(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-319780 (P2001-319780A)

(43)公開日 平成13年11月16日(2001.11.16)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

H05B 33/14 C09K 11/06

660

H 0 5 B 33/14

B 3K007

C09K 11/06

660

審査請求 未請求 請求項の数5 OL (全 7 頁)

(21)出願番号

特願2000-133530(P2000-133530)

(71)出顧人 000005201

富士写真フイルム株式会社

(22)出顧日

平成12年5月2日(2000.5.2)

神奈川県南足柄市中沼210番地 (72)発明者 三島 雅之

神奈川県南足柄市中沼210番地 富士写真

フイルム株式会社内

(74)代理人 100105647

弁理士 小栗 昌平 (外4名)

Fターム(参考) 3K007 AB02 AB03 BA05 BB02 DB03

DC05 FA01

(54) 【発明の名称】 発光素子

(57)【要約】

【課題】フルカラーディスプレイ、バックライト、照明 光源等の面光源やプリンター等の光源アレイなどに有効 に利用でき、発光効率および発光輝度に優れている。特 に白色光源として発光効率および発光輝度に優れた発光 素子を提供する。

【解決手段】支持基板上に設けた少なくとも陽極、発光層を含む有機化合物層、陰極からなる発光素子において、相異なる二種以上の発光材を発光層に含み、かつ該発光材の少なくとも一種がオルトメタル化錯体である。

【特許請求の範囲】

【請求項1】 支持基板上に設けた少なくとも陽極、発 光層を含む有機化合物層および陰極からなる発光素子に おいて、相異なる二種以上の発光材を該発光層に含み、 かつ該発光材の少なくとも一種がオルトメタル化錯体で あることを特徴とする発光素子。

【請求項2】 相異なる二種以上の発光材が同一の発光 層に混合して含まれることを特徴とする請求項1記載の 発光素子。

【請求項3】 相異なる二種以上の発光材がそれぞれ相 異なる発光層に含まれることを特徴とする請求項1記載 の発光素子。

【請求項4】 白色発光であることを特徴とする請求項1乃至3のいずれかに記載の発光素子。

【請求項5】 発光材が相異なる三種であり、かつそれぞれの発光波長ピークが $400\sim500$ nmの青色発光材、 $500\sim570$ nmの緑色発光材、 $580\sim670$ nmの赤色発光材であることを特徴とする請求項1乃至4のいずれかに記載の発光素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はフルカラーディスプレイ、バックライト、照明光源等の面光源やプリンター等の光源アレイ等に有効に利用できる発光素子に関するものであり、さらに詳しくは、発光効率および発光輝度に優れた発光素子に関するものである。

[0002]

【従来の技術】有機物質を使用した有機発光素子は、固体発光型の安価な大面積フルカラー表示素子や書き込み光源アレイとしての用途が有望視され、多くの開発が行われている。一般に有機発光素子は、発光層及び該層を挟んだ一対の対向電極から構成されている。発光は、両電極間に電界が印加されると、陰極から電子が注入され、陽極から正孔が注入される。この電子と正孔が発光層において再結合し、エネルギー準位が伝導体から価電子帯に戻る際にエネルギーを光として放出する現象である。

【0003】従来の有機発光素子は、駆動電圧が高く、発光輝度や発光効率も低かったが、近年この点を解決する技術が種々報告されている。例えば、有機化合物の蒸着により有機薄膜を形成する有機発光素子が知られている(アプライド フィジクスレターズ、51巻、913頁、1987年)。ここに記載の有機発光素子は電子輸送材料からなる電子輸送層と正孔輸送材料からなる正孔輸送層の積層二層構造を有し、従来の単層型素子に比べて発光特性が大幅に向上している。

【0004】上記の有機発光素子は正孔輸送材料として む有機化合物層および附低分子アミン化合物、電子輸送材料兼発光材料として8 相異なる二種以上の発光ーキノリノールのAl錯体(Alq)を用いており、発 光材の少なくとも一種な光色は緑色である。その後、このような蒸着型有機発光 50 を特徴とする発光素子。

素子は数多く報告されている(マクロモレキュラリーシンポジウム、125巻、1頁、1997年記載の参考文献参照)。

【0005】しかしながら、この有機発光素子は無機し E D素子や、蛍光管に比べ非常に発光効率が低く大きな 問題となっている。現在提案されている有機発光素子の ほとんどは、有機化合物発光材の一重項励起子から得ら れる蛍光発光を利用したものである。単純な量子化学の メカニズムにおいては励起子状態において、蛍光発光が 得られる一重項励起子と燐光発光が得られる三重項励起 子の比は1対3であり、蛍光発光を利用している限りは 励起子の25%しか有効活用できず発光効率の低いもの となる。それに対して三重項励起子から得られる燐光を 利用できるようになれば、発光効率を向上できることに なる。そのような考えのもとで近年イリジウムのフェニ ルピリジン錯体を用いた燐光発光素子が報告されている (アプライド フィジクスレター、75巻、4頁、19 99年、ジャパニーズジャーナルオブ アプライド フ ィジクス、38巻、L1502頁、1999年)。これ 20 らの報告では従来の蛍光利用有機発光素子に対して、2 ~3倍の発光効率を報告している。しかしながら、省工 ネルギーや耐久性向上の点でこれでもまだまだ低く、さ らに一層の発光効率向上および輝度向上が強く求められ

【0006】一方、バックライトや照明光源では高発光効率で高発光輝度である光源が強く望まれているが、現状では蛍光管以上のものは得られていない。蛍光管は水銀を含み環境問題が浮上しており、さらに柔軟性が無く設置場所に制限があるという問題がある。また寿命も10000時間足らずと短いものである。これら問題点を解決する目的で、安全で軽くかつ薄くできる有機発光素子が提案されているが、まだまだ発光効率、発光輝度の点で劣っており、この改良が強く望まれている。

[0007]

30

【発明が解決しようとする課題】本発明は、前記従来における問題を解決し、以下の目的を達成することを課題とする。すなわち、本発明は、フルカラーディスプレイ、バックライト、照明光源等の面光源や、プリンター等の光源アレイなどに有効に利用でき、発光効率および発光強度に優れた発光素子を提供することを目的とする。さらには、発光効率および発光輝度に優れた白色発光素子を提供することを目的とする。

[0008]

【課題を解決するための手段】本発明の上記課題は以下 の手段により達成された。

(1)支持基板上に設けた少なくとも陽極、発光層を含む有機化合物層および陰極からなる発光素子において、相異なる二種以上の発光材を該発光層に含み、かつ該発光材の少なくとも一種がオルトメタル化錯体であることを特徴とする発光素子。

- (2)相異なる二種以上の発光材が同一の発光層に混合して含まれることを特徴とする前記(1)記載の発光素子。
- (3) 相異なる二種以上の発光材がそれぞれ相異なる発 光層に含まれることを特徴とする前記(1)記載の発光 素子。
- (4) 白色発光であることを特徴とする前記(1)~
- (3) 記載の発光素子。
- (5) 発光材が相異なる三種であり、かつそれぞれの発 光波長ピークが400~500nmの青色発光材、50 0~570nmの緑色発光材、580~670nmの赤 色発光材であることを特徴とする前記(1)~(4)記載の発光素子。

【発明の実施の形態】以下に本発明を詳細に説明する。

[0009]

W

本発明における発光素子は、支持基板上に設けた少なく とも陽極、発光層を含む有機化合物層、および陰極から なり、相異なる二種以上の発光材を発光層に含み、その 発光材の少なくとも一種がオルトメタル化錯体である。 【0010】本発明に用いられる発光材であるオルトメ タル化錯体とは、例えば山本明夫著「有機金属化学ー基 礎と応用一| 150頁、232頁、裳華房社(1982 年発行)やH.Yersin著「Photochemistry and Photophis ics of Coodination Compounds」71~77頁、135 ~146頁、Springer-Verlag社(1987年発行)等 に記載されている化合物群の総称である。オルトメタル 化錯体を形成する配位子としては種々のものがあり上記 文献にも記載されている。例えば2-フェニルピリジン 誘導体、7、8-ベンゾキノリン誘導体、2-(2-チ エニル) ピリジン誘導体、2-(1-ナフチル) ピリジ 30 ン誘導体、2-フェニルキノリン誘導体等を挙げること ができる。これらの誘導体は必要に応じて置換基を有し ても良い。オルトメタル化錯体を形成する金属としては 例えば、Ir、Pd、Pt等を挙げることができるが特 に限定されることはない。本発明に用いられるオルトメ タル化錯体は、オルトメタル化錯体を形成するのに必要 な配位子以外に他の配位子(例えば、ジアルキルアミ ン、ジアリールアミンなどのアミン類等)を有しても良

【0011】本発明においては、相異なる二種以上の発光材を発光層に含むことを特徴とし、上記オルトメタル化錯体の少なくとも一種を発光層に含む。他の発光材は、オルトメタル化錯体であってもなくても良く、例えばベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、スチリルベンゼン誘導体、ポリフェニルが導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、ペリレン誘導体、ペリノン誘導体、オキサジアゾール誘導体、アルダジン誘導体、ピラリジン誘導体、ピラン誘導体、ピレン誘導体、シクロ

ペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、スチリルアミン誘導体、芳香族ジメチリデン化合物、8ーキノリノール誘導体の金属錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物が挙げることができ、特にこれらに限定されることはない。

【0012】本発明においては、上記オルトメタル化錯 体を少なくとも一種含む相異なる二種もしくは三種以上 の発光材を用いることにより、任意の色の発光素子を得 ることが得きる。中でも発光材を適切に選ぶことによ り、高発光効率および高発光輝度である白色発光体を得 ることができる。例えば、青色発光材と橙色発光材の組 み合わせにより白色発光素子を得ることができる。なか でも、相異なる三種以上の発光材を適切に選ぶことが好 ましく、それぞれの発光波長400~500mmの青色 発光材、500~570nmの緑色発光材、580~6 70nmの赤色発光材である発光材を選ぶことが好まし い。これらを有機化合物層の発光層に含ませることによ り白色発光素子を得ることができる。これらの発光材は 上記例より適切に選ぶことができる。例えば青色発光材 としてスチリルベンゼン誘導体、緑色発光材としてオル トメタル化錯体であるトリス(2-フェニルピリジン) イリジウム錯体、赤色発光材としてはDCM等のピラン 誘導体を選ぶことにより高発光効率および高発光輝度を 示す白色発光素子を得ることができる。

【0013】本発明に用いられる発光素子の構成は支持 基板上に設けた少なくとも陽極、少なくとも発光層を含 む有機化合物層、および陰極からなっており、有機化合 物層は発光層を含んでいればその構成は特に限定される ことはない。例えば有機化合物層として、発光層のみの 一層、正孔輸送層/発光層または発光層/電子輸送層の 二層構成、正孔輸送層/発光層/電子輸送層の三層構成 であっても良く、また正孔注入層、正孔ブロック層、電 子注入層を設けても良い。また発光層としては一層だけ でも良く、また第一発光層、第二発光層、第三発光層等 に発光層を分割しても良い。本発明においては発光層に 相異なる二種以上の発光材を含むが、同一発光層に混合 して含ませても良く、また発光層を分割しそれぞれ別々 の発光層に含ませても良い。また発光層としてはホスト 材に発光材を分散させたドープ型発光層でも、発光材が 主成分である非ドープ型発光層であっても良い。

【0014】以下に本発明における発光素子の構成および作成方法について詳細に説明する。本発明に用いられる支持基板は透明であっても不透明であっても良い。透明な支持基板を用いた場合には、構成としては例えば透明支持基板/陽極/有機化合物層/陰極構成を挙げることができる。また、不透明な支持基板を用いた場合に

は、例えば不透明支持基板(陰極と併用してもよい)/ 陰極/有機化合物層/陽極(透明)構成を挙げることが できる。いずれの場合にも、透明な陽極側から発光を取 り出すことができればよい。以下に透明な支持基板を用 いた場合について詳細に説明する。

【0015】透明な支持基板としては例えばガラス、ポリカーボネートシート、ポリエーテルスルホンシート、ポリエステルシート、ポリンクロロトリフルオロエチレン)シート等を挙げることができる。またこれらに窒化珪素、酸化珪素等による保護膜を形成したものを用いることもできる。

【0016】この透明な支持基板上に陽極を設ける。本発明に用いられる陽極は有機化合物層に正孔を供給するものであり、金属、合金、金属酸化物、有機導電性化合物、またはこれらの混合物を好適に用いることができる。好ましくは仕事関数が4.0eV以上の材料である。具体例としては、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)等の半導性金属酸化物、金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物または積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、およびこれらとITOとの積層物などが挙げられる。

【0017】陽極の設置方法は特に限定されることはな く、例えば、印刷方式、コーティング方式等の湿式方式 や、真空蒸着法、スパッタリング法、イオンプレーティ ング法等の物理的方式、CVD、プラズマCVD法等の 化学的方式を挙げることができ、それぞれの陽極材料に 最も適した方法をとることができる。例えば、ITO陽 極を設置する場合には、スパッタ法が用いられ、直流 法、RF法いずれも採用することができる。また有機導 電性化合物を設置する場合には湿式製膜法が好ましく用 いられる。以上の如くにして得られる陽極の膜厚は材料 により適宜選択可能であるが、通常10nm~50μm の範囲のものが好ましく、より好ましくは50 nm~2 $0 \mu m$ である。この陽極の抵抗は $10^3 \Omega / \square$ 以下であ ることが好ましく、さらに好ましくは $10^{\circ}\Omega/\Box$ 以下 である。また陽極シートの透明性は主に陽極側から蛍光 を取り出すため透過度60%以上であることが好まし く、さらに好ましくは70%以上である。

【0018】この陽極上に発光層を含む一層以上の有機化合物層を設ける。有機化合物層の膜厚は、全体で0.05 μ m以上0.3 μ m以下であることが好ましく、さらに好ましくは0.07 μ m以上0.2 μ m以下である。これよりも薄いと電圧印加時に絶縁破壊が起こりやすくなり好ましくない。また、これよりも厚いと発光に高電圧が必要となり好ましくない。本発明の有機化合物層は塗布法等による湿式法、蒸着法やスパッタ法等による乾式法いずれも好ましくとることができる。湿式法を用いる場合にはポリビニルカルバゾール誘導体や、ポリ

(pフェニレンビニレン)等の正孔輸送性ポリマーまたは電子輸送性ポリマーに発光材や正孔輸送材、電子輸送材を溶媒中で混合溶解し、それを塗布乾燥することにより得ることができる。またポリカーボネート樹脂やポリスチレン樹脂等の電気的に不活性なポリマーバインダー中に発光材や正孔輸送材、電子輸送材を溶媒中で混合溶解し、それを塗布乾燥することにより得ることができる。また前記各層を順次塗布することにより多層化する事も可能である。乾式法を用いる場合には、順次各層を蒸着法やスパッタ法により設けることにより有機化合物層を得ることができる。

【0019】正孔輸送層または正孔注入層に用いられる 正孔注入材、正孔輸送材としては、陽極から正孔を注入 する機能、正孔を輸送する機能、陰極から注入された電 子を障壁する機能のいずれかを有しているもので有れば 限定されることはなく、例えば以下の材料を挙げること ができる。カルバゾール誘導体、トリアゾール誘導体、 オキサゾール誘導体、オキサジアゾール誘導体、イミダ ゾール誘導体、ポリアリールアルカン誘導体、ピラゾリ ン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導 体、アリールアミン誘導体、アミノ置換カルコン誘導 体、スチリルアントラセン誘導体、フルオレノン誘導 体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘 導体、芳香族第三アミン化合物、スチリルアミン化合 物、芳香族ジメチリデン系化合物、ポルフィリン系化合 物、ポリシラン系化合物、ポリ(N-ビニルカルバゾー ル) 誘導体、アニリン系共重合体、チオフェンオリゴマ 一、ポリチオフェン等の導電性高分子オリゴマー、ポリ チオフェン誘導体、ポリフェニレン誘導体、ポリフェニ レンビニレン誘導体、ポリフルオレン誘導体等の高分子 化合物等が挙げられる。これらは一種もしくは二種以上 を混合して用いることができる。

【0020】本発明の発光層に用いられる発光材は前記 のとおりである。また該発光層には発光材に励起子エネ ルギー移動させるためのホスト材が共用されても良くホ スト材としては特に限定されることはない。例えばカル バゾール誘導体、トリアゾール誘導体、オキサゾール誘 導体、オキサジアゾール誘導体、イミダゾール誘導体、 ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラ ゾロン誘導体、フェニレンジアミン誘導体、アリールア ミン誘導体、アミノ置換カルコン誘導体、スチリルアン トラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導 体、スチルベン誘導体、シラザン誘導体、芳香族第三ア ミン化合物、スチリルアミン化合物、芳香族ジメチリデ ン系化合物、ポルフィリン系化合物、アントラキノジメ タン誘導体、アントロン誘導体、ジフェニルキノン誘導 体、チオピランジオキシド誘導体、カルボジイミド誘導 体、フルオレニリデンメタン誘導体、ジスチリルピラジ ン誘導体、ナフタレンペリレン等の複素環テトラカルボ ン酸無水物、フタロシアニン誘導体、8-キノリノール

誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体ポリシラン系化合物、ポリ(Nービニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンは高導体、ポリフェニレンが誘導体等の高分子化合物等が挙げられる。これらは一種もしくは二種以上を混合して用いることができる。

7

【0021】電子輸送層または電子注入層に用いられる 電子注入材、電子輸送材としては、陰極から電子を注入 する機能、電子を輸送する機能、陽極から注入された正 孔を障壁する機能のいずれかを有しているもので有れば 限定されることはなく、例えば以下の材料を挙げること ができる。トリアゾール誘導体、オキサゾール誘導体、 オキサジアゾール誘導体、フルオレノン誘導体、アント ラキノジメタン誘導体、アントロン誘導体、ジフェニル キノン誘導体、チオピランジオキシド誘導体、カルボジ イミド誘導体、フルオレニリデンメタン誘導体、ジスチ リルピラジン誘導体、ナフタレンペリレン等の複素環テ トラカルボン酸無水物、フタロシアニン誘導体、8-キ ノリノール誘導体の金属錯体やメタルフタロシアニン、 ベンゾオキサゾールやベンゾチアゾールを配位子とする 金属錯体に代表される各種金属錯体、ポリチオフェン誘 導体、ポリフェニレン誘導体、ポリフェニレンビニレン 誘導体、ポリフルオレン誘導体等の高分子化合物を挙げ ることができこれらは一種もしくは二種以上を混合して 用いることができる。

【0022】本発明においてはさらにこの上に陰極を設 ける。本発明に用いられる陰極は有機化合物層に電子を 供給するものである。陰極に用いられる材料としては、 金属、合金、金属酸化物、電気伝導性化合物、またはこ れらの混合物を用いることができ、具体例としてはアル カリ金属(たとえば、Li、Na、K等)、またはその フッ化物、アルカリ土類金属(たとえばMg、Ca 等)、またはそのフッ化物、金、銀、鉛、アルミニウ ム、ナトリウムーカリウム合金、リチウムーアルミニウ ム合金、マグネシウムー銀合金、インジウム、イッテル ビウム等の希土類金属等が挙げられ、好ましくは仕事関 数が4.5 e V以下の材料である。より好ましくはアル ミニウム、リチウムーアルミニウム合金、マグネシウム 一銀合金が挙げられる。陰極の膜厚は材料により適宜選 択可能であるが、通常 $10nm \sim 5 \mu m$ の範囲のものが 好ましく、より好ましくは $50nm~1\mu m$ である。

【0023】陰極の作製には材料によって種々の方法が 用いられるが、例えばスパッタリング法、真空蒸着法、 コーティング法などの方法が用いられ、金属を単体で蒸 着することも,二成分以上を同時に蒸着することも可能 である。また、本発明においては、発光層と陰極の間に 電子注入層を設けてもよく、例えば、フッ化リチウム、 フッ化セシウム等の金属ハロゲン化物や酸化アルミ等の 金属酸化物を挙げることができる。

【0024】また、本発明においては陰極の外側に酸化 珪素、二酸化珪素、酸化ゲルマニウム、二酸化ゲルマニ ウム等の保護層を設けることができる。保護層の材料と しては水分や酸素等の素子劣化を促進するものが素子内 に入ることを抑止する機能を有しているものであれば良 い。保護層の形成方法については特に限定はなく、たと えば真空蒸着法、スパッタリング法、反応性スパッタリ ング法、分子センエピタキシ法、クラスターイオンビー ム法、イオンプレーティング法、プラズマ重合法、プラ ズマCVD法、レーザーCVD法、熱CVD法、コーティング法を適用できる。

【0025】不透明な支持基板を用いる場合には、支持基板としては例えばアルミ、鉄、ステンレス、ニッケル等の金属や合金の板、不透明な各種プラスティック基板、セラミック基板等を挙げることができ、金属基板を用いた場合には陰極と併用することも可能である。この上に前記の陰極、有機化合物層、陽極を設けて本発明における発光素子を得ることができる。また、前記と同様に陰極と発光層の間に電子注入層を設けることもできる。また陽極の外側に前記保護層を設けてもよい。

【0026】以上の如くにして得られた発光素子は、外部との水分や酸素の遮断の目的で封止板、封止容器により、封止剤を用いて封止する事ができる。封止板、封止容器に用いられる材質としては、ガラス、ステンレス、アルミ等の金属、ポリエステル、ポリカーボネート等のプラスティックやセラミック等を用いることができる。封止材としては紫外線硬化樹脂、熱硬化樹脂、二液型硬化樹脂いずれも用いることができる。

【0027】さらに本発明においては、封止容器と発光素子の間の空間に水分吸収剤または不活性液体を設けることができる。水分吸収剤としては、特に限定されることはないが例えば酸化バリウム、酸化ナトリウム、酸化カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、モレキュラーシーブ、ゼオライト、酸化マグネシウム等を挙げることができる。不活性液体としては、特に限定されることはないが例えば、パラフィン類、流動パラフィン類、パーフルオロアルカンやパーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤、塩素系溶剤、シリコーンオイル類を挙げることができる。

【0028】以上の如くにして、本発明における相異なる二種以上の発光材を発光層に含み、その発光材の少なくとも一種がオルトメタル化錯体である発光素子を作製することができる。該発光素子は任意の色相の発光を高発光効率および高発光輝度で達成することができる。

50 [0029]

【実施例】以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれにより限定されるものではない。 【0030】実施例1

25mm×25mm×0.5mmのガラス支持基板上に 直流電源を用い、スパッタ法にてインジウム錫酸化物 (IT〇、インジウム/錫=95/5モル比)の陽極を 形成した(厚み0.2 μm)。この陽極の表面抵抗は1 0 Ω / □であった。これにポリビニルカルバゾール / 1, 1, 4, 4, ーテトラフェニルブタジエン(青発光 材) /トリス(2-フェニルピリジン) イリジウム錯体 10 (緑発光材、オルトメタル化錯体) / 4 - (ジシアノメ チレン) -2-メチル-6-(4-ジメチルアミノスチ リル) - 4 H-ピラン(赤発光材) / 2-(4-ビフェ -1 (4 - t - ブチルフェニル) - 1. 3. 4-オキサジアゾール(電子輸送材)=200/1/5 /1/50重量比を溶解したジクロロエタン溶液をスピ ンコーターで塗布し、0.11μmの発光層を得た。こ の有機化合物層の上にパターニングしたマスク(発光面 積が5mm×5mmとなるマスク)を設置し、蒸着装置 内でマグネシウム:銀=10:1(モル比)を0.25 μ m蒸着し、さらに銀を 0. 3 μ m蒸着して陰極を設け た。陽極、陰極よりそれぞれアルミニウムのリード線を 出して発光素子を作成した。該素子を窒素ガスで置換し たグローブボックス内に入れ、ガラス製の封止容器で紫 外線硬化型接着剤(長瀬チバ製、XNR5493)を用 いて封止して本発明における発光素子を作製した。以上 の如くにして本発明における発光素子を得た。

【0031】該発光素子を用いて、以下の方法で評価した。東洋テクニカ製ソースメジャーユニット2400型を用いて、直流電圧を有機EL素子に印加し発光させた。その時の最高輝度をL 、L 、L が得られた時の電圧をV とした。さらに2000Cd/m2時の発光効率をP(Cd/A)として表1に示した。また発光波長を浜松ホトニクス製スペクトルアナライザーPMA-11を用いて測定し、表1に示した。

【0032】実施例2

実施例1において、赤発光材として4-(ジシアノメチレン)-2-メチルー6-(4-ジメチルアミノスチリル)-4H-ピラン(赤発光材)のかわりに、ビス(2-フェニルキノリン)アセチルアセトナートイリジウム 錯体を用いる以外は実施例1と同じ方法で本発明の発光素子を作製し、実施例1と同じ方法で評価した。その結果を表1に示した。

【0033】比較例1

実施例1において、緑発光材としてとしてトリス(2-フェニルピリジン)イリジウム錯体のかわりにクマリン6を用いる以外は実施例1と同じ方法で比較の発光素子を作製し、実施例1と同じ方法で評価した。その結果を表1に示した。

【0034】実施例3

25mm×25mm×0.5mmのガラス支持基板上に 直流電源を用い、スパッタ法にてインジウム錫酸化物 (ITO、インジウム/錫=95/5モル比)の陽極を 形成した(厚み 0.2 μm)。この陽極の表面抵抗は1 0 Ω/□であった。この陽極上に正孔輸送層として、 N, N'ージナフチルーN, N'ージフェニルベンジジ ンを真空蒸着法にて O. O 4 µ m設けた。この上に青発 光材である1-[3,5-ジ(1-ピレニル)-フェニ ル]ーピレンを1 n m/秒の速度で共蒸着して0.02 4μmの第一発光層を得た。その上にホスト材4,4' -N, N'ージカルバゾールビフェニル、緑発光材とし てトリス(2-フェニルピリジン)イリジウム錯体をそ れぞれ3 n m/秒、0.5 n m/秒の速度で共蒸着して 0.024μmの第二発光層を得た。さらにその上にホ スト材として4, 4'-N, N'-ジカルバゾールビフ ェニル、赤発光材としてルブレンをそれぞれ3 n m/ 秒、0.1 n m/秒の速度で共蒸着して0.024μm の第三発光層を得た。さらにその上に電子輸送材として 2. 2', 2''-(1, 3, 5-ベンゼントリイル) トリス[3-(2-メチルフェニル)-3H-イミダゾ [4, 5-b]ピリジン]を1 n m/秒の速度で蒸着して 0. 024μmの電子輸送層を設けた。この有機化合物 層の上にパターニングしたマスク(発光面積が5mm× 5 mmとなるマスク)を設置し、蒸着装置内でマグネシ ウム:銀=10:1 (モル比)を0.25μm蒸着し、 さらに銀を0.3μm蒸着して陰極を設けた。陽極、陰 極よりそれぞれアルミニウムのリード線を出して発光素 子を作成した。該素子を窒素ガスで置換したグローブボ ックス内に入れ、ガラス製の封止容器で紫外線硬化型接 着剤(長瀬チバ製、XNR5493)を用いて封止して 本発明における発光素子を作製した。以上の如くにして 本発明における発光素子を得た。これを実施例1と同じ 方法で評価し、表1に示した。

【0035】実施例4

実施例3において、赤発光材としてルブレン(赤発光材)のかわりに、ビス(2-フェニルキノリン)アセチルアセトナートイリジウム錯体を用いる以外は実施例1と同じ方法で本発明の発光素子を作製し、実施例1と同じ方法で評価した。その結果を表1に示した。

【0036】比較例2

実施例2において、緑発光材としてとしてトリス(2-フェニルピリジン)イリジウム錯体のかわりにクマリン6を用いる以外は実施例1と同じ方法で比較の発光素子を作製し、実施例1と同じ方法で評価した。その結果を表1に示した。

[0037]

【表1】

11				
	L 🛶	V	P	発光波長t*-5
	(Cd/m²)	(v)	(Cd/A)	(nm)
実施例 1	23000	11	18	450 , 515 , 604
実施例2	38000	10	25	450 , 515 , 599
比較例 1	2400	14	1.5	450 , 520 , 603
実施例3	56000	11	38	482 , 515 , 604
実施例4	78000	10	45	485 , 515 , 600
比較例 2	5200	14	2.5	482 , 516 , 605

【0038】上記の表1の結果から下記のことが明らか である。即ち、実施例1~2では比較例1に比べて、よ り低電圧駆動で高輝度発光時の発光効率(P)が10倍 以上も高く、且つ最高輝度(L_{MAX})も約10倍高い。 また、同様に実施例3~4では比較例2に比べて、より 低電圧駆動で高輝度発光時の発光効率が15倍以上も高 く、且つ最高輝度が10倍以上高いことがわかる。

[0039]

【発明の効果】支持基板上に設けた少なくとも陽極、発 光層を含む有機化合物層および陰極からなる発光素子に おいて、相異なる二種以上の発光材を発光層に含み、該 発光材の少なくとも一種がオルトメタル化錯体である発 光素子は、発光効率および発光強度に優れたものであ る。また、白色光源として有用なものである。