An Integrated Detection and Treatment Recommendation Framework for Breast Cancer using Convolutional Neural Network and TOPSIS

Devdatta Basu (1612006), Sheetal Kashid (1612020)

Under the guidance of

Dr Sanjay Pawar Dr Debabrata Datta (external guide)

Usha Mittal Institute of Technology, SNDTWU

July 1, 2020

Outline

- Introduction
- 2 Literature Survey
- Proposed System
- Architectural Overview
- Methodology
- 6 Results
- Applications and Future Scope
- 8 Conclusion
- References
- 10 Q & A

Introduction

Types of Cancer in Women

Estimated number of incident cases worldwide, females, all ages

Data source:GLOBOCAN 2018 Graph production: Global Cancer Observatory (http://gco.iarc.fr/) © International Agency for Research on Cancer 2020

International Agency for Research on Cancel
(World Heeth
Organization

Number of Deaths in India in 2018

Estimated number of deaths in 2018, India, females, all ages

Data source:GLOBOCAN 2018 Graph production: Global Cancer Observatory (http://gco.larc.fr/) © International Agency for Research on Cancer 2020 Total: 369 606

International Agency for Research on Cancer

(2) World Health

Projected Number of Cases in India through 2040

Estimated number of incident cases from 2018 to 2040, breast, females, all ages

Data source:GLOBOCAN 2018
Graph production: Global Cancer Observatory (http://gco.iarc.fr/)

International Agency for Research on Cancer 2018

Projected Number of Cases in Africa through 2040

Estimated number of incident cases from 2018 to 2040, breast, females, all ages

Data source:GLOBOCAN 2018

Graph production: Global Cancer Observatory (http://gco.larc.fr/)

© International Agency for Research on Cancer 2018

International Agency for Research on Cancer

Projected Number of Cases in the USA through 2040

Estimated number of incident cases from 2018 to 2040, breast, females, all ages

Data source:GLOBOCAN 2018 Graph production: Global Cancer Observatory (http://gco.iarc.fr/) © International Agency for Research on Cancer 2018

International Agency for Research on Cancer
World Health

World Health Organisation Explains

- Lack of early-detection, patients presenting at later-stage
- Lack of adequate diagnosis and treatment facilities

Problems Identified

- In 2014, patients: oncologists = 1: 2000
- Detection, consultation and treatment
- Zero to very less outreach in remote areas
- Chance of overlooking
- Affordability
- Limited diagnostic resources
- Problem with evaluating younger patients
- Zero to very few recommendation systems exist

Motivation

- Improve the ratio
- Try eradicating cancer altogether
- Build a system
 - Has good reach
 - Uses the simplest of screening techniques
- Deep learning methods reduce human error rate by 85%

Literature Survey

Literature Survey: Preprocessing

Title and Author	Key Takeaways	 Drawbacks	
	itey Takeaways	Only classification	
Breast Cancer Detection Using Extreme Learning Machine Based on Feature Fusion With CNN Deep Features (Zhiqiong Wang et. al.)	Subjective and objective feature extraction, actual considerations of doctors are taken into account, use of convolutional neural network for classification		
A Novel Algorithm for Pectoral Muscle Removal and Auto-Cropping of Neoplasmic Area from Mammograms (Dr M. Handmandlu et. al.)	Novel approach for preprocessing mammograms, tag removal, linear cut-off of pectoral muscle using straight line approximation	Linear approximation of pectoral muscle may lead to full or partial removal of lesion	

Literature Survey: Machine Learning vs Deep Learning

Title and Author	Key Takeaways	Drawbacks		
Breast Cancer Classification using Machine Learning (Meriem AMRANE et. al.)	Features such as uniformity of cell size and uniformity of cell shape are factored in	K-Nearest Neighbours and Naive Bayes classifiers do not give regard to the spatial and temporal properties of image datasets		
Breast Cancer Detection based on Deep Learning Technique (Nur Syahmi Ismail et. al.)	Deep learning models - VGG16 (16 layers) Microsoft's ResNet (152 layers)	Classifies the images as normal or abnormal, fails to address the nature of the tumor, not a regression application		

Literature Survey: Recommendation using TOPSIS

Title and Author	Key Takeaways	Drawbacks		
Using the AHP and TOPSIS Methods for Decision Making in Best Course Selection After HSC (Varsha T. Lokare et. al.)	Use of Saaty's scale (AHP) to obtain weights, leveraging weights obtained using AHP for recommendation using TOPSIS	Lacks a window for professional opinion on weights, which in cases as sensitive as our application, is of prime interest		
An Integrated Neutrosophic-TOPSIS Approach and its Application to Personnel Selection: A New Trend in Brain Processing and Analysis (Nada A. Nabeeh et. al.)	Neutrosophic AHP and TOPSIS overcome the inconsistency and uncertainty found in MCDM problems	Not currently suitable for our application as the number of features considered is relatively less		

Literature Survey: Other CAD Research

 Detection and Classification of the Breast Abnormalities in Digital Detection and Classification of the Breast Abnormalities in Digital (M. A. Al-masni et. al.)

