Функан. ДЗ 7.

ПРОХОРОВ ЮРИЙ, 776

1. Теорема Хана-Банаха и сопряженное пространство

Зафиксируем некоторое ЛНП $(X, \|\cdot\|)$.

Опр. Множество $L(X,\mathbb{C})$ всех линейных ограниченных операторов $X \to \mathbb{C}$ называется сопряженным пространством и обозначается X^* .

Сопряженное пространство X^* всегда полно, так как $\mathbb C$ полно.

Опр. Произвольное отображение $f: X \to \mathbb{R}$ или $f: X \to \mathbb{C}$ называется функционалом на X.

Опр. Элемент сопряженного пространства X^* называется линейным (непрерывным) функционалом.

Теорема Хана-Банаха. (общая формулировка) Пусть

- X комплексное ЛП, Y линейное подпространство X;
- p(x) полунорма на X:
 - (1) $p(x) \ge 0 \quad \forall x \in X;$
 - (2) $p(\lambda x) = |\lambda| \cdot p(x) \quad \forall \lambda \in \mathbb{C};$
 - (3) $p(x+y) \le p(x) + p(y)$.
- $f:Y\to\mathbb{C}$ линейный функционал, удовлетворяющий условию

$$|f(x)| \le p(x) \quad \forall x \in Y$$

Тогда существует линейный функционал $F:X\to\mathbb{C},$ являющийся продолжением f на X и удовлетворяющий условию

$$|F(x)| \le p(x) \quad \forall x \in X$$

Здесь под линейностью подпространства Y и функционалов f, F понимается именно комплексная линейность. Здесь приведена формулировка из книги Рудин, "Функциональный анализ".

Теорема Хана-Банаха. (вещественный случай) Пусть

- X вещественное ЛП, Y линейное подпространство X;
- $p:X \to \mathbb{R}$ такой функционал, что:
 - (1) $p(\lambda x) = \lambda \cdot p(x) \quad \forall \lambda \ge 0;$
 - (2) $p(x+y) \le p(x) + p(y)$.
- $f:Y \to \mathbb{R}$ линейный функционал, удовлетворяющий условию

$$f(x) \le p(x) \qquad \forall x \in Y$$

Тогда существует линейный функционал $F:X\to\mathbb{R},$ являющийся продолжением f на X и удовлетворяющий условию

$$F(x) \le p(x) \qquad \forall x \in X$$

Теорема Хана-Банаха не использует структуры нормированного пространства, однако есть удобное следствие. На семинарах под теоремой Хана-Банаха понимается это важное следствие общей теоремы.

Теорема Хана-Банаха. (следствие из общей теоремы) Пусть

- X- ЛНП, Y- подпространство X;• $f\in L(Y,\mathbb{C})=Y^*.$

Тогда существует $F \in X^*$, являющийся продолжением f на X и имеющий ту же норму: ||F|| = ||f||.

Далее приведены некоторые следствия из теоремы Хана-Банаха.

Утв. 1.1 Пусть $X - \Pi H \Pi$.

(1) Пусть $L \subset X$ — замкнутое подпространство, $x_0 \notin L$. Тогда $\exists f \in X^*$, такой что

$$f\Big|_{L} = 0, \qquad f(x_0) = 1, \qquad ||f|| = \frac{1}{\rho(x_0, L)}$$

(2) Пусть $x_0 \neq 0$. Тогда $\exists f \in X^*$, такой что

$$f(x_0) = ||x||_X, ||f|| = 1$$

- (3) Пусть $\forall f \in X^* \to f(x_0) = 0$. Тогда $x_0 = 0$.
- (4) $\forall x \in X : \|x\|_X = \sup_{\|f\|=1} |f(x)|.$

Утв. 1.2 Пусть $X \neq \{0\}$ — произвольное ЛНП, причем Y — неполное ЛНП. Тогда пространство L(X,Y)неполно.

