合流性とZ性について

群馬大学理工学府 赤坂 陸来*
Riku Akasaka
Department of Computer Science,
Gunma University

群馬大学理工学府 藤田 憲悦[†] Ken-etsu Fujita Department of Computer Science, Gunma University

名古屋大学大学院情報科学研究科 中澤 巧爾 Koji Nakazawa Nagoya University

1 はじめに

抽象書き換え系には合流性や停止性などの重要な性質が存在する. 合流性を証明する手段として, Z 性とよばれる性質を利用したものが知られている. 本論文は, 前半では Z 定理と合流性について, Dehornoy, P., and V. van Oostrom[1] にしたがって調査したものを述べる. 後半では Z 性を拡張した合成的 Z 定理について, Honda, Y., K. Nakazawa, and K. Fujita[2] より例を用いて紹介する.

2 準備

本節では、抽象書き換え系と例として用いる入計算について、本論文で使用する記号を含め定義を述べる、

2.1 抽象書き換え系

抽象書き換え系は、任意の集合 A と A 上の二項関係 \rightarrow の対 (A, \rightarrow) である. a, b, c, \ldots を集合 A の要素とし、 $(a, b) \in \rightarrow$ のとき, $a \rightarrow b$ と表し a から b への簡約という. $a \rightarrow b$ を満たすような b が存在しないとき a は 正規形であるという. \rightarrow の反射推移閉包を \rightarrow 、推移閉包を \rightarrow + と表す.

2.2 簡約列

抽象書き換え系 (A, \rightarrow) が与えられたとき, $a_0 \rightarrow a_1 \rightarrow a_2 \rightarrow \dots$ のような有限もしくは無限列を \rightarrow についての簡約列という. とくに, $a,b \in A$ について, a から始まる簡約列を a の簡約列, a から始まって b で終わる簡約列を a から b の簡約列という. また, $\sigma: a \rightarrow b$ と表記するとき σ は a から b の任意の簡約列を示す.

^{*}本研究は京都大学数理解析研究所の助成を受けたものである.

[†]本研究の一部は KAKENHI(C)20K03711 の援助を受けたものである.

2.3 λ 計算

2.3.1 λ 項

 Λ を λ 項の集合とし、以下のように定義する.

定義 $1(\lambda \bar{q})$

- 1. 変数 x, y, z, ... は λ 項である.
- 2. M が λ 項であり, x が変数のとき $(\lambda x.M)$ は λ 項である.
- 3. M, N が λ 項のとき (MN) は λ 項である.

 $(\lambda x.M)$ という形を関数抽象, (MN) という形を関数適用という. また, 関数抽象 $(\lambda x.M)$ の M の中に変数 x 現れたとき, x は束縛されているという. 束縛されている変数のことを束縛変数と呼び, 束縛されていない変数を自由変数と呼ぶ. λ 項 M に含まれる自由変数の集合を FV(M) と表す.

2.3.2 β 簡約 (\rightarrow_{β})

 $(\lambda x.M)N$ という形の λ 項を M[x:=N] に書き換えることを β 簡約と言い、M を β 簡約して M' を得るとき $M\to_{\beta} M'$ と表記する. β 簡約の反射推移閉包を \to_{β} , 推移閉包を \to_{β}^+ と表す. $(\lambda x.M)N$ という形の項を β 基 $(\beta\text{-redex})$ と言い、 β 基を含まない λ 項 $(\text{それ以上 }\beta$ 簡約できない λ 項) を β 正規形という. また、 (Λ,\to_{β}) の同値関係を $=_{\beta}$ で表し以下のように定義する.

定義 $2 (\rightarrow_{\beta}$ の同値関係)

- 1. $M \rightarrow_{\beta} N$ ならば $M =_{\beta} N$
- 2. $M =_{\beta} N$ ならば $N =_{\beta} M$
- 3. $M =_{\beta} N$ かつ $N =_{\beta} L$ ならば $M =_{\beta} L$

3 抽象書き換え系に関する性質

3.1 合流性と Church-Rosser の定理

定義 3 (合流性)

抽象書き換え系 (A, \rightarrow) について, 以下の性質を満たすとき (A, \rightarrow) は合流性をもつという.

$$\forall a, a_1, a_2 \in A, \ a \twoheadrightarrow a_1 \not \supset a \twoheadrightarrow a_2 \implies \exists a_3 \in A, \ a_1 \twoheadrightarrow a_3 \not \supset a_2 \twoheadrightarrow a_3$$

合流性はラムダ計算において成立し、関連した性質として Church-Rosser の定理が成立する.

