Exercise 2: Vectors (Solution)

Problem 1: General Vectors Operations

The following column vectors are defined:

$$\vec{u} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}, \quad \vec{v} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}, \quad \vec{w} = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$
$$\vec{a} = \begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -2 \\ 0 \\ 5 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

1. Calculate $\vec{u} + \vec{v}$, $\vec{u} - \vec{w}$, $\vec{u} \cdot \vec{v}$, $\vec{u} \cdot \vec{w}$. What does the result for $\vec{u} \cdot \vec{v}$ mean for these two vectors?

Answer:

(Remember: vectors are added/subtracted element-wise!)

$$\vec{u} + \vec{v} = \begin{pmatrix} 5+2 \\ -2+5 \end{pmatrix} = \begin{pmatrix} 7 \\ 3 \end{pmatrix}$$
$$\vec{u} - \vec{w} = \begin{pmatrix} 5+0 \\ -2-1 \end{pmatrix} = \begin{pmatrix} 5 \\ -3 \end{pmatrix}$$
$$\vec{u} \cdot \vec{v} = 5 \times 2 + (-2) \times 5 = 10 - 10 = 0$$
$$\vec{u} \cdot \vec{w} = 5 \times 0 + (-2) \times 1 = 0 - 2 = -2$$

Since $\vec{u} \cdot \vec{v} = 0$, these two vectors are orthogonal.

Generally, on a 2D plane (\mathbb{R}^2) any two vectors of the form $\begin{pmatrix} x \\ y \end{pmatrix}$ and $\begin{pmatrix} -y \\ x \end{pmatrix}$, where both $x \neq 0$ and $y \neq 0$, are orthogonal.

2. Draw \vec{u} , \vec{v} , $\vec{u} + \vec{v}$, $-\vec{v}$ on a cartesian coordinate system.

3. Calculate $5\vec{a} - 3\vec{b}$.

Answer:

Multiplying a vector by a scalar is simply multiplying each of its elements by that scalar, hence:

$$5\vec{a} = 5 \begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix}$$
$$= \begin{pmatrix} 5 \cdot 1 \\ 5 \cdot 3 \\ 5 \cdot 7 \end{pmatrix}$$
$$= \begin{pmatrix} 5 \\ 15 \\ 35 \end{pmatrix}.$$

Similarly,

$$\begin{aligned} 3\vec{b} &= \left(3 \cdot \left(-2\right), 3 \cdot 0, 3 \cdot 5\right) \\ &= \begin{pmatrix} -6 \\ 0 \\ 15 \end{pmatrix}. \end{aligned}$$

and thus -

$$5\vec{a} - 3\vec{b} = \begin{pmatrix} 5\\15\\35 \end{pmatrix} - \begin{pmatrix} -6\\0\\10 \end{pmatrix}$$
$$= \begin{pmatrix} -11\\15\\20 \end{pmatrix}.$$

4. Calculate $\vec{a} + \vec{w}$, $\vec{a} + \vec{b}$, $\vec{b} \cdot \vec{w}$, $\vec{a} \cdot \vec{c}$.

Answer:

 $\vec{a} + \vec{w}$ is undefined since these vectors are of a different dimension (3 and 2, respectively). The same is true for $\vec{b} \cdot \vec{w}$.

$$\vec{a} + \vec{b} = \begin{pmatrix} 1 - 2 \\ 3 + 0 \\ 7 + 5 \end{pmatrix}$$

$$= \begin{pmatrix} -1 \\ 3 \\ 12 \end{pmatrix}$$

$$\vec{a} \cdot \vec{c} = 1 \cdot 1 + 3 \cdot 1 + 7 \cdot 0$$

$$= 1 + 3$$

$$= 4.$$

5. What are the lengths of \vec{u} , \vec{v} , \vec{a} and \vec{c} ?

Answer:

The (Euclidean) length of a vector of N dimension is the square root of the sum of the squares of its elements, or as a general formula,

$$\|\vec{x}\| = \sqrt{\sum_{i=1}^{N} x_i^2}.$$

In the case of 2D and 3D vectors, this general formula simplifies to

$$||(x_1, x_2)|| = \sqrt{x_1^2 + x_2^2},$$

and

$$||(x_1, x_2, x_3)|| = \sqrt{x_1^2 + x_2^2 + x_3^2}.$$

respectively. Therefore:

$$\begin{split} \|\vec{u}\| &= \sqrt{5^2 + -2^2} = \sqrt{29} \approx 5.38516 \\ \|\vec{v}\| &= \sqrt{2^2 + 5^2} = \sqrt{29} \approx 5.38516 \\ \|\vec{a}\| &= \sqrt{1^2 + 3^2 + 7^2} = \sqrt{59} \approx 7.68115 \\ \|\vec{c}\| &= \sqrt{1^2 + 1^2 + 9^2} = \sqrt{2} \approx 1.41421. \end{split}$$

