Experimentalphysik (H.-C. Schulz-Coulon)

Robin Heinemann

October 20, 2016

Contents

1	Begrüßung ist langweilig						
2	Begrüßung2 ist auch langweilig						
3	Mod	odle		2			
4	Klausur						
5	Bücher						
6	Einleitung						
	6.1	Eigens	schaften der Physik	2			
		6.1.1	Beispiel	3			
	6.2	Maßei	nheiten	3			
		6.2.1	Basisgrößen	3			
		6.2.2	Weitere Größen	3			
7	Mechanik						
	7.1	Kinem	natik des Massenpunktes	4			
		7.1.1	Eindimensionale Bewegung	4			
		7.1.2	Bewegung im Raum				

- 1 Begrüßung ist langweilig
- 2 Begrüßung2 ist auch langweilig
- 3 Moodle

Passwort: F=ma

4 Klausur

11.02.2017 (9 Uhr) 60% Übungspunkte

5 Bücher

Buch Bemerkung

Heintze; Lehrbuch zur Experimentalphysik I

Haliday, Resnick, Walker; Physik

Tipler, Allen; Physik

Demtröder; Experimentalphysik I

Bergman

online...

6 Einleitung

6.1 Eigenschaften der Physik

Physik ist nicht axiomatisch!

- Nicht alle Gesetze der Natur sind bekannt.
- Die bekannten Naturgesezte sind nicht unumstößlich
- unfertig
- empirisch
- quantitativ
- experimentell
- überprüfbar

- braucht Mathematik
- Gefühl für Größenordnungen und rationale Zusammenhänge

6.1.1 Beispiel

Fermi-Probleme:

- Anzahl der Klabirstimmer in Chicago?
- Anzahl der Autos in einem 10km Stau?
- Anzahl von Fischen im Ozean

6.2 Maßeinheiten

Internationales Einheitensystem (SI)

6.2.1 Basisgrößen

Größe	Einheit	Symbol
Länge	Meter	m
Masse	Kilogramm	kg
Zeit	Sekunden	\mathbf{S}

- 1. Meter Strecke, die das Lich im Cakuum während der Dauer von $\frac{1}{299792458}$ s durchläuft.
- 2. Sekunde Das 9 192 631 770-fache der Periodendauder der am Übergang zwischen den beiden Hyperfeinstukturniveaus des Grundzustandes von Atomen des Nukulids Cs_{133} entsprechenden Strahlung.
- 3. Kilogramm Das Kilogramm ist die Einheit der Masse, es ist gleich der Masse des internationalen Kilogrammprototyps (ist scheiße).
 - (a) Avogadroprojekt

$$N_A = \frac{MVn}{m}$$

 N_A : Avogardokonstante ($N_A=6.022\,141\,5\times10^{23})$

6.2.2 Weitere Größen

Größe	Einheit	Symbol
Strom	Ampere	A
Temperatur	Kelvin	K
Lichtstärke	Candla	cd

7 Mechanik

Kinematik: Beschreibung der Bewegung Dynamik: Ursache der Berwegung

7.1 Kinematik des Massenpunktes

7.1.1 Eindimensionale Bewegung

1. **TODO** Skizze 1 $x_1, t_1 \longrightarrow x_2, t_2$ Geschwindigkeit

$$v = \frac{\text{Weg}}{\text{Zeit}} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$
 $[v] = \text{m s}^{-1}$ abgeleitete Größe

2. Momentangeschwindigkeit

$$v := \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{\mathrm{d}x}{\mathrm{d}t} = \dot{x}$$

3. Beschleunigung

$$a := \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \ddot{x} \quad [a] = \mathrm{m}\,\mathrm{s}^{-2}$$

4. Freier Fall a = const. (Behauptung)

$$a = \ddot{x} = \text{const} = \dot{v}$$

 \rightarrow Integration:

$$v(t) = \int_0^t a dt + v_0 = at + v_0$$
$$x(t) = x_0 + \int_0^t v(t) dt = x_0 + \int_0^t (at + v_0) dt = \frac{1}{2}at^2 + v_0t + x_0$$

