4.1 MC Fragen: Folgenkonvergenz

a)
$$\sum_{k=1}^{\infty} a_k$$

- Wahr \rightarrow laut der Cauchy Kriterium ist die reihe genau dann konvergent falls $\forall \epsilon > 0 \;\; \exists N \geq 1 \; \text{mit} \; \left| \sum_{k=n}^m a_k \right| < \epsilon \quad \forall m \geq n \geq N$
- Wahr (begründung gleich wie oben)
- Falsch $a_k:=1\Rightarrow \sum_{k=1}^\infty sin(1)$ konvergiert absolut, aber $\sum_{k=1}^\infty 1$ divergiert
- Falsch
- b) $\sum_{k=1}^{\infty} a_k$ eine reelle Reihe mit $\forall k \in \mathbb{N} : a_k \leq 0$
 - Wahr. Bew: $S_{n+1} S_n = \sum_{k=1}^{n+1} a_k \sum_{k=1}^n a_k = a_{n+1} \le 0 \Rightarrow (S_n)$ ist monoton fallend. Falls (S_n) nach unten beschränkt ist, folgt aus Weierstrass dass die Folge konvergiert.
 - Falsch. Bew sei $(a_k) := -\frac{1}{k}$ $\Rightarrow (a_k)$ ist monoton wachsend und $\lim_{n \to \infty} a_k = 0$ \Rightarrow Der Harmonische Reihe divergiert $\Rightarrow \sum_{k=1}^{\infty} -\frac{1}{k}$ divergiert
 - Falsch. Bew: Gegenbeispiel negative Geometrische Reihe
- c) $\phi: \mathbb{N}^* \to \mathbb{N}^*$ eine Abbildung, $\sum_{n=1}^{\infty} a_n$ eine Reihe und
 - \bullet Wahr. Bew: Da Definitionsmenge und Zielmenge gleich sind, ist es eine umordnung von a_n daraus folgt die Summe der b_n 's konvergiert
 - Wahr. Bew: Da ϕ injektiv ist, gilt $\phi(a) \neq \phi(b)|a \neq b$. Da die summe nach unendlich geht ist ϕ eine Umordnung der Summe der b_n 's konvergiert
 - Wahr. Bew: Satz von Dirichlet
 - Wahr. Bew: Satz von Dirichlet

test