MANAGING AND MINING SENSOR DATA

MANAGING AND MINING SENSOR DATA

Contents

Preface			xiii
1			
An Intro	duction	n to Sensor Data Analytics	1
Charu C		· ·	
1.		luction	1
2.		rch in Sensor Processing	3
3.		usions and Summary	7
Refer		usions and Summary	7
Heler	ences		'
2			
A Survey	of Mod	lel-based Sensor Data Acquisition and Management	9
		anasis G. Papaioannou, Hoyoung Jeung and Karl Aberer	
1.		luction	10
2.		l-Based Sensor Data Acquisition	13
۵.	2.1	Preliminaries	13
	$\frac{2.1}{2.2}$	The Sensor Data Acquisition Query	14
	2.3	Pull-Based Data Acquisition	15
	$\frac{1}{2}.4$	Push-Based Data Acquisition	18
3.		l-Based Sensor Data Cleaning	21
-	3.1	Overview of Sensor Data Cleaning System	22
	3.2	Models for Sensor Data Cleaning	23
	3.3	Declarative Data Cleaning Approaches	27
4.	Mode	l-Based Query Processing	28
	4.1	In-Network Query Processing	28
	4.2	Model-Based Views	29
	4.3	Symbolic Query Evaluation	30
	4.4	Processing Queries over Uncertain Data	31
	4.5	Query Processing over Semantic States	33
	4.6	Processing Event Queries	34
5.		l-Based Sensor Data Compression	34
	5.1	Overview of Sensor Data Compression System	35
	5.2	Methods for Data Segmentation	37
	5.3	Piecewise Approximation	37
	5.4	Compressing Correlated Data Streams	40
	5.5	Multi-Model Data Compression	41
	5.6	Orthogonal Transformations	42
C	5.7	Lossless vs. Lossy Compression	44
6.	Sumn	nary	45
Refer	ences		46

3		
	Processing in Wireless Sensor Networks	51
	Wang, Lei Chen and Dimitris Papadias	
1.	Introduction	52
2.	Limitations of Sensor Nodes	54
	2.1 Energy Constraint 2.2 Other Constraints	54
3.		55 56
Э.	Topologies of WSNS 3.1 Tree-Based Topology	56
	3.2 Multi-Path-Based Topology	58
	3.3 Hybrid Topology	59
4.	Data Storage	60
5.	Data Acquisition and Aggregation	61
٠.	5.1 Query Models	61
	5.2 Basic Acquisition and Aggregation	62
	5.3 Secure Aggregation	65
	5.4 Efficient Algorithms for Specific Aggregations	66
	5.5 Join Processing	67
6.	Other Queries	69
	6.1 Model-Driven Data Acquisition and Probabilistic Queries 69	
	6.2 Event Detection	70
	6.3 Approximation Queries	73
7.	Conclusion	73
Re	ferences	74
4		
	Dua cogging in Canaan Chacana	77
	Processing in Sensor Streams	' '
	ng Wang, Chunjie Zhou and Yanming Nie	70
1.	Events and Event Processing 1.1 Semantics of Events	78 78
	1.2 Event Processing	79
	1.3 Applications of Sensor Event Processing	80
2.	Event Processing in Sensor Streams	82
	2.1 Event Models for Sensor Streams	83
	2.2 Sensor Event Detection	84
3.	Event Processing over RFID Streams	86
	3.1 RFID Events	87
	3.2 RFID Complex Event Specifications	88
	3.3 RFID Complex Event Detection Models 3.4 RFID Complex Event Detection Methods and Opti-	89
	3.4 RFID Complex Event Detection Methods and Optimizations	91
4.	Advanced Topics on Complex Event Processing for Sensor Stream	-
	92 4.1 Probability of Events	93
	4.2 Disorder of Events	93
5.	Conclusions and Summary	96
	ferences	96
5	The Dollar Library Control of	109
	nsionality Reduction and Filtering on Time Series Sensor Streams	103
	Reparation Papadimitriou, Jimeng Sun, Christos Faloutos and Philip S. Yu	46.
1.	Introduction	104

