Traitement et analyse d'images

Reconstruction tomographique

Irène Buvat U494 INSERM Paris

buvat@imed.jussieu.fr http://www.guillemet.org/irene

novembre 2004

Plan du cours

- Introduction
 - Problème de reconstruction tomographique
 - Tomographie en transmission
 - Tomographie en émission
 - Spécificité du problème de reconstruction tomographique
- Notions de base
 - Projection
 - Transformée de Radon
 - Sinogramme
 - Rétroprojection
- Méthodes de reconstruction analytique
 - Principe
 - Théorème de la coupe centrale
 - Rétroprojection filtrée
 - Filtres
- Méthodes de reconstruction itérative
 - Principe et et méthodes
 - Opérateur de projection R
 - Méthodesalgébriques
 - -Méthodes statistiques
 - Régularisation
- Reconstruction « fully 3D »
 - Problématique
 - Méthodes analytiques
 - Méthodes de rebinning
 - Méthodes itératives
- Discussion

Introduction: la reconstruction tomographique

coupes d'orientation quelconque : imagerie 3D

Reconstruction tomographique = problème inverse : estimer la distribution 3D à partir des projections 2D mesurées

Introduction: coupes tomographiques

sagittale

transverse

coronale

Introduction: tomographie de transmission

• Source (X ou] externe au patient

• Mesures : projection du rayonnement ayant traversé le patient [] intégrale des coefficients d'atténuation

$$N = N_0 \exp(- \prod_{0}^{d} (1) d1)$$
 $\ln \frac{N_0}{N} = \prod_{0}^{d} (1) d1$

• Objet à reconstruire : cartographie 3D des coefficients d'atténuation

☐ du milieu traversé

Introduction: tomographie d'émission

• Source \square ou \square + interne au patient

• Mesures idéales (sans atténuation) : intégrale de l'activité le long des raies de projections

$$N = \prod_{0}^{d} (1) d1$$

• Objet à reconstruire : cartographie 3D de la distribution d'activité f dans l'organisme

TTI2 : Reconstruction tomographique - Irène Buvat - novembre 2004 - 6

Factorisation du problème de reconstruction

volume 3D à partir d'images 2D

volume 3D reconstruit à partir de la reconstruction d'un ensemble de volume 2D

Factorisation du problème de reconstruction

• Un ensemble de projections 2D — détecteur en position □ une projection □ ◆ N(x,z)volume 3D étudié reconstruction d'un objet 3D • Un ensemble de projections 1D N(x)coupe axiale zi reconstruction d'un objet 2D (coupe z_i) ensemble de coupes z_i = volume d'intérêt

Reconstruction : non unicité de la solution

• Pas de solution unique : toujours plusieurs objets compatibles avec un ensemble fini de projections

1 projection : plusieurs solutions possibles

2 projections : plusieurs solutions possibles

Unicité de la solution pour une infinité de projections seulement

Reconstruction: problème inverse mal posé

• Pas de solution du fait du bruit entachant les données

• Non unicité de la solution du fait du manque d'informations (nombre de projections fini)

typiquement, 64 ou 128 projections <<

Instabilité de la solution : petite différence sur les projections peut provoquer des écarts importants sur les coupes reconstruites

 $TTI2: Reconstruction\ tomographique\ -\ Ir\`ene\ Buvat\ -\ novembre\ 2004\ -\ 11$

1887-1956

1917 : Johann Radon : "De la détermination des fonctions à partir de leurs intégrales selon certaines directions", Math. Phys. Klass

$$p(u, \square) = \square^{\ddagger}(x,y) dv$$

Transformée de Radon

$$p(u, \square) = \square^{+}(x,y) dv$$

ensemble des projections pour [] = [0, []]= transformée de Radon de f(x,y)

$$R[f(x,y)] = \bigcap_{0} (u, \square) d\square$$

$$f(x,y)$$
 $p(u, \square)$ domaine spatial espace de Radon

Problème de reconstruction tomographique : inverser la transformée de Radon, i.e., estimer f(x,y) à partir de $p(u, \square)$

