Fachbereich Mathematik

Prof. Dr. Thomas Streicher

Dr. Sven Herrmann

Dipl.-Math. Susanne Pape

Wintersemester 2009/2010 12./13. Januar 2010

11. Übungsblatt zur Vorlesung "Mathematik I für Informatik"

Gruppenübung

Aufgabe G1 (Integration)

- (i) Berechnen Sie die folgenden Integrale:
 - (a) $\int_0^{\frac{\pi}{4}} \frac{1}{1+x^2} dx$
 - (b) $\int_{1}^{2} (3-2x)^{9} dx$.
- (ii) Geben Sie eine Stammfunktion der Funktion $f:]0, \infty[\to \mathbb{R}$ an.

$$f(x) = 6x^2 + 3x - 5\frac{1}{x} - \frac{1}{2}\sqrt{x}$$
.

Aufgabe G2 (Integration)

(i) Berechnen Sie das folgende uneigentliche Integral:

$$\int_0^\infty e^{-2x}\cos(x)\,dx\,.$$

(ii) Die Funktion f sei gegeben durch

$$f(x) = \frac{x}{(x-1)(x-2)^2}.$$

Bestimmen Sie Koeffizienten A, B, $C \in \mathbb{R}$ so, dass gilt

$$f(x) = \frac{A}{(x-1)} + \frac{B}{(x-2)} + \frac{C}{(x-2)^2}.$$
 (*)

Benutzen Sie nun die Darstellung aus (*), um das Integral

$$\int_{-1}^{0} f(x)dx$$

zu berechnen.

Anmerkung: Die Methode, welche zur Darstellung (*) führt, heißt Partialbruchzerlegung.

Aufgabe G3 (Uneigentliche Integrale)

Zeigen Sie, dass das uneigentliche Integral

$$\int_{-\infty}^{\infty} e^{-x^2} \, dx$$

existiert.

Aufgabe G4 (Integration)

Überprüfen Sie die Existenz der folgenden uneigentlichen Integrale und berechnen Sie diese gegebenenfalls.

(i)
$$\int_0^2 \frac{1}{x^2} dx$$
 (ii)
$$\int_0^\infty x e^{-\alpha x} dx, \ \alpha > 0$$

Hausübung

(In der nächsten Übung abzugeben.)

Aufgabe H1 (Riemann-Summen)

(3 Punkte)

Die Funktion $f(x) = \exp(x)$ sei gegeben. Berechnen Sie für die Zerlegung

$$Z = \{j/n, j \in \{0, ..., n\}\}$$

des Intervalls [0,1] die Untersumme $\underline{S}(Z)$ und die Obersumme $\overline{S}(Z)$. Welche Grenzwerte haben die Summen für $n \to \infty$? Was folgt für das Integral $\int_0^1 \exp(x) dx$?

Hinweise: $\lim_{n\to\infty} n(e^{\frac{1}{n}}-1)=1$. Siehe außerdem Übung 7, G2 (endl. geometrische Reihe).

Aufgabe H2 (Integrale)

(1+1+1+1 Punkte)

Bestimmen Sie die folgenden Integrale:

(i)
$$\int_0^1 \frac{6x^2 + 4}{x^3 + 2x + 1} dx$$
, (ii) $\int_0^{\pi} e^{\sin x} \cos x dx$, (iii) $\int_{-1}^1 \cos^2(x) dx$, (iv) $\int_2^{e^2} \frac{dx}{x \log x}$.

Hinweis: Das Integral (iv) lässt sich am einfachsten durch raten bestimmen.

Aufgabe H3 (Partialbruchzerlegung)

 $(1\frac{1}{2} + 1\frac{1}{2})$ Punkte)

Bestimmen Sie die folgenden Integrale mit Hilfe einer Partialbruchzerlegung:

(i)
$$\int_{-1}^{1} \frac{2x+1}{x^2+x-6} \, dx,$$

(ii)
$$\int_0^1 \frac{x}{(x+1)^3} dx$$
.