AKAI

SERVICE MANUAL

Model: LCT3285TA

Safety Instructions	1~2
Trouble Shooting manual of LCD.	3~5
Block Diagram.	6
Circuit diagram	7~31
Basic Operation & Circuit Description.	32~34
Main IC Information	35~73
Panel Information	.74~106
Explored View	.107
Spare Pare List.	.108~109
Software Upgrade	110~116
	Trouble Shooting manual of LCD. Block Diagram. Circuit diagram. Basic Operation & Circuit Description. Main IC Information. Panel Information. Explored View. Spare Pare List.

This manual is the latest at the time of printing, and does not include the modification which may be made after the printing, by the constant improvement of product.

I. Safety Instructions

CAUTION

RISKOF ELECTRIC SHOCK DO NOT OPEN

CAUTION: TO REDUCE THE RISK OF ELECTRIC SHOCK, DONOT REMOVE COVER (OR BACK). NO USER-SERVICEABLE PARTSINSIDE. REFER SERVICING TO QUALIFIED SERVICE PERSONNEL ONLY.

The lightning flash with arrowhead symbol, within an equilateral triangle, is intended to alert the user to the presence of uninsulated "dangerous voltage" within the product's enclosure that may be of sufficient magnitude to constitute a risk of electric shock to persons.

The exclamation point within an equilateral triangle is intended to alert the user to the presence of important operating and maintenance (servicing) instructions in the literature accompanying the appliance.

PRECAUTIONS DURING SERVICING

- In addition to safety, other parts and assemblies are specified for conformance with such regulations as those applying to spurious radiation. These must also be replaced only with specified replacements. Examples: RF converters, tuner units, antenna selection switches, RF cables, noise-blocking capacitors, noise-blocking filters, etc.
- 2. Use specified internal Wiring. Note especially:
 - 1) Wires covered with PVC tubing
 - 2) Double insulated wires
 - 3) High voltage leads
- 3. Use specified insulating materials for hazardous live parts. Note especially:
 - 1) Insulating Tape
 - 2) PVC tubing
 - 3) Spacers (insulating barriers)
 - 4) Insulating sheets for transistors
 - 5) Plastic screws for fixing micro switches
- When replacing AC primary side components (transformers, power cords, noise blocking capacitors, etc.), wrap ends of wires securely about the terminals before soldering.

- Make sure that wires do not contact heat generating parts (heat sinks, oxide metal film resistors, fusible resistors, etc.)
- 6. Check if replaced wires do not contact sharply edged or pointed parts.
- 7. Make sure that foreign objects (screws, solder droplets, etc.) do not remain inside the set.

MAKE YOUR CONTRIBUTION TO PROTECT THE ENVIRONMENT

Used batteries with the ISO symbol for recycling as well as small accumulators (rechargeable batteries), mini-batteries (cells) and starter batteries should not be thrown into the garbage can.

Please leave them at an appropriate depot.

WARNING:

Before servicing this TV receiver, read the X-RAY RADIATION PRECAUTION, SAFETY INSTRUCTION and PRODUCT SAFETY NOTICE.

X-RAY RADIATION PRECAUTION

- 1. Excessively high can produce potentially hazardous X-RAY RADIATION. To avoid such hazards, the high voltage must not exceed the specified limit. The normal value of the high voltage of this TV receiver is 27 KV at zero bean current (minimum brightness). The high voltage must not exceed 30 KV under any circumstances. Each time when a receiver requires servicing, the high voltage should be checked. The reading of the high voltage is recommended to be recorded as a part of the service record, It is important to use an accurate and reliable high voltage meter.
- The only source of X-RAY RADIATION in this TV
 receiver is the picture tube. For continued X-RAY
 RADIATION protection, the replacement tube must be
 exactly the same type as specified in the parts list.
- Some parts in this TV receiver have special safety related characteristics for X-RADIATION protection.
 For continued safety, the parts replacement should be under taken only after referring the PRODUCT SAFETY NOTICE.

SAFETY INSTRUCTION

The service should not be attempted by anyone unfamiliar with the necessary instructions on this TV receiver. The following are the necessary instructions to be observed before servicing.

- An isolation transformer should be connected in the power line between the receiver and the AC line when a service is performed on the primary of the converter transformer of the set.
- Comply with all caution and safety related provided on the back of the cabinet, inside the cabinet, on the chassis or picture tube.
- To avoid a shock hazard, always discharge the picture tube's anode to the chassis ground before removing the anode cap.

- Completely discharge the high potential voltage of the picture tube before handling. The picture tube is a vacuum and if broken, the glass will explode.
- When replacing a MAIN PCB in the cabinet, always be certain that all protective are installed properly such as control knobs, adjustment covers or shields, barriers, isolation resistor networks etc.
- When servicing is required, observe the original lead dressing. Extra precaution should be given to assure correct lead dressing in the high voltage area.
- 7. Keep wires away from high voltage or high tempera ture components.
- 8. Before returning the set to the customer, always perform an AC leakage current check on the exposed metallic parts of the cabinet, such as antennas, terminals, screwheads, metal overlay, control shafts, etc., to be sure the set is safe to operate without danger of electrical shock. Plug the AC line cord directly to the AC outlet (do not use a line isolation transformer during this check). Use an AC voltmeter having 5K ohms volt sensitivity or more in the following manner.

Connect a 1.5K ohm 10 watt resistor paralleled by a 0.15µF AC type capacitor, between a good earth ground (water pipe, conductor etc.,) and the exposed metallic parts, one at a time.

Measure the AC voltage across the combination of the 1.5K ohm resistor and 0.15 uF capacitor. Reverse the AC plug at the AC outlet and repeat the AC voltage measurements for each exposed metallic part.

The measured voltage must not exceed 0.3 V RMS. This corresponds to 0.5 mA AC. Any value exceeding this limit constitutes a potential shock hazard and must be corrected immediately.

The resistance measurement should be done between accessible exposed metal parts and power cord plug prongs with the power switch "ON". The resistance should be more than 6M ohms.

AC Leakage Current Check

PRODUCT SAFETY NOTICE

Many electrical and mechanical parts in this TV receiver have special safety-related characteristics. These characteristics are offer passed unnoticed by visual spection and the protection afforded by them cannot necessarily be obtained by using replacement components rates for a higher voltage, wattage, etc. The replacement parts which have these special safety characteristics are identified by

marks on the schematic diagram and on the parts list. Before replacing any of these components, read the parts list in this manual carefully. The use of substitute replacement parts which do not have the same safety characteristics as specified in the parts list may create shock, fire, X-RAY RADIATION or other hazards.

1. Do not power on.

1.1 Please check AC cable if connect to AC plug.

Is true the connector don't connect to AC plug. Please connect it.

2.2 Please check AC cable if connect to AC power.

Is true the AC cable don't connect to AC power. Please connect it.

3.3 Please check power board of fuse if broken.

If the F1 fuse is broken, Please pull out the AC cable from AC power. Please check AC L power and AC N ground by multimeter, The read number is infinite, the fuse is broke. then look up power board if not burn out place. Is true it. Please change power board or be changed power board.

2. The power on switch of green extinguish.

2.1 The power of led(indicator light) is red light, To touch power on key when indicator light wink

Is true that the power DC output have somewhere short circuit.

Please check connector J39,J31 .If not connector direction is wrong.

Or the mainboard somewhere of power short circuit.

3. The power is normal work ,but don't backlight.

3.1 The indicator light work normal (green light).

Please check Main board of transistor Q1&ollect if not has +5v voltage.

Is true Q18 collect hasn't +5v ,To check Q18 if fail. Or to check Q18 of base if not low. (Low is working, high don't work).

Please refer to attached sheet A circuit diagram.

- 3.2 Please check backlight of connector if not it direction is wrong or the connector of wire compositor direction is wrong.
- 3.3 To check connector panel of voltage is +24v. It's true .Then to check of the first pin if it have +5V voltage, It's true, than to check power board of +24v voltage, It's true. The panel of backlight board is fail. The change panel of backlight board.

Please refer to attached sheet B Panel of datasheet.

4. The screen don't have picture But have backlight.

- 4.1 To check to panel of voltage ,To check main board of bead L69 and L57 connect if not OK. Then check the L69 and L57 of voltage is +12v(27 inch panel voltage is +5v, To check L68 and L56). Next to check fuse F1 and connector J10 if not is +12v(27 inch panel voltage is +5v). If isn't please check power board of connector CON5 if has +12v(27 inch panel voltage is +5v).
- 4.2To check to main board +12 V voltage. To check to main board IC U35 of the first pin if

+5v voltage ,It's fail. It's low (close 0 v) working.

The circuit diagram follow down:

Please refer to attached sheet A circuit diagram.

5. The remote control don't be control.

- 6.1 The check batteries of remote control if it run out of.
- 6.2 To check main board of connecter J21 of wire connect fastness and the connecter of wire open.

Please refer to attached sheet A circuit diagram.

6. The sound don't output.

7.1 To check main board +24v voltage of connector J8 ,It's true not +24v voltage. Then to to check power main +24v fail .

Please refer to attached sheet A circuit diagram.

7. The DTV don't detect.

7.1 To check mainboard of connecter J24 and DTV mainboard of connector HA1 of FCC wire if no connect fastness.

Please refer to attached sheet C of DTV circuit diagram.

MT8202E (PBGA388) LCDTV BOARD 4 LAYERS FOR AKAI

- 1. INDEX / POWER / RESET / EEPROM
- 2. LDO
- 3. MT8202E PBGA388
- 4. MT8202 DECOUPLING
- 5. DDR MEMORY & FLASH
- 6. MT5351 INTERFACE
- 7. HDMI MT8293
- 8. DAUGHTER BOARD IN
- 9. WM8776 & VIDEO BYPASS
- 10. AUDIO / VIDEO IN CIRCUIT
- 11. VGA & PC AUDIO IN
- 12. LVDS OUT
- 13. BACK LIGHT / KEYPAD
- 14. TUNER IN
- 15. AV IN
- 16. AUDIO IN
- 17.AUDIO Amplifier

Size Document Number AKAI_MT8202_27US_LVDS_V0.0

KAWA Confidential

Title	DAUGHTER BOARD IN					
Size	Document Number	<designer></designer>	Ren			
С	AKAI_MT8202_27US_LVDS_V0.0	Checked: <checker></checker>	י וד			
Date:	Thursday, April 13, 2006	Sheet 8				

³ 14 / 116

MT5351RA-V2

MT5111 / MT5351 REFERENCE DESIGN - 4 LAYERS

Rev	History	P#	DATE
RA-V1	INITIAL VERSION		2005/06/15
RA-V2	ADDED AUDIO SWITCH / REFINE POWER CIRCUIT		2005/07/14

01. INDEX AND INTERFACE

02. POWER

03. TUNER

04. MT5111 ASIC

05. MT5351 ASIC

06. MT5351 PERIPHERAL

07. DDR MEMORY

08. NOR FLASH / JTAG / UART

NS: NON-STUFF

NAME	TYPE	DEVICE
+12V +5V	POWER +12V POWER +5V	POWER SUPPLY POWER SUPPLY
+5V_tuner DV33_DM DV18 DV33 AV33 DV25 DV12	POWER +5V POWER +3V3 POWER +1V8 POWER +3V3 POWER +3V3 POWER +2V5 POWER +1V2	TUNER POWER MT5111 POWER MT5111 POWER MT5351 POWER MT5351 ANALOG POWER MT5351 DDR POWER MT5351 POWER
GND	GROUND	GROUND

MediaTek Confidential

Basic Operations & Circuit Description

MODULE

There are 1 pcs panel and 5 pcs PCB including 3 pcs Extension PCB, 1 pcs Timming controller board and 1 pcs Back Light board in the Module.

SET

There are 6 pcs PCBs including 1 pcs ATV Tuner board, 1 pcs keypad board, 1 pcs Remote Control Receiver board, 2 pcs L/R Speakers and 1 pcs Main(Video)board, 1 pcs ATSC board in the SET.

PCB funtion

- 1. Power:
 - (1). Input voltage: AC 120V, 60Hz.
 - (2). To provide power for PCBs.
- 2. Main board: To converter TV signals, S signals, AV signals, Y Pb/Cb Pr/Cr signals, DVI/HDMI signals and D-SUB signals to digital ones and to transmit to Control board.
- 3. Control board: Dealing with the digital signal for output to panel.
- 4. Extension board: Output addressing signals.
- 5. ATV Tuner Board: To convert TV RF signal to video and SIF audio signal to Main board.
- 6. ATSC Board: Receiver and converter ATSC TV signal to transmit to main board.

PCB failure analysis

- 1. CONTROL: a. Abnormal noise on screen. b. No picture.
- 2. MAIN: a. Lacking color, Bad color scale.
 - b. No voice. (Make sure status: Mute / Internal, External speaker)
 - c. No picture but with signals output, OSD and back light.
 - d. Abnormal noise on screen.
- 3. POWER: NO picture, no power output.
- 4. Back Light: a. No picture.
 - b. Flash on screen.
 - c. Darker picture with signals.
- 5. ATV Tuner: a. No ATV Noise
 - b. No ATV signals
- 6. ATSC: a No ATSC TV signal

Main IC Specifications

- M13S128168A (ESMT) 2M x 16 Bit x 4 Banks Double Data Rate SDRAW
- MT5111CE Single-Chip HDTV/CATV Demodulator
- MT5351
 MT5351 is a DTV Backend Decoder SOC which support flexible transport demux,
 HD MPEG-2 video decoder, MPEG1,2, MP3, AC3 audio decoder, HDTV encoder.
 MT5351 is powered by ARM 926EJ with 16K I-Cache and 16K D-Cache. It can support 64Mb to 1Gb DDR DRAM devices with configurable 32/64 bit data bus interface.
- MT8202
 MT8202G is a highly integrated Single-Chip for LCD TV supporting video input and output format up to HDTV. It includes 3D comb filter TV decoder to retrieve the best image from popular composite signals.
- MT8293
 HDMI PanelLink Cinema Receiver
- R2S15102NP
 Digital Power Amplifier R2S15102NP
- WM8776 24-bit, 192kHz Stereo CODEC with 5 Channel I/P Multiplexer

MT5111CE July 2005

MT5111CE

Single-Chip HDTV/CATY Demodulator

Key Features

- Compliant with ATSC digital television standard
- Supports SCTE DVS-031 and ITU J.83 Annex B digital CATV standard
- Accepts direct IF (44 MHz of 43.75MHz) and low IF (5.38MHz)
- Differential IF input with programmable input signal level: 0.5Vpp to
 2Vpp
- NTSC interference rejection capability
- © Compensate echo up to -5 to +47us range forterrestrial HDTV reception
- On-chip 10-bit ADC for HDTV/CATV demodulator
- On-chip programmable gain amplifier
- 25MHz crystal for clock generation
- On-chip PLL clock generation
- Full-digital timing recovery no VCXO is required
- Full-digital frequency offset recovery with wide acquisition range ±1MHz for ATSC and ±250kHz for CATV reception
- Dual digital AGC controls for IF and RF respectively
- MPEG-2 transport stream output in parallel or serial format
- On-chip error rate estimators for TS packets, TCM decoder, and equalizer
- EIA/CEA-909 antenna interface
- Controlled by I²C interface
- Supports sleep mode to save power consumption
- Core power supply: 1.8V peripheral power supply: 3.3V
- 100-LQFP package
- Lead Free

MT5111CE July 2005

Functional Block Diagram

Figure 1: MT5111CE Functional Block Diagram

General Description

MT5111CE is a fully integrated single-chip 8-VSB and 64/256-QAM demodulator. The chip is designed specifically for the digital terrestrial HDTV and CATV receivers, and is fully compliant with ATSC A/53, SCTE DVS-031, and ITU J.83 Annex B standards.

