1 Grundlagen Elektrotechnik

1.1 Schaltelemente

Wiederstand R

$$u(t) = R \cdot i(t)$$

$$i(t) = \frac{1}{R} \cdot u(t)$$

$$\underline{Z}_R = R$$

Kapazität C

$$\begin{aligned} & - | - | \\ u(t) &= \frac{1}{C} \int_0^t i(\tilde{t}) d\tilde{t} \\ i(t) &= C \cdot \frac{du(t)}{dt} \\ &\underline{Z}_C = \frac{1}{j\omega C} \\ \text{Spanning springt nicht} \end{aligned}$$

Induktivität L

$$u(t) = L \cdot \frac{di(t)}{dt}$$

$$i(t) = \frac{1}{L} \int_{0}^{t} u(\tilde{t}) d\tilde{t}$$

$$\underline{Z}_{C} = j\omega L$$
Strom springt nicht

1.2 Schaltvorgänge

$$u(t) = U_E + (U_A - U_E) \cdot e^{\frac{-t}{\tau}}$$
 $i(t) = I_E + (I_A - I_E) \cdot e^{\frac{-t}{\tau}}$ $\tau = CR = \frac{L}{R}$

Betrachte: Zur bestimmung von R alle Quellen ausschalten und Belastung aus der Sicht des Speicherelements betrachten.

2 Schwingkreise

2.1 Freie Schwingung

 $\omega_r\left[\frac{rad}{s}\right]$: Resonanzfrequenz $\omega_0\left[\frac{rad}{s}\right]$: Eigenfrequenz Q_P,Q_S : Güte $\xi=\frac{1}{2Q}$: Dämpfungsfaktor

 $\alpha_{1,2} \colon$ Lösungen der Charakteristischen Gleichung

2.1.1 Ermittelung der Konstanten

- 1. Ermittelung der Anfangsbedingungen bei t=0. u(t) durch den Ansatz, dass die Spannung an C und der Strom an L nicht springen kann.
- 2. $\dot{u}(0)$ bestimmen aus $i_L + i_R + i_C = 0$, wobei $i_C = C \cdot \dot{u}(0)$
- 3. Ermittelung der Konstanten $U_1, U_2, \beta_u, U_a, U_b, I_1, I_2, \beta_i, I_a, I_b$: Funktion u(t), bzw. i(t) bei t = 0 mit Anfangsbedingungen vergleichen. das selbe für $\dot{u}(t)$, bzw. $\dot{i}(t)$.

2.1.2 Formeln

Parallelschwingkreis

Fall $Q < \frac{1}{2}$: Aperiodisch $\alpha_1, \alpha_2 \in \mathbb{R}$

$$u(t) = U_1 \cdot e^{\alpha_1 t} + U_1 \cdot e^{\alpha_2 t}$$
$$\alpha_{1,2} = -\frac{\omega_r}{2Q_P} \pm \sqrt{\frac{1}{4Q_P^2} - 1}$$

Fall $Q = \frac{1}{2}$: Kritisch, $\alpha_1 = \alpha_2$ $u(t) = (U_1 + \beta_u) \cdot e^{\alpha t}$ $\alpha_{1,2} = -\frac{\omega_r}{2Q_P} = -\omega_r$

Fall $Q > \frac{1}{2}$: Periodisch, $\alpha_1, \alpha_2 \in \mathbb{C}$ $u(t) = e^{\frac{\omega_r}{2Q_P}t} (U_a \cos \omega_0 t + U_b \sin \omega_0 t)$ $\dot{u}(t=0) = -\frac{\omega_r}{2Q_P} U_a + \omega_0 U_b$ $\alpha_{1,2} = -\frac{\omega_r}{2Q_P} \pm j\omega_0$ $\omega_0 = \omega_r \sqrt{1 - \frac{1}{4Q_P^2}}$

 $\omega_0 \approx \omega_r \text{ wenn } Q_P \gg \frac{1}{2})$

Seriellschwingkreis

$$\ddot{i} + \frac{R}{L}\dot{i} + \frac{1}{LC}i = 0$$
$$\ddot{i} + \frac{\omega_r}{Q_S}\dot{u} + \omega_r^2 u = 0$$
$$\omega_r = \frac{1}{\sqrt{LC}} \quad Q_S = \frac{1}{R}\sqrt{\frac{L}{C}}$$

