CONCOURS COMMUN POLYTECHNIQUE

EPREUVE SPECIFIQUE-FILIERE MP

MATHEMATIQUES 1

EXERCICE 1

a. Pour $n \in \mathbb{N}^*$,

$$\frac{1}{n(n+1)(n+2)} = \frac{1}{2} \frac{n+2-n}{n(n+1)(n+2)} = \frac{1}{2} \left(\frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)} \right).$$

Puis, pour $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \frac{1}{2} \sum_{k=1}^{n} (\frac{1}{k(k+1)} - \frac{1}{(k+1)(k+2)}) = \frac{1}{2} \left(\frac{1}{1 \times 2} - \frac{1}{(n+1)(n+2)} \right) \text{ (somme t\'elescopique)}.$$

On en déduit la convergence et la somme de la série proposée :

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}.$$

b. Pour $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} \frac{2^{k}}{(k-1)!} = 2 \sum_{k=1}^{n} \frac{2^{k-1}}{(k-1)!} = 2 \sum_{k=0}^{n-1} \frac{2^{k}}{k!},$$

et donc,

$$\sum_{n=1}^{+\infty} \frac{2^n}{(n-1)!} = 2e^2.$$

EXERCICE 2

a. f est continue par morceaux sur \mathbb{R} et 2π -périodique. On peut donc calculer ses coefficients de Fourier. Puisque f est paire, pour tout entier naturel non nul \mathfrak{n} , on a $\mathfrak{b}_{\mathfrak{n}}(f) = 0$ et pour tout entier naturel \mathfrak{n} , on a

$$a_n(f) = \frac{2}{\pi} \int_0^{\pi} t^2 \cos(nt) dt.$$

Ainsi, $a_0(f) = \frac{2}{\pi} \int_0^{\pi} t^2 dt = \frac{2\pi^2}{3}$ puis, pour $n \in \mathbb{N}^*$,

$$\begin{split} a_n(f) &= \frac{2}{\pi} \int_0^\pi t^2 \cos(nt) \ dt = \frac{2}{\pi} \left(\left[t^2 \frac{\sin(nt)}{n} \right]_0^\pi - \frac{2}{n} \int_0^\pi t \sin(nt) \ dt \right) = -\frac{4}{n\pi} \int_0^\pi t \sin(nt) \ dt \\ &= -\frac{4}{n\pi} \left(\left[-t \frac{\cos(nt)}{n} \right]_0^\pi + \frac{1}{n} \int_0^\pi \cos(nt) \ dt \right) = \frac{4}{n^2\pi} . \pi (-1)^n = \frac{4(-1)^n}{n^2}. \end{split}$$

Maintenant, la fonction f est 2π -périodique, continue sur \mathbb{R} , de classe C^1 par morceaux sur \mathbb{R} . D'après le théorème de DIRICHLET, la série de FOURIER de f converge vers f sur \mathbb{R} . En particulier, pour tout réel x de $[0,\pi]$,

$$f(x) = x^2 = \frac{a_0(f)}{2} + \sum_{n=1}^{+\infty} (a_n(f)\cos(nx) + b_n(f)\sin(nx)) = \frac{\pi^2}{3} + 4\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}\cos(nx).$$

http://www.maths-france.fr

b. x = 0 fournit

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12},$$

et $x = \pi$ fournit

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{1}{4} (\pi^2 - \frac{\pi^2}{3}) = \frac{\pi^2}{6}.$$

Mais alors,

$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{1}{2} (\sum_{n=1}^{+\infty} \frac{1}{n^2} - \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}) = \frac{1}{2} (\frac{\pi^2}{6} + \frac{\pi^2}{12}) = \frac{\pi^2}{8}.$$

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}, \quad \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \quad \text{et} \quad \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}.$$

c. Puisque f est continue par morceaux sur \mathbb{R} et 2π -périodique, la formule de Parseval fournit

$$\frac{a_0^2}{2} + \sum_{n=1}^{+\infty} (a_n^2 + b_n^2) = \frac{1}{\pi} \int_0^{2\pi} f^2(t) \ dt = \frac{2}{\pi} \int_0^{\pi} f^2(t) \ dt,$$

ou encore

$$\frac{2\pi^4}{9} + 16\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{2}{\pi} \int_0^{\pi} t^4 dt = \frac{2\pi^4}{5},$$

et donc,

$$\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

PROBLEME: Une introduction aux fonctions tests

- I. Découverte des fonctions tests.
- 1. Soit A une partie de \mathbb{R} .
 - Si \overline{A} est compacte, alors, \overline{A} est en particulier bornée. Puisque $A \subset \overline{A}$, A est aussi bornée.
- Réciproquement, si A est bornée, il existe R > 0 tel que $A \subset [-R, R]$. Mais alors $\overline{A} \subset \overline{[-R, R]} = [-R, R]$. On en déduit que \overline{A} est bornée. Comme d'autre part, \overline{A} est fermée, le théorème de BOREL-LEBESGUE permet d'affirmer que \overline{A} est compacte.

