WEEK 6: Machine Learning

Advice for Applying Machine Learning, Machine Learning System Design

Joohyung Kang

Contents

I. Advice for Applying Machine Learning

- Deciding What to Try Next
- Evaluating a Hypothesis
- Model Selection and Train/Validation/Test Sets
- Diagnosing Bias vs. Variance
- Regularization and Bias/Variance
- Learning Curves
- Deciding What to Do Next Revisited

II. Machine Learning System Design

- Precision / Recall
- Trading Off Precision and Recall
- Data For Machine Learning

- Evaluating a Learning Algorithm
 - Deciding What to Try Next
 - Once we have done some trouble shooting for errors in our prediction by:
 - ✓ Get more training examples
 - ✓ Try smaller sets of features
 - ✓ Try getting additional features
 - ✓ Try adding polynomial features
 - ✓ Try decreasing λ
 - ✓ Try increasing λ
 - Machine Learning Diagnostic → 학습된 모델의 성능을 진단/파악
 - ✓ Evaluating a Hypothesis
 - ✓ Model Selection
 - ✓ Train/Validation/Test Sets

Evaluating a Hypothesis

Evaluating a Learning Algorithm

Evaluating a Learning Algorithm

- Evaluating a Hypothesis
 - 학습된 모델이 올바른지 평가하는 방법
 - 주어진 Training Set을 Train/Test Sets으로 분리
 - ✓ 70% → Training Set
 - ✓ 30% → Testing Set
 - ※ Training Set과 Test Set은 Random하게 추출

Dataset:

	Size	Price	_
	2104	400	
70%	1600	330	
	2400	369	
	1416	232	Training Set
	3000	540	
	1985	300	
	1534	315	
30%	1427	199	
	1380	212	Testing Set
	1494	243	_

Evaluating a Learning Algorithm

- Training/Testing procedure for Linear Regression
 - 1 Lean parameter from training data (70%)
 - 2 Compute test set error

$$J_{test} (\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^{2}$$

Evaluating a Learning Algorithm

- Training/Testing procedure for Logistic Regression
 - 1) Lean parameter from training data (70%)
 - ② Compute test set error

$$J_{test} (\theta) = -\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} y_{test}^{(i)} \log h_{\theta} \left(x_{test}^{(i)} \right) + \left(1 - y_{test}^{(i)} \right) \log h_{\theta} \left(x_{test}^{(i)} \right)$$

Misclassification error:

$$err(h_{\theta}(x), y) = \begin{cases} 1 & \text{if } h_{\theta}(x) \ge 0.5 \text{ and } y = 0\\ & \text{if } h_{\theta}(x) < 0.5 \text{ and } y = 1\\ 0 & \text{Otherwise} \end{cases}$$

Test error =
$$\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} err \left(h_{\theta} \left(x_{test}^{(i)} \right), y_{test}^{(i)} \right)$$

Model Selection & Train/Validation/Test Sets

Evaluating a Learning Algorithm

Evaluating a Learning Algorithm

Model Selection

- Hypothesis → Polynomial Model
- d = degree of polynomial

$$d = 1 \qquad h_{\theta}(x) = \theta_{0} + \theta_{1}x \qquad \qquad \theta^{(1)} \longrightarrow J_{test} (\theta^{(1)})$$

$$d = 2 \qquad h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} \qquad \qquad \theta^{(2)} \longrightarrow J_{test} (\theta^{(2)})$$

$$d = 3 \qquad h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} \qquad \qquad \theta^{(3)} \longrightarrow J_{test} (\theta^{(3)})$$

$$d = 4 \qquad h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4} \qquad \qquad \theta^{(4)} \longrightarrow J_{test} (\theta^{(4)})$$

$$d = 5 \qquad h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4} + \theta_{5}x^{5} \qquad \theta^{(5)} \longrightarrow J_{test} (\theta^{(5)})$$

$$\vdots$$

$$d = 10 \qquad h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \cdots + \theta_{10}x^{10} \qquad \theta^{(10)} \longrightarrow J_{test} (\theta^{(10)})$$

$$\therefore \min J_{test} (\theta^{(d)})$$

- Evaluating a Learning Algorithm
 - Model Selection
 - $\min J_{test} (\theta^{(d)})$
 - **X** Problem: <u>Optimistic estimate of generalization error</u>
 - ✓ Test Set \rightarrow Low error, New Data Set \rightarrow ??

