Statistics 522: Sampling and Survey Techniques Topic 5

Topic Overview

This topic will cover

- One-stage Cluster Sampling
- Two-stage Cluster Sampling
- Systematic Sampling

Cluster Sampling: Basics

- Consider sampling children in an elementary school.
- We could take an SRS.
- An alternative is to take a random sample of classes and then measure all students in the selected classes.

Terminology

- The classes are the primary sampling units (psus) or clusters.
- The students within the classes are the secondary sampling units (ssus).
- Often the ssus are the elements of the population.

Why use cluster samples?

- Constructing a frame of the observation units may be difficult, expensive, or impossible.
 - Customers of a store
 - Birds in a region
- The population may be widely distributed geographically or may occur in natural clusters.
 - Residents of nursing homes
 - College students in dorms/classes

Comparison with stratification

- With both clusters and stratification we partition the population into subgroups (strata or clusters).
- With stratification, we sample from *each* of the subgroups.
- With cluster sampling, we sample all of the units in a subset of subgroups.

Precision

- In general, for a given total sample size n,
 - Cluster sampling will produce estimates with the largest variance.
 - SRS will be intermediate.
 - Stratification will give the smallest variance.

Notation

PSU level

- Measurement for jth element in the ith psu is $y_{i,j}$.
- In "design of experiments" we would call this a nested design.
- N is the number of psus in the population.
- M_i is the number of ssus in the *i*th psu.
- K is the number of ssus in the population.
- t_i is the total in the *i*th psu.
- t is the population total.
- S_t^2 is the population variance of the psu totals (between cluster variation).

SSU level

- \bar{y}_U is the population mean.
- $\bar{y}_{i,U}$ is the population mean in the *i*th psu.
- S^2 is the population variance (total variation).
- S_i^2 is the population variance within the *i*th psu.

Sample values

- n is the number of psus in the sample.
- m_i is the number of elements in the sample for the *i*th psu.
- \bar{y}_i is the sample mean for the *i*th psu.
- \hat{t}_i is the estimated total for the *i*th psu.
- \hat{t}_{unb} is the unbiased estimate of t (weighted mean of t's).
- s_t^2 is the estimated variance of psu totals.
- s_i^2 is the sample variance within the *i*th psu.

Clusters of equal size

- Think about the t_i as the basic observations and use the SRS theory.
- $M_i = M$ for all i.

Estimate of total

$$\hat{t} = \frac{N}{n} \sum t_i$$

$$Var(\hat{t}) = N^2 fpc \frac{S_t^2}{n}$$

- ullet To get the SE, substitute the sample estimate s_t^2 for S_t^2 and take the square root.
- For 95% the MOE is 1.96 times the SE.

Estimate of mean

- The estimate of \bar{y}_U is \hat{y} , the estimate of the population total divided by the number of units in the population.
- $\hat{\bar{y}} = \hat{t}/(NM)$
- The SE for this estimate is the SE of \hat{t} divided by NM.
- For 95% the MOE is 1.96 times the SE

Example

- Study Example 5.2 on page 137.
- A dorm has 100 suites, each with four students.
- Select an SRS of 5 suites.
- Ask each student in the selected suites to report their GPA.
- Key is suite-to-suite variation.

Some theory

• Think in terms of an anova decomposition of sums of squares (between and within clusters):

$$SST = SSB + SSW$$

• And the corresponding mean squares: MST, MSB, MSW

Variance of estimators

- For stratified sampling
 - Variances of the estimators depend on the within group variation MSW.
- For cluster sampling
 - Variances of the estimators depend on the between group variation MSB.

F = MSB/MSE

- If F is large then stratification decreases variance relative to an SRS.
- If F is large then clustering *increases* variance relative to an SRS.
- If $MSB > MST = S^2$ then cluster sampling is less efficient than an SRS.

ICC

• Intraclass (or intracluster) correlation coefficient (ICC) is the common correlation among pairs of observations from the same cluster.

$$ICC = 1 - \frac{M}{M-1} \frac{SSW}{SST}$$

- If clusters are perfectly homogeneous, then ICC = 1.
- *ICC* could also be negative.

