Computational Data Analysis Machine Learning

Yao Xie, Ph.D.

Associate Professor
Harold R. and Mary Anne Nash Early Career Professor
H. Milton Stewart School of Industrial and Systems
Engineering

Gaussian Mixture Model and EM Algorithm

Gaussian mixture model

• A density model p(X) may be multi-modal: model it as a mixture of uni-modal distributions (e.g. Gaussians)

$$\mathcal{N}(X|\mu_k, \Sigma_k) := \frac{1}{|\Sigma|^{\frac{1}{2}} (2\pi)^{\frac{d}{2}}} exp\left(-\frac{1}{2}(X-\mu)^{\mathsf{T}} \Sigma^{-1}(X-\mu)\right)$$

Consider a mixture of K Gaussians

Parametric or noparametric?

EM algorithm

- Associate each data and each component with a au_k^i
- Initialize $(\pi_k, \mu_k, \Sigma_k), k = 1 \dots K$
- Iterate the following two steps till convergence:
 - Expectation step (E-step): update τ_k^i given current (π_k, μ_k, Σ_k)

$$\tau_{k}^{i} = p(z_{k}^{i} = 1 | D, \mu, \Sigma) = \frac{\pi_{k} \mathcal{N}(x_{i} | \mu_{k}, \Sigma_{k})}{\sum_{k'=1}^{K} \pi_{k'} \mathcal{N}(x_{i} | \mu_{k'}, \Sigma_{k'})}$$

$$(k = 1 \dots K, i = 1 \dots m)$$

• Maximization step (M-step): update (π_k, μ_k, Σ_k) given τ_k^i

$$\pi_k = \frac{\sum_i \tau_k^i}{m}, \qquad \mu_k = \frac{\sum_i \tau_k^i x^i}{\sum_i \tau_k^i}$$

$$\Sigma_k = \frac{\sum_i \tau_k^i (x^i - \mu_k) (x^i - \mu_k)^T}{\sum_i \tau_k^i}$$

$$(k = 1 \dots K)$$

Expectation-Maximization Iterations

- k = 1 or 2
- Use au_1^i as the proportion of red, and au_2^i proportion of blue
- Draw only one contour for each Gaussian component

Mixture of 3 Gaussians

- First run PCA to reduce the dimension to 2
- k = 1 or 2 or 3
- Use au_1^i as the proportion of red, au_2^i proportion of green, and au_3^i proportion of green

Generating a data point from GMM

- For each data point xⁱ:
 - Randomly choose a mixture component, $z^i = \{1,2,...K\}$, with probability π_{z^i}
 - Then sample the actual value of x^i from a Gaussian distribution $\mathcal{N}(x | \mu_{z^i}, \Sigma_{z^i})$
- Joint distribution over p(x, z)
- $p(x,z) = \pi_z \mathcal{N}(x|\mu_z, \Sigma_z)$
- Marginal distribution p(x)
- $p(x) = \sum_{z=1}^{K} p(x,z) = \sum_{z=1}^{K} p(x|z)p(z)$

Learning the Parameters

- How to learn?
- Maximum likelihood learning (let $\theta = (\pi_k, \mu_k, \Sigma_k), k = 1 \dots K$
- $\theta^* = \operatorname{argmax} l(\theta; D) = \log \prod_{i=1}^m p(x^i)$
- Write down the log-likelihood function (related to previous slide, generating a GMM sample)

$$l(\theta; D) = \log \prod_{i=1}^{m} \left(\sum_{z^{i}=1}^{K} p(x^{i}, z^{i} | \theta) \right)$$

$$= \log \prod_{i=1}^{m} \left(\sum_{z^{i}=1}^{K} p(x^{i} | \mu_{z^{i}}, \Sigma_{z^{i}}) p(z^{i} | \pi) \right)$$
Georgia Tech

Why is learning hard?

With latent variables z, likelihood of the data becomes

With latent variables
$$z$$
, likelihood of the data becomes
$$l(\theta;D) = \log \prod_{i=1}^m \left(\sum_{z^i=1}^K p\big(x^i\big|\mu_{z^i},\Sigma_{z^i}\big) p\big(z^i\big|\pi\big) \right)$$

$$= \log \prod_{i=1}^m \left(\sum_{z=1}^K \pi_{z^i} \mathcal{N}\big(x\big|\mu_{z^i},\Sigma_{z^i}\big) \right)$$
 Nonconvex Difficult!

Georgia

Details of EM

 We intend to learn the parameters that maximizes the log-likelihood of the data

$$l(\theta; D) = \log \prod_{i=1}^{m} \left(\sum_{z^{i}=1}^{K} p(x^{i}, z^{i} | \theta) \right)$$
Nonconvex Difficult!

Expectation step (E-step): What do we take expectation over?

$$l(\theta; D) \ge f(\theta) = E_{q(z^1, z^2, \dots, z^m)} \left[\log \prod_{i=1}^m p(x^i, z^i | \theta)\right]$$

• Maximization step (M-step): how to maximize?

$$\theta^{t+1} = argmax_{\theta} \ f(\theta)$$

Bayes rule

likelihood Prior
$$P(z|x) = \frac{P(x|z)P(z)}{P(x)} = \frac{P(x,z)}{\sum_{z'} P(x,z')}$$
posterior normalization constant

Prior:
$$p(z) = \pi_z$$

Likelihood:
$$p(x|z) = \mathcal{N}(x|\mu_z, \Sigma_z)$$

Posterior:
$$p(z|x) = \frac{\pi_z \mathcal{N}(x|\mu_z, \Sigma_z)}{\sum_{z'} \pi_{z'} \mathcal{N}(x|\mu_{z'}, \Sigma_{z'})}$$

E-step: what is $q(z^1, z^2, ..., z^m)$

• $q(z^1, z^2, ..., z^m)$: posterior distribution of the latent variables

$$q(z^1, z^2, ..., z^m) = \prod_{i=1}^m p(z^i | x^i, \theta^t)$$

• For each data point x^i , compute $p(z^i = k | x^i)$ for each k

$$\tau_k^i = p(z^i = k | x^i) = \frac{p(z^i = k, x^i)}{\sum_{k'=1...K} p(z^i = k', x^i)}$$

$$= \frac{\pi_k \mathcal{N}(x^i | \mu_k, \Sigma_k)}{\sum_{k'=1..K} \pi_{k'} \mathcal{N}(x^i | \mu_{k'}, \Sigma_{k'})}$$

E-step: compute the expectation

$$f(\theta) = E_{q(z^{1},z^{2},..,z^{m})} \left[\log \prod_{i=1}^{m} p(x^{i},z^{i}|\theta) \right]$$

$$= \sum_{i=1}^{m} E_{p(z^{i}|x^{i},\theta^{t})} \left[\log p(x^{i},z^{i}|\theta) \right]$$

$$= \sum_{i=1}^{m} E_{p(z^{i}|x^{i},\theta^{t})} \left[\log \pi_{z^{i}} \mathcal{N}(x^{i}|\mu_{z^{i}},\Sigma_{z^{i}}) \right]$$

• Expand log of Gaussian $\log \mathcal{N}(x^i | \mu_{z^i}, \Sigma_{z^i})$

$$f(\theta) = \sum_{i=1}^{m} E_{p(z^i|x^i,\theta^t)} \left[\log \pi_{z^i} - \left(x^i - \mu_{z^i} \right)^\mathsf{T} \Sigma_{z^i} \left(x^i - \mu_{z^i} \right) + \log \Sigma_{z^i} + c \right]$$

$$= \sum_{k=1}^{m} \sum_{k=1}^{m} \tau_{k}^{i} \left[\log \pi_{k} - (x^{i} - \mu_{k})^{\mathsf{T}} \Sigma_{k} (x^{i} - \mu_{k}) + \log \Sigma_{k} + c \right]$$

M-step: maximize $f(\theta)$

•
$$f(\theta) = \sum_{i=1}^{m} \sum_{k=1}^{K} \tau_i^k \left[\log \pi_k - \left(x^i - \mu_k \right)^{\mathsf{T}} \Sigma_k \left(x^i - \mu_k \right) + \log \Sigma_k + c \right]$$

For instance, we want to find π_k , and $\sum_{i=1}^K \pi_k = 1$

Form Lagrangian

$$L = \sum_{i=1}^{m} \sum_{k=1}^{K} \tau_k^i [\log \pi_k + other \ terms] + \lambda (1 - \sum_{i=1}^{K} \pi_k)$$

Take partial derivative and set to 0

$$\frac{\partial L}{\partial \pi_k} = \sum_{i=1}^m \frac{\tau_k^i}{\pi_k} - \lambda = 0$$

$$\Rightarrow \pi_k = \frac{1}{\lambda} \sum_{i=1}^m \tau_k^i$$

$$\Rightarrow \lambda = m$$

EM graphically

EM vs. modified K-means

 The EM algorithm for mixture of Gaussian is like a soft clustering algorithm

K-means:

- "E-step", we do hard assignment:
 - $z^i = argmax_k(x^i \mu_k) \Sigma_k^{-1}(x^i \mu_k)$
- "M-step", we update the means and covariance of cluster using maximum likelihood estimate:

$$\bullet \mu_k = \frac{\sum_i \delta(z^i,k)x^i}{\sum_i \delta(z^i,k)}$$

$$\bullet \Sigma_k = \frac{\sum_i \delta(z^i,k)(x^i - \mu_k) (x^i - \mu_k)^T}{\sum_i \delta(z^i,k)}$$

$$\delta(z^i,k) = 1 \text{ if } z^i = k; \text{ otherwise 0.}$$

