PRÁCTICO 2: VALORES Y VECTORES PROPIOS. DIAGONALIZACIÓN.

1. Valores y vectores propios

Ejercicio 1. Para las siguientes transformaciones lineales

$$T: \mathbb{K}^2 \to \mathbb{K}^2 \quad T(x,y) = (-2x - 7y, \ x + 2y)$$
$$T: \mathbb{K}^3 \to \mathbb{K}^3, \quad T(x,y,z) = (x, z, y)$$
$$T: \mathbb{K}^3 \to \mathbb{K}^3, \quad T(x,y,z) = (x, z, -y),$$

- 1. Hallar valores propios y bases de los subespacios propios de T, si $\mathbb{K} = \mathbb{R}$.
- 2. Hallar valores propios y bases de los subespacios propios de T, si $\mathbb{K} = \mathbb{C}$.

EJERCICIO 2. Hallar los valores propios y bases de los subespacios propios de la transformación lineal $T: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ tal que

$$T\left(\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\right)=\left(\begin{array}{cc}4a+b+d&2a+3b+d\\-2a+b+2c-3d&2a-b+5d\end{array}\right).$$

EJERCICIO 3. Se considera la matriz $A = \begin{pmatrix} 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ y la transformación lineal $T : \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\mathcal{B}(T)_{\mathcal{B}} = A$, donde $\mathcal{B} = \{(1,0,0), (1,1,0), (1,1,1)\}.$

- 1. Hallar los valores propios y los subespacios propios de A.
- 2. Hallar los valores propios y los subespacios propios de T.

EJERCICIO 4. Sea $T: V \to V$ una transformación lineal. Probar que:

- 1. T es invertible \Leftrightarrow 0 no es valor propio de T.
- 2. Si T es invertible y λ es valor propio de $T \Rightarrow \lambda^{-1}$ es valor propio de T^{-1} .
- 3. Si λ es valor propio de $T \Rightarrow \lambda^n$ es valor propio de $T^n \forall n \in \mathbb{N}$.
- 4. Si T es invertible y λ es valor propio de T \Rightarrow λ^{-n} es valor propio de T^{-n} $\forall n \in \mathbb{N}$. Nota: Existen resultados análogos para matrices cuadradas.

EJERCICIO 5. Sea A una matriz $n \times n$.

- 1. Probar que A y A^t tienen el mismo polinomio característico.
- 2. Deducir que $A y A^t$ tienen los mismos valores propios.
- 3. λ A y A^t tienen los mismos vectores propios?

Ejercicio 6. Sean A y B dos matrices $n \times n$ semejantes.

- 1. Probar que A y B tienen el mismo polinomio característico.
- 2. Deducir que A y B tienen los mismos valores propios.
- 3. ¿Qué relación existe entre los vectores propios de A y B?

2. Diagonalización

EJERCICIO 7. Para las siguientes transformaciones lineales $T : \mathbb{R}^3 \to \mathbb{R}^3$, hallar los valores propios, hallar bases de los subespacios propios e investigar si son diagonalizables.

1.
$$T(x, y, z) = (2y + z, 2x + z, x + y + z)$$
.

- 2. T(x, y, z) = (4x 5y + 2z, 5x 7y + 3z, 6x 9y + 4z).
- 3. T(x, y, z) = (y, -4x + 4y, 2x + y + 2z).
- 4. T(x, y, z) = (2x, 2y, 2z).

EJERCICIO 8. Dadas las matrices:

(a)
$$A = \begin{pmatrix} 4 & 1-i \\ 1+i & 5 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}$ (c) $A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & -1 & -1+i \\ 0 & -1-i & 0 \end{pmatrix}$

- 1. Hallar los valores propios de A y bases de los subespacios propios de A.
- 2. Deducir que A es diagonalizable.
- 3. Hallar una matriz diagonal D semejante a la matriz A y la matriz invertible P tal que $D = P^{-1}AP$.

EJERCICIO 9. En cada caso, hallar los valores reales de a y b para que la matriz sea diagonalizable.

$$A = \begin{pmatrix} a & 1 & -1 \\ 2 & a & 2 \\ 1 & 1 & a \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -2 & -2 - a \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 0 & 1 \\ 0 & b & 0 \\ a & 0 & 0 \end{pmatrix}.$$

EJERCICIO 10. Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ una transformación lineal tal que su matriz asociada en la base canónica es simétrica. Probar que T es diagonalizable.

3. Otros ejercicios de diagonalización

EJERCICIO 11. Sea $T: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$ definida como $T(M) = M + aM^t$ con $a \in \mathbb{R}$.

