Variable Compleja

Basado en las clases de Cristóbal Miguel González Enríquez

Autor: Jorge Rodríguez Domínguez

Índice general

Capítulo 1

Los números complejos

 $(\mathbb{R}^2,+,\cdot)$ con las siguientes operaciones

- Suma : (a, b) + (c, d) = (a + b, c + d).
- Producto: $(a, b) \cdot (c, d) = (ac bd, ad + bc)$

es un cuerpo, lo llamaremos $\mathbb C$ y sus elementos se llaman números complejos.

Observamos que

$$E = \{(a,0) : a \in \mathbb{R}\} \subset \mathbb{C}$$

es subcuerpo de \mathbb{C} , pues

- $(a,0) + (c,0) = (a+c,0) \in E$.
- $(a,0) \cdot (c,0) = (ac,0) \in E$.
- El opuesto de (a,0) es $(-a,0) \in E$.
- El inverso de $(a,0) \neq (0,0)$ es $\left(\frac{1}{a},0\right) \in E$.

Esto nos dice que E es subcuerpo de $\mathbb C$. Además E es isomorfo a $\mathbb R$ (en sentido de cuerpos) mediante la siguiente identificación

$$(a,0) \in E \longleftrightarrow a \in \mathbb{R}$$

1.1. Terminología y nomenclatura

- 1) Los elementos de $\mathbb{C} \longleftrightarrow \mathbb{R}^2$ se llaman números complejos.
- 2) Si $(a,b) \in \mathbb{C}$, su parte real es a y su parte imaginaria es b.
- 3) $(1,0) \equiv 1$.
- 4) $(0,1) \equiv i$.

Mediante la identificación $E \longleftrightarrow \mathbb{R}$, tenemos que para $x, y \in \mathbb{R}$

- $x \cdot 1 = x.$
- $y \cdot i = (0, y).$
- (x,y) = (x,0) + (0,y) = x + iy.

De esta manera

$$\mathbb{C} = \{x + iy : x, y \in \mathbb{R}\}.$$

Los números complejos se representan en \mathbb{R}^2 de la siguiente manera:

Si $z = x + iy \in \mathbb{C}$, entonces Re(z) = x e Im(z) = y.

- \mathbb{C} no tiene orden (\mathbb{R} sí).
- $i^2 = (0,1) \cdot (0,1) = (-1,0) = -1.$

Definición 1.1.1. Si $z = a + ib \in \mathbb{C}$, definimos su conjugado como $\overline{z} = a - ib$.

Esta operación de conjugación se puede ver en \mathbb{R}^2 como la siguiente aplicación lineal

$$\begin{array}{ccc}
\mathbb{R}^2 & \longrightarrow \mathbb{R}^2 \\
\begin{pmatrix} x \\ y \end{pmatrix} & \longmapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}
\end{array}$$

Algunas propiedades innmediatas son

- 1) $\bar{0} = 0$.
- 2) $\bar{1} = 1$.
- 3) $\overline{z+w} = \overline{z} + \overline{w}, z, w \in \mathbb{C}.$
- 4) $\overline{z \cdot w} = \overline{z} \cdot \overline{w}, z, w \in \mathbb{C}.$
- 5) Involución : $\overline{\overline{z}} = z, z \in \mathbb{C}$.
- 6) Si $z = a + ib \in \mathbb{C}$,

$$\operatorname{Re}(z) = a = \frac{z + \overline{z}}{2}$$
 y $\operatorname{Im}(z) = b = \frac{z - \overline{z}}{2i}$.

1.2. \mathbb{C} como espacio vectorial

Al estar \mathbb{C} identificado con \mathbb{R}^2 , tenemos que \mathbb{C} es un espacio vectorial de dimensión 2. La base canónica es $\{1,i\}$. Pero como \mathbb{C} es un cuerpo, tenemos que es un espacio vectorial complejo de dimensión y tiene como base canónica $\{1\}$.

Veamos como son las aplicaciones lineales de $\mathbb C$ en $\mathbb C$.

• Punto de vista real.

$$L: \mathbb{C} \longrightarrow \mathbb{C}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto L \begin{pmatrix} x \\ y \end{pmatrix} = xL(1) + yL(i)$$

En términos de números complejos, z = x + iy. Entonces

$$L(z) = L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \vdots$$

$$= \frac{(a_{11} + a_{22}) + i(-a_{12} + a_{21})}{2} z + \frac{(a_{11} - a_{22}) + i(a_{12} + a_{21})}{2} \overline{z}$$

■ Punto de vista complejo

$$L: \mathbb{C} \longrightarrow \mathbb{C}$$
$$z \longmapsto zL(1)$$

Veamos como son las rectas de números complejos. En $\mathbb R$ una recta es de la forma

$$Ax + By + C = 0$$
, $A, B, C \in \mathbb{R}, |A| + |B| > 0$.

En términos de números complejos

$$0 = A \frac{z + \overline{z}}{2} + B \frac{z - \overline{z}}{2i} + C = \frac{A - iB}{2} z + \frac{A + iB}{2} \overline{z} + C$$
$$= \beta z + \overline{\beta} \overline{z} + \gamma \text{ donde } \beta = \frac{A - iB}{2}, \gamma = C.$$

Nos queda que la ecuación de una recta en el plano complejo es

(E)
$$\beta z + \overline{\beta}\overline{z} + \gamma = 0$$
, $\beta \in \mathbb{C}, \beta \neq 0, \gamma \in \mathbb{R}$

Definición 1.2.1. Definimos el módulo o valor absoluto de un número complejo como la aplicación

$$|.|: \mathbb{C} \longrightarrow \mathbb{R}^+$$

 $z \longmapsto \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2} = \sqrt{z \cdot \overline{z}}.$

Veamos que el módulo es, efectivamente, una norma.

Demostraci'on. 1) $|z| \ge 0.$

- 2) $|z| = 0 \iff z = 0.$
- 3) Desigualdad triangular : $|z+w| \le |z| + |w|$. Veamoslo. Sean $z=x+iy, \ w=u+iv$ donde $x,y,u,v \in \mathbb{R}$.

Cuentas previas

(i)

$$\begin{aligned} & \text{Re}(z) = x \le |x| = \sqrt{x^2} \le \sqrt{x^2 + y^2} = |z| \\ & \text{Im}(z) = y \le |y| = \sqrt{y^2} \le \sqrt{x^2 + y^2} = |z|. \end{aligned}$$

$$\begin{array}{ll} \text{(ii)} & |z\cdot w| = \sqrt{(zw)\cdot \overline{(zw)}} = \sqrt{z\overline{z}w\overline{w}} = \sqrt{|z|^2|w|^2} = |z|\cdot |w|. \\ \text{(iii)} & |\overline{z}| = |z|. \end{array}$$

Ahora si, pasamos a probar la desigualdad triangular.

$$|z+w|^2 = (z+w)\overline{(zw)} = z\overline{z} + w\overline{w} + z\overline{w} + \overline{z}w$$

$$= |z|^2 + |w|^2 + 2\operatorname{Re}(z\overline{w})$$

$$\leq |z|^2 + |w|^2 + 2|z\overline{w}| = |z|^2 + |w|^2 + 2|z||\overline{w}|$$

$$= |z|^2 + |w|^2 + 2|z||w|$$

$$= (|z| + |w|)^2$$

Luego $|z+w| \le |z| + |w|$.

4) Compatibilidad de la norma con el producto por escalares.

$$|\lambda z| = |\lambda||z|, \quad \lambda, z \in \mathbb{C}.$$

El hecho de tener definida la multiplicación en \mathbb{C} y la propiedad |zw|=|z||w| nos dice que \mathbb{C} es un álgebra (real o compleja) conmutativa (por ser la multiplicación conmutativa). La norma que hemos definido en \mathbb{C} viene del siguiente producto escalar complejo

$$<.,.>: \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{C}$$

 $(z,w) \longmapsto < z,w>_{\mathbb{C}} = z\overline{w}$

Veamos que es, efectivamente, un producto escalar complejo

Demostración. 1) Sesguilinealidad (lineal por la izquierda y lineal conjugado por la derecha). Dados $\lambda_1, \lambda_2 \in \mathbb{C}, z, z_2, z_2, w, w_1, w_2 \in \mathbb{C}$ entonces

$$<\lambda_1 z_2 + \lambda_2 z_2, w>_{\mathbb{C}} = \lambda_1 < z_1, w>_{\mathbb{C}} + \lambda_2 < z_2, w>_{\mathbb{C}}$$

$$< z, \lambda_2 w_2 + \lambda_2 w_2>_{\mathbb{C}} = \overline{\lambda_1} < z, w_1>_{\mathbb{C}} + \overline{\lambda_2} < z, w_2>_{\mathbb{C}}$$

2) Hermeticidad (simetría conjugada). Dados $z,w\in\mathbb{C}$ entonces

$$\langle z, w \rangle_{\mathbb{C}} = z\overline{w} = \overline{\overline{z}\overline{w}} = \overline{\overline{z}w} = \overline{w}\overline{\overline{z}} = \overline{\langle w, z \rangle_{\mathbb{C}}}$$

3) Definido positivo. Dado $z \in \mathbb{C}$. Entonces

$$\langle z, z \rangle_{\mathbb{C}} = z\overline{z} = |z|^2 \ge 0$$
 y
 $\langle z, z \rangle_{\mathbb{C}} = 0 \iff |z|^2 = 0 \iff z = 0.$

Podemos ver este producto escalar en \mathbb{R}^2 en términos complejos. Sean

$$z_1 = x_1 + iy_1$$
 y $z_2 = x_2 + iy_2$,

 $x_1, y_1, x_2, y_2 \in \mathbb{R}$. Entonces

$$\langle (x_1, y_1), (x_2, y_2) \rangle_{\mathbb{R}^2} = x_1 x_2 + y_1 y_2 = \text{Re}(z_1 \overline{z_2}).$$

Veamos como es una circunferencia de números complejos de centro $z_0 = x_0 + iy_0$ y radio r > 0.

(E)
$$\{z \in \mathbb{C} : |z - z_0| = r\}$$

$$0 = |z - z_0|^2 - r^2 = \dots = |z|^2 + |z_0|^2 - 2\operatorname{Re}(z\overline{z_0}) - r^2$$
$$= |z|^2 - \overline{z_0}z - z_0\overline{z} + |z_0|^2 - r^2.$$

Multiplicando por $\alpha \in \mathbb{R}$, $\alpha \neq 0$

$$0 = \alpha |z|^2 - \alpha \overline{z_0}z - \alpha z_0 \overline{z} + \alpha (|z_0|^2 - r^2)$$

Llamando $\beta = -\alpha \overline{z_0} z$ y $\gamma = \alpha(|z_0|^2 - r^2)$ nos queda que

$$\alpha |z|^2 + \beta z + \overline{\beta} \overline{z} + \gamma = 0$$

donde $\alpha, \gamma \mathbb{R}, \alpha \neq 0, \beta \in \mathbb{C}$ y $|\beta|^2 > \alpha \gamma$. Si $\alpha = 0$ tendríamos la ecuación de una recta.

Nos queda que la ecuación de una circunferencia (o recta) en el plano complejo es

$$(E) \alpha |z|^2 + \beta z + \overline{\beta}\overline{z} + \gamma = 0, \quad \alpha, \gamma \in \mathbb{R}, \beta \in \mathbb{C}, |\beta|^2 > \alpha \gamma$$

1.3. Topología en $\mathbb C$

La norma |.| en $\mathbb C$ genera la siguiente métrica

$$d(z_2, z_2) = |z_1 - z_2|, \quad z_1, z_2 \in \mathbb{C}.$$

Como sabemos, una métrica genera un topología. Las bolas las llamaremos discos.

Definición 1.3.1. Definimos

• Disco abierto de centro z_0 y radio r

$$\Delta(z_0, r) = \mathbb{D}(z_0, r) = \{ z \in \mathbb{C} : |z - z_0| < r \}.$$

 \blacksquare Circunferencia de centro z_0 y radio r

$$\partial \Delta(z_0, r) = C(z_0, r) = \{ z \in \mathbb{C} : |z - z_0| = r \}.$$

• Disco cerrado de centro z_0 y radio r

$$\overline{\Delta(z_0, r)} = \{ z \in \mathbb{C} : |z - z_0| \le r \}.$$

Con la métrica inducida tenemos el concepto de convergencia de sucesiones y el concepto de continuidad.

Observación 1.3.2. $(\mathbb{C},|.|)$ es un espacio vectorial normado completo, es decir, toda sucesión de Cauchy converge. En cuanto a la continuidad de funciones, $f:D\subset\mathbb{C}\longrightarrow\mathbb{C}$ es continua si y solo si

$$\operatorname{Re}(f): D \longrightarrow \mathbb{R}$$
 es continua y $\operatorname{Im}(f): D \longrightarrow \mathbb{R}$ es continua.

Tenemos que $(\mathbb{C}, +, \cdot, |.|)$ es un álgebra de Banach conmutativa, luego la teoría de series de potencias tiene sentido completo en \mathbb{C} y, en particular, podemos definir la exponencial de cualquier número complejo de la siguiente manera

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \quad z \in \mathbb{C},$$

y como el producto es conmutativo,

$$e^{z_1+z_2} = e^{z_1} \cdot e^{z_2}, \quad z_1, z_2 \in \mathbb{C}.$$

Algunas propiedades de la exponencial son

- 1) $e^0 = 1$.
- 2) $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, x \in \mathbb{R}.$
- 3) $z = x + iy, x, y \in \mathbb{R}$ entonces

$$e^z = e^{x+iy} = e^x e^{iy} = e^x \sum_{n=0}^{\infty} \frac{(iy)^n}{n!} = \dots = e^x (\cos(y) + i \sin(y))$$

- $Re(e^z) = e^x \cos(y) = e^{\operatorname{Re}(z)} \cos(\operatorname{Im}(z)).$
- $\operatorname{Im}(e^z) = e^x \operatorname{sen}(y) = e^{\operatorname{Re}(z)} \operatorname{sen}(\operatorname{Im}(z))$. Al ser $\operatorname{Re}(e^z)$ e $\operatorname{Im}(e^z)$ continuas, se tiene que e^z es continua en $\mathbb C$.
- $|e^z| = \sqrt{(e^x \cos(y))^2 + (e^x \sin(y))^2} = e^x$, donde $z = x + iy \in \mathbb{C}$. En particular $|e^{i\theta}| = 1$, para todo $\theta \in \mathbb{R}$.
- $\overline{e^z} = \overline{e^{x+iy}} = \overline{e^x(\cos(y) + i \sin(y))} = e^x(\cos(y) i \sin(y)) = e^x(\cos(y) + i \sin(-y)) = e^{\overline{z}}.$
- 4) La exponencial compleja es periódica de periodo $2\pi i$.

$$e^{z+2\pi i} = e^{x+i(y+2\pi)} = e^x(\cos(y+2\pi) + i\sin(y+2\pi))$$

= $e^x(\cos(y) + i\sin(y)) = e^z$.

En particular, la exponencial no es inyectiva.

5) La exponencial no es sobreyectiva, pues $e^z \neq 0$ para todo $z \in \mathbb{C}$. De hecho, el 0 es el único número omitido por la exponencial, es decir, si $w \in \mathbb{C} \setminus \{0\}$, entonces existe $z \in \mathbb{C}$ tal que $e^z = w$.

1.4. Representación polar y exponencial de números complejos

Definición 1.4.1. Si $z \in \mathbb{C} \setminus \{0\}$, definimos el argumento de z como el siguiente conjunto

$$\arg(z) = \left\{ \theta \in \mathbb{R} : \cos(\theta) = \frac{\operatorname{Re}(z)}{|z|}, \sin(\theta) = \frac{\operatorname{Im}(z)}{|z|} \right\}$$

Proposición 1.4.2. Si $\theta_0 \in \arg(z)$ entonces $\arg(z) = \{\theta_0 + 2k\pi : k \in \mathbb{Z}\}.$

Demostración. Solo hace falta probar que $\arg(z) \supseteq \{\theta_0 + 2k\pi : k \in \mathbb{Z}\}$ (la otra inclusión es fácil de ver). Sea $\theta_1 \in \arg(z)$. Entonces

$$\cos(\theta_1) = \frac{\operatorname{Re}(z)}{|z|} = \cos(\theta_0) \Longleftrightarrow \left\{ \begin{array}{l} \theta_1 = \theta_0 + 2k\pi : k \in \mathbb{Z} \\ \theta_1 = -\theta_0 + 2k\pi : k \in \mathbb{Z} \end{array} \right.$$

Si se da el primer caso, entonces se cumple la proposición. Supongamos que se da el segundo caso, entonces también ha de ocurrir que

$$\operatorname{sen}(\theta_1) = \frac{\operatorname{Im}(z)}{|z|} = \operatorname{sen}(\theta_0)$$

luego,

$$\operatorname{sen}(-\theta_0) = \operatorname{sen}(-\theta_0 + 2k\pi) = \operatorname{sen}(\theta_0) \Longrightarrow 2\operatorname{sen}(\theta_0) = 0 \Longrightarrow \theta_0 = k_1\pi, \ k_1 \in \mathbb{Z}.$$

De aquí

$$\theta_1 = -\theta_0 + 2k\pi = -k_1\pi + 2k\pi$$

= $k_1\pi - 2k_1\pi + 2k\pi = k_1\pi + 2(k - k_1)\pi$
= $\theta_0 + 2(k - k_1)\pi$.

Definición 1.4.3. Si $z \in \mathbb{C} \setminus \{0\}$, su argumento principal es

$$Arg(z) = arg(z) \cap [-\pi, \pi)$$

Ejemplo 1.4.4. \bullet Arg(1) = 0.

- $\quad \operatorname{Arg}(i) = \frac{\pi}{2}.$
- $Arg(-1) = -\pi$.
- $Arg(-i) = -\frac{\pi}{2}$.

Observación 1.4.5. Si $z \in \mathbb{C} \setminus \{0\}$

$$\operatorname{Arg}(z) = \begin{cases} \operatorname{arc} \cos\left(\frac{\operatorname{Re}(z)}{|z|}\right) & si \quad \operatorname{Im}(z) > 0 \\ -\operatorname{arc} \cos\left(\frac{\operatorname{Re}(z)}{|z|}\right) & si \quad \operatorname{Im}(z) \le 0 \end{cases}$$

Luego, Arg : $\mathbb{C}\setminus(-\infty,0] \longrightarrow \mathbb{R}$ es continua en $\mathbb{C}\setminus(-\infty,0]$ y no se puede ser extendida de forma continua a $(-\infty,0]$.

Definición 1.4.6 (Forma polar y exponencial). Sea $z \in \mathbb{C} \setminus \{0\}$, entonces

- Forma polar: $z = |z|(\cos \theta + i \sin \theta)$.
- Forma exponencial: $z = |z|e^{i\theta}$.

La representación exponencial de un número complejo es muy útil, por ejemplo,

1) Multiplicación de números complejos: Dados $z_1=r_1e^{i\theta_1}$ y $z_1=r_2e^{i\theta_2}$ tenemos que

$$z_1 z_2 = r_1 e^{i\theta_1} r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)} = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$$

2) Desarrollando el miembro izquierdo de 1) tenemos que

$$z_1 z_2 = r_1(\cos \theta_1 + i \sin \theta_1) r_2(\cos \theta_2 + i \sin \theta_2)$$

= $r_1 r_2(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i(\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2).$

Con lo que llegamos a la fórmula de la suma de ángulos en el coseno y el seno.

3) Fórmula de Moivre.

$$(\cos \theta + i \sin \theta)^n = (e^{i\theta})^n = e^{in\theta} = \cos(n\theta) + i \sin(n\theta).$$

4) Podemos ver $re^{i\theta}$ como un número complejo en la circunferencia de centro 0 radio r que forma un ángulo θ con el eje real positivo.

Ejemplo 1.4.7. • $i = e^{i\frac{\pi}{2}}$.

 $3 = 3e^{i \cdot 0} = 3.$

 $-3i = 3e^{-i\frac{\pi}{2}} = 3e^{i\frac{3\pi}{2}}.$

Volvamos a la exponencial.

1) Sabemos que la exponencial tiene periodo $2\pi i$. Veamos que este es el periodo más pequeño, para ello, hemos de probar que $e^z = e^w$ si y solo si $z - w = 2k\pi i$, $k \in \mathbb{Z}$. Solo tenemos que probar que si $e^z = e^w$ entonces $z - w = 2k\pi i$, $k \in \mathbb{Z}$ (la otra implicación ya la vimos).

Demostración.

$$e^z = e^w \iff e^{z-w} = 1.$$

Escribimos z - w = x + iy, $x, y \in \mathbb{R}$. Entonces

$$e^{z-w} = 1 \iff e^{x}(\cos y + i \sin y) = 1 \iff \begin{cases} e^{x} \cos y = 1 \\ e^{x} \sin y = 0 \end{cases} \iff \begin{cases} e^{x} \cos y = 1 \\ \sin y = 0 \end{cases}$$
$$\iff \begin{cases} e^{x} \cos y = 1 \\ y = k\pi, \ k \in \mathbb{Z} \end{cases} \iff \begin{cases} e^{x}(-1)^{k} = 1 \\ y = k\pi, \ k \in \mathbb{Z} \end{cases} \iff \begin{cases} e^{x} \cdot 1 = 1 \\ y = k\pi, \ k \in \mathbb{Z}, \ k \text{ par} \end{cases}$$
$$\iff \begin{cases} x = 0 \\ y = k\pi, \ k \in \mathbb{Z} \end{cases} \iff z - w = 2k\pi i, \ k \in \mathbb{Z}$$

Observación 1.4.8. Esto nos dice que $f(z) = e^z$ es inyectiva en cualquier banda horizontal de altura 2π , es decir, del tipo

$$S_{y_0} = \{x + iy \in \mathbb{C} : y \in [y_0, y_0 + 2\pi)\}.$$

2) 0 es el único valor omitido por $f(z) = e^z$.

Demostración. Sea $w \in \mathbb{C}\setminus\{0\}$. Vamos a encontrar $z \in \mathbb{C}$ tal que $e^z = w$. Tomamos la representación exponencial $w = re^{i\theta}, r > 0, \theta \in \mathbb{R}$. Basta tomar $x = \log r$ e $y = \theta$, así

$$e^z = e^{x+iy} = e^x e^{iy} = e^{\log r} e^{i\theta} = re^{i\theta} = w$$

Observación 1.4.9. Si $k \in \mathbb{Z}$ y $e^z = w$, entonces $e^{z+2k\pi i} = w$.

Introducimos ahora la definición de logaritmo complejo.

Definición 1.4.10. Si $z \in \mathbb{C} \setminus \{0\}$, definimos el logaritmo complejo de z como

$$\log(z) = \{ w \in \mathbb{C} : e^w = z \}$$
$$= \log|z| + i \arg(z).$$

Y definimos el logaritmo principal como $\text{Log}(z) = \log|z| + i\text{Arg}(z)$.

Algunas propiedades del logaritmo son

1) Si $z_1, z_2 \in \mathbb{C} \setminus \{0\}$, $z_1 = r_1 e^{i\theta_1}$, $z_2 = r_2 e^{i\theta_2}$, $r_1, r_2 > 0$, $\theta_1 \in \arg(z_1)$ y $\theta_2 \in \arg(z_2)$, entonces $\arg(z_1 z_2) = \arg(r_1 e^{i\theta_1} r_2 e^{i\theta_2}) = \arg(r_1 r_2 e^{i(\theta_1 + \theta_2)}) = \arg(z_1) + \arg(z_2)$.

Con esto probado, es claro que $\log(z_1 z_2) = \log(z_1) + \log(z_2)$ (como conjuntos).

2) $\operatorname{Arg}(z_1 z_2)$ no es necesariamente $\operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)$, basta tomar $z_1 = z_2 = i$.

$$\operatorname{Arg}(i \cdot i) = \operatorname{Arg}(-1) = -\pi \neq \pi = \frac{\pi}{2} + \frac{\pi}{2} = \operatorname{Arg}(i) + \operatorname{Arg}(i)$$

3) Arg es continua en $\mathbb{C}\setminus(-\infty,0]$ y no admite extensión continua a un conjunto mayor.

Definición 1.4.11. • Sea $A \subset \mathbb{C}\setminus\{0\}$, decimos que $\varphi: A \longrightarrow \mathbb{R}$ es una rama (continua) de $\arg(z)$ en A, si φ es continua en A y $\varphi(z) \in \arg(z)$ para cada $z \in A$.

- Sea $A \subset \mathbb{C}$ y sea $f : A \longrightarrow \mathbb{C}$ continua, decimos que $\varphi : A \longrightarrow \mathbb{R}$ es una rama (continua) de $\arg(f)$ en A, si φ es continua en A y $\varphi(z) \in \arg(f(z))$ para cada $z \in A$.
- Sea $A \subset \mathbb{C}\setminus\{0\}$, decimos que $\psi: A \longrightarrow \mathbb{R}$ es una rama (continua) de $\log(z)$ en A, si ψ es continua en A y $\psi(z) \in \log(z)$ para cada $z \in A$, o equivalentemente, si $e^{\psi(z)} = z$ para todo $z \in A$.
- Sea $A \subset \mathbb{C}$ y sea $f: A \longrightarrow \mathbb{C}$ continua, decimos que $\psi: A \longrightarrow \mathbb{R}$ es una rama (continua) de $\arg(f)$ en A, si ψ es continua en A y $\psi(z) \in \log(f(z))$ para cada $z \in A$, o equivalentemente, si $e^{\psi(z)} = f(z)$ para todo $z \in A$.

Ejemplo 1.4.12. 1) Arg es una rama del arg(z) en $\mathbb{C}\setminus(-\infty,0]$.

- 2) Log es una rama del $\log(z)$ en $\mathbb{C}\setminus(-\infty,0]$.
- 3) $\varphi_0(z) = \arg(z) \cap [0, 2\pi), z \in \mathbb{C} \setminus \{0\}$ es continua en $\mathbb{C} \setminus \{0\}$ y por tanto es una rama de $\arg(z)$ en $\mathbb{C} \setminus [0, +\infty)$.

Demostración. Observamos que $\varphi_0(z) = \pi + \text{Arg}(-z)$.

- (i) $\varphi_0(z) \in \pi + [-\pi, \pi) = [0, 2\pi).$
- (ii) $\varphi_0(z) \in \arg(z)$ pues

$$\cos(\varphi_0(z)) = \cos(\pi + \operatorname{Arg}(-z)) = -\cos(\operatorname{Arg}(-z)) = -\frac{\operatorname{Re}(-z)}{|z|} = \frac{\operatorname{Re}(z)}{|z|}$$
$$\operatorname{sen}(\varphi_0(z)) = \operatorname{sen}(\pi + \operatorname{Arg}(-z)) = -\operatorname{sen}(\operatorname{Arg}(-z)) = -\frac{\operatorname{Im}(-z)}{|z|} = \frac{\operatorname{Im}(z)}{|z|}.$$

- (iii) φ_0 es continua en $\mathbb{C}\setminus[0,+\infty)$ si y solo si $\pi+\operatorname{Arg}(z)$ es continua en $\mathbb{C}\setminus[0,+\infty)$ si y solo si $\operatorname{Arg}(-z)$ es continua en $\mathbb{C}\setminus[0+\infty)$ si y solo si $z\notin[0,+\infty)$ si y solo si $z\in\mathbb{C}\setminus[0,+\infty)$.
- (iv) φ_0 no adite extensión continua a un conjunto mayor (pues Arg no admite extensión continua a un conjunto mayor).
- 4) Si $\theta_0 \in \mathbb{R}$ fijo, la función $\varphi_{\theta_0}(z) = \arg(z) \cap [\theta_0, \theta_0 + 2\pi), z \in \mathbb{C} \setminus \{0\}$ está bien definida y es continua en $\mathbb{C} \setminus \{re^{i\theta_0} : r \geq 0\}$. Por tanto, φ_{θ_0} es una rama del $\arg(z)$ en

$$S_{\theta_0} = \mathbb{C} \setminus \{ re^{i\theta_0} : r \ge 0 \}$$

y además

$$\varphi_{\theta_0}(z) = \theta_0 + \pi + e^{-i(\theta_0 + \pi)}z.$$

(5) Si $\theta_0 \in \mathbb{R}$ fijo, la función $\psi_{\theta_0}(z) = \log |z| + i\varphi_{\theta_0}(z)$, $z \in \mathbb{C} \setminus \{0\}$ está bien definida y es continua en $\mathbb{C} \setminus \{re^{i\theta_0} : r \geq 0\}$. Por tanto, ψ_{θ_0} es una rama de $\log(z)$ en

$$S_{\theta_0} = \mathbb{C} \setminus \{ re^{i\theta_0} : r \ge 0 \}$$

y además

$$e^{\varphi_{\theta_0}(z)} = e^{\log|z| + i\varphi_{\theta_0}(z)} = |z|e^{i\varphi_{\theta_0}(z)} = z.$$

Observación 1.4.13. Sea $\Omega \subset \mathbb{C} \setminus \{0\}, \ \varphi : \Omega \longrightarrow \mathbb{R} \ y \ \psi : \Omega \longrightarrow \mathbb{R}$.

П

- 1) φ es una rama del $\arg(z)$ en Ω si y solo si $\log|z| + i\varphi(z)$ es una rama del $\log(z)$ en Ω .
- 2) ψ es una rama del $\log(z)$ en Ω si y solo si $\text{Re}(\psi(z))$ (= $\log|z|$) e $\text{Im}(\psi(z))$ son ramas del $\arg(z)$ en Ω .

Proposición 1.4.14. *Sea* $\Omega \subset \mathbb{C} \setminus \{0\}$ *conexo,*

- 1) Si φ_1, φ_2 son ramas de $\arg(z)$ en Ω , entonces existe $k \in \mathbb{Z}$ tal que $\varphi_2(z) = \varphi_1(z) + 2k\pi$, $z \in \Omega$.
- 2) Si ψ_1, ψ_2 son ramas de $\log(z)$ en Ω , entonces existe $k \in \mathbb{Z}$ tal que $\psi_2(z) = \psi_1(z) + 2k\pi i$, $z \in \Omega$.

Demostración. Probaremos solo 1). Para cada $z \in \Omega$, $\varphi_1(z)$, $\varphi_2(z) \in \arg(z)$, luego existe $k(z) \in \mathbb{Z}$ tal que

$$\varphi_2(z) - \varphi_1(z) = 2k(z)\pi, \quad z \in \Omega.$$

Observaos que $\varphi_2 - \varphi_1$ es continua en Ω , que es conexo, luego $(\varphi_2 - \varphi_1)(\Omega)$ es conexo y además es la imagen de un conjunto discreto, por tanto, se tiene que reducir (por continuidad) a un punto, es decir, existe $k \in \mathbb{Z}$ tal que

$$\varphi_2(z) - \varphi_1(z) = 2k\pi, \quad z \in \Omega.$$

Proposición 1.4.15. Sea A un conjunto conexo $y : A \longrightarrow \mathbb{C}$ continua.

- 1) Si φ_1, φ_2 son ramas de $\arg(f)$ en A, entonces existe $k \in \mathbb{Z}$ tal que $\varphi_2(z) = \varphi_1(z) + 2k\pi$, $z \in A$.
- 2) Si ψ_1, ψ_2 son ramas de $\log(f)$ en A, entonces existe $k \in \mathbb{Z}$ tal que $\psi_2(z) = \psi_1(z) + 2k\pi i$, $z \in A$.

Proposición 1.4.16. En el plano complejo

- No existe rama de arg(z) en $\mathbb{C}\setminus\{0\}$.
- No existe rama de $\log(z)$ en $\mathbb{C}\setminus\{0\}$.

De forma general, si $\Omega \subset \mathbb{C} \setminus \{0\}$ contiene una circunferencia C de centro 0 y radio r, entonces no existe una rama de $\arg(z)$ en Ω ni una rama de $\log(z)$ en Ω .

Demostración. Basta demostrar que no hay una rama del $\arg(z)$ en C. Supongamos por reducción al absurdo que $\varphi: C \longrightarrow \mathbb{R}$ es una rama de $\arg(z)$ en C, entonces φ es continua en C y $\varphi(z) \in \arg(z)$ para todo $z \in C$.

Observamos que $\operatorname{Arg}(z)$ es rama del $\operatorname{arg}(z)$ en $C\setminus\{-r\}$. Por la proposición anterior:

$$Arg(z) = \varphi(z) + 2k\pi, \quad z \in C \setminus \{-r\}.$$

Esto nos dice que como φ adimite extensión continua a C, entonces $\operatorname{Arg}(z)$ admite extensión continua a C, lo que es imposible. Esta contradicción surge de suponer que existe φ rama de $\operatorname{arg}(z)$ en C, luego no existe una rama de $\operatorname{arg}(z)$ en C.

Observación 1.4.17. Acabamos de probar que, por ejemplo, la circunferencia unidad $\{|z|=1\}$ no tiene rama de $\arg(z)$. Sin embargo, si consideramos una parametrización de la circunferencia unidad:

$$\gamma: [-\pi, \pi] \longrightarrow \mathbb{C}$$

$$t \longmapsto \gamma(t) = e^{it}$$

Observamos que $\varphi: [-\pi, \pi] \longrightarrow \mathbb{R}, \ \varphi(t) = t$ es rama del $\arg(\gamma)$ en $[-\pi, \pi]$.

Teorema 1.4.18. Sean $a, b \in \mathbb{R}$ con a < b y $\gamma : [a, b] \longrightarrow \mathbb{C} \setminus \{0\}$ una función continua. Entonces existe una rama de $\arg(\gamma)$ en [a, b] y existe una rama del $\log(\gamma)$ en [a, b].

Estas ramas son únicas salvo adición de múltiplos enteros de 2π en el caso de $\arg(z)$, y adición de múltiplos enteros de $2\pi i$ en el caso de $\log(z)$.

Demostración. Existencia: Como γ es continua en el compacto [a,b], entonces $\gamma([a,b])$ es compacto en $\mathbb{C}\setminus\{0\}$, luego la distancia de $\gamma([a,b])$ a 0 es postiva y, en consecuencia, existe r>0 tal que $|\gamma(t)|>r$ para todo $t\in[a,b]$.

Como γ es continua en el compacto [a,b], entonces γ es uniformemente continua en [a,b], luego para $\varepsilon = r/2$, existe $\delta > 0$ tal que si $t,s \in [a,b]$ con $|t-s| < \delta$, entonces $|\gamma(t) - \gamma(s)| < r/2$. Sea $N \in \mathbb{N}$ tal que $\frac{b-a}{N} < \delta$. Particionamos el intervalo [a,b] en N trozos de igual longitud, tomando la siguiente partición

$$\mathcal{P} = \left\{ t_0 = a, \ t_1 = t_0 + \frac{b-a}{N}, \ \dots, \ t_j = t_0 + j \frac{b-a}{N}, \ \dots, \ t_N = b \right\}.$$

Observamos que para j=1,...,N se tiene que $\gamma([t_{j-1},t_j])\subset \Delta(\gamma(t_j),r/2)$. Efectivamente, si $t\in[t_{j-1},t_j]$, entonces

$$|t - t_j| \le t_j - t_{j-1} = \frac{b - a}{N} < \delta,$$

por tanto, $|\gamma(t) - \gamma(t_j)| < r/2$, o sea, $\gamma(t) \in \Delta(\gamma(t_j), r/2)$.

Observamos también que

$$\Delta(\gamma(t_i), r/2) \subset \mathbb{C} \setminus \{ re^{i(\theta_j - \pi)} : r \ge 0 \}$$

donde $\theta_j \in \arg(\gamma(t_j))$. Efectivamente, basta ver que $0 \notin \Delta(\gamma(t_j), r/2)$. Si $z \in \Delta(\gamma(t_j), r/2)$ entonces

$$|z| = |z - \gamma(t_j) + \gamma(t_j)| \ge ||z - \gamma(t_j)| - |\gamma(t_j)||$$

$$\ge |\gamma(t_j)| - |z - \gamma(t_j)| > r - \frac{r}{2} = \frac{r}{2}.$$

Esto nos permite considerar la correspondiente rama del argumento, $\varphi_{\theta_j\pi}$, en $\mathbb{C}\setminus\{re^{i(\theta_j-\pi)}:r\geq 0\}$, que también es rama del $\arg(z)$ en $\Delta(\gamma(t_j),r/2)$ (válido para cualquier $j\in\{1,...,N\}$). Cualquier otra rama del $\arg(z)$ en $\Delta(\gamma(t_j),r/2)$ se diferenciará de $\varphi_{\theta_j-\pi}$ en un múltiplo entero de 2π .

Empezamos con las definiciones. Consideramos una rama del $\arg(z)$ en $\Delta(\gamma(t_1), r/2)$ que llamaremos φ_1 . Esto nos dice que $\varphi_1 \circ \gamma$ es rama del $\arg(\gamma)$ en $[t_0, t_1]$, pues $\gamma([t_0, t_1]) \subset \Delta(\gamma(t_1), r/2)$.

Consideremos ahora $\Delta(\gamma(t_2), r/2)$, que sabemos que contiene a $\gamma([t_1, t_2])$ y además dista de 0 más de r/2, luego es posible encontrar una rama del $\arg(z)$ en $\Delta(\gamma(t_2), r/2)$, φ_2 y tal que

$$\varphi_2(\gamma(t_1)) = \varphi_1(\gamma(t_1)).$$

De esta manera, $\varphi_2 \circ \gamma$ es rama del $\arg(\gamma)$ en $[t_1, t_2]$ y además $\varphi_2 \circ \gamma(t_1) = \varphi_1 \circ \gamma(t_1)$.

Continuamos este proceso hasta que lleguemos a definir una rama del $\arg(z)$, φ_N , en $\Delta(\gamma(t_N), r/2)$ que contiene a $\gamma([t_{N-1}, t_N])$ y de manera que

$$\varphi_N(\gamma(t_{N-1})) = \varphi_{N-1}(\gamma(t_{N-1})).$$

De esta manera, $\varphi_N \circ \gamma$ es rama del $\arg(\gamma)$ en $[t_{N-1}, t_N]$ y además $\varphi_N \circ \gamma(t_{N-1}) = \varphi_{N-1} \circ \gamma(t_{N-1})$.

Esto da pie a que la función

$$\varphi: [a, b] \longrightarrow \mathbb{R}$$

$$t \longmapsto \varphi(t) = \varphi_j(\gamma(t)) \text{ si } t \in [t_{j-1}, t_j], \ j \in \{1, ..., N\},$$

está bien definida, es continua y representa una rama del arg(z) en [a, b].

Observación 1.4.19. Si $\gamma:[a,b]\longrightarrow \mathbb{C}\setminus\{0\}$ y φ_1,φ_2 son dos ramas del $\arg(z)$ en [a,b], al ser [a,b] conexo, existe $k\in\mathbb{Z}$ tal que

$$\varphi_2(t) = \varphi_1(t) + 2k\pi$$

de manera que

$$\varphi_2(b) - \varphi_2(a) = \varphi_1(b) - \varphi_1(a)$$

permanece invariante, y dicha constante se llama variación del argumento de γ en [a,b] y se denota por

$$\operatorname{Var}_{\gamma}(\arg(z)) = \varphi(b) - \varphi(a).$$

Definición 1.4.20. Sea $n \in \mathbb{N}$, $n \ge 1$.

- Para $\Omega \in \mathbb{C}$, decimos que $h: \Omega \longrightarrow \mathbb{C}$ es rama de $\sqrt[n]{z}$ en Ω , si h es continua en Ω y $h(z)^n = z$ para todo $z \in \Omega$.
- Para A conjunto y $f: A \longrightarrow \mathbb{C}$ continua, decimos que $h: A \longrightarrow \mathbb{C}$ es rama de $\sqrt[n]{f}$, si h es continua en A y $h(z)^n = f(z)$ para todo $z \in A$.

Observación 1.4.21. • $\sqrt[n]{0} = 0$.

• Sea $z = re^{i\theta}$, r > 0, entonces z tiene exatamente n raíces n-éseimas:

$$w_0 = r^{1/n} e^{i\frac{\theta}{n}}, \ w_1 = r^{1/n} e^{i\frac{\theta+2\pi}{n}}, \ \dots, \ w_{n-1} = r^{1/n} e^{i\frac{\theta+2\pi(n-1)}{n}}.$$

Además, dos raíces n-ésimas de z distintas se diferencian en una raíz n-ésima de la unidad:

$$\frac{w_j}{w_k} = \frac{r^{1/n} e^{i\frac{\theta + 2\pi j}{n}}}{r^{1/n} e^{i\frac{\theta + 2\pi k}{n}}} = e^{i(j-k)\frac{2\pi}{n}}$$

es raíz de la unidad.

Proposición 1.4.22. Sean $\Omega \subset \mathbb{C}\setminus\{0\}$ conexo y $n \in \mathbb{N}$, $n \geq 2$. Supongamos que h_1, h_2 son ramas de $\sqrt[n]{z}$ en Ω , entonces existe ξ , raíz n-ésima de la unidad, tal que $h_2(z) = \xi h_1(z)$ para todo $z \in \Omega$.

Proposición 1.4.23. Sean $\Omega \subset \mathbb{C}\setminus\{0\}$ conexo y $n \in \mathbb{N}$, $n \geq 2$. Supongamos que h es rama de $\sqrt[n]{z}$ en Ω , entonces hay exactamente n ramas de $\sqrt[n]{z}$ en Ω .

Proposición 1.4.24. Sea $n \in \mathbb{N}, n \geq 2$

• Sea $\Omega \subset \mathbb{C}\setminus\{0\}$ conexo. Supongamos que ψ es una rama del $\log(z)$ en Ω , entonces

$$e^{\frac{1}{n}\psi(z)}, z \in \Omega$$

es una rama de $\sqrt[n]{z}$ en Ω .

• Sea Ω un conjunto $y f : \Omega \longrightarrow \mathbb{C}$ continua. Si ψ es una rama del $\log(f)$ en A, entonces

$$e^{\frac{1}{n}\psi(z)}, z \in \Omega$$

es una rama de $\sqrt[n]{f}$ en A.

Demostración. \blacksquare Como ψ es rama del $\log(z)$ en Ω entonces

$$\left(e^{\frac{1}{n}\psi(z)}\right)^n = e^{\psi(z)} = z, \ z \in \Omega,$$

es decir, ψ es rama de $\sqrt[n]{z}$ en Ω .

■ Como ψ es rama del $\log(f)$ en Ω entonces

$$\left(e^{\frac{1}{n}\psi(z)}\right)^n = e^{\psi(z)} = f(z), \ z \in \Omega,$$

es decir, ψ es rama de $\sqrt[n]{f}$ en Ω .

Observación 1.4.25. Pueden existir ramas de $\sqrt[n]{f}$ en A sin que existan ramas del $\log(f)$ en A.

Basta considerar $f: \mathbb{C} \longrightarrow \mathbb{C}$, $f(z) = z^2$. Es claro que f es continua en \mathbb{C} y que h(z) = z es rama de \sqrt{f} en \mathbb{C} . Sin embargo no existe rama del $\log(f) = \log(z^2)$ en \mathbb{C} , no tiene sentido considerarla pues $0 \in f(\mathbb{C})$.

Definición 1.4.26. Para $\alpha, z \in \mathbb{C}, z \neq 0$, definimos el conjunto

$$z^{\alpha} = e^{\alpha \log(z)} = \{e^{\alpha w} : w \in \log(z)\}.$$

El valor principal de z^{α} es $e^{\alpha \text{Log}(z)}$.

1.5. El Teorema Fundamental del Álgebra

Teorema 1.5.1 (Teorema Fundamental del Álgebra). Todo polinomio no constante con coeficientes complejos tiene al menos una raíz.

Demostración. Sea $P(z) = a_0 + a_1 z + ... + z_n z^n$, $a_n \neq 0$ un polinomio de grado n en la variable z, $a_0, a_1, ..., a_n \in \mathbb{C}$. Observamos que

• P es continua en \mathbb{C} .

 \blacksquare Si $z \neq 0$

$$|P(z)|^n = |z|^n \left| \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \ldots + \frac{a_{n-1}}{z} + a_n \right| \implies \lim_{z \to \infty} |P(z)| = 0.$$

De aquí deducimos que |P| alcanza un mínimo en \mathbb{C} en cierto z_0 . Veamos que $|P(z_0)| = 0$ (con lo que habremos terminado).

Por reducción al absurdo supongamos que $P(z_0) = \alpha \neq 0$. Consideramos

$$Q(z) = P(z_0 + z) = a_0 + a_1(z_0 + z) + \dots + a_n(z_0 + z)^n$$

que vuelve a ser un polinomio de grado n y satisface que $Q(0)=P(z_0)=\alpha\neq 0$ y si $z\in\mathbb{C}$

$$|Q(z)| = |P(z_0 + z)| \ge |P(z_0)| = |Q(0)|,$$

lo que nos dice que |Q| tiene un mínimo en 0.

Escribamos Q de la siguiente forma

$$Q(z) = \alpha + \beta z^{m} + c_{m+1} z^{m+1} + \dots + c_n z^{n}$$

donde $\beta \in \mathbb{C} \setminus \{0\}$, $c_{m+1}, ..., c_n \in \mathbb{C}$, $c_n \neq 0$ y $m \in \mathbb{N} \cap [1, n]$ es el menor de los exponentes positivos de z que aparece en la expresión de Q. Como $\alpha, \beta \in \mathbb{C} \setminus \{0\}$ y $m \in \mathbb{N}$, $n \geq 1$, existe $\gamma \in \mathbb{C}$ tal que $\gamma^m = -\frac{\alpha}{\beta}$.

Observamos que

$$Q(\gamma z) = \alpha + \beta(\gamma z) + c_{m+1}(\gamma z)^{m+1} + \dots + c_n(\gamma z)^n$$

= $\alpha + \beta \gamma^m z^m + \widetilde{Q}(z)$
= $\alpha - \alpha z^m + \widetilde{Q}(z)$

siendo \widetilde{Q} un polinomio de grado n (a no ser que m=n en cuyo caso Q=0) tal que

$$\left|\frac{\widetilde{Q}(z)}{z^m}\right| \xrightarrow[z \to 0]{} 0.$$

En virtud a esto, existe $\delta > 0$ tal que si $0 < |z| < \delta$, entonces

$$|\widetilde{Q}(z)| < \frac{|\alpha|}{2}|z|^m$$

(simplemente hemos aplicado la definición de límite). En particular, para $z=\frac{\delta}{2}<1$, tenemos que $\gamma=\frac{\delta}{2}\neq 0$ y

$$\begin{aligned} \left| Q \left(\gamma \frac{\delta}{2} \right) \right| &= \left| \alpha - \alpha \left(\frac{\delta}{2} \right)^m + \widetilde{Q} \left(\frac{\delta}{2} \right) \right| \le \left| \alpha \left(1 - \left(\frac{\delta}{2} \right) \right)^m \right| + \left| \widetilde{Q} \left(\frac{\delta}{2} \right) \right| \\ &= \left| \alpha \right| \left| 1 - \left(\frac{\delta}{2} \right)^m \right| + \frac{\left| \alpha \right|}{2} \left| \frac{\delta}{2} \right|^m = \left| \alpha \right| \left(1 - \left(\frac{\delta}{2} \right)^m \right) + \frac{\left| \alpha \right|}{2} \left| \frac{\delta}{2} \right|^m \\ &= \left| \alpha \right| \left[1 - \left(\frac{\delta}{2} \right)^m + \frac{1}{2} \left(\frac{\delta}{2} \right)^m \right] = \left| \alpha \right| \left[1 - \frac{1}{2} \left(\frac{\delta}{2} \right)^m \right] \\ &< \alpha \end{aligned}$$

Contradiciendo que $|\alpha|$ es el valor mínimo de |Q|.

1.6. La esfera de Riemann

Consideramos lo que se conoce como compactificación de Alexandroff de \mathbb{C} . Lo denotaremos por

$$\mathbb{C}^* = \widehat{\mathbb{C}} = \overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}.$$

La topología de \mathbb{C}^* se caracteriza porque los entornos básicos de puntos finitos siguen siendo los habituales (discos centrados en el punto), mientras que los entornos básicos del ∞ son exteriores de discos centrados en 0.

Sin embargo, la topología que acabamos de describir se puede enriquecer si le asociamos una métrica. Para llegar a esta métrica es conveniente obtener otra visualización de \mathbb{C}^* , mediante la identificación de \mathbb{C}^* con $\mathbb{S}^2 = \{(X,Y,Z): X^2 + Y^2 + Z^2 = 1\}$. De ahí que \mathbb{C}^* se llame esfera de Riemann.

La identificación se conoce como proyección estereográfica de \mathbb{S}^2 sobre \mathbb{C} (identificado a su vez con el plano Z=0 de \mathbb{R}^3).

Definimos $\Pi: \mathbb{S}^2 \longrightarrow \mathbb{C}^*$ como la aplicación que lleva un punto (X_0, Y_0, Y_0) de la esfera hacia un punto $x_0 + iy_0$ de \mathbb{C}^* tal que dicho punto está en la recta que pasa por N y (X_0, Y_0, Z_0) . Así, tenemos que Π es

$$\Pi(N) = \infty$$

$$\Pi(X_0, Y_0, Z_0) = \frac{X_0}{1 - Z_0} + i \frac{Y_0}{1 - Z_0}, (X_0, Y_0, Z_0) \neq N$$

De igual modo, se puede probar que la inversa de Π , $\Pi^{-1}: \mathbb{C}^* \longrightarrow \mathbb{S}^2$ es

$$\Pi^{-1}(\infty) = N$$

$$\Pi(z_0) = \left(\frac{2\operatorname{Re}(z_0)}{|z_0|^2 + 1}, \frac{2\operatorname{Im}(z_0)}{|z_0|^2 + 1}, \frac{|z_0|^2 - 1}{|z_0|^2 + 1}\right)$$

Observamos que Π y Π^{-1} son continuas, por tanto, Π define un homeomorfismo entre \mathbb{S}^2 y \mathbb{C}^* .

En \mathbb{S}^2 , la topología inducida tiene asociada la distancia euclídea heredada de \mathbb{R}^3 :

$$d_3((X_1, Y_1, Z_1), (X_2, Y_2, Z_2)) = \sqrt{(X_1 - X_2)^2 + (Y_1 - Y_2)^2 + (Z_1 - Z_2)^2}$$

y esta medida puede ser transferida a una métrica en \mathbb{C}^* (que genera la topología) y se llama **métrica cordal**. Dados $z_1, z_2 \in \mathbb{C}^*$

$$\rho(z_1, z_2) = d_3 \left(\Pi^{-1}(z_1), \Pi^{-1}(z_2) \right) = \dots = \frac{2|z_1 - z_2|}{\sqrt{|z_1|^2 + 1}} \sqrt{|z_2|^2 + 1}$$

Observación 1.6.1. \blacksquare Bajo la métrica cordal, los polinomios admiten extensión a \mathbb{C}^* , de esta forma

$$\lim_{z \to \infty} P(z) = \infty \ (P(\infty) = \infty).$$

■ También las funciones racionales $R = \frac{P}{Q}$ admiten extensión a \mathbb{C}^* . Si z_0 es un cero de Q y no de P, entonces $R(z_0) = \infty$.

Proposición 1.6.2. Si $P(z) = a_0 + a_1 z + ... + a_n z^n$, $a_n \neq 0$ y $Q(z) = b_0 + b_1 z + ... + b_m x^m$, $b_m \neq 0$ son polinomios sin ceros en común. Entonces $R(z) = \frac{P(z)}{Q(z)}$, $z \in \mathbb{C}^*$, toma cada valor de \mathbb{C}^* tantas veces como máx $\{n, m\}$.

Demostración. Caso 1: Supongamos que n > m. Entonces $R(\infty) = \infty$ y

$$\frac{R(z)}{z},...,\frac{R(z)}{z^{n-m-1}}$$

tienen límite ∞ en ∞ , por tanto, R toma el valor ∞ n-mveces. También R toma el valor ∞ en los m ceros de Q (que no son ceros de P), por tanto, R toma el valor ∞ (n-m)+m=n veces.

Sea ahora $w \in \mathbb{C}^*$. Consideramos

$$R(z) - w = \frac{P(z)}{Q(z)} - w = \frac{P(z) - wQ(z)}{Q(z)}$$

donde el grado de P-wQ es n y el grado de Q es m. Además estos polinomios no tienen ceros en común (porque P y Q no tienen ceros en común). Por tanto, R-w es cero en tantos puntos como P-wQ es cero, es decir, en n puntos, lo que prueba que R toma el valor w n veces.

<u>Caso 2</u>: Supongmos n < m. Consideramos $\frac{1}{R} = \frac{Q}{P}$. Aplicando el caso 1, $\frac{1}{R}$ toma cada valor de \mathbb{C}^* m veces y en consecuencia R toma cada valor de \mathbb{C}^* m veces.

<u>Caso 3</u>: Supongamos n=m. En este caso $R(\infty)=\frac{a_n}{b_n}$. Consideramos

$$R(z) - \frac{a_n}{b_n} = \frac{P(z)}{Q(z)} - \frac{a_n}{b_n} = \frac{P(z) - \frac{a_n}{b_n}Q(z)}{Q(z)}$$

que es una función racional con grado del numerador menor estricto que el grado del denominador. Por el caso 2, tenemos que $R - \frac{a_n}{b_n}$ toma el valor cero n veces, es decir, R toma el valor $\frac{a_n}{b_n}$ n veces.

Por otro lado, R toma el valor ∞ en los n ceros de Q (que no son ceros de P). Sea $w \in \mathbb{C}^* \setminus \{\frac{a_n}{b_n}\}$, entonces

$$R(z)-w=\frac{P(z)}{Q(z)}-w=\frac{P(z)-wQ(z)}{Q(z)}$$

es una función racioal con grado del numerador igual que el grado del denominador. Además el numerador y el denominador no tienen ceros en común, por tanto, R-w vale cero en los n ceros de P-wQ, es decir, R toma el valores w n veces.

Algunas propiedades mas de \mathbb{C}^*

1) Toda función de \mathbb{C}^* en \mathbb{C}^* tiene un equivalente de \mathbb{S}^2 en \mathbb{S}^2 . Es decir, el siguiente diagrama conmuta

$$\begin{array}{c|c} \mathbb{S}^2 & \xrightarrow{\widetilde{T}} \mathbb{S}^2 \\ \Pi \downarrow & & \downarrow \Pi \\ \mathbb{C}^* & \xrightarrow{T} \mathbb{C}^* \end{array}$$

- 2) Π transforma circuferencias de \mathbb{S}^2 en rectas o circunferencias de \mathbb{C}^* .
- 3) $\Pi: \mathbb{S}^2 \longrightarrow \mathbb{C}^*$ es una aplicación conforme, en el sentido de que preserva ángulos.

Capítulo 2

Teoría elemental de funciones holoformas

2.1. Diferenciabilidad

Definición 2.1.1. Sean Ω abierto de \mathbb{C} , $z_0 \in \Omega$ y $f: \Omega \longrightarrow \mathbb{C}$ una función. Decimos que f es diferenciable en el sentido real en z_0 , si existe una aplicación \mathbb{R} -lineal $T: \mathbb{C} \longrightarrow \mathbb{C}$ (denotada por $T \equiv d_{\mathbb{R}} f z_0$ y llamada diferencial real de f en z_0) tal que

$$\lim_{z \to z_0} \frac{f(z) - f(z_0) - T(z - z_0)}{|z - z_0|} = 0,$$

o sea, tal que

$$f(z) = f(z_0) + T(z - z_0) + R_{z_0}(z),$$

siendo

$$\lim_{z \to z_0} \frac{R_{z_0}(z)}{|z - z_0|} = 0.$$

Observación 2.1.2. Recordemos que si f es diferenciable en z_0 en el sentido real y u = Re(f) y v = Im(f), entonces tenemos que u y v son derivables respecto x e y en z_0 y que

$$D_{\mathbb{R}}f(z_0) = d_{\mathbb{R}}fz_0 = \begin{pmatrix} \frac{\partial u}{\partial x}(z_0) & \frac{\partial u}{\partial y}(z_0) \\ \frac{\partial v}{\partial x}(z_0) & \frac{\partial v}{\partial y}(z_0) \end{pmatrix} \equiv \begin{pmatrix} u_x(z_0) & u_y(z_0) \\ v_x(z_0) & v_y(z_0) \end{pmatrix}$$

Recordemos además que el aspecto de las aplicaciones \mathbb{R} -lineales en forma compleja es de la forma: Dado $z=x+iy\in\mathbb{C}$, entonces

$$\begin{split} D_{\mathbb{R}}f(z_0)(z) &= \begin{pmatrix} u_x(z_0) & u_y(z_0) \\ v_x(z_0) & v_y(z_0) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \\ &= (u_x(z_0)x + u_y(z_0)y) + i(v_x(z_0) + v_y(z_0)y) \\ &= \begin{pmatrix} \frac{u_x(z_0) - iu_y(z_0) + iv_x(z_0) + iv_y(z_0)}{2} \end{pmatrix} z + \begin{pmatrix} \frac{u_x(z_0) + iu_y(z_0) + iv_x(z_0) - iv_y(z_0)}{2} \end{pmatrix} \overline{z} \\ &= \alpha z + \beta \overline{z} \end{split}$$

Con todo esto, podemos decir que f es diferenciable en el sentido real en z_0 si existen $\alpha, \beta \in \mathbb{R}$ tales que

$$f(z) = f(z_0) + \alpha(z - z_0) + \beta \overline{(z - z_0)} + R_{z_0}(z),$$

siendo

$$\lim_{z \to z_0} \frac{R_{z_0}(z)}{|z - z_0|} = 0.$$

Definición 2.1.3. Sean $\Omega \in \mathbb{C}$, $z_0 \in \Omega$ y $f : \Omega \longrightarrow \mathbb{C}$ una función. Decimos que f es diferenciable en z_0 en el sentido complejo si existe una aplicación \mathbb{C} -lineal $T : \mathbb{C} \longrightarrow \mathbb{C}$ tal que

$$f(z) = f(z_0) + T(z - z_0) + \widetilde{R_{z_0}}(z)$$

siendo lím $_{z\to z_0}\,\frac{\widetilde{R_{z_0}}(z)}{z-z_0}=0.$

Equivalentemente, f es diferenciable en z_0 en el sentido complejo si existe $\lambda \in \mathbb{C}$ tal que

$$f(z) = f(z_0) + \lambda(z - z_0) + \widetilde{R_{z_0}}(z)$$

siendo $\lim_{z\to z_0} \frac{\widetilde{R_{z_0}}(z)}{z-z_0} = 0.$

Proposición 2.1.4. Sean $\Omega \in \mathbb{C}$, $z_0 \in \Omega$ y $f:\Omega \longrightarrow \mathbb{C}$ una función. Sea u=Re(f) y v=Im(f). Entonces f es diferenciable en z_0 en el sentido complejo si y solo si f es diferenciable en z_0 en el sentido real y se satisfacen las condiciones de Cauchy-Riemann

$$(C - R) \begin{cases} u_x(z_0) = v_y(z_0) \\ u_y(z_0) = -v_x(z_0) \end{cases}$$

Definición 2.1.5. Sean $\Omega \in \mathbb{C}$, $z_0 \in \Omega$ y $f : \Omega \longrightarrow \mathbb{C}$ una función. Decimos que f es derivable en z_0 (en sentido complejo) si existe

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

En tal caso, ha dicho límite le llamamos derivada (compleja) de f en z_0 , y lo denotamos $f'(z_0)$.

Proposición 2.1.6. Sean $\Omega \in \mathbb{C}$, $z_0 \in \Omega$ y $f : \Omega \longrightarrow \mathbb{C}$ una función. Entonces f es diferencialble en z_0 en sentido complejo si y solo si f es derivable en z_0 (en sentido complejo). En ese caso caso, si $\lambda \in \mathbb{C}$ es el complejo que permite escribir

$$f(z) = f(z_0) + \lambda(z - z_0) + \widetilde{R_{z_0}}(z)$$

siendo $\lim_{z\to z_0} \frac{\widetilde{N_{z_0}}(z)}{z-z_0} = 0$, entonces $\lambda = f'(z_0)$.

 $Demostraci\'on. \Longrightarrow$ Supongamos que f es diferenciable en sentido complejo en z_0 , entonces existe $\lambda \in \mathbb{C}$ tal que

$$f(z) = f(z_0) + \lambda(z - z_0) + \widetilde{R_{z_0}}(z)$$

siendo lím $_{z\to z_0}$ $\frac{\widetilde{R_{z_0}}(z)}{z-z_0}=0$ y se tiene que

$$\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}=\lim_{z\to z_0}\lambda+\frac{\widetilde{R_{z_0}}(z)}{z-z_0}=\lambda$$

 \leftarrow Supongamos que f es derivable en z_0 , o sea,

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Entonces

$$f(z) = f(z_0) + f'(z_0)(z - z_0) + \widetilde{R_{z_0}}(z)$$

siendo $\widetilde{R_{z_0}}(z) = f(z) - f(z_0) - f'(z_0)(z - z_0)$ y

$$\lim_{z \to z_0} \frac{\widetilde{R_{z_0}}(z)}{z - z_0} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) = f'(z_0) - f'(z_0) = 0$$

Expresión de $f'(z_0)$

Supongamos que f es derivable en $z_0 = x_0 + iy_0 \in \mathbb{C}$ y que u = Re(f) y v = Im(f). Entonces

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Si nos acercamos a z_0 a lo largo de la recta horizontal $y = y_0$ y a lo largo de la recta vertical $x = x_0$, la derivada de f en z_0 no cambia y sigue siendo $f'(z_0)$. Además

$$f'(z_0) = \lim_{x \to x_0} \frac{f(x+iy_0) - f(x_0+iy_0)}{(x+iy_0) - (x_0+iy_0)} = \lim_{x \to x_0} \frac{f(x+iy_0) - f(x_0+iy_0)}{x - x_0} = \frac{\partial f}{\partial x}(z_0)$$

$$= \lim_{x \to x_0} \frac{(u(x+iy_0) - u(x_0+iy_0)) + i(v(x+iy_0) - v(x_0+iy_0))}{x - x_0} = u_x(z_0) + iv_x(z_0)$$

$$= u_x(z_0) - iu_y(z_0) \underset{C-R}{=} v_y(z_0) + iv_x(z_0)$$

Y también

$$f'(z_0) = \lim_{y \to y_0} \frac{f(x_0 + iy) - f(x_0 + iy_0)}{(x_0 + iy) - (x_0 + iy_0)} = \lim_{x \to x_0} \frac{f(x + iy_0) - f(x_0 + iy_0)}{i(y - y_0)} = -i\frac{\partial f}{\partial y}(z_0)$$

$$= \lim_{y \to y_0} \frac{(u(x_0 + iy) - u(x_0 + iy_0)) + i(v(x_0 + iy) - v(x_0 + iy_0))}{i(y - y_0)} = v_y(z_0) - iu_y(z_0)$$

$$= u_x(z_0) - iu_y(z_0) \underset{C-R}{=} v_y(z_0) + iv_x(z_0)$$

En resumen

$$f'(z_0) = u_x(z_0) - iu_y(z_0) = v_y(z_0) + iv_x(z_0)$$

Ejemplo 2.1.7. 1. f(z) = z es derivable en \mathbb{C} .

2. $f(z) = \overline{z} = x - iy$ (z = x + iy) no es derivable en ningún punto de \mathbb{C} .

Demostración.

$$\begin{array}{l} u(z) = \operatorname{Re} f(z) = x \\ v(z) = \operatorname{Im} f(z) = y \end{array} \right\} \Longrightarrow (u,v) \in \mathscr{C}^{\infty}$$

¿Se satisfacen las condiciones de Cauchy-Riemann?

$$u_x = 1 \neq -1 = v_y$$

Por tanto, f no es derivable en ningún punto de \mathbb{C} .

3. $f(z) = |z|^2 = z\overline{z} = x^2 + y^2$ (z = x + iy) solo es derivable en 0.

Demostración.

$$\begin{cases} u(z) = \operatorname{Re} f(z) = x^2 \\ v(z) = \operatorname{Im} f(z) = y^2 \end{cases} \Longrightarrow (u, v) \in \mathscr{C}^{\infty}$$

¿Se satisfacen las condiciones de Cauchy-Riemann?

$$u_x = 2x = 0 = v_y \iff x = 0$$
$$u_y = 0 = -2y = -v_x \iff y = 0$$

Por tanto, f solo es derivable en 0 y f'(0) = 0.

4. $f(z) = z^2$ es derivable en todo \mathbb{C} y f'(z) = 2z.

Demostración. Dado $z_0 \in \mathbb{C}$

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{z^2 - z_0^2}{z - z_0} = \lim_{z \to z_0} z + z_0 = 2z_0$$

5. $f(z) = e^z = e^x(\cos y + i \sin y)$ (z = x + iy) es derivable en \mathbb{C} y $f'(z) = e^z$.

Demostraci'on.

¿Se satisfacen las condiciones de Cauchy-Riemann?

$$u_x = e^x \cos y = 0 = v_y$$

$$u_y = -e^x \sin y = -v_x$$

Por tanto, f es derivable en \mathbb{C} y

$$f'(z) = u_x(z) + iv(z) = e^x \cos y + ie^x \sin y = e^x(\cos y + i \sin y) = e^z = f(z)$$

6. $f(z) = \text{Log}(z), \in \Omega = \mathbb{C} \setminus (-\infty, 0]$ es derivable en Ω y $f'(z) = \frac{1}{z}$.

Demostración. Tenemos que $f(\Omega) = \{w \in \mathbb{C} : -\pi < \text{Im}(w) < \pi\}$ y f es una biyección entre ambos conjuntos. Si $z_0 \in \Omega$ y $z \neq z_0$ y llamamos w = Log(z) y $w_0 = \text{Log}(z_0)$ tenemos

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{w - w_0}{e^w - e^{w_0}} = \lim_{w \neq w_0} \lim_{z \to z_0} \frac{1}{\frac{e^w - e^{w_0}}{w - w_0}} = \lim_{z \to z_0} \frac{1}{e^{w_0}} = \frac{1}{z_0}$$

Observación 2.1.8. Sean $\Omega \in \mathbb{C}$ abierto y $z_0 \in \Omega$.

- 1. Si $f:\Omega \longrightarrow \mathbb{C}$ es derivable en z_0 , entonces f es continua en z_0 .
- 2. Si $f: \Omega \longrightarrow \mathbb{C}$ es constante, f es derivable y f'(z) = 0.
- 3. Aritmética de las funciones derivables: Si $f,g:\Omega\longrightarrow\mathbb{C}$ son derivables en z_0
 - a) f + g es derivable en z_0 y

$$(f+g)'(z_0) = f'(z_0) + g'(z_0)$$

b) $f \cdot g$ es derivable en z_0 y

$$(f \cdot g)'(z_0) = f'(z_0) \cdot g(z_0) + f(z_0) \cdot g'(z_0)$$

c) Si $g(z_0) \neq 0$, entonces $\frac{f}{g}$ es derivable en z_0 y

$$\left(\frac{f}{g}\right)'(z_0) = \frac{f'(z_0) \cdot g(z_0) - f(z_0) \cdot g'(z_0)}{g(z_0)^2}$$

4. Regla de la cadena: Si $f: \Omega \longrightarrow \mathbb{C}$ con $f(\Omega) \subset \Omega'$ abierto de \mathbb{C} y $g: \Omega' \longrightarrow \mathbb{C}$. Si f es derivable en z_0 y g es derivable en $g(z_0)$ entonces $g \circ f$ es derivable en z_0 y

$$(g \circ f)'(z_0) = g'(f(z_0)) \cdot f'(z_0)$$

5. Las funciones polinómicas son derivables en \mathbb{C} y las funciones racionales son derivables donde el denominador no se anule.

2.2. Versiones del Teorema de la Función Inversa

Teorema 2.2.1 (Teorema de la función inversa en \mathbb{R}^n). Sean $\Omega \subset \mathbb{R}^n$ abierto, $x^0 \in \Omega$ y $f: \Omega \longrightarrow \mathbb{R}^n$ una función difrenciable en el sentido real en Ω . Supongamos que $d_{\mathbb{R}^n}f$ es continua en Ω y que $|d_{\mathbb{R}^n}f_{x^0}| \neq 0$. Entonces f es localmente invertible en x^0 y su inversa local es diferenciable en $f(x^0)$.

Más concretamente, existen U_{x^0} entorno de x^0 , $V_{f(x^0)}$ entorno de $f(x^0)$ y una aplicación $g:V_{f(x^0)}\longrightarrow U_{x^0}$ diferenciable en $V_{f(x^0)}$ con diferencial continua tal que

- 1. $f|_{U_{x^0}}$ es inyectiva $y |d_{\mathbb{R}^n} f_{x^0}| \neq 0$.
- 2. $f(U_{x^0}) = V_{f(x^0)}$.
- 3. $g \circ f(x) = x$ para todo $x \in U_{x^0}$ y $f \circ g(y) = y$ para todo $y \in V_{f(x^0)}$.
- 4. $d_{\mathbb{R}^n} g_{f(x)} = d_{\mathbb{R}^n} f_x^{-1}$ para todo $x \in U_{x^0}$.

