級

	西	安	电	子	科	技	大	学
--	---	---	---	---	---	---	---	---

考试时间 120 分钟

试

题号	_	11	111	四	总分
分数					

1. 考试形式: 闭卷回 开卷口: 2. 本试卷共四大题, 满分100分;

月

3. 考试日期:

年

日: (答题内容请写在装订线外)

一、单项选择题(每小题 2 分, 共 40 分)

- 1. 嵌入式系统是面向应用的专用计算机系统;其有别于通用计算机系统的最大特 点是
 - (A) 嵌入专用 (B) 高可靠
- (C) 低功耗
- (D) 低成本
- 2. 下面哪一类嵌入式处理器最适合用于工业控制 。
 - (A) 嵌入式微处理器
- (B) 嵌入式微控制器

(C) DSP

- (D) 以上都不合适
- 3. 在 CPU 中, 不仅要保证指令的正确执行,还要能够处理异常事件。
 - (A) 运算器
- (B) 控制器
- (C) 寄存器组 (D) 内部总线
- 4. 下面关于哈佛结构描述正确的是
 - (A) 程序存储空间与数据存储空间分离
 - (B) 存储空间与 IO 空间分离
 - (C) 程序存储空间与数据存储空间合并
 - (D) 存储空间与 IO 空间合并
- ARM 微处理器已经遍及工业控制、消费类电子产品、通信系统、网络系统、 无线系统等各类产品市场,下列关于 ARM 架构特点的描述中错误的
 - (A) 支持 16 位、32 位、64 位多种指令集,能很好地兼容从 IoT、终端到云端 地各类应用场景。
 - (B) 大量使用寄存器,大多数数据操作都在寄存器中完成,指令执行速度更快。
 - (C) 同样功能、性能占用的芯片面积小、功耗低、集成度更高, 更多的硬件 CPU 核具备更好的并发性能。
 - (D) 采用复杂指令集,处理效率高。
- ARM 汇编语句 "LDMIA R0!, {R1, R2, R3, R4}" 的寻址方式为

	(A) 立即寻址	(B) 多寄存器寻址
	(C) 寄存器直接寻址	(D) 堆栈寻址
7.	乘法指令中,若乘数是 32bit,那	
	(A) 32 (B) 33	
8.	宏与子程序的相同之处为	
	(A) 目标代码都是唯一的 (C) 执行使需要保护现场/回复现:	• /
9.	在软件开发过程中,"汇编"通常 (A) 将汇编语言转换成机器语言的	
	(B) 将机器语言转换成汇编语言的	
	(C) 将高级语言转换成机器语言的	的过程
	(D) 将高级语言转换成汇编语言的	的过程
10.	RISC-V 是一种基于"精简指令	集"原则的指令集架构,其于 2010 年开始
	于。	
	(A) 加州大学伯克利分校 (C) 麻省理工学院	(B) 哈佛大学 (D) 复旦大学
11.	鲲鹏 920 使用的指令集架构是	
	(A) ARM v7 32 位 (C) ARM v8 64 位	(B) ARM v8 32 位 (D) ARM v9 64 位
12	•	
12.	RGB5:6:5 表示一帧彩色图像的颜 (A) 2 ³ (B) 2 ⁵	
13.	某系统需要永久存放大量不再修改 (A) SRAM	收的数据,最合适的存储器是。 (B) DRAM
	(C) EEPROM	(D) Flash
14.	下面特性不符合嵌入5	式操作系统特点。
		(C) 微型化 (D) 易移植
15		入函数必须进行互斥处理?
15.	(A) 查询实时编程结构的不可重》	
	(C) 调度式系统	(D) 抢先式实时操作系统
16.	在操作系统中,任务本身启动的吗	推一状态转换是 。
10.	(A)调度 (B) 阻塞	
17		引用延时函数 OSTimeDly()后,不再就绪,以
11.	•	务运行。过一段时间后,本任务由唤
	醒。	·
	(A) 系统 (B) 其它任务	(C) 任务自己 (D) 时钟中断

18.		因为执行信号量申请 OSSemPend()函数而
		函数释放信号量时,有可能被唤醒。
	(A) OSSemPost()	(B) OSTimeDly()
	(C) OSTaskSuspend()	(D) OSTaskResume()
19.	当用信号量实现任务互斥时,其特点	点是。
	(A) 取值可以为负	(B) 二值信号量,只有 0、1 两个状态
	(C) 取值不可为负	(D) 与实现任务同步时没有区别
20.	μC/OS-II 提供的内存管理方式是	•
	(A) 虚拟管理 (B) 堆栈管理	
=,	判断题(每题1分,共10分)	
1.	嵌入式系统应用广泛,"神威太湖之	上光"超级计算机就是嵌入式系统的一种。
	()	
2.	设指令中取指、分析、执行3个子	部件完成,每个子部件的工作周期为△t。
		连续执行 10 条指令,则共需时间 12△t。
	()	CS 2411 10 2411 4 2 22 4 1 1 1 2 2 2 2 2 2 2 2 2 2
3.	ARM 是 32 位微处理器是指通用寄	存器数目为 32 个。()
4.	ARM 中,寄存器 R15 除了可以做	d通用寄存器外,一般还用做程序计数器。
	()	
5.	ENTRY 伪指令的含义是定义程序的	i入口。()
٥.		
6.		器架构",不仅是指令的集合,还包括编程
	需要的硬件信息;而微架构是指处理	理器的具体硬件实现方案。()
7.	实时操作系统按照是否支持抢占,可	「分为抢占式实时操作系统和非抢占式 实 时
	操作系统。()	
8.	在实时操作系统中,把不能分割的打	执行过程称为可重入函数。()
0.	在关时保护系统中,10个能力时的1	X们过往你为引星八函数。 ()
9.	μC/OS-II 中,一个任务被唤醒,则	意味着该任务重新占有了 CPU。()
10.	实时操作系统中,两个任务并发执行	_了 ,一个任务要等待其合作伙伴发来信息,
	- · · · · · · · · · · · · · · · · · · ·	这种制约性合作关系被看为任务的同步。
	()	

三、简答题(共 30 分	三、	简答题	(共	30	分
--------------	----	-----	----	-----------	---

1. 简述嵌入式实时系统的特点。(4分)答:

2. RISC 指令集只包含少量常用指令,为什么有时反而比 CISC 指令集的性能更好? (4分)

答:

3. 在 ARM 汇编语言程序里,什么是伪指令? 他们有什么用? (4分) 答:

4. 能否使用全局变量来实现任务间的通信?它有什么优缺点?该如何正确信用? (6分)
答:
5C.OS II 由任久的调度一郎人为任久尔调度和由斯尔调度 统法一老的区别
5. μC/OS-II 中任务的调度一般分为任务级调度和中断级调度,简述二者的区别 (6分)
答:
6. 优先级反转如何发生?又如何解决? (6分)
答:

四、程序题(共20分)

1. 在嵌入式程序开发中,经常会遇到 C 程序和汇编程序混合编程的情况。某工程需要一个完成字符串拷贝的功能函数,要求用汇编语言开发。调用该字符串拷贝函数的主程序如下:

```
#include < stdio. h >
extern void strcopy (char *d, const char *s);
int main ()
{
    const char *srcstr="First string - source";
    char dststr[]="second string - destination";
    printf ("Before copying: \n");
    printf ("%s\n%s\n" srcstr, dststr);
    strcopy (dststr, srcstr);
    printf ("After copying: \n");
    Printf ("%s\n%s\n", srcstr, dststr);
    return (0);
}
试完成该汇编程序。
```

答:

2. 某 32 位嵌入式系统中,有 1 个 LED 发光二极管被连接在了 GPIOB 口的 Pin4 引脚上,二极管共阳接法。假设 GPIOB 口的数据寄存器的地址是 0xCD78, 试设计一个程序,让该发光二级管按照每秒 1 次的频率闪烁。编译器是一个纯粹的 ANSI C 编译器。(5 分)

假设函数 deLay(ms)可以让系统按毫秒进行延迟。

答:

3. 某嵌入式系统采用 320×240(长×宽)像素的 TFT 彩色液晶屏作为自己的显示系统,其 LCD 控制器设置为 RGB565 的彩色模式。若设置给定像素颜色的函数是已知的,如:

void PutPixel(UINT16T x,UINT16T y,UINT16T c)

x:水平方向坐标

v:垂直方向坐标

{

c:像素颜色值(RGB565)

那么该如何设计"画一条水平直线"的函数? (5分)答:

 $void\ Lcd_Draw_HLine (INT16T\ usX0,\ INT16T\ usX1,\ INT16T\ usY0,\ UINT16T\ ucColor,\ UINT16T\ usWidth)$

4. 在 μC/OS-II 中,假设 4×5 矩阵键盘的键值转换由函数 keyScan 完成,其定义为:

INT8U keyScan(void),该函数返回识别到的按键代号(0-19)。

将按键值显示到 LCD 显示屏上的指定位置由 keyPrint 函数完成,其定义为: void keyPrint(INT8U x, INT8U y, INT8U c),该函数参数为要显示的位置屏幕坐标和按键代号。

实现一个键盘应用,要求用一个 μC/OS-II 任务实现键盘的识别和显示;用键盘中断实现异步事件驱动,中断服务程序和任务之间使用信号量做同步。这样,每次有按键被按下时,中断服务程序发出一个信号量,键盘识别任务可进行一次按键的识别和显示。键盘中断服务程序如下所示,试设计键盘任务 KeyTask。(5 分)

键盘中断服务程序:

```
extern OS_EVENT *Keypad_Sem;
void __KeyPad(void)
{
    INT8U err;

    ClearPending(BIT_EINT1); //清除中断源
    err = OSSemPost(Keypad_Sem);//释放键盘信号量
}
答:
OS_EVENT *Keypad_Sem;
void KeyTask (void *data)
{
```