Здравствуйте!

Лекция №3

Производные от неявных функций

Если явно функция одной переменной x задается выражением y = f(x), то ее неявное задание имеет вид уравнения F(x, y) = 0, не разрешенного относительно y.

Аналогично, если y зависит от $(x_1, x_2, ..., x_n)$, то неявное задание этой функции имеет вид уравнения

$$F(x_1, x_2, ..., x_n, y) = 0,$$

не разрешенного относительно у.

В общем случае можно сразу задавать m функций $y_1, y_2, ..., y_m$ в виде системы из m уравнений вида

$$\begin{cases} F_{1}(x_{1}, x_{2}, ..., x_{n}, y_{1}, y_{2}, ..., y_{m}) = 0, \\ F_{2}(x_{1}, x_{2}, ..., x_{n}, y_{1}, y_{2}, ..., y_{m}) = 0, \\ \\ F_{m}(x_{1}, x_{2}, ..., x_{n}, y_{1}, y_{2}, ..., y_{m}) = 0. \end{cases}$$

Начнем со случая функции одной переменной, задаваемой уравнением F(x,y)=0. Представим себе, что мы каким-то образом решили это уравнение и нашли явную зависимость y от x: y=y(x). Если мы эту зависимость подставим в исходное уравнение, то получим тождество

$$F(x, y(x)) \equiv 0$$
.

Продифференцируем это соотношение по x. Заметим, что в левую часть аргумент x входит в двух видах: сам по себе и как аргумент у y(x). Так как справа при любых x стоит 0, то получим

$$F'_{x}(x, y(x)) + F'_{y}(x, y(x)) \frac{dy}{dx} = 0,$$

откуда

$$\frac{dy}{dx} = -\frac{F_x'(x,y)}{F_y'(x,y)}.$$

Аналогично, в случае уравнения $F(x_1, x_2, ..., x_n, y) = 0$, если бы нам удалось найти явный вид зависимости $y = y(x_1, x_2, ..., x_n)$ и подставить его в исходное уравнение, то мы получили бы тождество

$$F(x_1, x_2, ..., x_n, y(x_1, x_2, ..., x_n)) \equiv 0.$$

Дифференцируя по x_i , получим

$$F'_{x_i}(x_1, x_2, ..., x_n, y) + F'_y(x_1, x_2, ..., x_n, y) \frac{\partial y}{\partial x_i} = 0,$$

откуда

$$\frac{\partial y}{\partial x_i} = -\frac{F'_{x_i}(x_1, x_2, ..., x_n, y)}{F'_{y}(x_1, x_2, ..., x_n, y)}.$$

В случае системы уравнений, определяющих $y_1, y_2, ..., y_m$, если бы удалось выразить их явно, то есть найти $y_i = y_i (x_1, x_2, ... x_n)$, то, после подстановки их обратно в систему, мы получили бы систему тождеств

Дифференцируя каждое из тождеств, скажем, по x_i , с учетом того, что x_i входит как само по себе, так и через $y_1, y_2, ..., y_m$, получим

$$\begin{cases} \frac{\partial F_{1}(x,y)}{\partial x_{i}} + \frac{\partial F_{1}(x,y)}{\partial y_{1}} \frac{\partial y_{1}}{\partial x_{i}} + \frac{\partial F_{1}(x,y)}{\partial y_{2}} \frac{\partial y_{2}}{\partial x_{i}} + \dots + \frac{\partial F_{1}(x,y)}{\partial y_{m}} \frac{\partial y_{m}}{\partial x_{i}} = 0, \\ \frac{\partial F_{m}(x,y)}{\partial x_{i}} + \frac{\partial F_{m}(x,y)}{\partial y_{1}} \frac{\partial y_{1}}{\partial x_{i}} + \frac{\partial F_{m}(x,y)}{\partial y_{2}} \frac{\partial y_{2}}{\partial x_{i}} + \dots + \frac{\partial F_{m}(x,y)}{\partial y_{m}} \frac{\partial y_{m}}{\partial x_{i}} = 0. \end{cases}$$

Эту систему можно рассматривать как систему линейных уравнений относительно $\frac{\partial y_1}{\partial x_i}, \frac{\partial y_2}{\partial x_i}, ..., \frac{\partial y_m}{\partial x_i}$. Решив ее обычными методами, можно найти сразу все частные производные.

Производные высших порядков

Представим себе, что нам задана, скажем, функция u = f(x, y, z) от трех переменных x, y, z. Мы можем вычислить частные производные от этой функции по аргументам x, y, z:

$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$.

Но эти производные сами являются функциями от тех же переменных x, y, z. И от них снова можно вычислять производные по тем же аргументам, которые уже будут называться производными второго порядка

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f''_{xx}(x, y, z); \quad \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f''_{yy}(x, y, z); \quad \dots$$

Кроме этих производных есть еще и так называемые **смешанные производные.** Это – производные вида

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = f''_{xy}(x, y, z); \quad \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = f''_{yx}(x, y, z).$$

От этих вторых производных можно снова вычислять производные, которые будут называться производными третьего порядка и т.д.

Теорема. Пусть у функции f(x,y) существуют смешанные производные $\frac{\partial^2 f}{\partial x \partial y}$ и $\frac{\partial^2 f}{\partial y \partial x}$ и они непрерывны в точке (x_0,y_0) .

Тогда в этой точке они равны друг другу, то есть $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$.

В общем случае имеет место следующая теорема.

Теорема. Пусть у функции $f(x_1, x_2, ..., x_n)$ существуют все смешанные производные до k-го порядка включительно, и они непрерывны. Тогда значения всех производных до k-го порядка не зависят от того, в каком порядке производится дифференцирование

Теперь можно окончательно установить форму записи для смешанных производных. Пусть у функции $f(x_1, x_2, ..., x_n)$ дифференцирование по x_1 производилось k_1 раз, по $x_2 - k_2$ раз, ..., по $x_n - k_n$ раз, так что $k_1 + k_2 + ... + k_n = k$. Тогда соответствующая производная записывается в виде

$$\frac{\partial^k f(x_1, x_2, ..., x_n)}{\partial x_1^{k_1} \partial x_2^{k_2} ... \partial x_n^{k_n}}$$

Нормаль к поверхности

Рассмотрим сначала поверхность в трехмерном пространстве, заданную в явном виде уравнением z = f(x, y)

Пусть M_0 — некоторая точка этой поверхности с координатами $(x_0\,,y_0\,,z_0\,)$, где $z_0=f(x_0\,,y_0\,)$. Пусть \vec{N} — некоторый вектор, проведенный из этой точки.

Сместимся из точки M_0 в точку M с координатами (x, y, z), лежащую на этой же поверхности, то есть z = f(x, y). Две эти точки будет соединять вектор $\vec{r} = (x - x_0, y - y_0, z - z_0)$. Пусть ϕ есть угол между векторами \vec{N} и \vec{r} .

Определение. Вектор \vec{N} называется **вектором нормали** к поверхности z = f(x,y) в точке (x_0,y_0,z_0) , если $\lim_{M\to M_0} \phi = \pi/2$, когда точка M приближается к точке M_0 .

Другими словами это означает, что вектор \vec{N} становится перпендикулярным вектору \vec{r} независимо от того, с какой стороны точка M приближается к точке M_0 . Поэтому условие того, что \vec{N} – вектор нормали в точке (x_0, y_0, z_0) можно переписать в виде

$$\lim_{M\to M_0}\frac{(\vec{r},\vec{N})}{\|\vec{r}\|}=0$$

Теорема. Если f(x,y) дифференцируема в точке (x_0, y_0) , то вектор нормали имеет компоненты

$$(f'_x(x_0, y_0), f'_y(x_0, y_0), -1).$$

Доказательство.

Рассмотрим вектор $\vec{N} = (f'_x(x_0, y_0), f'_y(x_0, y_0), -1)$. Смещаясь по поверхности в точку (x, y), мы получим

$$z - z_0 = \Delta z = f'_x(x_0, y_0) \Delta x + f'_y(x_0, y_0) \Delta y + o(\rho),$$

где $\Delta x = x - x_0$, $\Delta y = y - y_0$, $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}$, так что вектор \vec{r} имеет компоненты

$$\vec{r} = (\Delta x, \Delta y, f'_x(x_0, y_0) \Delta x + f'_y(x_0, y_0) \Delta y + o(\rho)).$$

Тогда получим

$$\frac{(\vec{r}, \vec{N})}{\|\vec{r}\|} = \frac{f_x'(x_0, y_0) \Delta x + f_y'(x_0, y_0) \Delta y - f_x'(x_0, y_0) \Delta x - f_y'(x_0, y_0) \Delta y - o(\rho)}{\sqrt{(\Delta x)^2 + (\Delta y)^2 + (f_x'(x_0, y_0) \Delta x + f_y'(x_0, y_0) \Delta y + o(\rho))^2}}$$

Сокращая слагаемые в числителе и деля на р, получим

$$\frac{(\vec{r}, \vec{N})}{\|\vec{r}\|} = \frac{-o(\rho)/\rho}{\sqrt{1 + \left(f'_{x}(x_{0}, y_{0})\frac{\Delta x}{\rho} + f'_{y}(x_{0}, y_{0})\frac{\Delta y}{\rho} + \frac{o(\rho)}{\rho}\right)^{2}}}.$$

Числитель этого выражения стремится к нулю при $\rho \rightarrow 0$, а знаменатель в любом случае больше 1. Поэтому

$$\lim_{\rho\to 0}\frac{(\vec{r},\vec{N})}{\|\vec{r}\|}=0,$$

что и доказывает, что вектор \vec{N} есть вектор нормали к поверхности в точке $((x_0, y_0, f(x_0, y_0)).$

Пусть теперь поверхность задана неявно уравнением F(x,y,z) = 0. Заметим, что полученное выше выражение для нормали можно записать в виде

$$\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, -1\right)$$
.

Но, по правилу нахождения производных от неявных функций,

$$\frac{\partial z}{\partial x} = -\frac{F_x'(x_0, y_0, z_0)}{F_z'(x_0, y_0, z_0)}, \quad \frac{\partial z}{\partial y} = -\frac{F_y'(x_0, y_0, z_0)}{F_z'(x_0, y_0, z_0)},$$

то есть

$$\vec{N} = \left(-\frac{F_x'(x_0, y_0, z_0)}{F_z'(x_0, y_0, z_0)}, -\frac{F_y'(x_0, y_0, z_0)}{F_z'(x_0, y_0, z_0)}, -1\right).$$

Умножим все компоненты этого вектора на $(-F'_z(x_0, y_0, z_0))$. Это изменит длину вектора \vec{N} и (может быть) его направление, но не изменит факта перпендикулярности вектору \vec{r} при $M \rightarrow M_0$. Поэтому в данном случае вектором нормали является вектор с компонентами

$$\vec{N} = (F'_x(x_0, y_0, z_0), F'_y(x_0, y_0, z_0), F'_z(x_0, y_0, z_0)).$$