MT5111CE includes a 10-bit A/D converter, 8-VSB/QAM demodulator, TCM (Trellis-Coded Modulation) decoder, and Reed-Solomon Forward Error Correction decoder. Moreover, an internal controller handles the acquisition and tracking to ensure the best receiving performance. The internal controller communicates with the external host controller via the I2C-compatible interface, and also provides direct control to the RF tuner via the second I2C-compatible

interface.

MT5111CE accepts either the direct IF signals centered at 44MHz or 43.75MHz, or the low IF signals centered at 5.38MHz. The center frequency of the incoming IF signal can also be programmed to other frequencies for various applications. An On-chip programmable gain-controlled amplifier is designed to provide sufficient signal amplitude when the received RF signal is weak. The IF signal is first sampled by a 10-bit A/D converter. Afterward, the digitized samples are further processed for adjacent channel interference rejection.

MT5111CE measures the power level of the digitized sequence, and feeds the control voltages back to the RF tuner and the IF amplifier respectively. The control voltages are converted to analog signals through the on-chip 1-bit sigmadelta D/A converters plus the off-chip R-C low-pass filters. The automatic gain control keeps the received power level at a desired level and maximizes the received SNR.

The carrier frequency offset and symbol timing offset are both estimated and compensated by a fully digital synchronizer. The synchronizer also controls the rate conversion in the digital re-sampling device by estimating the sampling frequency offset. All synchronization in MT5111CE are integrated in digital circuits, no external VCXO is required.

The equalizer is adopted to cancel the effect of multi-path fading channel during signal propagation in the air or over cable networks. The equalizer is not only capable of acquiring correct coefficients combination by specified adaptive algorithms, but also programmable to different configurations for various channel conditions.

The following FEC decoder corrects most of the errors by the concatenation

MT5111CE ___ July 2005

of TCM and Reed-Solomon decoders. For CATV reception, MT5111CE detects and aligns de-puncturing timing of the received sequence. The timing synchronization is also automatically performed to lock the FEC frames. The on-chip error rate estimator can simultaneously monitor the receiving qualities at the three stages: equalizer output, TCM decoder, and transport stream packets. The chip finally outputs the decoded MPEG-2 packets in either the serial or parallel transport stream format.

In addition to the demodulation of HDTV signal, MT5111CE also provides the capability to remove the NTSC co-channel interference. To achieve the best reception condition, an antenna interface compliant with EIA/CEA-909 is designed to control the antenna parameters.

MT5111CE is designed with efficient mechanisms of power saving. When configured to enter the sleep mode by the system host, it can immediately turn off almost all embedded hardware except the on-chip controller to reduce the power consumption. Resuming from sleep mode is also triggered by the system host. Upon returning to the operation mode, the chip will try to re-acquire the DTV signal automatically.

MT5111CE July 2005

Pin Description

Signal Name	Pin No	I/O	Description
Transport Stream	<u> </u>		
TSDATA[7:0]	22;23;24,25,28, 29,32,33	О	TS data output
TSSYNC	34	О	TS packet start signal
TSVAL	38 ∄	0	TS output valid signal
TSCLK 🐉	37	0	TS output dock
TSERR #	39 🖟	0	S packet error indicator
Analog Signal			
IN+	82 81	l Lá	A 155 - 155 - 15 - 15 - 15 - 15 - 15 - 1
IN-	81	H	Analog differential IF input
REFTOP	88	"Ö	ADC reference top voltage. Decouple with a capacitor to AVSS
REFBOT	86 87	0	ADC reference bottom voltage. Decouple with a capacitor to AVSS
VCMEXT	87	0	ADC common mode voltage
Antenna Interface			
ANTIF	62	0	CEA-909 Antenna Control Interface
Clock Generation			25MHz crystal input
XTAL1	97	. 1	25MHz crystal input
XTAL2	96	il I	
Control Signals			
HOST_CLK	47	l l	Host processor serial clock input, 5 volt compatible
HOST_DATA	44 §		Host processor senal data pin, 5 volt compatible
TUNER_CLK	69		Tuner senal clock output, 5 volt compatible
TUNER_DATA	68		Tuger serial data pin, 5 volt compatible
IF_AGC	7 1 72 E	#O	IF AGC output
RF_AGC	a 73 a	О	74/4 (27) 1 (4)% See
RESET	48	養	
SA0	66	\$13	Chip slave address selection pin, tie to VDD3.3 or DGND
SA1	67	(A)	Chip slave address selection pin, tie to VDD3.3 or DGND
Power Supply			
VDD3.3	117,26,35,42, 52,60,70	Р	Digital power supply, tie to 3.3V
VDD1.8	18,30,40,45, 55,64,75	Р	Digital power supply, tie to 1.8V
DGND	16,19,27,31, 36,41,43,46,51,56, 61,63,65,71, 7 4	Pass	Digital ground, tie to digital ground plane
AVDD	3,10,12,80,83,91, 92,93,99	P	Analog power supply the to 3.3V
AVSS	7,11,79,85,89,94, 95,98,100	STANDON STANDS	Analog ground lie to analog ground plane
ADVDD3.3	15,76		Digital power supply for analog component, tie to 3.3V
AVDD1.8	90	P	Digital power supply for analog component, tie to 1.8V
Others # 10		22 22	
Others NC	\$,2,4,5,6,8,9 3,14, 20,21,49,50,53,54, 57,58,59,77,78,84	AND THE PROPERTY OF THE PARTY O	Not Connected
10 Hb	21 22 12 PRESERVE	2	

Table 1: Pin Description

MT5111CE

Electrical Characteristic

Recommended Operating Condition

Symbol	Description	Service Service Service Control	Typical	Max	Unit
Tj 🎆	Chip Junction Temperature	ahka Sakan Se-		125	°C
VDD1.8	1.8V Digital Gore Power Supply Voltage	1.62	1.8	1.98	Volt
AVDD	3 3V Analog Power Supply Voltage	3.15	3.3	3.45	Volt
VDD3,3	33V Digital IO Power Supply Voltage	3	3.3	3.6	Volt
AVDD1.8	18V Analog Power Supply Voltage	1.7	1.8	1.9	Volt
VIH	Digital Input High Voltage	3 🔏	3.3	3.6	Volt
VIL	Digital Input Low Voltage	- 4	0,		Volt

Table 2: Recommend Operating Condition Typical Current and Power Dissipation (ASTC Mode)

Symbol	Description	Typical	Unit
I_VDD1.8	1.8V Digital Core Power Supply Current	350	mA
I_AVDD	3.3V Analog Power Supply Current	70	mA
I_VDD3.3	3.3 Digital I/O Power Supply Current	16	mA
I_AVDD1.	1.8V Analog Power Supply Current	2	mA
P_VDD1.8	1.8V Digital Core Power Dissipation	630	mW
P_AVDD	3.3V Analog Power Dissipation	231	mW
P_VDD3.3	3.3V Digital IO Power Dissipation	52.8	∦ mW
P_AVDD1 ₈ 8	1.8V Analog Power Dissipation	3.6	mW
P_Total	Total Power Dissipation	917.4	mW
P_Sleep	Total Power Dissipation (Sleep Mode)	130	mW

Table 3 Typical Current and Power Dissipation (ATSC Mode)

MT5111CE July 200

Typical Current and Power Dissipation (QAM Mode)

Symbol	Description	Typical	Junit , g
I_VDD1.8	1.8V Digital Core Power Supply Current	4175	mA
I_AVDD	3.3V Analog Power Supply Current	70	mA
I_VDD3.3	3.3V Digital I/O Power Supply Current	19	mA
I_AVDD1.8	1.8V Analog Power Supply Current	2	mA
P_VDD1.8	1.8V Digital Core Power Dissipation	315	mW
P_AVDD	3.3V Analog Power Dissipation	231	mW
P_VDD3.3	3.3V Digital IO Power Dissipation	62.7	mW
P_AVDD1.8	1.8V Analog Power Dissipation	3.6	_∰ mW
P_Total	Total Power Dissipation	612.3	mW
P_Sleep	Total Power Dissipation (Sleep Mode)	130	mW

Table 4: Typical Current and Power Dissipation (QAM Mode)

Specifications are subject to change without notice,

MT8293

HDMI PanelLink Cinema Receiver

MT8293 is a low-cost, fully HDMI-compliant receiver that fits directly into home theater products such as LCD TVs, plasma TVs and HDTVs. The receiver is capable of supporting bandwidths up to 165MHz and video resolutions up to 1080p and UXGA. The MT8293 supports the DVD Audio standard, including 7.1- surround audio at 96kHz and stereo audio at 192kHz.

The built-in High-bandwidth Digital Content Protection (HDCP) decryption engine secures the digital link for transmission of valuable high-definition video and audio.Built-in HDCP self-test engine simplifies manufacturing testing.

FEATHRES

- Industry-Standard
 - HDMI 1.1
 - DVI 1.0
 - EIA/CEA-861B
 - HDCP 1.1
- Digital Video Output
 - Integrated PanelLink Core
 - Supports DTV (480i/576i/480p/576p/720p/1080i/1080p) and PC (VGA/XGA/SXGA/UXGA) resolution up to 165MHz (using dual edge to transmit video data for pixel clock over 112MHz)
 - Flexible digital video interface
 - 24-bit RGB/YCbCr 4:4:4
 - 16-bit YCbCr 4:2:2
 - 8-bit YcbCr 4 2:2 (ITU-R BT.656)
 - Integrated RGB <-> /CbGr color space conversion (both 601 and 709)
 - 4:2:2 <-> 4:4:4 converter
 - Integrated Deinterlacer for 480i/576i (SDTV only)
 - Integrated Down Scaler (with CEN)
- Digital Audio Output
 - Industry-standard \$/PDIF and 3-wire output

- Supports high-end audio including DVD-Audio
 - 2-ch. 32-192kHz or
 - 8-ch. 32-96kHz
- Programmable 3-wire output supports numerous low-cost I2S audio DACs
- Supports IEC60958 2-channel PCM
- Capable of carrying IEC61937 compressed audio (Dolby Digital, DTS, etc.)
- Content Protection
 - Integrated HDCP cipher engine
 - External EEPROM for encrypt HDCP keys
 - Builtin HDGP self test
 - Decrypts beth video and audio
- System Operation
 - Register-programmable via slave I2C interface
 - Auto video mode
 - Auto audio mode
 - Flexible interrupt registers with interrupt pin
- Power Management
 - 1.8V core provides low-power operation
 - Flexible power-down modes
- Outline
 - 128-pin QFP package

PRELIMINARY, SUBJECT TO CHANGE WITHOUT NOTICE MTK CONFIDENTIAL, NO DISCLOSURE West the Control of t nakanasaranganak Water the second second CGND18 CVCC18 MUTE IOVCC33 IOGND33 SPDIF 31 IDVCC33 30 IOGND33 29 GPI04 28 GPI05 27 GPI06 SD 26 GPI07 25 CGND18 SD2 24 CVCC18
23 GPI08
22 GPI09
21 GPI010
20 GPI011 SD1 SD0 CVCC18 GPIO8 ws sci IOVCC33 IDGND33 MCLK CGND18 CVCC18 AUUPVCC18 77 78 79 80 81 29 GPI011
19 100VCC33
19 100H012
17 GPI013
18 GPI014
18 GPI015
19 MEDIATEK AUDPGNO 83 AUDPGND XTALIN XTALIVCC REGVCC RSVDL RESET# 88 87 88 TO DESCRIPTION OF THE PROPERTY OF THE PARTY 89 90 91 DVCC38 DGND33 DGND33 DGC_IN SOG_IN CEN SC DT INT QE23 92 93 94 95 96 QE22 QE21 QE20 QE18 VSYNC 0613 0613 0614 0616 0616 0617 0617 0617 0618 0047C03 088 (1089) 0E10 0E11 10ACC33 QEB
QEE
QES
IOVCC33
ODCK
IOGND33
QES
QES
QES
COND18
CVCC18 HSYNC CVCC18 CGND18 Pennedirperandah mengapan Kang がある。 ACCOMPANION TO THE PROPERTY OF Washing salid Dalaging ANTERIOR CERTIFICATION

PRELIMINARY, SUBJECT TO CHANGE WITHOUT NOTICE MTK CONFIDENTIAL, NO DISCLOSURE Wanterania keringahan bah under der er eine der eine eine RESETH INT GPID(IS:0) CSCL DSCL DDC Slave DSDA CSCL CSDA WITCH AND SUMMERSHEET. MCLK KWP KSCL KSDA HDCP osc_in Xtalin Xtalout Keys HDCR Engine RKC SPDIF emelLink TADS Core WS SCK RXO Audio Data Decode RXI RK2 MUTE SCDT CEM DE HSYNC ODCK QE[3:0] System Detect PWR5V Video processi Demterlacer Down-scaler SOG_IN THE Warreness and the second secon

