Relations and Orders

September 24, 2019

1 Relations

1.1 Partitions

Let A be a non-empty set, and S be a set composed of subsets of A.

$$S = \{S_1, S_2, \cdots, S_m\}, S_i \subset A.$$

S is a partition of A if

- 1. $S_i \neq \emptyset$
- 2. $S_i \cap S_j = \emptyset, i \neq j$
- 3. $\bigcup_{i=1}^{m} S_i = A$

 S_i (the elements of S) can be called *blocks*.

A partition of a set A is a collection of disjoint nonempty subsets of A that have A as their union.

1.2 Relations

A set R is called a *relation* if R only contains ordered pairs.

Let R be a relation. We define the *domain* of R to be the set

$$dom R = \{x | \exists y ((x, y) \in R)\}\$$

And we define the range of R to be the set

$$ran R = \{y | \exists x ((x, y) \in R)\}$$

The *field* of R is the set Ran $R = \operatorname{ran} R \cup \operatorname{dom} R$.

Sometimes we write aRb instead of $(a,b) \in R$.

1.3 Definitions

We say that a relation R on a set M is

- reflexive if for all $a \in M, (a, a) \in R$
- symmetric if for all $a, b \in M$, if $(a, b) \in R$, then $(b, a) \in R$.
- antisymmetric if for all $a, b \in M$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b.
- asymmetric if for all $a, b \in M$, if $(a, b) \in R$, then $(b, a) \notin R$.
- transitive if for all $a, b, c \in M$, if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$.

1.4 Equivalence Relation and Equivalence class

Let R be a relation on a set M. If R is reflexive, symmetric and transitive, then we say that R is an equivalence relation on M. If R is an equivalence relation on M and $a \in M$, then define the equivalence class of a to be

$$[a]_R = \{b \in M | (a, b) \in R\}$$

1.5 Quotient Set

Let R be an equivalence relation on a set A. S is called a *quotient set* of A induced by R if S is the set of all equivalence classes induced by R. S can be denoted as A/R. I.e.

$$A/R = \{ [a]_R | a \in A \}.$$

where

$$[a]_R = \{b \in A | aRb\}.$$

1.6 Theorems

Here are some theorems about Equivalence Relations, Equivalence Classes, and Quotient Sets.

i)Let R be an equivalence relation on a non-empty set A. For all $a, b \in A$, $(a, b) \in R$ if and only if $[a]_R = [b]_R$. (You can prove it by yourself.)

ii)Let R be an equivalence relation on a non-empty set A. The quotient set A/R is a partition of A. (A partition can be induced from an equivalence relation.)

iii)Let $S = \{S_1, S_2, \dots, S_m\}, S_i \subset S$ be a partition of a non-empty set A. Let $R = \{(a,b)|\exists i(a \in S_i \land b \in S_i)\}$. Then R is an equivalence relation on A. (An equivalence relation can be induced from a partition.)

iv)Let R_1 and R_2 be two equivalence relations on a non-empty set A. $R_1 = R_2$ if and only if $A/R_1 = A/R_2$.

1.7 Summary

- An equivalence relation corresponds to a partition. The equivalence classes are the blocks of a partition.
- A partition is a quotient set. A quotient set is a partition.
- Different partitions corresponds to different equivalence relations.

1.8 Exercise

How many different equivalence relations are there on a set $A = \{1, 2, 3, 4\}$. (15)

2 Orders

2.1 Definitions

Let R be a relation on a set M. If R is reflexive, antisymmetric and transitive, then R is called a *partial order*. We often write a partial order together with its domain, (M, R), and say that (M, R) is a *partially ordered set* or *poset*. (A partial order is often written as \preceq .)

Let R be a relation on a set M. If R is asymmetric and transitive, then R is called a strict partial order. We say that (M,R) is a strict partially ordered set or strict poset. (A strict partial order is often written as \prec .)

Let (M, R) be a partially ordered set. If for all $x, y \in M$, $(x, y) \in R$ or $(y, x) \in R$, then R is called a *linear order* or *total order*, and we say that (M, R) is a *linearly ordered* set or *totally ordered set*. (Any two elements in a linearly ordered set can be linked with \leq)

Let R be a linear order on a set M. We say that R is a well-order if for all $A \subseteq M$, if $A \neq \emptyset$, then there exists $x \in A$, such that for all $y \in A$, if $(y, x) \in R$ then y = x. We also say that (M, R) is a well-ordered set. (This says that every nonempty $A \subseteq M$ has a least element according to R.)

If R is a linear order on M and M is finite then R is a well-order.

2.2 Greatest and Least Element

a is the greatest element of the poset (S, \preceq) if $b \preceq a$ for all $b \in S$. a is the least element of the poset (S, \preceq) if $a \preceq b$ for all $b \in S$.

2.3 Maximal and Minimal Elements

An element of a poset is called *maximal* if it is not less than any element of the poset. That is, a is *maximal* in the poset (S, \preceq) if there is no $b \in S$ such that $a \preceq b \land a \neq b$. Similarly, an element of a poset is called *minimal* if it is not greater than any element of the poset. That is, a is *minimal* if there is no element $b \in S$ such that $b \preceq a \land a \neq b$.

2.4 Upper Bound and Lower Bound

Let (L, \preceq) be a poset and let $S \subseteq L$. We say that $x \in L$ is an *upper bound* on S if for all $y \in S$, $y \preceq x$. We say that $x \in L$ is a *lower bound* on S if for all $y \in S$, $x \preceq y$.

