NOIP2019 模拟训练题

题目名称	合并集合	爬	硬币
英文代号	merge	climb	coin
文件名	merge.cpp	climb.cpp	coin.cpp
输入文件名	merge.in	climb.in	coin.in
输出文件名	merge.out	climb.out	coin.out
单个测试点时限	2s	2s	2s
测试点个数	10	10	10
单个测试点分数	10	10	10
附加文件	无	无	无
题目类型	传统	传统	传统
空间限制	256M	512M	256M

合并集合

【问题描述】

有n个集合,第i个集合记为 S_i ,集合按环状排列,即第i个集合右边是第i+1个集合,第n个集合右边是第1个集合

一开始每个集合里只有一个数,每次你可以选择两个相邻的集合S,T,然后合并成 $S \cup T$,之后你获得收益|S| * |T|,其中|S|表示集合S的元素个数

你需要一直进行以上的操作直到只剩一个集合为止, 求能获得的最大 的收益之和

【输入格式】

第一行一个正整数n

第二行n个正整数 a_i ,表示一开始有 $S_i = \{a_i\}$

【输出格式】

输出一个非负整数表示最大的收益之和

【样例输入】

4

1 2 2 2

【样例输出】

5

【样例解释】

先合并第一个和第二个,得到{1,2},{2},产生的收益为1 再合并第一个和第二个,得到{1,2},{2},产生的收益为2 再合并这两个,得到{1,2},产生的收益为2 所以答案是5

【数据范围】

对于30%的数据,有 $1 \le n \le 7$

对于50%的数据,有 $1 \le n \le 50$

对于100%的数据,有 $1 \le n \le 300$, $1 \le a_i \le n$

2 Climb

2.1 Description

小 M 把小 D 困在了一个高度为 L 的陷阱里,小 D 有 N 天时间可以爬出来,他有 N 个药丸,每天吃一颗,顺序任意。

第 i 颗药丸可以让他早上爬 A_i ,下午滑下去 B_i ,如果他任何时刻能爬到井口,就能爬出来。 小 M 每天晚上都会放水,第 i 天晚上水位会升高 C_i ,如果小 D 不能再晚上保证严格高于水位,就会被淹死。

问小 D 最早第几天可以爬出来,如果不可行输出 -1。

2.2 Input Format

第一行两个数 N, L。

接下来 N 行每行两个数 A_i, B_i 。

接下来 N 行每行一个整数 C_i 。

2.3 Output Format

一行一个整数表示答案, 无解输出 -1。

2.4 Samples

2:4 Samples	
2.4.1 Input 1	2.4.3 Input 2
3 9	5 20
6 3	3 2
5 2	4 2
3 1	6 3
2	8 4
2	10 5
2	4
	2
2.4.2 Output 1	3
2	4
2	5
	2.4.4 Output 2
	-1
	_

2.5 Constrains

对于 40% 的数据, $N \leq 1000$;

对于额外 20% 的数据, $B_i = 0$;

对于额外 20% 的数据, $C_i = 0$;

对于 100% 的数据, $n \leq 10^5, 0 \leq A_i, B_i, C_i \leq 10^9$ 。

3 Coin

3.1 题目描述

小 M 和小 D 在玩游戏。

小 M 有个 h 行 w 列的棋盘,每个格子都包含了至多一枚硬币,硬币正面或者反面朝上。

小 M 和小 D 轮流操作, 小 M 先手。每个人可以选择棋盘中没在之前被选择过的的一行或者一列, 然后将所选的行或列上的硬币全部翻转, 即正面变成反面, 反面变成正面。

当所有硬币都正面朝上或者所有的行列都被选择,游戏结束。最后一次操作的玩家将会获得 1 分。如果当前局面所有的硬币都正面朝上,小 M 和小 D 都将获得 2 分的额外收益。

问两个人如果都按最优策略操作,即最大化自己的分数,那么小 M 最后的得分是多少。

保证每列至少有一个硬币,每行至少有一个反面朝上的硬币。

3.2 输入格式

第一行包含一个整数 T, 表示数据组数。

对于每组数据,第一行两个整数 h, w,表示棋盘大小。

接下来 h 行,每行一个长度为 w 的字符串,每个位置由为 o, x, e 中一个。如果这个位置为 e 表示没有硬币,如果是 o 表示正面朝上,否则表示反面朝上。

3.3 输出格式

共T行,每行一个整数表示小M的分数。

3.4 样例输入

1 2 5 exexe xeoex

3.5 样例输出

3

3.6 数据范围与约定

10%的数据,保证答案都为0或1。

30%的数据,保证答案不为3。

另外 30% 的数据, 保证 $h, w \le 15$ 。

100% 的数据,保证 $1 \le T, h, w \le 100$ 。