

PROYECTO – AVANCE PARCIAL

Integrantes: Luis Macas – Viviana Mero – Eduardo Veintimilla

Materia: Redes de sensores

Prof.: Ing. Nestor Arreaga

Tema del proyecto: Medidor de contaminación ambiental y

reforestación

Introducción

Nuestro grupo busca resolver el problema de contaminación por CO2 presente en al aire causado por diferentes factores asociados a la actividad industrial, comercial y al uso de vehículos, siendo estas características propias de una urbe.

Se construirá un medidor que cense constantemente cada cierto tiempo, ya establecido, los datos sobre la cantidad de CO2 presente en una zona específica y generará información útil para nosotros sobre la cantidad de árboles que serían necesarios plantar para contrarrestar la contaminación causada por el CO2.

La utilidad del proyecto se basa en que además de medir la contaminación en el aire le dará una recomendación al usuario y puede incentivar a las personas a reforestar ciertas zonas con altos índices de contaminación.

Objetivo general

 Determinar la cantidad de contaminación presente dentro de las zonas más concurridas de la ciudad de Guayaquil.

Objetivos específicos

- Diseñar una red de sensores capaz de medir la cantidad de CO2 causado por las actividades comerciales, industriales y de transporte.
- Diagnosticar la cantidad de árboles necesarios para contrarrestar los efectos de la contaminación en dicha área.
- Representar mediante forma gráfica y/o ilustrativa dichos efectos en la ciudad.

Justificación del proyecto

Se propone resolver el problema de la contaminación ambiental y reforestación, mediante el uso de sensores y dispositivos tecnológicos con el fin de detectar las zonas más contaminadas por CO2 u otros gases nocivos y con los datos recolectados, conseguir una estimación de los árboles que deben plantarse en la zona para contrarrestar los efectos de la contaminación.

Según estadísticas realizadas por el Estado de Ecuador a mediados del 2016 se determinó que más del 39% de la contaminación del aire en Guayaquil proviene de los automotores. Guayaquil genera cerca de 6.8 toneladas de dióxido de carbono (CO2) de los cuales se puede componer: 39% proviene de transporte (consumo de gasolina y GLP), 25% de residuos (disposición de desechos), 16% de zonas residenciales (consumo de energía eléctrica y GLP), 14% del sector industrial (por uso de electricidad y diésel) y 6% del comercial e institucional.

Con esto como base, el proyecto podría contribuir a saber específicamente cuáles son las zonas donde más existen estas emisiones y enfrentar esa contaminación con árboles, aunque sea un plan a medio/largo plazo, debemos tener en cuenta que en los tiempos actuales cualquier solución que aporte al beneficio del país y del planeta será bienvenida.

Diseño de la arquitectura tecnológica

Los nodos sensores estarán esparcidos por zonas más concurridas de la cuidad, por lo tanto, se necesita que los nodos sensores transmitan los datos entre ellos hasta llegar al nodo recolector (sink), el cual agrupará los datos obtenidos y los enviará a la red externa (backend sigfox). Se seleccionó la topología Malla debido a que los nodos sensores se pueden conectar a múltiples nodos sensores en la red y así transmitir los datos obtenidos del medio por el camino disponible con más alta disponibilidad.

Materiales a usar

Arduino UNO: La placa incluye todo lo necesario para que el microcontrolador haga su trabajo, basta conectarla a un ordenador con un cable USB o a la corriente eléctrica a través de un transformador.

Características:

Microcontrolador: ATmega328

Voltaje operativo: 5V

Voltaje de entrada (recomendado): 7-12V

Pines de entradas/salidas digital: 14 (6 son salidas PWM)

Pines de entradas análogas: 6

 Memoria Flash: 32KB (ATmega328) de las cuales 0.5KB es usado por el bootloader.

SRAM: 2KB (ATmega328)

■ EEPROM: 1KB (ATmega328)

Velocidad del reloj: 16MHZ

Waspmote PRO V1.5: La arquitectura de hardware Waspmote ha sido especialmente diseñada para funcionar con un consumo extremadamente bajo. Los interruptores digitales permiten activar y desactivar cualquiera de las interfaces del sensor, así como los módulos de radio. Tres modos de suspensión diferentes hacen de Waspmote la plataforma de loT de menor consumo en el mercado.