Key Findings

You Only Look Once (YOLO) based, capable of concurrently detecting and classifying the masses

Literature Survey: Other CAD Research

- Detection and Classification of the Breast Abnormalities in Digital Detection and Classification of the Breast Abnormalities in Digital (M. A. Al-masni et. al.)
- Automatic Segmentation of Pectoral Muscle in Mammogram Images Using Global Thresholding and Weak Boundary Approximation (S. I. Naz et. al.)

Key Findings

Processing of pectoral muscle using Connected Component Labelling (CCL) based, tags removed using Otsu's thresholding

Other CAD Research

 The Classification of Mammogram Using Convolutional Neural Network with Specific Image Preprocessing for Breast Cancer Detection (H.-C. Lu et. al.)

Key Findings

Contrast enhancement done using Contrast Limited Adaptive Histogram Equalization (CLAHE)

Other CAD Research

- The Classification of Mammogram Using Convolutional Neural Network with Specific Image Preprocessing for Breast Cancer Detection (H.-C. Lu et. al.)
- Enhanced Breast Cancer Classification with Automatic Thresholding Using SVM and Harris Corner Detection (M. Taheri et. al.)

Key Findings

Classification with automatic thresholding utilizing SVM and Harris Corner Detection method

Other CAD Research

- The Classification of Mammogram Using Convolutional Neural Network with Specific Image Preprocessing for Breast Cancer Detection (H.-C. Lu et. al.)
- Enhanced Breast Cancer Classification with Automatic Thresholding Using SVM and Harris Corner Detection (M. Taheri et. al.)
- Face Recognition Based on Convolution Neural Network (K. Yan et. al.)

Key Findings

Location (keypoint) detection, Stochastic Gradient Descent (SGD) optimiser, network consisting of three convolution, two pooling, two fully-connected and one Softmax regression layers

Proposed System

Overview

Figure: Block Diagram

Architectural Overview

Architectural Overview

Figure: System

Operational Environment

- Operating system Windows 10
- Hardware NVIDIA GeForce MX150, NVIDIA GeForce 940MX
- Environment Anaconda Jupyter Notebook, Google Colab
- Preprocessing OpenCV Python library
- Pectoral muscle OpenCV Python library
- Locating the region of abnormality (CNN) Keras using Tensorflow v2.x backend
- ROI extraction OpenCV Python library
- Feature extraction Pandas Python library
- TOPSIS Numpy Python library

Methodology

Image Acquisition: Why Mammograms?

- According to World Health Organisation, mammography is the only screening method that has proven to be effective
- Uses low energy x-rays (few kEV)
- Wide availability

Image Acquisition: Description of Mammogram

Figure: Mammogram

Image Acquisition: Dataset

- MIAS Database from Kaggle
- 322 mammogram images
- Text file containing -

REFNUM	BG	CLASS	SEVERITY	X	Y	RADIUS
0	G	CIRC	В	535.0	425.0	197.0
1	G	CIRC	В	522.0	280.0	69.0
2	D	NORM	NaN	NaN	NaN	NaN
3	D	NORM	NaN	NaN	NaN	NaN
4	F	CIRC	В	477.0	133.0	30.0

Figure: Dataset

Image Preprocessing: Flow

- Input Raw images
- Output Preprocessed images

Figure: Preprocessing

Image Preprocessing: Implementation

Figure: Preprocessing

Pectoral Muscle: Flow

- Input Preprocessed images
- Output Images without pectoral muscle

Figure: Pectoral Muscle

Pectoral Muscle: Preprocessing

Figure: Flipping and Cropping

Pectoral Muscle: Linear Cut-off

Figure: Existing Method: Linear Cut-off

Pectoral Muscle: Proposed Algorithm

Algorithm 1: Image processing of pectoral muscle

Input: Preprocessed images

Result: Images containing breast mass

Procedure;

for each image i do

Consider the first N rows from the top right corner, traverse each row and locate the index \mathbf{x}_j of the last pixel having value greater than threshold T where:

1. 0 < T < 255

2.
$$1 \le j < N$$

Consider the first N columns from the top right corner, traverse each column and locate the index y_j of the last pixel having value greater than threshold T where;

1.
$$0 \le T < 255$$

2.
$$1 \le j < N$$

Set $X = \max_{j=1}^{n} \max_{j=1}^{n} (x_j)$ and $Y = \max_{j=1}^{n} \max_{j=1}^{n} (y_j)$;

Set Z = X;

for each row i in image such that i < Y do

Select the row and mark the last pixel with pixel value greater than

T having index k such that $k \leq Z$;

Cut off the region along the row from indices 0 to k:

Set Z = k;

end

end

Pectoral Muscle: Proposed Method

Figure: Proposed Method

Pectoral Muscle: Comparison

Algorithm: Random Forest Classifier to classify dense tissues as normal or abnormal

Linear Cut-off	Proposed System
79.16	83.30

Location Detection: Choosing the Method

Drawbacks of Artificial Neural Network (ANN) -

• ANN has no regard for spatial aspects of data

Implication

Making it unsuitable/ less relevant for image data

Location Detection: Choosing the Method

Drawbacks of Artificial Neural Network (ANN) -

- ANN has no regard for spatial aspects of data
- ANN uses huge number of parameters

Implication

As opposed to Convolutional Neural Networks (CNNs)

Location Detection: Choosing the Method

Convolutional Neural Network (CNN) -

- CNN captures spatial and temporal dependencies
- CNN assigns weights to features
- CNN achieves higher detection accuracy
- CNN delivers quantitative analysis of lesions
- CNN offers lesser number of parameters
- CNN powered CAD finds even the smallest of lesions at early stages

Location Detection: Flow

- Input Images with no pectoral muscle
- Output Coordinates and centre of abnormality

Figure: Location Detection

Location Detection: Dataset Preparation

- Convert images to Numpy array
- Reshape into four dimensions (n, w, h, c) where
 - *n* is the number of images (322)
 - w is the halved width of each image (512)
 - h is the halved height of each image (512)
 - c is the number of channels (1)

Location Detection: CNN Architecture

Figure: Architecture

Location Detection: CNN Summary

Model: "sequential"

Layer (type)	Output	Shap	e		Param #
batch_normalization (BatchNo	(None,	512,	512,	1)	4
conv2d (Conv2D)	(None,	508,	508,	24)	624
activation (Activation)	(None,	508,	508,	24)	0
max_pooling2d (MaxPooling2D)	(None,	254,	254,	24)	0
conv2d_1 (Conv2D)	(None,	250,	250,	36)	21636
activation_1 (Activation)	(None,	250,	250,	36)	0
max_pooling2d_1 (MaxPooling2	(None,	125,	125,	36)	0
flatten (Flatten)	(None,	5625	90)		0
dense (Dense)	(None,	3)			1687503

Total params: 1,709,767 Trainable params: 1,709,765 Non-trainable params: 2

Figure: Summary

Location Detection: Results using Various Optimisers

Figure: ADADELTA, Adam, Adamax

Location Detection: Results using Various Optimisers

Figure: RMSProp, Nadam, Adagrad

Region of Interest (ROI) Extraction: Flow

- Input Images, radii and coordinates of abnormality
- Output Cropped approximate region

Figure: ROI Extraction

Region of Interest (ROI) Extraction: Cropping the Circular Region

Figure: Extracting ROI

Figure: Region of Abnormality

Figure: Lesion Marked by Dr Asawari Lautre, Radiologist at Tata Medical Centre, Mumbai

Figure: Contour Detected Automatically

Figure: Minimum Enclosing Circle (MEC)

