ii. Demonstrate which can be named as terms and formula with their Backus 8 1 3 Naur Form.

(OR)

b. Consider the sentence $\phi \underline{def} \forall_x \exists_y \exists_z (P(x,y) \lor P(x,z) \to P(z,x))$ which of ¹⁰ ⁴ ³ ² the following models satisfies ϕ , with respect to set of natural numbers.

$$P^{M} \underbrace{def}_{n,n} \{(m,n) \mid (m < n)\}$$

$$P^{M'} \underline{def} \{(m, n*2 \mid m \text{ natural number})\}$$

$$P^{M"}\underline{def}\left\{m,n\mid m< n+1\right\}$$

$$P^{M'''}\underline{def}\{m,n\mid m>n-1\}$$

29. a. State and explain the natural deduction of predicate logic.

10 2 4 1

(OR)

- b. Solve the following
 - (i) $\exists_x \exists_y \phi \dashv \vdash \exists_y \exists_x \phi$
 - (ii) $\neg \exists_{\mathbf{r}} \phi \dashv \vdash \forall_{\mathbf{r}} \neg \phi$
 - (iii) $\exists_r \phi \lor \psi \dashv \vdash \exists_r (\phi \lor \psi)$
- 30. a. Demonstrate the K-model with suitable example.

10 2 5 1

(OR)

b. Consider the state transition diagram and check which of the following 10 3 5 2 states satisfies. Explain with justification.

 $q_4 \models XXa$

$$q_3 \vDash Xb$$

$$q_1 \vDash AF(a \land b)$$

$$q_2 \vDash X(a \rightarrow b)$$

$$q_3 \vDash E(a \cup b)$$

Page 4 of 4 21NF6/7/18CSE351T

Reg. No.								

B.Tech. DEGREE EXAMINATION, NOVEMBER 2022

Sixth/ Seventh Semester

18CSE351T - COMPUTATIONAL LOGIC

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note:

- (i) Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) Part B should be answered in answer booklet.

(II) Par	t - B should be answered	n answer bookiet.						
Time: $2\frac{1}{2}$ Hours PART – A ($25 \times 1 = 25$ Marks)							s: 75	
							PO	
	Answ	er ALL Questions						
1. The	1. The binding priority of propositional logic is							
(A)	V Λ, →, ¬	(B) $\exists A, A \rightarrow A, A \lor A$			7.			
(C)	$\exists, \lor \land, \to \leftrightarrow$	(D) \exists , \rightarrow \lor \land						
2. Sym	abolic representation of	"B ₁ is logically equivalent to 2	Z ₁ " is	1	1	1	1	
(A)	$B_1 > Z_1$	$- (B) B_1 \equiv Z_1$						
(C)	$B_1 \wedge Z_1$	(D) $B_1 \vee Z_1$						
3. Whi	ch of the following is r	ot true?		.1	1	1	1	
	A≡¬A	(B) $A \leftrightarrow A$						
` ,	$A \rightarrow A$	(D) A ∧ ¬ A						
* *	V	n Karaja Birani a reservici		\$2	-	-		
4. A tr	uth table is a convenier	t format for displaying the	of formula.	. 1	1	I	1	
(A)		(B) Symbol						
(C)	Values	(D) Semantics						
5 n	$\rightarrow q, q \rightarrow s, s \rightarrow r \vdash$			1	2	1	1	
-	$p \lor r$	(B) $p \wedge r$						
(A)	PVI	(D) P'''						

6. If $\Sigma \vdash W$ where Σ - any set of propositions, W - any proposition, then

osition, then 1 2 2 1

1 2 2 1

1 1 2 1

(A) $\Sigma \models W$

(C) $p \rightarrow r$

(B) Σ ⊬ W

(D) $\exists p \land \exists r$

(C) $\Sigma \nvDash W$

(A) s

(D) $\Sigma \equiv W$

7. In a formula $\neg p \rightarrow (q \rightarrow (s \lor t))$. Which of the following is not a sub formula.

- (B) t
- C) q

(D) p

8. A → B is equivalent to(A) ¬A ∨ B

(B) A V B

(C) A ∨ ¬B

(D) \(\bar{A} \times \bar{B} \)