定理 4 $((\Lambda, \rightarrow_{\beta})$ の合流性)

 $\forall M, M_1, M_2 \in \Lambda, \ M \twoheadrightarrow_{\beta} M_1 \not \to \supset M \twoheadrightarrow_{\beta} M_2 \implies \exists M_3 \in \Lambda, \ M_1 \twoheadrightarrow_{\beta} M_3 \not \to \supset M_2 \twoheadrightarrow_{\beta} M_3$

定理 5 (Church-Rosser の定理)

$$\forall M, N \in \Lambda, \ M =_{\beta} N \implies \exists L \in \Lambda, \ M \twoheadrightarrow_{\beta} L かつ N \twoheadrightarrow_{\beta} L$$

図 1: $(\Lambda, \rightarrow_{\beta})$ の合流性

図 2: Church-Rosser の定理

 (Λ, \to_{β}) が定理 4 を満たすことを (Λ, \to_{β}) は CR 性をもつという.

定理 6 合流性と Church-Rosser の定理について, 以下のことが言える.

 (Λ, \to_{β}) が合流性をもつ $\iff (\Lambda, \to_{\beta})$ が CR 性をもつ

証明

 (\Longrightarrow)

 $=_{\beta}$ の定義に沿った帰納法により証明する.

- 1. $M =_{\beta} N$ が $M \twoheadrightarrow_{\beta} N$ から定義されるとき: $M \twoheadrightarrow_{\beta} N$, $N \twoheadrightarrow_{\beta} N$ より成立する.
- 2. $M =_{\beta} N$ が $N =_{\beta} M$ から定義されるとき: 帰納法の定義から、ある L が存在し、 $N \rightarrow_{\beta} L$ 、 $M \rightarrow_{\beta} L$ となる.
- 3. $M =_{\beta} N$ が $M =_{\beta} N', N' =_{\beta} N$ から定義されるとき: 帰納法の定義から,ある M_1, M_2 が存在し,それぞれ $M \to_{\beta} M_1$ かつ $N' \to_{\beta} M_1$, $N' \to_{\beta} M_2$ かつ $N \to_{\beta} M_2$ となる.さらに合流性より,ある M_3 が存在し, $M_1 \to_{\beta} M_3$ かつ $M_2 \to_{\beta} M_3$ となる.つまり $M \to_{\beta} M_3$, $N \to_{\beta} M_3$ となる M_3 が存在する.

 (\iff)

任意の M, M_1, M_2 に対して, $M \rightarrow_\beta M_1$, $M \rightarrow_\beta M_2$ を仮定する. $=_\beta$ の定義より $M_1 =_\beta M_2$ である. 定理 5 より, $M_1 \rightarrow_\beta M_3$, $M_2 \rightarrow_\beta M_3$ となる M_3 が存在する.

3.2 Triangle property

定義 7 (Triange-property)

抽象書き換え系 (A, \rightarrow) と A 上の写像 f について, 以下の性質を満たすとき関係 \rightarrow は Triangle-property をもつという.

任意の $a,b \in A$ について, $a \to b \implies b \to f(a)$

図 3: Triangle-property

例題 8 $((\Lambda, \rightarrow_{\beta})$ における Triangle-property)

 (Λ, \to_{β}) について, 並行簡約という二項関係と写像 *(complete-development) を定義する.

定義 9 (並行簡約 \Rightarrow_{β})

- 1. $x \Rightarrow_{\beta} x$
- 2. $M \Rightarrow_{\beta} M'$ ならば $\lambda x.M \Rightarrow_{\beta} \lambda x.M'$
- 3. $M \Rightarrow_{\beta} M'$ かつ $N \Rightarrow_{\beta} N'$ ならば $(MN) \Rightarrow_{\beta} (M'N')$
- 4. $M \Rightarrow_{\beta} M'$ かつ $N \Rightarrow_{\beta} N'$ ならば $(\lambda x.M)N \Rightarrow_{\beta} M'[x := N']$

定義 10 (写像 * (complete-development))

- 1. $x^* = x$
- 2. $(\lambda x.M)^* = \lambda x.M^*$
- 3. $((\lambda x.M)N)^* = M^*[x := N^*]$
- $4. (LN)^* = L^*N^* (ただし L は関数抽象以外の<math>\lambda$ 項)

 $\forall M \in \Lambda$ について, 並行簡約は M の中に存在する β 基 を任意の数同時に簡約できる関係であり, 写像 * は M の中の β 基 をすべて簡約した λ 項を返すような写像である. また, \Rightarrow_{β} は $\rightarrow_{\beta} \subset \Rightarrow_{\beta} \subset \rightarrow_{\beta}$ といった大小関係となる. 並行簡約と写像 * を定義することで次の命題が成り立つことが分かる.