Finalement,

$$\forall \mathsf{A} \in \mathscr{P}(\mathbb{R}), \ (\mathsf{A} \ \mathsf{born\acute{e}e} \Leftrightarrow \overline{\mathsf{A}} \ \mathsf{compacte}).$$

- 2. Quelques exemples
- **a.** (Voir graphique page suivante)

 $\{x \in \mathbb{R}/\ u(x) \neq \underline{0}\} =]-2, 2[$ et donc $\mathrm{supp}(u) = [-2,2]$. Puisque]-2, 2[est borné, la question précédente permet d'affirmer que $\mathrm{supp}(u) =]-2, 2[$ est compact.

La fonction $\mathfrak u$ n'est dérivable en 2 ($\mathfrak u_{\mathfrak a}'(2)=-4$ et $\mathfrak u_{\mathfrak d}'(2)=0$). $\mathfrak u$ n'est donc pas une fonction test.

b. $\{x \in \mathbb{R} / \sin(x) \neq 0\} = \mathbb{R} \setminus \pi \mathbb{Z}$ et donc supp(sin) = \mathbb{R} . La fonction sin n'est pas à support compact et n'est donc pas une fonction test.

a. Montrons par récurrence que pour tout entier naturel k, il existe un polynôme P_k de degré $d_k = 2k$ tel que pour tout réel strictement positif $x, \, h^{(k)}(x) = P_k\left(\frac{1}{x}\right)e^{\frac{-1}{x}}.$

- ullet Le résultat est clair pour k=0 avec $P_0=1$ qui est bien un polynôme de degré $d_0=0=2\times 0$.
- \bullet Soit k > 0. Supposons le résultat établi pour l'entier k. Pour tout réel strictement positif x on a alors

$$h^{(k+1)}(x) = (h^{(k)})'(x) = \left(-\frac{1}{x^2}P_k'\left(\frac{1}{x}\right) + P_k\left(\frac{1}{x}\right).\left(-\frac{1}{x^2}\right)\right)e^{-\frac{1}{x}} = -\frac{1}{x^2}\left(P_k'\left(\frac{1}{x}\right) + P_k\left(\frac{1}{x}\right)\right)e^{-\frac{1}{x}} = P_{k+1}\left(\frac{1}{x}\right)e^{-\frac{1}{x}},$$

avec $P_{k+1} = -X^2(P_k + P_k')$. Tout d'abord, P_{k+1} est bien un polynôme. Ensuite, puisque P_k n'est pas le polynôme nul, le degré de $P_k + P_k'$ est le degré d_k de P_k . Mais alors $d_{k+1} = 2 + d_k = 2k + 2 = 2(k+1)$.

 $\mathrm{On\ a\ montr\'e\ par\ r\'ecurrence\ que\ }\forall k\in\mathbb{N},\ \exists P_k\in\mathbb{R}[X]/; \forall x\in\mathbb{R},\ h^{(k)}(x)=P_k\left(\frac{1}{x}\right)e^{-\frac{1}{x}}.\ \mathrm{De\ plus},\ \forall k\in\mathbb{N},\ \deg(P_k)=2k.$

Un théorème classique d'analyse dit que si f est une fonction continue sur [a, b] à valeurs dans \mathbb{R} , de classe \mathbb{C}^{∞} sur [a, b]telle que pour tout entier naturel non nul k $f^{(k)}$ a une limite réelle en a, alors f est de classe C^{∞} sur [a,b]. Ici,

- h est continue sur]0, $+\infty$ [et $\lim_{\substack{x\to 0\\x>0\\x>0}} h(x) = \lim_{\substack{x\to 0\\x>0\\x>0}} e^{-\frac{1}{x}} = 0 = h(0)$. Donc h est continue sur [0, $+\infty$ [.
- Pour tout entier naturel non nul k et tout réel strictement positif x, on a $h^{(k)}(x) = P_k\left(\frac{1}{x}\right)e^{-\frac{1}{x}}$ où P_k est un polynôme.Les théorèmes de croissances comparées permettent alors d'affirmer que pour tout entier naturel non nul k, $h^{(k)}(x)$ tend vers 0 quand x tend vers 0 par valeurs supérieures et en particulier $h^{(k)}$ a une limite réelle quand x tend vers 0 par valeurs supérieures.

On en déduit que h est de classe C^{∞} sur $[0, +\infty[$ et en particulier admet en 0 des dérivées à droite à tout ordre égales à 0. Comme h est également de classe C^{∞} sur $]-\infty,0]$ et que ses dérivées successives sur cet intervalle sont nulles, on a montré que

h est de classe C^{∞} sur \mathbb{R} .

b. Le support de h est $[0, +\infty[$. Donc h n'est pas une fonction test. Supposons par l'absurde que h est développable en série entière. Alors, il existe un réel r > 0 tel que pour tout réel $x \in]-r,r[,$

$$h(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n = 0.$$

h est donc nulle sur un intervalle ouvert non vide de centre 0, ce qui n'est pas. Donc h n'est pas développable en série entière.