Sinogramme

Sinogramme = signal issu d'une coupe z_i vue sous différentes incidences \square

sinogramme correspondant à la coupe z_i

Opération de rétroprojection

Attention : la rétroprojection n'est pas l'inverse de la transformée de Radon

Deux approches à la reconstruction tomographique

• Les méthodes analytiques

$$R[f(x,y)] = \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] (u, \left[\begin{array}{c} \\ \\ \end{array} \right] d \left[\begin{array}{c} \\ \\ \end{array} \right]$$

• Les méthodes discrètes (ou itératives)

$$p = R f$$

Méthodes de reconstruction analytique : introduction

• Inversion analytique de la transformée de Radon

$$R[f(x,y)] = \left[\begin{array}{c} \\ \\ \\ \\ \end{array} \right] (u, []) d[]$$

- Expression continue du problème de reconstruction tomographique
- Méthode la plus courante : rétroprojection filtrée

FBP: Filtered BackProjection

• Méthodes rapides

• Méthodes disponibles sur tous les dispositifs d'acquisition commercialisés (scanner X, SPECT, PET)

Limites de la rétroprojection simple

rétroprojection simple artefacts d'épandage en étoile

La rétroprojection n'inverse pas la transformée de Radon

Rétroprojection filtrée: principe

rétroprojection simple

rétroprojection filtrée

réduction des artefacts

inversion de la transformée de Radon

Théorème de la coupe centrale (TCC)

TF monodimensionnelle d'une projection par rapport à u

TF bidimensionnelle de la distribution à reconstruire

objet f(x,y) à reconstruire = rétroprojection des projections filtrées

Algorithme de rétroprojection filtrée

Insuffisance du filtre rampe

amplification des hautes fréquences

$$w(\square) = 0,5.(1 + \cos\square\square/\square_c)$$
 si $\square < \square_c$ domaine $= 0$ si $\square \ge \square_c$ fréquentiel

Filtres classiques : filtre de Hann

- Filtre rampe
 - meilleure résolution spatiale mais forte amplification du bruit haute fréquence

• Filtre de Hann

$$w(\square) = 0,5.(1 + \cos\square\square/\square_c) \quad \text{si } \square < \square_c$$

= 0 \qquad \text{si } \mu \geq \mu_c

modifie les moyennes fréquences

plus faible est la fréquence de coupure, moins on préserve les détails "haute fréquence", i.e., plus fort est le lissage

Filtres classiques : filtre de Hamming

• Filtre rampe

• Filtre de Hamming

plus faible est la fréquence de coupure, moins on préserve les détails "haute fréquence", i.e., plus fort est le lissage

Filtres classiques : filtre gaussien

• Filtre rampe

• Filtre gaussien (domaine spatial)

$$c(x) = (1/[]\sqrt{2[]}).exp[-(x-x_0)^2/2[]^2] si [] < []_c$$

$$= 0 si [] \ge []_c$$

plus grande est la dispersion du filtre gaussien (FWHM ou []),

moins on préserve les détails "haute fréquence", i.e., plus fort est le lissage

Filtres classiques : filtre de Butterworth

• Filtre rampe

• Filtre de Butterworth

2 paramètres : fréquence de coupure □_c et ordre n

2 4 6 8 10 ordre
$$n$$
, $\square_c=0.25$

plus faible est l'ordre moins on préserve les détails "haute fréquence", i.e., plus fort est le lissage

Implantation du filtrage

• Multiplication du filtre rampe par une fenêtre d'apodisation

- filtrage 1D (direction x)
- Filtrage des projections puis reconstruction avec un filtre rampe
 - \rightarrow filtrage 2D (directions x,z)
- Reconstruction avec un filtre rampe puis filtrage 2D des coupes reconstruites
 - filtrage 2D (directions x,y)
- Reconstruction avec un filtre rampe puis filtrage 3D du volume reconstruit
 - \rightarrow filtrage 3D (directions x,y,z)

Méthodes de reconstruction analytique : discussion

• Rapide

- Mais beaucoup d'approximations non vérifiées en pratique :
 - modèle de lignes intégrales (résolution spatiale parfaite du détecteur)
 - pas de prises en compte des fluctuations statistiques

Approche alternative : la reconstruction discrète, ou itérative

Méthodes de reconstruction itératives : introduction

• Expression discrète et matricielle du problème de reconstruction tomographique

$$\begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{14} \\ r_{41} & r_{44} \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix}$$