6. What is the angle between \vec{v} and the x-axis?

Answer

The angle between any vector in \mathbb{R}^2 and the x-axis is the inverse tan (i.e. arctan) of its y-component divided by its x-component. In this case,

$$\theta_{\vec{v}} = \arctan\left(\frac{v_y}{v_x}\right)$$

$$= \arctan\left(\frac{5}{2}\right)$$

$$\approx 1.19 \text{ [rad]}$$

$$\approx 68.18^{\circ}.$$

7. What would be the cartesian coordinates of the vector \vec{v} rotated by 42° counter clockwise?

Answers

Rotating \vec{v} by 42° will result in a vector with the same length (magnitude) as \vec{u} and an angle of $68.18^{\circ} + 42^{\circ} = 110.18^{\circ}$ to the x-axis. Recalling that

$$u_x = \|\vec{u}\| \cos(\theta)$$
$$u_y = \|\vec{u}\| \sin(\theta),$$

we can subtitute $\|\vec{u}\| \approx 5.39$ and $\theta = 110.18^\circ$ and get the components:

$$u_x = 5.39\cos(110.18^\circ) = 5.39 \cdot \approx -0.35 \approx -1.89$$

 $u_y = 5.39\sin(110.18^\circ) = 5.39 \cdot \approx 0.94 \approx 5.07,$

which as a column vector is $\vec{u}' = \begin{pmatrix} -1.89 \\ 5.07 \end{pmatrix}$.

8. What is the angle between \vec{a} and \vec{b} ?

Answer:

For any two vectors \vec{x} , \vec{y} , the following always applies:

$$\vec{x} \cdot \vec{y} = ||\vec{x}|| \, ||\vec{y}|| \cos(\theta) \,,$$

where θ is the angle between the two vectors.

Solving for θ we get

$$\cos\left(\theta\right) = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|}.$$

In our case

$$\vec{a} \cdot \vec{b} = 1 \times (-2) + 3 \times 0 + 7 \times 5 = 33,$$

and

$$\|\vec{x}\| \|\vec{y}\| = \sqrt{1^2 + 3^2 + 7^2} \cdot \sqrt{2^2 + 9^2 + 5^2}$$

$$= \sqrt{1 + 9 + 49} \cdot \sqrt{4 + 25}$$

$$= \sqrt{59} \cdot \sqrt{29}$$

$$= \sqrt{59 \times 29}$$

$$= \sqrt{1711}$$

$$\approx 41.36.$$

Therefore,

$$\cos\left(\theta\right) \approx \frac{33}{41.36} \approx 0.798,$$

and thus

$$\theta \approx \arccos(0.789) \approx 37^{\circ}$$
.

9. Calculate $\vec{c} = \vec{a} \times \vec{b}$. What is the general formula for all the vectors that are orthogonal to \vec{c} ?

Answer:

$$\vec{c} = \vec{a} \times \vec{b} = \begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix} \times \begin{pmatrix} -2 \\ 0 \\ 5 \end{pmatrix}$$

$$= \begin{pmatrix} 3 \cdot 5 - 7 \cdot 0 \\ 7 \cdot (-2) - 1 \cdot 5 \\ 1 \cdot 0 - 3 \cdot (-2) \end{pmatrix}$$

$$= \begin{pmatrix} 15 \\ -14 - 5 \\ - (-6) \end{pmatrix}$$

$$= \begin{pmatrix} 15 \\ -19 \\ 6 \end{pmatrix}.$$

Every 3D-vector can be associated with a plane, to which it is orthogonal. All vectors on the plane will therefore also be orthogonal to that vector.

To define a plane in 3D-space, one needs two linearly independent vectors (meaning two non-zero vectors that are not on the same line).

 \vec{a} and \vec{b} are indeed linearly independent, and thus all possible linear combinations of them would correspond to the general formula we are looking for, meaning that

$$\vec{d} = \alpha \cdot \begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix} + \beta \cdot \begin{pmatrix} -2 \\ 0 \\ 5 \end{pmatrix},$$

for any non-zero $\alpha, \beta \in \mathbb{R}$, is the general formula of the vectors we are looking for.

