Лабораторная работа №7 «Трехмерное наблюдение»

Оглавление

инициализация сцены
Параметры проецирования камеры
Ортогональная проекция
Перспективная проекция
Создание куба
7.1 Задание для самостоятельной работы
7.2 Задание для самостоятельной работы
7.3 Задание для самостоятельной работы
7.4 Задание для самостоятельной работы
7.5 Задание для самостоятельной работы
7.6 Задание для самостоятельной работы
7.7 Задание для самостоятельной работы
7.8 Задание для самостоятельной работы
7.9 Задание для самостоятельной работы
7.10 Задание для самостоятельной работы
7.11 Задание для самостоятельной работы
7.12 Задание для самостоятельной работы

Инициализация сцены

Создадим нашу первую 3D-сцену, которая будет содержать следующие объекты:

- 1. Куб.
- 2. Камера.
- 3. Оси *x*, *y* и *z*.

Параметры проецирования камеры

Ортогональная проекция

THREE. OrthographicCamera имеет такие же параметры, как и рассмотренная в лекциях функция ortho(mat4 out, left, right, bottom, top, near, far), за исключением первого параметра — матрицы out. Параметры top и bottom у функции THREE.OrthographicCamera поменяны местами.

Перспективная проекция

THREE.PerspectiveCamera имеет такие же параметры, как и рассмотренная в лекциях функция perspective (mat4 out, fovy, aspect, near, far), за исключением первого параметра — матрицы out. Параметр fovy определяет здесь угол обзора в горизонтальной плоскости.

Создание куба

Для создания куба (в общем случае — прямоугольного параллелепипеда) используем метод THREE.BoxGeometry(4, 4, 4). В данном случае, он имеет длину ребра, равную 4.

Нам также нужно сообщить Three.js, как будут выглядеть его грани (например, их цвет и видимость). Здесь создаются простые материалы (THREE.MeshBasicMaterial), каждый из которых характеризуется своим цветом. Свойство visible определяет, будет ли материал видимым. По умолчанию окрашиваются только внешние стороны куба (THREE.FrontSide). Чтобы грани были видны с при взгляде с внутренней стороны куба, мы включили двухстороннее окрашивание (THREE.DoubleSide).

Затем мы объединяем геометрию и материалы в объект Mesh с именем cube.

7.1 Задание для самостоятельной работы

С помощью ортогональной проекции и настроек положения камеры получить вид **передней** грани куба.

7.2 Задание для самостоятельной работы

С помощью ортогональной проекции и настроек положения камеры получить вид **задней** грани куба.

7.3 Задание для самостоятельной работы

С помощью ортогональной проекции и настроек положения камеры получить вид **верхней** грани куба.

7.4 Задание для самостоятельной работы

С помощью ортогональной проекции и настроек положения камеры получить вид **нижней** грани куба.

7.5 Задание для самостоятельной работы

С помощью ортогональной проекции и настроек положения камеры получить вид **правой** грани куба.

7.6 Задание для самостоятельной работы

С помощью ортогональной проекции и настроек положения камеры получить вид **левой** грани куба.

7.7 Задание для самостоятельной работы

С помощью ортогональной проекции и настроек положения камеры получить изометрический вид куба.

7.8 Задание для самостоятельной работы

С помощью настройки объема наблюдения, сделайте панорамное отображение куба и отображение куба крупным планом. (для переключения видов можно использовать параметр zoom)

7.9 Задание для самостоятельной работы

С помощью перспективной проекции и настроек положения камеры получить вид куба с **1** главной точкой схождения.

7.10 Задание для самостоятельной работы

С помощью перспективной проекции и настроек положения камеры получить вид куба с 2 главными точками схождения.

7.11 Задание для самостоятельной работы

С помощью перспективной проекции и настроек положения камеры получить вид куба с ${\bf 3}$ главными точками схождения.

7.12 Задание для самостоятельной работы

С помощью настройки объема наблюдения и настроек положения камеры, усильте и, наоборот, уменьшите эффект перспективы (для переключения настроек можно использовать параметр perspective_effect). Эффект перспективы оказывает влияние на угол схождения параллельных линий на проекции. Чем больше угол, тем сильнее эффект.