Analyse Numérique chapitre 2:Intégration numérique

Mme M.El Kyal

ENSA d'Agadir

Plan

Introduction

Méthodes de Newton Cotes

Méthodes composites

Méthodes de Gauss

Description du problème

On cherche à estimer la valeur numérique de

$$I = \int_{a}^{b} f(x) dx$$

avec a et b deux réels (a < b =.

- Dans beaucoup de situations, la fonction est donnée explicitement mais difficile à intégrer.
- Dans d'autres cas, la fonction est évaluée numériquement en différents points de l'intervalle mais non connue explicitement.

Solution : utiliser des méthodes numériques.

En analyse numérique, il existe toute une famille d'algorithmes permettant d'approcher la valeur numérique d'une intégrale. Toutes consistent à approcher l'intégrale

$$I = \int_{a}^{b} f(x) dx$$

par une formule dite de quadrature, du type

$$I(f) = \sum_{i=0}^{p} w_i f(x_i).$$

Les choix du nombre p, des pondérations w_i et des noeuds x_i dépendent de la méthode employée.

Ordre de précision

Une première indication de l'efficacité d'une méthode est donnée par son ordre.

Définition

Une formule de quadrature est dite d'ordre de précision n si elle est exacte pour x^k , $k=0,\cdots,n$ et non exacte pour x^{n+1} .

Autrement dit, une méthode de quadrature est d'ordre n quand elle donne la valeur exacte de l'intégrale pour tout polynôme de degré inférieur ou égal à n, et un résultat faux pour au moins un polynôme de degré n+1.

Les méthodes de Newton-Cotes: Formules de quadrature de type interpolation

Les méthodes de Newton-Cotes utilisent l'interpolation des fonctions à intégrer avec des points x_i équidistants.

Notons que si $p_n(x)$ est le polynôme qui interpole la fonction f aux points $x_0 < x_1 < \dots < x_n$, alors la fonction f peut s'écrire

$$f(x) = p_n(x) + E_n(x)$$

Alors l'approximation de $I = \int_a^b f(x) dx$ est donnée par

$$I(f) = \int_{a}^{b} p_{n}(x) dx$$

avec une erreur

$$E(f) = \int_a^b \frac{f^{(n+1)}(\epsilon(x))}{(n+1)!} (x-x_0) \cdots (x-x_n) dx.$$

Avantages

- Les fonctions sont interpolées par des polynômes dont on connaît facilement la primitive.
- ces méthodes sont utilisables même si on ne connait que des valeurs de f puisqu'on peut alors construire le polynôme P d'interpolation de f sur ces valeurs.

Méthode des rectangles

C'est la méthode la plus simple qui consiste à interpoler la fonction f à intégrer par une fonction constante (polynôme de degré 0) au point $x_0 = a$ ou $x_0 = b$.

Soit $(x_0, f(x_0))$ le point d'interpolation, la formule devient alors :

$$I_R(f) = (b-a)f(x_0)$$

pour $x_0 = a$ on aura

$$I \simeq I_{R,g}(f) = (b-a)f(a)$$

et pour $x_0 = b$ on aura

$$I \simeq I_{R,d}(f) = (b-a)f(b)$$

Erreur d'intégration de la méthode des rectangles

Avec $x_0 = a$ ou b, l'erreur est donné par:

$$E_R(f) = \frac{(b-a)^2}{2} f'(\eta), \eta \in [a,b].$$

Pour la démonstration, il suffit d'utiliser le théorème suivant

Théoreme

Soit f_1 une fonction continue dans l'intervalle [a,b] et f_2 une fonction intégrable qui ne change pas de signe dans l'intervalle [a,b]. Il existe alors $\eta \in [a,b]$ tel que

$$\int_{a}^{b} f_{1}(x) f_{2}(x) dx = f_{1}(\eta) \int_{a}^{b} f_{2}(x) dx.$$

La méthode du rectangle est exacte (c'est-à-dire $E_R(f)=0$) pour les fonctions constantes.

Erreur d'intégration de la méthode du point milieu

Pour la méthode du point milieu $(x_0 = \frac{b+a}{2})$ l'erreur est

$$E(f) = \frac{(b-a)^3}{24} f''(\eta), \eta \in [a,b].$$

On remarque que le choix du point milieu améliore l'ordre de la méthode.

Méthode des trapèzes

Le principe de la méthode des trapèzes est d'approcher la région sous la courbe représentative de la fonction f par un trapèze et d'en calculer l'aire.

