Anomaly Detection in Ion Beam Etching Processes

Daniel Hamama

ID: 318652252

Holon Institute of Technology

Student of BSc Applied Mathematics

Introduction:

Context:

Ion beam etching is a critical process in manufacturing high-precision components. Monitoring this process in real time helps avoid costly production failures.

• Objective:

To develop an effective and scalable anomaly detection framework leveraging LSTM models, aimed at identifying rare faults in time-series dataset.

Dataset Overview

- Data Source: Sensor logs from an Ion Beam Etching machine.
- **Train Data:** 3.7 Million data points, 27 features.
- **Anomaly Variable:** 'fault' (Binary 0: Normal, 1: Fault).
- Target Variable: FLOWCOOLPRESSURE from the domain knowledge.
- **Test Data:** 1.2 Million data points, 24 features.

Project Methodology

Data Preprocessing	EDA	Clustering	Anomaly Detection	Evaluation
 Data Loading Data Cleaning Scaling Reducing RAM usage Reshaping for LSTM Label Encoding 	 Distribution Correlation Behavior over Time 	 Elbow Method PCA Cluster Understanding Feature	 Sample Dataset Train-Test Split LSTM Model Model and Hyperparameter Tuning Scaling to Full Dataset 	 Train Data Performance Applying on Test Data Probability Thresholds MSE Comparison

Data Preprocessing

Objective: Cleaning the data as much as possible, cleaner data will yield better results, also preparing the data to the clustering and anomaly detection process.

- Cleaning the data from irrelevant features.
- Checking for missing values and duplicate rows.
- Reducing RAM usage by converting numerical values to int16 bytes.
- Label Encoding categorical features.
- Scaling for Clustering and LSTM
- Reshaping data to 3D for LSTM
- Sequence Generation for LSTM (30 steps)

Exploratory Data Analysis (EDA) Pt.1

- Purpose: Understand Train dataset behavior, target variable (FLOWCOOLPRESSURE)
 distribution, correlation and patterns.
- **Insights:** Distribution, 'fault' count (13,693), and behavior over time.

Exploratory Data Analysis (EDA) Pt.2

- Outliers: Using a Boxplot on the target variable to get a glimpse of it's behavior.
- Correlation: Using a heatmap to understand feature correlation with the target variable.

Clustering

- Clustering Method: MiniBatchKMeans was applied to separate the data into clusters.
- **Elbow Method:** The Elbow method was used with **PCA** in order to determine the optimal number of clusters.
- **Feature Importance:** Deriving the features that had the most impact on the clustering process.
- Comparative Analysis: Comparing the top features in each of the clusters and how they behave.

Clustering Plots 1:

Feature Importance: These features were selected by a **Decision Trees Classifier** based on their correlation with the target variable.

Clustering Plots 2:

ETCHPBNGASREADBACK Comparison:

Clustering Plots 3:

ETCHSUPPRESSORCURRENT Comparison:

Clustering Plots 4:

FLOWCOOLPRESSURE Comparison:

Clustering Plots 5:

Mean Value Across Clusters:

Analysis Summary:

Cluster 0:

- ETCHPBNGASREADBACK: Consistently low values, tightly clustered around -2.
- ETCHSUPPRESSORCURRENT: Low variability, grouped around -0.9.
- FLOWCOOLPRESSURE: Predominantly negative values, indicating lower pressures.

Cluster 1:

- ETCHPBNGASREADBACK: Tighter grouping around positive values with occasional outliers.
- ETCHSUPPRESSORCURRENT: Wider variability, ranging from -0.9 to 0.8.
- **FLOWCOOLPRESSURE**: Moderate range, values close to zero with some significant outliers.

Cluster 2:

- ETCHPBNGASREADBACK: High variability with extreme outliers, suggesting instability.
- ETCHSUPPRESSORCURRENT: Shows extreme outliers, with very high values.
- **FLOWCOOLPRESSURE**: Mostly positive values but with notable outliers.

*Outliers:

Clusters 1 and 2 exhibit more extreme outliers, particularly in **FLOWCOOLPRESSURE** and **ETCHSUPPRESSORCURRENT**, which could signify abnormal process conditions or potential anomalies.

Clustering Plots 6:

Behavior across Time:

ETCHPBNGASREADBACK -

Clustering Plots 7:

Behavior across Time:

ETCHSUPPRESSORCURRENT -

Clustering Plots 8:

Behavior across Time:

FLOWCOOLPRESSURE -

Time-Series Analysis Summary:

- **Cluster 0:** The Time series plots suggest consistent operation values over time, with fewer spikes or anomalies in the key features.
- Cluster 1: This cluster shows significant variability over time, with frequent spikes in FLOWCOOLPRESSURE and ETCHSUPPRESSORCURRENT, suggesting unstable behavior.
- Cluster 2: This cluster appears more stable overall but large spikes in
 ETCHSUPPRESSORCURRENT and FLOWCOOLPRESSURE could indicate critical operational issues during specific time windows.

