Red-Net: Investigating The Generalizability of Color Features

Aimee Johnston

Background and Question

- Can convolutional neural networks learn to generalize features across an image space?
- Does size of a feature matter?
- Can a CNN trained to recognize red objects in the foreground of an image also recognize red objects in the background?

Why red?

 CNNs have been shown to exhibit hierarchical color processing that makes them prefer red (Hickey and Zhang 2020)

1A: No Red

1C: Background Red

1B: Foreground Red

1D: Excluded Image

Dataset

- 850 images pulled from CIFAR-100 dataset
- Hand-labelled into 3 categories
- 61 with red in foreground
- 39 with red in background
- 34 excluded images for 816
- Images are 32x32 pixels
- Split into "train" and "test" sets

Figure 1

Building the Model

- Used keras library
- Wanted to keep the structure simple to avoid learning unnecessary complex features
- In order to validate accuracy metrics,
 ran the same experiment using a varied
 number of convolutional filters

Model: "sequential_72"		
Layer (type)	Output Shape	Param -
conv2d_71 (Conv2D)	(None, 25, 25, 4)	772
<pre>max_pooling2d_69 (MaxPooli ng2D)</pre>	(None, 12, 12, 4)	0
flatten_69 (Flatten)	(None, 576)	0
dense_68 (Dense)	(None, 2)	1154
re_lu_65 (ReLU)	(None, 2)	0
softmax_68 (Softmax)	(None, 2)	0
Total params: 1926 (7.52 KB) Trainable params: 1926 (7.52 KB) Non-trainable params: 0 (0.00 Byte)		

Figure 2: Sample Model Schema for 4 convolutional filters

Figure 3

- Trained with foreground red objects as target
 (blue line)
- Tested on background red objects (orange line)
- Averaged accuracy across epochs
- Seems to confirm generalizability

Figure 4

- Reversed training and test sets
- Trained on background red objects (blue line)
- Tested on foreground (orange line)
- More inconsistent, but still showed better performance for background objects

Figures 3 and 4

Hypothesis confirmed?

Results seem to indicate that the task is generalizable

Potential Confounding Factors and Next Steps

- Coarse images only require a few red pixels to inhabit the foreground
- Convolutions are close in size to image
- Small dataset with subjective labelling
- Did not pad images before applying convolutional filter
- Examine convolutional filter activations
- Train on grayscale images where only color is red
 - Test on full color images to detect red objects

Questions?

https://github.com/ak-johnston/Vision-Final/