Definition of Minimum Edit Distance

### How similar are two strings?

### Spell correction

- The user typed "graffe" Which is closest?
  - graf
  - graft
  - grail
  - giraffe

- Computational Biology
  - Align two sequences of nucleotides

```
AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC
```

Resulting alignment:

```
- AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
```

Also for Machine Translation, Information Extraction, Speech Recognition

### **Edit Distance**

The minimum edit distance between two strings Is the minimum number of editing operations

- Insertion
- Deletion
- Substitution

Needed to transform one into the other

Two strings and their alignment:

If each operation has cost of 1

Distance between these is 5

If substitutions cost 2 (Levenshtein)

Distance between them is 8

## Alignment in Computational Biology

Given a sequence of bases

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

### An alignment:

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Given two sequences, align each letter to a letter or gap

### Other uses of Edit Distance in NLP

### Evaluating Machine Translation and speech recognition

```
R Spokesman confirms senior government adviser was appointed

H Spokesman said the senior adviser was appointed

S I D
```

### Named Entity Extraction and Entity Coreference

- IBM Inc. announced today
- IBM profits
- Stanford Professor Jennifer Eberhardt announced yesterday
- for Professor Eberhardt...

### How to find the Min Edit Distance?

Searching for a path (sequence of edits) from the start string to the final string:

- Initial state: the word we're transforming
- Operators: insert, delete, substitute
- Goal state: the word we're trying to get to
- Path cost: what we want to minimize: the number of



### Minimum Edit as Search

### But the space of all edit sequences is huge!

- We can't afford to navigate naïvely
- Lots of distinct paths wind up at the same state.
  - We don't have to keep track of all of them
- Just the shortest path to each of those revisted states.

## Defining Min Edit Distance

### For two strings

- X of length *n*
- Y of length *m*

### We define D(*i,j*)

- the edit distance between X[1..i] and Y[1..j]
  - i.e., the first *i* characters of X and the first *j* characters of Y
- The edit distance between X and Y is thus D(n,m)

# Definition of Minimum Edit Distance

# Computing Minimum Edit Distance

# Dynamic Programming for Minimum Edit Distance

**Dynamic programming**: A tabular computation of D(n,m)

Solving problems by combining solutions to subproblems.

### Bottom-up

- We compute D(i,j) for small i,j
- And compute larger D(i,j) based on previously computed smaller values
- i.e., compute D(i,j) for all i (0 < i < n) and j (0 < j < m)

### Defining with Edit Distance (Levenshtein)

```
Initialization
  D(i,0) = i
  D(0,j) = j
Recurrence Relation:
  For each i = 1...M
        For each j = 1...N
  Y ( j )
```

Termination:

D(N,M) is distance

### The Edit Distance Table

| N | 9 |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 8 |   |   |   |   |   |   |   |   |   |
| Ι | 7 |   |   |   |   |   |   |   |   |   |
| Т | 6 |   |   |   |   |   |   |   |   |   |
| N | 5 |   |   |   |   |   |   |   |   |   |
| Е | 4 |   |   |   |   |   |   |   |   |   |
| Т | 3 |   |   |   |   |   |   |   |   |   |
| N | 2 |   |   |   |   |   |   |   |   |   |
| Ι | 1 |   |   |   |   |   |   |   |   |   |
| # | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|   | # | Е | Χ | Е | С | U | Т | I | 0 | N |

