MAT202E Midterm Solutions

1) For the conversions given below, perform the operations step by step.

a)
$$(160,343)_{10} = (?)_2$$

Number	Quotient	Remainder	<u>Number</u>	Quotient	Integer part.
160/2	80	$0 \rightarrow a_0$	0.343*	2 0.686	$0 \rightarrow a_{-1}$
80/2	40	$0 \rightarrow a_1$	0.686*	2 1.372	$1 \rightarrow a_{-2}$
40/2	20	$0 \rightarrow a_2$	0.372*	2 0.744	$0 \rightarrow a_{-3}$
20/2	10	$0 \rightarrow a_3$	0.744*	2 1.488	$1 \rightarrow a_{-4}$
10/2	5	$0 \rightarrow a_4$	0.488*	2 0.976	$0 \rightarrow a_{-5}$
5/2	2	$0 \rightarrow a_5$	0.976*	2 1.952	$1 \rightarrow a_{-6}$
2/2	1	$0 \rightarrow a_6$	0.952*	2 1.904	$1 \rightarrow a_{-7}$
1/2	0	$0 \rightarrow a_7$	0.904*	2 1.808	$1 \rightarrow a_{-8}$
			0.808*	2 1.616	$1 \rightarrow a_{-9}$
			0.616*	2 1.232	$1 \rightarrow a_{-10}$

$$(160,343)_{10} = (10100000,01010111111)_2$$

b)
$$(11001,1001)_{10} = (?)_2$$

$$(11001)_2 = (1 \cdot 2^0) + (0 \cdot 2^1) + (0 \cdot 2^2) + (1 \cdot 2^3) + (1 \cdot 2^4)$$
$$= 1 + 0 + 0 + 8 + 16$$
$$= 25$$

$$(...,1001)_2 = (1 \cdot 2^{-1}) + (0 \cdot 2^{-2}) + (0 \cdot 2^{-3}) + (1 \cdot 2^{-4})$$
$$= (0.5) + (0) + (0) + (0.0625)$$
$$= 0.5625$$

$$(11001,1001)_{10} = (25,5625)_{2}$$

2) Represent -5,5834x10¹⁰ as a single precision floating point number using IEEE-754 format Value = $(-1)^s x(1.m)_2 x2^{e^{s-127}}$

$$(-5,5834x10^{10}) \cong (-1)x(1,625)x2^{35}$$
 $(162)_{10} = (10100010)_2$
 $e'-127 = 35$ $e' = 162$ $(0,625)_{10} = (,101)_2$

3) If B is increased by +2 and C increased by +1, the robot moves 8 step backwards. If A is increased by +1, B is decreased by -2 and C is decreased by -3, the robot does not move. If A is decreased by -1, B is increased by 1 and C is increased by 2, the robot moves 3 steps forward. (A, B, C buttons)

- Write the linear system model of the control panel.
- Solve the linear system by Naïve Gaussian Elimination method.
- Write the pseudo-code of the forward-elimination phase for the algorithm. (Please refer to lecture notes)

$$2x_2 + x_3 = -8$$
$$x_1 - 2x_2 - 3x_3 = 0$$
$$-x_1 + x_2 + 2x_3 = 3$$

$$\begin{bmatrix} 0 & 2 & 1 & | & -8 \\ 1 & -2 & -3 & | & 0 \\ -1 & 1 & 2 & | & 3 \end{bmatrix} \qquad \begin{bmatrix} 1 & -2 & -3 & | & 0 \\ 0 & 2 & 1 & | & -8 \\ -1 & 1 & 2 & | & 3 \end{bmatrix} \qquad \begin{bmatrix} 1 & -2 & -3 & | & 0 \\ 0 & 2 & 1 & | & -8 \\ 0 & -1 & -1 & | & 3 \end{bmatrix} \qquad \begin{bmatrix} 1 & -2 & -3 & | & 0 \\ 0 & 2 & 1 & | & -8 \\ 0 & 2 & 1 & | & -8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & -3 & 0 \\ 0 & 2 & 1 & -8 \\ -1 & 1 & 2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & -3 & 0 \\ 0 & 2 & 1 & -8 \\ 0 & -1 & -1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & -3 & 0 \\ 0 & -1 & -1 & 3 \\ 0 & 2 & 1 & -8 \end{bmatrix}$$

Swap R1 and R2

Add R1 to R3

Swap R2 and R3

Add twice R2 to R3

$$\begin{bmatrix} 1 & -2 & -3 & 0 \\ 0 & -1 & -1 & 3 \\ 0 & 0 & -1 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & -3 & 0 \\ 0 & -1 & -1 & 3 \\ 0 & 0 & -1 & -2 \end{bmatrix} \qquad \begin{bmatrix} 1 & -2 & 0 & 6 \\ 0 & -1 & 0 & 5 \\ 0 & 0 & -1 & -2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & -4 \\ 0 & -1 & 0 & 5 \\ 0 & 0 & -1 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & | -4 \\ 0 & -1 & 0 & | 5 \\ 0 & 0 & -1 & | -2 \end{bmatrix}$$

Add -1 times R3 to R2

Add -2 times R2 to R1

Multiply R2 by -1

Add -3 times R3 to R1

Multiply R3 by -1

$$\begin{bmatrix} 1 & 0 & 0 & -4 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & 2 \end{bmatrix} \qquad \begin{aligned} x_1 &= -4 \\ x_2 &= -5 \\ x_3 &= 2 \end{aligned}$$

- 4) Given the experimental data below, answer the following questions, by using the Newton's Divided Difference Method:
 - Draw the divided difference table for degree 3.
 - Estimate f(0,3).
 - It is discovered that f(0,4) is underestimated by 10 and f(0,6) is overestimated by 5. Under these new circumstances, by what amount (in percentage) the estimation of f(0,3) found in question-b is changed?

X	0.0	0.2	0.4	0.6
f(x)	15.0	21.0	30.0	51.0

X	f(x)	[1]	[2]	[3]
0.0	15.0	30	37.5	187.5
0.2	21.0	45	150	
0.4	30.0	105		
0.6	51.0			

Corresponding polynomial degree 3 obtained by using formula

$$f(x) = f_0^{[0]} + (x - x_0)f_0^{[1]} + (x - x_0)(x - x_1)f_0^{[2]} + (x - x_0)(x - x_1)(x - x_2)f_0^{[3]}$$
 Therefore;

$$f(x) = 15.0 + (x)30 + (x)(x - 0.2)37.5 + (x)(x - 0.2)(x - 0.4)187.5$$
$$f(x) = 187.5x^3 - 75x^2 + 37.5x + 15$$

And the value of f(0.3) is;

$$f(0.3) = 24.5625$$

Updating overestimated and underestimated numbers.

X	f(x)	[1]	[2]	[3]
0.0	15.0	30	162.5	-541.6667
0.2	21.0	95	-162.5	
0.4	40.0	30		
0.6	46.0			

$$f(x) = 15.0 + (x)30 + (x)(x - 0.2)162.5 + (x)(x - 0.2)(x - 0.4)\left(-\frac{1625}{3}\right)$$

$$f(x) = \frac{-1625x^3}{3} + 487.5x^2 - \frac{275x}{6} + 15$$

And the value of f(0.3) is;

$$f(0.3) = 30.5$$

5) A loan of *A* Turkish Lira (TL) is repaid by making n equal monthly payments of *M* TL, starting a month after the loan is made. It can be shown that if the monthly interest rate is *r*, then

$$A.r = M \left(1 - \frac{1}{\left(1 + r \right)^n} \right)$$

- A car loan of 10000 TL was repaid in 60 monthly payments of 250 TL. Use the Newton-Raphson Method to find the monthly interest rate with the absolute relative approximate error smaller than %0,0019.
- Write the pseudo-code for the algorithm. (*Please refer to lecture notes*)

$$Ar = M\left(1 - \frac{1}{(1+r)^n}\right)$$

$$10000r = 250\left(1 - \frac{1}{(1+r)^{60}}\right)$$

$$f(r) = 40r + \frac{1}{(1+r)^{60}} - 1$$
 $f'(r) = 40 - \frac{60}{(1+r)^{61}}$

And Newton's iteration;

$$r_{n+1} = r_n - \frac{40r_n + 1/(1 + r_n)^{60} - 1}{40 - 60/(1 + r_n)^{61}}$$