Ordinary Differential Equations: Skydiver

The free-fall velocity of a parachutist initially at rest can be estimated using the force balance:

$$\dot{v} = g - \frac{c_d}{m} v^2$$

where $g=9.81\frac{m}{s^2}=$ acceleration due to gravity and m=80~kg is the parachutist's mass. During freefall, the drag coefficient $c_d=0.25\frac{kg}{m}$. When the parachutist opens the chute at time t_{open} , the drag coefficient becomes $c_d=5\frac{kg}{m}$.

- a) What would be the steady-state velocity if the chute was not opened? What is the steady-state velocity after the chute opens?
- b) Sketch (by hand) the phase portrait and anticipated solution.
- c) Write a function to solve this ODE numerically from $t = 0:0.01:30 \, s$. Create a plot of v(t) vs t for $t_{open} = 0:5:20 \, s$, putting all curves on a single plot. Use a relative and absolute tolerance of 10^{-9} (see the ode 45 () documentation).
- d) Create a plot of v(t) vs t for m = 25: 25: 100 kg, putting all curves on a separate figure. Take $t_{open} = 15$ s. Use a relative and absolute tolerance of 10^{-9} .

Skydiver Phase Portrait/Anticipated Solution

ODE and Initial Condition	Fixed Points (=Steady-State Values)	Stability
$\dot{v} = g - \frac{c_d}{m} v^2$		
$v_0 = 0 \frac{m}{s}, t = 0$		

ODE and Initial Condition	Fixed Points (=Steady-State Values)	Stability
$\dot{v} = g - \frac{c_d}{m}v^2$ $v_0 = 0 \frac{m}{s}, t = 0$	$V_{SS} = \sqrt{\frac{nq}{cd}}$	Stable!