Design effect

- The design effect is the ratio of the variances for two different designs having the same number of sampled units, usually with the variance of the SRS in the denominator.
- The design effect for cluster sampling relative to simple random sampling is MSB/MST (or MSB/S^2)

$$\frac{NM-1}{M(N-1)}[1-(M-1)ICC].$$

Clusters of unequal size

- No new ideas
- Formulas are messier.
- See text Section 5.2.3 on pages 143-144.

Ratio Estimation

- Use the M_i , the number of ssus in the ith psu, as the auxiliary variable (x_i) .
- Formulas are in Section 5.2.3.2 on pages 144-145.

Comparison

Need to know K to

• Estimate \bar{y} using unbiased estimation:

$$\hat{t}_{unb} = \frac{N}{n} \sum_{sam} t_i$$

$$\hat{\bar{y}}_{unb} = \frac{\hat{t}_{unb}}{K}$$

• Estimate t using ratio estimation

$$\hat{\bar{y}}_r = \frac{\sum t_i}{\sum M_i}$$

$$\hat{t}_r = K \hat{\bar{y}}_r$$

Two-stage cluster sampling

- If the items within a cluster are very similar, it is wasteful to measure all of them.
- Alternative is to take an SRS of the units in each selected psu (cluster).

First stage

- Population is N psus (clusters).
- Take a SRS of n psus.

Second stage

- M_i is the number of ssus in cluster i.
- For each of the sampled clusters, draw an SRS.
- The sample size for cluster i is m_i .

Estimation of the total

- In one-stage cluster sampling, we use $\hat{t}_{unb} = \frac{N}{n} \sum_{sample} t_i$ as the estimate of the population total.
- Note that the t_i are known without error because we sample all ssus in the sampled psus.
- For two-stage cluster sampling, we need to estimate the t_i .

Estimate of t_i

- Within each cluster, we have an SRS so all that we have learned about estimation with SRSs applies.
- The sample mean for cluster i is

$$\bar{y}_i = \frac{1}{m_i} \sum_{\text{in cluster } i} y_{i,j}$$

• To estimate the total for cluster i we multiply by M_i ,

$$\hat{t}_i = M_i \bar{y}_i$$

Estimate of population total

- The estimate of the population total is obtained from the \hat{t}_i .
- We first find the average of these (divide by n) and then multiply by the population size (N).

$$\hat{t}_{unb} = \frac{N}{n} \sum_{sample} \hat{t}_i$$

Estimated variance

- The estimated variance for \hat{t}_{unb} is obtained by deriving a formula for the true variance and substituting sample estimates for unknown parameters in this formula.
- The formula contains two terms:
 - A term equal to the expression for one-stage clustering (S_t^2) .
 - An additional term to account for the fact that we took an SRS at the second stage (S_i^2) 's).
- The derivation is given in the text for the general case of unequal probability sampling in Section 6.6.

Between cluster variance

• We estimate the between cluster variance, viewing the \hat{t}_i as an SRS.

$$s_t^2 = \sum_{sample} (\hat{t}_i - \hat{\bar{t}})^2 / (n-1)$$

- Note the text uses \hat{t}_{unb}/N for $\hat{\bar{t}}$.
- s_t^2 is an estimate of S_t^2 the true variance of the t_i .

Within cluster variance

- We estimate the within cluster variance, viewing the $y_{i,j}$ as an SRS.
- \bullet For cluster i

$$s_i^2 = \frac{1}{m_i - 1} \sum_{sample} (y_{i,j} - \bar{y}_i)^2$$

• There is an fpc for each cluster

$$fpc_i = (1 - m_i/M_i)$$

Estimated Variance of \hat{t}_{unb}

• First term as in single-stage.

$$N^2 fpc \frac{s_t^2}{n}$$

• Plus the within term

$$\frac{N}{n} \sum_{sample} fpc_i \frac{M_i^2 s_i^2}{m_i}$$

Take the square root to get the SE

- Multiply the SE by 1.96 for the MOE
- The 95% CI is $\hat{t}_{unb} \pm MOE$

Population mean

- K is the total number of elements in the population (assume this is known).
- The estimate of the population mean is the estimate of the population total divided by $K(\hat{t}/K)$.
- The SE for this estimate is the SE for the total divided by K.

