UNIVERSIDADE DE SÃO PAULO

BEATRIZ ALVES DOS SANTOS JHONATAN BARBOZA DA SILVA KEVIN RYOJI NAKASHIMA

RELATÓRIO DE LABORATÓRIO DE FÍSICA PRÁTICA 3: MOVIMENTO UNIDIMENSIONAL

PROFESSOR: RICHARD CHARLES GARRATT

SÃO CARLOS, SP 30 de abril de 2025

Anotações do último relatório:

- Apresentar as fórmulas na seção MATERIAIS E MÉTODOS
- Aproveitar melhor o espaço na construção do gráfico

OBJETIVO

O objetivo da prática, de maneira geral, consiste na extração e análise dos dados relacionados a dois tipos de movimento: movimento harmônico simples, descrito pelo movimento do pêndulo, e movimento uniformemente variado, descrito pelo movimento do carrinho no plano inclinado. Para isso, será necessário alguns objetivos secundários, como: a medição do período de oscilação do pêndulo com diferentes comprimentos, a medição das marcações da fita termossensível, construção de gráficos e tabelas, para melhor organização e visualização dos dados, e a determinação do valor da constante g.

MATERIAIS E MÉTODOS

Para execução do experimento, foram necessários diversos tipos de materiais e ferramentas, isso inclui:

- Trena (incerteza de +- 1mm).
- Cronômetro (incerteza de +- 0,01s).
- Paquímetro (incerteza de +- 0,01mm).
- Peso.
- Barbante.
- Calço.
- Trilho.
- Carrinho.
- Fita termossensível.

A primeira etapa do experimento se baseou na análise do período de um pêndulo, com diferentes comprimentos de L, com o intuito de determinar, a partir do uso do método de mínimos quadrados, o valor da aceleração da gravidade. Para isso, foram necessários alguns passos importantes. Primeiro, medimos, com o auxílio do cronômetro e da trena, respectivamente, o período de oscilação do pêndulo e o comprimento L. No total, foram seis medições, que, para a minimização dos erros, seguiram o seguinte algoritmo: primeiro medimos o comprimento L e o tempo de dez oscilações(tn), depois dividimos tn por dez, para obter o valor de T. Após isso, organizamos os dados em uma tabela contendo os valores de L, tn, T e T^2, para facilitar, posteriormente, na construção do gráfico de T^2 em função de L, feito em papel milimetrado. Por fim, com o método de mínimos quadrados, calculamos a inclinação da reta correspondente a equação T^2 = ((2 pi)^2/g) * L, para determinar o valor de g.

A segunda etapa do experimento se baseou na análise da posição do carrinho, em movimento uniformemente variado, a fim de determinar, a partir do método de mínimos quadrados, o valor da aceleração da gravidade. Primeiro, determinamos,

de maneira indireta, o valor do ângulo de inclinação theta do plano inclinado, a partir das medidas do calço (altura) e da separação entre os pés do trilho (comprimento), feitas com o uso da trena e do paquímetro. Após isso, começamos a realizar as marcações. Para isso, colocamos um papel termosensível abaixo da trajetória do carrinho, para que, a partir de um mecanismo de produção de faísca de frequência de 5hz, pudesse marcar a posição em que ele estava em instantes de tempo t com intervalo de 0,2 segundos. Com o papel termosensível marcado, começamos a medir, com a trena, a posição do objeto, em seu respectivo instante, colocando os dados em uma tabela contendo t, y, e y/t, para organizar os dados coletados. Para a melhor visualização dos valores obtidos, fizemos, em um papel milimetrado, o gráfico de y/t em função de t, visando também verificar a coerência da inclinação calculada, a partir do método de mínimos quadrados, em relação a equação y/t = v0 + at/2. Por fim, calculamos, a partir da equação a=gsen(theta) e dos resultados obtidos até então, o valor da constante g.

RESULTADOS E DISCUSSÃO

Pêndulo simples

- a) Para o experimento, usamos 6 medidas diferentes de L, onde mantemos todos os outros parâmetros constantes.
- b) Em cada medida, suspendemos o pêndulo verticalmente e medimos o valor de L. Começamos com L = (2,360 +- 0,001) m e fomos reduzindo, em média, 30 centímetros a cada nova medida.
- c) No primeiro caso, onde L = (2,360 +- 0,001) m, medimos, de maneira direta, o tempo Tn, que equivale ao tempo de dez oscilações, e dividimos por dez, o que resultou nos seguinte valores: Primeira medida:

$$Tn = (31,06 +- 0,01) s$$
, $T = Tn/10 => T = ((31,06 +- 0,01) s) / 10 = (3,106 +- 0,001) s$

 d) Agora, precisamos construir uma tabela contendo os valores de L, Tn, T e T^2. Para isso, faremos o mesmo procedimento feito anteriormente, bem como o cálculo de T^2:

