Projekt zasilania energią elektryczną Oddziału nr 1 fabryki samochodów

Skład grupy: Kacper Borucki, Eryk Błaszczyk

Kierownik projektu: Kacper Borucki

1 SPIS TREŚCI

2	Oświadczenie o samodzielności wykonania projektu5									
3	K	arta p	rojektowa	. 7						
4	0	pis te	chniczny	11						
	4.1	Pr	zedmiot i zakres opracowania	11						
	4.2	Og	gólna charakterystyka Oddziału nr 1	11						
	4.3	W [,]	ykaz dobranych odbiorników energii elektrycznej w Oddziale nr 1	11						
	4.4	Ze	stawienie mocy zapotrzebowanych	12						
	4.5	W	arunki zasilania podstawowego i rezerwowego zakładu i Oddziału 1	12						
	4	.5.1	Zasilanie zakładu	12						
	4	.5.2	Zasilanie Oddziału nr 1	13						
	4.6	Op	ois stacji oddziałowych SO1 i SO2	13						
	4	.6.1	Charakterystyka stacji oddziałowej SO1	13						
	4	.6.2	Charakterystyka stacji oddziałowej SO2	13						
	4	.6.3	Koncepcja zasilania	13						
	4	.6.4	Kompensacja mocy biernej	14						
	4	.6.5	Transformatory	14						
	4.7	W	arunki zwarciowe	15						
	4.8	Op	ois linii kablowych WLZ zasilania Oddziału 1	15						
	4.9	Ch	arakterystyka oświetlenia i instalacji oświetleniowej Oddziału nr 1	16						
	4.10) Ch	arakterystyka instalacji siłowej w Oddziale nr 1	17						
	4	.10.1	Instalacja zasilania gniazd	17						
	4	.10.2	Instalacja zasilania odbiorników	17						
	4.11	l Za	stosowane środki ochrony przeciwporażeniowej	18						
	4.12		ykaz Polskich Norm wykorzystanych w projekcie i przyjętych dodatkowych założeń	12						
		.12.1	PN EN 12464-1:2012 - Wymagania dotyczące oświetlenia podstawowego miejsc prac							
			emysłu metalowego	•						
	4	.12.2	PN-IEC 60364-5-523: 2001 – Dobór przewodów na obciążalność długotrwałą	18						
		.12.3 rzeciw	PN-IEC 60364-4-41:2007 – Maksymalny czas zadziałania zabezpieczeń	18						
5			obliczeń projektowych							
J	5.1		obór urządzeń odbiorczych w Oddziale nr 1							
	5.2		ojekt oświetlenia ogólnego Oddziału nr 1.							
		.2.1	Wersja #1: Konwencjonalna, z oprawami oświetleniowymi opartymi o świetlówki							
		.2.2	Wersja #2: Energooszczędna, z oprawami oświetleniowymi opartymi o LED-y							

5.2.3	Ostatecznie wybrano wariant 1, energooszczędny, ze względu na następujące korzyści:
	21

5.3	•	acowanie koncepcji sieci rozdzielczej w zakładzie (zasilania podstawowego i	
reze	rwowe	go)	21
5	.3.1	Wariant 1	21
5	.3.2	Wariant 2	22
5.4	Obl	iczenia mocy szczytowej Oddziału nr 1 i całego zakładu	23
5	.4.1	Oddział nr 1 – metoda zastępczej liczby odbiorników	23
5	.4.2	Oddział nr 2 – metoda wskaźnika zapotrzebowania mocy $m{kz}$	24
5.5	Dok	oór baterii kondensatorów do kompensacji mocy biernej	25
5	.5.1	Oddział nr 1:	25
5	.5.2	Oddział nr 2:	25
5	.5.3	Oddział nr 3:	25
5	.5.4	Oddział nr 4:	25
5.6	Dok	oór transformatorów w stacjach oddziałowych	26
5	.6.1	Oddział 1:	26
5	.6.2	Oddział 2:	26
5	.6.3	Oddział 3:	26
5	.6.4	Oddział 4:	26
5	.6.5	Stacja SO1:	27
5	.6.6	Stacja SO2:	27
5.7	Obl	iczenia zwarciowe	27
5	.7.1	System elektroenergetyczny	27
5	.7.2	Transformator dwuuzwojeniowy	27
5	.7.3	Maksymalny początkowy prąd zwarcia trójfazowego na szynach NN transformato	ora 27
	.7.4 ddziału	Prądy początkowy i udarowy zwarcia trójfazowego w rozdzielnicy oddziałowej 1 – zasilanie podstawowe	
	.7.5 ddziału	Prądy początkowy i udarowy zwarcia trójfazowego w rozdzielnicy oddziałowej 1 – zasilanie rezerwowe	28
5.8	Dok	oór linii kablowej WLZ1 do Oddziału nr 1	28
5	.8.1	WLZ1 do zasilania podstawowego:	28
5	.8.2	WLZ1 do zasilania rezerwowego:	33
5.9	Obl	iczenia wybranych obwodów instalacji odbiorczej	35
5	.9.1	Dobór przewodów i zabezpieczeń do obwodów pras	35
5	.9.2	Dobór przewodów i zabezpieczeń do obwodów podnośników	38
5	.9.3	Dobór przewodów i zabezpieczeń do obwodów przenośników	40
5	.9.4	Dobór przewodów i zabezpieczeń do obwodów pieców	43

5.9.		5 Dobór przewodów i zabezpieczeń do obwodów gniazd 3-fazowych	45			
	5.9.	6 Dobór przewodów i zabezpieczeń do obwodów gniazd 1-fazowych	47			
6	Wyl	kaz rysunków technicznych	53			
	6.1 1.	Podkładka budowlana ze schematami rozmieszczenia urządzeń odbiorczych w Odd 53	ziale nr			
6.2 Plan instalacji siłowej w Od		Plan instalacji siłowej w Oddziale nr 1	53			
	6.3	Plan instalacji oświetleniowej w Oddziale nr 1.	53			
	6.4	Plan zagospodarowania przestrzennego zakładu.	53			
7	Lite	ratura	54			
8 Załączniki						

2 OŚWIADCZENIE O SAMODZIELNOŚCI WYKONANIA PROJEKTU

Tabela 1. Zestawienie osób odpowiedzialnych za poszczególne zadania

Etap projektu						
Etap 1: Projekt	Wariant tradycyjny instalacji oświetleniowej	-	+			
oświetlenia ogólnego	Wariant energooszczędny instalacji oświetleniowej	+	-			
oddziału nr 1	Wybór wariantu oświetlenia do zastosowania	+	+			
Etap 2: Dobór	Dobór silników pras, podnośników, przenośników	+	-			
urządzeń do oddziału	Dobór pieców oporowych	+	-			
nr 1	Dobór gniazd	+	-			
Etap 3: Wyznaczenie obliczeniowej mocy szczytowej dla oddziału nr 2	Wyznaczenie obliczeniowej mocy szczytowej dla oddziału nr 2 metodą wskaźnika zapotrzebowania	-	+			
Etap 4: Wyznaczenie obliczeniowej mocy szczytowej dla	Wyznaczenie obliczeniowej mocy szczytowej dla oddziału nr 1 metodą zastępczej liczby odbiorników	+	-			
oddziału nr 1	Zestawienie tabelaryczne mocy szczytowej poszczególnych oddziałów	+	-			
Etap 5: Opracowanie	Koncepcja zasilania - wariant 1	+	-			
koncepcji zasilania	Koncepcja zasilania – wariant 2	-	+			
podstawowego i rezerwowego zakładu	Wybór wariantu koncepcji zasilania	+	+			
Etap 6: Opracowanie koncepcji	Kompensacja mocy biernej – wariant 1 – kompensacja grupowa	+	+			
kompensacji mocy biernej	Kompensacja mocy biernej – wariant 2 – kompensacja lokalna	+	-			
,	Wybór wariantu kompensacji mocy biernej	+	+			
	Dobór urządzeń do kompensacji mocy biernej	+	_			
Etap 7: Dobór transformatorów w	Dobór transformatorów na podstawie katalogów producentów	+	+			
stacjach oddziałowych	Obliczenie spodziewanych wartości początkowych zwarcia trójfazowego na szynach NN w stacjach transformatorowych	+	-			
Etap 8: Dobór WLZ1 zasilania	Dobór WLZ1 zasilania podstawowego zgodnie z algorytmem doboru przewodów	+	-			
podstawowego i	Dobór zabezpieczeń WLZ1	+	-			
WLZ1R zasilania rezerwowego	Dobór WLZ1R zasilania rezerwowego zgodnie z algorytmem doboru przewodów	+	-			
	Dobór zabezpieczeń WLZ1R	+	-			
	Obliczenie prądów zwarciowych na poziomie RO oddziału nr 1	+	-			
Etap 9: Obliczenia instalacji siłowej	Dobór przewodów i zabezpieczeń dla silników pras, podnośników i przenośników	+	-			
	Dobór przewodów i zabezpieczeń dla pieców	+	-			
	Dobór przewodów i zabezpieczeń dla gniazd	+	-			

Etap projektu	Zadanie	Kacper Borucki	Eryk Błaszczyk
Etap 10: Obliczenia	Plan instalacji oświetleniowej oddziału nr 1	-	+
instalacji oświetleniowej	Dobór przewodów i zabezpieczeń dla obwodów oświetleniowych	-	+
	Koncepcja układu sterowania oświetleniem	-	+
Etap 11:	Plan zagospodarowania przestrzennego zakładu	-	+
Opracowanie dokumentacji	Podkładka budowlana ze schematem rozmieszczenia urządzeń w oddziale nr 1	+	-
rysunkowej	Plan instalacji siłowej w oddziale nr 1	+	-
	Plan instalacji oświetleniowej w oddziale nr 1	-	+
Etap 12: Opracowanie opisu technicznego	Opracowanie opisu technicznego dla projektu	+	-
Dokumentacja	Opracowanie dokumentacji projektu	+	-

	KARTA PR	OJEKTOWA	nr /	7		
Zespół Urzą Katedra Ene	zenia elektryczne 3 – projekt (S dzeń Elektroenergetycznych (ZU rgoelektryki : Mgr inż. Mirosław Kobusińsk	T-Ii 2019/2020 E) – <u>www.zue</u>	0)			
Imię i nazwi	sko studenta, numer indeksuk	ACPER BORVE	دا . 245	365		
Imię i nazwi	sko studenta, numer indeksu ££	YK BEASZEZ	YK 24	0763		
		du przemysł	owego	Oddziału nr 1		
Nazwa zakła	72.5	owe założenia p			V	
A1. Nazwa o				ALEGORARE		PARAMETER.
A3. Branża – A4. Kategoria A5. Konstruk	środowiskowe: pomieszczenie prze przemysł metalowy i maszynowy, a zasilania: II cja budynku: z materiałów izolacyj	4 30	alne.			
A6. Kształt p	omieszczenia: prostopadłościan gabarytowe pomieszczenia, [m]: dł	(L) 25	, szer. (5	s)18, w	ys. (H)	7,5
A8. Dwoje di	zwi wejściowych naprzeciwległych		•			
A8. Dwoje di	ki energii elektrycznej w Oddziale n	ar 1 zainstalowai	ne na stał	e:		Links
A8. Dwoje di	0310 030	r 1 zainstalowar	•	e: In	U _n	
A8. Dwoje di A7. Odbiorni Grupa	ki energii elektrycznej w Oddziale n ODBIORNIK	ar 1 zainstalowai	ne na stał	e: In A		odbiorników w grupie
A8. Dwoje di A7. Odbiorni Grupa urządzeń	ki energii elektrycznej w Oddziale n	r 1 zainstalowar	ne na stał	E: In A 16-32-63	V	odbiorników w grupie
A8. Dwoje dr A7. Odbiorni Grupa urządzeń	ki energii elektrycznej w Oddziale n ODBIORNIK Gniazda 3 fazowe	r 1 zainstalowar P ₀ kW -	ne na stał	e: In A	V 400	odbiorników w grupie
A8. Dwoje dr A7. Odbiorni Grupa urządzeń 1 2	ki energii elektrycznej w Oddziale n ODBIORNIK Gniazda 3 fazowe	r 1 zainstalowar	ne na stał	E: In A 16-32-63	V 400 230	odbiorników w grupie
A8. Dwoje dr A7. Odbiorni Grupa urządzeń 1 2 3	ki energii elektrycznej w Oddziale n ODBIORNIK Gniazda 3 fazowe	r 1 zainstalowa P ₀ kW	ne na stał	E: In A 16-32-63	V 400 230 400	odbiorników w grupie

 P_0 – moc wymagana przez maszynę napędzaną (należy dobrać silnik klatkowy 3–fazowy nn, w maszynie przewidzieć tylko jeden silnik, obudowa kołnierzowa). Silniki zasilane na stałe. Gniazda przeznaczone są do zasilania odbiorników przenośnych.

P
A8. Układ sieci w zakładzie: TN
A9. Dodatkowa ochrona przeciwporażeniowa: samoczynne wyłączenie zasilania.
A10.Sposoby prowadzenia instalacji siłowej:
Silniki Brabinki Kablowe
Gniazda - Korytho Kablowe

B. WARUNKI ZASILANIA ENERGIĄ ELEKTRYCZNĄ ODDZIAŁU nr 1

B4. Liczba kabli we wspólnym wykopie oprócz linii WLZ1:

B5. Odległość w świetle między sąsiednimi kablami: .9/12/5-25-50cm.

C. CHARAKTERYSTYKA STACJI ODDZIAŁOWEJ SO 1

C1. Napięcia znamionowe stacji SO1: 6-10-15-20-30 kV/0,4 kV. C2. Moc zwarciowa na szynach SN stacji SO1:320 MV·A. C3. Wymagana wartość cos φ na szynach nn stacji SO1:2.3.1

D. CHARAKTERYSTYKA STACJI ODDZIAŁOWEJ SO 2

E. CHARAKTERYSTYKA ODDZIAŁÓW

Nr	Nazwa oddziału	P _n kW	P _s	соѕф	Kategoria zasilania
1	Thocania	-	4771-786-4		II-70.%
2	Lakiernia	320	List- in		I – 100%
3	Oddział 3	-	350	0,80	п-60.%
4	Oddział 4	7 - 10	280	0,79	III

F. ZAWARTOŚĆ DOKUMENTACJI PROJEKTOWEJ

- D1. Strona tytułowa.
- D2. Spis treści.
- D3. Karta projektowa.
- D4. Opis techniczny.
- D5. Obliczenia projektowe.
- D6. Rysunki techniczne.
- D7. Literatura.
- D8. Załączniki (karty katalogowe, wydruki programów).

G. ZAWARTOŚĆ OPISU TECHNICZNEGO

- 1. Przedmiot i zakres opracowania.
- 2. Ogólna charakterystyka Oddziału nr 1.
- 3. Wykaz dobranych odbiorników energii elektrycznej w Oddziale nr 1.
- Zestawienie mocy zapotrzebowanych.
- 5. Warunki zasilania podstawowego i rezerwowego zakładu i Oddziału 1.
- 6. Opis stacji oddziałowych SO1 i SO2...

- 7. Warunki zwarciowe.
- 8. Opis linii kablowych WLZ zasilania Oddziału 1.
- 9. Charakterystyka oświetlenia i instalacji oświetleniowej Oddziału nr 1.
- 10. Charakterystyka instalacji siłowej w Oddziale nr 1.
- 11. Zastosowane środki ochrony przeciwporażeniowej.
- 12. Wykaz Polskich Norm wykorzystanych w projekcie i przyjętych dodatkowych założeń projektowych.

H. ZAKRES OBLICZEŃ PROJEKTOWYCH

- F1. Dobór urządzeń odbiorczych w Oddziale nr 1.
- F2. Projekt oświetlenia ogólnego Oddziału nr 1.
- F3. Opracowanie koncepcji sieci rozdzielczej w zakładzie (zasilania podstawowego i rezerwowego).
- F3. Obliczenia mocy szczytowej Oddziału nr 1 i całego zakładu
- F4. Dobór baterii kondensatorów do kompensacji mocy biernej.
- F5. Dobór transformatorów w stacjach oddziałowych.
- F6. Obliczenia zwarciowe.
- F7. Dobór linii kablowej WLZ1 do Oddziału nr 1.
- F8. Obliczenia wybranych obwodów instalacji odbiorczej.

I. WYKAZ RYSUNKÓW TECHNICZNYCH

- 1. Podkładka budowlana ze schematami rozmieszczenia urządzeń odbiorczych w Oddziale nr 1.
- 2. Plan instalacji siłowej w Oddziale nr 1.
- 3. Plan instalacji oświetleniowej w Oddziale nr 1.
- 4. Plan zagospodarowania przestrzennego zakładu.
- 5. Schemat ideowy sieci rozdzielczej w zakładzie.

Na rysunkach wchodzących w skład projektu należy umieścić metryczkę (tabelkę) rysunku, zawierającą:

- nazwę obiektu budowlanego,
- przedmiot, skalę i numer rysunku,
- imię i nazwisko projektanta, data i podpis,
- imię i nazwisko osoby sprawdzającej.

J. LITERATURA

Należy podać wykaz wykorzystanych publikacji, norm, katalogów, stron WWW, programów komputerowych itd..

K. ZAŁĄCZNIKI

- Wydruki wyników użytych programów komputerowych.
- Karty katalogowe dobranych urządzeń.

