HW 5

March 11, 2021

1 IST 387 HW 5

Copyright 2021, Jeffrey Stanton, Jeffrey Saltz, and Jasmina Tacheva

```
[2]: # Enter your name here: Connor Hanan
```

- 1.0.1 Attribution statement: (choose only one and delete the rest)
- [3]: # 1. I did this homework by myself, with help from the book and the professor.

(Chapter 11 of Introduction to Data Science)

Reminders of things to practice from previous weeks: Descriptive statistics: mean() max() min() Coerce to numeric: as.numeric()

1.1 Part 1: Use the Starter Code

Below, I have provided a starter file to help you.

Each of these lines of code **must be commented** (the comment must that explains what is going on, so that I know you understand the code and results).

```
[4]: library(RCurl) #load library RCurl
library(jsonlite) #load library jsonlite
dataset <- getURL("https://ist387.s3.us-east-2.amazonaws.com/data/role.json")

→#calls API and stores reponse as variable
readlines <- jsonlite::fromJSON(dataset) #strips the JSON formatting of the API

→response as a list of dataframes
df <- readlines$objects$person #subsets the list to select the dataframe we want
```

A. Explore the **df** dataframe (e.g., using View() or whatever you think is best).

```
[6]: str(df)
```

```
'data.frame': 100 obs. of 17 variables:

$ bioguideid : chr "C000880" "G000386" "L000174" "M001153" ...

$ birthday : chr "1951-05-20" "1933-09-17" "1940-03-31" "1957-05-22" ...

$ cspanid : int 26440 1167 1552 1004138 25277 5929 1859 1962 45465 92069
...

$ firstname : chr "Michael" "Charles" "Patrick" "Lisa" ...
```

```
: chr
                      "male" "male" "female" ...
 $ gender_label: chr
                      "Male" "Male" "Female" ...
                      "Crapo" "Grassley" "Leahy" "Murkowski" ...
 $ lastname
               : chr
 $ link
               : chr
"https://www.govtrack.us/congress/members/michael crapo/300030"
"https://www.govtrack.us/congress/members/charles grassley/300048"
"https://www.govtrack.us/congress/members/patrick leahy/300065"
"https://www.govtrack.us/congress/members/lisa murkowski/300075" ...
$ middlename : chr "D." "E." "J." "A." ...
               : chr "Sen. Michael "Mikeâ€<9d> Crapo [R-ID]" "Sen. Charles
 $ name
"Chuckâ€<9d> Grassley [R-IA]" "Sen. Patrick Leahy [D-VT]" "Sen. Lisa Murkowski
[R-AK]" ...
 $ namemod
                      ... ... ... ... ...
               : chr
$ nickname
                     "Mike" "Chuck" "" "" ...
               : chr
                      "N00006267" "N00001758" "N00009918" "N00026050" ...
 $ osid
               : chr
 $ pvsid
               : chr
                      "26830" "53293" "53353" "15841" ...
 $ sortname
               : chr "Crapo, Michael "Mikeâ€<9d> (Sen.) [R-ID]" "Grassley,
Charles "Chuckâ€<9d> (Sen.) [R-IA] " "Leahy, Patrick (Sen.) [D-VT] " "Murkowski,
Lisa (Sen.) [R-AK]" ...
             : chr "MikeCrapo" "ChuckGrassley" "SenatorLeahy" "LisaMurkowski"
 $ twitterid
 $ youtubeid
                      "senatorcrapo" "senchuckgrassley" "SenatorPatrickLeahy"
               : chr
"senatormurkowski" ...
```

B. Explain the dataset o What is the dataset about? o How many rows are there and what does a row represent? o How many columns and what does each column represent?

```
[7]: #the dataset is about information about senators
#there are 100 rows, each one represents a single senator
#there are 17 columns, each one represents info about a senator
```

1.2 Part 2: Investigate the resulting dataframe

C. How many senators are women?

[8]: library(tidyverse)

library(tidyverse)

Attaching packages

tidyverse

1.3.0

```
      ggplot2
      3.3.2
      purrr
      0.3.4

      tibble
      3.0.4
      dplyr
      1.0.2

      tidyr
      1.1.2
      stringr
      1.4.0

      readr
      1.4.0
      forcats
      0.5.0
```

Conflicts

```
tidyverse_conflicts()
  tidyr::complete() masks
RCurl::complete()
```

```
dplyr::filter()
                         masks
     stats::filter()
       purrr::flatten()
                         masks
     jsonlite::flatten()
       dplyr::lag()
                         masks stats::lag()
[17]: df %>% filter(gender=='female') %>% nrow()
     24
       D. How many senators have a YouTube account?
[13]: df %>% filter(!is.na(youtubeid)) %>% nrow()
     73
       E. How many women senators have a YouTube account?
[14]: df %>% filter(gender=='female') %>% filter(!is.na(youtubeid)) %>% nrow()
     16
       F. Create a new dataframe called youtubeWomen that only includes women senators who
          have a YouTube account.
[25]: | youtubeWomen <- df %>% filter(gender=='female') %>% filter(!is.na(youtubeid))
       G. What does running this line of code do? Explain in a comment:
[28]: youtubeWomen$year <- substr(youtubeWomen$birthday,1,4) #creates a new column of
       → the birthyear of each senator in youtubeWomen by taking a substring of
       → characters 1-4 in their full birthday
```

[29]: youtubeWomen

	bioguideid	birthday	cspanid	firstname	gender	$gender_label$	lastname	linl
A data.frame: 16×18	<chr $>$	<chr $>$	<int $>$	<chr $>$	<chr $>$	<chr $>$	<chr $>$	<c< td=""></c<>
	M001153	1957-05-22	1004138	Lisa	female	Female	Murkowski	htt
	M001111	1950-10-11	25277	Patty	female	Female	Murray	htt
	D000622	1968-03-12	94484	Tammy	female	Female	Duckworth	htt
	C000127	1958-10-13	26137	Maria	female	Female	Cantwell	htt
	F000062	1933-06-22	13061	Dianne	female	Female	Feinstein	htt
	S000770	1950 - 04 - 29	45451	Debbie	female	Female	Stabenow	htt
	B001230	1962-02-11	57884	Tammy	female	Female	Baldwin	htt
	B001243	1952-06-06	31226	Marsha	female	Female	Blackburn	htt
	H001042	1947-11-03	91216	Mazie	female	Female	Hirono	htt
	G000555	1966-12-09	1022862	Kirsten	female	Female	Gillibrand	htt
	K000367	1960 - 05 - 25	83701	Amy	female	Female	Klobuchar	htt
	S001191	1976-07-12	68489	Kyrsten	female	Female	Sinema	htt
	W000817	1949 - 06 - 22	1023023	Elizabeth	female	Female	Warren	htt
	F000463	1951-03-01	1034067	Deb	female	Female	Fischer	htt
	C001035	1952 - 12 - 07	45738	Susan	female	Female	Collins	htt
	S001181	1947 - 01 - 28	22850	Jeanne	female	Female	Shaheen	htt

H. Use this new variable to calculate the mean **birthyear** in **youtubeWomen**. **Hint:** You may need to convert it to numeric first.

[31]: mean(as.numeric(youtubeWomen\$year))

1954.875

I. Make a histogram of the **birthyears** of senators in **youtubeWomen**. Add a comment describing the shape of the distribution.

```
[48]: hist(as.numeric(youtubeWomen$year)) #seems to be a fairly normal distribution, ⊔
→with a slight bias to the older ages
```

Histogram of as.numeric(youtubeWomen\$year)

