

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 12: AHO-HOPCRAFT-ULLMANN-ALGORITHMUS

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 10. Januar 2022

Algebraisches Pfadproblem

FLOYD-WARSHALL-ALGORITHMUS

Ziel: kürzeste Wege in einem Graphen G = (V, E, c)

- ► $P_{u,v}^{(k)}$ = Menge aller Wege von u nach v mit inneren Knoten in $\{1, ..., k\}$
- $D_G^{(k)}(u,v) = \begin{cases} \min\left\{c_p : p \in P_{u,v}^{(k)}\right\} & \text{wenn } P_{u,v}^{(k)} \neq \emptyset \\ \infty & \text{sonst} \end{cases}$

Initialisierung:

sierung:
$$D_G^{(0)} = mA_G = \min \{A_G, \mathbf{0}_n\} = \begin{cases} c(u, v) & \text{wenn } u \neq v, (u, v) \in E \\ 0 & \text{wenn } u = v \\ \infty & \text{sonst} \end{cases}$$

Rekursion:

$$\begin{split} D_G^{(k+1)}(u,v) &= \min \left\{ \; D_G^{(k)}(u,v) \; , D_G^{(k)}(u,k+1) + D_G^{(k)}(k+1,v) \; \right\} \\ &= \min \left\{ \quad \text{alt} \quad , \quad \text{Zeile} \quad + \quad \text{Spalte} \quad \right\} \end{split}$$

Ende: $D_G = D_G^{(n)}$ mit n = |V|

ABSTRAKTION: ALGEBRAISCHES PFADPROBLEM

- bisher: kürzeste Wege

 - ▶ Minimum min über alle Pfade
- jetzt: Verallgemeinerung
 - ▶ Pfadoperation ⊙ entlang der Pfade
 - ▶ Akkumulationsoperation ⊕
- ► **Ergebnis:** allgemeine algebraische Struktur Semiring $(S, \oplus, \odot, \mathbf{0}, \mathbf{1})$

	Werte S	\oplus	\odot	0	1
kürzeste Wegeproblem	$\mathbb{R}^{\infty}_{\geq 0}$	min	+	∞	0
Kapazitätsproblem	\mathbb{N}_{∞}	max	min	0	∞
Erreichbarkeitsproblem	$\{true,false\}$	V	^	false	true
Zuverlässigkeitsproblem	[0,1]	max	•	0	1
Prozessproblem	$\mathcal{P}(\Sigma^*)$	U	0	Ø	$\{\varepsilon\}$

FLOYD-WARSHALL → AHO-HOPCRAFT-ULLMANN

modifizierte Adjazenzmatrix

$$mA_G = \begin{cases} A_G(u, v) & \text{wenn } u \neq v \\ A_G(u, v) \oplus \mathbf{1} & \text{wenn } u = v \end{cases}$$

Initialisierung: $D_G^{(0)} = mA_G$

Rekursion:

$$D_G^{(k+1)}(u,v) = D_G^{(k)}(u,v) \oplus \left(D_G^{(k)}(u,k+1) \odot (D_G^{(k)}(k+1,k+1))^* \odot D_G^{(k)}(k+1,v)\right)$$

vgl. dazu Floyd-Warshall:

$$\begin{split} &D_G^{(k+1)}(u,v)\\ &= \min \left\{ D_G^{(k)}(u,v), D_G^{(k)}(u,k+1) + 0 + D_G^{(k)}(k+1,v) \right\} \end{split}$$

Teil (a):

$$(\textit{S}, \oplus, \odot, \textbf{0}, \textbf{1}) = (\mathbb{N}_{\infty}, \mathsf{max}, \mathsf{min}, 0, \infty)$$

Teil (a):

$$(\mathcal{S}, \oplus, \odot, \boldsymbol{0}, \boldsymbol{1}) = (\mathbb{N}_{\infty}, \mathsf{max}, \mathsf{min}, 0, \infty)$$

Teil (b):

$$mA_G = D_G^{(0)} = \begin{pmatrix} \infty & 5 & 3 & 0 & 0 \\ 0 & \infty & 4 & 3 & 0 \\ 0 & 4 & \infty & 0 & 2 \\ 0 & 0 & 0 & \infty & 4 \\ 0 & 0 & 0 & 0 & \infty \end{pmatrix}$$

Teil (c):

Zunächst einige Hinweise zur Notation und zum Verständnis...