L. Terminy

DATA WYDANIA TEMATU	TERMIN ODDANIA PRACY	OCENA DOKUMENTACJI
10.03.7070	16.06.2020	

Projektant: Nr rys. Tytuł rys. 4/5 Plan zagospodarowania p						prz	zoetrzennego					1	Skala: 1:2000 Data: luty 2010			
	:				W. Te				s	prav	vdza	jący	: mg	ır inż	. Mirosław Kobus	iński
Inwestor:														_		
Obiekt: Adres:													_			
Objekt																
] ,	UA.	. OIII									
							00n 0m									
L					25	0.0	.00		Ш]	
											-					
					-					1						
-										+						
-										+						
										+						
				1						1						
										_					1	

4 OPIS TECHNICZNY

4.1 Przedmiot i zakres opracowania

Przedmiotem niniejszego opracowania jest projekt wykonawczy wewnętrznej instalacji elektrycznej Oddziału nr 1 fabryki samochodów oraz koncepcja zasilania całej fabryki z dwóch stacji oddziałowych, z uwzględnieniem kompensacji mocy biernej.

Opracowanie obejmuje sposób rozmieszczenia maszyn, gniazd, sposób prowadzenia instalacji elektrycznej oraz wykaz dobranych zabezpieczeń w Oddziale nr 1.

4.2 Ogólna Charakterystyka Oddziału nr 1

Tabela 2. Ogólna charakterystyka oddziału nr 1 - dane obiektu

Nazwa oddziału	Tłocznia
Warunki środowiskowe	Pomieszczenie przemysłowe normalne
Branża	Przemysł metalowy i maszynowy
Kategoria zasilania	II – 70%
Konstrukcja budynku	Z materiałów izolacyjnych:
	 Podłoga: beton
	Sufit: gips, tynk
	 Ściany: tynk wapienny
Kształt pomieszczenia	Prostopadłościan
	Dwoje drzwi naprzeciwległych na dwóch bokach
	pomieszczenia (zgodnie z rys. 2)
Wymiary gabarytowe pomieszczenia	Długość: 25 m
	Szerokość: 18 m
	Wysokość: 7,5 m
Układ sieci w zakładzie	TN-C-S
Dodatkowa ochrona przeciwporażeniowa	Samoczynne wyłączenie zasilania

4.3 Wykaz dobranych odbiorników energii elektrycznej w Oddziale nr 1

Odbiorniki energii elektrycznej w oddziale nr 1 dobrano na podstawie minimalnych wymaganych mocy dla poszczególnych rodzajów urządzeń zestawionych w Tabela 20. Gniazda dobrano na podstawie wymaganego prądu znamionowego, odpowiednio 63 A dla gniazd 3-fazowych oraz 16 A dla gniazd 1-fazowych.

Ze względu na możliwości montażu stosownie do wymagań danych stanowisk pracy, zdecydowano się w każdym przypadku na silniki w obudowie kołnierzowej.

Oprawy oświetleniowe oraz ich rozmieszczenie zostały dobrane zgodnie z wymaganiami przedstawionymi w PN EN 12464-1:2012. Dane te zostały zgromadzone w formie tabelarycznej w Tabela 21. Dobór opraw wykonano przy wykorzystaniu oprogramowania Dialux na podstawie danych wejściowych zestawionych w Tabela 22.

Tabela 3 Odbiorniki energii elektrycznej w oddziale nr 1

Тур	Producent	Model	Liczba odb.	P _n [kW]	ω [rpm]	<i>I</i> _n [A]	η [-]	$cos \varphi_n$ [-]	<i>M</i> _n [Nm]	k _r [-]	<i>U_n</i> [V]	Karta kat.
Gniazda 3- fazowe	PCE	113-6	6	25,2	-	63	-	-	-	-	400	[Zał. 5]
Gniazda 1- fazowe	PCE	135-6	18	3,68	-	16	-	-	-	1	230	[Zał. 4]
Prasy	Promotor	YX3 200L2-6	4	22	970	42,1	0,92	0,82	216,6	7,3	400	[Zał. 8]
Podnośniki	Tamel	3Skg160L-6-IE2	4	11	980	24	0,887	0,75	107,2	7,5	400	[Zał. 7]
Przenośniki	Tamel	3SKG160M-6-IE2	2	7,5	975	16,6	0,872	0,75	73,5	6,5	400	[Zał. 7]
Piece oporowe	Industry2.0	ICF 1100_92	4	15	-	-	-	-	-	-	400	[Zał. 6]
Oprawy oświetleniowe	ESSYSTEM	6873060 CO4 235	48	0,077	-	0,37	-	0,95	-	38	230	[Zał. 3]

4.4 ZESTAWIENIE MOCY ZAPOTRZEBOWANYCH

Tabela 4: Zestawienie mocy zapotrzebowanych dla poszczególnych oddziałów

	Informacje o oddziałach				ie podsta	Zasilanie rezerwowe		
Nr	Nazwa	<i>P_n</i> [kW]	Kat. Zasilania	P _{sz} [kW]	$oldsymbol{Q}_{sz}$ [kvar]	$cos \varphi_{sz}$	P _{rez} [kvar]	$oldsymbol{Q}_{rez}$ [kvar]
1	Tłocznia	429,3	II - 70%	143,9	110,9	0,792	100,7	77,6
2	Lakiernia	320,0	I - 100%	173,4	92,6	0,882	173,4	92,6
3	Oddział 3	-	II - 60%	350,0	262,5	0,800	210,0	157,5
4	Oddział 4	-	III	280,0	217,3	0,790	-	-

4.5 WARUNKI ZASILANIA PODSTAWOWEGO I REZERWOWEGO ZAKŁADU I ODDZIAŁU 1

4.5.1 Zasilanie zakładu

Linie zasilające do poszczególnych oddziałów poprowadzić zgodnie z planem zagospodarowania przestrzennego 6.4. Zasilanie podstawowe i rezerwowe poszczególnych oddziałów zestawiono w Tabela 5 oraz Tabela 6.

Zastosować urządzenia do kompensacji mocy biernej na poziomie poszczególnych oddziałów. Zestawienie urządzeń do kompensacji mocy biernej podano w Tabela 10.

Tabela 5: Podstawowe zasilanie poszczególnych oddziałów

Stacja	Zasilane oddziały	P	Q	S	соѕф
SO1	1 i 3	493,9	373,4	619,2	0,798
SO2	2 i 4	453,4	309,9	551,0	0,823

Tabela 6: Rezerwowe zasilanie poszczególnych oddziałów

Stacja	Rezerwowane oddziały	Р	Q	S	соѕф
SO1	2	173,4	92,6	196,6	0,882
SO2	1i3	310,7	235,1	389,7	0,797

4.5.2 Zasilanie Oddziału nr 1

Zasilanie podstawowe Oddziału nr 1 należy doprowadzić przewodem YKY-żo 4x240SM ze Stacji Oddziałowej nr 1, a zasilanie rezerwowe doprowadzić przewodem YAKXS-żo 4x240SM ze Stacji Oddziałowej nr 2 zgodnie ze sposobem podanym na planie zagospodarowania Fabryki Samochodów (rys. 1). W obydwu przypadkach napięcie doprowadzić na poziomie 400/230 V.

Urządzenie do kompensacji mocy biernej zamontować przy rozdzielnicy oddziałowej z wyłączonym ostatnim członem baterii kondensatorów. Model urządzenia do zamontowania podano w Tabela 10.

Główne zabezpieczenia zwarciowe dla poszczególnych linii zasilających oddziału nr 1 zestawiono w Tabela 17. Zastosować wymienione tam wkładki bezpiecznikowe na poziomie RO jako zabezpieczenie całego oddziału.

4.6 Opis stacji oddziałowych SO1 i SO2

Zasilanie ze stacji oddziałowych do rozdzielnic oddziałowych doprowadzić zgodnie z planem zagospodarowania przestrzennego fabryki oraz z wytycznymi dotyczącymi zasilania podstawowego i rezerwowego dla poszczególnych oddziałów, zestawionymi w Tabela 5 i Tabela 6.

Zdecydowano się na zastosowanie kompensacji miejscowej, zatem w SO1 i SO2 nie trzeba stosować dodatkowych baterii kondensatorów energetycznych.

Transformatory do zamontowania na poszczególnych stacjach oddziałowych zestawiono w Tabela 13.

4.6.1 Charakterystyka stacji oddziałowej SO1

Tabela 7: Dane stacji oddziałowej SO1

Napięcia znamionowe stacji	30 kV / 0,4 kV
Moc zwarciowa na szynach SN stacji	320 MVA
Wymagana wartość $cos arphi$ na szynach nn stacji	0,91

4.6.2 Charakterystyka stacji oddziałowej SO2

Tabela 8: Dane stacji oddziałowej SO2

Napięcia znamionowe stacji	15 kV / 0,4 kV
Moc zwarciowa na szynach SN stacji	16 MVA
Wymagana wartość $cos \varphi$ na szynach nn stacji	0,91

4.6.3 Koncepcja zasilania

Po rozpatrzeniu dwóch wariantów koncepcji zasilania, wybrano wariant z mniejszymi różnicami w zapotrzebowanych mocach oddziałów. Pozwoliło to na bardziej równomierny rozkład obciążenia między stacjami oddziałowymi.

Tabela 9: Obciążenie stacji oddziałowych podczas zasilania rezerwowego – bez kompensacji mocy biernej

Stacja	Zasilane oddziały	Rezerwowane oddziały	Р	Q	S	соѕф
SO1	1 i 3	2	667,3	466,0	815,8	0,818
SO2	2 i 4	1i3	764,2	545,0	940,7	0,812

4.6.4 Kompensacja mocy biernej

Zdecydowano się na zastosowanie kompensacji mocy biernej w każdym z oddziałów, co pozwoliło na ograniczenie wielkości prądów obciążających linie zasilające, a także uprościło eksploatację – w przypadku konieczności rezerwowania któregoś z oddziałów, nie trzeba przełączać urządzeń do kompensacji mocy biernej. Ponadto dzięki temu można było zastosować mniejsza przekroje przewodów.

Tabela 10: Dobrane urządzenia do kompensacji mocy biernej

Stacja	Producent	Model	Moc baterii [kvar]	St. Regulacji [kvar]	Ilość członów	Ilość stopni regulacji	Szereg regulacyjny
1	Olmex	BK-55 55/5	55	5	4	11	1:2:4:4
2	Olmex	BK-25 16/2	16	2	4	8	1:2:2:3
3	Olmex	BKH-96 115/5	115	5	5	23	1:2:4:8:8
4	Olmex	BK-180 95/5	95	5	5	19	1:2:4:6:6

Tabela 11: Obcigżenie SO1 i SO2 podczas zasilania podstawowego z kompensacją mocy biernej

Stacja	Zasilane oddziały	Р	Q	S	соѕф
SO1	1i3	493,9	213,4	538,0	0,918
SO2	2 i 4	453,4	205,9	498,0	0,911

Tabela 12: Obciążenie SO1 i SO2 podczas zasilania rezerwowego z kompensacją mocy biernej

Stacja	Zasilane oddziały	Rezerwowane oddziały	P [kW]	Q [kvar]	S [kVA]	cosф [-]
SO1	1 i 3	2	667,3	292,0	728,5	0,916
SO2	2 i 4	1 i 3	764,2	340,0	836,4	0,914

4.6.5 Transformatory

Transformatory dobrano w taki sposób, aby spełniały wymagania dotyczące zapotrzebowania na energię wszystkich oddziałów zarówno podczas normalnej pracy (zasilanie podstawowe), jak i podczas rezerwowania oddziałów. Wybrane transformatory wykonane są w izolacji żywicznej ze względu na zwiększone bezpieczeństwo przeciwpożarowe.

Tabela 13: Dobrane transformatory

Stacja	Producent	Seria	Nr ref.	<i>U_k</i> [%]	Napięcie pierwotne [kV]	Napięcie wtórne [V]	P ₀ [W]	P _k [W] przy 120°C	I ₀ [%]
SO1	Legrand	A_0A_k	FJ5AAAQBB	6,5	33	400	1495	8800	0,9
SO2	Legrand	A_0A_k	FK3AAAFBB	6	15	400	1550	9000	0,7

4.7 WARUNKI ZWARCIOWE

Tabela 14: Wartości impedancji poszczególnych elementów pętli zwarcia

Element sieci	R	X	Z
	$[oldsymbol{\Omega}]$	$[\Omega]$	$[\Omega]$
System	$45 \cdot 10^{-6}$	$0.45 \cdot 10^{-3}$	$0.45 \cdot 10^{-3}$
elektroenergetyczny			
Transformator SO	$2,2 \cdot 10^{-3}$	$12,8 \cdot 10^{-3}$	$13 \cdot 10^{-3}$
WLZ – zasilanie	$6.0 \cdot 10^{-3}$	$5,6 \cdot 10^{-6}$	-
podstawowe			
WLZ – zasilanie	$18,9 \cdot 10^{-3}$	$10,5 \cdot 10^{-6}$	-
rezerwowe			

Tabela 15: Wyznaczone prądy zwarciowe w sieci

Miejsce zwarcia	Prąd zwarciowy	Wartość
Szyny NN transformatora SO	$I_{k3}^{\prime\prime}$	17,165 <i>kA</i>
Rozdzielnica oddziałowa SO1 –	$I_{k3}^{\prime\prime}$	14,805 <i>kA</i>
zasilanie podstawowe	i_p	26,172 <i>kA</i>
Rozdzielnica oddziałowa SO1 –	$I_{k3}^{\prime\prime}$	9,237 <i>kA</i>
zasilanie rezerwowe	i_p	14,369 <i>kA</i>

4.8 Opis linii kablowych WLZ zasilania Oddziału 1

Linie kablowe WLZ dobrano zgodnie z normą PN-IEC 60364-5-523: 2001. Linie zasilające WLZ1 i WLZR poprowadzić w ziemi zgodnie z 6.4, przy czym liczba kabli we wspólnym wykopie poza WLZ1 nie powinna być większa niż 2.

Tabela 16: Dobrane przewody oraz ich właściwości

Rodzaj zasilania	Producent	Model	llość żył	Wykonanie żył	Izolacja	S [mm ²]	<i>I_Z</i> [A]
Podstawowe WLZ1	TFKable	YKY-żo 4x240SM	4	Miedź	XLPE	240	351
Rezerwowe WLZ1R	TFKable	YAKXS- żo 4x240SM	4	Aluminium	XLPE	240	272

Tabela 17: Dobrane wkładki topikowe do zabezpieczeń przetężeniowych

		П	

Rodzaj zasilania	Wybrana wkładka topikowa	Charakterystyka zabezpieczenia	I_n	U_n
Podstawowe WLZ1	ETI WT/NH -1 KOMBI gG/gL 004184119	gG/gL	250 A	400 V
Rezerwowe WLZ1R	ETI WT/NH -1 KOMBI gG/gL 004184124	gG/gL	160 A	400 V

4.9 CHARAKTERYSTYKA OŚWIETLENIA I INSTALACJI OŚWIETLENIOWEJ ODDZIAŁU NR 1

Projekt instalacji oświetleniowej oddziału nr 1 został opracowany w dwóch wariantach – energooszczędnym oraz konwencjonalnym. Po porównaniu obydwu opcji dokonano analizy porównawczej i zdecydowano się na wariant konwencjonalny z wykorzystaniem opraw ESSYSTEM 6873060 CO4 235.

Oświetlenie zaprojektowano w sposób zgodny z 4.12.1, a także mając na celu równomierne obciążenie poszczególnych faz. Projekt połączenia instalacji został zamieszczony w 6.3.

Do zasilania instalacji oświetleniowej zgodnie z 6.3 przewody H07V-K (LgY) 2,5 poprowadzić w korytkach kablowych pod sufitem. Oprawy oświetleniowe zamontować na wysokości 6,5 m. Jako zabezpieczenie zastosować wkładki topikowe ETI D01 gG 6A.

Powierzchnia	ρ [%]	E _m [lx]	E _{min} [lx]	E _{max} [lx]	E _{min} / E _m
Płaszczyzna pracy	/	323	204	396	0.632
Podłoga	27	307	203	381	0.662
Sufit	78	114	98	154	0.858
Ściany (4)	47	244	146	403	1

Płaszczyzna pracy:		UGR	Wzdłuż-	W poprzek	do osi oświetlenia	
Wysokość:	0.850 m	Lewa ściana	24	21		
Siatka:	32 x 32 Punkty	Dolna ściana	24	22		
Margines:	0.000 m	(CIE, SHR = 0).25.)			
Liczba punktów poniżej 400 lx (do IEQ-7): 100.00%.						

Wykaz opraw

Nr.	llość	Etykieta (Czynnik korekcyjny)	Φ (Oprawa) [lm]	Φ (Lampy) [lm]	P [W]
1	63	ESSYSTEM 6873060 CO4 235 (1.000)	5463	6600	77.0
			W sumie: 344171	W sumie: 415800	4851.0

Specyfikacja mocy przyłączeniowej: 10.78 W/m² = 3.33 W/m²/100 lx (Powierzchnia podstawowa: 450.00 m²)

Rysunek 1. Projekt instalacji oświetleniowej - zestawienie danych z programu Dialux

4.10 CHARAKTERYSTYKA INSTALACJI SIŁOWEJ W ODDZIALE NR 1

4.10.1 Instalacja zasilanja gniazd

Przewody gniazd 3-fazowych oraz 1-fazowych poprowadzić w nieperforowanych korytkach kablowych na ścianie, na wysokości 5 m, zgodnie z rysunkiem zamieszczonym w 6.2. Gniazda zamontować na wysokości 1,25 m. Obwody gniazd zabezpieczyć wkładkami topikowymi zgodnie z Tabela 19.

