Apuntes sobre Divisibilidad

September 2024

1 Teorema de la división Euclidea

Sean $a,b\in\mathbb{Z}$, con $b\neq 0$. Entonces, $\exists !q,r\in\mathbb{Z}$, tales que a=bq+r, con $0\leq r<|b|$.

2 Definición

Dados $a, b \in \mathbb{Z}$, decimos que d = mcd(a, b) si:

- *d* > 0
- d|a y d|b
- Si d'|a y d'|b entonces d'|d

3 Teorema

Si $a \neq 0$ ó $b \neq 0$, entonces $\exists! d = mcd(a, b)$

3.1 Demostración

Consideremos el conjunto $\Delta = \{ax + by > 0 : x, y \in \mathbb{Z}\}$. Veamos que $d = min(\Delta) = mcd(a, b)$. En primer lugar, constatamos que existe el minimo de este conjunto, ya que $\Delta \neq \emptyset$. Efectivamente, basta con tomar x = a, y = b, con lo que $0 < a^2 + b^2 \in \Delta$.

- Por definición, d > 0
- Veamos que d|a. Expresamos $d=ax_o+by_o$. Entonces, por el teorema de la división euclidea, r=a-dq con $0 \le r < d$, lo cual podemos reescribir como $r=a-(ax_o+by_o)q=a(1-qx_o)+b(-qy_o)$. Si r>0, entonces $r \in \Delta$, pero $r< d=min(\Delta)$, luego tenemos que conluir que r=0. Por simetría, tendremos que d|b.

 \bullet Finalmente, veamos que se d'|a y d'|b entonces d'|d. Efectivamente, consideremos:

$$\begin{cases} d'|a \Rightarrow a = d'a' \\ d'|b \Rightarrow ab = d'b' \\ d = ax_o + by_o \end{cases}$$
 (1)

De lo anterior se concluye que $d=d'a'x_o+d'b'y_o=d'(a'x_o+b'y_o)$. Esto es d|d'

4 Teorema del algoritmo de Euclides

Sean $a,b\in\mathbb{Z}$ con $b\neq 0$, y sea a=bq+r con $0\leq r<|b|$ y $r,q\in\mathbb{Z}$. Entonces, mcd(a,b)=mcd(b,r)

4.1 Demostración

Sea d = mcd(a, b). Entonces $d|a \ y \ d|b$. Esto es, $\exists a', b' \in \mathbb{Z}$ tales que $a = da' \ y$ b = db'. Por tanto, r = a - bq = da' - db'q = d(a' - b'q), por lo que d|r (y d|b).

Por otro lado, si d'|b y d'|r, entonces $\exists b', r' \in \mathbb{Z}$ con b = b'd' y r = r'd', con lo cual a = bq + r = b'd'q + r'd' = d'(b'q + r') y así d'|a (y d'|b). Por tanto, d'|d ya que d = mcd(b, r).

Finalmente, $d \ge 0$ por definición. Concluimos, pues, que d = mcd(b, r)