Kapitola 6

LL gramatiky

6.1 Definice LL(k) gramatik

Definice 6.1. Nechť $G=(N,\Sigma,P,S)$ je CFG, $k\geq 1$ je celé číslo. Definujme funkci $FIRST_k^G:(N\cup\Sigma)^+\to \mathcal{P}(\{w\in\Sigma^*\mid |w|\leq k\})$ předpisem

$$FIRST_k^G(\alpha) = \{ w \in \Sigma^* \mid (\alpha \Rightarrow^* w \land |w| \le k) \lor (\alpha \Rightarrow^* wx \land |w| = k \land x \in \Sigma^*) \}$$

a funkci $FOLLOW_{k}^{G}:N\rightarrow\mathcal{P}(\{w\in\Sigma^{*}\mid|w|\leq k\})$ předpisem

$$FOLLOW_k^G(A) = \{ w \in \Sigma^* \mid S \Rightarrow^* \gamma A\alpha, \ w \in FIRST_k^G(\alpha) \}.$$

Nechť dále $w=a_1a_2\dots a_n$ je libovolný řetěz. Pak klademe

$$k: w = \begin{cases} a_1 \dots a_k & k < n \\ w & k \ge n \end{cases}$$

Poznámka 6.2. Nechť relace \Rightarrow_L značí levou derivaci, \Rightarrow_L^* jako obvykle její transitivní a reflexivní uzávěr. Není těžké ukázat, že pokud bychom v definicích funkcí FIRST a FOLLOW použili \Rightarrow_L^* namísto \Rightarrow^* , obdržíme tytéž množiny terminálních řetězů, tj. například platí: $FOLLOW_k^G(A) = \{w \in \Sigma^* \mid S \Rightarrow_L^* xA\alpha, \ w \in FIRST_k^G(\alpha)\}$. K tomu stačí indukcí ověřit následující dvě tvrzení (při obvyklém značení a $X, Y \in (N \cup \Sigma)^*$):

$$(1) \{ w \in \Sigma^* \mid \gamma \Rightarrow_L^n w \} = \{ w \in \Sigma^* \mid \gamma \Rightarrow^n w \} \ \mathbf{a}$$

(2) je-li
$$Y \Rightarrow^n \gamma X \beta \wedge \gamma \Rightarrow^* x \wedge \beta \Rightarrow^* y$$
, pak $Y \Rightarrow^n_L x X \alpha \wedge \alpha \Rightarrow^* y$ pro nějaké α .

Úmluva: V dalším textu budeme i levé derivace značit symbolem \Rightarrow resp. \Rightarrow *, pokud nebude řečeno jinak.

Definice 6.3. Nechť $G=(N,\Sigma,P,S)$ je CFG, $k\geq 1$ je celé číslo. Řekneme, že G je LL(k) gramatika, právě když pro libovolné dvě nejlevější derivace $(w\in\Sigma^*)$

(1)
$$S \Rightarrow^* wA\alpha \Rightarrow w\beta\alpha \Rightarrow^* wx$$
 (6.1)

(2)
$$S \Rightarrow^* wA\alpha \Rightarrow w\gamma\alpha \Rightarrow^* wy$$
, podmínka (6.2)

(3)
$$k: x = k: y$$
 (6.3)

implikuje rovnost
$$\beta = \gamma$$
. (6.4)

Řekneme, že gramatika G je LL právě když je LL(k) pro nějaké $k \in \mathbb{N}$, jazyk L je LL(k) právě když existuje LL(k) gramatika G taková, že L = L(G).

6.2 Vlastnosti LL gramatik

Věta 6.4. Každá LL(k) gramatika je jednoznačná.