Do instalacji gniazd 1-fazowych użyć przewodu TFKable YDYżo 3-żyłowego, o przekroju żyły $4\ mm^2$ w izolacji PVC. Dla gniazd 3-fazowych zastosować przewód YKXS-żo 5-żyłowy, o przekroju żyły $16\ mm^2$ w izolacji XLPE. Zdecydowano się na izolację XLPE ze względu na mniejsze przekroje żył.

4.10.2 Instalacja zasilania odbiorników

Zasilanie odbiorników poprowadzić w drabinkach kablowych zgodnie z 6.2. Z rozdzielnicy oddziałowej wyprowadzić przewody pod sufit, na wysokość 7,3 m. Następnie sprowadzić przewody w drabinkach na poziom ziemi, a przewody na ziemi poprowadzić w peszlach kablowych.

Dla poszczególnych rodzajów urządzeń zastosować poszczególne przewody dobrane zgodnie z normą PN-IEC 60364-5-523: 2001, podane w Tabela 18.

Tabela 18: Rodzaje przewodów do zastosowania dla poszczególnych obwodów

Zasilany odbiornik	Rodzaj przewodu	Ilość i przekrój żył	Izolacja żył	Powłoka
Gniazdo 1-fazowe	TFKable TFPremium YDYżo	$3 \times 4mm^2$	PVC	PVC
Gniazdo 3-fazowe	TFKable YKXS-żo	5 x 16 mm ²	XLPE	PVC
Prasa	TFKable TFPremium YDYżo	$4 x 10 mm^2$	PVC	PVC
Podnośnik	TFKable TFPremium YDYżo	$4 \times 4 mm^2$	PVC	PVC
Przenośnik	TFKable TFPremium YDYżo	$4 \times 4 mm^2$	PVC	PVC
Piec oporowy	TEKable TEPremium YDYżo	$4 \times 4 mm^2$	PVC	PVC

Dla silników pras, podnośników i przenośników należy zastosować przełącznik gwiazdatrójkąt. Silniki zabezpieczyć wyłącznikami silnikowymi oraz dobranymi wkładkami topikowymi o charakterystyce aM. Piece oporowe zabezpieczyć tylko wkładkami topikowymi o charakterystyce szybkiej gF. Zestawienie zabezpieczeń poszczególnych obwodów znajduje się w Tabela 19.

4.11 ZASTOSOWANE ŚRODKI OCHRONY PRZECIWPORAŻENIOWEJ

Zasilanie budynku wykonane jako TN-C. Dla wszystkich urządzeń odbiorczych zastosowano system prądu przemiennego 4-przewodowy.

Środkiem dodatkowej ochrony przeciwporażeniowej w przypadku wszystkich stosowanych obwodów instalacji elektrycznej jest samoczynne wyłączenie zasilania. Urządzenia zabezpieczające dla poszczególnych rodzajów odbiorników zestawiono w Tabela 19.

Tabela 19: Zastosowane urządzenia zabezpieczające dla poszczególnych obwodów

Zasilany odbiornik	Zabezpieczenie nadprądowe	Zabezpieczenie zwarciowe
Gniazdo 1-fazowe -		Wkładka topikowa
		ETI DII gF 16A/690V PL
		Charakterystyka gF, $I_N = 16 A$
Gniazdo 3-fazowe	-	Wkładka topikowa
	 	ETI NH00 gF 63A/400V
		Charakterystyka gF, $I_N = 63 A$
Prasa	Wyłącznik silnikowy	Wkładka topikowa
	LEGRAND MPX3 100H 4173 75	ETI 006711040 CH14/P aM 50A/500V
		Charakterystyka aM, $I_N = 50 A$
Podnośnik	Wyłącznik silnikowy	Wkładka topikowa
	LEGRAND MPX3 100H 4173 73	ETI 002621015 CH10x38 aM 32A/400V
		Charakterystyka aM, $I_N = 32 A$
Przenośnik	Wyłącznik silnikowy	Wkładka topikowa
	LEGRAND MPX3 100H 4173 71	ETI 002611009 CH8x32 aM 16A/400V
		Charakterystyka aM, $I_N = 20 A$
Piec oporowy	-	Wkładka topikowa
		ETI NH1C gF 25A/400V
		Charakterystyka gF, $I_N = 25 A$

4.12 WYKAZ POLSKICH NORM WYKORZYSTANYCH W PROJEKCIE I PRZYJĘTYCH DODATKOWYCH ZAŁOŻEŃ PROJEKTOWYCH

- 4.12.1 PN EN 12464-1:2012 Wymagania dotyczące oświetlenia podstawowego miejsc pracy dla przemysłu metalowego
- 4.12.2 PN-IEC 60364-5-523: 2001 Dobór przewodów ze względu na obciążalność długotrwałą
- 4.12.3 PN-IEC-60364-4-43:1999 Dobór przekroju przewodów ze względu na ochronę przed cieplnymi skutkami zwarcia
- 4.12.4 PN-IEC 60364-4-41:2007 Maksymalny czas zadziałania zabezpieczeń przeciwporażeniowych

5 ZAKRES OBLICZEŃ PROJEKTOWYCH

5.1 Dobór urządzeń odbiorczych w Oddziale nr 1.

Tabela 20: Wymagania wobec odbiorników energii elektrycznej w oddziale nr 1 zamontowanych na stałe

Grupa urządzeń	Odbiornik	P ₀	In	Un	Liczba odb.
1	Gniazda 3-fazowe	-	63	400	6
2	Gniazda 1-fazowe	-	16	230	18
3	Prasy	20,0	-	400	4
4	Podnośniki	10,0	-	400	4
5	Przenośniki	7,0	-	400	2
6	Piece oporowe	15,0	-	400	4

5.2 Projekt oświetlenia ogólnego Oddziału nr 1.

Projekt oświetlenia ogólnego oddziału nr 1 został wykonany zgodnie z wytycznymi normy **PN EN 12464-1:2012** dla miejsc pracy związanych z formowaniem metali na zimno.

Tabela 21: Wymagania normowe dla projektu oświetlenia oddziału nr 1

E_m [Ix]	UGR_L [-]	<i>U_a</i> [-]	R _a [-]
300	25	0,60	80

Tabela 22: Dane wejściowe wykorzystane w programie DIALux

Zastosowane oprawy	ESSYSTEM 6873060 CO4 235
Ilość zastosowanych opraw	63
Wysokość płaszczyzny pracy	0,850 m
Współczynnik konserwacji	0,57 (ukł. zewn., 3-letni plan konserwacji)
Współczynniki odbicia	
 Podłoga: beton 	$ \rho = 27\% \rho = 78\% $
 Sufit: gips, tynk 	ho = 78%
 Ściany: tynk wapienny 	$\rho = 47\%$

Przygotowane zostały dwa warianty oświetlenia:

5.2.1 Wersja #1: Konwencjonalna, z oprawami oświetleniowymi opartymi o świetlówki

Specyfikacja mocy przyłączeniowej: 10.78 W/m² = 3.33 W/m²/100 lx (Powierzchnia podstawowa: 450.00 m²)

Rysunek 2. Instalacja oświetleniowa, wariant konwencjonalny - dane z programu Dialux

5.2.2 Wersja #2: Energooszczędna, z oprawami oświetleniowymi opartymi o LED-y

Specyfikacja mocy przyłączeniowej: 7.47 W/m² = 2.29 W/m²/100 lx (Powierzchnia podstawowa: 450.00 m²)

Rysunek 3. Instalacja oświetleniowa, wariant energooszczędny - dane z programu Dialux

5.2.3 Ostatecznie wybrano wariant 1, energooszczędny, ze względu na następujące korzyści:

- Nieco niższe współczynniki UGR
- Większa równomierność oświetlenia
- Sumarycznie większy strumień świetlny.

5.3 OPRACOWANIE KONCEPCJI SIECI ROZDZIELCZEJ W ZAKŁADZIE (ZASILANIA PODSTAWOWEGO I REZERWOWEGO).

Tabela 23. Zestawienie mocy zapotrzebowanych, dane bazowe do opracowania koncepcji zasilania

Nr	Nazwa	Kategoria zasilania	Pn	Ps	соѕф	Pr
1	Tłocznia	II - 70%	429,3	143,9	0,792	100,7
2	Lakiernia	I - 100%	320,0	173,4	0,882	173,4
3	Oddział 3	II - 60%	-	350,0	0,800	210,0
4	Oddział 4	III	-	280,0	0,790	-

5.3.1 Wariant 1

5.3.1.1 Stacja Oddziałowa 1: zasilanie oddziału nr 1 i 3, rezerwowanie oddziału nr 2:

5.3.1.1.1 Zasilanie podstawowe oddziału nr 1 i 3:

$$P_{SO1P} = P_{O1} + P_{O3} = 143,9kW + 350,0kW = 493,9kW$$

$$S_{SO1P} = S_{O1} + S_{O3} = \frac{P_{O1}}{\cos\varphi_{O1}} + \frac{P_{O3}}{\cos\varphi_{O3}} = \frac{143,9kW}{0,792} + \frac{350,0kW}{0,800} = 619,2kVA$$

$$\cos\varphi_{SO1P} = \frac{P_{SO1P}}{S_{SO1P}} = \frac{493,9kW}{619,2kVA} = 0,798$$

5.3.1.1.2 Zasilanie podstawowe oddziału nr 1 i 3, rezerwowanie oddziału nr 2:

$$\begin{split} P_{SO1R} &= P_{O1} + P_{O3} + P_{O2R} = 143,9kW + 350,0kW + 173,4kW = 667,3kW \\ S_{SO1R} &= S_{O1} + S_{O3} + S_{O2R} = \frac{P_{O1}}{\cos\varphi_{O1}} + \frac{P_{O2}}{\cos\varphi_{O2}} + \frac{P_{O2R}}{\cos\varphi_{O3}} \\ &= \frac{143,9kW}{0,792} + \frac{350,0kW}{0,800} + \frac{173,4kW}{0,882} = 815,8kVA \\ \cos\varphi_{SO1R} &= \frac{P_{SO1R}}{S_{SO1R}} = \frac{667,3kW}{667,3kW} = 0,818 \end{split}$$

5.3.1.2 Stacja Oddziałowa 2: zasilanie oddziałów nr 2 i 4, rezerwowanie oddziałów nr 1 i 3:

5.3.1.2.1 Zasilanie podstawowe oddziałów nr 2 i 4:

$$P_{SO2P} = P_{O2} + P_{O4} = 173,4kW + 280,0kW = 453,4kW$$

$$S_{SO2P} = S_{O2} + S_{O4} = \frac{P_{O2}}{\cos \varphi_{O2}} + \frac{P_{O4}}{\cos \varphi_{O4}} = \frac{173,4kW}{0,882} + \frac{280,0kW}{0,790} = 551,0kVA$$

$$\cos \varphi_{SO1P} = \frac{P_{SO2P}}{S_{SO2P}} = \frac{453,4kW}{551,0kVA} = 0,823$$

5.3.1.2.2 Zasilanie podstawowe oddziałów nr 2 i 4, rezerwowanie oddziałów nr 1 i 3:

$$\begin{split} P_{SO2R} &= P_{O1R} + P_{O3R} + P_{O2} + P_{O4} \\ &= 143,9kW \cdot 0,7 + 350,0kW \cdot 0,6 + 173,4kW + 280,0kW \\ &= 764,2kW \\ \\ S_{SO2R} &= S_{O1R} + S_{O3R} + S_{O2} + S_{O4} = \frac{P_{O1R}}{\cos\varphi_{O1}} + \frac{P_{O3R}}{\cos\varphi_{O3}} + \frac{P_{O2}}{\cos\varphi_{O2}} + \frac{P_{O4}}{\cos\varphi_{O4}} \\ &= \frac{143,9kW}{0,792} + \frac{350,0kW}{0,800} + \frac{173,4kW}{0,882} + \frac{280,0kW}{0,790} = 940,7kVA \\ &= \cos\varphi_{SO1R} = \frac{P_{SO2R}}{S_{SO2R}} = \frac{667,3kW}{667,3kW} = 0,812 \end{split}$$

- 5.3.2 Wariant 2
- 5.3.2.1 Stacja Oddziałowa 1: zasilanie oddziału nr 1 i 4, rezerwowanie oddziału nr 2 i 3:
- 5.3.2.1.1 Zasilanie podstawowe oddziału nr 1 i 4:

$$P_{SO1P} = P_{O1} + P_{O4} = 143,9kW + 280,0kW = 423,9kW$$

$$S_{SO1P} = S_{O1} + S_{O4} = \frac{P_{O1}}{\cos\varphi_{O1}} + \frac{P_{O4}}{\cos\varphi_{O4}} = \frac{143,9kW}{0,792} + \frac{280,0kW}{0,790} = 536,1kVA$$

$$\cos\varphi_{SO1P} = \frac{P_{SO1P}}{S_{SO1P}} = \frac{423,9kW}{536,1kVA} = 0,791$$

5.3.2.1.2 Zasilanie podstawowe oddziału nr 1 i 4, rezerwowanie oddziałów nr 2 i 3:

$$\begin{split} P_{SO1R} &= P_{O1} + P_{O4} + P_{O2R} + P_{O3R} \\ &= 143.9kW + 280.0kW + 173.4kW + 0.6 \cdot 350kW = 807.3kW \\ S_{SO1R} &= S_{O1} + S_{O4} + S_{O2R} + S_{O3R} = \frac{P_{O1}}{\cos \varphi_{O1}} + \frac{P_{O4}}{\cos \varphi_{O4}} + \frac{P_{O2R}}{\cos \varphi_{O2}} + \frac{P_{O3R}}{\cos \varphi_{O3}} \\ &= \frac{143.9kW}{0.792} + \frac{280.0kW}{0.790} + \frac{173.4kW}{0.882} + \frac{350.0kW}{0.800} = 995.2kVA \\ &\cos \varphi_{SO1R} = \frac{P_{SO1R}}{S_{SO1R}} = \frac{807.3kW}{995.2kVA} = 0.811 \end{split}$$

- 5.3.2.2 Stacja Oddziałowa 2: zasilanie oddziałów nr 2 i 3, rezerwowanie oddziału nr 1:
- 5.3.2.2.1 Zasilanie podstawowe oddziałów nr 2 i 3:

$$P_{SO2P} = P_{O2} + P_{O3} = 173,4kW + 350,0kW = 523,4kW$$

$$S_{SO2P} = S_{O2} + S_{O3} = \frac{P_{O2}}{\cos\varphi_{O2}} + \frac{P_{O3}}{\cos\varphi_{O3}} = \frac{173,4kW}{0,882} + \frac{350,0kW}{0,800} = 634,1kVA$$

$$\cos\varphi_{SO1P} = \frac{P_{SO2P}}{S_{SO2P}} = \frac{523,4kW}{634,1kVA} = 0,825$$

5.3.2.2.2 Zasilanie podstawowe oddziałów nr 2 i 3, rezerwowanie oddziału nr 1:

$$\begin{split} P_{SO2R} &= P_{O1R} + P_{O2} + P_{O3} = 143.9 kW \cdot 0.7 + 173.4 kW + 350.0 kW = 624.2 kW \\ S_{SO2R} &= S_{O1R} + S_{O2} + S_{O3} = \frac{P_{O1R}}{\cos \varphi_{O1}} + \frac{P_{O2}}{\cos \varphi_{O2}} + \frac{P_{O3}}{\cos \varphi_{O3}} \\ &= \frac{143.9 kW \cdot 0.7}{0.792} + \frac{350.0 kW}{0.800} + \frac{173.4 kW}{0.882} = 761.3 kVA \end{split}$$

$$cos\varphi_{SO1R} = \frac{P_{SO2R}}{S_{SO2R}} = \frac{624,2kW}{761,3kVA} = 0,812$$

5.4 OBLICZENIA MOCY SZCZYTOWEJ ODDZIAŁU NR 1 I CAŁEGO ZAKŁADU.

5.4.1 Oddział nr 1 – metoda zastępczej liczby odbiorników

Tabela 24. Metoda zastępczej liczby odbiorników - zestawienie danych do obliczeń

Nr grupy	Odbiorniki	<i>P</i> _n [kW]	Liczba odb.	P _{ni} [kW]	k_w	$cos \varphi_{av}$	φ [°]	tgφ
Grupa 1	Piece oporowe	15	4	60	0,8	0,95	18,2	0,329
Grupa 2	Prasy	22	4	88	0,17	0,65	49,5	1,169
Grupa 3	Przenośniki	7,5	2	15	0,4	0,75	41,4	0,882
Grupa 4	Podnośniki (dźwigi, suwnice)	11	4	44	0,1	0,5	60,0	1,732
Grupa 5	Przenośne urządzenia	25,2	6	217,4	1 0,06	0,5		
	elektryczne	3,68	18	217,7	0,00	0,5	60,0	1,732
Grupa 6	Oświetlenie	0,077	63	4,85	1	0,95	18,2	0,329

5.4.1.1 Zastępcza liczba odbiorników:

$$\begin{split} n_z &= \frac{(\sum P_{ni})^2}{\sum P_{ni}^2} \\ &= \frac{(6 \cdot 25,2kW + 18 \cdot 3,68kW + 4 \cdot 22kW + 4 \cdot 11kW + 2 \cdot 7,5kW + 4 \cdot 15kW + 63 \cdot 0,077kW)^2}{6 \cdot (25,2kW)^2 + 18 \cdot (3,68kW)^2 + 4 \cdot (22kW)^2 + 4 \cdot (11kW)^2 + 2 \cdot (7,5kW)^2 + 4 \cdot (15kW)^2 + 63 \cdot (0,077kW)^2} \\ &= \frac{(429,3kW)^2}{7486.9kW^2} = 24,6 \rightarrow 25 \end{split}$$

