

Brøkregning

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORBYUNIVERSITETET

1 Tall og tallregning

2 Brøkregning

- Multiplikasjon, utvidelse og forkorting av brøk
- Divisjon av brøk
- Plussing og minusing av brøk

3 Bokstavregning og parenteser

Hva er en brøk?

Definisjon

En brøk er et tall på formen

 $\frac{a}{b}$

hvor $b \neq 0$.

Merk: Ingen av tallene trenger å være heltall. Tallet $\frac{2,3}{\pi}$ er en brøk! Tallet på topp kalles teller og tallet nederst kalles nevner.

Multiplikasjon, utvidelse og forkorting av brøk

Multiplikasjon av brøk

Dersom du skal gange sammen to brøker, så ganger du teller med teller og nevner med nevner.

Eksempel

Vi vil regne ut $\frac{2}{3}$ ganget med $\frac{5}{7}$. Vi får:

$$\frac{2}{3} \cdot \frac{5}{7} = \frac{2 \cdot 5}{3 \cdot 7} = \frac{10}{21}.$$

Utvidelse av brøk

Vi kan «gange med 1» for å gjøre både teller og nevner i en brøk større.

Eksempel

Vi har

$$\frac{2}{3} = \frac{2}{3} \cdot 1 = \frac{2}{3} \cdot \frac{5}{5} = \frac{2 \cdot 5}{3 \cdot 5} = \frac{10}{15}.$$

Dette gjør at om nevneren i en brøk for eksempel er 3, så kan vi endre nevneren så den blir hva som helst i 3-gangen, ved å utvide på denne måten.

Nikolai Bjørnestøl Hansen Brøkregning 23. juni 2020 3 / 14

Forkorting av brøk

Vi kan også «utvide baklengs» for å gjøre både teller og nevner mindre, noen ganger.

Eksempel

Vi har

$$\frac{7}{21} = \frac{1 \cdot 7}{3 \cdot 7} = \frac{1}{3} \cdot \frac{7}{7} = \frac{1}{3} \cdot 1 = \frac{1}{3}.$$

Utviding og forkorting av brøk

- Både utviding og forkorting av brøk skjer så ofte at vi sjeldent skriver det helt ut.
- Vi husker utviding ved at vi husker at vi kan gange med det samme over og under brøkstreken.
- Vi husker forkorting ved at vi kan stryke like faktorer over og under brøkstreken.

Eksempel

$$\frac{2}{3} = \frac{2 \cdot 5}{3 \cdot 5} = \frac{10}{15}$$
 $\frac{7}{21} = \frac{1 \cdot 7}{3 \cdot 7} = \frac{1}{3}$.

Primtallsfaktorisering og forkorting

- En brøk kalles maksimalt forkortet om vi ikke klarer å forkorte den mer.
- Den letteste måten å forkorte en brøk maksimalt for hånd er å primtallsfaktorisere både teller og nevner, og så stryke felles faktorer.

Eksempel

Vi skal forkorte brøken

$$\frac{588}{105} = \frac{2 \cdot 2 \cdot \cancel{3} \cdot \cancel{7} \cdot 7}{\cancel{3} \cdot 5 \cdot \cancel{7}} = \frac{2 \cdot 2 \cdot 7}{5} = \frac{28}{5}.$$

Divisjon av brøk

Deling av brøk

For å dele en brøk med en annen, så flipper vi den andre brøken opp ned, og gjør om dele-tegnet til et gange-tegn.

Eksempel

Vi har

$$\frac{3}{5} : \frac{2}{7} = \frac{3}{5} \cdot \frac{7}{2} = \frac{3 \cdot 7}{5 \cdot 2} = \frac{21}{10}.$$

Deling av brøk

Denne regelen for deling av brøk gjør at brøkoppgaver som ser veldig vanskelige ut, ikke er så vanskelige likevel!

