Бустинг

X - множество признаков, Y - множество классов. Пусть есть выборка $\{(x_i,y_i)\}_{i=1}^n \in X \times Y$, а также семейство базовых алгоритмов H, в котором каждый элемент $h(x;a) \in H$ определяется набором параметров $a \in A$.

Основная идея - построить новый алгоритм классификации в следующей форме:

$$F_M(x) = \sum_{m=1}^M h(x;a)b_m$$
, где $a_i \in A, b_i \in \mathbb{R}$

Построение проводится \mathcal{H} асифи: пусть уже есть классификатор F_{k-1} (от k-1 параметра), тогда построение классификатора F_k сводится к подбору наиболее оптимальных параметров a_k, b_k :

$$F_k = F_{k-1} + h(\cdot, a_k)b_k$$

Подбор параметров

Оптимальность параметров определятся с помощью функции ошибки:

$$Q=\sum_{i=1}^N L(y_i,F(x_i)) o min$$
, где $L(y_i,F(x_i))$ - функция потерь.

Минимизируем функционал с помощью метода градиентного спуска. Пусть есть алгоритм F_{k-1} . Найдем такой $b_k \in \mathbb{R}$, что значение Q для $F_k = F_{k-1} - b_k \nabla Q$ минимально.

Тут
$$\nabla Q = \left[\frac{\partial Q}{\partial F_{k-1}}(x_i)\right]_{i=1}^N = \left[\frac{\partial L(y_i, F_{k-1})}{\partial F_{k-1}}(x_i)\right]_{i=1}^N$$
То есть $b_k = \underset{b \in \mathbb{R}}{argmin} \left(\sum_{i=1}^N L\left(F_{k-1}(x_i) - b\nabla Q_i\right)\right)$

Однако ∇Q не является алгоритмом из H, поэтому найдем наиболее "близкий" алгоритм $h(., a_k)$:

$$a_k = \underset{a \in A}{\operatorname{argmin}} \left(\sum_{i=1}^{N} L(\nabla Q_i, h(x_i; a)) \right)$$

Это эквивалентно обучению базового алгоритма на выборке $\{(x_i, \nabla Q_i)\}_{i=1}^N$. Теперь осталось найти наиболее оптимальный b_k :

$$b_k = \underset{b \in \mathbb{R}}{argmin} \left(\sum_{i=1}^{N} L \left(F_{k-1}(x_i) + h(x_i; a_k) b \right) \right)$$

Таким образом,
$$F_k = F_{k-1} + b_k h(\cdot; a_k)$$

Бустинг над деревьями Рассмотрим случай бинарной классификации, когда в качестве базовых алгоритмов выступают решающие деревья. Каждому листу дерева соответствует значение a_i - "степень принадлежности" одному из классов. Множество X разбивается на J непересекающихся областей $R_{i=1}^J$, каждой из которых соответствует один лист дерева.

Тогда
$$h(x,a) = \sum_{j=1}^{J} a_j I\left[x \in R_j\right]$$

Соответственно, $F_k = F_{k-1} + b_k \left(\sum_{j=1}^J a_j I\left[x \in R_j\right]\right) = F_{k-1} + \sum_{j=1}^J c_j I\left[x \in R_j\right],$ где $c_j = a_j b_j$. В таком случае, вместо того, чтобы сначала искать оптимальные a_i , а затем b_i , можно сразу искать оптимальные c_i :

$$c_{j_k} = \underset{c \in \mathbb{R}}{\operatorname{argmin}} \sum_{x_i \in R_j} L(F_{k-1}(x_i) + c)$$