 $\textbf{4.}\quad\textbf{a.}\ \operatorname{Soit}\ x\in\mathbb{R}.\ -(x-1)(x+1)>0\Leftrightarrow x\in]-1,1[.\ \operatorname{Donc}\ \operatorname{si}\ x\in]-\infty,-1]\cup[1,+\infty[,\ \phi(x)=0\ \operatorname{et}\ \operatorname{si}\ x\in]-1,1[.\ \operatorname{Donc}\ \operatorname{si}\ x\in]-\infty]$

$$\varphi(x) = e^{-\frac{1}{-(x-1)(x+1)}} = e^{\frac{1}{x^2-1}}.$$

$$\forall x \in \mathbb{R}, \ \phi(x) = \left\{ \begin{array}{l} e^{\frac{1}{x^2 - 1}} \operatorname{si} x \in] - 1, 1[\\ 0 \operatorname{si} x \in] - \infty, -1] \cup [1, +\infty[\end{array} \right.$$

Puisque la fonction $x \mapsto -(x-1)(x+1)$ est de classe C^{∞} sur \mathbb{R} à valeurs dans \mathbb{R} et que h est de classe C^{∞} sur \mathbb{R} , la fonction ϕ est de classe C^{∞} sur \mathbb{R} . Puisque de plus le support de ϕ est [-1,1] qui est un compact de \mathbb{R} ,

la fonction φ est une fonction test.

 φ est paire, croissante sur $]-\infty,0]$ et décroissante sur $[0,+\infty[$.

Graphe de la fonction φ

b. La fonction $x \mapsto h(-(x-3)(x-8))$ est une fonction test dont le support est [3,8]. La fonction $x \mapsto h(-(x-1)(x-2)) + h(-(x-5)(x-6))$ est une fonction test dont le support est $[1,2] \cup [5,6]$.

5. Soit f une fonction définie sur \mathbb{R} à support compact. Il existe un réel poisitif A tel que pour $x \in]-\infty, -A] \cup [A, +\infty[$, f(x) = 0. Mais alors $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = 0$.

6. Construction d'une suite régularisante

a. φ est continue sur $]-\infty,+\infty[$ et donc localement intégrable sur $]-\infty,+\infty[$. φ est nulle au voisinage de $-\infty$ et au voisinage de $+\infty$ et donc φ est intégrable au voisinage de $-\infty$ et au voisinage de $+\infty$. Finalement,

$$\varphi$$
 est intégrable sur] $-\infty$, $+\infty$ [.

 φ est une fonction continue, positive et non nulle sur $]-\infty,+\infty[$ et donc

$$\int_{-\infty}^{+\infty} \varphi(x) \ dx > 0.$$

Posons alors $I = \int_{-\infty}^{+\infty} \phi(x) \ dx$ puis $\rho = \frac{1}{I} \phi$. ρ vérifie toutes les conditions de l'énoncé.

b. Soit $n \in \mathbb{N}^*$. Pour $x \in \mathbb{R}$, $\rho_n(x) \neq 0 \Leftrightarrow n\rho(nx) \neq 0 \Leftrightarrow nx \in]-1,1[\Leftrightarrow x \in]-\frac{1}{n},\frac{1}{n}[$.

$$\forall n \in \mathbb{N}^*, \; \operatorname{supp}(\rho_n) = \left[-\frac{1}{n}, \frac{1}{n} \right].$$

Soit $n \in \mathbb{N}^*$. En posant t = nx, on obtient

$$\int_{-\infty}^{+\infty} \rho_n(x) \ dx = \int_{-\frac{1}{n}}^{\frac{1}{n}} \rho(nx) \ ndx = \int_{-1}^{1} \rho(t) \ dt = \int_{-\infty}^{+\infty} \rho(t) \ dt = 1.$$

$$\forall n \in \mathbb{N}^*, \ \int_{-\infty}^{+\infty} \rho_n(x) \ dx = 1.$$

II. Approximation uniforme sur \mathbb{R} par des fonctions de classe C^{∞} ou par des fonctions tests.

7. a. La suite de polynômes (P_n) converge uniformément sur $\mathbb R$ vers une certaine fonction f. On en déduit qu'il existe un entier N tel que, pour $n \ge N$, $\|P_n - f\|_{\infty} \le \frac{1}{2}$. Pour $n \ge N$, on a alors

$$\|P_n - P_N\|_{\infty} \le \|P_n - f\|_{\infty} + \|f - P_N\|_{\infty} \le \frac{1}{2} + \frac{1}{2} = 1.$$

b. Ainsi, pour $n \ge N$, le **polynôme** $P_n - P_N$ est borné sur $\mathbb R$ et donc est un polynôme constant C_n . La suite de polynômes constants $(C_n) = (P_n - P_N)$ converge vers $f - P_N$ qui est donc un polynôme constant C (car si pour tout x réel et tout $n \ge N$, $C_n(x) = C_n(0)$ alors en faisant tendre n vers $+\infty$, on obtient pour tout réel x, C(x) = C(0)).

Quand n tend vers $+\infty$ dans l'égalité $P_n = P_N + C_n$, on obtient $f = P_N + C$ et f est donc un polynôme.

Si une suite de polynômes (P_n) converge uniformément sur \mathbb{R} vers une fonction f, f est un polynôme.

8. a. Graphe de la fonction z_n .

Soient x un réel positif puis $n_0=E(x)+1$. Pour $n\geq n_0$, on a $n\geq E(x)+1>x$ et donc $z_n(x)=1$. On en déduit que $\lim_{n\to +\infty}z_n(x)=1$. Si maintenant x est un réel négatif, $\lim_{n\to +\infty}z_n(x)=\lim_{n\to +\infty}z_n(-x)=1$.

La suite de fonctions (z_n) converge simplement vers la fonction constante $x \mapsto 1$ sur \mathbb{R} .

 $\text{Maintenant, pour tout entier } n, \|z_n-1\|_{\infty}=1 \text{ et on n'a donc pas } \lim_{n\to+\infty}\|z_n-1\|_{\infty}=0.$

La suite de fonctions (z_n) ne converge pas uniformément vers sa limite sur $\mathbb R.$

b. Soit g une fonction continue sur \mathbb{R} et nulle à l'infini. Il existe un réel positif A tel que si |x| > A, $|g(x)| \le 1$. Mais la fonction g est continue sur le segment [-A,A] et donc bornée sur ce segment. Par suite, il existe un réel M tel que si $|x| \le A$, $|g(x)| \le M$.

Pour tout réel x on a alors $|g(x)| \leq Max\{1, M\}$. On a montré que

si g
 est nulle à l'infini, g est bornée sur $\mathbb R.$

 $\mathbf{c.} \ \mathrm{Soit} \ n \in \mathbb{N}. \ \mathrm{Puisque} \ \{x \in \mathbb{R}/\ |x| \geq n+1\} \subset \{x \in \mathbb{R}/\ |x| \geq n\}, \ \mathrm{on} \ \mathrm{a} \ \alpha_{n+1} \leq \alpha_{n}.$

La suite (α_n) est décroissante.

 $\mathrm{Soit}\ \epsilon>0.\ \mathrm{Puisque}\ g\ \mathrm{est}\ \mathrm{nulle}\ \grave{\mathrm{a}}\ \mathrm{l'infini},\ \mathrm{il}\ \mathrm{existe}\ A>0\ \mathrm{tel}\ \mathrm{que}\ \mathrm{si}\ |x|>A,\ |g(x)|<\frac{\epsilon}{2}.$

Soit alors $n_0 = E(A) + 1$. Pour tout réel x tel que $|x| \ge n_0$, on a $|g(x)| < \frac{\varepsilon}{2}$ et donc $\alpha_{n_0} \le \frac{\varepsilon}{2} < \varepsilon$. Mais alors, puisque la suite (α_n) est décroissante (et positive), pour $n \ge n_0$, on a $0 \le \alpha_n \le \alpha_{n_0} < \varepsilon$. On a montré que

$$\forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} / \; \forall n \in \mathbb{N}, \; (n \geq n_0 \Rightarrow 0 \leq \alpha_n < \varepsilon)$$

et donc que

$$\lim_{n\to +\infty}\alpha_n=0.$$

- **d.** Soient $n \in \mathbb{N}$ et $x \in \mathbb{R}$.
 - Si |x| < n, $|g_n(x) g(x)| = |g(x) g(x)| = 0 \le \alpha_n$.
 - Si $|x| \ge n + 1$, $|g_n(x) g(x)| = |g(x)| \le \alpha_n$.
 - Si $n \le |x| < n+1$, $|g_n(x) g(x)| = |(-|x| + n + 1)g(x) g(x)| = (|x| n).|g(x)| \le |g(x)| \le \alpha_n$.

Finalement, pour tout réel x on a $|g_n(x) - g(x)| \le \alpha_n$ et donc $||g_n - g||_{\infty} \le \alpha_n$.

$$\forall n \in \mathbb{N}, \ \|g_n - g\|_{\infty} \leq \alpha_n.$$

e. Soit $n \in \mathbb{N}$. Le support de g_n est contenu dans $\operatorname{supp}(z_n) = [-(n+1), (n+1)]$. Mais alors le support de g_n est borné est donc compact. De plus, g_n est continue sur \mathbb{R} en tant que produit de fonctons continues sur \mathbb{R} . Finalement

pour tout entier naturel n, g_n est continue sur \mathbb{R} à support compact.

D'après les questions c. et d., la suite $(\|g_n - g\|_{\infty})$ tend vers 0 quand n tend vers $+\infty$ et donc la suite de fonctions (g_n) converge uniformément sur $\mathbb R$ vers la fonction g.

On a montré que

Une fonction continue sur \mathbb{R} , nulle à l'infini est limite uniforme sur \mathbb{R} d'une suite de fonctions continues sur \mathbb{R} à support compact (A_1) .

