Explaining Classifications for Individual Instances

3 marca 2019

Wpływ atrybutu A_i na predykcję dla danej obserwacji:

- x- obserwacja
- A_i atrybuty
- Model klasyfikacji:

$$f: x \mapsto f(x) \tag{1}$$

Wpływ atrybutu A_i na predykcję dla danej obserwacji:

- x- obserwacja
- A_i atrybuty
- Model klasyfikacji:

$$f: x \mapsto f(x) \tag{1}$$

•

$$predDiff_i(x) = f(x) - f(x \backslash A_i)$$
 (2)

• information difference

• information difference

weight of evidence

information difference

weight of evidence

• difference of probabilities

information difference

•

$$infDiff_i(y|x) = \log_2 p(y|x) - \log_2 p(y|x \setminus A_i)$$
 (3)

• weight of evidence

• difference of probabilities

• information difference

 $infDiff_i(y|x) = \log_2 p(y|x) - \log_2 p(y|x \setminus A_i)$ (3)

weight of evidence

$$WE_i(y|x) = \log_2(odds(y|x)) - \log_2(odds(y|x \setminus A_i))$$
 (4)

difference of probabilities

information difference

$$infDiff_i(y|x) = \log_2 p(y|x) - \log_2 p(y|x \setminus A_i)$$
 (3)

weight of evidence

•

$$WE_i(y|x) = \log_2(odds(y|x)) - \log_2(odds(y|x \setminus A_i))$$
 (4)

difference of probabilities

$$probDiff_i(y|x) = p(y|x) - p(y|x \setminus A_i)$$
 (5)

Przykład wizualizacji

- Służy do obliczenia wyjaśnień i pokazania jej wizualizacji
- agregacja wyjaśnień dla obserwacji daje wyjaśnienia dla modelu

Przykład wizualizacji

Dane:	Titanic	
Liczba obserwacji:	2201	
Dane uczące:	50%	
Modele:	NB ; SVM	
Wyjaśnienie:	InfDiff	

Data set: titanic; model: naive Bayes p(survived=yeslx) = 0.50; true survived=yes

Data set: titanic; model: SVM p(survived=yeslx) = 0.22; true survived=yes

Data set: titanic, survived=yes model: naive Bayes

Jakość modelu a wyjaśnienia

Im lepiej model odzwierciedla problem, tym bliższe są wyjaśnienia modelu - wyjaśnieniom prawdziwym.

Table 3: Performance and average distances to the true explanation for five classification methods on five data sets.

method		condInd	xor	group	cross	chess
	acc	0.90	0.51	0.35	0.50	0.50
NB	AUC	0.96	0.51	0.50	0.50	0.50
	$\overline{d_{exp}}$	0.06	0.39	0.46	0.45	0.47
DT	acc	0.89	0.90	0.33	0.52	0.52
	AUC	0.95	0.90	0.50	0.56	0.50
	$\overline{d_{exp}}$	0.17	0.01	0.35	0.33	0.35
kNN	acc	0.86	0.90	0.99	0.55	0.71
	AUC	0.93	0.90	0.83	0.59	0.78
	d_{exp}	0.16	0.10	0.08	0.40	0.33
SVM	acc	0.89	0.58	0.66	0.98	0.53
	AUC	0.95	0.52	0.76	0.99	0.52
	$\overline{d_{exp}}$	0.12	0.39	0.22	0.04	0.42
ANN	acc	0.89	0.90	0.98	0.95	0.84
	AUC	0.92	0.90	0.82	0.98	0.90
	$\overline{d_{exp}}$	0.27	0.09	0.09	0.08	0.16

Dane: 'Groups'

Figure 4: Visualization of two important attributes in the *groups* data set. Circles, triangles, and lines represent class values 0, 1, and 2.

Zbędne zmienne

Data set: modGroup2; model: knn p(class=1ix) = 1.00; true class=1

Data set: modGroup2; model: neural network p(class=1lx) = 1.00; true class=1

$$p(y|x\backslash A_i) = \sum_{s=1}^{m_i} p(A_i = a_s|x\backslash A_i) p(y|x \leftarrow A_i = a_s)$$
 (6)

$$p(y|x\backslash A_i) \doteq \sum_{s=1}^{m_i} p(A_i = a_s) p(y|x \leftarrow A_i = a_s)$$
 (7)