	Supervised Learning (Data is labelled)	Unsupervised
Categorical classification	K-nearest neighbor	
	Decision Trees	
	Naïve Bayes Classifier	
	Logistic Regression	
Continuous	Linear Regression	K-means clustering
		Association Rules

- making predictions about a categorical outcome y based on a num of predictors x - obj is assigned to the class most common among its k nearest neighbors - to determine the KNN, use Euclidean dist, sqrt((x ₁ -x ₀) ² + (y ₁ -y ₀) ²) - y usually set to 1 or 0 depending on the classification - fitted outcome val/predicted class membership = average y value -predicted outcome val = y < 0.5, assign to class 0 or if y > 0.5, class 1 - By taking larger k, variance will decrease, but since we are taking data points further away, may lead to greater bias in calculating ave. y - Prediction error for a model = bias ² + variance + irreducible error - Essentially, variance = opp of precision, bias = opp of accuracy bias-variance tradeoff			
(KNN) - to determine the KNN, use Euclidean dist, sqrt((x ₁ -x ₀) ² + (y ₁ -y ₀) ²) - y usually set to 1 or 0 depending on the classification - fitted outcome val/predicted class membership = average y value -predicted outcome val = y < 0.5, assign to class 0 or if y > 0.5, class 1 - By taking larger k, variance will decrease, but since we are taking data points further away, may lead to greater bias in calculating ave. y - Prediction error for a model = bias ² + variance + irreducible error - Essentially, variance = opp of precision, bias = opp of accuracy bias-variance tradeoff bias: unaccuracy, variance: un-precisio True Positive: Predict true when true True -ve: Predict false when false False +ve: Predict true when false False -ve: Predict false when true Actual +ve TP Good classifier have large TP and TN and small/zero FP and FN Class -ve FP Accuracy = TP+TN TP+TN+TP+FN X 100% True +ve rate (TPR) = TP+TN TP+T	Nariance Bias ² Class -ve FN		
- y usually set to 1 or 0 depending on the classification - fitted outcome val/predicted class membership = average y value -predicted outcome val = y < 0.5, assign to class 0 or if y > 0.5, class 1 - By taking larger k, variance will decrease, but since we are taking data points further away, may lead to greater bias in calculating ave. y - Prediction error for a model = bias² + variance + irreducible error - Essentially, variance = opp of precision, bias = opp of accuracy bias-variance tradeoff bias: unaccuracy, variance: un-precisio True Positive: Predict true when true Confusion matrix True -ve: Predict false when false False +ve: Predict true when false False -ve: Predict false when true Good classifier have large TP and TN and small/zero FP and FN Class -ve FP Accuracy = \frac{TP+TN}{TP+TN+FP+FN} \times 100\% True +ve rate (TPR) = \frac{TP}{TP+FN} \]	Bias ² n class -ve FN		
- fitted outcome val/predicted class membership = average y value -predicted outcome val = y < 0.5, assign to class 0 or if y > 0.5, class 1 - By taking larger k, variance will decrease, but since we are taking data points further away, may lead to greater bias in calculating ave. y - Prediction error for a model = bias² + variance + irreducible error - Essentially, variance = opp of precision, bias = opp of accuracy bias-variance tradeoff	Bias ² n class -ve FN		
