CSE 221: Algorithms Dynamic Programming

Mumit Khan

Computer Science and Engineering **BRAC** University

References

- Jon Kleinberg and Éva Tardos, Algorithm Design. Pearson Education, 2006.
- T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, Second Edition. The MIT Press, September 2001.

Last modified: December 30, 2010

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.

Mumit Khan Licensed under @@@@ 1/53CSE 221: Algorithms

Introduction

- Memoization
- Dynamic programming
- Weighted interval scheduling problem
- 0/1 Knapsack problem
- Coin changing problem
- What problems can be solved by DP?
- Conclusion

3/53

 Build up the solution by computing solutions to the subproblems.

Mumit Khan Licensed under CSE 221: Algorithms

- Build up the solution by computing solutions to the subproblems.
- Don't solve the same subproblem twice, but rather save the solution so it can be re-used later on.

Mumit Khan Licensed under CSE 221: Algorithms 3 / 53

Dynamic Programming (DP)

- Build up the solution by computing solutions to the subproblems.
- Don't solve the same subproblem twice, but rather save the solution so it can be re-used later on.
- Often used for a large class to optimization problems.

Mumit Khan

3/53

Dynamic Programming (DP)

- Build up the solution by computing solutions to the subproblems.
- Don't solve the same subproblem twice, but rather save the solution so it can be re-used later on.
- Often used for a large class to optimization problems.
- Unlike Greedy algorithms, implicitly solve all subproblems.

Mumit Khan Licensed under CSE 221: Algorithms

3/53

Dynamic Programming (DP)

- Build up the solution by computing solutions to the subproblems.
- Don't solve the same subproblem twice, but rather save the solution so it can be re-used later on.
- Often used for a large class to optimization problems.
- Unlike Greedy algorithms, implicitly solve all subproblems.
- Motivating the case for DP with Memoization a top-down technique, and then moving on to Dynamic Programming – a bottom-up technique.

Licensed under Mumit Khan CSE 221: Algorithms

- Build up the solution by computing solutions to the subproblems.
- Don't solve the same subproblem twice, but rather save the solution so it can be re-used later on.
- Often used for a large class to optimization problems.
- Unlike Greedy algorithms, implicitly solve all subproblems.
- Motivating the case for DP with Memoization a top-down technique, and then moving on to Dynamic Programming – a bottom-up technique.
- *□ Greedy is evil, Dynamic Programming is good.* Prof. Jeff Erickson, University of Illinois, Urbana-Champaign.

Mumit Khan Licensed under CSE 221: Algorithms 3 / 53

- Introduction
- Memoization
- Dynamic programming
- Weighted interval scheduling problem
- 0/1 Knapsack problem
- Coin changing problem
- What problems can be solved by DP?
- Conclusion

Recursive solution to Fibonacci numbers

Definition (Fibonacci numbers)

The Fibonacci numbers are given by the following sequence:

$$\langle 0, 1, 1, 2, 3, 5, 8, 21, 34, 55, 89, \ldots \rangle$$

Mumit Khan Licensed under @@@@ CSE 221: Algorithms 5 / 53

5 / 53

Recursive solution to Fibonacci numbers

Definition (Fibonacci numbers)

The Fibonacci numbers are given by the following sequence:

$$\langle 0, 1, 1, 2, 3, 5, 8, 21, 34, 55, 89, \ldots \rangle$$

and described by the following recurrence.

$$\operatorname{Fib}(n) = \left\{ \begin{array}{ll} n & \text{if } n = 0 \text{ or } 1 \\ \operatorname{Fib}(n-1) + \operatorname{Fib}(n-2) & \text{if } n \geq 2 \end{array} \right.$$

Licensed under Mumit Khan CSE 221: Algorithms

Recursive solution to Fibonacci numbers

Definition (Fibonacci numbers)

The Fibonacci numbers are given by the following sequence:

$$\langle 0, 1, 1, 2, 3, 5, 8, 21, 34, 55, 89, \ldots \rangle$$

and described by the following recurrence.

$$\operatorname{Fib}(n) = \left\{ \begin{array}{ll} n & \text{if } n = 0 \text{ or } 1 \\ \operatorname{Fib}(n-1) + \operatorname{Fib}(n-2) & \text{if } n \geq 2 \end{array} \right.$$

Straightforward recursive algorithm

FIBONACCI(
$$n$$
) $\triangleright n \ge 0$

- **if** n = 0 or n = 1
- then return n
- 3 else return FIBONACCI(n-1) + FIBONACCI(n-2)

Mumit Khan

Licensed under

CSE 221: Algorithms

fib(n)

Mumit Khan Licensed under CSE 221: Algorithms 6 / 53

Recursion tree

Mumit Khan

Licensed under

CSE 221: Algorithms

Mumit Khan Licensed under CSE 221: Algorithms 6 / 53

Recursion tree

Mumit Khan Licensed under CSE 221: Algorithms 6/53

Recursion tree

Complexity

This recursive algorithm for Fibonacci numbers has exponential running time!

Licensed under @@@@ Mumit Khan CSE 221: Algorithms 6 / 53

Complexity

This recursive algorithm for Fibonacci numbers has exponential running time!

To be precise, $T(n) = O(\varphi^n)$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden ratio.

Mumit Khan Licensed under @@@@ CSE 221: Algorithms 6 / 53

Redundant computations

 \triangleright Note how FIB(n-2) and FIB(n-3) are each being computed twice.

Licensed under @@@@ Mumit Khan CSE 221: Algorithms 7 / 53

 \triangleright In fact, computing FIB(n-2) involves computing a whole subtree.

Mumit Khan Licensed under CSE 221: Algorithms 7 / 53

 \triangleright Likewise for computing FIB(n-3).

Mumit Khan Licensed under @@@@ CSE 221: Algorithms 7 / 53

Redundant computations

Observations

Spectacular redundancy in computation

Licensed under @@@@ Mumit Khan CSE 221: Algorithms 7 / 53

Redundant computations

Observations

• Spectacular redundancy in computation - how many times are we computing FIB(n-2)?

Licensed under @@@@ Mumit Khan CSE 221: Algorithms 7 / 53

Observations

 Spectacular redundancy in computation – how many times are we computing FIB(n-2)? FIB(n-3)?

Mumit Khan Licensed under @@@@ CSE 221: Algorithms 7 / 53

Redundant computations

Observations

- Spectacular redundancy in computation how many times are we computing FIB(n-2)? FIB(n-3)?
- What if we compute and save the result of FIB(i) for $i = \{2, 3, ..., n\}$ the first time, and then re-use it each time afterward?

Mumit Khan Licensed under CSE 221: Algorithms 7 / 53

Redundant computations

Observations

- Spectacular redundancy in computation how many times are we computing FIB(n-2)? FIB(n-3)?
- What if we compute and save the result of FIB(i) for $i = \{2, 3, ..., n\}$ the first time, and then re-use it each time afterward?
- Ah, we've just (re)discovered Memo(r)ization!

Mumit Khan Licensed under @@@@ CSE 221: Algorithms 7 / 53

Definition (Memoization)

The process of saving solutions to subproblems that can be re-used later without redundant computations.

Mumit Khan Licensed under @@@@ CSE 221: Algorithms

Definition (Memoization)

The process of saving solutions to subproblems that can be re-used later without redundant computations.

Basic idea

Typically, the solutions to subproblems (i.e., the intermediate solutions) are saved in a global array, which are later looked up and re-used as needed.

Licensed under @@@@ 8 / 53 Mumit Khan CSE 221: Algorithms

Definition (Memoization)

The process of saving solutions to subproblems that can be re-used later without redundant computations.

Basic idea

Typically, the solutions to subproblems (i.e., the intermediate solutions) are saved in a global array, which are later looked up and re-used as needed.

• At each step of computation, first see if the solution to the subproblem has already been found and saved.

Mumit Khan

Definition (Memoization)

The process of saving solutions to subproblems that can be re-used later without redundant computations.

Basic idea

Typically, the solutions to subproblems (i.e., the intermediate solutions) are saved in a global array, which are later looked up and re-used as needed.

- At each step of computation, first see if the solution to the subproblem has already been found and saved.
- 2 If so, simply return the solution.

Definition (Memoization)

The process of saving solutions to subproblems that can be re-used later without redundant computations.

Basic idea

Typically, the solutions to subproblems (i.e., the intermediate solutions) are saved in a global array, which are later looked up and re-used as needed.

- At each step of computation, first see if the solution to the subproblem has already been found and saved.
- 2 If so, simply return the solution.
- If not, compute the solution, and save it before returning the solution.

Mumit Khan Licensed under CSE 221: Algorithms 8 / 53

Memoized recursive algorithm for Fibonacci numbers

```
M-FIBONACCI(n) \triangleright n \ge 0, global F = [0 ... n]
   if n = 0 or n = 1
                                                Our base conditions.
       then return n
   if F[n] is empty
                                   \triangleright No saved solution found for n.
       then F[n] \leftarrow \text{M-FIBONACCI}(n-1) + \text{M-FIBONACCI}(n-2)
5
    return F[n]
```

Memoized recursive algorithm for Fibonacci numbers

```
M-FIBONACCI(n) \triangleright n \ge 0, global F = [0 ... n]
   if n = 0 or n = 1
                                              Our base conditions.
       then return n
   if F[n] is empty
                       \triangleright No saved solution found for n.
       then F[n] \leftarrow \text{M-FIBONACCI}(n-1) + \text{M-FIBONACCI}(n-2)
5
   return F[n]
```

Questions

• What is this global array F?

