18-661 Introduction to Machine Learning

Linear Regression - I

Fall 2020

ECE - Carnegie Mellon University

Announcements

- The math quiz scores posted on Gradescope Entry Code: 9E882Y
- HW1 due on this Friday, Sept 11

Outline

- 1. Recap of MLE/MAP
- 2. Linear Regression

Motivation

Algorithm

Univariate solution

Multivariate Solution

Probabilistic interpretation

Computational and numerical optimization

Recap of MLE/MAP

Dogecoin

- Scenario: You find a coin on the ground.
- You ask yourself: What is the probability that I will flip a heads?

- You flip the coin 10 times ...
- It comes up as 'H' 8 times and 'T' 2 times
- Can we learn from this data?

Machine Learning Pipeline

Two approaches that we discussed:

- Maximum likelihood Estimation (MLE)
- Maximum a posteriori Estimation (MAP)

Maximum Likelihood Estimation (MLE)

- **Data**: Observed set D of n_H heads and n_T tails
- Model: Each flip follows a Bernoulli distribution

$$P(H) = \theta, P(T) = 1 - \theta, \theta \in [0, 1]$$

Thus, the likelihood of observing sequence D is

$$P(D \mid \theta) = \theta^{n_H} (1 - \theta)^{n_T}$$

- Question: Given this model and the data we've observed, can we calculate an estimate of θ ?
- MLE: Choose θ that maximizes the *likelihood* of the observed data

$$\begin{split} \hat{\theta}_{\textit{MLE}} &= \arg\max_{\theta} P(D \mid \theta) \\ &= \arg\max_{\theta} \log P(D \mid \theta) \\ &= \frac{n_{H}}{n_{H} + n_{T}} \end{split}$$

MAP for Dogecoin

$$\hat{\theta}_{MAP} = \arg\max_{\theta} P(\theta \mid D) = \arg\max_{\theta} P(D \mid \theta) P(\theta)$$

- Recall that $P(D \mid \theta) = \theta^{n_H} (1 \theta)^{n_T}$
- How should we set the prior, $P(\theta)$?
- Common choice for a binomial likelihood is to use the Beta distribution, θ ~ Beta(α, β):

$$P(\theta) = \frac{1}{B(\alpha, \beta)} \, \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

• Interpretation: $\alpha=$ number of expected heads, $\beta=$ number of expected tails. Larger value of $\alpha+\beta$ denotes more confidence (and smaller variance).

Putting it all together

$$\begin{split} \hat{\theta}_{MLE} &= \frac{n_H}{n_H + n_T} \\ \hat{\theta}_{MAP} &= \frac{\alpha + n_H - 1}{\alpha + \beta + n_H + n_T - 2} \end{split}$$

- Suppose $\theta^* := 0.5$ and we observe: $D = \{H, H, T, T, T, T\}$
- Scenario 1: We assume $\theta \sim Beta(4,4)$. Which is more accurate θ_{MLE} or θ_{MAP} ?
 - $\theta_{MAP} = 5/12$, $\theta_{MLE} = 1/3$
- Scenario 2: We assume $\theta \sim Beta(1,7)$. Which is more accurate θ_{MLE} or θ_{MAP} ?
 - $\theta_{MAP}=1/6,\ \theta_{MLE}=1/3$

Linear Regression

Recap of MLE/MAP

Linear Regression

Motivation

Algorithm

Univariate solution

Multivariate Solution

Probabilistic interpretation

Computational and numerical optimization

Task 1: Regression

How much should you sell your house for?

input: houses & features **learn**: $x \rightarrow y$ relationship **predict**: y (continuous)

Course Covers: Linear/Ridge Regression, Loss Function, SGD, Feature Scaling, Regularization, Cross Validation

Supervised Learning

Supervised learning

In a supervised learning problem, you have access to input variables (X) and outputs (Y), and the goal is to predict an output given an input

- Examples:
 - Housing prices (Regression): predict the price of a house based on features (size, location, etc)
 - Cat vs. Dog (Classification): predict whether a picture is of a cat or a dog

Regression

Predicting a continuous outcome variable:

- Predicting a company's future stock price using its profit and other financial info
- Predicting annual rainfall based on local flora and fauna
- Predicting distance from a traffic light using LIDAR measurements

Magnitude of the error matters:

- We can measure 'closeness' of prediction and labels, leading to different ways to evaluate prediction errors.
 - Predicting stock price: better to be off by 1\$ than by 20\$
 - Predicting distance from a traffic light: better to be off 1 m than by 10 m
- We should choose learning models and algorithms accordingly.