MED	A IATEK			<i>MT</i> 8 2 93
PRELIM	INARY, SUBJECT T	O CHANGE WITHOUT NOTICE		MTK CONFIDENTIAL, NG DISCLOSURE
Item	Symbol	Pin#	Туре	Description
	<u> </u>		DIG	
		and I I	Power/G	round (45)
1	CVCC18	12,24,3 6,45,6 6,81,112,12		Digital Logic ground
2	CGND18	13,25,37,65,80,113,126	Į I	Digital Logic ground
3	IOVCC33	7,19,31,68,77,98,107,120		Input/Output Pin 8.3V power
4	IOGND33	6,18,30,69,78,97,106,118		input/⊙utput Pin ground
5	AVCC	49,53,57,61		TMDS Analog 3.3V power
6	AGND	52,56,60,64	I	TMDS Analog ground
7	PVCC	47	1	TMDS PLL 3.3V power
8	PGND	46	I	TMDS PLL ground
9	AUDPVCC18	82	l s	TMDS PLL ground AGR PLL 1.8V power ACR PLL ground
10	AUDPGND	83	1	TMDS PLL ground AGR PLL 1.8% power ACR PLL ground ACR PLL crystal input 3.3% power ACR PLL regulator 3.3% power
11	XTALVCC	86		ACR PLE crystal input 3.3V power
12	REGVCC	87	l l	3) 100 100 100 100 100 100 100 100 100 10
			uration/F	rogramming (20)
1	INT	91 89 42	О	Interrupt output
2	RESET#	89		Reset Pin. Active low
3	DSCL	42	1	DDC I2C clock, 5V tolerance
4	DSDA	41	1/0	DDC I2C data, 5V tolerance
5	CSCL	40	1 Neg	Configuration I2C clock
6	CSDA	39	I/O	Configuration I2C data
7	KSCL	11	0	KEYS EERPOM I2C clock
8	KSDA	10		KEYS EEPROM 126 data
9	KWP	9	0	KEYS EEPROM write protect
10	SCDT	90	0	Indicates active video at HDMI input port
11	CISCA	38	I	I2C device address select

MTK CONFIDENTIAL, NO DISCLOSURE

Item	Symbol	Pin#	Туре	Description
12	PWR5V	44		TMDS port transmitter detect (hot plug), 5V tolerance
13	RSVDL	88 		Must be tied low
14	RSVD	48	0	Must be tied low No connect
15	NC	43	- 40	No connect
16	NC	8,5 4	-/	No connect
17	OSC_IN	3		Oscillator input, External in
18	SOG_IN	3	l	SOG input, External AD
19	CEN	2	0	Clock enable, for 8202 CEN north
		Dig	ital Audio	p Interface (9)
1	MCLK	79	I/O	Audio master clock input reference
2	SCK	76	O	
3	WS	75	0	2S word select output
4	SD0	74		I2S serial data output
5	SD1	73	0	I2S serial data output
6	SD2	72	0	I2S serial data output
7	SD3	71	0	I2S serial data output S/PDtF audio output
8	SPDIF	70		S/PDIF audio output
9	MUTE	67		Mute audio output
			3PIO Inte	afface (16)
1	GPIO0	3 5	I /O	GP O
2	GPIO1	34		GPIO
3	GPIO2	33	I/O	GPIO

MT8**2**93

PRELIMINARY, SUBJECT TO CHANGE WITHOUT NOTICE

MTK CONFIDENTIAL, NO DISCLOSURE

Item	Symbol	Pin#	Туре	Description
4	GPIO3	32	I/O	GPIO A
5	GPIO4	29	I/O	
6	GPIO5	29 28 28	I/O	GPIO GPIO
7	GPIO6	27	I/O	GPIO GPIO GPIO
8	GPIO7	26	I/O I/O	GPIO
9	GPIO8	23 22	I/O	GPIO
10	GPIO9	22	I/O	GPIO GPIO GPIO GPIO
11	GPIO10	21	104°	GPIO GPIO GPIØ
12	GPIO11	20	I/O	GPIO GPIO
13	GPIO12	17	I/O /	GPI ©
14	GPIO13	16	I/O	GPIO
15	GPIO14		I/O	GPIO
16	GPIO15	14	I/O	GPIO
	2			rface (28)
1	DE	127	0	Data enable
2	VSYNC	1	0	Vertical sync
3	HSYNC	128	Q	Vertical sync Herizontal sync Qutput data clock
4	ODCK	120		Output data clock
5	55	124	0,,,,,	24-bit Even pixel
6	QE1	126 224 454 564 000000000000000000000000000000		24° bit Even pixel
7	QE2	122	0	24-bit Even pixel

MTK CONFIDENTIAL, NO DISCLOSURE

Item	Symbol	Pin #	Туре	Description
8	QE3	121	0	24-bit Even pixel
9	QE4	117	О	24-bit Even pixel 24-bit Even pixel 24-bit Even pixel
10	QE5	116	0	24-bit Even pixel
11	QE6	115 114 111 110	0	
12	QE7	114	O.	24-bit Even pixel
13	QE8	111	ő	24-bit Even pixel
14	QE9	110	0	24-bit Even pixel
15	QE10	109	0	24-bit Even pixel 24-bit Even pixel 24-bit Even pixel
16	QE11	108	0	24-bit Even pixel 24-bit Even pixel 24-bit Even pixel 24-bit Even pixel
17	QE12	105	О	24-bit Even pixel
18	QE13	104	1 20 THE S	24-bit Even pixel
19	QE14	103	0 0	24-bit Even pixel
20	QE15	103	Ø	24-bit Even pixel
21	QE16	01	0	24-bit Even pixel
22	QE17	100	0	24-bit Even pixel
23	QE18	99 acien)	24-bit Even pixel 24-bit Even pixel 24-bit Even pixel
24	QE19	96	O	24-bij Even pixel
25	QE20	95		24-bit Even pixel 24-bit Even pixel 24-bit Even pixel
26	QE21	95	0	24-bit Even pixel 24-bit Even pixel 24-bit Even pixel
27	QE22		O.	24-bit Even pixel
28	QE23	92	0	24-bit Even pixel
	20,00		···········	

OCOCHANICA MANAGEMENTO CONTRACTO CON

MTK CONFIDENTIAL, NO DISCLOSURE

PRELIMI	NARY, SUBJECT T	O CHANGE WITHOUT NOTICE		MTK CONFIDENTIAL, NO DISCLO
Item	Symbol	Pin #	Туре	Description
			ANAL	.OG (8)
			Differen	tial signal
1	RXC+	51		tial signal TMDS input clock pair TMDS input clock pair
1	RXC-	50		ELAIDO III DO ELOCKODAN SE SE SE SE SE SE
1	RX0	55	I	TMDS input data pair
1	RX0	55 54 59	l hed	TMDS input data pair
1	RX1	54		TMDS input data pair
1	RX1	58	ſ	TMDS input data pair TMDS input data pair TMDS input data pair
1	RX2	63	I	TMDS input data pair TMDS input data pair TMDS input data pair roup(2)
1	RX2	62		TMDS input data pair TMDS input data pair roup(2) Crystal input PAD
		943HUH J	PLL g	foup(2)
68	XTALIN	85		Crystatinput AD & & & &
69	XTALOUT	84	O	Crystal output PAD
	3 1			

WESTERN.

Werthern second contrasting

White the company of the contraction of the contrac

MT8202

HDTV-Ready LCD TV Chip

Specifications are subject to change without notice,

MT8202 is a highly integrated single chip for LCD TV supporting video input and output format up to HDTV. It includes 3D comb filter TV decoder to retrieve the best image from popular composite signals. Embedded HDTV/VGA decoders let the high bandwidth input signals perfectly reproduced. 24/16/8 bits digital port may accept all kinds of external digital input video source. New 2nd generation advanced motion adaptive de-interlacer converts accordingly the interlace video into progressive one with overlay of a 2D Graphic processor. Advanced full function color processing with fully 10-bit path provides high quality video contents. Independent two Flexible scalers provide wide adoption to various LCD panels for two of different video sources at the same time. Its on-chip audio processor decodes analog signals from tuner with lip sync control, delivering high quality post-processed sound effect to customers. On-chip microprocessor reduces the system BOM and shortens the schedule of Ul design by high level C program. MT8202 is a cost-effective and high performance HDTV ready solution to LCD TV manufactures.

FEATURES

Video Input

- Support fully programmable 8 Composite/SV input pins
- Support 2 Component inputs with SDTV format & HDTV 480p/720p/1080i format
- Support 1 VGA input up to SXGA (1280x1024x75Hz) including SOG signals
- Support DVI 24 bit RGB digital input
- Support CCIR 656/601 digital input

TV decoder

- Full 10-bit data path to enhance the video resolution and reduce digital truncation ergres
- Support PAL (B, C D, HM, N, I, Nc) PAL (Nc), PAL, NTSC, NTSC 4.43 SECAM
- Automatic Luma/Chroma gain control

Automatic TV standard detection

- 2nd generation NTSC/PAL Motion Adaptive 3D comb filter with huge improvement
- Motion Adaptive 3D Noise Reduction
- VBI decoder for Closed-Caption/XDS/ Teletext/WSS/VPS
- High speed advanced Teletext/Closed-Caption drawing engine directly on OSD plane
- Macrovision detection
- Adjustable horizontal delay for combination of SCART Composite/RCB input

Video Processor

- Fully 10-bit processing to enhance the video quality
- Advanced lesh tone and color processing
- Gamma/anti-Gamma correction
- Advanced Color Transient Improvement (CTI)
- 2D Peaking 3
- Advanced horizontal/vertical sharpness
- Saturation/hue adjustment
- Brightness and contrast adjustment
- Black level extender
- White peak level limiter
- Adaptive Luma/Chroma management
- Automatic detect film or video source
- 3:2/2:2 pull down source detection
- 2nd generation Advanced Motion adaptive de-interlacing
- Arbitrary ratio vertical/horizontal scaling of video, from 1/32X to 32X
- Advanced linear and non-linear Panorama scaling
- Programmable Zoom viewer
- Progressive scan output
- Picture-in-Picture (PIP)
- Picture-Out-Picture (POP)
- Advanced dithering processing for LCD display with 6/8/10 bit output
- Frame rate conversion, 50Hz to 75Hz

Audio DSP

- Support BTSC/EIAJ/A2/NICAM decode
- Stereo demodulation, SAP demodulation

MTK CONFIDENTIAL, NO DISCLOSURE

- Noise reduction
- Mode selection (Main/SAP/Stereo)
- Pink noise and white noise generator
- Equalizer
- Sub-woofer/Bass enhancement
- Noise auto mute
- 3D surround processing include virtual surround
- Audio and video lip synchronization
- Support Reverberation

Audio Input/Output

- Decode audio AF from Tuner
- 2 channel audio L/R digital line in
- 7.1-channel slave digital line in
- Including full 7.1-channels digital output, 2channel bypass and 2-channel headphone output
- Embedded 3 internal DAC output

DRAM Controller

- Supports up to 32M-byte SDR/DDR DRAM
- Supports 2x16 bit SDR/DDR bus interfaces
- Build in a DRAM interface programmable clock to optimize the DRAM performance
- Programmable DRAM access cycle and refresh cycle timings
- Support 3.3/2.5-Volt SDR/DDR Interface

■ Video Output

- TV pattern generator for testing
- Interlaced 50Hz to 120Hz
- Support up to 1366 horizontal points
- 6/8/10-bit single channel or 6/8/10-bit dual channel LVDS output
- Support video gutput mirror and upside down
- 2D-Graphic/3 OSD processor

- Embedded Two backend RGB domain OSD planes and one YUV domain QSD
- Support Text/Bitmap decoder
- Support ine/rectangle/gradient fill
- Support bitblt
- Support color Key function
- Support Clip Mask
- Support Alpha blending with video output
- 65535/256/16/4/2-color bitmap format OSD.
- Automatic vertical scrolling of OSD image
- Support OSD mirror and upside down

Host Micro controller

- Turbo 8032 micro controller
- Built-in internal 373 and 8-bit programmable lower address_port
- 2048-bytes on-chip RAM.
- Up to 4M bytes FLASH-programming interface
- Supports 5/3.3-Volt. FLASH interface
- Supports power-down mode
- Supports additional serial port
- IR control serial input
- Support 2 RS232 interface for external source confimunication
- Support 2 PWM output
- Support DDG2Bi/DDC2B/DDC1/DDCCI
- Programmable GPIO setting for complex external device control

Outline

- 388-pin BGA package
- Lead Free
- 3.3/2.5/1.8-Volt operating voltages
- 0.18um process

MTK CONFIDENTIAL, NO DISCLOSURE

BLOCK DIGRAM

Analog Switch

Analog switches are built in MT8202 to connect to 17 input signals and there is need to add external components to add analog video multiplexes on board.

There are 9 high-speed differential input pairs for 3 sets of YPRPB/VGA input signals.

The 8 Composite/S signal input pins can be fully programmed to connect to any AV/SV inputs.

ADC/ Source Select

The video ADC sample analog input signals. After ADC all signal processing is digital domain. The source select multiplex all inputs from digital and analog video ports and route them into data path.

Audio Interface

Audio interface accept analog audio signal from Tuner, e.g. AF. It also includes preprocessing circuit to filter the noisy audio signals. Audio decoder will decode the B TSC or NCAM, and option best sound with enhanced 3D surround post-processing.

Embedded 7.1 channel digital audio input (slave) and 2 channels (master) digital audio inputs.

Embedded 3 high performance audio DACs

DSP

MTK CONFIDENTIAL, NO DISCLOSURE

DSP handle audio decoding as well as computing intensive jobs. The downloadable micro code enables last function convergence for various audio standards in the world.

Advanced DSP engine supports full functions of sound effects.

MDDi/Scaler

MDDi is MTK proprietary desinterlaging technology, 2nd generation MDDi solution provides improved low angle processing and more accurate motion detection for all interlace sources. The techniques reduce jagged edges and broken images. The MDDi engine supports both Main and Sub channel SDTV inputs or one channel 1080 high quality de-interlacing.

Two totally independent scaler support full functions of PIP/POP and frame rate conversion.

With MDDi and high quality scaler, MT8202 guarantee all input format could be translated to output format with best video quality for motion and still pictures.

Color/Gamma

MT8202 includes advanced color management function to allow user to improve video quality with fully flexibility. With contrast/hue/saturation/Gamma/anti-Gamma/flesh tone function, MT8202 deliver the best video quality with vivid color.