Mumit Khan

Licensed under

CSE 221: Algorithms

9 / 53

Memoized recursive algorithm for Fibonacci numbers

```
M-FIBONACCI(n) \triangleright n \ge 0, global F = [0 ... n]
   if n = 0 or n = 1
                                               Our base conditions.
       then return n
3
   if F[n] is empty
                                 \triangleright No saved solution found for n.
       then F[n] \leftarrow \text{M-FIBONACCI}(n-1) + \text{M-FIBONACCI}(n-2)
5
    return F[n]
```

Questions

• What is this global array F? It's used store the values of the intermediate results, and must be initialized by the caller to all empty.

CSE 221: Algorithms Mumit Khan Licensed under

9 / 53

```
M-FIBONACCI(n) \triangleright n \ge 0, global F = [0 ... n]
   if n = 0 or n = 1
                                               Our base conditions.
       then return n
3
  if F[n] is empty
                                 \triangleright No saved solution found for n.
       then F[n] \leftarrow \text{M-FIBONACCI}(n-1) + \text{M-FIBONACCI}(n-2)
   return F[n]
5
```

Questions

- What is this global array F? It's used store the values of the intermediate results, and must be initialized by the caller to all empty.
- What is an appropriate sentinel to indicate that $F[i], 0 \le i \le n$ has not been solved yet (i.e., empty)?

Licensed under CSE 221: Algorithms

```
M-FIBONACCI(n) \triangleright n \ge 0, global F = [0 ... n]
   if n = 0 or n = 1
                                               Our base conditions.
       then return n
3
  if F[n] is empty
                                 \triangleright No saved solution found for n.
       then F[n] \leftarrow \text{M-FIBONACCI}(n-1) + \text{M-FIBONACCI}(n-2)
   return F[n]
5
```

Questions

- What is this global array F? It's used store the values of the intermediate results, and must be initialized by the caller to all empty.
- What is an appropriate sentinel to indicate that $F[i], 0 \le i \le n$ has not been solved yet (i.e., empty)? Use -1, which is guaranteed to be an invalid value.

Mumit Khan

Memoized ... Fibonacci numbers (continued)

```
FIBONACCI(n) \triangleright n > 0
   \triangleright Allocate an array F[0..n] to save results (LENGTH[F] = n+1).
   for i \leftarrow 0 to n
         do F[i] \leftarrow -1
                          \triangleright No solution computed for i yet (sentinel)
   return M-FIBONACCI(F, n)
```

Memoized ... Fibonacci numbers (continued)

```
FIBONACCI(n) \triangleright n > 0
    \triangleright Allocate an array F[0..n] to save results (LENGTH[F] = n+1).
   for i \leftarrow 0 to n
          do F[i] \leftarrow -1 \triangleright No solution computed for i yet (sentinel)
   return M-FIBONACCI(F, n)
M-FIBONACCI(F, n) \triangleright n > 0, F = [0..n]
    if n < 1
       then return n
   if F[n] = -1
                                                  \triangleright No saved solution found for n.
       then F[n] \leftarrow \text{M-FIBONACCI}(F, n-1) + \text{M-FIBONACCI}(F, n-2)
5
    return F[n]
```

Memoized ... Fibonacci numbers (continued)

```
FIBONACCI(n) \triangleright n > 0
    \triangleright Allocate an array F[0..n] to save results (LENGTH[F] = n+1).
   for i \leftarrow 0 to n
          do F[i] \leftarrow -1 \triangleright No solution computed for i yet (sentinel)
  return M-FIBONACCI(F, n)
M-FIBONACCI(F, n) \triangleright n > 0, F = [0..n]
   if n < 1
       then return n
3 if F[n] = -1
                                                  \triangleright No saved solution found for n.
       then F[n] \leftarrow \text{M-FIBONACCI}(F, n-1) + \text{M-FIBONACCI}(F, n-2)
5
    return F[n]
```

Running time

Each element $F[2] \dots F[n]$ is filled in just once in $\Theta(1)$ time, so $T(n) = \Theta(n)$.

Mumit Khan Licensed under CSE 221: Algorithms 10 / 53

11/53

Memoization highlights

• Idea is to re-use saved solutions, trading off space for time.

Mumit Khan Licensed under CSE 221: Algorithms

- Idea is to re-use saved solutions, trading off space for time.
- Any recursive algorithm can be memoized, but only helps if there is redundancy in computing solutions to subproblems (in other words, if there are overlapping subproblems).

Licensed under @@@@ 11 / 53 Mumit Khan CSE 221: Algorithms

Memoization highlights

- Idea is to re-use saved solutions, trading off space for time.
- Any recursive algorithm can be memoized, but only helps if there is redundancy in computing solutions to subproblems (in other words, if there are overlapping subproblems).
- Any recursive algorithm where redundant solutions are computed, Memoization is an appropriate solution.

Memoization highlights

- Idea is to re-use saved solutions, trading off space for time.
- Any recursive algorithm can be memoized, but only helps if there is redundancy in computing solutions to subproblems (in other words, if there are overlapping subproblems).
- Any recursive algorithm where redundant solutions are computed, Memoization is an appropriate solution.
- Often called Top-down Dynamic Programming.

Memoization highlights

- Idea is to re-use saved solutions, trading off space for time.
- Any recursive algorithm can be memoized, but only helps if there is redundancy in computing solutions to subproblems (in other words, if there are overlapping subproblems).
- Any recursive algorithm where redundant solutions are computed, Memoization is an appropriate solution.
- Often called Top-down Dynamic Programming.

Questions to ask (and remember)

Licensed under Mumit Khan CSE 221: Algorithms 11/53

- Idea is to re-use saved solutions, trading off space for time.
- Any recursive algorithm can be memoized, but only helps if there is redundancy in computing solutions to subproblems (in other words, if there are overlapping subproblems).
- Any recursive algorithm where redundant solutions are computed, Memoization is an appropriate solution.
- Often called Top-down Dynamic Programming.

Questions to ask (and remember)

• What are the drawbacks, if any, of memoization?

Mumit Khan Licensed under CSE 221: Algorithms 11/53

- Idea is to re-use saved solutions, trading off space for time.
- Any recursive algorithm can be memoized, but only helps if there is redundancy in computing solutions to subproblems (in other words, if there are overlapping subproblems).
- Any recursive algorithm where redundant solutions are computed, Memoization is an appropriate solution.
- Often called Top-down Dynamic Programming.

Questions to ask (and remember)

- What are the drawbacks, if any, of memoization?
- Would all recursive algorithms benefit from memoization?

Mumit Khan Licensed under CSE 221: Algorithms 11/53

- Idea is to re-use saved solutions, trading off space for time.
- Any recursive algorithm can be memoized, but only helps if there is redundancy in computing solutions to subproblems (in other words, if there are overlapping subproblems).
- Any recursive algorithm where redundant solutions are computed, Memoization is an appropriate solution.
- Often called Top-down Dynamic Programming.

Questions to ask (and remember)

- What are the drawbacks, if any, of memoization?
- Would all recursive algorithms benefit from memoization? For example, would the recursive algorithm to compute the factorial of a number benefit from memoization?

Mumit Khan Licensed under CSE 221: Algorithms 11/53

Contents

- Introduction
- Memoization
- Dynamic programming
- Weighted interval scheduling problem
- 0/1 Knapsack problem
- Coin changing problem
- What problems can be solved by DP?
- Conclusion

• Note how the recursive algorithm computes the Fibonacci number *n* top down by computing (and saving) solutions for smaller values.

Mumit Khan Licensed under CSE 221: Algorithms 13 / 53

13 / 53

Dynamic programming

- Note how the recursive algorithm computes the Fibonacci number *n* top down by computing (and saving) solutions for smaller values.
- Idea: why not build up the solution bottom-up, starting from the base case(s) all the way to n?

Licensed under @@@@ CSE 221: Algorithms Mumit Khan

Dynamic programming

- Note how the recursive algorithm computes the Fibonacci number n top down by computing (and saving) solutions for smaller values.
- Idea: why not build up the solution bottom-up, starting from the base case(s) all the way to n?
- This bottom up construction gives us the first Dynamic Programming algorithm.

Mumit Khan Licensed under CSE 221: Algorithms 13 / 53

Dynamic programming

- Note how the recursive algorithm computes the Fibonacci number n top down by computing (and saving) solutions for smaller values.
- Idea: why not build up the solution bottom-up, starting from the base case(s) all the way to n?
- This bottom up construction gives us the first Dynamic Programming algorithm.

Dynamic programming algorithm for fibonacci numbers

```
FIBONACCI(n)
                                \triangleright n > 0
  F[0] \leftarrow 0
2 F[1] \leftarrow 1
3 for i \leftarrow 2 to n
4
           do F[i] \leftarrow F[i-1] + F[i-2]
5
    return F[n]
```

Dynamic programming

- Note how the recursive algorithm computes the Fibonacci number n top down by computing (and saving) solutions for smaller values.
- Idea: why not build up the solution bottom-up, starting from the base case(s) all the way to n?
- This bottom up construction gives us the first Dynamic Programming algorithm.

Dynamic programming algorithm for fibonacci numbers

```
FIBONACCI(n)
                                \triangleright n > 0
  F[0] \leftarrow 0
2 F[1] \leftarrow 1
3 for i \leftarrow 2 to n
           do F[i] \leftarrow F[i-1] + F[i-2]
4
5
    return F[n]
```

 $T(n) = \Theta(n)$

Dynamic programming (continued)

The pattern

Formulate the problem recursively.

Dynamic programming (continued)

The pattern

1 Formulate the problem recursively. Write a formula for the whole problem as a simple combination of of the answers to smaller subproblems.

The pattern

- Formulate the problem recursively. Write a formula for the whole problem as a simple combination of the answers to smaller subproblems.
- **2** Build solutions to the recurrence from the bottom up.

