Stroke Prediction Data Analytics using Logistic regression and kNN classification.

1. Importing necessary libraries for the analysis

```
import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
import warnings
warnings.simplefilter('ignore', category=UserWarning)

%matplotlib inline
```

2. Importing and loading the data from the csv containing dataset of every patient record

2.1. Data Exploration

```
In [533...
            data.shape #size of the dataset
           (5110, 12)
Out[533]:
In [534...
            data.head() # first 5 row
Out[534]:
                  id gender age hypertension heart_disease ever_married work_type Residence_type av
               9046
                        Male 67.0
                                             0
                                                           1
                                                                       Yes
                                                                               Private
                                                                                               Urban
                                                                                 Self-
           1 51676 Female 61.0
                                             0
                                                           0
                                                                                                Rural
                                                                       Yes
                                                                             employed
                                             0
           2 31112
                        Male 80.0
                                                                       Yes
                                                                               Private
                                                                                                Rural
           3 60182 Female 49.0
                                                                                               Urban
                                              0
                                                                       Yes
                                                                               Private
                                                                                 Self-
               1665 Female 79.0
                                              1
                                                           0
                                                                       Yes
                                                                                                Rural
                                                                             employed
```

In [535... data.tail() # Last 5 rows

\bigcirc	$\Gamma = 2 = 1$	
Uul	[555]	

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type
5105	18234	Female	80.0	1	0	Yes	Private	Urban
5106	44873	Female	81.0	0	0	Yes	Self- employed	Urban
5107	19723	Female	35.0	0	0	Yes	Self- employed	Rural
5108	37544	Male	51.0	0	0	Yes	Private	Rural
5109	44679	Female	44.0	0	0	Yes	Govt_job	Urban

In [536...

data.info() # information of attributes

<class 'pandas.core.frame.DataFrame'> RangeIndex: 5110 entries, 0 to 5109 Data columns (total 12 columns):

			- / -	
#	Column	Non-N	Null Count	Dtype
0	id	5110	non-null	int64
1	gender	5110	non-null	object
2	age	5110	non-null	float64
3	hypertension	5110	non-null	int64
4	heart_disease	5110	non-null	int64
5	ever_married	5110	non-null	object
6	work_type	5110	non-null	object
7	Residence_type	5110	non-null	object
8	<pre>avg_glucose_level</pre>	5110	non-null	float64
9	bmi	4909	non-null	float64
10	smoking_status	5110	non-null	object
11	stroke	5110	non-null	int64
4+,,,,,	os. float(4/2) int	(1/1)	-b+/F)	

dtypes: float64(3), int64(4), object(5)

memory usage: 479.2+ KB

In [537...

data.describe()

Out[537]:

	id	age	hypertension	heart_disease	avg_glucose_level	bmi	
count	5110.000000	5110.000000	5110.000000	5110.000000	5110.000000	4909.000000	51
mean	36517.829354	43.226614	0.097456	0.054012	106.147677	28.893237	
std	21161.721625	22.612647	0.296607	0.226063	45.283560	7.854067	
min	67.000000	0.080000	0.000000	0.000000	55.120000	10.300000	
25%	17741.250000	25.000000	0.000000	0.000000	77.245000	23.500000	
50%	36932.000000	45.000000	0.000000	0.000000	91.885000	28.100000	
75%	54682.000000	61.000000	0.000000	0.000000	114.090000	33.100000	
max	72940.000000	82.000000	1.000000	1.000000	271.740000	97.600000	

3. Analysis of Data and Data Preprocessing

```
df = data.copy() #create a copy of the data for preprocessing
  #id column contains unique values of all patients. So this column is
  dropped
  df = df.drop(['id'],axis=1)
```

3.1. Find the null values in the columns and process it

```
In [539...
          df.isnull().sum()
          gender
Out[539]:
          age
          hypertension
                                0
          heart disease
          ever_married
          work_type
                                0
                               0
          Residence_type
                                0
          avg_glucose_level
                              201
          bmi
          smoking_status
                                0
          stroke
                                0
          dtype: int64
In [540...
          # bmi column has 201 null values
          #fill the missing value in numerical variable with the mean value
          df['bmi']=df['bmi'].fillna(df['bmi'].mean())
In [541...
          df.isnull().sum()
          gender
                               0
Out[541]:
          age
          hypertension
                               0
          heart_disease
                               0
                               0
          ever_married
          work_type
                               0
          Residence_type
                               0
          avg_glucose_level
          bmi
                               0
          smoking_status
                               0
                               0
          stroke
          dtype: int64
```