Теоремы об отделимости. Пусть X — комплексное ЛНП, $A, B \subset X$ — непустые выпуклые непересекающиеся множества. Тогда

(1) если A открыто, то $\exists f \in X^*, f \neq 0$ и $\gamma \in \mathbb{R}$, такие что

$$\operatorname{Re} f(a) < \gamma \le \operatorname{Re} f(b) \qquad \forall a \in A, \qquad \forall b \in B$$

(2) если A компактно, а B замкнуто, то $\exists f \in X^*, \ f \neq 0$ и $\gamma_1, \gamma_2 \in \mathbb{R}$, такие что

$$\operatorname{Re} f(a) < \gamma_1 < \gamma_2 < \operatorname{Re} f(b) \qquad \forall a \in A, \qquad \forall b \in B$$

Утв. 1.3 Пусть X — комплексное ЛНП. Тогда отображение $\Phi: X \to X^{**}$ вида

$$\Phi(x) = \Phi_x, \quad$$
где $\Phi_x : X^* \to \mathbb{C}$ действует по правилу $\Phi_x(f) = f(x)$

осуществляет изометрический изоморфизм между X и ${\rm Im}\Phi\subset X^{**}.$

Отображение Φ иногда называется отображением Банаха.

Опр. Комплексное ЛНП X называется рефлексивным, если $\text{Im}\Phi = X^{**}$.

То есть X рефлексивно $\iff \Phi$ осуществляет изометрический изоморфизм между X и $X^{**}.$

Любое рефлексивное пространство является банаховым, так как сопряженное пространство всегда полно.

Опр. Функционал $f: X \to \mathbb{C}$ достигает своей нормы, если

$$\exists x \in X: \|x\| = 1, f(x) = \|x\|$$

Теорема Джеймса. ЛНП X рефлексивно \iff любой функционал $f \in X^*$ достигает своей нормы.

Опр. ЛНП X и Y будем называть pавными и писать X = Y или $X \cong Y$, если X и Y изометрически изоморфны.

Сопряженные и вторые сопряженные пространства для пространств последовательностей:

	X	X^*	X**	Рефлексивность
1	c_0	l_1	l_{∞}	×
2	c	l_1	l_{∞}	Х
3	l_1	l_{∞}		×
4	$l_p, 1$	$l_q, \ \frac{1}{p} + \frac{1}{q} = 1$	l_p	1
5	l_{∞}			Х

Пространство l_{∞}^* не выражается через известные пространства, но содержит подпространство, изоморфное l_1 .

Если в пространстве X есть счетный базис (Шаудера) $\{e_m\}_{m=1}^{\infty},$ а $f\in X^*,$ то

$$x = \sum_{m=1}^{\infty} \alpha(m)e_m \implies f(x) = \sum_{m=1}^{\infty} \alpha(m)f(e_m)$$

Утв. 1.4 В пространствах $l_p \ (1 \le p < \infty)$ и c_0 есть счетный базис $\{e_m\}_{m=1}^{\infty}$:

$$e_m(k) = \begin{cases} 1, & m = k, \\ 0, & m \neq k. \end{cases}$$

Утв. 1.5 В пространстве c_0 есть счетный базис $\{e_m\}_{m=0}^{\infty}$:

$$e_0(k) \equiv 1, \qquad e_m(k) = \begin{cases} 1, & m = k, \\ 0, & m \neq k. \end{cases}, \quad m \ge 1$$

2. Ядро линейного функционала

Утв. 2.1 Пусть $X - \Pi H\Pi$, $f \in X^*$. Тогда $\operatorname{Ker} f - \operatorname{замкнутое}$ подпространство X.

Доказательство.

Пусть
$$f(x_n) = 0$$
, $\forall n \in \mathbb{N}$ и $x_n \to x \implies |f(x)| = |f(x) - f(x_n)| \le ||f|| \cdot ||x - x_n|| \to 0$.

Утв. 2.2 Пусть $X - \Pi H\Pi$, $f \in X^*$, $f(x_0) \neq 0$. Тогда $\operatorname{Ker} f \oplus \operatorname{Lin}\{x_0\} = X$.

Доказательство.

