Um Modelo Matemático para Análise de Batalhas Históricas Considerando Munição Limitada

Thales Luis Rodrigues Sabino

9 de dezembro de 2015

Relatório técnico do trabalho realizado na disciplina *Instrução a Modelagem Matemática (2015-3)* do **Programa de Pós-Graduação em Modelagem Computacional (PGMC) da Universidade Federal de Juiz de Fora (UFJF)**.

Professor: Rodrigo Weber dos Santos

Resumo

Abstract text

1 Introdução

Descoberta no século 19 na antiga Suméria, a cidade-estado de Lagash possui ruínas que contém registros que mostram vários aspectos da guerra travada com uma cidade-estado vizinha conhecida como *Umma*. Nas ruínas foram encontradas representações de soldados sendo devorados por abutres. A relíquia, hoje, encontra-se exposta no Museu do Louvre, em Paris [3].

Fica claro que conflitos, armados ou não, sempre fizeram parte da história da humanidade. O orçamento dedicado a defesa de vários países corresponde a uma parte significativa do PIB gerado, tornando o aspecto bélico de extrema importância para a defesa e segurança de um país (procurar referência).

É evidente que uma parte significa do dinheiro investido nas forças militares é dedicada ao estudo de situações de combate, estratégias e maneiras eficientes de vencer as batalhas. O termo eficiente, nesse contexto, significa derrotar o inimigo sofrendo um número mínimo de baixas.

Não faz parte do escopo deste trabalho a realização de uma discussão sobre os aspectos positivos, negativos e impactos sociais causados por conflitos, somente uma análise de um modelo matemático que tenta capturar os aspectos de um conflito armado entre dois exércitos homogêneos.

1.1 Modelos de Combate do Tipo Lanchester

A análise de combates do ponto de vista matemático foi inicialmente desenvolvido por Frederick W. Lanchester (1914) (Figura 1), um engenheiro britânico que que desenvolveu a teoria dos combates baseado em conflitos aéreos da Primeira Guerra Mundial na tentativa de explicar porque a concentração de forças era útil em combates modernos. As *leis* de Lanchester são ensinadas e usadas em todos os colégios militares do mundo.

Figura 1: Frederick Willian Lanchester

Existem dois tipos de modelos a serem considerados, **homogêneos** e **heterogêneos**. No modelo homogêneo, um único escalar é utilizado para representar o poder de combate de uma unidade e ambos os lados do conflito são considerados equivalentes quanto a eficiência em combate. O modelo homogêneo pode ser considerado de cunho *acadêmico* e é aplicado na análise e revisão de *batalhas históricos*, não sendo considerado um bom modelo para descrição de *combates modernos* [1].

1.2 Batalhas Históricas

Não foi considerada nenhuma batalha específica no desenvolvimento deste trabalho, somente a forma como as batalhas eram efetuadas.

Antes da Primeira Guerra Mundial, conhecida como guerra das trincheiras, as batalhas entre dois países que estavam em guerra tinham um formato bem diferente dos combates modernos. As batalhas, normalmente, tinham um local e data pré-definidos, onde das duas forças se encontravam e faziam a disputa. A força que conseguisse incapacitar a maior parte da força do adversário era considerada a vencedora. Nesse tipo de conflito, os dois exércitos praticamente se alinhavam um de frente para o outro, em uma formação, normalmente em linha ou retangular até que fosse ordenado o ataque. A linha de frente de cada exército ia sendo substituída a medida que os soldados iam ficando sem munição ou era atingidos.

A Batalha de Gettysburg (Figura 3) é uma batalha famosa da Guerra Civil Americana conhecida por ser a batalha com maior número de vítimas de tal guerra. O Assalto de Pickett (2) foi o famoso assalto da infantaria Confederada ordenada pelo Gal. Robert E. Lee, em 3 de Julho de 1863, durante a Batalha de Gettsburg. No entanto, esse assalto foi repelido com um grande número de baixas e decisão a favor da União.

As **Equações de Lanchester** foram utilizas para modelar esse conflito e, portanto, representam um modelo válido para o estudo de conflitos clássicos.

Figura 2: O Assalto de Pickett de uma posição na linha dos Confederados olhando para as linhas da União. Pintura de Edwin Forbes.

Figura 3: Pintura da Batalha de Gettysburg

O modelo matemático apresentado neste trabalho foi ligeiramente baseado no modelo de forças homogêneas de Lanchester, porém foi considerado que a munição disponível na linha de frente é limitada e deve ser reposta. Para modelar a reposição da munição na linha de frente foi utilizado o processo de difusão, onde a munição deve sair da retaguarda até chegar na linha de frente onde pode ser utilizada contra o exército inimigo.

2 Objetivo

O objetivo deste trabalho é o desenvolvimento e análise de um modelo matemático capaz de representar o embate entre duas forças homogêneas, porém com munição disponível limitada na linha de frente.

O modelo proposto foi baseado no modelo de Lanchester porém foram acres-

centados outros parâmetros de forma a a permitir um controle mais refinado do desenrolar da batalha.

