Flerdimensionell analys Formelblad och anteckningar LP1 2025

Lucas Månsson

1 Kapitel 1: Grundläggande begrepp

1.1 Mängder och tallinjen \mathbb{R}

Snitt, union och differens:

$$A \cup B$$
, $A \cap B$, $A \setminus B$

Absolutbelopp:

$$|ab| = |a||b|, \quad |\frac{a}{b}| = \frac{|a|}{|b|} \quad |a+b| \le |a| + |b|$$

1.2 Planet \mathbb{R}^2 och rummet \mathbb{R}^3

Avståndsformel.

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Mängder i planet och rummet

Omgivning: Med en omgivning av punkten (a, b) i planet menar vi alla punkter i en cirkelskiva kring denna. Detta kan uttryckas:

$$|(x,y) - (a,b)| < d$$

Notera att den stränga olikheten ovan innebär att punkterna på själva cirkeln inte ingår i omgivningen.

Öppen och sluten mängd.

1.3 Begrepp och metoder från linjär algebra

Vektorer

$$u + v = (a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$$

$$u - v = (a_1, b_1) - (a_2, b_2) = (a_1 - a_2, b_1 - b_2)$$

$$\lambda u = \lambda(a_1, b_1) = (\lambda a_1, \lambda b_1)$$

$$|u + v| \le |u| + |v|$$

Skalärprodukt och vektorprodukt

Skalärprodukt:

$$u \cdot v = |u||v|\cos \theta$$
$$u \cdot v = (a_1, b_1) \cdot (a_2, b_2) = a_1 a_2 + b_1 b_2$$

Ortogonal projektion

En ortogonal projektion kan beräknas med projektionsformeln.

$$\mathbf{u}' = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v}$$

Linjer

Vi kan beskriva en linje i planet om vi känner till en punkt P på linjen och en riktningsvektor v som anger dess riktning.

Om $P = (x_0, y_0)$ och $v = (v_1, v_2)$ så blir linjens ekvation i parameterform:

$$(x,y) = (x_0, y_0) + t(v_1, v_2)$$

Normalvektor: Varje linje i planet kan beskrivas på normalform:

$$ax + by + c = 0$$

Om vi plockar ut koefficienterna framför x och y och bildar vektorn n=(a,b) blir n vinkelrät mot linjen.

Givet en punkt $P = (x_0, y_0)$ och normalvektor n = (a, b):

$$a(x-x_0) + b(y-y_0) = 0$$

Plan

Med hjälp av en punkt och två icke-parallella riktningsvektorer kan man få ett plan på parameterform i rummet.

Matriser och determinanter

- 1.4 Rummet \mathbb{R}^n
- 2 Kapitel 2: Analytisk geometri
- 2.1 Geometri i \mathbb{R}^2

Sammanfattning av första- och andragradskurvor:

Rät linje:

$$ax + by + c = 0$$

Parabel:

$$y = ax^2$$

Cirkel:

$$x^2 + y^2 = r^2$$

Ellips

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad \text{asymptoter: } y = \pm \frac{b}{a}x$$

Hyperbel

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \quad \text{asymptoter: } y = \pm \frac{b}{a}x$$

För en hyperbel med höger-vänster öppen:

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$

2.2 Geometri i \mathbb{R}^3

Sammanfattning av första- och andragradskurvor Plan

$$ax + by + cz + d = 0$$

Paraboloid

$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Kon

$$z^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Sfär

$$x^2 + y^2 + z^2 = r^2$$

Ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Hyperbolisk paraboloid

$$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

Hyperboloid (enmantlad)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Hyperboloid (tvåmantlad)

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

2.3 Polära och rympolära koordinater

Polära koordinater

En punkt P i planet med rätvinkliga koordinater (x,y), kan också beskrivas med avståndet r från origo tillsammans med vinkel φ mot positiva x-axeln. P har då polära koordinaterna (r,φ) .

$$\begin{cases} x = r\sin\varphi, \\ y = r\sin\varphi \end{cases}$$

I de fall vi har annan medelpunkt än origo, ex. (x_0, y_0) :

$$\begin{cases} x = x_0 + r\sin\varphi, \\ y = y_0 + r\sin\varphi \end{cases}$$

Om vi vill beskriva en ellipsskiva, snarare än bara en ellips:

$$\begin{cases} x = x_0 + ar\sin\varphi, \\ y = y_0 + ar\sin\varphi \end{cases}$$

Cylindriska och rymdpolära koordinater

Cylindriska koordinater:

$$\begin{cases} x = r \sin \varphi, \\ y = r \sin \varphi, \\ z = z \end{cases}$$

En annan koordinat än z kan vara oförändrad.

