STK-IN4300 Statistical Learning Methods in Data Science

Riccardo De Bin

debin@math.uio.no

Outline of the lecture

- Shrinkage Methods
 - Lasso
 - Comparison of Shrinkage Methods
 - More on Lasso and Related Path Algorithms

STK-IN4300: lecture 5 2/ 40

Shrinkage Methods: ridge regression and PCR

STK-IN4300: lecture 5 3/ 40

STK-IN4300: lecture 5 4/ 40

Lasso: Least Absolute Shrinkage and Selection Operator

Lasso is similar to ridge regression, with an L_1 penalty instead of the L_2 one,

$$\sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2,$$

subject to $\sum_{j=1}^{p} |\beta_j| \leq t$.

Or, in the equivalent Lagrangian form,

$$\hat{\beta}_{\mathsf{lasso}}(\lambda) = \mathrm{argmin}_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}.$$

- X must be standardized;
- β_0 is again not considered in the penalty term.

STK-IN4300: lecture 5 5/ 40

Lasso: remarks

Due to the structure of the L_1 norm;

- some estimates are forced to be 0 (variable selection);
- no close form for the estimator.

From a Bayesian prospective:

- $\hat{\beta}_{\mathsf{lasso}}(\lambda)$ as the posterior mode estimate.
- $\beta \sim Laplace(0, \tau^2)$;
- for more details, see Park & Casella (2008).

Extreme situations:

- $\lambda \to 0$, $\hat{\beta}_{lasso}(\lambda) \to \hat{\beta}_{OLS}$;
- $\lambda \to \infty$, $\hat{\beta}_{lasso}(\lambda) \to 0$.

Lasso: constrained estimation

STK-IN4300: lecture 5 7/ 40

Lasso: generalized linear models

Lasso (and ridge r.) can be used with any linear regression model;

• e.g., logistic regression.

In logistic regression, the lasso solution is the maximizer of

$$\max_{\beta_0,\beta} \left\{ \sum_{i=1}^N \left[y_i (\beta_0 + \beta^T x_i) - \log(1 + e^{\beta_0 + \beta^T x_i}) \right] - \lambda \sum_{j=1}^p |\beta_j| \right\}.$$

Note:

 penalized logistic regression can be applied to problems with high-dimensional data (see Section 18.4).

STK-IN4300: lecture 5 9/ 40

Comparison of Shrinkage Methods: coefficient profiles

$$\rho = 0.5$$

STK-IN4300: lecture 5 10/ 40

Comparison of Shrinkage Methods: coefficient profiles

$$\rho = -0.5$$

STK-IN4300: lecture 5 11/ 40

Comparison of Shrinkage Methods: coefficient profiles

STK-IN4300: lecture 5 12/ 40

More on Lasso and Related Path Algorithms: generalization

Generalization including lasso and ridge r. → bridge regression:

$$\tilde{\beta}(\lambda) = \operatorname{argmin}_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\}, q \geqslant 0.$$

Where:

- $q = 0 \rightarrow \text{best subset selection}$;
- $q = 1 \rightarrow lasso$;
- $q = 2 \rightarrow \text{ridge regression}$.

More on Lasso and Related Path Algorithms: generalization

Note that:

- $0 < q \le 1 \rightarrow \text{non differentiable}$;
- $1 < q < 2 \rightarrow$ compromise between lasso and ridge (but differentiable \Rightarrow no variable selection property).
- q defines the shape of the constrain area:

q = 4

$$q = 0.5$$

- q could be estimated from the data (tuning parameter);
- in practice does not work well (variance).

STK-IN4300: lecture 5 14/ 40

More on Lasso and Related Path Algorithms: elastic net

Different compromise lasso / ridge regression: elastic net

$$\tilde{\beta}(\lambda) = \operatorname{argmin}_{\beta} \left\{ \sum_{i=1}^N (y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij})^2 + \lambda \sum_{j=1}^p \left(\alpha |\beta_j| + (1-\alpha)\beta_j^2\right) \right\}.$$

Idea:

- L₁ penalty takes care of variable selection;
- L_2 penalty helps in correctly handling correlation;
- α defines how much L_1 and L_2 penalty should be used:
 - it is a tuning parameter, must be found in addition to λ ;
 - a grid search is discouraged;
 - in real experiments, often very close to 0 or 1.

STK-IN4300: lecture 5 15/ 40

More on Lasso and Related Path Algorithms: elastic net

Comparing the bridge regression and the elastic net,

- they look very similar;
- huge difference due to differentiability (variable selection).

STK-IN4300: lecture 5 16/ 40

More on Lasso and Related Path Algorithms: Least Angle Regression

The Least Angle Regression (LAR):

- can be viewed as a "democratic" version of the forward selection;
- add sequentially a new predictors into the model
 - only "as much as it deserves";
- eventually reaches the least square estimation;
- strongly connected with lasso;
 - lasso can be seen as a special case of LAR;
 - LAR is often used to fit lasso models.

STK-IN4300: lecture 5 17/ 40

More on Lasso and Related Path Algorithms: LAR

Least Angle Regression:

- 1. Standardize the predictors (mean zero, unit norm). Initialize:
 - residuals $r = y \bar{y}$
 - regression coefficient estimates $\beta_1 = \cdots = \beta_p = 0$;
- 2. find the predictor x_i most correlated with r;
- 3. move $\hat{\beta}_i$ towards its least-squares coefficient $\langle x_i, r \rangle$,
 - until for $k \neq j$, $\operatorname{corr}(x_k, r) = \operatorname{corr}(x_i, r)$.
- 4. add x_k in the active list and update both $\hat{\beta}_i$ and $\hat{\beta}_k$:
 - towards their joint least squares coefficient;
 - until x_l has as much correlation with the current residual;
- 5. continue until all p predictors have been entered.

STK-IN4300: lecture 5 18/ 40

More on Lasso and Related Path Algorithms: comparison

STK-IN4300: lecture 5 19/ 40

More on Lasso and Related Path Algorithms: overfit

Group Lasso

Sometimes predictors belong to the same group:

- genes that belong to the same molecular pathway;
- dummy variables from the same categorical variable . . .

Suppose the p predictors are grouped in ${\cal L}$ groups, group lasso minimizes

$$\min_{\beta} \left\{ ||(y - \beta_0 \vec{1} - \sum_{\ell=1}^{L} X_{\ell} \beta_{\ell}||_2^2 + \lambda \sum_{\ell=1}^{L} \sqrt{p_{\ell}} ||\beta_j||_2 \right\},$$

where:

- $\sqrt{p_{\ell}}$ accounts for the group sizes;
- ullet || \cdot || denotes the (not squared) Euclidean norm
 - it is $0 \Leftarrow$ all its component are 0;
- sparsity is encouraged at both group and individual levels.

STK-IN4300: lecture 5 21/ 40

Non-negative garrote

The idea of lasso originates from the non-negative garrote,

$$\hat{\beta}_{\text{garrote}} = \operatorname{argmin}_{\beta} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} c_j \beta_j x_{ij})^2,$$

subject to

$$c_j \geqslant 0$$
 and $\sum_i c_j \leqslant t$.

Non-negative garrote starts with OLS estimates and shrinks them:

- by non-negative factors;
- the sum of the non-negative factor is constrained;
- for more information, see Breiman (1995).

STK-IN4300: lecture 5 22/ 40

In the case of orthogonal design $(X^TX = I_N)$,

$$c_j(\lambda) = \left(1 - \frac{\lambda}{\hat{\beta}_j^{OLS}}\right),$$

where λ is a tuning parameter (related to t).

Note that the solution depends on $\hat{\beta}_{OLS}$:

- cannot be applied in p >> N problems;
- may be a problem when $\hat{\beta}_{OLS}$ behaves poorly;
- has the oracle properties (Yuan & Lin, 2006) ← see soon.

STK-IN4300: lecture 5 23/ 40

Comparison between lasso (left) and non-negative garrote (right).

(picture from Tibshirani, 1996)

STK-IN4300: lecture 5 24/ 40

Let:

- $\mathcal{A} := \{j : \beta_i \neq 0\}$ be the set of the true relevant coefficients;
- δ be a fitting procedure (lasso, non-negative garrote, ...);
- $\hat{\beta}(\delta)$ the coefficient estimator of the procedure δ .

We would like that δ :

- (a) identifies the right subset model, $\{j: \hat{\beta}(\delta) \neq 0\} = \mathcal{A};$
- (b) has the optimal estimation rate, $\sqrt{n}(\hat{\beta}(\delta)_{\mathcal{A}} \beta_{\mathcal{A}}) \stackrel{d}{\to} N(0, \Sigma)$, where Σ is the covariance matrix for the true subset model.

If δ satisfies (a) and (b), it is called an oracle procedure.