Feature Extraction: Features

Morphological

- Roundness
- Acreage ratio

Texture

- Energy
- Entropy
- Contrast coefficient
- Mean
- Variance

Histogram

- Histogram mean
- Histogram variance
- Histogram peak
- Histogram skew

Feature Extraction: Morphological Features

Roundness

$$r = \frac{p^2}{4\pi A}$$

Figure: Tumor along with MEC

Feature Extraction: Morphological Features

Roundness

$$r=\frac{p^2}{4\pi A}$$

Acreage ratio

$$a = \frac{Area(Contour)}{Area(MEC)}$$

Figure: Tumor along with MEC

Energy

$$E = \sum P(i,j)^2$$

- Energy
- Entropy

$$S = \sum P(i,j) \cdot (-ln(P(i,j)))$$

- Energy
- Entropy
- Contrast coefficient

$$C = \sum (i - j)^2 \cdot P(i, j)$$

- Energy
- Entropy
- Contrast coefficient
- Mean

$$\mu = \frac{1}{N} \sum P(i,j)$$

- Energy
- Entropy
- Contrast coefficient
- Mean
- Variance

$$\sigma^2 = \sum \frac{(P(i,j) - \mu)^2}{N}$$

Feature Extraction: Histogram Features

- Histogram mean
- Histogram variance
- Histogram peak
- Histogram skew

Figure: Histogram

Recommendation: TOPSIS

- Technique for Order Preference by Similarity to Ideal Solution
- Multi-criteria decision making
- Based on Euclidean distance

Recommendation: Flow

- Input Feature matrix, weight matrix
- Output Ranked recommendation

Figure: Recommendation

Standardise the feature matrix using min-max scaling

$$X_{sc} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

- Standardise the feature matrix using min-max scaling
- Normalise the weight matrix

$$X_{inorm} = \frac{X_i}{\sqrt{\sum x_i^2}}$$

- Standardise the feature matrix using min-max scaling
- Normalise the weight matrix
- Find Euclidean distance of each alternative from feature tuple

$$d=\sqrt{\sum (x_i-y_i)^2}$$

- Standardise the feature matrix using min-max scaling
- Normalise the weight matrix
- Find Euclidean distance of each alternative from feature tuple
- Rank the alternatives in accordance with increasing Euclidean distance

$$d=\sqrt{\sum (x_i-y_i)^2}$$

Weight matrix obtained from the radiologist surveyed

	4					sv 11	CRITERIA		VII.	N.	97	
		Roundness	Acreage Ratio	Energy	Entropy	Contrast Coefficient	Texture Mean	Texture Variance	Histogram Mean	Histogram Variance	Histogram Peak	Histogram Skew
	Reimaging or Other	6	5	7	7	4	6	6	6	5	6	5
ERNATI	Immediate Treatment	1 0	7	8	8	10	9	8	7	6	10	0
ALTE	No Treatment	10	1	2	2	1	2	1	2	1	2	10

Normalised weight matrix

							CRITERIA		V-	Ver-11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		Roundness	Acreage Ratio	Energy	Entropy	Contrast Coefficient	Texture Mean	Texture Variance	Histogram Mean	Histogram Variance	Histogram Peak	Histogram Skew
	Reimaging or Other	0.6	0.7	0.7	0.7	0.4	0.6	0.7	0.7	0.7	0.6	0.5
ALTERNATI	Immediate Treatment	0	0.86	0.72	0.72	0.92	0.79	0.77	0.71	0.73	0.82	0.89
ALT	No Treatment	0.84	0.11	0.18	0.18	0.09	0.17	0.09	0.2	0.12	0.16	0

Tuple from feature matrix

Roundness	Acreage Ratio	Energy	Entropy	Contrast Coefficient		Texture Variance		Histogram Variance	Histogram Peak	Histogram Skew
0.599662	0.544823	0.185483	0.884496	1	0.187019	0.448059	1	1	1	0.944063

Subtraction of tuple values from normalised weight matrix

		Acreage			Contrast	Texture	Texture	Histogram	Histogram	Histogram	Histogram
1	Roundness	Ratio	Energy	Entropy	Coefficient	Mean	Variance	Mean	Variance	Peak	Skew
	0.599662	0.544823	0.185483	0.884496	1	0.187019	0.448059	1	1	1	0.944063

							CRITERIA	10.	10.	St		
			Acreage			Contrast	Texture	Texture	Histogram	Histogram	Histogram	Histogram
		Roundness	Ratio	Energy	Entropy	Coefficient	Mean	Variance	Mean	Variance	Peak	Skew
	Reimaging	0.6 -	0.7 -	0.7 -	0.7 -	0.4 - 1	0.6 -	0.7 -	0.7 - 1	0.7 - 1	0.6 - 1	0.5 -
	or Other	0.599662	0.54482	0.18548	0.88449		0.18701	0.44805	0.7 - 1	0.7 - 1		0.944063
	Immediate	0 -	0.86 -	0.72 -	0.72 -	0.00	0.79 -	0.77 -	0.71 - 1	0.73 - 1	0.82 - 1	0.89 -
ALTERN	Treatment	0.599662	0.54482	0.18548	0.88449	0.92 - 1	0.18701	0.44805	0.71 - 1	0.75 - 1		0.944063
F	No	0.84 -	0.11 -	0.18 -	0.18 -	0.09 - 1	0.17 -	0.09 -	0.2 - 1	0.12 - 1	0.16 - 1	0 -
	Treatment	0.599662	0.54482	0.18548	0.88449	0.09 - 1	0.18701	0.44805	0.2 - 1			0.944063