9. a. Soit $x \in \mathbb{R}$. La fonction $h: t \mapsto g(t)f(x-t)$ est continue sur \mathbb{R} . Le support de h est contenu dans le support de g. On en déduit que h est nulle à l'infini et en particulier intégrable au voisinage de $+\infty$ et au voisinage de $-\infty$. Finalement

$$\forall x \in \mathbb{R}$$
, la fonction $t \mapsto g(t)f(x-t)$ est intégrable sur \mathbb{R} .

b. Soit $x \in \mathbb{R}$. Pour t réel donné, $-R \le x - t \le R \Leftrightarrow x - R \le t \le x + R$. La fonction $h: t \mapsto f(t)g(x-t)$ est continue sur \mathbb{R} et son support est contenu dans [x-R,x+R]. On en déduit de nouveau que h est nulle à l'infini et en particulier intégrable au voisinage de $+\infty$ et au voisinage de $-\infty$. Finalement

$$\forall x \in \mathbb{R}, \, \mathrm{la \,\, fonction} \,\, t \mapsto f(t)g(x-t) \,\, \mathrm{est \,\, int\'egrable \,\, sur} \,\, \mathbb{R}.$$

Soit $x \in \mathbb{R}$. En posant u = x - t, on obtient

$$(g * f)(x) = \int_{-\infty}^{+\infty} g(t)f(x-t) dt = \int_{-R}^{R} g(t)f(x-t) dt$$

$$= \int_{x+R}^{x-R} g(x-u)f(u) (-du) = \int_{x-R}^{x+R} g(x-u)f(u) du = \int_{-\infty}^{+\infty} f(u)g(x-u) du$$

$$= (f * g)(x).$$

Donc

$$f*g=g*f.$$

- 10. Support d'une convolution
- a. Soient x un réel strictement plus grand que R + S et t un réel.
 - Si |t| > R, on a g(t) = 0 et donc g(t)f(x t) = 0.
- Si $|t| \le R$, alors $-R \le t \le R$ puis $x R \le x t$. Mais alors x t > (R + S) R = S. On en déduit que f(x t) = 0 et donc encore une fois que g(t)f(x t) = 0.

Finalement, pour tout réel t on a g(t)f(x-t) = 0 et donc $g * f(x) = \int_{-\infty}^{+\infty} g(t)f(x-t) = 0$.

De même, soient x un réel strictement plus petit que -(R+S) et t un réel.

- Si |t| > R, on a g(t) = 0 et donc g(t)f(x t) = 0.
- Si $|t| \le R$, alors $-R \le t \le R$ puis $x t \le x + R < -(R + S) + R = -S$. On en déduit de nouveau que f(x t) = 0 et donc que g(t)f(x t) = 0.

Dans ce cas aussi g * f(x) = 0.

En résumé, f * g est nulle en dehors de [-(R+S), (R+S)] et donc

f*g est à support compact.

b. On prend pour f la fonction constante $x \mapsto 1$ et pour g la fonction z_0 . g est à support compact et f ne l'est pas. Pour tout réel x on a

$$f * g(x) = \int_{-\infty}^{+\infty} g(t)f(x-t) dt = \int_{-1}^{1} z_0(t) dt = 1.$$

f*g est la fonction constante $x\mapsto 1$ et n'est donc pas à support compact.

11. Dérivation d'une convolution

a. Soient \mathfrak{a} un réel strictement positif puis $\mathfrak{x} \in [-\mathfrak{a}, \mathfrak{a}]$.

Si t est un réel tel que t > a + R, alors $x - t < x - (a + R) \le a - (a + R) = -R$ et donc g(x - t) = 0. De même si t < -a - R, alors $x - t > x + a + R \ge -a + a + R = R$ et donc g(x - t) = 0. Mais alors

$$f * g(x) = \int_{-\infty}^{+\infty} f(t)g(x-t) dt = \int_{-\alpha-R}^{\alpha+R} f(t)g(x-t) dt.$$

- **b.** Soient a un réel strictement positif et $\Phi: [-a,a] \times [-a-R,a+R] \longrightarrow \mathbb{R}$. $(x,t) \longmapsto f(t)g(x-t) dt$
 - Pour tout réel x de [-a, a], la fonction $t \mapsto \Phi((x, t))$ est continue par morceaux sur [-a R, a + R].
- Puisque g est de classe C^1 sur \mathbb{R} , Φ admet une dérivée partielle par rapport à sa première variable sur $[-\alpha,\alpha] \times [-\alpha-R,\alpha+R]$. De plus pour $(x,t) \in [-\alpha,\alpha] \times [-\alpha-R,\alpha+R]$, on a

$$\frac{\partial \Phi}{\partial x}((x,t)) = f(t)g'(x-t).$$

- Pour tout réel x de $[-\alpha,\alpha]$, la fonction $t\mapsto \frac{\partial\Phi}{\partial x}((x,t))$ est continue par morceaux sur $[-\alpha-R,\alpha+R]$ et pour tout réel t de $[-\alpha-R,\alpha+R]$, la fonction $x\mapsto \frac{\partial\Phi}{\partial x}((x,t))$ est continue sur $[-\alpha,\alpha]$.
- D'après la question 5., une fonction à support compact est nulle à l'infini et d'après la question 8.b., une fonction continue sur $\mathbb R$ et nulle à l'infini est bornée sur $\mathbb R$. Les fonctions $\mathfrak g$ et $\mathfrak g'$ sont donc bornées sur $\mathbb R$ ($\mathfrak g'$ étant également continue sur $\mathbb R$ à support compact). D'autre part, $\mathfrak g$ est continue sur le segment $[-\mathfrak a-R,\mathfrak a+R]$ et en particulier est bornée sur ce segment. On en déduit que les fonctions Φ et $\frac{\partial \Phi}{\partial x}$ sont bornées sur $[-\mathfrak a,\mathfrak a]\times[-\mathfrak a-R,\mathfrak a+R]$. On note alors M_0 (resp. M_1) un majorant de la fonction $|\Phi|$ (resp. $\left|\frac{\partial \Phi}{\partial x}\right|$) sur $[-\mathfrak a,\mathfrak a]\times[-\mathfrak a-R,\mathfrak a+R]$ puis on note ϕ_0 : $t\longmapsto M_0$ et ϕ_1 : $t\longmapsto M_1$.

