19 BUNDESREPUBLIK **DEUTSCHLAND**

® Patentschrift (i) DE 3423258 C1

(51) Int. Cl. 4: A 61 M 1/18 B 01 D 13/00

DEUTSCHES PATENTAMT Aktenzeichen: Anmeldetag:

P 34 23 258.3-35

23. 6.84

Offenlegungstag: Veröffentlichungstag

der Patenterteilung: 23. 1.86

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(73) Patentinhaber:

SECON Gesellschaft für Separations- und Concentrationstechnik mbH, 3400 Göttingen, DE

(74) Vertreter:

Bibrach, R., Dipl.-Ing.; Rehberg, E., Dipl.-Ing., Pat.-Anw.; Bibrach-Brandis, M., Rechtsanw., 3400 Göttingen

② Erfinder:

Lüning, Rudolph, 3400 Göttingen, DE; Weickhardt, Ludwig, 3406 Bovenden, DE

(56) Im Prüfungsverfahren entgegengehaltene Druckschriften nach § 44 PatG:

DE-OS 30 23 681 Trans.Amer.Soc.Art.f.Sut.Organs., Vol.XVIII (1972) S.473;

(54) Kapillardialysator

Ein Kapillardialysator weist ein in der Regel rohrförmiges Gehäuse (1) und ein Bündel darin beidendig durch eine Einbettmasse (3) fixierter sowie gegeneinander und gegenüber dem Gehäuse abgedichteter Kapillaren (2) auf, die in je einer Stirnfläche (4) enden, an die je eine Ein- bzw. Ausströmkammer (8, 9) für das Blut anschließt. Zwischen den Einbettmassen (3) ist um die Kapillaren (2) herum eine Dialysatkammer mit zwei gehäuseseitigen Anschlüssen vorgesehen. Mindestens eine der beiden Stirnflächen (4) aus Einbettmasse (3) und Kapillaren (2) ist mit einer Beschichtung (15) ver-

Patentansprüche:

1. Kapillardialysator mit einem in der Regel rohrförmigen Gehäuse und einem Bündel darin beidendig durch eine Einbettmasse fixierter sowie gegeneinander und gegenüber dem Gehäuse abgedichteter Kapillaren, die in je einer Stirnfläche enden, an die je eine Ein- bzw. Ausströmkammer für das Blut sen um die Kapillaren herum vorgesehenen Dialysatkammer mit zwei gehäuseseitigen Anschlüssen, dadurch gekennzeichnet, daß mindestens eine der beiden Stirnflächen (4) aus Einbettmasse (3) versehen ist.

2. Kapillardialysator nach Anspruch 1, dadurch gekennzeichnet, daß die Beschichtung (15) auch um die Innenkante der einzelnen Kapillare (2) herum bis zu einer gewissen Tiefe an der Innenwand der Kapillare 20 (2) vorgesehen ist.

3. Kapillardialysator nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Beschichtung (15) aus Polyurethan und die Kapillaren (2) aus regenerierter Zellulose bestehen.

 Kapillardialysator nach Anspruch 1, dadurch gekennzeichnet, daß die Beschichtung (20) aus einem Material besteht, das eine poröse Filterstruktur aufweist und die Anlagerung von Eiweißstoffen aus dem Blut gestattet.

5. Kapillardialysator nach Anspruch 4, dadurch gekennzeichnet, daß die Beschichtung (20) mit der porösen Filterstruktur aus einem in zwei Lösungsmitteln gelösten Kunststoff besteht, wobei die beiden Lösungsmittel unterschiedliche Verdampfungsei- 35 genschaften aufweisen.

Kapillardialysator nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Beschichtung (20) mit der porösen Filterstruktur auf der Oberfläche der gesamten Ein- bzw. Ausströmkammer (8,9) vorgese- 40 hen ist.

