Лекція 4+

ЛІНІЙНІ ПРОСТОРИ ТА ОПЕРАТОРИ

Нагадаємо, що **поле** — множина, для якої визначено дві пари бінарних операцій: додавання/віднімання та множення/ділення, що задовольняють умовам, подібним до властивостей арифметичних операцій над раціональними, дійсними або комплексними числами. Надалі нас цікавитимуть лінійні простори над полем *комплексних чисел* ℂ.

Означення лінійного (векторного) простору. Лінійний простір над полем K — це множина елементів L, де визначені бінарні операції, що задовольняють нижчезазначеним аксіомам.

- а) Додавання векторів: кожним двом елементам $f \in L$, $g \in L$ відповідає елемент h цієї ж множини L, який називається сумою (позначення $h = g + f \in L$).
- б) Множення на елементи з K: для будь-яких $\alpha \in K$ та $h \in L$ визначений елемент $\alpha f \in L$, який називається добутком елемента на число.

Для цих операцій виконані аксіоми:

- комутативність додавання: g + f = g + f;
- асоціативність додавання: (f+g)+h=f+(g+h);
- існування нульового елементу $\theta \in L$, такого, що $\forall f \in L : f + \theta = f$;
- існування протилежного вектора, тобто $\forall f \in L \ \exists g \in L \colon \ g+f=\theta$. Для множення на елементи α,β з поля K мають виконуватися
- асоціативність $\forall \alpha, \beta \in K$: $(\alpha\beta) f = \alpha(\beta f)$ та
- дистрибутивність $\alpha(f+g) = \alpha f + \alpha g$, $(\alpha + \beta) f = \alpha f + \beta f$;
- якщо 1 це одиниця поля K ($\forall \alpha \in K : \alpha 1 = 1\alpha = \alpha$), то $1 \cdot f = f$ •

Елементи лінійного простору називають векторами.

Деякі наслідки цих аксіом

- Единість нуля $\theta \in L$,..
- Єдиність протилежного елемента: $\forall \mathbf{f}$ протилежний елемент \mathbf{f}' (такий, що $\mathbf{f} + \mathbf{f}' = \mathbf{0}$) визначений єдиним чином.
- $(-a)\mathbf{f} = -(a\mathbf{f}) = a(-\mathbf{f})$, де $-\mathbf{f}$ елемент, протилежний до \mathbf{f} .
- $0 \cdot \mathbf{f} = \mathbf{0}$

Означення. Векторний простір над полем комплексних чисел називають **унітарним**, якщо для кожної впорядкованої пари елементів $f \in L$, $g \in L$ співставлено комплексне число $\langle f, g \rangle$, яке називають **скалярним добутком**, таке, що

- $\langle f, g \rangle = \langle g, f \rangle^*$ (зірочка означає комплексне спряження);
- $\langle f, \alpha g \rangle = \alpha \langle f, g \rangle;$
- $\langle f + g, h \rangle = \langle f, h \rangle + \langle g, h \rangle$; $\langle f, \alpha g + \beta h \rangle = \alpha \langle f, g \rangle + \beta \langle f, h \rangle$
- Квадрат вектора є дійсним та невід'ємним: $\langle f, f \rangle \ge 0$; причому $\langle f, f \rangle = 0$ тоді й тільки тоді, коли f = 0 •

Для унітарного простору інколи вживають термін «предгільбертів простір».

3 умови
$$\langle f, \alpha g \rangle = \alpha \langle f, g \rangle$$
 випливає $\langle \alpha f, g \rangle = \langle g, \alpha f \rangle^* = \alpha^* \langle g, f \rangle^* = \alpha^* \langle f, g \rangle$.

Означення. Елементи v_1, v_2 називають **ортогональними**, якщо $\langle v_1, v_2 \rangle = 0$. Позначення $v_1 \perp v_2$ ◆

Застереження. Ми використовуємо позначення ближче до фізичних застосувань, де $\langle f, g \rangle$ є операцією, лінійною по **другому** аргументу. У літературі можна зустріти скалярний добуток у вигляді $(g, f) = \langle f, g \rangle$, тобто тут буде $(\alpha g, f) = \alpha(g, f)$.

Величину $||f|| = \sqrt{\langle f, f \rangle}$ називають **нормою** вектора.

Вправа. Доведіть тотожність паралелограма: $\|f + g\|^2 + \|f - g\|^2 = 2(\|f\|^2 + \|g\|^2)$.

