Лабораторная работа № 5

Имитационное моделирование

Королёв Иван

Содержание

1	Цел	ь работы	5
2	Зад	ание	6
3	Teop	ретическое введение	7
4	Вып	олнение лабораторной работы	8
	4.1	Реализация модели эпидемии в xcos	8
	4.2	Реализация модели с помощью блока Modelica в xcos	12
	4.3	Выполнение упражнени построения модели эпидемии в OpenModelica	15
	4.4	Задание для самостоятельного выполнения. Реализация с помощью	
		xcos	16
	4.5	Задание для самостоятельного выполнения. Реализация с помощью	
		блока Modelica в xcos	18
	4.6	Задание для самостоятельного выполнения. Реализация в	
		OpenModelica	21
	4.7	Результаты на различных параметрах	23
5	Выв	воды	26
Сп	Список литературы		

Список иллюстраций

4.1	beta, nu	8
4.2	Реализованная модель эпидемии	9
4.3	Начальные значения для верхнего блока интегрирования	10
4.4	Начальные значения для среднего блока интегрирования	10
4.5	Конечное время интегрирования	11
4.6	Модель эпидемии при beta=1, nu=0.3	11
4.7	Модель эпидемии	12
4.8	Параметры блока реализации	13
4.9	Параметры блока реализации	14
4.10	Модель эпидемии Modelica	14
4.11	Реализация модели эпидемии в OpenModelica	15
4.12	Модель эпидемии в OpenModelica	16
4.13	Переменные окружения	17
4.14	Реализация модели эпидемии с учетом процесса рождения / гибели	
	особей с помощью xcos	17
4.15	Модель эпидемии при beta=1, nu=0.1, mu=0.1	18
4.16	Реализация модели эпидемии с учетом процесса рождения / гибели	
	особей с помощью блока Modelica в хсоз	18
4.17	Параметры блока реализации	19
4.18	Параметры блока реализации	20
4.19	Модель эпидемии при beta=1, nu=0.1, mu=0.1	21
4.20	Реализация модели с учетом процесса рождения / гибели особей	
	эпидемии в OpenModelica	22
4.21	Модель эпидемии с учетом процесса рождения / гибели особей в	
	OpenModelica	23
4.22	Результаты на различных параметрах	23
4.23	Результаты на различных параметрах	24
4.24	Результаты на различных параметрах	24
4.25	Результаты на различных параметрах	24

Список таблиц

1 Цель работы

Построение модели эпидемии (SIR) в xcos, с помощью блока Modelica и в OpenModelica.

2 Задание

- 1. Необходимо реализовать модель эпидемии в хсоѕ
- 2. Необходимо реализовать модель эпидемии с помощью блока Modelica в хсоз
- 3. Выполнить упражнение построения модели эпидемии в OpenModelica
- 4. Задание для самостоятельного выполнения. Требуется:
 - реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica;
 - построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр µ);
 - сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

3 Теоретическое введение

Модель SIR предложена в 1927 г. (W. O. Kermack, A. G. McKendrick). С описанием модели можно ознакомиться, например в [1]. Предполагается, что особи популяции размера N могут находиться в трёх различных состояниях: * S (susceptible, уязвимые) — здоровые особи, которые находятся в группе риска и могут подхватить инфекцию; * I (infective, заражённые, распространяющие заболевание) — заразившиеся переносчики болезни; * R (recovered/removed, вылечившиеся) — те, кто выздоровел и перестал распространять болезнь (в эту категорию относят, например, приобретших иммунитет или умерших). Внутри каждой из выделенных групп особи считаются неразличимыми по свойствам.

4 Выполнение лабораторной работы

4.1 Реализация модели эпидемии в хсоѕ

Зафиксируем начальные данные: $\beta = 1, \nu = 0, 3, s(0) = 0, 999, i(0) = 0, 001, r(0) = 0.$ В меню моделирования устанавливаем переменные окружения (рис. 4.1)

Рис. 4.1: beta. nu

Для реализации модели потребуется: * CLOCK_c — запуск часов модельного времени; * CSCOPE — регистрирующее устройство для построения графика; * $TEXT_f$ — задаёт текст примечаний; * MUX — мультиплексер, позволяющий в данном случае вывести на графике сразу несколько кривых; * $INTEGRAL_m$ — блок интегрирования * $GAINBLK_f$ — в данном случае позволяет задать значения коэффициентов β и ν ; * SUMMATION — блок суммирования; * $PROD_f$ — поэлементное

произведение двух векторов на входе блока.

Добавляем эти блоки из палитры инструментов и строим с их помощью данную систему дифференциальных уравнений:

$$\begin{cases} \dot{s} = -\beta s(t)i(t); \\ \dot{i} = \beta s(t)i(t) - \nu i(t); \\ \dot{r} = \nu i(t), \end{cases}$$

где β – скорость заражения, ν – скорость выздоровления.

