Coxeter groups ou automatic

A-Ext ZEA* - "formal language" (set of words on A)

An automaton is a finite digraph with a designated start vertex, and edges latelled by elt of A.

It wognine the language

L= { words obtained by reading the edge labels of a path starting of "start"} Such an I is "legular"

Stort by a - Z={aba., bab. | n=0}

Theorem The language of reduced words in (W,S) is regular

For ws, >w: |f Neg (w) = { v, ..., vx} k=l(w) than Neg (wsi)={sid,..., sid, ai} the 1(wsi) Si Neg (w) U {di}

We could do this for W infinite, but the grouph would be infinite.

Instead, do this with: Let I=(small nots) < I Let Neg, (w)= { & E I | w \(\) < 0}

Claim For wsi>w, Nogz (WSi) = (Si Negz (W) U {di}) 1]

Verhier: Negz (w) Edger: a; \$5: (5:50 (a;)) 1 5, Nan Sz > (x, tdz, x2) Sz > (x2+d3, x3) > (d3+d1, d1 (Full pic in p. 118)

W= Ã2 &

I={d1, d2, d3, d, td2, d, + d3, d2+d3}

root paret:

Sidi=-di Si(diddj)=dj Sidj=ditdj

Silditale)= 2ditalitalitale

Note. In example, $Neg_{\mathbb{Z}}(S_1S_2) = Neg_{\mathbb{Z}}(S_1S_2S_3S_1S_2)$ Question. What can we say about the map $W \mapsto Neg_{\mathbb{Z}}(W)$ |mage?

Image?

There? (the sets {weW | Neg_(w) = S}, SEZ)

There may be open grestions.

o Claim - Thusem

Need: Si. Si reduced walk in graph Induction i, clear for i=0. Sup thre for i.

Si...Si Sin reduced Si...Si reduced
Si...Si din > 0

Sind walk Si,..,Si and

din ≠ last nock

walk Si...Si, Sin

· Proof of Claim

Lemma. Let $\alpha \in \mathbb{Z}$, $si\alpha \in \mathbb{Q}^+ \setminus \mathbb{Z}$ Let wsi>w. Then wsia>o. Pf flong We proud that in this substant on Six dominates &i.

Since waizo -> wsix>0. B

Then the daim follows because $\alpha \in \mathbb{Z} \\
\alpha \in \text{Neg}(ws_i) \rightarrow Si\alpha \notin \Phi^+ \backslash \mathbb{Z} \rightarrow \begin{cases} Si\alpha \in \Phi^- \rightarrow \kappa = \alpha_i \\ \text{or} \end{cases} \\
Si\alpha \in \mathbb{Z} \rightarrow Si\alpha \in \text{Neg}_w$

(the other inclusion is easy).

Note the subtlety:

allo Using Neg (w) gave an infinite graph.

Te (w)

(doo) Much

Sumple Using Nega(w) would make it finite,
roots De(w) but now Nega(wsi) doesn't
De(w) Just depend on Nega(w), si (little

small using Neg_ (w) > gave a finite graph and

Nega(w) and Si only.