Saturday, October 14 | 3:15 pm-4:45 pm | Platform Session 3

3:30 pm

PLATFORM

SESSIONS-SATURD

UI

Real-Time Label-Free Imaging of Dynamic **Metabolic Processes During Apoptosis In Live Cells**

Marina Marjanovic¹, Andrew Bower¹, Joanne Li¹, Eric Chaney¹, and

¹University of Illinois at Urbana-Champaign, Urbana, IL

3:45 pm

Improved Performance in Fiber Bundle Imaging Systems Via Dithering

Arthur Gmitro¹, Andrew Rouse¹, and Neil Momsen¹ ¹University of Arizona, Tucson, AZ

4:00 pm

Photonic Inactivation of Virus Particles by Femtosecond Lasers

Mina Nazari¹, Rahm Gummuluru¹, Mi Hong¹, Björn Reinhard¹, and Shvamsunder Erramilli¹ ¹Boston University, Boston, MA

4:15 pm

Noncontact 3-dimensional Speckle Contrast Diffuse Correlation Tomography of Tissue Blood Flow Distribution

Mingjun Zhao¹, Chong Huang¹, Daniel Irwin¹, Siavash Mazdeyasna¹, Nneamaka Agochukwu¹, Ruohui Li¹.², Lesley Wong¹, and Guoqiang Yu¹ ¹University of Kentucky, Lexington, KY, ²Beijing Union University, Beijing, China, People's Republic of

Accurate Segmentation of Pressure Ulcer Images

Ahmed Shalaby¹, Ali Mahmoud¹, Begoña García-Zapirain², Adel Elmaghraby¹, and Ayman El-Baz¹ ¹University of Louisville, Louisville, KY, ²EVIDA Research Group, Deusto University, Spain, Deusto, Spain

OP-Sat-3-9

Room 228A

Track: Device Technologies and Biomedical Robotics

Affordable Health and Frugal Innovation

Chairs: Adam Brown, Perry Weinthal

3:15 pm

Automating Biomarker Concentration and Signal Enhancement for Paper-Based Chlamvdia Detection

Daniel Bradbury¹, April Pan¹, Benjamin Wu¹, ², and Daniel Kamei¹ ¹University of California Los Angeles, Los Angeles, CA, ²School of Dentistry, University of California Los Angeles, Los Angeles, CA

Measuring the Mass, Volume, and Density of **Microgram-Sized Objects in Fluids**

Shirin Mesbah Oskui¹, Heran Bhakta¹, Graciel Diamante¹, Huinan Liu¹, Daniel Schlenk¹, and William Grover¹ ¹University of California, Riverside, Riverside, CA

Implementation of a Split Trehalase in an **Electrochemical Biosensor for Rapid Point-of-Care Detection of Antibodies and Biomarkers** of Disease

Jeroen De Buck¹ and Marija Drikic¹ ¹University of Calgary, Calgary, AB, Canada

Rapid Workflow for Cancer Cell Genomics

Adam Snider¹ and Anubhay Tripathi¹ ¹Brown University, Providence, RI

Open-Source Device for Variable Ulnar Eminence

Perry Weinthal¹

¹Florida Atlantic University, Boca Raton, FL

Point-of-Care System for Monitoring Cellular Adhesion in Sickle Cell Disease

Mark Lewandowski¹, Jonathon Koss¹, Jane Little¹, and Umut Gurkan¹ ¹Case Western Reserve University, Cleveland, OH

OP-Sat-3-10

Room 226A

Track: Bioinformatics. Computational and Systems Biology

Analysis of Cell Signaling

Chairs: Megan McClean, Princess Imoukhuede

A Rule-based Model of the CamKII Holoenzyme

Matthew Pharris¹, Melanie Stefan², and Tamara Kinzer-Ursem¹ ¹Purdue University, West Lafayette, IN, ²The University of Edinburgh, Edinburgh, United Kingdom

How Specific Sequence Features of FG Nups Affect Nucleocytoplasmic Transport

Mohaddeseh Peyro¹, Mohammad Soheilypour¹, Ali Ghavami¹, Briana Lee¹, and Mohammad Mofrad¹ ¹University of California Berkeley, Berkeley, CA

3:45 pm

Keratinocyte ERK Signaling is Modulated by Growth Factor Presentation Scheme and Cellular Tight Junctions

Pamela Kreeger¹, Chloe Kim¹, Sarah Jacobsen¹, Cameron Stewart¹, Megan McClean¹, and Kristyn Masters¹ ¹University of Wisconsin-Madison, Madison, WI

Computational Model Predicts the Dynamics of Thrombospondin-1 Mediated Apoptosis Signaling

Qianhui Wu¹, Jennifer Rohrs¹, Pin Wang¹, and Stacey Finley¹ ¹University of Southern California, Los Angeles, CA

Saturday, October 14 | 3:15 pm-4:45 pm | Platform Session 3

Room 226B

Large-scale Logic-based Differential Equation Computational Model Revealed a New **Dimension in Macrophage Polarization**

