RIDGE REGRESSION (LZ Regularization)

Overfitting

L> Troung Dada -> High Accuracy -> Low Bias L> Test Dada -> Low Accuracy -> High Variance

To reduce overfitting, we can use Ridge Regression

Cost Function

$$\frac{1}{2m} \stackrel{\mathcal{E}}{\underset{i=1}{\text{if}}} \left(h_{\mathcal{O}}(x)^{i} - y^{i} \right)^{2} + \bigwedge \stackrel{\mathcal{E}}{\underset{i=1}{\text{if}}} \left(\text{slope} \right)^{2}$$
if $\Lambda = 1$

Lyperparameter

$$h_0(x) = Q_0 + Q_1 x_1$$

= 0 + $|[Q_1]^2$
> 0

if is increasing, slope is descreasing

 $ho(x) = Q_0 + Q_1 \chi_1 + Q_2 \chi_2 + Q_3 \chi_3$ = $Q + 0.52 \chi_1 + 0.48 \chi_2 + 0.24 \chi_3$

Afk: apply
Tidge regression

LASSO REGRESSION(LI Regularization) -> Feature Selection

Cost Function

After one point of time, a will become zero.

X & Tremoved

Flastie Net (LI and L2)

Cost Function