Route H — Holography, Replica Non-Orientables, and Entanglement

Parity-anomaly contributions to Rényi entropies and reflection-positivity bounds

Evan Wesley, with Octo White, Claude, Gemini, and O3

August 5, 2025

Abstract

We give a mathematical framework for parity-sensitive corrections to entanglement measures in conformal field theories using non-orientable replica geometries. The analysis identifies a \mathbb{Z}_2 anomaly character whose inflow contribution produces a universal constant shift in Rényi entropies on crosscap replicas, reflecting the same parity-depth mechanism that fixes the cosmological decade index. We formalize the replica construction on Pin manifolds, state and prove anomaly-inflow identities, and derive reflection-positivity inequalities that saturate under the least-action selector.

Contents

1	Replica geometries with crosscaps	1
	1.1 Replica construction	1
	1.2 Anomaly inflow on non-orientables	2
2	Parity contribution to Rényi entropies	2
3	Holographic interpretation	2
4	Consequences and falsifiability	2

1 Replica geometries with crosscaps

1.1 Replica construction

Let (\mathcal{H}, ρ) be a CFT state on a spatial manifold Σ . For an entangling region $A \subset \Sigma$, the *n*-th Rényi entropy is computed by a path integral on an *n*-sheeted branched cover \mathcal{M}_n of the Euclidean spacetime. We introduce a *non-orientable replica* $\widehat{\mathcal{M}}_n$ by inserting a crosscap across each sheet before gluing, so that $\widehat{\mathcal{M}}_n$ carries a Pin structure compatible with antiunitary symmetries.

Definition 1.1 (Parity-twisted Rényi). Define the parity-twisted Rényi entropy by

$$S_n^{(P)}(A) := \frac{1}{1-n} \log \frac{Z[\widehat{\mathcal{M}}_n]}{(Z[\widehat{\mathcal{M}}_1])^n}, \tag{1}$$

where $Z[\cdot]$ is the reflection-positive, regulated CFT partition function with appropriate background gauge fields.

1.2 Anomaly inflow on non-orientables

Let $\nu \in \operatorname{Hom}(\Omega_{d+1}^{\operatorname{Pin}^+}(BG), U(1))$ be the invertible phase character. Inflow assigns to a bounding (d+2)-manifold W with $\partial W = \widehat{\mathcal{M}}_n$ a phase $\nu(W)$ such that

$$Z[\widehat{\mathcal{M}}_n] = \nu(W) Z_{\text{bulk}}[\widehat{\mathcal{M}}_n], \qquad |\nu(W)| = 1.$$
 (2)

Proposition 1.2 (\mathbb{Z}_2 anomaly character on crosscaps). If the \mathbb{Z}_2 -primary parity depth is m, then the restriction of ν to crosscap replicas takes values in $\{\pm 1\}$ and can be written as $(-1)^{\chi_n}$ for a \mathbb{Z}_2 -valued characteristic χ_n detecting the n-dependent Pin cycle.

Proof. \mathbb{Z}_2 -primary classes evaluate to ± 1 ; invariance under deformations and sheet permutations implies dependence only on the Pin cycle class, yielding the stated form.

2 Parity contribution to Rényi entropies

Theorem 2.1 (Universal constant shift). Let d be the boundary spacetime dimension. The parity-twisted Rényi entropy satisfies

$$S_n^{(P)}(A) = S_n^{(or)}(A) + \frac{i\pi}{1-n} \chi_n \pmod{2\pi},$$
 (3)

where $S_n^{(\text{or})}$ is the usual orientable Rényi entropy and $\chi_n \in \{0,1\}$ is the anomaly character on $\widehat{\mathcal{M}}_n$.

Proof. Take the logarithm of (2); the magnitude of $\nu(W)$ is one, so only its phase contributes. For \mathbb{Z}_2 -primary inflow, $\nu(W) = \pm 1 = e^{i\pi\chi_n}$, yielding the constant term.

Corollary 2.2 (Reflection positivity bound). Reflection positivity requires $S_n^{(P)}(A) \in \mathbb{R}$; hence χ_n must vanish or the imaginary contribution must cancel across replicas. The least-action selector enforces the minimal nonvanishing choice of χ_n consistent with parity depth, reproducing the same minimizing pattern as for the cosmological index.

3 Holographic interpretation

Proposition 3.1 (Bulk dual constraint). In AdS_{d+1}/CFT_d , the invertible \mathbb{Z}_2 character corresponds to a bulk topological term on a Pin(d+1) extension of $\widehat{\mathcal{M}}_n$. The minimal phase consistent with reflection positivity in the bulk reproduces the boundary constant shift and fixes the sign of the bulk counterterm universally.

Proof. By anomaly inflow, the boundary character is the boundary variation of a bulk invertible phase. On a Pin extension, the topological term reduces to a \mathbb{Z}_2 phase when evaluated on the filling of the crosscap cycle. Minimality is the bulk realization of the least-action selector.

4 Consequences and falsifiability

A nontrivial χ_n implies a universal, geometry-independent constant contribution to parity-twisted Rényi entropies. Any CFT with the SM global symmetry content should exhibit the same sign pattern across n, providing a boundary probe of the same parity-depth mechanism. A proof that $\chi_n = 0$ for all n in a theory matching the SM symmetry would falsify the universality claim.