Mumit Khan Licensed under ^{®™} CSE 221: Algorithms 14/53

Dynamic programming (continued)

The pattern

- **1** Formulate the problem recursively. Write a formula for the whole problem as a simple combination of of the answers to smaller subproblems.
- 2 Build solutions to the recurrence from the bottom up. Write an algorithm that starts with the base case, and works its way up to the final solution by considering the subproblems in the correct order.

The pattern

- **1** Formulate the problem recursively. Write a formula for the whole problem as a simple combination of of the answers to smaller subproblems.
- 2 Build solutions to the recurrence from the bottom up. Write an algorithm that starts with the base case, and works its way up to the final solution by considering the subproblems in the correct order.

Observations

• Must ensure that the recurrence is correct of course!

Dynamic programming (continued)

The pattern

- **1** Formulate the problem recursively. Write a formula for the whole problem as a simple combination of of the answers to smaller subproblems.
- Build solutions to the recurrence from the bottom up. Write an algorithm that starts with the base case, and works its way up to the final solution by considering the subproblems in the correct order.

Observations

- Must ensure that the recurrence is correct of course!
- Need a "place" to store the solutions to subproblems, and need to look these solutions up when needed.

CSE 221: Algorithms Mumit Khan Licensed under 14 / 53

Dynamic programming (continued)

The pattern

- **1** Formulate the problem recursively. Write a formula for the whole problem as a simple combination of of the answers to smaller subproblems.
- 2 Build solutions to the recurrence from the bottom up. Write an algorithm that starts with the base case, and works its way up to the final solution by considering the subproblems in the correct order.

Observations

- Must ensure that the recurrence is correct of course!
- 2 Need a "place" to store the solutions to subproblems, and need to look these solutions up when needed. Typically, but not always, a multi-dimensional table is used as storage.

Licensed under CSE 221: Algorithms Mumit Khan 14 / 53

- Introduction
- Memoization
- Dynamic programming
- Weighted interval scheduling problem
- 0/1 Knapsack problem
- Coin changing problem
- What problems can be solved by DP?
- Conclusion

Weighted interval scheduling problem

Definition (Weighted interval scheduling problem)

Given a set of schedules $I = \{I_i\}$, with associated weights $W = \{w_i\}$, find $A \subseteq I$ such that the members of A are non-conflicting and the total weight $\sum_{i \in A} w_i$ is maximized.

Example (an instance of weighted interval problem)

$$|A| = ???$$
, $\sum_{i \in A} w_i = ???$.

Weighted interval scheduling problem

Definition (Weighted interval scheduling problem)

Given a set of schedules $I = \{I_i\}$, with associated weights $W = \{w_i\}$, find $A \subseteq I$ such that the members of A are non-conflicting and the total weight $\sum_{i \in A} w_i$ is maximized.

Example (using an optimal strategy)

$$|A| = 1$$
, $\sum_{i \in A} w_i = 3$.

Weighted interval scheduling problem

Definition (Weighted interval scheduling problem)

Given a set of schedules $I = \{I_i\}$, with associated weights $W = \{w_i\}$, find $A \subseteq I$ such that the members of A are non-conflicting and the total weight $\sum_{i \in A} w_i$ is maximized.

Example (using an optimal strategy)

|A| = 1, $\sum_{i \in \Delta} w_i = 3$.

What now?

First step is to formulate a recursive solution, but first we need to figure out what the subproblems are.

Mumit Khan Licensed under CSE 221: Algorithms 16 / 53

17 / 53

Developing a recursive solution

ullet Let W be an instance of a weighted interval problem.

Mumit Khan Licensed under CSE 221: Algorithms

- Let W be an instance of a weighted interval problem.
- As in the greedy approach, we sort the intervals according to finish times such that $f_i \leq f_j$ for i < j ("a natural order of the subproblems").

Licensed under @@@@ Mumit Khan CSE 221: Algorithms 17/53

Developing a recursive solution

- Let W be an instance of a weighted interval problem.
- As in the greedy approach, we sort the intervals according to finish times such that $f_i \leq f_j$ for i < j ("a natural order of the subproblems").
- Let ϑ be an optimal solution (even if we have no idea what it is yet).

Mumit Khan Licensed under CSE 221: Algorithms 17/53

17/53

- Let W be an instance of a weighted interval problem.
- As in the greedy approach, we sort the intervals according to finish times such that $f_i \leq f_i$ for i < j ("a natural order of the subproblems").
- Let ϑ be an optimal solution (even if we have no idea what it is yet).
- All we can say about ϑ is the following: interval n (the last interval) either belongs to ϑ , or it doesn't.

Mumit Khan Licensed under CSE 221: Algorithms

Developing a recursive solution

- Let W be an instance of a weighted interval problem.
- As in the greedy approach, we sort the intervals according to finish times such that $f_i \leq f_i$ for i < j ("a natural order of the subproblems").
- Let ϑ be an optimal solution (even if we have no idea what it is yet).
- All we can say about ϑ is the following: interval n (the last interval) either belongs to ϑ , or it doesn't.
 - If $n \in \vartheta$ Then clearly all intervals that conflict with n are not members of ϑ . ϑ then contains n, plus an optimal solution to all intervals that do not conflict with n. We now need to have a quick way of computing list of conflicting intervals for n.

- Let W be an instance of a weighted interval problem.
- As in the greedy approach, we sort the intervals according to finish times such that $f_i \leq f_i$ for i < j ("a natural order of the subproblems").
- Let ϑ be an optimal solution (even if we have no idea what it is yet).
- All we can say about ϑ is the following: interval n (the last interval) either belongs to ϑ , or it doesn't.
 - If $n \in \vartheta$ Then clearly all intervals that conflict with n are not members of ϑ . ϑ then contains n, plus an optimal solution to all intervals that do not conflict with n. We now need to have a quick way of computing list of conflicting intervals for n.
 - If $n \notin \vartheta$ Then ϑ contains an optimal solution for the intervals $\{i_1, i_2, ..., i_{n-1}\}$.

Example (an instance of a weighted interval problem)

 \triangleright For each interval i, compute p(i), the leftmost interval that does not conflict with i. Define p(i) = 0 if not request i < j is disjoint from j.

Mumit Khan

Licensed under @@@@

Developing a recursive solution (continued)

Example (an instance of a weighted interval problem)

 \triangleright For a given interval i, p(i) means that intervals $\{p(i)+1,p(i)+2,\ldots,i-1\}$ overlap with it. For example, p(6) = 3, which means that intervals $\{4, 5\}$ overlap interval 6.

Example (an instance of a weighted interval problem)

 \triangleright Alternatively, intervals $\{1, 2, ..., p(i)\}$ do not overlap interval i. For example, p(6) = 3 means that intervals $\{1, 2, 3\}$ do not overlap interval 6.

• If $n \in \emptyset$, then \emptyset must include, in addition to interval n, an optimal solution to the subproblem consisting of intervals $\{1, 2, \ldots, p(n)\}.$

• If $n \in \emptyset$, then \emptyset must include, in addition to interval n, an optimal solution to the subproblem consisting of intervals $\{1, 2, \dots, p(n)\}$. If $\vartheta(n)$ is an optimal solution to the subproblem for intervals $\{1, 2, ..., n\}$, then:

$$\triangleright \vartheta(n) = w_n + \vartheta(p(n))$$

- If $n \in \emptyset$, then \emptyset must include, in addition to interval n, an optimal solution to the subproblem consisting of intervals $\{1, 2, \dots, p(n)\}$. If $\vartheta(n)$ is an optimal solution to the subproblem for intervals $\{1, 2, ..., n\}$, then:
 - $\triangleright \vartheta(n) = w_n + \vartheta(p(n))$
- If $n \notin \vartheta$, then ϑ simply contains an optimal solution to the subproblem consisting of the intervals $\{1, 2, \dots, n-1\}$.

- If $n \in \emptyset$, then \emptyset must include, in addition to interval n, an optimal solution to the subproblem consisting of intervals $\{1, 2, \dots, p(n)\}$. If $\vartheta(n)$ is an optimal solution to the subproblem for intervals $\{1, 2, ..., n\}$, then:
 - $\triangleright \vartheta(n) = w_n + \vartheta(p(n))$
- If $n \notin \vartheta$, then ϑ simply contains an optimal solution to the subproblem consisting of the intervals $\{1, 2, \dots, n-1\}$.

 $\triangleright \vartheta(n) = \vartheta(n-1)$

- If $n \in \emptyset$, then \emptyset must include, in addition to interval n, an optimal solution to the subproblem consisting of intervals $\{1, 2, \dots, p(n)\}$. If $\vartheta(n)$ is an optimal solution to the subproblem for intervals $\{1, 2, ..., n\}$, then: $\triangleright \vartheta(n) = w_n + \vartheta(p(n))$
- If $n \notin \vartheta$, then ϑ simply contains an optimal solution to the subproblem consisting of the intervals $\{1, 2, ..., n-1\}$. $\triangleright \vartheta(n) = \vartheta(n-1)$
- Since an optimal solution must maximize the sum of the weights in the intervals it contains, we accept the larger of the two.

