ROBUST POSE ESTIMATION FOR SPHERICAL PANORAMA

Presenter: Shuai Wang

Advisor: Dr. Chen Wang

What's a spherical panoramic image?

What's virtual tour?

What's virtual tour?

What's virtual tour?

University at Buffalo The State University of New York

University at Buffalo The State University of New York

The environments in virtual tour

Diverse environments

Large baseline

Featureless regions

Visual ambiguity

...

Challenges we faced

Existing methods

Manual Annotation

Classic feature based

Learning based

The Research of pose estimation on perspective images VS spherical images

VS

Perspective images

Spherical images

Proposed Methodology

Keypoints detection and matching

University at Buffalo The State University of New York

The highest number of the correspondences usually get the good result.

Test results – compare single methods

Accuracy (%) for different acceptance thresholds in various indoor and outdoor environments

Method	5° ↑		10)° ↑	15	;° ↑	20)° ↑	25	;° ↑
	indoor	outdoor								
SIFT+KNN	39.19	22.96	90.54	39.58	93.24	51.45	94.59	58.31	94.59	62.53
SuperPoint+	41.90	27.18	70.27	48.55	77.02	64.38	79.73	73.88	79.73	80.21
LightGlue										

Test results – compare single methods

Accuracy (%) for different acceptance thresholds in various indoor and outdoor environments

Method	5° ↑		10)°	15	°	20)° ↑	25	;° ↑
	indoor	outdoor								
SIFT+KNN	39.19	22.96	90.54	39.58	93.24	51.45	94.59	58.31	94.59	62.53
SuperPoint+	41.90	27.18	70.27	48.55	77.02	64.38	79.73	73.88	79.73	80.21
LightGlue										

Test results – compare single method and combine method

Accuracy (%) for different acceptance thresholds in various environments

Method	5° ↑	10° ↑	15° ↑	20° ↑	25° ↑
SIFT + KNN	25.61	47.90	58.28	64.24	67.77
SuperPoint + LightGlue	29.58	52.10	66.45	74.83	80.13
Combine	30.68	55.63	69.09	78.15	84.77

Test results – compare single method and combine method

Accuracy (%) for different acceptance thresholds in various environments

Method	5° ↑	10° ↑	15° ↑	20° ↑	25° ↑
SIFT + KNN	25.61	47.90	58.28	64.24	67.77
SuperPoint + LightGlue	29.58	52.10	66.45	74.83	80.13
Combine	30.68	55.63	69.09	78.15	84.77

Preprocessing -reduce the outlier's rate

The process of split the correspondence into groups

Some Split Results

Test results - Accuracy (%) for different acceptance thresholds in various environment

Indoor

Method	5° ↑	10° ↑	15° ↑	20° ↑	25° ↑
Without preprocessing	43.24	89.19	91.90	91.89	93.24
After preprocessing	43.24	94.59	95.95	95.95	95.95

Outdoor

Method	5° ↑	10° ↑	15° ↑	20° ↑	25° ↑
Without preprocessing	28.23	49.08	64.64	75.46	83.11
After preprocessing	30.61	49.34	67.28	78.89	84.96

Overall

Method	5° ↑	10° ↑	15° ↑	20° ↑	25° ↑
Without preprocessing	30.68	55.63	69.09	78.15	84.77
After preprocessing	56.73	56.73	71.96	81.68	86.76

Different error function for RANSAC

New Error function for RANSAC

$$\begin{bmatrix} \boldsymbol{p_1} & -\boldsymbol{R}\boldsymbol{p_2} \end{bmatrix} \begin{bmatrix} \|\boldsymbol{P_1}\| \\ \|\boldsymbol{P_2}\| \end{bmatrix} = t \tag{4-20}$$

The error function computes the reproject error in camera coordinates according to equation (4-18).

$$error = p_1 * ||P_1|| - (Rp_2 * ||P_1|| + t)$$
 (4-23)

For every **R** and **t**, estimate its mean error for all the correspondences.

Mean error =
$$\frac{1}{n} \sum_{i=0}^{n} (p_1 * ||P_1||) - (Rp_2 * ||P_2|| + t)$$
 (4 – 24)

The pose that has the least mean error is selected.

Argmin (Mean errors)

A small trick

The sequence number of correspondences

Overall test results and conclusion

Ind	h	O1
1111	JU	OI.

	Method	5° ↑	10° ⊺	15° ↑	20° ↑	25° ↑
	SIFT + KNN	39.19	90.54	93.24	94.59	94.59
	SuperPoint + LightGlue	41.90	70.27	77.02	79.73	79.73
	Without preprocessing	43.24	89.19	91.90	91.89	93.24
	Ours	43.24	94.59	95.95	95.95	95.95
_						

Outdoor

Method	5° ↑	10° ↑	15° ↑	20° ↑	25° ↑
SIFT + KNN	22.96	39.58	51.45	58.31	62.53
SuperPoint + LightGlue	27.18	48.55	64.38	73.88	80.21
Without preprocessing	28.23	49.08	64.64	75.46	83.11
Ours	30.61	49.34	67.28	78.89	84.96

Overall

Method	5° ↑	10° ↑	15° ↑	20° ↑	25° ↑
SIFT + KNN	25.61	47.90	58.28	64.24	67.77
SuperPoint + LightGlue	29.58	52.10	66.45	74.83	80.13
without preprocessing	30.68	55.63	69.09	78.15	84.77
Our	56.73	56.73	71.96	81.68	86.76

Acknowledgement

Thanks to my advisor, Dr. Chen Wang!

Thanks to all my colleagues in the SAIR lab!

Thanks to my friends during my time studying in UB!

Thanks to my family!

Please give advice!