Circuit Creation

You are here

Making boolean expressions

So how would you represent boolean expressions using logic gates?

Like so:

Creating complex circuits

• What do we do in the case of more complex circuits, with several inputs and more than one output?

- If you're lucky, a truth table is provided to express the circuit.
- Usually the behaviour of the circuit is expressed in words, and the first step involves creating a truth table that represents the described behaviour.

Circuit example

The circuit on the right has three inputs (A, B and C) and two outputs (X and Y).

- What logic is needed to set X high when all three inputs are high?
- What logic is needed to set Y high when the number of high inputs is odd?

Combinational circuits

Small problems can be solved easily.

- Larger problems require a more systematic approach.
 - Example: Given three inputs A, B, and C, make output Y high in the case where all of the inputs are low, or when A and B are low and C is high, or when A and C are low but B is high, or when A is low and B and C are high.

Creating complex logic

- How do we approach problems like these (and circuit problems in general)?
- Basic steps:
 - Create truth tables.
 - Express as boolean expression.
 - 3. Convert to gates.
- The key to an efficient design?
 - Spending extra time on Step #2.

Now you are here

Lecture Goals

- After this lecture, you should be able to:
 - Create a truth table that represents the behaviour of a circuit you want to create.
 - Translate the minterms from a truth table into gates that implement that circuit.
 - Use Karnaugh maps to reduce the circuit to the minimal number of gates.

Lecture Goals

Which implementation do you prefer? Why?

A.

В.

Example truth table

- Consider the following example:
 - "Given three inputs A, B, and C, make output Y high wherever any of the inputs are low, except when all three are low or when A and C are high."
- This leads to the truth table on the right.
 - Is there a better way to describe the cases when the circuit's output is high?

A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Minterms and Maxterms

Minterms

- An easier way to express circuit behaviour is to assume the standard truth table format, and then list which input rows cause high output.
 - These rows are referred to as minterms.

A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Minterm	Y
\mathbf{m}_0	0
$\mathtt{m_1}$	1
\mathbf{m}_2	1
m ₃	1
m_4	1
m ₅	0
m ₆	1
m ₇	0

Minterms and maxterms

- A more formal description:
 - Minterm = an AND expression with every input present in true or complemented form.
 - Maxterm = an OR expression with every input present in true or complemented form.
 - For example, given four inputs (A, B, C, D):
 - Valid minterms:
 - $\overline{A} \cdot \overline{B} \cdot C \cdot D$, $\overline{A} \cdot B \cdot \overline{C} \cdot D$, $\overline{A} \cdot B \cdot C \cdot D$
 - Valid maxterms:
 - $\overline{A}+\overline{B}+C+D$, $\overline{A}+B+\overline{C}+D$, A+B+C+D
 - Neither minterm nor maxterm:
 - \bullet A·B+C·D, A·B·D, A+B

Creating boolean expressions

- A quick aside about notation:
 - AND operations are denoted in these expressions by the multiplication symbol.
 - e.g. $A \cdot B \cdot C$ or $A * B * C \approx A \wedge B \wedge C$
 - OR operations are denoted by the addition symbol.
 - e.g. $A+B+C \approx A \lor B \lor C$
 - NOT is denoted by multiple symbols.
 - lacktriangle e.g. $\neg A$ or A' or \overline{A}
 - XOR occurs rarely in circuit expressions.
 - e.g. A ⊕ B

The intuition behind minterms

- If you're confused about what a mintem means, consider how the expression behaves:
 - $m_{15} = A*B*C*D$
 - what is the behaviour?
 - A*B*C*D is low at all times, except when all four of the input values are high.

A	В	С	D	m ₁₅
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

The intuition behind maxterms

- Similarly, consider how a maxterm expression works:
 - $M_0 = A + B + C + D$
 - what is the behaviour?
 - A+B+C+D is always high, except in the one case where all four input values are low.
- Try it with other input combinations!