- If $n \in \emptyset$, then \emptyset must include, in addition to interval n, an optimal solution to the subproblem consisting of intervals $\{1, 2, \dots, p(n)\}$. If $\vartheta(n)$ is an optimal solution to the subproblem for intervals $\{1, 2, ..., n\}$, then:
 - $\triangleright \vartheta(n) = w_n + \vartheta(p(n))$
- If $n \notin \vartheta$, then ϑ simply contains an optimal solution to the subproblem consisting of the intervals $\{1, 2, ..., n-1\}$. $\triangleright \vartheta(n) = \vartheta(n-1)$
- Since an optimal solution must maximize the sum of the weights in the intervals it contains, we accept the larger of the two.
 - $\vartheta(n) = \text{MAX}(w_n + \vartheta(p(n)), \vartheta(n-1))$

Recursive algorithm for an optimal value

If OPT(j) is an optimal solution to the subproblem for intervals $\{1, 2, \dots, j\}$, for any $j \in \{1, 2, \dots, n\}$, then:

$$OPT(j) = MAX(w_j + OPT(p(j)), OPT(j-1))$$

Recursive algorithm for an optimal value

If OPT(i) is an optimal solution to the subproblem for intervals $\{1, 2, \dots, j\}$, for any $j \in \{1, 2, \dots, n\}$, then:

$$OPT(j) = MAX(w_j + OPT(p(j)), OPT(j-1))$$

Extracting the intervals in an optimal solution

The interval j is in an optimal solution OPT(j) if and only if the first of the two options is larger than the second.

Mumit Khan

Licensed under

CSE 221: Algorithms

Recursive algorithm for an optimal value

If OPT(i) is an optimal solution to the subproblem for intervals $\{1, 2, \dots, j\}$, for any $j \in \{1, 2, \dots, n\}$, then:

$$OPT(j) = MAX(w_j + OPT(p(j)), OPT(j-1))$$

Extracting the intervals in an optimal solution

The interval j is in an optimal solution OPT(j) if and only if the first of the two options is larger than the second.

Interval j belongs to an optimal solution on the set $\{1, 2, ..., j\}$ if and only if

$$w_j + OPT(p(j)) \geq OPT(j-1)$$

A recursive algorithm

```
WIS(j)
  if i = 0
      then return 0
3
     else return MAX(w_i + WIS(p(j)),
                      WIS(j-1)
```

```
WIS(i)
  if i = 0
      then return 0
3
     else return MAX(w_i + WIS(p(j)),
                      WIS(i-1)
```

• The initial call is WIS(n) for intervals $\{1, 2, ..., n\}$ sorted in non-decreasing order of the finishing times.

```
WIS(i)
  if i = 0
      then return 0
3
     else return MAX(w_i + WIS(p(j)),
                       WIS(i-1)
```

- The initial call is WIS(n) for intervals $\{1, 2, ..., n\}$ sorted in non-decreasing order of the finishing times.
- The tree grows very rapidly, leading to exponential running time. The tree when p(j) = j - 2 for all j shows how quickly it grows.

```
WIS(i)
  if i = 0
      then return 0
3
      else return MAX(w_i + WIS(p(j)),
                       WIS(i-1)
```

- The initial call is WIS(n) for intervals $\{1, 2, ..., n\}$ sorted in non-decreasing order of the finishing times.
- The tree grows very rapidly, leading to exponential running time. The tree when p(j) = j - 2 for all j shows how quickly it grows.
- There are many overlapping subproblems, so the obvious choice is to memoize the recursion.

```
M-WIS(i)
   if i = 0
       then return 0
3
   elseif M[i] is empty
       then M[j] \leftarrow \text{MAX}(w_i + \text{M-WIS}(p(j)),
4
                            M-WIS(i-1)
5
    return M[i]
```

Memoizing the recursion

```
M-WIS(i)
   if i = 0
       then return 0
3
   elseif M[i] is empty
4
       then M[j] \leftarrow \text{MAX}(w_i + \text{M-WIS}(p(j)),
                            M-WIS(i-1)
5
   return M[i]
```

• Each entry in M[j] gets filled in only once at $\Theta(1)$ time, and there are n+1 entries, so M-WIS(n) takes $\Theta(n)$ time.

```
M-WIS(i)
   if i = 0
       then return 0
3
   elseif M[j] is empty
4
       then M[j] \leftarrow \text{MAX}(w_i + \text{M-WIS}(p(j)),
                            M-WIS(i-1)
5
   return M[i]
```

- Each entry in M[i] gets filled in only once at $\Theta(1)$ time, and there are n+1 entries, so M-WIS(n) takes $\Theta(n)$ time.
- Of course, sorting the intervals by the finish times takes $\Theta(n \lg n)$ time.

```
M-WIS(i)
   if i = 0
       then return 0
3
   elseif M[i] is empty
4
       then M[j] \leftarrow \text{MAX}(w_i + \text{M-WIS}(p(j)),
                            M-WIS(i-1)
5
   return M[i]
```

- Each entry in M[i] gets filled in only once at $\Theta(1)$ time, and there are n+1 entries, so M-WIS(n) takes $\Theta(n)$ time.
- Of course, sorting the intervals by the finish times takes $\Theta(n \lg n)$ time.
- This memoized algorithm *plus* sorting the intervals takes $\Theta(n \lg n) + \Theta(n) = \Theta(n \lg n)$ time.

Computing a solution in addition to its values

- The memoized algorithm only computes the optimal value, but does not extract the intervals that make up the solution.
- The key to extracting the solution is to note that item j is in ϑ if and only if $w_i + M[p(j)] \ge M[j-1]$. This provides two ways of extracting the intervals in the optimal solution:
 - Trace back from M[n] and extract the solution by checking which choice was made -j-1 or p(j) – when M[j] was included in the optimal set of intervals.
 - 2 Whenever a choice is made between two options, save in pred[j], the predecessor pointer, the choice that was made between i-1 and p(i).

- The first way recursively extracts an optimal set of intervals for a problem size of $1 \le j \le n$.
- Calling WIS-FIND-SOLUTION(n) extracts all the intervals in the optimal solution.

24 / 53 Mumit Khan Licensed under CSE 221: Algorithms

- The first way recursively extracts an optimal set of intervals for a problem size of 1 < i < n.
- Calling WIS-FIND-SOLUTION(n) extracts all the intervals in the optimal solution.

```
WIS-find-solution(i)
   if i = 0
      then Output nothing
3
      else
           if w_i + M[p(j)] \ge M[j-1]
4
5
             then Output i
6
                  WIS-FIND-SOLUTION(p(i))
             else WIS-FIND-SOLUTION(j-1)
```

- The second way requires that M-WIS use an auxiliary array pred[0...n] to save the predecessor of each interval in the solution.
- Initialize pred[j] = 0 for all $0 \le j \le n$.

Mumit Khan Licensed under CSE 221: Algorithms 25 / 53

- The second way requires that M-WIS use an auxiliary array pred[0...n] to save the predecessor of each interval in the solution.
- Initialize pred[j] = 0 for all $0 \le j \le n$.

```
M-WIS(i)
   if i = 0
        then return 0
3
    elseif M[i] is empty
4
        then if w_i + \text{M-WIS}(p(j)) > \text{M-WIS}(j-1)
                 then M[j] \leftarrow w_i + \text{M-WIS}(p(j))
5
6
                        pred[i] \leftarrow p(i)
                 else M[i] \leftarrow \text{M-WIS}(i-1)
                        pred[i] \leftarrow i - 1
8
9
    return M[i]
```

Licensed under @@@@ Mumit Khan CSE 221: Algorithms 25 / 53

Now that we have pred[j] filled in, we start from M[n] and work backwards.

- If pred[j] = p(j), then we did add the j^{th} interval in the final solution, and we continue with $pred[i] \leftarrow p(i)$.
- 2 if $pred[j] \neq p(j)$, then we did not add the j^{th} interval in the final solution, and we continue with $pred[i] \leftarrow i - 1$.

Now that we have pred[j] filled in, we start from M[n] and work backwards.

- If pred[j] = p(j), then we did add the j^{th} interval in the final solution, and we continue with $pred[i] \leftarrow p(i)$.
- ② if $pred[j] \neq p(j)$, then we did not add the j^{th} interval in the final solution, and we continue with $pred[i] \leftarrow i - 1$.

```
WIS-FIND-SOLUTION(i)
   if i = 0
      then Output nothing
3
      else
4
           if pred[i] = p(i)
5
             then Output j
                  WIS-FIND-SOLUTION(p(i))
6
             else WIS-FIND-SOLUTION(i-1)
```

26 / 53

Computing a solution in addition to its values (continued)

Now that we have pred[j] filled in, we start from M[n] and work backwards.

- If pred[j] = p(j), then we did add the j^{th} interval in the final solution, and we continue with $pred[i] \leftarrow p(i)$.
- ② if $pred[j] \neq p(j)$, then we did not add the i^{th} interval in the final solution, and we continue with $pred[i] \leftarrow i - 1$.

```
WIS-FIND-SOLUTION(i)
   if i = 0
      then Output nothing
3
      else
4
           if pred[i] = p(i)
5
             then Output j
6
                  WIS-FIND-SOLUTION(p(i))
             else WIS-FIND-SOLUTION(i-1)
```

Can you come up with an iterative version?

Developing a Dynamic Programming algorithm

• The value of an optimal solution OPT(i) for any $j \in \{1, 2, 3, \dots, n\}$ depends on the values of OPT(p(j)) and OPT(j-1).

Developing a Dynamic Programming algorithm

- The value of an optimal solution OPT(i) for any $j \in \{1, 2, 3, \dots, n\}$ depends on the values of OPT(p(j)) and OPT(i-1).
- We can build the table M[i] bottom-up, starting from the base case of i = 0, up to n by using the memoized recursive formulation: $M[j] = \text{MAX}(w_j + M[p(j)], M[j-1]).$

- The value of an optimal solution OPT(i) for any $j \in \{1, 2, 3, \dots, n\}$ depends on the values of OPT(p(j)) and OPT(i-1).
- We can build the table M[i] bottom-up, starting from the base case of i = 0, up to n by using the memoized recursive formulation: $M[j] = MAX(w_i + M[p(j)], M[j-1])$.

