COMP 3981: Project Description (Part #1)

Problem Formulation and Graphical User Interface (GUI) Implementation

State Representation:

Black Marbles at $[x_1,y_1;\ x_2,y_2;\ x_3,y_3;....$ $x_{14},y_{14}.]$ 8

White Marbles at $[x_1, y_1; x_2, y_2; x_3, y_3; \dots x_{14}, y_{14}]$

Initial State: (For visuals, please see end of document)

	Black Marbles [location, marbles lost]	White Marbles [location, marbles lost]
Standard Formation	[G3, G4, G5, H1, H2, H3, H4 H5, H6, I1, I2, I3, I4, I5; 0 lost]	[A5, A6, A7, A8, A9, B4, B5 B6, B7, B8, B9, C5, C6, C7; 0 lost]
Belgian Daisy Formation	[G2, G3, H1, H2, H3, I1, I2, A8, A9, B7, B8, B9, C7, C8; 0 lost]	[A5, A6, B4, B5, B6, C4, C5 G5, G6, H4, H5, H6, I4, I5; 0 lost]
German Daisy Formation	[F2, F3, G1, G2, G3, H1, H2 B8, B9, C7, C8, C9, D7, D8; 0 lost]	[B4, B5, C3, C4, C5, D3, D4 F6, F7, G5, G6, G7, H5, H6; 0 lost]

Goal Test:

Black Marbles: $[x_1, y_1; x_2, y_2; x_3, y_3; \dots x_8, y_8; 6 lost]$

or

White Marbles: $[x_1, y_1; x_2, y_2; x_3, y_3; x_8, y_8; 6 lost]$

Actions (For visuals please see end of document

#Marbles	Alignment of marbles	Actions (Given current state x_n, y_n)	Resulting State
1	N/A	Move towards V ₁	marble at $(x - 1_n, y_n)$
1	N/A	Move towards V ₂	marble at $(x - 1_n, y + 1_n)$
1	N/A	Move towards V ₃	marble at $(x_n, y + 1_n)$
1	N/A	Move towards V ₄	marble at $(x + 1_n, y_n)$
1	N/A	<i>Move</i> towards V ₅	marble at $(x + 1_n, y - 1_n)$
1	N/A	<i>Move</i> towards V ₆	marble at $(x_n, y - 1_n)$
2	Horizontal	Move broadside towards V ₁	marbles at $(x - 1_n, y_n; x - 1_n, y_n)$
2	Vertical	Move inline towards V_1	marbles at $(x - 1_n, y_n; x - 1_n, y_n)$
2	Horizontal	Move broadside towards V_2	marbles at $(x - 1_n, y + 1_n; x - 1_n, y + 1_n)$
2	Vertical	Move inline towards V ₂	marbles at $(x - 1_n, y + 1_n; x - 1_n, y + 1_n)$
2	Horizontal	Move inline towards V_3	marbles at $(x_n, y + 1_n; x_n, y + 1_n)$
2	Vertical	Move broadside towards V_3	marbles at $(x_n, y + 1_n; x_n, y + 1_n)$
2	Horizontal	Move broadside towards V ₄	marbles at $(x + 1_n, y_n; x + 1_n, y_n)$
2	Vertical	Move inline towards V_4	marbles at $(x + 1_n, y_n; x + 1_n, y_n)$
2	Horizontal	Move broadside towards $ m V_{5}$	marbles at $(x + 1_n, y - 1_n; x + 1_n, y - 1_n)$
2	Vertical	Move inline towards $ m V_{5}$	marbles at $(x + 1_n, y - 1_n; x + 1_n, y - 1_n)$
2	Horizontal	Move inline towards V_6	marbles at $(x_n, y - 1_n; x_n, y - 1_n)$
2	Horizontal	Move broadside towards V ₆	marbles at $(x_n, y - 1_n; x_n, y - 1_n)$
3	Horizontal	Move broadside towards V_1	marbles at $(x - 1_n, y_n; x - 1_n, y_n; x - 1_n, y_n)$
3	Vertical	Move inline towards V_1	marbles at $(x - 1_n, y_n; x - 1_n, y_n; x - 1_n, y_n)$
3	Horizontal	Move broadside towards V_2	marbles at $(x - 1_n, y + 1_n; x - 1_n, y + 1_n; x - 1_n, y + 1_n)$
3	Vertical	Move inline towards V ₂	marbles at $(x - 1_n, y + 1_n; x - 1_n, y + 1_n; x - 1_n, y + 1_n)$
3	Horizontal	Move inline towards V ₃	marbles at $(x_n, y + 1_n; x_n, y + 1_n; x_n, y + 1_n)$
3	Vertical	Move broadside towards V_3	marbles at $(x_n, y + 1_n; x_n, y + 1_n; x_n, y + 1_n)$
3	Horizontal	Move broadside towards V_4	marbles at $(x + 1_n, y_n; x + 1_n, y_n; x + 1_n, y_n)$
3	Vertical	Move inline towards V ₄	marbles at $(x + 1_n, y_n; x + 1_n, y_n; x + 1_n, y_n)$
3	Horizontal	Move broadside towards V_5	marbles at $(x + 1_n, y - 1_n; x + 1_n, y - 1_n; x + 1_n, y - 1_n)$
3	Vertical	Move inline towards V ₅	marbles at $(x + 1_n, y - 1_n; x + 1_n, y - 1_n; x + 1_n, y - 1_n)$
3	Horizontal	Move inline towards V_6	marbles at $(x_n, y - 1_n; x_n, y - 1_n; x_n, y - 1_n)$
3	Horizontal	Move broadside towards V ₆	marbles at $(x_n, y - 1_n; x_n, y - 1_n; x_n, y - 1_n)$

Resources:

Figure 1- German Daisy layout with coordinates and vectors.

Figure 2- Belgian Daisy Layout with coordinates.

Figure 3- Standard Layout of the board with coordinates.