Conten	ats	vii
2.	Broader Overview	109
	2.1 Dimensionality reduction	110
	2.2 Compression and filtering	111
3.	Principal Component Analysis (PCA)	113
4.	Auto-Regressive Models and Recursive Least Squares	115
	4.1 Auto-Regressive (AR) Modeling	115
	4.2 Recursive Least Squares (RLS)	116
5.	MUSCLES	117
	5.1 Selective MUSCLES	117
6.	Tracking Correlations and Hidden Variables: SPIRIT	119
	6.1 Tracking the Hidden Variables	121
	6.2 Detecting the Number of Hidden Variables	122
-	6.3 Exponential Forgetting	124
7.	An Application-driven View: Putting Correlations to Work 7.1 Forecasting and Missing Values	$\frac{125}{125}$
	7.1 Forecasting and Missing Values 7.2 Interpretation	$\frac{125}{126}$
8.	Pattern Discovery across Time	126
0.	8.1 Locally Optimal Patterns	129
	8.2 Multiple-Scale Patterns	132
	8.3 Streaming Computation	136
9.	Conclusions	137
Ref	erences	138
6		
6 Minima	Cangan Data Ctucana	143
	Sensor Data Streams	140
	C. Aggarwal Introduction	1.49
1. 2.		143 144
۷.	Sensor Stream Mining Issues 2.1 Data Uncertainty and Volume	$144 \\ 145$
	2.2 Power Issues in Sensor Collection and Transmission	146
	2.3 In-Network Processing	146
3.	Stream Mining Algorithms	147
	3.1 Data Stream Clustering	147
	3.2 Data Stream Classification	150
	3.3 Frequent Pattern Mining	152
	3.4 Change Detection in Data Streams 3.5 Synopsis Construction in Data Streams	$153 \\ 154$
	3.5 Synopsis Construction in Data Streams 3.6 Dimensionality Reduction and Forecasting in Data Stre	-
	162	anis
	3.7 Distributed Mining of Data Streams	162
4.	Sensor Applications of Stream Mining	163
	4.1 Military Applications	163
	4.2 Cosmological Applications	164
	4.3 Mobile Applications	164
E	4.4 Environmental and Weather Data	165
5.	Conclusions and Research Directions	165
Kei	erences	166
7		
Real-T	ime Data Analytics in Sensor Networks	173
	s Palpanas	
1.	Introduction	173

	0	D-4- (1-11-4:	171
	2.	Data Collection	174
		2.1 Model-Driven Data Acquisition 2.2 Data-Driven Data Acquisition	175
		2.2 Data-Driven Data Acquisition2.3 Data Series Summarization	176 181
	0		
	3.	Data Processing	184
		3.1 Enabling Complex Analytics	185
		3.2 Detection and Tracking of Homogeneous Regions	186
		3.3 Outlier Detection	187
	4	3.4 Processing Uncertain Data Series	192
	4.	Discussion	196
		4.1 Data-Aware Network Protocols 4.2 Uncertain Data Processing	196 198
		4.2 Uncertain Data Processing 4.3 Ubiquitous Sensor Networks	$198 \\ 199$
	5.	Conclusions	
	-		200
	Refere	ences	201
8			
Di	stribute	ed Data Mining in Sensor Networks	211
		Bhaduri and Marco Stolpe	
	1.	Introduction	212
	2.	Clustering in Wireless Sensor Networks	213
		2.1 Distributed Clustering of Sensor Nodes	214
		2.2 Distributed Clustering of Sensor Measurements	219
	3.	Classification in Wireless Sensor Networks	222
	4.	Outlier Detection in WSN	226
	1.	4.1 Statistical approaches	$\frac{220}{227}$
		4.2 Nearest neighbor based approaches	228
		4.3 Classification based approaches	229
	5.	Conclusions	230
	Refere		230
9			007
	cial Sei	· ·	237
Ch	aru C.	Aggarwal and Tarek Abdelzaher	
	1.	Introduction	238
	2.	Technological Enablers of Social Sensing	242
	3.	Data Collection, Architectural and System Design Challenges	244
		3.1 Privacy-Preserving Data Collection	245
		3.2 Generalized Model Construction	246
		3.3 Real-time Decision Services	247
		3.4 Recruitment Issues	247
		3.5 Energy Efficient Design	249
		3.6 Other Architectural Challenges	251
	4.	Privacy Issues in Social Sensing	252
	5.	Trust in Social Sensing	258
	6.	Implied Social Networks: Inference and Dynamic Modeling	261
	7.	Trajectory Mining for Social Sensing	265
		7.1 Integrating Sensor Data with Heterogeneous Media for	
		Enhanced Mining and Inference	269
	8.	Social Sensing Applications	271
		8.1 CrowdSourcing Applications for User-Centered Activi-	
		ties	271