Page 1 of 4 21NF6/7/18CSE351T

9.	Propositions accepted without further		1	l	2	I	21. A state transition diagram is a	5	1
	(A) Semantics	(B) Rule					(A) Undirected graph (B) Weighted graph		
	(C) Derivation	(D) Axioms					(C) Unweighted graph (D) Directed graph		
10.	0. Pick out the equation for bottom up elimination rule			1	2	1	22. Temporal logic is a formal system for reasoning about .	5	1
	(A) \overline{T}	(B) $P, \neg P$				2.7	(A) Velocity (B) Time		
		1					(C) Speed (D) Acceleration		
	(C) <u>+</u>	(D) T							
	P	(D) $\frac{T}{P \vee \neg P}$					23. \Box can be read as	5	1
							(A) Always (B) Partially		
11.	A function with zero arity can be cal	led as function.	1	1	3	1	(C) Eventually (D) Rarely		
	(A) Algebraic	(B) Nullary							
	(C) Predicate	(D) Logic						5	1
		•					(A) Active state (B) Passive state		
12.	Find the number of arguments in giv	en equation $\forall_x \forall_y P(f(x), y)$	1	2	3	1	(C) Active structure (D) Static structure		
	(A) 0	(B) 2					25. CTL is	5	1
	(C) 1	(D) 3					(A) Branching tree logic (B) Graph		•
							(C) Logical (D) Hash		
13.	Existential quantifiers can be denoted		1	11	3	1	(2) 11451		
	$(A) \forall x$	(B) 7							
	(C) ↔	(D) $\exists x$					$PART - B (5 \times 10 = 50 \text{ Marks})$ Marks BL	CO	rc
14	Law of remainder can be denoted as		1	1	3	1	Answer ALL Questions		
17,	(A) $\forall_x X \to Y \equiv \forall_x X$	(B) $\exists_x X \to Y \equiv \forall_x X$	1	•	3	1			
	(C) $\forall_x X \equiv \forall_x X [x/y]$	2					1,	1	1
	$(C) \mathbf{v}_{x} A = \mathbf{v}_{x} A \left[x / y \right]$	(D) $\forall_x X[x/y] \equiv \exists_x X[x/y]$					(i) $((p \land q) \rightarrow (\neg q \lor s)) \lor t$		
15	If $A = B \rightarrow C$, then $I_I = A$ iff		1	1	3	1	(ii) $(p \to (q \to r)) \land ((p \land q) \lor s)$ (iii) $(\neg p \to \neg q) \to (\neg (p \land s) \to \neg t)$		
15.	(A) $I_l \vDash B$ holds or $I_l \vDash C$ holds	(D) / to D holds	•	G .	3	•	(iii) $(\neg p \rightarrow \neg q) \rightarrow (\neg (p \land s) \rightarrow \neg t)$		-
		(B) $I_l = B \text{ holds}$							
	(C) $I_l \vDash A \text{ holds}$	(D) $I_l \nvDash A$ holds					(iv) $\neg (\neg (p \rightarrow q)(\land q \lor (s \rightarrow \neg t)))$		
16.	Which one of the following is not a t	erm?	1	1	4	1	(OP)		
	(A) Any variable	(B) A function with zero arity					(OR) b. Draw the truth table for the following formula and check whether it is 3	1	1
	(C) Nullary function	(D) A function with 1 arity					b. Draw the truth table for the following formula and check whether it is tautology	1	1
177	TPL - 1-1 1						(i) $((p \land q) \lor s) \rightarrow q$		
1/.	The deduction rule is essential proving		1	1	4	1	(ii) $(p \to q \to t) \leftrightarrow s$		
	(A) Constants(C) Variables	(B) Assumptions					(iii) $(n+a) \leftrightarrow (a+a)$		
	(C) Variables	(D) Symbols					$(m) (p \land q) \leftrightarrow (q \land p)$		
18.	Completeness means that every valid	l formula has a	1	1	4	1	27. a. State and derive the derived rules of propositional logic.	2	1
	(A) Literals	(B) Variables					Propositional rogic.		
	(C) Symbols	(D) Proof					(OR)		
							b. Solve the following	2	2
19.	Validity in predicate logic is		1	1	4	1	(i) $p \to q, s \to t \vdash (p \lor s)(q \land t)$		
	(A) Decidable	(B) Undecidable					(ii) $p \to q, \neg p \to r, \neg q \to \neg r \vdash q$		
	(C) Predictable	(D) Usable					(iii) $p \rightarrow (q \lor r), \neg q, \neg r \vdash \neg p$		
20	All conjugations are		1	1	4	1	(iv) $(p \land q) \rightarrow r, r \rightarrow s, q \land \neg s \vdash \neg p$		
40,	All conjunctions areliterals (A) Single		1	1	4	1	(r··1) (r··1) (s)4 (c) ip		
	(C) Double	(B) Multiple (D) None					28. a.i. Write the need of first order logic.	3	1
	(C) DOUOLO	(D) NOIL					· · · · · · · · · · · · · · · · · · ·		

Page 2 of 4