Early Detection of Chronic Kidney Disease using Machine Learning

IBM PROJECT REPORT

Submitted by

TEAM ID: PNT2022TMID21848

TEAM MEMBERS

 SURYA K
 142219106110

 SURIYA PRAKASH C
 142219106111

 THINAGARAN T
 142219106117

 VIGNESH S
 142219106307

in partial fulfilment for the award of the degree

of

BACHELOR OF ENGINEERING

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

SRM VALLIAMMAI ENGINEERING COLLEGE

(An Autonomous Institution)

SRM NAGAR: KATTANKULATHUR – 603203

INDEX

1. INTRODUCTION

- 1. Project Overview
- 2. Purpose

2. LITERATURE SURVEY

- 1. Existing problem
- 2. References
- 3. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 1. Empathy Map Canvas
- 2. Ideation & Brainstorming
- 3. Proposed Solution
- 4. Problem Solution fit

4. REQUIREMENT ANALYSIS

- 1. Functional requirement
- 2. Non-Functional requirements

5. PROJECT DESIGN

- 1. Data Flow Diagrams
- 2. Solution & Technical Architecture
- 3. User Stories

6. PROJECT PLANNING & SCHEDULING

- 1. Sprint Planning & Estimation
- 2. Sprint Delivery Schedule
- 3. Reports from JIRA

7. CODING AND SOLUTIONING (Explain the features added in the project along with code)

- 1. Feature 1
- 2. Feature 2
- 3. Database Schema (if Applicable)

8. TESTING

- 1. Test Cases
- 2. User Acceptance Testing

9. RESULTS

1. Performance Metrics

10. ADVANTAGES & DISADVANTAGES

- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

Source Code GitHub & Project Demo Link

CHAPTER 1

INTRODUCTION

1.1 Project Overview:

Chronic Kidney Disease (CKD) is a major medical problem which can be diagnosed by using this system. It can be cured if treated in early stages. Chronic kidney disease can be detected with regular laboratory tests, and some treatments are present which can prevent development, slow disease progression, and risk of cardiovascular disease, and improve survival and quality of life. Out of the 11 machine learning methods considered, XG BOOST classifier are shown to result in the highest accuracy and minimal bias to the attributes. The research also considers the practical aspects of data collection and highlights the importance of incorporating domain knowledge when using machine learning for CKD status prediction.

1.2 Project Overview:

The primary goal of the project is to detect the chronic kidney disease. People with Chronic Kidney Disease suffer from Leg swelling, exhaustion, nausea, loss of appetite, and confusion are some of symptoms. Anaemia, bone disease, and high blood pressure (often linked to the activation of the Renin-Angiotensin-Aldosterone system) are complications that can be related to hormonal dysfunction of the kidneys. In this project CKD patients and healthy subjects will be analysed to predict the presence of chronic kidney disease.

CHAPTER 2

LITERATURE SURVEY

2.1 Existing problem

At the initial stage user will gather the dataset required to make a diagnosis of CKD. Once the data has been loaded, system will preprocess the data and extraction of features will be done. Once the features required for the prediction have been extracted system will compare the features with model and prediction will be given as final result in the end.

2.1.1 References

S.No	PAPER TITLE	TECHNOLOGIES USED	DESCRIPTION
1	Intelligent systems on the cloud for the early detection of chronic kidney disease	Back-propagation networks, Generalized Feed Forward Neural Networks, and Modular Neural Networks.	model is uploaded to the
2	Performance Analysis of Machine Learning Classifier for Predicting Chronic Kidney Disease	Regression and classification, decision tree classifier, random forest	This proposed system detects CKD- chronic kidney disease using machine learning; they have attained an accuracy of 100% for decision tree classifier, 95.12% for random forest and 98.82% in logistic regression.

3	Prediction of chronic kidney disease (CKD) using Data Science	Support Vector Machine, Random Forest, Boost, Logistic Regression, Neural networks, Naive Bayes Classifier.	This research work is primarily concentrated on finding the best suitable classification algorithm which can be used for the diagnosis of CKD based on the classification report and performance factors.
4	A Neural Network based Model for Predicting Chronic Kidney Diseases	Artificial Neural Network algorithms	The 14 different properties are analysed and linked to chronic kidney disorder victims and foretold accuracy for a machine learning algorithm named Artificial Neural Network. A er analysing the outcomes, it is recognized that the algorithm gives correctness of 96.
6	Early Diagnosis of Chronic Kidney Disease Using Machine Learning Algorithms with Least Parameters by RFE and Feature Importance Techniques	Linear, Logistic, Decision tree, CART, and Random forest classifier	The primary goal of this research project is to enhance the diagnostic precision by assessing the optimum feature selection and developing a prediction model using machine learning methods. By using different classifier methods, the model achieved a diagnosis accuracy of 0.925.

7	Chronic kidney disease Diagnosis using Multilayer perceptron classifier	Multilayer Perceptron Classifier	The Experimental results show that the proposed model can perform classification with the testing accuracy of 92.5% surpassing the scores achieved by SVM and naive bayes classifier.
8	Detection of Chronic Kidney Disease Using Machine Learning Algorithms with Least Number of Predictors	Logistic regression, SVM, Random forest, and Gradient boosting	The link between variables has been researched in order to decrease the number of features and eliminate redundancy. Tenfold cross-validation has been used to train, test, and validate the classifiers.
9	Chronic Kidney Disease Prediction and Recommendation of Suitable Diet plan by using Machine Learning	Machine Learning Algorithms, MDRD equation	The proposed system which detects chronic kidney disease using machine learning defines 3 zones (Safe zone, Caution zone, Danger zone) on the basis of blood potassium level. doctors a different native technique to detect chronic renal illnesses in a patient's early stages.

