SMASH(Scalable Molecular Analysis Solver for High performance computing systems) ユーザーマニュアル ver. 1.1.0

1. 可能な計算

Hartree-Fock, B3LYP: 閉殻・開殻エネルギー及び構造最適化計算

MP2: 閉殻エネルギー計算

2. インストール方法

Intel、AMD マシンで MPI を使ってコンパイルする場合、smash/ディレクトリ内でmake

と実行する。

Intel MPI Library (mpiifort)を使用する場合、

make -f Makefile.mpiifort

と実行する。

MPI 並列しない場合、

make -f Makefile.x86 64.noMPI

と実行する。

Intel コンパイラ、MKL ライブラリ以外を使用する場合、Makefile、Makefile.x86.noMPIのF90、LIB、OPTを編集する。

Kコンピュータ、FX10を利用する場合、

make -f Makefile.fujitsu

と実行する。

bin/smash ができれば、インストール終了。

3. 重要な設定

Linux システムの stack size と環境変数の OMP_STACKSIZE のデフォルト値は小さいため、実行前に新しい値を設定する必要がある。

bash の場合: ~/.bashrc ファイルに次の2行を追加してください。

ulimit -s unlimited

export OMP_STACKSIZE=1G

csh,tcsh の場合:~/.cshrc もしくは~/.tcshrc ファイルに次の2行を追加してください。 unlimit

setenv OMP_STACKSIZE 1G

もし SCF 計算が開始すぐに止まる場合、OMP_STACKSIZE の値をより大きくしてください。

4. 実行方法

4.1. ノード内(OpenMP)並列

1 プロセスのスレッド数を決めるため、環境変数 OMP_NUM_THREADS を設定してください。

bash の場合: ~/.bashrc ファイルに次の行を追加してください。

export OMP_NUM_THREADS=(スレッド数)

csh,tcsh の場合: ~/.cshrc もしくは~/.tcshrc ファイルに次の行を追加してください。

setenv OMP_NUM_THREADS (スレッド数)

設定後、次のように計算を実行してください。

bin/smash < (input ファイル名) > (output ファイル名)

4.2. ノード間(MPI)並列

mpirun もしくは mpiexec コマンドにより MPI 並列計算を開始してください。 MPI プロセス数は-np の後に指定してください。

mpirun -np (プロセス数) bin/smash < (input ファイル名) > (output ファイル名)

4.3. ハイブリッド(MPI/OpenMP)並列

1プロセスあたりのスレッド数(OMP_NUM_THREADS の値)は1ノードのコア数と同じ、プロセス数は使用するノード数と同じにすると最も効率的に計算できます。OMP_NUM_THREADS を設定後、MPI 計算を開始してください。

5. インプット形式

```
job runtype=optimize method=b3lyp basis=gen memory=1g
control spher=.false.
scf diis=.false.
opt nopt=100
geom
 O
   0.0000000
                  0.0000000
                               0.1423813
Н 0.0000000
                  0.7568189
                               -0.4626257
     0.0000000
                 -0.7568189
                              -0.4626257
basis
0
6-31G(d)
***
Η
STO-3G
****
```

job, control, scf, opt, dft で始まる行で計算内容を指定して、geom の次の行から原子と その座標を指定する。大文字と小文字の区別はない。原子ごとの基底関数、ECP を指 定する場合、basis、ecp の次の行から指定する。

