GAN and Diffusion with Transformer

Stanley Liang

Research Fellow, NLM

Recap

- The transformer architecture can extend to computer vision tasks
- Unlike the convolutional approach
 - Feed the NN with a sequence of image patches
 - Convert flattened patches into class embedding + position
 - Multi-head Self Attention
 - Key content details, relationships, crucial features in recognition
 - Query patch content, similarity, significance in the whole image
 - Value patch information to other patches, capture & express importance of features
 - $Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$

GAN – Generative Adversarial Network

- GAN is a deep neural network framework to generate plausible data samples given a distribution domain
- GAN trains a generative model by framing the problem as a supervised learning problem with two sub-models
 - The generator model produces new samples
 - The discriminator model classifies whether a sample is truly from the domain (real), or a generated one (fake)
- The two models are trained together in an adversarial manner, or zero-sum game
 - Ideal status the discriminator classifies about 50% as fake, meaning the generated images can fool the discriminator

Generative adversarial networks (conceptual)

199

Generative models

- Generative vs Discriminative
- Discriminative

- $X \rightarrow Y \ by \ ML$, Arg max P(Y|X)
- Generative

- $\xi_{noise}, Y_{class} \rightarrow X_{features}$
- P(X|Y)

Variational Autoencoders (VAE)

After training

Generative adversarial network (GAN)

After training

Look real

Conditional GAN

- Conditional GAN or cGAN generates sample to a designated class
- Unconditional GAN generates sample to a random class
- cGAN requires labeled training data
- Label encoding
 - Extra class vector
 - Extra dimensions to the input matrices
 - Use shallow NN to encode a feature map as the labels
- Issues of cGAN
 - Complexity of feature encoding
 - Difficult to optimize
 - Require large training datasets

Wasserstein GAN

- Mode collapse
 - Generator produces a particular plausible output which classified as real by the discriminator
 - Discriminator finds the best idea is to always reject this type of outputs
 - Generator over-optimizes for a particular discriminator
 - Discriminator never manages to learn its way out of the trap.

 Wasserstein use a new discriminator called critic to measure the dissimilarity of the two distributions by earth mover's distance (EMD)

$$\mathbb{W}(P_r, P_g) = \sup_{\|f\|_L \le 1} \mathbb{E}_{x \sim \mathbb{P}_r}(f(x)) - \mathbb{E}_{x \sim \mathbb{P}_g}(f(x))$$

- The Wasserstein loss no longer measures the probability of an image being real or fake, by the distance between the synthetic distribution and the real distribution
- The loss is differentiable in full range
- EMD computing
 - Lipschitz L1 norm
 - Weight clipping
 - Gradient penalty

Image Synthesis by GAN

- The generator produces plausible image example to a belonging to the designated domain
- Synthetic images usually look more real
- Evaluation metrics
 - 1. Subjective judgment
 - Fidelity synthetic images vs real images
 - Diversity generated images should not be identical
 - 4. Inception score, Frechet-Inception distance (FID), Kernel-Inception distance (KID), etc..

Self-Attention Generative Adversarial Networks (SAGAN)

- Proposed by GAN inventor in 2019
- Attention-driven, long-range dependency
- Discriminator can detect consistency of highly detailed features
- Spectral normalization for generator
- $\text{Objective loss: hinge loss} \ \ \overset{L_D = \ -\mathbb{E}_{(x,y) \sim p_{data}}[\min(0,-1+D(x,y))] \ -\mathbb{E}_{z \sim p_z,y \sim p_{data}}[\min(0,-1-D(G(z),y))],} \\ L_G = \ -\mathbb{E}_{z \sim p_z,y \sim p_{data}}D(G(z),y),$
- Spectral Normalization (SN): prevent parameter magnitudes from escalating
- Two-Timescale Update Rule (TTUR)
- Compensate slow learning by regularization

Model	Inception Score	FID
AC-GAN [31]	28.5	/
SNGAN-projection [17]	36.8	27.62*
SAGAN	52.52	18.65

Denoising diffusion versus GAN

 $p_{\theta}(x_{t-1}|x_t) \coloneqq N(x_{t-1}; \mu_{\theta}; (x_t, t) \in_{\theta} (x_t, t))$

Loss Objective

$$L_{KL} = \mathbb{E}_{t,x_0,\epsilon} \left[\left\| \epsilon - \epsilon_{\theta} \left(\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon \right) \right\|^2 \right]$$

Generator loss:
$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(1 - D(G(z^{(i)})))$$

Discriminator loss: $\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m [\log D(x^{(i)}) + \log (1 - D(G(z^{(i)})))]$

Latent Diffusion Model (LDM)

U-Net with attention

 Conventional U-net uses convolution blocks in both up/down sampling

U-net with self-attention enhances the learning for both local and

global context

Patching + position embedding

- UP / down blocks, bottlenet
 - Convolution + residual
 - Residual connection
 - normalization layer
 - self-attention layer

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.

Explainable AI (XAI) to explore transformers

- XAI shows how the ML algorithms make decisions
- Grad-CAM (Gradient-weighted Class Activation Mapping)
- Mean of attention distance
- Attention heatmap

