PCT/JP03/12716

03.10.03

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年10月 4日

REC'D 2 1 NOV 2003

PCT

WIPO

出 願 番 号 Application Number:

特願2002-291909

[ST. 10/C]:

[JP2002-291909]

出 願· 人 Applicant(s):

NOK株式会社 鐘淵化学工業株式会社

DEST AVAILABLE COPY

PRIORITY DOCUMENTS
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年11月 6日

【書類名】

特許願

【整理番号】

18974

【提出日】

平成14年10月 4日

【あて先】

特許庁長官 殿

【国際特許分類】

H01B 7/00

CO8L 83/06

【発明者】

【住所又は居所】

神奈川県藤沢市辻堂新町4-3-1 エヌオーケー株式

会社内

【氏名】

藤本 健一

【発明者】

【住所又は居所】

大阪府摂津市鳥飼西5-1-1 鐘淵化学工業株式会社

内

【氏名】

中川 佳樹

【特許出願人】

【識別番号】

000004385

【氏名又は名称】 エヌオーケー株式会社

【特許出願人】

【識別番号】 000000941

【氏名又は名称】 鐘淵化学工業株式会社

【代理人】

【識別番号】

100066005

【弁理士】

【氏名又は名称】 吉田 俊夫

【選任した代理人】

【識別番号】 100114351

【弁理士】

【氏名又は名称】 吉田 和子

【手数料の表示】

【予納台帳番号】 006231

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 自動車用ワイヤーハーネスシール材料

【特許請求の範囲】

【請求項1】 (A)ヒドロシリル化反応可能なアルケニル基を少くとも1個有するアクリル系重合体、(B)ヒドロシリル基含有化合物および(C)ヒドロシリル化触媒を必須成分として含有する組成物よりなる自動車用ワイヤーハーネスシール材料。

【請求項2】 数平均分子量Mnが500以上でかつ分子量分布(Mw/Mn)が1.8以下である液状アクリル系重合体が組成物の一成分として用いられた請求項1記載の自動車用ワイヤーハーネスシール材料。

【請求項3】 組成物から得られた硬化物が50以下のデュロA硬さを示す請求項1または2記載の自動車用ワイヤーハーネスシール材料。

【請求項4】 (A)、(B)、(C)各成分の合計量100重量部当り100重量部以下の補強剤または充填剤が組成物に添加された請求項1または3記載の自動車用ワイヤーハーネスシール材料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、自動車用ワイヤーハーネスシール材料に関する。さらに詳しくは、 耐熱・耐油性および電線との密着性にすぐれた自動車用ワイヤーハーネスシール 材料に関する。

[0002]

【従来の技術】

自動車、産業機械等の電気配線に用いられているワイヤーハーネスのシール材料としては、従来から主としてシリコーンゴムが用いられているが、シリコーンゴムはワイヤーとの密着性が悪く、またエンジンルームで使用された場合の耐油性に劣るなどの問題がみられる。さらに、低硬度化した場合には、それの機械的な強度が小さいため、ワイヤー挿入時に傷が発生し易く、シール性に劣るなどの問題もみられる。

[0003]

特に、自動車用ワイヤーハーネスに用いられるシール材料には、次にような特性が求められている。

- (1) 自動車の使用環境に対応した耐熱性・耐オゾン性を有していること
- (2) シール性能を左右する耐圧縮永久歪特性にすぐれていること
- (3) 電線との密着性にすぐれていること
- (4) 電線挿入時に挿入抵抗が少なく、低硬度であること
- (5) 電線挿入時にシールを傷付けた場合でも、シールに割れなどを生じないこと

[0004]

近年の自動車の高性能化に伴い、今迄以上に高い温度が用いられるようになってきており、そのためワイヤーハーネスには耐熱・耐油環境下での十分なるシール性が求められている。

[0005]

【発明が解決しようとする課題】

本発明の目的は、耐熱・耐油性および電線との密着性などにすぐれた自動車用 ワイヤーハーネスシール材料を提供することにある。

[0006]