### **The Edit Distance Table**

| N | 9 |         |                                                                                                                |    |   |   |   |   |   |   |  |  |  |  |  |  |  |
|---|---|---------|----------------------------------------------------------------------------------------------------------------|----|---|---|---|---|---|---|--|--|--|--|--|--|--|
| 0 | 8 |         |                                                                                                                |    |   |   |   |   |   |   |  |  |  |  |  |  |  |
| I | 7 | D(:     | $D(i,j) = min$ $\begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \end{cases}$                                        |    |   |   |   |   |   |   |  |  |  |  |  |  |  |
| Т | 6 | — D(1), | <i>j</i> ) = mi                                                                                                | i) |   |   |   |   |   |   |  |  |  |  |  |  |  |
| N | 5 |         | $D(i-1,j-1) + \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$ |    |   |   |   |   |   |   |  |  |  |  |  |  |  |
| Е | 4 |         |                                                                                                                |    |   |   |   |   |   |   |  |  |  |  |  |  |  |
| Т | 3 |         |                                                                                                                |    |   |   |   |   |   |   |  |  |  |  |  |  |  |
| N | 2 |         |                                                                                                                |    |   |   |   |   |   |   |  |  |  |  |  |  |  |
| Ι | 1 |         |                                                                                                                |    |   |   |   |   |   |   |  |  |  |  |  |  |  |
| # | 0 | 1       | 2                                                                                                              | 3  | 4 | 5 | 6 | 7 | 8 | 9 |  |  |  |  |  |  |  |
|   | # | Е       | Χ                                                                                                              | Е  | С | U | Т | I | 0 | N |  |  |  |  |  |  |  |

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} = \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$$

## **Edit Distance**

| N | 9 |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 8 |   |   |   |   |   |   |   |   |   |
| Ι | 7 |   |   |   |   |   |   |   |   |   |
| Т | 6 |   |   |   |   |   |   |   |   |   |
| N | 5 |   |   |   |   |   |   |   |   |   |
| Е | 4 |   |   |   |   |   |   |   |   |   |
| Т | 3 |   |   |   |   |   |   |   |   |   |
| N | 2 |   |   |   |   |   |   |   |   |   |
| Ι | 1 |   |   |   |   |   |   |   |   |   |
| # | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|   | # | Е | X | Е | С | U | Т | Ι | 0 | N |

### **The Edit Distance Table**

| N | 9 | 8 | 9 | 10 | 11 | 12 | 11 | 10 | 9  | 8  |
|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 8 | 7 | 8 | 9  | 10 | 11 | 10 | 9  | 8  | 9  |
| Ι | 7 | 6 | 7 | 8  | 9  | 10 | 9  | 8  | 9  | 10 |
| Т | 6 | 5 | 6 | 7  | 8  | 9  | 8  | 9  | 10 | 11 |
| N | 5 | 4 | 5 | 6  | 7  | 8  | 9  | 10 | 11 | 10 |
| Е | 4 | 3 | 4 | 5  | 6  | 7  | 8  | 9  | 10 | 9  |
| Т | 3 | 4 | 5 | 6  | 7  | 8  | 7  | 8  | 9  | 8  |
| N | 2 | 3 | 4 | 5  | 6  | 7  | 8  | 7  | 8  | 7  |
| Ι | 1 | 2 | 3 | 4  | 5  | 6  | 7  | 6  | 7  | 8  |
| # | 0 | 1 | 2 | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|   | # | Е | Χ | Е  | С  | U  | Т  | Ι  | 0  | N  |

# Computing Minimum Edit Distance

Backtrace for Computing Alignments

## Computing alignments

#### Edit distance isn't sufficient

 We often need to align each character of the two strings to each other

We do this by keeping a "backtrace"

Every time we enter a cell, remember where we came from

When we reach the end,

 Trace back the path from the upper right corner to read off the alignment

$$D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + \end{cases} = \begin{cases} 2; & \text{if } S_1(i) \neq S_2(j) \\ 0; & \text{if } S_1(i) = S_2(j) \end{cases}$$

## **Edit Distance**

| N | 9 |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 8 |   |   |   |   |   |   |   |   |   |
| Ι | 7 |   |   |   |   |   |   |   |   |   |
| Т | 6 |   |   |   |   |   |   |   |   |   |
| N | 5 |   |   |   |   |   |   |   |   |   |
| Е | 4 |   |   |   |   |   |   |   |   |   |
| Т | 3 |   |   |   |   |   |   |   |   |   |
| N | 2 |   |   |   |   |   |   |   |   |   |
| Ι | 1 |   |   |   |   |   |   |   |   |   |
| # | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|   | # | Е | X | Е | С | U | Т | Ι | 0 | N |

