

Reduction of Radar Processing Latency

01-June-2015 to 16-Dec-2015

Date: 21-Apr-2016

Master thesis presentation by Tamilselvan Shanmugam

Matrik #: 367975

- Background
- Existing analysis by Airbus DS
- Testbed
- Implementation
- Summary & Conclusion

- Background
- Existing analysis by Airbus DS
- Testbed
- Implementation
- Summary & Conclusion

Minimize SWaP, Cost – ARM Cortex
 A9

Background

 Minimize SWaP, Cost – ARM Cortex A9

Integrated Modular Avionics(IMA)

Data Graphics Processing Module (DGPM)

Platform Support Module (PSM)

Terminologies

Pulse

Terminologies

- Pulse
- Burst

Terminologies

- Pulse
- Burst

Dwell

Requirements

2x Dwell time latency

- 50% Utilization
 - CPU
 - Memory
 - Memory transfer band-width

Time Domain Processing

Frequency Domain Processing

Frequency Domain Processing

Detection Processing

Correlation Processing

- Background
- Existing analysis by Airbus DS
- Testbed
- Implementation
- Summary & Conclusion

Functional Blocks

Scheme-1, Data Distribution

Scheme-1, Processing Latency

- Data fetch
 - SDRAM Buffer to SDRAM
 - SDRAM to L2 cache

Execute

- Store back
 - L2 Cache to SDRAM
 - SDRAM to SDRAM Buffer

Scheme-1, Results

• CPU Util: 75.58%

Memory Util: 7% of 1GB

• Interface Util: 72% of 100MB/s

Processing Latency: 333.67ms (12x dwell time)

Scheme-2, Time Partitioning

24 CPUs for A/A Mode and A/G Mode

	Major Time Frame capacity [ms]	X A/A Appl. Partition Time capacity [ms]	A/A L2-cache Partition [Byte]	Partition Change Time [ms] A/A -> A/G	Y A/G Appl. Partition Time capacity [ms]	Partition Change Time [ms] A/G -> A/A	A/G L2-cache Partition [Byte]
Core1	40	19,50	65.536	0,50	19,50	0,50	65.536
Core2	20	5,50	65.536	0,50	13,50	0,50	65.536
Core3	40	25,50	65.536	0,50	13,50	0,50	65.536
Core4	20	14,50	524.288	0,50	4,50	0,50	131.072

Scheme-2, Results

• CPU Util: 71%

Memory Util: 9% of 1GB

• Interface Util: 72% of 100MB/s

Processing Latency: 640ms (23x dwell time)

- Background
- Existing analysis by Airbus DS
- Testbed
- Implementation
- Summary & Conclusion

- Memory Transfer Bandwidth
 - STREAM Benchmark, 4threads 1048MiB/s
- Memory Utilization
 - Monitor 'top' output
- Processing Latency
 - 4 threads to 4 cores, 1000 runs

CPU Load

- Background
- Existing analysis by Airbus DS
- Testbed
- Implementation
- Summary & Conclusion

Design Decisions

Space Partition

Design Decisions

Space Partition

Correlation Processing – Data Dependent

Scheme-3

Correlation Processing – Data Dependent

Scheme-3, Data Distribution

CPU7 – 1 dwell per core

Scheme-3, Time Saving

Scheme-3, Results

• CPU Util: 66%

Memory Transfer BW: 39.4% of 1048MiB/s

Memory Util: 0.9% of 879MiB

Processing Latency: 167ms (4x dwell time)

Scheme-4

Scheme-4

Scheme-4, Data Distribution

Scheme-4, Time Saving

Correlation Processing

• Execution time = 43.34ms = 1.5x dwell time

Correlation Processing

• Execution time = 43.34ms = 1.5x dwell time

Scheme-4, Correlation Processing

Scheme-4, Results

• CPU Util: 50.8%

Memory Transfer BW: 30.3% of 1048MiB/s

Memory Util: 0.5% of 879MiB

• Processing Latency: 54.7ms (1.9x dwell time)

- Background
- Existing analysis by Airbus DS
- Testbed
- Implementation
- Summary & Conclusion

- Objective
 - Real-time processing
 - Less SWaP and Cost

- Contributions
 - Single core to Multicore
 - Optimized Scheduling

Conclusion

