

ИПМ им.М.В.Келдыша РАН • Электронная библиотека

Препринты ИПМ • Препринт № 174 за 2018 г.

ISSN 2071-2898 (Print) ISSN 2071-2901 (Online)

Калиткин Н.Н., Колганов С.А.

Функции Ферми-Дирака. Свойства функций

Рекомендуемая форма библиографической ссылки: Калиткин Н.Н., Колганов С.А. Функции Ферми-Дирака. Свойства функций // Препринты ИПМ им. М.В.Келдыша. 2018. № 174. 24 с. doi:10.20948/prepr-2018-174

URL: http://library.keldysh.ru/preprint.asp?id=2018-174

Ордена Ленина ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ имени М.В.Келдыша Российской академии наук

Н.Н. Калиткин, С.А. Колганов

Функции Ферми-Дирака. Свойства функций

Калиткин Н.Н., Колганов С.А.

Функции Ферми-Дирака. Свойства функций.

Рассмотрены функции Ферми-Дирака произвольного вещественного индекса. Дан обзор их важнейших свойств, включая разложения функций при отрицательных и положительных аргументах. Построен ряд, сходящийся при любых значениях аргумента. Найдены коэффициенты этого ряда для целых и полуцелых индексов функций. Аналогично исследованы свойства интегральной функции Ферми-Дирака.

Ключевые слова: функции Ферми-Дирака, качественные свойства

Nikolai Nikolaevich Kalitkin, Semen Andreevich Kolganov The Fermi-Dirac functions. Properties of functions.

The Fermi-Dirac functions of an arbitrary real index are considered. An overview of their most important properties is presented, including function expansions with negative and positive arguments. The series is built, which converges for all values of the argument. The coefficients of this series for integer and half-integer function indices are calculated. The analogous properties are investigated for the integral Fermi-Dirac function.

Key words: Fermi-Dirac functions, qualitative properties

Работа выполнена при поддержке Российского фонда фундаментальных исследований, проект 18-01-00175, и программы РУДН "5-100".

Оглавление

1. Определение функций Ферми-Дирака	3
2. Связь функций соседних индексов	4
3. Ряд для x < 0	5
4. Всюду сходящийся ряд	
5. Изменение знака аргумента	16
6. Интегральная функция ФД	19
Библиографический список	

1. Определение функций Ферми-Дирака

Функции Ферми-Дирака (далее ФД) возникают в задачах квантовой механики при описании свойств вещества, обусловленных поведением электронов (или других фермионов). Как известно, функция распределения электронов имеет вид $const\{1 + exp[(0.5p^2 - \mu)/T]\}^{-1}$, где p есть импульс электрона, и – химический потенциал, а Т – температура (все физические формулы написаны в атомной системе единиц; за единицу берутся масса электрона, заряд электрона и постоянная Планка). При решении квантовофермиевского задач используются различные моменты механических распределения; они равны сверткам различных степеней импульса р с этим распределением. В таких свертках принято выбирать величину $t = 0.5 p^2 / T$ в качестве переменной интегрирования. Тогда эти моменты приобретают следующий вид:

$$I_{k}(x) = \int_{0}^{\infty} \frac{t^{k} dt}{1 + \exp(t - x)}, x\epsilon(-\infty; +\infty);$$
 (1)

здесь величина x является химическим потенциалом, делёным на температуру. Целые k соответствуют нечетным моментам импульса, а полуцелые — четным. В физических задачах нужны только целые и полуцелые индексы и вещественные значения x, хотя в математической теории этих функций рассматриваются произвольные k и комплексные x.

Интеграл в (1) сходится при k > -1. Способ доопределения функции $\Phi Д$ для индекса k < -1 будет показан далее. Заметим, что при целых отрицательных k функции $\Phi Д$ имеют полюс.

Перечислим индексы, актуальные физических приложений. для плотности соответствует k = 1/2. Кинетической Электронной электронов соответствует k = 3/2. В довольно известной статистической модели атома Томаса-Ферми с квантовой и обменной поправками требуются k = -1/2 и k = -3/2. Для вычисления проводимости в простейшем приближении необходимо k = 1, для электронной теплопроводности — k = 2, для электронной вязкости — k = 3. Для уточнения этих приближений может потребоваться k = 4. Поэтому определим задачу так: нужны алгоритмы вычисления для целых и полуцелых индексов k в пределах $-3/2 \le k \le 4$.

История. Функции ФД впервые появились на заре развития квантовой механики в работах Паули [1] и Зоммерфельда [2] при описании вырожденного электронного газа в металлах. Основные свойства этих функций изложены в статье МакДугала и Стоунера [3]. В ней приведены сходящийся ряд при x < 0 и асимптотическое разложение при $x \to +\infty$. Заметим, что в асимптотическом

разложении в формуле (5.3) имеется опечатка. Вместо сомножителя (k-r+2) следует писать (k-2r+2). Улучшенное выражение для асимптотического разложения получено в [4]; в нем содержится связь между значениями $I_k(x)$ и $I_k(-x)$. В [5] построен ряд, сходящийся при любых значениях x.

Поскольку прямое вычисление квадратур (1) в общем случае трудоемко, много работ было посвящено вычислению таблиц функций для конкретных индексов и построению для них несложных экономичных аппроксимаций. Но эти работы мы рассмотрим позднее.

Точное решение. При k=0 интеграл (1) легко вычисляется в элементарных функциях. Это дает

$$I_0(x) = \ln(1 + e^x). \tag{2}$$

Для этой функции выполняется следующее соотношение, связывающее функцию положительного и отрицательного аргументов:

$$I_0(x) = I_0(-x) + x, x \ge 0.$$
 (3)

В его справедливости нетрудно убедиться, подставляя (2) в (3).

2. Связь функций соседних индексов

Пусть k > 0. Вычислим производную функции ФД, дифференцируя (1) по x:

$$I_k(x) = \int_0^\infty \frac{d}{dx} \left(\frac{1}{1 + \exp(t - x)} \right) t^k dt.$$

Поскольку дробь в скобках зависит только от выражения t-x, то дифференцирование этой дроби по x эквивалентно дифференцированию этой дроби по t со знаком "минус":

$$I_k(x) = -\int_0^\infty \frac{d}{dt} \left(\frac{1}{1 + \exp(t - x)} \right) t^k dt.$$

Берем получившийся интеграл по частям:

$$I_k(x) = -\frac{t^k}{1 + \exp(t - x)} \bigg|_0^\infty + \int_0^\infty \frac{d}{dt} (t^k) \frac{dt}{1 + \exp(t - x)}.$$

Поскольку k>0, выражение перед интегралом обращается в нуль при t=0 и при $t\to +\infty$. Раскрывая в последнем интеграле d/dt, получим:

$$I_{k}(x) = k \int_{0}^{\infty} \frac{t^{k-1}dt}{1 + \exp(t - x)} = kI_{k-1}(x).$$
 (4)

Это соотношение связывает производную функции $\Phi Д$ с функцией $\Phi Д$ на единицу меньшего индекса.

