Poznámka (Literature)

Kechris.

1 Polish topological space

Definice 1.1 (Polish space)

We say TS (X, τ) is polish (PTS) if X is separable and completely metrizable.

Poznámka

Complete compatible metric is not unique: $\tilde{\varrho} = \min\{1, \varrho\}$.

Například

 \mathbb{R} , \mathbb{C} , \mathbb{R}^n , \mathbb{C}^n , $2 := \{0, 1\}$, $\omega := \{0, 1, 2, \ldots\}$ with discrete topology, Separable Banach space (SBS), metrizable compacts, 2^{ω} , ω^{ω} (both with product topology).

Věta 1.1 (Baire)

X TS metrizable with complete metric. Then countable intersection of open dense subsets of X is dense in X.

 $D\mathring{u}kaz$

Without proof. (We should know it already.)

Věta 1.2

X complete metric space, $\{F_n\}$ is decreasing sequence of closed subsets of X, such that $\operatorname{diam}(F_n) \to 0$. Then $|\bigcap F_n| = 1$.

 $D\mathring{u}kaz$

Without proof. (We should know it already.)

Věta 1.3

- (i) If X_n are PTS, $n \in \omega$. Then $\prod_{n \in \omega} X_n$ is PTS.
 - (ii) X PTS, $H \subset X$. Then H is PTS $\Leftrightarrow H \in \mathcal{G}_{\delta}(X)$

Důkaz ((i))

Let d_n be CCM (complete compatible metric) on X_n , $n \in \omega$. Then

$$d(x,y) := \sum_{n=0}^{\infty} \min \{2^{-n}, d_n(x_n, y_n)\}\$$

is CCM on $X = \prod_{n \in \omega} X_n$, where $x = (x_n)$, $y = (y_n)$. ("Definition is correct" is trivial, "d is metric" straightforward, "d is complete" also easy, compatibility too).

Důkaz ((ii))

 $H = \emptyset$, H = X trivial. Assume $H \neq \emptyset$, X.

" \Longrightarrow ": Fix CCM ϱ on H.

 $V_n := \bigcup \left\{ V \subset X | V \text{ open in } X \wedge V \cap H \neq \emptyset \wedge \operatorname{diam}_{\varrho}(V \cap H) < 2^{-n} \right\}, \qquad n \in \omega.$

We want to show $H \stackrel{?}{=} \bigcap_{n \in \omega} (V_n \cap \overline{H}) \in \mathcal{G}_{\delta}$: \mathbb{C}_{δ} : \mathbb

 $\{y\} := \bigcap_{n \in \omega} \overline{G_n \cap H}^H \in H$. For contradiction: $x \neq y \implies \exists O \subset X$ open: $x \notin \overline{O}$, $y \in O$, $G_n \cap H \subset B(y, 2^{-n})$, $n \in \omega$. $\Longrightarrow \exists n \in \omega G_n \cap H \subset O$, $x \in G_n \cap (X \setminus \overline{O}) \cap \overline{H} \Longrightarrow G_n \cap (X \setminus \overline{O}) \cap H \neq \emptyset$.

" \Leftarrow ": fix CCM d on X, $H = \bigcap_{n \in \omega} U_n$, $\emptyset \neq U_n \neq X$. $F_n := X \setminus U_n$, $\tilde{d}(x,y) = d(x,y) + \sum_{n=0}^{\infty} \min \left\{ 2^{-n}, \left| \frac{1}{\operatorname{dist}(x,F_n)} - \frac{1}{\operatorname{dist}(y,F_n)} \right| \right\}$, $x,y \in H$. Next we verified that \tilde{d} is metric, that \tilde{d} is equivalent with d on H (by convergence), and that (H,\tilde{d}) is complete metric space and separable. TODO?

Definice 1.2 (Notation)

 $A \neq 0$:

- $A^{<\omega}$:= finite sequence of elements of $A = \bigcup_{n \in \omega} A^n$;
- $s \in A^k$, $t \in A^{<\omega} \cup A^{\omega}$: $s^{\wedge}t := (s_0, s_1, \dots, s_{k-1}, t_0, t_1, \dots)$, where $s = (s_0, \dots, s_{k-1})$, $t = (t_0, t_1, \dots)$;
- $s \in A^{<\omega} \cup A^{\omega}$: |s| is the number of elements of sequence s $(|s| \in \omega \cup \{\infty\})$;
- $s \in A^{<\omega} \cup A^{\omega}$, $k \in \omega$, $|s| \ge k$, then we denote restriction of s on first k elements as s/k;
- $s < t \text{ iff } |t| \ge |s| \text{ and } s = t/|s| \ (s \in A^{<\omega}, \ t \in A^{<\omega} \cup A^{\omega}).$

1.1 Baire space ω^{ω}

Definice 1.3 (Baire interval)

For $s \in \omega^{<\omega}$ we define Baire interval of s as $\mathcal{N}(s) := \{ \nu \in \omega^{\omega} | s < \nu \}.$

 $\mathcal{N}(s)$ are clopen $(\mathcal{N}(s) = \omega^{\omega} \setminus \bigcup \{\mathcal{N}(t) | |t| = |s|, t \neq s, t \in \omega^{<\omega}\}).$

 $\{\mathcal{N}|s\in\omega^{<\omega}\}\$ is base of topology of ω^{ω} .

Věta 1.4 (Alexandrov–Urysohn)

 ω^{ω} is up to homeomorphism unique nonempty multi-dimension PTS such that every compact has empty interior.

Důkaz

Bez důkazu.

Důsledek

 ω^{ω} is homeomorphic to $\mathbb{R}\backslash\mathbb{Q}$.

Věta 1.5

Let $X \neq \emptyset$, PTS. Then X is continuous image of ω^{ω} .

Poznámka

 $X \neq \emptyset$ PTS. Then there $\exists F \subset \omega^{\omega}$, F closed, and continuous injection $\varphi : F \to X$.

 $D\mathring{u}kaz$

Find CCM on X such that diam $X \leq 1$. We inductively construct closed $\emptyset \neq A_s \subset X$ for every $s \in \omega^{<\omega}$ such that 1. $A_\emptyset = X$; 2. diam $(A_s) \leq 2^{-|s|}$; 3. $A_s = \bigcup_{i \in \omega} A_{s^{\wedge}i}$.

Empty set is trivial. Assume we already have A_s . Find $\{x_i|i\in\omega\}\subset A_s$ dense in A_s . $A_{s^{\hat{}}i}:=A_s\cap\overline{B(x_i,2^{-|s|-2})}\neq\varnothing$ closed.

Fix $\forall \nu \in \omega^{\omega} : f(\nu) := x$, where $\{x\} = \bigcap_{k \in \omega} A_{\nu/k} \neq \emptyset$ (intersection of closed nonempty non-increasing sequence of sets). "f is surjection": $x \in A_s \stackrel{3}{\Longrightarrow} \exists n \in \omega : x \in A_{s^{\wedge}n} \stackrel{1}{\Longrightarrow} \forall x \in X \ \exists \alpha \in \omega^{\omega} \ \forall k \in \omega : x \in A_{\alpha/k} \implies x = f(\alpha)$.

"f continuous": $f(\mathcal{N}_{\nu/k}) \subset A_{\nu/k}$ for every $\nu \in \omega^{\omega}$, $k \in \omega$, diam $A_{\nu/k} \leq 2^{-k}$.

1.2 Cantor set 2^{ω}

Tvrzení 1.6 (Brouwer)

 2^{ω} is up to homeomorphism unique nonempty nuldimensional compact metrizable space without isolated points (space without isolated points is called perfect space).

Tvrzení 1.7

Let $X \neq \emptyset$ metrizable, compact. Then X is continuous image of 2^{ω} .

Důkaz

Without proof, but it is similar to the previous one.

1.3 Hilbert cube $[0,1]^{\omega}$

Tvrzení 1.8

Let X be PTS. Then X is homeomorphic to G_{δ} subset of $[0,1]^{\omega}$.

 $D\mathring{u}kaz$

X PTS, case \varnothing is trivial, so assume $X \neq \varnothing$, ϱ is CCM on X, $\varrho \leqslant 1$. Let $\{x_n, n \in \omega\}$ be dense in X. Define $f: X \to [0,1]^{\omega}: f(x) = (\varrho(x,x_n))_{n \in \omega}$. $\varrho \leqslant 1 \implies f(x) \in [0,1]^{\omega}$.

"Continuity of f": $f^{-1}(U) = \bigcap_{i=1}^n B(x_i, b_i) \setminus \overline{B(x_i, a_i)}$ open.

"Injective": $x \neq y \implies \exists n \in \omega : \varrho(x, x_n) < \varrho(y, x_n) \implies f(x) \neq f(y)$.

"Continuity of f^{-1} " $f(y^n) \to f(y) \stackrel{?}{\Longrightarrow} y^n \to y$.

$$f(y^n) \to f(y) \stackrel{?}{\Leftrightarrow} \forall k \in \omega : \varrho(y^n, x_k) \to \varrho(y, x_k).$$

Let $\varepsilon > 0$ be arbitrary:

$$\exists k \in \omega : \varrho(y, x_k) < \frac{\varepsilon}{3}. \ \exists n_0 \ \forall n \geqslant n_0 : \varrho(y^n, x_k) < \frac{2\varepsilon}{3}.$$

Then

$$\forall n \geqslant n_0 : \varrho(y^n, y) \leqslant \varrho(y^n, x_k) + \varrho(x_k, y) < \varepsilon.$$

So f(X) is homeomorphism to $X \implies f(X)$ is PTS $\implies f(X) \in \mathcal{G}_{\delta}([0,1]^{\omega})$.

Důsledek

Let X be compact metrizable space. Then X is homeomorphic to some closed subset of $[0,1]^{\omega}$.

 $D\mathring{u}kaz$

Compact metrizable space is Polish. And compact subset must be closed.

1.4 $\mathcal{K}(X)$: Hyperspace of compact subsets of X

Definice 1.4 (Vietoris topology)

Let X be PTS, denote $\mathcal{K}(X) := \{K \subset X | K \text{ is compact}\}$. Vietoris topology on $\mathcal{K}(X)$ is generated by $\{K \in \mathcal{K}(X) | K \subset V\}$ for V open and

$$\{K \in \mathcal{K}(X) | K \cap V \neq \emptyset\} = \mathcal{K}(X) \setminus \{K \in \mathcal{K}(X) | K \subset X \setminus V\} \text{ for } V \text{ open.}$$

Tvrzení 1.9 (Hausdorff metric)

Let X be PTS, ϱ CCM on X, $\varrho \leqslant 1$. Then mapping $h : \mathcal{K}(X) \times \mathcal{K}(X) \mapsto [0, +\infty)$ defined as:

$$h(K,L) = \begin{cases} 0, & K = L = \emptyset \\ \max\left\{\sup_{x \in K} \varrho(x,L), \sup_{y \in L} \varrho(y,K)\right\}, & K,L \neq \emptyset, \\ 1, & other \ cases, \end{cases}$$

is CCM on K(X) with Vietoris topology. h is known as Hausdorff metric.

 $\mathcal{K}(X)$ is separable if X is PTS. X is compact metrizable $\implies \mathcal{K}(X)$ is compact (totally bounded).

 $D\mathring{u}kaz$

 $(\emptyset \neq K, L, P \in \mathcal{K}(X).)$ h is metric, definition is correct, $h \geqslant 0$ trivial, h(K, L) = h(L, K) trivial, $h(K, L) = 0 \implies K = L \ (x \notin L \implies \varrho(x, L) > 0 \implies K \subset L \land L \subset K).$

" \triangle " aka " $h(K, L) \leq h(K, P) + h(P, L)$ ": Let $x \in K, y \in L, p \in P$. Then

$$\begin{split} \varrho(x,L) \leqslant \varrho(x,y) \leqslant \varrho(x,p) + \varrho(p,y) & \quad \inf y \in L \\ \varrho(x,L) \leqslant \varrho(x,p) + \varrho(p,L) & \quad \sup p \in P \\ \varrho(x,L) \leqslant \varrho(x,p) + h(P,L) & \quad \inf p \in P \\ \varrho(x,L) \leqslant \varrho(x,P) + h(P,L) & \quad \inf p \in P \\ \sup_{x \in K} \varrho(x,L) \leqslant h(K,P) + h(P,L). \end{split}$$

Similarly $\sup_{y \in L} \varrho(y, K) \leq h(K, P) + h(P, L)$.

Důkaz (Kompatibilita s Vietorisovou topologií)

Označme Vietorisovu topologii jako \mathcal{V} a topologii indukovanou Hausdorffovou metrikou jako \mathcal{H} . Chceme dokázat $\mathcal{H} = \mathcal{V}$.