Теорема 1. Для будь-яких векторів f, g в унітарному просторі має місце **нерівність Коші- Буняковського**¹:

$$\left| \left\langle f, g \right\rangle \right| \le \left\| f \right\| \cdot \left\| g \right\| \ . \tag{1}$$

Рівність має місце лише коли $\exists \lambda \in \mathbb{C}$: $f = \lambda g$ або $g = \lambda f$.

Доведення. Для $g = \theta$ та $\|g\| = 0$ виконання (1) очевидне. Для будь-яких векторів $f, g, g \neq \theta$, з унітарного простору покладемо $\lambda = \langle f, g \rangle^* \langle g, g \rangle^{-1}$. Маємо

$$0 \le \langle f - \lambda g, f - \lambda g \rangle = \langle f, f \rangle - \lambda^* \langle g, f \rangle - \lambda \langle f, g \rangle + \left| \lambda \right|^2 \langle g, g \rangle = \langle f, f \rangle - \frac{\left| \langle f, g \rangle \right|^2}{\langle g, g \rangle}.$$

¹ У англомовній літературі **Cauchy–Schwarz inequality**, а також **Cauchy–Bunyakovsky–Schwarz inequality**. The inequality for sums was published by <u>Augustin-Louis Cauchy</u> (1821), while the corresponding inequality for integrals was first proved by <u>Viktor Bunyakovsky</u> (1859). The modern proof of the integral inequality was given by <u>Hermann Amandus Schwarz</u> (1888). https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz inequality

Тому $|(f,g)|^2 \le \langle g,g \rangle \langle f,f \rangle$, причому рівність може бути лише за умови колінеарності векторів f,g. Звідси випливає (1) і твердження теореми lacktriangle

Теорема 2. Для будь-яких елементів f, g з унітарного простору має місце **нерівність трикутника**:

$$||f + g|| \le ||f|| + ||g||$$
 (2)

 \mathcal{A} оведення. Завдяки (1) маємо $\operatorname{Re}\langle f,g \rangle \leq |\langle f,g \rangle| \leq ||f|| \cdot ||g||$, тому

$$\|f+g\|^2 \equiv \langle f+g,f+g \rangle = \langle f,f \rangle + 2\operatorname{Re}\langle f,g \rangle + \langle g,g \rangle \leq \|f\|^2 + 2\|f\| \cdot \|g\| + \|g\|^2 = (\|f\| + \|g\|)^2,$$
 звідки випливає твердження теореми (2) •

Означення. Лінійний простір L над полем K називають нормованим, якщо $\forall f \in L$ існує число $\|f\|$, таке що

- 1) $||f|| \ge 0$, причому ||f|| = 0 тоді й тільки тоді, коли f = 0;
- 2) $\forall f \in L$, $\alpha \in K$ маємо $\|\alpha f\| = |\alpha| \|f\|$;
- 3) $||f + g|| \le ||f|| + ||g||$

Таким чином, унітарний простір ϵ нормований з нормою $\|f\| = \sqrt{\langle f, f \rangle}$.

Наявність норми, що задовольняє зазначеним вище умовам дозволяє ввести відстань $\|f - g\|$ між довільними елементами унітарного простору f, g, завдяки чому цей простір можна розглядати як приклад так званого *метричного* простору.

Означення. Послідовність елементів унітарного простору $f_1, f_2, f_3, ...$ збігається до елементу g, якщо $\lim_{n\to\infty} \|f_n-g\|=0$. Це будемо позначати так: $f_n\Rightarrow g$ (границя послідовності $\{f_n\}$) \blacklozenge Означення. Послідовність елементів унітарного простору $f_1, f_2, f_3, ...$ ϵ фундаментальною (збіжною за Коші), якщо $\forall \varepsilon > 0$ існує $N(\varepsilon)$, таке, що $\forall n, m > N(\varepsilon)$: $\|f_n - f_m\| < \varepsilon$ \blacklozenge Означення. Унітарний простір \mathbf{H} ϵ гільбертовим, якщо для будь-якої фундаментальної послідовності елементів $f_1, f_2, f_3, ...$ \in \mathbf{H} існує елемент g з цього ж простору, для якого $f_n \Rightarrow g$ (умова повноти простору відносно введеної норми) \blacklozenge

Зауважимо, що повний нормований лінійний простір називають простором Банаха (банаховим простором). Таким чином, гільбертів простір ϵ одночасно банаховим простором відносно введеної норми $\|f\| = \sqrt{(f,f)}$. *Приклади*.