Xiaji Liu¹, Jingyuan Zhang¹, Angela Zeigler¹, Merry Lindsey^{2,3}, and Jeffrey Saucerman¹

¹University of Virginia, Charlottesville, VA, ²University of Mississippi Medical Center, Jackson, MS, ³G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS

4:30 pm

High-dimensional Single-cell Signaling Analysis Identifies Novel Targets for Eradicating Latent HIV-infected T Cells

Linda Fong¹ and Kathryn Miller-Jensen¹ ¹Yale University, New Haven, CT

OP-Sat-3-11

CNS Repair and Regeneration

Chairs: Stephanie Seidlits, Ryan Koppes

Track: Neural Engineering

3:15 pm

Improving Functional Gains in a Skilled Reaching Task Following Brain Injury Through Combinatorial Neural Stem Cell and Motor Rehabilitation Therapy

Caroline Addington¹, Gergey Mousa², Peter Hillebrand², Amber Bengson², Kristen Okada², Akshara Thakore², Sarah Stabenfeldt², and Jeffrey Kleim² ¹University of Virginia, Charlottesville, VA, ²Arizona State University, Tempe, AZ

3:30 pm

Endogenous Neural Stem Cell Activation After Traumatic Brain Injury

Jeremy Anderson¹, Misaal Patel¹, Quinn Wade¹, Kelvin Kwan¹, and

¹Rutgers University, Piscataway, NJ

Feasibility of Nanoparticle Delivery Correlates With Blood Brain Barrier Permeability After **Diffuse Brain Injury**

Vimala Bharadwaj¹, Rachel Rowe², Jordan Harrison², Chen Wu², Trent Anderson², Jonathan Lifshitz^{2,3}, P. David Adelson³, Vikram Kodibagkar¹, and Sarah Stabenfeldt¹ ¹Arizona State University, Tempe, AZ, ²University of Arizona, College

of Medicine-Phoenix, Phoenix, AZ, ³Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ

Implantation of an Astrocyte Extracelllular Matrix **Containing Hydrogel Improves Neural Fiber Growth into a Spinal Cord Lesion**

Russell Thompson^{1,2}, Jennifer Pardieck^{1,2}, Lindsey Crawford², and Shelly Sakiyama-Elbert¹

¹University of Texas-Austin, Austin, TX, ²Washington University in St Louis, St Louis, MO

IL-4-Releasing Films Shift Macrophages to an **Anti-inflammatory State for Spinal Cord Injury** Regeneration

Alexis Ziemba¹, Anthony D'Amato¹, Devan Puhl¹, Taylor MacEwen¹, Abigail Koppes², Ryan Gilbert¹, Michelle Lennartz³, and Ryan Koppes² ¹Rensselaer Polytechnic Institute, Troy, NY, ²Northeastern University, Boston, MA, ³Albany Medical Center, Albany, NY

Combinatorial Lentiviral Gene Delivery of Pro-oligodendrogenic Factors to Improve Myelination of Regenerating Axons After Spinal Cord Injury

Dominique Smith¹, Daniel Margul², Mitchell Johnson¹, and Lonnie Sheal

¹University of Michigan - Ann Arbor, Ann Arbor, MI, ²Northwestern University, Chicago, IL

OP-Sat-3-12

Room 227C

Track: Undergraduate Research, **Design & Leadership**

Undergraduate Research, Design & Leadership III

Chairs: Jeffrey La Belle, Tim Becker

The Influences of Mitochondrial Depolarization on Mitochondrial Network Structures

Shao-Ting Chiu¹, Jun-Yi Leu², and An-Chi Wei¹ Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, ²Institute of Molecular Biology, Academia Sinica Taipei, Taiwan

3:24 pm

3-Dimensional Fluid-Structure Interaction Computational Model of Heart Valves for Bioreactor Optimization

Frederic Blais¹, Giulia Luraghi², Francesco Migliavacca², Giancarlo Pennati², Leslie Sierad^{1,3}, and Ethan Kung¹

¹Clemson University, Clemson, SC, ²Politecnico di Milano, Milan, Italy, ³Aptus Bioreactors, Clemson, SC

3:33 pm

Antibacterial Effects of Copper-PDMS Membranes for Artificial Lungs

Angela Lai¹, Neha Kapate¹, Neil Carleton¹, and Keith Cook¹ ¹Carnegie Mellon University, Pittsburgh, PA

Similarity in Viral and Host Promoters Couples Viral Reactivation with Host Cell Migration

Kathrin Bohn-Wippert¹, Erin Tevonian¹, Melina Megaridis¹, and

¹University of Illinois at Urbana-Champagin, Urbana, IL

242

243

The Influences of Mitochondrial Depolarization on Mitochondrial Network Structures

Shao-Ting Chiu¹, Jun-Yi Leu², and An-Chi Wei¹

¹Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, ²Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan

Introduction: The mitochondrial life cycle includes fission and fusion, which contribute to the dynamic morphology. Besides, mounting evidence indicates that mitochondrial fusion process avoids damaged mitochondria from fusing with others based on mitochondrial membrane potential. However, how mitochondrial damage influences mitochondrial network remains unclear. In this study, we first depolarized mitochondria by uncoupler, and investigated changes of mitochondrial 3D structure from a network point of view. Also, we have implemented an artificial neural network for automatic recognition of damaged mitochondrial network. This study provides insights into morphological response to mitochondrial damage and possible application to clinical diagnosis.

Materials and Methods: S. cerevisiae S288C labeled with Kgd1-GFP was used for mitochondrial imaging. Cells were treated with 10 μM FCCP (carbonylcyanide-p-trifluorometoxyphenylhydrazon), a mitochondrial uncoupler, for 50 min to depolarize mitochondria, and the untreated cells are regarded as the control. Mitochondrial 3D images were captured by a Delta Vision microscope, and processed by MitoGraph software (Fig. 1A). We further calculated network features including network density (the ratio of actual connections to potential connections), average and variance of mitochondrial length, network size (number of nodes). The comparison for two groups was calculated by Mann-Whitney U test. Moreover, we have constructed a full-connected neural network with two hidden layers to classify mitochondrial morphology into two groups.

Results and Discussion: Network density, average and variance of mitochondrial length decrease significantly after FCCP treatment (Fig. 1B), while the network size increases significantly compared to the untreated population. The slower fusion rate of damaged mitochondria may contribute to increased nodes and decreased connections in the mitochondrial network, which result in lower network density and higher size. The fragmentation may also result in lower average and variance of mitochondrial length in the damaged network. The implemented neural network performs at 68% accuracy (Fig. 1C), applying deep learning framework may improve the performance.

Fig. 1. (A) Mitochondrial morphology with or without FCCP treatment (10 μ M). Blue part represents the mitochondrial surface, and white part represents the mitochondrial skeleton. Scale bars represent 2 μ m (B) The effect of FCCP treatment to the mitochondrial network (n=126). *P < 0.05 and **P < 0.01 vs. control (Mann-Whitney U test, one-tailed) (C) Classification results. A neural network was used to classify mitochondrial status based on four mitochondrial network features (n=126).

Conclusions: The morphological changes caused by mitochondrial uncoupler includes lower density, average and variance of mitochondrial length, and higher network size. The significantly different features provide opportunities for automatic recognition of damaged mitochondrial morphology.

The Influences of Mitochondrial Depolarization on Mitochondrial Network Structures

Shao-Ting Chiu

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

BMES 2017, Phoenix

Introduction

(2) Mitochondrial life cycle

(1) Mitochondria in a cell

(3) Yeast mitochondrial network

(Left) 3D mitochondrial structure (Right) Skeletonized mitochondrial network

Main Questions

- What are the differences between normal and depolarized mitochondrial network?
 - ☐ Graph theory provides useful features to distinguish mitochondrial morphology

 How to predict depolarization based on mitochondrial morphology?

Mitochondrial membrane potential

Yeast Mitochondrial 3D Imaging and Depolarization

+FCCP: 10uM FCCP (uncoupler), 50 min treatment. MitoGraph software: Viana et al. Biophys. Method (2015)

Network Properties (1)

Network Properties (3)

Number of multi-connected Nodes

^{*:} p value<0.05; **: p value<0.01 (Mann-Whitney U test, two-tailed)

Artificial Neural Network for Mitochondrial Depolarization Detection

Performance of Classification

• Testing accuracy: 90% (62 samples)

• Training accuracy: 100% (63 samples)

Discussion

- Depolarized mitochondrial network possesses lower average and variance of length can be explained by decreased mitochondrial fusion rate.
- Though the differences of network features between normal and depolarized mitochondria are little, the combination of these features is still enough to predict the conditions.
- The main source of prediction error is from false positive (type I error).

Summary

 Normal and depolarized mitochondrial network possessed at least 10 network features in significant difference.

 Implemented Artificial neural network can predict mitochondrial depolarization based on morphological features in 90% accuracy.

Acknowledgement

- Supervisors
- ☐ Dr. An-Chi Wei

Department of Electrical Engineering, National Taiwan University

☐ Dr. Jun-Yi Leu
Institute of Molecular Biology,
Academia Sinica, Taipei, Taiwan

EE Student travel fund

Supported by

Supplemental Materials

6: network; V: a node; k_{ν} : degree of V;

 N_V : Number of links between neighbors of V

Clustering Coefficient (C(V))

$$C(V) = \frac{N_V}{C_2^{k_v}}$$

Density(D(G))

$$D(G) = \frac{Number\ of\ edges\ in\ G}{C_2^{Number\ of\ nodes\ in\ G}}$$

Transitivity(T(G))

$$3 \times Triangles$$

Supplemental Materials

Human bone osteosarcoma possesses sophisticated mitochondrial network

