Cinética Michaeliana

Diz-se que um enzima apresenta uma cinética Michaeliana sempre que a variação da velocidade inicial medida (v_i) pode ser ajustada a uma expressão da forma:

$$v = \frac{k_0[\mathrm{E}]_0[\mathrm{A}]}{K_\mathrm{m} + [\mathrm{A}]}$$

- · Cinética Michaeliana não implica a aderência a um mecanismo do tipo Henri-Michaelis-Menten.
- Cinética Michaeliana designa um comportamento fenomenológico.
- k_0 tem dimensões de constante de primeira ordem (s⁻¹) e representa-se frequentemente como $k_{\rm cat}$
- O valor de [E]₀ é difícil de determinar em muitas situações, pelo que se usa frequentemente V_{max} em lugar de $k_0[\text{E}]_0$. É o valor máximo de velocidade inicial que pode ser medido (saturação) para uma determinada quantidade de [E]₀

Diferentes mecanismos, a mesma equação

$$E + A \xleftarrow{K_S} E A \xleftarrow{K} E A' \xleftarrow{K'} E A'' \xrightarrow{k_4} E + P$$

$$\int_{\mathbf{M_m}} E \underbrace{K_S}_{\mathbf{M_m}} = \underbrace{K_S}_{\mathbf{M_m}} E \underbrace{K_S}_{\mathbf{M_m}}$$

$$K_{\rm m} = \frac{s}{1 + K + KK'}$$
 $k_{\rm cat} = \frac{k_4 KK'}{1 + K + KK'}$

$$v = \frac{k_{\text{cat}}[E]_0[A]}{K_{\text{m}} + [A]}$$

distinguir um do outro através de um simples ensaio de cinética de equilíbrio Os mecanismos acima, tais como muitos outros, serão impossíveis de ou steady-state

O significado de $K_{\rm m}$

velocidade inicial medida é igual a metade da velocidade máxima (para uma mesma **Definição**: a constante de Michaelis, K_m, é a concentração de substrato para a qual concentração de enzima)

- O K_m é uma medida inversa da afinidade do enzima para o seu substrato
- ullet O $K_{\!\scriptscriptstyle m}$ é característico de cada enzima e substrato, e independente da concentração deste último
- medida relativa de afinidade, já que corresponde à concentração para a qual metade dos ullet Embora $K_{\!\scriptscriptstyle m}$ não seja igual a $K_{\!\scriptscriptstyle S}$ na maioria das condições, pode ser usado como uma sítios de ligação do enzima se encontram saturados em condições de steady state.
- ullet Variações no valor de $K_{
 m m}$ de um enzima (alterações das condições do meio, mutações, etc), podem normalmente ser atribuídos a uma alteração da capacidade do enzima de ligar o substrato.
- A expressão do K_m em termos do mecanismo cinético pode ser mais ou menos complexa, mas este tem que ter sempre *dimensões de concentração*.

$$v = \frac{k_{\text{cat}}[E]_0[A]}{K_{\text{m}} + [A]}$$

K_m's de alguns enzimas e substratos

Enzyme	Substrate	$K_{\rm m}$ (mM)
Hexokinase (brain)	ATP P-Glicose	0.4
Carbonic anhydrase	D-Fructose HCO ₂	1.5
Chymotrypsin	Glycyltyrosinylglycine	108
eta-Galactosidase Threonine dehydratase	D-Lactose L-Threonine	4.0 5.0

O significado de k_{cat}

Definição: o k_{cat} , constante catalítica ou $turnover\ number\$ é igual ao quociente antre a velocidade máxima observada e a quantidade de enzima da amostra

$$k_{
m cat} = rac{V_{
m max}}{[{
m E}]_0}$$

- ullet O $k_{
 m cat}$ não tem que necessariamente corresponder (ou depender) a uma única constante cinética do mecanismo de catálise, mas pode ser visto como uma constante de primeira ordem *aparent*e para a dissociação do complexo enzima-substrato
- ullet O k_{cat} tem dimensões inversas de tempo (frequência) e pode ser visto como o número de ciclos catalíticos do enzima por unidade de tempo
- ullet V_{\max} **não é** característico de um determinado enzima, pois depende da concentração do mesmo na amostra
- ullet Variações no valor de $k_{
 m cat}$ de um enzima (alterações das condições do meio, mutações, etc), podem normalmente ser atribuídos a uma alteração da capacidade catalítica do
- ullet A expressão do $k_{
 m cat}$ em termos do mecanismo cinético pode ser mais ou menos complexa, mas este tem que ter sempre *dimensões inversas de tempo*

$$v = \frac{k_{\text{cat}}[\text{E}]_0[\text{A}]}{K_{\text{m}} + [\text{A}]}$$

$k_{\rm cat}$'s de alguns enzimas

	0.4
$k_{\rm cat}~({\rm s}^{-1})$	10,000,000 400,000 14,000 2,000 800 0.
k_{ca}	40,0
	line iicillin
Substrate	H ₂ O ₂ HCO ₃ Acetylcholine Benzylpenicillin Fumarate ATP
S	HHAMEA
	ase)
	nydrase esterase e (an ATPase)
те	Catalase Carbonic anhydrase Acetylcholinesterase β-Lactamase Fumarase RecA protein (an AT
Enzyme	Cate Cark Acet β -Le Fum Rec β

