Magnetic Sensor Characterization and Signal Conditioning for Position and Speed Estimation of BLDC Motors

Bearbeiter: Julien Aziz

Betr. Mitarbeiter: Jana Mayer, Ajit Basarur

Referent: Uwe D. Hanebeck

Intelligent Sensor-Actuator-Systems Laboratory (ISAS),
Institute for Anthropomatics and Robotics,
Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany

http://isas.uka.de

Gliederung

- 1. Motivation
- 2. Sensor Position
- 3. Signal Rekonstruktion
- 4. Schätzmodell
- 5. Evaluation
- 6. Fazit und Ausblick

Motivation

 Ziel: Präzise Bestimmung der Rotorposition von BLDC-Motoren anhand des Magnetfelds in Echtzeit

Motivation – Vorherige Arbeiten

Motivation - Problemstellung

Erwartung:

Abbildung: Winkel -> Magnetstärke ist eine glatte Sinuskurve

Ist:

Verformungen an mehreren Punkten

Ursache:

Induktion an den Motorspulen

Motivation - Problemstellung

Erwartung:

Winkelspezifische Magnetfeldstärke für jede Geschwindigkeit gleich

Ist:

Geschwindigkeitsabhängige Phasenverschiebung

Ursache:

Tiefpassfilter des Sensors

Motivation - Problemstellung

Lösungsansatz:

- Charakterisierung des Magnetflusses
- Neue Sensorposition um ungewollte Einflüsse zu vermeiden

Lösungsansatz:

- Approximation des ungefilterten Signals
- System konstruieren welches ein unabhängiges Signal erzeugt

Ermöglicht die Verwendung einfacher Messmodelle mit geringer Komplexität

Sensor Position - Magnetfeldmessung

 Ziel: Messung des Magnetfeldes produziert von den rotierenden Permanentmagneten

Idealfall:

- Problem:
 - 1. Magnetfluss der Permanentmagneten nicht gleichmäßig verteilt
 - 2. Unerwünschte Störungen durch elektromagnetische Induktion

Sensor Position - Magnetfeldmessung

- Positionsänderung
 - 1. Horizontale Translation entlang x_s
 - 2. Vertikale Translation entlang y_s
- Berücksichtigung der Spulenverteilung

Sensor Position - Translation

- Signal B_{χ} :
 - Kaum Veränderung in beide Translationsrichtungen
- Signal B_y :
 - Starke Deformation bei Translation zum Stator
 - Verringerung der Störung bei Translation zum Rotor
- Grund: Räumliche Beziehungen zwischen Messachsen und Spulen

Sensor Position - Translation

- Signal B_{χ} :
 - Verringerung der Deformation nach vertikaler Translation
- Signal B_{y} :
 - Vorherige Beobachtung noch deutlicher

Sensor Position – Exklusive Messrichtung

 Vertikale Translation bis Sensor auf Spule (1) liegt B × 3500 B 2500 D 2000

 Fast orthogonale Beziehung zwischen Messrichtung und Spule

Ungestörtes sinusoides Signal B_x

- \triangleright Sensor Positionen mit sinusoidem Signal B_x
- Verringerung der Komplexität durch Reduktion der Dimension

(2)

Sensor

Signal Verarbeitung - Approximation

 Problem: Tiefpassfilter verursacht ungewollte Geschwindigkeitsabhängigkeit

- Signale bei niedrigen Geschwindigkeiten nahezu ungefiltert
- Übertragung dieses Verhaltens auf alle Geschwindigkeiten

Signal Verarbeitung – Rekonstruktion

• Idee: Transformation der Messung y(k) während des Schätzprozesses

- Identifikation eines neuen Systems g
 - \triangleright Eingabe ist Messung y_k
 - \triangleright Ausgabe soll möglichst präzise Schätzung des ungefilterten Signals u_k sein
 - $\hat{u}_k = g * y_k = g * h(u_k)$
 - \triangleright \hat{u}_k idealer Weise Geschwindigkeitsunabhängig

Signal Verarbeitung – Rekonstruktion

- Identifikation von g mithilfe der approximierten Ein-Ausgabe-Paare $(\hat{\mathbf{u}}_k, \hat{\mathbf{y}}_k)$
- Evaluation durch Eingabe von echten Messungen y_k
- Idenfikationsansätze:
 - 1. Korrelationsanalyse
 - 2. Instrumentvariablen-Schätzung
 - 3. Sub-Space Identifikation

