Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 2p; B 4p; C 3p.
- 2. Problema Prolog (B) vor fi rezolvată în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- de flux, tipul predicatului determinist/nedeterminist).

 3. Problema Lisp (C) va fi rezolvată în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie următoarea definiție de predicat PROLOG f(integer, integer), având modelul de flux (i, o):

```
f(1, 1):-!.

f(K,X):-K1 is K-1, f(K1,Y), Y>1, !, K2 is K1-1, X is K2.

f(K,X):-K1 is K-1, f(K1,Y), Y>0.5, !, X is Y.

f(K,X):-K1 is K-1, f(K1,Y), X is Y-1.
```

Rescrieți această definiție pentru a evita apelul recursiv **f(J,V)** în clauze, fără a redefini logica clauzelor. Justificați răspunsul.

B. Dându-se o listă formată din numere întregi, să se genereze în PROLOG lista permutărilor având proprietatea că valoarea absolută a diferenței dintre două valori consecutive din permutare este <=3. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista $L=[2,7,5] \Rightarrow [[2,5,7], [7,5,2]]$ (nu neapărat în această ordine)

C. Un arbore n-ar se reprezintă în LISP astfel (nod subarbore1 subarbore2). Se cere să se verifice dacă un nod x apare pe un nivel par în arbore. Nivelul rădăcinii se consideră a fi 0. Se va folosi o funcție MAP.
<u>Exemplu</u> pentru arborele (a (b (g)) (c (d (e)) (f)))
a) x=g => T
b) x=h => NIL