Timed automata

金钊, 王璐璐, 白宗磊

北京大学信息科学与技术学院

2017/6/1

Outline

- 10.1 Motivation
- 10.2 Syntax of timed automata
- 10.3 Semantics of timed automata
- 10.4 Networks of timed automata
- 10.5 More on timed automata formalisms

10.3 Semantics of timed automata

state

state

- a suitable notion of the state of computation of a timed automaton consists of a pair (I, v)
- I is the control location the automaton is in
- v is the valuation determined by the current clock values

timed transition system

timed transition system T(A)

Let $A = (L, I_0, E, I)$ be a timed automaton over a set of clocks C and a set of actions Act. We define the timed transition system T(A) generated by A as $T(A) = (Proc, Lab, \{\stackrel{\alpha}{\longrightarrow} | \alpha \in Lab\})$

timed transition system

timed transition system T(A)

其中:

- $Proc = \{(I, v) | (I, v) \in L * (C \rightarrow R_{\geq 0}) \text{ and } v \models I(I)\}$. states are of the form (I, v), where I is a location of the timed automaton and v is a valuation that satisfies the invariant of I.
- $Lab = Act \cup R_{\geq 0}$ is the set of labels $(R_{\geq 0}: time elapsing \quad step)$
- the transition relation is defined by:
 - $(I, v) \xrightarrow{a} (I', v')$ if there is an edge $(I \xrightarrow{g, a, r} I') \in E$ such that $v \models g, v' = v[r]$ and $v' \models I(I')$
 - $(I, v) \xrightarrow{d} (I, v + d)$ for all $d \in R_{\geq 0}$ such that $v \models I(I)$ and $v + d \models I(I)$

where: g is the guard, a is the action, r is the set of clocks to be reset, I assigns invariants to locations.

timed transition system

timed transition system T(A)

Let v_0 denote the valuation such that $v_0(x)=0$ for all $x\in C$. If v_0 satisfies the invariant of the initial location I_0 , we shall call (I_0,v_0) the initial state (or initial configuration) of T(A).

Example

A small part of the transition system T(A) is shown below (there are in fact uncountably many different reachable states for every x in the interval [0, 2])

$$(\ell_{0}, [x=0]) \xrightarrow{0.6} (\ell_{0}, [x=0.6]) \xrightarrow{0.4} (\ell_{0}, [x=1]) \xrightarrow{0.3} (\ell_{0}, [x=1.3]) \xrightarrow{0.7} (\ell_{0}, [x=2])$$

Notice:

There is a fundamental difference between situations where a clock constraint is used in the guard and where it is used in the invariant.

Notice:

In the timed automaton (b), $x \le 1$ is used in the invariant. This

Exercise:

Figure 10.3 A small Jobshop.

A Worker alternates between resting and working. The clock x is used for constraining the time spent by the Worker in these two modes, and the clock y is used to control the frequency with which the Worker is hitting nails while working.

谢谢大家!