ANALYSE STATISTIQUE & LANGAGE R

Statistiques descriptives

Présentation

Gaëtan DION

- Euro Information Groupe Crédit Mutuel CIC
- Elaboration et développement d'un SIG (système d'information géographique) groupe
- Développeur et Lead Technique (architecture) .NET / C# / SQL Server
- Développement de projets Bl / Décisionnel
- Gestion de projets analyses de données : Big Data (Spark, NoSQL...), couplé aux statistiques / Machine Learning

Planning

- 09/11/2020:6h
- 10/11/2020: 2h
- 30/11/2020:2h
 - 1^e évaluation théorie / pratique
- 25/01/2020: 2h
- 29/01/2020: 2h
 - 2^e évaluation théorie / pratique

- **Séance 1**: statistiques descriptives
- **Séance 2**: tests d'hypothèses et régression linéaire
- **Séance 3**: modélisation (régression logistique), évaluation du modèle
 - Analyses factorielles (PCA)

Déroulement Séance 1

- Qu'est-ce que le Machine Learning?
- A quoi ça sert?
- Comment le situer parmi tous les types d'intelligence artificielle?
- Distinguer classification / régression, apprentissage supervisé / non supervisé
- La démarche d'un data scientist
- Les statistiques descriptives
 - Les différents types de variables
 - Analyser un jeu de données

Qu'est ce que le Machine Learning?

- Traitements informatiques basés sur des méthodes mathématiques, qui apprend sur un jeu de données (distributions, hypothèses...), afin de déterminer des règles automatiquement, en minimisant l'erreur
- Sortir une prédiction, classification d'individus (labellisé ou non labellisé)
- Processus non déterministe, chaque résultat possède une probabilité d'appartenance à cette classification
- 2 phases :
 - Entrainement du modèle (modélisation)
 - Test / évaluation du modèle

A quoi ça sert?

- Ces modèles permettent d'aborder des problèmes à espace multidimensionnel ou non linéaire, réalisation de multiples croisements, variations...
- Analyse de gros volumes de données, centaines de variables

Concrètement?

- Détection de fraude (données labellisées)
- Ciblage Marketing (appétence)
- Score d'attrition (CHURN)
- Bourse, Trading...
- Analyse de sentiments, d'images, reconnaissance vocale (SVI), chatbot...
- Actuariat, assurance...

Une vision d'ensemble

Le Big Data, l'IA, la Bl

Classification / régression

2 types de problèmes

Régression : $Y \in R$, une infinité de valeurs continues réelles => taux de chômage, PIB, températures...

- Classification : $Y = \{0 ; 1\}$, un nombre fini de valeur.
- Une classification binaire : fraude 1/0, appétence 1/0, churn 1/0
- Multi Class: {0; 9} => mnist les nombres de 0 à 9
- Multi Label: Une observation peut appartenir à plusieurs classes (pas d'exclusivité) => 1 article pour plusieurs sujets

Supervisé / non supervisé

2 méthodes d'apprentissage

■ Supervisé: ces algo extraient la connaissance d'un jeu de données de type entrée / sortie. On connait la variable à expliquer, et on se sert des variables explicatives pour expliquer la distribution des données.

	-	pixel783	indexedLabel
0.01	0.0		! 5.0
0.01	0.0	0.0	5.0
0.01	0.0	0.0	5.01
0.01	0.0	0.0	5.01
0.01	0.0	0.0	6.0
0.01	0.0	0.0	5.01
0.01	0.0	0.0	6.0
0.01	0.0	0.0	5.0
0.01	0.0	0.0	2.0
0.01	0.0	0.0	2.0
0.01	0.0	0.0	5.0

Non supervisé

■ Ici pas d'entrée / sortie, toutes les données sont équivalentes, on cherche à organiser les données en groupe. Les groupes comportent des données similaires, et les données différentes se trouvent dans des groupes distincts.

La démarche d'un data scientist

- 1. Compréhension / exploration du jeu de données
 - a. Statistiques descriptives
 - a. Valeurs uniques / manquantes par variable
 - Univariées (moyenne, médiane, quartiles, variance, écart type, distribution...)
 - c. Bivariées (nuage de points, boites à moustaches...)
 - d. Multivariées (matrice de corrélations...)
 - b. Nettoyage des données (remplacement de valeurs manquantes, uniformisation...)
 - c. Création de nouvelles variables (agrégats...)
 - d. Création d'un ou plusieurs modèle statistique
 - e. Evaluation d'un ou plusieurs modèle

Les types de données

Quantitative / qualitative

- Quantitative : données numériques
- Qualitative : données alphanumériques

Quantitative discrète / quantitative continue

- Variable qui peut prendre un nombre fini de valeurs
 - Mr/Mme, secteur d'activité, Marié/célibataire...
- Variable qui peut prendre un grand nombre de valeurs dans un intervalle réel donné
 - âge, poids, taille, revenu...

