Föreläsning 9 i Kursboken (63.2-3.4)

— Taylors formel för vektorvärda funktioner

- Funktionalmatris

L. Funktionaldeterminant

– Kedjeregeln för vektorvärda funktioner

- Inversa funktionssatsen

- Lokai inverterbarhet + global inverterbarhet

Inversens funktionalmatris

- Implicita funktioner

— Samband mellan två variabler

— Samband mellan tre variabler

Taylors formel för vektorvärda funktioner

Betrakta en funktion

$$\bar{\mathfrak{f}}:\begin{pmatrix} x\\y\end{pmatrix}\longmapsto\begin{pmatrix} u(x,y)\\\gamma(x,y)\end{pmatrix}$$

Når \bar{f} linjariseras kring (x,y) = (a,b) så linjariseras varje komponent separat

•
$$u(a+h,b+k) = u(a,b) + u'_x(a,b)h + u'_y(a,b)k + (Resttern)$$

$$V(a+h,b+k) = V(a,b) + V_{\alpha}(a,b)h + V_{\alpha}(a,b)k + (Restlerm)$$

och linjariseringen av f blir

$$\tilde{f}(a+h,b+k) = \begin{pmatrix} u(a,b) + u'_{\alpha}(a,b)h + u'_{y}(a,b)k \\ v(a,b) + v'_{\alpha}(a,b)h + v'_{y}(a,b)k \end{pmatrix} + (Restterm)$$

eller i matrisform

$$\overline{f}(a+h,b+k) = \begin{pmatrix} u(a,b) \\ v(a,b) \end{pmatrix} + \begin{pmatrix} u'_{x}(a,b) & u'_{y}(a,b) \\ v'_{x}(a,b) & v'_{y}(a,b) \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix} + (Restterm).$$
Konstant linjära termer

Geometriskt betyder formeln att lokalt kring (a,b) är f approximativt lika med en linjär avbildning som

har matrisen

$$J_{\bar{f}} = \begin{pmatrix} u_{x}'(a,b) & u_{y}'(a,b) \\ v_{x}'(a,b) & v_{y}'(a,b) \end{pmatrix} = Ja kebi matris beknus \\ = \frac{3(u,w)}{3(x,y)} | (x,y) = (a,b)$$

Exempel 1 Linjarisera

$$\bar{f}(x,y) = \begin{pmatrix} x^2y - 2xy + 3xy^2 \\ \arctan \frac{y}{x} \end{pmatrix}$$

kring punkten (x,y) = (1,1).

Lasnings forslag

Taylors formel lyder

$$\vec{f}(i+h,i+k) = \begin{pmatrix} u(i,i) \\ v(i,i) \end{pmatrix} + \begin{pmatrix} u_{\alpha}^{i}(i,i) & u_{g}^{i}(i,i) \\ v_{\alpha}^{i}(i,i) & v_{g}^{i}(i,i) \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix} + \{\text{Restterm}\},$$

där ulx,y) = $x^2y - 2xy + 3xy^2$ och $v(x,y) = \arctan \frac{y}{x}$. Vi har att

$$u(1,1) = 2, v(1,1) = \frac{\pi/4}{4},$$

$$u(1,1) = 2xy - 2y + 3y^2 \Big|_{\frac{x+1}{4+3}} = 3, v_x'(1,1) = \frac{-9/x^2}{1 + (\frac{y}{x})^2} \Big|_{\frac{x+1}{y+1}} = -\frac{1}{2},$$

$$v_{ij}^{1}(1,1) = x^{2} - 2y + 6xy \Big|_{\substack{\alpha=1 \ y=1}} = 5, \qquad v_{ij}^{1}(1,1) = \frac{1/\alpha}{1 + (\frac{y}{\alpha})^{2}} \Big|_{\substack{\alpha=1 \ y=1}} = \frac{1}{2}.$$

Alltså år

$$f(1+h_1 1+k) = \begin{pmatrix} 2 \\ \pi/4 \end{pmatrix} + \begin{pmatrix} 3 & 5 \\ -1/2 & 1/2 \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix} + (Restlerm).$$

