

W5200E01-M3 User's Guide

Version 1.0

Table of Contents

ı	Introduction 4				
2	Specification				
3	W5200E0	01-M3 Block Diagram	5		
4	Hardwar	e Layout	6		
5	Expansion Port Interface				
6	Develop	ment environment	8		
	6.1	IDE	8		
	6.2	Install Flash loader Demonstrator	8		
	6.3	USB-to-UART interface IC Driver	8		
7	W5200 S	PI	10		
8	W5200 N	lemory Map	13		
9	Reference	e Firmware	14		
	9.1	W5200 Socket API	15		
	9.2	Firmware Structure	17		
	9.3	Firmware Functions	18		
	9.4	Firmware Build and Upload	19		
	9.4.1	Build - IAR Embedded Workbench IDE	19		
	9.4.2	Upload - Flash Loader Demonstrator	20		
10	Applicat	ion Demonstration	23		
	10.1	Flow of Demonstration	23		
	10.2	Ping TEST	24		
	10.2.1	Network configuration for TEST PC	24		
	10.2.2	Ping Test at Command Prompt	24		
	10.3	App. TEST - Loopback TEST	25		
11	Physical Specification				
12	Schemat	ic	28		

Table of Figures

Figure 1 W5200E01-M3 Block Diagram	
Figure 2 W5200E01-M3 Layout	
Figure 3 Download Flash loader demonstrator	
Figure 4 Currently Supported VCP Drivers (3MAR2010)	(
Figure 5 W5200 SPI Interface	10
Figure 6 W5200 Memory Map	13
Figure 7 TCP SERVER /CLIENT	14
Figure 8 Compile on IAR Embedded Workbench IDE	19
Figure 9 Flow Chat of Demonstration	23
Figure 10 W5200F01-M3 Board Dimension	2

1 Introduction

W5200E01-M3 is the evaluation board for testing iEthernet W5200 and prototyping development. W5200E01-M3 is composed of a STM32F103C8 based on ARM Cortex M3 CPU core, a W5200 which acts as Hardwired TCP/IP embedded Ethernet controller, and a FT232R which acts as USB-to-UART interface IC. W5200 has been proven in various fields to work as a fully hardwired TCP/IP implemented chip that processes various protocols such as TCP, UDP, IPv4, ICMP, ARP, IGMP, PPPoE, and etc.

Cortex-M3 can be used to test W5200's performance, and the surrounding peripherals can be used to implement various Ethernet Applications. The USB-to-UART interface IC in W5200E01-M3 can be used for UART communication. And the extension pin header (total of 40 pins) allows the user for easy connection and testing.

W5200E01-M3 can provide simple example codes based on ANSI C to implement various internet application programs based on W5200. W5200 can be used as a small embedded deice in Power down mode to save power consumption.

Main features;

- W5200 Hardwired TCP/IPcore.
- Cortex-M3.
- RJ-45 which is integrated transformer.
- USB-to-UART interface IC.
- 40 pin expanded header.
- 2 user LEDs, 2 Serial TX/RX LEDs ,1 POWER Indicate LED
- Mode S/W, Reset S/W
- Power source : USB BUS power (500mA), External VIN (5V)

2 Specification

Table 1 List of Items Contained in the EVB

Item	Description	Remark
TCP/IP core	W5200	Hardwired TCP/IP core
MCU	Cortex-M3 MCU	STM32F103C8
USB-to-Serial Converter	On board USB-to-UART interface IC, USB bus power	FT232RQ
Ethernet	On board RJ-45 which is integrated transformer	-
LED	User LED 2Ea Serial Status LED 2Ea	
Button	Reset Switch 1Ea Program Enable Switch 1Ea	-
Expansion Port	MCU port expansion - in 2.54mm Pitch Pin-Header Hole	-
PCB	28mm * 52mm Size	-

3 W5200E01-M3 Block Diagram

The Block diagram is shown below.

Figure 1 W5200E01-M3 Block Diagram

4 Hardware Layout

The layout of the W5200E01-M3 is shown below.

