Loi binomiale, cours, premi \tilde{A} "re STMG

F.Gaudon

24 mai 2022

Table des matières

1 Schéma de Bernoulli

Définition:

Deux $\exp \tilde{A}$ ©riences sont dites ind \tilde{A} ©pendantes si le r \tilde{A} ©sultat de l'une n'influe pas sur le r \tilde{A} ©sultat de l'autre.

Exemple:

il y a indépendance lorsqu'on lance deux fois de suite une pià ce de monnaie.

Définition:

On considÃ"re une $\exp \tilde{A}$ ©rience aléatoire ne comportant que deux issues; l'une appelée « $\operatorname{succ}\tilde{A}$ "s » et l'autre appelée « \tilde{A} ©chec ». On note p la probabilité de $\operatorname{succ}\tilde{A}$ "s et q la probabilité d'échec (q=1-p). La répétition de cette $\exp \tilde{A}$ ©rience n fois de maniÃ"re indépendante constitue un schÃ@ma de Bernoulli de paramÃ"tres n et p.

$Propri ilde{A} ilde{C} t ilde{A} ilde{C}:$

Dans un sch \tilde{A} ©ma de Bernoulli, la probabilit \tilde{A} © d'une liste de r \tilde{A} ©sultats est le produit des probabilit \tilde{A} ©s de chaque r \tilde{A} ©sultat

$\mathbf{Exemple:}$

 ${\tt arbre.png}$

On contr \tilde{A} 'le la qualit \tilde{A} © d'un produit sur une cha \tilde{A} ®ne de production. On pr \tilde{A} ©l \tilde{A} " ve 3 produits au hasard. On suppose que les pr \tilde{A} ©l \tilde{A} " vements sont ind \tilde{A} © pendants. Statistiquement, chaque produit a une probabilit \tilde{A} © p=0,05 d' \tilde{A} tre d \tilde{A} © fectueux.

Sur l'arbre ci-dessus repr \tilde{A} ©sentant un sch \tilde{A} ©ma de Bernoulli de param \tilde{A} "tres n=3 et p=0,05, la probabilit \tilde{A} © d'avoir les deux premi \tilde{A} "res exp \tilde{A} ©riences qui donnent un succ \tilde{A} "s et la derni \tilde{A} "re qui

donne un \tilde{A} ©chec est $P(SS\bar{S}) = 0,05^2 \times 0,95 \approx 0,002$ soit 0,2 % de chances d'avoir deux produits d \tilde{A} ©fectueux sur les trois pr \tilde{A} ©lev \tilde{A} ©s.

2 Loi binomiale

$D\tilde{A}(\tilde{C})$ finition:

Soit un sch $\tilde{\mathbf{A}}$ ©ma de Bernoulli de param $\tilde{\mathbf{A}}$ "tres n et p et soit X le nombre de succ $\tilde{\mathbf{A}}$ "s obtenus. On dit que X est la variable al $\tilde{\mathbf{A}}$ ©atoire associ $\tilde{\mathbf{A}}$ ©e $\tilde{\mathbf{A}}$ ce sch $\tilde{\mathbf{A}}$ ©ma. On dit aussi que la variable al $\tilde{\mathbf{A}}$ ©atoire X suit une loi binomiale de param $\tilde{\mathbf{A}}$ "tres n et p. Si k est un entier compris entre 0 et n, l' $\tilde{\mathbf{A}}$ ©v $\tilde{\mathbf{A}}$ ©nement « on a obtenu k succ $\tilde{\mathbf{A}}$ "s » est not $\tilde{\mathbf{A}}$ © X0 et sa probabilit $\tilde{\mathbf{A}}$ 0 est not $\tilde{\mathbf{A}}$ 0 est not $\tilde{\mathbf{A}}$ 0.

Exemple:

On considÃ" re le problÃ" me précé dent de test des produits d'une chaî ne de production. Les prélÃ" vements é tant supposé s indé pendants les uns des autres, l'expé rience constitue un sché ma de Bernoulli de paramÃ" tres n=3 et p=0,05. La variable alé atoire X qui compte le nombre de succÃ" s suit la loi binomiale de paramÃ" tres n=3 et p=0,05.

On a
$$P(X = 2) = P(SS\bar{S} \cap S\bar{S}S \cap SS\bar{S})$$

car trois chemins permettent d'obtenir deux succ \tilde{A} s c'est \tilde{A} dire deux objets d \tilde{A} (c)fectueux.

$$D'o\tilde{A}^{1}P(X=2)=P(SS)+P(SS)+P(SS)$$

 $doncP(X=2)=0.05^2 \times 0.95 + 0.95 \times 0.05 \times 0.95 + 0.95 \times 0.05^2 = 3 \times 0.05^2 \times 0.95 = 0.007$ soit une probabilit $\tilde{A}(\tilde{C})$ tr \tilde{A} "s faible de 0.007 d'avoir deux produits d $\tilde{A}(\tilde{C})$ fectueux.

Calcul pratique de P(X=k) et $P(X \le k)$:

Soit X une variable al \tilde{A} ©atoire de param \tilde{A} "tres n et p. Pour k allant de 0 \tilde{A} n, pour calculer P(X=k) ou $P(X \le k)$, on utilise une calculatrice :

- Sur Texas instrument : aller dans le menu 2nd distrib, choisir binomFdp et taper n, p, k pour calculer P(X = k) et choisir binomFRép et taper n, p, k pour calculer $P(X \le k)$.
- Sur Casio : aller dans le menu STAT puis DIST puis BINM. Sé lectionner alors Bpd puis Var pour variable, puis entrer alors k dans la ligne « x », n dans la ligne « numtrial » et p dans la ligne « p » puis aller sur « execute » pour valider et calculer ainsi P(X = k). Pour le calcul de $P(X \le k)$, on utilisera Bcd au lieu de Bpd.

Exemple:

On considà re une variable alà catoire X suivant la loi binomiale de paramà tres n=4 et p=0,4. Sur TI, la probabilità $P(X \le 3)$ est donnà ce par binomFrà p(4,0.4,3).

Remarques:

- On a $P(X < 3) = P(X \le 2)$
- pour calculer P(X > k), on calcule $1 P(X \le k)$.

DÃ(c)finition:

Lorsqu'on simule un « grand nombre de fois » un sch \tilde{A} ©ma de Bernoulli de param \tilde{A} "tres n et p, la moyenne du nombre de succ \tilde{A} "s par sch \tilde{A} ©ma se rapproche d'un r \tilde{A} ©el appel \tilde{A} © $esp\tilde{A}$ ©rance $math\tilde{A}$ @matique de la variable al \tilde{A} ©atoire X que l'on note E(X).

$\mathbf{Propri\tilde{A}}\mathbf{\textcircled{C}}\mathbf{t\tilde{A}}\mathbf{\textcircled{C}}:$

L'esp $\tilde{\mathbf{A}}(\tilde{\mathbf{C}})$ rance math $\tilde{\mathbf{A}}(\tilde{\mathbf{C}})$ matique de la loi binomiale de param $\tilde{\mathbf{A}}$ " tres n et p est :

$$E(X) = np$$

Exemple:

Pour le problà "me de la chaà ® ne de production, en prà © levant n=100 produits indà © pendamment, la loi binomiale a pour paramà "tres n=100 et p=0,05. On a alors $E(X)=np=100\times 0,05=5$ ce qui signifie que l'on peut prà © voir 5 produits dà © fectueux pour un prà © là "vement de 100 produits indà © pendants.