• Problème de reconstruction : système d'équations de grande taille

128 projections 128 x 128

2 097 152 équations à autant d'inconnues

• Inversion itérative du système d'équations

Expression discrète du problème de reconstruction

$$\begin{aligned} p_1 &= r_{11} f_1 + r_{12} f_2 + r_{13} f_3 + r_{14} f_4 \\ p_2 &= r_{21} f_1 + r_{22} f_2 + r_{23} f_3 + r_{24} f_4 \\ p_3 &= r_{31} f_1 + r_{32} f_2 + r_{33} f_3 + r_{34} f_4 \\ p_4 &= r_{41} f_1 + r_{42} f_2 + r_{43} f_3 + r_{44} f_4 \end{aligned}$$

$$\begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{14} \\ f_2 \\ f_{31} \\ f_{41} & r_{44} \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix}$$

Problème : déterminer f connaissant p et R

Expression de l'opérateur de projection R

Modélisation du problème direct

Expression de l'opérateur de projection R

Deux aspects

- Modélisation géométrique
 - choix d'un modèle de distribution de l'intensité des pixels
 - modélisation de la géométrie de détection
- Modélisation de la physique de détection
 - * atténuation
 - * diffusion
 - * résolution limitée du détecteur

Modélisation géométrique de l'opérateur R

• Modèle de distribution de l'intensité des pixels : détermination de la contribution de chaque pixel i à une raie

 Modèle de la géométrie de détection géométrie parallèle géométrie en éventail

Modélisation physique de l'opérateur R

• Atténuation

• Diffusion

sans modélisation de la diffusion :

$$p_1 = r_{11} f_1 + r_{13} f_3$$

avec modélisation de la diffusion :

$$p_1 = r_{11} f_1 + r_{12} f_2 + r_{13} f_3 + r_{14} f_4$$

• Réponse du détecteur

sans modélisation de la fonction de réponse de la caméra :

$$p_1 = r_{11} f_1 + r_{13} f_3$$

avec modélisation:

$$p_1 = r_{11} f_1 + r_{12} f_2 + r_{13} f_3 + r_{14} f_4$$

Opérateurs de projection R et de rétroprojection

rétroprojection

 p_3

 p_4

$$p_{1} = f_{1} + f_{3}$$

$$p_{2} = f_{2} + f_{4}$$

$$p_{3} = f_{1} + f_{2}$$

$$p_{4} = f_{3} + f_{4}$$

$$\mathbf{R} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \mathbf{R}^{t}$$

Résolution du problème inverse

$$p = R f$$

Recherche d'une solution f minimisant une distance d(p,Rf), p et R étant connus

estimée initiale de l'objet à reconstruire

définit la méthode itérative : additive : $f^{n+1} = f^n + c^n$

multiplicative : $f^{n+1} = f^n \cdot c^n$

Deux classes de méthodes discrètes itératives

- Méthodes algébriques
 - méthodes itératives conventionnelles résolvant un système d'équations linéaires
 - minimisent $||p Rf||^2$
 - ART, SIRT, ILST, Gradient conjugué, etc

- Méthodes statistiques
 - estimation bayesienne
 - prennent en compte le bruit dans les données
 - maximisent une fonction de vraisemblance
 - MLEM, OSEM

- Deux pixels et deux raies de projection
 - système de deux équations à deux inconnues

$$f_1 = 10$$

 $f_2 = 15$

Opérateur de projection (connu)

$$\mathbf{R} = \begin{bmatrix} 7/8 & 1/8 \\ 1/8 & 7/8 \end{bmatrix}$$

Valeurs de projection mesurées

$$p_1 = 7/8 f_1 + 1/8 f_2 = 85/8$$

 $p_2 = 1/8 f_1 + 7/8 f_2 = 115/8$

Inconnues à déterminer : f₁ et f₂

Approche ART (Algebraic Reconstruction Technique)

$$p_1 = 7/8 f_1 + 1/8 f_2 = 85/8$$
 (équation 1)
 $p_2 = 1/8 f_1 + 7/8 f_2 = 115/8$ (équation 2)

• Utilisation d'une seule équation de raie par itération, et mise à jour de chaque inconnue à partir de cette équation :

itération 1 : estimation de f_1 à partir de l'équation 1 slmt estimation de f_2 à partir de l'équation 1 slmt

itération 2 : estimation de f_1 à partir de l'équation 2 slmt estimation de f_2 à partir de l'équation 2 slmt

itération 3 : estimation de f_2 à partir de l'équation 2 simitiération 3 : estimation de f_1 à partir de l'équation 1 slmt etc...

• Modification à chaque itération proportionnelle à l'erreur par rapport à la projection vraie

• ART additive (erreur = p_k - p_k^n) ou ART multiplicative (erreur = p_k / p_k^n)

$$p_1 = 7/8 f_1 + 1/8 f_2 = 85/8 = 10,6$$

 $p_2 = 1/8 f_1 + 7/8 f_2 = 115/8 = 14,4$

• Repose sur la méthode de Kaczmarz

contribution du pixel i /à la raie de projection k

$$f_i^{n+1} = f_i^n + (p_k - p_k^n) r_{ki} / [jr_{kj}^2]$$

écart entre valeurs du bin de projection estimée et observée

• Exemple (initialisation $f_1^0 = f_2^0 = 0$ $p_1^0 = p_2^0 = 0$): itération n=1, raie k=1, estimation de f_1 et f_2 :

$$f_1^1 = 0 + (85/8-0).(7/8)/(49/64+1/64) = 119/10 = 11,9$$

 $f_2^1 = 0 + (85/8-0).(1/8)/(49/64+1/64) = 17/10 = 1,7$
 $p_2^1 = 119/40 = 3,0$

itération n=2, raie k=2, estimation de f₁ et f₂ :

$$\begin{aligned} f_1^2 &= 11.9 + (115/8 - 119/40).(1/8)/(49/64 + 1/64) = 13.7 \\ f_2^2 &= 1.7 + (115/8 - 119/40).(7/8)/(49/64 + 1/64) = 14.5 \\ & \Box \ \ p_1^{\ 1} = 13.8 \end{aligned}$$

itération 1 2 3 4 5
$$f_1$$
 11,9 13,7 10,1 10,3 10,0 f_2 1,7 14,5 13,9 14,9 14,9

• A chaque itération, mise à jour successive de toutes les inconnues (ici f₁ et f₂) à partir de l'équation correspondant à une seule raie de projection

Approche SIRT

$$p_1 = 7/8 f_1 + 1/8 f_2 = 85/8$$
 (équation 1)
 $p_2 = 1/8 f_1 + 7/8 f_2 = 115/8$ (équation 2)

- SIRT: Simultaneous Iterative Reconstruction Technique
- Utilisation de toutes les équations à chaque itération et mise à jour de chaque inconnue :

itération 1 : estimation de f₁ en résolvant l'équation 1 estimation de f₂ en résolvant l'équation 2

itération 2 : estimation de f₁ en résolvant l'équation 1 estimation de f₂ en résolvant l'équation 2

itération 3 : estimation de f_1 en résolvant l'équation 1

estimation de f₂ en résolvant l'équation 2

etc...

- Modification à chaque itération proportionnelle à l'erreur par rapport à la projection vraie
- Méthode de Jacobi
 Méthode de Gauss-Seidel
- Nombre d'itérations réduit par rapport aux méthodes ART

SIRT: méthode de Jacobi

$$p_1 = 7/8 f_1 + 1/8 f_2 = 85/8 = 10,6$$

 $p_2 = 1/8 f_1 + 7/8 f_2 = 115/8 = 14,4$

contribution du pixel i à la raie de projection i

$$f_i^{n+1} = f_i^n + (p_k - p_k^n) / r_{ii}$$

écart entre valeurs du bin de projection estimée et observée

• Exemple (initialisation $f_1^0 = f_2^0 = 0$ $p_1^0 = p_2^0 = 0$): itération n=1:

estimation de f_1 en résolvant l'équation 1 $f_1^{-1} = (85/8)/(7/8) = 85/7 = 12,1$ estimation de f_2 en résolvant l'équation 2 $f_2^{-1} = (115/8)/(7/8) = 115/7 = 16,4$

itération n=2 :

