Out[

Mortality Aggregation

Benjamin Frost 2022

```
In [ ]:
          import pandas as pd
          import numpy as np
          import torch.multiprocessing as mp
          from sklearn.cluster import AgglomerativeClustering
          from sklearn.metrics import silhouette_score
          \textbf{from} \  \, \textbf{sklearn.metrics} \  \, \textbf{import} \  \, \textbf{f1\_score}
          \textbf{from} \ \textbf{sklearn.metrics} \ \textbf{import} \ \textbf{recall\_score}
          from sklearn.metrics import precision_score
          from sklearn.cluster import KMeans
          from sklearn.preprocessing import PolynomialFeatures
          from tqdm import tqdm
          \textbf{from} \  \, \text{concurrent.futures} \  \, \textbf{import} \  \, \text{ThreadPoolExecutor, as\_completed}
          from scipy.interpolate import interp1d
          from Categorization import Categorizer
          import torch
          import copy
          from torch.nn.functional import one_hot
          import imblearn
          from collections import Counter
          from tslearn.clustering import TimeSeriesKMeans
          from tslearn.utils import to_time_series_dataset
          \textbf{from} \  \, \textbf{tslearn.preprocessing} \  \, \textbf{import} \  \, \textbf{TimeSeriesScalerMeanVariance}
          from sklearn.metrics import silhouette_score
          from tsfresh import extract_features, select_features
          \textbf{from} \ \texttt{tsfresh.utilities.dataframe\_functions} \ \textbf{import} \ \texttt{impute}
          from dask.dataframe import from_pandas
           from tsfresh.utilities.distribution import MultiprocessingDistributor
          import hashlib
          from sklearn.metrics import precision_recall_fscore_support
          from importlib import reload
          \textbf{from} \text{ temporalHelper } \textbf{import} \text{ TemporalHelper } \textbf{as} \text{ TH}
```

Loading in the mimic dataset

```
In [ ]:
          th = TH()
          mimicDF = th.get_mimic()
          {\tt mimicDF}
```

]:		PatientID	Mortality14Days	ALT	AST	Admit Ht	Albumin	Arterial BP Mean	Arterial BP [Diastolic]	Arterial BP [Systolic]	Arterial PaCO2	 SVI	SVR	SVRI	SaO2	Sodi
	0	178177	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	١
	1	178177	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	1
	2	178177	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	1
	3	178177	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	1
	4	178177	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	1
	47083	159740	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	1
	47084	159740	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	L
	47085	159740	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	1
	47086	159740	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	1
	47087	159740	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	1

47088 rows × 44 columns

```
In [ ]:
           mimicDF.describe()
Out[]:
                                                                                                                      Arterial BP
                                                                                                                                    Arterial BP
                                                                                                        Arterial BP
                      PatientID Mortality14Days
                                                          ALT
                                                                        AST
                                                                                           Albumin
                                                                              Admit Ht
                                                                                                                      [Diastolic]
                                                                                                                                     [Systolic]
```

	PatientID	Mortality14Days	ALT	AST	Admit Ht	Albumin	Arterial BP Mean	Arterial BP [Diastolic]	Arterial BP [Systolic]	Α
count	47088.000000	47088.000000	484.000000	481.000000	705.000000	245.000000	31415.000000	31503.000000	31504.000000	8601.0
mean	151079.910805	0.039755	630.123967	954.301455	67.382553	2.721633	77.058157	57.226709	117.544502	40.!
std	29378.613191	0.195386	1245.805613	2384.326867	5.448469	0.584693	14.324177	11.197415	21.311674	7.0
min	100059.000000	0.000000	3.000000	3.000000	48.000000	1.400000	0.000000	0.000000	0.000000	15.0
25%	126241.000000	0.000000	25.000000	49.000000	64.000000	2.400000	68.000000	50.000000	103.000000	36.0
50%	151857.000000	0.000000	97.000000	137.000000	68.000000	2.700000	75.000000	56.000000	115.000000	40.0
75%	176484.000000	0.000000	554.750000	797.000000	70.000000	3.000000	84.000000	63.000000	129.000000	44.0
max	199998.000000	1.000000	8100.000000	23060.000000	160.000000	4.400000	287.000000	191.000000	255.000000	91.0

8 rows × 44 columns

```
print(f"There are {mimicDF['PatientID'].nunique()} unique patients in the dataset")
There are 1126 unique patients in the dataset
patients = th.get_patients()
print(len(patients))
      | 1126/1126 [00:01<00:00, 945.96it/s]
1126
```

Aggregating the dataset using expert values

```
In [ ]: # Aggregating the dataset
           staticPatients = []
           target = []
           for patient in patients:
               curr = {}
               df = patient.data
               curr['PatientID'] = patient.patientID
               target.append(patient.label)
               curr['ALT'] = df['ALT'].max()
               curr['AST'] = df['AST'].max()
               curr['Admit_Ht'] = df['Admit Ht'].max()
               curr['Albumin'] = df['Albumin'].min()
               curr['Arterial_BP_Mean'] = df['Arterial BP Mean'].min()
               curr['Arterial_BP_Diastolic'] = df['Arterial BP [Diastolic]'].min()
               curr['Arterial_BP_Systolic'] = df['Arterial BP [Systolic]'].min()
               curr['Arterial_PaCO2'] = df['Arterial PaCO2'].min()
curr['Arterial_PaO2'] = df['Arterial PaO2'].min()
               curr['Arterial_pH_Max'] = df['Arterial pH'].max()
               curr['Arterial_pH_Min'] = df['Arterial pH'].min()
               curr['Urea'] = df['BUN'].min() * 0.357
               curr['CVP_Min'] = df['CVP'].min()
curr['CVP_Max'] = df['CVP'].max()
               curr['Ca02'] = df['Ca02'].min()
               curr['Chloride'] = df['Chloride'].min()
curr['Creatinine'] = df['Creatinine'].min()
               curr['Daily_Weight'] = df['Daily Weight'].loc[df['Daily Weight'].first_valid_index()] / 2.205 if df['Daily Weight']
               curr['Fibrinogen'] = df['Fibrinogen'].max()
curr['Glucose_Max'] = df['Glucose'].max()
               curr['Glucose_Min'] = df['Glucose'].min()
               curr['Heart_Rate_Min'] = df['Heart Rate'].min()
               curr['Heart_Rate_Max'] = df['Heart Rate'].max()
               curr['Hamoglobin'] = df['Hemoglobin'].min()
curr['INR'] = df['INR'].max()
               curr['Ionized_Calcium'] = df['Ionized Calcium'].min()
               curr['LDH'] = df['LDH'].max()
curr['Magnesium'] = df['Magnesium'].min()
               curr['NBP_Mean'] = df['NBP Mean'].min()
                curr['NBP_Diastolic'] = df['NBP [Diastolic]'].min()
               curr['NBP_Systolic'] = df['NBP [Systolic]'].min()
               curr['PTT'] = df['PTT'].max()
               curr['Platelets'] = df['Platelets'].min()
```

Out[]:

```
curr['Potassium_Max'] = df['Potassium'].max()
    curr['Potassium_Min'] = df['Potassium'].min()
     curr['Resp_Rate_(Spont)_Min'] = df['Resp Rate (Spont)'].min()
     curr['Resp_Rate_(Spont)_Max'] = df['Resp Rate (Spont)'].max()
    curr['SVI'] = df['SVI'].min()
    curr['SVRI_Max'] = df['SVRI'].max()
curr['SVRI_Min'] = df['SVRI'].min()
     curr['Sa02'] = df['Sa02'].min()
    curr['Sodium_Max'] = df['Sodium'].max()
curr['Sodium_Min'] = df['Sodium'].min()
     curr['Sp02'] = df['Sp02'].min()
     curr['Sv02_Max'] = df['Sv02'].max()
    curr['Sv02_Min'] = df['Sv02'].min()
    curr['Temperature_C_Max'] = df['Temperature C'].max()
curr['Temperature_C_Min'] = df['Temperature C'].min()
     curr['Bilirubin'] = df['Total Bili'].max()
    curr['White_Blood_Cells_Max'] = df['WBC'].max()
curr['White_Blood_Cells_Min'] = df['WBC'].min()
     staticPatients.append(curr)
staticPatientsDF = pd.DataFrame([x.values() \ \textit{for} \ x \ \textit{in} \ staticPatients], \ columns=curr.keys())
staticPatientsDF = staticPatientsDF.set_index('PatientID')
targetSeries = pd.Series(data=target)
staticPatientsDF.describe()
```