Signal Rekonstruktion – 1. Korrelationsanalyse

• Lineares zeit-invariantes System kann mit Impulsantwort g(k) beschrieben werden:

$$y(t) = \sum_{k=0}^{\infty} g(k) u(t-k)$$

- Ansatz: Mithilfe der Kreuzkorrelation von Ein- und Ausgabe die Gewichtsfunktion g(k) bestimmen
- Annahme: Eingabe u(t) ist unkorreliert mit Störsignalen, Mittelwertfrei und idealerweise weißes Rauschen
- Dann gilt:

$$R_{yu}(\tau) = \sum_{k=0}^{\infty} g(k) R_{uu}(\tau - k)$$

• Im Fall von weißem Rauschen vereinfacht sich die Gleichung zu $R_{vu}(\tau) = g(k)R_{uu}(0)$

Signal Rekonstruktion – 1. Korrelationsanalyse

Für eine endliche Anzahl an Eingaben N wird nun approximiert:

•
$$R'_{yu}(\tau) = \frac{1}{N} \sum_{t=1}^{N-\tau} u(t+\tau) y(t)$$
, $\tau = 0, 1, 2, ... N-1$

•
$$R'_{uu}(\tau) = \frac{1}{N-\tau} \sum_{t=1}^{N-\tau} u(t+\tau) u(t),$$
 $\tau = 0, 1, 2, ... N-1$

Mit folgendem Gleichungssystem:

$$\begin{pmatrix} R'_{yu}(0) \\ \vdots \\ R'_{yu}(N-1) \end{pmatrix} = \begin{pmatrix} R'_{uu}(0) & \cdots & R'_{uu}(N-1) \\ \vdots & \ddots & \vdots \\ R'_{uu}(N-1) & \cdots & R'_{uu}(0) \end{pmatrix} \begin{pmatrix} g(0) \\ \vdots \\ g(N-1) \end{pmatrix}$$

lässt sich ein g(t), N-ter Ordnung ermitteln

- Pre-Whitening Filter erforderlich
- Verwendete Eingaben müssen das Verhalten des Systems repräsentieren
- Hohe Ordnung und damit hohe Komplexität benötigt

Signal Rekonstruktion – 2. SRIVC Method

- "Simplified Refined Instrumental Variable method for Continuous-time Systems"
- Annahme: Lineares, zeit-invariantes System
- System beschreibbar als Differentialgleichung

$$y^{(n)}(t) + a_1 y^{(n-1)}(t) + \dots + a_n y^{(0)}(t) = b_0 u^{(m)}(t) + b_1 u^{(m-1)}(t) + \dots + b_m u^{(0)}(t)$$

• Sei *s* der Differentialoperator so lässt sich das System beschreiben:

$$y(t) = \frac{B(s)}{A(s)} u(t)$$
mit $A(s) = s^n + a_1 s^{n-1} + \dots + a_n$

$$B(s) = b_0 s^m + b_1 s^{m-1} + \dots + b_m$$

- Fehlerfunktion: $\varepsilon(t) = y(t) \frac{B(s)}{A(s)} u(t)$
- Umgeformt: $\varepsilon(t) = \frac{1}{A(s)} [A(s)y(t) B(s)u(t)]$
- Idee: $F(s) = \frac{1}{A(s)}$ als Filter initialisieren und iterativ das Modell trainieren

Signal Rekonstruktion – 2. SRIVC Method

- Fehlerfunktion: $\varepsilon(t) = F[A(s)y(t) B(s)u(t)]$
- Da Linear: $\varepsilon(t) = A(s) y_f(t) B(s) u_f(t)$

• Bzw.
$$\varepsilon(t) = y_f^{(n)}(t) + \dots + a_n y^{(0)}(t) - b_0 u_f^{(m)}(t) - \dots - b_m u^{(0)}(t)$$

- Wobei $y_f^{(i)} = f_i(t) * y(t)$, i = 0, ..., n
- Mit $f_i(t) = L^{-1}(\frac{s^i}{A(s)})$

$$y_f^{(n)}(t) = \left[-y_f^{(n-1)}(t) \dots - y_f^{(0)}(t) \ u_f^m(t) \dots u_f^0(t) \right] \begin{vmatrix} a_1 \\ \dots \\ a_n \\ b_0 \\ \dots \\ b_m \end{vmatrix} + \varepsilon(t)$$

- Instrumentvariable: $\left[-y_f^{(n-1)}(t) \dots y_f^{(0)}(t) \ u_f^{(m)}(t) \dots u_f^{(0)}(t) \right]$
- $-\frac{1}{A(s)}$ muss bekannt sein bzw. geschätzt werden
- Modellordnung muss vorab geschätzt werden
- Kann zu Konvergenzproblemen führen