【課題を解決するための手段】

かかる本発明の目的は、(A)ヒドロシリル化反応可能なアルケニル基を少くとも1個有するアクリル系重合体、(B)ヒドロシリル基含有化合物および(C)ヒドロシリル化触媒を必須成分として含有する組成物からなる自動車用ワイヤーハーネスシール材料によって達成される。

[0007]

【発明の実施の形態】

(A)成分のヒドロシリル化反応可能なアルケニル基を少くとも1個、好ましくは 末端に少くとも1個有するアクリル系重合体の主鎖を構成するアクリル酸エステ ル系モノマーとしては特に限定されず、各種任意のものを用いることができる。

[0008]

例えば、アクリル酸、メタクリル酸、メチルアクリレート、エチルアクリレー ト、プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート 、イソブチルアクリレート、第3ブチルアクリレート、n-ペンチルアクリレート 、n-ヘキシルアクリレート、シクロヘキシルアクリレート、n-ヘプチルアクリレ ート、n-オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリ レート、デシルアクリレート、ドデシルアクリレート、フェニルアクリレート、 トルイルアクリレート、ベンジルアクリレート、2-メトキシエチルアクリレート 、3-メトキシブチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロ キシプロピルアクリレート、ステアリルアクリレート、グリシジルアクリレート 、2-アミノエチルアクリレート、トリフルオロメチルメチルアクリレート、2-ト リフルオロメチルエチルアクリレート、2-パーフルオロエチルエチルアクリレー ト、2-パーフルオロエチル-2-パーフルオロブチルエチルアクリレート、パーフ ルオロエチルアクリレート、パーフルオロメチルアクリレート、ジパーフルオロ メチルメチルアクリレート、2-パーフルオロメチル-2-パーフルオロエチルエチ ルアクリレート、2-パーフルオロヘキシルエチルアクリレート、2-パーフルオロ デシルエチルアクリレート、2-パーフルオロヘキサデシルエチルアクリレート等 のアクリル酸エステルまたはこれに対応するメタクリル酸エステル、アクリル酸 のエチレンオキサイド付加物、γ-(メタクリロイルオキシプロピル)トリメトキ シシラン等が用いられる。

[0009]

これらの内、生成物の物性などの点からは、好ましくはアクリル酸エステルまたはメタクリル酸エステルが用いられ、特に好ましくはアクリル酸エステル、例えばブチルアクリレート、エチルアクリレート、2-メトキシエチルアクリレート、2-エトキシエチルアクリレート等が1種または2種以上組合せて用いられる。

[0010]

本発明においては、これらの好ましいモノマーを他のモノマーとランダム共重合したり、さらにブロック共重合させてもよく、この際にはこれらの好ましいモノマーであるアクリル酸エステルまたはメタクリル酸エステルが60重量%以上の割合で共重合されていることが好ましい。

また、これらのアクリル酸系またはメタクリル酸系モノマーと共に、約30重量 %以下の割合で他のモノマーを共重合させることができ、かかるモノマーとして は、例えばスチレン、ビニルトルエン、α-メチルスチレン、クロロスチレン、 スチレンスルホン酸またはその塩等のスチレン系モノマー;パーフルオロエチレ ン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有ビニルモノマー ;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のけい素含有ビニル 系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステル またはジアルキルエステル;フマル酸、フマル酸のモノアルキルエステルまたは ジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロ ピルマレイミド、プチルマレイミド、ヘキシルマレイミド、オクチルマレイミド 、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロへ キシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタクリロニ トリル等のニトリル基含有ビニル系モノマー;アクリルアミド、メタクリルアミ ド等のアミド基含有ビニル系モノマー:酢酸ビニル、プロピオン酸ビニル、ピパ リン酸ビニル、安息香酸ビニル、けい皮酸ビニル等のビニルエステル類;エチレ ン、プロピレン等のオレフィン類;ブタジエン、イソプレン等の共役ジエン類;塩 化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。

[0012]

これらのモノマーを共重合させて得られたアクリル系重合体中には、ヒドロシ リル化反応可能なアルケニル基が少くとも1個、好ましくは末端に少くとも1個導 入される。導入されたアルケニル基は、一般式

