視覚と行動の end-to-end 学習により 経路追従行動を模倣する手法の提案

(経路選択の成功率向上を意図したネットワークの変更と実験的評価)

21C1011 石黒巧

A proposal for an imitation method of path-tracking behavior by end-to-end learning of vision and action

(Modification of network and experimental evaluation aimed at improving route selection success rate)

Takumi ISHIGURO

Recent research explores navigation using camera images. Okada et al. proposed a method based on end-to-end imitation learning, mimicking navigation with a metric map and enabling path following via visual input. Haruyama et al. extended this by combining scenario-based navigation and pathway classification, allowing robots to reach destinations. However, their approach was limited to scenarios in specific areas, lacking validation in diverse environments. This study investigates navigation feasibility in untested scenarios using an improved network and a combined online and offline training method. Experiments confirmed navigation success even in challenging, unverified areas.

Key Words: autonomouse mobile robot, end-to-end learning, navigation

1. 緒 言

近年,ロボットにおけるカメラ画像を用いたナビゲーションの研究が進んでいる.本研究室の岡田ら(1) はメトリックマップベースの経路追従行動を endto-end 学習を用いて,模倣学習することで,視覚に基づくナビゲーション手法を提案した.また,春山ら(2) はカメラ画像とシナリオに基づいて,目的地まで経路追従するシステムを提案している.この手法は岡田らの手法をベースに,カメラ画像から通路の種類を分類し,シナリオに基づいて経路を選択する機能を追加している.春山らは,島田ら(4) が作成したシナリオから 7 例を選定し,目的地まで到達できることを確認している.選定外のシナリオでは地面の色が変化したり広場などを通過したりするため,視覚に基づいて経路追従するのがより困難な環境の可能性がある.

そこで本論文では,島田らが作成したシナリオの中で,春山らが検証していないシナリオについて,目的地まで経路追従できるかを確認する.また,経路

追従の成功率を向上させるための改良も行う.

2. 視覚に基づいて目的地まで 経路追従するシステム

春山らの手法 $^{(2)}$ の概要を図1に示す.システムは,

- 1. シナリオを分解し「条件」と「行動」を抽出す るシナリオモジュール
- 2. カメラ画像と目標方向を与えることで,経路を追従する経路追従モジュール
- 3. カメラ画像から通路の特徴を分類する通路分類 モジュール

の3つから構成される.まずは人間が目的地に応じた「条件」と「行動」のシナリオを作成する.シナリオによってシナリオモジュールが指示を抽出し,経路追従モジュールが行動を実行する.通路分類モジュールが条件達成を検出し,次の行動に遷移する.

3. 機能の改善

経路追従モジュールに関して,経路追従の可能性 を向上させるために2点変更を加えた.

指導教員: 林原靖男教授

Fig. 1 Overview of proposed system by haruyama and others(Quoted from⁽²⁾)

3・1 ネットワークの変更 Felipe ら ⁽³⁾ の先行研究を基に,図 2 に示すコマンドでモデルを分岐する形式のネットワークを構築した.

Fig. 2 Branched network

3・2 オフライン学習の併用 学習量を増やすため事前に取得したデータを使用し追学習を行う.

4. 実験

春山らが未検証のシナリオに関しても,ロボットが目的地へ到達可能であるか検証する.

4・1 実験装置 図3に実験に使用するロボットを示す.また,実験は千葉工業大学津田沼キャンパス2号館3階で行う.

Fig. 3 Experimental setup

4・2 実験方法 訓練時にはオンライン学習を行いながら,すべての三叉路に侵入,脱出を行うルートを1周走行する.次に作成したモデルに追加でオフライン学習を行う.オフライン学習のデータセット

にはオンライン学習の際に作成したルート 1 周分の データを使用し, epoch 数は 20 とした.

訓練後,ロボットが目的地まで到達できるか確認する.実験では,ロボットをシナリオのスタート地点,向きに配置し,シナリオを1例ずつ入力する.壁に衝突することなく正しい経路を選択し,目的地で停止した場合に成功とする.

4・3 実験結果 シナリオ 28 例中,24 例の成功を確認した.失敗した場合では曲がり角で曲がることができなかった.原因として,通路分類モジュールの出力に遅れがあることが挙げられる.解析の結果,経路追従モジュールへ目標方向を与えるタイミングが遅いため,曲がれないことを確認した.

5. 結 言

春山らの先行研究では走行が確認されていないシナ リオでも目的地まで経路追従できることを確認した.

文 献

- [1] 岡田眞也,清岡優祐,上田隆一,林原靖男 . "視覚と行動の end-to-end 学習により経路追従行動をオンラインで模倣する 手法の提案",計測自動制御学会 SI 部門講演会 SICE-SI2020 予稿集,pp.1147-1152(2020).
- [2] 春山健太,藤原柾,馬場琉生,石黒巧,上田隆一,林原靖男 . "視覚と行動の end-to-end 学習により経路追従行動をオン ラインで模倣する手法の提案 - トポロジカルマップとシナリ オに基づく経路選択機能の追加と検討-", 計測自動制御学会 SI 部門講演会 SICE2023 予稿集, pp.1B4-03(2023).
- [3] F. Codevilla, M. Müller, A. López, V. Koltun, A. Dosovitskiy: "End-to-end Driving via Conditional Imitation Learning", arXiv preprint, arXiv:1710.02410 (2018), https://arxiv.org/abs/1710.02410.
- [4] 島田滉己,上田隆一,林原靖男,"トポロジカルマップを用いたシナリオによるナビゲーションの提案 -シナリオに基づく実ロボットのナビゲーション-",計測自動制御学会 SI 部門講演会 SICE2020 予稿集,pp.1H2-04(2020).