## MinEdit with Backtrace

| n | 9 | , 8            | <b>∠</b> ↓9       | رني 10×        | $\angle :\downarrow 11$ | <b>∠</b> ⊆ 12     | J 11              | ↓ 10              | 19            | <b>/8</b>      |  |
|---|---|----------------|-------------------|----------------|-------------------------|-------------------|-------------------|-------------------|---------------|----------------|--|
| 0 | 8 | <u> </u>       | ∠ <del>-</del> ∵8 | ∠←↓9           | ∠←↓ 10                  | ∠⊷, 11            | <sub></sub> 10    | <sub>~</sub> 9    | ∠ 8           | <b>-</b> 9     |  |
| i | 7 | <u>,</u> 6     | .∕·7              | /< ↓8          | <b>∠</b> ⊆9             | ∠∈↓10             | ↓9                | ∠ 8               | √ 9           | ← 10           |  |
| t | 6 | <sub></sub> 5  | ∠ <del>-</del> ~6 | ∠←↓ 7          | ∠ <del>-</del> ~8       | ∠ <del>←</del> ↓9 | ∠8                | ← 9               | ← 10 →        | <b>⊢</b> ,, 11 |  |
| n | 5 | . 4            | .⁄∵ ., 5          | <i>∠</i> :↓6   | ∠: J7                   | ./<↓ <b>8</b>     | /<↓9              | ∠< <b>1</b> 0     | ∠ ↓11 ,       | ∠, 10          |  |
| e | 4 | ∠3             | <b>←</b> 4        | ∠ <b>–</b> 5   | ← 6                     | <i>←</i> 7        | <b>←</b> ↓ 8      | ∠ <del>-</del> ∵9 | ∠⊷, 10        | ↓9             |  |
| t | 3 | <b>∠</b> ′.,4  | <b>.⁄</b> ∵ , 5   | /<↓6           | ∠: J7                   | ∠:↓8              | ∠7                | √ 8               | ∠;‡9          | ↓8             |  |
| n | 2 | <b>∠</b> ⊢., 3 | ∠⊷, 4             | .∠ <b>←</b> ↓5 | ∠ <del>-</del> , 6      | ∠ <b>-</b> ↓7     | ∠ <del>-</del> ↓8 | <sub>~</sub> 7    | ∠ <b>←</b> ↓8 | ∠7             |  |
| i | 1 | .⁄· ↓2         | <b>.⁄</b> ∵ 3     | ∠:↓4           | .⁄∵., 5                 | Z:16              | ∠:↓7              | ∠ 6               | · 7           | < 8            |  |
| # | 0 | 1              | 2                 | 3              | 4                       | 5                 | 6                 | 7                 | 8             | 9              |  |
|   | # | e              | X                 | e              | c                       | u                 | t                 | i                 | 0             | n              |  |

### Adding Backtrace to Minimum Edit Distance

#### Base conditions:

Termination:

D(i,0) = i D(0,j) = j D(N,M) is distance

#### Recurrence Relation:

```
For each i = 1...M
        For each j = 1...N
        D(i,j) = \begin{cases} D(i-1,j) + 1 & \text{deletion} \\ D(i,j-1) + 1 & \text{insertion} \\ D(i-1,j-1) + 2; & \text{if } X(i) \neq Y(j) \\ 0; & \text{if } X(i) = Y(j) \end{cases}
```

### The Distance Matrix



Every non-decreasing path

from (0,0) to (M, N)

corresponds to an alignment of the two sequences

An optimal alignment is composed of optimal subalignments

### Result of Backtrace

Two strings and their alignment:

### Performance

Time:

O(nm)

Space:

O(nm)

Backtrace

O(n+m)

Backtrace for Computing Alignments

Weighted Minimum Edit Distance

## Weighted Edit Distance

### Why would we add weights to the computation?

- Spell Correction: some letters are more likely to be mistyped than others
- Biology: certain kinds of deletions or insertions are more likely than others

