

Project Presentation

Thirteen Bus System

EEE 306 Sessional

Bangladesh University of Engineering and Technology

28 February 2023

Supervisors:

Ashikur Rahman Jowel Lecturer, EEE, BUET

Tanshia Tahreen
Part-Time Lecturer, EEE, BUET

Presenters: Group: 02

Shakir Ahmed ID: 1906074

Mehedi Hasan ID: 1906075

Abu Sayed ID: 1906076

Md. Sharif Uddin ID: 1906077

Asif Aftab Ronggon ID: 1906078

Faiyaz Uddin ID: 1906079

Md. Liton Ali ID: 1906080

Aninday K Choudhury ID: 1906081

Objectives:

Performing load flow analysis on a 13-bus power system

Increasing voltage of load buses

Determining the rating of circuit breaker through fault analysis

Reducing three phase fault current at load buses

Platforms:

* CYME PSAF

The Given Power System:

Assumptions

- Generator Rating: 100 MVA
- Transformer Rating: 100 MVA
- Transformer Standard: 100 MVA
- Emergency Rating: 150MVA
- Transformer X1/R1: 999.99
- Z = X
- Branch Data: Loading Limit 700 A, Emergency Loading Limit 750 A
- Generator Data : G1 \rightarrow 1.06 * 138 = 146.28 kV
- Generator Data : $G2 \rightarrow 1.02 * 138 = 140.76 \text{ kV}$
- Generator Data : G12 \rightarrow 1.01 * 66 = 66.66 kV
- Bus Data: Bus $7 \rightarrow PF = 0.9$ Lagging

Bus Data:

Bus No.	Nominal Voltage (kV)	Туре	Real Power Load (MW)	Reactive Power Load (MVAR)
1	138	Slack Bus		
2	138	PV		
3	138	PQ	95	20
4	138	PQ	45	0
5	138	PQ	10	2
6	66	PQ	11	7.5
7	66	PQ	K×L ¹	2
8	66	PQ	25	7
9	66	PQ	20	6
10	66	PQ	20	5
11	66	PQ	30	10
12	66	None	13.5	6
13	66	PQ	20	5

Replace 'L' with your group number. K = 4 for group A2 and K=5 for group B1. Load power factor at bus 7 should be maintained at 0.9 lagging.

Generator Data:

(2) Generator Data

Bus No.	Pg	Vg (pu)	Q _{max} (MVAR)	Q _{min} (MVAR)		
1	Slack (not specified)	1.06	-	-		
2	100	1.02	50	-40		
12	20	1.01	100	-60		

Branch Data

From	To	D (nu)	V (nu)	D (pu)
FIOIII		R (pu)	X (pu)	B (pu)
Bus 1	Bus 2	0.01938	0.05917	0.05280
Bus 1	Bus 5	0.05403	0.22304	0.04920
Bus 2	Bus 3	0.04699	0.19797	0.04380
Bus 2	Bus 4	0.05811	0.17632	0.03400
Bus 2	Bus 5	0.05695	0.17388	0.03460
Bus 3	Bus 4	0.06701	0.17103	0.01280
Bus 4	Bus 5	0.01335	0.04211	0
Bus 6	Bus 10	0.09498	0.19890	0
Bus 6	Bus 11	0.12291	0.25581	0
Bus 6	Bus 12	0.06615	0.13027	0
Bus 7	Bus 8	0	0.11001	0
Bus 8	Bus 9	0.03181	0.08450	0
Bus 8	Bus 13	0.12711	0.27038	0
Bus 9	Bus 10	0.08205	0.19207	0
Bus 11	Bus 12	0.22092	0.19988	0
Bus 12	Bus 13	0.17093	0.34802	0

Transformer Data:

From	To	R (pu)	X (pu)	B (pu)
Bus 4	Bus 7	0	0.20912	0
Bus 4	Bus 8	0	0.55618	0
Bus 5	Bus 6	0	0.25202	0