estimation de f₁ en résolvant l'équation 1 $f_1^2 = [85/8 - (1/8)*(115/7)]/(7/8) = 9,8$ estimation de f₂ en résolvant l'équation 2 $f_2^2 = [115/8 - (1/8)*(85/7)]/(7/8) = 14,7$

itération	1	2	3
f_1	12,1	9,8	10,0
f_2	16,4	14,7	15,0

SIRT: méthode de Gauss-Seidel

$$p_1 = 7/8 f_1 + 1/8 f_2 = 85/8 = 10,6$$

 $p_2 = 1/8 f_1 + 7/8 f_2 = 115/8 = 14,4$

• Identique à la méthode de Jacobi mais en tirant immédiatement parti des estimations obtenues aux itérations précédentes

$$f_i^{n+1} = f_i^n + (p_k - p_k^{n \text{ ou } (n+1)}) / r_{ii}$$
estimé à partir de toutes les valeurs courantes des f_i

• Exemple (initialisation $f_1^0 = f_2^0 = 0$ $p_1^0 = p_2^0 = 0$): itération n=1 :

estimation de f_1 en résolvant l'équation 1 $f_1^{-1} = (85/8-0)/(7/8) = 85/7 = 12,1$ estimation de f_2 en résolvant l'équation 2 avec $f_1^{-1} = [115/8-(1/8)*(85/7)]/(7/8) = 14,7$

itération n=2 :

estimation de f_1 en résolvant l'équation 1 avec $f_2^1 = 14,7$ $f_1^2 = (85/8-14,7/8)/(7/8) = 10,0$ estimation de f_2 en résolvant l'équation 2 avec $f_1^2 = 10,0$ $f_2^2 = (115/8-10,0/8)/(7/8) = 15,0$

itération	1	2	
\mathbf{f}_1	12,1	10,0	convergence plus rapide que Jacobi
f_2	14,7	15,0	rapide que Jacobi

Méthodes de descente

• Méthodes ART et SIRT :

• Méthodes de descente :

$$f_i^{n+1} = f_i^n + \prod_{i=1}^n (erreur^n)$$
coefficient de pondération optimisé

- modification du coefficient de pondération à chaque itération
- Méthode du gradient : Iterative Least Squared Technique (ILST)

Méthode du gradient conjugué

Méthodes de descente : gradient conjugué

• Adaptée à la résolution d'un système d'équations dont la matrice est symétrique :

$$p = R \ f \quad \Box \quad R^t \ p = \underbrace{R^t \ R}_{\ \ } f$$
 matrice symétrique

• Formule de mise à jour :

$$f_i^{n+1} = f_i^n + \prod^n d^n$$
coefficient de direction de descente optimisée à chaque itération (vitesse de descente)
$$f_i^{n+1} = f_i^n + \prod^n d^n$$
direction de descente optimisée à chaque itération

- Direction de descente optimisée à chaque itération :

itération 1 :
$$d^1 = R^t p - R^t R f^0$$

itération n : $d^n = (R^t p - R^t R f^n) + b^n d^{n-1}$

- optimisation de la convergence
- convergence rapide
- méthode additive
- utilisée en SPECT

Deux classes de méthodes discrètes itératives

Méthodes algébriques
 méthodes itératives conventionnelles résolvant un
 système d'équations linéaires
 minimisent ||p - R f||²
 ART, SIRT, ILST, Gradient conjugué, etc

Méthodes statistiques
 estimation bayesienne
 prennent en compte le bruit dans les données
 maximisent une fonction de vraisemblance
 MLEM, OSEM

Méthode statistique: MLEM

- MLEM = Maximum Likelihood Expectation Maximization
- Utilise une formulation probabiliste du problème de reconstruction :
 - modèle probabiliste :

Les p_k sont des variables aléatoires de Poisson de paramètres \overline{p}_k , d'où l'expression de la vraisemblance de f :

$$prob(p|f) = \prod_{k} exp(-\overline{p_k}) . \overline{p_k}^{p_k}/p_k!$$

- détermine la solution f qui maximise la vraisemblance (ou log-vraisemblance), i.e., prob(p|f) par rapport au modèle probabiliste choisi.

