PARTIE 1 CORRIGES DES EXERCICES

EXERCICE 1

$$\sum_{j=1}^{6} xj^{j} = x_{1} + x_{2} + x_{3} + x_{4} + x_{5} + x_{6}$$

$$\sum_{j=1}^{6} xj^{j} = x^{2}_{1} + x^{2}_{2} + x^{2}_{3} + x^{2}_{4} + x^{2}_{5} + x^{2}_{6}$$

$$\sum_{j=1}^{4} xj^{j} - 3^{2} = x_{1} + x_{2} + x_{3} + x_{4} - 9$$

$$\sum_{j=1}^{n} \alpha = \alpha + \alpha + \dots + \alpha = n\alpha$$

$$\sum_{j=1}^{4} (xj - 3)^{2} = (x_{1} - 3)^{2} + (x_{2} - 3)^{2} + (x_{3} - 3)^{2} + (x_{4} - 3)^{2} = \sum_{j=1}^{4} xj^{2} - 6 \sum_{j=1}^{4} xj + 36$$

$$\sum_{j=1}^{3} (xj - \alpha) = (x_{1} - \alpha) + (x_{2} - \alpha) + (x_{3} - \alpha) = \sum_{j=1}^{3} xj - 3\alpha$$

$$\sum_{j=1}^{3} xj - \alpha = x_{1} + x_{2} + x_{3} - \alpha$$

$$\sum_{j=1}^{5} fkxk = f_{1}x_{1} + f_{2}x_{2} + f_{3}x_{3} + f_{4}x_{4} + f_{5}x_{5}$$
si
$$\sum_{k=1}^{5} fk = 1 \text{ alors } \sum_{k=1}^{5} fkxk = \text{moyenne arithmétique}$$

EXERCICE 2

$$\begin{split} & x_1^2 + x_2^2 + \dots + x_6^2 = \sum_{j=1}^6 Xj^2 \\ & f_1 \, x_1^3 + f_2 \, x_2^3 + \dots + f_7 \, x_7^3 = \sum_{k=1}^7 fk \, x_k^3 \\ & (x_1 + y_1) + (x_2 + y_2) + \dots + (x_8 + y_8) = \sum_{j=1}^8 (Xj + Yj) = \sum_{j=1}^8 Xj + \sum_{j=1}^8 Yj \end{split}$$

$$(x_1 + y_1)^2 + (x_2 + y_2)^2 + \dots + (x_8 + y_8)^2 = \sum_{j=1}^{8} (Xj + Yj)^2 = \sum_{j=1}^{8} Xj^2 + \sum_{j=1}^{8} Yj^2 + 2\sum_{j=1}^{8} XjYj$$

$$ab + ab = \sum_{j=1}^{8} ab$$

$$f_1 X_1 Y_1 + f_2 X_2 Y_2 + f_3 X_3 Y_3 + f_4 X_4 Y_4 + f_5 X_5 Y_5 + f_6 X_6 Y_6 = \sum_{k=1}^{6} f_k X_k Y_k$$

$$\sum_{j=1}^{n} (aX_{j} + bY_{j} - cZ_{j}) = a\sum_{j=1}^{n} X_{j} + b\sum_{j=1}^{n} Y_{j} - c\sum_{j=1}^{n} Z_{j}$$

EXERCICE 4

	Χ	Υ	X ²	Y ²	X+Y	(X+Y) ²	XY	(X-Y)	(X-Y) ²	(X+Y)(X-Y)
	2	-3	4	9	-1	1	-6	5	25	-5
	-5	-6	25	36	-11	121	30	1	1	-11
	4	10	16	100	14	196	40	-6	36	-84
	-8	6	64	36	-2	4	-48	-14	196	28
total	-7	7	109	181	0	322	16	-14	258	-72

$$\Sigma x^2 = 109$$
 $\Sigma y^2 = 181$ $\Sigma (x + y)^2 = 322$
 $\Sigma x = -7$ $\Sigma y = 7$ $\Sigma xy = 16$
 $\Sigma x\Sigma y = (7)*(-7) = -49$
 $(\Sigma x^2 - \Sigma y^2) = 109 - 181 = -72$
 $\Sigma (x - y)^2 = 258$
 $\Sigma (x - y)(x + y) = -72$

La somme d'additions est égale à l'addition de sommes.

Le produit des sommes n'est pas égal à la somme des produits.

Le symbole Σ (symbole somme) est un opérateur linéaire, il respecte aussi les identités remarquables.

