

Some Applications of Trigonometry Ex 12.1 Q55 Answer:

Let h be the height of tower CD. The tower CD subtends an angle lpha at a point A. And the angle of depression of foot of tower at a point b meter just above $_A$ is β . Let $_{AC=x}$ and $\angle _{ACB=\beta}$,

Here we have to prove height of tower is $b \tan \alpha \cot \beta$

We have the corresponding figure as follows

In AABC .

$$\Rightarrow \tan \beta = \frac{AB}{AC}$$

$$\Rightarrow \tan \beta = \frac{b}{x}$$

$$\Rightarrow x = \frac{b}{\tan \beta}$$

$$\Rightarrow x = b \cot \beta$$

Again in $\triangle ACD$

$$\Rightarrow \tan \alpha = \frac{CD}{AC}$$

$$\Rightarrow$$
 $\tan \alpha = \frac{h}{x}$

$$\Rightarrow h = x \tan \alpha$$

$$\Rightarrow$$
 $h = b \tan \alpha \cot \beta$

Hence the height of tower is $b \tan \alpha \cot \beta$

Some Applications of Trigonometry Ex 12.1 Q56

Answer:

Let BE be the observer of 1,5 m tall. And AD be the tower of height 30. Here we have to find angle of elevation of the top of tower.

Let $\angle ABC = \theta$

The corresponding figure is as follows

$$\Rightarrow \tan \theta = \frac{28.5}{28.5}$$

$$\Rightarrow$$
 $\tan \theta = 1$

$$\Rightarrow$$
 $\theta = 45^{\circ}$

Hence the required angle is

45°

Some Applications of Trigonometry Ex 12.1 Q57 Answer:

Let the length of stool, $AB=0.5\,\mathrm{m}$, height $AC=1.5\,\mathrm{m}$ and its leg inclined at an angle of 60° to the ground.

Let length of leg $AE = h \, \text{m}$.

C D
We have to find length of leg, lengths of two steps equal in length.

 $\ln \triangle AEC$, $\angle AEC = 60^{\circ}$

$$\sin 60^{\circ} = \frac{AC}{AE}$$

$$\Rightarrow \frac{\sqrt{3}}{2} = \frac{1.5}{h}$$

$$\Rightarrow h = \frac{3}{\sqrt{3}}$$

$$\Rightarrow h = 1.732$$

In $\triangle AGH$, $\angle AGH = 60^{\circ}$ and AH = 0.5 m

$$\tan 60^{\circ} = \frac{AH}{GH}$$

$$\Rightarrow \sqrt{3} = \frac{0.5}{GH}$$

$$\Rightarrow GH = \frac{0.5}{\sqrt{3}}$$

$$\Rightarrow GH = 0.2886$$

Total length = $0.5 + (0.2886 \times 2) = 1.1077 \text{ m}$.

 $In\Delta APQ$, $\angle APQ = 60^{\circ}$ and AQ = 1 m

$$\tan 60^{\circ} = \frac{AQ}{PQ}$$

$$\Rightarrow \sqrt{3} = \frac{1}{PQ}$$

$$\Rightarrow PQ = \frac{1}{\sqrt{3}}$$

$$\Rightarrow PQ = 0.577$$

Total lengths $0.5 + (0.577 \times 2) = 1.654 \,\text{m}$

Hence the length of leg is 1.732 m.

And lengths of each step are $\boxed{1.1077}$ m and $\boxed{1.654}$ m.

********* END *******