MySQL 한번에 끝내기

목차

- 1. MySQL 소개
- 2. MySQL설치
- 3. SQL 기본
- 4. SQL고급

1. MySQL 소개

MySQL 소개

- MySQL은 가장 널리 사용되고 있는 관계형 데이터베이스 관리 시스템(RDBMS: Relational DBMS)
- MySQL은 오픈 소스이며, 다중 사용자와 다중 스레드를 지원
- C언어, C++, JAVA, PHP 등 여러 프로그래밍 언어를 위한 다양한 API를 제공
- MySQL은 유닉스, 리눅스, 윈도우 등 다양한 운영체제에서 사용할 수 있으며, 특히 PHP 와 함께 웹 개발에 자주 사용
- MySQL은 오픈 소스 라이센스를 따르기는 하지만, 상업적으로 사용할 때는 상업용 라이센스 구입 필요

2. MySQL 설치

MySQL 다운로드

MySQL Enterprise Edition

The most comprehensive set of advanced features, management tools and technical support to achieve the highest levels of MySQL scalability, security, reliability, and uptime.

Oracle MySQL Cloud Service

Built on MySQL Enterprise Edition and powered by the Oracle Cloud, Oracle MySQL Cloud Service provides a simple, automated, integrated and enterprise ready MySQL cloud service, enabling organizations to

MySQL 다운로드

Suanlab

MySQL 다운로드

- MySQL Shell
- MySQL Workbench
- MySQL Connectors
- Other Downloads

- If you have an online connection while running the MySQL Installer, choose the mysql-installer-web-community file.
- If you do NOT have an online connection while running the MySQL Installer, choose the mysql-installer-community file.

Note: MySQL Installer is 32 bit, but will install both 32 bit and 64 bit binaries.

Online Documentation

• MySQL Installer Documentation and Change History

Please report any bugs or inconsistencies you observe to our Bugs Database.

Thank you for your support!

MySQL Workbench

MySQL Workbench

3. SQL 기본

SQL의 분류

- DMLData Manipulation Language
 - 데이터 조작 언어
 - 데이터를 조작(선택, 삽입, 수정, 삭제)하는 데 사용되는 언어
 - DML 구문이 사용되는 대상은 테이블의 행
 - DML 사용하기 위해서는 꼭 그 이전에 테이블 이 정의되어 있어야 함
 - SQL문 중 SELECT, INSERT, UPDATE, DELETE가 이 구문에 해당
 - 트랜잭션Transaction이 발생하는 SQL도 이 DML 에 속함
 - 테이블의 데이터를 변경(입력/수정/삭제)할
 때 실제 테이블에 완전히 적용하지 않고, 임시로 적용시키는 것
 - 취소가능

- DDL Data Definition Language
 - 데이터 정의 언어
 - 데이터베이스, 테이블, 뷰, 인덱스 등의 데이터 베이스 개체를 생성/삭제/변경하는 역할
 - CREATE, DROP, ALTER 구문
 - DDL은 트랜잭션 발생시키지 않음
 - ROLLBACK이나 COMMIT 사용 불가
 - DDL문은 실행 즉시 MySQL에 적용
- DCLData Control Language
 - 데이터 제어 언어
 - 사용자에게 어떤 권한을 부여하거나 빼앗을 때 주로 사용하는 구문
 - GRANT/REVOKE/DENY 구문

SHOW DATABASES

■ 현재 서버에 어떤 DB가 있는지 보기

USE

- 사용할 데이터베이스 지정
- 지정해 놓은 후 특별히 다시 USE문 사용 하거나 다른 DB를 사용하겠다고 명시하 지 않는 이상 모든 SQL문은 지정 DB에서 수행

USE database_name

- Workbench에서 직접 선택해 사용 가능
 - [Navigator] → [SCHEMAS] → 데이터베이스 선택

SHOW TABLE

■ 데이터베이스 world의 테이블 이름 보기

SHOW TABLE STATUS

■ 데이터베이스 world의 테이블 정보 조회

DESCRIBE (DESC)