5.4.1.2 Moc średnia grupy odbiorników:
$$P_{avi} = k_{wi} \sum P_{ni}$$
; $Q_{avi} = P_{avi} t g \phi_{avi}$

Grupa 1:
$$P_{av1} = 0.8 \cdot 4 \cdot 15kW = 48kW$$
; $Q_{av1} = 48kW \cdot 0.329 = 15.8kvar$

Grupa 2:
$$P_{av2} = 0.17 \cdot 4 \cdot 22kW = 14.96kW$$
; $Q_{av2} = 14.96kW \cdot 1.169 = 17.5kvar$

Grupa 3:
$$P_{av3} = 0.4 \cdot 2 \cdot 7.5kW = 6kW$$
; $Q_{av3} = 6kW \cdot 0.882 = 5.3kvar$

Grupa 4:
$$P_{av4} = 0.1 \cdot 4 \cdot 11kW = 4.4kW$$
; $Q_{av4} = 4.4kW \cdot 1.732 = 7.6kvar$

Grupa 5:
$$P_{av5} = 0.06 \cdot (6 \cdot 25.2kW + 18 \cdot 3.68kW) = 13.05kW$$
;

$$Q_{av5} = 13,05kW \cdot 1,732 = 22,6kvar$$

Grupa 6:
$$P_{av6} = 1.63 \cdot 0.077kW = 4.85kW$$
; $Q_{av6} = 4.85kW \cdot 0.329 = 1.6kvar$

5.4.1.3 Współczynnik wykorzystania mocy odbiorników należących do m grup:

$$\begin{split} k_{wn} &= \frac{\sum_{i=1}^{m} k_{wi} P_{Ni}}{\sum P_{Ni}} \\ &= \frac{0.8 \cdot 60 kW + 0.17 \cdot 88 kW + 0.4 \cdot 15 kW + 0.1 \cdot 44 kW + 0.06 \cdot 217.4 + 1 \cdot 4.85 kW}{60 kW + 88 kW + 15 kW + 44 kW + 217.4 kW + 4.85 kW} \\ &= \frac{89.766 kW}{427.8 kW} = 0.212 \end{split}$$

$$k_s = 1 + \frac{1.5}{\sqrt{n_z}} \sqrt{\frac{1 - k_{wn}}{k_{wn}}} = 1 + \frac{1.5}{\sqrt{25}} \sqrt{\frac{1 - 0.212}{0.21}} = 1.577$$

5.4.1.4 Moc zapotrzebowana oddziału:

$$P_{Zz} = k_s \sum P_{avi} = 1,582 \cdot (48kW + 14,96kW + 6kW + 4,4kW + 13,05kW + 4,85kW)$$

= 143,9kW

$$Q_{ZZ} = k_s \sum P_{avi} = 1,582 \cdot (15,8kvar + 17,5kvar + 5,3kvar + 7,6kvar + 22,6kvar + 1,6kvar = 111,0kvar$$

$$S_{Zz} = \sqrt{P_{Zz}^2 + Q_{Zz}^2} = \sqrt{143.9^2 + 111.0^2} = 181.8kVA$$

$$cos\varphi_{Zz} = \frac{P_{Zz}}{S_{Zz}} = \frac{143.9kW}{181.8kVA} = 0.792$$

5.4.2 Oddział nr 2 – metoda wskaźnika zapotrzebowania mocy k_z

Tabela 25. Metoda wskaźnika zapotrzebowania mocy – zestawienie danych do obliczeń

Nr. Grupy	Odbiorniki	P_n [kW]	Liczba odb.	<i>P_{ni}</i> [kW]	k_{zi}	cosφ _{śr}	φ [°]	tgφ
Gr 1	Oświetlenie	0,07	48	3,36	0,8	0,95	18,195	0,329
Gr 2	Urządzenia przenośne	ı	ı	20	0,1	0,5	60	1,732
Gr 3	Piece Lakiernicze	32	5	160	0,8	0,95	18,194	0,328
Gr 4	Podnośniki	10	6	60	0,2	0,5	50	1,191
Gr 5	Sprężarki	5	4	20	0,75	0,85	31,788	0,619
Gr 6	Tokarki i giętarki do blach	11	5	55	0,25	0,65	49,458	1,169

5.4.2.1 Moc zapotrzebowana danych grup:
$$P_{zi} = k_{zi} \sum P_{ni}$$
; $Q_{zi} = P_{zi} \cdot tg \varphi_{zi}$

Grupa 1:
$$P_{z1} = 0.8 \cdot 3.36kW = 2.69kW$$
; $Q_{z1} = 2.69kW \cdot 0.329 = 0.88kvar$

Grupa 1:
$$P_{z2} = 0.1 \cdot 20kW = 2kW$$
; $Q_{z2} = 2kW \cdot 1.732 = 3.46kvar$

Grupa 1:
$$P_{z3} = 0.8 \cdot 160 kW = 128 kW$$
; $Q_{z3} = 128 kW \cdot 0.328 = 41.98 kvar$

Grupa 1:
$$P_{z4} = 0.2 \cdot 60kW = 12kW$$
; $Q_{z4} = 12kW \cdot 1.191 = 14.29kvar$

Grupa 1:
$$P_{z5} = 0.75 \cdot 20kW = 15kW$$
; $Q_{z5} = 15kW \cdot 0.619 = 9.29kvar$

Grupa 1:
$$P_{z6} = 0.25 \cdot 55kW = 13.75kW$$
; $Q_{z6} = 13.75kW \cdot 1.169 = 16.07kvar$

5.4.2.2 Moc zapotrzebowana oddziału:

$$P_{zo} = \sum P_{Zo} = (2,69kW + 2kW + 128kW + 12kW + 15kW + 13,75kW) = 173,44kW$$

$$Q_{zo} = \sum P_{Zo} = (0,88kvar + 41,98kvar + 14,29kvar + 9,29kvar + 16,07kvar) = 92,58kvar$$

$$S_{zo} = \sqrt{P_{zo}^2 + Q_{zo}^2} = \sqrt{174,44^2 + 92,58^2} = 196,60kVA$$

$$\cos\varphi_{zo} = \frac{P_{zo}}{S_{zo}} = \frac{173,44kW}{196,60kVA} = 0,88$$

5.5 DOBÓR BATERII KONDENSATORÓW DO KOMPENSACJI MOCY BIERNEJ.

Tabela 26. Koncepcja kompensacji mocy biernej - zestawienie danych do obliczeń

Oddział	<i>P_S</i> [kW]	$cos \varphi_s$ [-]	$tg arphi_s$ [-]	$cos \varphi_k$ [-]	$tg arphi_k$ [-]	Q_k [kvar]
1	143,9	0,792	0,771	0,910	0,456	45,4
2	173,4	0,882	0,534	0,910		13,6
3	350,0	0,800	0,750	0,910		103,0
4	280,0	0,790	0,776	0,910		89,7

$$tg\varphi_k = \frac{\sqrt{1 - \cos^2 \varphi_k}}{\cos \varphi_k} = \frac{\sqrt{1 - 0.91^2}}{0.91} = 0.456$$

5.5.1 Oddział nr 1:

$$tg\varphi_s = \frac{\sqrt{1 - \cos^2 \varphi_s}}{\cos \varphi_s} = \frac{\sqrt{1 - 0.792^2}}{0.792} = 0.771$$

$$Q_k = P_s(tg\varphi_s - tg\varphi_k) = 143.9 \ kW \cdot (0.771 - 0.456) = 45.4 \ kvar$$

5.5.2 Oddział nr 2:

$$tg\varphi_s = \frac{\sqrt{1 - \cos^2 \varphi_s}}{\cos \varphi_s} = \frac{\sqrt{1 - 0.882^2}}{0.882} = 0.534$$

$$Q_k = P_s(tg\varphi_s - tg\varphi_k) = 173.4 \ kW \cdot (0.534 - 0.456) = 13.6 \ kvar$$

5.5.3 Oddział nr 3:

$$tg\varphi_{s} = \frac{\sqrt{1 - \cos^{2}\varphi_{s}}}{\cos\varphi_{s}} = \frac{\sqrt{1 - 0.8^{2}}}{0.8} = 0.750$$

$$Q_{k} = P_{s}(tg\varphi_{s} - tg\varphi_{k}) = 350 \text{ kW} \cdot (0.750 - 0.456) = 103.0 \text{ kvar}$$

5.5.4 Oddział nr 4:

$$tg\varphi_s = \frac{\sqrt{1 - \cos^2 \varphi_s}}{\cos \varphi_s} = \frac{\sqrt{1 - 0.79^2}}{0.79} = 0.776$$

$$Q_k = P_s(tg\varphi_s - tg\varphi_k) = 280 \ kW \cdot (0.776 - 0.456) = 89.7 \ kvar$$

5.6 Dobór transformatorów w stacjach oddziałowych.

Tabela 27. Dobór transformatorów SO1 i SO2 - zestawienie danych do obliczeń

Oddział	<i>P_s</i> [kW]	$oldsymbol{Q}_{s}$ [kvar]	$cos \varphi_s$ [-]	$oldsymbol{Q}_k$ [kvar]	$oldsymbol{Q}_{komp}$ [kvar]	S_k [kVA]	$cos \varphi_{krz}$ [-]
1	143,9	110,9	0,792	45,4	50,0	156,3	0,921
2	173,4	92,6	0,882	13,6	14,0	190,4	0,911
3	350,0	262,5	0,800	103,0	110,0	381,8	0,917
4	280,0	217,3	0,790	89,7	90,0	307,6	0,910

5.6.1 Oddział 1:

$$Q_s = P_s t g \varphi_s = 143,9 \ kW \cdot 0,771 = 110,9 \ kvar$$

$$S_k = \sqrt{P_s^2 + \left(Q_s - Q_{komp}\right)^2} = \sqrt{143,9^2 + (110,9 - 50)^2} = 156,3 \ kVA$$

$$cos \varphi_{krz} = \frac{P_s}{S_k} = \frac{143,9 kW}{156,3 kVA} = 0,921$$

5.6.2 Oddział 2:

$$Q_{s} = P_{s}tg\varphi_{s} = 173,4 \ kW \cdot 0,534 = 92,6 \ kvar$$

$$S_{k} = \sqrt{P_{s}^{2} + \left(Q_{s} - Q_{komp}\right)^{2}} = \sqrt{173,4^{2} + (92,6 - 14)^{2}} = 190,4 \ kVA$$

$$cos\varphi_{krz} = \frac{P_{s}}{S_{k}} = \frac{173,4kW}{190,4kVA} = 0,911$$

5.6.3 Oddział 3:

$$Q_{s} = P_{s}tg\varphi_{s} = 350,0 \ kW \cdot 0,75 = 262,5 \ kvar$$

$$S_{k} = \sqrt{P_{s}^{2} + \left(Q_{s} - Q_{komp}\right)^{2}} = \sqrt{350^{2} + (262,5 - 110)^{2}} = 381,8 \ kVA$$

$$cos\varphi_{krz} = \frac{P_{s}}{S_{k}} = \frac{262,5kW}{381,8kVA} = 0,921$$

5.6.4 Oddział 4:

$$Q_{s} = P_{s}tg\varphi_{s} = 280,0 \ kW \cdot 0,776 = 217,3 \ kvar$$

$$S_{k} = \sqrt{P_{s}^{2} + \left(Q_{s} - Q_{komp}\right)^{2}} = \sqrt{280^{2} + (217,3 - 90)^{2}} = 307,6 \ kVA$$

$$cos\varphi_{krz} = \frac{P_{s}}{S_{k}} = \frac{280,0kW}{307,6kVA} = 0,921$$

Tabela 28. Dobór transformatorów - zestawienie wyników obliczeń

Stacja	U_n [kV]	Zasilane oddziały	Rezerwowane oddziały	S_p [kVA]	S_{p+r} [kVA]
SO1	30/0,4	1i3	2	538,0	728,5
SO2	15/0,4	2 i 4	1 i 3	498,0	836,4

5.6.5 Stacja SO1:

5.6.6 Stacja SO2:

$$S_p = S_{s2} + S_{s4} = 190,4kVA + 307,6kVA = 498,0$$

$$S_{p+r} = S_{s2} + S_{s4} + 0,7S_{s1} + 0,6S_{s3} = 498,0 + 0,7 \cdot 156,3kVA + 0,6 \cdot 381,8kVA$$

$$= 836,4kVA$$

5.7 OBLICZENIA ZWARCIOWE.

5.7.1 System elektroenergetyczny

$$\begin{split} Z_Q &= \frac{cU_n^2}{S_{kQ}''} \left[\frac{U_{dT}}{Ug_T} \right]^2 = \frac{1.1 \cdot (30 \ kV)^2}{320 \ MVA} \left[\frac{0.4 \ kV}{33 \ kV} \right]^2 = 0.000454545 \ \Omega = 0.455 \cdot 10^{-3} \ \Omega \\ \\ X_Q &= 0.995 Z_Q = 0.995 \cdot 0.455 \cdot 10^{-3} \ \Omega = 0.452 \cdot 10^{-3} \ \Omega \\ \\ R_Q &= 0.1 X_Q = 0.1 \cdot 0.455 \cdot 10^{-3} \ \Omega = 0.045 \cdot 10^{-3} \ \Omega \end{split}$$

5.7.2 Transformator dwuuzwojeniowy

$$Z_T = \frac{\Delta U_{k\%} U_{dT}^2}{100 S_{nt}} = \frac{6.5 \cdot (0.4kV)^2}{100 \cdot 0.8MVA} = 0.013 \Omega$$

$$R_T = \frac{\Delta P_{\text{Cu}} U_{dT}^2}{S_{nT}^2} 10^{-3} = \frac{8.8 \ kW \cdot (0.4 \ kV)^2}{100 \cdot 0.8 \ MVA} \cdot 10^{-3} = 2.2 \cdot 10^{-3} \Omega$$

$$X_T = \sqrt{Z_T^2 - R_T^2} = \sqrt{(0.013 \ \Omega)^2 - (0.0022 \ \Omega)^2} = 12.8 \cdot 10^{-3} \ \Omega$$

5.7.3 Maksymalny początkowy prąd zwarcia trójfazowego na szynach NN transformatora

$$R_K = R_Q + R_T = 0.045 \cdot 10^{-3} \,\Omega + 2.2 \cdot 10^{-3} \,\Omega = 2.25 \cdot 10^{-3} \,\Omega$$

$$X_K = X_Q + X_T = 0.452 \cdot 10^{-3} \,\Omega + 12.8 \cdot 10^{-3} \,\Omega = 13.3 \cdot 10^{-3} \,\Omega$$

$$Z_{K3} = \sqrt{R_K^2 + X_K^2} = \sqrt{(2.25 \cdot 10^{-3} \,\Omega)^2 + (13.3 \cdot 10^{-3} \,\Omega)^2} = 13.45 \cdot 10^{-3} \,\Omega$$

$$I''_{K3max} = \frac{c_{max} U_n}{\sqrt{3} Z_{K3}} = \frac{1 \cdot 400 \, V}{\sqrt{3} \cdot 13.45 \cdot 10^{-3} \,\Omega} = 17.166 \, kA$$

5.7.4 Prądy początkowy i udarowy zwarcia trójfazowego w rozdzielnicy oddziałowej oddziału 1 – zasilanie podstawowe

$$\begin{split} R_K &= R_Q + R_T + R_{WLZ} = 2,25 \cdot 10^{-3} \ \Omega + 5,95 \cdot 10^{-3} \ \Omega = 8,2 \cdot 10^{-3} \ \Omega \\ X_K &= X_Q + X_T + X_{WLZ} = 13,3 \cdot 10^{-3} \Omega + 5,6 \cdot 10^{-6} \ \Omega = 13,3 \cdot 10^{-3} \ \Omega \\ Z_{K3} &= \sqrt{R_K^2 + X_K^2} = \sqrt{(8,2 \cdot 10^{-3} \ \Omega)^2 + (13,3 \cdot 10^{-3} \ \Omega)^2} = 0,016 \ \Omega \\ I''_{K3} &= \frac{c_{max} U_n}{\sqrt{3} Z_{K3}} = \frac{1 \cdot 400 V}{\sqrt{3} \cdot 0,016 \ \Omega} = 14,805 \ kA \end{split}$$

Współczynnik κ został dobrany na podstawie Rys. 2.2 z [2]

5.7.5 Prądy początkowy i udarowy zwarcia trójfazowego w rozdzielnicy oddziałowej oddziału 1 – zasilanie rezerwowe

$$R_K = R_Q + R_T + R_{WLZ} = 2,25 \cdot 10^{-3} \,\Omega + 18,9 \cdot 10^{-3} \,\Omega = 21,2 \cdot 10^{-3} \,\Omega$$

$$X_K = X_Q + X_T + X_{WLZ} = 13,3 \cdot 10^{-3} \,\Omega + 10,5 \cdot 10^{-6} \,\Omega = 13,3 \cdot 10^{-3} \,\Omega$$

$$Z_{K3} = \sqrt{R_K^2 + X_K^2} = \sqrt{(21,2 \cdot 10^{-3} \,\Omega)^2 + (13,3 \cdot 10^{-3} \,\Omega)^2} = 0,025 \,\Omega$$

$$I_{K3}^{"} = \frac{c_{max} U_n}{\sqrt{3} Z_{K2}} = \frac{1 \cdot 400 V}{\sqrt{3} \cdot 0.025 \,\Omega} = 9,237 \,kA$$

Współczynnik κ został dobrany na podstawie Rys. 2.2 z [2]

$$i_p = \sqrt{2}\kappa I_{K3}^{"} = \sqrt{2} \cdot 1, 1 \cdot 9,237 \ kA = 14,369 \ kA$$

- 5.8 Dobór Linii Kablowej WLZ1 do Oddziału nr 1.
- 5.8.1 WLZ1 do zasilania podstawowego:
- 5.8.1.1 Wyznaczenie prądów obciążeń roboczych

$$I_B = I_{os} = \frac{P_{os}}{\sqrt{3}U_n\eta\cos\varphi_{os}} = \frac{143,9 \text{ kW}}{\sqrt{3}\cdot0,4 \text{ kV}\cdot0,921} = 225,6 \text{ A}$$

5.8.1.2 Dobór zabezpieczeń przetężeniowych

Największy prąd rozruchowy mają silniki zasilające prasy. Przyjęto lekki rozruch kilka razy w ciągu doby, stąd $\alpha=3,0$. Oprócz tego, przyjęto zastosowanie przełącznika gwiazdatrójkąt i brak samorozruchu silników.

$$I_{nF} \ge (I_0 - I_{nMmax}) + \frac{I_{rmax}}{3\alpha} = (225,6 A - 42,1 A) + \frac{42,1 A \cdot 7,3}{3 \cdot 3} = 217,6 A$$

$$I_{nF} \ge I_o = 225,6 A$$

Biorąc pod uwagę powyższe, dobrano wkładkę topikową ETI WT/NH -1 KOMBI gG/gL 250A (charakterystyka zwłoczna).

