

مقدمة

الدوائر الحسابية:

الدارات الحسابية المنطقية ، هي عبارة عن دارات خاصة تتكون من مجموعة من البوابات المنطقية التي تسمح بالقيام بالعمليات التالية: (الجمع ، الطرح ،المقارنة) من بين الوسائل المستعملة لإجراء عمليات حسابية في أسرع وقت وبدقة هي: الآلة الحاسية .

النصف الجامع والجامع الكامل: النصف الجامع Half Adder:

هو عبارة عن دارة منطقية ذات مدخلين (a,b) ومخرجين (r,s) تقوم هذه الدارة بعملية الجمع بين بيتين(2 bits) دون الأخذ بعين الاعتبار الباقي الناتج عن البيتين السابقين.

جدول کارنو:

ab	0	1
0	0	0
1	0	1

r= a.b

ab	0	1
0	0	1
1	1	0

جدول الحقيقة:

العفارج		المداخيل	
r	S	Α	В
0	0	0	0
0	1	0	1
0	1	1	0
1	0	1	1

رسم الدالة المنطقية:

يمكن تحقيق نصف الجامع ببوابة AND و بوابة XOR

: Full Adder الكامل Full Adder

نسمي الجامع الكامل بالدارة المنطقية التي تقوم بعملية الجمع بين بيتين (2bits) مع أخذ بعين الاعتبار الباقي الناتج عن البيتين السابقين

100011110 r-1 1010011110 a 1100111011 b

> 10 1110110 01 S 0100 011 110 r

جدول الحقيقة

ارج	المذ	المداخل		N
r	S	r-1	В	Α
0	0	0	0	0
0	1	0	0	1
0	1	0	1	0
1	0	0	1	1
0	1	1	0	0
1	0	1	0	1 ,
1	0	1	1	0
1	1	1	1	1

Check Board Configuration النتيجة XOR بين جميع المداخل

ba r-1	00	01	11	10
0	0	1	0	1
1	1	0	1	0

الدارة المنطقية:

الطارح النصفي Half subtractor

الطارح عبارة عن دارة منطقية تقوم بعملية الطرح بين بيتين 2bit (a0,b0)

الطارح التصفي Half subtractor

جدول كارثو و المعادلات المنطقية:

BA	0	1
0	0	0
1	1	0

$$C = A.B$$

BA	0	1
0	0	1
1	1	0

جول الحقيقة:

المفسارج		المداخــــــــــــــــــــــــــــــــــــ		
С	Q	В	Α	
0	0	0	0	
0	1	0	1	
1	1	1	0	
0	0	1	1	

رسم الدارة المنطقية

الطارح الكامل full subtractor

الطارح عبارة عن دارة منطقية تقوم بعملية الطرح بين بيتين 2bit مع الأخذ بعين الاعتبار المحتفظ به من العملية السابقة

عدد المداخل 3 وهي : A,B;C-1

عدد المخارج 2 وهي : Q, C

1110011110 A 1000111011 B 001100011 C-1

0101100011 Q 0001100011 C

جدول كارثو و المعادلات المنطقية:

BA C-1	00	01	11	10
0	0	1	0	1
1,0	1	0	1	0

Q= A.B (C-1) + A.B (C-1) + A.B (C-1)+ A.B. C-1 Q= (C-1) .(A.B + A. B)+ (C-1) (A.B + A.B) Q = (C-1) . (A B) + (C-1) .(A B) Q= (C-1) B

جدول الحقيقة

ارج	المذ	المداخل		1
С	Q	C-1	В	Α
0	0	0	0	0
0	1	0	0	1
1	1	0	1	0
0	0	0	1	1
1	1	1	0	0
0	0 8	1	0	1
1	0	1	1	0
1	1	1	1	1 6

جدول كارنو و المعادلات المنطقية :

BA C-1	00	01	11	10
0	0	0	0	1
1	1)	0	1	1

انجاز الدارة المنطقية للطارح:

الدارة المنطقية:

