Infraestructura para el Análisis de Rendimiento

Lic. Andrés More Director: Dr Fernando G. Tinetti

Magíster en Cómputo de Altas Prestaciones Universidad Nacional de La Plata Facultad de Informática

Septiembre de 2016

Contenido

- Introducción y Trabajo Relacionado
 - Motivación y Objetivos
 - Teoría Básica
 - Herramientas
- Descripción del Problema y Propuesta de Solución
 - Análisis de Rendimiento
 - Procedimiento
 - Infraestructura

- Casos de Aplicación
 - Multiplicación de Matrices
 - Transmisión de Calor en 2D
 - Conjunto de Mandelbrot
 - Conclusiones y Trabajo Futuro
 - Conclusiones
 - Trabajo Futuro

Resumen Resumen

- Las aplicaciones son construidas por especialistas en el dominio del problema, no expertos en rendimiento.
- Se desarrolló infraestructura que simplifica el análisis de rendimiento, permitiendo más tiempo de experimentación y análisis.
- El soporte consiste en información sobre programa, sistema, comportamiento, escalamiento, perfil de ejecución, cuellos de botella, uso de recursos.

Introducción Motivación y Objetivos

- En HPC los desarrolladores son los especialistas del dominio, no son expertos en optimización.
- Menor tiempo de experimentación y análisis ya que el código optimizado puede ejecutarse órdenes de magnitud mejor que una implementación directa teórica.
- La metodología consiste en analizar el estado del arte, formular e implementar una solución sistemática, aplicar lo implementado a casos de estudio y documentar la experiencia.

Motivación y Objetivos Teoría Básica Herramientas

Introducción Contribuciones Realizadas

- Reportes técnicos: Estudio de Multiplicación de Matrices, Comparación de Implementaciones de una Operación BLAS.
- Artículos: Optimizing Latency in Beowulf Clusters, Lessons Learned from Contrasting BLAS Kernel Implementations, Hotspot: a Framework to Support Performance Optimization on Multiprocessors.
- Libro: Sección Intel Cluster Ready e Intel Cluster Checker en Programming Intel Xeon Phi. Reseña para JCS & T.

Trabajo Relacionado Teoría Básica

- Rendimiento, Paralelismo y Métricas
- Leyes de Escalamiento (Amdahl y Gustafson)

		Porcentaje de Paralelismo							
		0.1	0.3	0.5	0.8	0.9	0.95		
Número de Procesadores	1	1.00	1.00	1.00	1.00	1.00	1.00		
	2	1.05	1.14	1.33	1.60	1.82	1.90		
	4	1.08	1.23	1.60	2.29	3.08	3.48		
	8	1.10	1.28	1.78	2.91	4.71	5.93		
	16	1.10	1.31	1.88	3.37	6.40	9.14		
	32	1.11	1.32	1.94	3.66	7.80	12.55		
	64	1.11	1.33	1.97	3.82	8.77	15.42		
	128	1.11	1.33	1.98	3.91	9.34	17.41		
	256	1.11	1.33	1.99	3.95	9.66	18.62		
	512	1.11	1.33	2.00	3.98	9.83	19.28		
	1024	1.11	1.33	2.00	3.99	9.91	19.64		
	2048	1.11	1.33	2.00	3.99	9.96	19.82		
	4096	1.11	1.33	2.00	4.00	9.98	19.91		
	8192	1.11	1.33	2.00	4.00	9.99	19.95		
	16384	1.11	1.33	2.00	4.00	9.99	19.98		
	32768	1.11	1.33	2.00	4.00	10.00	19.99		
ž	65536	1.11	1.33	2.00	4.00	10.00	19.99		

	, , , , , , , , , , , , , , , , , , , ,										
		Porcentaje de Paralelismo									
		0.1	0.25	0.5	0.75	0.9	0.95				
Número de Procesadores	1	1	1	1	1	1	1				
	2	1	1	2	2	2	2				
	4	1	2	3	3	4	4				
	8	2	3	5	6	7	8				
	16	3	5	9	12	15	15				
	32	4	9	17	24	29	30				
	64	7	17	33	48	58	61				
	128	14	33	65	96	115	122				
	256	27	65	129	192	231	243				
	512	52	129	257	384	461	486				
	1024	103	257	513	768	922	973				
	2048	206	513	1025	1536	1843	1946				
	4096	411	1025	2049	3072	3687	3891				
	8192	820	2049	4097	6144	7373	7782				
	16384	1639	4097	8193	12288	14746	15565				
	32768	3278	8193	16385	24576	29491	31130				
ž	65536	6555	16385	32769	49152	58983	62259				

Técnicas de Análisis

Motivación y Objetiv Teoría Básica Herramientas

Trabajo Relacionado Herramientas

- Pruebas de Rendimiento (STREAM/HPL/Intel MPI/HPCC)
- Utilización de las Herramientas
- Tiempo de Ejecución
- Perfil de Ejecución Funcional
- Asistido por Hardware
- Reporte de Vectorización

Descripción del Problema Análisis de Rendimiento

- Problemas: Interacción Humana, Manejo de Herramientas, Recopilación y Representación, Optimización Temprana, Implementación Teórica.
- Optimización: Código, Ejecución, Memoria, Precarga, Punto Flotante.
- Infraestructura: Reusabilidad, Configurabilidad, Portabilidad, Extensibilidad, Simplicidad.

