Demostración de Reglas Derivadas para el Cálculo de Enunciados como Sistema de Deducción Natural.

Arantxa Martin Santos

M.T: Modus Tollens: [M.T.]

$$A \to B$$

$$\neg B$$

$$\neg A$$

Demostración:

1.
$$A \rightarrow B$$
 Premisa
2. $\neg B$ Premisa
3. A
4. B EI 1,3
5. $\neg B \land B$ IC 2,4
6. $\neg A$ IN 3-5

SIL. DISY.: Silogismo disyuntivo: [S.D.]

$$\begin{array}{ccc}
A \lor B & A \lor B \\
\neg A & \neg B & A
\end{array}$$

TRANS. C.: Transitividad del Condicional. [Sil.]

 $A \rightarrow B$

 $B \rightarrow C$

 $A \rightarrow C$

Demostración:

1.- A→B Premisa

2.- B→C Premisa

3.- A

4.- B EI 1,3 5.- C EI 2,4

6.- A→C II 3-5

CONT. C.: Contraposición del Condicional: [Cp.]

$$A \rightarrow B$$

 $\neg B \to \neg A$

Demostración:

 $A \rightarrow BPremisa$ 1.

2. $\neg\mathsf{B}$

-3. Α

B EI 1,3 B ∧ ¬B IC 4,2 ¬A IN 3-5 _5.

6. 7. $\neg B \rightarrow \neg A$ II 2-6

I.: Identidad: [Id.]

1 A	Premisa
2 ¬A	
☐ 2 ¬A 3 A ∧ ¬A	I.C. 1,2
4 ¬¬A	I.N. 2-3
5 A	E.N. 4

CPr.: Carga de Premisa

$$\begin{array}{c} A \\ B \rightarrow A \end{array}$$

Demostración

IDN.: Introducción de la Doble Negación

Demostración

ECQ.: Ex Contradictione Quolibet

$$A \wedge \neg A$$

PTE: Principio de Tercio Excluido

$$\vdash A \lor \neg A$$

Demostración

$$\begin{array}{|c|c|c|c|c|}\hline & 1. - \neg (A \lor \neg A) \\ \hline & 2. - A \\ \hline & 3. - A \lor \neg A \\ \hline & 4. - (A \land \neg A) \land \neg (A \lor \neg A) \\ \hline & 5. - \neg A \\ \hline & 6. - A \lor \neg A \\ \hline & 7. - (A \lor \neg A) \land \neg (A \lor \neg A) \\ \hline & 8. - \neg \neg (A \lor \neg A) \\ \hline & 10. \\ \hline \\ \hline & 10. \\ \hline \\ \hline & 10. \\ \hline \\ \hline &$$

PNC: Principio de No Contradicción

$$\vdash \neg (A \land \neg A)$$

Demostración

CONM. C.: Conmutatividad de la Conjunción [CC.]

 $A \wedge B$ $B \wedge A$

Demostración	
1 A ∧ B	Premisa
2 A	E.C. 1
3 B	E.C. 1
4 B ∧ A	I.C. 2,3
5 B ∧ A	Premisa
6 B	E.C. 5
7 A	E.C. 5
7. A ∧ B	I I.C. 6,7

CONM. D.: Conmutatividad de la Disyunción [CD.]

 $\mathsf{A} \vee \mathsf{B}$

 $\mathsf{B} \vee \mathsf{A}$

Demostración

1 A ∨ B	Premisa
2 A	
3 B ∨ A	I.D. 2
4 B	
5 B ∨ A	I.D. 4
6 B ∨ A	E.D.1, 2-3, 4- 5
7 B ∨ A	Premisa
─ 8 B	
9 A ∨ B	I.D. 8
10 A	
11 A ∨ B	I.D. 8
7. A ∨ B	E.D.7, 8-9, 10-11

Imp: Importación

$$\frac{A \to (B \to C)}{(A \land B) \to C}$$

1.- A
$$\rightarrow$$
 (B \rightarrow C)

2.- A \wedge B

3.- A

4.- B \rightarrow C

5.- B

E.C. 2

6.- C

E.I. 1,3

E.C. 2

E.I. 4-5

7. (A \wedge B) \rightarrow C

I.I. 2-6

Exp: Exportación

$$(A \land B) \to C$$
$$A \to (B \to C)$$

Demostración

1.-
$$(A \land B) \rightarrow C$$

2.- A
3.- B
4.- $A \land B$
1.C. 2,3
5.- C
E.I. 1,4
6.- $B \rightarrow C$
1.I. 3-5
7. $A \rightarrow (B \rightarrow C)$
1.I. 2-6

Def. D: Definición de la Disyunción [DfD₁]

Def D.: Definición de la Disyunción [DfD₂]

$$A \lor B$$
$$\neg (\neg A \land \neg B)$$

Demostración

Def. C: Definición del Condicional [DI₁]

$$A \to B$$

$$\neg (A \land \neg B)$$

Def. C: Definición del Condicional [Dl₂]

$$A \to B$$

$$\neg A \lor B$$

Demostración

Def. C.: Definición de la Conjunción [DfC₁]

$$A \wedge B$$

$$\neg (A \rightarrow \neg B)$$

Def C.: Definición de la Conjunción [DfC₂]

Demostración

De MORGAN.: [DM₁]

De MORGAN.: [DM₂]

Demostración

REGLAS DERIVADAS DEL CÁLCULO CUANTIFICACIONAL

Def. **\Lambda**: DEFINICIÓN DEL GENERALIZADOR. [DG.]

1.-
$$\Lambda x \ Px$$
 Premisa
2.- Pa E. Λ 1
3.- $\nabla x \ \neg Px$
4.- $\neg Pa$
5.- $\Lambda x \ Px$
6.- $Pa \land \neg Pa$ IC. 2, 4
IN. 5-6
8.- $\neg \Lambda x \ Px$ E. ∇ 3,4-7
9.- $\Lambda x \ Px \land \neg \Lambda x \ Px$ IC. 1,8
10.- $\neg \nabla x \ \neg Px$ IN. 3-9

Def. V: DEFINICIÓN DEL PARTICULARIZADOR. [DP.]

Demostración

Neg. Λ: NEGACIÓN DEL GENERALIZADOR. [NG.]

Neg. V: NEGACIÓN DEL PARTICULARIZADOR. [NP.]