$CH_2=C(R)-$

で表わされ、ここでRは水素原子または炭素数1~20の有機基であり、かかる有機基としては炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基等が挙げられ、ヒドロシリル基含有化合物との反応性の点からは、Rが水素原子またはメチル基、好ましくは水素原子であるアルケニル基が導入される。

[0013]

かかるアルケニル基の導入は、例えば次のような方法によって行うことができ る。

(a)リビングラジカル重合によりアクリル系重合体を合成する際に、所定のア クリル系モノマーと共に、一般式

CH2=CR1-R2-R3-CR1=CH2

Rl:水素原子またはメチル基

 R^2 :エステル基または $o_{-,m}$ -または p_{-} フェニレン基 エステル基の場合は(メタ)アクリレート系化合物 フェニレン基の場合はスチレン系化合物

R³: 直接結合または1個以上のエーテル結合を有していてもよい C1~C20の有機基

で表わされる、一分子中に重合性のアルケニル基および重合性の低いアルケニル 基を併せ持つ化合物、例えば

CH₂=CHC00 (CH₂) nCH=CH₂

 $CH_2=C(CH_3)COO(CH_2)nCH=CH_2$

o-, m-またはp-ジビニルベンゼン

等を反応させる方法

(b)リビングラジカル重合によりアクリル系重合体を合成する際に、重合反応 の終期あるいは所定のモノマーの反応終了後に、第2のモノマーとして、重合性 の低いアルケニル基を少くとも2個有する化合物、すなわち一般式

 $CH_2=CR^1-R^4-CR^1=CH_2$

R1:水素原子またはメチル基

R4:1個以上のエーテル結合を含んでいてもよいC1~C20の有機基 で表わされる化合物、例えば1,5-ヘキサジエン、1.7-オクタジエン、1.9-デカジ エン等を反応させる方法

この方法は、一分子当りに導入されるアルケニル基の制御がより容易である。

(c)ハロゲンを少くとも1個有するアクリル系重合体にアルケニル基を有する各 種の有機金属化合物を作用させて、重合体中のハロゲンをアルケニル基に置換す る方法など、アクリル系重合体中のハロゲンをアルケニル基に置換する方法

[0014]

これらの方法によってアクリル系重合体中に導入されるアルケニル基は、重合体1分子当り1~10、好ましくは2~8である。

[0015]

アルケニル基を有するアクリル系重合体は、常温で液状の数平均分子量Mnが50 0以上、好ましくは1,000~100,000のものが一般に用いられる。この分子量が低 くなりすぎると、アクリル系重合体本来の特性が発現され難くなり、一方高すぎ ると取扱いが困難となる。

[0016]

この重合体の分子量分布、すなわちゲルパーミエーションクロマトグラフィー (GPC)で測定した重量平均分子量と数平均分子量との比(Mw/Mn)は、一般に1.8以下、好ましくは1.5以下、特に好ましくは1.3以下のものが用いられる。この比が 1.8以上のものを用いると、物性が低下するようになり好ましくない。なお、GPC 測定による分子量は、クロロホルムを移動相として、ポリスチレンゲルカラムを用い、ポリスチレン換算で求められた。

[0017]

このアルケニル基含有アクリル系重合体は、種々の重合法で得ることができ、 その方法は特に限定されないが、モノマーの汎用性、制御の容易性の点からはラ ジカル重合法が好ましい。ラジカル重合法の中でもリビング重合法がより好まし く、原子移動ラジカル重合法が特に好ましい。

[0018]

ラジカル重合反応は重合速度が速く、ラジカル同士のカップリングなどによる 停止反応が起り易いため、一般的には反応の制御が難かしいとされているが、リ ビングラジカル重合法は特殊な重合系を用いることにより、重合体成長末端での 停止反応などの副反応が起り難く、また分子量分布の狭い重合体(Mw/Mn:1.1~1. 5程度)が得られ、さらにモノマーと開始剤の仕込み比によって分子量を自由にコ ントロールすることができるという特徴を有する。

[0019]

