

INFORMATICS INSTITUTE OF TECHNOLOGY

In Collaboration with

ROBERT GORDON UNIVERSITY ABERDEEN

CM-2604 Machine Learning Coursework

Sathila Samarasinghe
IIT ID – 20210515

RGU ID - 2117535

Submitted in partial fulfillment of the requirements for the BSc (Hons) in Artificial Intelligence and Data Science degree at Robert Gordon University.

March 2023

© The copyright for this project and all its associated products resides with the Informatics Institute of Technology

Introduction

This is a machine learning classification problem labeling emails as spam or non-spam. The dataset used here is Spambase dataset (https://archive.ics.uci.edu/ml/datasets/Spambase) found on UCI Machine Learning Repository. The problem has been triggered successfully using the two machine learning models K Nearest Neighbors and Decision Trees.

Dataset

The spambase dataset had 4601 rows and 57 columns. However, these rows and columns had to reduce in the data preprocessing stage in order to get a good dataset.

Initial information on the dataset is shown below.

RangeIndex: 4601 entries, 0 to 4600 Data columns (total 58 columns):							
#	Columns (total 58 columns):	Non-Null Count	Dtype				
		Non-Null Count					
0	word_freq_make	4601 non-null	float64				
1	word_freq_address	4601 non-null	float64				
2	word_freq_all	4601 non-null	float64				
	word_freq_3d	4601 non-null	float64				
	word_freq_our	4601 non-null	float64				
5	word_freq_over	4601 non-null	float64				
6	word_freq_remove	4601 non-null	float64				
7	word_freq_internet	4601 non-null	float64				
8	word_freq_order	4601 non-null	float64				
10	word_freq_mail word_freq_receive	4601 non-null 4601 non-null	float64 float64				
11	word_freq_will	4601 non-null	float64				
12	word_freq_people	4601 non-null	float64				
13	word_freq_report	4601 non-null	float64				
14	word_freq_addresses	4601 non-null	float64				
	word_freq_free	4601 non-null	float64				
16	word_freq_business	4601 non-null	float64				
17	word_freq_email	4601 non-null	float64				
18	word_freq_you	4601 non-null	float64				
19	word_freq_credit	4601 non-null	float64				
	word_freq_your	4601 non-null	float64				
	word_freq_font	4601 non-null	float64				
22	word_freq_000	4601 non-null	float64				
	word_freq_money word_freq_hp	4601 non-null 4601 non-null	float64 float64				
25	word_freq_hpl	4601 non-null	float64				
	word_freq_george	4601 non-null	float64				
27	word_freq_650	4601 non-null	float64				
28	word_freq_lab	4601 non-null	float64				
29	word_freq_labs	4601 non-null	float64				
30	word_freq_telnet	4601 non-null	float64				
31	word_freq_857	4601 non-null	float64				
	word_freq_data	4601 non-null	float64				
	word_freq_415	4601 non-null	float64				
	word_freq_85	4601 non-null	float64				
	word_freq_technology	4601 non-null	float64				
36 37	word_freq_1999	4601 non-null 4601 non-null	float64 float64				
	word_freq_parts word freq pm	4601 non-null	float64				
39	word_freq_pm word_freq_direct	4601 non-null	float64				
40	word_freq_cs	4601 non-null	float64				
41	word freq meeting	4601 non-null	float64				
42	word freq original	4601 non-null	float64				
43	word_freq_project	4601 non-null	float64				
44	word_freq_re	4601 non-null	float64				
45	word_freq_edu	4601 non-null	float64				
46	word_freq_table	4601 non-null	float64				
47	word_freq_conference	4601 non-null	float64				
48	char_freq_;	4601 non-null	float64				
49	char_freq_(4601 non-null	float64				
50	char_freq_[4601 non-null	float64				
51 52	char_freq_!	4601 non-null	float64 float64				
53	char_freq_\$ char freq #	4601 non-null	float64				
54	capital_run_length_average	4601 non-null	float64				
55	capital_run_length_longest	4601 non-null	int64				
56	capital_run_length_total	4601 non-null	int64				
57	spam	4601 non-null	int64				
dtype	es: float64(55), int64(3)						

Data Preprocessing

Data Cleaning

Data cleaning has been done by removing all the null duplicated values from the dataset.