Соотношение (4) было получено для k > 0; при этом в правой части стоит функция с индексом больше -1. Будем считать это соотношение справедливым для любых значений k. Тогда оно доопределяет функции Φ Д нецелых индексов k < -1: оно выражает эти функции через производные функции $\Phi \Pi$ на единицу большего индекса. Очевидно, для получения функции $\Phi Д$ с индексом -1 < k < 0надо продифференцировать функцию с положительным индексом 0 < k < 1. Для нахождения функции $\Phi \Pi$ с индексом -2 < k < -1 надо продифференцировать функцию -1 < k < 0, т.е. дважды продифференцировать функцию положительным индексом 0 < k < 1. Это рекуррентный процесс, т.е. для уменьшения индекса на единицу требуется лишний каждого продифференцировать функцию с положительным индексом. Поэтому следует ожидать, что численное нахождение функции ФД с большими отрицательными индексами будет связано с существенной потерей точности.

При k=0 соотношение (4) теряет смысл: слева стоит производная от (2), которая положительна и конечна при любом конечном x. Это означает, что $I_{-1}(x)=\infty$ при любом значении x. Соответственно, не существует $I_k(x)$ при любом целом k<0.

3. Ряд для x < 0

Пусть x < 0. Поскольку в (1) под интегралом $t \ge 0$, то $e^{x-t} < 1$. Тогда в подынтегральном выражении (1) можно преобразовать дробь в сходящийся ряд:

$$\frac{1}{1+e^{t-x}} = \frac{e^{x-t}}{1+e^{x-t}} = \sum_{n=1}^{\infty} (-1)^{n-1} e^{n(x-t)}.$$

Умножим последнее выражение на t^k и проинтегрируем. Интеграл от $t^k \exp(-nt)$ выражается через $\Gamma(k+1)$. В итоге получаем следующий ряд [3]:

$$I_{k}(x) = \Gamma(k+1) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{e^{nx}}{n^{k+1}}, x < 0.$$
 (5)

Этот ряд сходится при любых x < 0, но сходимость неравномерная: она быстро ухудшается при $x \to -0$. Если x = 0, то ряд (5) сходится для индексов k > -1, но

сходимость при этом крайне медленная. При x > 0 ряд расходится для любого k.

Замечание. Почленное дифференцирование ряда (5) с индексом k точно дает ряд для индекса k-1.

Схема Горнера. Ряд (5) пригоден для практического вычисления функций при $x \le -1$. Ряд (5) знакопеременный, так что ошибка не превышает первого отброшенного слагаемого. Обычно требуется обеспечить некоторую не абсолютную, а относительную точность. Главный член суммы в (5) есть e^x . Если в сумме оставляется N слагаемых, то относительная величина отброшенного члена есть $e^{-Nx}/(N+1)^{k+1}$. Поэтому для заданного x надо выбирать N из условия:

$$\frac{e^{-Nx}}{(N+1)^{k+1}} \le \varepsilon. \tag{6}$$

Можно определить N из уравнения (6) каким-либо итерационным процессом. Но при написании программы можно поступить проще: заранее составить таблицу границ x_N , удовлетворяющих уравнению (6), и далее отслеживать попадание требуемого значения x в эти границы.

Когда N определено, то суммировать отрезок ряда удобнее всего по схеме Горнера:

$$I_{k}(x) = \Gamma(k+1)e^{x} \left(\frac{1}{1^{k+1}} - e^{x} \left(\frac{1}{2^{k+1}} - e^{x} \left(\frac{1}{3^{k+1}} - e^{x} \left(\dots - e^{x} \frac{1}{N^{k+1}} \right) \right) \right) \right). \tag{7}$$

Для 64-битовых вычислений следует полагать $\varepsilon = 10^{-16}$. Тогда для x = -1 число слагаемых составляет N = 37 - 40; оно слабо зависит от k и слегка убывает при увеличении k. При $x \to -\infty$ число слагаемых N быстро убывает.

Таким образом, это достаточно экономичный способ прямого вычисления функций $\Phi Д$ при $x \le -1$.

4. Всюду сходящийся ряд

Этот ряд был предложен в [5]. Применим к подынтегальному выражению (1) следующее преобразование:

$$\frac{1}{1+e^{t-x}} = \frac{2e^{-t}}{(1+2e^{-x})-(1-2e^{-t})} = \frac{2e^{-t}}{1+2e^{-x}} \left(1 - \frac{1-2e^{-t}}{1+2e^{-x}}\right)^{-1} = \frac{2e^{-t}}{1+2e^{-x}} \sum_{m=0}^{\infty} \left(\frac{1-2e^{-t}}{1+2e^{-x}}\right)^{m}.$$

При допустимых значениях переменных $(-\infty < x < +\infty, 0 \le t < +\infty)$ разложение в ряд здесь всегда сходится, так как $\left| (1-2e^{-t})/(1+2e^{-x}) \right| < 1$. Подставляя последнее разложение в интеграл (1), получаем ряд, сходящийся при любых x:

$$I_{k}(x) = 2\Gamma(k+1)\sum_{n=0}^{\infty} \frac{b_{n}^{(k)}}{(1+2e^{-x})^{n+1}},$$
(8)

где

$$b_n^{(k)} = \frac{1}{\Gamma(k+1)} \int_0^\infty (1 - 2e^{-t})^n e^{-t} t^k dt = \sum_{p=0}^n \frac{(-1)^p 2^p n!}{p!(n-p)!(p+1)^{k+1}}; b_0^{(k)} = 1.$$
 (9)

Сумма в (9) получается раскрытием скобки в подынтегральном выражении по формуле бинома и выражением получившихся интегралов через Γ -функцию.

В подынтегральном выражении для $b_n^{(k)}$ стоит скобка $(1-2e^{-t})$, которая по модулю не превосходит 1; поэтому всегда $\left|b_n^{(k)}\right| \le 1$. Следовательно, ряд (8) сходится при любом x не медленней, чем геометрическая прогрессия со знаменателем $(1+2e^{-x})^{-1}$. На любом ограниченном справа полубесконечном интервале эта сходимость будет равномерной. Практически при $x \le 0$, и даже $x \le 1$, сходимость достаточно быстрая, и ряд (8) удобен для прямых вычислений функций ФД. Этим ряд (8) удобнее ряда (5), который практически пригоден лишь при $x \le -1$. Однако при x > 1 скорость сходимости ряда (8) быстро ухудшается.