Ex: predicting the sale price of a house

Retrieve historical sales records

(This will be our training data)

Features used to predict

Correlation between square footage and sale price

Roughly linear relationship

 $\mathsf{Sale}\ \mathsf{price} \approx \mathsf{price_per_sqft}\ \times\ \mathsf{square_footage}\ +\ \mathsf{fixed_expense}$

Data Can be Compactly Represented by Matrices

• Learn parameters (w_0, w_1) of the orange line $y = w_1 x + w_0$ Sq.ft

House 1:
$$1000 \times w_1 + w_0 = 200,000$$

House 2:
$$2000 \times w_1 + w_0 = 350,000$$

Can represent compactly in matrix notation

$$\begin{bmatrix} 1000 & 1 \\ 2000 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_0 \end{bmatrix} = \begin{bmatrix} 200,000 \\ 350,000 \end{bmatrix}$$

Some Concepts That You Should Know

- Invertibility of Matrices and Computing Inverses
- Vector Norms L2, Frobenius etc., Inner Products
- Eigenvalues and Eigen-vectors
- Singular Value Decomposition
- Covariance Matrices and Positive Semi-definite-ness

Excellent Resources:

- Essence of Linear Algebra YouTube Series
- Prof. Gilbert Strang's course at MIT
- More resources posted on Piazza

Matrix Inverse

• Let us solve the house-price prediction problem

$$\begin{bmatrix} 1000 & 1 \\ 2000 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_0 \end{bmatrix} = \begin{bmatrix} 200,000 \\ 350,000 \end{bmatrix}$$
 (1)

$$\begin{bmatrix} w_1 \\ w_0 \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1000 & 1 \\ 2000 & 1 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 200,000 \\ 350,000 \end{bmatrix}$$
 (2)

Matrix Inverse

Let us solve the house-price prediction problem

$$\begin{bmatrix} 1000 & 1 \\ 2000 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_0 \end{bmatrix} = \begin{bmatrix} 200,000 \\ 350,000 \end{bmatrix}$$
 (3)

$$= \frac{1}{-1000} \begin{bmatrix} 1 & -1 \\ -2000 & 1000 \end{bmatrix} \begin{bmatrix} 200,000 \\ 350,000 \end{bmatrix}$$
 (5)

$$= \frac{1}{-1000} \begin{bmatrix} 150,000 \\ -5 \times 10^7 \end{bmatrix} \tag{6}$$

You could have data from many houses

- Sale_price =
 price_per_sqft × square_footage + fixed_expense + unexplainable_stuff
- Want to learn the price_per_sqft and fixed_expense
- Training data: past sales record.

sqft	sale price
2000	800K
2100	907K
1100	312K
5500	2,600K

Problem: there isn't a $\mathbf{w} = [w_1, w_0]^T$ that will satisfy all equations

Want to predict the best price_per_sqft and fixed_expense

- Sale_price =
 price_per_sqft × square_footage + fixed_expense + unexplainable_stuff
- Want to learn the price_per_sqft and fixed_expense
- Training data: past sales record.

sqft	sale price	prediction
2000	810K	720K
2100	907K	800K
1100	312K	350K
5500	2,600K	2,600K

How to measure errors?

Need a way to make a map the vector of error (the difference between the prediction and sale price) to a scalar.

Norms and Loss Functions

- A vector norm is any function $f: \mathbb{R}^n \to \mathbb{R}$ with
 - $f(x) \ge 0$ and $f(x) = 0 \iff x = 0$
 - f(ax) = |a|f(x) for $a \in \mathbb{R}$
 - triangle inequality: $f(x + y) \le f(x) + f(y)$
- e.g., ℓ_2 norm: $\|x\|_2 = \sqrt{x^\top x} = \sqrt{\sum_{i=1}^n x_i^2}$
- e.g., ℓ_1 norm: $||x||_1 = \sum_{i=1}^n |x_i|$
- e.g., ℓ_{∞} norm: $||x||_{\infty} = \max |x_i|$

from inside to outside: ℓ_1 , ℓ_2 , ℓ_∞ norm ball.

