集合论与图论试题

题号	_	1	11]	四	五.	总分				
分数										

学号	
姓名	

本试卷满分90分-参考答案

(计算机科学与技术学院 08 级)

一、填空(本题满分20分,每空各1分)

- 1. 设A,B为集合,若 $(A \setminus B) Y B = (A Y B) \setminus B$,则B等于什么? ($B = \phi$)
- 2. 设 $f: X \to Y, A \subseteq X$,则 $f^{-1}(f(A))$ 与A有何关系? ($f^{-1}(f(A)) \supseteq A$)
- 3. 给定集合 $S = \{1,2,3,4,5\}$,找出 S 上的等价的关系 R ,此关系 R 能产生划分 $\{\{1,2\},\{3\},\{4,5\}\}$ 。 ($\{(1,1),(2,2),(1,2),(2,1),(3,3),(4,4),(5,5),(4,5),(5,4)\}$)
- 4. 设 R, I, N 分别表示实数,整数,自然数集(包括 0),定义映射 f_1, f_2, f_3 ,试确定它们的性质(单射、满射、双射)。

(1)
$$f_1: R \to R, f_1(x) = 2^x$$
;

(2)
$$f_2: I \to N, f_2(x) = |x|$$
;

(3)
$$f_3: R \to R, f_3(x) = x + 2$$
.

- 5. 在集合 $A = \{1,2,\Lambda,11,12\}$ 上定义的整除关系" \mid " 是 A 上的偏序关系,则极大元有几个?
- 6. 设 X 是一个集合,|X|=n,求 X 上对称的二元关系有多少?($2^{\frac{n^2+n}{2}}$)
- 7. 设R 是集合X 上的一个二元关系,则

$$(R^2 \subseteq R)$$

$$(R = R^{-1})$$

8. 设G 是有 p 个顶点的 K – 正则偶图,则 p 至少是多少? ($p \ge 2K$)

意行为规范

注

守考场纪律

靪

主領領軍等

9.	有 n 个药箱,若每两个药箱里有一种相同的药,	而每种药	恰好放	在两个	药
	箱中,则				
	(1) 每个药箱里有多少种药?	(n-1)	
	(2) n个药箱里共有多少种药?	(n(n-	1)/2)	
10.	设 G 是无向图,有 12 条边,6 个 3 度顶点,其	余顶点的	度数均	小于 3,)
	则 G 至少有多少个顶点?		(9)	
11	. 设 T 是有 $p(p \ge 3)$ 个顶点的无向树且 T 的最大。	度为 $\Delta(T)$,则		
	(1) $\Delta(T)$ 的范围为多少?	(2≤	$\Delta(T) \le$	p-1)	
	(2)	•	(p	−1)	
12.	设 G 是有 8 个顶点的极大平面图,则 G 的面数 f	分多少?	(12	(
13.	设 G 是 (p,q) 图,若 $q < p-1$,则 G 的顶点连通	度 k(G) 为	多少?	(0)
14.	设 T 为任一棵正则二元树, q 为边数, $t(t \ge 2)$ 为	对树叶数,	则 q 等 ·	于什么	?
			(q =	2(t-1))
15.	设 p,q 为正整数,则 p,q 为何值时 $K_{p,q}$ 为欧拉图	?	(p	,q为偶	数)
<u> </u>	. 简答下列各题(本题满分 10 分)				
1.	设 A,B,C 是三个任意集合,且 $(AIB)YC = AI$	(B Y C),	则A与	C应	
	满足什么关系?说明理由。(3分)				
角	$ \mathcal{E}: \ C \subseteq A $.				
两	可边同并上A有: AU((AI B)UC)=AU[AI (BU	[C)] = A,			
[/	$AU(AI B)]UC = AUC = A; \Box C \subseteq A.$				

2. 设R为X上的二元关系,若 $R \neq \phi$ 且R是反自反的和传递的,则R是

反对称的吗?说明理由。(3分)

证: 若 R 不是反对称的,则 $\exists x, y \in X$,使得(x, y), $(y, x) \in R$,由 R 的传递性有: $(x, x) \in R$,与 R 是反自反的矛盾。于是 R 是反对称的二元关系。

3. 设 $N = \{1,2,3,L\}$,试构造两个映射f和 $g: N \to N$,使得 $f \circ g = I_N$,但 $g \circ f \neq I_N$ 。(4分)

解: $fg = I_N \oplus gf \neq I_N$, 故f是满射, 但f不是单射。于是令:

$$f: N \to N, f(1) = 1, f(n) = n - 1, n \ge 2$$
, $g: N \to N, \forall n \in N, g(n) = n + 1$, 则
$$fg = I_N \text{ 但 } gf \ne I_N \text{ } \circ$$