Advanced dither function support 6/8/10-bit video output for any kinds of display wiit (LCD REDP, CRT)

8032

On-chip Turbo8032 provide the most cost effective development environment for system house Well-proven F/W could speed up the system design significantly.

2D-G/OSD

On-chip graphic engine draw bitmap OSD and store them into DRAM OSD read data from DRAM and display on screen. With 2D-G and OSD. The computing power requirement of μ P will be minimized.

One YUV space OSD added to support Main/PIP Telefext/Close-caption functions.

MT5351

DTV Backend Decoder SOC

Specifications are subject to change without notice,

MediaTek MT5351 is a DTV Backend Decoder SOC which support flexible transport demux, HD MPEG-2 video decoder, JPEG decoder, MPEG1,2, MP3, AC3 audio decoder, HD TV encoder. The MT5351 enables consumer electronics manufactures to build high quality, feature-rich DTV, STB or other home entertainment audio/video device.

World-Leading Technology: HW support worldwide major broadcast network and CA standards, include ATSG, DVB, OpenCable, DirectTV, MHP.

Rich Feature for high value product: To enrich the feature of DTV, the MT5351 support 1394-56 component to external DVHS. Dual display, PIP/POP and quad pictures provide user a whole new viewing experience.

Credible Audio/Video Quality: The MT5351 use advanced motion adaptive de-interlace algorithm to achieve the best movie/video playback. The embedded 4X over-sample video DAC could generate very fine display quality. Also, the audio 3D surround and equalizer provide professional entertainment

Key Features:

- 1. Flexible Demuxer
- 2. Dual HD MPEG2 Video Decoder
- 3 Dual MPEG1,2, MP3, AC3 Audio decode
- 4. Dual Display
- 5. PIP/POP/Quad Mode
- IEEE1394-5C
- 7. POD/DVB-CI

Application:

- 1. DTV
- Set-top Box
- 3. DTV Recorder
- 4. Home Media Center

Order Information:

MT5351AG → one HD decoder MT5351CG → two HD decoder All Package are Lead Free

DDDD Date Code
#: Subcontractor Code
LLLL: Lot Number

MTK CONFIDENTIAL, NO DISCLOSURE

General Feature List

■ Host CPU

- ARM 926EJ
- 16K I-Cache and 16K D-Cache
- 8K Data TCM and 8K Instruction TCM
- JTAG ICE interface
- Watch Dog timers

■ Transport Demuxer

- Support 3 independent transport stream inputs
- Support serial / parallel interface for each transport stream input.
- Support ATSC DVB, and MPEG2 transport stream inputs
- Programmable sync detection.
- Support DES/3-DES de-scramble
- 96 PID filter and 128 section filters.
- Support TS recording via IEEE1394 interface

■ MPEG2 Decoder

- Support dual MPEG 2 HD decoder or up to 8 SD decoder
- Complaint to MP@ML, MP@HL and MPEG-1 video standards

■ JPEG Decoder

Decode Base-line or progressive JPEG file

2D Graphics

- Support multiple color modes
- Point, horizontal /vertical line primitive drawing
- Rectangle fill and gradient fill functions
- Bitblt with transparent, alpha blending, alpha composition and stretch
- Font rendering by color expansion
- Support clip masks
- YCbCr to RGB color space transfer

OSD Display

- 3 linking list OSDs with multiple color mode
- OSD scaling with arbitrary ratio from 1/2x to 2x
- Square size, 32x32 or 64x64 pixel hardware cursor

■ Video Processing

Advanced Motion adaptive de-interlace on SDTV resolution

- Support dip
- 3:2/2:2 pull down source detection
- Arbitrary ratio vertical/horizontal scaling of video, from 1/15X to 16X
- Support Edge preserve
- Support horizontal edge enhancement
- Support Quad-Picture

Main Display

- Mixing two video and three OSD and hardware cursor
- Contrast/Brightness adjustment
- Gamma correction
- Picture in-Picture (PIP)
- Picture-Out Picture (POP)
- 480i/576i/480p/576p/720p/1080i output

Auxiliary Display

- Mixing one video and one OSD
- 480i/576i output

■ TV Encoder

- Support NTSC M/N, PAL M/N/B/D/G/H/I
- Macrovision Rev 7.1.L1
- CGMS/WSS
- Closed Captioning
- Six12-bit video DACs for CVBS, S-video or RGB/YPbPr output

■ Digital Video Interface

- Support SAV/EAV
- Support 8/16 for SD/HD digital video input
- Support 8/16/24 bits digital output for main display
- Support 8 bits digital output for aux display

■ DRAM Controller

- Supports 64Mb to 1€b DDR DRAM devices
- Configurable 32/64 bit data bus interface
- Support DDR266, DDR333, DDR400 JEDEC specification compliant SDRAM

Peripheral Bus Interface

- Support NOR/NAND flash
- Support CableCard host control bus

Audio

MTK CONFIDENTIAL, NO DISCLOSURE

- Support Dolby Digital AC-3 decoding
- MPEG-1 layer I/II, MP3 decoding
- Dolby prologic II
- Main audio output: 5.1ch + 2ch (down mix)
- Auxiliary audio output: 2ch
- Pink noise and white noise generator
- Equalizer
- Bass management
- 3D surround processing include virtual surround
- Audio and video lip synchronization
- Support reverberation
- SPDIF out
- 12S I/F

Peripherals

- Three UARTs with Tx and Rx EIFO, two of them have hardware flow control
- Two serial interfaces, one is master only, the other can be set to master mode or slave mode
- Two PWMs
- IR blaster and receiver
- IR blaster and receiver
 IEEE 1394 link controller
 IDE pus ATA/ATAPI7 UDMA mode 5, 100 MB/s
- Real-time clock and watchdog controller
- Memory card I/F: MS/MS-Pro, SD, CF, and MMC
- PCMCIA/POD/CI interface

IC Outline

- 471 Pin BGA Package
- 3.3V/1.2V dual Voltage

MTK CONFIDENTIAL, NO DISCLOSURE

Electrical Characteristics

Absolute Maximum Rating

Symbol	Paraméters / A	Value	Unit
IOVDD	3.3V supply voltage 1.2V supply voltage Analog supply voltage DDR supply voltage	-0.5 to 4.6 -0.5 to 1.8	V
IOVDD CVDD	3.3V supply voltage 1.2V supply voltage Analog supply voltage	-0.5 to 1.8	V
AVDD	Analog supply voltage DDR supply voltage	-0.5 to 4.6	V
RVDD	DDR supply voltage	-0.5 to 3.5	V
VIN(3.3V)	Input Voltage(3.3V IO)	VSS-1.0 to 3.63	V
VIN(3.3V) VIN(5V tolerance) Vout Ts	Input Voltage(5V tolerance IO)	VSS-1.0 to 5 5	V
Vout	Output Voltage	-0.3 to VDD3+0.3	V
Vout Ts	Storage Temperature	40 to 150	C
Ta	Ambient Temperature	0 to 70	C

DC Characteristics

				437 T	
Symbol	Parameters.	Min 🦼	Тур	Max	Unit
IOVDD	3.3 V supply voltage 1.2 V supply voltage	2.97 1.08	3.3	3.63	V
CVDD	3.3V supply voltage 1.2V supply voltage	1.08	1.2	1.32	V
AVDD	1.2V supply voltage Analog supply voltage	2.97	3.3	3.63	V
VIH(3.3V)	3.3V input voltage high	2.0			V
VIL(3.3V)	3.3V input voltage low			0.8	V
VOH(3.3V)	3.3 V output voltage high	2.4	. 4		
VOL(3.3V)	3.3V output voltage low 3/5V tolerance input voltage high 3/5V tolerance output voltage high 3/5V tolerance output voltage high 3/5V tolerance output voltage low Junction operation temperature Power dissapation			0.4	
VIH(3/5V)	3/5V tolerance input voltage high	2:0			V
VIL(3/5V)	3/5V tolerance input voltage low			0.8	V
VOH(3/5V)	3/5V tolerance output voltage high	2.4		į.	V
VOL(3/5V)	3/5V tolerance output voltage low	2.4	25	0.4	V
Tj	Junction operation temperature	-40	25	125	C
PD(estimate)	Junction operation temperature Power dissapation Power down mode		1.5		W
Pdown	Power down mode		2		mW

MTK CONFIDENTIAL, NO DISCLOSURE

DDR ELECTRICAL Characteristics and DC Operating Condiction

Symbol	Parameters	Min 🌲	Тур	Max	Unit
RVDD(DDR333) DDR I/O supply voltage for DDR266	2.3	2.5	2.7	V
	or DDR333				
RVDD(DDR400) DDR I/O supply voltage for DDR400	2.5 0.49*RVDD	2.6	2.7 0 0.51*RVDD	V
DVREF	DDR I/O reference voltage	0.49*R ∀ DD	0.5*RVDD	0.51*RVDD	V
VTT	DDR I/O termination voltage	VREF-0.04	VREF	VREF+0.04	V
VIH	DDR input voltage high	VREF+0.15		RVDD+0.3	V
VIL	DDR input voltage high DDR input voltage low	-0.3		VREF-0.15	V

DDR AC Operating Condiction

	Will your services and the services are services are services and the services are services a	172		
Symbol	Parameters	∉ Min	Тур Мах	Unit
VIH	Input high voltage, DQ DQS	DVREF	#0.31 DVREF-0	V
VIL	Input low voltage, DQ DQS		‡ 0.31 DVREF-0 1.5	.31 V
Vslew	Input minimum slew rate Input maximum swing	1.0		V/ns
Vswing	Input maximum swing		1.5	V

10Wx2ch(SE)/20Wx1ch(BTL) Digital Audio Power Amplifier

1.Outline

R2S15102NP is a Digital Power Amplifier IC developed for TV. R2S15102NP can realize maximum Power 10W \times 2ch (VD = 24V,THD = 10%, SE) at 8 Ω load.

It is possible to replace from the conventional analog amplifier system to the digital amplifier system easily.

2.Feature

High Output Power(THD=10%)without external Heat Sink (note) the thermal pad is soldered the thermal pad with the printed-circuit board directly.

Recommanded Power Condition

SE operation mode :10Wx2ch(VD=24V) at 8 Ω BTL operation mode: 20Wx1ch(VD=18V) at 8 Ω

The RENESAS original circuits realize high power efficiency, low noise and low distortion characteristics.

Pop sound Less

Built-in protection function

(Over Current, Over Temperature and Under Voltage)

Built-in Mute and Stand-by function

3. Operating Condition

Recommanded Power supply voltage: from 11V to 25V Recommanded Speaker Impedance: from 4 to 8Ω

4.Block Diagram

5 . Pin Configuration(Table.1)

No.	NAME	I/O	Description					
1	OUT1	О	Power Output pin #1					
2	VD1	-	Power supply p	Power supply pin for power output stage #2				
3	STBYL	I	Stand-by control pin. When this is "L", circuit current is reduced. There is the pull-down resistor: 50Kohm(typ.).					
4	PWM1	I	PWM input pin #1 (for phase compensation)					
5	IN1	I	Analog input #1 resistance.	Analog input #1. The gain is depended on the external				
6	CBIAS	I/O	1 *	onnected so that it may not be influenced of hange(Ripple Filter).				
7	ROSC	I	Control pin for	PWM carrier frequency				
8	GND	ı	GND pin for an	alog block				
9	VREF	I/O	Capacitor conne voltage source	Capacitor connection pin for analog block reference voltage source				
10	PROT	О	Protection Timer pin. At protection mode, the output becomes "L"-level.					
			(The timing capacitor is connected)					
11	IN2	I	SE operation	Analog input #2(as same as IN1)				
		I	BTL operation	When this is connected to DVDD pin via				
				the resister, Reversed signal of OUT1 is output to OUT2.				
12	PWM2	I	PWM input pin	#2 (for phase compensation)				
13	MUTEL	I	Mute control pi	n. When this is "L", it becomes mute status.				
14	VD2	1	Power supply p	Power supply pin for power output stage #2				
15	OUT2	O	Power Output pin #2					
16	VS2	-	Ground pin for power output stage #2					
17	HB2	I/O	Capacitor connection pin for bootstrap					
18	DVDD	О	Built-in power supply pin for internal digital block.					
19	HB1	I/O	Capacitor connection pin for bootstrap #1					
20	VS1	-	Ground pin for power output stage #1					

6 . Absolute Maximum Rating(Table.2)

Symbol	Parameter	Condition	Value	Unit
VD max	Maximum VD Voltage VD1,VD2 pin voltage		27	V
HB max	Maximum HB Voltage	HB1, HB2 pin voltage	40	V
Pd	Power dispassion	Ta = 25°C :See Fig.3	4.2	W
ja	Thermal Resistance	See Fig.3	30	/W
Tj	Junction temperature	Maximum Temperature	150	
Та	Operating ambient temperature	Temperature range	-20 ~ 75	
Tstg	Storage temperature	Temperature range	-40 ~ 150	

Fig.3 Thermal De-rating(on PCB: printed-circuit board): Size 75mm x 75mm

(NOTE)

PCB pattern design for high effective thermal conductivity

(1) The exposed die pad is directly soldered with the printed-circuit board pattern .

Consideration about the PCB design

The Power dispassion at 10Wx2ch(SE) or 20Wx1ch(BTL) is estimated almost 2W. It has enough margin, designing the PCB at ja=30 /W.

(1)PCB basic design (copper plane)

<PCB size estimation >

10Wx2ch: 75mm x 75mm

The GND&Power line total area size is also equal to the above GND&Power line total area size of the 4layer PCB.

<PCB size estimation >

 $10Wx2ch: (75+)mm \times (75+)mm$

(2)PCB Thermal Pad

The exposed die pad is directly soldered with the printed-circuit board pattern.

7. Recommended Operating condition(Table.3)

Symbol	Parameter	Condition	MIN	TYP	MAX	Unit
VD	Supply Voltage	VD1,VD2 pin voltage	11	-	25	V
VH	Control voltage of high level	STBYL, MUTEL	2	-	5	V
VL	Control voltage of low level	STBYL, MUTEL	0	-	0.8	V
fosc	Carrier Frequency	R= 33 k	300	400	600	kHz

(note) · STBYL: High level:normal operation Low level:Stand-by

· MUTEL:High level:normal operation Low level:Mute

· The carrier frequency can be changed by the resistance at Pin#.7 .

