THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Problem Sheet for Week 10

MATH1901: Differential Calculus (Advanced)

Semester 1, 2017

Web Page: sydney.edu.au/science/maths/u/UG/JM/MATH1901/

Lecturer: Daniel Daners

Material covered

☐ Taylor's Theorem. ☐ Curves in \mathbb{R}^2 and \mathbb{R}^3 .

Outcomes

After completing this tutorial you should

☐ use Taylor's Theorem to approximate functions and integrals;

☐ use Taylor's Theorem to compute limits;

sketch curves and find parametrisations in simple cases.

Summary of essential material

Taylor's Theorem: Let f(x) be n times differentiable at $x = x_0$. Then $f(x) = T_n(x) + R_n(x)$ where

$$T_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

is the *n*-th order Taylor polynomial of f centred at $x = x_0$. It is the *best polynomial approximation* of order f near f near f has at least f h

$$R_n(x) = f(x) - T_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$
 for some c strictly between x_0 and x.

This is called the *Lagrange form* of the remainder. The remainder looks like the general term in $T_n(x)$, but $f^{(n+1)}$ is evaluated at an intermediate c value between x and x_0 and not at x_0 . A special case is the Mean Value Theorem (n = 0).

To estimate $R_n(x)$ we maximise $|f^{(n+1)}(c)|$ over all c between x and x_0 . A common method is to use the "worst case scenario" for an estimate:

- If $|f^{(n)}(c)|$ is monotone in c set c = 0 or $c = x_0$ depending on whether it is increasing or decreasing;
- If $|f^{(n)}(c)|$ is a fraction maximise the numinator and minimize the denominator, often by setting c = 0 or $c = x_0$.

Often this is achieved by setting c = 0 or $c = x_0$, or if it is a fraction to minimize the denominator and maximise the numerator. One can also use calculus to find the maximum, but that is not necessary most of the time.

Curves: A *curve* in \mathbb{R}^2 is a function $C: [a, b] \to \mathbb{R}^2$. We are often a little relaxed here, and either regard the curve as the the actual function, or as the image of [a, b] under C in \mathbb{R}^2 . A curve is given by its "component functions"

$$(x(t), y(t))$$
 or $x(t)\mathbf{i} + y(t)\mathbf{j}$ or $\begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$, $t \in [a, b]$.

The points (x(t), y(t)) trace out a curve as t increases from a to b. Similarly, a curve in \mathbb{R}^3 is a function $C: [a, b] \to \mathbb{R}^3$ with the same interpretation as above, but three components.

Questions to complete during the tutorial

Questions marked with * are more difficult.

- 1. Prove that for all $n \ge 0$, we have the estimate $\left| \sin(1) \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} \right| \le \frac{1}{(2n+2)!}$.
- **2.** Let $p(x) := x^4 7x^3 + 13x^2 + 2x 10$ be a polynomial.
 - (a) Determine the Taylor polynomials of order n about x = 0 for $n \ge 0$.
 - (b) Express the polynomial p as a polynomial in terms of (x-3) by computing a relevant Taylor polynomial.
- 3. (a) Calculate the second order Taylor polynomial $T_2(x)$ for $f(x) = \sqrt{1+x}$ about x = 0, and write down a formula for the remainder term $R_2(x) = f(x) T_2(x)$. Hence show that

$$1 + \frac{1}{2}x^4 - \frac{1}{8}x^8 \le \sqrt{1 + x^4} \le 1 + \frac{1}{2}x^4 - \frac{1}{8}x^8 + \frac{1}{16}x^{12} \quad \text{for all } x \in \mathbb{R}$$

- (b) Hence, or otherwise, calculate $\lim_{x\to 0} \frac{2\sqrt{1+x^4}-2-x^4}{x^8}$.
- **4.** Let $f(x) := (1+x)^{\alpha}$, where $\alpha \in \mathbb{R}$ is fixed. We define

$$\begin{pmatrix} \alpha \\ 0 \end{pmatrix} := 1 \quad \text{and} \quad \begin{pmatrix} \alpha \\ k \end{pmatrix} := \frac{\alpha(\alpha-1)(\alpha-3)\cdots(\alpha-k+1)}{k!} \quad \text{for all integers } k \ge 1.$$

If $\alpha \ge 1$ is an integer these coincide with the binomial coefficients.

- (a) Show that the *n*-th Taylor polynomial of *f* about x = 0 is given by $T_n(x) = \sum_{k=0}^n {\alpha \choose k} x^k$.
- (b) Hence, write down the 4th order Taylor polynomial of $\frac{1}{\sqrt{1+x}}$ about x=0.
- (c) This part shows that the remainder $R_n(x)$ approaches zero as n gets large provided that $0 \le x < 1$.
 - *(i) Fix $x \in \mathbb{R}$ with |x| < 1. Using the Lagrange form of the remainder, show that

$$R_n(x) = (-1)^n \alpha \frac{(1+c)^\alpha}{n+1} \left(1-\alpha\right) \left(1-\frac{\alpha}{2}\right) \left(1-\frac{\alpha}{3}\right) \cdots \left(1-\frac{\alpha}{n}\right) \left(\frac{x}{1+c}\right)^{n+1}$$

for some c strictly between 0 and x. Derive that for $1 \le m < n$ and $x \in (0, 1)$

$$|R_n(x)| \le \frac{2^{\alpha}}{n+1} (1+|\alpha|)^m (1+\frac{|\alpha|}{m})^{n+1} |x|^{n+1}.$$