"
c": Zvolme $K \in \mathcal{K}(X)$ a $\varepsilon > 0$. Množina K je kompaktní, takže můžeme nalézt konečný systém \mathcal{B} otevřených koulí s diametrem < ε protínajících K, který pokrývá K. Potom platí

$$B_h(K,\varepsilon) \supset \left\{ L \in \mathcal{K}(X) \middle| L \subset \bigcup \mathcal{B} \land \forall B \in \mathcal{B} : L \cap B \neq \emptyset \right\} \ni K.$$

"⊃": Nechť $V \subset X$ je otevřená a $K \in \mathcal{K}(X)$ splňuje $K \cap V \neq \emptyset$. Zvolme $x \in K \cap V$ a k němu nalezněme $\varepsilon > 0$, že $B(x, \varepsilon) \subset V$. Potom $B_h(K, \varepsilon) \subset \{L \in \mathcal{K}(X) | L \cap V \neq \emptyset\}$.

Nyní nechť $V \subset X$ je otevřená a $K \in \mathcal{K}(X)$, $K \neq \emptyset$, splňuje $K \subset V$. Nalezneme $\varepsilon > 0$ takové, že $\{y \in X | \varrho(y, K) < \varepsilon\} \subset U$. Potom platí $B_h(K, \varepsilon) \subset \{L \in \mathcal{K}(X) | L \subset V\}$. Pro $K = \emptyset$ stačí položit $\varepsilon = 1/2$.

 $D\mathring{u}kaz$ (Separabilita $\mathcal{K}(X)$)

Nalezněme $D \subset X$ spočetnou a hustou. Položme $\mathcal{D} := \{K \in \mathcal{K}(X) | K \text{ konečná} \land K \subset D\}$. Množina \mathcal{D} je spočetná. Jestliže V_0, V_1, \ldots, V_n jsou otevřené podmnožiny X takové, že

$$\mathcal{G} := \{ K \in \mathcal{K}(X) | K \subset V_0 \land \forall i \in [n] : K \cap V_i \neq \emptyset \}$$

je neprázdná, pak pro každé $i \in [n]$ zvolme $x_i \in V_0 \cap V_i \cap D$ a položme $L := \{x_1, \dots, x_n\}$. Potom $L \in \mathcal{G} \cap \mathcal{D}$, takže \mathcal{D} je hustá v $\mathcal{K}(X)$.

 $D\mathring{u}kaz$ (Úplnost $(\mathcal{K}(X), h)$)

Nechť (K_n) je cauchyovská posloupnost v $(\mathcal{K}(X), h)$. Položme $K := \bigcap_{n \in \omega} \overline{\bigcup_{j \geq n} K_j}$. Odvodíme 1. $K \in \mathcal{K}(X), 2. K_n \to K$.

 $\frac{,,1.\text{``:}}{\bigcup_{n\in\omega}K_n}$ Stačí ukázat, že množina $\bigcup_{n\in\omega}K_n$ je totálně omezená, pak je totiž množina $\frac{}{\bigcup_{n\in\omega}K_n}$ kompaktní. Vezměme $\varepsilon>0$. Pak existuje $n_0\in\omega$ takové, že $\forall n\in\omega,n\geqslant n_0:h(K_n,K_{n_0})<\varepsilon/2$. Nechť S je konečná $\varepsilon/2$ -síť v K_{n_0} . Potom

$$\bigcup_{n\geqslant n_0} K_n \subset \{y\in X|\varrho(y,K_{n_0})<\varepsilon/2\}.$$

Odtud plyne, že S je ε -síť $\bigcup_{n \geq n_0} K_n$. Existuje tedy ε -konečná síť množin $\bigcup_{n \in \omega} K_n$, protože $\bigcup_{n < n_0} K_n$ je kompaktní.

"2." Nechť množina V je otevřená v X a $K \subset V$. Platí $\bigcap_{n \in \omega} \overline{\bigcup_{j \geqslant n} K_j} \cap V^c = K \cap V^c = \emptyset$, a tedy existuje $n_0 \in \omega$ takové, že $\overline{\bigcup_{j \geqslant n_0} K_j} \subset V$. Pro $n \geqslant n_0$ tedy platí $K_n \subset V$.

Nyní nechť množina $V \subset X$ je opět otevřená a $K \cap V \neq \emptyset$. Nalezneme $\varepsilon > 0$ a $x \in K \cap V$ takové, že $B(x,\varepsilon) \subset V$. K tomuto ε nalezneme $n_0 \in \omega$ takové, že $\forall n,m \geqslant n_0 : h(K_n,K_m) < \varepsilon/2$. Dále existuje $m_0 \geqslant n_0$ takové, že $K_{m_0} \cap B(x,\varepsilon/2) \neq \emptyset$. Potom pro každé $n \geqslant m_0$ platí $K_n \cap B(x,\varepsilon) \neq \emptyset$, a tedy $K_n \cap V \neq \emptyset$.

1.5 Rozšiřování spojitých zobrazení

Věta 1.10 (Kuratowski)

Nechť X je metrický prostor, Y je úplný metrický prostor, $A \subseteq X$ a $f: A \to Y$ je spojité zobrazení. Potom existuje G_{δ} množina G taková, že $A \subseteq G \subseteq \overline{A}$, a existuje spojité rozšíření $g: G \to Y$ zobrazení f.

 $D\mathring{u}kaz$

Definujeme oscilaci zobrazení f v bodě $x \in \overline{A}$ jako osc $(f, x) = \inf \{ \text{diam } f(U) | U \text{ je okolí } x \}$. Pro $x \in A$ platí osc(f, x) = 0. Položme $G = \{ x \in \overline{A} | \text{osc}(f, x) = 0 \}$. Ověříme požadované vlastnosti:

"Inkluze $A \subset G \subset \overline{A}$ " zřejmě platí. "Množina G je typu G_{δ} " plyne z rovnosti $G = \bigcap_{n \in \omega} \left\{ x \in \overline{A} | \operatorname{osc}(f, x) < 1/n \right\}$, neboť tyto množiny jsou otevřené v \overline{A} .

Zobrazení g definujeme takto: $\{g(x)\} := \bigcap_{k \in \mathbb{N}} \overline{f(B(x, 2^{-k}))}, x \in G$. Ověříme:

"Korektnost definice g" plyne z jedné z vět výše. "Spojitost g" plyne z rovnosti osc(g,x) = osc(f,x) = 0 pro $x \in G$. "Zobrazení g rozšiřuje f" je snadné.

Věta 1.11 (Lavrentěv)

Nechť X,Y jsou úplné metrické prostory, $A \subset X$, $B \subset Y$ a $f:A \to B$ je homeomorfismus A na B. Pak existují G_{δ} množiny G,H takové, že $A \subset G \subset X$, $B \subset H \subset Y$, a $\tilde{f}:G \to H$

homeomorfismus G na H splňující $\tilde{f}|_A = f$.

Důkaz

Podle předchozí věty existuje G_{δ} množina G_1 a spojité zobrazení $f_1: G_1 \to Y$ takové, že $A \subset G_1$ a $f_1|_A = f$. Podobně nalezneme G_{δ} množinu H_1 a spojité zobrazení $g_1: H_1 \to X$ takové, že $B \subset H_1$ a $g_1|_B = f^{-1}$. Označme

$$R := \{(x, y) \in G_1 \times Y | f_1(x) = y\}, \qquad S := \{(x, y) \in X \times H_1 | x = g_1(y)\}.$$

Položíme $G := \pi_X(R \cap S)$, $H := \pi_Y(R \cap S)$ a $\tilde{f} := f_1|_G$, a tedy \tilde{f} je homeomorfismus G na H. Zobrazení $\psi(x) = (x, f_1(x))$ je spojité na G_1 , S je uzavřená v $X \times H_1$ a $G = \psi^{-1}(S)$. Množina G je tedy G_δ v X. Podobně lze odvodit, že H je G_δ v Y.

2 Základní vlastnosti borelovských a analytických množin

2.1 Zavedení borelovské hierarchie a její vlastnosti

Definice 2.1 (Borel hierarchy)

X is metrizable space, $1 \leq \alpha < \omega_1$. We define $\Sigma_{\alpha}^0(X)$, $\Pi_{\alpha}^0(X)$, and $\Delta_{\alpha}^0(X)$ by induction:

$$\Sigma_1^0(X) := \{ U \subset X | U \text{ open} \},$$

$$\Pi_{\alpha}^0(X) := \{ A \subset X | X \backslash A \in \Sigma_{\alpha}^0(X) \},$$

$$\Sigma_{\alpha}^0(X) := \left\{ \bigcup_{n \in \omega} A_n \middle| A_n \in \Pi_{\alpha_n}^0(X), \alpha_n < \alpha, n \in \omega \right\},$$

$$\Delta_{\alpha}^0(X) := \Sigma_{\alpha}^0(X) \cap \Pi_{\alpha}^0(X).$$

Poznámka (By induction it can be prooven)

$$\Sigma^0_{\alpha}(X) \subset \Sigma^0_{\beta}(X), \Pi^0_{\alpha}(X) \subset \Pi^0_{\beta}(X), \qquad 1 \leqslant \alpha < \beta < \omega_1.$$

Pozn'amka

$$\forall \alpha, \beta : 1 \leqslant \alpha < \beta < \omega_1 : \Sigma_{\alpha}^0(X) \subset \Pi_{\beta}^0(X).$$

Poznámka

If X contains homeomorphic copy of 2^{ω} then all inclusions are strict.

We denote Borel(X) as σ -algebra of Borel sets (σ -algebra generated by $\Sigma_1^0(X)$).

Poznámka (Also non-trivial theorem)

$$Borel(X) = \bigcup_{1 \leq \alpha < \omega_1} \Sigma_{\alpha}^0(X) = \bigcup_{1 \leq \alpha < \omega_1} \Pi_{\alpha}^0(X) = \bigcup_{1 \leq \alpha < \omega_1} \Delta_{\alpha}^0(X).$$

$$A_n \in \bigcup_{1 \leqslant \alpha < \omega_1} \Sigma_{\alpha}^0(X) \implies \exists 1 \leqslant \alpha_n < \omega_1 : A_n \in \Sigma_{\alpha_n}^0(X) \implies A_n \in \Sigma_{\sup\{\alpha_n \mid n \in \omega\}}^0 \implies \bigcup_{n \in \omega} A_n \in \Sigma_{\sup\{\alpha_n, n \in \omega\}}^0 \implies \bigcup A_n \in \bigcup_{1 \leqslant \alpha < \omega_1} \Sigma_{\alpha}^0(X).$$

Poznámka

$$F_{\sigma} = \Sigma_{2}^{0}, G_{\delta} = \Pi_{2}^{0}, F_{\sigma\delta} = \Pi_{3}^{0}, G_{\delta\sigma} = \Sigma_{3}^{0}.$$

 $\Sigma^0_{\alpha}(X)$ is closed under countable union and $\Pi^0_{\alpha}(X)$ under countable intersection.

Věta 2.1

X be metrizable, $1 \leq \alpha < \omega_1$. Then

- 1. $\Sigma^0_{\alpha}(X)$ is closed under finite intersection;
- 2. $\Pi^0_{\alpha}(X)$ is closed under finite union.

 $D\mathring{u}kaz$

"1." Firstly for
$$\alpha=1$$
, it is trivial. Then let $A,B\in\Sigma^0_{\alpha}(X),\ \alpha>1$. Then $A=\bigcup_{n\in\omega}A_n,$ $A_n\in\Pi^0_{\alpha_n}(X),\ \alpha_n<\alpha,\ B=\bigcup_{m\in\omega}B_m,\ B_m\in\Pi^0_{\beta_m}(X),\ \beta_n<\alpha.\ A\cap B=\bigcup_{(m,n)\in\omega^2}A_n\cap B_m,$ $A_n\cap B_m\in\Pi^0_{\max\{\alpha_n,\beta_n\}}(X)\implies A\cap B\in\Sigma^0_{\alpha}(X).$ "2." \longleftarrow de Morgan and 1.

Věta 2.2

X be metrizable, $A \subset Z \subset X$, $1 \leq \alpha < \omega_1$. Then $A \in \Sigma^0_{\alpha}(Z) \Leftrightarrow$ there exists $\tilde{A} \in \Sigma^0_{\alpha}(X)$: $A = \tilde{A} \cap Z$. Similarly for $\Pi^0_{\alpha}, \Delta^0_{\alpha}$.

