

planetmath.org

Math for the people, by the people.

syntactic properties of a normal modal logic

 ${\bf Canonical\ name} \quad {\bf Syntactic Properties Of AN ormal Modal Logic}$

Date of creation 2013-03-22 19:34:18 Last modified on 2013-03-22 19:34:18

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 24

Author CWoo (3771) Entry type Definition Classification msc 03B45 Recall that a normal modal logic is a logic containing all tautologies, the schema K

$$\Box(A \to B) \to (\Box A \to \Box B),$$

and closed under modus ponens and necessitation rules. Also, the modal operator diamond \diamond is defined as

$$\diamond A := \neg \Box \neg A.$$

Let Λ be any normal modal logic. We write $\vdash A$ to mean $\Lambda \vdash A$, or wff $A \in \Lambda$, or A is a theorem of Λ . In addition, for any set Δ , $\Delta \vdash A$ means there is a finite sequence of wff's such that each wff is either a theorem, a member of Δ , or obtained either by modus ponens or necessitation from earlier wff's in the sequence, and A is the last wff in the sequence. The sequence is called a deduction (of A) from Δ .

Below are some useful meta-theorems of Λ :

1. (RM) $\vdash A \rightarrow B$ implies $\vdash \Box A \rightarrow \Box B$

Proof. By assumption and by necessitation, $\vdash \Box(A \to B)$, by schema K and by modus ponens, we have the result.

- 2. As a result, $\vdash A \leftrightarrow B$ implies $\vdash \Box A \leftrightarrow \Box B$.
- 3. (substitution theorem). If $\vdash B_i \leftrightarrow C_i$ for i = 1, ..., m, then

$$\vdash A[\overline{B}/\overline{p}] \leftrightarrow A[\overline{C}/\overline{p}],$$

where $\overline{p} := (p_1, \dots, p_m)$ is the tuple of all the propositional variables in A listed in order.

Proof. For most of the proof, consult http://planetmath.org/SubstitutionTheoremForProentry for more detail. What remains is the case when A has the form $\Box D$. We do induction on the number n of \Box 's in A. The case when n=0 means that A is a wff of PL_c , and has already been proved. Now suppose A has n+1 \Box 's. Then D has n \Box 's, and so by induction, $\vdash D[B/p] \leftrightarrow D[C/p]$, and therefore $\vdash \Box D[B/p] \leftrightarrow \Box D[C/p]$ by 2. This means that $\vdash A[B/p] \leftrightarrow A[C/p]$.

4. $\vdash A \to B$ implies $\vdash \diamond A \to \diamond B$

Proof. By assumption, tautology $\vdash (A \to B) \to (\neg B \to \neg A)$, and modus ponens, we get $\vdash \neg B \to \neg A$. By 1, $\vdash \Box \neg B \to \Box \neg A$. By another instance of the above tautology and modus ponens, and the definition of \diamond , we get the result.

5. $\vdash A \lor B$ implies $\vdash \diamond A \lor \Box B$

Proof. Since $\vdash A \lor B \leftrightarrow (\neg A \to B)$, we have $\vdash \neg A \to B$, so $\vdash \Box \neg A \to \Box B$. By the tautology $C \leftrightarrow \neg \neg C$, we have $\vdash \neg \neg \Box \neg A \to \Box B$, or $\vdash \neg \diamond A \to \Box B$, and therefore $\vdash \diamond A \lor \Box B$.

6. (RR) $\vdash A \land B \rightarrow C$ implies $\vdash \Box A \land \Box B \rightarrow \Box C$

Proof. By assumption and $1, \vdash \Box(A \land B) \to \Box C$. Since $\Box A \land \Box B \to \Box(A \land B)$ is a theorem (see http://planetmath.org/SomeTheoremSchemasOfNormalModalLo we get $\vdash \Box A \land \Box B \to \Box C$ by the law of syllogism.