3 Modelo Matemático de Batalhas Históricas

Considere o embate entre duas forças homogêneas no contexto de uma batalha histórica, onde os exércitos se alinham um de frente para o outro em formação e mantém a posição atirando e substituindo a linha de frente a medida que esta é atingida pelo inimigo. Para o desenvolvimento do modelo, será considerado a força E (o exército sob comando) e a I (o exército inimigo). É desejável saber em que condições o exército E irá vencer ou perder a batalha. Outras perguntas se deseja responder são: Como o número de soldados irá cair com o tempo na batalha? Quantos sobreviventes o vencedor terá? O quanto a eficiência do exército é importante para garantir a vitória na batalha?

3.1 Modelagem de Formação de Batalha

Seja E(t) e I(t) as respectivas forças do exército e do inimigo. A taxa de variação do exército pode ser modelada da seguinte forma:

$$\frac{dE(t)}{dt} = -k_1 \alpha E(t) \beta I(t) \tag{1}$$

onde $0 < k_1 \le 1$ é a constante que mede a eficiência do inimigo e $0 < \alpha, \beta \le 1$ é a porcentagem do exército que irá compor as linhas de frente do exército e do inimigo em um dado momento. A Equação 1 pode ser resumida como a modelagem da batalha das duas linhas de frente por unidade de tempo.

De maneira análoga, a taxa com que o exército inimigo é cai é modelada como o encontro das duas linhas de frente:

$$\frac{dI(t)}{dt} = -k_2 \rho \mu(t, L) \alpha E(t) \beta I(t)$$
(2)

onde $0 < k_2 \le 1$ é a constante que mede a eficiência do exército em relação ao inimigo $0 \le \rho \le 1$ é a taxa de disparos que o exército consegue efetuar e $\mu(t,L)$ é a quantidade de munição disponível na linha de frente no instante de tempo t. L>0 é a extensão da formação. Quanto maior for L mais espaçado estarão os soldados relativos a linha de frente e mais tempo levará para a munição chegar na linha de frente.

A difusão da munição é modelada pela equação de difusão em 1D:

$$\frac{\partial \mu(t,x)}{\partial t} = D \frac{\partial^2 \mu(t,x)}{\partial x^2} \tag{3}$$

onde $0 < x \le L$ e D > 0 é o coeficiente de difusão da munição pelo exército.

3.2 Condições Iniciais e de Contorno

Após a escolha dos parâmetros da batalha, as condições iniciais dizem respeito somente ao contingente inicial de cada exército e a quantidade de munição presente na retaguarda do exército no tempo t=0:

$$E(0) = \Upsilon$$

$$I(0) = \Phi$$

$$\mu(0,0) = \Delta$$

$$(4)$$

onde $\Upsilon, \Phi, \Delta > 0$.

Para as condições de contorno é importante notar que na retaguarda x=0 não há fluxo de munição, porém na linha de frente a munição é utilizada a uma taxa proporcional a taxa de disparos que o exército consegue efetuar, logo:

$$\nabla \mu(t, L) \cdot \eta(x) = -\frac{\rho \mu(t, L)}{D \alpha E(t)}$$

$$\nabla \mu(t, 0) \cdot \eta(x) = 0$$
(5)

3.2.1 Condição para Vitória

O exército vencedor de uma batalha é aquele que permanece com a maior parte de seus soldados em campo. No modelo proposto, para considerar que um dos exércitos perdeu a batalha, uma fração do número original de soldados deve ser atingida. Um exército é considerado perdedor se essa fração for atingida, declarando rendição ao adversário. Para implementar essa condição um valor $0 < \gamma \le 1$ é escolhido de forma que se $E < \gamma E(t)$ considera-se derrota para o inimigo e se $I < \gamma I(t)$ considera-se vitória sobre o inimigo.

3.3 Discretização por Diferenças Finitas

Para solucionar o modelo, foi escolhido o método de diferenças finitas explicito para solução numérica das equações diferenciais que fazem parte do modelo.

Para as Equações 1 e 2 foi escolhida o esquema para frente no tempo, logo a discretização por diferenças finitas para a Equação 1 é dada por:

$$\frac{dE}{dt} = \frac{E^{t+1} - E^t}{\Delta t} = -k_1 \alpha E(t) \beta I(t) \tag{6}$$

isolando o termo E^{t+1} tem-se:

$$E^{t+1} = E^t - \Delta t \left[k_1 \alpha E(t) \beta I(t) \right] \tag{7}$$

De forma análoga, a discretização da Equação 2 depois de isolado o termo I^{t+i} é:

$$I^{t+1} = I^t - \Delta t \left[k_2 \rho \mu(t, L) \alpha E(t) \beta I(t) \right]$$
(8)

Para a discretização da equação de difusão foi escolhido o esquema de diferenças centras no espaço e para frente no tempo, logo:

$$\frac{\partial \mu}{\partial t} = \frac{\mu_{t+1}^i - \mu_i^t}{\Delta t} = D\left(\frac{\mu_{i-1}^t - 2\mu_i^t + \mu_{i+2}^t}{(\Delta x)^2}\right)$$
(9)

isolando o termo μ_{i+1}^t tem-se que:

$$\mu_{i+1}^t = \mu_i^t + \frac{D\Delta t}{(\Delta x)^2} \left(\mu_{i-1}^t - 2\mu_i^t + \mu_{i+2}^t \right)$$
 (10)

onde $\frac{D\Delta t}{(\Delta x)^2} < \frac{1}{2}$ é a condição CFL do modelo. Portanto, os valores de $D, \Delta t$ e Δx devem ser escolhidos de forma adequada para não causar instabilidade na solução numérica do modelo.

