Федеральное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Высшая школа экономики»»

Отчет по лабораторной работе 1

Теория погрешностей и машинная арифметика Вариант 10: задачи 1.1.10, 1.3.3, 1.6, 1.7, 1.9.4

Выполнил:

Студент группы БПМ-211 Ляхов Артём Андреевич

Преподаватель:

Брандышев Петр Евгеньевич

Содержание

1	Зад	ача 1.1.10. Вычисление частичных сумм ряда	3		
	1.1	Формулировка задачи	3		
	1.2	Теоретический материал	3		
	1.3	Аналитический вывод суммы ряда	3		
	1.4	Код программы	4		
	1.5	Результаты вычислительного эксперимента	4		
	1.6	Гистограммы	4		
2	Задача 1.3.3. Вычисление обратной матрицы				
	2.1	Формулировка задачи	6		
	2.2	Результаты вычислений	6		
	2.3	Объяснение результата	6		
3	Задача 1.6. Машинная точность для Python				
	3.1	Формулировка задачи	8		
	3.2	Результаты вычислительно эксперимента	8		
	3.3	Код программы	8		
4	Задача 1.7. Параметры ЭВМ в разных режимах точности				
	4.1	Формулировка задачи	10		
	4.2	Результаты вычислительного эксперимента	10		
	4.3	Код программы	11		
5	Задача 1.9.4 Существование обратной матрицы				
	5.1	Формулировка задачи	12		
	5.2	Теоретический материал	12		
	5.3	Результаты вычислительного эксперимента	13		
		5.3.1 Случай точных значений	13		
			13		
	5.4	Код программы	13		

1 Задача 1.1.10. Вычисление частичных сумм ряда

1.1 Формулировка задачи

Дан ряд $\sum_{n=0}^{\infty} a_n$, необходимо аналитически найти его сумму, вычислить для $N=10,\ 10^2,\ 10^3,\ 10^4,\ 10^5$ частичные суммы $S_N=\sum_{n=0}^N a_n$, после чего найти и сравнить абсолютные погрешности а также количество верных цифр.

Члены ряда при этом заданы соотношением (задача 1.1.10):

$$a_n = \frac{84}{13(n^2 + 14n + 48)}$$

1.2 Теоретический материал

Пусть a - точное значение, a^* - приближённое значение некоторой величины. Абсолютной погрешностью приближённого значения a^* называется величина $\Delta(a^*) = |a - a^*|$. Поскольку точное значение a, как правило, неизвестно, чаще получают оценку вида $|a - a^*| \leq \overline{\Delta}(a^*)$, где $\overline{\Delta}(a^*)$ называют верхней границей абсолютной погрешности.

Значащую цифру числа a называют верной, если абсолютная погрешность числа не превосходит единицы разряда, соответствующего этой цифре.

Абсолютную погрешность S_N можно определить с помощью функции $d(N)=|S_N-S|,$ где S - искомая сумма ряда.

1.3 Аналитический вывод суммы ряда

Пусть S-искомая сумма ряда, то есть

$$S = \lim_{N \to \infty} S_N$$

Разложим дробь a_n на простейшие:

$$a_n = \frac{84}{13(n+6)(n+8)} = \frac{84}{13} \left(\frac{A}{n+6} + \frac{B}{n+8} \right)$$

Методом вычёркивания получаем, что $A = \frac{1}{2}, B = -\frac{1}{2}$, а значит:

$$a_n = \frac{42}{13} \left(\frac{1}{n+6} - \frac{1}{n+8} \right)$$

Таким образом, мы можем выразить частичную сумму ряда как

$$S_N = \frac{42}{13} \sum_{n=0}^{N} \left(\frac{1}{n+6} - \frac{1}{n+8} \right) = \frac{42}{13} \left(\frac{1}{6} + \frac{1}{7} - \frac{1}{N+7} - \frac{1}{N+8} \right)$$

Следовательно, итоговая сумма ряда будет равна:

$$S = \lim_{N \to \infty} S_N = \frac{42}{13} \left(\frac{1}{6} + \frac{1}{7} \right) = \frac{42}{13} \cdot \frac{13}{42} = 1 \tag{1}$$

1.4 Код программы

Код программы для эксперимента можно найти в ноутбуке, прикриплённом вместе с отчётом.

1.5 Результаты вычислительного эксперимента

В таблице 1 представлены результаты вычислительного эксперимента, проведённого с использованием языка программирования Python.

N	S_N	Абсолютная погрешность	Количество верных цифр	
10	0.630468	$3.696 \cdot 10^{-1}$	0	
10^{2}	0.939891	$6.011 \cdot 10^{-2}$	1	
10^{3}	0.993587	$6.413 \cdot 10^{-3}$	2	
10^{4}	0.999354	$6.457 \cdot 10^{-4}$	3	
10^{5}	0.999935	$6.461 \cdot 10^{-5}$	4	

Таблица 1: Результаты эксперимента.