Objective A

Part 1: Load flow analysis on PSAF

Bus Voltage Report

ID	Zone	kV Base	V Sol [pu]	Ang sol[deg]	Vmin(pu)	Vmax(pu)	Pgen(MW)	Q gen (MVAR)	P Load(MW)	Q Load(M VAR)
B1	0	138	1.06	0	0.9	1.1	193.5	168.91	0	0
B10	0	66	0.942	-15.1	0.9	1.1	0	0	20	5
B11	0	66	0.937	-16.5	0.9	1.1	0	0	30	10
B12	0	66	1.01	-13.8	0.9	1.1	20	38.55	13.5	6
B13	0	66	0.917	-17	0.9	1.1	0	0	20	5
B2	0	138	1.02	-0.2	0.9	1.1	100	-115.63	0	0
В3	0	138	0.957	-7.8	0.9	1.1	0	0	95	20
B4	0	138	0.99	-5.3	0.9	1.1	0	0	45	0
B5	0	138	1.016	-3.4	0.9	1.1	0	0	10	2
B6	0	66	0.986	-12.8	0.9	1.1	0	0	11	7.5
B7	0	66	0.968	-10.6	0.9	1.1	0	0	10	4.84
B8	0	66	0.936	-14.3	0.9	1.1	0	0	25	7
B9	0	66	0.929	-15.2	0.9	1.1	0	0	20	6

Generator Report:

													Q		
		Dba		Rated	kV	Gener		Q	S			Qmin	Max		Ctrled
	Bus	se		S	Nomi	ator	Р	(MVA	(MVA	P Factor	•	(MVA	(MVA	Ctrled	Bus/V
ID	ID	ID	Type	(MVA)	nal	Type	(MW)	R))	(%)	I (pu)	R)	R)	BusID	(pu)
				Genera											
G12		B12	G12	tor	100	66.66	PV	20	38.55	43.43	46.1	0.43	100	-60	B12
				Genera											
G1		B1	G1	tor	100	146.28	SW	193.5	168.91	256.85	75.3	2.423	43.59	-43.59	B1
		·	_	Genera	_	•	·	·	-		•	_	·	·	
G2		B2	G2	tor	100	140.08	PV	100	115.63	152.88	65.4	1.499	50	-40	B2

Line Report:

			/ /		/ /	1		A.	N17			1// \		\			91	
														Q	Amp			
													Р	Loss	acity		Amp	Load
	Bus				kV		(2		P.Fa		I	Loss	es	(Nor	Load	i acity	(ng
	Fro		Dbas		Nomi Leng	P	(MVA		ctor		angle	es	(MVA	m.)	ng	Emer	Emer
ID	m	Bus To	e ID	Type	nal th	(1	/IW) F	?)	S(MVA)	(%)	I (pu)	(deg)	(MW)	R)	(pu)	(%)) (pu)	(%)
L610	B6	B10	L610	Line	66 1	1	23.78	11.27	26.31	90.4	4 0.26	7 -38.	2 0.68	8 1.4	2 0.	8 33.	3 0.85	7 31.
L611	B6	B11	L611	Line	66 1	1	26.47	7.16	27.42	96.5	0.27	3 -27.9	9 0.9	5 1.9	8 0.	8 34.	7 0.85	7 32.4
L612	B6	B12	L612	Line	66 1	1	3.88	-19.72	20.1	19.3	3 0.20	4 66.	1 0.27	7 0.5	<u>4 0.</u>	8 25.	5 0.85	7 23.8
L813	B8	B13	L813	Line	66 1	1	14.98	-0.28	14.98	100	0.10	6 -13.2	2 0.33	3 0.6	9 0.	8 20	0.85	7 18.
L910	B9	B10	L910	Line	66 1	1	-3.07	-4.78	5.68	-54	4 0.06°	1 107.	5 0.03	3 0.0	7 0.	8 7.0	0.85	7 7.
L12s	B1	B2	L12	Line	138 1	1	27.15	59.81	65.69	41.3	3 0.62	2 -65.0	6 0.8	1 -3.2	5 1.67	3 3	7 1.79	3 34.0
L12	B1	B2	L12	Line	138 1	1	27.15	59.81	65.69	41.3	3 0.62	2 -65.0	6 0.8	1 -3.2	5 1.67	3 3	7 1.79	3 34.0
L23	B2	B3	L23	Line	138 1	1	70.2	18.06	72.48	96.8	3 0.71°	1 -14.0	6 2.4	1 5.8	8 1.67	3 42.	5 1.79	3 39.0
L24	B2	B4	L24	Line	138 1	1	51.77	1.02	51.78	100	0.50	3 -1.	3 1.	5 1.1	2 1.67	3 30.	3 1.79	3 28.
L34	B3	B4	L34	Line	138 1	1	-27.22	-7.82	28.32	-96.1	0.29	6 156.°	1 0.58	8 0.2	7 1.67	3 17.	7 1.79	3 16.
L15	B1	B5	L15	Line	138 1	1 -	139.19	49.29	147.66	94.3	3 1.39	3 -19.	5 2.5	5 -12.6	8 1.67	3 83.	3 1.79	3 77.
L25	B2	B5	L25	Line	138 1	1	30.72	-8.6	31.91	96.3	3 0.31	3 15.4	4 0.54	4 -1.9	3 1.67	3 18.	7 1.79	3 17.4
L45	B4	B5	L45	Line	138 1	1	-90.44	-32.04	95.95	-94.3	3 0.97	7 155.:	2 1.20	6 3.9	6 1.67	3 57.9	9 1.79	3 54. ⁻
L78	B7	B8	L910	Line	66 1	1	31.96	3.35	32.13	99.5	0.33	2 -16.	5 0.9	9 2.1	2 0.	8 41.	5 0.85	7 38.
L89	B8	B9	L89	Line	66 1	1	17.04	1.5	17.1	99.6	0.18	3 -19.	3 0.1	1 0.2	8 0.	8 22.	0.85	7 21.
L1112	B11	B12	L1112	Line	66 1	1	-4.48	-4.81	6.58	-68.2	2 0.0	7 116.	5 0.1 ²	1 0.5	9 0.	8 8.	0.85	7 8.2
L1213		B13	L1213	Line	66 1	1	5.52	6.89	8.83	62.5	0.08	7 -65.	1 0.17	7 0.9	2 0.	8 10.9	9 0.85	7 10.2

