Interação Humano- Resumos Computador Usabilidade Teóricas

Gonçalo Matos, 92972 Licenciatura em Engenharia Informática 2.º Ano | 2.º Semestre | Ano letivo 2019/2020

Última atualização a 25 de maio de 2020

Índice

1.	Interação Humano-Computador	4
2.	Princípios e paradigmas de usabilidade (UI e UX)	5
	Usabilidade	5
	Paradigmas de usabilidade	6
	Ubiquitious computing	6
	Princípios de usabilidade	6
	UX (User Experience)	7
3.	O utilizador	8
	Human Information Proposition Cychons (LUDC)	0
	Human Information Processing System (HIPS)	
	Sistema percetual	
	Os sentidos	8
	Sistema cognitivo	9
	Information Processing Model	10
	Sensory memory	10
	Working memory	10
	Long term memory	11
	HIPS e o IPM	11
	Implicações no design	12
	Memória	12
	Atenção	12
	Aprendizagem	12
	Resolução de problemas	12
	Emoções	13
	Outras características	13
	Exemplos de implicações no design	13
	Considerações finais	13

1. Interação Humano-Computador

Baseado em "Human-Computer Interaction: Present and Future Trends"

A IHC é uma disciplina que estuda e tenta responder a todos os problemas relacionados com o desenho, avaliação e implementação de interfaces (UI) entre humanos e computadores.

Resulta de uma mescla de <u>ciências experimentais</u> como processamento de imagem, vídeo, linguagens de programação, com <u>ciências sociais e humanas</u>, como a ergonomia ou a psicologia.

O seu objetivo é criar interfaces <u>intuitivas</u>, <u>eficientes</u>, <u>robustas</u> e <u>costumizáveis</u>, de forma a <u>reduzir o gap entre o modelo mental do utilizador e a forma como as máquinas realizam as tarefas</u>.

Nos primórdios da tecnologia, este *gap* era bastante grande. Em vez do desenvolvimento da interface de focar no utilizador, focava-se na máquina e muitas vezes os utilizadores tinham de ser formados para poderem trabalhar com elas.

No entanto, com o crescimento exponencial da sua utilização, começaram a ser considerados conceitos como a *user experience* (UX), que considera parâmetros como a <u>satisfação</u>, <u>sentido de realização</u> ou <u>apelo estético</u>, entre outros.

O modelo <u>user experience honeycomb</u> criou um diagrama ilustrativo dos conceitos abordados pela UX.

O modelo mental é algo que também começou a ser mais valorizado ao longo do tempo, tendo-se concluído que utilizadores com diferentes idades ou características sociais tendem a aprender e procurar formas de interação diferentes.

2. Princípios e paradigmas de usabilidade (UI e UX)

Define-se por **interface** o meio através do qual o utilizador e um sistema de computação interagem. Para o utilizador, a interface "é o sistema", uma vez que esta cria uma **abstração** da sua implementação.

Durante a II Guerra Mundial, devido à necessidade de utilização da tecnologia por soldados pouco ou nada preparados, emergiram dois conceitos relacionados com a sua usabilidade: **ergonomia** e **fatores humanos** (e cognitivos). No entanto, apenas nos anos 80 esta começou a crescer, não só devido à <u>redução do preço da tecnologia</u>, como à necessidade de <u>aumentar a produtividade</u>.

Mesmo assim, esta disciplina não se revelou fácil, uma vez que na sua equação entra o utilizador, que para além de complexo, não pode ser definido como uma entidade única (muita variabilidade entre indivíduos) nem controlado.

Para conseguir desenvolver um sistema interativo é assim fundamental conhecer **princípios**ⁱ (indepentes da tecnologia) e **paradigramas**ⁱⁱ de usabilidade. Devemos para isto conhecer os <u>casos de sucesso</u> (paradigmas) e procurar compreender <u>porque funcionam</u> (princípios) com recurso aos <u>métodos</u> adequados para avaliar e testar novas ideias, até que sejam atingidos os objetivos.

Usabilidade

A **usabilidade** é um **requisito não funcional** definido pela norma ISO 9241-11 como a possibilidade de um produto ser utilizado por utilizadores específicos num determinado contexto para atingir um determinado objetivo com <u>eficácia</u>, <u>eficiência</u> e <u>satisfação</u>.

