AMMM - Course project

Master in Research and Innovation in Informatics

Ignacio Encinas Rubio, Adrián Jiménez Gonzalez {ignacio.encinas,adrian.jimenez.g}@estudiantat.upc.edu

Polytechnic University of Catalonia

23 de noviembre de 2022

Contents

- 1. Problem Statement
 - 1.1. Inputs & Outputs
- 1.2. Definitions
- 2. Integer Linear Programming Model
 - 2.1. Variables
 - 2.2. Constraints
 - 2.3. Redundant constraints

- 3. Metaheuristics
 - 3.1. Greedy algorithm 3.2. Local Search
 - 3.3. GRASP
 - - Parameter tuning
- 4 Results
 - 4.1. Time
 - 4.2. Quality of solutions

Problem Statement

Main requirements

- 1. Each contestant will play exactly once against each of the other contestants.
- 2. Each round will consist of $\frac{n-1}{2}$ matches.
- 3. Players will play 50% of their games as white, 50% will be played as black.

Subtle requirements

- A player can only play up to 1 game per round
- A player can't play against himself

Problem Statement: Inputs & Outputs

Inputs

- \blacksquare Number of contestants, n. Has to be odd
- \blacksquare Matrix of points per day per player, $p_{n\times n}$

Outputs

■ Schedule with the set of pairings $\{\{r_1, p_i, p_j\}, \ldots, \{r_n, p_k, p_h\}\}$ that maximizes total score. Ensured to be optimal if it's obtained through the ILP.

Problem Statement: Definitions

In order to specify the constraints, we need to specify the sets and variables we're going to work with:

- $lackbox{ } M(x,y)$ matches played among x and y (1)
- \blacksquare R(r) matches played at round r (2)
- $lackbox{ }W(p)$ matches played by player p as white (3)
- lacksquare B(p) matches played by player p as black (3)
- lacksquare G(p,r) games played by p at round r (4)
- F(r) free players at round r (5)

- 1. Each contestant will play exactly once against each of the other contestants.
- 2. Each round will consist of $\frac{n-1}{2}$ matches.
- 3. Players will play 50 % of their games as white, 50 % will be played as black.
- 4. Players can play up to 1 match per round
- Objective function

Every set will be constructed from a boolean multidimensional array. matches[w][b][r] will be 1 whenever player w plays player b in round r, and 0 otherwise.

Set constructions

```
\begin{split} M(x,y) &= \{\{x,y,r\} & | \; \mathsf{matches}[x][y][r] = 1 \lor \mathsf{matches}[y][x][r] = 1 \quad \forall r \in [1,Rounds] \} \\ F(r) &= \{p & | \; \mathsf{matches}[p][o][r] = 0 \land \mathsf{matches}[o][p][r] = 0 \quad \forall o \in [1,n] \} \\ W(p) &= \{\{p,b,r\} & | \; \mathsf{matches}[p][b][r] = 1 \quad \forall r \in [1,Rounds], b \in [1,n] \} \\ B(p) &= \{\{w,p,r\} & | \; \mathsf{matches}[w][p][r] = 1 \quad \forall r \in [1,Rounds], w \in [1,n] \} \\ R(r) &= \{\{w,b,r\} & | \; \mathsf{matches}[w][b][r] = 1 \quad \forall w,b \in [1,n] \} \\ G(p,r) &= \{\{o,p,r\} & | \; \mathsf{matches}[p][o][r] = 1 \lor \mathsf{matches}[o][p][r] = 1 \quad \forall o \in [1,n] \} \end{split}
```

Integer Linear Programming Model: Constraints

$$|M(x,y)| = 1 \quad \forall x, y \in P \mid x \neq y \tag{1}$$

$$|R(r)| = \frac{n-1}{2} \quad \forall r \in [1, \text{ Rounds}]$$
 (2)

$$|W(p)| = \frac{n-1}{2} \quad \forall r \in [1, \text{ Rounds}], \forall p \in P \quad \textbf{(3)}$$

$$|G(p,r)| \le 1 \quad \forall p \in P, r \in [1, \text{ Rounds}]$$
 (4)

- Each contestant will play exactly once against each of the other contestants.
- 2. Each round will consist of $\frac{n-1}{2}$ matches.
- 3. Players will play 50 % of their games as white, 50 % will be played as black.
- 4. Players can play up to 1 match per round

Integer Linear Programming Model: Redundant constraints

Redundant constraints might appear to make the model faster but they seem make it slower in the long run

$$|M(x,x)| = 0 \quad \forall x \in P$$

$$|B(p)| = \frac{n-1}{2} \quad \forall r \in [1, \text{ Rounds}], p \in P$$

 \longrightarrow ILP non-redundant \longrightarrow ILP redundant

Greedy cost function

$$q(c, day) = c.points_per_day[day]$$

Algorithm Greedy algorithm

- 1: Players ← Set of Players
- 2: rests $\leftarrow \{\}$
- 3: for day in 0..days do
- 4: $playersToRest \leftarrow filter Players(p) | p.hasNotRested$
- sortedPlayers \leftarrow sort playersToRest(p) by q(p,day) (DESC)
- 6: select p ∈ sortedPlayers.first()
- 7: $rests[day] \leftarrow p$

Metaheuristics: Local Search

Algorithm Local Search

1: for i in 0..days do
2: best_swap_points ← 0
3: best_swap ← i
4: for j in 0..days do
5: change = EvaluateRestSwap(i,j)
6: if change > best_swap_points then
7: best_swap_points ← change
8: best_swap ← j
9: rests[i] ↔ rests[best_swap]

Ignacio Encinas Rubio, Adrián Jiménez González

Metaheuristics: GRASP

Algorithm constructRCL(day)

- 1: $q_{max} \leftarrow \text{sortedPlayers.first().points[d]}$
- 2: $q_{min} \leftarrow \text{sortedPlayers.last().points[d]}$
- 3: $RCL_{max} \leftarrow \{p \in sortedPlayers \mid p.points[d] >= q_{max} \alpha \cdot (q_{max} q_{min})\}$

Algorithm GRASP

- 1: rests $\leftarrow \{\}$
- 2: for day in 0..days do
- 3: $playersToRest \leftarrow filter Players(p) \mid p.hasNotRested$
- 4: sortedPlayers \leftarrow sort playersToRest(p) by q(p,day) (DESC)
- 5: $RCL \leftarrow constructRCL(day)$
- 6: select $p \in RCL$ randomly
- 7: $rests[day] \leftarrow p$

GRASP: Parameter tuning

- Figure shows the arithmetic mean error with respect to the optimal solution for each of the instances.
- We keep the smallest alpha that gives the minimum mean error.

→ Mean error w.r.t optimal solution. Coarse grain (Step 0.1)

Results: Time

- Greedy and Local Search need approximately same time to reach the solution. They're fastest but their quality of the solution is too low.
- GRASP sacrifices some runtime performance to improve the quality of the solution.
- ILPs obtain the optimal solution at cost of being several orders of magnitude slower due to the complexity of creating valid pairings.
- ILP rest obtains the optimal solution just computing the rest day for each player. It is not much slower than GRASP and for large instances it can be even faster.

Results: Quality of solutions

- Greedy offers the worst solution for every instance
- Greedy + Local Search improves the quality of the solution taking practically the same time as Greedy.
- GRASP commonly reachs the optimal solution, having a great improvement over Local Search.