Dynamic programming algorithm

```
WIS(n)
   M[0] \leftarrow 0
2
  for i \leftarrow 1 to n
3
         do M[j] = MAX(w_i + M[p(j)], M[j-1])
4
   return M[n]
```

Developing a Dynamic Programming algorithm

- The value of an optimal solution OPT(i) for any $j \in \{1, 2, 3, \dots, n\}$ depends on the values of OPT(p(i)) and OPT(i-1).
- We can build the table M[i] bottom-up, starting from the base case of i = 0, up to n by using the memoized recursive formulation: $M[j] = MAX(w_i + M[p(j)], M[j-1])$.

Dynamic programming algorithm

```
WIS(n)
   M[0] \leftarrow 0
2
  for i \leftarrow 1 to n
3
          do M[j] = MAX(w_i + M[p(j)], M[j-1])
4
   return M[n]
                     T(n) = \Theta(n)
```

```
WIS(n)
   M[0] \leftarrow 0
   for j \leftarrow 1 to n
3
         do if w_i + M[p(j) > M[j-1]
               then M[i] = w_i + M[p(i)]
4
5
                     pred[i] = p(i)
6
               else M[i] = M[i-1]
                     pred[i] = i - 1
8
   return M[n]
```

Computing a solution in addition to its values

```
WIS(n)
   M[0] \leftarrow 0
   for i \leftarrow 1 to n
3
         do if w_i + M[p(j) > M[j-1]
               then M[j] = w_i + M[p(j)]
4
5
                     pred[i] = p(i)
6
               else M[i] = M[i - 1]
                     pred[i] = i - 1
8
   return M[n]
WIS-find-solution(i)
   j ← n
   while i > 0
         do if pred[i] = p(i)
               then Output j
4
5
             i \leftarrow pred[i]
```

Mumit Khan

Licensed under @@@@

CSE 221: Algorithms

Pred = 0 0 0 0 0 0 0

Index
$$v1 = 2$$
 $v2 = 4$
 $v3 = 4$
 $v4 = 7$
 $v5 = 2$
 $v6 = 1$
 $v6 = 1$
 $v1 = 2$
 $v2 = 4$
 $v3 = 4$
 $v4 = 7$
 $v5 = 2$
 $v6 = 1$
 $v7 = 1$
 $v7 = 1$
 $v8 = 1$
 $v9 =$

0	1	2	3	4	5	6
0	2					
4				_		_
0	2	4				
	_	1	_	_	_	-

$$Pred = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Weighted Interval Scheduling DP algorithm in action

Index
$$v1 = 2$$

$$v1 = 2$$

$$v3 = 4$$

$$v4 = 7$$

$$v6 = 1$$

$$v = 2$$

$$v = 3$$

$$v = 2$$

$$v = 2$$

$$v = 3$$

$$v$$

Weighted Interval Scheduling DP algorithm in action

Index
$$v1 = 2 \qquad v2 = 4 \qquad 0$$

$$2 \qquad v3 = 4 \qquad 1$$

$$4 \qquad v4 = 7 \qquad 0$$

$$5 \qquad v6 = 1 \qquad 3$$

$$v = 2 \quad 4 \quad 7 \quad 2 \quad 1$$

$$p = 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$

$$Pred = 0 \quad 0 \quad 1 \quad 0 \quad 3 \quad 5$$

Weighted Interval Scheduling DP algorithm in action

Optimal value: 8

Optimal solution: {5, 3, 1}

Optimal value: 8 Optimal solution: $\{1, 3, 5\}$

Answer the following questions

Instead of sorting the intervals by finish time, what if we sorted the requests by start time?

Answer the following questions

- Instead of sorting the intervals by finish time, what if we sorted the requests by start time?
- What if we didn't sort the requests at all? Would it still work?

Answer the following questions

- Instead of sorting the intervals by finish time, what if we sorted the requests by start time?
- What if we didn't sort the requests at all? Would it still work?
- 1 If all the weights are the same, what does this problem become?

Answer the following questions

- Instead of sorting the intervals by finish time, what if we sorted the requests by start time?
- What if we didn't sort the requests at all? Would it still work?
- **1** If all the *weights* are the same, what does this problem become? Can you solve it using DP?

- Introduction
- Memoization
- Dynamic programming
- Weighted interval scheduling problem
- 0/1 Knapsack problem
- Coin changing problem
- What problems can be solved by DP?
- Conclusion

Definition (0/1 knapsack problem)

Given a set S of n items, such that each item i has a positive benefit v_i and a positive weight w_i , the goal is to find the maximum-benefit subset that does not exceed a given weight W.

0/1 knapsack problem

Definition (0/1 knapsack problem)

Given a set S of n items, such that each item i has a positive benefit v_i and a positive weight w_i , the goal is to find the maximum-benefit subset that does not exceed a given weight W. Formally, we wish to determine a subset of S that maximizes $\sum_{i \in S} v_i$, subject to $\sum_{i \in S} w_i \leq W$.

0/1 knapsack problem

Definition (0/1 knapsack problem)

Given a set S of n items, such that each item i has a positive benefit v_i and a positive weight w_i , the goal is to find the maximum-benefit subset that does not exceed a given weight W. Formally, we wish to determine a subset of S that maximizes $\sum_{i \in S} v_i$, subject to $\sum_{i \in S} w_i \leq W$.

Maximum weight: W = 4 kg

$$W = 4 \text{ kg}$$

Definition (0/1 knapsack problem)

Given a set S of n items, such that each item i has a positive benefit v_i and a positive weight w_i , the goal is to find the maximum-benefit subset that does not exceed a given weight W. Formally, we wish to determine a subset of S that maximizes $\sum_{i \in S} v_i$, subject to $\sum_{i \in S} w_i \leq W$.

Maximum weight: W = 4 kg

$$W = 4 \text{ kg}$$

Optimal solution: items B and C

Benefit:

Licensed under Mumit Khan CSE 221: Algorithms 32 / 53 • Let S be an instance of a 0/1 Knapsack problem, and ϑ be an optimal solution (even if we have no idea what it is yet).

Mumit Khan Licensed under CSE 221: Algorithms 33 / 53

- Let S be an instance of a 0/1 Knapsack problem, and ϑ be an optimal solution (even if we have no idea what it is yet).
- Note that the presence of an item i in ϑ does not preclude any other item $j \neq i$ in ϑ .

Mumit Khan Licensed under CSE 221: Algorithms 33 / 53

- Let S be an instance of a 0/1 Knapsack problem, and ϑ be an optimal solution (even if we have no idea what it is yet).
- Note that the presence of an item i in ϑ does not preclude any other item $i \neq i$ in ϑ .
- If item n weighs more than the maximum allowed weight, it will not be in ϑ .

Mumit Khan Licensed under CSE 221: Algorithms 33 / 53

- Let S be an instance of a 0/1 Knapsack problem, and ϑ be an optimal solution (even if we have no idea what it is yet).
- Note that the presence of an item i in ϑ does not preclude any other item $i \neq i$ in ϑ .
- If item n weighs more than the maximum allowed weight, it will not be in ϑ .
- Otherwise, all we can say about ϑ is the following: item n (the last one) either belongs to ϑ , or it doesn't.

- Let S be an instance of a 0/1 Knapsack problem, and ϑ be an optimal solution (even if we have no idea what it is yet).
- Note that the presence of an item i in ϑ does not preclude any other item $i \neq i$ in ϑ .
- If item n weighs more than the maximum allowed weight, it will not be in ϑ .
- Otherwise, all we can say about ϑ is the following: item n (the last one) either belongs to ϑ , or it doesn't.
 - If $n \in \vartheta$ Then the optimal solution contains n, plus an optimal solution for the other n-1 items, but with a reduced maximum weight of $W - w_n$.

- Let S be an instance of a 0/1 Knapsack problem, and ϑ be an optimal solution (even if we have no idea what it is yet).
- Note that the presence of an item i in ϑ does not preclude any other item $i \neq i$ in ϑ .
- If item n weighs more than the maximum allowed weight, it will not be in ϑ .
- Otherwise, all we can say about ϑ is the following: item n (the last one) either belongs to ϑ , or it doesn't.
 - If $n \in \vartheta$ Then the optimal solution contains n, plus an optimal solution for the other n-1 items, but with a reduced maximum weight of $W - w_n$.
 - If $n \notin \vartheta$ Then ϑ simply contains an optimal solution for the first n-1 items, with the maximum allowed weight W remaining unchanged.

33 / 53

Developing a recursive solution

- Let S be an instance of a 0/1 Knapsack problem, and ϑ be an optimal solution (even if we have no idea what it is yet).
- Note that the presence of an item i in ϑ does not preclude any other item $i \neq i$ in ϑ .
- If item n weighs more than the maximum allowed weight, it will not be in ϑ .
- Otherwise, all we can say about ϑ is the following: item n (the last one) either belongs to ϑ , or it doesn't.
 - If $n \in \vartheta$ Then the optimal solution contains n, plus an optimal solution for the other n-1 items, but with a reduced maximum weight of $W - w_n$.
 - If $n \notin \vartheta$ Then ϑ simply contains an optimal solution for the first n-1 items, with the maximum allowed weight W remaining unchanged.
- We have two parameters for each subproblem the items 5, and the maximum allowed weight W.