Observación 2.2.2. Si f es una función compleja de variable compleja, con u = Re(f) y v = Im(f), derivable en $z_0 \in \mathbb{C}$, entonces la matriz jacobiana d f en z_0 es

$$D_{\mathbb{R}}f(z_0) = d_{\mathbb{R}}f_{z_0} = \begin{pmatrix} u_x(z_0) & u_y(z_0) \\ v_x(z_0) & v_y(z_0) \end{pmatrix} \underset{C-R}{=} \begin{pmatrix} u_x(z_0) & u_y(z_0) \\ -u_y(z_0) & u_x(z_0) \end{pmatrix}$$

cuyo determinante es $|d_{\mathbb{R}}f_{z_0}| = u_x(z_0)^2 + u_y(z_0)^2$. Recordemos que $f'(z_0) = u_x(z_0) + iv_x(z_0) = u_x(z_0) - iu_y(z_0)$, por tanto, $|d_{\mathbb{R}}f_{z_0}| = |f'(z_0)|^2$.

Así, $d_{\mathbb{R}}f_{z_0}$ es invertible si y solo si $f'(z_0) \neq 0$, y en ese caso

$$(d_{\mathbb{R}}f_{z_0})^{-1} = \frac{1}{|f'(z_0)|^2} \begin{pmatrix} u_x(z_0) & -u_y(z_0) \\ u_y(z_0) & u_x(z_0) \end{pmatrix}$$

que sería la matriz jacobiana asociada a $d_{\mathbb{R}}f_{f(z_0)}^{-1}$ y podemos ver que cumple las condiciones de Cauchy-Riemann, o sea,

$$(f^{-1})'(f(z_0)) = \frac{1}{|f'(z_0)|^2} (u_x(z_0) + iv_y(z_0)) = \frac{1}{|f'(z_0)|^2} (u_x(z_0) - iu_x(z_0))$$
$$= \frac{1}{|f'(z_0)|^2} \overline{f'(z_0)} = \frac{\overline{f'(z_0)}}{f'(z_0)\overline{f'(z_0)}} = \frac{1}{f'(z_0)}$$

Teorema 2.2.3 (Teorema de la función inversa. Versión 1). Sean $\Omega \subset \mathbb{C}$ abierto, $z_0 \in \Omega$ y $f: \Omega \longrightarrow \mathbb{C}$ derivable en Ω . Supongamos que f' es continua en Ω y que $f'(z_0) \neq 0$. Entonces f es localmente invertible en z_0 y su inversa local es derivable en un entorno de $f(z_0)$.

Más concretamente, existen U_{z_0} entorno de z_0 , $V_{f(z_0)}$ entorno de $f(z_0)$ y una aplicación $g:V_{f(z_0)}\longrightarrow U_{z_0}$ derivable en $V_{f(z_0)}$ con derivada continua tal que

- 1. $f|_{U_{z_0}}$ es inyectiva y $f'(z_0) = 0$.
- 2. $f(U_{z_0}) = V_{f(z_0)}$.
- 3. $g = f^{-1} en V_{f(z_0)}$.
- 4. Para cada $w \in V_{f(z_0)}$ se tiene que

$$g'(w) = \frac{1}{f'(g(w))}$$

Teorema 2.2.4 (Teorema de la función inversa global). Sean $\Omega \subset \mathbb{C}$ abierto, $z_0 \in \Omega$ y $f:\Omega \longrightarrow \mathbb{C}$ invectiva y derivable en Ω . Supongamos que f' es continua en Ω y que $f'(z) \neq 0$ para cada $z \in \Omega$. Entonces $f(\Omega)$ es abierto de \mathbb{C} y $f^{-1}:f(\Omega) \longrightarrow \Omega$ es derivable en $f(\Omega)$ y para cada $w \in f(\Omega)$ se tiene que

$$(f^{-1})'(w) = \frac{1}{f'(f^{-1}(w))}$$

Teorema 2.2.5 (Teorema de la función inversa. Versión 3). Sean U, V dos abiertos de \mathbb{C} y sean $f: U \longrightarrow \mathbb{C}$ $y : V \longrightarrow \mathbb{C}$ dos funciones continuas tales que $f \circ g(w) = w$ para todo $w \in V$ (g es rama de f^{-1} en V). Supongamos que f es derivable en U con $f'(z) \neq 0$ para todo $z \in U$. Entonces g es derivable en V y para $w \in V$ se tiene que

$$g'(w) = \frac{1}{f'(g(w))}$$

Demostración. Sea $w_0 \in V,$ para cada $w \neq w_0$ tenemos que $g(w) \neq g(w_0),$ y así

$$\lim_{w \to w_0} \frac{g(w) - g(w_0)}{w - w_0} = \lim_{w \to w_0} \frac{1}{\frac{w - w_0}{g(w) - g(w_0)}} = \lim_{w \to w_0} \frac{1}{\frac{f(g(w)) - f(g(w_0))}{g(w) - g(w_0)}} = \frac{1}{f'(g(w))}$$

Ejemplo 2.2.6. Veamos algunos ejemplos de funciones derivables.

1. Sean

$$f: U = \{z \in \mathbb{C} : -\pi < \operatorname{Im}(z) < \pi\} \longrightarrow \mathbb{C}, \ f(z) = e^z$$

 $q: V = \mathbb{C} \setminus (-\infty, 0] \longrightarrow U, \ q(w) = \operatorname{Log}(w)$

Tenemos que f y g son continuas y $f \circ g(w) = w$ para cada $w \in V$. Además, f es derivable en U y $f'(z) = e^z \neq 0$ para cada $z \in U$. Por el Teorema de la función inversa, se tiene que g es derivable en V y

$$g'(w) = \frac{1}{f'(g(w))} = \frac{1}{f(g(w))} = \frac{1}{w}$$

2. Fijado $\theta_0 \in \mathbb{R}$, la rama del $\arg(z)$ con valores en $[\theta_0, \theta_0 + 2\pi)$ es $\varphi_{\theta_0}(z) = \arg(z) \cap [\theta_0, \theta_0 + 2\pi)$. Entonces

 $g_{\theta_0}: V_{\theta_0} = \mathbb{C} \setminus \{re^{i\theta_0}: r \geq 0\} \longrightarrow U_{\theta_0} = \{z \in \mathbb{C}: \theta_0 < \operatorname{Im}(z)\theta_0 + 2\pi\}, \ g_{\theta_0}(w) = \log|w| + i\varphi_{\theta_0}(w)$ es rama continua del $\log(w)$ en V_{θ_0} y

$$f_{\theta_0}: U_{\theta_0} \longrightarrow \mathbb{C}, \ f_{\theta_0}(z) = e^z$$

es continua en U_{θ_0} , derivable en U_{θ_0} , $f'_{\theta_0}(z)=e^z\neq 0$ para cada $z\in U_{\theta_0}$ y $f_{\theta_0}\circ g_{\theta_0}(w)=w$ para cada $w\in U_{\theta_0}$. Por el Teorema de la función inversa, g_{θ_0} es derivable en V_{θ_0} y

$$g'_{\theta_0}(w) = \frac{1}{f'_{\theta_0}(g_{\theta_0}(w))} = \frac{1}{w}$$

3. Fijado $\theta_0 \in \mathbb{R}$. Consideramos

$$h_{\theta_0}: V_{\theta_0} = \mathbb{C} \setminus \{ re^{i\theta_0}: r \ge 0 \} \longrightarrow \widetilde{U_{\theta_0}} = \left\{ re^{i\theta_0}: r > 0, \frac{\theta_0}{n} < \theta < \frac{\theta_0 + 2\pi}{n} \right\}$$

dada por

$$h_{\theta_0}(w) = e^{\frac{1}{n}g_{\theta_0}(w)} = |w|^{\frac{1}{n}}e^{i\frac{\varphi_{\theta_0}(w)}{n}}$$

define una rama continua de $\sqrt[n]{w}$ en V_{θ_0} con imagen en $\widetilde{U_{\theta_0}}$, ambos abiertos de \mathbb{C} .

Además, $p(z) = z^n$ es continua, derivable en $\widetilde{U_{\theta_0}}$, $p \circ h_{\theta_0}(w) = w$ para cada $2 \in V_{\theta_0}$ y $p(z) = nz^{n-1} \neq 0$ para cada $z \in \widetilde{U_{\theta_0}}$. Por el Teorema de la función inversa, h_{θ_0} es derivable en V_{θ_0} y

$$h'_{\theta_0}(w) = \frac{1}{p'(h_{\theta_0}(w))} = \frac{1}{nh_{\theta_0}(w)^{n-1}}$$

Teorema 2.2.7. Sea $\Omega \subset \mathbb{C} \setminus \{0\}$ abierto. Si g es una rama del $\log(z)$ en Ω entonces g es derivable en Ω y $g'(z) = \frac{1}{z}$ para cada $z \in \Omega$.

Teorema 2.2.8. Sean $\Omega \subset \mathbb{C} \setminus \{0\}$ abierto $y \ n \in \mathbb{N}$, $n \geq 2$. Si h es una rama de $\sqrt[n]{z}$ en Ω entonces h es derivable en Ω y

$$h'(z) = \frac{1}{nh(z)^{n-1}}$$

para cada $z \in \Omega$

Teorema 2.2.9 (Teorema Fundamental del Álgebra). Si P es un polinomio no constante con coeficientes complejos, entonces $P(\mathbb{C}) = \mathbb{C}$.

Demostración. 1. Si $|z| \to \infty$ entonces $|P(z)| \to \infty$.

2. $P(\mathbb{C})$ es abierto de \mathbb{C}

Sea $w_0 \in \overline{P(\mathbb{C})} \cap \mathbb{C}$. Tomamos una sucesión $\{w_n\} \subset P(\mathbb{C})$ tal que $\{w_n\} \to w_0$. Sea para cada $n \in \mathbb{N}$, $z_n \in \mathbb{C}$ tal que $P(z_n) = w_n$. Como $\{P(z_n)\} \to w_0$, que es finito, entonces $\{z_n\}$ no tiene límite ∞ , luego existe una subsucesión $\{z_{n_k}\}$ de $\{z_n\}$ que converge en \mathbb{C} , digamos a $z_0 \in \mathbb{C}$. Como P es continua,

$$P(z_0) = P\left(\lim_k z_{n_k}\right) = \lim_k P(Z_{n_k}) = \lim_k w_{n_k} = w_0$$

lo que prueba que $w_0 = P(z_0) \in P(\mathbb{C})$.

3. Si $z_0 \in \mathbb{C}$ y $P'(z_0) \neq 0$, entonces $P(z_0) \in Int(P(\mathbb{C}))$ P es derivable en \mathbb{C} y P' es continua en \mathbb{C} (puesto que P' es otro polinomio). El hecho de que $P'(z_0) \neq 0$, nos dice que P es localmente invertible en z_0 . O sea, existen entornos abiertos U de z_0 y V de $P(z_0)$ tales que P(U) = V y de esta menra

$$P(z_0) \in V = P(U) \subset P(\mathbb{C})$$

4. $Int(P(\mathbb{C})) \neq \emptyset$ y $\partial P(\mathbb{C})$ contiene a lo sumo un número finito de puntos Si $z_0 \in \mathbb{C}$, entonces $P'(z_0) = 0$ o $P(z_0) \neq 0$. Obersvamos que solo un número (a lo sumo) finito verifica que $P'(z_0) = 0$ (por ser P' un polinomio). Así para todo $z \in \mathbb{C}$ tal que $P'(z_0) \neq 0$, se tiene que $P(z_0) \in Int(P(\mathbb{C}))$ (por lo probado en 3). Para el resto, una cantidad finita de puntos, allí donde P'(z) = 0 tenemos que

$$P(z) = P(\mathbb{C}) \backslash Int(P(\mathbb{C})) = \overline{P(\mathbb{C})} \backslash Int(P(\mathbb{C})) = \partial P(\mathbb{C})$$

5. $P(\mathbb{C}) = \mathbb{C}$

$$\begin{split} \mathbb{C} &= P(\mathbb{C}) \dot{\cup} Ext(P(\mathbb{C})) = \overline{P(\mathbb{C})} \dot{\cup} Ext(P(\mathbb{C})) \\ &= Int(P(\mathbb{C})) \dot{\cup} \partial P(\mathbb{C}) \dot{\cup} Ext(P(\mathbb{C})) \end{split}$$

Luego

$$\mathbb{C}\backslash\partial P(\mathbb{C})=Int(P(\mathbb{C}))\dot{\cup}Ext(P(\mathbb{C}))$$

Pero $\mathbb{C}\setminus\partial P(\mathbb{C})$ es conexo y $Int(P(\mathbb{C}))$ y $Ext(P(\mathbb{C}))$ son abiertos disjuntos, por tanto, uno de ellos tiene que ser vacío. Sin embargo, sabemos que $Int(P(\mathbb{C}))\neq\emptyset$, por tanto, $Ext(P(\mathbb{C}))=\emptyset$, lo que prueba que $\mathbb{C}=P(\mathbb{C})$.

2.3. Funciones holomorfas

Definición 2.3.1. Sean $\Omega \subset \mathbb{C}$ abierto y $f:\Omega \longrightarrow \mathbb{C}$ una función.

- Para $z_0 \in \Omega$, decimos que f es holomorfa en z_0 si f es derivable en un entorno de z_0 en Ω .
- ullet Decimos que f es holomorfa en Ω si lo es en todos los puntos de Ω .
- \blacksquare Para $K\subset \Omega,$ decimos que f es holomorfa en K si f es holomorfa en todos los puntos de K

Definición 2.3.2. Decimos que una función es entera si es holomorfa en \mathbb{C} .

Ejemplo 2.3.3. 1. $f(z) = z^2$ es entera. De hecho, cualquier polinomio es una función entera y una función racional es holomorfa allí donde el denominador no se anule.

- 2. $f(z) = e^z$ es entera.
- 3. f(z) = Log(z) es holomorfa en $\mathbb{C} \setminus (-\infty, 0]$.
- 4. $f(z) = e^{\frac{1}{n}\text{Log}(z)}$ es holomorfa en $\mathbb{C}\setminus(-\infty,0]$ (raíz *n*-ésima).
- 5. $f(z) = |z|^2$ solo es derivable en 0, por tanto, no es holomorfa en ningún punto.

Definición 2.3.4. Un dominio de \mathbb{C} es un conjunto abierto y conexo de \mathbb{C} .

Proposición 2.3.5. Sea D un dominio de \mathbb{C} y sean $z_1, z_2 \in D$. Entonces existe una poligonal en D, de origen z_1 , extremo z_2 y lados paralelos a los ejes. En particular, D es arcoconexo.

Teorema 2.3.6. Sean D un dominio de \mathbb{C} y $f: D \longrightarrow \mathbb{C}$ holomorfa.

- 1. Si f'(z) = 0 para todo $z \in D$, entonces f es constante en D.
- 2. Si $f(z) \in \mathbb{R}$ para todo $z \in D$, entonces f es constante en D.
- 3. Si Ref(z) = 0 para todo $z \in D$, entonces f es constante en D.
- 4. Si |f(z)| es constante en D, entonces f es constante en D.

Demostración. Sean u = Re f y v = Im f. Como f es holomorfa en D, entonces f es derivable en D y se satisface

$$(C - R) \left\{ \begin{array}{l} u_x = v_y \\ u_y = -v_x \end{array} \right.$$

- 1. $f'(z) = u_x + iv_x = 0$, entonces $v_y = u_y = 0$ en D, por tanto, $u \ y \ v$ son constantes en cada segmento de D (por el Teorema del Valor Medio). Entonces fijado $z_0 \in D$, todo $z \in D$ puede ser unido por una poligonal a z_0 en D de lados paralelos a los ejes, lo que nos dice que el valor de f en z_0 se propaga para cualquier $z \in D$, lo que significa que f es constante en D.
- 2. Análogo.
- 3. Análogo.
- 4. Supongamos que |f(z)| = c para todo $z \in D$.
 - Si c = 0, entonces f(z) = 0 en D.
 - Si $c \neq 0$, entonces $|f|^2 = u^2 + v^2 = c^2$ en D. Obtenemos que

$$\begin{cases} 2u \cdot u_x + 2v \cdot v_x = 0 \\ 2u \cdot u_y + 2v \cdot v_y = 0 \end{cases} \iff \begin{cases} u \cdot u_x + v \cdot v_x = 0 \\ u \cdot u_y + v \cdot v_y = 0 \end{cases} \iff \begin{cases} u \cdot u_x - v \cdot u_y = 0 \\ v \cdot v_x + u \cdot u_y = 0 \end{cases}$$
$$\iff \begin{pmatrix} u & -v \\ v & u \end{pmatrix} \begin{pmatrix} u_x \\ v_y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Como

$$\begin{vmatrix} u & -v \\ v & u \end{vmatrix} = u^2 + v^2 = c^2 \neq 0$$

Se tiene que dicho sistema de ecuaciones tiene solución única y su única solución es $u_x = u_y = 0$, por tanto (Cauchy-Riemann), $v_x = v_y = 0$, lo que nos dice que f es constante en D.

2.4. Funciones armónicas

Supongamos que f es holomorfa en un abierto $\Omega \subseteq \mathbb{C}$ y que $u = \operatorname{Re} f$ y $v = \operatorname{Im} f$. Entonces se satisface

$$(C - R) \left\{ \begin{array}{l} u_x = v_y \\ u_y = -v_x \end{array} \right.$$

Supongamos que $u, v \in \mathcal{C}^2(\Omega)$ (sentido real). Entonces

$$\Delta u = u_{xx} + u_{yy} = v_{yx} - v_{xy} = 0$$
$$\Delta v = v_{xx} + v_{yy} = -u_{yx} + u_{xy} = 0$$

Por tanto, u y v son funciones armónicas en Ω .

Definición 2.4.1. Sea Ω un abierto de \mathbb{C} . Decimos que $u:\Omega\longrightarrow\mathbb{R}$ es armónica en Ω si

- $u \in \mathscr{C}^2(\Omega).$
- $\Delta u = u_{xx} + u_{yy} = 0$ en Ω .

Ejemplo 2.4.2. 1. Si f es holomorfa en Ω abierto de \mathbb{C} , entonces Re(f) e Im(f) son armónicas.

- 2. $\log |z|$ es armónica en $\mathbb{C}\setminus\{0\}$.
- 3. $\log |z|$ no es la parte real de ninguna función holomorfa en $\mathbb{C}\setminus\{0\}$.

Demostración. Por reducción al absurdo, supongamos que existe $f: \mathbb{C} \setminus \{0\} \longrightarrow \mathbb{C}$ holomorfa tal que $\text{Re}(f) = \log |z|$ en Ω .

Recordemos que g(z) = Log(z) es holomorfa en $\mathbb{C} \setminus (-\infty, 0]$ y no admite extensión continua a ningún conjunto mayor.

Observamos que f es holomorfa en $\mathbb{C}\setminus(-\infty,0]$ y que g-f es holomorfa en $\mathbb{C}\setminus(-\infty,0]$ y $\operatorname{Re}(g-f)=\log|z|-\log|z|=0$ para todo $z\in\mathbb{C}\setminus(-\infty,0]$. Por tanto, existe $c\in\mathbb{C}$ tal que g=f+c en $\mathbb{C}\setminus(-\infty,0]$. Esto nos dice que g admite una extensión holomorfa en $\mathbb{C}\setminus\{0\}$ porque f+c la admite, llegando a contradicción.

- 4. $\operatorname{Arg}(z)$ es armónica en $\mathbb{C}\setminus(-\infty,0]$, puesto que $\operatorname{Arg}(z)=\operatorname{Im}(\log(z))$ en $\mathbb{C}\setminus(-\infty,0]$.
- 5. Si u es armónica en Ω abierto, en general, u no es la parte real de una función holomorfa en Ω (punto 3).

Definición 2.4.3. Sea D un dominio de \mathbb{C} , decimos que D es simplemente conexo si $\mathbb{C}^* \backslash D$ es conexo.

Definición 2.4.4. Sea $\Omega \subset \mathbb{C}$ abierto y $u : \Omega \longrightarrow \mathbb{R}$ una función armónica. Decimos que $v : \Omega \longrightarrow \mathbb{R}$ es conjugada armónica de u en Ω si f = u + iv es holomorfa en Ω .

Ejemplo 2.4.5. 1. Si v es conjugada armónica de u en Ω , entonces v es armónica en Ω (por ser la parte imaginaria de una función holomorfa).

- 2. Si v es conjugada armónica de u en Ω , entonces $v+c,\,c\in\mathbb{R}$, es también conjugada armónica de u en Ω .
- 3. Si v_1 y v_2 son conjugadas armónicas de u en un dominio D, entonces existe $c \in \mathbb{R}$ tal que $v_2 = v_1 + c$ en D.

Demostración. Tenemos que $f_1 = u + iv_1$ y $f_2 = u + iv_2$ son holomorfas en D, por tanto, $f_2 - f_1$ es holomorfa en D y $\text{Re}(f_2 - f_1) = 0$, por tanto, $f_2 - f_1$ es constante en D.

- 4. Si v es conjugada armónica de u en Ω abierto de \mathbb{C} y si $\widetilde{\Omega} \subset \Omega$ es abierto, entonces v es conjugada armónica de u en $\widetilde{\Omega}$.
- 5. Si D es un dominio de $\mathbb{C}\setminus\{0\}$, entonces $\log|z|$ es armónica en D. Además, existe conjugada armónica de $\log|z|$ en D si y solo si existe rama del $\log(z)$ en D.

 \implies Supongamos que $\log |z|$ tiene conjugada armónica en D. Fijamos $z_0 \in D$ y escogemos una conjugada armónica de $v(z) = \log |z|$ en D tal que $v(z_0) \in \arg(z_0)$. Veamos entonces que $f(z) = \log |z| + iv(z)$, $z \in D$, es una rama del $\log(z)$ en D.

- \blacksquare Es claro que f es continua en D, de hecho, es holomorfa en D.
- $e^{f(z)} = z$ en D? Definimos $F(z) = ze^{-f(z)}, z \in D$. Es claro que F es holomorfa en D y para cada $z \in D$

$$|F(z)| = |z| |e^{-f(z)}| = |z|e^{\operatorname{Re}(-f(z))} = |z|e^{-\log|z|} = |z| \frac{1}{|z|} = 1$$

Luego, F es constante en D, ¿qué constante es?

$$F(Z_0) = z_0 e^{-f(z_0)} = z_0 e^{-(\log|z_0| + iv(z_0))} = z_0 \frac{1}{z_0} = 1$$

Por tanto $F(z) = 1 \iff e^{f(z)} = z$ en D.

6. Si u es armónica en un abierto Ω , entonces $f = u_x - iv_y$ es holomorfa en Ω .

Capítulo 3

Series en \mathbb{C} . Series de potencias

Establezcamos cierta notación.

- Para $a \in \mathbb{Z}$, $\mathbb{N}_a = [a, +\infty) \cap \mathbb{Z}$.
- Si $a, b \in \mathbb{R}$, $a \leq b$, entonces $[[a, b]] = [a, b] \cap \mathbb{Z}$.
- Si $a, b \in \mathbb{R}$, a < b, entonces $((a, b)) = (a, b) \cap \mathbb{Z}$.

Definición 3.0.1. Sea $\{z_n\}_{n\geq 0}\subset \mathbb{C}$ una sucesión.

- La sucesión de sumas parciales asociada a $\{z_n\}$ es $\{S_n\}$ dada por $S_n = \sum_{k=0}^n z_k$.
- La serie asociada $\{z_n\}$ es la sucesión de sumas parciales asociada a $\{z_n\}$ denotada por $\sum_{n=0}^{\infty} z_n$.
- Decimos que la serie $\sum_{n=0}^{\infty} z_n$ converge, si la sucesón de sumas parciales converge. En tal caso, diremos que la sucesión es sumable y que su suma es

$$\sum_{n=0}^{\infty} z_n = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=0}^{n} z_k$$

- **Observación 3.0.2.** 1. El hecho de que la sucesión $\{z_n\}$ tenga primer término en 0, 1 ó n_0 es irrelevante, es decir, no afecta al carácter de la serie (pero sí a su suma).
 - 2. Si $\sum_{n=0}^{\infty} z_k$ converge a $Z \in \mathbb{C}$, entonces para cada $n \in \mathbb{N}_0$, la serie $\sum_{k=n+1}^{\infty} z_k$ también converge y la sucesión de sumas parciales es

$$S_{n,N} = \sum_{k=n+1}^{N} z_k = S_N - S_n, \quad N > n$$

Observamos que

$$\sum_{k=n+1}^{\infty} z_k = \lim_{N \to \infty} S_{n,N} = \lim_{N \to \infty} S_N - S_n = Z - S_n \equiv Z_n$$

Si $n \to \infty$

$$\lim_{n \to \infty} Z_n = \lim_{n \to \infty} Z - S_n = 0$$

- 3. $\sum_{k=0}^{n} z_k = \sum_{k=0}^{n} \operatorname{Re}(z_k) + i \sum_{k=0}^{n} \operatorname{Im}(z_k)$.
- 4. <u>Criterio necesario</u>: Si $\sum_{k=0}^{\infty} z_k$ converge, entonces $\{z_n\} \to 0$.

- 5. Criterio de Cauchy $\sum_{k=0}^{\infty} z_k$ converge si y solo si S_n converge si y solo si S_n es de Cauchy.
- 6. <u>Linealidad</u>:

$$\mathscr{S} = \{ \{ z_n \}_{n \ge 0} : z_n \in \mathbb{C} \ \forall \ n \}$$

es un espacio vectorial complejo. Es más

$$S:\mathscr{S}\longrightarrow\mathbb{C}$$

$$\{z_n\} \longmapsto S(\{z_n\}) = \sum_{n=0}^{\infty} z_n$$

es una función lineal, es decir,

- $\sum_{n=0}^{\infty} (z_n + w_n) = \sum_{n=0}^{\infty} z_n + \sum_{n=0}^{\infty} w_n.$ $\sum_{n=0}^{\infty} \lambda z_n = \lambda \sum_{n=0}^{\infty} z_n.$

Definición 3.0.3. Sea $\{z_n\}_{n\geq 0}$ una sucesión en \mathbb{C} . Decimos que la serie $\sum_{n=0}^{\infty} z_n$ converge absolutamente si $\sum_{n=0}^{\infty} |z_n|$ es convergente.

1. Si $\sum_{n=0}^{\infty} z_n$ converge absolutamente, entonces también converge y Observación 3.0.4.

$$\left| \sum_{n=0}^{\infty} z_n \right| \le \sum_{n=0}^{\infty} |z_n|$$

3.1. Convergencia puntual y uniforme de sucesiones de funciones

Definición 3.1.1. Sea S un conjunto y sean $\{f_n\}$ una sucesión de funciones de S en \mathbb{C} .

- Decimos que $f: S \longrightarrow \mathbb{C}$ es el límite puntual de $\{f_n\}$ en S, o que $\{f_n\}$ converge puntualemente a f en S, si $\lim_{n\to\infty} f_n = f(x)$ para todo $x \in S$.
- Decimos que $f: S \longrightarrow \mathbb{C}$ es el límite uniforme de $\{f_n\}$ en S, o que $\{f_n\}$ converge uniformemente a f en S si, para cada $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que si $n \geq n_0$ entonces $|f_n(x) - f(x)| < \varepsilon$ para todo $x \in S$.

Observación 3.1.2. 1. Si $\{f_n\}$ converge uniformemente en S, entonces $\{f_n\}$ converge puntualmente en S.

2. La convergencia puntual no implica (en general) la convergencia uniforme.

Ejemplo 3.1.3. Sea $f_n:[0,1]\longrightarrow\mathbb{C}$, dadas por $f_n(x)=x^n$. Es claro que, fijado $x\in[0,1]$ se tiene que

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n = \begin{cases} 0 & si & x \in [0, 1) \\ 1 & si & x = 1 \end{cases} = f(x)$$

Por tanto, $\{f_n\}$ converge puntualmente a f en [0,1], pero la convergencia no es uniforme (porque f_n son todas continuas en [0,1] y f no es continua en [0,1]).

- 3. Como \mathbb{C} es completo
 - $\{f_n\}$ converge puntualmente en S si y solo si $\{f_n\}$ es puntualmente de Cauchy en S.
 - $\{f_n\}$ converge uniformemente a f en S si y solo si $\{f_n\}$ es uniformemente de Cauchy en S si y solo para cada $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que si $n, m \in \mathbb{N}$ con $n > m \ge n_0$, entonces $|f_n(x) - f_m(x)| < \varepsilon$ para todo $x \in S$.

Definición 3.1.4. Si $\sum_{n=0}^{\infty} z_n$ converge absolutamente, decimos que converge incondicionalmente si se satisfacen las siguientes propiedades

- 1. Si $\sigma: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$ es una biyección, entonces $\sum_{n=0}^{\infty} z_{\sigma(n)}$ converge absolutamente y $\sum_{n=0}^{\infty} z_n = \sum_{n=0}^{\infty} z_{\sigma(n)}$.
- 2. Para toda partición $\{A_n\}_{n\geq 1}$ de \mathbb{N}_0 se tiene que para cada n tal que A_n es infinito, $\sum_{k\in A_n} z_n$ converge absolutamente y además

$$\sum_{n=0}^{\infty} z_n = \sum_{n \ge 1} \sum_{k \in A_n} z_n$$

Proposición 3.1.5. Si $\sum_{n=0}^{\infty} a_n \ y \sum_{n=0}^{\infty} b_n$ son absolutamente convergentes, entonces la serie "producto de Cauchy"

$$\sum_{n=0}^{\infty} c_n, \text{ siendo } c_n = \sum_{k=0}^{n} a_k b_{n-k}$$

es también absolutamente convergente y

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n\right) \cdot \left(\sum_{n=0}^{\infty} b_n\right)$$

Proposición 3.1.6. Sea X un espacio topológico y sea $\{f_n\}$ una sucesión de funciones continuas de X en \mathbb{C} . Supongamos que $f: X \longrightarrow \mathbb{C}$ es el límite uniforme de $\{f_n\}$ en X. Entonces f es continua en X.

3.2. Series funcionales. Series de potencias

Definición 3.2.1. Sea $\{f_n\}_{n\geq 0}$ una sucesión de funciones complejas definidas sobre un conjunto S.

■ La serie funcional asociada a $\{f_n\}$, y denotada $\sum_{n=1}^{\infty} f_n$, se define como la sucesión de las sumas parciales asociadas a $\{f_n\}$

$$S_n = \sum_{k=0}^n f_k(x), \quad x \in S$$

- Decimos que $\sum_{n=1}^{\infty} f_n$ converge uniformemente (respectivamente puntualmente convergente) en S si así lo hace la correspondiente sucesión de sumas parciales.
- Decimos que $\sum_{n=1}^{\infty} f_n$ converge absolutamente y uniformemente (respectivamente puntualmente) en S si la serie asociada a $\{|f_n|\}$ es uniformemente (respectivamente puntualmente) convergente en S.

Teorema 3.2.2 (Criterio de Cauchy). $\sum_{n=0}^{\infty} f_n$ es uniformemente convergente en S si y solo $\sum_{n=0}^{\infty} f_n$ es uniformemente de Cauchy en S si y solo si para cada $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que

♥® @jorgeroddom

 $si \ n, m \in \mathbb{N} \ con \ n > m \ge n_0, \ entonces$

$$\sup_{x \in S} \left| \sum_{k=m+1}^{n} f_k(x) \right| < \varepsilon$$

Proposición 3.2.3 (Criterio Mayorante de Weierstrass). Sea S un conjunto y sea $\{f_n\}_{n\geq 0}$ una sucesión defunciones complejas definidas en S. Supongamos que

- 1. Existe una sucesión $\{M_n\}_{n\geq 0}\subset \mathbb{R}^+$ con $\sum_{n=0}^{\infty}M_n$ convergente.
- 2. Existe $N \in \mathbb{N}$ tal que $|f_n(x)| \leq M_n$ para todo $x \in S$ y todo $n \geq N$.

Entonces $\sum_{n=0}^{\infty} f_n$ converge absoluta y uniformemente en S.

Definición 3.2.4 (Series de potencias). Una serie de potencias centrada en $a \in \mathbb{C}$ es una serie funcional del tipo

$$\sum_{n=0}^{\infty} a_n (z-a)^n = a_0 + a_1 (z-a) + a_2 (z-a)^2 + \dots$$

Observación 3.2.5. En la definición anterior, en el caso de que z=a, consideramos que $0^0=1$ (por convenio). Además, si z=a, entonces $\sum_{n=0}^{\infty} a_n (z-a)^n$ converge y su valor es a_0 .

Ejemplo 3.2.6. La serie geométrica: $\sum_{k=0}^{\infty} z^n$.

Sumas parciales :
$$S_n(z) = \sum_{k=0}^n z^k = \begin{cases} \frac{1-z^{n+1}}{1-z} & si \quad z \neq 1\\ n+1 & si \quad z = 1 \end{cases}$$

Observamos que si |z| < 1, $S_n(z) \xrightarrow[n \to \infty]{1-z} y$ si |z| > 1, entonces $S_n(z)$ no converge. Por tanto, $\{S_n\}$ es puntualmente convergente a $\frac{1}{1-z}$ en $\mathbb{D} = \{|z| < 1\}$.

Veamos que $\sum_{k=0}^{\infty} z^n$ converge absolutamente y uniformemente en cualquier compacto K de \mathbb{D} .

Demostración. Sea $K \subset \mathbb{D}$ compacto. Entonces exite $r \in (0,1)$ tal que $K \subset \Delta(0,r)$. Ahora, si $z \in K$ y $n \in \mathbb{N}$, observamos que $|z^n| = |z|^n \le r^n$ y que $\sum_{k=0}^{\infty} r^n = \frac{1}{1-r}$ converge. Por tanto, por el Criterio Mayorante de Weierstrass, $\sum_{k=0}^{\infty} z^n$ converge absoluta y uniformemente en K.

Definición 3.2.7. Sea $\{x_n\} \subset \mathbb{R}$.

- $\limsup_{n\to\infty} \{x_n\} = \lim_{n\to\infty} \sup_k \{x_k : k \ge n\}$

Teorema 3.2.8. Sea $\sum_{n=0}^{\infty} a_n (z-a)^n$ una serie de potencias centrada en $a \in \mathbb{C}$. Definimos

$$R = \frac{1}{ \limsup_{n \to \infty} \sqrt[n]{|a_n|}}$$

Entonces

- a) Si $z \in \Delta(a, R)$ entonces $\sum_{n=0}^{\infty} a_n(z-a)^n$ converge absolutamente.
- b) Si |z-a| > R, la serie de potencias no converge

c) $\sum_{n=0}^{\infty} a_n (z-a)^n$ converge absoluta y uniformemente en cada subconjunto compacto de $\Delta(a,R)$.

