Mathematische Bildverarbeitung Vorlesungsskript

Institut für Mathematik Vorlesung von Prof. Dr. Marko Lindner In LATEXgesetzt durch Jonas Sattler

Fehlermeldungen an fabian.gabel@tuhh.de

Wintersemester 2018/19

Inhaltsverzeichnis

1	Übe	rblick	2
	1.1	Techniken der Bildverarbeitung	2
	1.2	Unser Fokus	2
	1.3	Verwandte Vorlesungen	2
	1 4	Literatur	2

1 Überblick

1.1 Techniken der Bildverarbeitung

- Kontrastverbesserung
- Entrauschen
- Kantendetektion
- Schärfen
- Inpainting
- Segmentierung (Einzelne Objekte detektieren)
- Registrierung (Bilder des selben Objektes in Einklang bringen)

1.2 Unser Fokus

• Mathematische Beschreibung

1.3 Verwandte Vorlesungen

- 3D Computervision
- Digitale Bildanalyse
- Mustererkennung und Datenkompression
- Medical imaging

1.4 Literatur

- Bredies, Lorenz : Mathematische Bildverarbeitung
- Aubert, Kornprobst : Mathematical Problems in Image Processing
- Modersitzki : Numerical Methods for Image Registration
- Alt : Lineare Funktionalanalysis

2 Was ist ein Bild?

2.1 Definition

Digitale/diskrete Sicht

Abbildung 1: Diskretes Bild Darstellung als Matrix.

Werkzeuge: Lineare Algebra Vorteile: Endlicher Speicher

Nachteile: Probleme bei zoomen und drehen

Kontinuierlich/analoge Sicht

Abbildung 2: Kontinuierliches Bild Darstelllung als Funktion in zwei Veränderlichen

Werkzeuge: Analysis

Vorteile: Mehr Freiheit (z.b. Kante=Linie

entlang einer Unstetigkeit)

Nachteile: Unendlicher Speicher

Definition. Ein <u>Bild</u> ist eine Funktion $u: \Omega \to F$, wobei $\Omega \subset \mathbb{Z}^d$ (im diskreten Fall) oder $\Omega \subset \mathbb{R}^d$ (im kontinuierlichen Fall).

d=2: Typisches 2D Bild

d=3: 3D-Bild bzw. "Körper" <u>oder</u> Video: 2D Ort + Zeit

F ist der Farbraum, Beispiele:

- F = [0, 1] oder $F = \{0, 1, ..., 255\}$, Graustufen
- $F = \{0, 1\}$ schwarz/weiß
- $F = [0, 1]^3$ oder $F = \{0, 1, ..., 255\}^3$ Farbbilder

2.2 Umwandlung

 $\textbf{Kontinuierlich} \rightarrow \textbf{Diskret:}$

- ullet Ω in Gitter zerlegen
- Jede Box durch nur einen Farbwert approximieren
- Etwa durch den Funktionswert im Mittelpunkt der Box
- • oder durch den Mittelwert in der Box: $\frac{1}{|B_i|} \cdot \int_{B_i} u(x) dx$

 $Diskret \rightarrow Kontinuierlich:$

- 1. Idee: Jeder Punkt der Box B_i erhält den Funktionswert von B_i als Farbwert
 - ⇒ Nearest neighbour Interpolation .
- 2. Idee: Mittelpunkt von Box B_i erhält den Wert von Pixel B_i sonst wird interpoliert. Grauwert g := Gewichtetes Mittel aus Grauwerten a, b, c, d.

$$g = (1-\alpha)(1-\beta)a + \alpha(1-\beta)b + (1-\alpha)\beta c + \alpha\beta d$$
 Dieses wird **Bilineare Interpolation** genannt.

2.3 Beispiel Rotation

1. Fall, kontinuierliches Bild

Sei u das alte Bild und v das neue Bild, dann ist die Drehung gegeben durch eine **Drehmatrix**:

$$D_{\varphi} \in \mathbb{R}^{d \times d}, D_{\varphi} = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$$

Damit folgt, dass $D(u) = D_{\varphi}\Omega$ und $v(x) = u(\underbrace{D_{\varphi}^{-1}x}_{\in \Omega}) = u(D_{-\varphi}x)$. (D(u) ist die **Domain** von u)

2. Fall, diskretes Bild

Dieses ist problematisch, denn i.A. $x \in \mathbb{Z}^d$, aber $D_{\varphi} x \notin \mathbb{Z}^d$.

Weiterhin ist $v(x)=u(D_{\varphi}^{-1}x)$, wobei der konkrete Wert durch Interpolation bestimmt wird.

Index

H^1 deblurring, 42	Isodata Algorithmus, 10
L^2 deblurring, 42	Isotrop, 31
öffnen, 14	
Abreißen, 35 Absoluter Fehler, 15 affin-linear, 48	Kohärentsrichtung, 45 Kohärenz verstärkende Diffusion, 46 Kopplungskonstante, 33 Korrelation, 17
anisoptrop, 31	Landmarks, 53
Banachraum, 24 Beleuchtungsausgleich, 47 Bilateraler Filter, 32 Bild, 4	Laplace-Schärfen, 37 Laplacian of Gaußian method, 37 Lineare Regression, 48
Bilineare Interpolation, 5	Maske, 17
bimodal, 9	Masse, 10
Canny-Algorithmus, 35	Median, 10
D: 1	Merkmale, 53
Dichte, 7	Mittelwert, 10
Diffusionsgleichung, 29	Morphographische Operationen, 11
Diffusionstensor, 31 dilation, 12	Mumford-Shah-Funktional, 52
Dirac-Impuls, 20	Nearest neighbour Interpolation, 5
Diskreter Laplace Operator, 28	Non-maximum suppression, 35
Distributioneller Gradient, 60	Normalengleichung, 48
Distributionen, 58	Normalized Crosscorrelation, 56
Domain, 6	Tromanzed crosscorrelation, co
doppelt geglätteter Strukturtensor, 45	Otsu's Verfahren, 10
Drehmatrix, 5	
Dualraum, 57	Polynomiale Regression, 48
, ,	Prewitt-Filter, 34
Entfaltung, 39	Davishan 1E
erosion, 13	Rauschen, 15 Relativer Fehler, 15
Euler-Lagrange-Gleichung, 34	Rudin–Osher–Fatemi-Funktional, 33
F.I. 10	radiii Osher Fateriii-Fanktionar, 55
Faltung, 18	schließen, 13
Farbraum, 4	Schwellenwert, 9
Fixpunktgleichung, 10	Shape based Methods, 9
Fixpunktiteration, 10	Signal to noise ratio, 16
Fouriertransformation, 21 Frequenzbereich, 25	Sobel-Filter, 35
Frequenzraumfilter, 21	Sobolev-Räume, 33
Frequenziaummter, 21	strengkonvex, 62
Gauß-Kern, 27	Strukturelement, 12
gleitendes Mittel, 19	Sub-Niveaumenge, 62
Gradientenfilter, 34	T M
·	Toeplitz-Matrix, 39
Hilbertraum, 24	Totalvariation, 50
Histogramm, 6	Trigonometrisches Polynom, 49
Histogramm - equalization, 9	Untere Halbstatigkeit, 61
Histogramm thresholding, 46	ontere Haibstatignett, UI
hysteresis thresholding, 35	Varianz, 10

INDEX

Wärmegleichung, 29

Zeitbereich, 25