In []:

:	ALT	AST	Admit_Ht	Albumin	Arterial_BP_Mean	Arterial_BP_Diastolic	Arterial_BP_Systolic	Arterial_PaCO2	Arte
count	253.000000	250.000000	663.000000	143.000000	1096.000000	1097.000000	1097.000000	1075.000000	107
mean	388.296443	652.108000	67.376471	2.613287	60.073905	43.779398	87.995442	34.494884	ç
std	1014.823729	2053.610608	5.529188	0.584451	9.878763	11.453517	21.175211	5.266344	3
min	3.000000	3.000000	48.000000	1.400000	0.000000	0.000000	0.000000	15.000000	
25%	19.000000	40.000000	64.000000	2.200000	55.000000	40.000000	82.000000	31.000000	7
50%	40.000000	79.500000	68.000000	2.600000	60.000000	45.000000	90.000000	35.000000	8
75%	220.000000	359.000000	70.000000	3.000000	65.000000	50.000000	98.000000	38.000000	10
max	8100.000000	23060.000000	160.000000	4.400000	106.000000	77.000000	170.000000	66.000000	38

8 rows × 51 columns

```
rowsWithNaN = sum(staticPatientsDF.isnull().any(axis=1))
print(f"{staticPatientsDF.shape[0]} rows in df, {rowsWithNaN} containing NaN values")
1126 rows in df, 1124 containing NaN values
```

Filling the missing values from aggregated data

```
In [ ]:
         fillNaModeDF = staticPatientsDF.copy()
         for col in fillNaModeDF:
             fillNaModeDF[col] = fillNaModeDF[col].fillna(fillNaModeDF[col].mean())
         fillNaModeDF['Admit_Ht'][fillNaModeDF["Admit_Ht"] > 100] = fillNaModeDF["Admit_Ht"].mean()
         display(fillNaModeDF)
```

		ALT	AST	Admit_Ht	Albumin	Arterial_BP_Mean	Arterial_BP_Diastolic	Arterial_BP_Systolic	Arterial_PaCO2	Arterial_Pa(
Patie	entID									
100	0059	388.296443	652.108	66.000000	2.613287	60.0	43.0	106.0	39.0	8:
100	0298	388.296443	652.108	68.000000	2.613287	62.0	48.0	81.0	33.0	7
100	0321	388.296443	652.108	59.000000	2.613287	59.0	41.0	86.0	32.0	127
100	0336	304.000000	780.000	72.000000	2.100000	63.0	53.0	80.0	26.0	2!
100	0392	388.296443	652.108	69.000000	2.613287	56.0	45.0	80.0	43.0	61

	ALT	AST	Admit_Ht	Albumin	Arterial_BP_Mean	Arterial_BP_Diastolic	Arterial_BP_Systolic	Arterial_PaCO2	Arterial_Pa
PatientID									
199876	388.296443	652.108	67.376471	2.613287	57.0	37.0	93.0	38.0	78
199877	388.296443	652.108	67.376471	2.613287	63.0	51.0	134.0	38.0	127
199963	388.296443	652.108	72.000000	2.613287	56.0	42.0	82.0	30.0	10!
199993	388.296443	652.108	67.376471	2.613287	63.0	52.0	81.0	38.0	8!
199998	388.296443	652.108	69.500000	2.613287	58.0	40.0	100.0	27.0	10!
1126 rows	× 51 colum	ns							
4									•