任意の
$$M, N \in \Lambda$$
について, $M \Rightarrow_{\beta} N \implies N \Rightarrow_{\beta} M^*$

つまり, 並行簡約 \Rightarrow_{β} は *Triangle-property* を満たす.

3.3 Cofinality

定義 11 (戦略)

抽象書き換え系 (A, \rightarrow) において、戦略 F とは次の性質を満たす A から A への写像である.

- 1. $a \equiv F(a)$ a が正規形である場合
- $2. a \rightarrow^+ F(a)$ その他

a が正規形でないとき, a から F(a) を求める際, $a\to F(a)$ のとき F は 1 ステップ戦略, $a\to^+F(a)$ のとき F は多ステップ戦略と呼ぶ.

定義 12 (\rightarrow_F)

抽象書き換え系 (A, \rightarrow) と戦略 F があり, $a \rightarrow^+ F(a)$ のとき, $a \rightarrow_F F(a)$ と書く.

定義 13 (Cofinality)

戦略 F が以下の性質を満たすとき戦略 F は cofinal である.

任意の
$$a,b \in A$$
 について, $a \to b \Longrightarrow$ ある $n(\geq 1)$ が存在し, $b \twoheadrightarrow F^n(a)$

定義 14 (Hyper-Cofinality)

任意の $a,b\in A$ と A 上の戦略 F について、最終的には常に簡約 \to_F を含む a の任意の簡約列を σ とする. 以下の性質を満たすとき、戦略 F は hyper-cofinal である.

$$a \rightarrow b \implies \sigma \bot \mathcal{O} c$$
 が存在し, $b \rightarrow c$

3.4 Z性

定義 **15** (Z 性)[I] 抽象書き換え系 (A, \rightarrow) について, 次の性質を満たす A 上の写像 f が存在するとき, 写像 f は Z 性を満たすという.

任意の
$$a,b \in A$$
 について, $a \to b \implies b \twoheadrightarrow f(a) \twoheadrightarrow f(b)$

例題 **16** $((\Lambda, \rightarrow_{\beta})$ における Z 性)

 $(\Lambda, \rightarrow_{\beta})$ について、3.2節で導入した写像*はZ性を満たす写像である. つまり、次の命題が成り立つ.

任意の
$$M, N \in \Lambda$$
について、 $M \rightarrow_{\beta} N \implies N \rightarrow_{\beta} M^* \rightarrow_{\beta} N^*$

証明

M の構造に関する帰納法により $M \rightarrow_{\beta} N \implies N \twoheadrightarrow_{\beta} M^* \twoheadrightarrow_{\beta} N^*$ を証明する.

- 1. M が関数抽象 $(\lambda x. M_1)$ のとき:
 - $M = \lambda x. M_1 \rightarrow_{\beta} \lambda x. N_1 = N$ と仮定すると、帰納法の仮定より、 $N_1 \twoheadrightarrow_{\beta} M_1^* \twoheadrightarrow_{\beta} N_1^*$ となる.従って、 $\lambda x. N_1 \twoheadrightarrow_{\beta} \lambda x. M_1^* (= (\lambda x. M_1)^*) \twoheadrightarrow_{\beta} \lambda x. N_1^* (= (\lambda x. N_1)^*)$ である.
- 2. M が関数適用 M_1M_2 のとき:
 - 2-1 $M_1M_2=(\lambda x.M_0)M_2\to_{\beta} M_0[x:=M_2]=N$ の場合: $N=M_0[x:=M_2]\twoheadrightarrow_{\beta} M_0^*[x:=M_2^*] (=((\lambda x.M_0)M_2)^*=M^*) \twoheadrightarrow_{\beta} M_0[x:=M_2]^*=N^*$ となる.
 - 2-2 $M=M_1M_2\to_{\beta} N_1N_2=N$ の場合: $M_1\to_{\beta} N_1(M_2=N_2)$ もしくは $M_2\to_{\beta} N_2(M_1=N_1)$ となる.それぞれの場合において帰納 法の仮定より, $N_i\to_{\beta} M_i^*\to_{\beta} N_i^*(i=1,2)$ である. M_1 が関数抽象で $M_1^*=\lambda x.M_0'$ であれば, $M_0'\to_{\beta} N_0'$ となる N_0' について $N_1^*=\lambda x.N_0'$ となる.よって,