7. Kapillardialysator nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Beschichtung (15, 20) aus zwei Schichten besteht, von denen die zuerst aufgebrachte den Haftgrund für die zweite 45 Beschichtung (20) bildet und die zweite Beschichtung (20) gemäß den Merkmalen des Anspruches 4 ausgebildet ist.

8. Kapillardialysator nach Anspruch 7, dadurch gekennzeichnet, daß die erste Beschichtung (15) eine 50 Dicke von etwa 5-20 µm und die zweite Beschichtung (20) eine Dicke von etwa 5 bis 50 μm aufweist.

9. Kapillardialysator nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß die Beschichtung (20) mit der porösen Filterstruktur im wesentlichen 55 aus Polysulfon, Polyamid, Polymethylmethacrylat, Polycarbonat oder Zelluloseacetaten besteht.

Die Erfindung bezieht sich auf einen Kapillardialysator mit einem in der Regel rohrförmigen Gehäuse und einem Bündel darin beidendig durch eine Einbettmasse fixierter sowie gegeneinander und gegenüber dem Ge- 65 häuse abgedichteter Kapillaren, die in je einer Stirnfläche enden, an die je eine Ein- bzw. Ausströmkammer für das Blut anschließt, und mit einer zwischen den Einbett-

massen um die Kapillaren herum vorgesehenen Dialysatkammer mit zwei gehäuseseitigen Anschlüssen. Ein solcher Kapillardialysator entspricht der üblichen Ausbildung und Ausführung.

Kapillardialysatoren mit einem rohrabschnittförmigen Gehäuse werden bekanntlich in der Weise hergestellt (z. B. DE-OS 30 23 681),

daß ein Bündel Kapillaren, also sehr feine dünne Rohre mit einem Innendurchmesser von etwa 0,2 mm und anschließt, und mit einer zwischen den Einbettmas- 10 einer Wandstärke von 5-20 um in das rohrabschnittförmige Gehäuse eingeschoben werden. Beide Enden des rohrabschnittförmigen Gehäuses werden durch je eine Abdeckkappe verschlossen. Durch die Anschlüsse für das Dialysat hindurch wird an beiden Endbereichen und Kapillaren (2) mit einer Beschichtung (15, 20) 15 Einbettmasse zwischen das Bündel der Kapillaren und das rohrabschnittförmige Gehäuse eingegeben. Durch einen Schleudervorgang um eine mittlere Querachse des rohrabschnittförmigen Gehäuses verteilt sich die Einbettmasse zwischen den Kapillaren und zwischen den Kapillaren und der Gehäusewandung, wobei der Raum bis zu den Abdeckkappen ausgefüllt wird. Durch die dann erstarrte Einbettmasse sind die Kapillaren in dem rohrabschnittförmigen Gehäuse gleichzeitig fixiert und abgedichtet. Nach der Entfernung der nur für das Eingießen der Einbettmasse erforderlichen Abdeckkappen wird das Bündel der Kapillaren, die ursprünglich mit entsprechend größerer Länge in das rohrförmige Gehäuse eingeschoben wurden, beidendig abgeschnitten. Dieser Schnitt kann auch durch einen Stanzvorgang erfolgen. Bei diesem Schnitt entsteht eine Stirnfläche durch die Kapillaren und die Einbettmasse hindurch, die an der Gehäusewandung endet. Durch diesen Schnitt entstehen jedoch in nachteiliger Weise Rauhigkeiten an der Stirnfläche, und zwar sowohl im Bereich der Einbettmasse als auch im Bereich der Kapillarenden. Die Kapillaren selbst weisen auch oft Einrisse in ihrer Rohrwandung auf, die meist in nachteiliger Weise nach dem Innenraum der Rohrwandung der einzelnen Kapillare hin gerichtet sind. Diese Einrisse werden bei elektronenmikroskopischer Vergrößerung der Schnittfläche sichtbar. Es sind auch Ablöseerscheinungen zwischen der Kapillarwand und der Einbettmasse zu beobachten. Die beschriebenen Rauhigkeiten können als Auslöser bzw. als Keim wirken und durch ihre Form und Anwesenheit die Gefahr von Gerinnungserscheinungen des Blutes bei der Verwendung des Dialysators begünstigen. Infolge dieser Gerinnungserscheinungen kommt es dann zu Verstopfungen der einzelnen Kapillare, insb. eingangsseitig, also im Bereich der Einströmkammer. Hierdurch wird die Dialysierfläche des Dialysators durch Ausfall der verstopften Kapillaren verkleinert. Die erforderliche Leistung ist nicht mehr vorhanden. Als weiterer Nachteil ergibt sich ein entsprechender Blutverlust des Patienten, da auch eine Auswaschmöglichkeit infolge der Verstopfungen nicht gegeben ist.