Fall $Q < \frac{1}{2}$: Aperiodisch $\alpha_1, \alpha_2 \in \mathbb{R}$

$$i(t) = I_1 \cdot e^{\alpha_1 t} + I_2 \cdot e^{\alpha_2 t}$$

 $\alpha_{1,2} = -\frac{\omega_r}{2Q_S} \pm \sqrt{\frac{1}{4Q_S^2} - 1}$

Fall $Q = \frac{1}{2}$: Kritisch, $\alpha_1 = \alpha_2$ $i(t) = (I_1 + \beta_i) \cdot e^{\alpha t}$ $\alpha_{1,2} = -\frac{\omega_r}{2Q_G} = -\omega_r$

Fall $Q > \frac{1}{2}$: Periodisch, $\alpha_1, \alpha_2 \in \mathbb{C}$ $i(t) = e^{\frac{\omega_r}{2Q_S}t} (I_a \cos \omega_0 t + I_b \sin \omega_0 t)$ $\dot{i}(t=0) = -\frac{\omega_r}{2Q_S} I_a + \omega_0 I_b$ $\alpha_{1,2} = -\frac{\omega_r}{2Q_S} \pm j\omega_0$ $\omega_0 = \omega_r \sqrt{1 - \frac{1}{4Q_S^2}}$ $\omega_0 \approx \omega_r \text{ wenn } Q_S \gg \frac{1}{2})$

2.1.3 Kurvendiskusion

im Folgenden wird der Faktor $y(t) = e^{-\frac{\omega_r}{2Q} \cdot t}$ untersucht.

- $y(t = \frac{2Q}{\omega_r}) = e^{-1} \approx 0.368 = 36.8\%$
- nach Q Perioden: $t=Q\cdot T=\frac{2\pi Q}{\omega_r}, y(t=\frac{2\pi Q}{\omega_r})=e^{-\pi}\approx 0.0432=4.32\%$

erzwungene Schwingung

$$\omega_1\left[\frac{rad}{s}\right]$$
: untere 3dB Grenze $\omega_2\left[\frac{rad}{s}\right]$: obere 3dB Grenze $B\left[\frac{1}{s}\right]$: Bandbreite $\omega_2\left[\frac{rad}{s}\right]$: Verstimmung Ω : Normierte Frequenz $\frac{Z}{R} = \frac{Y}{G}$: Normierter Frequenzgang

2.2.1 Formeln

$$\nu = \frac{\omega}{\omega_r} - \frac{\omega_r}{\omega} = \frac{f}{f_r} - \frac{f_r}{f}$$

$$\Omega = \nu \cdot Q = \left(\frac{\omega}{\omega_r} - \frac{\omega_r}{\omega}\right) \cdot Q$$

$$B = f_2 - f_1 = \frac{\omega_2 - \omega_1}{2\pi} = \frac{\omega_r}{2\pi Q}$$

$$\omega_{1,2} = \omega_r \cdot \left(\sqrt{\frac{1}{4Q^2} + 1} \mp \frac{1}{2Q}\right)$$
bei $\omega = \omega_1 \to \Omega = -1$, bei $\omega = \omega_2 \to \Omega = +1$

Parallelschwingkreis

$$\underline{Z} = \frac{1}{1 + j\left(\omega C - \frac{1}{\omega L}\right) \cdot R}$$
$$\underline{\frac{Z}{R}} = \frac{1}{1 + j\Omega}$$

bei Resonanz $\omega = \omega_r$

$$\underline{Z} = \underline{Z}_{max} = R \; ; \; U = U_{max} = R \cdot I$$

$$P = P_{max} = RI^{2} \; ; \; I_{L} = I_{C} = Q_{P}I$$

$$Q_{L} = -Q_{C} = Q_{P} \cdot P_{max}$$

$$\mathbf{an 3dB\text{-Grenzen}}$$

$$\frac{Z}{R} = \frac{1}{\sqrt{2}} \hat{=} - 3dB$$

$$\underline{Y} = \underline{Y}_{max} = G \; ; \; I = I_{max} = G \cdot U$$

$$P = P_{max} = GU^{2} \; ; U_{L} = U_{C} = Q_{S}U$$

$$Q_{L} = -Q_{C} = Q_{S} \cdot P_{max}$$

$$\mathbf{an 3dB\text{-Grenzen}}$$

$$\frac{Y}{G} = \frac{1}{\sqrt{2}} \hat{=} - 3dB$$

Seriellschwingkreis

$$\underline{Y} = \frac{G}{1 + j\left(\omega L - \frac{1}{\omega C} \cdot G\right)}$$
$$\frac{\underline{Y}}{G} = \frac{1}{1 + j\Omega}$$