Demostración. b) Tiene que ser $R < \infty$. Ahora, si |z - a| > R, entonces existe r > 0 tal que

$$R < r < |z - a| \iff \frac{1}{|z - a|} < \frac{1}{r} < \frac{1}{R} = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$$

Entonces existe $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ creciente tal que

$$\sqrt[\varphi(n)]{\left|a_{\varphi(n)}\right|} > \frac{1}{r} \Longleftrightarrow \left|a_{\varphi(n)}\right| > \frac{1}{r^{\varphi(n)}}, \quad \forall n \in \mathbb{N}$$

Por tanto

$$\left| a_{\varphi(n)}(z-a)^{\varphi(n)} \right| = \left| a_{\varphi(n)} \right| |z-a|^{\varphi(n)} > \frac{r^{\varphi(n)}}{r^{\varphi(n)}} = 1$$

Luego, $\sum_{n=0}^{\infty} a_n (z-a)^n$ no converge.

a) y c) Tiene que ser R>0. Sea K un compacto en $\Delta(a,R)$. Entonces existe $r\in(0,R)$ tal que $K\subset\Delta(a,r)$. Sea $\rho\in(r,R)$. Observamos que

$$r < \rho < R \Longleftrightarrow \frac{1}{R} < \frac{1}{\rho} < \frac{1}{r}$$

y que

$$\frac{1}{R} = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$$

Entonces existe $n_0 \in \mathbb{N}$ tal que si $n \geq n_0$

$$\sqrt[n]{|a_n|} < \frac{1}{\rho} \Longleftrightarrow |a_n| < \frac{1}{\rho^n}$$

Ahora, si $n \ge n_0$

$$|a_n(z-a)^n| = |a_n| |z-a|^n \le \frac{r^n}{\rho^n} = \left(\frac{r}{\rho}\right)^n$$

y $\sum_{n=0}^{\infty} \left(\frac{r}{\rho}\right)^n$ converge, pues $0 < \frac{r}{\rho} < 1$. Así, por el Criterio Mayorante de Weierstrass, $\sum_{n=0}^{\infty} a_n (z-a)^n$ converge absoluta y uniformemente en K.

Observación 3.2.9. 1. Sea $\sum_{n=0}^{\infty} a_n (z-a)^n$ una serie de potencias. Si R > 0 entonces dicha serie define una función continua en $\Delta(a, R)$.

2. Otra fórmula para $R\!\!:\!$ Sea

$$A = \{r \ge 0 : \{|a_n|r^n\} \text{ es acotada}\}$$

Entonces $R = \sup(A)$.

Demostración. Sea $R_0 = \sup(A)$. Veamos que $R \ge R_0$. Supongamos que $R_0 > 0$ (si $R_0 = 0$ no hay que probar nada). Sea $\rho \in (0, R_0)$. Entonces $\{|a_n|\rho^n\}$ es acotada, digamos por M, por tanto

$$|a_n|^{\frac{1}{n}} \le \frac{M^{\frac{1}{n}}}{\rho}, \quad n \in \mathbb{N}$$

Luego

$$\limsup \sqrt[n]{|a_n|} \leq \frac{1}{\rho} \Longrightarrow \rho \leq \frac{1}{\limsup \sqrt[n]{|a_n|}} = R$$

Como $\rho < R_0$ es aribitrario, entonces $R_0 \le R$.

Veamos que $R \leq R_0$. Supongamos que R > 0 (Si R = 0 no hay que probar nada). Sea $\rho \in (0, R)$ Entonces

$$\frac{1}{R} = \limsup \sqrt[n]{|a_n|} < \frac{1}{\rho}$$

Entonces, existe $n_0 \in \mathbb{N}$ tal que $\sqrt[n]{|a_n|} < \frac{1}{\rho}$ para todo $n \geq n_0$, lo que nos dice que si $n \geq n_0$ entonces

$$|a_n| < \frac{1}{\rho^n} \Longrightarrow |a_n|\rho^n < 1 \Longrightarrow \{|a_n|\rho^n\}$$
 es acotada

Por tanto, $\rho \in A$ y $\rho \leq \sup(A) = R_0$. Como $\rho < R$ es arbitrario, concluimos que $R \leq R_0$. \square

3. Otra fórmula para R:

Si
$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \rho$$
, entonces $R = \frac{1}{\rho}$

Demostración. Observamos que

Podemos escribir

$$|a_n|^{\frac{1}{n}} = e^{\frac{\log|a_n|}{n}}$$

- $\{n\}$ es una sucesión creciente hacia ∞ .
- .

$$\frac{\log|a_{n+1}| - \log|a_n|}{(n+1) - n} = \log\left|\frac{a_{n+1}}{a_n}\right| \xrightarrow[n \to \infty]{} \log(\rho)$$

Luego

$$\lim_{n\to\infty}e^{\frac{\log|a_n|}{n}}=\lim_{n\to\infty}e^{\rho}=\rho$$

Por tanto, $R = \frac{1}{\rho}$.

Proposición 3.2.10. Sean

- $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n \ con \ R_f \ge R.$
- $g(z) = \sum_{n=0}^{\infty} b_n (z-a)^n \ con \ R_g \ge R.$

Entonces

- $(f+g)(z) = \sum_{n=0}^{\infty} (a_n + b_n)(z-a)^n$ es serie de pontencias con $R_{(f+g)} \ge R$.
- $(f \cdot g)(z) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} {n \choose k} a_k b_{n-k}\right) (z-a)^n$ es una serie de potencias con $R_{(f \cdot g)} \ge R$.

Proposición 3.2.11. Sea $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ una serie de potencias con radio de convergencia $R_a > 0$. Sea $b \in \Delta(a, R_a)$ y sea $r_b = R_a - |b-a|$. Entonces existe una serie de potencias $g(z) = \sum_{n=0}^{\infty} b_n (z-b)^n$, centrada en b, con radio de convergencia $R_b \geq r_b$ tal que f(z) = g(z) para cada $z \in \Delta(b, r_b)$.

Demostración. Sea $z \in \Delta(b, r_b)$. Entonces

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n = \sum_{n=0}^{\infty} a_n [(z-b) + (b-a)]^n = \sum_{n=0}^{\infty} \left(a_n \sum_{k=0}^n \binom{n}{k} (z-b)^k (b-a)^{n-k} \right)$$
$$= \sum_{n=0}^{\infty} \sum_{k=0}^n a_n \binom{n}{k} (z-b)^k (b-a)^{n-k} = \sum_{k=0}^{\infty} \left(\sum_{n=k}^{\infty} a_n \binom{n}{k} (b-a)^{n-k} \right) (z-b)^k$$

Definiendo $b_k = \sum_{n=k}^{\infty} b_k \binom{n}{k} (b-a)^{n-k}$, tenemos que $g(z) = \sum_{k=0}^{\infty} b_k (z-b)^k$ es serie de potencias centrada en b con radio de convergencia $R_b \ge r_b$.

Corolario 3.2.12. De hecho, f(z) = g(z) para cada $z \in \Delta(a, R_a) \cap \Delta(b, R_b)$.

Definición 3.2.13. Sea $\Omega \subseteq \mathbb{C}$ abierto. Decimos que $f : \Omega \longrightarrow \mathbb{C}$ es análitica en Ω , si para cada $a \in \Omega$, f se puede expresar en forma de serie de potencias alrededor de a.

Observación 3.2.14. Toda serie de potencias es análitica en su disco de convergencia.

Teorema 3.2.15 (Diferenciabilidad de las series de potencias). Sea $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ una serie de potencias con radio de convergencia R > 0. Entonces

a) Para cada $k \in \mathbb{N}$, la serie de potencias

$$\sum_{n=k}^{\infty} n(n-1)...(n-k+1)a_n(z-a)^{n-k}$$

es una serie de potencias centrada en a de radio de convergencia R.

b) f es infinitamente derivable en $\Delta(a,R)$ y para cada $k \in \mathbb{N}_0$ y para cada $z \in \Delta(a,R)$

$$f^{(k)}(z) = \sum_{n=k}^{\infty} n(n-1)...(n-k+1)a_n(z-a)^{n-k}$$

c) Para cada $k \in \mathbb{N}_0$, $f^{(k)}(a) = k!a_k$.

Definición 3.2.16. Si f es infinitamente derivable en a, entonces su serie de Taylor centrada en a es

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n$$

Demostración. c) Se tiene de forma directa de a) y b).

a) y b) Basta probarlo para k = 1 (el resto se haría por inducción sobre k)

$$(a_1) \sum_{n=1}^{\infty} n a_n (z-a)^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} (z-a)^n$$

Observamos que

$$\limsup_{n \to \infty} \sqrt[n]{|(n+1)a_{n+1}|} = \limsup_{n \to \infty} (n+1)^{\frac{1}{n}} \cdot \left(|a_{n+1}|^{\frac{1}{n+1}}\right)^{\frac{n+1}{n}} = 1 \cdot \frac{1}{R} = \frac{1}{R}$$

 (b_1) $g(z) = \sum_{n=1}^{\infty} na_n(z-a)^{n-1}$ converge absoluta y uniformemente en cada compacto contenido en (a,R). Veamos que f'(z) = g(z) para cada $z \in \Delta(a,R)$. Sea $z_0 \in \Delta(a,R)$, tenemos que probar que

$$\lim_{n \to z_0} \frac{f(z) - f(z_0)}{z - z_0} - g(z_0) = 0$$

Sea $\varepsilon > 0$. Como $z_0 \in \Delta(a, R)$, entonces existe r > 0 tal que $z_0 \in \overline{\Delta(a, r)} \subset \Delta(a, R)$. También existe $\rho > 0$ $(f = r - |z_0 - a|)$ tal que

$$z_0 \in \overline{\Delta(a_0, \rho)} \subset \Delta(a, r) \subset \Delta(a, R)$$

Ahora, para $z \in \Delta(z_0, \rho), z \neq z_0$

$$\frac{f(z) - f(z_0)}{z - z_0} - g(z_0) = \frac{1}{z - z_0} \left(\sum_{n=1}^{\infty} a_n ((z - a)^n - (z_0 - a)^n) \right) - \sum_{n=1}^{\infty} n a_n (z_0 - a)^{n-1}$$

$$= \sum_{n=1}^{\infty} a_n \sum_{k=0}^{n-1} (z - a)^{n-1-k} (z_0 - a)^k - \sum_{n=1}^{\infty} n a_n (z_0 - a)^{n-1}$$

$$= \left(\sum_{n=1}^{N} + \sum_{n=N+1}^{\infty} \right) a_n \left(\frac{(z - a)^n - (z_0 - a)^n}{z - z_0} - n(z_0 - a)^{n-1} \right) \equiv I_N(z) + II_N(z)$$

donde lo de dentro del paréntesis es

$$\sum_{n=1}^{N} a_n \left(\frac{(z-a)^n - (z_0-a)^n}{z - z_0} - n(z_0-a)^{n-1} \right) + \sum_{n=N+1}^{\infty} a_n \left(\frac{(z-a)^n - (z_0-a)^n}{z - z_0} - n(z_0-a)^{n-1} \right)$$

(hemos usado que $x^n - y^n = (x - y)(x^{n-1} + +x^{n-2}y + ... + xy^{n-1}y^{-1})$).

Empezamos con II_N : Teemos convergencia absoluta

$$|II_N(z)| \le \sum_{n=N+1}^{\infty} |a_n| \cdot \left| \frac{(z-a)^n - (z_0 - a)^n}{z - z_0} \right| + \left| n(z_0 - a)^{n-1} \right|$$

$$\le \sum_{n=N+1}^{\infty} |a_n| \left[\sum_{k=0}^{n-1} |z - a|^{n-1-k} \cdot |z_0 - a|^k + n|z_0 - a|^{n-1} \right]$$

Observamos que

- $|z-a|^{n-1-k} \le \rho n 1 k < r^{n-1-k}.$
- $|z_0 a|^k < r^k$.

Luego

$$|II_N(z)| \le \sum_{n=N+1}^{\infty} n|a_n| (r^{n-1} + r^{n-1}) \le \sum_{n=N+1}^{\infty} 2n|a_n| r^{n-1}$$

Por el Criterio Mayorante de Weierstrass, $|II_N(z)|$ converge uniformemente en $\Delta(z_n,\rho)\setminus\{z_0\}$ porque $\sum_{n=N+1}^{\infty}2n|a_n|r^{n-1}$ converge. Así, existe $N_0\in mathbb{N}$ tal que

$$|II_{N_0}(z)| < \frac{\varepsilon}{2}$$

Pasamos a estimar I_{N_0} :

$$I_{N_0}(z) = \sum_{n=1}^{N_0} a_n \left(\frac{(z-a)^n - (z_0 - a)^n}{z - z_0} - n(z_0 - a)^{n-1} \right) \xrightarrow[z \to z_0]{} 0$$

Por tanto, existe $\delta > 0$, que podemos suponnen
r $\delta < \rho$ tal que

$$|I_{N_0}(z)| < \frac{\varepsilon}{2}, \quad \forall z \in \Delta(z_0, \delta) \setminus \{z_0\}$$

De esta manera, si $z \in \Delta(z_0, \delta) \setminus \{z_0\}$

$$\left| \frac{f(z) - f(z_0)}{z - z_0} - g(z_0) \right| \le |I_{N_0}(z)| + |II_{N_0}(z)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Observación 3.2.17. • Si f es análitica, entonces $f \in \mathscr{C}^{\infty}$.

 \bullet En $\mathbb{R}.$ Si $f\in\mathscr{C}^{\infty},$ entonces f no tiene por qué ser analítica. Por ejemplo

$$f(x) = \begin{cases} e^{-1/x^2} & si \quad x \neq 0\\ 0 & si \quad x = 0 \end{cases}$$

Resulta que $f \in \mathscr{C}^{\infty}$, $f^{(n)}(0) = 0$. Su serie de Taylor es

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = 0$$

que no es f en un en entorno del 0. Sin embargo, en \mathbb{C} , ser \mathscr{C}^{∞} si implica ser analítica.

Observación 3.2.18. La función

$$f(z) = \begin{cases} e^{-1/z^2} & si \quad z \neq 0\\ 0 & si \quad z = 0 \end{cases}$$

no es ni siquiera continua en 0.

Ejemplo 3.2.19. Sea $f(z) = \frac{1}{z}$, $z \in \mathbb{C} \setminus \{0\}$, que es holomorfa en $\mathbb{C} \setminus \{0\}$. ¿Serie de potencias de f centrada en 1? Si existe, es la serie de Taylor de f en 1, es decir,

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!} (z-1)^n$$

¿Como calcular $f^{(n)}(1)$ rápido?

$$\frac{1}{z} = \frac{1}{1+z-1} = \frac{1}{1+(z-1)} = \sum_{n=0}^{\infty} (-(z-1))^n = \sum_{n=0}^{\infty} (-1)^n (z-1)^n$$

que converge si $z \in \Delta(1,1)$. Por tanto $f^{(n)}(1) = n!(-1)^n$.

3.3. Las funciones trigonométricas

En analogía con el caso real

$$sen(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \quad z \in \mathbb{C}$$

$$\cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \quad z \in \mathbb{C}$$

Con esto, es fácil ver que

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} = \cosh z$$
$$\operatorname{sen} z = \frac{e^{iz} - e^{-iz}}{2i} = \frac{\operatorname{senh} z}{i}$$

Propiedades:

- 1. Es fácil comprobar que para cada $z \in \mathbb{C}$,
 - \bullet sen'(z) = cos(z).
 - $\bullet \cos'(z) = -\sin(z).$

2.

$$\begin{aligned} \cos(z) + i \sin(z) &= \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \\ &= \sum_{n=0}^{\infty} i^{2n} \frac{x^{2n}}{(2n)!} + \sum_{n=0}^{\infty} i^{2n+1} \frac{x^{2n+1}}{(2n+1)!} \\ &= \sum_{k=0}^{\infty} \frac{(iz)^k}{k!} = e^{iz} \end{aligned}$$

- 3. $\cos^2(z) + \sin^2(z) = 1$, para cada $z \in \mathbb{C}$.
- 4. Es fácil comprobar que para cada $z \in \mathbb{C}$,
 - $\cos(-z) = \cos(z) \text{ y } \sin(-z) = -\sin(z).$
 - $\cos(z + 2\pi) = \cos(z) \text{ y } \operatorname{sen}(z + 2\pi) = \operatorname{sen}(z).$
- 5. Para cada $z, w \in \mathbb{C}$

$$\begin{aligned} \cos(z+w) &= \frac{e^{i(z+w)} + e^{-i(z+w)}}{2} = \frac{1}{2} \left(e^{iz} e^{iw} + e^{-iz} e^{-iw} \right) \\ &= \frac{1}{2} \left((\cos z + \sin z) (\cos w + i \sin w) + (\cos z - i \sin z) (\cos w - i \sin w) \right) \\ &= \dots = \cos z \cos w - \sin z \sin w \\ &\sin(z+w) = \dots = \sin z \cos w + \cos z \sin w \end{aligned}$$

6. sen y cos no son acotadas en \mathbb{C} . Sea $x+iy\in\mathbb{C}$, entonces

$$\begin{split} \operatorname{sen}(x+iy) &= \operatorname{sen} x \cos(iy) + \cos x \operatorname{sen}(iy) = \operatorname{sen} x \frac{e^{iiy} + e^{-iiy}}{2} + \cos x \frac{e^{iiy} - e^{-iiy}}{2i} \\ &= \operatorname{sen} x \cosh y + i \cos x \operatorname{senh} y \\ \cos(x+iy) &= \dots = \cos x \cosh y - i \operatorname{sen} x \operatorname{senh} y \end{split}$$

Con esto, tenemos que

$$|\operatorname{sen}(x+iy)|^2 = \operatorname{sen}^2 x \operatorname{cosh}^2 y + \operatorname{cos}^2 x \operatorname{senh}^2 y = \operatorname{sen}^2 x (1 + \operatorname{senh}^2 y) + \operatorname{cos}^2 x \operatorname{senh}^2 y$$
$$= \operatorname{sen}^2 x + \operatorname{senh}^2 y$$
$$|\operatorname{cos}(x+iy)|^2 = \operatorname{cos}^2 x + \operatorname{senh}^2 y$$

7. ¿Ceros de sen y cos? Sea $x+iy\in\mathbb{C}$, entonces

8. Visulización de la función sen : S

• Comportamiento de las líneas horizontales $(y = y_0)$

$$\underline{y_0=0}$$
 $\operatorname{sen}(z)=\operatorname{sen}(t)$, se reccore el segmento $[-1,1]$ $\underline{y_0\neq 0}$ $\operatorname{sen}(z)=\operatorname{sen}(t+iy_0)=\operatorname{sen}t\operatorname{cosh}y_0+i\operatorname{cos}t\operatorname{senh}y_0$, que es una elipse

• Comportamiento de las líneas verticales $(x = x_0)$

$$\frac{x_0 = 0}{x_0 \neq 0} \quad \operatorname{sen}(z) = \operatorname{sen}(x_0 + ty_0) = \operatorname{sen}(x_0 + ty$$

El caso de que $x_0 \neq 0$, tenemos que se describe una rama de la hipérbola de centro 0, vértices princales sen x_0 y $-\sin x_0$ y asíntocas de pendientes $\frac{\cos x_0}{\sin x_0}$ y $-\frac{\cos x_0}{\sin x_0}$

9. Inyectividad de la función sen: Sean $z,w\in\mathbb{C},,$ entonces

$$\begin{split} \operatorname{sen} z &= \operatorname{sen} w \Longleftrightarrow \frac{e^{iz} - e^{-iz}}{2i} = \frac{e^{iw} - e^{-iw}}{2i} \Longleftrightarrow e^{iz} - e^{-iz} = e^{iw} - e^{-iw} \\ &\iff e^{iz} (1 - e^{i(w-z)}) = -e^{iw} (-e^{i(w-z)} + 1) \\ &\iff e^{i(z+w)} (1 - e^{i(w-z)}) = -(-e^{i(w-z)} + 1) \\ &\iff (1 + e^{i(w+z)}) (1 - e^{i(w-z)}) = 0 \\ &\iff \begin{cases} e^{i(w+z)} = -1 \\ \delta \\ e^{i(w-z)} = 1 \end{cases} &\iff \begin{cases} w + z = \pi + 2k\pi, \ k \in \mathbb{Z} \ (Simetria) \\ \delta \\ w - z = 2k\pi, \ k \in \mathbb{Z} \ (Periodicidad) \end{cases} \\ &\iff w \neq z \text{ son simétricos respecto} \end{cases} \end{split}$$

Dominio de inyectividad de la función sen

- Periodicidad: Nos restringimos a una banda vertical de ancho máximo 2π .
- Simetría: Nos restringimos a

$$S = \left\{ z \in \mathbb{C} : -\frac{\pi}{2} < z < \frac{\pi}{2} \right\}$$

Capítulo 4

Transformaciones de Möbius

4.1. Transformaciones de Möbius

Definición 4.1.1. Una transformación de Möbius es una aplicación racional de grado 1, es decir, de la forma

$$T(z) = \frac{az+b}{cz+d}$$

 $con ad - bc \neq 0.$

Propiedades:

1. Son holomorfas en $\mathbb{C}\setminus\{-\frac{d}{c}\}$ y

$$T'(z) = \frac{a(cz+d) - (az+b)d}{(cz+d)^2} = \frac{ad-bc}{(cz+d)^2} \neq 0$$

2. Relación con matrices $2 \times 2.$.

$$T(z) = \frac{az+b}{cz+d} \longleftrightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Con esta asignación, dadas $T(z)=\frac{az+b}{cz+d},~ad-bc\neq 0$ y $S(z)=\frac{mz+n}{oz+p},~mp-no\neq 0$. Entonces

$$T\circ S(z)=\ldots=\frac{(am+bo)z+an+bp}{(cm+do)z+cn+dp}$$

que se comprueba que es una transformación de Möbius. La matriz asociada a $T\circ S$ es

$$\begin{pmatrix} am+bo & an+bp\\ cm+do & cn+dp \end{pmatrix} = \begin{pmatrix} a & b\\ c & d \end{pmatrix} \begin{pmatrix} m & n\\ o & p \end{pmatrix}$$

De esta forma, podremos notar $T\circ S\equiv TS$ y $T(z)\equiv Tz$. La inversa de T es

$$T^{-1}(w) = \frac{dw - b}{-cw + a}$$

que es una transformación de Möbius, pues $da - bc \neq 0$ y tiene como matriz asociada

$$T^{-1} \longleftrightarrow \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

3. Tipos básicos de transformaciones de Möbius.

■ Traslación: $Tz = z + b, b \in \mathbb{C}$.

• Rotación: $Tz = e^{i\theta}z, \ \theta \in \mathbb{R}$.

■ Dilatación: Tz = rz, r > 0, $r \neq 1$.

• Inversión: $Tz = \frac{1}{z}$

Toda transformación de Möbius es composición de estas 4 transformaciones de Möbius básicas.

Proposición 4.1.2. Las transformaciones de Möbius envian circunferencias de \mathbb{C}^* en circunferencias de \mathbb{C}^* .

Proposición 4.1.3. Toda transformación de Möbius distinta de la identidad tiene 1 ó 2 puntos fijos. Si una transformación de Möbius tiene más de 2 puntos fijos, entonces es la identidad.

Teorema 4.1.4 (Determinación única de transformaciones de Möbius). Una transformación de Möbius queda completamente determinada en el momento que se establecen las imágenes (distintas) de 3 puntos de \mathbb{C}^* .

Más concretamente, dadas 2 ternas de puntos de \mathbb{C}^* , existe una única transformación de Möbius que aplica una terna en la otra.

Demostración. Existencia: Sean $z_1, z_2, z_3 \in \mathbb{C}^*$ distintos y $w_1, w_2, w_3 \in \mathbb{C}^*$. Definimos la transformación de Möbius

$$Tz = \frac{z - z_2}{z - z_3} \cdot \frac{z_1 - z_3}{z_1 - z_2}$$

que aplica $\{z_1, z_2, z_3\}$ en $\{1, 0, \infty\}$. De igual modo definimos S, transformación de Möbius, que aplica $\{w_1, w_2, w_3\}$ en $\{1, 0, \infty\}$. Ahora, $S^{-1}T$ aplica $\{z_1, z_2, z_3\}$ en $\{w_1, w_2, w_3\}$.

<u>Unicididad</u>: Supongamos por reducción al absurdo que T_1 y T_2 son transformaciones de Möbius que aplican $\{z_1, z_2, z_3\}$ en $\{w_1, w_2, w_3\}$. Entonces $T_2^{-1}T_1$ es transformación de Möbius que aplica $\{z_1, z_2, z_3\}$ en $\{z_1, z_2, z_3\}$. Así, $T_2^{-1}T_1$ tiene 3 puntos fijos, por tanto, $T_2^{-1}T_1 = I$, luego, $T_1 = T_2$.

Corolario 4.1.5. Para cada par de circunferencias de \mathbb{C}^* , Γ y Γ' , existe una transformación de Möbius que aplica una en la otra.

Definición 4.1.6 (Razón doble de 4 puntos). Sean $z_1, z_2, z_3 \in \mathbb{C}^*$ distintos y sea $z \in \mathbb{C}^*$. Se define la razón doble de z con respecto a z_1, z_2, z_3 como la imagen de z mediante la única transformación de Möbius que aplica z_1 en $1, z_2$ en 0 y z_3 en ∞ .

Notaremos a la razón doble de z con respecto a z_1, z_2, z_3 como $Tz = (z; z_1, z_2, z_3)$.

Proposición 4.1.7. Si T es una transformación de Möbius $y z_1, z_2, z_3 \in \mathbb{C}^*$ distintos, entonces

$$(Tz; Tz_1, Tz_2, Tz_3) = (z; z_1, z_2, z_3)$$

para todo $z \in \mathbb{C}^*$.

Demostración. Definimos $Sz=(z;z_1,z_2,z_3)$, que es una transformación de Möbius. Veamos que ocurre con ST^{-1} .

- $ST^{-1}(Tz_1) = Sz_1 = 1.$
- $ST^{-1}(Tz_2) = Sz_2 = 0.$
- $ST^{-1}(Tz_3) = Sz_3 = \infty$.

Luego, $ST^{-1}(z) = (z; Tz_1, Tz_2, Tz_3)$ y por tanto

$$(z; z_1, z_2, z_3) = Sz = ST^{-1}(Tz) = (Tz; Tz_1, Tz_2, Tz_3)$$

Observación 4.1.8. La circunferencia, Γ , determinada por $z_1, z_2, z_3 \in \mathbb{C}^*$ es

$$\Gamma = \{ z \in \mathbb{C}^* : \operatorname{Im}(z; z_1, z_2, z_3) = 0 \}$$

Definición 4.1.9. Una orientación en una circuferencia Γ de \mathbb{C}^* es una terna ordenada (z_1, z_2, z_3) donde $z_j \in \Gamma$.

• El lado derecho de Γ respecto a la orientación (z_1, z_2, z_3) es

$$\Gamma_+(z_1, z_2, z_3) = \{ z \in \mathbb{C}^* : \operatorname{Im}(z; z_1, z_2, z_3) > 0 \}$$

• El lado izquierdo de Γ respecto a la orientación (z_1, z_2, z_3) es

$$\Gamma_{-}(z_1, z_2, z_3) = \{ z \in \mathbb{C}^* : \operatorname{Im}(z; z_1, z_2, z_3) < 0 \}$$

Proposición 4.1.10 (Principio de orientación). Sean Γ_1, Γ_2 circunferencias de \mathbb{C}^* orientadas por (z_1, z_2, z_3) y (w_1, w_2, w_3) respectivamente. Si T es una transformación de Möbius tal que $Tz_1 = w_1, Tz_2 = w_2$ y $Tz_2 = w_3$, entonces

- $T(\Gamma_{1,+}(z_1, z_2, z_3)) = \Gamma_{2,+}(w_1, w_2, w_3).$
- $T(\Gamma_{1,-}(z_1,z_2,z_3)) = \Gamma_{2,-}(w_1,,w_2,w_3).$

Demostración.

$$\begin{split} \Gamma_{2,+}(w_1,w_2,w_2) &= \{ w \in \mathbb{C}^* : \operatorname{Im}(w;w_1,w_2,w_3) > 0 \} = \{ w \in \mathbb{C}^* : \operatorname{Im}(w;Tz_1,Tz_2,Tz_3) > 0 \} \\ &= \{ w \in \mathbb{C}^* : \operatorname{Im}(TT^{-1}w;Tz_1,Tz_2,Tz_3) > 0 \} \\ &= \{ w \in \mathbb{C}^* : \operatorname{Im}(T^{-1}w;z_1,z_2,z_3) > 0 \} \\ &= \{ Tz \in \mathbb{C}^* : \operatorname{Im}(z;z_1,z_2,z_3) > 0 \} = T(\Gamma_{1,+}(z_1,z_2,z_3)) \end{split}$$

Definición 4.1.11. Sea Γ una circunferencia en \mathbb{C}^* que pasa por z_1, z_2, z_3 . Para $z \in \mathbb{C}^*$ definimos el simétrico de z con respecto a Γ como $z^* \in \mathbb{C}^*$ tal que

$$(z^*; z_1, z_2, z_3) = \overline{(z; z_1, z_2, z_3)}$$

Observación 4.1.12. • "Ser simétrico respecto a" es una relación de equivalencia.

• z^* siempre existe. Sea $Sz = (z; z_1, z_2, z_3)$, entonces

$$Sz^* = \overline{Sz} \Longrightarrow z^* = S^{-1}(\overline{Sz})$$

♥ @jorgeroddom

Lema 4.1.13. Las transformaciones de Möbius que aplican $\overline{\mathbb{R}}$ en $\overline{\mathbb{R}}$ admiten una representación del tipo

$$Tz = \frac{az+b}{cz+d}, \quad a, b, c, d \in \mathbb{R}$$

 $Demostraci\'on. \Longleftarrow \text{Si } Tz = \frac{az+b}{cz+d} \text{ con } a,b,c,d \in \mathbb{R} \text{, entonces } T\overline{\mathbb{R}} = \overline{\mathbb{R}}.$

 \Longrightarrow Supongamos que T es una transformación de Möbius tal que $T\overline{\mathbb{R}} = \overline{\mathbb{R}}$. Sean $z_1 = T^{-1}(1)$, $z_2 = T^{-1}(0)$, $z_3 = T^{-1}(\infty)$. Observamos que $z_1, z_2, z_3 \in \overline{\mathbb{R}}$, y que

$$Tz = (Tz; 1, 0, \infty) = (Tz; Tz_1, Tz_2, Tz_3) = (z; z_1, z_2, z_3)$$

que es una transformación de Möbius con coeficientes reales.

Una propiedad importante que satisfacen las transformaciones de Möbius que dejan invariante $\overline{\mathbb{R}}$ es que son simétricas con respecto a la conjugación, es decir, si T es una transformación de Möbius tal que $T\overline{\mathbb{R}} = \overline{\mathbb{R}}$ y $Tz = \frac{az+b}{cz+d}$ con $a,b,c,d \in \mathbb{R}$, entonces

$$T\overline{z} = \frac{a\overline{z} + b}{c\overline{z} + d} = \overline{\left(\frac{az + b}{cz + d}\right)} = \overline{Tz}$$

Teorema 4.1.14. Si S y T son transformaciones de Möbius que aplican Γ en $\overline{\mathbb{R}}$ entonces

$$T^{-1}(\overline{Tz}) = S^{-1}(\overline{Sz})$$

para cada $z \in \mathbb{C}^*$.

 $Demostración.\ T^{-1}(\overline{Tz}) = S^{-1}(\overline{Sz}) \Longleftrightarrow ST^{-1}(\overline{Tz}) = \overline{Sz}.$ Observamos que ST^{-1} es una transformación de Möbius que aplica $\overline{\mathbb{R}}$ en $\overline{\mathbb{R}}$, por tanto

$$ST^{-1}(\overline{Tz}) = \overline{ST^{-1}(Tz)} = \overline{Sz}$$

Ejemplo 4.1.15. 1. El simétrico con respecto $\overline{\mathbb{R}}$ coincide con el conjugado. En efecto, fijamos $z \in \mathbb{C}^*$, entonces z^* es tal que

$$z^* = (z^*; 1, 0, \infty) = \overline{(z; 1, 0, \infty)} = \overline{z}$$

2. Simetría con respecto a $\partial \mathbb{D}$. Sea

$$Tz = (z; i, 1, -1) = \frac{z-1}{z+1} \cdot \frac{i+1}{i-1} = \frac{z-1}{z+1} \cdot (-i) = \frac{i-iz}{1+z}$$

que es una transformación de Möbius. Observamos que su inversa es

$$T^{-1}(2) = \frac{i-w}{i+w}$$

Entonces

$$z^* = T^{-1}(\overline{Tz}) = T^{-1}\left(\frac{-i+i\overline{z}}{1+\overline{z}}\right) = \frac{i-\frac{-i+i\overline{z}}{1+\overline{z}}}{i+\frac{-i+i\overline{z}}{1+\overline{z}}} = \frac{i+i\overline{z}+i-iz}{i+i\overline{z}-i+i\overline{z}} = \frac{1}{\overline{z}} = \frac{z}{|z|^2}$$

Proposición 4.1.16. Sea Γ una circunferencia de \mathbb{C}^* . Entonces Γ queda fija por simetría respecto a Γ .

Teorema 4.1.17 (Principio de simetría). Sea T una transformación de Möbius y sea Γ una circunferencia en \mathbb{C}^* . Supongamos que z y z^* son simétricos respecto a Γ . Entonces Tz y Tz^* son simétrico respecto a $\Gamma' = T\Gamma$.

Demostración. Sea S una transformación de Möbius que aplica Γ en $\overline{\mathbb{R}}$. Denotemos como $(Tz)^{**}$ al simétrico de Tz respecto a Γ' , entonces

$$(Tz)^{**} = S^{-1}(\overline{STz}) \underset{(*)}{=} T(T^{-1}S^{-1})(\overline{STz}) = Tz^{*}$$

En (*) estamos usando que $ST(\Gamma) = \overline{\mathbb{R}}$ y que $(ST)^{-1} = T^{-1}S^{-1}$.

Ejemplo 4.1.18. 1. Toda recta es la imagen de $\overline{\mathbb{R}}$ mediante una traslación y una rotación.

