CH.

學習重點

科學態度 與精神

(夕) 發現問題與提出假設

山 規劃實驗與研究

NO

科學方法

◆)) 表達與分享

YES 分析資料與論證建模

科學基本 度量單位

- 一 國際基本單位制 (SI)、基本量、導出量
- 一 時間單位、長度單位、質量單位

物理學 簡介

- 一 物理學的發展與涵蓋範疇
- 一 跨領域學科的挑戰

「距離」、「時間」為基本量
「速率」可用<u>距離</u>導出,為導出量。

B 點 A 走到B 的距離(基本量)
A 走到B 花的時間(基本量)

科學的態度與方法

1-1 研究科學的態度與精神

學習概念 []

科學 (science) 的發展歷程

補充資料

1. 科學的意涵:

- (1) 科學,由希臘哲學家亞里斯多德首先提出,其意義為「認識」、「知識」。
- (2) 科學,是經由準確觀察結果而建立的具體、明確、有系統、有組織的知識或學問。

2. 早期的探討:

(1) 亞里斯多德對觀察到的現象感到好奇,並將觀察到的現象分成兩類:

	自然運動	例如日、月、星辰以圓軌道繞著地球作永恆運動,或是地表附近有重量
		的物體會朝向地面自然掉落,且愈重的物體掉下的速度愈快。
	強迫運動	物體沒有受到推力就不會持續運動。

(2) 亞里斯多德的論述已具備後世科學研究的雛型。

3. 西元十五世紀文藝復興運動時期的轉變:

對科學研究的態度轉變成採用定量的數學工具,再透過有系統、有目的的實驗找尋真理與檢驗理論。

- (1) 伽利略一實驗物理學之父:
 - ① 發現亞里斯多德關於自由落體運動與物體運動機制上的破綻。
 - ② 設計精妙的實驗,以簡單的斜面運動驗證並提出自由落體定律與慣性定律。
 - ③ 建立重要的科學概念:

	去除不相關的因素,例如:顏色、形狀、材質,並且把自由落體看成是
系統化	一個「質點」,只考慮質點的位置、速度、加速度等可以定量表達之物
	理量。
數學化	以數學作為工具來研究物理學。
小 昭 十 //-	從不起眼的小問題出發,探究背後究竟緣由,不但要知其然,更要知其
小題大作	所以然。

- (2) 馬克士威一理論物理學:
 - ① 透過理論的思維與推廣,預測出以前不為人知的現象。
 - ② 以完整的數學建立了力線的概念。

- ③ 統整電磁現象並從理論上修正舊定律的不足,成為著名的「馬克士威方程組」。
- ④ 推論光是一種電磁波,由赫茲以實驗室產生的無線電波所證實。
- ⑤ 證明多數顏色可用「紅綠藍」三原色混合而成,並製作出世界第一張彩色照片。

學習概念 2

科學的態度與精神

補充資料

- 1. 自 17 世紀以來,科學家們開始建構有系統的科學知識,至今,已發展出一門相當完整的 學問,物理學(physics)。
- 2. 綜觀科學家們致力於科學的探究過程,可以歸納得出以下幾個重點:
 - (1) 「好奇心」是科學探索的原動力。
 - (2) 科學家在進行觀察、實驗與推論時,盡可能不偏執己見,力求審慎與客觀,且當佐證 不充足的情況下,絕不會妄做結論。
- (3) 科學家往往是「大膽假設,小心求證」,堅持求真、求實的精神,追根究柢、鍥而不捨, **直到直相水落石出。**

研究科學的態度與精神

下列哪些不是研究自然科學的態度?(應選2項)

- (A)求真求實的態度 (B)客觀的態度 (C)持之以恆的態度 (D)主觀的態度
- (E)相信自己的實驗結論必為真的態度

答 > (D)(E)

- 解 ► (D) × (1)研究自然科學不可抱持著「主觀的態度」。
 - (E) × (2) 常發現實驗的結果與事實不符時,必須重新修正、再次確認實驗是否有瑕疵。 故骥(D)(E)。
- **■類題**:臺灣著名化學家李遠哲博士曾經說:「我只要在儀器測量的每一個環節做得比 別人的精密一些些,我就可以比別人提早得到答案!」這句話說明科學的進步 需要科學家具備哪一項科學態度?
 - (A)專注實驗數據的精密度 (B)睿智的聰明度 (C)高深的數學根基
 - (D)窮究理論的推導 (E)演繹思考的能力
- 答 > (A)
- (A)○ 科學的基本態度是進行實驗驗證,並且提高「實驗數據的精密度」。故選(A)。)

-2 科學方法

學習概念

客觀的科學研究流程

配合課本9頁

觀察現象	觀察是探究科學的基石。
\downarrow	
發掘問題	透過觀察可以發現自然世界中未知的各種事物和現象,從而提出問題。
\downarrow	
提出假設	對於問題所做的一種簡單的陳述。
$\downarrow \uparrow$	
設計實驗檢驗	對於觀察以及假設的一種驗證。若不正確,則不斷修正探索的方式與相
假設的正確性	關詮釋。

得到確切的結論

對假設進行驗證、歸納,發現得出解釋結論,形成某一現象或問題的科 學知識。

學習概念 2

說明例:原子的爭論

觀察現象、 發掘問題

十九世紀初期,科學家對「物質的本源—原子(atom)」有兩派不同主張, 爭論不休!

提出假設

(1) <u>奧國</u>物理學家<u>馬赫</u>認為原子僅是「思想之物」,是一種想像工具,認定「我不相信原子的存在」。

(2) <u>奧國</u>物理學家<u>波茲曼</u>認為有物質則必有原子的存在,堅信「原子說」是 存在的!

以旁觀者的角度來看,兩個認定都是從明確的假設出發,但由於當時欠缺原 子存在的實驗證據,尚無法檢驗哪一個是假說正確。

設計實驗 檢驗假設 的正確性

- (1) 直到西元 1827 年<u>英國</u>植物學家<u>布朗</u>,用單透鏡觀察花粉微粒在水中不停地作不規則的運動,如右圖所示。
- (2) 花粉旋於水中參與熱運動時,由於受到周圍水分子 的撞擊產生不平衡的力量,花粉微粒獲得加速度, 不停地作折線運動,稱為布朗運動。

◎布朗運動軌跡圖

- (3) 基於布朗運動的發現,證實花粉微粒是不停地運動著,提供人們對原子存在事實的一有力的證據。

得到確切 的結論

- (1) 二十世紀初期,人類陸續提出原子的結構模型,經多次的實驗修正,人 們不可能「看見」的原子,終被證實。
- (2) 今日,人類更能擅用精密的科技-「粒子加速器」來研究原子,令人驚訝的,構成原子質料的最小物質是成對、不能單獨存在的夸克(quarks)!

範例 2 科學方法

印尼國家的某些村落仍盛行巫醫治病的習俗。他們的醫術都是經由前人的經驗累積、 家族的傳承或自己天生的特殊能力來幫病人治病,以現今科學的角度評論,這種醫療 行為,是欠缺下列哪一項過程?

(A)做歸納整理 (B)做實驗驗證 (C)對病人的觀察 (D)探究原因建立理論模型 (E)演繹思考

答**>**(D)

解 (D) ○ 以前人的經驗累積、家族的傳承或自己天生的特殊能力來進行醫療行為,這是欠缺「建立模型發展理論」的科學方法。故選(D)。

類題:下列關於探究科學的方法,哪一個是正確的?

- (A)薰薰看到一個問題後,直接下結論
- (B)<u>彥彥</u>覺得天氣愈來愈悶熱,提出假設可能是因為要下雨前水氣釋放出的熱量 所導致
- (C)<u>展展</u>將兩物體在相同高度同時釋放發現重的物體較快落地,因此得到重的物體加速度較大
- (D)耀耀認為在科學探究的過程中不需要驗證也可以直接下結論
- (E)婷婷認為觀察到的現象為何,即可直接下結論

答 **(B)**

- (A)× 要先提出假設經過實驗驗證才可下結論。
- (C)× 實驗設計不完備。
- (D) × 需要驗證才有結論。
- (E)× 要經由問題接著假設,實驗驗證後才可下結論。故選(B)。)

]-1~]-2 課後練習

基礎題

1_1 研究科學的態度與精神

概念)科學的發展歷程

(解析見解答本)

(E)1. 在物理發展史上,被稱為實驗物理學之父,其提出的理論或觀念為日後生頓學 說奠定重要的發展基礎,此人為下列哪一位科學家? (A)哥白尼 (B)焦耳 (C)亞里斯多德 (D)安培 (E)伽利略

(概念)科學的態度與精神

- (E) 2. 下列何者不是良好的科學態度? (A)不堅持己見 (B)重視思考 (C)避免妄下論斷 (D)尊重藝術與宗教的觀點 (E)認同優秀科學家的權威性
- (E) 3. 下列各選項哪一個不是「自然科學的精神」? (A)求真的態度 (B)客觀的態度 (C)有恆的態度 (D)審慎的態度 (E)主觀的態度
- (℃)4. 科學態度強調「謙卑」。牛頓談到自己的理論時曾說:「如果我比別人看的更 遠,那是因為我站在一些巨人的肩上。」下列哪個人可能是他所說的巨人之一? (A)庫侖 (B)愛因斯坦 (C)伽利略 (D)馬克士威 (E)愛迪生

1-2 科學方法

(概念)客觀的科學研究流程

- (B) 5. 當我們採用「科學方法」以解決生活中遇到的一些問題時,試問以下所列各項 推行的步驟依序為何?何發現問題; (2)觀察; (两設計實驗; (7)提出假設; (成提 出結論
 - (A)甲 \rightarrow 乙 \rightarrow 丁 \rightarrow 丙 \rightarrow 戊 (B)乙 \rightarrow 甲 \rightarrow 丁 \rightarrow 丙 \rightarrow 戊 (C)乙 \rightarrow 甲 \rightarrow 丙 \rightarrow 戊 \rightarrow 丁 (D)甲 \rightarrow 丁 \rightarrow 乙 \rightarrow 丙 \rightarrow 戊
 - (E)乙→甲→丙→丁→戊
- (B)6. 在發展萬有引力定律的過程中,牛頓心裡曾想:『為什麼蘋果會往下掉,而不 像月球繞著地球轉呢?』試問牛頓的想法是符合科學方法中的哪一步驟? (A)進行觀察 (B)確認問題 (C)提出假設 (D)進行實驗 (E)做出結論

- (D) 7. 廟宇裡常見有乩童藉由神明附身,依照神明指示來幫助信眾解決所遭遇的問題。 這些乩童通常號稱自己有神力,因而在觀察和分析信眾所提供的資料後,當下 即可建構出事情的原因及解決對策。若以科學方法的角度來看,上列的敘述是 不符合哪個步驟?
 - (A)進行觀察 (B)確認問題 (C)提出假設 (D)進行實驗,驗證假說 (E)分析論述

進階題

- (DE)1. 五位同學聚集在一起探討如何以「科學的方法」進行實驗,以下是他們各自的 論述,試問哪幾位同學是正確? (應選2項)
 - **伊觀察現象**,依照自己豐富的經驗判斷即可得知結論。
 - 〇觀察生活中各個滾動的物體,始終會停下來,經過無數次檢驗,可以得知: 維持運動需要外力。
 - (内將兩張相同的紙,一張攤平,另一張揉成一團,依序在等高度的樓頂作自由 落體實驗,發現揉成一團的紙較早抵達地面;這個結果與老師所述「伽利略 提出自由落體的落下時間與質量無關」的說法不同,因此可以推翻伽利略的 觀點。
 - (丁)進行科學探究時,必須小心提出假設,同時應該進行實驗驗證,才可以提出 結論。
 - 成科學方法的實施步驟,依序為:觀察現象→發掘問題→提出假設→設計實驗 檢驗正確性→得到確切結論。
 - (A)甲 (B)乙 (C)丙 (D)丁 (E)戊
- (AD)2. 愛因斯坦在1915年提出廣義相對論並用它解決了重力理論無法解釋的「為何水 星繞日軌跡慢慢變化」的困惑。同時他也根據廣義相對論預測光線在經過太陽 附近時會產生彎曲,最後得到英國天文學家愛丁頓爵士的證實。根據上述文字 可知,一個成功的科學理論必須具備下列哪些要素? (應撰2項)
 - (A)能解釋已知的實驗結果
 - (B)能推翻之前的科學理論
 - (C)能得到所有人的認同
 - (D)能做出合理預測並獲證實
 - (E)能永遠適用於自然界

-3 科學基本度量單位

學習概念

國際單位制(SI)

配合課本 10 ~ 11 頁

1. 基本量(fundamental quantity):

- (1) 1960年於巴黎第十一屆國際度量衡會議正式將單位系統命名為「國際單位制」(SI制)。
- (2) 1971 年第十四屆國際度量衡會議決定採用七個基本單位。

	基本量	單位	單位符號	
1	長度	公尺	meter	m
2	質量	公斤	kilogram	kg
3	時間	秒	second	S
4	電流	安培	ampere	A
5	熱力學溫度	克耳文	kelvin	K
6	光強度	燭光	candela	cd
7	物質量	莫耳	mole	mol

2. 導出量 (derived quantity):

- (1) 其他物理量的單位,依據物理定律或定義,可以從這七個基本單位組合出來的,稱為導出量。
- (2) 說明例:
 - ① 力,單位為牛頓 $(N = kg \cdot m/s^2)$,是由長度、質量、時間所導出的。
 - ② 功,單位為焦耳 $(J = N \cdot m = kg \cdot m^2/s^2)$,也是由長度、質量、時間所導出的。

3. 前綴詞 (prefix) 及其符號:

(1) 因為測量數值可能包含很大或很小的因子,所以 SI 規定用來表示冪次的前綴詞 (prefix) 及其符號,下表為常用的一些前綴詞。

冪次	10^{18}	10 ¹⁵	10 ¹²	10 ⁹	10^6	10^3	10 - 3	10 - 6	10 - 9	10 - 12	10^{-15}	10 - 18
前綴詞	exa	peta	tera	giga	mega	kilo	milli	micro	nano	pico	femto	atto
符號	Е	P	T	G	M	k	m	μ	n	p	f	a
中文	艾	拍	兆	吉	百萬	千	毫	微	奈	皮	飛	阿
大小	大←											

(2) 說明例:

- ① 水熊蟲身長, $L = 1.5 \, \mu \text{m} = 1.5 \times 10^{-6} \, \text{m}$ 。
- ② 飛碟電臺廣播頻率, $f = 92.1 \text{ MHz} = 9.21 \times 10^7 \text{ Hz}$ (赫)。

4. 物理量的數值表示:

- (1) 科學記號:
 - ① 當遇到太大或太小的數值時,甚不利於數據的紀錄與閱讀,因此常將這類的數值直 接以「 $a \times 10^n$, $1 \le a < 10$, n 為整數」的形式表之。
 - ② 説明例: $\begin{cases} a. 光速為 300000000 \text{ m/s} \underline{- 表為科學記號} 3 \times 10^8 \text{ m/s} \\ b. 電子電量為 0.0000000000000000016 C} \underline{- 表為科學記號} 1.6 \times 10^{-19} \text{ C} \end{cases}$
- (2) 數量級的表示:
 - ① 當數值的精確度並不重要時,可以將數值僅以 10 的冪次表示即可,例如,全球的總 人口約為 1010人,這樣的數值表示法稱為「數量級」。
 - ② 界定值的取捨: $\begin{cases} a < 3.16 & \underline{\mathbb{N}} \quad a \times 10^{n} \approx 10^{n} \\ a \ge 3.16 & \underline{\mathbb{N}} \quad a \times 10^{n} \approx 10^{n+1} \end{cases}$ ③ 說明例: $\begin{cases} a. \text{ 光速的數量級為 } 3 \times 10^{8} \text{ m/s} \approx 10^{8} \text{ m/s} \\ b. 電子質量的數量級為 <math>9.1 \times 10^{-31} \text{ kg} \approx 10^{-30} \text{ kg} \end{cases}$

