Chain Rule (Contd.)

Functions Defined on Surfaces:

If we are interested in the temperature w = w(x, y, z) on a globe in space, we might prefer to think of x, y and z as functions of variables r and s that gives points' longitudes & latitudes. If x = x(r, s), y = y(r, s) and z = z(r, s), we could then express the temperature as a function of r and s with the composite function.

$$w = w(x(r,s), y(r,s), z(r,s))$$

Under the right conditions, w could have partial derivatives with respect to both r and s that could be calculated in the following way.

Chain Rule for Two independent and Three Intermediate Variables

Suppose that w = w(x, y, z); x = x(r, s), y = y(r, s) and z = z(r, s). If all the four functions are differentiable, then w has partial derivatives with respect to r and s, given by the formulas

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}$$
$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}$$

Example 3

Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if

$$w = x + 2y + z^2$$
; $x = \frac{r}{s}$, $y = r^2 + \ln s$, $z = 2r$

Solution:

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}$$

$$= (1) \left(\frac{1}{s}\right) + (2) (2r) + (2z) (2)$$

$$= \left(\frac{1}{s}\right) + 4r + (4r) (2)$$

$$= \left(\frac{1}{s}\right) + 12r$$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}$$

$$= (1) \left(-\frac{r}{s^2}\right) + (2) \left(\frac{1}{s}\right) + (2z) (0)$$

$$= \left(\frac{2}{s}\right) - \left(\frac{r}{s^2}\right)$$

Remark 1:

If f is a function of two variables instead of three, each equation becomes correspondingly one term shorter.

If
$$w = f(x,y)$$
; $x = g(r,s), y = h(r,s)$, then
$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r}$$
$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s}$$

Example 4:

Express $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial r}$ in terms of s and r

$$w = x^2 + y^2$$
, $x = r - s$, $y = r + s$

Solution:
$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r}$$

$$= (2x)(1) + (2y)(1)$$

$$= 2(r - s) + 2(r + s) = 4r$$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s}$$

$$= (2x)(-1) + (2y)(1)$$

$$= -2(r-s) + 2(r+s)$$

$$= 4s$$

Remark 2: If f is a function of x alone, our equations become even simpler.

If
$$w = w(x)$$
; $x = x(r, s)$, then

$$\frac{\partial w}{\partial r} = \frac{dw}{dx} \cdot \frac{\partial x}{\partial r}$$
 and $\frac{\partial w}{\partial s} = \frac{dw}{dx} \cdot \frac{\partial x}{\partial s}$

Chain Rule

$$\frac{\partial w}{\partial x} = \frac{dw}{dx} \frac{\partial x}{\partial x}$$

Chain Rule: Two Independent Variables

In exercise 7 and 8, (a) express $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ as a function of u and vby using chain rule. Then (b) evaluate $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ at the given point (u,v).

1.
$$z = 4e^x \ln y$$
, $x = \ln(u \cos v)$, $y = u \sin v$; $(u, v) = \left(2, \frac{\pi}{4}\right)$

2.
$$z = \tan^{-1}\left(\frac{x}{y}\right), \ x = u\cos v, \ y = u\sin v; \ (u,v) = \left(1.3, \frac{\pi}{6}\right)$$