したがって、リビング重合法は、分子量分布が狭く、生成重合体が液状の場合

には粘度の低い重合体を得ることができるばかりではなく、特定の官能基を有す るモノマーを重合体のほぼ任意の位置に導入することができるため、アルケニル 基を有するアクリル系重合体の製造方法としては好ましいものといえる。

[0020]

なお、リビング重合法とは、狭義においては、末端が常に活性を持ち続けて分 子鎖が成長していく重合のことを指しているが、一般には末端が不活性化された ものと活性化されたものが平衡状態にありながら成長していく擬リビング重合も 含まれ、本発明におけるリビング重合法は後者である。

[0021]

(B)成分のヒドロシリル基含有化合物としては、(A)成分のアルケニル基を末端 に少くとも1個有するアクリル系重合体との架橋により硬化できる化合物であれ ば特に制限はなく、例えば一般式

R53Si0[SiR520]a[SiHR60]b[SiR6R70]c SiR63 R^5 2HSi0[SiR 5 20]a[SiHR 6 0]b[SiR 6 R 7 0]c SiHR 5 2

R⁵, R⁶: C₁~C₆のアルキル基またはフェニル基

 $R^7: C_1 \sim C_{10}$ のアルキル基またはアラルキル基

0≤a≤100

2≤b≤100

0≤c≤100

 R^8 , R^9 : $C_1 \sim C_6$ のアルキル基またはフェニル基

 $R^{10}: C_1 \sim C_{10}$ のアルキル基またはアラルキル基

0≤d≤8

2≤e≤10

0≤f≤8

 $3 \leq d + e + f \leq 10$

[0022]

これらの中でも、平均して1分子中にヒドロシリル基を少くとも1.1個以上有する鎖状ポリシロキサン、環状シロキサン等の化合物が好んで用いられ、アクリル系重合体との相溶性の観点からは、ヒドロシリル基以外にアルキル基、フェニル基、アルキルフェニル基等を有するシロキサン化合物がより好ましい。これらのヒドロシリル基含有化合物は、1種または2種以上を混合して用いることもできる

[0023]

アルケニル基含有アクリル系重合体とヒドロシリル基含有化合物とは、任意の割合で混合して用いることができるが、硬化性の点からは、アクリル系重合体中のアルケニル基とヒドロシリル基含有化合物のヒドロシリル基のモル比が5~0.2、好ましくは2.5~0.4の割合で用いられる。このモル比が5以上になると硬化が不十分で、ベトツキのある強度の小さい硬化物しか得られず、一方0.2以下のモル比では、硬化後も硬化物中に活性なヒドロシリル基が大量に残るので、クラックやボイドが発生し、均一で強度のある硬化物が得られなくなる。

[0024]

また、(C)成分のヒドロシリル化触媒についても特に制御はなく、任意のものが使用できる。具体的には、塩化白金酸、白金の単体やアルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、さらには

白金-ビニルシロキサン錯体 Ptn(CH₂=CHMe₂SiOSiMe₂CH=CH₂)n

 $Pt[(MeCH_2=CHSiO)_4]m$

白金-ホスフィン錯体 Pt(PPh3)4

Pt (PBu₃)₄

白金-ホスファイト錯体 Pt[P(OPh)3]4

 $Pt[P(OBu)_3]_4$

Me:メチル基

Bu:ブチル基

Ph:フェニル基

Vi:ビニル基(CH=CH₂)

n、m:正の整数

や白金化合物以外の触媒であるRhCl (PPh3)3、RhCl3、Rh/Al2O3、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4等が挙げられ、また白金-炭化水素錯体(米国特許第3,159,601号明細書、同第3,159,662号明細書)や白金-アルコラート錯体(同第3,220,972号明細書)等も用いられ、これらは単独でまたは2種以上が併用される。これらのヒドロシリル化触媒の内、触媒活性の点からは塩化白金酸、白金-オレフィン錯体、白金-ビニルシロキサン錯体等が好んで用いられる。

[0025]

