

CURSO: Engenharia de Software SEMESTRE: 02/2019

DISCIPLINA: Fundamentos de Arquitetura de Computadores CÓDIGO: 193674

DISCIPLINA: Fundamentos de Arquitetura de Computadores CÓDIGO: 1936 CARGA HORÁRIA: 60 horas CRÉDITOS: 4

PROFESSOR: John Lenon C. Gardenghi TURMA: B

PLANO DE ENSINO

1 Objetivos da Disciplina

O objetivo da disciplina é introduzir ao aluno o funcionamento de um sistema computacional do ponto de vista da relação entre hardware e software.

2 Ementa do Programa

1. Introdução

- 2. Aritmética Computacional
- Introdução à programação em linguagem de montagem
- 4. Arquitetura interna de um processador
- 5. Hierarquia de memória
- 6. Barramento de dados

3 Horário das aulas e atendimento

AULAS: segundas e sextas-feiras, das 10h às 11h50, na sala S7.

ATENDIMENTO: segundas-feiras, das 17h às 19h, na sala 22-UED.

E-MAIL: john.gardenghi@unb.br.

4 Metodologia

A metodologia consiste em aulas expositivas, com o auxílio do quadro branco e eventualmente de projetor digital. A fim de fortalecer a aprendizagem da disciplina, as aulas serão complementadas com exercícios e atividades, presenciais e extra-classe. Também contaremos com conteúdos disponibilizados na página web da disciplina e eventualmente na plataforma Aprender, cuja chave de inscrição é FAC_B_FGA@19_2.

5 Critérios de Avaliação

A média final de cada aluno será baseada na média de provas M_P e na média de trabalhos M_T .

Serão realizadas três provas. As provas P_1 e P_2 versarão sobre o conteúdo dado até a data da prova, excluindo-se o conteúdo da prova anterior, e são obrigatórias a todos os alunos. A prova substitutiva P_s é opcional, e poderá ser feita por qualquer aluno. A nota da P_s necessariamente substituirá a menor nota ponderada entre P_1 e P_2 .

Deste modo, a média das provas M_P será dada por

$$M_P = 0.4 \times N_1 + 0.6 \times N_2$$
,

onde

$$\left\{ \begin{array}{lll} N_1 = P_1 & \text{e} & N_2 = P_2, & \text{se o aluno n\~ao realizou a } P_s, \\ N_1 = P_s & \text{e} & N_2 = P_2, & \text{se } 0.4 \times P_1 < 0.6 \times P_2, \\ N_1 = P_1 & \text{e} & N_2 = P_s, & \text{se } 0.4 \times P_1 \geq 0.6 \times P_2. \end{array} \right.$$

Por outro lado, realizaremos n trabalhos $T_i, i=1,2,\ldots,n$ e m listas de exercícios $L_j, j=1,2,\ldots,m$ ao longo do semestre, que também receberão nota de 1 a 10. As listas serão consideradas como 1 ponto extra na média de trabalhos. Ou seja, teremos uma média de listas

$$M_L = \frac{\sum_{j=1}^m L_j}{m}$$

e a média de trabalhos M_T será calculada como

$$M_T = \frac{\sum_{i=1}^{n} T_i}{n} + \frac{M_L}{10}.$$

A média final será calculada da seguinte forma:

$$M_F = 0.6 \times M_P + 0.4 \times M_T.$$

Os trabalhos e listas serão divulgados ao longo do semestre, com prazo hábil para conclusão e entrega. Não há trabalho nem lista substitutiva. Ao aluno que deixar de fazer um trabalho ou uma lista, será atribuída nota zero ao correspondente. Também será atribuído zero em uma lista ou trabalho a todos os envolvidos se for detectado plágio.

Para ser aprovado na disciplina, o aluno deve

- obter $M_F \geq 5.0$ e
- ter frequência igual ou superior a 75%.

A menção final do curso será dada em função da nota M_F , de acordo com a tabela abaixo.

$ m M_{F}$	Menção	Descrição
0,0	SR	Sem rendimento
de 0,1 a 2,9	II	Inferior
de 3,0 a 4,9	MI	Médio Inferior
de 5,0 a 6,9	MM	Médio
de 7,0 a 8,9	MS	Médio Superior
9,0 ou maior	SS	Superior

Importante: Será atribuída menção SR ao aluno que tiver menos que 75% de presença ao longo do semestre, mesmo que obtenha $M_F > 0$.

6 Cronograma

Sem.	Aula	Data	Conteúdo	
01	1	12/08	Apresentação do curso · Introdução à arquitetura de computadores	
	2	16/08	Linguagem de montagem	
02	3	19/08	Linguagem de montagem	
	4	23/08	Linguagem de montagem	
03	5	26/08	Linguagem de montagem	
	6	30/08	Linguagem de montagem	
04	7	02/09	Linguagem de montagem	
	8	06/09	Linguagem de montagem	
05	9	09/09	Aritmética computacional	
	10	13/09	Aritmética computacional	
06	11	16/09	Aritmética computacional	
	12	20/09	Aritmética computacional	
07	_	23/09	Semana universitária	
	_	27/09	Semana universitária	
08	13	30/09	Aritmética computacional	
	14	04/10	Aritmética computacional	
09	15	07/10	Prova 1	
	16	11/10	Arquitetura interna de um processador	
10	17	14/10	Arquitetura interna de um processador	
	18	18/10	Arquitetura interna de um processador	
11	19	21/10	Arquitetura interna de um processador	
	20	25/10	Arquitetura interna de um processador	
12	21	28/10	Arquitetura interna de um processador	
	22	01/11	Hierarquia de memória	
13	23	04/11	Hierarquia de memória	
	24	08/11	Hierarquia de memória	
14	25	11/11	Hierarquia de memória	
	_	15/11	Feriado	
15	26	18/11	Hierarquia de memória	
	27	22/11	Hierarquia de memória	
16	28	25/11	Hierarquia de memória	
	29	29/11	Barramentos de dados	
17	30	02/12	Prova 2	
	31	06/12	Prova Substitutiva	
18	32	09/12	Revisão de notas	
	33	13/12	Revisão final de menções	
				

7 Bibliografia

BIBLIOGRAFIA BÁSICA

PATTERSON, D. A.; HENNESSY, J. L. **Organização e projeto de computadores**. 3 ed. Elsevier, 2005. TANEMBAUM, A. A. **Organização estruturada de computadores**. 5 ed. Prentice Hall, 2007.

BIBLIOGRAFIA COMPLEMENTAR

STALLINGS, W. Arquitetura e organização de computadores. 8 ed. Prentice Hall. 2010.

WEBER, R.F. Fundamentos de arquitetura de computadores. 3 ed. Editora Sagra, 2004.

WIKINSON, B. Computer Architecture: Design and Performance. 2 ed. Prentice Hall, 1996.

BRYANT, R. E.; O'HALLARON, D. R. **Computer Systems**: A Programmer's Perspective. 2 ed. Addison-Wesley Publishing Company, 2010.