3.4 Dados de Entrada

Nesta seção serão apresentados os dados de entradas escolhidos como dados de entradas.

Dados de Entrada			
Υ	500	Número inicial de soldados no exército	$\Upsilon > 0$
Φ	500	Número inicial de soldados inimigos	$\Phi > 0$
Δ	1000	Quantidade inicial de munição na retaguarda	$\Delta > 0$
γ	0.01	Fração que deve sobrar no campo de batalha para considerar derrota	$0 < \gamma \le 1$
k_2	0.01	Constante que mede o poder de ataque e a eficiência do exército	$0 < k_2 \le 1$
k_1	0.03	Constante que mede o poder de ataque e a eficiência do inimigo	$0 < k_1 \le 1$
ρ	0.05	Medida da taxa de disparos feitas pelo exército por unidade de tempo	$0 < \rho \le 1$
D	0.8	Coeficiente de difusão da munição pelo exército	D > 0
L	7	Tamanho da formação do exército	L > 0
α	0.1	Porcentagem do exército que ocupa a linha de frente	$0 < \alpha \le 1$
β	0.1	Porcentagem do exército inimigo que ocupa a linha de frente	$0 < \beta \le 1$
Δt	0.07	Discretização temporal	$\Delta t > 0$
Δx	0.6	Discretização espacial	$\Delta x > 0$

Tabela 1: Lista dos valores escolhidos para condição inicial, de contorno e parâmetros do modelo.

A Tabela 1 lista todos os valores escolhidos para resolução numérica do modelo das batalhas. Note que a condição CFL $\left(\frac{D\Delta t}{(\Delta x)^2} < 0.15 < 1/2\right)$ foi atendida, logo, para os parâmetros escolhidos, o método explícito não apresenta instabilidades.

4 Análise do Modelo

O modelo de batalhas proposto, apresentado na Seção 3.1 é composto por três equações. Dessas, duas são compostas exclusivamente por termos de reação (Equações 1 e 2) e uma é composta exclusivamente por um termo de difusão (Equação 3

Nesta seção será feita uma análise dos termos de reação do modelo proposto a fim de entender, de forma qualitativa, o comportamento do modelo.

4.1 Pontos de Equilíbrio e Nullclines

Os pontos de equilíbrio para os termos de reação do modelo de batalhas são obtidos ao fazer $\frac{dE}{dt}=0$ e $\frac{dI}{dt}=0$. É evidente que, para as Equações 1 e 2, existem infinitos pontos de equilíbrio localizados nos eixos x e y. A fim de visualizar essa informação, a Figura 4 mostra o gráfico com as Nullclines de I(t) e E(t). Como $\frac{dE}{dt}<0$ e $\frac{dI}{dt}<0$ para todos os instantes de tempo, todos os pontos de equilíbrios são sumidouros e tendem a levar a solução para a origem.

Figura 4: Gráfico com as Nullclines de E(t) vs I(t).

4.2 Plano de Fase

O comportamento das soluções do modelo descritos pelo gráfico de Null clines é corroborado pelo plano de fase dos termos de reação do sistema. Como pode ser visto na Figura 5, construída como um campo vetorial de I(t) vs E(t), todas as soluções são levadas para algum dos eixos canônicos.

Pela Figura também é possível perceber que a taxa com que a quantidade de soldados caí no decorrer da batalha é maior quando existem muitos soldados em campo. O que faz sentido, dado que quanto mais soldados em batalha maior a chance de acontecer um acerto por parte do adversário. A medida que o número de soldados vai caindo, a taxa com que o número de soldados caí também é reduzida. Na Figura 5 foi escolhido o desenho do campo vetorial no lugar do campo de direções para evidenciar esse fato.

A Figura 5 também é composta pela solução numérica do modelo de acordo com os dados de entrada da Tabela 1. Os vetores da figura deveriam representar a direção da derivada em cada um dos pontos. Note que isso não acontece na Figura 5. Esse fato é decorrente da influência do termo de difusão na solução do sistema. O número de inimigos, para essa solução particular, decresce mais rapidamente que o número de soldados do exército quando a munição fica disponível na linha de frente. Essa disponibilidade é a influência do termo de difusão na solução.

Figura 5: Resultado da batalha para os dados de entrada da Tabela 1. Nestas condições o exército sai vitorioso.

5 Resultados

Figura 6: Resultado da batalha para os dados de entrada da Tabela 1. Nestas condições o exército sai vitorioso.

