Problem statement:-

To predict the best model for the given Rainfall dataset based on accuracy.

Data Collection

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [3]:

```
df=pd.read_csv(r"C:\Users\sowmika\Downloads\rainfall.csv")
df
```

Out[3]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	0
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	38
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	19
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	18
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	22:
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	26
•••												
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	11
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	14
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	7:
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	16
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	16
4116 rows × 19 columns												

Data Cleaning and Preprocessing

In [4]:

df.head()

Out[4]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	5
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	3
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	2
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	3
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	
4												1	

In [5]:

df.tail()

Out[5]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OC.
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4
4												

In [6]:

df.describe

Out[6]:

oucloj.											
<pre><bound method="" ndframe.describe="" of<="" td=""></bound></pre>											
JAN											
0		N & NIC				49.2	87.1	29.2	2.3	528.8	51
	\	a 111c	ODMIN 13	LANDS	1701	13.2	0,.1	27.2	2.3	320.0	J_
1	=	N & NIC	OBAD TC	LVNDC	1902	0.0	159.8	12.2	0.0	446.1	53
	ANDAMA	IN & IVIC	ODAN 13	LANDS	1902	0.0	139.0	12.2	0.0	440.1))
7.1	A N ID A NA A	N O NEC	ODAD TO	LANDC	1003	12 7	144.0	0 0	1.0	225 4	47
2	ANDAMA	N & NIC	OBAK 12	LANDS	1903	12.7	144.0	0.0	1.0	235.1	47
9.9	4 N ID 4 M 4	N O NTC	0D4D TC	LANDS	1001	0.4	44 7	0 0	202 4	204 5	40
3	ANDAMA	N & NIC	OBAK IS	LANDS	1904	9.4	14.7	0.0	202.4	304.5	49
5.1											
4	ANDAMA	N & NIC	OBAR IS	LANDS	1905	1.3	0.0	3.3	26.9	279.5	62
8.7											
• • •				• • •	• • •	• • •	• • •	• • •	• • •	• • •	
• • •											
4111			LAKSHA	DWEEP	2011	5.1	2.8	3.1	85.9	107.2	15
3.6											
4112			LAKSHA	DWEEP	2012	19.2	0.1	1.6	76.8	21.2	32
7.0											
4113			LAKSHA	DWEEP	2013	26.2	34.4	37.5	5.3	88.3	42
6.2											
4114			LAKSHA	DWFFP	2014	53.2	16.1	4.4	14.9	57.4	24
4.1			LANSIIA	DWLLI	2011	33.2	10.1		1110	37.	
4115			LAKSHA	DMEED	2015	2.2	0.5	3.7	87.1	133.1	29
6.6			LANSIIA	DWLLI	2015	2.2	0.5	5.7	07.1	100.1	23
0.0											
	JUL	AUG	SEP	0CT	NO	V D	EC ANN		an Fah	Man Ma	. ,
0									an-Feb	Mar-Ma	
0	365.1	481.1	332.6	388.5	558.	2 33	.6 337	3.2	136.3	560.	3
\	220.0	752.7	666.3	107.2	250	0 160	F 252		150.0	450	_
1	228.9	753.7	666.2	197.2		0 160		10.7	159.8	458.	
2	728.4	326.7	339.0	181.2				7.4	156.7	236.	
3	502.0	160.1	820.4	222.2		7 40			24.1	506.	
4	368.7	330.5	297.0	260.7	25.	4 344	.7 256	6.7	1.3	309.	7
• • •	• • •			• • •				• • •	• • •	• •	
4111	350.2	254.0	255.2	117.4				3.7	7.9	196.	
4112	231.5	381.2	179.8	145.9	12.	4 8	.8 146	5.5	19.3	99.	6
4113	296.4	154.4	180.0	72.8	78.	1 26	.7 142	6.3	60.6	131.	1
4114	116.1	466.1	132.2	169.2	59.	0 62	.3 139	5.0	69.3	76.	7
4115	257.5	146.4	160.4	165.4	231.	0 159	.0 164	2.9	2.7	223.	9
	Jun-Se	p Oct-	Dec								
0	1696.	3 98	0.3								
1	2185.	9 71	6.7								
2	1874.		0.6								
3	1977.		1.0								
4	1624.		0.8								
 4111	 1013.		 6.6								
4111	1119.		7.1								
4113	1057.		7.6								
4114	958.		0.5								
4115	860.	9 55	5.4								

