FIT5190 Introduction to IT Research Methods

Deep reinforcement learning and its applications to video games

Southeast University – Monash University Joint Graduate School

Li Shangyi 2819****

CONTENTS

01 Deep Reinforcement learning

O2 Applications in video games

(03) Conclusion

Reinforcement learning

- At each time step the agent:

 Executes action A_t Receives observation O_t Receives scalar reward R_t
- The environment:

 Receives action A_{t+1} Emits observation O_{t+1} Emit scalar reward R_{t+1}

Reinforcement learning

Reward in reinforcement learning

Reward:

The game of go

- + reward for winning game
- reward for losing a game
- 0 reward during a game

Robot walk

- + reward for forward motion
- reward for falling over

Stock trading

- + reward for making money
- reward for losing money

Reinforcement learning

Sequential decision making

$$S_t$$
, R_t , A_t , S_{t+1} , R_{t+1} , A_{t+1} , ...

Goal: select actions to maximize total future reward (cumulative reward)

Components of an agent

- Policy
 - Agent's behavior function
 - A map from state to action
- Value function
 - how good is each state and / or action

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right]$$

Starting from state s, then following policy π

$$q_{\pi}(s, a) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = a \right]$$

Starting from state s, taking action a, then following policy π

Deep Reinforcement learning

- deep learning + reinforcement learning
 - using deep neural networks to approximate value function or policy
- No explicit training data

Atari Games (Mnih et al., 2015)

https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=rz2qWeMaqtw

Atari Games

Deep Q network (DQN)

Input: 4 frames images (what you see on the screen) and

score

Goal: maximize the score on the screen

No domain knowledge is involved!

The algorithm doesn't know what the control exactly do.

Atari Games

Playing FPS Game (Lample et al., 2016)

https://www.youtube.com/watch?v=oo0TraGu6QY

Playing StarCraft (Peng et al., 2017)

http://v.youku.com/v_show/id_XMjcxMDgxNDg1Ng==.html

Playing StarCraft

http://v.youku.com/v_show/id_XMjcxMDgxNDg1Ng==.html

Playing StarCraft

http://v.youku.com/v_show/id_XMjcxMDgxNDg1Ng==.html

Conclusion

- Other applications:AlphaGoRobotic control
- The ability to tackle complex problems
- A way to artificial general intelligence (the intelligence of a machine that could successfully perform any intellectual task that a human being can)

Conclusion

References

- Lample, G. and Chaplot, D.S., 2016. Playing FPS games with deep reinforcement learning. arXiv preprint arXiv:1609.05521.
- Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G. and Petersen, S., 2015. Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.
- Peng, P., Yuan, Q., Wen, Y., Yang, Y., Tang, Z., Long, H. and Wang, J., 2017. Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat Games. arXiv preprint arXiv:1703.10069.

