Dimostrazioni della irriducibilità della rappresentazione standard di S_n

Bruno Bucciotti

2 marzo 2018

Sommario

Dimostro l'irriducibilità della rappresentazione standard di S_n e mi esercito con LATEX.

Definizione di ρ_{std}

Partiamo definendo ρ_{perm} come la rappresentazione per permutazione di S_n agente su \mathbb{C}^n , ρ_{perm} : $G \to GL(\mathbb{C}^n)$. Chiamo $u = \sum_{f \in S_n} e_f$ e osservo che $\rho_{perm}(\mathbf{u}) = \mathbf{u}$. Dunque ρ_{perm} agisce come la rappresentazione banale sul sottospazio < u >. Definisco ρ_{std} la rappresentazione ρ_{perm} meno la banale; ρ_{std} è definita sul sottospazio di \mathbb{C}^n tale che la somma delle coordinate sia 0. La tesi è che questa rappresentazione è irriducibile.

1 Caratteri

1.1 Definizioni

Azione transitiva: una azione di G gruppo su X insieme si dice transitiva se $\forall x,y \in X \exists q \in G \mid qx=y$.

Azione doppiamente transitiva: data una azione A di G gruppo su X insieme ho una azione B di G indotta su X^2 in cui agisco con A su ciascuno dei 2 elementi. Dico A transitiva se date qualunque due coppie $(x,y), (x',y') \in X^2$ con $x \neq y$ e $x' \neq y'$ esiste $g \in G$ per cui gx = x' e gy = y'. Osservo che A doppiamente transitiva implica A transitiva. Osservo inoltre che B ha B orbite: A orbite: A considerable A considerable

1.2 Lemma

Suppongo A doppiamente transitiva e applico il lemma di Burnside all'azione indotta B.

$$2 = \frac{1}{|G|} \sum_{g \in G} |Stab_B(g)|$$

Se suppongo che gli elementi di X fissati da A(g) siano $\{a,b,c,...\}$ allora B(g) fissa $\{(a,a),(a,b),(a,c),(b,a),(b,b),...\}$, cioè tutte le possibile coppie ordinate di questi. Dunque se $|Stab_A(g)|=n_g$ allora $|Stab_B(g)|=n_g^2$. Arrivo dunque a

$$\frac{1}{|G|} \sum_{g \in G} |Stab_A(g)|^2 = 2$$

1.3 Proof

Osservo che ρ_{perm} è doppiamente transitiva, poichè fissati 4 elementi $a \neq b, c \neq d$ ho che, supposto $a \neq d$, (ac)(bd) manda $(a,b) \rightarrow (c,d)$; se invece a=d allora ho che (acb) manda $(a,b) \rightarrow (c,a)$. Calcolo allora

$$\begin{split} <\chi_{\rho_{perm}},\chi_{\rho_{perm}}> &=<\chi_{\rho_{triv}},\chi_{\rho_{triv}}> + 2 <\chi_{\rho_{triv}},\chi_{\rho_{std}}> + <\chi_{\rho_{std}},\chi_{\rho_{std}}> \\ &= 1 + 2 <\chi_{\rho_{triv}},\chi_{\rho_{std}}> + <\chi_{\rho_{std}},\chi_{\rho_{std}}> \\ &= \frac{1}{|G|}\sum_{q \in G}|Stab_{\rho_{perm}}(g)|^2 = 2 \end{split}$$

da cui ρ_{std} irriducibile (e ortogonale alla banale).