2022-2023 MP2I

À chercher pour lundi 10/10/2022, corrigé

TD 6:

Exercice 10.

1) Posons $f: x \mapsto \tan(2\arctan(x))$. Puisque arctan est à valeurs dans $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, on a $2\arctan$ à valeurs dans $\left] -\pi, \pi\right[$. Pour le domaine de définition, il faut enlever donc les x tels que $2\arctan(x) = \pm \frac{\pi}{2}$, autrement dit le domaine de définition de f est $D = \mathbb{R} \setminus \{-1, 1\}$.

Pour simplifier, on utilise le fait que $\tan(2x) = \frac{2\tan(x)}{1-\tan^2(x)}$ et le fait que pour tout x réel, $\tan(\arctan(x)) = x$. On en déduit que pour tout $x \in \mathbb{R} \setminus \{-1,1\}$, $f(x) = \frac{2x}{1-x^2}$.

2) Posons $g: x \mapsto \cos(\arctan(x))$. g est définie sur \mathbb{R} comme composée de fonctions définies sur \mathbb{R} . Pour simplifier cette expression, on va exprimer cosinus en fonction de la tangente. On a $\frac{1}{\cos^2} = 1 + \tan^2$ (il suffit de dériver la fonction tangente par exemple pour retrouver cette expression rapidement). On en déduit que $\cos^2 = \frac{1}{1 + \tan^2}$. Ceci entraine que pour tout $y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, puisque cosinus est positif sur cet intervalle, on a :

$$\cos(y) = \frac{1}{\sqrt{1 + \tan^2(y)}}.$$

En $y = \arctan(x)$, on en déduit que pour tout $x \in \mathbb{R}$, $f(x) = \frac{1}{\sqrt{1+x^2}}$.

Exercice 17.

1) f est définie sur \mathbb{R} et pour $x \in \mathbb{R}$, $f(x) = xe^{-x\ln(2)}$ qui est dérivable sur \mathbb{R} . On a pour $x \in \mathbb{R}$:

$$f'(x) = e^{-x\ln(2)} - \ln(2)xe^{-x\ln(2)} = (1 - \ln(2)x)2^{-x}.$$

On a donc f strictement croissante sur $\left]-\infty, \frac{1}{\ln(2)}\right]$ et strictement décroissante sur $\left[\frac{1}{\ln(2)}, +\infty\right[$. La limite en $-\infty$ est $-\infty$ (pas de forme indéterminée) et la limite en $+\infty$ est 0 (par croissances comparées). Puisque $0 < \ln(2) < 1$, on a bien f croissante sur [0,1]

2) Pour $x \in \left[0, \frac{\pi}{4}\right]$, on a $g(x) = e^{\ln(2)\cos(x)} + e^{\ln(2)\sin(x)}$ donc g est dérivable comme somme/composée de fonctions dérivables. Pour $x \in \left[0, \frac{\pi}{4}\right]$, on a :

$$\begin{split} g'(x) &= -\ln(2)\sin(x)2^{\cos(x)} + \ln(2)\cos(x)2^{\sin(x)} \\ &= \ln(2)2^{\cos(x) + \sin(x)} \left(-\sin(x)2^{-\sin(x)} + \cos(x)2^{-\cos(x)} \right) \\ &= \ln(2)2^{\cos(x) + \sin(x)} \left(f(\cos(x)) - f(\sin(x)) \right). \end{split}$$

Pour $x \in \left[0, \frac{\pi}{4}\right]$, on a $0 \le \sin(x) \le \cos(x) \le 1$. Par croissance de f sur [0, 1], on a donc $\forall x \in \left[0, \frac{\pi}{4}\right]$, $g'(x) \ge 0$ donc g est croissante sur $\left[0, \frac{\pi}{4}\right]$.

3) Pour $x \in \left[0, \frac{\pi}{4}\right]$, on a donc $g(0) \leq g(x) \leq g\left(\frac{\pi}{4}\right)$. Or, g(0) = 2 + 1 = 3 et $g\left(\frac{\pi}{4}\right) = 2^{\frac{1}{\sqrt{2}}} + 2^{\frac{1}{\sqrt{2}}} = 2^{1 + \frac{1}{\sqrt{2}}}$. Puisque pour $x \in \left[0, \frac{\pi}{4}\right]$, $\cos(x) \geq 0$ et $\sin(x) \geq 0$, on a l'encadrement voulu où l'on peut mettre des valeurs absolues.

On vérifie alors que $x \mapsto 2^{|\cos(x)|} + 2^{|\sin(x)|}$ est paire et $\frac{\pi}{2}$ -périodique (on a $\cos(x + \pi/2) = -\sin(x)$ et $\sin(x + \pi/2) = \cos(x)$).

Par parité, on peut étendre la propriété sur $\left[-\frac{\pi}{4},\frac{\pi}{4}\right]$ qui est de longueur $\frac{\pi}{2}$ donc on peut étendre la propriété sur \mathbb{R} !

Déduire de la question précédente l'inégalité recherchée sur $\left[0,\frac{\pi}{4}\right]$ puis la démontrer sur $\mathbb R$ tout entier à l'aide d'arguments de périodicité/symétrie.

TD 7:

Exercice 5. On pose $t = \frac{\pi}{4} - x$ donc dt = -dx. On a alors :

$$I = \int_{\frac{\pi}{4}}^{0} \ln(1 + \tan\left(\frac{\pi}{4} - x\right))(-dx) = \int_{0}^{\frac{\pi}{4}} \ln(1 + \tan\left(\frac{\pi}{4} - x\right))dx.$$

Or, $\tan\left(\frac{\pi}{4} - x\right) = \frac{1 - \tan(x)}{1 + \tan(x)}$ (en utilisant $\tan(a + b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$). On a donc :

$$I = \int_0^{\frac{\pi}{4}} \ln\left(\frac{2}{1 + \tan(x)}\right) dx = -\frac{\pi}{4} \ln(2) - I.$$

On en déduit finalement que $I = \frac{\pi \ln(2)}{8}$.