Лингвистическая переменная

Лингвистическая переменная задается на количественной шкале базовой переменной и ($u \in U$) и принимает значения в виде слов и словосочетаний естественного языка.

Значение лингвистической переменной (терм) задается в виде функции принадлежности.

Лингвистическая переменная определяется как тройка (x, T, U), где x — наименование лингвистической переменной; T — множество ее значений (терм-множество); U — универсальное множество.

Нечеткая переменная – тройка (X, U, A), где X – наименование нечеткой переменной; U – универсальное множество; $A = \mu_A(u)$ – HM, описывающее ограничения на возможные значения нечеткой переменной X.

 Π ример 16. Слова "молодой" (М), "очень молодой" (ОМ), "пожилой" (П), "средний" (С) (рис. 11) – лингвистические значения лингвистической переменной "возраст".

Числовая переменная – "возраст", например, числа 0, 17, 24, 35, 85,... – *базовая* переменная.

Лингвистическая переменная — "возраст" (возраст, T, [0, 120]), x = возраст, терм-множество — $T = \{$ "очень молодой", "молодой", "средний", "пожилой" $\}$, U = [0, 120].

Нечеткая переменная — "молодой" (молодой, [17, 35], A). Здесь наименование, X= молодой, универсальное множество, U=[17, 35], нечеткое множество, задающее нечеткую переменную "молодой", обозначено буквой M, A = M.

График функций принадлежности лингвистической переменной «возраст»

Фаззификация

Фаззификация — определение степени принадлежности $\mu_A(u_0)$ элемента u_0 НМ A (определение соответствия между числовыми и лингвистическими значениями переменой).

Способы построения $\Phi\Pi$:

- на основе экспертных оценок.
- путем обработки статистических данных;
- по результатам моделирования, например, настройкой с помощью адаптивной сети. Условия, которым должна удовлетворять $\Phi\Pi$:

- ФП крайних нечетких множеств (термов) должны быть Z, S-типов, но не колоколообразные, и при $\min u = u_1$, $\max u = u_m$ значения ФП $\mu_{A_1}(u_1) = 1$, $\mu_{Am}(u_m) = 1$. (Для регулятора на основе алгоритма Мамдани).
 - Каждое нечеткое множество должно иметь единственный максимум.
 - ФП должны иметь гладкие затухающие до нуля фронты.
 - Нечеткие множества должны быть нормальными.
- Нечеткость обрабатываемой информации состоит в возможности одновременной принадлежности значения четкой входной переменной двум нечетким множествам

Лучшее расположение - $\mu_{A_i}(u) + \mu_{A_{i+1}}(u) = 1$.

Рис. 12

Иллюстрация влияния параметров гауссовской функции принадлежности на ее форму

$$\mu(x) = \mu(\|x - c\|) = \exp(-\frac{\|x - c\|^2}{2\sigma^2})$$

а) влияние изменения центра c при $\sigma = 1$; = 1

б) влияние изменения σ при c

Функция Гаусса
$$\mu(x) = \mu(\|x - c\|) = \exp(-\frac{\|x - c\|^2}{2\sigma^2})$$
, $\|x - c\|$ — блок вычисления эвклидова

расстояния вектора входа x от центра c функции Гаусса, параметр σ^2 — значение дисперсии.

2. НЕЧЕТКИЕ ОТНОШЕНИЯ

2.1. Основные определения

Нечеткое отношение (НО) R на множестве $U \times V$ — нечеткое подмножество декартова произведения, которое характеризуется функцией принадлежности $\mu_R(u,v)\colon U \times V \to [0,1]$.

 $\mathcal{U}_{R}(u,v)$ – субъективная мера выполнения отношения $u\,R\,v$. Пример 1.

Четкое отношение — R (\geq) ("больше или равно"), нечеткое — R (>>) ("много больше") (рис. 1).

Способы задания нечетких отношений:

теоретико-множественные:

$$R = \{((u_1, v_1), \, \mu_R(u_1, v_1)), \, ((u_2, v_1), \, \mu_R(u_2, v_1)), \dots \, ((u_n, v_n), \, \mu_R(u_n, v_n))\};$$

- графические: граф $U \cup V$, дуга $\mu_R(u_i, v_j)$;
- в матричном виде: с помощью матрицы инциденций:

Нечеткое отношение "x приблизительно равно y" на дискретных и непрерывных множествах изображено на рис. 2.

