ระบบแจ้งเตือนฝุ่น

1.Problem identification

1.1 Root Cause Analysis

ปัญหาสุขภาพของคนภายในมหาวิทยาลัยพะเยา ที่เกิดจากฝุ่นละออง ที่มีขนาดไม่เกิน
 2.5 ไมครอนและ10ไมครอน เพื่อป้องกันความเสี่ยงต่อสุขภาพ

1.2 Observation and Analysis

- แอปพลิเคชัน AirVisual และ LifeDee ไม่มีระบบแจ้งเตือนอันตรายผ่านทางSMSและมี ความจำเป็นต้องระบุตำแหน่งก่อนใช้งานถึงจะสามารถรับการแจ้งเตือนจากแอปพลิเค ชันได้

1.3 Stakeholder Input

- 1.3.1 กลุ่มผู้พัฒนา
- นักพัฒนาระบบ
- นักวิเคราะห์ระบบ
- 1.3.2 กลุ่มผู้ใช้งาน
- นิสิต
- อาจารย์
- บุลคากรภายในมหาวิทยาลัยพะเยา

1.4 Data Collection

- สัมภาษณ์ผู้มีส่วนเกี่ยวข้อง
- รวบรวมข้อมูลทางอินเตอร์เน็ต

1.5 Documentation

- เอกสารข้อมูลเกี่ยวกับฝุ่นละอองที่มีขนาดไม่เกิน 2.5 ไมครอนและ10ไมครอน
- คู่มือการใช้งานแอปพลิเคชัน
- เอกสารข้อมูลเกี่ยวกับเซ็นเซอร์วัดฝุ่นละออง
- เอกสารข้อมูลเกี่ยวกับไมโครคอนโทรลเลอร์

1.6 Prioritization

- ระดับความรุนแรงของฝุ่น : กำหนดความสำคัญตามระดับมลพิษที่ฝุ่นมี เช่น ฝุ่นละออง ที่มีขนาดไม่เกิน 2.5 ไมครอนและ10ไมครอน เพื่อให้ผู้ใช้ทราบถึงความเสี่ยงต่อสุขภาพ
- การแจ้งเตือนแบบทันที : ให้ระบบสามารถแจ้งเตือนผู้ใช้ทันทีเมื่อมีฝุ่นเกินระดับที่
 กำหนด เพื่อให้คนได้รับข้อมูลในขณะที่เหตุการณ์กำลังเกิดขึ้น

1.7 Feasibility Assessment

- เทคนิคและเทคโนโลยี : ตรวจสอบว่าเทคโนโลยีที่จะใช้ในระบบสามารถทำงานได้ด้วย
 ประสิทธิภาพและเชื่อถือได้หรือไม่ รวมถึงความเข้ากันได้กับอุปกรณ์ต่าง ๆ
- ความเป็นไปได้ทางการเงิน : พิจารณาค่าใช้จ่ายในการพัฒนาระบบ, ดำเนินการ บำรุงรักษา, และค่าใช้จ่ายทั่วไปที่เกี่ยวข้อง

ตารางการเปรียบเทียบคุณสมบัติของโมดูลต่าง ๆ แสดงดังตาราง 1

ตารางที่ 1 แสดงคุณสมบัติของโมดูลต่าง ๆ

9 9	Modules			
คุณสมบัติ	PMS7003	PMS5003	PMS3003	GP2Y1010AU0F
Measuring Principle	✓	√	√	X
Zero false alarm rate	√	√	√	X
Real-time response	√	>	>	X
Correct data	✓	√	√	X
Minimum distinguishable particle diameter :0.3 micrometer	√	√	√	X
Optional direction of air inlet and outlet in order to adapt the different design	√	√	Х	X
Very Slim	√	X	X	X
ราคา	เริ่มต้น766 - 970 บาท	เริ่มต้น695 - 950 บาท	เริ่มต้น598 - 710 บาท	เริ่มต้น 170 - 220 บาท

PMS7003, PMS5003 และ PMS3003 เป็นเซนเซอร์วัดฝุนละอองแบบเลเซอร์ที่ มี ประสิทธิภาพสูง แม่นยำ และมีค่าความไวสูง เหมาะสำหรับการใช้งานที่ต้องการวัดค่าฝุ่นละอองได้ อย่างละเอียด อย่างไรก็ตาม เซนเซอร์เหล่านี้มีราคาค่อนข้างสูง