~	
Contents	1X
Contentio	IΛ

	8.2 RFID Technology: The Internet of Things	276
	8.3 Vehicular Participatory Sensing	277
0	8.4 Participatory Sensing in Healthcare	280
9.	Future Challenges and Research Directions	282
Refe	erences	284
10		200
	for Mobile Objects	299
	s D. Larusso and Ambuj K. Singh	200
1. 2.	Introduction	300
۷.	Data Management for Mobile Objects 2.1 Spatiotemporal Database Systems	303 304
	2.2 Moving Object Databases	309
	2.3 Mobile Objects on Road Networks	313
3.	Probabilistic Models for Tracking	316
	3.1 The Tracking Problem	317
	3.2 Kalman Filter	319
	3.3 Tracking with Road Networks	328
	3.4 Tracking for External Sensing	331
4.	Mining Mobility Data	331
5.	Discussion and Future Research Directions	339
Refe	erences	340
11		
	ey of RFID Data Processing	349
Charu	C. Aggarwal and Jiawei Han	
1.	Introduction	350
2.	Raw RFID Data Cleaning and Compression	355
3.	RFID Data Management and Warehousing	359
	3.1 Efficient Warehousing of RFID Data	362
4.	Semantic Event Extraction from RFID Data Streams 4.1 Probabilistic Event Extraction	$\frac{365}{368}$
5.	Privacy and Security Issues with RFID Data	369
٥.	5.1 The Kill Command	370
	5.2 Cryptographic Solutions	371
	5.3 Blocker Tags	372
	5.4 Other Privacy- and Security-Protection Methods	374
	5.5 Privacy Issues in Data Management	375
6.	Conclusions and Summary	376
Refe	erences	376
12		
	ernet of Things: A Survey from the Data-Centric Perspective	383
Charu	C. Aggarwal, Naveen Ashish and Amit Sheth	
1.	Introduction	384
	1.1 The Internet of Things: Broader Vision	386
2.	Applications: Current and Future Potential	389
3.	Networking Issues: Impact on Data Collection	391
	3.1 RFID Technology	392
	3.2 Active and Passive RFID Sensor Networks 3.3 Wireless Sensor Networks	393 393
	3.4 Mobile Connectivity	394
	3.1 1,100110 00111100	007

	398
4.3 Semantic Web Data Management 4 4.4 Real-time and Big Data Analytics for The Internet of	109
Things 4.4 Real-time and Dig Data Analytics for The Internet of	410
	114
v	415
	$\frac{415}{417}$
v o	417 419
V	120
	120
13	
	129
Tarek Abdelzaher and Jiawei Han	
1. Introduction 4	430
2. Classification-based Bug Localization 4	433
	133
	134
±	436 437
	438 438
1 0	441
1 0	143
	144
5. Future Challenges 4	146
References 4	448
14	
Mining of Sensor Data in Healthcare: A Survey 4	459
Daby Sow, Deepak S. Turaga and Michael Schmidt	
1. Introduction 4	460
2. Mining Sensor Data in Medical Informatics: Scope and Chal-	161
	461 461
	163
0 0	168
11	468
	175
	476
1 1	477 480
	487
√ 0	192
v S	195
v e	495
15	
	505