節例 國際單位制

請以 SI 制中的七個基本量,組合出下列各物理量的單位,並填寫於空格中(請以英 文符號表示,例如: 速度 m/s)。

(1)電量= 。 (2)密度= 。 (3)力=

- ${\Xi}$ (1) A · s; (2) kg/m³; (3) kg · m/s²
- 解▶(1)電流為 電量 ,因此答案為 A·s;
 - (2)密度為 $\frac{質量}{體積}$,因此答案為 kg/m^3 ;
 - (3)力為質量×加速度,因此答案為 $kg \cdot m/s^2$ 。

類題:下列何者為能量的單位?

(A) kg
$$\cdot$$
 m (B) kg \cdot m/s² (C) kg \cdot m²/s²

(D) $kg \cdot m/s$ (E) $kg \cdot m^2/s$

((C) \bigcirc 因為動能 $K = \frac{1}{2} mv^2$,故其能量單位可利用質量 \times 速度 2 來表示,即為 $kg \cdot m^2/s^2$, 答 > (C) 故撰(C)。)

範例 2 單位的前綴詞

- 一個容量標示為 4TB 的硬碟,其中 B 是指 Byte(位元組)若簡單的以十進位來計算(電腦的世界實際上是二進位來計算)則 $4TB = _____GB = _____kB = _____kB$
- 答 4×10^3 , 4×10^6 , 4×10^9 , 4×10^{12}
- $\text{FF} 1T = 10^3 \text{G} = 10^6 \text{M} = 10^9 \text{k} = 10^{12} \text{ s}$

類題:下列單位換算,哪些正確?(應選3項)

(A)紅光波長 650 奈米 = 6.5×10^{-4} 公釐 (B) 1 毫微秒 = 10^{-8} 秒

(C)紅血球細胞的直徑 0.00005 公尺= 5×10^{-2} 公釐 (D) 64 MeV = 6.4×10^{4} eV

(E) 25 奈米 = 2.5×10^{-8} 公尺

小撇步

答 > (A)(C)(E)

 $((B) \times 1$ 毫微秒= 10^{-9} 秒。 $(D) \times 64 \text{ MeV} = 6.4 \times 10^{7} \text{ eV}$ 。 故選(A)(C)(E)。) 公釐=毫米= 10^{-3} m 公分=厘米= 10^{-2} m

學習概念 2 力學

力學三大基本量(單位)

..... 配合課本 12 頁

- 1. 時間單位 秒:
- (1) 以一個平均太陽日的86400分之一為「1秒」。
- (2) 1967 年,第十三屆國際度量衡會議採用「銫 Cs-133」原子鐘所發出特定的光波,振動 9,192,631,770 次所經過的時間,定義為「1 秒」,幾乎不會受環境的影響而具有非常高的穩定性。

2. 長度單位 —— 公尺:

- (1) 1983年,第十七屆國際度量衡會議改定「1公尺」為光在真空中傳播 299,792,458 分之 一秒內所行之距離。
- (2) 其他長度單位:天文學中
 - ① 用來表示星系間距離的單位為光年(light year,符號為 ly)。定義 1 光年為光在真 空中行經一年時間所走的直線距離,即11v=9.46×10¹⁵ m。
 - ② 用來表示太陽系各行星與太陽的距離為天文單位(astronomical unit, AU)。定義 1 天文單位為地球與太陽的平均距離,1AU=1.50×10¹¹ m。

3. 質量單位——公斤:

- (1) 1889 年以後,經國際度量衡會議決定以一特別鑄造的鉑銥合金圓柱體(高度和直徑皆 為3.9公分)的質量為1公斤,稱為標準公斤原器。
- (2) 由於考慮其恆定性,2018年11月正式通過以普朗克常數 h 來更精確定義質量的標準。
- (3) 其他單位:統一原子質量單位(\mathbf{u}),約是一個質子的質量, $1\,\mathbf{u}=1.67\times10^{-27}\,\mathrm{kg}$ 。

範例 🔫 國際單位系統

假設地球為一正球體,1公尺最初的定義為「通過法國巴黎的子午線,由赤道到北極 間距離的千萬分之一」。試問:

- (1) 地球赤道的半徑約為多少公尺?
- (2) 華航客機以時速800公里橫越經度60°的甲乙兩地,需費時若干小時?
- 答 (1) 6.4×10⁶ m; (2) 8.375 時
- (1)依題意: $\frac{1}{4}$ 周長為 1 千萬米,即 $\frac{1}{4} \times 2\pi R_{\rm e} = 1 \times 10^7 \, {
 m m}$,

∴地球赤道半徑
$$R_e = \frac{4 \times 10^7}{2\pi} = 6.4 \times 10^6$$
 (m)

(2)計算甲乙兩地之距離:

$$2\pi R_{\rm e} \times \frac{60^{\circ}}{360^{\circ}} = \frac{\pi R_{\rm e}}{3} = \frac{\pi}{3} \times (6.4 \times 10^{6}) = 6.7 \times 10^{6} \text{ (m)} = 6.7 \times 10^{3} \text{ km};$$

$$\langle \overline{\chi} | v = \frac{s}{t} | \Rightarrow 800 = \frac{6.7 \times 10^{3}}{t} \Rightarrow t = 8.375 \text{ (Hz})$$

類題:現行長度的基準是依照下列哪一種性質來訂定的?

