

DEPARTAMENTO DE MATEMÁTICA MÉTODOS ESTATÍSTICOS

 $2.^{\underline{0}}$ Semestre - 2022/20231. $\underline{0}$ Teste

Data: 22 de abril de 2023 Duração: 2 horas

Resolução

O teste foi resolvido recorrendo ao software R: ver script_1Teste_ME_22_23.

1. Variável de interesse: X = preferência em relação ao sabor do café

Níveis da variável de interesse: arábica, excelsa, liberia, robusta

Amostra de dimensão n = 1000 consumidores

(a) Tabela de frequências:

i	preferência em relação ao sabor do café x_i	Frequência Absoluta n_i	Frequência Relativa f_i
1	arábica	$0.405 \times 1000 = 405$	$\frac{40.5}{100} = 0.405$
2	excelsa	$0.180 \times 1000 = 180$	$\frac{64.8}{360} = 0.180$
3	liberia	$0.205 \times 1000 = 205$	$\frac{20.5}{100} = 0.205$
4	robusta	1000 - (405 + 180 + 205) = 210	$\frac{210}{1000} = 0.210$
		n = 1000	1

Como os dados são qualitativos nominais, a única medida adequada é a Moda:

moda = arábica

(pois $n_1 = 405$ é a maior frequência absoluta).

(b) i. População: todos os países com plantações de café em 2019

Dimensão da População: Não é indicado, no máximo serão todos os países do mundo

Amostra: os países que produziram café em 2019 e que se encontram no ficheiro cafe.txt

Dimensão da Amostra: n = 55 países

Unidade estatística: países

Variável estatística: bags Variável estatística: price

Dados estatísticos: 51841, 917, 81265,... Dados estatísticos: 120.52160, 24.00670,...

Classificação: Quantitativa discreta (*) Classificação: Quantitativa contínua

Variável estatística: month

Dados estatísticos: 4 (abril), 6 (junho), 10 (outubro)

Classificação: Qualitativa ordinal

 $(\mbox{*})$ Como "bags" está representada em milhares, pode ser classificada como Quantitativa contínua.

- ii. O Brasil foi o país que produziu mais café em 2019 (58210712 sacos de café de 60 kg). A Bolívia foi o país que foi melhor pago em 2019 (158.2941 cêntimos de dólar por tonelada).
- iii. Tabela de frequências:

	mês da	Freq.	Freq.	Freq. Abs.	Freq. Rel.
	colheita	Absoluta	Relativa	Acumulada	Acumulada
i	x_i	n_i	f_i	N_i	F_i
1	4 = abril	14	0.255	14	0.255
2	6 = junho	7	0.127	21	0.382
3	10 = outubro	34	0.618	55	1
		n=55	1		

Representação gráfica: gráfico de barras ou diagrama circular

iv. Nenhum dos meses apresenta valores considerados "outliers". O preço pago aos produtores apresenta maior dispersão quando a colheita é feita no mês de outubro (10), mas é no mês de junho (6) que a dispersão do preço é maior no que se refere aos 50% dos preços centrais (entre o 1º quartil e o 3º quartil). O preço máximo é atingido no mês de abril (4) e o mínimo no mês de junho (6), o preço mediano mais baixo ocorre no mês de outubro (10).

v. Como os dados têm unidades de medidas diferentes, a única medida de dispersão adequada é o coeficiente de variação:

$$CV_{\rm sacos} = \frac{8984.848}{3000.98} \times 100\% = 299.3971\% \qquad \qquad CV_{\rm preço} = \frac{37.1775}{83.5274} \times 100\% = 44.5094\%$$

Como $CV_{\rm sacos} > CV_{\rm preço}$, o número de sacos de café de 60kg apresenta maior dispersão do que o preço pago aos produtores.

vi. Tabela de frequências:

	Preço pago	Freq.	Freq.	Freq. Abs.	Freq. Rel.
	aos produtores	Absoluta	Relativa	Acumulada	Acumulada
i	Classe - c_i	n_i	f_i	N_i	F_i
1	[14.19, 38.21[7	0.127	7	0.127
2	[38.21, 62.22[7	0.127	14	0.255
3	[62.22, 86.24[18	0.327	32	0.582
4	[86.24, 110.3[10	0.182	42	0.764
5	[110.3, 134.3[6	0.109	48	0.873
6	[134.3, 158.3]	7	0.127	55	1
		n = 55	1		•

Representação gráfica: histograma

preço do café pago aos produtores

- 2. X = diâmetro, em milímetros, dos parafusos produzidos numa determinada linha de montagem
 - (a) Como X é uma variável aleatória contínua, a função de distribuição é $F(x)=\int_{-\infty}^{x}f\left(t\right)dt$.