- (ii) Hence show that $R_n(x) \to 0$ for all $x \in (0,1)$, that is, T_n approximates $(1+x)^{\alpha}$ well if $x \in (0,1)$. One can show that the same is true if $x \in (-1,0)$, but this is much harder.
- 5. Find parametrisations of the following curves.
 - (a) The line segment in \mathbb{R}^3 between A(1,3,2) and B(5,2,4) going from B to A.
 - (b) The circle in \mathbb{R}^2 centred at the origin with radius r, clockwise starting from the positive y-axis.
- **6.** (a) Find the points of intersection of the helix whose general point is given parametrically as $(\cos t, \sin t, t)$, $t \in \mathbb{R}$, with the sphere whose cartesian equation is $x^2 + y^2 + z^2 = 4$.

2

(b) Find all points common to the helices C_1 and C_2 , where

$$C_1(t) = (\cos t, \sin t, t), \quad t \in \mathbb{R}, \qquad C_2(s) = (\cos s, s, \sin s), \quad s \in \mathbb{R}.$$

Extra questions for further practice

- 7. Let $f(x) = \ln(1+x)$.
 - (a) Calculate the fourth order Taylor polynomial $T_4(x)$ for f(x) centred at 0.
 - (b) Use Taylor's Theorem to write down a formula for the fourth remainder term $R_4(x)$, and deduce that

$$\frac{x^5}{5(1+x)^5} \le f(x) - T_4(x) \le \frac{x^5}{5} \qquad \text{for all } x > 0.$$

(c) Use the previous part to compute the limit

$$\lim_{x \to 0^+} \frac{12\ln(1+x) - 12x + 6x^2 - 4x^3 + 3x^4}{\sin^5 x}$$

- **8.** Show that the curve C with parametric equations $x = t^2$, y = 1 3t, $z = 1 + t^3$, $t \in \mathbb{R}$, passes through (1, 4, 0) and (9, -8, 28) but not (4, 7, -6).
- **9.** Sketch the curves in \mathbb{R}^3 given by the following parametric equations.
 - (a) $x = t \cos t$, $y = t \sin t$, z = 5t, $t \in [0, 100]$.
 - (b) $x = 2\cos t, y = \sin t, z = e^{-t}, t \ge 0.$
- **10.** Suppose that f has at least n+1 derivatives in a neighbourhood of x_0 , and that $f^{(n+1)}$ is bounded near x_0 . Let T_n be the n-th order Taylor theorem about x_0 and let R_n be the remainder term. We know that

$$\lim_{x \to x_0} \frac{f(x) - T_n(x)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{R_n(x)}{(x - x_0)^n} = 0.$$

Show that T_n is the only polynomial with the above property, that is, if P(x) is a polynomial of at most degree n and

$$\lim_{x \to x_0} \frac{f(x) - P(x)}{(x - x_0)^n} = 0,$$

then $P = T_n$. Proceed as follows:

- (a) Show that $\lim_{x \to x_0} \frac{T_n(x) P(x)}{(x x_0)^k} = 0$ for every k = 0, 1, ..., n.
- (b) Setting $Q(x) := T_n(x) P(x)$ and writing it as a polynomial in $(x x_0)$, use induction by k to show that the coefficient a_k of x^k is zero for every k = 0, ..., n. Conclude that $T_n = P$.

Challenge questions (optional)

11. The error function from probability and statistics is defined by

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.$$

Show that for each $n \ge 1$ and $x \ge 0$ we have

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)k!} x^{2k+1} + E_n(x) \quad \text{with} \quad |E_n(x)| \le \frac{2x^{2n+3}}{\sqrt{\pi}(2n+3)(n+1)!},$$

and hence find a numerical approximation α to erf(1) such that

$$|\operatorname{erf}(1) - \alpha| < \frac{1}{1000}.$$

3

12. Use Question 1 to prove that sin(1) is irrational. Show also that cos(1) is irrational.

13. There are limitations to Taylor polynomials. This question describes a function whose Taylor polynomials are all identically zero. That is, $T_n(x) = 0$ for all n, and so $R_n(x) = f(x) - T_n(x) = f(x)$. Thus this function is "all remainder"!

Let

$$f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

(a) Show, by induction, that for all $n \ge 0$ and for $x \ne 0$,

$$f^{(n)}(x) = P_n(1/x)e^{-1/x^2}$$

where $P_n(t)$ is a polynomial with integer coefficients.

- (b) Show that $\lim_{x\to 0} |x|^{-k} e^{-1/x^2} = 0$ for all integers $k \ge 0$.
- (c) Show, by induction, that f(x) is differentiable as many times as we please at the point x = 0, and that $f^{(n)}(0) = 0$. Thus the *n*th order Taylor polynomial of f(x) centred at x = 0 is identically zero.