Três aspetos fundamentais que podemos considerar para avaliar a usabilidade são:

- ✓ Facilidade de aprendizagem e memorização
- ✓ Facilidade de uso
- Satisfação do utilizador

Com estes aspetos cumpridos, os custos de manutenção e suporte dos sistemas informáticos são reduzidos brutalmente.

Outras normas definiram outros aspetos da usabilidade, tendo sempre como centro a interdisciplinaridade do desenho das interfaces e o foco no utilizador.

Paradigmas de usabilidade

Ao longo da história da computação houveram muitos paradigmas de usabilidade, tendo os primórdios sido os *Video Display Unites* (VDU), mais tarde o conceito de *time sharing* (partilha de recursos), depois o WIMP (*Windows, Icons, Menus, Pinters*) com *direct manipulation* (ações do utilizador são visíveis no ecrã) e por fim a WWW e o conceito de *ubiquitous computing*, ambos nascidos nos anos 90.

Ubiquitiousⁱⁱⁱ computing

Baseado em "Mark Weiser and his vision of Ubiquituous Computing"

Este conceito, também conhecido por **pervasive computing**, foi definido por Mark Wiser, que em 1988 identificou a terceira onda da computação.

"Primeiro vieram os *mainframes*, partilhados por város utilizadores. Hoje estamos na era dos computadores pessoais, onde pessoas e máquinas se encaram nervosamente. A seguir vem a computação omnipresente, ou era da tecnologia calma, onde a tecnologia passa a fazer parte das nossas vidas"

Tradução livre

Hoje podemos confirmar de que não se enganou. A internet das coisas trouxe a tecnologia para ficar e ainda não parou de crescer.

Mark defendia que em contrasta com os *desktops*, a tecnologia iria ocorrer *everywhere* e *anywhere*, procurando estar em sintonia com o contexto em que se integra.

A visão é de dispositivos pequenos e baratos mas robutos organizados em rede, distribuídos em várias formas, tamanhos e feitios pelo nosso dia a dia, cada um com a sua finalidade.

Um exemplo de um ambiente *ubiquitious* doméstico é um onde a iluminação está em sintonia com monitores biométricos, sendo regulada com base nestes. Outro é o de um frigorífico que "sabe" qual o seu conteúdo e modela a sua temperatura a este.

Princípios de usabilidade

Procuram definir os critérios que devemos seguir ao desenvolver sistemas, de forma a que estes sejam facilmente utilizados pelos seus utilizadores.

Compatibilidade com o utilizador, com a tarefa, com o fluxo de trabalho e com o produto; feedback, coerência, familiaridade, simplicidade, flexibilidade, controlo, (in)visibilidade da tecnologia, robutez e prevenção de erros

Um exemplo de feedback é a barra de progresso quando carregamos uma página web

Um exemplo de familiaridade é a utilização de ícones representativos

Um exemplo de simplicidade é a ocultação da complexidade desnecessária

Um exemplo de prevenção de erros é o aviso de bateria fraca

UX (User Experience)

A experiência do utilizador tornou-se assim fundamental para garantir uma boa usabilidade de um sistema, mas na realidade o seu impacto vai muito além disso, não se limitando apenas a avaliar a <u>eficácia</u>, <u>eficiência</u> e <u>satisfação</u> do utilizador, mas também ao seu <u>comportamento</u>, <u>atitudes e emoções</u>.

Valoriza assim a parte afetiva da interação, tornando-se por isso mais subjetiva e variável ao longo do tempo.

3. O utilizador

De forma semelhante à máquina, o utilizador analisa a informação, pensa (processa) e responde com ações.

Human Information Processing System (HIPS)

O sistema de processamento de informação dos humanos tem diversos fatores que condicionam o desenvolvimento de sistemas computacionais, que muitas vezes são influenciados pelas emoções.

Sistema percetual

O sistema percetual corresponde à memória sensorial.

É este sistema o responsável pela **identificação de padrões**, um processo subconsciente utilizado para a resolução de ambiguidades, que tem por base não apenas o imediato, mas também a memória, <u>provando que o que vimos não depende</u> apenas dos estímulos sensoriais.

