		ightharpoonup
Question	Scheme	Marks
number		
	When $x = \frac{\pi}{2}$ $y = \frac{\pi^3}{8}$ So $\left(\frac{\pi}{2}, \frac{\pi^3}{8}\right)$	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 \sin x + x^3 \cos x$	M1 A1 A1
4	When $x = \frac{\pi}{2}$ $\frac{dy}{dx} = 3\left(\frac{\pi}{2}\right)^2 \sin\left(\frac{\pi}{2}\right) + \left(\frac{\pi}{2}\right)^3 \cos\left(\frac{\pi}{2}\right) = \left[\frac{3\pi^2}{4}\right]$	M1
	$y - \frac{\pi^3}{8} = \frac{3\pi^2}{4} \left(x - \frac{\pi}{2} \right)$	M1
	$y = \frac{3}{4}\pi^2 x - \frac{1}{4}\pi^3$	A1
Total 7 mark		

Mark	Notes	
Note: In this question, all substitution of angle values must be in Radians only.		
B1	For obtaining $y = \frac{\pi^3}{8}$ [allow $\left(\frac{\pi}{2}\right)^3$ and also awrt $y = 3.88$]	
M1	 For an attempt to use the product rule. The definition of an attempt is as follows: There must be a correct attempt to differentiate both terms. sin x ⇒ cos x x³ ⇒ ax² where x ≠ 0 The correct formula must be used. i.e., it must be a sum of their two terms. 	
A1	At least one term must be correct. Either $3x^2 \sin x$ or $x^3 \cos x$	
A1	For $3x^2 \sin x + x^3 \cos x$ oe Ignore any subsequent simplification once you have seen the correct answer – even if the simplification is incorrect.	
M1	For substitution of $\frac{\pi}{2}$ into their $\frac{dy}{dx} = \left[\frac{3}{4}\pi^2\right]$ provided it is a changed expression. Allow a value of awrt 7.4(0) NOTE: You must see a full substitution of $\frac{\pi}{2}$ into their $\frac{dy}{dx}$ if their expression for $\frac{dy}{dx}$ is incorrect.	
M1	For a correct method for finding the equation of a line using their value of y , dy/dx and the given x [allow $x = 1.57$]. This must be applied correctly. Either uses the formula with their values, or if uses $y = mx + c$ they must reach a value for c before this mark can be awarded. Do not allow processing errors to find the value of c	
A1	For $y = \frac{3}{4}\pi^2 x - \frac{1}{4}\pi^3$ Allow $y = 7.4(0)x - 7.75$ or better values. Do not allow a mixture of decimals and exact values.	