Universidad de Alcalá Escuela Politécnica Superior

Grado en Ingeniería Informática

Trabajo Fin de Grado

Análisis de datos en redes sociales: Caso de estudio aplicado en

Twitter

ESCUELA POLITECNICA

Autor: David Márquez Mínguez

Tutor: Juan José Cuadrado Gallego

UNIVERSIDAD DE ALCALÁ

ESCUELA POLITÉCNICA SUPERIOR

Grado en Ingeniería Informática

Trabajo Fin de Grado

Análisis de datos en redes sociales: Caso de estudio aplicado en Twitter

Autor: David Márquez Mínguez

Tutor: Juan José Cuadrado Gallego

Tribunal:

Presidente: Name of the tribunal president

Vocal 1º: Name of the first vocal

Vocal 2º: Name of the second vocal

Fecha de depósito: X de X de 2021

Agradecimientos

 $\label{eq:approx} A\ todos\ los\ que\ la\ presente\ vieren\ y\ entendieren.$ Inicio de las Leyes Orgánicas. Juan Carlos I

Aqui va la parte de agradecimientos.....

Resumen

Resumen...... correo de contacto: David Márquez Mínguez <david.marquez@edu.uah.es>.

Palabras clave: Trabajo fin de /grado, LATEX, soporte de español e inglés, hasta cinco....

Abstract

 $Abstract......contact\ email:\ David\ M\'{a}rquez\ M\'{i}nguez\ < \underline{david.marquez@edu.uah.es}>.$

Resumen extendido

Con un máximo de cuatro o cinco páginas. Se supone que sólo está definido como obligatorio para los TFGs y PFCs de UAH.

Índice general

Resumen	ix
Abstract	xi
Resumen extendido	xiii
Índice general	xv
Índice de figuras	xvii
Índice de tablas	xix
Índice de listados de código fuente	xxi
Índice de algoritmos	xxiii
Lista de acrónimos	xxiii
Lista de símbolos	xxiii
1 Ejemplo práctico: Minería de textos con R	1
2 Presupuesto	3
Bibliografía	5
Apéndice A Manual de usuario	7
A.1 Introducción	7
A.2 Manual	7
A.3 Ejemplos de inclusión de fragmentos de código fuente $\dots \dots \dots \dots \dots$	7
A.4 Ejemplos de inclusión de algoritmos	9
Apéndice B Herramientas y recursos	11
Apóndico C. Vorsionos	13

Índice de figuras

Índice de tablas

Índice de listados de código fuente

A.1	Ejemplo de código fuente con un 1stinputlisting dentro de un codefloat	8
A.2	Ejemplo de código fuente con estilo Cnice, de nuevo con un 1stinputlisting dentro	
	de un codefloat	8
A.3	Ejemplo de código fuente con estilo Cnice, modificado para que no aparezca la numeración.	9
A.4	Ejemplo con colores usando el estilo Ccolor	9

Índice de algoritmos

A.1	How to write algorithms	10
A.2	IntervalRestriction	1(

Capítulo 1

Ejemplo práctico: Minería de textos con R

Twiiter es actualmente una dinámica e ingente fuente de contenidos, que dada su popularidad e impacto, se ha convertido en la principal fuente de informacion para estudios relacionados con Social Media Analytics.

Capítulo 2

Presupuesto

Blah, blah, blah.

Bibliografía

Apéndice A

Manual de usuario

A.1 Introducción

Blah, blah, blah...

A.2 Manual

Pues eso.

A.3 Ejemplos de inclusión de fragmentos de código fuente

Para la inclusión de código fuente se utiliza el paquete listings, para el que se han definido algunos estilos de ejemplo que pueden verse en el fichero config/preamble.tex y que se usan a continuación.

Así se inserta código fuente, usando el estilo CppExample que hemos definido en el preamble, escribiendo el código directamente :

```
#include <stdio.h>

// Esto es una funcion de prueba
void funcionPrueba(int argumento)
{
   int prueba = 1;
   printf("Esto_es_una_prueba_[%d][%d]\n", argumento, prueba);
}
```

O bien insertando directamente código de un fichero externo, como en el ejemplo A.1, usando \lstinputlisting y cambiando el estilo a Cbluebox (ademÃ;s de usar el entorno codefloat para evitar pagebreaks, etc.).

Listado A.1: Ejemplo de código fuente con un 1stinputlisting dentro de un codefloat

```
#include <stdio.h>

// Esto es una función de prueba
void funcionPrueba(int argumento)
{
    int prueba = 1;
    printf("Esto_es_una_prueba_[%d][%d]\n", argumento, prueba);
}
```

O por ejemplo en matlab, definiendo settings en lugar de usar estilos definidos:

```
% add_simple.m - Simple matlab script to run with condor
% a = 9;
b = 10;
c = a+b;
fprintf(1, 'La_suma_de_%d_y_%d_es_igual_a_%d\n', a, b, c);
```

O incluso como en el listado A.2, usando un layout más refinado (con los settings de http://www.rafalinux.com/?p=599 en un lststyle Cnice).

Listado A.2: Ejemplo de código fuente con estilo Cnice, de nuevo con un lstinputlisting dentro de un codefloat

```
#include <stdio.h>

#define LOOP_TIMES 5

int main(int arge, char* argv[])

{
   int i;

for (i = 1; i < LOOP_TIMES; i++)
   puts("Hola mundo!");
}</pre>
```

Y podemos reutilizar estilos cambiando alg \tilde{A}^{o} n par \tilde{A} jmetro, como podemos ver en el listado A.3, en el que hemos vuelto a usar el estilo Cnice eliminando la numeración.

