Powers of paths in tournaments

Nemanja Draganić* François Dross[†] Jacob Fox[‡] António Girão[§] Frédéric Havet[¶] Dániel Korándi^{||**} William Lochet^{††} David Munhá Correia* Alex Scott^{||} Benny Sudakov*

Abstract

In this short note we prove that every tournament contains the k-th power of a directed path of linear length. This improves upon recent results of Yuster and of Girão. We also give a complete solution for this problem when k = 2, showing that there is always a square of a directed path of length $\lceil 2n/3 \rceil - 1$, which is best possible.

1 Introduction

One of the main themes in extremal graph theory is the study of embedding long paths and cycles in graphs. Some of the classical examples include the Erdős–Gallai theorem [3] that every n-vertex graph with average degree d contains a path of length d, and Dirac's theorem [2] that every graph with minimum degree n/2 contains a Hamilton cycle. A famous generalization of this, conjectured by Pósa and Seymour, and proved for large n by Komlós, Sárközy and Szemerédi [5], asserts that if the minimum degree is at least kn/(k+1), then the graph contains the k-th power of a Hamilton cycle.

In this note, we are interested in embedding directed graphs in a tournament. A tournament is an oriented complete graph. The k-th power of the directed path $\vec{P}_{\ell} = v_0 \dots v_{\ell}$ of length ℓ is the graph \vec{P}_{ℓ}^k on the same vertex set containing a directed edge $v_i v_j$ if and only if $i < j \le i + k$. The k-th power of a directed cycle is defined analogously. An old result of Bollobás and Häggkvist [1] says that, for large n, every n-vertex tournament with all indegrees and outdegrees at least $(1/4 + \varepsilon)n$ contains the k-th power of a Hamilton cycle

^{*}Department of Mathematics, ETH Zurich, Zurich, Switzerland. Emails: {nemanja.draganic, david.munhacanascorreia, benjamin.sudakov}@math.ethz.ch. Research supported in part by SNSF grant 200021_196965

[†]Institute of Informatics, University of Warsaw, Poland. Email: francois.dross@googlemail.com. Research supported in part by ERC grant No 714704.

[‡]Department of Mathematics, Stanford University, Stanford, CA, USA. Email: jacobfox@stanford.edu. Research supported by a Packard Fellowship and by NSF award DMS-185563.

[§]E-mail: tzgirao@gmail.com.

[¶]CNRS, Université Côte d'Azur, I3S, INRIA, Sophia Antipolis, France. Email: frederic.havet@inria.fr. Research supported in part by Agence Nationale de la Recherche under contract Digraphs ANR-19-CE48-0013-01.

Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, United Kingdom. Emails: {korandi, scott}@maths.ox.ac.uk.

^{**}Supported by SNSF Postdoc.Mobility Fellowship P400P2_186686.

^{††}Department of Informatics, University of Bergen, Norway. Email: william.lochet@uib.no. Research supported by ERC grant No 819416.

(the constant 1/4 is optimal). However, we cannot expect to find powers of directed cycles in general, as the transitive tournament contains no cycles at all.

What about powers of directed paths? A classical result, which appears in every graph theory book (see, e.g., [7]), says that every tournament contains a directed Hamilton path. On the other hand, Yuster [6] recently observed that some tournaments are quite far from containing the square of a Hamilton path. In particular, there is an n-vertex tournament that does not even contain the square of $\vec{P}_{2n/3}$, and more generally, for every $k \geq 2$, there are tournaments with n vertices and no k-th power of a path with more than $nk/2^{k/2}$ vertices. In the other direction, Yuster proved that every tournament with n vertices contains the square of a path of length $n^{0.295}$. This was improved very recently by Girão [4], who showed that for fixed k, every tournament on n vertices contains the k-th power of a path of length $n^{1-o(1)}$. Both papers noted that no sublinear upper bound is known. Our main result shows that the maximum length is in fact linear in n.