三、简答下列各题(本题满分15分)

- 1. 何谓强连通有向图? 何谓有向图的强支? (2分)
- **解:** 设 D= (V, A) 是有向图,若 $\forall u, v \in V$, u 与 v 互达,则称 D 是强连通的有向图; 有向图 D 的极大强连通子图称为 D 的一个强支。
- 2. 至少要删除多少条边,才能使 $K_p(p>2)$ 不连通且其中有一个连通分支恰有 k 个顶点 (0 < k < p) ? (3 分)

证:要使删除边后的图边数最多,则删除的边最少。则至少应该删除的边数为:

$$\frac{p(p-1)}{2} - \frac{k(k-1)}{2} - \frac{(p-k)(p-k-1)}{2} = k(p-k) \circ$$

3. 具有奇数顶点的偶图是否是哈密顿图? 说明理由。(3分)

证:设G是一个具有奇数顶点的偶图,则G的顶点集V有一个二划分,

即
$$V = \{V_2, V_2\}$$
且有 $|V_1| \neq |V_2|$ 。

不妨设 $|V_1| \triangleleft V_2|$,则有 $W(G-V_1) = |V_2| \triangleright |V_1|$ 。

由哈密顿图的必要条件可知: G不是哈密顿图。

4. 设D=(V,A)是一个有向图,如图所示。写出有向图D邻接矩阵、可达矩阵

以及顶点2到4长度为2的有向通道的条数。(3分)

解: (1)
$$\begin{pmatrix} 00000 \\ 10110 \\ 10000 \\ 00100 \\ 00000 \end{pmatrix}$$
; (2) $\begin{pmatrix} 10000 \\ 11110 \\ 10100 \\ 10110 \\ 00001 \end{pmatrix}$; 0。

- 5. 设G = (V, E)是一个(p,q)图,每个顶点的度为3。则(4分)
 - (1) 若q=3p-6,则G在同构意义下是否唯一?
 - (2) 若 p=6,则 G 在同构的意义下是否唯一? 说明理由。

解: (1) p=4, q=6, K_4 唯一。

(2) p=6, q=9, G 不唯一。如图所示。

四、证明下列各题(本题满分25分)

1. 设A,B,C,D都是非空集合,若 $A\times B=C\times D$,证明: A=C,B=D。(5分)

证: 因为A,B,C,D非空,所以 $\forall x \in A, y \in B$,有 $(x,y) \in A \times B = C \times D$,即 $x \in C, y \in D$ 。因此 $A \subseteq C, B \subseteq D$ 。

同理 $C \subseteq A, D \subseteq B$ 。由集合相等的定义有: A = C, B = D。

2. 设 $f: X \to Y$, 证明: f 是满射 $\Leftrightarrow \forall E \in 2^Y$, $f(f^{-1}(E)) = E$ 。 (5分)

证明: $\Rightarrow \forall y \in f(f^{-1}(E))$,则 $\exists x \in f^{-1}(E)$,使得 f(x) = y,于是, $y = f(x) \in E$,所以 $f(f^{-1}(E)) \subseteq E$ 。

反过来, $\forall y \in E$,因为f 是满射,故必有 $x \in f^{-1}(E)$,使得f(x) = y。又 $x \in f^{-1}(E)$,故 $y \in f(f^{-1}(E))$,所以 $E \subseteq f(f^{-1}(E))$ 。

因此 $f(f^{-1}(E)) = E$ 。

 \leftarrow 假设f 不是满射,则 $\exists y_0 \in Y$,使得 $\forall x \in X$, $f(x) \neq y$ 。于是令 $E = \{y_0\} \in 2^Y$,

有 $f(f^{-1}(E)) = f(f^{-1}(\{y_0\})) = f(\phi) = \phi$,由题意得 $\phi = E = \{y_0\}$,矛盾。故 f 一定为满射。

3. 证明:全体有理数之集 Q 是可数集。(5 分)

证: 因为 $Q = Q_+$ U Q_- U $\{0\}$ 。显然, $Q_+ \sim Q_-$ 。因此只须证明 Q_+ 是可数集即可。我们知道,每个正有理数均可写成 p/q 的形式,其中 p 与 q 为自然数。于是, $\forall q \in N$,令 $A_q = \{\frac{p}{q} | p \in N\}$,则 A_q 是可数集,并且 $Q_+ = \bigcup_{q=1}^\infty A_q$ 。由定理可知, Q_+ 是可数集。因此,Q 是可数集。

- 4. 设R,S 是集合X 上的等价关系,且 $R \circ S = S \circ R$,则(10分)
 - (1) 证明: RoS 是 X 上的等价关系;
 - (2) 证明: $(RYS)^+ = RoS$ 。

