Smoothness and Strong Convexity

Instructor: Jin Zhang

Department of Mathematics Southern University of Science and Technology

Fall 2023

Contents

1 *L*-Smooth Functions

Strong Convexity

3 Smoothness and Strong Convexity Correspondence

1. L-Smoothness

Recall

• (vector l_p norm and its dual). For a given $1 \le p < \infty$, the l_p -norm on \mathbb{R}^n is given by

$$||x||_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}$$
 for all $x = (x_1, \dots, x_n)^T \in \mathbb{R}^n$.

The l_{∞} -norm on \mathbb{R}^n is defined by

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|.$$

 $l_q\text{-norm}$ is the dual of $l_p\text{-norm}$ (1 $\leq p \leq \infty$), where q satisfies $\frac{1}{p}+\frac{1}{q}=1.$

Recall

• (induced matrix norm). Given l_a -norm and l_b -norm on \mathbb{R}^n and \mathbb{R}^m , respectively, the induced matrix norm on $\mathbb{R}^{m \times n}$ is given by

$$\|A\|_{a,b} = \max_{x \in \mathbb{R}^n} \left\{ \|Ax\|_b \ \big| \ \|x\|_a \leq 1 \right\} \ \text{for all} \ A \in \mathbb{R}^{m \times n}.$$

It can be easily shown that for any $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$,

$$||Ax||_b \le ||Ax||_{a,b} ||x||_a$$
.

Definition: (L-smoothness)

Let $L \geq 0$. Then $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is said to be L-smooth over a set $D \in \mathbb{R}^n$ if it is differentiable over D and satisfies

$$\left\|\nabla f(x) - \nabla f(y)\right\|_* \leq L \left\|x - y\right\| \text{ for all } x, y \in D.$$

The constant L is called the smoothness parameter.

Remark:

- 1. $C_L^{1,1}(D) = \{ f : \mathbb{R}^n \to \overline{\mathbb{R}} \mid f \text{ is L-smooth over } D \subset \mathbb{R}^n \}.$
- 2. Let $0 \le L_1 \le L_2$, then $C_{L_1}^{1,1}(D) \subset C_{L_2}^{1,1}(D)$.
- 3. We say $f: \mathbb{R}^n \to \mathbb{R}$ is *L*-smooth if f is *L*-smooth over \mathbb{R}^n .

Example (0-smoothness of affine functions).

Let $f:\mathbb{R}^n \to \mathbb{R}$ be given by $f(x)=\langle b,x \rangle +c$, where $b\in\mathbb{R}^n$ and $c\in\mathbb{R}$. Then f is 0-smooth.

Recall: Let $C \subset \mathbb{R}^n$ be nonempty, then P_C is the orthogonal projection mapping associated with C defined by

$$P_C(x) = \operatorname*{arg\,min}_{y \in C} \|y - x\|.$$

In addition, if C is closed and convex, P_C is well-defined and the function $\varphi_C(x):\mathbb{R}^n\to\mathbb{R}$ given by

$$\varphi_C(x) \equiv \frac{1}{2} d_C^2(x) = \frac{1}{2} \|x - P_C(x)\|^2$$

is convex. Under the l_2 -norm setting, $arphi_C$ is differentiable with

$$\nabla \varphi_C(x) \equiv x - P_C(x).$$

Theorem:

Let $C \subset \mathbb{R}^n$ be nonempty closed and convex. Then

(a). (firm nonexpansiveness) For any $v, w \in \mathbb{R}^n$,

$$\langle P_C(v) - P_C(w), v - w \rangle \ge ||P_C(v) - P_C(w)||^2.$$

(b). (nonexpansiveness) For any $v, w \in \mathbb{R}^n$,

$$||P_C(v) - P_C(w)|| \le ||v - w||.$$

Example (1-smoothness of $\frac{1}{2}d_C^2$).

Let $C \subset \mathbb{R}^n$ be nonempty closed and convex. Consider the function $\varphi_C(x) = \frac{1}{2} d_C^2$, then φ_C is 1-smooth with respect to (w.r.t.) the l_2 -norm (over \mathbb{R}^n).

Example (1-smoothness of $\frac{1}{2} \| \cdot \|_2^2 - \frac{1}{2} d_C^2$).