Algorithme MLEM

• Deux étapes :

- calcul de l'espérance de la log-vraisemblance compte tenu des projections p_k mesurées et de l'estimation courante des f_i .
- maximisation de l'espérance en annulant les dérivées partielles par rapport à f_i .

• Formule de mise à jour :

$$f_i^{n+1} = f_i^n \cdot \left[\prod_k r_{ki} \left(p_k / p_k^n \right) \right] / \prod_k r_{ki}$$

$$f^{n+1} = f_i^n \cdot R^t \left[p / p^n \right]$$
 opérateur de erreur rétroprojection

- * méthode multiplicative
- * solution toujours positive ou nulle
- * nombre d'événements conservé au fil des itérations
- * convergence lente
- * méthode itérative la plus utilisée en SPECT (dans sa version accélérée OSEM)

Version accélérée de MLEM: OSEM

- OSEM = Ordered Subset Exepectation Maximisation
- Tri des P projections en sous-ensembles ordonnés Exemple :

8 projections 2 sous-ensembles de 4 projections

- Application de MLEM sur les sous-ensembles :
 - itération 1 :

estimation de f¹ à partir de l'initialisation f⁰ et des projections p¹ correspondant au sous-ensemble 1

$$f^{l}=f^{0}$$
 .

 R^t [p / p^1]

estimation de f'1 à partir de f1 et des projections p'1 correspondant au sous-ensemble 2

$$f'^1 = f^1 \cdot R^t [p/p'^1]$$

- itération 2 :

estimation de f² à partir de f'¹ et des projections p² correspondant au sous-ensemble 1

$$f^2 = f^{\prime 1}$$
. $R^t [p/p^2]$

estimation de f² à partir de f² et des projections p² correspondant au sous-ensemble 2

$$f'^2 = f^2 \cdot R^t [p/p'^2]$$

etc.

Caractéristiques de OSEM

- OSEM avec S sous-ensembles et I iterations SI itérations de MLEM MLEM 1 16 24 32 40 itér. OSEM 1 6 8 10 itér. 4 ss-ens. **OSEM** 5 3 8 ss-ens.
 - Facteur d'accélération ~ nombre de sous-ensembles
 - méthode itérative la plus utilisée en SPECT

Caractéristiques des méthodes itératives

• Plus élevé est le nombre d'itérations, meilleure est la restitution des hautes fréquences

OSEM 1 2 3 4 5

gradient 1 2 3 4 5

conjugué

- Problème du choix du nombre d'itérations
 - convergence vers la solution puis divergence de la procédure lors de la reconstruction des très hautes fréquences du fait de la présence de bruit (haute fréquence)
- nécessité de « régulariser »

Importance de la régularisation

- Régularisation implicite : arrêt précoce des itérations
- Régularisation explicite : introduction d'un a priori sur la solution :
 - solution non régularisée : minimisation de d(p,Rf)
 - solution régularisée : minimisation de $d_1(p,Rf) + [d_2(f,f_a)$ a priori régularisant
- solution compromis entre la fidélité aux mesures et l'a priori
- Exemples d'a priori régularisants :
 - distribution de f connue (Poisson, Gauss)
 - image lisse
 - image présentant des discontinuités

Effet de la régularisation

sans régularisation

image idéale

avec régularisation

30

80

itérations:

0

TTI2 : Reconstruction tomographique - Irène Buvat - novembre 2004 - 55

Interprétation probabiliste de la régularisation

• Méthodes statistiques de reconstruction :

Chercher f la plus probable compte tenu des projections p observées

• Interprétation probabiliste :

Maximiser prob(f|p) : probabilité avoir l'image f quand les projections valent p

• Théorème de Bayes :

projections connues
$$\square$$
 prob(p) = 1
pas d'hypothèse a priori sur f \square prob(f) = 1

alors:

$$prob(f|p) = prob(p|f)$$

maximiser prob(f|p) = maximiser la vraisemblance prob(p|f) = minimiser l'écart entre projections calculées et observées

Algorithmes associés à l'interprétation probabiliste

• Régularisation

```
probabilité a priori
de l'image f ≠ 1
prob(f|p) = prob(p|f) . prob(f)
probabilité a posteriori
de l'image f
```

méthodes MAP (maximum a posteriori) versions régularisées : MLEM ☐ MAP-EM

Reconstruction analytique ou itérative ?

