Profs. Bresler & Radhakrishnan

Homework 8 Due: Friday, October 30

Reading: Chapter 9

1. Consider the following system with uniform sampling

$$x_a(t)$$
 T x_n $H_d(\omega)$ y_n D/A $y_a(t)$ (ideal)

The discrete-time system $H_d(\omega)$ is an ideal low-pass filter with cutoff frequency $\frac{\pi}{8}$.

- (a) If $x_a(t)$ is bandlimited to 5 kHz, what is the maximum value of T that will avoid aliasing in the A/D converter?
- (b) If $\frac{1}{T} = 10$ kHz and $x_a(t)$ is sufficiently bandlimited such that the overall system from $x_a(t)$ to $y_a(t)$ behaves as an LSI system, what will the cutoff frequency of the effective continuous-time filter be?
- (c) Repeat part (b) for $\frac{1}{T} = 20 \text{ kHz}$.
- 2. The system shown below with input $x_a(t)$ is used to produce an output $y_a(t)$ such that $Y_a(\Omega) = X_a(\Omega)H_a(\Omega)$ where $H_a(\Omega)$ corresponds to an ideal low-pass filter with cut-off frequency of $\Omega_c = 1000\pi$ rad/s.

- (a) Assuming ideal A/D and D/A converters, find Nyquist Sampling Rate for the signal $x_a(t)$.
- (b) Determine the largest T possible such that $Y_a(\Omega) = X_a(\Omega)H_a(\Omega)$.
- (c) Determine the required $H_d(\omega)$ for sampling period T = 0.25 ms.
- (d) Assuming T = 0.25ms, sketch $X_d(\omega)$, $Y_d(\omega)$, and $Y_a(\Omega)$, for an ideal D/A.

(e) Suppose the ideal D/A is now replaced by a zero-order hold, using the pulse

$$p_a(t) = \begin{cases} 1, & 0 \le t \le T \\ 0, & \text{else.} \end{cases}$$

Sketch $Y_a(\Omega)$ for $|\Omega| \leq 8000\pi$. Find the amplitude of the largest unwanted (out of the band $|\Omega| \leq \frac{\pi}{T}$) component of $Y_a(\Omega)$, due to the nonideal D/A.

- 3. Let the input to a ZOH operating with period T be $y[n] = cos(n\pi/4)$. Sketch the output of the ZOH by hand for 0 < t < 10T.
- 4. Sketch by hand the Fourier transform of the output of a ZOH operating at 12 Hz for an input $y[n] = cos(n\pi/4)$. Do the sketch for $0 \le |\Omega| \le 48\pi$ Determine the magnitude of the largest unwanted component at the output.
- 5. The transfer functions of three LSI systems are given below. For each system, determine whether it is an FIR or IIR filter.

(a)
$$H(z) = \frac{z^2 + 3z}{z^2 + 3z + 2}$$

(b)
$$H(z) = \frac{z+1}{z^2 - \frac{z}{4} - \frac{1}{8}}$$

(c)
$$H(z) = \frac{1}{3} \times (1 - z^{-1} + z^{-2})$$

(d)
$$H(z) = \frac{1}{3} \times (1 + z^{-1} + z^{-2})$$