触媒量についても特に制限はないが、(A)成分重合体中のアルケニル基1モルに対して $10^{-1}\sim10^{-8}$ モル、好ましくは $10^{-2}\sim10^{-6}$ モルの範囲内で用いられる。ヒドロシリル化触媒は、一般に高価で腐食性があり、また水素を大量に発生して硬化物を発泡させてしまう場合があるので、 10^{-1} モル以上は用いない方がよい。

[0026]

これらの(A)、(B)、(C)3成分は、これら必須成分の内の一つでも欠けると加硫 成形物(硬化物)が得られなかったり、得られたとしてもゴム弾性や伸びが低下するなどの不具合が発生する。

[0027]

以上の各成分を必須成分とする組成物中には、ゴム用配合剤として、カーボンブラック、ホワイトカーボン等の補強剤、けいそう土、タルク、クレー、グラファイト、けい酸カルシウム、硫酸バリウム、炭酸カルシウム、炭酸マグネシウム、水酸化アルミニウム、マイカ等の充填剤、各種金属粉末、ガラス粉末、セラミックス粉末、粒状または粉末状ポリマー等の粉末状固体充填剤、摩耗性や成形性などを改良させる少量の熱可塑性樹脂やゴム、強度や剛性を向上させる短繊維、ステアリン酸、パルミチン酸、パラフィンワックス等の加工助剤、酸化亜鉛、酸化マグネシウム等の受酸剤、アミン系、フェノール系、イミダゾール系等の老化防止剤、安定剤、可塑剤、粘着性付与剤、離型剤、難燃剤、顔料等のゴム工業で一般的に使用されている各種配合剤が、必要に応じて適宜添加されて用いられる。これらの各種配合剤において、操作上からは液状のものを使用することが好ま

しい。

[0028]

組成物中には3,5-ジメチル-1-ヘキシン-3-オール、3,5-ジメチル-1-ヘキシン-5-オール等の硬化調整剤を、(A)、(B)、(C)各成分の合計量100重量部当り約5重量部以下、好ましくは約0.01~1重量部添加して用いることができる。硬化調整剤は、硬化速度の調節やスコーチを防止するという働きをする。

[0029]

自動車用ワイヤーハーネスシール材料という用途上、組成物を硬化して得られる硬化物の表面硬度は50以下であることが好ましい。硬化物のデュロA硬さを50以下の低硬度とするためには、組成物中への各種補強剤または充填剤の添加割合を調節することによっても可能である。ただし、補強剤または充填剤として、触媒毒となるイオウやハロゲン等を含むものは好ましくない。補強剤または充填剤の添加割合は、(A)、(B)、(C)各成分の合計量100重量部当り約100重量部以下、一般には1~100重量部、好ましくは約5~80重量部であり、これ以下の添加割合あるいは補強剤または充填剤を用いない場合には、硬さは50以下となるが、製品の外観が損なわれるようになるのでその点では好ましくなく、一方これ以上の割合で用いられると、硬度が高すぎるようになる。また、補強剤または充填剤と共に可塑剤等を併用することにより、硬さを調整することもできる。

[0030]

組成物の調製は、3本ロール等を用いて混練することによって行われ、それの加硫成形は、射出成形機、圧縮成形機、加硫プレス等を用いて、一般に約120~200℃で約1~60分間程度加熱することによって行われ、必要に応じて約100~200℃で約1/2~24時間程度加熱する二次加硫が行われる。なお、加熱を全く行わずに、室温条件下に24時間以上放置することによっても硬化は可能である。

[0031]

このシール材料の主な用途は、コネクタパッキン、ガスケット、0リング等であり、所定形状のパッキン等を加硫成形後樹脂製ハウジングに装着し、それに塩化ビニル樹脂、ポリプロピレン樹脂等で被覆された電線を通して用いられ、使用中にコネクタ外部からの電気接点への水、埃、油等の侵入を有効に防止する。

[0032]

【発明の効果】

本発明に係る自動車用ワイヤーハーネスシール材料は、次のような効果を奏する。

- (1) アクリルゴムを用いているため、耐熱性・耐油性および耐オゾン性にすぐれている。
- (2) 低硬度のアクリルゴムによる電線との密着性および割れ難さの点ですぐれている。
- (3) 液状アクリルゴムによる成形加工のし易さにすぐれ、従来のミラブルタイプのものとは異なり、混練工程を省略できる。
- (4) 従来のアクリルゴムの場合のように加硫剤を用いていないため、クリーン性(低アウトガス性)やヒドロシリル架橋による低圧縮永久歪が得られている。

