Reg. No.:

Name :

Continuous Assessment Test I – March 2023

Programme	B.Tech.	Semester	:	WIN SEM 2022-23
Course Title	: Differential Equations and Transforms	Code	:	BMAT102L
		Slot	:	C1+TC1+TCC1
Faculty(s)	Dr. Saroj Kumar Dash; Dr. Srutha Keerthi B; Dr. Somnath Bera; Dr. Ashish Bera; Dr. Kriti Arya	Class Nos.		CH2022232300616; CH2022232300617; CH2022232300673; CH2022232300618; CH2022232300682
Time	: 90 Minutes	Max. Marks	:	50

Answer ALL the Questions

Q.No.	Solve the following differential equation $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} = x + e^x \sin x$ by the method of undetermined coefficients. A mass weighing 32 Pounds attached to a vertically hanged spring, by which the spring elongated 3.2 Feet below its original length. Suppose the spring-mass system is inside a damping medium with the damping constant one 5^{th} of the spring constant. Find the displacement $x(t)$, if the mass is released 3 Feet below the equilibrium position with an upward velocity of 5 Feet/Sec. [Note: $g = 32$ units (in FPS system).] (a) Form the partial differential equation by eliminating the arbitrary functions $f(x,y)$ and $\phi(x,y)$ from $z = f(x^3 + 2y) + g(x^3 - 2y)$. (b) Find the singular solution for the partial differential equation $z = px + qy + 3p^{\frac{1}{3}}q^{\frac{1}{3}}$.		
1.			
2.			
3.			
4.			
5.	 (a) Find the particular solution of the ordinary differential equation: 2x²y" + 5xy' + y = (1/2)(1-1/x), if the complementary solution/homogeneous solution is: yh(x) = yc(x) = c1x²-1/2 + c2x²-1 by using a method except using the Operator method. (b) Using standard formulae, derive the Laplace transform of the following function sin² t cos t. 		