Optimization HW1

Gan Haochen 1600017789

April 2020

1 Newton-type Optimization

Newton-type Optimization is defined as the iteration procedure:

$$B_k d_k = -g_k \tag{1}$$

where $d_k := x_{k+1} - x_k$, $g_k := \nabla f(x_k)$. And using line-search to find an α such that

$$x_{k+1} = x_k + \alpha d_k \tag{2}$$

For Damping Newton method, the matrix B_k is the Hessian of the objective function:

$$B_k = G_k := \nabla^2 f(x_k) \tag{3}$$

For quasi-Newton method, the inverse-matrix $H_k = B_k^{-1}$ is defined and the iteration procedure could be re-written as:

$$d_k = -H_k g_k \tag{4}$$

and for the Broyden methods, the iteration of H_k is:

$$H_{k+1}^{\phi} = H_{k+1}^{\text{DFP}} + \phi (H_{k+1}^{\text{BFGS}} - H_{k+1}^{\text{DFP}}) = H_{k+1}^{\text{DFP}} + \phi v_k v_k^T$$
 (5)

where

$$v_k := (y_k^T H_k y_k)^{\frac{1}{2}} (\frac{s_k}{s_k^T y_k} - \frac{H_k y_k}{y_k^T H_k y_k})$$

2 Implementation

2.1 Stopping Criterion

In our implementation the stopping criterion is setted as:

$$||g_k||_2 < \epsilon(1+|f_k|), \quad \epsilon = 1e - 8 \tag{6}$$

Notice due to the magnitude of the function f, which could be very large or very small in some cases, an absolute criterion is not proper because of the machine accuracy.

2.2 Numerical Adjustment

In the iteration procedure of Broyden and SR1 methods, the denominator could be very small and cause problem. When this happen, we set $H_k = I_n$ where I_n is the identity of $n \times n$ dimensions. The identity is also used as the initial value of H_k .

2.3 C++ Eigen Library Used

A library for C++, Eigen is used for the linear system calculation. And VectorXd class is also very useful in the program.

3 Results

BDx means Brown-Dennis function with x dimension; DIE(x) means Discrete integral equation function with x dimension; CP mean Combustion Propane function from P153.

Timing of certain jobs of the optimization

Problem	DN	BFGS	Broyden($\phi = 0.5$)	DFS	SR1		
BD4	0.313	0.758	1.093	12.766	4.393		
BD10	0.276	0.564	0.645	12.928	22.08		
BD20	0.174	0.328	0.282	0.283	3.392		
BD30	0.22	0.24	0.203	0.208	15.211		
BD40	0.171	0.226	0.188	0.222	19.323		
BD50	0.159	0.257	0.233	0.214	39.021		
DIE2	0.046	0.131	0.064	0.05	0.086		
DIE10	0.156	0.32	0.32	0.295	0.068		
DIE20	0.27	0.503	0.502	0.401	0.098		
DIE30	0.308	0.814	0.784	0.682	0.177		
DIE40	0.495	1.006	0.784	1.001	0.256		
DIE50	0.396	0.563	0.784	0.545	0.363		
CP(P153)	/	0.298	2.369	23.621	/		

3.1 Analysis

Note that at least in our implementation Damping Newton is almost always better than Broyden-type method. In BD problem the performance of SR1 method is not so satisfying. But in DIE problem the SR1 method works well.

And note that DFS method just failed for small scale BD problem, which could because of the denominator is still too small in the formula. And during the experiment we have observed that the line search is hard for Broyden-type method when close to the optimal. And at the same time Damping Newton method does not evoke too many line researches.

iteration number							
Problem	DN	BFGS	Broyden($\phi = 0.5$)	DFS	SR1		
BD4	20	76	106	/	/		
BD10	15	50	70	/	1999		
BD20	9	24	25	23 325			
BD30	7	13	12	13	838		
BD40	7	11	11	11	750		
BD50	7	10	11	9	1573		
DIE2	4	14	13	11	13		
DIE10	4	14	14	14	12		
DIE20	4	14	14	13	11		
DIE30	4	14	14	13	11		
DIE40	4	14	14	14	11		
DIE50	4	14	14	14	11		
CP(P153)	/	70	/30	1081	/		

function evoking number						
Problem	DN	BFGS	Broyden($\phi = 0.5$)	DFS	SR1	
BD4	61	244	579	/	/	
BD10	46	169	397	/	20203	
BD20	28	94	191	282	2618	
BD30	22	67	131	197	8818	
BD40	23	68	136	2042	9375	
BD50	23	727	147	215	23596	
DIE2	13	15	30	45	53	
DIE10	13	55	110	165	49	
DIE20	137	55	110	161	49	
DIE30	138	55	110	161	45	
DIE40	13	55	110	165	45	
DIE50	13	55	110	165	45	
CP(P153)	/	287	2495	22353	/	

And for the DIE problem we noticed that Damping Newton method just arrived 10^{-34} order, while other methods cannot. This is probably because of the machine accuracy and because Newton method could reach a very close point at once without being influenced by machine accuracy.

iteration number						
Problem	DN	BFGS	Broyden($\phi = 0.5$)	DFS	SR1	
BD4	20	76	106	/	/	
BD10	15	50	70	/	1999	
BD20	9	24	25	23	325	
BD30	7	13	12	13	838	
BD40	7	11	11	11	750	
BD50	7	10	11	9	1573	
DIE2	4	14	13	11	13	
DIE10	4	14	14	14	12	
DIE20	4	14	14	13	11	
DIE30	4	14	14	13	11	
DIE40	4	14	14	14	11	
DIE50	4	14	14	14	11	
CP(P153)	/	70	439	1981	/	

Optimal

Problem	DN	BFGS	Broyden($\phi = 0.5$)	DFS	SR1
BD4	1.05E - 05	1.05E - 05	1.05E - 05	1.08E - 05	1.05E - 05
BD10	1.44323	1.44323	1.44323	1.44323	1.44323
BD20	85822.2	85822.2	85822.2	85822.2	85822.2
BD30	9.77E + 08	9.77E + 08	9.77E + 08	9.77E + 08	9.77E + 08
BD40	5.86E + 12	5.86E + 12	5.86E + 12	5.86E + 12	5.86E + 12
BD50	2.67E + 16	2.67E + 16	2.67E + 16	2.67E + 16	2.67E + 16
DIE2	3.01E - 34	6.83E - 20	2.17E - 20	1.11E - 21	1.77E - 17
DIE10	3.33E - 35	1.70E - 17	1.70E - 17	1.70E - 17	1.70E - 17
DIE20	4.99E - 35	2.31542E - 17	2.31542E - 17	2.31542E - 17	2.31542E - 17
DIE30	1.09E - 34	1.64E - 17	1.60E - 17	2.37E - 17	2.12E - 17
DIE40	1.20E - 34	1.20E - 34	1.69E - 17	1.64E - 17	1.58E - 17
DIE50	1.48E - 34	1.72E - 17	1.68E - 17	1.64E - 17	2.26E - 17
CP(P153)	/	4.30E - 18	2.55E - 17	1.50E - 01	/