Descriptive Analytics

By Dr Shaik A Qadeer Professor MJCET

Learning Objectives

- Working with DataFrames and perform basic exploratory Analysis
- Data Preparation Activities: Filtering, grouping, ordering, joining etc.
- Dealing with Missing Values
- Prepare plots such as bar plot, histogram, distribution plot, box plot, scatter plot, pair plot and heat maps to find insights.

Working with Dataframes

FIGURE 2.1 Structure of a DataFrame.

Example: IPL data set

Data Code	Data Type	Description			p
HS	Continuous	Highest score by the batsman in IPL	RUNS-S	Continuous	N
AVE-B	Continuous	Average runs scored by the batsman in IPL			
AVE-BL	Continuous	Bowling average (Number of runs conceded / number of wickets taken) in IPL	RUNS-C	Continuous	N
SR-B	Continuous	Batting strike rate (ratio of the number of runs scored to the number of balls faced) in IPL			
SR-BL	Continuous	Bowling strike rate (ratio of the number of balls bowled to the number of wickets taken) in IPL			
SIXERS	Continuous	Number of six runs scored by a player in IPL			
WKTS	Continuous	Number of wickets taken by a player in IPL			
ECON	Continuous	Economy rate of a bowler (number of runs conceded by the bowler per over) in IPL			
CAPTAINCY EXP	Categorical	Captained either a T20 team or a national team			
ODI-SR-B	Continuous	Batting strike rate in One-Day Internationals			
ODI-SR-BL	Continuous	Bowling strike rate in One-Day Internationals			
ODI-RUNS-S	Continuous	Runs scored in One-Day Internationals			
ODI-WKTS	Continuous	Wickets taken in One-Day Internationals			
T-RUNS-S	Continuous	Runs scored in Test maches			
T-WKTS	Continuous	Wickets taken in Test maches			
PLAYER-SKILL	Categorical	Player's primary skill (batsman, bowler, or all-rounder)			
COUNTRY	Categorical	Country of origin of the player (AUS: Australia; IND: India; PAX: Pakistan; SA: South Africa; SL: Sri Lanka; NZ: New Zealand; WI: West Indies; OTH: Other countries)			
YEAR-A	Categorical	Year of Auction in IPL			
IPL TEAM	Categorical	Team(s) for which the player had played in the IPL (CSK: Chennai Super Kings, DC: Deccan Chargers, DD: Delhi Daredevils, KXI: Kings XI Punjab, KXR: Kolkata Knight Riders; MI: Mumbai Indians; PWI: Pune Warriors India; RR: Rajasthan Royals; RCB: Royal Challengers Bangalore).	10.00		
	5/20/20	12.4. + sign was used to indicate that the player had played for more than one team. For example, Pre CSK+ would mean that the player had played tor CSK as well as for one or more other teams.	pared By Dr S	naik Abdul Qad	eer

2.1	IPL	auction	price	data	description
-----	-----	---------	-------	------	-------------

Data Code	Data Type	Description
AGE	Categorical	Age of the player at the time of auction classified into 3 categories. Category 1 (L25) means the player is less than 25 years old, 2 means that age is between 25 and 35 years (B25–35) and category 3 means that the age is more than 35 (A35).
RUNS-S	Continuous	Number of runs scored by a player
RUNS-C	Continuous	Number of runs conceded by a player

Loading Dataset into DataFrame

```
import pandas as pd
ipl_auction_df = pd.read_csv('IPL IMB381IPL2013.csv')
```

ipl_auction_df.head(5)

	SI. NO.	Player Name	Age	 Auction Year	Base Price	Sold Price
0	1	Abdulla, YA	2	 2009	50000	50000
1	2	Abdur Razzak	2	 2008	50000	50000
2	3	Agarkar, AB	2	 2008	200000	350000
3	4	Ashwin, R	1	 2011	100000	850000
4	5	Badrinath, S	2	 2011	100000	800000

Finding summary of the DataFrame

```
ipl auction df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 130 entries, 0 to 129
Data columns (total 26 columns):
                                                 HS
                                                                 130
                                                                       non-null
                                                                                 int64
Sl.NO.
                 130
                       non-null
                                 int64
                                                                 130
                                                                       non-null
                                                                                float64
                                                 AVE
                 130
                       non-null
                                  object
PLAYER NAME
                                                                 130
                                                                       non-null
                                                                                float 64
                                                 SR-B
AGE
                 130
                       non-null
                                 int64
                                                                 130
                                                                                int64
                                                 SIXERS
                                                                       non-null
COUNTRY
                 130
                       non-null Object
                                                 RUNS-C
                                                                 130
                                                                       non-null int64
TEAM
                 130
                       non-null Object
                                                 WKTS
                                                                 130
                                                                       non-null int64
PLAYING ROLE
                 130
                       non-null
                                  Object
                                                 AVE-BL
                                                                 130
                                                                       non-null
                                                                                float64
T-RUNS
                 130
                       non-null
                                  int64
                                                  ECON
                                                                                float 64
                                                                 130
                                                                       non-null
T-WKTS
                 130
                       non-null
                                  int64
                                                                       non-null float64
                                                 SR-BL
                                                                 130
ODI-RUNS-S
                 130
                       non-null
                                  int64
                                                 AUCTION YEAR
                                                                       non-null int64
                                                                 130
                                 float 64
                                                 BASE PRICE
                                                                 130
                                                                       non-null int64
ODI-SR-B
                 130
                       non-null
                                                                 130
                                                                       non-null int64
                                                 SOLD PRICE
ODI-WKTS
                 130
                       non-null
                                  int64
                                                 dtypes: float64(7), int64(15), object(4)
ODI-SR-BL
                 130
                       non-null
                                  float 64
                                                 memory usage: 26.5+ KB
CAPTAINCY EXP
                 130
                       non-null
                                  int64
                       non-null
RUNS-S
                 130
                                 int64
```

Slicing and Indexing of the DataFrame by ROWS

ipl_auction_df[0:5]

	SI. NO.	Player Name	Age	***	Auction Year	Base Price	Sold Price
0	1	Abdulla, YA	2		2009	50000	50000
1	2	Abdur Razzak	2	***	2008	50000	50000
2	3	Agarkar, AB	2	***	2008	200000	350000
3	4	Ashwin, R	1	***	2011	100000	850000
4	5	Badrinath, S	2	***	2011	100000	800000

BY Rows: First five entries

ipl_auction_df[-5:]

BY Rows: Last five entries

	SI. NO.	Player Name	Age	•••	Auction Year	Base Price	Sold Price
125	126	Yadav, AS	2	***	2010	50000	750000
126	127	Younis Khan	2	***	2008	225000	225000
127	128	Yuvraj Singh	2	***	2011	400000	1800000
128	129	Zaheer Khan	2	***	2008	200000	450000
129	130	Zoysa, DNT	2	***	2008	100000	110000

Slicing and Indexing of the DataFrame by Columns

Sorting DataFrame by Column Values

ipl_auction_df[['PLAYER NAME', 'SOLD PRICE']].sort_values
('SOLD PRICE')[0:5]

	Player Name	Sold Price
73	Noffke, AA	20000
46	Kamran Khan	24000
0	Abdulla, YA	50000
1	Abdur Razzak	50000
118	Van der Merwe	50000

ipl_auction_df[['PLAYER NAME',	'SOLD PRICE']].sort_values('SOLD
PRICE', ascending = False) [0:5]	

	Player Name	Sold Price
93	Sehwag, V	1800000
127	Yuvraj Singh	1800000
50	Kohli, V	1800000
111	Tendulkar, SR	1800000
113	Tiwary, SS	1600000

To sort the records in descending order, pass False to ascending

Creating New Columns

```
ipl_auction_df[['PLAYER NAME', 'BASE PRICE', 'SOLD PRICE',
    'premium']][0:5]
```

	Player Name	Base Price	Sold Price	Premium
0	Abdulla, YA	50000	50000	0
1	Abdur Razzak	50000	50000	0
2	Agarkar, AB	200000	350000	150000
3	Ashwin, R	100000	850000	750000
4	Badrinath, S	100000	800000	700000

Grouping and Aggregating

 To find average SOLD PRICE for each age category, group all records by AGE and then apply mean() on SOLD PRICE column.

	Age	Sold Price
0	1	720250.000000
1	2	484534.883721
2	3	520178.571429

Handling Missing Values

- Autos-mpg dataset: It contains information about different cars and their characteristics
 - 1. mpg miles per gallon
 - 2. cylinders Number of cylinders (values between 4 and 8)
 - 3. displacement Engine displacement (cu. inches)
 - 4. horsepower Engine horsepower
 - 5. weight Vehicle weight (lbs.)
 - **6.** acceleration Time to accelerate from 0 to 60 mph (sec.)
 - 7. year Model year (modulo 100)
 - 8. origin Origin of car (1. American, 2. European, 3. Japanese)
 - 9. name Vehicle name

Assigning Names to the Columns(As file is header less)

	mpg	cylinders	displacement	 year	origin	name
0	18.0	8	307.0	 70	1	chevrolet chevelle malibu
1	15.0	8	350.0	 70	1	buick skylark 320
2	18.0	8	318.0	 70	1	plymouth satellite
3	16.0	8	304.0	 70	1	amc rebel sst
4	17.0	8	302.0	 70	1	ford torino

 $5 \text{ rows} \times 9 \text{ columns}$

Summary of Autos-mpg data(Observer horsepower)

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):
                 398 non-null float 64
mpg
cylinders
                 398 non-null int64
displacement
                 398 non-null float 64
horsepower
                 398 non-null object
                 398 non-null float 64
weight
acceleration
                 398 non-null float 64
                 398 non-null int64
year
origin
                 398 non-null int64
                 398 non-null object
name
dtypes: float64(4), int64(3), object(2)
memory usage: 28.1+ KB
```

autos.info()

Here the column *horsepower* has been inferred as *object*, whereas it should have been inferred as *float64*. This may be **because some of the rows contain non-numeric** values in the *horsepower* column.

Handling Missing Values...(Observer horsepower)

