Aufgabe 1: Schaltwerksanalyse (20 Punkte)

a) Gegeben Sei der durch die folgende LogiFlash-Schaltung realisierte Automat mit dem Startzustand S0.

Matrikelnummer:	Studiengang:
Bitte geben Sie die Ausgabefunktionen des Automaten an.	
Bitte geben Sie die Ansteuergleichungen der für die Realisierur deten Flipflops an.	ng des Automaten verwen-
Bitte geben Sie die Zustandsübergangsfunktionen des Automa	ten an.
b) Für die Eingänge eines zum Zustandsbit Z_1 korrespondierend sierung eines Automaten seien folgende Gleichungen gegebei $J=Q_0\overline{X}_0+\overline{Q}_0X_0$ $K=Q_0+\overline{X}_0$	
Bitte geben Sie die Zustandsübergangsfunktion für das Zustaminimaler Form an.	andsbit $Z_1 des$ Automaten in
c) Ein für die Eingabe X_0 definierter Automat sei durch die $Z_0^{n+1}=\overline{Z}_0$ sowie die Ausgabefunktionen $Y_1=X_0$ und $Y_0=\overline{X}_0$	
Um welchen Automatentyp handelt es sich? Bitte geben Sie ei	ne Begründung an.

Matrikelnummer:	Studiengang:

Bitte realisieren Sie den Automaten als LogiFlash Schaltung unter der ausschließlichen Verwendung beliebig vieler der folgenden LogiFlash Komponenten: Buttons, Lampen, Und- & Oder-Gatter mit beliebig vielen gegebenenfalls negierten Eingängen und T-Flipflops (Toggle-Flipflops) (siehe Abbildung 2).

Abbildung 2: Erlaubte Komponenten

d) Gegeben sei folgende Zustandsübergangsgleichungen:

$$Z_0^{n+1} = \overline{Z}_1 \overline{Z}_0 \overline{a} \, \overline{b} + \overline{Z}_1 \overline{Z}_0 a \, \overline{b} + \overline{Z}_1 Z_0 a \, \overline{b} + Z_1 Z_0 a \, \overline{b} + Z_1 \overline{Z}_0 a \, \overline{b} + Z_1 \overline{Z}_0 \overline{a} \, \overline{b}$$

$$Z_1^{n+1} = (Z_1 + \overline{Z}_0)(Z_1 + \overline{b})(\overline{Z}_0 + \overline{a})$$

Bitte geben Sie die Zustandsübergangsfunktion für Z_1^n in disjunktiver und die für Z_0^n in konjunktiver Minimalform an! Ihnen stehen für die Bestimmung der Übergangsfunktionen folgende KV-Diagramme zur Verfügung. Bitte füllen Sie diese komplett aus und kennzeichnen Sie Ihre Minimierungen!

Zustandsübergangsfunktionen:

$$\Sigma_{A1} = /20 \text{ Pkt}$$

Aufgabe 2: Entwurf auf Registertransfer Ebene (10 Punkte)

a) Für das angegebene Operationswerk ist ein festverdrahtetes Steuerwerk mit einem 4-Bit-Binärzähler gegeben. Das B-Flag stellt eine externe Bedingung dar.

Die Steuersignale sind:

- c_0 AC \leftarrow AC + DR
- c_1 AC \leftarrow AC \wedge DR
- c_2 AC \leftarrow NOT AC
- c_3 WRITE M (M(AR) \leftarrow DR)
- c_4 READ M (DR \leftarrow M(AR))
- c_5 DR \leftarrow AC
- c_6 AC \leftarrow DR
- c_7 AR \leftarrow DR(ADR)
- c_8 PC \leftarrow DR(ADR)
- c_9 PC \leftarrow PC+1
- c_{10} AR \leftarrow PC
- c_{11} IR \leftarrow DR(OP)
- C₁₂ RIGHT-SHIFT AC
- C₁₃ LEFT-SHIFT AC

Matrikelnummer:	Studiengang:

Matrik	kelnummer:	Studiengang:
	reiben Sie das durch die Zählersteuerur on. Achten Sie auf das Timing!	ng definierte Verhalten als RT-Programm bzw. in RT-
b)		g (KEINE zeilenweise Beschreibung des RT-Codes) ei-
	nes Durchlaufs an!	
c)	Kann man in diesem Programm Takte	einsparen, wenn ja, wie und wo?
d)	Wie sieht der Speicherinhalt aus, wenn	das Programm unendlich lange läuft?

Aufgabe 3: CPU-Kontrolleinheit

(20 Punkte)

Das oben vorgegebene Blockschaltbild zeigt das Operationswerk der in dieser Aufgabe gegebenen mikroprogrammierten CPU. Das Operationswerk ist darauf spezialisiert Bilddaten zu manipulieren. In dem Speicher DMEM sind Bilder mit einer Größe von 32 x 32 Pixeln abgespeichert, wobei jeder Pixelwert in einer separaten Zeile des Speichers abgelegt wird (Zeilenweise von oben links nach unten rechts). Jedes Pixel setzt sich aus Rot, Grün, Blau mit einem maximalen Tonwert von je 255 zusammen.

