Relazione di Progetto Web Server e Sito Web

Giovanni Maria Rava

12 luglio 2025

Indice

1	Introduzione			
	1.1	Obbiettivo	2	
	1.2	Requisiti minimi	2	
	1.3	Estensioni opzionali	3	
2	Fondamenti Teorici			
	2.1	Protocollo HTTP	4	
	2.2	Socket	5	
3	Architettura del Server			
	3.1	3.1 Fase di inizializzazione	6	
	3.2	3.2 Ciclo principale del server	7	
	3.3	3.3 Ricezione e parsing della richiesta	7	
	3.4	3.4 Recupero del file richiesto		
	3.5	3.5 Costruzione della risposta HTTP	8	
	3.6	3.6 Logging delle richieste	8	
	3.7	3.7 Chiusura della connessione	8	
4	Ana	alisi tramite Wireshark e Console	9	
	4.1	Richiesta HTTP GET	9	
	4.2	Risposta HTTP con codice 200 OK	10	
	4.3	Richiesta di file inesistente: errore 404	11	
	4.4	Log della console del server	11	
	4.5		12	

Introduzione

Questa relazione documenta lo sviluppo di un semplice Web Server scritto in linguaggio Python (versione 3.12), in grado di gestire richieste HTTP e servire contenuti statici in formato HTML e CSS. Il progetto ha finalità didattiche ed è stato realizzato nell'ambito del corso di Programmazione di Reti (codice: 70226), durante l'Anno Accademico 2024/2025.

Durante lo sviluppo del progetto sono stati utilizzati diversi ambienti di lavoro e strumenti di sviluppo, elencati di seguito:

- Spyder 6, per il debugging interattivo del codice Python;
- Visual Studio Code, per l'editing del codice e la gestione dei file HTML/CSS;
- GitHub, per il versionamento e l'archiviazione del progetto.

1.1 Obbiettivo

Progettare un semplice server HTTP in Python (usando socket) e servire un sito web statico con HTML/CSS.

1.2 Requisiti minimi

- Il server deve rispondere su localhost:8080
- Deve servire almeno tre pagine HTML statiche
- Gestione di richieste GET e risposta con codice 200
- Implementare risposta 404 per file inesistenti

1.3 Estensioni opzionali

- \bullet Gestione dei MIME types (.html, .css, .jpg)
- Logging delle richieste
- Aggiunta di animazioni o layout responsive

Fondamenti Teorici

2.1 Protocollo HTTP

Il Hypertext Transfer Protocol (HTTP) è il protocollo standard per la comunicazione tra client e server sul Web . HTTP funziona secondo un modello stateless, ovvero ogni transazione è indipendente e non si tiene memoria di essa. Utilizza comandi testuali standard come GET per richiedere risorse. All'interno di HTTP sono prensenti messaggi di due tipi:

- richiesta
- risposta

Ogni messaggio è formato da una intestazione (header) seguita dal corpo (body). L'intestazione è composta da una serie di righe di testo terminate da caratteri di fine linea. Una richiesta inizia con una riga di richiesta, seguita da una o più righe di intestazione. Una risposta inizia con una riga di stato, seguita da una o più righe di intestazione. All'interno del body vengono contenuti i dati da trasferire.

In questo progetto viene implementata in particolare la richiesta **GET**, che consiste nella richiesta di una pagina al server. Esempio di richiesta:

GET /index.html HTTP/1.1
Host: localhost:8080
User-Agent: Mozilla/5.0

Vengono anche gestiti con particolare attenzioni i codici di stato $200\,$ che corrisponde ad OK e $404\,$ Not found

2.2 Socket

Il **socket** è un'interfaccia che le applicazioni usano per interagire con i protocolli dello strato di trasporto. È fornita dal sistema operativo in esecuzione sull'host ed è accessibile tramite primitive di comunicazione. Il socket HTTP, in particolare, viene usato per trasmettere messaggi HTTP tra client e server web.

Architettura del Server

L'architettura del server HTTP realizzato è di tipo **sequenziale e monoth-read**, ed è progettata per rispondere a richieste HTTP in ingresso attraverso socket TCP. L'obiettivo è servire contenuti statici (HTML, CSS, immagini) situati nella directory www/, restituendo risposte conformi al protocollo HTTP.

Il server è costituito da un unico file server.py, suddivisibile logicamente in tre macro-componenti:

- Fase di inizializzazione (apertura del socket e ascolto)
- Gestione della richiesta (ricezione, parsing, recupero file)
- Generazione della risposta (header HTTP, corpo e codice di stato)

3.1 Sase di inizializzazione

Il server crea e configura il socket TCP che lo mette in ascolto su localhost:8080:

```
serverSocket = socket(AF_INET, SOCK_STREAM)
serverSocket.bind(('localhost', serverPort))
serverSocket.listen(1)
```

Questa fase prepara il server ad accettare una connessione per volta tramite il metodo accept().

