

1. HÁZI FELADAT KIÍRÁS

RENDSZER- ÉS IRÁNYÍTÁSTECHNIKA

BMEGEMIBMRI

Adott a MAXON vállalat A-Max 32 típusú, 20 W teljesítményű kefés egyenáramú motorja (BDC motor). A θ_1 paraméterként megadott névleges feszültség (u_n) érték alapján azonosítsa be a vizsgált motor paramétereit. Készítsen táblázatot, amely tartalmazza az alábbi paraméterek nevét, jelölését, a katalógusban szereplő dimenzióját! Adja meg alábbi paraméterek értékét SI egységben is.

A táblázatnak tartalmazni kell a következő katalógus adatlapi adatokat: armatúra ellenállás (R_a), armatúra induktivitás (L_a), nyomatékállandó (k_m), sebességállandó (k_s), forgórész tehetetlenségi nyomatéka (J_r), névleges szögsebesség (ω_n) és névleges áramerősség (i_n).

Megjegyzés: A levezetésekhez szükséges elektromos állandó (k_e), a katalógus adatlapban megadott sebességállandó reciproka.

1. feladat (összesen 13 pont)

- a. A fenti ábra alapján rajzolja fel a BDC motor hatásvázlatát! (1p)
- b. Írja fel a BDC motor *szimbolikus* feszültség-szögsebesség átviteli függvényét irányítástechnikai normálalakban, a következő paraméterek segítségével: R_a , L_a , k_m , k_e és J_r ! (1p) Az eredő átviteli függvény alapján adja meg *szimbolikusan* és *numerikusan* a rendszer erősítését, illetve az időállandóit! (1-1p)
- c. Írja fel a BDC motor *szimbolikus* feszültség-áram átviteli függvényét irányítástechnikai normálalakban, a *b* feladatrészben megadott paraméterekkel! (1p) Az eredő átviteli függvény alapján adja meg *szimbolikusan* és *numerikusan* a rendszer erősítését, illetve az időállandóit! (1-1p)
- d. Írja fel a BDC motor *szimbolikus* terhelőnyomaték-szögsebesség átviteli függvényét irányítástechnikai normálalakban, a *b* feladatrészben megadott paraméterekkel! (1p) Az eredő átviteli függvény alapján adja meg *szimbolikusan* és *numerikusan* a rendszer erősítését, illetve az időállandóit! (1-1p)
- e. Írja fel a BDC motor *szimbolikus* terhelőnyomaték-áram átviteli függvényét irányítástechnikai normálalakban, a *b* feladatrészben megadott paraméterekkel! (1p) Az eredő átviteli függvény alapján adja meg *szimbolikusan* és *numerikusan* a rendszer erősítését, illetve az időállandóit! (1-1p)

Megjegyzés: Az időállandók numerikus meghatározása során ügyeljen arra, hogy a paramétereket SI egységben helyettesítse be.

2. feladat (összesen 9 pont)

- a. Mutassa meg, hogy a névleges feszültség rákapcsolása esetén hogyan változik a BDC motor szögsebessége! Adja meg a szögsebesség időfüggvényét, valamit ábrázolja is azt! (1-1p) A végérték-tételek alkalmazásával határozza meg a kezdeti és az állandósult szögsebesség értékét! (1p)
- b. Mutassa meg, hogy a névleges feszültség rákapcsolása esetén hogyan változik a BDC motor áramszükséglete! Adja meg az áramerősség időfüggvényét, valamit ábrázolja is azt! (1-1p) A végérték-tételek alkalmazásával határozza meg a kezdeti és az állandósult áramerősség értékét! (1p)
- c. Mutassa meg, hogy a névleges feszültség rákapcsolása esetén hogyan változik a BDC motor nyomatéka! Adja meg a villamos nyomaték időfüggvényét, valamit ábrázolja is azt! (1-1p) A végérték-tételek alkalmazásával határozza meg a kezdeti és az állandósult villamos nyomaték értékét! (1p)

3. feladat (összesen 9 pont)

Adott egy zárt szabályozási kört soros kompenzáció és negatív visszacsatolás alkalmazása mellett. Az alkalmazott szabályozó paraméteres alakban a következő $W_c(s) = P(1 + 1/(T_I s))$. Válassza meg T_I értékét úgy, hogy a szabályozó zérusa ejtse ki a felnyitott kör átviteli függvényében a motor legnagyobb időállandóját!

