

Betriebssysteme 1. Einführung

Organisatorisches

- Diese Vorlesung findet mittwochs 8:00-9:30 Uhr statt
 - Alternativ: in englischer Sprache: Mittwoch, 9:45-11:15 Uhr
 - Inhalte identisch, Wechsel jederzeit möglich
 - Raum B013
- Prüfung: schriftlich, 60 Minuten (deutsch)
- Online Support: Moodle ("BeSy25")
 - Vorlesungsfolien
 - Beispielprogramme aus der Vorlesung
 - Links zu anderen Materialien
 - Alle wichtigen Ankündigungen
 - Forum zur Diskussion
 - Dokumente und Organisatorisches f
 ür das Praktikum/Labor

Praktikum/Labor Betriebssysteme

- Termin:
 - Dienstag 14:00-17:15 Uhr
 - Für WIN/WINplus:
 - Start: 25.3.2025 (Gruppe 1) in B207
 - Für Al:
 - Start: 25.3.2025 (Gruppe A) in E007
 - Genaue Termine f
 ür jede Gruppe finden Sie in Moodle
- Es besteht Anwesenheitspflicht
- Durchführung
 - 6 Termine mit insgesamt 10 Laborversuchen
 - Beantworten von Fragen auf einem Laborbogen
 - "Pre-lab"-Fragen zur Vorbereitung (ab dem 2. Termin)
 - Versuche 4 und 5 beinhalten auch Programmierung
 - Labortest am Ende

Anmerkungen

- Fehler in den Unterlagen/Aufschrieb bitte melden
- Fragen sind erlaubt und erwünscht!
- Erreichbarkeit
 - Vor/nach der Vorlesung, im Praktikum
 - E-Mail: tobias.lauer@hs-offenburg.de
 - Per Moodle-Forum

Literaturempfehlungen

[Tan02] A.S. Tanenbaum, *Moderne Betriebssysteme*, Pearson Studium, 2002 (4. Auflage 2016).

[Stal03] W. Stallings, *Betriebssysteme, Prinzipien und Umsetzung* Pearson Studium, 2003 (7. Auflage 2012).

[Gla10] E. Glatz, Betriebssysteme, dpunkt, 2010 (3. Auflage 2015).

[Man10] P. Mandl, *Grundkurs Betriebssystem*, Vieweg+Teubner, 2010.

Vorlesungsüberblick

- 1. Einführung
- 2. Grundlagen
- 3. Prozesse
- 4. Threads
- 5. Scheduling
- 6. Synchronisation
- 7. Kommunikation
- 8. Deadlocks
- 9. Speicherverwaltung
- 10. Dateisysteme
- 11.E/A-Verwaltung

Was ist ein Betriebssystem?

Jeder hatte schon praktischen Umgang mit Betriebssystemen!

Was ist ein Betriebssystem?

Betriebssystem

Hardware

DIN 44300: Betriebssysteme

Die <u>Programme</u> eines digitalen Rechensystems, die zusammen mit den Eigenschaften der Rechenanlage die Grundlage der möglichen Betriebsarten des digitalen Rechensystems bilden und insbesondere die <u>Ausführung von</u> <u>Programmen steuern und</u> <u>überwachen.</u>

Wikipedia:

Ein Betriebssystem ist die <u>Software</u>, die die Verwendung (den Betrieb) eines <u>Computers</u> ermöglicht. Es verwaltet <u>Betriebsmittel</u> wie Speicher, Ein- und Ausgabegeräte und steuert die Ausführung von Programmen.

Eine Stufe feiner...(Zoom in)

Anwendungen

z.B. Reservierungssystem, Fakturierung, Flugüberwachung

Middleware

z.B. Datenbanken, Kommunikationsdienste, etc.

Dienstprogramme

z.B. Editoren, Compiler, Shells,...

Betriebssystem

"Herz" des Systems

Hardware

CPU, Disk, Memory, USB Port, etc.

Aufgaben eines Betriebssystems

- Komplexe Hardware für Anwendung einfach verfügbar machen
 - benutzerfreundliche Schnittstellen zur Maschine
 - Programmierer unterstützen durch höherwertige Dienste
- Betriebsmittelverwaltung (CPU, Speicher, E/A-Geräte, etc.)
 - Sicherstellen, dass jede Anwendung bekommt "was sie braucht"
 - Parallele Ausführung von Anwendungen unterstützen Warum nötig?