Let $C\subset\mathbb{R}^n$ be nonempty closed and convex. Consider the function $\psi_C(x)=\frac{1}{2}\,\|x\|_2^2-\frac{1}{2}d_C^2(x)$. Then ψ_C is 1-smooth with respect to (w.r.t.) the l_2 -norm.

1. *L*-Smooth Functions

1.1 The Descent Lemma

Lemma: (descent lemma).

Let $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ be L-smooth over a given convex set $\Omega.$ Then for any $x,y\in\Omega,$

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||x - y||^2.$$

1. L-Smooth Functions

1.2 Characterizations of L-Smooth Functions

Theorem: (characterizations of L-smoothness).

Let $f: \mathbb{R}^n \to \mathbb{R}$ be real-valued convex and differentiable over \mathbb{R}^n , and let L > 0. Then the following claims are equivalent:

- (i). f is L-smooth.
- (ii). $f(y) \le f(x) + \langle \nabla f(x), y x \rangle + \frac{L}{2} ||x y||^2$ for all $x, y \in \mathbb{R}^n$.
- (iii). $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle + \frac{1}{2L} \|\nabla f(x) \nabla f(y)\|_*^2$ for all $x, y \in \mathbb{R}^n$.
- (iv). $\langle \nabla f(x) \nabla f(y), x y \rangle \ge \frac{1}{L} \|\nabla f(x) \nabla f(y)\|_*^2$ for all $x, y \in \mathbb{R}^n$.
- (v). $f(\lambda x + (1-\lambda)y) \ge \lambda f(x) + (1-\lambda)f(y) \frac{L}{2}\lambda(1-\lambda)\|x-y\|^2$ for any $x,y\in\mathbb{R}^n$ and $0\le\lambda\le 1$.

Recall: Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable over \mathbb{R}^n . Then for any $x,y \in \mathbb{R}^n$,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$$

Remark: necessity of convexity for L-smoothness characterization.

Consider the function $f: \mathbb{R}^n \to \mathbb{R}$ given by $f(x) = -\frac{1}{2} \|x\|_2^2$. Then f is 1-smooth w.r.t. the l_2 -norm but is not L-smooth w.r.t. the l_2 -norm for L < 1. However, -f is convex, so for any $x, y \in \mathbb{R}^n$,

$$(-f)(y) \ge (-f)(x) + \langle \nabla(-f)(x), y - x \rangle,$$

or equivalently,

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle,$$

which implies that (ii) of Theorem (characterization of L-smoothness) is satisfied with L=0.

4 D > 4 B > 4 B > 4 B >

1. *L*-Smooth Functions

1.3 Second-Order Characterization

Theorem: (L-smoothness and boundedness of the Hessian).

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable. Then for a given $L \geq 0$, the following two claims are equivalent:

- (i). f is L-smooth w.r.t. the l_p -norm $(1 \le p \le \infty)$.
- (ii). $\left\| \nabla^2 f(x) \right\|_{p,q} \leq L$ for any $x \in \mathbb{R}^n$, where q satisfies $\frac{1}{p} + \frac{1}{q} = 1$.

Recall:

- Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable convex over \mathbb{R}^n . Then $\nabla f(x) \geq 0$ for any $x \in \mathbb{R}^n$.
- If $A \in \mathbb{R}^{n \times n}$ is nonnegative definite, $||A||_{2,2} = ||A||_2 = \lambda_{\max}(A)$.

Example: (1-smoothness of $\sqrt{1 + \|\cdot\|_2^2}$).

The function $f: \mathbb{R}^n \to \mathbb{R}$, given by

$$f(x) = \sqrt{1 + \|x\|_2^2},$$

is 1-smooth w.r.t. the l_2 -norm.

2. Strong Convexity

Definition: (strong convexity).

 $f:\mathbb{R}^n o \overline{\mathbb{R}}$ is called σ -strongly convex for a given $\sigma>0$ if $\mathrm{dom}(f)$ is convex and the following inequality holds for any $x,y\in\mathrm{dom}(f)$ and $0\leq\lambda\leq1$:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) - \frac{\sigma}{2}\lambda(1 - \lambda)\|x - y\|^2$$

Theorem

 $f:\mathbb{R}^n o\overline{\mathbb{R}}$ is σ -strongly convex w.r.t the l_2 -norm if and only if $f(\cdot)-rac{\sigma}{2}\left\|\cdot
ight\|_2^2$ is convex.