Důkaz: Předpokládejme, že G není jednoznačná. Pak existuje věta $u \in L(G)$, která má alespoň dvě různé levé derivace:

(1)
$$S \Rightarrow^* wA\alpha \Rightarrow w\beta\alpha \Rightarrow^* wx = u$$

(2)
$$S \Rightarrow^* wA\alpha \Rightarrow w\gamma\alpha \Rightarrow^* wy = u$$

kde $A \to \beta \mid \gamma$ jsou dvě různá pravidla. Pak k: x = k: y =, ale $\beta \neq \gamma$, a tedy G není LL(k). \Box

Věta 6.5. *Je-li* G *levorekurzivní*, pak není LL(k) pro žádné k.

Důkaz: Nechť $G = (N, \Sigma, P, S)$. Buď $A \in N$ levorekursivní neterminál, tj. $A \Rightarrow^* A\alpha$ pro nějaké α . Jestliže $\alpha \Rightarrow^* \varepsilon$, pak G není jednoznačná, a tedy ani LL(k).

Jestliže $\alpha \not\Rightarrow^* \varepsilon$, nechť $\alpha \Rightarrow^* v, v \in \Sigma^+$, a $A \Rightarrow^+ \beta \Rightarrow^* u$, kde $\beta \not\Rightarrow^* A\alpha$ (použití pravidla, které již nevede k levé rekurzi $A \Rightarrow^* A\alpha$). Pak existují levé derivace:

(1)
$$S \Rightarrow^* wA\alpha' \Rightarrow^* wA\alpha^k\alpha' \Rightarrow^+ w\beta\alpha^k\alpha' \Rightarrow^* wuv^k\alpha'$$

(2)
$$S \Rightarrow^* wA\alpha' \Rightarrow^* wA\alpha^k\alpha' \Rightarrow^+ wA\alpha^{k+1}\alpha' \Rightarrow^* wuv^{k+1}\alpha'$$
,

kde $k:uv^k=k:uv^{k+1}$. Současně však muselo být (viz kroky \Rightarrow +) v jistém kroku derivace (1), konkrétně v části $A\Rightarrow$ + β , použito nějakého pravidla p_1 , které již nemůže vést na levou rekurzi; v odpovídajícím kroku derivace (2), konkrétně v části $A\Rightarrow$ + $A\alpha$, ale bylo použito jiného pravidla p_2 , které k levé rekuzi vede. Tedy $p_1\neq p_2$ a G není LL(k).

Věta 6.6. Nechť $G = (N, \Sigma, P, S)$ je CFG. Pak G je LL(k) právě když platí podmínka: Jsou-li $A \to \beta$ a $A \to \gamma$ dvě libovolná různá pravidla v P, pak pro všechny nejlevější větné formy $wA\alpha$ platí:

$$FIRST_k(\beta\alpha) \cap FIRST_k(\gamma\alpha) = \emptyset.$$

Důkaz: Předpokládejme, že existují $w, A, \alpha, \beta, \gamma$ tak, jak uvedeno výše, ale $FIRST_k(\beta\alpha) \cap FIRST_k(\gamma\alpha) \neq \emptyset$. Nechť $x \in FIRST_k(\beta\alpha) \cap FIRST_k(\gamma\alpha)$. Odtud (a z předpokladu o $wA\alpha$ a z definice funkce FIRST) plyne existence dvou derivací

$$S \Rightarrow^* wA\alpha \Rightarrow w\beta\alpha \Rightarrow^* wxy$$
$$S \Rightarrow^* wA\alpha \Rightarrow w\gamma\alpha \Rightarrow^* wxz$$

a současně k: xy = k: xz, protože $x \in FIRST_k(\beta\alpha) \cap FIRST_k(\gamma\alpha)$ (je-li |x| < k, pak $y = \varepsilon = z$). Jelikož máme $\beta \neq \gamma$, pak G není LL(k).

Naopak, předpokládejme, že G není $\operatorname{LL}(k)$. To jest, existují dvě různé derivace

$$S \Rightarrow^* wA\alpha \Rightarrow w\beta\alpha \Rightarrow^* wx$$
$$S \Rightarrow^* wA\alpha \Rightarrow w\gamma\alpha \Rightarrow^* wy$$

takové, že k: x = k: y, ale $\beta \neq \gamma$. Tedy $A \to \beta$ a $A \to \gamma$ jsou dvě různá pravidla, ale množiny $FIRST_k(\beta\alpha)$ a $FIRST_k(\gamma\alpha)$ nejsou disjunktní – obě obsahují řetěz k: x.

