

ASSAM SCIENCE AND TECHNOLOGY UNIVERSITY Guwahati

Course Structure and Syllabus

MECHANICAL ENGINEERING (ME)

Semester IV / ME / B.TECH

SL. SUB-CODI		SUBJECT	Hours/Week			CREDIT
No.	SUB-CODE	SUBJECT		T	P	С
	THEORY					
1	MA131401	Numerical Methods and Computation	3	2	0	4
2	ME131402	Applied Thermodynamics	3	2	0	4
3	ME131403	Mechanism and Machines II	3	0	0	3
4	ME131404	Fluid Mechanics I	3	0	0	3
5	EE131405	Electro Technology	3	0	0	3
6	HS131406	Economics & Accountancy	4	0	0	4
	PRACTICAL		1		•	
7	MA131411	Numerical Methods and Computation Lab	0	0	2	1
8	ME131413	Mechanism and Machines II Lab	0	0	2	1
9	ME131414	Fluid Mechanics I Lab	0	0	2	1
10	EE131415	Electro Technology Lab	0	0	2	1
TOTAL 19 4 8				25		
Worki	ng Hours: 31		1			1
Total	Credits : 25					

Course Title: NUMERICAL METHODS AND COMPUTATION

Course Code: MA131401 L-T:: C 3-2 =4

ClassHours/week	4
Expected weeks	12
Total hrs. of	36+12
classes	=48

MODULE	TOPIC	COURSE CONTENT	HOURS
1	Approximation in numerical computation	Truncation and rounding errors, fixed and floating point arithmetic, Propagation of errors.	4
2	Interpolation	Newton forward/backward interpolation, Lagrange's and Newton's divided difference Interpolation.	12
3	Numerical Integration	Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule. Expression for corresponding error terms.	8
4	Numerical solution of linear equations	Gauss elimination method, matrix inversion, LU factorization method, Gauss-Seidel iterative method.	7
5	Numerical solution of Algebraic and transcendental equation	Bisection method, Regula-Falsi method, Newton-Raphson method.	7
6	Numerical solution of Ordinary differential equation	Euler's method, Runge-Kutta methods, Predictor-Corrector methods and Finite Difference method.	10
		TOTAL	48

- 1. Numerical Methods, SukhenduDey, Shishir Gupta, McGraw Hill Education (India) private Limited
- 2. Numerical Algorithms. E. V. Krishnamurthy, S. K. Sen. Affilated East-West Press
- 3. Computer Programming & Numerical Analysis by N Dutta, University Press.
- 4. Numerical Methods. E. Balagurusamy, Tata McGraw Hill Education (1999)
- 5. Numerical & Statistical Methods With Programming in c by SujathaSinha
- 6. Numerical Methods In Eng. & Science, Dr. B. S. Grewal, Khpub publication
- 7. Numerical Methods for Scientific and Engineering Computation by R. K. Iyengar, New Age International
- 8. Numerical Mathematical Analysis by J. B. Scarborough, Oxford

Course Title: APPLIED THERMODYNAMICS

Course Code: ME131402 L-T:: C 3-2 =4

ClassHours/week	4
Expected weeks	12
Total hrs. of	36+12
classes	=48

MODULE	TOPIC	COURSE CONTENT	HOURS
1	Boilers	CLASSIFICATION OF BOILERS, MOUNTINGS,	8
		ACCESSORIES, EVAPORATION CAPACITY,	
		EQUIVALENT EVAPORATION, BOILER	
		EFFICIENCY, SELECTION OF A BOILER, HEAT	
		BALANCE SHEET.	
2	STEAM NOZZLES	FLOW OF STEAM THROUGH NOZZLES, SHAPE OF	12
		NOZZLES, EFFECT OF FRICTION, CRITICAL	
		PRESSURE RATIO, SUPERSATURATED FLOW,	
		Mass flow rate & maximum mass flow	
		RATE THROUGH NOZZLE, NOZZLE EFFICIENCY.	
3	AIR COMPRESSOR	RECIPROCATING COMPRESSOR - MULTISTAGE	12
		OPERATION, EFFECT OF CLEARANCE,	
		VOLUMETRIC EFFICIENCY, ROTARY	
		COMPRESSORS, VANE TYPE, ROOTS BLOWER,	
		SCREW COMPRESSORS, CENTRIFUGAL	
		COMPRESSORS, COMPRESSION RATIO,	
		METHODS FOR IMPROVING THERMAL	
		EFFICIENCY, COMPRESSOR WORK AND POWER,	
		INTERCOOLER AND AFTERCOOLER, AXIAL	
		FLOW COMPRESSORS, CHARGING AND	
		CHOKING OF COMPRESSORS.	
4	GAS POWER CYCLES	BRAYTON CYCLE- OPEN AND CLOSED, IDEAL	8
		AND ACTUAL CYCLES, ISENTROPIC EFFICIENCY,	
		POWER OUTPUT, METHODS TO IMPROVE	
		THERMAL EFFICIENCY.	
5	VAPOUR POWER AND	RANKINE CYCLE, REHEATING AND	8
	COMBINED CYCLES	REGENERATION CYCLES, BINARY VAPOUR	
		Cycles.	
		TOTAL	48

