

IT Assignment Coversheet

Course: PROG8080 – Database Management

Program Coordinator: David Allison

Professor/Instructor: Mark Morell

Assignment #: Choose from list

Assignment Type: ☐ Individual ☐ Pair ☒ Team

Date Submitted: September 15th, 2019

Student Information

Name	Uploaded (for instructor)
Chaitanya Uttarwar	
Aparna Tomar	
Saim Ahmad	
Zeefa Karim	\boxtimes

IT Standards Marking Sheet

Programming & SQL Standards - :	1% each			
P1 Meaningful Identifiers		P20 Code Module S	Size and Focus	
P2 Prefixes & Hungarian Notation	ı	P21 Single Point of	Exit	
P3 Identifier Case Conventions			P22 Disabled Code & Misleading	
P4 Header Comments		P23 Each Class in a File Named		
P5 Method Comments		P24 Class Organization		
P9 "Magic" Numbers and Strings		P25 Unwise Coding Practice		
P10 Constant Scope		SQL1 Table Names		
P11 Indentation		SQL2 Column Nam	es	
P12 Line Length and Wrapping		SQL3 Keywords & I	Function Names	
P13 Blank Lines		SQL4 Header Comments		
P14 Code Crowding		SQL5 Output Messa	ages	
P15 Space Around Binary Operat	ors	SQL6 Implementat	ion Comments	
P16 Space After Delimiters		SQL7 Formatting		
P17 Curly Brace Alignment		SQL8 Subquery IN and =		
P19 Global Variables				
		Late Assign	nments	
		Days Late	Penalty %	
Base Mark:		1	5	
Standards Penalties: - %	-	2	10	
Late Penalties: - %	-	3	20	
Final Mark:		4	40	
		5	60	
		6	80	
		7	100	

Question1: Identify 4 different Relational Database Management

Systems(RDBMS) and describe some of the difference between them.

Solution: Relational Database Management Systems have been bedrock of the growth of Software Development over last four decades. Without RDBMS, there would have been scaling issues related to Software Products and as we all know, No-Scale means No-Growth. And, if software industry would not have grown the way it did then today world would have been totally different. We cannot emphasize the importance of RDBMS more and every software student should have clear understanding of what RDBMS are and what types are available/popular in the market. For the purpose of this assignment, we have identified four types of RDBMS and discussed each's features and USP:

Microsoft SQL	Oracle DB	SQLite	PostgreSQL
Server			
About: Microsoft	About: Oracle	About: SQLite is	About: PostgreSQL
SQL is a popular	Corporation owns	popular open	is an open source
RDBMS developed	Oracle DB and	source SQL	SQL database and
by Microsoft.	code is not open	database.	is typically used for
	source. Oracle DB		web application
	is being the most		development.
	widely used		
	RDBMS in banking		

	industry across the		
	globe.		
USP:	USP:	USP:	USP:
a. Customized	a. Batch	a. SQLite can	a. Easy to Use.
solutions for	processing	store entire	b. Inexpensive
Microsoft	of	database	c. Reliable
Infrastructure.	transactions	in a single	d. Large
b. Excellent	make Oracle	file.	Development
Data	DB standout	b. Data can	Community
Recovery	from its	be stored	
Support	competitors.	locally and	
c. Installation is	b. Scale is not	therefore	
streamlined.	an issue with	no need to	
	Oracle DB.	connect	
	c. Provides	database	
	functionality	to a server.	
	in built in DB	c. No	
	Management	installation	
	System	needed.	
	targetted to		
	specific		
	industry.		

	d. Extensive		
	language		
	Support		
Disadvantage:	Disadvantage:	Disadvantage:	Disadvantage:
a. Licensing is pretty	a. Expensive	a. Database size	a. Slower
expensive. For SQL	than	is restricted to	performance
Server 2008, for	Microsoft.	2GB in most	than other
instance, SQL Server	b. Steep	cases.	open source
Standard Edition	Learning	b. SQLite is used	DBMS such
costs \$7,171 per	Curve.	to handle low to	as MySql
processor. The SQL		medium HTTP	b. Less popular
Server Datacenter		requests.	than MySql
edition is \$54,990 per			
processor, according			
to the Microsoft			
website.			
b. Limited			
Compatibility as MS			
SQL-Server is			
designed to run on			
Windows-bases			
servers.			

Table1: Comparison of Four RDBMS.

Question 2: Research the popularity of various RDBMS vendors among both small and large businesses and demonstrate how much each is being used. You must note the source of your data.

Solution 2: According to the data published as of September, 2019(Statistics, 2019), the most popular database management systems(DBMS) in the world was Oracle — which means it is the first choice of large organizations across the globe and it seems obvious too as Oracle DB does not have OS restrictions and it supports extensive programming languages. After Oracle, next most popular RDMS is MySQL — open source DBMS and this trend indicates that small and medium size enterprises are going with MySQL. Another interesting trend from statistics is that database management system industry is dominated by big tech companies such as Microsoft, Oracle and IBM but statistics is showing that number of free and open sources DBMS such as MySQL, PostgreSQL and Apache Cassandra.

Figure 1: Popularity of DBMS worldwide. Adapted from Statistica, 2019.

Question 3: Discuss the differences between relational databases and non-relational databases and highlight what situations are best for each.

Solution:

Relational Database	Non-Relational Database
Data is stored and represented in the	No use of Tables. Instead they use the
form of tables consisting of rows and	storage mechanism which is suited as
columns.	per the requirement. For example, as
	Json Objects etc.
In Relational database, for selecting a	In Non-Relational database, the data to
row, the entire database is loaded and	be fetched is referred by an index. The
then the row is selected.	data is stored sequentially adjacent to
	each other. So, it does not require the
	entire file to be opened or loaded.
They can be used when dealing with	Non-relational database should
several amount of data since the data is	preferably be used in situations where
fetched by selecting a row which	huge amount of data is involved since it
requires the entire file to be loaded.	fetches data by index.
Example of relational database:	Example of non-relational database:
MySQL, PostgreSQL	MongoDB

Relational database is best suited for situations where small to average amount of data is involved. Whereas, non-relational database is used for the situations where huge amount of data is involved since the data is stored adjacent to each other. The data can

be picked up by the use of an index. It does not require to open the entire file and hence is more efficient in case of large amount of data.

Question 4: Explain what a "Data Warehouse" is as if you were telling someone who knows nothing about databases. Describe its characteristics as well as why you would use one.

Solution 4: A database is grouping of data in an organized manner. A department or organization has various databases since they are required to store information about everything. For example, an organization needs to store their employee data, customer information, product details etc.

A data warehouse is a database which acts as a central repository or a central storage location for all the data in an organization. The data comes from the different department of an organization like CRM, financial and HR system etc. All the data from these systems are collected and copied into the data warehouse.

Data warehouse does not only contain the internal data of an organization. But it also contains external data that such as weather etc. which can affect the decision making and they can be used for analytical purposes.

They are used for analytical and business purposes.

Reasons for using data warehouse are enumerated below:

 Data warehouse helps to have a single version of data. If the data is stored at different location, the data might differ.

- Data warehouse provides simplicity while accessing the data since the data is normalized and organized in a proper way which helps easy retrieval.
- Data warehouse allows persistence of data in a way that organization requires.
 Data warehouse stores historical data.

For example, if the organization requires full history of data along with the current version, data warehouse allows to do that and presents the information in desired manner.

REFERENCES

[1] Statistica, 2019. Worldwide Popularity Ranking Database Management Systems. Retrieved from:

www.statista.com/statistics/809750/worldwide-popularity-ranking-database-management-systems/