

Fakultät für Informatik Professur Technische Informatik

Modellierung und Integration von Sensorknoten in einer Simulationsumgebung

Konzeptvortrag Bachelorarbeit

Thomas Rückert

Prof. Dr. Wolfram Hardt

Dipl.-Inf. Mirko Lippmann

Motivation

- Schrumpfende Sensoren
- Schrumpfende Sensorknoten
- Wachsende Mobilität
 - Drahtlose Kommunikation
 - Integrierte Energiequelle

Größere Sensornetzwerke

• "Smart Dust"

Motivation

- Komplexere Netze und Elemente erfordern Test
- Tests so real wie möglich
- Betrachtung von:
 - Energiehaushalt
 - Realistische Messwerte
 - Erfassung durch Simulierte Hardwaresensorik
 - Ausführbarer Code

4/9/15 Thomas Rückert 3 www.tu-chemnitz.de

Grundlagen

- Sensor
- Sensorknoten
- Sensornetzwerke
- Evaluation
- Simulationsumgebung

4/9/15 Thomas Rückert 4 www.tu-chemnitz.de

Grundlagen – Sensor

- lateinisch sentire, dt. "fühlen" oder "empfinden"
- Technisches Gegenstück zu den menschlichen Sinnen

• z.B. für: Temperatur, Helligkeit, Druck, ...

Funktionsweise:

- Aufnehmer erfasst Daten aus der Umgebung
- Umwandlung in elektrisches Signal
- Aufnehmer
 - aktiv (erzeugt elektrisches Signal)
 - passiv (Parameterveränderung, mit Hilfsenergie bestimmen)

Grundlagen - Sensorknoten

- Viele (verschiedene) Sensorknoten
- Knoten teilweise wenige Millimeter groß ("Smart Dust")
 - Linear Technology Corporation
 - LTC5800-WHM SmartMesh WirelessHART Mote-on-Chip
 - (10mm × 10mm × 0.85mm)

Bauteile

- Transreceiver mit Antenne
- Energiequelle (Batterie oder Energy Harvesting)
- Ein oder mehrere Sensoren
- Mikrocontroller (SoC)

4/9/15 Thomas Rückert 6 www.tu-chemnitz.de

Grundlagen - Sensornetzwerke

- Verteilung der Knoten in einem Gebiet
- Große Flächen, sehr viele Knoten
- 2004 The Ohio State University
 - Über 1000 Knoten möglich
 - 250.000 m²
- Kommunikation per Funk
- Oft Selbstorganisiert oder auch mit Basis
- IEEE 802.15.4, ZigBee

Grundlagen - Evaluation

4/9/15 Thomas Rückert 8 www.tu-chemnitz.de

Grundlagen - Evaluation

Emulation

- Systemimplementierung
- Deckt kompletten Funktionsumfang ab
- Hardwarebeschreibungssprache
 - zB VHDL
- Ausführung dann auf FPGA (oder Netzwerk von FPGAs)
- Homogene Hardwareplattform

(Rapid) Prototyping

- Ähnlich Emulation aber zusätzlich Implementierungen der Hardware
- Teile können auch bereits fertige Module sein
- Daher heterogene HW-Plattform
- Stellt geringere Anforderungen an Timing, Größe und Kosten als Endprodukt

4/9/15 Thomas Rückert 9 www.tu-chemnitz.de

Grundlagen - Evaluation

Simulation

- Entwicklungsprozess f
 ür Module
- Test von Ansätzen zu geringen Kosten
- Modell Abbildung eines Systems
- Evaluieren der Umsetzbarkeit
- Spezifikation relevanter Teile des Moduls
- Oberflächliche/keine Implementierung bestehender oder unwichtiger Teile
 - Co-Simulation

Grundlagen - Simulationsumgebung

- Omnet++
- Simulation Library (IKR SimLib)
- openWNS

- NS-3
- Simanet

	Omnet++	IKR SimLib	OpenWNS	NS-3
freie Lizenz	✓	✓ (LGPL)	✓(LGPLv2)	✓(GPLv2)
alle gängigen	1	kein	1	kein
Betriebssysteme	V	Windows	V	Windows
GUI bei Simulation	✓	X	(\checkmark)	X
IDE	✓	(\mathbf{X})	(X)	(\checkmark)
Drahtlose Verb.	(\checkmark) mit MiXiM	✓	✓	1
Sprache(n)	C++ mit NED	C++ oder Java	Python	Python

www.tu-chemnitz.de

Grundlagen - Simulationsumgebung

Omnet++

- ACADEMIC PUBLIC LICENSE
 - Quellcode ist offen
- Codeausführung im Application Layer der Sensorknoten
- Protokolle f
 ür tiefere Schichten vorhanden
 - lassen sich anpassen
- Grafische Simulation

