



parameters that fully describe the filter transfer function

$$\{H_o, H_C, H_S, \Omega_S\}$$
  $(\Omega_C = 1)$ 

In terms of logarithmic gain

$$\{\alpha_o, \alpha_{\text{max}}, \alpha_{\text{min}}, \Omega_S\}$$
  $(\Omega_C = 1)$ 

If  $H_0 = 1$ , the filter requirements can be determined by three parameters

$$\Omega_S$$
 and  $\{H_C, H_S\}$  or  $\{a_{\max}, \alpha_{\min}\}$ 



Butterworth proposed the monotonic function

$$G(\Omega) = \frac{H_o}{\sqrt{1 + \beta^2 \Omega^{2N}}}$$

with N, the order of the approximation, a positive integer, and  $\beta$  a design parameter related to the passband tolerance.

## Gain and Attenuation Functions

#### **ITMO**

$$G(\Omega) = \frac{H_o}{\sqrt{1 + \beta^2 \Omega^{2N}}}$$

 $G(0) = H_o$ 

For  $\Omega = 0$ 



#### Logarithmic gain



$$G(1) = \frac{H_o}{\sqrt{1+\beta^2}} \ge H_C \quad \Leftrightarrow \quad \beta^2 \le (H_o/H_C)^2 - 1$$

$$\beta \le \beta_{\text{max}} = \sqrt{\left(\frac{H_o}{H_C}\right)^2 - 1} = \sqrt{10^{\frac{a_{\text{max}}}{10}} - 1}$$

For  $\beta = \beta_{max}$  the gain  $G(1) = H_C$ 

$$G(\Omega) = \frac{H_o}{\sqrt{1 + \beta^2 \Omega^{2N}}}$$

$$G(\Omega_S) = \frac{H_o}{\sqrt{1 + \beta^2 \Omega_S^{2N}}} \le H_S$$



$$N \ge \frac{\log(\frac{(H_o/H_S)^2 - 1}{\beta^2})}{2\log\Omega_S}$$

$$N \geq \frac{\log(\frac{(H_o/H_S)^2 - 1}{\beta^2})}{2\log\Omega_S} \qquad N \geq N_d = \frac{\log(\frac{(H_o/H_S)^2 - 1}{\beta^2})}{2\log\Omega_S}$$

$$n_{f \min} = \frac{\log(\frac{\frac{H_o^2}{H_S^2} - 1}{\frac{H_o^2}{H_C^2} - 1})}{2\log\Omega_S} = \frac{\log(\frac{10^{\frac{a_{\min}}{10}} - 1}{10^{\frac{a_{\max}}{10}} - 1})}{2\log\Omega_S}$$

#### **ITMO**







$$\beta_{\min} = \frac{\sqrt{\frac{H_o^2}{H_S^2} - 1}}{\Omega_S^N} \le \beta \le \sqrt{\frac{H_o^2}{H_C^2} - 1} = \beta_{\max}$$

$$\beta_{\min} = \frac{\sqrt{10^{\frac{\alpha_{\min}}{10}} - 1}}{\Omega_S^N} \le \beta \le \sqrt{10^{\frac{\alpha_{\max}}{10}} - 1} = \beta_{\max}$$

## **ITMO**



#### **ITMO**

parameters that fully describe the filter transfer function

$$\{H_o, H_C, H_S, \Omega_S\}$$
  $(\Omega_C = 1)$ 

In terms of logarithmic gain

$$\{\alpha_o, \alpha_{\text{max}}, \alpha_{\text{min}}, \Omega_S\}$$
  $(\Omega_C = 1)$ 

If  $H_0 = 1$ , the filter requirements can be determined by three parameters

$$\Omega_S$$
 and  $\{H_C, H_S\}$  or  $\{a_{\max}, \alpha_{\min}\}$ 



Chebyshev approximation

$$G_{CH}(\Omega) = \frac{H_o}{\sqrt{1 + \varepsilon^2 C_N^2(\Omega)}}$$

The ripple factor  $\epsilon$  and order N are so chosen to keep the response  $G_{CH}(\Omega)$  within the specifications.

