STA 4102/5106: Homework Assignment #1

(Wednesday, August 27) Due: Wednesday, September 3

- 1. Let A be an $n \times n$ real matrix. Prove that if A is symmetric, i.e. $A = A^T$, then all eigenvalues of A are real.
- 2. Through transformation with orthogonal matrix O, the problem $\hat{b} = \arg\min_b \|y Xb\|^2$ is equivalent to $\hat{b} = \arg\min_b \|y^* X^*b\|^2$ where y and y^* are in \mathbf{R}^m , X and X^* are in $\mathbf{R}^{m \times n}$ ($m \ge n$), and $y^* = Oy$ and $X^* = OX$. Let $y^* = [y_1^*, y_2^*, \cdots, y_m^*]^T$. Prove that the residual sum of square $\|y X\hat{b}\|^2 = \sum_{i=n+1}^m |y_i^*|^2$.
- 3. Let *O* be an $n \times n$ orthogonal real matrix, i.e. $O^TO = I_n$, where I_n is an $n \times n$ identity matrix. Prove that
 - i) Any entry in O is between -1 and 1.
 - ii) If λ is an eigenvalue of O, then $|\lambda| = 1$.
 - iii) det(O) is either 1 or -1.
- 4. Let H be an $n \times n$ householder matrix given by

$$H = I_n - 2 \frac{vv^T}{v^T v}$$
, for any non-zero *n*-length column vector v.

Show that $H = H^T$ and $HH^T = I_n$. In other words, H is a symmetric, orthogonal matrix.