Dobór przekroju przewodów ze względu na obciążalność prądową długotrwałą 5.8.1.3

$$I_Z \ge \frac{I_B}{k_q k_t}$$

Przyjęto sposób D wykonania instalacji (bezpośrednio w ziemi), 3 żyły obciążone, odległość 0,25 m między kablami ($k_g=0$,8) oraz pracę w temperaturze $20^{\circ} {\it C}$ ($k_t=1$,0).

$$I_Z \ge \frac{225,6 \, A}{0,8 \cdot 1} = 281,94 \, A$$

Dobrany przewód: miedziany w izolacji XLPE, o przekroju $240\ mm^2$, $I_Z=351\ A$ – warunek spełniony.

$$351 A \ge 281,94 A$$

Sprawdzenie dobranego przekroju ze względu na wytrzymałość mechaniczną 5.8.1.4

$$S \geq S_{mech}$$

$$240 \ mm^2 \ge 1.5 \ mm^2$$

Warunek spełniony.

5.8.1.5 Dobór przekroju przewodu neutralnego i ochronnego.

$$S_L \ge 50 \ mm^2$$

Zatem minimalny przekrój przewodu ochronnego musi być większy niż $0.5S_L$.

5.8.1.6 Wyznaczenie przekroju przewodów ze względu na dopuszczalny spadek napięcia

$$\Delta U_{\%} \leq \Delta U_{dop}$$

Przewód miedziany, zatem
$$\gamma=56\frac{m}{\Omega\cdot mm^2}$$

$$R=\frac{l}{\gamma S}=\frac{80}{56\frac{m}{\Omega\cdot mm^2}\cdot 240~mm^2}=0,00595~\Omega=5,95~\text{m}\Omega$$

$$X = x' \cdot l \cdot 10^{-3} = 0.07 \frac{m\Omega}{m} \cdot 80 \ m \cdot 10^{-3} = 0.0056 \ \Omega = 5.6 \ \mu\Omega$$

$$\Delta U_{\%} = \frac{100\sqrt{3}}{U_n} I_B(Rcos\varphi + Xsin\varphi)$$

$$= \frac{100\sqrt{3}}{400 V} \cdot 281,9 A \cdot (5,95 m\Omega \cdot 0,921 + 5,60 \mu\Omega \cdot 0,390) = 0,67\%$$

Dla obwodu zasilającego odbiorniki siłowe oraz instalacje oświetleniowe:

$$\Delta U_{\%} = 0.67\% \le 5.5\%$$

Warunek spełniony.

5.8.1.7 Sprawdzenie przekroju przewodów ze względu na wytrzymałość cieplną przy przeciążeniach Warunek pierwszy:

$$I_B \leq I_n \leq I_Z'$$

Stąd:

$$225,6 A \le 250 A \le 280,8 A$$

Warunek spełniony.

Warunek drugi:

$$I_2 \leq 1,45I_Z'$$

Dla dobranej wkładki topikowej wartość górna prądu probierczego wkładki jest 1,6-krotnością prądu znamionowego.

$$I_2 = 1.6 \cdot 250 A = 400 A$$

Zatem

$$400A \le 1,45 \cdot 350 A \cdot 0,8 = 407,2 A$$

Warunek spełniony.

5.8.1.8 Sprawdzenie przekroju przewodów ze względu na cieplną wytrzymałość zwarciową

$$S \geq \frac{I_K''}{k} \sqrt{t_{wy^{\frac{1}{2}}}}$$

Czas zadziałania zabezpieczenia jest krótszy niż 10 ms, dlatego posłużono się charakterystyką całki Joule'a oraz warunkiem

$$\int_t I^2 dt \le (kS)^2$$

Rysunek 4: Charakterystyka całki Joule'a dla zabezpieczeń ETI WT/NH -1 KOMBI gG/gL

Odczytano wartość całki Joule'a dla prądu zwarciowego ok. 17,166 kA:

$$\int_t I^2 dt \cong 15\,000\,A^2 s$$

Dla dobranego przewodu wartość jednosekundowej gęstości prądu w czasie zwarcia wynosi:

$$k = 135 \; \frac{A\sqrt{s}}{mm^2}$$

Stąd

$$(kS)^2 = \left(135 \frac{A\sqrt{s}}{mm^2} \cdot 240 \ mm^2\right)^2 = (32400)^2 \ A^2 s$$

Zatem

$$15\,000\,A^2s \le (32400)^2\,A^2s$$

Warunek spełniony.

5.8.1.9 Dobór przewodu z katalogu producenta

Na podstawie obliczeń dobrano przewód TFKable YKXS-żo 4x240SM, 4-żyłowy o przekroju żyły (również PEN) $240\ mm^2$ w izolacji XLPE i powłoce PVC.

5.8.1.10 Sprawdzenie przekroju przewodów ze względu na skuteczność dodatkowej ochrony przeciwporażeniowej

$$I_a \leq I_{K1}$$

Z charakterystyki czasowo-prądowej zabezpieczenia, dla czasu zadziałania zabezpieczenia $t_{dop}=5s$ odczytano wartość prądu wyłączającego $I_a\cong1500~A$.

Rysunek 5: Charakterystyki czasowo prądowe zabezpieczeń ETI WT/NH -1 KOMBI gG/gL

Obliczenie pętli zwarcia jednofazowego metodą uproszczoną:

$$Z_{K1} = \underline{Z}_{Q} + \underline{Z}_{T} + \underline{Z}_{WLZ} + \underline{Z}_{WLZ \ PEN}$$

Po uwzględnieniu współczynnika temperaturowego rezystancji oraz faktu, że przekrój żyły PEN jest równy przekrojowi przewodu fazowego:

$$\begin{split} R_{K1} &= R_T + 1,24 \cdot 2R_{WLZ} = 0,0022 \ \Omega + 2 \cdot 1,24 \cdot 0,00595 \ \Omega = 0,017 \ \Omega \\ X_{K1} &= X_Q + X_T + 2X_{WLZ} = 0,0005 \ \Omega + 0,0128 \ \Omega = 0,014 \ \Omega \\ &|Z_{K1}| \ = \sqrt{R_{K1}^2 + X_{K1}^2} = \sqrt{(0,017 \ \Omega)^2 + (0,014 \ \Omega)^2} = 0,022 \ \Omega \\ I_{K1} &= \frac{c_{min} \ U_{nf}}{|Z_{K1}|} = \frac{0,95 \cdot 230 \ V}{0,022 \ \Omega} \cong 10,0 \ kA \\ &1500 \ A \leq 10 \ kA \end{split}$$

Warunek spełniony.

5.8.2 WLZ1 do zasilania rezerwowego:

5.8.2.1 Wyznaczenie prądów obciążeń roboczych

$$I_B = I_{os} = \frac{P_{os}}{\sqrt{3}U_n \eta \cos \varphi_{os}} = \frac{100,7 \text{ kW}}{\sqrt{3} \cdot 0,4 \text{ kV} \cdot 0,921} = 157,9 \text{ A}$$

Dobór zabezpieczeń przetężeniowych 5.8.2.2

Największy prąd rozruchowy mają silniki zasilające prasy. Przyjęto lekki rozruch kilka razy w ciągu doby, stąd $\alpha=3.0$. Oprócz tego, przyjęto zastosowanie przełącznika gwiazdatrójkąt i brak samorozruchu silników.

$$I_{nF} \ge (I_0 - I_{nMmax}) + \frac{I_{rmax}}{3\alpha} = (157.9 A - 42.1 A) + \frac{42.1 A \cdot 7.3}{3 \cdot 3} = 149.9 A$$

$$I_{nF} \ge I_o = 157.9 A$$

Biorac pod uwagę powyższe, dobrano wkładkę topikowa ETI WT/NH -1 KOMBI gG/gL 160A (charakterystyka zwłoczna).

5.8.2.3 Dobór przekroju przewodów ze względu na obciążalność prądową długotrwałą

$$I_Z \ge \frac{I_B}{k_g k_t}$$

Przyjęto sposób D wykonania instalacji (bezpośrednio w ziemi), 3 żyły obciążone, odległość 0,25 m między kablami ($k_g=0$,8) oraz pracę w temperaturze $20^{\circ}\mathcal{C}$ ($k_t=1$,0).

$$I_Z \ge \frac{157,9 A}{0.8 \cdot 1} = 197,4 A$$

Dobrany przewód: aluminiowy w izolacji XLPE, o przekroju $240 \ mm^2$, $I_Z=272 \ A$ warunek spełniony.

Sprawdzenie dobranego przekroju ze względu na wytrzymałość mechaniczną 5.8.2.4

$$S \geq S_{mech}$$

$$240 \ mm^2 > 16 \ mm^2$$

Warunek spełniony.

Dobór przekroju przewodu neutralnego i ochronnego. 5.8.2.5

$$S_L \geq 50 \ mm^2$$

Zatem minimalny przekrój przewodu ochronnego musi być większy niż $0.5S_L$.

Wyznaczenie przekroju przewodów ze względu na dopuszczalny spadek napięcia 5.8.2.6

$$\Delta U_{\%} \leq \Delta U_{don}$$

 $\Delta U_\% \leq \Delta U_{dop}$ Przewód miedziany, zatem $\gamma=33\frac{m}{\Omega\cdot mm^2}$. Na potrzeby projektu założono długość przewodu WLZ l=150m.

$$R = \frac{l}{\gamma S} = \frac{150}{33 \frac{m}{\Omega \cdot mm^2} \cdot 240 \ mm^2} = 0,00595 \ \Omega = 18,9 \ \text{m}\Omega$$

$$X = x' \cdot l \cdot 10^{-3} = 0,07 \frac{m\Omega}{m} \cdot 150 \ m \cdot 10^{-3} = 0,0056 \ \Omega = 10,5 \ \mu\Omega$$

$$\Delta U_{\%} = \frac{100\sqrt{3}}{U_n} I_B (R\cos\varphi + X\sin\varphi)$$

$$= \frac{100\sqrt{3}}{400 \ V} \cdot 157,9 \ A \cdot (18,9 \ m\Omega \cdot 0,921 + 10,5 \ \mu\Omega \cdot 0,390) = 1,5\%$$

Dla obwodu zasilającego odbiorniki siłowe oraz instalacje oświetleniowe:

$$\Delta U_{\%} = 1.5\% \le 5.5\%$$

Warunek spełniony.

5.8.2.7 Sprawdzenie przekroju przewodów ze względu na wytrzymałość cieplną przy przeciążeniach

5.8.2.7.1 Warunek pierwszy:

$$I_R \leq I_n \leq I_Z'$$

Stad:

$$157.9 A \le 160 A \le 217.6 A$$

Warunek spełniony.

5.8.2.7.2 Warunek drugi:

$$I_2 \leq 1,45I_2'$$

Dla dobranej wkładki topikowej wartość górna prądu probierczego wkładki jest 1,6-krotnością prądu znamionowego.

$$I_2 = 1.6 \cdot 160 A = 256 A$$

Zatem

$$256 A \le 1,45 \cdot 272 A \cdot 0,8 = 315,5 A$$

Warunek spełniony.

5.8.2.8 Sprawdzenie przekroju przewodów ze względu na cieplną wytrzymałość zwarciową

$$S \geq \frac{I_K''}{k} \sqrt{t_{wy!}}$$

Czas zadziałania zabezpieczenia jest krótszy niż 10 ms, dlatego posłużono się charakterystyką całki Joule'a oraz warunkiem

$$\int_{t} I^{2} dt \le (kS)^{2}$$

Odczytano wartość całki Joule'a dla prądu zwarciowego ok. 17,166 kA:

$$\int_t I^2 dt \cong 14\,500\,A^2 s$$

Dla dobranego przewodu wartość jednosekundowej gęstości prądu w czasie zwarcia wynosi:

$$k = 87 \; \frac{A\sqrt{s}}{mm^2}$$

Stad

$$(kS)^2 = \left(7 \frac{A\sqrt{s}}{mm^2} \cdot 240 \ mm^2\right)^2 = (20880)^2 \ A^2 s$$

Zatem

$$14500 A^2 s \le (20880)^2 A^2 s$$

Warunek spełniony.

5.8.2.9 Dobór przewodu z katalogu producenta

Na podstawie obliczeń dobrano przewód TFKable YAKXS-żo 4x240SM, 4-żyłowy o przekroju żyły (również PEN) $240 \ mm^2$ w izolacji XLPE i powłoce PVC.

5.8.2.10 Sprawdzenie przekroju przewodów ze względu na skuteczność dodatkowej ochrony przeciwporażeniowej

$$I_a \leq I_{K1}$$

Z charakterystyki czasowo-prądowej zabezpieczenia, dla czasu zadziałania zabezpieczenia $t_{dop}=5s$ odczytano wartość prądu wyłączającego $I_a\cong 600\,A.$

Obliczenie pętli zwarcia jednofazowego metodą uproszczoną:

$$Z_{K1} = \underline{Z}_O + \underline{Z}_T + \underline{Z}_{WLZ} + \underline{Z}_{WLZ \ PEN}$$

Po uwzględnieniu współczynnika temperaturowego rezystancji oraz faktu, że przekrój żyły PEN jest równy przekrojowi przewodu fazowego:

$$R_{K1} = R_T + 1,24 \cdot 2R_{WLZ} = 0,0022 \Omega + 2 \cdot 1,24 \cdot 0,019 \Omega = 0,049 \Omega$$

$$X_{K1} = X_Q + X_T + 2X_{WLZ} = 0,0005 \Omega + 0,0128 \Omega = 0,013 \Omega$$

$$|Z_{K1}| = \sqrt{R_{K1}^2 + X_{K1}^2} = \sqrt{(0,049 \Omega)^2 + (0,013 \Omega)^2} = 0,051 \Omega$$

$$I_{K1} = \frac{c_{min} \ U_{nf}}{|Z_{K1}|} = \frac{0,95 \cdot 230 \ V}{0,051 \Omega} \cong 7,461 \ kA$$

$$600 \ A < 7.461 \ kA$$

Warunek spełniony.

5.9 OBLICZENIA WYBRANYCH OBWODÓW INSTALACJI ODBIORCZEJ

Do obliczeń wybrano z każdej grupy urządzeń obwód o najdłuższym przewodzie zasilającym. Założono, że podstawowym zabezpieczeniem jest zabezpieczenie nadprądowe.

5.9.1 Dobór przewodów i zabezpieczeń do obwodów pras

5.9.1.1

Wyznaczenie prądów obciążeń roboczych
$$I_B = \frac{P_n}{\sqrt{3} U_n \eta cos \varphi} = \frac{22 \ kW}{\sqrt{3} \cdot 400 \ V \cdot 0,92 \cdot 0,82} = 42,1 \ A$$

5.9.1.2 Dobór zabezpieczeń

5.9.1.2.1 Zabezpieczenia zwarciowe

Przyjęto rozruch lekki, kilka razy na dobę oraz możliwość rozruchu Y/Δ .

$$\alpha = 3$$

$$I_{rmax} = k_r I_B = 7,3 \cdot 42,1 A = 307,3 A$$

$$I_{nFmin} = \frac{I_{rmax}}{3\alpha} = \frac{307,3 A}{3 \cdot 3} = 34,1 A$$

Dobrano wkładkę ETI 006711040 CH14/P aM 50A/500V 1433950 o charakterystyce aM, $I_n = 50 A$ oraz zdolności zwarciowej 120 kA.

5.9.1.2.2 Zabezpieczenia przeciążeniowe

Przyjęto $I_{nt} = 1.1I_{nM}$.

$$I_{nt} = 1.1I_{nM} = 1.1 \cdot 42.1 A = 46.3 A$$

Dobrano wyłącznik silnikowy LEGRAND MPX3 100H 4173 75 o $I_n=50\,A$ oraz zakresie nastaw $34\,A-50\,A$.