- city 테이블에 무슨 열이 있는지 확인
 - DESCRIBE city;
 - DESC city;

country 테이블과 countrylanguage 테이블 정보 보기

SELECT

- SELECT... FROM>
- 요구하는 데이터를 가져오는 구문
- 일반적으로 가장 많이 사용되는 구문
- 데이터베이스 내 테이블에서 원하는 정보를 추출
- SELECT의 구문 형식

```
SELECT select_expr
[FROM table_references]
[WHERE where_condition]
[GROUP BY {col_name | expr | position}]
[HAVING where_condition]
[ORDER BY {col_name | expr | position}]
```

SELECT

SELECT*

SELECT

- SELECT 열 이름
 - 테이블에서 필요로 하는 열만 가져오기 가능
 - 여러 개의 열을 가져오고 싶을 때는 콤마로 구 분
 - 열 이름의 순서는 출력하고 싶은 순서대로 배 열 가능

SELECT FROM WHERE

- 기본적인 WHERE절
 - 조회하는 결과에 특정한 조건으로 원하는 데 이터만 보고 싶을 때 사용
 - SELECT 필드이름 FROM 테이블이름 WHERE 조건식;
 - 조건이 없을 경우 테이블의 크기가 클수록 찾 는 시간과 노력이 증가

SELECT FROM WHERE

- 관계 연산자의 사용
 - OR 연산자
 - AND 연산자
 - 조건 연산자(=,<,>,<=,>=,<>,!= 등)
 - 관계 연산자(NOT, AND, OR 등)
 - 연산자의 조합으로 데이터를 효율적으로 추출
- MySQL 함수 및 연산자: https://dev.mysql.com/doc/refman/8.0 /en/functions.html

한국에 있는 도시들 보기

미국에 있는 도시들 보기

한국에 있는 도시들 중에 인구 수가 1,000,000 이상인 도시 보기

BETWEEN

■ 데이터가 숫자로 구성되어 있어 연속적인 값은 BETWEEN... AND 사용 가능

IN

■ 이산적인^{Discrete} 값의 조건에서는 IN() 사용 가능

한국, 미국, 일본의 도시들 보기

LIKE

- 문자열의 내용 검색하기 위해 LIKE 연산 자 사용
- 문자 뒤에 % 무엇이든(%) 허용
- 한 글자와 매치하기 위해서는 ' '사용

Sub Query

- 서브 쿼리SubQuery
- 쿼리문 안에 또 쿼리문이 들어 있는 것
- 서브 쿼리의 결과가 둘 이상이 되면 에러 발생

ANY

- 서브쿼리의 여러 개의 결과 중 한 가지만 만족해도 가능
- SOME은 ANY와 동일한 의미로 사용
- = ANY 구문은 IN과 동일한 의미

ALL

■ 서브쿼리의 여러 개의 결과를 모두 만족 시켜야 함

ORDER BY

- 결과가 출력되는 순서를 조절하는 구문
- 기본적으로 오름차순ASCENDING 정렬
- 내림차순DESCENDING 으로 정렬
 - 열 이름 뒤에 DESC 적어줄 것
- ASC(오름차순)는 default이므로 생략 가 능

ORDER BY

■ ORDER BY 구문을 혼합해 사용하는 구문 도 가능

인구수로 내림차순하여 한국에 있는 도시 보기

국가 면적 크기로 내림차순하여 나라 보기 (country table)

DISTINCT

- 중복된 것은 1개씩만 보여주면서 출력
- 테이블의 크기가 클수록 효율적

LIMIT

- 출력 개수를 제한
- 상위의 N개만 출력하는 'LIMIT N' 구문
- 서버의 처리량을 많이 사용해 서버의 전 반적인 성능을 나쁘게 하는 악성 쿼리문 개선할 때 사용

GROUP BY

- 그룹으로 묶어주는 역할
- 집계 함수Aggregate Function를 함께 사용
 - AVG(): 평균
 - MIN(): 최소값
 - MAX(): 최대값
 - COUNT(): 행의 개수
 - COUNT(DISTINCT): 중복 제외된 행의 개수
 - STDEV(): 표준 편차
 - VARIANCE(): 분산
- 효율적인 데이터 그룹화Grouping
- 읽기 좋게 하기 위해 별칭Alias 사용

```
SELECT CountryCode, MAX(Population) AS 'Population'
FROM city
GROUP BY CountryCode
```


도시는 몇개인가?

