Clasificación de Nudos IV

Escuela FICO-González Acuña de nudos y 3 variedades

Luis Celso Chan Palomo Universidad Autónoma de Yucatán

December 14, 2017

Polinomio de Alexander

Sean K un nudo (o enlace) orientado y D un diagrama regular de K. El polinomio de Alexander de K, $\Delta_K(t)$, se define por los siguientes axiomas:

- ▶ Si D es cualquier diagrama del nudo trivial entonces $V_D(t) = 1$.
- ▶ Sean D_+ , D_- y D_0 los siguientes diagramas. Entonces:

$$\Delta_{D_+}(t) - \Delta_{D_-}(t) + (t^{1/2} - t^{-1/2})\Delta_{D_0}(t) = 0.$$

Nota

$$t^{-1}V_{D_{+}}(t) - tV_{D_{-}}(t) = (t^{1/2} - t^{-1/2})V_{D_{0}}(t).$$

El pol. de Alexander es un invariante de nudos.

Nota

- 1. Existen nudos K_1 y K_2 tales que $\Delta_{K_1}(t) = \Delta_{K_2}(t)$ pero que $V_{K_1}(t) \neq V_{K_2}(t)$.
- 2. Existen nudos K_1 y K_2 tales que $\Delta_{K_1}(t) \neq \Delta_{K_2}(t)$ pero que $V_{K_1}(t) = V_{K_2}(t)$.
- 3. Existen nudos K_1 y K_2 tales que $\Delta_{K_1}(t) = \Delta_{K_2}(t)$ y $V_{K_1}(t) = V_{K_2}(t)$.

El pol. de Alexander es un invariante de nudos.

Nota

- 1. Existen nudos K_1 y K_2 tales que $\Delta_{K_1}(t) = \Delta_{K_2}(t)$ pero que $V_{K_1}(t) \neq V_{K_2}(t)$.
- 2. Existen nudos K_1 y K_2 tales que $\Delta_{K_1}(t) \neq \Delta_{K_2}(t)$ pero que $V_{K_1}(t) = V_{K_2}(t)$.
- 3. Existen nudos K_1 y K_2 tales que $\Delta_{K_1}(t) = \Delta_{K_2}(t)$ y $V_{K_1}(t) = V_{K_2}(t)$.

Teorema

Un nudo K es p-coloreable si y solo si $\Delta_K(-1)$ es divisible por p.

Ejemplo

Si $K = 3_1$ entonces $\Delta_K(t) = t - 1 + t^{-1}$. Luego $\Delta_K(-1) = 3$ de donde K solo es 3-coloreable.

Sea K un nudo alternante y sea

$$\Delta_K(t) = a_{-m}t^{-m} + a_{-m+1}t^{-m+1} + \cdots + a_mt^m \qquad a_{-m} \neq 0 \neq a_m.$$

Entonces:

- $\triangleright a_{-m}, a_{-m+1}, \ldots, a_m$ no son cero
- el signo de dos coeficientes consecutivos alterna: $a_i a_{i+1} < 0$.

Ejemplo

El nudo $K = 8_{19}$ no es alternante.

Desanudamiento de nudos: u(K)

Definición

El número de desanudamiento de un nudo K(u(K)) es el mínimo cambio de cruces necesarios para desanudarlo al considerar todos sus diagramas D(u(D)).

Ejemplo

El siguiente diagrama D es tal que u(D) = 1

Familia infinita de nudos con u(K) = 1:

Si $K = 7_5$ entonces $u(K) \le 2$.

Si $K = 7_5$ entonces $u(K) \le 2$.

Pregunta

Cualquier diagrama de un nudo se puede llevar al diagrama del nudo trivial?

Invariante

Teorema

Cada nudo (o enlace) puede ser transformado en el nudo (o enlace) trivial por una sucesión apropiada de cambios de cruces.

Invariante

Teorema

Cada nudo (o enlace) puede ser transformado en el nudo (o enlace) trivial por una sucesión apropiada de cambios de cruces.

Teorema

Si K es un nudo entonces:

$$u(K) = min \{u(D) \in \mathbb{N} \cup \{0\} : D \text{ diagrama regular de } K\}$$

es un invariante de K.