Assumptions:

Loading Limit: 700A

Emergency Loading Limit: 750A

Abnormal Report: part 1

BUSES OUTSIDE VOLTAGE LIMITS (100 %) Bus ID Zone kV Base Vmin - [pu] Vmax - [pu] V sol - [pu] Ang sol - [deg] OVERLOADED LINES & CABLES (WITHIN 100 %) Bus Power Flow - Loading Limit From Bus To Emergency Loading Limit - [pu] [pu] - [pu] UNDERLOADED LINES & CABLES (WITHIN 50 %) Ruc Dower Flow

	Bus		Power Flow -		
ID	From	Bus To	[pu]	Loading Limit - [pu]
L610	B6	B10	0.26	7 0.4	
L611	B6	B11	0.27	8 0.4	
L612	B6	B12	0.20	4 0.4	
L813	B8	B13	0.10	6 0.4	
L910	B9	B10	0.06	1 0.4	
L12s	B1	B2	0.63	2 0.837	
L12	B1	B2	0.63	2 0.837	
L23	B2	B3	0.71	1 0.837	
L24	B2	B4	0.50	8 0.837	
L34	В3	B4	0.29	6 0.837	
L25	B2	B5	0.31	3 0.837	
L78	B7	B8	0.33	2 0.4	
L89	B8	B9	0.18	3 0.4	
L1112	B11	B12	0.0	7 0.4	
L1213	B12	B13	0.08	7 0.4	

Abnormal Report: part 2

		D TRANSFORMERS	(\sim	7	
WITHI	N 100 9	%)						
				Loading				
	Bus		Flow -	Limit -				
ID	From	Bus To	[MVA]	[MVA]	Emergenc	y Loading	Limit - [M\	/A]
UNDE	RLOAD	ED TRANSFORMER	S (
WITHI	N 50 %	6)	· 					
			Power					
	Bus		Flow -					
ID	From	Bus To	[MVA]	Loading L	imit - [MVA	\]		
T47	B4	B7	43.716	50				
T48	B4	B8	28.424	50				
GENE	RATOF	RS AT REACTIVE LIM	ITS (
	N 0%							
	Bus		Q Gen -	Q Min -				
ID	From	P Gen - [MW]	[MVAR]	[MVAR]	Q Max - [N	/IVAR]		
G2	B2		-115.63		50			
TRANS	SFORM	MERS AT TAP LIMITS	(
	N 0%		`					
		<i>'</i>	Тар					
	Bus			Min Tap -				
ID	1	Bus To	[%]		Max Tap -	[%]		
/	7XX				IXI		750	X
	1/-/	\times	\rightarrow	\rightarrow	\vee	\leftarrow		

Summery Report:

