Bayesian Statistics III/IV (MATH3361/4071)

Michaelmas term 2021

Exercise Sheet: Bayesian Statistics

Lecturer & author: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Part I

Matrix & vector calculus

The exercises about Matrix & vector calculus are optional and can be skipped.

Exercise 1. (\star) Let A, B be $K \times K$ invertible matrices. Show that

$$(A+B)^{-1} = A^{-1}(A^{-1}+B^{-1})^{-1}B^{-1}$$

Exercise 2. $(\star\star)$ [Woodbury matrix identity] Verify that

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U (C^{-1} + VA^{-1}U)^{-1}VA^{-1}$$

if A and C are non-singular.

Exercise 3. $(\star\star)$ [Sherman-Morrison formula] Let A be a $K\times K$ invertible matrix and u and v two $K\times 1$ column vectors. Verify that

$$(A + uv^{\top})^{-1} = A^{-1} - \frac{1}{1 + v^{\top} A^{-1} u} A^{-1} uv^{\top} A^{-1}$$

if $1 + v^{\top} A^{-1} u \neq 0$, and if A is non-singular.

Exercise 4. $(\star\star\star)$ [Block partition matrix inversion] Let A be $K\times K$ invertible matrix, and let $B=A^{-1}$ its inverse.

Consider Partition

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}; B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

Namely, $B_{11} = \begin{bmatrix} A^{-1} \end{bmatrix}_{11}$ is the upper corner of the A^{-1} , etc...

24 Show that

$$A_{11}^{-1} = B_{11} = B_{12}B_{22}^{-1}B_{21}$$
$$A_{11}^{-1}A_{12} = -B_{12}B_{22}^{-1}$$

7 **Hint:** Start by noticing that

$$AB = I \iff \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} \iff \begin{cases} A_{11}B_{11} + A_{12}B_{21} & = I \\ A_{11}B_{12} + A_{12}B_{22} & = 0 \end{cases}$$

Part II

Random variables

Exercise 5. (*)Let $y \in \mathcal{Y} \subseteq \mathbb{R}$ be a univariate random variable with CDF $F_y(\cdot)$. Consider a bijective function $h: \mathcal{Y} \to \mathcal{Z}$ with z = h(y), and h^{-1} its inverse. The PDF of z is

$$F_z(z) = \begin{cases} F_Y(h^{-1}(z)) & \text{if } h \not \\ \\ 1 - F_Y(h^{-1}(z)) & \text{if } h \searrow \end{cases}$$

Exercise 6. (\star) Let $y \in \mathcal{Y} \subseteq \mathbb{R}$ be a univariate random variable with PDF $f_y(\cdot)$. Consider a bijective function $h: \mathcal{Y} \to \mathcal{Z} \subseteq \mathbb{R}$ and let h^{-1} be the inverse function of h. Consider a univariate random variable such that z = h(y).

The PDF of z is

$$f_z(z) = f_y(y) |\det(\frac{dy}{dz})| = f_y(h^{-1}(z)) |\det(\frac{d}{dz}h^{-1}(z))|$$

Exercise 7. (*)Let $y \sim \operatorname{Ex}(\lambda)$ r.v. with Exponential distribution with rate parameter $\lambda > 0$, and $f_{\operatorname{Ex}(\lambda)}(y) = \lambda \exp(-\lambda y) \mathbb{1}(y \geq 0)$. Let $z = 1 - \exp(-\lambda y)$. Calculate the PDF of z, and recognize its distribution.

Exercise 8. (\star) Prove the following properties

1. Let matrix $A \in \mathbb{R}^{q \times d}$, $c \in \mathbb{R}^q$, and z = c + Ay then

$$E(z) = E(c + Ay) = c + AE(y)$$

2. Let random variables $z \in \mathcal{Z}$ and $y \in \mathcal{Y}$, and let functions ψ_1 and ψ_2 defined on \mathcal{Z} and \mathcal{Y} , then

$$E(\psi_1(z) + \psi_2(y)) = E(\psi_1(z)) + E(\psi_2(y))$$

3. If random variables $z \in \mathcal{Z}$ and $y \in \mathcal{Y}$ are independent then

$$E(\psi_1(z)\psi_2(y)) = E(\psi_1(z))E(\psi_2(y))$$

for any functions ψ_1 and ψ_2 defined on \mathcal{Z} and \mathcal{Y} .