Signal Rekonstruktion – 3. State Space

- N4SID "Numerical Algorithm for State Space Subspace System Identification"
- System im Zustandsraum:
 - $x_{k+1} = A x_k + B u_k$
 - $y_k = C x_k + D u_k$
- Idee: Ordnung n und Parametrisierung des Systems aus Unterräumen von Ein/Ausgabe schätzen
- Sei:
 - $X_p = (x_{0, \dots, x_{j-1}}) \epsilon R^{n \times j}$ Zustandssequenz der Vergangenheit
 - $X_f = (x_i, ..., x_{i+j-1}) \in \mathbb{R}^{n \times j}$ Zustandssequenz der Zukunft

$$\textbf{U}_f = \begin{pmatrix} u_i & \cdots & u_{2i+j-1} \\ \vdots & \ddots & \vdots \\ u_{2i-1} & \cdots & u_{2i+j-2} \end{pmatrix} \text{ die Hankel-Matrix der zukünftigen Eingaben }$$

• Für Ausgaben Y_p, Y_f analog

Signal Rekonstruktion – 3. State Space

Erweiterte Beobachtungsmatrix:

$$\Gamma_i = \left(C \ CA \ CA^2 \dots CA^{i-1}\right)^T$$

- $\bullet \quad O_i = Y_{f/U_f} \left(U_p Y_p \right)^T$
 - Schiefe Projektion der Zukunfts-Ausgabe Y_f entlang des Zeilenraums der Zukunftseingabe U_f in den Zeilenraum der vergangenen Ein/Ausgaben U_p, Y_p
 - Wobei gilt: $O_i = \Gamma_i X_f$
- Aus Singulärwertzerlegung von O_i kann nun:
 - Systemordnung n bestimmt werden
 - Die erweiterte Beobachtungsmatrix Γ_i geschätzt werden
- Mit bekannten Γ_i , O_i können nun X_f sowie A und C bestimmt werden
- B, D durch lineares Regressionsverfahren

Schätzmodell

- Kombination 3 neuer Ansätze
 - 1. Eindimensionale Messvariable B_x
 - Neue Sensorposition mit glattem sinusoidem Signal
 - 3. Transformation des gemessenen Signals vor Eingabe in den Kalman Filter mit identifiziertem System g

Vereinfachung der Messgleichung f

- Eindimensionale Abbildung
- Geschwindigkeitsunabhängig
- Beschreibbar als einfacher sinusoider Term

Messgleichung

 $f:Rotorwinkel \rightarrow Magnetfeldstärke$

$$\theta \to B_{\chi}$$

Schätzmodell - Training

Auswertung - Schätzfehler

Positive Rotation

System	$RMSE(\theta)$ / deg	$RMSE(\omega)$ / RPM
Imp	121.1584	49.6462
SRIVC	2.8800	5.1206
N4SID	2.9678	4.9448

Negative Rotation

System	$RMSE(\theta)$ / deg	RMSE(ω) / RPM
Imp	120.2361	52.7653
SRIVC	2.6809	3.5901
N4SID	1.6657	3.5546

Auswertung – Position Schätzfehler

- Basisfunktion sensibel gegenüber Rauschen
- SRIVC steigender Fehler bei hohen Geschwindigkeiten
- N4SID starke Abweichung zwischen Rotationsrichtungen

Auswertung – Geschw. Schätzfehler

- Basisfunktion hat Probleme bei steigenden Geschwindikeiten
- SRIVC und N4SID relativ konstant über alle Geschwindigkeiten
- Leicht erhöhte Fehler bei niedrigen Geschwindigkeiten

Auswertung – Rechenzeit

Komplexität der System bestimmt durch Modellordnung

		lmp	SRIVC	N4SID
Modellordnung	Positiv	15	3	3
	Negativ	11	2	2

 Rechenzeit pro Schätziteration als Indikator für Komplexität des Schätzmodells

	lmp	SRIVC	N4SID	Basis Function
Rechenzeit pro Schätzung / ms		0.0679	0.0662	0.3229

- Signifikante Reduzierung der Rechenzeit zu vorherigen Arbeiten
- Komplexität der Systeme wenig Einfluss auf Rechenzeit

Fazit

- Zwei wesentliche Probleme des Schätzmodells eliminiert
 - Neue Sensorposition mit purem Signal der Permanentmagneten ohne Störung durch Magnetfeldern in den Spulen
 - Effiziente Technik entwickelt um ungewollte Tiefpasstransformationen mithilfe eines weiteren Systems zu invertieren
- Erfolgreich die Dimension der Messvariable reduziert
- Integrierung der neuen Ansätze in das Modell mit präzisen Schätzergebnissen
 - $RMSE(\theta)_{N4SID} = 2,3168 deg$
 - $RMSE(\omega)_{N4SID} = 4,2435 RPM$
- Signifikante Rechenzeitreduktion von 0,2567 ms zu vorherigen Arbeiten bei gesteigerter Schätzpräzision

Ausblick

- Rotation des Sensors ermöglichen für besser Messpositionen
- Erhöhung der Systemkomplexitäten für präzisere Ergebnisse und weniger Overhead
- Das Schätzmodell unter Last evaluieren

Thank you for your attention

Sensor-Actuator-Systems