According to a rseearch soluty at Cmabrigde Uinervsity, it deosn't mttaer in waht oredr the Itteers in a wrod are.

Os sentidos

Para IHC a **visão** é a mais importante (apesar da audição e tato estarem a ganhar terreno), sendo também o sentido priveligiado no que toca à nossa atenção. Destaca-se a compensação que dá ao movimento e a mudanças de iluminação, podendo no entanto provocar ilusões por compensação excessiva.

A **audição** dá-nos informação acerca da direção e distância à qual se encontram os objetos, sendo possível a filtração dos barulhos de fundo. É o único sentido que é realmente 3D.

O **tato** dá-nos um *feedback* importante em relação à temperatura, pressão e dor, havendo variações da sensibilidade em diferentes partes do corpo (os dedos são os mais sensíveis).

O **olfato** e o **paladar** são sentidos que fazem uma análise química e que devido à sua natureza mais complexa são difíceis de utilizar em IHC.

Associados aos sentidos e à captação de informação estão ainda associados...

Proprioception, a capacidade de reconhecer a localização espacial do corpo **Kinesthesia**, a capacidade de percecionar o movimento do corpo e a sua direção

Para além destes fatores existem ainda outros como o ambiente em que se inserem, o trabalho que vão desenvolver e as suas características físicas. No entanto, as mais dispares entre os pares são o conhecimento e experiência e as ferramentas que dispõem.

Sistema cognitivo

Já o **sistema cognitivo** engloba as **memórias a curto e longo prazo**, desempenhando processos como a atenção seletiva e a aprendizagem de resolução de problemas.

Information Processing Model

Baseado em "Information processing model: Sensory, working, and long term memory | MCAT | Khan Academy."

O modelo **Information Processing Model** procura representar de forma conceptual (sem entrar no domínio da biologia) como o nosso cérebro recebe e obtém sentido a partir da informação, ajudando-nos a perceber os dois sistemas introduzidos anteriormente através de um modelo que procura comprar a mente a um computador, responsável por analisar e processar informação do ambiente.

O modelo **Atkinson–Shiffrin**, também conhecido por modelo **multi-store** é bastante semelhante a este e é o abordado pelo slides teóricos.

Sensory memory

O primeiro estado, no qual entramos quando obtemos informação é a **sensory memory**, uma memória onde é registada toda a informação captada pelos 5 sentidos (input) de forma temporária. Apesar de termos 5, os mais estudados são a visão e a audição, sendo definido um tipo de memória para cada um.

Memória icónica¹ Armazenada durante menos do que 0.5 segudos **Memória ecoica**² Armazenada durante 3-4 segundos

Working memory

No entanto, estes registos não podem ser todos mantidos, dada a elevada quantidade de informação obtida através dos estímulos constantes a que estamos sujeitos. Assim, apenas a informação à qual decidimos prestar atenção é passada para a working memory.

Esta é uma memória a <u>curto prazo</u>, não sendo tão dependente da temporalidade e <u>capaz de armazenar cerca de 7 pedaços de informação</u>, dependendo também da sua complexidade. Por sua vez também é dividida em duas componentes.

Visual-spacial sketchpad Responsável por armazenar informação visual e espacial **Phone logical loop** Repsonsável pelo armazenamento de números e palavras

A capacidade desta memória pode ser aumentada com recurso ao **chunking**, uma agragação dos números ou letras de forma a atribuir-lhes algum sentido.

Por exemplo para decorar os números primeiros 5 números de um conjunto começado por 35196... podemos associar o 351 ao indicativo telefónico de Portugal e 96 ao identificador da operadora MEO.

¹ Icónico | Relativo a imagem

² Ecoico | Que faz eco

Long term memory

Existem no entanto cenários em que as memórias necessitam das duas lógicas para serem armazenadas, sendo para este efeito criado um **episodic buffer**, um conector para a **long term memory**, o último estado do modelo, atingido devido ao ensaio (repetição para memorizar) e que se pensa ser **ilimitada**, dividindo-se em:

Memória explícita, que consiste em palavras (e seus significados), episódios (armazenando detalhes associados a determinados eventos)

Memória implícita, que armazena informações que não conseguimos descrever, seja relativa a <u>procedimentos</u>, como andar de bicicleta (não conseguimos explicar a pressão correta a aplicar sobre os pedais, por exemplo) ou <u>preparação</u>, quando entendemos a informação com base numa experiência anterior (se nos mostrarem uma vaca e passado algum tempo nos perguntem um animal, é provável que digamos vaca, por termos essa palavra na memória implícita)

Há ainda uma distinção entre a forma como obtemos a informação da nossa memória, podendo **recordar** (conhecimento na cabeça) as coisas ou **reconhecê-las** (conhecimento no mundo).