## Confusion matrix for spelling errors

|    | sub[X, Y] = Substitution of X (incorrect) for Y (correct) |     |    |     |     |     |      |     |     |     |   |     |     |        |     |     |     |     |     |    |     |    |     |     |    |    |
|----|-----------------------------------------------------------|-----|----|-----|-----|-----|------|-----|-----|-----|---|-----|-----|--------|-----|-----|-----|-----|-----|----|-----|----|-----|-----|----|----|
| х  |                                                           |     |    |     |     |     | -, - | •   |     |     |   |     |     | eroct) |     | ,   |     | - \ |     | ,  |     |    |     |     |    |    |
|    | a                                                         | b   | c  | -a  | c   | f   | g    | ħ   | j   | j   | k | J   | m   | n      | 0   | p   | q   | Т   | 3   | t  | บ   | ν  | w   | х   | У  | Υ, |
| 8. | 0                                                         | 0   | 7  | 1   | 342 | D   | 0    | 2   | 118 | 0   | 1 | 0   | 0   | -3     | 76  | D   | 0   | ī   | 35  | 9  | 9   | D  | 1   | 0   | -5 | Ď  |
| b  | 0                                                         | 0   | 9  | 9   | 2   | 2   | 3    | 1   | 0   | 0   | 0 | 5   | 11  | 5      | 0   | 10  | 0   | 0   | 2   | 1  | 0   | 0  | 8   | 0   | 0  | 0  |
| С  | 6                                                         | 5   | 0  | 16  | 0   | 9   | 5    | 0   | 0   | 0   | 1 | 0   | 7   | 9      | 1   | 10  | 2   | 5   | 39  | 40 | 1   | 3  | 7   | 1   | 1  | 0  |
| ď  | 1                                                         | 10  | 13 | 0   | 12  | 0   | 5    | 5   | 0   | 0   | 2 | 3   | 7   | 3      | ()  | 1   | 0   | 43  | 30  | 22 | 0   | D  | 4   | 0   | 2  | 0  |
| e  | 388                                                       | 0   | 3  | 11  | 0   | 2   | 2    | 0   | 89  | 0   | 0 | 3   | 0   | 5      | 93  | 0   | 0   | 14  | 12. | 6  | 15  | 0  | 3   | 0   | 18 | C) |
| f  | 0                                                         | 15  | 0  | 3   | 1   | 0   | 5    | 2   | 0   | 0   | 0 | 3   | 4   | 1      | 0   | 0   | 0   | 6   | 4   | 12 | 0   | 0  | 2   | 0   | 0  | 0  |
| g  | 4                                                         | 1   | 11 | 11  | 9   | 2   | 0    | 0   | 0   | -1  | 1 | 3   | 0   | 0      | 2   | 1   | 3   | 5   | 13  | 21 | 0   | 0  | 1   | 0   | 3  | 0  |
| h  | 1                                                         | 8   | 0  | 3   | 0   | 0   | 0    | 0   | 0   | 0   | 2 | 0   | 12  | 14     | 2   | 3   | 0   | 3   | 1   | 11 | O   | 0  | 2   | 0   | 0  | 0  |
| i  | 103                                                       | 0   | 0  | 0   | 146 | 0   | 1    | 0   | 0   | 0   | 0 | 6   | 0   | 0      | 49  | 0   | 0   | 0   | 2   | 1  | 47  | 0  | 2   | 1   | 15 | 0  |
| j  | 0                                                         | 1   | 1  | 9   | 0   | 0   | 1    | 0   | 0   | 0   | 0 | 2   | 1   | 0      | 0   | 0   | 0   | 0   | 5   | 0  | 0   | 0  | 0   | 0   | 0  | 0  |
| k  | 1                                                         | 2   | 8  | 4   | 1   | 1   | 2    | 5   | 0   | 0   | 0 | 0   | 5   | 0      | 2   | 0   | 0   | ø   | 6   | 0  | O   | 0  | - 4 | 0   | 0  | 3  |
