Advanced Calculus II: Assignment 1

Chris Hayduk

February 9, 2020

Problem 1.

a)

b) Let $D_f \subset \mathbb{R}^n$ and let $f: D_f \to \mathbb{R}^m$. Also let $a \in D_f$.

Suppose f is continuous at a and suppose $||\cdot||_{n_1}, ||\cdot||_{m_1}$ are norms on \mathbb{R}^n and \mathbb{R}^m respectively.

Thus, by the definition of continuity, for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $x \in D_f$ with $||x - a||_{n_1} < \delta$, then $||f(x) - f(a)||_{m_1} < \epsilon$.

By part (a), for any other arbitrary norms $||\cdot||_{n_2}, ||\cdot||_{m_2}$ on \mathbb{R}^n and \mathbb{R}^m , we have that

$$C_{n1}||x-a||_{n1} \le ||x-a||_{n2} \le C_{n2}||x-a||_{n1}$$

$$C_{m1}||f(x)-f(a)||_{m1} \le ||f(x)-f(a)||_{m2} \le C_{m2}||f(x)-f(a)||_{m1}$$

for $C_{n1}, C_{n2}, C_{m1}, C_{m2} > 0$ and for every $x \in \mathbb{R}^n, f(x) \in \mathbb{R}^m$.

Hence, $||x - a||_{n_1} < \delta \implies C_{n_2} ||x - a||_{n_1} < C_{n_2} \delta \implies ||x - a||_{n_2} < C_{n_2} \delta$ for every $x \in \mathbb{R}^n$.

In addition, the reverse is true. We can see that if $||x-a||_{n^2} < C_{n^2}\delta$, then we have that

$$\frac{1}{C_{n2}}||x-a||_{n2} < \delta$$

$$\Longrightarrow$$