Primeira medida:

Tn =
$$(31,06 +- 0,01)$$
 s, T = Tn/10 => T = $((31,06 +- 0,01)$ s) / 10 = $(3,106 +- 0,001)$ s

$$T^2 = ((3,106 +- 0,001) \text{ s})^2 = (9,647236 +- 0,006212) \text{ s}^2 = (9,647 +- 0,006) \text{ s}^2$$

Segunda medida:

Tn =
$$(29,02 +- 0,01)$$
 s, T = Tn/10 => T = $((29,02 +- 0,01)$ s) / 10 = $(2,902 +- 0,001)$ s

$$T^2 = ((2,902 +- 0,001) \text{ s})^2 = (8,421604 +- 0,005804) \text{ s}^2 = (8,422 +- 0,006) \text{ s}^2$$

Terceira medida:

Tn =
$$(26,90 + 0.01)$$
 s, T = Tn/10 => T = $((26,90 + 0.01)$ s) / 10 = $(2,690 + 0.001)$ s

$$T^2 = ((2,690 +- 0,001) \text{ s})^2 = (7,2361 +- 0,00538) \text{ s}^2 = (7,236 +- 0,005) \text{ s}^2$$

Quarta medida:

Tn =
$$(25,43 +- 0,01)$$
 s, T = Tn/10 => T = $((25,43 +- 0,01)$ s) / 10 = $(2,543 +- 0,001)$ s

$$T^2 = ((2,543 +- 0,001) \text{ s})^2 = (6,466849 +- 0,005086) \text{ s}^2 = (6,467 +- 0,005) \text{ s}^2$$

Quinta medida:

$$Tn = (23,60 +- 0,01) s$$
, $T = Tn/10 => T = ((23,60 +- 0,01) s) / 10 = (2,360 +- 0,001) s$

$$T^2 = ((2,360 +- 0,001) s)^2 = (5,5696 +- 0,00472) s^2 = (5,570 +- 0,005) s^2$$

Sexta medida:

Tn =
$$(21.75 + 0.01)$$
 s, T = Tn/10 => T = $((21.75 + 0.01)$ s) / 10 = $(2.175 + 0.001)$ s

$$T^2 = ((2,175 +- 0,001) \text{ s})^2 = (4,730625 +- 0,00435) \text{ s}^2 = (4,731 +- 0,004) \text{ s}^2$$

Agora, com os dados em mãos, podemos construir o gráfico:

Tabela 1 - Variação de Tn, T e T² com o comprimento.

L (m)	Tn (s)	T (s)	T²(s²)
+- 0,001 m	+- 0,01 s	+- 0,001 s	
2,360	31,06	3,106	9,647 +- 0,006

2,060	29,02	2,902	8,422 +- 0,006
1,778	26,90	2,690	7,236 +- 0,005
1,585	25,43	2,543	6,467 +- 0,005
1,366	23,60	2,360	5,570 +- 0,005
1,165	21,75	2,175	4,731 +- 0,004

Fonte: Elaborada pelo autor.

- e) Após a análise do Gráfico 1, contido no fim do relatório, podemos verificar que as grandezas possuem, de fato, uma relação de linearidade, o que elimina a necessidade de revisão dos cálculos ou da realização de novas medidas.
- f) Para o cálculo da inclinação da reta, usaremos o método de mínimos quadrados. Primeiro, faremos o cálculo do coeficiente angular: coeficiente angular = somatório(xi - x_)yi/somatório(xi - x_)²

$$x_{-} = (x1 + x2 + x3 + x4 + x5 + x6) / 6 = (2,36 + 2,06 + 1,778 + 1,585 + 1,366 + 1,165) / 6 = 1,719$$

coeficiente angular = 4.028389/0.980124 = 4.1100809693

Agora, faremos o cálculo da incerteza do coeficiente angular:

incerteza = (incerteza de T^2)/sqrt(somatório(xi - x_)²)

incerteza = (0,006)/sqrt(0,980124) = 0,0060605318580 = 0,006

Portanto, como resultado, obtemos os seguinte valores:

coeficiente angular = 4,110 +- 0,006

g) Agora, com coeficiente angular em mãos, podemos calcular o valor de g. Para isso, usaremos a seguinte equação:

$$T^2 = ((2pi)^2/g)L$$

A equação indica que, em uma função T^2 em função de L, o coeficiente angular é equivalente a (2pi)²/g. Por isso, faremos a equivalência:

```
(2pi)^2/g = 4,110 => g = (2pi)^2/4,110 = 9,6054544049531
incerteza = 0,01402256117
```

Portanto, chegamos em g = 9,61 +- 0,01. Isso significa que, por mais que não tenha chegado no resultado esperado (9,81), ainda é um resultado satisfatório, uma vez que está bem próximo do valor esperado.