-predicted outcome val = y < 0.5, assign to class 0 or if y > 0.5, class 1 - By taking larger k, variance will decrease, but since we are taking data points further away, may lead to greater bias in calculating ave. y - Prediction error for a model = bias² + variance + irreducible error - Essentially, variance = opp of precision, bias = opp of accuracy bias-variance tradeoff bias: unaccuracy, variance: un-precisio True Positive: Predict true when true Confusion matrix True -ve: Predict false when false Predicted False +ve: Predict true when false False -ve: Predict false when true Good classifier have large TP and TN and small/zero FP and FN Class -ve FP Accuracy = TP+TN / TP+TN+FP+FN Accuracy = TP+TN / TP+TN+FP+FN Accuracy = TP+TN / TP+TN+FP+FN True +ve rate (TPR) = TP / TP+FN True +ve rate (TPR) = TP+TN / TP+FN / TP+FN True +ve rate (TPR) = TP+FN / TP+FN / TP+FN / TP+FN / TP+FN True +ve rate (TPR) = TP+TN / TP+FN / TP+	Bias ² n class -ve FN		
- By taking larger k, variance will decrease, but since we are taking data points further away, may lead to greater bias in calculating ave. y - Prediction error for a model = bias² + variance + irreducible error - Essentially, variance = opp of precision, bias = opp of accuracy bias-variance tradeoff bias: unaccuracy, variance: un-precisio True Positive: Predict true when true Confusion matrix True -ve: Predict false when false Predicted of the precisio False +ve: Predict true when false Predicted of the precisio False -ve: Predict false when true Actual +ve TP Good classifier have large TP and TN and small/zero FP and FN Class -ve FP Accuracy = TP+TN TP+TN+FP+FN Accuracy = TP+TN TP+TN+FP+FN True +ve rate (TPR) = TP TP+FN True +ve rate (TPR) = TP True	Bias ² n class -ve FN		
data points further away, may lead to greater bias in calculating ave. y - Prediction error for a model = bias² + variance + irreducible error - Essentially, variance = opp of precision, bias = opp of accuracy bias-variance tradeoff bias: unaccuracy, variance: un-precisio True Positive: Predict true when true True -ve: Predict false when false False +ve: Predict true when false False -ve: Predict false when true Good classifier have large TP and TN and small/zero FP and FN Accuracy = TP+TN / TP+TN+FP+FN x 100% True +ve rate (TPR) = TP / TP+FN / TP+FN True +ve rate (TPR) = TP / TP+FN / TP+FN / TP+FN True +ve rate (TPR) = TP / TP+FN /	class -ve FN		
- Prediction error for a model = bias² + variance + irreducible error - Essentially, variance = opp of precision, bias = opp of accuracy bias-variance tradeoff bias: unaccuracy, variance: un-precision True Positive: Predict true when true True -ve: Predict false when false False +ve: Predict true when false False -ve: Predict false when true Good classifier have large TP and TN and small/zero FP and FN Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$ x 100% True +ve rate (TPR) = $\frac{TP}{TP+FN}$	class -ve FN		
- Essentially, variance = opp of precision, bias = opp of accuracy bias-variance tradeoff True Positive: Predict true when true True -ve: Predict false when false False +ve: Predict true when false False -ve: Predict false when true Good classifier have large TP and TN and small/zero FP and FN Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$ x 100% True +ve rate (TPR) = $\frac{TP}{TP+FN}$	class -ve FN		
bias-variance tradeoff True Positive: Predict true when true True -ve: Predict false when false False +ve: Predict false when false False -ve: Predict false when true Good classifier have large TP and TN and small/zero FP and FN Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$ x 100% True +ve rate (TPR) = $\frac{TP}{TP+FN}$	class -ve FN		
bias-variance tradeoff True Positive: Predict true when true True -ve: Predict false when false False +ve: Predict true when false False -ve: Predict false when true Good classifier have large TP and TN and small/zero FP and FN Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$ x 100% bias: unaccuracy, variance: un-precisio Confusion matrix Predicted of the true when false Actual the true class the true when false the true true true true true true true tru	class -ve FN		
True Positive: Predict true when true True -ve: Predict false when false False +ve: Predict true when false False -ve: Predict false when true Good classifier have large TP and TN and small/zero FP and FN Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$ x 100% Confusion matrix Predicted +ve Actual +ve Class -ve FP True +ve rate (TPR) = $\frac{TP}{TP+FN}$	class -ve FN		
False +ve: Predict true when false False -ve: Predict false when true Good classifier have large TP and TN and small/zero FP and FN Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$ x 100% True +ve rate (TPR) = $\frac{TP}{TP+FN}$	-ve FN		
False +ve: Predict true when false False -ve: Predict false when true Good classifier have large TP and TN and small/zero FP and FN Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$ x 100% True +ve rate (TPR) = $\frac{TP}{TP+FN}$	-ve FN		
False -ve: Predict false when true Good classifier have large TP and TN and small/zero FP and FN $Actual tve TP class -ve FP$ $Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \times 100\%$ True +ve rate (TPR) = $\frac{TP}{TP + FN}$	FN		
Good classifier have large TP and TN and small/zero FP and FN class -ve FP Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$ x 100% True +ve rate (TPR) = $\frac{TP}{TP+FN}$			
Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$ x 100% True +ve rate (TPR) = $\frac{TP}{TP+FN}$	114		
Accuracy = $\frac{1}{TP + TN + FP + FN} \times 100\%$ True +ve rate (TPR) = $\frac{1}{TP + FN}$ True ve rate (TNR) = $\frac{TN}{TN}$			
Drocision = True + True = True + True = True			
$\frac{ \text{recision} }{TP+FP} = \frac{ \text{free} }{TN+FP}$			
Ideally, TPR = 1 and (FPR and FNR = 0) threshold of the predicted two TPR & FPR or same	rate) = $\frac{FP}{FP+TN}$		
Ealso we rate (END/miss rate /type II error rate)	= <u>FN</u>		
'	TP+FN		
N-Fold Entire dataset randomly split into N datasets of ≈ equal size			
Cross- N-1 of these datasets are treated as training dataset, while remaining one would be test dataset and me			
Validation Repeat process but change test set each time for the remaining N-1 time (1st: a as test, 2nd: b as test	10th: j as test)		
The N models errors are averaged across the N folds			
Decision Decision/Prediction tree uses a tree structure to specify seq of Building a decision tree			
Trees decisions and consequences 1. Choose the most informative at			
At each node/test point, test a particular var/attribute and pick a - Use entropy-based methods (use	•		
specific child/branch and traverse down tree Iterative Dichotomiser 3 and C4.5			
Eventually when leaf is reached, prediction is made Purity of node = prob of correspondent probabilities and probabilities are probabilities are probabilities and probabilities are probabilit	iding class		
Depth: min no. of steps to reach node from root.			
Entropy Entropy mtd selects most informative var based on Given variable Y and set of possible categorical Control of the Cont	al values it can		
Mtd 1. Entropy = impurity of var/attribute take, $(y_1, y_2,, y_k)$,		
2. Information gain = purity of var/attribute Entropy of Y = $D_Y = -\sum_{j=1}^K P(Y = y_j) \log_2 P$			
Entropy is a measure of unpredictability where $P(Y = y_j)$ denotes purity/probability of Q	class $Y = y_j$, and		
If Y is binary and only takes on values 0 or 1, $\sum_{j=1}^{K} P(Y = y_j) = 1$			
	Suppose we have feature X and split values (x_1, x_2) .		