Contents xi

Varun M	ithal, λ	James Faghmous, Jaya Kawale, Luke Styles, Mace B Ki Chen, Ankush Khandelwal, Shyam Boriah, Karsten S l Steinbach, Vipin Kumar and Stefan Liess	${\it lank}, \ {\it ltein}$
1.		uction	506
2.	Overv	iew of Earth Science Sensor Datasets	507
	2.1	Observational Data	507
	2.2	Reanalysis Data	509
3.	Data-o	centric Challenges	511
4.		Detection	512
	4.1	Illustrative Application: Monitoring Changes in Land Cover	514
	4.2	Illustrative Application: Identifying Ocean Eddies from Satellite Altimeter Data	516
5.	Relation	onship Mining	519
	5.1	Illustrative Application: Identifying Atmospheric Teleconnections	521
6.	Conclu	iding Remarks	522
7.		wledgments	523
Refere			523
Index			531

Preface

Sensor data has become pervasive in recent years because of the popularization and wider availability of sensor technology through cheaper embedded sensor devices and RFID technology. Sensors produce large volumes of data continuously over time, and this leads to numerous computational challenges. Such challenges arise both from *accuracy* and *scalability* perspectives.

The scalability challenges of sensor data analytics have reached extraordinary proportions, with the increasing proliferation of ubiquitous and embedded sensors and mobile devices, each of which can potentially generate large streams of data. Many of these devices are internet-connected. This has enabled greater possibilities for different kinds of distributed data sharing and analytics. It has been estimated that the number of internet-connected devices has exceeded the number of people on the planet since 2008. Therefore, it is foreseeable, that in the coming years, machine generated data will dominate human-generated data by orders of magnitude, and this gap is only likely to increase with time. In this context, the challenges associated with scalable and real-time management and mining of sensor data are likely to become even more significant with time.

Sensor data mining is a relatively new area, which is now reaching a certain level of maturity. In spite of this, the data analytics researchers have often remained disconnected from the networking issues which arise during data collection and processing. While the focus of this book is clearly on the data analytics side, we have taken special care to emphasize the impact of the network-specific issues on data processing.

This book discusses the key issues in the collection, modeling and processing of sensor data. The content of the book is carefully designed to cover the area of sensor data mining comprehensively. Each chapter is written as a survey by a well known researcher from the field, so as to cover this area comprehensively. Emphasis is also provided on different applications of sensor networks. A number of newer applications such as social sensing and the internet-of-things are also discussed in this book.

The book is intended for graduate students, researchers and professors. Emphasis has been placed on simplifying the material and making it more accessible. The material in the book can be helpful to both beginners on the subject and advanced researchers. At the same time, the latest topics are covered in significant detail. It is hoped that this book will provide a comprehensive overview of the research in this field. It will be a useful guide to students, researchers and practitioners.

Chapter 1

AN INTRODUCTION TO SENSOR DATA ANALYTICS

Charu C. Aggarwal

IBM T. J. Watson Research Center

Yorktown Heights, NY 10598

charu@us.ibm.com

Abstract

The increasing advances in hardware technology for sensor processing and mobile technology has resulted in greater access and availability of sensor data from a wide variety of applications. For example, the commodity mobile devices contain a wide variety of sensors such as GPS, accelerometers, and other kinds of data. Many other kinds of technology such as RFID-enabled sensors also produce large volumes of data over time. This has lead to a need for principled methods for efficient sensor data processing. This chapter will provide an overview of the challenges of sensor data analytics and the different areas of research in this context. We will also present the organization of the chapters in this book in this context.