- (A)單擺的等時性 (B)地球運行的規則性 (C)以地球子午線長度
- (D)光速的不變性 (E)光波波長的穩定性
- 答 > (D) ((D)「1公尺」定義為光在真空中傳播 299,792,458 分之 1 秒內所行之 距離,利用了光揀的不變性,故撰(D)。)

13 課後練習

基礎題

(概念)國際單位制(SI)

(解析見解答本)

- (A)1. 下列有關國際單位系統(SI)的敘述,何者不正確?
 - (A)力為一個基本量,其SI單位為牛頓
 - (B)在力學上最常用的三個基本量為長度、時間及質量
 - (C)加速度的單位乃藉由長度與時間兩個基本量所導出,亦稱為導出單位
 - (D) SI 的溫度單位是克氏(K) (E) SI 的電量單位是 A·s
- (A) 2. 在牛頓萬有引力定律中,兩球體間的引力可寫為 $F = \frac{GMm}{r^2}$,其中 $M \times m$ 為質 量,r為距離。若將力的單位表為牛頓時,則式中係數 G 的單位應寫為何? (A)牛頓 · $\frac{\triangle \mathbb{R}^2}{\triangle \mathbb{R}^2}$ (B)牛頓 · $\frac{\triangle \mathbb{R}}{\triangle \mathbb{R}}$ (C)牛頓 · $\frac{\triangle \mathbb{R}^2}{\triangle \mathbb{R}}$ (D)牛頓 · $\frac{\triangle \mathbb{R}}{\triangle \mathbb{R}^2}$ (E)係數是沒有單位的
- (A) 3. 1900 年開始,科學家不斷地追求極小的事物及極短暫的變化,例如:分子、原 子、電子等的運動是科學家們勢東的研究項目,因此需採用一種更小的時間單 位。「 \oplus 」是一個極小的時間單位,在 $1\oplus$ 中,光可走 0.3 奈米。已知光速為 3×10⁸ m/s,試問「1⊕」相當於幾秒? (A) 10^{-18} (B) 10^{-15} (C) 10^{-12} (D) 10^{-9} (E) 10^{-6}
- (BC)4. 下列關於「國際單位制」的敘述,哪些正確? (應選3項)
 - (A)長度為基本量,SI單位為公分 (B)溫度為基本量,SI單位為克耳文(K) (C)電量為電流和時間兩個基本量所導出的物理量 (D)質量為基本量,SI 單位為 公克 (E)時間以絕 - 133 元素的輻射週期的倍數為標準
- 5. 大雄到郊外寫生,手握畫筆,當他將手臂伸直時,畫筆恰可遮住遠方的大樓。若眼睛至 畫筆的距離為60公分,畫筆長20公分,大樓高度為50公尺,求大雄與大樓之間的距離 為多少公尺?
 - 答 150 公尺

概念 力學三大基本量(單位)

- (B) 6. 設光一秒內在真空中前進的距離為X,一光年所行的直線距離為Y,地球與太 陽的平均距離(一個天文單位)為 Z,則三個長度之大小關係為何?
 - (A) X > Y > Z (B) Y > Z > X (C) Y > X > Z (D) Z > Y > X
 - (E) X = Y > Z

進階題

- (AB)1. 以下有關各個物理導出量所對應的SI單位,哪些正確?(應選3項)
 - (A)已知動能 $K = \frac{1}{2} mv^2$,其中 m 為物體的質量,v 為物體的速率,則動能 K 的 單位為 $kg \cdot m^2/s^2$ (B)令 L 為單擺擺長,g 是重力加速度,則 $\sqrt{\frac{L}{\sigma}}$ 的單位與時 間是相同的 (C)已知P是氣體壓力,V是氣體體積,則 $P \cdot V$ 的單位與質量是 相同的 (D)電池的單位為伏特,以 SI 單位表之為 $\frac{\mathbf{kg} \cdot \mathbf{m}^2}{\mathbf{A} \cdot \mathbf{s}^2}$ (E)已知長度為 L, 質量為M,時間為T,今欲以 ρ 表達水管中流水在單位時間內的密度,則 ρ $=\frac{M}{TI^3}$
- (D) 2. 真空中的光速恆為 3×10^8 公尺/秒,因此我們可以將光在一定時間中移動的距 離訂為長度單位,例如以光在1秒中移動的距離為1光秒,光在1日中移動的 距離為1光日。已知地球與月球的距離為38萬公里,這個距離約為幾光秒? (A) 0.5 (B) 0.8 (C) 1.0 (D) 1.3 (E) 2.0
- 3. 根據壓力的定義:壓力為單位面積所受的垂直作用力: $P = \frac{F}{4}$,今有一登山隊員攜帶一 個圓筒形鍋子上山,此鍋子蓋上鍋蓋後可以只靠鍋蓋重量而完全密閉,在高山營地中測 得當地氣壓為 720 毫米水銀柱, 若要使鍋內的水能在 100℃時沸騰的話, 需要能達 1 大 氣壓,而圓筒鍋的內半徑為10公分,則鍋蓋約需為多少公斤重?(1大氣壓=76厘米 水銀柱≒1000 克重/平方公分)
 - 答 16.52 kgw

-4 物理學簡介

學習概念

物理學涵蓋的範疇

配合課本 16 頁

1. 何謂物理學?

