Design and Analysis of Algorithms: Homework #2

Due in class on February 15, 2018

Professor Kasturi Varadarajan

Alic Szecsei

Suppose we are given an array A[1..n] with the special property that $A[1] \ge A[2]$ and $A[n-1] \le A[n]$. We say that an element A[x] is a *local minimum* if it is less than or equal to both its neighbors, or more formally, if $A[x-1] \ge A[x]$ and $A[x] \le A[x+1]$. For example, there are six local minima in the following array:

Table 1: Example array

We can obviously find a local minimum in O(n) time by scanning through the array. Describe and analyze an algorithm that finds a local minimum in $O(\log n)$ time. [Hint: With the given boundary conditions, the array **must** have at least one local minimum. Why?]

Suppose we are given two sorted arrays A[1..n] and B[1..n] and an integer k. Describe an algorithm to find the kth smallest element in the union of A and B in $\Theta(\log n)$ time. For example, if k=n, your algorithm should return the smallest element of $A \cup B$; if k=n, your algorithm should return the median of $A \cup B$. You can assume that the arrays contain no duplicate elements. [Hint: First solve the special case k=n.]

For this problem, a *subtree* of a binary tree means any connected subgraph. A binary tree is *complete* if every internal node has two children, and every leaf has exactly the same depth. Describe and analyze a recursive algorithm to compute the *largest complete subtree* of a given binary tree. Your algorithm should return the root and the depth of this subtree.

Figure 1: The largest complete subtree of this binary tree has depth 2.

- 1. Let A[1..m] and B[1..n] be two arbitrary arrays. A common subsequence of A and B is both a subsequence of A and a subsequence of B. Give a simple recursive definition for the function lcs(A,B), which gives the length of the longest common subsequence of A and B.
- 2. Call a sequence X[1..n] oscillating if X[i] < X[i+1] for all even i, and X[i] > X[i+1] for all odd i. Give a simple recursive definition for the function los(A), which gives the length of the longest oscillating subsequence of an arbitrary array A of integers.
- 3. Call a sequence X[1..n] accelerating if $2 \times X[i] < X[i-1] + X[i+1]$ for all i. Give a simple recursive definition for the function lxs(A), which gives the length of the longest accelerating subsequence of an arbitrary array A of integers.