EXERCICE 5: LES ARRONDIS

48,6 à 1 unité près (49)
136.5 à 1 unité près (137)
2,484 au 1/100ème (2.48)
0,0435 au 1/100ème (0.44)
48,6 à 1 unité près (137)
366 à 1a dizaine près (370)
24447 a un millier près (24000)
5,56500 au 1/100ème (5.57)
4,50001 à 1 unité près (5)
5,56500 au 1/1000ème (5.565)

On étudie les résultats d'un recensement dans un département, en ce qui concerne la répartition de la population active, selon la catégorie socioprofessionnelle et le sexe :

CSP	hommes	femmes
A : agriculteurs	8964	2744
B : artisans, commerçants	7924	3388
C : cadres supérieurs, professions libérales	4100	1432
D : professions intermédiaires	8532	6048
E : employés	9324	14392
F: ouvriers	24424	4392

Synthétiser l'information à l'aide des graphiques les plus judicieux

La lecture de chacun de ces quelques graphes donne des interprétations différentes qui se complètent.

CSP	Hommes fi	Femmes f'i
E : employés	0,147	0,444
D : professions intermédiaires	0,135	0,187
F : ouvriers	0,386	0,136
B : artisans, commerçants	0,125	0,105
A : agriculteurs	0,142	0,085
C : cadres supérieurs, professions libérales	0,065	0,044
somme	1,00	1,00

!!!!!!!!!!c'est un « non sens »!!!!!!!

Déterminer les caractéristiques de position, de dispersion et la SCE de la série des résultats au test de dextérité manuelle suivants :

 $\{73; 80; 71; 89; 77; 84; 78; 74; 75; 73; 80; 83; 82; 74; 85; 82; 83; 80; 76; 81\}$

FX	7
_, .	•

xi		xi (trié)	Xi ²	n+
73		71	5041	1
80		73	5329	2
71		73	5329	3
89		74	5476	4
77		74	5476	5
84		75	5625	6
78		76	5776	7
74		77	5929	8
75		78	6084	9
73		80	6400	10
80		80	6400	11
83		80	6400	12
82		81	6561	13
74		82	6724	14
85		82	6724	15
82		83	6889	16
83		83	6889	17
80		84	7056	18
76		85	7225	19
81		89	7921	20
	total	1580	125254	

POSITION	DISPERSION	
n = 20	variance = 21,70	
moyenne = 79,00	SCE = 434,00	
mode = 80	sx = 4,66	
médiane (rang) = 10,5ème	IIQ = 8	
médiane = 80	R = 18	
Q(1) = 5,5ème	CV = 5,89%	
Q1 = 74,5	les données	s sont peu
Q(3) = 15,5	dispersées,	en effet le
Q3 = 82,5	CV < 10%.	
lim inf = 62,5		
lim sup = 94,5		
x max = 71		
xmin = 89		

BOX PLOT

pas de données "out"

mode, moyenne et médiane sont proches, la distribution de la variable s'apparente à une distribution symétrique et en cloche, cependant la moyenne est tirée vers le bas . De plus, Q1 et Q3 ne sont pas exactement à égale distance de Q2, il y a donc un étalement des valeurs vers la gauche car Q3 est plus près de Q2 que ne l'est Q1.

Une enquête menée sur un échantillon de 55 familles a permis de mesurer le nombre d'enfants xi par famille :

xi : nombre	ni : nombre de
d'enfants	familles
0	1
1	4
2	6
3	9
4	17
5	11
6	4
7	2
8	1

- 1°) déterminer graphiquement le mode, la médiane et les quartiles de la distribution.
- 2°) calculer les caractéristiques de position, de dispersion et la SCE à l'aide de la calculatrice.
- 3°) calculer le coefficient d'asymétrie de Yule et les coefficients d'asymétrie et d'aplatissement de Fisher. Interpréter les résultats.

Approximation des calculs: 0.01

Vous établirez un tableau dans lequel figurera les colonnes pour xi, ni, xi², nixi, nixi², $(xi - \overline{x})$, $(xi - \overline{x})$ ², ni $(xi - \overline{x})$ ³, ni $(xi - \overline{x})$ ³, ni $(xi - \overline{x})$ ⁴, vous pourrez ainsi comparer les résultats de la calculatrice à ceux calculés en appliquant les formules du cours aux calculs du tableau.

1°)

xi	ni	nixi	ni(xi - m)²	ni(xi - m) ³	ni(xi - m) ⁴	n+
0	1	0	14,86	-57,27	220,75	1
1	4	4	32,59	-93,04	265,59	5
2	6	12	20,64	-38,27	70,97	11
3	9	27	6,57	-5,62	4,80	20
4	17	68	0,36	0,05	0,01	37
5	11	55	14,43	16,53	18,94	48
6	4	24	18,41	39,50	84,75	52
7	2	14	19,79	62,24	195,78	54
8	1	8	17,18	71,24	295,32	55
total	55	212	144,84	-4,63	1156,90	
total / 55		3,855	2,633	-0,084	21,034	

Position	Dispersion		
moyenne =3,85	variance =2,63		
mode =4	s(x) = 1,62		
Q(1) =14	CV =42,10		
Q(2) =28	R =8		
Q(3) =42	SCE =144,84		
Q1 =3	IIQ =2		
Q2 =4	μ3 =-0,08		
Q3 =5	μ4 =21,03		

3°)

asymétrie	aplatissement		
Yule s =0,00000	Fisher γ2 =-3,00		
Fisher γ 1 = 0,02			

La distribution est symétrique et s'aplatit selon le modèle de la loi de gauss.