Exercise 9. (\star) Prove the following properties of the covariance matrix

- 1. $Cov(z, y) = E(zy^{\top}) E(z) (E(y))^{\top}$
- 2. $Cov(z, y) = (Cov(y, z))^{\top}$
- 3. $\operatorname{Cov}_{\pi}(c_1 + A_1 z, c_2 + A_2 y) = A_1 \operatorname{Cov}_{\pi}(x, y) A_2^{\top}$, for fixed matrices A_1, A_2 , and vectors c_1, c_2 with suitable dimensions.

4. If z and y are independent random vectors then Cov(z, y) = 0

Exercise 10. (*)Prove that the (i, j)-th element of the covariance matrix between vector z and y is the covariance between their elements z_i and y_j :

$$[Cov(z, y)]_{i,j} = Cov(z_i, y_j)$$

Exercise 11. (\star) Prove the following properties of Var(Y) for a random vector $y \in \mathcal{Y} \subseteq \mathbb{R}^d$

- 1. $Var(y) = E(yy^{\top}) E(y) (E(y))^{\top}$
- 2. $Var(c + Ay) = AVar(y)A^{\top}$, for fixed matrix A, and vectors c with suitable dimensions.
- 3. $Var(y) \ge 0$; (semi-positive definite)

Exercise 12. (*)Prove the following properties of characteristic functions

- 1. $\varphi_{A+Bx}(t) = e^{it^T A} \varphi_x(B^T t)$ if $A \in \mathbb{R}^d$ and $B \in \mathbb{R}^{k \times d}$ are constants
- 2. $\varphi_{x+y}(t) = \varphi_x(t)\varphi_y(t)$ if and only if x and y are independent
 - 3. if $M_x(t) = \mathrm{E}(e^{t^T x})$ is the moment generating function, then $M_x(t) = \varphi_x(-it)$

Exercise 13. (*)Show that if $X \sim \operatorname{Ex}(\lambda)$ then $\varphi_X(t) = \frac{\lambda}{\lambda - it}$.

76 **Exercise 14.** (★)

- 1. Find $\varphi_X(t)$ if $X \sim \text{Br}(p)$.
- 2. Find $\varphi_Y(t)$ if $Y \sim \text{Bin}(n, p)$

Exercise 15. $(\star\star\star)$ Prove the following statement related to the Bayesian theorem:

Assume a probability space (Ω, \mathscr{F}, P) . Let a random variable $y : \Omega \to \mathcal{Y}$ with distribution $F(\cdot)$. Consider a partition $y = (x, \theta)$ with $x \in \mathcal{X}$ and $\theta \in \Theta$. Then the probability density function (PDF), or the probability mass function (PMF) of $\theta | x$ is

$$f(\theta|x) = \frac{f(x|\theta)f(\theta)}{\int f(x|\theta)dF(\theta)}$$
(1)

Hint Consider cases where x is discrete and continuous. In the later case use the mean value theorem:

$$\int_{A} f(x)g(x)dx = f(\xi) \int_{A} g(x)dx$$

where $\xi \in A$ if A is connected, and $g(x) \ge 0$ for $x \in A$.

Exercise 16. (\star) Prove that:

1. if
$$Z \sim \mathrm{N}(0,I)$$
 then $\varphi_Z(t) = \exp(-\frac{1}{2}t^Tt)$, where $Z \in \mathbb{R}^d$

2. if $X \sim N(\mu, \Sigma)$ then $\varphi_X(t) = \exp(it^T \mu - \frac{1}{2} t^T \Sigma t)$, where $X \in \mathbb{R}^d$

Hint: Assume as known that if $Z \sim N(0,1)$ then $\varphi_Z(t) = \exp(-\frac{1}{2}t^2)$, where $Z \in \mathbb{R}$

Exercise 17. (*) Show the following properties of the Characteristic Function

- 1. $\varphi_x(0) = 1$ and $|\varphi_x(t)| \le 1$ for all $t \in \mathbb{R}^d$
- 2. $\varphi_{A+Bx}(t) = e^{it^T A} \varphi_x(B^T t)$ if $A \in \mathbb{R}^d$ and $B \in \mathbb{R}^{k \times d}$ are constants
 - 3. x and y are independent then $\varphi_{x+y}(t) = \varphi_x(t)\varphi_y(t)$ (we do not proov the other way around)
- 4. if $M_x(t) = \mathrm{E}(e^{t^Tx})$ is the moment generating function, then $M_x(t) = \varphi_x(-it)$

Part III

Probability calculus

Exercise 18. (*)Let a random variable $x \sim \mathrm{IG}(a,b)$, a fixed value c > 0, and y = cx then $y \sim \mathrm{IG}(a,cb)$.

Exercise 19. $(\star\star\star)$ Consider that x given z is distributed according to $Ga(\frac{n}{2}, \frac{nz}{2})$, and that z is distributed according to $Ga(\frac{m}{2}, \frac{m}{2})$; i.e.

$$\begin{cases} x|z & \sim \operatorname{Ga}(\frac{n}{2}, \frac{nz}{2}) \\ z & \sim \operatorname{Ga}(\frac{m}{2}, \frac{m}{2}) \end{cases}$$

Here, $Ga(\alpha, \beta)$ is the Gamma distribution with shape and rate parameters α and β , and PDF

$$f_{Ga(\alpha,\beta)}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \mathbb{1}(x > 0)$$

1. Show that the compound distribution of x is F $x \sim F(n, m)$, where F(n, m) is F distribution with numerator and denumerator degrees of freedom n and m, and PDF

$$f_{\mathsf{F}(n,m)}(x) = \frac{1}{x \,\mathrm{B}(\frac{n}{2}, \frac{m}{2})} \sqrt{\frac{(n \, x)^n \, m^m}{(n \, x + m)^{n+m}}} \mathbf{1}(x > 0)$$

2. Show that

$$E_{F(n,m)}(x) = \frac{m}{m-2}$$

3. Show that

$$\operatorname{Var}_{\mathsf{F}(n,m)}(x) = \frac{2m^2(n+m-2)}{n(m-2)^2(m-4)}$$

Hint: If $\xi \sim \text{IG}(a,b)$ then $E_{\xi \sim \text{IG}(a,b)}(\xi) = \frac{b}{a-1}$, and $\text{Var}_{\xi \sim \text{IG}(a,b)}(\xi) = \frac{b^2}{(a-1)^2(a-2)}$

Exercise 20. $(\star\star)$ Prove the following statement:

Let
$$x \sim \mathbf{N}_d(\mu, \Sigma), x \in \mathbb{R}^d$$
, and $y = (x - \mu)^\top \Sigma^{-1} (x - \mu)$. Then

$$y \sim \chi_d^2$$

Exercise 21. $(\star\star)$ Let

$$\begin{cases} x|\xi & \sim \mathbf{N}_d(\mu, \Sigma \xi) \\ \xi & \sim \mathbf{IG}(a, b) \end{cases}$$

with PDF

$$f_{N_d(\mu,\Sigma\xi)}(x|\xi) = (2\pi)^{-\frac{d}{2}} \det(\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)$$
$$f_{IG(a,b)}(\xi) = \frac{b^a}{\Gamma(a)} \xi^{-a-1} \exp\left(-\frac{b}{\xi}\right) 1_{(0,\infty)}(\xi)$$

Show that the marginal PDF of x is

$$f(x) = \int f_{N_d(\mu,\Sigma\xi)}(x|\xi) f_{IG(a,b)}(\xi) d\xi$$

$$= \frac{2a^{-\frac{d}{2}}}{\pi^{\frac{n}{2}} \sqrt{\det(\frac{b}{a}\Sigma)}} \frac{\Gamma\left(a + \frac{d}{2}\right)}{\Gamma(a)} \left[1 + \frac{1}{2a}(x - \mu)^{\top} \left(\frac{b}{a}\Sigma\right)^{-1} (x - \mu)\right]^{-\frac{(2a+d)}{2}}$$
(2)

FYI: For $a = b = \frac{v}{2}$, the marginal PDF is the PDF of the d-dimensional Student T distribution.

