

Estadística con Excel

Héctor Manuel Garduño Castañeda

Noviembre, 2021

Contenido

ANOVA de una vía

Uso del ANOVA de una vía

Se trata del Análisis de la varianza (de ahí su nombre). En particular, para ANOVA de una vía tenemos:

- Se utiliza para comparar la varianza entre diferentes muestras elegidas de una misma población.
- La idea es comparar dos o más muestras basados en la diferencia de las varianzas y se trata de una prueba de hipótesis sobre las medias poblacionales.
- Puede ser usado cuando tenemos al menos dos variables, donde una es categórica y la otra es continua. A la categórica la llamamos variable de respuesta.

Condiciones para ser aplicable

Supongamos que tenemos la variable independiente X y la variable de respuesta Y. Para poder aplicar correctamente el ANOVA de una vía se debe cumplir:

- Los grupos son independientes.
- Y debe ser aproximadamente normal en cada grupo (siendo menos estricta esta condición cuanto mayor sea el tamaño de cada grupo).
- ▶ Todos los grupos tienen la misma varianza (esta condición es más importante cuanto menor es el tamaño de los grupos).
- ▶ No tener datos atípicos.

Hipótesis

Supongamos que la muestra se divide, según la variable independiente, en los grupos $G_1, G_2, ..., G_k$. Sea μ_m la media poblacional del grupo m. Entonces la prueba de hipótesis se establece como:

$$\left\{ \begin{array}{ll} H_0: & \mu_1=\mu_2=\ldots=\mu_k \\ H_a: & \text{hay al menos dos medias diferentes} \end{array} \right.$$

Por lo tanto, en caso de rechazar H_0 , se tiene que proceder a lo que se conoce como pruebas post hoc, siendo la prueba por parejas la más conocida. Ver https://github.com/scidatmath2020/Inferencia-Estadistica/blob/master/C08.%20ANOVA.ipynb

Proceso de investigación

Los pasos para la aplicación del ANOVA de una vía son:

- 1. Seleccionar el nivel de significación. Este es denotado por α . Generalmente $\alpha = 0.01$, $\alpha = 0.05$ o $\alpha = 0.10$.
- 2. Encontrar el valor crítico. Este es denotado por f. Antiguamente se usaba una tabla de F. Se seleccionaba la columna basado en α y la fila basado en los **grados de libertad**.
- 3. Calcular un parámetro. Se refiere a calcular el número F con los datos de la muestra como la media de la suma de los cuadrados.
- 4. Comparar y decidir. Si F < f, aceptamos H0. En caso contrario, rechazamos la hipótesis nula.

Proceso en Excel

