Population Genetics

Brief overview of basic concepts and processes Kerstin Johannesson

Single and polygenic traits

Few-loci traits: colour, sex-determination inherited diseases

How genetic variation arises

1. Mutation

a. Deletions or insertions of nucleotides

protein	1×10^{-6}		
microsatellites	$0.7-10 \times 10^{-5}$		
SNPs	$1-10 \times 10^{-9}$		

1 ind. out of 1.000.000 carries a new mutation in a protein

- b. Chromosomal rearrangements (inversions, duplications, fusions, fissions...)
- Results in big or no problems

The fate of a new mutation:

Initial frequency = $1/2N_a$

carried as a heterozygote by only one individual of a population

```
Positive for fitness:
```

 A_1A_1 1+s

 A_1A_2 1+s/2

 A_2A_1 1

Probability of fixation* = $2s (N_e/N_a)$, if 2s is small and N_e is large

^{*}Fixation = frequency of 1.00

The fate of a new mutation:

Initial frequency = $1/2N_a$

Negative for fitness:

 A_1A_1 1-s

 A_1A_2 1-s/2

 A_2A_2 1

Mutation will disappear if $2N_e s > 1$ (relatively large population) but it will take $2(N_e/N_a)[ln(2N_a/2N_e s)+1-0.58]$ to get rid of it

For $N_e=N_a=10~000$ and s=1% disadvantage, ≈ 9.6 generations For $N_e=N_a=10~000$ and s=10% disadvantage, ≈ 5 generations

Neutral for fitness:

A*A* 1

A*A 1

AA :

Probability of fixation = $1/2N_a$ Probability of loss = $1-1/2N_a$

Time to fixation = $4N_e$ generations

For $N_e = N_a = 10000$, 40000 generations

Time for disapperance = $2(N_e/N_a) \ln(2N_a)$

For $N_e = N_a = 10000$, ≈ 20 generations

Positive, negative or neutral?

"Hey! I'm trying to pass the potatoes! ... Remember, my forearms are just as useless as yours!"

Gametes (n)

2. Recombination

Extended to polygenic traits - infinite # of combinants

Hardy-Weinberg equilibrium

(the "null hypothesis" of population genetics)

Populations maintain stable allele frequencies from generation to generation if:

- 1. Diploid organisms
- 2. Sexual reproduction
- 3. Random mating
- 4. Nonoverlapping generations
- 5. No selection
- 6. No migration
- 7. No mutation
- 8. Infinite population size

$$(AA)=p^2$$
 p=freq of allele A
 $(Aa)=2pq$ q=freq of allele a
 $(aa)=q^2$

With finite population size → genetic drift

An infinite number of gametes are produced

New adults are sampled at random among the gametes

Drift removes genetic variation

Random genetic drift is strongest if

- a) populations are **small** and/or
- b) alleles are neutral

Selection most often violates HW equilibrium

Natural selection at work

Large populations:

Allele frequencies will change according to genotype fitnesses

Genotype Frequency	AA	Aa	aa
	p²	2pq	q^2
Fitness	w_{11}	W ₁₂	W ₂₂

Mean fitness:

$$w = p^2 w_{11} + 2pq w_{12} + q^2 w_{22}$$

Change in p per generation:

$$\Delta p = pq[p(w_{11}-w_{12}) + q(w_{12}-w_{22})]/w$$

Constant selection generates equilibrium frequencies

 $W_{11} > W_{12} > W_{22}$ $W_{11} < W_{12} < W_{22}$ A will be fixed and a lost a will be fixed and A lost

Gene flow

Island model

N = (N_e) m = proportion of N migrating each generation Nm = number of migrants

$$N \xrightarrow{m} N \xrightarrow{N} N$$
 Stepping-stone model

Differentiation between populations (F_{ST})

 F_{ST} = Degree of genetic differentiation between populations

 $F_{ST} = 1$, max differentiation Fixed for different alleles in a SNP locus

 $F_{ST} = 0$, no differentiation Same allele frequencies in a SNP locus

Gene flow, mutation and drift in an island model (no selection)

Equilibrium between drift (loss of variation), migration and mutation (adding variation)

For $\mu = 10^{-6}$, m = 0.1, N = 50

Island model:

$$F_{ST} = 1/[4N(m+\mu) + 1]$$

0.33

$$N \xrightarrow{m} N \xrightarrow{N} N$$

Stepping-stone model: $F_{ST} = 1/[(4N\sqrt{2m\mu}) + 1]$

0.97

Gene flow and drift - island model

Island model: $F_{ST} = 1/(4Nm + 1)$

Gene flow and selection over an ecotone

Population fragmentation and changes in F_{ST}

Non-equilibria is likely to be common

More about F-statistics

 F_{IS} , inbreeding coefficient (deviation from random mating) within a subpopulation F_{IT} , inbreeding coefficient (deviation from random mating) between/among subpopulations F_{ST} , differentiation between/among subpopulations

$$F_{IS} = 1-(H_{obs}/H_{exp})$$
 $F_{ST} = 1-(average\ H_{exp\ of\ all\ subpops}/total\ H_{exp})$
 $F_{IT} = 1-(H_{obs}/total\ H_{exp})$
 $F_{ST} = (F_{IT} - F_{IS})/(1-F_{IS})$

 $F_{\rm ST}$ - still one of the most used indexes of genetic differentiation

 $F_{\rm IS}$ - is a classical index of inbreeding...

 $F_{IS} = 1 - (H_{obs}/H_{exp})$

positive values \rightarrow $H_{obs} < H_{exp}$

Source: https://www.instituteofcaninebiology.org/

$F_{\rm IS}$ and may also be used to estimate cloning

$$F_{IS} = 1 - (H_{obs}/H_{exp})$$

negative values \rightarrow H_{obs} > H_{exp}

Genetic effects of population bottlenecks

Genetic variation is lost in relation to effective population size (N_e) and (population increase) R_0 1/(2N) of the heterozygosity is lost per generation

Lost genetic variation is restored by mutation and gene flow (if present)

If only mutations - restoration will take 100,000s of generations for specific SNPs (see mutation rates),

but will be more rapid for quantitative traits (e.g., 100-1000 generations)

Demographic inferences of DNA sequencing data can be used to trace historic

bottlenecks

The real reason dinosaurs became extinct

The Wahlund effect

Fragmentation creates a deficiency of heterozygotes - a Wahlund effect

recombined gametes

linked gametes

Genetic linkage

r, recombination fraction D, disequilibrium $D=p_{AB}p_{ab}-p_{Ab}p_{aB}$ $D_{max}=p_Aq_b$ or p_aq_B

Decay of linkage over time

Only genes very close on the chromosome will remained linked for longer periods of time, and genes inside inversions

Overdominance can explain stable polymorphisms

Heterozygote favoured by selection

Even under extreme conditions, aa will remain in the population. This will generate a "genetic load"

Negative frequency dependent selection can explain stable polymorphisms

Genotype favoured by selection while rare

AA Aa aa 1 1 >1 while rare

aa will increase up to equilibrium when no longer favoured due to increased frequency

Dominant or recessive makes a difference