and a summer of a such taken as a subsequent to be used	Conditional entropy given X and split points $(x_1, x_2) = D_{Y X} =$		
outcome of next toss, so entropy is lower $\sum_{i=1}^{2} P(X = x_i) D(Y X = x_i) =$			
When coin is fair, entropy is max $-\{\sum_{i=1}^{2} P(X=x_i) \sum_{j=1}^{K} P(Y=y_j X=x_i) \log 2[P(X=x_i) \sum_{j=1}^{K} P(Y=y_j X=x_j)] \log 2[P(X=x_i) \sum_{j=1}^{K} P(X=x_j) \sum_{j=1}^{K} P(X=x_j)] \log 2[P(X=x_j) \sum_{j=1}^{K} P(X=x_j) \sum_{j=1}^{K} P(X=x_j$	$Y = y_j X = x_i)] $		
Ideally in decision tree, entropy should be low so that our predictions have less "uncertainty" So reduction in entropy = information gain = I	$D_Y - D_{Y X}$		
So chose var and how to split according to mo	ost info gain		
Thus, decision tree algo recursively calculate conditional entropy for Another mtd is Gini index			
	Given variable Y and set of possible categorical		
Then var and its split points selected based on largest info gain until values it can take, (y ₁ , y ₂ ,, y _k)			
(i) All leaf nodes in tree satisfy min purity threshold Gini index of Y = $G_Y = \sum_{j=1}^K P(Y = X_j)$	$y_j)[1-p(Y=y_j)]$		
(ii) Tree cannot be further split with preset min purity threshold where $P(Y = y_j)$ denotes purity/pro			
(iii) Any other stopping cond satisfied (e.g. max depth of tree) class $Y = y_i$, and $\sum_{j=1}^{K} P(Y = y_j) = \sum_{j=1}^{K} P(Y = y_j)$	class Y = y_i , and $\sum_{j=1}^K P(Y = y_j) = 1$		
Decision or prediction surface corresponds to a leaf node of the tree, and it can be reached by traversing			
of the tree following by a series of decisions according to the value of an attribute.			
The decision surface can only be axis-aligned for the decision tree. (knn don't need be axis-aligned)			

Naive Bayes theorem	Bayes theorem gives relationship btw probabilities of 2 events and their conditional probs Naive Bayes classifier assumes that features are indep. of other features (they dont affect each other) Input variables are normally categorical, but some algo accept continuous variables Discretization of continuous variables: convert continuous vars to categorical vars Output usually class label and its probability Bayes' Theorem: More generally, suppose categorical $\{X_1, X_2,, X_m\}$, then $P(Y = y_j X) = \frac{P(X_1 = x_1, X_2 = x_2,, X_m)}{P(X_1 = x_1, X_2 = x_2,, X_m)}$		Conditional prob of C occuring, given A has occurred: $P(C A) = \frac{P(A \cap C)}{P(A)} = \frac{P(A C)*P(C)}{P(A)}$, where $P(A \cap C)$ is prob that A and C occur $P(C A)$ usually more diff to compute than $P(A C)$ and $P(C)$ E.g. 1% of pop has disease. Lab test gives 95% TP, 6% FP Let $C = \{\text{have disease}\}$, $A = \{\text{+ve test result}\}$ $P(C) = 0.01$, $P(-C) = 0.99$, $P(A C) = 0.95$, $P(A -C) = 0.06$ $P(C A) = \frac{P(A C)*P(C)}{P(A)} = \frac{P(A C)P(C)}{P(A\cap C)+P(A\cap C)} = \frac{P(A C)P(C)}{P(C)P(A C)+P(C)P(A C)} = \frac{0.95*0.01}{0.01*0.95+0.99*0.06} \approx 0.1379$ outcome var Y can take on vals $\{y_1, y_2y_k\}$ and feature vars $X = x_m Y = y_j)P(Y = y_j)$ for $i = 1$.			
	•			•		ature vars. i.e. $P(X_1 = x_1, X_2 = x_2,, X_m = x_m Y = y_j) = P(X_1 = x_1, X_2 = x_2,, X_m = x_m Y = y_j) = P(X_1 = x_1, X_2 = x_2,, X_m = x_m Y = y_j) = P(X_1 = x_1, X_2 = x_2,, X_m = x_m Y = y_j) = P(X_1 = x_1, X_2 = x_2,, X_m = x_m Y = y_j) = P(X_1 = x_1, X_2 = x_2,, X_m = x_m Y = y_j) = P(X_1 = x_1, X_2 = x_2,, X_m = x_m Y = y_j) = P(X_1 = x_1, X_2 = x_2,, X_m = x_m Y = y_j) = P(X_1 = x_1, X_2 = x_2,, X_m = x_m Y = y_j)$
	= $x_1 Y = y_j \rangle P(X_2 = x_2 Y = y_j)P(X_m = x_m Y = y_j) = \prod_{i=1}^m P(X_i = x_i Y = y_j)$ 2. Ignore denominator since it is constant for all values of Y					
			$= y_i) * \prod_{i=1}^m P(X_i)$			2 k
-	E.g.	7)[7) (1	7)/ 11 <u>[=1</u>	^\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	, ,	X = {1, 2, not 3}
	j	1	2	3		$P(Y = 1 X) \propto P(Y = 1) * P(x_1 y_1) * P(x_2 y_1) * P(\neg x_3 y_1) =$
	$P(Y = y_j)$	0.5	0.3	0.2		$0.5 * 0.4 * 0.2 * (1 - 0.4) \approx 0.024$
	$P(x_1 y_j)$	0.4	1/15	0.5		$P(Y = 2 X) \propto 0.3 * 1/15 * 1/3 * (1 - 0.6) \approx 0.0027$
	$P(x_2 y_j)$	0.2	1/3	0.25		$P(Y = 3 X) \propto 0.2 * 0.5 * 0.25 * (1 - 0.25) \approx 0.0188$
	$P(x_3 y_j)$	0.4	0.6	0.25		Thus, given X, we predict object to be class 1
Linear Regression	To prevent probability from tending to 0, can compute to Assume relationship btw input variables and outcome ar linear $y_i \approx \beta_0 + \beta_1 x_i$ Best fit line: vertical dist btw each data point to line is			d outcome	e are	More generally, RSS = $\sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2$ $\frac{\partial RSS}{\partial \beta_0} = \sum_{i=1}^{n} 2[y_i - (\beta_0 + \beta_1 x_i)](-1) = 0$ $n\beta_0 + \beta_1 \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} y_i = 0 \Rightarrow \beta_0 + \beta_1 \bar{x} - \bar{y} = 0 - (1)$
	Residual Sum	of Squares (RS s: Process of m	ot: $e_i = y_i - (\beta_0 + 1)$ SS): RSS = e_1^2 + inimizing RSS: p	e ₂ ² + + e	erentiate	$\begin{split} \frac{\partial \text{RSS}}{\partial \mathbb{G}_1} &= \sum_{i=1}^n 2 \big[y_i - \big(\mathbb{G}_0 + \mathbb{G}_1 x_i \big) \big] (-\mathbf{x}_i) = 0 \\ \mathbb{G}_0 \sum_{i=1}^n x_i + \mathbb{G}_1 \sum_{i=1}^n x_i^2 - \sum_{i=1}^n x_i y_i = 0 - (2) \\ &(\overline{y} - \mathbb{G}_1 \overline{x}) \sum_{i=1}^n x_i + \mathbb{G}_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i \\ \widehat{\mathbb{G}}_1 &= \{ \sum_{i=1}^n x_i y_i - \overline{y} \sum_{i=1}^n x_i \} / \{ \sum_{i=1}^n x_i^2 - \overline{x} \sum_{i=1}^n x_i \} \text{ and } \\ \widehat{\mathbb{G}}_0 &= \overline{y} - \widehat{\mathbb{G}}_1 \overline{x} \text{($^{\wedge}$ represent estimated values)} \end{split}$
Logistic Regression	have multiple	e values (not ju	• •	me that	π(X)	$= P(Y = 1 X) = \frac{exp(\Re_0 + \Re_1 X)}{1 + exp(\Re_0 + \Re_1 X)}, \text{ and}$ $= 0 X) = 1 - \frac{exp(\Re_0 + \Re_1 X)}{1 + exp(\Re_0 + \Re_1 X)} = \frac{1}{1 + exp(\Re_0 + \Re_1 X)}$
