Active Reinforcement Learning

images/tree04

Aijun Bai

Sep 24, 2011

Multi-Agent Systems Lab., USTC

- Preliminaries
 Markov Decision Process
 Reinforcement Learning
- Active Reinforcement Learning Active Learning Fashion Sensitivity Analysis Active RL Algorithm
- 3 Empirical Test
- 4 Conclusions
 Advantages & Disadvantages
 Possible Applications in 2D

- Preliminaries
 Markov Decision Process
 Reinforcement Learning
- 2 Active Reinforcement Learning Active Learning Fashion Sensitivity Analysis Active RL Algorithm
- 3 Empirical Test
- Advantages & Disadvantages
 Possible Applications in 2D

Definition of MDPs

- MDP if a 4-tuple:
 - Finite set of states: $S = \{s_1, s_2, \cdots, s_{|S|}\}$
 - Finite set of actions: $A = \left\{a_1, a_2, \cdots, a_{|A|}\right\}$
 - Transition probability function: $T(s'|s,a) \rightarrow [0,1]$
 - Immediate reward function: $R(s,a) \to \mathbf{R}$
- Define $Next(s, a) = \{s' : T(s'|s, a) > 0\}$
- Deterministic policy: $\pi(s) \to A$

Propertities of policy π

- Transition probability matrix: $T^{\pi}(s,s') = T(s'|s,\pi(s))$
- Reward vector: $R^{\pi}(s) = R(s, \pi(s))$
- Value function(vector): $V^{\pi}(s) = E\left\{r_1 + \alpha r_2 + \alpha^2 r_3 + \cdots\right\}$
- Bellman equation: $V^{\pi} = \alpha T^{\pi} V^{\pi} + R^{\pi}$
- Compute $V^{\pi}(T,R)$ (Policy evaluation):
 - Direct method: $V^{\pi} = (I \alpha T^{\pi})^{-1} R^{\pi}$
 - Iterative method: $V^{\pi}(s) \leftarrow R^{\pi}(s) + \alpha T^{\pi}(s) V^{\pi}$
- Utility function: $U^{\pi}(T,R) = E_{s_0 \sim D} V^{\pi}(s_0;T,R)$

The optimal policy $\Pi_{T,R}$

- $\Pi_{T,R}$ respects: $\Pi_{T,R} = \arg \max_{\pi} U^{\pi}(T,R)$
- Can be solved by Dynamic Programming method:
 - Value iteration
 - Policy iteration
- ullet Only if T and R is known

Model-free fashion using RL

- Find Π when T or R is not known
- General processes:
 - Sample Collection: exploration & exploitation
 - 2 Policy Evaulation: $V \leftarrow V^{\pi}$
 - **3** Policy Improvement: $\pi \leftarrow greedy(V)$
- Interact eachother until convergence of policy or it's value function
- Can be proved to be optimal when convergence happens

Sample Collection

- Samples are sets of s, a, r, s'
- Sampling methods:
 - Interaction with realistic environment
 - Simulation episodes from start state
 - Query a single state/action pair with simulation

- Preliminaries
 Markov Decision Process
 Reinforcement Learning
- Active Reinforcement Learning Active Learning Fashion Sensitivity Analysis Active RL Algorithm
- 3 Empirical Test
- 4 Conclusions
 - Advantages & Disadvantages
 Possible Applications in 2D

mages/tree04

Learning with prior knowledge

- Observations:
 - Traditional RL method (MC, TD, LSPI, etc.) learns from 0
 - Near-optimal policy can be got from inaccurate models
- Idea: using prior MDP specification to accelerate learning
- Method: active sample collection with sensitivity analysis of individual state/action pair

Replacement Function

• Replace the transition probabilities $T(\cdot|\hat{s},\hat{a})$ of a fixed state/action pair with a given distribution $X \in \Delta(Next(\hat{s},\hat{a}))$:

$$W_{\hat{s},\hat{a}}[T,X](s'|s,a) = \left\{ \begin{array}{ll} X(s') & \text{if } s,a=\hat{s},\hat{a} \\ T(s'|s,a) & \text{otherwise} \end{array} \right.$$

Similarly, replace the reward of the chosen state/action pair with r:

$$Y_{\hat{s},\hat{a}}[R,r](s,a) = \left\{ \begin{array}{cc} r & \text{if } s,a = \hat{s},\hat{a} \\ R(s,a) & \text{otherwise} \end{array} \right.$$

The Goal of Sensitivity Analysis

- To determine how much $T(\cdot|\hat{s},\hat{a})$ can change before the currently optimal policy becomes suboptimal
- More precisely:
 - Let $\Pi_{T;\hat{s},\hat{a}} = \arg \max_{\pi} U^{\pi}(W_{\hat{s},\hat{a}}[T_0,T],R_0)$
 - Region in $\Delta(Next(\hat{s},\hat{a}))$ space: $C = \{T: U^{\Pi_{T_0;\hat{s},\hat{a}}}(W_{\hat{s},\hat{a}}[T_0,T],R_0) \geq U^{\Pi_{T;\hat{s},\hat{a}}}(W_{\hat{s},\hat{a}}[T_0,T],R_0) \}$
 - The smaller the regin, the more sensitive the station/action pair

