

Discrete Mathematics

Jidong Yuan yuanjd@bjtu.edu.cn SD 404

Algebraic Structure

- Outline:
- Introduction to Algebraic Structure
- Semigroup and Monoid
- Group and Subgroup
- Abelian Group, Cyclic Group and Permutation Group
- Coset
- Ring and Field
- Lattice
- Boolean algebra

Review

- Algebraic system <A, °>
 - ✓ 3 properties
 - Closure
 - Commutativity
 - Associativity
 - √ 3 constants
 - Identity
 - Zero
 - □Inverse

- √ 6 special algebraic systems
 - Semigroup
 - Monoid
 - □Group
 - ☐ Abelian Group
 - □Cyclic Group
 - □ Permutation Group
- √ 2 relations
 - Homomorphism
 - Isomorphism

Coset

Definition:

• If $\langle H, * \rangle$ is a subgroup of $\langle G, * \rangle$ and $a \in G$ then the set

 $Ha = \{h * a | h \in H\}$ is called a right coset of H in G.

 $aH = \{a * h | h \in H\}$ is called a **left coset** of H in G.

Example:

- \checkmark <**Z**, +> is a subgroup of <**R**, +>.
- \checkmark 2.5 \in **R**
- \checkmark { $a + 2.5 \mid a \in \mathbf{Z}$ } is a right coset of **Z** in **R**.
- \checkmark {2.5 + $a \mid a \in \mathbf{Z}$ } is a left coset of \mathbf{Z} in \mathbf{R} .

Exercise 1

Let $S=\{1, 2, 3\}, \langle S_3, \circ \rangle$ is a group. Determine all the left cosets of $H=\{p_1, p_3\}$ in S_3 .

$$p_{1} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad p_{2} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad p_{3} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
$$p_{4} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad p_{5} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \qquad p_{6} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Equivalence Relation

 \bullet <H, *> is a subgroup of <G, *>. R={ $(a, b) \mid a, b \in G \text{ and } a^{-1} * b \in H$ } is an equivalence relation on G.

Proof:

✓ Reflexivity:

For $\forall a \in G, a^{-1} \in G. a^{-1} * a = e \in H.$ Thus $(a, a) \in R.$

✓ Symmetry:

For $\forall (a, b) \in R$, $a^{-1} * b \in H$. H is a group, thus $(a^{-1} * b)^{-1} = b^{-1} * a \in H$, $(b, a) \in R$.

✓ Transitivity:

For $\forall (a, b) \in R$, $\forall (b, c) \in R$, then $a^{-1} * b \in H$, $b^{-1} * c \in H$.

 $(a^{-1}*b)*(b^{-1}*c) \in H$. Thus $a^{-1}*c \in H$, $(a, c) \in R$.

Equivalence Classes

ullet < H, * > is a subgroup of < G, * >. $R = \{(a,b) \mid a,b \in G \text{ and } a^{-1} * b \in H\}$ is a equivalence relation on G.

For $\forall a \in G$, if $[a]_R = \{x \mid x \in G \text{ and } (a, x) \in R\}$, $[a]_R = aH$.

Proof:

 $b \in [a]_R$ if and only if $(a, b) \in R$. $[a]_R = \{b \mid a^{-1} * b \in H, a, b \in G\}$ $= \{b \mid a^{-1} * b = h, h \in H, a, b \in G\}$ $= \{b \mid b = a * h, h \in H, a, b \in G\}$ = aH

Coset:

If $\langle H, * \rangle$ is a subgroup of $\langle G, * \rangle$ and $a \in G$ then the set: $Ha = \{h * a | h \in H\}$ is called a right coset of H in G. $aH = \{a * h | h \in H\}$ is called a left coset of H in G.

Properties of Cosets

- Let $\langle H, * \rangle$ be a subgroup of $\langle G, * \rangle$. Then the left (right) cosets of H form a partition of G. i.e., the union of all left (right) cosets of a subgroup H is equal to G.
- Any two left (right) cosets of H in G are either identical or disjoint.

$$G = \bigcup_{i=1}^k [a_i]_R = \bigcup_{i=1}^k a_i H$$

 $|a_1H| = |a_2H| = |a_3H| = ... = |a_kH| = |H|$

Lagrange's theorem

- The order of each subgroup of a finite group is a divisor of the order of the group.
- \bullet If $\langle H, * \rangle$ is a subgroup of $\langle G, * \rangle$, |G| = n, |H| = m, then $m \mid n$.

Proof:

Since $\langle G, * \rangle$ is a finite group, H is finite.

Therefore, the number of cosets of *H* in *G* is finite.

Let a_1H , a_2H , ..., a_kH be the distinct left cosets of H in G.

$$|G| = |a_1H| + |a_2H| + |a_3H| + ... + |a_kH|$$

Since
$$|a_1H| = |a_2H| = |a_3H| = ... = |a_kH| = |H|$$

$$|G|=k|H|$$

Corollary

• Every group with an order of a prime number can not have other subgroups other than two trivial subgroups .

Exercise 2

• Group $\langle \mathbf{Z}_4, +_4 \rangle$. Let $G = \mathbf{Z}_4$. Determine all the left cosets of $H = \{[0]\}$ in G.

+ _m	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

Exercise 3

•Group $<\mathbf{Z}_4$, $+_4>$. Let $G=\mathbf{Z}_4$. Determine all the left cosets of $H=\{[0],[1],[2],[3]\}$ in G.

+ _m	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]