FUNDAÇÃO UNIVERSIDADE FEDERAL DO AMAPÁ DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE CIÊNCIA DA COMPUTAÇÃO

Física I

Prof. Dr. Marcelo Ricardo Souza Siqueira

Lista 01 - Cinemática e Leis de Newton

Guia para Resolução de Questões Discursivas em Física

- O processo de resolução de problemas em Física envolve as seguintes etapas:
- 1. Compreensão: Leia atentamente a questão, identifique as variáveis e o conceito físico principal.
- 2. **Planejamento:** Descreva o problema, faça um diagrama (se necessário), liste as equações e planeje a solução.
- 3. **Resolução:** Substitua valores nas equações, realize os cálculos, mantenha as unidades e verifique cada etapa.
 - 4. Verificação: Revise a solução, verifique a consistência e reanalise o diagrama e as fórmulas.
 - 5. Apresentação: Apresente a resposta final com unidades, escreva uma conclusão e organize o trabalho. Dicas finais:
 - Seja organizado e conciso.
 - Destaque equações e conceitos-chave.
 - Verifique se a resposta faz sentido fisicamente.

Em resumo, uma abordagem lógica e organizada é fundamental para a resolução eficaz de problemas em Física.

Questões

- 1. Um carro se desloca em uma estrada retilínea e horizontal com uma velocidade constante de $60\,\mathrm{km/h}$. De repente, o motorista percebe que o semáforo à frente mudou para vermelho e aplica os freios. Considerando que a desaceleração do carro é constante e igual a $5\,\mathrm{m/s}^2$, determine a distância necessária para que o carro pare completamente.
- 2. Uma bola é lançada verticalmente para cima com uma velocidade inicial de $20\,\mathrm{m/s}$. Considerando que a resistência do ar não é desprezível e que o coeficiente de arrasto é $C_d=0.47$, calcule a altura máxima atingida pela bola e o tempo que ela leva para retornar ao solo.
- 3. Um bloco de 2 kg é empurrado ao longo de uma superfície horizontal rugosa com uma força de 15 N. Se o coeficiente de atrito cinético entre o bloco e a superfície é 0,3, determine a aceleração do bloco.
- 4. Uma partícula de massa m é lançada com velocidade v_0 em um plano inclinado com um ângulo θ em relação à horizontal. Supondo que não há atrito, determine a distância que a partícula percorre ao longo do plano antes de parar.
- 5. Um paraquedista de massa 80 kg salta de um avião em queda livre. Sabendo que o coeficiente de arrasto do paraquedista é $C_d=1,2$ e que a densidade do ar é $\rho=1,225\,\mathrm{kg/m}^3$, determine a velocidade terminal atingida pelo paraquedista.
- 6. Um corpo de massa $5 \, \text{kg}$ é puxado para cima em uma rampa inclinada a 30° com uma força de $50 \, \text{N}$. Sabendo que o coeficiente de atrito estático é 0,4 e o coeficiente de atrito cinético é 0,3, determine se o corpo se move e, em caso afirmativo, calcule a aceleração.
- 7. Um projétil é disparado horizontalmente de uma altura h com uma velocidade inicial de v_0 . Desconsidere a resistência do ar e determine o tempo de voo e a distância horizontal percorrida pelo projétil até atingir o solo.
- 8. Dois blocos, A e B, de massas m_A e m_B respectivamente, estão conectados por uma corda inextensível e sem massa sobre uma polia. O bloco A está sobre uma superfície horizontal sem atrito, enquanto o bloco B está suspenso no ar. Determine a aceleração dos blocos e a tensão na corda.
- 9. Um ciclista de massa $70\,\mathrm{kg}$ está descendo uma colina com inclinação de 5° . Se a força de arrasto é proporcional ao quadrado da velocidade com um coeficiente de $0.9\,\mathrm{N/(m/s)^2}$, determine a velocidade terminal do ciclista
- 10. Um objeto de massa 2 kg está preso a uma mola de constante elástica $k = 100 \,\mathrm{N/m}$. O objeto é puxado para uma posição $x = 0.1 \,\mathrm{m}$ e solto. Determine a velocidade do objeto ao passar pela posição de equilíbrio.
- 11. Uma força constante de $F=40\,\mathrm{N}$ é aplicada a um bloco de $10\,\mathrm{kg}$ sobre uma superfície horizontal. Se o coeficiente de atrito cinético é 0,25, determine a aceleração do bloco e a força de atrito que atua sobre ele.

- 12. Um corpo de massa m está inicialmente em repouso em um plano horizontal. Uma força F é aplicada ao corpo ao longo de uma direção que forma um ângulo θ com a horizontal. Sabendo que o coeficiente de atrito é μ , determine a condição para que o corpo comece a se mover.
- 13. Uma partícula é lançada em um ângulo θ em relação à horizontal com uma velocidade inicial v_0 . Desconsidere a resistência do ar e determine a altura máxima atingida pela partícula e o alcance horizontal.
- 14. Um carro de massa m está se movendo em uma estrada curva de raio r com uma velocidade constante v. Determine a força centrípeta que atua no carro e discuta como essa força está relacionada com a força de atrito entre os pneus e a estrada.
- 15. Um esquiador de massa 70 kg está descendo uma pista com inclinação de 10°. Se o coeficiente de atrito cinético entre os esquis e a neve é 0,2, determine a aceleração do esquiador.
- 16. Um bloco de massa m está sendo puxado para cima por uma corda em um poço. A aceleração do bloco é constante e igual a a. Determine a tensão na corda e a velocidade do bloco após t segundos, considerando que ele parte do repouso.
- 17. Um avião de papel é lançado horizontalmente com uma velocidade inicial de v_0 . Considere que a força de arrasto é proporcional ao quadrado da velocidade com um coeficiente C_d . Determine a distância horizontal percorrida pelo avião antes de tocar o solo.
- 18. Uma partícula de massa m está se movendo sob a ação de uma força constante F em uma direção que forma um ângulo θ com a horizontal. Determine o trabalho realizado pela força após a partícula se deslocar por uma distância d.
- 19. Um projétil é lançado com uma velocidade inicial v_0 em um ângulo θ em relação à horizontal. Desconsidere a resistência do ar e determine a energia cinética do projétil no ponto mais alto de sua trajetória.
- 20. Uma bola é lançada para cima com uma velocidade inicial v_0 . Sabendo que a resistência do ar é proporcional à velocidade com um coeficiente b, determine a altura máxima atingida pela bola.

"O que sabemos é uma gota, o que ignoramos é um oceano."

"Mas o que seria o oceano se não infinitas gotas?"

Isaac Newton