 $D\mathring{u}kaz$

Firstly $\alpha = 1$ from definition of subspace. Then assume that it is all true for all $\beta < \alpha$. We want to prove it for α . ":

$$A \in \Sigma_{\alpha}^{0}(Z) \implies A = \bigcup A_{n}, A_{n} \in \Pi_{\beta_{n}}^{0}(Z), \beta_{n} < \alpha \implies \exists \tilde{A}_{n} \in \Pi_{\beta_{n}}^{0}(X) : \tilde{A}_{n} \cap Z = A_{n}.$$

$$\tilde{A} = \bigcup \tilde{A}_n \in \Sigma_{\alpha}^0(X), \tilde{A} \cap Z = Z \cap \bigcup \tilde{A}_n = \bigcup (Z \cap \tilde{A}_n) = \bigcup A_n = A.$$

"←=":

$$\tilde{A} \in \Sigma_{\alpha}^{0}(X), A = \tilde{A} \cap Z \implies \exists \tilde{A}_{n} \in \Pi_{\beta_{n}}^{0}(X), \beta_{n} < \alpha, \bigcup \tilde{A}_{n} = \tilde{A}.$$

$$\tilde{A} \cap Z \in \Pi^0_{\beta_n}(Z) \implies A = \tilde{A} \cap Z = \left(\bigcup \tilde{A}_n\right) \cap Z = \bigcup \left(\tilde{A}_n \cap Z\right) = \bigcup A_n \in \Sigma^0_{\alpha}(Z).$$

Věta 2.3

 $X, Y \ be \ metric \ spaces, \ f: X \to Y \ is \ continuous. \ If \ A \in \Sigma^0_{\alpha}(Y) \ (\Pi^0_{\alpha}(Y), \ \Delta^0_{\alpha}(Y)) \ then \ f^{-1}(A) \in \Sigma^0_{\alpha}(X) \ (\Pi^0_{\alpha}(X), \ \Delta^0_{\alpha}(Y)).$

 $D\mathring{u}kaz$

 $\alpha = 1$ trivial. Assume it holds true for $\Sigma^0_{\beta}(Y)$, $\Pi^0_{\beta}(Y)$, $\beta < \alpha$, and we want to show for $\Sigma^0_{\alpha}(Y)$ ($\Pi^0_{\alpha}(Y)$). Let $A \in \Sigma^0_{\alpha}(Y)$, $\alpha > 1 \implies A = \bigcup_{n \in \omega} A_n$, $A_n \in \Pi^0_{\beta_n}(Y)$, $\beta_n < \alpha$.

$$f^{-1}(A) = f^{-1}\left(\bigcup A_n\right) = \bigcup \underbrace{f^{-1}(A_n)}_{\Pi^0_{\beta^n}(X)} \in \Sigma^0_{\alpha}(X),$$

$$f^{-1}(Y \backslash A) = f^{-1}(Y) \backslash f^{-1}(A) = X \backslash f^{-1}(A).$$

Věta 2.4 (Borel classes in PTS)

X,Y be PTS, $A \in \Sigma^0_{\alpha}(X)$, $\alpha \geq 3$ (resp. $A \in \Pi^0_{\alpha}(X)$, $\alpha \geq 2$), $B \subset Y$. If B and A are homeomorphic then $B \in \Sigma^0_{\alpha}(Y)$ (resp. Π^0_{α}).

 $D\mathring{u}kaz$

 $f:A\to B$ is homeomorphism A onto B. The theorem Lavrentěv there is extension \tilde{f} of f, \tilde{f} is homeomorphism \tilde{A} onto \tilde{B} , $A\subset\tilde{A}$, $B\subset\tilde{B}$, $\tilde{A}\in\Pi^0_2(X)$, $\tilde{B}\in\Pi^0_2(Y)$. Then $B\in\Sigma^0_\alpha(\tilde{B})$ (because $B=(f^{-1})^{-1}(A)$). From the theorem above, $\exists \hat{B}\in\Sigma^0_\alpha(Y):B=\hat{B}\cap\tilde{B}\in\Sigma^0_\alpha(Y)\iff\alpha\geqslant 3$.

2.2 Analytic sets

Definice 2.2 (Analytic set, coanalytic set)

X PTS, $A \subset X$. We say that A is analytic set in X if there exists PTS Y and continuous mapping $\varphi: Y \to X$ such that $\varphi(Y) = A$. We denote collection of analytic subsets of X as $\Sigma^1_1(X)$. We say that A is coanalytic in X if $X \setminus A \in \Sigma^1_1(X)$ and we denote this collection as $\Pi^1_1(X)$. $\Delta^1_1(X) = \Sigma^1_1(X) \cap \Pi^1_1(X)$.

Například
$$Q = \{ \alpha \in 2^{\omega} | \exists n \in \omega \ \forall j \geqslant n : \alpha_j = 0 \} = 2^{<\omega} \in \Sigma_2^0(2^{\omega}) \setminus \Pi_2^0(2^{\omega}), \text{TODO}?$$

Poznámka

 $X \text{ PTS}, F : X \to \mathcal{K}(X) \text{ by } F(x) = \{x\}. \text{ Then } F \text{ is continuous, } F^{-1}(\mathcal{K}(A)) = A \Longrightarrow \text{if } \mathcal{K}(A) \in \Sigma^0_{\alpha}(\mathcal{K}(X)) \ (\Pi^0_{\alpha}, \ \Delta^0_{\alpha}) \text{ then } A \in \Sigma^0_{\alpha}(X) \ (\Pi^0_{\alpha}, \ \Delta^0_{\alpha}). A \text{ open } \Longrightarrow \mathcal{K}(A) \text{ is open,} A \text{ is closed } \Longrightarrow \mathcal{K}(A) \text{ is closed. } \mathcal{K}(\bigcap A_n) = \bigcap \mathcal{K}(A_n). \text{ Thus for } A \in \Pi^0_2(X) : \mathcal{K}(A) \in \Pi^0_2(\mathcal{K}(X)). A \in \Sigma^0_1(X) \ (\Pi^0_1(X), \ \Pi^0_2(X)) \Leftrightarrow \mathcal{K}(A) \in \Sigma^0_1(\mathcal{K}(X)) \ (\Pi^0_1(\mathcal{K}(X)), \ \Pi^0_2(\mathcal{K}(X))).$

Věta 2.5

 $X \ PTS, \ |X| > \omega. \ Assume \ I \subset \mathcal{K}(X), \ I \ is \ \sigma\text{-ideal} \ (K \in I, L \subset K \implies L \in I; \ K_n \in I, \bigcup K_n \in \mathcal{K}(X) \implies \bigcup K_n \in I). \ If \ I \in \Pi^0_2(\mathcal{K}(X)), \ then \ I \in \Sigma^1_1(\mathcal{K}(X)).$

$$D$$
ů s le d e k

$$A \notin \Pi_2^0(X) \implies \mathcal{K}(A) \notin \Sigma_1^1(\mathcal{K}(X)).$$

Poznámka
$$A \in \Pi_1^1(X)$$
, $\mathcal{K}(A) = \mathcal{K}(X) \setminus \{K \in \mathcal{K}(X) | \exists x \in (X \setminus A) \cap K\}$
 $\{(K, x) \in \mathcal{K}(X) \times X | x \in K\}$ is closed.

Definice 2.3

$$\Sigma_1^1(X) := \{ A \subset X | \exists Y \text{ PTS}, f : Y \to X \text{ continuous} : f(Y) = A \}.$$

 $Poznámka \quad \bullet \quad \emptyset \in \Sigma_1^1;$

- $X \text{ PTS} \implies \Pi_2^0(X) \subset \Sigma_1^1(X), f = \text{id};$
- $X, Z \text{ PTS}, \psi : X \to Z \text{ continuous}, A \in \Sigma^1_1(X) \implies \psi(A) \in \Sigma^1_1(Z);$
- $\bullet \ \Sigma^1_{n+1}(X) = \{A \subset X | \exists Y \ \mathrm{PTS}, \psi : Y \to X \ \mathrm{cont}, B \in \Pi^1_n(X), A = \psi(B)\}, \ n \in \omega \backslash \{0\};$
- $\Pi_n^1(X) = \{A \subset X | X \setminus A \in \Sigma_n^1(X)\}, \ \Delta_n^1(X) = \sum_n^1(X) \cap \Pi_n^1(X);$
- $\bigcup_{n\in\mathbb{N}} \Sigma_n^1(X) = \bigcup_{n\in\mathbb{N}} \Pi_n^1 = \bigcup_{n\in\mathbb{N}} \Delta_n^1(x) = \mathbb{P}(X);$
- $\#\mathbb{P}(X) \leq 2^{\omega}$, $\mathbb{P}(X)$ is closed under continuous images and inverse images;
- $\Sigma^1_1(X) = \{A \subset X | \exists \psi : \omega^\omega \to X \text{ continuous} : \psi(\omega^\omega) = A\}; Y \text{ PTS}, f : Y \to X : f(Y) = A, g : \omega^\omega \to Y : g(\omega^\omega) = Y, g, f \text{ are constant. So } \psi = f \circ g.$

Věta 2.6

 $X \ PTS, \ A_n \in \Sigma^1_1(X), \ n \in \omega. \ Then \bigcup_{n \in \omega} A_n, \bigcap_{n \in \omega} A_n \in \Sigma^1_1(X).$

Důsledek

Similar for $\Pi_1^1(X)$.

Důkaz

"Union": Assume $A_n \neq \emptyset$, $n \in \omega \implies \varphi_n : \omega^\omega \to X : \varphi_n(\omega^\omega) = A_n$ continuous. Define $\varphi : \omega^\omega \to X$ by $\varphi(\nu_0, \nu_1, \ldots) = \varphi_{\nu_0}(\nu_1, \nu_2, \ldots)$. " φ is continuous": $\nu^j \to \nu \implies \exists n_0 \in \omega \ \forall j \geqslant n_0 : \nu_0^j = \nu_0$.

$$\lim_{j\to\infty}\varphi(\nu^j)=\lim_{j\to\infty}\varphi_{\nu_0^j}(\nu_1^j,\nu_2^j,\ldots)=\lim_{j\to\infty}\varphi_{\nu_0}(\nu_1^j,\ldots)=\varphi_{\nu_0}(\nu_1,\ldots)=\varphi(\nu).$$

$$,,\varphi(\omega^{\omega}) = \bigcup_{n \in \omega} A_n$$
":

$$x \in \bigcup A_n \implies \exists n \in \omega : x \in A_n \implies \exists \nu \in \omega^\omega : \varphi_n(\nu) = x \implies \varphi(n^{\hat{\nu}}) = x.$$

$$x \in \varphi(\omega^{\omega}) \implies \exists \tilde{\nu} \in \omega^{\omega} : \varphi(\tilde{\nu}) = x \implies x = \varphi_{\tilde{\nu}_0}(\tilde{\nu}_1, \ldots) \implies z \in A_{\tilde{\nu}_0} \implies x \in \bigcup A_n.$$

 $D\mathring{u}kaz$

WLOG: $A_n \neq \emptyset$, $n \in \omega$. $Y := (\omega^{\omega})^{\omega}$, Y PTS by the theorem above (first item). $\varphi_n : \omega^{\omega} \to X$, meh that $\varphi_n(\omega^{\omega}) = A_n$.

$$F := \{ y = (y_0, y_1, \ldots) \in Y | \forall n, m \in \omega : \varphi_n(y_n) = \varphi_m(y_m) \} = \emptyset$$

$$= \bigcap_{n \text{ } m \in \omega} \{ y \in Y | \varphi_n(y_n) = \varphi_m(y_m) \} = \bigcap) n, m \in \omega \{ y \in Y | \varphi_n \circ \pi_n(y) = \varphi_m \circ \pi_m(y) \}$$

intersection of closed, so F is closed and is PTS.

$$,\varphi_0\circ\pi_0(F)=\bigcap_{n\in\omega}A_n$$
":

$$x \in \varphi_0 \circ \pi_0(F) \implies \exists y \in F : x = \varphi_0(y_0) = \varphi_1(y_1) = \varphi_2(y_2) = \dots \implies x \in \bigcap_{n \in \omega} A_n.$$

$$x \in \bigcap A_n \implies \exists y_0, y_1, \ldots \in \omega^{\omega} : \varphi_0(y_0) = x, \varphi_1(y_1) = x, \ldots \implies$$

 $\implies y = (y_0, y_1, \ldots) \in F, \varphi_0 \circ \pi_0(y) = x \implies x \in \varphi_0 \circ \pi_0(F).$

Poznámka

 $\Sigma_1^1(X)$ is not closed under complement: $\sigma(\Sigma_1^1(X)) \supset \Sigma_1^1(X) \cup \Pi_1^1(x)$.

```
Borel(X) \subset \Sigma^1_1(X) \cap \Pi^1_1(X) = \Delta^1_1(X).
```

Věta 2.7

 $X, Y PTS, A \in \Sigma_1^1(X)$ (respective $\Pi_1^1(X)$), $B \subset Y$, A and B are homeomorphism. Then $B \in \Sigma_1^1(Y)$ (resp. $\Pi_1^1(Y)$).

 $D\mathring{u}kaz$

For Σ^1_1 trivial. $A \in \Pi^1_1(X)$, $\varphi : A \to B$ homeomorphism. Then from the theorem above, $\exists \tilde{A} \in \Pi^0_2(X), \tilde{B} \in \Pi^0_2(Y)$ and $\tilde{\varphi} : \tilde{A} \to \tilde{B}$ homeomorphism extending $\varphi, A \subset \tilde{A}, B \subset \tilde{B}$. Then $\tilde{A} \backslash A = (X \backslash A) \cap \tilde{A} \in \Sigma^1_1(X) \Longrightarrow \tilde{B} \backslash B \in \Sigma^1_1(Y)$. $B = Y \backslash (\tilde{B} \backslash B \cup Y \backslash \tilde{B}) \in \Pi^1_1(Y)$. \Box

Věta 2.8

X PTS. Then $Borel(X) \subset \Delta_1^1(X)$.

