Problem R-06M $(C_2H_2F_6P_2)$ 36.4 MHz ³¹P NMR spectrum. The spectrum is NOT proton decoupled.

Source: R. Demuth, J. Grobe J. Fluorine Chem. 1972/73, 2, 269. (Reich digitized hard copy) g

Problem R-06M One of the phosphorus signals of $(CF_3)_2$ P-PH₂ is shown below. The spectrum is NOT proton decoupled. Source: R. Demuth, J. Grobe *J. Fluorine Chem.* **1972/73**, 2, 269.

(a) Which P signal is it? Explain briefly.

(b) Identify couplings and report then in the standard format ($^{n}J_{HH}$ = 00 Hz)

Problem R-06M One of the phosphorus signals of $(CF_3)_2$ P-PH₂ is shown below. The spectrum is NOT proton decoupled. Source: R. Demuth, J. Grobe *J. Fluorine Chem.* **1972/73**, 2, 269.

- (a) Which P signal is it? Explain briefly.
- This is the P(CF₃)₂ signal. If it was the PH₂ signal would expect a triplet of doublets (or even a quartet) with large couplings to H and P (150-200 Hz). As it is, the triplet splitting is only about 12 Hz
 - (b) Identify couplings and report then in the standard format (${}^{n}J_{HH} = 00 \text{ Hz}$)

This is a doublet of septets of triplets due to coupling of P to P, F₆ and H₂

10

$$^{1}J_{P-P} = 195 \text{ Hz}$$
 $^{2}J_{P-F} = 70 \text{ Hz}$
 $^{2}J_{P-H} = 12 \text{ Hz}$

J. Fluorine Chem. 1972/73, 2, 276

$$^{1}J_{PH} = 202 \text{ Hz}$$
 $^{2}J_{PPH} = 12.3 \text{ Hz}$
 $^{2}J_{FCP} = 70.0 \text{ Hz}$
 $^{1}J_{PP} = 195 \text{ Hz}$
 $\delta_{H} = 3.03$
 $\delta_{F} = 52.2 \text{ (sign?)}$
 $\delta_{PCF3} = 12.5$
 $\delta_{PH2} = 199$