Theorem 1. For $n \geq 2$, every n-vertex tournament contains the k-th power of a directed path of length $n/2^{4k+6}k$.

The proof of this theorem combines Kővári–Sós–Turán style arguments, used for the bipartite Turán problem, and median orderings of tournaments. A median ordering is a vertex ordering that maximizes the number of forward edges. Theorem 1 and Yuster's construction show that an optimal bound on the length has the form $n/2^{\Theta(k)}$. It would be interesting to find the exact value of the constant factor in the exponent. Optimizing our proof can yield a lower bound of $n/2^{ck+o(k)}$ with $c \approx 3.9$, but is unlikely to give the correct bound.

We also improve the exponential constant in the upper bound from 1/2 to 1.

Theorem 2. Let $k \ge 5$ and $n \ge k(k+1)2^k$. There is an n-vertex tournament that does not contain the k-th power of a directed path of length $k(k+1)n/2^k$.

Note that this theorem also holds trivially for $k \leq 4$, when $k(k+1)n/2^k > n$.

Finally, we can solve the problem completely in the special case of k = 2. Once again, the proof uses certain properties of median orderings.

Theorem 3. For $n \ge 1$, every n-vertex tournament contains the square of a directed path of length $\ell = \lceil 2n/3 \rceil - 1$, but not necessarily of length $\ell + 1$.

Theorems 1, 2 and 3 are proved in Sections 2, 3 and 4, respectively.

2 Lower bound

We will need the following Kővári–Sós–Turán style lemma.

Lemma 4. Let G be a directed graph with disjoint vertex subsets A and B with |A| = 2k + 1, $|B| \ge 2^{4k+4}k$, and every vertex in A has at least $(1 - \frac{1}{2k+1})|B|/2$ outneighbours in B. Then A contains a subset A' of size k that has at least $(2k+1)2^{2k}$ common outneighbours in B.

Proof. Suppose there is no such set A'. Then every k-subset of A appears in the inneighbourhood of less than $(2k+1)2^{2k}$ vertices in B. So if $d^-(v)$ denotes the number of inneighbours a vertex $v \in B$ has in A, then we have

$$\binom{2k+1}{k} \cdot (2k+1)2^{2k} = \binom{|A|}{k} \cdot (2k+1)2^{2k} > \sum_{v \in B} \binom{d^-(v)}{k}. \tag{1}$$

On the other hand,
$$\sum_{v \in B} d^-(v) \ge |A|(1 - \frac{1}{2k+1})|B|/2 = k|B|$$
. By Jensen's inequality, $\sum_{v \in B} {d^-(v) \choose k} \ge |B| \cdot {\sum_{v \in B} d^-(v)/|B| \choose k} = |B| \ge 2^{4k+4}k$. This contradicts (1).

One more ingredient we need for the proof of Theorem 1 is the folklore fact that every tournament on 2^m vertices contains a transitive subtournament of size m+1. This is easily seen by taking a vertex of outdegree at least 2^{m-1} as the first vertex of the subtournament, and then recursing on the outneighbourhood.

Proof of Theorem 1. Order the vertices as 0, 1, ..., n-1 to maximize the number of forward edges, i.e., the number of edges ij such that i < j. As was mentioned in the introduction, we will refer to such a sequence as a median ordering of the vertices. We denote an "interval" of vertices with respect to this ordering by $[i, j) = \{i, ..., j-1\}$, where $0 \le i < j \le n$.

We will embed \vec{P}_{ℓ}^{k} inductively using the following claim.

Claim. Let $t = 2^{4k+4}k$ and $t \le i \le n - (2k+1)t$. For every subset $A^* \subseteq [i-t,i)$ of size 2^{2k} , there is an index $i+t \le j \le i+(2k+1)t$ and a set $A' \subseteq A^*$ of size k such that A' induces a transitive tournament and its vertices have at least 2^{2k} common outneighbours in [j-t,j).