Keywords: Sensor data, stream processing

1. Introduction

Recent years have seen tremendous advances in hardware technology such as the development of miniaturized sensors, GPS-enabled devices, pedometers, and accelerometers, which can be used to collect different kinds of data [6]. This has lead to a deluge of tremendous amounts of real-time data, which can be mined for a variety of analytical insights. The costs of sensor hardware has been consistently going down over the past few years. Furthermore, many data collection technologies [5] such as RFID have been enabled in a very cost-effective way, as a result of which the *scale* of the collection process has become enormous. Sensor

data is produced in the context of a wide variety of applications such as the following:

- A wide variety of mobile devices are now GPS-enabled. This has lead to unprecedented opportunities in the context of several applications such as social sensing [4]. GPS data is also available in the context of many location-aware devices and applications.
- The decreasing cost of RFID tags has lead to tremendous volumes of RFID data. The cost of an RFID tag is now in the range of under 5 cents. This has allowed cost-effective deployment of RFID tags on products of even modest price. RFID data poses numerous challenges because of the tremendous amounts of noise in the collected data [5].
- Numerous military applications use a wide variety of sensors in order to track for unusual events or activity. This could include visual or audio cameras, or seismometers for tracking movements of large objects [9].
- Sensors are also deployed in the context of a wide variety of environmental applications, such as detecting weather and climate trends [7], and tracking pollution levels in water networks [11].

Sensor data brings numerous challenges with it in the context of data collection, storage and processing. This is because sensor data processing often requires efficient and real-time processing from massive volumes of possibly uncertain data. Some of these challenges may be enumerated as follows:

- Data collection is a huge challenge in the context of sensor processing because of the natural errors and incompleteness in the collection process. Sensors often have limited battery life, because of which many of the sensors in a network may not be able to collect or transmit their data over large periods of time. The errors in the underlying data may lead to uncertainty of the data representation [8]. Therefore, methods need to be designed to process the data in the presence of uncertainty.
- Sensors are often designed for applications which require *real-time* processing. This requires the design of efficient methods for stream processing [1]. Such algorithms need to be executed in one pass of the data, since it is typically not often possible to store the entire data set because of storage and other constraints.

- The large volumes of data lead to huge challenges in terms of storage and processing of the data. It has been estimated that since 2008, the number of internet-connected devices has exceeded the number of people on the planet. Thus, it is clear that the amount of machine generated data today greatly exceeds the amount of human generated data, and this gap is only likely to increase in the forseeable future. This is widely known as the big data problem in the context of analytical applications [10], or the information overload problem in stream processing.
- In many cases, it is critical to perform *in-network processing*, wherein the data is processed within the network itself, rather than at a centralized service. This needs effective design of distributed processing algorithms, wherein queries and other mining algorithm can be processed within the network in real time [12].

In this book, we will provide an overview of the key areas of research in sensor processing, as they related to these challenges. We will also study a number of new applications of sensor data such as social sensing, mobile data processing, RFID processing, and the internet of things.

This chapter is organized as follows. In the next section, we will discuss the key areas of research in sensor processing, as they relate to the afore-mentioned challenges. We will also relate the different research areas to these challenges. Section 3 discusses the conclusions and summary.

2. Research in Sensor Processing

The research issues in the area of sensor processing arise along all stages of the pipeline, beginning from data collection, cleaning, data management, and knowledge discovery and mining. Furthermore, many research issues arise in the context of in-network processing, which are specific to the particular application domain. The specificity to the application domain may arise in the context of other parts of the pipeline as well. Therefore, we summarize the key research issues which arise in the context of sensor data processing as follows:

■ Data Collection and Cleaning Issues: Numerous issues arise in the context of collection of sensor data. Sensor data is inherently noisy and uncertain, and may either have missed readings or redundant readings depending upon the application domain. For example, in the context of RFID data, almost 30% of the readings are dropped, and multiple sensors may track the same RFID object. In the context of battery-driven sensors, numerous errors may

arise during data transmission, and there may also be significant incompleteness because of limited battery life.