10	Optimization of Prediction Method of Chronic Kidney Disease Using Machine Learning Algorithm.	AdaBoost, Linear Discriminant Analysis, and	These algorithms are used using a dataset from the UCI machine learning repository that is available online. Gradient Boosting (GB) Classifiers produce results with a predictably high accuracy of roughly 99.80%. Based on these benchmarks, the most effective and optimized algorithms for the requested job can be chosen.
----	---	---	---

2.1.2 Problem Statement Definition

- Chronic Kidney Disease (CKD) is a major medical problem which can be diagnosed by using this system. It can be cured if treated in early stages.
- Chronic kidney disease can be detected with regular laboratory tests, and some treatments are present which can prevent development, slow disease progression, and risk of cardiovascular disease, and improve survival and quality of life.
- CKD also recognized as Chronic Renal Disease (CRD) which is an uncharacteristic functioning of kidney or a failure of renal function expanding over a period of months or years.
- Final output predicts whether the person is having CKD or not by using minimum number of features.

CHAPTER 3

IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

3.3 Proposed Solution

SNO	Parameter	Description
1	Problem Statement (Problem to be solved)	Detection of Kidney disease at an early stage
2	Idea / Solution description	The feasibility and importance of these ideas are evaluated using the brainstorming and idea prioritising template in mural. All those are: 1. Examine urine pus cells, anaemia, urea, enema, packed cell volume, and diabetes. If it is higher than the cut-off then mentions CKD. 2. Regular blood tests for Glomerular Filtration Rate (GFR) and Creatinine
		For the standard techniques of early detection and avoidance of chronic kidney disease, all the suggestions above are to be followed. Analyse each of them separately. Regarding point no. 1, It is possible to check the anaemia, urea, packed cell volume, deem in the leg, diabetes, and urine pus cells of many people, roughly 1000 people, and then build an excel sheet to determine whether or not they have chronic kidney disease. This excel spreadsheet can then be used to train and test an AI model. Later, the model can determine whether or not chronic renal disease is present if only these parameters are fed into it. Regarding point no. 2, One thousand people's blood samples for creatinine and glomerular filtration rate (GFR) can be examined to determine whether they have chronic kidney disease. Based on the data, an AI model can be created, trained, and tested to forecast chronic kidney disease. A ML model can be built to analyse these data and further used to predict the kidney disease from it.

3	Novelty / Uniqueness	According to numerous specialists, the best conventional strategy is to evaluate multiple blood parameters and spot chronic kidney disease at an early stage. User is able to identify chronic kidney disease in around the time of (15 minutes).
4	Social Impact / Customer Satisfaction	Early detection of CKD which reduce fatalities related to this disease and it also help in facilitation of appropriate dosing of medications and allow timely preparation for kidney replacement, which may improve outcome.
5	Business Model (Revenue Model)	Capable of bringing revenue from directly clients. Can collaborate with health care sector and generate revenue from their customers.
6	Scalability of the Solution	ML models are easily resized and updated. The same machine learning model can therefore be used to identify other fatal diseases when fed with different sets of data

3.4 Problem Solution Fit

Project Design Phase-I Problem Solution -fit

Date	16/10/2022
Team ID	PNT2022TMID21848
Project Name	Early Detection of Chronic kidney Disease Using
	Machine Learning
Maximum Marks	

Problem Solution -fit:

1.CUSTOMER SEGMENT(S) (CS) > Patients, doctors, nurses and regular individuals who have some symptoms that who wants to know whether he/she have Chronic kidney disease	2.JOBS-TO-BE-DONE / PROBLEMS (J&P) >Detect The illness at an early stage >Make the application user-friendly for customers >create a user-friendly interface >Make sure the predictions are correct	3. TRIGGERS (TR) > The Customer easily predict CKD in their respective places 4. EMOTIONS: BEFORE/AFTER (EM) >Before:Disappointed,depresse d,fearful and Anxiety. >After:Positivity, peace and Self-assurance.
5. AVAILABLE SOLUTIONS (AS) > the Diagnosis made manually by doctors in Lab testing using a variety of test findings	6.CUSTOMER CONSTRAINTS (CC) >Lack of skilled Doctors >Expensive Diagnostic procedures >Negligent human mistake >Longer detection times for illnesses	7. BEHAVIOR (BE) > It is user interactive interface. So, customer can easily understand the application
8. CHANNELS OF BEHAVIOR (CH) >Get information about the illness and its symptoms by searching the internet >Seek diagnosis and treatment at a hospital.	9. PROBLEM ROOT CAUSE (RC) > A Lack of facilities in hospitals >Lack of experience of doctors >Expensive diagnostic Procedures >Human mistake in manual diagnosis	10. YOUR SOLUTION (SL) >A machine learning model that uses test data from other diseases to diagnose CKD in its early stages correctly and prevent manual mistakes in diagnosis.

CHAPTER-4

REQUIREMENT ANALYSIS

4.1 Functional requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Login page
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	User Requirements	Create an account, see certain content, recalculate data using a particular algorithm, and perform other actions.
FR-4	Business Requirements	An application allowing patient to identify chronic kidney disease in around the time of 15 minutes.
FR-5	User Authentication	Challenges the user to validate credentials (for example, through Password)
FR-6	User Authorization	Once the server receives a request with authorization, it can verify your credentials and grant you access to the resources.

