07/01/2025

Exercice 1.

Première partie

Soit $(a,b) \in]0,1[^2$ vérifiant a+b < 1. Soit X une variable aléatoire discrète dont la distribution est donnée par :

$$X = \begin{cases} 1 & \text{, avec probabilité } a \\ 0 & \text{, avec probabilité } 1 - (a+b) \\ -1 & \text{, avec probabilité } b \end{cases}$$

- 1. Calculez l'espérance de X.
- **2.** On pose $Y = X^2$.
 - a) Quelle est la loi de Y?
 - **b)** Calculez l'espérance de Y.
 - c) Combien vaut la variance de X?
 - \mathbf{d}) Calculez la variance de Y.
 - e) Quelle est la loi de $P = \frac{Y+X}{2}$?
 - **f**) Quelle est la loi de $M = \frac{Y X}{2}$?
- 3. Calculez
 - **a)** $P_{[Y=1]}(X=1),$
 - **b)** $P_{[X=1]}(Y=1),$
 - c) P(P = M),
 - **d)** P(PM = 0).
- **4. a)** Pour quelles valeurs de a et b a-t-on l'égalité

$$\mathbf{P}_{[Y=1]}(X=1) = \mathbf{P}_{[P=0]}(X=0) ?$$
(1.1)

Représentez l'ensemble des solutions dans un plan cartésien.

b) Pour quelles valeurs de a et b a-t-on l'égalité

$$\mathbf{P}_{[Y=1]}(X=-1) = \mathbf{P}_{[M=0]}(X=0) ? \tag{1.2}$$

Représentez l'ensemble des solutions sur le graphique précédent.

c) Les deux équations (1.1) et (1.2) peuvent-elles être simultanément vérifiées?

Deuxième partie

On tire X_1, \ldots, X_n , un échantillon de n variables aléatoires indépendantes de même loi que X et, pour chaque tirage X_i , on définit les variables Y_i , P_i et M_i comme précédemment.

- **5.** On pose $S_P = \sum_{i=1}^n P_i$.
 - a) Montrez que S_P donne le nombre de tirages X_i égaux à 1.
 - **b)** Quelle est la loi de S_P ?
 - c) On estime a par $\hat{a}_1 = \frac{S_P}{n}$. Calculez l'espérance et la variance de \hat{a}_1 .
- **6.** On suppose désormais que a = b.
 - a) Montrez que $a < \frac{1}{2}$.
 - **b)** On pose $S_M = \sum_{i=1}^n M_i$.
 - **i.** Pourquoi peut-on estimer a par $\hat{a}_0 = \frac{S_M}{n}$?

- ii. Calculez l'espérance et la variance de \hat{a}_0 .
- **c)** Pour $t \in]0,1[$, on pose $\hat{a}_t = t\hat{a}_1 + (1-t)\hat{a}_0$.
- i. Calculez l'espérance et la variance de \hat{a}_t .
- ii. Pour quelle valeur de $t^* \in]0,1[$, a-t-on une variance minimale?
- **d)** Quel est le meilleur estimateur de $a:\hat{a}_1,\,\hat{a}_0$ ou \hat{a}_{t^*} ?
- e) Montrez que

$$\hat{a}_{t^*} = \frac{\sum\limits_{i=1}^{n} Y_i}{2n}.$$