Proiectarea algoritmilor - Test scris 11.04.2014, A

Observatii:

- 1. Nu este permisă consultarea bibliografiei.
- 2. Toate întrebările sunt obligatorii.
- 3. Fiecare întrebare/item este notată cu un număr de puncte indicat în paranteză. Descrieți conceptele utilizate în răspunsuri.
- 4. Algorimii vor fi descriși în limbajul Alk. Se adimit extensii cu sintaxă inspirată din C++ (de exemplu, for, do-while, repeatuntil, etc.). Pentru structurile de date utilizate (de exemplu, liste, mulțimi)se va preciza operațiile (fără implementare daca nu se cere explicit) și complexitățile timp și spațiu ale acestora.
- 5. Nu este permisă utilizarea de foi suplimentare.
- 6. Timp de răspuns: 1 oră.
- 1. În contextul algoritmului Boyer-Moore se consideră subiectul "E CARATA DAR NU E ARATATA" și patternul "ARATAT".
- a) [0.5] Să se enunțe regula caracterului rău (bad character rule).
- b) [0.5] Presupunând ca alfabetul e format din literele care apar în cele două șiruri, să se calculeze funcția de salt.
- c) [0.5] Să se enunțe regula celui mai bun sufix.
- d) [0.5] Să se calculeze valorile goodSuff (j).
- e) [1] Să se explice cum se aplică algoritmul Boyer-Moore pentru exemplul considerat. Câte comparații s-au efectuat? **Răspuns**.

a)

Dacă $p[j] \neq s[i] = C$,

- dacă apariția cea mai din dreapta a lui C în p este k < j, p[k] și s[i] sunt aliniate
- ② dacă apariția cea mai din dreapta a lui C în p este k>j, p este translatat la dreapta cu o poziție
- **3** dacă C nu apare în p, patternul p este aliniat cu s[i+1...i+m] (saltul = j).

b)

$$salt[C] = \begin{cases} m - \text{poziția ultimei apariții} &, \text{dacă } C \text{ apare în pattern} \\ \text{a lui } C \text{ în pattern} \\ m &, \text{ altfel} \end{cases}$$

$$(\text{alternativ}, salt(C) = \max(\{0\} \cup \{i < m \mid p[i] = C\}))$$

c)

Presupunem că p[j-1] nu se potrivește (după ce s-au potrivit p[j..m-1].

- dacă goodSuff(j) > 0, face un salt egal cu m goodSuff(j) (cazul 1)
- ② dacă goodSuff(j) = 0, face un salt egal cu m lp(j) (cazul 1)

Dacă p[m-1] nu se potrivește, atunci j=m și saltul este corect.

unde

lp(j) = lungimea celui mai lung prefix al lui p care este sufix al lui p[j..m-1].

d)

goodSuff(j) = poziția de sfârșit a unei apariții a lui <math>p[j..m-1] care nu este precedată de p[j-1]

Α	R	Α	Т	А	Т
0	1	2	3	4	5
0	0	0	0	3	0

e)

daca exista nepotrivire pe pozitia p[j], mareste k (= pozitia de inceput al lui i la urmatoarea iteratie) cu maximul dintre salturile date de regula caracterului rau si regula sufixului bun.

Е		С	Α	R	Α	
Α	R	Α	Т	Α	Т	

se aplica regula caracterului rau, se incrementeaza pozitia i din text cu salt[A]=1 (se aliniaza A) [1 comparatie]

	С	Α	R	Α	Т	Α		
Α	R	Α	Т	Α	Т			

se aplica regula caracterului rau, se incrementeaza pozitia i cu salt[R]=4 (se aliniaza R) (3 comparatii)

. . .

- 2. În contextul algoritmilor greedy.
- a) [0.5] Să se enunțe problema codurilor Huffman.
- b) [0.5] Să se explice legătura dintre codurile Huffman și arborii binari.
- c) [0.5] Să se explice cine sunt mulțimea de stări S și colecția de submulțimi C.
- d) [0.5] Să se descrie pasul de alegere locală dinalgoritmul greedy care construiește arborele Huffman.
- e) [1] Să se explice cum este utilizat algoritmul greedy pentru a construi o codificare Huffman pentru textul "streets are never stars" (mesajele sunt carcactere care apar în text, frecvența este dată de numărul de apariții).