Proof. There is a subset $A \subseteq A^*$ of size 2k+1 that induces a transitive tournament. Let B = [i, i + (2k+1)t). Then every vertex $v \in A$ has at least $kt = \left(1 - \frac{1}{2k+1}\right)|B|/2$ outneighbours in B. Indeed, otherwise v would have more than (k+1)t inneighbours in the interval B, so moving v to the end of this interval would increase the number of forward edges in the ordering, contradicting our choice of the vertex ordering.

We can thus apply Lemma 4 to find a k-subset $A' \subseteq A$ with least $(2k+1)2^{2k}$ common outneighbours in B. Partition B into 2k+1 intervals of size t, and we can choose j accordingly so that A' has at least 2^{2k} common outneighbors in the interval [j-t,j).

The theorem trivially holds for $n < 2^{2k}$, so assume $n \ge 2^{2k}$. Let $i_0 = 2^{2k}$ and $A_0 = [0, 2^{2k})$, and apply the Claim with $i = i_0$ and $A^* = A_0$. We get a set $A' \subset A_0$ of size k that induces a transitive tournament, i.e., the k-th power of some path $v_0 \dots v_{k-1}$. Moreover, this A' has at least 2^{2k} common outneighbours in some interval [j - t, j) with $i_0 + t \le j \le i_0 + (2k + 1)t$. Let us define $i_1 = j$, and choose A_1 to be any 2^{2k} of the common outneighbours.

At step s, we apply the Claim again with $i=i_s$ and $A^*=A_s$ to find the k-th power of some path $v_{sk}\dots v_{(s+1)k-1}$ in A_s with 2^{2k} common outneighbours in some $[i_{s+1}-t,i_{s+1})$ with $i_s+t\leq i_{s+1}\leq i_s+(2k+1)t$, and repeat this process until some step ℓ with $i_\ell>n-(2k+1)t$. Note that intervals $[i_s-t,i_s)$ and $[i_{s+1}-t,i_{s+1})$ are always disjoint. Finally, A_ℓ must also contain a transitive tournament of size 2k+1. Call these vertices $v_{\ell k},\dots,v_{(\ell+2)k}$. Observe that $n-(2k+1)t< i_\ell \leq 2^{2k}+\ell(2k+1)t$, so $n<(\ell+2)(2k+1)t$.

Then $v_0 \dots v_{(\ell+2)k}$ is a directed path of length $(\ell+2)k \ge kn/(2k+1)t \ge n/(2^{4k+6}k)$ whose k-th power is contained in the tournament. In fact, we proved a bit more: the tournament contains all edges of the form $v_a v_b$ with a < b and $|a/k| + 1 \ge |b/k|$.

3 Upper bound

Let $\ell_k(n)$ denote the smallest integer ℓ such that there is an *n*-vertex tournament that does not contain \vec{P}_{ℓ}^k , or in other words, the largest integer such that every *n*-vertex tournament contains the *k*-th power of a directed path on ℓ vertices.

To prove Theorem 2, we first note that $\ell_k(n)$ is subadditive.

Lemma 5. For any $k, n, m \ge 1$, we have $\ell_k(n+m) \le \ell_k(n) + \ell_k(m)$.

Proof. Let T_1 and T_2 be extremal tournaments on n and m vertices, respectively, not containing the k-th power of any directed path of length $\ell_k(n)$ and $\ell_k(m)$. Let T be the tournament on n+m vertices, obtained from the disjoint union of T_1 and T_2 by adding all remaining edges directed from T_1 to T_2 . Then any k-th power of a path in T must be the concatenation of the k-th power of a path in T_1 and the k-th power of a path in T_2 , and hence it must have length at most $(\ell_k(n)-1)+(\ell_k(m)-1)+1<\ell_k(n)+\ell_k(m)$.

Our improved upper bound is based on the following construction.

Lemma 6. For every $k \geq 5$, we have $\ell_k(2^{k-1}) < \frac{k(k+1)}{2}$.

