

DIN CLUJ-NAPOCA

PROIECT INGINE	ERIA REGLARII AUTOMATE II				
NUME student	Cigan Oliviu-David	GRUPA:	30132	Nota	

Brain Tumor Detection System

Autor: Cigan Oliviu-David

Grupa: **30132**

AN UNIVERSITAR: 2022-2023

PROIECT INGINERIA REGLARII AUTOMATE II			
NUME student	GRUPA:	Nota	

Cuprins

1.		Scopul Proiectului	. 3
		Obiective	
		Specificații	
		Studiu bibliografic	
		Analiză, proiectare, implementare	
4.		Concluzii	. 7
á	а.	Rezultate obținute	. 7
k	э.	Direcții de dezvoltare	23

PROIECT INGINERIA REGLARII AUTOMATE II			
NUME student	GRUPA:	Nota	

1. Scopul Proiectului

Brain-Tumor-Detection-System este un proiect inovator in industria medicala care are ca scop imbunatatirea procesului de diagnosticare a tumorilor cerebrale. Prin colectarea si analizarea imaginilor de tip radiografie a creierului, acest sistem ajuta medicii sa determine cu aproximatie prezenta unei tumori.

Acest proiect este extrem de important deoarece diagnosticarea timpurie a tumorilor cerebrale poate face diferenta dintre viata si moarte pentru pacienti. Cu cat o tumora este descoperita mai devreme, cu atat sansele de a trata si vindeca pacientul sunt mai mari.

Brain-Tumor-Detection-System utilizeaza tehnologie de ultima ora pentru a procesa si analiza imaginile de radiografie a creierului, oferind astfel un nivel ridicat de precizie si fiabilitate. Sistemul este proiectat sa identifice anomalii in imaginile radiologice, astfel incat sa poata fi identificate zonele de interes si sa se ofere o evaluare precisa.

In plus, Brain-Tumor-Detection-System poate fi utilizat in timp real, ceea ce inseamna ca medicii pot avea acces instantaneu la rezultatele analizelor, permitand astfel diagnosticarea rapida si precisa. Acest sistem poate contribui semnificativ la reducerea timpului necesar pentru diagnosticarea tumorilor cerebrale, ceea ce poate avea un impact major asupra sanatatii si bunastarii pacientilor..

a. Objective

Obiectul acestui proiect, este sa ofere medicilor o unealta utila pentru a intelege si analiza mai usor radiografiile la creier, contribuind astfel la imbunatatirea procesului de diagnosticare a tumorilor cerebrale.

Este important de mentionat ca acest proiect nu are ca scop inlocuirea medicilor sau analizatorilor de radiografii, ci sa fie un suport pentru acestia. Sistemul este proiectat sa ofere informatii suplimentare si evaluari preliminare ale imaginilor radiologice, astfel incat medicii sa poata lua decizii mai informate si sa ofere un diagnostic mai precis.

Brain-Tumor-Detection-System foloseste tehnologie avansata pentru a procesa imaginile radiologice ale creierului, identificand anomalii si zone de interes. In plus, sistemul poate fi utilizat in timp real, astfel incat medicii sa poata accesa informatiile necesare imediat, ajutand astfel la reducerea timpului necesar pentru diagnosticarea tumorilor cerebrale.

Este important sa subliniem faptul ca acest proiect este conceput pentru a fi o unealta utila pentru medici, oferindu-le un suport suplimentar si ajutandu-i sa ia decizii mai informate in procesul de diagnosticare a tumorilor cerebrale. Nu are ca scop inlocuirea lor sau a analizatorilor de radiografii, ci sa fie un instrument de sprijin pentru a imbunatati procesul de diagnosticare si tratament pentru pacienti.

PROIECT INGINER	RIA REGLARII AUTOMATE II			
NUME student		GRUPA:	Nota	

b. Specificații

In specificațiile lucrării detaliați cerințele. Descrieți ce intentionați să obtineți. Vă puteți referi la funcțiile aplicației, interfață, nivele de performanță, elemente, calitate, limitări,

In cadrul acestui proiect, s-a dezvoltat un sistem automat pentru colectarea imaginilor si diagnosticarea tumorilor cerebrale. In prima etapa a procesului, se face colectarea automata a imaginilor de radiografii ale creierului, care sunt redimensionate la o dimensiune standard de 300px x 300px pentru a putea fi prelucrate mai eficient.