Důsledek 6.7. Necht' $G=(N,\Sigma,P,S)$ je CFG bez ε -pravidel. Pak G je LL(1) právě když $\forall A \in N$ a pro každá dvě různá A-pravidla $A \to \beta$, $A \to \gamma$ z P platí

$$FIRST_1(\beta) \cap FIRST_1(\gamma) = \emptyset.$$

Důkaz: Jelikož $\beta \not\Rightarrow^* \varepsilon$ a $\gamma \not\Rightarrow^* \varepsilon$, pak $\forall \alpha. \ FIRST_1(\beta \alpha) \cap FIRST_1(\gamma \alpha) = FIRST_1(\beta) \cap FIRST_1(\gamma).$

Věta 6.8. Necht' $G=(N,\Sigma,P,S)$ je CFG. G je LL(1) gramatika právě když $\forall A\in N$ a pro každá dvě různá A-pravidla $A\to \beta,\ A\to \gamma$ z P platí

$$FIRST_1(\beta FOLLOW_1(A)) \cap FIRST_1(\gamma FOLLOW_1(A)) = \emptyset$$
 (6.5)

Důkaz: Pro $\beta \neq \gamma$ provedeme rozbor po případech:

- je-li $\beta \Rightarrow^* \varepsilon$ a $\gamma \Rightarrow^* \varepsilon$, pak G není jednoznačná. Tedy G není LL(k) a současně průnik (6.5) je neprázdný: je roven $FOLLOW_1(A)$.
- je-li $\beta \not\Rightarrow^* \varepsilon$ a $\gamma \not\Rightarrow^* \varepsilon$, pak tvrzení platí díky důsledku 6.7.
- je-li $\beta \not\Rightarrow^* \varepsilon$ a $\gamma \Rightarrow^* \varepsilon$, pak z věty 6.6 pro tento případ plyne, že G není LL(1), právě když existuje levá větná forma $wA\alpha$ tavová, že $FIRST_1(\beta) \cap FIRST_1(\alpha) \neq \emptyset$, právě když $FIRST_1(\beta FOLLOW_1(A)) \cap FIRST_1(\gamma FOLLOW_1(A)) = \emptyset$, protože $FIRST_1(\alpha) \subseteq FOLLOW_1(A)$. Identicky pro případ $\beta \Rightarrow^* \varepsilon$ a $\gamma \not\Rightarrow^* \varepsilon$.

6.3 Syntaktická analýza LL(1) gramatik

Syntaktickou analýzu LL(k) gramatik lze provádět deterministickým zásobníkovým automatem automatem (DPDA). Požadujeme však, aby v případě, že vstupní slovo patří do jazyka, automat navíc poskytl informaci o struktuře věty (například její levé odvození, či derivační strom, resp. jednoznačné zakódování tohoto stromu). Proto automat rozšíříme o možnost zápisu výstupního symbolu na (přidanou) výstupní pásku Formální definici takového automatu s výstupem ponecháváme čtenáři.

Syntaktickou analýzu ukážeme nejprve pro LL(1) gramatiky, přičemž přímo vycházíme z tvrzení věty 6.8.

Nechť je dána LL(1) gramatika $G=(N,\Sigma,P,S)$, kde pravidla z P jsou očíslována $i=1,\ldots,card(P)$. Je-li $w\in L(G)$, pak $levým\ rozborem\ w$ nazveme posloupnost čísel pravidel použitých v levém odvození věty w.

DPDA $\mathcal A$ provádějící LL(1) syntaktickou analýzu vět z L(G) má jeden stav, počáteční obsah zásobníku je S\$, kde S je kořen gramatiky G a \$ je symbol nevyskytující se v gramatice. Automat akceptuje prázdným zásobníkem. Označme M přechodovou funkci typu $M: (N \cup \Sigma \cup \{\$\}) \times (\Sigma \cup \varepsilon) \rightarrow \{<\alpha, i> | A \rightarrow \alpha \text{ je } i\text{-té pravidlo v } P\} \cup \{\text{odstraň, přijmi, chyba}\},$

a je definována takto:

^{1.} Protože automat má jen jeden stav, v definci přechodové funkce ho neuvádíme.

- 1. Je-li $A \to \alpha$ i-té pravidlo, klademe $M(A,a) = <\alpha, i>$ pro všechna $a \in FIRST_1(\alpha)$. Je-li též $\varepsilon \in FIRST_1(\alpha)$, pak $M(A,b) = <\alpha, i>$ pro všechna $b \in FOLLOW_1(A)$. V obou případech: je-li
- 2. M(a, a) = odstraň, pro všechna $a \in \Sigma$.
- 3. $M(\$, \varepsilon) = \text{přijmi}$. Automat vymaže ze zásobníku symbol \$ a akceptuje.
- 4. $M(x, a) = \text{chyba}, \text{ pro } x \in \Sigma, x \neq a.$

Uvedená přechodová funkce M se též někdy nazývá LL(1) tabulkou pro G, její část zkonstruovaná dle bodu 1 pak redukovanou LL(1) tabulkou. Díky Větě 6.8 se snadno nahléne, že M je přechodovou funkcí deterministického PDA (s výstupem), a to právě když G je LL(1); v opačném případě by M(A,a) obsahovala dvě různé položky $<\alpha,i>$ a $<\beta,j>$ pro nějaká $A\in N,a\in\Sigma\cup\{\varepsilon\}$. Činnost automatu lze neformálně popsat takto:

- 1. Je-li na vrcholu zásobníku neterminál, řekněme A, pak automat má (v obou podpřípadech) udělat krok dle bodu 1 definice funkce M. Nechť první symbol ještě nezpracované části vstupu je a: automat provede ε -krok, nahradí A na vrcholu zásobníku řetězem α a na výstup zapíše i, tj. číslo použitého pravidla $A \to \alpha$.
- Je-li na vrcholu zásobníku terminál, řekněme a a na vstupu je rovněž a, pak (tak jako u nedetermininistické analýzy shora dolů) automat přečte ze vstupu a a z vrcholu zásobníku a odstraní.
- 3. Je-li na vrcholu zásobníku symbol \$ (indikující "prázdný" zásobník) a na vstupu je (již jen) ε (indikující **eof** vstupního souboru), automat akceptuje (vymaže zásobník).
- 4. ve všech ostatních případech automat ukončí výpočet a neakceptuje.

Výše uvedené úvahy lze formalizovat takto: množinu konfigurací K automatu $\mathcal A$ definujeme jako $(N \cup \Sigma \cup \{\$\})^* \times (\Sigma \cup \varepsilon)^* \times \{1, \ldots, card(P)\}^*$ reprezentující obsah zásobníku, dosud nepřečteno část vstupního slova a dosud vyprodukovaný výstup. Počáteční konfigurací pro vstupní slovo w je $(S\$, w, \varepsilon)$. Na K definujeme binární relaci (krok výpočtu) \vdash takto:

- 1. $(ax, A\gamma, \pi) \vdash (ax, \alpha\gamma, \pi i)$ jestliže $M(A, a) = \langle \alpha, i \rangle$.
- 2. $(ax, a\gamma, \pi) \vdash (x, \gamma, \pi)$ (pozn.: v tomto případě je M(a, a) = odtraň).
- 3. $(\varepsilon,\$,\pi) \vdash (\varepsilon,\varepsilon,\pi)$, kde $(\varepsilon,\varepsilon,\pi)$ je akceptující konfigurace a π je levý rozbor $w \in L(G)$.

Pro ostatní konfigurace není krok výpočtu definován. Případně je možné K rozšířit o konfiguraci "chyba" a definovat:

4. $(ax, X\gamma, \pi) \vdash \text{chyba}$

Tvrzení obsažené v bodě 3 je třeba dokázat:

Věta 6.9. Necht' $G=(N,\Sigma,P,S)$ je LL(1) gramatika, jejíž pravidla jsou očíslována $i=1,\ldots,card(P)$ a necht' A s přechodovou funkcí M jsou takové, jak definováno výše. Pak platí: $(S\$,w,\varepsilon) \vdash^* (\varepsilon,\varepsilon,\pi) \iff w \in L(G)$ a π je levý rozbor w.

Důkaz: Idea důkazu: nechť $\mathcal N$ je PDA provádějící nedeterministickou syntaktickou analýzu vět z L(G) zkonstruovaný dle lemmatu o nedeterministické syntaktické analýze shora dolů. Lze ověřit, že každý úspěšný výpočet automatu $\mathcal N$ lze simulovat výpočtem v $\mathcal A$ a též i obráceně, že ke každému akceptujícímu výpočtu v $\mathcal A$ existuje úspěšný výpočet automatu $\mathcal N$ (po případech dle definice přechodových funkcí automatů $\mathcal N$ a $\mathcal A$). Jelikož nahrazování neterminálů na vrcholu zásobníku odpovídá levé derivaci, je π je levým rozborem w.

6.4 SLL(k) gramatiky a jejich analýza

Pozorný čtenář si jistě položil otázku, zda tvrzení Věty 6.6 nejde z případu k=1 zobecnit na k>1. Ukážeme, že tomu tak není. Nejprve se zabývejme podmínkou (6.5) z Věty 6.6 zobecněnou pro $k\geq 1$.

Věta 6.10. Pro libovolnou redukovanou CFG $G = (N, \Sigma, P, S)$ a libovolné $k \ge 1$ celé jsou následující dvě tvrzení (6.6) a (6.7) ekvivalentní:

Důkaz: Negace tvrzení (6.6) je ekvivaletní s tvrzením:

$$\exists A \in N. \ \exists A \to \beta \mid \gamma. \ \beta \neq \gamma:$$
$$\exists y \in FIRST_k(\beta FOLLOW_k(A)) \cap FIRST_k(\gamma FOLLOW_k(A)),$$

které je ekvivaletní tvrzení:

$$\exists A \in N. \ \exists A \to \beta \mid \gamma :$$

$$S \Rightarrow_L^* wA\delta_1, \quad y \in FIRST_k(\beta\delta_1),$$

$$S \Rightarrow_L^* w'A\delta_2, \quad y \in FIRST_k(\gamma\delta_2) \ \text{a} \ \beta \neq \gamma,$$

což je ekvivalentní negaci trvrzení (6.7) – viz definice FIRST, FOLLOW a poznámka 6.2.

Je tedy vidět, že každá gramatika splňující podmínku (6.7) je LL(k) gramatikou, ale obrácené tvrzení neplatí: lze ukázat (viz níže), že pro každé k>1 existuje LL(k) gramatika taková, že nesplňuje podmínku (6.7). Má tedy smysl definovat tzv. SLL(k) gramatiky, a to (například) takto:

Definice 6.11. Nechť $G=(N,\Sigma,P,S)$ je redukovaná CFG, $k\geq 1$ je celé číslo. řekneme, že G je SLL(k) gramatika, právě když pro libovolné dvě nejlevější derivace ($w\in\Sigma^*$)

- (1) $S \Rightarrow^* wA\alpha \Rightarrow w\beta\alpha \Rightarrow^* wx$
- (2) $S \Rightarrow^* w' A \alpha' \Rightarrow w' \gamma \alpha' \Rightarrow^* w' y$, podmínka
- (3) k: x = k: y

implikuje rovnost $\beta = \gamma$.

Řekneme, že gramatika G je SLL právě když je SLL(k) pro nějaké $k \in \mathbb{N}$, jazyk L je SLL(k) právě když existuje SLL(k) gramatika G taková, že L = L(G).

Je tedy vidět, že syntaktická analýza SLL(k) gramatik je přímočarým rozšírením syntaktické analýzy LL(1) gramatik. Detaily (zatím) ponecháváme čtenáři.

6.5 Příloha: algoritmy pro výpočet funkcí FIRST a FOLLOW

Nechť Σ je abeceda, $L_1, L_2 \subseteq \Sigma^*, k \ge 1$. Definujeme funkci $\oplus_k : \Sigma^* \times \Sigma^* \longrightarrow \Sigma^*$ takto: $L_1 \oplus_k L_2 = \{ w \mid w = k : xy \text{ pro nějaká } x \in L_1, y \in L_2 \}.$

Je dána gramatika $G=(N,\Sigma,P,S)$ a řetězec $\alpha=Y_1\cdot Y_2\cdot \cdot \cdot \cdot Y_l$, kde $Y_x=N\cup \Sigma$.

- 1) $FI_k(x) = \{x\} \text{ pro } x \in \Sigma$
- 2) Výpočet $FI_k(x)$ pro $x \in N$:

Nechť $N = \{X_1, X_2, \dots, X_n\}$. Budeme počítat hodnotu $FI_k(X_i)$ současně pro všechny neterminály $(i = 1, \dots, n)$. Nechť všechna pravidla pro neterminál X_i jsou tato:

$$X_i \to Y_1^1 \dots Y_{k_1}^1 \mid Y_1^2 \dots Y_{k_2}^2 \mid \dots \mid Y_1^j \dots Y_{k_j}^j$$

Potom

$$FI_{k}(X_{i}) = [FI_{k}(Y_{1}^{1}) \oplus_{k} FI_{k}(Y_{2}^{1}) \oplus_{k} \dots \oplus_{k} FI_{k}(Y_{k_{1}}^{1})]$$

$$\cup \dots \cup$$

$$[FI_{k}(Y_{1}^{1}) \oplus_{k} FI_{k}(Y_{2}^{1}) \oplus_{k} \dots \oplus_{k} FI_{k}(Y_{k_{1}}^{1})].$$

Hodnoty $FI_k(X_i)$ jsou pevnými body uvedené soustavy rekurzivních rovnic. Počáteční hodnoty jsou $FI_k(X_i) = \emptyset$.

3) $FIRST_k(\alpha) = FI_k(Y_1) \oplus_k FI_k(Y_2) \oplus_k \cdots \oplus_k FI_k(Y_l)$

Je dána gramatika $G = (N, \Sigma, P, S)$. Funkce FO je definována pro $A \in N$.

Postupně počítáme hodnoty: $FO_1(A)$ pro všechny $A \in N$,

$$FO_2(A)$$
 pro všechny $A \in N$
 \vdots
 $FO_k(A)$ pro všechny $A \in N$

Při výpočtu $FO_i(A)$ postupujeme následovně:

- 1) $FO_i(S):=\{\epsilon\}$ pro počáteční neterminál S. $FO_i(A):=\emptyset$ pro ostatní neterminály.
- 2) Pro každé pravidlo tvaru: $B \to \alpha A\beta \in P$, kde $\beta \neq \epsilon$

$$FO_i(A) := FO_i(A) \cup [(FI_i(\beta) - \{\epsilon\}) \oplus_i FO_{i-1}(B)]$$

3) OPAKUJ

Pro každé pravidlo tvaru: $B \to \alpha A\beta \in P$, kde $\beta = \epsilon$ nebo $\epsilon \in FI_1(\beta)$

$$FO_i(A) := FO_i(A) \cup FO_i(B)$$

Tak dlouho, dokud se nedosáhne pevného bodu.

157

$6.6 \quad Transformace\ gramatik\ do\ LL(1)\ tvaru$

- odstranění levé rekurze
- levá substituce odstranění konfliktu FIRST-FIRST
- pohlcení pravého kontextu odstranění konfliktu FIRST-FOLLOW