- A. Hallar los valores y subespacios propios de T discutiendo según a.
- B. Hallar los valores de a para los cuales T es invertible.
- C. Hallar los valores de a para los cuales T es diagonalizable y hallar su forma diagonal.
- D. Para a = 1, observar que es diagonalizable y hallar una base de $\mathcal{M}_2(\mathbb{R})$ formada por vectores propios de T.

EJERCICIO 12. Sea $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ definida como T(p) = 2p' + p.

- A. Hallar los valores y subespacios propios de T.
- B. Investigar si T es diagonalizable y si lo es hallar su forma diagonal y una base de \mathcal{P}_2 formada por vectores propios de T.

EJERCICIO 13. Sea
$$T: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$$
 definida como $T(B) = BA - AB$ con $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

- A. Hallar los valores y subespacios propios de T.
- B. Investigar si T es diagonalizable y si lo es hallar su forma diagonal y una base de $\mathcal{M}_2(\mathbb{R})$ formada por vectores propios de T.

EJERCICIO 14. Sea $T: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$ una transformación lineal tal que:

$$T(1) = 4 + 4x^{2},$$

 $T(x) = -1 + 2x - 3x^{2},$
 $T(x^{2}) = b \text{ con } b \in \mathbb{R}.$

- A. Determinar los valores de b para los cuales T es diagonalizable. Justificar
- B. Para b=3, observar que T es diagonalizable, hallar su forma diagonal y una base de $\mathcal{P}_2(\mathbb{R})$ formada por vectores propios de T.

EJERCICIO 15. Sea $T: \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$ definida como T(p(x)) = 2p(x) + p'(x) + p''(x) + p'''(x).

- A. Hallar los valores y subespacios propios de T.
- B. ¿Es T diagonalizable? En caso afirmativo hallar su forma diagonal y una base de $\mathcal{P}_3(\mathbb{R})$ formada por vectores propios de T.

EJERCICIO 16. Sean V un \mathbb{R} -espacio vectorial de dimensión finita y $T:V\to V$ una transformación lineal con tres valores propios $\lambda_1 < \lambda_2 < \lambda_3$ y S_{λ_1} , S_{λ_2} , S_{λ_3} los respectivos subespacios propios.

- 1. Sabiendo que $T = T^3$, hallar $\lambda_1, \lambda_2, \lambda_3$.
- 2. Sea $v \in V$, probar que
 - a) $\frac{1}{2}T^2(v) \frac{1}{2}T(v) \in S_{\lambda_1}$.
 - b) $v T^2(v) \in S_{\lambda_2}$.
 - c) $\frac{1}{2}T(v) + \frac{1}{2}T^2(v) \in S_{\lambda_3}$.
- 3. Probar que $V = S_{\lambda_1} \oplus S_{\lambda_2} \oplus S_{\lambda_3}$.
- 4. Probar que T es diagonalizable.
- 5. Si dim(V) = 4, hallar las posibles matrices diagonales asociadas a T.

EJERCICIO 17. Se considera la transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ que representa una simetría respecto el plano $\pi = \{(x, y, z) \in \mathbb{R}^3 : x + 5y - 13z = 0\}.$

- 1. Probar que T es diagonalizable.
- 2. Calcular el determinante de la matriz asociada a T en las bases canónicas.

EJERCICIO 18. Probar que una matriz cuyas filas suman siempre el mismo número tiene vector propio $(1,\ldots,1)^t$. Diagonalizar las matrices A y B en $\mathcal{M}_6(\mathbb{R})$ (hallar la matriz diagonal y la matriz de semejanza).

EJERCICIO 19. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por T(x, y, z) = (-7y + z, 4y, -2x + y + 3z).

- 1. Propar que I es diagonal.

 2. Calcular $\begin{pmatrix} 0 & -7 & 1 \\ 0 & 4 & 0 \\ -2 & 1 & 3 \end{pmatrix}^n$, $\forall n \in \mathbb{N}$.
- 3. Hallar, si es posible, una matriz F en $\mathcal{M}_3(\mathbb{R})$ tal que $F^2 = \begin{pmatrix} 0 & -7 & 1 \\ 0 & 4 & 0 \\ -2 & 1 & 3 \end{pmatrix}$.

4. Si
$$A = \begin{pmatrix} 0 & -7 & 1 \\ 0 & 4 & 0 \\ -2 & 1 & 3 \end{pmatrix}$$
, calcular A^{-1} , A^{5} y A^{-5} .