Se
$$x \le 0$$
, $F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} 0 dt = 0$
Se $0 < x < 1$, $F(x) = \int_{-\infty}^{x} f(t) dt = 0 + \int_{0}^{x} t dt = \left[\frac{t^{2}}{2}\right]_{0}^{x} = \frac{x^{2}}{2}$
Se $1 \le x < 3$, $F(x) = \int_{-\infty}^{x} f(t) dt = \frac{1^{2}}{2} + \int_{1}^{x} \frac{t}{8} dt = \frac{1}{2} + \left[\frac{t^{2}}{16}\right]_{1}^{x} = \frac{1}{2} + \frac{x^{2}}{16} - \frac{1^{2}}{16} = \frac{7}{16} + \frac{x^{2}}{16}$
Se $x \ge 3$, $F(x) = \int_{-\infty}^{x} f(t) dt = \frac{7}{16} + \frac{3^{2}}{16} + \int_{3}^{x} 0 dt = 1 + 0 = 1$

logo

$$F(x) = P(X \le x) = \begin{cases} 0, & x \le 0 \\ \frac{x^2}{2}, & 0 < x < 1 \\ \frac{7}{16} + \frac{x^2}{16}, & 1 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

(b)

$$P\left(X \le \frac{5}{3} \mid \frac{1}{4} < X < \frac{8}{3}\right) = \frac{P\left(X \le \frac{5}{3} \land \frac{1}{4} < X < \frac{8}{3}\right)}{P\left(\frac{1}{4} < X < \frac{8}{3}\right)} = \frac{P\left(\frac{1}{4} < X \le \frac{5}{3}\right)}{P\left(\frac{1}{4} < X < \frac{8}{3}\right)} = \frac{P\left(\frac{1}{4} < X \le \frac{5}{3}\right)}{P\left(\frac{1}{4} < X < \frac{8}{3}\right)} \text{ v.a. cont.}$$

$$= \frac{F\left(\frac{5}{3}\right) - F\left(\frac{1}{4}\right)}{F\left(\frac{8}{3}\right) - F\left(\frac{1}{4}\right)} = \frac{\frac{7}{16} + \frac{\left(\frac{5}{3}\right)^2}{16} - \frac{\left(\frac{1}{4}\right)^2}{2}}{\frac{7}{16} + \frac{\left(\frac{8}{3}\right)^2}{16} - \frac{\left(\frac{1}{4}\right)^2}{2}} = 0.6816$$

 $\underline{\mathrm{OU}}$

$$P\left(X \le \frac{5}{3} \mid \frac{1}{4} < X < \frac{8}{3}\right) = \frac{P\left(X \le \frac{5}{3} \land \frac{1}{4} < X < \frac{8}{3}\right)}{P\left(\frac{1}{4} < X < \frac{8}{3}\right)} = \frac{P\left(\frac{1}{4} < X \le \frac{5}{3}\right)}{P\left(\frac{1}{4} < X < \frac{8}{3}\right)} = \frac{P\left(\frac{1}{4} < X \le \frac{5}{3}\right)}{P\left(\frac{1}{4} < X < \frac{8}{3}\right)} = \frac{\frac{1}{4} x dx + \int_{1}^{\frac{5}{3}} \frac{x}{8} dx}{\frac{1}{4} x dx + \int_{1}^{\frac{5}{3}} \frac{x}{8} dx} = 0.6816$$

(c) Pretende-se determinar k tal que:

$$P(X > k) = 0.05 \Leftrightarrow 1 - P(X \le k) = 0.05 \Leftrightarrow P(X \le k) = 0.95 \Leftrightarrow F(k) = 0.95$$

Como

$$F(1)=\frac{1^2}{2}=0.5<0.95 \text{ então } k>1$$

$$F(3) = 1 > 0.95$$
 então $k < 3$

Como 1 < k < 3 tem-se

$$F\left(k\right) = 0.95 \Leftrightarrow \frac{7}{16} + \frac{k^2}{16} = 0.95 \Leftrightarrow k^2 = 8.2 \Leftrightarrow k = \sqrt{8.2} \Leftrightarrow k = \pm 2.8636 \underset{1 < k < 3}{\Rightarrow} k = 2.8636$$