- (1) 物理學的英文字「physics」,乃源於希臘字「Φύσις」,其原意為「自然」(nature)。 自然界的研究被稱為「自然哲學」(natural philosophy)。
- (2) 物理學是一門研討物質的成分,及物質間交互作用的科學。

2. 物理學的發展:

一般而言,將1900年以前的物理學,稱為古典物理學;之後發展的稱為近代物理學。

	古典物理學(classical physics)	近代物理學(modern physics)
發展節介	自十七世紀初葉,由 <u>伽利略、牛頓</u> 等 人開始對巨觀的物理現象加以研究, 至十九世紀末葉結束時建立完成了力 學、熱學、光學、電磁學等,構成了 相當完整的物理理論體系,統稱為古 典物理學。	二十世紀初期,物理學自巨觀的物理現象,進入微觀的原子結構,科學家開始探索日常生活中體驗不到的高速度運動物體呈現的現象,這現象往往與熟知的經驗牴觸。
主要	力學 (mechanics)熱學 (heat)光學 (optics)	量子力學(quantum mechanics): 解釋微觀世界裡的物理量關係。相對論(relativity):
	• 電磁學 (electromagnetism)	解釋高速狀或重力場很強時的理論。

3. 物理學的發展及其探討的程序:

- (1) 由簡而繁。
- (2) 由定性進而定量。
- (3) 由文字敘述的觀念進而以數學表示的定理。
- (4) 由經驗結果的描述,進而引入假設的理論。
- (5) 由歸納性的知識,進而成為演繹性的系統。

物理學的範疇

下列哪個學說屬於折代物理學?

(A)力學 (B)電磁學 (C)光學 (D)相對論 (E)聲音

答 > (D)

解 ► (D) ○ 力學、光學、聲音以及電磁學是屬於古典物理。故選(D)。

類題 1:「物理學」這一名詞是源自於希臘文何意? (A)琥珀 (B)原理 (C)哲學 (D)科學 (E)自然

答 > (E)

(E)○ 「物理學」一名源自於希臘文「自然」。故選(E)。)

類題2: 闸力學; ②電磁學; 例量子力學,就物理學的發展順序應該如何排列? (A)甲丙乙 (B)甲乙丙 (C)乙丙甲 (D)丙甲乙 (E)乙甲丙

答 > (B)

((B)○ 力學最早、電磁學次之、量子力學最晚。故選(B)。)

學習概念 2 跨領域學科的挑戰

- 1. 物理學探索自然,描述能量、物質、空間和時間的相互作用,範圍涵蓋我們生活周邊所 有事物的功能。
- 2. 透過物理學來探究基本的自然科學現象,物理知識在日常生活中也很實用。
 - (1) GPS 使用物理方程式來估算地圖上兩個位置之間的駕駛時間。
 - (2) 平日利用微波爐加熱食物時,不能使用金屬製的餐具。

◎應用手機內建的 APP 估算駕駛時間

- ⊙微波無法穿透金屬,會被其反射回去,損壞微波爐
- 3. 物理學與其他學科密切關聯,可對跨領域的研究做出重要貢獻。
 - (1) 化學家要理解原子和分子間的交互作用時,必須嫻熟掌握量子力學。
 - (2) 建築大樓、橋梁,涉及聲學、振動、照明、熱漲冷縮等,都會應用到相關的物理定律。
- 4. 學習物理學時,我們不但要專注於基本定律的理解與掌握,也要兼顧到實際應用時所需 的分析方法與技巧。

1-4 課後練習

基礎題

(概念)物理學涵蓋的範疇

(解析見解答本)

- (C)1. 歷史上發表最偉大的鉅作「自然哲學的數學原理」,是下列哪一位科學家? (A)伽利略 (B)克卜勒 (C)牛頓 (D)愛因斯坦 (E)亞里斯多德
- (D) 2. 有關「近代物理」的敘述,下列何者錯誤?
 - (A)以量子力學及相對論為基礎所建構的物理學
 - (B)它是微觀的物理概念
 - (C)西元 1900 年後所發展的物理學即為近代物理
 - (D)強調邏輯及因果關係
 - (E)是機率性及不確定性的問題
- (D)3. 哪一位科學家修訂了牛頓力學理論,成為近代物理學之科學巨人? (A)馬克士威 (B)庫侖 (C)波耳 (D)愛因斯坦 (E)安培
- (D) 4. 以下是一些物理學家及其發現的理論或定律: (P)愛因斯坦與相對論; (Z)馬克士 威與電磁理論;例牛頓與萬有引力定律。就你高中所學認知的自然科學發展, 試將(甲)乙)肉依歷史的先後順序排列為何? (A)甲乙丙 (B)乙甲丙 (C)乙丙甲 (D)丙乙甲 (E)甲丙乙
- (B) 5. 下列哪一理論可以說明物體運動速度在接近光速時的力學行為? (A)庫侖平方反比定律 (B)愛因斯坦狹義相對論 (C)司乃耳折射定律 (D)引力平方反比定律 (E)行星三大運動定律
- (AE)6. 牛頓曾說:「我只像是個在海邊玩耍的男孩,偶爾找到了比較平滑的鵝卵石, 或是比較漂亮的貝殼,而覺得很有趣味。」以下哪些比較可能是牛頓在科學上 面的貢獻?(應撰2項) (A)力學 (B)電學 (C)磁學 (D)量子力學 (E)光學
- (CE) 7. 下列哪些理論是「近代物理」的主要內容? (A)牛頓力學 (B)電磁學 (C)量子力學 (D)波動光學 (E)相對論

