CS183

Instructor: Ali Davanian

Security

Logistics

- This is our last lecture
 - We studied more than 11 chapters of the textbook
- Next week is your presentations
 - Sign up (Link on Slack and iLearn)
 - Make it interesting for your classmates
- Please evaluate me
 - Please be polite and fair in your evaluations
 - Instructors are not able to access results until grades have been submitted
 - https://ieval.ucr.edu/

Chapters	Topic
Chapter 2	Booting and System
Chapter 7	Scripting and the Shell
Chapter 3	Access Control
Chapter 4	Process Control
Chapter 5	The Filesystem
Chapter 6	Software Installation/ Management
Chapter 8	User Management
Chapter 13	TCP/IP Networking
Chapter 15	IP Routing
Chapter 16	DNS: Domain Name System
Chapter 27	Security
Partially touched: 1 and 14	Introduction and Physical Networking

Elements of security - "CIA Triad"

- CIA or Triangle of Security stands for:
 - Confidentiality: it is about privacy of data
 - Integrity: it relates to the authenticity of information
 - Availability: it expresses the idea that information must be accessible to authorized users when they need it
- Security is a process!
 - Consider the CIA principles as you design, implement, and maintain systems and networks

How security is compromised?

- **Social engineering**: in the context of information security, it is the psychological manipulation of people into performing actions or divulging confidential information (Wikipedia).
- Software vulnerabilities: they are security-sapping bugs like Buffer overflows.
- Denial-of-service (DoS) attacks: A DoS attack aims to interrupt a service or adversely impact its performance, making the service unavailable to users.
- Insider attacks: when Employees, contractors or consultants abuse their privileges to reveal data, disrupt systems for financial gain, or create havoc for political reasons
- Misconfiguration: a not-so-secure configuration that allows hackers to break in.

Basic Security Measures

- Software Updates: keeping systems updated with the latest patches
- Backups: keeping a copy of system states and data in case there is a breach
- Removing Unnecessary services: disable (and possibly remove) those services are unnecessary, especially if they are network daemons.
- Password measures: enforce password aging, complexity, time out etc.
- Penetration testing: lay the hacker role and try to break in your network; if you found a backdoor, close it
- Firewalls: filter out unnecessary traffic to your network
- Anti Virus: anti Viruses are usually the last line of defense; if the malware bypassed firewalls (and other measures), the antivirus can still detect an clean it
- Logging: log and store events as they will be very useful to detect, and analyze attacks

Security tools

- Penetration testing
 - Nmap: network port scanner
 - **Metasploit**: penetration testing software
 - Nessus: scans network for services, and can check their vulnerability
- Security auditing and compliance checking:
 - Lynis: It performs an extensive health scan of your systems to support system hardening and compliance testing
- Password Complexity:
 - John the Ripper: implements various passwordcracking algorithms in a single tool. Direct John to the file to be cracked e.g./etc/shadow
 - THC Hydra: similar but works online

Network Intrusion Detection Systems (NIDS)

- Snort: the popular network intrusion detection/prevention system
 - Snort IPS uses a series of rules that help define malicious network activity and uses those rules to find packets that match against them and generates alerts for users
 - alert tcp !192.168.1.0/24 any -> 192.168.1.0/24 111 (content: "|00 01 86 a5|"; msg: "external mountd access";)
- Bro (Zeek): the programmable network intrusion detection system
 - Zeek is a powerful network analysis framework; compared to SNORT Zeek/Bro is more of a passive approach.
- Suricata: very similar to SNORT but offers a scripting language (LuaJIT), and was designed with multi-threading (and performance) in mind

Host Based Intrusion Detection

- A host-based IDS is an intrusion detection system that monitors the computer infrastructure on which it is installed
- OSSEC is a scalable, multi-platform, open source Host-based Intrusion Detection System (HIDS). Some features are:
 - Log file analysis
 - Collect logs from files (for instance "/var/log/messages")
 - Alerting when output of a command changes (for instance "netstat -tan |grep LISTEN")
 - Filesystem integrity checks
 - It does that by looking for changes in the MD5/SHA1 checksums of the key files in the system
 - Root kit detection
 - Look for hidden processes, access to important files owned by root etc.

