Econometrics - Problem Set 5

Gualtiero Azzalini

Exercise 2

I first report the whole code. At the beginning I set the following values: n=10 the sample size, k=1000 the number of times to repeat part (b), reps=3000 the number of bootstrap repetitions, $\alpha=0.05$ for the CI, $\theta_0=\exp\left(\mathbb{E}[x]\right)=1$.

```
% Exercise 2
% Set parameters
n = 10; k = 1000; reps = 3000; alpha = 0.05; theta0 = 1; tic
for j=1:k
         x = randn(n,1).*sqrt(6);
         theta = \exp(mean(x));
         bs=randi([1 10],n,reps);
         x \ star(:,:) = x(bs(:,:));
                   for i=1:reps
                           \operatorname{Tn}(i,1) = (\operatorname{sqrt}(n) * (\exp(\operatorname{mean}(x \operatorname{star}(:,i))) - \operatorname{theta}) * \dots
                                               (std(x star(:, i))*theta)^(-1))';
                  end
         Tn abs = abs(Tn);
         z(j,1) = quantile(Tn_abs,1-alpha);
         CI bs(j,1) = theta-z(j,1)*(std(x)*theta)*sqrt(n)^(-1);
         CI asy(j,1) = theta -1.96*(std(x)*theta)*sqrt(n)^(-1);
         CI_bs(j,2) = theta+z(j,1)*(std(x)*theta)*sqrt(n)^(-1);
         CI asy(j,2) = theta + 1.96*(std(x)*theta)*sqrt(n)^(-1);
         if rem(j/200,1) == 0
                   j
         end
         if theta0<CI bs(j,1) | theta0>CI bs(j,2)
                  dummy bs(j,1)=0;
         else
                  dummy bs(j,1)=1;
         end
         if theta0<CI asy(j,1) | theta0>CI asy(j,2)
                  dummy asy(j,1)=0;
         else
```

```
dummy_asy(j,1)=1;
end
end
toc

%Percentage theta0 is in the interval
perc_bs = 100*sum(dummy_bs)/k;
perc_asy = 100*sum(dummy_asy)/k;
```

Part (a)

The following code does what required in the question:

```
x = randn(n,1).*sqrt(6);

theta = exp(mean(x));
```

The first line generates a random sample of n=10 from a $\mathcal{N}(0,6)$ and computes $\hat{\theta}=\exp(\bar{x}_n)$ where \bar{x}_n is the sample mean.

Part (b)

The following code performs what required in the question:

```
bs=randi([1\ 10],n,reps);\\ x\_star(:,:)=x(bs(:,:));\\ for i=1:reps\\ Tn(i,1)=(sqrt(n)*(exp(mean(x\_star(:,i)))-theta)*...\\ (std(x\_star(:,i))*theta)^{(-1)})';\\ end\\ Tn\_abs=abs(Tn);\\ z(j,1)=quantile(Tn\_abs,1-alpha);\\ CI\_bs(j,1)=theta-z(j,1)*(std(x)*theta)*sqrt(n)^{(-1)};\\ CI\_asy(j,1)=theta-1.96*(std(x)*theta)*sqrt(n)^{(-1)};\\ CI\_bs(j,2)=theta+z(j,1)*(std(x)*theta)*sqrt(n)^{(-1)};\\ CI\_asy(j,2)=theta+1.96*(std(x)*theta)*sqrt(n)^{(-1)};\\ CI\_asy(j,2)=thet
```

In the first two lines I draw with replacement reps = 3000 new bootstrap samples, that i collect in the matrix x_{star} . Basically in the first line I create a 10x3000 matrix containing numbers from 1 to 10. The integers in each column represent which values in the original sample should be put in each bootstrap sample. Then I compute the t-statistic:

$$T_n(F_n) = \frac{\sqrt{n} \left(\hat{\theta}^* - \hat{\theta}\right)}{\hat{\sigma}^*}$$

Where $\hat{\theta}^* = \exp(\bar{x}_n^*)$ and $\hat{\theta} = \exp(\bar{x}_n)$ and $\hat{\sigma}^* = \sigma(x^*) \exp(\bar{x}_n) = \sigma(x^*) \hat{\theta}$. $\hat{\sigma}^*$ is computed through the delta-method and $\sigma(x^*)$ is the standard deviation of the sample. In fact, according to the delta-method, if $g(\theta)$ is a continuously differentiable function, then $\sqrt{n}(g(\hat{\theta}) - g(\theta)) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2 g^{'}(\theta)^2)$ in the univariate case. In this case $g(\theta) = \exp(\theta)$ hence we can use the formula above as consistent estimator of the standard error.

Then, I take the absolute value of T_n and I compute the $1-\alpha$ quantile of this distribution to get $z_{n,\alpha}^*$ (in my case $\alpha=0.05$). Finally I compute the CI in the bootstrap case as $\hat{\theta}\pm z_{n,\alpha}^*\frac{\sigma(x)}{\sqrt{n}}$ and in the asmptotic case as $\hat{\theta}\pm 1.96\frac{\sigma(x)}{\sqrt{n}}$. Note that I use $\sigma(x)$, the standard error of the original sample x as consistent estimator (in this case I could have used also the asymptotic variance as I know the true distribution but (i) usually the original distribution is not known (ii) the standard error of the sample is a consistent estimator and hence results are basically the same).

