Deep Learning Assignment 02

Firstly, I didn't include the evaluation metrics and the graphs during the assignment. Then I trained again to include the metrics in it like precision, accuracy, f1-score etc.

How contrastive Learning Works:

□ Contrastive Learning (CLIP) pull similar things closer and push dissimilar ones apart, Model learns that these two are views of the same thing → so their embeddings (vectors) should be close.

$$p(\mathbf{s} = s_i | \mathbf{x}; \mathbf{s} \in S) := \frac{\exp(\langle f(\mathbf{x}), g(s_i) \rangle / \tau)}{\sum_{s \in S} \exp(\langle f(\mathbf{x}), g(s) \rangle / \tau)},$$

- > Si → The correct match of image X in the batch S
- \triangleright s \in S \rightarrow Set of matches pictures and captions
- \rightarrow f(X) \rightarrow Encoder that generate embeddings
- \triangleright g(s) \rightarrow Encoder that encodes the s (candidate sample into embeddings
- ightarrow , ightarrow Dot product and cosine similarity between embeddings
- \succ τ : Temperature parameter controls the sharpness of the distribution. Lower $\uparrow \tan \tau \Rightarrow$ more peaky softmax \Rightarrow more confident predictions.

Below are the graphs:

Training and Validation Graphs:

Testing the model with the same images and the different images