Реализованная модель эпидемии. Выходы трёх блоков интегрирования соединяем с мультиплексором.(рис. 4.2)

Рис. 4.2: Реализованная модель эпидемии

В параметрах верхнего блока интегрирования задаем значения s(0) = 0, 999, который отвечает за здоровых особей. (рис. 4.3)

Рис. 4.3: Начальные значения для верхнего блока интегрирования

В параметрах среднего блока интегрирования задаем значения i(0) = 0, 001, который отвечает за переносчиков болезни. (рис. 4.4)

Рис. 4.4: Начальные значения для среднего блока интегрирования

В нижнем блоке интегрирования начальные значения по умолчанию заданы нулю, как в нашем условии. Данная часть отвечает за тех, кто имеет иммунитет. Далее, устанавливаем конечное время интегрирования. Оно равно 30 (рис. 4.5)

Рис. 4.5: Конечное время интегрирования

Результат моделирования представлен на (рис. 4.6), где черной линией обозначен график s(t) (динамика численности уязвимых к болезни особей), красная линия r(t) — динамику численности выздоровевших особей, наконец, зеленая линия i(t) — динамику численности заражённых особей. Пересечение трёх линий определяет порог эпидемии.

Рис. 4.6: Модель эпидемии при beta=1, nu=0.3

4.2 Реализация модели с помощью блока Modelica в xcos

В данном задании необходимо было реализовать такую же модель эпидемии при beta=1, nu=0.3, только с помощью блока Modelica в xcos. Для начала добавляем новый блок констант и блок реализации кода на Modelica. Таким образом выглядит наша модель (рис. 4.7)

Рис. 4.7: Модель эпидемии

Указываем параметры для блока реализации. Переменные на входе ("beta", "nu") и выходе ("s", "i", "r") блока заданы как внешние ("E"). (рис. 4.8)

Рис. 4.8: Параметры блока реализации

Код на языке Modelica. Задаем переменные beta, nu. Указываем начальные значения для s, i, r и пишем систему уравнения. (рис. 4.9)

Рис. 4.9: Параметры блока реализации

Результат работы модели. Он идентичен с реализацией в хсоз. (рис. 4.10)

Рис. 4.10: Модель эпидемии Modelica

4.3 Выполнение упражнени построения модели эпидемии в OpenModelica

Код реализации модели эпидемии в OpenModelica. Задаем все начальные параметры с помощью parameter Real, как было в реализациях хсоз. Записываем систему уравнения, реализация очень сильно схожа с реализацией с помощью блока Modelica в хсоз (рис. 4.11)

```
Acciding and a service model and react lab money ope
  1 model lab
  parameter Real ss = 0.999;
      parameter Real ii = 0.001;
parameter Real rr = 0;
      parameter Real beta = 1;
  5
       parameter Real nu = 0.3;
  6
  7
       Real s(start=ss);
  8
       Real i(start=ii);
  9
        Real r(start=rr);
  10 equation
 11
         der(s)=-beta*s*i;
 12
13
         der(i)=beta*s*i-nu*i;
         der(r)=nu*i;
  14 end lab;
```

Рис. 4.11: Реализация модели эпидемии в OpenModelica

Результат модели. Результат идентичен с построением с помощью других способов, значит все выполнено правильно. (рис. 4.12)

Рис. 4.12: Модель эпидемии в OpenModelica

4.4 Задание для самостоятельного выполнения.

Реализация с помощью хсоѕ

Необходимо реализовать такую же модель эпидемии, только с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica.

Так выглядит система уравнения:

$$\begin{cases} \dot{s} = -\beta s(t)i(t) + \mu(N - s(t)); \\ \dot{i} = \beta s(t)i(t) - \nu i(t) - \mu i(t); \\ \dot{r} = \nu i(t) - \mu r(t), \end{cases}$$

где μ — константа, которая равна коэффициенту смертности и рождаемости.

Реализуем эту модель в *xcos*. Тут нам понадобятся три блока суммирования и 4 блока констант (добавляется константа ν).

В меню моделирования устанавливаем переменные окружения. (рис. 4.13) Реализация с помощью хсоs. (рис. 4.14)

Рис. 4.13: Переменные окружения

Рис. 4.14: Реализация модели эпидемии с учетом процесса рождения / гибели особей с помощью xcos

В параметрах блоков интегрирования нет изменений, указываем все начальные значения из предыдущих этапов выполнения.

Результат моделирования представлен на (рис. 4.15), где черной линией обозначен график s(t) (динамика численности уязвимых к болезни особей), красная линия r(t) — динамику численности выздоровевших особей, наконец, зеленая линия i(t) — динамику численности заражённых особей. Пересечение трёх линий

определяет порог эпидемии.