bei Resonanz $\omega = \omega_r$

$$\underline{Y} = \underline{Y}_{max} = G \; ; \; I = I_{max} = G \cdot U$$

$$P = P_{max} = GU^2 \; ; U_L = U_C = Q_S U$$

$$Q_L = -Q_C = Q_S \cdot P_{max}$$
an 3dB-Grenzen

$$\frac{\underline{Y}}{G} = \frac{1}{\sqrt{2}} \widehat{=} -3dB$$

2.2.2 Normierter Frequenzgang

$$\frac{Z}{R} = \frac{1}{1 + j\Omega} = \frac{1}{\sqrt{1 + \Omega^2}} / -\arctan\Omega, \quad \Omega = \nu \cdot Q = Q\left(\frac{\omega}{\omega_r} - \frac{\omega_r}{\omega}\right)$$

Elektrotechnik 4 - Formelsammlung

Reaktanz-Eintore

$$X = \operatorname{Im}(\underline{Z})$$
 Reaktanz $B = \operatorname{Im}(\underline{Y})$ Suszeptanz

Grundelemente

Eigenschaften

$$\underline{Z}(j\omega) = \frac{a_n(j\omega)^n + a_{n-2}(j\omega)^{n-2} + a_{n-4}(j\omega)^{n-4}}{b_m(j\omega)^m + b_{m-2}(j\omega)^{m-2} + b_{m-4}(j\omega)^{m-4}} = \frac{P_n(j\omega)}{Q_m(j\omega)}$$

• |n-m|=1: Im Zähler und im Nenner kommen nie dieselben Potenzen vor.

- Den Polynomen $P_n(j\omega)$ und $Q_n(j\omega)$ fehlen keine Koeffizienten.
- Die Anzahl der Elemente entspicht der Anzahl endlicher Nullstellen und Polstellen.
- Die Ableitung der Funktion $Z(j\omega)$ ist immer positiv, d.H Z ist monoton Steigend.

Minimum-Reaktanz-Eintore MRET

Wenn ein **Kreis** aus lauter L oder C vorhanden ist, kann ein L (bzw. C) weggelassen (unterbrochen) werden. klemmen bleiben geöffnet!

Ein **Trennbündel**, wie auf der Grafik angezeigt, darf nur L oder C-Elemente schneiden. Sobald ein Trennbündel gefunden wurde, ein Element kurzgeschlossen werden. Die Klemmen müssen geschlossen werden!

Bestimmung des RET-Types

Typ	$X(\omega)$	$\omega = 0$	$\omega o \infty$	L-Kr.	L-Tb.	C-Kr.	C-Tb.
L	$X(\omega)$ ωL_{∞} ω	0	×	√	√	_	
\mathbf{C}	$X(\omega)$ $\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$	×	0	_	_	✓	✓
\mathbf{s}	$X(\omega) \qquad \omega L_{\infty}$ $X(\omega) \qquad W = \lambda U_{\infty}$ $X(\omega) \qquad W = \lambda U_{\infty}$	×	×	_	✓	_	✓
P	$X(\omega)$ ωL_0 $-\frac{1}{\omega C_{\infty}}$ ω	0	0	√	_	✓	_

RET-Synthese

Mittels Partialbruchzerlegung 3.5.1

1. Impedanz- oder Admitanzfunktion

2. PBZ bilden & koeffizienten ermitteln

3. Nach Netzwerkelementen umformen

Mittels Kettenbruchzerlegung

1. Voraussetzung: Unecht gebrochen

2. Polynomdivision ausführen

3. mit Kehrwert des Rests bei 2. fortfahren

4. Abgespaltete Werte Seriell und Parallel (je nach Bedeutung von F_n) sind die Elemente.

Äquivalenz 3.6

- 1. Gegebenees RET übersichtlich aufzeichnen
- 2. In das RET zusätzlich L- bzw. C-Elemente so einfügen, dass L- bzw. C-Kreise oder Trennbündel entstehen.
- 3. Durch Weglassen / Kurzschliessen von alten RET-Eementen das erweiterte RET auf ein MRET zurückführen.
- 4. Impedanzfunktion des alten RET und des MRET berechnen und die unbekannten Elemente durch Koeffizientenvergleich bestimmen.

