In [7]: import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

In [8]: df=pd.read_csv(r"C:\Users\vibhu\Downloads\loan1.csv")
df

Out[8]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	Yes	Single	125	No
1	No	Married	100	No
2	No	Single	70	No
3	Yes	Married	120	No
4	No	Divorced	95	Yes
5	No	Married	60	No
6	Yes	Divorced	220	No
7	No	Single	85	Yes
8	No	Married	75	No
9	No	Single	90	Yes

In [9]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Home Owner	10 non-null	object
1	Marital Status	<pre>10 non-null</pre>	object
2	Annual Income	10 non-null	int64
3	Defaulted Borrower	10 non-null	object

dtypes: int64(1), object(3)
memory usage: 448.0+ bytes

```
In [10]: df['Marital Status'].value_counts()
df['Annual Income'].value_counts()
Out[10]: Annual Income
           125
                   1
           100
                   1
           70
                   1
           120
                   1
           95
                   1
           60
                   1
           220
                   1
           85
                   1
           75
                   1
           90
                   1
           Name: count, dtype: int64
In [11]: convert={"Home Owner":{"Yes":1,"No":0}}
           df=df.replace(convert)
           df
```

Out[11]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	Single	125	No
1	0	Married	100	No
2	0	Single	70	No
3	1	Married	120	No
4	0	Divorced	95	Yes
5	0	Married	60	No
6	1	Divorced	220	No
7	0	Single	85	Yes
8	0	Married	75	No
9	0	Single	90	Yes

```
In [12]: | convert={"Marital Status":{"Single":1,"Married":2,"Divorced":3}}
          df=df.replace(convert)
          df
Out[12]:
             Home Owner Marital Status Annual Income Defaulted Borrower
          0
                                   1
                      1
                                              125
                                                                No
          1
                      0
                                   2
                                              100
                                                                No
          2
                      0
                                   1
                                               70
                                                                No
          3
                                   2
                      1
                                              120
                                                                No
                      0
                                   3
          4
                                               95
                                                                Yes
                                   2
          5
                                               60
                      0
                                                                No
                      1
                                   3
                                              220
          6
                                                                Nο
          7
                                   1
                      0
                                               85
                                                                Yes
                                   2
          8
                      0
                                               75
                                                                No
          9
                      0
                                   1
                                               90
                                                                Yes
In [13]: x=["Home Owner","Marital Status","Annual Income"]
          y=["Yes","No"]
         all inputs=df[x]
          all classes=df["Defaulted Borrower"]
In [14]: (x train,x test,y train,y test)=train test split(all inputs,all classes,test size=0.3
In [15]: clf=DecisionTreeClassifier(random_state=0)
In [17]: | clf.fit(x_train,y_train)
Out[17]:
                   DecisionTreeClassifier
          DecisionTreeClassifier(random state=0)
In [18]: score=clf.score(x_test,y_test)
          print(score)
```

1.0

In []: