

hay gradenic time and have to he

COIO3 COBETCKIX **СОЦИАЛИСТИЧЕСКИХ** РЕСПУБЛИК

... SU ... 1731814 A1

(51)5 C 12 N 9/78, C 12 P 13/02

ГОСУДАРСТВЕННЫЙ KOMMITET по изобретениям и открытиям **ПРИ ГКНТ СССР**

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(21) 4826513/13

(22) 17.05.90

(46) 07.05.92. Бюл. № 17

(71) Саратовский филиал Всесоюзного научно-исследовательского института генетики и селекции промышленных микроорганизмоз и Всесоюзный научно-исследовательский институт генетики и селекции промышленных микроорганизмов (72) А.С.Яненко, И.Н.Полякова, О.Б.Астаурова, В.Н.Пауков, С.В.Козулин, М.К.Синолицкий. Т.Н.Моисеева. С.П.Воронин и В.Г.Дебабов

(53) 663.15 (088.8)

(56) EP N 0204555. кл. С 12 Р 13/02, опублик, 1986.

Agric. Biolog. Chem., 1988. v. 52, № 7, p. 1813-1816.

(54) ШТАММ БАКТЕРИЙ RHODOCOCCUS RHODOCHROUS-ПРОДУЦЕНТ НИТРИЛ-ГИДРАТАЗЫ

(57) Использование: биотехнология. Сущность изобретения: получение нового штам-

ма бактерий - продуцента фермента нитрилгидратазы. производства зованием в качестве селектирующего агента изобутиронитрила. Штамм

выделенного из почвы акрилонитрила, с исполь-

Rhodococcus rhodochrous BKNMS-926 ofладает следующими признаками: гранпозитивный, неподвижный, спор не образует, некислотоустойчив, язроб. Клетки в возра-

ств 18-20 ч образуют длинные слабоватаящиеся нити, которые через 48-72 ч распадаются на палочковидные и кохковид-

ные элементы. Штамы Rhodococcus rhodochrous 926 обладает высокой активностью нитрилгидратазы, достигающей 140

ммоль нг/мин в отношении изобутиронитрила, 220 ммоль/мг/мин в отношении ацетонитрила. 150 ммоль/мг/мин в отношении

акрилонитрила. Штамм Rhodococcus rhodochrous ВКПМS-926 может быть использован в биотехнологическом процессе

получения акриламида и других амидов карбоновых кислот. 3 табл.

Изобретение относится к микробирлогической промышленности и касается получения нового штамма, обладающего высокой нитрилгидратазной активно-

Нитрилгидратаза - фермент, катализирующий процесс гидролиза нитрилов карбоновых кислот в амиды.

Известны микроорганизмы, продуцирующие фермент нитрилгидратазу, относящиеся к родам Corynebacterium, Nocardia. Brevibacterium, Bacillus, Bacteridium, Micrococcus, Pseudumonns, Rhodococcus,

Одним из примеров использования этого фермента является получение акриламида из акрилонитрила.

Известны штаммы, способные к трансформации акрилонитрила в акриламид: Corynebacterium N 771, Corynebacterium N 774, Nocardia N 775. Pseudomonas chlororophis B23. Rhodococcus rhodochrous I-1.

Надостатком данных штаммов является низкая ферментативная активность нитрилгидратазы. В случае штамма Corynebacterium N 774 удельная активность нитрилгидратазы не превышала 38.5 ед

BEST AVAILABLE COPY

Pseudomonas штамм Известен chlororaphis B23, который при выращивании на среде, содержащей вминокислоту L-цистеин (2 г/л), прэявлял ферментативную активность 105.7 ед.

Недостатком данного штамма является использование в культуральной среде доро-

гостоящей аминокислоты.

Наиболее близким к изобретению по технической сущности является штами 10 Адении не утилизирует. Am-324, Myrant Pseudomonas chlororaphis В23, который обладает удельной нитрилгидратазной активностью 141 ед.

Недостатками данного штамма являются использование в среде культивирования 15 дорогостоящих аминокислот L-пролина и Lцистеина, дробное введение индуктора метакриламида.

Целью изобретения является получение штамма с более высокой нитрилгидратаз- 20 рифампицину. ной активностью, не зребующего использования аминокислот при выращивании. культивирование на простой синтетической

Заявляемый штамм Rhodococcus 25 rhodochrous M8 депонирован под номером S-226 и характеризуется следующими морфолого-культуральными и физиолого-биохимическими признаками.

Морфологические признаки: штамм грамположительный, неподвижный, спор и капсул не образует, некислотоустойчив, аэроб. Клетки в возрасте 18-20 ч образуют длинные по 20 мкм, слабо ветвящиеся нити, которые через 48-72 ч распадаются на палочковидные и кокковидные элементы.

Палочковидные клетки имеют размеры 0.9-1.2 x 2.0-20.0 мкм. Деление клеток происходит как по раскалывающемуся, так и по сгибающемуся типу. В протоплазме клеток 40 видны внутриклеточные включения в виде зерен (гранулярность протоплазмы).

Культуральные свойства: при росте на мясопептонном агаре штамм образует круггладкие колонии диаметром 1 мм 45 (48-72 ч), поверхность сухая, матовая, розового цвета. При росте на мясопептонном бульоне образует пленку и осадок. Лакмусовое молоко не изменяет.

свойства: штамм 50 Физиологические нитраты. Тест с метиловым редуцирует красным, реакция Фогес-Проскаузра отрицательные. Образует сероводород. Штамм оксида за отрицательный, каталаза- и фосоптимальное значение рН 7.0, при температуре 5-45°C, оптимельное значение температуры 30°C. В качестве источников взота использует соединения вммония и нитраты.

Штамм двет кислую ревкцию при росте на глюкоза, фруктоза, сорбите, маниято и глицерине. Газообразование ни на одном сахаре не обнаружено. В качество единственного источника углерода использует **ИНОЗИТ, МАННИТ, МАЛЬТОЗУ, СОРОИТ, ГЛЮКОЗУ,** глицерин, лактат, пируват, не использует рамнозу, галактозу. Кражная и цехлюкозу не гидролизует, тенн 60 и тенн 80 гидролизует.

Химинеский состав влеток: в клеточной стенке содержится теко-дивимногимеелинолая кислоты, врабиноза и галактоза. Содержится липид A (LCN), характерный для DOZOKOKKOB.

Чувствительность к антибактернальным препаратам: штамм чувствителен к канамицину, хлорамфениколу, ампициллину, пенициллину, мономициину, тетрациклину,

Патогенность: штамм непатогенный.

Ферментативную активность определяли с использованием в качастве субстратов нитрилов карбоновых кислот. За единицу удельной нитрилгидратазной активности принимали количество фермента, катализирующего образование 🗇 ижмоль амида в одну минуту, содержащегося в 1 мг сухого веса KACTOK.

Штамм Rhodococcus rhodochrous M8. ВКПМ S-926 обладает более высокой активностью нитрилгидратазы (150 ед.) по сравнению со штаммом прототипом Ат-324 (141) ед.) и не требует использования в культуральной среде дорогостоящих аминокислот.

Пример 1. Выделение штамма Rhodococcus rhodochrous M8, BKIIM S-926.

Заявляемый штамм был выделен из почвы с производства акрилонитрила. Навеску МВРОП 1.0 г ресуспендировали в 10 мл физиологического раствора и отстаивали в течение 1 ч. Надосадочную жидкость в количестве 2 мл вносили в среду следнощего COCTABA, f:

K₂HPO₄	0.5
KH ₂ PO ₄	
	0,5
MgSO4·7H ₂ O	0,5
FeSO4·7H ₂ O	0.01
Глюкоза "	1,0
Изобутиро нитрил	1,0
Вода водопро-	
водная, мл	1000
рH	7.2±0.5

50 мл суспензии инкубировали в 300 мл фатараположительный. Растет при рН 6-9. 55 колбе Эрленмейера при 28-30°C, при кругоперемешивании 804 (число качаний 180-200 мин $^{-1}$). Через двое суток отбирали 1 мл культуральной жидкости, серийно разводили в физиологическом растворе и высевали на чашки Петри с агаризованной средой (1,5% агар-агара) вышеуказанного состава. Посевы инкубировали 48-72 ч при 28-30°С, после чего отбирали наиболее крупные колонии, которые использовали в дэльнейших исследованиях. Колонии пересваали на чашки Петри с мясопаптонным агаром. Выделенные культуры изучали на способность к трансформации акрилонитрила в акриламид.

Микроорганизмы выращивали в течение двух суток на среде выделения, отбирали 5 мл клеточной суспензии. центрифугировали, клетки отмывали 0.01 М фосфатным буфером, рН 7.6, ресуспендировали 15 в 2 мл буфера того же состава, содержащего акрилонитрил в концентрации 1 г/л. Реакцию останавливали добавлением 0.1 мл 1 н. НСІ. Количественное определение акриламида осуществляли методом газожидкостной хроматографии на хроматографе ЛХМ-80 с пламенно-ионизационным детектором. В качестве неподвижной фазы использовали Reoplex 400.

В результате была выделена культура 25 Rhodococcus rhodochrous M8 с высокой нитрилгидратазной активностью.

Пример 2. Использование штамма Rhodococcus rhodochrous M8, ВКПМ S-926 для трансформации изобутиронитрила в 30 изобутирамид.

Полученный штамм Rhodococcus rhodochrous M8. ВКПМ S-926 предкультивировали в колбах Эрленмейера, заполненных на 1/10 часть бульоном Хоттингера в течение суток, на качалке (число качаний 120 мин⁻¹) при 30°С. Культуральную жидкость в объеме 10 мл инокулировали в 1,5 л ферментер. Состав среды, г:

ментер. Состав среды, г:	
K ₂ HPO ₄	0.5
KH ₂ PO ₄	0.5
MgSO ₄ ·7H ₂ O	0.5
CoC ₁₂ ·7H ₂ O	0.02
Глюкоза	10.0
Изобутирамид	2.5
Дистиллированная	
вода, мл	1000
pH	7.2 ± 0.2
Условия культивирования:	
Объем культуральной	
среды, мл	1000
Скорость перемеши-	
вания, об/мин	600
Аэрация, мин ⁻¹	1:2
Температура, °С	30
pH	7.2

Ферментацию вели при контролируемом значении рН. Подтитровку осуществляли 1 н. НСІ и 1 н. КОН. Из реакционной среды периодически отбирали пробы для определения концентрации клеток и их нитрилгидратазной активности. Концентрацию клеток определяли фотокалориметрически при длине волны 540 нм, толщине слоя 5,07 мм.

Активность нитрилгидратазы оценивали следующим образом.

1 мл культуральной жидкости центрифугировали, клетки отмывали 0.01 М фосфатным буфером, рН 7,6. Буферную емкость и
значение рН подбирали экспериментально.
Клетки ресуспендировали в буфере указапного состава до значения оптической плотности 0.2-0.5 (А 540 нм). К 2 мл клеточной
взвеси в фосфатном буфере добавляли изобутиронитрил в количестве 25 мкл. Реакцию
проводили при 20°С в течение 10 мин, а затем
останавливали добавлением 0,1 мл 1 н. НСІ.
Вактериальные клетки отделяли центрифугированием. Концентрацию изобутирамида
в надосадочной жидкости анализировали
методом газожидкостной хроматографии.

Удельная активность нитрилгидратазы в отношении изобутиронитрила достигала 140 ед.

Пример 3. Использование штамма Rhodococcus rhodochrous M8. ВКПМ S-926 для трансформации ацетонитрила в ацетамид.

Штамм Rhodococcus rhodochrous M8. ВКПМ S-926 подготавливали к процессу трансформации по примеру 2. Активность нитрилгидратазы оценивали аналогично примеру 2. В качестве субстрата добавляли ацетонитрил в количестве 25 мкл.

Активность нитрилгидратазы в отношении ацетонитрила достигала 220 ед.

Пример 4. Использование штамма 40 Rhodococcus rhodochrous M8. ВКПМ S-926 для трансформации акрилонитрила в акриламид.

Штамм Rhodococcus rhodochrous M8.
 ВКПМ S-926 подготавливали к процессу трансформации как в примере 2. Активность нитрилгидратазы оценивали аналогично примеру 2. В качестве субстрата добавляли акрилонитрил в количестве 25 мкл.

Изменение ферментативной активно-50 сти в зависимости от стадни роста клеток представлена в табл. 1.

Активность нитрилгидратазы в отношении акрилонитрила достигала 150 ед.

Пример 5. Влияние температуры на 55 активность нитрилгидратазы штамма Rhodococcus rhodochrous M8. ВКПМ S:926.

Бактерии Rhodococcus rhodochrous M8. ВКПМ S-926 выращивали в течение 70 ч и подготавливали к трансформации по приме-

ру 2. Образцы с реакционной смесью, содержащие 25 мкл акрилонитрила и 0,04 мг клетох по сухому весу в 2 мл 0,025 М фосфатного буфера, рН 7.6, инкубировали в течение 5 мин при различных температурах. Концентрацию образовавшегося в реакционной смеси акриламида определяли с помощью газожидкостной хроматографии. Изменение активности нитрилгидратазы в зависимости от температуры проведения 10 реакции трансформации представлено в табл. 2.

Таким образом нитрилгидратаза из штамма Rhodococcus rhodochrous M8. ВКПМ S-926 обладает более высокой термостабильностью, чем аналогичный фермент из Pseudomonas chlororaphis **B23 (темпера**турный оптимум 20°C) и Rhodococcus sp. N 774 (температурный оптимум 35°C).

Пример 6. Индукция нитрилгидратазы 20 при росте штамма Rhodococcus rhodochrous

М8. ВКПМ S-926 на мочевине.

Штамм Rhodococcus rhodochrous M8. ВКПМ S-926 предкультивировали в колбах Эрленменера, содержащих бульон Хоттин- 25 гера в течение суток на качалке при 30°С. 10 мл культуральной жидкости инокулировали в колбы Эрленмейера, содержащие 200 мл синтетической среды с различным количеством мочевины. Состав синтетиче- 30 ской среды, г:

K ₂ HPO ₄	0.5
NaH ₂ PO ₄	0.5
MgSO4 • 7H2O	0.5
CoCl2·6H2O	0.004
FeSO ₄ ·7H ₂ O	0.005
Глюкоза	10,0-20,0
Дистиллированная	
вода, мл	1000

Клетки растили в течение 72 ч при 30°C. 40 Активность нитрилгидратазы спределяли по примеру 2. Изменение активности нитрилгидратазы в зависимости от концентрации мочевины в среде представлено в табл. 3.

Результаты табл. 3 показывают, что уровень индукции нитрилгизратазы возрастает с ростом концентрации мочезины в среде и удельная активность достигает максимального вначения при концентрации мочевины 16 r/n.

Заявляемый бактериальный штами М8, ВКЛМ 5-926 на основании таксономического изучения отнесен к виду Rhodococcus rhodochrous. Штамм обладает индуцибельной интрилгидратазой, осуществляющей гидролиз алифатических нитрилов в амиды. Индукция нитрилгидратазы достигается при выращивании клаток Rhodococcus rhodochrous M8 на минеральной среде с ионами кобальта, содержащей в качестве источника взота и индуктора нитрилы н амиды органических кислот, например изобутиронитрил или изобутирамид, в в качества источника углерода - гліокозу. Максимальная активность нитрилгидратазы (удельная активность 300 и общая активность 2400) наблюдается при использовании в качестве источника азота и индуктора мочевины комерчески доступного создинения, что особенно важно в случае промышленного использования штамив. Еще однижавжным технологическим преимуществом использования штамма Rhodococcus rhodochrous M8 в качестве катализатора при гидролизе нитрилов является высокая термостабильность нитрилгидратазы. Максимальная активность формонта (1000 од.) наблюдается при 53°C.

35 Штамм Rhodococcus rhodochrous M8. ВКПМ S-928 может быть рекомендован как продуцент фермента нитрилгидратазы и использован в биотехнологическом процессе получения акриламида и других амидов карбоновых кислот.

Формула изобретения WITEMM бактерия Rhodococcus rhodechrous ВКЛМ S-926 - продуцент нитрилгидратазы.

Таблица 1

Похазатели	Рост клеток, ч					
	0	28	40	54	70	75
Оптическая плотность	0.05	0.5	1,1	3.4*	12.0*	1,0*
Удельная нит- рилгидратазная активность	0	5	23	112	150	120

45

Указанные величины оптической плотности промеряли после соответствующих разведений.

Таблица 2

Температур а , ^о С	Удельная активность нитрилгидра- тазы мкмоль акриламида/мг сухого веса клаток/мин		
20	150		
36	285		
46	680		
53	1000		
56	980		
60	680		
65	277		

Таблица 3

Глюкоза. г/л	Мочевина, г/л	Рост культуры, мг сухого веса клеток/мл	Удельная актие- ность, мкноль акриламида, мг сухого веса кла- ток/мин	Общая актив- ность; мкмоль ак- гжламида мл/мин
10	0,024	3.0	2.0	6.0
10	0.6	2.68	4,5	12,06
10	1.2	3.0	31.5	94,5
10	2.4	2.96	42.0	124,32
10	4.8	2.6	84,0	218,4
10	8.0	2.6	143.0	371,8
10	16.0	2.76	357,0	985,32
10	32,4	3.36	210.0	705.6
20	16,0	8.0	300,0	2400,0

5

10

15

20

Редактор Л.Гратилло

Составитель С.Козулин Техред М.Моргентал

Корректор М.Пожо

Заказ 1557

Тираж

Подписнов

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР 113035, Москво, Ж-35. Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101

Supplied by The British Library - "The world's knowledge"

AND STATE OF THE PARTY OF THE P

5 Lat 16