A Figura 6 mostra o resultado da batalha descrita pelos dados de entrada mostrados na Tabela 1. É possível ver claramente que a estratégia de manter uma formação compacta, com uma pequena quantidade de soldados na linha-de-frente, é eficiente. É possível ver claramente o momento em que a munição começa a

A Figura 7 mostra a concentração de munição tanto na retaguarda quando na linha de frente para o exército sendo modelado. Note que, no inicio da batalha, o exército começa sofrente baixas, porém como a linha de frente é relativamente pequena

Figura 7: Difusão da munição a partir da retaguarda até a linha de frente. Como a munição se concentra totalmente na retaguarda, ela rapidamente chega a linha de frente.

em relação ao número de soldados, as baixas não representam perdas significativas do contingente de soldados. Por volta de t=2, quando a munição começa a chegar na linha de frente, é possível ver uma reviravolta drástica no destino da batalha. Como a perícia e o poder de fogo do exército são maiores em relação ao inimigo, quando a munição fica disponível na linha de frente, a queda no contingente inimigo é significativa levando-os a vitória.

Pode-se argumentar que não ter munição na linha de frente é uma falha do modelo, mas nesse ponto é razoável assumir que a munição presente na linha de frente não é suficiente para causar dano no inimigo, tornando a modelagem válida.

Uma análise interessante no contexto de batalhas entre exércitos é avaliar o impacto que a perícia do exército tem no resultado da batalha. Para fazer essa análise, o modelo foi utilizado para avaliar diversas batalhas onde a perícia do exército sofre variação (0.001 $\leq k_2 < 0.01$). De forma a ver o resultado das batalhas foi gerado o gráfico da Figura 8. Nessa figura é possível os diversos resultados. Note que a batalha foi perdida para $k_2 < 0.0064$, a causa da derrota não é somente a baixa perícia do exército. É possível ver que para $k_2 = 0.0055$ o número de baixas do inimigo deixa de aumentar. Isso acontece devido a munição da linha de frente ter se esgotado. A baixa perícia do exército faz com que a munição inicial não seja suficiente para vencer a batalha. É possível ver que mesmo com uma perícia inferior ao inimigo, o aumento do poder de fogo com a munição chegando na linha de frente é considerável.

A fim de ilustrar o que foi afirmado no parágrafo anterior, a quantidade inicial de munição foi aumentada em 10 vezes ($\mu(0,0)=10000$) enquanto que o intervalo de variação da perícia do exército foi reduzida em 10 vezes ($0.0001 \le k_2 < 0.001$). A Figura 9 mostra o resultado das batalhas com essa configuração. Note que a forma do gráfico não muda, o que comprova que o poder de fogo proporcionado pela munição na linha frente pode garantir a vitória mesmo com um exército de perícia mais baixa.

Outros resultados foram obtidos através da variação da porcentagem do

Figura 8: Resultado de batalhas com a variação da perícia do exército ($0.001 \le k_2 < 0.01$).

exército que ocupa a linha de frente $(0.1 \le \alpha < 1)$ e variação do coeficiente de difusão de munição $(0.1 \le D < 0.8)$, Figuras 10 e 11, respectivamente. Os resultados deixam claro o que era esperado do modelo. Quanto maior a linha de frente maior é a probabilidade de sofrer uma baixa, algo similar com a área de contato entre os exércitos ser maior. No caso do coeficiente de difusão, quanto mais rápido a munição chega na linha de frente, mais rápido a batalha é vencida.

6 Conclusão

Neste trabalho foi apresentado um modelo matemático que descreve a evolução de uma batalha entre duas forças homogêneas com munição limitada na linha de frente. O modelo considera que a munição que é difundida pelo exército de forma que ela deve ser levada da retaguarda para a linha de frente para que a mesma possa causar impacto no inimigo.

Fica evidente que o impacto que a munição tem ao decidir o destino da batalha é significativo. Manter uma fração do exército na linha de frente contando com substituição contínua dos soldados impacta no tempo total da batalha.

O modelo descrito, apesar de simples, pode ser utilizado para descrever o comportamento de uma batalha entre duas forças homogêneas e pode ser uma ferramenta para entender o desfecho de batalhas desse tipo que ocorriam antes dos conflitos armados modernos.

As análises de Nullclines e Plano de Fase foram baseadas na teoria apresentada em [2].

Referências

[1] GIORDANA, F. R., WEIR, M. D., AND FOX, W. P. A First Course in Mathe-

Figura 9: Resultado de batalhas com a variação da perícia do exército (0.0001 $\leq k_2 < 0.001$).

matical Modelling. Thomson Learning, 2003.

- [2] HIRSCH, M. W., SMALE, S., AND DEVANEY, R. L. Differential equations, dynamical systems, and an introduction to chaos. Academic Press, Waltham (Mass.), 2013.
- [3] NAVARRO, R. Qual foi a primeira guerra da história? http://mundoestranho.abril.com.br/materia/qual-foi-a-primeira-guerra-da-historia. [Online; acessado em 2 de dezembro de 2015].

Figura 10: Resultado de batalhas com a variação da porcentagem do exército na linha de frente (α) .