Funktionalmatris

Taylors formel av ordning 1 för en differentierbar funktion $\bar{f} \colon \mathbb{R}^m \to \mathbb{R}^n$,

$$ar{f}: \left(egin{array}{c} x_1 \\ x_2 \\ \dots \\ x_m \end{array}
ight) \longmapsto \left(egin{array}{c} f_i(x_i, x_2, \dots, x_m) \\ \dots \\ f_n(x_i, x_2, \dots, x_m) \end{array}
ight),$$

lyder

$$\overline{f}(a_1+h_1,...,a_m+h_m) = \begin{pmatrix} f_1(a_{1_1}...,a_{n_1}) \\ \vdots \\ f_n(a_{r_1}...,a_m) \end{pmatrix} + \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_{n_1}} \\ \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_m} \end{pmatrix} \begin{pmatrix} h_t \\ h_2 \\ \vdots \\ h_m \end{pmatrix} + (\text{Resitem}),$$

$$konstant \qquad \qquad linjara termer$$

Matrisen i den linjära delen kallas för F:s funktionalmatris och betecknas

$$J_{\overline{f}} = \frac{\partial \overline{f}}{\partial (x_{i_1,...,i_n})} = \frac{\partial (f_{i_1,...,i_n})}{\partial (x_{i_1,...,i_n})} = \begin{pmatrix} \frac{\partial f_{i_1}}{\partial x_{i_1}} & \frac{\partial f_{i_1}}{\partial x_{i_2}} & \frac{\partial f_{i_1}}{\partial x_{i_1}} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_{i_n}}{\partial x_{i_1}} & \frac{\partial f_{i_n}}{\partial x_{i_2}} & \cdots & \frac{\partial f_{i_n}}{\partial x_{i_n}} \end{pmatrix}.$$

Övning & Bestäm funktionalmatrisen för

$$\bar{f}:\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \cos(x+z) \\ \frac{xy}{z} \end{pmatrix} = \begin{pmatrix} f_1(x,y,z) \\ f_2(x,y,z) \end{pmatrix}$$

$$\frac{\partial f}{\partial(x_i,y_j,z)} = \frac{\partial(f_i,f_2)}{\partial(x_j,y_j,t)}$$

Funktionaldeterminant

För en funktion

$$\bar{f} : \begin{pmatrix} \alpha \\ y \end{pmatrix} \longmapsto \begin{pmatrix} u(\alpha, y) \\ v(\alpha, y) \end{pmatrix}$$

anger funktionaldeterminanten

$$\det \left(J_{\frac{1}{2}} \right) = \det \left(\frac{\partial (u, v)}{\partial (x, y)} \right) = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$$

skalfaktorn för hur arean av små ytstycken föråndras under avbildning med funktionen f.

För funktioner $f: \mathbb{R}^3 \to \mathbb{R}^3$ anger funktionaldeterminanten skalfaktorn för hur volymen av små kroppar förändras under avbildning med \tilde{f} .

(används vid variabelbyte avtrippel integralen)

Kedjeregeln för vektorvärda funktioner

l en sammansåttning fog av två differentierbara funktioner

$$\begin{pmatrix} \alpha \\ y \end{pmatrix} \xrightarrow{\bar{9}} \begin{pmatrix} u \\ v \end{pmatrix} \xrightarrow{\bar{7}} \begin{pmatrix} s \\ t \end{pmatrix}$$

approximeras foch à lokalt val av sina linjariseringar.

Sammansättningen \bar{f} og kommer därför lokalt approximeras väl av \bar{f} och \bar{g} :s linjariseringar utförda efter varandra, dvs \bar{f} og har en linjarisering med matrisen $J_{\bar{f}}$ og $J_{\bar{f}}$ $J_{\bar{g}}$.

Bra Exempel Far kedjeregeln

Exempel2: Bestäm funktionalmatrisen för

$$\vec{f}: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} \sqrt{xy} \\ z \sin \alpha \end{pmatrix}$$

- a) direkt,
- b) genom att dela upp \bar{f} i två enklare steg och använda kedjeregeln.

