Tutorial 9 Questions (Part 2)

Finite State Machine Design

- 1. Implement a mod-4 counter with the count sequence 1, 2, 4, 8, 1... as a finite state machine with two D Flip-flops and additional gates.
 - (i) Design a mod-4 counter with the count sequence 0, 1, 2, 3, 0... using D flip-flops.
 - (ii) Develop the truth table for a combinational circuit that converts 0, 1, 2, 3, 0... to 1, 2, 4, 8, 1....
 - (iii) Combine the circuits from (i) and (ii) together.
 - (iv) How does this circuit differ from T8Q2?
- 2. A finite state machine's output Q depends on the value of an input signal X in the *current* and *previous clock cycles*, i.e., X_t and X_{t-1} as specified below:

X_t	X_{t-1}	$\mathbf{Q}^{\scriptscriptstyle +}$
0	0	\overline{Q}
0	1	1
1	0	0
1	1	Q

Design the finite state machine using (a) D flip-flops and (b) J-K flip-flops. Does one design need more components than the other? Why?

- Q3. For the finite state machine with the timing diagram shown in the figure below:
 - (i) Identify the input & output signals of the machine.
 - (ii) Construct the state transition diagram.
 - (iii) Based on (ii), fill in the next state table and output logic table below.

Next State Table

Current State	Inputs	Next State
S	IN	S+
S0	0	S1

Output Logic Table

Current State	Outputs		
S	OUT1	OUT2	
S0	0	0	

- Q4. Given the state transition diagram of a state machine shown in Figure (a) below,
 - (i) Identify the input & output signals of the machine.
 - (ii) Complete the corresponding timing diagram in Figure (b),
 - (iii) Based on (ii), fill in the next state and output logic table below.

Next State Table

Current State	Inp	uts	Next State
S	I1	I2	S+

Output Logic Table

Current State	Outputs	
S	OUT1	OUT2