 $D\mathring{u}kaz$

Trivial.

2.3 Luzin theorem

Věta 2.9 (Luzin)

X PTS, $A_1, A_2 \in \Sigma_1^1(X)$, $A_1 \cap A_2 = \emptyset$. Then there exists $B \in Borel(X)$, such that $A_1 \subset B \subset X \setminus A_2$.

Důsledek

 $X \text{ PTS. } \Delta_1^1(X) = Borel(X).$

 $D\mathring{u}kaz$

 $\Delta_1^1(X) \subseteq Borel(X)$ we already have. $A \in \Delta_1^1(X) \implies A \in \Sigma_1^1(X), X \setminus A \in \Sigma_1^1 \implies$

 $\implies \exists B \in Borel(X) : A \subset B \subset X \setminus (X \setminus A) = A \implies A = B \implies A \in Borel(X).$

Lemma 2.10

 $C_n, D_n \subset X$, $n, m \in \omega$ and $\forall n, m \in \omega$ we can separate C_n, D_m by some Borel set. Then we can separate $\bigcup_{n \in \omega} C_n$ and $\bigcup_{m \in \omega} D_m$ by Borel set.

 $D\mathring{u}kaz$

Let $B_{n,m} \in Borel(X)$ separating C_n from D_m $(C_n \subset B_{n,m} \subset X \backslash D_m)$.

Put
$$B := \bigcup_{n \in \omega} \bigcap_{m \in \omega} B_{n,m}$$
.

Důkaz (Luzin theorem)

Assume $A_1, A_2 \neq \emptyset$. Then exists $\varphi_1, \varphi_2 : \omega^{\omega} \to X \ \varphi_i(\omega^{\omega}) = A_i$. We assume A_1 can't be separated from A_2 by any Borel set. $A_i = \varphi_i(\omega^{\omega}) \implies A_i = \bigcup_{n \in \omega} \varphi_i(\mathcal{N}(n)) \implies$

$$\implies \exists \nu_0, \mu_0 \in \omega : \varphi_i(\mathcal{N}(\mu_0)) \text{ can't be separated from } \varphi_2(\mathcal{N}(\nu_0)).$$

We use lemma again and obtain $\mu, \nu \in \omega^{\omega}$ such that $\forall k \in \omega : \varphi_1(\mathcal{N}(\mu/k))$ can't be separated from $\varphi_2(\mathcal{N}(\nu/k))$

$$\varphi_1(\mu) \in A_1, \varphi_2(\nu) \in A_2 \implies \varphi_1(\mu) \neq \varphi_2(\nu) \implies \exists G_1, G_2 \text{ open }, G_1 \cap G_2 = \emptyset$$

such that $\varphi_1(\mu) \in G_1$, $\varphi_2(\nu) \in G_2$, φ_1, φ_2 are continuous $\Longrightarrow \exists k \in \omega : \varphi_1(\mathcal{N}(\mu/k)) \subset G_1$, $\varphi_2(\mathcal{N}(\nu/k)) \subset G_2$ which is continuous.

Například

$$\{f \in C([0,1]) | \forall x \in [0,1] : f'(x) \in \mathbb{R}\} \in \Pi_1^1 \setminus \Delta_1^1.$$

 $\{f \in C([0,2\pi)| \text{ Fourier series converges to } f \text{ for every } x \in [0,2\pi]\} \in \Pi_1^1 \backslash \Delta_1^1.$

$$\{K \in \mathcal{K}([0,1])||K| \leq \omega\}, \{K \in \mathcal{K}(\mathbb{R})|K \subset \mathbb{Q}\} \in \Pi_1^1 \backslash \Delta_1^1.$$

Například

$${x \in X | \exists y \in Y : (x, y) \in B} \in \Sigma_1^1(X).$$

2.4 Suslinova operace

Definice 2.4 (Suslinovo schéma, Suslinova operace)

Suslinovým schématem (na množině X) rozumíme systém podmnožin X indexovaný prvky $\omega^{<\omega}$. Suslinova operace aplikovaná na schéma $(P_s)_{s\in\omega^{<\omega}}$ je $\mathcal{A}_sP_s=\bigcup_{\nu\in\omega^\omega}\bigcap_{n\in\omega}P_{\nu|n}$.

Věta 2.11

Nechť X je polský, $A \subset X$. Pak je ekvivalentní:

- 1. $A \in \Sigma_1^1(X)$;
- 2. existuje uzavřená $F \subset X \times \omega^{\omega}$ taková, že $\pi_X(F) = A$;
- 3. existuje Suslinovo schéma $(F_s)_{s\in\omega^{<\omega}}$ z uzavřených podmnožin X takové, že $A=\mathcal{A}_sF_s$.

 $D\mathring{u}kaz$

Předpokládejme, že A je neprázdná, jinak je tvrzení zřejmé. "1. \Longrightarrow 3.": Necht φ : $\omega^{\omega} \to X$ je spojité zobrazení na A. Položme $F_s = \overline{\varphi(\mathcal{N}(s))}$. Pokud $x \in A$, pak existuje $\mu \in \omega^{\omega}$ takové, že $x = \varphi(\mu)$. Pak máme $x \in \varphi(\mathcal{N}(\mu|k)) \subset F_{\mu|k}$ pro každé $k \in \omega$. Odtud $x \in \bigcap_{k \in \omega} F_{\mu|k} \subset \bigcup_{\nu \in \omega^{\omega}} \bigcap_{n \in \omega} F_{\nu|n}$. Pokud existuje $\mu \in \omega^{\omega}$ taková, že $x \in \overline{\varphi(\mathcal{N}(\mu|k))}$, pak $x = \varphi(x)$ díky spojitosti φ .

"3. \Longrightarrow 2.": Položme $F_n=\bigcup_{s\in\omega^{<\omega},|s|=n}(F_s\times\mathcal{N}(s)),\ F=\bigcap_{n\in\omega}F_n$. Pak F_n jsou uzavřené, a tedy i F je uzavřená. Navíc $\pi(F)=A$. "2. \Longrightarrow 1." zřejmé. \Box

2.5 Obrazy a vzory při borelovských zobrazeních

Věta 2.12

Nechť X je polský. Potom existuje uzavřená množina $F \subset \omega^{\omega}$ a spojitá bijekce $f: F \to X$.

 $D\mathring{u}kaz$

Zafixujeme úplnou kompatibilní metriku na X splňující diam $X \leq 1$. Budeme konstruovat Suslinovo schéma $(F_s)_{s \in \omega^{<\omega}}$ takové, že pro každé $s \in \omega^{<\omega}$ platí

- $F_{\varnothing} = X$,
- F_s je F_σ ,
- $F_s = \bigcup_{j \in \omega} F_{s^{\hat{}}j} = \bigcup_{j \in \omega} \overline{F_{s^{\hat{}}j}},$
- diam $F_s \leqslant 2^{-|s|}$,
- $\forall i, j \in \omega : F_{s^{\wedge}i} \cap F_{s^{\wedge}j} = \emptyset.$

Konstrukce schématu: Pro libovolnou F_{σ} množinu D a libovolné $\varepsilon > 0$ stačí nalézt spočetný disjunktní systém \mathcal{D} obsahující F_{σ} množiny o diametru menším než ε a splňující $D = \bigcup \mathcal{D}, \ \forall E \in \mathcal{D} : \overline{E} \subset D.$

Napišme nejprve D jako sjednocení rostoucí posloupnosti uzavřených množin C_j , $j \in \omega$, přičemž $C_0 = \varnothing$. Potom každý rozdíl $C_{j+1} \setminus C_j$ vyjádříme jako spočetné sjednocení disjunktního systému F_{σ} množin $(E_i^j)_{i \in \omega}$, kde diam $E_i^j < \varepsilon$. Položme $\mathcal{D} = \{E_i^j, i \in \omega, j \in \omega\}$. Požadované podmínky jsou splněny včetně poslední, platí totiž $\overline{E_i^j} \subset C_j \subset D$.

Konstrukce F a f: Položme

$$F := \left\{ \nu \in \omega^{\omega} | \bigcap_{n \in \omega} F_{\nu|n} \neq \varnothing \right\}, \qquad \{ f(\nu) \} = \bigcap_{n \in \omega} F_{\nu|n}.$$

Není těžké ověřit, že zobrazení $f: F \to X$ je dobře definováno, je spojité a je na. Ukážeme, že množina F je uzavřená. Vezměme posloupnost (ν^j) prvků množiny F s limitou ν . Pro každé $j \in \omega$ nalezneme $x_j \in \bigcap_{n \in \omega} F_{\nu^j|n}$. Posloupnost (x^j) je cauchyovská, a tedy konvergentní. Označme x^* limitu této posloupnosti. Potom $x^* \in \bigcap_{n \in \omega} \overline{F_{\nu|n}} = \bigcap_{n \in \omega} F_{\nu|n}$, a tedy $\nu \in F$.

Lemma 2.13

 (X,τ) PTS, $F \in \Pi_1^0(X)$. Let τ_F be topology generated by $\tau \cup \{F\}$. Then τ_F is Polish, $F \in \Delta_1^0(X,\tau_F)$, $\Delta_1^1(X,\tau_F) = \Delta_1^1(X,\tau)$.

 $D\mathring{u}kaz$

 (X, τ_F) is homeomorphic with $((X \setminus F) \times \{0\}) \cup (F \times \{1\}) \subset X \times \{0, 1\}$ which is PTS and those two subsets are G_δ in $X \times \{0, 1\}$, so, (X, τ_F) is Polish.

$$\Delta_1^1(((X\backslash F)\times\{0\})\cup(F\times\{1\}))\Leftrightarrow$$

$$\Leftrightarrow \Delta_1^1(\tau_F)=\{A\cup B|A\in\Delta_1^1(X\backslash F,\tau),B\in\Delta_1^1(F,\tau)\}\subset\Delta_1^1(\tau)\subset\Delta_1^1(\tau_F).$$

).

Lemma 2.14

 (X,τ) PTS, $(\tau_n)_{n\in\omega}$ Polish topology, $\tau\subset\tau_n$, $n\in\omega$. Then topology τ_∞ generated by $\bigcup_{n\in\omega}\tau_n$ is polish. If $\forall n\in\omega:\tau_n\subset\Delta^1_1(\tau)$, then $\Delta^1_1(\tau)=\Delta^1_1(\tau_\infty)$.

 $D\mathring{u}kaz$

Set $X_n := (X, \tau_n), \ \varphi : X \to \prod_{n \in \omega} X_n, \ \varphi(x) = (x, x, x, x, \dots). \ \varphi$ is homomorphism (X, τ_∞) on $\varphi(X)$. $(U \in \text{base of } \tau_\infty \implies \exists n \in \omega : U \in \tau_n, \varphi(U) = x_1 \times x_2 \times \dots \times x_{n-1} \times U \times x_{n+1} \times \dots \cap \varphi(X)$ is open. $\varphi(X) \in \Pi^0_1(\prod X_n) \implies \varphi(X) \text{ PTS} \implies (X, \tau_\infty) \text{ PTS}.)$

 $\Delta_1^1(\tau) = \Delta_1^1(\tau_\infty) \iff \sigma(\sigma(M)) = \sigma(M). \ (\tau_\infty \subset \Delta_1^1(\tau) = \Delta_1^1(\tau_n).) \ \tau_\infty \subset \bigcup \Delta_1^1(\tau_n). \quad \Box$

Věta 2.15

 (X, τ) PTS, $A \in \Delta_1^1(X, \tau)$. There exists polish topology τ_A such that $\tau \subset \tau_A$, $\Delta_1^1(\tau_A) = \Delta_1^1(\tau)$ and $A \in \Delta_1^0(X, \tau_A)$.

 $D\mathring{u}kaz$

 $\mathcal{S} := \left\{ D \in \Delta_1^1(X) | \text{ exists polish topology } \tau_D \supset \tau \text{ and } \Delta_1^1(\tau_D) = \Delta_1^1(\tau), D \in \Delta_1^0(X, \tau_D) \right\}.$

We know that $\tau \subset \mathcal{S}$ and that \mathcal{S} is closed under complements. Moreover, \mathcal{S} is closed under countable union $(A_n \in \mathcal{S} \to \tau_{A_n} \to \tau_{\infty} = \tau_{\bigcup A_n})$. So $\mathcal{S} = \Delta^1_1(X, \tau)$.

Lemma 2.16

 $X, Y PTS. f: X \to Y Borel. Then graph(f) \in \Delta^1_1(X \times Y).$

 \Box $D\mathring{u}kaz$

Fix compatible complete metric ϱ on Y. U_n , $n \in \omega$, countable collection of open balls with diam $< 2^{-n}$ covering Y.

graph
$$f \stackrel{?}{=} \bigcap_{n \in \omega} \bigcup_{U \in U_n} f^{-1}(U) \times U \in \Delta^1_1(X \times Y).$$

"⊆":
$$(x,y) \in \operatorname{graph}(f) \Leftrightarrow f(x) = y \implies \forall n \in \omega \; \exists U \in U_n : y \in U \land x \in f^{-1}(U) \implies (x,y) \in \bigcap_{n \in \omega} \bigcup_{U \in U_n} f^{-1}(U) \times U.$$

Poznámka (Notation)

If f is Borel, we write $f \in \Delta_1^1$.