TEXTBOOKS / REFERENCE:

- Thermal Engineering By Sarkar, B.K, Tata Mcgraw Hill.
 Engineering Thermodynamics By Nag P.K, Tata Mcgraw Hill.
- 3. Applied Thermodynamics For Engineering Technologists By T. D. Eastop, Pearson.
- 4. Thermodynamics By Holman, J.P., Mcgraw Hill Book Company.

Course Title: MECHANISM AND MACHINES II

Course Code: ME131403 L-T:: C 3-0 =3

ClassHours/week	3
Expected weeks	12
Total hrs. of	36
classes	

MODULE	TOPIC	COURSE CONTENT	HOURS
1	GOVERNORS	Use and classification; Study and analysis of Watt, Porter, Proell, Hartung, Hartnell, and Wilson-Hartnell governors; Sensitiveness, stability, isochronism, hunting, effort and power of governors; Controlling force diagram and stability criteria analysis; coefficient of insensitiveness.	8
2	BALANCING	Static balancing; Dynamic balancing of rotating masses - graphical and analytical methods; Balancing of inline single cylinder and four cylinder engine; Balancing of symmetric two cylinder V-engine; Swaying couple; Hammer blow, Tractive force.	8
3	GYROSCOPE	Gyroscopic couple and precessional motion; Effect of gyroscopic couple on aeroplane and ship; Stability of two wheel and four wheel vehicles taking turn.	6
4	VIBRATION	Definition & types of vibration; Differential equations of vibratory motions (longitudinal & torsional); Natural frequency of free longitudinal vibration-Equilibrium method, Energy method (Rayleigh's maximum energy principle); Effect of inertia in longitudinal vibration; Natural frequency of free transverse vibration of a beam due to point loads - Rayleigh's method. Whirling of shaft, synchronous whirling; critical speed - Dunkerley's method.	6
5	FREE DAMPED VIBRATION	Damping factor; Logarithmic decrement. Forced vibration, concept of under damped, critically damped and over damped system; Dynamic magnifier (magnification factor); Vibration isolation and transmissibility.	8
		TOTAL	36

TEXTBOOKS / REFERENCE:

- 1. S.S. Rattan, Theory of Machines, Tata McGraw Hill.
- 2. J.S. Rao, The Theory of Machines Through Solved Problems, New Age Int. Pub.
- 3. W.T. Thomson, Theory of vibration with Applications, McGraw Hill.
- 4. Uicker, Pennock&Shigley, Theory of Machines and Mechanisms, Oxford University Press.
- 5. Ghosh & A.K. Mallik, Theory of Mechanisms and Machines, Affiliated East-West Publication.
- 6. Rao & Dukkipati, Mechanism and Machine Theory, New Age Int. Pub.
- 7. Theory of Machines by V.P.Singh.

Course Title: FLUID MECHANICS I

Course Code: ME131404 L-T:: C 3-0 =3

ClassHours/week	3
Expected weeks	12
Total hrs. of	36
classes	

MODULE	TOPIC	COURSE CONTENT	HOURS
1	SIGNIFICANCE OF FLOW PROPERTIES	COURSE CONTENT Classification of fluids based on variation of viscosity, continuum, no slip condition of viscous liquids. Fundamental equation in vectorial form, pressure at a point, constant density and temperature solution, unit and scales of pressure measurement, pressure measuring devices, hydrostatic force on a horizontal plane, vertical plane, inclined and rough surface, buoyancy stability of floating and submerged bodies, metacentre and metacentric height.	6
2	KINEMATICS OF FLUID FLOW	Fluid flow and classifications. Continuity equation in 1d & 3d. Potential flow &stream function; material derivative and acceleration, types of flow lines, streamline, path line, streak line, stream tube, steady and unsteady flow, uniform and non-uniform flow, rotational and irrotational flows, translation, vorticity, stream function, velocity potential function, flow net. Uniform flow, source and sink, vortex flow, free and forced vortex, doublet, continuity equation and its analysis based on integral form.	6
3	DYNAMICS OF FLUID	Equations of motion; euler's equation; bernoulli's equation; applications of bernoulli's equation, concept of static and stagnation pressures, application of pitot tube in flow measurements, pitot static tube, venturimeter, loss of head in a	4