Teil (c):

Zunächst einige Hinweise zur Notation und zum Verständnis...

Verallgemeinerte Operationen:

allgemeine Akkumulationsoperation:

$$s_0 \oplus s_1 \oplus \cdots \oplus s_n = \sum_{i \in \{0,\ldots,n\}}^{\oplus} s_i$$

$$s_0 + s_1 + \dots + s_n = \sum_{i \in \{0,1,\dots,n\}} s_i$$

Teil (c):

Zunächst einige Hinweise zur Notation und zum Verständnis...

Verallgemeinerte Operationen:

allgemeine Akkumulationsoperation: gewöhnliche Addition:

$$s_0 \oplus s_1 \oplus \cdots \oplus s_n = \sum_{i \in \{0,\ldots,n\}}^{\oplus} s_i$$

$$s_0 + s_1 + \dots + s_n = \sum_{i \in \{0,1,\dots,n\}} s_i$$

Potenz: induktiv definiert über

$$s^0 := 1$$

$$s^0 := \mathbf{1}$$
 und $s^{n+1} := s \odot s^n$

Teil (c):

Zunächst einige Hinweise zur Notation und zum Verständnis...

Verallgemeinerte Operationen:

allgemeine Akkumulationsoperation: gewöhnliche Addition:

$$s_0 \oplus s_1 \oplus \cdots \oplus s_n = \sum_{i \in \{0,\ldots,n\}}^{\oplus} s_i$$

$$s_0 + s_1 + \dots + s_n = \sum_{i \in \{0,1,\dots,n\}} s_i$$

Potenz: induktiv definiert über

$$s^0 := 1$$

$$s^0 := \mathbf{1}$$
 und $s^{n+1} := s \odot s^n$

Stern:

$$s^* = \sum_{n \in \mathbb{N}}^{\oplus} s^n$$

Teil (c): Laut Vorlesung gilt $s^* = \sum_{n \in \mathbb{N}}^{\oplus} s^n$ mit $s^0 = \mathbf{1}$ und $s^{n+1} = s \odot s^n$. Im Semiring $(S, \oplus, \odot, \mathbf{0}, \mathbf{1}) = (\mathbb{N}_{\infty}, \max, \min, 0, \infty)$ gilt:

- $s^0 = 1 = \infty$
- $s^2 = s \odot s^1 = \min\{s, s\} = s$
- ٠...

Schließlich ist

$$s^* = \sum_{n \in \mathbb{N}}^{\max} s^n = \sup \left\{ s^n : n \in \mathbb{N} \right\} = \sup \left\{ \infty, s, s, \ldots \right\} = \infty = \mathbf{1}.$$

Somit gilt dann in der Updateformel

$$\begin{split} D_G^{(k+1)}(u,v) &= \max \left\{ D_G^{(k)}(u,v), \min \left\{ D_G^{(k)}(u,k+1), \infty, D_G^{(k)}(k+1,v) \right\} \right\} \\ &= \max \left\{ D_G^{(k)}(u,v), \min \left\{ D_G^{(k)}(u,k+1), \quad D_G^{(k)}(k+1,v) \right\} \right\} \\ &= D_G^{(k)}(u,v) \oplus \left(D_G^{(k)}(u,k+1) \odot D_G^{(k)}(k+1,v) \right) \end{split}$$

Teil (d):

- $D_G^{(1)}$: keine Änderung (Quelle)
- $D_G^{(2)}$: (1,3,4), (3,4,3), (1,4,3)
- $D_G^{(3)}$: (1,5,2), (2,5,2)
- $D_G^{(4)}$: (1,5,3), (2,5,3), (3,5,3)
- $D_G^{(5)}$: keine Änderung (Senke)

Teil (d):

- $D_G^{(1)}$: keine Änderung (Quelle)
- $D_G^{(2)}$: (1,3,4), (3,4,3), (1,4,3)
- $D_G^{(3)}$: (1,5,2), (2,5,2)
- $D_G^{(4)}$: (1,5,3), (2,5,3), (3,5,3)
- $D_G^{(5)}$: keine Änderung (Senke)

Teil (e):

 $D_{G'}(1,5) = 2$ über den Pfad (1,2,3,5)

Update-Formel:

$$\begin{split} &D_G^{(k+1)}(u,v) \\ &= D_G^{(k)}(u,v) \oplus \Big(D_G^{(k)}(u,k+1) \odot (D_G^{(k)}(k+1,k+1))^* \odot D_G^{(k)}(k+1,v)\Big) \\ &= D_G^{(k)}(u,v) \cup \Big(D_G^{(k)}(u,k+1) \circ (D_G^{(k)}(k+1,k+1))^* \circ D_G^{(k)}(k+1,v)\Big) \\ &= \quad \text{alt} \quad \cup \Big(\quad \text{Zeile} \quad \circ \quad \text{(Diagonale)}^* \quad \circ \quad \text{Spalte} \Big) \end{split}$$

Teil (b):
$$D_G^{(0)} = mA_G = \begin{pmatrix} \{\varepsilon, d\} & \{a\} & \varnothing \\ \varnothing & \{\varepsilon\} & \{b\} \\ \{c\} & \varnothing & \{\varepsilon\} \end{pmatrix}$$

Teil (b):
$$D_{G}^{(0)} = mA_{G} = \begin{pmatrix} \{\varepsilon, d\} & \{a\} & \varnothing \\ \varnothing & \{\varepsilon\} & \{b\} \\ \{c\} & \varnothing & \{\varepsilon\} \end{pmatrix}$$
Teil (c):
$$D_{G}^{(1)} = \begin{pmatrix} \{d\}^{*} & \{d\}^{*} \{a\} & \varnothing \\ \varnothing & \{\varepsilon\} & \{b\} \\ \{c\} \{d\}^{*} & \{c\} \{d\}^{*} \{a\} & \{\varepsilon\} \end{pmatrix}$$

Teil (d):

$$D_{G}^{(2)}(3,3) = D_{G}^{(1)}(3,3) \cup \left(D_{G}^{(1)}(3,2) \circ \left(D_{G}^{(1)}(2,2)\right)^{*} \circ D_{G}^{(1)}(2,3)\right)$$

$$= \{\varepsilon\} \cup \left(\{c\} \{d\}^{*} \{a\} \circ \{\varepsilon\}^{*} \circ \{b\}\right)$$

$$= \{\varepsilon\} \cup \left(\{c\} \{d\}^{*} \{ab\}\right)$$

Teil (d):

$$D_{G}^{(2)}(3,3) = D_{G}^{(1)}(3,3) \cup \left(D_{G}^{(1)}(3,2) \circ \left(D_{G}^{(1)}(2,2)\right)^{*} \circ D_{G}^{(1)}(2,3)\right)$$

$$= \{\varepsilon\} \cup \left(\{c\} \{d\}^{*} \{a\} \circ \{\varepsilon\}^{*} \circ \{b\}\right)$$

$$= \{\varepsilon\} \cup \left(\{c\} \{d\}^{*} \{ab\}\right)$$

$$D_{G}^{(3)}(3,3) = D_{G}^{(2)}(3,3) \cup \left(D_{G}^{(2)}(3,3) \circ \left(D_{G}^{(2)}(3,3)\right)^{*} \circ D_{G}^{(2)}(3,3)\right)$$

$$= D_{G}^{(2)}(3,3) \cup \left(D_{G}^{(2)}(3,3)\right)^{*}$$

$$= \left(D_{G}^{(2)}(3,3)\right)^{*}$$

$$= \left(\{\varepsilon\} \cup \{c\} \{d\}^{*} \{ab\}\right)^{*}$$

$$= \left(\{c\} \{d\}^{*} \{ab\}\right)^{*}$$