PROJET UE MOGPL — MU4IN200 DICE BATTLE

ARIANA CARNIELLI

1. Introduction

2. Question 1

Q(d,k) est la probabilité d'obtenir k points en jetant d dés sachant qu'aucun dé a tombé sur 1. On numérote les dés de 1 à d et on note j le résultat du dernier dé, qui est donc un nombre entre 2 à 6. Alors on aura k points si et seulement si les d-1 premiers dés donnent k-j points. Les valeurs possibles de j étant disjointes, on peut dire que Q(d,k) est la somme pour toutes les valeurs de j de Q(d-1,k-j) multiplié par la probabilité que le dernier dé donne j sachant qu'il n'est pas 1 (égale à $\frac{1}{5}$), ce qui donne donc :

(1)
$$Q(d,k) = \sum_{j=2}^{6} \frac{Q(d-1,k-j)}{5}.$$

Plus précisément, soient $X_1,...,X_d$ des variables aléatoires indépendantes et distribuées selon une loi uniforme sur $\{1,...,6\}$, représentant les résultats de chaque dé. Soient $S_d = \sum_{i=1}^d X_i$ et $S_{d-1} = \sum_{i=1}^{d-1} X_i$. On peut réécrire Q(d,k) comme

$$Q(d,k) = \mathbb{P}(S_d = k \mid X_1 \neq 1, ..., X_d \neq 1).$$

Montrons d'abord que $P(d,k) = \left(\frac{5}{6}\right)^d Q(d,k)$ pour $2d \le k \le 6d$. On a

$$\begin{split} P(d,k) &= \mathbb{P}(S_d = k, X_1 \neq 1, \dots, X_d \neq 1) \\ &= \mathbb{P}(S_d = k \mid X_1 \neq 1, \dots, X_d \neq 1) \mathbb{P}(X_1 \neq 1, \dots, X_d \neq 1) \\ &= Q(d,k) \mathbb{P}(X_1 \neq 1) \cdots \mathbb{P}(X_d \neq 1) = Q(d,k) \left(\frac{5}{6}\right)^d. \end{split}$$

On montre maintenant la relation (1) pour $d \ge 2$ et $2d \le k \le 6d$. On a $S_d = S_{d-1} + X_d$. Conditionnellement à $X_1 \ne 1, \ldots, X_d \ne 1$, X_d ne peut prendre que les valeurs j allant de 2 à 6, et, comme les évènements $X_d = 2, \ldots, X_d = 6$ forment une partition, on a

$$\begin{split} Q(d,k) &= \mathbb{P}(S_{d-1} + X_d = k \mid X_1 \neq 1, \dots, X_d \neq 1) \\ &= \sum_{j=2}^{6} \mathbb{P}(S_{d-1} = k - j, X_d = j \mid X_1 \neq 1, \dots, X_d \neq 1) \\ &= \sum_{j=2}^{6} \mathbb{P}(S_{d-1} = k - j \mid X_1 \neq 1, \dots, X_d \neq 1) \mathbb{P}(X_d = j \mid X_1 \neq 1, \dots, X_d \neq 1), \end{split}$$

où l'on utilise le fait que S_{d-1} et X_d sont indépendants. Comme S_{d-1} ne dépend pas de X_d , on obtient, par la définition de Q, que

$$\mathbb{P}(S_{d-1} = k - j \mid X_1 \neq 1, ..., X_d \neq 1) = \mathbb{P}(S_{d-1} = k - j \mid X_1 \neq 1, ..., X_{d-1} \neq 1) = Q(d-1, k-j),$$
 et en plus $\mathbb{P}(X_d = j \mid X_1 \neq 1, ..., X_d \neq 1) = \mathbb{P}(X_d = j \mid X_d \neq 1) = \frac{1}{5}$. Donc

$$Q(d,k) = \sum_{j=2}^{6} \frac{Q(d-1,k-j)}{5}.$$

Les cas d'initialisation correspondent à d=1 et $k \in \{2,...,6\}$, auquel cas on a $Q(1,k)=\frac{1}{5}$. En plus, Q(1,k)=0 pour k>6.