Constante de especificidade e eficiência catalítica

$$v = \frac{k_{\text{cat}}[E]_0[A]}{K_m + [A]}$$

quando [A] << $K_{\rm M}$ tem-se também [E]₀ \cong [E] e a eq. de M.-M. fica

$$u = rac{k_{
m cat}}{K_{
m m}} {
m [E][A]}$$

e o termo k_{cat}/K_{m} pode ser visto como uma constante de segunda ordem para o processo:

$$E + A \xrightarrow{k_{cat}/K_m} E + P$$

processo de catálise passa a ser o encontro entre enzima e substrato! A muito baixas concentrações de substrato o passo limitante do

Em condições *in vivo* é frequente ter valores de [A] entre 0.1-1 $K_{\rm m}$

Constante de especificidade e eficiência catalítica

$$\frac{k_{\rm cat}}{K_{\rm m}} \longrightarrow {\rm efici\hat{e}ncia\ catalítica\ (M^{-1} {
m s}^{-1})}$$

$$E + A \xleftarrow{k_1} EA \xrightarrow{k_2} E + P$$

$$rac{k_{
m cat}}{K_{
m m}} = rac{k_2}{K_{
m m}} = rac{k_1 k_2}{k_{-1} + k_2}$$
 logo: $k_2 o \infty \Rightarrow rac{k_{
m cat}}{K_{
m m}} = k_1$

processo colisional de segunda ordem, controlado apenas por k_1 Quando k_2 é muito grande, a catálise torna-se efectivamente um

constante de especificidade = eficiência catalítica

representa-se usualmente como $\,k_{\scriptscriptstyle
m A}$

Equação de Michaelis-Menten em termos de $k_{ m A}$

$$u = \frac{k_{\text{cat}}[\text{E}]_0[\text{A}]}{K_{\text{m}} + [\text{A}]}$$
 $k_{\text{A}} = \frac{k_{\text{cat}}}{K_{\text{m}}}$

$$u = \frac{k_{\text{cat}}[E]_0[A]}{K_{\text{m}} + [A]} = \frac{k_{\text{A}}[E]_0[A]}{1 + \frac{[A]}{K_{\text{m}}}}$$

$$v = \frac{k_{\mathbf{A}}[\mathbf{E}]_{\mathbf{0}}[\mathbf{A}]}{1 + \frac{[\mathbf{A}]}{K_{\mathbf{m}}}}$$

fundamentais k_A e K_m em vez de k_{cat} e $K_{m.}$. Muitas relações tornam-se A cinética enzimática pode ser formulada usando como quantidades mais simples quando expressas desta forma.

Constante de especificidade e eficiência catalítica

Existe um limite superior teórico para k_{cat}/K_{m}

moléculas típicas em solução, a constante difusiva tem um valor da O substrato tem que encontrar o centro activo por difusão. Para ordem de 108-109 M-1s-1

Constante de especificidade para alguns enzimas

Enzima	Substrato	K_{m}	k cat	K _{cat} /K _m
Acetil colina esterase	Acetilcolina	9.50E-05	1.40E+04	1.5E+08
Anidrase carbónica	CO2	1.20E-02	1.00E+06	8.3E+07
Catalase	H2O2	2.50E-02	1.00E+07	4.0E+08
Fumarase	Fumarato	5.00E-06	8.00E+02	1.6E+08
Urease	Ureia	2.50E-02	1.00E+04	4.0E+05
Crotonase	Crotonil-CoA	2.00E-05	5.70E+03	2.9E+08
b-lactamase	Benzilpenicilina	2.00E-05	2.00E+03	1.0E+08
Triose-P-isomerase	Gliceraldeido-3-P	4.70E-04	4.30E+03	9.1E+06
Quimotripsina	N-Ac-Gly Ester	4.40E-01	5.10E-02	1.2E-01
	N-Ac-Val Ester	8.80E-02	1.70E-01	1.9E+00
	N-Ac-Tyr Ester	6.60E-04	1.90E+02	2.9E+05

Os valores a vermelho denotam constantes de especificidade próximas do limite difusivo do substrato.