■ Nominale / Ordinale

- L'ordre n'a pas d'importance (ville, profession, ...)
- Variables dont le classement à une importance : (S, M, L, XL) ou (âge, poids, taille, revenus)

Quelques fondamentaux

- Variance?
 - Mesure la dispersion autour de la moyenne
 - Evolue entre $[0; +\infty]$, toujours positif
 - $-2, 4, 6 = [(2-4)^2 + (4-4)^2 + (4-6)^2]/3$
- Ecart type?
 - $\sqrt{variance}$
 - Coefficient de variation : (σ / μ)
 - si >= $(\mu/2)$: forte dispersion
- Box plot / boite à moustaches ?

Prise en main de R Studio

- Se connecter à https://rstudio.cloud/
- Suivre le notebook : Les types de données R
 - Comprendre et manipuler les types de données
- Suivre le notebook : Mettre en forme des données
 - Lecture d'un fichier
 - Manipulation / transformation de données
 - Ecriture d'un fichier résultat

Exercice box plot

- Récupérer des données Airbnb de Melbourne sur le site Kaggle : https://www.kaggle.com/tylerx/melbourne-airbnb-opendata#listings_summary_dec18.csv
- Data" > "Data Sources" > Sélectionnez "listings_summary_dec18.csv" > en-dessous cliquez sur l'icone download

Analyse univariée

- Afficher moyenne, médiane, variance, écart type, coef. de variation des prix
- Afficher une boite à moustache / box plot sur la variable prix
- Fonction geom_boxplot()
- Afficher un graphique lisible (échelle, pas...)

Distribution, loi normale?

Permet d'appréhender la distribution de la série

Dans une distribution normale, la tendance centrale : la moyenne, la médiane et le mode ont des valeurs identiques.

68% de la population est concentrée entre +/- 1 écart type

X suit une loi normale N(170, 10)

Loi normale centrée réduite : $(x - \mu) / \sigma => N(0, 1)$

P(x>190)=2,2% (2 écart-type)

La loi normale centrée réduite permet de se référer à une table de probabilité

Elle permet d'uniformiser le poids des variables pour un modèle

Exercice histogramme

Analyse univariée

- Afficher une distribution du prix des airbnb via un histogramme
- Fonction : geom_histogram()

Exercice diagramme en bâtons

■ Analyse univariée

- Diagramme de fréquence sur la variable qualitative « room_type » et « neighbourhood »
- Fonction geom_bar()
- Afficher le graphique à l'horizontal (90°)
- Qu'en déduisez-vous?

Exercice bivariée

Analyse bivariée

- Prix des logements en fonction des quartiers (variable neighbourhood)

Exercice nuage de points

Analyse bivariée

- Prix des logements (ordonnée) en fonction :
 - du type de logement (room_type)
 - du quartier (neighbourhood)
 - du nombre de nuits minimum (minimum_nights)
- Que peut-on en déduire?

Abscisse

Résumé

Utiliser la « distribution » tidyverse : install.packages("tidyverse", repos='http://cran.r-project.org')

La librairie graphique est ggplot2

Fonctions R	Univariees / biavariees / Multivariées	Types de graphiques
Histogramme	Univarié	geom_histogram()
Courbe gaussian ou non	Univarié	geom_density()
Boite à moustache	Univarié et bivarié	geom_boxplot()
Diagramme en bâtons	Univarié	geom_bar()
Nuage de points	Bivarié	geom_point()

Universións / bioversións /

Les corrélations

- Etudier l'intensité de la liaison qui peut exister entre deux ou plusieurs variables
 - Test de dépendance ou d'indépendance
- Le coefficient de corrélation est compris entre [-1; 1]
 - 0 : absence de relation
 - 1 : relation linéaire positive forte
 - -1: relation linéaire négative forte

$$r = \frac{\sum (xi - \bar{x})(yi - \bar{y})}{SxSy}$$

ici, r=-0.5 : corrélation négative faible entre les deux variables

ici, r=1: corrélation positive parfaite entre les deux variables

Exercice matrice de corrélation

- Analyse multivariée
 - Matrice de corrélation
 - <u>Données quantitatives</u>
- Fonction corrplot() / package corrplot
 - Sélectionner seulement les variables numériques (plusieurs solutions)
 - Déterminer le coefficient de corrélation pour chaque couple de variables avec cor()
 - Afficher la matrice de corrélation à partir de ce résultat

