Proteomics Informatics – Overview of Mass spectrometry (Week 2)

Peptide Fragmentation

Liquid Chromatography (LC)-MS/MS

Ion Sources

Electrospray

Matrix Assisted Laser Desorption Ionization (MALDI)

alpha-cyano-4-hydroxycinnamic acid

Detectors

Electron Multiplier Detector

Image Current Detector

Mass Analyzers

Mass Spectrometry (MS)

$$\overline{F} = m\overline{a} = m\frac{dv}{dt} = z(\overline{E} + v \times \overline{B})$$

$$\sqrt{}$$

$$\frac{m}{z} \frac{d\overline{v}}{dt} = \overline{E} + \overline{v} \times \overline{B}$$

Time-of-Flight Mass Spectrometry

Magnetic Sector

$$\overline{F} = \frac{mv^{2}}{R} = zvB$$

$$zV = \frac{mv^{2}}{2}$$

$$R = \sqrt{\frac{m}{z}} \sqrt{\frac{2V}{B}}$$

Quadrupole Mass Filter

Ion Trap

Fourier transform ion cyclotron resonance

$$\overline{F} = \frac{mv^2}{R} = zvB$$

$$\bigcup_{R}$$

$$\frac{m}{z} = \frac{R}{v}B = \frac{B}{\omega}$$

Orbitrap

Characteristic frequencies:

- Frequency of rotation ω_φ
- Frequency of radial oscillations ω,
- Frequency of axial oscillations ω,

$$\omega_r = \omega_z \sqrt{\left(\frac{R_m}{R}\right)^2 - 2}$$

$$\omega_z = \sqrt{\frac{k}{m/z}}$$

Quadrupole Time-of-Flight Mass Spectrometer

Triple Quadrupole

Linear Ion Trap / Orbitrap

Data Independent Acquisistion

Data Dependent Acquisistion

Vacuum System

Mass Spectrometry Data

Mass Spectrometry Data

Dimensions:

Time
Peptide m/z
Peptide Intensity
Petide fragment m/z
Peptide fragment intensity

• • •

Example data - MALDI-TOF

Peptide intensity vs m/z

Example data - ESI-LC-MS/MS

Slice - Scalable Data Sharing for Remote Mass Informatics

Developed by Manor Askenazi Slice.ionomix.com

Most mass spectrometry data is acquired in discovery mode, meaning that the data is amenable to open-ended analysis as our understanding of the target biochemistry increases. In this sense, mass spectrometry based discovery work is more akin to an astronomical survey, where the full list of object-types being imaged has not yet been fully elucidated, as opposed to e.g. micro-array work, where the list of probes spotted onto the slide is finite and well understood.

fenyolab.ionomix.com

Peptide intensity vs time
For 737.707 m/z which corresponds to
3+ of LGEHNIDVLEGNEQFINAAK

Fragment intensity vs m/z
For 3+ of LGEHNIDVLEGNEQFINAAK

Fragment intensity vs m/z
For 3+ of LGEHNIDVLEGNEQFINAAK

Peptide intensity vs m/z

Peptide intensity vs m/z

Peptide intensity vs time

ASTHTDSSAQTVSLEDYVSR 3+ in E. coli

DTTTIIDGVGEEAAIQGR 2+ in E. coli

ATGTSEMAPALVAAFGGK 2+ in E. coli

FVPDTQAPLGIR 2+ in E. coli

Proteomics Informatics – Overview of Mass spectrometry (Week 2)

