Experiment 7 Pre-Lab ECE203 Spring 25

Xiangbo Cai

C=0.01 µF

R=2KD

1. (2 points) Find the cutoff frequency for the circuit shown.

2. (1 point each) Fill in the following table for V_{out} vs. frequency. You must take into consideration the -3dB attenuation at the filter's cutoff frequency. Assume $V_{in} = 2V_{rms} \angle 0^{\circ}$.

f (Hz)	V _{out} (V _{rms})	Oout (°)
80Hz	0.02	89.42°
800Hz	07.	84.28°
8kHz	1.41	45°
80kHz	2.00	S.71°

$$H(\omega) = \frac{j\omega RC}{1+j\omega RC}$$

$$|H(\omega)| = \frac{\omega RC}{1+(\omega RC)^2} = \frac{2\pi f \cdot RC}{1+(2\pi f RC)^2} = \frac{V_{int}}{V_{in}}$$

$$= H(\omega) = ton^{-1}(\frac{\omega RC}{o}) - ton^{-1}(\frac{\omega RC}{I})$$

$$= 90^{\circ} - tan^{-1}(\omega RC)$$

$$= 90^{\circ} - tan^{-1}(\alpha RC)$$