Contents

1	Non-inertial Reference Frame	-
2	Centripetal Forces	-
	2.1 Example	
	2.2 Example	-
	2.3 Example	-
1	Non-inertial Reference Frame • Inertial - No acceleration	
	• Non Inertial - Yes acceleration	
	- Fictitious forces	

2 Centripetal Forces

- Centripetal Acceleration $a_c = v \omega$
- Angular Acceleration (Angular, Linear) $R\omega^2 \leftrightarrows \frac{v^2}{R}$

2.1 Example

$$\mu_{min} = ?$$

$$\sum F_z = 0$$

$$N = mg$$

$$\sum F_c = \frac{mv^2}{R}$$

$$f = \frac{mv^2}{R}$$

$$\mu g = \frac{v^2}{R}$$

$$\mu = \frac{v^2}{gR}$$

$$\mu = \frac{(7 \text{ m s}^{-1})^2}{(10 \text{ m s}^{-2})(40 \text{ m})}$$

 $R = 40 \,\mathrm{m}$ $v = 7 \,\mathrm{m \, s^{-1}}$

 $\mu = 0.12$

2.2 Example

$$R = 10 \,\mathrm{m}$$
$$\theta = 36^{\circ}$$
$$\mu = 0$$
$$v = 0$$

$$\sum_{i} F_{z} = 0$$

$$N \sin(\theta) = mg$$

$$N = \frac{mg}{\cos(\theta)}$$

$$\sum_{c} F_{c} = ma_{c}$$

$$-f\cos(\theta) = ma_{c}$$

$$-\mu mg \tan(\theta) + N\sin(\theta) = \frac{mv^{2}}{R}$$

$$\left(\frac{mg}{\cos(\theta)}\right)\sin(\theta) = \frac{mv^{2}}{R}$$

$$v = \sqrt{Rg \tan(\theta)}$$

2.3 Example

$$D = 4 \,\mathrm{m}$$

$$\mu_{max} = 0.4$$

$$\omega = ?$$

$$m = 60 \,\mathrm{kg}$$

$$\sum F_z^{(m)} = 0$$

$$f = mg$$

$$\mu N = mg$$

$$N = \frac{mg}{\mu}$$