MA1100 - Basic Discrete Mathematics Suggested Solutions (Semester 2: AY2021/22)

Written by: Daryl Chew Audited by: Chow Yong Lam

1. Solution:

- $\bigcup_{n=1}^{\infty} A_n = \mathbb{Z}^+$ because for every $m \in \mathbb{Z}^+$, $1 \le m \le 5k$ for some $k \in \mathbb{Z}^+$, so $m \in A_k \subseteq \bigcup_{n=1}^{\infty} A_n$ and thus $\mathbb{Z}^+ \subseteq \bigcup_{n=1}^{\infty} A_n$. We also have $A_n \subseteq \mathbb{Z}^+$ so $\bigcup_{n=1}^{\infty} A_n \subseteq \mathbb{Z}^+$.
- $\bigcap_{n=1}^{\infty} A_n = A_1$, because every $k \in A_1$ satisfies $1 \le k \le 5n$ for all $n \in \mathbb{Z}^+$ (hence is a member of all A_n and thus $\bigcap_{n=1}^{\infty} A_n$). Any $k \notin A_1$ will not be in $\bigcap_{n=1}^{\infty} A_n$ by definition of intersection.

2. Solution:

- (i) No; f(0) = 5 = f(2) for instance.
- (ii) For all $x \in \mathbb{Q}$, $(x-1)^2 \ge 0$ which implies $4(x-1)^2 \ge 0$ and $4(x-1)^2 + 1 \ge 1$. Hence $f(x) \ge 1$, thus $\mathcal{R}(f) \subseteq [1, \infty)$.
- (iii) No; for any x in the domain, $x = \frac{a}{b}$ for integers a and b, where $b \neq 0$. Therefore

$$f(x) = f\left(\frac{a}{b}\right)$$

$$= 4\left(\frac{a}{b} - 1\right)^2 + 1$$

$$= 4\left(\frac{a - b}{b}\right)^2 + 1$$

$$= \frac{4(a - b)^2}{b^2} + 1$$

$$= \frac{4(a - b)^2 + b^2}{b^2} \in \mathbb{Q},$$

so $\sqrt{2}$ would be in $[1, \infty)$ but not $\mathcal{R}(f)$, for instance.

3. Solution:

(i) If $y = (f \circ g)(x)$ for any $x \in \mathbb{R}$, then

$$y = 6x + 5 \iff x = \frac{y - 5}{6},$$

therefore $(f \circ g)^{-1}(x) = \frac{x-5}{6}$.

(ii) Since $f, f \circ g$ and h are bijective, we have

$$f(x) = (f \circ g)^{-1} \circ (f \circ g) \circ f(x)$$

$$= (f \circ g)^{-1} \circ f \circ (g \circ f)(x)$$

$$= (f \circ g)^{-1} \circ h(x)$$

$$= (f \circ g)^{-1} (18x + 17)$$

$$= \frac{(18x + 17) - 5}{6}$$

$$= \frac{18x + 12}{6}$$

$$= 3x + 2.$$

4. Solution:

Proof. (\subseteq): Suppose $x \in f^{-1}\left[\bigcap_{i \in I} Z_i\right]$. Then $f(x) \in \bigcap_{i \in I} Z_i$ and is thus in Z_i for all $i \in I$. Therefore $x \in f^{-1}[Z_i]$ for all $i \in I$, so $x \in \bigcap_{i \in I} f^{-1}[Z_i]$.

(⊇): Now suppose $x \in \bigcap_{i \in I} f^{-1}[Z_i]$. Then $x \in f^{-1}[Z_i]$ for all $i \in I$, so $f(x) \in Z_i$ for all $i \in I$. Therefore $f(x) \in \bigcap_{i \in I} Z_i$ and so $x \in f^{-1}[\bigcap_{i \in I} Z_i]$.