LOAD FLOW STUDY PARAMETERS

Study: ModelGrid1

Time: Tue Feb 28 10h08m54s 2023

Method: Newton-Raphson

Constraints: Not applied Flat start: Yes

Tcul txfo used as fixed tap: n\a
Block Q-flow Txfo Adjustment n\a
Block P-flow Txfo Adjustment: n\a
Block Switchable Shunt Adjustment: n\a
Block DC Link Adjustment: n\a

Base power : 100.00 [MVA]
Tolerance : 0.100 [MVA]

	COMPLETE SUMMARY REPORT		
Summary Data	Active Power	Reactive Power	
Total generation	313.495	91.826	
Spinning reserve	-43.495		
Static Load	299.500	73.343	
Shunt loads	0.000	0.000	
Motor loads	0.000	0.000	
Total load	299.500	73.343	
Line / cable losses	13.995	-1.272	
Transformer losses	0.000	19.755	
Total losses	13.995	18.483	
Mismatches	0.000	0.000	

Objective a

Part 2: Load flow analysis on MATLAB

Flow chart for Newton-Raphson

Taking Bus Data 13 x 10 Matrix

Taking Line Data 13 x 10 Matrix

Create Admittance Matrix

Extract Power Data from Power Data Matrix

Calculating Scheduled Power As Net Power

Calculating PV and PQ Buses

Calculate PQ Mismatch Matrix

Create Jacobian Matrix

Solve Equations

Update Voltage Magnitude for PQ and PV Buses until tolerance requirement (while loop)

Calculate the Required Data

$$P_{i} = |V_{i}|^{2} G_{ii} + \sum_{\substack{n=1\\n\neq i}}^{N} |V_{i}V_{n}Y_{in}| \cos(\theta_{in} + \delta_{n} - \delta_{i})$$

$$Q_{i} = -|V_{i}|^{2} B_{ii} - \sum_{\substack{n=1\\n\neq i}}^{N} |V_{i}V_{n}Y_{in}| \sin(\theta_{in} + \delta_{n} - \delta_{i})$$

$$\Delta P_i = P_{i, \text{sch}} - P_{i, \text{calc}}$$

$$\Delta Q_i = Q_{i, \text{sch}} - Q_{i, \text{calc}}$$

```
%calculation of P-O mismatch matrix
    for i = 1:nbus
       for k = 1:nbus
            P(i) = P(i) + V(i)* V(k)*(abs(Y(i,k))*cos(Yangle(i,k)+del(k)-del(i)));
            Q(i) = Q(i) - V(i)* V(k)*(abs(Y(i,k))*sin(Yangle(i,k)+del(k)-del(i)));
        end
    end
    for i=1:nbus
       if type(i)==2 || type(i)==4
           if Q(i)<=Qmin(i)
              type(i)=4;
              Qsch(i)=Qmin(i);
            elseif Q(i)>=Qmax(i)
              type(i)=4;
              Qsch(i)=Qmax(i);
            else
              type(i)=2;
        end
    end
PV = find(type == 2 | type == 1);
PO = find(type == 3 | type == 4);
n PV = length(PV);
n PO = length(PO);
   dPa = Psch-P;
   d0a = 0sch-0;
    k = 1;
   dQ = zeros(n_PQ,1);
```

$$\frac{\partial P_i}{\partial \delta_j} = -|V_i V_j Y_{ij}| \sin(\theta_{ij} + \delta_j - \delta_i)$$

$$\frac{\partial P_i}{\partial \delta_i} = -Q_i - |V_i|^2 B_{ii}$$

```
\begin{aligned} |V_j| \frac{\partial P_i}{\partial |V_j|} &= |V_j| |V_i Y_{ij}| \cos(\theta_{ij} + \delta_j - \delta_i) \\ |V_i| \frac{\partial P_i}{\partial |V_i|} &= \frac{\partial Q_i}{\partial \delta_i} + 2|V_i|^2 G_{ii} = P_i + |V_i|^2 G_{ii} \end{aligned}
```