도시들의 평균 인구수는?

HAVING

- WHERE과 비슷한 개념으로 조건 제한
- 집계 함수에 대해서 조건 제한하는 편리 한 개념
- HAVING절은 반드시 GROUP BY절 다음 에 나와야 함

ROLLUP

- 총합 또는 중간합계가 필요할 경우 사용
- GROUP BY절과 함께 WITH ROLLUP문 사용

JOIN

■ JOIN은 데이터베이스 내의 여러 테이블 에서 가져온 레코드를 조합하여 하나의 테이블이나 결과 집합으로 표현

city, country, countrylanguage 테이블 3개를 JOIN 하기

MySQL 내장함수

- 사용자의 편의를 위해 다양한 기능의 내장 함수를 미리 정의하여 제공
- 대표적인 내장 함수의 종류
 - 문자열 함수
 - 수학 함수
 - 날짜와 시간 함수

LENGTH()

■ 전달받은 문자열의 길이를 반환

CONCAT()

- 전달받은 문자열을 모두 결합하여 하나의 문자열로 반환
- 전달받은 문자열 중 하나라도 NULL이 존 재하면 NULL을 반환

LOCATE()

- 문자열 내에서 찾는 문자열이 처음으로 나타나는 위치를 찾아서 해당 위치를 반 환
- 찾는 문자열이 문자열 내에 존재하지 않 으면 0을 반환
- MySQL에서는 문자열의 시작 인덱스를 1 부터 계산

LEFT(), RIGHT()

- LEFT(): 문자열의 왼쪽부터 지정한 개수만 큼의 문자를 반환
- RIGHT(): 문자열의 오른쪽부터 지정한 개 수만큼의 문자를 반환

LOWER(), UPPER()

- LOWER(): 문자열의 문자를 모두 소문자 로 변경
- UPPER(): 문자열의 문자를 모두 대문자로 변경

REPLACE()

■ 문자열에서 특정 문자열을 대체 문자열로 교체

TRIM()

- 문자열의 앞이나 뒤, 또는 양쪽 모두에 있 는 특정 문자를 제거
- TRIM() 함수에서 사용할 수 있는 지정자
 - BOTH: 전달받은 문자열의 양 끝에 존재하는 특정 문자를 제거 (기본 설정)
 - LEADING: 전달받은 문자열 앞에 존재하는 특정 문자를 제거
 - TRAILING: 전달받은 문자열 뒤에 존재하는 특정 문자를 제거
- 만약 지정자를 명시하지 않으면, 자동으로 BOTH로 설정
- 제거할 문자를 명시하지 않으면, 자동으로 공백을 제거

FORMAT()

- 숫자 타입의 데이터를 세 자리마다 쉼표(,) 를 사용하는 '#,###,###.##' 형식으로 변 환
- 반환되는 데이터의 형식은 문자열 타입
- 두 번째 인수는 반올림할 소수 부분의 자 릿수

FLOOR(), CEIL(), ROUNT()

- FLOOR(): 내림
- CEIL(): 올림
- ROUND(): 반올림

SQRT(), POW(), EXP(), LOG()

- SQRT(): 양의 제곱근
- POW(): 첫 번째 인수로는 밑수를 전달하고, 두 번째 인수로는 지수를 전달하여 거듭제곱 계산
- EXP(): 인수로 지수를 전달받아, e의 거듭 제곱을 계산
- LOG(): 자연로그 값을 계산

SIN(), COS(), TAN()