Licensed under CSE 221: Algorithms Mumit Khan

•
$$w_n > W \implies n \notin \vartheta$$
.
• $\vartheta(n, W) = \vartheta(n - 1, W)$

Mumit Khan

Licensed under @@@@

CSE 221: Algorithms

- $w_n > W \implies n \notin \vartheta$. $\triangleright \vartheta(n, W) = \vartheta(n-1, W)$
- Otherwise, *n* is either $\in \vartheta$ or $\notin \vartheta$.
 - If $n \in \vartheta$, then $\vartheta(n, W)$ is an optimal solution to the subproblem for items $\{1, 2, \ldots, n\}$:

$$\triangleright \vartheta(n, W) = v_n + \vartheta(n-1, W-w_n)$$

- $w_n > W \implies n \notin \vartheta$. $\triangleright \vartheta(n, W) = \vartheta(n-1, W)$
- Otherwise, *n* is either $\in \vartheta$ or $\notin \vartheta$.
 - If $n \in \vartheta$, then $\vartheta(n, W)$ is an optimal solution to the subproblem for items $\{1, 2, ..., n\}$:

$$\triangleright \vartheta(n,W) = v_n + \vartheta(n-1,W-w_n)$$

• If $n \notin \vartheta$, then $\vartheta(n, W)$ simply contains an optimal solution to the subproblem consisting of the intervals $\{1, 2, \dots, n-1\}$:

- $w_n > W \implies n \notin \vartheta$. • $\vartheta(n, W) = \vartheta(n-1, W)$
- Otherwise, *n* is either $\in \vartheta$ or $\notin \vartheta$.
 - If $n \in \vartheta$, then $\vartheta(n, W)$ is an optimal solution to the subproblem for items $\{1, 2, \dots, n\}$:
 - $\triangleright \vartheta(n,W) = v_n + \vartheta(n-1,W-w_n)$
 - If $n \notin \vartheta$, then $\vartheta(n, W)$ simply contains an optimal solution to the subproblem consisting of the intervals $\{1, 2, ..., n-1\}$: $\triangleright \vartheta(n, W) = \vartheta(n-1, W)$
 - Since an optimal solution must maximize the sum of the weights in the intervals it contains, we accept the larger of the two.

- $w_n > W \implies n \notin \vartheta$. $\triangleright \vartheta(n, W) = \vartheta(n-1, W)$
- Otherwise, *n* is either $\in \vartheta$ or $\notin \vartheta$.
 - If $n \in \vartheta$, then $\vartheta(n, W)$ is an optimal solution to the subproblem for items $\{1, 2, ..., n\}$:

$$\triangleright \vartheta(n, W) = v_n + \vartheta(n-1, W - w_n)$$

- If $n \notin \vartheta$, then $\vartheta(n, W)$ simply contains an optimal solution to the subproblem consisting of the intervals $\{1, 2, \dots, n-1\}$: $\triangleright \vartheta(n, W) = \vartheta(n-1, W)$
- Since an optimal solution must maximize the sum of the weights in the intervals it contains, we accept the larger of the two.

Recursive algorithm for an optimal value

If OPT(j, w) is an optimal solution to the subproblem for items $\{1,2,\ldots,j\}$, for any $j\in\{1,2,\ldots,n\}$, and with a maximum allowed weight of w, then:

$$OPT(j,w) = \left\{ \begin{array}{ll} OPT(j-1,w) & \text{if } w_j > w, \\ \max(v_j + OPT(j-1,w-w_j), & \\ OPT(j-1,w)) & \text{otherwise.} \end{array} \right.$$

Mumit Khan Licensed under CSE 221: Algorithms 35 / 53

Recursive algorithm for an optimal value

If OPT(j, w) is an optimal solution to the subproblem for items $\{1,2,\ldots,j\}$, for any $j\in\{1,2,\ldots,n\}$, and with a maximum allowed weight of w, then:

$$OPT(j, w) = \begin{cases} OPT(j-1, w) & \text{if } w_j > w, \\ \max(v_j + OPT(j-1, w - w_j), & \text{otherwise.} \end{cases}$$

Extracting the items in an optimal solution

The item j is in an optimal solution OPT(j, w) if and only if the first of the two options is larger than the second.

$$v_j + OPT(j-1, w-w_j) \ge OPT(j-1, w)$$

Mumit Khan Licensed under CSE 221: Algorithms 35 / 53

A recursive algorithm

```
KNAPSACK(j, w)
   if i = 0 or w = 0
      then return 0
3
   elseif w_i > w
      then return KNAPSACK(j-1, w))
5
   else return MAX(v_i + KNAPSACK(j-1, w-w_i),
                   KNAPSACK(i-1, w)
```

```
KNAPSACK(j, w)

1 if j = 0 or w = 0

2 then return 0

3 elseif w_j > w

4 then return KNAPSACK(j - 1, w))

5 else return MAX(v_j + \text{KNAPSACK}(j - 1, w - w_j), \text{KNAPSACK}(j - 1, w))
```

• The initial call is KNAPSACK(n, W).

A recursive algorithm

```
KNAPSACK(j, w)

1 if j = 0 or w = 0

2 then return 0

3 elseif w_j > w

4 then return KNAPSACK(j - 1, w))

5 else return MAX(v_j + \text{KNAPSACK}(j - 1, w - w_j), \text{KNAPSACK}(j - 1, w))
```

- The initial call is KNAPSACK(n, W).
- The tree grows very rapidly, leading to exponential running time.

A recursive algorithm

```
Knapsack(i, w)
  if i = 0 or w = 0
     then return 0
3
   elseif w_i > w
     then return KNAPSACK(i-1, w)
   else return MAX(v_i + KNAPSACK(j-1, w-w_i),
5
                   KNAPSACK(i-1, w)
```

- The initial call is KNAPSACK(n, W).
- The tree grows very rapidly, leading to exponential running time.
- There are many overlapping subproblems, so the obvious choice is to memoize the recursion.

```
M-KNAPSACK(i, w)
   if j = 0 or w = 0
      then return 0
3
   elseif M[i, w] is empty
      then M[j, w] \leftarrow \text{MAX}(v_j + \text{M-KNAPSACK}(j-1, w-w_i),
4
                             M-KNAPSACK(i-1, w)
5
   return M[i, w]
```

Memoizing the recursion

```
M-KNAPSACK(i, w)
   if j = 0 or w = 0
      then return 0
   elseif M[i, w] is empty
3
      then M[j, w] \leftarrow \text{MAX}(v_i + M - KNAPSACK}(j-1, w-w_i),
4
                            M-KNAPSACK(i-1, w)
5
   return M[i, w]
```

• Each entry in M[i, w] gets filled in only once at $\Theta(1)$ time, and there are $n + 1 \times W + 1$ entries, so M-KNAPSACK(n, W)takes $\Theta(nW)$ time.

Memoizing the recursion

```
M-KNAPSACK(j, w)

1 if j = 0 or w = 0

2 then return 0

3 elseif M[j, w] is empty

4 then M[j, w] \leftarrow \text{MAX}(v_j + \text{M-KNAPSACK}(j-1, w-w_j), \\ M-KNAPSACK}(j-1, w))

5 return M[j, w]
```

- Each entry in M[j,w] gets filled in only once at $\Theta(1)$ time, and there are $n+1\times W+1$ entries, so M-KNAPSACK(n,W) takes $\Theta(nW)$ time.
- Is this a linear-time algorithm?

Memoizing the recursion

```
M-KNAPSACK(i, w)
   if j = 0 or w = 0
      then return 0
3
   elseif M[i, w] is empty
      then M[j, w] \leftarrow \text{MAX}(v_i + M - KNAPSACK}(j-1, w-w_i),
4
                            M-KNAPSACK(i-1, w)
5
   return M[i, w]
```

- Each entry in M[i, w] gets filled in only once at $\Theta(1)$ time, and there are $n+1\times W+1$ entries, so M-KNAPSACK(n,W)takes $\Theta(nW)$ time.
- Is this a linear-time algorithm?
- This is an example of a pseudo-polynomial problem, since it depends on another parameter W that is independent of the problem size.

Developing a Dynamic Programming algorithm

```
KNAPSACK(n, W)
    for i \leftarrow 0 to n \rightarrow n po remaining capacity
            do M[i,0] \leftarrow 0
    for w \leftarrow 0 to W \rightarrow \text{no item to choose from}
            do M[0, w] \leftarrow 0
     for i \leftarrow 1 to n
 6
            do for w \leftarrow 1 to W
                     do if w_i > w
 8
                            then M[i] = M[i - 1, w]
                            else M[j, w] \leftarrow \text{MAX}(v_i + M[j-1, w-w_i],
 9
                                                       M[i-1, w]
10
     return M[n, W]
```

Mumit Khan

Licensed under

CSE 221: Algorithms

0/1 Knapsack recursive algorithm in action

Given the following (from M. H. Alsuwaiyel, ex. 7.6):

$$W = 9$$

 $w_i = \{2, 3, 4, 5\}$
 $v_i = \{3, 4, 5, 7\}$

0/1 Knapsack recursive algorithm in action

Given the following (from M. H. Alsuwaiyel, ex. 7.6):

$$W = 9$$

 $w_i = \{2, 3, 4, 5\}$
 $v_i = \{3, 4, 5, 7\}$

0/1 Knapsack DP algorithm in action

Given the following (from M. H. Alsuwaiyel, ex. 7.6):

$$W = 9$$

 $w_i = \{2, 3, 4, 5\}$
 $v_i = \{3, 4, 5, 7\}$

	0	1	2	3	4	5	6	7	8	9
4	1	1	ı	•	-	-	-	-	-	•
3	-	-	-	-	-	-	-	-	-	-
2	-	-	-	-	-	-	-	-	-	-
1	-	-	-	-	-	-	-	-	-	-
0	-	1		-	-	-	-	-	-	

0/1 Knapsack DP algorithm in action

Given the following (from M. H. Alsuwaiyel, ex. 7.6):

$$W = 9$$

 $w_i = \{2, 3, 4, 5\}$
 $v_i = \{3, 4, 5, 7\}$

	0	1	2	3	4	5	6	7	8	9
4	0	0	3	4	5	7	8	10	11	12
3	0	0	3	4	4	7	8	9	9	12
2	0	0	3	4	4	7	7	7	7	7
1	0	0	3	3	3	3	3	3	3	3
0	0	0	0	0	0	0	0	0	0	0

Definition (Subset Sums problem)

Given a set S of n items, such that each item i has a positive weight w_i , the goal is to find the maximum-weight subset that does not exceed a given weight W.