3.2. Dividing the columns into numerical and categorical

```
num = ['age','avg_glucose_level','bmi']
df_num = df[num]
cat =
['gender','hypertension','heart_disease','ever_married','work_type','Resi
```

```
df_cat =
df[['gender','hypertension','heart_disease','ever_married','work_type','R
```

3.3. Distribution of all numerical value (df_num)

```
for i in df_num.columns:
    plt.hist(df_num[i])
    plt.title(i)
    plt.show()
```


3.4. Relation between Numerical valued feature and target variable (Stroke)

```
for i, num_feature in enumerate(num):
    plt.figure(i,figsize=(6, 4), dpi=80)
    sns.scatterplot(x=num_feature, y='stroke', data=df)
```

```
plt.title('Relation between {} and Stroke

Variable'.format(num_feature))
   plt.xlabel(num_feature)
   plt.ylabel('Stroke')
   plt.show()
```



```
#compare the stroke across, numerical values columns
pd.pivot_table(df,index = 'stroke', values=
['age','avg_glucose_level','bmi'])
```

Out[545]: age avg_glucose_level bmi

stroke			
0	41.971545	104.795513	28.825388
1	67.728193	132.544739	30.217789

3.5. Check correlations between numerical values

```
In [546...
          # to check correlations in numerical value
          print(df_num.corr())
          sns.heatmap(df_num.corr(),annot=True,cmap="BrBG")
                                 age avg_glucose_level
                                                             bmi
                                                        0.325942
          age
                            1.000000
                                              0.238171
          avg_glucose_level 0.238171
                                              1.000000
                                                        0.168751
          bmi
                            0.325942
                                              0.168751 1.000000
          <Axes: >
Out[546]:
```


3.6. Distribution of all continuous variable in numerical data


```
#distribution of continuous variable
fig,axes = plt.subplots(nrows=1,ncols=3,figsize=(16,4))
df['bmi'].plot(kind='hist',bins=50,ax=axes[0],xlabel="BMI",title="Histogr
df['bmi'].plot(kind='density', color='r', ax=axes[1], title='Density
```

```
Histogram
                                                                               Density Plot
                                                                                                                                            Boxplot
                                                                                                                   100
                                                         0.06
                                                         0.05
500
                                                         0.04
400
                                                                                                                BMI
                                                        0.03
300
                                                                                                                    40
                                                         0.02
                                                         0.01
                                                                                                                    20
100
                                                                                                100
```

```
In [549...
```


3.7 Distribution of all categorical values (df_cat)

smoking_status


```
In [551...
          #remove 'Other' in gender column
          print(df["gender"].value_counts())
          df = df.drop(df[df["gender"]=="Other"].index.values,axis=0)
          print(df["gender"].value_counts())
          df.shape
          Female
                   2994
                   2115
          Male
          Other
                      1
          Name: gender, dtype: int64
                   2994
          Female
          Male
                   2115
          Name: gender, dtype: int64
Out[551]: (5109, 11)
```

3.8. Relation between Categorical valued feature and target variable (Stroke)

```
for feature in cat:
    ct = pd.crosstab(df[feature], df['stroke'], normalize='index')
    ct.plot(kind='bar', stacked=True,figsize=(8,4))
    plt.title(f'Relation between {feature} and Stroke Variable')
    plt.xlabel(feature)
    plt.ylabel('Proportion')
    plt.xticks(rotation=0)
    plt.show()
```


Relation between hypertension and Stroke Variable

Relation between heart_disease and Stroke Variable

Relation between smoking_status and Stroke Variable

3.9. Analysis on Traget Variable

```
In [553...
          print('Values and counts for stroke are:
          \n{}'.format(df['stroke'].value_counts()))
          print('Values and normalised counts for stroke are:
          \n{}'.format(df['stroke'].value_counts(normalize=True)))
          Values and counts for stroke are:
              4860
               249
          Name: stroke, dtype: int64
          Values and normalised counts for stroke are:
              0.951262
              0.048738
          Name: stroke, dtype: float64
In [554...
          df['stroke'].value_counts().plot.bar(figsize=(5,4))
          plt.show()
```


In [555... df_original = df.copy()