Proof. Let $n=2^{k-1}$ and $\ell=\frac{k(k+1)}{2}$, and note that $\vec{P}_{\ell-1}^k$ has $k\ell-\ell$ edges.

Let T be a random n-vertex tournament obtained by orienting the edges of K_n independently and uniformly at random. The probability that a fixed sequence of ℓ vertices $v_0 \dots v_{\ell-1}$ forms a copy of $\vec{P}_{\ell-1}^k$ is $2^{-(k-1)\ell}$. There are $\binom{n}{\ell} \cdot \ell!$ such sequences, so the probability that T contains the k-th power of a path of length $\ell-1$ is at most $\binom{n}{\ell} \cdot \ell! \cdot 2^{-(k-1)\ell} < n^{\ell} \cdot 2^{-(k-1)\ell} = 1$. So with positive probability T does not contain $\vec{P}_{\ell-1}^k$, therefore $\ell_k(2^{k-1}) \leq \ell-1$.

Combining Lemmas 5 and 6 and using the monotonicity of $\ell_k(n)$, we get

$$\ell_k(n) \le \left\lceil \frac{n}{2^{k-1}} \right\rceil \cdot \ell_k(2^{k-1}) \le \left(\frac{n}{2^{k-1}} + 1 \right) \left(\frac{k(k+1)}{2} - 1 \right) \le \frac{k(k+1)n}{2^k}$$

for $n \ge k(k+1)2^k$, establishing Theorem 2.

4 The square of a path

Proof of Theorem 3. Recall that $\ell_2(n)$ is the largest integer such that every n-vertex tournament contains the square of a path on ℓ vertices. Proving Theorem 3 is therefore equivalent to showing $\ell_2(n) = \lceil 2n/3 \rceil$ for every $n \ge 1$.

It is easy to check that $\ell_2(1) = 1$ and $\ell_2(2) = \ell_2(3) = 2$, so $\ell_2(n) \leq \lceil 2n/3 \rceil$ follows from Lemma 5 by induction, as $\ell_2(n) \leq \ell_2(n-3) + \ell_2(3) = \ell_2(n-3) + 2$ holds for every n > 3. For the lower bound we need to take a closer look at median orderings.

Claim. Every median ordering x_1, \ldots, x_n of a tournament has the following properties:

- (a) All edges of the form $x_i x_{i+1}$ are in the tournament.
- (b) If $x_i x_{i-2}$ is an edge of the tournament, then "rotating" $x_{i-2} x_{i-1} x_i$ gives two other median orderings $x_1, \ldots, x_{i-3}, x_{i-1}, x_i, x_{i-2}, x_{i+1}, \ldots, x_n$ and $x_1, \ldots, x_{i-3}, x_i, x_{i-2}, x_{i-1}, x_{i+1}, \ldots, x_n$.
- (c) If $x_i x_{i-2}$ is an edge of the tournament, then each of x_{i-2}, x_{i-1}, x_i is an inneighbour of x_{i+1} , and at most one of them is an outneighbour of x_{i+2} .

Proof. Property (a) holds, as otherwise we could swap x_i and x_{i+1} to get an ordering with more forward edges, contradicting our assumption. Property (b) holds because rotating $x_{i-2}x_{i-1}x_i$ has no effect on the number of forward edges.

These two properties together imply that each of x_{i-2}, x_{i-1}, x_i is an inneighbour of x_{i+1} . Suppose, to the contrary of (c), that two of them are outneighbours of x_{i+2} . By rotating $x_{i-2}x_{i-1}x_i$ if needed, we may assume that these are x_{i-1} and x_i . But then we can also rotate $x_ix_{i+1}x_{i+2}$ so that x_{i+2} comes right after x_{i-1} in a median ordering. This contradicts (a). \square

Let us now say that i is a bad index in a median ordering x_1, \ldots, x_n if $x_i x_{i-2}$ is an edge, and at least one of $x_{i+2}x_i$ and $x_{i+2}x_{i-1}$ is also an edge.

