ClassNotes

Diego Berrocal

January 16, 2015

Contents

1	Axi	omas de la Mecánica cuántica	1
	1.1	Axioma 1]
	1.2	Axioma 2]
	1.3	Axioma 3	2
	1.4	Axioma 4	2
		Axioma 5	
2	Res	ultados de la clase anterior	2
	2.1	Ejemplo con Spin $1/2$	4
		2.1.1 Ejercicio	١
		2.1.2 Ejemplos	
		2.1.3 Suma de momento angular	(
	Ejer	cicios Sugeridos: Libro Introduction to Quantum Mechanics Griffith	hs
2n	ירם ג	tion 4.18, 4.28, 4.29, 4.30, 4.31, 4.34, 4.35	

1 Axiomas de la Mecánica cuántica

1.1 Axioma 1

Todo sistema físico es completamente descrito con ua fuente de onda Ψ en un espacio de Hilbert.

1.2 Axioma 2

Para todo observable físico existe un operador hermitiano en H.

$$x->\vec{x}$$

$$p->\delta_x$$

$$?->\vec{s}$$

1.3 Axioma 3

Los únicos resultados posibles de la medida de un observable es un valor del operador correspondiente.

1.4 Axioma 4

Si un sistema está en un estado Ψ entonces la probabilidad de obtener valores entre λ_1 y λ_2 es

$$P(\lambda_1, \lambda_2) = ||\Psi||^2 = ||(E(\lambda_2) - E(\lambda_1))\Psi||^2$$

 $E(\lambda)$ es la resolución de la indentidad del observable A (**WHAT** libros de análisis funcional, teoría de la medida, Libro de análisis funcional es Bresis)

1.5 Axioma 5

En todo sistema existe un operador hamiltoniano H que determina la evolución temporal.

$$\Psi(t_1) - > \Psi(t_2)$$

$$t_1 < t_2$$

$$H\Psi(x,t) = i\hbar \frac{\partial \Psi(x,t)}{\partial t}$$

2 Resultados de la clase anterior

Aquí μ es el momento angular o tiene que ver con ello, checka el Gridffiths Se tiene:

$$J_{\pm} = J_1 \pm iJ_2$$
$$[J_3, J_{\pm}] = \pm \hbar J_{\pm}$$
$$[J^2, J_{\pm}] = 0$$

$$J^2 = J_{\pm}J_{\mp} + J_3^2 \mp \hbar J_3$$

De donde:

$$J_3(J_{\pm}f) = (\mu \pm \hbar)(J_{\pm}f)$$

$$J_3 f = \mu f$$

$$J^2 f = \lambda f - --> (\lambda > 0)$$

$$\mu, \lambda \in \mathbb{R}$$
(1)

$$-\sqrt{\lambda} \le \mu \le \sqrt{\lambda}$$

$$< J^2 > \ge < J_3 > - > \lambda \ge \mu^2$$

Hasta ahora se tiene que el operador J_- o J+ sube de energía a los μ en un \hbar . Como se ve en la siguiente figura. **Insert Image Here**

Por el teorema del supremo en este espacio acotado de energías, se tendrá que hay un $\mu_{máx}$ y este será igual a

$$\mu_m x = l\hbar$$

Y se tendrá que en este $\mu_{\rm m\acute{a}x}$ si se aplicara de nuevo el operador de creación J+ se tendría

$$J + f_t = 0$$

Lo mismo pasaría del otro extremo

$$J - f_b = 0$$

Al aplicar J^2 (la versión con el +) a f_t

(2)

$$l \in \mathbb{R}$$

$$\lambda = \hbar^2(l)(l+1)$$

Similarmente aplicamos la versioón con el - a $f_{\rm b}$

 $l \in \mathbb{R}$

$$\lambda = \hbar^2(l)(l+1)(3)$$

Por lo tanto podemos tener que.

$$J_3(J+f) = (\mu + \hbar)(J+f)$$

$${}^2(J+f) = \lambda(J+f)$$

$$\hbar^2 l(l+1) = \hbar^2 \vec{l}(\vec{l}-1)$$

$$\vec{l} = l+1 - > \vec{l} > l, ESTOESTAMAL$$

$$\vec{l} = -l, l \in \mathbb{R}$$

$$l = -l + N, N = 0, 1, 2, ...$$

$$l = \frac{N}{2}$$

Para cada l existen iguales valores propios de ${\bf J}_3$ que representamos con m de la siguiente manera

$$J_3 f_{lm} = m\hbar f_{lm}$$
$$J^2 f_{lm} = \hbar^2 l(l+1) f_{lm}$$

2.1 Ejemplo con Spin 1/2

Cuando consideramos el espín de 1/2 se considera como partícula de estudio al electrón, protón, neutrón, quark, leptons, etc. Lo que se hará ahroa es un ejemplo en el que se suman dos espines 1/2 es decir el acoplamiento de dos partículas con spin 1/2. Todos las partículas que tienen espín 1/2 son fermiones, las que tienen espín entero son bosones como el fotón y el gravitrón.

