Synthetic Likelihoods for Parameter Inference in Electricity Spot Price Models

Jake Ireland

Outline

- Part I: Features of Spot Electricity Prices and a Model
- Part II: What is a Synthetic Likelihood?
- Part III: Fitting & Results

Part I: Features of Electricity Spot Prices

Features of Electricity Prices:

Large Volatility, Mean Reversion, Seasonality, Price Spikes

Figure: Example Trajectory from Model

Part I: Electricity Spot Price Model

We can account for these features by using a regime-switching model (Huisman & Mahieu 2003). We need three regimes:

- Regime 0: Default Price Levels.
- Regime 1: A price Spike.
- Regime -1: Reverting after a price spike.

Switching between regimes is given by the Markov process below where p is the probability of remaining in Regime 0.

Figure: State Transition Diagram

Part I: Mathematical Specification of the Model

Let s(t) be the natural log of the spot price on day t. Let $(\epsilon(t))$ be a sequence of iid standard Normal random variables.

•
$$s(t) = f(t) + x(t)$$

•
$$f(t) = \mu_0 + \beta_1 D_1(t) + \beta_2 D_2(t)$$

•
$$dx(t) := x(t) - x(t-1), x(0) = 0$$

$$\bullet \ \mathrm{d}x(t) = \begin{cases} -\alpha_0 x(t-1) + \sigma_0 \epsilon(t) & \text{Day t in Regime 0} \\ \mu_1 + \sigma_1 \epsilon(t) & \text{Day t in Regime 1} \\ -\alpha_{-1} x(t-1) + \sigma_{-1} \epsilon(t) & \text{Day t in Regime } -1 \end{cases}$$

Part II: What is a Synthetic Likelihood?

- Model: $f(y|\theta)$, Observed trajectory: y_0
- Idea:
 - MLE: choose parameters that maximise the chance of seeing the observed trajectory
 - SLE: choose parameters that maximise the chance of a trajectory presenting some observed summary statistics.
- Issue: Computationally intensive (and choosing good statistics)
- Solution: Robust Covariance Matrix
- Issue: Need M-Statistics (we can write each statistic as the minimisation of a loss function)

Part II: Technical Details

Synthetic Likelihood Estimation (Wood 2010)

- Choose statistics: $\mathbf{s}(\cdot) = (s_1(\cdot), \dots, s_M(\cdot)) \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$
- For some given parameters θ :
 - Generate samples: $y_1, \dots y_N$
 - Transform samples to statistics: $s(y_1), \ldots, s(y_N)$
 - Calculate sample mean $\hat{\mu}$ and covariance $\hat{\Sigma}$ of statistics
 - Compute Synthetic Likelihood $\log \phi(\mathbf{s}(\mathbf{y}_0)|\hat{\boldsymbol{\mu}},\hat{\boldsymbol{\Sigma}})$
- $\boldsymbol{\theta}_{\mathsf{SLE}}$ chosen as the $\boldsymbol{\theta}$ to maximise $\log \phi(\boldsymbol{s}(\boldsymbol{y}_0)|\hat{\boldsymbol{\mu}},\hat{\boldsymbol{\Sigma}})$

Robust Covariance Matrix (Huber 1967)

- Write each statistic $s_i(\cdot)$ as the minimisation of loss function L_i . Define $L:=\sum_{i=1}^M L_i$.
- Compute the hessian H_L of L and V, the sample covariance of the gradient of L (taken over each element of the trajectory).
- $\bullet \ \Sigma \approx \tilde{\Sigma} := H_L^{-1} V_L H_L^{-1}$

Part II: What statistics can we include?

M-Estimators

- ML estimators (minimum of negative log-likelihood)
 - mean, standard deviation, gamma shape parameter
- Regression Coefficients (minimum of squared residuals sum)
 - auto-linear regression useful for those pesky mean-reversion parameters
 - polynomial regression of ordered simulation values on ordered observation values

Not M-Estimators

- Autocorrelation coefficients
- mean median
- quartiles (min, Q1, median, Q3, max)
- more complex statistics

Part II: What is a useful statistic?

- Good statistics demonstrate high correlation with model parameters and low correlation with other statistics
- We can conduct simulation studies to compute correlation matrices to evaluate a set of parameters

Figure: Correlation Diagrams

Part III: Fitting and Results

- Fitting the simplified model
- Computational efficiency of the RCM
- Full model correlation matrices
- Next steps

Part III(a): Simplified Model (Set-up)

Simplified Model: Only default regime (mean reversion)

- s(t) = f(t) + x(t)
- $f(t) = \mu_0 + \beta_1 D_1(t) + \beta_2 D_2(t)$
- $dx(t) = -\alpha_0 x(t-1) + \sigma_0 \epsilon(t)$

Statistics

- We can infer μ_0 and σ_0 by including the maximum likelihood estimators of normal distribution
- For β_1 and β_2 we can use the mean taken over Saturdays and Sundays (with a quadratic loss)
- ullet For α_0 , an autoregression up to lag 1 makes sense.
- All M-Estimators!

Part III(a): Simplified Model (Statistics Analysis)

Figure: Correlation plots

Part III(a): Simplified Model (Simulation Study)

Figure: Simple Model Simulation Study

Part III(b): Computational Efficiency of RCM

- Used the **profvis** R library
- Wrote functions that:
 - generated an 'observed trajectory' using the true parameters
 - evaluated the observed statistics
 - calculated the synthetic likelihood of the true parameters
- Evaluated the above 1000 times each

Figure: **profvis** results

- RCM is $\approx 4 \times$ faster.
- \bullet Comes from needing $100\times$ fewer samples (observation length kept the same)

Part III(c): Full model correlation matrices

Figure: Correlation plots

Next Steps & References

Next Steps

- Finish fitting the full model
- See if non *M*-estimators can be replaced with *M*-estimators
- Fit actual data, use this to price financial options

References

- Huisman, R. and Mahieu, R., 2003. Regime jumps in electricity prices. Energy Economics, 25(5), pp.425-434.
- Wood, S., 2010. Statistical inference for noisy nonlinear ecological dynamic systems. Nature, 466(7310), pp.1102-1104.
- Huber, P., 1967. The behavior of maximum likelihood estimates under nonstandard conditions. Proceedings of the 5th Berkeley symposium on mathematical statistics and probability, 1, pp.221-233.