A Código Fonte com a Implementação do Modelo

```
#include <iostream>
#include <iomanip>
#include <fstream>
#include <vector>
#include <string>
struct ModelInput
    double start_army_size;
                                         // > 0
                                                         Tamanho inicial
   do exÅrcito
                                         // > 0
    double start enemy size;
                                                         Tamanho inicial
   do exÅrcito inimigo
   double loose_battle_fraction;
exArcito que define derrota
                                         // 0 < x < 1:
                                                         Porcentagem do
                                         // 0 < x <= 1
                                                         PerÅcia do exÅ
    double army_skill;
    rcito em eliminar inimigos
    double enemy_skill;
                                         // 0 < x <= 1
                                                          PerÅcia do
    inimigo em eliminar o exArcito
                                         // > 0
                                                          Quantidade de
    double start_ammo;
   muniÅÅo que estarÅ disponÅvel durante a batalha
    double army fire_rate;
                                         // 0 < x <= 1
                                                          Taxa com que o
   exÅrcito consegue atirar a muniÅÅo disponÅvel
    double ammo_diffusion_coeffient;
                                                          Velocidade com o
    que a muniÅÅo Å distribuÅda para o exÅrcito
    double formation_size;
                                                         Tamanho da forma
   ÅÅo utilizada na batalha pelo exÅrcito double front_line_fraction; //
                                         // 0 < x <= 1
                                                          Porcentagem do
   exArcito que atuarA na linha de frente
   Porcentagem do
   exÅrcito inimigo que atuarÅ na linha de frente
    double delta_time;
    double delta x;
```


Figura 11: Resultado de batalhas com a variação do coeficiente de difusão de munição pelo exército (D).

```
* @brief ModelInputData default input data
ModelInput()
    \mathtt{start} \_\mathtt{army} \_\mathtt{size}
                                       = 500.0;
    start_enemy_size
loose_battle_fraction
army_skill
enemy_skill
                                       = 500.0;
                                       = 0.01;
                                       = 0.03;
                                       = 0.01;
    start_ammo
army_fire_rate
                                       = 1000;
                                       = 0.05;
     ammo\_diffusion\_coeffient
                                       = 0.8;
     formation_size
                                       = 7;
    front_line_fraction
                                       = 0.1;
    enemy_front_line_fraction
                                       = 0.1;
                                       = 0.07;
     d\,elt\,a\,\_\,t\,i\,m\,e
     \det a x
                                       = 0.6;
     std::cout << "CFL = " << ammo_diffusion_coeffient * delta_time /
 (delta_x * delta_x) << std :: endl;
friend \ std::ostream \& \ operator << \ (std::ostream \& \ out \ , \ const \ ModelInput
& input_data)
     out << "#-
\operatorname{std}::\operatorname{endl};
     out << "#--- GentlesmanBattle Input Data" << std::endl;
     out << "#----
std::endl;
    out << "#- Start Army Size
                                         : " << input_data.start_army_size
<< std::endl;
    out << "#- Start Enemy Size
                                        : " << input data.start enemy size
 << \operatorname{std} :: \operatorname{endl};
                                         : " << input data.army skill <<
    out << "#- Army Skill
std::endl;
```

```
out << "#- Enemy Skill
                                    : " << input data.enemy skill <<
    std::endl;
        out << "#- Start Ammo
                                       : " << input_data.start_ammo <<
    std::endl;
        out << "#- Ammo Diffusion Coef: " << input_data.
    a\,m\,m\,o\,\_\,d\,iffu\,s\,io\,n\,\_\,c\,o\,effi\,en\,t \ << \ st\,d\,::\,e\,n\,d\,l\;;
        out << "#- Battle Field Size : " << input_data.formation_size
    << std::endl;
   out << "#- Front Line Fraction: " << input_data.
front_line_fraction << std::endl;</pre>
                                        : " << input data.delta_time <<
        out << "#- Delta Time
    std::endl;
        out << "#- Delta X
                                       : " << input_data.delta_x << std::
    endl;
        out << "#-
    std::endl;
        return out:
};
struct ModelInfo
    double time
                             = 0.0;
    double new army size
                             = 0.0;
    double old army size
                             = 0.0;
    double new_enemy_size
                             = 0.0:
    double old enemy size
                             = 0.0;
    st\,d\,::\,v\,e\,c\,t\,o\,r\,{<}d\,o\,u\,b\,l\,e{>}\,new\_ammo\_amount\;;
    std::vector<double> old ammo amount;
    const ModelInput& model_input;
    double CFL = 0.0;
    ModelInfo(const ModelInput& input data) :
        model_input(input_data)
    void update_input()
        // Setting up the mesh for the ammo diffusion
    old ammo amount.resize(new ammo amount.size());
         / Initial condition
        old_army_size = model_input.start army size;
        old_enemy_size = model_input.start_enemy_size;
        // Ammot starts at rear-line
        old ammo amount [1] = model input.start ammo;
        CFL = model\_input.ammo\_diffusion\_coeffient * model\_input.
    delta_time / (model_input.delta_x * model_input.delta_x);
    void advance time()
```

```
// Calculates the fraction of the army and enemies currently
{\tt standing \ in \ the \ front-line}
    double front line size = model input.front line fraction *
old army size;
    double enemy_front_line_size = model_input.front_line_fraction *
 old enemy size;
    // Army
old army size = new army size;
    // Enemy
    double shoots fired = old ammo amount.back() * model input.
army_fire_rate;
    new_enemy_size = old_enemy_size - model_input.delta_time *
model_input.army_skill * shoots_fired * front_line_size *
enemy_front_line_size;
    old enemy size = new enemy size;
    // Ammo Diffusion
    for (size t i = 1; i < new ammo amount.size() - 1; ++i)
        new_ammo_amount[i] = old_ammo_amount[i] + CFL * (
old ammo amount [i-1] - 2.0 * old ammo amount [i] + old ammo amount [i
+1]);
    // Ammo boundary conditions
    // At x=0 there is no flow.
    new ammo amount [0] = new ammo amount [1];
    // At x=L the ammo is being used by the soldiers
    // Calculates the percentage of ammo used at the frontline.
    double ammo usage ratio = 1.0 - (1.0 / \text{front line size});
    new\_ammo\_amount.back() = new\_ammo\_amount[new\_ammo\_amount.size()]
- 2] * ammo usage ratio;
    // Swap vectors for next time step
    new_ammo_amount.swap(old_ammo_amount);
     / Finally, advance the time
    time += model input.delta time;
}
 * @brief True if the battle has came to an end
 * The condition for the battle to stop is when the army size
reaches a fraction defined
 * by @ref ModelInputData::loose battle fraction. The condition is
applied for both the army
 * and the enemies.
 * @return True if the battle has came to an end false otherwise
bool should stop() const
    return new army size <= model input.start army size *
model input.loose battle fraction ||
```

```
new enemy size <= model input.start enemy size *
    model_input.loose_battle_fraction;
    }
    * @brief Returns true if the number of soldiers is bigger than the
    number of enemies soldiers at this moment
    bool is_army_winning() const
    {
        return old army size > old enemy size;
    friend std::ostream& operator << (std::ostream& out, const ModelInfo&
     info)
    {
        out << "#---
    std::endl;
        out << "#--- GentlesmanBattle Execution Summary" << std::endl;
        out << "#----
    std::endl;
        out << "# Number of Iterations
                                             : " << info.time / info.
    model_input.delta_time << std::endl;
        out << "# Total time
                                              : " << info.time << std::