Grundlagen - Simulationsumgebung

Omnet++

- Bibliotheken/Framework in C++
- Eigene Beschreibungssprache: NED
 - Netzwerkbeschreibungssprache
- Entwicklungsumgebung auf Basis von Eclipse
 - C++ und NED-Integration
 - Grafische Umgebung für Simulation
- Frameworks wie MiXiM
 - Wireless support

Bestehende und Nutzbare Module

Omnet++

- Simulationsumgebung und -oberfläche
- Allgemein: NED, Netzwerk, Kommunikation
- Event Log

MiXiM

- Host802154_2400MHz
 - IEEE 802.15.4: Protokoll für "Wireless Personal Area Networks"
 - Batterie
 - Funktransreceiver
- BaseWorldUtility für Umgebung
- Coord

Ziel - Implementierung

- Bestehende Module (gegebenenfalls erweitern)
- Umgebung mit verschiedenen Parametern
 - Bereitstellen von Positionsgebundenen Daten
- Verschiedenene Sensoren
 - Temperatur, Druck, Helligkeit, Luftfeuchtigkeit
 - Rufen die positionsgebundenen Daten ab
- Knoten (Host802154_2400MHz) mit diesen Sensoren
 - Betrachtung Energie
- Kommunikation zwischen den Knoten
 - Peer-to-peer Netz
- Statistiken über Simulation
 - Besonders Energieverbrauch, Kommunikation zwischen Knoten

Ziel - Implementierung

4/9/15 Thomas Rückert 16 www.tu-chemnitz.de

Ziel - Test

- Beweis Erfüllung der Aufgabenstellung
- Tests auf Funktionsfähigkeit
- Beispiele für die Nutzung der Anwendung
 - Entsprechend der späteren Nutzung
 - Sollen zeigen, dass Ziel erfüllt
 - Sehr großes Netz, mit alles verschiedenen Sensoren
- Datenvisualisierung
- Energiehaushalt der Hosts Testumgebung für das Netz:
 - Verschiedene Routingverfahren
 - Langzeitverhalten

Ziel - Ausarbeitung

- Technische Grundlagen
- Grundlagen zu Omnet++ vermitteln
- Implementierung beschreiben
 - Detaillierte Code-Dokumentation
- Modellierung der Hosts und des Netzes beschreiben (Knoten mit verschiedenen Sensoren)
- Mit Hilfe von Tests und Beispielen:
 - Aufgabenstellung gelöst?
 - Anwendung der Anforderung entsprechend?

Fakultät für Informatik Professur Technische Informatik

Zeitplanung

4/9/15 Thomas Rückert 19 www.tu-chemnitz.de

Präsentation der Simulationsumgebung

Beispiel

4/9/15 Thomas Rückert 20 www.tu-chemnitz.de

ENDE

Vielen Dank für die Aufmerksamkeit. Fragen?

Quellen

- Kleiner Knoten
 - http://cds.linear.com/docs/en/datasheet/5800whmf.pdf
- Großes Netz 1000+
 - http://www.ieee-icnp.org/2005/Papers/05_sbapat-Yield.pdf
- https://de.wikipedia.org/wiki/Datei:Light_sensor.png (Urheber: vic)
- JOURNAL OF COMMUNICATIONS, VOL. 3, NO. 7 → Artikel SimANet
 - https://www.tu-chemnitz.de/informatik/ce/publications/publications.ph p?controller=detail&id=424
- https://www.tu-chemnitz.de/informatik/ce/publications/publications.php? controller=detail&id=505

4/9/15 Thomas Rückert 22 www.tu-chemnitz.de

Quellen

- https://de.wikipedia.org/wiki/Sensor
- https://en.wikipedia.org/wiki/Wireless_sensor_network#mediaviewer/File:WSN.svg
- https://de.wikipedia.org/wiki/Datei:Gas-Sensor.jpg
- https://de.wikipedia.org/wiki/Drucksensor
- https://de.wikipedia.org/wiki/IEEE_802.15.4
- Ganttprojekt zum erstellen von Gantt-Diagramm

4/9/15 Thomas Rückert 23 www.tu-chemnitz.de

Grundlagen – Sensor

- Temperatursensor
 - Heiß-/Kaltleiter
 - mit passivem Aufnehmer
 - Widerstand wird verändert
- Drucksensor
 - Piezoelektrischer Drucksensor
 - Aktiver Aufnehmer
 - Ladungstrennung erzeugt elektrische Spannung in einem Kristall