StyleGAN Playground

ANLY 590 Final Project Presentation 12/06/2022

Group Members:

Dian Zhi

Ruobing Yan

Muwen You

Zihang Weng

Hanshen Jing

Overview

- Introduction
- GAN Model
 - Traditional GAN
 - StyleGAN
- Data
- Results

Introduction

What's our goal?

Understand, implement and train the
 StyleGAN model to create a new image by
 mixing photos from two different styles.

Fig 1. StyleGAN Mixing Example

Introduction

StyleGAN

- A generative adversarial network (GAN) introduced by Nvidia researchers in December 2018.
- In February 2019, Uber engineer Philip Wang used the StyleGAN architecture to create thispersondoesnotexist.com, which displayed a new face on each web page reload.

Fig 2. Person Does Not Exist

Generative Adversarial Networks (GANs)

- GAN is a combination of two networks: a generator and a discriminator.
- The generator learns to generate plausible data. It learns to make the discriminator classify its output as real.
- The discriminator learns to distinguish the generator's fake data from real data. The discriminator penalizes the generator for producing implausible results.

Fig 3. GANs Structure

More About GANs

Issues:

- Non-convergence: the models do not converge and worse they become unstable.
- Mode collapse: the generator produces limited modes.
- Vanishing Gradients: the generator training can fail due to vanishing gradients.

Different Types:

- Conditional GAN (CGAN)
- CycleGAN
- Deep Convolutional GAN (DCGAN)
- StyleGAN
-

StyleGAN

- The fully connected network in acts as a nonlinear mapping function.
- The style module AdaIN transfers the features of the w vector so that it can be used as input in the synthesis network.
- Noise is added into the network to generate stochastic details. It is unrelated Gaussian noise.
- Constant is used as fixed input to the first convolutional layer.

$$ext{AdaIN}(\mathbf{x}_i, \mathbf{y}) = \mathbf{y}_{s,i} rac{\mathbf{x}_i - \mu(\mathbf{x}_i)}{\sigma(\mathbf{x}_i)} + \mathbf{y}_{b,i},$$

Fig 5. AdalN formula

Fig 4. StyleGAN Structure

Image Data Source

Fig 6. The cover of Arcane

Arcane: league of legends (S1):

- Random screenshots of over
 7000 images.
- Manually selected around 1000 images.

Fig 7. The Cover of CelebA

Celebrity Faces (Kaggle):

- Over 200k images of celebrities with 40 binary attribute annotations.
- Manually selected around 1000 images.

Data Access Link: https://drive.google.com/drive/folders/1PnlRTeZTBMRbPQcjPZliQEwgNpmL_UT0?usp=share_link

Data Processing

Images Pre-processing:

- Face detection using Haar cascade frontal face classifier.
- Crop a sub-image from the image with face detection boxes.
- Go through all the images and manually selected 1000 images from each dataset.

Fig 8. Cropped images comparison

Code Access Link: https://drive.google.com/drive/folders/1PnIRTeZTBMRbPQciPZliQEwqNpmL_UT0?usp=share_link

Result Evaluation

- Mapping network
 - convert image to feature vector w in feature space

- Generator
 - use feature vector w to recover the original image

- Discriminator
 - discriminate the generated image vs original image

Result Evaluation

w_new = (feature vector w1 + feature vector w2) / 2

When feed w_new into generator, the generated image should have features from both w1 and w2

Feature/Style mixing

Feature Mixing

(w1 + w2) / 2

w1

w2

Fig 9. Left: generated celebrity face 1; right: generated celebrity face 2; middle: transition from face 1 to face 2

Style Mixing

(w1 + w2) / 2

w1

w2

Fig 10. Left: generated celebrity face; right: generated arcane style face; middle: transition from celebrity face to arcane style face

Result Evaluation

StyleGAN truncates the intermediate vector w, forcing it to stay close to the "average" intermediate vector

$$w_new = w_avg + \psi(w - w_avg)$$

\mathcal{\psi}
truncation_psi
between 0 (w_new = w_avg) and 1 (no truncation)

Leftmost column: Celebrity faces

Topmost row:
Arcane character faces

Fig 11. Style mixing matrix. Images in the matrix were generated with combined feature vectors from row and column images

truncation psi = 0.01

Leftmost column: Celebrity faces

Topmost row:
Arcane character faces

Thanks for Watching! Q & A

Reference

- Fig 1: https://www.geeksforgeeks.org/stylegan-style-generative-adversarial-networks/
- Fig 2: thispersondoesnotexist.com

Fig 3:

- Fig 4 & 5: https://cv-tricks.com/how-to/understanding-stylegan-for-image-generation-using-deep-learning/
- Fig 6: https://www.imdb.com/title/tt11126994/
- Fig 7: https://www.kaggle.com/datasets/jessicali9530/celeba-dataset
- Fig 8: https://drive.google.com/drive/folders/1PnlRTeZTBMRbPQcjPZliQEwgNpmL_UT0?usp=share_link