Verifying the result can be done by calculating the dot product between $\vec{c} = \begin{pmatrix} 15 \\ -19 \\ 6 \end{pmatrix}$ and $\alpha \cdot \begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix} + \begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix}$

Problem 2: Linear Combinations of Vectors

Write the vector $\vec{v} = \begin{pmatrix} 1\\3\\3\\7 \end{pmatrix}$ as a linear combination of the following vectors:

$$\vec{u}_1 = \begin{pmatrix} -2\\5\\0\\5 \end{pmatrix}, \ \vec{u}_2 = \begin{pmatrix} 1\\0\\1\\-1 \end{pmatrix}, \ \vec{u}_3 = \begin{pmatrix} -4\\4\\-8\\-2 \end{pmatrix}.$$

A newore

Let's start with adding \vec{u}_1 and \vec{u}_2 together:

$$\vec{u}_1 + \vec{u}_2 = \begin{pmatrix} -2\\5\\0\\5 \end{pmatrix} + \begin{pmatrix} -1\\0\\-1\\1 \end{pmatrix}$$
$$= \begin{pmatrix} -2+1\\5+0\\0-1\\5+1 \end{pmatrix}$$
$$= \begin{pmatrix} -1\\5\\-1\\6 \end{pmatrix}.$$

We can then see what is the result of subtracting \vec{w} from $\vec{u}_1 + \vec{u}_2$:

$$\vec{w} - (\vec{u}_1 + \vec{u}_2) = \begin{pmatrix} 1\\3\\3\\7 \end{pmatrix} - \begin{pmatrix} -1\\5\\1\\6 \end{pmatrix}$$
$$= \begin{pmatrix} 1 - (-1)\\3 - 5\\3 - 1\\7 - 6 \end{pmatrix}$$
$$= \begin{pmatrix} 2\\-2\\4\\1 \end{pmatrix}.$$

This is exactly equal to $-\frac{1}{2}\vec{u}_3$. Thus, adding $-\frac{1}{2}\vec{u}_3$ to $\vec{u}_1 + \vec{u}_2$ should give us \vec{w} . Let's check this:

$$\vec{u}_1 + \vec{u}_2 - \frac{1}{2}\vec{u}_3 = \begin{pmatrix} -1\\5\\-1\\6 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -4\\4\\-8\\-2 \end{pmatrix}$$
$$= \begin{pmatrix} -1+2\\5-2\\-1+4\\6+1 \end{pmatrix}$$
$$= \begin{pmatrix} 1\\3\\3\\7 \end{pmatrix}$$
$$= \vec{w}.$$

as expected. Thus, with the coefficients $\alpha_1 = \alpha_2 = 1$, $\alpha_3 = -\frac{1}{2}$, we get

$$\vec{w} = \vec{u}_1 + \vec{u}_2 - \frac{1}{2}\vec{u}_3.$$

Problem 3: Linear Independence of Vectors

Which of the following sets of vectors are linearly independent?

1.
$$\vec{a} = \begin{pmatrix} 1 \\ 0 \\ 3 \\ -2 \end{pmatrix}, \vec{b} = \begin{pmatrix} 2 \\ 6 \\ 0 \\ 1 \end{pmatrix}$$

Answer:

There is no $\alpha \in \mathbb{R}$ such that $\vec{b} = \alpha \vec{a}$, and thus these vectors are linearly independent.

2.
$$\vec{a} = \begin{pmatrix} 1 \\ -2 \\ 5 \end{pmatrix}, \vec{b} = \begin{pmatrix} -2 \\ 4 \\ -10 \end{pmatrix}$$

Answer:

Since $\vec{b} = -2\vec{a}$, the two vectors are **not** linearly independent.

3.
$$\vec{a} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 5 \\ 1 \\ -3 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} -9 \\ 1 \\ 6 \end{pmatrix}$

Answer

Since $\vec{c} = \vec{a} - 2\vec{b}$, the three vectors are **not** linearly independent.

4.
$$\vec{a} = \begin{pmatrix} 1 \\ 5 \\ -2 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \ \vec{c} = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}, \ \vec{d} = \begin{pmatrix} -1 \\ -7 \\ 7 \end{pmatrix}$$

Answer:

For vectors of dimension N, any set of vectors with M > N elements are **not** linearly independent. In this case N = 3 and M = 4, and thus these vectors are not linearly independent.