Listado A.3: Ejemplo de código fuente con estilo Cnice, modificado para que no aparezca la numeración.

```
#include <stdio.h>
#define LOOP_TIMES 5

int main(int argc, char* argv[])
{
   int i;

for (i = 1; i < LOOP_TIMES; i++)
    puts("Hola mundo!");
}</pre>
```

Ahora compila usando gcc:

```
$ gcc -o hello hello.c
```

Y también podemos poner ejemplos de código coloreado, como se muestra en el A.4.

Listado A.4: Ejemplo con colores usando el estilo Ccolor

```
#include <stdio.h>
#define LOOP_TIMES 5

int main(int argc, char* argv[])
{
   int i;

   for (i = 1; i < LOOP_TIMES; i++)
      puts("Hola mundo!");
}</pre>
```

Finalmente aquà tenéis un ejemplo de código shell, usando el estilo BashInputStyle:

```
#!/bin/sh

HOSTS_ALL="gc000 gc001 gc002 gc003 gc004 gc005 gc006 gc007"

for h in $HOSTS_ALL

do

echo "Running [$*] in $h..."

echo —n " "

ssh root@$h $*

done
```

A.4 Ejemplos de inclusión de algoritmos

En la versión actual (abril de 2014), empezamos a usar el paquete algorithm2e para incluir algoritmos, y hay ajustes especÃficos y dependientes de este paquete tanto en config/preamble.tex como en cover/extralistings.tex (editadlos segÃon vuestras necesidades).

Hay otras opciones disponibles (por ejemplo las descritas en http://en.wikibooks.org/wiki/LaTeX/Algorithm), y podemos abordarlas, pero por el momento nos quedamos con algorithm2e.

Incluimos dos ejemplos directamente del manual: uno sencillo en el algoritmo A.1, y otro un poco $m\tilde{A}_{js}$ complicado en el algoritmo A.2.

```
Data: this text

Result: how to write algorithm with LATEX2e initialization;

while not at end of this document do

read current;

if understand then

go to next section;

current section becomes this one;

else

go back to the beginning of current section;
```

Algoritmo A.1: How to write algorithms

```
Data: G = (X, U) such that G^{tc} is an order.
      Result: G' = (X, V) with V \subseteq U such that G'^{tc} is an interval order.
      begin
          V \longleftarrow U
          S \longleftarrow \emptyset
          for x \in X do
             NbSuccInS(x) \longleftarrow 0
              NbPredInMin(x) \longleftarrow 0
             NbPredNotInMin(x) \leftarrow |ImPred(x)|
          for x \in X do
             if NbPredInMin(x) = 0 and NbPredNotInMin(x) = 0 then
               AppendToMin(x)
          while S \neq \emptyset do
    1
REM
             remove x from the list of T of maximal index
              while |S \cap ImSucc(x)| \neq |S| do
                  for y \in S - ImSucc(x) do
                      { remove from V all the arcs zy : }
                     for z \in ImPred(y) \cap Min do
                         remove the arc zy from V
                         NbSuccInS(z) \longleftarrow NbSuccInS(z) - 1
                         move z in T to the list preceding its present list
                         {i.e. If z \in T[k], move z from T[k] to T[k-1]}
                      NbPredInMin(y) \longleftarrow 0
                      NbPredNotInMin(y) \longleftarrow 0
                      S \longleftarrow S - \{y\}
                      AppendToMin(y)
              RemoveFromMin(x)
```

Algoritmo A.2: IntervalRestriction

Apéndice B

Herramientas y recursos

Las herramientas necesarias para la elaboración del proyecto han sido:

- PC compatible
- Sistema operativo GNU/Linux [?]
- Entorno de desarrollo Emacs [?]
- Entorno de desarrollo KDevelop [?]
- Procesador de textos $\LaTeX[?]$
- Lenguaje de procesamiento matemático Octave [?]
- Control de versiones CVS [?]
- Compilador C/C++ gcc [?]
- Gestor de compilaciones make [?]

Apéndice C

Versiones

En este apartado incluyo el historial de cambios más relevantes de la plantilla a lo largo del tiempo.

No empecé este apéndice hasta principios de 2015, con lo que se ha perdido parte de la información de los cambios importantes que ha ido sufriendo esta plantilla.

• Mayo 2015:

 Hay disponible un make bare para que deje los capítulos mondos y lirondos y se pueda escribir desde casi cero sin tener que andar borrando manualmente.

• Abril 2015:

– Ahora manejamos masculino/femenino en algunos sitios (el/la, autor/autora, alumno/alumna, del/de la, ...). Hay que definir variable con el género del autor (todavía queda pendiente lo de los tutores y tal). NOT FINISHED!!

• Enero 2015:

- Solucionado el problema (gordo) de compilación del anteproyecto.tex y el book.tex,
 debido al uso de paths distintos en la compilación de la bibliografía. El sistema se ha complicado
 un poco (ver biblio\bibliography.tex).
- Añadido un (rudimentario) sistema para generar pdf con las diferencias entre el documento en su estado actual y lo último disponible en el repositorio (usando latexdiff).

• Diciembre 2015:

 Separada la compilación del anteproyecto de la del documento principal. Para el primero se ha creado el directorio anteproyecto donde está todo lo necesario.

Universidad de Alcalá Escuela Politécnica Superior

ESCUELA POLITECNICA SUPERIOR