O reconhecimento é muito mais fácil do que recordar, por isso os menus são mais fáceis de aprender do que linguagens de comando.

HIPS e o IPM

Com esta analogia entre a mente e um computador conseguimos compreender melhor o *Human Information Processing System* (HIPS) e identificar os pontos fortes e fracos do homem em relação à máquina.

Strengths

LTM ~infinite capacity
LTM duration and complexity
Capacity to learn
Powerful selective attention
Powerful pattern recognition process

Weakesses

STM limited capacity STM limited duration Error prone processing Non reliable access to LTM Slow processing

É com base nestes pontos que nos devemos basear aquando da decisão de atribuir uma tarefa a um computador ou a uma pessoa.

Implicações no design

Memória

A **memória** tem grandes implicações no desenho de interfaces, das quais se destacam:

- Redução do esforço cognitivo ao evitar procedimentos longos e complexos;
- Desenhar interfaces que promovam o reconhecimento em detrimento do recordar, através da implementação de padrões de interação, como menus, ícones, e elementos consistentes;
- Disponibilizar mecanismos de nomeação e identificação visual da informação digital;

Atenção

Para captar a **atenção** do utilizador foi criada a **selective attention**, uma exploração da UI que destaca determinados elementos para captar a nossa atenção.

Por exemplo ao selecionarmos um ficheiro num explorador de ficheiros este fica rodeado por um quadrado com um fundo mais claro.

A interface deve ainda ser **organizada** e <u>oferecer várias alternativas para alternar</u> entre interfaces.

Aprendizagem

Apesar de ser fundamental a fomentação da exploração, as interfaces devem guiar os utilizadores para realizarem as ações apropriadas nas primeiras interações.

Resolução de problemas

Para ajudar o utilizador a resolver problemas de forma autónoma, devem ser...

- Disponibilizados mecanismos para...
 - O utilizador consultar mais informação acerca das interfaces
 - O utilizador consultar como efetuar determinadas ações de forma eficiente
- Ser utilizadas funções simples e fáceis de memorizar para ações rápidas
- ✔ Permitir ao utilizador definir e guardar os seus critérios e preferências

Emoções

As emoções condicionam as respostas físicas e cognitivas a estímulos, havendo um conceito fundamental, o **affect**, que condiciona a forma como reagimos a situações.

Affect é a resposta biológica e estímulos físicos

- "Negative affect can make it harder to do even easy tasks; positive affect can make it easier to do difficult tasks"
- "Wash and polish your car: doesn't it drive better?"
- Donald Norman | Para mais info ler https://ind.org/emotion_design_attractive_things_work_better/

Outras características

Há outras características do utilizador que condicionam o design de interfaces, nomeadamente...

Experiência e conhecimento grau de escolaridade, literacia digital, ...

Trabalho frequência de realização da tarefa, treino, ...

Características físicas deficiências físicas, dificuldade em distinguir cores, idade, ...

Aspetos culturais

Exemplos de implicações no design

- Much system experience, but low task experience -> more semantic help
- Much task experience but low system experience -> more syntactic help
- High usage frequency -> easy to use
- Low usage frequency -> easy to learn and remember
- · Mandatory -> easy to use
- · Optional -> easy to learn and remember
- Color (particularly red and green) should not be used as only cue to convey information

Considerações finais

É importante ter em mente que os utilizadores finais são muito diferentes dos desenvolvedores das aplicações, havendo muita variabilidade entre si, que para além disto é variável ao longo do tempo (pessoas evoluem...), por isso devemos considerar o utilizador como um espécie desconhecida e estudá-lo em pormenor.

- i **Princípio** | Origem, causa primária
- ii **Paradigma** | Algo que serve de exemplo geral ou modelo (padrão).
- iii | Omnipresente