Zweitore

- Reziprok: Speist man ein reziprokes Zweitor aus einer Quelle mit Innenwiederstand \underline{Z}_0 und belastet es am Ausgang mit der selben Impedanz Z_0 , so ist es für die Kenngrössen gleichgültig, in welcher Richtung das Zweitor betrieben wird.
- Richtsymmetrie: Beide Tore können elektrisch beim Umtauschen nicht unterschieden werden.
- Erdsymmetrie: Werdem die beiden Eingangsanschlüsse, so wie die Ausgangsanschlüsse, separat vertauscht, ist kein Unterschied von Aussen erkennbar.

4.1 Matrizen

Form	Vierpolgleichung	Berechnung
Impedanz	$\left[\begin{array}{c} \underline{U}_1 \\ \underline{U}_2 \end{array}\right] = [Z] \left[\begin{array}{c} \underline{I}_1 \\ \underline{I}_2 \end{array}\right]$	
Admitanz	$\left[\begin{array}{c} \underline{I}_1 \\ \underline{I}_2 \end{array}\right] = [Y] \left[\begin{array}{c} \underline{U}_1 \\ \underline{U}_2 \end{array}\right]$	
Ketten	$\left[\begin{array}{c} \underline{U}_1 \\ \underline{I}_1 \end{array}\right] = [A] \left[\begin{array}{c} \underline{U}_2 \\ -\underline{I}_2 \end{array}\right]$	
Hybrid	$\left[\begin{array}{c} \underline{U}_1 \\ \underline{I}_2 \end{array}\right] = [H] \left[\begin{array}{c} \underline{I}_1 \\ \underline{U}_2 \end{array}\right]$	

Koeffizientenbeziehungen

reziprok	$\underline{Z}_{12} = \underline{Z}_{21},$	$\underline{Y}_{12}=\underline{Y}_{21},$	$\det[A] = 1,$	$\underline{H}_{12} = -\underline{H}_{21}$
symmetrisch	$\underline{Z}_{12} = \underline{Z}_{21},$	$\underline{Y}_{12} = \underline{Y}_{21},$	$\det[A] = 1,$	$\underline{H}_{12} = -\underline{H}_{21}$
	$\underline{Z}_{11}=\underline{Z}_{22},$	$\underline{Y}_{11}=\underline{Y}_{22},$	$\underline{A}_{11}=\underline{A}_{22},$	$\det[H]=1$

4.2 Leerlauf und Kurzschluss am Zweitor

Bei einer Kurzschlussimpedanz $\underline{Z_{1k}}, \underline{Z_{2k}}$ wird die jeweils gegenüberliegende Seite kurzgeschlossen. Bei den Leerlaufimpedanzen $\underline{Z_{1l}}, \underline{Z_{2l}}$

	$[\underline{A}]$	$[\underline{Z}]$	$[\underline{Y}]$	$[\underline{H}]$
$\underline{Z_{1k}} =$	$\frac{\underline{A}_{12}}{\underline{A}_{11}}$	$\frac{\det\left[\underline{Z}\right]}{\underline{Z}_{22}}$	$rac{1}{Y_{11}}$	\underline{H}_{11}
$\underline{Z_{2k}} =$	$\frac{\underline{A}_{12}}{\underline{A}_{11}}$	$\frac{\det\left[\underline{Z}\right]}{\underline{Z}_{11}}$	$\frac{1}{\underline{Y}_{22}}$	$\frac{\underline{H}_{11}}{\det\left[\underline{H}\right]}$
$\underline{Z}_{1l} =$	$\frac{\underline{A}_{11}}{\underline{A}_{21}}$	Z_{11}	$\frac{\underline{Y}_{22}}{\det\left[\underline{Y}\right]}$	$\frac{1}{\underline{H}_{22}}$
$\underline{Z}_{2l} =$	$\frac{\underline{A}_{22}}{\underline{A}_{21}}$	\underline{Z}_{22}	$\frac{\underline{Y}_{11}}{\det\left[\underline{Y}\right]}$	$\frac{1}{\underline{H}_{22}}$