GP2Y1010AU0F เป็นเซนเซอร์วัดฝุ่นละอองแบบอินฟราเรดที่มีราคาประหยัดกว่า แต่มีค่า ความแม่นยำและความละเอียดต่ำกว่า เซนเซอร์นี้เหมาะสำหรับการใช้งานที่ต้องการวัดค่าฝุ่นละออง แบบคร่าวๆ หรือต้องการประหยัดต้นทุน PMS7003 เหมาะสำหรับการนำไปใช้งานเพราะ เป็นเซ็นเซอร์ฝุ่นที่มีประสิทธิภาพสูง มีความ แม่นยำ ความไวสูง และมีขนาดเล็ก

ตารางการเปรียบเทียบคุณสมบัติของไมโครคอนโทรลเลอร์ แสดงดังตาราง 2

ตารางที่ 2 แสดงคุณสมบัติของไมโครคอนโทรลเลอร์

ອ ຸດເຊນເນັສີ	Microcontroller			
คุณสมบัติ	ESP32	Arduino		
ชิป	ESP32-WROOM-32D	ATmega328P		
สถาปัตยกรรม	Dual-core, 32-bit	Single-core, 8-bit		
ความถี่สัญญาณนาฬิกา	240 MHz	16 MHz		
หน่วยความจำแฟลช	4 MB	32 KB		
หน่วยความจำ RAM	520 KB	2 KB		
WIFI	✓	Х		
Bluetooth	✓	Х		
GPIO	38 Pin	23 Pin		
ราคา	เริ่มต้น 168 - 278 บาท	เริ่มต้น 180 - 315 บาท		

ESP32 มีชิปประมวลผลที่มีประสิทธิภาพสูงกว่า หน่วยความจำมากกว่า และรองรับการ เชื่อมต่อ Wi-Fi และ Bluetooth ในตัว จึงเหมาะกับการใช้งานที่ต้องการประสิทธิภาพสูง เช่น อุปกรณ์ IoT, อุปกรณ์ควบคุมอัตโนมัติ, อุปกรณ์มัลติมีเดีย เป็นต้น Arduino มีชิปประมวลผลที่มีประสิทธิภาพต่ำกว่า หน่วยความจำน้อยกว่า และรองรับการ เชื่อมต่อ Wi-Fi และ Bluetooth ผ่านโมดูลภายนอก จึงเหมาะกับการใช้งานที่ต้องการต้นทุนต่ำ เช่น อุปกรณ์ DIY, อุปกรณ์การเรียนรู้ เป็นต้น

ESP32 เป็นตัวเลือกที่ดีกว่า Arduino สำหรับการนำไปใช้งานระบบแจ้งเตือนฝุ่น เนื่องจากมี ประสิทธิภาพสูงกว่าและรองรับการเชื่อมต่ออินเทอร์เน็ตได้ในตัว

ตารางการเปรียบเทียบคุณสมบัติของฐานข้อมูล แสดงดังตาราง 3

ตารางที่ 3 แสดงคุณสมบัติของฐานข้อมูล

คุณสมบัติ	Database			
น์ะหยากณ	SQLite	MySQL		
ประเภท	ฐานข้อมูลแบบ SQL แบบฝัง	ฐานข้อมูลแบบ SQL แบบคลาวด์		
สถาปัตยกรรม	ฐานข้อมูลแบบเชิงสัมพันธ์	ฐานข้อมูลแบบเชิงสัมพันธ์		
การเข้าถึงข้อมูล	แบบออฟไลน์	แบบออนไลน์		
ความปลอดภัย	รองรับการรับรองความถูกต้องแบบ พื้นฐาน	รองรับการรับรองความถูกต้องแบบต่างๆ เช่น Basic, Digest, OAuth, PAM, LDAP, SAML, OpenID Connect เป็นต้น		
ความยืดหยุ่น	รองรับโครงสร้างข้อมูลเชิงสัมพันธ์	รองรับโครงสร้างข้อมูลเชิงสัมพันธ์		
การใช้งาน	เหมาะกับการใช้งานที่ต้องการเก็บ ข้อมูลขนาดเล็ก เช่น ข้อมูลเซ็นเซอร์ ข้อมูลการกำหนดค่า เป็นต้น	เหมาะกับการใช้งานที่ต้องการเก็บข้อมูล ขนาดใหญ่ เช่น ข้อมูลผู้ใช้ ข้อมูลอุปกรณ์ ข้อมูลเหตุการณ์ เป็นต้น		
ราคา	ฟรี	เริ่มต้น 192.38 บาท		

