Aplicații la problema determinării unei tăieturi minime

Tăietură minimă

▶ Determinarea unui flux maxim ⇒ determinarea unei tăieturi minime

Aplicaţii

Arce = poduri, capacitate = costul dărâmării podului.
 Ce poduri trebuie dărâmate a.î. teritoriul sursă să nu mai fie conectat cu destinația și costul distrugerilor să fie minim?

Tăietură minimă

Planificare activități proiecte

- Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:
 - profitul p_i care poate fi și <0

- Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:
 - profitul p_i care poate fi și <0
 - perechi (i, j) = activitatea i depinde de activitatea j
 (activitatea nu poate fi efectuată decât dacă se efectuează j)

- Se cunosc pentru un proiect cu n activități, numerotate 1,..., n:
 - profitul p_i care poate fi şi <0
 - perechi (i, j) = activitatea i depinde de activitatea j
 (activitatea nu poate fi efectuată decât dacă se efectuează j)

Se cere: să se selecteze o mulțime de activități realizabile A de profit maxim

O mulțime de activități este realizabilă dacă

• $i \in A$, i depinde de $j \Rightarrow j \in A$

Notaţii pentru o mulţime A de activităţi

•
$$castig(A) = \sum_{i \in A, p_i \ge 0} p_i$$

•
$$pierdere(A) = \sum_{i \in A, p_i < 0} (-p_i)$$

• profit(A) = castig(A) - pierdere(A)

• $C_{tot} = castig(\{1,...,n\})$

Exemplu:

- n = 6 activități
- 1 profit 11
- 2 profit –5
- 3 profit –12
- 4 profit 8
- 5 profit 6
- 6 profit 3
- Dependențe indicate de graful alăturat

Soluţie
$$A = \{2, 4, 5, 6\}$$
, profit(A) = 12 (castig(A) = 17, pierdere(A)=5)

Trebuie să împărțim activitățile în două:

 Asociem probleme o o rețea și reducem determinarea lui A la determinarea unei tăieturi minime în rețea

pierderi în profit minime (față de C_{tot})

⇔ capacitatea tăieturii trebuie să fie minimă

Exemplu:

- n = 6 activități
- 1 profit 11
- 2 profit –5
- 3 profit –12
- 4 profit 8
- 5 profit 6
- 6 profit 3
- Dependențe indicate de graful alăturat

Asociem grafului o rețea de transport

Adăugăm o sursă și o destinație

Unim s cu activități cu profit >=0

▶ Unim activitățile cu profit <0 cu t</p>

c(sx) = profitul lui x

c(yt) = modulul profitului lui y

• Restul capacităților = ∞ - pentru a ne asigura că A este realizabilă

• Orice tăietură în rețea este de forma $K_A = (A \cup \{s\}, \overline{A} \cup \{t\})$

- Orice tăietură în rețea este de forma $K_A = (A \cup \{s\}, \overline{A} \cup \{t\})$
- Dacă c(K_A) < ∞, atunci A este o mulțime de activități
 realizabilă (dacă i∈A şi i depinde de j, atunci ij are capacitate ∞,
 deci nu aparține tăieturii; rezultă că j este tot în A).

A – mulțime de activități realizabile \Leftrightarrow tăietura corespunzătoare $K_A = (A \cup \{s\}, \bar{A} \cup \{t\})$ este o tăietură de capacitate finită

Propoziţie. Dacă K_A este o tăietură de capacitate finită avem profit $(A) = C_{tot} - c(K_A)$

Justificare:

Avem

$$egin{aligned} & ext{profit}(\mathtt{A}) = ext{castig}(\mathtt{A}) - ext{pierdere}(\mathtt{A}) = \ & = ext{C}_{ ext{tot}} - ext{castig}(ar{A}) - ext{pierdere}(\mathtt{A}) \end{aligned}$$
 $c(K_A) = \sum_{i \in A} c(it) + \sum_{i \in ar{A}} c(si) = \ & = \sum_{i \in A, p_i < 0} (-p_i) + \sum_{i \in ar{A}, p_i > 0} p_i = \ & = pierdere(A) + castig(ar{A}) \end{aligned}$

Corolar.

