MA 126 — Spring 2017 —	Prof. Clontz —	Standard Assessment 1
------------------------	----------------	-----------------------

Name:		

- Each question is prefaced with a Standard for this course.
- When grading, each response will be marked as follows:
 - $-\sqrt{}$: The response is demonstrates complete understanding of the Standard.
 - $-\star$: The response may indicate full understanding of the Standard, but clarification or minor corrections are required.
 - \times : The response does not demonstrate complete understanding of the Standard.
- Only responses marked with a \checkmark mark count toward your grade for the semester. Visit the course website for more information on how to improve \star and \times marks.
- \bullet This Assessment is due after 50 minutes. All blank responses will be marked with \times .

	Mark:	
C01: This student is able to		
Derive properties of the logarithmic and exponential functions from		
their definitions.		
	(Instructor Use Only)	

Use the definition $\ln x = \int_1^x \frac{1}{t} dt$ to prove that $\ln(x/a) = \ln x - \ln a$ for all positive real numbers x and a.

	Mark:
C02: This student is able to Prove hyperbolic function identities.	
	(Instructor Use Only)

Use the definitions

$$\sinh(x) = \frac{e^x - e^{-x}}{2}, \cosh(x) = \frac{e^x + e^{-x}}{2}$$

to prove the following identity.

$$\cosh^2(x) = 1 + \sinh^2(x)$$

S01: This student is able to...
Find derivatives and integrals involving logrithmic and exponential functions.

[Instructor Use Only]

a) Find
$$\frac{d}{dy}[\ln(y^2+1) + e^{3y}].$$

b) Find
$$\int \left(\frac{e}{x} + e^x\right) dx$$
.

S02: This student is able to...
Find derivatives and integrals involving hypberbolic functions.

(Instructor Use Only)

a) Find $\frac{d}{dx}[\cosh(2x-7)+\sinh(x^2)\operatorname{csch}(x^2)]$.

b) Find $\int 5 \operatorname{sech}(t) \tanh(t) dt$.

Use this space if you need extra room for a problem: