with this task. The program should:

Read the number of products, n.Read n lines, each containing the Name of the product and its Quantity, separated by a space. Convert this data into a pandas DataFrame. Identify and display the Name and Quantity of products with zero stock. If no products have zero stock, display: No products with zero stock.

Input Format

The first line contains an integer n, the number of products.

The next n lines each contain:

<Product_ID> <Quantity>

where <Product_ID> is a single word (e.g., "Shampoo") and <Quantity> is a non-negative integer (e.g., 5).

Output Format

The first line of output prints:

Products with Zero Stock:

If there are any products with zero stock, the following lines print the pandas DataFrame showing those products with two columns: Product_ID and Quantity.

The column headers Product_ID and Quantity are printed in the second line.

Each subsequent line shows the product's name and quantity, aligned under the respective headers, with no index column.

The output formatting (spacing and alignment) follows the default pandas to_string(index=False) style.

If no products have zero stock, print:

No products with zero stock.

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 3

P101 10

P102 0

P103 5

Output: Products with Zero Stock:

Product_ID Quantity

```
241901080
                         241901080
                                                    241901080
                  0
       P102
Answer
    import pandas as pd
    n = int(input())
    data = []
    for _ in range(n):
      product_id, quantity = input().split()
      data.append([product_id, int(quantity)])
    df = pd.DataFrame(data, columns=["Product_ID", "Quantity"])
    zero_stock = df[df["Quantity"] == 0]
    print("Products with Zero Stock:")
    if zero_stock.empty:
                                                    241901080
      print("No products with zero stock.")
    else:
      print(zero_stock.to_string(index=False))
                                                                       Marks: 10/10
    Status: Correct
```

241901080

241901080

241901080

241901080

241901080

241901080

241901080

241901080

Rajalakshmi Engineering College

Name: Pratiba S

Email: 241901080@rajalakshmi.edu.in

Roll no: 241901080 Phone: 7200010194

Branch: REC

Department: I CSE (CS) FB

Batch: 2028

Degree: B.E - CSE (CS)

NeoColab_REC_CS23221_Python Programming

REC_Python_Week 7_PAH

Attempt : 1 Total Mark : 50 Marks Obtained : 50

Section 1: Coding

1. Problem Statement

You're analyzing the daily returns of a set of financial assets over a period of time. Each day is represented as a row in a 2D array, where each column represents the return of a specific asset on that day.

Your task is to identify which days had all positive returns across every asset using numpy, and output a boolean array indicating these days.

Input Format

The first line of input consists of two integer values, rows and cols, separated by a space.

Each of the next rows lines consists of cols float values representing the returns of the assets for that day.

Output Format

The first line of output prints: "Days where all asset returns were positive:"

The second line of output prints: the boolean array positive_days, indicating True for days where all asset returns were positive and False otherwise.

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 3 4 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 -0.01 0.02 0.03 0.04

Output: Days where all asset returns were positive:

[True True False]

Answer

```
import numpy as np
rows, cols = map(int, input().split())
data = []
for _ in range(rows):
    data.append(list(map(float, input().split())))
returns = np.array(data)
positive_days = np.all(returns > 0, axis=1)
print("Days where all asset returns were positive:")
print(positive_days)
```

Status: Correct Marks: 10/10

2. Problem Statement

A company conducted a customer satisfaction survey where each respondent provides their RespondentID and an optional textual Feedback. Sometimes, respondents submit their ID without any feedback or with empty feedback.

Your task is to process the survey responses using pandas to replace any

missing or empty feedback with the phrase "No Response". Finally, print the cleaned survey responses exactly as shown in the sample output.

Input Format

The first line contains an integer n, the number of survey responses.

Each of the next n lines contains:

A RespondentID (a single alphanumeric string without spaces),

Followed optionally by a Feedback string, which may be empty or missing.

If no feedback is provided after the RespondentID, treat it as missing.

Output Format

Print the line:

Survey Responses with Missing Feedback Filled:

Then print the cleaned survey data as a table with two columns: RespondentID and Feedback.

241901080

241901080

The table should have the headers exactly as:

RespondentID Feedback

Print each respondent's data on a new line, aligned to match the output produced by pandas.DataFrame.to_string(index=False).

For any missing or empty feedback, print "No Response" in the Feedback column.

Maintain the spacing and alignment exactly as shown in the sample outputs.

Refer to the sample output for the formatting specifications.

Sample Test Case

```
Input: 4
101 Great service
102
103 Loved it
104
Output: Survey Responses with Missing Feedback Filled:
RespondentID
                 Feedback
     101 Great service
     102 No Response
     103
            Loved it
     104 No Response
Answer
import pandas as pd
n = int(input())
ids = \Pi
feedbacks = []
for _ in range(n):
  line = input().strip()
  if ' ' in line:
    parts = line.split(' ', 1)
  rid, fb = parts[0], parts[1].strip()
    ids.append(rid)
    feedbacks.append(fb if fb else "No Response")
  else:
    ids.append(line)
    feedbacks.append("No Response")
df = pd.DataFrame({"RespondentID": ids,"Feedback": feedbacks})
print("Survey Responses with Missing Feedback Filled:")
print(df.to_string(index=False))
```

Status: Correct Marks: 10/10

3. Problem Statement

Arjun is a data scientist working on an image processing task. He needs to

normalize the pixel values of a grayscale image matrix to scale between 0 and 1. The input image data is provided as a matrix of integers.

Help him to implement the task using the numpy package.

Formula:

To normalize each pixel value in the image matrix:

```
normalized_pixel = (pixel - min_pixel) / (max_pixel - min_pixel)
```

where min_pixel and max_pixel are the minimum and maximum pixel values in the image matrix, respectively. If all pixel values are the same, the normalized image matrix should be filled with zeros.

Input Format

The first line of input consists of an integer value, rows, representing the number of rows in the image matrix.

The second line of input consists of an integer value, cols, representing the number of columns in the image matrix.

The next rows lines each consist of cols integer values separated by a space, representing the pixel values of the image matrix.

241901080

Output Format

The output prints: normalized_image

Refer to the sample output for the formatting specifications.

Sample Test Case

```
Input: 2
3
1 2 3
4 5 6
Output: [[0. 0.2 0.4]
[0.6 0.8 1.]]
```

Answer

```
import numpy as np
rows = int(input())
cols = int(input())
matrix = []
for _ in range(rows):
    matrix.append(list(map(int, input().split())))
image = np.array(matrix, dtype=float)
min_pixel = np.min(image)
max_pixel = np.max(image)
if min_pixel == max_pixel:
    normalized_image = np.zeros_like(image)
else:
    normalized_image = (image - min_pixel) / (max_pixel - min_pixel)
print(normalized_image)
```

Status: Correct Marks: 10/10

4. Problem Statement

Arjun manages a busy customer service center and wants to analyze the distribution of customer wait times to improve service efficiency. He decides to group the wait times into intervals of 5 minutes each and count how many customers fall into each interval bucket.

Help him implement this bucketing and counting task using NumPy.

Bucketing Logic:

Divide the wait times into intervals (buckets) of size 5 minutes, e.g.:

$$[0-5)$$
, $[5-10)$, $[10-15)$, ...

Use NumPy's digitize function to determine which bucket each wait time falls into.

Count the number of wait times in each bucket and generate bucket labels.

Input Format

The first line contains an integer n, the number of customer wait times recorded.

The second line contains n space-separated floating-point numbers representing

the wait times (in minutes).

Output Format

The first line of output is the text:

Wait Time Buckets and Counts:

Each subsequent line prints the bucket range and the number of wait times in that bucket, formatted as:

```
<bucket_range>: <count>
```

where <bucket_range> is the lower and upper bound of the bucket (inclusive lower bound, exclusive upper bound), for example:

0-5:3

5-10:2

10-15: 1

The output uses the default string formatting of Python's print() function (no extra spaces, no special formatting beyond the specified lines).

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 10

2.0 3.0 7.0 8.0 12.0 14.0 18.0 19.0 21.0 25.0

Output: Wait Time Buckets and Counts:

0-5: 2 5-10: 3

5-10: 2

10-15: 2

15-20: 2

20-25: 1

Answer

```
241901080
   import numpy as np
import math
    n = int(input())
    wait_times = np.array(list(map(float, input().split())))
    max_val = np.max(wait_times)
    upper_limit = int(math.ceil(max_val / 5) * 5)
    bins = np.arange(0, upper_limit + 5, 5)
    bucket_indices = np.digitize(wait_times, bins, right=False)
    counts = np.zeros(len(bins) - 1, dtype=int)
    for i in bucket_indices:
      if 1 <= i <= len(counts):
        counts[i - 1] += 1
    print("Wait Time Buckets and Counts:")
   for i in range(len(counts)):
      print(f"{bins[i]}-{bins[i+1]}:{counts[i]}")
```

Status: Correct Marks: 10/10

241901080

Problem Statement

A software development company wants to classify its employees based on their years of service at the company. They want to categorize employees into three experience levels: Junior (less than 3 years), Mid (3 to 6 years, inclusive), and Senior (more than 6 years).

Experience Level Classification:

Junior: Years at Company < 3

Mid: 3 ≤ Years at Company < 6

Senior: Years at Company > 5

You need to create a Python program using the pandas library that reads employee data, processes it into a DataFrame, and adds a new column "Experience Level" to display the appropriate classification for each 241901080 employee.

Input Format

Next n lines: each line has a string Name and a floating-point number Years at Company (space-separated).

Output Format

First line: "Employee Data with Experience Level:"

The employee data table printed with no index column, and with columns: Name, Years at Company, Experience Level.

Refer to the sample output for the formatting specifications.

Sample Test Case

```
Input: 5
Alice 2
Bob 4
Charlie 7
Diana 3
Evan 6
```

Output: Employee Data with Experience Level:

Name Years at Company Experience Level

Alice	2.0	Junior
Bob	4.0	Mid
Charlie	7.0	Senior
Diana	3.0	Mid
Evan	6.0	Senior

Answer

```
import pandas as pd
n = int(input())
data = Π
for _ in range(n):
   name, years = input().split()
   data.append([name, float(years)])
df = pd.DataFrame(data, columns=["Name", "Years at Company"])
def classify_experience(years):
o if years < 3:
     return "Junior"
```

elif 3 <= years <6:
 return "Mid"
 else:
 return "Senior"
 df["Experience Level"] = df["Years at Company"].apply(classify_experience)
 print("Employee Data with Experience Level:")
 print(df.to_string(index=False))

Status: Correct Marks: 10/10

24,190,1080

24,190,1080

24,190,1080