$$N_1 N_2 \twoheadrightarrow_{\beta} M_1^* M_2^* = M_0'[x := M_2^*]$$

 $\rightarrow_{\beta} M_0'[x := M_2^*] (= (M_1 M_2)^*)$
 $\twoheadrightarrow_{\beta} N_0'[x := N_2^*] (= (N_1 N_2)^*)$

その他の場合, $N_1N_2 \twoheadrightarrow_\beta M_1^*M_2^* \twoheadrightarrow_\beta N_1^*N_2^*$ となる. N_1 が関数抽象で $N_1^* = \lambda x.N_0'$ のとき, $N_1^*N_2^* = (\lambda x.N_0')N_2^* \rightarrow N_1'[x:=N_2^*] = (N_1N_2)^*$ である.それ以外は $N_1^*N_2^* = (N_1N_2)^*$ となる.

4 相互関係

本節では、3節で挙げた5つの概念について、それらの相互関係を述べる.

4.1 *Z*性と合流性

Z性と合流性について次のことが成立する.

定理 17 (Z 定理)

抽象書き換え系 (A, \rightarrow) と A 上の写像 f が与えられたとき,

写像 f が Z 性を満たす \Longrightarrow (A, \rightarrow) は合流性をもつ

証明

 $a \in A$ から分岐した任意の項について、Z 性を帰納的に用いることで下図のように示すことができる.

4.2 Z性とCofinality

Z性と Cofinality について次のことが成立する.

定理 18

抽象書き換え系 (A, \rightarrow) と A 上の写像 f が与えられたとき、

写像 f が Z 性を満たす \Longrightarrow 戦略 f は cofinal である

証明

a の簡約列上の任意の項 b_n について、ある k が存在し、 $b_n \twoheadrightarrow f^k(a)$ となればよい.Z 性より $a \to b_0 \to b_1$ のとき、 $b_0 \twoheadrightarrow f^1(a)$ 、 $b_1 \twoheadrightarrow f^1(b_0)$ である. $b_0 \twoheadrightarrow f^1(a)$ なので Z 性より、 $f^1(b_0) \twoheadrightarrow f^2(a)$ となる.同様に考えると、a の簡約列上の任意の項 b_n について $b_n \twoheadrightarrow f^k(a)$ となる.

図 4: Z 性 \Longrightarrow Cofinality

4.3 「Z性 \iff 合流性」,「Z性 \iff Cofinality」の反例

以下のような項書き換えは、Z 性 \iff 合流性、Z 性 \iff Cofinality の反例となる.

- $i \to i+1 \ (\forall i \in \mathbb{Z})$
- $-(n+1) \rightarrow n+1 \ (\forall n \in \mathbb{N})$

証明

Z 性を満たす写像 * が存在すると仮定する。 $0^*=n\ (n>0)$ であり、書き換え規則より、-(n+1) woheadrightarrow 0、-(n+1) woheadrightarrow n+1 となるので、それぞれ Z 性より、 $-(n+1)^* woheadrightarrow 0^*$ 、 $n+1 woheadrightarrow 0^*=n$ となり、書き換え規則に矛盾する。

図 5: 「Z 性 \iff Cofinality」, 「Z 性 \iff 合流性」の反例

4.4 Z性と Hyper-Cofinality

Z性と Hyper-Cofinality について次のことが成立する.

定理 19

抽象書き換え系 (A, \rightarrow) と A 上の写像 f が与えられたとき,

写像 f が Z 性を満たす \Longrightarrow 戦略 f は hyper-cofinal である

証明

 $a \to b$ となる任意の $a,b \in A$ と、最終的には常に簡約 \to_f を含むような a の簡約列 σ が与えられたときに、 σ に合流する b の簡約列 δ が存在することを示せばよい. σ は正規形で終わるか,a から c の簡約列 σ_1 と、 $c \to_f f(c)$ と、f(c) の簡約列 σ_2 に分けられる. $a \to b$, $a \to c$ なので,それぞれ Z 性より $b \to f(a)$ 、 $f(a) \to f(c)$ である.つまり, $c \to d \to f(c)$ となる d が存在し, $\delta_1: b \to d$ が考えられる.c が正規形の場合, $\delta:=\delta_1$ とし,その他の場合, δ_1 と $c \to f(c)$ と σ_2 を合わせたものを δ とすることで δ は σ に合流する δ の 簡約列である.

