Les inéquations du 1er degré

Par exemple, 2x-8<10 est une inéquation : il faut trouver **tous les nombres** x pour lesquels 2x-8 est plus petit que 10. 1 et 7 sont des exemples de solutions, mais il y en a beaucoup d'autres.

Méthode

Une inéquation se résout comme une équation, mais à la dernière étape, **si le nombre devant x est négatif** (et que l'on doit donc diviser par un nombre négatif) **il faut changer le sens de l'inégalité** : < devient >, et > devient <. En effet, on a par exemple 20 qui est plus petit que 30, donc 20<30, mais si on divise 20 et 30 par le nombre négatif -10, on obtient -2 et -3, et -2>-3. On observe un changement dans le sens de l'inégalité.

Exemple

Résolution de l'inéquation $3x - 6 \le 6x - 12$.

 $3x-6 \le 6x-12$ 1. $3x-6x \le -12+6$ On passe les "x" à gauche et les nombres à droite
2. $-3x \le -6 \Rightarrow$ On réduit les expressions obtenues.
3. $x \ge (-6) \div (-3)$ On divise par le nombre qui est devant "x".
4. $x \ge 2$ On obtient les solutions.

On écrit l'ensemble des solutions : $S = [2;+\infty[$

Exercice 1

Comment peut-on écrire l'ensemble des nombres x tels que $x \le 2$?

Exercice 2

Quelles sont les solutions de l'inéquation 5x+15<25?

Exercice 3

Quelles sont les solutions de l'inéquation 2x+6<4x-2?

Exercice 4

Quelles sont les solutions de l'inéquation $\frac{1}{4}x - \frac{1}{3} > \frac{1}{2}x - 1$?

Exercice 5

Quelles sont les solutions de l'inéquation 2(6-3x)>-1-x?

Exercice 6

Quelles sont les solutions de l'inéquation (x-2)(x+5) < (x-3)(x-2)?

Exercice 7

Quelles sont les solutions de l'inéquation $(x+5)^2-(x-2)(x+2)>1$?

Exercice 8

Résous l'inéquation $(5-5x)^2 > (1+5x)^2$ puis écris les solutions sous la forme $x < \frac{x}{b}$, avec $\frac{x}{b}$ une fraction irréductible. Combien trouves-tu pour a et b?

Inéquations et tableaux de signes

Résolution de l'inéquation (2x-2)(4x+16)>0.

Méthode

• **1. On étudie le signe** de 2x-2 en fonction de x et celui de 4x+16 en fonction de x. Pour cela, on cherche les valeurs de x pour lesquelles ces expressions sont positives.

$$2x-2>0$$
 $4x+16>0$ $2x>2$ $4x>-16$ $x>-4$

Donc 2x-2>0 lorsque x>1 et 4x+16>0 lorsque x>-4.

• **2. On dessine** un tableau comme ci-dessous en faisant apparaître les valeurs pour lesquelles les expressions 2x-2 et 4x+16 sont égales à zéro (-4 et 1).

valeurs de x	 4 1	+∞
signe de 2 x - 2		
signe de 4 x + 16		
signe de (2x-2)(4x+16)		

• **3. On complète les premières lignes** en inscrivant des "-" si l'expression est négative pour les valeurs de x qui figurent au-dessus, des "+" le cas échéant, et un zéro sur la barre verticale correspondant à la valeur qui annule l'expression.

Х	- 00	- 4		1	+∞
signe de 2 x - 2				Φ	+
signe de 4 x + 16		Φ	+		+
signe de (2x-2)(4x+16)					

• **4. On remplit la dernière ligne** en effectuant sur chaque colonne le produit des signes des deux expressions en respectant les règles des signes pour un produit.

Х	- 00	- 4		1	+∞
signe de 2 x - 2				Φ	+
signe de 4 x + 16		Φ	+		+
signe de (2x-2)(4x+16)	+	Φ	_	Φ	+

• **5. On lit les solutions** en regardant la première et la dernière ligne du tableau.

On cherchait les solutions de (2x-2)(4x+16)>0.

(2x-2)(4x+16)>0 (+) lorsque x est strictement plus petit que -4 et lorsque x est strictement plus grand que 1.

Les solutions sont donc : $S=]-\infty;-4[\cup]1;+\infty[$

Le cas des quotient

On utilise la même méthode que pour les produits, mais à l'étape 4, on place une double barre sur la dernière ligne pour les valeurs de x pour lesquelles il y a une division par zéro. Comme une division par zéro est impossible, il faudra retirer ces valeurs de l'ensemble des solutions.

Exemple:

$$\frac{3x-9}{x+5} \le 0$$

S = -5;3

Et avec encore plus de lignes!

Dernier exemple avec la résolution de l'inéquation $\frac{(-2x-2)(2x-10)}{-9x-81} \ge 0$ On utilise toujours la même méthode.

$$\begin{array}{lll}
-2x-2>0 & 2x-10>0 & -9x-81>0 \\
-2x>2 & 2x>10 & -9x>81 \\
\frac{-2x}{-2} < \frac{2}{-2} & \frac{2x}{2} > \frac{10}{2} & \frac{-9x}{-9} < \frac{81}{-9} \\
x<-1 & x>5 & x<-9
\end{array}$$

Х	-00 -	9 -	1 5	- +∞
- 2 x - 2	+	+ (> —	_
2 x - 10		_	- (> +
- 9 x - 81	+ () —		_
(-2x-2)(2x-10) -9x-81	_	+ () — () +

 $S =]-9;-1] \cup [5;+\infty[$

Exercice 1

Quelles sont les solutions de l'inéquation $(x-2)(x+4) \ge 0$?

Exercice 2

Quelles sont les solutions de l'inéquation $(x+4)(5-x)(-x+6) \ge 0$?

Exercice 3

Quelles sont les solutions de l'inéquation $\frac{1}{x} > 2$? **Exercice 4**

Quelles sont les solutions de l'inéquation $\frac{(x-1)(x-5)}{16-8x} \ge 0$?

Exercice 5

Quelles sont les solutions de l'inéquation $\frac{x^2-7}{x} \ge 0$? **Exercice 6**

Quelles sont les solutions de l'inéquation $(x-7)(x+1)+(x-7)(x-1) \ge 0$?

Exercice 7

Quelles sont les solutions de l'inéquation $(x+2)^2 - (x+2)(2x+9) \ge 0$?

Exercice 8

Quelles sont les solutions de l'inéquation $\frac{1}{x^2 + x} \ge 0$?

Exercice 9

Quelles sont les solutions de l'inéquation $(3x-2)^2 + 2(3x-2) \le x^2$?

Exercice 10

Quelles sont les solutions de l'inéquation $\frac{x^2 + 4x + 4}{x^2 - 9} \le 0$?