概念)跨領域學科的挑戰

- (CD)8. 關於物理學與跨領域的挑戰,下列敘述哪些正確?(應選3項)
 - Е (A) 化學家要理解原子和分子的交互作用時便獨力發展出量子化學
 - (B)建築學中涉及建築物的聲學、振動、加熱、照明、冷卻等皆利用舊經驗及老 師傅的經驗傳承即可完成
 - (C)醫學診斷中常用到的利器,如 X 射線、磁共振造影(MRI)和超音波、血流 量計等檢測儀器都直接涉及物理學
 - (D)學習物理時除了基本定律的理解與掌握,也會兼顧實際應用的分析方法及技 巧與其他跨領域研究的合作
 - (E)「物理」這個名詞在希臘語中的意思是「自然」,是研究物質、能量的本質 與性質,以及它們彼此之間交互作用的自然科學

進階題

- (AB)1. 下列哪些科技設計產品是古典物理學的應用?(應選3項)
 - D (A)簡單機械 (B)蒸汽機 (C)電子顯微鏡 (D)電磁爐 (E)雷射
- (B) 2. 二十世紀物理學蓬勃發展,下列哪一項應用的主要科學領域,不是這世紀的成 就?
 - (A)核彈與核能 (B)高壓傳輸電力系統 (C)電晶體與積體電路
 - (D)人造衛星與太空飛行器 (E)雷射

歷屆學測題

【基礎篇】

55% 答對率 / 全對率 以上

回接回

(B)1. 科學的進步有賴科學研究者的投入,能留名科學史的往往是有新發現或開創新 領域的科學家,他們的創新性貢獻常能提升大眾的生活水準,造福全人類。下 表所列各科學家與其在物理學上主要貢獻(甲至(成的對應,何者最為恰當? (甲)發現造成月亮繞地球運行與造成地球上自由落體的力,是同一來源。

(乙)首位提出物質波新學說。

(内發現不僅電流會產生磁場, 隨時間變化的磁場也能產生電流。

(丁)發現兩帶電質點間的作用力與距離的關係和萬有引力的形式相同。

(成)提出光子假說解釋光雷效應。

70%答對率 (108 學測)

物理學家	庫侖	法拉第	德布羅意	牛頓	愛因斯坦
(A)	甲	Z	丙	丁	戊
(B)	丁	丙	Z	甲	戊
(C)	丙	甲	戊	丁	Z
(D)	戊	Z	甲	丁	丙
(E)	Z	丙	戊	甲	丁

(D) 2. 一群學生討論物理學發展史,初步整理出下列(P)~(C)等 6 項資料的敘述。 甲湯姆森經由實驗發現電子的存在。

囚拉塞福提出原子的正電荷集中在核心、電子分布在核外圍的原子模型。

因首先發現載有電流的導線會在其周圍產生磁場的是厄斯特。

①首先推論光是電磁波的是赫茲。

(戊)首先由實驗發現電磁感應現象的是法拉第。

己首先提出能量具有量子化特性的是愛因斯坦。

在上述各項敘述中,正確的為下列何者?

62%答對率 (112 學測)

(A)甲丁戊 (B)乙丙己 (C)丙丁戊己 (D)甲乙丙戊 (E)甲乙丁己

сн. 1

科學素養新焦點

史書記載西元 1405 年 6 月,晴朗無雲的天際,鄭和的船隊像一條身軀龐大的巨龍,橫臥在南京太昌瀏家港外的長江江面上,大小二百多艘船隻一字排開,形成了如林的船牆。在一片驚天動地的樂鼓聲、鞭炮聲及歡呼聲中,船隊啟航了。欽差正使總兵太監鄭和,巍然站立在寶船帥旗下,船隊在江面上破浪前進,到達長江山海口

前,領航官陳建州發現長江江面變得寬廣,江水流速變慢,船身沒入水面下的體積也逐漸改變,於是下令全體揚帆,以求能在吉時,進入東海,展開人類歷史上最壯麗璀燦的三保太監鄭和下西洋之處女航。擔任如此龐大船隊的領航官,陳建州必然具備相當的航行知識。以現今的流體力學解釋,當洋流是穩定的,在一定時間內流過江口各截面的海水(質)量都會相同,也就是洋流在通過河道寬度狹窄、水淺處,洋流特別湍急,這便是遵循所謂的連續方程式。下表列出的甲~己(括號內為其符號)為回答下列各問題時需要考慮的一些參數。

甲 (A)	Z(v)	丙 (m)	T(t)	戊(P)	$\exists (V)$
江口任一處截面積	洋流流速	海水質量	海水流動時距	海水密度	海水體積

1. 利用數值常數、定義的參數符號,試將領航官<u>陳建州</u>所領悟的流體力學特性,簡述推論, 並以一數學關係式表示。

答:詳見解析

(D) 2. 長江水自瀏家港抵達出海口前,高度落差的遞減幅度甚小可忽略且不計潮汐影響,若<u>瀏家港</u>外的長江平均寬度 1260 公尺,水位(水深)6 公尺,江水流速平均為12 公尺/秒。長江在出海口前,江面平均寬度變為2268 公尺,水位5 公尺,假設江水為穩定理想洋流,承1.的推論關係式,試問此時江水流速約為多少公尺/秒?