En effet, si on interpole f par un polynôme de degré un, on a besoin de deux points d'interpolation, à savoir (a, f(a)) et (b, f(b)). L'intégrale est alors approchée par l'aire du polynôme d'interpolation, en l'occurrence un trapèze. Ceci justifie le nom de méthode des trapèzes :

$$I(f) = (b-a)\frac{f(b) + f(a)}{2}$$

Erreur d'intégration de la méthode des trapèzes

L'erreur commise est

$$E_T(f) = -\frac{(b-a)^3}{12}f''(\eta), \eta \in [a,b].$$

En effet,

$$E_T(f) = \int_a^b \frac{f^{(2)}(\epsilon(x))}{2!} (x-a)(x-b) dx$$

comme la fonction (x-a)(x-b) ne change pas de signe dans [a,b], on peut utiliser le second théorème de la moyenne et on aura

$$\int_{a}^{b} \frac{f''(\epsilon(x))}{2!} (x-a)(x-b) dx = \frac{f''(\eta)}{2!} (b-a)^{3} \int_{a}^{b} (x-a)(x-b) dx = -\frac{f''(\eta)}{12} (b-a)^{3}$$

L'erreur s'annule pour tout polynôme de degré inférieur ou égal à un, elle est alors d'ordre 1.

Méthode de Simpson

- La fonction f est maintenant remplacée par une parabole, qui nécessite trois points d'interpolation.
- Les extrémités a, b, et leur milieu m sont choisis.
- La méthode de Simpson consiste alors à remplacer l'intégrale par:

$$I_{S}(f) = \frac{(b-a)}{6} (f(a) + 4f(m) + f(b)).$$

En effet, en posant $x_0=a, x_1=m$ et $x_2=b$ la fonction est approchée dans ce cas par le polynôme

$$p_2(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)$$

ď où

$$I_{S}(f) = \int_{x_{0}}^{x_{2}} p_{2}(x)dx$$

$$= \int_{x_{0}}^{x_{2}} f(x_{0}) + f[x_{0}, x_{1}](x - x_{0}) + f[x_{0}, x_{1}, x_{2}](x - x_{0})(x - x_{1})dx$$

$$= \frac{(x_{2} - x_{0})}{6} (f(x_{0}) + 4f(x_{1}) + f(x_{2}))$$

$$= \frac{(b - a)}{6} (f(a) + 4f(m) + f(b)).$$

Erreur de la méthode de Simpson

Pour l'étude de l'erreur, il suffit de remarquer que si on rajoute un quatrième point $(x_3, f(x_3))$, le polynôme de degré 3 correspondant sera

$$p_3(x) = p_2(x) + f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2)$$
$$\int_{x_0}^{x_2} (x - x_0)(x - x_1)(x - x_2) dx = 0$$

(Il suffit de faire le changement de variables $x=x_0+sh$ avec $h=\frac{b-a}{2}$) d'où

$$\int_{x_0}^{x_2} p_2(x) dx = \int_{x_0}^{x_2} p_3(x) dx$$

et par suite

$$E_{S}(f) = \int_{x_{0}}^{x_{2}} E_{3}(x) dx = \int_{x_{0}}^{x_{2}} \frac{f^{(4)}(\epsilon(x))}{4!} (x - x_{0})(x - x_{1})(x - x_{2})(x - x_{3}) dx$$

or le choix de x_3 est arbitraire, on prends alors $x_3 = x_1$, le terme d'erreur devient dans ce cas

$$E_{S}(f) = \int_{x_{0}}^{x_{2}} \frac{f^{(4)}(\epsilon(x))}{4!} (x - x_{0})(x - x_{1})^{2} (x - x_{2}) dx.$$

 $(x-x_0)(x-x_1)^2(x-x_2)$ ne change pas de signe dans $[x_0,x_2]$, on applique alors le second théorème de la moyenne et on aura :

$$E_S(f) = -\frac{f^4(\eta)}{2880}(b-a)^5 = -\frac{f^4(\eta)}{90}h^5$$

avec $h = \frac{b-a}{2}$ et $\eta \in [a,b]$.

La méthode de Simpson est alors d'ordre 3.

Remarque

Il est possible de construire une formule de Newton-Cotes de degré quelconque. Toutefois, une telle formule n'est pas inconditionnellement stable. C'est pourquoi, on se contentera de plus bas degrés:

- 1 n = 0 méthode des rectangle ou la méthode du point milieu où la valeur est évaluée en milieu d'intervalle;
- 2 n = 1 méthode des trapèzes;
- 3 *n* = 2 méthode de Simpson dite 1/3, i.e. celle présentée avant;
- 4 n = 3 méthode de Simpson 3/8 (il suffit de faire le calcul);
- 5 n = 4 méthode de Boole.