EXERCICE 9

Etudier, sur la distribution des dépenses mensuelles en loisirs des familles de 4 personnes d'une région socialement favorisée, les caractéristiques de position, de dispersion, la SCE et représenter graphiquement les fonctions de densité de fréquence et de répartition.

dépenses	nombre de familles
[1000; 1500 [24
[1500; 2000 [40
[2000; 2500 [60
[2500; 3000 [35
[3000; 3500 [14
[3500; 4500 [10

Déterminer, par le calcul et graphiquement, les quartiles et C25,C40,C50,C60 de cette distribution.

[borne inf	borne sup[n'j	x'j	n+ (<)	n'j x'j	n'j x'j²
500	1000	0	750	0	0	0
1000	1500	24	1250	24	30000	37500000
1500	2000	40	1750	64	70000	122500000
2000	2500	60	2250	124	135000	303750000
2500	3000	35	2750	159	96250	264687500
3000	3500	14	3250	173	45500	147875000
3500	4500	10	4000	183	40000	160000000
	total	183	_		416750	1036312500

total

POSITION (x)		DISPERSION (x)
n = 183		variance = 476712,50
moyenne = 2277,32		SCE = 87238387,98
isse modale = [2000;2500[sx = 690,44
Q(1) = 46ème		CV = 30,32%
Q(2)= 92ème		Les données sont un peu dispersées
Q(3) = 138ème		si l'on se fixe un CV égal à 10% maximum pour les considérer
Q1 = C25 = 1775		homogènes
Q2 = C50 = 2233,33	On utilise le	
Q3 = 2700	théorème de	
C(40) = 73,6ème	Thalès pour	
C40= 2080	calculer les	
C(60)= 110,4ème	quantiles	
C60 = 2386,67		

[borne inf	borne sup[n'j	x'j	n+ (<)
500	1000	0	750	0
1000	1500	24	1250	24
1500	2000	40	1750	64
2000	2500	60	2250	124
2500	3000	35	2750	159
3000	3500	14	3250	173
3500	4000	5	3750	178
4000	4500	5	4250	183
	total	103		

total

Voici un relevé du carnet de pesée des veaux blancs corréziens le 12 janvier 1971 à Objat (19). Les données sont en Kg.

169	205	160	179	128	159	140	201	195
179	181	161	188	192	141	186	155	159
141	162	124	153	173	166	173	166	157
149	126	181	203	189	163	193	173	158
162	121	165	144	169	157	155	186	166

- 1°) sur cette série brute des données déterminer les caractéristiques de position ,de dispersion et la SCE.
- 2°) grouper cette série en classes d'amplitude 10 en partant de 120 comme limite inférieure de la 1ère classe (120 inclus).
- 3°) déterminer les caractéristiques de position de dispersion et la SCE sur la série groupée en classes.
- 4°) représenter graphiquement les fonctions de densité de fréquence et de répartition de la série groupée en classes.
- 5°) représenter sur la fonction de répartition de la série groupée le 20ème centile, le 2ème quartile, le 80ème centile.

1°)			
xi (trié)	n+	xi (trié)	n+
121	1	165	23
124	2	166	24
126	3	166	25
128	4	166	26
140	5	169	27
141	6	169	28
141	7	173	29
144	8	173	30
149	9	173	31
153	10	179	32
155	11	179	33
155	12	181	34
157	13	181	35
157	14	186	36
158	15	186	37
159	16	188	38
159	17	189	39
160	18	192	40
161	19	193	41
162	20	195	42
162	21	201	43
163	22	203	44
		205	45

POSI	TION
x min	121
x max	205
n	45
modes	166 ; 173
moyenne	148,86
Q(1)	11,5ème
Q(2)	23ème
Q(3)	34,5ème
Q1	155
Q2	165
Q3	181
lim inf	116
lim sup	220
"out"	non

DISPERSION			
variance 177,66			
SCE 7994,85			
écart type 13,33			
R 84			
CV 12,60%			
IIQ 26			

2°) et 3°)

