1989005473 *52-75*

N89-14844 175143

HELIUM-3 BLANKETS FOR TRITIUM BREEDING IN FUSION REACTORS

Don Steiner, Mark Embrechts, Georgios Varsamis, Ry a 3523 and Roger Vesey Dept. of Nuclear Engineering and Engineering Physics Rensselaer Polytechnic Institute Troy, NY 12181 CF 448284

and

Paul Gierszewski Canadian Fusion Fuels Technology Project

OBSERVATIONS

- RESOURCE CONSIDERATIONS HAVE LIMITED D-T FUSION REACTOR BLANKET STUDIES TO LITHIUM-BASED SYSTEMS
- WHILE ACCEPTABLE LITHIUM-BASED BLANKET DESIGNS HAVE BEEN DEVELOPED SAFETY & ENGINEERING CONCERNS ARE ASSOCIATED WITH THE USE OF LITHIUM
- THE BEST SAFETY FEATURES ARE GENERALLY ATTRIBUTED TO BLANKETS EMPLOYING HELIUM AS COOLANT
- IT WOULD BE DESIRABLE TO DEVELOP A TRITIUM BREEDING OPTION WHICH RETAINS HELIUM AS COOLANT AND ELIMINATES LITHIUM CONCERNS
- A HELIUM-3 (BREEDER)/HELIUM-4 (COOLANT) BLANKET OFFERS PROMISE FOR ENHANCED SAFETY & ENGINEERING CHARACTERISTICS

ESECOM RESULTS
FUSION TECHNOLOGY/JAN., 1988

Case	Nominal LSA	COE (mill/kW·h)
1. V-Li/TOK	3	49.7
2. RAF-He/TOK	2	42.6
3. RAF-PbLi/RFP	4	37.7
4. V-Li/RFP	4	37.3
5. SiC-He/TOK	1	40.3
6. V-Flibe/TOK	2	42.9
7. V-MHD/TOK	4	35.4
8. V-D ³ He/TOK	2	41.3
9. RAF-Li/HYB	4	İ
Stand alone	}	63.7
With MHTGR clients		40.3
10. SS-He/HYB	4	}
Stand alone		55.8
With MHTGR clients		39.8

GENERAL FEATURES OF CONCEPT

• USE HELIUM-3 TO BREED TRITIUM [large $\sigma(n,T)$ of 'He]

- BLANKET COOLANT WOULD BE HELIUM-4
 - OPERATING AT ABOUT 5 MPa

 - 100 300 C (NEAR TERM) 250 500 C (COMMERCIAL)
- BLANKET STRUCTURE WOULD BE CONVENTIONAL (e.g. STAINLESS STEEL) OR ADVANCED (e.g. SiC)
- BERYLLIUM WOULD BE USED FOR NEUTRON MULTIPLICATION [large $\sigma(n,2n)$]
- , HELIUM-3 CONTAINED IN A LOOP SEPARATE FROM HELIUM-4 LOOP AND FLOWS WITHIN THE BERYLLIUM, ALSO ACTING AS A PURGE FOR BERYLLIUM-BRED TRITIUM
- CONCEPT FEATURES SIMILAR TO THOSE OF A He/SB BLANKET WITH EXCEPTION THAT ISSUES ASSOCIATED WITH THE SB ARE ELIMINATED

A REFERENCE CONFIGURATION WAS ADOPTED BASED ON MINOR MODIFICATIONS TO THE BCSS He/LiAlO, /Be BLANKET

LIAIO, IS REPLACED WITH BERYLLIUM CONTAINING A HELIUM-3 PURGE STREAM

HELIUM COOLED BLANKET MODULE SECTOR

ORIGINAL PAGE IS OF POOR QUALITY

- THE HELIUM-3 BLANKET EXHIBITS GOOD TRITIUM BREEDING POTENTIAL
- THE REFERENCE CONFIGURATION WAS NOT OPTIMIZED FOR TBR & SOME BREEDING ENHANCEMENT IS EXPECTED

