Метод вычисления инвариантных множеств линейных систем большой размерности при неопределённых возмущениях¹

А. Н. Дарьин, А. Б. Куржанский

1 Введение

Разработка эффективных методов вычисления синтезирующих управлений в линейных системах большой размерности представляет серьёзную задачу в области соответствующей математической теории и её приложений. Это тем более справедливо для систем с геометрическими ограничениями на управления и неопределённые возмущения. Решение задачи синтеза целевых управлений в указанных условиях опирается, как известно, на построение слабо инвариантных множеств (попятных множеств достижимости), порождённых разрешающими уравнениями рассматриваемого процесса. В данной статье приводятся методы построения подобных уравнений и отвечающих им инвариантных множеств с обсуждением особенности вычислений для систем большой размерности. Предлагаемые подходы основаны на применении разработанных ранее теории и методах эллипсоидальных аппроксимаций многозначных функций.

¹Работа выполнена в рамках ФЦП «Научные и научно-педагогические кадры инновационной России на 2009–2013 годы» (контракт № 16.740.11.0426 от 26 ноября 2010 года). Первый автор поддержан грантом президента РФ для поддержки молодых учёных-кандидатов наук (грант МК-1111.2011.1).

2 Рассматриваемая задача. Эллипсоидальные аппроксимации

Ниже обсуждается линейная система с неопределённостью вида

$$\dot{x}(t) = A(t)x(t) + B(t)u(t) + C(t)v(t), \quad t \in [t_0, t_1]. \tag{1}$$

Здесь $x(t) \in \mathbb{R}^n$ — состояние системы, с управлением $u(t) \in \mathbb{R}^{n_u}$ и неопределённым возмущением $v(t) \in \mathbb{R}^{n_v}$ принадлежащими известным множествам $\mathscr{P}(t)$ и $\mathscr{Q}(t)$ соответственно.

Задача целевого управления состоит в том, чтобы привести состояние x(t) в фиксированный момент времени t_1 в заданное целевое множество \mathcal{M} . Решение этой задачи будем искать в классе синтезируемых стратегий $\mathcal{U}(t,x)$, обеспечивающих существование решений системы (1) при $u=\mathcal{U}(t,x)$.

Напомним, что эллипсоидом $\mathscr{E}(x,X) \subseteq \mathbb{R}^k$ с центром $x \in \mathbb{R}^k$ и неотрицательно определённой матрицей конфигурации $X \in \mathbb{R}^{k \times k}$, называется выпуклое замкнутое множество, опорная функция [1, 2] которого равна

$$\rho(\ell \mid \mathscr{E}(x,X)) = \langle \ell, x \rangle + \langle \ell, X \ell \rangle^{\frac{1}{2}}.$$

Далее предполагаем, что множества \mathcal{M} , $\mathcal{P}(t)$ и $\mathcal{Q}(t)$ являются эллипсоидами в соответствующих пространствах:

$$\mathcal{M} = \mathcal{E}(m, M), \quad \mathcal{P}(t) = \mathcal{E}(p(t), P(t)), \quad \mathcal{Q}(t) = \mathcal{E}(q(t), Q(t)),$$

причём функции p(t), P(t), q(t), Q(t) соответствующих размерностей непрерывно зависят от времени.

Под множееством разрешимости $\mathscr{W}[t]$ указанной выше задачи будем понимать совокупность всех таких начальных позиций $\{t_0, x_0\}$, для

каждой из которых существует управление² $\mathcal{U}(t,x)$, переводящее это начальное состояние в терминальное $\{t_1,x(t_1)\},x(t_1)\in\mathcal{E}(m,M)$ при любом допустимом возмущении $v(t)\in\mathcal{Q}(t)$.