Example: (strong convexity of quadratic functions).

Consider the quadratic function $f:\mathbb{R}^n \to \mathbb{R}$ given by

$$f(x) = \frac{1}{2}x^T A x + b^T x + c,$$

where $A \in \mathbb{R}^{n \times n}$ is symmetric, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

Then f is strongly convex w.r.t. the l_2 -norm if and only if A>0, and in that case, $\lambda_{\min}(A)$ is its largest possible strong convexity parameter.

Lemma:

Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be σ -strongly convex and let $g: \mathbb{R}^n \to \overline{\mathbb{R}}$ be convex. Then f+g is σ -strongly convex.

Example: (strong convexity of $\frac{1}{2} \|\cdot\|_2^2 + \delta_C$).

Let $C \subset \mathbb{R}^n$ be nonempty convex. Then the function $\frac{1}{2} \|\cdot\|_2^2 + \delta_C$ is 1-strongly convex.

Lemma:

Let $f: \mathbb{R} \to \overline{\mathbb{R}}$ be closed convex and let $[a,b] \subseteq \mathsf{dom} f(a \leq b)$. Then

$$f(b) - f(a) = \int_{a}^{b} h(t)dt,$$

where $h:(a,b)\to\mathbb{R}$ satisfies $h(t)\in\partial f(t)$ for any $t\in(a,b)$

Lemma: (line segment principle).

Let $C \subset \mathbb{R}^n$ be nonempty convex. Suppose that $x \in ri(C)$, $y \in cl(C)$, and let $\lambda \in (0,1]$. Then $\lambda x + (1-\lambda)y \in ri(C)$.

Theorem: (first-order characterizations of strong convexity).

Let $f:\mathbb{R}^n\to\overline{\mathbb{R}}$ be proper closed and convex. Then for a given $\sigma>0$, the following three claims are equivalent:

- (i). f is σ -strongly convex.
- (ii). For any $x \in \text{dom} \partial f, y \in \text{dom} f$ and $g \in \partial f(x)$ we have

$$f(y) \ge f(x) + \langle g, y - x \rangle + \frac{\sigma}{2} \|y - x\|^2$$

(iii). For any $x, y \in \text{dom}\partial f$, and $g_x \in \partial f(x), g_y \in \partial f(y)$ we have

$$\langle g_x - g_y, x - y \rangle \ge \sigma \|x - y\|^2$$
.

Theorem: (existence and uniqueness of a minimizer of closed strongly convex functions)

Let $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper closed and σ -convex. Then

- (a). f has a unique minimizer;
- (b). $f(x) f(x^*) \ge \frac{\sigma}{2} \|x x^*\|^2$ for all $x \in \text{dom}(f)$, where x^* is the unique minimizer of f.

3. Smoothness and Strong Convexity Correspondence3.1 The Conjugate Correspondence Theorem

Theorem: (conjugate correspondence theorem).

Let $\sigma > 0$. Then

- (a). If $f:\mathbb{R}^n \to \mathbb{R}$ is $\frac{1}{\sigma}$ -smooth and convex, then f^* is σ -strongly convex with respect to the dual norm $\|\ \|_*$.
- (b). If $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is proper closed and σ -strongly convex, then $f^*: \mathbb{R}^n \to \mathbb{R}$ is $\frac{1}{\sigma}$ -smooth w.r.t the dual norm $\|\cdot\|_*$.

3. Smoothness and Strong Convexity Correspondence

3.2 Smoothness of the Infimal Convolution

Theorem: (smoothness of the infimal convolution).

Let $f:\mathbb{R}^n \to \overline{\mathbb{R}}$ be proper closed and convex, and let real-valued function $w:\mathbb{R}^n \to \mathbb{R}$ be L-smooth and convex. Assume that $f\square w$ is real-valued. Then the following hold:

- (a). $f \square w$ is L-smooth.
- (b). Let $x \in \mathbb{R}^n$, and assume that u(x) is a minimizer of

$$\min_{u} \left\{ f(u) + w(x - u) \right\}.$$

Then
$$\nabla (f \square w)(x) = \nabla w (x - u(x)).$$