Numerical solution of the geostrophic adjustment problem

R. C. Scott

- When the atmosphere or ocean are perturbed away from geostrophy, how do they return to equilibrium?
- non-dimensional linear SW equations
 - f-plane dynamics
 - constant depth
 - small aspect ratio
- Poincaré wave excitation (dispersive)

$$- \omega^2/f^2 = 1 + k^2 \lambda_R^2$$

- Scale dependence of transient and steady response
 - $\overline{}$ L relative to $\lambda_{\scriptscriptstyle R}$

$$\frac{\partial u}{\partial t} - v = -\frac{\partial \eta}{\partial x}$$

$$\frac{\partial v}{\partial t} + u = 0$$

$$\frac{\partial \eta}{\partial t} + \left(\frac{\lambda_R}{L}\right)^2 \frac{\partial u}{\partial x} = 0$$

$$\lambda_R^2 = \frac{gH}{f^2}$$

- Staggering of the spatial grid
 - "Arakawa" grids
 - (A),(B),...,(E)
 - frequently employed in models of the ocean and atmosphere (why?)
- Analytical solutions to the transient problem known only for select initial conditions
 - special functions (Bessel)
 or integral (Fourier)
 transform methods
- Physical insight
 - examine many possible initial states

Rajpoot et al., 2012, J. Comp. Phys.

Numerical approach

Regular spatial grid, leapfrog time stepping

Staggered spatial grid, explicit forward-backward in time

$$\begin{aligned} u_{j}^{n+1} &= u_{j}^{n-1} + 2\Delta t \left[v_{j}^{n} - \left(\frac{h_{j+1}^{n} - h_{j-1}^{n}}{2\Delta x} \right) \right] \\ v_{j}^{n+1} &= v_{j}^{n-1} + 2\Delta t u_{j}^{n} \\ h_{j}^{n+1} &= h_{j}^{n-1} + \frac{\Delta t}{\Delta x} \left[u_{j+1}^{n} - u_{j-1}^{n} \right] \end{aligned}$$

$$\begin{aligned} u_{j}^{n+1} &= u_{j}^{n-1} + 2\Delta t \left[v_{j}^{n} - \left(\frac{h_{j+1}^{n} - h_{j-1}^{n}}{2\Delta x} \right) \right] \\ v_{j}^{n+1} &= v_{j}^{n-1} + 2\Delta t u_{j}^{n} \end{aligned} \qquad \begin{aligned} u_{j}^{n+1} &= u_{j}^{n} + \Delta t \left[v_{j}^{n} - \left(\frac{h_{j+1/2}^{n} - h_{j-1/2}^{n}}{\Delta x} \right) \right] \\ v_{j}^{n+1} &= v_{j}^{n-1} + 2\Delta t u_{j}^{n} \end{aligned} \qquad \begin{aligned} v_{j}^{n+1} &= v_{j}^{n} + \Delta t u_{j}^{n+1} \\ v_{j}^{n+1} &= v_{j}^{n} + \Delta t u_{j}^{n+1} \end{aligned} \end{aligned}$$

$$h_{j+1/2}^{n+1} &= h_{j-1/2}^{n} + \frac{\Delta t}{\Delta x} \left[u_{j+1}^{n+1} - u_{j}^{n+1} \right] \end{aligned}$$

Durran, Fig. 4.1

Unstaggered grid, leapgfrog unit Gaussian IC

Evolution of Gaussian free surface deviation: comparison of numerical methods

Grid: unstaggered

T-step: Leapfrog

Grid: staggered

T-step: Forward-backward

Examples of other initial states:

(A) Northward, laterally sheared jet Free surface flat, zero zonal flow

12.5

-12.5

(B) Step function displacement at origin, motionless (u = v = 0)

Gill version (see notes)