Bei unserem Fallturm

$$x(t) = \frac{1}{2}at^2 \rightarrow a = \frac{2x}{t^2}$$

$$x[m] \quad t[ms] \quad \frac{2x}{t^2}[m s^{-2}]$$

$$0.45 \quad 304.1 \quad 9.7321696$$

$$0.9 \quad 429.4 \quad 9.7622163$$

$$1.35 \quad 525.5 \quad 9.7772861$$

$$1.80 \quad 606.8 \quad 9.7771293$$

$$x(t) = \frac{1}{2}gt^2, \ g = 9.81 \,\mathrm{m \, s^{-2}}$$

Die Erdbeschleunigung g ist für alle Körper gleich (Naturgesetz).

7.1.2 Bewegung im Raum

1. **TODO** Skizze 2 Ortsvektor:

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} x(t) & y(t) & z(t) \end{pmatrix}^{\mathsf{T}}$$

Durschnittsgeschwindigkeit

$$\frac{\Delta \vec{r}_{12}}{\Delta t} = \frac{\vec{r}_2 - \vec{r}_1}{\Delta t} = \vec{v}_D$$

$$\vec{v}(t) = \frac{d\vec{r}}{dt} = \dot{\vec{r}}(t) = (\dot{x}(t) \quad \dot{y}(t) \quad \dot{z}(t))^{\mathsf{T}} = (v_x \quad v_y \quad v_z)^{\mathsf{T}}$$

$$\vec{a}(t) = \frac{d\vec{v}}{dt} = \dot{\vec{v}}(t) = \ddot{\vec{r}}(t) = (\ddot{x} \quad \ddot{y} \quad \ddot{z})^{\mathsf{T}} = (a_x \quad a_y \quad a_z)^{\mathsf{T}}$$

 \rightarrow Superpositionsprinzip:

Kinematik kann für jede einzelne (Orts)komponente einzeln betrachtet werden.

$$\vec{r}(t) = \vec{r_0} + \vec{v_0}(t - t_0) + \frac{1}{2}\vec{a}(t^2 - t_0^2) = \begin{pmatrix} x_0 + v_{x,0}(t - t_0) + \frac{1}{2}a_{x,0}(t^2 - t_0^2) \\ y_0 + v_{y,0}(t - t_0) + \frac{1}{2}a_{y,0}(t^2 - t_0^2) \\ z_0 + v_{z,0}(t - t_0) + \frac{1}{2}a_{z,0}(t^2 - t_0^2) \end{pmatrix}$$

- 2. Horizontaler Wurf
- 3. TODO Skizze 3

$$t_{0} = 0$$

$$\vec{a_{0}} = \begin{pmatrix} 0 & 0 & -g \end{pmatrix}^{\mathsf{T}}$$

$$\vec{v_{0}} = \begin{pmatrix} v_{x,0} & 0 & 0 \end{pmatrix}^{\mathsf{T}}$$

$$\vec{x_{0}} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}^{\mathsf{T}}$$

$$\vec{r}(t) = \begin{pmatrix} v_{x,0}t & 0 & \frac{1}{2}gt^{2} \end{pmatrix}^{\mathsf{T}}$$

4. Schiefer Wurf

$$\vec{a_0} = \begin{pmatrix} 0 \\ 0 \\ -g \end{pmatrix}$$

$$\vec{v_0} = \begin{pmatrix} v_{x,0} \\ 0 \\ v_{z,0} \end{pmatrix}$$

$$\vec{r_0} = \begin{pmatrix} 0 \\ 0 \\ z_0 \end{pmatrix}$$

$$r(t) = \begin{pmatrix} v_{x,0}t \\ 0 \\ -\frac{1}{2}gt^2 + v_{z,0}t + z_0 \end{pmatrix}$$

$$z(x) = -\frac{1}{2}\frac{g}{v_{x,0}^2}x^2 + \frac{v_{z,0}}{v_{x,0}}x + z_0$$