Problema 1

Considere o problema de aproximar a função $f(x) = \ln(x)$ por um polinômio e Taylor de um grau n qualquer. Uma forma de realizar essa aproximação consiste em trabalhar com a função $f(x) = \ln(1+x)$ em torno do ponto a = 0 com um polinômio de Taylor. Sendo assim:

- (a) Determine a forma geral do polinômio de Taylor de grau n em torno de a=0.
- (b) Implemente uma função chamada $ln_taylor1p$ para calcular o valor de ln(1+x) aproximadamente utilizando a expressão obtida em (a). Os argumentos da função devem ser: o grau do polinômio n e o ponto x onde deseja-se aproximar a função.
- (c) Calcule os valores aproximados de $\ln(1.5)$ e $\ln(2)$ para diferentes valores de n. Apresente os resultados como uma tabela.
- (d) O que ocorre para o caso x=2? A aproximação é razoável?

Problema 2

Tendo em vista o mesmo objetivo de aproximar a funcção $\ln(x)$, considere agora as seguintes mudanças de variável:

- $i) f(x) = \ln(1 x)$
- ii) $f(x) = \ln \frac{(1+x)}{(1-x)}$

Para o caso (ii) lembre-se da propriedade de logaritmos que permite $\ln \frac{(1+x)}{(1-x)}$ da seguinte forma: $\ln (1+x) - \ln (1-x)$. Sendo assim:

- (a) Determine o polinômio de Taylor de grau n em torno do ponto a=0 para o caso (i).
- (b) Implemente uma função chamada $ln_taylor1m$ para calcular o valor de ln(1-x) aproximadamente utilizando a expressão obtida em (a).
- (c) Implemente a ideia descrita no caso (ii) como uma função ln_taylor, isto é, essa função irá calcular o valor aproximado de ln(x) usando as duas funções implementadas ln_taylor1m e ln_taylor1p.
- (d) Utilize essa nova implementação para calcular de forma aproximada o valor de $\ln(2)$. O que ocorre com o resultado? Apresente uma tabela comparando os resultados para diferentes valores de n e o erro cometido.