Due: Tuesday 02/25/2020

- **PP**: 1.25 Prove that, in a topological space X, if U is open and C is closed, then U-C Is open and C-U is closed.
- *PP*: 1.26 Prove that closed balls are closed sets in the standard topology on \mathbb{R}^2 .
- *PP*: 1.27 The infinite comb C is the subset of the plane illustrated in Figure 1.17 and defined by

$$C = \{(x,0)|0 \le x \le 1\} \cup \left\{ \left(\frac{1}{2^2}, y\right)|n = 0, 1, 2, \dots \text{ and } 0 \le y \le 1 \right\}$$

- (a) Prove that C is not closed in the standard topology on \mathbb{R}^2 .
- (b) Prove that C is closed in the vertical interval topology on \mathbb{R}^2 .
- PP: 1.33 Prove theorem 1.17: Let X be a topological space.
 - (a) Prove that \emptyset and X are closed sets.
 - (b) Prove that the intersection of any collection of closed sets in *X* is a closed set
 - (c) Prove that the union of finitely many closed sets in *X* is a closed set.
- *PP*: 1.35 Show that \mathbb{R} in the lower limit topology is Hausdorff.
- **PP**: 1.36 Show that \mathbb{R} in the finite complement topology is not Hausdorff.
- **PP**: 2.02 Prove theorem 2.2: Let X be a topological space and A and B be subsets of X.
 - (a) If C is a closed set in X and $A \subset C$, then $Cl(A) \subset C$
 - (b) If $A \subset B$ then $Cl(A) \subset Cl(B)$
 - (c) A is closed if and only if A = Cl(A)
- PP: 2.07 Let $B=\left\{\frac{a}{2^n}\in\mathbb{R}|a\in\mathbb{Z},n\in\mathbb{Z}_+\right\}$. Show that B is dense in \mathbb{R}
 - 2.10 Prove Theorem 2.5: Let X be a topological space, A be a subset of X, and y be an element of X. Then $y \in Cl(A)$ if and only if every open set containing y intersects A.

Proof. Let (X, \mathcal{T}) be a topological space, $A \subset X$ and $y \in X$.

(⇒) WTS: If $y \in Cl(A)$ then $\forall U \in \mathcal{T}$ such that $y \in U$ we will have the following $U \cap A \neq \emptyset$

By way of contradiction, suppose $y \notin Cl(A)$. Then there exists a closed set C such that $y \notin C$. Thus, X - C is open and $y \in X - C \subset X - A$. Notice, $(X - C) \cap A = \emptyset$. This is a contradiction as X - C is an open set containing y, yet $(X - C) \cap \emptyset = \emptyset$.

Due: Tuesday 02/25/2020

Therefore, if $y \in Cl(A)$ then every open set containing y intersects A.

(\Leftarrow) *WTS*: *If* $\forall U \in \mathcal{T}$ *such that* $y \in U$ *and* $U \cap A \neq \emptyset$ *then* $y \in Cl(A)$ Let U be open and $U \cap A \neq \emptyset$. By theorem 2.4, We have that $U \in Int(A)$. Recall, by definition $Int(A) \subset A \subset Cl(A)$. Since, $y \in U \in Int(A)$ it follows that $y \in Cl(A)$ Therefore $\forall U \in \mathcal{T}$ such that $y \in U$ and $U \cap A \neq \emptyset$ then $y \in Cl(A)$

- PP: 2.11 Prove Theorem 2.6: For sets A and B in a topological space X, the following hold:
 - (a) Cl(X A) = X Int(A)
 - (b) $Int(A) \cap Int(B) = Int(A \cap B)$
 - 2.13 Determine the set of limit points of *A* in each case.
 - (a) A = (0, 1] in the lower limit topology on \mathbb{R} . A' = [0, 1)
 - (b) $A=\{a\}$ in $X=\{a,b,c\}$ with topology $\{X,\varnothing,\{a\},\{a,b\}\}$ $A'=\{b,c\}$
 - (c) $A = \{a, c\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}$ $A' = \{b, c\}$
 - (d) $A = \{b\}$ in $X = \{a, b, c\}$ with topology $\{X, \emptyset, \{a\}, \{a, b\}\}$ $A' = \{a, c\}$
 - (e) $A = (-1,1) \cup \{2\}$ in the standard topology on \mathbb{R} A' = [-1,2]
 - (f) $A = (-1,1) \cup \{2\}$ in the lower limit topology on \mathbb{R} A' = [-1,2)
 - (g) $A=\{(x,0)\in\mathbb{R}^2|x\in\mathbb{R}\}$ in \mathbb{R}^2 with the standard topology. $A'=\mathbb{R}$
 - (h) $A=\{(0,x)\in\mathbb{R}^2|x\in\mathbb{R}\}$ in \mathbb{R}^2 with the topology generated by the basis in Exercise 1.19
 - (i) $A=\{(x,0)\in\mathbb{R}^2|x\in\mathbb{R}\}$ in \mathbb{R}^2 with the topology generated by the basis Exercise 1,19 $A'=\mathbb{R}$
 - 2.20 Prove Theorem 2.11: Let A be a subset of \mathbb{R}^n in the standard topology. If x is a limit point of A, then there is a sequence of points in A that converges to x.

Proof. WTS: $x \in A' \Rightarrow \exists (x_n)$

Due: Tuesday 02/25/2020

PP: 2.21 Determine the set of limit points of the set

$$S = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right) \in \mathbb{R}^2 | 0 < x \le 1 \right\}$$

as a subset of \mathbb{R}^2 in the standard topology. (The closure of S in the plane is known as the topologist's sine curve.)