

ResolverFuzz: Automated Discovery of DNS Resolver Vulnerabilities with Query-Response Fuzzing

75INGHU

Qifan Zhang¹ Xuesong Bai¹ Xiang Li² Haixin Duan^{2, 3, 4} Qi Li² Zhou Li

¹University of California, Irvine ²Tsinghua University ³Zhongguancun Laboratory ⁴Quan Cheng Laboratory

DNS Resolution

- Translate human-friendly domains into machine-friendly IP addresses.
- Recursive process. Root servers, Top-Level Domain (TLD) servers, etc.
- Multiple roles. Forwarders, recursive resolvers, nameservers (NSes).

DNS Complexity and Vulnerability

- Over 100 RFCs.
- Many use cases. Web browsing, email, zero-trust network, autonomous vehicle, etc.
- Many implementations. 20+ widely used DNS software.
- Fragmented service ecosystem. Millions of NSes, open/local resolvers, and forwarders.
- DNS failures and attacks happened a lot.

RESOLVERFUZZ [4] Infrastructure • Input: Query/Response generator. • Output: response, cache dump, network traffic packets (tcpdump), system logs. • Oracle: 3 oracles for each kind of vulnerabilities. **Client** Resolver Software 1 atkr.com. A 6.6.6.6 Data Dumper Differential testing **DNS Message PCFG** Cache, log **Inconsistency Cluster & Filter DNS Message Byte-level Vulnerability** traffic or bug

Challenges 1: Non-Crash Vulnerabilities

- DNS vulnerabilities does not always lead to crashes.
- Focus on categories of identified bugs via CVE study on CVEs ranging from 1999 to 2023.

Software*	# CVE							
	Non-crash				Crash			
	Cache Poisoning	Resource Consum. ¹	Others ²	Total	Non-memory	Memory	Total	Total
BIND	18	18	11	47	75	22	97	144
Unbound	4	5	4	13	5	8	13	26
Knot Resolver	6	4	0	10	2	0	2	12
PowerDNS Recursor	13	8	9	30	7	6	13	43
MaraDNS	2	3	0	5	4	7	11	16
Technitium	3	1	0	4	0	0	0	4
Total	46	39	24	109	93	43	136	245

Challenges 2: Stateful Fuzzing

Challenges 3: Fuzzing Instrumentation

Identified Vulnerabilities

- Tested on 6 mainstream DNS software.
- 23 vulnerabilities identified, 19 confirmed, 15 CVEs assigned, categorized into 3 classes.

*: Recursive or forwarding modes. ¹: They are triggered by different responses and their cache are inconsistent. ²: Total. ✓or ✓: Vulnerable. ✓: Discussed but no immediate action. ✓: Confirmed and/or fixed by vendors. ✗: Not vulnerable. †: CVEs assigned. '-': Not applicable. # Amount of test cases: CP1 (19), CP2 (1,422), CP3 (111,328), CP4 (7,856), RC1 (539,745), RC2 (112,126), RC3 (88,935), RC4 (132), RC5 (272) RC6 (6,264), RC7 (4,448), and CC1 (5).

Input Generation

- Two dimensions. Generate a pair of query and response in each round.
- Grammar-based fuzzing. Generation is based on Probabilistic context-free grammar (PCFG).
- Byte-level mutation [1]. Special characters (\., \000, @, /, and \) are embedded.

Evaluation Results

Throughput ("Thruput") of 4 modes with regard to the number of units. CDNS w/o f.b., CDNS w/ f.b., Recur-only and Fwd-only refers to CDNS without fallback, CDNS with fallback, Recursive-only, and Forward-only.

References

- [1] Philipp Jeitner and Haya Shulman.
 - Injection Attacks Reloaded: Tunnelling Malicious Payloads over DNS. In 30th USENIX Security Symposium (USENIX Security 21), pages 3165-3182, 2021.
- [2] Takashi Takizawa.
 DNS RFCs (2020-08-29).
- https://emaillab.jp/dns/dns-rfc/, 2020.
- [3] Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and Chengyu Song.
 Be sensitive and collaborative: Analyzing impact of coverage metrics in greybox fuzzing.
 In 22nd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019), pages 1–15, 2019.
- [4] Qifan Zhang, Xuesong Bai, Xiang Li, Haixin Duan, Qi Li, and Zhou Li. ResolverFuzz: Automated Discovery of DNS Resolver Vulnerabilities with Query-Response Fuzzing. In Proceedings of the 33rd USENIX Security Symposium, USENIX Security '24, 2024.