Características:

Microcontrolador: ATmega1281

Frecuencia: 14.7456MHZ

SRAM: 8KB

EEPROM: 4KB

■ FLASH: 128KB

Clock: RTC(32KHZ)

Entradas analógicas: 7

Entradas/Salidas digitales: 8(I/O)

Entradas PWM: 1

Una entrada USB, una I2C, una SPI

Voltaje de batería: 3.3 - 4.2V

USB Charging: 5V-480mA

Panel solar Charging: 6 a 12V – 300mA

Waspmote Gas Sensor Board v3.0: Se trata del módulo central que recopila la información de una gran variedad de sensores de aire y aunque exista una gran variedad de sensores dependiendo del objetivo a sensar, el proyecto requerirá del sensor de CO2 TGS4161.

Características:

- Voltaje de alimentación: 3.3V 5V
- Tensión de alimentación del sensor: Sensores de gas y BME280 (3.3V), Sensor de polvo y partículas (3.3V y 5V)
- Corriente máxima admitida (continua): 200mA
- Corriente máxima admitida (pico): 400mA
- Material: policarbonato
- Sellado: poliuretano
- Tensión nominal de aislamiento CA: 690V
- Tensión nominal de aislamiento DC: 1000V

Xbee pro S2: Los módulos XBee son soluciones integradas que brindan un medio inalámbrico para la interconexión y comunicación entre dispositivos. Estos módulos utilizan el protocolo de red llamado IEEE 802.15.4 para crear redes FAST POINT-TO-MULTIPOINT (punto a multipunto); o para redes PEER-TO-PEER (punto a punto). Fueron diseñados para aplicaciones que requieren de un alto tráfico de datos, baja latencia y una sincronización de comunicación predecible. Por lo que básicamente XBee es propiedad de Digi basado en el protocolo Zigbee. En términos simples, los XBee son módulos inalámbricos fáciles de usar.

Características:

Specification	XBee Series 2	XBee Series 2 PRO	
Performance			
Indoor/Urban Range	up to 133 ft. (40 m)*	up to 300 ft. (100 m)*	
Outdoor RF line-of-sight Range	up to 400 ft. (120 m)*	up to 1 mile (1.6 km)	
Transmit Power Output (software selectable)	2mW (+3dBm), boost mode enabled 1.25mW (+1dBm), boost mode disabled	79mW (+19 dBm)	
RF Data Rate	250,000 bps	250,000 bps	
Serial Interface Data Rate (software selectable)	1200 - 230400 bps (non-standard baud rates also supported)	1200 - 230400 bps (non-standard baud rates also supported)	
Receiver Sensitivity	-96 dBm, boost mode enabled -95 dBm, boost mode disabled	-102 dBm	
Power Requirements			
Supply Voltage	2.1 - 3.6 V	3.0 - 3.4 V	
Operating Current (Transmit, max output power)	40mA (@ 3.3 V, boost mode enabled) 35mA (@ 3.3 V, boost mode disabled)	295mA (@3.3 V)	
Operating Current (Receive))	40mA (@ 3.3 V, boost mode enabled) 38mA (@ 3.3 V, boost mode disabled)	45 mA (@3.3 V)	
Idle Current (Receiver off)	15mA	15mA	
Power-down Current	< 1 uA @ 25°C	< 1 uA @ 25°C	

General	A.		
Operating Frequency Band	ISM 2.4 GHz	ISM 2.4 GHz	
Dimensions	0.960" x 1.087" (2.438cm x 2.761cm)	0.960" x 1.297" (2.438cm x 3.294cm)	
Operating Temperature	-40 to 85° C (industrial)	-40 to 85° C (industrial)	
Antenna Options	Integrated Whip, Chip, RPSMA, or U.FL Connector*	Integrated Whip, Chip, RPSMA, or U.FL Connecto	
Networking & Security			
Supported Network Topologies	Point-to-point, Point-to-multipoint, Peer-to-peer, and Mesh	Point-to-point, Point-to-multipoint, Peer-to-peer, and Mesh	
Number of Channels (software selectable)	16 Direct Sequence Channels	14 Direct Sequence Channels	
Addressing Options	PAN ID and Addresses, Cluster IDs and Endpoints (optional)	PAN ID and Addresses, Cluster IDs and Endpoints (optional)	
Agency Approvals			
United States (FCC Part 15.247)	OUR-XBEE2	MCQ-XBEEPRO2	
Industry Canada (IC)	4214A-XBEE2	1846A-XBEEPRO2	
Europe (CE)	ETSI	ETSI	