Данное множество $\mathscr{W}[t]$ является слабо инвариантным [3] относительно системы (1) и целевого множества $\mathscr{E}(m,M)$. Как известно, знание трубки $\mathscr{W}[\tau]$, $\tau \in [t,t_1]$, позволяет вычислить соответствующее управление $\mathscr{U}(t,x)$ [4, 5]. Конкретные вычисления будем проводить, аппроксимируя $\mathscr{W}[\tau]$ изнутри при помощи совокупности параметризованных эллипсоидов. Далее рассматривается задача вычисления внутренней эллипсоидальной аппроксимации [6] множества разрешимости $\mathscr{W}[t]$. Известны [7] следующие уравнения подобной аппроксимации $\mathscr{W}^-[t] = \mathscr{E}(w(t), W(t))$

$$\dot{w}(t) = A(t)w(t) + B(t)p(t) + C(t)q(t), \quad w(t_1) = m; \tag{2}$$

$$\dot{W}(t) = A(t)W(t) + W(t)A^{T}(t) - W^{\frac{1}{2}}(t)T(t)(B(t)P(t)B^{T}(t))^{\frac{1}{2}} - (B(t)P(t)B^{T}(t))^{\frac{1}{2}}T^{T}(t)W^{\frac{1}{2}}(t) + \pi^{-1}(t)C(t)Q(t)C(t), \quad W(t_{1}) = M. \quad (3)$$

Здесь T(t) — произвольная ортогональная матрица, обеспечивающая коллинеарность векторов $T(t)(B(t)P(t)B^T(t))^{\frac{1}{2}}s(t)$ и $W^{\frac{1}{2}}(t)s(t)$, функция s(t) — решение сопряжённой системы

$$\dot{s}(t) = -A^{T}(t)s(t), \quad s(t_1) = \ell.$$

При отсутствии помехи в (3) опускаются два слагаемых, содержащих $\pi(t)$, иначе $\pi(t) = \langle s(t), C(t)Q(t)C^T(t)s(t)\rangle^{\frac{1}{2}}/\langle s(t), W(t)s(t)\rangle^{\frac{1}{2}}$.

 $^{^{2}}$ В рассматриваемом линейном случае существует универсальное управление, не зависящее от $\{t_0, x_0\}$.

Эллипсоидальная аппроксимация (2)–(3) обладает свойством «тугости», т.е. она обеспечивает касание оценки и точного множества в направлении сопряжённого вектора s(t):

$$\rho\left(s(t)\mid\mathcal{W}^{-}[t]\right) = \rho\left(s(t)\mid\mathcal{W}[t]\right).$$

Последнее условие выполняется для так называемых «хороших направлений» s(t).

В ходе применения описанной эллипсоидальной оценки к задаче синтеза управлений для многозвенной колебательной системы высокой размерности [8] возникают следующие трудности.

Во-первых, эллипсоиды-аппроксимации близки к вырожденным. В разделе 3 настоящей статьи предлагается способ комбинирования нескольких эллипсоидальных оценок, позволяющий преодолеть их вырожденность.

Во-вторых, с ростом размерности существенно увеличивается вычислительная нагрузка. Поэтому необходимо максимально эффективно производить операции, входящие в матричное дифференциальное уравнение (3). Новому эффективному способу нахождения матрицы T(t) посвящён раздел 4.

В-третьих, требования по скорости вычисления и по необходимой для этого компьютерной памяти приводят к необходимости вычисления эллипсоидальных оценок с помощью *параллельных алгоритмов*. Особенности компьютерной реализации полученных формул описаны в разделе 5.

В статье использованы следующие обозначения. $\mathscr{B}_r(a)$ — шар радиуса r с центром в точке a в соответствующем нормированном пространстве. $h_+(\mathscr{X},\mathscr{Y}) = \inf \{ \varepsilon \geq 0 \mid \mathscr{X} \subseteq \mathscr{Y} + \mathscr{B}_{\varepsilon}(0) \} =$

 $\sup \{ \rho(\ell \mid \mathscr{X}) - \rho(\ell \mid \mathscr{Y}) \mid \|\ell\| \le 1 \}$ — хаусдорфово полурасстояние между замкнутыми множествами \mathscr{X} и \mathscr{Y} . $G(t,\tau)$ — фундаментальная матрица системы (1) (решение задачи Коши $\partial G/\partial t = A(t)G(t,\tau), \ G(\tau,\tau) = I$). $\rho(\ell \mid X) = \sup_{x \in X} \langle \ell, x \rangle$ — опорная функция ко множеству X в направлении ℓ .

