GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

INSTITUT FÜR INFORMATIK

Gruppe Softwaretechnik für Verteilte Systeme http://www.swe.informatik.uni-goettingen.de

Vorlesung Softwaretechnik I SoSe 2024

Prof. Dr. J. Grabowski · Dr. P. Makedonski · M.Sc. C. Bieber

Aufgabenblatt 11

Allgemeine Informationen

Alle Studierende sollen die Aufgaben, die unter dem Punkt Vorbereitung auf die Übung genannt sind, bis zum Übungstermin bearbeitet haben.

Vorbereitung auf die Übung

Für die Übung sollen **alle Studierende** mit Datenflussanalyse, Kontrollflussgraphen, sowie Äquivalenzklassen vertraut sein.

Ablauf der Übung

In der Übung werden spezielle White-Box und Black-Box Test Techniken vertieft. Der Ablauf der Übung gestaltet sich folgendermaßen:

- 1. Gruppenbildung (4-6 Studenten)
- 2. Bearbeitungszeit für beide Aufgaben (60 Minuten)
- 3. Vorstellen der Ergebnisse durch zwei randomisiert ausgewählte Personen (pro Gruppe ca. 6-10 Minuten)

Aufgabe 1: White-Box Testing

In dieser Aufgabe sollen Testfälle anhand des Kontrollflusses der Funktion getPosition erstellt werden. Es sollen Testfälle generiert werden, welche

- 1. 100 % Anweisungsüberdeckung
- 2. 100 % Zweigüberdeckung

erreichen. Schreiben Sie dazu zuerst einen Kontrollflussgraphen für die *getPosition* Funktion auf. Danach überlegen Sie sich Testfälle, welche dazu führen dass alle Knoten des Graphen mindestens einmal durchlaufen werden (100 % Anweisungsüberdeckung).

Weiterhin sollen Sie sich Fälle überlegen, sodass jede Kante des Graphen mindestens einmal durchlaufen wird (100 % Zweigüberdeckung).

```
public static Integer getPosition(List<Integer> list, Integer value) {
2
        ListIterator < Integer > it = list.listIterator();
3
        int i = 0;
4
        while(it.hasNext()) {
5
             Integer val = it.next();
7
             if (val.equals(value))
8
                 break;
9
             i++;
10
11
        {\bf return} \quad {\bf i} \ ;
12 }
```

Aufgabe 2: Black-Box Testing

In dieser Aufgabe soll eine Äquivalenzklassenbildung vorgenommen werden für eine Methode mit folgender Signatur:

```
applyAlgorithm(int a, int b);
```

Für die Eingabe des Algorithmus gelten folgende Bedingungen:

- a) Wenn b > 10 ist, dann muss $0 \le a < 10$ sein.
- b) Wenn $0 \le b \le 10$ gilt, dann muss $a \ge 10$ sein.
- c) Wenn b < 0 ist, muss a = 0 sein.
- d) Für alle anderen Fälle ist die Eingabe undefiniert.

Bestimmen Sie gültige und ungültige Äquivalenzklassen sowie zugehörige Testfälle.

Hinweise

Hinweise für diese Aufgaben finden Sie in den Vorlesungsfolien zur Qualitätssicherung.