Plano inclinado

a) Neste experimento iniciamos inclinando levemente um trilho de ar utilizando um calço para que um carrinho possa percorrê-lo. Com um paquímetro determinamos que a altura do calço era de 61,00 +-0,05 mm e com uma trena determinamos que o comprimento do trilho era de 1,60 +- 0,001m. Com estas medidas podemos calcular o ângulo θ da inclinação e seu respectivo erro:


```
sen \theta = co/hip

\theta = arcsen(co/hip)

\theta = arcsen (0,061/1,6) = 2,1849311173°
```

ERRO:

```
\Delta\theta = |\partial co/\partial\theta| \Delta co + |\partial hip/\partial\theta| \Delta hip

\Delta\theta = d/dco |arcsen(co/hip)| \Delta co + d/dhip |arcsen(co/hip)| \Delta hip
```

Derivada em relação a co: d/dco | arcsen(co/hip) | Δco =

```
1 / sqrt (co<sup>2</sup> - hip<sup>2</sup>) \Deltaco = \Deltaco / sqrt (2,56-0,003721) = \Deltaco / sqrt (2,556279) = \Deltaco / 1,5988367647 = 0,00005 / 1,5988367647 = 0,0000312727
```

Derivada em relação a hip: d/dhip | arcsen(co/hip) | Δ hip (1 / sqrt (1 - (co / hip)^2)) * (-co / hip^2) Δ hip - co Δ hip / hip sqrt(hip^2 - co^2) = - 0,61 * 0,001 / 1,6 (1,3988367647) = - 0,0002384546

$$\Delta\theta$$
 = 0,0000312727 + 0,0002384546 = 0,0002697273 $\Delta\theta \approx 0,0003$

Logo :
$$\theta = 2,1849^{\circ} + 0,0003^{\circ}$$

- b) Posicionamos o carrinho no extremo do trilho com o eletroímã ativado, colamos a fita termossensível ao longo do trilho e ativamos o pulsador, em seguida o carrinho foi liberado e as marcações feitas.
- c) Sabemos que o pulsador faz uma marcação a cada 0,2s e, com o auxílio de uma trena, medimos as distâncias das marcações(m). Assim, podemos calcular y/t (m/s) e seu respectivo erro propagado, que, considerando que não nos foi dado o erro da medição de tempo, iremos considerar o mesmo como 0 e fazer a propagação da seguinte maneira:

$$f(y,t)=y/t\;,\;\;\Delta f=|\partial f/\partial y|\Delta y=1/t\;^*0,001=0,001/t.$$
 Os dados estão dispostos na tabela 2:

Tabela 2: Posição y em função do tempo t para movimento do carrinho sobre o trilho de ar inclinado.

-		
t (s)	y (m) +- 0,001m	ylt (m/s)
0,2	0,066	0,330 +- 0,005
0,4	0,147	0,368 +- 0,003
0,6	0,245	0,408 +- 0,002
0,8	0,356	0,445 +- 0,001
1,0	0,483	0,483 +- 0,001

1,2	0,626	0,5217 +- 0,0008
1,4	0,784	0,5600 +- 0,0007
1,6	0,955	0,5969 +- 0,0006
1,8	1,141	0,6339 +- 0,0006
2,0	1,344	0,6720 +- 0,0005

- d) Segue em anexo um gráfico em papel milimetrado de y/t em função de t, que demonstra que a relação entre as duas grandezas é linear.
- e) Utilizaremos o método de mínimos quadrados para determinar o coeficiente angular e o coeficiente linear com seus respectivos erros.

coeficiente angular:
$$a = \frac{\sum (x_i - \bar{x})y_i}{\sum (x_i - \bar{x})^2}$$

$$x_{-} = (0.2 + 0.4 + 0.6 + 0.8 + 1.0 + 1.2 + 1.4 + 1.6 + 1.8 + 2.0) / 10 = 1.1$$

coeficiente angular: a = 0.62675/3.3 = 0.1899242424

coeficiente linear: $b = \bar{y} - a\bar{x}$

$$x = (0.2 + 0.4 + 0.6 + 0.8 + 1.0 + 1.2 + 1.4 + 1.6 + 1.8 + 2.0) / 10 = 1.1$$

$$y_{-} = (0.33 + 0.368 + 0.408 + 0.445 + 0.483 + 0.5217 + 0.56 + 0.5969 + 0.6339 + 0.672) / 10 = 0.50185$$