Lasningsforslag

a) Vi har att

$$J_{\frac{7}{4}} = \begin{pmatrix} \frac{\partial}{\partial x} \sqrt{xy} & \frac{\partial}{\partial y} \sqrt{xy} & \frac{\partial}{\partial z} \sqrt{xy} \\ \frac{\partial}{\partial x} z \sin x & \frac{\partial}{\partial y} z \sin x & \frac{\partial}{\partial z} z \sin x \end{pmatrix} = \begin{pmatrix} \frac{y}{2\sqrt{xy}} & \frac{x}{2\sqrt{xy}} & 0 \\ z \cos x & 0 & \sin x \end{pmatrix}.$$

b) Se f som sammansattningen go h, dår

$$\begin{pmatrix} \alpha \\ y \\ z \end{pmatrix} \xrightarrow{\bar{h}} \begin{pmatrix} \alpha y \\ \sin \alpha \\ z \end{pmatrix} = \begin{pmatrix} u \\ v \\ w \end{pmatrix} \xrightarrow{\bar{g}} \begin{pmatrix} \sqrt{u} \\ vw \end{pmatrix}.$$

Då såger kedjeregeln att

$$J_{\bar{f}} = J_{\bar{g}} J_{\bar{h}}.$$

Delfunktionerna har funktionalmatriserna

$$J_{\tilde{h}} = \begin{pmatrix} \frac{\partial}{\partial x} \times y & \frac{\partial}{\partial y} \times y & \frac{\partial}{\partial z} \times y \\ \frac{\partial}{\partial x} \sin x & \frac{\partial}{\partial y} \sin x & \frac{\partial}{\partial z} \sin x \\ \frac{\partial}{\partial x} z & \frac{\partial}{\partial y} z & \frac{\partial}{\partial z} z \end{pmatrix} = \begin{pmatrix} y & x & 0 \\ \cos x & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

$$J_{\tilde{g}} = \begin{pmatrix} \frac{\partial}{\partial u} \sqrt{u} & \frac{\partial}{\partial y} \sqrt{u} & \frac{\partial}{\partial w} \sqrt{u} \\ \frac{\partial}{\partial u} \vee w & \frac{\partial}{\partial y} \vee w & \frac{\partial}{\partial w} \vee w \end{pmatrix} = \begin{pmatrix} \frac{1}{2\sqrt{u}} & 0 & 0 \\ 0 & w & v \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2\sqrt{xy}} & 0 & 0 \\ 0 & x & \sin x \end{pmatrix}.$$

Alltså år

$$J_{\mathcal{S}} = \begin{pmatrix} \frac{1}{2\sqrt{xy}} & 0 & 0 \\ 0 & z & \sin \alpha \end{pmatrix} \begin{pmatrix} y & \alpha & 0 \\ \cos \alpha & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{y}{2\sqrt{xy}} & \frac{x}{2\sqrt{xy}} & 0 \\ z \cos \alpha & 0 & \sin \alpha \end{pmatrix}.$$

Övning 2

Givet funktionen

$$\bar{j}: \left(\begin{array}{c} \alpha \\ y \end{array}\right) \longmapsto \left(\begin{array}{c} \sin \alpha y \\ \ln \frac{\alpha}{y} \end{array}\right)$$

a) Skriv f som en sammansåttning av två enkla funktioner

$$\bar{f} \colon \begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix} \longmapsto \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{pmatrix}$$

b) Beråkna funktionalmatrisen Ji med kedjeregeln.