Вывод: Как видно из результатов эксперимента, увеличение числа суммируемых членов ряда в 10 раз по сравнению с предыдущем случаем увеличивает количество верных цифр на одну.

1.6 Гистограммы

Рис. 1: Гистограмма зависимости абсолютной погрешности $a(S_N)$ от количества суммируемых членов ряда N.

Рис. 2: Гистограмма зависимости количества верных знаков S_N от количества суммируемых членов ряда N.

2 Задача 1.3.3. Вычисление обратной матрицы

2.1 Формулировка задачи

Для заданной матрицы A найти (если это возможно) обратную. Затем в элемент a_{11} внести погрешность в 10% и снова найти обратную. Объяснить полученные результаты.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 3 & 5 & 3 \\ 9 & 15 & 9 \\ 6 & 7 & 2 \end{pmatrix}$$

2.2 Результаты вычислений

Рассмотрим исходную матрицы A. Её определитель $\det A = 0$, следовательно, у матрицы A нет обратной.

Для случая $a_{11} = 3.3$ у A сущестует обратная и она равняется:

$$\begin{pmatrix} 3.3 & 5 & 3 \\ 9 & 15 & 9 \\ 6 & 7 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 3.3333 & -1.1111 & 1.1719 \cdot 10^{-16} \\ -3.6364 & 1.1515 & 0.27273 \\ 2.7273 & -0.6969 & -0.4545 \end{pmatrix}$$

Если же $a_{11} = 2.7$ у матрицы A также существует обратная:

$$\begin{pmatrix} 2.7 & 5 & 3 \\ 9 & 15 & 9 \\ 6 & 7 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} -3.3333 & 1.1111 & 1.1719 \cdot 10^{-16} \\ 3.6364 & -1.2727 & 0.27273 \\ -2.7273 & 1.1212 & -0.4545 \end{pmatrix}$$

Вывод: Как мы видим, у обраных матриц совпадают третьи столбцы, существенно отличаются вторые столбцы, а первые столбцы имеют противоположные знаки. Таким образом, добавление погрешности в один элемент матрицы может не только повлиять на факт существования обратной матрицы, но и сильно изменить её.

2.3 Объяснение результата

Введём дополнительное обозначение

$$f(\delta) = \begin{pmatrix} 3(1+\delta) & 5 & 3\\ 9 & 15 & 9\\ 6 & 7 & 2 \end{pmatrix}$$

тогда $\det f(\delta) = -99\delta$.

Если мы составим матрицу алгебраических дополнений элементов матрицы A, то мы увидим, что в ней есть элементы, которые не зависят от δ . Таким образом, в матрице A^{-1} (при условии её существования) есть элементы обратно пропорциональные δ . Это объясняет тот факт, что для $\delta=0.1$ и $\delta=-0.1$ обратные матрицы очень сильно отличаются друг от друга.

3 Задача 1.6. Машинная точность для Python

3.1 Формулировка задачи

Требуется для Python найти значение машинного нуля, машинной бесконечности, машинного эпсилон.

3.2 Результаты вычислительно эксперимента

Величина	Приближённое значение
Машинный нуль X_0	$5 \cdot 10^{-324}$
Машинная бесконечность X_{∞}	$8.99 \cdot 10^{307}$
Машинное эпсилон ε_M	$2.22 \cdot 10^{-16}$

Таблица 2: Результаты вычислительного эксперимента, проведённого с использованием Python.

3.3 Код программы

Ниже представлены коды программы для выполнения вычислительного эксперимента.

```
a = 1
b = a
while a > 0:
   b = a
   a /= 2

print(f"Machine zero in Python is {b}")
```

```
a = 1.0
b = a
while a != float('inf'):
   b = a
   a *= 2

print(f"Machine infinity in Python is {b}")
```

```
a = 1.0
eps = a
while a + 1 > 1:
    eps = a
    a /= 2

print(f"Machine epsilon in Python is {eps}")
```

4 Задача 1.7. Параметры ЭВМ в разных режимах точности

4.1 Формулировка задачи

Вычислить значения машинного нуля, машинной бесконечности, машинного эпсилон в режимах одинарной, двойной и расширенной точности на двух алгоритмических языках. Сравнить результы.

В рамках решения будем искать параметры ЭВМ на языках Python (пакет numpy) и C++.

4.2 Результаты вычислительного эксперимента

Величина	Python	C++
Машинный нуль	$1.402 \cdot 10^{-45}$	$1.401 \cdot 10^{-45}$
Машинная бесконечность	$1.701 \cdot 10^{38}$	$3.402 \cdot 10^{38}$
Машинное эпсилон	$1.192 \cdot 10^{-7}$	$1.19 \cdot 10^{-7}$

Таблица 3: Результаты эксперимента для режима **одинарной точности**: тип *np.single* для языка Python и *float* для языка C++.

