

FE590 - Statistical Learning

Country Risk Scoring/Risk Rating – the quantitative & qualitative approach

Introduction

- Country risk analysis is an important indicator as it is related to the risk of investing or lending (to companies) in a country
- Possible changes in the business environment may adversely affect operating profits, assets value and credibility/trustworthy of the country.
- Financial factors such as currency, bond yield, GDP/employment rate, regulatory changes, or politically stability factors such as mass riots, civil war and other potential events contribute to companies' operational risks (closely related ~ Political Risk)
- Objective is predict the Country Risk scoring (quantitative) and Risk Rating group (qualitative) using machine learning techniques

Data

- Data of 83 countries collected (Brazil, Canada, China, Columbia, Egypt, Ghana, Japan, Kenya, Latvia, Luxembourg, Norway, Qatar, Singapore, South Korea, Sweden, Turkey, Vietnam, Ukraine, US etc.)
- Source: **Bloomberg**
- Bloomberg Country Risk Score & its country data:
 - Bond yield
 - GDP data / CPI data / Unemployment rate
 - Budget surplus
 - Import / Export, FDI etc.
- Risk rating group based on Fitch Ratings
 - AAA, AA+, AA, AA-, A+, A, A- (Good)
 - BBB+, BBB, BBB-, BB+, BB, BB- (Moderate)
 - B+, B, B-, CCC, CC etc. (Risky)

Supervised Techniques (Quantitative)

- Data split into training (~70%) and testing sets (~30%)
- Linear regression in R language [using glm()] select predictors based on smallest CP value on different subset selections

##		1	2	3	4	5	6	7	
##	(Intercept)	TRUE							
##	X5.Year.CDS	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	
##	X3.Month.Deposit.Rate	FALSE							
##	Equity.Index.Price.Change.Perc	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE	
##	${\tt Index.Returns.To.Global.Avg.Zscore}$	FALSE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	
##	Historical.3.Month.Volatility	FALSE	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	
##	Real.Effective.Exchange.Rate	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	TRUE	
##	GDP.YOY.Perc	FALSE							
##	CPI.Actual	FALSE							
##	Unemployment	FALSE							
##	Total.External.Debt.PercGDP	FALSE							
##	Imports.PercGDP	FALSE							
##	Exports.PercGDP	FALSE							
##	Currency.Reserves.PercGDP	FALSE							
##	Foreign.Direct.Investment	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	
##	WGI.Control.Of.Corruption	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	
##	WGI.Govt.Effectiveness	FALSE							
##	WGI.Regulatory.Quality	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	
##	WGI.Rule.Of.Law	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE	
##	Ease.Of.Doing.Business.Rank	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	
##	Starting.A.Business.Rank	FALSE							

Linear regression (Quantitative)

- Selected predictors:
 - 3 month deposit rate
 - Index returns to Global Avg. Z score,
 - Unemploymenet rate
 - FDI
 - World wide Governance Indictor (WGI) corruption index
 - WGI Gov. effectiveness
 - WGI Rule of Law
 - Ease of Doing Business ranking

Linear regression (Quantitative)

Plot of predicted values vs. actual Bloomberg Risk Score

Tree regression (Quantitative)

Generated tree [using tree()] & predicted values vs. actual Bloomberg Risk Score

Boosting (Quantitative)

Ensemble method to improve results of weak learners sequentially, using [gbm()]

Equity.Index.Price.Change.Perc Historical.3.Month.Volatility X3.Month.Deposit.Rate Unemployment WGI.Govt.Effectiveness Total.External.Debt.PercGDP Ease.Of.Doing.Business.Rank WGI.Regulatory.Quality Exports.PercGDP	rel.inf 64.31743852 8.58889305 5.58321546 5.15688431 4.09328425 3.22075211 2.59328232 1.82447296 0.95530142
Exports.PercGDP WGI.Control.Of.Corruption	0.95530142
Currency.Reserves.PercGDP	0.66449581
CPI.Actual Imports.PercGDP	0.61352192 0.44300797
X5.Year.CDS	0.43755037
Index.Returns.To.Global.Avg.Zscore	0.24869574
Foreign.Direct.Investment	0.21865129
Starting.A.Business.Rank	0.21356855
Real.Effective.Exchange.Rate	0.10860436
GDP.YOY.Perc	0.01405102
WGI.Rule.Of.Law	0.00000000

Boosting (Quantitative)

Predicted values vs. actual Bloomberg Risk Score

SVM regression (Quantitative)

- Support Vector Machine (SVM) regression to map max.
 number of points to decision boundary of a line
- Predicted values vs. actual Bloomberg Risk Score

Neural Networks (Quantitative)

Network diagram with 5 hidden layers [using neuralnet()]:

Neural Networks (Quantitative)

Predicted values vs. actual Bloomberg Risk Score

Bagging (Quantitative)

- Bootstrap aggregating (bagging) improves variance via model averaging technique. Bagging has the best results
- Predicted values vs. actual Bloomberg Risk Score

Decision Tree (Qualitative)

- Tree classification [using rpart()]
- Predicted Rating Grop vs. actual Risk Rating Group

	Good	Moderate	Risky
Good	10	0	1
Moderate	1	6	2
Risky	0	1	2

Confusion matrix | accuracy = 78.3%

LDA (Qualitative)

- Linear discriminant using linear combination of features for classification [using LDA()]
- Predicted Rating Group vs. actual Risk Rating Group

	Good	Moderate	Risky
Good	5	0	0
Moderate	2	3	2
Risky	0	0	0

Confusion Matrix

Accuracy = 80.0%

SVM (Qualitative)

- Support Vector Machine finds corresponding hyperplane that maximizes the separation between data points in classification [using SVM()]. Linear based & radial Kernel with best fit model.
- Predicted Rating Group vs. actual Risk Rating Group

* linear kernel	Good	Moderate	Risky
Good	5	1	0
Moderate	2	2	0
Risky	0	0	0

* radial kernel	Good	Moderate	Risky
Good	5	0	0
Moderate	5	3	0
Risky	0	0	0

Confusion Matrix

Accuracy = 70.0%

Confusion Matrix

Accuracy = 50.0%

Neural Networks (Qualitative)

- Network diagram with 3 hidden layers [using neuralnet()]:
- Predicted Rating Group vs. actual Risk Rating Group

	Good	Moderate	Risky
Good	4	1	0
Moderate	2	2	2
Risky	0	0	0

Confusion Matrix | Accuracy = 54.5%

Boosting (Qualitative)

- Ensemble method to improve results of weak learners sequentially, using [gbm()]. Multinomial classification with specific learning rate.
- Predicted Rating Group vs. actual Risk Rating Group. Boosting has highest accuracy.

	Good	Moderate	Risky
Good	10	1	1
Moderate	1	6	1
Risky	0	0	3

Confusion Matrix | Accuracy = 82.6%

Conclusion

- Both bagging improves accuracy of quantitative results while boosting improves the accuracy of qualitative results
- The supervised learning techniques have fairly well accurate predictions > 80% for Country Risk Scoring / Risk Rating classification