Eksamen på Økonomistudiet. Sommeren 2012

MATEMATIK A

1. årsprøve

Fredag den 8. juni 2012

(2 timers skriftlig prøve uden hjælpemidler)

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

1. ÅRSPRØVE 2012 S-1A ex

SKRIFTLIG EKSAMEN I MATEMATIK A

Fredag den 8. juni 2012

2 sider med 3 opgaver.

Løsningstid: 2 timer.

Ingen hjælpemidler må medbringes ved eksamen.

Opgave 1. Partielle afledede. Lad $A \subseteq \mathbb{R}^2$ være en åben mængde, og lad $(x_0, y_0) \in A$ være et fast valgt punkt. Betragt en funktion $f : A \to \mathbb{R}$.

(1) Forklar, hvad det vil sige, at funktionen f har de partielle afledede

$$\frac{\partial f}{\partial x}(x_0, y_0)$$
 og $\frac{\partial f}{\partial y}(x_0, y_0)$

i punktet (x_0, y_0) , og forklar i den forbindelse, hvordan man finder disse partielle afledede.

(2) Betragt funktionen $f: \mathbb{R}^2 \to \mathbb{R}$, som er givet ved forskriften

$$\forall (x, y) \in \mathbf{R}^2 : f(x, y) = 3x^2 + xy^2 + \sin(xy).$$

Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

for denne funktion i et vilkårligt punkt $(x, y) \in \mathbf{R}^2$.

(3) Betragt funktionen $g: \mathbf{R}^2 \to \mathbf{R}$, som er givet ved forskriften

$$g(x,y) = \begin{cases} xy, & \text{for } x > 0 \text{ og } y > 0 \\ 0, & \text{ellers} \end{cases}$$

Bestem de partielle afledede

$$\frac{\partial g}{\partial x}(0,0)$$
 og $\frac{\partial g}{\partial y}(0,0)$.

(4) Betragt funktionen $h: \mathbf{R} \to \mathbf{R}$, som er givet ved

$$\forall x \in \mathbf{R} : h(x) = q(x, x^2).$$

Vis, at funktionen h er differentiabel i ethvert punkt $x \in \mathbf{R}$, og bestem f'(x).

Opgave 2. Udregn følgende ubestemte integraler:

$$\int \frac{x^5}{2+x^6} \, dx.$$

(2)
$$\int \frac{x^n}{7 + x^{n+1}} dx, \text{ hvor } n \in \mathbf{N}.$$

$$\int \frac{e^x}{1+e^x} \, dx.$$

Opgave 3. Betragt den uendelige række

(*)
$$\sum_{n=0}^{\infty} \frac{1}{(\sqrt{1+x^2})^n}.$$

(1) Bestem mængden

$$K = \{x \in \mathbf{R} \mid (*) \text{ er konvergent}\}.$$

(2) Bestem en forskrift for funktionen $f:K\to\mathbf{R},$ som er givet ved

$$\forall x \in K : f(x) = \sum_{n=0}^{\infty} \frac{1}{(\sqrt{1+x^2})^n}.$$

(3) Vis, at

$$\forall x \in K : f(-x) = f(x).$$

(4) Vis, at

$$f\left(\frac{1}{p}\right) \to \infty \text{ for } p \to \infty.$$