8 . Electronic Characteristics(Table.4)

(Unless otherwise noted, Ta=25°C, VD=24V, Carrier Frequency=400kHz, f=1kHz,SE operation)

Symbol	Parameter		Condition	MIN	TYP	MA X	Unit
IVD	Circuit Current		No Signal	TBD	28	TBD	mA
			MUTE	TBD	-	TBD	mA
			Stand-by	-	-	10	uA
VDPR	Detection Vol	tage	VD under-voltage	TBD	9.8	TBD	V
TPR	Protection Temperature		Thermal Shut-dawn	-	150	-	
TRL	Release Temperature		Thermal Shut-dawn	-	120	-	
IPR	Protection Current		Output over-current	-	6	-	A
Pomax	Pomax Maximum a output	at SE	THD=10%, VD=24V, RL=8	TBD	10	-	W/ch
power	at BTL	THD=10%, VD=18V, RL=8	TBD	20	-	W	
THD	Total Harmonic Distortion		Po=1W	-	0.1	TBD	%
No	Output Noise level		A-Weighted filter	-	(100)	TBD	uVrm s
Eff	Power	at SE	Po=10+10W	TBD	93	ı	%
E	Efficiency at BTL		Po=20W	TBD	89	-	%
Mute	Mute Attenuation			TBD	80	1	dB
PSRR	Ripple Rejection Ratio		dVD=100mVrms,f=100 Hz	TBD	50	-	dB

9 . Application Examples

Fig.4 SE operation mode(10Wx2ch)

(note)

"R for GND" 's are for the evaluation only and not needed actually.

Fig.5 BTL operation mode (20W)

24-bit, 192kHz Stereo Codec with 5 Channel I/P Multiplexer

DESCRIPTION

The WM8776 is a high performance, stereo audio codec with five channel input selector. The WM8776 is ideal for surround sound processing applications for home hi-fi, DVD-RW and other audio visual equipment.

A stereo 24-bit multi-bit sigma delta ADC is used with a five stereo channel input mixer. Each ADC channel has programmable gain control with automatic level control. Digital audio output word lengths from 16-32 bits and sampling rates from 32kHz to 96kHz are supported.

A stereo 24-bit multi-bit sigma delta DAC is used with digital audio input word lengths from 16-32 bits and sampling rates from 32kHz to 192kHz. The DAC has an input mixer allowing an external analogue signal to be mixed with the DAC signal. There are also Headphone and line outputs, with volume controls for the headphones.

The WM8776 supports fully independent sample rates for the ADC and DAC. The audio data interface supports I²S, left justified, right justified and DSP formats.

The device is controlled in software via a 2 or 3 wire serial interface, selected by the MODE pin, which provides access to all features including channel selection, volume controls, mutes, and de-emphasis facilities.

The device is available in a 48-pin TQFP package.

BLOCK DIAGRAM

FEATURES

- Audio Performance
 - 108dB SNR ('A' weighted @ 48kHz) DAC
 - 102dB SNR ('A' weighted @ 48kHz) ADC
- DAC Sampling Frequency: 32kHz 192kHz
- ADC Sampling Frequency: 32kHz 96kHz
- Five stereo ADC inputs with analogue gain adjust from +24dB to –21dB in 0.5dB steps
- Programmable Limiter or Automatic Level Control (ALC)
- Stereo DAC with independent analogue and digital volume controls
- · Stereo Headphone and Line Output
- 3-Wire SPI Compatible or 2-Wire Software Serial Control Interface
- Master or Slave Clocking Mode
- Programmable Audio Data Interface Modes
 - I²S, Left, Right Justified or DSP
 - 16/20/24/32 bit Word Lengths
- Analogue Bypass Path Feature
- Selectable AUX input to the volume controls
- 2.7V to 5.5V Analogue, 2.7V to 3.6V Digital supply Operation

APPLICATIONS

- · Surround Sound AV Processors and Hi-Fi systems
- DVD-RW

PIN CONFIGURATION

ORDERING INFORMATION

DEVICE	TEMPERATURE RANGE	PACKAGE	MOISTURE SENSITIVITY LEVEL	PEAK SOLDERING TEMPERATURE
WM8776EFT/V	-25 to +85°C	48-pin TQFP	MSL2	240°C
WM8776EFT/RV	-25 to +85°C	48-pin TQFP (tape and reel)	MSL2	240°C
WM8776SEFT/V	-25 to +85°C	48-pin TQFP (lead free)	MSL2	260°C
WM8776SEFT/RV	-25 to +85°C	48-pin TQFP (lead free, tape and reel)	MSL2	260°C

Note:

Reel quantity = 2,200

PIN DESCRIPTION

PIN NAME TYPE DE 1 AIN2L Analogue Input Channel 2 left input multiplexor v 2 AIN1R Analogue Input Channel 1 right input multiplexor	ESCRIPTION virtual ground
	virtual around
2 AIN1R Analogue Input Channel 1 right input multiplexor	virtual ground
	virtual ground
3 AIN1L Analogue Input Channel 1 left input multiplexor v	virtual ground
4 DACBCLK Digital input/output DAC audio interface bit clock	
5 DACMCLK Digital input Master DAC clock; 256, 384, 512	2 or 768fs (fs = word clock frequency)
6 DIN Digital Input DAC data input	
7 DACLRC Digital input/output DAC left/right word clock	
8 ZFLAGR Open Drain output DAC Right Zero Flag output (extended)	ernal pull-up resistor required)
9 ZFLAGL Open Drain output DAC Left Zero Flag output (exter	rnal pull-up resistor required)
10 ADCBCLK Digital input/output ADC audio interface bit clock	
11 ADCMCLK Digital input ADC audio interface master cloc	k
12 DOUT Digital output ADC data output	
13 ADCLRC Digital input/output ADC left/right word clock	
14 DGND Supply Digital negative supply	
15 DVDD Supply Digital positive supply	
16 MODE Digital input Control interface mode select (5)	V tolerant)
17 CE Digital input Serial interface Latch signal (5V	tolerant)
18 DI Digital input Serial interface data (5V tolerant)	:)
19 CL Digital input Serial interface clock (5V toleran	et)
20 HPOUTL Analogue Output Headphone left channel output	
21 HPGND Supply Headphone negative supply	
22 HPVDD Supply Headphone positive supply	
23 HPOUTR Analogue Output Headphone right channel output	
24 NC Not bonded	
25 NC Not bonded	
26 VOUTL Analogue output DAC channel left output	
27 VOUTR Analogue output DAC channel right output	
28 VMIDDAC Analogue output DAC midrail decoupling pin ; 10u	uF external decoupling
29 DACREFN Analogue input DAC negative reference input	
30 DACREFP Analogue input DAC positive reference input	
31 AUXR Analogue input DAC mixer right channel input	
32 AUXL Analogue input DAC mixer left channel input	
33 VMIDADC Analogue Output ADC midrail divider decoupling p	in; 10uF external decoupling
34 ADCREFGND Supply ADC negative supply and substra	ate connection
35 ADCREFP Analogue Output ADC positive reference decoupling	ng pin; 10uF external decoupling
36 AVDD Supply Analogue positive supply	
37 AGND Supply Analogue negative supply and su	ubVstrate connection
38 AINVGR Analogue Input Right channel multiplexor virtual	
39 AINOPR Analogue Output Right channel multiplexor output	
40 AINVGL Analogue Input Left channel multiplexor virtual gr	round
41 AINOPL Analogue Output Left channel multiplexor output	
42 AIN5R Analogue Input Channel 5 right input multiplexor	virtual ground
43 AIN5L Analogue Input Channel 5 left input multiplexor vi	irtual ground
44 AIN4R Analogue Input Channel 4 right input multiplexor	virtuai ground
44 AIN4R Analogue Input Channel 4 right input multiplexor	irtual ground
44 AIN4R Analogue Input Channel 4 right input multiplexor 45 AIN4L Analogue Input Channel 4 left input multiplexor vi	irtual ground virtual ground

Note: Digital input pins have Schmitt trigger input buffers and pins 16, 17, 18 and 19 are 5V tolerant.

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings are stress ratings only. Permanent damage to the device may be caused by continuously operating at or beyond these limits. Device functional operating limits and guaranteed performance specifications are given under Electrical Characteristics at the test conditions specified.

ESD Sensitive Device. This device is manufactured on a CMOS process. It is therefore generically susceptible to damage from excessive static voltages. Proper ESD precautions must be taken during handling and storage of this device.

Wolfson tests its package types according to IPC/JEDEC J-STD-020B for Moisture Sensitivity to determine acceptable storage conditions prior to surface mount assembly. These levels are:

MSL1 = unlimited floor life at <30°C / 85% Relative Humidity. Not normally stored in moisture barrier bag.

MSL2 = out of bag storage for 1 year at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

MSL3 = out of bag storage for 168 hours at <30°C / 60% Relative Humidity. Supplied in moisture barrier bag.

CONDITION	MIN	MAX
Digital supply voltage	-0.3V	+3.63V
Analogue supply voltage	-0.3V	+7V
Voltage range digital inputs (DI, CL, CE and MODE)	DGND -0.3V	+7V
Voltage range digital inputs (MCLK, DIN, ADCLRC, DACLRC, ADCBCLK and DACBCLK)	DGND -0.3V	DVDD + 0.3V
Voltage range analogue inputs	AGND -0.3V	AVDD +0.3V
Master Clock Frequency		37MHz
Operating temperature range, T _A	-25°C	+85°C
Storage temperature	-65°C	+150°C

Notes:

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital supply range	DVDD		2.7		3.6	V
Analogue supply range	AVDD, HPVDD, DACREFP		2.7		5.5	٧
Ground	AGND, DGND, DACREFN, ADCREFGND			0		V
Difference DGND to AGND			-0.3	0	+0.3	V

Note: digital supply DVDD must never be more than 0.3V greater than AVDD.

^{1.} Analogue and digital grounds must always be within 0.3V of each other.

ELECTRICAL CHARACTERISTICS

Test Conditions

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, T_A = +25°C, fs = 48kHz, MCLK = 256fs unless otherwise stated.

AVDD - OV, DVDD - 3.5V, ACIVE	00,0000		MIZ, WOLK -	20013 0111033	Other Wise State	u.
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Digital Logic Levels (TTL Levels	s)					
Input LOW level	V _{IL}				0.8	V
Input HIGH level	V _{IH}		2.0			٧
Output LOW	V _{OL}	I _{OL} =1mA			0.1 x DVDD	V
Output HIGH	VoH	I _{OH} =1mA	0.9 x DVDD	.,,,		V
Analogue Reference Levels						
Reference voltage	V _{VMID}			AVDD/2		V
Potential divider resistance	R _{VMID}			50k		Ω
DAC Performance (Load = 10k 0	•				-L	
0dBFs Full scale output voltage	T .			1.0 x		Vrms
, ,				AVDD/5		• 11110
SNR (Note 1,2)		A-weighted,		108		dB
, ,		@ fs = 48kHz				QD.
SNR (Note 1,2)		A-weighted		108		dB
, , ,		@ fs = 96kHz		100		QD.
Dynamic Range (Note 2)	DNR	A-weighted, -60dB		108		dB
		full scale input		100		uВ
Total Harmonic Distortion (THD)		1kHz, 0dBFs		-97	-90	dB
DAC channel separation				100		dB
Power Supply Rejection Ratio	PSRR	1kHz 100mVpp		50		dB
		20Hz to 20kHz		45		dB
		100mVpp				
Headphone Buffer						
Maximum Output voltage				0.9		Vrms
Max Output Power (Note 4)	P _o	R _L = 32 Ω		25		mW
		$R_L = 16 \Omega$		50		mW
SNR (Note 1,2)		A-weighted	85	92		dB
Headphone analogue Volume Gain Step Size			0.5	1	1.5	dB
Headphone analogue Volume Gain Range		1kHz Input	-73		+6	dB
Headphone analogue Volume Mute Attenuation		1kHz Input, 0dB gain		100		dB
Total Harmonic Distortion	THD+N	1kHz, R _L = 32Ω @ P _o =		-80	-60	dB
+Noise		10mW rms		0.01	0.1	%
		1kHz, $R_L = 32\Omega$ @ $P_o =$		-77	-40	dB
		20mW rms		0.014	1.0	%
Power Supply Rejection Ratio	PSRR	20Hz to 20kHz, without supply decoupling		-40		dB
ADC Performance	•					
Input Signal Level (0dB)				1.0 x		Vrms
				AVDD/5		VIIIIG
SNR (Note 1,2)		A-weighted, 0dB gain		102		dB
• • •		@ fs = 48kHz				4.2
SNR (Note 1,2)		A-weighted, 0dB gain		100		dB
•		@ fs = 96kHz		.00		QL)
		64 x OSR				
Dynamic Range (note 2)		A-weighted, -60dB full scale input		102		dB
Total Harmonic Distortion (THD)		1kHz, 0dBFs		00	90	- DR
rotar Harmonic Distollion (TMD)	L	IKITZ, UUDITS		-90	-80	DB

Test Conditions

AVDD = 5V, DVDD = 3.3V, AGND = 0V, DGND = 0V, T_A = +25°C, fs = 48kHz, MCLK = 256fs unless otherwise stated.

	/		ti rej moent	20010 0111000 1	31110111100 310	ica.
		1kHz, -3dBFs		-95	-85	dB
ADC Channel Separation		1kHz Input		90		dB
Programmable Gain Step Size			0.25	0.5	0.75	dB
Programmable Gain Range		1kHz Input	-21		+24	dB
(Analogue)						
Programmable Gain Range		1kHz Input	-103		-21.5	dB
(Digital)						
Mute Attenuation (Note 6)		1kHz Input, 0dB gain		76		dB
Power Supply Rejection Ratio	PSRR	1kHz 100mVpp		50		dB
		20Hz to 20kHz		45		dB
		100mVpp				
Analogue input (AIN) to Analogu	ue output (VOL	JT) (Load=10k Ω, 50pF, g	gain = 0dB)	Bypass Mode		
0dB Full scale output voltage				1.0 x		Vrms
				AVDD/5		
SNR (Note 1)			90	100	<u></u>	dB
THD		1kHz, 0dB		-90		dB
		1kHz, -3dB		-95		dB
Power Supply Rejection Ratio	PSRR	1kHz 100mVpp		50		dB
		20Hz to 20kHz		45		dB
		100mVpp				
Mute Attenuation		1kHz, 0dB		100		dB
Supply Current						
Analogue supply current		AVDD = 5V		48		mA
Digital supply current		DVDD = 3.3V		8		mA

Notes:

- Ratio of output level with 1kHz full scale input, to the output level with all zeros into the digital input, measured 'A' weighted.
- All performance measurements done with 20kHz low pass filter, and where noted an A-weight filter. Failure to use
 such a filter will result in higher THD+N and lower SNR and Dynamic Range readings than are found in the Electrical
 Characteristics. The low pass filter removes out of band noise; although it is not audible it may affect dynamic
 specification values.
- 3. VMID decoupled with 10uF and 0.1uF capacitors (smaller values may result in reduced performance).
- 4. Harmonic distortion on the headphone output decreases with output power.
- 5. All performance measurement done using certain timings conditions (Please refer to section 'Digital Audio Interface').
- 6. A better MUTE Attenuation can be achieved if the ADC gain is set to minimum.