3. Question 2

Remarquons que la formule

(2)
$$EP(d) = 4d\left(\frac{5}{6}\right)^{d} + 1 - \left(\frac{5}{6}\right)^{d}$$

provient du fait qu'on a une probabilité de $1-\left(\frac{5}{6}\right)^d$ de ne marquer qu'un seul point et une probabilité de $\left(\frac{5}{6}\right)^d$ de marquer entre 2d et 6d points, et l'espérance du nombre de points marqué dans ce dernier cas est égale à 4d.

On veut maximiser EP(d) pour $d \in \{1,...,D\}$. Pour éviter de faire une recherche exhaustive, on peut faire une étude de la fonction EP(d) en relaxant d'abord d à une variable réelle. Dans ce cas, on calcule

$$EP'(d) = 4\left(\frac{5}{6}\right)^d + 4d\left(\frac{5}{6}\right)^d \ln\frac{5}{6} - \left(\frac{5}{6}\right)^d \ln\frac{5}{6} = \left(\frac{5}{6}\right)^d \left(4 + 4d\ln\frac{5}{6} - \ln\frac{5}{6}\right).$$

On cherche les valeurs d^* telles que $EP'(d^*) = 0$. Cela arrive si et seulement si

$$4 + 4d^* \ln \frac{5}{6} - \ln \frac{5}{6} = 0$$

et on calcule alors

$$d^* = \frac{\ln\frac{5}{6} - 4}{4\ln\frac{5}{6}} = \frac{\ln\frac{6}{5} + 4}{4\ln\frac{6}{5}} \approx 5,735.$$

On remarque aussi que EP'(d) > 0 pour $d < d^*$ et EP'(d) < 0 pour $d > d^*$, donc EP est strictement croissante sur $]-\infty, d^*[$ et strictement décroissante pour $]d^*, +\infty[$, et atteint ainsi son maximum global à $d = d^*$.

On revient maintenant à une variable discrète $d \in \{1, ..., D\}$. Grâce à l'étude précédente, $EP(1) < EP(2) < \cdots < EP(5)$ et $EP(6) > EP(7) > \cdots$, ainsi les candidats à maximum global de EP dans les entiers sont 5 et 6. On calcule $EP(5) \approx 8,636$ et $EP(6) \approx 8.703$, donc le maximum global est atteint en d = 6. Comme $d \in \{1, ..., D\}$, cela n'arrive que lorsque $D \ge 6$; dans le cas contraire, EP est croissante sur $\{1, ..., D\}$ et le maximum est atteint en D. On a donc $d^*(D) = \min(D, 6)$. La méthode implémentée retourne donc cette valeur.

4. Question 3

On considère ici que D=3 et N=2, auquel cas $d^*(D)=3$. On suppose que le joueur 1 choisit de jouer toujours 3 dés alors que le joueur 2 choisit de jouer toujours un seul dé. Soient X_i et Y_i les gains des joueurs 1 et 2, respectivement, au i-ème lancer de dés. Alors $X_i \in \{1,6,7,\ldots,18\}$ et $Y_i \in \{1,2,\ldots,6\}$. En particulier, on remarque que, si $X_1 > 1$, alors le joueur 1 est sûr de gagner.

Comme N=2, le jeu se finira au maximum au bout de 2 tours. Soit G la variable aléatoire donnant le gain final du joueur 1:G=1 si le joueur 1 gagne et G=-1 si le joueur 2 gagne (il est impossible d'avoir un match nul dans la variante séquentielle). Les évènements G=1 et G=-1 peuvent être décrits en fonction de X_i et Y_i de la façon suivante :

$$G = 1: X_1 > 1 \cup (X_1 = 1 \cap Y_1 = 1)$$

 $G = -1: X_1 = 1 \cap Y_1 > 1$

Cela permet de calculer les probabilités :

$$\mathbb{P}(G=1) = \left(\frac{5}{6}\right)^3 + \left(1 - \left(\frac{5}{6}\right)^3\right) \frac{1}{6} \approx 0,6489$$

$$\mathbb{P}(G=-1) = \left(1 - \left(\frac{5}{6}\right)^3\right) \frac{5}{6} \approx 0,3511$$

On a donc $\mathbb{E}(G) \approx 0.2978$. Si, à la place de $d^*(D) = 3$, le joueur 1 avait choisit de jouer 1 dé comme le joueur 2, les probabilités de G = 1 et G = -1 auraient été

$$\mathbb{P}(G=1) = \frac{5}{6} + \left(\frac{1}{6}\right)^2 \approx 0,8611$$

$$\mathbb{P}(G=-1) = \frac{1}{6} \frac{5}{6} \approx 0,1389$$

Cela donne $\mathbb{E}(G) \approx 0.7222$. Ainsi, l'espérance de gain du joueur 1 est plus grande s'il ne choisit de joueur qu'un seul dé dans ce cas.

