Worksheet 9 Solution

March 18, 2020

Question 1

- a. Every set S of size 0 has $\frac{0(0-1)}{2} = 0$ subsets of size 2
- b. Let n = 0, and S be an arbitrary set. Assume S has size 0.

Then, S only has empty subsets by the fact that S has size 0.

Since empty subset has size 0, there are 0 subsets with size 2.

c. Section 1:

Every set of size k has $\frac{k(k-1)}{2}$ subsets of size 2.

Section 2:

Every set of sie k+1 has $\frac{(k+1)k}{2}$ subsets of size 2.

Section 3.1:

Because we know

Index	Set	# of subsets of size 2 containing last element
2	$\{s_1, s_2\}$	has 1 subset containing s_2
3	$\{s_1, s_2, s_3\}$	has 2 subsets containing s_3
4	$\{s_1, s_2, s_3, s_4\}$	has 3 subsets containing s_4

, we can deduce from above that the number of subsets of size 2 containing s_{k+1} is k.

Section 3.2:

P(n): $\forall n \in \mathbb{N}$, every set of size n has $\frac{n(n-1)}{2}$ subsets of size 2

Let $k \in \mathbb{N}$, and assume P(k).

Then, the number of subsets of S of size 2 that don't contain s_{k+1} is $\frac{k(k-1)}{2}$.

Section 3.3:

$$\frac{k(k-1)}{2} + k = \frac{k(k-1)}{2} + \frac{2k}{2} \tag{1}$$

$$= \frac{k}{2} \left[(k-1) + 2 \right] \tag{2}$$

$$=\frac{k(k+1)}{2}\tag{3}$$

Then, it follows from the proof of induction that the statement $\forall n \in \mathbb{N}$, every set of size n has $\frac{n(n-1)}{2}$ is true.

Question 2

a. P(n): Every finite set S of size n has exactly $\frac{n(n-1)(n-2)}{6}$ subsets of size 3. Base Case (n=0):

Let the size of S be 0.

Then, S only contains empty subsets.

Since an empty subset has size 0, S has 0 subsets of size 3.

Inductive Step:

Let $n \in \mathbb{N}$.

By the table below

Index	Set	# of subsets of size 3 containing last element
0	{}	0
1	$\{s_1\}$	0
2	$\{s_1, s_2\}$	0
3	$\{s_1, s_2, s_3\}$	1
4	$\{s_1, s_2, s_3, s_4\}$	3
5	$\{s_1, s_2, s_3, s_4, s_5\}$	6

, we can deduce that the number of subsets of size 3 containing s_{k+1} is $\frac{k(k-1)}{2}.$

Since the number of subsets of S of size 3 that doesn't contain s_{k+1} is $\frac{(k)(k-1)(k-2)}{6}$,

$$\frac{k(k-1)(k-2)}{6} + \frac{k(k-1)}{2} = \frac{k(k-1)(k-2)}{6} + \frac{3k(k-2)}{6} \tag{1}$$

$$=\frac{k(k-1)}{6}(k-2+3)\tag{2}$$

$$=\frac{(k+1)k(k-1)}{6}$$
 (3)

Then, it follows from the proof of induction that the statement every finite set S of size n has exactly $\frac{n(n-1)(n-2)}{6}$ subsets of size 3 is true.

Question 3

a. Part 1 (The subset of S that contain the element 3):

$$\{1,3\},\{2,3\},\{3\},\{1,2,3\}$$

Part 2 (The subset of S that do not contain the element 3):

$$\{\},\{1\},\{2\},\{1,2\}$$

b. P(n): For every natural number n, every set S of size n satisfies $|\mathcal{P}(S)| = 2^n$

Base Case (n = 0):

Let
$$n = 0$$
. Then, $\mathcal{P}(\{\}) = \{\{\}\}$.

Then,
$$|\mathcal{P}(\{\})| = 1$$

Since $2^0 = 1$, the base case holds.

Inductive Case:

Let $n \in \mathbb{N}$. Assume P(n).

Since the number of subsets containing last element in S of size n+1 is 2^n by the table below,

Index	Set	# of subsets containing last element
0	{}	0
1	{1}	1
2	{1,2}	2
3	$\{1, 2, 3\}$	4
4	$\{1, 2, 3, 4\}$	8

$$|\mathcal{P}(n+1)| = 2^n + 2^n$$
 (1)
= 2^{n+1} (2)

Then, it follows from the proof of induction that the statement 'for every natural number n, every set S of size n satisfies $|\mathcal{P}(S)| = 2^n$ ' is true.