Отметим одно качественное отличие ряда (8) от ряда (5). Почленное диффиренцирование ряда (8) для индекса k не дает такого же ряда для индекса k=-1.

Коэффициенты ряда. Вычисление $b_n^{(k)}$ с помощью суммы (9) легко выполняется для первых членов ряда:

$$b_0^{(k)} = 1, b_1^{(k)} = 1 - 2^{-k}. (10)$$

Однако для больших n так вычислять коэффициенты из суммы (9) неудобно. Слагаемые суммы знакопеременны. Члены суммы содержат в себе биномиальные коэффициенты. При больших n центральные коэффициенты на много порядков больше крайних коэффициентов. Поэтому суммирование знакопеременных членов в (9) приводит к потере точности. Уже при $n \sim 10$ теряется много значащих цифр, а при $n \sim 20$ потеря точности становится огромной.

Существует способ вычисления $b_n^{(k)}$ без потери точности. Справедливы следующие рекуррентные соотношения, выражающие коэффициенты для индекса k через коэффициенты для индекса k-1:

$$b_0^{(k)} = 1; b_n^{(k)} = \frac{1}{n+1} \left(b_n^{(k-1)} + n b_{n-1}^{(k)} \right), n > 1.$$
(11)

Равенство (11) проверяется интегрированием (9) по частям. Предполагая k > 0 и умножая все на $\Gamma(k+1)$, проинтегрируем сомножитель e^{-t} :

$$\Gamma(k+1)b_n^{(k)} = -(1-2e^{-t})^n e^{-t}t^k \Big|_0^\infty + \int_0^\infty e^{-t} \frac{d}{dt} \Big[(1-2e^{-t})^n t^k \Big] dt.$$

Первое слагаемое равно 0. Преобразуем подынтегральное выражение:

$$e^{-t}\frac{d}{dt}\Big[(1-2e^{-t})^nt^k\Big] = ne^{-t}(1-2e^{-t})^{n-1}(2e^{-t})t^k + k(1-2e^{-t})^nt^{k-1}.$$

Выражение $(2e^{-t})$ в первом слагаемом преобразуем так: $(2e^{-t}) = 1 - (1 - 2e^{-t})$. Тогда последний интеграл выражается через коэффициенты следующим образом:

$$n\Gamma(k+1)b_{n-1}^{(k)} - n\Gamma(k+1)b_n^{(k)} + k\Gamma(k)b_n^{(k-1)}$$
.

Приравнивая полученное выражение величине $\Gamma(k+1)b_n^{(k)}$, доказываем формулу (11).

Поскольку $\left|b_n^{(k)}\right| \le 1$, а коэффициенты в правой части (11) суммируются с положительными весами 1/(n+1) и n/(n+1), причем сумма весов равна 1, то вычисления по формуле (11) будут устойчивыми. Заметим, что если для некоторого k-1 коэффициенты $b_n^{(k-1)} \ge 0$ при всех n, то коэффициенты $b_n^{(k)}$ также будут неотрицательны. Поскольку при увеличении k на 1 вычисления устойчивы, то можно далее снова увеличить k на 1 и повторить этот процесс неограниченное количество раз, не теряя точности.

Заметим, что, рекуррентно суммируя (11) по n, получаем следующее выражение:

$$b_n^{(k)} = \frac{1}{n+1} \sum_{p=0}^{n} b_p^{(k-1)}.$$
 (12)

Вычисление по формуле (12) также устойчиво.

Практически нас интересуют только целые или полуцелые индексы. Для k=0 коэффициенты вычисляются точно:

$$b_n^{(0)} = \frac{1 + (-1)^n}{2(n+1)}, n \ge 0; \tag{13}$$

эта формула легко получается из интеграла (9) заменой переменных $\tau = (1-2e^{-t})$. Заметим, что все нечетные коэффициенты (13) равны 0, а четные положительны. Для других целых индексов k>0 коэффициенты вычисляются рекуррентным применением (11). Видно, что все они будут положительными. В принципе, коэффициенты для целых k выражаются через обыкновенные дроби, но эти выражения чрезмерно громоздки.

Для полуцелых индексов k наиболее удобно начать с индекса k = -1/2. В этом случае в интеграле (9) удобно сделать замену $t = \tau^2$. Получившиеся интегралы вычисляются по квадратурным формулам. По найденным коэффициентам и рекуррентным формулам (11) легко вычисляются значения коэффициентов для более высоких полуцелых индексов.

Индекс k = -3/2. Он требуется в практических приложениях. Формула (11) очевидным образом обращается в сторону уменьшения индекса:

$$b_0^{(k)} = 1; b_n^{(k-1)} = (n+1)b_n^{(k)} - nb_{n-1}^{(k)}, n > 1.$$

Однако эта формула содержит вычитание с большими весами, и вычисления по ней неустойчивы. Выгоднее воспользоваться дифференциальным соотношением (4), полагая в нем k = -1/2, и продифференцировать ряд (8) для этого индекса почленно. Это дает

$$I_{-3/2}(x) = -8\sqrt{\pi}e^{-x} \sum_{n=0}^{\infty} \frac{(n+1)b_n^{(-1/2)}}{(1+2e^{-x})^{n+2}}.$$
 (14)

Этот ряд также сходится при любых x, а вычисления по этой формуле устойчивы.

Коэффициенты для всех целых и полуцелых индексов от k=-1/2 до k=4 приведены в *Таблице 1* в виде десятичных дробей. Число значащих цифр рассчитано на получение относительной точности $\varepsilon=10^{-16}$. Число коэффициентов достаточно для вычисления функций $\Phi Д$ при $x \le 1$ с указанной точностью. Для значений $x \le 0$ достаточно суммировать до n=35.

