

CosmicWatch: The Desktop Muon Detectors, exploring gamma-ray spectroscopy

Andrés Felipe Vargas-Londoño

Universidad Nacional de Colombia Facultad de Ciencias Departamento de Física Sede Bogotá, Colombia 2024

CosmicWatch: The Desktop Muon Detectors, exploring gamma-ray spectroscopy

Andrés Felipe Vargas-Londoño

Tesis presentada como requisito parcial para optar por el título de: **Físico**

Director(a):
Prof. Luis Fernando Cristancho Mejia
Codirector(a):
Prof. Spencer Axani

Línea de investigación:
Espectroscopía gamma
Grupo de investigación:
Grupo de Física Nuclear Universidad Nacional (GFNUN)
Axani Group (AxLab)

Universidad Nacional de Colombia Facultad de Ciencias Departamento de Física 2024 Cita 01.

 $\begin{array}{c} \text{Autor} \\ \textit{Fuente} \end{array}$

Wenn du es nicht einfach erklären kannst, hast du es nicht genug verstanden - Si no eres capaz de explicar algo claramente, es que aún no lo has entendido lo suficiente.

Albert Einstein

Declaración

Declaración

Me permito afirmar que he realizado ésta tesis de manera autónoma y con la única ayuda de los medios permitidos y no diferentes a los mencionados el presente texto. Todos los pasajes que se han tomado de manera textual o figurativa de textos publicados y no publicados, los he reconocido en el presente trabajo. Ninguna parte del presente trabajo se ha empleado en ningún otro tipo de tesis.

Sede Bogotá., Fecha entrega

Andrés Felipe Vargas-Londoño

Acknowledgments

This goes to my family, my mom and my dad, who no matter how many mistakes I make, there is never a hint of judgement or disappointment. To every teacher who put his soul into letting me explore a corner of their bast knowledge. And to every friend who stood there when things did not seem to be going anywhere. But also specially to myself, for not letting me ever down.

Listado de símbolos y abreviaturas

Resumen

CosmicWatch: Los Detectores de Muones de Escritorio, explorando la espectroscopía gamma

Texto del resumen.

Palabras clave: Use palabras clave que estén en Theasaurus

Abstract

Abstract

CosmicWatch: The Desktop Muon Detectors, exploring gamma-ray spectroscopy

Abstract text.

Keywords: Use keywords available in Theasaurus

Table of contents

A	knowledgments	II
Li	cado de símbolos y abreviaturas	III
Re	sumen	IV
Al	stract	V
Ta	ple of contents	VII
Li	of Figures	VIII
Li	of Tables	IX
1.	Introduction	1
2.	Physical aspects	2
	2.1. Radioactivity	2
	2.2. Cosmic Radiation	2
	2.3. Particle interactions with matter	2
3.	Detector description	3
	3.1. History	3
	3.2. Plastic vs. LYSO	3
	3.3. Power Consumption	3
	3.4. KiCad	3
	3.5. Accessories	3
	3.6. 3D printed case	3
4.	Detection methods	4
	4.1. Scintillation	4
	4.2. Single photon detectors	4

_T	ABLI	E OF CONTENTS	VII	
	4.3.	PMT's	4	
	4.4.	SiPM advantages	4	
5.	Elec	etronics	5	
	5.1.	Amplifier	5	
	5.2.	Peak Detector	5	
	5.3.	Trigger	5	
	5.4.	Microcontroller	5	
	5.5.	DC to DC booster	5	
	5.6.	Single photons	5	
6.	Gea	ant4 Simulation	6	
	6.1.	What is Geant4?	6	
	6.2.	Geometry	6	
	6.3.	Muons going through the scintillator	6	
	6.4.	Photons collected vs. produced	6	
	6.5.	Optimum SiPM placement	6	
	6.6.	Simulated Spectra	6	
7.	Mea	asurements	7	
	7.1.	Rohde&Schwarz RTO6 oscilloscope	7	
	7.2.	CosmicWatch electronics	7	
	7.3.	NIM	7	
8.	Ong	going work and future directions	8	
	8.1.	Odd features in Cesium spectra	8	
	8.2.	Adding LYSO radioactivity to Geant4	8	
9.	Cor	aclusion	9	
Α.	Ras	pberryPi Pico code	10	
$\mathbf{R}_{\mathbf{c}}$	References			

List of Figures

LIST OF TABLES

List of Tables

Introduction 1

Chapter 1

Introduction

CosmicWatch: The Desktop Muon Detectors, are a self-contained, low-cost, and easy-to-build particle detector for students, scientists, and cosmic-ray enthusiasts. It aims to make particle detection interactive and available to anyone interested in learning about the electronics and physics involved in this area of expertise. With this in mind, the detector design prioritizes the user experience across the board, from its construction to data acquisition and processing. It uses a silicon photomultiplier (SiPM) to collect light emitted by a plastic scintillator after a charged particle, like a cosmic-ray muon, deposits some of its energy in it. This project aims to further expand the capabilities of CosmicWatch by exploiting the already existing electronics and implementing the necessary features to transform the detector into a portable gamma-ray spectrometer

Using a Cerium doped Lutetium-based scintillation crystal (LYSO), we have achieved an energy resolution of $4.86\sqrt{E~\mathrm{[MeV]}}$ while testing in a Rohde&Schwarz RTO6 oscilloscope to sample the data.

The human body is known to have many limitations, our senses are often not the best tools to delve into the intricacies of nature. For many years scientists have taken advantage of the sensitivity of materials to further expand our capabilities to explore the world around us, bringing to our reach worlds once invisible. Scintillating crystals for example have allowed us to develop a type of detector able to distinguish the energy deposition in it, making elusive particles trackable, no longer letting them escape our curiosity. The wonders of these types of detectors are sadly not easily available to everyone, scintillating and solid-state detectors are often out of the economic capacities of most. CosmicWatch Desktop Muon Detectors are therefore an extremely powerful tool to bring particle detection closer to the public, students, and young scientists like myself. This work thus aims to further explore and expand the capabilities of CosmicWatch, hoping to one day provide a self-contained, low-cost, and easy-to-build particle detector suited for gamma-ray spectroscopy.

Physical aspects

- 2.1. Radioactivity
- 2.2. Cosmic Radiation
- 2.3. Particle interactions with matter

Detector description

- 3.1. History
- 3.2. Plastic vs. LYSO
- 3.3. Power Consumption
- 3.4. KiCad
- 3.5. Accessories
- 3.6. 3D printed case

In order to make the crystal easier to mount on the SiPM PCB it was necessary to design a 3D printed case. With this we made sure that the crystal would not move with respect to the SiPM, preventing scratches and providing a more stable optical coupling with the photomultiplier.

The design keeps in mind that the crystal has to be wrapped in teflon tape to increase reflectivity, which is why it comes in two pieces that come together around the crystal, lowering the risk of tears. Once the crystal is placed in the case it can be kept together by means of electrical tape.

Detection methods

- 4.1. Scintillation
- 4.2. Single photon detectors
- 4.3. PMT's
- 4.4. SiPM advantages

Electronics 5

Chapter 5

Electronics

CosmicWatches have to be mainly low-cost and easy to build, in order to achieve this the components selected for the construction have been carefully curated to make sure this restrictions were met. This however might be greatly responsible for some of the odd features found while testing the detector, like the lack of linearity. The full KiCad project can be found in CosmicWatch-gamma-spectroscopy-PCB.

- 5.1. Amplifier
- 5.2. Peak Detector
- 5.3. Trigger
- 5.4. Microcontroller
- 5.5. DC to DC booster
- 5.6. Single photons

Geant4 Simulation

- 6.1. What is Geant4?
- 6.2. Geometry
- 6.3. Muons going through the scintillator
- 6.4. Photons collected vs. produced
- 6.5. Optimum SiPM placement
- 6.6. Simulated Spectra

Measurements 7

Chapter 7

Measurements

- 7.1. Rohde&Schwarz RTO6 oscilloscope
- 7.2. CosmicWatch electronics
- 7.3. NIM

Ongoing work and future directions

- 8.1. Odd features in Cesium spectra
- 8.2. Adding LYSO radioactivity to Geant4

Conclusion 9

Chapter 9

Conclusion

Appendix A

RaspberryPi Pico code

BIBLIOGRAPHY 11

Bibliography