Telecom Services and Churn

Summer Malone UCLA Extension 450.4

Company

TelCo is a telecommunications company that offers customers a variety of subscriptions (phone, internet, tv)

Problem

TelCo saw subscription services decline in the last quarter. They would like to understand more about their customers and any indicators that could prevent churn in the future.

Agenda

- Data Overview
- Exploratory Analysis
- Model Comparison
- Next Steps and Recommendations

Data Overview Structure and Cleaning

TelCo Dataset and Execution

7,043 entries across 21 fields:

- Account information
- Demographics
- Services enrolled

Tools for analysis and reporting

- 0 customerID
- 1 gender
- 2 SeniorCitizen
- 3 Partner
- 4 Dependents
- 5 tenure
- 5 PhoneService
- MultipleLines
- 8 InternetService
- 9 OnlineSecurity
- 10 OnlineBackup
- 11 DeviceProtection
- 12 TechSupport
- 13 StreamingTV
- 14 StreamingMovies
- 15 Contract
- 16 PaperlessBilling
- 17 PaymentMethod
- 18 MonthlyCharges
- 19 TotalCharges
- 20 Churn

*Represents end of Oct. accounts/status

Dataset: https://www.kaggle.com/farazrahman/telco-customer-churn-logisticregression

Exploratory AnalysisTelco Customers

Churned Customers

Churn - customers who left within the last month

- About 1/3 of customers churned within the last month
- The customer base is 50/50 split for both current/churn customers

Demographics

Churn

- Majority of customers with Telco are under 65 and do not have any dependents
- Customers without partners churned 2x more than those with partners

Contracts and Billing

43% of month-to-month contracts churned within the last month

A/B test with CRM team to find optimal time to email billing statement

Tenure and Spending

Explore opportunities/ROI to add free/discount services to reduce monthly charges for new customers (i.e, internet upgrade)

◆ Clusters split into 3 groups based on elbow curve of KMeans algorithm

Model Comparison Predicting Churn

Model Implementations - Predicting Churn

33% test size & random state activated across all models

Logistic Regression

★ Simplest

Random Forest

Handles more features 🗡

LR + Feature Elimination

Reduces noise for LR

F1 score closest to 1 is the goal, so .64 is great start

Consider altering different parameters to improve model (i.e, solver, penalty)

		precision	recall	f1-score	support
	0	0.91	0.77	0.83	1714
	1	0.54	0.77	0.64	611
accuracy			0.77	2325	
macro	avg	0.72	0.77	0.73	2325
weighted	avg	0.81	0.77	0.78	2325

Dataset is 30% churn, so added more weight to these to compensate for majority active customers

Logistic Regression

- LR F1 score was .64, so .37 is disappointing
- There is too much noise, which is mudding the results (49 features total)

		precision	recall	f1-score	support
	0	0.78	0.97	_ 0.87	1714
	1	0.73	0.25	0.37	611
accuracy				0.78	2325
macro	avg	0.76	0.61	0.62	2325
weighted	avg	0.77	0.78	0.74	2325

Random Forest Classifier

F1 score .52, which is better than RF (.34), but LR with weights performed best (.64)

Consider implementing other ensemble models like XGBoost

	precision	recall	f1-score	support
0	0.82	0.89	0.85	1714
1	0.60	0.47	0.52	611
accuracy			0.78	2325
macro avg	0.71	0.68	0.69	2325
weighted avg	0.76	0.78	0.77	2325

Logistic Regression + Recursive Feature Elimination

RFE - Feature Importance

'Additionals' like online security and tech support increase likelihood of attrition

Collaborate with sales/marketing teams to bundle these additional services to early subscribers

Feature Importance

Next Steps

Monitor seasonality and offers

Observe competitors and partnerships

Dive into and understand LTV

Recommendations

Explore opportunities to add free/discounted services for new customers to reduce monthly payments (i.e, internet upgrade)

A/B test with CRM team to find optimal time to email billing statement

Continue model iteration - XGBoost Classifier, parameter tweaking

Collaborate with sales/marketing teams to bundle these additional services to early subscribers

Thank you

Linkedin: Summer Malone

github.com/malonesum

Appendix

Dataset: https://www.kaggle.com/blastchar/telco-customer-churn

Utilized and edited code from various sources:

https://github.com/irinhwng/Consumer-Insights-Metrics_and_Predictions

https://github.com/akshayr89/Telecom_Churn_Model

https://scikit-learn.org/