Chapter 16: Vector Calculus

§ 16.1*: Vector Fields

Definition: Let D be a set in \mathbb{R}^n . A **vector field** on \mathbb{R}^n is a function \mathbf{F} that assigns to each point (x_1, \ldots, x_n) in D an n-dimensional vector $\mathbf{F}(x_1, \ldots, x_n)$.

#2: Sketch the vector field $\mathbf{F}(x,y) = \frac{1}{2}x\,\hat{\mathbf{i}} + y\,\hat{\mathbf{j}}$.

With **component functions** P and Q:

$$\mathbf{F}(x,y) = P(x,y)\,\hat{\mathbf{i}} + Q(x,y)\,\hat{\mathbf{j}}$$
$$= \langle P(x,y), Q(x,y) \rangle$$

or, more compactly when the domain is clear, $\mathbf{F} = P \,\hat{\mathbf{i}} + Q \,\hat{\mathbf{j}} = \langle P, Q \rangle$. Functions like P and Q are sometimes called **scalar fields**.

Example A: Sketch the vector field $\mathbf{F}(x, y, z) = \hat{\mathbf{j}} - \hat{\mathbf{i}}$.

Example B: Find and sketch the gradient vector field ∇f of $f(x,y) = \sqrt{x^2 + y^2}$.

A vector field **F** is called a **conservative vector field** if it is the gradient of some scalar field, i.e., if $\mathbf{F} = \nabla f$ for some f. In this case, f is called a **potential function** for \mathbf{F} .

From § 16.3, pp. 1090–2:

Suppose $\mathbf{F} = P \,\hat{\mathbf{i}} + Q \,\hat{\mathbf{j}}$ is conservative.

Theorem 5: If $\mathbf{F}(x,y) = P(x,y) \hat{\mathbf{i}} + Q(x,y) \hat{\mathbf{j}}$ is a conservative vector field, where P and Q have continuous first-order partial derivatives on a domain D, then throughout D we have $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

Theorem 6: Let $\mathbf{F} = P \,\hat{\mathbf{i}} + Q \,\hat{\mathbf{j}}$ be a vector field on an open simply-connected region D. If P and Q have continuous first-order derivatives and $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ throughout D, then \mathbf{F} is conservative.

Examples: Determine whether or not **F** is a conservative vector field. If it is, find a function f such that $\mathbf{F} = \nabla f$.

C:
$$\mathbf{F}(x,y) = (3x^2 - 2y^2)\,\mathbf{\hat{i}} + (4xy + 3)\,\mathbf{\hat{j}}$$

D:
$$\mathbf{F}(x,y) = e^x \sin y \,\hat{\mathbf{i}} + e^x \cos y \,\hat{\mathbf{j}}$$