onoio

Table of Contents

O

- ▶ IP Terminology
- The Hierarchical IP Addressing Scheme
- ▶ IPv4 Address Types
- Network Address Translation (NAT)
- Internet Protocol Version 6 (IPv6)

IP Terminology

IP Terminology

O

- Octet Same as byte, made up of 8 bits
- Network Address This is the designation used in routing to send packets to a remote network—for example, 10.0.0.0, 172.16.0.0, and 192.168.10.0.
- Host Address A logical address used to define a single host
- Broadcast Address Used by applications and hosts to send information to all hosts on a network. For example
 255.255.255.255, which designates all networks and all hosts

- IP address consists of 32 bits or 4 bytes or 4 octets
- Represented as:
 - 54.164.151.235 or
 - 00110110.10100100.10010111.11101011 or
 - 66.A4.97.EB
- 32-bit IP address is *structured* (or *hierarchical*) address to make routing possible
- If IP address was *flat* (or *non hierarchical*) routing would be impossible

- The **network address** (or **network number**) uniquely identifies each network
- Every machine on the same network shares that network address as part of its IP address
- For example:

network starts with these numbers

8

Network addresses are divided into 5 classes:

	 	Octet 1			1	Octet 2	Octet 3	Octet 4
Class A	0		Ne	etwo	rk ID		Host ID	
Class B	1	0			Netwo	rk ID	ID	
Class C	1	1	0			Network ID		Host ID
Class D	1	1	1	0		Multica	st Address	
Class E	1	1	1	1		Re	served	

Class A Addresses

	network	host	host	host
--	---------	------	------	------

- Class A Network address is 1-byte long, first bit is always 0
- Maximum 2⁷ = 128 Class A networks can be created
- Maximum 2^{24} = 16,777,214 hosts (excluding 2 reserved addresses)
- First bit is always 0 then 00000000 = 0011111111 = 127
- The addresses 00000000 and 01111111 are reserved for default route and troubleshooting respectively
- So Class A network addresses start with 1-126

Class A Addresses

Address	Function						
Network address of all 0s (0.X.X.X)	Means "this network or segment."						
Network address of all 1s (127.X.X.X)	Means "all networks."						
127.0.0.1	Reserved for loopback tests. Designates the local host and allows that host to send a test packet to itself without generating network traffic.						
Host address of all 0s (X.0.0.0)	Means "network address" or any host on the specified network.						
Host address of all 1s (X.255.255.255)	Means "all hosts" on the specified network						
Entire IP address set to all 0s (0.0.0.0)	Any host on any network						
Entire IP address set to all 1s (255.255.255.255)	Broadcast to all hosts on the current network						
oodio							

Class B Addresses

network network host host

- Class B Network Address is 2-byte long, first 2 bits are always 10
- Maximum 2¹⁴ = 16,384 Class B networks can be created
- Maximum 2¹⁶ = 65,534 hosts (excluding 2 reserved addresses)
- First 2 bits are always 10 then **10**000000 = 128 **10**111111 = 191
- Class B Network Addresses start with 128-191

Class C Addresses

```
network
         network
                  network
                            host
```

- Class C Network Address is 3-byte long, first 3 bits are always 110
- Maximum 2²¹ = 2,097,152 Class C networks can be created
- Maximum 2⁸ = 254 hosts (excluding 2 reserved addresses)
- First 3 bits are always 110 then **110**00000 = 192 **110**11111 = 223
- Class C Network Addresses start with 192-223

Class D Addresses

- Not assigned to devices on a network
- Used for special-purpose, multicast applications (such as videoand audio-streaming applications)
- Need to be registered with IANA to be used globally
- First 4 bits are always 1110 then **1110**0000 = 224 **1110**1111 = 239
- Class D Network Addresses start with 224-239

Class E Addresses

- No defined use
- Reserved for usage and testing by IANA and the Internet Research Task Force (IRTF)
- Need to be registered with IANA to be used globally
- First 4 bits are always 1111 then 11110000 = 240 11111111 = 255
- Class E Network Addresses start with 240-255

