Aufgaben zur Veranstaltung Lineare Algebra 2, SS 2021

Matthias Grajewski, Andreas Kleefeld, Benno Wienke

Köln, Jülich, Aachen

Übungsblatt 4

19.04.2021

Selbstlernaufgaben

Aufgabe 1

Gegeben sei eine lineare Abbildung von $\mathbb{R}^3 \to \mathbb{R}^3$. Man weiß $f(e_1) = (1,1,0)^{\top}$, $f(e_2)$ ist die Spiegelung von $f(e_1)$ an 0, und $f((1,1,1)^{\top}) = e_1$. Wie lautet die Abbildungsmatrix?

Aufgabe 2

Bestimmen Sie

- (a) den Kern
- (b) die Dimension des Kerns
- (c) den Rang
- (d) das Bild

der linearen Abbildung $f(x) = A \cdot x, f : \mathbb{R}^4 \to \mathbb{R}^2$ mit

$$A = \left(\begin{array}{rrr} 1 & 4 & 2 & 5 \\ 3 & 2 & 0 & 1 \end{array}\right).$$

Aufgabe 3

Eine lineare Abbildung $f: \mathbb{R}^3 \to \mathbb{R}^3$ sei definiert durch $f(x) = A_t x$ mit

$$A_t = \begin{pmatrix} t-1 & 1 & 1 \\ 1 & t-1 & 1 \\ 1 & 1 & t-1 \end{pmatrix}, \quad t \in \mathbb{R}.$$

Bestimmen Sie die Mengen $M_n = \{t \in \mathbb{R} | rg(A_t) = n\}$ für n = 1, 2, 3.

Aufgabe 4

Bestimmen Sie den Rang, den Kern und das Bild der zu der folgenden Matrix gehörenden linearen Abbildung in Abhängigkeit von a:

$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & -1 & 1 \\ 4 & -1 & a \end{pmatrix}$$

Hausaufgaben

Aufgabe 5

Bestimmen Sie den Rang der zu den folgenden Matrizen gehörenden linearen Abbildungen:

(a)
$$A_1 = \begin{pmatrix} -3 & 2 & 1 \\ -4 & 0 & -2 \end{pmatrix}$$
 (b) $A_2 = \begin{pmatrix} 1 & 1 & 0 & 2 \\ 4 & 0 & 1 & 3 \\ 6 & 2 & 1 & 7 \\ 1 & 0 & 0 & 1 \end{pmatrix}$

Aufgabe 6

Bestimmen Sie den Rang der zu der folgenden Matrix gehörenden linearen Abbildung

$$A = \begin{pmatrix} 1 & t & t^2 \\ t & 1 & t \\ t^2 & t & 1 \end{pmatrix}$$

in Abhängigkeit von t.

Aufgabe 7

Bestimmen Sie das Bild, den Rang, den Kern und die Dimension des Kerns der linearen Abbildung $f(x)=A\cdot x, f:\mathbb{R}^4\to\mathbb{R}^4$ mit

$$A = \left(\begin{array}{rrrr} 1 & 3 & 0 & -2 \\ 2 & 1 & 4 & 1 \\ 0 & 1 & -1 & -1 \\ -1 & 0 & -2 & -1 \end{array}\right).$$

Aufgabe 8

Berechnen Sie in Abhängigkeit von \boldsymbol{x}

- (a) den Kern
- (b) die Dimension des Kerns
- (c) den Rang
- (d) das Bild der zu der folgenden Matrix gehörenden linearen Abbildung:

$$A = \left(\begin{array}{cccc} 2 & 1 & 2 & 3 \\ 2 & 5 & 4 & 3 \\ 1 & 2 & 5 & x \\ 2 & 1 & 3 & 5 \end{array}\right)$$

2