

Machine Learning

Agenda

Általános bevezető

- Fő típusok
- Üzleti problémák
- Módszertan

Adatelőkészítés

- Adattranszformációk
- Feature selection
- Tesztkörnyezet kialakítása

Klasszifikáció kiértékelése

- Accuracy
- ROC (AUC)

Machine learning

- előrejelzés
- összefüggések feltárása
- automatizálás

forrás:

https://www.pexels.com/search/machine%20learning/

Típusok

Reinforcement Learning

- AlphaGo
- robotok mozgása

Supervised Learning

Regression (numerikus célváltozó)

- Árak előrejelzése
- Kereslet előrejelzése
- Ügyfélérték becslés
- Várható élettartam
- Idősor előrejelzés

Classification (kategorikus célváltozó)

- esemény bekövetkezése
 - hitel bírálat
 - lemorzsolódás
- keresztértékesítés

Supervised Learning Algoritmusok

Regression

- Lineáris regresszió
- Neurális hálózat
- Döntési fa / Random forest
- stb.

Classification

- Logisztikus regresszió
- Döntési fa / random forest
- Neurális hálózat
- Support Vektor Machine
- Naive Bayes
- Bayes hálózat
- K-nn
- stb

Supervised learning vs unsupervised learning

- Adatok fel vannak címkézve (célváltozó)
- Cél: címke minél pontosabb előrejelzése
- $f(x_i) = y_i + \mathcal{E}$
- Training teszt partíció

- Nincsen címke
- Cél: mintázatok keresése az adatokban
- osztályozzuk x_i-ket
- Csak training adat van

Unsupervised Learning

Dimenzió csökkentés

- Összefüggések feltárása
- Zaj csökkentése az adatban
- Futásidő csökkentése

Klaszterezés

- Ügyfélcsoportok azonosítása
- Termékek csoportosítása

Anomália detekció

- Csalás detektálás
- Hibakeresés

Asszociációs szabályok

- Vásárlói kosárelemzés
- Keresztértékesítés

Módszertan

forrás: http://www.stellarconsulting.co.nz/blog/data/crisp-dm-still-a-leader/

Adatok előkészítése

Adatok előkészítése és megismerése

- Filterezés rekordok kiválogatása
- Hiányzó értékek kezelése
- Kiugró értékek kezelése
- Leíró statisztikák
- Vizualizáció
- Változók létrehozása
- Feature selection
- Training teszt (validáló) adatok leválogatása vagy cross-validation környezet kialakítása

Tesztkörnyezet kialakítása

Feature selection

Miért fontos?

- zaj csökkentése
- túltanulás elkerülése
- gyorsabb modellépítés

- Célváltozótól független változók kiszűrése
- Összefüggő bemenő változók kezelése

Modell építése

model <- randomForest(Target ~ ., data=df)</pre>

df (tanító adat)

Age	Salary	Ed	Target
21	405	М	1
58	587	Н	0
42	100	L	1
19	256	М	0
33	800	Н	0

Modell alkalmazása

predict(model, df_test, type="prob")

Age	Salary	Ed
28	455	Н

0.86

Modellek kiértékelése

- 1. Teszt adaton a modell alkalmazása (scoreolás)
- 2. A score-ok összehasonlítása a címkével
- 3. A legjobb modell kiválasztása a teszt adatokon
- 4. A kiválasztott modell kiértékelése a validáló adatokon

Overfitting (Túltanulás)

forrás: https://en.wikipedia.org/wiki/Overfitting

Model complexity

forrás: http://gluon.mxnet.io/chapter02_supervised-learning/regularization-scratch.html

Bináris klasszifikáció kiértékelése

Accuracy vs. ROC (AUC)

Cut-off érték

type="response" vs. type="prob"

Pontosság - accuracy

		Előrejelzett kategória		
		No	Yes	
Valós kategória	No	True Negative	False Positive	
	Yes	False Negative	True Positive	

ROC chart

Inst#	Class	Score	Inst#	Class	Score	1
1	р	.9	11	p	.4	0.9
2	p	.8	12	n	.39	0.8 - 38 .37 .36 .35
3	n	.7	13	p	.38	0.7 - *
4	p	.6	14	n	.37	± 0.6 − × 51 1505
5	p	.55	15	n	.36	1505 1505 1505 1505 1505 1505 1505 1505 1505 1505 1506
6	p	.54	16	n	.35	<u>B</u> 0.4 − * * * * * * * * * *
7	n	.53	17	p	.34	0.3 - *.6
8	n	.52	18	n	.33	0.2 ** - *.7
9	p	.51	19	p	.30	0.1
10	n	.505	20	n	.1	Infinity
						False positive rate

forrás: https://ccrma.stanford.edu/workshops/mir2009/references/ROCintro.pdf

ROC chart

AUC: ROC görbe alatti terület

AUC ~ 0.5 Random score

AUC ~ 0.7 Gyengén szeparáló modell

AUC ~ 0.9 Jó szeparáció

AUC ~ 1 Tökéletes modell

library(pROC)

plot(roc(df\$label, df\$score),print.auc=TRUE)

forrás: https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Példa - 1. modell

Beteg	Score	Előrejelzett kategória
Nem	0.1	NEM
Igen	0.1	NEM

		Előrejelzett kategória		
		NEM	IGEN	
Valós kategória	Nem	9	0	
	lgen	1	0	

Accuracy = 9/10 = **90%**

AUC = **0.5**

Példa - 2. modell

Beteg	Score	Előrejelzett kategória
Nem	0.1	NEM
Nem	0.2	NEM
Nem	0.2	NEM
Nem	0.3	NEM
Nem	0.3	NEM
Nem	0.4	NEM
Nem	0.4	NEM
Nem	0.6	IGEN
lgen	0.8	IGEN
Nem	0.9	IGEN

		Előrejelzett kateç	gória	
		NEM	IGEN	
⁄alós ategória	Nem	7	2	
	lgen	0	1	

Accuracy = 8/10 = **80%**

AUC = 0.889

Példa - 3. modell

Beteg	Score	Előrejelzett kategória
Nem	0.52	IGEN
Nem	0.53	IGEN
Nem	0.54	IGEN
Nem	0.55	IGEN
Nem	0.55	IGEN
Nem	0.6	IGEN
Nem	0.6	IGEN
Nem	0.7	IGEN
Nem	0.7	IGEN
Igen	0.9	IGEN

		Előrejelzett kategória		
		NEM	IGEN	
/alós ategória	Nem	0	9	
	lgen	0	1	

Accuracy = 1/10 = **10%**

forrás: https://www.kdnuggets.com/2017/09/cartoon-machine-learning-class.html