Таблица 1

n∖k	-1/2	1/2	1
0	1.00000000000000000	1.000000000000000000	1.000000000000000000
1	-0.41421356237309515	0.29289321881345243	0.500000000000000000
2	0.48097395201231308	0.35558679654640596	0.444444444444444
3	-0.31443745684377605	0.18808073319886048	0.33333333333333333
4	0.35496973905796525	0.22145853437068147	0.3066666666666664
5	-0.2639146991274261	0.14056299545433018	0.255555555555554
6	0.29305220065772453	0.16234716762624365	0.23945578231292514
7	-0.23206012422784597	0.11304625614448247	0.20952380952380950
8	0.25480909731988405	0.12879768294174931	0.19858906525573192
9	-0.20961507725316636	0.09495640692225774	0.17873015873015871
10	0.22827198241767724	0.10707600469456860	0.17074642529187981
11	-0.19269402581588935	0.08209516881869711	0.15651755651755650
12	0.20850412514677033	0.09181893469008735	0.15039490424105806
13	-0.17934271566143664	0.07245024537926421	0.13965241108098250
14	0.19305732762114028	0.08049071752872261	0.13478669478669478
15	-0.16845640223916253	0.06493152254322979	0.12636252636252635
16	0.1805638658684417	0.07173342509177166	0.12238964418895212
17	-0.15935707527675091	0.05889506396018707	0.11559021951178811
18	0.17019275877281642	0.06475283737137809	0.11227660685050288
19	-0.15160238383284011	0.05393507631116717	0.10666277650797773
20	0.16140657992677773	0.05905276695952958	0.10385117037040963
21	-0.14488973151960657	0.04978265339229612	0.09913066262630009
22	0.15384051431503362	0.05430690821502384	0.09671099298470294
23	-0.13900414944762135	0.04625228081241362	0.09268136827700697
24	0.1472371586201546	0.05029167592472326	0.09057411354592670
25	-0.13378812964569098	0.04321168340278425	0.08709049379416028
26	0.14140906612540924	0.04684862350362221	0.08523666206241499
27	-0.12912325802251828	0.04056391344911719	0.08219249556018589
28	0.13621609350926644	0.04386226448567407	0.08054733221744463
29	-0.12491855193815647	0.03823623727154638	0.07786242114352980
30	0.13155110392581695	0.04124639426039382	0.07639131286522656
31	-0.12110278860777168	0.03617298229576366	0.07400408433818823
32	0.12733061461119022	0.03893533479017052	0.07267980997348647
33	-0.11761930413804721	0.03433078658639941	0.07054216850367805
34	0.1234884883008756	0.03687814950764765	0.06934300450561377
L	I		

Таблица 1

n∖k	-1/2	1/2	1
35	-0.11442237441589655	0.03267535717643808	0.06741680993601339
36	0.11997156715133331	0.03503471420278660	0.06632519418171647
37	-0.11147463877385461	0.03117920491392763	0.06457979433482919
38	0.11673657115056887	0.03337298353537996	0.06358136436832140
39	-0.10874522884795892	0.02982002822579649	0.06199183025911337
40	0.11374786384105723	0.03186704860665650	0.06107471839675545
41	-0.10620838520960593	0.02857953827769788	0.05962055843492794
42	0.11097580026521373	0.03049573041694243	0.05877486670280144
43	-0.10384241822419096	0.02744259067509849	0.05743907427773778
44	0.10839549296611649	0.02924154405934333	0.05665647756539299
45	-0.10162891623985279	0.02639653405283907	0.05542481500962358
46	0.10598587447494355	0.02808992427458597	0.05469825715292267
47	-0.09955213438673234	0.02543071471914185	0.05355871012890345
48	0.10372897595078695	0.02702863841774685	0.05288216835617696
49	-0.09759851721451281	0.02453609530510165	0.05182452498905343
50	0.10160936547917465	0.02604733589675014	0.05119282534490051
51	-0.09575632184163210	0.02370495786331971	0.05020834793442165
52	0.099613705906352476	0.02513719839243354	0.04961701919090997
53	-0.09401531751504925	0.02293067032007274	0.04869818550218941
54	0.097730403282552378	0.02429066546484510	0.04814334246000084
55	-0.09236654391281224	0.02220750101167265	0.04728363991607226
56	0.095949324771059719	0.02350121721797768	0.04676188938507314
57	-0.09080211507512911	0.02153047010947584	0.04595564991291671
58	0.094261570372856804	0.02276320062241450	0.04546401436426342
59	-0.08931505911688105	0.02089522962675958	0.04470628079152570
60	0.092659286746943334	0.02207168957954948	0.04424213590351627
61	-0.08789918624863347	0.02029796577586911	0.04352855306636278
62	0.091135514254736275	0.02142237130727970	0.04308957628551600
63	-0.08654897937862024	0.01973531895281251	0.04241630165605482
64	0.089684060445614291	0.02081145343731716	0.04200042955957113
65	-0.08525950286539473	0.01920431773576092	0.04136405941472915
66	0.088299394749181859	0.02023558754193138	0.04096945215681271
67	-0.08402632596474541	0.01870232410800966	0.04036696021333017

Таблица 1

n\k	3/2	2	5/2
0	1.0000000000000000000	1.0000000000000000000	1.0000000000000000000
1	0.64644660940672627	0.750000000000000000	0.82322330470336313
2	0.54949333845328618	0.64814814814814814	0.73197998262000408
3	0.45914018713967975	0.5694444444444442	0.66377003374992305
4	0.41160385658588011	0.51688888888888884	0.61333679831711441
5	0.36643037973062181	0.47333333333333333	0.57218572855269900
6	0.33727563514428205	0.43992225461613216	0.53862714378006804
7	0.30924696276930708	0.41112244897959183	0.50995462115372292
8	0.28919704278846736	0.38750762856582965	0.48542600133536123
9	0.26977297920184640	0.36662988158226251	0.46386069912200972
10	0.25498234515573021	0.34882229464677317	0.44487175785234795
11	0.24057508046097745	0.33279689980267180	0.42784703473640034
12	0.22913230001706283	0.31876597706716309	0.41256128591183594
13	0.21794072468579154	0.30597215092529301	0.39865981725283278
14	0.20877739087532027	0.29455978718271980	0.38600098882766526
15	0.19978702410456461	0.28404745838145773	0.37436261603247145
16	0.19225445945675326	0.27453817519366330	0.36365037152801749
17	0.18484560415138848	0.26570773321133689	0.35371677334042695
18	0.17852493221559845	0.25763241077129301	0.34449615012333074
19	0.17229543942037689	0.25008392905812726	0.33588611458818302
20	0.16690293120795557	0.24312046435871212	0.32783929633198172
21	0.16157928221633469	0.23657547337087523	0.32028202296308866
22	0.15691526595540814	0.23049440900625906	0.31317912048449387
23	0.15230430824111671	0.22475219897587354	0.30647600330768648
24	0.14822380294846099	0.21938507555867567	0.30014591529331747
25	0.14418487527362728	0.21429682241388662	0.29414741375409864
26	0.14057982891177523	0.20951681647494322	0.28845972542660520
27	0.13700783193096602	0.20496951929941615	0.28305072923033237
28	0.13379591581216285	0.20067909905521025	0.27790401152625754
29	0.13061059319414231	0.19658520979148755	0.27299423091518704
30	0.12772787709950525	0.19270798730999525	0.26830821950177797
31	0.12486678663688833	0.18899849034212629	0.26382567472475016
32	0.12226280324759384	0.18547368184610691	0.25953589074059391
33	0.11967656746344106	0.18209334321838841	0.25542238123244237
34	0.11731089837898982	0.17887190496945199	0.25147633886520088
	•		