133

34 **Exercise 22.** (★★★)

Let $x \sim \mathrm{T}_d(\mu, \Sigma, \nu)$. Recall that $x \sim \mathrm{T}_d(\mu, \Sigma, \nu)$ is the marginal distribution $f_x(x) = \int f_{x|\xi}(x|\xi) f_{\xi}(\xi) \mathrm{d}\xi$ of (x, ξ) where

$$x|\xi \sim N_d(\mu, \Sigma \xi v)$$

$$\xi \sim IG(\frac{v}{2}, \frac{1}{2})$$

Consider partition such that

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}; \qquad \qquad \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}; \qquad \qquad \Sigma = \begin{bmatrix} \Sigma_1 & \Sigma_{21}^\top \\ \Sigma_{21} & \Sigma_2 \end{bmatrix},$$

where $x_1 \in \mathbb{R}^{d_1}$ and $x_2 \in \mathbb{R}^{d_2}$.

Address the following:

1. Show that the marginal distribution of x_1 is such that

$$x_1 \sim T_{d_1}(\mu_1, \Sigma_1, \nu)$$

Hint: Try to use the form $f_x(x) = \int f_{x|\xi}(x|\xi) f_{\xi}(\xi) d\xi$.

2. Show that

$$\xi | x_1 \sim \text{IG}(\frac{1}{2}(d_1 + v), \frac{1}{2}\frac{Q + v}{v})$$

where $Q = (\mu_1 - x_1)^{\top} \Sigma_1^{-1} (\mu_1 - x_1)$.

Hint: The PDF of $y \sim N_d(\mu, \Sigma)$ is

$$f(y) = (2\pi)^{-\frac{d}{2}} \det(\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(y-\mu)^{\top} \Sigma^{-1}(y-\mu)\right)$$

Hint: The PDF of $y \sim IG(a, b)$ is

$$f_{\text{IG}(a,b)}(y) = \frac{b^a}{\Gamma(a)} y^{-a-1} \exp(-\frac{b}{y}) \mathbb{1}_{(0,+\infty)}(y)$$

3. Let $\xi' = \xi \frac{v}{Q+v}$, with $Q = (\mu_1 - x_1)^{\top} \Sigma_1^{-1} (\mu_1 - x_1)$, show that

$$\xi'|x_1 \sim \text{IG}(\frac{v+d_1}{2}, \frac{1}{2})$$

4. Show that the conditional distribution of $x_2|x_1$ is such that

$$x_2|x_1 \sim T_{d_2}(\mu_{2|1}, \dot{\Sigma}_{2|1}, \nu_{2|1})$$

where

$$\mu_{2|1} = \mu_2 + \Sigma_{21} \Sigma_{11}^{-1} (x_1 - \mu_1)$$
$$\dot{\Sigma}_{2|1} = \frac{\nu + (\mu_1 - x_1)^{\top} \Sigma_1^{-1} (\mu_1 - x_1)}{\nu + d_1} \Sigma_{2|1}$$

$$\begin{array}{c}
\nu + a_1 \\
\Sigma_{2|1} = \Sigma_{22} - \Sigma_{21} \Sigma_{1}^{-1} \Sigma_{21}^{\top}
\end{array}$$

 $\nu_{2|1} = \nu + d_1$

Hint: You can use the Example [Marginalization & conditioning] from the Lecture Handout

Exercise 23. $(\star\star\star)$ Show that

1. If $x_i \sim N_d(\mu_i, \Sigma_i)$ for i = 1, ..., n and $y = c + \sum_{i=1}^n B_i x_i$, then

$$y \sim \mathbf{N}_d(c + \sum_{i=1}^n \mu_i, \sum_{i=1}^n B_i \Sigma_i B_i^\top)$$

2. If $x_i \sim T_d(\mu_i, \Sigma_i, v)$ for i = 1, ..., n and $z = c + \sum_{i=1}^n B_i x_i$, then

$$z \sim \mathrm{T}_d(c + \sum_{i=1}^n \mu_i, \sum_{i=1}^n B_i \Sigma_i B_i^\top, v)$$

Part IV

Bayesian paradigm and calculations

Exercise 24. (\star)Consider an i.i.d. sample y_1, \ldots, y_n from the skew-logistic distribution with PDF

$$f(y_i|\theta) = \frac{\theta e^{-y_i}}{(1 + e^{-y_i})^{\theta+1}}$$

with parameter $\theta \in (0, \infty)$. To account for the uncertainty about θ we assign a Gamma prior distribution with PDF

$$\pi(\theta) = \frac{b^a}{\Gamma(a)} \theta^{a-1} e^{-b\theta} 1(\theta \in (0, \infty)),$$

and fixed hyper parameters a, b specified by the researcher's prior info.

