Piotr Kaczmarczyk

Symulacja komputerowa – projekt

Temat: Symulacja przebiegu oczekiwanej długości życia względem produktu krajowego brutto.

Wykorzystałem w projekcie głównie HTML, JS oraz Bootstrap. Aby generować wykresy użyłem D3.js oraz jQuery.

W górnym panelu możemy uruchomić symulację oraz kontrolować oś czasu. Po prawej stronie widzimy listę, z której dostępne są opcje filtrowania danych.

Jak widać powyżej po najechaniu na konkretną kropkę widzimy okienko z informacjami na temat poszczególnego obiektu.

W prawym dolnym rogu znajduje się legenda oraz pokazany mamy obecnie wybrany rok.

Poniżej widzimy panel do obsługi symulacji, możemy z niego wybrać parametry symulacji oraz ją zrestartować.

Dzięki przyciskom możemy generować naszą symulacje albo ją resetować wczytując początkowe dane.

Parametrami jakie możemy ustawić to:

- Mnożnik
- Parametr do zmiany
- Kontynent

Rozkład liczb losowych nie został zaimplementowany. W parametrze "Multiply value", w którym możemy ustawić, jak zostaną przemnożone wartości symulacji podczas symulacji.

Przykładowe ustawnie symulacji oraz jej widok po uruchomieniu przebiegu.


```
function multiply() {
    const multiValue = document.getElementById("multiply").value
    const continent = document.getElementById("continent-multiply").value
    const field = document.getElementById("field-multiply").value //income, life exp
    for (let year = 0; year < max_year; year++)</pre>
        for (let country = 0; country < formattedData[year].length; country++) {</pre>
            if (continent === 'all')
                if (field !== 'all'){
                    formattedData[year][country][field] *= parseFloat(multiValue)
                else {
                    formattedData[year][country]['income'] *= parseFloat(multiValue)
                    formattedData[year][country]['life_exp'] *= parseFloat(multiValue)
            else if (formattedData[year][country]['continent'] === continent)
                if (field !== 'all'){
                    formattedData[year][country][field] *= parseFloat(multiValue)
                else {
                    formattedData[year][country]['income'] *= parseFloat(multiValue)
                    formattedData[year][country]['life exp'] *= parseFloat(multiValue)
    update(formattedData[time])
}
function reset() {
    ("#year")[0].innerHTML = 1800
    $("#date-slider").slider("value", Number(1800))
    time = 0
}
```

Obsługa wykresu została opisana w pliku "main.js". Najważniejsza w nim jest funkcja "update(data)", która pozwala nam manipulować wykresem i zmieniać jego wygląd w zależności od ustawionych parametrów. Wygląda ona następująco:

```
function update(data) {
   // standard transition time for the visualization
   const t = d3.transition()
     .duration(100)
   const continent = $("#continent-select").val()
   const filteredData = data.filter(d => {
     if (continent === "all") return true
     else {
        return d.continent == continent
   })
   // JOIN new data with old elements.
   const circles = g.selectAll("circle")
      .data(filteredData, d => d.country)
   // EXIT old elements not present in new data.
   circles.exit().remove()
   // ENTER new elements present in new data.
   circles.enter().append("circle")
      .attr("fill", d => continentColor(d.continent))
      .on("mouseover", tip.show)
      .on("mouseout", tip.hide)
      .merge(circles)
      .transition(t)
         .attr("cy", d => y(d.life_exp))
         .attr("cx", d => x(d.income))
         .attr("r", d => Math.sqrt(area(d.population) / Math.PI))
   // update the time label
   timeLabel.text(String(time + 1800))
   $("#year")[0].innerHTML = String(time + 1800)
   $("#date-slider").slider("value", Number(time + 1800))
}
```

Testy rozkładu liczb w projekcie, zbadajmy to na przykładzie Europy zapisując największe wartości. Obie wartości zostały przemnożone przez ten sam mnożnik.

	1800	1800		1900		2014	
	Life Exp.	GPD	Life Exp.	GPD	Life Exp.	GPD	
1.1	47.13	4 659	58.82	10 604	84.80	88 203	
1.2	51.42	5 082	64.16	11 568	101.76	105 843	
1.3	55.71	5 506	69.51	12 532	110.24	114 663	

Opisane wartości pokazują nam, że program działa poprawnie i symuluje działanie jakie mu zadamy.

Wnioski:

Tworząc ten projekt mogłem poznać bibliotekę "d3.js" oraz wykorzystać ją w praktyce. Pozwoliło to stworzyć mi interaktywną symulacje przedstawiającą to jak możemy manipulować danymi i je pokazywać w praktyce.