Evaluating a Learning Algorithm

- Train/Validation/Test Sets
 - Training Set을 3그룹으로 나누어 학습, 검증, 최종 테스트 과정을 거침
 - **X** Data Sets
 - ✓ 60% → Training Set
 - ✓ 20% → Cross Validation Set
 - ✓ 20% → Testing Set

Training Error:

$$J_{train} (\theta) = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} (h_{\theta}(x_{train}^{(i)}) - y_{train}^{(i)})^{2}$$

Cross Validation Error:

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

Testing Error:

$$J_{\text{test}} (\theta) = \frac{1}{2m_{\text{test}}} \sum_{i=1}^{m_{\text{test}}} (h_{\theta}(x_{\text{test}}^{(i)}) - y_{\text{test}}^{(i)})^2$$

Evaluating a Learning Algorithm

- Train/Validation/Test Sets
 - ① Optimize the parameter in θ using the training set for each polynomial degree
 - 2 Find the polynomial degree d with the least error using the *cross validation set*
 - 3 Estimate the generation error using the **test set** with J_{test} ($\theta^{(d)}$)

$$d = 1 h_{\theta}(x) = \theta_{0} + \theta_{1}x \theta^{(1)} \longrightarrow J_{cv}(\theta^{(1)})$$

$$d = 2 h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} \theta^{(2)} \longrightarrow J_{cv}(\theta^{(2)})$$

$$d = 3 h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} \theta^{(3)} \longrightarrow J_{cv}(\theta^{(3)})$$

$$d = 4 h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4} \theta^{(4)} \longrightarrow J_{cv}(\theta^{(4)})$$

$$d = 5 h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4} + \theta_{5}x^{5} \theta^{(5)} \longrightarrow J_{cv}(\theta^{(5)})$$

$$\vdots$$

$$d = 10 h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \cdots + \theta_{10}x^{10} \theta^{(10)} \longrightarrow J_{cv}(\theta^{(10)})$$

$$\min J_{cv}(\theta^{(d)}) \longrightarrow J_{test}(\theta^{(d)})$$

Diagnosing Bias vs. Variance

Bias vs. Variance

- **❖** Bias vs. Variance
 - Diagnosing Bias vs. Variance
 - Bias
 - ✓ 가설 $h_{\theta}(x)$ 가 실제 현상 y(x) 와 얼마나 **적합한가**에 대한 척도
 - ✓ 즉, 예측된 결과가 실제 True와 얼마나 떨어져 있는가?
 - ✓ 모델이 가진 한계점에서 오는 Error
 - ✓ 모델의 특성에 따라 생겨나는 Error

Ex) Linear Function

Variance

- ✓ 가설 $h_{\theta}(x)$ 의 입력 데이터에 대한 민감도
- ✓ 특정 Data Set에만 특화된 가설(모델)로 인해 생겨나는 Error
 - Ex) "자동차" 인식의 문제에서 "승용차"의 Data Set으로 학습하게 되면,
 - "승합차"나 "트럭"에 대한 인식 Error가 발생함.
 - ※ 즉, 새로운 입력 데이터에 대해 민감한 결과를 가져오는 현상

The Problem of Overfitting

- Train a hypothesis $h_{\theta}(x)$ for "Regression" problem
 - Linear Regression and Polynomial Regression Problems
 ✓ Ex. Housing prices

- **❖** Bias vs. Variance
 - Diagnosing Bias vs. Variance

Training Error:

$$J_{train} (\theta) = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} (h_{\theta}(x_{train}^{(i)}) - y_{train}^{(i)})^{2}$$

Cross Validation Error:

:
$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

- **❖** Bias vs. Variance
 - Diagnosing Bias vs. Variance

Bias (Underfit):

$$\begin{cases} J_{train} & (\theta) \text{ will be high} \\ J_{cv} & (\theta) \approx J_{train} & (\theta) \end{cases}$$

Variance (Overfit):

$$\begin{cases} J_{train} & (\theta) \text{ will be low} \\ J_{cv}(\theta) \gg J_{train} & (\theta) \end{cases}$$

Regularization and Bias/Variance

Bias vs. Variance

❖ Bias vs. Variance

- Linear Regression with Regularization
 - Model $\rightarrow h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - x^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$

❖ Bias vs. Variance

- Linear Regression with Regularization
 - Choosing the regularization parameter λ

• Model
$$\Rightarrow$$
 $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - x^{(i)} \right)^2 + \frac{\lambda}{2m} \sum_{i=1}^{m} \theta_i^2$$

Try
$$\lambda = 0$$
 $\theta^{(1)} \longrightarrow J_{cv}(\theta^{(1)})$
Try $\lambda = 0.01$ $\theta^{(2)} \longrightarrow J_{cv}(\theta^{(2)})$
Try $\lambda = 0.02$ $\theta^{(3)} \longrightarrow J_{cv}(\theta^{(3)})$
Try $\lambda = 0.04$ $\theta^{(4)} \longrightarrow J_{cv}(\theta^{(4)})$
Try $\lambda = 0.08$ $\theta^{(5)} \longrightarrow J_{cv}(\theta^{(5)})$
 \vdots
Try $\lambda = 10$ $\theta^{(10)} \longrightarrow J_{cv}(\theta^{(10)})$
 $\min J_{cv}(\theta^{(d)}) \longrightarrow J_{test}(\theta^{(d)})$