- 1. Derive the posterior distribution of θ .
- 2. Derive the predictive PDF for a future $z = y_{n+1}$.

Exercise 25. $(\star\star\star)$ (Nuisance parameters are involved)

<-story

Assume observable quantities $y=(y_1,...,y_n)$ forming the available data set of size n. Assume that the observations are drawn i.i.d. from a sampling distribution which is judged to be in the Normal parametric family of distributions $N(\mu, \sigma^2)$ with unknown mean μ and variance σ^2 . We are interested in learning μ and the next outcome $z=y_{n+1}$. We do not care about σ^2 .

Assume You specify a Bayesian model

<-set-up

$$\begin{cases} y_i|\mu,\sigma^2 \sim \mathrm{N}(\mu,\sigma^2), \text{ for all } i=1,...,n \\ \mu|\sigma^2 \sim \mathrm{N}(\mu_0,\sigma^2\frac{1}{\tau_0}) \\ \sigma^2 \sim \mathrm{IG}(a_0,k_0) \end{cases}, \text{ prior}$$

1. Show that

$$\sum_{i=1}^{n} (y_i - \theta)^2 = n(\bar{y} - \theta)^2 + ns^2,$$

where $s^2 = \frac{1}{2} \sum_{i=1}^n (y_i - \bar{y})^2$.

2. Show that the joint posterior distribution $\Pi(\mu, \sigma^2|y)$ is such as

$$\mu | y, \sigma^2 \sim N(\mu_n, \sigma^2 \frac{1}{\tau_n})$$

$$\sigma^2 | y \sim IG(a_n, k_n)$$

with

$$\mu_n = \frac{n\bar{y} + \tau_0 \mu_0}{n + \tau_0};$$
 $\tau_n = n + \tau_0;$ $a_n = a_0 + n$

$$k_n = k_0 + \frac{1}{2}ns_n^2 + \frac{1}{2}\frac{\tau_0 n(\mu_0 - \bar{y})^2}{n + \tau_0}$$

Hint: It is

$$-\frac{1}{2}\frac{(\mu-\mu_1)^2}{v_1} - \frac{1}{2}\frac{(\mu-\mu_2)^2}{v_2} \dots - \frac{1}{2}\frac{(\mu-\mu_n)^2}{v_n} = -\frac{1}{2}\frac{(\mu-\hat{\mu})^2}{\hat{v}} + C$$

where

$$\hat{v} = \left(\sum_{i=1}^{n} \frac{1}{v_i}\right)^{-1}; \quad \hat{\mu} = \hat{v}\left(\sum_{i=1}^{n} \frac{\mu_i}{v_i}\right); \quad C = \frac{1}{2} \frac{\hat{\mu}^2}{\hat{v}} - \frac{1}{2} \sum_{i=1}^{n} \frac{\mu_i^2}{v_i}$$

3. Show that the marginal posterior distribution $\Pi(\mu|y)$ is such as

$$\mu|y \sim \mathsf{T}_1\left(\mu_n, \frac{k_n}{a_n} \frac{1}{\tau_n}, 2a_n\right)$$

Hint-1: If $x \sim IG(a, b)$, y = cx, then $y \sim IG(a, cb)$.

Hint-2: The definition of Student T is considered as known

4. Show that the predictive distribution $\Pi(z|y)$ is Student T such as

$$z|y \sim \mathsf{T}_1\left(\mu_n, \frac{k_n}{a_n}(\frac{1}{\tau_n}+1), 2a_n\right)$$

Hint-1: Consider that

$$N(x|\mu_1, \sigma_1^2) N(x|\mu_2, \sigma_2^2) = N(x|m, v^2) N(\mu_1|\mu_2, \sigma_1^2 + \sigma_2^2)$$

where

$$v^2 = \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}\right)^{-1}; \quad m = v^2 \left(\frac{\mu_1}{\sigma_1^2} + \frac{\mu_2}{\sigma_2^2}\right)$$

Hint-2: The definition of Student T is considered as known

The following is about the Normal linear model of regression. The calculations are too challenging;; (not anymore...)