3.10. Normalizing the numerical value for better modelling

```
#adjusting distribution of continuous variables by normalization

df['avg_glucose_level_log']=np.log(df['avg_glucose_level'])

df['bmi_log']=np.log(df['bmi'])

fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(16,4))

df['avg_glucose_level'].plot(kind='hist', bins=50, ax=axes[0],
    title='Raw variable distribution')

df['avg_glucose_level_log'].plot(kind='hist', bins=50, ax=axes[1],
    title='Log variable distribution')

plt.show()
```



```
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(16,4))
df['bmi'].plot(kind='hist', bins=50, ax=axes[0], title='Raw variable
distribution')
df['bmi_log'].plot(kind='hist', bins=50, ax=axes[1], title='Log
```

```
variable distribution')
plt.show()
```


3.11. Coverting the categorical variables into integer ones using LabelEncoder

```
In [558...
         #converting categorical variables to integer ones. Label Encoder is
         used in this process
         from sklearn.preprocessing import LabelEncoder
         labelEncode = LabelEncoder()
         df['gender'] = labelEncode.fit_transform(df['gender'])
         print('\nGender is converted to
         integer:\n{}'.format(df['gender'].value_counts()))
         df['ever_married'] = labelEncode.fit_transform(df['ever_married'])
         print('\nMarriage Status is converted to
         integer:\n{}'.format(df['ever_married'].value_counts()))
         df['work_type'] = labelEncode.fit_transform(df['work_type'])
         print('\nwork_type is converted to
         integer:\n{}'.format(df['work_type'].value_counts()))
         df['Residence_type'] = labelEncode.fit_transform(df['Residence_type'])
         print('\nResidence_type is converted to
         integer:\n{}'.format(df['Residence type'].value counts()))
         df['smoking_status'] = labelEncode.fit_transform(df['smoking_status'])
         print('\nsmoking_status is converted to
         integer:\n{}'.format(df['smoking_status'].value_counts()))
```

```
Gender is converted to integer:
   2994
1
    2115
Name: gender, dtype: int64
Marriage Status is converted to integer:
    3353
    1756
Name: ever_married, dtype: int64
work_type is converted to integer:
2
   2924
3
    819
4
    687
0
    657
     22
Name: work_type, dtype: int64
Residence_type is converted to integer:
    2596
    2513
Name: Residence_type, dtype: int64
smoking_status is converted to integer:
    1892
0 1544
1
    884
3
    789
Name: smoking_status, dtype: int64
```

4. Feature Selection

```
#generates correlation heatmap between all features
corr = df.corr()
plt.figure(figsize=(12,8))
sns.heatmap(corr,annot=True,cmap="BrBG")
plt.title("Correlation heatmap between all features")
plt.show()
```



```
#drop bmi and avg glucose level because of high correlation coefficient

cols = ['avg_glucose_level', 'bmi']

df = df.drop(columns=cols,axis=1)
```

```
corr = df.corr()
plt.figure(figsize=(12,8))
sns.heatmap(corr,annot=True,cmap="BrBG")
plt.title("Correlation heatmap between all features after removing
avg_glucose_level and bmi features")
plt.show()
```



```
In [562... # Preparation of feature variable and target variable
X = df.drop(['stroke'],axis=1)
print(X)
y = df['stroke']
print('\nShape of X and y before resampling - X: {},y:
{}\n'.format(X.shape,y.shape))
y.value_counts().plot.bar(figsize=(5,4))
plt.title('count of target variable before resampling')
plt.show()
```

	gender	age	hypertension he	art_disease ever_marr:	ied	work_type \
)	1	67.0	0	1	1	2
L	0	61.0	0	0	1	3
2	1	80.0	0	1	1	2
3	0	49.0	0	0	1	2
1	0	79.0	1	0	1	3
			• • •	•••		
5105	0	80.0	1	0	1	2
5106	0	81.0	0	0	1	3
5107	0	35.0	0	0	1	3
5108	1	51.0	0	0	1	2
5109	0	44.0	0	0	1	0
) L 2 3		1 0 0 1	2 2	5.30930 4.66268 5.14300	7 3 4 3 8 3	3.600048 3.363608 3.481240 3.538057 3.178054
• • •		• • •		••		•••
5105		1				3.363608
5106		1				3.688879
5107		0				
5108		0				
5109		1	. 0	4.44594	9 3	3.265759