 \underline{OU}

$$P(X > k) = 0.05 \Leftrightarrow 1 - P(X \le k) = 0.05 \Leftrightarrow P(X \le k) = 0.95 \Leftrightarrow \int_{-\infty}^{k} f(x) dx = 0.95$$

portanto

Se
$$k \le 0$$
, $\int_{-\infty}^{k} f(x) dx = 0.95 \Leftrightarrow \int_{-\infty}^{k} 0 dx = 0.95 \Leftrightarrow 0 = 0.95 \text{ impossível}$
Se $0 < k < 1$, $\int_{-\infty}^{k} f(x) dx = 0.95 \Leftrightarrow \int_{-\infty}^{0} 0 dx + \int_{0}^{k} x dx = 0.95 \Leftrightarrow 0 + \left[\frac{x^{2}}{2}\right]_{0}^{k} = 0.95 \Leftrightarrow \frac{k^{2}}{2} = 0.95 \Leftrightarrow k = \pm 1.3784 \text{ impossível pois } 0 < k < 1$
Se $1 \le k < 3$, $\int_{-\infty}^{k} f(x) dx = 0.95 \Leftrightarrow \int_{-\infty}^{0} 0 dx + \int_{0}^{1} x dx + \int_{1}^{k} \frac{x}{8} dx = 0.95 \Leftrightarrow k = \pm 2.8636 \Rightarrow k = 2.8636$
 $\Leftrightarrow 0 + \left[\frac{x^{2}}{2}\right]_{0}^{1} + \left[\frac{x^{2}}{16}\right]_{0}^{k} = 0.95 \Leftrightarrow \frac{7}{16} + \frac{k^{2}}{16} = 0.95 \Leftrightarrow k = \pm 2.8636 \Rightarrow k = 2.8636$

- (d) Seja Y= número de parafusos defeituosos por dia de produção, $Y\sim P\left(1.2\right)$ pois $E\left(Y\right)=\lambda=1.2$ parafusos defeituosos por dia de produção.
 - i. Seja W = número de parafusos defeituosos encontrados em 10 dias de produção,

$$W \sim P(10 \times 1.2) \Leftrightarrow W \sim P(12)$$

Pretende-se

$$P(W = 20) = f_W(20) = 0.0097$$

ii. Seja T=tempo de produção (em horas) entre dois parafusos defeituosos. Como 1 dia produção = 8 horas, então recorrendo à relação entre a distribuição de Poisson e a distribuição Exponencial, tem-se

$$T \sim Exp\left(\frac{8}{1.2}\right)$$

Pretende-se

$$P(T \ge 6) = 1 - P(T < 6) = 1 - F_T(6) = 0.4066$$

- 3. Seja $X = \text{quantidade de areia vendida diariamente, em toneladas, } X \sim N(2, \sigma) \text{ pois } E[X] = \mu = 2.$
 - (a) Tem-se $X \sim N(2, \sigma) \Leftrightarrow Z = \frac{X-2}{\sigma} \sim N(0, 1)$ 1500 quilos = 1.5 toneladas

Pretende-se determinar σ sabendo

$$P\left(X > 1.5\right) = 0.95 \Leftrightarrow 1 - P\left(X \le 1.5\right) = 0.95 \Leftrightarrow P\left(X \le 1.5\right) = 0.05 \Leftrightarrow P\left(Z \le \frac{1.5 - 2}{\sigma}\right) = 0.05 \Leftrightarrow \Phi\left(\frac{1.5 - 2}{\sigma}\right) = 0.05 \Leftrightarrow \frac{1.5 - 2}{\sigma} = z_{0.05} \Leftrightarrow \frac{1.5 - 2}{\sigma} = -1.645 \Leftrightarrow \sigma = 0.304$$

(b) Sabe-se que $\sigma^2=0.04,$ então $\sigma=\sqrt{0.04}=0.2,$ logo $X\sim N\,(2,0.2).$ i.

$$\begin{split} P\left(X > 2.5 | X \ge 1\right) &= \frac{P(X > 2.5 \land X \ge 1)}{P(X \ge 1)} = \frac{P(X > 2.5)}{P(X \ge 1)} = \frac{1 - P(X \le 2.5)}{1 - P(X < 1)} \underset{\text{v.a. cont.}}{=} \\ &= \frac{1 - F(2.5)}{1 - F(1)} = 0.0062 \end{split}$$

ii. Seja V= número de dias em 20, onde as vendas não atingem a média, $V\sim B\left(20,0.5\right)$ pois n=20

$$p=P({\rm vendas~n\tilde{a}o~atingirem~a~m\acute{e}dia})=P(X<2) \underset{\rm v.a.~cont.}{=} F_X(2)=0.5$$

Pretende-se

$$P(V \ge 5) = 1 - P(V < 5) = 1 - P(V \le 4) = 1 - F_V(4) = 1 - 0.0059 = 0.9941$$

(c) Pretende-se determinar E[W]. Como

$$E[W] = E[3Y^2 - 1] = 3E[Y^2] - 1$$

e sabe-se que Y é dado por:

$$\begin{array}{c|ccccc} y & 0 & 2 & 3 \\ \hline f(y) & 0.1 & 0.3 & 0.6 \end{array}$$

vem que

$$E[Y^2] = 0^2 \times 0.1 + 2^2 \times 0.3 + 3^2 \times 0.6 = 6.6$$

logo

$$E[W] = 3 \times 6.6 - 1 = 18.8$$