Seminar 5

Octavian Custura

December 2020

7. An internet service provider has two connection lines for its customers. Eighty percent of customers are connected through Line I, the rest through Line II. Line I has a $Gamma(3, \frac{1}{2})$ connection time (in minutes), while Line II has a U(20,50) connection time (in seconds). Find the probability that it takes a randomly selected customer more than 30 seconds to connect to the internet.

Proof. Firstly, we want to compute the probability that it takes a randomly selected customer from Line I more than 30 seconds to connect to the internet. We know that the connection time is $Gamma(3, \frac{1}{2})$, so we can compute

$$\mathrm{pdf}\; f(x) = 4x^2 e^{-2x}$$

$$F(\frac{1}{2}) = P(X \le \frac{1}{2}) = \int_{-\infty}^{\frac{1}{2}} f(x)\, dx = \int_{0}^{\frac{1}{2}} f(x)\, dx$$

since one cannot wait < 0 minutes.

$$\int 4x^2 e^{-2x} dx = -(2x^2 + 2x + 1) e^{-2x} + C$$
Thus, $F(\frac{1}{2}) \approx 0.08030$

$$P(T > \frac{1}{2} \text{min}) = 1 - P(T \le \frac{1}{2} \text{min})$$

$$= 1 - F(\frac{1}{2})$$

$$= 0.91970 = P1$$

or

$$P(T > \frac{1}{2}\min) = 1 - P(T \le \frac{1}{2}\min)$$

$$= 1 - gamcdf(\frac{1}{2}, 3, \frac{1}{2}) \ (in \ matlab)$$

$$= 0.91970 = P1$$
(1)

Secondly, we want to compute the probability that it takes a randomly selected customer from Line II more than 30 seconds to connect to the internet. We know that the connection time is U(20,50), so we can compute

$$pdf f(x) = \frac{1}{30}, x \in [20, 50]$$
$$F(30) = P(X \le 30) = \int_{-\infty}^{30} f(x) dx = \int_{20}^{30} f(x) dx$$

since f is defined on [20, 50]

$$\int \frac{1}{30} dx = \frac{x}{30} + C$$
Thus, $F(30) = \frac{30}{30} - \frac{20}{30} = \frac{1}{3} = 0.3333$

$$P(T > 30 \text{sec}) = 1 - P(T \le 30 \text{sec})$$

$$= 1 - F(30)$$

$$= 0.66667 = P2$$

 \mathbf{or}

$$P(T > 30\text{sec}) = 1 - P(T \le 30\text{sec})$$

= $1 - unifcdf(30, 20, 50)$ (in matlab) (2)
= $0.66667 = P2$

Finally, we need to compute the probability that it takes a randomly selected customer more than 30 seconds to connect to the internet. We have that

$$P(T > 30) = 80\%P1 + 20\%P2$$

$$= 80\% \cdot 0.91970 + 20\% \cdot 0.66667$$

$$= 0.73576 + 0.133334$$

$$= 0.869094$$

8. Let $X, Y \in N(0,1)$ be independent random variables. Let D_r be the disk centered at the origin with radius r. Find r such that $P((X,Y) \in D_r) = 0.3$.

Proof. The pdf of X is
$$f_X(x) = \frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}$$
. The pdf of Y is $f_Y(y) = \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}}$. Since X and Y are independent, $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y) = \frac{e^{-\frac{x^2+y^2}{2}}}{2\pi}$. We know that $P((X,Y) \in D_r) = \int_{D_r} \int f(x,y) \, dx \, dy$. A disk D_r is defined with the formula

$$x^2 + y^2 \le r^2$$

Thus,

$$P(D_r) = 0$$
, if $x^2 + y^2 > r^2$

For $x^2 + y^2 \le r^2$, we have

$$P(D_r) = \int_{-r}^{r} \int_{-\sqrt{r^2 - x^2}}^{\sqrt{r^2 - x^2}} \frac{e^{-\frac{x^2 + y^2}{2}}}{2\pi} \, dy \, dx$$
$$= \int_{0}^{r} \int_{0}^{2\pi} \frac{e^{-\frac{R^2}{2}}}{2\pi} R \, d\theta \, dR$$
$$= \int_{0}^{r} \frac{e^{-\frac{R^2}{2}}}{2\pi} 2\pi R \, dR$$
$$= 1 - e^{-\frac{r^2}{2}}$$

(by writing to polar coordinates) the probabilty of $(X,Y) \in D_r$. This way, we need to compute

$$P(R = r) = 0.3$$

$$1 - e^{-\frac{r^2}{2}} = 0.3$$

$$e^{-\frac{r^2}{2}} = 0.7$$

$$-r^2 = 2ln(0.7)$$

$$r \approx 0.8446$$