Modélisation des énergies au sein d'un système

Enseignement Technologique

Transversal

Séance 2
Énergies, Puissances et rendement

Savoirs et compétences:

CO2.1 Identifier les flux et la forme de l'énergie, caractériser ses transformations et/ou modulations et estimer l'efficacité globale d'un système.

Energie et puissance mécanique 2
Energie mécanique potentielle2
Énergie mécanique cinétique2
Puissance mécanique :
Energie et puissance électrique en courant continu 3
La chaîne d'énergie 4
Puissance
Rendement d'un système 5
Généralités5
Rendement d'un système décomposable5
Ordre de grandeur de quelques rendements6

Energie et puissance mécanique

Une énergie mécanique est homogène à (partage les même unités que) une Force (en Newton N) multipliée par une longueur (en mètre m).

Energie mécanique potentielle

Définition Une masse **m** subissant une accélération **g** et pouvant réaliser un déplacement potentiel **H** dispose d'une énergie potentielle $E_p = P \times H$, $E = m \times g \times H$, avec H en m, m en kg et g en kg·m·s⁻². Il s'agit de l'énergie que peut acquérir la masse lors de sa chute.

Sur terre, la gravitation vaut $g = 9.81 m.s^{-2}$

■ Exemple Un ascenseur, composé d'une cabine pesant 1000 kg et accueillant 3 personnes pour une masse totale de 200 kg se trouve au dernier étage, à une hauteur de 27m. Quelle est l'énergie récupérable lors de la descente de l'ascenseur? (En joule et en kWh)

On calcule sa masse: m = m1 + m2 = 1200 kg. On calcule l'énergie potentielle: $E_p = mgH = 1200 \times 9.81 \times 10^{-5}$ 27 = 317.84 J

✓ Correction : On calcule sa masse : m = m1 + m2 = 1200 kg. On calcule l'énergie potentielle : $E_p = mgH = mgH$ $1200 \times 9.81 \times 27 = 317.84 J$

Énergie mécanique cinétique

Masse en translation

Définition Une masse **m** se déplaçant dans un mouvement de **translation** à une vitesse **v** dispose d'une énergie cinétique $E_c = \frac{1}{2}m \times v^2$ avec m en kg et v en m/s.

■ Exemple Une voiture de 1.5 tonne est lancée à 50 km/h. Calculez son énergie cinétique.

On calule l'énergie cinétique : $E_c = \frac{1}{2} \times 1500 \times (50000 \times 3600)^2 = 115740J = 115.7kJ$ **On calule l'énergie cinétique :** $E_c = \frac{1}{2} \times 1500 \times (50000 \times 3600)^2 = 115740J = 115.7kJ$

Masse en rotation

Définition Une masse ponctuelle m en rotation à une distance l autour d'un axe Δ à la vitesse angulaire Ω dispose d'une énergie cinétique $E_c = \frac{1}{2}m \times l^2 \times \omega^2$

1.3 Puissance mécanique :

Puisque l'énergie mécanique est homogène à une force fois une longueur, la puissance mécanique est homogène à une force X une longueur / un temps (seconde) ou encore une force X une vitesse.

Définition En translation :

Dans le cas de la translation, la puissance vaut : $P_{\text{meca}} = E/t = F \times L/t = F \times v$, en $W = Nms^{-1}$

En rotation:

En rotation, la puissance mécanique peut se calculer comme le produit du couple C par la fréquence de rotation Ω . $P_{\text{meca}} = C \cdot \Omega$

1.4 Energie et puissance électrique en courant continu

Energie électrique

Définition L'énergie électrique se manifeste lors du déplacement de charges électriques (électrons ou ions). Ce déplacement est appelé **courant électrique**, noté **I** et exprimé en **Ampère A**.

Une charge électrique (quantité d'électricité) se mesure en coulomb (C), 1 C correspond à un courant de 1 Ampère pendant 1 seconde.

Définition Energie électrique :

Une charge électrique q soumise à une différence de potentiel ΔU dispose d'une énergie potentielle électrique $E_{elec}=q\Delta U$

■ **Exemple** Un drône Parrot est équipé de 3 cellules au lithium délivrant chacune 334mA.h sous 11,1V. Déterminez l'énergie embarquée par ce drone en **kJ** puis en **W.h** lorsque la batterie est entièrement chargée.