Int64Index: 4210 entries, 0 to 4600 Data columns (total 58 columns): # Column Non-Null Count Dtype 0 word freg make 4210 non-null float64 word freq address 4210 non-null float64 word_freq_all 4210 non-null word_freq_3d 4210 non-null float64 word_freq_our word_freq_over 4210 non-null float64 4210 non-null float64 word_freq_remove 4210 non-null word_freq_internet 4210 non-null float64 4210 non-null float64 word_freq_order word frea mail 4210 non-null float64 10 word_freq_receive 4210 non-null 11 word_freq_will 4210 non-null float64 12 word_freq_people 13 word_freq_report 4210 non-null float64 float64 4210 non-null word_freq_addresses 4210 non-null float64 15 word free free 4210 non-null float64 16 word freq business 4210 non-null float64 17 word_freq_email 4210 non-null float64 word_freq_you 4210 non-null 19 word_freq_credit 4210 non-null float64 20 word freq your 4210 non-null float64 21 word_freq_font 4210 non-null float64 word_freq_000 4210 non-null 22 float64 23 word_freq_money 4210 non-null float64 word_freq_hp 24 4210 non-null float64 25 word_freq_hpl 4210 non-null float64 word_freq_george 4210 non-null 27 word_freq_650 4210 non-null float64 28 word freg lab 4210 non-null float64 word_freq_labs 4210 non-null float64 30 word_freq_telnet 4210 non-null 31 word_freq_857 4210 non-null float64 32 word_freq_data float64 4210 non-null 33 word_freq_415 4210 non-null float64 word_freq_85 4210 non-null float64 35 word_freq_technology 4210 non-null float64 36 word frea 1999 4210 non-null float64 word_freq_parts 4210 non-null float64 38 word_freq_pm 4210 non-null 39 word_freq_direct 4210 non-null float64 40 word_freq_cs 4210 non-null float64 41 word_freq_meeting 4210 non-null float64 42 word_freq_original 4210 non-null 43 word_freq_project 4210 non-null float64 44 word frea re 4210 non-null float64 word_freq_edu 4210 non-null float64 46 47 word_freq_table 4210 non-null word frea conference 4210 non-null float64 48 char_freq_; 49 char_freq_(4210 non-null float64 4210 non-null float64 50 char_freq_[4210 non-null float64 51 char_freq_! 4210 non-null float64 char_freq_\$ char_freq_# 52 4210 non-null float64 capital_run_length_average 4210 non-null float64 55 capital_run_length_longest 4210 non-null int64 4210 non-null int64 56 capital run length total 57 spam 4210 non-null dtypes: float64(55), int64(3)

Number of rows before removing duplicates – 4601

Number of rows after removing duplicates – 4210

Data Transformation

Data transformation has been done using the technique of removing outliers and performing a standard scaler.

Identifying Outliers

A boxplot has been made to identify the outliers.

From the above boxplot, it has been found there are outliers in the following three columns of the dataset.

- capital_run_length_total
- capital_run_length_average
- capital_run_length_longest

Outlier boxplot of capital_run_length_total:

Outlier boxplot of capital_run_length_average:

Outlier boxplot of capital_run_length_longest

Removing Outliers

The identified outliers have been removed from the dataset by converting them to null values using the Inter Quartile Range (IQR) technique.

Boxplot of capital_run_length_total after removing outliers:

Boxplot of capital_run_length_avarage after removing outliers:

Boxplot of capital_run_length_longest after removing outliers:

Number of rows before removing outliers -4210Number of rows after removing outliers -3446

Standard Scaling

Performing a standard scaler was to normalize the range of values of each column to reduce the mean to zero and the standard deviation to one.