Aus Trans. Amer. Soc. Aitif. Sut. Organs Vol. XVIII 1972 Seite 473 ist es bekannt, mit Blut in direktem Kontakt stehende rauhe Oberflächen von Aktivkohle in Absorbern zur Vermeidung von Thrombose mit einer glät-60 tenden, porösen Haut zu überziehen.

Der Erfindung liegt die Aufgabe zugrunde, die beschriebenen Nachteile zu bekämpfen und einen Kapillardialysator der eingangs beschriebenen Art zu schaffen, bei der bei Gebrauch der Ausfall von Kapillaren und damit der Blutverlust für den Patienten erniedrigt

Erfindungsgemäß wird dies dadurch erreicht, daß mindestens eine der beiden Stirnflächen aus Einbett-

masse und Kapillaren mit einer Beschichtung versehen ist. Durch die Aufbringung dieser Beschichtung auf die geschnittenen Stirnenden aus Einbettmasse und Kapillaren findet eine Glättung und Verrundung der Oberfläche statt. Die Verletzungen der Oberfläche im Mikrobereich, die durch den Schnitt hervorgerufen werden, werden ausgeglichen. Fremdkörper werden eingebettet, Risse ausgefüllt und insgesamt wird die Oberflächenrauhigkeit vermindert, so daß die Gefahr solcher rauhen stark vermindert ist. Es versteht sich, daß die Beschichtung so aufgebracht ist, daß die Kapillaröffnungen der Kapillaren von der Beschichtung nicht überspannt und nicht abgedeckt sind. Die Kapillaren müssen natürlich Es ist aber durchaus möglich und auch sinnvoll, die Beschichtung auch um die Innenkante der einzelnen Kapillare herum bis zu einer gewissen Tiefe an der Innenwand der Kapillare vorzusehen, damit auch die innere scharf geschnittene Kante jeder Kapillare verrundet 20 len weiter beschrieben. Es zeigt wird. Damit ergeben sich günstige geometrische Bedingungen am Eintritt in jede einzelne Kapillare hinsichtlich der beabsichtigten Blutströmung.

Besonders geeignet ist eine Beschichtung aus Polyurethan, wobei die Kapillaren aus regenerierter Zellulo- 25 se bestehen. Das Polyurethan haftet auf der Zellulose und wird von dort auch bei Benetzen mit Flüssigkeit nicht abgelöst.

Die Beschichtung, die in aller Regel sehr dünn ausgebildet ist und somit eine Glätt- und Einebnungsfunktion 30 erfüllt, kann aber auch aus einem Material bestehen, das eine poröse Filterstruktur aufweist und die Anlagerung von Eiweißstoffen aus dem Blut gestattet. Damit wird eine Oberfläche besonderer Art geschaffen, die durch Anlagerung von eigenen Eiweißstoffen aus dem Blut 35 besonders blutfreundlich, und zwar für jeden einzelnen Patienten, gestaltet wird. Es versteht sich, daß diese Gestaltung erst während der Benutzung des Dialysators eintritt, jedoch ist durch die Verwendung einer Beschichtung in Form einer porösen Filterstruktur die 40 Möglichkeit hierzu geschaffen. Eine solche poröse Filterstruktur kann beispielsweise dann hergestellt werden, wenn die Beschichtung aus einem in zwei Lösungsmitteln gelösten Kunststoff besteht, wobei die beiden Lösungsmittel unterschiedliche Verdampfungseigen- 45 schaften aufweisen. Nach dem Aufbringen der Beschichtung verdampft zuerst das Lösungsmittel 1 und die Konzentration des Kunststoffes im Lösungsmittel 2 steigt an. Vor dem Verdampfen des Lösungsmittels 2 entsteht ein örtlich unterschiedlicher Fällungsvorgang, 50 wobei die gewünschte poröse Filterstruktur entsteht. Schließlich verdampft auch das Lösungsmittel 2 vollständig.