Norms and Loss Functions

- A vector norm is any function $f: \mathbb{R}^n \to \mathbb{R}$ with
 - $f(x) \ge 0$ and $f(x) = 0 \iff x = 0$
 - f(ax) = |a|f(x) for $a \in \mathbb{R}$
 - $f(x+y) \le f(x) + f(y)$
- e.g., ℓ_2 norm: $\|x\|_2 = \sqrt{x^\top x} = \sqrt{\sum_{i=1}^n x_i^2}$
- e.g., ℓ_1 norm: $||x||_1 = \sum_{i=1}^n |x_i|$
- Question: What is the ℓ_1 norm of y Aw for the following problem?

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 1.5 & 1 \\ 2.5 & 1 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 2 \\ 3.5 \\ 3 \\ 4.5 \end{bmatrix}$$

$$A \qquad \times \qquad w = \qquad y$$

• Answer: $||y - Aw||_1 = 0.5$

Reduce prediction error

How to measure errors?

sqft	sale price	prediction	abs error	squared error
2000	810K	720K	90K	8100
2100	907K	800K	107K	107 ²
1100	312K	350K	38K	38 ²
5500	2,600K	2,600K	0	0
• • •	• • •			

- absolute difference: |prediction sale price|.
- squared difference: (prediction sale price)² [differentiable!].

Minimize squared errors

Our model:

Sale_price =

 $\label{eq:price_per_sqft} price_per_sqft \times square_footage + fixed_expense + unexplainable_stuff \\ \hline \textit{Training data:} \\$

sqft	sale price	prediction	error	squared error
2000	810K	720K	90K	8100
2100	907K	800K	107K	107 ²
1100	312K	350K	38K	38 ²
5500	2,600K	2,600K	0	0
Total				$8100 + 107^2 + 38^2 + 0 + \cdots$

Aim:

Adjust price_per_sqft and fixed_expense such that the sum of the squared error is minimized — i.e., the unexplainable_stuff is minimized.

Recap of MLE/MAP

Linear Regression

Motivation

Algorithm

Univariate solution

Multivariate Solution

Probabilistic interpretation

Computational and numerical optimization

Linear regression

Setup:

- Input: $\mathbf{x} \in \mathbb{R}^D$ (covariates, predictors, features, etc)
- **Output**: $y \in \mathbb{R}$ (responses, targets, outcomes, outputs, etc)
- Model: $f: \mathbf{x} \to y$, with $f(\mathbf{x}) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w}^\top \mathbf{x}$.
 - $\mathbf{w} = [w_1 \ w_2 \ \cdots \ w_D]^{\top}$: weights, parameters, or parameter vector
 - w₀ is called bias.
 - Sometimes, we also call $\tilde{\mathbf{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^{\top}$ parameters.
- Training data: $\mathcal{D} = \{(\mathbf{x}_n, y_n), n = 1, 2, \dots, N\}$

Minimize the Residual sum of squares:

$$RSS(\tilde{\mathbf{w}}) = \sum_{n=1}^{N} [y_n - f(\mathbf{x}_n)]^2 = \sum_{n=1}^{N} [y_n - (w_0 + \sum_{d=1}^{D} w_d x_{nd})]^2$$

Recap of MLE/MAP

Linear Regression

Motivation

Algorithm

Univariate solution

Multivariate Solution

Probabilistic interpretation

Computational and numerical optimization

Residual sum of squares:

$$RSS(\tilde{\mathbf{w}}) = \sum_{n} [y_n - f(\mathbf{x}_n)]^2 = \sum_{n} [y_n - (w_0 + w_1 x_n)]^2$$

What kind of function is this? CONVEX (has a unique global minimum)

Residual sum of squares:

$$RSS(\mathbf{w}) = \sum_{n} [y_n - f(\mathbf{x}_n)]^2 = \sum_{n} [y_n - (w_0 + w_1 x_n)]^2$$

Figure 2: RSS is the sum of squares of the dotted lines

Figure 3: Adjust (w_0, w_1) to reduce RSS

Figure 4: RSS minimized at (w_o^*, w_1^*)

Residual sum of squares:

$$RSS(\tilde{\mathbf{w}}) = \sum_{n} [y_n - f(\mathbf{x}_n)]^2 = \sum_{n} [y_n - (w_0 + w_1 x_n)]^2$$

Stationary points:

Take derivative with respect to parameters and set it to zero

$$\frac{\partial RSS(\tilde{\mathbf{w}})}{\partial w_0} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)] = 0,$$

$$\frac{\partial RSS(\tilde{\mathbf{w}})}{\partial w_1} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)]x_n = 0.$$

$$\frac{\partial RSS(\tilde{\mathbf{w}})}{\partial w_0} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)] = 0$$
$$\frac{\partial RSS(\tilde{\mathbf{w}})}{\partial w_1} = 0 \Rightarrow -2\sum_n [y_n - (w_0 + w_1 x_n)]x_n = 0$$

Simplify these expressions to get the "Normal Equations":

$$\sum y_n = Nw_0 + w_1 \sum x_n$$
$$\sum x_n y_n = w_0 \sum x_n + w_1 \sum x_n^2$$

Solving the system we obtain the least squares coefficient estimates:

$$w_1 = \frac{\sum (x_n - \bar{x})(y_n - \bar{y})}{\sum (x_i - \bar{x})^2}$$
 and $w_0 = \bar{y} - w_1 \bar{x}$

where
$$\bar{x} = \frac{1}{N} \sum_{n} x_n$$
 and $\bar{y} = \frac{1}{N} \sum_{n} y_n$.

Example

sqft (1000's)	sale price (100k)
1	2
2	3.5
1.5	3
2.5	4.5

Residual sum of squares:

$$RSS(\tilde{\mathbf{w}}) = \sum_{n} [y_n - f(\mathbf{x}_n)]^2 = \sum_{n} [y_n - (w_0 + w_1 x_n)]^2$$

The w_1 and w_0 that minimize this are given by:

$$w_1 = \frac{\sum (x_n - \bar{x})(y_n - \bar{y})}{\sum (x_i - \bar{x})^2}$$
 and $w_0 = \bar{y} - w_1 \bar{x}$

where
$$\bar{x} = \frac{1}{N} \sum_{n} x_n$$
 and $\bar{y} = \frac{1}{N} \sum_{n} y_n$.

Example

sqft (1000's)	sale price (100k)
3411 (1000 3)	sale price (100K)
1	2
2	3.5
1.5	3
2.5	4.5

Residual sum of squares:

$$RSS(\tilde{\mathbf{w}}) = \sum_{n} [y_n - f(\mathbf{x}_n)]^2 = \sum_{n} [y_n - (w_0 + w_1 x_n)]^2$$

The w_1 and w_0 that minimize this are given by:

$$w_1 \approx 1.6$$

 $w_0 \approx 0.45$

Recap of MLE/MAP

Linear Regression

Motivation

Algorithm

Univariate solution

Multivariate Solution

Probabilistic interpretation

Computational and numerical optimization

Least Mean Squares when x is *D*-dimensional

sqft (1000's)	bedrooms	bathrooms	sale price (100k)
1	2	1	2
2	2	2	3.5
1.5	3	2	3
2.5	4	2.5	4.5

$RSS(\tilde{\mathbf{w}})$ in matrix form:

$$RSS(\tilde{\mathbf{w}}) = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2 = \sum_{n} [y_n - \tilde{\mathbf{w}}^{\top} \tilde{\mathbf{x}}_n]^2,$$

where we have redefined some variables (by augmenting)

$$\tilde{\mathbf{x}} \leftarrow [1 \ x_1 \ x_2 \ \dots \ x_D]^\top, \quad \tilde{\mathbf{w}} \leftarrow [w_0 \ w_1 \ w_2 \ \dots \ w_D]^\top$$

Least Mean Squares when x is *D*-dimensional

 $RSS(\tilde{\mathbf{w}})$ in matrix form:

$$RSS(\tilde{\mathbf{w}}) = \sum_{n} [y_n - (w_0 + \sum_{d} w_d x_{nd})]^2 = \sum_{n} [y_n - \tilde{\mathbf{w}}^{\top} \tilde{\mathbf{x}}_n]^2,$$

where we have redefined some variables (by augmenting)

$$\tilde{\mathbf{x}} \leftarrow [1 \ x_1 \ x_2 \ \dots \ x_D]^\top, \quad \tilde{\mathbf{w}} \leftarrow [w_0 \ w_1 \ w_2 \ \dots \ w_D]^\top$$

which leads to

$$\begin{split} RSS(\tilde{\mathbf{w}}) &= \sum_{n} (y_{n} - \tilde{\mathbf{w}}^{\top} \tilde{\mathbf{x}}_{n}) (y_{n} - \tilde{\mathbf{x}}_{n}^{\top} \tilde{\mathbf{w}}) \\ &= \sum_{n} \tilde{\mathbf{w}}^{\top} \tilde{\mathbf{x}}_{n} \tilde{\mathbf{x}}_{n}^{\top} \tilde{\mathbf{w}} - 2y_{n} \tilde{\mathbf{x}}_{n}^{\top} \tilde{\mathbf{w}} + \text{const.} \\ &= \left\{ \tilde{\mathbf{w}}^{\top} \left(\sum_{n} \tilde{\mathbf{x}}_{n} \tilde{\mathbf{x}}_{n}^{\top} \right) \tilde{\mathbf{w}} - 2 \left(\sum_{n} y_{n} \tilde{\mathbf{x}}_{n}^{\top} \right) \tilde{\mathbf{w}} \right\} + \text{const.} \end{split}$$

$RSS(\tilde{\mathbf{w}})$ in new notations

From previous slide:

$$RSS(\tilde{\mathbf{w}}) = \left\{ \tilde{\mathbf{w}}^{\top} \left(\sum_{n} \tilde{\mathbf{x}}_{n} \tilde{\mathbf{x}}_{n}^{\top} \right) \tilde{\mathbf{w}} - 2 \left(\sum_{n} y_{n} \tilde{\mathbf{x}}_{n}^{\top} \right) \tilde{\mathbf{w}} \right\} + \text{const.}$$

Design matrix and target vector:

$$\tilde{\mathbf{X}} = \begin{pmatrix} \tilde{\mathbf{x}}_1^\top \\ \tilde{\mathbf{x}}_2^\top \\ \vdots \\ \tilde{\mathbf{x}}_N^\top \end{pmatrix} \in \mathbb{R}^{N \times (D+1)}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix} \in \mathbb{R}^N$$

Compact expression:

$$\textit{RSS}(\tilde{\mathbf{w}}) = \|\tilde{\mathbf{X}}\tilde{\mathbf{w}} - \mathbf{y}\|_2^2 = \left\{\tilde{\mathbf{w}}^\top \tilde{\mathbf{X}}^\top \tilde{\mathbf{X}}\tilde{\mathbf{w}} - 2\left(\tilde{\mathbf{X}}^\top \mathbf{y}\right)^\top \tilde{\mathbf{w}}\right\} + \text{const}$$

Example: $RSS(\tilde{\mathbf{w}})$ in compact form

sqft (1000's)	bedrooms	bathrooms	sale price (100k)
1	2	1	2
2	2	2	3.5
1.5	3	2	3
2.5	4	2.5	4.5

Design matrix and target vector:

$$\tilde{\mathbf{X}} = \begin{pmatrix} \tilde{\mathbf{x}}_1^\top \\ \tilde{\mathbf{x}}_2^\top \\ \vdots \\ \tilde{\mathbf{x}}_N^\top \end{pmatrix} \in \mathbb{R}^{N \times (D+1)}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix} \in \mathbb{R}^N$$

. Compact expression:

$$RSS(\tilde{\mathbf{w}}) = \|\tilde{\mathbf{X}}\tilde{\mathbf{w}} - \mathbf{y}\|_{2}^{2} = \left\{\tilde{\mathbf{w}}^{\top}\tilde{\mathbf{X}}^{\top}\tilde{\mathbf{X}}\tilde{\mathbf{w}} - 2\left(\tilde{\mathbf{X}}^{\top}\mathbf{y}\right)^{\top}\tilde{\mathbf{w}}\right\} + \text{const}$$

Example: $RSS(\tilde{\mathbf{w}})$ in compact form

sqft (1000's)	bedrooms	bathrooms	sale price (100k)
1	2	1	2
2	2	2	3.5
1.5	3	2	3
2.5	4	2.5	4.5

Design matrix and target vector:

$$\tilde{\mathbf{X}} = \begin{pmatrix} \tilde{\mathbf{x}}_{1}^{\top} \\ \tilde{\mathbf{x}}_{2}^{\top} \\ \vdots \\ \tilde{\mathbf{x}}_{N}^{\top} \end{pmatrix} = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 1.5 & 3 & 2 \\ 1 & 2.5 & 4 & 2.5 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 2 \\ 3.5 \\ 3 \\ 4.5 \end{bmatrix}$$

. Compact expression:

$$RSS(\tilde{\mathbf{w}}) = \|\tilde{\mathbf{X}}\tilde{\mathbf{w}} - \mathbf{y}\|_{2}^{2} = \left\{\tilde{\mathbf{w}}^{\top}\tilde{\mathbf{X}}^{\top}\tilde{\mathbf{X}}\tilde{\mathbf{w}} - 2\left(\tilde{\mathbf{X}}^{\top}\mathbf{y}\right)^{\top}\tilde{\mathbf{w}}\right\} + \text{const}$$

Solution in matrix form

Compact expression

$$RSS(\tilde{\mathbf{w}}) = ||\tilde{\mathbf{X}}\tilde{\mathbf{w}} - \mathbf{y}||_{2}^{2} = \left\{\tilde{\mathbf{w}}^{\top}\tilde{\mathbf{X}}^{\top}\tilde{\mathbf{X}}\tilde{\mathbf{w}} - 2\left(\tilde{\mathbf{X}}^{\top}\mathbf{y}\right)^{\top}\tilde{\mathbf{w}}\right\} + \text{const}$$

Gradients of Linear and Quadratic Functions

- $\nabla_{\mathbf{x}}(\mathbf{b}^{\top}\mathbf{x}) = \mathbf{b}$
- $\nabla_{\mathbf{x}}(\mathbf{x}^{\top}\mathbf{A}\mathbf{x}) = 2\mathbf{A}\mathbf{x}$ (symmetric \mathbf{A})

Normal equation

$$\nabla_{\tilde{\mathbf{w}}} RSS(\tilde{\mathbf{w}}) = 2\tilde{\mathbf{X}}^{\top} \tilde{\mathbf{X}} \tilde{\mathbf{w}} - 2\tilde{\mathbf{X}}^{\top} \mathbf{y} = 0$$

This leads to the least-mean-squares (LMS) solution

$$\tilde{\mathbf{w}}^{LMS} = \left(\tilde{\mathbf{X}}^{ op} \tilde{\mathbf{X}}
ight)^{-1} \tilde{\mathbf{X}}^{ op} \mathbf{y}$$

Example: $RSS(\tilde{\mathbf{w}})$ in compact form

sqft (1000's)	bedrooms	bathrooms	sale price (100k)
1	2	1	2
2	2	2	3.5
1.5	3	2	3
2.5	4	2.5	4.5

Write the least-mean-squares (LMS) solution

$$ilde{\mathbf{w}}^{LMS} = \left(\mathbf{ ilde{X}}^ op \mathbf{ ilde{X}}
ight)^{-1} \mathbf{ ilde{X}}^ op \mathbf{y}$$

Can use solvers in Matlab, Python etc., to compute this for any given $\tilde{\mathbf{X}}$ and \mathbf{y} .

Exercise: $RSS(\tilde{\mathbf{w}})$ in compact form

Using the general least-mean-squares (LMS) solution

$$\tilde{\mathbf{w}}^{LMS} = \left(\tilde{\mathbf{X}}^{\top}\tilde{\mathbf{X}}\right)^{-1}\tilde{\mathbf{X}}^{\top}\mathbf{y}$$

recover the uni-variate solution that we had computed earlier:

$$w_1 = \frac{\sum (x_n - \bar{x})(y_n - \bar{y})}{\sum (x_i - \bar{x})^2}$$
 and $w_0 = \bar{y} - w_1 \bar{x}$

where $\bar{x} = \frac{1}{N} \sum_n x_n$ and $\bar{y} = \frac{1}{N} \sum_n y_n$.