Răspuns.

a)

Intrare

• n mesaje M_0 , M_1 , ..., M_{n-1} cu frecventele w_0 , w_1 , ..., w_{n-1} codificate astfel incat $cod(M_i) \in \{0,1\}^*$, $\forall i,j: i \neq j \Rightarrow cod(M_i)$ nu este prefix a lui $cod(M_j)$; lungimea medie a codificarii = $1/n \sum_{i=0,n-1} (|cod(M_i)|w_i)$

lesire

· codificare cu lungimea medie minima

b)

Codurile pot fi memorate de un arbore binar a.i. orice cod descrie unic un drum de la radacina la frontiera.

Regula de parcurgere: cod = 0, se coboara la copilul stang; cod = 1, se coboara la copilul drept.

Un exemplu.

c)

S – cea mai mica multime de arbori construita astfel:

1) $w_i \in S$ pentru orice i

2) T_1 , $T_2 \in S \Rightarrow T_1 \oplus T_2 \in S$

De explicat operatia \oplus

 $X \in C$ daca:

1) (\forall T₁, T₂ \in X) \neg (T₁ \leq T₂ | | T₂ \leq T₁), unde T₁ \leq T₂ ddaca exista T a. i. T₂ = T₁ \oplus T

2) X este finita

d)

alege T₁, T₂ cu radacini minime in B si T₁⊕ T₂ nu este in B

$$B = B - \{T_1, T_2\} \cup \{T_1 \oplus T_2\}$$

ρ١

- se calculeaza mai intai frecventele (b este caracterul spatiu)

- se calculeaza mai intal frecventele (V este caracterul spatiu)
a e n r s t v b
2 5 1 4 4 3 1 3
pas 1:
1 v 1 n 2 a 3 b 3 t 4 r 4 s 5 e
pas 2:
1 v 1 n 2 a 3 t 3 b 4 r 4 s 5 e pas 3:
$\frac{2}{2}$ a

...

3. Se consideră problema Submulțime de sumă dată (SSD): Intrare: o mulțime A astfel orice $a \in A$ are o mărime $s[a] \in Z_+$, și un număr $M \in Z_+$. Ieşire: cel mai mare $M^* \le M$ a.î. există $A' \subseteq A$ cu $\sum (s[a] | a \in A') = M^*$. a) [1] Să se arate că SSD este în NP. Justificare. Indicatie (pe tabla): se va arata ca varianta ca problema de decizie este in NP. b) [0.5] Există algoritm determinist polinomial care rezolvă SSD? Justificare. c) [1] Să se dea un exemplu de algoritm care calculează o aproximare a soluției optime. Ce se poate spune despre aproximare? d) [0.5] Precizați complexitatea timp a algoritmului de aproximare. Răspuns. a) - se considera varianta data ca problema decizie, care cere daca se poate alege A' a.i. M* = M si notata SSDDec - trebuie dat un algoritm nedeterminist care rezolva SSDDec nondetSSDDec (A, s, M) { foreach (a in A) x[a] = choice(2); // partea de ghicire //partea de verificare mStar = 0;foreach (a in A) mStar = mStar + x[a]; if (mStar = M) return succes; else return failure; b) Oricare din cele doua variante este problema NP-completa. Deoarece nu se stie daca P = NP, nu se poate da un raspuns exact. Dar se stie ca pana acum nu s-a gasit pentru niciuna din probleme algoritm determinist polinomial care sa o rezolve. c) $ssdAprox(n, s, M, \varepsilon)$ { L[0] = (0);for $(i = 1; i \le n; ++i)$ { Ltemp = merge(L[i-1], L[i-1] + s[i]);curata(Ltemp, ε/n, L[i]); elimina din L[i] valorile mai mari decit M; return cea mai mare valoare din L[n]; unde curata(Ltemp, ε/n , L[i]) pune in L[i] lista Ltemp curatata de delta = ε/n . - este o schema de aproximare polinomial completa, adica eroarea relativa este $\,$ marginita de ϵ si complexitatea timp este polinomiala ata in n cat si $1/\epsilon$.

d) Complexitatea timp va fi O(n max_i L[i].length()). Se stie ca L[i].length() = O(n ln M $/\epsilon$) (teorema de la curs).