❖ Bias vs. Variance

- Linear Regression with Regularization
 - Bias/Variance as a function of the regularization parameter λ

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

$$J_{train} (\theta) = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} (h_{\theta}(x_{train}^{(i)}) - y_{train}^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

Optimal value for λ

Learning Curves Bias vs. Variance

Bias vs. Variance

Learning Curves

$$J_{train} (\theta) = \frac{1}{2m_{train}} \sum_{i=1}^{m_{train}} (h_{\theta}(x_{train}^{(i)}) - y_{train}^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

❖ Bias vs. Variance

- Learning Curves
 - Typical learning curve for "<u>High Bias</u>"
 - ✓ Low training set size
 - $ightharpoonup J_{train}(\theta)$ to be low and $J_{cv}(\theta)$ to be high
 - ✓ Large training set size
 - > both J_{train} (θ) and J_{cv} (θ) to be high with J_{train} (θ) ≈ J_{cv} (θ)

 $h_{\theta}(x) = \theta_0 + \theta_1 x$ Size **** Size

X High Bias: Getting more training data will not help much.

❖ Bias vs. Variance

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$$

- Learning Curves
 - Typical learning curve for "<u>High Variance</u>"
 - ✓ Low training set size
 - $\succ J_{train}(\theta)$ to be low and $J_{cv}(\theta)$ to be high
 - ✓ Large training set size
 - $ightharpoonup J_{train}(\theta) < J_{cv}(\theta)$

X High Variance: Getting more training data is likely to help.

Deciding What to do Next(Revisited)

Bias vs. Variance

- Bias vs. Variance
 - Deciding What to Try Next
 - Once we have done some trouble shooting for errors in our prediction by:
 - ✓ Get more training examples → Fixing High Variance
 - ✓ Try smaller sets of features → Fixing High Variance
 - ✓ Try getting additional features → Fixing High Bias
 - ✓ Try adding polynomial features → Fixing High Bias
 - ✓ Try decreasing λ → Fixing High Bias
 - ✓ Try increasing λ → Fixing High Variance

- Bias vs. Variance
 - **Deciding What to Try Next**
 - Neural Networks and Overfitting

"Small" neural network (fewer parameters; more prone to underfitting)

Computationally cheaper

"Large" neural network (more parameters; more prone to overfitting) Computationally more expensive.

High Bias Problem

High Variance Problem

Use regularization (λ) to address overfitting.

Precision / Recall

Machine Learning System Design

- **❖** Precision and Recall
 - Performance Evaluation

Precision and Recall

- Precision (정확률)
 - True라고 예측한 것 중에서 실제로 True인 비율

$$\checkmark PRE = \frac{TP}{TP + FP}$$

- Recall (재현률)
 - 실제 True인 것 중에서 True라고 예측한 비율

$$\checkmark$$
 $REC = TPR = \frac{TP}{P} = \frac{TP}{FN + TP}$

Precision and Recall

- Trading off → Threshold
 - Logistic Regression $0 \le h_{\theta}(x) \le 1$

Suppose predict "y=1" if
$$h_{\theta}(x) \ge 0.5$$
 predict "y=0" if $h_{\theta}(x) < 0.5$

❖ Precision and Recall

- Trading off → Threshold
 - Logistic Regression $0 \le h_{\theta}(x) \le 1$

Suppose predict "y=1" if
$$h_{\theta}(x) \ge 0.7$$
 predict "y=0" if $h_{\theta}(x) < 0.7$

❖ Precision and Recall

- Trading off → Threshold
 - Logistic Regression $0 \le h_{\theta}(x) \le 1$

Suppose predict "y=1" if
$$h_{\theta}(x) \ge 0.25$$
 predict "y=0" if $h_{\theta}(x) < 0.25$

 F_1 Score: $2\frac{PR}{P+R}$

- Data for Machine Learning
 - Large Data Rationale
 - Use a learning algorithm with many parameters
 - ✓ Logistic Regression/Linear Regression with many features
 - ✓ Neural Network with many hidden units

Low bias algorithm
$$J_{train} (\theta) \text{ will be small}$$

- Use a very large training set
 - ✓ Unlikely to overfit

$$\begin{cases} J_{train} & (\theta) \approx J_{test} & (\theta); \text{ Low variance algorithm} \\ & J_{test} & (\theta) \text{ will be small} \end{cases}$$

X Large parameters && Very large training set = Best algorithm!