MATEUS ALVES DA ROCHA

Brasileiro \diamond Solteiro \diamond Data de nascimento: 06/07/1992Brasília - DF \diamond https://mateusalves.github.io/ +55 61 992751102 \diamond mateus.alves.unb@gmail.com

ENGENHEIRO DE HARDWARE E FIRMWARE

Engenheiro Eletrônico com mais de 1 ano de experiência em sistemas embarcados. Estou preparado para novos desafios nos quais eu possa utilizar todo o meu conhecimento e habilidade em desenvolvimento de soluções de *hardware* e *firmware*. Almejo contribuir para o alcance de metas da empresa e do desenvolvimento profissional da minha equipe de trabalho.

QUALIFICAÇÕES

Programação C/C++, Python, Assembly, Java, MATLAB

Softwares & Ferramentas Esp32/Esp8266, Arduino, Raspberry Pi, MSP430, FPGA,

Proteus, EAGLE, Kicad, Fusion 360, SolidWorks, Github

CATIA, LATEX, MS office, MS Project Português (Nativo), Inglês (Fluente)

Idiomas

FORMAÇÃO

Universidade de Brasília

Dezembro 2018

Bacharel em Engenharia Eletrônica

Wayne State University

Agosto 2015 - Maio 2016

Intercâmbio pelo programa Ciências Sem Fronteiras

EXPERIÊNCIA

E-lastic Janeiro 2019 - Atual

Engenheiro de desenvolvimento em Hardware e Firmware

- Desenvolvimento da versão 2.0 da PCB do principal produto da empresa utilizando o software Kicad:
- Reduzindo os componentes e realizando um roteamento focado na eficiência do uso do espaço físico da PCB, foi possível diminuir o custo de produção em mais de 20%;
- Nova versão da PCB com um microcontrolador *ESP32* que fornece conexão *Wi-Fi* e *Bluetooth*, enquanto a placa anterior utiliza o MCU *Attiny84* que apenas proporciona conexão *Bluetooth*;
- Interação com o usuário através de LED RGB controlado por saídas PWM;
- Programação do MCU realizada em linguagem C/C++ com algumas modificações de sintaxe próprias da programação dos MCUs Atmega328P;
- Foi realizada a adição de novas funcionalidades ao programa de forma a torná-lo mais confiável. Por exemplo: A inclusão da ferramenta *Watchdog timer* (WTD) para garantir que o sistema não ficará preso devido a bugs no *firmware*; Implementação de interrupção para o botão que indica quando o MCU deve entrar ou sair do modo *Deep Sleep*; A atualização do *firmware* através da comunicação *Wi-Fi* recebendo o arquivo binário do servidor *over the air* (OTA).
- · Desenvolvimento de circuito para acionamento das luzes da empresa utilizando ESP8266:
 - Através da comunicação Wi-Fi, o MCU acessa um arquivo PHP armazenado no servidor contendo a informação do estado desejado da iluminação em um dado momento;
 - Adicionalmente, o sistema conta com WTD timer para possíveis travamentos e atualizações de

· Testes, calibração e manutenção do produto da empresa:

- Ao receber um lote de PCB, programa-se o microcontrolador Attiny84 e, posteriormente, são realizados testes para garantir o correto funcionamento utilizando equipamentos de bancada;
- Calibra-se o produto e estipula-se o valor ótimo da constante de calibração utilizada no firmware;
- Realiza-se a manutenção dos equipamentos que retornam dos clientes apresentando defeitos utilizando equipamentos de precisão como multímetros, osciloscópio, fontes de alimentação, ferro de solda, etc.

· Outras atividades:

- Implementação de controle de versão dos firmwares desenvolvidos Git;
- Negociação com fornecedores chineses das PCBs;
- Suporte técnico aos clientes;
- Manuseio da impressora 3D e software de fatiamento (Slicer).

E-lastic

Junho 2018 - Dezembro 2018

Estagiário de Engenharia Eletrônica

· Prototipação do circuito temporizador para acionamento da Raspberry Pi 3:

- Soldagem manual de PCBs com componentes SMDs (0805);
- Manutenção de placas defeituosas utilizando equipamentos de bancada: osciloscópio, multímetro, fontes, etc;

· Prototipação de sistema de monitoramento para motociclistas a partir de uma câmera comercial:

- A partir da aquisição de uma câmera 360, fez-se um novo designer de case de forma a torná-la menos perceptível conforme requisição do cliente. Para chegar a este resultado, foi necessário desmontar o sistema e fazer conexões diretamente no circuito;

· Manuseio da impressora 3D e software de fatiamento (slicer):

- Criação de peças STL para eventuais protótipos utilizando o software Fusion 360;
- Configuração de impressão utilizando o software Simplify 3D;

· Outras atividades:

- Monitoramento de estoque dos produtos eletrônicos;
- Montagem e manutenção dos produtos;

LaBCert

Junho 2017 - Junho 2018

Estagiário de Engenharia Eletrônica

Desenvolvimento de instrumentos de ensaios para certificação de equipamentos eletromédicos: Criação do circuito utilizando o software EAGLE; Prototipação do circuito em PCB dupla face utilizando a técnica de fototransferência; Modelagem no software SolidWorks do case para conter o circuito; Desenvolvimento de material multimídia para treinamento de novos colaboradores baseado na norma ABNT IEC 60601-1.

Pesquisador de graduação voluntário

· Desenvolvimento de melhorias em aplicativo de *smartphone* escrito na linguagem C# através da geração de telas de interação com usuário para o controle da quantidade de fotos obtidas pelo app. Desenvolvimento de *scripts* no Matlab para processamento das imagens obtidas com o *smartphone*.

Universidade de Brasília

Janeiro 2014 - Abril 2017

Aluno de iniciação científica

- · Sistema de Auxílio em Diagnósticos para Diálise Peritoneal SADDIPE: Tecnologia *M-Health* para a avaliação da turbidez do líquido dializado:
- Desenvolvimento de circuito eletrônico e Programação da interface de interação com o usuário utilizando um $display\ TFT$ para a plataforma Arduino.

Período: Outubro 2016 - Abril 2017.

· Sistema de aquisição de sinais EMG em coto de amputados:

- Programação do microcontrolador Atmega328P para aquisição de tensões analógicas geradas pelas contrações dos músculos; Desenvolvimento do código para armazenamento das tensões em um cartão SD; Fabricação de placas de circuito impresso desde o desenho do *layout*, arranjo dos componentes e a soldagem; Montagem das placas em caixas portáteis; Desenvolvimento de script no *MATLAB* para visualização das tensões e comparação dos valores com os dados obtidos utilizando um osciloscópio digital.

Período: Abril 2015 - Agosto 2015.

· Sistema de informação Geoestatístico e Sonoro da Dengue:

- Desenvolvimento do código do microcontrolador responsável por mover a plataforma em um sistema de eixos cartesianos; Desenvolvimento do código para capturar as imagens através da porta USB utilizando uma câmera micoscópica; Publicação de artigo científico.

Período: Janeiro 2014 - Dezembro 2014