Exercise 26. $(\star\star\star)$ (Normal linear regression model with unknown error variance)

<-story

Consider we are interested in recovering the mapping

$$x \stackrel{\eta(x)}{\longmapsto} y$$

in the sense that y is the response (output quantity) that depends on x which is the independent variable (input quantity) in a procedure; E.g.:,

- y: precipitation in log scale
- x = (longitude, latitude): geographical coordinates.

It is believed that the mapping $\eta(x)$ can be represented as an expansion of d known polynomial functions $\{\phi_j(x)\}_{j=0}^{d-1}$ such as

$$\eta(x) = \sum_{j=0}^{d-1} \phi_j(x) \beta_j = \Phi(x)^{\top} \beta; \text{ with } \Phi(x) = (\phi_0(x), ..., \phi_{d-1}(x))^{\top}$$

where $\beta \in \mathbb{R}^d$ is unknown.

Assume observable quantities (data) in pairs (x_i, y_i) for i = 1, ..., n; (E.g. from the i-th station at location x_i I got the reading y_i). Assume that the response observations $y = (y_1, ..., y_n)$ may be contaminated by noise with unknown

variance; such that

$$y_i = \eta(x_i) + \epsilon_i$$

where $\epsilon_i \sim N(0, \sigma^2)$ with unknown σ^2 .

You are interested in learning β , but you do not care about σ^2 . Also you want to learn the value of y_f at an untried x_f (i.e. the precipitation at any other location).

Consider the Bayesian model

<-set-up

$$y|\beta, \sigma^2 \sim N(\Phi\beta, I\sigma^2)$$
; the sampling distr
 $\beta|\sigma^2 \sim N(\mu_0, V_0\sigma^2)$; prior distr
 $\sigma^2 \sim IG(a_0, k_0)$ prior distr

where Φ is the design matrix $[\Phi]_{i,j} = \Phi_j(x_i)$.

1. Show that the joint posterior distribution $d\Pi(\beta, \sigma^2|y)$ is such as

$$\beta | y, \sigma^2 \sim N(\mu_n, V_n \sigma^2);$$
 $\sigma^2 | y \sim IG(a_n, k_n)$

with

$$V_n^{-1} = \Phi^{\top} \Phi + V_0^{-1}; \qquad \mu_n = V_n \left((\Phi^{\top} \Phi)^{-1} \Phi y + V_0^{-1} \mu_0 \right); \qquad a_n = \frac{n}{2} + a_0$$
$$k_n = \frac{1}{2} (y - \Phi \hat{\beta}_n)^{\top} (y - \Phi \hat{\beta}_n) - \frac{1}{2} \mu_n^{\top} V_n^{-1} \mu_n + \frac{1}{2} \left(\mu_0^{\top} V_0^{-1} \mu_0 + y^{\top} \Phi^{\top} (\Phi^{\top} \Phi)^{-1} \Phi y \right) + k_0$$

Hint-1:

$$(y - \Phi \beta)^{\top} (y - \Phi \beta) = (\beta - \hat{\beta}_n)^{\top} \left[\Phi^{\top} \Phi \right] (\beta - \hat{\beta}_n) + S_n; \quad S_n = (y - \Phi \hat{\beta}_n)^{\top} (y - \Phi \hat{\beta}_n); \quad \hat{\beta}_n = (\Phi^{\top} \Phi)^{-1} \Phi y$$

Hint-2: If $\Sigma_1 > 0$ and $\Sigma_2 > 0$ symmetric

$$-\frac{1}{2}(x-\mu_1)\Sigma_1^{-1}(x-\mu_1)^{\top} - \frac{1}{2}(x-\mu_2)\Sigma_2^{-1}(x-\mu_2)^{\top} = -\frac{1}{2}(x-m)V^{-1}(x-m)^{\top} + C$$

wher

$$V^{-1} = \Sigma_1^{-1} + \Sigma_2^{-1}; \quad m = V\left(\Sigma_1^{-1}\mu_1 + \Sigma_2^{-1}\mu_2\right); \quad C = \frac{1}{2}m^{\mathsf{T}}V^{-1}m - \frac{1}{2}\left(\mu_1^{\mathsf{T}}\Sigma_1^{-1}\mu_1 + \mu_2^{\mathsf{T}}\Sigma_2^{-1}\mu_2\right)$$