[0033]

【実施例】

次に、実施例について本発明を説明する。

[0034]

実施例1~4、比較例1

組成物成分(重量部)	<u>実-1</u>	<u>実-2</u>	比-1	<u>実-3</u>	<u>実-4</u>
アクリル系重合体	93.9	93.9	93.9	93.9	93.9
ヒドロシリル基含有化合物	5.6	5.6	5.6	5.6	5.6
ヒドロシリル化触媒	0.5	0.5	0.5	0.5	0.5
カーボンブラック (N990)	5	25	120		
ホワイトカーボン				5	18
(日本アエロシル製品Aerosil R974)					
酸化防止剤	1	1	1	1	1
(大内新共化学製品ノクラックCD)					
ポリエーテルエステル系可塑剤		5	5		
(旭電化製品RS700)					
3,5-ジメチル-1-ヘキシン-3-オール	0.1	0.1	0.1	0.1	0.1

(硬化調整剤)

[0035]

なお、アクリル系重合体としては、ブチルアクリレート、エチルアクリレートおよび2-メトキシエチルアクリレートの共重合体中に1,5-ヘキサジエンを共重合させ、アルケニル基を導入した共重合体が用いられ、この共重合体の数平均分子量Mnは18000、分子量分布 (Mw/Mn) は1.1、共重合体1分子当りに導入された平均アルケニル基数は1.9であるものが用いられ、ヒドロシリル基含有化合物としては、分子中に平均5個のヒドロシリル基と平均5個のα-メチルスチレン基を含有する鎖状シロキサン(Si-H基の量:3.70ミリモル/g)が用いられ、またヒドロシリル化触媒としては、0価白金の1,1,3,3-テトラメチル-1,3-ジビニルシロキサン錯体を3重量%含有するキシレン溶液がそれぞれ用いられた。

[0036]

以上の各成分を3本ロールを用いて十分に混合した後、圧縮成形機を用いて、1 80℃で10分間加硫成形した。得られた加硫成形物について、次の各項目の試験を 行った。

[0037]

常態値、圧縮永久歪、耐熱性試験(150℃、70時間後の物性変化)、耐油性試験(150℃の潤滑油No.3中70時間後の物性変化):

JIS K6253, K6251, K6262, K6257, K6258準拠

密着性試験:

コネクタパッキンを想定した直径10mm、高さ10mmの円柱体中心に直径2mmの 貫通孔を設け、そこに外径3mmの電線を通して引張り、折曲げまたは熱負荷(120 ℃、168時間)後、通した電線を手で引張り、抜けない場合を○、抜けがある場合 を×と評価

アウトガス試験:

GCMS法(120℃で1時間熱抽出後の試科1g当りのガス発生量)

金属腐食試験:

線径3mm、内径25mmの0リングをアルミニウム板で挟んで、100℃で168時間加熱後のアルミニウム板の腐食状態を目視で観察

[0038]

比較例2

アクリルゴム(日本ゼオン製品Nipol AR 72HF)	100重量部		
イオウ	0.5	"	
ステアリン酸ナトリウム	1	"	
ステアリン酸カリウム	2	"	
ステアリン酸	1	"	

以上の各成分を3本ロールを用いて十分に混合した後、圧縮成形機を用いて、1 80℃で6分間加硫成形した後150℃で5時間の二次加硫を行い、得られた加硫成形 物について、実施例1~4と同様の試験が行われた。

[0039]

比較例3

シリコーンゴム(東レシリコーン製品VMQ;SE8311CVU)	100重量部		
赤色顔料(東レシリコーン製品CP21 RED)	2	"	
有機過酸化物(東レシリコーン製品RC4;	1	"	
2,5-ジメチル-2,5-ジ第3ブチルパーオキシ			
ヘキサンのSiO ₂ 50%希釈物)			