Es ist aber auch möglich, daß die Beschichtung aus brachte den Haftgrund für die zweite Beschichtung bildet und die zweite Beschichtung gemäß den Merkmalen des Anspruches 4 ausgebildet ist. Die erste Beschichtung erfüllt somit im wesentlichen Glätt- und Einebnungsfunktion, während die zweite, darauf aufgebrachte 60 zusätzliche Schicht der Beschichtung die poröse Filterstruktur erbringt. Es ist auch möglich, daß die Beschichtung auf der Oberfläche der gesamten Ein- bzw. Ausströmkammer vorgesehen ist. Hierfür kommt jedoch die Beschichtung mit der porösen Filterstruktur allein 65 zur Anwendung, weil die Oberfläche der Ein- und Ausströmkammer ansonsten von einem Gehäusedeckel gebildet wird, an welchem ein Schnitt- oder Stanzvorgang

nicht stattfindet. Selbstverständlich kann diese (zweite) Beschichtung mit der porösen Filterstruktur auch allein auf die Stirnfläche der Einbettmasse und der Kapillaren aufgebracht werden. Die Beschichtung mit der Filterstruktur kann im wesentlichen aus Polysulfon, Polyamid, Polymethylmethacrylat, Polycarbonat oder Zelluloseacetaten bestehen.

Die erste Beschichtung kann eine Dicke von etwa 5-20 μm und die zweite Beschichtung von etwa Stellen, Ausgangspunkt für eine Blutgerinnung zu sein, 10 5-50 µm aufweisen. Bei derartig dünnen Beschichtungen besteht nicht die Gefahr, daß die einzelne Kapillare durch die Aufbringung der Beschichtung verstopft oder unzumutbar verengt wird.

Die Erfindung läßt sich auch durch die Verwendung offen bleiben, weil durch sie der Fluß des Blutes erfolgt. 15 einer Beschichtung auf den geschnittenen Stirnflächen der Kapillaren und der Einbettmasse eines Kapillardialysators zur Verminderung der Gerinnungsgefahr für das Blut kennzeichnen.

Die Erfindung wird anhand von Ausführungsbeispie-

Fig. 1 einen Schnitt durch einen Kapillardialysator,

F i g. 2 eine Schnittdarstellung des einen Endbereichs des Kapillardialysators vor der Anbringung des Schnit-

F i g. 3 eine Schnittdarstellung des Endes einer einzelnen Kapillare mit der Darstellung einer einfachen Beschichtung und

F i g. 4 eine Schnittdarstellung des Endes einer einzelnen Kapillare mit der Darstellung einer ersten und einer zweiten Beschichtung.

Der in Fig. 1 dargestellte Kapillardialysator weist ein rohrabschnittförmiges Gehäuse 1 auf, in welchem ein Bündel aus vielen Kapillaren 2, die in Fig. 1 in stark relativ vergrößerter Darstellung wiedergegeben sind, angeordnet sind. An beiden Enden ist das Bündel der Kapillaren 2 in einer Einbettmasse 3 eingeformt, die das Bündel der Kapillaren 2 nicht nur innerhalb des Gehäuses 1 fixiert, sondern die Kapillaren 3 untereinander und gegenüber der Wandung des Gehäuses 1 abdichtet. Die Einbettmasse 3 und die Kapillaren enden in einer Stirnfläche 4. Die Enden des rohrabschnittförmigen Gehäuses 1 sind mit einem Außengewinde 5 versehen, auf die jeweils ein Deckel 6 unter Zwischenlage einer nicht dargestellten Dichtung aufgeschraubt wird. Der Deckel 6 besitzt einen Anschlußstutzen 7 zum Anschluß einer Schlauchleitung. Am einen Ende des Gehäuses ist auf diese Art und Weise eine Einströmkammer 8 und am anderen Ende eine Ausströmkammer 9 gebildet. Die beiden Kammern 8 und 9 sind grundsätzlich gleich bzw. ähnlich ausgebildet, so daß die Verwendung des Kapillardialysators in der einen oder anderen Richtung erfolgen kann. Es versteht sich, daß durch den einen Anschlußstutzen 7 das Blut in die Einströmkammer 8 eintritt, sich von dort auf die Kapillaren 2 verteilt und diese zwei Schichten besteht, von denen die zuerst aufge- 55 durchströmt. In der Ausströmkammer 9 sammelt sich das Blut aus den einzelnen Kapillaren 2 und strömt durch den Anschlußstutzen 7 wieder aus.

Der zwischen den Kapillaren 2 vorhandene Innenraum 10 zwischen den Einbettmassen 3 ist für das Dialysat bestimmt. Über zwei Stutzen 11 und 12 fließt das Dialysat gemäß den Pfeilen 13, während sich das Blut gemäß den Pfeilen 14 bewegt. Auf der Stirnfläche 4 ist eine Beschichtung 15 aufgebracht, die sich über die Einbettmasse 3 hinweg erstreckt und auch die Stirnenden der Kapillaren 2 erfaßt. Diese Beschichtung 15 dient dazu, die Rauhigkeit zu vermindern, Fremdkörper einzuschließen, spitze Materialstücke zu verrunden und insgesamt damit eine für das Blut verträgliche Oberfläche zu schaffen, hinsichtlich der die Gefahr von Blutgerinnungen wesentlich vermindert ist.

Fig. 2 verdeutlicht einen Vorgang während des Herstellens des Kapillardialysators. Hierbei wird das rohrabschnittförmige Gehäuse 1 ohne die Verwendung der Deckel 6 mit gesonderten Abdeckkappen 16 verschlossen, nachdem ein Bündel von Kapillaren 2 mit etwas größerer Länge in das Gehäuse 1 eingebracht worden Durch die Stutzen 11 und 12 wird Einbettmasse 3 in nicht ausgehärtetem Zustand eingeführt. Anschließend das derart vorbereitete Gehäuse durch einen Schleudervorgang um eine mittlere Querachse in Drehung versetzt, wobei der Zwischenraum zwischen den Enden des Gehäuses und den Abdeckkappen 16 von der Einbettmasse ausgefüllt wird, die in diesem Stadium aushärtet. 15 Es versteht sich, daß sich die Einbettmasse 3 auch um einen gewissen Betrag nach innen von den Stirnenden des Gehäuses 1 aus gesehen hinein erstreckt, so daß eine feste und dichte Verbindung der Stirnbereiche der Kapillaren 2 mit dem Gehäuse 1 eintritt. Nach der Aushärtung werden die Abdeckkappen 16 entfernt und es erfolgt ein Schnitt mit Hilfe eines Messers 17 bzw. einer Stanzvorrichtung derart, daß überschüssige Einbettmasse 3 mit den Enden der Kapillaren 2 abgeschnitten wird. Es entsteht bei diesem Schnitt beidendig je eine 25 Stirnfläche 3, die in diesem Zustand beachtliche Oberflächenrauhigkeiten aufweist. Oft sind auch Einrisse zwischen der Einbettmasse 3 und den Enden der Kapillaren 2 zu beobachten. Auch Teile der Kapillaren hängen fransenförmig in den Innenraum einer Kapillare hinein. 30 All diese Rauhigkeiten stellen eine Gefahr für das Gerinnen des Blutes während der Benutzung dar. Diese Rauhigkeiten, die im Mikrobereich liegen, werden nun durch die Beschichtung 15 (F i g. 3) beseitigt, eingeebnet und geglättet. Aus der extrem vergrößernden Darstel- 35 lung der Fig. 3 ist ersichtlich, wie sich auch die Beschichtung 15 um die Innenkante 18 des Endes jeder Kapillare 2 herum erstreckt und sogar bis zu einer gewissen Tiefe in die einzelne Kapillare 1 hinein fortsetzt, so daß auf jeden Fall die scharfe Innenkante 18 verrun- 40 det ist. Die Dicke dieser Beschichtung 15 liegt in der Größenordnung von 5-20 µm. Die Beschichtung 15 weist eine vorzugsweise glatte und ebene Oberfläche 19 auf, an der Blutbestandteile nicht haften. Besonders geeignet ist Polyurethan für diese Beschichtung 15, wäh- 45 rend gleichzeitig die Kapillaren 2 aus regenerierter Zellulose bestehen können. Das Polyurethan haftet auf der Zellulose besonders gut und wird auch durch Benetzen mit Flüssigkeit nicht abgelöst. Statt der Beschichtung 15 mit glatter Oberfläche 19 kann auch eine Beschichtung 50 20 mit poröser Filterstruktur auf die Stirnfläche 4 allein aufgebracht werden.