Lemma 7. Every tournament has a median ordering without any bad indices.

Proof. Suppose this fails to hold for some tournament, and take a median ordering x_1, \ldots, x_n that minimizes the largest bad index i. As i is a bad index, $x_i x_{i-2}$ is an edge, and x_i or x_{i-1} is an outneighbour of x_{i+2} . By (b), $x_{i-2} x_{i-1} x_i$ can be rotated so that $x_{i+2} x'_{i-2}$ is an edge in the new median ordering $x_1, \ldots, x_{i-3}, x'_{i-2}, x'_{i-1}, x'_i, x_{i+1}, \ldots, x_n$. Then neither $x_{i+2} x'_i$ nor $x_{i+2} x'_{i-1}$ is an edge, since by (c), only one of x'_{i-2}, x'_{i-1}, x'_i is an outneighbour of x_{i+2} . Also by (c), $x'_{i-1} x_{i+1}$ and $x'_i x_{i+1}$ are edges, so both of x_{i+1} and x_{i+2} are outneighbours of x'_{i-1} and x'_i . This means that none of i, i+1, i+2 is a bad index in this new ordering, and hence the largest bad index is smaller than i. This is a contradiction.

Now we are ready to prove $\ell_2(n) \geq \lceil 2n/3 \rceil$. Take an *n*-vertex tournament with median ordering x_1, \ldots, x_n as in Lemma 7, and let $I = \{i_1 < i_2 < \cdots < i_k\}$ be the set of indices i such that $x_i x_{i-2}$ is not an edge (in particular, $i_1 = 1$ and $i_2 = 2$). We claim that $x_{i_1} \ldots x_{i_k}$ is a directed path on $k \geq \lceil 2n/3 \rceil$ vertices whose square is contained in the tournament.

To see this, first observe that if the index i + 2 is not in I, then both i and i + 1 are in I. Indeed, if $x_{i+2}x_i$ is an edge, then $x_{i+1}x_{i-1}$ cannot be one because of (c), and x_ix_{i-2} cannot be one because i is not a bad index. This immediately implies $k \geq \lceil 2n/3 \rceil$.

It remains to check that $x_{i_{j-2}}x_{i_j}$ and $x_{i_{j-1}}x_{i_j}$ are all edges in the tournament. By the above observation, we know that $i_j - 3 \le i_{j-2} < i_{j-1} < i_j$. Here $x_{i_j-1}x_{i_j}$ is an edge by (a), and $x_{i_j-2}x_{i_j}$ is an edge by the definition of I. So the only case left is to show that $x_{i_{j-2}}x_{i_j}$ is an edge when $i_{j-2} = i_j - 3$.

In this case there is an index $i_j - 3 < i < i_j$ that is not in I, i.e., $x_i x_{i-2}$ is an edge in the tournament. But then if $i = i_j - 1$, then $x_{i_{j-2}} x_{i_j}$ is an edge because of (c), while otherwise $i = i_j - 2$, and $x_{i_{j-2}} x_{i_j}$ is an edge because i is not a bad index. This concludes our proof. \square

References

- [1] B. Bollobás and R. Häggkvist, Powers of Hamilton cycles in tournaments, *J. Combin. Theory Ser. B* 50 (1990), 309–318.
- [2] G. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69–81.
- [3] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, *Acta Math. Hungar.*, 10 (1959), 337–356.
- [4] A. Girão, A note on long powers of paths in tournaments, arXiv:2010.02875 preprint.
- [5] J. Komlós, G.N. Sárközy and E. Szemerédi, Proof of the Seymour conjecture for large graphs, Ann. Comb. 2 (1998), 43–60.
- [6] R. Yuster, Paths with many shortcuts in tournaments, Discrete Math. 334 (2021), 112168.
- [7] D. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, 2001.