A	В	С	D	M _O
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Specifying circuit behaviour

- Circuits are often described using minterms or maxterms, as a form of logic shorthand.
 - Given n inputs, there are 2n minterms and maxterms possible (same as rows in a truth table).
 - Naming scheme:
 - Minterms are labeled as m_x, maxterms are labeled as M_x
 - The \times subscript indicates the row in the truth table.
 - x starts at 0 (when all inputs are low), and ends with 2^n-1 .
 - Example: Given 3 inputs
 - Minterms are m_0 ($\overline{A} \cdot \overline{B} \cdot \overline{C}$) to m_7 ($A \cdot B \cdot C$)
 - Maxterms are M_0 (A+B+C) to M_7 ($\overline{A}+\overline{B}+\overline{C}$)

Quick Exercises

- Given 4 inputs A, B, C and D write:
 - $^{\square}$ m_{9}
 - \overline{m}_{15}
 - \overline{m}_{16}
 - □ M₂
- Which minterm is this?
 - \blacksquare $\underline{A} \cdot B \cdot \underline{C} \cdot \underline{D}$
- Which maxterm is this?
 - A+B+C+D

Using minterms and maxterms

- What are minterms used for?
 - A single minterm indicates a set of inputs that will make the output go high.
 - Example: m₂
 - Output only goes high in third line of truth table.

A	В	С	D	m_2
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Using minterms and maxterms

- What happens when you combine two minterms?
 - Using an OR operation, the result is an output that goes high in both minterm cases.
 - For m₂+m₈, both third and ninth lines of truth table result in high output.

A	В	С	D	m_2	m ₈	m ₂ +m ₈
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	1	0	1
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	1	1	0	0	0
1	0	0	0	0	1	1
1	0	0	1	0	0	0
1	0	1	0	0	0	0
1	0	1	1	0	0	0
1	1	0	0	0	0	0
1	1	0	1	0	0	0
1	1	1	0	0	0	0
1	1	1	1	0	0	0

Creating boolean expressions

- Two canonical forms of boolean expressions:
 - Sum-of-Minterms (SOM):
 - Since each minterm corresponds to a single high output in the truth table, the combined high outputs are a union of these minterm expressions.
 - Expressed in "Sum-of-Products" form.
 - Product-of-Maxterms (POM):
 - Since each maxterm only produces a single low output in the truth table, the combined low outputs are an intersection of these maxterm expressions.
 - Expressed in "Product-of-Sums" form.

$Y = m_2 + m_6 + m_7 + m_{10}$ (SOM)

A	В	С	D	m ₂	m ₆	m ₇	m ₁₀	Y
0	0	0	0					
0	0	0	1					
0	0	1	0					
0	0	1	1					
0	1	0	0					
0	1	0	1					
0	1	1	0					
0	1	1	1					
1	0	0	0					
1	0	0	1					
1	0	1	0					
1	0	1	1					
1	1	0	0					
1	1	0	1					
1	1	1	0					
1	1	1	1					

$Y = m_2 + m_6 + m_7 + m_{10}$ (SOM)

A	В	С	D	m_2	m ₆	m ₇	m ₁₀	Y
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	1	0	1	0	0	0	1
0	0	1	1	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0
0	1	1	0	0	1	0	0	1
0	1	1	1	0	0	1	0	1
1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0
1	0	1	0	0	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0

Using Sum-of-minterms

- Sum-of-minterms is a way of expressing which inputs cause the output to go high.
 - Assumes that the truth table columns list the inputs according to some logical or natural order.
- Minterm and maxterm expressions are used for efficiency reasons:
 - More compact than displaying entire truth tables.
 - Sum-of-minterms are useful in cases with very few input combinations that produce high output.
 - Product-of-Maxterms useful when expressing truth tables that have very few low output cases...

$Y = M_3 \cdot M_5 \cdot M_7 \cdot M_{10} \cdot M_{14}$ (POM)

A	В	С	D	M ₃	M ₅	M ₇	M ₁₀	M ₁₄	Y
0	0	0	0						
0	0	0	1						
0	0	1	0						
0	0	1	1						
0	1	0	0						
0	1	0	1						
0	1	1	0						
0	1	1	1						
1	0	0	0						
1	0	0	1						
1	0	1	0						
1	0	1	1						
1	1	0	0						
1	1	0	1						
1	1	1	0						
1	1	1	1						

$Z = M_3 \cdot M_5 \cdot M_7 \cdot M_{10} \cdot M_{14} (POM)$

A	В	С	D	M ₃	M ₅	M ₇	M ₁₀	M ₁₄	Z
0	0	0	0	1	1	1	1	1	1
0	0	0	1	1	1	1	1	1	1
0	0	1	0	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	0
0	1	0	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	0
0	1	1	0	1	1	1	1	1	1
0	1	1	1	1	1	0	1	1	0
1	0	0	0	1	1	1	1	1	1
1	0	0	1	1	1	1	1	1	1
1	0	1	0	1	1	1	0	1	0
1	0	1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1	1
1	1	1	0	1	1	1	1	0	0
1	1	1	1	1	1	1	1	1	1

Converting SOM to gates

 Once you have a Sum-of-Minterms expression, it is easy to convert this to the equivalent combination of gates:

$$m_0 + m_1 + m_2 + m_3 =$$

$$\overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C =$$

Example: 2-input XOR gate

- An interesting property: $m_x = \overline{M}_x$
 - Minterm x is the complement of maxterm x.
 - e.g., $m_o = \overline{A} \cdot \overline{B}$ while $M_o = A + B$
- 2-input XOR gate in SOM and POM form.
 - Sum-Of-Minterms: $F = m_1 + m_2$
 - Product-Of-Maxterms : $F = M_O \cdot M_3$
- Write F in Sum-Of-Minterms form:
 - We need to include the minterms not present in F.
 - $\overline{F} = m_0 + m_3$

Example: 2-input XOR gate (cont'd)

- Write F in Sum-Of-Minterms form:
 - We need to include the minterms not present in F.
 - $\overline{F} = m_0 + m_3$
- Now let's take the complement of \overline{F} .
 - $\overline{F} = F = \overline{(m_0 + m_3)} = \overline{m}_0 \overline{m}_3$
 - But \overline{m}_o is M_o and \overline{m}_3 is M_3
 - Therefore, $F = M_o \cdot M_3$
- The canonical representations SOM and POM for a given function are equivalent! ©

Reducing circuits

Reasons for reducing circuits

- Note example of Sum-of-Minterms circuit design.
- To minimize the number of gates, we want to reduce the boolean expression as much as possible from a collection of minterms to something smaller.
- This is where CSC165 skills come in handy ©

Boolean algebra review

Axioms:

$$0 \cdot 0 = 0$$
 $0 \cdot 1 = 1 \cdot 0 = 0$
 $1 \cdot 1 = 1$ if $x = 1$, $\overline{x} = 0$

From this, we can extrapolate:

If one input of a 2-input AND gate is 1, then the output is whatever value the other input is.

$$x \cdot 0 = x+1 = x+0 = x+x = x \cdot \overline{x} = x+\overline{x} = \overline{x} = x+\overline{x} = x+$$

If one input of a 2input OR gate is o, then the output is whatever value the other input is.

Boolean algebra review

Axioms:

$$0 \cdot 0 = 0$$
 $0 \cdot 1 = 1 \cdot 0 = 0$
 $1 \cdot 1 = 1$ if $x = 1$, $\overline{x} = 0$

From this, we can extrapolate:

$$x \cdot 0 = 0 \qquad x+1 = 1$$

$$x \cdot 1 = x \qquad x+0 = x$$

$$x \cdot x = x \qquad x+x = x$$

$$x \cdot \overline{x} = 0 \qquad x+\overline{x} = 1$$

$$\overline{x} = x$$

Other Boolean identities

Commutative Law:

$$x \cdot \lambda = \lambda \cdot x$$
 $x+\lambda = \lambda + x$

Associative Law:

$$x \cdot (\lambda + z) = (x \cdot \lambda) \cdot z$$

 $x \cdot (\lambda \cdot z) = (x \cdot \lambda) \cdot z$

Distributive Law:

$$x \cdot (\lambda \cdot z) = (x+\lambda) \cdot (x+z)$$

 $x \cdot (\lambda + z) = x \cdot \lambda + x \cdot z$

Does this hold in conventional algebra?

Consensus Law Proof -Venn diagram

Consensus Law:

$$x \cdot y + \overline{x} \cdot z + y \cdot z = x \cdot y + \overline{x} \cdot z$$

- Proof by Venn diagram:
 - x · y
 - <u>X</u> · Z
 - y · Z
 - Already covered!

