Exemple de problème

non linéaire

Les exemples de <u>problèmes non linéaires</u> sont tellement nombreux qu'il est impossible de donner un exemple typique. Celui qui suit n'est qu'un parmis d'autres.

Le fichier EXCEL est disponible, c'est nolinear.XLS

Mise en place du problème

Un entrepreneur dispose de 3 machines qui se répartissent la production de 3 types de pièces A, B et C. Chaque pièce possède un temps de fabrication différent suivant la machine où elle est fabriquée . De plus, chaque machine a un temps limites de fonctionnement au dessus duquel elle ne peut plus produire. Et pour corser le tout, le prix de vente des pièces A,B et C diminue avec la quantité produite. Le but est toujours de répartir au mieux la fabrication des différentes pièces sur les machines pour maximiser le bébéfice.

- Le prix de vente de la pièce A est 81-qA/20
- Le prix de vente de la pièce B est 90-qB/10
- Le prix de vente de la pièce C est 85-qC/10

La feuille de calcul EXCEL correspondant au problème peut être mise sous cette forme :

	machine 1	machine 2	machine 3		
pièce A	1	6	0		
pièce B	1	2	3		
pièce C	1	3	1		
temp / mach	0	0	0		
temps max	100	450	150		
	quantité	valeur			
pièce A	0	81			
pièce B	0	90		bénéfice	0
pièce C	0	85			

- La <u>cellule cible</u> est celle contenant la valeur du bénéfice (cellule bleue).
- Les <u>cellules variables</u> sont les quantités respectives de pièces A,B et C (cellules grises).
- Les <u>contraintes</u> sont les temps maximum de fonctionnement des machines (cellules rouges).

Le problème est bien non-linéaire puisque le bénéfice est égal à qA*(81-qA.20)+qB*(90-qB/20)+qC*(85-qC/20).

Résolution

La résolution est immédiate :

	machine 1	machine 2	machine 3		
pièce A	1	6	0		
pièce B	1	2	3		
pièce C	1	3	1		
temp / mach	100	350	150		
temps max	100	450	150		
	quantité	valeur			
pièce A	30	79,5			
pièce B	40	86		bénéfice	8285
pièce C	30	82			

Determ \ Wester	Tritical or or column	Antwo
Retour a l'invite	<u>Initiation au solveur</u>	<u>Autres exemples</u>