Lecture-24

Sushrut Tadwalkar; 55554711

November 3, 2023

Quotes of the day

"*chuckles* I'm sorry, but all of this seems obvious." - Dr. Loewen, 11/3/2023

0.1 Neighbourhoods and interiors

Definition: Neighbourhood

Given HTS $(\mathcal{X}, \mathscr{T})$ and an $x \in \mathcal{X}$, a set $\mathcal{S} \subseteq \mathcal{X}$ is a *neighbourhood* of x exactly when there exists $\mathcal{U} \subseteq \mathscr{T}$ such that $x \in \mathcal{U} \subseteq \mathcal{S}$. We write $\mathscr{N}(x)$ to be the set of all such \mathcal{S} .

Figure 1: Visualization of the definition.

Lemma

In any HTS $(\mathcal{X},\mathscr{T})$ with $\mathcal{A}\subseteq\mathcal{X}$, the following are equivalent:

- (a) A is open.
- (b) For all $x \in \mathcal{A}$, we have $\mathcal{A} \in \mathcal{N}(x)$.

Proof. Just pushing around definitions, nothing too complex.

Definition: Interior points

In a HTS $(\mathcal{X}, \mathscr{T})$ with $\mathcal{A} \subseteq \mathcal{X}$, a point x is an *interior point of* \mathcal{A} if there exists $\mathcal{U} \in \mathscr{N}(x)$ such that $\mathcal{U} \subseteq \mathcal{A}$. The collection of interior points is

$$\mathcal{A}^{\circ}$$
 = "the interior point of \mathcal{A} ."

Note. *If* $A \subseteq B$, then $A^{\circ} \subseteq B^{\circ}$.

Proposition

In a HTS $(\mathcal{X}, \mathcal{T})$ with $\mathcal{A} \subseteq \mathcal{X}$,

- (a) \mathcal{A}° is open, with $\mathcal{A}^{\circ} \subseteq \mathcal{A}$.
- (b) If \mathcal{G} is open, and $\mathcal{G} \subseteq \mathcal{A}$, then $\mathcal{G} \subseteq \mathcal{A}^{\circ}$; \mathcal{A}° is the **largest open subset** of \mathcal{A} .
- (c) \mathcal{A} is open iff $\mathcal{A} = \mathcal{A}^{\circ}$.

Proof. The proofs for these are very short and given in the notes, but the professor suggested we try to do them ourselves. \Box

Note. The shape of our neighbourhood depends on the topology we lay down on the space; if we look at the real line, the topology on it does not allow a point to be its own neighbourhood.

Example 1. If a < b in \mathbb{R} , we have

$$[a,b]^{\circ} = [a,b)^{\circ} = (a,b)^{\circ} = (a,b)^{\circ} = (a,b).$$

Furthermore, note that $\mathbb{Q}^{\circ} = \emptyset$.

Note. The "largest open subset" is as shown above, and the "smallest open subset" does not exist. We illustrate this in \mathbb{R} as follows: Consider $\mathcal{A} = [0,1]$; If \mathcal{U} is open, and $\mathcal{U} \supset \mathcal{A}$, then $0 \in \mathcal{U}$ and $1 \in \mathcal{U}$ imply that there exists a sufficiently large $n \in \mathbb{N}$ such that $\left(-\frac{1}{n}, \frac{1}{n}\right) = \mathbb{B}\left[0; \frac{1}{n}\right) \subseteq \mathcal{U}$ and $\left(1 - \frac{1}{n}, 1 + \frac{1}{n}\right) = \mathbb{B}\left[1; \frac{1}{n}\right) \subseteq \mathcal{U}$. So,

 $\mathcal{U} \supseteq \left(-\frac{1}{n}, 1 + \frac{1}{n}\right)$. Increasing n gives us a smaller alternative that is still open and covers [0, 1]; no smallest such subset exists.

$$\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, 1 + \frac{1}{n}\right) = [0, 1].$$

0.2 Closed sets; Closure

Definition: Closed set

In a HTS $(\mathcal{X}, \mathcal{T})$, a set $\mathcal{F} \subseteq \mathcal{X}$ is *closed* iff $\mathcal{F}^c = \mathcal{X} \setminus \mathcal{F}$ is open.