3 Регуляризация аппроксимаций

Вычислительные эксперименты с эллипсоидальной оценкой трубки достижимости для многозвенной колебательной системы [8] указывают на следующее.

- 1. Погрешность численного метода решения задачи Коши (3) может привести (и на практике приводит) к выходу матрицы W(t) из конуса неотрицательно определённых матриц.
- 2. При наличии в системе помехи, действующих вдоль направлений вырождения эллипсоидальной аппроксимации множества разрешимости, последняя быстро вырождается окончательно и становится пустым множеством.

3.1 Регуляризация суммы вырожденных эллипсоидов

Покажем, каким образом можно скомбинировать несколько вырожденных аппроксимаций для получения эллипсоида большей размерности. Этот подход основан на известной формуле внутренней эллипсоидальной аппроксимации выпуклой оболочки объединения эллипсоидов [6].

Лемма 1. Пусть $\mathscr{E}_i^- = \mathscr{E}(q,Q_i^-), \ i=\overline{1,m}$ — внутренние эллипсоидальные аппроксимации выпуклого множества \mathscr{X} . Тогда эллипсоид

$$\mathscr{E}_{\alpha}^{-} = \mathscr{E}(q, Q_{\alpha}^{-}), \quad Q_{\alpha}^{-} = \sum_{i=1}^{m} \alpha_{i} Q_{i}^{-}, \quad \alpha_{i} \geqslant 0, \quad \sum_{i=1}^{m} \alpha_{i} = 1, \tag{4}$$

также будет внутренней аппроксимацией множества \mathscr{X} .

Теорема 2. Пусть q=0 и размерность \mathscr{L} — линейной оболочки объединения эллипсоидов \mathscr{E}_i^- равна r. Тогда при $\alpha_i>0$, $i=\overline{1,m}$, имеет место равенство im $Q_{\alpha}^-=\mathscr{L}$, и в частности матрица Q_{α}^- имеет ранг r.

3.2 Регуляризация аппроксимации трубки разрешимости

Выберем в (4) следующие значения параметров α : $\alpha_1 = 1 - \sigma \gamma + \sigma \gamma \beta_i$, $\alpha_i = \sigma \gamma \beta_i$, $i = \overline{2,m}$, где $\beta_i \geqslant 0$, $\sum_{i=1}^m \beta_i = 1$, $\gamma \geqslant 0$. Здесь σ — достаточно малое положительное число, так что $\alpha_1 > 0$. Тогда

$$\sigma^{-1}(Q_{\alpha}^{-} - Q_{1}^{-}) = \gamma \left(\sum_{i=1}^{m} \beta_{i} Q_{i}^{-} - Q_{1}^{-} \right).$$

Используем этот результат для записи *m* перемешиваемых эллипсоидальных аппроксимаций трубки разрешимости:

$$\dot{W}_{i}(t) = A(t)W_{i}(t) + W_{i}(t)A^{T}(t) - W_{i}^{\frac{1}{2}}(t)T_{i}(t)(B(t)P(t)B^{T}(t))^{\frac{1}{2}} - (B(t)P(t)B^{T}(t))^{\frac{1}{2}}T_{i}^{T}(t)W_{i}^{\frac{1}{2}}(t) + \pi_{i}^{-1}(t)C(t)Q(t)C(t) + \gamma \left(\sum_{j=1}^{m} \beta_{ij}W_{j}(t) - W_{i}(t)\right), \quad W_{i}(t_{1}) = M;$$
(5)

Здесь $\beta_{ij} \geqslant 0$, $\sum_{j=1}^{m} \beta_{ij} = 1$, $i = \overline{1,m}$; $\gamma \geqslant 0$; $T_i(t)$ — произвольные ортогональные матрица, обеспечивающие сонаправленность векторов

 $T_i(t)(B(t)P(t)B^T(t))^{\frac{1}{2}}s_i(t)$ и $W_i^{\frac{1}{2}}(t)s_i(t)$; функции $s_i(t)$ — решения сопряжённой системы при различных конечных условиях:

$$\dot{s}_i(t) = -A^T(t)s_i(t), \quad s_i(t_1) = \ell_i.$$

и при наличии помехи $\pi_i(t) = \langle s_i(t), C(t)Q(t)C^T(t)s_i(t)\rangle^{\frac{1}{2}}/\langle s_i(t), W_i(t)s_i(t)\rangle^{\frac{1}{2}}.$

