_					
	1	st		_•	
0	061	1251	ra c)O\ !	NY
			-,		

- -different types: parametric (today), nonparametric (possibly covered)
 - semiparametric (not covered)
- Monte Carlo requires us to know the underlying distribution under Ho
 - -not always possible if Ho is composite (i.e. many possibilities exist)
- -> Utilize Parametric Bootstrap to estimate underlying distribution

Ex: Test for independence

You roll 2 4-sided dice and want to see if there is a correlation.

Data:

1st	V	2	3	ч	Total	22-test for independence
1	15	28	30	12	85	22 = 5 (0;; - E;;)2 E;;
2	22	41	10	8	81	i= row, j= column
3	30	42	28	19	119	$\chi^2 \approx 29.802$ $df = (4-1)(4-1) = 9$
4	31	20	10	10	71	p-value ≈ 0.0005
Total	98	131	78	49	356	

Estimate distribution of each roll by taking row totals and dividing by sample size estimated probability of $\hat{\rho}_{1} = \begin{bmatrix} 85 & 81 & 119 & 71 \\ 356 & 356 & 356 & 356 \end{bmatrix}$ the first roll resulting in $\hat{\rho}_{2} = \begin{bmatrix} 98 & 131 & 78 & 49 \\ 356 & 356 & 356 \end{bmatrix}$