Exercise: $RSS(\tilde{\mathbf{w}})$ in compact form

For the 1-D case, the least-mean-squares solution is

$$\tilde{\mathbf{w}}^{LMS} = \left(\tilde{\mathbf{X}}^{\top}\tilde{\mathbf{X}}\right)^{-1}\tilde{\mathbf{X}}^{\top}\mathbf{y}$$

$$= \left(\begin{bmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_N \end{bmatrix} \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & \dots \\ 1 & x_N \end{bmatrix}\right)^{-1} \begin{bmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_N \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_N \end{bmatrix}$$

$$= \left(\begin{bmatrix} N & N\bar{x} \\ N\bar{x} & \sum_n x_n^2 \end{bmatrix}\right)^{-1} \begin{bmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{bmatrix}$$

$$\begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \frac{1}{\sum (x_i - \bar{x})^2} \begin{bmatrix} \bar{y} \sum (x_i - \bar{x})^2 - \bar{x} \sum (x_n - \bar{x})(y_n - \bar{y}) \\ \sum (x_n - \bar{x})(y_n - \bar{y}) \end{bmatrix}$$

where $\bar{x} = \frac{1}{N} \sum_{n} x_n$ and $\bar{y} = \frac{1}{N} \sum_{n} y_n$.

Recap of MLE/MAP

Linear Regression

Motivation

Algorithm

Univariate solution

Multivariate Solution

Probabilistic interpretation

Computational and numerical optimization

Why is minimizing RSS sensible?

Probabilistic interpretation

• Noisy observation model:

$$Y = w_0 + w_1 X + \eta$$

where $\eta \sim N(0, \sigma^2)$ is a Gaussian random variable

• Conditional likelihood of one training sample:

$$p(y_n|x_n) = N(w_0 + w_1x_n, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{[y_n - (w_0 + w_1x_n)]^2}{2\sigma^2}}$$

Probabilistic interpretation (cont'd)

Log-likelihood of the training data \mathcal{D} (assuming i.i.d):

$$\log P(\mathcal{D}) = \log \prod_{n=1}^{N} p(y_n | x_n) = \sum_{n} \log p(y_n | x_n)$$

$$= \sum_{n} \left\{ -\frac{[y_n - (w_0 + w_1 x_n)]^2}{2\sigma^2} - \log \sqrt{2\pi}\sigma \right\}$$

$$= -\frac{1}{2\sigma^2} \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 - \frac{N}{2} \log \sigma^2 - N \log \sqrt{2\pi}$$

$$= -\frac{1}{2} \left\{ \frac{1}{\sigma^2} \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 + N \log \sigma^2 \right\} + \text{const}$$

What is the relationship between minimizing RSS and maximizing the log-likelihood?

Maximum likelihood estimation

Estimating σ , w_0 and w_1 can be done in two steps

• Maximize over w_0 and w_1 :

$$\max \log P(\mathcal{D}) \Leftrightarrow \min \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 \leftarrow \text{This is RSS}(\tilde{\mathbf{w}})!$$

• Maximize over $s = \sigma^2$:

$$\frac{\partial \log P(\mathcal{D})}{\partial s} = -\frac{1}{2} \left\{ -\frac{1}{s^2} \sum_{n} [y_n - (w_0 + w_1 x_n)]^2 + N \frac{1}{s} \right\} = 0$$

$$\to \sigma^{*2} = s^* = \frac{1}{N} \sum_{n} [y_n - (w_0 + w_1 x_n)]^2$$

How does this probabilistic interpretation help us?

- It gives a solid footing to our intuition: minimizing RSS($\tilde{\mathbf{w}}$) is a sensible thing based on reasonable modeling assumptions.
- Estimating σ* tells us how much noise there is in our predictions.
 For example, it allows us to place confidence intervals around our predictions.

Recap of MLE/MAP

Linear Regression

Motivation

Algorithm

Univariate solution

Multivariate Solution

Probabilistic interpretation

Computational and numerical optimization

Computational complexity of the Least Squares Solution

Bottleneck of computing the solution?

$$\mathbf{w} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{y}$$

Matrix multiply of $\mathbf{X}^{\top}\mathbf{X} \in \mathbb{R}^{(D+1)\times (D+1)}$ Inverting the matrix $\mathbf{X}^{\top}\mathbf{X}$

How many operations do we need?

- $O(ND^2)$ for matrix multiplication $\mathbf{X}^{\top}\mathbf{X}$
- $O(D^3)$ (e.g., using Gauss-Jordan elimination) or $O(D^{2.373})$ (recent theoretical advances) for matrix inversion of $\mathbf{X}^{\top}\mathbf{X}$
- O(ND) for matrix multiplication $\mathbf{X}^{\top} \mathbf{y}$
- $O(D^2)$ for $(\mathbf{X}^{\top}\mathbf{X})^{-1}$ times $\mathbf{X}^{\top}\mathbf{y}$

$$O(ND^2) + O(D^3)$$
 – Impractical for very large D or N

Alternative method: Batch Gradient Descent

(Batch) Gradient descent

- Initialize **w** to $\mathbf{w}^{(0)}$ (e.g., randomly); set t = 0; choose $\eta > 0$
- Loop until convergence
 - 1. Compute the gradient $\nabla RSS(\mathbf{w}) = \mathbf{X}^{\top} (\mathbf{X} \mathbf{w}^{(t)} \mathbf{y})$
 - 2. Update the parameters $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \nabla RSS(\mathbf{w})$
 - $3. t \leftarrow t + 1$

What is the complexity of each iteration? O(ND)

Why would this work?

If gradient descent converges, it will converge to the same solution as using matrix inversion.

This is because RSS(w) is a convex function in its parameters w

Hessian of RSS

$$RSS(w) = w^{\top} \mathbf{X}^{\top} \mathbf{X} w - 2 (\mathbf{X}^{\top} \mathbf{y})^{\top} w + \text{const}$$
$$\Rightarrow \frac{\partial^{2} RSS(w)}{\partial w w^{\top}} = 2 \mathbf{X}^{\top} \mathbf{X}$$

 $\mathbf{X}^{\top}\mathbf{X}$ is positive semidefinite, because for any \mathbf{v}

$$\boldsymbol{v}^{\top}\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{v} = \|\boldsymbol{X}^{\top}\boldsymbol{v}\|_2^2 \geq 0$$

Alternative method: Batch Gradient Descent

(Batch) Gradient descent

- Initialize **w** to $\mathbf{w}^{(0)}$ (e.g., randomly); set t = 0; choose $\eta > 0$
- Loop until convergence
 - 1. Compute the gradient $\nabla RSS(\mathbf{w}) = \mathbf{X}^{\top} \mathbf{X} \mathbf{w}^{(t)} \mathbf{X}^{\top} \mathbf{y}$
 - 2. Update the parameters $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \eta \nabla RSS(\mathbf{w})$
 - 3. $t \leftarrow t + 1$

What is the complexity of each iteration? O(ND)

Stochastic gradient descent (SGD)

Widrow-Hoff rule: update parameters using one example at a time

- Initialize **w** to some $\mathbf{w}^{(0)}$; set t=0; choose $\eta>0$
- Loop until convergence
 - 1. random choose a training a sample x_t
 - 2. Compute its contribution to the gradient

$$\mathbf{g}_t = (\mathbf{x}_t^{\top} \mathbf{w}^{(t)} - y_t) \mathbf{x}_t$$

3. Update the parameters

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \mathbf{g}_t$$

4. $t \leftarrow t + 1$

How does the complexity per iteration compare with gradient descent?

• O(ND) for gradient descent versus O(D) for SGD

SGD versus Batch GD

Stochastic Gradient Descent

Gradient Descent

- SGD reduces per-iteration complexity from O(ND) to O(D)
- But it is noisier and can take longer to converge

Mini-Summary

- Linear regression is the linear combination of features $f: \mathbf{x} \to \mathbf{y}$, with $f(\mathbf{x}) = w_0 + \sum_d w_d x_d = w_0 + \mathbf{w}^\top \mathbf{x}$
- If we minimize residual sum of squares as our learning objective, we get a closed-form solution of parameters
- Probabilistic interpretation: maximum likelihood if assuming residual is Gaussian distributed
- Gradient Descent and mini-batch SGD can overcome computational issues