Mulțimea de activități realizabile A este de profit maxim \Leftrightarrow tăietura $K_A = (A \cup \{s\}, \bar{A} \cup \{t\})$ este de capacitate minimă în rețeaua asociată

A determina o mulţime de activităţi de profit maxim se reduce astfel la a determina o tăietură minimă în reţeaua asociată (determinând fluxul maxim)

Algoritm de determinare a unei mulțimi de activități cu profit maxim

- 1. Construim N rețeaua de transport asociată
- 2. Determinăm K = (X,Y) tăietură minimă în N

Algoritm de determinare a unei mulțimi de activități cu profit maxim

- 1. Construim N rețeaua de transport asociată
- 2. Determinăm K = (X,Y) tăietură minimă în N
- 3. $A = X \{s\}$

Image segmentation

-- medicină

Spatially Varying Color Distributions for Interactive Multi-Label Segmentation (C. Nieuwenhuis, D. Cremers), In IEEE Transactions on Pattern Analysis and Machine Intelligence, volume 35, 2013

Delimitare regiuni foreground/background - decidem pentru fiecare pixel dacă aparține fundalului (este în background) sau prim planului (este în foreground)

https://courses.engr.illinois.edu/cs473/sp2013/w/lec/19_add_notes.pdf

Delimitare regiuni foreground/background -

- pixeli vecini ⇒ o imagine poate fi privită ca un graf grid de pixeli
 - vârfuri = pixeli
 - muchii = pixeli vecini

Delimitare regiuni foreground/background -

- Date
 - Pentru fiecare pixel i:

```
f_i = probabilitatea ca i \in foreground
```

 $b_i = probabilitatea ca i \in background$

Delimitare regiuni foreground/background -

- Date
 - Pentru fiecare pixel i:

```
f_i = probabilitatea ca i \in foreground
b_i = probabilitatea ca i \in background
```

Pentru fiecare pereche de pixeli vecini (i, j):

```
p<sub>ij</sub> = penalizarea de separare = pentru plasarea
lui i și j în regiuni diferite (unul în
foreground și altul în background)
```

Delimitare regiuni foreground/background -

Se cere o partiţionare a pixelilor în două mulţimi F şi B (corespunzătoare pixelilor din foreground/backgroud) care să maximizeze

$$q(F,B) = \sum_{i \in F} f_i + \sum_{i \in B} b_i - \sum_{\substack{ij \in E \\ |F \cap \{i,j\}| = 1}} p_{ij}$$

Delimitare regiuni foreground/background -

Avem

$$q(F,B) = \sum_{i} (f_i + b_i) - \sum_{i \in F} b_i - \sum_{j \in B} f_j - \sum_{\substack{ij \in E \\ |F \cap \{i,j\}| = 1}} p_{ij}$$

Delimitare regiuni foreground/background -

Avem

$$q(F,B) = \sum_{i} (f_i + b_i) - \sum_{i \in F} b_i - \sum_{j \in B} f_j - \sum_{\substack{ij \in E \\ |F \cap \{i,j\}| = 1}} p_{ij}$$

Problema se reduce la a minimiza

$$r(F,B) = \sum_{i \in F} b_i + \sum_{j \in B} f_j + \sum_{\substack{ij \in E \\ |F \cap \{i,j\}| = 1}} p_{ij}$$

Asociem problemei o rețea N

Asociem problemei o rețea N

Delimitare regiuni foreground/background -

- Rețeaua N
 - noduri noi s, t
 - arce si, $c(si) = f_i$ pentru orice i
 - arce it, $c(it) = b_i$ pentru orice i
 - se înlocuiește muchie ij cu 2 arce

$$c(ij) = c(ji) = p_{ii}$$

Pentru K = (X, Y) tăietură în N avem capacitatea:

Pentru K = (X, Y) tăietură în $N, F = X - \{s\}, B = Y - \{t\}$ avem

$$c(X,Y) = ?$$

Pentru K = (X, Y) tăietură în N, F = X - $\{s\}$, B = Y - $\{t\}$ avem

$$c(X,Y) = \sum_{i \in F} c(it) + \sum_{j \in B} c(sj) + \sum_{\substack{ij \in E \\ |F \cap \{i,j\}| = 1}} c(ij) =$$

Pentru K = (X, Y) tăietură în $N, F = X - \{s\}, B = Y - \{t\}$ avem

$$c(X,Y) = \sum_{i \in F} c(it) + \sum_{j \in B} c(sj) + \sum_{\substack{ij \in E \\ |F \cap \{i,j\}| = 1}} c(ij) =$$

$$= \sum_{i \in F} b_i + \sum_{j \in B} f_j + \sum_{\substack{ij \in E \\ |F \cap \{i,j\}| = 1}} p_{ij} = r(F,B)$$

Concluzii

Pentru K = (X, Y) tăietură în N cu F = X - {s}, B = Y - {t} avem

$$c(X,Y) = r(F,B)$$

Rezultă:

determinarea unei segmentări care maximizează măsura de performanță q (adică a unei partiții (F,B) a mulțimii pixelilor cu r(F, B) minimă) ⇔

determinarea unei tăieturi (X, Y) de capacitate minimă:

$$F = X - \{s\}, B = Y - \{t\}$$