In etapa urmatoare, imaginile sunt prelucrate intr-un format numeric, prin intermediul unui proces de preprocesare. Acest proces are ca scop eliminarea zgomotului si a altor artefacte din imagine, pentru a permite o analiza mai precisa a datelor.

Odata prelucrate, imaginile sunt trecute prin trei algoritmi diferiti de machine learning: LogisticRegression, SVM si RandomForestClassifier. Fiecare dintre aceste algoritmi este evaluat si comparat pentru a determina care dintre ele ofera cea mai buna acuratete in diagnosticarea tumorilor cerebrale.

Dupa ce algoritmul de machine learning a fost selectat, sistemul poate analiza trei tipuri diferite de tumori cerebrale: pituitary_tumor, meningioma_tumor si glioma_tumor. In functie de datele colectate si analizate, sistemul poate oferi o concluzie cu privire la prezenta sau absenta cancerului. De asemenea, performanta sistemului este destul de inalta, chiar si luand in considerare dataset-ul destul de complex utilizat in acest proiect. Sistemul raspunde foarte rapid si eficient la cerintele utilizatorilor, oferind o acuratete buna in diagosticarea tumorilor cerebrale.

In final, sistemul poate afisa o vizualizare a imaginii, impreuna cu concluzia oferita de sistem. Aceasta poate fi deosebit de utila pentru medicii care se ocupa de diagnosticarea tumorilor cerebrale, oferindu-le o metoda precisa si rapida pentru a determina daca pacientii lor sunt sau nu afectati de aceasta afectiune grava.

Acest sistem de detectare a tumorilor cerebrale a fost creat folosind Python si Jupyter Notebook. Pentru a dezvolta acest sistem, s-au utilizat o serie de librarii importante, inclusiv Sklearn, numpy, pandas si matplotlib, care au fost esentiale in procesul de colectare si preprocesare a datelor.

PROIECT INGINERIA REGLARII AUTOMATE II			
NUME student	GRUPA:	Nota	

2. Studiu bibliografic

Conține o analiză a ceea ce s-a realizat/studiat anterior. Arătați că ați studiat materiale bibliografice și că ați înteles ceea ce ați citit.

Puteti include diferite puncte de vedere asupra problemei pe care o rezolvați în lucrare.

Nu uitați să citați corespunzător autorii oricărei idei extrase dintr-o sursă bibliografică.

PROIECT INGINERIA REGLARII AUTOMATE II			
NUME student	GRUPA:	Nota	

3. Analiză, proiectare, implementare

Aceasta parte a lucrării este flexibilă și depinde foarte mult de natura lucrării, poate fi organizată în mai multe capitole și conține contribuțiile personale ale autorului.

Includeți:

- Detalii referitoare la analiză și proiectare:
 - descrierea metodelor pe care le-ați aplicat pentru rezolvarea problemei,
 - descrierea materialelor, procedurilor
 - calcule, tehnici, descrierea echipamentelor
 - metodologia de proiectare
 - informațiile necesare pentru ca cineva să poata reface lucrarea
- Implementare :
 - Descrieti detaliile tehnice ale implementarii aplicatiei: mediul de implementare, modul de prezentare, modul de utilizare al aplicatiei, etc.
- Testare si validare :
 - Descrieți metodologia de testare a aplicației și rezultatele
 - Includeți experimentele pe care le-ați realizat, analiza rezultatelor pe care leați obținut.

PROIECT INGINERIA REGLARII AUTOMATE II			
NUME student	GRUPA:	Nota	

4. Concluzii

a. Rezultate obținute

In cadrul proiectului de detectare a tumorilor cerebrale, s-au utilizat trei algoritmi de machine learning: LogisticRegression, SVM si RandomForestClassifier. Pentru a evalua performanta acestor algoritmi, s-a folosit o imagine standard de marime 300x300.

Dupa analiza datelor, s-a observat ca LogisticRegression a avut o performanta de 0.8481012658227848, ceea ce reprezinta o acuratete de 85%. RandomForestClassifier a avut o performanta de 0.810126582278481, ceea ce reprezinta o acuratete de 81%. In schimb, SVM a obtinut o performanta impresionanta de 0.9367088607594937, adica aproape 94% acuratete.