図 6: Z 性 \Longrightarrow Hyper-Cofinal

4.5 Z性と Triangle-property

Z性と Triangle-property について次のことが成立する.

定理 20

抽象書き換え系 (A, \rightarrow) と A 上の写像 f が与えられたとき、

ある関係 \rightarrow_t が存在し、次の性質を満たす.

T1.
$$\rightarrow \subseteq \rightarrow_t \subseteq \rightarrow$$

T2.
$$a \rightarrow_t b \implies b \rightarrow_t f(a)$$

証明

 (\Longrightarrow)

 $a \rightarrow b \rightarrow f(a)$ のとき, $a \rightarrow_t b$ と定義する. \rightarrow_t が T1, T2 を満たすことを示す.

- **(T1)** $a \to b$ ならば Z 性より, $a \to b \twoheadrightarrow f(a)$ である. よって $\to \subseteq \to_t$ である. $a \to_t b$ ならば, 明らかに $a \twoheadrightarrow b$ である. よって $\to_t \subseteq \to$ である. 以上より, $\to \subseteq \to_t \subseteq \to$ の関係が得られる.
- **(T2)** $a \to_t b$ と仮定すると $\to_t o$ の定義から $a \twoheadrightarrow b \twoheadrightarrow f(a)$ となり、Z 性より $f(a) \twoheadrightarrow f(b)$ である. $b \twoheadrightarrow f(a) \twoheadrightarrow f(b)$ となるので $\to_t o$ の定義から $b \to_t f(a)$ である. 従って、 $a \to_t b$ ならば $b \to_t f(a)$ となり T2 が成り立つ.

(← `

 $a \to b$ を仮定すると、T1、T2 より $a \to_t b \to_t f(a)$ となる。 $b \to_t f(a)$ なので T2 より、 $b \to_t f(a) \to_t f(b)$ となる。T1 より、 $b \twoheadrightarrow f(a) \twoheadrightarrow f(b)$ である。従って、 $a \to b$ ならば $b \twoheadrightarrow f(a) \twoheadrightarrow f(b)$ となり、Z 性が示された。

4.6 合流性と Cofinality

合流性と Cofinality について次のことが成立する.

定理 21

抽象書き換え系 (A, \rightarrow) と A 上の写像 F が与えられたとき,

戦略 F が $cofinal \Longrightarrow (A, \rightarrow)$ は合流性をもつ.

証明

 $a_1 \leftarrow a \twoheadrightarrow a_2$ となる任意の $a,a_1,a_2 \in A$ について. 戦略 F は cofinal なので、ある n,m が存在し、 $a_1 \twoheadrightarrow F^n(a)$ かつ $a_2 \twoheadrightarrow F^m(a)$ となる. k = max(n,m) とすると、 $F^n(a) \twoheadrightarrow F^k(a) \leftarrow F^m(a)$ である. 従って、 $a_1 \twoheadrightarrow F^k(a) \leftarrow a_2$ となり合流性が成立する.

 a_1 $F^n(a)$ $F^m(a)$

図 7: 合流性 ⇒ Cofinality

5 合成的 Z 定理

5.1 弱 Z 性

定義 22 (弱 Z 性) 抽象書き換え系 (A, \rightarrow) について, \rightarrow_{\times} を A 上の関係とし, その反射推移閉包を \rightarrow_{\times} と する.

次の性質を満たすA上の写像fが存在するとき、写像fは弱Z性を満たすという.

任意の
$$a,b \in A$$
 について、 $a \to b \implies b \twoheadrightarrow_{\times} f(a) \twoheadrightarrow_{\times} f(b)$

5.2 合成的 Z 定理

定理 23 (合成的 Z 定理)[2] 抽象書き換え系 (A, \rightarrow) について, $\rightarrow = \rightarrow_1 \cup \rightarrow_2$ とする. 次の性質を満たす A 上の写像 f_1, f_2 が存在するとき, 合成写像 $f_2 \circ f_1$ は Z 性を満たす.

