

Crafted by:

Raudhoh Fitra H.

Training series number **XXX.XXX.XX**

Intro to Machine Learning

Updated **Q2.2020**

Introduction to Machine Learning

Supervised and Unsupervised Algorithm

Linear Regression Algorithm

Cost Function

Gradient Descent

Learning Objective

To have a basic understanding of how machine learning works, the various algorithms and evaluation metrics used

Prerequisite

Jupyter notebook + Python 3.7 installed Notebook

What is Machine Learning?

"The ability of machine to do certain task performed by human without being explicitly programmed to do that task,"

What machine does

```
package com.beginnersbook;
  2 public class JavaExample {
         public static void main(String[] args) {
             String str1 = String.format("%d", 15); // Integer value
             String str2 = String.format("%s", "BeginnersBook.com"); // String
             String str3 = String. format("%f", 16.10); // Float value
             String str4 = String. format("%x", 189); // Hexadecimal value
             String str5 = String.format("%c", 'P'); // Char value
             String str6 = String.format("%0", 189); // Octal value
  9
 10
             System.out.println(str1);
             System.out.println(str2);
 11
 12
             System.out.println(str3);
 13
             System.out.println(str4);
 14
             System. out.println(str5);
 15
             System. out.println(str6);
 16
 17
 18 }
Problems @ Javadoc Declaration Console Console Representation Progress Coverage
<terminated> JavaExample [Java Application] /Library/Java/JavaVirtualMachines/jdk-9.0.4.jdk/Conter
BeginnersBook.com
16.100000
bd
275
```

Machine is explicitly programmed to do things.

While human has intelligence to learn things

The ability of machine to learn like human does, is

Machine Learning

This is how machine do that

Machine Learning vs Traditional Computing

Machine learning and non-Machine Learning case

- Predicting house price
- Sentiment analysis
 Segmenting customer based on buying behavior
 Credit scoring

 - Spam filtering

- 1. Get the average height of students in a class
- No-reply email

Benefits of Machine Learning

- Real-time decision-making process
- Improve effectiveness and efficiency
- Help marketing Strategy
- Improve the precision of financial rules
- Improve security

Descriptive, Predictive and Prescriptive Analytics

Machine Learning Algorithms

Supervised Learning

Regression + Classification

Unsupervised Learning

Clustering

Semi-supervised Learning?

Linear Regression

Linear Regression

is a statistical modelling used to examine the relationship between two or more variables. Linear regression performs the task to predict a **dependent variable value** (y) based on a **given independent variable** (x).

Multivariate Linear Regression

$$y_1 = \beta_0 + \beta_1 x_{11} + \dots + \beta_k x_{1k} + \varepsilon_1$$

$$y_2 = \beta_0 + \beta_1 x_{21} + \dots + \beta_k x_{2k} + \varepsilon_2$$

$$\vdots$$

$$y_n = \beta_0 + \beta_1 x_{n1} + \dots + \beta_k x_{nk} + \varepsilon_n$$

Residual Error

$$\mathsf{MAE} = \frac{1}{n} \sum_{j=1}^{n} |y_{j} - y_{j}|$$

Mean Absolute Error

$$MSE = \frac{1}{N} \sum_{i}^{n} (Y_i - y_i)^2$$

Mean Squared Error

RMSE =
$$\sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

Root Mean Squared Error

Cost Function & Gradient Descent

Cost function is a function that measures the performance of a machine learning model.

Gradient descent is function that minimize the error, that is mean squared error cost function. By changing the weighting of parameters iteratively.

How Gradient Descent works?

1. Guess theta

Guess/Random $\Theta_{(n+1 \mathbf{x}_1)} \rightarrow \Theta_{0}, \Theta_{1},....$ and Θ_{n}

2. Predict, with these theta

$$pred^{(i)} = \Theta_0 \times 1 + \sum \Theta_i X_i^{(i)}$$

3. Measure error (cost function)

error_(m×1) = y_(m×1) - pred_(m×1)
cost =
$$(1/2m)^* \sum_{i=1}^m (error)^2$$

4. Update theta

$$\Theta = \Theta - \alpha (1/m) * \sum_{i=1}^{m} (error)*x$$

5. Repeat

Questions?