[4116 rows x 19 columns]>

In [7]:

df.info()

```
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):
 #
     Column
                  Non-Null Count Dtype
_ _ _
     ----
                  -----
                                  ----
0
     SUBDIVISION 4116 non-null
                                  object
 1
     YEAR
                  4116 non-null
                                  int64
 2
                                  float64
     JAN
                  4112 non-null
 3
     FEB
                  4113 non-null
                                  float64
 4
     MAR
                  4110 non-null
                                  float64
 5
     APR
                  4112 non-null
                                  float64
 6
     MAY
                  4113 non-null
                                  float64
 7
     JUN
                  4111 non-null
                                  float64
 8
     JUL
                  4109 non-null
                                  float64
 9
     AUG
                  4112 non-null
                                  float64
 10
                                  float64
     SEP
                  4110 non-null
 11
     0CT
                  4109 non-null
                                  float64
 12
     NOV
                  4105 non-null
                                  float64
 13
     DEC
                  4106 non-null
                                  float64
 14
     ANNUAL
                  4090 non-null
                                  float64
     Jan-Feb
                  4110 non-null
                                  float64
 15
```

4107 non-null

4106 non-null

4103 non-null

float64

float64

float64

<class 'pandas.core.frame.DataFrame'>

dtypes: float64(17), int64(1), object(1)
memory usage: 611.1+ KB

Mar-May

Jun-Sep

18 Oct-Dec

In [8]:

16

17

df.shape

Out[8]:

(4116, 19)

```
In [9]:
df.isnull().any()
Out[9]:
SUBDIVISION
                False
YEAR
                False
JAN
                 True
FEB
                 True
MAR
                 True
APR
                 True
MAY
                 True
JUN
                 True
JUL
                 True
                 True
AUG
SEP
                 True
0CT
                 True
NOV
                 True
DEC
                 True
ANNUAL
                 True
Jan-Feb
                 True
Mar-May
                 True
Jun-Sep
                 True
Oct-Dec
                 True
dtype: bool
In [10]:
df.fillna(method="ffill",inplace=True)
In [11]:
df.isnull().sum()
Out[11]:
SUBDIVISION
                0
YEAR
                0
                0
JAN
FEB
                0
                0
MAR
APR
                0
                0
MAY
JUN
                0
                0
JUL
                0
AUG
                0
SEP
                0
OCT
                0
NOV
DEC
                0
                0
ANNUAL
```

0

0 0

0

Jan-Feb Mar-May

Jun-Sep Oct-Dec

dtype: int64

```
In [12]:
```

```
df['YEAR'].value_counts()
Out[12]:
YEAR
1963
        36
2002
        36
        36
1976
        36
1975
1974
        36
         . .
1915
        35
1918
        35
1954
        35
1955
        35
1909
        34
Name: count, Length: 115, dtype: int64
```

Exploratory data analysis

In [13]:

```
sns.lmplot(x='NOV',y='DEC',order=2,data=df,ci=None)
plt.show()
```


In [14]:

```
df=df[['JAN','FEB','MAR','APR','DEC']]
sns.heatmap(df.corr(),annot=True)
plt.show()
```


In [15]:

sns.pairplot(df)

Out[15]:

<seaborn.axisgrid.PairGrid at 0x160dadc30d0>

Splitting the dataset into training data and test data

In [16]:

```
x=np.array(df['FEB']).reshape(-1,1)
y=x=np.array(df['JAN']).reshape(-1,1)
```

In [17]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30)
```

In [18]:

```
lrg=LinearRegression()
lrg.fit(x_train,y_train)
print(lrg.score(x_train,y_train))
```

1.0

In [19]:

```
y_pred=lrg.predict(x_test)
plt.scatter(x_test,y_test,color='cyan')
plt.plot(x_test,y_pred,color='black')
plt.show()
```


In [20]:

```
df700=df[:][:700]
sns.lmplot(x='FEB',y='JAN',order=2,ci=None,data=df700)
plt.show()
```


In [21]:

```
df700.fillna(method='ffill',inplace=True)
```

In [22]:

```
x=np.array(df700['FEB']).reshape(-1,1)
y=x=np.array(df700['JAN']).reshape(-1,1)
```

In [23]:

```
df700.dropna(inplace=True)
```

In [24]:

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.03)
lrg=LinearRegression()
lrg.fit(x_train,y_train)
print(lrg.score(x_test,y_test))
```

1.0

In [25]:

```
y_pred=lrg.predict(x_test)
plt.scatter(x_test,y_test,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()
```


In [26]:

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
```

In [27]:

```
lrg=LinearRegression()
lrg.fit(x_train,y_train)
y_pred=lrg.predict(x_test)
r2=r2_score(y_test,y_pred)
print("R2 score:",r2)
```

R2 score: 1.0

Ridge Regression

In [28]:

```
from sklearn.linear_model import Lasso,Ridge
from sklearn.preprocessing import StandardScaler
```

In [29]:

```
plt.figure(figsize=(10,10))
sns.heatmap(df.corr(),annot=True)
plt.show()
```



```
In [30]:
features=df.columns[0:5]
target=df.columns[-5]
In [31]:
x=df[features].values
y=df[target].values
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.30,random_state=1)
print("The dimension of X_train is {}".format(x_train.shape))
print("The dimension of X_test is {}".format(x_test.shape))
The dimension of X_train is (2881, 5)
The dimension of X_test is (1235, 5)
In [32]:
lrg= LinearRegression()
#Fit model
lrg.fit(x_train, y_train)
actual = y_test
train_score_lrg = lrg.score(x_train, y_train)
test_score_lrg = lrg.score(x_test, y_test)
print("\nLinear Regression Model:\n")
print("The train score for lr model is {}".format(train_score_lrg))
print("The test score for lr model is {}".format(test_score_lrg))
Linear Regression Model:
The train score for lr model is 1.0
The test score for lr model is 1.0
In [33]:
ridgeReg = Ridge(alpha=10)
ridgeReg.fit(x_train,y_train)
train score ridge = ridgeReg.score(x train, y train)
test_score_ridge = ridgeReg.score(x_test, y_test)
print("\nRidge Model:\n")
print("The train score for ridge model is {}".format(train_score_ridge))
print("The test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model:

The train score for ridge model is 0.999999999856335 The test score for ridge model is 0.999999999840021

Lasso Regression

```
In [35]:
```

```
lasso= Lasso(alpha=10)
lasso.fit(x_train,y_train)
train_score_ls = lasso.score(x_train, y_train)
test_score_ls= lasso.score(x_test, y_test)
print("\nLasso Model:\n")
print("The train score for lasso model is {}".format(train_score_ls))
print("The test score for lasso model is {}".format(test_score_ls))
```

Lasso Model:

The train score for lasso model is 0.9999147271297208 The test score for lasso model is 0.9999147248375002

In [36]:

```
plt.figure(figsize=(10,10))
```

Out[36]:

<Figure size 1000x1000 with 0 Axes>
<Figure size 1000x1000 with 0 Axes>

In [37]:

from sklearn.linear_model import LassoCV

In [38]:

```
from sklearn.linear_model import RidgeCV
ridge_cv=RidgeCV(alphas =[0.0001,0.001,0.01,1,1,10]).fit(x_train,y_train)
print(ridge_cv.score(x_train,y_train))
print(ridge_cv.score(x_test,y_test))
```

0.9999999982836236
0.99999999986591067

Elastic Net

In [39]:

from sklearn.linear_model import ElasticNet

```
In [40]:
```

```
e=ElasticNet()
e.fit(x_train,y_train)
print(e.coef_)
print(e.intercept_)
print(e.score(x,y))
```

[9.99044548e-01 1.38835344e-05 4.58897515e-05 0.00000000e+00 0.00000000e+00]
0.016565679683701262
0.9999991435191248

In [41]:

```
y_pred_elastic=e.predict(x_train)
```

In [51]:

```
mean_sqaured_error=np.mean((y_pred_elastic-y_train)**2)
print(mean_sqaured_error)
```

0.0009226812593710402

Conclusion:

we conclude that "Ridge model" is the best model for Rainfall
Prediction dataset, because it got
 highest accuracy compared to other models