2. Simetría con respecto a $\partial \Delta(a, R)$. Sea Tz = a + Rz, es una transformación de Möbius que aplica $\{|z| = 1\}$ en $\{|z - a| = R\}$. Fijamos $z_0 \in \mathbb{C}^*$ y sea $w_0 = T^{-1}z_0 = \frac{z_0 - a}{R}$. Entonces

$$z_0^* = T\left(\frac{1}{\overline{w_0}}\right) = a + R\frac{1}{\overline{w_0}} = a + \frac{R}{\frac{\overline{z_0 - a}}{R}} = a + \frac{R^2}{\overline{z_0 - a}}$$

Teorema 4.1.19. Las transformaciones de Möbius que dejan invariante a la circunferencia unidad admiten una representación del tipo

$$Tz = \frac{\alpha z + \beta}{\overline{\beta}z + \overline{\alpha}}$$

 $con \ \alpha, \beta \in \mathbb{C} \ y \ |\alpha| \neq |\beta|.$

 $Demostración. \Longrightarrow Sea\ T$ una transformación de Möbius que deja invariante $\partial \mathbb{D}$. Fijamos S una transformación de Möbius que aplica $\partial \mathbb{D}$ en $\overline{\mathbb{R}}$, por ejemplo, $Sz=(z;i,1,-1)=\frac{i-iz}{1+z}$. Entonces $R=STS^{-1}$ es una transformación de Möbius que deja invariante $\overline{\mathbb{R}}$, luego R admite una representación del tipo

$$Rz = \frac{az+b}{cz+d}, \quad a,b,c,d \in \mathbb{R}$$

Entonces $T = S^{-1}RS$ tiene el siguiente aspecto

$$S^{-1}RS \longleftrightarrow \begin{pmatrix} i & 1 \\ -i & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -i & i \\ 1 & 1 \end{pmatrix} = \dots = \begin{pmatrix} (a+d)+i(b-c) & -(a-d)+i(b+c) \\ -(a-d)-i(b+c) & (a+d)-i(b-c) \end{pmatrix}$$
$$= \begin{pmatrix} \frac{\alpha}{\beta} & \frac{\beta}{\alpha} \end{pmatrix}$$

Como tiene que ser transformación de Möbius el determinante de dicha matriz ha de ser distinto de cero, por tant ha d
 ocurrir que $|\alpha| \neq |\beta|$.

 \iff Sea $Tz = \frac{\alpha z + \beta}{\overline{\beta}z + \overline{\alpha}}$ con $\alpha, \beta \in \mathbb{C}$ y $|\alpha| \neq |\beta|$. Si |z| = 1, entonces $z\overline{z} = 1 \iff \overline{z} = \frac{1}{z}$. Con esto, tenemos que

$$|Tz| = \left| \frac{\alpha z + \beta}{\overline{\beta}z + \overline{\alpha}} \right| = \left| \frac{\alpha z + \beta}{z \left(\overline{\beta} + \overline{\alpha} \frac{1}{\overline{z}} \right)} \right| = \left| \frac{\alpha z + \beta}{z \left(\overline{\beta} + \overline{\alpha} \overline{z} \right)} \right| = 1$$

Observación 4.1.20. \blacksquare Si $\alpha = 0$ entonces

$$Tz = \frac{\beta}{\overline{\beta}z} = \lambda \frac{1}{z}, \quad |\lambda| = 1$$

 \blacksquare Si $\alpha \neq 0$ entonces

$$Tz = \frac{\alpha \left(z + \beta \frac{1}{\alpha}\right)}{\overline{\alpha} \left(\overline{\beta}z \frac{1}{\overline{\alpha}} + 1\right)} = \frac{\alpha}{\overline{\alpha}} \cdot \left(\frac{\overline{z} + \frac{\beta}{\alpha}}{1 + \overline{\left(\frac{\beta}{\alpha}\right)}}\right) = \lambda \left(\frac{z + a}{1 + \overline{a}z}\right), \quad |\lambda| = 1, \ |a| \neq 1$$

Teorema 4.1.21. Las transformaciones de Möbius que dejan invariante $\mathbb D$ son del tipo

$$Tz = \lambda \left(\frac{a - z}{1 - \overline{a}z} \right)$$

 $con |\lambda| = 1 y |a| < 1.$

4.2. Aplicaciones conformes

Definición 4.2.1. Una aplicación conforme en $D \subset \mathbb{C}$ dominio es una función holomorfa e inyectiva (y con inversa holomorfa).

Definición 4.2.2. Sean $D_1, D_2 \subset \mathbb{C}$ dominios. Decimos que D_1 es conformemente equivalente a D_2 si existe $f: D_1 \longrightarrow D_2$ conforme y tal que $f(D_1) = D_2$.

Proposición 4.2.3. " Ser conformemente equivalente a" es una relación de equivalencia.

Ejemplo 4.2.4. 1. Dos discos son conformemente equivalentes.

- 2. Dos semiplanos son conformemente equivalentes.
- 3. $\mathbb{D}=\{|z|<1\}$ y $\mathbb{H}=\{\mathrm{Re}z>0\}$ son conformemente equivalentes. Para verlo, usamos la transformación de Möbius

$$Tz: \mathbb{D} \longrightarrow \mathbb{H}$$

$$z \longmapsto Tz = \frac{1+z}{1-z}$$

que se conoce como aplicación de Cayley.

4. El disco unidad y $\mathbb{C}\setminus(-\infty,0]$ son conformemente equivalentes. De nuevo, basta darse cuenta que la función z^2 aplica el semiplano de la derecha conformemente sobre $\mathbb{C}\setminus(-\infty,0]$ para obtener que $f(z)=\left(\frac{1+z}{1-z}\right)^2$ establece una equivalencia conforme entre \mathbb{D} y $\mathbb{C}\setminus(-\infty,0]$.

5. El disco unidad es conformemente equivalente al sector $S_{\alpha} = \{re^{i\theta}: r>0, |\theta|<\alpha\}$ de apertura 2α ($\alpha\in(0,\pi]$) mediante la aplicación $f_{\alpha}(z)=\left(\frac{1+z}{1-z}\right)^{\frac{2}{\pi}\alpha}$ y donde se usa la rama principal de la potencia.

6. El disco unidad es conformemente equivalente a la banda horizontal $B_h = \{ \text{Im}|z| < h \}$ de altura 2h (h>0), mediante la aplicación $f(z) = \frac{2h}{\pi} \text{Log}\left(\frac{1+z}{1-z}\right)$

7. El disco unidad es conformemente equivalente a $\mathbb{H}\setminus[0,1]$, mediante la secuencia de aplicaciones

$$\mathbb{D} \to \mathbb{C} \setminus (-\infty, 0] \to \mathbb{C} \setminus (-\infty, 1] \to \mathbb{H} \setminus [0, 1]$$
$$z \longmapsto \left(\frac{1+z}{1-z}\right)^2 \longmapsto \bullet + 1 \longmapsto \sqrt{\bullet}$$

donde nuevamente se ha usado la rama principal de la raíz cuadrada.

8. El disco unidad es conformemente equivalente a $\mathbb{D}\setminus[-1,0]$, usando la aplicación $\sqrt{\left(\frac{1+z}{1-z}\right)^2+1}$, $z\in\mathbb{D}$ y luego la inversa de la aplicación de Cayley, $\frac{w-1}{w+1}$, $w\in\mathbb{H}$. Así, una aplicación conforme entre \mathbb{D} y $\mathbb{D}\setminus[-1,0]$ es

$$f(z) = \frac{\sqrt{\left(\frac{1+z}{1-z}\right)^2 + 1} - 1}{\sqrt{\left(\frac{1+z}{1-z}\right)^2 + 1} + 1}$$

donde $z \in \mathbb{D}$.

9. El disco unidad es conformemente equivalente a $\mathbb{D}\backslash\overline{\Delta\left(\frac{1}{2},\frac{1}{2}\right)}$. La secuencia de aplicaciones sería así

$$\mathbb{D} \to \mathbb{H} \to \{0 < \operatorname{Im} z < 1\} \to \{0 < \operatorname{Re} z < 1\} \to \overline{\Delta\left(\frac{1}{2}, \frac{1}{2}\right)}$$
$$z \longmapsto \frac{1+z}{1-z} \longmapsto \frac{1}{\pi} \operatorname{Log}(\bullet) + \frac{i}{2} \longmapsto i(\bullet) + 1 \longmapsto \frac{\bullet - 1}{\bullet + 1}$$

Capítulo 5

Integración compleja. Versiones simples del teorema de Cauchy

5.1. Primitivas

Definición 5.1.1. Sea $\Omega \subset \mathbb{C}$ abierto y $f : \Omega \longrightarrow \mathbb{C}$ una función. Decimos que $F : \Omega \longrightarrow \mathbb{C}$ es primitiva de f en Ω si

- 1. F es holomorfa en Ω .
- 2. F' = f en Ω .

Ejemplo 5.1.2. 1. Una primitiva de e^z en \mathbb{C} es e^z .

2. Una primitiva de $a_0 + a_1 z + ... + a_n z^n$ en \mathbb{C} es

$$a_0z + a_1\frac{z^2}{2} + \dots + a_n\frac{z^{n+1}}{n+1}$$

3. Si $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ es una serie de potencias con radio de convergencia R>0, entonces

$$F(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-a)^{n+1}$$

es una primitiva de f en $\Delta(a, R)$.

- 4. Si F es una primitiva de f en Ω , entonces $F + \lambda$ es una primitiva de f en Ω .
- 5. Si $D \subset \mathbb{C}$ es dominio y F_1, F_2 son primitivas de f en D, entonces existe $\lambda \in \mathbb{C}$ tal que $F_2 = F_1 + h$ en D.

Demostración. $F_2 - F_1$ es holomorfa en D y $(F_2 - F_1)' = F_2' - F_1' = f - f = 0$. Luego, $F_2 - F_1$ es constante en D.

6. Una primitiva de $\frac{1}{z}$ en $\mathbb{C}\setminus(-\infty,0]$ es Logz.

Proposición 5.1.3. Sea $D \in \mathbb{C} \setminus \{0\}$ dominio. Entonces existe una rama del $\log z$ en D si y solo si $\frac{1}{z}$ tiene primitiva en D.

Demostración. \Longrightarrow Supongamos que g es una rama del $\log z$ en D, entonces sabemos que g es derivable en D y que $g'(z) = \frac{1}{z}, z \in D$, por tanto, g es primitiva de $\frac{1}{z}$ en D.

Supongamos que $g:D\longrightarrow \mathbb{C}$ es primitiva de $\frac{1}{z}$ en D. Entonces g es holomorfa en D y $g'(z)=\frac{1}{z},\,z\in D$.

Consideremos $G(z) = ze^{-g(z)}, z \in D$. Entonces

- (i) G es holomorfa en D.
- (ii) Dado $z \in D$

$$G'(z) = e^{-g(z)} - ze^{-g(z)}g'(z) = e^{-g(z)} - ze^{-g(z)}\frac{1}{z} = e^{-g(z)} - e^{-g(z)} = 0$$

Por tanto, G es constante y no nula en D. De esta manera, si β es un logaritmo de dicha constante, entonces tenemos que

$$G(z) = e^{\beta} = ze^{-g(z)} \Longrightarrow z = e^{g(z)+\beta}, \quad z \in D$$

Luego, $g(z) + \beta$ es rama del $\log z$ en D.

Proposición 5.1.4. Sea $D \subset \mathbb{C}$ dominio $y \ f : D \longrightarrow \mathbb{C}$ holomorfa y nunca nula en D. Entonces existe una rama del $\log(f)$ en D si y solo si $\frac{f'}{f}$ tiene primitiva en D.

5.2. Integración de funciones complejas sobre intervalos

Definición 5.2.1. Sea [a,b] un intervalo real no degenerado. Decimos que $\varphi:[a,b]\longrightarrow \mathbb{C}$ es integrable en [a,b] (Riemann o Lebesgue) si lo son $\mathrm{Re}(\varphi)$ e $\mathrm{Im}(\varphi)$ y en ese caso

$$\int_{a}^{b} \varphi(t) dt = \int_{a}^{b} \operatorname{Re}(\varphi(t)) dt + i \int_{a}^{b} \operatorname{Im}(\varphi(t)) dt$$

Observación 5.2.2. 1. Linealidad:

$$\int_a^b \alpha_1 \varphi_1(t) + \alpha_2 \varphi_2(t) dt = \alpha_1 \int_a^b \varphi_1(t) dt + \alpha_2 \int_a^b \varphi_2(t) dt$$

2. Aditividad: Si $c \in (a, b)$

$$\int_{a}^{b} \varphi(t) dt = \int_{a}^{c} \varphi(t) dt + \int_{c}^{b} \varphi(t) dt$$

3. Notación:

$$\int_{a}^{b} \varphi(t) dt = -\int_{b}^{a} \varphi(t) dt \quad y \quad \int_{c}^{c} \varphi(t) dt = 0$$

4. Estimación:

$$\left| \int_a^b \varphi(t) \ dt \right| \leq \int_a^b |\varphi(t)| \ dt$$

Demostración. Si φ es integrable en [a,b], entonces $|\varphi| = \sqrt{\text{Re}(\varphi)^2 + \text{Im}(\varphi)^2}$ es integrable en [a,b].

- Si $I = \int_a^b \varphi(t) dt$, no hay nada que probar.
- Supongamos que $I \neq 0$, entonces $I = |I|e^{i\theta}$, $\theta \in \arg(I)$.

$$\begin{split} \left| \int_a^b \varphi(t) \ dt \right| &= |I| = I e^{-i\theta} = \int_a^b e^{-i\theta} \varphi(t) \ dt \\ &= \int_a^b \operatorname{Re}(e^{-i\theta} \varphi(t)) \ dt + i \int_a^b \operatorname{Im}(e^{-i\theta} \varphi(t)) \ dt \\ &= \int_a^b \operatorname{Re}(e^{-i\theta} \varphi(t)) \ dt \leq \int_a^b \left| \operatorname{Re}(e^{-i\theta} \varphi(t)) \right| \ dt \\ &= \int_a^b |\varphi(t)| \ dt \end{split}$$

5. Si φ es continua en [a, b], entonces φ es integrable en [a, b].

6. El Teorema Fundamental del Cálculo tenemos que si $\varphi:[a,b]\longrightarrow\mathbb{C}$ es derivable y φ' es integrable en [a,b] entonces:

$$\int_{a}^{b} \varphi'(t) \ dt = \varphi(b) - \varphi(a)$$

7. <u>Cambio de variable</u>: Si $h:[a,b] \longrightarrow \mathbb{R}$ es de clase \mathscr{C}^1 y $\varphi:h([a,b]) \longrightarrow \mathbb{C}$ es continua, entonces $\varphi = \varphi \circ h$ son integrables en h([a,b]), [a,b] respectivamente y

$$\int_{a}^{b} \varphi \circ h(t)h'(t) \ dt = \int_{h(a)}^{h(b)} \varphi(s) \ ds$$

Integración por partes: $\varphi, \psi : [a, b] \longrightarrow \mathbb{C}$ son de clase \mathscr{C}^1 a trozos entonces

$$\int_{a}^{b} \varphi(t)\psi'(t) = \left[\varphi(t)\psi(t)\right]_{a}^{b} - \int_{a}^{b} \psi(t)\varphi(t) dt$$

5.3. Curvas y caminos

5.3.1. Curvas

Sea $\mathscr C$ el conjunto de pares (I,φ) donde I es intervalo compacto de $\mathbb R$ y $\varphi:I\longrightarrow \mathbb C$ continua. Definimos la relación de equivalencia

 $(I,\varphi)\sim (J,\psi)\Longleftrightarrow \text{Existe }h:I\longrightarrow J \text{ homeomorfismo creciente tal que }\varphi=\psi\circ h$

$$I \xrightarrow{\varphi} \mathbb{C} \qquad \qquad J \xrightarrow{\psi} \mathbb{C}$$

$$I \xrightarrow{h} J \xrightarrow{\psi} \mathbb{C}$$

Definición 5.3.1. • Una curva en \mathbb{C} es un elemento de \mathscr{C}/\sim .

- ullet Cada representante de una curva γ se llama parametrización de γ .
- Cada homeomorfismo creciente que liga dos parametrizaciones se llama cambio de parámetro.

Definición 5.3.2. Sea γ una curva de $\mathbb C$ parametrizada por $\varphi:[a,b]\longrightarrow \mathbb C$. Definimos:

- $origen(\gamma) = \varphi(a)$.
- $extremo(\gamma) = \varphi(b)$.
- $soporte(\gamma) = sop(\gamma) = \varphi([a, b]).$

Observación 5.3.3. Estas definiciones son independientes de la parametrización elegida.

Demostración. Sea $\psi:[c,d]\longrightarrow\mathbb{C}$ otra parametrización de γ , entonces existe $h:[a,b]\longrightarrow[c,d]$ homeomorfismo creciennte tal que $\varphi=\psi\circ h$. Entonces

- $origen(\gamma) = \varphi(a) = \varphi(h^{-1}(c)) = \psi(c)$.
- $extremo(\gamma) = \varphi(b) = \varphi(h^{-1}(d)) = \psi(d)$
- $sop(\gamma) = \varphi([a,b]) = \psi(h([a,b])) = \psi([c,d]).$

Definición 5.3.4. Sea γ una curva de \mathbb{C} .

- \blacksquare Decimos que γ es simple si una (todas) parametrización es inyectiva.
- Decimos que γ es cerrada si $origen(\gamma) = extremo(\gamma)$.
- Decimos que γ es una curva de Jordan si una (todas) parametrización suya ($[a, b], \varphi$) es cerrada y φ es inyectiva en [a, b).

Ejemplo 5.3.5. 1. El segmento de origen z_1 y extremo z_2 , denotado por $[z_1, z_2]$, lo podemos parametrizar como

$$\varphi: [0,1] \longrightarrow \mathbb{C}$$

$$t \longmapsto \varphi(t) = z_1 + t(z_2 - z_1)$$

2. La circunferecia de centro a y radio r recorrida una vez en sentido positivo (horario) empezando por a+r se puede parametrizar como

$$\varphi:[0,2\pi)\longrightarrow\mathbb{C}$$

$$t\longmapsto \varphi(t)=a+re^{i\theta}$$

Definición 5.3.6. Sean $([a_1,b_1],\varphi_1)$ y $([a_2,b_2],\varphi_2)$ dos parametrizaciones de curvas γ_1 y γ_2 respectivamente con $\varphi_1(b_1) = \varphi_2(a_2)$, entonces

$$\varphi(t) = \begin{cases} \varphi_1(t) & si & t \in [a_1, b_1] \\ \\ \varphi_2(t - b_1 + a_2) & si & t \in [b_1, b_1 + b_2 - a_2] \end{cases}$$

es una parametrización de una curva γ , que se llama $\gamma_1 + \gamma_2$.

Observación 5.3.7. La definición es independiente de las parametrizaciones elegidas.

Ejemplo 5.3.8. La poligonnal de vértices $z_1, ..., z_n$, denotada por $[z_1, ..., z_n]$ se puede parametrizar como

$$[z_1, ..., z_n] = [z_1, z_2] + ... + [z_{n-1}, z_n]$$

Definición 5.3.9. Si γ es una curva de $\mathbb C$ parametrizada por $\varphi:[a,b]\longrightarrow \mathbb C$, entonces su curva opuesta, $-\gamma$, viene parametrizada por

$$-\gamma: [-b, -a] \longrightarrow \mathbb{C}, \quad -\gamma(t) = \varphi(-t)$$

Observación 5.3.10. $\gamma + (-\gamma)$ no es una curva constante.

5.3.2. Funciones de variaciones acotadas

Definición 5.3.11. Sea $\varphi : [a, b] \longrightarrow \mathbb{C}$ función.

■ Para una partición $\Pi = \{a = t_0 < t_1 < ... < t_n = b\}$ de [a, b], definimos la variación de φ respecto de Π como

$$Var(\varphi, \Pi) = \sum_{j=1}^{n} |\varphi(t_j) - \varphi(t_{j-1})|$$

 \blacksquare La variación total de φ en [a,b] se define como

$$Var_{[a,b]}(\varphi) = \sup_{\Pi \in \mathcal{P}([a,b])} Var(\varphi,\Pi)$$

 \blacksquare Decimos que φ es de variación acotada en [a,b] si $Var_{[a,b]}(\varphi)$ es finita.

Observación 5.3.12. 1. φ no tiene que ser necesariamente continua.

- 2. Si φ es continua, entonces φ es una parametrización de una curva γ y $Var(\varphi, \Pi)$ representa la longitud de una poligonal con vértices en γ , ordenados en orden creciente de los parámetros.
- 3. Si $\Pi_1 \subseteq \Pi_2$ entonces $Var(\varphi, \Pi_1) \leq Var(\varphi, \Pi_2)$.
- 4. a) Si $\varphi : [a, b] \longrightarrow \mathbb{C}$ es función y $[\alpha, \beta] \subset [a, b]$ entonces

$$Var_{[\alpha,\beta]}(\psi) \le Var_{[a,b]}(\varphi)$$

siendo $\psi = \varphi|_{[\alpha,\beta]}$.

b) Si $c \in (a, b)$ entonces

$$Var_{[a,b]}(\varphi) = Var_{[a,c]}(\psi_1) + Var_{[c,b]}(\psi_2)$$

siendo $\psi_1 = \varphi|_{[a,c]}$ y $\psi_2 = \varphi|_{[c,b]}$.

Demostración. a) Basta ver que $Var_{[a,b]}(\varphi)$ es cota superior de $\{Var(\psi,\Pi): \Pi \in \mathcal{P}([a,b])\}$. Sea $\Pi = \{\alpha = t_0 < t_1 < ... < t_n = \beta\}$ una partición de $[\alpha,\beta]$. Añadimos a Π los extremos a y b si fueran necesarios para obtener una partición de [a,b]

$$P = \{s_0 = a < s_1 < \dots < s_m = b\}$$

Entonces

$$Var(\psi, \Pi) = \sum_{j=1}^{n} |\psi(t_j) - \psi(t_{j-1})| = \sum_{j=1}^{n} |\varphi(t_j) - \varphi(t_{j-1})|$$

$$\leq \sum_{k=1}^{m} |\varphi(s_k) - \varphi(s_{k-1})| = Var(\varphi, P) \leq Var_{[a,b]}(\varphi)$$

- b) Se deja como ejercicio.
- 5. Si $\varphi:[a,b]\longrightarrow\mathbb{C}$ es función y $h:[\alpha,\beta]\longrightarrow[a,b]$ es homeomorfismo, entonces

$$Var_{[a,b]}(\varphi) = Var_{[\alpha,\beta]}(\varphi \circ h)$$

Demostración. veamos primero que $Var_{[a,b]}(\varphi) \leq Var_{[\alpha,\beta]}(\varphi \circ h)$. Sea Π partición de $[\alpha,\beta]$, $\Pi = \{t_0 = a < t_1 < ... < t_n = \beta\}$. Entonces

- $\Pi^* = \{a = h(t_0) < ... < b = h(t_n)\}$ es partición de [a, b] si h crece.
- $\blacksquare \Pi^* = \{b = h(t_0) < \dots < a = h(t_n)\}\$ es partición de [a, b] si h decrece.

y entonces

$$Var(\varphi, \Pi^*) = \sum_{j=1}^{n} |\varphi(h(y_j)) - \varphi(h(t_{j-1}))| = \sum_{j=1}^{n} |\varphi \circ h(t_j) - \varphi \circ h(t_{j-1})|$$
$$= Var(\varphi \circ h, \Pi) \le Var_{[\alpha, \beta]}(\varphi \circ h)$$

Lo que nos dice que $Var_{[a,b]}(\varphi) \leq Var_{[\alpha,\beta]}(\varphi \circ h)$.

Veamos ahora que $Var_{[a,b]}(\varphi) \ge Var_{[\alpha,\beta]}(\varphi \circ h)$. Se hace de forma análoga trabajando con la inversa de h (que existe puesto que h es homeomorfismo y por tanto, su inversa también es homeomorfismo).

Corolario 5.3.13. φ es variación acotada si y solo si $\varphi \circ h$ es de variación acotada (cualquiera que sea el homeomorfimos h).

Ejemplo 5.3.14. 1. Si $\varphi:[a,b] \longrightarrow \mathbb{R}$ es monótona, entonces φ es de variación acotada.

- 2. Si $\varphi:[a,b] \longrightarrow \mathbb{R}$ es diferencia de funciones crecientes, entonces φ es de variación acotada en [a,b].
- 3. Existen funciones continuas que no son de variación acotada, por ejemplo:

$$\varphi:\left[-\frac{2}{\pi},0\right]\longrightarrow\mathbb{C}$$

$$t\longmapsto\varphi(t)=t+it\,\mathrm{sen}\left(\frac{1}{t}\right)$$

- φ es continua en $\left[-\frac{2}{\pi},0\right]$ $(\varphi(0)=0)$.
- La idea de por qué no es de variación acotada es la siguiente. Definimos la partición

$$\Pi_N = \{ t_0 < t_1 < \dots < t_{2N+1} < t_\infty \}, \ N \in \mathbb{N}$$

donde

$$t_j = -\frac{1}{\frac{\pi}{2} + j\pi}, \quad j \in \mathbb{N}_0$$

Observamos que

$$\varphi(t_j) = t_j - it_j \operatorname{sen}\left(\frac{\pi}{2} + j\pi\right) = t_j + i(-1)^j t_j$$

Y con esto (y desarrollando algunos cálculos) tenemos que

$$Var(\varphi, \Pi_N) = \dots \ge \frac{1}{\pi} \sum_{k=0}^{N} \frac{1}{k+1} \xrightarrow[N \to \infty]{} \infty$$

Proposición 5.3.15. Si $\varphi : [a,b] \longrightarrow \mathbb{C}$ es de clase \mathscr{C}^1 en [a,b], entonces φ es de variación acotada en [a,b] y

$$Var_{[a,b]}(\varphi) = \int_a^b |\varphi'(t)| dt$$

Demostración. Haremos la demostración en dos partes.

■ Probemos que $\int_a^b |\varphi'(t)| dt$ es cota superior de $\{Var(\varphi,\Pi): \Pi \in \mathcal{P}([a,b])\}$. Sea $\Pi = \{t_0 = a < t_1 < ... < t_n = b\}$ una partición de [a,b]. Entonces

$$Var(\varphi, \Pi) = \sum_{j=1}^{n} |\varphi(t_j) - \varphi(t_{j-1})| = \sum_{j=1}^{n} \left| \int_{t_{j-1}}^{t_j} \varphi'(t) \ dt \right|$$

$$\leq \sum_{j=1}^{n} \int_{t_{j-1}}^{t_j} |\varphi'(t)| \ dt = \int_{a}^{b} |\varphi'(t)| \ dt$$

■ Probemos que $\int_a^b |\varphi'(t)| \ dt$ es supremo $\{Var(\varphi,\Pi): \Pi \in \mathcal{P}([a,b])\}$. Sea $\varepsilon > 0$, queremos encontrar una partición Π de [a,b] tal que $Var(\varphi,\Pi) > \int_a^b |\varphi'(t)| \ dt - \varepsilon$. Como φ' es continua en [a,b], dado $\varepsilon > 0$, existe $\delta > 0$ tal que si $s,t \in [a,b]$ con $|s-t| < \delta$, entonces $|\varphi'(s) - \varphi'(t)| < \frac{\varepsilon}{2(b-a)}$. Así

$$\begin{split} \int_{a}^{b} |\varphi'(t)| \ dt &= \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\varphi'(t)| \ dt = \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |\varphi'(t) - \varphi'(t_{j})| + \varphi(t_{j})| \ dt \\ &\leq \sum_{j=1}^{n} \left(\int_{t_{j-1}}^{t_{j}} |\varphi'(t) - \varphi'(t_{j})| + |\varphi(t_{j})| \ dt \right) \\ &< \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} \frac{\varepsilon}{2(b-a)} \ dt + \int_{t_{j-1}}^{t_{j}} |\varphi'(t_{j})| \ dt \\ &= \frac{\varepsilon}{2} + \sum_{j=1}^{n} |\varphi'(t_{j})| (t_{j} - t_{j-1}) = \frac{\varepsilon}{2} + \sum_{j=1}^{n} |\varphi'(t_{j})(t_{j} - t_{j-1})| \\ &= \frac{\varepsilon}{2} + \sum_{j=1}^{n} \left| \int_{t_{j-1}}^{t_{j}} \varphi'(t_{j}) \ dt \right| = \frac{\varepsilon}{2} + \sum_{j=1}^{n} \left| \int_{t_{j-1}}^{t_{j}} \varphi'(t_{j}) - \varphi'(t) \ dt \right| \\ &\leq \frac{\varepsilon}{2} + \sum_{j=1}^{n} \left(\left| \int_{t_{j-1}}^{t_{j}} \varphi'(t_{j}) - \varphi'(t) \right| + \left| \int_{t_{j-1}}^{t_{j}} \varphi'(t) \ dt \right| \right) \\ &\leq \frac{\varepsilon}{2} + \sum_{j=1}^{n} \left(\int_{t_{j-1}}^{t_{j}} |\varphi'(t_{j}) - \varphi'(t)| \left| \int_{t_{j-1}}^{t_{j}} \varphi'(t) \ dt \right| \right) \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} + \sum_{j=1}^{n} \left| \int_{t_{j-1}}^{t_{j}} \varphi'(t) \ dt \right| = \varepsilon + \sum_{j=1}^{n} |\varphi(t_{j}) - \varphi(t_{j-1})| = \varepsilon + Var(\varphi, \Pi) \end{split}$$

Proposición 5.3.16. Si $\varphi:[a,b]\longrightarrow \mathbb{C}$ es de clase \mathscr{C}^1 a trozos en [a,b], entonces φ es de variación acotada en [a,b] y

$$Var_{[a,b]}(\varphi) = \int_a^b |\varphi'(t)| dt$$

Definición 5.3.17. Sea γ una curva en \mathbb{C} .

 \blacksquare Definimos la longitud de γ como

$$long(\gamma) := Var_{[a,b]}(\varphi)$$

donde $\varphi:[a,b]\longrightarrow \mathbb{C}$ es una parametrización cualquiera de $\gamma.$

- Decimos que γ es rectificable si $long(\gamma) < \infty$.
- \blacksquare Decimos que γ es un camino si tiene una parametrización de clase \mathscr{C}^1 a trozos.

Observación 5.3.18. ■ Todo camino es rectificable.

- $long(\gamma) = long(-\gamma)$.
- Si γ_1, γ_2 son curvas tales que $extremo(\gamma_1) = origen(\gamma_2)$, entonces

$$long(\gamma_1 + 2) = long(\gamma_1) + long(\gamma_2)$$

5.3.3. Integración sobre caminos

Definición 5.3.19. Sea γ un camino de \mathbb{C} y sea f una función continua sobre $sop(\gamma)$. Definimos la ingral de f sobre γ como

$$\int_{\gamma} f(z) \ dz := \int_{a}^{b} f(\varphi(t)) \cdot \varphi'(t) \ dt$$

donde $\varphi:[a,b]\longrightarrow\mathbb{C}$ es una paramemtrización de clase \mathscr{C}^1 a trozos en [a,b] de γ .

Lema 5.3.20. $Si \varphi : [a,b] \longrightarrow \mathbb{C}$ es una parametrización de clase \mathscr{C}^1 a trozos y f una función continua sobre $\varphi([a,b])$, entonces

$$\int_{a}^{b} f(\varphi(z)) \cdot \varphi'(t) \ dt = \lim_{\|P\| \to 0} S(f, \varphi, P)$$

donde $P \in \mathcal{P}([a,b]), P = \{t_0 = a < t_1 < ... < t_n = b\} \ y$

$$S(f, \varphi, P) = \sum_{j=1}^{n} f(\varphi(t_j))(\varphi(t_j) - \varphi(t_{j-1}))$$

Demostración. Como φ es de clase \mathscr{C}^1 a trozos en [a,b], entonces φ es de variación acotada en [a,b] y

$$Var_{[a,b]}(\varphi) = \int_a^b |\varphi'(t)| dt$$

Sea $\varepsilon > 0$ y sea $0 < Var_{[a,b]}(\varphi) < V$. Como $f \circ \varphi$ es continua en [a,b], entonces es uniformemente continua en [a,b]. Así, dado $\varepsilon > x0$, existe $\delta > 0$ tal que si $s,t \in [a,b]$ con $|s-t| < \delta$, entonces $|f \circ \varphi(s) - f \circ \varphi(t)| < \varepsilon / V$.

Ahora, si $P = \{t_0 = a < t_1 < \dots < t_n = b\}$ es una partición de [a, b] tal que $||P|| < \delta$, entonces

$$\left| \int_{a}^{b} f(\varphi(z)) \cdot \varphi'(t) \, dt - S(f, \varphi, P) \right| = \left| \sum_{j=1}^{n} \left[\int_{t_{j-1}}^{t_{j}} f(\varphi(t)) \varphi'(t) \, dt - f(\varphi(t_{j})) (\varphi(t_{j}) - \varphi(t_{j-1})) \right] \right|$$

$$= \left| \sum_{j=1}^{n} \left[\int_{t_{j-1}}^{t_{j}} f(\varphi(t)) \varphi'(t) \, dt - f(\varphi(t_{j})) \int_{t_{j-1}}^{t_{j}} \varphi'(t) \, dt \right] \right|$$

$$= \left| \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} \left[f(\varphi(t)) - f(\varphi(t_{j})) \right] \varphi'(t) \, dt \right|$$

$$\leq \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |f(\varphi(t)) - f(\varphi(t_{j}))| \cdot |\varphi'(t)| \, dt$$

$$< \sum_{j=1}^{n} \frac{\varepsilon}{V} \int_{t_{j-1}}^{t_{j}} |\varphi'(t)| \, dt = \frac{\varepsilon}{V} \int_{a}^{b} |\varphi'(t)| \, dt$$

$$= \frac{\varepsilon}{V} Var_{[a,b]}(\varphi) < \frac{\varepsilon}{V} V = \varepsilon$$

Lema 5.3.21. Sea $\varphi : [a,b] \longrightarrow \mathbb{C}$ una parametrización de clase \mathscr{C}^1 a trozos en [a,b] y sea f una función continua sobre $\varphi([a,b])$. Si $h : [\alpha,\beta] \longrightarrow [a,b]$ es un homeomorfismo, entonces

$$\int_{a}^{b} f(\varphi(z)) \cdot \varphi'(t) \ dt = \lim_{\|P\| \to 0} S(f, \varphi \circ h, P)$$

Demostración. Como $\lim_{\|P\|\to 0} S(f,\varphi,P) = \int_a^b f(\varphi(t))\varphi'(t) dt$.

Dado $\varepsilon > 0$, existe $\delta > 0$ tal que si $\|P\| < \delta$, entonces $\left| S(f, \varphi, P) - \int_a^b f(\varphi(t)) \varphi'(t) \ dt \right| < \varepsilon$. Como $h : [\alpha, \beta] \longrightarrow [a, b]$ es homeomorfismo, dado $\varepsilon > 0$, existe $\delta > 0$ tal que si $s, t \in [\alpha, \beta] < \delta$ entonces $|h(s) - h(t)| < \varepsilon$. Sea $P = \{t_0 = \alpha < t_1 < \dots < t_n = \beta\}$ una partición de $[\alpha, \beta]$ con $\|P\| < \delta$. Definimos $P^h = \{h(t_0) = a < \dots < h(t_n) = b\}$, que es una partición de [a, b] con $\|P^h\| = \max_j |h(t_j) - h(t_{j-1})| < \delta$. Por tanto

$$\left| S\left(f, \varphi, P^h \right) - \int_a^b f(\varphi(t)) \varphi'(t) \ dt \right| < \varepsilon$$

De aquí se sigue que

$$\left| S(f, \varphi \circ h, P) \int_{a}^{b} f(\varphi(t)) \varphi'(t) \ dt \right| = \left| \sum_{j=1}^{n} f(\varphi \circ h(t_{j})) \left[\varphi \circ h(t_{j}) - \varphi \circ h(t_{j-1}) \right] - \int_{a}^{b} f \circ \varphi(t) \varphi'(t) \ dt \right|$$

$$= \left| \sum_{j=1}^{n} f(\varphi(h(t_{j}))) \left[\varphi(h(t_{j})) - \varphi(h(t_{j-1})) \right] - \int_{a}^{b} f \circ \varphi(t) \varphi'(t) \ dt \right|$$

$$= \left| S \left(f, \varphi, P^{h} \right) - \int_{a}^{b} f(\varphi(t)) \varphi'(t) \ dt \right| < \varepsilon$$

Observación 5.3.22. Algunas propiedades inmediatas son

1. Linealidad:

$$\int_{\gamma} (\alpha f + \beta g)(z) \ dz = \alpha \int_{\gamma} f(z) \ dz + \beta \int_{\gamma} g(z) \ dz$$

2.

$$\int_{-\gamma} f(z) \ dz = -\int_{\gamma} f(z) \ dz$$

3. Dados γ_1, γ_2 caminnos tales que $extremo(\gamma_1) = origen(\gamma_2)$. Si f es continua en $sop(\gamma_1 + \gamma_2)$ entonces

$$\int_{\gamma_1 + \gamma_2} f(z) \ dz = \int_{\gamma_1} f(z) \ dz + \int_{\gamma_2} f(z) \ dz$$

4.

$$\int_{\gamma + (-\gamma)} f(z) \ dz = \int_{\gamma} f(z) \ dz + \int_{-\gamma} f(z) \ dz = \int_{\gamma} f(z) \ dz - \int_{\gamma} f(z) \ dz = 0$$

5. Si γ es camino cerrado y f es continua en $sop(\gamma)$, entonces $\int_{\gamma} f(z) dz$ es independiente del $origen(\gamma)$.

Proposición 5.3.23 (Regla de Barrow). Si γ es camino en \mathbb{C} y f es de clase \mathscr{C}^1 en un entorno del $sop(\gamma)$, entonces

$$\int_{\gamma} f'(z) \ dz = f(extremo(\gamma)) - f(origen(\gamma))$$

Observación 5.3.24. 1. Acotación de la integral: Sea γ camino de \mathbb{C} , f continua en $sop(\gamma)$ y $\varphi: [a,b] \longrightarrow \mathbb{C}$ una paramatrización de clase \mathscr{C}^1 a trozos en [a,b] de γ , entonces

$$\begin{split} \left| \int_{\gamma} f(z) \ dz \right| &= \left| \int_{a}^{b} f(\varphi(t)) \varphi'(t) \ dt \right| \leq \int_{a}^{b} \left| f(\varphi(t)) \varphi'(t) \right| \ dt \\ &\leq \max_{z \in sop(\gamma)} \left| f(z) \right| \int_{a}^{b} \varphi'(t) \ dt = \max_{z \in sop(\gamma)} \left| f(z) \right| \cdot long(\gamma) \end{split}$$

2. <u>Intercambio límite e integral</u>: Sea γ un camino de \mathbb{C} , $\{f_n\}$ una sucesión de funciones continua sobre $sop(\gamma)$ que converge uniformemente a una función continua f en $sop(\gamma)$. Entonces

$$\lim_{n} \int_{\gamma} f_n(z) \ dz = \int_{\gamma} \lim_{n} f_n(z) \ dz = \int_{\gamma} f(z) \ dz$$

Demostración. Basta observar que

$$\left| \int_{\gamma} f(z) \ dz - \int_{\gamma} f_n(z) \ dz \right| = \left| \int_{\gamma} f(z) - f_n(z) \ dz \right| \le \max_{z \in sop(\gamma)} |f_n(z) - f(z)| \cdot long(\gamma)$$

Como $\lim_n \max_{z \in sop(\gamma)} |f_n(z) - f(z)| \cdot long(\gamma) = 0$, pues $\{f_n\}$ converge uniformemente a f en $sop(\gamma)$, entonces

$$\lim_{n} \left| \int_{\mathcal{X}} f(z) \ dz - \int_{\mathcal{X}} f_n(z) \ dz \right| = 0$$

3. Intercambio límite y serie: Sea γ un camino en \mathbb{C} , $\sum_{n=1}^{\infty} f_n$ una serie de funciones continuas sobre $sop(\gamma)$ que converge uniformemente en $sop(\gamma)$, entonces

$$\sum_{n=1}^{\infty} \int_{\gamma} f_n(z) \ dz = \int_{\gamma} \sum_{n=1}^{\infty} f_n(z) \ dz$$

Definición 5.3.25. Sea γ camino de \mathbb{C} representado por una parametrización $\varphi : [a, b] \longrightarrow \mathbb{C}$ de clase \mathscr{C}^1 a trozos en [a, b]. Sea f una función continua sobre $sop(\gamma)$. Definimos

■ Integral de f respecto del elemento de longitud de arco

$$\int_{\gamma} f(z) |dz| := \int_{a}^{b} f(\varphi(t)) |\varphi'(t)| dt$$

 \blacksquare Integrales respecto de la parte real e imaginaria de γ

•

$$\int_{\gamma} f(z) \ dx := \int_{a}^{b} f(\varphi(t))(\operatorname{Re} \varphi)'(t)) \ dt$$

•

$$\int_{\gamma} f(z) \ dy := \int_{a}^{b} f(\varphi(t))(\operatorname{Im} \varphi)'(t)) \ dt$$

Observación 5.3.26. Las definiciones no dependen de la parametrización elegida.

Definición 5.3.27. Sea D un dominio en \mathbb{C} y sea $f:D \to \mathbb{C}$ continua. Decimos que la integral de f es independiente del camino en D si para todo par de puntos $z_1, z_2 \in D$ y para todo par de caminos γ_1, γ_2 en D con $origen(\gamma_1) = origen(\gamma_2) = z_1$ y $extremo(\gamma_1) = extremo(\gamma_2) = z_2$ se tiene que

$$\int_{\gamma_1} f(z) \ dz = \int_{\gamma_2} f(z) \ dz$$

Observación 5.3.28. Esta definición es equivalente a que $\int_{\gamma} f(z) \ dz = 0$ para todo camino cerrado γ en D.

Teorema 5.3.29. Sea D un dominio en \mathbb{C} y $f:D\longrightarrow \mathbb{C}$ continua. Son equivalentes:

- (i) La integral de f es independiente del camino en D.
- (ii) f tiene primitiva en D.

Demostración.

 $(i) \Leftarrow (ii)$ Sea F primitiva de f en D, entonces F es holomorfa en D y F = f' en D, luego F es de clase \mathscr{C}^1 en D. Así, si γ es un camino cerrado en D, por la regla de Barrow

$$\int_{\gamma} f(z) \ dz = \int_{\gamma} F'(z) \ dz = F(extremo(\gamma)) - F(origen(\gamma)) = 0$$

 $(i) \Longrightarrow (ii)$ Busquemos una primitiva de f en D. Fijemos $a \in D$. Sea γ_z un camino en D de origen a y extremo z (siempre existe al menos uno). Definimos $F(z) = \int_{\gamma_z} f(\xi) \ d\xi$, que está bien definida

pues la integral de f es independiente del camino en D.

Probemos que F es derivable en D y F'=f en D. Fijamos $z_0\in D$. Sea γ_0 un camino en D de origen a y extremo z_0 . Entonces $F(z_0)=\int_{z_0}f(\xi)\ d\xi$. Como $z_0\in D$ y D e s dominio, entonces existe r>0 tal que $\Delta(z_0,r)\subset D$. Para $z\in\Delta(z_0,r)$, consideramos el segmento $[z_0,z]$ que está en $\Delta(z_0,r)$ (pues un disco es convexo). Observamos que $\gamma_0+[z_0,z]$ es un camino en D de origen a y extremo z, luego

$$F(z) = \int_{\gamma_0 + [z_0, z]} f(\xi) \ d\xi$$

Así

$$\left| \frac{F(z) - F(z_0)}{z - z_0} - f(z_0) \right| = \left| \frac{1}{z - z_0} \left[\int_{\gamma_0} f(\xi) \ d\xi + \int_{[z_0, z]} f(\xi) \ d\xi - \int_{\gamma_0} f(\xi) \ d\xi - f(z_0) \right] \right|$$

$$= \left| \frac{1}{z - z_0} \int_{[z_0, z]} f(\xi) - f(z_0) \ d\xi \right|$$

$$\leq \frac{1}{z - z_0} \cdot \max_{\xi \in [z_0, z]} |f(\xi) - f(z_0)| \cdot long([z_0, z])$$

$$\leq \frac{1}{z - z_0} \cdot \max_{\xi \in [z_0, z]} |f(\xi) - f(z_0)| \cdot |z - z_0|$$

$$= \max_{\xi \in [z_0, z]} |f(\xi) - f(z_0)| \xrightarrow[z \to z_0]{} 0$$

Lo que prueba que F es derivable en D y que F' = f en D.

Ejemplo 5.3.30. 1. $\int_{\gamma} z^n dz = 0$ para todo $n \in \mathbb{N}_0$.

- 2. Si $n \in \mathbb{Z}$, n < 0 y $n \neq 1$, entonces z^n es derivada de $\frac{z^{n+1}}{n+1}$ en $\mathbb{C}\setminus\{0\}$, por tanto, mientras $sop(\gamma) \subset \mathbb{C}\setminus\{0\}$, $\int_{\gamma} z^n dz = 0$.
- 3. En general, $\int_{\Sigma} P(z) dz = 0$, para todo polinomio P.
- 4. $\int_{\gamma} \sum_{n=0}^{\infty} a_n (z-a)^n dz = 0$ siempre que $sop(\gamma)$ esté en el disco de convergencia de la serie.
- 5. $\frac{1}{z}$ no tiene primitiva en $\mathbb{C}\setminus\{0\}$, luego la intergal de $\frac{1}{z}$ no es independiente del camino en $\mathbb{C}\setminus\{0\}$.

5.4. Índice de un punto respecto de un camino cerrado

Definición 5.4.1. Sea γ un camino cerrado en \mathbb{C} y $z_0 \in \mathbb{C} \setminus sop(\gamma)$. Definimos el índice de z_0 respecto de γ como

$$n(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz$$

Teorema 5.4.2. Sea γ un camino cerrado en \mathbb{C} . Entonces

- (i) $n(\gamma, z) \in \mathbb{Z}$ para cualquier $z \in \mathbb{C} \setminus sop(\gamma)$.
- (ii) $n(\gamma, \bullet)$ es una función continua en $\mathbb{C} \setminus sop(\gamma)$.
- (iii) $n(\gamma, z) = 0$ para cada z en la componente conexa de $\mathbb{C} \setminus sop(\gamma)$ no acotada.

Demostración. (i) Sabemos que si γ es un camino cerrado en \mathbb{C} que no pasa por $z_0 \in \mathbb{C}$, entonces el número de vueltas netas que γ da alrededor de z_0 viene dado por

$$n(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz = \frac{1}{2\pi} \operatorname{Var}_{\gamma}(\arg(z - z_0)) \in \mathbb{Z}$$

(ii) Sea $z_0 \in \mathbb{C} \setminus sop(\gamma)$. Fijemos $\varepsilon > 0$. Como $\mathbb{C} \setminus sop(\gamma)$ es abierto, existe r > 0 tal que $\Delta(z_0, r) \subset \mathbb{C} \setminus sop(\gamma)$ ($|\xi - z_0| \ge r$ para todo $\xi \in sop(\gamma)$). Tomamos $\delta < \min\left\{\frac{r}{2}, \frac{\varepsilon \pi r^2}{long(\gamma)}\right\}$. Si $z \in \Delta(z_0, \delta)$ y $\xi \in sop(\gamma)$, entonces

$$|\xi - z| \ge |\xi - z_0| - |\xi - z| \ge r - \delta > r - \frac{r}{2} = \frac{r}{2}$$

Y además, si $z \in \mathbb{C} \setminus sop(\gamma)$ y $z \in \Delta(z_0, \delta)$, entonces

$$|n(\gamma, z) - n(\gamma, z_0)| = \left| \frac{1}{2\pi i} \int_{\gamma} \frac{1}{\xi - z} d\xi - \frac{1}{2\pi i} \int_{\gamma} \frac{1}{\xi - z_0} d\xi \right| = \left| \frac{1}{2\pi i} \int_{\gamma} \frac{1}{\xi - z} - \frac{1}{\xi - z_0} d\xi \right|$$

$$= \frac{1}{2\pi} \left| \int_{\gamma} \frac{z - z_0}{(\xi - z)(\xi - z_0)} d\xi \right| \le \frac{1}{2\pi} long(\gamma) \max_{\xi \in sop(\gamma)} \frac{|z - z_0|}{|\xi - z||\xi - z_0|}$$

$$\le \frac{long(\gamma)}{\pi r^2} \delta < \varepsilon,$$

lo que prueba que $n(\gamma, \bullet)$ es una función continua en $\mathbb{C} \setminus sop(\gamma)$.

(iii) Teenemos que $sop(\gamma)$ es un compacto en \mathbb{C} , luego existe R>0 tal que $sop(\gamma)\subset \delta(0,R)$. Sea $z\not\in\overline{\Delta(0,R)}$ (|z|>R). Entonces

$$\begin{split} |n(\gamma,z)| &= \left|\frac{1}{2\pi i} \int_{\gamma} \frac{1}{\xi - z} \; d\xi \right| \leq \frac{long(\gamma)}{2\pi} \max_{\xi \in sop(\gamma)} \frac{1}{|\xi - z|} \\ &\leq \frac{long(\gamma)}{2\pi} \frac{1}{d(z, sop(\gamma))} \xrightarrow[z \to \infty]{} 0 \end{split}$$

Esto prueba que $|n(\gamma, z) \xrightarrow[z \to \infty]{} 0$. Por tanto, dado $\varepsilon > 0$, existe R_0 tal que si $|z| > R_0$, entonces $|n(\gamma, z)| < \frac{1}{2}$. Pero $n(\gamma, z) \in \mathbb{Z}$, luego $n(\gamma, z) = 0$ si $|z| > R_0$. Como $n(\gamma, \bullet)$ es una función continua en $\mathbb{C} \setminus sop(\gamma)$, se tiene que $n(\gamma, z) = 0$ para todo z en la componente conexa no acotada de $\mathbb{C} \setminus sop(\gamma)$.

5.5. Teorema de Cauchy para dominios convexos

Definición 5.5.1. Decimos que $S \subseteq \mathbb{C}$ es un conjunto convexo si para cualesquiera $z_1, z_2 \in S$ se tiene que $[z_1, z_2] \subset S$.

Definición 5.5.2. Definimos

■ Triángulo T de vértices $z_1, z_2, z_3 \in \mathbb{C}$ como

$$T = \overline{co}\{z_1, z_2, z_2\} = \{t_1 z_2 + t_2 z_2 + t_3 z_3 : t_1, t_2, t_3 \in [0, 1], t_1 + t_2 + t_3 = 1\}$$

• Frontera del triángulo T de vértices $z_1, z_2, z_3 \in \mathbb{C}$ como

$$\partial T = [z_1, z_2, z_3] = [z_1, z_2] + [z_2, z_3] + [z_3, z_1]$$

Teorema 5.5.3 (Teorema de Cauchy para triángulos). Sea Ω un abierto de \mathbb{C} y sea T un triángulo en Ω . Sea $f:\Omega \longrightarrow \mathbb{C}$ una función continua en Ω y holomorfa en $\Omega \setminus \{p\}$ siendo $p \in \Omega$. Entonces

$$\int_{\partial T} f(z) \ dz = 0$$

Teorema 5.5.4 (Teorema de Cauchy para dominios convexos). Sea D un dominio convexo en \mathbb{C} . Sea $p \in D$ y $f: D \longrightarrow \mathbb{C}$ continua en D y holomorfa en $D \setminus \{p\}$. Entonces

$$\int_{\gamma} f(z) \ dz = 0$$

para todo camino cerrado γ en D.

Demostración. Basta probar que f tiene primitiva en D.

Fijamos $z_0 \in D$. Como $[z_0, z] \subset D$ (pues D es convexo), definimos

$$F(z) = \int_{[z_0, z]} f(\xi) \ d\xi$$

Vamos a probar que F es holomorfa en D y que F'=f en D. Para ellos, hemos de probar que fijado $z_1 \in D$ se tiene que

$$\lim_{z \to z_1} \frac{F(z) - F(z_1)}{z - z_1} - f(z_1) = 0$$

Observamos que si $z \in D$, entonces el triángulo $T = \overline{co}\{z_0, z_1, z\}$ está en D, luego por el teorema de Cauchy para triángulos

$$0 = \int_{\partial T} f(z) \ dz = \int_{[z_0, z_1]} f(\xi) \ d\xi + \int_{[z_1, z]} f(\xi) \ d\xi + \int_{[z, z_0]} f(\xi) \ d\xi$$
$$= F(z_1) + \int_{[z_1, z]} f(\xi) \ d\xi - F(z)$$

Luego

$$\left| \frac{F(z) - F(z_1)}{z - z_1} - f(z_1) \right| = \left| \frac{\int_{[z_1, z]} f(\xi) \ d\xi}{z - z_1} - \frac{\int_{[z_1, z]} f(z_1) \ d\xi}{z - z_1} \right| = \left| \frac{1}{z - z_1} \int_{[z_1, z]} f(\xi) - f(z_1) \ d\xi \right|$$

$$\leq \frac{\log([z_1, z])}{|z - z_1|} \max_{\xi \in [z_1, z]} (f(\xi) - f(z_1)) = \max_{\xi \in [z_1, z]} (f(\xi) - f(z_1)) \xrightarrow[z \to z_1]{} 0$$

Observación 5.5.5. 1. La conclusión del teorema de Cauchy para dominios convexos también es que f tiene primitiva en D.

- 2. La hipótesis de que D sea convexo se puede debilitar, por ejemplo, que D sea estrellado con respecto a un punto $z_0 \in D$. En general, el teorema de Cauchy es cierto si D es simplemente conexo.
- 3. El teorema de Cauchy no es cierto sobre dominios cualesquiera. Por ejemplo, $f(z) = \frac{1}{z}$ es holomorfa en $\mathbb{C}\setminus\{0\}$ y f no tiene primitiva en $\mathbb{C}\setminus\{0\}$.
- 4. Existencia de conjugada armónica en dominios convexos: Si D es un dominio convexo y u: $D \longrightarrow \mathbb{R}$ es armónica en D, entonces u tiene conjugada armónica en D.

Demostración. Consideramos $f(z) = u_x(z) - iu_y(z)$. Sabemos que f es holomorfa en D y por el teorema de Cauchy, f tiene primitiva en D. Sea F una función holomorfa en D tal que F' = f en D. Sea U = Re(F) y V = Im(F). Por Cauchy-Riemann, tenemos que

$$\begin{cases}
U_x = V_y \\
U_y = -V_x
\end{cases}$$

en D. Observamos que F = U + iV. Por tanto

$$U_x - iU_y = F' = f = u_x - iu_y$$

lo que nos dice que

$$\begin{cases}
U_x = u_x \\
U_y = u_y
\end{cases}$$

en D. Por tanto, $U = u + \alpha$ en D, $\alpha \in \mathbb{R}$. O sea, $u = U - \alpha = \operatorname{Re}(F) - \alpha = \operatorname{Re}(F - \alpha)$. \square

Teorema 5.5.6 (Fórmula integral de Cauchy para dominios convexos). Sea f una función holomorfa en un dominio convexo $D \subseteq \mathbb{C}$. Sea γ un camino cerrado en D. Entonces

$$f(z)n(\gamma, z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} \ d\xi$$

para todo $z \in D \setminus sop(\gamma)$.

Demostración. Sea $z \in D \setminus sop(\gamma)$. Consideramos

$$g(\xi) = \begin{cases} \frac{f(\xi) - f(z)}{\xi - z} & si \quad \xi \in D \setminus \{z\} \\ f'(z) & si \quad \xi = z \end{cases}$$

Observamos que g es continua en D y holomorfa en D salvo en quizás en z. Por el teorema de Cauchy para dominios convexos:

$$0 = \int_{\gamma} g(\xi) \ d\xi = \int_{\gamma} \frac{f(\xi) - f(z)}{\xi - z} \ d\xi = \int_{\gamma} \frac{f(\xi)}{\xi - z} \ d\xi - \int_{\gamma} \frac{f(z)}{\xi - z} \ d\xi$$

de donde deducimos que

$$\int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi = f(z) \int_{\gamma} \frac{1}{\xi - z} d\xi = f(z) n(\gamma, z) 2\pi i$$

Teorema 5.5.7 (Propiedad del valor medio). Sea f una función holomorfa en un abierto $\Omega \subseteq \mathbb{C}$ y sean $a \in \Omega$ y R > 0 tales que $\Delta(a, R) \subset \Omega$. Entonces:

(i) Propiedad del valor medio para circunferencias: Para cada $0 \le r < R$ se tiene que

$$f(a) = \frac{1}{2\pi} \int_0^{2\pi} f\left(a + re^{it}\right) dt$$

(ii) Propiedad del valor medio para discos: Para cada 0 < r < R se tiene que

$$f(a) = \frac{1}{\pi r^2} \int_{\Delta(a,r)} f(\xi) \ dA(\xi)$$

Observación 5.5.8. $\xi = x + iy$, entonces $dA(\xi) = dxdy$.

Corolario 5.5.9 (Propiedad del valor medio para funciones armónicas). Sea u una función armónica en un abierto $\Omega \subseteq \mathbb{C}$ y sean $a \in \Omega$ y R > 0 tales que $\Delta(a, R) \subset \Omega$. Entonces:

(i) Propiedad del valor medio para circunferencias: Para cada $0 \le r < R$ se tiene que

$$u(a) = \frac{1}{2\pi} \int_0^{2\pi} u\left(a + re^{it}\right) dt$$

(ii) Propiedad del valor medio para discos: Para cada 0 < r < R se tiene que

$$u(a) = \frac{1}{\pi r^2} \int_{\Delta(a,r)} u(\xi) \ dA(\xi)$$

Teorema 5.5.10 (Forma débil del principio del módulo máximo). Sea f una función holomorfa en un abierto $\Omega \subseteq \mathbb{C}$. Si |f| alcanza un máximo local en $a \in \Omega$, entonces f es constante en un entorno de a.

Demostración. Sea R>0 tal que $\Delta(a,R)\subset\Omega$ y además, tal que $|f(z)|\leq |f(a)|$ para todo z $in\Delta(a,R)$. Entonces para cada $r\in(o,R)$, por el teorema del valor medio para discos:

$$|f(a)| = \left| \frac{1}{\pi r^2} \int_{\Delta(a,r)} f(z) \ dA(z) \right| \le \frac{1}{\pi r^2} \int_{\Delta(a,r)} |f(z)| \ dz$$
$$\le \frac{1}{\pi r^2} \int_{\Delta(a,r)} |f(a)| \ dz = |f(a)|$$

Así, las desigualdades anteriores, son en realidad, igualdades, por tanto,

$$|f(a)| = \frac{1}{\pi r^2} \int_{\Delta(a,r)} |f(z)| \ dz$$

Luego, como |f| es continua, obtenemos que |f| = |f(a)| en $\Delta(a, R)$. Recordemos además que si f es holomorfa y |f| es constante en un entorno de a, entonces f es constante en dicho entorno. \square

Teorema 5.5.11 (Forma débil del principio del módulo mínimo). Sea f una función holomorfa en un abierto $\Omega \subseteq \mathbb{C}$, y tal que $f(z) \neq 0$ para todo $z \in \Omega$. Si |f| alcanza un mínio local en $a \in \Omega$, entonces f es constante en un entorno de a.

Demostración. Basta observar que $\frac{1}{f}$ es una función holomorfa en Ω y que $\frac{1}{|f|}$ alcanza un máximo local en $a \in \Omega$. Solo hay que aplicar la forma débil del principio del módulo máximo para obtener el resultado del teorema.

Teorema 5.5.12 (Forma débil del principio del máximo y del mínimo para funciones armónicas). Sea u una función armónica en un abierto $\Omega \subseteq \mathbb{C}$. Entonces:

- (i) Si u alcanza un máximo local en $a \in \Omega$, entonces u es constante en un entorno de a.
- (ii) Si u alcanza un mínimo local en $a \in \Omega$, entonces u es constante en un entorno de a.

5.6. Analiticidad de las funciones holomorfas

Teorema 5.6.1 (Diferenciación bajo el signo integral). Sea Ω un abierto de \mathbb{C} y sea γ un camino en \mathbb{C} . Supongamos que $h: sop(\gamma) \times \Omega \longrightarrow \mathbb{C}$ es una función tal que:

- a) h es continua en $sop(\gamma) \times \Omega$.
- b) Para cada $\xi \in sop(\gamma)$, la función $h_{\xi} : \Omega \longrightarrow \mathbb{C}$ dada por $h_{\xi}(z) = h(\xi, z)$ es holomorfa en Ω .
- c) La función $H: sop(\gamma) \times \Omega \longrightarrow \mathbb{C}$ dada por

$$H(\xi, z) = (h_{\xi})'(z) = \frac{\partial h}{\partial z}(\xi, z)$$

es continua en $sop(\gamma) \times \Omega$.

Entonces, la función $F(z) = \int_{\gamma} h_{\xi}(z) d\xi$, $z \in \Omega$, es holomorfa en Ω y

$$F'(z) = \int_{\gamma} (h_{\xi})'(z) \ d\xi$$

Teorema 5.6.2 (Analiticidad de la integral de Cauchy). Sea γ un camino sobre \mathbb{C} y sea φ una función continua en sop (γ) . Consideremos la función

$$F: \mathbb{C}\backslash sop(\gamma) \longrightarrow \mathbb{C}, \quad F(z) = \int_{\gamma} \frac{\varphi(\xi)}{\xi - z} \ d\xi$$

Entonces F, conocida como la integral de Cauchy de φ sobre γ , está bien definida y es análitica en $\mathbb{C}\backslash sop(\gamma)$, o sea, es desarrollable en serie de potencias alrededor de cualquier punto de $\mathbb{C}\backslash sop(\gamma)$. Esto implica en F es infinitamente derivable en $\mathbb{C}\backslash sop(\gamma)$.

Además, para cada $n \in \mathbb{N}$ se tiene que

$$F^{(n)}(a) = n! \int_{\gamma} \frac{\varphi(\xi)}{(\xi - a)^{n+1}} d\xi$$

para todo $a \in \mathbb{C} \backslash sop(\gamma)$.

Demostración. F está bien definida en $\mathbb{C}\backslash sop(\gamma)$. Sea $a \notin sop()$. Sea R > 0 tal que $\Delta(a,R) \cap sop(\gamma) = \emptyset$. Sea $z \in \Delta(a,R)$ arbitrario, pero fijo. Observamos que si $\left|\frac{z-a}{\xi-a}\right| < 1$ tenemos que

$$\frac{1}{\xi - z} = \frac{1}{(\xi - a) - (z - a)} = \frac{1}{\xi - a} \cdot \frac{1}{1 - \frac{z - a}{\xi - a}}$$
$$= \frac{1}{\xi - a} \sum_{n=0}^{\infty} \left(\frac{z - a}{\xi - a}\right)^n = \sum_{n=0}^{\infty} \frac{(z - a)^n}{(\xi - a)^{n+1}}$$

siendo la convergencia de la serie absoluta y uniforme en cada subconjunto compacto de $A = \left\{\xi \in \mathbb{C} : \left|\frac{z-a}{\xi-a}\right| < 1\right\}$. En particular, $sop(\gamma) \subset A$ y es compacto, como además φ es contina sobre $sop(\gamma)$ tenemos que

$$F(z) = \int_{\gamma} \frac{\varphi(\xi)}{\xi - z} d\xi = \int_{\gamma} \sum_{n=0}^{\infty} \frac{\varphi(\xi)}{(\xi - a)^n} (z - a)^n d\xi$$
$$= \sum_{n=0}^{\infty} \left[\int_{\gamma} \frac{\varphi(\xi)}{(\xi - a)^n} d\xi \right] (z - a)^n$$

Tomando $\{a_n\} = \{\int_{\gamma} \frac{\varphi(\xi)}{(\xi-a)^n} d\xi\}$, tenemos una expresión válida para cda $z \in \Delta(a, R)$, por lo que concluimos que F es desarrollable e serie de potencias alrededor de a con radio de convergencia al menos $dist(a, sop(\gamma))$.

Como esta serie debe coincidir con la serie de taylor de F centrada en a, tenemos que

$$F^{(n)}(a) = n! \cdot a_n = n! \int_{\gamma} \frac{\varphi(\xi)}{(\xi - a)^n} d\xi$$

Teorema 5.6.3 (Analiticidad de las funciones holomorfas). Sea f holomorfa en un abierto $\Omega \subseteq \mathbb{C}$. Entonces f es analítica en Ω . Además, para cada $a \in \Omega$, el desarrollo en serie de potencias de f en a tiene radio de convergencia $R = dist(a, \mathbb{C} \setminus \Omega)$.

Demostración. Sea $a \in \Omega$ y sea $R = dist(a, \mathbb{C}\backslash\Omega)$. Sea $C_r = \{|\xi - a| = r\}$, para $r \in (0, R)$. Como f es holomorfa en $\Delta(a, R)$, que es convexo, podemos aplicar la fórmula de la integral de Cauchy, con lo que tenemos que:

$$f(z)n(C_r,z) = \frac{1}{2\pi i} \int_{C_r} \frac{f(\xi)}{\xi - z} d\xi,$$

para todo $z \in \Delta(a, R)$. En particular, si $z \in \Delta(a, r)$, tenemos que $n(C_r, z) = 1$ y por tanto

$$f(z) = \frac{1}{2\pi i} \int_{C_r} \frac{f(\xi)}{\xi - z} \ d\xi,$$

lo que nos dice que f concide en $\Delta(a,r)$ con la integral de cauchy de la función $\varphi = \frac{1}{2\pi i} f|_{C_r}$ a lo largo de C_r . De aquí se sigue que f es análitica en $\Delta(a,r)$, y en particular, en a, y así

$$f(z) = \sum_{n=0}^{\infty} \left(\frac{f(\xi)}{(\xi - z)^{n+1}} d\xi \right) (z - a)^n,$$

para todo $z \in \Delta(a,r)$. Además, esta serie ha de coincidir con la serie de taylor de f en a, o sea que para $n \in \mathbb{N}$, $a_n = \frac{f^{(n)}(a)}{n!}$ no cambia de valor por mucho que cambie el valor de $r \in (o,R)$, lo que nos dice que el radio de convergencia de la serie anterior es R.

Observación 5.6.4. Si f es holomorfa en Ω y $\Delta(a,R) \subset \Omega$, entonces

$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_{|\xi - a| = r} \frac{f(\xi)}{(\xi - a)^{n+1}} d\xi$$

para todo $r \in (0, R)$ y todo $z \in \Delta(a, r)$.

Teorema 5.6.5 (Fórmula integral de la derivada n-ésima en dominios convexos). Sea D un dominio convexo y sea f una función holomorfa en D. Sea γ un camino cerrado en D. Entonces, para cada $z \in D \setminus sop(\gamma)$ se tiene que:

$$f^{(n)}(z)n(\gamma,z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi-z)^{n+1}} d\xi$$

Demostración. Por la fórmula de la integral de Cauchy en dominios convexos, tenemos que

$$f(z)n(\gamma, z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$$

Observamos que $F(z)=\frac{1}{2\pi i}\int_{\gamma}\frac{f(\xi)}{\xi-z}\ d\xi$ es anlítica en $D\backslash sop(\gamma)$. Derivando:

$$F^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi$$

para todo $z \in D \setminus sop(\gamma)$. Esto nos dice que el lado izquierdo de la igualdad también es analítico en $D \setminus sop(\gamma)$. Como $n(\gamma, z)$ es una función a trozos tenemos que la derivada n-ésima del lado izquierdo de la igualdad es $f^{(n)}(z)n(\gamma, z)$, y por tanto,

$$f^{(n)}(z)n(\gamma,z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi-z)^{n+1}} d\xi$$

Ejemplo 5.6.6. 1. Sea $f(z) = \operatorname{sen} z$. Observamos que esta función es holomorfa en \mathbb{D} .

$$\frac{1}{2\pi i} \int_{|z|=1} \frac{\sin z}{z^3} d\xi = \frac{1}{2\pi i} \int_{|\xi|=1} \frac{\sin \xi}{(\xi - 0)^3} d\xi = \frac{1}{2!} \cdot \frac{2!}{2\pi i} \int_{|\xi|=1} \frac{\sin \xi}{(\xi - 0)^3} d\xi = \frac{1}{2!} \cdot f''(0) = 0$$

2. Sea 0 < r < 1,

$$\frac{1}{2\pi i} \int_{|z|=2} \frac{1}{z^2(z^2+4)} dz = \frac{1}{2\pi i} \int_{|z|=r} \frac{\frac{1}{z^2+4}}{(z-0)^2} dz$$

Observamos que $f(z) = \frac{1}{z^2+4}$ es holomorfa en \mathbb{D} y $f'(z) = \frac{-2z}{(z^2+4)^2}$, por tanto

$$\frac{1}{2\pi i} \int_{|z|=r} \frac{\frac{1}{z^2+4}}{(z-0)^2} dz = f'(0) = 0$$

5.7. Consecuencias de la analiticidad

Teorema 5.7.1. Sea Ω abierto de \mathbb{C} y sea $f:\Omega \longrightarrow \mathbb{C}$ continua en Ω y holomorfa en $\Omega \setminus \{p\}$, siendo $p \in \Omega$. Entonces f es holomorfa en Ω .

Demostración. Basta demostrar que f es holomorfa en p. Como Ω es abierto, existe R>0 tal que $\Delta(p,R)\subset\Omega$. Por el teorema de Cauchy para dominios convexos, tenemos que $\int_{\gamma}f(z)\ dz=0$ para todo camino cerrado γ en $\Delta(p,R)$. Esto equivale a que f tiene primitiva en $\Delta(a,R)$, o sea, existe F holomorfa en $\Delta(p,R)$ tal que F'=f en $\Delta(p,R)$. Como F es holomorfa en $\Delta(p,R)$, entonces es analítica en $\Delta(p,R)$ y por tanto, F'=f es holomorfa en $\Delta(p,R)$.

Teorema 5.7.2. Sea Ω abierto de \mathbb{C} y $f:\Omega \longrightarrow \mathbb{C}$ holomorfa. Sean u=Re(f) y v=Im(f). Entonces u y v son armónicas en Ω y de clase $\mathscr{C}^{\infty}(\Omega)$.

Demostración. Como f es holomorfa, entonces $f \in \mathscr{C}^{\infty}(\Omega)$, lo que nos dice que u y v son armónicas en Ω y por ser, $f \in \mathscr{C}^{\infty}(\Omega)$, se tiene que $u, v \in \mathscr{C}^{\infty}$ en Ω .

