COMBINATORIAL TOOLS

IN

EQUIVARIANT

ALGEBRAIC TOPOLOGY

Part I

THE CONJECTURES

KERVAIRE PROBLEM (1960)

Can every smooth *n*-manifold become a sphere via surgery?

SURGERY

Replace a submanifold by another with the same boundary

KERVAIRE PROBLEM (1960)

Can every smooth *n*-manifold become a sphere via surgery?

(1963–1984) counterexamples with n = 2, 6, 14, 30, 62 (1969) Browder: counterexamples must have $n = 2^k - 2$

THEOREM (Hill-Hopkins-Ravenel, 2016)

The only counterexamples have n = 2, 6, 14, 30, 62, or maybe 126

Key ingredient: equivariant homotopy theory

THEOREM (Lin-Wang-Xu, December 2024)

There exist counterexample 126-manifolds (nonconstructive)

TELESCOPE CONJECTURE (Ravenel, 1984)

Two ways of computing $\pi_k S^n$ are the same

THEOREM (Burklund–Hahn–Levy–Schlank, 2023)

The Telescope Conjecture is false!

A key ingredient: equivariant homotopy theory

Will equivariant homotopy theory solve all our problems?

Not yet.

- Group actions are rigid; homotopy theory is floppy
- Computations are tough, even for small finite groups
- Needs new algebraic tools: Mackey/Tambara functors

The better we understand these tools, the more we can do!

EQUIVARIANT

PART II

ALGEBRAIC TOPOLOGY

Let *G* be a finite group.

DEFINITION

A *G*-space is a topological space *X* with a *G*-action $G \times X \to X$:

$$1 \cdot x = x$$
$$g \cdot (h \cdot x) = (gh) \cdot x$$

such that $x \mapsto g \cdot x$ is continuous for all $g \in G$.

DEFINITION

A G-equivariant map $f \colon X \to Y$ is a continuous map such that

$$f(g \cdot x) = g \cdot f(x)$$

for all $g \in G$ and all $x \in X$.

EXAMPLES

 $PbCr_3S_4$ crystals Dihedral Group D_6

In algebraic topology, we study spaces using invariants

DEFINITION

An invariant is data F(X) built from a space X such that

$$X \simeq Y \implies F(X) \cong F(Y)$$

We mostly use the contrapositive: $F(X) \not\cong F(Y) \implies X \not\simeq Y$

EXAMPLE

The fundamental group $\pi_1(X)$ is the group of homotopy classes of based loops in X.

QUESTION

How do you see group actions on spaces using invariants?

ANSWER

Consider the fixed point subspaces X^G as well!

$$X^G := \left\{ x \in X \mid g \cdot x = x \text{ for all } g \in G \right\} \subseteq X$$

THE DATA PIPELINE

THEOREM (Elmendorf, Piacenza, 1991)

For the purposes of homotopy theory, we may replace a G-space X by its collection of fixed point subspaces $\{X^H\}_{H\subseteq G}$

EXAMPLE

DEFINITION (Dress, 1971)

A Mackey Functor for *G* is the data:

- an abelian group M(H) for each subgroup $H \subseteq G$
- restriction homomorphisms

$$\operatorname{res}_K^H \colon M(H) \to M(K)$$

• transfer homomorphisms

$$\operatorname{tr}_K^H \colon M(K) \to M(H)$$

• conjugation isomorphisms

$$c_g: M(K) \cong M(gKg^{-1})$$

with a "double coset formula" for res o tr, and other conditions

SMALL GROUPS

A Mackey functor for G = 1 is just an abelian group

A Mackey functor M for $G = C_p$ (cyclic, order p) is the data:

$$M(C_p)$$
 $\operatorname{tr}_{\mathbb{1}}^{C_p} \bigvee_{\operatorname{res}_{\mathbb{1}}^{C_p}}^{C_p}$
 $M(\mathbb{1})$
 C_p

$$\operatorname{res}_1^{C_p} \circ \operatorname{tr}_1^{C_p}(m) = \sum_{g \in C_p} g \cdot m$$

QUESTION

Where do the transfers come from?

Let E/F be a Galois extension with (finite) Galois group Gal(E/F)

There is a Gal(E/F)-Mackey functor M with $M(H) = (E^H, +)$

Restrictions are inclusions:

$$\operatorname{res}_K^H : E^H \longrightarrow E^K$$

Transfers are sums over orbits (field-theoretic traces):

$$\operatorname{tr}_{K}^{H} \colon E^{K} \longrightarrow E^{H}$$

$$a \longmapsto \sum_{gK \in H/K} g \cdot a$$

SLOGAN

Mackey Functors $\pi_1^{st}(X^H)$ encode a "Galois theory" of *G*-spaces

EQUIVARIANT ALGEBRA

PART III

The category of *G*-Mackey functors is:

- abelian \Rightarrow algebra!
- symmetric monoidal \implies commutative algebra!
- generated by finitely many projectives
 ⇒ homological algebra!

EXAMPLE

When $G = \mathbb{1}$, this is just abelian groups and commutative rings

OUESTION

What is a commutative ring for *G*-Mackey functors?

Let E/F be a Galois extension with (finite) Galois group Gal(E/F)

There is a Gal(E/F)-Mackey functor M with $M(H) = E^H$

Restrictions are inclusions:

$$\operatorname{res}_K^H \colon E^H \hookrightarrow E^K$$

Transfers are sums over orbits (field-theoretic traces):

$$\operatorname{tr}_{K}^{H} \colon E^{K} \longrightarrow E^{H}$$

$$a \longmapsto \sum_{\sigma \in \operatorname{Gal}(E^{K}/E^{H})} \sigma(a)$$

Also have field-theoretic norms:

$$a \longmapsto \prod_{\sigma \in \operatorname{Gal}(E^K/E^H)} \sigma(a)$$

DEFINITION (Tambara, 1993)

A Tambara Functor for *G* is the data:

- a commutative ring T(H) for each subgroup $H \subseteq G$
- restriction (ring) homomorphisms

$$\operatorname{res}_K^H \colon T(H) \to T(K)$$

• transfer homomorphisms (for +)

$$\operatorname{tr}_K^H \colon T(K) \to T(H)$$

• norm homomorphisms (for ×)

$$\operatorname{nm}_K^H \colon T(K) \to T(H)$$

• conjugation isomorphisms with "double coset formulas" for res o tr and res o nm, and ...

TAMBARA FUNCTORS FOR SMALL GROUPS

A Tambara functor for G = 1 is a commutative ring

A Tambara functor T for $G = C_p$ is the data:

$$T(C_p)$$
 $T(1)$
 C_p

$$\operatorname{nm}(0) = 0$$

$$\operatorname{res} \circ \operatorname{tr}(x) = \sum_{g \in C_p} g \cdot x$$

$$\operatorname{res} \circ \operatorname{nm}(x) = \prod_{g \in C_p} g \cdot x$$
(and other conditions)

EXAMPLE: BURNSIDE FUNCTOR A

For each G, there is a Burnside functor \mathbb{A} with origin in topology. Each $\mathbb{A}(H)$ is built from finite G-sets.

This Tambara functor \mathbb{A} plays the role of \mathbb{Z} .

- Every Mackey functor is an A-module
- A is the initial Tambara functor
- A is the unit for the tensor product

REPRESENTATION THEORY

DEFINITION

Let *X* be a *G*-space. The space X^n has actions of both G^n and S_n , which combine to an action of the wreath product $G \wr S_n$.

THEOREM (Cornelius-Dominguez-Modi-Mehrle-Rose-Stapleton, 2024)

Connect $\mathbb{A}(G \wr S_n)$ to the representation theory of S_n ; use this to find computationally effective formulas for nm in \mathbb{A} .