THE HELIUM-3 BLANKET CONCEPT SHARES MANY ATTRACTIVE ASPECTS OF He/SB BLANKETS AND BRINGS SEVERAL ADVANTAGES

• COMMON ATTRACTIVE FEATURES

- GOOD SAFETY CHARACTERISTICS
- NO CORROSION CONCERNS
- GOOD TRITIUM BREEDING POTENTIAL
- ADVANTAGES OF HELIUM-3 BLANKETS
 - ONLINE BREEDING CONTROL
 - NOT SENSITIVE TO POWER VARIATIONS &
 - HEAT CONDUCTANCE CONSTRAINTS
 - REDUCED TRITIUM INVENTORY IN BREEDER
 - NO C-14 PRODUCTION IN BREEDER
- The R & D REQUIRED FOR THE HELIUM-3 BLANKET WOULD BE SIMILAR TO THAT OF He/SB BLANKETS WITH EXCEPTION OF SB DEVELOPMENT

TRITIUM CONTROL ISSUES IN ESECOM REFERENCE CASES

Case	Active Tritium Inventory (g)	Dominant Location of Tritium	Difficulty of Control
V-Li/TOK	500	Coolant/breeder	Low
RAF-He/TOK	160	Breeder	Low to medium
RAF-PbLi/RFP	60	Coolant	Medium to high
V-Li/RFP	500	Coolant/breeder	Low
SiC-He/TOK	160	Breeder	Low to medium
V-Flibe/TOK	15	Structure	Medium
V-MHD/TOK	Not estimated	Structure?	Medium?
V-D ³ He/TOK	60	Coolant	Low to medium
,			
RAF-Li/HYB	1000	Coolant/breeder	Low
SS-He/HYB	200	Structure	Low to medium

T/He3 Inventory and Leakage

- Purge circuit He3 volume:

Blanket/plenum - 10 m3 Piping/T system/misc - 5 m3

- Inventories:

He4 coolant - 2000 kg
He3 purge - 50 kg
T in purge - 0.06 g
T in coolant - 0.8 g

T in Be - 0.5-1000 g (?)

- Assume 1% circuit leakage/yr (BCSS):

He4 - 2 kg/yr He3 - 0.5 kg/yr

T - 100 Ci/yr (+ 10 Ci/d across HX)

- Options for He3 inventory reduction: Breeding in outboard only - 25% less Purge flow rate to 30 m/s - 10% less

HELIUM-3 REQUIREMENTS FOR FUSION

	ITER"	COMM"	100 x COMM
INVENTORY, kg	50	50	5000
LEAKAGE, kg/yr	0.5	0.5	50
BURNUP, kg/yr	8	96	9600
LIFETIME, kg	85 (10 yrs)	3800 (40 yrs)	10° (120 yrs)
COST, \$/g	700 (MOUND)	100-500 (TARGET)	100-500 (TARGET)

[&]quot; 600 MW, / 25 % AVAILABILITY

 $^{^{\}circ}$ 2400 MW, / 75 % AVAILABILITY

RESERVES OF HELIUM-3 THAT COULD BE AVAILABLE IN THE YEAR 2000

CUMULATIVE AMOUNT TO YEAR 2000 (kg)	PRODUCTION RATE POST YEAR 2000 (kg/yr)
	1.3
> 13.4	_
10	2
∝ 300	∞ 15
29	
187	_
500 to 600	∝ 18
	AMOUNT TO YEAR 2000 (kg) > 13.4 10 \preced{\precedent} 29 187

Note: Data from the University of Wisconsin (Fusion Technology)

- THE DECAY OF TRITIUM IN MILITARY STOCKPILES COULD SATISFY THE HELIUM-3 REQUIREMENTS OF ITER
- COMMERCIAL FUSION POWER WOULD REQUIRE EXTRATERRESTRIAL SUPPLIES OF HELIUM-3

CONCLUDING REMARKS

- HELIUM-3 BLANKETS OFFERS CONSIDERABLE PROMISE FOR TRITIUM BREEDING IN FUSION REACTORS
 - GOOD BREEDING POTENTIAL
 - LOW OPERATIONAL RISK
 - ATTRACTIVE SAFETY FEATURES
- AVAILABILITY OF HELIUM-3 RESOURCES IS THE KEY ISSUE FOR THIS CONCEPT
 - THERE IS SUFFICIENT HELIUM-3 FROM DECAY OF MILITARY STOCKPILES TO MEET ITER NEEDS
 - EXTRATERRESTRIAL SOURCES OF HELIUM-3 WOULD BE REQUIRED FOR A FUSION POWER ECONOMY
 - $\propto 100 500 \$/g$
 - \propto 10° kg/yr &: \propto 10° kg