Пусть $x \in X$. Определим $\alpha = \frac{f(x)}{f(x_0)}$. Тогда $f(x - \alpha x_0) = 0 \implies x - \alpha x_0 \in \operatorname{Ker} f \implies \operatorname{Ker} f + \operatorname{Lin}\{x_0\} = X$. Сумма прямая, потому что пересечение подпространств тривиально.

Утв. 2.3 Пусть $X - \Pi H\Pi$, $f \in X^*$. Тогда $\forall x_0 \in X$ справедлива формула

$$\rho(x_0, \operatorname{Ker} f) = \frac{|f(x_0)|}{\|f\|}$$

Доказательство.

$$||f|| = \sup_{x \neq 0} \frac{|f(x)|}{||x||} = \left/ \text{Vtb. } 2.2 \right/ = \sup_{\substack{\alpha \neq 0 \\ y \in \text{Ker } f}} \frac{|f(\alpha x_0 + y)|}{||\alpha x_0 + y||} = \sup_{\substack{\alpha \neq 0 \\ y \in \text{Ker } f}} \frac{|\alpha||f(x_0)|}{||\alpha x_0 + y||} = \sup_{\substack{y \in \text{Ker } f}} \frac{|f(x_0)|}{||x_0 + \frac{y}{\alpha}||} =$$

$$= \sup_{z \in \text{Ker } f} \frac{|f(x_0)|}{||x_0 - z||} = \frac{|f(x_0)|}{||x_0 - z||} = \frac{|f(x_0)|}{\rho(x_0, \text{Ker } f)}.$$

3. Сопряженное гильбертово пространство

Теорема Рисса-Фреше.

Пусть H — гильбертово пространство. Тогда существует такое отображение $z:H^* \to H,$ что

- \bullet z взаимно однозначно;
- $\bullet \ f(x) = \left\langle x, z(f) \right\rangle, \ \forall x \in H, \ \forall f \in H^*;$ $\bullet \ \|f\| = \|z(f)\|, \ \forall f \in H^*;$
- z сопряженно-линейное: $z(f+g)=z(f)+z(g), \ \ z(\alpha f)=\overline{\alpha}z(f).$

В некотором смысле H^* изометрически изоморфно H, но формально так говорить нельзя.

Утв. 3.1 Гильбертово пространство рефлексивно.

Задача §9.11

Найти норму функционала φ на пространстве C[a,b]:

$$\varphi(f) = \int_{a}^{b} f(x)g(x)dx,$$

где g — фиксированная непрерывная функция. Исследовать вопрос о том, когда норма достигается.

Решение:

(a) Найдем норму функционала φ . Сразу получим оценку:

$$\left|\varphi(f)\right| \le \int_a^b |f(x)||g(x)|dx \le \|f\|_\infty \cdot \|g\|_1 \qquad \Longrightarrow \qquad \|\varphi\| \le \|g\|_1$$

1. Пусть сначала g — функция, не меняющая знак.

Тогда можно взять $f(x) \equiv 1$, и тогда

$$|\varphi(f)| = \int_a^b |g(x)| dx = ||g||_1 \Longrightarrow ||\varphi|| = ||g||_1$$

2. Пусть теперь g — функция, имеющая конечное число нулей $\{x_k\}_{k=1}^{N-1} \subset (a,b)$. Построим максимизирующую последовательность.

Определим для $n \in \mathbb{N}$: $l_k = x_k - \frac{1}{n}$, $r_k = x_k + \frac{1}{n}$. Функции $f_n(x)$ определим следующим образом:

$$f_n(x)=\left\{egin{array}{ll} \dfrac{g(x)}{|g(x)|} &, & |x-x_k|\geq rac{1}{n}, & orall k=\overline{1,N}, \ 0 &, & x=x_k, \ \end{array}
ight.$$
 линейно , иначе,

то есть мы фактически разбиваем отрезок [a,b] на N отрезков, на каждом из которых g(x) знакопостоянна, и там полагаем $f_n(x)$ того же знака, что и g, и единицей по модулю. А потом соединяем линейно, чтобы была непрерывность.