end

```
% Calculate J11
for i = 1:(nbus-1)
    m = i+1;
   for k = 1:(nbus-1)
       n PV = k+1;
       if n PV == m
            J11(i,k) = -Q(m) - V(m)^2*B(m,m);
        else
            J11(i,k) = -abs(V(m))* abs(V(n_PV))*abs(Y(m,n_PV))*sin(Yangle(m,n_PV)+del(n_PV)-del(m));
        end
   end
% Calculate J12
for i = 1:(nbus-1)
    m = i+1;
   for k = 1:n_PQ
       n_PV = PQ(k);
        if n_PV == m
            J12(i,k) = P(m)+V(m)^2*G(m,m);
        else
            J12(i,k) = abs(V(m))*abs(V(n_PV))*abs(Y(m,n_PV))*cos(Yangle(m,n_PV)+del(n_PV)-del(m));
        end
   end
```

```
\frac{\partial Q_i}{\partial \delta_j} = -|V_i V_j Y_{ij}| \cos(\theta_{ij} + \delta_j - \delta_i)
\frac{\partial Q_i}{\partial \delta_i} = P_i - |V_i|^2 G_{ii}
```

```
|V_{j}| \frac{\partial Q_{i}}{\partial |V_{j}|} = -|V_{j}| |V_{i}Y_{ij}| \sin(\theta_{ij} + \delta_{j} - \delta_{i}) = \frac{\partial P_{i}}{\partial \delta_{j}}
|V_{i}| \frac{\partial Q_{i}}{\partial |V_{i}|} = -\frac{\partial P_{i}}{\partial \delta_{i}} - 2|V_{i}|^{2}B_{ii} = Q_{i} - |V_{i}|^{2}B_{ii}
```

```
% Calculate J21
for i = 1:n PQ
    m = PQ(i);
    for k = 1:(nbus-1)
        n PV = k+1;
        if n PV == m
            J21(i,k) = P(m)-(V(m)^2)*G(m,m);
        else
            J21(i,k) = -(abs(V(m))* abs(V(n_PV))*abs(Y(m,n_PV))*(cos(Yangle(m,n_PV)+del(n_PV)-del(m))));
        end
    end
end
% Calculate J22
for i = 1:n_PQ
    m = PQ(i);
    for k = 1:n_PQ
        n_PV = PQ(k);
        if n_PV == m
            J22(i,k) = Q(m)-V(m)^2*B(m,m);
        else
            J22(i,k) = -abs(V(m))*abs(V(n_PV))*abs(Y(m,n_PV))*sin(Yangle(m,n_PV)+del(n_PV)-del(m));
        end
    end
end
```

```
\Delta\delta_2
                                                                                                                                                                                         \Delta P_2
                    \mathbf{J}_{11}
                                                                                          J_{12}
 \partial P_4
                                       \partial P_4
                                                                     \partial P_{A}
                                                                                                        |V_4| \frac{1}{\partial |V_4|}
                                                                                                                                                      \Delta \delta_{A}
                                                                                                                                                                                         \Delta P_{a}
 \partial \delta_2
\frac{\partial Q_2}{\partial \delta_2}
                                      \partial Q_2
                                                                    \partial Q_2
                                                                                                                                                    \Delta |V_2|
                                                                                                                                                                                         \Delta Q_2
                                                                                                                                                      |V_2|
                    J_{21}
                                                                                           J_{22}
\frac{\partial Q_4}{\partial \delta_2}
                                      \partial Q_4
                                                                     \partial Q_4
                                                                                                                        \partial Q_4
                                                                                                                                                    \Delta |V_{a}|
                                                                                                                                                                                         \Delta Q_4
                                                                                                                                                      |V_4|
                                                       Jacobian
                                                                                                                                              Corrections
                                                                                                                                                                                 Mismatches
```

```
% Form Jacobian matrix
J(1:nbus-1,1:nbus-1) = J11;
J(1:nbus-1,nbus:end) = J12;
J(nbus:end,1:nbus-1) = J21;
J(nbus:end,nbus:end) = J22;
% Solve equations
correction matrix = J\M;
del theta = correction matrix(1:nbus-1);
delv = correction matrix(nbus:end);
   %% updating
   % Updating voltage angles
 del(2:end) = del(2:end) + del theta;
% Updating voltage magnitudes for PO and PV buses
 pv_pq_idx = find(type == 3 | type == 4); % indices of PV and PQ buses
 V(pv pq idx) = V(pv pq idx) + delv;
% Incrementing iteration counter
 iteration = iteration + 1;
% Computing tolerance as maximum absolute value of correction vector
  tolerance = max(abs([del_theta; delV]));
end
Del = 180/pi*del;
```

[fb, tb, Pij, Qij] = loadanalysis(Y,bus_data,line_data,V,del,base,iteration);

Newton Raphson Loadflow Analysis

busNum	voltage	angle	genMW	genMVar	loadMW	loadMVar
1	1.06	0	197.42	56.246		
2	1.02	-3.3084	100	9.1034	0	0
3	0.94287			7.6529e-05	95	20
4	0.96685	-10.495	-1.1119e-05	-4.2043e-05	45	0
5	0.98371	-9.1761	-2.657e-06	-9.3001e-06	10	2
6	0.98375	-9.186	-6.2848e-06	-1.436e-05	11	7.5
7	0.96684	-10.496	-8.3332e-08	3.6609e-06	10	4.8432
8	0.96679	-10.514	-8.2934e-06	-1.4235e-05	25	7
9	0.95432	-11.425	6.8075e-06	1.9708e-05	20	6
10	0.9535	-11.377	5.1429e-06	1.1942e-05	20	5
11	0.96006	-11.816	3.3195e-06	4.7956e-06	30	10
12	1.01	-11.557	20	54.941	13.5	6
13	0.96217	-12.587	1.0426e-06	2.541e-06	20	5
 otal		17.919	46.947	317.419 120.2	90 299.50	73.343

Line Flow and Losses

	rom Tom Tom		P MW	_			To Bus	P MW	I I	Q MVar	I I	Line I	Loss MVar
 I	1	2	117.33	33	.31	2	1	-114.7	73	-31.0	8	2.60	2.23
1	-			9 20								3.33	8.62
1				24	.05	3		-77.4				3.25	9.49
1	2	4	73.5	5 9					17	-3.1	L2	3.09	6.01
1	2	5	60.4	7 2	.71	5	2	-58.4	16	-0.0	3	2.01	2.67
	3	4	-17.55	5 -6	.70	4	3	17.8	31	6.1	19	0.26	-0.50

1	4	5	-58.22	-19.67	5	4	58.76	21.37	0.54	1.70
1	61	10	20.64	5.45	10	61	-20.19	-4.51	0.45	0.94
1	61	11	17.47	1.11	11	6	-17.08	-0.30	0.39	0.81
ī	61	12	17.34	-27.98	12	61	-16.60	29.44	0.74	1.46
ī	7	8	0.26	0.04	8	7	-0.26	-0.04	0.001	0.001
ī	8	91	19.96	6.89	91	8	-19.81	-6.49	0.15	0.40
ī	8	13	10.92	-3.26	13	8	-10.74	3.63	0.18	0.38
ī	91	10	-0.19	0.49	10	9	0.19	-0.49	0.001	0.001
ī	11	12	-12.92	-9.70	12	11	13.54	10.27	0.63	0.57
ī	12	13	9.56	9.23	13	12	-9.26	-8.63	0.30	0.60
ī	4	71	10.26	4.89	7	4	-10.26	-4.89	0.001	0.001
ī	4	8	55.62	10.61	8	4	-55.62	-10.59	0.001	0.02
ī	5	61	66.45	-13.91	61	5	-66.45	13.92	0.001	0.01
11	otal	Loss						17.	919 35.	406
**	****	****	******	*****	****	****	****	* * * * * * * * * * * *	*****	 *******
* *	**									

The number of Iterations it took:6 >>

Objective b

Increasing voltage of load buses

Medium Transmission Line:

Medium Transmission line (>80 km <250 km)

Medium length line, nominal π representation.

From KCL, the current in the series impedance designated by $I_{\rm L}$ is

$$I_{\rm L} = I_{\rm R} + \frac{Y}{2} V_{\rm R} \tag{13}$$

From KVL, the sending end voltage is

$$V_{\rm S} = V_{\rm R} + ZI_{\rm L} \tag{14}$$

From equations 14 and 13

$$V_{\rm S} = \left(1 + \frac{ZY}{2}\right)V_{\rm R} + ZI_{\rm R}$$
(15)

The sending end current is,

$$I_{\rm S} = I_{\rm L} + \frac{Y}{2} V_{\rm S} \tag{16}$$

Here, due to shunt capacitance VR becomes greater than Vs at no load.