		venturimeter, orificemeter and its classification, , hydraulic co-efficient of an orifice, factors affecting the orifice co-efficients.	
4	MOMENTUM ANALYSIS OF FLOW SYSTEMS	The linear momentum equation for steady flow, differential approach.	5
5	FLOW THROUGH PIPES	Darcy – weisbach equation of friction loss; hydraulic grade line and total energy line.	6
6	BASIC PRINCIPLE FOR FLOW THROUGH ORIFICES	V-notches (rectangular-v), weirs (rectangular). Flow through open channels; use of chezy's formula.	5
7	DIMENSIONAL ANALYSIS & MODEL INVESTIGATION APPLIED TO FLOW SYSTEMS	Buckingham pi theorem. Dimensionless numbers in fluid flow.	4
		TOTAL	36

- 1. Fluid Mechanics and Machinery by Bansal, Laxmi Pub.
- 2. Fluid Mechanics by Som & Biswas, Tata Mcgraw Hill.
- 3. Fluid Mechanics by F.M. White, Tata mcgraw-Hill.
- 4. Fluid Mechanics by Streeter, Tata mcgraw Hill.
- 5. Fluid Mechanics by A.K. Mohanty. PHI.
- 6. Fluid Mechanics & Hydraulic Machines by Sukumar Pati.
- 7. Mechanics of Fluid by Massey, Taylor & Francis.
- 8. Fluid Mechanics by Potter & Wiggert, Cengage Learning.
- 9. Fluid Mechanics and Turbo machines, M.M. Das, PHI.
- 10. Fluid Mechanics & Hydraulics by K. Subramanya, Tata mcgraw Hill

Course Title: ELECTRO TECHNOLOGY

Course Code: EE131405 L-T:: C 3-0 =3

ClassHours/week	3
Expected weeks	12
Total hrs. of	36
classes	

MODULE	TOPIC	COURSE CONTENT	HOURS
1	DC MACHINES	EMF generated in the armature.	10
		Methods of Excitation, Armature	
		reaction & its effect in the performance,	
		Methods of decreasing the effects of	
		Armature reaction, Effect of Brush shift.	
		Commutation process. Operating	
		Characteristics of DC Generators:	
		Separately Excited generators, Shunt	
		Generators, Series Generators and	
		Compound Generators. Torque equation	
		of D.C motor, Operating Characteristics	
		of Shunt, Series & Compound motors.	
		Losses and efficiency of DC machines,	
		Hopkinson's and Swinburne's test D.C	
		Machine application: Generator	
		application, Motor application.	
2	3-PHASE INDUCTION	Induction motor as a Transformer, Flux	8
2	MACHINE	and MMF phasors in Induction motors,	O
		Equivalent circuit, Performance	
		equations, Induction motor phasor	
		diagram Toque-slip characteristic,	
		Power slip characteristic. Speed control	
		of Induction motor Polarity Test,	
		Application of Polyphase Induction	
		motor.	
3	Synchronous	Construction, Types, Excitation system,	10
	MACHINES	Generator & motor modes Armature	
		reaction, Theory of salient pole	
		machine, Two reaction theory, Voltage	
		regulation. Parallel operation of	
		alternators, Synchronous machine	
		connected to infinite bus, effect of	
		change of excitation and speed of prime	

		mover. Starting of Synchronous motor, V-Curve, Damper winding, Hunting.	
4	FRACTIONAL KILOWATT MOTORS	Single phase Induction motor: Construction, Double revolving field theory. Starting methods, Speed - torque characteristics, Phasor diagram, Application. Principle of operation of AC servo motors, Stepper motors, Techo generators, Brush less DC motors.	8
TOTAL			36

- 1. ELECTRICAL MACHINERY BY P.S. BHIMRA, KHANNA PUBLISHERS.
- 2. ELECTRIC MACHINES BY D.P. KOTHARI & I.J NAGRATH, TATA MCGRAW-HILL.
- 3. ELECTRICAL MACHINES, BY P.K. MUKHERJEE & S. CHAKRABARTY, DHANPATRAI PUBLICATION.

Course Title: ECONOMICS AND ACCOUNTANCY

Course Code: HS131406 L-T :: C 4-0 = 4

ClassHours/week	4
Expected weeks	12
Total hrs. of	48
classes	

MODULE	TOPIC	COURSE CONTENT	HOURS
1	Introduction to Economics	i) Nature and Scope of Economicsii) Concepts of micro and macro economics, economic good and free good.	4
2	Demand and Supply Analysis	 i) Law of Demand and determinants of demand ii) Categories and Types of Elasticity of Demand- price elasticity, income elasticity, cross elasticity. iii) The determinants of elasticity, Demand elasticity and Revenue. iv) Law of Supply and Elasticity of Supply. 	8
3	The Theory of Production and Cost	 i) Iso-quant and Iso-cost line. ii) Law of Return to Scale and Law of Variable Proportion. iii) Types of Cost – total, average and marginal cost, fixed cost & variable cost, long run and short run cost, private & social cost, economist's cost & accountant's cost, opportunity cost. 	8
4	Market	i) Features of perfect competition and monopoly.ii)Price-Output determination underperfect competition, simple problems of perfect competition.	5