Простір l^2 . Розглянемо простір, елементами якого є послідовності комплексних чисел виду $f \equiv \{x_n, n=1,2,...\} \equiv \{x_1,x_2,x_3,...\}$.

Для елементів $f \equiv \{x_n, n=1,2,...\}$, $g \equiv \{y_n, n=1,2,...\}$ та комплексного числа α покладемо $f+g \equiv \{x_n+y_n, n=1,2,...\}$, $\alpha f \equiv \{\alpha x_n, n=1,2,...\}$. Легко перевірити, що ці операції задовольняють умови лінійного простору. Нехай додатково виконуються умови абсолютної збіжності послідовностей з цього простору: $\sum_{n=1}^{\infty} |x_n|^2 < \infty$. Тоді для будь-яких двох таких послідовностей можна отримати 2

$$\left| \sum_{n=1}^{\infty} x_n^* y_n \right| \le \left(\sum_{n=1}^{\infty} |x_n|^2 \sum_{n=1}^{\infty} |y_n|^2 \right)^{1/2} < \infty \quad ; \tag{3}$$

тобто існує скінченна величина $\langle f,g \rangle = \sum_{n=1}^{\infty} x_n^* y_n$, яку можна розглядати як скалярний добуток елементів f та g. Звідси випливає, що простір l^2 є унітарним. Можна довести умову повноти й показати, що цей простір також є гільбертовим.

Простір $L^2[a,b]$ — гільбертів простір квадратично-інтегровних за Лебегом комплексних функцій однієї дійсної змінної на відрізку [a,b]. У цьому просторі скалярний добуток функцій f та g визначають так (див. застереження до визначення скалярного добутку):

$$\langle f, g \rangle = \int_{a}^{b} [f(x)]^* g(x) dx$$
 (4)

Сюди входить випадок, коли $a=-\infty,b=\infty$. Означення тривіально узагальнюється на випадок функцій багатьох змінних. Зауважимо, що умова інтегровності за Лебегом суттєва для розгляду питань збіжності. Для розгляду унітарних просторів (коли питання збіжності несуттєві) з скалярним добутком (4), можна обмежитися інтегровністю за Ріманом.

Базиси в гільбертовому просторі. Будемо говорити, що система незалежних векторів $\{v_{\alpha}\}$ з гільбертового простору **H** індексується множиною m, якщо є взаємно-однозначна відповідність між векторами системи та усіма елементами цієї множини: $v_{\alpha} \Leftrightarrow \alpha$. Для квантово-механічних застосувань важливими є випадки $m = \mathbb{N}$ та $m = \mathbb{R}$. Незалежність векторів означає, що жоден з них не може бути лінійною комбінацією інших векторів.

Означення. Множина $D \subset \mathbf{H}$ є щільною в \mathbf{H} , якщо для будь-якого $g \in \mathbf{H}$ можна знайти послідовність $\{f_n, n=1, 2...\} \subset D$, яка збігається до g, тобто $f_n \Rightarrow g$ ♦

Означення. Систему векторів $S = \{u_{\alpha}, \alpha \in m\}$ гільбертова простору, що індексується множиною m, називають **ортогональною**, якщо для будь-якої пари $\alpha, \beta \in m$ має місце

_

² Запишіть нерівність (1) для скінченних послідовностей та застосуйте граничний перехід до нескінченності.

 $u_{\alpha} \perp u_{\beta}$. Якщо додатково $\|u_{\alpha}\| = 1 \ \forall \alpha \in m$, систему S називають **ортонормованою**. Система векторів S називається **повною в H**, якщо множина скінчених лінійних комбінацій векторів u_{α} щільна в **H**. Повну ортонормальну систему векторів гільбертового простору **H** називають **ортонормальним базисом** в **H** \blacklozenge

Означення. Гільбертів простір називають **сепарабельним**, якщо **у** ньому можна обрати ортонормальний базис із зліченної множини векторів ♦. Наприклад, простір $L^2[a,b]$ є сепарабельним. Можна показати, що будь-які два сепарабельні гільбертові простори ізоморфні.

Приклад. Розглянемо гільбертів простір $L^2[0,2\pi]$.