#now check how strongly the remaining features are associated with target

from sklearn.feature_selection import SelectKBest, chi2,

```
mutual_info_classif, f_classif
chi2 = SelectKBest(score_func = chi2, k = 'all').fit(X,y)
chi2_sorted = pd.Series(data=chi2.scores_,
index=X.columns).sort_values()
ftest = SelectKBest(score_func = f_classif, k = 'all').fit(X,y)
ftest_sorted = pd.Series(data=ftest.scores_,
index=X.columns).sort_values()
mitest = SelectKBest(score_func = mutual_info_classif, k =
'all').fit(X,y)
mitest_sorted = pd.Series(data=mitest.scores_,
index=X.columns).sort_values()
```

In [564...

```
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
plt.subplots_adjust(wspace=0.8)
chi2_sorted.plot(kind='barh', ax=axes[0], title='chi2 score')
ftest_sorted.plot(kind='barh', ax=axes[1], title='F Test score')
plt.show()
```


5. Prediction using Scikit-Learn

In [565...

```
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score, f1_score, precision_score,
recall_score, confusion_matrix, auc, roc_curve, classification_report
```

5.1 Resampling the imbalance dataset with SMOTE technique

```
from imblearn.over_sampling import SMOTE #imblearn is derived from
    sklearn library
# Create SMOTE object
smote = SMOTE(random_state=42)
# resampling the imbalanced dataset
```

```
X, y = smote.fit_resample(X, y)
print('\nShape of X and y after resampling - X: {},y:
{}\n'.format(X.shape,y.shape))
y.value_counts().plot.bar(figsize=(5,4))
plt.title('count of target variable after resampling')
plt.show()
```

```
Shape of X and y after resampling - X: (9720, 10),y:(9720,)
```


5.2. Prediction model with 10 fold cross validation function creation

```
In [567...
         def train_and_validate(model,X,y):
             print('\nResults from {} algorithm:'.format(model))
             #splitting the dataset into train and test data
             X_train, X_test, y_train, y_test =
         train_test_split(X,y,test_size=0.2,random_state=42)
             #prediction
             predicted_model = model.fit(X_train,y_train)
             print('\nAccuracy on training data is
         {:.3f}\n'.format(model.score(X_train,y_train)))
             #checking the cross validation score for 10 folds
             scores = cross_val_score(model, X_train, y_train, cv=10,
         scoring='accuracy')
              print('Mean cross-validation accuracy is {:.3f} with SD
         {:.3f}'.format(np.mean(scores),np.std(scores)))
             y_pred=model.predict(X_test)
              print('Accuracy on test data is
```

```
{:.3f}\n'.format(accuracy_score(y_true=y_test, y_pred=y_pred)))
    print(classification_report(y_test,y_pred))
    print('Test data metrics: accuracy={:.3f}, f1={:.3f}, precision=
{:.3f}, recall={:.3f}'
          .format(accuracy_score(y_true=y_test, y_pred=y_pred),
                  f1_score(y_true=y_test, y_pred=y_pred),
                  precision_score(y_true=y_test, y_pred=y_pred),
                  recall_score(y_true=y_test, y_pred=y_pred)))
    confusionmatrix = confusion_matrix(y_true=y_test, y_pred = y_pred)
    plt.figure(figsize=(4,4))
    print(confusionmatrix)
sns.heatmap(confusionmatrix,annot=True,fmt="d",cmap="BrBG",xticklabels=
['N','Y'], cbar=False,yticklabels=['N','Y'],square=True,linewidths=8.0)
    ax.set_xlabel('Predicted Stroke')
    ax.set_ylabel('Actual Stroke')
    plt.show()
    fpr, tpr, _ = roc_curve(y_test, y_pred)
    roc_auc = auc(fpr, tpr)
    plt.figure(figsize=(5,4))
    plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc)
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver Operating Characteristic')
    plt.legend(loc="lower right")
    plt.show()
    return predicted_model
```

5.3 Logistic Regression Model

```
from sklearn.linear_model import LogisticRegression
from sklearn.utils.class_weight import compute_class_weight
train_and_validate(LogisticRegression(), X,y)
```

Results from LogisticRegression() algorithm:

Accuracy on training data is 0.780

Mean cross-validation accuracy is 0.777 with SD 0.015 Accuracy on test data is 0.778

	precision	recall	f1-score	support
0	0.80	0.75	0.77	976
1	0.76	0.81	0.78	968
			0.70	1044
accuracy			0.78	1944
macro avg	0.78	0.78	0.78	1944
weighted avg	0.78	0.78	0.78	1944

Test data metrics: accuracy=0.778, f1=0.783, precision=0.762, recall=0.806 [[732 244] [188 780]]

Out[568]: • LogisticRegression
LogisticRegression()

5.4 kNN classification model

In [569...

