Real Analysis Homework 8

Francisco Jose Castillo Carrasco

October 13, 2017

1 Problem 4.2.1

1. Consider \mathbb{R} with the absolute value. Let $a, b \in \mathbb{R}$ and a < b. Show that I = (a, b) is open.

Solution:

Proof. Let $y \in I$, then a < y < b and $d(y, x) < (b - a) \ \forall \ x \in I$. Set $\varepsilon = (b - a) - d(y, x) > 0$. Now, let $z \in U_{\varepsilon}(y)$ such that $d(z, y) < \varepsilon$. Then, $\forall x \in I$, by the triangle inequality,

$$d(z,x) \le d(z,y) + d(y,x) < \varepsilon + d(y,x) = (b-a) - d(y,x) + d(y,x) = (b-a) .$$

Thus $z \in I$. Since z was chosen arbitrarily, $U_{\varepsilon}(y) \subseteq I$ and y is an interior point of I. Thus, every point in I is an interior point of I which implies, I is open.

2 Problem 4.2.3

1. Consider \mathbb{R} with the metric induced by the absolute value. Let $S \subseteq \mathbb{R}$. S is called *order-dense* if for any $a,b \in \mathbb{R}$ with a < b there exists some $s \in S$ such that a < s < b. Show that S is order-dense if and only if S is dense (i.e. $\mathbb{R} \subseteq \overline{S}$).

Solution:

Proof. (\Rightarrow) Let $x \in \mathbb{R}$. Since S is order-dense, for each $n \in \mathbb{N}$ there exists some $s_n \in S$ and $a, b \in \mathbb{R}$ with $a = x - \frac{1}{n}$ and $b = x + \frac{1}{n}$ such that:

$$a < s_n < b$$
,

$$x - \frac{1}{n} < s_n < x + \frac{1}{n} .$$

The last equation means that $|s_n - x| < \frac{1}{n}$, which implies that $s_n \to x$ as $n \to \infty$. Therefore $x \in \bar{S}$. Thus, $\mathbb{R} \subseteq \bar{S}$ and S is dense.

 (\Leftarrow) Assume S is dense and let $a,b \in \mathbb{R}$ with a < b. Consider I = (a,b). Let $x \in I$. In the previous problem we showed that, for some ϵ , we can define an open ball $U_{\epsilon}(x) \subseteq I$. Since S is dense in \mathbb{R} , x is a limit point of S and, by Lemma 4.11, $U_{\epsilon}(x) \cap S \neq \emptyset$. Therefore, there exists some $s \in S$ that is also in $U_{\epsilon}(x)$ and then a < s < b. Thus, S is order-dense in \mathbb{R} .

3 Problem 4.2.14

1. Let X be a metric space with metric d and S and T be subsets of X.

Show: $int(S \cap T) = \breve{S} \cup \breve{T}$

Solution:

Proof. Observe that,

$$X \setminus (\breve{S} \cap \breve{T}) = X \setminus \breve{S} \cup X \setminus \breve{T}$$

By DeMorgan's law.

Then, by proposition 4.17,

$$X \setminus \breve{S} \ \cup \ X \setminus \breve{T} = \overline{X \setminus S} \ \cup \ \overline{X \setminus T} \ = \overline{X \setminus S \ \cup \ X \setminus T} \ .$$

Then, by DeMorgan's Law and proposition 4.17,

$$\overline{X \setminus S \ \cup \ X \setminus T} = \overline{X \setminus S \cap T} = X \setminus Int(S \cap T) \ .$$

Thus,

$$\begin{split} X \setminus (\check{S} \cap \check{T}) &= X \setminus Int(S \cap T) \\ \Rightarrow \check{S} \cap \check{T} &= Int(S \cap T) \ . \end{split}$$

2. $\breve{S} \cup \breve{T} \subseteq Int(S \cup T)$ but equality fails in general.

Solution:

Proof. Let $x \in \breve{S} \cap \breve{T}$. Then,

Case 1: Let $x \in \breve{S}$, $\exists \varepsilon_1 > 0$ such that,

$$U_{\varepsilon_1}(x) \subseteq S \subseteq S \cup T$$
.

Thus $x \in Int(S \cup T)$.

Case 2: Let $x \in \check{T}$, $\exists \varepsilon_2 > 0$ such that,

$$U_{\varepsilon_2}(x) \subseteq T \subseteq S \cup T$$
.

Thus, $x \in Int(S \cup T)$.

Case 3: Let $x \in \breve{S} \cup \breve{T}$, $\exists \varepsilon_3 > 0$ such that,

$$U_{\varepsilon_3}(x) \subseteq S \cap T \subseteq S \cup T$$
.

Thus, $x \in Int(S \cup T)$.

Then $x \in \check{S} \cap \check{T} \Rightarrow x \in Int(S \cup T)$. Thus,

$$\check{S} \cup \check{T} \subseteq Int(S \cup T)$$

Now, lets show that equality fails in general. Let (\mathbb{R}, d) be the real number line under Euclidean topology. Let $S = [a, \dots, b]$ and $T = [b, \dots, c] \ \forall \ a, b, c \in \mathbb{R}$. Then,

$$\begin{split} Int(S \cup T) &= Int([a, \cdots, b] \cup [b, \cdots, c]) \\ &= Int([a, \cdots, c]) \\ &= (a, \cdots, c) \ , \end{split}$$

and

$$\begin{split} \breve{S} \cup \breve{T} &= Int([a, \cdots, b]) \cup Int([b, \cdots, c]) \\ &= (a, \cdots, b) \cup (b, \cdots, c) \\ &\neq (a, \cdots, c) \; . \end{split}$$

Thus, the equality fails.

4 Problem 4.3.1

1. Consider the sequence space l^{∞} with the supremum norm and the subset $D = \{x = (x_n) \in \mathbb{R}^{\mathbb{N}}; |x_n| \leq 1/n \ \forall n \in \mathbb{N}\}$. Show that D is totally bounded.

Solution:

Proof. D is totally bounded if and only if every sequence in D has a subsequence that is a Cauchy sequence. Let $(x^m)_{m=1}^\infty$ be a sequence in D. Since we are in the space of sequences, a sequence in this space is in fact a sequence of sequences $x^m=(x_1^m,x_2^m,...,x_n^m,x_{n+1}^m,...)$. Since $(x^m)_{m=1}^\infty\in D$, $|x_n^m|<\frac{1}{n}$ for all $n\in\mathbb{N}$. For all $\varepsilon>0$ there exists $N\in\mathbb{N}$, $N>\frac{\varepsilon}{\varepsilon}$ such that:

$$|x_n^m| < \frac{1}{n} < \frac{1}{N} < \frac{\varepsilon}{2} .$$

Now let (x^{m_j}) be subsequence of (x^m) . Since every bounded set in \mathbb{R}^N is totally bounded, for each $k = \{1, ..., N\}$, $\exists N_k > 0$ such that

$$|x_k^{m_i} - x_k^{m_j}| < \varepsilon$$
, for $i, j > N_k$.

Let $i, j > N_k$ and k > N:

$$|x_k^{m_i} - x_k^{m_j}| < |x_k^{m_i}| + |x_k^{m_j}| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon .$$

Choose now $N_2 = \max_{k=1}^{N} N_k$. Then:

$$||x_k^{m_i} - x_k^{m_j}|| < \varepsilon \ \forall i, j > N_2 \text{ and } \forall k > N.$$

Page 3

Therefore,

$$||x^{m_i} - x^{m_j}|| < \varepsilon \quad \forall i, j > N_2 .$$

Thus, the subsequence is Cauchy and ${\cal D}$ is totally bounded.