AI6104 - MATHEMATICS FOR AI

TUTORIAL 8 - DETERMINANTS, EIGENVALUES AND EIGENVECTORS

Problem 1

Compute the determinant of following matrices using the Laplace expansion along the first

(a)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

(b)
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

(a)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $C = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$

Solution:

(a)

$$\det(A) = \begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{vmatrix} = 1 \cdot \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} + -2 \cdot \begin{vmatrix} 3 & 2 \\ 0 & 1 \end{vmatrix} 3 \cdot \begin{vmatrix} 3 & 1 \\ 0 & 0 \end{vmatrix} = 1 \cdot 1 - 2 \cdot 3 + 3 \cdot 0 = -5$$

(b)

$$\det(B) = \begin{vmatrix} 1 & 0 & 3 \\ 5 & 1 & 1 \\ 0 & 1 & 2 \end{vmatrix} = 1 \cdot \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} + 0 \cdot \begin{vmatrix} 5 & 1 \\ 0 & 2 \end{vmatrix} + 3 \cdot \begin{vmatrix} 5 & 1 \\ 0 & 1 \end{vmatrix} = 1 - 0 + 15 = 16$$

(c)

$$\det(C) = \begin{vmatrix} 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1 \end{vmatrix} = 1 \cdot \begin{vmatrix} 0 & 1 \\ 1 & -1 \end{vmatrix} - (-1) \cdot \begin{vmatrix} -1 & 1 \\ 0 & -1 \end{vmatrix} + 0 \cdot \begin{vmatrix} -1 & 0 \\ 0 & 1 \end{vmatrix} = 0$$

Problem 2

Find the eigenvalues and a basis for each eigenspace of the following matrices

(a)
$$A = \begin{bmatrix} 1 & 3 \\ -2 & 6 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

(a)
$$A = \begin{bmatrix} 1 & 3 \\ -2 & 6 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$ (c) $A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ -1 & 0 & 2 \end{bmatrix}$

Solution:

(a) The characteristic polynomial of A is

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 3 \\ -2 & 6 - \lambda \end{vmatrix} = (\lambda - 3)(\lambda - 4)$$

1

Solving the characteristic polynomial we get the eigenvalues $\lambda_1 = 3$ and $\lambda_1 = 4$. To find the eigenspace corresponding to the eigenvalue $\lambda_1 = 3$, we need to find the null space of

$$A - 3I = \begin{bmatrix} -2 & 3\\ -2 & 3 \end{bmatrix}$$

Thus eigenvectors corresponding to $\lambda_1 = 3$ are of the form $\begin{bmatrix} 3t \\ 2t \end{bmatrix}$, so that $E_1 = \operatorname{span}\left(\begin{bmatrix} 3 \\ 2 \end{bmatrix}\right)$. Similarly, $E_2 = \operatorname{span}\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right)$.

(b) The characteristic polynomial of A is

$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 0 & -2 - \lambda & 1 \\ 0 & 0 & 3 - \lambda \end{vmatrix} = -(\lambda - 1)(\lambda + 2)(\lambda - 3)$$

Solving the characteristic polynomial we get the eigenvalues $\lambda_1 = 1$, $\lambda_2 = -2$, and $\lambda_3 = 3$.

The eigenspace can be computed in a similar way $E_1 = \operatorname{span} \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{pmatrix}, E_2 =$

$$\operatorname{span}\left(\begin{bmatrix} -1\\3\\0 \end{bmatrix}\right) \text{ and } E_3 = \operatorname{span}\left(\begin{bmatrix} 1\\210 \end{bmatrix}\right).$$

(c) The characteristic polynomial of A is

$$\det(A - \lambda I) = \begin{vmatrix} 4 - \lambda & 0 & 1\\ 2 & 3 - \lambda & 2\\ -1 & 0 & 2 - \lambda \end{vmatrix} = -(\lambda - 3)^3$$

, which yields the only eigenvalue $\lambda=3,$ and corresponding eigenspace E=

$$\operatorname{span}\left(\begin{bmatrix}0\\1\\0\end{bmatrix},\begin{bmatrix}-1\\0\\1\end{bmatrix}\right)$$

Problem 3

Compute the indicated power of matrix

$$A^{2020} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}^{2020}$$

Solution:

We first find the eigenvalues and a basis for each eigenspace of A. Since A is upper triangula, its eigenvalues are the diagonal entries, which are $\lambda_1 = -1$ and $\lambda_2 = 1$. Thus,

the corresponding eigenspaces are

$$E_1 = \left\{ \begin{bmatrix} -1\\2\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\2 \end{bmatrix} \right\}, \qquad E_2 = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$$

