Loan Default Prediction for the Financial Risk Control of an Online Lending Company

Zhehao Guo(zhg26) Xiaoqian Xu (xix64) TongKa(tok31)

Introduction

Peer to peer (P2P) lending is an innovative option for borrowing from individuals without using a traditional bank or credit union. The problem we want to explore is to predict whether a user of online P2P lending website will default in 6 months based on their lending data on the lending website. This is a binary classification.

We are interested in this topic because:

- Huge dataset: 3 datasets with 60000 user data with 400 features, including chaotic text data, time-series data, categorial and numerical data, and geographic data
- Challenges from masking dataset: meanings of most of features are unknown or vague due to privacy protection
- Practical: all data comes from real-world business - FinVolution Group (PPDAI Group Inc).

Data

The dataset discloses the credit risk of loan data from a real online Peer to Peer lending company in China. In order to protect the privacy of users, the dataset provider use data masking techniques to filter sensitive information and hide the meaning of features.

Source:

https://ai.ppdai.com/resource/pdf/PPD-First-Round-Data-Updated.zip

Description:

Da	ataset 1- Master
idx	Unique key from each loan
target	Target value. Default or not (1= default 0 = not default)
ListingInfo	Date of each loan
UserInfo_*(1-24)	Features describe the users, vague meaning
Education_Info_*(1-8)	Education background, vague meaning
WeblogInfo_*(1-58)	Features describe behaviors of users, vague meaning
ThirdParty_Info_Perio dN_* N(1-7) *(1-17)	Data from third party which contains 17 different features in 7 different periods, vague meaning
SocialNetwork_*(1-17)	Social network related information, vague meaning
Dataset 2 -	Log_Info: login records
idx	Unique key from each loan
ListingInfo	Date of each loan
ListingInfo LogInfo1	
	Date of each loan Users' operations on the website,
LogInfo1	Date of each loan Users' operations on the website, vague categories
LogInfo1 LogInfo2 LogInfo3	Date of each loan Users' operations on the website, vague categories Users' operation type
LogInfo1 LogInfo2 LogInfo3	Date of each loan Users' operations on the website, vague categories Users' operation type Users' login time
LogInfo1 LogInfo2 LogInfo3 Dataset 3 - User	Date of each loan Users' operations on the website, vague categories Users' operation type Users' login time rupdate_Info: update records
LogInfo1 LogInfo2 LogInfo3 Dataset 3 - User ListingInfo1	Date of each loan Users' operations on the website, vague categories Users' operation type Users' login time rupdate_Info: update records Date of each loan

Data exploration:

Hypothesis

1. The modified contents and frequency will affect default rate: frequency – positively related/ contents – negatively related

2. The geographic info may affect default risk: Users who live in some specific provinces have higher risk to default

Solution

1. Feature engineering

Data preprocessing

Creating new features

2. Modeling

Gradient boosting trees:

Deployment

To measure performance of our final model and decide the deployment strategy, we compared our model based on following 3 attributes by using bagging. We think our model can be deployed into practice.

Good performance: Test AUC (Stacking) = 0.757 Train AUC - Test AUC = 0.017

Recall: 0.68 (highest among 5 models)

Stability: The distribution of AUC is squeezed.

Findings

1. We will identify defaulter in terms of risk based on the prediction probability distribution of the model.

2. Feature importance: Most important feature:

Third Party information are very significant.

Conclusion

- 1. Technical strength: Ensemble methods;
- 2. Innovation: Geoinformation, aggregation function, matrix decomposition, deployment strategy;
- 3. Challenge: Masking data, data cleaning, model hyperparameters tuning, ensemble technique.

References

1. Pyecharts: github.com/pyecharts/pyecharts

- 2. SVD: sklearn.decomposition.TruncatedSVD
- 3. NMF: sklearn.decomposition.NMF

4. Ensemble methods: zhangruochi.com/Ensemble-Methods/2019/07/17/