Sparsity 2017 - Homework 2

Michał Szafraniuk

November 20, 2017

Problem 1 Let's slightly change the notation: let $\bot(v)$ be the σ -smallest vertex that is weakly r-reachable from v so that $D = \{\bot(v) : v \in V(G)\}$ and let D^* be any of the smallest r-dominating sets, i.e. $|D^*| = dom_r(G)$.

The proof that D is r-dominating set is trivial: every vertex v has its picked $\bot(v)$ in D and $\bot(v) \in WReach_r[v] \subseteq N_r[v]$. Now let's take any vertex $v \in V(G)$, then there exists some $x \in D^*$ such that $v \in N_r[x]$. We can assume that $x \neq v$. Now let's try to prove the following

Claim 1. $\perp(v) \in WReach_{2r}[x]$

Proof. We can assume that $\bot(v) \neq x$ and let's consider the path P in G between x and v: it has a length of at most r and no matter if either $x \leq_{\sigma} v$ or $v \leq_{\sigma} x$, the σ -smallest vertex of P cannot be smaller than $\bot(v)$ because otherwise it would contradict the way $\bot(v)$ was picked as such guy would be weakly r-reachable from v and smaller than $\bot(v)$. Now if $\bot(v)$ is internal vertex of P then $\bot(v) \in WReach_{r-1}[x] \subseteq WReach_{2r}[x]$. If it is not, then consider the path from x to v and then to $\bot(v)$: its length is at most 2r with all the internal vertices σ -greater than $\bot(v)$ thus $\bot(v) \in WReach_{2r}[x]$.

So given G, we can fix the smallest dominating set and then every vertex $v \in V(G)$ is mapped into one of the $dom_r(G)$ balls of that dominating set. If then we fix σ , then each vertex v can only pick its $\bot(v)$ from the set no bigger than $WReach_{2r}[x]$ meaning it has at most $wcol_{2r}(G,\sigma)$ options to do that. Hence $|D| \le wcol_{2r}(G,\sigma) \cdot dom_r(G)$

Problem 2 If $I_v = [a, b]$ then let $\kappa(v)$ denote the number of intervals that a belongs to. For fixed k, if $G \in \mathcal{I}_k$, then G excludes K_{k+1} as its subgraph and if $\kappa(v) = k$ then v belongs to some clique K_k in G. Let $\eta(r, k) := wcol_r(\mathcal{I}_k)$ and let also recursively specify $\xi(r, k)$ for $k, r \in \mathbb{N}$ as follows: $\xi(r, 1) = 1, \xi(1, k) = k - 1$ and $\xi(r, k) = \xi(r, k - 1) + \xi(r - 1, k)$. Then $\xi(r, k) = \binom{r+k-1}{r}$ by Pascal triangle. So if we succeed in showing that $\eta(r, k) \leq \xi(r, k)$ we are done.

If k=1 then \mathcal{I}_1 is the class of graphs with zero edges as no two intervals can overlap. Then $WReach_r[G,\sigma,v]=\{v\}$ for any σ,v,r so $\eta(r,1)=1$. If r=1 then $WReach_1[G,\sigma,v]\subseteq N_1[v]$ which is at most k-set by definition of \mathcal{I}_k (EDIT: this is actially not true but unofrtunately no time to figure out if it can be fixed), so $\eta(1,k)\leq k$. We conclude the boundary conditions hold.

Now let's fix $G \in \mathcal{I}_k$ and σ and let's try to prove the following

Claim 2. If $u \in WReach_r[G, \sigma, v]$ for some $u, v \in V(G)$ then $u \in WReach_{r-1}[G, \sigma, v]$ or $u \in WReach_r[\mathcal{A}(G), \sigma, v]$, where \mathcal{A} is an operation specified below.

Proof. Let P be a path witnessing $u \in WReach_r[G, \sigma, v]$. P is either simple by definition or can be made simple by cuting out the cycles. If the length of P is shorter than r then $u \in WReach_{r-1}[G, \sigma, v]$.

Otherwise assume $P = \langle v = v_1 \leadsto v_2 \leadsto ... \leadsto v_r = u \rangle$. For any graph input $G \in \mathcal{I}_k$, algorithm \mathcal{A} first marks the edges of P in G, then it destroys all the cliques K_t without touching P: this is always possible as P can use only k-1 edges from each K_t so \mathcal{A} just cuts one of the unused edges. \square

We can conclude that $\eta(r,k) \leq \eta(r-1,k) + \eta(r,k-1)$ and hence $\eta(r,k) \leq {r+k-1 \choose r}$