4.3 Ersatzschaltungen

4.4 Zusammenschaltung von Zweitoren

Netzwerke und Systeme

Duale Netzwerke

- 1. Zählrichtung Festlegen (z.B. im Uhrzeigersinn \rightarrow Pfeile nach Innen).
- 2. In jede Netzwerkmasche einen Knoten für das duale Netzwerk setzen
- 3. Alle Elemente durchschneiden und mit dualen Elementen den benachbarten Knoten verbinden
- 4. Zählrichtungen übertragen (wie zuvor Festgelegt)
- 5. Dualfaktoren wählen:

$$R' = \frac{D^2}{R}, \quad L' = D^2 C, \quad C' = \frac{L}{D^2}, \quad \underline{U}' = D\underline{I}, \quad \underline{I}' = \frac{\underline{U}}{D}$$

Netzwerkfunktionen

Polynom-Darstellung: $\underline{F}(s) = K \cdot \frac{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}{s^m + b_{m-1}s^{m-1} + \dots + b_1s + b_0} = K \frac{P_n(s)}{Q_m(s)}$ Produktform $\underline{F}(s) = k \cdot \frac{(s - n_1)(s - n_2) \dots (s - n_n)}{(s - p_1)(s - p_2) \dots (s - p_m)}$

Norm. Produktform Es kommen nur Faktoren (s), (1+as) und $(1+bs+cs^2)$ vor.

Alle Konstanten sind reell

Partialbruchform: $\underline{F}(s) = B_0 + B_1 s + \frac{K_1}{s-n_1} + \frac{K_2}{s-n_2} + \ldots + \frac{K_n}{s-n_n}$

Pol und Ortskurve des Parallelschwingkreis

$$\underline{Z}(s) = \frac{sL}{s^2LC + s\frac{L}{R} + 1} = \omega_r^2 \frac{sL}{s^2 + s\frac{\omega_r}{Q} + \omega_r^2}$$

$$Q \ll \frac{1}{2} \quad s_{1,2} \approx 0, -\infty$$

$$Q < \frac{1}{2}$$
 $s_{1,2} = -\frac{\omega_r}{2Q} \pm \omega_r \sqrt{\frac{1}{4Q^2} - 1}$

$$Q = \frac{1}{2} \qquad s_{1,2} = -\omega_r$$

$$Q < \frac{1}{2} \qquad s_{1,2} = -\frac{\omega_r}{2Q} \pm \omega_r \sqrt{\frac{1}{4Q^2} - 1}$$

$$Q = \frac{1}{2} \qquad s_{1,2} = -\omega_r$$

$$Q > \frac{1}{2} \qquad s_{1,2} = -\frac{\omega_r}{2Q} \pm j\omega_r \sqrt{1 - \frac{1}{4Q^2}}$$

$$Q \gg \frac{1}{2}$$
 $s_{1,2} \approx \pm j\omega_r$

Freie Schwingung - Allgemeine Lösung

Von der Übertragungsfunktion H(s) lässt die freie Schwingung beim Ausschalten berechnen, wobei \underline{s}_n die Polstellen von H(s) sind:

$$u(t) = C_1 \cdot e^{\underline{s}_1 t} + C_2 \cdot e^{\underline{s}_2 t} + C_3 \cdot e^{\underline{s}_3 t} + \dots, \qquad \underline{s}_n = \sigma_n + j\omega_n$$

$$\text{Fallunterscheidung:} \left\{ \begin{array}{lll} \text{reeller Pol} & \rightarrow & C_i \cdot e^{\sigma_i t} \\ \text{doppelter reeller Pol} & \rightarrow & C_{i1} \cdot e^{\sigma_i t} + C_{i2} \cdot t \cdot e^{\sigma_i t} \\ \text{komplex konj. Poolpaar} & \rightarrow & \underline{C}_{i1} \cdot e^{(\sigma_{i1} + j\omega_{i1})t} + \underline{C}_{i2} \cdot e^{(\sigma_{i2} + j\omega_{i2})t} \\ & & \underline{C}_{i1} \text{ und } \underline{C}_{i2} \text{ sind komplex konj.} \end{array} \right.$$