TERMINOLOGY

- 1. Signal-to-noise ratio (dB) SNR is a measure of the difference in level between the full scale output and the output with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).
- Dynamic range (dB) DNR is a measure of the difference between the highest and lowest portions of a signal.
 Normally a THD+N measurement at 60dB below full scale. The measured signal is then corrected by adding the 60dB to it. (e.g. THD+N @ -60dB= -32dB, DR= 92dB).
- 3. THD+N (dB) THD+N is a ratio, of the rms values, of (Noise + Distortion)/Signal.
- 4. Stop band attenuation (dB) Is the degree to which the frequency spectrum is attenuated (outside audio band).
- Channel Separation (dB) Also known as Cross-Talk. This is a measure of the amount one channel is isolated from the other. Normally measured by sending a full scale signal down one channel and measuring the other.
- 6. Pass-Band Ripple Any variation of the frequency response in the pass-band region.

CPT TFT-LCD

CLAA320WA01 C

ACCEPTED BY:		

APPROVED BY	CHECKED BY	PREPARED BY

RECORD OF REVISIONS

Revision No.	Date	Page	Description
Ver1.0	2005/8/29	all	Preliminary specification was first issued.
		3	Module Weight = 8000(Max)→8200(Max)
		4	Input Voltage of Inverter =21.6 (Min)→ -0.3(Min) Input Voltage of Inverter =26.4 (Max)→27 (Max) Inverter Dimming=0 (Min)→ -0.3(Min) Inverter Dimming=5(Max)→5.5(Max) Backlight on Control Voltage=2(Min)→ -0.3(Min) Backlight on Control Voltage=5(Max)→5.5(Max)
	2005/9/28 8		LCD Power Supply Current—White=400(Typ.)→350(Typ.) LCD Power Supply Current—White= (Max)→400(Max) LCD Power Supply Current—Black=350(Typ.)→300(Typ.) LCD Power Supply Current—Black= (Max)→400(Max) LCD Power Supply Current—RGB stripe=390(Typ.)→320(Typ.) LCD Power Supply Current—RGB stripe= (Max)→400(Max)
			Input Frequency of Inverter=60.5(Min)→61.5(Min) Input Frequency of Inverter=66.5(Max)→65.5(Max)
Ver2.0		10	Pin 25=NC→DE/Sync
		DCLK Freq.=68(Min)→62(Min) Horizontal Line Rate=43.2(Min)→37.1 Horizontal Line Rate=48.5(Typ.)→48. Horizontal Line Rate=53.3(Max)→56N Horizontal Effective Time=(Min)→13 Horizontal Effective Time=(Max)→1 Vertical Frame Rate=54.6(Min)→47(Note of the content	
		22	Response Time Tr= 9(Typ.) \rightarrow 10(Typ.) Response Time Tr=16(Max) \rightarrow 17(Max) Response Time Tf= 7(Typ.) \rightarrow 6(Typ.) Response Time Tf=9(Max) \rightarrow 8(Max)
	2005/10/13	3	Module Weight = 8200(Max)→8300(Max)
	2005/10/13	8	Power Consumption=(115, Typ)→(120, Typ)

CONTENTS

No	Item	Page
1	OVERVIEW	3
2	ABSOLUTE MAXIMUM RATINGS	4
3	ELECTRICAL CHARACTERISTICS	5
4	INTERFACE PIN CONNECTION	10
5	INTERFACE TIMING	13
6	BLOCK DIAGRAM	18
7	MECHANICAL SPECIFICATION	19
8	OPTICAL CHARACTERISTICS	21
9	RELIABILITY TEST CONDITIONS	26
10	PACKAGING	27
11	HANDLING PRECAUTIONS FOR TFT-LCD MODULE	30

1. OVERVIEW

CLAA320WA01 is 32" color (80.04cm) TFT-LCD (Thin Film Transistor Liquid Crystal Display) module composed of LCD panel, LVDS driver ICs, control circuit, backlight, and inverter. By applying 8 bit digital data, 1366*768, 16.7 million-color images are displayed on the 32" diagonal screen. General specification are summarized in the following table:

1.1 GENERAL INFORMATION

ITEM		SPECIFICATION				
Display Area (mm)	697.68 (H) × 392.25 (V) (31.51 inch diagonal)				
Number of Pixels		1366 (H) × 768 (V) 16:9				
Pixel Pitch (mm)		0.51075 (H) × 0.51075 (V)				
Color Pixel Arrang	gement	RGB Vertical Strip				
Display Mode		Normally Black				
Number of Colors		16.7M (8bit)				
Surface Treatment		Hard coating: 2H Anti-Clare + LR <less 2%="" reflection.<="" td="" than=""></less>				
Wide view tech.		MVA				
Viewing Angle	CR≧10	-85~85(H),85~85(V)				
Brightness (cd/m2	2)	550 (Typ.)				
Total Module Power (W)		125				
Module Size (mm)		743.0±1(W) × 447.0±1 (H) × 44.0±1 (D) (including inverter)				
Module Weight (g)	8300 (Max)				

1.2 MECHANICAL INFORMATION

ITEM			MIN	TYP.	MAX.	UNIT
Module	Horizontal	(H)	742.0	743.0	744.0	mm
outline	Vertical (V)		446.0	447.0	448.0	mm
dimension	Depth (D)	with inverter	43.0	44.0	45.0	mm
Module Weight					8300	g

2. ABSOLUTE MAXIMUM RATINGS

The following are maximun values which, if exceeded, may cause faulty operation or damage to the module.

ITEM	SYMBOL	MIN.	MAX.	UNIT	REMARK
Power Supply Voltage For LCD	VCC	- 0.3	15.0	V	
Input voltage of inverter	VBL	- 0.3	27	V	
Inverter dimming	VDIM	- 0.3	5.5	Vdc	
Backlight on control voltage	VBLON	- 0.3	5.5	Vdc	
ESD	VESDt	-100	100	V	
ESD	VESDc	-8000	8000	V	
Operation Ambient Temperature	Тор	0	50	$^{\circ}\!\mathbb{C}$	*1) *2) *3) *4)
Storage Temperature	T _{stg}	-20	60	$^{\circ}\!\mathbb{C}$	*1) *2) *3) *4)

[Note]

- *1) The relative temperature and humidity range are as below sketch.(90%RHMax / Ta≤40°C)
- *2) The maximum wet bulb temperature $\leq 39^{\circ}$ C (Ta>40°C) and without dewing.
- *3) If you use the product in a environment which over the definition of temperature and humidity too long, and it will effect the result of visible inspection.
- *4) While the product operates in normal temperature range, the center surface of panel should be under 60°C.
- *5) Input voltage of the connector side in Inverter.

Humidity:

Humidity ≤ 85%RH without condensation.

Relative Humidity $\leq 90\%$ (Ta $\leq 40^{\circ}$ C)

Wet Bulb Temperature $\leq 39^{\circ}$ C (Ta $\geq 40^{\circ}$ C)

3. ELECTRICAL CHARACTERISTICS

3.1 TFT-LCD MODULE

Ta=25°C

ITEM		SYMBOL	MIN	TYP	MAX	UNIT	REMARK
LCD Power Sup	ply Voltage	VCC	11.4	12.0	12.6	V	*1)
Ripple Vo	ltage	Vrpd			100	mVp-p	VIN=+12.0V
Rush cui	rrent	Irush			8	А	*2)
	White			350	400		
LCD Power Supply Current	Black	ICC		300	400	mA	*3)
	RGB stripe			320	400		
LCD power co	nsumption	Pc		6.48	9.7	W	
High input volta	ge of LVDS	V _{IN+}			100	mV	
Low input voltage of LVDS		V _{IN-}	100			mV	* 4 \
Input common voltage of LVDS		VCM		1.25	-	V	*4) *5)
Input terminal re	sist of LVDS	R _T		100		ohm	

[Note]

- *1) The module should be always operated within above ranges.
- *2) Measure conditions:

Vcc rising time is 1 ms

*3) The specified power supply current is under condition at Vcc=12V, Ta=25+/-2[°]C, f_v=60Hz, whereas a power dissipation check pattern below is displayed.

*4) Power and Signal Sequence:

Power Sequence Table

Parameter		Unit		
Parameter	Min	Тур	Max	Offic
T1	1		30	ms
T2	0		50	ms
Т3	0		50	ms
T4	2000			ms
T5	110			ms
Т6	100			ms

Notes:

- Please avoid floating state of interface signal at invalid period.
- When the interface signal is invalid, be sure to pull down the power supply for LCD to 0V.
- Lamp power must be turn off after power supply for LCD interface signal valid.

VCC-dip State:

- 1) When $9V \le VCC < 11.4 \text{ V}$, $td \le 10 \text{ ms}$.
- 2) VCC > 11.4V, VCC-dip condition should also follow the VCC-turn-off condition.

*5) LVDS Signal Definition:

$$\begin{split} \text{VID} &= \text{VIN}_{+} - \text{VIN}_{-}, \\ \triangle \text{VCM} &= \mid \text{VCM}_{+} - \text{VCM}_{-} \mid , \\ \triangle \text{VID} &= \mid \text{VID}_{+} - \text{VID}_{-} \mid , \\ \text{VID} &= \mid \text{VIH}_{+} - \text{VIH}_{-} \mid , \\ \text{VID} &= \mid \text{VIL}_{+} - \text{VIL}_{-} \mid , \\ \text{VCM} &= \left(\text{VIN}_{+} + \text{VIN}_{-} \right) / 2, \\ \text{VCM} &+ = \left(\text{VIH}_{+} + \text{VIH}_{-} \right) / 2, \\ \text{VCM} &= \left(\text{VIL}_{+} + \text{VIL}_{-} \right) / 2, \end{split}$$

VIN+: Positive Polarity differential DATA & CLK input VIN-: Negative Polarity differential DATA & CLK input

3.2 BACKLIGHT Ta=25°C

ITEM		SYMBOL	MIN	TYP	MAX	UNIT	REMARK
Lamp Volta	ige	VL		1150		Vrms	IL=5.0mA
Lamp Curre	ent	L	4.0	4.5	5.0	mArms	*1)
Lamp life ti	me	LT	50,000			hr	*2)
Input voltage of	inverter	VBL	21.6	24	26.4	V	*3)
Input ourrent of	invertor	IIN <mark>0</mark>	1	(4.8)		Α	*4)
Input current of	inverter	IIN		(4.4)			*5)
Input frequency of	f inverter	FL	61.5	63.5	65.5	KHz	*6)
Inverter dimr	Inverter dimming		0		5	Vdc	*7)
Inverter duty	ratio		20	1	100	%	VDIM=5V(MAX.)
Inverter opening	voltage	Vopen	1900			Vrms	
Backlight on /of	ON	Various	2.0		5	V	
control voltage	OFF	VBLON	0		0.8	V	
Power consun	nption	BLW0		(120)		W	*4)
(Panel+ Back	light)	BLW		(105)			*5)

[Note]

^{*1)} Lamp Current measurement method (The current meter is connected to low voltage end) Take the average of 16 CCFL's lamp current as $V_{DIM} = 5V$ after power on for 30 min.

- *2) Definition of the lamp life time:

 When lamp luminance redue to 50% or lower than its initial value.
- *3) Ripple voltage that occur at the instant of power-on can't exceed 30V.
- *4) 25°C; V_{DIM} = 5V(MAX.), After power on for 5 seconds
- *5) 25°C; V_{DIM} = 5V(MAX.), After power on for 30 minutes
- *6) Electrical and optical characterisitics color chromaticity is not included can maintain in a range +/- 10% when the inverter operates within this frequency range.
- *7) Brightness is the darkest when $V_{DIM} = 0V$; Brightness is the brightest when $V_{DIM} = 5V$.

4. INTERFACE PIN CONNECTION

4.1 Connector Part No.: 20389-030E(I-PEX), FI-X30SSL-HF(JAE), or compatible

Pin NO	Symbol	Description	Note
1	VCC	Power supply: +12V	
2	VCC	Power supply: +12V	
3	GND	Ground	
4	GND	Ground	
5	RxIN0-	Data-	
6	RxIN0+	Data+	
7	GND	Ground	
8	RxIN1-	Data-	
9	RxIN1+	Data+	
10	GND	Ground	
11	RxIN2-	Data-	
12	RxIN2+	Data+	
13	GND	Ground	
14	RxCLKIN-	Clock-	
15	RxCLKIN+	Clock+	
16	GND	Ground	
17	RxIN3-	Data-	
18	RxIN3+	Data+	
19	GND	Ground	
20	NC	Reserved	*1)
21	NC	Reserved	*1)
22	NC	Reserved	*1)
23	NC	Reserved	*1)
24	NC	Reserved	*1)
25	DE/Sync	DE/Sync Option	*3)
26	NC	Reserved	*1)
27	DMS	LVDS Option	*2)
28	NC	Reserved	*1)
29	NC	Reserved	*1)
30	GND	Ground	

^{*1)} NC: Must let it open.

