TRABAJO PRÁCTICO Nº 7 CIRCUITOS DE CORRIENTE CONTINUA-PARTE III

Experiencia 7.1 Redes de corriente continua

Objetivo

Corroborar procedimientos y reglas que se aplican en la resolución de redes de corriente continua constituidas por elementos lineales y funcionamiento en régimen estacionario.

Introducción

Se trata de circuitos eléctricos cuyo funcionamiento se resuelve analíticamente aplicando la ley de Ohm, las reglas de asociación de resistencias, la ecuación del circuito serie y las reglas de Kirchhoff.

Ley de Ohm: $i = \frac{V}{R}$

Regla; resistencias en serie: $R_{eq} = \sum R_i$

Regla; resistencias en paralelo: $\frac{1}{R_{eq}} = \sum \frac{1}{R_{i}}$

Ecuación del circuito serie: $i = \frac{\sum \varepsilon}{\sum R}$

Kirchhoff; regla de las mallas: $\sum V = 0$

 $\textit{Kirchhoff; regla de los nudos:} \qquad \sum i_{entrante} = \sum i_{saliente} \ \acute{o} \ \sum i = 0$

La denominación de red eléctrica que se da a los circuitos proviene de la configuración en mallas de la interconexión de elementos, de manera que se los puede describir mediante:

- Malla (o espira): cualquier trayectoria conductora <u>cerrada</u> que se pueda definir recorriendo el circuito.
- Nodo (o unión, o nudo): punto del circuito al que confluyen <u>tres o más</u> conductores de interconexión de elementos.
- Rama: tramo del circuito, con uno o varios elementos en serie, definido entre dos nodos.
- Elementos activos: Generadores de fem; se los representa como ideales, sin resistencia interna. Si es necesario tomar en cuenta el valor de r, se la representa en serie con ε, como una resistencia externa.
- Elementos pasivos o consumidores: resistores (resistencias lineales).

Las redes más sencillas son aquellas que se pueden resolver reduciéndolas a una malla simple o circuito serie usando las reglas de asociación serie y paralelo de resistencias y generadores. Llamamos a estas redes **circuitos reducibles.**

Las redes en las que no es posible la reducción a circuito serie se denominan **redes o circuitos no reducibles** y para su resolución se recurre a las reglas de Kirchhoff.

Las fuentes de fem que usaremos serán consideradas como ideales (sin resistencia interna) por esto, adoptaremos como valor de ε directamente la diferencia de potencial en bornes de las fuentes, en funcionamiento y conectadas a la red en estudio.

I. Verificación del procedimiento para resolver una "red reducible a circuito serie".

Equipamiento

Siete resistores potencia de disipación 0,5 W con terminales de conexión tipo "banana" y accesorios fijos en un panel rectangular.

Dos fuentes de corriente continua.

Tester digital.

Dos módulos con interruptores y accesorios para conexión, comando y protección de circuitos. Conductores y accesorios para el cableado.

Procedimiento

Representar esquemáticamente el grupo de resistores y numerarlos conforme se indica en el dispositivo de trabajo. Medirlos utilizando el ohmímetro y registrar sus valores en el esquema. Dibujar diagrama circuital de una red reducible a circuito serie indicando la conexión de las fuentes; por ejemplo, el mostrado en el esquema (Fig. 7.2) que interconecta los siete resistores y las dos fuentes.

Interconectar los resistores del panel conforme a lo representado en el diagrama (el diagrama siempre debe tenerlo a la vista).

$$\begin{aligned} V_{F1} &= \epsilon_1 \\ V_{F2} &= \epsilon_2 \end{aligned}$$

Determinar con el tester en la función ohmímetro los valores de resistencias equivalentes que permitan calcular el denominador ΣR de la ecuación general. Registrar valores y calcular ΣR .

Comparar el valor determinado anteriormente con el que resulta de resolver las combinaciones serie paralelo de la red a partir del valor de los resistores individuales. Para el caso de la red del

diagrama corresponde:
$$\sum R = \frac{R_1 R_2 R_3}{R_2 R_3 + R_1 R_2 + R_1 R_3} + R_4 + R_5 + \left(\frac{R_6 R_7}{R_6 + R_7}\right)$$
(7.1)

Conectar la red a las fuentes utilizando los interruptores de comando y protección de circuitos; previamente, controlar que las **polaridades** sean las indicadas en el diagrama y que la regulación de las fuentes (no necesariamente iguales) supere 12 V.

Controlar que los resistores funcionen sin exceder la potencia de disipación 0,5 W; en caso de que esto ocurra, disminuir la tensión de alguna de las fuentes. Para este control aplicar la expresión $P = \frac{V^2}{R}$ (con el tester, en la función voltímetro, medir la tensión V en el resistor de resistencia R que controla).