Die **ALU** beherrscht die Addition (**add**) und die Invertierung (**inv**). Das A-Flag wird von der ALU automatisch erzeugt und hat 1 Bit Breite. Es gilt: Z=1, wenn die letzte Operation der ALU einen Werte >255 lieferte, sonst Z=0.

Das Operationswerk soll dazu verwendet werden die Werte der einzelnen Farbkanäle um einen gegebenen Wert zu erhöhen. Übersteigt der Wert den maximalen Tonwert, so soll der maximal möglichen Tonwert abgespeichert werden. Nachdem der Tonwert des Pixels verändert wurde, soll dieser wieder an dieselbe Stelle im Speicher DMEM zurückgeschrieben werden.

Achten Sie darauf das Ihre Lösungen minimal bezüglich der Ausführungszeit sind.

Matrikelnummer:	Studiengang:
-----------------	--------------

Eine Registertransferbeschreibung einiger Befehle der CPU ist Ihnen vorgegeben:

Opcode	Befehl	Beschreibung
0	LOAD addr channel	Lädt den Speicherinhalt aus DMEM unter der Adresse addr in
		das Register DR und anschließend den entsprechenden chan -
		nel in AC .
1	STORE addr channel	Ersetzt den Wert von AC im Register DR für den entsprechen-
		den channel. Anschließend wird DR unter der Adresse addr
		im Speicher DMEM abgelegt.
2	ADD value	Addiert den Wert des AC mit dem Wert value aus dem Regis-
		ter IR und schreibt das Ergebnis zurück in AC .
3	LIMIT	Falls der maximale Tonwert überschritten wurde, soll der ma-
		ximale Tonwert in AC gesetzt werden.

Die folgenden Aufgaben sollen alle in dem aus der Vorlesung und Übung bekannten RT-Code umgesetzt werden.

a)	Ergänzen Sie im Blockschaltbild und dem Befehlsformat die fehlenden Indizes der Register- und Spei-
	cherbreiten in den vorgesehenen Kästchen (gestrichelt). Die Breiten und Tiefen sollen so klein wie mög-
	lich gewählt werden, sollen aber alle notwendigen Werte speichern können.

b) Deklarieren Sie alle benötigten Speicher und Register in der bekannten R-Notation.

Matrikelnummer:	Studiengang:

dem												STORE,	
Imp	lementi	eren Sie	unter	dem La	abel LOZ	AD das	zugeh	örige \	/erha	alten au	us der Ta	abelle.	
Imp	lementi	eren Sie	unter	dem La	bel STO	ORE da	s zuge	hörige	Verl	nalten	aus der	Tabelle.	

Matrikelnummer:

Studiengang: _____

f)	Implementieren Sie unter dem Label ADD das zugehörige Verhalten aus der Tabelle.
g)	Implementieren Sie unter dem Label LIMIT das zugehörige Verhalten aus der Tabelle.

Matrikelnummer:

Studiengang: _____

h) Implementieren Sie die angegebenen Teile des horizontalen Mikroprogramms. Verwenden Sie hierfür die Angabe der Befehlstabelle. FETCH habe die Sprungadresse 0001. Zur Bearbeitung stehen Ihnen ausschließlich die folgenden Condition Select Signale zur Verfügung:

Condition Select	Funktion
00	PC inkrementieren
01	Springe immer mit next_addr
10	Springe mit next_addr, falls A = 1
11	Springe mit opcode

i.

ADD value	Addiert den Wert des AC mit dem Wert value aus dem Register IR und
	schreibt das Ergebnis zurück in AC .

	ac	ldr		:S	next	_add	r						c_h	orz					
								c1	1	c10	c9	с8	c7 c1	c6 c0	c5	c4	1	c3	c2
1	0	0	0																
1	0	0	1																
1	0	1	0																
1	0	1	1																

ii.

LIMIT	Falls der maximale Tonwert überschritten wurde, soll der maximale
	Tonwert in AC gesetzt werden.

	ad	ldr		C	:S	next _.	_add	r	c1	1	c10	c9	c8	c_h c7 c1	1 OrZ c6 c0	C.	5 c	4	с3	c2
1	1	0	0																	
1	1	0	1																	
1	1	1	0																	
1	1	1	1																	

iii.

I FFTCH	
1 - 1 - 1 - 1	

	ac	ldr		C	ZS .	next _.	_add	r	c1	1	c10	c9	c8	c 7		c5	c4	1 (c3	c2
														c1	c0					
0	1	0	0																	
0	1	0	1																	
0	1	1	0																	
0	1	1	1																	

i) Geben Sie das Mapping ROM für die Befehle ADD und LIMIT an.

Opcode	S	prung	adress	e

j) Geben Sie eine Befehlsfolge an, welche den Rotanteil eines beliebigen Pixels mit der Adresse x Ihres gespeicherten Bildes um den Tonwert 42 erhöht.

I) Es sei folgender horizontales Mikroprogramm gegeben. Was wird hier ausgeführt? Begründen Sie!

	ad	ldr		C	:S	next _.	_add	r	c11	c	10	c9	c8	c_h c7 c1	1 OrZ c6 c0	:5	c4	c3	c2
0	1	0	0						1										
0	1	0	1	1	1					1									
0	1	1	0																
0	1	1	1																