The Joy of Primitive Variable Recovery in Relativistic Magnetohydrodynamics

Wolfgang Kastaun

North American Einstein Toolkit Summer School 2021

Conserative to Primitive Recovery

Also known as con2prim, C2P

The Situation

Better avoid driving over potholes with GRMHD cars.

The Primitive Variables

Matter related variables that need to be recovered

$ ho_{E}$	Fluid contribution to total energy density
ho	Baryonic mass density
P	Fluid pressure
$\epsilon = \frac{ ho_E}{ ho} - 1$	Specific internal energy
$h = 1 + \epsilon + \frac{P}{\rho}$	Relativistic enthalpy
v ⁱ	3-velocity
W	Lorentz factor
C_S	Adiabatic sound speed

The Magnetic Field

In the Eularian frame, EM field described by

 B^i Magnetic field F^i Electric field

► Important assumption: Ideal MHD

$$E^i = -\epsilon^{ijk} v_j B_k$$

- ► Role in C2P
 - Bⁱ needed as input
 - E provided as result
- ▶ Bⁱ can be trivially obtained before C2P
 - Either evolved directly (constrained transport)
 - ightharpoonup Or computed from evolved vector potential A^{μ}

The Conserved Variables

Evolved by GRMHD codes

Conserved baryonic mass

$$D = \sqrt{\gamma} \rho W$$

Quasi-conserved momentum density

$$S_i = \sqrt{\gamma} \left[\rho W^2 h v_i + \epsilon_{ijk} E^j B^k \right]$$

Quasi-conserved energy density

$$au = \sqrt{\gamma} \left[
ho W \left(hW - 1
ight) - P + rac{1}{2} \left(E^2 + B^2
ight)
ight]$$

Matter Composition

- ightharpoonup Typically given by the electron fraction Y_e
- ► Available from evolution scheme before C2P
- Often evolved in terms of conserved tracer DY_e
- Does not need to be recovered by C2P
- Used by C2P only when evaluating EOS

The Equation of State

- Evolved variables insufficient to compute primitives
- Also need EOS
- Can be specified differently
 - ▶ Suitable for C2P: $P = P(\rho, \epsilon, Y_e)$
 - Often available only as $P(\rho, T, Y_e)$
- ▶ Inversion $T(\rho, \epsilon, Y_e)$ increases computational costs
- Using $P(\rho, T, Y_e)$ directly increases complexity of C2P
- ▶ Many C2P schemes require derivatives $\partial_{\rho}P, \partial_{\epsilon}P$

The Equation of State

- Different types of EOS in use
 - ► Include composition *Y*_e or not
 - ► Analytic, e.g. ideal gas
 - ► Hybrid: cold part + analytic thermal contribution
 - Fully tabulated
- Ideally, C2P algorithm should not depend on EOS type

The Equation of State

- EOS have a validity range
 - Physical bounds
 - ► Technical constraints
- ▶ Important: zero-temperature limit $\epsilon \le \epsilon(\rho, T = 0, Y_e)$
- Ideally,
 - ► EOS frameworks should provide validity ranges
 - C2P algorithm should use validity ranges

Solution Approaches

- Always cast into a root finding problem
- Different choices for root function
 - Multidimensional?
 - ▶ One-dimensional?
 - Which independent variables to use?
- Different root-solving algorithms
 - ▶ Newton-Raphson needed for multidimensional formulations
 - Root-bracketing only for one-dimensional formulations
 - Some require derivatives
- Require initial guess or not

Existing Schemes

► Many algorithms in literature, e.g.

Scheme	Dims	Independent	EOS	EOS	Guess
		variables	form	deriv.	needed
Neilsen	1	DhW	$P(\rho,\epsilon)$	No	No
Newman	1	P	$P(\rho, h)$	No	No
Noble	2	DhW, v ²	$P(\rho, h)$	Yes	Yes
Siegel	2	DhW, T	$P(\rho, T)$	Yes	Yes
Duran	3	W, DhW, T	$\epsilon(ho,T)$	Yes	Yes

Existing Schemes

► Many algorithms in literature, e.g.

