Contents

$$\mathbf{1} \quad K[x,y]/\langle x-a_1,y-a_2\rangle \cong K$$

1
$$K[x,y]/\langle x-a_1,y-a_2\rangle\cong K$$

Let $P=(a_1,a_2)$ and ϕ be the evaluation map

$$\phi: K[x,y] \to K$$

$$\phi(f(x,y)) = f(P)$$

then $\phi(K) = K$ so we see ϕ is surjective.

We also see $K[x,y]/\ker\phi\cong K$. Since the map is surjective, and K is a field, therefore $\ker\phi$ is maximal.

Now we prove $\ker \phi = \langle x - a_1, y - a_2 \rangle$. We can easily see $\langle x - a_1, y - a_2 \rangle \subseteq \ker \phi$, so now we prove the reverse inclusion. We write $f(x,y) = \sum f_i(x) y^i$ and then see $f(x,a_2) = \sum f_i(x) a_2^i$.

$$f(x,y)-f(x,a_2)=\sum f_i(x)(y^i-a_2^i)$$

but $(y^i - a_2^i) = (y - a_2)(y^{i-1} + \dots + a_2)$

$$\Rightarrow f(x,y) - f(x,a_2) \in \langle y - a_2 \rangle$$

Continuing with the same argument for x, and noting $f(a_1, a_2) = 0$, we see

$$f(x,y) \in \langle x - a_1, y - a_2 \rangle \Rightarrow \ker \phi = \langle x - a_1, y - a_2 \rangle$$