| 1  | 2                                                         | 10  | 1  | 4   | 0   | 4   | 5    | - 6 | 13  | 0   | 1 | 0   | 0   | 14     | 2   | 5   | 0   | 11  | 10  | 2  | 0   | 0  | 0   | 0   | 0  | 0  |
| m  | 1                                                         | 3   | 7  | 8   | 0   | 2   | 0    | - 6 | 0   | 0   | 4 | 4   | 0   | 180    | 0   | 6   | 0   | 0   | 9   | 15 | 13  | 3  | 2   | 2   | 3  | 0  |
| n  | 2                                                         | 7   | 6  | - 5 | 3   | 0   | 1    | 19  | _ ! | 0   | 4 | 35  | 78  | 0      | 0   | . 7 | 0   | 28  | 5   | 7  | 0   | 0  | 1   | 2   | 0  | 2  |
| o  | 91                                                        | 1   | 1  | 3   | 116 | 0   | ()   | 0   | 25  | 0   | 2 | 0   | 0   | 0      | 0   | 14  | 0   | 2   | 4   | 14 | 39  | 0  | 0   | 0   | 18 | 0  |
| P  | 0                                                         | 11  | 1  | 2   | 0   | 6   | -5   | 0   | 2   | 9   | 0 | 2   | 7   | 6      | 15  | 0   | 0   | 1   | 3   | 6  | 0   | 4  | 1   | 0   | 0  | 0  |
| q  | 0                                                         | 0   | 1  | 0   | 0   | 0   | 27   | 0   | 0   | 0   | 0 | 0   | 0   | 0      | 0   | 0   | 0   | 0   | 0   | 0  | 0   | () | 0   | 0   | 0  | 0  |
| г  | 0                                                         | 14  | 0  | 30  | 12  | 2   | 2    | 8   | 2   | 0   | 5 | 8   | 4   | 20     | 1   | 14  | 0   | 0   | 12  | 22 | 4   | () | 0   | 1   | 0  | 0  |
| 8  | 11                                                        | 8   | 27 | 33  | 35  | 4   | .0   | 1   | 0   | 1   | 0 | 27  | 0   | 6      | 1   | 7   | 0   | 14  | .0  | 15 | 0   | 0  | - 5 | 3   | 20 | 1  |
| t  | 3                                                         | 4   | 9  | 42  | .7  | - 5 | 19   | 5   | 0   | 1   | 0 | 14  | 9   | 5      | .5  | 5   | 0   | 11  | 37  | 0  | 0   | 2  | 19  | 0   | 7  | 6  |
| ţı | 20                                                        | 0   | () | 0   | 44  | 0   | 0    | 0   | 64  | 0   | 0 | 0   | 0   | 2      | 43  | 0   | 0   | 4   | 0   | 0  | 0   | 0  | 2   | 0   | 8  | 0  |
| v  | 0                                                         | 0   | 7  | 0   | 0   | 3   | 0    | 0   | 0   | 0   | 0 | 1   | 0   | 0      | 1   | 0   | 0   | 0   | 8   | 3  | 0   | 0  | 0   | 0   | 0  | 0  |
| w  | 2                                                         | 2,  | ı  | 0   | 1   | 0   | 0    | 2   | 0   | 0   | 1 | 0   | 0   | 0      | 0   | 7   | 0   | 6   | 3   | 3  | - 1 | 0  | 0   | 0   | 0  | 0  |
| x  | 0                                                         | 0   | 0  | 2   | 0   | 0   | 0    | 0   | 0   | 0   | 0 | 0   | 0   | 0      | 0   | 0   | 0   | 0   | 9   | 0  | 0   | 0  | 0   | 0   | 0  | 0  |
| у  | 0                                                         | 0   | 2  | 0   | 15  | 0   | 1    | 7   | 15  | 0   | 0 | 0   | 2   | 0      | 6   | 1   | 0   | 7   | 36  | 8  | 5   | 0  | 0   | 1   | 0  | 0  |
|    | ()                                                        | - 0 | n. | - 7 | ß   | - a | - 0  | O   | Α.  | - 6 | n | - 7 | - 5 | - 0    | - 0 | п   | - 0 | •   | 21  | 3  | 0   | а  | Ω   | - 0 | •  | n  |