Load Bus Voltage increasing using Shunt Capacitor:

Effect of shunt capacitor on load bus voltage:

	Before Voltage	Paguirad							Canacitanas	
		Required Voltage (pu)	1st trial	2nd trial	3rd trial	4th trial	5th trial	Final Voltage	Capacitance MVAR	% rise
									1	2.12314
B10	0.942	0.96084	1	0.969	0.966	0.96	0.959	0.962	2 5	5 2
D11	0.007	0.05574	0.007	0.004	0.00	0.050	0.050	0.056		2.24119
B11	0.937	0.95574	0.987	0.961	0.96	0.958	0.958	0.958	3 2.5	1.96292
B13	0.917	0.93534	1.006	0.96	0.947	0.94	0.939	0.935	5 (1.90292
										1.98537
B3	0.957	0.97614	0.981	0.968	0.968	0.967	0.967	0.976	8	3 1
	0.00	4 0000	4 047	4 000	4 000	4 004	4 004	4.04	٠,	2.02020
B4	0.99	1.0098	1.017	1.002	1.003	1.001	1.001	1.01	15	1.87007
B5	1.016	1.03632	1.035	1.024	1.025	1.024	1.024	1.035	5 45	
										1.82555
В6	0.986	1.00572	1.018	1.001	1.001	0.999	0.999	1.004	10	
										2.06611
B7	0.968	0.98736	1.031	0.998	0.994	0.986	0.986	0.988	3 () (
B8	0.936	0.95472	1.014	0.973	0.966	0.957	0.956	0.956		2.13675
Во	0.930	0.93472	1.014	0.973	0.900	0.937	0.930	0.930		2.15285
В9	0.929	0.94758	1.008	0.966	0.96	0.951	0.949	0.949)) 3

Let's Look at The Given Power System again:

Shunt Capacitance Table:

	ID	Bus ID	DBase ID	Duplic	Status	MVAR	kV Nominal
1	C10	B10	C10	1	▽	5.000	138.000
2	C11	B11	C11	1	✓	2.500	66.000
3	C13	B13	C13	1		0.800	66.000
4	C3	B3	C3	1	✓	8.000	138.000
5	C4	B4	C4	1	✓	15.000	138.000
6	C5	B5	C5	1	✓	45.000	138.000
7	C6	B6	C6	1	✓	10.000	66.000
8	C7	B7	C7	1	П	1.000	66.000
9	C8	B8	C8	1	П	0.000	66.000
10	C9	B9	C9 <u></u>	1		0.000	66.000

Reason for using shunt capacitor:

- Improves power factor
- Eases the lag between current and voltage
- Improves power stability
- Improves voltage profile

Objective C

138 kV Circuit Breaker

Relevant Formaula:

 $Voltage\ Range\ Factor, K=1.6$

Lower Limit of Operating Voltage =
$$\frac{Rated\ Maximum\ Voltage}{K}$$

Maximum Symmetrical Interrupting Current = $K \times Rated$ Short Circuit Current

 $Rated\ Voltage = Rated\ Maximum\ Voltage$

 $Rated\ Momentary\ Current = Maximum\ Symmetrical\ Interrupting\ Current$

Selection Criteria for Circuit Breakers based current profiles:

- The maximum instantaneous current which the breaker must carry
- The total current when the breakers contacts part to interrupt the circuit

Significance of K = 1.6

- Instantaneous current following a fault has a DC component;
- K determines the range of Voltage over which rated short circuit current * operating voltage product is constant.
- ❖ 1.6 chosen following the standard values for high voltage industrial applications

Circuit Breaker Rating:

Bus No.	Related Maximum Voltage (kV)	Rated Voltage (kV)	Lower Limit of Operating Voltage (kV)	Fault Type	Short Circuit Current (A)	Momentary Current(A)	Maximum Symmetrical Interrupting Capability(A)
B1	138	138	86.25	LLL	5779.7679	9247.62864	9247.62864
B2	138	138	86.25	LLL	5719.822	9151.7152	9151.7152
В3	138	138	86.25	LLL	2420.3317	3872.53072	3872.53072
B4	138	138	86.25	LLL	4023.8454	6438.15264	6438.15264
B5	138	138	86.25	LLL	4678.2311	7485.16976	7485.16976
В6	66	66	41.25	LLL	6017.2706	9627.63296	9627.63296
В7	66	66	41.25	LLL	3934.2966	6294.87456	6294.87456
B8	66	66	41.25	LLL	4239.3098	6782.89568	6782.89568
В9	66	66	41.25	LLL	3615.3839	5784.61424	5784.61424
B10	66	66	41.25	LLL	3511.6684	5618.66944	5618.66944
B11	66	66	41.25	LLL	2482.4208	3971.87328	3971.87328
B12	66	66	41.25	LLL	8094.2353	12950.77648	12950.77648
B13	66	66	41.25	LLL	3126.1445	5001.8312	5001.8312

