TECE Projet 6: Calcul matriciel

IBRAHIM ALAME

1. Soit $\mathcal N$ l'algèbre des matrices triangulaires supérieurs strictes de $\mathcal M_3(\mathbb R)$.

$$N \in \mathcal{N} \Longleftrightarrow N = \left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{array}\right)$$

On associe à \mathcal{N} l'ensemble \mathcal{U} des matrices U = I + N, où I est la matrice identité de $\mathcal{M}_3(\mathbb{R})$.

- (a) Montrer que le produit de trois matrices quelconques de $\mathcal N$ est nul. En particulier $N^3=0$ si $N\in \mathcal N$.
- (b) Montrer que \mathscr{U} est un sous groupe non commutatif du groupe linéaire de $\mathscr{M}_3(\mathbb{R})$.
- (c) Pour tout réel α , on définit la matrice U^{α} par

$$U^{\alpha} = I + \alpha N + \frac{\alpha(\alpha - 1)}{2} N^2$$

Il sera commode de poser $N_{\alpha}=\alpha N+\frac{\alpha(\alpha-1)}{2}N^2$. Vérifier que pour α et β réels arbitraires, on a

$$U^{\alpha}U^{\beta} = U^{\alpha+\beta}$$
 et $(U^{\alpha})^{\beta} = U^{\alpha\beta}$

- (d) Que peut-on dire de U^{α} pour $\alpha \in \mathbb{Z}$?
- (e) On définit une application dite exponentielle, noté exp, de ${\mathscr N}$ dans ${\mathscr U}$:

$$\forall N \in \mathcal{N}, \qquad \exp(N) = I + N + \frac{N^2}{2}$$

Montrer que l'application exp est une bijection de $\mathcal N$ dans $\mathcal U$.

(f) On définit également l'application dite logarithme notée ln de ${\mathscr U}$ dans ${\mathscr N}$ par :

Si
$$U = I + N$$
, $\ln(U) = N - \frac{N^2}{2}$

Prouver que l'application ln est la bijection réciproque de exp.

(g) Établir les formules

$$\exp(\alpha N) = (\exp(N))^{\alpha}, \quad \ln(U^{\alpha}) = \alpha \ln U, \quad U^{\alpha} = \exp(\alpha \ln U)$$

(h) Application numérique : Soit

$$U = \left(\begin{array}{ccc} 1 & 2 & 3\\ 0 & 1 & 2\\ 0 & 0 & 1 \end{array}\right)$$

Calculer $\exp(U-I)$, $\ln U$, U^{-1} et U^n pour tout $n \in \mathbb{Z}$.

- 2. Soit A la matrice : $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
 - (a) Montrer que pour tout entier $k \in \mathbb{N}$

$$\left\{ \begin{array}{l} A^{2k} = (-1)^k I \\ A^{2k+1} = (-1)^k A \end{array} \right.$$

(b) On définit l'exponentielle matricielle par la somme de la série $e^M=\sum_{p=0}^{\infty}\frac{M^p}{p!}.$ Montrer que

$$e^{tA} = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$$

- 3. Montrer que la matrice suivante est diagonalisable : $A=\begin{pmatrix}0&a&a^2\\\frac{1}{a}&0&a\\\frac{1}{a^2}&\frac{1}{a}&0\end{pmatrix}\qquad(a\neq0)$ En déduire A^{-1} et A^n où $n\in\mathbb{Z}$
- 4. Soit la matrice de $\mathcal{M}_n(\mathbb{R})$

$$A = \left(\begin{array}{ccccc} 0 & -1 & 0 & \cdots & 0 \\ -1 & 0 & -1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & -1 & 0 & -1 \\ 0 & \cdots & 0 & -1 & 0 \end{array}\right)$$

- (a) Montrer que A est diagonalisable.
- (b) Montrer que si λ est une valeur propre de A alors $0 \le \lambda \le 2$. On pourra utiliser le théorème d'Hadamart :

$$\lambda \text{ est une valeur propre de } A \Longrightarrow \lambda \in \bigcup_{i=1}^n \left\{z \in \mathbb{C}, |z-a_{i,i}| \leq \sum_{j \neq i} |a_{i,j}| \right\}$$

(c) On pose $\lambda = 2\cos\theta$ où $\theta \in [0,\pi]$. Soit le determinant $D_n = \det(\lambda I_n - A)$. Montrer que

2

$$\begin{cases} D_n = 2\cos\theta D_{n-1} - D_{n-2}, & \forall n \ge 2 \\ D_0 = 1, & D_1 = 2\cos\theta \end{cases}$$

(d) Calculer D_n en fonction de n. En déduire les valeurs propres de A.