Consensus Law Proof -Venn diagram

Consensus Law:

$$x \cdot y + \underline{x} \cdot z + y \cdot z = x \cdot y + \underline{x} \cdot z$$

- Proof by Venn diagram:
 - x · y
 - <u>X</u> · Z
 - y · Z
 - Already covered!

Other boolean identities

Absorption Law:

$$x \cdot (x+\lambda) = x$$
 $x+(x \cdot \lambda) = x$

De Morgan's Laws:

$$\frac{\overline{x} \cdot \overline{y}}{\overline{x} + \overline{y}} = \frac{\overline{x} \cdot \overline{y}}{\overline{x} \cdot \overline{y}}$$

Converting to NAND gates

- De Morgan's Law is important because out of all the gates, NANDs are the cheapest to fabricate.
 - a Sum-of-Products circuit could be converted into an equivalent circuit of NAND gates:

This is all based on de Morgan's Law:

A	В	С	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

• Assuming logic specs at left, we get the following:

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot C$$

$$A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

 Now start combining terms, like the last two:

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C}$$

$$+ A \cdot B$$

- Different final expressions possible, depending on what terms you combine.
- For instance, given the previous example:

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

If you combine the end and middle terms...

$$Y = B \cdot C + A \cdot \overline{C}$$

Which reduces the number of gates and inputs!

- What is considered the "simplest" expression?
 - In this case, "simple" denotes the lowest gate cost
 (G) or the lowest gate cost with NOTs (GN).
 - To calculate the gate cost, simply add all the gates together (as well as the cost of the NOT gates, in the case of the GN cost).

Karnaugh maps

- How do we find the "simplest" expression for a circuit?
 - Technique called Karnaugh maps (or K-maps).
 - Karnaugh maps are a 2D grid of minterms, where adjacent minterm locations in the grid differ by a single literal.
 - Values of the grid are the output for that minterm.

	B·€	B·C	В∙С	B⋅C
Ā	0	0	1	0
A	1	0	1	1

Karnaugh maps

- Karnaugh maps can be of any size, and have any number of inputs.
 - i.e. the 4-input example here.

	<u>C</u> · <u>D</u>	<u>C</u> ∙D	C ·D	C · <u>D</u>
$\overline{A} \cdot \overline{B}$	$\rm m_{\rm o}$	m_1	m_3	m_2
Ā·B	m_4	m_5	m_7	m_6
A·B	m ₁₂	m ₁₃	m ₁₅	m_{14}
Α·B	m ₈	m_9	m ₁₁	m_{10}

 Since adjacent minterms only differ by a single value, they can be grouped into a single term that omits that value.

Using Karnaugh maps

- Once Karnaugh maps are created, draw boxes over groups of high output values.
 - Boxes must be rectangular, and aligned with map.
 - Number of values contained within each box must be a power of 2.
 - Boxes may overlap with each other.
 - Boxes may wrap across edges of map.

	B·C	B·C	B·C	B⋅C
Ā	0	0	1	0
A	1	0	1	1

Using Karnaugh maps

	B·C	B·C	B·C	B⋅C
Ā	0	0	1	0
A	1	0	1	1

- Once you find the minimal number of boxes that cover all the high outputs, create boolean expressions from the inputs that are common to all elements in the box.
- For this example:
 - Vertical box: B·C
 - Horizontal box: A · C
 - Overall equation: $Y = B \cdot C + A \cdot \overline{C}$

Karnaugh maps and maxterms

- Can also use this technique to group maxterms together as well.
- Karnaugh maps with maxterms involves grouping

	C+D	C+D	C+D	C +D
A+B	${\rm M}_{\odot}$	M_1	M_3	M_2
A+B	M_4	M_5	M_7	M_6
Ā+B	M ₁₂	M ₁₃	M ₁₅	M ₁₄
Ā+B	M_8	M_9	M_{11}	M_{10}

the zero entries together, instead of grouping the entries with one values.

Quick Exercise

	<u>CD</u>	- CD	CD	CD
ĀB	0	0	1	1
ĀB	1	1	0	0
AB	1	1	0	0
AB	0	0	0	0

$$F = B \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C$$