- Data Management Issues: The large volumes of collected data poses significant challenges for the collected data. Sometimes, the volume of the data is so large, that it may be impractical to store the entire raw data, and it may be desirable to either compress or drop portions of the data. What parts of the data should be dropped or compressed? The errors and uncertainty in sensor data, have spurred the development of algorithms for uncertain database management [2].
- Sensor Data Mining and Processing: The large volumes of sensor data necessitate the design of efficient one-pass algorithms which require at most one scan of the data. These are traditionally referred to as data stream mining algorithms. Furthermore, it may sometimes be advantageous to perform *in-network processing*, which can perform partial processing of the data in the network before sending these results on to a higher level of storage.
- Application-Specific Issues: Sensor data can arise in many domains such as retail data (RFID), military sensor networks, astronomy, the environment, and mobile data. Different domains may lead to different issues in the context of storage and processing. For example, RFID data may have larger levels of redundancy and uncertainty, whereas mobile data mining applications may require spatio-temporal mining techniques.

The different chapters of this book will study these different aspects of sensor stream processing. Therefore, the book will be organized so as to comprehensively study these different aspects. The different topics covered by the chapters of this book are as follows:

Data Collection and Management Issues The key data collection and management issues are discussed in Chapter 2. This chapter discusses some of the key database management aspects, which have recently been designed in the context of sensor data. Issues involving data uncertainty and query processing are discussed in this chapter, especially in the context of sensor data. The area of indexing and query processing is very important in the context of sensor data, and therefore we have also designed chapters specifically for this topic.

Query Processing of Sensor Data Sensor data poses numerous challenges from the perspective of indexing and query processing, be-

cause of the massive volume of the data which is received over time. A special case of query processing in sensor data is that of event detection, wherein continuous queries are posed on the sensor data in order to detect the underlying events. The main challenge in event processing is that the high level semantic events are often a complex function of the underlying raw sensor data. In some cases, the event-query cannot be posed exactly, since the event detection process is ambiguously related to the underlying data. Methods for query processing of sensor data are discussed in Chapter 3. Specialized methods for event processing of sensor data are discussed in Chapter 4.

Mining Sensor Data A variety of data mining methods such as clustering, classification, frequent pattern mining, and outlier detection are often applied to sensor data in order to extract actionable insights. This data usually needs to be compressed and filtered for more effective mining and analysis. The main challenge is that conventional mining algorithms are often not designed for real time processing of the data. Therefore, new algorithms for sensor data stream processing need to perform the analytics in a single pass in real time. In addition, the sensor scenario may often require *in-network* processing, wherein the data is processed to higher level representations before further processing. This reduces the transmission costs, and the data overload from a storage perspective. The problems of stream compression [3] and stream mining are therefore tightly integrated together from an efficiency perspective. For example, compression and hidden variable modeling provides summarized representations which can be leveraged for applications such as forecasting and outlier analysis. A survey of methods for dimensionality reduction, compression and filtering of sensor streams is provided in Chapter 5. This chapter studies the issue of stream correlation analysis, compression across streams in terms of hidden variables, and compression across time in a given stream. The application of these concepts to a few stream mining problems is also studied in the same chapter. A number of methods for real-time sensor stream mining, processing and analytics are discussed in Chapters 6 and 7. Specific methods for mining sensor streams in the distributed setting are presented in Chapter 8.

Social Sensing Applications and Mobile Data The popularity of mobile phones and other sensor-enabled devices has lead to a plethora of "socially-aware data" which can be mined in the context of a wide variety of applications. This trend has lead to the integration of sensors and dynamic social networks. A number of architectural, privacy and trust issues arise in the collection of socially aware sensor data. These

issues are discussed in detail in Chapter 9. The chapter also discusses the issues of mining the different kinds of GPS- and content-based data generated in such applications.

Much of the data in social sensing applications often contains GPS trajectory data. Mobile data has a number of characteristics, which can be exploited in order to create more efficient methods for clustering, classification, anomaly detection, and pattern mining. Therefore, we have included a chapter which discusses algorithms for mobile data analysis in detail. Chapter 10 provides a detailed discussion of a wide variety of indexing and mining algorithms in the context of mobile data.