Binning with K-Bins

'Bilirubin': [5.8, 12.2],

```
In [ ]:
           import Categorization
           reload(Categorization)
           cat = Categorization.Categorizer(fillNaModeDF)
           cat.kBins(bins = 3)
           boundaries = cat.getBoundaries()
           display(boundaries['kBins'])
           cat.display(num=6)
          {'ALT': [2791.0, 6870.0],
           'AST': [7989.0, 23060.0],
           'Admit_Ht': [58.0, 68.0],
'Albumin': [2.5, 3.5],
           'Arterial_BP_Mean': [36.0, 71.0],
           'Arterial_BP_Diastolic': [26.0, 52.0],
           'Arterial_BP_Systolic': [57.0, 114.0],
           'Arterial_PaCO2': [32.0, 49.0], 'Arterial_PaO2': [135.0, 281.0],
           'Arterial_pH_Max': [187.0],
           'Arterial_pH_Min': [7.11, 7.3],
           'Urea': [14.994, 29.988],
           'CVP_Min': [8.0, 15.0],
           'CVP_Max': [18.0, 34.0],
           'CaO2': [7.688059807, 14.1566],
           'Chloride': [99.0, 111.0],
           'Creatinine': [3.9, 8.3],
           'Daily_Weight': [40.27211022675737, 67.57369614512471],
           'Fibrinogen': [358.0, 645.0],
'Glucose_Max': [261.0, 467.0],
'Glucose_Min': [148.0, 270.0],
           'Heart_Rate_Min': [46.0, 92.0],
'Heart_Rate_Max': [108.0, 166.0],
           'Hamoglobin': [6.0, 11.5],
           'INR': [27.0],
           'Ionized_Calcium': [0.76, 1.03],
           'LDH': [4412.0, 9830.0],
           'Magnesium': [2.1, 3.3],
           'NBP_Mean': [37.66669846, 75.66670227],
           'NBP_Diastolic': [33.0, 66.0], 'NBP_Systolic': [78.0, 158.0],
           'PTT': [64.4, 107.9],
           'Platelets': [216.0, 443.0],
           'Potassium_Max': [61259.0],
           'Potassium_Min': [3.3, 4.3],
           'Resp_Rate_(Spont)_Min': [9.0, 20.0],
           'Resp_Rate_(Spont)_Max': [13.0, 26.0],
           'SVI': [27.12770081, 55.24860001],
           'SVRI_Max': [2589.0, 4339.620117],
           'SVRI_Min': [1052.630005, 2105.26001],
           'Sa02': [62.0, 80.0],
           'Sodium_Max': [139.7587601078167, 153.0],
           'Sodium_Min': [120.0],
           'Sp02': [42.0, 67.0],
           'Sv02_Max': [64.0, 89.0],
           'Sv02_Min': [63.0, 80.0],
           'Temperature_C_Max': [33.70000076],
'Temperature_C_Min': [29.60000038],
```

'White_Blood_Cells_Max': [17.7, 33.2],
'White_Blood_Cells_Min': [17.4, 38.6]} kBins ALT, score: 0.95 800 600 Frequency 400 200 0 1000 2000 8000 3000 4000 5000 6000 7000 kBins AST, score: 0.97 800 600 Frequency 400 200 0 5000 10000 15000 20000 Value kBins Admit_Ht, score: 0.49 400 Frequency 200 100 0 50 70 75 55 kBins Albumin, score: 0.91 1000 800 600 Frequency 400

200

0

1.5

2.0

2.5

3.0

Value

3.5

4.0

4.5

Labelling high to low

```
In [ ]:
         categories = {0: 'very_low', 1: 'low', 2: 'medium', 3: 'high', 4: 'very_high'}
         cat.map_types(mapping=categories)
         mapped = cat.mappedTypes['kBins']
         mapped
```

Out[]:		ALT_high	ALT_low	ALT_medium	AST_high	AST_low	AST_medium	Admit_Ht_high	Admit_Ht_low	Admit_Ht_medium	Albumin_high
	0	0	1	0	0	1	0	0	0	1	0
	1	0	1	0	0	1	0	1	0	0	0
	2	0	1	0	0	1	0	0	0	1	0
	3	0	1	0	0	1	0	1	0	0	0
	4	0	1	0	0	1	0	1	0	0	0
	•••			•••							
	1121	0	1	0	0	1	0	0	0	1	0
	1122	0	1	0	0	1	0	0	0	1	0
	1123	0	1	0	0	1	0	1	0	0	0
	1124	0	1	0	0	1	0	0	0	1	0
	1125	0	1	0	0	1	0	1	0	0	0

1126 rows × 141 columns

```
In [ ]:
         targetSeries.value_counts()
             1077
Out[]:
        dtype: int64
In [ ]:
         mapped['Mortality14Days'] = targetSeries.values
         mapped.to_csv("./categorisedData/expertLabelledData.csv")
```