Skall utforas som hemlæxa (se Exempels)

Inversa funktionssatsen

En kontinuerligt deriverbar funktion

$$\bar{\mathfrak{f}}: \left(\begin{matrix} \mathfrak{x} \\ \mathfrak{y} \end{matrix}\right) \to \left(\begin{matrix} \mathfrak{u}(\mathfrak{x},\mathfrak{y}) \\ \mathfrak{v}(\mathfrak{x},\mathfrak{y}) \end{matrix}\right)$$

ser lokalt ut som en linjår avbildning med matrisen

$$\mathcal{I}_{\bar{f}} \; = \; \left(\begin{array}{cc} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{array} \right).$$

Om den linjära avbildningens matris $J_{\bar{f}}$ är inverterbar (dvs $\det(J_{\bar{f}}) \neq 0$) då är avbildning \bar{f} lokalt inverterbar kring linjariseringspunkten.

Ovning 3 Visa att funktionen

$$f: \begin{pmatrix} \alpha \\ y \end{pmatrix} \longmapsto \begin{pmatrix} xy \\ \ln \frac{x}{y} \end{pmatrix}$$

har en differentierbar lokal invers kring punkten (x,y) = (1,1).

Lokalt inverterbar + globalt inverterbar

Observera att bara för att en funktion är lokalt inverterbar överallt i en mångd behöver inte funktionen vara globalt inverterbar.

Funktionen $\bar{f}(x,y) = (e^{(x+2)/4}\cos y, e^{(x+2)/2}\sin y)$ är lokalt inverterbar (det $J_{\bar{f}}(x,y) = \frac{1}{4}e^{(x+2)/2} > 0$) men inte globalt $(\bar{f}(0,-\pi) = \bar{f}(0,\pi) = (-\sqrt{e},0))$.

Inversens funktionalmatris

Den lokala inversfunktionens funktionalmatris är inversen av funktionens funktionalmatris.

Implicita funktioner

Vi behandlar vanligtvis funktioner som ges direkt av formler, men vissa typer av funktioner definieras istället via samband.

Exempel 3 Den ideala gaslagen lyder

$$pV = nRT.$$
 (*)

Om vi har givet $p = 200 \, \text{Pa}$, $n = 0.2 \, \text{mol}$ och $T = 300 \, \text{K}$ så går det från gaslagen att bestämma volymen V,

 $200 \text{ V} = 0.2 \cdot 8.314 \cdot 300 \iff \text{V} = 2.5 \text{ m}^3.$

Gaslagen definierar volymen V som en funktion av p, n och T,

$$V = \frac{nRT}{P}$$
.

Exempel 4 van der Waals gaslag

$$\left(p - \frac{a^2n}{v^2}\right)(v - nb) = nRT$$

definierar också volymen V som en funktion av de övriga tillståndsvariablerna p, n och T, men det är svärt att uttrycka V = V(p, n, T) med en explicit formel.

Samband mellan två variabler : implicita Funktions sat

Antag alt a och y hänger ihop via sambandet

$$f(x,y)=0,$$

där f är en kontinuerligt deriverbar funktion.

Då definierar sambandet y som en kont. deriverbar

funktion av
$$\alpha$$
 lokalt kring $(\alpha, y) = (a, b)$ om

 $\frac{\partial f}{\partial y}(a_1b) \neq 0.$

Alla punkter (x,y) som uppfyller f(x,y) = 0 bildar en rivåkurva i planet och kurvan har normalvektorn $\nabla f = (f_x', f_y')$.

I punkten (a,b) är fyla,b) + 0 och i en omgivning av (a,b) råder ett 1:1-förhållande mellan 2- och y-värden på kurvan.

Observera ott 1:1-förhållandet bara gananteras gälla lokalt och inte för hela kurvan.

I punkten (a,b) är $f'_y(a,b) = 0$ och pavsett hur liten omgivning kring (a,b) väljs så går det inte att definiera y = y(x) eftersom mot x-värden till vänster om x=a svarar två y-värden.

Övning 4 Markera de punkter dår sambandet f(x,y) = 0 inte definierar y = y(x) som en kontinuerligt deriverbar funktion.

Övning 5 Undersök om sambandet

$$e^{xy} + x + y = 2$$

i en omgivning av punkten (x,y) = (1,0)definierar en kontinuerligt deriverbar funktion y = y(x).

$$f(x,y) = \begin{cases} \frac{\partial f}{\partial x} & \text{if } parken \\ \frac{\partial f}{\partial x} & \text{if } parken \end{cases}$$

Exempel 5 Bestäm y'(1) för funktionen ovan.

se lösnings förslaset på taulan.

