8/28/2018

Discussion #1

Exercise 1 (Subpaces and dimensions) Consider the set S of points such that

$$x_1 + 2x_2 + 3x_3 = 0$$
, $3x_1 + 2x_2 + x_3 = 0$.

Show that S is a subspace. Determine its dimension, and find a basis for it.

Exercise 2 (Direct sum) Find $k \in \mathbb{R}$ such that $\mathbb{R}^3 = S \oplus T$, with $S = span \left\{ \begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix} \right\}$ and $T = \{(x, y, z) \in \mathbb{R}^3 : kx + y - z = 0\}$

Exercise 3 (Extrema of inner product over a ball) Let $y \in \mathbb{R}^n$ be a given non-null vector, and let $\mathcal{X} = \{x \in \mathbb{R}^n : ||x||_2 \le r\}$, where r is some given positive number.

- 1. Determine the optimal value p_1^* and the optimal set (i.e., the set of all optimal solutions) of the problem $\min_{x \in \mathcal{X}} |y^\top x|$.
- 2. Determine the optimal value p_2^* and the optimal set of the problem $\max_{x \in \mathcal{X}} |y^\top x|$.
- 3. Determine the optimal value p_3^* and the optimal set of the problem $\min_{x \in \mathcal{X}} y^\top x$.
- 4. Determine the optimal value p_4^* and the optimal set of the problem $\max_{x \in \mathcal{X}} y^\top x$.

Exercise 4 (Inner product) Let $x, y \in \mathbb{R}^n$. Under which condition on $\alpha \in \mathbb{R}^n$ does the function

$$f(x,y) = \sum_{k=1}^{n} \alpha_k x_k y_k$$

define an inner product on \mathbb{R}^n ?