Ratio Estimate

- We use the same procedure that we used for one-stage clustering.
- M_i is the auxiliary variable (x_i) .

$$\bar{Y}_{ratio} = \frac{\sum_{sample} \hat{t}_i}{\sum_{sample} M_i}$$

- The approximate variance formula is messy.
- See page 148.

Example 5.6, page 148

- File name is coots.dat.
- American coot eggs from Minnedosa, Manitoba.
- Clusters (psus) are clutches or nests of eggs.
- Two eggs (ssus) from each clutch were measured.
- We will look at the egg volume.

Some details

- The sample size for clutches is n = 184.
- The population size N is unknown.
- The number of eggs in each clutch is M_i and varies.
- We have a sample of $m_i = 2$ eggs from each clutch.
- We will use a ratio estimate.

Import and check the data (SLL148.sas)

```
options nocenter;
proc contents data=a1;
proc print data=a1;
run;
```

The data

Obs	${\tt CLUTCH}$	CSIZE	VOLUME
1	1	13	3.7957569
2	1	13	3.9328497
3	2	13	4.2156036
4	2	13	4.1727621
5	3	6	0.9317646
6	3	6	0.9007362

Calculate some clutch summaries

```
proc means data=a1 noprint;
  by clutch;
  var volume csize;
  output out=a2
    mean=yibar Micap var=s2i x1
    sum=tihat x2 n=milow x3;
data a2; set a2;
  keep clutch Micap yibar
    s2i tihat milow;
proc print data=a2;
run;
```

Output

Obs	CLUTCH	yibar	Micap	s2i	tihat	milow
1	1	3.8643033	13	0.009397	7.7286066	2
2	2	4.19418285	13	0.000918	8.3883657	2
3	3	0.9162504	6	0.000481	1.8325008	2
4	4	2.99833465	11	0.000795	5.9966693	2

A plot

```
symbol1 v=circle i=sm70;
proc sort data=a2; by yibar;
proc gplot data=a2;
   plot s2i*yibar/frame;
run;
```


Find the outlier

```
proc print data=a2;
    where s2i ge .2;
run;
```

Output

Obs	${\tt clutch}$	yibar	Micap	s2i	milow	tihat
89	88	2.34829	10	0.48669	2	23.4829

Clutch 88

```
proc print data=a1;
   where clutch eq 88;
run;
```

Output

0bs	clutch	csize	length	breadth	volume	tmt
176	88	9	45.17	32.69	1.85500	0
177	88	11	46.32	32.14	2.84159	0

Find the estimate

```
proc means data=a2 noprint;
  var tihat Micap;
  output out=a3
      sum=Stihat SMicap;
data a3; set a3;
  ybar_rat=Stihat/SMicap;
proc print data=a3;
run;
```

Output

```
Obs Stihat SMicap ybar_rat
1 4378.29 1758 2.49050
```

Calculations for the SE

SE

- Finish calculations using outline given for Example 5.6 on page 151.
- SE expressed as relative error is 2.45%.

Final Comment

Unbiased estimation does not work well (ratio estimation works better) when

$$Var(M_i) = constant$$
$$t_i \propto M_i$$

Weights

- In many practical situations, weights are used for estimates with cluster sampling.
- The weight of an element is the reciprocal of its probability of selection.

- Consider ssu corresponding to $y_{i,j}$.
- \bullet First, we need to have psu *i* selected in the first stage
 - The probability is n/N
- Then, ssu j needs to be selected.
 - The probability is m_i/M_i .
- So the probability that $y_{i,j}$ is selected is nm_i/NM_i .
- And the weight is NM_i/nm_i .