证: (1) 由 R,S 是等价关系得到 $R \circ S$ 自反的;

又由 $(R \circ S)^{-1} = S^{-1} \circ R^{-1} = S \circ R = R \circ S$, 故 $R \circ S$ 是对称的;

 $\overrightarrow{\text{mi}}(R \circ S)^2 = (R \circ S) \circ (R \circ S) = R \circ (S \circ R) \circ S = R \circ (R \circ S) \circ S = R^2 S^2 \subseteq R \circ S$

从而 RoS 是传递的, 因此, RoS 是等价关系。

(2) 因为RoS 是 X 上的等价关系,所以RoS 是 X 上的传递关系;

又 $\forall (x, y) \in R Y S$, 有 $(x, y) \in R$ 或 $(x, y) \in S$ 。

若 $(x,y) \in R$, 因为 $(y,y) \in S$, 所以 $(x,y) \in R \circ S$;

 $若(x,y) \in S$, 因为 $(x,x) \in R$, 所以 $(x,y) \in R \circ S$ 。

两种情况下都有 $(x,y) \in RoS$,故 $RYS \subseteq RoS$ 。

对于 X 上的任一等价关系 R'' 且 R Y S \subset R'', 有

 $\forall (x, y) \in R \circ S, \exists z \in X, \notin \{(x, z) \in R \not \exists (z, y) \in S \}$

若 $(x,z) \in R$,有 $(x,z) \in R Y S \subset R''$;

若 $(z, y) \in S$,有 $(z, y) \in R Y S \subseteq R''$ 。

由 R'' 的传递性,有 $(x,y) \in R''$,故 $R \circ S \subseteq R''$ 。

因此 RoS 是包含 RYS 的最小传递关系。

从而 $(R Y S)^+ = R o S$ 。

五、证明下列各题(本题满分20分,每小题各5分)

1. 证明: 恰有两个顶点度数为1的树必为一条通路。

证:设T是一棵具有两个顶点度数为1的(p,q)树,则

$$q = p - 1 \coprod \sum_{i=1}^{p} \deg(v_i) = 2q = 2(p-1)$$

又T除两个顶点度数为1外,其他顶点度均大于等于2,故

$$\sum_{i=1}^{p} \deg(v_i) = 2 + \sum_{i=1}^{p-2} \deg(v_i) = 2(p-1)$$
, \Box

$$\sum_{i=1}^{p-2} \deg(v_i) = 2(p-2) .$$

因此p-2个分支点的度数都恰为2,即T为一条通路。

2. 设G是一个(p,q)图, $p \ge 3$, 证明: 若 $q \ge p$, 则G中必有圈。

证: (1) 设G 是连通的,若G 无圈,则G 是树,因此q = p - 1 与 $q \ge p$ 矛盾。

故G中必有圈。

(2) 设G不连通,则G中有 $k(k \ge 2)$ 个分支, G_1, G_2, L_1, G_k 。

若G中无圈,则G的各个分支 $G_i(i=1,2,L,k)$ 中也无圈,于是各个分支都

是树, 所以有: $q_i = p_i - 1$, i = 1, 2, L, k。相加得:

 $q = p - k(k \ge 2)$ 与 $q \ge p$ 矛盾,故G中必有圈。

综上所述,图G中必有圈。

3. 设G是一个(p,q)图,且q>(p-1)(p-2)/2,证明: G是连通图。

证: 用反证法。假设图*G* 是不连通的,则图*G* 至少存在两个连通分支,一个支为 G_1 是 (p_1,q_1) 图,另外一些支构成的子图为 G_2 是 (p_2,q_2) 。 而 G 的最大可能边数 $q=q_1+q_2 \le p(p_1-1)/2+p_2(p_2-1)/$,其中 $1 \le p_1 \le p-1$, $1 \le p_2 \le p-1$, 所以 $q \le (p-1)(p-2)$,与题设矛盾。所以 G 是连通的。

4. 设G 是边数q < 30 的平面图,证明:G 中存在顶点v,使得 $\deg v \le 4$ 。

证:不妨设G是连通的,否则因为它的每个连通分支的边数都应小于 30,因此可对它的每个连通分支进行讨论,所以可设G是连通的。

若G中无圈,则G必为树,结论显然成立;

若G中有圈,因而G中每个面至少由3条边围成,于是

$$q \le 3p - 6 \tag{1}$$

假设G中所有顶点的度数均大于等于5,由握手定理可知:

$$2q = \sum_{i=1}^{p} \deg v_i \ge 5p$$
, $| \mathbb{I} | p \le 2q/5$ (2)

由 (1), (2) 得: $q \ge 30$ 。

这与题设q < 30矛盾,故一定存在顶点v,使得 $\deg v \le 4$ 。