딥러닝/클라우드

오세종 MIT DANKOOK UNIVERSITY

Contents

- 1. remind: clustering, classification
- 2. k-means clustering
- 3. KNN classification
- 4. Performance metric
- 5. k-fold cross validation

- Clustering
 - Grouping target data into some category (class)
 - Data in same group has similar characteristics
 - Group points into clusters based on how "near" they are to one another
 - Unsupervised learning

- Classification
 - Classify new data into one of known category.
 - The category has "label"
 - Application: prediction, diagnosis in medcine
 - Supervised learning

- Example : clustering
 - 차량의 특성을 가지고 grouping 을 해 보자

Can you see some group?

Vehicle	Top speed	Color	Air	Weight
	km/h		resistance	Kg
V1	220	red	0.30	1300
V2	230	black	0.32	1400
V3	260	red	0.29	1500
V4	140	gray	0.35	800
V5	155	blue	0.33	950
V6	130	white	0.40	600
V7	100	black	0.50	3000
V8	105	red	0.60	2500
V9	110	gray	0.55	3500

Example : clustering

Example : classification

No	Height	Weight	running hour	working hour	Category
1	0.41	0.36	0.27	0.65	Patient
2	0.23	0.37	0.34	0.68	patient
3	0.38	0.38	0.46	0.95	patient
4	0.45	0.31	0.37	0.75	patient
5	0.37	0.45	0.48	0.75	patient
6	0.28	0.26	0.36	0.86	patient
7	0.66	0.44	0.51	0.98	patient
8	0.55	0.43	0.43	0.91	patient
9	0.23	0.44	0.28	0.78	patient
10	0.41	0.53	0.46	0.86	patient
11	0.65	0.38	0.74	0.51	normal
12	0.89	0.53	0.67	0.46	normal
13	0.58	0.54	0.56	0.43	normal
14	0.78	0.55	0.67	0.34	normal
15	0.89	0.56	0.81	0.56	normal
16	0.65	0.57	0.81	0.43	normal
17	0.75	0.67	0.76	0.35	normal
18	0.46	0.48	0.65	0.42	normal
19	0.89	0.69	0.78	0.23	normal
20	0.78	0.81	0.88	0.26	normal

Disease A

Patient or Normal?

Height	Weight	running hour	working hour
0.5	0.44	0.45	0.61

example: image classification

(2) Search similar image and shows detail information about it

- Binary vs. multiple classification
 - Binary classification
 - # of class is two

Male Female

Patient Normal

Yes No

- multiple classification
 - # of class over two

Well-done medium rare

university High school

Middle school

Elementary school

• 금이간 타일과 정상 타일 군집화

https://www.slideshare.net/picasso544/clustering-tutorial

475Hz	557Hz
	
0.958	0.003
1.043	0.001
1.907	0.003
0.780	0.002
0.579	0.001
0.003	0.105
0.001	1.748
0.014	1.839
0.007	1.021
0.004	0.214

Table 1: frequency intensities for ten tiles.

Tiles are made from clay moulded into the right shape, brushed, glazed, and baked. Unfortunately, the <u>baking may produce invisible cracks</u>. Operators can detect the cracks by hitting the tiles with a hammer, and in an automated system the response is recorded with a microphone, filtered, Fourier transformed, and normalised. A small set of data is given in TABLE 1 (adapted from MIT, 1997).

Plot of tiles by frequencies (logarithms). The whole tiles (o) seem well separated from the cracked tiles (*). The **objective** is to find the two clusters.