Ясно, что $||f_n||_{\infty}=1$ при достаточно больших n. По построению, знаки f_n и g всегда совпадают, поэтому, считая $x_0=r_0=a$ и $x_N=l_N=b$, запишем

$$\begin{split} |\varphi(f_n)| &= \int_a^b f_n(x)g(x)dx = \sum_{k=1}^N \int_{x_{k-1}}^{x_k} |f_n(x)||g(x)|dx \geq \sum_{k=1}^N \int_{r_{k-1}}^{l_k} 1 \cdot |g(x)|dx = \\ &= \|g\|_1 - \sum_{k=1}^{N-1} \int_{l_k}^{r_k} |g(x)|dx \geq \|g\|_1 - \frac{2(N-1)}{n} \|g\|_\infty \longrightarrow \|g\|_1 \quad \text{при} \quad n \to \infty \end{split}$$

Поэтому $\|\varphi\| = \|g\|_1$.

3. Пусть теперь g — произвольная непрерывная функция на [a, b].

По теореме Вейерштрасса, существует последовательность полиномов $P_n(x)$, сходящаяся к g(x) по норме $\|\cdot\|_{\infty}$. Обозначим функционалы

$$\varphi_n(f) = \int_a^b f(x) P_n(x) dx$$

Функции $P_n(x)$ имеют конечные числа нулей, поэтому функционалы φ_n удовлетворяют пункту 2, значит, их нормы $\|\varphi_n\| = \|P_n\|_1$.

Покажем, что $\varphi_n \to \varphi$ по норме сопряженного пространства (т.е. сильно сходится).

$$\left| (\varphi_n - \varphi)(f) \right| \le \int_a^b |f(x)| |P_n(x) - g(x)| dx \le (b - a) ||f||_{\infty} \cdot ||P_n - g||_{\infty}$$

Тогда норма разности функционалов

$$\|\varphi_n - \varphi\| \le (b-a)\|P_n - g\|_{\infty} \longrightarrow 0 \qquad \Longrightarrow \qquad \|\varphi_n\| \longrightarrow \|\varphi\|$$

Последний переход следует из оценки $||x|| - ||y|| \le ||x - y||$, которая следует из неравенства треугольника.

Тогда имеем, что $\|P_n\|_1 \to \|\varphi\|$. С другой стороны,

$$||P_n - g||_{\infty} \to 0$$
 \Longrightarrow $||P_n - g||_1 \to 0$ \Longrightarrow $||P_n||_1 \to ||g||_1$

Отсюда тогда следует, что $\|\varphi\| = \|g\|_1$.

(b) Мы показали, что если g(x) — знакопостоянная функция, то норма достигается.

Теперь докажем, что если g(x) имеет нуль $c \in (a,b)$ и меняет там знак, то норма не достигается. Для произвольной функции $f \in C[a,b], \|f\|_{\infty} = 1$:

$$\begin{split} |\varphi(f)| &= \left| \int_a^{c-\delta} f(x)g(x)dx + \int_{c-\delta}^{c+\delta} f(x)g(x)dx + \int_{c+\delta}^b f(x)g(x)dx \right| \leq \\ &\leq \int_a^{c-\delta} |f||g|dx + \int_{c+\delta}^b |f||g|dx + \left| \int_{c-\delta}^{c+\delta} fgdx \right| \leq \|g\|_1 - \int_{c-\delta}^{c+\delta} |g(x)|dx + \left| \int_{c-\delta}^{c+\delta} f(x)g(x)dx \right| = (*) \end{split}$$

где $\delta = \delta(f) > 0$ — выберем сами, чтобы получить более точную оценку.

1. Пусть |f(c)| = 1.

Тогда $\exists \delta > 0$, такое, что с одной стороны от x = c функция f(x)g(x) неотрицательна, а с другой неположительна. Тогда

$$(*) \le \|g\|_{1} - \underbrace{\int_{c-\delta}^{c+\delta} |g| dx}_{\alpha + \beta} + \left| \underbrace{\int_{c-\delta}^{c} |f| |g| dx}_{\alpha \ge 0} - \underbrace{\int_{c}^{c+\delta} |f| |g| dx}_{\beta \ge 0} \right| = \|g\|_{1} + \underbrace{|\alpha - \beta| - \alpha - \beta}_{<0} < \|g\|_{1}$$

2. Пусть |f(c)| < 1.