Before Standard Scaling:

	word_freq_make	$word_freq_address$	word_freq_all	word_freq_3d	word_freq_our	word_freq_over	word_freq_remove	$word_freq_internet$	word_freq_order	word_freq_mail
count	3446.000000	3446.000000	3446.000000	3446.000000	3446.000000	3446.000000	3446.000000	3446.000000	3446.000000	3446.000000
mean	0.094779	0.092716	0.268056	0.005818	0.308175	0.085267	0.093688	0.096164	0.047841	0.201033
std	0.309801	0.474629	0.529981	0.134848	0.701947	0.281174	0.356036	0.420321	0.222685	0.581086
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
50%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
75%	0.000000	0.000000	0.360000	0.000000	0.360000	0.000000	0.000000	0.000000	0.000000	0.000000
max	4.540000	14.280000	5.100000	7.070000	10.000000	5.880000	7.270000	11.110000	5.260000	11.110000

Standard Deviation -before standard scaling

120

100

100

40

20

0

10

20

30

40

50

Index

After Standard Scaling:

	word_freq_make	$word_freq_address$	word_freq_all	word_freq_3d	word_freq_our	word_freq_over	word_freq_remove	$word_freq_internet$	word_freq_order	word_freq_mail
count	3.446000e+03	3.446000e+03	3.446000e+03	3.446000e+03	3.446000e+03	3.446000e+03	3.446000e+03	3.446000e+03	3.446000e+03	3.446000e+03
mean	-3.299096e-17	-2.474322e-17	7.422965e-17	4.123870e-18	4.948644e-17	-4.948644e-17	-3.299096e-17	2.474322e-17	-2.474322e-17	4.123870e-18
std	1.000145e+00	1.000145e+00	1.000145e+00	1.000145e+00	1.000145e+00	1.000145e+00	1.000145e+00	1.000145e+00	1.000145e+00	1.000145e+00
min	-3.059813e-01	-1.953730e-01	-5.058574e- 01	-4.315372e- 02	-4.390922e-01	-3.032971e-01	-2.631810e-01	-2.288195e-01	-2.148683e-01	-3.460115e-01
25%	-3.059813e-01	-1.953730e-01	-5.058574e- 01	-4.315372e- 02	-4.390922e-01	-3.032971e-01	-2.631810e-01	-2.288195e-01	-2.148683e-01	-3.460115e-01
50%	-3.059813e-01	-1.953730e-01	-5.058574e- 01	-4.315372e- 02	-4.390922e-01	-3.032971e-01	-2.631810e-01	-2.288195e-01	-2.148683e-01	-3.460115e-01
75%	-3.059813e-01	-1.953730e-01	1.735113e-01	-4.315372e- 02	7.384151e-02	-3.032971e-01	-2.631810e-01	-2.288195e-01	-2.148683e-01	-3.460115e-01
max	1.435073e+01	2.989567e+01	9.118532e+00	5.239393e+01	1.380907e+01	2.061203e+01	2.015906e+01	2.620720e+01	2.340938e+01	1.877615e+01

Dimensional Reduction

Reducing the number of features and retaining the most useful features in the dataset have been done to simplify analysis and make the data more manageable.

The most common feature extraction technique used here is principal component analysis (PCA). Principal components are designed to capture more variance in data while reducing the dimensionality.

It was identified as more than 44 principal components have more than 90% variance of data. So, for the newly created data frame, 44 principal components have been used.

K Nearest Neighbors (KNN) Classification

The splitting of the dataset has been done as follows.

70% - Training data

30% - Testing data

Random state -0

Through a grid search optimal k value was found as 7.

Accuracy of training data achieved: 92.24709784411277 % Accuracy of testing data achieved: 90.13539651837525 %

Confusion Matrix

Spam = 1 (positives)

Non-spam = 0 (negatives)

Accuracy = (True Positives + True Negatives)/(True Positives + False Positives + True

Negatives + False Negatives)

Recall = (True Positives)/(True Positives + False Negatives)

Precision = (True Positives)/(True Positives + False Positives)

F1 Score = 2* (Precision* Recall)/(Precision+ Recall)

- True Positives instances that are positive and have been correctly classified as positive by the classification model.
- True Negatives instances that are negative and have been correctly classified as negative by the classification model.
- False Positives instances that are negative but have been incorrectly classified as positive by the classification model.
- False Negatives instances that are positive but have been incorrectly classified as negative by the classification model.

Classification Report :

	precision	recall	f1-score	support
0	0.90	0.96	0.93	676
1	0.91	0.79	0.85	358
accuracy			0.90	1034
macro avg	0.90	0.88	0.89	1034
weighted avg	0.90	0.90	0.90	1034

Decision Tree Classification

The splitting of the dataset has been done as follows.

80% - Training data

20% - Testing data

Random state -0

The resulting decision tree before pruning:

Accuracy of training data achieved: 99.92743105950653 % Accuracy of testing data achieved: 87.10144927536231 %

Since there is a considerable gap between testing accuracy and training accuracy, the model has to be called overfitted. Pruning the decision tree has solved this issue.

Pruning the Decision Tree

The first elbow point (0.003) was taken as the optimal ccp_alpha value.

Accuracy of training and testing data after pruning:

Accuracy of training data achieved: 91.8722786647315 % Accuracy of testing data achieved: 87.82608695652175 %

The above accuracy values of training and testing data confirmed the overfitting was treated successfully.

Pruned Decision Tree:

Confusion Matrix

Spam = 1 (positives)

Non-spam = 0 (negatives)

Accuracy = (True Positives + True Negatives)/(True Positives + False Positives + True

Negatives + False Negatives)

Recall = (True Positives)/(True Positives + False Negatives)

Precision = (True Positives)/(True Positives + False Positives)

F1 Score = 2* (Precision* Recall)/(Precision+ Recall)

- True Positives instances that are positive and have been correctly classified as positive by the classification model.
- True Negatives instances that are negative and have been correctly classified as negative by the classification model.
- False Positives instances that are negative but have been incorrectly classified as positive by the classification model.
- False Negatives instances that are positive but have been incorrectly classified as negative by the classification model.

Classification Report :

	precision	recall	f1-score	support
0	0.89	0.92	0.91	450
1	0.85	0.79	0.82	240
accuracy			0.88	690
macro avg	0.87	0.86	0.86	690
weighted avg	0.88	0.88	0.88	690

Comparison of results in KNN and Decision Tree Classifiers

	KNN	Decision Tree
Accuracy of Training data	92.24709784411277	91.8722786647315
Accuracy of Testing data	90.13539651837525	87.82608695652175

Limitations

- The dataset is old (created in 1999). So, the resulting predictions may not be helpful in present-day emails.
- The dataset had 4601 email data where 1813 were spam and 2788 were non-spam. This could affect the predicted result because more data is biased toward non-spam.
- Fewer email data (4601) which is not sufficient for a project like this. Because there are billions of data collected with emails in the present day.
- When dropping the duplicates and null values, lots of rows had to drop. It lessens the amount of data further.
- The decision tree has to be pruned because of overfitting.

Future Enhancements

- Can use machine learning models such as SVM and Random Forests and see for better results.
- Use data augmentation to generate more data for the trained model. Techniques like data synthesis could create more similar data to the original data.
- Going with a recently updated dataset with a large volume can be used to make good predictions in real-time emails.
- Scaling techniques such as min-max scaling and chi-squared test can be applied to improve the performance of the model.
- Use hyperparameter tuning techniques other than grid search.
 - e.x: Random search, Bayesian optimization, genetic algorithms etc.

