Back to the Future

Maratona de Programação IME-USP 🔯 Brasil

Timelimit: 2

Um grupo de amigos resolveu ir à Alemanha para apoiar a seleção brasileira em sua jornada gloriosa rumo ao hexa. Como as passagens aéreas e as estadias eram caras, cada um trouxe uma quantidade de dinheiro que julgou suficiente para passar o mês com conforto e voltar para casa sem problemas.

Porém, após a bela campanha do Brasil na copa do mundo, o grupo de amigos se viu obrigado a gastar o dinheiro que tinha guardado para as etapas finais da copa com a famosa cerveja alemã. As consequências de tais atos foram terríveis. Após uma grande bebedeira, todos foram pegos pela polícia local dormindo na rua, e receberam multas pesadíssimas. Além disso, todos perderam suas passagens de volta. Devido a esses contratempos, a viagem de volta ficou ameaçada. De repente, eles descobriram que precisavam voltar para casa gastando a menor quantidade possível de dinheiro.

Analisando as rotas aéreas disponíveis, os amigos notaram que em todas as rotas o número de assentos disponíveis nos aviões era sempre o mesmo. Porém, os preços das viagens entre uma cidade e outra eventualmente variavam bastante. Assustados com a possibilidade de não encontrar lugares suficiente nos aviões para que todos pudessem voltar e preocupados em gastar a menor quantidade possível de dinheiro, o grupo de amigos resolveu pedir sua ajuda.

Entrada

O problema é composto por várias instâncias. Cada instância começa com uma linha com dois inteiros positivos N ($2 \le N \le 100$) e M ($1 \le M \le 5000$), onde N é o número de cidades que pertencem às M rotas de voo consideradas. Os amigos querem ir da cidade 1 até a cidade N.

Nas próximas **M** linhas são fornecidos triplas de inteiros **A B C** descrevendo a rota do avião (**A** e **B**) e o preço da passagem aérea por pessoa (**C**). Os valores de **A** e **B** estão entre 1 e n. As rotas são bidirecionais (ou seja, há um voo de **A** até **B** e um voo de **B** até **A** com preço **C**) e haverá no máximo uma rota entre duas cidades. Na próxima linha são dados dois inteiros, D e K, onde D é o número de amigos e K é o número de assentos livres em cada voo. Cada rota só pode ser utilizada uma vez.

Saída

Para cada instância, imprima a linha "Instancia **k**", onde **k** é o número da instância atual. Além disso, imprima a menor quantidade possível de dinheiro que os amigos vão gastar para voltar ao Brasil (que está limitada por 10¹⁵). Caso não seja possível escolher um conjunto de voos que levem todos para casa, imprima "impossivel".

Imprima uma linha em branco após cada instância.

Exemplo de Entrada	Exemplo de Saída
4 5	Instancia 1
1 4 1	80
1 3 3	
3 4 4	Instancia 2
1 2 2	140
2 4 5	
20 10	Instancia 3

	Exemplo de Entrada	impossivel	Exemplo de Saída
1 3 3			
3 4 4			
1 2 2			
2 4 5			
20 100			
4 4			
1 3 3			
3 4 4			
1 2 2			
2 4 5			
20 1			

X Maratona de Programação IME-USP 2006.