SQLite ข้อดีคือ ใช้งานง่าย ติดตั้งและใช้งานบน ESP32 ได้โดยตรง และมีขนาดความจุ เพียงพอสำหรับเก็บข้อมูลค่าฝุ่นละออง แต่มีข้อเสียคือ ไม่สามารถเข้าถึงข้อมูลแบบออนไลน์ได้ MySQL ข้อดีคือ รองรับการเข้าถึงข้อมูลแบบออนไลน์ รองรับการรับรองความถูกต้องแบบ ต่างๆ และมีขนาดความจุเพียงพอสำหรับเก็บข้อมูลค่าฝุ่นละออง แต่มีข้อเสียคือ ใช้งานยากกว่า ติดตั้ง และใช้งานบน ESP32 ต้องใช้โมดูลเพิ่มเติม และเริ่มต้นใช้งานมีค่าใช้จ่าย

MySQL เหมาะสำหรับการนำไปใช้งานเพราะ รองรับการเข้าถึงข้อมูลแบบออนไลน์ข้อมูลที่ ได้รับมามีการเปลี่ยนแปลงอยู่ ตลอดเวลา

ตารางการเปรียบเทียบคุณสมบัติของภาษาที่ใช้ในการทำแอปพลิเคชัน แสดงดังตาราง 4 ตารางที่ 4 แสดงคุณสมบัติของภาษาที่ใช้ในการทำแอปพลิเคชัน

	ภาษาที่ใช้ในการทำแอปพลิเคชัน			
คุณสมบัติ	Python	Java	JavaScript	
ประสิทธิภาพ	มีประสิทธิภาพปานกลาง	มีประสิทธิภาพสูง	มีประสิทธิภาพปาน กลาง	
ความนิยม	เป็นที่นิยมสูง	เป็นที่นิยมสูง	เป็นที่นิยมสูง	
Community Support	มีคอมมูนิตี้แข็งแกร่ง	มีคอมมูนิตี้แข็งแกร่ง	มีคอมมูนิตี้แข็งแกร่ง	
การใช้งานกับ SMS Gateway	มีไลบรารี	มีไลบรารี	ไม่มีไลบรารี	

ภาษา Python เป็นตัวเลือกที่ดีสำหรับการพัฒนาแอประบบแจ้งเตือนฝุ่นทั่วไป เนื่องจากมี โมดูลและไลบรารีที่หลากหลายสำหรับการทำงานกับอุปกรณ์ IoT เช่น เซนเซอร์ การเชื่อมต่อ อินเทอร์เน็ต เป็นต้น นอกจากนี้ยังใช้งานง่ายและเหมาะสำหรับการพัฒนาแอปพลิเคชันบนอุปกรณ์ IoT และคลาวด์

ภาษา Java เป็นตัวเลือกที่ดีสำหรับการพัฒนาแอประบบแจ้งเตือนฝุ่นที่ต้องการประสิทธิภาพ สูง เช่น แอปพลิเคชันที่ต้องประมวลผลข้อมูลจำนวนมาก หรือแอปพลิเคชันที่ทำงานแบบเรียลไทม์ นอกจากนี้ยังเหมาะสำหรับการพัฒนาแอปพลิเคชันบนคลาวด์

ภาษา JavaScript เป็นตัวเลือกที่ดีสำหรับการพัฒนาแอประบบแจ้งเตือนฝุ่นที่สามารถเข้าถึง ได้จากเว็บเบราว์เซอร์ เช่น แอปพลิเคชันแจ้งเตือนฝุ่นบนเว็บไซต์ หรือแอปพลิเคชันแจ้งเตือนฝุ่นบน แอปพลิเคชันมือถือ อย่างไรก็ตาม ภาษา JavaScript นั้นไม่มีโมดูลสำหรับส่งข้อความ SMS โดยตรง จึงจำเป็นต้องใช้โมดูลจากผู้ให้บริการเครือข่ายมือถือหรือโมดูลอื่นๆ แทน

