МИНОБРНАУКИ РОССИИ ФГБОУ ВО «СГУ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

ОТНОШЕНИЕ ЭКВИВАЛЕНТНОСТИ И ОТНОШЕНИЕ ПОРЯДКА

ЛАБОРАТОРНАЯ РАБОТА

студента 3 курса 331 группы
специальности 100501 — Компьютерная безопасность
факультета КНиИТ
Окунькова Сергея Викторовича
Проверил

аспирант

В. Н. Кутин

СОДЕРЖАНИЕ

1	Постановка задачи		3
2	Teop	етические сведения по рассмотренным темам с их обоснованием	4
	2.1	Алгебраические операции	4
	2.2	Основные операции над бинарными отношениями	4
	2.3	Основные операции над матрицами	5
ЗА	КЛЮ	ЧЕНИЕ	6

1 Постановка задачи

Цель работы:

Изучение основных понятий универсальной алгебры и операций над бинарными отношениями.

Порядок выполнения работы:

- 1. Рассмотреть понятие алгебраической операции и классификацию свойств операций. Разработать алгоритмы проверки свойств операций: ассоциативность, коммутативность, идемпотентность, обратимость, дистрибутивность.
- 2. Рассмотреть основные операции над бинарными отношениями. Разработать алгоритмы выполнения операции над бинарными отношениями.
- 3. Рассмотреть основные операции над матрицами. Разработать алгоритмы выполнения операций над матрицами.

2 Теоретические сведения по рассмотренным темам с их обоснованием

2.1 Алгебраические операции

Опр. Отображение $f:A^n\to A$ называется алгебраической n-арной операцией или просто алгебраической операцией на множестве A. При этом n называется порядком или арностью алгебраической операции f.

Далее для бинарной операции f по возможности будем использовать мультипликативную запись с помощью символа \cdot , т.е.вместо f(x,y) писать $x \cdot y$.

Опр. Бинарная операция · на множестве А называется:

1. ассоциативной, если для любых $x, y, z \in A$ выполняется равенство

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z;$$

2. коммутативной, если для любых $x, y \in A$ выполняется равенство

$$x \cdot y = y \cdot x;$$

3. идемпотентной, если для любого $x \in A$ выполняется равенство

$$x \cdot x = x$$
;

- 4. обратимой, если для любого $x \in A$ и некоторого $a \in A$, выполняется свойство $x \cdot a = a \cdot x = 1$;
- 5. дистрибутивной относительно операции +, если для любых $x,y,z\in A$ выполняются равенства

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z),$$

$$(y+z) \cdot x = (y \cdot x) + (z \cdot x);$$

2.2 Основные операции над бинарными отношениями

- 1. Теоретико-множественные операции (\cup, \cap, \neg)
- 2. Обращение бинарных отношений: обратным для бинарного отношения $\rho \subset A \times B$ называется бинарное отношение $\rho^{-1} \subset B \times A$, определяющееся по формуле:

$$\rho^{-1} = (b, a) : (a, b) \in \rho.$$

3. Композиция бинарных отношений: композицией бинарных отношений $\rho \subset A \times B$ и $\sigma \subset B \times C$ называется бинарное отношение $\rho \sigma \subset A \times C$, определяющееся по формуле:

$$\rho\sigma=(a,c):(a,b)\in\rho$$
 и $(b,c)\in\sigma$ для некоторого $b\in B.$

2.3 Основные операции над матрицами

1. Сложение и вычитание матриц.

Суммой A+B матриц $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=a_{ij}+b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

Разностью A-B матриц $A_{m\times n}=(a_{ij})$ и $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=a_{ij}-b_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

2. Умножение матрицы на число.

Произведением матрицы $A_{m\times n}=(a_{ij})$ на число α называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=\alpha a_{ij}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

3. Произведение двух матриц.

Произведением матриц $A_{m\times n}=(a_{ij})$ на матрицу $B_{m\times n}=(b_{ij})$ называется матрица $C_{m\times n}=(c_{ij})$, где $c_{ij}=\sum\limits_{p=1}^n a_{ip}b_{pj}$ для всех $i=\overline{1,m}$ и $j=\overline{1,n}$.

4. Транспонирование матрицы.

Транспонированной по отношению к матрице $A_{m\times n}=(a_{ij})$ называется матрица $A_{n\times m}^T=(a_{ij}^T)$ для элементов которой $a_{ij}^T=a_{ji}$.

ЗАКЛЮЧЕНИЕ

В рамках данной лабораторной работы были рассмотренны теоритические основы отношений эквивалентности, построение их фактор множеств, построение диаграмм Хассе и решетки концептов. На основе этой теоретической части была смоделирована программа на языке Python с использованием средств библиотеки Numpy, которая способна пострить замыкание эквивалентности, фактор множество, систему представителей этого множества, построить диаграмму Хассе на отношение делимости и построить решетку концептов для заданного множества, а так же была оценена асимптотика каждого реализованного алгоритма.