Medir con el tester en la función voltímetro las tensiones de salida de las fuentes, estando estas activadas y conectadas a la red. Registrar los valores medidos y calcular el numerador de la ecuación general del circuito serie Σ ε .

Calcular la corriente del circuito serie aplicando
$$i = \frac{\sum \varepsilon}{\sum R}$$
 (7.2)

Medir la corriente en diferentes puntos del circuito serie, comprobando la característica de corriente del circuito serie. Indicar en el diagrama los puntos de medición y registrar valores medidos.

Precaución: la apertura del circuito para conectar el amperímetro, debe realizarla abriendo previamente los interruptores de comando.

Final: verificar correspondencia entre valor medido y valor calculado de la intensidad de corriente del circuito reducible a serie.

II. Verificación de las reglas de Kirchhoff. "Redes no reducibles a circuito serie".

Equipamiento

Seis resistores potencia de disipación 0,5 W parcialmente interconectados conforme se indica en el dispositivo de trabajo (Fig. 7.3).

Dos fuentes de corriente continua.

Tester digital.

Dos módulos con interruptores y accesorios para conexión, comando y protección de circuitos.

Conductores y accesorios para el cableado.

Procedimiento

Representar esquemáticamente el grupo de resistores y numerarlos conforme se indica en el dispositivo de trabajo. Medirlos utilizando el ohmímetro y registrar sus valores en el esquema.

Dibujar diagrama circuital de una red no reducible a circuito serie indicando la conexión de las fuentes; por ejemplo, el mostrado en el esquema (Fig. 7.4) que interconecta los seis resistores y las dos fuentes. Marcar en el diagrama la formación de nodos y mallas (en el ejemplo son tres nodos y tres mallas simples).

Registrar en el diagrama la identificación y valor de los resistores.

Con el diagrama circuital a la vista

Construir la red efectuando el correspondiente cableado; inclusive el de conexión de las fuentes. Activar las fuentes reguladas a tensiones del orden de 12 V y cerrar los interruptores de comando.

Con el tester en la función voltímetro

Controlar que los resistores funcionen sin exceder la potencia de disipación 0,5 W; en caso de que esto ocurra, disminuir la tensión de alguna de las fuentes.

Medir la tensión en cada uno de los elementos de la red registrando **valores** y **POLARIDADES** en el diagrama circuital.

Aplicando la ley de Ohm

Calcular la corriente en cada uno de los resistores; registrar valores y sentidos en el diagrama.

Considerando los datos registrados en el diagrama circuital:

Verificar la regla de las mallas en las cuatro mallas simples.

Verificar la regla de los nudos en los cuatro nudos.

Registrar los cálculos y exponer conclusiones.

Ejercicio complementario

Determinar la diferencia de potencial entre los puntos \mathbf{a} y \mathbf{b} de la red ($V_{ab} = V_a - V_b$). (7.3) Sobre el diagrama circuital, partiendo del punto \mathbf{b} seguir una trayectoria conductora hasta el punto \mathbf{a} sumando algebraicamente las diferencias de potencial que encuentre. Efectuar igual

determinación siguiendo diferentes trayectorias. Comparar resultados. Verificar midiendo Vab

con el tester en la función voltímetro.

Ejercicio complementario

Para resolver una red no reducible a serie, aplicando las reglas de Kirchhoff, debe obtener un número de ecuaciones lineales independientes igual al número de incógnitas; así, la resolución de la red es, en definitiva, un problema algebraico.

Resolver la red Fig. 7.4 (determinar analíticamente las corrientes) a partir del conocimiento de las resistencias y de las tensiones en bornes de las fuentes. Verificar valores y sentido de las corrientes con los registrados en el diagrama circuital.

Experiencia 7.2

Circuitos resistencia-capacitancia

Introducción

Cuando se tiene un circuito formado por un resistor \mathbf{R} y un capacitor \mathbf{C} en serie, y se lo conecta a una fuente de corriente continua, se produce la carga del capacitor; esta carga y la consecuente diferencia de potencial entre las placas del capacitor, no son constantes por cuanto se aproximan a un valor final (\mathbf{Q} y V) de manera asintótica siguiendo una variación exponencial con un tiempo característico $\tau = \mathbf{RC}$, denominado "constante de tiempo" o "tiempo de relajación".

En el proceso de descarga, los parámetros mencionados, también varían exponencialmente, con la misma constante de tiempo.