Estimates

- For total, multiply by the weights and then sum.
- For mean, divide total by the sum of the weights in the sample.
- This is a ratio estimator.
- \bullet If N is unknown, relative weights can be used, but the total cannot be estimated.

Design issues

- Precision needed
- Size of the psu
- How many ssus to sample within each selected psu
- How many psus to select

PSU

- Often this is some natural unit.
 - Clutch of eggs
 - Class of children
- Sometimes we have some control.
 - Area of a forest
 - Time interval for customers
- Principle more area \Rightarrow more variability within psu's (ICC smaller)

Subsampling sizes

- \bullet The relative sizes of MSB and MSW are relevant.
- $R_{adj}^2 = 1 \frac{MSW}{MST}$ is the adjusted R^2 .
- If units within clusters are very similar relative to units from other clusters, we do not need to sample large numbers within each cluster.

Cost

- One approach to determining sample sizes is to consider costs
- c_1 is the cost of obtaining a psu.
- c_2 is the cost of obtaining a ssu.
- \bullet C is the total cost

$$C = c_1 n + c_2 n m$$

Minimum cost

• Use calculus to find n and m that minimize the variance of the estimator.

$$n = \frac{C}{c_1 + c_2 m}$$

- Formula for m involves MSW and MSB (or R_{adj}^2)
- See page 156.
- ullet We are assuming the cluster sizes are equal (M).

Other issues

- For unequal cluster sizes the same approach is reasonable.
- Use \bar{M} and \bar{m} in place of M and m.
- Then take $m_i = \bar{m}$ or
- if the M_i do not vary very much, we often take m_i proportional to M_i ($\frac{m_i}{M_i} = constant$)

PSU's

- \bullet The number of psus to sample (n) can be determined from the desired MOE using some approximations.
- See Section 5.5.3 on pages 158-159.

Systematic sampling

- We mentioned earlier that systematic sampling is a special case of cluster sampling.
- It is a one-stage cluster sample.
- Suppose we take every 10th unit.
- Then the ten clusters are $\{1,11,\ldots\}, \{2,12,\ldots\}, \{3,13,\ldots\},\ldots \{10,20,\ldots\}.$

Variance

• The variance of the estimate of the population mean for systematic sampling is approximately

$$\frac{S^2}{M}(1+(M-1)ICC)$$

- Here M is the size of the systematic sample.
- If the ICC is zero this is the variance for an SRS.

ICC

- If the ICC is negative, the systematic sample is better that an SRS.
 - This happens when the within cluster variation is *larger* that the overall variance (clusters are diverse).
 - If the ICC is positive, then SRS is better.

Example

- List in random order.
 - Systematic similar to SRS.
- List is in decreasing or increasing order based on something correlated with y.
 - Systematic better to SRS.
- Periodic pattern in the list
 - Could be a disaster

Advantage

Puts absolute (not probabilistic) bounds on event detection.

Periodicity

- One remedy is to take more than one systematic sample.
- This is called *interpenetrating systematic sampling*.
- Each systematic sample is viewed as a cluster and the methods of this chapter apply.

Models for cluster sampling

• Basic idea is the one-way anova model with random effects

$$Y_{i,j} = A_i + e_{i,j}$$

- (Fixed effects one-way model used for stratified sampling.)
- Where A_i and $e_{i,j}$ are independent with means μ and zero, and variances σ^2 and σ_A^2 , respectively.

ICC

• The intraclass correlation coefficient (ICC) is

$$\rho = \frac{\sigma_A^2}{\sigma^2 + \sigma_A^2}$$

• Note that this quantity is always nonnegative (not appropriate if "competing resources").

$$Cov_{M1}(Y_{i,j}, Y_{k,\ell}) = \sigma_A^2 I(i=k) + \sigma^2 I(j=\ell)$$

• We can use this framework to derive formulas for the SEs.

Properties

- Design-unbiased estimators can be model-biased when error variance assumed constant. (Ratio estimator unbiased.)
- Important diagnostic: does $Var(\hat{T})$ depend on M_i ?
- Different model assumptions can lead to different designs.