Proof.

Basta demostrar que si $K \approx \bar{K}$ entonces $u(K) = u(\bar{K})$.

Nota

u(K) es en general un invariante difícil de calcular.

Corolario (Owens-06)

Si $K \in \{9_{10}, 9_{13}, 9_{35}, 9_{38}\}$ entonces u(K) = 3.

 $K = 9_{10}$ desde KnotInfo El resultado anterior terminó el cálculo de u(K) para nudos primos hasta 9 cruces.

 $K = 9_{13}$ desde KnotInfo

u(k) desconocidos desde KnotInfo

Ejemplo

Si $K = 10_{11}$ se sabe que $u(K) \in \{2, 3\}$.

Nota

La clasificación de nudos primos hasta 10 cruces con u(K) = 1 se terminó en 2006 con los trabajos de Ozsváth-Szabó y Gordon-Luecke

Lema

Sean L_+, L_-, L_0 y L_∞ los 4 diagramas de enlaces ilustrados en la figura. Entonces entre los 4 números $Tri(L_+)$, $Tri(L_-)$, $Tri(L_0)$ y $Tri(L_\infty)$ 3 son iguales entre ellos y el cuarto es igual a los otros 3 o es 3 veces más grande, es decir, $Tri(L_+)/Tri(L_-) \in \{1,3,1/3\}$.

Corolario

$$u(K) \ge \log_3(Tri(K)) - 1.$$

Proof.

$$\log_3(\mathsf{Tri}(\mathit{L}_+)) - \log_3(\mathsf{Tri}(\mathit{L}_-)) = \log_3(\frac{\mathsf{Tri}(\mathit{L}_+)}{\mathsf{Tri}(\mathit{L}_-)}) \leq 1$$

Entonces:

Lema

Sean L_+, L_-, L_0 y L_∞ los 4 diagramas de enlaces ilustrados en la figura. Entonces entre los 4 números $Tri(L_+)$, $Tri(L_-)$, $Tri(L_0)$ y $Tri(L_\infty)$ 3 son iguales entre ellos y el cuarto es igual a los otros 3 o es 3 veces más grande, es decir, $Tri(L_+)/Tri(L_-) \in \{1,3,1/3\}$.

Corolario

$$u(K) \ge \log_3(Tri(K)) - 1.$$

Proof.

$$\begin{split} \log_3(\operatorname{Tri}(L_+)) - \log_3(\operatorname{Tri}(L_-)) &= \log_3(\frac{\operatorname{Tri}(L_+)}{\operatorname{Tri}(L_-)}) \leq 1 \\ \operatorname{Entonces:} \log_3(\operatorname{Tri}(L_+)) &\leq 1 + \log_3(\operatorname{Tri}(L_-)) \leq 2 + u(L_-) = \\ 1 + u(L_+) \text{ por inducción}. \end{split}$$

Corolario

$$u(K) \ge \log_3(Tri(K)) - 1.$$

Ejemplo

Los siguientes nudos tienen u(K) = 2:

Teorema (Scharlemann-1985)

Nudos con u(K) = 1 son primos.

Corolario

Si
$$u(K_1) = 1$$
 y $u(K_2) = 1$ entonces $u(K_1 + K_2) = 2$.

Teorema (Scharlemann-1985)

Nudos con u(K) = 1 son primos.

Corolario

Si
$$u(K_1) = 1$$
 y $u(K_2) = 1$ entonces $u(K_1 + K_2) = 2$.

Ejemplo

Los siguientes nudos tienen u(K) = 2:

Teorema (Scharlemann-1985)

Nudos con u(K) = 1 son primos.

Corolario

Si
$$u(K_1) = 1$$
 y $u(K_2) = 1$ entonces $u(K_1 + K_2) = 2$.

Ejemplo

Los siguientes nudos tienen u(K) = 2:

Conjetura

$$u(K_1 + K_2) = u(K_1) + u(K_2).$$

Nudo de Bleiler

Dos diagramas del mismo nudo K:

10-cruces y $u(D_1) = 3$.

14-cruces y $u(D_2) = 2$.

No siempre el diagrama mínimo del nudo realiza el mínimo número de desanudamiento u(K) = 2.

