Documentation Technique

Application Pipeline Machine Learning

1- Présentation Générale de l'application

L'application Pipeline Machine Learning est comme son nom l'indique un Pipeline de Data Science avec entraînement, évaluation et prédiction de modèles de Machine Learning.

Principales Technologies utilisées :

- Python
- Bibliothèques :
 - Streamlit pour le front,
 - o Pandas et Numpy pour la manipulation des données
 - Scikit-learn, Lazypredict, pour la partie Machine Learning
 - Seaborn, Matplotlib pour la visualisation
 - Openpyxl, CSV, FPDF pour importer et exporter des fichiers
- Plateforme d'hébergement : Streamlit Cloud

2- Architecture de l'application

main.py	Page principale de navigation
ap,	i age principale de navigación

config.py Fichier de style

routes.py Fonctions de redirection

pages /

O_Accueil.py Page d'accueil de l'application

1_Import.py Importation des données

2_Exploration.py Analyse exploratoire + traitement

3_Machine Learning.py Entraı̂nement + sélection modèle

4_Evaluation.py Évaluation modèle

5_Predictions.py Prédictions manuelles / fichier

modules /

module_eval.py Fonctions d'évaluation des modèles

module_explo.py Fonctions d'exploration et traitement

module_import.py Fonctions d'import des fichiers

module_ML.py Fonctions de machine learning

module_predict.py Fonctions de prédiction

3- Installation et lancement

Pour récupérer le repo : git clone https://github.com/mon-utilisateur/Projet IA Vin.git

Pour installer les librairies : pip install -r requirements.txt

Pour lancer l'application : streamlit run main.py

L'application est également disponible via ce lien : https://pipeline-machine-learning.streamlit.app/

Si nécessaire appuyer sur le bouton pour « réveiller » l'application

4- Déroulement de votre visite sur l'application

• Page 0 – Accueil:

- Présentation générale de l'application

• Page 1 – Import des données :

- chargement CSV ou XLSX ou utilisation du dataset proposé,
- suppression des colonnes inutiles

• Page 2 – Exploration et Traitements :

- Choix de la cible
- Détection et choix du type de tâche (classification ou régression)
- Visualisation de la distribution des colonnes
- Encodage,
- Analyse des corrélations et choix des colonnes à conserver
- Gestion des NaN,
- Gestion des outliers,
- Standardisation
- Export des données nettoyées en CSV ou XLSX
- Téléchargement d'un rapport PDF des analyses et traitements effectués

• Page 3 – Entraînement du modèle :

- Séparation du jeu de données en un jeu d'entraînement et un jeu de test,
- sélection automatique du meilleur modèle (LazyPredict / Cross-Validation),
- Entraînement et export du modèle au format pickles
- Optimisation des Hyperparamètres (GridSearchCV/RandomizedSearchCV) et nouvel export du modèle optimisé au format pickles

• **Page 4** – Évaluation :

- rapport de classification / régression

• **Page 5** – Prédictions :

- Import de nouvelles données par saisie manuelle ou import CSV/XLSX
- Utilisation du modèle en mémoire ou import d'un autre modèle au format pickles pour effectuer des prédictions sur les nouvelles données

5- Points d'attention

- Bien valider **df_clean** pour que l'entraînement fonctionne
- Vérifier le bon encodage des cibles pour les prédictions
- LabelEncoder doit être utilisé si on veut faire le décodage lors de la prédiction

6- Points d'amélioration en vue d'une V.2

- Laisser l'utilisateur choisir le modèle de son choix malgré la recommandation
- Intégrer un réseau de neurones
- Intégrer du renforcement