MATA42 - Matemática Discreta I **Professora:** Isamara

LISTA DE EXERCÍCIOS - TÉCNICAS DE DEMONSTRAÇÃO

- Q.1: Para cada fbf CONDICIONAL $p \rightarrow q$ definida nos itens abaixo, determine a "CONTRAPOSITIVA" $(\neg q \rightarrow \neg p)$; a "RECÍPROCA" $(q \rightarrow p)$; e a "INVERSA" $(\neg p \rightarrow \neg q)$.
 - (a) "Se p é número primo então p = 2 ou p é ímpar".
 - (b) "Se x é divisível por 5 e por 2 então x é divisível por 10".
 - (c) "Se n=ab tais que a e b são inteiros positivos, então $a \leq \sqrt{n}$ ou $b \leq \sqrt{n}$."
 - (d) "Se $n^3 + 5$ é impar, então n é par."
- Q.2: Mostre que: Para todo x e y números reais tais que 0 < x < y. Então $x^2 < y^2$.
- Q.3: Mostre que: Sejam A,B,C conjuntos não vazios. Se $A\cap C\subseteq B$ e $a\in C$ então $a\not\in A\setminus B$.
- Q.4: Mostre que: Para todo x e y números naturais. Se x divide y então x^2 divide y^2 .
- Q.5: Mostre que: Dado n um inteiro. Se 3 divide n então 9 divide n^2 .
- Q.6: Seja n um número inteiro. Se $1 \le n \le 15$ ento $n^2 n + 41$ é primo. Prove por Exaustão.

Q.7: Mostre que:

Para todo inteiro $n, n^2 \ge n$.

(Dica: Considere todos os casos: $(1)n \le -1$ ou (2)n = 0 ou $(3)n \ge 1$)

Q.8: Mostre que:

Para todo inteiro $n, n^2 + 3n + 5$ é impar.

(Dica: Considere todos os casos: (1)2|n ou $(2)2 \not|n$)

Q.9: Mostre por Redução ao Absurdo que:

A soma de dois números racionais é um número racional.

Q.10: Mostre por Contraposição

Se n é um inteiro e 3n + 2 é impar, então n é impar.

Q.11: Mostre por Contraposição

Se n=ab tais que a e b são inteiros positivos, então $a\leq \sqrt{n}$ ou $b\leq \sqrt{n}$.

- Q.12: Seja n um número inteiro. Mostre que as seguintes afirmações são EQUIVALENTES
 - 1. $n \in par$
 - 2. n-1 é impar
 - 3. n^2 é par

(Dica: Para mostrar a equivalência das afirmações acima,

n é par se e somente se n-1 é impar se e somente se n^2 é par

basta mostrar as três afirmações: (1) Se n é par então n-1 é ímpar;

(2) Se n-1 é impar então n^2 é par; e (3) Se n^2 é par então n é par.