

6.2.6 电子云的径向分布图

天津大学

邱海霞

电子云的径向分布图

$$|\psi|^2$$
 $|\Psi|^2$ $|\Psi|$

径向分布图

电子出现的概率与离核远近的关系

薄球壳内电子出现的概率随r改变的情况

概率=概率密度×体积

径向分布函数

离核半径为r,厚度为 Δr 的薄球壳内电子出现的概率

概率= 概率密度 × 体积

District Control

概率 $W = R^2(\mathbf{r}) \times 4 \pi r^2 \Delta r$

单位厚度球壳内概率:

$$D(r) = \frac{W}{\Delta r} = 4 \pi r^2 R^2 (r)$$

径向分布函数

电子云的径向分布图

径向分布图

径向分布函数D(r)对r作图

a_0 :坎汀	1		个
0. 77.3		30	

エカ / ハノノフ

	概率密度	球壳体积
r增大	减小	增大

电子云径向分布图

氢原子电子云的径向分布图

曲线的峰数?

等于n-l

随着n的增大,最 大概率半径增大