สำหรับการพัฒนาแอประบบแจ้งเตือนฝุ่นทาง SMS นั้น ภาษา Python เป็นตัวเลือกที่ดี เนื่องจากมีโมดูลสำหรับส่งข้อความ SMS ผ่านผู้ให้บริการเครือข่ายมือถืออยู่แล้ว ซึ่งช่วยลดความ ซับซ้อนในการพัฒนาแอปพลิเคชัน

2. Opportunity Recognition

2.1 Environmental Scanning

- สร้างสถานีรับข้อมูลจากเซ็นเซอร์วัดค่าฝุ่นละออง และส่งข้อมูลเข้าแอปพลิเคชัน เมื่อค่า ฝุ่นละอองเกินระดับความรุนแรงที่กำหนด แอปพลิเคชันจะทำการแจ้งเตือนไปยัง โทรศัพท์มือถือ
- สร้างและพัฒนาแอปพลิเคชัน ลงบนโทรศัพท์มือถือระบบปฏิบัติการแอนดรอยด์ เวอร์ชัน 8.0 ถึงเวอร์ชัน 10 และระบบปฏิบัติการไอโอเอส 11 ถึงไอโอเอส 17 ระบบที่ กล่าวเป็นเวอร์ชันของระบบบนโทรศัพท์มือถือที่มีการใช้งานอยู่ในปัจจุบัน

2.2 Cost-Benefit Analysis

ตารางรายรายละเอียดค่าใช้จ่าย

ตารางที่ 5 ตารางแสดงรายละเอียดค่าใช้จ่ายต่าง ๆ ในโครงการเป็นเวลา 1 ปี

ตำแหน่ง				
MIPPURA	จำนวน	ค่าใช้จ่ายชั่วโมง	ค่าใช้จ่ายรายปี	
Junior Developer	2	800	1,587,200	
Junior system	2	1,000	1,984,000	
analysis	۷	1,000	1,904,000	
Lead project	1	900	1,785,600	
manager	1	700	1,765,000	
Senior tester	1	600	1,190,400	
Junior support	1	450	892,800	
รวมเป็นค่าใช้จ่าย			7,440,000	

2.3 Benchmarking

ตารางการเปรียบเทียบฟังก์ชันของแอปพลิเคชันต่าง ๆ ที่ใช้อยู่ในปัจจุบัน แสดงดังตาราง 5 ตารางที่ 5 แสดงคุณสมบัติของแอปพลิเคชันต่าง ๆ ที่นิยมอยู่ในปัจจุบัน

0014018	แอปพลิเคชัน		
คุณสมบัติ	AirVisual	LifeDee	ระบบแจ้งเตือนฝุ่น
การแจ้งเตือนตลอดเวลา(ทุก ๆ 1ชั่วโมง)	√	√	√
AQI	√	√	Х
ระบุฝุ่นละออง ที่มีขนาดไม่เกิน 2.5 ไมครอน	√	>	√
ระบุฝุ่นละออง ที่มีขนาดไม่เกิน 10 ไมครอน	X	X	√
ระบุอุณหภูมิ	√	>	√
ระบุความชื้น	√	X	√
สภาพอากาศ	√	>	X
พยากรณ์ค่าฝุ่นล่วงหน้าได้	√	X	X
ประวัติข้อมูลย้อนหลัง	√	X	√
ทิศทางลมและความเร็วลม	√	X	X
คำแนะนำด้านสุขภาพ	√	X	√
สถานบริการสาธารณสุขใกล้เคียง	X	√	√
การแจ้งเตือนทางSMS	X	X	√
ระบุตำแหน่งขณะใช้งาน	✓	√	X

3. Requirements Gathering

สิ่งที่ผู้ใช้ต้องการ

- ต้องการการแจ้งเตือนอันตรายจากฝุ่นทันที
- ต้องการความถูกต้องของข้อมูล
- ต้องการรูปแบบการแจ้งเตือนที่รวดเร็ว
- ต้องการใช้งานง่ายของแอปพลิเคชัน

สิ่งที่นักพัฒนาต้องการ

- ความถูกต้องของข้อมูล
- การแจ้งเตือนให้กับผู้ใช้
- การแสดงข้อมูลที่จำเป็นกับผู้ใช้ เช่น ค่าฝุ่นละออง ที่มีขนาดไม่เกิน 2.5 ไมครอน และ
 10 ไมครอน อุณหภูมิ ความชื้น