Hyperbolic Image-Text Representations

Вспомним CLIP

По паре(текс-картинка) создаем согласованные эмбединги

Уже работает на zero-shot задачах

(2) Create dataset classifier from label text

Специфичность текста и картинок

Стремимся учитывать древовидную иерархию текстовых описаний, переходя от общих концепций к более специфическим.

Почему гиперболоид?

Переведем эмбединги в гиперболическое пространство
По мере удаления от "корня", объем в этом пространстве увеличивается экспоненциально,
По сути это непрерывный аналог дерева

CLIP: embed images and text in a Euclidean space

Краткий принцип работы модели

- 1. Переводим эмбеддинги с гиперсферы на гиперболоид
- 2. Введем меру расстояния между векторами на гиперболоиде для оценки их схожести.
- 3. Разработаем специальную функцию потерь, учитывающую иерархическую структуру.
- 4. В остальном следуем подходу, использованному в CLIP.

Архитектура MERU, contrastive loss

Используем отрицательное значение Lorentzian distance(кратчайший путь) взамен cosine similarities.

$$d_{\mathcal{L}}(\mathbf{x}, \mathbf{y}) = \sqrt{1/c} \cdot \cosh^{-1}(-c \langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}})$$

Entailment loss

Устанавливаем иерархию, в которой тексты являются более обобщенными, чем соответствующие им изображения.

X - текст, Y - картинка Хотим, чтобы Y лежал внутри какогото конуса по отношению к X. Задаем угол

$$\operatorname{ext}(\mathbf{x}, \mathbf{y}) = \pi - \angle \mathbf{O} \mathbf{x} \mathbf{y} \qquad \operatorname{ext}(\mathbf{x}, \mathbf{y}) = \cos^{-1} \left(\frac{y_{time} + x_{time} \ c \ \langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}}}{\|\mathbf{x}_{space}\| \sqrt{(c \ \langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}})^2 - 1}} \right)$$

$$aper(\mathbf{x}) = \sin^{-1} \left(\frac{2K}{\sqrt{c} \|\mathbf{x}_{space}\|} \right)$$

$$\mathcal{L}_{entail}(\mathbf{x}, \mathbf{y}) = \max(0, \operatorname{ext}(\mathbf{x}, \mathbf{y}) - \operatorname{aper}(\mathbf{x}))$$

Итоговый loss & Inference stage

$$\mathcal{L}_{cont} + \lambda \mathcal{L}_{entail} \quad \lambda \in [0.01, 0.3]$$

Inference

Для упорядочивания текстов (изображений) можно просто вычислить их скалярные произведения с изображением (текстом), так как все остальные используемые функции сохраняют порядок.

Zero-shot эксперименты

Классификация изображений. На датасетах, выделенных серым цветом, обе модели показали результаты, сопоставимые со случайным выбором.

Извлечение изображений и текста. Почему в задаче text2image вторая строка показывает лучшие результаты? Мы не расширяем размер кодировщика текста, только увеличиваем размер ViT.

1-		#	1	01	001		0.1					101				45	211							1	$ext \rightarrow$	imag	e	i	image	$\rightarrow tex$	xt
		SeNe	1-10	IR-	I.R.	1220	397		raft	_		ch-	ers	-10	SAT	ISC	itry	ST	VR	Z	2			CO	CO	Fli	ckr	CO	CO	Fli	ickr
		mag	000	TEA	TIF	CUB	SUN	ars	Virc	OTC	ets	alte	Flow	STL	Euro	ES	oni	Z Z	TE	CA	ST			R5	R10	R5	R10	R5	R10	R5	R10
	CI ID	24.2	74.5	(0.1	24.4	22.0	55.	11.0	4	15.0	<u></u>	62.0		10000	1000	21.4	5.0	100	10.4	50.0	50.1	ViT	CLIP	29.9	40.1	35.3	46.1	37.5	48.1	42.1	54.7
	CLIP		14.5	60.1	24.4	33.8	27.5	11.3	1.4	15.0	13.1	63.9	47.0	88.2	18.6	31.4	5.2	10.0	19.4	50.2	50.1	S/16	MEDII	20 5	40.0	27 1	17.1	20.0	50 F	12 5	55.2
S/16	MERU	34.4	75.6	52.0	24.7	33.7	28.0	11.1	1.3	16.2	72.3	64.1	49.2	91.1	30.4	32.0	4.8	7.5	14.5	51.0	50.0	5/10	MEKU								
ViT	CLIP	37.9	78.9	65.5	33.4	33.3	29.8	14.4	1.4	17.0	77.9	68.5	50.9	92.2	25.6	31.0	5.8	10.4	14.3	54.1	51.5		CLIP		43.3	40.3	51.0	41.4	52.7	50.2	60.2
	(7) (6) (7) (7) (7)																				49.9	B/16	MERU	33.2	44.0	41.1	51.6	41.8	52.9	48.1	58.9
ViT	CLIP	38.4	80.3	72.0	36.4	36.3	32.0	18.0	1.1	16.5	78.8	68.3	48.6	93.7	26.7	35.4	6.1	14.8	13.6	51.2	51.1	ViT	CLIP	31.7	42.2	39.0	49.3	40.6	51.3	47.8	58.5
L/16	MERU	38.8	80.6	68.7	35.5	37.2	33.0	16.6	2.2	17.2	80.0	67.5	52.1	93.7	28.1	36.5	6.2	11.8	13.1	52.7	49.3	L/16	MERU	32.6	43.0	39.6	50.3	41.9	53.3	50.3	60.6