Objective d

Reducing three phase fault current at load buses

Reduction of Fault Current:

								- 27	
Fault Curre	ent Decreasing	Analysi s							
Bus	Fault	Want Value	First(14,999,40,40)	2nd(30,40,40,99)	3rd	4th(WITH	LINE LENG	TH CHANGE	D)
B10	3511.6684	3406.318348	3405	3379	3401	3407			
B11	2482.4208	2407.948176	2441	2431	2235	2421			
B13	3126.1445	3032.360165	3062	3048	3069	3047			
B3	2420.3317	2347.721749	1746	1732	1802	2305			
B4	4023.8454	3903.130038	3533	3445	3572	3848			
B5	4678.2311	4537.884167	3819	3643	3882	4100			
B6	6017.2706	5836.752482	5751	5687	5720	5794			
B7	3934.2966	3816.267702	3737	3697	3753	3792			
B8	4239.3098	4112.130506	4055	4016	4069	4099			
B9	3615.3839 3506.922383		3487	3459	3495	3505			
	% Reduction	With Series Reactor	without line changed	changed line length					
B10	3.037541927	3.777930741	3.151447899	2.980588942					
B11	1.668564814	2.071397404	9.966916165	2.474229994					
B13	2.051872522	2.499708507	1.82795453	2.531696791					
B3	27.86112746	28.43956058	25.54739501	4.765119591					
B4	12.19841597	14.38537872	11.22919385	4.370083403			L		
B5	18.36658091	22.12868663	17.01991806	12.36003711					
B6	4.425105961	5.488711111	4.940289705	3.710496251					
B7	5.014787141	6.031487306	4.608107076	3.616824415					
B8	4.347636967	5.267598042	4.01739453	3.309732164					
B9	3.551044745	4.325512984	3.329768106	3.053172306					

Series Reactor Table:

	ID	Bus From	Bus To	DBase ID	Duplic	Status
1	SR1211	B12_2	B11_2	SR1211 📃	1	F
2	SR1213	B12_2	B13_2	SR1213 📃	1	
3	SR15	B1_2	B5_2	SR15 📃	1	፟
4	SR23	B2_2	B3_2	SR23 💷	1	V
5						

		ID	Bus From	Bus To	DBase ID)	Duplic	Status	Series X Compensati on	Length
	1	L1111_	B11	B11_2	L1112		1		0.00	0.5000
	2	L1112	B11	B12	L1112		1	П	0.00	1.0000
	3	L11_	B1	B1_2	L15		1	፟	0.00	0.5000
	4	L12	B1	B2	L12		1	፟፟፟	0.00	1.0000
	5	L1212_	B12	B12_2	L1112		1	F	0.00	0.5000
	6	L1213	B12	B13	L1213		1	┍	0.00	1.0300
	7	L12s	B1	B2	L12		1	┍	0.00	1.0000
	8	L1313_	B13	B13_2	L1213		1	П	0.00	1.0000
Line	9	L15	B1	B5	L15		1	П	0.00	1.0000
	10	L22_	B2	B2_2	L23		1	፟	0.00	0.4000
Length Change	11	L23	B2	B3	L23		1	П	0.00	1.0000
	12	L24	B2	B4	L24		1	፟፟፟	0.00	0.8000
Change	13	L25	B2	B5	L25		1	፟	0.00	1.0000
	14	L33_	B3	B3_2	L23		1	፟፟፟	0.00	0.5000
	15	L34	B3	B4	L34		1	፟	0.00	0.7000
	16	L45	B4	B5	L45		1	፟	0.00	0.8000
	17	L55_	B5_2	B5	L15		1	ゼ	0.00	1.0000
	18	L610	B6	B10	L610		1	፟	0.00	1.0000
\ X_/_	19	L611	B6	B11	L611		1	ゼ	0.00	0.9250
	20	L612	B6	B12	L612		1	፟	0.00	1.0000
	21	L78	B7	B8	L78		1	፟	0.00	1.0000
	22	L813	B8	B13	L813		1	፟	0.00	1.0000
	23	L89	B8	B9	L89		1	┍	0.00	1.0000
	24	L910	B9	B10	L910		1	F	0.00	1.2000

Problems Faced:

	Severity	Message	Location
1	Information	Solve,-3	

