HS Osnabrück	
FIuI – Biermann	

Übung zu Mathematik I für Informatik

Blatt 11

1. Aufgabe: Die Information einer vertraulichen Zahl wird unter drei Personen aufgeteilt. $\overline{\text{Dabei}}$ wird das in der Vorlesung vorgeführte Verfahren verwendet. Die drei Personen A, B und C erhalten jeweils die Information

Wie lautet die geheime Zahl? Geben Sie an, wie jeweils zwei Personen diese gemeinsam ermitteln können.

- 2. Aufgabe: Betrachten Sie zu der Primzahl p = 97 den Restklassenring \mathbb{Z}_{97} .
 - (a) Finden Sie ein $x \in \mathbb{Z}_{97}^*$ mit

$$x^5 = \overline{30} \tag{1}$$

Finden Sie die Lösung von (1) nicht durch Probieren, sondern wenden Sie das in der Vorlesung erläuterte Verfahren an.

- (b) Warum ist die Lösung von (1) eindeutig?
- 3. (a) Das folgende lineare Gleichungssystem besitzt Koeffizienten aus dem Restklassenkörper \mathbb{Z}_{23} :

$$\frac{\overline{12} \cdot x_1 + \overline{15} \cdot x_2 + \overline{4} \cdot x_3 = \overline{21}}{\overline{10} \cdot x_1 + \overline{3} \cdot x_2 + \overline{20} \cdot x_3 = \overline{2}} \\
\overline{9} \cdot x_1 + \overline{13} \cdot x_2 + \overline{21} \cdot x_3 = \overline{3}$$
(2)

Lösen Sie dieses lineare Gleichungssystem mit Werten aus \mathbb{Z}_{23} , indem Sie in gewohnter Weise das Gaußsche Verfahren anwenden. Was sind Rang und Corang dieses Gleichungssystems?

- (b) Sei A die Koeffizientenmatrix des Gleichungssystems (2). Berechnen Sie $\det(A)$, A^2 und, falls $\det(A) \neq \overline{0}$ ist, die Umkehrmatrix A^{-1} .
- 4. Berechnen Sie in dem Restklassenkörper \mathbb{Z}_{103} die Potenz

$$\overline{5}^{1740}$$
 (3)

indem Sie die Rechnung zunächst mit Hilfe des Satzes von Euler vereinfachen.

5. Zeigen Sie, daß in dem Restklassenring \mathbb{Z}_n mit n=264389 die beiden Restklassen

$$\overline{u} = \overline{164790} \quad \text{und} \quad \overline{v} = \overline{261333}$$
 (4)

einerseits dasselbe Quadrat in \mathbb{Z}_n besitzen und andererseits $\overline{u} \neq \pm \overline{v}$ ist.

Wie kann man daraus schließen, daß n = 264389 keine Primzahl ist?