Fail2Ban: brute-force attack response system

- Fail2Ban scans log files like /var/log/auth.log and bans IP addresses conducting too many failed login attempts
- Fail2Ban comes out-of-the-box ready to read many standard log files, such as those for sshd and Apache
 - It can read any file of your choice

```
23:03:57.936 INFO Fail2Ban v0.3.0-CVS is running 23:03:59.065 INFO Ban 62.94.10.80 23:08:19.221 INFO Restoring iptables... 23:08:19.224 INFO Unban 62.94.10.80 23:08:19.238 INFO Exiting... 23:12:16.017 INFO Fail2Ban v0.3.0-CVS is running 23:38:43.211 INFO Restoring iptables... 23:38:43.213 INFO Exiting... 23:38:43.213 INFO Exiting... 23:45:11.090 INFO Fail2Ban v0.3.0-CVS is running 12:01:32.866 INFO Ban 66.139.75.25 12:11:33.871 INFO Unban 66.139.75.25
```

Cryptography

- In the cryptography context, "Alice" and "Bob" are at the two sides of the communication and they want to securely communicate with:
 - Confidentiality: messages are impossible to read for everyone except the intended recipients.
 - *Integrity*: it is impossible to modify the contents without detection.
 - Non-repudiation: the authenticity of the message can be validated.
- Symmetric cryptography or "classic" cryptography
 - Alice and Bob share a secret key that they use to encrypt and decrypt messages.
 - Limitation: Alice and Bob need to securely exchange the secret key in advance

Public key cryptography

- The idea is keeping the keys for decryption private while sharing the key for encryption readily available
 - A message sent for "Bob" can only be read by "Bob"
 - Useful for cases where parties want to communicate for the first time
- How should Alice know the public key belongs to "Bob"? What if "Mallory" claims to be Bob and present a fake public key?
 - There needs to be a signature validation process

Public key infrastructure process for the web

Exhibit B Public key infrastructure process for the web

- The "Certificate Authority" (CA) is implicitly trusted in this system
 - Examples are such as GeoTrust and VeriSign
- The user can check the authenticity of signatures because operating systems are shipped with CA certificates
 - Signing is another interesting cryptography context

Transport Layer Security (TLS)

 Transport Layer Security (TLS) uses public key cryptography and PKI to secure messages between nodes on a network

openssl

- openssl is an administrator's TLS multitool:
 - generate public/private key pairs
 - openssl genrsa -out admin.com.key 2048
 - create a certificate signing request
 - openssl req -new -sha256 -key admin.com.key -out admin.com.csr
 - examine the cryptographic properties
 - openssl x509 -noout -text -in google.com.pem
 - openssl s_client -connect google.com:44
 - encrypt and decrypt files
 - create certificate authorities
 - myriad other cryptographic operations
- It is open source and it has been examined by thousands of people

The Secure Shell - SSH

- It is a protocol for remote logins and for securing network services on an insecure network
 - Remote command execution
 - Shell access
 - File transfer
 - Port forwarding
 - Network proxy services
 - Even VPN tunneling
- SSH is a client/server protocol that uses cryptography for authentication, confidentiality, and integrity of communications

OpenSSH - Open source SSH implementation

- ssh, the client
- sshd, the server daemon
- ssh-keygen, for generating public/private key pairs
- ssh-add and ssh-agent, tools for managing authentication keys
- ssh-keyscan, for retrieving public keys from servers
- sftp-server, the server process for file transfer over SFTP
- sftp and scp, file transfer client utilities

ssh port forwarding

- Alice wants to establish an HTTP connection to a web server on an enterprise network an access to port 80 is blocked by the firewall
- Alice can route the connection through the SSH server
 - Alice can use SSH port forwarding feature to access the web server
 - ssh -L 8000:webserver:80 server.admin.com
 - Alice can now open the webpage in her browser by specifying port 8000

Virtual private networks (VPNs)

- A VPN is a connection that makes a remote network appear as if it were directly connected
- Internet Protocol security (IPsec) is an approved, authentication and encryption system
- Linux and FreeBSD include native kernel support for IPsec

Questions?

Further reading

- Computer Security Textbook (taught in UC Berkeley)
- Google Security Engineering Interview Study notes
- Mitre Attack Matrix for Enterprise