

TECNOLOGICO NACIONAL DE MEXICO INSTITUTO TECNOLOGICO DE LA LAGUNA

Modelo COCOMO

Sistema de monitoreo y asistencia DOCENTE: LAMIA HAMDAN M.

NUM DE CONTROL	NOMBRE
18130578	Moreno Castillo Jorge Gerardo
17130836	Romo Arroyo Juan Carlos
18130576	Medina Lujan Alejandro Israel
18130534	Arellano Sanchez Juan Jesus
17130791	González Sandoval José Manuel

FECHA: 05/12/2021

Índice

Introducción	3
Estimaciones	3
Desarrollo	6
KDLC	6
Tipos de proyectos de software	7
FAE (Factor de Ajuste de Esfuerzo)	7
Cálculos Finales	8
Conclusión	9

Introducción

El Modelo Constructivo de Costos (o COCOMO, por su acrónimo del inglés COnstructive COst MOdel) es un modelo matemático de base empírica utilizado para estimación de costos de software. Incluye tres submodelos, cada uno ofrece un nivel de detalle y aproximación, cada vez mayor, a medida que avanza el proceso de desarrollo del software: básico, intermedio y detallado.

Este modelo fue desarrollado por Barry W. Boehm a finales de los años 70 y comienzos de los 80, exponiéndolo detalladamente en su libro "Software Engineering Economics" (Prentice-Hall, 1981).

COCOMO es una jerarquía de modelos de estimación de costes software que incluye submodelos básico, intermedio y detallado. Las ecuaciones de estimación del esfuerzo de desarrollo tienen la forma:

$$E = a_i S^{b_i} m(X)$$

Con:

- S el número de miles de líneas de código fuente
- M(X) es un multiplicador que depende de 15 atributos
- En la siguiente tabla se muestran los coeficientes para los diferentes modos

Estimaciones

Tipo / Complejidad	Baja	Media	Alta	TOTAL
(EI) entrada Externa	OPF	4PF	6PF	10
(EO) salida Externa	4PF	3PF	7PF	15
(EQ) consulta Externa	OPF	2PF	2PF	4
(ILF) Archivo Lógico Interno	7PF	4PF	15PF	26
(EIF) Archivo de interfaz Externo	OPF	2PF	5PF	7
PFSA				62

Siglas utilizadas

VL = Muy bajo (0)

L = bajo (1)

N = nominal (2)

H = alto(3)

VH = muy alto (4)

XH = extra alto (5)

Atributos del producto

No.	Factor	Valor (VL-XH)
1	Confiabilidad requerida	3
2	Tamaño de la base de datos	1
3	Complejidad del producto	2
SUMA		5

Atributos de la computadora

No.	Factor	Valor (VL-XH)
1	Restricción de tiempo de ejecución	1
2	Restricción de almacenamiento principal	1
3	Volatilidad de la plataforma	3
4	Tiempo de respuesta de la computadora	4
SUMA		9

Atributos del personal

No.	Factor	Valor (VL-XH)
1	Capacidad de analista	2
2	Experiencia en aplicaciones	2
3	Capacidad del programador	3
4	Experiencia de plataforma	4
5	Lenguaje de programación y experiencia en herramientas	3
SUMA		14

Atributos del proyecto

No.	Factor	Valor (VL-XH)
1	Prácticas de programación modernas	3
2	Uso de herramientas de software	3
3	Programa de desarrollo requerido	2
SUMA		8

Extra

No.	Factor	Valor (VL-XH)
1	Reutilización requerida	0
2	Documentación adaptada a las necesidades del ciclo de vida	1
3	Continuidad del personal	3
4	Desarrollo multi-sitio	2
SUMA		6

Suma total

No.	Atributo	SUMA INDIVIDUAL
1	Atributos del producto	5
2	Atributos de la computadora	9
3	Atributos del personal	14
4	Atributos del proyecto	8
5	Extras	6
SUMA	TOTAL	42

Calculo del FCT

$$FCT = 0.65 + (0.01 * 42)$$

$$FCT = 1.07$$

Puntos de función

Constituyen una técnica de medida del software, simple de obtener pero muy potente en sus resultados. Esta potencia radica en que del valor de la medida en Puntos Función se derivan un conjunto de métricas esenciales para la gestión de la productividad, la calidad y el coste del software.