5.9.1.3 Dobór przekroju przewodów ze względu na obciążalność prądową długotrwałą

W obliczeniach przyjęto parametry przewodu miedzianego w izolacji PVC o przekroju żyły $10\ mm^2$. Przewód prowadzono w drabince kablowej, w której na początkowym odcinku biegnie łącznie 7 przewodów.

$$I_Z = 60 A$$

$$I_Z' = k_g k_T I_Z = 0.79 \cdot 1 \cdot 60 A = 47.4 A$$

$$I_Z' \ge I_B \to 47.4 A \ge 42.1 A$$

Warunek spełniony.

5.9.1.4 Sprawdzenie dobranego przekroju ze względu na wytrzymałość mechaniczną

Dla miedzianych przewodów siłowych do układania na stałe najmniejszy przekrój wynosi $1.5\ mm^2.$

$$S \ge S_{mech} \rightarrow 10 \ mm^2 \ge 1.5 \ mm^2$$

Warunek spełniony.

5.9.1.5 Dobór przekroju przewodu neutralnego i ochronnego

Minimalny przekrój żył przewodów ochronnych dla $S_L \leq 16~mm^2$ wynosi S_L , czyli w tym przypadku $10~mm^2$.

5.9.1.6 Wyznaczenie przekroju przewodów ze względu na dopuszczalny spadek napięcia

Spadek napięcia od rozdzielnicy oddziałowej do maszyny nie powinien przekraczać 3%

$$R = \frac{l}{\gamma S} = \frac{27,5 m}{56 \frac{m}{\Omega \cdot mm^2} \cdot 10 mm^2} = 0,049 \Omega$$

$$X = x'l \cdot 10^{-3} = 0.07 \frac{m\Omega}{mm^2} \cdot 27.5 \ m \cdot 10^{-3} = 0.002 \ m\Omega$$

$$\Delta U_{\%} = \frac{100\sqrt{3}}{U_n} I_B(R\cos\varphi + X\sin\varphi)$$

$$= \frac{100\sqrt{3}}{400 V} \cdot 42,1 A \cdot (0,049 \Omega \cdot 0,82 + 0,002 m\Omega \cdot 0,57) = 0,73\%$$

$$\Delta U_{\%} \le \Delta U_{dop} \to 0,718\% \le 3\%$$

5.9.1.7 Sprawdzenie przekroju przewodów ze względu na wytrzymałość cieplną przy przeciążeniach

5.9.1.7.1 Warunek pierwszy

$$I_R \le I_n \le I_Z' \to 42.1 A \le 46 A \le 47.4 A$$

Warunek spełniony.

5.9.1.7.2 Warunek drugi

$$I_2 \le 1.45 I_Z' \to 60 A \le 68.7 A$$

Warunek spełniony.

5.9.1.8 Sprawdzenie przekroju przewodów ze względu na cieplną wytrzymałość zwarciową Na podstawie 5.7.4 przyjęto $I_K^{\prime\prime}=14{,}805~kA$. Czas zadziałania zabezpieczenia jest krótszy niż 10 ms, stąd posłużono się warunkiem:

$$\int_{t} I^{2} dt \le (kS)^{2}$$

Dla przewodu o izolacji PVC z żyłami miedzianymi: $k=115\frac{A\sqrt{s}}{mm^2}$

$$(kS)^2 = \left(115 \frac{A\sqrt{s}}{mm^2} \cdot 10 \ mm^2\right)^2 = 1322500 \ A^2 s$$

Z charakterystyki urządzenia zabezpieczającego odczytano $\int_t I^2 dt = 6000\,A^2 s$

$$\int_{t} I^{2} dt \le (kS)^{2} \to 6000 \, A^{2} s \le 1322500 \, A^{2} s$$

Warunek spełniony.

5.9.1.9 Dobór przewodu z katalogu producenta

Na podstawie obliczeń dobrano przewód TFKable TFPremium YDYżo, 4-żyłowy o przekroju żyły $10\ mm^2$, napięciu znamionowym 450/750 V, w izolacji i powłoce PVC.

5.9.1.10 Sprawdzenie przekroju przewodów ze względu na skuteczność dodatkowej ochrony przeciwporażeniowej

Parametry systemu elektroenergetycznego, transformatora oraz WLZ dobrano podstawie obliczeń zwarciowych w 5.7. Przyjęto parametry WLZ dla zasilania rezerwowego, jako gorszego przypadku. Dla napięcia znamionowego 400/230 V dobrano współczynnik napięciowy $c_{min}=0.95$. Najdłuższy dopuszczalny czas wyłączenia dla instalacji wynosi 0,2s.

$$R_{K1} = R_T + 1,24(R_{WLZ} + R_L + R_{WLZPEN} + R_{LPEN})$$

= 2,2 $m\Omega$ + 1,24 · (2 · 18,9 $m\Omega$ + 2 · 49,1 $m\Omega$) = 0,169 Ω

$$X_{K1} = X_Q + X_T + X_{WLZ} + X_L + X_{WLZPEN} + X_{LPEN} \approx 0.452 \, m\Omega + 12.812 \, m\Omega$$

= 0.013 mΩ

$$Z_{K1} = \sqrt{R_{K1}^2 + X_{K1}^2} = \sqrt{(0.169 \, m\Omega)^2 + (0.013 \, m\Omega)^2} = 0.169 \, \Omega$$

$$I_{K1} \approx \frac{0.95 U_{nf}}{Z_{K1}} = \frac{0.95 \cdot 230 \, V}{0.169 \, \Omega} = 1311 \, A$$

Z charakterystyki urządzenia zabezpieczającego odczytano minimalny prąd powodujący zadziałanie urządzenia w dopuszczalnym czasie $I_a=600\,A$.

$$I_a \le I_{K1} \to 600 A < 1311 A$$

Warunek spełniony.

- 5.9.2 Dobór przewodów i zabezpieczeń do obwodów podnośników
- 5.9.2.1 Wyznaczenie prądów obciążeń roboczych

$$I_B = \frac{P_n}{\sqrt{3}U_n\eta\cos\varphi} = \frac{11 \, kW}{\sqrt{3} \cdot 400 \, V \cdot 0,887 \cdot 0,75} = 23,9 \, A$$

5.9.2.2 Dobór zabezpieczeń

5.9.2.2.1 Zabezpieczenia zwarciowe

Przyjęto rozruch średni, częsty, oraz możliwość rozruchu Y/Δ .

$$\alpha = 2$$

$$I_{rmax} = k_r I_B = 7.5 \cdot 23.9 A = 179.0 A$$

$$I_{nFmin} = \frac{I_{rmax}}{3\alpha} = \frac{179.0 A}{2 \cdot 3} = 29.8 A$$

Dobrano wkładkę ETI 002621015 CH10x38 aM 32A/400V o charakterystyce aM, $I_n=32\,A$ oraz zdolności zwarciowej $100\,kA$.

5.9.2.2.2 Zabezpieczenia przeciążeniowe

Przyjęto $I_{nt} = 1,1I_{nM}$.

$$I_{nt} = 1.1I_{nM} = 1.1 \cdot 23.9 A = 26.3 A$$

Dobrano wyłącznik silnikowy LEGRAND MPX3 100H 4173 73 o $I_n=32\,A$ oraz zakresie nastaw $22\,A-32\,A$.

5.9.2.3 Dobór przekroju przewodów ze względu na obciążalność prądową długotrwałą W obliczeniach przyjęto parametry przewodu miedzianego w izolacji PVC o przekroju żyły $4\ mm^2$. Przewód prowadzono w drabince kablowej, w której na początkowym odcinku biegnie łącznie 7 przewodów.

$$I_Z = 34 A$$

$$I'_Z = k_a k_T I_Z = 0.79 \cdot 1 \cdot 34 A = 26.9 A$$

$$I_Z' \ge I_R \to 26.9 A \ge 23.9 A$$

5.9.2.4 Sprawdzenie dobranego przekroju ze względu na wytrzymałość mechaniczną Dla miedzianych przewodów siłowych do układania na stałe najmniejszy przekrój wynosi $1,5\ mm^2$.

$$S \ge S_{mech} \rightarrow 4 \ mm^2 \ge 1.5 \ mm^2$$

Warunek spełniony.

- 5.9.2.5 Dobór przekroju przewodu neutralnego i ochronnego Minimalny przekrój żył przewodów ochronnych dla $S_L \leq 16~mm^2$ wynosi S_L , czyli w tym przypadku $4~mm^2$.
- 5.9.2.6 Wyznaczenie przekroju przewodów ze względu na dopuszczalny spadek napięcia
 Spadek napięcia od rozdzielnicy oddziałowej do maszyny nie powinien przekraczać 3%

$$R = \frac{l}{\gamma S} = \frac{35,0 \text{ m}}{56 \frac{m}{\Omega \cdot mm^2} \cdot 4 \text{ mm}^2} = 0,156 \Omega$$

$$X = x'l \cdot 10^{-3} = 0,07 \frac{m\Omega}{mm^2} \cdot 35,0 \text{ m} \cdot 10^{-3} = 0,002 \text{ m}\Omega$$

$$\Delta U_{\%} = \frac{100\sqrt{3}}{U_n} I_B(R\cos\varphi + X\sin\varphi)$$

$$= \frac{100\sqrt{3}}{400 \text{ V}} \cdot 23,9 \text{ A} \cdot (0,156 \Omega \cdot 0,75 + 0,002 \text{ m}\Omega \cdot 0,66) = 1,21\%$$

$$\Delta U_{\%} \le \Delta U_{dop} \to 1,21\% \le 3\%$$

Warunek spełniony.

- 5.9.2.7 Sprawdzenie przekroju przewodów ze względu na wytrzymałość cieplną przy przeciążeniach
- 5.9.2.7.1 Warunek pierwszy

$$I_B \le I_n \le I_Z' \to 23.9 A \le 26 A \le 26.9 A$$

Warunek spełniony.

5.9.2.7.2 Warunek drugi

$$I_2 \le 1,45I_Z' \to 38,4 A \le 38,9 A$$

Warunek spełniony.

5.9.2.8 Sprawdzenie przekroju przewodów ze względu na cieplną wytrzymałość zwarciową Na podstawie 5.7.4 przyjęto $I_K^{\prime\prime}=14{,}805~kA$. Czas zadziałania zabezpieczenia jest krótszy niż 10 ms, stąd posłużono się warunkiem:

$$\int_{t} I^{2} dt \le (kS)^{2}$$

Dla przewodu o izolacji PVC z żyłami miedzianymi: $k=115 rac{A\sqrt{s}}{mm^2}$

$$(kS)^2 = \left(115 \frac{A\sqrt{s}}{mm^2} \cdot 10 \ mm^2\right)^2 = 211600 \ A^2 s$$

Z charakterystyki urządzenia zabezpieczającego odczytano $\int_t I^2 dt = 2200\,A^2 s$

$$\int_{t} I^{2} dt \le (kS)^{2} \to 2200 \, A^{2} s \le 211600 \, A^{2} s$$

Warunek spełniony.

5.9.2.9 Dobór przewodu z katalogu producenta

Na podstawie obliczeń dobrano przewód TFKable TFPremium YDYżo, 4-żyłowy o przekroju żyły $4\ mm^2$, napięciu znamionowym 450/750 V, w izolacji i powłoce PVC.

5.9.2.10 Sprawdzenie przekroju przewodów ze względu na skuteczność dodatkowej ochrony przeciwporażeniowej

Parametry systemu elektroenergetycznego, transformatora oraz WLZ dobrano podstawie obliczeń zwarciowych w 5.7. Przyjęto parametry WLZ dla zasilania rezerwowego, jako gorszego przypadku. Dla napięcia znamionowego 400/230 V dobrano współczynnik napięciowy $c_{min}=0.95$. Najdłuższy dopuszczalny czas wyłączenia dla instalacji wynosi 0,2s.

$$R_{K1} = R_T + 1,24(R_{WLZ} + R_L + R_{WLZPEN} + R_{LPEN})$$

$$= 2,2 \, m\Omega + 1,24 \cdot (2 \cdot 18,9 \, \text{m}\Omega + 2 \cdot 156,3 \, \text{m}\Omega) = 0,434 \, \Omega$$

$$X_{K1} = X_Q + X_T + X_{WLZ} + X_L + X_{WLZPEN} + X_{LPEN} \approx 0,452 \, m\Omega + 12,812 \, \text{m}\Omega$$

$$= 0,013 \, \text{m}\Omega$$

$$Z_{K1} = \sqrt{R_{K1}^2 + X_{K1}^2} = \sqrt{(0,434 \, m\Omega)^2 + (0,013 \, m\Omega)^2} = 0,435 \, \Omega$$

$$I_{K1} \approx \frac{0,95 U_{nf}}{Z_{K1}} = \frac{0,95 \cdot 230 \, V}{0,435 \, \Omega} = 503 \, A$$

Z charakterystyki urządzenia zabezpieczającego odczytano minimalny prąd powodujący zadziałanie urządzenia w dopuszczalnym czasie $I_a=390\,A$.

$$I_a \le I_{K1} \to 390 A < 503 A$$

Warunek spełniony.

5.9.3 Dobór przewodów i zabezpieczeń do obwodów przenośników

5.9.3.1 Wyznaczenie prądów obciążeń roboczych

$$I_B = \frac{P_n}{\sqrt{3}U_n\eta\cos\varphi} = \frac{7.5 \text{ kW}}{\sqrt{3}\cdot400 \text{ V}\cdot0.872\cdot0.75} = 16.6 \text{ A}$$

5.9.3.2 Dobór zabezpieczeń

5.9.3.2.1 Zabezpieczenia zwarciowe

Przyjęto rozruch średni, kilka razy na dobę oraz możliwość rozruchu Y/Δ .

$$\alpha = 2.5$$

$$I_{rmax} = k_r I_B = 6.5 \cdot 16.6 A = 107.6 A$$

$$I_{nFmin} = \frac{I_{rmax}}{3\alpha} = \frac{107.6 A}{3 \cdot 3} = 14.3 A$$

Dobrano wkładkę ETI 002611009 CH8x32 aM 16A/400V o charakterystyce aM, $I_n=20\,A$ oraz zdolności zwarciowej $50\,kA$.

5.9.3.2.2 Zabezpieczenia przeciążeniowe

Przyjęto $I_{nt} = 1.1I_{nM}$.

$$I_{nt} = 1.1I_{nM} = 1.1 \cdot 16.6 A = 18.2 A$$

Dobrano wyłącznik silnikowy LEGRAND MPX3 100H 4173 71 o $I_n=20\ A$ oraz zakresie nastaw $11\ A-17\ A$.

5.9.3.3 Dobór przekroju przewodów ze względu na obciążalność prądową długotrwałą W obliczeniach przyjęto parametry przewodu miedzianego w izolacji PVC o przekroju żyły $4\ mm^2$. Przewód prowadzono w drabince kablowej, w której na początkowym odcinku biegnie łącznie 7 przewodów.

$$I_Z = 34 A$$

$$I_Z' = k_g k_T I_Z = 0.79 \cdot 1 \cdot 60 A = 26.9 A$$

$$I_Z' \ge I_B \to 26.9 A \ge 16.6 A$$

Warunek spełniony.

5.9.3.4 Sprawdzenie dobranego przekroju ze względu na wytrzymałość mechaniczną Dla miedzianych przewodów siłowych do układania na stałe najmniejszy przekrój wynosi $1.5 \ mm^2$.

$$S \ge S_{mech} \rightarrow 4 \ mm^2 \ge 1.5 \ mm^2$$

Warunek spełniony.

- 5.9.3.5 Dobór przekroju przewodu neutralnego i ochronnego Minimalny przekrój żył przewodów ochronnych dla $S_L \leq 16~mm^2$ wynosi S_L , czyli w tym przypadku $4~mm^2$.
- 5.9.3.6 Wyznaczenie przekroju przewodów ze względu na dopuszczalny spadek napięcia
 Spadek napięcia od rozdzielnicy oddziałowej do maszyny nie powinien przekraczać 3%

$$R = \frac{l}{\gamma S} = \frac{37.5 \, m}{56 \frac{m}{\Omega \cdot mm^2} \cdot 10 \, mm^2} = 0.167 \, \Omega$$

$$X = x' l \cdot 10^{-3} = 0.07 \frac{m\Omega}{mm^2} \cdot 37.5 \, m \cdot 10^{-3} = 0.003 \, m\Omega$$

$$\Delta U_{\%} = \frac{100\sqrt{3}}{U_n} I_B (R\cos\varphi + X\sin\varphi)$$

$$= \frac{100\sqrt{3}}{400 \, V} \cdot 16.6 \, A \cdot (0.167 \, \Omega \cdot 0.82 + 0.003 \, m\Omega \cdot 0.57) = 0.90\%$$

$$\Delta U_{\%} \le \Delta U_{don} \to 0.89\% \le 3\%$$

5.9.3.7 Sprawdzenie przekroju przewodów ze względu na wytrzymałość cieplną przy przeciążeniach

5.9.3.7.1 Warunek pierwszy

$$I_R \le I_n \le I_Z' \to 16.6 A \le 20 A \le 26.9 A$$

Warunek spełniony.

5.9.3.7.2 Warunek drugi

$$I_2 \le 1.45I_7' \rightarrow 20.4 A \le 38.9 A$$

Warunek spełniony.

5.9.3.8 Sprawdzenie przekroju przewodów ze względu na cieplną wytrzymałość zwarciową Na podstawie 5.7.4 przyjęto $I_K^{\prime\prime}=14{,}805~kA$. Czas zadziałania zabezpieczenia jest krótszy niż 10 ms, stąd posłużono się warunkiem:

$$\int_{t} I^{2} dt \le (kS)^{2}$$

Dla przewodu o izolacji PVC z żyłami miedzianymi: $k=115 rac{A\sqrt{s}}{mm^2}$

$$(kS)^2 = \left(115 \frac{A\sqrt{s}}{mm^2} \cdot 4 \, mm^2\right)^2 = 211600 \, A^2 s$$

Z charakterystyki urządzenia zabezpieczającego odczytano $\int_t I^2 dt = 7000\,A^2 s$

$$\int_{t} I^{2} dt \le (kS)^{2} \to 7000 \, A^{2} s \le 211600 \, A^{2} s$$

Warunek spełniony.

5.9.3.9 Dobór przewodu z katalogu producenta

Na podstawie obliczeń dobrano przewód TFKable TFPremium YDYżo, 4-żyłowy o przekroju żyły $4 \ mm^2$, napięciu znamionowym 450/750 V, w izolacji i powłoce PVC.

5.9.3.10 Sprawdzenie przekroju przewodów ze względu na skuteczność dodatkowej ochrony przeciwporażeniowej

Parametry systemu elektroenergetycznego, transformatora oraz WLZ dobrano podstawie obliczeń zwarciowych w 5.7. Przyjęto parametry WLZ dla zasilania rezerwowego, jako gorszego przypadku. Dla napięcia znamionowego 400/230 V dobrano współczynnik napięciowy $c_{min}=0.95$. Najdłuższy dopuszczalny czas wyłączenia dla instalacji wynosi 0,2s.

$$R_{K1} = R_T + 1,24(R_{WLZ} + R_L + R_{WLZPEN} + R_{LPEN})$$

$$= 2,2 \, m\Omega + 1,24 \cdot (2 \cdot 18,9 \, \text{m}\Omega + 2 \cdot 167,4 \, \text{m}\Omega) = 0,462 \, \Omega$$

$$X_{K1} = X_Q + X_T + X_{WLZ} + X_L + X_{WLZPEN} + X_{LPEN} \approx 0,462 \, m\Omega + 12,812 \, \text{m}\Omega$$

$$= 0,013 \, \text{m}\Omega$$

$$Z_{K1} = \sqrt{R_{K1}^2 + X_{K1}^2} = \sqrt{(0,462 \, m\Omega)^2 + (0,013 \, m\Omega)^2} = 0,462 \, \Omega$$

$$I_{K1} \approx \frac{0.95 U_{nf}}{Z_{K1}} = \frac{0.95 \cdot 230 V}{0.462 \Omega} = 472 A$$

Z charakterystyki urządzenia zabezpieczającego odczytano minimalny prąd powodujący zadziałanie urządzenia w dopuszczalnym czasie $I_a=150\,A$.

$$I_a \le I_{K1} \to 150 A < 472 A$$

Warunek spełniony.

- 5.9.4 Dobór przewodów i zabezpieczeń do obwodów pieców
- 5.9.4.1 Wyznaczenie prądów obciążeń roboczych

$$I_{B} = \frac{P_{n}}{\sqrt{3}U_{n}\eta\cos\varphi} = \frac{15 \ kW}{\sqrt{3} \cdot 400 \ V \cdot 1 \cdot 1} = 21.7 \ A$$

- 5.9.4.2 Dobór zabezpieczeń
- 5.9.4.2.1 Zabezpieczenia zwarciowe

Dla pieca oporowego przyjęto tylko jedno zabezpieczenie – przeciwzwarciowe – w postaci wkładki topikowej ETI NH1C gF 25A/400V o $I_n=25\,A$ oraz charakterystyce gF

5.9.4.2.2 Zabezpieczenia przeciążeniowe

Dla pieców oporowych nie dobrano dodatkowych zabezpieczeń przeciążeniowych.

5.9.4.3 Dobór przekroju przewodów ze względu na obciążalność prądową długotrwałą W obliczeniach przyjęto parametry przewodu miedzianego w izolacji PVC o przekroju żyły $4\ mm^2$. Przewód prowadzono w drabince kablowej, w której na początkowym odcinku biegnie łącznie 7 przewodów.

$$I_Z = 34 A$$

$$I_Z' = k_g k_T I_Z = 0.79 \cdot 1 \cdot 60 A = 26.9 A$$

$$I_Z' \ge I_B \to 26.9 A \ge 21.7 A$$

Warunek spełniony.

5.9.4.4 Sprawdzenie dobranego przekroju ze względu na wytrzymałość mechaniczną Dla miedzianych przewodów siłowych do układania na stałe najmniejszy przekrój wynosi $1,5\ mm^2$.

$$S \ge S_{mech} \rightarrow 4 \ mm^2 \ge 1.5 \ mm^2$$

Warunek spełniony.

5.9.4.5 Dobór przekroju przewodu neutralnego i ochronnego Minimalny przekrój żył przewodów ochronnych dla $S_L \leq 16~mm^2$ wynosi S_L , czyli w tym przypadku $4~mm^2$.

5.9.4.6 Wyznaczenie przekroju przewodów ze względu na dopuszczalny spadek napięcia
Spadek napięcia od rozdzielnicy oddziałowej do maszyny nie powinien przekraczać 3%

$$R = \frac{l}{\gamma S} = \frac{38,0 \ m}{56 \frac{m}{\Omega \cdot mm^2} \cdot 4 \ mm^2} = 0,170 \ \Omega$$

$$X = x'l \cdot 10^{-3} = 0.07 \frac{m\Omega}{mm^2} \cdot 37.4 \, m \cdot 10^{-3} = 0.003 \, m\Omega$$

$$\Delta U_{\%} = \frac{100\sqrt{3}}{U_n} I_B(R\cos\varphi + X\sin\varphi) = \frac{100\sqrt{3}}{400 \, V} \cdot 21.7 \, A \cdot (0.170 \, \Omega \cdot 1) = 1.59\%$$

$$\Delta U_{\%} \leq \Delta U_{dop} \rightarrow 1.59\% \leq 3\%$$

- 5.9.4.7 Sprawdzenie przekroju przewodów ze względu na wytrzymałość cieplną przy przeciążeniach
- 5.9.4.7.1 Warunek pierwszy

$$I_R \le I_n \le I_T' \to 21.7 A \le 25 A \le 26.9 A$$

Warunek spełniony.

5.9.4.7.2 Warunek drugi

$$I_2 \le 1,45I_Z' \to 36,25 A \le 38,95 A$$

Warunek spełniony.

5.9.4.8 Sprawdzenie przekroju przewodów ze względu na cieplną wytrzymałość zwarciową Na podstawie 5.7.4 przyjęto $I_K^{\prime\prime}=14{,}805~kA$. Czas zadziałania zabezpieczenia jest krótszy niż 10 ms, stąd posłużono się warunkiem:

$$\int_{t} I^{2} dt \le (kS)^{2}$$

Dla przewodu o izolacji PVC z żyłami miedzianymi: $k=115 rac{A\sqrt{s}}{mm^2}$

$$(kS)^2 = \left(115 \frac{A\sqrt{s}}{mm^2} \cdot 4 \ mm^2\right)^2 = 211600 \ A^2 s$$

Z charakterystyki urządzenia zabezpieczającego odczytano $\int_t I^2 dt = 1000\,A^2 s$

$$\int_{t} I^{2} dt \le (kS)^{2} \to 1000 \, A^{2} s \le 211600 \, A^{2} s$$

Warunek spełniony.

5.9.4.9 Dobór przewodu z katalogu producenta

Na podstawie obliczeń dobrano przewód TFKable TFPremium YDYżo, 4-żyłowy o przekroju żyły $4\ mm^2$, napięciu znamionowym 450/750 V, w izolacji i powłoce PVC.

5.9.4.10 Sprawdzenie przekroju przewodów ze względu na skuteczność dodatkowej ochrony przeciwporażeniowej

Parametry systemu elektroenergetycznego, transformatora oraz WLZ dobrano podstawie obliczeń zwarciowych w 5.7. Przyjęto parametry WLZ dla zasilania rezerwowego, jako gorszego przypadku. Dla napięcia znamionowego 400/230 V dobrano współczynnik napięciowy $c_{min}=0.95$. Najdłuższy dopuszczalny czas wyłączenia dla instalacji wynosi 0,2s.

$$R_{K1} = R_T + 1.24(R_{WLZ} + R_L + R_{WLZPEN} + R_{LPEN})$$

= 2,2 $m\Omega + 1.24 \cdot (2 \cdot 18.9 \text{ m}\Omega + 2 \cdot 169.6 \text{ m}\Omega) = 0.468 \Omega$

$$X_{K1} = X_Q + X_T + X_{WLZ} + X_L + X_{WLZPEN} + X_{LPEN} \approx 0.452 \text{ } m\Omega + 12.812 \text{ } m\Omega = 0.013 \text{ } m\Omega$$

$$Z_{K1} = \sqrt{R_{K1}^2 + X_{K1}^2} = \sqrt{(0.468 \,\Omega)^2 + (0.013 \,m\Omega)^2} = 0.468 \,\Omega$$

$$I_{K1} \approx \frac{0.95 U_{nf}}{Z_{K1}} = \frac{0.95 \cdot 230 V}{0.468 \Omega} = 467 A$$

Z charakterystyki urządzenia zabezpieczającego odczytano minimalny prąd powodujący zadziałanie urządzenia w dopuszczalnym czasie $I_a=150\,A$.

$$I_a \le I_{K1} \to 150 A < 467 A$$

Warunek spełniony.

- 5.9.5 Dobór przewodów i zabezpieczeń do obwodów gniazd 3-fazowych
- 5.9.5.1 Wyznaczenie prądów obciążeń roboczych

Jako prąd obciążenia roboczego przyjęto prąd znamionowy gniazda.

$$I_B = 63 A$$

- 5.9.5.2 Dobór zabezpieczeń
- 5.9.5.2.1 Zabezpieczenia zwarciowe

Dobrano wkładkę ETI ETI NH00 gF 63A/400V o charakterystyce gF, $I_n=63\,A$ oraz zdolności zwarciowej $100\,kA$.

5.9.5.2.2 Zabezpieczenia przeciążeniowe

Do obwodów gniazd 3-fazowych nie dobrano żadnych dodatkowych zabezpieczeń przeciążeniowych.

5.9.5.3 Dobór przekroju przewodów ze względu na obciążalność prądową długotrwałą W obliczeniach przyjęto parametry przewodu miedzianego w izolacji XLPE o przekroju żyły $16\ mm^2$. Przewód prowadzono w nieperforowanym korytku kablowym na ścianie, w którym biegnie łącznie 6 przewodów.

$$I_Z = 96 A$$

$$I_Z' = k_g k_T I_Z = 0.72 \cdot 1 \cdot 96 A = 69.1 A$$

$$I_Z' \ge I_B \to 69.1 A \ge 63 A$$

Warunek spełniony.

5.9.5.4 Sprawdzenie dobranego przekroju ze względu na wytrzymałość mechaniczną Dla miedzianych przewodów siłowych do układania na stałe najmniejszy przekrój wynosi $1.5\ mm^2$.

$$S \ge S_{mech} \rightarrow 16 \ mm^2 \ge 1.5 \ mm^2$$

Warunek spełniony.

- 5.9.5.5 Dobór przekroju przewodu neutralnego i ochronnego Minimalny przekrój żył przewodów ochronnych dla $S_L \leq 16~mm^2$ wynosi S_L , czyli w tym przypadku $16~mm^2$.
- 5.9.5.6 Wyznaczenie przekroju przewodów ze względu na dopuszczalny spadek napięcia
 Spadek napięcia od rozdzielnicy oddziałowej do maszyny nie powinien przekraczać 3%

$$R = \frac{l}{\gamma S} = \frac{48,05 \, m}{56 \frac{m}{\Omega \cdot mm^2} \cdot 16 \, mm^2} = 0,054 \, \Omega$$

$$X = x'l \cdot 10^{-3} = 0,07 \frac{m\Omega}{mm^2} \cdot 48,05 \, m \cdot 10^{-3} = 0,003 \, m\Omega$$

$$\Delta U_{\%} = \frac{100\sqrt{3}}{U_n} I_B(R\cos\varphi + X\sin\varphi) = \frac{100\sqrt{3}}{400 V} \cdot 21,7 A \cdot (0,054 \Omega \cdot 0,5 + 0,003 \text{ m}\Omega \cdot 0,87)$$
$$= 0,73\%$$

$$\Delta U_\% \leq \Delta U_{dop} \rightarrow ~0.73\% \leq 3\%$$

- 5.9.5.7 Sprawdzenie przekroju przewodów ze względu na wytrzymałość cieplną przy przeciążeniach
- 5.9.5.7.1 Warunek pierwszy

$$I_B \le I_n \le I_Z' \to 63.0 A \le 63.0 A \le 69.12 A$$

Warunek spełniony.

5.9.5.7.2 Warunek drugi

$$I_2 \le 1.45 I_2' \rightarrow 91.4 A \le 100.2 A$$

Warunek spełniony.

5.9.5.8 Sprawdzenie przekroju przewodów ze względu na cieplną wytrzymałość zwarciową Na podstawie 5.7.4 przyjęto $I_K^{\prime\prime}=14,\!805~kA$. Czas zadziałania zabezpieczenia jest krótszy niż 10 ms, stąd posłużono się warunkiem:

$$\int_t I^2 dt \le (kS)^2$$

Dla przewodu o izolacji XLPE z żyłami miedzianymi: $k=135 rac{A\sqrt{s}}{mm^2}$

$$(kS)^2 = \left(135 \frac{A\sqrt{s}}{mm^2} \cdot 16 \ mm^2\right)^2 = 4665600 \ A^2 s$$

Z charakterystyki urządzenia zabezpieczającego odczytano $\int_t I^2 dt = 10000~A^2 s$

$$\int_{t} I^{2} dt \le (kS)^{2} \to 10000 \, A^{2} s \le 4665600 \, A^{2} s$$

Warunek spełniony.

5.9.5.9 Dobór przewodu z katalogu producenta

Na podstawie obliczeń dobrano przewód TFKable YKXS-żo, 5-żyłowy o przekroju żyły $16\ mm^2$, napięciu znamionowym 0,6/1 kV, w izolacji XLPE i powłoce PVC.

5.9.5.10 Sprawdzenie przekroju przewodów ze względu na skuteczność dodatkowej ochrony przeciwporażeniowej

Parametry systemu elektroenergetycznego, transformatora oraz WLZ dobrano podstawie obliczeń zwarciowych w 5.7. Przyjęto parametry WLZ dla zasilania rezerwowego, jako gorszego przypadku. Dla napięcia znamionowego 400/230 V dobrano współczynnik napięciowy $c_{min}=0.95$. Najdłuższy dopuszczalny czas wyłączenia dla instalacji wynosi 0,2s.

$$\begin{split} R_{K1} &= R_T + 1,24 (R_{WLZ} + R_L + R_{WLZ\,PEN} + R_{L\,PEN}) \\ &= 2,2 \, m\Omega + 1,24 \cdot (2 \cdot 18,9 \, \text{m}\Omega + 2 \cdot 53,6 \, \text{m}\Omega) = 0,180 \, \Omega \\ X_{K1} &= X_Q + X_T + X_{WLZ} + X_L + X_{WLZ\,PEN} + X_{L\,PEN} \approx 0,452 \, m\Omega + 12,812 \, \text{m}\Omega \\ &= 0,013 \, \text{m}\Omega \\ Z_{K1} &= \sqrt{R_{K1}^2 + X_{K1}^2} = \sqrt{(0,180 \, \Omega)^2 + (0,013 \, m\Omega)^2} = 0,180 \, \Omega \\ I_{K1} &\approx \frac{0,95 U_{nf}}{Z_{K1}} = \frac{0,95 \cdot 230 \, V}{0,180 \, \Omega} = 1211 \, A \end{split}$$

Z charakterystyki urządzenia zabezpieczającego odczytano minimalny prąd powodujący zadziałanie urządzenia w dopuszczalnym czasie $I_a=315\,A$.

$$I_a \le I_{K1} \to 315 A < 1211 A$$

Warunek spełniony.

5.9.6 Dobór przewodów i zabezpieczeń do obwodów gniazd 1-fazowych

5.9.6.1 Wyznaczenie prądów obciążeń roboczych

Jako prąd obciążenia roboczego przyjęto prąd znamionowy gniazda

$$I_{R} = 16 A$$

5.9.6.2 Dobór zabezpieczeń

5.9.6.2.1 Zabezpieczenia zwarciowe

Dobrano wkładkę ETI DII gF 16A/690V PL o charakterystyce gF, $I_n=16\,A$ oraz zdolności zwarciowej $10\,kA$.

5.9.6.2.2 Zabezpieczenia przeciążeniowe

Do obwodów gniazd 1-fazowych nie dobrano żadnych dodatkowych zabezpieczeń przeciążeniowych.

5.9.6.3 Dobór przekroju przewodów ze względu na obciążalność prądową długotrwałą

W obliczeniach przyjęto parametry przewodu miedzianego w izolacji PVC o przekroju żyły $4\ mm^2$. Przewód prowadzono w nieperforowanym korytku kablowym na ścianie, w którym biegnie łącznie 6 przewodów.

$$I_Z = 36 A$$

$$I'_Z = k_a k_T I_Z = 0.72 \cdot 1 \cdot 36 A = 25.9 A$$

$$I_Z' \ge I_B \to 25.9 A \ge 16 A$$

5.9.6.4 Sprawdzenie dobranego przekroju ze względu na wytrzymałość mechaniczną Dla miedzianych przewodów siłowych do układania na stałe najmniejszy przekrój wynosi $1,5\ mm^2$.

$$S \ge S_{mech} \rightarrow 4 \ mm^2 \ge 1.5 \ mm^2$$

Warunek spełniony.

- 5.9.6.5 Dobór przekroju przewodu neutralnego i ochronnego Minimalny przekrój żył przewodów ochronnych dla $S_L \leq 16~mm^2$ wynosi S_L , czyli w tym przypadku $4~mm^2$.
- 5.9.6.6 Wyznaczenie przekroju przewodów ze względu na dopuszczalny spadek napięcia
 Spadek napięcia od rozdzielnicy oddziałowej do maszyny nie powinien przekraczać 3%

$$R = \frac{l}{\gamma S} = \frac{47,75 \, m}{56 \frac{m}{\Omega \cdot mm^2} \cdot 4 \, mm^2} = 0,213 \, \Omega$$

$$X = x' l \cdot 10^{-3} = 0,07 \frac{m\Omega}{mm^2} \cdot 47,75 \, m \cdot 10^{-3} = 0,003 \, m\Omega$$

$$\Delta U_{\%} = \frac{200}{U_n} I_B (R\cos\varphi + X\sin\varphi) = \frac{200}{230 \, V} \cdot 16 \, A \cdot (0,213 \, \Omega \cdot 0,5 + 0,003 \, m\Omega \cdot 0,87)$$

$$= 0,98\%$$

$$\Delta U_{\%} \leq \Delta U_{dop} \rightarrow 0.98\% \leq 3\%$$

Warunek spełniony.

- 5.9.6.7 Sprawdzenie przekroju przewodów ze względu na wytrzymałość cieplną przy przeciążeniach
- 5.9.6.7.1 Warunek pierwszy

$$I_R \le I_n \le I_Z' \to 21.7 A \le 25 A \le 26.9 A$$

Warunek spełniony.

5.9.6.7.2 Warunek drugi

$$I_2 \le 1.45I_Z' \rightarrow 36.25 A \le 38.95 A$$

Warunek spełniony.

5.9.6.8 Sprawdzenie przekroju przewodów ze względu na cieplną wytrzymałość zwarciową Na podstawie 5.7.4 przyjęto $I_K^{\prime\prime}=14{,}805~kA$. Czas zadziałania zabezpieczenia jest krótszy niż 10 ms, stąd posłużono się warunkiem:

$$\int_{t} I^{2} dt \le (kS)^{2}$$

Dla przewodu o izolacji PVC z żyłami miedzianymi: $k=115 rac{A\sqrt{s}}{mm^2}$

$$(kS)^2 = \left(115 \frac{A\sqrt{s}}{mm^2} \cdot 4 \ mm^2\right)^2 = 211600 \ A^2 s$$

Z charakterystyki urządzenia zabezpieczającego odczytano $\int_t I^2 dt = 500\,A^2 s$

$$\int_{t} I^{2} dt \le (kS)^{2} \to 500 \, A^{2} s \le 211600 \, A^{2} s$$

Warunek spełniony.

5.9.6.9 Dobór przewodu z katalogu producenta

Na podstawie obliczeń dobrano przewód TFKable TFPremium YDYżo, 3-żyłowy o przekroju żyły $4 mm^2$, napięciu znamionowym 450/750 V, w izolacji i powłoce PVC.

5.9.6.10 Sprawdzenie przekroju przewodów ze względu na skuteczność dodatkowej ochrony przeciwporażeniowej

Parametry systemu elektroenergetycznego, transformatora oraz WLZ dobrano podstawie obliczeń zwarciowych w 5.7. Przyjęto parametry WLZ dla zasilania rezerwowego, jako gorszego przypadku. Dla napięcia znamionowego 400/230 V dobrano współczynnik napięciowy $c_{min}=0.95$. Najdłuższy dopuszczalny czas wyłączenia dla instalacji wynosi 0,2s.

$$R_{K1} = R_T + 1,24(R_{WLZ} + R_L + R_{WLZPEN} + R_{LPEN})$$

$$= 2,2 \, m\Omega + 1,24 \cdot (2 \cdot 18,9 \, \text{m}\Omega + 2 \cdot 213,2 \, \text{m}\Omega) = 0,576 \, \Omega$$

$$X_{K1} = X_Q + X_T + X_{WLZ} + X_L + X_{WLZPEN} + X_{LPEN} \approx 0,452 \, m\Omega + 12,812 \, \text{m}\Omega$$

$$= 0,013 \, \text{m}\Omega$$

$$Z_{K1} = \sqrt{R_{K1}^2 + X_{K1}^2} = \sqrt{(0,576 \, \Omega)^2 + (0,013 \, m\Omega)^2} = 0,576 \, \Omega$$

$$I_{K1} \approx \frac{0,95 \, U_{nf}}{Z_{K1}} = \frac{0,95 \cdot 230 \, V}{0,576 \, \Omega} = 379 \, A$$

Z charakterystyki urządzenia zabezpieczającego odczytano minimalny prąd powodujący zadziałanie urządzenia w dopuszczalnym czasie $I_a=80\,A$.

$$I_a \le I_{K1} \to 80 A < 379 A$$

Warunek spełniony.

5.10 OBLICZENIA DLA INSTALACJI OŚWIETLENIOWEJ

Obliczenia przeprowadzono dla najdłuższego obwodu oświetleniowego.

5.10.1.1 Wyznaczenie prądów obciążeń roboczych

$$I_B = nI_{nopr} = 21 * 0.1925 = 4.0 A$$

5.10.1.2 Dobór zabezpieczeń

5.10.1.2.1 Zabezpieczenia zwarciowe

Na podstawie prądu obciążenia roboczego wybrano wkładkę ETI D01/gG/6A/E14/400V 002211003 o prądzie znamionowym 6 A.

5.10.1.2.2 Zabezpieczenia przeciążeniowe

Dla obwodów oświetleniowych nie dobrano zabezpieczeń przeciążeniowych, jedynie zwarciowe.

5.10.1.3 Dobór przekroju przewodów ze względu na obciążalność prądową długotrwałą W obliczeniach przyjęto parametry przewodu miedzianego w izolacji PVC o przekroju żyły $2.5\ mm^2$.

$$I_Z = 19,5 A$$

$$I'_Z \ge \frac{I_B}{k_g k_t} = \frac{4,0}{0,77 * 1} = 15,01 A$$

$$I'_Z \ge I_B \to 19,5 A \ge 4,0 A$$

Warunek spełniony.

5.10.1.4 Sprawdzenie dobranego przekroju ze względu na wytrzymałość mechaniczną

$$S \ge S_{mech} \to 2.5 \ mm^2 \ge 1.5 \ mm^2$$

Warunek spełniony.

5.10.1.5 Dobór przekroju przewodu neutralnego i ochronnego

$$S_L \leq 16 \, mm^2$$

Zatem minimalny przekrój przewodu ochronnego będzie równy $S_L=2.5mm^2$

5.10.1.6 Wyznaczenie przekroju przewodów ze względu na dopuszczalny spadek napięcia
Spadek napięcia od rozdzielnicy oddziałowej do maszyny nie powinien przekraczać 2,5%

$$U_{\%} \leq \Delta U_{dop}$$
 Spadek nie powinien przekraszać 2,5%

Spadek nie powinien przekraszać 2,5%
Przewód miedziany, zatem
$$\gamma = 56 \frac{m}{\Omega \cdot mm^2}$$

 $R = \frac{l}{\gamma S} = \frac{37,01}{56 \frac{m}{\Omega \cdot mm^2} \cdot 240 \ mm^2} = 0,264 \ \Omega$
 $X = x' \cdot l \cdot 10^{-3} = 0,07 \frac{m\Omega}{m} \cdot 37,01 \ m \cdot 10^{-3} = 0,002 m\Omega$
 $\Delta U_{\%} = \Sigma \Delta U_{0i} = \frac{100 P_{opr} \Sigma l_{0i}}{\gamma S U_n^2} = \frac{100 * 77W * 203,1m}{56 \frac{m}{\Omega \cdot mm^2} * 2,5mm^2 * 400^2 V} = 0,07\%$
 $\Delta U_{\%} \leq \Delta U_{dop} \rightarrow 0,07\% \leq 2,5\%$

Warunek spełniony.

5.10.1.7 Sprawdzenie przekroju przewodów ze względu na wytrzymałość cieplną przy przeciążeniach

5.10.1.7.1 Warunek pierwszy

$$I_R \le I_n \le I_Z' \to 4.0 A \le 6.0 A \le 15.01A$$

Warunek spełniony.

5.10.1.7.2 Warunek drugi

$$I_2 \le 1.45I_Z' \to 6A \le 1.45 \cdot 15.01A = 21.76 A$$

Warunek spełniony.

5.10.1.8 Sprawdzenie przekroju przewodów ze względu na cieplną wytrzymałość zwarciową Na podstawie 5.7.4 przyjęto $I_K^{\prime\prime}=14{,}805~kA$. Czas zadziałania zabezpieczenia jest krótszy niż 10 ms, stąd posłużono się warunkiem:

$$\int_{t} I^{2} dt \le (kS)^{2}$$

Dla przewodu o izolacji PVC z żyłami miedzianymi: $k=115 rac{A\sqrt{s}}{mm^2}$

$$(kS)^2 = \left(115 \frac{A\sqrt{s}}{mm^2} \cdot 2,5mm^2\right)^2 = 82656 A^2 s$$

Z charakterystyki urządzenia zabezpieczającego odczytano $\int_t I^2 dt = 500\,A^2 s$

$$\int_{t} I^{2} dt \le (kS)^{2} \to 500 \, A^{2} s \le 82656 \, A^{2} s$$

Warunek spełniony.

5.10.1.9 Dobór przewodu z katalogu producenta

Na podstawie obliczeń dobrano przewód H07V-K (LgY) 2,5mm2 450/750V , 4-żyłowy o przekroju żyły (również PEN) 2,5 mm^2 o powłoce PVC.

5.10.1.10 Sprawdzenie przekroju przewodów ze względu na skuteczność dodatkowej ochrony przeciwporażeniowej

Parametry systemu elektroenergetycznego, transformatora oraz WLZ dobrano podstawie obliczeń zwarciowych w 5.7. Przyjęto parametry WLZ dla zasilania rezerwowego, jako gorszego przypadku. Dla napięcia znamionowego 400/230 V dobrano współczynnik napięciowy $c_{min}=0.95$. Najdłuższy dopuszczalny czas wyłączenia dla instalacji wynosi 0,2s

$$R_{K1} = R_T + 1,24(R_{WLZ} + R_L + R_{WLZPEN} + R_{LPEN})$$

$$= 0,002\Omega + 1,24(0,019\Omega + 0,264\Omega + 0,19\Omega) = 0,704\Omega$$

$$X_{K1} = X_Q + X_T + X_{WLZ} + X_L + X_{WLZPEN} + X_{LPEN}$$

$$\approx 0,452\text{m}\Omega + 12,812\text{m}\Omega + 0,011\text{m}\Omega + 0,003\text{m}\Omega + 0,011\text{m}\Omega$$

$$+ 0,003\text{m}\Omega = 13,291\text{m}\Omega$$

$$Z_{K1} = \sqrt{R_{K1}^2 + X_{K1}^2} = \sqrt{(0,704\Omega)^2 + (0,013291\Omega)^2} = 0,702\Omega$$

$$I_{K1} \approx \frac{0,95U_{nf}}{Z_{K1}} = \frac{0,95 \cdot 230 \text{ V}}{0,702\Omega} = 310,94 \text{ A}$$

Z charakterystyki urządzenia zabezpieczającego odczytano minimalny prąd powodujący zadziałanie urządzenia w dopuszczalnym czasie $I_a=150\,A$.

Rysunek 6. Charakterystyki czasowo-prądowe zabezpieczenia obwodu oświetleniowego

$$I_a \le I_{K1} \to 150 \, A < 310,94 \, A$$

6 WYKAZ RYSUNKÓW TECHNICZNYCH

Numer rysunku	Tytuł	Autor	Data
1	Fabryka samochodów – plan	Eryk Błaszczyk	
	zagospodarowania przestrzennego		
2	Oddział nr 1 – podkładka budowlana	Kacper Borucki	2020-05-22
3	Plan instalacji siłowej – oddział nr 1	Kacper Borucki	2020-05-22
4	Plan instalacji oświetleniowej – oddział nr 1	Eryk Błaszczyk	

6.1 PODKŁADKA BUDOWLANA ZE SCHEMATAMI ROZMIESZCZENIA URZĄDZEŃ ODBIORCZYCH W ODDZIALE NR 1.

6.2 PLAN INSTALACJI SIŁOWEJ W ODDZIALE NR 1.

6.3 PLAN INSTALACJI OŚWIETLENIOWEJ W ODDZIALE NR 1.

6.4 PLAN ZAGOSPODAROWANIA PRZESTRZENNEGO ZAKŁADU.

7 LITERATURA

- [1] Waldemar Dołęga, Mirosław Kobusiński, *Projektowanie instalacji elektrycznych w obiektach przemysłowych*
- [2] Henryk Markiewicz, *Instalacje elektryczne*
- [3] Łukasz Gorgolewski, *Systemy zasilania rezerwowego cz. I*, 27.06.2017 inzynierbudownictwa.pl, http://www.inzynierbudownictwa.pl/technika,materialy_i_technologie,artykul,systemy_zasilania_rezerwowego_cz_i,10109
- [4] Zbigniew Skibko, Radosław Wiśniewski, *Kompensacja mocy biernej w obiektach przemysłowych* http://astat-energetyka.pl/wp-content/uploads/2018/07/4-Kompensacja-mocy-biernej-w-obiektach-przemyslowych.pdf

[Zał. 1] Projekt oświetlenia – wariant 1 – konwencjonalny (Eryk Błaszczyk)

odział-nr-1-tłocznia -oświetlenie-eblaszo

[Zał. 2] Projekt oświetlenia – wariant 2 – energooszczędny (Kacper Borucki)

odział-nr-1-tłocznia -oświetlenie-kboruc

[Zał. 3] Oprawy oświetleniowe – karta katalogowa

cosmo4-karta-katal ogowa.pdf

[Zał. 4] Gniazda 1-fazowe – karta katalogowa

113-6PL.PDF

[Zał. 5] Gniazda 3-fazowe – karta katalogowa

135-6PL.PDF

[Zał. 6] Piece oporowe – karta katalogowa

piece-karta-dokum entacja.pdf

[Zał. 7] Silniki indukcyjne do podnośników i przenośników – karta katalogowa

dokumentacja-3Sg-IE2-_karta_katalogo

[Zał. 8] Silniki indukcyjne do pras – karta katalogowa

PRASA-KARTA-KATA LOGOWA.pdf

[Zał. 9] Bateria kondensatorów do oddziału nr 1 – karta katalogowa

Karta-katalogowa-B K-55-edit.pdf

[Zał. 10] Bateria kondensatorów do oddziału nr 2 – karta katalogowa

Karta-katalogowa-B K-25-oddzial2.pdf

[Zał. 11] Bateria kondensatorów do oddziału nr 3 – karta katalogowa

Karta-katalogowa-B KH-96.pdf

[Zał. 12] Bateria kondensatorów do oddziału nr 4 – karta katalogowa

Karta-katalogowa-B K-180.pdf

[Zał. 13] Zabezpieczenia WLZ zasilania oddziału nr 1 – karta katalogowa

wlz-p-r-zabezpiecze nia-karta-katalogow

[Zał. 14] WLZ1 – zasilanie podstawowe – karta katalogowa

wlz1-podstawowakarta-katalogowa.po

[Zał. 15] WLZ1 – zasilanie rezerwowe – karta katalogowa

wlz-rezerwowa-kart a-katalogowa.pdf

[Zał. 16] Transformator SO1 – karta katalogowa

trafo-so1-do-doku mentacji.pdf

[Zał. 17] Transformator SO2 – karta katalogowa

trafo-so2-dokumen tacja.pdf

[Zał. 18] Zabezpieczenie zwarciowe gniazd 3-fazowych – karta katalogowa

gniazda 3f eti_datasheet_00411

[Zał. 19] Zabezpieczenie zwarciowe gniazd 1-fazowych – karta katalogowa

gniazda 1f eti_datasheet_00231

[Zał. 20] Zabezpieczenie zwarciowe silników pras – karta katalogowa

wkladka prasy eti_datasheet_00671

[Zał. 21] Wyłączniki silnikowe dla pras, podnośników, przenośników – karta katalogowa

[Zał. 22] Zabezpieczenie zwarciowe silników podnośników – karta katalogowa

wkladka podnosniki - eti_dat

[Zał. 23] Zabezpieczenie zwarciowe silników przenośników – karta katalogowa

wkladka przenosnik - eti_dat

[Zał. 24] Zabezpieczenie zwarciowe pieców oporowych – karta katalogowa

PIEC - WKLADKA - eti_datasheet_00413

[Zał. 25] Przewody zasilające gniazda 3-fazowe – karta katalogowa

gniazda-3f-zasilani e-karta-katalogowa.

[Zał. 26] Przewody zasilające prasy – karta katalogowa

prasy-zasilanie-kart a-katalogowa.pdf

[Zał. 27] Przewody zasilające gniazda 1-fazowe, oświetlenie i pozostałe maszyny – karta katalogowa

gniazda1f-przenos niki-podnosniki-pie

[Zał. 28] Obwody oświetleniowe – przewody zasilające

H07V-K, 07V-K (LgY(żo) 450_750 V).p

[Zał. 29] Obwody oświetleniowe – wkładki topikowe

zab-oswietlenia-kat alog.pdf