Pines

Pin#	Name	Direction	Description
		Direction	•
1	VCC	-	Power supply
2	DOUT	Output	UART Data Out
3	DIN / CONFIG	Input	UART Data In
4	DIO12	Either	Digital I/O 12
5	RESET	Input	Module Reset (reset pulse must be at least 200 ns)
6	PWM0 / RSSI / DIO10	Either	PWM Output 0 / RX Signal Strength Indicator / Digital IO
7	PWM / DIO11	Either	Digital I/O 11
8	[reserved]	-	Do not connect
9	DTR / SLEEP_RQ/ DI08	Either	Pin Sleep Control Line or Digital IO 8
10	GND	-	Ground
11	DIO4	Either	Digital I/O 4
12	CTS / DIO7	Either	Clear-to-Send Flow Control or Digital I/O 7
13	ON / SLEEP / DIO9	Output	Module Status Indicator or Digital I/O 9
14	[reserved]	-	Do not connect
15	Associate / DIO5	Either	Associated Indicator, Digital I/O 5
16	RTS / DIO6	Either	Request-to-Send Flow Control, Digital I/O 6
17	AD3 / DIO3	Either	Analog Input 3 or Digital I/O 3
18	AD2 / DIO2	Either	Analog Input 2 or Digital I/O 2
19	AD1 / DIO1	Either	Analog Input 1 or Digital I/O 1
20	AD0 / DIO0 / ID Button	Either	Analog Input 0, Digital I/O 0, or Node Identification

Sensor TGS4161: Modulo sensor de CO2 con poco consumo de energía. Capaz de detectar un rango entre 350-10,000 ppm, siendo ideal para todo tipo de control del aire: a puertas cerradas o puertas abiertas.

Características:

Specifications:

•				
Model number		TGS 4161		
Sensing element type			Solid electrolyte	
Target gases			Carbon dioxide	
Typical detection range			350 ~ 10,000 ppm	
	Heater resistance	Вн	$70 \pm 7\Omega$ at room temp.	
Electrical characteristics	Heater current	lн	approx. 50mA	
	Heater power consumption	Рн	approx. 250mW	
Electronic characteriores	Electromotive force	EMF	220~490mV in 350ppm CO2	
	Sensitivity	ΔEMF	44~72mV	EMF(350ppm CO2)- EMF(3500ppm CO2)
	Heater voltage	Vн	5.0 ± 0.2V (DC)	
Sensor characteristics	Response time		approx. 1.5 min. (to 90% of final ΔEMF value)	
	Measurement accuracy		approx. ±20% at 1,000ppm CO ₂	
Operating conditions			-10~50°C	C, 5~95%RH
Strorage conditions			-20~60°C, 5~90%RH (store in moisture proof bag with silica gel)	
Standard test conditions	Test gas condition		CO ₂ in air at 20±2°C, 65±5%RH	
	Circuit condition		VH = 5.0±0.05V DC	
	Conditioning period before test		12 hours or longer	

Thinxtra devkit: Thinxtra cuenta con un conjunto completo de funciones y accesorios para que cualquiera pueda configurar una solución de IoT. El Thinxtra Shield cuenta con sensores integrados: temperatura, presión, luz, golpes, interruptor magnético / medidor magnético y acelerómetro 3D, 2 LED y 1 pulsador, 1 puerto USB, Arduino Uno R3 tablero clon (ya enchufado en el escudo), antena externa de 8.5 cm para el mejor rendimiento y cable USB, además posee módulo Sigfox Wisol (WSSFM10) que permite enviar los datos al backend de sigfox.

Características:

Características

- Acelerómetro de 3 ejes
- Sensor digital de temperatura y presión
- Reed switch
- Sensores de luz
- Ledes rojo y azul
- Incluye:
 - Cable USB
 - Portabaterías
 - Antena
 - · Arduino Uno R3
 - Conectividad de un año a la red global de Sigfox

- Pulsador
- Placa de blindaje compatible con:
 - Arduino
 - Raspberry Pi
 - PC
 - Placa STMicro Nucleo
- Configuraciones disponibles:
 - RCZ1 (Europa)
 - RCZ2 (EE, UU.)
 - RCZ4 (Asia-ANZ)

Metodología

Mediante la investigación exploratoria que se llevo a cabo acerca de la implementación y configuración del Xbee Pro S2 para crear una red inalámbrica punto a punto, se siguieron los siguientes pasos:

1) Descargar e Instalar XCTU

Para configurar y usar los módulos XBee es necesario descargar e instalar XBee Configuration and Test Utility (XCTU) que es un software multiplataforma que permite interactuar con los módulos mediante un interfaz gráfico. Esta aplicación incluye herramientas graficas que facilitan configurar y probar los módulos Xbee, además ofrece un resumen de todos los parámetros del módulo y una descripción de ellos, configurar, inicializar, actualizar firmware y testear los módulos XBee, comunicándose por puerto serie a los módulos.

2) Conectar Xbee a Arduino UNO

Para empezar a configurar el Xbee acorde a nuestras especificaciones primero hay que acceder a su firmware por medio del programa XCTU, para esto debemos establecer una comunicación UART entre la PC y el Xbee, esto se logra realizando la siguiente conexión entre PC-Arduino UNO-Xbee.

PC-Arduino UNO

Se conecta el cable USB del Arduino al PC.

Arduino UNO-Xbee

Arduino UNO	Xbee PRO S2
3.3v	Pin 1
GND	Pin 10
TX	Pin 2
RX	Pin 3

3) Configurar Roles del Xbee por medio de XCTU

Debido a que la red inalámbrica será punto a punto se establecerá un Xbee con el rol de coordinador y el otro con el rol de router.

Para esto los parámetros a configurar son:

Personal Area Network Identifier (PAN ID): es un identificador único que establece

que los módulos están en la misma red.

<u>Destination address High</u>: es el valor de Serial Number High que tiene el Xbee con el que se quiere comunicar.

<u>Destination address Low</u>: es el valor de Serial Number Low que tiene el Xbee con el que se quiere comunicar.

Node Identifier: Es el identificador de nodo, es un string corto que permite identificar fácilmente un módulo con un nombre.

Baud Rate: es la velocidad de transmisión serial.

<u>Sleep Mode:</u> es el que permite colocar el modo del Xbee ya sea router o end device.

Xbee Router

Se debe descargar el firmware Zigbee Router AT la versión más reciente.

Luego configurar los siguientes parámetros:

PAN ID	1234
Channel Verification	enabled
Destination address High	13A200
Destination address Low	41256EFE
Node Identifier	ROUTER
Baud Rate	9600
Sleep Mode	No Sleep (Router) [0]

Y guardamos las configuraciones realizadas seleccionando la opción "Write"

Xbee Coordinador

Se debe descargar el firmware Zigbee Coordinador AT la versión más reciente.

Luego configurar los siguientes parámetros:

PAN ID	1234
Destination address High	13A200
Destination address Low	41256F0B
Node Identifier	COORDINADOR
Baud Rate	9600

Y guardamos las configuraciones realizadas seleccionando la opción "Write"

4) Sensado y transmisión de datos por medio de Waspmote IDE

Waspmote IDE permitirá programar el Xbee Router para la transmisión de datos recolectados por el módulo Waspmote Gas Sensor, específicamente del sensor de CO2, hacia el Xbee coordinador que estará conectado al Arduino del Thinxtra.

5) Programar Thinxtra para el envió de datos al backend de sigfox

Por medio del IDE de Arduino se realiza un código que recibe los datos del Xbee coordinador, esos datos serán analizados y mediante fórmulas se determinara la cantidad de árboles necesarios para plantar en esa zona para contrarrestar el nivel de contaminación. Luego esos datos serán enviados al backend de sigfox por medio del módulo WISOL.

Bibliografía

- Informacion acerca del Xbee: https://aprendiendoarduino.wordpress.com/2016/11/16/zigbeexbee/
- Configuración punto a punto entre Xbee: https://www.youtube.com/watch?v=slkPhaPvq3w
- Waspmote Zigbee: http://www.libelium.com/downloads/documentation/waspmote-zigbee-networking_guide.pdf
- Ejemplos de programación en Waspmote: http://www.libelium.com/development/waspmote/examples/

- Primer programa en Waspmote PRO: http://www.libelium.com/downloads/documentation/quickstart_guide.pdf
- Zigbee RF Modules: https://www.digi.com/resources/documentation/digidocs/PDFs/90000976.pdf

Anexos

Parámetros de Xbee Router

Parámetros de Xbee Coordinador