3 теорії рядов Фур'є випливає що тригонометрична система

$$e_k = \frac{1}{\sqrt{2\pi}} e^{inx}, \quad n = 0, \pm 1, \pm 2, \dots \in \text{повною у цьому просторі}.$$

Маємо

$$\|e_n\|^2 = \frac{1}{2\pi} \int_0^{2\pi} e^{inx} e^{-inx} dx = 1,$$
 $(e_n, e_n) = \frac{1}{2\pi} \int_0^{2\pi} e^{i(n-n)x} dx = 0, \quad n \neq n'.$

Ця система ортонормована, вона утворює зліченний ортонормований базис в $L^2[0,2\pi]$, тому цей простір є сепарабельним.

Процедура ортогоналізації Грама-Шмідта. Нехай система незалежних векторів $S = \{g_n \neq \theta, n \in \mathbb{N}\}$ є повною в сепарабельному гільбертовому просторі **H**. Покажемо, як з цієї системи можна отримати ортонормальний базис.

Покладемо $e_1 = g_1 / \|g_1\|$, $h_2 = g_2 - \left\langle e_1, g_2 \right\rangle e_1$, $e_2 = h_2 / \|h_2\|$, очевидно $\left\langle e_1, e_2 \right\rangle = 0$.

Далі за індукцією: припускаємо, що є n-1 ортонормованих векторів $e_1,...,e_{n-1}$, що утворені з лінійних комбінацій векторів $g_1,...,g_{n-1}$. Покладемо $h_n=g_n-\sum_{i=1}^{n-1} \left\langle e_i,g_n\right\rangle e_i$. Завдяки ортонормованості $e_1,...,e_{n-1}$ маємо $\left\langle h_n,e_i\right\rangle =0,\ i=1,...,n-1$. Завдяки незалежності векторів $g_1,...,g_{n-1}$ маємо $e_n\neq 0$ і можна покласти $e_n=h_n/\|h_n\|$. Цей алгоритм дозволяє побудувати зліченний базис в \mathbf{H} .

Приклад. Поліноми Лежандра. У просторі $L^2[-1,1]$ з скалярним добутком $\langle g,h \rangle = \int\limits_{-1}^1 dx \, g(x) h(x)$ повною є система дійсних функцій $\{g_n = x^n, n = 0,1,2,...\}$. Повнота випливає з теореми Вейерштрасса про можливість апроксимації функцій поліномами з будьякою заданою точністю. За допомогою процесу Грама-Шмідта звідси можна отримати ортогональні (але не нормовані) поліноми Лежандра $P_n(x), x \in [-1,1]$:

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (1 - x^2)^n, \qquad \int_{-1}^1 dx \, P_n(x) P_m(x) = \frac{2\delta_{nm}}{2n+1}.$$

Зокрема,
$$P_0(x) = 1$$
, $P_1(x) = x$, $P_2(x) = \frac{3x^2 - 1}{2}$.

Поліноми Лежандра є регулярними розв'язками рівняння Лежандра

$$\frac{d}{dx}\left[(1-x^2)\frac{dP_n}{dx}\right] + n(n+1)P_n = 0.$$

Поліноми Ерміта. Для дійсних функцій, заданих на $(-\infty,\infty)$ з скалярним добутком $\langle g,h \rangle = \int\limits_{-\infty}^{\infty} dx \, g(x) h(x) \exp(-x^2)$ подібним чином можна побудувати ортогональну систему поліномів Ерміта³:

$$h_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}, \qquad \int_{-\infty}^{+\infty} h_n(x) h_m(x) e^{-x^2} dx = 2^n n! \sqrt{\pi} \delta_{nm}.$$

Поліноми Ерміта виникають, зокрема, при розв'язанні рівняння Шредінгера для квантового гармонічного осцилятора

$$-\frac{1}{2}\frac{d^2\psi_n}{dx^2} + \frac{x^2}{2}\psi_n = \lambda_n\psi_n,$$

тут розв'язками задачі на власні значення є

$$\psi_n(x) = \frac{(-1)^n}{\sqrt{2^n n! \sqrt{\pi}}} e^{-x^2/2} h_n(x), \quad \lambda_n = n + \frac{1}{2}; \quad n = 1, 2, ...$$

_

 $^{^3}$ Подане визначення поліномів здебільшого використовується у фізичних застосуваннях («фізичні» поліноми Ерміта). Інші визначення відрізняються коефіцієнтами при x.