Fig. 4 zeigt die weitere Möglichkeit, daß die Beschichtungen 15 und 20 nacheinander, also in zwei Schichten übereinander aufgebracht sind. Die poröse Filterstruktur dient dazu, eine Grundlage für die Anlagerung von Eiweißstoffen aus dem Blut zu schaffen, so daß die Oberfläche insgesamt als blutfreundlich und verträglich anzusehen ist. Die Beschichtung 20 mit der porösen Filterstruktur kann nicht nur auf die Stirnfläche 4, sondern auch auf die übrige Oberfläche der Einströmkammer 8 und der Ausströmkammer 9 aufgebracht werden, also im wesentlichen auf die Innenseiten der Deckel 6. Besonders wichtig ist die einströmseitige Anordnung.

Eine Beschichtung 20, die eine poröse Filterstruktur ergibt, besteht in der Regel aus einem Kunststoff, der in zwei Lösungsmitteln gelöst ist, wobei die beiden Lö-

sungsmittel unterschiedliche Verdampfungseigenschaften haben. Dabei hat sich folgendes Verhältnis bewährt. Als Kunststoff wird 7,5 g Polykarbonat eingesetzt, welches in 92,5 g Methylenchlorid als erstes Lösungsmittel mit hoher Verdampfungsgeschwindigkeit gelöst ist. Zusätzlich ist der Kunststoff in 12,5 g Dimethylacetamid als zweites Lösungsmittel mit vergleichsweise langsamer Verdampfungsgeschwindigkeit gelöst. Statt Dimethylacetamid kann auch Dimethylformamid Anwendung finden. Nach der Aufbringung einer derartigen Beschichtung 20 verdampft zuerst das erste Lösungsmittel Methylenchlorid und die Konzentration des Kunststoffes im Lösungsmittel 2, dem Dimethylacetamid steigt an. Beim Verdampfen des Lösungsmittels 2, dem Dimethylacetamid entsteht eine örtlich unterschiedliche Fällungsreaktion, wobei die poröse faserige Struktur entsteht. Anschließend verdampft das zweite Lösungsmittel vollständig.

Hierzu 2 Blatt Zeichnungen

34 23 25

A 61 M 1/18

BEST AVAILABLE COPY

34 23 258

Int. Cl.4:

A 61 M 1/18 Veröffentlichungstag: 23. Januar 1986

