Задача дискретной классификации для Iris flower data set.

Баталов Семен

18.02.2021

1. Iris flower data set

Это стандартный набор данных, интегрированный в модуль «sklearn» языка «Python» (Рис. 1). Набор данных состоит из 150 образцов каждого из трех видов ириса (Iris setosa, Iris virginica и Iris versicolor). Для каждого образца были измерены четыре характеристики: длина и ширина чашелистиков и лепестков в сантиметрах. Основываясь на комбинации этих четырех характеристик, можно разработать несложный классификатор, чтобы отличать виды друг от друга.

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	name
0	5.1	3.5	1.4	0.2	0	setosa
1	4.9	3.0	1.4	0.2	0	setosa
2	4.7	3.2	1.3	0.2	0	setosa
3	4.6	3.1	1.5	0.2	0	setosa
4	5.0	3.6	1.4	0.2	0	setosa
145	6.7	3.0	5.2	2.3	2	virginica
146	6.3	2.5	5.0	1.9	2	virginica
147	6.5	3.0	5.2	2.0	2	virginica
148	6.2	3.4	5.4	2.3	2	virginica
149	5.9	3.0	5.1	1.8	2	virginica

150 rows × 6 columns

Рис. 1. Набор данных трех видов ириса.

2. Классификатор

Классификатор был написан на языке «**Python**». Подробнее о программе можно узнать в папке «**source**» проекта.

При построении дерева (Рис. 2) использовался стандартный классификатор «**DecisionTreeClassifier**» модуля «**sklearn**». Обучающая выборка составила 50% от всех полей (переставленных в случайном порядке) в наборе.

Рис. 2. Дерево классификации.

После была произведена проверка работоспособности классификатора на оставшихся в датасете примерах. Результат проверки изображен на рисунке (Рис. 3).

- accuracy это главная метрика, которая показывает долю правильных ответов модели. Ее значение равно отношению числа правильных ответов, которые дала модель, к числу всех объектов. Но она не полностью отражает качество модели. Поэтому вводятся precision и recall.
- precision эта метрика показывает, насколько мы можем доверять модели, другими словами, какое у нас количество «ложных срабатываний». Значение метрики равно отношению числа ответов, которые модель считает правильными, и они действительно были правильными (это число обозначается «true positives») к сумме «true positives» и числа объектов которые модель посчитала правильными, а на самом деле они были неправильные (это число обозначается «false positives»). В виде формулы: precision = «true positives» / («true positives» + «false positives»).

- recall эта метрика показывает насколько модель может вообще обнаруживать правильные ответы, другими словами, какое у нас количество «ложных пропусков». Ее численное значение равно отношению ответов, которые модель считает правильными, и они действительно были правильными к числу всех правильных ответов в выборке. В виде формулы: recall = «true positives» / «all positives».
- f1-score это объединение precision и recall.
- **support** это просто число найденных объектов в классе.

Accuracy: 6	9.96			
	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	21
versicolor	0.94	0.97	0.95	30
virginica	0.96	0.92	0.94	24
accuracy	/		0.96	75
macro avg	0.96	0.96	0.96	75
weighted ava	0.96	0.96	0.96	75

Рис. 3. Оценка работы классификатора.