Figure 2 W5200E01-M3 Layout

Table 2 Hardware Description

Symbols	Description	Symbols	Description
W5200	Hardwired TCP/IP Core	STM32F103C8	Cortex-M3 MCU
RESET S/W	Reset Switch	User LED1 /	User LED 2Ea
		User LED2	
PROG S/W	Enable Programming Switch	FT232RQ	USB-to-UART Interface IC
	- PROG: Program Enable		
	- RUN: User APP. Enable		
Ethernet Port	RJ-45	POWER LED	POWER Indicate LED
	(integrated transformer)		
Serial TXD /	Serial status LED 2Ea	J1 / J2	20 Pin 2.54mm Pitch
Serial RXD			Expanded Headers
Mini USB B-type	USB Connector		

5 Expansion Port Interface

The expansion port has 2.54mm Pitch Pin-Header Hole.

Note.

- 1. Some of the expanded pin headers are shared by on board peripherals.
- $\hbox{2. Refer to STM} \hbox{32F103C8's datasheet for more detailed information about alternative functions of pin header } \\$

Table 3 Expanded pin header

J1	Alternative Functions	Shared by	J2	Alternative Functions	Shared by
PA0	WKUP/UASRT2_CTS	LED3	nRESET	-	-
PA1	USART2_RTS/ADC12_IN1	LED4	PB1	ADC12_IN9/TIM3_CH4	-
PA2	USART2_TX/ADC12_IN2	-	PB2	-	BOOT1
PA3	USART2_RX/ADC12_IN3	-	PB3	-	-
PA4	SPI1_NSS/USART2_CK	nSS1	PB4	-	-
PA5	SPI1_SCK/ADC12_IN5	SCLK1	PB5	I2C1_SMBAI	-
PA6	SPI1_MISO/ADC12_IN6	MISO1	PB6	I2C1_SCL/TIM4_CH1	-
PA7	SPI1_MOSI/ADC12_IN7	MOSI1	PB7	I2C1_SDA/TIM4_CH2	-
3V3D	-	-	3V3D	-	-
GND	-	-	GND	-	-
GND	-	-	GND	-	-
PA8	USART1_CK/TIM1_CH1	TXD1	PB10	I2C2_SCL/USART3_TX	-
PA9	UART1_TX/TIM1_CH2	RXD1	PB11	I2C2_SDA/USAART3_RX	-
PA10	UART1_RX/TIM1_CH3	-	PB12	SPI2_NSS/I2C2_SMBAI	-
PA11	UART1_CTS/CANRX/	-	PB13	SPI2_SCK/USART3_CTS	-
PA12	UART1_RTS/CANTX	-	PB14	SPI2_MISO/USART3_RTS	-
PA13	-	-	PB15	SPI2_MISO/TIM1_CH3N	-
PA14	-	-	PC13	TAMPER-RTC	-
PA15	-	-	PC14	OSC32_IN	-
VIN_5V	External VIN (5V)	-	PC15	OSC32_OUT	-

6 Development environment

6.1 IDE

The IAR Embedded Workbench for ARM IDE is currently supported. (Other IDE tools for ARM IDE will be supported as like Keil.) The W5200E01-M3 software package is released the version of IAR Embedded Workbench for ARM 5.41. Refer to IAR's own documentation on how to use it. The W5200E01-M3 software package contains various examples for using W5200

6.2 Install Flash loader Demonstrator

Flash Loader demonstrator is used to program for W5200E01-M3.

Note:

Refer to UM0462 User manual at www.st.com for more detailed information about STM32F103xx Flash Loader demonstrator

Download: UM0462 Flash loader demonstrator

http://www.st.com/internet/mcu/product/216817.jsp

Click "Design Support" -> SW DEMOS (Bottom end of page)

Figure 3 Download Flash loader demonstrator

SW	SW DEMOS				
	Description	Version	Size		
ar)	STM32F101xx and STM32F103xx Flash loader demonstrator: Contains the Demo GUI, Command line and header source files	2.2.0	7867KB		

6.3 USB-to-UART interface IC Driver

When the mini-USB is connect to USB-equipped Windows computer, the Device Manager will properly installed USB-to-Serial driver. If USB-to-Serial adaptor not works as expected, you can download the USB-to-Serial driver at www.ftdichip.com.