3.2 Ciclo principale del server

Il server entra in un ciclo infinito dove attende, elabora e risponde alle richieste dei client:

```
while True:
    connectionSocket, addr = serverSocket.accept()
    ...
    connectionSocket.close()
```

Ogni iterazione rappresenta l'elaborazione completa di una singola connessione HTTP.

3.3 Ricezione e parsing della richiesta

Il server riceve il messaggio dal client, che rappresenta una richiesta HTTP:

```
message = connectionSocket.recv(1024).decode()
parts = message.split()
method = parts[0]
path = parts[1][1:]
```

- recv(1024) riceve al massimo 1024 byte dalla richiesta.
- split() separa la richiesta in blocchi (es. GET /index.html HTTP/1.1).
- Viene estratto il metodo HTTP (GET) e il percorso richiesto.
- Se il path è vuoto, viene servito per default index.html.

3.4 Recupero del file richiesto

Il server costruisce il path assoluto al file richiesto nella directory www/:

```
filepath = os.path.join('www', path)
if not os.path.isfile(filepath):
    ...
```

Se il file non esiste, viene generata una risposta 404 Not Found. Altrimenti, il contenuto viene letto in modalità binaria.

3.5 Costruzione della risposta HTTP

A seconda dell'esito del controllo sul file, vengono costruite le intestazioni e il corpo della risposta. Ad esempio, in caso positivo:

```
HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 1234

Nel codice:

content_type = get_content_type(filepath)
header = (
    "HTTP/1.1 200 OK\\r\\n"
    f"Content-Type: {content_type}\\r\\n"
    f"Content-Length: {len(body)}\\r\\n"
    "Connection: close\\r\\n"
    "\\\n"
).encode()
connectionSocket.sendall(header + body)
```

3.6 3.6 Logging delle richieste

Ad ogni richiesta viene stampato un log nella console, utile per il monitoraggio e il debugging:

```
log_request(addr, method, path, 200)

Esempio di output su console:

[2025-07-10 11:45:01] ('127.0.0.1', 54322) - GET index.html -> 200
```

3.7 Chiusura della connessione

Infine, il server chiude il socket dedicato alla comunicazione col client:

```
connectionSocket.close()
```

Analisi tramite Wireshark e Console

Per validare il corretto funzionamento del Web Server e osservare il traffico di rete generato, è stato utilizzato il tool **Wireshark**. Tramite il monitoraggio dell'interfaccia **Loopback**, è stato possibile catturare i pacchetti scambiati tra il browser (client) e il server Python in ascolto su localhost:8080.

4.1 Richiesta HTTP GET

Nell'immagine seguente è mostrato il pacchetto contenente la richiesta GET da parte del client per il file /index.html:

Figura 4.1: Pacchetto HTTP contenente richiesta GET

Come si nota dalla sezione "Hypertext Transfer Protocol" di Wireshark, la richiesta include:

- Il metodo GET
- La versione HTTP HTTP/1.1
- Header come Host, User-Agent, ecc.

4.2 Risposta HTTP con codice 200 OK

A seguito della richiesta, il server restituisce il file richiesto con codice di stato 200 OK:

Figura 4.2: Risposta HTTP con codice 200 OK e intestazioni corrette

L'header della risposta include:

• Codice di stato: HTTP/1.1 200 OK

• Content-Type: text/html

• Content-Length

• Connection: close

4.3 Richiesta di file inesistente: errore 404

Se il client tenta di accedere a una risorsa non esistente (es. /pippo.html), il server risponde con il messaggio di errore 404 Not Found, come mostrato nella figura seguente:

Figura 4.3: Risposta HTTP con errore 404 Not Found

4.4 Log della console del server

Per ogni richiesta ricevuta, il server produce un log in console con informazioni utili per il debugging. Un esempio di output è:

```
[2025-07-12 10:21:05] ('127.0.0.1', 54322) - GET index.html -> 200 [2025-07-12 10:22:10] ('127.0.0.1', 54324) - GET pippo.html -> 404
```

Questo log mostra:

- Timestamp della richiesta
- Indirizzo IP e porta del client
- Metodo e risorsa richiesta
- Codice di stato HTTP restituito

4.5 Considerazioni

L'analisi con Wireshark ha confermato che il server genera messaggi HTTP validi secondo specifica e risponde coerentemente a tutte le richieste. L'output in console permette di tracciare l'attività del server, facilitando il debugging e l'eventuale estensione futura del progetto.