Défauts des formules de Newton-Cotes

- Pour rendre l'erreur plus petite qu'une quantité donnée, la seule possibilité avec les formules de Newton-Cotes est d'augmenter le nombre de points d'intégration (donc le degré du polynôme d'interpolation). Cela conduit parfois à l'apparition de comportements peu appréciables (ex : phénomène de Runge).
- A partir de $n \ge 9$, les formules de Newton-Cotes deviennent instables (les poids intervenant dans les formules peuvent être négatifs).

Idée : puisque le terme d'erreur dépend également de b-a, on peut réduire l'erreur en découpant l'intervalle [a,b] en n sous-intervalles et approcher f par des polynômes par morceaux pour le calcul de l'intégrale (formule composite).

Méthodes composites, idée de base

es méthodes consistent à diviser l'intervalle [a,b] en n sous-intervalles de longueur

$$h = \frac{b - a}{n}$$

et d'introduire les points de subdivision $x_i = a + ih, i = 1, \cdots, n$ on aura

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x)dx$$

et l'on applique une des formules de Newton-Cotes sur chaque intervalle $[x_i, x_{i+1}]$.

Méthode des rectangles composite

Pour la méthode des rectangles gauche, la formule devient

$$I_{R,g,c}(f) = \frac{(b-a)}{n} \sum_{i=1}^{n-1} f(x_i)$$

Pour la méthode des rectangles droite, la formule devient

$$I_{R,d,c}(f) = \frac{(b-a)}{n} \sum_{i=1}^{n-1} f(x_{i+1})$$

Le terme d'erreur s'écrit

$$E_{R,c}(f) = h \frac{(b-a)}{2} f'(\eta) = \frac{(b-a)^2}{2n} f'(\eta), \eta \in [a,b].$$

Point milieu composite

Pour la méthode du point milieu, la formule composite est

$$I(f) = \frac{(b-a)}{n} \sum_{i=1}^{n-1} f(m_i)$$

où m_i est le milieu du i-ième sous-intervalle. Puisque les n sous-intervalles sont identiques, ils sont de la forme [a+ih,a+(i+1)h], avec h=(b-a)/n et i=0,1,2,...,n-1. Ceci entraîne finalement que $m_i=a+ih+h/2$. Le terme d'erreur s'écrit

$$E(f) = h^2 \frac{(b-a)}{24} f''(\eta), \eta \in [a,b].$$

La méthode des trapèzes composite

Pour la méthode des trapèzes, elle devient :

$$I(f) = \sum_{i=0}^{n-1} (x_{i+1} - x_i) \frac{f(x_{i+1}) + f(x_i)}{2}$$

$$= \frac{b-a}{n} \sum_{i=0}^{n-1} \frac{f(x_{i+1}) + f(x_i)}{2}$$

$$= \frac{b-a}{2n} \left[f(x_0) + 2(f(x_1) + f(x_2) + \dots + f(x_{n-1})) + f(x_n) \right]$$

et l'erreur commise est

$$E_{T,c}(f) = -n\frac{h^3}{12}f''(\eta) = -\frac{(b-a)^3}{12n^2}f''(\eta), \eta \in [a,b].$$

La méthode de Simpson composite

Pour la méthode de Simpson, puisque la méthode simple necessite deux intervalles, il est préférable de subdiviser l'intervalle [a,b] en 2n sous intervalleset d'utiliser la méthode de Simpson simple dans chaque paire de sous intervalles. On aura

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n-1} \int_{x_{2i}}^{x_{2i+2}} f(x)dx$$

$$\simeq \sum_{i=0}^{n-1} \frac{k}{3} (f(x_{2i}) + 4f(x_{2i+1}) + f(x_{2i+2}))$$

$$= \frac{k}{3} (f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \cdots + 4f(x_{2n-3}) + 2f(x_{2n-2}) + 4f(x_{2n-1}) + f(x_{2n}))$$

avec
$$k = \frac{b-a}{2n}$$
.

Le terme d'erreur s'écrit

$$E_{S,c} = n \left(-\frac{f^4(\eta)}{90} k^5 \right) = -\frac{b-a}{180} f^4(\eta) k^4$$
$$= -\frac{(b-a)^5}{2880 n^4} f^4(\eta)$$

avec $\eta \in [a,b]$.

Méthode de Gauss-Legendre

Jusqu'à présent, le problème a toujours été posé de la façon suivante :

• On dispose de la valeur de f surn+1 points : x_0, x_1, \dots, x_n et on cherche à approcher l'intégrale de f par la formule :

$$\int_a^b f(x)dx = \sum_{i=1}^n \omega_i f(x_i) + E_n$$

- On cherche à minimiser l'erreur E_n .
 - Chaque méthode correspond à un choix de valeurs ω_i .
 - Au mieux, on arrive à obtenir une méthode d'ordre n+1 c'est à dire dont le terme d'erreur dépend de $f^{(n+2)}$, cela signifie qu'elle est exacte si f est un polynôme de degré $\leq n+1$.

Si on est capable de calculer f en n'importe quel point, on peut faire varier les x_i de manière à ce que la méthode soit d'ordre supérieure. C'est l'idée des méthodes de Gauss.

Position du problème

Soit f une fonction que l'on peut calculer en n'importe quel point

- Soit n+1 le nombre de points de calcul.
- Soient x_0, x_1, \dots, x_n les points et $\omega_0, \dots, \omega_n$ les coefficients
- Soit P_k l'ensemble des polynômes de degré inférieur à k.
- On cherche les meilleures valeurs pour ω_i et x_i afin de minimiser l'erreur dans la formule de quadrature.
- Il y a 2n + 2 degrés de liberté, on espère obtenir une méthode d'ordre 2n + 1 c-à-d E = 0 pour les polynômes de degré inférieur à 2n + 1.
- Le plus souvent, la méthode de Gauss-Legendre est présentée sur un intervalle [-1,1]. Une intégration sur un intervalle plus général [a,b] peut néanmoins s'obtenir par le changement de variable : $x \to \frac{b-a}{2}t + \frac{b+a}{2}$.

Méthode à 1 point (n = 0)

On cherche la position de l'unique point x_0 ainsi que l'unique coefficient associé ω_0 de manière à ce que la méthode soit exacte pour tous les polynômes de degré 2n+1=1. En l'occurrence, il faut ici qu'elle soit exacte pour les polynômes $p_0=1$ et $p_1=x$.

• Pour le polynôme constant $p_0 = 1$,

$$\int_{-1}^{1} 1.dx = \omega_0 \Leftrightarrow \omega_0 = 2$$

• Pour le polynôme $p_1 = x$,

$$\int_{-1}^{1} x dx = \omega_0 x_0 \Leftrightarrow \omega_0 x_0 = 0$$

alors $x_0 = 0$ et la quadrature s'écrit

$$I(f) = 2f(0)$$

Méthode à 2 points (n = 1)

On cherche la position des deux points x_0 et x_1 ainsi que les deux coefficients associés ω_0 et ω_1 de manière à ce que la méthode soit exacte pour tous les polynômes de degré 2n+1=3. En l'occurrence, il faut ici qu'elle soit exacte pour les polynômes $p_0=1,\ p_1=x,\ p_2=x^2$ et $p_3=x^3$. On aura ainsi le système:

$$\begin{cases} \omega_0 + \omega_1 &= 2\\ \omega_0 x_0 + \omega_1 x_1 &= 0\\ \omega_0 x_0^2 + \omega_1 x_1^2 &= 2/3\\ \omega_0 x_0^3 + \omega_1 x_1^3 &= 0 \end{cases}$$

on aura alors

$$\omega_0 = \omega_1 = 1 \text{ et } x_1 = -x_0 = \frac{\sqrt{3}}{3}$$

La méthode de quadrature s'écrit alors:

$$I(f) = f(-\frac{\sqrt{3}}{3}) + f(\frac{\sqrt{3}}{3})$$

notons qu'elle est non exacte pour x^4 dons elle est d'ordre 3.

Integrale sur un intervalle quelconque

Dans le cas où l'intégrale n'est pas calculée sur [-1,1], mais sur un domaine quelconque [a,b], alors la méthode est la même avec :

$$I(f) = \frac{(b-a)}{2} \sum_{i=0}^{n} \omega_i f\left(\frac{b-a}{2} x_i + \frac{b+a}{2}\right)$$

où les poids ω_i et les x_i sont les poids et points de quadrature calculés sur [-1, 1].

En effet il suffit de passer par changement de variables et on aura

$$\int_{a}^{b} f(x)dx = \frac{(b-a)}{2} \int_{-1}^{1} f(\frac{(b-a)}{2}t + \frac{(b+a)}{2})dt$$