BGuide - Cálculo 1

Bruno Geronymo 2018-03-04

Contents

Prefácio		5
1	Números reais1.1 Os Números Racionais1.2 Os Números Reais	7 7 7
2	Sem Título	11
3	Sem Título	13
4	Sem Título	15
5	Sem Título	17

4 CONTENTS

Prefácio

Este material trata-se de um manual de resoluções dos exercícios propostos no livro Um Curso de Cálculo, Volume 1, 5^a Edição de Hamilton Luiz Guidorizzi. Ao decorrer das resoluções o material busca apresentar, adicionalmente, resoluções computacionais através do software R de computação estatística para facilitar a visualização do problema e também o aprendizado da linguagem R.

O material procura abordar todos os assuntos tratados no livro do *Guidorizzi*, seguindo também a mesma ordem dos capítulos, para facilitar a dinâmica de pesquisa por assuntos específicos.

6 CONTENTS

Números reais

1.1 Os Números Racionais

Por uma questão de notação admitiremos aqui que, sendo r um número racional, se $r \leq 0$, dizemos que r é não positivo. Da mesma forma, se $r \geq 0$, dizemos que r é não negativo.

Vale acrescentar aqui algumas definições que poderão auxiliar na leitura do livro.

- Abscissa: Trata-se da coordenada de um ponto sobre uma reta.
- Irredutível: Algo que não se pode reduzir. Uma fração é dita irredutível quando está em sua forma mais reduzida possível.

1.2 Os Números Reais

EXEMPLO 4. (Página 6) Suponha $x \ge 0$ e $y \ge 0$. Prove:

b)
$$x \leqslant y \Rightarrow x^2 \leqslant y^2$$
.

Resolução:

```
## Estudo por simulação:
## Semente:
set.seed(sum(utf8ToInt("BGuide")))
## Quantidade de números a serem gerados:
n <- 1000000
## Gera-se aqui 'n' números aleatórios seguindo a distribuição Uniforme de
## parâmetros 'min = 0' e 'max = 1':
x <- runif(n)</pre>
```

```
## Em seguida geramos mais 'n' números aleatórios seguindo uma distribuição
## Uniforme de parâmetros 'min = x' e 'max = 1'. Isto faz com que todos os
## números armazenados em y[i] sejam maiores do que os armazenados em x[i], com
## 'i' variando de 1 a 'n'. Mas não implica que y[i] seja maior do que x[j] com
## 'j' também variando de 1 a 'n' e 'i != j':
y \leftarrow runif(n, min = x)
## Soma a quantidade de verificações onde a afirmação 'x^2 <= y^2' for
## verdadeira:
sum(x^2 \le y^2)
## [1] 1000000
## Observe que o resultado é 1.000.000, exatamente a quantidade de números
## uniformes no intervalo (0, 1) que foram gerados. Logo para todas as
## simulações obteve-se 'x^2 <= y^2'.
## Obs.: O resultado obtido por simulação não prova a propriedade acima, apenas
## cria evidências a favor dela. A simulação não é necessária aqui pois a
## propriedade pode ser provada analiticamente.
```

EXEMPLO 9. (Página 10) Resolva a inequação $\frac{3x-1}{x+2} \geqslant 5$.

Sendo x < 2:

$$\frac{3x-1}{x+2} \geqslant 5 \Leftrightarrow 3x-1 \leqslant 5(x+2).$$

Então o autor pergunta: Por quê?

Sabemos que 1 < 2, se multiplicássemos esta expressão por -1 sem alterarmos o sentido da desigualdade teríamos -1 < -2 e sabemos que esta afirmação não é verdadeira. Considerando a < 0, se multiplicarmos uma desigualdade por a altera-se o sentido da desigualdade pois refletimos estes valores para o outro lado de um eixo com relação a origem a uma taxa de progressão |a|. Porém, ao realizar este processo a direção de crescimento das unidades permanece a mesma (não é refletida).

```
## Linha da origem:
abline(v = 0, col = "red", lwd = 2)
## Eixo do sistema:
arrows(x0 = -8, y0 = 1, x1 = 4, y1 = 1, lwd = 2)
## Coordenadas da legenda:
x \leftarrow c(-6.007753, -4.010723, 1.992396, 2.990910)
y \leftarrow rep(1.05, 4)
## Legenda:
text(x, y, labels = c("ky", "kx", "x", "y"), col = "red", lwd = 3)
```

Gráfico Unidimensional para Avaliação das Desigualdades

1.2.1 Exercícios Resolvidos

1. Resolva a inequação.

a)
$$3x + 3 < x + 6$$

$$3x + 3(-x) < x + 6(-x)$$
 (1.1)

$$2x + 3 \quad < \quad 6 \tag{1.2}$$

$$2x + 3(-3) < 6(-3)$$
 (1.3)

$$2x < 3 \tag{1.4}$$

$$\frac{2x}{2} < \frac{3}{2} \tag{1.5}$$

$$\frac{2}{2} < \frac{2}{2} \tag{1.5}$$

$$x < \frac{3}{2} \tag{1.6}$$