## ітмо

$$G_{CH}(\Omega) = \frac{H_o}{\sqrt{1 + \varepsilon^2 C_N^2(\Omega)}}$$

$$\varepsilon \le \sqrt{\frac{H_o^2}{H_C^2} - 1} = \sqrt{10^{\frac{\alpha_{\text{max}}}{10}} - 1} = \varepsilon_{\text{max}}$$

For 
$$\varepsilon \leq \varepsilon_{max}$$

$$H_0 \ge G_{CH}(\Omega) \ge \frac{H_0}{\sqrt{1+\varepsilon^2}} \ge H_C$$

For 
$$\Omega = 1$$

$$G_{CH}(1) = \frac{H_0}{\sqrt{1 + \epsilon^2}} \ge H_C$$



$$G_{CH}(\Omega_S) = \frac{H_o}{\sqrt{1 + \varepsilon^2 C_N^2(\Omega_S)}} \le H_S$$

$$\Leftrightarrow C_N^2(\Omega_S) \ge \frac{(H_o/H_S)^2 - 1}{\varepsilon^2}$$

$$\Leftrightarrow N \cosh^{-1}(\Omega_S) \ge \cosh^{-1} \sqrt{\frac{(H_o/H_S)^2 - 1}{\varepsilon^2}}$$

for N: 
$$N \ge N_d = \frac{\cosh^{-1}(\sqrt{\frac{(H_o/H_S)^2 - 1}{\varepsilon^2}})}{\cosh^{-1}(\Omega_S)}$$

$$N \ge N_d = \frac{\cosh^{-1}(\sqrt{\frac{(H_o/H_S)^2 - 1}{\varepsilon_{\max}^2}})}{\cosh^{-1}(\Omega_S)} = \frac{\cosh^{-1}(\sqrt{\frac{(H_o/H_S)^2 - 1}{(H_o/H_C)^2 - 1}})}{\cosh^{-1}(\Omega_S)}$$



$$\begin{array}{ll}
\cosh^{-1}(\Omega_S) \\
\text{logarithmic gain} \\
\text{specifications}
\end{array}
\qquad N \ge N_d = \frac{\cosh^{-1}(\sqrt{\frac{10\frac{\alpha_{\min}}{10} - 1}{10\frac{\alpha_{\max}}{10} - 1}})}{\cosh^{-1}(\Omega_S)}$$

## **ITMO**



# Comparison of All-Pole Responses

#### Comparison of Amplitude Response



# Comparison of All-Pole Responses

#### Comparison of Step and Impulse Responses



# Butterworth VS Chebyshev



|                    | Butterworth Filter                                                                                           | Chebyshev Filter                                                                                                  |
|--------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                    | The order of the Butterworth filter is higher than the Chebyshev filter for the same desired specifications. | The order of the Chebyshev filter is less compared to the Butterworth filter for the same desired specifications. |
| Hardware           | It requires more hardware.                                                                                   | It requires less hardware.                                                                                        |
| Ripple             | There is no ripple in passband and stopband of frequency response.                                           | There is either ripple in passband or stopband.                                                                   |
| POIES              | All poles lie on a circle having a radius of the cutoff frequency.                                           | All poles lie on ellipse having major axis R, $\xi$ , minor axis r.                                               |
|                    | The Butterworth filter has a wider transition band compared to the Chebyshev filter.                         | The Chebyshev filter has a narrow transition band compared to the Butterworth filter.                             |
| Types              | It doesn't have any types.                                                                                   | It has two types; type-1 and type-2.                                                                              |
| I LITATT FRALIENCY | The cutoff frequency of this filter is not equal to the passband frequency.                                  | The cutoff frequency of this filter is equal to the passband frequency.                                           |



#### First-order Filter



The cut-off frequency point and phase shift angle can be found by using the following equation:

$$f_C = \frac{1}{2\pi RC}$$
phase shift  $\phi = -\arctan(2\pi fRC)$ 



## RC Low Pass Filter Circuit

#### **ITMO**

#### Second-order Low Pass Filter



Passive Low Pass Filter Gain at  $f_c$  is proportional  $\left(\frac{1}{\sqrt{2}}\right)^n$ 

where "n" is order of filter or the number of filter stages.

