

Center for Research in Applied Cryptography and Cyber Security

DEFENCE AGAINST ADVERSARIAL EXAMPLES

Yishay Asher • Steve Gutfreund **Instructor:** Hanan Rosemarin

Problem Description

Building high accuracy DNN models which are sufficiently resistant to adversarial attacks

Background and Goal

- ✓ An adversarial example is an instance with small, intentional feature perturbations that cause a machine learning model to make a false prediction.
- ✓ The goal is to Find a way to train 'secured' models such that this sort of attacks should not affect them.
- ✓ Project based on the article <u>Bridging machine learning and</u> cryptography in defence against adversarial attacks

Figure 1: example of an adversarial image

Set-Up

- ✓ Mnist and Fashion-Mnist datasets
- ✓ Using well-known neural nets

Securing Models

Approach: training models on encrypted images.

- Encryption techniques: ✓ Permutation
- ✓ AES in ECB, CBC and CTR modes

Figure 2: architecture for securing models

Cutting Loose Ends

Eliminated the models that did not learn well. Learning encrypted images is not very intuitive, as can be seen in figure 3.

Figure 3: Sample of the encrypted images. Interesting to see how for the human eye it's difficult to distinguish between various classes but a DNN model classifies quite well, as can be seen in table 1

3. Attacking

Attacks:

- ✓ Carlini & Wagner, CW
- ✓ Fast Gradient Sign Method, FGSM

'gray-box' scenario, i.e. the attacker knows the architecture of the model but has no access to the private key.

Figure 4: visualization of a CW attack secured by permutation

Results

There's a slight tradeoff between accuracy on the original images and the accuracy on the adversarial images, but overall, accuracies are good

Classification error (%) on the first 1000 test samples							
		mnist			fashion mnist		
	model	original	original adversarial images		original adversarial image		rial images
		images	attack	gray box	images	attack	gray box
UNENCRYPTED	Α	1.49	$CW\ l_2$	100.00	8.30	$CW\ l_2$	100.00
			$CW\ l_0$	100.00		$CW\ l_0$	100.00
			CW l_{∞}	100.00		CW l_{∞}	100.00
	В	2.10	FGSM	39.50	9.50	FGSM	77.20
PERMUTATED	A	3.70	$CW\ l_2$	4.50	12.30	$CW\ l_2$	12.70
			$CW\ l_0$	7.30		$CW\ l_0$	12.50
			CW l_{∞}	5.40		CW l_{∞}	12.90
	В	4.20	FGSM	8.60	12.00	FGSM	29.80
AES · ECB	Α	18.40	$CW\ l_2$	irrelevant	54.60	$CW\ l_2$	irrelevant
	В	19.30	FGSM		55.30	FGSM	
AES · CBC	Α	67.60	$CW\ l_2$	irrelevant	71.50	$CW\ l_2$	irrelevant
	В	87.40	FGSM		90.30	FGSM	
AES · CTR	Α	3.70	CW l_2	4.20	17.40	CW l_2	17.20
	В	2.70	FGSM	4.90	16.70	FGSM	26.50

Table 1: table containing all the results

Success with Permutation, Coincidence?

To verify that the learning ability of a permutation model does not result from high density in small images, we trained models on padded images. Padding done with white pixels. See table 2 for results.

	image size	error rate	
	28x28	3.70	
mnist	40x40	3.40	
	60x60	3.30	
	28x28	12.30	
fashion mnist	40x40	14.40	
	60x60	10.80	

Table 2: results for training permutated data, various image dimensions

Future Work

- ✓ Improve accuracy on AES-ECB model
- ✓ Nicholas Carlini (the 'C' in CW attack) believes we still might defeat these defenses. (we contacted him)
- ✓ Test on more complicated datasets; i.e. Cifar-10