7. (RK) More generally, $\vdash A_1 \land \cdots \land A_n \rightarrow A$ implies $\vdash \Box A_1 \land \cdots \Box A_n \rightarrow \Box A$, where the case n = 0 is the necessitation rule.

Proof. Cases n=1,2 are meta-theorems 1 and 6. If $\vdash A_1 \land \cdots \land A_n \land A_{n+1} \to A$, or $\vdash (A_1 \land \cdots \land A_n) \land A_{n+1} \to A$, then $\vdash \Box (A_1 \land \cdots \land A_n) \land \Box A_{n+1} \to \Box A$ by 6. But $\vdash \Box (A_1 \land \cdots \land A_n) \leftrightarrow \Box A_1 \land \cdots \land \Box A_n$, the result follows. \Box

8. Define a function s on $\{\neg, \lambda\}$, where λ is the empty word, such that $s(\neg) = \lambda$, the empty word, and $s(\lambda) = \neg$. Then for any wff A, and $\epsilon_1, \epsilon_2 \in \{\neg, \lambda\}$:

$$\vdash \epsilon_1 \Box^n \epsilon_2 A \leftrightarrow s(\epsilon_1) \diamond^n s(\epsilon_2) A.$$

Technically speaking, this is really an infinite collection of theorem schemas.

Proof. We will check the case when $\epsilon_1 = \neg$ and $\epsilon_2 = \lambda$ and leave the rest to the reader. We do induction on n. If n = 0, then we have the tautology $\neg A \leftrightarrow \neg A$. Suppose $\vdash \neg \Box^n A \leftrightarrow \diamond^n \neg A$. Then $\vdash \neg \Box^{n+1} A \leftrightarrow \diamond^n \neg \Box A$, by applying the induction case on wff $\Box A$. Since $A \leftrightarrow \neg \neg A$ is a tautology, $\vdash \neg \Box^{n+1} A \leftrightarrow \diamond^n \neg \Box \neg \neg A$ by the substitution theorem. By the definition of \diamond , we have $\vdash \neg \Box^{n+1} A \leftrightarrow \diamond^{n+1} \neg A$. \Box

9. Let $\Box \Delta := \{ \Box A \mid A \in \Delta \}$. Then $\Delta \vdash A$ implies $\Box \Delta \vdash \Box A$.

Proof. Induct on the length n of deduction of A from Δ . If n=0, then either $\vdash A$, in which case $\vdash \Box A$ by necessitation, or $A \in \Delta$, in which case $\Box A \in \Box \Delta$. In either case, $\Box \Delta \vdash \Box A$. Next suppose the property holds for all deductions of length n, and there is a deduction \mathcal{E} of A of length n+1. If A is obtained from Δ by necessitation, say A is $\Box B$, where B is in \mathcal{E} , then a subsequence of \mathcal{E} is a deduction of B of length $\leq n$, from Δ . So by induction, $\Box \Delta \vdash \Box B$, or $\Box \Delta \vdash A$. By necessitation, $\Box \Delta \vdash \Box A$. Finally, if A is obtained by modus ponens, then there is a wff B such that $B, B \to A$ are both in \mathcal{E} . By induction, $\Box \Delta \vdash \Box B$ and $\Box \Delta \vdash \Box (B \to A)$, which, by K and modus ponens, $\Box \Delta \vdash \Box B \to \Box A$, and as a result, $\Box \Delta \vdash \Box A$ by modus ponens. \Box

Noticeably absent is the deduction theorem, for the necessitation rule says $A \vdash \Box A$, but this does not imply $\vdash A \to \Box A$. In fact, the wff $A \to \Box A$ is not a theorem in general, unless of course the logic includes the entire schema. All we can say is the following:

10. (deduction theorem) If $\Delta, A \vdash B$ and B is not of the form $\Box C$, then $\Delta \vdash A \to B$.

Remark. It can be shown that conversely, if a modal logic obeys metatheorem 7 above as an inference rule, then it is normal. For more detail, see http://planetmath.org/EquivalentFormulationsOfNormalityhere.