Les fonctions φ_0 et φ_1 sont continues, positives et clairement intégrables sur [-a-R,a+R] et pour $(x,t)\in [-a,a]\times [-a-R,a+R]$, on a

$$|\Phi((x,t))| \leq \phi_0(t) \quad \mathrm{et} \quad \left|\frac{\partial \Phi}{\partial x}((x,t))\right| \leq \phi_1(t).$$

En résumé

- $\bullet \ \forall x \in [-\alpha,\alpha], \ \text{la fonction} \ t \mapsto \Phi((x,t)) \ \text{est continue par morceaux sur} \ [-\alpha-R,\alpha+R] \ \text{et intégrable sur} \ [-\alpha-R,\alpha+R].$
- La fonction Φ admet sur $[-a,a] \times [-a-R,a+R]$ une dérivée partielle par rapport à sa première variable $\frac{\partial \Phi}{\partial x}$ vérifiant
 - $\text{-}\ \forall t\in [-\alpha-R,\alpha+R],\ \mathrm{la\ fonction}\ x\mapsto \frac{\partial\Phi}{\partial x}((x,t))\ \mathrm{est\ continue\ sur\ } [-\alpha,\alpha],$
 - $-\ \forall x \in [-\alpha,\alpha], \ \mathrm{la\ fonction}\ t \mapsto \frac{\partial \Phi}{\partial x}((x,t))\ \mathrm{est\ continue\ par\ morceaux\ sur\ } [-\alpha-R,\alpha+R],$
 - il existe une fonction φ_1 continue par morceaux, positive et intégrable sur [-a-R,a+R] telle que

$$-\ \forall (x,t) \in [-\alpha,\alpha] \times [-\alpha-R,\alpha+R], \ \left|\frac{\partial \Phi}{\partial x}((x,t))\right| \leq \phi_1(t).$$

http://www.maths-france.fr

D'après le théorème de dérivation des intégrales à paramètres (théorème de LEIBNIZ), f * g est de classe C^1 sur [-a, a] et pour tout réel x de [-a, a],

$$(f*g)'(x) = \int_{-\alpha-R}^{\alpha+R} \frac{\partial}{\partial x} \left(f(t)g(x-t) \right) \ dt = \int_{-\alpha-R}^{\alpha+R} f(t)g'(x-t) \ dt = \int_{-\infty}^{+\infty} f(t)g'(x-t) \ dt = f*g'(x).$$

Comme ce dernier résutat est valable pour tout réel strictement positif a, on a montré que

$$f * g$$
 est de classe C^1 sur \mathbb{R} et $(f * g)' = f * (g')$.

Il est alors clair par récurrence que si g est de classe C^{∞} sur \mathbb{R} , f * g est de classe C^{∞} sur \mathbb{R} et que pour tout entier naturel k, $(f * g)^{(k)} = f * (g^{(k)})$.

12. Application à l'approximation

 $\textbf{a. Soit } n \in \mathbb{N}^*. \text{ On rappelle que la fonction } \rho_n \text{ est positive et de classe } C^\infty \text{ sur } \mathbb{R}, \text{ que } \int_{-\infty}^{+\infty} \rho_n(t) \ dt = 1 \text{ et que } \sup (\rho_n) = \left[-\frac{1}{n}, \frac{1}{n}\right]. \text{ Soit alors } x \text{ un réel.}$

$$\begin{split} |f*\rho_n(x) - f(x)| &= \left| \int_{-\infty}^{+\infty} f(x-t) \rho_n(t) \ dt - f(x) \int_{-\infty}^{+\infty} \rho_n(t) \ dt \right| = \left| \int_{-\infty}^{+\infty} (f(x-t) - f(x)) \rho_n(t) \ dt \right| \\ &\leq \int_{-\infty}^{+\infty} |f(x-t) - f(x)| \rho_n(t) \ dt = \int_{-\frac{1}{n}}^{\frac{1}{n}} |f(x-t) - f(x)| \rho_n(t) \ dt. \end{split}$$

b. Soit $\varepsilon > 0$. Puisque f est uniformément continue sur \mathbb{R} ,

$$\exists \alpha > 0/, \ \forall (x,y) \in \mathbb{R}^2, \ (|x-y| < \alpha \Rightarrow |f(x) - f(y)| < \varepsilon.$$