- SIN(): 사인값 반환
- COS(): 코사인값 반환
- TAN(): 탄젠트값 반환

ABS(), RAND()

- ABS(X): 절대값을 반환
- RAND(): 0.0보다 크거나 같고 1.0보다 작 은 하나의 실수를 무작위로 생성

NOW(), CURDATE(), CURTIME()

- NOW(): 현재 날짜와 시간을 반환, 반환되는 값은 'YYYY-MM-DD HH:MM:SS' 또는 YYYYMMDDHHMMSS 형태로 반환
- CURDATE(): 현재 날짜를 반환, 이때 반환되는 값은 'YYYY-MM-DD' 또는 YYYYMMDD 형태로 반환
- CURTIME(): 현재 시각을 반환, 이때 반환되는 값은 'HH:MM:SS' 또는 HHMMSS 형태로 반화

DATE(), MONTH(), DAY(), HOUR(), MINUTE(), SECOND()

- DATE(): 전달받은 값에 해당하는 날짜 정 보를 반환
- MONTH(): 월에 해당하는 값을 반환하며, 0부터 12 사이의 값을 가짐
- DAY(): 일에 해당하는 값을 반환하며, 0부터 31 사이의 값을 가짐
- HOUR(): 시간에 해당하는 값을 반환하며, 0부터 23 사이의 값을 가짐
- MINUTE(): 분에 해당하는 값을 반환하며, 0부터 59 사이의 값을 가짐
- SECOND(): 초에 해당하는 값을 반환하며, 0부터 59 사이의 값을 가짐

MONTHNAME(), DAYNAME()

- MONTHNAME(): 월에 해당하는 이름을 반환
- DAYNAME(): 요일에 해당하는 이름을 반 환

DAYOFWEEK(), DAYOFMONTH(), DAYOFYEAR()

- DAYOFWEEK(): 일자가 해당 주에서 몇 번째 날인지를 반환,1부터 7 사이의 값을 반환 (일요일=1, 토요일=7)
- DAYOFMONTH(): 일자가 해당 월에서 몇 번째 날인지를 반환, 0부터 31 사이의 값을 반환
- DAYOFYEAR(): 일자가 해당 연도에서 몇 번째 날인지를 반환, 1부터 366 사이의 값 을 반환

DATE_FORMAT()

- 전달받은 형식에 맞춰 날짜와 시간 정보 를 문자열로 반환
- MySQL Date and Time Function: https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html

4. SQL 고급

CREATE TABLE AS SELECT

■ city 테이블과 똑같은 city2 테이블 생성

CREATE DATBASE

- CREATE DATABASE 문은 새로운 데이 터베이스를 생성
- USE문으로 새 데이터베이스를 사용

CREATE TABLE (MySQL Workbench)

■ 데이터 타입:
https://dev.mysql.com/doc/refman/8.0
/en/data-types.html

CREATE TABLE (MySQL Workbench)

CREATE TABLE (MySQL Workbench)

■ test 테이블 생성 완료

CREATE TABLE

■ test2 테이블 생성 완료

ALTER TABLE

■ ALTER TABLE 문과 함께 ADD 문을 사용 하면, 테이블에 컬럼을 추가할 수 있음

ALTER TABLE

■ ALTER TABLE 문과 함께 MODIFY 문을 사용하면, 테이블의 컬럼 타입을 변경할 수 있음

ALTER TABLE

■ ALTER TABLE 문과 함께 DROP 문을 사용하면, 테이블에 컬럼을 제거할 수 있음

인덱스Index

- 테이블에서 원하는 데이터를 빠르게 찾기 위해 사용
- 일반적으로 데이터를 검색할 때 순서대로 테이블 전체를 검색하므로 데이터가 많으면 많을수록 탐색하는 시간이 늘어남
- 검색과 질의를 할 때 테이블 전체를 읽지 않기 때문에 빠름
- 설정된 컬럼 값을 포함한 데이터의 삽입, 삭제, 수정 작업이 원본 테이블에서 이루어질 경우, 인덱스도 함께 수정되어야 함
- 인덱스가 있는 테이블은 처리 속도가 느려질 수 있으므로 수정보다는 검색이 자주 사용 되는 테이블에서 사용하는 것이 좋음