Corolario 5.7.3. Si u es armónica en un abierto $\Omega \subset \mathbb{C}$, entonces $u \in \mathscr{C}^{\infty}(\Omega)$.

Demostración. Como u es armónica en Ω , entonces u es la parte real de una función holomorfa, por tanto, $u \in \mathscr{C}^{\infty}(\Omega)$.

Teorema 5.7.4 (de Morera). Sea $\Omega \subseteq \mathbb{C}$ abierto $y \ f : \Omega \longrightarrow \mathbb{C}$ continua en Ω . Supongamos que $\int_{\gamma} f(z) \ dz = 0$ para todo camino cerrado γ de Ω . Entonces f es holomorfa en Ω .

Demostración. Fijamos $a \in \Omega$ y R > 0 tal que $\Delta(a, R) \subset \Omega$. Las hipótesis del teorema en $\Delta(a, R)$ implican que f tiene primitiva en $\Delta(a, R)$, es decir, existe F holomorfa en $\Delta(a, R)$ tal que F' = f en $\Delta(a, R)$, por tanto, f es holomorfa en $\Delta(a, R)$.

Teorema 5.7.5 (de Morera para triángulos). Sea $\Omega \subseteq \mathbb{C}$ abierto $y \ f : \Omega \longrightarrow \mathbb{C}$ continua en Ω . Supongamos que $\int_{\partial T} f(z) \ dz = 0$ siempre que T sea un triángulo (sólido) enn Ω . Entonces f es holomorfa en Ω .

Demostración. Fijamos $a \in \Omega$ y R > 0 tal que $\Delta(a, R) \subset \Omega$. Definimos

$$F(z) = \int_{[a,z]} f(\xi) \ d\xi$$

Observamos que F está bien ndefinida y, imitando la demostración del teorema de Cauchy para triángulos, tenemos que F es una primitiva de f en $\Delta(a, R)$. Por tanto, F' = f es holomorfa en $\Delta(a, R)$.

Teorema 5.7.6 (de Liouville). Si f es entera y acotada, entonces f es constante.

Demostración. Sea M tal que |f(z)| < M para todo $z \in \mathbb{C}$. Sea $a \in \mathbb{C}$. Por la fórmula intergal de Cauchy, la primera derivada de f en a es

$$f'(a) = \frac{1}{2\pi i} \int_{|z-a|=B} \frac{f(z)}{(z-a)^2} dz$$

Tomando módulos

$$\begin{split} |f'(a)| &= \left| \frac{1}{2\pi i} \int_{|z-a|=R} \frac{f(z)}{(z-a)^2} \ dz \right| \leq \frac{1}{2\pi} long(|z-a|=R) \cdot \max_{|z-a|=R} \left| \frac{f(z)}{(z-a)^2} \right| \\ &\leq \frac{2\pi R}{2\pi} \cdot \frac{M}{R^2} = \frac{M}{R} \xrightarrow[R \to \infty]{} 0 \end{split}$$

Como f'(a) no depende de R, se tiene entonces que f'(a) = 0.

Teorema 5.7.7 (Teorema Fundamental del Álgebra). Todo polinomio con coeficientes complejos no constante tiene una raíz.

Demostración. Sea P un polinomio no constante, entoces $\lim_{z\to\infty} |P(z)| = \infty$. Por reducción al absurdo, supongamos que P no tiene raíces, entonces podemos considerar $f(z) = \frac{1}{P(z)}, z \in \mathbb{C}$ que es una función entera y acotada ($\lim_{z\to\infty} f(z) = 0$). Por el teorema de Liouville, se tiene que f es constante y, por tanto, P es constante, lo que es una contradicción, pues suponíamos que P no era constante. Luego, P tiene una raíz.

Teorema 5.7.8 (de Liouville). Si f es entera g no constante, entonces $f(\mathbb{C})$ es denso en \mathbb{C} .

Demostración. Por reducción al absurdo, supongamos que $f(\mathbb{C})$ no es denso en \mathbb{C} , o sea, existen $w_0 \in \mathbb{C}$ y $r_0 > 0$ tales que $\Delta(w_0, r_0) \cap f(\mathbb{C}) = \emptyset$. Esto nos dice que $|f(z) - w_0| \ge r_0$ para todo $z \in \mathbb{C}$, por tanto, $1 \ge \left| \frac{r_0}{f(z) - w_0} \right|$. Consideramos $g(z) = \frac{r_0}{f(z) - w_0}$, $z \in \mathbb{C}$, que es una función entera, acotada y nunca cero. Aplicando el teorema de Liouville, tenemos que g es una constante (y no nula). Esto implica que $f(z) = \frac{r_0}{g(z)} + w_0$ es constante en \mathbb{C} , lo que es una contradicción, luego $f(\mathbb{C})$ es denso en \mathbb{C} .

Observación 5.7.9. Según este resultado, la imagen de una función entera no constante no puede omitir un disco, mucho menos un semiplano, pero ¿puede omitir una semirrecta? ¿qué pasa si f es entera y $f(\mathbb{C}) \subset \mathbb{C}(-\infty,0]$? Una generalización del Teorema de Liouville nos dice que si una función entera se comporta como un polinomio en el infinito es que entonces es un polinomio.

Teorema 5.7.10 (de Liouville). Si f es entera y existen M>0, $\alpha \geq 0$ y R>0 tales que $|f(z)| \leq M|z|^{\alpha}$ para todo |z|>R, entonces f es un polinomio de grado a lo sumo α .

Demostración. Como f es entera, entonces f es analítica y por tanto, f es desarrollable en serie de potencias centrada en 0 y con radio de convergencia ∞ . Sea

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

dicho desarrollo para cada $z \in \mathbb{C}$. Por la fórmula integral de Cauchy para la n-éseima derivada, nos dice que:

$$\begin{split} \left| \frac{f^{(n)}(0)}{n!} \right| &= |a_n| = \left| \frac{1}{2\pi i} \int_{|z|=R} \frac{f(z)}{z^{n+1}} \ dz \right| \leq \frac{1}{2\pi} long(|z|=R) \cdot \max_{|z|=R} \left| \frac{f(z)}{z^{n+1}} \right| \\ &\leq \frac{2\pi R}{2\pi} \cdot \frac{MR^{\alpha}}{R^{n+1}} = M \cdot R^{\alpha-n} \xrightarrow[R \to \infty]{} 0 \end{split}$$

para $n > \alpha$. O sea, $a_n = 0$ si $n > \alpha$, luego, $f(z) = \sum_{n \le \alpha} a_n z^n$, que es un polinomio de grado a lo sumo α .

Teorema 5.7.11 (de Liouville). Si f es entera y existen M > 0, $\alpha \geq 0$ y una succesión $\{R_k\} \subset \mathbb{R}$ creciente con $\lim_{k\to\infty} R_k = \infty$ y tales que $|f(z)| \leq M|z|^{\alpha}$ para $|z| = R_k$. Entonces f es un polinomio de grado a lo sumo α .

5.8. Sucesiones de funciones holomorfas

Definición 5.8.1. Sea $\{f_n\}$ una sucesión de funciones holomorfas en un dominio $D\subseteq\mathbb{C}$ y sea $f:D\longrightarrow\mathbb{C}$ una función. Decimos que $\{f_n\}$ converge uniformemente en subconjuntos compactos de D (o que converge normalmente en D) si para cada compacto $K\subset D$, se tiene que $f_n\xrightarrow[n\to\infty]{}f$ de manera uniforme, o sea, para $\varepsilon>0$, existe $N_{K,\varepsilon}\in\mathbb{N}$ tal que $|f_n(z)-f(z)|<\varepsilon$ siempre que $z\in K$ y $n\geq N_{K,\varepsilon}$.

Observación 5.8.2. Si $\{f_n\}$ es una sucesión de funciones holomorfas que converge uniformemente a f en D entonces f es continua en D.

Lema 5.8.3. Sea D un dominio en \mathbb{C} y sean f, f_n $(n \in \mathbb{N})$ funciones de D en \mathbb{C} . Son equivalentes:

- 1. Convergencia uniforme en compactos.
- 2. Convergencia local uniforme. Para cada $a \in D$, existe R > 0 tal que $\Delta(a,R) \subset D$ y

$$f_n \xrightarrow[n \to \infty]{} f$$
 de manera uniforme en $\Delta(a, R)$

Teorema 5.8.4 (Teorema de Convergencia de Weierstrass). Sea $\{f_n\}$ una sucesión de funciones holomorfas en un dominio $D \subseteq \mathbb{C}$ que converge uniformemente en compactos de D a una función $f: D \longrightarrow \mathbb{C}$. Entonces f es holomorfa en D. Es más, la sucesión $\{f_n^{(m)}\}$ de las derivadas m-ésimas converge uniformemente en compactos de D a $f^{(m)}$.

Demostración. Es claro que f es continua en D. Fijamos $z_0 \in D$ y R_0 tales que $\Delta(z_0, R_0) \subset D$. Probemos que f es holomorfa en $\Delta(z_0, R_0)$, para ello, vamos a utilizar el teorema de Morera. Sea γ un camino cerrado en $\Delta(z_0, R_0)$. Entonces:

$$\int_{\gamma} f(z) \ dz = \int_{\gamma} \lim_{n \to \infty} f_n(z) \ dz = \lim_{n \to \infty} \int_{\gamma} f_n(z) \ dz = 0.$$

El igual a 0 se debe a una aplicación directa del teorema de Cauchy para dominios convexos, ya que cada f_n es holomorfa en $\Delta(z_0, R_0)$, que es convexo. Por el teorema de Morera, tenemos que f es holomorfa en $\Delta(z_0, R_0)$.

Fijamos $m \in \mathbb{N}$. Sea $z_0 \in D$ y sean $r_1 > r_0 > 0$ tales que $\overline{\Delta(z_0, r_0)} \subset \overline{\Delta(z_0, r_1)} \subset D$. sea $z \in \Delta(z_0, r_0)$, por la fórmula de Cauchy para la derivada m-éseima, tenemos que

$$\begin{split} \left| f_n^{(m)}(z) - f^{(m)}(z) \right| &= \left| \frac{m!}{2\pi i} \int_{|\xi - z_0| = r_1} \frac{f_n(\xi)}{(\xi - z)^{m+1}} \ d\xi - \frac{m!}{2\pi i} \int_{|\xi - z_0| = r_1} \frac{f(\xi)}{(\xi - z)^{m+1}} \ d\xi \right| \\ &= \left| \frac{m!}{2\pi i} \int_{|\xi - z_0| = r_1} \frac{f_n(\xi) - f(\xi)}{(\xi - z)^{m+1}} \ d\xi \right| \leq \frac{m!}{2\pi} long(|\xi - z_0| = r_1) \cdot \max_{|\xi - z_0| = r_1} \frac{|f_n(\xi) - f(\xi)|}{|\xi - z|^{m+1}} \\ &\leq \frac{m! \cdot r_1}{(r_1 - r_0)^{m+1}} \cdot \max_{|\xi - z_0| = r_1} |f_n(\xi) - f(\xi)| \end{split}$$

El lado derecho tiende a 0 cuando $n \to \infty$, independietemente de $z \in \overline{\Delta(z_0, r_0)}$, luego el lado izquierdo también, concluyendo que $f_n^{(m)} \to f^{(m)}$ de manera uniforme en $\overline{\Delta(z_0, r_0)}$.

5.9. Ramas del logaritmo y de la raíz n-ésima

Teorema 5.9.1 (Recopilatorio). Sea D un dominio en \mathbb{C} y sea $f:D\longrightarrow \mathbb{C}$ holomorfa y nunca nula en D.

- 1. Si g es una rama del $\log(f)$ en D, entonces cualquier otra rama del $\log(f)$ en D es de la forma $g + 2\pi i$, $k \in \mathbb{Z}$.
- 2. Existe una rama del $\log(f)$ en $D \Longleftrightarrow \frac{f'}{f}$ tiene primitiva en $D \Longleftrightarrow P$ ara todo camino cerrado γ en D se tiene que $\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = 0$. En este caso, si G es primitiva de $\frac{f'}{f}$ en D, entonces existe una constante $\beta \in \mathbb{C}$ tal que $G + \beta$ es rama holomorfa del $\log(f)$ en D.

Observación 5.9.2. La función $\frac{f'}{f}$ recibe el nombre de **derivada logarítimica de f**, la cual tiene sentido completo siempre que f sea holomorfa y nunca cero. Tenemos las siguientes reglas:

$$\frac{(fg)'}{fg} = \frac{f'}{f} + \frac{g'}{g}, \quad \frac{\left(\frac{f}{g}\right)'}{\frac{f}{g}} = \frac{f'}{f} - \frac{g'}{g}, \quad \frac{(f^N)'}{f^N} = N\frac{f'}{f}.$$

Ejemplo 5.9.3. Sea $f(z) = \frac{z+1}{z-1}$, que es holomorfa y nunca cero en $D = \mathbb{C} \setminus \{-1, 1\}$, ¿existe rama del $\log(f)$ en D? Sea γ un camino cerrado en D, entonces

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z+1} - \frac{1}{z-1} dz = n(\gamma, 1) - n(\gamma, -1),$$

que no tiene porqué ser 0, por tanto, no existe rama del log(f) en D.

Consideramos ahora $D_1 = \mathbb{C}\setminus[-1,1]$, ¿existe rama del $\log(f)$ en D? Sea γ camino cerrado en D_1 , entonces -1 y 1 están en la misma componente conexa de $\mathbb{C}\setminus sop(\gamma)$ y

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = n(\gamma, 1) - n(\gamma, -1) = 0,$$

por tanto, si existe rama del log(f) en D_1 .

Teorema 5.9.4 (Recopilatorio). Sea $n \in \mathbb{N}$, $n \geq 2$. Sea D un dominio de \mathbb{C} y $f: D \longrightarrow \mathbb{C}$ holomorfa y nunca cero en D.

- 1. Si g es rama del $\log(f)$ en D, entonces $h = e^{\frac{g}{n}}$ es una rama de $\sqrt[n]{f}$ en D, y cualquier otra rama de $\sqrt[n]{f}$ en D es de la forma $\xi \cdot h$, siendo $\xi^n = 1$.
- 2. Si h es rama de $\sqrt[n]{f}$ en D, entonces h es holomorfa en D y $h' = \frac{f'}{nh^{n-1}}$ en D.
- 3. Si existe una rama de $\sqrt[n]{f}$ en D, entonces para todo camino cerrado γ en D se tiene que

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz \quad es \ un \ m\'{ultiplo} \ entero \ de \ n.$$

Demostración. Solo tenemos que probar 3. Sea h una rama de $\sqrt[n]{f}$ en D. Entonces

$$\frac{f'}{f} = \frac{nh^{n-1}h'}{h^n} = n\frac{h'}{h}, \qquad z \in D.$$

Sea γ un camino cerrado en D, entonces:

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} \ dz = n \int_{\gamma} \frac{h'(z)}{h(z)} \ dz \underset{w=h(z)}{=} n \int_{h \circ \gamma} \frac{dw}{w} = n \cdot n(h \circ \gamma, 0) \in \mathbb{Z}$$

Observación 5.9.5. Si γ es un camino cerrado en D, entonces $h \circ \gamma$ es un camino cerrado en h(D) y definimos

$$\operatorname{Var}_{\gamma}(\arg(h)) = \operatorname{Var}_{h \circ \gamma}(\arg(z))$$

Ejemplo 5.9.6. Sea $f(z) = z^2 - 1 = (z-1)(z+1)$, que es holomorfa y nunca cero en $D = \mathbb{C} \setminus \{-1, 1\}$, ¿existe rama de $\sqrt[n]{f}$ en D? Sea γ un camino cerrado en D, entonces:

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z+1} + \frac{1}{z-1} dz = n(\gamma, 1) + n(\gamma, -1),$$

que puede ser igual a, por ejemplo, 1 (basta tomar γ la circunferencia de centro -1 y radio 1), por lo que no existe $\sqrt[n]{f}$ en D.

Sea $D_1 = \mathbb{C}\setminus[-1,1]$, ¿existe rama de $\sqrt[n]{f}$ en D? Sea γ un camino cerrado en D_1 , entonces -1 y 1 están en la misma componente conexa de $\mathbb{C}\setminus sop(\gamma)$ y por tanto

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z+1} + \frac{1}{z-1} dz = n(\gamma, 1) + n(\gamma, -1) = 2n(\gamma, 1),$$

♥ @jorgeroddom

CAPÍTULO 5. INTEGRACIÓN COMPLEJA. VERSIONES SIMPLES DEL TEOREMA DE CAUCHY

que es un múltiplo entero de 2. Esto nos dice que hay posibilidades de que exista rama de \sqrt{f} en D_1 . Observamos que

$$f(z) = (z-1)(z+1) = (z-1)^2 \frac{z+1}{z-1}$$

Recordamos que en el anterior ejercicio hemos probado que existe g rama del $\log\left(\frac{z+1}{z-1}\right)$ en D_1 , por tanto,

$$h(z) = (z - 1)e^{\frac{g(z)}{2}}$$

es rama de \sqrt{f} en D_1 , ya que es holomorfa en D_1 y $h(z)^2=f(z),\,z\in D_1.$

Capítulo 6

Ceros de funciones holomorfas

Teorema 6.0.1. Sea Ω abierto de \mathbb{C} y sea $f:\Omega \longrightarrow \mathbb{C}$ holomorfa y sea $a\in \Omega$ tal que f(a)=0. Entonces solo una de las dos opcionea a continuación es válida:

- (i) $f \equiv 0$ en un entoro de a.
- (ii) a es un cero aislado de f, en cuyo caso, existen $n_0 \in \mathbb{N}$ y $g : \Omega \longrightarrow \mathbb{C}$ holomorfa, con $g(a) \neq 0$ tales que $f(z) = (z-a)^{n_0} g(z)$.

Demostración. Como f es holomorfa, entonces f es analítica y en consecuencia, es desarrollable en serie de potencias. Sea R > 0 tal que $\Delta(a, R) \subset \Omega$. Entonces para cada $z \in \Delta(a, R)$ se tiene que

$$f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z - a)^n$$

Entonces ocurre una de las siguientes opciones:

- (i) Si $f^{(n)}(a) = 0$ para todo $n \in \mathbb{N}_0$, entonces $f \equiv 0$ en $\Delta(a, R)$.
- (ii) Existe un primer natural $n_0 \in \mathbb{N}$ tal que $f^{(n_0)}(a) \neq 0$ ($n_0 \neq 0$, pues f(a) = 0). Definimos

$$g(z) = \begin{cases} \frac{f(z)}{(z-a)^{n_0}} & si \quad z \neq a\\ \frac{f^{(n_0)}(a)}{n!} & si \quad z = a \end{cases}$$

g es continua, en principio, en $\Omega\setminus\{a\}$. Veamos que g es continua en a. Para $z\in\Delta(a,R)$:

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n = (z-a)^{n_0} \sum_{n=n_0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^{n-n_0}$$

donde esta otra serie de potencias tiene el mismo radio de convergencia que f y tiene valor $\frac{f^{(n_0)}(a)}{n_0!}$ en z=a. Esto prueba que g es continua en Ω . Además, g es holomorfa en $\Omega\setminus\{a\}$, y por un resultado previo, se tiene que g es holomorfa en Ω .

Como $g(a) \neq 0$, existe un entorno U de a tal que $g \neq 0$ en U y por tanto, $f(z) = (z-a)^{n_0} g(z) \neq 0$ para cada $z \in U \setminus \{a\}$, lo que prueba que a es un cero aislado de f.

Definición 6.0.2. $Z(f) = \{a \in D : f(a) = 0\}$

Teorema 6.0.3 (Teorema de Identidad ded Weierstrass). Sea f una función holomorfa y no constante en un dominio $D \subseteq \mathbb{C}$. Entonces el conjunto de sus ceros no puede tener puntos de acumulación en D.

Demostración. Sea $A = \{a \in D : a \text{ es punto de acumulación de } Z(f) \text{ en } D\}$. Observamos que $A \subset Z(f)$. También, por la definición de A, se tiene que A es cerrado en D.

Veamos que A es abierto de D. Sea $a \in A$, entonces existe una sucesión $\{a_n\} \subset Z(f)$ tal que $a_n \to a$. Esto nos dice que a no puede ser un cero aislado de f, luego, por el teorema anterior, existe un entorno U de a tal que f = 0 en U. Esto nos dicec que $U \subset A$ y por tanto, A es abierto de D.

Como A es abierto y cerrado y D es conexo, entonces $A = \emptyset$ o A = D. Pero $A \neq D$ porque f no es constante, por tanto $A = \emptyset$.

Corolario 6.0.4. Si f es holomorfa en y no constante en D dominio de \mathbb{C} , entonces los puntos de acumulación de Z(f) están en ∂D .

Observación 6.0.5. • Si $K \subset D$ es compacto, entonces $Z(f) \cap K$ es finito (o vacío).

■ El conjunto Z(f) es a lo sumo numerable.

Corolario 6.0.6 (Principio de Unicidad de Weierstrass). Si f, g son holomorfas en un dominio $D \subseteq \mathbb{C}$ y f(z) = g(z) para todo $z \in A$, siendo $A \subset D$ un conjunto de acumulación de D, entonces f = g en D.

Teorema 6.0.7 (Prinicipio del módulo máximo). Si f es holomorfa en un dominio $D \subseteq \mathbb{C}$ y |f| alcanza un máximo local en $z_0 \in D$, entonces f es constante en D.

Demostración. Como |f| alcanza un máximo local en $z_0 \in D$, entonces f es constante en un entorno U de z_0 . Por el principio de identidad de Weierstrass, f es constante en D.

Teorema 6.0.8 (Principio del módulo mínimo). Si f es holomorfa y nunca cero en un dominio $D \subseteq \mathbb{C}$ y |f| alcanza un mínimo local en D, entonces f es constante en D.

Ejemplo 6.0.9. Sea u(z) = Re(z). Sabemos que u es armónica en \mathbb{C} y que $u(z) = 0 \iff \text{Re}(z) = 0$, que es un conjunto de acumulación de \mathbb{C} , pero, u no es identicamente cero en \mathbb{C} .

Teorema 6.0.10 (Principio de Identidad de Weierstrass para funciones armónicas). Sea $D \subseteq \mathbb{C}$ un dominio. Sea $u:D \longrightarrow \mathbb{R}$ armónica. Supongamos que existe $a \in D$ y r>0 tales que $\Delta(a,r) \subset D$ y $u \equiv 0$ en $\Delta(a,r)$. Entonces u=0 en D.

Demostración. Consideramos $f = u_x - iu_y$, que es holomorfa en D y f = 0 en $\Delta(a, r)$ (por hipótesis). Por el principio de identidad de Weiertrass, f = 0 en D. Esto implica que $u_x \equiv 0 \equiv u_y$ en D, por tanto, u es constante en D y como u = 0 en $\Delta(a, r)$, tenemos que u = 0 en D.

Teorema 6.0.11 (Principio del máximo y del mínimo para funciones armónicas).
• Siu es armónica en un dominio $D \subseteq \mathbb{C}$ y alcanza un máximo local en D, entonces u es constante en D.

■ Si u es armónica en un dominio $D \subseteq \mathbb{C}$ y alcanza un mínimo local en D, entonces u es

Teorema 6.0.12 (Regla de L'Hôpital). Sea $D \subseteq \mathbb{C}$ un dominio $y \ f, g : D \longrightarrow \mathbb{C}$ holomorfas. Supongamos que f(a) = g(a) = 0. Entonces los siguientes límites existen y son iguales

$$\lim_{z \to a} \frac{f(z)}{g(z)}, \qquad \lim_{z \to a} \frac{f'(z)}{g'(z)}$$

Demostración. Sean n_f y n_g los órdenes de a como cero de f y g respectivamente. Entonces podemos escribir

- $f(z) = (z-a)^{n_f} h_f(z)$, siendo h_f holomofa en D y $h_f(a) \neq 0$.
- $\bullet \ g(z)=(z-a)^{n_g}h_g(z),$ siendo h_g holomofa en D y $h_g(a)\neq 0.$

Entonces

- $f'(z) = n_f(z-a)^{n_f-1}h_f(z) + (z-a)^{n_f}h'_f(z) = (z-a)^{n_f-1}[n_fh_f(z) + (z-a)h'_f(z)]$, donde lo del interior del corchete es diferente de 0 para z=a. Luego, si $n_f-1 \ge 1$, entonces a es cero de f' de orden n_f-1 .
- De igual forma $g'(z) = n_g(z-a)^{n_g-1}h_g(z) + (z-a)^{n_g}h'_g(z) = (z-a)^{n_g-1}[n_gh_g(z) + (z-a)h'_g(z)].$

Entonces

$$\frac{f(z)}{g(z)} = (z - a)^{n_f - n_g} \frac{h_f(z)}{h_g(z)} \xrightarrow[z \to a]{} \begin{cases} 0 & si & n_f > n_g \\ \frac{h_f(a)}{h_g(a)} & si & n_f = n_g \\ \infty & si & n_f < n_g \end{cases}$$

$$\frac{f'(z)}{g'(z)} = (z - a)^{n_f - n_g} \frac{n_f h_f(z) + (z - a) h'_f(z)}{n_g h_g(z) + (z - a) h'_g(z)} \xrightarrow[z \to a]{} \begin{cases} 0 & si & n_f > n_g \\ \frac{h_f(a)}{h_g(a)} & si & n_f = n_g \\ \infty & si & n_f < n_g \end{cases}$$

Teorema 6.0.13 (Principio del módulo máximo). Sea f holomorfa en un dominio $D \subseteq \mathbb{C}$. Supongamos que existe M > 0 tal que

$$\lim_{D\ni z\to\xi} |f(z)| \le M$$

para todo $\xi \in \partial_{\infty} D = \begin{cases} \partial D & si \quad D \text{ es acotada} \\ \partial D \cup \{\infty\} & si \quad D \text{ no es acotada} \end{cases}$. Entonces $|f(z)| \leq M$ para todo $z \in D$. Es más, si existe $z_0 \in D$ tal que $|f(z_0)| = M$, entonces f es constante en D.

Demostración. Sea $\alpha = \sup_{zD} |f(z)| \in [0, \infty]$. Existe $\{z_n\} \subset D$, que podemos suponer con límite z^* tal que $|f(z_n)| \xrightarrow[n \to \infty]{} \alpha$.

Caso 1: Si $z^* \in D$ entonces

$$|f(z^*)| = \left| f\left(\lim_{n \to \infty} z_n \right) \right| = \lim_{n \to \infty} |f(z_n)| = \alpha,$$

lo que nos dice que $|f(z^*)|$ es máximo global. Luego, por la versión anterior del principio del módulo máximo, tenemos que f es constante en D y $|f|=\alpha$ en D. Entonces, para cada $\xi\in\partial_\infty D$,

$$\alpha = \lim_{D\ni z\to \xi} |f(z)| =_{D\ni z\to \xi} |f(z)| \le M,$$

por tanto, $\alpha \leq M$, luego $|f(z)| \leq M$ para cada $z \in D$.

<u>Caso 2</u>: Si $z^* \in \partial_{\infty} D$, para todo $\varepsilon > 0$ ocurre que

$$\limsup_{D\ni z\to z^*} |f(z)| \le M + \varepsilon$$

Esto implica que existe un entorno de z^* , V (en \mathbb{C}^*) tal que $|f(z)| < M + \varepsilon$, para cada $z \in V \cap D$. Ahora, como $z_n \xrightarrow[n \to \infty]{} z^*$, existe un $n_0 \in \mathbb{N}$ tal que $z_n \in V$ para todo $n \geq n_0$, con lo que $|f(z_n)| < M + \varepsilon$ para todo $n \geq n_0$. Esto implica que

$$\alpha = \lim_{n \to \infty} |f(z_n)| \le M + \varepsilon$$

Como ε era arbitrario, resulta que $\alpha \leq M$.

Ahora, si existe $z_0 \in D$ tal que $|f(z_0)| = M$, entonces |f| alcanza máximo local en D, luego f es constante en D.

Teorema 6.0.14 (Principio del módulo mínimo). Si f es holomorfa y nunca cero en un dominio $D \subseteq \mathbb{C}$ y existe un $m \in \mathbb{R}$ tal que para todo $\xi \in \partial_{\infty}D$ se tiene que

$$\limsup_{D\ni z\to\xi}|f(z)|\ge m$$

entonces $|f(z)| \ge m$ para cada $z \in D$. Además, si existe $z_0 \in D$ tal que $|f(z_0)| = m$, entonces f es constante en D.

Teorema 6.0.15 (Principio del módulo máximo y del módulo mínimo para funciones armónicas). Sea $D \subseteq \mathbb{C}$ un dominio y sea u armónica en D.

- 1. Supongamos que existe $M \in \mathbb{R}$ tal que lím $\sup_{D\ni z\to \xi} u(z) \leq M$ para todo $\xi \in \partial_{\infty}D$. Entonces $u(z) \leq M$ para cada $z \in D$. Además, si existe $z_0 \in D$ tal que $u(z_0) = M$, entonces u es constante en D.
- 2. Supongamos que existe $m \in \mathbb{R}$ tal que $\limsup_{D\ni z\to \xi} u(z) \geq m$ para todo $\xi\in\partial_\infty D$. Entonces $u(z)\geq m$ para cada $z\in D$. Además, si existe $z_0\in D$ tal que $u(z_0)=m$, entonces u es constante en D.

Teorema 6.0.16 (Lema de Schwarz). Sea f holomorfa en el disco unidad \mathbb{D} con f(0) = 0 y $f(\mathbb{D}) \subset \mathbb{D}$. Entonces:

- (i) $|f(z)| \le z \text{ para } cada \ z \in \mathbb{D}.$
- (ii) $|f'(0)| \le 1$.

Si se da la igualdad en (i) para algún $z \neq 0$ o se da la igualdad (ii), entonces existe $\lambda \in \partial \mathbb{D}$ tal que $f(z) = \lambda z$ para cada $z \in \mathbb{D}$.

Demostración. Observamos que f(0) = 0. Consideramos

$$g(z) = \begin{cases} \frac{f(z)}{z} & si \quad z \in \mathbb{D} \setminus \{0\} \\ f(0) & si \quad z = 0 \end{cases}$$

Entonces g es continua en \mathbb{D} y holomorfa en $\mathbb{D}\setminus\{0\}$, luego, g es holomorfa en \mathbb{D} . Observamos que si $\xi\in\partial_{\infty}\mathbb{D}=\partial\mathbb{D}$, entonces

$$\lim_{\mathbb{D}\ni z\to \xi}|g(z)|=\lim_{\mathbb{D}\ni z\to \xi}\frac{|f(z)|}{|z|}\leq 1$$

Por el principio del módulo máximo, se tiene que $|g(z)| \leq 1$ para cada $z \in \mathbb{D}$.

Definición 6.0.17. Un automorfismo del disco unidad es una aplicación conforme de \mathbb{D} sobre \mathbb{D} , que son de la forma $\lambda \varphi_a$, $|\lambda| = 1$, |a| < 1, siendo

$$\varphi_a(z) = \frac{a-z}{1-\overline{a}z}$$

Teorema 6.0.18. Sea $f:\mathbb{D}\longrightarrow\mathbb{D}$ holomorfa. Se cumple

(i) Para $z_1, z_2 \in \mathbb{D}$,

$$\left| \frac{f(z_1) - f(z_2)}{1 - \overline{f(z_1)} f(z_2)} \right| = \left| \frac{z_1 - z_2}{1 - \overline{z_1} z_2} \right|$$

(ii) Para $z \in \mathbb{D}$,

$$\frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}$$

Además, si se da la igualdad en (i) para algún par $z_1, z_2 \in \mathbb{D}$ con $z_1 \neq z_2$ o se da la igualdad (ii) para algún $z \in \mathbb{D}$, entonces, f es un automorfismo en \mathbb{D} .

Capítulo 7

Versión homológica del Teorema de Cauchy

7.1. Cadenas y ciclos

Definición 7.1.1. Sea Ω un abierto de \mathbb{C} . Consideramos el conjunto \mathscr{C}_{Ω} de todas las sumas formales de caminos de Ω , el tipo $\gamma_1 + \ldots + \gamma_N$, siendo cada γ_j caminno en Ω . En \mathscr{C}_{Ω} definimos la relación \sim como sigue: $(\gamma_1 + \ldots + \gamma_N) \sim (\sigma_1 + \ldots + \sigma_M)$ si y solo si

$$\sum_{j=1}^{N} \int_{\gamma_j} f(z) \ dz = \sum_{i=1}^{M} \int_{\sigma_i} f(z) \ dz$$

para toda función

$$f: \left(\bigcup_{j=1}^{N} sop(\gamma_{j})\right) \cup \left(\bigcup_{i=1}^{M} sop(\sigma_{i})\right) \longrightarrow \mathbb{C}$$

Observación 7.1.2. Es claro que esta relación es una relación de equivalencia en \mathscr{C}_{Ω} .

Definición 7.1.3. A los elementos de \mathscr{C}_{Ω} les llamamos cadenas en Ω . Un ciclo en Ω es una cadena en Ω que admite una representación de la forma $\Gamma = \gamma_1 + ... + \gamma_N$, siendo cada γ_j un camino cerrado en Ω .

Observación 7.1.4. Dada la naturaleza de la cadena, es imposible definir origen y extremo de una cadena, así como soporte de una cadena: Si γ_1, γ_2 son caminos en Ω , entonces γ_1 y $\gamma_1 + \gamma_2 + (-\gamma_2)$ representan a la misma cadena y tienen "soportes" distintos.

Observación 7.1.5. Sea $\Omega \subseteq \mathbb{C}$ abierto y sea $f:\Omega \longrightarrow \mathbb{C}$. Sea Γ una cadena en Ω . Entonces, para cualesquier representación de Γ $\gamma_1 + \ldots + \gamma_N \sim \gamma_1' + \ldots + \gamma_M', \gamma_j, \gamma_i'$ caminos en Ω , hemos de tener

$$\sum_{j=1}^{N} \int_{\gamma_j} f(z) \ dz = \sum_{i=1}^{M} \int_{\gamma'_i} f(z) \ dz$$

lo que nos lleva a la siguiente definición.