5	Concepts of Accountancy	Various concepts like Journal, ledger and preparation of trial balance.\	8
6	Preparation of Final	Trading Account, Profit and Loss account,	
	Account	Balance Sheet.	8
7	Depreciation	Depreciation Policy, Causes of Depreciation, straight line method.	4
8	Cash Book	Single, Double and Triple Column.	3
		TOTAL	48

- 1. Managerial Economics by Yogesh Maheswary, PHI Learning.
- 2. Mankiw Gregory N.(2002), Principles of Economics, Thompson Asia.
- 3. Misra, S.K. and Puri (2009), *Indian Economy*, Himalaya.
- 4. Engineering Economics by Dr. Afajuddin Ahmed, G Begum, Chandra Prakash.
- 5. Book Keeping and Accountancy, K.R. Das, Lawyer's Books Stall.

PRACTICALS

NUMERICAL METHODS AND COMPUTATION LAB

SUBJECT	NUMERICAL METHODS AND COMPUTATION LAB
CODE	MA131411
L-T-P-C	0-0-2-1
CLASS HOUR	3hrs/week
TOTAL NO. OF CLASS	5 (APPROX)
EXPECTED NO. OF	5 (APPROX)
WEEKS	

EXPERIMENT NO.	TITLE OF THE EXPERIMENT	HOURS
1	Write a C program to solve algebraic equations by using Method of Bisection.	3
2	Write a C program to solve algebraic equations by using Method of False position.	3
3	Write a C program to solve algebraic equations by using Newton Raphson Method.	3
4	Write a C program to solve linear system of equations by using Gauss Jordan Method.	3
5	Write a C program to solve linear system of equations by using Gauss Seidal Method.	3
	TOTAL	15

Course Title: MECHANISM AND MACHINES II LAB

Course Code: ME131413 L-T-P :: C 0-0-2 = 1

EXPERIMENT	TITLE OF THE EXPERIMENT	HOURS
NO.		
1	TO DETERMINE THE SLEEVE LIFT FOR VARIOUS SPEEDS OF A HARTNELL GOVERNOR.	3
2	TO DETERMINE STATIC & DYNAMIC BALANCING OF ROTATING MASSES.	3
3	TO DETERMINE THE CORIOLLIS COMPONENT OF ACCELERATION.	3
4	TO DETERMINE THE GYROSCOPIC COUPLE.	3
	MECHANISMS (DEMO)	
5	INVERSION OF FOUR BAR MECHANISM (DEMO).	1
6	GEAR DRIVE (DEMO).	1
7	BELT DRIVE (DEMO).	1
8	Brakes & Clutches (Demo).	1
	TOTAL	16

Course Title: FLUID MECHANICS I LAB

Course Code: ME131414 L-T-P :: C 0-0-2 = 1

EXPERIMENT	TITLE OF THE EXPERIMENT	HOURS
NO.		
1	DETERMINATION OF METACENTRIC HEIGHT OF A SHIP MODEL APPARATUS.	3
2	VERIFICATION OF BERNOULLI'S THEOREM APPARATUS.	3
3	FREE VORTEX APPARATUS.	3
4	FORCED VORTEX APPARATUS.	3
5	MEASURING PIPE FRICTION APPARATUS.	3
6	REYNOLD'S APPARATUS.	3
7	MEASUREMENT OF FLOW OVER NOTCHES APPARATUS (TRIANGULAR & RECTANGULAR).	3
8	DETERMINATION OF $C_{C_{,}}$ C_{V} & C_{D} APPARATUS (FOR ORIFICE, MOUTHPIECE & CONVERGENT ORIFICE).	3
	TOTAL	24

Course Title: ELECTRO TECHNOLOGY LAB

Course Code: EE131415 L-T-P::C 0-0-2 = 1

EXPERIMENT	TITLE OF THE EXPERIMENT	HOURS
NO.		
1	LOAD TEST ON A DC SHUNT GENERATOR.	3
2	LOAD TEST ON A DC SERIES MOTOR.	3
3	EFFICIENCY OF A SINGLE PHASE TRANSFORMER.	3
4	V-CURVE OF A SYNCHRONOUS MOTOR.	3
5	OPEN CIRCUIT AND SHORT CIRCUIT TEST OF ALTERNATOR.	3
6	PARALLEL OPERATION OF ALTERNATOR.	3
	TOTAL	18