RFID Data and the Internet of Things The trend towards ubiquitous and embedded sensing has lead to a natural focus on machine-to-machine (M2M) paradigms in sensor processing. These paradigms use small RFID sensors to collect data about many smart objects. The data generated from such applications can be shared by different devices for heterogeneous fusion and inference, especially if the devices are connected to the internet. A number of issues also arise about how such devices can be effectively discovered and used by different network participants. Chapter 11 provides an overview on RFID applications for collecting such data. Issues about how such data can be used in the context of the internet of things are discussed in Chapter 12.

Software Bug Tracing in Sensor Networks Most of the aforementioned chapters provide application-specific insights on the basis of the collected data. Sensors also produce diagnostic data, which can be used in order to determine diagnostic bugs within the sensor software. Thus, this kind of mining process can be used in order to improve the performance of the underlying sensor network. A survey of methods and algorithms for software bug tracing in sensor networks is provided in Chapter 13.

Healthcare Applications Sensor data has found increasing application in the health care domain. A wide variety of Intensive Care Unit (ICU) applications use sensors such as ECG, EEG, blood pressure monitors, respiratory monitors, and a wide variety of other sensors in order to track the condition of the patient. The volume of such data is extremely large and the inferences from such data need to be performed in a time-critical fashion. Chapter 14 provides an overview of sensor mining applications in the context of health-care data.

Environmental and Climate Applications A wide variety of sensors are used in order to track environmental and sensor data. A tremendous amount of sensor data is available through satellite sensing, and other more conventional forms of sensing. Such data can be used in order to determine the short terms and long terms trends in climate change, and other environmental applications, such as detecting changes in land cover. Chapter 15 provides an overview of how sensor data may be used in the context of environmental and climate applications.

3. Conclusions and Summary

In this chapter, we provided an overview of the challenges and the key areas of research in sensor processing. We also presented the organization of this book, as it relates to these challenges. The ubiquity and volume of sensor data is likely to increase over time, as more and more applications containing sensor data become widely available. A number of emerging areas of research such as social sensing have brought the use of sensor data within the reach of the masses, because of their incorporation in commoditized devices such as mobile phones. Furthermore, newer applications such as the internet of things have lead to a greater focus on the effective storage and processing of sensor data. This book will discuss all of these challenges in a holistic and integrated way.

References

- [1] C. C. Aggarwal. Data Streams: Models and Algorithms, *Springer*, 2007.
- [2] C. C. Aggarwal. Managing and Mining Uncertain Data, Springer, 2009.
- [3] C. C. Aggarwal, P. S. Yu. A Survey of Synopsis Construction Algorithms in Data Streams, *Data Streams: Models and Algorithms*, Springer, 2007.
- [4] C. C. Aggarwal, T. Abdelzaher. Integrating Sensors and Social Networks, Social Network Data Analytics, Springer, 2011.
- [5] C. C. Aggarwal, J. Han. A Survey of RFID Data Processing, *Managing and Mining Sensor Data*, Springer, 2013.
- [6] I. Akylldiz, W. Su, Y. Sankarasubramaniam, E. Cayirci. A Survey on Sensor Networks, *IEEE Communications Magazine*, 2002.
- [7] D. Culler, D. Estrin. M. Srivastava. Guest Editor's Introduction: An Overview of Sensor Networks. *Computer*, 37(8), 2004.

- [8] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, W. Hong. Model-driven data acquisition in sensor networks, *VLDB Conference*, 2004.
- [9] D. Hall, J. Llinas. An Introduction to Multi-sensor data fusion, *Proceedings of the IEEE*, 85(1), 1997.
- [10] S. Lohr. The age of big data, New York Time Sunday Review, February 12, 2012. http://www.nytimes.com/2012/02/12--/sunday-review/big-datas-impact-in-the-world.html? pagewanted=all
- [11] A. Ostfeld(et.al.) The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms. *Journal of Water Resources Planning and Management*, vol. 134, no. 6, pp. 556–568, 2008. [Online]. Available: http://link.aip.org/link/?QWR/134/556/1
- [12] Y. Yao, J. E. Gehrke. The Cougar Approach to In-Network Query Processing in Sensor Networks. *SIGMOD Record*, Vol. 31(3), September 2002.