Рисунок 2 — Нечеткое отношение " x приблизительно равно y "

Нечеткие отношения "x намного меньше, чем y" на дискретных и непрерывных множествах изображены на рис. 3.

а) нечеткое отношение на дискретных мн-вах б) нечеткое отношение на непрерывных мн-вах

Рисунок 3 — Нечеткое отношение "x намного меньше, чем y"

Замечание

Бинарное отношение $R\subseteq U\times V$ можно рассматривать как *отображение* $\phi\colon U\to V.$ *Отображение* $\phi\colon U\to V$ соответствие между элементами множества оригиналов U и элементами множества образов V в отношении R . Если упорядоченная пара $(u,v)\in R$, то ее можно рассматривать как отображение оригинала u в образ v: $\phi(u)=v$. Графически при отображении $\phi\colon U\to V$ исток – оригинал u, а сток – образ v.

2.2. Операции над нечеткими отношениями

1. R и L – нечеткие отношения, R содержится в L, $R \subseteq L$, если $\forall (u,v) \in U \times V$: $\mu_R(u,v) \leq \mu_L(u,v).$

2. Объединение двух отношений R и $L-R\bigcup L$:

$$\forall \, (u,v) \in U \times V : \, \mu_R \bigcup_L (u,v) = \mu_R(u,v) \, \vee \, \mu_L(u,v) = \max \left[\mu_R(u,v), \, \, \mu_L(u,v) \right].$$

3. **Пересечение** двух отношений R и $L-R\bigcap L$:

$$\forall (u, v) \in U \times V : \ \mu_R \cap L(u, v) = \mu_R(u, v) \land \ \mu_L(u, v) = \min[\mu_R(u, v), \ \mu_L(u, v)].$$

Пример 2. $R \subseteq L$

$$R_{\downarrow\downarrow}$$
 $v_1^{0.3}$ $v_2^{0.4}$ u_1 $u_2^{0.5}$ u_1 $u_2^{0.5}$ u_2 u_2

Пример 3. $R \cap L$, $R \cup L$

Пример 4. R = " х приблизительно равно у ", L = " х намного меньше, чем у ". $R \cap L$, $R \cup L = "$

4. Дополнение нечеткого отношения
$$\overline{R}$$
 : $\forall (u,v) \in U \times V$: $\mu_{\overline{R}}(u,v) = 1 - \mu_{R}(u,v)$.

Дополнение — отрицание исходного отношения. Для R = (лучше), дополнение $\overline{R} = ($ не лучше).

Пример 5.

$$\begin{array}{c|cccc}
\hline{R} & v_1^{0.7} & v_2^{0.6} \\
u_1 & 0.5 & 0.9 \\
\end{array}$$

5. **Обратное** к **R** НО R^{-1} :

$$\forall (u,v) \in U \times V : uRv \Leftrightarrow vR^{-1}u$$
, или $\forall (u,v) \in U \times V : \quad \mu_R(u,v) = \mu_{R^{-1}}(v,u)$.

Матрица R^{-1} является транспонированной к матрице R.

Пример 6.
$$R^{-1}$$
 R
 $v_1^{0.2}$
 $v_2^{0.6}$
 $v_1^{0.7}$
 $v_2^{0.9}$
 $v_1^{0.6}$
 $v_2^{0.7}$
 $v_2^{0.8}$
 $v_2^{0.8}$

2.3. Композиция нечетких отношений

1. Максиминная композиция $R \circ L$ двух нечетких отношений $R \subset U \times V$ и $L \subset V \times W$ $R \circ L(u, w) = \bigvee (R(u, v) \wedge L(v, w)), \ \forall u \in U, \ \forall v \in V, \ \forall w \in W.$

 $(u,w) \in U \times W$ принадлежит нечеткому отношению $R \circ L$ принадлежности наибольшей из меньших степеней принадлежности различных компонируемых пар $(u,v) \in U \times V$ и $(v,w) \in V \times W$ нечетких отношений R и L, в качестве v выступают несколько компонируемых элементов.