Leitungstheorie

Modell einer Leitung

Kapazitätsbelag Induktivitätsbelag Wiederstandsbelag Leitwertbelag

Bei einer verlustlosen Leitung ist R' = 0 und G' = 0.

$$\underline{Z}_W = \sqrt{\frac{R' + j\omega L'}{G' + j\omega C'}} \stackrel{\text{verlustlos}}{=} \sqrt{\frac{L'}{C'}}$$

Wellengleichung

$$\begin{split} \frac{d^2\underline{U}}{dz^2} &= \underline{\gamma}^2 \cdot \underline{U} & \frac{d^2\underline{I}}{dz^2} = \underline{\gamma}^2 \cdot \underline{I} \\ \underline{\gamma} &= \sqrt{(R' + j\omega L') \cdot (G' + j\omega C')} = \alpha + j\beta \\ \Rightarrow \underline{U}(z) &= \underline{U}_{v0} \cdot e^{-\underline{\gamma}z} + \underline{U}_{r0} \cdot e^{\underline{\gamma}z} & \underline{I}(z) = \underline{I}_{v0} \cdot e^{-\underline{\gamma}z} - \underline{I}_{r0} \cdot e^{\underline{\gamma}z} \\ & & \bullet \\ (t,z) &= & \hat{U}_{v0} \cdot e^{-\alpha z} \cdot \cos(\omega t + \varphi_{v0} - \beta z) & + & \hat{U}_{r0} \cdot e^{\alpha z} \cdot \cos(\omega t + \varphi_{v0} + \omega z) \end{split}$$

 $u(t,z) = \underbrace{\underbrace{\hat{U}_{v0}}_{\text{r-Richtung laufende gedämpfte Welle}}^{\text{U}}_{\text{r-Richtung laufende gedämpfte Welle}}^{\text{U}}_{\text{Gegen z-Richtung laufende gedämpfte Welle}}^{\text{U}} + \underbrace{\underbrace{\hat{U}_{r0}}_{\text{r-0}} \cdot e^{\alpha z} \cdot \cos(\omega t + \varphi_{v0} + \beta z)}_{\text{Gegen z-Richtung laufende gedämpfte Welle}}^{\text{U}}_{\text{Richtung laufende gedämpfte Welle}}^{\text{U}}$ $\lambda = \frac{2\pi}{\beta} = \frac{c_0}{f \cdot \sqrt{\varepsilon_r}} \qquad \beta = \frac{2\pi}{\lambda} \qquad v_{ph} = \frac{\omega}{\beta} = f \cdot \lambda \qquad \underline{U}_{v2} = \underline{U}_{v1} \cdot e^{-j\beta l}$

Vorlaufende Welle (positive z-Richtung) Dämpfungsbelag

Rücklaufende Welle (negative z-Richtung) Phasenbelag

Geschwindigkeit der Welle Distanz vom Anfang v_{nh}

Lichtgeschwindigkeit (= $299.29 \cdot 10^6$) ε_r Relative Permitivität

6.3 Reflexion

\underline{r}	Reflexionsfaktor		$\underline{r} = \frac{\underline{U}_r}{\underline{U}_r} = \frac{\underline{Z} - \underline{Z}_0}{\underline{Z} + \underline{Z}_0}$
\underline{r}_1	am Anfang der Leitung		
\underline{r}_2	am Ende der Leitung		$\underline{r}_1 = \underline{r}_2 \cdot e^{-2\gamma l} = \frac{\underline{Z}_1 - \underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2}$
α_R	Reflexionsdämpfung		$\underline{r}_2 = \underline{r}_1 \cdot e^{2\gamma l} = \frac{\underline{Z}_2 - \underline{Z}_0}{\underline{Z}_2 + \underline{Z}_0}$
\underline{Z}_1	Leitungswiederstand am	Anfang	_ · · · · · · · · · · · · · · · · · · ·
\underline{Z}_2	Wiederstand nach der L	eitung	$\underline{Z} = \underline{Z}_0 \cdot \frac{1+\underline{r}}{1-\underline{r}}$
	Wenn $\underline{Z} = \underline{Z}_0$:	$\underline{r} = 0$	$\underline{U}_r = \underline{r} \cdot \underline{U}_v \underline{I}_r = \underline{r} \cdot \underline{I}_v$
Ι	eitungsende offen:	$\underline{r} = 1$	$\alpha_R = -20 \cdot \log(r) dB$
Leitur	ngsende kurzgeschlossen	$\underline{r} = -1$	$\underline{U}_{v2} = \underline{U}_{v1} \cdot e^{-j\beta l}$

6.4 Leitung als Zweitor

6.5 Verlustlose Leitung

Bei hochwertigem Leitungsmaterial und nicht zu grosser Leitungslänge kann die Leitung als Verlustlos angenommen werden: R' = 0, G' = 0. Somit gelten folgende Beziehungen:

$$\alpha=0, \qquad \beta=\omega\sqrt{L'C'}, \qquad \underline{Z}_0=\sqrt{\frac{L'}{C'}}=:R_0, \qquad \gamma=j\beta \qquad v_{ph}=\frac{1}{\sqrt{L'C'}}$$

$$\underline{Z}_1=R_0\cdot \frac{\underline{Z}_2+jR_0\cdot\tan\beta l}{R_0+jZ_2\cdot\tan\beta l}$$

Der Verkürzungsfaktor VK ist das Verhältnis der Wellengeschwindigkeit:

$$VK = \frac{\lambda}{\lambda_0} = \frac{v_{ph}}{c_0}, \qquad \lambda = VK \cdot \frac{c_0}{f}$$

6.5.1 Stehwellenverhältnis

In der Leitung befindet sich ein Spannungsmaximum $l_{U_{max}}$ und ein Spannungsminimum $l_{U_{min}}$

$$\begin{split} \underline{U}(l) &= \underline{U}_v(l) \cdot (1 + \underline{r}(l)), \qquad \underline{r}(l) = \underline{r}_1 \cdot e^{-j2\beta l}, \qquad \underline{r}_1 = r \cdot e^{j\varphi_1} \\ l_{U_{max}} &= \frac{\varphi_1}{2\beta} \qquad l_{U_{min}} = \frac{\pi + \varphi_1}{2\beta} \qquad \varphi_1 = l_{U_{max}} \cdot 2\beta \end{split}$$

Das Stehwellenverhältnis s ist das Verhältnis zwischen Spannungsmaximum und -minimum. Es wird auch VSWR (voltage standing wave ratio) genannt. Der Anpassungsfaktor m ist der Kehrwert von s. r ist der Betrag des Reflektionsfaktors (irgendwo auf der Leitung).

$$s = \frac{U_{max}}{U_{min}} = \frac{1+r}{1-r}$$
 $m = \frac{1}{s} = \frac{1-r}{1+r}$ $r = \frac{s-1}{s+1} = \frac{1-m}{1+m}$

6.5.2 Smith Chart

Füd das Smith Chart muss die Impedanz normiert werden: $Z_N = R_N + jX_N$

$$\underline{r} = \frac{\underline{Z}_N - 1}{Z_N + 1} = \frac{R_N + jX_N - 1}{R_N + jX_N + 1} \qquad \underline{Z}_N = R_N + jX_N = \frac{\underline{Z}}{R_0} = \frac{\underline{r} + 1}{r - 1}$$

Leitungstransformation: Zeiger \underline{r} um $\frac{l}{\lambda}$ drehen.

VSWR:
$$s = \sqrt{\frac{R_{max}}{R_{min}}}$$

Impedanz - Admittanz: Spiegelung am Kreismittelpunkt. $\underline{Y}_N = \frac{1}{\underline{Z}_N} \rightarrow$

Serieschaltung: Grafische Addition beider (gleich) normierten Impedanzen

Parallelschaltung: (Gleich) normierte Impedanzen am Zentrum spiegeln, grafisch Addieren (im Impedanzgitter) und zurückspiegeln.

Wellenwiederstandssprung: Wenn zwei verschiedene Wellenwiederstände zusammengeschaltet werden, müssen diese an der Stelle des Übergangs umoromiert werden: $\underline{Z}_{N_{R1}} = \underline{Z}_{N_{R0}} \cdot \frac{R_0}{R_1}$