Eksempel

Vi regner ut

$$\frac{\frac{2}{3}}{\frac{1}{7}} = \frac{2}{3} : \frac{1}{7} = \frac{2}{3} \cdot \frac{7}{1} = \frac{2 \cdot 7}{3 \cdot 1} = \frac{14}{3}.$$

Boka har en alternativ måte å løse denne typen oppgaver på, som går ut på å gange med 21 oppe og nede. Jeg synnes dette er lettere.

23. juni 2020

Ganging og deling med heltall

Om vi skal gange eller dele en brøk med heltall, husk at alle heltall kan skrives som brøk med 1 i nevneren. Vi har for eksempel at 3 = 3/1.

Eksempel

Vi regner ut

$$3 \cdot \frac{7}{5} = \frac{3}{1} \cdot \frac{7}{5} = \frac{3 \cdot 7}{1 \cdot 5} = \frac{21}{5}.$$

Kan også huske:

- Om du ganger med et heltall, gang tallet med telleren.
- Om du deler på et heltall, gang tallet med nevneren.

Plussing og minusing av brøk

Plussing av brøk

Dersom du skal plusse sammen to brøker som har samme nevner, så beholder du nevneren og plusser sammen tellerene.

Eksempel

Vi vil regne ut 3/12 plusset med 5/12.

$$\frac{3}{12} + \frac{5}{12} = \frac{3+5}{12} = \frac{8}{12}$$

Plussing av brøk

- To brøker har sjeldent felles nevner.
- Vi må da utvide begge brøkene.
- Letteste er å utvide hver av dem med den andres nevner.
- Men det finnes ofte «bedre» løsninger. Vi vil prøve å kjenne igjen tall som er i gangetabellen til begge nevnerene.

Eksempel

Brøkene 1/6 og 3/4 har fellesnevneren $6 \cdot 4 = 24$, men de har også den litt mindre fellesnevneren 12.

Nikolai Bjørnestøl Hansen Brøkregning 23. juni 2020 11 / 14

Plussing av brøk, eksempel

Vi vil plusse sammen 1/6 + 3/4, og får

$$\frac{1}{6} + \frac{3}{4} = \frac{1}{6} \cdot \frac{4}{4} + \frac{3}{4} \cdot \frac{6}{6}$$

$$= \frac{4}{24} + \frac{18}{24}$$

$$= \frac{4+18}{24}$$

$$= \frac{22}{24}$$

$$= \frac{11 \cdot \cancel{2}}{12 \cdot \cancel{2}}$$

$$= \frac{11}{42}.$$

Plussing av brøk, eksempel

Vi ser at 6 «mangler» en 2-er for å bli 12, og 4 «mangler» en 3-er for å bli 12, så vi kan forenkle utregningen litt. Vi får da

$$\frac{1}{6} + \frac{3}{4} = \frac{1}{6} \cdot \frac{2}{2} + \frac{3}{4} \cdot \frac{3}{3}$$

$$= \frac{2}{12} + \frac{9}{12}$$

$$= \frac{2+9}{12}$$

$$= \frac{11}{12}.$$

Fellesnevner og primtallsfaktorisering

Letteste måte å finne «beste» fellesnevner på er å primtallsfaktorisere alle nevnerene, og så se hva som «mangler» fra hver nevner.

Eksempel

Vi skal finne fellesnevner for $\frac{1}{693}$ og $\frac{1}{1540}$. Vi primtallsfaktoriserer og får

$$693 = 3 \cdot 3 \cdot 7 \cdot 11$$
 $1540 = 2 \cdot 2 \cdot 5 \cdot 7 \cdot 11$.

Vi ser at 693 «mangler» 2 · 2 · 5 og 1540 «mangler» 3 · 3. Felles faktor er derfor

$$2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 \cdot 7 \cdot 11 = 13860.$$

Vi kunne også bare ganget sammen 693 og 1540, da ville vi fått den ganske mye større felles faktoren 1 067 220.

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET