Report

Nunzia Cerrato, Giuseppe Catalano

Problem 2

Consider the $n \times n$ Wilkinson matrix

$$W_n = \begin{bmatrix} 1 & 0 & 0 & \cdots & 1 \\ -1 & 1 & 0 & \cdots & 1 \\ -1 & -1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & -1 & 1 \end{bmatrix}$$
(0.1)

(1) Compute the LU factorization of W_5 .

We are interested to compute two $n \times n$ matrices, L_5 and U_5 , that are, respectively, a unit lower triangular matrix and an upper triangular matrix that satisfy the identity $W_5 = L_5U_5$. We start writing the expression of W_5 :

now we compute \mathbf{m}_1 :

$$\mathbf{m}_{1} = \begin{bmatrix} 0 \\ W_{21}/W_{11} \\ W_{31}/W_{11} \\ W_{41}/W_{11} \\ W_{51}/W_{11} \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{bmatrix}. \tag{0.3}$$

Defining \mathbf{e}_i as the vectors with 1 in the i-th element and 0 otherwise, we can compute:

$$M_{1} = \mathcal{I}_{5} - \mathbf{m}_{1} \mathbf{e}_{1}^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

$$(0.4)$$

Using the expression of M_1 , we can compute $W_5^{(1)}$:

$$W_5^{(1)} = M_1 W_5 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & -1 & 1 & 0 & 2 \\ 0 & -1 & -1 & 1 & 2 \\ 0 & -1 & -1 & -1 & 2 \end{bmatrix}.$$
 (0.5)

The second iteration proceeds in a similar way:

$$\mathbf{m}_{2} = \begin{bmatrix} 0 \\ 0 \\ W_{32}^{(1)}/W_{22}^{(1)} \\ W_{42}^{(1)}/W_{22}^{(1)} \\ W_{52}^{(1)}/W_{22}^{(1)} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -1 \\ -1 \\ -1 \end{bmatrix}, \tag{0.6}$$

$$M_2 = \mathcal{I}_5 - \mathbf{m}_2 \mathbf{e}_2^T = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}.$$
 (0.7)

Using the expression of M_2 , we can compute $W_5^{(2)}$:

$$W_5^{(2)} = M_2 W_5^{(1)} = M_2 M_1 W_5 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & -1 & 1 & 4 \\ 0 & 0 & -1 & -1 & 4 \end{bmatrix}.$$
 (0.8)

Now we start the third iteration:

$$\mathbf{m}_{3} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ W_{43}^{(2)}/W_{33}^{(2)} \\ W_{53}^{(2)}/W_{33}^{(2)} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ -1 \end{bmatrix}, \tag{0.9}$$

$$M_3 = \mathcal{I}_5 - \mathbf{m}_3 \mathbf{e}_3^T = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}. \tag{0.10}$$

Using the expression of M_3 , we can compute $W_5^{(3)}$:

$$W_5^{(3)} = M_3 W_5^{(2)} = M_3 M_2 M_1 W_5 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 & 8 \\ 0 & 0 & 0 & -1 & 8 \end{bmatrix}.$$
 (0.11)

Similarly, we can perform the last iteration:

$$\mathbf{m}_{4} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ W_{54}^{(2)}/W_{44}^{(2)} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{bmatrix}, \tag{0.12}$$

$$M_4 = \mathcal{I}_5 - \mathbf{m}_4 \mathbf{e}_4^T = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$
 (0.13)

Using the expression of M_4 , we can compute $W_5^{(4)}$:

$$W_5^{(4)} = M_4 W_5^{(3)} = M_4 M_3 M_2 M_1 W_5 = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 1 & 8 \\ 0 & 0 & 0 & 0 & 16 \end{bmatrix} = U_5.$$
 (0.14)

We can get L_5 from $L_5 = M_1^{-1} M_2^{-1} M_3^{-1} M_4^{-1}$ and knowing that $M_i^{-1} = \mathcal{I}_5 + \mathbf{m}_i \mathbf{e}_i^T$:

$$L_{5} = M_{1}^{-1} M_{2}^{-1} M_{3}^{-1} M_{4}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ -1 & -1 & 1 & 0 & 0 \\ -1 & -1 & -1 & 1 & 0 \\ -1 & -1 & -1 & -1 & 1 \end{bmatrix}.$$
 (0.15)

(2) It is possible to guess the LU factorization of $W_n = L_n U_n$:

$$L_{n} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ -1 & 1 & \ddots & & \vdots \\ \vdots & \ddots & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ -1 & \cdots & \cdots & -1 & 1 \end{bmatrix}, \quad U_{n} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 2^{0} \\ 0 & 1 & \ddots & \vdots & 2^{1} \\ \vdots & \ddots & \ddots & 0 & 2^{2} \\ \vdots & & \ddots & 1 & \vdots \\ 0 & \cdots & \cdots & 0 & 2^{n-1} \end{bmatrix}$$
(0.16)

- (3) Here is the function that generates the $n \times n$ Wilkinson matrix:
- *** INSERIRE CODICE (funzione wilkin(n)) ***
- (4-5) Here is the code that performs the numerical experiment for each $n=2,\ldots,60$:
- *** INSERIRE CODICE (funzione check when lufact W fails) ***

The largest value of n for which $W_n \mathbf{x} = \mathbf{b}$ can be solved accurately is 54, that means that for n = 55 the program returns an inaccurate value for the solution \mathbf{x} . In this case, instead of computing the value $\mathbf{x} = \mathbf{e} = [1, \dots, 1]$, it computes $\tilde{\mathbf{x}} = [1, \dots, 1, 0, 1]$. In other words we have:

$$\mathbf{x}_{54} = 0 \neq \mathbf{e}_{54} = 1. \tag{0.17}$$

In order to understand the motivation uder this behavior, we verified that the matrices L_{55} and U_{55} were computed accurately. In the following is reported the code that verifies this computation: *** INSERIRE CODICE (funzioni expected_LU_wilkin, compute_error_lufact_W) ****

Once verified that the matrices L_{55} and U_{55} are correct, we know that the problems is in the calculation of the forward and backward substitution. We recall that having done the LU factorization of the matrix W_{55} allows us to solve the system $W_{55}\mathbf{x} = \mathbf{b}_{55}$, where $\mathbf{b}_{55} = W_{55}\mathbf{e}$, by solving (in order) the linear systems with forward and backward substitutions:

$$\begin{cases} L\mathbf{y} = \mathbf{b} \\ U\mathbf{x} = \mathbf{y} \end{cases} \tag{0.18}$$

where we named $L_{55} = L$, $U_{55} = U$ and $\mathbf{b}_{55} = \mathbf{b}$ for clarity. The solution to the first system is $\mathbf{y} = [2^0 + 1, 2^1 + 1, \dots, 2^{n-2} + 1, 2^{n-1}]$. After that, we compute the solution of the second system starting from the bottom:

$$\mathbf{x}_{55} = \mathbf{y}_{55} / U_{55,55} = \frac{2^{54}}{2^{54}} = 1, \tag{0.19}$$

so far so goood. Now we update the vector \mathbf{y} as follows:

$$\mathbf{y}^{(1)} = \mathbf{y} - \mathbf{x}_{55} \mathbf{u}_{55},\tag{0.20}$$

where \mathbf{u}_{55} is the 55-th and last column of U. Here we have, considering the 54-th component of $\mathbf{y}^{(1)}$:

$$[\mathbf{y}^{(1)}]_{54} = [\mathbf{y}]_{54} - \mathbf{x}_{55}U_{54,55} = 2^{53} + 1 - 2^{53}.$$
 (0.21)

Problem 3

Suppose that $A \in \mathbb{R}^{n \times n}$ is a nonsingular matrix and the LU factorization of A exists and has been computed. Consider two given vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, we can define the matrix $\tilde{A} = A + \mathbf{u}\mathbf{v}^T$

(1a) Prove that \tilde{A} is nonsingular if and only if $\mathbf{v}^T A^{-1} \mathbf{u} \neq 1$.

Proof: We start proving that $\det(\tilde{A}) \neq 0$ implies that $\mathbf{v}^T A^{-1} \mathbf{u} \neq 1$. We can choose an orthonormal basis $\mathcal{B} = \{\mathbf{e}_i\}_{i=1,...,n}$ of \mathbb{R}^n such that $\mathbf{u} = \alpha_1 \mathbf{e}_1$ and $\mathbf{v} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2$ with $\alpha_1, \beta_1, \beta_2 \in \mathbb{R}$. We can represent the matrix A with respect to the basis \mathcal{B} , denoting with $a_{ij} = \mathbf{e}_i^T A \mathbf{e}_j$ the element of the i-th row and j-th column of the matrix A written in the basis \mathcal{B} . We can represent the matrix $\mathbf{u}\mathbf{v}^T$ with respect to the basis \mathcal{B} , obtaining $\mathbf{u}\mathbf{v}^T = \alpha_1\beta_1\mathbf{e}_1\mathbf{e}_1^T + \alpha_1\beta_2\mathbf{e}_1\mathbf{e}_2^T$. Knowing that we can compute the determinant of a matrix M $n \times n$ using the formula:

$$\det(M) = \sum_{j=1}^{n} m_{ij} C_{ij}(M), \tag{0.22}$$

where C_{ij} is the cofactor of the element (i,j) of the matrix M, the determinant of \tilde{A} is:

$$\det(\tilde{A}) = \det(A) + \alpha_1 \beta_1 C_{11}(A) + \alpha_1 \beta_2 C_{12}(A). \tag{0.23}$$

Since we know that $\det(\tilde{A}) \neq 0$, we can write:

$$\det(A) + \alpha_1 \beta_1 C_{11}(A) + \alpha_1 \beta_2 C_{12}(A) \neq 0, \tag{0.24}$$

and, therefore:

$$\alpha_1 \beta_1 \frac{C_{11}(A)}{\det(A)} + \alpha_1 \beta_2 \frac{C_{12}(A)}{\det(A)} \neq -1,$$
 (0.25)

where we divided for det(A) both sides of the equation, knowing that $det(A) \neq 0$. At this point, it is straightforward to verify that

$$\mathbf{v}^{T} A^{-1} \mathbf{u} = \alpha_1 \beta_1 \frac{C_{11}(A)}{\det(A)} + \alpha_1 \beta_2 \frac{C_{12}(A)}{\det(A)}$$
(0.26)

writing **u** and **v** in terms of \mathbf{e}_1 and \mathbf{e}_2 and $A^{-1} = \frac{1}{\det(A)}(cof(A))^T$, where cof(A) is the matrix of cofactors of A. This proves that:

 $\mathbf{v}^T A^{-1} \mathbf{u} \neq -1. \tag{0.27}$

In order to prove the converse implication, we consider again the expression for the determinant of \tilde{A} :

$$\det(\tilde{A}) = \det(A) + \alpha_1 \beta_1 C_{11}(A) + \alpha_1 \beta_2 C_{12}(A) = \det(A) \left(1 + \alpha_1 \beta_1 \frac{C_{11}(A)}{\det(A)} + \alpha_1 \beta_2 \frac{C_{12}(A)}{\det(A)} \right). \tag{0.28}$$

Here we can recognize the expression of $\mathbf{v}^T A^{-1} \mathbf{u}$, obtaining:

$$\det(\tilde{A}) = \det(A)(1 + \mathbf{v}^T A^{-1}\mathbf{u}). \tag{0.29}$$

Now, knowing that $det(A) \neq 0$ and $\mathbf{v}^T A^{-1} \mathbf{u} \neq -1$, we obtain

$$\det(\tilde{A}) \neq 0 \tag{0.30}$$

and this concludes the proof.

(1b) Show that:

$$\tilde{A}^{-1} = A^{-1} - \alpha A^{-1} \mathbf{u} \mathbf{v}^T A^{-1}, \text{ where } \alpha = \frac{1}{\mathbf{v}^T A^{-1} \mathbf{u} + 1}.$$
 (0.31)

Proof: We start noticing that the last expression is well defined since \tilde{A} invertible implies $\mathbf{v}^T A^{-1} \mathbf{u} + 1 \neq 0$. Now we can manipulate the (0.31) multiplying both sides to the left for A and to the right for \tilde{A} , obtaining:

$$A = \tilde{A} - \alpha \mathbf{u} \mathbf{v}^{T} A^{-1} \tilde{A}$$

$$= A + \mathbf{u} \mathbf{v}^{T} - \alpha \mathbf{u} \mathbf{v}^{T} A^{-1} (A + \mathbf{u} \mathbf{v}^{T})$$

$$= A + (1 - \alpha) \mathbf{u} \mathbf{v}^{T} - \alpha \mathbf{u} \mathbf{v}^{T} A^{-1} \mathbf{u} \mathbf{v}^{T}.$$

$$(0.32)$$

Subtracting A from each side and dividing both sides for α (that is nonzero $\forall \mathbf{v}^T A^{-1} \mathbf{u} \in \mathbb{R}$) we obtain:

$$\mathbf{u}\mathbf{v}^T A^{-1} \mathbf{u}\mathbf{v}^T = \mathbf{u}\mathbf{v}^T (\alpha^{-1} - 1). \tag{0.33}$$

Finally, since $\mathbf{v}^T A^{-1} \mathbf{u} = \alpha^{-1} - 1$, the identity (0.33) is verified and this concludes the proof.

(1c) Assuming that LU factorization of A is already available, describe an $\mathcal{O}(n^2)$ algorithm to solve $\tilde{A}\tilde{\mathbf{x}} = \tilde{\mathbf{b}}$ for any right-hand side $\tilde{\mathbf{b}}$.

Supposing that \tilde{A} is invertible, we can write the solution $\tilde{\mathbf{x}}$ using the Sherman-Morrison formula for \tilde{A} :

$$\tilde{\mathbf{x}} = \tilde{A}^{-1}\tilde{\mathbf{b}} = A^{-1}\tilde{\mathbf{b}} - \frac{A^{-1}\mathbf{u}\mathbf{v}^T A^{-1}\tilde{\mathbf{b}}}{\mathbf{v}^T A^{-1}\mathbf{u} + 1}$$

$$(0.34)$$

Algorithm:

- Compute \mathbf{x} s.t. $A\mathbf{x} = \tilde{\mathbf{b}}$ and \mathbf{y} s.t. $A\mathbf{y} = \mathbf{u}$ using backward and forward substitutions. This requires $\mathcal{O}(n^2)$ operations.
- Compute $\gamma = \frac{\mathbf{v}^T \mathbf{x}}{\mathbf{v}^T \mathbf{y} + 1}$. This requires $\mathcal{O}(n)$ operations.
- Compute $\tilde{\mathbf{x}} = \mathbf{x} \gamma \mathbf{y}$. This requires $\mathcal{O}(n)$ operations.

(2) Assuming again that the LU factorization of A exists and has been computed, describe an efficient algorithm for solving the bordered system

$$\begin{bmatrix} A & \mathbf{u} \\ \mathbf{v}^T & \beta \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ z \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ c \end{bmatrix}, \tag{0.35}$$

where z is unknown and β and c are given scalars. When does this system have a unique solution? Solution:

Putting

$$A' = \begin{bmatrix} A & \mathbf{u} \\ \mathbf{v}^T & \beta \end{bmatrix}, \mathbf{x}' = \begin{bmatrix} \mathbf{x} \\ z \end{bmatrix}, \mathbf{b}' = \begin{bmatrix} \mathbf{b} \\ c \end{bmatrix}, \tag{0.36}$$

the system above rewrites as:

$$A'\mathbf{x}' = \mathbf{b}'. \tag{0.37}$$

The LU factorization of the matrix A' = L'U' exists and the matrices L' and U' take the following form:

$$L' = \begin{bmatrix} L & \mathbf{0} \\ \mathbf{f}^T & 1 \end{bmatrix}, U' = \begin{bmatrix} U & \mathbf{g} \\ \mathbf{0} & \gamma \end{bmatrix}. \tag{0.38}$$

In order to get the values of $\mathbf{f}, \mathbf{g} \in \mathbb{R}^n$ and $\gamma \in \mathbb{R}$, we impose A' = L'U', obtaining the following system:

$$\begin{cases} L\mathbf{g} = \mathbf{u} \\ U^T \mathbf{f} = \mathbf{v} \\ \mathbf{f}^T \mathbf{g} + \gamma = \beta \end{cases}$$
 (0.39)

Here we can find \mathbf{f} and \mathbf{g} with forward substitutions with $\mathcal{O}(n^2)$ operations. Therefore, we can rewrite the last equation as:

$$\gamma = \beta - \mathbf{v}^T A^{-1} \mathbf{u}. \tag{0.40}$$

In order to impose that the bordered system has a unique solution, we have to require that $\det(A') \neq 0$, that is true if and only if all the diagonal elements of U' are nonzero and, given that $\det(A) \neq 0$, this means requiring that $\gamma \neq 0$. Therefore, the condition for the uniquenes of the solution becomes:

$$\gamma = \beta - \mathbf{v}^T A^{-1} \mathbf{u} \neq 0 \Rightarrow \mathbf{v}^T A^{-1} \mathbf{u} \neq \beta. \tag{0.41}$$