4.2 Non-Functional Requirement:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Users can easily traverse an application's interface when it is useful, and applications with high usability allow users to quickly understand what a feature is and what it can achieve.
NFR-2	Security	Safeguard sensitive information and secure databases to store patients' medical records.
NFR-3	Reliability	You can check the percentage of the probability of failure, or failure rate, to determine the reliability of a system.
NFR-4	Performance	Reducing overall load time of prediction and interactivity with user
NFR-5	Availability	Indicates the user's ability to access the system at some point
NFR-6	Scalability	Describes the ability to properly handle upbringing (And downgrade) workload

CHAPTER-5

PROJECT DESIGN

5.1 Data Flow Diagrams

Project Design Phase-II Data Flow Diagram & User Stories

Date	16 October 2022
Team ID	PNT2022TMID21848
Project Name	Early Detection of Chronic kidney Disease
	using Machine Learning
Maximum Marks	4 Marks

Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2 Solution & Technical Architecture

Technical Architecture:

Project Design Phase-II Technology Stack (Architecture & Stack)

Date	16 October 2022
Team ID	PNT2022TMID21848
Project Name	Early Detection of Chronic Kidney Disease
	using Machine Learning
Maximum Marks	4 Marks

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

Table-1: Components & Technologies:

S. No	Component	Description	Technology
1.	User Interface	Users interact with our application through web User Interface.	HTML, CSS, and Python flask.
2.	Application Logic-1-Login.	When the user clicks on the login button, he/she is directed to login page if they are registered already.	HTML, CSS, Python flask.
3.	Application Logic-Registration	When the user clicks on the Register button, he/she is directed to Register page for further process.	HTML, CSS, Python flask.
4.	Application Logic-Test Vitals Form	After Logged in when the user clicks on the test vital form button, he/she directed to the form page to enter the vitals for prediction.	Front end- HTML, CSS, MySQL, Python flask Back end-Python
5.	Database	Data type - String, Numeric.	MySQL.
6.	Cloud Database	Database Service on Cloud	IBM.
7.	File Storage	File storage requirements	NIL
8.	External API-1	Purpose of External API used in the application	NIL
9.	External API-2	Purpose of External API used in the application	NIL
10.	Machine Learning Model	Get the data from the user and predict the data with tested and trained dataset models	Data Recognition Model, etc.
11.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Cloud Server Configuration:	NIL

5.3 User Stories

User Stories

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user can register for the application by entering my email, password, and confirming password.	user can access account / dashboard	High	Sprint-1
		USN-2	As a user will receive confirmation email once have registered for the application	User can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user can register for the application through Login page	User can register & access the dashboard with Login page	Low	Sprint-2
		USN-4	As a user can verify the signup credentials of the application through mail	User can receive the registration conformation email	Medium	Sprint-1
	Login	USN-5	As a user can log into the application by entering email & password	dashboard was immediately directed	High	Sprint-1
	Dashboard	USN-6	User can access my dashboard whenever want as a user by utilising user login information	User can access all the details in my dashboard	Medium	Sprint-1
Customer (Web user)	Sign-in	USN-7	User can use the application as a user at any time and from any location by using user login credentials	User can utilize my time & access the application	High	Sprint-2
Customer Care Executive	Clarification	USN-8	As a user, they need to clarify some related problems while using the application	Web application give detailed explanation to user 24/7	Medium	Sprint-2
Administrator	Quality assurance	USN-9	As a user they have some credibility issues while using application	We can give 100% assurance to that application	High	Sprint-3

CHAPTER 6 PROJECT PLANNING & SCHEDULING:

6.1 Sprint Planning & Estimation

Project Planning Phase Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Team ID	PNT2022TMID21848
Project Name	Early Detection of Chronic Kidney Disease using Machine Learning
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	User Registration	USN-1	As a user, I can register for the application by entering my name, mobile number, email, password, and confirming my password.	10	High	Suriyaprakash.C Thinagaran.T Surya.K Vignesh.S
Sprint-2		USN-2	As a user, I can register for the application through Gmail	5	Medium	Suriyaprakash.C Thinagaran.T Surya.K Vignesh.S
Sprint-1	User Confirmation	USN-3	As a user, I will receive confirmation email once I have registered for the application	10	High	Suriyaprakash.C Thinagaran.T Surya.K Vignesh.S
Sprint-2		USN-4	As a user, I will receive confirmation to verify the identity.	5	High	Suriyaprakash.C Thinagaran.T Surya.K Vignesh.S
Sprint-2	Data Collection	USN-5	As a user, I will enter the input data for disease prediction in the form	10	High	Suriyaprakash.C Thinagaran.T Surya.K Vignesh.S

6.2 Sprint Delivery Schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-3	Provide output to the user	USN-6	As a user, I will get the result of disease prediction in the dashboard.	10	High	Suriyaprakash.C Thinagaran.T Surya.K Vignesh.S
Sprint-3	Data Analysis	USN-7	As the admin, I will develop modules to preprocess and store the data.	10	High	Suriyaprakash.C Thinagaran.T Surya.K Vignesh.S
Sprint-4	Prediction of disease	USN-8	As the admin, I will build a Machine Learning model to predict the disease	10	High	Suriyaprakash.C Thinagaran.T Surya.K Vignesh.S
Sprint-4	Final Delivery	USN-9	Deploy the application in IBM cloud and make it available for use.	10	High	Suriyaprakash.C Thinagaran.T Surya.K Vignesh.S

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022		
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022		
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022		
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022		

Velocity:

We have a 6-day sprint duration, and the velocity of the team is 20 (points per sprint). The team's average velocity (AV) per iteration unit (story points per day)

AV = Sprint duration / velocity = 20 / 6 = 3.33

6.3 Reports from JIRA

ROADMAP:

BURNDOWN CHART:

Burndown Chart

CHAPTER-7 CODING & SOLUTIONING

Install & Importing the Dependencies

import numpy as np import
pandas as pd import
matplotlib.pyplot as plt
%matplotlib inline import
seaborn as sns import warnings
warnings.filterwarnings('ignore')

Extract the Data-Set (Kidney_Disease.csv)

kidney=pd.read_csv('kidney_disease.csv')

Performing Exploitory Data Analysis (EDA)

Modifying the Column Names as per our requirements

Performing Data cleaning

```
def extract_cat_num(kidney):
  cat_col=[col for col in kidney.columns if kidney[col].dtype=='0']
num_col=[col for col in kidney.columns if kidney[col].dtype!='0']
return cat_col,num_col cat_col,num_col=extract_cat_num(kidney)
# dirtiness in categorical data for col in cat_col: print('{}
has {} values'.format(col,kidney[col].unique()))
print("\n")
kidney['diabetes mellitus'].replace(to_replace={'\tno':'no','\tyes':'yes'},inplace=True)
kidney['coronary
                     artery
                               disease'].replace(to_replace={'\tno':'no'},inplace=True)
kidney['class'].replace(to_replace={'ckd\t':'ckd'},inplace=True)
# no dirtiness for
col in cat col:
  print('{} has {} values'.format(col,kidney[col].unique()))
print("\n")
```

Analysing distribution of each and every column

```
len(num_col)
plt.figure(figsize=(30,30)) for
i,feature in enumerate(num_col):
   plt.subplot(5,3,i+1) # 5 rows and 3 columns
kidney[feature].hist() plt.title(feature)
```

Check Label distribution of categorical Data

Correlation between features

```
plt.figure(figsize=(12,12))
```

sns.heatmap(kidney.corr(method='pearson'),cbar=True,cmap='BuPu',annot=True)

Analyse distribution of red blood cell count chronic as well as non chronic grid=sns.FacetGrid(kidney,hue='class',aspect=2) grid.map(sns.kdeplot,'red blood cell count') grid.add_legend() grid=sns.FacetGrid(kidney,hue='class',aspect=2) grid.map(sns.kdeplot,'haemoglobin') grid.add_legend() plt.figure(figsize=(12,10)) sns.scatterplot(x=kidney['red blood cell count'],y=kidney['packed cell volume'],hue=kidney['class']) plt.xlabel('red blood cell count') plt.ylabel('packed cell volume') plt.title('Relationship between red blood cell count and packed cell volume')

```
plt.figure(figsize=(12,10)) sns.scatterplot(x=kidney['red blood cell count'],y=kidney['haemoglobin'],hue=kidney['class']) plt.xlabel('red blood cell count') plt.ylabel('haemoglobin') plt.title('Relationship between haemoglobin and red blood cell count')
```

Handling Missing Values

```
kidney.isnull().sum() plt.subplot(1,2,1)

sns.boxplot(x=kidney['class'],y=kidney['age'])

list(enumerate(cat_col))

plt.figure(figsize=(15,15)) for i in

enumerate(num_col):

plt.subplot(4,4,i[0]+1)

sns.boxplot(x=kidney['class'],y=i[1],data=kidney.reset_index())

np.mean(kidney)

kidney.isnull().sum() for

i in num_col:

kidney[i].fillna(kidney[i].median(),inplace=True)

kidney.isnull().sum() kidney.describe()
```

Filling missing values in categorical columns using random values

```
kidney['red blood cells'].isnull().sum() random_sample=kidney['red blood cells'].dropna().sample(152)
random_sample
kidney[kidney['red blood cells'].isnull()].index
random_sample.index
random_sample.index=kidney[kidney['red blood cells'].isnull()].index #in this way index will be equal random_sample.index
```

```
kidney.loc[kidney['red blood cells'].isnull(),'red blood cells']=random_sample kidney['red
blood cells'].isnull().sum()
sns.countplot(kidney['red blood cells']) # checking that ratio didnt change after filling missing
values
#filling random values in all categorical columns def
Random_value_Imputation(feature):
  random_sample=kidney[feature].dropna().sample(kidney[feature].isnull().sum())
random_sample.index=kidney[kidney[feature].isnull()].index
kidney.loc[kidney[feature].isnull(),feature]=random_sample
Random_value_Imputation('pus cell') #only this column because it has higher no. of missing value
kidney.isnull().sum()
def impute_mode(feature):
  mode=kidney[feature].mode()[0]
kidney[feature]=kidney[feature].fillna(mode)
for col in cat_col: impute_mode(col)
kidney[cat_col].isnull().sum()
kidney.isnull().sum()
```

Performing the Feature Encoding

for col in cat col:

print('{} has {} categories'.format(col,kidney[col].nunique()))

Label Encoding ---> Because there are less no. of categories in each column

LabelEncoder can be used to normalize labels. It can also be used to transform nonnumerical labels (as long as they are hashable and comparable) to numerical labels. Fit label encoder.

- normal -- 0
- abnormal --1 from sklearn.preprocessing import LabelEncoder

le=LabelEncoder()

for col in cat_col:

XGBoost Classifier - For our Model Since we are using XGBoost, feature scaling is not required

```
from xgboost import XGBClassifier params={'learning-rate':[0,0.5,0.20,0.25],
    'max_depth':[5,8,10],
    'min_child_weight':[1,3,5,7],
    'gamma':[0.0,0.1,0.2,0.4],
    'colsample_bytree':[0.3,0.4,0.7]} from

sklearn.model_selection import RandomizedSearchCV

classifier=XGBClassifier()

random_search=RandomizedSearchCV(classifier,param_distributions=params,n_iter=5,scoring='roc_auc',n_jobs=-1,cv=5,verbose=3) random_search.fit(X_train,y_train) random_search.best_estimator_

#Checking for best model random_search.best_params_ classifier.fit(X_train,y_train)
```

