

EXAMINATION FOR THE DEGREES OF M.A. AND B.Sc.

Mathematics 2B - Linear Algebra

An electronic calculator may be used provided that it does not have a facility for either textual storage or display, or for graphical display.

Candidates must attempt all questions.

Specimen written section of the exam paper - 30 marks

1. We consider a subset of \mathbb{R}^3 in the form

$$\mathcal{C} = \{[1, 1, 0], [0, 1, 1], [0, 0, 1]\}$$

- (i) Show that \mathcal{C} forms a basis for \mathbb{R}^3 .
- (ii) Construct the change-of-basis matrix $P_{\mathcal{C}\leftarrow\mathcal{E}}$, where \mathcal{E} is the standard basis for \mathbb{R}^3
- (iii) Consider the vector $\mathbf{w} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \in \mathbb{R}^3$. Using your solution to part(ii), or otherwise, compute the coordinates of \mathbf{w} with respect to the basis \mathcal{C} .
- 2. Consider two $n \times n$ matrices C and D, where D is invertible. Prove that the matrix C is non-invertible if and only if the matrix DC is non-invertible.
- 3. Consider an $n \times n$ matrix A. Suppose that A has an eigenvalue λ . Show that the eigenspace E_{λ} is a subspace of \mathbb{R}^n .
- 4. Let U be the subspace of \mathbb{R}^4 spanned by

Use the Gram-schmidt Process to find an orthogonal basis for U.

5. Consider the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$(x_1, x_2) \to (x_1 + 2x_2, -x_1).$$

Show that T is a linear transformation.

6. Let q be the quadratic form defined by

$$q(x_1, x_2) = -3x_1^2 + 5x_2^2 - 6x_1x_2.$$

(i) Find a non-singular change of variables $\mathbf{x} = Q\mathbf{y}$, where

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$

such that $q(y_1, y_2) = \lambda_1 y_1^2 + \lambda_2 y_2^2$, for some $\lambda_1, \lambda_2 \in \mathbb{R}$.

(ii) Find a diagonal matrix D such $Q^TAQ = D$, where A is the matrix associated to q and determine the rank and the signature of q.

END]