Функция принадлежности максиминной композиции

$$\mu_{R\circ L}(u,w) = \bigvee_{v} (\mu_{R}(u,v) \land \mu_{L}(v,w)) = \max_{v} \{\min[\mu_{R}(u,v), \ \mu_{L}(v,w)]\}.$$

$$Ipuwep 7.$$

$$R \mapsto_{u_{1}} \frac{1}{v_{1}^{0.2} \frac{v_{2}^{0.7}}{v_{2}^{0.4} \frac{v_{2}^{0.8}}{v_{1}^{0.4} \frac{v_{2}^{0.8}}{v_{1}^{0.4} \frac{v_{2}^{0.8}}{v_{1}^{0.3} \frac{v_{2}^{0.9}}{v_{1}^{0.3} \frac{v_{2}^{0.9}}{v_{1}^{0.3} \frac{v_{2}^{0.9}}{v_{1}^{0.9} \frac{v_{2}^{0.9}}{v_{1}^{0.9}}}}}}}}} \frac{L}{u_{1}} \underbrace{u_{1}} \underbrace{u_{1}} \underbrace{u_{2}} \underbrace{u_{2}} \underbrace{u_{1}} \underbrace{u_{1}} \underbrace{u_{1}} \underbrace{u_{1}} \underbrace{u_{1}} \underbrace{v_{1}} \underbrace{u_{1}} \underbrace{v_{1}} \underbrace{v_$$

2. Минимаксная композиция $R \bullet L$ двух нечетких отношений $R \subset U \times V$ и $L \subset V \times W$ определяется $\Phi\Pi$ в виде

0.7

0.8

0.4

 u_1

 u_2

$$\mu_{R \bullet L}(u, w) = \bigwedge_{v} (\mu_{R}(u, v) \vee \mu_{L}(v, w)) = \min_{v} \{ \max_{v} [\mu_{R}(u, v), \ \mu_{L}(v, w)] \}.$$
(2.2)

3. Максимультипликативная композиция R*L двух нечетких отношений $R \subset U \times V$ и $L \subset V \times W$ определяется ФП в виде

$$\mu_{R*L}(u, w) = \bigvee_{v} (\mu_{R}(u, v) \mu_{L}(v, w)) = \max_{v} (\mu_{R}(u, v) \mu_{L}(v, w)).$$
(2.3)

Пример 8.

Пусть
$$(u, w) = (u_1, w_1)$$
,тогда $\mu_{R \bullet L}(u_1, w_1) = \min_{v_i} \max (\mu_R(u_1, v_i), \mu_L(v_i, w_1))$

 $\max(\mu_R(u_1, v_1), \mu_L(v_1, w_1)) = \max(0.2, 0.5) = 0.5,$

 $\max (\mu_R(u_1, v_2), \mu_L(v_2, w_1)) = \max (0.7, 0.3) = 0.7,$

$$\min_{v_i} \max (\mu_R(u_1, v_i), \mu_L(v_i, w_1)) = \min (0.5, 0.7) = 0.5.$$

Пусть
$$(u, w) = (u_1, w_1)$$
, тогда $\mu_{R*L}(u_1, w_1) = \max_{v_i} (\mu_R(u_1, v_i), \mu_L(v_i, w_1))$

$$(\mu_R(u_1, v_1) \cdot \mu_L(v_1, w_1)) = (0.2 \cdot 0.5) = 0.1, \quad (\mu_R(u_1, v_2) \cdot \mu_L(v_2, w_1)) = (0.7 \cdot 0.3) = 0.21,$$

$$\max_{v_i} (\mu_R(u_1, v_i) \cdot \mu_L(v_i, w_1)) = \max(0.1 \cdot 0.21) = 0.21.$$

В случае бесконечно не более, чем счетных множеств U, V, W: максиминная композиция

$$\mu_{R \circ L}(u, w) = \bigvee_{v} (\mu_{R}(u, v) \wedge \mu_{L}(v, w)) = \sup_{v} \{\min[\mu_{R}(u, v), \mu_{L}(v, w)]\};$$
(2.4)

минимаксная композиция

$$\mu_{R \bullet L}(u, w) = \bigwedge_{v} (\mu_{R}(u, v) \vee \mu_{L}(v, w)) = \inf_{v} \{ \max [\mu_{R}(u, v), \ \mu_{L}(v, w)] \};$$
(2.5)

максимультипликативная композиция

$$\mu_{R*L}(u, w) = \bigvee_{v} (\mu_{R}(u, v) \mu_{L}(v, w)) = \sup_{v} (\mu_{R}(u, v) \mu_{L}(v, w)).$$
(2.6)

3. НЕЧЕТКАЯ ЛОГИКА И ПРИБЛИЖЕННЫЕ РАССУЖДЕНИЯ

3.1. Основные понятия четкой логики

Высказывание A — предложение, относительно которого можно сказать, истинно оно или ложно. "Истина" — 1, "ложь" — 0, значения истинности: $\gamma(A) = 1$, $\gamma(A) = 0$.

Отдельные высказывания — буквы A, B, C, ...— **логические переменные** (пропозициональные, высказывательные)

Символы: $-, \lor, \land, \rightarrow, \longleftrightarrow -$ логические связки.

Логические операции

Ompuцание высказывания: \overline{A} ("не A").

Конъюнкция высказываний: $A \wedge B$ ("и").

Дизъюнкция высказываний: $A \lor B$ ("или").

Импликация высказываний *A* и *B*: $A \to B$ ($A \supset B$) ("если *A* ..., то *B*").

Высказывание $A \to B$ ложно тогда и только тогда, когда A, называемое *условием* (посылкой, антецедентом, допущением) импликации $A \to B$, истинно, а B, называемое следствием (заключением, выводом, консеквентом) импликации, ложно.

Эквивалентность высказываний A и $B \colon A \longleftrightarrow B$ ("A тогда и только тогда, когда B").

Логические формулы:

- а) логические переменные логические формулы;
- б) если A и B логические формулы, то (A), ($A \wedge B$), ($A \vee B$), ($A \rightarrow B$), ($A \leftrightarrow B$) логические формулы.

Импликации соответствует логическая формула $((\bar{A}) \lor B)$, т. е. $(A \to B) \leftrightarrow ((\bar{A}) \lor B)$.

Таблица истинности

A	В	\bar{A}	\overline{B}	$A \wedge B$	$A \lor B$	$A \rightarrow B$	$((\bar{A})\vee B)$	$(A \rightarrow B) \leftrightarrow ((\bar{A}) \lor B)$	$A \wedge$
0	0	1	1	0	0	1	1	1	
0	1	1	0	0	1	1	1	1	
1	0	0	1	0	1	0	0	1	
1	1	0	0	1	1	1	1	1	

Высказывание с переменными – предикат (высказывательная форма).

Пример 1. P(x) — «Быть простым числом» (предикат); x = 5; 8.

5 – простое число – истинное высказывание; 8 – простое число – ложное высказывание.

$$x=5$$
, $P(x)$ – истинно; $x=8$, $P(x)$ – ложно.

Правила, по которым в логике из *погических формул* образуются новые логические формулы, называются *правилами вывода*.

Правило прямого логического вывода "modus ponens": если $(A \rightarrow B)$ истинно и A истинно, то B – истинно. Одно суждение (B) является необходимым следствием двух других $(A \rightarrow B, A)$.

Записывают:
$$A \rightarrow B$$

$$A$$
 или $B = A \wedge (A \rightarrow B)$.

B

Выражения, стоящие над чертой – nосылки правила, $A \rightarrow B$ – импликация, A – условие; выражение, стоящее под чертой – логический $выво \partial$ правила.

Пример 2.

Если птица, то летает

Это животное – птица

Это животное летает.

Правило обратного логического вывода "modus tollens":

Записывают: $A \rightarrow B$

 \bar{B}

Пример 3.

Если птица, то летает

Это животное – не летает

Это животное не птица.

Прямым выводам (прямой цепочке рассуждений) соответствует движение от посылок к следствиям.

Обратным выводам (обратной цепочке рассуждений) соответствует движение от цели (факта, результата, следствия) к посылкам.