Relating Algebra and Geometry

For products of numbers

1 is the identity.

$$a \cdot 1 = a$$
 and $1 \cdot a = a$

The inverse of a is written a^{-1} , or $\frac{1}{a}$. $a \cdot a^{-1} = 1$ and $a^{-1} \cdot a = 1$ For composites of mappings

I is the identity.

$$S \circ I = S$$
 and $I \circ S = S$

The inverse of S is written S^{-1} .

$$S \circ S^{-1} = I$$
 and $S^{-1} \circ S = I$

In general, the **inverse** of a transformation T is defined as the transformation S such that $S \circ T = I$. The inverses of some other transformations are illustrated below.

Example 1 Find the inverses of (a) translation $T:(x, y) \to (x + 5, y - 4)$, (b) rotation $\mathcal{R}_{O, x}$, and (c) dilation $D_{O, 2}$.

Solution

a. T^{-1} : $(x, y) \to (x - 5, y + 4)$

 $T:(0, 6) \to (5, 2)$ $T^{-1}:(5, 2) \to (0, 6)$

b. The inverse of $\mathcal{R}_{O,x}$ is $\mathcal{R}_{O,-x}$.

 $\mathcal{R}_{O, x}: F \to G$ $\mathcal{R}_{O, -x}: G \to F$

c. The inverse of $D_{0, 2}$ is $D_{0, \frac{1}{2}}$.

 $D_{0,2}:(3,2) \to (6,4)$ $D_{0,\frac{1}{2}}:(6,4) \to (3,2)$

Example 2 What is the inverse of R_j ? (Refer to the diagram at right.)

Solution Since $R_j \circ R_j = I$, the inverse of R_j is R_j itself. In symbols, $R_j^{-1} = R_j$. Do you see that the inverse of any reflection is that same reflection?