Note:

Refer to Installation Guides at www.fuducguo.com more detailed information about USB-to-Serial converter.

- Download Installation Guides:
 - 1. www.fidichip.com
 - 2. Click "Support->Documents-> Installation Guides"
 - 3. Download up to your operation system.

- Download Driver
 - 1. www.fidichip.com
 - 2. Click "Drivers->VCP Drivers"
 - 3. Download up to your operation system.

Figure 4 Currently Supported VCP Drivers (3MAR2010)

			Pr	ocessor	Archite	cture		
Operating System	Release Date	x86 (32- bit)	x64 (64- bit)	PPC	ARM	MIPSII	MIPSIV	SH4
Windows*	2011-02-28	2.08.12	2.08.12	-	-	-	-	-
Windows*	2010-08-11	2.08.02	2.08.02	-	-	-	-	-
Linux	2009-05-14	1.5.0	1.5.0	-	-	-	-	-
Mac OS X	2011-02-28	2.2.16	2.2.16	2.2.16	-	-	-	-
Windows CE 4.2- 5.2**	2010-02-11	1.1.0.6	-	-	1.1.0.6	1.1.0.6	1.1.0.6	1.1.0.6
Windows CE 6.0	2010-02-11	1.1.0.6	-	-	1.1.0.6	1.1.0.6	1.1.0.6	1.1.0.6

7 W5200 SPI

The SPI Interface of ST23F103 with W5200 is shown below.

Figure 5 W5200 SPI Interface

A pseudo code for read/write with SPI is shown below. Check the W5200 documentation for SPI burst mode, and how to use it.

Code 1 Pseudo code for Read with SPI interface

```
#define data_read_command
                              0x00
               //address : 16bits
uint16 addr:
int16 data_len; //data_length :15bits
uint8 data_buf[]; // array for data
SpiSendData(); //send data from MCU to W5200
SpiRecvData(); //Receive data from W5200 to MCU
/* Pseudo Code for Read data of 8bit per packet */
ISR_DISABLE(); // Interrupt Service Routine disable
CSoff(); // CS=0, SPI start
//SpiSendData
SpiSendData(((addr+idx) & 0xFF00) >> 8); //Address byte 1
SpiSendData((addr+idx) & 0x00FF);  //Address byte 2
// data write command + data length upper 7bits
SpiSendData((data_read_command | ((data_len & 0x7F00) >> 8)));
// data length bottom 8bits
SpiSendData((data_len & 0x00FF));
SpiSendData(0);
                //dummy data
data_buf[idx] = SpiRecvData(idx);  //READ data
CSon(); // CS=1, SPI end
ISR_ENABLE();// Interrupt Service Routine disable
```


Code 2 Pseudo code for Write with SPI interface

```
#define data_write_command
                              0x80
uint16 addr;
               //address : 16bits
int16 data_len; //data_length :15bits
uint8 data_buf[]; // array for data
SpiSendData(); //send data from MCU to W5200
SpiRecvData(); //Receive data from W5200 to MCU
/* Pseudo Code for Read data of 8bit per packet */
SpiSendData(); //send data from MCU to W5200
ISR_DISABLE(); // Interrupt Service Routine disable
CSoff(); // CS=0, SPI start
SpiSendData(((addr+idx) & 0xFF00) >> 8); //Address byte 1
SpiSendData((addr+idx) & 0x00FF);
                                    //Address byte 2
// data write command + data length upper 7bits
SpiSendData((data_write_command | ((data_len & 0x7F00) >> 8)));
// data length bottom 8bits
SpiSendData((data_len & 0x00FF));
SpiSendData(data_buf[idx]);
CSon(); // CS=1, SPI end
IINCHIP_ISR_ENABLE(); // Interrupt Service Routine disable
```


8 W5200 Memory Map

Refer to W5200 Datasheet for more detail information.