Věta 2.17

 $X, Y \ PTS, f \in \Delta^1_1(X \times Y). \ If \ A \in \Delta^1_1(X) \ and \ f|_A \ is injective, then \ f(A) \in \Delta^1_1(Y).$

Důkaz

If $f: X \to Y$ is injective, then $f(A) = \prod_{Y} (\operatorname{graph}(f) \cap A \times Y) \in \Sigma_1^1(Y)$.

$$Y\backslash F(A) = \prod_{Y} (\operatorname{graph}(f) \cap (X\backslash A) \times Y) \in \Sigma^1_1(Y) \implies f(A) \in \Delta^1_1(Y).$$

Assume f is continuous, $A \in \Pi_1^0(X)$. From the theorem above $A \subset \omega^{\omega}$, $B_s := f(\mathcal{N}(s)capA)$. $\forall s \in \omega^{<\omega} \ \forall i, j, i \neq j : B_{s^{\wedge}i} \cap B_{s^{\wedge}j} = \emptyset \iff f \text{ is injection.} \ \forall s \in \omega^{<\omega} : B_s = \bigcup_{i \in \omega} B_{s^{\wedge}i}$.

From Luzin separation theorem, there exists (by induction) $(B'_s)_{s\in\omega^{<\omega}}$ of Borel sets:

$$\forall s \in \omega^{<\omega} \ \forall i, j \in \omega, i \neq j B'_{s^{\wedge}i} \cap B'_{s^{\wedge}i} = \varnothing.$$

(separation $B_{s^{\wedge}i}$, $\bigcup_{j < i} B_{s^{\wedge}j} \cup \bigcup_{l > i} B_{s^{\wedge}l}$) $\forall s \in \omega^{<\omega} : B_s \subset B'_s$.

Put: $B_{\varnothing}^* = Y$, $B_{s^{\wedge}j}^* = B_{s^{\wedge}j} \cap \overline{B_{s^{\wedge}j}} \cap B_s^*$. $\forall s \in \omega^{<\omega} : B_s^* \in \Delta_1^1(Y)$, $B_s \subset B_s^* \subset \overline{B_s}$, $B_{s^{\wedge}j}^* \subset B_s^*$, $B_{s^{\wedge}j}^* \cap B_{s^{\wedge}i}^* = \varnothing$, $s \in \omega^{<\omega}$, $i, j \in \omega, i \neq j$. We proof: $f(A) \stackrel{?}{=} \bigcup_{s \in \omega^{<\omega}} \bigcap_{k \in \omega} B_{s/k}^* = \bigcap_{k \in \omega} \bigcup_{s \in \omega^k} B_s^* \in \Delta_1^1(Y)$.

$$B_s^*, s \in \omega^{<\omega}, B_s^* \in \Delta_1^1(Y). \ f(A) = \bigcap_{k \in \omega} \bigcup_{s \in \omega^k} B_s^*:$$

 $,\subseteq : x \in f(A) \implies \exists \nu \in A : f(\nu) = x. \text{ Then } x \in f(\mathcal{N}_{\nu/k} \cap A) = B_{\nu/k} \subset B_{\nu/k}^*, \ k \in \omega$ $\implies x \in \bigcap_{k \in \omega} \bigcup_{s \in \omega^k} B_s^*.$

- a) Let f is continuous and $A \in \Delta_1^1(X)$. On X we find Polish topology τ_A such that $A \in \Delta_1^0(\tau_A)$, $\tau \subset \tau_A$ (so f is continuous with respect to τ_A), $\Delta_1^1(\tau) = \Delta_1^1(\tau_A)$.
- b) Let $f \in \Delta_1^1$. Then $f(A) = \pi_Y(\operatorname{graph}(f) \cap A \times Y)$. Observe that π_Y is injective on $(\operatorname{graph}(f) \cap A \times Y)$ if f is injective on A.

Věta 2.18

 $X, Y PTS, f \in \Delta_1^1(X \times Y).$

1.
$$A \in \Sigma^1_1(X) \implies f(A) \in \Sigma^1_1(Y);$$

$$2. \ B \in \Sigma^1_1(Y) \implies f^{-1}(B) \in \Sigma^1_1(X);$$

3.
$$B \in \Pi_1^1(Y) \implies f^{-1}(B) \in \Pi_1^1(X)$$
.

```
Důkaz
"1.": f(A) = \pi_Y((\operatorname{graph}(f) \cap A \times Y) is continuous image of \Sigma_1^1 set.

"2.": f^{-1}(B) = \pi_X((\operatorname{graph}(f) \cap X \times B) is continuous image of \Sigma_1^1 set.

"3.": f^{-1}(B) = f^{-1}(Y) \setminus f^{-1}(Y \setminus B).
```

2.6 Standard Borel spaces (SBS)

Definice 2.5 (Standard Borel space (SBS))

Measurable space (X, \mathcal{S}) is called standard Borel space (SBS) if there exists Polish topology τ on X such that $\Delta_1^1(X, \tau) = \mathcal{S}$.

Definice 2.6 (Effros Borel space)

Let X be PTS and $\mathcal{F}(X) := \Pi_1^0(X)$. Let \mathcal{S} be σ -algebra generated by sets of form $\{F \in \mathcal{F}(X) | F \cap U \neq \emptyset\} =: M_U$, where $U \in \Sigma_1^0(X)$. $(\mathcal{F}(X), \mathcal{S})$ is called Effros Borel space.

Věta 2.19

X PTS. Then $(\mathcal{F}(X), \mathcal{S})$ is SBS.

 $D\mathring{u}kaz$

Without proof.

Poznámka

X be measurable compact. Then $\mathcal{F}(X)$ can be equipped by Vietoris topology.

Příklad

 $SB := \{Y \in \mathcal{F}(C([0,1])) | Y \text{ is Banach subspace of } C([0,1]) \}$. If we restrict Effros σ -algebra on SB then SB is SBS.

$$SD = \{Y \in SB | Y \text{ has separable dual} \},$$

 $NU = \{Y \in SB | Y \text{ is not universal} \},$
 $REFL = \{Y \in SB | Y \text{ is reflexive} \},$
 $NL_1 = \{Y \in SB | Y \text{ does not contain } l_1 \}.$

3 Regularity of Σ_1^1 sets

3.1 Sets with Baire property (BP)

Definice 3.1 (Baire property (BP))

X TS, $A \subset X$ has Baire property (BP) in X if there exists open $U \subset X$ and set of 1. category $M \subset X$ such that $A = U \triangle M := (U \backslash M) \cup (M \backslash U)$. Collection of all sets with BP we denote as Baire(X).

Věta 3.1

X TS. Then Baire(X) is σ -algebra and $Baire(X) \supset Borel(X)$.

 $D\mathring{u}kaz$

1. "Baire(X) $\supset \Sigma_1^0(X)$ " trivial. 2. "Baire(X) is σ -algebra": a) " $A \in Baire(X) \stackrel{?}{\Longrightarrow} X \setminus A \in Baire(X)$ ": $A \in Baire(X) \implies \exists G \in \Sigma_1^0(X)$ and M meager such that $A = G \triangle M$.

$$X \setminus A = X \setminus (G \triangle M) = (X \setminus G) \triangle M = (\operatorname{int}(X \setminus G) \cup (X \setminus G) \setminus \operatorname{int}(X \setminus G)) \triangle M =$$

$$= (V \cup M_1) \triangle M_2 = V \triangle M \qquad (M = M_1 \triangle M_2).$$

b) $A_n \in Baire(X) \stackrel{?}{\Longrightarrow} \bigcup A_n \in Baire(X)$ ": $A_n = G_n \triangle M_n$, $G_n \in \Sigma_1^0(X)$, M_n meager. $M'_n = G_n \cap M_n$ (meager), $M''_n = M_n \setminus G_n$ (meager).

$$\bigcup A_n = \bigcup ((G_n \backslash M'_n) \cup M''_n) = ((\bigcup G_n) \backslash M''') \cup \bigcup M''_n,$$

where $M''' \subset \bigcup_{n \in \omega} M'_n$.

Lemma 3.2

X TS, $A \subset X$. Then A is meager iff $\forall x \in A \exists V \in \Sigma_1^0(X)$ such that $x \in V$ and $A \cap V$ is meager.

 $D\mathring{u}kaz$

" \Longrightarrow " trivial. " \Longleftarrow " \mathcal{U} denote as maximal collection of disjoint Σ^0_1 sets such that $U \cap A$ is meager for $U \in \mathcal{U}$. We show that $A \cap \bigcup \mathcal{U}$ is meager, $X \setminus \bigcup \mathcal{U}$ is nowhere dense, so meager.

 $"X \setminus \bigcup \mathcal{U}$ is nowhere dense": By contradiction we assume that there exists $\varnothing \neq V \in \Sigma_1^0(X), \ V \subset X \setminus \bigcup \mathcal{U}$. Now we have 2 cases: $A \cap V = \varnothing \implies V \in \mathcal{U}$ contradiction, or $A \cap V \neq \varnothing \implies \exists x \in A \cap V \implies \exists W \in \Sigma_1^0(X) : x \in W, W \cap A$ is meager $\implies x \in W \cap V \neq \varnothing, W \cap V \cap A$ is meager $\implies W \cap V \in \mathcal{U}$ contradiction.

" $\bigcup \mathcal{U} \cap A$ is meager": $\mathcal{U} := \{U_{\alpha} | \alpha \in I\}$, $U_{\alpha} \cap A$ meager \Longrightarrow exist? $F_n^{\alpha} \in \Pi_1^0(X)$ nowhere dense: $U_{\alpha} \cap A \subset \bigcup F_n^{\alpha} \subset \overline{U_{\alpha}}$. We show that $\bigcup_{\alpha \in I} F_n^{\alpha}$ is nowhere dense:

$$a)\bigcup_{\alpha\in I}U_{\alpha}\backslash F_{n}^{\alpha}\in\Sigma_{1}^{0}(X),\quad (\bigcup_{\alpha\in I}U_{\alpha}\backslash F_{n}^{\alpha})\cap(\bigcup_{\alpha\in I}F_{n}^{\alpha})=\varnothing\iff F_{n}^{\alpha}\subset\overline{U_{\alpha}},\quad \overline{U_{\alpha}}\cap U_{\beta}=\varnothing,\alpha\neq\beta$$

So \mathcal{U} is disjoint collection, so $\bigcup_{\alpha \in I} U_{\alpha} F_n^{\alpha} \cap \overline{\bigcup_{\alpha \in I} F_n^{\alpha}} = \emptyset$.

$$\Longrightarrow \overline{\bigcup_{\alpha \in I} F_n^{\alpha}} \subset (\bigcup_{\alpha \in I} (U_{\alpha} \cap F_n^{\alpha})) \cup (X \setminus \bigcup \mathcal{U}).$$

b) We assume $\exists V \in \Sigma_1^0(X), \ V \neq \emptyset, \ V \subset \overline{\bigcup_{\alpha \in I} F_n^{\alpha}}$.

?
$$\Longrightarrow V \not \subset X \setminus \bigcup \mathcal{U} \stackrel{a)}{\Longrightarrow} V \cap \bigcup_{\alpha \in I} (U_{\alpha} \cap F_{n}^{\alpha}) \neq \emptyset \implies \exists \alpha \in I : V \cap U_{\alpha} \neq \emptyset.$$

$$a) \implies V \cap U_{\alpha} \subset \bigcup_{\alpha \in I} (U_{\alpha} \cap F_{n}^{\alpha}) \stackrel{\mathcal{U} \text{ disjoint}}{\Longrightarrow} V \cap U_{\alpha} \subset F_{n}^{\alpha} \not \text{4}.$$

Definice 3.2 (S-Obal)

Nechť (X, \mathcal{S}) je měřitelný prostor a $A \subset X$. Řekneme, že $\hat{A} \in \mathcal{S}$ je \mathcal{S} -obalem množiny A, jestliže $A \subset \hat{A}$ a jestliže $\forall B \in \mathcal{S}$ splňující $A \subset B$ je každá podmnožina $\hat{A} \setminus B$ je prvkem \mathcal{S} .

Věta 3.3

 $Necht\ X$ je topologický prostor. Pak každá množina v X má Baire(X)-obal.

 $D\mathring{u}kaz$

Položme $E(A) = X \setminus \bigcup \{V \subset X | V \text{ je otevřená} \land A \text{ je první kategorie ve } V\}$. Potom množina $A \setminus E(A)$ je první kategorie podle předchozího lemmatu. Existuje tedy $W \subset X$ první kategorie a F_{σ} taková, že $A \setminus E(A) \subset W$. Položme $\hat{A} = E(A) \cup W$. Potom $\hat{A} \in Baire(X)$.