*2) LVDS OPTION PIN (DMS):

DMS (Pin 27)	LVDS format
GND	Non-JEIDA
NC	JEIDA

*3) DE / Sync:

DE/Syns (Pin 25)	Mode
NC	DE
GND	Sync

4.2 LVDS INTERFACE:

LVDS RECEIVER: Tcon (LVDS Rx merged)

	LVDS Pin	JEIDA-DATA	Non-JEIDA-DATA
	TxIN/RxOUT0	R2	R0
	TxIN/RxOUT1	R3	R1
	TxIN/RxOUT2	R4	R2
TxOUT/RxIN0	TxIN/RxOUT3	R5	R3
	TxIN/RxOUT4	R6	R4
	TxIN/RxOUT6	R7	R5
	TxIN/RxOUT7	G2	G0
	TxIN/RxOUT8	G3	G1
	TxIN/RxOUT9	G4	G2
	TxIN/RxOUT12	G5	G3
TxOUT/RxIN1	TxIN/RxOUT13	G6	G4
	TxIN/RxOUT14	G7	G5
	TxIN/RxOUT15	B2	В0
	TxIN/RxOUT18	B3	B1
	TxIN/RxOUT19	B4	B2
	TxIN/RxOUT20	B5	B3
	TxIN/RxOUT21	B6	B4
TxOUT/RxIN2	TxIN/RxOUT22	B7	B5
	TxIN/RxOUT24	Hsync	Hsync
	TxIN/RxOUT25	Vsync	Vsync
	TxIN/RxOUT26	DENA	DENA
	TxIN/RxOUT27	R0	R6
TxOUT/RxIN3	TxIN/RxOUT5	R1	R7
	TxIN/RxOUT10	G0	G6
	TxIN/RxOUT11	G1	G7
	TxIN/RxOUT16	В0	B6
	TxIN/RxOUT17	B1	B7
	TxIN/RxOUT23	Reserved	Reserved

4.3 INVERTER – CONNECTOR:

Connector (Receptacle): S14B-PH-SM3-TB (JST) or compatible

Mating connector (Plug): PRH-14(JST) or compatible

Pin No.	Symbol	Description	Note
1	VBL	Supply Voltage 24V	
2	VBL	Supply Voltage 24V	
3	VBL	Supply Voltage 24V	
4	VBL	Supply Voltage 24V	
5	VBL	Supply Voltage 24V	
6	GND	Ground	
7	GND	Ground	
8	GND	Ground	
9	GND	Ground	
10	GND	Ground	
11	NC	NC (Test pin or else)	
12	BLON	ON/OFF Control	(1)
13	VDIM	0V~5V	(2)
14	GND	GND	

[Note]

- *1) ON/ OFF control: ON=5V, OFF=0V; when this PIN is disconnecting with power, the Inverter is in OFF status.
- *2) VDIM: MAX=5V, MIN=0V; when this PIN is disconnecting with power, the output status of Inverter is the same as VDIM=0.

5. INTERFACE TIMING (DE only mode)

5.1 TIMING SPECIFICATION

	ITEM			SYMBOL	MIN.	TYP.	MAX.	UNIT
	_	OCLK	Freq.	f _{CLK}	62	80	84	MHz
	L	JCLK	Cycle	t _{CLK}	14.7	12.5	11.9	ns
			Line Rate	f_H	37.1	48.6	56	kHz
			Horizontal Total Time	t _H	1575	1648	1936	t _{CLK}
		Horizontal	Horiaontal Effective Time	t _{HA}	1366	1366	1366	t _{CLK}
	DENA		Horizontal Blank Time	t _{HB}	209	282	570	t _{CLK}
			Frame Rate	Fr	47	60	63	Hz
LCD Timing			Vertical Total Time	t _V	790	810	888	t _H
		Vertical	Vertical Effective Time	t_{VA}	768	768	768	t _H
		Vertical Blank Time	t _{VB}	22	42	120	t _H	
		Horizontal	Horizontal sync time	tHsync		136		t _{CLK}
	Sync		Horizontal Back porch	tHBP		108		t _{CLK}
	Mode	Vortical	Vertical sync time	tVsync		5		t _H
	Vertical		Vertical Back porch	tVBP		22		t _H

[Note]

1). The best result of over-driving is in frame rate =60Hz.

5.2 TIMING CHART

a. Horizontal Timing

b. Vertical Timing Chart

5.3 LVDS DATA MAPPING

a. None-JEIDA normal Specification

b. JEIDA Specification

8bit LSB: R0,G0,B0

Parallel TTL Data Inputs Mapped to LVDS outputs

5.4 LVDS INTERFACE

8bit LSB: R0, G0, B0

JEIDA: Parallel TTL Data Inputs Mapped to LVDS outputs

TRANSMITTER(THC63LVD823)		INTERFACE CONNECTOR		TIMING CONTROLLER INPUT	
PIN NO	INPUT DATA	HOST	TFT_LCD		
51	TA0			R2	
52	TA1			R3	
54	TA2			R4	
55	TA3	TxOUT0+ TxOUT0-	TA+ TA-	R5	
56	TA4			R6	
3	TA5			R7 (MSB)	
4	TA6			G2	
6	TB0			G3	
7	TB1			G4	
11	TB2			G5	
12	TB3	TxOUT1+	TB+ TB-	G6	
14	TB4				G7 (MSB)
15	TB5			B2	
19	TB6			В3	
20	TC0			B4	
22	TC1			B5	
23	TC2	TxOUT2+	 0	B6	
24	TC3		TC+ TC-	B7 (MSB)	
27	TC4			Hsync	
28	TC5			Vsync	
30	TC6			DENA	
50	TD0			R0 (LSB)	
2	TD1			R1	
8	TD2			G0 (LSB)	
10	TD3	TxOUT3+ TxOUT3-	TD+ TD-	G1	
16	TD4	1,00132		B0 (LSB)	
18	TD5			B1	
25	TD6			Reserved	

5.5 COLOR DATA ASSIGNMENT

COLOR	INPUT	G DAT8B DAT8B DAT	88
	DATA	B7 B6 B5 R4 B3 B2 R1 B0 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 R4 B	3/B2/B1/B0
		MSE !!!!SBMSE!!!!!SBMSE!!!!	i isb
	BLACK		101010
	RED(255)		
BASIC	GREEN(255)		0 0 0 0
COLOR	BLUE(255)		1111
	CYAN		. 1 1 1 1
	MAGENTA		311111
	YELLOW		
	WHITE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 1 1 1 1
	RED(0)		0:0:0:0
	RED(1)		
	RED(2)		0 0 0 0
RED			1 1 1
	RED(253)	1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0	0.000
	RED(254)	1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0	0:0:0:0
	RED(255)	1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0	0 0 0
	GREEN(0)		0.0000
	GREEN(1)		0:0:0:0
	GREEN(2)		0.0000
GREEN			
	GREEN(253)		0.0.0.0
	GREEN(254)		0.0000
	GREEN(255)	0 0 0 0 0 0 0 0 0 0	10:0:0
	BLUE(0)		0.0.0.0
	BLUE(1)	0:	0 0 0 1
	BLUE(2)		0 1 0
BLUE			-,
	BLUE(253)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 1
	BLUE(254)		
	BLUE(255)	0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;1;1;1;1	1 1 1 1

[Note]

1) Definition of gray scale:

Color (n): n indicates gray scale level, higher n means brighter level.

2) Data: 1-High, 0-Low

5.6 DATA MAPPING

D(1,1)	D(2, 1)		D(X, 1)		D(1365, 1)	D(1366, 1)
D(1, 2)	D(2, 2)		D(X, 2)		D(1365, 2)	D(1366, 2)
-	1	+	1	+	1	1
D(1, Y)	D(2, Y)		D(X, Y)		D(1365, Y)	D(1366, Y)
-	1	+	1	+	1	-
D(1,767)	D(2,767)		D(X,767)		D(1365,767)	D(1366,767))
D(1,768)	D(2,768)		D(X,768)		D(1365,768)	D(1366,768)

6. BLOCK DIAGRAM

BACKLIGHT UNIT

Lamp connector

HV: BHR-02VS-1(JST)*8 or compatible

Mating connector: SM02 (8.0)B-BHS-1-TB (JST) or compatible

LV1: BHR-02VS-1(JST)*1 or compatible

Mating connector: SM02 (8.0)B-BHS-1-TB (JST) or compatible

7. MECHANICAL SPECIFICATION

7.1 FRONT SIDE

(include Inverter, if the dimension did not to eerance, please refer to the table.) [Unit: mm]

7.2 REAR SIDE

(include Inverter, if the dimension did not to eerance, please refer to the table.) [Unit: mm]

8.OPTICAL CHARACTERISTICS

Ta = 25°C, VCC=12V

ITEM		SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	REMARKS
Contras	t (CEN)	CR	θ=ψ= 0° Point-5	700	1000			*1)*2)*3)
	Central luminance	Lwc	θ=ψ= 0°	450	550		cd/m ²	*9)
Luminance	5P Luminance (AVG)	Lw9	θ=ψ= 0°		500		cd/m ²	*2)*3)
	Uniformity	△Lw	$\theta = \psi = 0^{\circ}$	75			%	*2)*3)
Respon	se Time	tr	θ=ψ= 0°		10	(17)	ms	*3)*4)
(White	- Black)	tf	$\theta = \psi = 0^{\circ}$		6	(8)	ms	*3)*4)
	se Time ay average)	trg, tfg		1	10	(15)	ms	*5)
Image	sticking	tis	4 h			(3)	sec	*6)
Viou onglo	Horizontal	Ψ	CR ≧ 10 Point-5	-80~80	-85~85		0	*2)*3)
View angle	Vertical	θ		-80~80	-85~85		0	*2)*3)
Crossta	lk Ratio	CMR	$\theta = \psi = 0^{\circ}$			(1)	%	*3)*7)
	Red	Rx Ry		TBD	TBD	TBD		
	Green	Gx Gy		TBD	TBD	TBD		
Color Chromaticity	Blue	Bx By	$\theta = \psi = 0^{\circ}$ Point-5	TBD	TBD	TBD		*2)*3)
	White	Wx Wy		TBD	0.283 0.297	TBD		
Color Te	mperature	Тс			9300		K	*3)
Color	Gamut	CG		1	75	1	%	*8)

[Note]

These items are measured using: BM-5A (TOPCON)

View angle: EZ contrast XL-88, Response Time: Westar TRD-100

[under the dark room condition (no ambient light).]

Definition of these measurement items is as follows:

*1) Definition of Contrast Ratio: [These items are measured using BM-5A (TOPCON) under the dark room condition (no ambient light).]

CR=ON (White) Luminance/OFF (Black) Luminance

*2) Definition of Luminance, Luminance uniformity, Contrast, and the Deviation of Color Coordinate:

Luminance and Contrast: To measure at the center position "5" on the screen (NO.5), see Figure.8-1 below.

Luminance uniformity: Lw (MAX) and Lw(MIN) are the maximum and minimum luminance value measure at the position "1~5" on the screen (NO.1~5), see Figure.8-1 and below show equation:

 $\Delta Lw = [(Lw(MIN)) / Lw(MAX)] \times 100\%$

The Deviation of Color Coordinate: To measure at the position "1~5" on the screen (NO.1~5), see Figure.8-1 below.

Figure 8-1. Measurement Positions

*3) Definition of Viewing Angle (θ , ϕ):

Figure 8-2. Definition of Viewing Angle

*4) Definition of Response Time (White – Black)

Figure 8-3. Definition of Response Time (White – Black)

*5) Definition of Response Time (Gray to Gray, Average)

Figure 8-4. Definition of Response Time (Gray to Gray)

The driving signal time means the signal of gray level 0, 31, 63, 95, 127, 159, 191, 223, 255. Gray to gray average means the average switching time of gray level 0, 31, 63, 95, 127, 159, 191, 223, 255 to each other.

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed

after lighting Backlight for 1 hour in a windless room.

*6) Image Sticking Test Method:

Continuously display the test pattern shown in the figure below for specified time. To change the module frame to gray pattern (gray 120 pattern), and it's displaying grade still under specification.

Figure 8-5. The Pattern of Image Sticking Test

*7) Definition of Cross talk Ratio

CMR = MAX $((/(LB1-LA)/LC)) \times 100\%$, $(/(LB2-LA)/LC) \times 100\%$

LA: Pattern A (Half-Tone pattern) Measure point Luminance

LB1, LB2: Pattern B1, Pattern B2 Measure point Luminance

LC: Pattern C (white pattern) Measure point Luminance

Figure 8-6. The Pattern of Cross talk Test

*8) Definition of Color Gamut:

To measure RGB three sub-pixels color gamut coordinate at CIE coordinate chart from the center of module, to form a triangle area = A_{RGB} .

RGB three sub-pixels of NTSC at CIE coordinate chart to form a triangle area = N_{RGB} .

$$CG = \frac{A_{RGB}}{N_{RGB}} \times 100$$

*9) Definition of Central luminance:

After lighting on the panel for 30 mins, then the Central luminance test proceeded. The definition of TYP value is under status of Inverter Dimming Voltage=5V.

9.RELIABILITY TEST CONDITIONS

9.1 TEMPERATURE AND HUMIDITY

TEST ITEMS	CONDITIONS
High Temperature Operation	50°C; 240hrs
High Temperature Storage	60°C; 240hrs
High Temperature High Humidity Operation	50°C; 90% RH; 240 hrs (No condensation)
Low Temperature Operation	0°C; 240 hrs
Low Temperature Storage	-20°C; 240 hrs

9.2 SHOCK AND VIBRATION

ITEMS	CONDITIONS
	Shock level: 980m/s ² (100G)
Shock	Waveform: half sinusoidal wave, 2ms
(Non-Operation)	Number of shocks: one shock input in each direction of three mutually perpendicular axes for a total of six shock inputs.
	Vibration level: 9.8m/s ² (1.0G) zero to peak
	Waveform: sinusoidal
\/:\bunation	Frequency range: 10 to 300 Hz
Vibration (Non-Operation)	Frequency sweep rate: 0.5 octave/min
(rear operation)	Duration: one sweep from 10 to 300Hz in each of three mutually perpendicular axis (each x, y, z axis:10 min, total 30 mins)

9.3 JUDGMENT STANDARD

The judgment of the above test should be made as follow:

Pass: Normal display image with no obvious non-uniformity and no line defect.

Partial transformation of the module parts shall be ignored.

Fail: No display, obvious non-uniformity, or line defects.

10. PACKAGING

10.1 PACKING SPECIFICATIONS

(1) 3 LCD TV modules/1 Box

(2) Box dimensions: 975(L) x 375(W) x 562(H)

(3) Weight: approximately 31.9kg (3 modules per box)

10.2 PACKING METHOD

Figure 1 and Figure 2 are the packing method.