Imagine defining $\mathscr{F} = \{\mathcal{U}^c : \mathcal{U} \in \mathcal{J}\}$ is the set of all closed subsets in \mathcal{X} . The HTS axioms could be set up starting with closed sets and \mathscr{F} instead of open sets and \mathscr{T} , and this would be logically equivalent:

(HTS 1) $\emptyset, \mathcal{X} \in \mathcal{F}$; note that these sets are both closed and open (by definition). These can also be called "cl-open" sets.

(HTS 2) Arbitrary intersection of closed sets in closed: if $\mathcal{K} \subseteq \mathcal{F}$ then $\bigcap \mathcal{K} \in \mathcal{F}$, where

$$\bigcap \mathcal{K} = \bigcap_{\mathcal{K} \in \mathcal{K}} \mathcal{K}$$

$$= \left(\bigcap_{k \in \mathcal{K}} \mathcal{K}^c\right)^c.$$

(HTS 3) If $\mathcal{F}_1, \dots, \mathcal{F}_N$ are closed are closed (where $n \in \mathbb{N}$), then $\bigcup_{j=1}^N \mathcal{F}_j$ is closed as well, where

$$\left(\bigcup_{j=1}^{N} \mathcal{F}_{j}\right)^{c} = \bigcap_{j=1}^{N} (\mathcal{F}_{j}^{c}) \in \mathscr{T}.$$

(HTS 4) If $x_1 \neq x_2$ in \mathcal{X} , there exist $\mathcal{F}_1, \mathcal{F}_2 \in \mathscr{F}$ such that $x_1 \notin \mathcal{F}_1, x_2 \notin \mathcal{F}_2, \mathcal{F}_1 \cup \mathcal{F}_{\in} = \mathcal{X}$.

Note. As HTS 1 already suggests, if a set is not open, it **does not** mean it is closed; it could be cl-open, which is purely a definition. This is also why I think the names are not good because "sets are not doors" - Dr. Jim Bryan, 2023.

Definition: Closure

In a HTS $(\mathcal{X}, \mathcal{T})$ with $\mathcal{A} \subseteq \mathcal{X}$, the *closure* of \mathcal{A} is the set

$$\overline{\mathcal{A}} = ((\mathcal{A}^c)^\circ)^c$$
,

which is the complement of an open set $((A^c)^\circ)$, so it is closed:

$$(\mathcal{A}^c)^\circ \subseteq \mathcal{A}^c$$

$$\Longrightarrow ((\mathcal{A}^c)^\circ)^c \supseteq (\mathcal{A}^c)^c = \mathcal{A}$$

$$\Longrightarrow \overline{\mathcal{A}} \supseteq \mathcal{A}.$$

Indeed \overline{A} is the smallest closed superset of A; if F is closed, and $F \supseteq A$, then $F \supseteq \overline{A}$ as well.

Note. If $A \subseteq \mathcal{B}$, then $\overline{A} \subseteq \overline{\mathcal{B}}$. Example: $\overline{(ab)} = [a, b]$.

0.3 Boundary points

Definition: Boundary

In a HTS $(\mathcal{X}, \mathcal{T})$ with $\mathcal{A} \subseteq \mathcal{X}$, a point $x \in \mathcal{X}$ belongs to $\partial \mathcal{A}$, the **boundary** of \mathcal{A} , iff for all $\mathcal{G} \in \mathcal{N}(x)$, we have $\mathcal{G} \cap \mathcal{A} \neq \emptyset$ and $\mathcal{G} \cap \mathcal{A}^c \neq \emptyset$.

Example 2. Consider:

- (a) $\partial(a,b) = \{a,b\}.$
- (b) $\partial \mathbb{Q} = \mathbb{R}$ (very interesting).