Figure 6 W5200 Memory Map

Table 4 W5200 Memory

Start Address Register 0x0000 Mode (MR) 0x0001 Gateway Address (GAR[0-1]) 0x0005 Subnet mask Address (SUBR[0-1]) 0x0009 Source Hardware Address (SHAR[0-5]) 0x000F Source IP Address (SIPR[0-3]) 0x0013 Reserved 0x0015 Interrupt (IR) 0x0016 Socket Interrupt Mask (IMR) 0x0017 Retry Time (RTR[0-1]) 0x0019 Retry Count (RCR) 0x001A Reserved 0x001C Authentication Type in PPPoE (PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS) 0x0036 Interrupt Mask (IMR2)			
0x0001 Gateway Address (GAR[0-1]) 0x0005 Subnet mask Address (SUBR[0-1]) 0x0009 Source Hardware Address (SHAR[0-5]) 0x000F Source IP Address (SIPR[0-3]) 0x0013 Reserved 0x0015 Interrupt (IR) 0x0016 Socket Interrupt Mask (IMR) 0x0017 Retry Time (RTR[0-1]) 0x0019 Retry Count (RCR) 0x001A Reserved 0x001C Authentication Type in PPPoE (PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	Start Address	Register	
(GAR[0-1]) 0x0005 Subnet mask Address (SUBR[0-1]) 0x0009 Source Hardware Address (SHAR[0-5]) 0x000F Source IP Address (SIPR[0-3]) 0x0013 Reserved 0x0015 Interrupt (IR) 0x0016 Socket Interrupt Mask (IMR) 0x0017 Retry Time (RTR[0-1]) 0x0019 Retry Count (RCR) 0x001A Reserved 0x001C Authentication Type in PPPoE (PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	0x0000	Mode (MR)	
0x0005 Subnet mask Address (SUBR[0-1]) 0x0009 Source Hardware Address (SHAR[0-5]) 0x000F Source IP Address (SIPR[0-3]) 0x0013 Reserved 0x0015 Interrupt (IR) 0x0016 Socket Interrupt Mask (IMR) 0x0017 Retry Time (RTR[0-1]) 0x0019 Retry Count (RCR) 0x001A Reserved 0x001C Authentication Type in PPPoE (PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	0x0001	Gateway Address	
(SUBR[0-1]) 0x0009 Source Hardware Address (SHAR[0-5]) 0x000F Source IP Address (SIPR[0-3]) 0x0013 Reserved 0x0015 Interrupt (IR) 0x0016 Socket Interrupt Mask (IMR) 0x0017 Retry Time (RTR[0-1]) 0x0019 Retry Count (RCR) 0x001A Reserved 0x001C Authentication Type in PPPoE (PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)		(GAR[0-1])	
0x0009 Source Hardware Address (SHAR[0-5]) 0x000F Source IP Address (SIPR[0-3]) 0x0013 Reserved 0x0015 Interrupt (IR) 0x0016 Socket Interrupt Mask (IMR) 0x0017 Retry Time (RTR[0-1]) 0x0019 Retry Count (RCR) 0x001A Reserved 0x001C Authentication Type in PPPoE (PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	0x0005	Subnet mask Address	
(SHAR[0-5]) 0x000F Source IP Address (SIPR[0-3]) 0x0013 Reserved 0x0015 Interrupt (IR) 0x0016 Socket Interrupt Mask (IMR) 0x0017 Retry Time (RTR[0-1]) 0x0019 Retry Count (RCR) 0x001A Reserved 0x001C Authentication Type in PPPoE (PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)		(SUBR[0-1])	
0x000F Source IP Address (SIPR[0-3]) 0x0013 Reserved 0x0015 Interrupt (IR) 0x0016 Socket Interrupt Mask (IMR) 0x0017 Retry Time (RTR[0-1]) 0x0019 Retry Count (RCR) 0x001A Reserved 0x001C Authentication Type in PPPoE (PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	0x0009	Source Hardware Address	
(SIPR[0-3]) 0x0013 Reserved 0x0015 Interrupt (IR) 0x0016 Socket Interrupt Mask (IMR) 0x0017 Retry Time (RTR[0-1]) 0x0019 Retry Count (RCR) 0x001A Reserved 0x001C Authentication Type in PPPoE (PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)		(SHAR[0-5])	
0x0013 Reserved 0x0015 Interrupt (IR) 0x0016 Socket Interrupt Mask (IMR) 0x0017 Retry Time (RTR[0-1]) 0x0019 Retry Count (RCR) 0x001A Reserved 0x001C Authentication Type in PPPoE (PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	0x000F	Source IP Address	
0x0015 Interrupt (IR) 0x0016 Socket Interrupt Mask (IMR) 0x0017 Retry Time (RTR[0-1]) 0x0019 Retry Count (RCR) 0x001A Reserved 0x001C Authentication Type in PPPoE (PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)		(SIPR[0-3])	
0x0016 Socket Interrupt Mask (IMR) 0x0017 Retry Time (RTR[0-1]) 0x0019 Retry Count (RCR) 0x001A Reserved 0x001C Authentication Type in PPPoE (PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	0x0013	Reserved	
0x0017 Retry Time (RTR[0-1]) 0x0019 Retry Count (RCR) 0x001A Reserved 0x001C Authentication Type in PPPoE (PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	0x0015	Interrupt (IR)	
(RTR[0-1]) 0x0019 Retry Count (RCR) 0x001A Reserved 0x001C Authentication Type in PPPoE (PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	0x0016	Socket Interrupt Mask (IMR)	
0x0019 Retry Count (RCR) 0x001A Reserved 0x001C Authentication Type in PPPoE (PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	0x0017	Retry Time	
0x001A Reserved 0x001C Authentication Type in PPPoE (PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)		(RTR[0-1])	
0x001C Authentication Type in PPPoE (PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	0x0019	Retry Count (RCR)	
(PATR[0-1]) 0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	0x001A		
0x001E Authentication Algorithm in PPPoE (PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	0x001C	Authentication Type in PPPoE	
(PPPALGO) 0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)		(PATR[0-1])	
0x0020 Reserved 0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	0x001E	Authentication Algorithm in PPPoE	
0x0028 PPP LCP Request Timer (PTIMER) 0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)			
0x0029 PPP LCP Magic number (PMAGIC) 0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	0x0020	Reserved	
0x0030 Interrupt Low Level Timer (INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	0x0028	PPP LCP Request Timer (PTIMER)	
(INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	0x0029	PPP LCP Magic number (PMAGIC)	
(INTLEVEL[0-1]) 0x0032 Reserved 0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)	0x0030	Interrupt Low Level Timer	
0x0034 Socket Interrupt (IR2) 0x0035 PHY Status (PSTATUS)			
0x0035 PHY Status (PSTATUS)	0x0032	Reserved	
, ,	0x0034	Socket Interrupt (IR2)	
0x0036 Interrupt Mask (IMR2)	0x0035	PHY Status (PSTATUS)	
	0x0036	Interrupt Mask (IMR2)	