Rymdpolära koordinater:

$$\begin{cases} x = r \sin \theta \cos \varphi, \\ y = r \sin \theta \sin \varphi, \\ z = r \cos \theta \end{cases}$$

3 Kapitel 3: Funktioner

3.1 Reellvärda funktioner

En reellvärd funktion är av typen

$$\mathbb{R}^n \to \mathbb{R}$$

dvs. en funktion av n variabler där varje funktionsvärde är reellt.

Funktioner av typen $\mathbb{R}^2 \to \mathbb{R}$

En funktion f av två variabler består av en definitionsmängd $D_f \subseteq \mathbb{R}^2$ och en avbildningsregel:

$$(x,y) \in D_f \mapsto f(x,y) \in \mathbb{R}$$

Nivåkurvor och nivåytor

En nivåkurva består av samtliga punkter i xy-planet som ger samma funktionsvärde. Låt f vara en funktion av två variabler, och C, en konstant. Mängden i xy- planet som ges av ekvationen:

$$f(x,y) = C$$

kallas en **nivåkurva** till f. Konstanten C motsvarar således "höjden över xy-planet".

3.2 Vektorvärda funktioner

En funktion av typen $f: \mathbb{R}^n \to \mathbb{R}^p$, där $p \geq 2$, kallas **vektorvärd**. eftersom funktionsvärdena då är vektorer.

Funktioner av typen $\mathbb{R} \to \mathbb{R}^2$ och $\mathbb{R} \to \mathbb{R}^3$ (kurvor)

$$\mathbf{r}(t) = (x(t), y(t))$$

$$\mathbf{r}(t) = (x(t), y(t), z(t))$$

Funktioner av typen $\mathbb{R}^2 \to \mathbb{R}^3$ (ytor)

$$\mathbf{r}(s,t) = (x(s,t),y(s,t),z(s,t))$$

Funktioner av typen $\mathbb{R}^2 \to \mathbb{R}^2$ och $\mathbb{R}^3 \to \mathbb{R}^3$ (koordinatbyten)

(fyll i senare)

Funktioner av typen $\mathbb{R}^2 \to \mathbb{R}^2$ och $\mathbb{R}^3 \to \mathbb{R}^3$ (vektorfält)

(fyll i senare)

3.3 Sammansättning av funktioner

$$(f \circ g)(x) = f(g(x))$$

3.4 Gränsvärden och kontinuitet

Definition av gränsvärden då $(x,y) \rightarrow (a,b)$

Vi säger att f(x,y) har gränsvärdet A då $(x,y) \rightarrow (a,b)$, och skriver

$$\lim_{(x,y)\to(a,b)} f(x,y) = A,$$

Beräkning av gränsvärden då $(x,y) \rightarrow (a,b)$

I envariabelfallet finns det endast två sätt att närma sig en punkt. Med två variabler finns det oändligt många. Ett sätt att hantera är att uttrycka punkterna i polära koordinater.

$$\begin{cases} x = r\sin\varphi, \\ y = r\sin\varphi \end{cases}$$

Tillvägagångssätt:

- Gör en kvalificerad gissning av vad gränsvärdet bör vara
- Bilda absolutbeloppet |f(x,y) A|, byt till polära koordinater, och försök att göra |f(x,y) A| oberoende av φ genom en lämplig uppskattning uppåt.
- Visa att denna uppskattning går mot 0 då $r \to 0$.

Beräkning av gränsvärden då $|(x,y)| \to \infty$

(Fyll i vid behov)

Gränsvärden för allmänna funktioner $\mathbb{R}^n \to \mathbb{R}^p$

(Fyll i vid behov)

Kontinuitet

Låt funktionen f vara en funktion av typen $\mathbb{R}^2 \to \mathbb{R}$ som är definerad i punkten (a,b). Om det gäller att

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

är f kontinuerlig i (a,b). Antag att den reellvärda funktionen f(x,y) är kontinuerlig på den slutna begränsade (dvs. kompakta) mängden D i plaet. Då antar funktionen både ett största och minsta värde i D.

Satsen om mellanliggande värden: Antag att den reellvärda funktionen f(x,y) är kontinuerlig på en bågvis sammanhängande mängd D i planet. Om (a_1,b_1) och (a_2,b_2) är punkter i D sådana att $f(a_1,b_1) \neq f(a_2,b_2)$, så antar funktionen samtliga värden mellan $f(a_1,b_1)$ och $f(a_2,b_2)$.