PRIMER PARCIAL (Recuperación) (Soluciones)

Observaciones:

- Tiempo: 1h. 30 m.
- Sólo se valorarán las respuestas que estén justificadas correctamente.
- No está permitido el uso de dispositivos electrónicos.

Ejercicio 1

Sea D₃₉₂ el conjunto de todos los divisores positivos de 392, y sea | la relación de orden de divisibilidad, es decir, a|b significa que "a divide a b".

- a) (5 puntos) Dibuja el diagrama de Hasse del conjunto ordenado (D_{392} , |).
- b) (5 puntos) Obtén las cotas superiores e inferiores, supremo e ínfimo, máximo y mínimo, maximales y minimales, si los hay, del subconjunto $B = \{2, 7, 49, 196\}$.
- c) (5 puntos) Razona si 7 y 49 tienen complementario en D₃₉₂. En caso afirmativo obtenlos.

Razona si (D₃₉₂, |) es un Álgebra de Boole.

Solución

a)

cotas superiores B = {196, 392}

cotas inferiores $B = \{1\}$

supremo B = 196

infimo B = 1

maximales $B = \{196\}$

minimales $B = \{2, 7\}$

máximo B = 196

mínimo B no existe

c) x es complementario de 7 en D_{392} si y sólo si inf $\{7, x\} = 1$ y sup $\{7, x\} = 392$.

No existe el complementario de 7 en D_{392} .

y es complementario de 49 en D_{392} si y sólo si inf $\{49, y\} = 1$ y sup $\{49, y\} = 392$.

Entonces 8 es el complementario de 49 en D_{392} .

 D_{392} no es Álgebra de Boole porque card D_{392} = 12 que no es potencia de 2.

Ejercicio 2

a) (5 puntos) Determina la tabla de verdad de la expresión booleana E(x, y, z) = x' + x z + (y'x)'.

PRIMER PARCIAL (Recuperación) (Soluciones)

- b) (5 puntos) Dada la función booleana $f: B^4 \to B$ cuyo conjunto de verdad es $S(f) = \{(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 1, 1)\}$
 - i) Calcula una expresión booleana para f en forma de suma de productos elementales.
 - ii) Simplifica la expresión booleana obtenida por el método de Quine McCluskey.

Solución

a)
$$x' + xz + (xy')' = x' + xz + (x' + y) = x' + y + xz$$

×	у	z	x' + y + x z			
0	0	0	1			
0	0	1	1			
0	1	0	1			
0	1	1	1			
1	0	0	0			
1	0	1	1			
1	1	0	1			
1	1	1	1			

b)

ii) Aplicando el algoritmo de Quine - McCluskey:

· 1111	· -111	11
- 1011	· 1-11	0-1-
· 0111	· O-11	01
- 0011	· 011-	
- 0110	· 01-1	
- 0101	· -011	
· 0001	· 00-1	

PRIMER PARCIAL (Recuperación) (Soluciones)

· 0010 · 001-

· 0-10

· 0-01

	1111	0111	1011	0011	0110	0101	0001	0010
11	√	√	V					
0-1-		V		√	√			√
01		V		V		√	V	

La expresión booleana pedida es: E'(x, y, z, t) = x't + zt + x'z.

Ejercicio 3

a) (5 puntos) Demuestra por inducción que

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

b) (10 puntos) Un importador de vehículos trabaja tres modelos diferentes. El modelo superior se vende por 103.000 €, el modelo intermedio se vende a 78.000 € y el modelo básico se vende por 67.000 €. Si el pasado año vendieron 32 vehículos por los que facturaron un total de 2.188.000 €, ¿cuántos vehículos de cada tipo vendieron?

Solución

a) La fórmula es cierta si n = 1, puesto que

$$\sum_{k=1}^{1} k = \frac{1(1+1)}{2}$$

Hipótesis de inducción: supongamos que la fórmula es cierta para k = n-1, entonces

$$\sum_{k=1}^{n} k = \sum_{k=1}^{n-1} k + n = \frac{(n-1)n}{2} + n = \frac{(n-1)n + 2n}{2} = \frac{n(n+1)}{2}$$

se cumple la igualdad para todo $n \ge 1$.

b) Sean x, y, z el número de vehículos vendidos de cada uno de los modelos, entonces se tiene que

$$\begin{cases} 103x + 78y + 67z = 2188 \\ x + y + z = 32 \end{cases} \Longrightarrow \begin{cases} 36x + 11y = 44 \\ z = 32 - x - y \end{cases}$$

PRIMER PARCIAL (Recuperación) (Soluciones)

$$\begin{cases} 36 = 11.3 + 3 \\ 11 = 3.3 + 2 \implies 1 = 3 - 2 = 3 - (11 - 3.3) = -11 + 4.3 = -11 + 4(36 - 11.3) = 4.36 - 11.13 \\ 3 = 2.1 + 1 \end{cases}$$

$$44 = 176.36 - 572.11 \implies \begin{cases} x = 176 + 11t \ge 0 \\ y = -572 - 36t \ge 0 \implies t = -16 \implies x = 0, y = 4, z = 28 \\ z = 428 + 25t \ge 0 \end{cases}$$