系统工程第3次作业

张博睿 自75 2017011537

程序详见

./code/main.py

1.函数说明

(1) 输入参数

输入参数	相关说明
data	第一列为Y,第二列为X
alpha	显著性水平,默认为0.05

(2) 函数功能

函数	功能	
fit()	对输入的数据data通过最小二乘法进行线性拟合,计算斜率和截距;	
	并对计算的结果进行 F 检验,根据显著性判断是否呈现线性;最后计	
	算置信区间。	
print_formula()	输出计算出来的中间结果和最终结果。	
plot()	对原始数据和预测数据以及置信区间进行可视化。	

2.算法流程

输入: 待拟合数据data, 和置信区间alpha。

(1) 通过最小二乘法计算参数 \hat{a} 和 \hat{b} 。

$$\hat{a} = \frac{\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_i^2 - n \bar{x}^2}$$
$$\hat{b} = \bar{y} - \hat{a} \bar{x}$$

(2) 进行 F 检验,并通过查阅 F 分布判断是否呈现线性关系。

$$F = \frac{(n-2)ESS}{RSS}$$

(3) 计算置信区间

$$S_{\sigma} = \sqrt{\frac{RSS}{n-2}}$$

$$\left(\hat{y} - Z_{\frac{\alpha}{2}}S_{\sigma}, \hat{y} + Z_{\frac{\alpha}{2}}S_{\sigma}\right)$$

$$\left(\hat{y} - Z_{\frac{\alpha}{2}}S_{\sigma}, \hat{y} + Z_{\frac{\alpha}{2}}S_{\sigma}\right)$$

(4)输出结果并可视化。

输出:最终拟合结果。

3.拟合结果

项目	数值	
\bar{x}	0.016286	
\bar{y}	2.987857	
â	-134.607	
\hat{b}	5.180021	
拟合公式	y = -134.61 * x + 5.18	

4.统计检验

项目	数值
F统计量	21.96092
P值	0.999473
S_{σ}	0.81185
$Z_{rac{lpha}{2}}$	1.959964

可以看到,在显著性为 $\alpha=0.05$ 的前提下,可以认为呈现出线性关系,并且置信区间为 (y-1.591196027793183,y+1.591196027793183)