Set

$$P = \begin{bmatrix} -1 & -1 & 1\\ 0 & 2 & 0\\ 2 & 0 & 0 \end{bmatrix}, \text{ so that } P^{-1} = \begin{bmatrix} 0 & 0 & \frac{1}{2}\\ 0 & \frac{1}{2} & 0\\ 1 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Then

$$D = P^{-1}AP = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

so that

$$A^{2020} = PD^{2020}P^{-1} = \begin{bmatrix} -1 & -1 & 1\\ 0 & 2 & 0\\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} (-1)^{2020} & 0 & 0\\ 0 & (-1)^{2020} & 0\\ 0 & 0 & 1^{2020} \end{bmatrix} \begin{bmatrix} 0 & 0 & \frac{1}{2}\\ 0 & \frac{1}{2} & 0\\ 1 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
$$= \begin{bmatrix} -1 & -1 & 1\\ 0 & 2 & 0\\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & \frac{1}{2}\\ 0 & \frac{1}{2} & 0\\ 1 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} = I$$

Problem 4

Principal Component Analysis, or simply PCA, is a statistical procedure that allows us to identify the principal directions in which the data varies. Suppose we have input data $x \in \mathbb{R}^p$, by PCA we may construct another random vector y which has lower dimension $m \ll p$ but has similar statistical properties. This often makes it easier to interpret the data and to identify interesting features.

The idea behind PCA is to ignore the redundant variables, *i.e.*, variables that are highly correlated with others. Thinking of x as attributes of automobiles, and two different attributes, some x_i and x_j , respectively give a car's maximum speed measured in miles per hour, and kilometers per hour. These two attributes are therefore almost linearly dependent; thus, the data really lies approximately on an p-1 dimensional subspace. The measure of such correlation is the covariance matrix, Σ .

- (a) One important step in PCA is to find a linear function of x, $\alpha^{\top}x$, which has the maximum variance, i.e., $Var(\alpha^{\top}x) = \alpha^{\top}\Sigma\alpha$, where $\alpha^{\top}\alpha = 1$. Show that the eigenvector α_1 corresponding to the largest eigenvalue λ_1 is the solution to the maximization problem.
- (b) In general, α_k will give the k-th largest variance. Consider k=2, we wish to find the the largest linear function of x, $\alpha^{\top} x$, which is uncorrelated with $\alpha_1 x$, and has the largest variance. The constraint of uncorrelation can be expressed as $\text{Cov}(\alpha^{\top} x, \alpha_1^{\top} x) = \lambda_1 \alpha^{\top} \alpha_1 = 0$. Prove that eigenvector α_2 corresponding to the second largest eigenvalue

 λ_2 is the solution to the maximization problem

$$\max_{\alpha} \qquad \alpha^{\top} \Sigma \alpha$$
 subject to
$$\alpha^{\top} \alpha = 1$$

$$\alpha^{\top} \alpha_1 = 0$$

Hint: you may use Lagrange multipliers to solve the maximization problem.

Solution:

(a) Consider the maximization problem,

$$\max_{\alpha} \qquad \alpha^{\top} \Sigma \alpha$$
 subject to
$$\alpha^{\top} \alpha = 1$$

The Lagrangian can be written as

$$\mathcal{L} = \alpha^{\top} \Sigma \alpha - \lambda (\alpha^{\top} \alpha - 1))$$

and

$$\frac{d}{d\alpha}\mathcal{L} = \Sigma\alpha - \lambda\alpha = 0$$

which yields

$$\lambda \alpha = \Sigma \alpha$$

This equation is recognized as an eigenvector equation where α is an eigenvector of Σ and λ is the associated eigenvalue.

We then look back to the quantity to be maximized

$$\alpha^{\top} \Sigma \alpha = \alpha^{\top} \lambda \alpha = \lambda \alpha^{\top} \alpha = \lambda$$

Then it is obvious that we should choose λ to be as large as possible. Therefore, the largest eigenvalue λ_1 is the solution, the the objective value is the largest eigenvalue λ_1 .

(b) Consider the Lagrangian

$$\mathcal{L}(\alpha, \lambda, \mu) = \alpha^{\top} \Sigma \alpha - \lambda (\alpha^{\top} \alpha - 1) - \mu (\alpha^{\top} \alpha_1)$$

and

$$\frac{d}{d\alpha}\mathcal{L} = 2\Sigma\alpha - 2\lambda\alpha - \mu\alpha_1 =$$

If we left multiply α_1 to the equation, we have

$$2\alpha_1^{\mathsf{T}} \Sigma \alpha - 2\lambda \alpha_1^{\mathsf{T}} \alpha - \mu \alpha_1^{\mathsf{T}} \alpha_1 = 0 - 0 - \mu = 0$$

which gives $\mu = 0$. Then we left with the same eigenvalue equation

$$\Sigma \alpha - \lambda \alpha = 0$$

Since α_1 violates the second constraint, the optimal solution would be α_2 , which is the eigen vector corresponding to the second largest eigenvalue λ_2 .