2. Show that the marginal posterior of β given y is

$$\beta|y \sim \mathsf{T}_d(\mu_n, V_n \frac{k_n}{a_n}, 2a_n)$$

3. Show that the predictive distribution of an outcome $y_f = \Phi_f \beta + \epsilon$ with $\Phi_f = (\phi_0(x_f), ..., \phi_{d-1}(x_f))$ and $\epsilon \sim N(0, \sigma^2)$ at untried location x_f is

$$y_f|y \sim \mathsf{T}_d(\mu_n, [\Phi^{\top}\Phi + 1]\frac{k_n}{a_n}, 2a_n)$$

Consider that

$$N(x|\mu_1, \sigma_1^2) N(x|\mu_2, \sigma_2^2) = N(x|m, v^2) N(\mu_1|\mu_2, \sigma_1^2 + \sigma_2^2)$$

where

$$v^2 = \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}\right)^{-1}; \quad m = v^2 \left(\frac{\mu_1}{\sigma_1^2} + \frac{\mu_2}{\sigma_2^2}\right)$$

259

Exercise 27. $(\star\star)$ Let $y=(y_1,...,y_n)$ be observables drawn iid from sampling distribution $y_i|\theta \stackrel{\text{iid}}{\sim} N(\theta,\theta^2)$ for all i=1,...,n, where $\theta \in \mathbb{R}$ is unknown. Specify a conjugate prior density for θ up to an unknown normalizing constant.

20

Exercise 28. $(\star\star)$ If the sampling distribution $F(\cdot|\theta)$ is discrete and the prior $\Pi(\theta)$ is proper, then the posterior $\Pi(\theta|y)$ is always proper.

26

Exercise 29. $(\star\star)$ If the sampling distribution $F(\cdot|\theta)$ is continuous and the prior $\Pi(\theta)$ is proper, then the posterior $\Pi(\theta|y)$ is almost always proper.

268

The Limit Comparison Theorem for Improper Integrals

General: Let integrable functions f(x), and g(x) for $x \ge a$.

Let

$$0 \le f(x) \le g(x)$$
, for $x \ge a$

Then

$$\int_{a}^{\infty} g(x) \mathrm{d}x < \infty \implies \int_{a}^{\infty} f(x) \mathrm{d}x < \infty$$
$$\int_{a}^{\infty} f(x) \mathrm{d}x = \infty \implies \int_{a}^{\infty} g(x) \mathrm{d}x = \infty$$

Type I: Let integrable functions f(x), and g(x) for $x \ge a$, and let g(x) be positive.

Let

$$\lim_{n \to \infty} \frac{f(x)}{g(x)} = c$$

Then

• If $c \in (0, \infty)$:

$$\int_a^\infty g(x)\mathrm{d}x < \infty \Longleftrightarrow \int_a^\infty f(x)\mathrm{d}x < \infty$$

• If c = 0:

$$\int_{a}^{\infty} g(x) dx < \infty \implies \int_{a}^{\infty} f(x) dx < \infty$$

• If $c = \infty$:

$$\int_a^\infty f(x)\mathrm{d}x = \infty \implies \int_a^\infty g(x)\mathrm{d}x = \infty$$

Type II: Let integrable functions f(x), and g(x) for $a < x \le b$, and let g(x) be positive.

Let

$$\lim_{n \to a^+} \frac{f(x)}{g(x)} = c$$

Then

• If $c \in (0, \infty)$:

$$\int_a^\infty g(x)\mathrm{d}x < \infty \Longleftrightarrow \int_a^\infty f(x)\mathrm{d}x < \infty$$

269

• If
$$c = 0$$
:

$$\int_a^\infty g(x)\mathrm{d}x < \infty \implies \int_a^\infty f(x)\mathrm{d}x < \infty$$

• If $c=\infty$:

$$\int_{a}^{\infty} f(x) dx = \infty \implies \int_{a}^{\infty} g(x) dx = \infty$$

Note: A useful test function is

$$\int_0^\infty \left(\frac{1}{x}\right)^p \mathrm{d}x \quad \begin{cases} <\infty &, \text{ when } p>1 \\ =\infty &, \text{ when } p\leq 1 \end{cases}$$

Exercise 30. $(\star\star)$ Consider the Bayesian model

$$\begin{cases} x | \sigma & \sim \mathbf{N}(0, \sigma^2) \\ \sigma & \sim \mathbf{E}\mathbf{x}(\lambda) \end{cases}$$

where $\text{Ex}(\lambda)$ is the exponential distribution with mean $1/\lambda$. Show that the posterior distribution is not defined always.

