Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

VİTMO

ЛАБОРАТОРНАЯ РАБОТА №1 ПРЕДМЕТ «ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ» ТЕМА «УПРАВЛЯЕМОСТЬ И НАБЛЮДАЕМОСТЬ»

Вариант №2

Преподаватель: Пашенко А. В.

Выполнил: Румянцев А. А.

Факультет: СУиР Группа: R3341

Поток: ТАУ R22 бак 1.1.1

Содержание

L	Задание 1. Исследование управляемости		
	1.1	Матрица управляемости	
	1.2	Собственные числа и матрицы Хаутуса	
	1.3	Жорданова форма системы	
	1.4	Грамиан управляемости системы	
	1.5	Управление системой за определенное время	
	Приложения		
	2.1	Приложение 1	

Задание 1. Исследование управляемости

Рассмотрим систему

$$\dot{x}=Ax+Bu$$
, где $A=\begin{bmatrix}1&-2&3\\2&-3&2\\-2&1&-4\end{bmatrix}$, $B=\begin{bmatrix}-3\\-1\\3\end{bmatrix}$; дана точка $x_1=\begin{bmatrix}4\\3\\-3\end{bmatrix}$

Матрица управляемости

Исходя из условия видим, что порядок системы n равен трем. Значит, матрица управляемости будет иметь вид

$$U = \begin{bmatrix} B & AB & A^2B \end{bmatrix}$$

Вектор B нам известен. Найдем оставшиеся неизвестные

$$AB = \begin{bmatrix} 1 & -2 & 3 \\ 2 & -3 & 2 \\ -2 & 1 & -4 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 8 \\ 3 \\ -7 \end{bmatrix},$$

$$A^{2}B = \begin{bmatrix} 1 & -2 & 3 \\ 2 & -3 & 2 \\ -2 & 1 & -4 \end{bmatrix}^{2} \begin{bmatrix} -3 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} -9 & 7 & -13 \\ -8 & 7 & -8 \\ 8 & -3 & 12 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} -19 \\ -7 \\ 15 \end{bmatrix}$$

Таким образом, получаем матрицу управляемости

$$U = \begin{bmatrix} -3 & 8 & -19 \\ -1 & 3 & -7 \\ 3 & -7 & 15 \end{bmatrix}$$

Определим ранг этой матрицы, чтобы сделать вывод об управляемости системы в целом

rank
$$[U]$$
 = rank $\begin{bmatrix} -3 & 8 & -19 \\ -1 & 3 & -7 \\ 3 & -7 & 15 \end{bmatrix} = 3$

Так как ранг матрицы управляемости равен порядку системы n, то система является полностью управляемой

Собственные числа и матрицы Хаутуса

Найдем собственные числа матрицы A

$$\det [\lambda I - A] = \begin{vmatrix} \lambda - 1 & 2 & -3 \\ -2 & \lambda + 3 & -2 \\ 2 & -1 & \lambda + 4 \end{vmatrix} = \lambda^3 + 6\lambda^2 + 13\lambda + 10 = 0$$

Подбором получаем корень $\lambda_1 = -2$. Вынесем его за скобку, и, решим квадратное уравнение

$$(\lambda + 2) (\lambda^2 + 4\lambda + 5) = 0,$$

$$\lambda^2 + 4\lambda + 5 = 0, \ D = 4^2 - 5 \cdot 4 = -4 \Rightarrow \lambda_{2,3} = \frac{-4 \pm 2i}{2} = -2 \pm i$$

Таким образом, матрица A имеет следующие собственные числа

$$\lambda_1 = -2$$
$$\lambda_{2,3} = -2 \pm i$$

Действительная часть всех собственных чисел меньше нуля, а значит они все асимптотически устойчивые, но могут быть неуправляемыми. Для проверки построим матрицы Хаутуса $[A - \lambda_i I \ B]$ для каждого собственного числа и найдем их ранг

rank
$$[A - \lambda_1 I B] = \text{rank} \begin{bmatrix} 3 & -2 & 3 & -3 \\ 2 & -1 & 2 & -1 \\ -2 & 1 & -2 & 3 \end{bmatrix} = 3$$

$$\operatorname{rank} [A - \lambda_{2,3} I \ B] = \operatorname{rank} \begin{bmatrix} 3 \pm i & -2 & 3 & -3 \\ 2 & -1 \pm i & 2 & -1 \\ -2 & 1 & -2 \pm i & 3 \end{bmatrix} = 3$$

Ранги матриц Хаутуса для каждого собственного числа матрицы A равны порядку системы, следовательно, все собственные числа являются управляемыми. Из этого же следует, что система полностью управляема

Жорданова форма системы

Мы можем разложить матрицу А следующим образом

$$A = PJP^{-1},$$

где P – матрица собственных векторов матрицы A, J – жорданова нормальная форма. В нашем случае кратных собственных чисел нет, а значит ЖНФ примет вид диагональной матрицы. Это объясняется тем, что для каждого собственного числа найдется хотя бы один собственный вектор ($A\mathbf{v}=\lambda\mathbf{v}$), то есть каждому собственному числу соответствует ровно одна жорданова клетка размера 1×1 . Ранее мы вычисляли собственные числа – составим матрицу J без поиска P и P^{-1}

$$J = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 - i & 0 \\ 0 & 0 & -2 + i \end{bmatrix}$$

Более того, можно сделать матрицу вещественной, пользуясь знаниями с линейной алгебры

$$\lambda_{1,2} = \alpha \pm \beta i, \ J = \begin{bmatrix} \alpha + \beta i & 0 \\ 0 & \alpha - \beta i \end{bmatrix} \Rightarrow J_{re} = \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix}$$

Получаем матрицу J_{re} в базисе собственных векторов матрицы A

$$J_{re} = \begin{bmatrix} -2 & 0 & 0\\ 0 & -2 & 1\\ 0 & -1 & -2 \end{bmatrix} = P_{re}^{-1}AP_{re}$$

Далее для анализа необходимо перевести вектор входных воздействий B в базис собственных векторов матрицы A

$$B_{Jre} = P_{re}^{-1}B$$

Для поиска P_{re} составим матрицу собственных векторов P матрицы A (v_i находятся подстановкой соответсвующих λ_i в [$\lambda_i I - A$] и решением СЛАУ)

$$P = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} -1 & -1.5 + 0.5i & -1.5 - 0.5i \\ 0 & -1 & -1 \\ 1 & 1 & 1 \end{bmatrix}$$

Теперь составим матрицу P_{re} по следующему принципу: каждый нечетный столбец составляется из действительных частей чисел соответствующих нечетных столбцов матрицы P, а каждый четный – из мнимых частей

$$P_{re} = [\Re\{P_1\} \Im\{P_2\} \Re\{P_3\}] = \begin{bmatrix} -1 & 0.5 & -1.5 \\ 0 & 0 & -1 \\ 1 & 0 & 1 \end{bmatrix}$$

Найдем обратную матрицу от P_{re} и вычислим B_{Jre}

$$P_{re}^{-1} = \begin{bmatrix} -1 & 0.5 & -1.5 \\ 0 & 0 & -1 \\ 1 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 & 1 \\ 2 & -1 & 2 \\ 0 & -1 & 0 \end{bmatrix} \Rightarrow P_{re}^{-1}B = \begin{bmatrix} 0 & 1 & 1 \\ 2 & -1 & 2 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = B_{Jre}$$

Мы так же можем убедиться, что верно нашли J_{re}

$$J_{re} = P_{re}^{-1} A P_{re} = \begin{bmatrix} 0 & 1 & 1 \\ 2 & -1 & 2 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -2 & 3 \\ 2 & -3 & 2 \\ -2 & 1 & -4 \end{bmatrix} \begin{bmatrix} -1 & 0.5 & -1.5 \\ 0 & 0 & -1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & -1 & -2 \end{bmatrix}$$

Итого, получаем

$$J_{re} = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 1 \\ 0 & -1 & -2 \end{bmatrix}, \ B_{Jre} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

Мы уже выяснили, что все жордановы клетки относятся к различным собственным числам – можем делать выводы об управляемости. Так как элементы матрицы входных воздествий B_{Jre} не равны нулю, то все собственные числа управляемы. Из этого следует, что система полностью управляема. При этом достаточное условие полной управляемости системы в нашем случае – не равенство нулю последнего элемента матрицы B_{Jre} .

Грамиан управляемости системы

Найдем Грамиан управляемости системы относительно времени $t_1=3$

$$P(t_1) = \int_{0}^{t_1} e^{At} B B^T e^{A^T t} dt$$

Предоставим вычисления MATLAB. Программа представлена на листинге 1 в приложении 1. Итого имеем

$$P(t_1 = 3) = \begin{bmatrix} 1.5956 & 0.4779 & -1.7132 \\ 0.4779 & 0.1500 & -0.5029 \\ -1.7132 & -0.5029 & 1.8559 \end{bmatrix}$$

Получили числовую матрицу. Для анализа управляемости системы найдем собственные числа Грамиана с помощью MATLAB. Получаем

$$\lambda_1 = 3.5841$$
 $\lambda_2 = 0.0002$
 $\lambda_3 = 0.0172$

Все собственные числа Грамиана относительно $t_1=3$ строго положительны, следовательно, его определитель (произведение собственных чисел) больше нуля – Грамиан невырожденный. Это следует уже из равенства ранга матрицы управляемости порядку системы – полученный в нынешнем пункте результат подтверждает наши рассуждения – система полностью управляема. Однако из-за присутствия маленького собственного числа $\lambda_2=0.0002$ можно сделать вывод, что в некотором направлении система слабо управляема.

Управление системой за определенное время

Найдем управление, переводящее систему из x(0) = 0 в $x(t_1) = x_1$ за время t_1 , по формуле

 $u(t) = B^{T} e^{A^{T}(t_{1}-t)} [P(t_{1})]^{-1} x_{1}$

Приложения

Приложение 1

```
% input data
A = [1 -2 3; 2 -3 2; -2 1 -4];
B = [-3; -1; 3];
x1 = [4; 3; -3];
t1 = 3;
% controllability matrix
U = [B A*B A*A*B];
r = rank(U);
disp(U);
disp(r);
% A matrix eigenvalues
A_e = eig(A);
disp(A_e);
% gramian
integrand = Q(t) \exp (A * t) * (B * B') * \exp (A' * t);
P_t1 = integral(@(t) integrand(t), 0, t1, 'ArrayValued', true);
disp(P_t1);
% gramian eigenvalues
e = eig(P_t1);
disp(e);
```

Листинг 1: Программа для первого задания