WORK-IN-PROGRESS (Calle-Chan-Mehrle-Quigley-Spitz-Van Niel)

Every Tambara functor T has a character theory: a Tambara functor $\Gamma(T)$ with $T \hookrightarrow \Gamma(T)$, where $\Gamma(T)$ is easier to study.

COMMUTATIVE ALGEBRA

THEOREM (Nakaoka, 2014)

There is a robust theory of prime ideals for Tambara functors.

THEOREM (Chan-Mehrle-Quigley-Spitz-Van Niel, 2024)

Use $\Gamma(\mathbb{A})$ for $G = C_p$ to describe the Tambara affine line, and relate affine Tambara algebraic geometry to invariant theory.

LONG-TERM GOAL

Algebraic geometry and invariant theory of Tambara functors

HOMOTOPICAL COMBINATORICS

PART IV

A NON-EXAMPLE

 $\mathbb{Z}/2$ acts on S^2 by reflection in equator

Want to allow Tambara functors with a subset of the norms

QUESTION

Which combinations of norms are allowable?

DEFINITION (Rubin, 2020)

A *G*-transfer system is a partial order \rightarrow on subgroups of *G*:

- (refinement) if $K \to H$, then $K \subseteq H$
- (conjugation) if $K \to H$, then $gKg^{-1} \to gHg^{-1}$ for all $g \in G$
- (restriction) if $K \to H$ and $L \subseteq H$, then $K \cap L \to L$

Transfer systems for $G = C_p$:

Transfer systems for $G = C_{p^2}$:

THEOREM (Balchin-Barnes-Roitzheim, 2021)

There are $Cat(n+1) = \frac{1}{n+2} \binom{2n+2}{n+1}$ transfer systems for C_{p^n} .

INCOMPLETE TAMBARA FUNCTORS

DEFINITION

Let τ be a transfer system for G. A τ -Tambara functor is a Tambara functor with only those norms parameterized by τ .

FREE ALGEBRAS

 $\mathbb{Z}[x]$ is a free algebra with one generator

The free τ -Tambara functor $\mathbb{A}[\tau, H]$ is determined by:

- ullet a transfer system au
- a subgroup $H \subseteq G$

 $\mathbb{Z}[x]$ is a free \mathbb{Z} -algebra with one generator

 $\mathbb{Z}[x]$ is a free \mathbb{Z} -module with basis $\{1, x, x^2, x^3, \ldots\}$

QUESTION

Is the free au-Tambara functor $\mathbb{A}[au,H]$ free as a Mackey functor?

THEOREM (Hill-Mehrle-Quigley, 2023)

Let G be solvable. Then $\mathbb{A}[\tau,H]$ is free as a Mackey functor iff:

- (a) $H \rightarrow G$ in τ ,
- (b) τ has no arrows below H.

THEOREM (Hill-Mehrle-Quigley, 2023)

Let *G* be solvable. Then $\mathbb{A}[\tau, H]$ is free as a Mackey functor iff:

- (a) $H \rightarrow G$ in τ ,
- (b) τ has no arrows below H.

COMBINATORIAL QUESTION

How many $A[\tau, H]$ are free?

Group	#subgroups H	# transfer systems $ au$	# pairs (τ, H)	# free	% free
C_p	2	2	4	2	50
C_{p^2}	3	5	15	4	≈ 27
C_{p^3}	4	14	56	9	≈ 16
C_{p^4}	5	42	210	23	≈ 11
	:	÷	:	:	:
C_{p^n}	n+1	Cat(n+1)	P(n)	F(n)	$\frac{F(n)}{P(n)}$

 $F(n) = \sum_{i=0}^{n} \operatorname{Cat}(i)$

$$P(n) = (n+1)\operatorname{Cat}(n+1)$$

$$\lim_{n \to \infty} \frac{\sum_{i=0}^{n} F(i)}{\sum_{i=0}^{n} P(i)} = 0$$

THEOREM (Hill-Mehrle-Quigley, 2023)

Fix a bijection $\mathbb{G} \colon \mathbb{N} \to \{\text{isomorphism classes of finite groups}\}.$

Let F(G) be the number of pairs (τ, H) such that $\mathbb{A}[\tau, H]$ is free.