Таблица 1

n∖k	3/2	2	5/2
35	0.11495991112336339	0.17577593010741202	0.24768421587237210
36	0.11279977066605049	0.17281780210942027	0.24403869032625530
37	0.11065186104099461	0.16996943348377314	0.24052851060822211
38	0.10867035136136348	0.16724153427568461	0.23714753216599496
39	0.10669909328297431	0.16461029167527036	0.23388632119391944
40	0.10487392146160071	0.16208503379042852	0.23073967729800923
41	0.10305738852865064	0.15964540342482136	0.22769962280350070
42	0.10136990810744811	0.15729957698942557	0.22476172246173204
43	0.09968974180216744	0.15503002010961447	0.22191917744674194
44	0.09812422629677135	0.15284394138640955	0.21916817853229817
45	0.09656492863929457	0.15072613429126203	0.21650289049114591
46	0.09510801365281142	0.14868298796916971	0.21392002077118136
47	0.09365640325835996	0.14670123218083084	0.21141452873966424
48	0.09229665295549030	0.14478655740889912	0.20898355168284435
49	0.09094144180248254	0.14292731676050219	0.20662270948523712
50	0.08966900835335054	0.14112860124254922	0.20432949965912170
51	0.08840046892084995	0.13938013483277753	0.20210009522184727
52	0.08720682230710623	0.13768649114142154	0.19993229761968234
53	0.08601652319623525	0.13603855955550984	0.19782274624147037
54	0.08489423487384633	0.13444046469922785	0.19576950058024084
55	0.08377482891202180	0.13288409282810007	0.19376959572902264
56	0.08271739712791576	0.13137317697822240	0.19182131154303830
57	0.08166245011035646	0.12990046099433783	0.18992202082868170
58	0.08066415774615404	0.12846933478026876	0.18807019264084227
59	0.07966800894416413	0.12707328388045638	0.18626348957923095
60	0.07872380698736717	0.12571539620870326	0.18450054396297091
61	0.07778145470976236	0.12438980196447197	0.18277926832985464
62	0.07688686608432613	0.12309932219179014	0.18109843654817959
63	0.07599387316039623	0.12183864999591927	0.17945617774524547
64	0.07514491285696424	0.12061036968151391	0.17785138905465653
65	0.07429732808240055	0.11940966801080505	0.17628238813083447
66	0.07349043643254280	0.11823891852044695	0.17474817989653160
67	0.07268472889835849	0.11709374266298934	0.17324724679361730

Таблица 1

n∖k	3	7/2	4
0	1.0000000000000000000	1.000000000000000000	1.000000000000000000
1	0.875000000000000000	0.91161165235168151	0.937500000000000000
2	0.79938271604938260	0.85173442910778896	0.89146090534979416
3	0.74189814814814814	0.80474333026832245	0.85407021604938271
4	0.69689629629629635	0.76646202387808082	0.82263543209876544
5	0.65963580246913578	0.73408264132385048	0.79546882716049383
6	0.62824815277584956	0.70616042738902440	0.77158015939125890
7	0.60110743980131731	0.68163470160961170	0.75027106944251620
8	0.57737412744181871	0.65983373491247277	0.73106029810910533
9	0.55629970285586317	0.64023643133342645	0.71358423858378117
10	0.53743812029140037	0.62247600647151025	0.69757095510265565
11	0.52038468525067294	0.60625692549358445	0.68280543261499049
12	0.50487555385194149	0.59135726091037299	0.66911851886398677
13	0.49066816792860946	0.57759315779197717	0.65637206522574554
14	0.47759427587888342	0.56482034652768975	0.64445354593595472
15	0.46549759978529431	0.55291673837173860	0.63326879930153845
16	0.45426469245637480	0.54178342267504909	0.62273914595770530
17	0.44378930583165049	0.53133527548979231	0.61279748817292445
18	0.43399157451268427	0.52150163731261012	0.60338665061185914
19	0.42479619223995640	0.51222086117638876	0.59445712769326398
20	0.41614496710275428	0.50344078665998837	0.58596607242704923
21	0.40798271738766889	0.49511538831012930	0.57787591992525933
22	0.40026583441456409	0.48720511579597120	0.57015374229435944
23	0.39295276627128528	0.47967473610895933	0.56277036829339810
24	0.38601005864278087	0.47249358327633367	0.55569995590737331
25	0.37940570340320801	0.46563411521778614	0.54891940773413617
26	0.37311352240586487	0.45907210078107574	0.54240807864790397
27	0.36710837943777747	0.45278562322569205	0.53614737510468513
28	0.36136943873493027	0.44675522282226326	0.53012054971262468
29	0.35587663110348217	0.44096318975869403	0.52431241909231985
30	0.35061312646498266	0.43539367458911610	0.51870921610434129
31	0.34556266908614336	0.43003217459335463	0.51329838651002258
32	0.34071148765462711	0.42486562053721039	0.50806848048410147
33	0.33604624811238482	0.41988199585177599	0.50300900306140395
34	0.33155555259401526	0.41507040565215958	0.49811033304804997

Таблица 1

n∖k	3	7/2	4
35	0.32722834085827629	0.41042078926938769	0.49336361104277848
36	0.32305508305425318	0.40592397578443817	0.48876067785389943
37	0.31902651332871423	0.40157146354295881	0.48429398931376300
38	0.31513459078889294	0.39735546530252380	0.47995656883876636
39	0.31137148331105235	0.39326873669980872	0.47574194170057355
40	0.30773035039591523	0.38930461329976485	0.47164409801021601
41	0.30420451832517487	0.38545687543080620	0.46765744135104836
42	0.30078812434062258	0.38171977885013003	0.46377675956010828
43	0.29747544015355420	0.37808794700005310	0.45999718411905022
44	0.29426140684761770	0.37455639658965856	0.45631416684635173
45	0.29114107483552298	0.37112045080490830	0.45272344745481197
46	0.28811005171070697	0.36777576080419067	0.44922103477940545
47	0.28516403463716788	0.36451823513617970	0.44580318060977553
48	0.28229918816312161	0.36134405792284635	0.44246636443739484
49	0.27951175073506923	0.35824963095409418	0.43920727216334832
50	0.27679835564698058	0.35523158916399666	0.43602278360420388
51	0.27415569755439972	0.35228675274203225	0.43290995502632301
52	0.27158080686736241	0.34941214038123319	0.42986600883464449
53	0.26907076525047624	0.34660492937864501	0.42688831913864139
54	0.26662294160408995	0.34386246703685580	0.42397440318346774
55	0.26423474787594725	0.34118223719207308	0.42112190933869054
56	0.26190384312335557	0.33856187007542338	0.41832860993140397
57	0.25962792274182078	0.33599911405392779	0.41559239118675600
58	0.25740489582721821	0.33349184419946876	0.41291124719761130
59	0.25523270229477218	0.33103803828913148	0.41028327144923066
60	0.25310946776877102	0.32863578428378459	0.40770665171676407
61	0.25103334412676620	0.32628325983291478	0.40517966288466734
62	0.24900264536589356	0.32397873882839517	0.40270066260659160
63	0.24701570793823771	0.32172057381147096	0.40026808518989859
64	0.24507101042659579	0.31950720173828917	0.39788043788584776
65	0.24316705069302325	0.31733712880484288	0.39553629565565351
66	0.24130245170537284	0.31520893553755464	0.39323429798475379
67	0.23947585304298483	0.31312126364426146	0.39097314438266895

5. Изменение знака аргумента

В [4] получено фундаментальное соотношение, связывающее функции $\Phi \mathcal{J}$ произвольного индекса k>-1 от положительного и отрицательного аргументов. Запишем его в несколько преобразованном виде, предполагая x>0:

$$I_{k}(x) \approx \cos(\pi k)I_{k}(-x) + \frac{x^{k+1}}{k+1} \left[1 + \sum_{n=1}^{N} (2 - 2^{2-2n}) \frac{\zeta(2n)}{x^{2n}} \prod_{p=1}^{2n} (k+2-p) \right]; \quad (15)$$

здесь ζ – функция от четного аргумента выражается через числа Бернулли:

$$\zeta(2n) = \frac{2^{2n-1}\pi^{2n} |B_{2n}|}{(2n)!}.$$
(16)

Заметим, что при сравнении данных формул с [4] надо учитывать одно обстоятельство: определение функции $\Phi Д$ в [4] отличается от (1) делителем $\Gamma(k+1)$.

Представление (15) является асимптотическим. Это означает, что при фиксированном x и возрастании N, т.е. увеличении числа членов суммы, точность сначала возрастает до некоторого номера N(x), а при дальнейшем добавлении членов начинает ухудшаться. Оптимальное N(x) монотонно возрастает при $x \to +\infty$. Таким образом, представление (15) позволяет получать высокую точность при положительных x >> 1, но при умеренных x > 0 его точность невелика.

Нетрудно убедиться, что почленное дифференцирование разложения (15) дает разложение для функции Φ Д с индексом k=-1. Однако оптимальное число членов N(x) оказывается разным для функций соседних индексов.

В *Таблице* 2 приведены значения первых 12 чисел Бернулли и ζ – функции. Такого количества достаточно для обеспечения относительной погрешности 10^{-16} при аргументах $x \ge 50$.

 $\begin{tabular}{ll} \it Tаблица~2 \\ \it 3$ Вначения чисел Бернулли и $\it \zeta$ -функции

	9 10 20pj		
2 <i>n</i>	B_{2n}	$\zeta(2n)/\pi^{2n}$	
2	$\frac{1}{6}$	$\frac{1}{6}$	
4	$-\frac{1}{30}$	$\frac{1}{90}$	
6	$\frac{1}{42}$	<u>1</u> 945	
8	$-\frac{1}{30}$	1 9450	
10	$\frac{5}{66}$	<u>1</u> 93555	
12	$-\frac{691}{2730}$	$\frac{691}{638512875}$	
14	$\frac{7}{6}$	$\frac{2}{18243225}$	
16	$-\frac{3617}{510}$	3617 325641566250	
18	$\frac{43867}{798}$	$\frac{43867}{38979295480125}$	
20	$-\frac{174611}{330}$	174611 1531329465290625	
22	$\frac{854513}{138}$	77683 13447856940643124	
24	$-\frac{236364091}{2730}$	236364091 201919571963756511232	

Целые индексы. Сам асимптотический ряд (15) был получен ещё в ранних работах [3]. Однако там ещё не была обнаружена связь с функциями от отрицательного аргумента. Для функций произвольного индекса последнее обстоятельство несущественно, поскольку точность асимптотического ряда хороша лишь при больших значениях x, когда величина $I_k(-x)$ весьма мала.

Однако для целых индексов $k \ge 0$ ситуация кардинально меняется. В этом случае в произведении по p сомножитель со значением p = 2k + 2 равен нулю. Тем самым, сумма по n содержит лишь конечное число слагаемых вплоть до $N = 1 + \left\lfloor k/2 \right\rfloor$, где квадратные скобки обозначают целую часть числа. Поэтому соотношение (15) принимает следующий вид:

$$I_{k}(x) = (-1)^{k} I_{k}(-x) + \frac{x^{k+1}}{k+1} \left[1 + \sum_{n=1}^{1+\lfloor k/2 \rfloor} (2 - 2^{2-2n}) \frac{\zeta(2n)}{x^{2n}} \prod_{p=1}^{2n} (k+2-p) \right].$$
 (17)

Самое поразительное то, что для целых индексов соотношение (17) является не асимптотическим, а точным! В этом можно убедиться следующим образом. Для функции $I_0(x)$ оно совпадает с соотношением (3), которое является точным. Полагая k=1 в (4), подставляя в правую часть (3) и интегрируя, получим для $I_1(x)$ соотношение между функциями функции положительного И отрицательного аргументов, которое также оказывается точным. Последовательно повышая таким интегрированием индекс k на единицу, убедимся в том, что соотношение (17) является точным для всех функций целого индекса.

Приведем такие соотношения для нескольких первых индексов:

$$I_{0}(x) = I_{0}(-x) + x, x \ge 0;$$

$$I_{1}(x) = -I_{1}(-x) + \frac{x^{2}}{2} + \frac{\pi^{2}}{6}, x \ge 0;$$

$$I_{2}(x) = I_{2}(-x) + \frac{x^{3}}{3} + \frac{\pi^{2}}{3}x, x \ge 0;$$

$$I_{3}(x) = -I_{3}(-x) + \frac{x^{4}}{4} + \frac{\pi^{2}}{2}x^{2} + \frac{7\pi^{4}}{60}, x \ge 0;$$

$$I_{4}(x) = I_{4}(-x) + \frac{x^{5}}{5} + \frac{2\pi^{2}}{3}x^{3} + \frac{7\pi^{4}}{15}x, x \ge 0.$$
(18)

Этих значений k достаточно для практических приложений.