Nechť $B \in Baire(X)$ splňující $A \subset B$. Zřejmě $E(A) \subset E(B)$. Takže

$$\hat{A}\backslash B = (E(A) \cup W)\backslash B = (E(A)\backslash B) \cup (W\backslash B) \subset (E(B)\backslash B) \cup (W\backslash B).$$

Množina $W\backslash B$ je první kategorie. Množina B má Baierovu vlastnost, a proto lze psát $B=H\triangle M$, kde H je otevřená množina a M je množina první kategorie. Potom máme

$$E(B)\backslash B \subset (E(B)\backslash H) \cup M \subset (\overline{H}\backslash H) \cup M.$$

Poslední množina je první kategorie, takže $\hat{A} \backslash B$ je také první kategorie, což jsme měli dokázat.

Věta 3.4 (Szpilrajn-Marszewski (1907–1976))

 (X, \mathcal{S}) measurable space, such that for every $A \subset X$ there exists \mathcal{S} -cover of A. Then \mathcal{S} is closed under Suslin operation.

Důkaz

 $(P_s)_{s \in \omega^{<\omega}}$ Suslin scheme of elements of \mathcal{S} . Put $P := \mathcal{A}_s P_s$. We want $P \in \mathcal{S}$. We can assume $P_s \supset P_t$, s < t $(\tilde{P}_t = \bigcap_{s \leq t} P_s \in \mathcal{S})$. Denote $A^s := \bigcup_{\nu \in \mathcal{N}(s)} \bigcap_{n \in \omega} P_{\nu/n} = \mathcal{A}_t P_{s^{\wedge} t}$.

 $A^s \subset P_s$ trivial. $A^{\varnothing} = P$, $A^s = \bigcup_{n \in \omega} A^{s^n}$ trivial. Set $\overline{A^s}$ be \mathcal{S} -cover of A^s such that $A^s \subset \overline{A^s} \subset P_s(\overline{A^s} \cap P_s \in \mathcal{S})$. $Q_s := \overline{A^s} \setminus \left(\bigcup_{n \in \omega} A^{\hat{s}^n}\right)$, $Q = \bigcup_{s \in \omega^{<\omega}} Q_s$. $\bigcup_{n \in \omega} A^{\hat{s}^n}$ is \mathcal{S} -cover of A^s . $\left(A^{\hat{s}^n} \supset A^{\hat{s}^n} \Longrightarrow \bigcup A^{\hat{s}^n} \supset \bigcup A^{\hat{s}^n} = A^s\right)$. \Longrightarrow any subset of Q_s is in \mathcal{S} . \Longrightarrow any subset of Q is in \mathcal{S} .

$$\hat{A^{\varnothing}} \backslash P = \hat{P} \backslash P \subset Q \iff A^{\varnothing} \backslash Q \subset P.$$

$$x \in \hat{A^{\varnothing}} \backslash Q \implies x \notin Q_{\varnothing}, x \in \hat{A^{\varnothing}} \implies \exists n_0 \in \omega : x \in \hat{A^{n_0}}, x \notin Q_{n_0} \implies \exists n_1 \in \omega : x \in \hat{A^{n_0,n_1}}, x \in Q_{n_0,n_1}.$$

Etc. $\Longrightarrow \exists \nu \in \omega^{\omega} \ \forall n \in \omega : x \in A^{\hat{\nu}/n} \subset P^{\nu|n} \Longrightarrow x \in \mathcal{A}_s P_s = P_{\varnothing}.$

Důsledek

Nechť X je polský. Potom $\Sigma_1^1(X) \subset Baire(X)$.

 $D\mathring{u}kaz$

Platí $\Pi_1^0(X) \subset Baire(X)$, a tedy $\Sigma_1^1(X) = \mathcal{A}\Pi_1^0(X) \subset \mathcal{A}Baire(X) = Baire(X)$.

Definice 3.3 (Univerzálně měřitelná)

Nechť X je polský. Řekneme, že $A \subset X$ je univerzálně měřitelná, jestliže pro každou σ -konečnou borelovskou míru μ na X je množina A μ -měřitelná.

Věta 3.5 (Luzin–Sierpiński)

Nechť X je polský a $A \in \Sigma_1^1(X)$. Potom A je univerzálně měřitelná.

 $D\mathring{u}kaz$

Nechť μ je σ -konečná borelovská míra na X a $\mathcal S$ je σ -algebra μ -měřitelných množin. Bez újmy na obecnosti můžeme předpokládat, že μ je pravděpodobnostní. Pro $A \subset X$ proložme $\mu^*(A) = \inf \{ \mu(B), B \in Borel(X) \land A \subset B \}.$

Pak existuje $\hat{A} \in Borel(X)$ takové, že $\mu^*(A) = \mu(\hat{A})$. Jestliže $A \subset B$ a B je měřitelná, pak $\mu(\hat{A} \backslash B) = 0$. Jinak by totiž existovala $C \subset \overline{A} \backslash B \subset \overline{A} \backslash A$ taková, že $C \in Borel(X)$ a $\mu(C) > 0$, což nelze. Odtud a z předchozí věty plyne dokazované tvrzení.

3.2 Solecki theorem

Poznámka (Notation)

 $X \text{ PTS}, \mathcal{I} \subset \Pi_1^0(X).$

$$\mathcal{I}^{ext} := \left\{ A \subset X | \exists \mathcal{F} \subset \mathcal{I}, |\mathcal{F}| = \omega, A \subset \bigcup \mathcal{F} \right\}.$$

Například

 $\mathcal{I} = \{A \subset X | |A| < \omega\}, \ \mathcal{I} = \{A \subset X | A \text{ nowhere dense}\}.$

$$\mathcal{I}^{perf} = \left\{ A \subset X | A \neq \varnothing, \forall U \in \Sigma_1^0(X) : U \cap A \neq \varnothing \implies U \cap A \notin \mathcal{I}^{ext} \right\}.$$

 $\operatorname{Ker} A := A \setminus \bigcup \left\{ U \subset X | U \in \Sigma_1^0(X), U \cap A \in \mathcal{I}^{ext} \right\} =$

= max perfect subset of $A \iff X$ has countable base.

$$MGR(A) = \{ Z \subset A | Z \text{ be meager in } A \}, \qquad A \subset X.$$

Věta 3.6 (Solecki)

 $X \ PTS, \ A \in \Sigma_1^1(A), \ \mathcal{I} \subset \Pi_1^0(X). \ A \notin \mathcal{I}^{ext} \implies \exists H \in \Pi_2^0(X), H \subset A, H \notin \mathcal{I}^{ext}$

Lemma 3.7 (For proof of Solecki)

 $A \in \Sigma_1^1(X) \backslash \mathcal{I}^{ext}$. Then there exists Suslin scheme $(A_s)_{s \in \omega^{<\omega}}$ of closed subsets of X such

that:

$$A_{\varnothing} = \varnothing, \quad a_s A_s \subset A, \quad A_s \neq \varnothing \implies A \cap A_s \in \mathcal{I}^{perf}, \overline{A \cap A_s} = A_s, \quad \overline{\bigcup_{n \in \omega} A_{s^{\wedge} n}} = A_s.$$

Důkaz

 $(H_s)_{s \in \omega^{<\omega}}$ closed subsets of X, decreasing $(H_s \supset H_{s \land n}, n \in \omega)$, $A = a_s H_s \iff A \in \Sigma^1_1(X)$. For $s \in \omega^{<\omega} : L_s := a_t H_{s \land t}, A_s := \overline{\mathrm{Ker}(L_s)}$.

- 1. $A_{\varnothing} = \overline{\operatorname{Ker}(L_{\varnothing})} = \overline{\operatorname{Ker}(A)} \neq \varnothing \iff A \notin \mathcal{I}^{ext}$ (X has countable base).
- 2. $H_s \searrow \Longrightarrow L_s \subset H_s \Longrightarrow \operatorname{Ker}(L_s) \subset H_s \stackrel{H_s \in \Pi_1^0(X)}{\Longrightarrow} A_s \subset H_s \Longrightarrow a_s A_s \subset a_s H_s = A.$
- 3. $\operatorname{Ker}(L_s) \subset A_s, L_s \subset A : (A = \bigcup_{|s|=k} L_s, k \in \omega \iff H_s \setminus) \implies \operatorname{Ker}(L_s) \subset A_s \cap A,$ $\overline{\operatorname{Ker}(L_s)} = A_s.$

$$A_s = \overline{\operatorname{Ker}(L_s)} \subset \overline{A_s \cap A} \subset \overline{A_s} = A_s.$$

Assume $A_s \neq \emptyset \implies A \cap A_s \neq \emptyset$. $U \in \Sigma_1^0(X)$, $U \cap A \cap A_s \neq \emptyset \implies U \cap \operatorname{Ker}(L_s) \neq \emptyset \implies U \cap \operatorname{Ker}(L_s) \notin \mathcal{I}^{ext}$. $\Longrightarrow U \cap A \cap A_s \notin \mathcal{I}^{ext}$.

4. $\bigcup_{n\in\omega} A_{s^{\wedge}n} \subset A_s \iff (H_s \searrow \Longrightarrow L_s \searrow \Longrightarrow A_s \searrow)$. Let $U \in \Sigma_1^0(X)$, $U \cap A_s \neq \emptyset$ $\Longrightarrow U \cap \operatorname{Ker}(L_s) \neq \emptyset \implies U \cap L_s \notin \mathcal{I}^{ext}$.

$$L_s = \bigcup_{n \in \omega} L_{s^{\hat{}}n} \implies \exists n_0 \in \omega : U \cap L_{s^{\hat{}}n_0} \notin \mathcal{I}^{ext} \implies U \cap \operatorname{Ker}(L_{s^{\hat{}}n_0}) \notin \mathcal{I}^{ext} \implies$$

$$\Longrightarrow U \cap A_{s^{\wedge}n_0} \neq \emptyset.$$

Důkaz (Solecki theorem, not in exam)

 $A \in \Sigma_1^1(X) \setminus \mathcal{I}^{ext}$, $(A_s)_{s \in \omega^{<\omega}}$ from the previous lemma. There are 2 cases:

"1st case $\exists s \in \omega^{<\omega} \ \exists U \in \Sigma_1^0(X) : A_s \cap U \neq \emptyset \wedge MGR(A_s \cap U) \subset \mathcal{I}^{ext}$ ": Put $\tilde{A} := A \cap A_s \cap U$. Then from the third item of the previous lemma $\tilde{A} \in \mathcal{I}^{perf}$, $\tilde{A} \in \Sigma_1^1(X)$. $A_s \neq \emptyset$, $A \cap A_s \in \mathcal{I}^{perf}$, $U \cap A_s \neq \emptyset \implies U \cap A \cap A_s \neq \emptyset \iff \overline{A \cap A_s} = A_s$.

$$\implies \tilde{A} \in Baire(A_s \cap U) \iff (A_s \cap U \in \Pi_2^0(X)), A_s \cap U \text{ PTS}.$$

$$\tilde{A} = H \cup M, H \in \Pi_2^0(A_s \cup U), M \in MGR(A_s \cap U) \subset \mathcal{I}^{ext} \implies H \notin \mathcal{I}^{ext}, H \subset A.$$

"2nd case $\forall s \in \omega^{<\omega} \ \forall U \in \Sigma_1^0(X), U \cap A_s \neq \emptyset : MGR(A_s \cap U) \backslash \mathcal{I}^{ext} \neq \emptyset$ ": Notation: $\mathcal{F} \subset 2^X : \mathcal{F}^d := \overline{\bigcup \mathcal{F}} \backslash \bigcup \{\overline{F} | F \in \mathcal{F}\}$. Choose CCM ≤ 1 on X. We will inductively construct $\varphi : \omega^{<\omega} \to \omega^{<\omega}, \ U_s \subset X, \ s \in \omega^{<\omega} \ \text{such that:}$

1.
$$|\varphi(s)| = |s|; \varphi(s) < \varphi(t)$$
, for every $s < t$;

- 2. $U_s \in \Sigma_1^0(X)$;
- 3. diam $U_s \leqslant 2^{-|s|}$;
- 4. $\lim_{n\to\infty} \operatorname{diam}(U_{s^{\wedge}n}) = 0;$
- 5. $\forall t, s \in \omega^{<\omega}, t < s, t \neq s : \overline{U_s} \subset U_t;$
- 6. $\forall s \in \omega^{<\omega} \ \forall m, n \in \omega, m \neq n : U_{s^{\wedge}m \cap U_{s^{\wedge}n}} = \emptyset;$
- 7. $U_a \cap A_{\varphi(s)} \neq \emptyset$;
- 8. $\{U_{s^{\wedge}n}|n\in\omega\}^d\notin\mathcal{I}^{ext};$
- 9. $\{U_{s^{\wedge}n}|n\in\omega\}^d\subset U_s;$
- 10. $(9. + 5.) \overline{\bigcup_{n \in \omega} U_{s^{\wedge} n}} \subset U_s.$

Construction: $\varphi(\emptyset) = \emptyset$, U_{\emptyset} be arbitrary open subset of X: $U_{\emptyset} \cap A_{\emptyset} \neq \emptyset$. Then all items are satisfied. We assume that U_s , φ_s are constructed for all $s \in \omega^{<\omega}$, $|s| \leq N \in \omega$. Let $s \in \omega^{<\omega}$, $|s| \leq N$ be arbitrary. From 7th item $U_s \cap A_{\varphi(s)} \neq \emptyset$, $MGR(A_{\varphi(s)} \cap U_s) \notin \mathcal{I}^{ext}$ $\Longrightarrow \exists K \subset A_{\varphi(s)} \cap U_s, K \in \Pi_1^0(X)$, nowhere dense in $A_{\varphi(s)} \cap U_s, K \notin \mathcal{I}^{ext}$. Because

 $\exists L \in MGR(A_{\varphi(s)} \cap U_s) \backslash \mathcal{I}^{ext} \implies \exists H \in \Sigma_2^0(X), H \supset L, H \in \Sigma_2^0(A_{\varphi(s)} \cap U_s), H \notin \mathcal{I}^{ext},$

so $H = \bigcup F_n, F_n \in \Pi_1^0(X)$, nowhere dense in $A_{\varphi(s)} \cap U_s \implies \exists n_0 \in \omega : F_{n_0} = K \notin \mathcal{I}^{ext}$.