Let P(G) be the total number of pairs (τ, H) for G.

$$\lim_{n\to\infty}\frac{\sum_{i=1}^n F(\mathbb{G}(i))}{\sum_{i=1}^n P(\mathbb{G}(i))}=0$$

SLOGAN

"Free incomplete Tambara functors are almost never free."

 $Work-IN-PROGRESS \ (\hbox{\tt Bingham-Franchere-Jones-Mehrle-Shoults-Yousef})$

Computer code and recursive formulas to enumerate free transfer systems for C_{p^n} , C_{pq^n} , $C_{p^2q^n}$, . . .

THEOREM (Mehrle-Quigley-Stahlhauer, 2024)

Let *G* be a cyclic *p*-group for an odd prime *p*. If $\mathbb{A}[\tau, H]$ is free, we construct well-behaved Koszul resolutions.

THEOREM (Mehrle-Quigley-Stahlhauer, 2024)

Let *G* be a cyclic *p*-group, any prime *p*. If $\mathbb{A}[\tau, H]$ is *not* free, then it is infinite dimensional: there is a module with no finite resolution.

GOAL

A theory of minimal resolutions for Tambara functors

TAKEAWAYS

Will equivariant algebraic topology solve all our problems?

Not yet. But sooner rather than later!

- · Renewed interest in the field
- We understand the tools much better than 10 years ago
- New computational aids, e.g. homotopical combinatorics

WORK-IN-PROGRESS (Guillou-Keyes-Mehrle)

Apply what we've learned about Tambara functors to make new calculations in equivariant homotopy theory.

BONUS: MACKEY FUNCTORS

 Fin^G = category of finite *G*-sets and *G*-equivariant functions

 $\operatorname{Span}(\operatorname{\mathcal{F}in}^G)$ = category of finite *G*-sets and spans of finite *G*-sets

DEFINITION

A Mackey functor is a product-preserving functor

$$M \colon \operatorname{Span}(\operatorname{\mathcal{F}in}^G) \to \operatorname{\mathcal{A}b}$$

$$\begin{split} M(H) &:= M(G/H) \\ \operatorname{res}_{K}^{H} &:= M \left(G/H \not \longleftrightarrow G/K \xrightarrow{\operatorname{id}} G/K \right) \\ \operatorname{tr}_{K}^{H} &:= M \left(G/K \not \longleftrightarrow G/K \xrightarrow{\operatorname{id}} G/K \xrightarrow{\operatorname{id}} G/H \right) \end{split}$$

BONUS: TAMBARA FUNCTORS

 $\mathbb{B}ispan(\mathfrak{F}in^G)$ = category of finite *G*-sets & bispans of finite *G*-sets

DEFINITION

A Tambara functor is a product-preserving functor

$$T: \operatorname{Bispan}(\operatorname{\mathcal{F}in}^G) \to \operatorname{Set}$$

such that each T(U) is a commutative ring

$$\operatorname{res}_{K}^{H} := T\left(G/H \overset{\operatorname{id}}{\longleftarrow} G/K \xrightarrow{\operatorname{id}} G/K \xrightarrow{\operatorname{id}} G/K\right)$$

$$\operatorname{tr}_{K}^{H} := T\left(G/K \overset{\operatorname{id}}{\longleftarrow} G/K \xrightarrow{\operatorname{id}} G/K \xrightarrow{\operatorname{id}} G/K \xrightarrow{\operatorname{id}} G/H\right)$$

$$\operatorname{nm}_{K}^{H} := T\left(G/K \overset{\operatorname{id}}{\longleftarrow} G/K \xrightarrow{\operatorname{id}} G/H \xrightarrow{\operatorname{id}} G/H\right)$$