Source Code

Link to GitHub repository: https://github.com/Sathila01/Machine-Learning-CourseWork.git

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import re
%matplotlib inline
with open ("spambase/spambase.names") as spam:
text = spam.read()
labels = re.findall(r'\n(\w* ?\W?):', text)
#labels.append('Class')
df = pd.read csv("spambase/spambase.data", header=None, names=labels
+['spam'])
df.head()
df.info()
df.duplicated()
#Dropping duplicates
df.drop duplicates(inplace=True)
df.info()
#Finding Outliers
fig = plt.figure(figsize =(200, 100))
df.plot.box(title='BoxPlot Spambase',rot=90) #rot = axis rotation
plt.show()
import seaborn as sn
sn.boxplot(x = df['capital run length total'])
sn.boxplot(x = df['capital run length average'])
sn.boxplot(x = df['capital run length longest'])
#Using IQR technique to make all outliers to null values
for x in
['capital run length total','capital run length longest','capital run length
average']:
    q75, q25 = np.percentile(df.loc[:,x],[75,25])
    intr qr = q75-q25
   max = q75+(1.5*intr_qr)
   min = q25 - (1.5*intr qr)
    df.loc[df[x] < min,x] = np.nan
    df.loc[df[x] > max,x] = np.nan
```



```
sn.boxplot(x = df['capital run length total'])
sn.boxplot(x = df['capital run length average'])
sn.boxplot(x = df['capital run length longest'])
df.isnull().sum()
# Drop all rows with NaN values
preprocessed df=df.dropna(axis=0)
# Reset index after drop
preprocessed df=df.dropna().reset index(drop=True)
preprocessed df
#Removing the target column
target dropped df = preprocessed df.drop(labels=['spam'], axis=1)
target dropped df.head()
target dropped df.describe()
#Standard Deviation before performing Standard Scaling
# Calculate the standard deviation of all columns
sd = target dropped df.std()
# Plot the standard deviation of all columns
plt.bar(range(len(sd)), sd)
plt.title("Standard Deviation -before standard scaling")
plt.xlabel("Index")
plt.ylabel("Standard Deviation")
plt.show()
#Mean before performing Standard Scaling
# Calculate the mean of all columns
mean = target dropped df.mean()
# Plot the mean of all columns
plt.bar(range(len(mean)), mean)
plt.title("Mean -before standard scaling")
plt.xlabel("Index")
plt.ylabel("Mean")
plt.show()
#Performing Standard Scaling
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaled data=scaler.fit transform(target dropped df)
standardized df=pd.DataFrame(data=scaled data, columns=
target dropped df.columns)
standardized df
```



```
standardized df.describe()
#Standard Deviation after performing Standard Scaling
# Calculate the standard deviation of all columns
sd = standardized df.std()
# Plot the standard deviation of all columns
plt.bar(range(len(sd)), sd)
plt.title("Standard Deviation -after standard scaling")
plt.xlabel("Index")
plt.ylabel("Standard Deviation")
plt.show()
#Mean after performing Standard Scaling
# Calculate the mean of all columns
mean = standardized df.mean()
# Plot the mean of all columns
plt.bar(range(len(mean)), mean)
plt.title("Mean -after standard scaling")
plt.xlabel("Index")
plt.ylabel("Mean")
plt.show()
#Performing PCA to dataset
from sklearn.decomposition import PCA
pca = PCA()
principalComponents = pca.fit transform(standardized df)
plt.figure()
plt.plot(np.cumsum(pca.explained variance ratio ))
plt.xlabel('Number of Components')
plt.ylabel('Variance (%)') #for each component
plt.title('Explained Variance')
plt.grid(True)
plt.show()
pca = PCA(n components=44)
new data = pca.fit transform(standardized df)
# This will be the new data fed to the algorithm.
pca df = pd.DataFrame(data = new data,
                            columns = ['PC1',
'PC2','PC3','PC4','PC5','PC6','PC7','PC8','PC9','PC10','PC11','PC12','PC13','
PC14', 'PC15', 'PC16', 'PC17', 'PC18', 'PC19', 'PC20', 'PC21',
'PC22', 'PC23', 'PC24', 'PC25', 'PC26', 'PC27', 'PC28', 'PC29', 'PC30', 'PC31', 'PC32',
'PC33','PC34','PC35','PC36','PC37','PC38','PC39','PC40','PC41','PC42','PC43',
'PC44'1)
```