2nd-Order Filter Corner Frequency

$$f_C = \frac{1}{2\pi\sqrt{R_1C_1R_2C_2}}$$

2nd-Order Low Pass Filter -3dB Frequency

$$f_{-3dB} = f_c \sqrt{2^{1/n} - 1}$$

where  $f_c$  is the calculated cut-off frequency, n is the filter order and  $f_{-3dB}$  is the new -3dB pass band frequency 16

# The High Pass Filter Circuit



#### First-order Filter



Cut-off Frequency and Phase Shift

$$f_C = \frac{1}{2\pi RC}$$
 phase shift  $\phi = \arctan(2\pi fRC)$ 



# The High Pass Filter Circuit

Second-order Low Pass Filter



2nd-Order Filter Corner Frequency

$$f_C = \frac{1}{2\pi\sqrt{R_1C_1R_2C_2}}$$

to reduce the loading effect the impedance of each following stage 10x the previous stage

$$R_2 = 10R_1$$

$$C_2 = \frac{1}{10}C_1$$

## Band Pass Filter Circuit





Bandwidth is frequency range that exists between two cut-off frequency

$$BW = f_H - f_L$$

The upper and lower cut-off frequencies for a band pass filter can be found using the same formula as that for both the low and high pass filters



## Active Low Pass Filter

First-order Filter

Active Low Pass Filter without Amplification



Active Low Pass Filter with Amplification



Simplified Inverting Amplifier Filter Circuit

Unity Gain Non-inverting Amplifier Filter Circuit



Cut-off Frequency 
$$f_C = \frac{1}{2\pi R_2 C}$$



## Active Low Pass Filter

Second-order Low Pass Active Filter



# Active High Pass Filter

#### First-order Filter





#### First-order Filter





# Active High Pass Filter

Second-order Active High Pass Filter Circuit



#### **Active Band Pass Filter**

#### **ITMO**



## Active Band Pass Filter



$$f_{C1} = \frac{1}{2\pi R_1 C_1}$$
$$f_{C2} = \frac{1}{2\pi R_2 C_2}$$

#### **Active Band Pass Filter**

Multiple Feedback Band Pass Active Filter



infinite-gain multiple-feedback (IGMF) band pass filter

the characteristics of the IGMF filter

$$f_r = \frac{1}{2\pi\sqrt{R_1C_1R_2C_2}}$$

$$Q = \frac{f_r}{BW_{-3dB}} = \frac{1}{2} \sqrt{\frac{R_2}{R_1}}$$

$$Max \ gain \sim -\frac{R_2}{2R_1} = 2Q^2$$









# Second Order High Pass Filter













## State Variable Filter Circuit

#### **ITMO**





## State Variable Filter Circuit

**Op-amp Integrator Circuit** 



in the time domain

$$V_{out} = \frac{1}{RC} \int_{0}^{t} V_{in} dt$$

in the frequency domain 
$$V_{out} = -\frac{1}{2\pi f_{C}RC}V_{in}$$

Op-amp A2 Transfer Function Op-amp A3 Transfer Function

$$\frac{V_{BP}}{V} = -\frac{1}{2\pi f PC}$$

$$\frac{f_{LP}}{f_{RP}} = -\frac{1}{2\pi f_{C} R C}$$

between 
$$V_{HP}$$
 and  $V_{LP}$  
$$\frac{V_{LP}}{V_{BP}} = -\frac{1}{2\pi f_C RC}$$
 
$$\frac{V_{LP}}{V_{HP}} = -\frac{1}{2\pi f_C RC} \times -\frac{1}{2\pi f_C RC}$$

Transfer function

$$=\frac{1}{(2\pi f_C RC)^2}$$



#### **Amplifier Summing Circuit**



$$V_{+} = \frac{V_{in}R_{2} + V_{BP}R_{1}}{R_{1} + R_{2}}$$

$$V_{-} = \frac{V_{LP}R_{3} + V_{HP}R_{4}}{R_{3} + R_{4}}$$

transfer function for the output of A1

$$V_{HP} = V_{In} \frac{R_2(R_3 + R_4)}{R_3(R_1 + R_2)} + V_{BP} \frac{R_1(R_3 + R_4)}{R_4(R_1 + R_2)} - V_{LP} \frac{R_3}{R_4}$$

$$\frac{V_{OUT}}{V_{IN}} = \frac{V_{LP}}{V_{IN}} = \frac{\frac{R_2(R_3 + R_4)}{R_3(R_1 + R_2)} \times \frac{1}{RC}}{\frac{R_3}{R_4RC} + \frac{R_1(R_3 + R_4)}{R_4(R_1 + R_2)} \times \frac{1}{2\pi RC} + \left(\frac{1}{2\pi RC}\right)^2} = \frac{A_0 \frac{f}{f_0}}{1 + 2\zeta \frac{f}{f_0} + \left(\frac{f}{f_0}\right)^2}$$

