THIS PAPER IS NOT TO BE REMOVED FROM THE EXAMINATION HALLS

UNIVERSITY OF LONDON

CO1102 ZB

BSc, CertHE and Diploma Examination

COMPUTING AND INFORMATION SYSTEMS, CREATIVE COMPUTING AND COMBINED DEGREE SCHEME

Mathematics for Computing

Date and Time: Tuesday 9 May 2017: 10.00 - 13.00

Duration: 3 hours

There are TEN questions in this paper. Candidates should answer all **TEN** questions. All questions carry equal marks and full marks can be obtained for complete answers to **TEN** questions. Each question carries equal marks. The marks for each part of a question are indicated at the end of the part in [.] brackets.

There are 100 marks available on this paper.

A hand held calculator may be used when answering questions on this paper but it must not be pre-programmed or able to display graphics text or algebraic equations. The make and type of machine must be stated clearly on the front cover of the answer book.

© University of London 2017

Question 1

(a) Working in base 2 and showing all carries, compute the following:

$$(101010)_2 + (11011)_2$$

[2]

- (b) i. Define what is meant by a rational number.
 - ii. Give an example of a rational number a, where 3 < a < 4.
 - iii. Give an example of an irrational number b, where 3 < b < 4.

[3]

(c) Express the binary number 110.101 as a decimal and say whether or not it is rational.

[2]

(d) Showing all working convert the repeating decimal number

to a fraction in its lowest terms.

[3]

Question 2

- (a) Let A, B and C be subsets of a universal set U.
 - i. Draw a labelled Venn diagram showing these three sets dividing $\ensuremath{\mathcal{U}}$ into 8 disjoint regions.
 - ii. On your diagram shade the region corresponding to X as given in the following membership table. Be sure to include a key to your shaded area.

A	B	C	X
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

iii. Construct a membership table which shows the region Y, where

$$Y = (B \cup C) - A$$
.

iv. By comparing Y to X or otherwise state a simple relation between these two sets using set notation.

[7]

- (b) i. Give the set $\{3n-5: n \in \mathbb{Z}, -3 \le n \le 2\}$ by the listing method.
 - ii. Give the set $P = \{1, 5, 25, 125, ...15625\}$ by the rules of inclusion method.

[3]

Question 3

Let $S = \{11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$ and let p, q be the following propositions concerning an integer $n \in S$.

p: n is a multiple of three;

q: n is an odd number.

(a) For each of the following compound statements find the set of values $n \in S$ for which it is true:

$$p \wedge q$$
; $p \vee q$; $\neg p \wedge q$.

[3]

(b) Express the following statement using p,q and logic symbols:

If n is even then it is not a multiple of 3.

[1]

(c) Use truth tables to prove that:

$$q \to p \equiv \neg p \to \neg q$$
.

[2]

- (d) List the elements of S which are in the truth set for the statement $q \to p$.
- [2]
- (e) Write the contrapositive of the following statement concerning an integer n.

If the last digit of n is 4, then n is not odd.

[2]

Question 4

The exponential function f where $f: \mathbb{R} \to \mathbb{R}$, is defined by the rule $f(x) = 3^x$.

- (a) Find f(0), f(4), f(-1) and $f(\frac{1}{2})$. [2]
- (b) Showing your working, find x such that f(x) = 100. [2]
- (c) Say, with reason, whether f is
 - i. one-to-one;
 - ii. onto.

[2]

[2]

- (d) Say what properties a function must have for it to have an inverse.
- (e) The invertible function $g: \mathbb{R} \to \mathbb{R}^+$, is given by the rule $g(x) = 10^x$. Give the [2]

Question 5

(a) A sequence is defined by the formula:

$$u_n = 5n + 3$$
 for $n \ge 1$.

i. Calculate u_1, u_2, u_3 and u_4 , showing your working.

domain, range and function rule of the function q^{-1} .

- ii. Define this same sequence in terms of a recurrence relation and initial term. [4]
- (b) Prove by induction that

$$\sum_{r=1}^{n} (5r+3) = \frac{5n^2 + 11n}{2}$$

for all $n \ge 1$.

[4]

(c) Use the formula from (b) to evaluate the following sum:

$$13 + 18 + 23 + 28 + \dots + 2018$$
.

[2]

Question 6

- (a) State the two properties a graph must have in order for it to be **simple**.
- [2]

- (b) A graph is called k-regular if each of its vertices has degree k. Draw an example of each of the following graphs.
 - i. A 4-regular graph on 6 vertices.
 - ii. A 3-regular graph on 4 vertices.

[2]

- (c) i. Draw a simple graph G with degree sequence 3,3,3,3,2,2, which we shall call G.
 - ii. Draw a simple graph, H, which has the same number of vertices and edges as G but is not isomorphic to G. Say also why the graph you have drawn is not isomorphic to G.
 - iii. Draw another simple graph with the same degree sequence as ${\cal G}$ which is non-isomorphic to both ${\cal G}$ and ${\cal H}.$

[4]

(d) Given a 5-regular graph on 2n vertices where $n \ge 4$ find how many edges there are in this graph.

[2]

Question 7

(a) Given the graph M with adjacency matrix

$$\mathbf{A}(M) = \left(egin{array}{cccc} 0 & 2 & 0 & 1 \ 2 & 0 & 2 & 1 \ 0 & 2 & 0 & 1 \ 1 & 1 & 1 & 0 \end{array}
ight).$$

- i. Draw the graph M.
- ii. Draw two spanning trees of M which are non-isomorphic to one another and say why they are non-isomorphic. Label these trees T_1 and T_2 .
- iii. Draw another spanning tree of M, called T_3 , and determine whether or not it is isomorphic to either of the trees you drew in (ii).

[5]

- (b) Given two graphs A and B, a relation R is defined such that graph A is related to graph B if it is non-isomorphic to graph B. Say whether or not this relation is
 - i. reflexive;
 - ii. symmetric;
 - iii. transitive.

Justify your answer in each case. In the cases where the given property does not hold provide a counter example to justify this.

[5]

Question 8

In a tournament two teams, A and B, play a series of just two matches. The outcome of each match may be an outright win or lose for each team, or a draw. The winner of the tournament is the team that wins the most matches. If both teams win the same number of matches the result is a draw.

(a) Draw a tree to model the possible outcomes for the tournament.

[4]

- (b) If the probability that A wins any match is $\frac{1}{2}$ and the probability that B wins any match is $\frac{2}{5}$ find
 - i. the probability that A wins the tournament
 - ii. the probability that B wins the tournament
 - iii. the probability that the outcome of the tournament is a draw.

[6]

Question 9

- (a) A ternary tree is a rooted tree in which each internal node has exactly 3 children. Let Q be a ternary tree of height h in which all the external nodes lie on level h.
 - i. Suppose that h > 5, give the number of nodes on level 5 of the tree Q.
 - ii. Explain why the number of **internal** nodes in Q is $\sum_{n=0}^{h-1} 3^n$.
 - iii. What is the smallest possible height of the tree Q if it is known to have at least 1000 internal nodes?

[5]

- (b) Let $X = \{x_1, x_2, x_3, ..., x_8\}$ be a set of eight elements.
 - i. Say how to assign a unique 8-bit binary string to each subset of X.
 - ii. Give the 8-bit binary string for the subset $S = \{x_4, x_6, x_8\}$ and find the subset of X coded by the binary string 10101010.
 - iii. Find the total number of subsets of X.

[5]

Question 10

- (a) Given two matrices **M** and **N** where $\mathbf{M}=\left(\begin{array}{cc} 5 & 6\\ 7 & 8 \end{array}\right)$, $\mathbf{N}=\left(\begin{array}{cc} x & 0\\ 0 & y \end{array}\right)$ and $x,y\in\mathbb{R}.$
 - i. Find MN and NM.
 - ii. Given MN = NM, state a relation between x and y.

[4]

(b) i. Write down the augmented matrix for the following system of equations.

$$x + 3z = 10$$
$$x + y + z = 6$$
$$2x - y + z = 3.$$

ii. Use Gaussian elimination to solve the system.

[6]

END OF PAPER

UL17/0466

PAGE 7 of 7