

COMO CONVENCER QUE SEUS DADOS SÃO INTERESSANTES

Processamento de Linguagem Natural e Storytelling na prática

MATHEUS EDUARDO RODRIGUES FREITAG

CIENTISTA DE DADOS

SUMÁRIO

- 1 NLP? 5 SENTINDO
- 2 IDENTIFICANDO 6 EXPANDINDO
- 3 ENTENDENDO 7 FUTURO
- **4** COMPARANDO

NLP?

O que é isso, de onde veio, e porque eu deveria me importar?

IDENTIFICANDO

Vamos imaginar que o G1 contratou a Indeorum para categorizar seus artigos

ENTENDENDO

Vamos imaginar um país fictício que esteja em época de eleições.

TF-IDF

TF: Term Frequency

Quantas vezes um termo aparece em um texto

TF(t) = (# de vezes que o termo aparece) / (# de termos no texto)

IDF: Inverse Document Frequency

Quão especial é um termo

IDF(t) = log(# de documentos) / (# de documentos que t aparece)

Agora considere que temos 10M de documentos e que "gato" aparece em 1K deles, portanto o IDF cupe i log(10,000,000 / 1,000) = 4.

Então o TF-IDF se torna o produto desses dois valores: 0.03 * 4 = 0.12

MATEMÁTICA????

- Se uma palavra aparece muito em um documento, ela é importante. Score sobe.
- Mas se essa palavra aparece em muitos documentos, ela n\u00e3o serve de identificador \u00ednico. O Score cai.

Então palavras sem muito significado e que aparecem muito, como artigos e preposições, recebem score baixo, e palavras que aparecem muito em um único documento recebem score alto

Em Ulysses:

- A palavra mais comum surgia 8000 vezes
- A décima, 800 vezes
- A centésima, 80 vezes
- A milésima, 8 vezes.

LEI DE ZIPF

Análise Presidencial

~18k palavras

~11k palavras (sem stopwords)

~4.5k palavras únicas

Manuscrito Voynich

COMPARANDO

Como fazemos para comparar dois corpus de texto? E como quantificar as semelhanças e diferenças?

QUÃO PARECIDOS SÃO ESSES TEXTOS?

"[...] A limpeza e secagem correta dos pés após o banho é um fator decisivo para evitar a proliferação de fungos que podem causar odores fortes[...]"

"[...] A limpeza e secagem dos pés é um fator decisivo para evitar a proliferação de fungos que causam odores fortes[...]" "[...] A limpeza e secagem correta dos pés após o banho auxilia no combate a proliferação de fungos e do mau odor nos pés [...]"

QUÃO PARECIDOS SÃO ESSES TEXTOS?

Matheus Freitag

Mateus Freitag

Mateus Freitas

DISTÂNCIA DE LEVENSHTEIN

SENTINDO

Como máquinas podem compreender emoções inerentemente humanas?

EXPANDINDO

- Applied Data Science with Python Specialization https://bit.ly/2danP4n
- Natural Language Processing with Python

- Recurrent Neural Networks
- Kaggle Competitions

FUTURO

Palavras sofrem muitas variações linguísticas (especialmente línguas românticas)

STEMMING

LEMMATIZAÇÃO

OBRIGADO!

Alguma pergunta?

Matheus Freitag