    endl;
        out << "# Soldiers Count
                                             : " << info.new army size <<
     std::endl;
out << "# Enemies Count
                                             : " << info.new_enemy_size
    << std::endl;
        out << "# Available Ammo at Fronline: " << info.new ammo amount.
    back() << std::endl;
        out << "# Available Ammo at Rearline: " << info.new ammo amount.
    front () << std :: endl;
        out << "#-
    std::endl;
        out << "# Battle Result: ";
        if (info.is_army_winning())
            out << "YOU WIN!" << std::endl;
        }
        \mathbf{else}
        {
            out << "YOU LOOSE!" << std::endl;
        out << "#-
    std::endl;
        return out;
};
struct ModelOutput
    std::fstream output file;
    std::fstream phase_plane_file;
    const ModelInput& model_input;
const ModelInfo& model_info;
    const std::string prefix;
```

```
ModelOutput (const ModelInfo& model info, const ModelInput&
_model_input, const std::string& _prefix = "")
    : model_input(_model_input),
model_info(_model_info),
      prefix ( _ prefix )
void start execution()
    output file.open(prefix + " gentlemans battle.dat", std::ios::
out);
    output_file << model_input << std::endl << std::endl;
                                                              Frontline "
    output file << "# Time Army
                                       Enemy
                                               Rearguard
<< std::endl;
void write_output_step()
    output file << std::setw(10) << std::setprecision(10) << std::
fixed << stda :: setfill('0') <<
                     model_info.time << " " << model_info.old_army_size << " " <<
                     \verb|model_info.old_enemy_size| << " " <<
                     model_info.old_ammo_amount.front() << " " << model_info.old_ammo_amount.back() << " " <<
                     std::endl;
}
void stop execution(bool b show plots = true)
    // Write Execution Summary into the output file
    output file << model info << std::endl;
    if (output_file.is_open())
    {
         output_file.close();
    if (b_show_plots)
    {
         std::string\ output\_filename\_quotes = "'" + prefix + "
_gentlemans_battle.dat '";
        std::string gnuplot_reaction_script = prefix + "
_gentlemans_battle_result.gnu";
        std::string gnuplot_phase_plane_script = prefix + "
_gentlemans_battle_phase_plane.gnu"
         st\,d::st\,ring\ gn\,uplot\,\_diffu\,sion\,\_script\ =\ pr\,efix\ +\ "
_gentlemans_battle_diffusion.gnu";
         const int title_font_size = 15;
             std::fstream gnuplot script file(gnuplot reaction script
, std::ios::out);
             gnuplot script file << "set terminal 'wxt'" << std::endl</pre>
             gnuplot script file << "set xlabel 'Tempo'" << std::endl
             gnuplot script file << "set ylabel 'NÅmero de Soldados'"
<< std :: endl;
             gnuplot_script_file << "set zeroaxis" << std::endl;</pre>
```

```
gnuplot script file << "set yrange [0:550]" << std::endl
              gnuplot script file << "set title 'EvoluÅÅo do NÅmero de
 Soldados no Campo de Batalha' font 'Arial, " << title_font_size <<
"'," << std::endl;
              gnuplot script file << "plot " <<</pre>
                                         output_filename_quotes << " using
 1:2 with lines title 'Soldados'
                                         output_filename_quotes << " using
 1:3 with lines title 'Inimigos' linetype rgb '#6f99c8'" << std::
endl;
gnuplot_script_file << "set output 'report/figs/
battle_reaction.png'" << std::endl;
gnuplot_script_file << "set terminal pngcairo enhanced
gnuplot_script_file << "replot" << std::endl;</pre>
              std::fstream gnuplot_script_file(
gnuplot_diffusion_script , std::ios::out);
              gnuplot script file << "set terminal 'wxt'" << std::endl</pre>
              gnuplot script file << "set xlabel 'Tempo'" << std::endl</pre>
              gnuplot script file << "set ylabel 'ConcentraÅÅo de Muni
{\rm \AA \AA o} \; {\text{'"}} \; << \; {\rm st} \, {\rm d} :: {\rm e} \, {\rm n} \, {\rm d} \, {\rm l} \; ;
              gnuplot script_file << "set zeroaxis" << std::endl;</pre>
              gnuplot_script_file << "set title 'MuniÅÅo nas linhas de
 frente e retarguarda' font 'Arial, " << title font size << "'" <<
std::endl:
              gnuplot_script_file << "plot" <<</pre>
                                         output filename quotes << " using
 1\!:\!4 with lines title 'Retarguarda'," <\!<
                                         output filename quotes << " using
 1:5 with lines title 'Linha de frente' linetype rgb '#6f99c8'" <<
std :: endl;
gnuplot_script_file << "set output 'report/figs/
battle_ammo_diffusion.png'" << std::endl;
gnuplot_script_file << "set terminal pngcairo enhanced
font 'arial, 10' fontscale 1.0" << std::endl;
              gnuplot_script_file << "replot" << std::endl;</pre>
              const ModelInput& input = model info.model input;
              std::fstream gnuplot script file(
gnuplot phase plane script, std::ios::out);
              gnuplot_script_file << "set terminal 'wxt'" << std::endl</pre>
              gnuplot script file << "k1 = " << input.enemy skill <<
std::endl:
              gnuplot script file << "k2 = " << input.army skill <<
std::endl;
              gnuplot\_script\_file << "alpha" = " << input.
front_line_fraction << std::endl;
gnuplot_script_file << "beta = " << input.enemy_front_line_fraction << std::endl;
              gnuplot script file << "vec scale = 0.5" << std::endl;
```

```
gnuplot script file \ll "dEdt(I,E) = -k1 * alpha * E *
    gnuplot script file \ll "dIdt(I,E) = -k2 * alpha * E *
     \underline{\mathtt{beta}} \ * \ \underline{\mathtt{I}} " << \underline{\mathtt{std}} :: \underline{\mathtt{endl}} ; 
    \# * (1 / \operatorname{sqrt}(d\operatorname{Edt}(x,y) **2 + d\operatorname{Idt}(x,y) **2))" << \operatorname{std}::\operatorname{endl};
                  gnuplot_script_file << "set samples 20" << std::endl;</pre>
                  gnuplot script file << "set zeroaxis" << std::endl;</pre>
                  gnuplot_script_file << "set xlabel 'NÅmero de Soldados -
     E(t) '" << std :: endl;
     gnuplot_script_file << "set title 'Plano de Fase' font 'Arial, " << title_font_size << "'" << std::endl;