coeficiente linear: b = 0.50185 - 0.19*1.1 = 0.29285

Agora, para calcular as incertezas, precisamos calcular a dispersão média:

dispersão média do ajuste:
$$\Delta y = \sqrt{\frac{\sum (ax_i + b - y_i)^2}{N-2}}$$

$$N - 2 = 10 - 2 = 8$$

 $\Delta y = raiz(0.0000877/8) = 0.0033111629 = 0.003.$

Agora, faremos o cálculo da incerteza do coeficiente angular:

incerteza do coeficiente angular:
$$\Delta a = \frac{\Delta y}{\sqrt{\sum (x_i - \bar{x})^2}}$$

incerteza: $\Delta a = (0.003)/\text{sgrt}(3.3) = 0.0016514456 = 0.002$.

Portanto, como resultado, obtemos os seguinte valores:

coeficiente angular: a = 0,190 +- 0,002

Agora, faremos o cálculo da incerteza do coeficiente linear

incerteza do coeficiente linear:
$$\Delta b = \sqrt{\frac{\sum x_i^2}{N \sum (x_i - \bar{x_i})^2}} \Delta y$$

$$\sum xi^2 = 0.2^2 + 0.4^2 + 0.6^2 + 0.8^2 + 1.0^2 + 1.2^2 + 1.4^2 + 1.6^2 + 1.8^2 + 2.0^2 = 15.4$$

incerteza: $\Delta b = \text{sqrt}(15.4/\ 10^{*}\ 3.3)^{*}\ 0.003 = 0.0020493902 = 0.002$. Portanto, como resultado, obtemos os seguinte valores:

coeficiente linear: b = 0,293 +- 0,002

Assim, temos a reta y = 0.19x + 0.293 que foi esboçada no gráfico 2 em anexo junto com os dados analisados, possibilitando, assim, ver a correspondência deles.

- f) A velocidade inicial do carrinho foi de 0,293 m/s, Considerando que o carrinho está sem atrito e em um plano inclinado em 2,1849° +- 0,0003°, é um valor condizente com os dados obtidos neste experimento.
- g) considerando a equação:

$$\frac{y}{t} = v_0 + \frac{a}{2}t$$

e os valores calculados da reta, temos que: $a/2 = 0.19 \Rightarrow a = 0.38$

Assim, podemos calcular o valor da gravidade:

$$a = g \operatorname{sen}(\theta)$$

 $g = a / sen(\theta)$

 $g = 0.38 / sen (2.1849^{\circ})$

 $g = 9,9673549989 \text{ m/s}^2$

Agora podemos calcular o erro da gravidade:

$$\Delta g = |\partial g/\partial a| \Delta a + |\partial g/\partial \theta| \Delta \theta$$

 $\Delta g = 1/\text{sen}(\theta)^* \Delta a - \text{cosec}(\theta)^* \text{cotg}(\theta)^* \Delta \theta$ = $(1/\text{sen}(2,1849))^* 0,002 + \text{cosec}(2,1849)^* \text{cotg}(2,1849)^* 0,0003 = 0,0524597632 + 0,2062519517 = 0,2587117149 => <math>\Delta g = 0,3$

Deste modo o valor da gravidade é de 10,0 +- 0,3 m/s²

Os experimentos do pêndulo simples (g = $9.61 \pm 0.01 \text{ m/s}^2$) e do plano inclinado (g = $10.0 \pm 0.3 \text{ m/s}^2$) apresentaram resultados consistentes entre si e com o valor teórico de 9.8 m/s^2 .

CONCLUSÃO

Tal como orientado, calculamos o valor da gravidade utilizando o pêndulo simples e o plano inclinado. Ambos os resultados foram satisfatórios e dentro da referência teórica de 9,8 m/s², sendo o primeiro método mais preciso devido à menor incerteza, enquanto o segundo, embora com maior dispersão, ainda forneceu uma aproximação válida, comprovando a eficácia de ambas as abordagens na determinação da aceleração gravitacional.

BIBLIOGRAFIA

Jose F. Schneider. Laboratório de Física I: livro de práticas. Instituto de Física de São Carlos, 2017. Disponível em: < http://granada.ifsc.usp.br/labApoio/images/apostilas/fisicai-2017.pdf >. Acesso em: 30 mar. 2025.

The End!

MakeAGIF.com Melhor parte do relatório!!

Kevin é de suma importância que esta ilustração esteja no relatório.

ass: Beatriz Alves

Eu reafirmo essa mensagem para o segundo relatório.

- E para o terceiro!!