-							
	[lim inf	lim sup[n'j	n+	x'j	n'jx'j	n'jx'j²
	110	120	0	0	115	0	0
	120	130	4	4	125	500	62500
	130	140	1	5	135	135	18225
	140	150	4	9	145	580	84100
	150	160	9	18	155	1395	216225
	160	170	10	28	165	1650	272250
	170	180	5	33	175	875	153125
	180	190	6	39	185	1110	205350
	190	200	3	42	195	585	114075
	200	210	3	45	205	615	126075
	210	220	0	45	215	0	0
•		total	45			7445	1251925

POSITION	D	ISPERSIC	N
n	45	variance	448,69
classe modale	[160, 170[SCE	20191,11
moyenne	165,44	écart type	21,18
Q(1)	11,55ème		
Q(2)	23ème	CV	12,80%
Q(3)	34,5ème		
Q1	152,78	On utilise le	théorème de
Q2	165	•	calculer les
Q3	182,5	quartiles	

4°) et 5°)

EXERCICE 11On considère la répartition par âge d'une population (effectifs en millier) :

Age : xi	effectif	1°) représenter les fonction de densité de fréquence et de répartition.
[0;20[Déterminer graphiquement les quartiles.
[20 ; 40 [600	2°) calculer les caractéristiques de position et de dispersion et la SCE.
[40 ; 50 [258	3°) Calculer les caractéristiques de forme.
[50 ; 60 [221	4°) en utilisant la variable centrée réduite retrouver les valeurs des
[60 ; 75 [332	coefficients de position, dispersion et de forme.
[75 ; 90 [187	

$$Q2 = 38$$

$$Q3 = 60$$

[lim inf	lim sup[n'j	x'j	n'jx'j	n'jx'j²
0	20	505	10	5050	50500
20	40	600	30	18000	540000
40	50	258	45	11610	522450
50	60	221	55	12155	668525
60	75	332	67,5	22410	1512675
75	90	187	82,5	15427,5	1272768,75
-	total	2103		84652,5	4566918,75

POSITION	D	ISPERSIO	N
n	2103	variance	551,30
classe modale	[20; 40[SCE	1159383,92
moyenne	40,25	écart type	23,48
Q(1)	526ème		
Q(2)	1052ème	CV	58,33%
Q(3)	1578ème		
Q1	20,70	On utilise le	théorème de
Q2	38,23	Thalès pour	calculer les
Q3	59,73	quartiles	

x'i	n'i	n'i (x'i - m)²	n'i (x'i - m) ³	n'i (x'i - m) ⁴
10	505	462204,6321	-13983173,66	423035885
30	600	63076,9855	-646741,5596	6631176,832
45	258	5813,260682	27594,32942	130984,4952
55	221	48060,38913	708736,4803	10451588,25
67,5	332	246472,6771	6715589,348	182978254,7
82,5	187	333755,9713	14100118,53	595684750,8
total	2103	1159383,92	6922123,47	1218912640,09

D(1) = 210,4	μ3 = 3291,55
D(9) = 1893,6	μ4 = 579606,58
D1 = 8,33	mode = 30
D9 = 73,99	

asymétrie	aplatissement	
Pearson s = 0,44	Kelley G2 = 0,297	
Yule s = 0,102		
Pearson β1 = 0,06	Pearson β 2 = 1,91	
Fisher $\gamma 1 = 0.25$	Fisher γ 2 = -1,09	

ti =(xi-m)/s					
ti	ni	niti	niti²	niti ³	niti ⁴
-1,29	505	-650,68	838,39	-1080,25	1391,88
-0,44	600	-262,01	114,41	-49,96	21,82
0,20	258	52,16	10,54	2,13	0,43
0,63	221	138,80	87,18	54,75	34,39
1,16	332	385,26	447,08	518,80	602,04
1,80	187	336,47	605,40	1089,28	1959,93
total	2103	0	2103	534,76	4010,48

Position		Dispersion
t moy = 0	mode = -0,44	variance = 1
$(t_{0,25}) = 526$	$t_{0,25} = -0.83$	μ3 = 0,25
$(t_{0,5}) = 1052$	$t_{0,5} = -0.09$	μ4 = 1,91
$(t_{0,75}) = 1578$	$t_{0,75} = 0.83$	$s_t = 1$
$(t_{0,10}) = 210,4$	$t_{0,10} = -1,36$	CV = #DIV/0!
$(t_{0,90}) = 1893,6$	$t_{0,90} = 1,44$	

asymétrie	aplatissement
Pearson s = 0,44	Kelley G2 = 0,297
Yule s = 0,10	
Pearson β1 = 0,06	Pearson β2 = 1,91
Fisher $\gamma 1 = 0.25$	Fisher γ 2 = -1,09

Les caractéristiques de position suivent les changements d'origine et d'unité. Les caractéristiques de dispersion suivent les changements d'unité. Les caractéristiques de forme sont inchangées.