Propuesta de Solución Procedimiento

- Procedimiento iterativo.
- Se establece una línea base.
- Se instrumenta el binario.
- Se comprueba estabilidad.
- Se comprueba uso de recursos.
- Se realiza un perfil.
- Se realiza una optimización.
- Se comprueba y se itera.

Propuesta de Solución Infraestructura

- hotspot
- Combina gcc, make, prof, gprof, pidstat, latex.
- Arquitectura y diseño.

Análisis de Rendimient Procedimiento Infraestructura

Propuesta de Solución Implementación

- GNU/Linux, Ubuntu, Python, matplotlib, numpy.
- Configuración
- Reporte: Formato portable, hipervínculo, secciones y gráficos, tendencia, referencias, inglés.
- Reporte: Resumen, Contenido, Programa, Capacidad del Sistema, Carga de Trabajo, Escalabilidad, Perfil de Ejecución, Bajo Nivel, Referencias.

Multiplicación de Matrices Transmisión de Calor en 2 Conjunto de Mandelbrot

Casos de Aplicación Sistema de Prueba

Hardware y Software

memory 7984MiB System memory

processor Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz

bridge 440FX - 82441FX PMC [Natoma]

bridge 82371SB PIIX3 ISA [Natoma/Triton II]

storage 82371AB/EB/MB PIIX4 IDE

network 82540EM Gigabit Ethernet Controller

bridge 82371AB/EB/MB PIIX4 ACPI

storage 82801HM/HEM (ICH8M/ICH8M-E) SATA Controller [AHCI mode]

Pruebas de Rendimiento

- Host: ubuntu
- 2. Distribution: Ubuntu, 14.04, trusty.
- This codename provides LSB (Linux Standard Base) and distribution-specific information.
- Compiler: gcc (Ubuntu 4.8.2-19ubuntu1) 4.8.2.
 Version number of the compiler program.
- C Library: GNU C Library (Ubuntu EGLIBC 2.19-Oubuntu6.6) stable release version 2.19.
 Version number of the C library.

Casos de Aplicación Multiplicación de Matrices

Estabilidad

Execution time: (a) problem size range: 2048 - 4096

- (b) geomean: 42.80017 seconds
- (c) average: 42.80048 seconds (d) stddev: 0.16483
- (e) min: 42.41161 seconds
- (f) max: 43, 15019 seconds
- (g) repetitions: 16 times

Escalabilidad

Casos de Aplicación Transmisión de Calor en 2D

Utilización de recursos

Instrucciones

```
: /* set boundary values */
: for (i = 0; i < GRESH; i++)
: {
: if (i < 256 || i > 768)
: solution[cur_gen][i][0] = solution[cur_gen][i][1];
6.77 : 400040: moved 0x8(rdx),xmn0
36.41 : 400040: moved xmn0,(rdx)
2.92 : 400044: jnpq 4004b7 <compute_one_iteration=0x37>
```


Casos de Aplicación Conjunto de Mandelbrot

Estructuras

```
struct complextype {
                                                                 4 */
float
                            real:
                                                                4 */
float
                            imag;
/* size: 8, cachelines: 1, members: 2 */
/* last cacheline: 8 bytes */
               do
                   temp = z.real * z.real - z.imag * z.imag + c.real;
                   z.imag = 2.0 * z.real * z.imag + c.imag;
         400999:
                       addsd xmm6,xmm0
0.57 :
6.56 :
         40099d:
                       unpcklpd xmm0,xmm0
                   z.real = temp;
                   lensq = z.real * z.real + z.imag * z.imag;
5.17 :
         4009a5:
                       movaps xmm1,xmm0
2.26:
         4009a8:
                       mulss xmm1,xmm0
3.94 :
                       movaps xmm2,xmm3
         4009ac:
0.13 :
         4009af:
                       mulss xmm2.xmm3
                       addss xmm3,xmm0
19.29 :
         4009ь3:
```


Conclusiones y Trabajo Futuro Conclusiones

- La optimización requiere un análisis disciplinado para ser efectiva.
- Se provee una infraestructura automática que soporta el analísis.

Conclusiones y Trabajo Futuro Trabajo Futuro

- Extensión.
- Aplicación.
- Soporte MPI.