Find $D \subset A_{\varphi(s)} \cap U_s$: D is discrete in $X \setminus K$. $D \cap K = \emptyset$. $\overline{D} = K \cup D$. Let $\{y_n\} \subset K$, $\overline{\{y_n\}} = K$, and every element of $\{y_n\}$ repeats infinitely many times. Find $x_n \in (A_{\varphi(s)} \cap U_s) \setminus K$ such that $\varrho(x_n, y_n) < \frac{1}{n}$ (it exists $\longleftarrow K$ is nowhere dense in $A_{\varphi(s)} \cap U_s$). Then $D = \{x_n | n \in \omega\}$, $D \cap K = \emptyset$, $\overline{D} \supset \overline{D} \cup \{y_n | n \in \omega\} \supset D \cup K$, $x \notin K \cup D \Longrightarrow \exists n \in \omega \setminus \{0\} : \varrho(x, K) > \frac{1}{n} \Longrightarrow \#(B(x, 1/2n) \cap D) \leqslant 2n \Longrightarrow x \notin \overline{D}. \Longrightarrow \overline{D} = D \cup K$, D is discrete in $X \setminus K$. Assume $x_n \neq x_m$, $n \neq m$.

Define $U_{s^{\wedge}n}$ as open ball with center x_n : $\overline{U_{s^{\wedge}n}} \subset U_s$. $U_{s^{\wedge}n} \cap U_{s^{\wedge}m} = \emptyset$ (D is discrete), $\dim U_{s^{\wedge}n} \leqslant 2^{-|s|-1}$, $\lim_{n\to\infty} \dim U_{s^{\wedge}n} = 0$, $\overline{\bigcup_{n\in\omega} U_{s^{\wedge}n}} \setminus \overline{\bigcup_{n\in\omega} \overline{U_{s^{\wedge}n}}} = \{U_{s^{\wedge}n} | n\in\omega\} = K \iff \overline{U_{s^{\wedge}n}} \cap K = \emptyset$, $\overline{D} = K \cup D$. $x_n \in A_{\varphi(s)} \implies U_{s^{\wedge}n} \cap A_{\varphi(s)} \neq \emptyset$, $\overline{\bigcup_{k\in\omega} A_{\varphi(s)^{\wedge}k}} = A_{\varphi(s)} \implies \exists k \in \omega : U_{s^{\wedge}n} \cap A_{\varphi(s)^{\wedge}k} \neq \emptyset$.

Put $\varphi(s^{n}) = \varphi(s)^{k}$. And then all items are satisfied. $H = \bigcap_{n \in \omega} \bigcup_{|s|=n, s \in \omega^{<\omega}} U_s \in \Pi_2^0(X), H \subset A, H \notin \mathcal{I}^{ext}$.

$$H := \bigcap_{n \in \omega} \bigcup \{ U_s | s \in \omega^{<\omega}, |s| = n \} \in \Pi_2^0 (\longleftarrow 2.).$$

 $H \subset A$?, $H \notin \mathcal{I}^{ext}$. " $H \subset A$ ": 5. and 6. $\Longrightarrow H = \bigcup_{\nu \in \omega^{\omega}} \bigcap_{n \in \omega} \bigcup_{\nu/m} = a_s U_s$?

 $x \in H \Leftrightarrow \forall n \in \omega \ \exists \omega^{<\omega}, |s| = n : x \in U_s \overset{5. \wedge 6.}{\Leftrightarrow} \exists s \in \omega^\omega \ \forall n \in \omega x \in U_{s/n} \Leftrightarrow a_s U_s.$

$$(3. \implies \operatorname{diam}(U_{\nu/n}) \leqslant 2^{-n}, (7. \implies U_{\nu/m} \cap A_{\varphi(\nu/n)} \neq \varnothing)) \implies$$

$$\Longrightarrow \bigcap_{n \in \omega} \overline{U_{\nu/n}} \subset \bigcap_{n \in \omega} A_{\varphi(\nu/n)} \subset A \implies H \subset A.$$

 $H \notin \mathcal{I}^{ext}$: $\forall \nu \in \omega^{\omega} : \bigcap_{n \in \omega} U_{\nu/n} \neq \emptyset \iff 3. \land 5.$, so $\forall s \in \omega^{<\omega} : U_s \cap H \neq \emptyset$. Assume $H \subset \bigcup_{m \in \omega} F_m$, $F_m \in \mathcal{I}$. $H \in G_\delta \implies \exists n_0 \in \omega : F_{n_0}$ is not meager in $H \implies \exists U \neq \emptyset$ open in $X: \emptyset \neq U \cap H \subset F_{n_0}$. Let $x \in U \cap H$. Then there exist $\nu \in \omega^{\omega} \ \forall n \in \omega : x \in U_{\nu/n} \implies \exists m_0 \in \omega : U_{\nu/m_0} \subset U \implies \emptyset \neq U_{\nu/m_0} \cap H \subset F_{n_0}$. Denote $\nu/m_0 =: s$. For contradiction assume $g: formula \in \mathcal{I}$ as $formula \in \mathcal{I}$. So $g: formula \in \mathcal{I}$ which contradicts $g: formula \in \mathcal{I}$. So $g: formula \in \mathcal{I}$ which contradicts $g: formula \in \mathcal{I}$ is $formula \in \mathcal{I}$. So $g: formula \in \mathcal{I}$ is $formula \in \mathcal{I}$.

$$x \in \{U_{s^{\wedge}n}, n \in \omega\}^d \implies \exists n_k \nearrow, x_k \in U_{s^{\wedge}n_k} : x_k \to x, y_k \in U_{s^{\wedge}n_k} \cap H \subset F_{n_0} \implies$$

$$\implies 4. \implies y_k \to x \implies x \in F_{n_0}.$$

Věta 3.8 (Perfect set theorem)

X PTS, $A \in \Sigma_1^1(X)$, $|A| > \omega$. Then there exists homeomorphic copy C of 2^{ω} in A.

 $D\mathring{u}kaz$

 $\mathcal{I} = \{\{x\}, x \in X\}, \mathcal{I}^{ext} \text{ countable sets } \Longrightarrow A \in \Sigma_1^1(X) \setminus \mathcal{I}^{ext} \Longrightarrow \exists H \in \Pi_2^0(X), H \notin \mathcal{I}^{ext} \Longrightarrow |H| > \omega, H \text{ be PTS } \Longrightarrow H \text{ contains } 2^{\omega}.$

 $G := \underbrace{\operatorname{Ker}(H)}_{\text{such that }} \xrightarrow{B_{s^{\wedge}0}} \cap \overrightarrow{B_{s^{\wedge}1}} \neq \varnothing, \ \overrightarrow{B_{s^{\wedge}0}} \cap \overline{B_{s^{\wedge}1}} \subset B_s. \ \operatorname{diam} B_s \leqslant 2^{-|s|}. \ C = \bigcap_{n \in \omega} \bigcup_{s \in 2^n} B_s := \bigcup_{s \in 2^{\omega}} \bigcap_{n \in \omega} B_{s/n}.$

Poznámka

Tuto větu nelze pro koanalytické množiny v ZFC dokázat ani vyvrátit.

4 Infinite games

4.1 Baire definitions

Definice 4.1

Assume $A \neq \emptyset$, $X \subset A^{\omega}$. In game G(X), there are 2 players I, II and those players choose $a_i, i \in \omega, a_i \in A$:

$$I: a_0, a_2, a_4, \dots$$

$$II: a_1, a_3, a_5, \dots$$

Player I wins $\equiv (a_i) \in X$, otherwise player II wins.

Strategy for I is mapping $S: A^{<\omega} \to A^{<\omega}$ such that $\forall s \in A^{<\omega}: |S(s)| = |s| + 1$ and $\forall s, t \in A^{<\omega}, s < t: S(s) < S(t)$.

Definice 4.2 (Notation)

 $\sigma \subset A^{<\omega}$ be tree iff $\forall s, t \in A^{<\omega}, s < t : t \in \sigma \implies s \in \sigma$

Let σ be tree, $s \in \sigma$. Then s is leaf iff $\forall n \in A : s^{\wedge}n \notin \sigma$.

Let σ be tree. Then σ is prunned $\equiv \sigma$ does not have leaves $(\forall s \in \sigma : \exists a \in A : s^a \in \sigma)$.

$$[\sigma] = \{ \nu \in A^{\omega} | \forall n \in \omega : \nu/n \in \sigma \}, \qquad [\sigma] \in \Pi_1^0(A^{\omega}).$$

 $\forall F \in \Pi_1^0(A^{\omega}) \exists ! \text{ prunned tree } \sigma \subset A^{<\omega} : [\sigma] = F.$

Strategy for I is prunned tree $\sigma \subset A^{<\omega}$ such that $\sigma \neq \emptyset$, $(a_0, a_1, \dots, a_{2j}) \in \sigma \implies \forall a \in A : (a_0, \dots, a_{2j}, a) \in \sigma$, and $(a_0, \dots, a_{2j+1}) \in \sigma \implies \exists ! a \in A : (a_0, \dots, a_{2j+1}, a) \in \sigma$.

Definice 4.3

Strategy σ for I is winning \Leftrightarrow I wins if the follows this strategy $[\sigma] \subset X$.

Poznámka

In Game G(A, X) at most one player has winning strategy. It can happen (ZFC) that nobody has winning strategy.

Definice 4.4 (Game with rule)

 $T \subset A^{<\omega}$ be prunned tree, $X \subset [T]$.

$$I: a_0, a_2, a_4, \dots$$

$$II: a_1, a_3, a_5, \dots$$

such that $\forall n \in \omega : (a_0, \dots, a_n) \in T$ (T is tree of rules). Other notions are similar.

Poznámka

Assume

$$X = \{x \in A^{\omega} | x \in X \cap [T] \cup (\exists n \in \omega : x/n \notin T \text{ and the least } n \in \omega : x/n \notin T \text{ is odd})\}$$

then I (resp. II) has wining strategy in $G(X') \Leftrightarrow I$ (resp. II) has winning strategy in G(T,X).

Například

 $SG(A, B_0, B_1)$. Let S, T be nonempty prunned trees on $\omega, A \subset [S], B_0, B_1 \subset [T]$.

$$I: x(0), x(1), x(2), \dots$$

$$II: y(0), y(1), y(2), \dots$$

 $x(i), y(i) \in \omega, x/n \in S, y/n \in T$. Player II wins $\Leftrightarrow (x \in A \implies y \in B_0) \land (x \notin A \implies y \in B_1)$.

I has winning strategy $\Leftrightarrow \exists f : [T] \to [S]$ continuous: $f(B_0) \cap A = \emptyset$, $f(B_1) \subset A \Leftrightarrow f^{-1}(A)$ separates B_1 from B_2 .

II has winning strategy $\Leftrightarrow \exists g : [S] \to [T]$ continuous: $g(A) \subset B_0, g(A^c) \subset B_1$.

Věta 4.1 (H?)

X Polish topological space, $A \in \Sigma_1^1(X) \backslash \Sigma_2^0(X)$. Then there exists C, the cantor set, $C \subset X$, such that $\overline{C} \backslash A = C$, $|C \backslash A| = \omega$ ($C \cap A$ is homeomorphic to \mathcal{N}).

Poznámka (Similarly)

 $A \in \Pi_1^1(X)$. Than A is polish space or it contains rel. closed set homeomorphic to \mathbb{Q} .