Tomographie de transmission PET

rétroprojection filtrée

algorithme ML

Tomographie d'émission PET

- Algorithmes itératifs par rapport à rétroprojection filtrée (FBP)
 - * réduction des artefacts de raies
 - * temps de calculs accrus
 - * possible compensation des phénomènes parasites via une modélisation adéquate dans le projecteur R (diffusion, atténuation, fonction de réponse du détecteur)
 - * possible modélisation des caractéristiques statistiques des données

Solution: « fully 3D reconstruction »

Trois approches de reconstruction 3D complète

• Méthode analytique 3D FBP : généralisation de la rétroprojection filtrée au 3D

• Méthodes de rebinning réorganisation des données pour se ramener à la configuration de reconstruction 2D

• Méthodes discrètes itératives estimation d'un projecteur 3D

Méthodes analytiques de reconstruction 3D

- 3D FBP : généralisation de la rétroprojection filtrée au 3D :
- prend en compte la redondance des données

- nécessite des projections complètes

projection complète projection incomplète

Reprojection 3D traitant des données incomplètes

- Extraction des données 2D (non prise en compte des LOR obliques)
- Reconstruction d'une première estimée de l'objet par FBP 2D
- Estimation des données tronquées en reprojetant l'objet estimé
- Fusion des données estimées et des données mesurées
- Reconstruction par 3D FBP

Méthodes de rebinning

• A partir des R² sinogrammes (R nombre de couronnes), estimation de 2R-1 sinogrammes correspondant aux plans droits

TTI2 : Reconstruction tomographique - Irène Buvat - novembre 2004 - 64

$$r_rebin = (r1+r2)/2$$

Autre technique de rebinning : Fourier rebinning

Méthodes discrètes itératives

• Aucune différence conceptuelle avec l'approche 2D

- Challenges:
- taille du projecteur (ou matrice de transition) (plus de 10 millions de LOR en PET 3D)
- estimation du projecteur pour rendre compte correctement des phénomènes 3D affectant les données mesurées (diffusion, réponse du détecteur, sensibilité variable du détecteur dans la direction axiale).

- 1917 : Johann Radon : "De la détermination des fonctions à partir de leurs intégrales selon certaines directions"
- travaux confinés au cercle des mathématiciens
- 1956 : Bracewell : démonstration des relations entre transformée de Fourier et transformée de Radon
- 1963 : premières applications de la tomographie médicale
 - Kuhl, prof de radiologie : premières images tomographiques par rétroprojection simple
 - Cormack, physicien : application des travaux de Radon aux acquisitions par rayons X
- 1970 : publication de la première image de tomodensitométrie X
- 1970-73 : mise au point du premier scanner X par Cormack et Hounsfield
- 1979 : Attribution du prix Nobel de Médecine à Cormack et Hounsfield

Quelle méthode pour quelle application?

- Scanner X
- * rétroprojection filtrée car excellent rapport signal-surbruit
- Tomographie d'émission monophotonique
- * routine clinique : longtemps rétroprojection filtrée seulement
- * de plus en plus fréquemment : algorithmes itératifs, en particulier OSEM, du fait de :
 - la réduction des artefacts de raies
 - les plus grandes possibilités en terme de quantification
 - le traitement plus efficace de données présentant une faible statistique (10 000 moins d'événements qu'en scanner X)
 - l'augmentation de la puissance des calculateurs qui rend la mise en œuvre d'algorithmes itératifs compatible avec une utilisation clinique
- Tomographie d'émission de positons
- * routine clinique : rétroprojection filtrée
- * en cours de développement : algorithmes itératifs du fait de :
 - la possibilité de traiter totalement la nature 3D de la reconstruction sans factorisation et d'exploiter au mieux les nouveaux dispositifs d'acquisition
 - l'augmentation de la puissance des calculateurs

Pour en savoir plus ...

- Analytic and iterative reconstruction algorithms in SPECT. Journal of Nuclear Medicine 2002, 43:1343-1358
- Rétroprojection filtrée et reconstruction itérative : rappels théoriques et propriétés des deux approches sur : http://www.guillemet.org/irene