Un grafo direccional acíclico *G* se puede *ordenar topológicamente*

La **ordenación topológica** de *G* es una ordenación lineal de todos los vértices

... tal que si G contiene la arista (u, v), entonces u aparece antes que v en la ordenación

```
dfs():
 for each u in V:
     u.color = white
     π[u] = null
 time = 0
 for each u in V:
     if u.color == white:
         time = dfsVisit(u, time)
```

```
dfsVisit(u, time):
u.color = gray
time = time+1
u.d = time
for each v in \alpha[u]:
   if v.color == white:
      \pi[v] = u
      time = dfsVisit(v, time)
u.color = black
time = time+1
u.f = time
return time
```

El algoritmo de ordenación topológica

topSort()

- 1) Ejecute dfs () para calcular los tiempos f para cada vértice
- 2) Cada vez que calcule el tiempo f para un vértice, inserte ese vértice al frente de una lista ligada
- 3) return la lista ligada de vértices

Un grafo, G, direccional sin costo y acíclico

DFS de G, a partir del vértice 4 ...

DFS de G, a partir del vértice 4 ...

DFS de G, a partir del vértice 4 ...

En un grafo que tiene ciclos es *imposible* producir un orden lineal de sus vértices:

• p.ej., el grafo de la diap. #26

Un grafo direccional G es acíclico si y sólo si DFS de G no produce aristas hacia atrás

Para demostrar la corrección de topSort(), basta demostrar que para cualquier par de vértices u, v, si hay una arista de u a v, entonces v.f < u.f

¿Qué son las componentes fuertemente conectadas de un grafo direccional?

Las **componentes fuertemente conectadas** (scc's) de un grafo direccional G = (V, E) son conjuntos máximos de vértices $C \subseteq V$ tales que para todo par de vértices $u \in V$ tales son mutuamente alcanzables —se puede llegar a v desde u, v se puede llegar a v desde v

El algoritmo para determinar las scc's de G usa el grafo transpuesto de G

$$G^{T} = (V, E^{T})$$
, en que $E^{T} = \{ (u, v) : (v, u) \in E \}$

... es decir, E^T consiste en las aristas de G con sus direcciones invertidas

G y *G*^T tienen exactamente las mismas componentes fuertemente conectadas

u y v son mutuamente alcanzables en G si y sólo si lo son en G^T

Definamos el grafo de componentes de G, $G^{SCC} = (V^{SCC}, E^{SCC})$

Supongamos que G tiene las componentes fuertemente conectadas C_1 , C_2 , ..., C_k

 $V^{\rm SCC}$ es $\{v_1, v_2, ..., v_k\}$ y contiene un vértice v_i por cada componente fuertemente conectada C_i de G

Hay una arista $(v_i, v_j) \in E^{SCC}$ si G tiene una arista direccional (x, y) para algún $x \in C_i$ y algún $y \in C_j$

La propiedad clave es que G^{SCC} es un **grafo direccional acíclico** (DAG)

Hagamos una exploración DFS de G

Sea
$$U \subseteq V$$

Definimos $d(U) = \min_{u \in U} \{u.d\}$ —el tiempo de descubrimiento más temprano de cualquier vértice en U

Definimos $f(U) = \max_{u \in U} \{ u.f \}$ —el tiempo de finalización más tardío de cualquier vértice en U

Una propiedad clave entre scc's y tiempos de finalización

Sean C y D componentes fuertemente conectadas distintas de G = (V, E):

- si hay una arista $(u, v) \subseteq E$, en que $u \subseteq C$ y $v \subseteq D$, entonces f(C) > f(D)
- si hay una arista $(u, v) \in E^T$, en que $u \in C$ y $v \in D$, entonces f(C) < f(D)

Cada arista en G^T que va entre scc's distintas va de una con un tiempo de finalización más temprano a otra con un tiempo de finalización más tardío

Hagamos ahora una exploración DFS de GT

En el ciclo principal de dfs(), consideremos los vértices en orden decreciente de los *u.f* determinados en la exploración DFS de *G*:

- empezamos con la scc C cuyo tiempo de finalización es máximo
- la exploración empieza en un vértice x de C y visita todos los vértices de C
- no hay aristas en G^T de C a ninguna otra scc —el árbol con raíz x contiene exactamente los vértices de C

En resumen, el algoritmo para encontrar scc's de un grafo G es el siguiente

realizamos DFS de *G*, para calcular los tiempos de finalización de cada vértice

determinamos G^{T}

realizamos DFS de G^T , pero en el ciclo principal consideramos los vértices en orden decreciente de u.f, calculado antes

los vértices de cada árbol en el bosque primero-en-profundidad recién formado son una scc diferente