

Section 3.1 Midcourse Review

The Rocket Equation

Consider a rocket burn of duration t_{burn}

Final Velocity

Propellant Budgeting Equation

• Solving for P_{m1}

$$(P_{mf})_{burn} = e^{\left[\frac{\Delta V_{burn}}{g_0 I_{sp}}\right]} - 1$$

 Mass of Fuel and oxidizer required for a burn to give a specified ∆V

$$\mathbf{M}_{+ \text{ oxidizer}}^{\text{fuel}} = \left[\mathbf{M}_{\text{dry}} + \mathbf{M}_{\text{payload}}\right] \begin{bmatrix} e^{\left[\frac{\Delta \mathbf{V}_{\text{burn}}}{g_0 \, \mathbf{I}_{\text{sp}}}\right]} - 1 \end{bmatrix}$$

Specific Impulse

• Specific Impulse is a scalable characterization of a rocket's Ability to deliver a certain (specific) impulse for a given weight of propellant

$$I_{sp} = \frac{I_{mpulse}}{g_0 M_{propellant}} = \frac{\int_0^t F_{thrust} dt}{g_0 \int_0^t m_{propellant} dt}$$

Mean specific impulse

Specific Impulse (cont'd)

$$I_{sp} = \frac{1}{g_0} \frac{F_{thrust}}{m_{propellant}} \rightarrow m_e \equiv m_{propellant} \rightarrow$$

$$I_{sp} = \frac{1}{g_0} \left[V_e + \frac{p_e A_e - p_\infty A_e}{m_e} \right] \equiv \frac{C_e}{g_0}$$

"Units ~ seconds"

• Effective Exhaust Velocity

Available Delta V

$$\Delta V_{t_{burn}} = g_0 \cdot I_{sp} \left[\ln \left(1 + P_{mf} \right) \right] -$$
"combustion ΔV "

$$\int_{0}^{t_{burn}} g(t) \cdot \sin \theta dt - \sqrt{\int_{0}^{t_{burn}} \frac{\rho V^{3}}{\beta}} dt$$
"gravity loss" "drag loss"

7

Required ΔV

 Root Sum Square of Required Kinetic Energy (Horizontal) + Potential Energy (Vertical)

$$\left(\Delta V_{required}\right)_{total} = \sqrt{ \left(V_{orbital} - V_{"boost"}\right)^2 + \Delta V_{gravity}^2} = \sqrt{ \left(V_{orbital} - V_{"boost"}\right)^2 + \left(\frac{2 \cdot \mu \cdot h_{orbit}}{R_{\oplus} \cdot \left(R_{\oplus} + h_{orbit}\right)}\right) }$$

$$V_{"boost"} = \left(R_{\oplus} + h_{launch}\right) \cdot \Omega_{\oplus} \cdot \cos \lambda \cdot \sin Az_{launch} = \left(R_{\oplus} + h_{launch}\right) \cdot \Omega_{\oplus} \cdot \cos i$$
Direction of Earth Rotation V boost | V b

Required $\Delta V_{(2)}$

• Example Calculation, Shuttle to Due East LEO Orbit

Kennedy Space Center (KSC)

Due-East Launch

110 km MECO

28.5° Inclination Orbit

$$V_{"boost"} = (R_{\oplus} + h_{launch}) \cdot \Omega_{\oplus} \cdot \cos i_{orbit} =$$

$$6373.25 \left(\frac{2\pi}{23 \cdot 3600 + 56 \cdot 60 + 4.1} \right) \cos \left(\frac{\pi}{180} 28.5 \right)$$

 $= 0.408426 \ km/sec$

Required $\Delta V_{(3)}$

- Example Calculation, Shuttle to Due East LEO Orbit
- "Lift" Delta V... equivalent change in potential energy

$$\Delta V_{gravity} = \sqrt{2 \frac{\mu \cdot h_{orbit}}{R_{earth} \cdot \left(R_{earth} + h_{orbit}\right)}} =$$

$$\left(\frac{2(3.9860044 \cdot 10^5)110}{6373.25(6373.25 + 110)}\right)$$

0.5 = 1.45681

km/sec

110 km MECO

Required $\Delta V_{(3)}$

Orbital Velocity ...

$$V_{orbit} = \sqrt{\frac{\mu}{\left(R_{earth} + h_{orbit}\right)}} = \left(\frac{(3.9860044 \cdot 10^5)}{6373.25 + 110}\right)^{0.5}$$
 = 7.84102 km/sec

$$\left(\Delta V_{total}\right)_{required} = \sqrt{\left(V_{orbit} - V_{"boost"}\right)^2 + \left(\Delta V_{gravity}\right)^2} =$$

$$((7.84102 - 0.408426)^{2} + 1.45732^{2})^{0.5}$$
 = 7.57412
 km/sec

110 km MECO

STS-114 Trajectory Example

"Return to Flight" After Columbia Accident

UtahState UNIVERSITYSTS-114 Trajectory Example (2)

STS-114 Trajectory Example (3)

MAE 5540 - Propulsion Systems

Medicines & Ference 1

STS-114 Trajectory Example (4)

Medicines & Ference 1

STS-114 Trajectory Example (5)

Medicinies & Ferences

1 Engineering

STS-114 Trajectory Example (6)

Calculated Accumulated Delta V's

Medicines & Ferrespies 1 Engineering

STS-114 Trajectory Example (7)

Calculated Accumulated Delta V's 2

"Orbitology" Summary (1)

• **Kepler's First Law:** In a two body universe, orbit of a satellite is a conic section with the Earth centered at one of the focii

Circle:
$$r = a$$

Ellipse:
$$r = \frac{a[1 - e^2]}{[1 + e \cos(v)]}$$

Parabola:
$$r = \frac{2 p}{[1 + \cos(v)]}$$

Hyperbola:
$$r = \frac{a \left[e_{hyp}^2 - 1\right]}{\left[1 + e_{hyp} \cos(v)\right]}$$

The Conic Sections:

r – radius vector

v – *true* anomaly

e – orbit eccentricity

a – orbit semi-major

axis

"Orbitology" Review (2)

• **Kepler's Second Law:** In a two body universe, radius vector from the Earth to the satellite sweeps out equal areas in equal times

"Orbitology" Review (3)

Alternate Statement of of Kepler's Second law:

$$\frac{\overline{L}}{m} = \overline{l} = (0) \mathbf{r}^2 \overline{i}_{k} \implies (0) \mathbf{r}^2 = l \text{ (specific angular momentum)}$$

"The angular momentum of an orbiting object is constant"

• Velocity Vector for an Elliptical Orbit

$$\overline{V} = r(v) \omega \left[\frac{\left[e \sin(v) \right]}{\left[1 + e \cos(v) \right]} \overline{i}_r + \overline{i}_v \right]$$

$$\omega = \frac{\sqrt{\mu \ a \left[\ 1 - e^2 \right]}}{r^2}$$

$$\mu = G \cdot M_{\oplus}$$

"Orbitology" Review (4)

Total Area of an Elliptical Orbit

Kepler's Third law:

Orbital Period

$$T = \frac{2 \pi a^{3/2}}{\sqrt{\mu}}$$

$$\mu = GM \Rightarrow planetary$$

gravitational parameter

•
$$\mu_{earth} = 3.9860044 \text{ km}^3/\text{sec}^2$$

$$\begin{split} \mu_{moon} &= 4.903 \times 10^3 \, \frac{m^3}{sec^2} \\ \mu_{sun} &= 1.327 \times 10^{20} \, \frac{m^3}{sec^2} \\ \mu_{Mars} &= 4.269 \times 10^4 \, \frac{m^3}{sec^2} \end{split}$$

Orbitology Summary (5)

Gravitational Potential Energy

•Gravitational potential energy equals the amount of energy released when the Big Mass M pulls the small mass m at infinity to a location r in the vicinity of a mass M

$$P_{E_{grav}} \equiv E_{released} = \int_{\infty}^{\mathbf{r}} \mathbf{F} \cdot d\mathbf{r} =$$

$$\int_{-\infty}^{\mathbf{r}} \frac{G M m}{r^2} dr = -G M m \left[\frac{1}{\mathbf{r}} - \frac{1}{\infty} \right] = -\frac{G M m}{\mathbf{r}}$$

$$GM = \mu$$

Orbitology Summary (6)

Vis-Viva Equation

kinetic potential energy

$$\frac{V^2}{2}$$
 $-\frac{\mu}{r}$

total

$$=-\frac{\mu}{2a}$$

Orbitology Summary (7)

Vis-Viva Equation for All the Conic-Sections

Circle:
$$r = a \implies$$

$$V = \sqrt{\mu \left[\frac{2}{a} - \frac{1}{a}\right]} = \sqrt{\frac{\mu}{a}}$$

Ellipse:
$$r = \frac{a[1 - e^2]}{[1 + e \cos(v)]} \Rightarrow$$

$$V = \sqrt{\mu \left[\frac{2}{r} - \frac{1}{a}\right]}$$

Parabola:
$$r = \frac{2 p}{[1 + \cos(v)]} \Rightarrow$$

$$Parabola: \boxed{r = \frac{2 \ p}{\left[1 + \cos\left(\nu\right)\right]}} \Rightarrow \qquad V = \sqrt{\mu \left[\frac{2}{r} - \frac{1}{\infty}\right]} = \sqrt{\frac{2\mu}{r}}$$

Hyperbola:
$$r = \frac{a \left[e_{hyp}^2 - 1 \right]}{\left[1 + e_{hyp} \cos(v) \right]}$$

$$V = \sqrt{\mu \left[\frac{2}{r} + \frac{1}{a}\right]}$$

Orbitology Summary (8)

• Hohmann Transfer

Orbitology Summary (9)

• Simple Plane Change

$$\left| \Delta \mathbf{V} \right| = 2 \sin \left(\frac{\Delta i}{2} \right) \mathbf{V}_{\mathbf{v}}$$

simple plane change

$$V_r = ||V|| \cdot \sin(\gamma)$$

$$V_{v} = ||V|| \cdot \cos(\gamma)$$

MAE 5540 - Propulsion Systems

Orbitology Summary (10)

$$\Delta V_{\text{combined}} = \sqrt{V_2^2 + V_1^2} - 2 |V_2 \cos(\gamma_2)| |V_1 \cos(\gamma_1)| \cos(\Delta i)$$

Homework 4

A Novel Application of the Rocket-Equation

Calculating the Fuel Budget for an Orbital Phasing
Maneuver of a GeoStationary Satellite

MAE 5540 - Propulsion Systems

TT&C Satellite

- TT&C satellite used to monitor pacific coast battle has failed
- NACSOC has decided to transfer the functions of a spare Atlantic battle group satellite to the pacific until a replacement can be launched

... design an Orbital phasing Maneuver that Allows Transfer of a GEO Synchronous Communication Satellite from 40.40' west Longitude To 118.15' west longitude

Medicinies & Ferences Engineering

Phasing Maneuver

Phasing Maneuver (part 2)

• Design a Reverse
Orbital Maneuver
that Puts the Satellite
Back to the Original
Longitude after
Mission has been
accomplished

What To Compute

- Compute
 - ... Phasing Orbit Parameters
 - ... Phasing Orbit Period
 - ... Required Delta V₁, Delta V₂
- Assume $R_{min} > 32,000 \text{ km}$ (to stay above Van Allen belts)
- Note: It may take Multiple orbits of Phasing
 Orbit to accomplish this task

What To Compute (cont'd)

- Compute
 - ... Burn time for Transfer Orbit

Insertion

... Burn Time for Final Orbit

Insertion

... Required Fuel Budget for Delta

 V_1 , Delta V_2

Parameters of the Problem

Solar Day: 23 hrs, 56 min, 4.1 seconds

Gravitational Parameter:
$$\mu = 3.9860044 \text{ x}$$
 $\frac{\text{km}^3}{\text{sec}^2}$

Original Longitude: 40 deg, 40 min West Destination Longitude: 118 deg, 15 min West

Parameters of the Problem (cont'd)

Specific Impulse

Fuel	Oxidzer	Isp(s)
Liquid propellants		
Hydrogen (LH2)	Oxygen (LOX)	450
Kerosene (RP-4)	Oxygen (LOX)	280
Monomethyl hydrazine Nitrogen Tetraoxide		310
Solid propellants		
Powered Al	Ammonium Perchlorate	270

Parameters of the Problem (Concluded)

•
$$F_{thruster} = 0.500 \text{ kNt}$$

• Spacecraft mass

1000 kg "Dry"