```
autos["horsepower"] = pd.to_numeric(autos["horsepower"],
errors = 'corece') autos.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):
                398 non-null float64
mpg
cylinders
                398 non-null int64
displacement
               398 non-null float 64
horsepower
               392 non-null float64
weight
       398 non-null float64
acceleration
               398 non-null float.64
                398 non-null int64
year
origin
                398 non-null int64
                398 non-null object
name
dtypes: float64(5), int64(3), object(1)
memory usage: 28.1+ KB
```

Handling Missing Values...Now check for null values in horsepower

Handling Missing Values...Remove the nulls

 $0 \text{ rows} \times 9 \text{ columns}$

Exploration of Data Using Visualization

- Data Visualization is useful
 - To gain insights in data
 - To understand what happened in the past in a given context
 - For feature engineering
- Drawing Plots

```
import matplotlib.pyplot as plt
import seaborn as sn
%matplotlib inline
```

Bar Chart

- A frequency chart for qualitative variables (or categorical variables)
- Used to assess the most-occurring and least-occurring categories within a dataset

sn.barplot(x = 'AGE', y = 'SOLD PRICE', data = soldprice by age);

Prepared By Dr Shaik Abdul Qadeer FIGURE 2.3 Bar plot for average sold price versus age.

Histogram

- A plot that shows the frequency distribution of a set of continuous variable.
- Gives an insight into the underlying distribution of the variable, outliers, etc.

```
plt.hist( ipl_auction_df['SOLD PRICE'], bins = 20 );
```

Note: By default, plt.hist() function creates 10 bins in the histogram. To create more bins, the bins parameter can be set in the hist() method accordingly.

Box Plot

- Box plot is designed by identifying the following descriptive statistics:
- 1. Lower quartile (1st quartile), median and upper quartile (3rd quartile).
- 2. Lowest and highest values.
- 3. Inter-quartile range (IQR).

```
box = sn.boxplot(ipl auction df['SOLD PRICE']);
```


FIGURE 2.8 Box plot for SOLD PRICE.

Box Plot...

IQR:

- IQR is the distance (difference) between the 3rd quartile and 1st quartile.
- The length of the box is equivalent to IQR.
- The whisker of the box plot extends till Q1 1.5IQR and Q3 + 1.5IQR
- · Observations beyond these two limits are potential outliers.
- The caps key in box variable returns the min and max values of the distribution

```
[item.get_ydata()[0] for item in box['caps']]
[20000.0, 1350000.0]
```

Box Plot...

IQR:

• The whiskers key in box variable returns the values of the distribution at 25 and 75 quantiles.

```
[item.get_ydata()[0] for item in box['whiskers']]
[225000.0, 700000.0]
So, inter-quartile range (IQR) is 700,000 - 225,000 = 475,000.
```

• The medians key in box variable returns the median value of the distribution.

```
[item.get_ydata()[0] for item in box['medians']]
[437500.0]
```

Scatter plot

- Two variables are plotted along two axes
- Can reveal correlation present between two variables, if any
- Useful for assessing the strength of the relationship and to find the outliers in the data
- Mostly used during regression model building to decide on the initial model

```
plt.scatter(x=ipl_auction_df['SIXERS'],y=ipl_auction_df['SOLD PRICE'])
plt.xlabel('SIXERS')
plt.ylabel('SOLD PRICE')
plt.title('Scatter plot between players sixers and sold price')
```

Text(0, 0.5, 'SOLD PRICE')

Connected to Puthon 3 Good

Scatter plot..

 To draw the direction of relationship between the variables, regplot() of seaborn can be used

```
sn.regplot(x=ipl_auction_df['SIXERS'],y=ipl_auction_df['SOLD PRICE'])
```

' <Axes: xlabel='SIXERS', ylabel='SOLD PRICE'>

Pair plot

```
influential_features = ['SR-B', 'AVE', 'SIXERS', 'SOLD PRICE']
sn.pairplot(ipl_auction_df[influential_features], size=2)
```


Correlation and Heatmap

- Correlation is used for measuring the strength and direction of the linear relationship between two continuous random variables X and Y
- It is a statistical measure that indicates the extent to which two variables change together
- Positive correlation the variables increase/ decrease together
- Negative correlation if one variable increases, the other decreases
- The correlation value lies between -1.0 and 1.0. The sign indicates whether it is positive or negative correlation.
- -1.0 indicates a perfect negative correlation, whereas +1.0 indicates perfect positive correlation.

Correlation and Heatmap

```
ipl_auction_df[influential_features].corr()
```

	SR-B	AVE	SIXERS	SOLD PRICE
SR-B	1.000000	0.583579	0.425394	0.184278
AVE	0.583579	1.000000	0.705365	0.396519
SIXERS	0.425394	0.705365	1.000000	0.450609
SOLD PRICE	0.184278	0.396519	0.450609	1.000000

Correlation and Heatmap

sn.heatmap(ipl_auction_df[influential_features].corr(), annot=True);

Thank you!