6. キーワード内容

6.1. job

runtype 計算実行方法 energy: エネルギー計算 (default) gradient: エネルギー微分計算 optimize: 構造最適化計算 method 計算方法 HF: Hartree-Fock 計算 (default) b3lyp: B3LYP 計算 mp2: MP2 計算 basis 基底関数 sto-3g (default), 6·31g, 6·31g(d), cc-pvdz, cc-pvtz, cc-pvqz, d95v, lanl2dz gen: 元素ごとに指定(参照 6.6 basis) memory 1ノード当たりメモリ使用量(default 4GB) 使用可能単位: B, KB, MB, GB, TB charge 系の電荷 (default ±0) multi スピン多重度 1: singlet 2: doublet 3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz				
gradient: エネルギー微分計算 optimize: 構造最適化計算 method 計算方法 HF: Hartree-Fock 計算 (default) b3lyp: B3LYP 計算 mp2: MP2 計算 basis 基底関数 sto-3g (default), 6-31g, 6-31g(d), cc-pvdz, cc-pvtz, cc-pvqz, d95v, lanl2dz gen: 元素ごとに指定(参照 6.6 basis) memory 1 ノード当たりメモリ使用量(default 4GB) 使用可能単位: B, KB, MB, GB, TB charge 系の電荷 (default ±0) multi スピン多重度 1: singlet 2: doublet 3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz	runtype	計算実行方法		
method 計算方法 HF: Hartree-Fock 計算 (default) b3lyp: B3LYP 計算 mp2: MP2 計算 basis 基底関数 sto-3g (default), 6-31g, 6-31g(d), cc-pvdz, cc-pvtz, cc-pvqz, d95v, lanl2dz gen: 元素ごとに指定(参照 6.6 basis) memory 1ノード当たりメモリ使用量(default 4GB) 使用可能単位: B, KB, MB, GB, TB charge 系の電荷 (default ±0) multi スピン多重度 1: singlet 2: doublet 3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz		energy: エネルギー計算 (default)		
method 計算方法 HF: Hartree·Fock 計算 (default) b3lyp: B3LYP 計算 mp2: MP2 計算 basis 基底関数 sto-3g (default), 6-31g, 6-31g(d), cc-pvdz, cc-pvtz, cc-pvqz, d95v, lanl2dz gen: 元素ごとに指定(参照 6.6 basis) memory 1ノード当たりメモリ使用量(default 4GB) 使用可能単位: B, KB, MB, GB, TB charge 系の電荷 (default ±0) multi スピン多重度 1: singlet 2: doublet 3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz		gradient: エネルギー微分計算		
HF: Hartree・Fock 計算(default) b3lyp: B3LYP 計算 mp2: MP2 計算 basis 基底関数 sto・3g(default), 6・31g, 6・31g(d), cc-pvdz, cc-pvtz, cc-pvqz, d95v, lanl2dz gen: 元素ごとに指定(参照 6.6 basis) memory 1ノード当たりメモリ使用量(default 4GB) 使用可能単位: B, KB, MB, GB, TB charge 系の電荷(default ±0) multi スピン多重度 1: singlet 2: doublet 3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed・shell (default) UHF: Open・shell ecp ECP (Effective Core Potential) lanl2dz		optimize: 構造最適化計算		
b3lyp: B3LYP 計算 mp2: MP2 計算 basis 基底関数 sto-3g (default), 6-31g, 6-31g(d), cc-pvdz, cc-pvtz, cc-pvqz, d95v, lanl2dz gen: 元素ごとに指定(参照 6.6 basis) memory 1ノード当たりメモリ使用量(default 4GB) 使用可能単位: B, KB, MB, GB, TB charge 系の電荷 (default ±0) multi スピン多重度 1: singlet 2: doublet 3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz	method	計算方法		
basis 基底関数 sto-3g (default), 6-31g, 6-31g(d), cc-pvdz, cc-pvtz, cc-pvqz, d95v, lanl2dz gen: 元素ごとに指定(参照 6.6 basis) memory 1 ノード当たりメモリ使用量(default 4GB) 使用可能単位: B, KB, MB, GB, TB charge 系の電荷 (default ±0) multi スピン多重度 1: singlet 2: doublet 3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz		HF: Hartree-Fock 計算 (default)		
基底関数 sto-3g (default), 6-31g, 6-31g(d), cc-pvdz, cc-pvtz, cc-pvqz, d95v, lanl2dz gen: 元素ごとに指定(参照 6.6 basis) memory 1ノード当たりメモリ使用量(default 4GB) 使用可能単位: B, KB, MB, GB, TB charge 系の電荷 (default ±0) multi スピン多重度 1: singlet 2: doublet 3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz		b3lyp: B3LYP 計算		
sto-3g (default), 6-31g, 6-31g(d), cc-pvdz, cc-pvtz, cc-pvqz, d95v, lanl2dz gen: 元素ごとに指定(参照 6.6 basis) memory 1 ノード当たりメモリ使用量(default 4GB) 使用可能単位: B, KB, MB, GB, TB charge 系の電荷 (default ±0) multi スピン多重度 1: singlet 2: doublet 3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz		mp2: MP2 計算		
d95v, lanl2dz gen: 元素ごとに指定(参照 6.6 basis) memory 1 ノード当たりメモリ使用量(default 4GB) 使用可能単位: B, KB, MB, GB, TB charge 系の電荷 (default ±0) multi スピン多重度 1: singlet 2: doublet 3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz	basis	基底関数		
gen: 元素ごとに指定(参照 6.6 basis) memory 1 ノード当たりメモリ使用量(default 4GB) 使用可能単位: B, KB, MB, GB, TB charge 系の電荷 (default ±0) multi スピン多重度 1: singlet 2: doublet 3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz		sto-3g (default), 6-31g, 6-31g(d), cc-pvdz, cc-pvtz, cc-pvqz		
memory 1 ノード当たりメモリ使用量(default 4GB) 使用可能単位:B, KB, MB, GB, TB charge 系の電荷 (default ±0) multi スピン多重度 1: singlet 2: doublet 3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz		d95v, lanl2dz		
使用可能単位:B, KB, MB, GB, TB Charge 系の電荷 (default ±0) multi スピン多重度 1: singlet 2: doublet 3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz		gen: 元素ごとに指定(参照 6.6 basis)		
multi スピン多重度 1: singlet 2: doublet 3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz	memory	1ノード当たりメモリ使用量(default 4GB)		
multi スピン多重度 1: singlet 2: doublet 3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz		使用可能単位:B, KB, MB, GB, TB		
1: singlet 2: doublet 3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz	charge	系の電荷 (default ±0)		
2: doublet 3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz	multi	スピン多重度		
3,4,: triplet, quartet, scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz		1: singlet		
scftype 波動関数種類 RHF: Closed-shell (default) UHF: Open-shell ecp ECP (Effective Core Potential) lanl2dz		2: doublet		
RHF : Closed-shell (default) UHF: Open-shell ecp		3,4,: triplet, quartet,		
ecp ECP (Effective Core Potential) lanl2dz	scftype	波動関数種類		
ecp ECP (Effective Core Potential) lanl2dz		RHF: Closed-shell (default)		
lanl2dz		UHF: Open-shell		
	ecp	ECP (Effective Core Potential)		
mon: 二ま デレア 松宁(lanl2dz		
gen		gen: 元素ごとに指定(参照 2.7 ecp)		