以上の各成分を3本ロールを用いて十分に混合した後、圧縮成形機を用いて、1 80℃で6分間加硫成形した後200℃で22時間の二次加硫を行い、得られた加硫成形 物について、実施例1~4と同様の試験が行われた。

[0040]

以上の各実施例および比較例における測定結果は、次の表に示される。

表

	試験項目		<u>実-1</u>	<u>実-2</u>	比-1	<u>実-3</u>	<u>実-4</u>	比-2	比-3
〔常態値	<u>i)</u>								
硬さ	デュロA(ポイ	ント)	10	40	72	12	32	42	30
破断强	強度	(MPa)	4.2	7.0	9.6	3.9	4.8	1.6	6.2
破断伸	すび		280	200	105	300	210	120	460
〔圧縮永	〈 久歪〕								

ペー	37	•	14/E
- •	_		14/6

150℃、70時間	(%)	12	19	42	14	22	64	28
〔耐熱性試験〕								
硬さ変化(な	ポイント)	+3	+2	+2	+4	+2	+5	+2
破断強度変化率	(%)	+10	+5	+16	+12	+4	-19	+8
破断伸び変化率	(%)	+6	+9	-18	-7	-12	-20	-6
〔耐油性試験〕								
硬さ変化(ス	ポイント)	-5	-3	-2	-5	-4	-6	-14
破断強度変化率	(%)	-16	-12	-23	-18	-15	-30	-36
破断伸び変化率	(%)	-18	-19	-26	-13	-12	-39	-47
体積変化率	(%)	+18.0	+15.2	+14.8	+19.1	+17.3	+19.6	+62.0
〔密着性試験〕								
引張り後		0	0	0	0	0	×	0
折曲げ後		. 0	0	×	0	0	×	×
熱負荷後		Ö	0	0	0	0	×	×
〔アウトガス性〕								
ガス発生量	$(\mu g/g)$	40	24	18	38	26	80	62
〔金属腐食性〕								
腐食の有無		なし	なし	なし	なし	なし	あり	なし

[0041]

以上の結果から、次のようなことがいえる。

[0042]

各実施例の組成物から得られたものは、低硬度で耐熱性、耐油性も良好であり、電線との密着性も良く、アウトガスも少ないので自動車用ワイヤーハーネスシール材料として好適に用いられる。一方、比較例1のものは硬度が高く、電線への密着性も劣っている。また、アクリルゴムを用いた比較例2は、実用強度が小さく、圧縮永久歪特性も劣っており、さらに電線への密着性も劣っている。シリコーンゴムを用いた比較例3については、耐熱性は良好なものの耐油性に劣り、さらに電線への密着性も劣っていた。

【書類名】 要約書

【要約】

【課題】 耐熱・耐油性および電線との密着性などにすぐれた自動車用ワイヤー ハーネスシール材料を提供する。

【解決手段】 (A)ヒドロシリル化反応可能なアルケニル基を少くとも1個有するアクリル系重合体、(B)ヒドロシリル基含有化合物および(C)ヒドロシリル化触媒を必須成分として含有する組成物からなる自動車用ワイヤーハーネスシール材料。この自動車用ワイヤーハーネスシール材料は、液状アクリルゴムを用いているため成形加工し易く、また加硫剤を用いていないためクリーン性(低アウトガス性)やヒドロシリル架橋による低圧縮永久歪が得られている。

特願2002-291909

出願人履歴情報

識別番号

[000004385]

1. 変更年月日 [変更理由]

1990年 8月27日

更理由] 新規登録住 所 東京都港

東京都港区芝大門1丁目12番15号

氏 名 エヌオーケー株式会社

2. 変更年月日 [変更理由]

住 所

2003年 7月 4日

名称変更

東京都港区芝大門1丁目12番15号

氏 名 NOK株式会社

特願2002-291909

出願人履歴情報

識別番号

[000000941]

1. 変更年月日 [変更理由] 住 所

1990年 8月27日 新規登録

住 所 名

大阪府大阪市北区中之島3丁目2番4号

鐘淵化学工業株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.