CHAPTER-8

TESTING

8.1 Test Cases

	В												N
	3500			Date	17.11.2022	1							
				Team ID	PNT2022TMID40421								
				Project Name	Early Detection of Chronic Kidne								
				Maximum Marks	4 marks								
Test case ID	Feature Type	Componen	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status	Commnets	TC for Automation(Y/N)	BUG ID	Executed By
LoginPage_TC_OO 1	Functional	Kaggle	Verify User can collect from Hospitals /Download from Kaggle for further purpose.	Kaggle	Enter into kaggle website Download the dataset	https://www.kaggle.com/	Download the Dataset	Working as expected	Pass	Downloaded dataset from kaggle	NO		SUDARSON PRAVINTH
LoginPage_TC_CO 2	Functional	Data Pre - processing	verify Data pre-processing by using machine learning algorithm in Jupiter Notebook	Anaconda prompt , Jupyter Notebook	1.Enter Anaconda prompt 2.Enter Jupyter Notebook & do Data pre-processing		Pre-processing the dataset using machine learning Algorithm	Working as expected	pass	pre-processed and handeled the data successfully	NO		KARTHI KEYAN KALATH S
LoginPage_TC_OO	Functional	Build a Model	Verify user can Build a Machine learning model using Logistic Regression & Save the model in Pickle form	Anaconda prompt , Jupyter Notebook	1 Enter Anaconda prompt 2 Enter Jupyter Notebook & do Model Building	Model building using logistic regression	Build a Machine Learning Model	Working as expected	pass		NO		THANIGAIVEL H p
LoginPage_TC_OO 4	UI	Flask Deploymen t	Verify user can Create Html pages home.html,kidney.html, main.html & predict.html Run both pages in app.py	Visual Studio Code	Click on VS code ,create html pages . Run html pages on app.py by using live server .	Run a website in localhost server http://127.0.0.1:5000/	Appears a Prediction page on local host server	Working as expected	pass	using VS code created home.html,kidney.html,ma in.html & predict.html	NO		SHANMUGAN S
LoginPage_TC_OO	UI	Local host	Verify user can Run in localhost server Entering home page by home.html then kidney.html gives prediction page & predict.html gives Result	Visual Studio Code	Click on the http link Enter the values as in the dataset Click on submit	Gives prediction result as patient have CKD or NOT http://127.0.0.1-5000/predict	Predict the Result	Working as expected	Pass	Entering data of patient click Sumbit it shows a person affected or not	NO		SUDARSON PRAVINTH
LoginPage_TC_OO	Functional	IBM Deploymen t	Verify user can Deploy using Jupiter notebook in IBM with cloud object storage, Watson studio integration with flask using API key & Scoring Endpoint	IBM CLOUD	Enter IBM Cloud using login credentials Use jupyter notebook in IBM 3.create project & deployment sapce 4.create watson studio, cloud object storage. 5 deploy on IBM	Deploy the project in IBM CLOUD	Application should show same resut as vs code flask integration	Working as expected	Pass	Deployed in IBM Watson studio scikit_model.pkl	NO		KARTHI KEYAN KALATY S
LoginPage_TC_OO	Functional	Flask Integration	Verify Using addign API key & Scoring End point Run in new.py	IBM CLOUD	Click on VS code & execute new.py	scoring point	Finding an Scoring point	Working as expected	Pass	Run new.py to check scoring point	NO		SHANMUGAN S
LoginPage_TC_OOS	Functional	ssk Integratio	Verify Using adding mode! scikit, model pkl and adding API key & Scoring End point Run home.html,kidney.html, main.html & predict.html pages in app.py in local host server	IBM CLOUD	/S code & execute same html pages	in localhost server http://1	Appears a Prediction page on local	rking as expe	pass	Run app.py	NO		THANIGAIVEL H p

8.2 User Acceptance Testing

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity y 4	Subtotal
By Design	11	4	3	3	21
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	12	2	4	20	38
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	0	0	0	0
Totals	26	9	12	25	72

3.Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	50	0	0	50
Security	0	0	0	0
Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

CHAPTER-9 RESULTS

9.1 Performance Metrics

Let's Predict our model Accuracy.

Evaluation of the model

As we Performed all the Methods and Trained our Model using different Menthods

We Got Very Good Accuracy Using XGBoost - 98% Accuracy

CHAPTER-10

ADVANTAGES & DISADVANTAGES

10.1 Advantages

- Increased awareness of CKD may make it easier to take therapeutic measures
 to slow the deterioration in renal function or avoid CKD-related metabolic
 problems.
- 2. In addition, regardless of the need for or type of renal replacement therapy (such as dialysis or transplantation), a uniform disease classification and action plan encompassing all patients may improve patient care continuity.
- 3. Early detection of chronic kidney disease is the advantage because we can cure in first stage.

10.2 Disadvantages

- 1. CKD has a significant negative impact on quality of life, increased risks of cardiovascular illness, and premature mortality (QoL). According to estimates, CKD patients' mortality from cardiovascular disease (CVD) is at least 8 to 10 times higher than that of non-CKD patients.
- 2. Your heart and blood vessels may experience problems as a result of chronic kidney disease. Anemia (low red blood cell count) (low red blood cell count) bone issues.

CHAPTER-11

CONCLUSION

The advantage of this strategy is that because the prediction process goes much more quickly, doctors can start treating CKD patients as soon as possible and classify a larger population of patients in a shorter amount of time. We would prefer to work with larger datasets in the future or compare the results of this dataset with another dataset that contains the same information because the dataset used in this paper only has 400 examples. Additionally, using the appropriate dataset, we attempt to determine whether a person with this syndrome has a higher chance of developing chronic risk factors like hypertension, a family history of kidney failure, and diabetes in order to reduce the incidence of CKD. Early prediction is very crucial for both the experts and the patients to prevent and slow down the progress of chronic kidney disease to kidney failure.

CHAPTER-12 FUTURE SCOPE

This effort will serve as the foundation for the CKD patient healthcare system. This work's extension is that the use of machine learning results in high-caliber performance. It is hoped that this will motivate people to make positive changes in their life and seek early treatment for chronic renal illness. In future an application can be developed with large dataset processing capabilities and with login credentials

CHAPTER-13 APPENDIX

7.1 Home.html:

```
{% extends 'main.html' %}
{% block content %}
{% if message %}
        <div class="alert alert-danger">{{ message }}</div>
    {% endif %}
<html lang="en">
    <meta charset="utf-8">
   <meta name="viewport" content="width=device-width, initial-scale=1,</pre>
shrinkto-fit=no">
    <meta name="description" content="">
   <meta name="author" content="">
    <title>Kidney Disease Prediction</title>
    <link rel="canonical"</pre>
href="https://getbootstrap.com/docs/4.0/examples/carousel/">
    <!-- Bootstrap core CSS -->
    <link href="../../dist/css/bootstrap.min.css"</pre>
rel="stylesheet"> <style>
                                  .jumbotron{
       background-color: bisque;
           .btn{
color: white;
                      background-
                      border-
color: #6cc1c3;
color: #6cc1c3;
              .lead{
                             background-
image: url(./kidney.jpg);
   </style>
  </head>
```

```
<body>
   <main role="main">
     <section class="jumbotron p-3 p-md-5 text-black rounded text-center">
<div class="container">
         <h1 style="font-family: sanserif; " class="jumbotron-heading">Chronic
Kidney Disease Prediction</h1>
         Chronic kidney disease (CKD) is one of the
most critical health problems due to its increasing prevalence. In this
project, we aim to test the ability of machine learning algorithms for
the prediction of chronic kidney disease using the smallest subset of
features
       </div>
     </section>
       <!-- START THE FEATURETTES -->
       <hr class="featurette-divider">
       <div class="row featurette">
         <div class="col-md-12">
           <h2 style="font-family: sanserif;" class="featurette-heading">How it
will works</h2>
           This prediction will be used in healthcare
Applications. As it was very important to predict weather the patient was having
any chances of getting this Kidney Disease. 
         </div>
       </div>
       <hr class="featurette-divider">
       <div class="row featurette">
         <div class="col-md-12">
           <h2 style="font-family: sanserif;" class="featurette-heading">Stages
of Disease</h2>
           <iframe</pre>
src="https://www.miskawaanhealth.com/wpcontent/uploads/2021/05/chronic-kidney-
disease-stages.jpg" title="W3Schools Free
Online Web Tutorials" width="100%" height="600px"></iframe>
         </div>
```

```
<hr class="featurette-divider">
       <div class="row featurette">
         <div class="col-md-12">
            <h2 style="font-family: sanserif;" class="featurette-heading">Future
implementations</h2>
            In future an application can be developed with
large dataset processing and capabilities
                                                      more accurate result
can produce using this dataset
         </div>
       </div>
       <hr class="featurette-divider">
       <!-- /END THE FEATURETTES -->
      </div><!-- /.container -->
      <section class="jumbotron p-3 p-md-5 text-black rounded text-center">
        <div class="container">
         <h1 class="jumbotron-heading">Chronic Kidney Disease
Prediction</h1>
                         Chronic kidney disease (CKD) is one
of the most critical health problems due to its increasing prevalence. In
this paper, we aim to test the ability of machine learning algorithms for the
prediction of chronic kidney disease using the smallest subset of
features
           <a href="{{ url_for('kidneyPage') }}" class="btn btn-primary my-</pre>
2">Check out the Project</a>
         </div>
      </section>
    </main>
    <!-- Bootstrap core JavaScript
    <!-- Placed at the end of the document so the pages load faster -->
<script src="https://code.jquery.com/jquery-3.2.1.slim.min.js"</pre>
integrity="sha384-
KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/Qpg6aAZGJwFDMVNA/GpGFF93hXpG5KkN"
crossorigin="anonymous"></script>
```