Clustering	Note as $z \rightarrow c$ In logistic reg i.e. $z = \beta_0 + \beta_2$ $P(Y = 1 X_1, X_2)$ To estimate β_1 estimation (N Likelihood fn $\prod_{i=1}^n p^{y_i} (1 - e$ each i th data Easier to wor In $L(p) = \sum_{i=1}^n \log \sum_{i=1}^n (1 - e$ $\log \sum_{i=1}^n (1 - e$ In $L(p) = n_1 \ln e$ To get max $\ln e$ $\log p \Rightarrow \hat{p}_{mle} = e$ using 2nd del	gression, z is ling and the series of partial series of partial series of the series of the series of the series of the series of partial series of partial series of partial series of partial series of the serie	ear fn of input $x \mapsto R_p X_p$ $(R_0 + R_1 X_1 + R_2 X_2 + R_2 R_3 R_4 R_4 R_4 R_4 R_5 R_4 R_4 R_5 R_5 R_5 R_5 R_5 R_5 R_5 R_5 R_5 R_5$	variables, $\frac{+ \Re_p X_p)}{++ \Re_p X_p)}$ od $= 0 \text{ or 1) for } (Y = 0)$ $-p)$ $+ n_0 = n$ $\Rightarrow n_1(1-p)$ ck if max	$L(\beta_0, \frac{1}{\log n})$ In $L(\beta_0, \frac{1}{\log n})$ Note $\frac{\partial}{\partial \beta_0} \ln \frac{1}{\log n}$ $\frac{\partial}{\partial \beta_1} \sum_{i=1}^{n} \frac{\partial}{\partial \beta_0} \ln \frac{1}{\log n}$ Solvi $= \sum_{i=1}^{n} \frac{1}{\log n}$ These mtds	$\begin{split} &\beta_{1}) = \prod_{i=1}^{n} \left[\frac{exp(\beta_{0} + \beta_{1}X_{i})}{1 + exp(\beta_{0} + \beta_{1}X_{i})} \right]^{y_{i}} \left[\frac{1}{1 + exp(\beta_{0} + \beta_{1}X_{i})} \right]^{1 - y_{i}} \\ &= \prod_{i=1}^{n} \frac{exp(\beta_{0} + \beta_{1}X_{i})^{y_{i}}}{1 + exp(\beta_{0} + \beta_{1}X_{i})} = \prod_{i=1}^{n} \frac{exp[y_{i}(\beta_{0} + \beta_{1}X_{i})]}{1 + exp(\beta_{0} + \beta_{1}X_{i})} \\ &\beta_{0}, \beta_{1}) = \sum_{i=1}^{n} \{y_{i}(\beta_{0} + \beta_{1}X_{i}) - \ln(1 + \exp(\beta_{0} + \beta_{1}X_{i}))\} \\ &\frac{\partial}{\partial \beta_{0}} \sum_{i=1}^{n} y_{i}(\beta_{0} + \beta_{1}X_{i}) = \sum_{i=1}^{n} y_{i} \text{ and} \\ &\beta_{0}(1 + \exp(\beta_{0} + \beta_{1}X_{i})) = \frac{exp(\beta_{0} + \beta_{1}X_{i})}{1 + exp(\beta_{0} + \beta_{1}X_{i})} = \pi[X_{i}] \\ &\frac{\partial}{\partial \beta_{0}} \sum_{i=1}^{n} y_{i}(\beta_{0} + \beta_{1}X_{i}) = \sum_{i=1}^{n} x_{i}y_{i} \\ &\frac{\partial}{\partial \beta_{0}} \left[\ln(1 + \exp(\beta_{0} + \beta_{1}X_{i})) = \frac{1}{1 + exp(\beta_{0} + \beta_{1}X_{i})} \frac{\partial}{\partial \beta_{1}} (1 + \exp(\beta_{0} + \beta_{1}X_{i})) \right] \\ &\frac{\partial}{\partial \beta_{0}} \left[\ln(1 + \exp(\beta_{0} + \beta_{1}X_{i})) = \frac{1}{1 + exp(\beta_{0} + \beta_{1}X_{i})} \frac{\partial}{\partial \beta_{1}} (1 + \exp(\beta_{0} + \beta_{1}X_{i})) \right] \\ &\frac{\partial}{\partial \beta_{0}} \left[\ln(1 + \exp(\beta_{0} + \beta_{1}X_{i})) = \frac{1}{1 + exp(\beta_{0} + \beta_{1}X_{i})} \frac{\partial}{\partial \beta_{1}} (1 + \exp(\beta_{0} + \beta_{1}X_{i})) \right] \\ &\frac{\partial}{\partial \beta_{0}} \left[\ln(1 + \exp(\beta_{0} + \beta_{1}X_{i})) = \frac{1}{1 + exp(\beta_{0} + \beta_{1}X_{i})} \right] = 0 \text{ and} \\ &\left\{ x_{i} y_{i} - x_{i} \frac{exp(\beta_{0} + \beta_{1}X_{i})}{1 + exp(\beta_{0} + \beta_{1}X_{i})} \right\} = 0 \text{ will give MLE } \widehat{\beta}_{0} \text{ and } \widehat{\beta}_{1} \\ &\text{e 2 fn aka score fn and typically solved by numerical is (Newton-Raphson algo)} \end{aligned}$
clustering	Clustering refers to a broad set of techniques for finding clusters in a data set Each cluster contains observations of a data set that are quite similar to each other, while diff clusters are quite diff from each other Clustering is an exploratory technique to discover hidden structures of the data Clustering mtds: K-means clustering, mean-shift clustering, density-based spatial clustering of applications with noise (DBSCAN), expectation-maximization (EM) clustering using Gaussian mixture models (GMM) and agglomerative					
K-means	hierarchical clustering For a chosen value of k, identify k clusters 1. Input k random centroid (center of cluster)					
k-means clustering		For a chosen value of k, identify k clusters 1. Input k random centroid (center of cluster) based on data proximity to center of clusters				
		., ., .,		I		

	Center is the mean of each clusters's n-	2. For each	ch data point, assign them to nearest cluster using
	dimensional vector of attributes		n distance
		3. Calcula	ate new centroid for each cluster (avg all cluster points)
			t step 2 and 3 until centroids converges (< threshold)
	Value of k chosen by calculating Within Sum of So	quares (W	•
	For M data points z ₁ , z ₂ ,, z _M		Choose k where WSS _{k+1} does not decrease
	SS = sum of squares of one cluster = $dist(z_i, D)^2$ =	dist of da	, ,
	pt that belongs to cluster with centroid D to D	. 4.4\	This proces of finding appropriate k = finding "elbow"
A i - t i	WSS = $\sum_{i=1}^{M} dist(z_i, D_i)^2$ = sum of all SS (lower be		of WSS curve
Association Rules	Descriptive (not predictive) method for unsupervised learning		ransaction can be viewed as a basket of items: aka itemset et containing k items: k-itemset {item1, item2,, item k}
Rules	Relationships between features are called rules		utation of association rules typically based on itemsets
	Association rules often used in mining custome	1	ill use Apriori algo to generate association rules
	transactions and is aka market basket analysis		in use ripriori algo to generate association raies
Apriori	Given an itemset L, support of L = % of transaction	ns that	Apriori algo uses bottom-up iterative approach by first
Algo	contains L		determining all the 1-itemsets, and identifying which of
	Frequent itemset: set that has items appearing to	gt often	them are frequent based on the min support criterion.