	5	
Start Address	Register	
0x4n00	Socketn Mode (SO_MR)	
0x4n01	Socketn Command (SO_CR)	
0x4n02	Socketn Interrupt (SO_IR)	
0x4n03	Socketn Status (SO_SR)	
0x4n04	Socketn Source Port	
	(S0_PORT[0-1])	
0x4n06	Socketn Destination Hardware Address	
	(Sn_DHAR[0-5])	
0x4n0C	Socketn DestinationIP Address	
	(Sn_DIPR[0-3])	
0x4n10	Socketn Destination Port	
	(Sn_DPOR T 0-1])	
0x4n12	Socketn Maximum Segment Size	
	(Sn_MSS R 0-1])	
0x4n14	Socketn Protocolin IP Raw mode	
	(Sn_PROTQ)	
0x4n15	Socketn IP TOS (SO_TOS)	
0x4n16	Socketn IP TTL (SO_TTL)	
0x4n17	Reserved	
0x4n1E	Receive Memory Size	
	(Sn_RXMEM_SIZE	
0x4n1F	Transmit Memory Size	
	(Sn_TXMEM_SIZE	
0x4n20	Socketn TX Free Size	
	(Sn_TX_FS f [0-1])	
0x4n22	Socketn TX Read Pointer	
0711122	(Sn_TX_R[[0-1])	
0x4n24	Socketn TX Write Pointer	
0/11/21		
0x4n26	Socketn RX Received Size	
5.11120		
0x4n28	Socketn RX Read Pointer	
OX IIIZO		
0ν4η2Δ	Socketn RX Write Pointer	
UATI IZA		
0v4n2C		
UATI IZC	•	
0v4n2D		
UX 4 I IZU		
0v4s2E		
	Reserved	
	et number (0 1 2 3 4 5 6 7)	
0x4n26 0x4n28 0x4n2A 0x4n2C 0x4n2C 0x4n2D 0x4n2F 0x4n30 n is sock	(Sn_TX_Wf[0-1]) Socketn RX Received Size (Sn_RX_RSf[0-1]) Socketn RX Read Pointer (Sn_RX_R[0-1]) Socketn RX Write Pointer (Sn_RX_Wf[0-1]) Socket Interrupt Mask (Sn_IMR) Fragment Offset in IP header (Sn_FRAG[0-1])	