Definición 7.1.6. Definimos la integral de f a lo largo de Γ como

$$\int_{\Gamma} f(z) \ dz = \sum_{j=1}^{N} \int_{\gamma_j} f(z) \ dz$$

Definición 7.1.7. Sea Γ un ciclo en \mathbb{C} representado por $\gamma_1 + ... + \gamma_N$, siendo cada γ_j camino cerrado en \mathbb{C} . Si $a \in \mathbb{C} \setminus \bigcup_{i=1}^N sop(\gamma_i)$, definimos el índice de a respecto de Γ como

$$n(\Gamma, a) = \frac{1}{2\pi i} \int_{\Gamma} \frac{1}{z - a} dz = \sum_{j=1}^{N} \frac{1}{2\pi i} \int_{\gamma_j} \frac{1}{z - a} dz = \sum_{j=1}^{N} n(\gamma_j, a)$$

Observación 7.1.8. Claramente, tenemos las mismas propiedades que teníamos para caminos cerrados, una vez hayamos fijado una representación $\gamma_1 + ... + \gamma_N$ del ciclo Γ :

- $n(\Gamma, z) \in \mathbb{Z}$ para todo $z \in \mathbb{C} \setminus \bigcup_{j=1}^{N} sop(\gamma_j)$
- $n(\Gamma, \bullet)$ es una función continua en $\mathbb{C} \setminus \bigcup_{j=1}^N sop(\gamma_j)$, luego es constante en cada componente conexa de $\mathbb{C} \setminus \bigcup_{j=1}^N sop(\gamma_j)$.
- $n(\Gamma, z) = 0$ para todo z en la componente conexa no acotada de $\mathbb{C} \setminus \bigcup_{j=1}^{N} sop(\gamma_j)$.

Definición 7.1.9. Sea Ω abierto de \mathbb{C} . Decimos que un ciclo Γ en Ω es homólogo a 0 módulo Ω , denotado como $\Gamma \sim 0 \pmod{\Omega}$, si $n(z, \Gamma) = 0$ para todo $z \in \mathbb{C} \setminus \Omega$.

Decimos que dos ciclos en Ω , Γ_1 y Γ_2 , son homólogos módulo Ω , si $\Gamma_1 - \Gamma_2 \sim 0 \pmod{\Omega}$.

Teorema 7.1.10 (Lema de separación). Sea Ω abierto en \mathbb{C} y sea K un compacto en Ω . Entonces existe un ciclo Γ en $\Omega \backslash K$ que satisface

- (i) $\Gamma \sim 0 (m \acute{o} d \Omega)$.
- (ii) $n(\Gamma, z) = 1$ para todo $z \in K$.
- (iii) Para toda función holomorfa en Ω se tiene que

$$\int_{\Gamma} f(\xi) \ d\xi = 0 \quad y \quad f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)}{\xi - z} \ d\xi, \quad \forall z \in K$$

Teorema 7.1.11. Sea Ω un abierto en \mathbb{C} y sea Γ un ciclo en Ω . Entonces

$$\int_{\Gamma} f(z) \ dz = 0 \ para \ toda \ f \ holomorfa \iff \Gamma \sim 0 (m \acute{o}d \ \Omega).$$

Teorema 7.1.12 (Fórmulas integrales de Cauchy). Sea $\Omega \subseteq \mathbb{C}$ abierto. Sea f holomorfa en Ω y sea Γ un ciclo en Ω homólogo a θ módulo Ω . Supongamos que una representación Γ es $\gamma_1 + ... + \gamma_N$ siendo cada γ_j camino cerrado en en Ω . Entonces, para cada $z \in \mathbb{C} \setminus \bigcup_{j=1}^N sop(\gamma_j)$

y para cada $n \in \mathbb{N} \cup \{0\}$ se tiene

$$f^{(n)}(z)n(\Gamma,z) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(\xi)}{(\xi-z)^{n+1}} d\xi$$

Demostración. Sea $z \in \mathbb{C} \setminus \bigcup_{j=1}^{N} sop(\gamma_j)$ y sea $n \in \mathbb{N} \cup \{0\}$. Al ser f holomorfa en Ω , se tiene que f es analítica en Ω . Por tanto, podemos considerar:

$$g(\xi) = \begin{cases} \frac{n!}{2\pi i} \cdot \frac{f(\xi) - \sum_{k=0}^{\infty} \frac{f^{(k)}(z)}{k!} (\xi - z)^k}{(\xi - z)^{n+1}} & si \quad \xi \in \Omega \setminus \{z\} \\ \frac{n!}{2\pi i} \cdot \frac{f^{(n+1)}(z)}{(n+1)!} & si \quad \xi = z \end{cases}$$

Se puede comprobar facilmente que esta función es continua en Ω y holomorfa, inicialmente en $\Omega \setminus \{z\}$, por lo que, por un resultado anterior, g es holomorfa en Ω . Así, por la versión homológica del Teorema de Cauchy, $\int_{\Gamma} g(\xi) \ d\xi = 0$. Desgranando esta integral, resulta entonces

$$\frac{n!}{2\pi i} \int_{\Gamma} \frac{f(\xi)}{(\xi - z)^{n+1}} \ d\xi = \sum_{k=0}^{\infty} \left(\frac{f^{(k)}(z)}{k!} (\xi - z)^k \cdot \frac{n!}{2\pi i} \int_{\Gamma} \frac{1}{(\xi - z)^{n-k+1}} \ d\xi \right) \stackrel{=}{=}$$

Como $\frac{1}{(\xi-z)^{n-k+1}}$ tiene primitiva si y solo si $n\neq k,$ entonces

$$=_{(*)} \frac{f^{(n)}(z)}{n!} \cdot \frac{n!}{2\pi i} \int_{\Gamma} \frac{1}{\xi - z} d\xi + 0 = f^{(n)}(z) n(\Gamma, z).$$

7.2. Dominios simplemente conexos

En su día dimos la definición de dominio simplemente conexo en \mathbb{C} , como un dominio D en \mathbb{C} tal que $\mathbb{C}^* \setminus D$ es conexo.

Teorema 7.2.1 (Caracterización de dominios simplementes conexos en \mathbb{C}). Sea $D\subseteq\mathbb{C}$ un dominio. Son equivalentes:

- (a) D es un dominio simplemente conexo en \mathbb{C} .
- (b) Todo ciclo en D es homólogo a 0 módulo D.
- (c) Todo camino cerrado en D es homólogo a 0 módulo D.

Teorema 7.2.2 (Teorema de Cauchy para dominios simplementes conexos). Sea $D \subseteq \mathbb{C}$ un dominio simplemente conexo y sean f holomorfa en D y γ un camino cerrado o un ciclo en D, entonces $\int_{\gamma} f(z) \ dz = 0$.

Teorema 7.2.3 (Fórmula integrales de Cauchy). Sea $D \subseteq \mathbb{C}$ un dominio simplemente conexo. Sean f holomorfa en D y $\gamma_1,...,\gamma_N$ caminos cerrados en D. Entonces, para cada $z \in D \setminus \bigcup_{j=1}^N \gamma_j$ y cada $n \in \mathbb{N} \cup \{0\}$:

$$f^{(n)}(z)\sum_{j=1}^{N}n(\gamma_{j},z) = \sum_{j=1}^{N}\frac{n!}{2\pi i}\int_{\gamma_{j}}\frac{f(\xi)}{(\xi-z)^{n+1}}\ d\xi$$

Con estos resultados para dominios simplemente conexos, podemos dar otras caracterizaciones de estos dominios.

Teorema 7.2.4 (Caracterizaciones de dominio simplemente conexo). Sea $D \subseteq \mathbb{C}$ un dominio en \mathbb{C} . Son equivalentes:

- (i) D es un dominio simplemente conexo en \mathbb{C} .
- (ii) Todo camino en D (ciclo en D), γ , es homólogo a 0 módulo D.
- (iii) $\int_{\gamma} f(\xi) d\xi = 0$ para toda función f holomorfa en D, y todo camino cerrado γ (ciclo) en D.
- (iv) Toda función holomorfa en D tiene primitiva en D.
- (v) Para toda función f holomorfa en D, sin ceros en D, existe una rama del $\log(f)$ en D.
- (vi) Toda función armónica en D tiene conjugada armónica en D.

Demostración. Ya tenemos que $(i) \iff (ii) \iff (iii) \iff (iv) \implies (v)$ y que $(iv) \implies (vi)$.

Veamos que $(v) \Longrightarrow (ii)$. Sea $a \notin D$. La función $f(z) = z - a, z \in D$ es holomorfa en D, y nunca 0 en D. Entonces existe rama del $\log(z-a)$ en D, lo que equivale a decir que $\frac{1}{z-a} = \frac{f'}{f}$ tiene primitiva en D, y esto, a su vez, equivale a decir que $\int_{\gamma} \frac{1}{z-a} \ dz = 0$ para todo camino cerrado γ en D. Como $a \notin D$ ha sido elegido de manera arbitraria, concluimos que todo camino cerrado en D es homólogo a 0 módulo D.

Finalizamos el teorema probando que $(vi) \Longrightarrow (v)$. Sea f holomorfa en D, sin ceros en D. Entonces $u = \log |f|$ es armónica en D, ya que localmente es la parte real de una función holomorfa. Por hipótesis, existe g holomorfa en D tal que $u = \log |f| = \operatorname{Re}(g)$ en D. Vamos a probar ahora que existe una constante $\beta \in \mathbb{C}$ tal que $e^{g+\beta} = f$, o sea, tal que $g+\beta$ es rama del $\log(f)$ en D. Para probarlo, observamos que la función $F(z) = f(z)e^{-g(z)}, z \in D$, es holomorfa en D, y es una constate C no nula, pues $|F| = 1 \neq 0$ en D. Sea $\in \log(C)$. Entonces $f(z)e^{-g(z)} = F(z) = e^{\beta}, z \in D$, o sea, $f(z) = e^{g(z)+\beta}, z \in D$.

Capítulo 8

Singularidades aisladas

8.1. Singularidades aisladas

Definición 8.1.1. Por una singularidad aislada de una función f entendemos un punto z_0 de manera que f está definida y es holomorfa en un entorno perforado de z_0 , $\Delta(z_0, r) \setminus \{z_0\}$, sin ser a priori holomorfa en todo el entorno $\Delta(z_0, r)$.

Ejemplo 8.1.2. 1. Las funciones $\frac{1}{z}$, $\frac{\sin z}{z}$, $e^{1/z}$ presentan singularidades aisladas en 0, ya que están definidas y son holomorfas en un entorno perforado de 0.

- 2. En principio, según la definición, si f es holomorfa en z_0 , también podría decir que f presenta una singularidad aislada en z_0 , aunque el interés es decir esto es nulo.
- 3. Un primer resultado sobre singularidades aisladas ya lo vimos como consecuencia de la analiticidad de funciones holomorfas: Si f es continua en un abierto Ω y f es holomorfa en $\Omega \setminus \{p\}$, siendo $p \in \Omega$, entonces f es holomorfa en Ω . O sea, la singularidad de p es evitable si f es continua en p.
- 4. Hay puntos que también podríamos llamar singularidades pero no aisladas. Por ejemplo, la función $f(z) = \frac{1}{\operatorname{sen}(1/z)}$ presenta singularidades aisladas en los puntos de la forma $a_n = \frac{1}{n\pi}$, $n \in \mathbb{Z} \setminus \{0\}$. El punto a = 0 también es "singularidad" de f, pero al ser límite de singularidades aisladas (no evitables), resulta que no es holomorfa en ningún entorno perforado de 0, por lo que 0 no puede ser singularidad aislada de f.

Definición 8.1.3. Si z_0 es una singularidad de f, decimos que es evitable si f admite una extensión holomorfa a todo un entorno de z_0 . De esta manera, absusando de notación, la extensión holomorfa de f en un entorno de una singularidad aislada evitable, también se suele denominar f.

Teorema 8.1.4 (Teorema de Riemann sobre la singularidad evitable). Sea z_0 una singularidad aislada de f. Son equivalentes:

- (i) z_0 es singularidad aislada evitable de f.
- (ii) f admite extensión continua a z_0 .
- (iii) Existe $\lim_{z\to z_0} f(z)$ y es finito.
- (iv) f está acotada en un entorno perforado de z_0 .

(v)
$$\lim_{z\to z_0} (z-z_0)f(z) = 0$$
.

Demostración. Las implicaciones $(i) \Longrightarrow (ii) \Longrightarrow (iv) \Longrightarrow (v)$ son inmediatas. Probemos $(v) \Longrightarrow (i)$.

Supongamos que f es holomorfa en $\Delta(z_0, R) \setminus \{z_0\}$ y que $\lim_{z \to z_0} (z - z_0) f(z) = 0$. Entonces la función $g : \Delta(z_0, R) \longrightarrow \mathbb{C}$, dada por

$$g(z) = \begin{cases} (z - z_0)f(z) & si \quad z \in \Delta(z_0, R) \setminus \{z_0\} \\ 0 & si \quad z = z_0 \end{cases}$$

está bien definida y es continua en $\Delta(z_0, R)$, y además es holomrfa en $\Delta(z_0, R) \setminus \{z_0\}$. Por tanto, tenemos que g es holomorfa en $\Delta(z_0, R)$ y tiene un cero en z_0 . Todo esto implica que g admite una factorización del tipo $g(z) = (z - z_0)h(z)$, con h holomrfa en $\Delta(z_0, R)$. Se sigue entonces que:

$$h(z) = \frac{(z - z_0)h(z)}{(z - z_0)} = \frac{g(z)}{z - z_0} = f(z), \quad z \in \Delta(z_0, R) \setminus \{z_0\}$$

probando de esta manera que h es una extensión holomorfa de f en $\Delta(z_0, R)$, y así, z_0 es singularidad evitable.

Definición 8.1.5. Sea z_0 una singularidad aislada de f.

- z_0 es evitable si existe $\lim_{z\to z_0} f(z)$ y es finito.
- z_0 es polo si existe $\lim_{z\to z_0} f(z)$ y vale ∞ .
- z_0 es singularidad aislada esencial si no es aislada ni polo (f no tiene límite en z_0).

Ejemplo 8.1.6. 1. $f(z) = \frac{\sin z}{z}$ tiene una singularidad aislada evitable en 0.

- 2. $f(z) = \frac{1}{(z-z_0)^n}$ tiene un polo en $z = z_0$.
- 3. $f(z) = e^{1/z}$ tiene una singularidad esencial en z = 0, pues el límite no existe, basta considerar:

$$\lim_{n \to \infty} f\left(\frac{1}{n}\right) = \lim_{n \to \infty} e^n = \infty$$
$$\lim_{n \to \infty} f\left(-\frac{1}{n}\right) = \lim_{n \to \infty} e^{-n} = 0$$

Teorema 8.1.7 (Orden de un polo). Sea z_0 un polo de f. Entonces existe un primer natural n_0 tal que $f(z) = (z - z_0)^{n_0} g(z)$ tiene una singularidad aislada evitable en z_0 y, además, trás evitar la singularidad, g no se anula en todo un entorno de z_0 .

Dicho primer natural se llama orden z_0 como polo de f.

Observación 8.1.8. 1. f tiene un polo de orden n_0 en z_0 si y solo si $\frac{1}{f}$ tiene un cero de orden n_0 en z_0 .

- 2. Si Ω es abierto de \mathbb{C} , $z_0 \in \Omega$, y f es holomorfa enn $\Omega \setminus \{z_0\}$, siendo z_0 polo de f de orden n_0 , entonces $g(z) = (z z_0)^{n_0} f(z)$ es holomorfa en Ω con $g(z_0) \neq 0$.
- 3. Si z_0 es singularidad aislada de f que es evitable o polo, entonces existe $\lim_{z\to z_0} f(z)$ como valor en \mathbb{C}^* , así que definiendo $f(z_0) = \lim_{n\to z_0} f(z) \in \mathbb{C}^*$, obtenemos una extensión de f, continua con respecto a la topología de \mathbb{C}^* en un entorno de z_0 .

Teorema 8.1.9 (Casorati-Weierstrass). Si D es un dominio en \mathbb{C} y f es holomorfa en $D\setminus\{z_0\}$, siendo $z_0 \in D$ una singularidad aislada esencial de f, entonces para r > 0 tal que $\Delta(z_0, r) \subset D$, se tiene que $f(\Delta(z_0, r)\setminus\{z_0\})$ es denso en \mathbb{C} .

8.2. Desarrollos de Laurent

Sabemos que si f es holomorfa en z_0 , entonces f es desarrollable en serie de potencias alrededor de z_0 :

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

Cuando z_0 es una singularidad aislada evitable o un polo de f, también obtenemos un desarrollo en serie de potencias de $(z - z_0)$ de la siguiente forma:

■ Si z_0 es singularidad evitable de f, la extensión holomorfa de f en z_0 , que la llamaremos nuevamente f, se encarga de proporcionarnos un desarrollo en serie de potencias "no negativas" de $(z - z_0)$:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

■ Si z_0 es un polo de orden n_0 de f, entonces $(z-z_0)^n f(z)$ tiene una singularidad evitable en z_0 , y n_0 es el primer natural con esta propiedad. Tras evitar la singularidad enn z_0 , obtenemos

$$(z - z_0)^{n_0} f(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^n$$

De aquí se sigue que

$$f(z) = \frac{1}{(z - z_0)^{n_0}} \sum_{n=0}^{\infty} b_n (z - z_0)^n = \sum_{n=0}^{\infty} b_n (z - z_0)^{n-n_0} = \sum_{k=-n_0}^{\infty} a_k (z - z_0)^k$$
$$= \frac{a_{-n_0}}{(z - z_0)^{n_0}} + \frac{a_{-n_0+1}}{(z - z_0)^{n_0-1}} + \dots + \frac{a_{-1}}{(z - z_0)} + a_0 + a_1 (z - z_0) + \dots$$

Cuando z_0 sea una singularidad aislada esencial de f, veremos aparecer infinitas potencias negativas de $(z-z_0)$.

Teorema 8.2.1 (Desarrollos de Laurent). Sea $a \in \mathbb{C}$, $0 \le R_1 < R_2 \le \infty$, $y \ f$ holomorfa en el anillo $A = A(a; R_1, R_2) = \{z \in \mathbb{C} : R_1 < |z - a| < R_2\}$. Entonces f admite un desarrollo, llamado desarrollo de Laurent de f en A, de la forma:

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n, \quad z \in A$$

siendo la convergencia de la serie absoluta y uniforme en cada compacto de A. Además, los coeficientes a_n vienen dados por la fórmula:

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - a)^{n+1}} d\xi$$

donde γ es cualquier ciclo de A con $n(\gamma, a) = 1$.

Observación 8.2.2. Si $\{a_n\}_{n=-\infty}^{\infty}$ es una sucesión, decimos que la serie $\sum_{n=-\infty}^{\infty} a_n$ converge si las dos series $\sum_{n=0}^{\infty} a_n$, $\sum_{n=1}^{\infty} a_{-n}$ convergen. En tal caso, escribimos $\sum_{n=-\infty}^{\infty} a_n = \sum_{n=0}^{\infty} a_n + \sum_{n=1}^{\infty} a_{-n}$. Decimos que la serie $\sum_{n=-\infty}^{\infty} a_n$ converge absolutamente si $\sum_{n=-\infty}^{\infty} |a_n|$ es convergente.

Si S es un conjunto, y para cada $n \in \mathbb{Z}$, f_n es una función de S en \mathbb{C} , decimos que la serie $\sum_{n=-\infty}^{\infty} f_n$ converge uniformemente en S si las dos series funcionales $\sum_{n=0}^{\infty} f_n$, $\sum_{n=1}^{\infty} f_{-n}$ convergen uniformemente en S. En tal caso, escribimos $\sum_{n=-\infty}^{\infty} f_n = \sum_{n=0}^{\infty} f_n + \sum_{n=1}^{\infty} f_{-n}$.

- **Observación 8.2.3.** 1. Una consecuencia de la demostración del teorema sobre desarrollos de Laurent, es que f es descompone como $f = f_1 + f_2$, $f_1(z) = \sum_{n=-\infty}^{-1} a_n(z-a)^n$ y $f_2(z) = \sum_{n=0}^{\infty} a_n(z-a)^n$, siendo f_1 holomorfa en $\{z \in \mathbb{C} : |z-a| > R_1\}$ y f_2 holomorfa en $\{z \in \mathbb{C} : |z-a| < R_2\}$.
 - 2. Si f tiene una singularidad aislada en a, entonces f es holomorfa en un anillo de la forma A(a; 0, R), para algún R > 0, y admite un desarrollo de Laurent alrededor de a:

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-a)^n, \ z \in A(a; 0, R)$$

La serie de potencias negativas, $f_1 = \sum_{n=-\infty}^{-1} a_n (z-a)^n = P_{f,a}(z)$ se llama **parte principal** del desarrollo de Laurent de f en a. Según el aspecto de esta parte principal, obtenemos la siguiente caracterización de singularidades aisladas:

- a) a es singularidad evitable de f si y solo si $f_1 \equiv 0$.
- b) a es polo de f de orden n_0 si y solo si f_1 es un polinomio de grado n_0 en la variable $\frac{1}{z-a}$.
- c) a es singlaridad aislada esencial de f si y solo f_1 tiene infinitos sumandos.
- 3. Si f tiene una singularidad aislada en a, f es holomorfa en A(a;0,R), para algún R>0, y su desarrollo de Laurent es de la forma

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - a)^n, \quad z \in A(a; 0, R)$$

Si ahora γ es un ciclo en A(a;0,R) tal que $n(\gamma,a)=1$, entonces

$$a_{-1} = \frac{1}{2\pi i} \int_{\gamma} f(\xi) \ d\xi$$

O sea, hablando coloquialmente, a_{-1} es el único coeficiente del desarrollo de Laurent de f en a que sobrevive al integrar f a lo largo de γ . Recibe el nombre de **residuo de** f **en** a

$$Res(f, a) = a_{-1} = \frac{1}{2\pi i} \int_{\gamma} f(\xi) \ d\xi$$

cualquiera que sea el ciclo γ en A(a,0,R) con $n(\gamma,a)=1$.

- a) Si a es singularidad evitable de f, entonces Res(f, a) = 0.
- b) Si a es un polo de f de orden n_0 , entonces

$$f(z) = \sum_{n=-n_0}^{\infty} a_n (z-a)^n$$

con lo que

$$(z-a)^{n_0} f(z) = \sum_{k=0}^{\infty} a_{k-n_0} (z-a)^k$$

De donde deducimos que

$$Res(f,a) = a_{-1} = \frac{1}{(n_0 - 1)!} \frac{d^{n_0 - 1}}{dz^{n_0 - 1}} \Big|_{z=a} \left[(z - a)^{n_0} f(z) \right]$$

8.3. El infinito

Definición 8.3.1. Sea f una función holomorfa definida en un entorno de ∞ , esto es, existe R>0 tal que f está definida en $\{z\in\mathbb{C}:|z|>R\}$. Decimos que f es holomorfa en ∞ si f(1/z) tiene una singularidad evitable en 0, o sea, si f(1/z) es holomorfa en 0. Decimos que ∞ es una singularidad aislada (evitable, polo, esencial) de f si 0 es singularidad aislada (evitable, polo, esencial) de f(1/z).

Observación 8.3.2. 1. Si f tiene una singularidad aislada en ∞ , entonces $g(\xi) = f(1/\xi)$ tiene una singularidad aislada en 0, con desarrollo de Laurent en 0 del tipo:

$$g(\xi) = \sum_{n = -\infty}^{\infty} b_n \xi^n = \sum_{n = -\infty}^{\infty} b_{-n} \left(\frac{1}{\xi}\right)^n$$

y parte prinicipal

$$g_1(\xi) = \sum_{n=-\infty}^{1} b_n \xi^n = \sum_{n=1}^{\infty} b_{-n} \left(\frac{1}{\xi}\right)^n$$

De esta manera, podemos decir que el desarrollo de Laurent de f en ∞ es como sigue

$$f(z) = g(1/z) = \sum_{n=-\infty}^{\infty} b_{-n} z^n = \sum_{n=-\infty}^{\infty} a_n z^n$$

y su parte prinicipal es

$$f_1(z) = g_1(1/z) = \sum_{n=1}^{\infty} a_n z^n$$

o sea, es una serie de potencias centrada en 0 con radio de convergencia ∞ (porque tiene que estar definida y ser holomorfa en un entorno "perforado" de ∞). En consecuencia:

- a) ∞ es singualaridad evitable si y solo si $f_1 \equiv 0$.
- b) ∞ es polo de orden n_0 de f si y solo si $f_1(z) = \sum_{n=1}^{n_0} a_n z^n$ es un polinomio de grado n_0 .
- c) ∞ es singularidad aislada esencial de f si y solo si $f_1(z) = \sum_{n=1}^{\infty} a_n z^n$ es una serie de potencias alrededor de 0, con infinitos sumandos, y radio de convergencia ∞ . En otras palabras, ∞ es singularidad aislada esencial de f si y solo si f_1 es una función enntera distinta de un polinomio.
- 2. En virtud de lo anterior:
 - a) Todo polimomio de grado N tiene un polo de orden N en ∞ .
 - b) $\frac{1}{2^N}$ es holomorfa en ∞ y tiene un cero de orden N es ∞ .
 - c) $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ tiene una singularidad esencial en ∞ , pues su parte principal es $\sum_{n=1}^{\infty} \frac{z^n}{n!} = e^z 1$, que es una función entera que no es un polinomio.
 - d) $e^{1/z} = \sum_{n=0}^{\infty} \frac{1}{n!z^n} = \sum_{n=-\infty}^{0} \frac{z^n}{(-n)!}$ tiene una singularidad aislada en ∞ , con parte principal igual a 0. Luego, $e^{1/z}$ es holomorfa en ∞ (y en ∞ vale 1).

Definición 8.3.3. Si f tiene una sigularidad aislada en ∞ , y R es tal que f es holomorfa en $\{z \in \mathbb{C} : |z| > R\}$, definimos el residuo de f en ∞ como

$$Res(f,\infty) = -\frac{1}{2\pi i} \int_{|\xi|=r} f(\xi) \ d\xi$$

cualquiera que sea r > 0.

Observación 8.3.4. Una forma rápida para calcular el residuo de f en ∞ es la siguiente:

$$Res(f,\infty) = -\frac{1}{2\pi i} \int_{|\xi|=r} f(\xi) \ d\xi \underset{\xi=1/w}{=} \frac{1}{2\pi i} \int_{|w|=1/r} f\left(\frac{1}{w}\right) \left(-\frac{1}{w^2}\right) \ dw = Res\left(-\frac{1}{w} f\left(\frac{1}{w}\right), 0\right)$$

Definición 8.3.5. Sea Ω abierto de \mathbb{C}^* y sea $f:\Omega\longrightarrow\mathbb{C}^*$. Decimos que f es meromorfa en Ω si f es holomorfa en Ω salvo por polos (y singularidades evitables, como tales, trás evitarlas, dejan de ser singularidades)

Observación 8.3.6. Si f es meromorfa en el abierto Ω de \mathbb{C}^* , entonces el conjunto de polos de f no tiene puntos acumulación en Ω . De lo contrario, f tendría "singularidades no aisladas" en Ω . Se sigue entonces que el conjunto de polos de f, además de no tener puntos de acumulación en Ω , es a lo sumo numerable, y sus putos de acumulación están en $\partial_{\infty}\Omega$.

Teorema 8.3.7. • Si f es holomorfa en \mathbb{C}^* , entonces f es constante.

■ Si f es meromorfa en \mathbb{C}^* , entonces f es una función racional.

8.4. El teorema de los residuos

Proposición 8.4.1. Sea R una función racional. Entonces la suma de los residuos de R es 0.

Teorema 8.4.2 (Teorema de los residuos). Si f es holomorfa en un abierto $\Omega \subseteq \mathbb{C}$ excepto en $S \subset \Omega$, conjunto de singularidades aisladas (finitas) de f (puede haber singularidades aisladas esenciales), entonces

$$\frac{1}{2\pi i} \int_{\gamma} f(z) \ dz = \sum_{a \in S} n(\gamma, a) Res(f, a)$$

para todo ciclo γ en $\Omega \backslash S$, homólogo a 0 módulo Ω .

Observación 8.4.3. El teorema de los residuos engloba todos los resultados importantes vistos hasta ahora.

- 1. Teorema de Cauchy: Si f es holomorfa en el abierto $\Omega \subseteq \mathbb{C}$ y γ es un ciclo en Ω homólogo a 0 módulo Ω , entoces $\int_{\gamma} f(\xi) \ d\xi = 0$, pues f no tiene singularidades aisladas.
- 2. <u>Fórmula integral de Cauchy</u>: Si f es holomorfa en el abierto $\Omega \subseteq \mathbb{C}$, $z_0 \in \Omega$ y γ es un ciclo en $\Omega \setminus \{z_0\}$ homólogo a 0 módulo Ω , entonces el conjunto de singularidades de $g(z) = \frac{f(z)}{z-z_0}$, $z \in \Omega \setminus \{z_0\}$ es $S = \{z_0\}$, y observamos que z_0 es polo simple de g, por lo que $Res(g, z_0) = \lim_{z \to z_0} g(z)(z-z_0) = f(z_0)$. De ahí que

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z_0} \ d\xi = \frac{1}{2\pi i} \int_{\gamma} g(\xi) \ d\xi = n(\gamma, z_0) Res(g, z_0) = n(\gamma, z_0) f(z_0)$$

3. Fórmula integral de Cauchy para la n-ésima derivada: Si f es holomorfa en el abierto $\Omega \subseteq \mathbb{C}$, $z_0 \in \Omega$, $n \in \mathbb{N}$, y γ es un ciclo en $\Omega \setminus \{z_0\}$ homólogo a 0 módulo Ω , entonces el conjunto de singularidades de $g(z) = \frac{f(z)}{(z-z_0)^{n+1}}$, $z \in \Omega \setminus \{z_0\}$ es $S = \{z_0\}$ y observamos que z_0 es

un polo de g de orden n+1. Teniendo en cuenta que el desarrollo de Taylor de f en z_0 , $f(z) = \sum_{k=0}^{\infty} a_k (z-z_0)^k$, nso da el desarrollo de Laurent de g en z_0 :

$$g(z) = (z - z_0)^{-n-1} f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^{-n-1+k}$$

de donde, obtenemos que

$$Res(g, z_0) = a_n = \frac{f^{(n)}(z_0)}{n!}$$

De aquí se sigue que

$$\frac{n!}{2\pi i} \int_{\gamma} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi = \frac{n!}{2\pi i} \int_{\gamma} g(\xi) d\xi = n! n(\gamma, z_0) Res(g, z_0) = n(\gamma, z_0) f^{(n)}(z_0)$$

8.5. Principio del argumento

Teorema 8.5.1 (De la curva de Jordan). Sea J el soporte de una curva de Jordan en \mathbb{C} . Entonces $\mathbb{C}\backslash J$ tiene exactamente 2 componentes conexas y J es la frontera de ambas.

- A la componente acotada de J se le llama dominio interior de J, y se denota por I(J).
- A la componente no acotada de J se le llama **dominio exterior de** J, y se denota por E(J).

Otrs resultados que aceptaremos como válidos (pero que no demostraremos) son los siguientes:

- 1. Si γ es un camino de Jordan y $J = sop(\gamma)$, entonces $n(\gamma, z) = 0$ para todo $z \in E(J)$, (tambien escribiremos $n(\gamma, z) = n(J, z)$), mientras que $n(\gamma, z) = 1$ para todo $z \in I(J)$.
 - Si $n(\gamma, z) = 1$ para todo I(J), decimos que J está orientado positivamente.
 - Si $n(\gamma, z) = -1$ para todo I(J), decimos que J está orientado negativamente.
- 2. Cuando J es el soporte de un camino de Jordan positivamente orientado, entonces I(J) recibe el nombre de **dominio de Jordan**. Dicho de otra forma, un dominio $D \subseteq \mathbb{C}$ se dice que es un **dominio de Jordan**, si ∂D es el soporte de un camino de Jordan positivamente orientado.
- 3. Existen curvas de Jordan con área positiva.

Teorema 8.5.2 (Principio del argumento). Sea J el soporte de un camino de Jordan γ positivamente orientado. Sea D un dominio simplemete conexo que contiene a $I(J) \cup J$. Sea f meromorfa en D sin ceros ni polos en J, entonces

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(\xi)}{f(\xi)} d\xi = (*) - (**)$$

siendo

- (*) el número de ceros de f en I(J) contando multiplicidades.
- (**) el número de polos de f en I(J) contando multiplicidades.

Observación 8.5.3. Bajo las hipótesis del teorema de los residuos, tenemos que

$$n(f \circ \gamma, 0) = \frac{1}{2\pi i} \int_{f \circ \gamma} \frac{1}{w} dw = \frac{1}{2\pi} Var_{f \circ \gamma}(\arg(w)) = \frac{1}{2\pi} Var_{\gamma}(\arg(f))$$

Teorema 8.5.4 (Propiedad recubridora local de las funciones holomorfas). Sea f una función holomorfa en $z_0 \in \mathbb{C}$. Sea $w_0 = f(z_0)$ y sea $N \in \mathbb{N}$ el orden de z_0 como cero de $f-w_0$. Entonces f es una aplicación $N \longleftrightarrow 1$ en un entorno de z_0 , queriendo esto decir que existe R > 0, tal que si f es holomorfa en $\Delta(z_0, R)$, y tal que para todo $r \in (o, R)$, existe $\delta > 0$ con la propiedad de que si $w \in A(w_0, \delta) \setminus \{w_0\}$, entonces existen N puntos distintos $z_1(w), ..., z_N(w) \in \Delta(z_0, r)$ con $f(z_j(w)) = w$, j = 1, ..., N.

Corolario 8.5.5 (Teoerma de la aplicación abierta). Si f es meromorfa y no constante, entonces f es una aplicación abierta (en la topologia de \mathbb{C}^*).

Observación 8.5.6. 1. Si f es meromorfa y no constante en el abierto Ω , entoncnes $f(\Omega)$ es abierto.

2. Si f es meromorfa y no constante en el dominio D, entonces f(D) es dominio.

Teorema 8.5.7 (Teorema de Rouché). Sea J el soporte de un camino de Jordan γ . Sea D un dominio simplemente conexo en \mathbb{C} , satisfaciendo que $I(J) \cup J \subset D$. Sean f, g holomorfas en D y tales que

$$|f(z)-g(z)|<|g(z)|, para todo z \in J.$$

Entonces f y g tienen el mismo números de ceros en I(J) (por supuesto, contando multiplicidad).

Teorema 8.5.8 (De Hurwitz (I)). Supongamos que $\{f_n\}$ es una sucesión de funciones holomorfas en un dominio D, que converge normalmente a una función f (que sabemos que es holomorfa en D). Entonces, o bien f0 en D, o bien cada vez que $z_0 \in D$ sea un cero de orden $N \geq 0$, existen $r_0 > 0$ y $n_0 \in \mathbb{N}$ con la propiedad que, para todo $n \geq n_0$ f_n tiene exactamente N ceros en $\Delta(z_0, r_0)$ contando multiplicidades. Es más, estos ceros convergenn a z_0 en medida que $n \to \infty$.

En particular, si cada f_n carece de ceros y f no es identicamente cero, entonces f también carece de ceros.

Teorema 8.5.9 (De Hurwitz (II)). Supongamos que $\{f_n\}$ es ua sucesión de funciones holomorfas e inyectivas en un dominio D, que converge normalmente a una función f (que sabemos que es holomorfa en D). Entonces, obien f es constante en D, o bien f es inyectiva en D.