Mumit Khan Licensed under CSE 221: Algorithms 41 / 53

Related problem: Subset Sums problem

Definition (Subset Sums problem)

Given a set S of n items, such that each item i has a positive weight w_i , the goal is to find the maximum-weight subset that does not exceed a given weight W.

Formally, we wish to determine a subset of S that maximizes $\sum_{i \in S} w_i$, subject to $\sum_{i \in S} w_i \leq W$.

Mumit Khan Licensed under CSE 221: Algorithms 41 / 53

Related problem: Subset Sums problem

Definition (Subset Sums problem)

Given a set S of n items, such that each item i has a positive weight w_i , the goal is to find the maximum-weight subset that does not exceed a given weight W.

Formally, we wish to determine a subset of S that maximizes $\sum_{i \in S} w_i$, subject to $\sum_{i \in S} w_i \leq W$.

• How is this similar to the 0/1 Knapsack problem?

Related problem: Subset Sums problem

Definition (Subset Sums problem)

Given a set S of n items, such that each item i has a positive weight w_i , the goal is to find the maximum-weight subset that does not exceed a given weight W.

Formally, we wish to determine a subset of S that maximizes $\sum_{i \in S} w_i$, subject to $\sum_{i \in S} w_i \leq W$.

- How is this similar to the 0/1 Knapsack problem?
- Can you solve this using the same algorithm?

- Introduction
- Memoization
- Dynamic programming
- Weighted interval scheduling problem
- 0/1 Knapsack problem
- Coin changing problem
- What problems can be solved by DP?
- Conclusion

Definition

Given coin denominations in $C = \{c_i\}$, make change for a given amount A with the minimum number of coins.

Mumit Khan Licensed under 43 / 53

Definition

Given coin denominations in $C = \{c_i\}$, make change for a given amount A with the minimum number of coins.

Example

Coin denominations, $C = \{12, 5, 1\}$ Amount to change, A = 15

Definition

Given coin denominations in $C = \{c_i\}$, make change for a given amount A with the minimum number of coins.

Example

Coin denominations, $C = \{12, 5, 1\}$ Amount to change, A = 15

• Choose 0 12 coins, so remaining is 15

Definition

Given coin denominations in $C = \{c_i\}$, make change for a given amount A with the minimum number of coins.

Example

Coin denominations, $C = \{12, 5, 1\}$ Amount to change, A = 15

- ① Choose 0 12 coins, so remaining is 15
- 2 Choose 3 5 coins, so remaining is 15 3 * 5 = 0

Definition

Given coin denominations in $C = \{c_i\}$, make change for a given amount A with the minimum number of coins.

Example

Coin denominations, $C = \{12, 5, 1\}$ Amount to change, A = 15

- Choose 0 12 coins, so remaining is 15
- 2 Choose 3 5 coins, so remaining is 15 3 * 5 = 0

Solution: 3 coins.

Definition

Given coin denominations in $C = \{c_i\}$, make change for a given amount A with the minimum number of coins.

Example

Coin denominations, $C = \{12, 5, 1\}$ Amount to change, A = 15

- Choose 0 12 coins, so remaining is 15
- 2 Choose 3 5 coins, so remaining is 15 3 * 5 = 0

Solution: 3 coins.

Questions

What is the natural search space? Does this problem have a Dynamic Programming solution? If so, how do we develop it?

Licensed under CSE 221: Algorithms 43 / 53

Coin denominations, $C = \{12, 5, 1\}$ Amount to change, A = 15

Mumit Khan Licensed under CSE 221: Algorithms 44 / 53

Coin denominations, $C = \{12, 5, 1\}$ Amount to change, A = 15

• The best combination of coins for 15 paisa must be one of the following:

Mumit Khan Licensed under @@@@ CSE 221: Algorithms 44 / 53

44 / 53

Developing a recursive solution

Coin denominations, $C = \{12, 5, 1\}$ Amount to change, A = 15

- The best combination of coins for 15 paisa must be one of the following:
 - **1** Best combination for 15 12 = 3 paisa, plus a 12 paisa coin.

Licensed under Mumit Khan CSE 221: Algorithms

Coin denominations, $C = \{12, 5, 1\}$ Amount to change, A = 15

- The best combination of coins for 15 paisa must be one of the following:
 - **1** Best combination for 15 12 = 3 paisa, plus a 12 paisa coin.
 - Best combination for 15 5 = 10 paisa, plus a 5 paisa coin.

Coin denominations, $C = \{12, 5, 1\}$ Amount to change, A = 15

- The best combination of coins for 15 paisa must be one of the following:
 - **1** Best combination for 15 12 = 3 paisa, plus a 12 paisa coin.
 - Best combination for 15 5 = 10 paisa, plus a 5 paisa coin.
 - Best combination for 15 1 = 14 paisa, plus a 1 paisa coin.

- Coin denominations, $C = \{12, 5, 1\}$ Amount to change, A = 15
 - The best combination of coins for 15 paisa must be one of the following:
 - **1** Best combination for 15 12 = 3 paisa, plus a 12 paisa coin.
 - Best combination for 15 5 = 10 paisa, plus a 5 paisa coin.
 - Best combination for 15 1 = 14 paisa, plus a 1 paisa coin.
 - Since we're minimizing the number of coins, the best combination would be the minimum of these three choices.

- Coin denominations, $C = \{12, 5, 1\}$ Amount to change, A = 15
 - The best combination of coins for 15 paisa must be one of the following:
 - **1** Best combination for 15 12 = 3 paisa, plus a 12 paisa coin.
 - Best combination for 15-5=10 paisa, plus a 5 paisa coin.
 - Best combination for 15 1 = 14 paisa, plus a 1 paisa coin.
 - Since we're minimizing the number of coins, the best combination would be the minimum of these three choices.
 - By recursively solving for the best combination, this can be generalized to |C| denominations to make change for any amount A.

Coin denominations, $C = \{12, 5, 1\}$ Amount to change, A = 15

- The best combination of coins for 15 paisa must be one of the following:
 - **1** Best combination for 15 12 = 3 paisa, plus a 12 paisa coin.
 - Best combination for 15-5=10 paisa, plus a 5 paisa coin.
 - Best combination for 15 1 = 14 paisa, plus a 1 paisa coin.
- Since we're minimizing the number of coins, the best combination would be the minimum of these three choices.
- By recursively solving for the best combination, this can be generalized to |C| denominations to make change for any amount A.
- What are the subproblems?

If OPT(p) is the minimum number of coins needed to make change for amount p with denominations $C = \{c_1, c_2, \dots, c_k\}$, then:

Mumit Khan Licensed under CSE 221: Algorithms 45/53

If OPT(p) is the minimum number of coins needed to make change for amount p with denominations $C = \{c_1, c_2, \dots, c_k\}$, then:

• The coin c_i chosen at any step must be smaller than p, the amount left at that point.

Mumit Khan Licensed under CSE 221: Algorithms 45 / 53

If OPT(p) is the minimum number of coins needed to make change for amount p with denominations $C = \{c_1, c_2, \dots, c_k\}$, then:

- The coin c_i chosen at any step must be smaller than p, the amount left at that point.
- Once we choose $c_i \leq p$, $OPT(p) = 1 + OPT(p c_i)$, since we have to find the best combination for the remaining amount (picking a coin smaller than the amount at each step).

45 / 53 Mumit Khan Licensed under CSE 221: Algorithms

If OPT(p) is the minimum number of coins needed to make change for amount p with denominations $C = \{c_1, c_2, \dots, c_k\}$, then:

- The coin c_i chosen at any step must be smaller than p, the amount left at that point.
- Once we choose $c_i \leq p$, $OPT(p) = 1 + OPT(p c_i)$, since we have to find the best combination for the remaining amount (picking a coin smaller than the amount at each step).
- Since we don't know which coin would be chosen, we have to search all |C| denominations and find the minimum.

Mumit Khan Licensed under CSE 221: Algorithms 45 / 53 If OPT(p) is the minimum number of coins needed to make change for amount p with denominations $C = \{c_1, c_2, \dots, c_k\}$, then:

- The coin c_i chosen at any step must be smaller than p_i the amount left at that point.
- Once we choose $c_i \leq p$, $OPT(p) = 1 + OPT(p c_i)$, since we have to find the best combination for the remaining amount (picking a coin smaller than the amount at each step).
- Since we don't know which coin would be chosen, we have to search all |C| denominations and find the minimum.
- The number of coins for 0 amount is 0.

If OPT(p) is the minimum number of coins needed to make change for amount p with denominations $C = \{c_1, c_2, \dots, c_k\}$, then:

- The coin c_i chosen at any step must be smaller than p, the amount left at that point.
- Once we choose $c_i \leq p$, $OPT(p) = 1 + OPT(p c_i)$, since we have to find the best combination for the remaining amount (picking a coin smaller than the amount at each step).
- Since we don't know which coin would be chosen, we have to search all |C| denominations and find the minimum.
- The number of coins for 0 amount is 0.