Теорема 3. Пусть решения $W_i(t)$ уравнения (5) продолжаемы на отрезок $[t_0, t_1]$ и на всём отрезке являются положительно определёнными матрицами. Тогда многозначная функция

$$\mathcal{W}^{-}[t] = \operatorname{conv} \bigcup_{i=1}^{m} \mathcal{W}_{i}^{-}[t] = \operatorname{conv} \bigcup_{i=1}^{m} \mathcal{E}(w(t), W_{i}(t))$$

удовлетворяет при $t \in [t_0, t_1]$ эволюционному уравнению

$$\lim_{\sigma \to 0+} \sigma^{-1} h_+((I + \sigma A(t)) \mathcal{W}^-[t - \sigma] + \sigma C(t) \mathcal{Q}(t), \mathcal{W}^-[t] - \sigma B(t) \mathcal{P}(t)) = 0$$
 с начальным условием $\mathcal{W}^-[t_1] \subseteq \mathcal{M}$.

Следствие 1. В условиях теоремы многозначная функция $\mathcal{W}^-[t]$ является внутренней оценкой множества разрешимости $\mathcal{W}[t]$. Функции $\mathcal{W}_i^-[t]$ являются внутренними эллипсоидальными оценками $\mathcal{W}[t]$.

Следствие 2. В условиях теоремы многозначная функция $W^-[t]$ является слабо инвариантной по включению относительно системы (1), а функция расстояния $V^-(t,x) = d(G(t_1,t)x,G(t_1,t)W^-[t])$ является верхним решением уравнения Гамильтона-Якоби-Беллмана-Айзекса (см. [9]), т.е. удовлетворяет дифференциальному неравенству

$$\min_{u \in \mathscr{P}(t)} \max_{v \in \mathscr{Q}(t)} dV^{-}/dt = \min_{u \in \mathscr{P}(t)} \max_{v \in \mathscr{Q}(t)} \left\{ V_{t}^{-} + \langle V_{x}^{-}, A(t)x + B(t)u + C(t)v \rangle \right\} \leq 0 \quad (6)$$
с начальным условием $V^{-}(t_{1}, x) = d(x, \mathscr{M})$.

4 Эффективное вычисление матрицы поворота

В уравнение эллипсоидальной аппроксимации (3) входит операция вычисления ортогональной матрицы $T \in \mathbb{R}^{n \times n}$, такой что $Tv_2 \uparrow \uparrow v_1$ для некоторых ненулевых векторов $v_1, v_2 \in \mathbb{R}^n$. Введём обозначение $T = v_1 \circlearrowleft v_2$.

Следует отметить, что при $n \ge 2$ матрица $v_1 \circlearrowright v_2$ определена неоднозначно (при n = 2 таких матриц не меньше двух, а при $n \ge 3$ бесконечно много). Операцию « \circlearrowright » необходимо определить таким образом, чтобы она обладала достаточной гладкостью (по аргументам v_1, v_2) для применения к уравнению (3) схем численного интегрирования высоких порядков сходимости.

Операция $v_1 v_2$ может быть вычислена, например, через сингулярные разложения векторов v_1 и v_2 с последующим перемножением матриц преобразований [10]. Сложность этой вычислительной процедуры имеет порядок $O(n^3)$, непрерывная зависимость $v_1 v_2$ от v_1 , v_2 (и тем более гладкость) не гарантируется.

Далее предлагаются явные формулы для вычисления $v_1 \bigcirc v_2$ со сложностью $O(n^2)$ и обладающие необходимой гладкостью.