Taylor's Approximation

• Aproximate $U^\pi_{T_1}(W_{\hat{s},\hat{a}}[T_0,X])$ around T_1 with Taylor's approximation method:

$$\hat{U}_{T_{1}}^{\pi}(W_{\hat{s},\hat{a}}[T_{0},X]) \approx U^{\pi}(W_{\hat{s},\hat{a}}[T_{0},T_{1}],R_{0})
+ \nabla_{X|\bar{s},\hat{a}}U^{\pi}(W_{\hat{s},\hat{a}}[T_{0},T_{1}],R_{0})(X|\bar{\hat{s}},\bar{\hat{a}}-T_{1})$$

 The gradient of the utility function can be computed from a derived MDP

Newton's method for sensitivity analysis

- ① Solve optimal policy $\Pi_{T_0;\hat{s},\hat{a}}$ for T_0
- 2 Approximate $\hat{U}_{T_0}^{\Pi_{T_0;\hat{s},\hat{a}}}(W_{\hat{s},\hat{a}}[T_0,X])$ around T_0
- $\textbf{ 3} \ \ \text{Select the starting point } T_0' \in \Delta(Next(\hat{s},\hat{a})) \ \ \text{and} \ \ i \leftarrow 0$
- $\textbf{ § Solve optimal policy } \Pi_{T_i'; \hat{s}, \hat{a}} \text{ for } T_i'$
- $\ \, \textbf{3} \ \, \text{Approximate} \, \, \hat{U}^{\Pi_{T'_i;\hat{s},\hat{a}}}_{T'_i}(W_{\hat{s},\hat{a}}[T_0,X]) \, \, \text{around} \, \, T'_i \, \,$
- $\textbf{0} \quad \text{Let } T_{i+1}' \text{ be the clsest to } T_0 \text{ intersection point of } \\ \hat{U}_{T_0}^{\Pi_{T_0;\hat{s},\hat{a}}}(W_{\hat{s},\hat{a}}[T_0,X]) \text{ and } \hat{U}_{T_i'}^{\Pi_{T_i'};\hat{s},\hat{a}}(W_{\hat{s},\hat{a}}[T_0,X])$
- ① Let $i \leftarrow i+1$ and repeat steps 4-7 until $\Pi_{T_i';\hat{s},\hat{a}} = \Pi_{T_0;\hat{s},\hat{a}}$
- $\ \ \, \textbf{Return} \, \parallel T_i' | \overline{\hat{s}, \hat{a}} T_0 | \overline{\hat{s}, \hat{a}} \parallel \\$

General steps for Active RL Algorithm

- $\textbf{ 0} \ \, \mathsf{Specify possibly inaccurate} \,\, T \,\, \& \,\, R \,\, \mathsf{of the environment offline}$
- Analyse sensitivity of individual state/action pair
- Sample state/action pairs based on their sensitivity ordering
- Find the optimal policy in the "corrected" MDP

Convergence and Complexity

- Convergence can be reached in logarithmic time in MDP which $|Next(\cdot,\cdot)| \leq 2$
- DAG-structured MDP can be converted in polynomial time into an MDP of above form
- No strong convergence results for arbitary MDPs
- Works well based on empirical results

Preliminaries

Warkov Decision Process Reinforcement Learning

- Active Reinforcement Learning Active Learning Fashion Sensitivity Analysis Active RL Algorithm
- 3 Empirical Test
- 4 Conclusions

Advantages & Disadvantage Possible Applications in 2D

Experiment Setup

- Test domains:
 - Mountain-Car
 - Cart-Pole
 - Windy Gridworld
 - Pizza Delivery
 - Drunkard's Walk
- Test method:
 - Provide initial description as T
 - Sensitivity analysis and sort state/action pair
 - Randomly perturbe T to T'
 - Sample one state/action for 10000 times
 - ${\bf \bullet}$ Estimate T' using maximum liklihood methods
 - Find the optimal policy of the "corrected" MDP
 - ullet Evaluate the policy in T^\prime

Experiment Results

- Comparision with:
 - Random RL
 - Ominiscient
 - Prior Optimal
 - Full-backups Q-learning
- Active RL outperforms Random RL
- Prior Optimal performs poorly
- Q-learning rarely catches up with Active RL

Preliminaries

Warkov Decision Process Reinforcement Learning

- 2 Active Reinforcement Learning Active Learning Fashion Sensitivity Analysis Active RL Algorithm
- 3 Empirical Test
- Conclusions
 Advantages & Disadvantages
 Possible Applications in 2D

Advantages & Disadvantages

Advantages:

- Use prior knowledge to accelerate learning
- Provide a good strategy for sample collection avoiding blind sampling

Disadvantages:

- ullet Explicitly maintaining of T need much memory with large state/action space
- Low order Taylor's Approximation can not approximate well
- Sensitivity calculation is complicated and time-consuming
- Hardly to do "query" style sampling with real robots.

Hetero Parameters Problem

- Players got hetero parameters determining the basis physical model
- Realistic hetero parameters specified randomly by server when game starts
- Prior optimal policy based on default hetero parameters may not perform well

Solution with Active RL

- Offline:
 - Learning T_0 for default hetero parameters H_0
 - Sort state/action pairs based on sensitivity analysis
- Online:
 - ullet Use T_0 as prior MDP for realstic hetero parameters H_1
 - ullet Estimate T_1 by sensitivity based samples collection
 - Find the optimal policy of T_1 for online using

mages/tree04

References

 Arkady Epshteyn, Active Reinforcement Learning, http://ai.stanford.edu/~acvogel/papers/290.pdf