Рис. 4.15: Модель эпидемии при beta=1, nu=0.1, mu=0.1

4.5 Задание для самостоятельного выполнения.

Реализация с помощью блока Modelica в xcos

Реализация с помощью блока Modelica в xcos. (рис. 4.16)

Рис. 4.16: Реализация модели эпидемии с учетом процесса рождения / гибели особей с помощью блока Modelica в xcos

Указываем параметры для блока реализации. Переменные на входе ("beta", "nu", "mu") и выходе ("s", "i", "r") блока заданы как внешние ("E"). (рис. 4.17)

Рис. 4.17: Параметры блока реализации

Код на языке Modelica. Задаем переменные beta, nu, mu. Указываем начальные значения для s, i, r и пишем систему уравнения. (рис. 4.18)

Рис. 4.18: Параметры блока реализации

Результат моделирования представлен на (рис. 4.19), где черной линией обозначен график s(t) (динамика численности уязвимых к болезни особей), красная линия r(t) — динамику численности выздоровевших особей, наконец, зеленая линия i(t) — динамику численности заражённых особей. Пересечение трёх линий определяет порог эпидемии.

Рис. 4.19: Модель эпидемии при beta=1, nu=0.1, mu=0.1

4.6 Задание для самостоятельного выполнения.

Реализация в OpenModelica

Код реализации модели эпидемии в OpenModelica. Задаем все начальные параметры с помощью parameter Real, как было в реализациях хсоз. Записываем систему уравнения, реализация очень сильно схожа с реализацией с помощью блока Modelica в хсоз (рис. 4.20)

```
1
    model lab
 2
      parameter Real ss = 0.999;
 3
      parameter Real ii = 0.001;
4
      parameter Real rr = 0;
5
      parameter Real beta = 1;
      parameter Real nu = 0.1;
6
7
      parameter Real mu = 0.1;
8
      Real s(start=ss);
9
      Real i(start=ii);
10
      Real r(start=rr);
11
    equation
12
       der(s)=-beta*s*i+mu*i+mu*r;
       der(i)=beta*s*i-nu*i-mu*i;
13
14
       der(r)=nu*i-mu*r;
15
    end lab;
```

Рис. 4.20: Реализация модели с учетом процесса рождения / гибели особей эпидемии в OpenModelica

Результат модели. Результат идентичен с построением с помощью других способов, значит все выполнено правильно. (рис. 4.21)

Рис. 4.21: Модель эпидемии с учетом процесса рождения / гибели особей в OpenModelica

4.7 Результаты на различных параметрах.

При mu=0.6, nu=0.1, beta=1 (рис. 4.22), (рис. 4.23)

```
🖶 🚜 🧧 🕦 🛮 Доступный на запись 🛮 Model 🔻 Вид Текст 🔻 lab 🗸 /home/openmodelica/Dc
      model lab
        parameter Real ss = 0.999;
  2
        parameter Real ii = 0.001;
  4
        parameter Real rr = 0;
  5
        parameter Real beta = 1;
  6
        parameter Real nu = 0.1;
  7
        parameter Real mu = 0.6
  8
        Real s(start=ss);
  9
        Real i(start=ii);
 10
        Real r(start=rr);
 11
     equation
 12
         der(s)=-beta*s*i+mu*i+mu*r;
 13
         der(i)=beta*s*i-nu*i-mu*i;
 14
         der(r)=nu*i-mu*r;
 15
     end lab;
```

Рис. 4.22: Результаты на различных параметрах.

Рис. 4.23: Результаты на различных параметрах.

При mu=0.6, nu=0.6, beta=1 (рис. 4.24), (рис. 4.25)

```
III ~ ~ ~ 25
                                  🖶 🚜 🗐 🚺 Доступный на запись 🛮 Model 🔻 Вид Текст 🔻 lab 🗸 /home/openmodelica/Documents/test1.mo
     model lab
       parameter Real ss = 0.999;
       parameter Real ii = 0.001;
       parameter Real rr = 0;
       parameter Real beta = 1;
       parameter Real nu = 0.6;
       parameter Real mu = 0.6;
       Real s(start=ss);
       Real i(start=ii);
       Real r(start=rr);
     equation
        der(s)=-beta*s*i+mu*i+mu*r;
        der(i)=beta*s*i-nu*i-mu*i;
 13
        der(r)=nu*i-mu*r;
     end lab:
```

Рис. 4.24: Результаты на различных параметрах.

Рис. 4.25: Результаты на различных параметрах.

Исходя из анализа графиков, можно сделать вывод, что чем выше значение любого из параметров, тем быстрее система достигает стационарного состояния.

При высоком коэффициенте заражения \square система быстро проходит через пик развития эпидемии и достигает стационарного состояния.

5 Выводы

Построил модели эпидемии (SIR) в xcos, с помощью блока Modelica и в OpenModelica.

Список литературы