Теорема 4. Пусть $v_1, v_2 \in \mathbb{R}^n$ — ненулевые векторы. Матрица $T \in \mathbb{R}^{n \times n}$, вычисленная по формулам

$$T = I + Q_1(S - I)Q_1^T, (7)$$

$$S = \begin{pmatrix} c & s \\ -s & c \end{pmatrix}, \quad c = \langle \hat{v}_1, \hat{v}_2 \rangle, \quad s = \sqrt{1 - c^2}, \quad \hat{v}_i = v_i / \|v_i\|, \tag{8}$$

$$Q_1 = \begin{bmatrix} q_1 & q_2 \end{bmatrix} \in \mathbb{R}^{n \times 2}, \quad q_1 = \hat{v}_1, \quad q_2 = \begin{cases} s^{-1}(\hat{v}_2 - c\hat{v}_1), & s \neq 0, \\ 0, & s = 0, \end{cases}$$
(9)

является ортогональной и обладает свойством $Tv_2 \uparrow \uparrow v_1$.

Замечание 1. Отметим, что сложность вычислений в формулах (7)–(9) имеет порядок $O(n^2)$. Более того, умножение на матрицу T может быть также выполнено за $O(n^2)$ операций.

Замечание 2. Непосредственно проверяется, что зависимость $T = T(v_1, v_2)$ является сколь угодно гладкой при ненулевых векторах v_1, v_2 , за исключением конуса $v_1 \uparrow v_2$.

5 Об использовании параллельных вычислений

5.1 Вычисление эллипсоидальных аппроксимаций

Для численного интегрирования дифференциального уравнения (5) с использованием μ параллельных процессов предлагается разбить множество индексов $I = \{1, \ldots, m\}$ на μ непересекающихся подмножеств I_k , так что $I = I_1 \cup \cdots \cup I_{\mu}$. Процесс с номером k будет вычислять и хранить значения матриц W_i , $i \in I_k$.

Непосредственное интегрирование уравнения (5) привело бы к существенному объёму обмена данными между процессами, вследствие необходимости вычислять слагаемое $\sum_{i=1}^{m} \beta_{ij} W_j$. Для того, чтобы этого избежать, предлагается скомбинировать (5) с формулой (4). При таком подходе каждый процесс решает свою систему матричных дифференциальных уравнений (5), в которой упомянутое слагаемое заменено на $\sum_{i \in I_k} \beta_{ij} W_j$, где $\sum_{j \in I_k} \beta_{ij} = 1$. Перемешивание аппроксимаций, принадлежащих разным процессам, производится через заданные промежутки

времени по формуле (4) при $\alpha_i = \frac{1}{m}$, что позволяет существенно уменьшить количество обменов данными по сети.

5.2 Вычисление управлений

Исходя из дифференциального неравенства (6), управление, гарантирующее приведение системы в целевое множество \mathcal{M} , может быть выбрано как максимизатор в (6):

$$\mathscr{U}^*(t,x) = \begin{cases} -\frac{P(t)B^T(t)p}{(B^T(t)p,P(t)B^T(t)p)^{\frac{1}{2}}}, & B^T(t)p \neq 0; \\ \mathscr{P}(t), & B^T(t)p = 0; \end{cases}$$

где вектор $p = p(t,x) = \partial V^-/\partial x$ имеет смысл кратчайшего пути от точки x до множества $\mathcal{W}^-[t]$. Множество $\mathcal{W}^-[t]$ является выпуклой оболочкой набора множеств, поэтому нахождение вектора p является вычислительно трудной задачей.

Заменим функцию $V^-(t,x)$ на

$$\hat{V}^-(t,x) = d(G(t_1,t)x,G(t_1,t)\hat{\mathcal{W}}^-[t]), \quad \hat{\mathcal{W}}^-[t] = \bigcup_{i=1}^m \mathcal{W}_i^-[t] = \bigcup_{i=1}^m \mathcal{E}(w(t),W_i(t)),$$
 и далее

$$\hat{V}^{-}(t,x) = \min_{i=1,\dots,m} \max_{\|p\| \le 1} \left\{ \langle p, G(t_1,t)x \rangle - \rho \left(G^{T}(t_1,t)p \mid \mathcal{W}_i^{-}[t] \right) \right\}.$$
 (10)

Отсюда находим, что вектор $\hat{p}(t,x) = \partial V^-/\partial x$ равен $\hat{p} = \hat{p}_{i_0}$, где i_0 — номер $i \in \overline{1,m}$, на котором достигается минимум в (10), а \hat{p}_i — максимизатор в (10) при фиксированном i.

