Solution: Micro interrogation

Exercice I _

On a mesuré l'absorption de la lumière par des solutions alcalines de 4-nitrophénol, de concentrations croissantes. On a obtenu les résultats suivants (pour une lumière de longueur d'onde 400 nm et un trajet optique de 1 cm) :

Concentration C (en mol/l)	1×10^{-3}	2×10^{-3}	3×10^{-3}	4×10^{-3}	5×10^{-3}
Absorbation A	0.1865	0.3616	0.5370	0.7359	0.9238

1. Vérifier graphiquement qu'on peut admettre l'existence d'une relation linéaire entre l'absorbation et la concentration.

Absorbation par rapport à la Concentration

2. Proposer un modèle convenable, puis estimer les paramètres de la droite de régression de A par rapport à C.

$$y = \beta_0 + \beta_1 x + \varepsilon$$

tel que : y est l'Absorbation et x est la Concentration.

$$\hat{\beta}_0 = -0.00571$$
 $\hat{\beta}_1 = 184.89000$.

tel que:

$$\bar{A} = 0.54896$$
 $\bar{C} = 0.003$ $var(A) = 0.08551891$ $var(C) = 2.5e - 06$ $cov(A, C) = 0.000462225$.

3. Calculer le coefficient de corrélation *r* et en déduire le coefficient de détermination. Commenter.

$$r = 0.9996601$$
 $R^2 = 0.9993203$.

4. La pente est-elle significativement différente de 0, au risque $\alpha = 0.05$? Commentez le résultat.

$$H_0: \beta_1=0$$

$$t_{calc} = 66.410$$
 $t_{tab} = 3.182$.

On voit que $t_{calc} = 66.410 \notin [-3.182; 3.182]$

Alors H_0 est rejetée. Donc la Concentration influe significativement sur l'Absorbation.