STK-IN4300: lecture 5 25/ 40

Consider the following setup (Knight & Fu, 2000):

- $y_i = x_i \beta + \epsilon_i$, with ϵ_i i.i.d. r.v. with mean 0 and variance σ^2 ;
- $n^{-1}X^TX \to C$, where C is a positive definite matrix;
- suppose w.l.g. that $A = \{1, 2, ..., p_0\}$, $p_0 < p$;
- $C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$, with C_{11} a $p_0 \times p_0$ matrix;
- $\bullet \ \ \hat{\mathcal{A}} = \{j: \hat{\beta}_j^{\mathsf{lasso}}(\lambda) \neq 0\}$

Knight & Fu (2000) demonstrated the following two lemmas:

Lemma (1)

If $\lambda/n \to \lambda_0 \geqslant 0$, then $\hat{\beta}^{lasso}(\lambda) \xrightarrow{p} \operatorname{argmin}_u V_1(u)$, where

$$V_1(u) = (u - \beta)^T C(u - \beta)^T + \lambda_0 \sum_{i=1}^p |u_i|.$$

Lemma (2)

If $\lambda/\sqrt{n} \to \lambda_0 \geqslant 0$, then $\sqrt{n}(\hat{\beta}^{lasso}(\lambda) - \beta) \xrightarrow{d} \operatorname{argmin}_u V_2(u)$,

$$V_2(u) = -2u^TW + u^TCu + \lambda_0 \sum_{i=1}^p [u_j \operatorname{sgn}(\beta) \mathbb{1}(\beta \neq 0) + |u_j| \mathbb{1}(\beta = 0)].$$

STK-IN4300: lecture 5 27/ 40

From Lemma (1):

• only $\lambda_0 = 0$ guarantees consistency.

Lemma (2) states:

- the lasso estimate is \sqrt{n} -consistent;
- when $\lambda = O(\sqrt{n})$, \hat{A} cannot be A with positive probability.

Proposition (1)

If
$$\lambda/\sqrt{n} \to \lambda_0 \geqslant 0$$
, then $\limsup_{n} P[\hat{A} = A] \leqslant c < 1$.

For the proof, see Zou (2006).

It may be interesting to see what happens in the intermediate case, when $\lambda_0=\infty$, i.e., $\lambda/n\to 0$ and $\lambda/\sqrt{n}\to \infty$.

Lemma (3)

If
$$\frac{\lambda}{n} \to 0$$
 and $\frac{\lambda}{\sqrt{n}} \to \infty$, then $\frac{n}{\lambda}(\hat{\beta}^{lasso}(\lambda) - \beta) \xrightarrow{p} \operatorname{argmin}_{u} V_{3}(u)$,

$$V_3(u) = u^T C u + \sum_{i=1}^p [u_j \operatorname{sgn}(\beta) \mathbb{1}(\beta \neq 0) + |u_j| \mathbb{1}(\beta = 0)].$$

Note:

- the convergence rate of $\hat{\beta}^{lasso}(\lambda)$ is slower than \sqrt{n} ;
- the optimal estimation rate is available only when $\lambda = O(\sqrt{n})$, but it leads to inconsistent variable selection;
- for the proof, see Zou (2006).

More on Lasso and Related Path Algorithms: necessary condition

Can consistency in variable selection can be achieved by sacrificing the rate of convergence in estimation?

↓ Non necessarily.

It is possible to derive a necessary condition for consistency of the lasso variable selection (Zou, 2006):

Theorem (necessary condition)

Suppose that $\lim_n P[\hat{A} = A] = 1$. Then there exists some sign vector $s = (s_1, \dots, s_{p_0})^T$, $s_j \in \{-1, 1\}$, such that

$$|C_{21}C_{11}^{-1}s| \le 1. (1)$$

The last equation is understood componentwise.

STK-IN4300: lecture 5 30/ 4

More on Lasso and Related Path Algorithms: necessary condition

If condition (1) fails \Rightarrow the lasso variable selection is inconsistent. Corollary (1)

Suppose that $p_0=2m+1\geqslant 3$ and $p=p_0+1$, so there is one irrelevant predictor. Let $C_{11}=(1-\rho_1)I+\rho_1J_1$, where J_1 is the matrix of 1's, $C_{12}=\rho_2\vec{1}$ and $C_{22}=1$. If $-\frac{1}{p_0-1}<\rho_1<\frac{1}{p_0}$ and $1+(p_0-1\rho_1)<|\rho_2|<\sqrt{(1+(p_0-1)/\rho_1/p_0)}$, then condition (1) cannot be satisfied. So the lasso variable selection is inconsistent.

STK-IN4300: lecture 5 31/ 40

More on Lasso and Related Path Algorithms: Corollary (1)

Proof of Corollary (1).

Note that

•
$$C_{11}^{-1} = \frac{1}{1-\rho_1} (I - \frac{\rho_1}{1+(p_0-1)\rho_1} J_1);$$

•
$$C_{21}C_{11}^{-1} = \frac{\rho_2}{1 + (p_0 - 1)\rho_1}(\vec{1})^T$$
.