Тогда $\exists \delta > 0$, такое, что $|f(c)| \le r < 1$ на $[c - \delta, c + \delta]$. Тогда

$$(*) \le ||f||_1 - \int_{c-\delta}^{c+\delta} |g| dx + \int_{c-\delta}^{c+\delta} r|g| = ||g||_1 - \underbrace{(1-r) \int_{c-\delta}^{c+\delta} |g(x)| dx}_{>0} < ||g||_1$$

Подводя итог, получаем, что

$$\|\varphi\| = \|g\|_1$$

и что норма этого функционала достигается \iff функция g(x) не меняет знак на [a,b].

Задача §9.4

Привести пример функционала в пространстве C[a,b], не достигающего своей нормы.

Решение:

Из задачи $\S 9.11$ следует, что таким функционалом на C[-1,1] является, например

$$\varphi(f) = \int_{-1}^{1} x f(x) dx,$$

так как функция g(x) = x меняет знак в нуле.

Задача §9.5

Пусть X- ЛНП. Доказать, что $f\in X^*,\ f\neq 0$ достигает своей нормы \iff

$$\exists x_0 \in X \setminus \operatorname{Ker} f, \quad \exists x \in \operatorname{Ker} f : \quad ||x - x_0|| = \rho(x_0, \operatorname{Ker} f)$$

Решение:

Будем пользоваться формулой, полученной на семинаре: если $f \in X^*, f \neq 0$, то $\forall x_0 \in X$:

$$\rho(x_0, \operatorname{Ker} f) = \frac{|f(x_0)|}{\|f\|}$$

1. (\Longrightarrow) f достигает нормы, значит, существует $y \neq 0$, такой, что $||f|| = \frac{|f(y)|}{||y||} \neq 0$. Тогда $y \notin \operatorname{Ker} f$.

Подберем элементы нужные x и x_0 . В качестве x_0 возьмем произвольный элемент не из $\operatorname{Ker} f$ (он существует, так как $f \neq 0$). Заметим, что

$$z = y - \frac{f(y)}{f(x_0)} x_0 \in \operatorname{Ker} f \implies y = z + \alpha x_0, \qquad \alpha = \frac{f(y)}{f(x_0)} \neq 0$$

По формуле выше:

$$\rho(x_0, \text{Ker } f) = \frac{|f(x_0)|}{\|f\|} = \frac{|f(x_0)| \cdot \|y\|}{|f(y)|} = \frac{|f(x_0)| \cdot \|z + \alpha x_0\|}{|\alpha| \cdot |f(x_0)|} = \left\|x_0 - \underbrace{\left(-\frac{z}{\alpha}\right)}_{}\right\|$$

2. (⇐=) По предположению и формуле выше:

$$||x - x_0|| = \rho(x_0, \text{Ker } f) = \frac{|f(x_0)|}{||f||} = \frac{|f(x - x_0)|}{||f||},$$

то есть функционал f достигает свою норму на элементе $y = x - x_0$.

Покажем еще, что если второе свойство выполнено для какого-то $x_0 \in X \setminus \operatorname{Ker} f$, то оно выполнено $\forall y_0 \not\in \operatorname{Ker} f$. Тогда $y_0 = z + \alpha x_0$, где $z \in \operatorname{Ker} f$, $\alpha = \frac{f(y_0)}{f(x_0)}$. По предположению и формуле выше:

$$\rho(y_0, \text{Ker } f) = \frac{|f(y_0)|}{\|f\|} = \frac{|\alpha| \cdot |f(x_0)|}{\|f\|} = |\alpha| \cdot \rho(x_0, \text{Ker } f) = |\alpha| \cdot \|x - x_0\| = \|\underbrace{\alpha x + z}_y - y_0\|,$$

где y — элемент наилучшего приближения y_0 .