Anomaly Detection Model (LSTM)

- Model Design: Input Layer, 2 LSTM layers, Dense output layer, Loss function and an Optimizer.
- Why LSTM?: Long Short-Term Memory (LSTM) captures sequential time-series patterns effectively.

Experiment with Sample Dataset

- Sample Size: 600K data points with 13,693 labeled anomalies.
- Metrics Evaluated: Accuracy, Precision, Recall, F1-Score, Confusion Matrix.
- Validation: 20% of the data was used for validation set, Early Stopping was also implemented.
- Results:

Metric	Value
Accuracy	0.9999
Precision	0.9999
Recall	1.0
F1 Score	0.9998

Scaling to Full Dataset

- **Dataset Size:** Expanded to 3.7M data points.
- Challenges: Memory management, class imbalance, long training time.
- Results:

Metric	Value
Accuracy	1.0
Precision	1.0
Recall	1.0
F1 Score	1.0

Applying the Model to Test Data

- **Test Data:** Unlabeled dataset with 1.27M samples.
- Threshold-based Classification: Probability threshold of 0.5 was implemented to determine anomalies.
- Evaluation Method: MSE-based difference between Train and Test data.

• **Findings:** Model performed well with low Test MSE of **7.72** x **10^-3** and **12**,847 anomalies detected.

Evaluation and Key Results

- Leveraging MSE for Model Evaluation: The calculation of the MSE was applied to both the Training Data and the Testing Data while looking for the minimal gap between the two.
- Findings:

Dataset	MSE Value
Train Data	0.00000237 or 2.37e-06
Test Data	0.0077182333916425705 or 7.72 x 10 ^-3

Anomaly Investigation

We will compare anomalous data and normal data inside the following features:

- FLOWCOOLPRESSURE
- FLOWCOOLFLOWRATE
- ETCHSUPPRESSORCURRENT
- ETCHBEAMCURRENT

Showcasing KDE Distribution plots for each of the features with a distribution of anomalous data and normal data overlapping each other and derive insights from that.

FLOWCOOLPRESSURE:

- Higher anomaly density peaks at elevated pressure levels, more notably between the values of 0.20 and 0.35.
- Normal data has a narrower and smoother density curve.

FLOWCOOLFLOWRATE:

- Anomalous data shows distinct peaks at specific higher flow rate values, specifically between the values of 1 and 2, diverging significantly from normal data.
- The normal distribution highlights a steady, consistent flow rate across most observations with peaks around the 0 value and 3 to 4 values.

ETCHSUPPRESSORCURRENT:

- Anomalous data shows a noticeable shift towards higher current values, very similar behavior to FLOWCOOLPRESSURE. We can also observe a peak between the values of 1.3 to 1.4.
- The normal distribution is more tightly centered, indicating stable current levels during normal operations.

ETCHBEAMCURRENT:

- Anomalous data shows a significant peak at the lower values, more specifically between -0.05 and 0.
- Normal data shows a variety of peaks, while also being present inside anomalous data there might be overlapping conditions between the two.

Anomaly Investigation Conclusion

- FLOWCOOLPRESSURE and FLOWCOOLFLOWRATE indicates notable deviations in their distributions
 for anomalous data compared to normal data, suggesting significant differences in these features under
 anomalous conditions.
- **ETCHSUPPRESSORCURRENT** shows elevated values during anomalies, which likely contribute to distinguishing anomalous behavior.
- Similarly, **ETCHBEAMCURRENT** exhibits a clear shift in its distribution, while overlapping with normal data it can still be a strong indicator of anomalies.
- These features collectively demonstrate their importance in identifying and characterizing anomalous behavior in the dataset.

Limitations:

- Unlabeled Test Data: Since the test dataset lacks true labels for anomalies, the evaluation relies entirely on reconstruction error (MSE) and probability distributions.
- Imbalanced Dataset: The dataset is highly imbalanced, with anomalies being rare compared to normal data. The model could still have a bias toward normal data, missing subtle anomalies in the test data.
- **Limited Interpretability:** While the LSTM-based approach performs well at detecting anomalies, it lacks transparency regarding *why* certain instances are classified as anomalous. To counter that we performed distribution analysis of both anomalous data and normal data.

Conclusion:

Summary of the Project:

- Successfully developed a robust anomaly detection system for ion beam etching using time-series sensor data.
- The LSTM-based model effectively detected faults, even when scaled from a 600k sample dataset to a full 3.7M-row dataset.

Key Achievements:

- Model Scalability: The model demonstrated consistent performance on datasets of varying sizes, highlighting its scalability and reliability.
- Accurate Anomaly Detection: The optimal MSE value of 2.37×10⁻⁶ (training) and 7.72×10⁻³ (test) confirmed strong generalization.

Thank You!

Github link of the project: https://github.com/Danielh2525/Anomaly-Detection-Ion-Beam-Etching

For further question you can reach me at:

Email: danielhofc@gmail.com

Daniel Hamama.