

Laser Dust Module

(Model: ZH03A)

Manual

Version: 1.8

Valid from: 2016-2-18

Zhengzhou Winsen Electronics Technology Co., Ltd

Statement

This manual copyright belongs to Zhengzhou Winsen Electronics Technology Co., LTD. Without the written permission, any part of this manual shall not be copied, translated, stored in database or retrieval system, also can't spread through electronic, copying, record ways.

Thanks for purchasing our product. In order to let customers using it better and reduce the faults caused by misuse, please read the manual carefully and operate it correctly in accordance with the instructions. If users disobey the terms or remove, disassemble, change the components inside of the sensor, we shall not be responsible for the loss.

The specific such as color, appearance, sizes & etc., please in kind prevail.

We are devoting ourselves to products development and technical innovation, so we reserve the right to improve the products without notice. Please confirm it is the valid version before using this manual. At the same time, users' comments on optimized using way are welcome.

Please keep the manual properly, in order to get help if you have questions during the usage in the future.

Zhengzhou Winsen Electronics Technology CO., LTD

ZH03A Laser Dust Sensor Module

Profile

ZH03 Laser Dust sensor module is a common type, small size sensor, using laser scattering principle to detect the dust particles in air, with good selectivity and stability. It is easy to use, with UART output & analog output.

Features

Zero error alarm rate

Real time response

Accurate data

Minus resolution of particle diameter $1.0 \mu m$

Main Applications

It's widely used in portable instrument, air quality monitoring equipment, air purifiers, ventilation systems, air conditioner, and smart home equipment.

Technical Parameters

Model	ZH03		
Detection Gas	PM1.0, PM2.5, PM10		
	UART OUTPUT (3V TTL)		
Output	DAC (0~2V is corresponding to 0-1000)		
	PWM output		
Working Voltage	4.5V-5.5V		
Working Current	70-140(mA)		
Dormancy current	70mA		
Response Time	≤90s		
Working Humidity	15%RH-80%RH(no condensation)		
Working Temperature	-20~40°C		
Storage Temperature	-20~60℃		
Life Span	3 years (in air)		
Dimension	50*32.4*21mm		

Tel: 86-371-67169097/67169670 Fax: 86-371-60932988 Email: <u>sales@winsensor.com</u>

PIN1	Vin (Voltage Input 4.5V~5.5V)
PIN2	GND
PIN3	SET pin
PIN4	RXD Serial receive pin
PIN5	TXD Serial send pin
PIN6	RESET pin
PIN7	DAC Analog output
PIN8	PWM output

Note: When SET=1 or hang in the air, the module is in continuous sampling mode;

When SET=0, the module is in low consumption mode.

1. General Settings

Baud rate	9600
Date byte	8 byte
Stop byte	1byte
Check byte	no

2. Initiative upload

Byte 0	Start byte 1	0x42
Byte 1	Start byte 2	0x4D
Byte 2	Frame length high level 8	0x14
Byte 3	Frame length low level 8	
Byte 4	Data 1 High Level 8	reserve
Byte 5	Data 1 Low Level 8	
Byte 6	Data 2 High Level 8	reserve
Byte 7	Data 2 Low Level 8	
Byte 8	Data 3 High Level 8	reserve
Byte 9	Data 3 Low Level 8	
Byte 10	Data 4 High Level 8	PM1.0 concentration
Byte 11	Data 4 Low Level 8	(atmospheric environment)
Byte 12	Data 5 High Level 8	PM2.5 concentration
Byte 13	Data 5 Low Level 8	(atmospheric environment)
Byte 14	Data 6 High Level 8	PM10 concentration
Byte 15	Data 6 Low Level 8	(atmospheric environment)
Byte 16	Data 7 High Level 8	reserve
Byte 17	Data 7 Low Level 8	
Byte 18	Data 8 High Level 8	reserve
Byte 19	Data 8 Low Level 8	
Byte 20	Data 9 High Level 8	reserve
Byte 21	Data 9 Low Level 8	
Byte 22	Data & Check High Level 8	Check= byte 0++byte 21
Byte 23	Data & Check Low Level 8	
-		

3. Question & answer mode

0	1	2	3	4	5	6	7	8
Starting	Reserve	command	reserve	reserve	reserve	reserve	reserve	Check
byte								value
0XFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79

Return value as follow

0	1	2	3	4	5	6	7	8
Starting	Command	High	Low	reserve	reserve	reserve	reserve	Check
byte		Level	Level					value
		(ug/m³)	(ug/m³)					
0xFF	0x86	0x00	0x64	0x00	0x00	0x00	0x00	0x16

4. Switch between Q&A mode and Initiative upload mode Set Q&A mode:

0	1	2	3	4	5	6	7	8
Starting	Reserve	command	Q&A	Reserve	Reserve	Reserve	Reserve	Check
byte								value
0XFF	0x01	0x78	0x41	0x00	0x00	0x00	0x00	0x46

Set initiative upload mode

0	1	2	3	4	5	6	7	8
Starting	Reserve	Command	Upload	Reserv	Reserv	Reserve	Reserve	Check
byte				е	е			value
0xFF	0x01	0x78	0x40	0x00	0x00	0x00	0x00	0x47

5. Calibration

0	1	2	3	4	5	6	7	8
Starting	Reserv	command	To calibrate	To calibrate	Reserv	Reserv	Reserv	Check
byte	е		high level 8 of	low level 8 of	е	е	е	value
			concentration	concentration				
			(ug/m³)	(ug/m³)				
0xFF	0x01	0x88	0x00	0x64	0x00	0x00	0x00	0x13

For example:

The calibration command for 100ug/m³ concentration must be done in 80-120 ug/m³ concentration, when the concentration is stable, wait for at least 3 until the sensor gets stable.

Calibrate checksum:

```
unsigned char FucCheckSum(unsigned char *i,unsigned char In)
{
    unsigned char j,tempq=0;
    i+=1;
    for(j=0;j<(In-2);j++)
    {
        tempq+=*i;
        i++;
    }
    tempq=(~tempq)+1;
    return(tempq);
}</pre>
```


6. PWM output way

PWM output way					
Suppose the detection range is 0-1000ug/m ³					
PM2.5 concentration output range	0-1000ug/m ³				
Period	1000ms±5%				
High level output at the period start	200us(theoretical value)				
Middle of the period	1000ms±5%				
Low level output at the period end	200us (theoretical value)				
To calculate PM2.5 through PMW: P ug/m³=1000x(TH)/(TH+TL)					
P ug/m ³ is calculated value of PM2.5 concentration,	its unit is ug/m³				
TH is the time of high level during one period					
TL is the time of low level during one period					
(1000ms					
Oug/m³	200us				
<u>←4ms</u> →	<u>← 4ms</u> →				

Cautions:

- 1. Do not change or displace any electronic components.
- 2. Please avoid heavy shock and vibration

1000ug/m³

- 3. The sensor should be vertical installed, to extend fan's lifespan.
- 4. Make sure that the air circulation of dust collecting holes is normal when installation.
- 5. Please avoid sticky particles into the sensor to affect the sensor's performance.

Zhengzhou Winsen Electronics Technology Co., Ltd

Add: No.299, Jinsuo Road, National Hi-Tech Zone,

Zhengzhou 450001 China **Tel:** +86-371-67169097/67169670

Fax: +86-371-60932988

E-mail: sales@winsensor.com
Website: www.winsen-sensor.com