(A) 1.4 (B) 4.8 (C) 5.6 (D) 8.0 (E) 9.6

(D)3. 寶船沿長江(淡水)航行進入東海(鹹水)時,有關船身沒入水面下的體積變化與浮力的關係,下列何者正確?

(A)寶船沒入水面下體積變大、所受浮力變大 (B)寶船沒入水面下體積變大、所受浮力不變 (C)寶船沒入水面下體積變小、所受浮力變大 (D)寶船沒入水面下體積變小、所受浮力不變 (E)寶船沒入水面下的體積變化,與浮力無關

(C) 4. 船隊在長江山海口前,領航官陳建州手握住一枝長 20 公分的細木桿,伸長手臂用細木桿和鄰側遠方一座高 12 公尺的涼亭對照,發現細木桿兩端剛好和涼亭上下緣對齊,若眼睛和細木桿相距 60 公分,試問涼亭和領航官陳建州的距離約為何?

(A) 20 (B) 30 (C) 36 (D) 60 (E) 72 公尺

長度基本量的探索

空間的基本概念是距離(或長度),而空間觀念的數量化可用「長度的測量」來 達成。最初各國對長度的測量所採用標準不同,最後選定「米」(meter,即公尺)做 為國際公認長度單位。

「米」的由來,源於 1791 年 3 月 30 日巴黎國民大會議決採用「由北極經巴黎到赤道之子午線弧長的一千萬分之一的長度,定為 1 公尺。」依此規定便以鉑製成一米尺作為標準米棒,後來此棒經精密測定不甚準確微小於 1 公尺,約有 0.023% 的誤差。1875 年國際度量衡大會再次修訂以鉑(90%)、銥(10%)合金製成同長度標準 1 公尺米棒,這一標準米棒仍存有下列諸項缺點:

- (1) 長度隨溫度改變而改變,校正麻煩。
- (2) 雖然鉑銥合金硬度與抗氧能力高,但假以時日,標準 米棒長度仍會有所變化。
- (3) 天災人禍可能使標準米棒變形或散失。
- (4) 送到各國的標準米棒複製品在複製過程中有誤差存在,精確度已不能符合近代科技的要求。

隨著科技的發展,人們希望把長度基本單位建立在更科學、更可靠的基準上,而不再是用某一實體的尺寸做為標準。依此,在 1961 年國際度量衡會議上同意以氪($^{86}_{36}$ Kr)元素在 2 P_{10} 、5 D_{5} 兩能階間遷移時所輻射出橘紅色光在真空中波長的 1650763.73 倍為 1 公尺。這種規定的好處是:

- (1) 此種原子標準,可不必再擔心標準米棒是否會因任何因素而變形、散失。
- (2) 此種原子標準,精確且歷久不變,只要有氪燈設備,任何國家均可依此標準作公尺的校驗而不需到巴黎去。

今日最新的公尺標準是於 1983 年 9 月,第 17 屆國際度量衡大會重新決議,以光在真空中於 $\frac{1}{299792458}$ 秒時間內所行經之距離為 1 公尺。依此定義,在真空中光於 1 秒內可行進 299792458 公尺。閱讀上文,試回答 $5. \sim 8.$ 題:

- (D) 5. 下列何者是「長度」基本量的 SI 單位? (A) km (B) μm (C) nm (D) m (E)以上均是
- (BE)6. 下列有關「1公尺」由來的沿革敘述,哪些錯誤?(應選2項)
 - (A)公認製作而得的米棒,應符合「不變性」與「易得性」
 - (B)選作米棒的金屬材料,應採用活性極低的鉑、銥,如此便完美無缺
 - (C)米棒複製品,分送各國使用時亦應時時保持在0°C的環境中,以確保完整性
 - (D)光在真空中歷經 $\frac{1}{299792458}$ 秒所行之距離為1公尺,是目前最新的1公尺定
 - (E)國際度量衡會議曾一度採用常溫下銫原子133 Cs 的自然擺動長度定義為1公尺
- (C D) 7. 有關「長度的測量」,下列各項敘述哪些錯誤? (應選2項)
 - (A)利用某種放大工具的幫助,如果可將一米細分至含有微米刻度的程度,用這 樣的米尺來測量細菌較恰當
 - (B)有兩支直尺,最小刻度單位依次為公分、公釐,若同時用這兩支直尺來度量 一張桌子的長度,以公釐刻度者較準確
 - (C)量度一張課本紙張的厚度,最好是先測出課本的總厚度,以取得較大的測量 值,然後查得課本總頁碼,再將總厚度除以總頁碼,即得到一張紙的厚度
 - (D)某人在 A 位置測得一山頂的仰角為 30°, 前進 20 米抵達 B 位置後又測得山 頂的仰角為60°,據此資料可以推測山高為40米
 - (E)承(D), 這種測量距離的方法是利用光的直進原理
- 8. 在人類從事各種「長度測量」的演進過程中,擅用「光線直進」的特性,是相當重要的 經驗!今有一艘商船向著正北航行,在 $A \times B$ 二港口處先後測得北極星的仰角分別為 $\alpha \times$ β (單位為弧度),已知弧長=半徑×角度(弧度),依此可以估算得 $A \cdot B$ 二港口相 距若干?(地球半徑為 R_a)

答: $R_{\rm e}$ ($\beta - \alpha$)