Mathematik für die Informatik B

Serie 4

Abgabe der Hausaufgaben: Fr, 12.05.2023, 23:59 Uhr im OLAT

Benötigtes Vorwissen: Skript bis Kapitel 2 §5 einschließlich; zugehörige Vorlesungen; Globalübung vom 24.04. (siehe ggf. Video).

Präsenzaufgabe 1: Limesberechnung

Berechnen Sie die folgenden Limites:

- (2) $\lim_{n} (100 \sqrt[n]{101})^2$
- (3) $\lim_{n} \frac{7n^{12} 10^{1234}n^5 + 1000n^2}{3n^{12} + n^7}$ (4) $\lim_{n} \frac{7n^{10} 10^{1234}n^5 + 1000n^2}{3n^{11} + n^7}$

Präsenzaufgabe 2: Diskussion des Kombinationssatzes

Nach dem Kombinationssatz gilt $\lim_{n} (1 + \frac{1}{n})^{n} = 1 + 0 = 1$. Oder nicht?

Präsenzaufgabe 3: Rekursiv definierte Folge

Definiere die Folge $(x_n)_{n\geq 1}\in \mathcal{S}(\mathbb{R}_{>0})$ rekursiv durch:

$$x_1 := 2$$
 $x_n := \frac{1}{2} \left(x_{n-1} + \frac{2}{x_{n-1}} \right) \quad (n \ge 2)$

Aus dem Skript wissen wir bereits, dass $\lim_n x_n \in [\sqrt{2}, 2]$ gilt.

Können Sie den Limes genau berechnen?

Hausaufgabe 1: $\frac{+\infty}{+\infty}$ (10 Punkte)

Zeigen oder widerlegen Sie:

Es seien $(x_n)_n$, $(y_n)_n \in \mathcal{S}(\mathbb{R}_{\neq 0})$ so, dass $\lim_n x_n = \lim_n y_n = +\infty$ gilt. Dann gilt für die Folge $\left(\frac{x_n}{y_n}\right)_n$, dass sie konvergiert oder bestimmt divergiert.

Hausaufgabe 2: Nochmals Mittelwertfolge (10 Punkte)

Zeigen oder widerlegen Sie:

Es sei $(x_k)_{k\geq 1}\in\mathcal{S}(\mathbb{R})$ so, dass $(\frac{1}{n}\sum_{k=1}^n x_k)_{n\geq 1}$ konvergiert. Dann konvergiert $(x_k)_{k\geq 1}$.

Lösung zu Präsenzaufgabe 1

- **(1)** 0
- (2) 9801
- (3) $\frac{7}{3}$
- **(4)** 0

Lösung zu Präsenzaufgabe 2

In der Tat gilt $\lim_n 1 + \frac{1}{n} = 1 + 0 = 1$ nach dem Kombinationssatz. Daraus folgt, ebenso mit dem Kombinationssatz, dass $\lim_n (1 + \frac{1}{n})^k = 1^k = 1$ gilt für alle $k \in \mathbb{N}$. Dabei wenden wir den Kombinationssatz auf das Produkt von k Folgen der Form jeweils $(1 + \frac{1}{n})_n$ an. Der Kombinationssatz ist zwar nur für das Produkt von zwei Folgen formuliert, das setzt sich aber offenbar durch eine triviale Induktion auf endlich viele Folgen fort. Im Falle von $x := ((1 + \frac{1}{n})^n)_n$ haben wir aber eine steigende Anzahl von Faktoren; der Kombinationssatz ist nicht in der vorgeschlagenen Weise anwendbar.

In der Tat wissen wir aus dem Skript, dass x monoton steigend ist, und offenbar gilt $x_1 = 2$. Also gilt $\lim_n x_n \ge 2$, wenn der Limes existiert (tut er, nach Skript). Also ist $\lim_n (1 + \frac{1}{n})^n = 1$ nicht nur keine Konsequenz aus dem Kombinationssatz, sondern auch falsch.

Lösung zu Präsenzaufgabe 3

Definiere die Folge $(x_n)_{n\geq 1}\in \mathcal{S}(\mathbb{R}_{>0})$ rekursiv durch:

$$x_1 := 2$$
 $x_n := \frac{1}{2} \left(x_{n-1} + \frac{2}{x_{n-1}} \right) \quad (n \ge 2)$

Dann gilt $\lim_{n} x_n = \sqrt{2}$.

Beweis. Aus dem Skript wissen wir bereits, dass $\xi := \lim_n x_n \in [\sqrt{2}, 2]$ gilt. Es gilt $\lim_n x_{n-1} = \xi$. Mit dem Kombinationssatz folgt:

$$\xi = \lim_{n} x_n = \lim_{n} \frac{1}{2} \left(x_{n-1} + \frac{2}{x_{n-1}} \right) = \frac{1}{2} \left(\xi + \frac{2}{\xi} \right)$$

Es gilt:

$$\xi = \frac{1}{2} \left(\xi + \frac{2}{\xi} \right) \Longleftrightarrow 2\xi = \xi + \frac{2}{\xi} \Longleftrightarrow \xi = \frac{2}{\xi} \Longleftrightarrow \xi^2 = 2$$

Zusammen mit $\xi > 0$ ergibt das $\xi = \sqrt{2}$.