6. Интегральная функция ФД

В квантово-механических моделях атома возникает ещё одна специфическая функция, связанная с вычислением обменной энергии в квазиклассическом приближении. Её называют интегральной функцией ФД:

$$J(x) = \int_{-\infty}^{x} \left[I_{-1/2}(\xi) \right]^{2} d\xi.$$
 (19)

Исследуем свойства этой функции.

Разложение при x < 0. Запишем разложение (5) для индекса k = -1/2:

$$I_{-1/2}(x) = \sqrt{\pi} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{e^{nx}}{\sqrt{n}}, x \le 0.$$

Возводя этот ряд в квадрат и группируя члены с одинаковыми экспонентами, получим

$$\left[I_{-1/2}(x)\right]^2 = \pi \sum_{n=2}^{\infty} (-1)^n e^{nx} \sum_{p=1}^{n-1} \frac{1}{\sqrt{p(n-p)}}, x \le 0.$$

Почленно интегрируя полученный ряд от $-\infty$ до x, получим искомое разложение:

$$J(x) = \pi \sum_{n=2}^{\infty} (-1)^n a_n e^{nx}, a_n = \frac{1}{n} \sum_{p=1}^{n-1} \frac{1}{\sqrt{p(n-p)}}, x \le 0.$$
 (20)

Это разложение сходится при x < 0 и расходится при x > 0. Сходимость тем быстрее, чем больше модуль x. Ряд (20) знакопеременный. Фактически он пригоден для вычисления функции (19) при $x \le -1$, как и ряд (5). Значения коэффициентов a_n приведены в Taблице 3.

Всюду сходящийся ряд. Напишем всюду сходящийся ряд (8) для k = -1/2:

$$I_{-1/2}(x) = 2\sqrt{\pi} \sum_{n=0}^{\infty} \frac{b_n^{(-1/2)}}{(1+2e^{-x})^{n+1}}, -\infty < x < +\infty.$$

Возводя этот ряд в квадрат и группируя члены с одинаковыми знаменателями, получим

$$\left[I_{-1/2}(x)\right]^2 = 4\pi \sum_{n=0}^{\infty} \frac{1}{(1+2e^{-x})^{n+2}} \sum_{p=0}^{n} b_p^{(-1/2)} b_{n-p}^{(-1/2)}.$$
 (21)

Для получения J(x) надо проинтегрировать (21) от $-\infty$ до x. Будем искать интеграл в виде аналогичного разложения с неизвестными коэффициентами c_n :

$$J(x) = 4\pi \sum_{n=0}^{\infty} \frac{c_n}{(1+2e^{-x})^{n+2}}, -\infty < x < +\infty.$$
 (22)

Продифференцируем (22) по х и проведем следующие преобразования:

$$J'(x) = 4\pi \sum_{n=0}^{\infty} \frac{2e^{-x}(n+2)c_n}{(1+2e^{-x})^{n+3}} = 4\pi \sum_{n=0}^{\infty} \frac{\left[(1+2e^{-x})-1\right](n+2)c_n}{(1+2e^{-x})^{n+3}} = 4\pi \left[\sum_{n=0}^{\infty} \frac{(n+2)c_n}{(1+2e^{-x})^{n+2}} - \sum_{n=0}^{\infty} \frac{(n+2)c_n}{(1+2e^{-x})^{n+3}}\right].$$

Сдвигая во второй сумме индекс n на 1, получим

$$J'(x) = 4\pi \left[\sum_{n=0}^{\infty} \frac{(n+2)c_n}{(1+2e^{-x})^{n+2}} - \sum_{n=1}^{\infty} \frac{(n+1)c_{n-1}}{(1+2e^{-x})^{n+2}} \right].$$

Сопоставляя последнее выражение с (21) и приравнивая коэффициенты при одинаковых степенях знаменателя, найдем следующее соотношение между коэффициентами:

$$n = 0: 2c_0 = \left[b_0^{(-1/2)}\right]^2 = 1;$$

$$n > 0: (n+2)c_n - (n+1)c_{n-1} = \sum_{p=0}^n b_p^{(-1/2)} b_{n-p}^{(-1/2)}.$$

Таким образом, коэффициенты формулы (22) определяются из рекуррентных соотношений

$$c_0 = \frac{1}{2}; c_n = \frac{1}{n+2} \left[(n+1)c_{n-1} + \sum_{p=0}^{n} b_p^{(-1/2)} b_{n-p}^{(-1/2)} \right], n > 0.$$
 (23)

Значения коэффициентов c_n приведены в *Таблице 3*.

Формулы (22)-(23) определяют ряд, сходящийся при любых значениях x. Скорость его сходимости достаточно хороша при $x \le 0$, удовлетворительна при $x \le 1$, но быстро ухудшается при x > 1.

Разложение при $x \to +\infty$. Запишем асимптотическое разложение (15) для произвольного k в более удобном виде:

Tаблица 3 Коэффициенты разложений функции J(x)

n	a_{n}	C_n	C_n
0	0.5000000000000000000	0.500000000000000000	1.0000000000000000000
1	0.47140452079103173	0.05719095841793650	-0.82246703342411309
2	0.41367513459481287	0.32627341363306145	-3.38226010534730559
3	0.36329931618554523	0.05555337454026419	-56.74866767632004638
4	0.32247788425329943	0.24658846860286468	-2076.439816971693289
5	0.28947176887871823	0.05073748578641944	-133516.6239190830092
6	0.26245962433780035	0.20002927599276679	-13363920.49546855688
7	0.24002748681137623	0.04624864575737019	-1924202279.429788351
8	0.22113507376025146	0.16919747074124367	-376996608458.5720214
9	0.20502010799708259	0.04243339943502982	
10	0.19111818527221525	0.14714269473929523	
11	0.17900522098810093	0.03922350305150957	
12	0.16835758850494667	0.13051578228471081	
13	0.15892459422501767	0.03650451326932291	
14	0.15050930279877994	0.11749388727681387	
15	0.14295500139265471	0.03417682128363331	
16	0.13613550394070195	0.10699573032743079	
17	0.12994810323070083	0.03216234704554120	
18	0.12430837457100294	0.09833733348435542	
19	0.11914629284901028	0.03040122425575591	
20	0.11440329429976415	0.09106388018262407	
21	0.11003002691122073	0.02884749082202021	
22	0.10598460916982465	0.08486060243799427	
23	0.10223126852657950	0.02746553440048496	
24	0.09873926667442291	0.07950240515223343	
25	0.09548204372438338	0.02622743720392143	
26	0.09243653108215864	0.07482385935080225	
27	0.08958259552832193	0.02511104569452402	
28	0.08690258621471895	0.07070053682482372	
29	0.08438096303764077	0.02409857188256913	
30	0.08200398984235426	0.06703696772323861	
31	0.07975947964440647	0.02317557364450819	
32		0.06375862474843785	
33		0.02233020393904351	
34		0.06080644154622106	