CREATE INDEX

■ CREATE INDEX 문을 사용하여 인덱스를 생성

SHOW INDEX

■ 인덱스 정보보기

CREATE UNIQUE INDEX

■ 중복 값을 허용하지 않는 인덱스

FULLTEXT INDEX

■ FULLTEXT INDEX는 일반적인 인덱스와 는 달리 매우 빠르게 테이블의 모든 텍스 트 컬럼을 검색

INDEX 삭제 (ALTER)

■ ALTER 문을 사용하여 테이블에 추가된 인덱스 삭제

INDEX 삭제 (DROP INDEX)

- DROP 문을 사용하여 해당 테이블에서 명 시된 인덱스를 삭제
- DROP 문은 내부적으로 ALTER 문으로 자동 변환되어 명시된 이름의 인덱스를 삭제

VIEW

- 뷰view는 데이터베이스에 존재하는 일종 의 가상 테이블
- 실제 테이블처럼 행과 열을 가지고 있지 만, 실제로 데이터를 저장하진 않음
- MySQL에서 뷰는 다른 테이블이나 다른 뷰에 저장되어 있는 데이터를 보여주는 역할만 수행
- 뷰를 사용하면 여러 테이블이나 뷰를 하 나의 테이블처럼 볼 수 있음

- 뷰의 장점
 - 특정 사용자에게 테이블 전체가 아닌 필요한 컬럼만 보여줄 수 있음
 - 복잡한 쿼리를 단순화해서 사용
 - 쿼리 재사용 가능
- 뷰의 단점
 - 한 번 정의된 뷰는 변경할 수 없음
 - 삽입, 삭제, 갱신 작업에 많은 제한 사항을 가짐
 - 자신만의 인덱스를 가질 수 없음

CREATE VIEW

■ CREATE VIEW 문을 사용하여 뷰 생성

ALTER VIEW

■ ALTER 문을 사용하여 뷰를 수정

DROP VIEW

■ DROP 문을 사용하여 생성된 뷰를 삭제

city, country, countrylanguage 테이블을 JOIN하고, 한국에 대한 정보만 뷰 생성하기

INSERT

- 테이블 이름 다음에 나오는 열 생략 가능
- 생략할 경우에 VALUE 다음에 나오는 값 들의 순서 및 개수가 테이블이 정의된 열 순서 및 개수와 동일해야 함

INSERT (MySQL Workbench)

INSERT INTO SELECT

■ test 테이블에 있는 내용을 test2 테이블에 삽입

UPDATE

- 기존에 입력되어 있는 값 변경하는 구문
- WHERE절 생략 가능하나 테이블의 전체 행의 내용 변경

DELETE

- 행 단위로 데이터 삭제하는 구문
- DELETE FROM 테이블이름 WHERE 조 건;
- 데이터는 지워지지만 테이블 용량은 줄어 들지 않음
- 원하는 데이터만 지울 수 있음
- 삭제 후 잘못 삭제한 것을 되돌릴 수 있음

TRUNCATE

- 용량이 줄어 들고, 인덱스 등도 모두 삭제
- 테이블은 삭제하지는 않고, 데이터만 삭 제
- 한꺼번에 다 지워야 함
- 삭제 후 절대 되돌릴 수 없음

DROP TABLE

- 데이블 전체를 삭제, 공간, 객체를 삭제
- 삭제 후 절대 되돌릴 수 없음

DROP DATABASE

■ DROP DATABASE 문은 해당 데이터베이 스를 삭제

자신만의 연락처 테이블 만들기 이름, 전화번호, 주소, 이메일, ...

(참고) 데이터 타입:

https://dev.mysql.com/doc/refman/8.0/en/data-types.html

