Fakultät Angewandte Naturwissenschaften und Wirtschaftsingenieurwesen

W. Hengl / Prof. Dr. M. Moritz

Übungen zu Analytische Grundlagen - WIW-1:

Blatt 9

WS 2014/15

- **1.** Ein **Kreis** mit Radius r ist durch die Gleichung $x^2 + y^2 = r^2$ darstellbar.
- a) Geben Sie die explizite Darstellung y = f(x) an.
- b) Geben Sie eine Parameterdarstellung in der Form $\vec{r}(t) = \begin{pmatrix} x(t) \\ v(t) \end{pmatrix}$ an.
- c) Versuchen Sie aus der Parameterform wieder die anderen Formen herzuleiten.
- d) Welche Kurve wird durch $x(t) = a \cdot \cos t$ und $y(t) = b \cdot \sin t$ mit $a \neq b$ und $t \in [0, 2\pi]$ beschrieben?
- 2. Der waagerechte Wurf ist eine ungestörte Überlagerung einer gleichförmigen Bewegung in x-Richtung und des freien Falls in y-Richtung mit $x(t) = v_{ox} \cdot t$ und $y(t) = -\frac{1}{2}gt^2$.
- a) Erstellen Sie eine Wertetabelle für $t \in [0, 10]$ und $v_{ox} = 40$ und $g \approx 10$ (ausnahmsweise ohne Einheiten!) und skizzieren den Graphen.
- b) Leiten Sie die explizite Darstellung her. Welche Form hat die Funktion?
- **3.** Welche der folgenden Funktionen y = f(x) sind in ihrem natürlichen Definitionsbereich D_f gerade **bzw.** ungerade ? Bestimmen Sie dazu zuerst $\ D_f \$.

a)
$$v = 3x^2 - 7x^4 + 2$$

a)
$$y = 3x^2 - 7x^4 + 2$$
 b) $y = 4x^5 - 2x^3 + 6x$ c) $y = 2x^2 - x + 1$ d) $y = \frac{1}{x^2 + 1}$

c)
$$y = 2x^2 - x + 1$$

d)
$$y = \frac{1}{x^2 + 1}$$

e)
$$y = \frac{1}{x} + x$$
 f) $y = \frac{x}{x^2 + 1}$ g) $y = \frac{x}{x^3 + x}$ h) $y = |x| + 1$

$$f) \quad y = \frac{x}{x^2 + 1}$$

$$y = \frac{x}{x^3 + x}$$

h)
$$y = |x| + 1$$

i)
$$y = |x+1|$$

$$j) \quad y = \sqrt{x^3 + x^3}$$

i)
$$y = |x+1|$$
 j) $y = \sqrt{x^3 + x}$ k) $y = \sqrt[3]{x^4 + 2}$ l) $y = \ln(x^2)$

$$I) \quad y = \ln(x^2)$$

$$m) \quad y = 2\ln(x)$$

n)
$$v = (\ln(x))^{n}$$

m)
$$y = 2\ln(x)$$

n) $y = (\ln(x))^2$
o) $y = \frac{e^x - e^{-x}}{x}$
p) $y = \frac{e^x - 1}{e^x + 1}$

p)
$$y = \frac{e^x - 1}{e^x + 1}$$

q)
$$y = \sqrt{\cos(x) + 1}$$
 r) $y = \sqrt[3]{x + \sin(x)}$

$$y = \sqrt[3]{x + \sin(x)}$$

(A17.3)

4. Jede Funktion f(x) läßt sich als Summe einer geraden Funktion g(x) und einer ungeraden **Funktion** u(x) darstellen. Ermitteln Sie diese für folgende Funktionen y = f(x):

a)
$$y = x^2 + 2x - 1$$

a)
$$y = x^2 + 2x - 1$$
 b) $y = \sqrt{x^2 + x + 1}$ c) $y = \frac{x - 1}{x + 1}$

c)
$$y = \frac{x-1}{x+1}$$

d)
$$y = |x+2| - x$$

e)
$$y = \ln(x^2)$$

d)
$$y = |x+2| - x$$
 e) $y = \ln(x^2)$ f) $y = \cos(x + \frac{\pi}{4})$ (A18.3)

5. Untersuchen Sie das **Monotonieverhalten** der folgenden Funktionen y = f(x) in D_f :

a)
$$y = x-2$$
, $D_f = \mathbb{R}$

a)
$$y=x-2$$
 , $D_f=\mathbb{R}$ b) $y=-3\,x+1$, $D_f=\mathbb{R}$ c) $y=x^2$, $D_f=\mathbb{R}^{-1}$

c)
$$y = x^2$$
, $D_f = \mathbb{R}^{-1}$

d)
$$y=(x+1)^2-5$$
 , $D_f=\mathbb{R}$ e) $y=-x^3+1$, $D_f=\mathbb{R}$ f) $y=|x-1|$, $D_f=\mathbb{R}$

e)
$$y = -x^3 + 1$$
, $D_f = \mathbb{R}$

f)
$$y = |x-1|$$
, $D_f = \mathbb{R}$

g)
$$y = \sin(2x)$$
, $D_f = [-\pi, \pi]$ h) $y = \frac{1}{r-1}$, $D_f = \mathbb{R} \setminus \{1\}$

h)
$$y = \frac{1}{x-1}$$
, $D_f = \mathbb{R} \setminus \{1\}$

i)
$$y = \frac{1}{x^2} + 2$$
, $x \neq 0$

i)
$$y = \frac{1}{x^2} + 2$$
, $x \neq 0$ j) $y = \frac{x-1}{x+1}$, $D_f = \mathbb{R} \setminus \{-1\}$ (A17.2)

6. Sind folgende Funktionen y = f(x) auf ihrem natürlichen Definitionsbereich **periodisch**? Ermitteln Sie gegebenenfalls die **Grundperiode T** (primitive Periode p).

a)
$$y = \sin(x) + e^x$$

a)
$$y = \sin(x) + e^x$$
 b) $y = 4\cos(x-2)$ c) $y = \tan(4x) + 5$

c)
$$y = \tan(4x) + 5$$

d)
$$y = e^{\cos(2x+1)} + \frac{1}{2}$$

e)
$$y = \frac{\ln(|\sin(x)|)}{\tan(0.25x)}$$

d)
$$y = e^{\cos(2x+1)} + \frac{1}{2}$$
 e) $y = \frac{\ln(|\sin(x)|)}{\tan(0.25x)}$ f) $y = \sin(3x) - \tan(2x)$ (A18.4)

Anmerkung:

Wählen Sie Beispiele aus und versuchen diese zu lösen. Vergleichen Sie erst danach mit den Lösungen!

(entnommen der Übungssammlung von Prof. Schulte aus den Blättern 17 und 18)