

A MINITAB PROJECT BASED ON QUALITY CONTROL: GRAPH PLOT, DATA MODELLING & DATA VISUALIZATION

IPE 314 – Quality Management Sessional

Assigned by – Asst. Professor Tanmoy Das

Submitted by – Tasnim Ahmed Tahasin (201636026)

Y X

GRAPH PLOT

PARETO CHART

CAUSE AND EFFECT DIAGRAM & PIE CHART

MATRIX PLOT AND BUBBLE PLOT

HISTOGRAM & RUNCHART

Y_X //

GRAPH PLOT

BOXPLOT, SCATTERPLOT & INTERVAL PLOT

DOTPLOTS & HISTOGRAM

DATA SET

BAR CHART, PIE CHART, PARETO CHART AND CAUSE AND EFFECT DIAGRAM DATASETS

Scratch	Day
Scratch	Day
Peel	Day
Peel	Day
Smudge	Day
Scratch	Day
Other	Day
Other	Evening
Peel	Evening
Peel	Evening

У		Staff	Capacity	Planned	Switching	Line queues	Temperature	
У		absences		Hamica	Switching	Line queues	remperature	
У			repairs					
У		Training	Cycle time	Unplanne	Guest	Maintenance plan	Rain	
У			repairs	d	Control			
У								
У		Operator	Availability	Spare parts	Unloading	Safety checks	Time of day	
ening		error						
ening					Grouping		Attendance	
ening								

HISTOGRAM, GOODNESS-OF-FIT TEST, BOXPLOT, MATRIX PLOT & ANOVA DATASETS

Torque	Machine	Combined MPG	Retail (\$1000)	Defects	Observed	Break-Strength	Filter	Membrane
24	2	(Y)	(X)			82.40	26	45
		19.25	31.3			26.00	26	33
26	26	25.50	26.0	0	26	127.96	16	26
18	1	39.55	35.6			150.78	28	46
27	2	29.50	22.1			135.75		
17	2	41.20	26.0	1	41	92.01	27	25
32	2	30.15	16.2			159.67	19	32
31	2	17.80	26.9	2	18	117.74	21	33
27	2	22.25	28.9	3	28	152.05	26	22
21	2	28.00	40.0	3	20	12.38	25	30
27	1	15.25	78.0				16	26

DATA MODELLING

ANOVA

						Means					
One-way ANOVA: Filter versus	Analysis	Analysis of Variance							Mean	StDev	95% CI
Membrane	Cauraa	DE	۷۹: ۵۵	۸ ما: MC	Γ Value	D. Value	22	1	26.00	*	(16.98, 35.02)
	Source	DF	Adj SS	Adj MS	r-value	P-Value	25	1	27.00	*	(17.98, 36.02)
Method	Membrane	14	201.70	14.41	1.17	0.465	26	2	16.00	0.00	(9.63, 22.37)
Null hypothesis All means are equal						0.100	30	1	25.00	*	(15.98, 34.02)
	Error	5	61.50	12.30			32	1	19.00	*	(9.98, 28.02)
Alternative hypothesis Not all means are equal		10	262.20				33	2	23.50	3.54	(17.13, 29.87)
Significance level $\alpha = 0.05$	Total	19	263.20				34	1	25.00	*	(15.98, 34.02)
Equal variances were assumed for the analysis							35	1	23.00	*	(13.98, 32.02)
,,							37	1	20.00	*	(10.98, 29.02)
Factor Information	Model S	Sun	amar	\ /			38	2	23.50	3.54	(17.13, 29.87)
Tuctor information	iviouei .	Sull	IIIIai	у			39	2	21.00	5.66	(14.63, 27.37)
Footon Lovele Values							43	1	21.00	*	(11.98, 30.02)
Factor Levels Values	S		R-sq	R-sq(ad	j) R-so	q(pred)	44	1	25.00	*	(15.98, 34.02)
Membrane 15 22, 25, 26, 30, 32, 33, 34, 35, 37, 38, 39, 43, 44, 45, 4	6						45	2	24.50	2.12	(18.13, 30.87)
ivienibiane 15 22, 25, 20, 50, 52, 55, 54, 55, 57, 50, 53, 45, 44, 45, 2	3.50714	76.	.63%	11.219	%	*	46	1	28.00	*	(18.98, 37.02)
							Pooled StDev =	3.50	714		

GOODNESS-OF-FIT Correlation, Covariance TEST

Poisso	on	Regi	ressio	n Ana	lysis:	Model	Sum	nmary			Goodne	ss-of	-Fit Tes	sts			
Obser	ve	d ve	rsus [Defect	S	Devianc R-S	_	eviance -Sq(adj)	AIC		Test	DF	Estimate	M	lean C	Chi-Square	P-V
Method	d					5.389	%	0.00%	33.56		Deviance	2	8.99188	4.49	594	8.99	C
Link fund	ctio	า	Na	tural log		Coefficie	nts				Pearson	2	9.07348	4.53	8674	9.07	C
Rows us	ed		4			Term	Со	ef SE Co	ef VIF		Fits and	Diag	nostics	for	Unusi	ual Obse	ervat
Source	DF	Adj Dev	Adj Mean	Chi-Square	P-Value	Constant	3.42				Obs	Obse	erved	Fit	Resi	d Std	Resid
Regression	1	0.5118	0.5118	0.51	0.474	Defects	-0.060				2		11.00	29.05	2.0	9	2.48
Defects	1	0.5118	0.5118	0.51	0.474	Regres					2	,	10.00	27.25	1.0	1	2 20
Error	2	8.9919	4.4959			Observe	ed	=	exp(Y')		D Largo rosis		18.00	27.35	-1.9	1	-2.29
Total	3	9.5036				Y' =	3.429	- 0.0602	2 Defects	5	R Large resid	iuai					

CORRELATION, COVARIANCE

Correlati	ions					
	Hydrogen	Porosity				
Porosity	0.625					
	0.017					
Strength	-0.790	-0.527				
	0.001	0.053				
Cell Contents						
Pearson correlation						

Covariances: Hydrogen, Porosity,								
Strength Covariances								
	Hydrogen	Porosity	Strength					
Hydrogen	0.00072582							
Porosity	0.00357582	0.04512967						
Strength	-0.00704865	-0.03710245	0.10963907					

P-Value

SUMMARY

Minitab is a powerful statistical software for statistical analysis in quality management. By using minitab interface and its system environment facilitates we imported data to check 2D and 3D data visualization up to data exploration and analytical statistics. Excellent graphs were produced using minitab graph option from the menu bar. Minitab is used worldwide for the implementation of Six Sigma projects and provides standard statistical methods for Anova, regression, quality tools and quality control charts etc. Using the Stat option from the menu bar Anova, Goodness-of-fit test etc were done In short this submission helped us to get hands on experience in the minitab platform

Reference

Minitab sample data