Subtraction of tuple values from normalised weight matrix

	to o		-/-				CRITERIA			(t) (t)		
		Roundness	Acreage Ratio	Energy	Entropy	Contrast Coefficient	Texture Mean	Texture Variance	Histogram Mean	Histogram Variance	Histogram Peak	Histogram Skew
	Reimaging or Other	0.000338	0.15518	0.51452	-0.1845	-0.6	0.41298	0.25194	-0.3	-0.3	-0.4	-0.44406
ERNATI	Immediate Treatment	-0.599662	0.31518	0.53452	-0.1645	-0.08	0.60298	0.32194	-0.29	-0.27	-0.18	-0.05406
ALT	No Treatment	0.240338	-0.4348	-0.0055	-0.7045	-0.91	-0.017	-0.3581	-0.8	-0.88	-0.84	-0.94406

Recommendation: Implementation Steps

Squared values

	* * * * * * * * * * * * * * * * * * *						CRITERIA				8	
		Roundness	Acreage Ratio	Energy	Entropy	Contrast Coefficient	Texture Mean	Texture Variance	Histogram Mean	Histogram Variance	Histogram Peak	Histogram Skew
	Reimaging or Other	1.14E-07	0.02408	0.26473	0.03404	0.36	0.17055	0.06347	0.09	0.09	0.16	0.197192
ALTERNATI	Immediate Treatment	0.359595	0.09934	0.28571	0.02706	0.0064	0.36359	0.10365	0.0841	0.0729	0.0324	0.002923
	No Treatment	0.057762	0.18907	3E-05	0.49631	0.8281	0.00029	0.12821	0.64	0.7744	0.7056	0.891255

Recommendation: Implementation Steps

Sum of values for each alternative

							CRITERIA						
			Acreage			Contrast	Texture	Texture	Histogram	Histogram	Histogram	Histogram	
		Roundness	Ratio	Energy	Entropy	Coefficient	Mean	Variance	Mean	Variance	Peak	Skew	SUM
IVES	Reimaging or Other	0.0000001	0.02408	0.26473	0.03404	0.36	0.17055	0.06347	0.09	0.09	0.16	0.197192	1.45407
RNAT	Immediate Treatment	0.3595945	0.09934	0.28571	0.02706	0.0064	0.36359	0.10365	0.0841	0.0729	0.0324	0.002923	1.43765
ALTE	No Treatment	0.0577624	0.18907	0.00003	0.49631	0.8281	0.00029	0.12821	0.64	0.7744	0.7056	0.891255	4.71103

Recommendation: Implementation Steps

Taking square root and assigning ranks

							CRITERIA							
		Roundness	Acreage Ratio	Energy	Entropy	Contrast Coefficient	Texture Mean	Texture Variance	Histogram Mean	Histogram Variance	Histogram Peak	Histogram Skew	SQRT SUM	RANK
	Reimaging or Other	0.0000001	0.02408	0.26473	0.03404	0.36	0.17055	0.06347	0.09	0.09	0.16	0.197192	1.20585	2
	Immediate Treatment	0.3595945	0.09934	0.28571	0.02706	0.0064	0.36359	0.10365	0.0841	0.0729	0.0324	0.002923	1.19902	1
ALTE	No Treatment	0.0577624	0.18907	0.00003	0.49631	0.8281	0.00029	0.12821	0.64	0.7744	0.7056	0.891255	2.17049	3

Recommendation: Significance of Alternatives

• Re-imaging or other methods

Implication

- Magnetic Resonance Imaging (MRI) or Ultra Sonography (USG)
- Breast captured has a high tissue density
- Image is not clear

Recommendation: Significance of Alternatives

- Re-imaging or other methods
- Immediate treatment

Implication

- The case is of utmost seriousness
- The case is benign but needs to be addressed

Recommendation: Significance of Alternatives

- Re-imaging or other methods
- Immediate treatment
- No treatment

Implication

The case does not need immediate attention

Recommendation: Validation

The radiologist looked into each of 119 cases independently and labelled.