Recurrence

$$OPT(p) = \left\{ egin{array}{ll} 0 & \mbox{if } p = 0 \ min_{i:c_i \leq p} \{1 + OPT(p - c_i)\} & \mbox{if } p > 0 \end{array}
ight.$$

Mumit Khan Licensed under CSE 221: Algorithms 45 / 53

```
CHANGE(n, C)
    if n=0
        then return 0
3
        else min \leftarrow \infty
               for i \leftarrow 1 to |C|
5
                    do if c_i \leq n and 1 + \text{CHANGE}(n - c_i, C) < min
6
                           then min \leftarrow 1 + \text{CHANGE}(n - c_i, C)
```

```
CHANGE(n, C)
    if n=0
        then return 0
3
        else min \leftarrow \infty
               for i \leftarrow 1 to |C|
5
                    do if c_i \leq n and 1 + \text{CHANGE}(n - c_i, C) < min
6
                           then min \leftarrow 1 + \text{CHANGE}(n - c_i, C)
```

The initial call is CHANGE(A, C).

```
CHANGE(n, C)
    if n=0
        then return 0
3
        else min \leftarrow \infty
               for i \leftarrow 1 to |C|
5
                    do if c_i \leq n and 1 + \text{CHANGE}(n - c_i, C) < min
6
                           then min \leftarrow 1 + \text{CHANGE}(n - c_i, C)
```

- The initial call is CHANGE(A, C).
- The tree grows very rapidly, leading to exponential running time.

```
CHANGE(n, C)
    if n=0
        then return 0
3
        else min \leftarrow \infty
4
               for i \leftarrow 1 to |C|
5
                    do if c_i \leq n and 1 + \text{CHANGE}(n - c_i, C) < min
                           then min \leftarrow 1 + \text{CHANGE}(n - c_i, C)
6
```

- The initial call is CHANGE(A, C).
- The tree grows very rapidly, leading to exponential running time.
- There are many overlapping subproblems, so the obvious choice is to memoize the recursion.

Memoizing the recursion

```
M-Change(n, C)
   if n=0
       then return 0
       else if M[n] is empty
4
                 then min \leftarrow \infty
5
                        for i \leftarrow 1 to |C|
6
                             do if c_i \leq n and
                                       1 + \text{M-CHANGE}(n - c_i, C) < min
                                    then min \leftarrow 1 + \text{M-CHANGE}(n - c_i, C)
                        M[n] \leftarrow min
9
              return M[n]
```

Memoizing the recursion

```
M-Change(n, C)
   if n=0
       then return 0
3
       else if M[n] is empty
4
                 then min \leftarrow \infty
5
                       for i \leftarrow 1 to |C|
6
                            do if c_i \le n and
                                      1 + M-CHANGE(n - c_i, C) < min
                                   then min \leftarrow 1 + \text{M-CHANGE}(n - c_i, C)
                       M[n] \leftarrow min
9
              return M[n]
```

• Each entry in M[n] gets filled in only once at $\Theta(|C|)$ time, and there are n + 1 entries, so M-CHANGE(n) takes $\Theta(n|C|)$ time.

Memoizing the recursion

```
M-Change(n, C)
   if n=0
       then return 0
       else if M[n] is empty
4
                then min \leftarrow \infty
5
                       for i \leftarrow 1 to |C|
6
                            do if c_i \le n and
                                      1 + M-CHANGE(n - c_i, C) < min
                                   then min \leftarrow 1 + \text{M-CHANGE}(n - c_i, C)
                       M[n] \leftarrow min
9
              return M[n]
```

- Each entry in M[n] gets filled in only once at $\Theta(|C|)$ time, and there are n + 1 entries, so M-CHANGE(n) takes $\Theta(n|C|)$ time.
- Another pseudo-polynomial problem!

Developing a Dynamic Programming algorithm

```
CHANGE(n, C)
     \triangleright M = [0..n], S = [0..n]
 1 M[0] \leftarrow 0 no amount to change
 2 for p \leftarrow 1 to n
 3
            do min \leftarrow \infty
                for i \leftarrow 1 to |C|
 5
                      do if c_i \leq p and 1 + M[p - c_i] < min
                             then min \leftarrow 1 + M[p - c_i]
 6
                                    coin ← i
 8
                M[p] \leftarrow min
                S[p] \leftarrow coin
 9
10
     return M and S
```

Developing a Dynamic Programming algorithm

```
CHANGE(n, C)
     \triangleright M = [0..n], S = [0..n]
 1 M[0] \leftarrow 0 no amount to change
 2 for p \leftarrow 1 to n
 3
            do min \leftarrow \infty
                for i \leftarrow 1 to |C|
 5
                      do if c_i \leq p and 1 + M[p - c_i] < min
                             then min \leftarrow 1 + M[p - c_i]
 6
                                    coin ← i
 8
                M[p] \leftarrow min
                S[p] \leftarrow coin
 9
10
     return M and S
```

- M[p] for all $0 \le p \le n$ minimum number of coins needed to change for p paisa.
- S[p] for all $0 \le p \le n$ the first coin chosen in computing an optimal solution for making change for p paise.

Licensed under Mumit Khan CSE 221: Algorithms 48 / 53

- The S array in the algorithm "remembers" the first coin we use when computing an optimal value for a given amount.
- We go backwards using S[n] until n=0 and find the coin that was added at each step.

Mumit Khan Licensed under CSE 221: Algorithms 49 / 53

Computing a solution in addition to its values

- The S array in the algorithm "remembers" the first coin we use when computing an optimal value for a given amount.
- We go backwards using S[n] until n=0 and find the coin that was added at each step.

```
Coins(S, C, n)
    while n > 0
          do Output S[n]
3
              n \leftarrow n - C_{S[n]}
```

- Introduction
- Memoization
- Dynamic programming
- Weighted interval scheduling problem
- 0/1 Knapsack problem
- Coin changing problem
- What problems can be solved by DP?
- Conclusion

Problem types solved by Dynamic Programming

 The most important part of DP is to set up the subproblem structure.

Mumit Khan Licensed under CSE 221: Algorithms 51/53

- The most important part of DP is to set up the subproblem structure.
- DP is not applicable to all optimization problems.

Mumit Khan Licensed under CSE 221: Algorithms 51/53

Problem types solved by Dynamic Programming

- The most important part of DP is to set up the subproblem structure.
- DP is not applicable to all optimization problems.
- If a problem has the following properties, then it's likely to have a dynamic programming solution.

Problem types solved by Dynamic Programming

- The most important part of DP is to set up the subproblem structure.
- DP is not applicable to all optimization problems.
- If a problem has the following properties, then it's likely to have a dynamic programming solution.
 - Polynomially many subproblems The total number of subproblems should be a polynomial, or else DP may not provide an efficient solution.

51/53

Problem types solved by Dynamic Programming

- The most important part of DP is to set up the subproblem structure.
- DP is not applicable to all optimization problems.
- If a problem has the following properties, then it's likely to have a dynamic programming solution.
 - Polynomially many subproblems The total number of subproblems should be a polynomial, or else DP may not provide an efficient solution.
 - Subproblem optimality If the optimal solution to the entire problem contain optimal solution to the subproblems, then it has the subproblem optimality property. Also called the principle of optimality.

CSE 221: Algorithms Mumit Khan Licensed under

 Dynamic Programming, just like Memoization, avoids computing solutions to overlapping subproblems by saving intermediate results, and thus both require space for the "table".

Mumit Khan Licensed under CSE 221: Algorithms 52 / 53

- Dynamic Programming, just like Memoization, avoids computing solutions to overlapping subproblems by saving intermediate results, and thus both require space for the "table".
- Dynamic Programming is a bottom-up techniques, and finds the solution by starting from the base case(s) and works its way upwards.

Mumit Khan Licensed under CSE 221: Algorithms 52 / 53

- Dynamic Programming, just like Memoization, avoids computing solutions to overlapping subproblems by saving intermediate results, and thus both require space for the "table".
- Dynamic Programming is a bottom-up techniques, and finds the solution by starting from the base case(s) and works its way upwards.
- Developing a Dynamic Programming solution often requires some thought into the subproblems, especially how to find the natural order in which to solve the subproblems.

Mumit Khan Licensed under CSE 221: Algorithms 52 / 53

Dynamic Programming highlights

- Dynamic Programming, just like Memoization, avoids computing solutions to overlapping subproblems by saving intermediate results, and thus both require space for the "table".
- Dynamic Programming is a bottom-up techniques, and finds the solution by starting from the base case(s) and works its way upwards.
- Developing a Dynamic Programming solution often requires some thought into the subproblems, especially how to find the natural order in which to solve the subproblems.
- Unlike Memoization, which solves only the needed subproblems, DP solves all the subproblems, because it does it bottom-up.

Dynamic Programming highlights

- Dynamic Programming, just like Memoization, avoids computing solutions to overlapping subproblems by saving intermediate results, and thus both require space for the "table".
- Dynamic Programming is a bottom-up techniques, and finds the solution by starting from the base case(s) and works its way upwards.
- Developing a Dynamic Programming solution often requires some thought into the subproblems, especially how to find the natural order in which to solve the subproblems.
- Unlike Memoization, which solves only the needed subproblems, DP solves all the subproblems, because it does it bottom-up.
- Dynamic Programming on the other hand may be much more efficient because its iterative, whereas Memoization must pay for the (often significant) overhead due to recursion.

Mumit Khan Licensed under CSE 221: Algorithms 52 / 53

Conclusion

- Memoization is the top-down technique, and dynamic programming is a bottom-up technique.
- The key to Dynamic programming is in "intelligent" recursion (the hard part), not in filling up the table (the easy part).
- Dynamic Programming has the potential to transform exponential-time brute-force solutions into polynomial-time algorithms.
- Greed does not pay, Dynamic Programming does!