1 Streszczenie

Język programowania Python zdobywa coraz większą popularność w fizyce obliczeniowej. Jedną z najbardziej intensywnych obliczeniowo dziedzin fizyki jest symulacyjna fizyka plazmy, czyli układów wielu cząstek obdarzonych ładunkiem elektrycznych. Przykładowym rodzajem algorytmu symulacyjnego w tej dziedzinie jest metoda particle-in-cell ("cząstka w komórce"). Niniejsza praca podejmuje próbę przetestowania możliwości Pythona wykorzystującego obliczenia macierzowe w tych zastosowaniach.

W tym celu utworzono jednowymiarowy kod symulacyjny Particle-in-Cell mający modelować interakcję relatywistycznej plazmy wodorowej oraz impulsu laserowego. Kod zoptymalizowano poprzez wykorzystanie ogólnodostępnych bibliotek wywołujących niskopoziomowe procedury numeryczne do osiągnięcia wysokiej wydajności obliczeniowej. Na jego podstawie napisano również analogiczny program w języku C++ dla porównania wydajności.

Uzyskany program zwraca dobre jakościowo wyniki, zbliżone do rezultatów z istniejących symulacji i spodziewanych wyników teoretycznych dla symulacji elektrostatycznych oraz dla symulacji interakcji tarczy wodorowej z wiązką laserową na bazie symulacji eksperymentów z Instytutu Fizyki Plazmy i Laserowej Mikrosyntezy.

Przeprowadzono analizę wydajności i skalowania programu w obu wersjach w funkcji liczby cząstek. Jak pokazują benchmarki, implementacja w Pythonie mimo prób optymalizacji w wybranym paradygmacie wysokopoziomowych obliczeń macierzowych uzyskuje wyniki zadowalające, lecz gorsze niż reimplementacja w C++ przy kompilacji z optymalizacją o rząd wielkości w kwestii szybkości obliczeń.