Results

Accuracy

- Training accuracy 85.43%
- Testing accuracy 73.49%

Figure: RMSProp

Performance

97 out of 119 cases 81.5%

Applications and Future Scope

Applications

- Web application
- Pathological labs
- Outreach in the most remote of places

Future Scope

- Room for integrating other features (criteria)
- Room for integrating other methods of screening
- Streamlining of treatment methods (alternatives) with appropriate criteria
- Neutrosophic set in place of traditional fuzzy set theory

Conclusion

Highly modular and cohesive

- Highly modular and cohesive
- Returns 11 associated features about the abnormality, which doctors actually consider while evaluating a case

- Highly modular and cohesive
- Returns 11 associated features about the abnormality, which doctors actually consider while evaluating a case
- A wide window for adding new criteria (features) and alternatives (treatments)

- Highly modular and cohesive
- Returns 11 associated features about the abnormality, which doctors actually consider while evaluating a case
- A wide window for adding new criteria (features) and alternatives (treatments)
- Flexible

- Highly modular and cohesive
- Returns 11 associated features about the abnormality, which doctors actually consider while evaluating a case
- A wide window for adding new criteria (features) and alternatives (treatments)
- Flexible
- Weights can be modified

- Highly modular and cohesive
- Returns 11 associated features about the abnormality, which doctors actually consider while evaluating a case
- A wide window for adding new criteria (features) and alternatives (treatments)
- Flexible
- Weights can be modified
- Uses the most common method of imaging i.e. Mammography

- Highly modular and cohesive
- Returns 11 associated features about the abnormality, which doctors actually consider while evaluating a case
- A wide window for adding new criteria (features) and alternatives (treatments)
- Flexible
- Weights can be modified
- Uses the most common method of imaging i.e. Mammography
- O Can be easily extended for other types of cancer

Does not factor in other imaging methods

- Does not factor in other imaging methods
- 2 The mammogram must be the best version of itself

- Does not factor in other imaging methods
- 2 The mammogram must be the best version of itself
- May tend to be sensitive towards high tissue density

- Does not factor in other imaging methods
- 2 The mammogram must be the best version of itself
- May tend to be sensitive towards high tissue density
- Image processing of pectoral muscle requires high precision

- Does not factor in other imaging methods
- The mammogram must be the best version of itself
- May tend to be sensitive towards high tissue density
- Image processing of pectoral muscle requires high precision
- Weights are not set as learning quantities

References

References I

- U. Bick and F. Diekmann, "Computer-aided Detection and Diagnosis," in Digital Mammography, Springer, 2010, pp. 85-106.
- S. O. I. G. a. T. E. M. Amrane, "Breast cancer classification using machine learning," in Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT), Istanbul, 2018.
- C. L., . Y. K. Hwang, "Multiple attribute decision making: Methods and applications," 1981.
- Z. Wang, M. Li, H. Wang, H. Jiang, Y. Yao, H. Zhang and J. Xin, "Breast Cancer Detection Using Extreme Learning Machine Based on Feature Fusion With CNN Deep Features," IEEE Access, vol. 7, 2019.
- K. Hu, X. Gao and L. F., "Detection of Suspicious Lesions by Adaptive Thresholding Based on Multiresolution Analysis in Mammograms".
- M. Taheri, G. Hamer, S. H. Son and S. Y. Shin, "Enhanced Breast Cancer Classification with Automatic Thresholding Using SVM and Harris Corner Detection," RACS '16, pp. 56-60, 2016.

References II

- M. Hanmandlu, A. A. Khan and A. Saha, "A novel algorithm for pectoral muscle removal and auto-cropping of neoplasmic area from mammograms," 2012 IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore, 2012, pp. 1-5, doi: 10.1109/ICCIC.2012.6510254.
- N. Syahmi, Ismail and C. Sovuthy, "Breast cancer detection based on deep learning".
- V. T. Lokare and P. M. Jadhav, "Using the AHP and TOPSIS methods for decision making in best course selection after HSC," 2016 International Conference on Computer Communication and Informatics (ICCCI), 2016.
- N. A. Nabeeh, F. Smarandache, M. Abdel-Basset, H. A. El-Ghareeb and A. Aboelfetouh, "An Integrated Neutrosophic-TOPSIS Approach and Its Application to Personnel Selection: A New Trend in Brain Processing and Analysis," IEEE Access, vol. 7, 2019.

Q & A

Thank You