Let (L, \preceq) be a poset and let $S \subseteq L$. We say that $x \in L$ is a *least upper bound* (l.u.b.) on S if x is an upper bound on S and for all y, if y is an upper bound on S, then $x \preceq y$. We say that $x \in L$ is a *greatest lower bound* (g.l.b.) on S if x is a lower bound on S and for all y, if y is a lower bound on S then $y \preceq x$.

2.5 Theorems

- 1. The greatest (least) element is unique when it exists.
- 2. The greatest (least) element is always the maximal (minimal) element. However, the maximal (minimal) elements are **not** always the greatest (least) elements.
- 3. If (S, \preceq) is a finite poset, then the maximal (minimal) elements exist but are not unique.
- 4. Let (L, \preceq) be a poset and let $S \subseteq L$. If the least upper bound of S exists, then the least upper bound of S is unique. However, S can have several upper bounds.

2.6 Exercise

For the poset $S = (\{2, 4, 5, 10, 12, 20, 25\}, |),$

- 1. Determine whether the poset S has a greatest element and a least element. (No.)
- 2. Which elements of the poset are maximal, and which are minimal? (Maximal: 12,20,25. Minimal: 2,5.)
- 3. Find the lower and upper bounds of the subset $\{4, 10, 20\}$. (Lower bounds: 2. Upper bounds: 20.)

2.7 Lattices

Let (L, \preceq) be a poset. We say that (L, \preceq) is a *lattice* if for all $x, y \in L$, the set $\{x, y\}$ has both a l.u.b. and a g.l.b. If (L, \preceq) is a lattice and $x, y \in L$, then we write $x \vee y$ for the l.u.b. of $\{x, y\}$ and $x \wedge y$ for the g.l.b. of $\{x, y\}$.

In fact, if \leq is a linear order on M, then (M, \leq) is a lattice.

Let (L, \preceq) be a lattice. We say that (L, \preceq) is complete if for every $X \subseteq L$, X has both a least upper bound and a greatest lower bound. If (L, \preceq) is a complete lattice and $X \subseteq L$, then we use $\bigvee X$ to denote the least upper bound of X and $\bigwedge X$ to denote the greatest lower bound of X.

If (L, \preceq) is a complete lattice, then (L, \preceq) has a maximal element given by $\bigvee L$. This maximal element is sometimes denoted 1.

If (L, \preceq) is a complete lattice, then (L, \preceq) has a minimal element given by $\bigwedge L$. This minimal element is sometimes denoted $\mathbf{0}$.

2.8 Properties of Lattices (Order-Preserving)

Let (L, \preceq) be a lattice, and $a, b, c \in L$.

- 1. (a) $a \leq a \vee b, a \wedge b \leq a$.
 - (b) If $a \leq b, c \leq d$, then $a \wedge c \leq b \wedge d, a \vee c \leq b \vee d$. $a \wedge c \leq a \leq b$, and $a \wedge b \leq b \leq d$ (\leq is transitive.) $a \wedge c$ is a lower bound of $\{b, d\}$, and thus, $a \wedge c \leq b \wedge d$
 - (c) If $b \leq c$, then $a \wedge b \leq a \wedge c$, $a \vee b \leq a \vee c$.
- $2. \ a \lor b = b \lor a, a \land b = b \land a.$
- 3. $a \lor a = a, a \land a = a$.
- 4. $(a \lor b) \lor c = a \lor (b \lor c), (a \land b) \land c = a \land (b \land c).$
- 5. $a \lor (a \land b) = a, a \land (a \lor b) = a$.
- 6. $a \lor (b \land c) \preceq (a \lor b) \land (a \lor c), (a \land b) \lor (a \land c) \preceq a \land (b \lor c).$
- 7. $a \prec b \Leftrightarrow a \lor b = b \Leftrightarrow a \land b = a$

2.9 Exercises

Let (L, \preceq) be a lattice, and $a, b, c \in L$. Show that

- 1. $(a \lor b) \lor c = a \lor (b \lor c)$.
- $2. \ a \lor (a \land b) = a.$
- $3. \ a \vee (b \wedge c) \preceq (a \vee b) \wedge (a \vee c).$

```
O Association: (aub)vc = avcbvc)

a ≤ avcbvc)
b ≤ bvc ≤ avcbvc)

Similarly, avcbvc) ≤ (avb)vc

Therefore, (avb)vc = avcbvc)

Absorption: av(anb) = a

a ≤ a

a ≤ a

a ≤ av(anb)

Distribution: av(b ∧ c) ≤ (avb) ∧ (avc)

a ≤ avc

b ≤ avc

b ≤ avb

c ≤ avc

b ≤ avb

c ≤ avc

b ≤ avb

c ≤ avc
```

2.10 Chain Complete Posets

Let (P, \preceq) be a partial order. We say that $X \subseteq P$ is a chain if (X, \preceq) is a linear order.

Let (P, \preceq) be a partial order. We say that (P, \preceq) is chain complete if for all $X \subseteq P$, if X is a chain then X has a least upper bound.

Note that this definition ensures the existence of a unique least element. Since $\emptyset \subseteq P$ and \emptyset is a chain, and all $a \in P$ is the upper bound of \emptyset , therefore, P must has a unique least element, which is also the l.u.b of \emptyset .

Every complete lattice is a chain complete poset.