```
pca df
print(pca.explained variance )
print(pca.components )
# Defining Independent variable and Dependant variable
X = pca df.iloc[:, 0:44].values
y = preprocessed df.iloc[:, 57].values
KNN
# Splitting the dataset into the Training set and Testing set
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, y, test size = 0.30,
random state = 0)
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model selection import GridSearchCV
# Perform grid search to find optimal value of k
param grid = {'n neighbors': [1, 3, 5, 7, 9]}
grid search = GridSearchCV(KNeighborsClassifier(), param grid, cv=5)
grid search.fit(X train, y train)
# Print optimal value of k
optimal k value = grid search.best params ['n neighbors']
print('Optimal value of k:', optimal k value)
# Fitting classifier to the Training set
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n neighbors=optimal k value,
metric='minkowski', p=2)
classifier.fit(X train,y train)
# Predicting the Test set results
y pred = classifier.predict(X test)
# Making the Confusion Matrix
from sklearn.metrics import confusion matrix
cm = confusion matrix(y test, y pred)
cm
from sklearn.metrics import confusion matrix
import seaborn as sns
# Summary of the predictions made by the classifier
```



```
mat = confusion matrix(y test, y pred)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False)
plt.title('Confusion matrix')
plt.xlabel('True label')
plt.ylabel('Predicted label')
from sklearn.metrics import classification report
print('Classification Report : \n')
print(classification report(y test, y pred)) #support - no. of samples in the
test set
from sklearn.metrics import accuracy score
print("KNN accuracy of testing dataset : ",accuracy score(y pred,y test)*100)
y pred2 = classifier.predict(X train)
print ("KNN accuracy of training dataset: ", accuracy score (y pred2, y train)
* 100)
Decision Tree
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X, y, test size = 0.20,
random state = 0)
from sklearn.tree import DecisionTreeClassifier
clf = DecisionTreeClassifier(random state=0,criterion='gini')
clf.fit(X train, y train)
from sklearn.metrics import accuracy score
predictions test=clf.predict(X test)
print("Decision Tree accuracy of testing dataset :
",accuracy score(y_test,predictions_test)*100)
predictions train = clf.predict(X train)
print("Decision Tree accuracy of training dataset :
", accuracy score (y train, predictions train) *100)
from sklearn import tree
plt.figure(figsize=(15,10))
tree.plot tree(clf, filled=True)
plt.show()
# Pruning the decision tree
path = clf.cost complexity pruning path(X train, y train)
ccp alphas, impurities = path.ccp alphas, path.impurities
fig, ax = plt.subplots(figsize=(8,5))
ax.plot(ccp alphas[:-1], impurities[:-1], marker='o', drawstyle="steps-post")
```



```
ax.set xlabel("effective alpha")
ax.set ylabel("total impurity of leaves")
ax.set title("Total Impurity vs effective alpha for training set")
clf = DecisionTreeClassifier(random state=0, ccp alpha=0.003) #elbow point
clf.fit(X train, y train)
predictions test=clf.predict(X test)
print("Accuracy of testing data after pruning :
",accuracy_score(y_test,predictions_test)*100)
predictions train = clf.predict(X train)
print("Accuracy of training data after pruning :
",accuracy_score(y_train,predictions_train)*100)
print('Classification Report : \n')
print(classification_report(y_test,predictions_test))
mat = confusion matrix(y test, predictions test)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False)
plt.title('Confusion matrix')
plt.xlabel('true label')
plt.ylabel('predicted label')
plt.figure(figsize=(15,10))
tree.plot tree(clf, filled=True)
plt.show()
```