n is socket number (0, 1, 2, 3, 4, 5, 6, 7)

9 Reference Firmware

- The TCP (Transmission Control Protocol) RFC 793 of IETF
- TCP Server / Client Loopback

The TCP protocol of W5200 supports both server mode and client mode, user can select one and use for its application. The difference between server mode and client mode are shown below.

OPEN OPEN CONNECT LISTEN Connect-Request **ESTABLISHED ESTABLISHED** Data Communications Data Communications Disconnect-Request Disconnect-Request Disconnect-Request Disconnect-Request CLOSED CLOSED "TCP SERVER" "TCP CLIENT"

Figure 7 TCP SERVER /CLIENT

9.1 W5200 Socket API

Table 5 W5200 Socket API

Function	Description	Example code
socket()	To create the SOCKET n (the n-1 th	Method 1 : server mode
	SOCKET), use the socket() function to set	/* sets Protocol Number */
	the SOCKET number, protocol, port	s = 0; // set SOCKET 0 (From 0 to 7)
	number, and flag.	/* OPEN SOCKET 0 */
		socket(s, Sn_MR_TCP, port, mode);
		while(getSn_SR(s) != SOCK_INIT);
		Method 2 : client mode
		/* sets Protocol Number */
		s = 0; // set SOCKET 0
		/* sets port number */
		any_port = 1000;
		/* OPEN SOCKET 0 */
		socket(s, Sn_MR_TCP, any_port++, mode);
		while(getSn_SR(s) != SOCK_INIT);
listien()	The LISTEN step is only used during	s = 0; // set SOCKET 0
	SERVER mode. After creating the	listen(s);
	SOCKETn, change the SOCKET to LISTEN	
	status so that CLIENT can connect.	
connect()	The CONNECT stage is used during CLIENT	s = 0; // set SOCKET 0
	mode to connect to the SERVER.	serverip[4] = {192, 168, 1, 2}; // set
		server(destination) IP
		serverport = 0x5000; set server(destination) port
		connect(s, serverip, serverport);
send()	In the case of TCP protocol, the	/* Send data to connected peer. */
	connection between the peer is already	// max_size_tx_buf must be smaller than the
	complete before sending data	maximum size of the TX buffer
		s = 0; //set SOCKET 0
		* data_buf[max_size_tx_buf] = (uint8 *)0x7000; //
		set position of data buffer
		len = 1460; //set length is 1460 Byte
		send(s, (uint8 *)data_buf, len);