De röda punkterna uppfyller sambandet

$$e^{xy} + x + y = 2$$
,

Kring punkten $(x_1y) = (1,0)$

Samband mellan tre variabler : Ir

Implicita funktions sats

5åg att vi har ett samband mellan tre variabler f(x,y,z) = 0,

där f är en kontinuerligt deriverbar funktion. Dä definierar sambandet z som en kontinuerligt deriverbar funktion av x och y lokalt kring $(x_1y_1z)=(a_1b_1c)$ om $\frac{2f}{2z}(a_1b_1c) \neq 0$.

Alla purikter (x,y,z) som uppfyller sambandet f(x,y,z)=0 bildar en nivåyta i rummet ach ytan har normalvektorn $\forall f = (f'_x, f'_y, f'_z).$

I en punkt (a_1b_1c) där $f_2' \neq 0$ går det att välja en omgivning vari det råder ett 1:1-förhållande mellan (x,y)-värden och z-värden på ytan.

I punkten (a,b,c) år $f_2' = 0$ och det spelar ingen roll hur liten omgivning som väljs, det kommer alltid finnas (x,y)-värden mot vilka det svarar två z-värden.

Övning s: Hur lyder villkoret for all sambandet

SVQY;

$$f(x, y, z) = 0$$

 $\frac{2F(a,b,c) + 8}{3x}$ ska definiera en kontinuerligt deriverbar funktion x = x(y,z) i en omgivning av (x,y,z) = (a,b,c).

Övning c: Markera de punkter där f(x,y,z) = 0 inte definierar y = y(x,z) som en kontinuerligt deriverbar funktion.

Exempel 6: Visa att sambandet $3\alpha yz - z^3 = 10$ definierar $z = z(\alpha, y)$ som en kontinuerligt deriverbar funktion kring $(\alpha, y, z) = (1, 3, 2)$. Beståm därefter $z'_{\alpha}(1, 3)$ och $z'_{\gamma}(1, 3)$.

Lasnings farslag

Definiera

$$f(x,y,z) = 3xyz - z^3 - 10$$

Eftersom

$$\frac{6f}{07}(1,3,2) = 3xy - 3z^{2}\Big|_{\substack{x=1\\y=3\\2=2}} = -3 \neq 0$$

så ger implicita funktionssatsen att samhandet f(x,y,z) = 0 definierar z = z(x,y) som en kontinuerligt deriverbar funktion lokalt kring (x,y,z) = (1,3,2).

Len omgivning av (x,y) = (1,3) finns alltså en funktion z = z(x,y) som uppfyller

$$3 \propto y z(x_1 y) - z(x_1 y)^3 \equiv 10$$
.

Derivera nu båda led med avseende på x,

$$3\mu z(x,y) + 3xy \frac{\partial z}{\partial x} - 3z(x,y)^2 \frac{\partial z}{\partial x} = 0$$
 (1)

respektive y,

$$3 \propto z(x,y) + 3 \propto y \frac{\partial z}{\partial y} - 3 z(x,y)^2 \frac{\partial z}{\partial y} \equiv 0.$$
 (2)

(1) och (2) är ett linjärt ekvationssystem med $\frac{\partial z}{\partial x}$ och $\frac{\partial z}{\partial y}$ som obekanta och vi får

$$\frac{\partial z}{\partial x} = \frac{yz}{z^2 - xy} \quad \text{och} \quad \frac{\partial z}{\partial y} = \frac{xz}{z^2 - xy},$$

dvs

$$\frac{\partial z}{\partial x}(1,3) = \frac{3 \cdot 2}{2^2 - 1 \cdot 3} = 6,$$

$$\frac{\partial z}{\partial y}(1_i3) = \frac{1\cdot 2}{2^2 - 1\cdot 3} = 2,$$