                  gnuplot_script_file << "plot '_gentlemans_battle.dat'</pre>
    using 2:3 with lines title 'NÅmero de Soldados x Inimigos'," <<
                                            " '++' u 1:2:( vx(\$1,\$2)):(vy(\$1,
    $2)) with vectors notitle linetype rgb '#6f99c8'" <<
                                            std::endl;
    gnuplot_script_file << "set output 'report/figs/
battle_phase_plane.png'" << std::endl;
    gnuplot_script_file << "set terminal pngcairo enhanced
    font 'Arial, 10' fontscale 1.0" << std::endl;
                  gnuplot script file << "replot" << std::endl;</pre>
             // show reaction plot
             std::string plot command = "gnuplot -p" +
    gnuplot_reaction_script + " > battle_reaction.png";
             std::cout << plot_command << std::endl;
             system(plot command.data());
             // show diffusion plot
             plot command = "gnuplot -p" + gnuplot diffusion script + "
    > battle_ammo_diffusion.png";
             std::cout << plot command << std::endl;
             system(plot_command.data());
             // show phase plane plot
             plot command = "gnuplot -p" + gnuplot phase plane script +
    " > battle_phase_plane.png";
std::cout << plot_command << std::endl;
             system(plot_command.data());
         }
    }
};
struct ModelCondensedOutput
    int num executions;
    std::string param_name;
    \mathtt{std} :: \mathtt{string} \ \mathtt{graph\_title} \; ;
    std::string output_filename;
    std::vector<double> param_value_list;
    ModelCondensedOutput(int _num_executions,
                            const std:: string& param name,
```

```
const std::string& _graph_title,
                          const std::string& output_filename
                          ) :
        num executions ( num executions),
        param_name(_param_name),
        graph_title(_graph_title),
        output_filename(_output_filename)
        param value list.reserve(num executions);
    void add param value(double param value)
        param value list.push back(param value);
    void show_condensed_plot()
        std::string script_filename = "_condenser.gnu";
#if 0
        {
            std::fstream \ gnuplot\_script\_file(script\_filename \ , \ std::ios::
    out);
            gnuplot script file << "set terminal 'wxt'" << std::endl;</pre>
            gnuplot script file << "set xlabel 'Tempo'" << std::endl;
            gnuplot_script_file << "plot";</pre>
            for(int i = 0; i < num\_executions; ++i)
   <<\ ^{","}<<\ ^{i}<<\ ^{"}\_gentlemans\_battle. dat' using 1:3 with lines linetype rgb '#21eb12' notitle '" << param_name << " = " << param_value_list[i] << "',";
            gnuplot script file.close();
            std::string plot_command = "gnuplot -p " + script_filename;
            std::cout << plot_command << std::endl;
            system(plot command.data());
        }
#endif
        {
            std::fstream gnuplot_script_file(script_filename, std::ios::
    out);
            gnuplot_script_file << "set terminal 'wxt'" << std::endl;</pre>
                     script file << "set xlabel 'NÅmero de Soldados — E(t
            gnuplot
    ) " \ll std::endl:
            g\,nu\,plot\_script\_file << \ "set \ ylabel \ 'N\mathring{A}mero \ de \ Inimigos - \ I\,(\,t
    )" << std::endl;
   gnuplot_script_file << "plot";</pre>
            for(int i = 0; i < num_executions; ++i)
```

```
}
               g\,n\,u\,p\,l\,o\,t\,\_\,s\,c\,r\,i\,p\,t\,\_\,f\,i\,l\,e\ <<\ s\,t\,d\,::\,e\,n\,d\,l\,;
     gnuplot\_script\_file << "set terminal pngcairo enhanced font 'Arial , 10' fontscale 1.0" << std::endl;
    gnuplot_script_file << "set output 'report/figs/battle_" <<
output_filename << ".png'" << std::endl;</pre>
               gnuplot script file << "replot" << std::endl;</pre>
               gnuplot_script_file.close();
               std::string plot_command = "gnuplot -p " + script_filename;
               \operatorname{std}::\operatorname{cout} << \operatorname{plot}_{\operatorname{command}} << \operatorname{std}::\operatorname{endl};
               system(plot command.data());
          }
     }
};
struct GentlesmanBattleModel
     ModelInput input;
     ModelOutput output;
     ModelInfo info;
     GentlesmanBattleModel(const std::string& prefix = "") :
          output(info, input, prefix), info(input)
     void run(bool b_show_plots = true)
          // Print parameters information
          std::cout << input << std::endl;
          info.update input();
          output.start_execution();
          do
          {
               output.write output step();
               info.advance_time();
          while (!info.should stop());
          // Print execution summary
          std::cout << info << std::endl;
          output.stop execution(b show plots);
     }
};
int main()
     \begin{array}{lll} \textbf{const} & \textbf{int} & \textbf{num\_executions} = 10; \end{array}
     \mathtt{std} :: \mathtt{string} \ \mathtt{param\_name} = \ "D" \, ;
     \begin{array}{lll} \textbf{double} & param\_min = & 0.1; \end{array}
     double param max = 0.8;
```

```
if (num_executions > 1)
{
     {\bf Model Condensed Output\ condensend\ output\ (num\ executions\ ,}
                                                       param\_name,
                                                        "Resultado da Batalha com
a VariaÅÅo do Coeficiente de DifusÅo",
                                                       "\,a\,m\,m\,o\,\_\,d\,iff\,u\,s\,i\,o\,n\,\_\,v\,a\,r\,i\,a\,t\,i\,o\,n
<mark>"</mark>);
     for (int i = 0; i < num executions; ++i)
          GentlesmanBattleModel model(std::to_string(i));
            double param_value = (i / static_cast < double >(
num_executions)) * param_max;
          \label{eq:double_param_value} \begin{array}{lll} \mbox{double param\_value} = \mbox{param\_min} + \mbox{(param\_max - param\_min)} \ * \ ( \end{array}
i / static_cast <double > (num_executions));
          model.input.front line fraction = param value;
          model.run(false);
          condensend\_output.add\_param\_value (\,model.\,input\,.
front_line_fraction);
     condensend_output.show_condensed_plot();
else
     GentlesmanBattleModel model;
     model.run();
return EXIT_SUCCESS;
```