VVIZI	161	
receive()	RECEIVE is similar in usage method to	/* Check received data */
	SEND, but it has a checking the	s = 0; //set SOCKET 0
	Sn_RX_RSR(n).	/*len indicates the received data size in the RX
		buffer. It must be smaller than the maximum size of
		the RX buffer */
		if ((len = getSn_RX_RSR(s)) > 0)
		/* Received data */
		//len is a length included the DATA packet.
		* data_buf[max_size_tx_buf] = (uint8 *)0x7000; //
		set position of data buffer
		<pre>len = recv(s, (uint8 *)data_buf, len);</pre>
disconnect()	The disconnect (n) is not used to just	s = 0; // set SOCKET 0
	directly close the SOCKET. It is used to	disconnect(s);
	send a disconnect-request (FIN packet) to	
	a peer and wait for a disconnect-reply	
	(FIN/ACK packet)	
close()	Unlike DISCONNECT, CLOSE directly	s = 0; // set SOCKET 0
	changes the SOCKET to SOCK_CLOSED	close(s);

9.2 Firmware Structure

Table 6 Project Hierarchy

Directory	Files	Decryption
USER	main.c	W5200E01-M3 main function
	W5200.c, W5200.h	I/O functions for W5200
	socket.c, socket.h	Socket APIs for W5200
	loopback.c, loopback.h	TCP, UDP Loopback Apps implementation
	SPI2.c	STM32F103x SPI Interface initialization
	util.c, util.h	Utilities
	dhcp.c, dhcp.h	DHCP App implementation
	md5.c, md5.h	md5 hash algorithm implementation for PPPoE
	stm32f10x_it.c	Main Interrupt Service Routines
	system_stm32f10x.c	Cortex-M3 Device Peripheral Access Layer System
CMSIS	core_cm3.c	Cortex™ Microcontroller Software Interface Standard
EWARMv5.4	startup_stm32f10x_md.s	STM32F10x Medium Density Devices vector table
EWARMv5.4/	misc.c	miscellaneous firmware functions
StdPeriph_Driver	stm32f10x_bkp.c	BKP firmware functions
	stm32f10x_flash.c	FLASH firmware functions
	stm32f10x_gpio.c	GPIO firmware functions
	stm32f10x_rcc.c	RCC firmware functions
	stm32f10x_spi.c	SPI firmware functions
	stm32f10x_tim.c	TIM firmware functions
	stm32f10xusart.c	USART firmware functions

9.3 Firmware Functions

Table 7 Functions in main.c

Function	Description	
RCC_Configuration	Configure the system clocks	
NVIC_Configuration	Nested Vectored Interrupt Controller configuration	
GPIO_Configuration	Configure the General Purpose I/O Pin	
Reset_W5200	W5200 Reset Function	
UART1_Init	UART Interface Initialization	
WIZ_SPI_Init	W5200 SPI Interface Initialization	
Timer_Configuration	Timer Configuration	
LED3_onoff/LED4_onoff	USER LED n Control Function	
Set_network	Configure Network In formations for W5200	
WIZ_Config	Configure Network In formations	

Table 8 Key Variables for Network Configuration

Variable	Description	Example Code (Location: main.c)
MAC[6]	MAC address	MAC[6] = {0x00, 0x08, 0xDC, 0x01, 0x02, 0x03};
IP[4]	Local IP address	IP[4] = {192, 168, 11, 4};
GateWay[4]	Gateway address	GateWay[4] = {192, 168, 11, 1};
SubNet[4]	Sub	SubNet[4] = {255, 255, 255, 0};

• Note: MAC address should be defined even if DHCP mode.

Table 9 Functions in Loopback.c

Function	Description	Example Code (Location: loopback.c)
loopback_tcps	TCP Loopback server mode	- ch : socket number [0-7]
		- port : source port
		loopback_tcps(uint8 ch, uint16 port)
loopback_tcpc	TCP Loopback client mode	- ch : socket number [0-7]
		-ChConfig.destip : Destination IP
		-ChConfig.port : Destination Port
		loopback_tcpc(uint8 ch, CHConfig_TypeDef* ChConfig)
loopback_udp	UDP (User Datagram	- ch : socket number [0-7]
	Protocol)	- port : source port
	Loopback server mode	loopback_udp(uint8 ch, uint16 port)

9.4 Firmware Build and Upload

9.4.1 Build - IAR Embedded Workbench IDE

To build and link you project choose "Make" form the "Project" menu, or press F7.