	enough (i.e. support ≥ minimum support criterio	า)	In next iteration, those 1-itemsets that are frequent are
	If itemset is frequent, any subset of this frequent	itemset	then paired into 2-itemset, and check if ≥ min support
	must also be frequent		At each iteration, algo checks if support criterion is met, if
	This property is known as Apriori property / dow	nward	it is, then itemset is expanded, else Algo stops once there
	closure property	500/ 5	is no itemset that meet min support threshold or itemset
	i.e. 60% of transactions contains $\{x1, x2\}$, then ≥ 0	50% of	has reach a predefined length, N
Candidate	transactions must contain {x1} or {x2} Based on the frequent k-itemsets, collection of collection o	andidata	Apriori algo will output all frequent k-itemsets Measure such as confidence, lift and leverage is used to
Rules	rules are formed, e.g. frequent itemset {x1, x2} n		evaluate appropriateness of these candidate rules
Rules	suggest candidate rules $\{x1\} \rightarrow \{x2\}$ and $\{x2\} \rightarrow \{x\}$	•	evaluate appropriateriess of these candidate rules
Confidence	Confidence is defined as the measure of certain		Relationship is interesting if confidence ≥ predefined
and	trustworthiness associated with each discover	-	threshold / min confidence
Relationship	Confidence for $X \rightarrow Y$ is % of transactions that	contain	Higher confidence ⇒ rule is more interesting / trustworthy
	both X and Y out of all transactions containing	X, i.e.	Problems with confidence: given a rule $X \rightarrow Y$, confidence
	Confidence(X \rightarrow Y) = $\frac{Support(X \land Y)}{Support(X)}$		only considers antecedent (X) and cooccurrence of X and
	i.e. if X occurs, prob that X and Y occurs		Y; it does not consider the consequent of the rule (Y)
	·		To address this issue, we use lift and leverage
Lift and	Lift measures how many times more often X and		Leverage has similar idea with lift, but uses diff instead of
Leverage	- , , , , , , , , , , , , , , , , , , ,		a ratio
	Lift is a measure of how X and Y are really related	ratner	Leverage($X \rightarrow Y$) = Support($X \land Y$) - Support(X) * Support(Y)
	than coincidentally happening tgt: Support(XAY)		Leverage measures diff in prob of X and Y occurring tgt compared to if they are indep of each other
	$Lift(X \to Y) = \frac{Support(X \land Y)}{Support(X) * Support(Y)}$		Leverage = 0 if X and Y are indep of each other
	Lift is 1 if X and Y are indep of each other		Larges leverage value indicates stronger r/s btw X and Y
	Lift > 1 indicates there is usefulness to the rule		
	Market basket analysis refers to a specific		library(rgl)
	implementation of association rules that many		plot3d(x1, x2, x3, col = kout\$cluster)
Man	companies used		ManDaduca brook a large tasks into sees that tasks are
Map Reduce	Big data has volume, variety and velocity 1. Structured data: data containing a defined dat	a types	MapReduce break a large tasks into smaller tasks, run tasks in parallel, and consolidate the outputs of the
neduce	formats and structures. Usually stored in database		individual tasks into the final output.
	spreadsheets. Mainly collected from transactions		Map: Applies an operation to a piece of data and provides
	online analytic processing	. . .	some intermediate output (turn data into key-value pair)
	Semi-structured data: Textual data files with		Key-value pairs from each Map tasks are collected by a
	discernible pattern that enables easy parsing		master controller and sorted by key. The key-value pairs
	3. Quasi-structured dataL Textual data with errat	ic data	are divided among the Reduce tasks by their keys
	formats that can be formatted with effort, tool a		Reduce: Consolidates the intermediate outputs from the
	4. Unstructured data: data that has no inherent s	tructure	map steps and provides the final output.
			Reduce tasks work on one key at a time, and combine all
	Lot modelin Marian in all annual to the second state of the second	.+ a = 1	value associated with that key in some way.
	Let matrix M n x n, m_{ij} = element in row i, col j. Le	et col	Entries of M are stored as triplets (i, j, m _{ij})
	vector v be length n.		During map step, from each triplet, it produces the keyvalue pair (i, $m_{ii}v_i$).
	$\begin{pmatrix} m_{21} & m_{22} & \cdots & m_{2n} \\ \end{pmatrix} \begin{pmatrix} v_2 \\ v_2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$		Reduce function sums all the values associated with given
	$Mv = \begin{pmatrix} m_{11} & m_{12} & \cdots & m_{1n} \\ m_{21} & m_{22} & \cdots & m_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \cdots & m_{nn} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$		key i. Result will be (i, x_i)
			Final result will be Mv when sorted according to i
	$x_i = \sum_{j=1}^n m_{ij} v_j$		