Ablations

- 1. Второй loss важен для улучшения интерпретации модели.
- 2. Если параметр с (кривизна гиперболы) не обучается, это приводит к проблемам со сходимостью модели.
- 3. В СЦР используется косинусная схожесть, которая является ограниченной функцией.
 Применение функции cosh^{-1} помогает контролировать рост неограниченного скалярного

произведения.

	COCO text→image	COCO e image→text	ImageNet
MERU ViT-B/16	33.2	41.8	37.5
1. no entailment loss	33.7	43.5	36.2
2. <i>fixed</i> $c = 1$	33.2	42.1	37.9
3. $\langle \cdot, \cdot \rangle_{\mathcal{L}}$ in contrastive	32.6	42.3	37.3
MERU ViT-L/16	32.6	41.9	38.8
1. no entailment loss	32.7	42.2	33.8
2. <i>fixed</i> $c = 1$	0.9	0.9	0.7
3. $\langle \cdot, \cdot \rangle_{\mathcal{L}}$ in contrastive	- a	lid not converge	-

$$d_{\mathcal{L}}(\mathbf{x}, \mathbf{y}) = \sqrt{1/c} \cdot \cosh^{-1}(-c \langle \mathbf{x}, \mathbf{y} \rangle_{\mathcal{L}})$$

Визуально-семантическая иерархия

Изображения являются листьями, а тексты— промежуточными вершинами. Корень представляет собой самый универсальный элемент.

Распределение дистанций до корня показывает, что иерархическая структура функционирует эффективно.

CLIP: embed images and text in a Euclidean space

Корень соответствует среднему значению вложений обучающего набора данных.

MERU: embed images and text in a hyperbolic space

Корень представляет собой точку на гиперболоиде.

Примеры

MERU	CLIP
squirrel up on	squirrel up on
the snow	the snow
covered tree	covered tree
squirrel	squirrel
wildlife	+
fluffy	↓
[ROOT]	[ROOT]

MERU	CLIP
seagull	seagull
bird	bird
air	+
coast	1
day	
[ROOT]	[ROOT]

MERU	CLIP
cute pug sitting	cute pug sitting
on floor in	on floor in
white kitchen	white kitchen
pug	↓
domestic	+
little	+
[ROOT]	[ROOT]

[ROOT]

[ROOT]

Для воссоздания промежуточных узлов применяется метод линейной интерполяции, который осуществляется между изображением и корневой точкой.

Плюсы и минусы

- 1. Интерпретируемые эмбеддинги, поддерживающие семантическую иерархию
- 2. Разработаны с использованием CLIP, обученного на общедоступных данных с ограниченными использованием GPU.
- 3. Улучшенная эффективность в вычислениях для гиперболических преобразований.
- 4. Параметр с (кривизна гиперболоида) подлежит обучению.
- 1. Тестирование системы ограничено несколькими задачами zero-shot.
- 2. Качество вложений в Rⁿ оказалось ниже, чем у CLIP, что было подтверждено с использованием linear probe.
- 3. Entailment Loss, обеспечивающий интерпретируемость, может негативно влиять на качество модели.