Величина	Python	C++
Машинный нуль	$5 \cdot 10^{-324}$	$4.94 \cdot 10^{-324}$
Машинная бесконечность	$8.99 \cdot 10^{307}$	$1.78 \cdot 10^{308}$
Машинное эпсилон	$2.22 \cdot 10^{-16}$	$2.22 \cdot 10^{-16}$

Таблица 4: Результаты эксперимента для режима **двойной точности**: тип np.double для языка Python и double для языка C++.

Величина	Python	C++
Машинный нуль	$5 \cdot 10^{-324}$	$3.64 \cdot 10^{-4951}$
Машинная бесконечность	$8.988 \cdot 10^{307}$	$1.19 \cdot 10^{4932}$
Машинное эпсилон	$2.22 \cdot 10^{-16}$	$1.08 \cdot 10^{-19}$

Таблица 5: Результаты эксперимента для режима расширенной точности: тип np.longdouble для языка Python и $long\ double$ для языка C++

Вывод: Как мы видим, в режимах одинарной и двойной точности приближённые значения параметров совпадают. В то же время для режима расширенной точности наблюдается огромное расхождение. Скорее всего, это связано с тем, что пакет numpy на текущий момент полноценно не поддерживает режим расширенной точности.

4.3 Код программы

Код для проведения эксперимента на языке Python можно найти в файле laboratory_work1.ipynb, на языке C++ в файле lr1_exp.cpp. Оба файла прикреплены вместе с отчётом.

5 Задача 1.9.4 Существование обратной матрицы

5.1 Формулировка задачи

Для матрицы A решить вопрос существования обратной матрицы в следующих случаях:

- 1) элементы матрицы заданы точно;
- 2) элементы матрицы заданы приближённо с относительной погрешностью $a)\delta = \alpha\%$ б) $\delta = \beta\%$.

Найти относительную погрешность результата.

$$A = \begin{pmatrix} 9 & 5 & 6 \\ 13.5 & 9.5 & 11 \\ 8 & 4 & 5 \end{pmatrix}$$
$$\alpha = 0.1 \quad \beta = 0.5$$

5.2 Теоретический материал

У квадратной матрицы существует обратная тогда и только тогда, когда её определитель не равен нулю. Таким образом, наша задача полностью сводится к нахождению определителя и сравнению его с нулём.

В случае, когда все элементы матрицы заданы точно, можно найти точное значение определителя и дать правильный ответ на вопрос задачи.

В случае, когда элементы матрицы (а, следовательно, и определителя) заданы приближённо с относительной точностью δ дело обстоит сложнее. Если обозначить за a_{ij} элементы матрицы A, то каждый элементы a_{ij} может принимать любое значение из отрезка $[a_{ij}(1-\delta), a_{ij}(1+\delta)]$, если $a_{ij} \geq 0$ и из отрезка $[a_{ij}(1+\delta), a_{ij}(1-\delta)]$, если $a_{ij} < 0$. Множество всех возможных элементов матрицы значений матрицы A представляет компакт в 9-мерном пространстве. Сам определитель является дифференцируемой функцией девяти переменных - элементов матрицы a_{ij} . По теореме Вейерштрасса эта функция достигает на указанном множестве своего максимального и минимального значений - M и m, соответственно. Если отрезок [m, M] не содержит точку 0, то при любых допустимых

значениях a_{ij} определитель не равен нулю, и следовательно, у матрицы A существует обратная. Если $0 \in [m, M]$, то рассуждения выше неправомерные и будет иметь место неопределённость.

Нахождению m и M помогает одно очень полезное утверждение. Как функция от элементов матрицы определитель всегда достигает максимума и минимума на границе области, и более того, координаты этих точек имеют вид $a_{ij}(1\pm\delta)$. Таким образом, для нахождения m,M нужно посчитать определитель в $2^9=512$ точка и выбрать из значений максимальное и минимальное значения.

Относительная погрешность может быть оценена сверху как $\frac{\overline{\Delta}(a^*)}{|a^*|}$, где $\overline{\Delta}(a^*)=\frac{1}{2}\,(M-m),\ a^*=\frac{M+m}{2}$ - середина отрезка [m,M].

5.3 Результаты вычислительного эксперимента

5.3.1 Случай точных значений

Если значения матрицы A заданы точно, то $\det(A) = 2 \neq 0$. Следовательно, у матрицы A существует обратная A^{-1} .

5.3.2 Случай приближённых значений

δ	m	M	Относительная погрешность
$\alpha\% = 0.001$	1.4695	2.5295	0.265
$\beta\% = 0.005$	-0.6632	4.6367	1.334

Таблица 6: Результаты вычисления m и M для различных значений δ .

Вывод: Для случая $\delta = \alpha\%$ мы можем утверждать, что обратная матрица существует, в то время как в случае $\delta = \beta\%$ возникает неопределённость и мы не можем сделать о вывод о том, существует обратная матрица или нет.

5.4 Код программы

Код программы находится в файле **laboratory_work1.ipynb**, прикреплённом вместе отчётом.