Soient $n_0 = E\left(\frac{1}{\alpha}\right) + 1$ puis n un entier supérieur ou égal à n_0 et x un réel. On a déjà $n_0 > \frac{1}{\alpha}$ et donc $\frac{1}{n_0} < \alpha$. Mais alors, pour tout réel t de l'intervalle $\left[-\frac{1}{n},\frac{1}{n}\right]$, on a

$$|(x-t)-x| = |t| \le \frac{1}{n} \le \frac{1}{n_0} < \alpha.$$

On en déduit que

$$\begin{split} |f*\rho_n(x)-f(x)| & \leq \int_{-\frac{1}{n}}^{\frac{1}{n}} |f(x-t)-f(x)|\rho_n(t) \ dt \\ & \leq \int_{-\frac{1}{n}}^{\frac{1}{n}} \epsilon.\rho_n(t) \ dt = \epsilon \int_{-\frac{1}{n}}^{\frac{1}{n}} \rho_n(t) \ dt = \epsilon \int_{-\infty}^{+\infty} \rho_n(t) \ dt = \epsilon. \end{split}$$

On a montré que

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} / \forall x \in \mathbb{R}, \forall n \in \mathbb{N}, (n > n_0 \Rightarrow |f * \rho_n(x) - f(x)| < \varepsilon,$$

et donc que

la suite de fonctions $(f*\rho_{\mathfrak{n}})$ converge uniformément vers la fonction f sur $\mathbb{R}.$

D'autre part, chaque fonction ρ_n est de classe C^{∞} sur \mathbb{R} et donc d'après le résultat admis par l'énoncé (et puisque f est continue sur \mathbb{R}), chaque fonction $f * \rho_n$ est de classe C^{∞} sur \mathbb{R} .

c. Soit f une fonction continue sur \mathbb{R} à support compact. f est en particulier continue sur \mathbb{R} et nulle à l'infini et donc uniformément continue sur \mathbb{R} . D'après b., la suite $(f * \rho_n)$ est une suite de fonctions tests convergeant uniformément vers f sur \mathbb{R} .

toute fonction continue sur \mathbb{R} à support compact est limite uniforme sur \mathbb{R} d'une suite de fonctions tests (A_2) .

III. Théorème de Withney.

13. Soit f une fonction de classe C^{∞} sur \mathbb{R} . f est en particulier continue sur \mathbb{R} . Mais alors, puisque $Z(f) = f^{-1}(\{0\})$ et que le singleton $\{0\}$ est un fermé de \mathbb{R} , Z(f) est l'image réciproque d'un fermé de \mathbb{R} par une application continue sur \mathbb{R} et donc Z(f) est un fermé de \mathbb{R} .

Si f est de classe
$$C^\infty$$
 sur $\mathbb{R},\, Z(f)$ est un fermé de $\mathbb{R}.$

14. Une première tentative de preuve...infructueuse

Soit F une partie fermée et non vide de \mathbb{R} . Montrons que pour tout réel x, $d_F(x) = 0 \Leftrightarrow x \in F$.

Soit donc x un réel.

- $\bullet \text{ Si } x \text{ est dans } F, \text{ alors } 0 \leq d_F(x) = \inf_{y \in F} \lvert y x \rvert \leq \lvert x x \rvert = 0 \text{ et donc } d_F(x) = 0.$
- Si $d_F(x) = 0$, il existe une suite (y_n) d'éléments de F telle que la suite $(|x-y_n|)$ converge vers $d_F(x)$ c'est-à-dire 0. Ceci signifie encore que la suite (y_n) converge vers x. Mais F est fermée et la limite d'une suite convergente d'éléments de F appartient à F. On en déduit que $x \in F$.

Finalement

$$Z(d_F) = F.$$

Le théorème de Whitney serait alors démontré si la fonction d_F était de classe C^{∞} sur \mathbb{R} .

Représentons graphiquement la fonction d_F dans le cas particulier où $F=]-\infty,-1]\cup[1,+\infty[$. Soit $x\in\mathbb{R}$. Si $x\in]-\infty,-1]\cup[1,+\infty[$, on a $d_F(x)=0$. Si $x\in[-1,0],\ d_F(x)=d(x,-1)=x+1$ et si $x\in[0,1],\ d_F(x)=d(x,1)=1-x$. On obtient le graphique suivant :

La fonction d_F n'est pas dérivable en 0 et n'est donc pas de classe C^{∞} sur \mathbb{R} (mais est tout de même continue sur \mathbb{R}). Cette fonction n'est pas solution du problème posé.

- 15. Utilisation de fonctions tests
- (i) Soient a et b deux éléments de \overline{R} tels que a < b.

Si $\mathfrak a$ et $\mathfrak b$ sont réels posons pour tout réel $\mathfrak x$ $\phi_{\mathfrak a,\mathfrak b}(\mathfrak x)=\mathfrak h(-(\mathfrak x-\mathfrak a)(\mathfrak x-\mathfrak b))$ (où $\mathfrak h$ est la fonction étudiée à la question 3.).

- Si $a = -\infty$ et b est réel, posons $\varphi_{a,b}(x) = h(-(x-b))$.
- Si a est réel et $b = +\infty$, posons $\varphi_{a,b}(x) = h(x a)$.
- Si $a = -\infty$ et $b = +\infty$, posons $\phi_{a,b}(x) = e^x$.

Dans tous les cas, la fonction $\phi_{a,b}$ est une fonction de classe C^{∞} sur \mathbb{R} dont l'ensemble des zéros est le complémentaire dans \mathbb{R} de l'intervalle]a,b[.

