Num. Stability

Motivation:

for INP: 1/2 = -lo.g(e), 0 < t < 1. yeo) = 1. its

5.1. Lecaps exponentially. But when we

rpply implicit / explicit Enler method. The

kan. Sol. of implicit one looks good while

the explicit one degins to oscillate and

even explose when Step length h T.

Dmold priblem =

Fix $\lambda \in \mathbb{C}$. $J'(t) = \lambda g(t)$, $t_0 = t \in T$. $J(t_0) = j_0$.

Which has sol. $J(t) = j_0 e^{\lambda(t-t_0)}$. C_t .

Note that I = 101 e Rech, $C_t = t_0$. the limit habout on Rech) > . = . < D when $t \neq \infty$.

Row: Name sol. Should imitate its exp.

Rech = Man. sol. Should imitate its exp.

DJ: A RK methol is called absolutely

stable for a life it prohis approxi. Suplyal to When applied on for Rechoed. Chy is Kth sexplenth erj, (Explicit Euler) = --- = (/+ / 1) ~ 1 . We call Johns = 1+hh amplification. factor (1126211-1 (=) 12-1-19-1) we require: 19th 211 =1 for Stability c F.r 1 = -11) · /= = 10. 12'5 /101. · h = -6. Oscillates but boll. - h = 4. Exploses. kme: Absolutely stability only resures it's but not good approxi. Amplification factor examples: i) Explicit Euler Jakh) = 1+ 2h.

1) Henn: 1 () = I () / k: RK4: 1cxh) = = = cxh) K. pur: It's polynomial from Taylor expansion And 1362h) 1 who 12hl 1. The Sanbility region of a RK scheme is pira by SR = CALEC For A Ext. the stability interval is Ethere 1996 1513 where gaths is amplify factor from applying scheme on (4). (1) 2= 1h a) Explicit Enler: RZ = [-2,0]b) Kenn: KI = [-2,0] Recti C) RK4: KZ: [-2.71,0]. i) c Nonliner (m) FIR IUP gati = magati - cosees - Sinces 10) = 1. Noze df/2y = p. So pr VIII plan the role of A.

Rux: i) 1- Stable mother con proc butter Lamping property (i.C. lus oscillation when 121 large) i) Implicit Euler: 190211= /11-21 Implicit Trape.: 19621 = 1 15 A- Stable but not L- Stable. (3) Application of Stab. Analy.: Def. F. r IVP. y = f(t.y). y(t)=n. t > to. i) Its global Sol. is asymptotical stab. if my 5.1. V of perturbed problem Vito = fit, Viti), Vitx) = jitx)+Wx. t > tx for some tx > to is also global Where perturbation ||Wx || +8 & T 11 CU-926511 → OC + >>> h.lks. Ot. tx x ii) Let this IVP be silved by Lip. Centi one - seep methin 1/n = 1/n + hr F(hr; tr. 1.1.1)

Jo-Jo 2ts S.l. (Ju) is called panerienlly stable if my discrete sol. (Vn) nenx of Un = Vn-1 tha Fch-, tn. Vn-1, Va) Vnx = Jnx + Wx. n=nx. fir Sime tax; to Where perturbation 11Wx1158 Satisfied: 11 Un - Ja 11 - > 0 c ~ + 0 > All eigenvalues plas of factogets ne assumed to Entisfy: Relyces) < 0 Prove: i) The method is assurptically stable i) The method with SRC is musi enly stable if the step length ha is choven st. Luxuten & SR. Huzo. Kmx:i) 1 cts will take rile of 1 in the mokel problem (z.g. for k=1 =) th Emin foctoble) i) 2t will be wrong if fr is not Ringopalizable. [Counterexample exists] i.e. po complex system of eigenvalues

Reliso > Willerys exponentially. For a regular ca is invertible). We have: 11W4+11 = 110 W: (4) 11 5 C 11W: (4) 11 5 Ce 11 WK/ ECe / 11 Wx11. A = mx Rechis. ii) Discrute proble: g is aniplification fune of RK muchl in (2) not recell it 1n = 1chA) 1nn. Set 1/k = Q1k. Wa In = AgchA) A Jny = Jch D) Jny siner g is rutional Janc. (i.e. pcx)/1(x)). Algorithe: To 5.1ve g= - (etog): a) Evaluate +x at (tr. 96ta). b) Compute Ligen unlars di. 9 Chise kn st. kn xi ESK. for Rechis so. (4) Stiff problem: Consider the following IVP:

St. Kets = max / Recheer) / min 1 Reches / >>/ Rmp. Dwe only absile Rechters & o is) There's no exact math. Lef ii) It's Charletonizer by having Components that leasy in totally sitteent speed. And We Want to silve both components over long time when stop length h isn't so small. iv) Impl. nothers me often A-Stable so per can be thesen large to be stable. () po stiff) KM. When bealing Stift problem with some pit small transient e inital esser Co) We I like to use the mother that is L-Stable Czig. Fir trapeziskal its replification foots is 1+ to 1-1 21 if h is small. So the transient Will pot

		L	ay		7	~ S z	, ,		ph.	:10		j _m	p l.	Cit		E	n/-	w		ha_		
	1	-h-	(i s	5	m	·1/	5	71	Z	h		ti	Kn	8, 4		Ļ	Je.		7		
													er									
					hc																	
										na	m 5)	i'z		2		·/L/	at	·w	٤.			
					- 5						1.		5		4			h		t h		
					mo						<i>\mathcal{F}'</i>	7				7						
							_															
					- 5																	
<u>ن</u>	Zt		ha	5	0 /	L	~	4	25	-1		fi		5-	5	ta	22		me	t,	ko,	
Rm —	1	: /	E, /	-	3 ک	- / -	(<i>O</i> .	E	3	6	th		<i>i~</i>	rpl	161	て	E	- - -	les	•	