7.2 Kidney.html

```
{% extends 'main.html' %}
{% block content %}
<div class="row" style="margin-bottom: 125px;" >
    <div class="col-md-2"></div>
    <div class="col-md-8">
        <center><h1 style="font-family: fantasy;">KIDNEY DISEASE
PREDICTOR</h1></center>
           <center><h3 style="color:red"; text-align: left;</pre>
                                                                    font-family:
sansserif; position: relative;" >
               NOTE: <br/>
<br/>
<br/>
Normal-0,Abnormal-
1</span></h3></center>
        <div class="card card-body" style="border: 1px solid black;</pre>
backgroundsize: cover; background-color:bisque;">
           <form class="form-horizontal" action="{{ url for('predictPage') }}"</pre>
method="POST">
               <div class="row">
                   <div class="col-md-4">
                       <div class="form-group">
                                     style="color: rgb(1, 1, 1);">AGE</h6>
<input style="border: 1px solid black;" class="formcontrol" type="text" name="age"</pre>
                       </div>
                   </div>
```

```
<div class="col-md-4">
                        <div class="form-group">
                            <h6 style="color: rgb(0, 0, 0);">BLOOD PRESSURE</h6>
<input style="border: 1px solid black;" class="form-</pre>
control" type="text" name="bp" >
                        </div>
                    </div>
                    <div class="col-md-4">
                        <div class="form-group">
                                  style="color: rgb(0, 0, 0);">ALBUMIN</h6>
<input style="border: 1px solid black;" class="formcontrol" type="text" name="al"</pre>
                        </div>
                    </div>
                </div>
                <div class="row">
                    <div class="col-md-4">
                        <div class="form-group">
                            <h6 style="color: rgb(0, 0, 0);">SUGAR</h6>
<input style="border: 1px solid black;" class="formcontrol" type="text" name="su"</pre>
                        </div>
                    </div>
                    <div class="col-md-4">
                        <div class="form-group">
                            <h6 style="color: rgb(0, 0, 0);">RED BLOOD CELLS</h6>
<input style="border: 1px solid black;" class="formcontrol" type="text" name="rbc"</pre>
                        </div>
                    </div>
                    <div class="col-md-4">
                        <div class="form-group">
                            <h6 style="color: rgb(0, 0, 0);">PUS CELL</h6>
<input style="border: 1px solid black;" class="formcontrol" type="text" name="pc"</pre>
                        </div>
                    </div>
                </div>
                <div class="row">
                    <div class="col-md-4">
                        <div class="form-group">
```

```
style="color: rgb(0, 0, 0);">BACTERIA</h6>
<input style="border: 1px solid black;" class="formcontrol" type="text" name="ba"</pre>
                       </div>
                   </div>
                    <div class="col-md-4">
                       <div class="form-group">
                           <h6 style="color: rgb(0, 0, 0);">BLOOD GLUCOSE
RANDOM</h6>
                                      style="border: 1px solid
                                                                        black;"
                           <input</pre>
class="formcontrol" type="text" name="bgr" >
                       </div>
                   </div>
               </div>
               <div class="row">
                   <div class="col-md-4">
                       <div class="form-group">
                           <h6 style="color: rgb(0, 0, 0);">BLOOD UREA</h6>
<input style="border: 1px solid black;" class="formcontrol" type="text"</pre>
name="bu">
                       </div>
                   </div>
                   <div class="col-md-4">
                       <div class="form-group">
                           <h6 style="color: rgb(0, 0, 0);">SERUM
CREATININE</h6>
                           <input
                                     style="border: 1px
                                                               solid
                                                                        black;"
class="formcontrol" type="text" name="sc" >
                       </div>
                   </div>
                   <div class="col-md-4">
                       <div class="form-group">
                           <h6 style="color: rgb(0, 0, 0);">POTASSIUM</h6>
<input style="border: 1px solid black;" class="formcontrol" type="text"</pre>
name="pot" >
                       </div>
                   </div>
               </div>
               <div class="row">
                   <div class="col-md-4">
                       <div class="form-group">
```

```
<h6 style="color: rgb(0, 0, 0);">WHITE BLOOD CELL
COUNT</h6>
<h6 style="color: rgb(0, 0, 0);">HYPERTENSION</h6>
                      <input
                                 style="border: 1px solid
                                                                       black;"
class="formcontrol" type="text" name="htn">
                       </div>
                   </div>
                   <div class="col-md-4">
                       <div class="form-group">
                           <h6 style="color: rgb(0, 0, 0);">DIABETIES
MELLITUS</h6>
                           <input
                                     style="border: 1px solid
                                                                       black;"
class="formcontrol" type="text" name="dm" >
                       </div>
                   </div>
               </div>
               <div class="row">
                   <div class="col-md-4">
                       <div class="form-group">
                           <h6 style="color: rgb(0, 0, 0);">CORONARY ARTERY
DISEASE</h6>
                                     style="border: 1px solid
                                                                       black;"
                           <input</pre>
class="formcontrol" type="text" name="cad" >
                       </div>
                   </div>
                   <div class="col-md-4">
                       <div class="form-group">
                           <h6 style="color: rgb(0, 0, 0);">PEDAL EDEMA</h6>
<input style="border: 1px solid black;" class="formcontrol" type="text" name="pe"</pre>
                       </div>
                   </div>
                   <div class="col-md-4">
                       <div class="form-group">
                           <h6 style="color: rgb(0, 0, 0);">ANEMIA</h6>
<input style="border: 1px solid black;" class="formcontrol" type="text"</pre>
name="ane" >
```

```
</div>
         </div>
       </div>
       <input type="submit" class="btn btn-info btn-block"</pre>
value="Predict" >
     </form>
   </div>
 </div>
 <div class="col-md-2"></div>
</div> <br>
<h1 style="text-align: center" > Sample-Inputs in the Data Set</h1> <br>
<thead>
 age
  bp
  al
  su
  rbc
pc
  pcc
ba
  bgr
  bu
  sc
  pot
  wc
  htn
dm
  cad
  pe
  ane
scope="col">Disease
```

```
</thead>
24
 100
 2
 0
 1
 0
 1
 0
 136
 60
 1.9
 3.7
 9600
 1
1
 0
 0
 1
 Present
 68
 80
 3
 0
 0
 1
 0
 0
 157
 162
 9.6
 4.9
```

```
11000
 0
 0
 0
 Present
51
 0
 0
 0
 1
 0
 0
 0
 121
27
 0.8
 3.7
```

```
>0
```

7.3 Main.html

```
<!DOCTYPE html>
<html>
<head>
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <meta name="og:title" content="Kidney-Disease Prediction">
  <meta name="author" content="Venkata Sreeram">
  <meta name="og:image" content="static/logo1.png">
  <meta name="Keywords" content="Flask, Machine Learning, Deep Learning,</pre>
Artificial Intelligence, AI, ML,DL, Web Development">
  <meta name="description" content="A Machine Learning and Deep Learning based</pre>
webapp for Multiple Disease Prediction."> <title>Kidney Disease
Predictor</title>
  <link rel="icon" href="{{ url_for('static', filename = 'logo1.png') }}"</pre>
type="image/icon type">  Kidney Disease  <link rel="stylesheet"</pre>
href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"
integrity="sha384gg0yR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQU0hcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">
    <link href="https://cdnjs.cloudflare.com/ajax/libs/fontawesome/4.7.0/css/font-</pre>
awesome.min.css" rel="stylesheet"/>
    <link rel="canonical"</pre>
href="https://getbootstrap.com/docs/4.0/examples/sticky-footer/">
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"</pre>
integrity="sha384-
q8i/X+965Dz00rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
crossorigin="anonymous"></script>
    <script
src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"
integrity="sha384-
```

UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"

```
crossorigin="anonymous"></script>
    <script
src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"
integrity="sha384-
JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
crossorigin="anonymous"></script>
                html, body{
     <style>
height:100%; margin:0; } header{
height:50px;} footer{ height:75px;
background:black; }
body{
display:flex;
  flex-direction:column;
} footer{ padding:10px;
margin-top:auto; margin-
bottom: auto;
background-color:#6cc1c3 ;
} button{ border-radius:
13px; background-color:
bisque; border-color:
bisque; border-style:
hidden;
   }
button:hover {
  background-color: white;
  </style>
<body>
  <nav class="navbar navbar-expand-lg navbar-dark fixed-top bg-dark"</pre>
style="background-color: #6cc1c3 !important; ">
        <a style="text-decoration: none; font-family: fantasy; color: bisque"</pre>
href="{{ url_for('home') }}"><h1> KIDNEY DISEASE PREDICTION</h1></a>
```

```
<button class="navbar-toggler" type="button" data-toggle="collapse"</pre>
datatarget="#navbarNav" aria-controls="navbarNav" aria-expanded="false"
arialabel="Toggle navigation">
        <span class="navbar-toggler-icon"></span>
       <div class="collapse navbar-collapse" id="navbarNav">
        <button> <a href="{{ url_for('home') }}" class="nav-link"><h3</pre>
style="color: black; font-family: sansserif ">Home</h3></a></button>
           
          <br>
          <button><a class="nav-link" href="{{ url for('kidneyPage')}</pre>
}}"><h3 style=" color: black; font-family: sansserif;</pre>
">Predictor</h3></a></button>
           </div>
 </nav>
 <br>
<br>
<br>
<br>
 <div class="container-fluid" style="margin-bottom: 20px;">
 {% block content %}
 {% endblock %}
   </div>
 </main>
 <footer style="color: #6cc1c3;">
   <center>
     <a style="color: white;" target="blank">
PNT2022TMID40421 </a>
   </footer>
</body>
```