### State Variable Filter Circuit



State Variable Filter Corner Frequency

$$f_C = \sqrt{\frac{R_3}{R_4 (2\pi RC)^2}}$$

If 
$$R_3 = R_4$$
, then

$$f_{C(HP)} = f_{C(BP)} = f_{C(LP)} = \sqrt{\frac{1}{(2\pi RC)^2}}$$

$$f_{C(HP)} = f_{C(BP)} = f_{C(LP)} = \sqrt{\frac{1}{(2\pi RC)^2}} \qquad Q = \frac{f_C}{BW} = \frac{1}{2\zeta} = \frac{R_1(R_3 + R_4)}{R_4(R_1 + R_2)} \sqrt{\frac{R_3}{R_4} \times \frac{RC}{RC}}$$

Design a State Variable Filter which has

- $f_C$  of 1kHz;
- quality factor, Q of 10;
- Assume both the frequency determining resistors and capacitors are equal.

Assuming in calculations that C= 10nF, R3 and R4 are the same and equal to  $10k\Omega$  we get:





## State Variable Filter Circuit



#### Notch Filter Design



#### Variable Notch Filter Depth



# Band Stop Filter







# Sallen-Key Filter



The main advantages of the Sallen-key filter design are:

- •Simplicity and Understanding of their Basic Design
- •The use of a Non-inverting Amplifier to Increase Voltage Gain
- •First and Second-order Filter Designs can be Easily Cascaded Together
- •Low-pass and High-pass stages can be Cascaded Together
- •Each RC stage can have a different Voltage Gain
- •Replication of RC Components and Amplifiers
- •Second-order Sallen-key Stages have Steep 40dB/decade roll-off than cascaded RC

# Sallen-key High Pass Filter Circuit



$$f_C = \frac{1}{2\pi\sqrt{R_A C_A R_B C_B}}$$

# Sallen-Key Filter VS Multiple Feedback Filter itmo





| Sallen-Key                                                   | Multiple Feedback                                                      |
|--------------------------------------------------------------|------------------------------------------------------------------------|
| Non-inverting                                                | Inverting                                                              |
| Very precise DC-gain of 1                                    | Any gain is dependent on the resistor precision                        |
| Less components for gain = 1                                 | Less components for gain > 1 or < 1                                    |
| Op-amp input capacitance must possibly be taken into account | Op-amp input capacitance has almost no effect                          |
| Resistive load for sources even in high-pass filters         | Capacitive loads can become very high for sources in high-pass filters |



# Frequency Transformation



| Type of Transformation                                      | Frequency transform                                                                                            |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| The Lowpass to Highpass (LP-HP)  Frequency  Transformation  | $s \Leftrightarrow \frac{1}{s}$ $H_{HP}(s) = H_{LP}\left(\frac{1}{s}\right)$                                   |
| The Lowpass to Bandpass (LP-BP) Frequency Transformation    | $s \Leftrightarrow \frac{s^2 + \omega_0^2}{sBW}$ $H_{BP}(s) = H_{LP}\left(\frac{s^2 + \omega_0^2}{sBW}\right)$ |
| The Lowpass to Band-Reject (LP-BR) Frequency Transformation | $s \Leftrightarrow \frac{sBW}{s^2 + \omega_0^2}$ $H_{BR}(s) = H_{LP}\left(\frac{sBW}{s^2 + \omega_0^2}\right)$ |

- 1. Sarma M. S. Introduction to electrical engineering. New York: Oxford University Press, 2001. C. 715-716.
- Boylestad, Robert L. Electronic devices and circuit theory / Robert L. Boylestad, Louis Nashelsky.—11th ed.
- ISBN 978-0-13-262226-4Scherz P., Monk S. Practical electronics for inventors.
   McGraw-Hill Education, 2016.
- 4. Horowitz, Paul, and Winfield Hill. "The Art of Electronics. 3rd." *New York, NY, USA: University of Cambridge* (2015).
- 5. All about circuits (<a href="https://www.allaboutcircuits.com/">https://www.allaboutcircuits.com/</a>)
- 6. <a href="https://www.electronics-tutorials.ws/">https://www.electronics-tutorials.ws/</a>
- 7. <a href="https://en.wikipedia.org/">https://en.wikipedia.org/</a>

