Свободные и вынужденные колебания в электрическом контуре

Каспаров Николай, Б01-304

November 16, 2024

Цель работы: исследование свободных и вынужденных колебаний в колебательном контуре.

В работе используются: осциллограф АКТАКОМ ADS-6142H, генератор сигналов специальной формы АКИП-3409/4, магазин сопротивления МСР-60, магазин емкости Р5025, магазин индуктивности Р567 типа МИСП, соединительная коробка с шунтирующей емкостью, соединительные одножильные и коаксиальные провода.

1 Ход работы

1.1 Измерение периодов свободных колебаний

Соберем установку, выставим $R\approx 0$ Ом, $L=100.0\pm 0.1$ мГн, $C\approx 0$ нФ

Вычислим величину емкости C_0 самой установки:

$$T_0 = 2\pi\sqrt{LC_0} \longrightarrow C_0 = \frac{T^2}{4\pi^2L} = (1.24 \pm 0.04)$$
 н Φ

Будем увеличивать емкость контура и сравнивать экспериментальную величину периода с вычисленной теоретически:

С, нФ	$T^{$ эксп, мс	Т ^{теор} , мс
1	0.09 ± 0.01	0.09
2	0.11 ± 0.01	0.11
4	0.14 ± 0.01	0.14
6	0.17 ± 0.01	0.17
8	0.19 ± 0.01	0.19
9	0.20 ± 0.01	0.20

1.2 Критическое сопротивление и декремент затухания

Подберем и установим значение C^* так, чтобы частота собственных колебаний была $\nu_0=6.5$ к Γ ц. $C^*=\frac{1}{4\pi^2\nu_0^2L}\approx 6$ н Φ . Рассчитаем теоретически критическое сопротивление контура $R_{cr}=2\sqrt{\frac{L}{C}}\approx 8168$ Ом. Измеряем логарифмических декремент затухания по соседним максимумам при различных внешних сопротивлениях $(0,05R_{cr}-0,2R_{cr})$:

R, Ом	$R + R_L$, Om	$ heta = U_k/U_{k+1}$	$\mathrm{Q}=\pi/ heta$
400	430	0.40	7.94 ± 0.11
800	830	0.67	4.67 ± 0.07
1200	1230	1.00	3.15 ± 0.04
1600	1630	1.26	2.49 ± 0.04
2000	2030	1.34	2.35 ± 0.03

Коэффициент $k=1.1\pm0.1$, экспериментально определяем $R_{cr}=2\pi\sqrt{k}=6.7\pm0.6$ кОм. Значение совпадает в 3σ с полученным напрямую.

1.3 Свободное колебание на фазовой плоскости

С помощью осциллографа получаем портрет колебаний на фазовой плоскости, определяем декремент затухания по соседним пересечениям оси X.

	R, Om	U_k , дел	U_{k+1} , дел	θ	Q
	430	3.4	2.2	0.44	7.2
Ì	2030	3.2	0.4	2.08	1.5

Рисунок 1: График зависимости логарифмического коэффициента затухания от сопротивления

Рассчитаем теоретическое значение добротности через параметры контура

$$Q = \frac{\pi}{\theta} = \frac{\pi}{\gamma T} = \frac{\pi}{\frac{R}{2L}\frac{2\pi}{\omega_1}} = \frac{L}{R}\omega_1 = \frac{L}{R}\sqrt{\omega_0^2 - \gamma^2} = \frac{L}{R}\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}} = \frac{1}{2}\sqrt{\frac{4L}{CR^2} - 1}$$

При параметрах L=100 мГн, C=6 нФ имеем :

- 1. $R_1 = 440 \text{ OM}$ 2. $R_2 = 2030 \text{ OM}$
- $Q_1 = 9.5 \pm 0.2,$ $Q_2 = 1.95 \pm 0.05,$

1.4 Измерение АЧХ и ФЧХ вынужденных колебаний

Рисунок 2: Амплитудно-Частотная характеристика колебаний

Рисунок 3: Фазово-Частотная характеристика колебаний

Определим добротность по графику АЧХ. $Q=\frac{\omega_0}{2\Delta\Omega},$ где $2\Delta\Omega$ - ширина резонансной кривой на уровне $U=\frac{U_0}{\sqrt{2}}.$

Рассчитаем добротность по Φ ЧХ. Для этого проведем горизонтальную линию через уровень, где наблюдается резонанс. Затем отразим одну половину относительно этой прямой и измерим приблизительно ширину на расстоянии $\frac{\pi}{4}$ от резонанса. Данные занесём в таблицу:

Метод	АЧХ		д АЧХ ФЧХ	
R, Om	400	2000	400	2000
Q	7.6	1.30	9.1	2.8

2 Вывод

В данной лабораторной работе мы исследовали колебания в электрическом контуре и различными способами нашли его добротность. Наилучшую погрешность дал метод, использующий декремент затухания. Хуже всего показал себя метод фазовой спирали.