Small Time Optimality

Model 1

A Reed Shepp car model can be described by two variables v and ω which are the speed and angular velocity. The turning radius is $r = \frac{v}{\omega}$. To simplify the model, $|\boldsymbol{v}| = 1$, $|\boldsymbol{\omega}| \in [\omega_{min}, \omega_{max}]$.

We use (x, y, θ) to describe the state of a R.S car, (x, y) being the position of the car, while θ being the orientation.

2 Optimal Path Upper Bound

Theorem 2.1 There exist a minimium lenth l for a R.S car to turn angle $\Delta\theta$.

Proof: To turning a car with angle $\Delta\theta$ with the least amount of time, The control has to be $l^+l^-l^+l^-l^+\dots$ or $r^+r^-r^+r^-r^+\dots$ (keep turning counterclockwisely or clockwisely), with the max angular velocity. Therefore the turning radius is $r_{min} = \frac{|v|}{\omega_{max}}$.

Assume the *i*-th operation turns $\Delta\theta_i$ angles, the number of operations is $n \ (\forall \Delta \theta_i \geq 0 \text{ or } \forall \Delta \theta_i \leq 0, \text{ and } \sum_{i=1}^n \Delta \theta_i = \Delta \theta).$ The total path length of these operation is:

$$l = \sum_{i=1}^{n} r_{min} \Delta \theta_i = r_{min} \sum_{i=1}^{n} \Delta \theta_i = r_{min} \Delta \theta_i$$

 $l = \sum_{i=1}^{n} r_{min} \Delta \theta_i = r_{min} \sum_{i=1}^{n} \Delta \theta_i = r_{min} \Delta \theta$. which has nothing to do with the number of operations, neither with the angle of each turn.

Theorem 2.2 For a start configuration $s = (x_s, y_s, \theta_s)$, a goal configuration $g = (x_g, y_g, \theta_g)$ and a path σ with length l. σ cannot be the optimal path if $l > r_{min}\pi + |SG|$, where S and G are (x_s, y_s) and (x_g, y_g) .

Proof: Consider steering a R.S car with small-time controlability using $l^+l^-l^+l^-l^+\dots$ or $r^+r^-r^+r^-r^+\dots$ operations. when the number of operation keeps increasing, the position offset decreases(limit to 0). A naive way of moving the car is to 1. steer the car from start orientation to \vec{SG} direction, 2. move the car from S to G, 3. steer the car from \vec{SG} direction to goal orientation.

It can be proved that 1 and 3 steps can steer the car with a maxinum angle of π . (list all kinds of possible orientations then it can be shown. I omit it here.)

Thus the path length of this strategy is $L = \frac{\pi v}{\omega} + |SG| \ge r_{min}\pi + |SG|$

If a path planning algorithm gives a path σ with length $l > r_{min}\pi + |SG|$, then the naive strategy is even better. σ is clearly not the optimal path.

Theorem 2.3 If there is clearance of size $R > \frac{r_{min}\pi}{2}$ at any point p in workspace, there exist a R_{in} -ball centered at p, $R_{in} \in (0, R)$, such that between any points in the R_{in} -ball with any orientation, there exists a feasible optimal trajectory.

Proof: Assume $S = (x_s, y_s)$ and $G = (x_g, y_g)$ with orientations θ_s and θ_g are start and goal positions in workspace. We denote $|SG| = 2\delta$.

With Theorem 2.2, we know that the optimal path σ must satisfy the property of lenth $l <= r_{min}\pi + 2\delta$. Assume C being a point in the workspae and $|SC| + |GC| \le r_{min}\pi + 2\delta$. C is in an ellipse with foci's S and G.

Since any point P out of the ellipse will have $|SP| + |PG| > r_{min}\pi + 2\delta$, the optimal path from S to G with any orientation must be within the ellipse.

C' is a intersect point of line SG and the ellipse. O is the mid point of S and G.

$$\implies |SO| = |OG| = \delta. \ |C'S| + |C'G| = r_{min}\pi + 2\delta = 2|C'S| + |SG|$$

$$\implies |C'S| = \frac{r_{min}\pi}{2}$$

By rotating S and G about their mid point O, the trajectory of C' is the edge if another ball with radius $\delta + \frac{r_{min}\pi}{2}$. And between any points in the inner ball, there must exist an optimal trajectory without leaving the outter ball.

This two balls have radius difference of $\frac{r_{min}\pi}{2}$.

3 A Planning Algorithm

A possible non-optimal planning algorithm is as below:

- 1. Sample a random sphere in workspace.
- 2. Get the inner sphere of the previously sampled sphere.

- 3. Sample spheres along the boundary of existing inner spheres.
- 4. Repeat 1 3 until converege.
- 5. Find a path using boundary points of these inner spheres.

Suppose an algorithm gives a series of points $P_1, P_2, P_3, ..., P_n$ which are points that the car should go through. Then we can have the upper bound of total length of optimal path:

$$L \le (n-1)r_{min}\pi + \sum_{i=1}^{n-1} l_i$$

 $L \leq (n-1)r_{min}\pi + \sum_{i=1}^{n-1} l_i$ l_i being the distance between P_i and P_{i+1} .

3.1 Problems to solve:

- 1. How to minimize the number of points a car should go through?
- 2. How to choose the orientation at each point such that the total upper bound of optimal path that goes through these points is minimized?
 - 3. How to find the lower bound of optimal path between S and G?
- 4. How to minimize the upper bound of path length found by algorithm, such that the upper bound is close to the lower bound?