Scheme	Dims	Independent	EOS	EOS	Guess
		variables	form	deriv.	needed
Neilsen	1	DhW	$P(ho,\epsilon)$	No	No
Newman	1	Р	P(ho, h)	No	No
Noble	2	DhW, v²	P(ho, h)	Yes	Yes
Siegel	2	DhW, T	$P(\rho,T)$	Yes	Yes
Duran	3	W, DhW, T	$\epsilon(ho,T)$	Yes	Yes

▶ Meta-scheme: try several schemes until one succeeds

Existing Schemes

- ► See [Siegel+2018] for a C2P demolition derby
- ► Found that all schemes can fail

Evolution Errors

- Can give inaccurate or invalid states
- Specific internal energy
 - ightharpoonup Can fall slightly below T=0 value (harmless)
 - ► Has large error in magnetically dominated regime
 - Has large error in highly relativistic regime
 - ► Large temperature errors (several MeV)
 - Some schemes also evolve entropy

Evolution Errors

- Can give inaccurate or invalid states
- Specific internal energy
 - ightharpoonup Can fall slightly below T=0 value (harmless)
 - Has large error in magnetically dominated regime
 - Has large error in highly relativistic regime
 - Large temperature errors (several MeV)
 - Some schemes also evolve entropy
- NS surfaces
 - Problematic for evolution schemes
 - Often produces low-density invalid states
- BH center
 - Center extremely problematic for GRMHD
 - Anything can happen..
 - Impact lessened by horizon
 - Alternative: excise interior

Evolution Errors

- ► C2P needs to detect invalid input
- ► Ideally, correct harmless problems
- Otherwise, simulations should be aborted
- ► C2P cannot reduce inaccuracies from evolution

Artificial Atmosphere

- Evolution schemes cannot handle vacuum
- C2P problem also degenerate (velocity undefined)
- lacktriangle Artificial atmosphere: enforce minimum density $ho_{\sf atmo}$
- Atmosphere handling typically done during C2P

To Design a C2P Scheme

- Beware: tedious
- Root solvers
 - ▶ Need rapid convergence to limit CPU costs
 - Newton-Raphson methods may diverge
 - Using initial guesses makes C2P less predictable
- Root functions
 - ▶ May become degenerate for high W or B or ϵ
 - Need to proof uniqueness of solution
 - Avoid bad behavior for invalid input
 - Might even break in Newtonian (!) limit

C2P Headaches

- ► Failures for high magnetization or Lorentz factors
 - ⇒ cannot lower atmosphere density
- Inability to distinguish algorithm failure from invalid input
- ▶ Reflex of blaming the C2P blinds against evolution problems
- Unpredictable when using initial guesses
- EOS framework
 - Inconsistent treatment of different EOS types
 - Unclear concepts for validity range handling
 - Tabulated EOS often have low quality
 - Slow if based on temperature

RePrimAnd Scheme to the Rescue

- One-dimensional root function
- Root-solver does not need derivatives
- ► Linear in Newtonian limit
- Well behaved even for high magnetization
- Tight initial bracket available
- ► Mathematical proofs for existence + uniqueness of solution
- Reliably identifies invalid input states
- Provides optional corrections
- Error propagation of root solving mapped out

The RePrimAnd Library

- ► Standalone C++ library for primitive recovery
- Also contains fancy EOS framework
 - Generic interface
 - Open design, can add custom EOS types
 - Universal EOS file format
 - Python bindings for postprocessing
- ► C2P code completely EOS-agnostic
- Not tied to any evolution code
 - Can be installed in ET via ExternalLibraries thorn

The RePrimAnd Library

- Robustness proven by unit tests for C2P and EOS
- Efficiency proven by benchmarks

$$z \equiv Wv$$
. $B = 10\sqrt{W\rho}$ (bottom), $B = 0$ (top).

The RePrimAnd Library

- Publicly available
 - ► GitHub: https://github.com/wokast/RePrimAnd
 - Zenodo DOI https://doi.org/10.5281/zenodo.3785074
- Usable documentation https://www.atlas.aei.uni-hannover.de/holohome/ wolfgang.kastaun/doc/reprimand/latest/index.html
- Scheme described and tested in
 W. Kastaun et al, Phys. Rev. D 103, 023018 (2021)
 (arXiv:2005.01821).
- ► Further tests within Spritz code (see Jay's talk)

 J. V. Kalinani et al, arxiv:2107.10620 (2021)
- ► Already used in R. Aguilera-Miret et al, Phys. Rev. D 102 (2020)

RePrimAnd Todo-List

- Implement fully tabulated EOS
- EOS performance optimizations
- Add TOV solver
- ► Include the code for non-MHD C2P algorithm
- Thorns for integration into EinsteinToolkit
- ▶ RePrimand's EOS as alternative to ET's EOS_Omni (?)
- Public EOS collection (?)