Figure 8 Compile on IAR Embedded Workbench IDE

9.4.2 Upload - Flash Loader Demonstrator

Upload 1 Select the Communication port and set setting

Note - PROG S/W should be selected 'PROG' to connect to W5200E01-M3 with PC.

Upload 2 Check target readable

Upload 3 Select device in the target

Upload 4 Choose Binary image file in work project

Note - Binary image file's location: ...\Work\App\Debug\Exe in project directory

Upload 5 Select "@0x08000000" in memory address list

Upload 6 Select "Next" to upload the binary image file

Note - After finishing 'Download', PROG S/W should be selected 'RUN' to run User APP.

10 Application Demonstration

10.1 Flow of Demonstration

Figure 9 Flow Chat of Demonstration

10.2 Ping TEST

A ping test determines whether your test PC can communicate with the W5200E01-M3 over the network.

10.2.1 Network configuration for TEST PC

- 1. Access the "Start" menu and click "Control Panel."
- Click "Network Connections"
- 3. Right-click the name of your network in the list of available networks. Select "Properties."
- 4. Navigate to the "General" tab. Scroll down through the list of connection types and locate the "Internet Protocol (TCP/IP)" entry.
- 5. Right-click the entry and select "Properties."
- 6. Co figurate IP address, subnet mask and Default gateway as follow figure.

Figure 10 Internet Protocol Properties

10.2.2 Ping Test at Command Prompt

- 1. Access the "Start" in the menu, click "Run".
- 2. Enter "cmd" in the "Open:" field,
- 3. Type "ping 192.168.11.4" (W5200E01-M3 IP address) in Command Prompt window

Figure 11 Ping Test at Command Prompt

```
C:\WINDOWS\system32\cmd.exe

Microsoft Windows XP [Version 5.1.2600]
(CC Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\wiznet\ping 192.168.11.4

Pinging 192.168.11.4 with 32 bytes of data:

Reply from 192.168.11.4: bytes=32 time<1ms TTL=128

Reply from 192.168.11.4: bytes=32 time=5ms TTL=128

Reply from 192.168.11.4: bytes=32 time<1ms TTL=128

Reply from 192.168.11.4: bytes=32 time<1ms TTL=128

Reply from 192.168.11.4: bytes=32 time<1ms TTL=128

Paply from 192.168.11.4: bytes=32 time<1ms TTL=128

Paply from 192.168.11.4: bytes=32 time<1ms TTL=128

Ping statistics for 192.168.11.4:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 5ms, Average = 1ms

C:\Documents and Settings\wiznet>
```


10.3 App. TEST - Loopback TEST

- AX1 : Loopback test program

- Download URL: http://www.wiznet.co.kr/UpLoad_Files/ReferenceFiles/AX1.zip

AX1.zip : AXInstallV3.1.exe, AX1 Manual V3.1.pdf

Run 1 Input W5200E01-M3 IP and Port

Run 2 Check "Connected" message

Run 3 Set Data format; size and base Value

Run 4 Check the status message in dialog window

```
File(F) TCP UDP CPUTICK

| Ts Us | TR Uk | \infty | O |

| Send Started : 0x61~0xC4 (100 Bytes) |
| {Sent : 100, Remained : 0} |
| [Send Completed...]
| [Receive Started...]
| {Received : 100, Total Received : 100} |
| [Receive Completed...]
```


11 Physical Specification

Figure 12 W5200E01-M3 Board Dimension

Symbols	Dimensions (mm)
а	28.00
b	25.40
С	52.00
d	1.30
е	1.87
f	2.54
g	1.87

12 Schematic

W5200E01-M3 Schematic can be downloading at WIZnet Homepage, www.wiznet.co.kr.

Document History Information

Revision	Data	Description
Ver. 1.0	APR 14, 2011	Release

Copyright Notice

Copyright 2011 WIZnet, Inc. All Rights Reserved.

Technical Support: support@wiznet.co.kr
Sales & Distribution: sales@wiznet.co.kr

For more information, visit our website at http://www.wiznet.co.kr

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

WIZnet: W5200E01-M3