Таким образом, для синтеза управлений каждый из процессов локально находит ближайший к текущему положению эллипсоид, после чего определяется процесс, содержащий глобально ближайший к текущему положению эллипсоид. Этот процесс вычисляет управление и сообщает его всем остальным процессам. В заключение отметим, что описанный в статье метод вычисления инвариантных множеств и синтеза управлений был реализован в виде параллельной компьютерной программы. В серии тестовых расчётов были решены задачи управления при числе звеньев N до 100 (размерность n=200) для системы со скалярным управлением, и до 250 (размерность n=500) для системы с управлением размерности N.

А. Н. Дарьин

«В печать»

«В печать» А. Б. Куржанский

Список литературы

- [1] Рокафеллар Р. Выпуклый анализ. М.: Мир, 1973.
- [2] Половинкин Е. С., Балашов М. В. Элементы выпуклого и сильно выпуклого анализа. М.: Физматлит, 2004.
- [3] Krasovskii N. N., Subbotin A. I. Game-Theoretical Control Problems. SSSM. N.Y.: Springer, 1988.
- [4] Курэксанский А. Б., Никонов О. И. Эволюционные уравнения для пучков траекторий синтезированных систем управления // Доклады РАН. 1993. Т. 333. № 4. С. 578–581.
- [5] *Курэксанский А. Б.* Альтернированный интеграл Понтрягина в теории синтеза управлений // Труды МИАН. 1999. Т. 224. С. 234–248.
- [6] Kurzhanski A. B., Vályi I. Ellipsoidal Calculus for Estimation and Control. SCFA. Boston: Birkhäuser, 1997.
- [7] Kurzhanski A. B., Varaiya P. Ellipsoidal techniques for reachability analysis. Part II: Internal approximations. Box-valued constraints // Optimization methods and software. 2002. V. 17. N. 2. P. 207–237.
- [8] Востриков И. В., Дарьин А. Н., Куржанский А. Б. Успокоение многозвенной колебательной системы в условиях неопределённых возмущений // Дифференциальные уравнения. 2006. Т. 42. № 11. С. 1452— 1463.
- [9] Basar T., Olsder J. Dynamic Noncooperative Game Theory.N.Y.: Academic Press, 1982.

 $[10] \begin{tabular}{ll} Kurzhanskiy & A. & A., & Varaiya & P. & Ellipsoidal & toolbox. \\ http://code.google.com/p/ellipsoids/, 2005. \end{tabular}$

Факультет вычислительной математики и кибернетики Московского государственного университета имени М. В. Ломоносова.

Александр Николаевич Дарьин

119991 Москва, Воробьёвы горы, 1, ф-т ВМК МГУ тел. +7 (495) 939-51-35 (раб.), +7 (916) 633-12-59 (моб.). daryin@cs.msu.su, a.daryin@gmail.com (автор, отвечающий за переписку)

Александр Борисович Куржанский

119991 Москва, Воробьёвы горы, 1, ф-т ВМК МГУ тел. +7 (495) 932-88-50 (раб., тел./факс), +7 (495) 938-13-41 (дом.). kurzhans@mail.ru, kurzhans@cs.msu.su

Реферат

А. Н. Дарьин, А. Б. Куржанский. Метод вычисления инвариантных множеств линейных систем большой размерности при неопределённых возмущениях.

A. N. Daryin, A. B. Kurzhanski. A method for calculating the invariant sets of high-dimension linear systems under uncertainty.

Разработка эффективных методов вычисления синтезирующих управлений в линейных системах большой размерности представляет серьёзную задачу в области соответствующей математической теории и её приложений. Это тем более справедливо для систем с геометрическими ограничениями на управления и неопределённые возмущения. Решение задачи синтеза целевых управлений в указанных условиях опирается, как известно, на построение слабо инвариантных множеств (попятных множеств достижимости), порождённых разрешающими уравнениями рассматриваемого процесса. В данной статье приводятся методы построения подобных уравнений и отвечающих им инвариантных множеств с обсуждением особенности вычислений для систем большой размерности. Предлагаемые подходы основаны на применении разработанных ранее теории и методах эллипсоидальных аппроксимаций многозначных функций.