(ii) Soient a, b, c et d quatre éléments de $\overline{\mathbb{R}}$ tels que $a < b \le c < d$. La fonction $\phi_{a,b} + \phi_{c,d}$ est une fonction de classe C^{∞} sur \mathbb{R} dont l'ensemble des zéros est le complémentaire de]a, $b[\cup]c$, d[.

16. Soit F une partie fermée de \mathbb{R} . Si F est vide, la fonction exponentielle est une fonction de classe C^{∞} sur \mathbb{R} dont l'ensemble des zéros est vide et donc égal à F. De même si $F = \mathbb{R}$, la fonction nulle est une fonction de classe C^{∞} sur \mathbb{R} dont l'ensemble des zéros est \mathbb{R} et donc égal à F.

Sinon F n'est pas vide et son complémentaire Ω ne l'est pas davantage. Puisque F est fermé, Ω est un ouvert de \mathbb{R} et peut donc s'écrire comme une réunion finie ou dénombrable d'intervalles ouverts disjoints : $\Omega = \bigcup_{k \in I}]a_k, b_k[$, où I est une partie de \mathbb{N} .

Si I est fini, quite à renuméroter, on peut supposer que $\Omega = \bigcup_{k=0}^n]\alpha_k, b_k[$ et la fonction $\sum_{k=0}^n \phi_{\alpha_k,b_k}$ est une fonction de classe C^{∞} sur $\mathbb R$ dont l'ensemble des zéros est le complémentaire de Ω .

Si I est infini, quite à renuméroter, on peut supposer que $\Omega = \bigcup_{k \in \mathbb{N}}]a_k, b_k[$. Pour $n \in \mathbb{N}$, posons pour alléger $\phi_n = \phi_{]a_n,b_n[}$.

La première idée qui consiste à choisir $\sum_{n=0}^{+\infty} \varphi_n$ ne fonctionne pas car il n'y a aucune raison que cette série de fonctions converge.

On peut améliorer en choisissant la fonction $\sum_{n=0}^{+\infty} \frac{1}{2^n} \phi_n$ car, les fonctions $|\phi_n|$ sont majorées par 1 de sorte que cette série converge normalement sur \mathbb{R} , mais cela n'assure pas encore la possibilité de dériver terme à terme indéfiniment. Il faut encore améliorer.

Soit $n \in \mathbb{N}$.

Si l'intervalle $]a_n, b_n[$ est borné, on sait que la fonction ϕ_n est de classe C^{∞} sur \mathbb{R} à support compact. On en déduit que chaque $\phi_n^{(k)}$ est définie et bornée sur \mathbb{R} .

Si $]a_n, b_n[=]-\infty, b_n[$. D'après la question 3., chaque $\varphi_n^{(k)}$ admet une limite réelle quand x tend vers $-\infty$ et quand x tend vers b_n . Puisque φ_n est continue sur \mathbb{R} et nulle sur $[b_n, +\infty[$, encore une fois, chaque $|\varphi_n^{(k)}|$ est bornée sur \mathbb{R} . Il en est de même, si $]a_n, b_n[=]a_n, +\infty[$.

Dans tous les cas, pour tout entier k, $\|\phi_n^{(k)}\|_{\infty}$ existe et est un réel strictement positif (car ϕ_n n'est pas un polynôme).

Pour n entier naturel donné, considérons alors λ_n un réel strictement positif tel que, $\forall k \in [0,n], \|\lambda_n \phi_n^{(k)}\|_{\infty} \leq \frac{1}{2^n}$. On peut prendre par exemple

$$\lambda_n = \frac{1}{2^n \underset{0 \leq k < n}{\operatorname{Max}} (\|\phi_n^{(k)}\|_{\infty})}.$$

 $\mathrm{Pour}\; n \geq k, \, \mathrm{on}\; \mathrm{a}\; \|\lambda_n \phi_n^{(k)}\|_{\infty} \leq \frac{1}{2^n}.\; \mathrm{Ceci\; montre\; que\; la\; série\; de\; fonctions}\; \left(\sum_{i=k}^n \lambda_i \phi_i^{(k)}\right)_{n \geq k} \; \mathrm{est\; normalement\; convergente}$

 $\sup \mathbb{R} \text{ et donc (par récurrence sur k) que la fonction } \sum_{n=0}^{+\infty} \lambda_n \phi_n \text{ est pour tout k, de classe } C^k \text{ sur } \mathbb{R} \text{ avec } \left(\sum_{n=0}^{+\infty} \lambda_n \phi_n\right)^{(k)} = \sum_{n=0}^{+\infty} \lambda_n \phi_n$

$$\sum_{n=0}^{+\infty} \lambda_n \varphi_n^{(k)}$$

Enfin, puisque les λ_n sont strictement positifs et que les fonctions φ_n sont positives, on a pour tout réel x

$$\sum_{n=0}^{+\infty} \lambda_n \phi_n(x) = 0 \Leftrightarrow \forall n \in \mathbb{N}, \ \phi_n(x) = 0 \Leftrightarrow x \in F.$$

 $\sum_{n=0}^{+\infty} \lambda_n \phi_n \text{ est une fonction de classe } C^\infty \text{ sur } \mathbb{R} \text{ dont l'ensemble des zéros est } F. \text{ Le théorème de Withney est démontré.}$