 \bigcirc Calcul de la charge : $Q=334\times10^{-3}\times3600=1202.4C$ On en déduit alors l'énergie : $E_{elec}=3\times Q\times\Delta U=40040J=11.1Wh$

✓ Calcul de la charge : $Q=334\times10^{-3}\times3600=1202.4C$ On en déduit alors l'énergie : $E_{elec}=3\times Q\times\Delta U=40040J=11.1W\,h$

La puissance électrique d'un courant continu :

La puissance électrique est le produit du courant I et de la différence de potentiel ΔU , notée U.

 $P = U \times I$

2 La chaîne d'énergie

Un système est une entité qui utilise de l'énergie afin d'**agir** sur une **matière d'oeuvre**. Le cheminement de l'énergie entre sa source et son utilisation concrète peut être modélisée par une succession de blocs appelée **Chaîne d'énergie**.

Objectif Afin de décrire le fonctionnement d'un système, la chaîne d'énergie est un outil adapté faisant apparaître les différents organes impliqués dans l'adaptation et l'utilisation de l'énergie.

Définition La chaine d'énergie se décompose en différents blocs fonctionnels associés aux fonctions :

Alimenter et stocker: Apporter au système l'énergie pour son fonctionnement

Distribuer: Répartir, réguler, commander, piloter la distribution de l'énergie au système

Convertir: Transformer l'énergie initiale en énergie utilisable (thermique, mécanique, ...) par le système.

Transmettre: Transporter, l'énergie d'un endroit à un autre pour obtenir l'effet attendu (chaleur, lumière, ...)

2.1 Puissance

La puissance échangée entre deux composants ou sous-systèmes est le produit de deux types de grandeurs :

- Une grandeur d'effort e
- Une grandeur de flux f

Domaine	Grandeur de flux f	Grandeur d'effort e	Puissance	Unité
d'activité			$P = f \times e$	
Électrique	Intensité I en Ampère (A)	Tension U en Volts (V)	$P = U \times I$	Watts (W)
Mécanique	Vitesse V en m/s	Force F en Newtons (N)	$P = F \times V$	Watts (W)
(Translation)				
Mécanique	Vitesse ω en m/s	Couple C en	$P = C \times \omega$	Watts (W)
(Rotation)		Newton.mètre (Nm)		
Hydraulique	Débit Q en m³/s	Pression p en Pascals (Pa)	$P = Q \times p$	Watts (W)

3 Rendement d'un système

3.1 Généralités

Définition Pour un système réalisant une conversion d'énergie, le rendement est défini comme étant le rapport entre l'énergie recueillie en sortie et l'énergie fournie en entrée.

$$\eta = \frac{E_{\text{sortie}}}{E_{\text{entrée}}}$$

Le rendement est défini comme une grandeur sans dimension qui caractérise l'efficacité d'une transformation. À l'intérieur d'un mécanisme, certains facteurs liés à des phénomènes physiques transforment une partie de l'énergie en chaleur. Ces pertes sont généralement dues à :

- La résistance au glissement, au roulement, pivotement dans les liaisons
- La viscosité des fluides utilisés pour le transfert d'énergie ou pour la lubrification
- La déformation des pièces

Définition Le rendement est également défini comme le rapport entre la puissance utilisable en sortie et la puissance que le système a absorbée en entrée.

$$\eta = \frac{P_{\rm sortie}}{P_{\rm entr\acute{e}e}} = \frac{P_{\rm utile}}{P_{\rm absorb\acute{e}e}} = \frac{E_{\rm sortie}}{E_{\rm entr\acute{e}e}}$$

♥ Par définition, le rendement est TOUJOURS INFERIEUR À 1 :

$$\eta \leq 1$$

3.2 Rendement d'un système décomposable

Dans le cas d'un système décomposé en sous-systèmes, le rendement total correspond au produit des rendements de chacun des sous-systèmes :

Exemple
$$\eta_{\rm global} = \frac{P_{\rm sortie}}{P_{\rm entr\'ee}} = \frac{P_{\rm sortie}}{P_2} \frac{P_2}{P_1} \frac{P_1}{P_{\rm entr\'ee}} = \eta_3 \times \eta_2 \times \eta_1$$

Définition Dans le cas général d'un systèmes divisé en *n* sous-systèmes :

$$\eta_{\text{global}} = \eta_1 \times \eta_2 \times \dots \eta_n$$

3.3 Ordre de grandeur de quelques rendements

Moteur thermique (à explosion):

Moteur électrique :

Roulement à billes :

Engrenages à denture droite :