Part (c)

I repeat part (b) 1000 times as required and I compute the percentages as follows:

In the first part I define two dummies (one for the asymptotic and one for the bootstrap that is one if the true parameter $\theta_0 = 1$ is contained in the j^{th} iteration and it's zero otherwise. Then I compute the percentage of times that θ_0 is contained in the CI for the two cases. Results are in the table below:

Clearly the percentage is higher in the bootstrap case because, given that the t-stat is pivotal, the coverage of the bootstrap is $O(n^{-2})$ in the symmetric case, while it's $O(n^{-1/2})$ in the asymptotic case.

Exercise 3

Part $(a)^1$

To verify clean maximum we can check that the conditions of Lemma 2.1 are satisfied (as the latter holds in general).

- Θ is compact by hypothesis
- $Q(\theta_0) > Q(\theta)$ for each $\theta \in \Theta$ with $\theta \neq \theta_0$: $Q(\theta)$ is a quadratic form with W positive definite and symmetric which implies that is minimized at zero, i.e. when $\gamma(\theta_0) = g_0$. Since by assumption we know that there is a unique θ_0 such that $\gamma(\theta_0) = g_0$ then this condition holds.
- $Q: \Theta \to \mathbb{R}$ is continuous: we know by assumption that $\gamma: \Theta \to \mathbb{R}^k$ is continuous hence, to prove that Q is continuous we have to show that $(g_0 \gamma(\theta))$ is continuous in θ . Consider any $\theta^* \in \Theta$ and let $(\theta_n)_{n \in \mathbb{N}} \subset \Theta$ be a sequence such that $||\theta_n \theta^*|| \to 0$ as $n \to \infty$. Then since $\gamma: \Theta \to \mathbb{R}^k$ is continuous: $\lim_{n \to \infty} (g_0 \gamma(\theta_n)) = g_0 \gamma(\theta^*)$ and since algebraic operations are continuous, then this proves that the whole function Q is continuous.

As all the conditions required by the lemma are satisfied clean maximum holds.

Part (b)

We want to show $\sup_{\theta \in \Theta} |Q_n(\theta) - Q(\theta)| = o_p(1)$.

Now, consider the following:

$$2(Q(\theta) - Q_n(\theta)) = (g_n - \gamma(\theta))'\hat{W}(g_n - \gamma(\theta)) - (g_0 - \gamma(\theta))'W(g_0 - \gamma(\theta)).$$

Add and subtract $(g_n - \gamma(\theta))'W(g_n - \gamma(\theta))$:

$$\Rightarrow (g_n - \gamma(\theta))'(\hat{W} - W)(g_n - \gamma(\theta)) + (g_n - \gamma(\theta))'W(g_n - \gamma(\theta)) - (g_0 - \gamma(\theta))'W(g_0 - \gamma(\theta)).$$

Note that the last two terms can be written as:

$$(g_n - g_0)'W(g_n - g_0) - \gamma(\theta)'W(g_n - g_0) - (g_n - g_0)'W\gamma(\theta).$$

Therefore:

$$\sup_{\theta \in \Theta} 2 |Q_n(\theta) - Q(\theta)| \le \sup_{\theta \in \Theta} \left| (g_n - \gamma(\theta))'(\hat{W} - W)(g_n - \gamma(\theta)) \right|$$

$$+ \sup_{\theta \in \Theta} |(g_n - g_0)'W(g_n - g_0)|$$

$$+ \sup_{\theta \in \Theta} |\gamma(\theta)'W(g_n - g_0)|$$

$$+ \sup_{\theta \in \Theta} |(g_n - g_0)'W\gamma(\theta)|.$$

Now note the following:

¹Note: I assume first and second moments of $g(w_t)$ are finite

$$g_n - g_0 = \frac{1}{n} \sum_{t=1}^n g(w_t) - \mathbb{E}[g(w_t)] = o_{a.s.}(1) \qquad by \, Ergodic \, Theorem$$

$$||\hat{W} - W|| = o_p(1) \qquad by \, assumption$$

$$\sup_{\theta \in \Theta} (||\gamma(\theta)||) < \infty \qquad by \, Weierstrass \, as \, \gamma(\theta) \, continuous \, and \, \Theta \, compact$$

$$\sup_{\theta \in \Theta} ||g_n - \gamma(\theta)|| < \infty \qquad by \, the \, above \, and \, finite \, moments \, assumption$$

and that g_n and g_0 don't depend on θ , so that:

$$\begin{split} \sup_{\theta \in \Theta} 2 \, |Q_n(\theta) - Q(\theta)| &\leq \left(\sup_{\theta \in \Theta} ||g_n - \gamma(\theta)|| \right)^2 ||\hat{W} - W|| \\ &+ (||g_n - g_0||)^2 \, ||W|| \\ &+ \sup_{\theta \in \Theta} \left(||\gamma(\theta)|| \right) ||W|| \, ||g_n - g_0|| \\ &+ ||g_n - g_0|| \, ||W|| \sup_{\theta \in \Theta} \left(||\gamma(\theta)|| \right) \\ &= O_p(1) o_p(1) + o_p(1) * constant + O_p(1) * constant * o_p(1) + o_p(1) * constant * O_p(1) \\ &= o_p(1). \end{split}$$

This verifies uniform convergence.

Part (c)

By part (a) and part (b) and by the fact that we are dealing with an extremum estimator, using Theorem 2.1 we conclude that $\hat{\theta} \stackrel{p}{\to} \theta_0$ as $n \to \infty$.