## Weighted Min Edit Distance

#### Initialization:

```
D(0,0) = 0

D(i,0) = D(i-1,0) + del[x(i)];   1 < i \le N

D(0,j) = D(0,j-1) + ins[y(j)];   1 < j \le M
```

### Recurrence Relation:

```
D(i,j) = \min \begin{cases} D(i-1,j) & + \text{ del}[x(i)] \\ D(i,j-1) & + \text{ ins}[y(j)] \\ D(i-1,j-1) & + \text{ sub}[x(i),y(j)] \end{cases}
```

### Termination:

D(N,M) is distance

Weighted Minimum Edit Distance

Minimum Edit Distance in Computational Biology

## Sequence Alignment

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

## Why sequence alignment?

Comparing genes or regions from different species

- to find important regions
- determine function
- uncover evolutionary forces

Assembling fragments to sequence DNA Compare individuals to looking for mutations

### Alignments in two fields

### In Natural Language Processing

- We generally talk about distance (minimized)
  - And weights

### In Computational Biology

- We generally talk about similarity (maximized)
  - And scores

### The Needleman-Wunsch Algorithm

### Initialization:

$$D(i,0) = -i * d$$
  
 $D(0,j) = -j * d$ 

### Recurrence Relation:

$$D(i,j) = \min \begin{cases} D(i-1,j) & - d \\ D(i,j-1) & - d \\ D(i-1,j-1) & + s[x(i),y(j)] \end{cases}$$

### Termination:

```
D(N,M) is distance
```

### The Needleman-Wunsch Matrix



(Note that the origin is at the upper left.)

### A variant of the basic algorithm:

Maybe it is OK to have an unlimited # of gaps in the beginning and end:

· If so, we don't want to penalize gaps at the ends

# Different types of overlaps

|  | Example: 2 overlapping"reads" from a sequencing project    |
|--|------------------------------------------------------------|
|  | Example: Search for a mouse gene within a human chromosome |

### The Overlap Detection variant



### Changes:

#### 1. Initialization

For all i, j,  

$$F(i, 0) = 0$$
  
 $F(0, j) = 0$ 

#### 2. Termination

$$F_{OPT} = max \begin{cases} max_i & F(i, N) \\ max_j & F(M, j) \end{cases}$$

## The Local Alignment Problem

Given two strings

$$X = X_1 \dots X_M$$

$$y = y_1 \dots y_N$$

Find substrings x', y' whose similarity (optimal global alignment value) is maximum



## The Smith-Waterman algorithm

Idea: Ignore badly aligning regions

Modifications to Needleman-Wunsch:

Initialization: 
$$F(0, j) = 0$$

$$F(i, 0) = 0$$



Iteration: 
$$F(i, j) = \max F(i - 1, j) - d$$

$$F(i, j - 1) - d$$

$$F(i - 1 j - 1) + s(x_i, y_j)$$

## The Smith-Waterman algorithm

#### **Termination:**

1. If we want the best local alignment...

$$F_{OPT} = \max_{i,j} F(i, j)$$

Find F<sub>OPT</sub> and trace back



2. If we want all local alignments scoring > t

?? For all i, j find F(i, j) > t, and trace back?

Complicated by overlapping local alignments

```
TTATC
X = ATCAT
                                   0 0 0 0
Y = ATTATC
Let:
m = 1 (1 point for match)
d = 1 (-1 point for del/ins/sub)
```

```
TTATC
X = ATCAT
Y = ATTATC
```

```
TTATC
X = ATCAT
 = ATTATC
```

```
TTATC
  ATCAT
ATTATC
```

# Minimum Edit Distance

Minimum Edit Distance in Computational Biology