Aceste rezultate arata ca SVM a fost superior in analiza imaginilor si in detectarea tumorilor cerebrale, o performanta remarcabila poate fi atribuita capacitatii acestui algoritm de a gestiona date complexe si de a detecta modele mai precise. In consecinta, SVM este considerat a fi algoritmul ideal pentru a fi utilizat in cadrul sistemului de detectare a tumorilor cerebrale, deoarece ofera o acuratete buna si o performanta superioara in comparatie cu ceilalti doi algoritmi testati.

PROIECT INGINERIA	REGLARII AUTOMATE II			
NUME student		GRUPA:	Nota	

No Tumor - Logistic Regression:

[11]: test_based_on_images(classifier, 'no_tumor/')

PROIECT INGINERIA	REGLARII AUTOMATE II			
NUME student		GRUPA:	Nota	

Pituitary Tumor Detection - Logistic Regression:

[12]: test_based_on_images(classifier, 'pituitary_tumor/')

PROIECT INGINERIA	REGLARII AUTOMATE II			
NUME student		GRUPA:	Nota	

MeningiomaTumor Detection – Logistic Regression

[13]: test_based_on_images(classifier, 'meningioma_tumor/')

PROIECT INGINERIA	REGLARII AUTOMATE II			
NUME student		GRUPA:	Nota	

Glioma Tumor Detection - Logistic Regression

PROIECT INGINERIA REGLARII AUTOMATE II			
NUME student	GRUPA:	Nota	

New Tumor Dataset Detection - Logistic Regression

[15]: test_based_on_images(classifier, 'brain_tumor/', 400)

PROIECT INGINERIA	REGLARII AUTOMATE II			
NUME student		GRUPA:	Nota	

No Tumor - Random Forest Classifier:

[11]: test_based_on_images(classifier, 'no_tumor/')

PROIECT INGINERIA	REGLARII AUTOMATE II			
NUME student		GRUPA:	Nota	

Pituitary Tumor Detection - Random Forest Classifier:

PROIECT INGINERIA REGLARII AUTOMATE II			
NUME student	GRUPA:	Nota	

Meningioma Tumor Detection – Random Forest Classifier

[13]: test_based_on_images(classifier, 'meningioma_tumor/')

PROIECT INGINERIA	REGLARII AUTOMATE II			
NUME student		GRUPA:	Nota	

Glioma Tumor Detection - Random Forest Classifier

PROIECT INGINERIA	REGLARII AUTOMATE II			
NUME student		GRUPA:	Nota	

New Tumor Dataset Detection – Random Forest Classifier

[15]: test_based_on_images(classifier, 'brain_tumor/', 20)

PROIECT INGINERIA	REGLARII AUTOMATE II			
NUME student		GRUPA:	Nota	

No Tumor – Support Vector Machine – Support Vector Classifier:

[11]: test_based_on_images(classifier, 'no_tumor/')

PROIECT INGINERIA	REGLARII AUTOMATE II			
NUME student		GRUPA:	Nota	

Pituitary Tumor Detection – Support Vector Machine – Support Vector Classifier:

[12]: test_based_on_images(classifier, 'pituitary_tumor/')

PROIECT INGINERIA	REGLARII AUTOMATE II			
NUME student		GRUPA:	Nota	

Meningioma Tumor Detection – Support Vector Machine – Support Vector Classifier:

[13]: test_based_on_images(classifier, 'meningioma_tumor/')

PROIECT INGINERIA	REGLARII AUTOMATE II			
NUME student		GRUPA:	Nota	

Glioma Tumor Detection – Support Vector Machine – Support Vector Classifier:

[14]: test_based_on_images(classifier, 'glioma_tumor/')

PROIECT INGINERIA	REGLARII AUTOMATE II			
NUME student		GRUPA:	Nota	

New Tumor Detection Dataset – Support Vector Machine – Support Vector Classifier

[15]: test_based_on_images(classifier, 'brain_tumor/', 20)

PROIECT INGINERIA REGLARII AUTOMATE II			
NUME student	GRUPA:	Nota	

b. Direcții de dezvoltare

Descrieți direcțiile posibile de dezvoltare.