</html>

```
{% extends 'main.html' %}
{% block content %}
   <div class="row" style="margin-bottom: 477px;">
       <div class="col-md-3"></div>
       <div class="col-md-6">
           {% if pred == 1 %}
               <div class="jumbotron">
  <h1 class="display-4">You have a Kidney Disease !</h1>
  Please Consult the Doctor Immideately. It was too risky without
consultation. Make sure of health in your diet.
  <hr class="my-4">
 Proper Doctor Consultation Needed.
 <a class="btn btn-primary btn-lg" href="https://www.who.int/"</pre>
role="button">Learn more</a>
 </div>
           {% else %}
               <div class="jumbotron">
 <h1 class="display-4">Great! You are Healthy</h1>
 You are Absolutely Alright ! There is no Marks for Kidney
Disease. Enjot=y you life with full of Happiness.
  <hr class="my-4">
 >Be careful at your health. Nothing is important than your health.
<a class="btn btn-primary btn-lg" href="https://www.who.int/"</pre>
role="button">Learn more</a>
 </div>
           {% endif %}
           <div class="row">
               <div class="col-md-4"></div>
               <div class="col-md-4"><a href="{{ url for('home') }}" class="btn</pre>
btn-block btn-primary">Back to Home</a></div>
               <div class="col-md-4"></div>
           </div>
       </div>
       <div class="col-md-3"></div>
</div>
{% end block %}
```

App.py

```
from flask import Flask, render_template, request, flash, redirect import pickle import
numpy as np from PIL import Image from tensorflow.keras.models import load model
import requests
import json
# NOTE: you must manually set API_KEY below using information retrieved from your
IBM Cloud account.
API_KEY = "9G6L7fYYvmvpB0mI2kqJFm5LyfDvSdIakixARdY-LpZ7" token_response =
requests.post('https://iam.cloud.ibm.com/identity/token', data={"apikey":
API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'}) mltoken =
token_response.json()["access_token"]
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' + mltoken}
app = Flask(__name___)
def predict(values, dic):
                               if len(values)
== 18:
        model = pickle.load(open('models/scikit_model.pkl','rb'))
                                                                          values =
                           return model.predict(values.reshape(1, -1))[0]
np.asarray(values)
@app.route("/") def home():
    return render_template('home.html')
@app.route("/kidney", methods=['GET', 'POST']) def kidneyPage():
```

```
return render_template('kidney.html')
@app.route("/predict", methods = ['POST', 'GET']) def predictPage():
            if request.method == 'POST':
try:
           to_predict_dict = request.form.to_dict()
                                                                 to predict list = list(map(float,
list(to_predict_dict.values())))
                                             pred = predict(to_predict_list, to_predict_dict)
except:
       message = "Please enter valid Data"
                                                    return
render_template("home.html", message = message)
     return render template('predict.html', pred = pred)
if __name__ == '__main__': app.run(debug = True)
   # NOTE: manually define and pass the array(s) of values to be scored in the next line
#payload_scoring = {"input_data": [{"fields": [array_of_input_fields], "values":
[array of values to be scored, another array of values to be scored]}]} payload scoring =
{"input_data": [{"field": [['white blood cell count', 'blood urea', 'blood glucose random','serum
creatinine', 'packed cell volume',
'albumin', 'haemoglobin', 'age', 'sugar', 'ypertension']],
 "values": [[7800.0,36.0,121.0,1.2,44.0,1.0,15.4,48.0,0.0,1]]}]} response_scoring =
requests.post('https://ussouth.ml.cloud.ibm.com/ml/v4/deployments/b2d8555c-0595-43d8-
abda40bf8a6796d5/predictions?version=2022-11-09', json=payload_scoring,
headers={'Authorization': 'Bearer ' + mltoken}) print("Scoring response") predictions =
response_scoring.json() print(predictions)
```

```
import requests
# NOTE: you must manually set API KEY below using information retrieved from your
IBM Cloud account.
API KEY = "9G6L7fYYvmvpB0mI2kqJFm5LyfDvSdIakixARdY-LpZ7" token response =
requests.post('https://iam.cloud.ibm.com/identity/token', data={"apikey":
API_KEY, "grant_type": 'urn:ibm:params:oauth:grant-type:apikey'}) mltoken =
token response.json()["access token"]
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' +
mltoken}
# NOTE: manually define and pass the array(s) of values to be scored in the next line
#payload_scoring = {"input_data": [{"fields": [array_of_input_fields], "values":
[array of values to be scored, another array of values to be scored]}]} payload scoring =
{"input_data": [{"field": [['white blood cell count', 'blood urea', 'blood glucose
random','serum creatinine', 'packed cell volume',
'albumin', 'haemoglobin','age', 'sugar', 'ypertension']],
 "values": [[7800.0,36.0,121.0,1.2,44.0,1.0,15.4,48.0,0.0,1]]}]}
response scoring =
requests.post('https://ussouth.ml.cloud.ibm.com/ml/v4/deployments/b2d8555c-
0595-43d8-abda40bf8a6796d5/predictions?version=2022-11-09',
json=payload scoring, headers={'Authorization': 'Bearer ' + mltoken})
print("Scoring response") predictions = response_scoring.json()
print(predictions)
```

GitHub: https://github.com/IBM-EPBL/IBM-Project-18739-

<u>1659689147</u>

Demo Link: