Adelaide earthquake 13 Allah Bund	Calingiri earthquake 13, 25
	Cambay rift 127, 129
earthquake 127, 153	Cap-Rouge earthquake 83
paleoseismological studies 137	Carnières earthquake 211–212
Allah Bund fault 127, 138	Central Belgium earthquake 5, 211–212
slip along 137	Central Brazil 64
Amazon basin 53, 55, 66	characteristic earthquake 305, 312
Amazon craton 66	Charleston, MO, earthquake 317
Anjar earthquake 127, 153	Charleston, SC, earthquake 309, 310
Australia 1	Charleston, SC, seismic zone 306
Axial fault (also called Cottonwood Grove fault) 168,	Charleston uplift 179, 207
173, 308, 314	Charlevoix earthquake 77, 79–82
	Charlevoix seismic zone 3, 73, 77, 79–82
Banni graben 130	Cheraw fault 312, 318
basin inversion 257, 258, 270 (see also stress	Chuetsu earthquake 242, 245
inversion of basins)	Chuetsu-Oki earthquake 235–245
Australia 24	Colchester earthquake 213, 225
El Asnan fault zone 252	Commerce Geophysical Lineament 177,
Europe 263–266	312
Kutch 31, 134	compressional stress field 6, 9
Northwest Shelf 32	conjugate faults, Kutch 155
NMSZ 252	continental margin seismicity 60, 148-149
modeling 266–268	contractural strain rates, Japan Sea region 233
Sea of Japan region 171, 249	Cornwall–Messena earthquake 82
basin inversion models 276	Cottonwood Grove fault see Axial fault
insight from 289–290	Coulomb stress change, Kutch 148
Bass Strait earthquake 12	craton boundary 2, 87
Beachport earthquake 13	craton keels as stress concentrators 67
Belgian Ardenne earthquake 175	craton margins 32
Bermuda hotspot 171, 249	craton provinces 56-57, 65
Bharuch earthquake 127, 141	craton roots and intraplate seismicity 57–58
Bhuj earthquake 4, 127, 143, 148, 153	Crittendon county fault 184
Big Creek fault zone 177	Crowley's Ridge 168, 172
Blytheville arch 169	crustal fluids
Bootheel fault 175	Japan Sea region 244, 249–252
Borborena province 55	Kutch 154
Brazil 2, 66	
Burakin earthquake swarm 12	Dalton-Gerring earthquake 12
buried pluton 276, 280	Daquinshan fault zone 108
1	Darling fault 31
Cadell fault 22, 33	Deccan mantle plume 127
Cadoux earthquakes 13, 25	Deccan Traps 127, 294

deep central trough (DCT), Japan Sea region 239,	geodetic deformation, Kutch 128
240, 241	geodetic observation 127
deep mantle structure and intraplate earthquakes 288	China, GPS 104–106
deglaciation 51, 89, 172, 185, 278–279, 315	Kutch, GPS 4, 127, 149, 150
perturbation of regional stress field by 127, 294	Kutch, InSAR 4, 150
denudation model 162, 186–187, 279, 315	SAR interferometry 244
Dholavira archeological studies 137	geological history 4
Dholavira earthquake 153	NMSZ 164–173
distributed strain release model 316-317	GIA (glacial isostatic adjustment) 315
Dumbleyung fault scarp 22	Giles County, VA, earthquake 317
Düren earthquake 200	Gippsland basin 17, 24, 33
	Gondwanaland 129
earthquake catalog	Gora Dungar fault 145, 149
Australia 11, 15	Gora Dungar earthquake 146, 153
Brazil 2, 52–53, 61	Grand River tectonic zone 178
Central and Eastern US 106	ground surface rupture 13, 55
China 3, 98, 105	Ernabell a earthquake 13
earthquake damage analysis 204–207	Killari earthquake 13
Belgium 214–220	Tennant Creek earthquake 13
northern France 201	Ungava earthquake 13
southern England 201	Gujarat state, seismicity of 140–145
earthquake localization 30–33	Guyana shield 13, 55
earthquake-related landscape features 77	
NMSZ 179	Haicheng earthquake 111, 112
Eastern Canada 3	Hainaut seismic zone 201
Eifel Mountains earthquake 200	Hannut earthquake 213–214, 225
Ernabella earthquake 18	Hetao rift valley 100, 103
erosion model, NMSZ 278–279 (see also denudation	high-density body in lower crust, Kutch 4
model)	high-velocity body in lower crust, Charlevoix
ETAS model 308, 319	81
Euskirchen earthquake 200	Japan Sea region 240, 241
extended crust 19, 32, 58, 85	historical earthquakes 3
	hazard assessment 309
fault coupling 113–115	magnitudes 309
fault geometry 276	recurrence rates 321
fault interaction, China 99, 113, 118	Hongdong earthquake 108, 112
fault intersection model 281	Huashan fault 109
fault intersections 133, 137, 178, 179	Huaxian earthquake 98, 103, 108, 109, 112,
fault reactivation	119
Eastern Canada 89	Huoshan earthquake 109
Japan Sea region 242	Huoshan fault 109
NMSZ 167, 181–184, 187	Hyden fault scarp 109, 318
fault scarps 2, 15, 18, 25	
length 2, 20–22	Iapetan faults 81
vertical displacement 20–22	Iapetus Ocean 73
paleoseismological investigations 20	intersecting structures 133, 149
Fenwei rift system 99, 113	intersection zones, stress concentration in 5, 64
flexural stresses 2, 64–65, 250	intraplate earthquake models see also under NMSZ
as stress concentrator 51	unified model 290–292
Flinders Range seismic zone 14, 16, 26,	intraplate stress 6
31	inverted basins <i>see</i> stress inversion of basins
fluid-filled zones in lower crust	Island Belt fault 129, 133, 149
Japan Sea region 137, 249–252	Island Belt uplift 129
Kutch 133, 137	Iwate-Miyagi Nairiku earthquake 244
fluid migration 251	111 4 1 107 141
G 11 1 107	Jabalpur earthquake 127, 141
Gedi earthquake 127	Jaguaribe Lineament 64
Gedi fault 127, 151, 153	Japan Sea region earthquakes 5, 231, 233

Kachchh see Kutch mid-plate South America 53, 65 Kalgoorlie-Boulder earthquake 13 SLRS 77 Kathiawar uplift 129 mechanical and thermal influence for intraplate Katrol Hills fault 127 earthquakes 31-32 Killari (Latur) earthquake 13 mechanically coupled fault zones in China 113 Kurdwadi rift 127 Meckering earthquake 13, 15, 18, 282 Kutch Mainland fault 127, 129, 149 fault scarp 20 paleoseismological studies 140 Meeman-Shelby fault 177 Kutch Mainland uplift 129, 130 Meerberrie earthquake 12 Kutch rift basin 127 Meers fault 312, 318 Minas Gerais seismic zone 55 Lake County uplift 173, 175 Mineral, VA, earthquake 317 Lake Edgar fault 22, 318 Miramichi earthquake 87 Lake George fault 22, 33 model for mid-continental earthquakes 114 Lakhpat earthquake 127, 153 Montreal earthquake 77, 87 landscape record of seismicity in Australia 9, morphogenic earthquakes 2 Australia 18, 34, 318, 329 landslides in epicentral regions 79 Mount Hotham earthquake 14 Latur earthquake 127 Mount Lofty seismic zone 26 Liège earthquake 200, 201, 205, 210-211, Muikamachi fault 239 Linfen earthquake 110, 112 Nagar Parkar fault 129 lithospheric keels 65 Nagar Parkar uplift 129 lithospheric stress field 277 Narmada rift zone 127, 129, 136, 140 lithospheric structure, China 101-103 stress in 128, 244 local shear model 282 nature of seismic zones, Kutch 143 local stress anomaly, evidence of 283-287 Nebraska earthquake 316 Bardwell, KY 287, 329 neotectonic domain 2, 19 continental rift zones 287 neotectonic faults 60-64 eastern North America 286 New England Seamount Chain track 88, 104 France 283 New Madrid earthquakes Japan 286 1811-1812 sequence 173-175, 306-309 geological structures 175-178 local stress build-up and fault reactivation 88 local stress change, areal dimensions 22, geological history 164-173 magnitude of 175 local stress concentrator models 279-283 New Madrid North fault 175 fault intersections 280 New Madrid seismic zone (NMSZ) 4, 173-188, 276, restraining bends (compressional stopovers) 6 rift pillows 6 erosion model 186 (see also denudation model) stress amplification around plutons 6 fault activation models 181-184 local stress concentrators 6, 276, 287, 329 **GPS 163** local stress rotation see stress field, rotation Holocene triggering model 185-187 paleoseismological investigations 179-181, Logan's Line 73, 81 Longmenshan fault 117 244 Lort River fault scarp 22, 318 New Markham fault 175 Lower St. Lawrence seismic zone 3, 73, 82 Newcastle earthquake 13 Lushan earthquake 116 Niigata earthquake 179-181, 233, 244 Niigata region 234, 242 magmatic intrusive 129 Niigata-ken Chuetsu earthquake 235-245 associated fluid-filled zones 137 non-extended crust 15, 19, 32, 58 Kutch 135-137 Norseman earthquake 14 Manga fault 66 North Atlantic depth anomaly 258 Manila High 177 North China 3, 99 Marianna, AR, liquefaction features 180, 312 active tectonics 88, 104 Massena, NY, earthquake 317 crustal kinematics 104 maximum magnitude of earthquake, M_{max} 2, 304, geological history 101 319, 331 lithospheric structure 101-103 Australia 12, 14, 27-30 strain rate 104-106

North Kathiawar fault 129	Japan Sea 5, 242–245, 249
North Miyagi earthquake 128, 244	Kutch 140, 153
North Wagad fault 133, 135, 143, 149, 155	SLRS 81
northeast Brazil 66	Reelfoot Lake 85, 178
Northwest Shelf seismic zone 16, 24	Reelfoot Rift 33, 163, 169
Noto-Hanto earthquake 245–252	fault segments 175, 178-179, 308, 314
Noto-Hanto region 234	rift pillow 165
Nukerke earthquake 212–213, 225	seismicity 179–181
	Réunion mantle plume 127
Ordos plateau 99, 100	rift faults, reactivation of, Kutch 165
Ordos rift basin 99, 103	rift pillow 5, 280–281
Ottawa rift 33	rift structures 328
Ottawa–Bonnechère graben 3, 72, 83	rift systems
Otway basin 17, 24, 31, 33	ancient, aftershocks 247
	Japan Sea region 224, 231, 238–242
paleoliquefaction deposits/features	reactivation of 200, 231
Marianna, AR 312	rift zones
NMSZ 306	ancient 6
Wabash valley 312	continental 58
paleoseismic evidence, seismicity rate 312	interior 32, 58
paleoseismological investigations 2	rifted cratonic areas 85, 178
Australia 28	rifted margins 32, 59, 318
CEUS 312	ancient, failed 51
Charleston, SC 311	rifts and intraplate seismicity 276, 288–289, 315, 328
fault scarps 28	St. Lawrence rift system 86–90
Hyden faults scarp 20	Risco fault 163
Kutch 137–140	roaming of large earthquakes 4, 112, 114, 118, 329,
northeast Brazil 53	331 Bear well as each or 200, 221
NMSZ 163, 173, 177, 180, 184–185, 187, 311	Roer valley graben 200, 231
North China 106–108	Roermond earthquake 200, 207–210, 224, 231
SLRS 78 Western Evrens 200	Roopena fault 59, 318
Western Europe 200	rotation of regional stress field 6, 277
Pantanal basin 55, 66 Paraná basin 64	rotation of S _{Hmax} 276 (see also local stress anomaly
Parecis basin 66	stress field, rotation)
Parnaiba basin 64	Bardwell, KY 287
passive margin seismicity 59	Central Virginia seismic zone 286 Charlevoix seismic zone 81, 286
Brazil 58–60	Japan 286
Pernambuco Lineament 62	Lower St. Lawrence seismic zone 82, 286
perturbation of local stress field 277	Northern Appalachian seismic zone 286
areal extent 294	Sea of Japan region 243, 244
magnitude 287–288, 294	Sea of Jupan region 243, 244
perturbation of regional stress field 278–279	Saguenay earthquake 77, 86
deglaciation and erosion 90	Saguenay graben 3, 33, 72
Porto dos Gauchos seismic zone 55	Samkhiali graben 130, 131, 181
potential energy stress 5, 268	Sanhe earthquake 108, 110, 112
Potiguar Basin 55	São Francisco craton 55, 66
pre-existing zone of weakness 31, 88	Satpura earthquake 141
prehistoric earthquakes New Madrid 177	seismic hazard analysis 3, 6
probabilistic seismic hazard assessment (PSHA) 303,	seismic hazards 304
319, 329	Central and Eastern US 304 North China 115
Qinling–Dabie orogenic belt 100	Western Europe see under Western Europe seismic moment release, CEUS 305–309
Radhanpur arch 130, 134	Seismic tomographic studies 4, 234, 330
Ravensthorpe earthquake 14	Japan Sea region 4, 5, 239
reactivation of faults	Kutch 154

seismogenic strain rates, Australia 14	strain accumulation rates
seismotectonic correlations, Brazil 56–65	CEUS 313–315
Senador Pompeu Lineament 64	GPS in NMSZ 313
Shanxi graben 101	mechanism 315–316
Shanxi rift 99, 117	strain localization 32
Shanxi rift zone 108	stress concentration
Shibata-Koide Tectonic Line (SKTL) 235,	around weak intrusions 89
239	cratonic keels 67
S _{Hmax} (maximum horizontal compressive stress)	fault intersections 51, 281–282
Brazil 55	flexural deformation 67
Japan Sea region 241	intersecting structures 64, 66, 89
NMSZ 130, 181	lateral density variation 51, 67, 88
rotation of (see rotation of S _{Hmax})	lateral mass anomalies 89
Sino-Korean craton 99, 101	mafic intrusive bodies 135, 154
Sobral Pedro shear zone 55, 64	mechanisms 67
Son earthquake 4, 141	rift pillow 5, 181–183, 280
South Carolina Coastal Plain 27	stepover zones 135, 282, 330
Southern Oklahoma aulacogen 33	stress field Australia 22
South Wagad fault 129 Southeast Seismic Zone (Australia) 14, 17	Australia 22 Brazil 55
Southwest Seismic Zone (Australia) 12, 25 spatial and temporal pattern of seismicity 3, 51,	Europe, North Atlantic 258–263 from potential energy variations 259–261
292–294, 328	intraplate 6
Australia 14, 17, 25–27, 34, 114	lithospheric 277
Australia 14, 17, 23–27, 34, 114 Brazil 51	local perturbation of <i>see</i> perturbation of local stress
Central US 114	field
China 25, 112–115, 329	regional perturbation of <i>see</i> perturbation of regional
Japan Sea region 234	stress field
Kutch 293, 329	rotation of 6, 81, 88, 89, 153, 243, 244, 330
NMSZ 312	transmission of 1
North China 112, 294	stress inversion 276
Northwest Europe 114	stress inversion of basins 5, 234
Reelfoot fault system 293	Japan Sea 235, 239
Western Europe 181, 201	thermo-mechanical models 5
spatial clustering of earthquakes	Western Europe 263–266
Charlevoix seismic zone 81	stress pulse migration, Kutch 4, 5, 146–148, 329
Charleston, SC, seismic zone 318	stress transmission in Europe 258, 269
NMSZ 318	stress transmission through lithosphere 6, 277, 329
spatial migration of seismicity	surface rupture 2, 111
Australia 56	suture zones 87
long term in SE Brazil 66	
North America 56	Taihangshan mountains 100, 101
St. Lawrence Rift System (SLRS) 3, 72, 83	Tancheng earthquake 108, 109, 112, 117
StLaurent fault 81	Tangshan earthquake 98, 104, 111, 112, 117
stationarity of seismic source 3, 6, 319, 329, 331	Tanlu fault 101, 104, 108, 109, 112
stepover zone	Tasman Line 31
Charleston, SC 309	tectonic evolution
Crowley's Ridge 177	Kutch 133–135
Joiner Ridge 177	North China block 99–104
Kutch 129, 133, 134	tectonic framework, Kutch 129–133
models, NMSZ 181, 201	tectono-volcanic events, Kutch 133
Reelfoot fault 175	Temiscaming earthquake 82, 83
Reelfoot Rift basement faults 178,	temporal clustering of seismicity 2
188	Australia 15
Sawmill Branch fault 309	Kutch 179
strain accumulation	morphogenic earthquakes 30
Kutch 150	NMSZ 183

temporal growth of local stress 296
temporal migration of seismicity, North China 26
Tennant Creek earthquake 12
ground rupture 18
Thebes Gap 177
thermal weakening 31
thermo-mechanical model of stress inversion 267
Tocantins Province 55
Tohoku-Oki earthquake 234
triggered earthquakes 150
Kutch 146–148
Saurashtra 146

Uluru earthquake 15 Ungava earthquake 87 unified model for intraplate earthquakes 6, 275, 276, 290–295, 330

Val-des-Bois earthquake 78 Valentine, TX, earthquake 317 Verviers earthquake 200, 204, 207, 214, 221–223, 224, 226 Vincennes earthquake 312

Wabash Valley earthquakes 293, 308, 312 Wagad uplift 129, 130, 199 Warooka earthquake 13
Weihe Rift 99, 103, 108, 117, 119
Wenchuan earthquake 116
Western Europe 5, 13, 199
earthquake damage analysis 204–207
earthquake damage vulnerability 223–224
historical buildings 224–225
historical seismicity 201–204
rift basins 5
stress inversion of 5
Western Quebec seismic zone 3, 73, 82
Williamstown-Meadows fault 29
Woodstock fault 309

Xuaxian earthquake 3

Yanshan–Yinshan mountains and belts 100

Xingtai earthquake 104, 111, 112, 117

Yilgarn Craton 28 Yinchuan rift 103 Yinchuan rift valley 108

Xianshuihe fault 116

Zhangjiakou seismic zone 104 Zhangjiakou–Penglai fault 104