4.2 Banach-Mazur game

Definice 4.5 (Banach–Mazur game $G^{**}(M,Y)$)

Let Y be PTS, $M \subset Y$, $Y \neq \emptyset$.

$$I: U_0, U_1, U_2, \dots$$

$$II: V_0, V_1, V_2, \dots$$

 $U_i, V_i \neq \emptyset$ base open sets (some \mathcal{V} , the countable base of $Y, V_i, U_i \in \mathcal{V}$).

Poznámka

There is some ccm on Y and $diam(U_i) \to 0$.

$$U_i \supset V_i \supset U_{i+1}, i \in \omega.$$

II player wins $\equiv \bigcap V_n = \bigcap U_n \subset M$.

Věta 4.2

 $X \neq \emptyset$ topological space: 1. II has wining strategy $\Leftrightarrow M$ is co-meager. 2. X Polish topological space: I has wining strategy $\Leftrightarrow (\exists U \subset X \text{ open, } U \neq \emptyset : M \cap U \text{ is meager}).$

 $D\mathring{u}kaz$

"1.": " $\Leftarrow=$ ": Let W_n be open, dense: $M\supseteq\bigcap W_n$. II plays playes $V_n\subseteq U_n\cap W_n\wedge\bigcap V_n\subset\bigcap W_n\subset M$.

" ⇒ ":

 $\mathcal{M}_0 := \{V_0 | V_0 \text{ is answer of II on some } U_n \text{ from I} \},$

 $\tilde{\mathcal{M}}_0$ maximal disjoin subsystem of \mathcal{M}_0 . $W_0 := \bigcup \tilde{\mathcal{M}}_0$ is open and dense.

 $\mathcal{M}_n := \{V_n | V_n \text{ is answer of II on some } U_n \text{ from base which is continued in some element of } \tilde{\mathcal{M}}_{n-1} \}$,

 $\tilde{\mathcal{M}}_n$ is maximal disjoin subsystem of \mathcal{M}_n . $W_n := \bigcup \tilde{\mathcal{M}}_n$ is open and dense.

 $\bigcap W_n \subset M \implies M$ is co-meager.

"2.": " \Longrightarrow ": I has wining strategy. Put $U := V_0$. Then rest of the game is played inside of U_0 and I wins $\Leftrightarrow \bigcap U_n \subset U_0 \backslash A \Longrightarrow U_0 \backslash A$ is co-meager in $U_0 \Longrightarrow A$ is meager in $U_0 = U$.

 $": M \subset \bigcup F_n, F_n \text{ are closed, nowhere dense in } U_0 = U. \ U_i \subseteq V_{i-1} \backslash F_{i-1}, \ i \geqslant 1.$ $\bigcup U_n \not \subset \bigcup F_n \implies \bigcap U_n \not \subset M. \ \overline{U_i \subset V_i}, |V_i| \to 0.$

4.3 Game of J. Malý (point-line game)

Definice 4.6 (Game of J. Malý)

Let B be unit ball in \mathbb{R}^2 .

 $I: a_0, a_1, a_2, \dots$

 $II: p_0, p_1, \dots$

 $a_i \in B$, p_i line in \mathbb{R}^2 , $a_i, a_{i+1} \in p_i$. II player wins $\equiv (a_i)$ is convergent.

Věta 4.3 (From Real functions)

II player has wining strategy in this game.

4.4 Determinacy of games

Definice 4.7

We say that game G(A, X) is determined, if I or II player has winning strategy.

Poznámka (Remark)

I has wining strategy if $\exists a_0 \ \forall a_1 \ \exists a_2 \ \forall a_3 \dots (a_0, a_1, \dots) \in X$.

II has wining strategy if $\forall a_0 \ \exists a_1 \ \forall a_2 \ \exists a_3 \dots (a_0, a_1, \dots) \notin X$.

Věta 4.4 (Gale–Steward, 1953)

 $A \neq \emptyset$, $T \subset A^{<\omega}$, $T \neq \emptyset$ pruned tree, $X \subset [T] \subset A^{\omega}$ be closed in [T]. Then G(T,X) is determined.

 $D\mathring{u}kaz$

Assume II does not have winning strategy in G(T,X). We say that $p=(a_0,a_1,\ldots,a_{2n-1})\in T$ is non-loosing for I, if II player does not have winning strategy in game with this beginning. II does not have winning strategy $\Longrightarrow \varnothing$ is non-loosing. If p is non-loosing than there exist $a_{2n}\in A$ such that $(a_0,a_1,\ldots,a_{2n})\in T$ and $\forall a=a_{2n+1}\in A$ such that $(a_0,a_1,\ldots,a_{2n+1})\in T$ this position is non-loosing for I. The strategy for I player is choosing non-loosing positions. Assume that this strategy is not winning strategy. So, there exists $(a_0,a_1,\ldots)\in [T]\backslash X$ and for every $n\in\omega\colon (a_0,\ldots,a_{2n+1})$ are non-loosing position. But from fact that $[T]\backslash X$ is open, $\exists n\in\omega:\mathcal{N}(a_0,a_1,\ldots,a_{2n+1})\cap [T]\subset [T]\backslash X$ \Longrightarrow this is loosing position for I.

Příklad ("Closed" is nessesary)

 $A=\{0,1\}$, $T=2^{<\omega},~X=2^{\omega}\backslash\{0,0,\ldots\}$. This game is determined, but the previous proof cannot be used:

 $I:0,0,0,0,\dots$

 $II: 0, 0, 0, 0, \dots$

is always non-loosing, but $(0,0,0,\ldots) \notin X$.

Důsledek

 $T \neq \emptyset$ pruned tree on $A, X \subset [T]$ is open in [T]. Then G(T, X) is determined.

 $D\mathring{u}kaz$

I player playes a_0 and we assume game where II player starts and we play with set $(\mathcal{N}(a_0) \cap A^{<\omega})$. Using the previous theorem we have that game is determined.

Poznámka (Historical remark) G(T, X) be determined for:

- $X \in \Pi_1^0$: 1953 Gale-Stewnar.
- $X \in \Pi_2^0$: 1955 Woolfe.
- $X \in \Pi_3^0$: 1964 Davis.
- $X \in \Pi_4^0$: 1972 Paris.
- Martin: $T \neq \emptyset$ pruned tree on $A, X \subset [T], X \in \Delta_1^1([T])$. Then G(T, X) is determined.

4.5 Game $G^*(A)$

Definice 4.8 (Game $G^*(A)$)

 $X \neq \emptyset$ Polish topological space, d is compatible compact metric on $X, V = (V_n)$ countable base of $X, V_n \neq \emptyset, A \subset X$.

$$I: (U_0^{(0)}, U_1^{(0)}), (U_0^{(1)}, U_1^{(1)}), \dots$$

 $II: i_0, i_1, \dots$

$$i_n \in \{0,1\}. \ U_i^{(n)} \in V, \ \operatorname{diam} U_i^{(n)} < 2^{-n}. \ \overline{U_0^{(n)}} \cap \overline{U_1^{(n)}} = \varnothing, \ \overline{U_0^{(n+1)} \cup U_1^{(n+1)}} \subset U_{i_n}^{(n)}.$$

We define $x \in X$ by $\{x\} = \bigcap_{n \in \omega} \overline{U_{i_n}^{(n)}}$, then I wins $\Leftrightarrow x \in A$.

Poznámka

X Polish topological space, $|x| > \omega$. Then there exist $\tilde{X} \in \Pi_1^0(X)$ such that $|X \setminus \tilde{X}| = \omega$, \tilde{X} is perfect. $(\text{Ker}(X), I = \{M \subset X, |M| < \omega\})$.

Věta 4.5

 $X \neq \emptyset$, perfect Polish topological space, $A \subset X$. Then 1. I player has winning strategy \Leftrightarrow A contains homomorphic copy of 2^{ω} . 2. II player has winning strategy \Leftrightarrow $|A| \leqslant \omega$.

 $D\mathring{u}kaz$

 $\underbrace{0.05in}_{s,0} : \underline{0.05in}_{s,0} : \underline{0.05in}$

$$C = \bigcap_{n=1}^{\infty} \bigcup_{|s|=n} \bigcup s = \bigcup_{s \in 2^{\omega}} \bigcap_{k \in \omega \setminus \{0\}} \bigcup s/k \subset A.$$

 $\text{ ,1.} \iff \text{``: A continuous copy } C \text{ of } 2^{\omega} \text{ (homeomorphic)}. \text{ I player choose } U_i^{(n+1)} \text{:} \\ \operatorname{diam}(U_i^{(n+1)}) < 2^{-n-1}, \ U_i^{(n+1)} \cap C \neq \varnothing, \ \overline{U_0^{(n+1)}} \cap \overline{U_1^{(n+1)}} = \varnothing, \ \overline{U_0^{(n+1)}} \cup U_1^{(n+1)} \subset U_{i_n}^{(n)}.$

 $,2. \iff$ ": $|A| \leqslant \omega$: $A = \{x_0, x_1, \ldots\}$. II in n-th move choose $i_n \in \{0,1\}$ to have $x_n \notin U_{i_n}^{(n)}$. $\Longrightarrow \bigcap_{n \in \omega} \bigcup_{i_n}^{(n)} \notin A$.

 $D\mathring{u}kaz$ (2. \Longrightarrow)

Let σ be winning strategy for II player. Let $x \in A$. We say that position

$$p = ((U_0^{(0)}, U_1^{(0)}), i_0, \dots, (U_0^{(n-1)}, U_1^{(n-1)}), i_{n-1})$$

is good for x if we get to this position following one winning strategy and $x \in U_{i_{n-1}}^{(n-1)}$. We assume empty sequence be good for x. Assume that every good position p for x has nontrivial extension, which is still good for x. Then there exists some play following σ , such that the result is $x \in A$, which is const. So $\forall x \in A$ \exists maximal good position p for x. $A_p = \left\{ y \in U_{i_{(n-1)}}^{(n-1)} | \text{ for every extension following rules } (U_0^{(n)}, U_1^{(n)}) \text{ if } i \text{ is the move following } \sigma, \text{ then } y \notin U_i^{(n)} \right\} = \{y | p \text{ maximal good for } y\}.$

 $A \subset \bigcup_p A_p$, $|A_p| = 1$? By constr. $y_0 \neq y_1$, $y_0, y_1 \in A_p$. We choose $U_0^{(n)}, U_1^{(n)} : y_i \in U_i^{(n)} \implies y_0$ or $y_1 \in U_{i_n}^{(n)}$ and p is not maximal for this element. $\implies |A| = \omega$.

4.6 Game $G_u^*(F)$

Definice 4.9 (Game $G_n^*(F)$)

 $X \neq \emptyset$, perfect, Polish topological space, $F \subset X \times \omega^{\omega}$.

$$I: y(0), (U_0^{(0)}, U_1^{(0)}), y(1), (U_0^{(1)}, U_1^{(1)}), \dots$$

 $II: i_0, i_1, \dots$

 $U_i^{(n)}, i_n$ are same like in the previous game, $U_i^{(n)} \in V$ (fix constant base), $y(u) \in \omega$, $x \in X$ like before, $y = (y(0), y(1), \ldots)$. I wins $\Leftrightarrow (x, y) \in F$.

Věta 4.6

 $X \neq \emptyset$, perfect, Polish topological space, $F \subset X \times \omega^{\omega}$, $A = \prod_X (F)$. Then 1. I has winning strategy in $G_u^* \Longrightarrow A$ contains 2^{ω} . 2. II has winning strategy in $G_u^*(F) \Longrightarrow |A| \leqslant \omega$.

 $D\mathring{u}kaz$

"1." proof is same like proof of 1. in the previous theorem.

"2." Let II has winning strategy in $G_n^*(F)$. Assume $(x, y) \in F$. Similarly like before we find maximal good position for (x, y)

$$\left(p = \left(y(0), (U_0^{(0)}, U_1^{(0)}), i_0, y(1), (U_0^{(1)}, U_1^{(1)}), i_1, \dots, y(n-1), (U_0^{(n-1)}, U_1^{(n-1)}), i_{n-1}\right)\right).$$

 $p \in \sigma$, $x \in U_{i_n}^{(n-1)}$. Put $A_{p,\sigma} = \left\{ z \in U_{i_{n-1}}^{(n-1)} | \text{ for any possible extension } (a, U_0^{(n)}, U_1^{(n)}), \text{ if } i \text{ is played winning } \sigma, \text{ then } z \notin U_i^{(n)} \right\}$. If $a = y_0(n)$ and p as above, there $x \in A_{p,a}$.

Similarly like before $|A'_{p,n}| \leq 1$, $A \subset \bigcup_{p \in \sigma, a \in \omega} A_{p,a} \implies |A| \leq \omega$.

Definice 4.10

Let Γ be class of subsets of Polish topological spaces, $A \subset X$ (X Polish topological space) be Γ -hard $\equiv \forall B \in \Gamma(\omega^{\omega}) \ \exists f : \omega^{\omega} \to X : f^{-1}(A) = B$.

A is $\Gamma\text{-complete} \equiv A \in \Gamma \, \wedge \, A$ be $\Gamma\text{-hard}.$