• HINT: Precisely, show that the posterior is not defined in the case that you collect only one observation x = 0.

Exercise 31. $(\star\star)$ Consider the Bayesian model

$$\begin{cases} x | \sigma & \sim \mathbf{N}(0, \sigma^2) \\ \sigma & \sim \Pi(\sigma) \end{cases}$$

where $\Pi(\sigma)$ is an improper prior distribution with density such as $\pi(\sigma) \propto \sigma^{-1} \exp(-a\sigma^{-2})$ for a > 0. Show that we can use this prior on Bayesian inference.

Exercise 32. $(\star\star)$ Let x be an observation. Consider the Bayesian model

$$\begin{cases} x | \theta & \sim \text{Pn}(\theta) \\ \theta & \sim \Pi(\theta) \end{cases}$$

where $Pn(\theta)$ is the Poisson distribution with expected value θ . Consider a prior $\Pi(\theta)$ with density such as $\pi(\theta) \propto \frac{1}{\theta}$. Show that the posterior distribution is not always defined.

Hint-1: It suffices to show that the posterior is not defined in the case that you collect only one observation x=0.

Hint-2: Poisson distribution: $x \sim Pn(\theta)$ has PMF

$$Pn(x|\theta) = \frac{\theta^x \exp(-\theta)}{x!} 1(x \in \mathbb{N})$$

The next exercise is about the Sequential processing of data via Bayes theorem

Exercise 33. $(\star\star)$ Assume that observable quantities $x_1, x_2, ...$ are generated i.i.d by a process that can be modeled as a sampling distribution $N(\mu, \sigma^2)$ with known σ^2 and unknown μ .

1. Assume that you have collected an observation x_1 . Specify a prior $\Pi(\mu)$ on μ as $\mu \sim N(\mu_0, \sigma_0^2)$ where μ_0, σ_0^2 are known.

• Derive the posterior $\Pi(\theta|x_1)$.

Next assume that you additionally another an additional observation x_2 after collecting x_1 . Consider the posterior $\Pi(\mu|x_1)$ as the current state of your knowledge about θ .

- Derive the posterior $\Pi(\mu|x_1,x_2)$ in the light of the new additional observation x_2 .
- 2. Assume that you have collected two observations (x_1, x_2) . Specify a prior $\Pi(\mu)$ on μ as $\mu \sim N(\mu_0, \sigma_0^2)$ where μ_0, σ_0^2 are known.
 - Derive the posterior $\Pi(\theta|x_1,x_2)$ in the light of the observations (x_1,x_2) .
 - 3. What do you observe:

Hint: We considered the identity

$$-\frac{1}{2}\sum_{i=1}^{n}\frac{(y-\mu_{i})^{2}}{\sigma_{i}^{2}} = -\frac{1}{2}\frac{(y-\hat{\mu})^{2}}{\hat{\sigma}^{2}} + c(\hat{\mu},\hat{\sigma}^{2}),$$

$$c(\hat{\mu},\hat{\sigma}^{2}) = -\frac{1}{2}\sum_{i=1}^{n}\frac{\mu_{i}^{2}}{\sigma_{i}^{2}} + \frac{1}{2}(\sum_{i=1}^{n}\frac{\mu_{i}}{\sigma_{i}^{2}})^{2}(\sum_{i=1}^{n}\frac{1}{\sigma_{i}^{2}})^{-1}; \quad \hat{\sigma}^{2} = (\sum_{i=1}^{n}\frac{1}{\sigma_{i}^{2}})^{-1}; \quad \hat{\mu} = \hat{\sigma}^{2}(\sum_{i=1}^{n}\frac{\mu_{i}}{\sigma_{i}^{2}})^{2}$$

where $c(\hat{\mu}, \hat{\sigma}^2)$ is constant w.r.t. y.