Nota

c(K)=10, es decir, D_1 es un diagrama mínimo respecto del número de cruces. Pero $u(D_1)=3$ y $u(D_2)=2$.

Conjetura (Kohn)

Sea K un nudo con u(K) = 1. Entonces existe un cambio de cruce en un diagrama mínimo que lo desanuda.

Nudos Toroidales

Ejemplo

Para K = T(4,3) se tiene que $u(K) \le 3$:

T(4,3) desde katlas.org

Teorema (Kronheimer-Mrowka-93)

Sea q, r > 0 y (q, r) = 1. Entonces u(K(q, r)) = (q - 1)(r - 1)/2.

Ejercicios

Demostrar que para $K = 8_{10}$ se tiene que $u(K) \le 2$:

 $K=8_{10}$ desde KnotInfo

Corolario (Ozsváth-Szabó-06) $u(8_{10}) = 2$.

Demostrar que para $K = 10_{153}$ se tiene que $u(K) \le 2$:

 $K=10_{153}$ desde KnotInfo

Corolario (Gordon-Luecke-06) $u(10_{153}) = 2.$

G-etiquetamientos válidos

Definición

Sea G un grupo y K un nudo. Un G-etiquetamiento de un diagrama de K consiste en asignar a cada arco del diagrama un elemento de G tal que:

1. En un cruce positivo se cumple $h = gkg^{-1}$ y en los cruces negativos se cumple $k = gkg^{-1}$:

2. las etiquetas de los arcos generan al grupo.

Invariante de Nudos

Teorema

Si un diagrama de un nudo **orientado** tiene un G-etiquetamiento con etiquetas de una clase de conjugación de G entonces cada diagrama del nudo se puede etiquetar con esa clase de conjugación.

Las clases de conjugación de S_3 son:

$$S_3 = [(e)] \sqcup [(1,2)] \sqcup [(1,2,3)]$$

Ejemplo

$$b = cac^{-1} = (b^{-1}ab)a(b^{-1}ab)^{-1} = b^{-1}abab^{-1}a^{-1}b \Rightarrow bab = aba.$$

Teorema

 S_n tiene generadores $\tau_i = (i, i+1)$, i = 1, 2, ..., n-1, con relaciones:

$$\tau_i^2 = 1$$
 $\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}, \ y$ $\tau_i \tau_j = \tau_j \tau_i \ \text{si} \ | i-j | > 1$

Distinguiendo nudos

El trebol tiene un S_3 -etiquetamiento:

Pero el nudo ocho no tiene un S_3 -etiquetamiento:

b = (2,3)in embargo, tiene un A_4 -etiquetamiento con la clase de $[f_4]$ que lo genera:

$$f_4 = (1, 2, 3)$$
 $f_5 = (1, 4, 2)$

$$f_5 = (1,4,2)$$

$$f_6 = (1, 3, 4)$$

$$f_7 = (2,4,3)$$

Definición

Un grupo dihédrico es el grupo de simetrías de un polígono regular.

Nota

Un polígono regular de n lados tiene 2n diferentes simetrías: n rotaciones y n reflexiones.

Nota

Sea $p \ge 3$ con p primo.

$$D_P = (r, s : r^p = s^2 = 1, rs = sr^{-1})$$

= $\{1, r, r^2, \dots, r^{p-1}, s, sr, sr^2, \dots, sr^{p-1}\}$

grupo dihédrico de orden 2p.

Sea $p \ge 3$ un primo y D el diagrama de un nudo. Entonces D tiene una p-coloración si y sólo si D tiene un D_p -etiquetamiento.

$$D_P = (r, s : r^p = s^2 = 1, rs = sr^{-1})$$

= $\{1, r, r^2, \dots, r^{p-1}, s, sr, sr^2, \dots, sr^{p-1}\}$

grupo dihédrico de orden 2p.

Nota

Cualesquiera dos elementos de la forma sr^k generan D_p .

Sea K un nudo y G un grupo.

- 1. Si algún diagrama de K tiene un G-etiquetamiento entonces existe un epimorfismo de $\pi(K)$ a G.
- 2. Si existe un epimorfismo de $\pi(K)$ a G entonces cada diagrama de K tiene un G-etiquetamiento.