Before logarithms

- 1. Place two cluster centres (x) at random.
- 2. Assign each data point (* and o) to the nearest cluster centre (x)

- 1. Compute the new centre of each class
- 2. Move the crosses (x)

Iteration 2

Iteration 3

Iteration 4 (then stop, because no visible change)
Each data point belongs to the cluster defined by the nearest centre

557Hz	
++	Result =
0.003	1
0.001	1
0.003	1
0.002	1
0.001	1
0.105	2
1.748	2
1.839	2
1.021	2
0.214	2
	557Hz + 0.003 0.001 0.003 0.002 0.001 0.105 1.748 1.839 1.021 0.214

군집화 결과:

- 1. The last five data points (rows) belong to the first cluster
- 2. The first five data points (rows) belong to the second cluster

• 거리계산

$$p = (p_1, p_2, p_3, ..., p_n), q = (q_1, q_2, q_3, ..., q_n)$$

Euclidean distance

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2} = \sqrt{\sum_{i=1}^n (p_i - q_i)^2}.$$

Python code

KMeans

n_clusters : 클러스터의 개수

random_state : seed for reproducability

```
# cluster label
kmeans.labels_
# bind data & cluster label
np.hstack((X, kmeans.labels_.reshape(-1, 1)))

# center of clusters
kmeans.cluster_centers_

# predict new data
kmeans.predict([[0, 0], [12, 3]])
```

```
In [309]: kmeans.labels
                                                  In [311]: kmeans.cluster_centers_
Out[309]: array([1, 1, 1, 0, 0, 0])
                                                  Out[311]:
                                                  array([[9. , 5.
In [310]: np.hstack((X, kmeans.labels .reshape(-1, 1)
                                                         [1.66666667, 3.33333333]])
Out[310]:
array([[1, 2, 1],
                                                  In [312]: kmeans.predict([[0, 0], [12, 3]])
      [ 2, 3, 1],
                                                  Out[312]: array([1, 0])
      [2, 5, 1],
      [8, 5, 0],
      [10, 6, 0],
      [9, 4, 0]])
```


분류(classification)

No	running hour	working hour	Category
1	0.27	0.65	Patient
2	0.34	0.68	patient
3	0.46	0.95	patient
4	0.37	0.75	patient
5	0.48	0.75	patient
6	0.36	0.86	patient
7	0.51	0.98	patient
8	0.43	0.91	patient
9	0.28	0.78	patient
10	0.46	0.86	patient
11	0.74	0.51	normal
12	0.67	0.46	normal
13	0.56	0.43	normal
14	0.67	0.34	normal
15	0.81	0.56	normal
16	0.81	0.43	normal
17	0.76	0.35	normal
18	0.65	0.42	normal
19	0.78	0.23	normal
20	0.88	0.26	normal

Given Classified Data

Patient or Normal?

running	working	
hour	hour	
0.45	0.61	

- Idea of KNN
 - Find K nearest neighbor for new point (**)
 - Decide new point belongs to major class (class A)
 - # of neighbor of Class A > # of neighbor of Class B

- Algorithm
 - Calculate distance between new point and every point of given classes
 - Choose K nearest points by the distance
 - Choose major class from K points (the class is for the new point)

- How to calculate the distance between two element?
 - Using Euclidean distance

$$\mathbf{p} = (p_1, p_2, ..., p_n)$$

$$\mathbf{q} = (q_1, q_2, ..., q_n)$$

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2} = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}....$$

- K를 얼마로 하는 것이 좋은가
 - 크게 할 때와 작게 할 때 각각 장단점이 있다
 - 데이터 수가 N 이라고 할 때 K < sqrt(N) 을 권장

1NN vs kNN

- 장점
 - 통계적 가정 불필요 (비모수적 방법)
 - 단순하다
 - 성능이 좋다
 - 모델을 훈련(학습)하는 시간이 필요 없다
- 단점
 - 데이터가 커질수록 많은 메모리 필요, 처리시간(분류시간) 증가

Python code

knn_basic.py

```
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model selection import train test split
from sklearn.metrics import accuracy_score
# Load the iris dataset
iris X, iris y = datasets.load iris(return X y=True)
print(iris X.shape) # (150, 4)
# Split the data into training/testing sets
train X, test X, train y, test y = \
    train_test_split(iris_X, iris_y, test_size=0.3,\
                     random state=1234)
```

```
# Define learning model
model = KNeighborsClassifier(n neighbors=3)
# Train the model using the training sets
model.fit(train X, train y)
# Make predictions using the testing set
pred y = model.predict(test X)
print(pred y)
acc = accuracy score(test y, pred y)
print('Accuracy : {0:3f}'.format(acc))
```

Accuracy : 0.977778

KNeighborsClassifier

Hyper parameter (조율모수)

o n_neighbors : 이웃의 개수 (default: 5)

- Dataset scaling
 - Kmeans, knn 과 같은 거리기반 학습방법을 적용할 때는 scaling 필요
 - Scaling: 변수들의 값의 범위를 일정하게 맞추는 과정
 - 이유: 거리 계산에서 scale 이 큰 변수가 작은 변수보다 더 영향을 미 치기 때문에 변수별 영향력을 동일하게 해야 한다.
 - Ex) 키(150~200), 시력(0.1~2.0) $d(\mathbf{p}, \mathbf{q}) = d(\mathbf{q}, \mathbf{p}) = \sqrt{(q_1 p_1)^2 + (q_2 p_2)^2}$ (155, 1.0) (150, 0.1)

python

```
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
scaler.fit(X)  # X : input data

X_scaled = scaler.transform(X)
```

Dataset scaling

```
In [215]: iris X
                                    In [220]: scaler.transform(iris X)
Out[215]:
                                   Out[220]:
array([[5.1, 3.5, 1.4, 0.2],
                                   array([[-9.00681170e-01, 1.01900435e+00, -1.34022653e+00,
       [4.9, 3., 1.4, 0.2],
                                           -1.31544430e+001.
       [4.7, 3.2, 1.3, 0.2],
                                          [-1.14301691e+00, -1.31979479e-01, -1.34022653e+00,
       [4.6, 3.1, 1.5, 0.2],
                                           -1.31544430e+00],
      [5., 3.6, 1.4, 0.2],
                                          [-1.38535265e+00, 3.28414053e-01, -1.39706395e+00,
      [5.4, 3.9, 1.7, 0.4],
                                            -1.31544430e+00],
      [4.6, 3.4, 1.4, 0.3],
                                          [-1.50652052e+00, 9.82172869e-02, -1.28338910e+00,
      [5., 3.4, 1.5, 0.2],
                                           -1.31544430e+00],
      [4.4, 2.9, 1.4, 0.2],
                                          [-1.02184904e+00, 1.24920112e+00, -1.34022653e+00,
      [4.9, 3.1, 1.5, 0.1],
                                           -1.31544430e+00],
      [5.4, 3.7, 1.5, 0.2],
                                          [-5.37177559e-01, 1.93979142e+00, -1.16971425e+00,
       [4.8, 3.4, 1.6, 0.2],
                                           -1.05217993e+00],
       [4.8, 3., 1.4, 0.1],
                                          [-1.50652052e+00, 7.88807586e-01, -1.34022653e+00,
       [4.3, 3., 1.1, 0.1],
                                           -1.18381211e+00],
       [5.8, 4., 1.2, 0.2],
```

scikit-learn에서는 다음과 같은 스케일링 클래스를 제공한다.

- StandardScaler(X): 평균이 0과 표준편차가 1이 되도록 변환.
- RobustScaler(X): 중앙값(median)이 0, IQR(interquartile range)이 1이 되도록 변환.
- MinMaxScaler(X): 최대값이 각각 1, 최소값이 0이 되도록 변환
- MaxAbsScaler(X): 0을 기준으로 절대값이 가장 큰 수가 1또는 -1이 되도록 변환

- Performance metric
 - Performance evaluation of learning model (classification)

For binary classification model only

- Sensitivity (recall)
- Specificity
- precision
- F1 score
- ROC, AUC

For all classification model

Accuracy

Binary classification metric

positive (1): 양성 negative (0): 음성

Fact (실제값)

Predict (예측값)

	Fact is positive	Fact is negative
Predict as positive	TP	FP
Predict as negative	FN	TN

fact	predict
1	1
0	1
0	0
1	1
0	1
1	0

TP: true positive **FP:** false positive **FN:** false negative **TN:** true negative

$$Accuracy = \frac{(TP + TN)}{(TP + TN + FP + FN)}$$

(정확도)

Binary Classification Error

Specificity =
$$TN/(TN+FP)$$
 (≒0|⊊)

- Sensitivity
 - Fraction of all Class1 (True) that we correctly predicted at Class 1
 - How good are we at finding what we are looking for
- Specificity
 - Fraction of all Class 2 (False) called Class 2
 - How many of the Class 2 do we filter out of our Class 1 predictions

	Fact is True	Fact is False
Predict as True	TP	FP
Predict as False	FN	TN

Binary Classification Error

$$Precision = TP/(TP+FP)$$

(정밀도)

환자(Positive), 정상인(Negative)

Sensitivity : 환자를 환자라고 예측한 비율

Specificity: 정상인을 정상인이라고 예측한 비율

Precision: 환자라고 예측한 것 중에서 실제 환자의 비율

- Binary classification metric
 - F1 score : harmonic mean of sensitivity and specificity
 - sensitivity 와 specificity 의 불균형에 대해 감점이 이루어짐

$$F1\ score = \frac{2 \times sensitivity \times specificity}{sensitivity + specificity}$$

sensitivity	specificity	F1 score
1	1	1
1	0	0
0.8	0.8	0.8
0.8	0.5	0.62

How to calculate sensitivity, specificity,.. for multi-class model ?

class A, class B, class C

For class A:

positive : class A, negative: class B,C

For class B:

positive : class B, negative: class A,C

For class C:

positive : class C, negative: class A,B

Python metric

• https://scikit-learn.org/stable/modules/model_evaluation.html

6 1		
Scoring	Function	Comment
Classification		
<u>'accuracy'</u>	metrics.accuracy_score	
'balanced_accuracy'	metrics.balanced_accuracy_score	for imbalanced datasets.
'average_precision'	metrics.average_precision_score	
'neg_brier_score'	metrics.brier_score_loss	
<u>'f1'</u>	metrics.f1_score	for binary targets
'f1_micro'	metrics.f1_score	micro-averaged
'f1_macro'	metrics.f1_score	macro-averaged
'f1_weighted'	metrics.f1_score	weighted average
'f1_samples'	metrics.f1_score	by multilabel sample
'neg_log_loss'	metrics.log_loss	requires predict_proba support
'precision' etc.	metrics.precision_score	suffixes apply as with 'f1'
'recall' etc.	metrics.recall_score	suffixes apply as with 'f1'
'jaccard' etc.	metrics.jaccard_score	suffixes apply as with 'f1'
'roc_auc'	metrics.roc_auc_score	
'roc_auc_ovr'	metrics.roc_auc_score	
'roc_auc_ovo'	metrics.roc_auc_score	
'roc_auc_ovr_weighted'	metrics.roc_auc_score	
'roc_auc_ovo_weighted'	metrics.roc_auc_score	
43		

Clustering	
'adjusted_mutual_info_score'	metrics.adjusted_mutual_info_score
'adjusted_rand_score'	metrics.adjusted_rand_score
'completeness_score'	metrics.completeness_score
'fowlkes_mallows_score'	metrics.fowlkes_mallows_score
'homogeneity_score'	metrics.homogeneity_score
'mutual_info_score'	metrics.mutual_info_score
'normalized_mutual_info_score'	metrics.normalized_mutual_info_score
'v_measure_score'	metrics.v_measure_score
Regression	
'explained_variance'	metrics.explained_variance_score
'max_error'	metrics.max_error
'neg_mean_absolute_error'	metrics.mean_absolute_error
'neg_mean_squared_error'	metrics.mean_squared_error
'neg_root_mean_squared_error'	metrics.mean_squared_error
'neg_mean_squared_log_error'	metrics.mean_squared_log_error
'neg_median_absolute_error'	metrics.median_absolute_error
' <u>r2'</u>	metrics.r2_score
'neg_mean_poisson_deviance'	metrics.mean_poisson_deviance
'neg_mean_gamma_deviance'	metrics.mean_gamma_deviance

example

```
from sklearn.metrics import accuracy_score

test_y = [2, 0, 2, 2, 0, 1]
pred_y = [0, 0, 2, 2, 0, 2]

acc = accuracy_score(test_y, pred_y)
print(acc)
```

Confusion matrix

```
from sklearn.metrics import confusion_matrix
test_y = [2, 0, 2, 2, 0, 1]
pred_y = [0, 0, 2, 2, 0, 2]
confusion_matrix(test_y, pred_y)
```

```
# binary classification
test_y = [1, 0, 0, 1, 0, 1]
pred_y = [0, 0, 0, 1, 0, 1]
tn, fp, fn, tp = confusion_matrix(test_y, pred_y).ravel()
(tn, fp, fn, tp)
```

```
In [243]: (tn, fp, fn, tp)
Out[243]: (3, 0, 1, 2)
```


motivation

Only one classification experiment is enough?

Training data Test data

- Classification accuracy = 0.87 (???)
- 위의 예에서 Test 데이터셋을 다르게 만들면 accuracy 가 달라질 것이다
- Test 데이터셋이 어떻게 구성되었는가에 따라 accuracy 가 원래 성능 보다 높거나 낮게 나올 수도 있다.
- 그렇다면 어떻게 해야 분류 모델 또는 분류 알고리즘의 성능을 보다 정확히 알 수 있을까?

- Create a K-fold partition of the dataset
 - For each of K experiments, use K-1 folds for training and the remaining one for testing (일반적으로 k=10 을 많이 사용)

○ 모델의 정확도는 각 fold 의 정확도들의 평균으로 계산

$$Acc = \frac{1}{K} \sum_{i=1}^{K} Acc_i$$

Python function

05.knn_kfold.py

```
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model selection import KFold
from sklearn.model selection import train test split
from sklearn.metrics import accuracy score
import numpy as np
# Load the iris dataset
iris_X, iris_y = datasets.load_iris(return_X_y=True)
# Define fold (5 fold)
kf = KFold(n_splits=5, random_state=123, shuffle=True)
# Define learning model
model = KNeighborsClassifier(n neighbors=3)
acc = np.zeros(5) # 5 fold
i = 0
                     # fold no
```

```
for train_index, test_index in kf.split(iris_X):
   print("fold:", i)
   train X, test X = iris X[train index], iris X[test index]
   train y, test y = iris y[train index], iris y[test index]
   model.fit(train X, train y)
   pred y = model.predict(test X)
   acc[i] = accuracy score(test y, pred y)
   print('Accuracy : {0:3f}'.format(acc[i]))
   i += 1
print("5 fold :", acc)
print("mean accuracy :", np.mean(acc))
```

fold: 0

Accuracy : 0.966667

fold: 1

Accuracy : 0.966667

fold: 2

Accuracy : 0.966667

fold: 3

Accuracy : 0.966667

fold: 4

Accuracy : 0.933333

5 fold: [0.96666667 0.96666667 0.96666667 0.96666667 0.93333333]

mean accuracy : 0.96

K-fold Cross Validation (simple way)

05.knn_cross_val_score.py

```
from sklearn import datasets
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model selection import cross val score
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np
# Load the iris dataset
iris X, iris y = datasets.load iris(return X y=True)
# Define learning model
model = KNeighborsClassifier(n neighbors=3)
# Define fold (model, train, target, cross validation)
scores = cross val score(model, iris X, iris y, cv=5)
print("fold acc", scores)
print("mean acc", np.mean(scores))
```

```
In [360]: print("fold acc", scores)
fold acc [0.96666667 0.96666667 0.93333333 0.96666667 1. ]
In [361]: print("mean acc", np.mean(scores))
mean acc 0.966666666666668
```

Note. K-fold cross validation 의 용도

- K-fold cross validation이 원하는 모델을 도출하지는 않음
- 주어진 데이터셋으로 모델 개발시 미래의 정확도를 추정
- 최종 모델 개발을 위한 hyper parameter 튜닝에 사용
- 전처리시 feature selection 에 사용
- K-fold cross validation 에 의해 최적의 hyper parameter 값을 확정하면 전체 데이터를 활용하여 최종 모델을 완성함