Formula

PF = PFSA * FCT

Resultado

PF = 62 * 1.07

PF = 66.43

Desarrollo

Formulas a utilizar para el desarrollo del modelo del proyecto:

E = Esfuerzo = KLDCe * FAE (persona x mes)

T = Tiempo de duración del desarrollo = Esfuerzo (meses)

P = Personal = E/T (personas)

KDLC

Language	files	blank	comment	code
JavaScript CSS HTML	13 5 9	5636 1811 54	5363 148 323	27754 13636 1373
SUM:	27	7501	5834	42763

KDLC = SUM/1000 = 42763/1000 = **42.763**

KDLC = 42.763

Tipos de proyectos de software

Orgánico: proyecto relativamente sencillos, menores de 50 KDLC (miles de líneas código). En los cuales se tiene experiencia de proyectos similares y se encuentra en entornos estables

Semi-Acoplado: proyectos intermedios en complejidad y tamaño (menores de 300 KDLC). Donde la experiencia es variable, y las restricciones intermedias.

Empotrado: proyectos bastantes complejos, en los que apenas se tiene experiencia y se engloban en un entorno de gran innovación técnica. Además se trabaja con unos requisitos muy restrictivos y de gran volatilidad.

Proyecto de software	а	е	С	d
Orgánico	3.2	1.05	2.5	0.38
Semi-acoplado	3	1.12	2.5	0.35
Empotrado	2.8	1.2	2.5	0.32

FAE (Factor de Ajuste de Esfuerzo)

Conductores			Valor	ación		
Conductores	Muy bajo	Bajo	Nominal	Alto	Muy alto	Extra alto
Fiabilidad requerida del software	0.75	0.88	1	1.15	1.4	-
Tamaño de la base de datos	-	0.94	1	1.08	1.16	-
Complejidad del producto	0.7	0.85	1	1.15	1.3	1.65
Restricciones del tiempo de ejecución	-	-	1	1.11	1.5	1.66
Restricciones del almacenamiento principal	-	-	1	1.06	1.21	1.56
Volatilidad de la máquina virtual	-	0.87	1	1.15	1.3	-
Tiempo de respuesta del ordenador	-	0.87	1	1.07	1.15	-
Capacidad del analista	1.45	1.19	1	0.86	0.71	-
Experiencia en la aplicación	1.29	1.13	1	0.91	0.82	-

Capacidad de los programadores	1.42	1.17	1	0.86	0.7	-
Experiencia de S.O. utilizado	1.21	1.1	1	0.9	-	-
Experiencia en el lenguaje de programación	1.14	1.07	1	0.95	-	-
Prácticas de programación modernas	1.24	1.1	1	0.91	0.82	-
Utilización de herramientas de software	1.24	1.1	1	0.91	0.83	-
Limitaciones de planificación del proyecto	1.23	1.08	1	1.04	1.1	-

Calculo del FAE

0.83 * 1

FAE = 0.3656

Cálculos Finales

Debido que nuestro proyecto no supera los 50 KDLC usaremos un tipo de proyecto orgánico y usaremos los coeficientes de la siguiente tabla:

Proyecto de software	а	е	С	d
Orgánico	3.2	1.05	2.5	0.38
Semi-acoplado	3	1.12	2.5	0.35
Empotrado	2.8	1.2	2.5	0.32

Calculo de esfuerzo

E = Esfuerzo = aKLDCe * FAE (persona x mes)

 $E = 3.2 (42.763)^{1.05} * 0.3656 = 60.3639 personas/mes$

Calculo de Tiempo

T = Tiempo de duración del desarrollo = c Esfuerzo d

 $T = 2.5 * (60.3639)^{0.38} = 11.8750$ meses

Calculo de Personal

P = Personal = E/T (personas)

P = 60.3639 personas/mes / 11.8750 meses = 5.08327 personas

Costo Total En 11 meses de proyecto

CT = \$8000 * 11.8750 meses * 5.0832 personas = \$482, 904

Calculo de Personal en 6 meses

P = Personal = E/T (personas)

P = 60.3639 personas/mes / 6 meses = 10.0606 personas

Costo Total en 6 meses de proyecto

CT = \$8000 * 6 meses * 10.0606 personas = \$482, 908

Conclusión

Para la realización de este proyecto se proyectaron 11 meses de trabajo repartido entre 5 personas con un pago de \$8,000 pesos mensuales por persona para poder conseguir terminar el proyecto satisfactoriamente pero debido a que nuestra empresa busca resultados más prontos se trazó otro plan de trabajo en el cual se disminuía la cantidad de meses de realización buscando el mismo resultado y al mismo costo, nosotros hicimos un plan de 6 meses, aumentado el número de personal requerido para el proyecto, asi obteniendo el mismo resultado en menor tiempo y además proporcionando la misma cantidad de dinero en los dos casos.