Cuando se etudia teoría de momento angular siempre se tienen 3 operadores, y en este caso como es un caso específico de Spín, usaremos S_x , Sy, Sz, y también consideraremos a un S^2 . La relación de conmutación que consideraremos será la siguiente:

$$[S_x, S_y] = i\hbar S_z$$
$$[S_y, S_z] = i\hbar S_x$$
$$[S_z, S_x] = i\hbar S_y$$

Se seleccionan 2 operadores del Conjunto de operadores Momento angular $\{S_x,\,Sy,\,S_z,\,S^2\}$

Este submonjunto $\{S_z,\,S^2\}$ se denomina un c Conjunto completo de operadores conmutantes entre sí, podría haberse tomado cual quier componente del conjunto principal pero por convención se utilizará el S_z .

$$S^{2}|sm\rangle = \hbar^{2}s(s+1)|sm\rangle = \frac{1}{2}$$
$$S_{z}|sm\rangle = \hbar m|sm\rangle$$

s: número cuántico del espín

m: número cuántico de proyección del espín a lo alrgo del eje Z

2.1.1 Ejercicio

$$S_{\pm} = S_x \pm iSy$$

Verificar que se cumpla

$$S_{\pm}|sm> = \hbar\sqrt{s(s+1) - m(m+1)}|s(m\pm 1)>$$

2.1.2 Ejemplos

Sustituir $S=\frac{1}{2}$

$$S^{2}|sm> = \hbar^{2}(\frac{1}{2})(\frac{1}{2}+1)|sm>$$

$$= \hbar^{2}(\frac{3}{4})|sm>$$
(4)

Los valores posibles de m son $-\frac{1}{2}$ y $\frac{1}{2}$

$$2s+1 = 2(\frac{1}{2}) + 1 = 2$$

2s+1: Número de valores diferentes posibles

$$|\uparrow>=|,>$$
$$|\downarrow>=|,->$$

Existen 2 vectores linealmente independientes de tal modo que

$$|\uparrow\rangle,|\downarrow\rangle$$

constituyen una base.

UN estado general se expresa mediante una combinación lineal (con coeficientes cojmplejos)

$$|\Psi>=a|\uparrow>+b|\downarrow>$$

Con $a, b \in \mathbb{C}$

Notación:

$$|\uparrow\rangle = (10)|vertical = \chi +$$

 $|\downarrow\rangle = (01)|vertical = \chi -$

$$\begin{split} \Psi &= |\frac{1}{2}, \frac{1}{2}> = |\uparrow> = (10) vertical = \chi + \\ \Psi_{-} &= |\frac{1}{2}, -\frac{1}{2}> = |> = (01) vertical = \chi - \end{split}$$

Un estado general es χ .

$$\chi = a\chi + = b\chi -$$

Suma de momento angular

$$S^2, S_z$$

$$\begin{cases} 2\chi + = \frac{3}{4}\hbar^2\chi + \\ S^2\chi - = \frac{3}{4}\hbar^2\chi - \end{cases}$$

Sabemos que $\begin{cases} 2\chi + = \frac{3}{4}\hbar^2\chi + \\ S^2\chi - = \frac{3}{4}\hbar^2\chi - \end{cases}$ Cuado se usa funciones de onda con columnas de 2 componentes se dice que se está usando la representación espinorial.

$$\chi = a\chi + = b\chi -$$

$$egin{pmatrix} a \ b \end{pmatrix} = \mathrm{a} \, egin{pmatrix} 1 \ 0 \end{pmatrix} + \mathrm{b} \, egin{pmatrix} 0 \ 1 \end{pmatrix}$$

Calculamos la representación del operador S^2

$$\mathrm{S}^2 = egin{pmatrix} c & d \ e & f \end{pmatrix}$$

$$c, d, e, f \in \mathbb{C}$$

Aplicando S² en $\chi+$

Similarmente aplicamos S^2 en $\chi = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Bransden
$$\begin{pmatrix} c & d \\ e & f \end{pmatrix}$$

$$egin{pmatrix} 0 \ 1 \end{pmatrix} = \hbar^2 \; 3 rac{4 igg(0)}{1}$$

 $\binom{0}{1}=\hbar^2\ 3\frac{}{4\binom{0}{1}}$ Check out this book Devanathan, Angular MOmentum in Quantum Mechanics