A estos procesos, en los que los parámetros eléctricos varían con el tiempo, se denominan "transitorios" y, en la práctica, se consideran finalizados cuando el tiempo transcurrido es del orden de 5 veces el tiempo de relajación τ .

Objetivo

Analizar transitorios de carga y descarga de capacitores en circuitos RC y determinar las respectivas constantes de tiempo τ

Equipamiento

Caja **RC**. Características y especificaciones de los capacitores en T.P.N° 4. Los resistores son: $R_1 = 2.0 \times 10^8 \Omega$; $R_2 = 1.0 \times 10^8 \Omega$ y $R_3 = 0.50 \times 10^8 \Omega$.

Fuente de tensión variable de baja potencia. Se usará solo en la escala 0 - 30 V.

Electrómetro para mediciones estáticas de tensión. Se usará en la escala de 0 - 30 V. Cronómetro.

I. Transitorio de carga

Procedimiento:

Seleccionar el circuito que muestra la Fig. 7.5. El circuito serie es formado con R_1 =2.0x10 8 Ω y C_2 = 0.47 μ F.

Asegurar que el capacitor se encuentre descargado cortocircuitándolo transitoriamente.

Incorporar la fuente ajustada a 30 V.

Conectar el electrómetro a los terminales del capacitor

Fig. 7.5 Dispositivo de trabajo y circuito ensayo transitorio de carga

Cerrar la llave de la fuente iniciando el proceso de carga y simultáneamente accionar el cronómetro comenzando a medir el tiempo t .

Tomar los valores de t correspondientes a tensiones de 5 V; 10 V; 15 V y 20 V en bornes del capacitor (que serán indicadas por el electrómetro).

Graficar la curva de carga v=f(t). (al finalizar el proceso de carga la tensión en bornes del condensador será $V_f = 30 \text{ V}$).

Repetir la operación conectando el electrómetro en bornes de la resistencia y tomar lecturas de t para valores de tensión de 25 V; 20 V; 15 V y 10 V.

Graficar la curva v = f(t). (al finalizar la carga, la tensión en bornes del resistor será nula).

Cálculo de la constante de tiempo

Para cualquier punto de la curva de carga obtenida, por ejemplo, el punto 2, se cumple:

$$\mathbf{v}_2 = \mathbf{V}_{\mathbf{f}} \left(1 - \mathbf{e}^{-\frac{\mathbf{t}_2}{\tau}} \right) \tag{7.4}$$

de donde despejamos:

$$\tau = \frac{-t_2}{\ln \frac{V_f - v_2}{V_f}}$$
 (7.5)

Verificar resultado con los valores de R y C del circuito ensayado ($\tau = RC$).

Observar que en el ensayo donde v es la tensión en bornes del resistor, indirectamente está analizando la corriente i del transitorio de carga del capacitor.

Repetir procesos de carga seleccionando distintos valores de R y C; controlando cualitativamente su influencia en la duración del transitorio. No tomar lecturas; únicamente observar el desplazamiento de la aguja del electrómetro.

II. Transitorio de descarga

Fig. 7.6 Dispositivo de trabajo y circuito ensayo transitorio de descarga

Procedimiento:

Adoptar iguales componentes del circuito **RC** como muestra la Fig. 7.6.

Cargar el capacitor a **30 V** haciendo breve contacto con los terminales conectados a los bornes de la fuente.

Conectar el electrómetro a los bornes del capacitor.

Cerrar la llave y simultáneamente operamos el cronómetro comenzando a medir el tiempo t.

Tomar lecturas de t correspondientes a tensiones de 20; 15; 10 y 5 V.

Graficar la curva de descarga v = f(t). (al finalizar el proceso de descarga la tensión en bornes del capacitor será nula).

Cálculo de la constante de tiempo

Para dos puntos cualesquiera de la curva, por ejemplo el 2 y el 4, se cumple:

$$v_2 = V_i e^{-\frac{t_2}{\tau}} \quad y \quad v_4 = V_i e^{-\frac{t_4}{\tau}}$$
 (7.6)

De donde resulta:
$$\frac{v_2}{v_4} = e^{\frac{t_4 - t_2}{\tau}}$$
 finalmente:
$$\tau = \frac{t_4 - t_2}{\ln \frac{v_2}{v_4}}$$
 (7.7)

Teniendo en cuenta que ha ensayado el circuito con los mismos elementos: ¿Coincide el valor obtenido de τ con el valor determinado anteriormente con datos del proceso de carga?

Repetir procesos de descarga con distintos valores de R y C; controlando cualitativamente su influencia en la duración del transitorio. No tomar lecturas; únicamente observar e interpretar el desplazamiento de la aguja del electrómetro.