Therefore
$$C_{21}C_{11}^{-1}s = \frac{\rho_2}{1+(p_0-1)\rho_1}(\sum_{j=1}^{p_0}s_j)\vec{1}$$
.

Then, condition (1) becomes
$$\left|\frac{\rho_2}{1+(p_0-1)\rho_1}\right| \cdot \left|\sum_{j=1}^{p_0} s_j\right| \leq 1$$
.

Note that when p_0 is a odd number, $\left|\sum_{i=1}^{p_0} s_i\right| \ge 1$.

If $|\frac{\rho_2}{1+(p_0-1)\rho_1}|>1$, then condition (1) cannot be satisfied for any sign vector. The choice of (ρ_1,ρ_2) ensures that C is a positive matrix and $|\frac{\rho_2}{1+(p_0-1)\rho_1}|>1$.

The Smoothly Clipped Absolute Deviation (SCAD) estimator

$$\hat{\beta}_{\mathsf{scad}}(\lambda,\alpha) = \operatorname{argmin}_{\beta} \left\{ \frac{1}{2} ||y - \beta_0 \vec{1} - X\beta||_2^2 + \lambda \sum_{j=1}^p p_j(\beta_j;\lambda,\alpha) \right\},$$

where

$$\frac{d p_j(\beta_j; \lambda, \alpha)}{d\beta_j} = \lambda \left\{ \mathbb{1}(|\beta_j| \leq \lambda) + \frac{(\alpha \lambda - |\beta_j|)_+}{(\alpha - 1)\lambda} \mathbb{1}(|\beta_j| > \lambda) \right\}$$

for $\alpha > 2$.

Usually:

- α is set equal to 3.7 (based on simulations);
- λ is chosen via cross-validation.

The SCAD penalty function:

- penalizes less the largest regression coefficient estimates;
- makes the solution continuous. In particular,

$$\hat{\beta}_{\mathsf{scad}}(\lambda,\alpha) = \left\{ \begin{array}{ll} \mathsf{sgn}(\beta)(|\beta_j| - \lambda)_+ & \mathsf{when} \ |\beta| \leqslant 2\lambda \\ \{(\alpha - 1)\beta - \mathsf{sgn}(\beta)\alpha\lambda\}/(\alpha - 2) & \mathsf{when} \ 2\lambda < |\beta| \leqslant \alpha\lambda \\ \beta & \mathsf{when} \ |\beta| > \alpha\lambda \end{array} \right.$$

Note that:

- \exists an \sqrt{n} -consistent estimator (Fan & Li, 2001, Theorem 1);
- the SCAD estimator $\hat{\beta}_{scad}(\lambda, \alpha)$ is an oracle estimator (Fan & Li, 2001, Theorem 2).

STK-IN4300: lecture 5 34/ 40

STK-IN4300: lecture 5 35/ 40

Adaptive lasso

The adaptive lasso is a particular case of the weighted lasso,

$$\hat{\beta}_{\mathsf{weight}}(\lambda) = \mathsf{argmin}_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} w_j |\beta_j| \right\},$$

in which $\hat{w}_j = 1/|\hat{\beta}_{OLS}|^{\gamma}$.

Note:

- it enjoys the oracle properties (Zou, 2006, Theorem 2);
- when $\gamma = 1$, it is very closely related to the non-negative garrote (there is an additional sign constrain);
- relies on $\hat{\beta}_{OLS} \rightarrow$ sometimes lasso used in a first step;
- two-dimensional tuning parameter.

- (a) best subset regression;
- (b) bridge with $\alpha = 0.5$.

(picture from Zou, 2006)

- (c) lasso;
- (d) scad.

(picture from Zou, 2006)

STK-IN4300: lecture 5 38/ 40

- (e) adaptive lasso with $\gamma = 0.5$;
- (f) adaptive lasso with $\gamma = 0.2$.

(picture from Zou, 2006)

References I

- Breiman, L. (1995). Better subset regression using the nonnegative garrote. *Technometrics* **37**, 373–384.
- FAN, J. & LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. *Journal of the American Statistical Association* 96, 1348–1360.
- KNIGHT, K. & Fu, W. (2000). Asymptotics for lasso-type estimators. *Annals of Statistics* **28**, 1356–1378.
- Park, T. & Casella, G. (2008). The Bayesian lasso. *Journal of the American Statistical Association* 103, 681–686.
- TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58, 267–288.
- Yuan, M. & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. *Journal of the Royal Statistical Society: Series B* (Methodological) **68**, 49–67.
- ZOU, H. (2006). The adaptive lasso and its oracle properties. *Journal of the American Statistical Association* **101**, 1418–1429.

STK-IN4300: lecture 5 40/ 40