University of Toronto Department of Mathematics

START: 3:10pm

DURATION: 110 mins

Term Test 1 MAT224H1F Linear Algebra II

EXAMINERS: H. Horowitz, S. Uppal, I. Varma

ast Name (PRINT):	_
iiven Name(s) (PRINT):	_
tudent NUMBER:	_
MAIL: @mail.utoronto.ca	_
tudent SIGNATURE:	

Instructions.

- 1. There are **53** possible marks to be earned in this exam. The examination booklet contains a total of 9 pages. It is your responsibility to ensure that *no pages are missing from your examination*. DO NOT DETACH ANY PAGES FROM YOUR EXAMINATION.
- 2. DO NOT WRITE ON THE QR CODE AT THE TOP RIGHT-HAND CORNER OF EACH PAGE OF YOUR EXAMINATION.
- 3. For the full answer questions, WRITE YOUR SOLUTIONS ON THE FRONT OF THE QUESTION PAGES THEM-SELVES. THE BACK OF EVERY PAGE WILL **NOT** BE SCANNED NOR SEEN BY THE GRADERS.
- 4. Ensure that your solutions are LEGIBLE.
- 5. No aids of any kind are permitted. CALCULATORS AND OTHER ELECTRONIC DEVICES (INCLUDING PHONES) ARE NOT PERMITTED.
- 6. Have your student card ready for inspection.
- 7. You may use the two blank pages at the end for rough work. The last two pages of the examination WILL NOT BE MARKED unless you *clearly* indicate otherwise on the question pages.
- 8. Show all of your work and justify your answers but do not include extraneous information.

1. (a) Let $V = \{\mathbf{x}, \mathbf{y}\}$ be a set with exactly two vectors. Define vector addition and scalar multiplication in V by the following rules:
Vector addition: $\mathbf{x} + \mathbf{x} = \mathbf{x}$, $\mathbf{y} + \mathbf{y} = \mathbf{x}$, $\mathbf{x} + \mathbf{y} = \mathbf{y}$, and $\mathbf{y} + \mathbf{x} = \mathbf{y}$. Scalar multiplication: $c\mathbf{x} = \mathbf{x}$, and $c\mathbf{y} = \mathbf{y}$ for all $c \in \mathbb{R}$.
Show that V is not a vector space by citing one axiom in the definition of a vector space that fails to hold. You must both state the axiom clearly and show it does not hold. [4 marks]

1. (b) Define what it means for a subset W of a vector space V to be a subspace of V. [2 marks]

2. A vector $\mathbf{x} \in \mathbb{R}^n$ is symmetric if $x_k = x_{n-k+1}$ for $k = 1, 2, \dots, n$. It is anti-symmetric if $x_k = -x_{n-k+1}$ for $k = 1, 2, \dots, n$. Let

$$U = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \text{ is symmetric} \}$$

$$W = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \text{ is anti-symmetric} \}$$

(a) Both U and W are subspaces of \mathbb{R}^n but pick only one (your choice) and show it is a subspace. [5 marks]

(b) Is $\mathbb{R}^n = U \oplus W$? Explain your answer. [5 marks]

3. Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ be vectors in vector space	tors in vector space 1	- V .
---	------------------------	-------

(a) Define what it means for the list $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ to be linearly dependent. [2 marks]

(b) Define span $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$. [2 marks]

(c) Either prove the following statement is true or find a counterexample to show it is false: Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ be a linearly independent list of vectors in a vector space V. If the pair $\mathbf{u}, \mathbf{v} \in V$ is linearly independent and both $\mathbf{u}, \mathbf{v} \notin \text{span}\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$, then the list $\mathbf{u}, \mathbf{v}, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ is linearly independent. [4 marks]

4. ((a)	Let V	be a finite	dimensional	vector space.	Define the	dimension	of V .	[2 marks]
------	-----	---------	-------------	-------------	---------------	------------	-----------	----------	-----------

4. (b) Let V be an n-dimensional vector space. Let W_1 and W_2 be unequal subspaces of V, each with dimension (n-1). Prove that $V = W_1 + W_2$, and that $\dim(W_1 \cap W_2) = n-2$. [5 marks]

5. (a) Define what it means for a function $T: V \to W$ to be a linear transformation. [2 marks]

5. (b) Suppose $\mathbf{a} \in \mathbb{R}^n$ be a fixed vector. Show $T : \mathbb{R}^n \to \mathbb{R}$ defined by $T\mathbf{x} = \mathbf{a}^T\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$ is a linear transformation. [4 marks]

5. (c) Suppose you are given that the function $T: P_2(\mathbb{R}) \to \mathbb{R}$ satisfies

$$T(1+x) = 1$$
, $T(-1+x+x^2) = -1$, and $T(1-x-x^2) = -1$

Choose one of the following (i) T must be linear, (ii) T might be linear, or (iii) T cannot be linear, and justify your choice. [4 marks]

6. Determine if each statement below is True or False and indicate your answer by circling one of the options. No explanation is necessary. Each correct answer is worth 2 marks and each incorrect answer is worth 0 marks.
(i) Let V and W be vector spaces. For $\mathbf{x}, \mathbf{y} \in V$, the <i>line segment</i> joining \mathbf{x} and \mathbf{y} in V is $L = {\mathbf{x} + t(\mathbf{y} - \mathbf{x}) \mid 0 \le t \le 1}$. If $T: V \to W$ is a linear transformation, then $T(L)$ is a line segment in W .
(\mathbf{True}) (\mathbf{False})
(ii) If $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$ is a list of linearly independent vectors in a vector space V , then $\operatorname{span}\{\mathbf{x}_1, \mathbf{x}_2\} \cap \operatorname{span}\{\mathbf{x}_3, \mathbf{x}_4\} = \{0\}.$
(True) (False)
(iii) If $\mathbf{x}_1, \mathbf{x}_2$ are vectors in a vector space V , then $\mathrm{span}\{\mathbf{x}_1\} + \mathrm{span}\{\mathbf{x}_2\} = \mathrm{span}\{\mathbf{x}_1 + \mathbf{x}_2\}$. (True) (False)
(iv) If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for a vector space V and S_1, S_2, \dots, S_n are subsets of V such that $\mathbf{x}_i \in S_i$ for each $i = 1, 2, \dots, n$, then $V = \operatorname{span} S_1 + \operatorname{span} S_2 + \dots + \operatorname{span} S_n$.
${f (True)} \ \ {f (False)}$
(v) If W_1, W_2, W_3 are subspaces of a vector space V such that $V = W_1 \oplus W_2$ and $V = W_1 \oplus W_3$ then $W_2 = W_3$.
(True) (False)

(True) (False)

(vi) Let k be a positive integer. If W_1, W_2 are subspaces of a finite dimensional vector space V such that dim $W_1 + \dim W_2 \ge \dim V + k$, then $W_1 \cap W_2$ contains at least k linearly independent vectors.

THIS PAGE LEF	T INTENTIONAL	LY BLANK . If an	y work on this page	e is to be graded, indic	ate this CLEARLY

THIS PAGE LEFT INTE	NTIONALLY BLA	NK. If any work or	n this page is to be p	graded, indicate this	CLEARLY