Figure 1 Packing Method

(1) Corner protector: L1125 x 50mm x 50mm

(2) Pallet: L1000 x W1150 x H130mm

(3) Bottom Cap: 1000 x W1150 x H130mm(4) Pallet Stack: 1000 xW1150 x H1250mm

(5) Gross: 273kg

Figure 2 Packing Method

11. HANDLING PRECAUTIONS FOR TFT-LCD MODULE

Please pay attention to the followings in handling TFT-LCD products.

11.1 ASSEMBLY PRECAUTION

(1) Please use the mounting hole on the module side in installing and do not beading or wrenching

LCD in assembling. And please do not drop, bend or twist LCD module in handling.

- (2) Please design display housing in accordance with the following guidelines.
 - Housing case must be destined carefully and do not to put stresses on LCD all sides or wrench module. The stresses may cause non-uniformity even if there is no nonuniformity statically.
 - Keep sufficient clearance between LCD module back surface and housing when the LCD module is mounted. Approximately 1.0 mm of the clearance in the design is recommended taking into account the tolerance of LCD module thickness and mounting structure height on the housing.
 - When some parts, such as, FPC cable and ferrite plate, are installed underneath the LCD module, still sufficient clearance is required, such as 0.5mm. This clearance is, especially, to be reconsidered when the additional parts are implemented for EMI countermeasure.
 - Design the inverter location and connector position carefully so as not to put stress on lamp cable.
 - Keep sufficient clearance between LCD module and the other parts, such as inverter and speaker so as not to interface the LCD module. Approximately 1.0mm of the clearance in the design is recommended.
- (3) Please do not push or scratch LCD panel surface with any-thing hard. And do not soil LCD panel surface by touching with bare hands. (Polarizer film and surface of LCD panel are easy to be flawed.)
- (4) Please do not press any parts on the rear side such as source TCP, gate TCP, control circuit board and FPC during handling the LCD module. If pressing rear part could not be avoided, handle the LCD module with care not to damage them.
- (5) Please wipe out LCD panel surface with absorbent cotton or soft clothe in case of it being soiled.
- (6) Please wipe out drops of adhesives like saliva and water on LCD panel surface immediately. They might damage to cause panel surface variation and color change.
- (7) Please do not take a LCD module to pieces and reconstruct it. Resolving and reconstructing modules may cause them not to work well.
- (8) Please do not touch metal frames with bare hands and soiled gloves. A color change of the metal frames can happen during a long preservation of soiled LCD modules.

(9) Please pay attention to handling lead wire of backlight so that it is not tugged in connecting with inverter.

11.2 OPERATING PRECAUTIONS

- (1) Please be sure to turn off the power supply before connecting and disconnecting signal input cable.
- (2) Please do not change variable resistance settings in LCD module. They are adjusted to the most suitable value. If they are changed, it might happen LCD does not satisfy the characteristics specification.
- (1) Please consider that LCD backlight takes longer time to become stable of radiation characteristics in low temperature than in room temperature.
- (2) A condensation might happen on the surface and inside of LCD module in case of sudden change of ambient temperature.
- (3) Please pay attention to displaying the same pattern for a very long time. Image might stick on LCD. If then, time going on can make LCD work well.
- (4) Please obey the same caution descriptions as ones that need to pay attention to ordinary electronic parts.

11.3 PRECAUTIONS WITH ELECTROSTATICS

- (1) This LCD module use CMOS-IC on circuit board and TFT-LCD panel, and so it is easy to be affected by electrostatics. Please be careful with electrostatics by the way of your body connecting to the ground and so on.
- (2) Please remove protection film very slowly on the surface of LCD module to prevent from electrostatics occurrence.

11.4 STORAGE PRECAUTIONS

- (1) When you store LCD for a long time, it is recommended to keep the temperature between 0° C ~40°C without the exposure of sunlight and keep the humidity less than 90%RH.
- (2) Please do not leave the LCD in the environment of high humidity and high temperature such as 60°C 90%RH.
- (3) Please do not leave the LCD in the environment of low temperature(can not lower than 20° C).

11.5 SAFETY PRECAUTIONS

- (1) When you waste LCD, it is recommended to crush damaged or unnecessary LCD into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- (2) If any liquid leaks out of a damaged-glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

11.6 OTHERS

- (1) A strong incident light into LCD panel might cause display characteristics' changing inferior because of polarizer film, color filter, and other materials becoming inferior. Please do not expose LCD module direct sunlight Land strong UV rays.
- (2) Please pay attention on the side of LCD module do not contact with other materials in preserving it alone.
- (3) For the packaging box, please pay attention to the followings:
 - Packaging box and inner case for LCD are designed to protect the LCD from the damage or scratching during transportation. Please do not open except picking LCD up from the box.
 - Please do not pile them up more than 3 boxes. (They are not designed so.) And please do not turn over.
 - Please handle packaging box with care not to give them sudden shock and vibrations. And also please do not throw them up.
 - Packing box and inner case for LCD are made of cardboard. So please pay attention not to get them wet. (Such as keep them way the high humidity or wet place.)

Item	Part Number	Part Description	Usage / unit	Unit	Key/Spare
	LCT32ADNIA1TS-A01	AKAI LCD32"(LCT3285TA) S-MT8202+CPT AC120V/60HZ USA SILVER			
1>	510-L32AD01-02AKA	CARTON BOX AKAI LCT3285TA (MTK-8202) K	1	Piece	K
2>	580-L32ADHS-TU03L	IB E FOR AKAI LCT32AD USA CPT(CLAA32WA01) S-MTK8202	1	Piece	K
3>	E7501-056102	REMOTE CONTROL KOO1 "AKAI" 44KEYS MT8202 LCD32"/27" (W/O DVD) USA SILVER/BLACK	1	SET	K
4>	771EL37AD02-01	PCB ASSY MAIN S-MT8202 FOR 37LCD CPT	1	SET	K
5>	771L37AD01-01	NTSC TUNER PCB ASSY FOR LCD37	1	SET	K
6>	771S42D102-01	ATSC TUNER PCB ASSY	1	SET	K
7>	200-L32AD02-01AAV	CABINET FRONT SIL/BLK CPT PANEL AV	1	Piece	S
8>	202-L32AD22-01AV	CABINET BACK BLACK	1	Piece	S
9>	206-L32AD01-01RV	SPEAKER CABINET BACK BLACK LCT32AD R	1	Piece	S
10>	269-42SD01-01L	REMOTE RECEIVE LENS	1	Piece	S
11>	277-L32AD11-01S	FUNCTION KEY SIL (MATERIAL: BLACK) LCT32SD	1	Piece	S
12>	300-L32AD14-02C	POLYFOAM TOP L32AD C	1	Piece	S
13>	300-L32AD15-02C	POLYFOAM BOTTOM	1	Piece	S
14>	310-111404-07V	POLYBAG 11"X14"X0.04 FV	1	Piece	S
15>	310-423850-07V	BAG LAMIFILM 42"X38"X0.5MM	1	Piece	S
16>	384-L32AD02-01H	PVC SHEET FOR POWER 230X180X0.5 H	1	Piece	S
17>	384-L32AD03-01H	PVC SHEET FOR KEY	1	Piece	S
18>	387-L32AD01-01AHA	MODEL PLATE AKAI LCT3285TA H	1	Piece	S
19>	426-L32AD02-01S	POWER CORD BRACKET ASSY	1	Piece	S
20>	436-L32AB0B-01S	TERMINAL SHEET MT8202 TV	1	Piece	S
21>	481-L32AB06-01S	SHIELDING BOTTOM MT8202	1	Piece	S
22>	481-L32AD01-01S	SHIELD BOX FOR POWER L32AD S	1	Piece	S
23>	483-L32AB22-01S	SHIELDING COVER	1	Piece	S
24>	486-M32111-01	NAME PLATE M AKAI	1	Piece	S
25>	521-300055-01	FELT PAPER 300X5X0.5MM	4	Piece	S
26>	522-421D01-01	MASKING PAPER	1	Piece	S
27>	530-100053-15	FIBBER WASHER 10.0X5.3X1.5MM W/ADHESIVE	4	Piece	S
28>	563-119-	SERIAL NO. LABEL	1	Piece	S
29>	568-P46T02-02	WARNING LB ENG 42SF NIL	1	Piece	S
30>	579-42D102-09	SERIAL NO/BAR CODE LABEL 42D1	1	Piece	S
31>	579-42D103-02	ON/OFF LB ENG 42D1 NIL	1	Piece	S
32>	579-42D105-01	PROTECTIVE EARTH LABEL FOR ESA 42TD1	1	Piece	S
	579-L27AD09-01	CAUTION LABEL ENG AKAI	1	Piece	S

Spare Part List for LCT3285TA

Item	Part Number	Part Description	Usage / unit	Unit	Key/Spare
34>	579-L32AD02-02APA	UPC LABEL LCT3285TA P	2	Piece	S
35>	590-L32AD01-02	WARRANTY CARD AKAI LCT3285TA	1	Piece	S
36>	593-L32AD01-03	INSERION CARD LCT3285TA MTK8202	1	Piece	S
37>	E3404-157009	AC CORD UL 1.88M FOR LCD32 MT8202	1	Piece	S
38>	E3421-924009	WIRE ASSY 2P L120	2	Piece	S
39>	E3421-925127	WIRE ASSY TJC3-2Y L860 SPK-R MT8202	1	Piece	S
40>	E3421-925129	WIRE ASSY 10P/2.5 FOR MT8202 27" POWER 9V/12V	1	Piece	S
41>	E3421-925130	WIRE ASSY 1H3.96-2KN6 20 L180 2P FOR LCD32"/27"	2	Piece	S
42>	E3421-925133	WIRE ASSY TJC3-3Y L650 SPK-L MT8202	1	Piece	S
43>	E3421-926119	WIRE ASSY P2.0 8P L=215 TV/SIF	1	Piece	S
44>	E3421-926125	WIRE ASSY P2.5 4P/4P L400MM AMP24V EMI MT8202	1	Piece	S
45>	E3461-064038	WIRE ASSY P2.5 7P/7P L400MM 5V STANBY POWER MT8202 FOR 27"/32" LCD	1	Piece	S
46>	E3461-064040	WIRE ASSY P2.0 14P/3P2.0/8P2.5 L400MM/L700MM INVERTER MT8202	1	Piece	S
47>	E3471-000044	WIRE WS SHIELD WIRE FOR 32LCD COMBO MICO KEY 13P/8P+5P	1	Piece	S
48>	E3471-001002	WIRE WS SHIELD P1.0 OP L=220 FOR CPT LCD37"	1	Piece	S
49>	E4101-027001	SWITCH POW MR-22-N2BB-F2 ROCKET	1	Piece	S
50>	E4801-124001	SPEAKER 8 OHM 10W D3" YD78-1	2	Piece	S
51>	E4802-014001	TWEETER 6 OHM 10W D2" YD52-1	2	Piece	S
52>	E6203-32TD02	DISPLAY LCD 32" CPT WXGA CLAA320WA01C 1366X768 550CD/M2	1	Piece	S
53>	E7301-010002	BATTERY AAA RO3P1.5V <2>	2	Piece	S
54>	E7801-P02002	PCB ASSY PSU BOARD MEGMEET MT169 FOR 32LCD AC110-240V OUTPUT	1	SET	S
		12V/8V/24V 220W			
55>	734-L32AD03-01	PLASTIC BASE ASSY LCT3201TD W/O LOGO W/O PACKING SILVER	1	SET	S
56>	771BL37AD01-01	IR RECEIVE PCB ASSY FOR LCT37AD	1	SET	S
57>	771KL37AD01-01	KEY PCB ASSY FOR LCT37AD	1	SET	S

Software Upgrade

Process of update MT8202

Preparing:

- Connect RS232-VGA download line, One connector is connected to VGA connect port of Plasma TV, while another side is connected to PC COM port.
- 2. Store the MtkTool into the PC.

Downloading:

- **3.** Turn on AC power switch of the Plasma TV and then press the button "standby" of the remote control. The image could be found on the screen of the Plasma TV while the color of the power indicator is green. (the mode of the Plasma TV will be standby mode if after turn on the main power switch only.)
- **4.** Execute MTKtool and select the chipset as MT8202. (the software of MTKtool will be sent to your side)

5. Select current COM port. (please try to check the COM port of your PC).

- **6.** Choose the bit rate as 115200.
- **7.** Select the update binary by pressing browse button. For exemple, the binary file name is PDP4210EA1_V09.bin. (this update firmware will be sent to your side)

8. Press Upgrade button and start update process.

9. The update process is successful as the progress bar is 100%. After the update process is ok,

turn off power and wait indicator light is off. Turn on power and TV can work.

Checking

It is needed to check the version of the firmware for MT8202 which has been download into the Plasma TV .

Press Menu button of the remote control, following input "8202" of the remote control and OSD menu for Factory Setting is appeared on the screen.

Use the remote control and select the mode of Firmware Version and then enter the mode of Firmware Version . It is easy to be found the version of the current firmware for MT8202 is as the following : "Factory ID : PDP4210EA1_VXX"

Process of update MT5351AG

Preparing:

- Connect RS232 download line, One connector is connected to RS232 connect port of Plasma
 TV , while another side is connected to PC COM port.
- 2. Store the MtkTool into the PC

Downloading:

- **3.** Turn on AC power switch of the Plasma TV and then press the button "standby" of the remote control. The image could be found on the screen of the Plasma TV while the color of the power indicator is green. (the mode of the Plasma TV will be standby mode if after turn on the main power switch only.)
- **4.** Execute MTKtool and select the chipset as MT5351AG. (the software of MTKtool will be sent to your side)

5. Select current COM port. (please try to check the COM port of your PC).

- **6.** Choose the bit rate as 115200.
- 7. Select the update binary by pressing browse button. For exemple, the binary file name is

XXXX_PDP4210EA1_000000XX_X_P.bin. (this update firmware will be sent to your side)

8. Press Upgrade button and start update process.

9. The update process is successful as the progress bar is 100%. After the update process is ok, turn off power and wait indicator light is off. Turn on power and TV can work.

Checking:

It is needed to check the version of the firmware for MT5351AG which has been download into the Plasma TV.

Press Menu button of the remote control and the main OSD menu is appeared on the screen .

Use the remote control and select the DTV menu . following input "0000" (zero , zero , zero , zero) of the remote control .Then enter the mode of factory after input the digits .

It is easy to be found the version of the current firmware for MT5351AG is "PDP4210EA1 CLA_QAM_XXXXXX_XX"under the mode of factory .