- 1. \rightarrow 1 について, f1 が Z性を満たす.
- 2. $a \rightarrow_1 b$ となるとき $f_2(a) \rightarrow f_2(a)$ である.
- 3. 任意の $a \in Im(f_1)$ について, $a \rightarrow f_2(a)$ である.
- $4. \rightarrow_2$ について, $f_2 \circ f_1$ が弱 Z性を満たす.

図8が上の性質を図示したものであり、合成写像 $f_2 \circ f_1$ が Z 性を満たすことが確認できる.

図 8: 合成的 Z 定理

例題 **24** $(\lambda \mu$ 計算) [2]

以下のような項と簡約規則からなる $\lambda \mu$ 計算 の体系を定義する.

定義 25 (λμ計算)

項: $M := x \mid (\lambda x.M) \mid (MM) \mid (\mu \alpha.M) \mid ([\alpha]M)$

簡約規則:

- 1. $(\lambda x.M)N \to_{\beta} M[x := N]$
- 2. $(\mu \alpha.M)N \rightarrow_S M[[\alpha]w := [\alpha](wN)]$
- 3. $[\alpha](\mu\beta.M) \to_R M[\beta := \alpha]$
- 4. $\mu\alpha.[\alpha]M \to_{\mu\eta} M \ (\alpha \notin FV(M))$

この体系で Z性をみたす写像を求めるとき,例題 16 と同様に考えて,どれかの簡約規則を優先させる写像を考えたとしても Z性を満たさない.そこで, $\rightarrow_1=\rightarrow_{\mu\eta}$, $\rightarrow_2=\rightarrow_{\beta}\cup\rightarrow_S\cup\rightarrow_R$ として,以下のような写像 $*^1$ 、 $*^2$ を与える.すると,写像 $*^1$ 、 $*^2$ が合成的 Z の性質を満たし,合成写像 $*^2$ 。 $*^1$ が Z 性を満たすことが分かり.上の体系の合流性が示せる.

定義 26 (写像*1)

1.
$$x^{*^1} = x$$

2.
$$(\lambda x.M)^{*^1} = \lambda x.M^{*^1}$$

3.
$$(MN)^{*^1} = (M^{*^1}N^{*^1})$$

4.
$$(\mu \alpha . [\alpha] M)^{*^1} = M^{*^1} \ (\alpha \notin FV(M))$$

5.
$$(\mu \alpha.M)^{*^1} = \mu \alpha.M^{*^1}$$

6.
$$([\alpha]M)^{*^1} = [\alpha]M^{*^1}$$

定義 27 (写像*2)

1.
$$x^{*^2} = x$$

2.
$$(\lambda x.M)^{*^2} = \lambda x.M^{*^2}$$

3.
$$((\lambda x.M)N)^{*^2} = M^{*^2}[x := N^{*^2}]$$

4.
$$((\mu\alpha.M)N)^{*^2} = \mu\alpha.M^{*^2}[[\alpha]w := [\alpha](wN^{*^2})]$$

5.
$$(MN)^{*^2} = (M^{*^2}N^{*^2})$$

6.
$$(\mu \alpha.M)^{*^2} = \mu \alpha.M^{*^2}$$

7.
$$([\alpha](\mu\beta.M)N)^{*^2} = M^{*^2}[[\beta]w := [\alpha](wN^{*^2})]$$

8.
$$([\alpha]M)^{*^2} = [\alpha]M^{*^2}$$

6 まとめ

文献 [1] [5] に従って、相互関係を図 9 のようにまとめることができる。また、Z 性を拡張した合成的 Z 定理では、簡約規則が複数ある体系で Z 性を満たす写像が直接与えることが出来なくても、簡約規則を分けて考えることで Z 性を満たす写像について考えることができる。

図 9:5つの概念の相互関係

参考文献

- [1] Dehornoy, P., and V. van Oostrom, Z Draft: For Your Mind Only, July 27, 2008.
- [2] Honda, Y., K. Nakazawa, and K. Fujita, Confluence Proofs of Lambda-Mu-Calculi by Z Theorem, Studia Logica 109:917-936, 2021.
- [3] Komori, Y., N. Matsuda, and F. Yamakawa, A simplified proof of the Church-Rosser theorem, Studia Logica 102(1):175-183,2013.
- [4] Nakazawa, K., and K. Fujita, Compositional Z: Confluence proofs for permutative conversion, Studia Logica 104:1205-1224, 2016.
- [5] Terse, Term Rewriting System, Volume 55 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 2003.