5. Solution:

(i) Proof. Noting that

$$10 \equiv -1 \mod 11,$$

$$10^2 \equiv 1 \mod 11,$$

$$10^{k+2n} \equiv 10^k 10^{2n} \equiv 10^k (10^2)^n \equiv 10^k \mod 11,$$

we have

$$10^k \equiv -1 \mod 11 \text{ if } k \text{ is odd,}$$
$$10^k \equiv 1 \mod 11 \text{ if } k \text{ is even.}$$

Therefore $10^k \equiv (-1)^k \mod 11$, so $\sum_{k=0}^n a_k \cdot 10^k \equiv \sum_{k=0}^n a_k \cdot (-1)^k \mod 11$. Since an integer N is divisible by 11 if and only if $N \equiv 0 \mod 11$, by the established congruence we have the desired result.

(ii) Setting $S = \sum_{k=1}^{9} (10 - k) \cdot 10^{k-1}$ for brevity, we have

$$123456789123456789123456789123456789 \equiv \sum_{j=0}^{3} 10^{9j} \cdot \left(\sum_{k=1}^{9} (10-k) \cdot 10^{k-1}\right) \pmod{11}$$

$$\equiv 10^{0} \cdot S + 10^{9} \cdot S + 10^{18} \cdot S + 10^{27} \cdot S \pmod{11}$$

$$\equiv S - S + S - S \pmod{11}$$

$$\equiv 0 \pmod{11},$$

so it is divisible by 11.

6. Solution:

- (i) *Proof.* We verify that \sim is reflexive, symmetric and transitive:
 - (reflexivity): for all (x, y), $(x, y) \sim (x, y)$ because y x = y x.

- (symmetry): if $(x, y) \sim (x', y')$, then $y x = y' x' \iff y' x' = y = x$, thus $(x', y') \sim (y, x)$.
- (transitivity): if $(x_1, y_1) \sim (x_2, y_2)$ and $(x_2, y_2) \sim (x_3, y_3)$, then $y_1 x_1 = y_2 x_2 = y_3 x_3$, so $(x_1, y_1) \sim (x_3, y_3)$.
- (ii) For any $(x,y) \in [(a,b)]$, we have $(x,y) \sim (a,b)$. Therefore y-x=b-a, so y=b-a+x. Thus the points $(x,y) \in [(a,b)]$ form a straight line in \mathbb{R}^2 described by the equation.
- (iii) *Proof.* The function $f: \mathbb{R} \to X/\sim$ defined by f(x)=[(0,x)] is a bijection; this can easily be verified:
 - (injectivity): If f(x) = f(x'), then [(0, x)] = [(0, x')]. So $(0, x) \sim (0, x')$ implying x 0 = x' 0 and thus x = x'.
 - (surjectivity): Any $[(a,b)] \in X/\sim$ is equal to [(0,b-a)]=f(b-a).

7. Solution:

Proof. Suppose not; then $A \cup B = B \cup (A - B)$ is the union of countable sets and hence countable. By the inclusion injection $\iota : A \hookrightarrow A \cup B$, $A \preceq A \cup B$ and is hence countable, a contradiction.

8. Solution:

- (i) Proof. Since $p \mid p!$ and $p! = k!(p-k)!\binom{p}{k}$, by the primality of p at least one of $p \mid k!$, $p \mid (p-k)!$ and $p \mid \binom{p}{k}$ holds. Since k < p, $p \nmid n$ for any $n \in \{1, \ldots, k\}$, so $p \nmid k!$ again by primality. Since 0 < k, p-k < p and a similar argument shows that $p \nmid (p-k)!$. Therefore $p \mid \binom{p}{k}$.
- (ii) *Proof.* Fix a prime number p; we shall perform induction on $n \in \mathbb{Z}^+$.
 - Base case: $1^p = 1$, so $1^p \equiv 1 \mod p$.
 - Inductive step: Suppose $n^p \equiv n \pmod{p}$ for some $n \in \mathbb{Z}^+$. Then

$$(n+1)^p \equiv n^p + \binom{p}{1} n^{p-1} + \dots + \binom{p}{p-1} n + 1 \pmod{p}$$

$$\equiv n^p + 0 + \dots + 0 + 1 \pmod{p}$$

$$\equiv n^p + 1 \pmod{p}$$

$$\equiv n + 1 \pmod{p}$$

$$\pmod{p}$$

where the second equivalence follows by the divisibility of $\binom{p}{k}$ by p and the fourth equivalence follows from the inductive hypothesis. Thus $n^p \sim n \pmod{p}$ for all $n \in \mathbb{Z}^+$ by induction.