from sklearn.neighbors import KNeighborsClassifier
train_and_validate(KNeighborsClassifier(), X, y)

Results from KNeighborsClassifier() algorithm:

Accuracy on training data is 0.922

Mean cross-validation accuracy is 0.889 with SD 0.009 Accuracy on test data is 0.900

	precision	recall	f1-score	support
0	0.97	0.82	0.89	976
1	0.85	0.98	0.91	968
accuracy			0.90	1944
macro avg	0.91	0.90	0.90	1944
weighted avg	0.91	0.90	0.90	1944

Test data metrics: accuracy=0.900, f1=0.906, precision=0.847, recall=0.975 [[805 171] [24 944]]

Out[569]: • KNeighborsClassifier
KNeighborsClassifier()

Accuracy of kNN classification model is much higher than Logistic regression model. So, we need to try hyperparameter tuning and PCA reduction on Logistic regression model.

5.5 choosing best hyperparameter model for logistic regression model

```
# hyperparameter
from sklearn.model_selection import GridSearchCV
# create Logistic regression object
```

```
logreg_model = LogisticRegression(solver='liblinear') # liblinear
allows both l1 and l2 regularization
# specify hyperparameter grid
parameters = {'C': [0.01, 0.1, 1, 10, 100], 'penalty': ['l1', 'l2']}
# perform grid search with 10-fold cross validation
grid_search = GridSearchCV(logreg_model, parameters, cv=10)
X_train,X_test,y_train, y_test =
train_test_split(X,y,test_size=0.2,random_state=42)
grid_search.fit(X_train, y_train)
print("Best hyperparameters: ", grid_search.best_params_)
print("Best score: ", grid_search.best_score_)
Best hyperparameters: {'C': 100, 'penalty': 'l1'}
```

Best score: 0.7938536590207541

5.6 PCA on Logistic regression model

```
In [571...
         # PCA
         from sklearn.preprocessing import LabelEncoder, MinMaxScaler
         df = df_original.copy()
         cols =
         ['age', 'gender', 'hypertension', 'heart_disease', 'ever_married', 'avg_glucos
         le = LabelEncoder()
                                                    # initialise the necessary
         function taken from the LabelEncoder library
         for col in cols:
                                                    # iterate over all variables
         in cols
             df[col] = le.fit_transform(df[col]) # convert categorical values
         into integer values
         X = df.drop(['stroke'],axis=1)
         y = df['stroke']
         print(X.head())
         scaler = MinMaxScaler() # Normalizing the feature variable
         scaler.fit(X)
         X = scaler.transform(X)
```

```
gender
                hypertension heart_disease
                                               ever_married
           age
                                                                      2
0
        1
            88
                                            1
                                                          1
                                                                      3
1
        0
            82
                            0
                                           0
                                                          1
2
                            0
                                                                      2
        1
          101
                                           1
                                                          1
3
                                                                      2
        0
            70
                            0
                                           0
                                                          1
                                            0
                                                                      3
        0
           100
                            1
                                                          1
   Residence_type avg_glucose_level bmi smoking_status
0
                                 3849 240
                1
1
                0
                                 3587 162
                                                          2
2
                                 2483 199
                                                          2
                0
3
                1
                                 3384 218
                                                          3
4
                0
                                 3393 113
```

```
from sklearn.decomposition import PCA

pca = PCA(n_components=10).fit(X)

plt.plot(range(1,11), np.cumsum(pca.explained_variance_ratio_))

#plt.plot(np.cumsum(pca.explained_variance_ratio_))

nlt.yticks(nange(1,11))
```

```
#plt.plot(np.cumsum(pca.explained_variance_ratio_))
#plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xticks(range(1,11))
plt.xlabel('number of components')
plt.ylabel('cumulative explained variance');
plt.show()
```



```
pca = PCA(n_components=10).fit(X)
X_reduc = pca.transform(X)
print('\nPCA reduces features from {} to {}'.format(X.shape,
```

```
X_reduc.shape))
learnt_model = train_and_evaluate(LogisticRegression(), X_reduc, y)

PCA reduces features from (5109, 10) to (5109, 10)

Results from algorithm LogisticRegression():
Mean cross-validation accuracy is 0.796 with SD 0.019

Accuracy on training data is 0.797

Accuracy on test data is 0.745

Test data metrics:
f1=0.273,
precision=0.165,
recall=0.790
```


After hyperparameter tuning and PCA feature reduction on Logistic regression model, kNN still outperforms the Logistic regression model