On remarque que la situation de cet exemple n'est pas exceptionnelle : le cas N=2 est équivalant, par exemple, au cas N=100 lorsque les deux joueurs sont à égalité avec 98 points.

5. Ouestion 4

Pour faciliter l'analyse, on représente l'état courant du jeu par un triplet (i, j, n) où i et j sont les points cumulés des joueurs 1 et 2, respectivement, et $n \in \{1, 2\}$ indique qui est le prochain joueur à jouer. On note l'espérance de gain du joueur 1 dans l'état (i, j, n) par EG(i, j, n), en supposant que lui-même et son adversaire jouent toujours de façon optimale. On remarque que EG(i, j, n) représente toujours l'espérance de gain du joueur 1, même lorsque n = 2.

Dans l'état (i, j, 1), si le joueur 1 décide de jouer d dés et qu'il obtient k points, le prochain état sera (i + k, j, 2). Comme il obtient k points avec probabilité P(d, k), l'espérance de gain du joueur 1 lorsqu'il choisit de jouer d dés (et en supposant que lui-même et le joueur 2 jouent de façon optimale dans la suite) est

(3)
$$\sum_{k=1}^{6d} P(d,k)EG(i+k,j,2).$$

Ainsi, son choix optimal est de choisir le nombre d de dés qui maximise la quantité ci-dessus, ce qui donne

$$EG(i,j,1) = \max_{d \in \{1,\dots,D\}} \sum_{k=1}^{6d} P(d,k)EG(i+k,j,2).$$

Comme le jeu est symétrique par rapport à la permutation des deux joueurs (en changeant le signe du gain du joueur 1), on a EG(i + k, j, 2) = -EG(j, i + k, 1), et ainsi on obtient la formule

$$EG(i,j,1) = \max_{d \in \{1,...,D\}} \left(-\sum_{k=1}^{6d} P(d,k)EG(j,i+k,1) \right).$$

Comme cela ne fait intervenir que les espérances de gain lorsque c'est au joueur 1 de jouer (donc n = 1), on peut supprimer la troisième composante de l'état de la notation, comme à l'énoncé, pour arriver à

(4)
$$EG(i,j) = \max_{d \in \{1,\dots,D\}} \left(-\sum_{k=1}^{6d} P(d,k)EG(j,i+k) \right),$$

où EG(i, j) doit se comprendre comme EG(i, j, 1).

On initialise la récurrence en remarquant que EG(i,j)=1 si $i \ge N$ et j < N et que EG(i,j)=-1 si i < N et $j \ge N$. Comme le jeu est séquentiel, il n'est pas nécessaire d'initialiser EG(i,j) pour $i \ge N$ et $j \ge N$: il est impossible que les deux joueurs aient une quantité supérieure ou égale à N points car le jeu s'arrête dès que le premier joueur atteint N points ou plus.

6. Question 5

Notons OPT(i,j) la stratégie optimale du joueur 1 dans l'état (i,j,1), c'est-à-dire le nombre de dés qu'il doit lancer pour maximiser l'espérance de son gain. Cela revient à maximiser (3) par

rapport à d, ce qui donne

$$OPT(i,j) = \underset{d \in \{1,...,D\}}{\operatorname{argmax}} \left(-\sum_{k=1}^{6d} P(d,k)EG(j,i+k) \right).$$

Cela peut être calculé en même temps que le calcul récursif de *EG* par la formule (4).

7. Question 6

Dans ce cas, la somme dans (4) doit commencer à k=0 à la place de k=1. Le calcul de EG(i,j) par (4) utilise en particulier, dans le second membre, la valeur de EG(j,i). Or, le calcul de EG(j,i) par (4) utilise dans son second membre la valeur de EG(i,j). Ainsi, (4) ne permet pas de calculer EG(i,j) de façon explicite, mais donne uniquement une relation implicite où EG(i,j) dépend de lui-même. Il faudrait alors implémenter une méthode pour être capable de calculer EG(i,j) à partir de cette relation implicite.