$$I_{k}(x) \approx \cos(\pi k) I_{k}(-x) + \frac{x^{k+1}}{k+1} \sum_{n=0}^{N} \frac{A_{n}^{(k)}}{x^{2n}};$$

$$A_{0}^{(k)} = 1; A_{n}^{(k)} = (2 - 2^{2-2n}) \zeta(2n) \prod_{p=1}^{2n} (k+2-p), n \ge 1.$$
(24)

Положим здесь k = -1/2; тогда $\cos(\pi k) = 0$, и остается только сумма. Возведем эту сумму в квадрат и опять сгруппируем члены по одинаковым степеням x. Суммирование по n идет не до бесконечности, а до N. Однако мы будем пользоваться разложением (24) только в том случае, если последние члены суммы достаточно малы по сравнению с главными. Тогда можно приближенно записать

$$\left[I_{-1/2}(x)\right]^{2} \approx 4x \sum_{n=0}^{N} \frac{C_{n}}{x^{2n}}, C_{n} = \sum_{q=0}^{n} A_{q}^{(-1/2)} A_{n-q}^{(-1/2)}, x \to +\infty.$$
 (25)

Почленно проинтегрируем (25) по x от $-\infty$ до x, учитывая значения $C_0=1, A_1^{(-1/2)}=-\pi^2/24, C_1=-\pi^2/12.$ Получим следующую сумму:

$$J(x) \approx 2x^{2} \left[1 - \frac{\pi^{2}}{6} \left(\ln x - j \right) \frac{1}{x^{2}} - 4 \sum_{n=2}^{N} \frac{(n-1)C_{n}}{x^{2n}} \right], x \to +\infty, \tag{26}$$

где j есть константа, возникающая при интегрировании. Значение этой константы приведено в [6-7]:

$$j = \frac{\pi^2}{2} \left(1 - \frac{2}{3} \ln 2 - \frac{C}{3} \right) - \sum_{n=2}^{\infty} \frac{\ln n}{n^2},$$
 (27)

где C = 0.5772156649015325... – константа Эйлера.

Медленно сходящуюся сумму (27) необходимо вычислить с точностью $\varepsilon \sim 10^{-16}$. Непосредственное суммирование на компьютере требует неприемлемо большого числа членов ряда. Поэтому воспользуемся следующим приемом. Разобъем бесконечную сумму на две:

$$\sum_{n=2}^{\infty} \frac{\ln n}{n^2} = \sum_{n=2}^{N} \frac{\ln n}{n^2} + \sum_{n=N+1}^{\infty} \frac{\ln n}{n^2}, N >> 1.$$

Первую сумму вычислим непосредственно; при этом суммировать будем с последнего члена, т.к. проведение суммирования в порядке увеличения слагаемых уменьшает ошибки округления. Вторую сумму рассмотрим, как квадратуру средних для интеграла от функции $n^{-2}\ln(n)$ в пределах

 $N+1/2 \le n < +\infty$ с шагом $\Delta n = 1$. Сам интеграл легко вычисляется точно заменой переменных $\xi = \ln n$ и равен:

$$\int_{N+1/2}^{\infty} \frac{\ln(n)}{n^2} dn = \frac{1 + \ln(N + 1/2)}{N + 1/2}.$$

Для повышения точности добавим к формуле средних поправки Эйлера-Маклорена, содержащие первую и третью производные подынтегральной функции на левой границе (очевидно, эти поправки на правой границе обращаются в нуль). Получим следующее выражение:

$$\sum_{n=N+1}^{\infty} \frac{\ln n}{n^2} \approx \frac{1 + \ln(N+1/2)}{N+1/2} - \frac{2\ln(N+1/2) - 1}{24(N+1/2)^3} + \frac{7[24\ln(N+1/2) - 26]}{5760(N+1/2)^5}.$$

Следующая поправка Эйлера-Маклорена есть $O(N^{-7})$; чтобы она не превышала 10^{-16} , достаточно взять N=300. Численный расчет с этими значениями даёт

$$\sum_{n=2}^{\infty} \frac{\ln n}{n^2} = 0.93754825431584388,$$

$$j = 0.76740941382814898.$$
(28)

Коэффициенты C_n для $n \ge 2$ приведены в *Таблице 3*. Разложение (26) имеет асимптотическую сходимость, так что суммировать по n можно только до тех пор, пока члены суммы достаточно быстро убывают. Определение оптимального числа членов N является самостоятельной проблемой.

Библиографический список

- 1. Pauli W., Uber Gasentartung und Paramagnetismus // Zeutschrift für Physik, 1927, v.41, p.81-102. URL:https://link.springer.com/article/10.1007%2FBF01391920
- 2. Sommerfeld A., Zur Electronentheore der Metalle aQuf Grundder Fermishen Statistik // Zeutschrift für Physik, 1928, v.47, p.1-3. URL: https://link.springer.com/article/10.1007%2FBF01391052
- 3. Stoner E. C., McDougall J., The computation of fermi-dirac functions // Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1938, v237(773), p.67-104. URL: https://scinapse.io/papers/2024538905
- 4. Glasser M. L., Garoni T. M., Frankel N. E. Complete asymptotic expansions of the fermi-dirac integrals. Journal of Mathematical Physics, 42(4):18601868, 2001.
- 5. Калиткин Н. Н., О вычислении функций Ферми–Дирака, Ж. вычисл. матем. и матем. физ., 1968, том 8, № 1, с.173–175. URL:

http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=zvmmf&paperid=72 23&option_lang=rus

- 6. Калиткин Н.Н., Кузьмина Л.В., Интерполяционные формулы для функций Ферми–Дирака // Препринты ИПМ АН СССР, 1972, № 62.
- 7. Кузьмина Л.В., Численный расчет термодинамических функций веществ в статистической модели атома с квантово-обменными поправками, канд. дисс., Москва, ИПМ АН СССР, 1978.