- a. Határozza meg a zárt szabályozási kör átviteli függvényét (2p), és adja meg a zárt szabályozási kör karakterisztikus egyenletét! (1p)
- b. Határozza meg, hogy mely *P* értékekre lesz stabil a zárt szabályozási kör szögsebesség szabályozás esetén! (2p)

Válassza meg P erősítési tényező értékét a megadott θ_2 paraméternek! A szabályozási kör alapjele legyen az üresjárati szögsebesség fele, vagyis ($\omega_0/2$).

- c. Rajzolja fel a PI szabályozással ellátott szabályozási kör felnyitott körének Bode-diagramját a korábban megadott paraméterekkel! (1p) Adja meg a fázistartalék értékét! (1p)
- d. Rajzolja fel a zárt szabályozási kör súlyfüggvényét (impulzus válaszát)! (1p)
- e. Rajzolja fel a zárt szabályozási kör átmeneti függvényét (ugrás válaszát)! (1p)

4. feladat (összesen 9 pont)

Adott egy zárt szabályozási kört soros kompenzáció és negatív visszacsatolás alkalmazása mellett. Az alkalmazott szabályozó paraméteres alakban a következő $W_{\rm c}(s) = P(T_{\rm D}s+1)/(nT_{\rm D}s+1)$. Válassza meg $T_{\rm D}$ értékét úgy, hogy a szabályozó zérusa ejtse ki a felnyitott kör átviteli függvényében a motor második legnagyobb időállandóját! A számítás során legyen $n=\vartheta_3$!

- a. Határozza meg a zárt szabályozási kör átviteli függvényét (2p), és adja meg a zárt szabályozási kör karakterisztikus egyenletét! (1p)
- b. Határozza meg, hogy mely *P* értékekre lesz stabil a zárt szabályozási kör szögsebesség szabályozás esetén (2p)!

Válassza meg P erősítési tényező értékét a megadott θ_4 paraméternek! A szabályozási kör alapjele legyen az üresjárati szögsebesség fele, vagyis ($\omega_0/2$).

- c. Rajzolja fel a PD szabályozással ellátott szabályozási kör felnyitott körének Bode-diagramját a korábban megadott paraméterekkel! (1p) Adja meg a fázistartalék értékét! (1p)
- d. Rajzolja fel a zárt szabályozási kör súlyfüggvényét (impulzus válaszát)! (1p)
- e. Rajzolja fel a zárt szabályozási kör átmeneti függvényét (ugrás válaszát)! (1p)

Szorgalmi feladat (összesen 4 pont)

- a. Tegyük fel, hogy a 3. feladatban meghatározott szabályozó aktív. Tegyük fel, hogy a rendszer állandósult állapotba került! Ekkor egy ismeretlen τ_t amplitúdójú egységugrással leírható terhelőnyomaték kerül a motorra. Milyen tartományban lehet a τ_t , hogy állandósult állapotban az armatúra áram (abszolút értéke) ne lépje túl a névleges áram (i_n) értékét? (2p)
- b. Tegyük fel, hogy a 4. *feladatban* meghatározott szabályozó aktív. Tegyük fel, hogy a rendszer állandósult állapotba került! Ekkor egy ismeretlen $\tau_{\rm t}$ amplitúdójú egységugrással leírható terhelőnyomaték kerül a motorra. Milyen tartományban lehet a $\tau_{\rm t}$, hogy állandósult állapotban az armatúra áram (abszolút értéke) ne lépje túl a névleges áram ($i_{\rm n}$) értékét? (2p)