Real programmers code in binary.

- Synchronisation/Koordination der Nutzung der Betriebsmittel
- Fairness, Effizienz
- Kommunikation und Synchronisation der Programme unter sich
- Schutz/Sicherheit
 - Benutzer voreinander schützen
 - Sich selbst schützen
- Fehlererkennung und -behandlung

Aufgabenbereiche

- Prozessverwaltung
- Aufgabenverwaltung ("Scheduling")
- Speicherverwaltung
- Ein-/Ausgabeverwaltung
- Dateiverwaltung
- Interprozess-Kommunikation (IPC)
- Interprozess-Synchronisation
- Accounting (Abrechnung)

Arten von Betriebssystemen

- Batch-Systeme (eher "historisch") z.B. erste IBM System /360
 - automatische Abarbeitung von "Jobs"
 - keine (oder zweitrangige) interaktive Nutzung
- Multi-User Timesharing Systeme ("Standard") z.B. Windows, UNIX
 - Interaktive Benutzung des Rechensystems
 - "Konkurrierende" Benutzer und Anwendungen
- Echtzeitbetriebssysteme z.B. VxWorks, RT UNIX
 - Realisieren garantierte Antwortzeiten des Systems
 - häufig auch in Kombination mit "Embedded Systems"
- Mobile Kleinstbetriebssysteme z.B. Windows CE
 - für PDAs (Personal Digital Assistent Systems), etc.
 - Optimierung auf geringen Speicherbedarf und Stromverbrauch
- Verteilte Betriebssysteme, Netzwerkbetriebssystem (Forschungsfeld)

Umspannen mehrere Rechner z.B. AMOEBA

Historie 1945-1955

- Kein Betriebssystem
- Hardware teuer, langsam und in kleinen Stückzahlen gefertigt
- Programm "verwaltet sich selbst"
- Alle E/A-Aufgaben, etc. = Teil des Programms (Programm läuft nur auf einer Hardware!)

Historie 1955-1965

- Erste Batch-Betriebssysteme auf "Mainframes"
- 1 Job = einzelner Programmlauf mit
 - Einlesen von Programm und Daten (Lochkartenleser, Magnetband)
 - Bearbeiten (Rechnen im Arbeitsspeicher)
 - Ausgabe von Daten (Drucker, Magnetband)
- Betriebssystem steuert Abarbeitung der Jobs
- Operateure erledigen Ein-/Ausgabe, etc.
- Frühform: Ein Job nach dem anderen Welche Nachteile?
- Später: Mehrprogrammbetrieb ("Verzahnte" Job-Abarbeitung)
- "Job Control Language" zur Steuerung der Jobs
- Frühform: Ohne Festplatte Welche Nachteile?
- Später: Magnettrommel, Magnetplatte, mehrstufiges Speicherkonzept

Erste Batch-Betriebssysteme

Quelle: [Tan02]

Beispiel: IBM OS/360

Aus: "Introduction to IBM Data Processing Systems", 1968 (Lehrbuch)

Historie 1965-85

- Time-Sharing Betriebssysteme
- Schnellere CPUs und Ein-/Ausgabe
- Interaktive Nutzung gewinnt vermehrt an Bedeutung
- Jeder Benutzer hat sein eigenes ("dummes") Terminal
- Flexiblere Speicherkonzepte werden wichtiger (kleiner Hauptspeicher, große Festplatte)
- Schutzkonzepte werden wichtiger
- Beispiele: IBM OS/360, Siemens BS1000, Multics

Historie 1980-1995

- Siegeszug von Workstation und PC
- Speicher und CPU werden um Faktoren günstiger (Moore'sches Gesetz → Verdopplung der Integrationsdichte/Leistung ca. alle 18 Monate)
- Betriebssysteme DOS, Windows, UNIX
- Mikrokernel-Architekturen
- Graphische Benutzeroberflächen
- Standardisierung der Kommunikation (ISO/OSI, TCP/IP)
- Client-Server Architekturen
- Verteilte Systeme (Kooperierende Computer)

Historie 1995-Jetzt

- Multimedia
- Internet "für alle", WWW
- Multicore-CPUs
- Embedded Systems
- Ubiquitous Computing
- Mobile Geräte (Android, iOS, ...)
- Virtualisierung
- Cloud Computing