6.2. control

spher	Spherical Harmonics もしくは Cartesian 基底指定
-------	---

	.true. : Spherical (5d, 7f,) (default)		
	.false. : Cartesian (6d, 10f,)		
guess	初期波動関数		
	huckel:拡張 Huckel 計算(default)		
	check: チェックポイントファイル参照		
check	チェックポイントファイル名 (default:空白)		
cutint2	2 電子積分のカットオフ値		
	1.0d-12 (default)		
bohr	距離の単位		
	.false.: Å(default)		
	.true.: bohr		
iprint	出力制御		
	1:最少出力		
	2:通常出力 (default)		
	3: 詳細出力		

6.3. scf

diis	DIIS 指定	
	.true. : DIIS (default)	
	.false. : Second-order SCF	
maxiter	最大 SCF 回数	
	100 (default)	
dconv	SCFでの電子密度収束判定	
	5.0D-6 (default)	
maxdiis	最大 DIIS 回数	
	20 (default)	
maxsoscf	最大 SOSCF 回数	
	20 (default)	

6.4. opt

nopt	最大 Opt 回数	
	50 (default)	
noptconv	Opt での Force 収束判定	
	1.0D-4 (default)	
cartesian	構造最適化時の座標系	
	.true. : Cartesian coordinate	

	.false. : Redundant coordinate (default)
--	--

6.5. dft

nrad	汎関数数値積分の動径点数	
	96 (default)	
nleb	汎関数数値積分の Lebedev グリッド角度点数	
	302 (default)	

6.6. geom

"geom"の次の行から分子構造の読み込みが始まる。1行に1原子で、元素記号と xyz 座標を書く。空行もしくはファイルの最後で分子構造の読み込みが終了する。 チェックポイントファイルから読むときは、初めの行を geom=check と書く。

6.7. basis

元素ごとに指定する。

関数名(6-31G(d)、cc-pVDZ、LANL2DZ など)でも関数の直接記入でも可。 関数名と関数の併用も可(LANL2DZ に d 関数追加など)。

元素ごとの区切りは****で、basis 指定の最後は空行。

関数のフォーマットは次の通り。

(元素記号)

(軌道角運動量 (S,P,D,F,G,SP)) (primitive 関数の数)

(Gauss 関数の指数) (短縮係数) (P 関数の短縮係数(SP の場合のみ)) (Gauss 関数の指数) (短縮係数) (P 関数の短縮係数(SP の場合のみ)) ...primitve 関数の数繰り返し

...関数指定の繰り返し

basis

例)

Se LanL2DZ D 1 0.384 1.0 **** C H 6-31G(d)

6.8. ecp

元素ごとに指定する。

関数名(LANL2DZ)でも関数の直接記入でも可。

ecp 指定の最後は空行。

関数のフォーマットは次の通り。

(元素記号)

(関数名(任意)) (最大軌道角運動量) (Core 電子数)

(タイトル(任意))

(Gauss 関数の数)

(Rの次数) (Gauss 関数の指数) (Gauss 関数の係数)

(Rの次数) (Gauss 関数の指数) (Gauss 関数の係数)

...Gauss 関数の数繰り返し

...Gauss 関数指定の繰り返し

•••					
例)	ecp	ecp			
	Au	Au			
	Lanl	LanL2DZ			
	Cl	Cl			
	Cl-ECP 2 10				
	d-ul	potential			
	5				
	1	94.8130000	-10.0000000		
	2	165.6440000	66.2729170		
	2	30.8317000	-28.9685950		
	2	10.5841000	-12.8663370		
	2	3.7704000	-1.7102170		
	s-ul potential 5				
	0	128.8391000	3.0000000		
	1	120.3786000	12.8528510		
	2	63.5622000	275.6723980		
	2	18.0695000	115.6777120		
	2	3.8142000	35.0606090		
	p-ul potential				
	6				
	0	216.5263000	5.0000000		
	1	46.5723000	7.4794860		
	2	147.4685000	613.0320000		
	2	48.9869000	280.8006850		
	2	13.2096000	107.8788240		
	2	3.1831000	15.3439560		