IP Address Classes:

Address Class	1st Octet Range	1st Octet Bits	Network & Host Parts	# of Possible Networks # of Hosts per Network
A	1-126	0 0000000 - 0 1111111	N.H.H.H	128 nets (2 ⁷) 16,777,214 hosts per net (2 ²⁴)-2
В	128-191	10000000 - 10111111	N.N.H.H	16,384 nets (2 ¹⁴) 65,534 hosts per net (2 ¹⁶)-2
С	192-223	11000000 - 11011111	N.N.N.H	2,097,150 nets (2 ²¹) 254 hosts per net (2 ⁸)-2

Private IP Addresses (RFC 1918)

Every host on every network should have a routable IP address. But if every host on every network in the world was required to have an unique IP address, we would have run out of

IP addresses!

Private IP Addresses (RFC 1918)

- The IANA reserved the following IP address blocks for use as private IP addresses:
 - Class A: 10.0.0.0 to 10.255.255.255
 - Class B: 172.16.0.0 to 172.31.255.255
 - Class C: 192.168.0.0 to 192.168.255.255

- NAT is a process in which one or more local IP addresses are translated into one or more global IP address and vice versa to provide Internet access to the local hosts
- NAT allows multiple devices to access the Internet through a single public address

Advantages:

- Hides internal structure of the network from the outsider and thus increases network security
- Eliminates address renumbering when a network evolves
- Allows unlimited private IP address range

Disadvantages:

- Changes the IP addresses, thus troubleshooting becomes more complex
- Translation results in switching path delays
- Certain applications will not function while NAT is enabled
- Complicates tunneling protocols such as IPsec

Types of NAT:

- Static NAT (SNAT):
 - One-to-one mapping (A single private IP with a single global IP)
 - Each device needs a public IP address
 - Generally used for web hosting

Types of NAT:

- Dynamic NAT (DNAT):
 - Public IP is picked from a pool of IP addresses
 - If no IP is left, data packet is dropped by the NAT
 - Very costly as many global IP addresses have to be bought to make a pool

Types of NAT:

- Overloading or Port Address Translation (PAT):
 - Most popular type of NAT
 - Port numbers are used to distinguish the traffic
 - Cost-effective as lots of users can be connected by using only one public IP address

APIPA

- In a network, Dynamic Host Configuration Protocol (DHCP) server assigns IP addresses to all the hosts connected to the network
- If DHCP server isn't available, Windows provides Automatic Private IP Addressing (APIPA) service to configure the IP addresses for the hosts
- 169.254.0.1 169.254.255.254 reserved for **APIPA**

IPv4 Address Types

Pv4 Address Types

Layer 2 Broadcasts

- Layer 2 broadcast traffic stays within a local area network (LAN) boundary; known as the broadcast domain
- A MAC address of FF:FF:FF:FF:FF is used for broadcast

Pv4 Address Types

Layer 3 Broadcasts

- Layer 3 broadcast traffic is sent to all devices in a network
- A network address of X.255.255.255 is used for broadcast
- Address Resolution Protocol (ARP) uses broadcasting to map MAC addresses to IP addresses
- Dynamic Host Configuration Protocol (DHCP) uses broadcasting to dynamically assign IP addresses to hosts

IPv4 Address Types

d

Unicast Address

- Identifies a unique node on a network
- Packets addressed to a unicast address are delivered to the node identified by the address
- Unicast address has the MAC address of the destination device

Pv4 Address Types

Multicast Address

- Represent a group of devices in a LAN
- Multicast frames have a value of 1 in the least-significant bit of the first octet of the destination address
- Multicast addresses range from 224.0.0.0 to 239.255.255.255
 (Class D)

4

Internet Protocol Version 6 (IPv6)

Why do we need IPv6?

	ш	V	Δ	uu	ıe	33	эþ	ac	Ε,	Co	Ш	uii	ΠP	LIC	711
0		2	3	4	5	6	7	8	9	10	- 11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255

IPv4 — 4,294,467,295 IP addresses

```
Class A → 16,777,216
Class B → 65,535
Class C → 256
```

Large companies (Apple, IBM, Microsoft, etc.) allocated one or more Class A addresses

Many IP

addresses

are wasted!

ondi

32

IPv6 is 128-bit long:

340,282,366,920,938,463,463,374,607,431,768,211,456

- IPv6 is 128-bit long:
 - 340 undecillion
 - 282 decillion
 - 366 nonillion
 - 920 octillion
 - 938 septillion
 - 463 sextillion
 - 463 quintillion
 - 374 quadrillion
 - 607 trillion
 - 431 billion
 - 768 million
 - 211 thousand
 - 456

O

- More Efficient Routing
- More Efficient Packet Processing
- Directed Data Flows No broadcasts!
- Simplified Network Configuration
- Support For New Services No need for NAT!
- Security

IP Address representation:

IPv4 ----- 51.151.64 242

IPv6 — 2041:1234:140F:1122:AB91:564F:875B:131B

Octet

Hexadectet

or **hextet**

On browsers:

IPv4: http://51.151.64.242/index.html

IPv6:

http://[2041:1234:140F:1122:AB91:564F:875B:131B]/index.html

ondio

36

2001:0df8:23f2:0000:0000:66ee:1336:1744

Each group of 4 hex digits represents 16 bits.

Shortening IPv6 Addresses:

Original : 2041:0000:140F:0000:0000:0000:875B:131B

Short : 2041:0000:140F::875B:131B

Original : 2001:<u>0000:0000</u>:0012:<u>0000:0000</u>:1234:56ab

Wrong! : 2001::0012::1234:56AB

You can remove zeros only once!

Shortening IPv6 Addresses:

Original : 2041:0000:140F:0000:0000:0000:875B:131B

Short : 2041:<u>0</u>:140F::875B:131B

Original : 2001:0001:0002:0003:0004:0005:0006:0007

Short : 2001:1:2:3:4:5:6:7

Rules:

- o An entire string of zeros can be removed, you can only do this once
- 4 zeros can be removed, leaving only a single zero
- Leading zeros can be removed

IPv6 Address Types:

- Unicast Address
 - Link Local Address: Only valid in local networks. Starts with FE80::/10
 - Global Unicast Address: Worldwide unique address. Starts with 2000 to 3FFF
- Multicast address Same as IPv4. Starts with FF00::/8
- Anycast Address Similar to broadcast but instead of sending to all nodes, sends to the closest nodes to sender.

IPv6 Special Addresses:

Address	Meaning						
0:0:0:0:0:0:0:0	Equals ::. The equivalent of IPv4's 0.0.0.0 and is typically the source address of a host before the host receives an IP address when you're using DHCP-driven stateful configuration						
0:0:0:0:0:0:0:1	Equals ::1. The equivalent of 127.0.0.1 in IPv4.						
2000::/3	The global unicast address range allocated for Internet access.						
FC00::/7	The unique local unicast range.						
FE80::/10	The link-local unicast range.						
FF00::/8	The multicast range.						
3FFF:FFFF::/32	Reserved for examples and documentation.						
2001:0DB8::/32	Also reserved for examples and documentation.						
2002::/16	Used with 6to4 tunneling, which is an IPv4-to-IPv6 transition system.						

Stateless Autoconfiguration (EUI-64):

64-bit EUI-64 address

Advantages of EUI-64:

- Doesn't require support of a DHCP server
- Allows hot plugging of network devices
- Suitable for applications requiring secure connection without additional intermediaries in the form of a proxy or a DHCP server
- Cost effective
- Suitable for wireless networks

Migrating to IPv6:

- Dual Stacking
 - Most common and easiest migration
 - Allows devices to communicate either IPv4 or IPv6
 - Lets you upgrade your devices to IPv6 one at a time

Migrating to IPv6:

- 6to4 Tunneling
 - Useful for carrying IPv6
 packets over IPv4
 network
 - Puts IPv4 header onto \
 the front of IPv6 packet

