EXTREME HEAT

UCLA Latino Policy & Politics Institute Climate & Health Dashboard

Stanislaus County

County Statistics

Factors Influencing Exposure to Extreme Heat

Median
Age
Latino: 28 yrs
NL White: 45 yrs

Noncitizen Population

Latino: 17% NL white: 2% A_Z

Limited English
Proficiency

Latino: 25% NL White: 3%

Households

NL white: 33%

Poverty Rate

Latino: 16% NL white: 11%

Median Income (Household)

Latino: \$68k NL white: \$82k

SNAP Benefits

Latino: 18% NL white: 10%

Insecurity
Latino: 20%
NL white: 10%

Rate Latino: 8% NL white: 4%

Health Status

Latino: 14% NL white: 17%

Expectancy
Latino: 79 yrs
NL white: 75 yrs

Neighborhood Statistics

Extreme Heat Days

Latino Neighborhoods and Exposure to Extreme Heat Days (≥ 90°F), 2018-2022

Latino neighborhoods = Census tracts with 70%+ Latino residents
NL white neighborhoods = Census tracts with 70%+ NL white residents

Extreme heat days are defined as days where the temperature is at or above 90°F. Exposure to extreme heat poses significant health risks.

Annual Number of Extreme Heat Days (2018-2022)

At 90°F, the risk of heat-related illnesses and conditions increases significantly. **Latino** neighborhoods **NL white** neighborhoods

120 days

117 days

average days ≥ 90°F annually

Longest Period of Consecutive Extreme Heat Days (2022)

The Federal Emergency Management Agency defines a period of extreme heat in most of the U.S. as a period of 2 to 3 days above 90°F.

Latino neighborhoods **NL white** neighborhoods

69 days

71 days

consecutive days ≥ 90°F annually

Projected Number of Extreme Heat Days by Mid-Century (2035–2064)

Looking forward, NL white neighborhoods are projected to experience a greater number of extreme heat days.

Latino neighborhoods

NL white neighborhoods

122 days

127 days

expected days ≥ 90°F annually

^{*}NL white = Non-Latino white

Neighborhood Statistics (cont.)

Barriers and Facilitators To Preventing Heat Exposure

Tree Canopy

- · Tree canopy is land shaded by trees.
- Less tree canopy (fewer trees) = **Increased** exposure to extreme heat

% of Land with Tree Canopy

7%

7% NL white

Latino neighborhoods

neighborhoods

Impervious Surfaces

- Impervious surfaces are water-resistant surfaces such as concrete, asphalt, and stone.
- More impervious surfaces (like paved roads) = Increased exposure to extreme

% of Land with Impervious Surfaces

27%

43%

Latino

NL white neighborhoods neighborhoods

Older Housing Units

- Older housing units are homes built before 1970 that often have poor insulation and inefficient HVAC systems.
- More older homes = Increased exposure to extreme heat

% of Older Housing Units

29%

Latino neighborhoods

33% **NL** white neighborhoods

Vulnerable Groups

Age

Children and older adults are at higher risk for heat-related illnesses.

31% 9% ages 0-18 ages 65+

Latino neighborhoods

23% 22% ages 0-18 ages 65+

NL white neighborhoods

Workers in Heat-Exposed Industries

Industries with the highest exposure to extreme heat include agriculture, construction, waste management, and warehousing. Jobs in these sectors carry increased risks of heat-related illnesses such as heat stroke, dehydration, chronic heat stress, and even premature death.

% of Workers in Heat-Exposed Industries

34%

Latino neighborhoods

23% NL white neighborhoods

Health

Extreme heat poses serious health risks, especially for people with conditions like heart disease, asthma, diabetes, and obesity. These individuals are more vulnerable because heat places extra stress on the body, worsening symptoms and increasing the risk of medical emergencies.

% of Adults (18+) with Pre-Existing Conditions

13%

Latino **NL** white neighborhoods neighborhoods

Diabetes

39% Latino

31% NL white

neighborhoods neighborhoods

Obesity

Heat-Related Emergency Department Visits

Heat-related emergency room visits serve as a critical indicator of a

neighborhood's vulnerability to extreme temperatures

and the effectiveness of its heat mitigation

strategies.

per 10,000 people

Latino neighborhoods

NL white neighborhoods

Emergency Department Visits (per 10,000 people)

18

NL white Latino neighborhoods neighborhoods

Heart Attacks

75

54

NL white Latino neighborhoods neighborhoods

Asthma Attacks

Disadvantaged Communities

The CA Environmental Protection Agency defines disadvantaged communities based on their environmental pollution burden and population characteristics. Under Senate Bill 535, revenue from CA's Cap-and-Trade Program is partly directed toward these communities through the CA Climate Investments program to reduce pollution, enhance climate resilience, and improve health and economic well-being.

% of Disadvantaged Communities

100%

Latino

neighborhoods

0% **NL** white neighborhoods