

Kreislaufpathologie

Dr. med. Martina Haberecker, Institut für Pathologie

Themenblock Grundlagen der Diagnostik und Therapie martina.haberecker@usz.ch

Allgemeine Kreislaufpathologie

Lokal

- Ödem / Hyperämie / Blutungen
- Thrombose/ Embolie

Generalisiert

- Schock / intravasale Gerinnung
- Herzinsuffizienz
- Hypertonie

Definition

<u>Schock</u>: Generalisiertes, lebensbedrohliches Kreislaufversagen der Mikrozirkulation mit Gewebeschädigung durch Hypoxie und Mangeldurchblutung der terminalen Strombahn.

Klassifikationen des Schocks

- Pathogenese
 - Kardiogener Schock
 - Hypovolämischer Schock
 - Septisch-toxischer Schock
- Seltene Schockformen
 - Anaphylaktischer Schock
 - Endokriner Schock
 - Neurogener Schock

Hypovolämischer Schock

Vorkommen:

Verlust von zirkulierendem Blut (Hypovolämie) bei:

- Operation,
- Trauma,
- Blutplasmaverlust bei Verbrennungen,
- Gewebequetschung,
- Wasserverlust bei Cholera,
- Coma diabeticum

Septisch-toxischer Schock

Ursache:

Bakterielle Sepsis (gramnegative Bakterien)

Pathogenese:

Toxische Lipopolysaccharide (Endotoxine)

Folge:

Disseminierte intravasale Gerinnung (DIG)

Schockveränderungen Pathologie

Organveränderungen bei Schock (wichtig!)

- Lunge
- Leber
- Niere
- Herz
- Nebenniere
- Darm

Schockorgane: Lunge

Akutes Lungenversagen "Schocklunge" Synonym: Acute Respiratory Distress Syndrome (ARDS, «klinisch») / Diffuser Alveolarschaden (DAD, «pathologisch»)

Mikroskopie:

Frühphase

- Hyaline Membranen!
- Nekrosen der Typ I-Pneumozyten und Endothelzellen
- Interstitielles, alveoläres Lungenoedem
- Hyaline Mikrothromben

Irreversibles Stadium

Granulationsgewebe, Lungenfibrose

Diffuser Alveolarschaden - Morphologie

Schockorgane: Herz

Makroskopie/ Mirkoskopie:

- Subendokardiale Blutungen
- Subendokardiale Myokardinfarkte
- Einzelzell-Nekrosen
 - (Kontraktionsbänder!)

Schockorgan Herz - Morphologie

Kontraktionsbandnekrosen

Schockorgane: Gehirn

Hypoxische Enzephalopathie

Schockorgane: Niere

Akutes Nierenversagen

- Makroskopie:
 - Deutliche Mark-Rinden-Grenze
 - Blasse Nierenrinden wegen Nierenischämie
 - Zyanotisches Nierenmark
- Mikroskopie:
 - Mikrothromben
 - Weite Tubuli

Schockorgan Niere - Morphologie

Schockorgan Niere - Morphologie

akute Tubulusnekrose

Schockorgane: Leber

Häufigstes Schockorgan:

- 45% bis 55% der Patienten betroffen
- Zentrale Leberparenchymnekrosen (!)
- Ikterus und Cholestase

Schockorgan Leber - Morphologie

Zentrale Nekrose

Schockenteropathie - Morphologie

Schockorgane - Morphologie

Pankreas: Kalkspritzernekrosen

Definition

Disseminierte intravasale Gerinnung (DIG):

Ein multifaktorielles Ereignis mit Bildung von zahlreichen Mikrothromben in der Gefässendstrombahn Verbrauch von Thrombozyten und Gerinnungsfaktoren (Verbrauchskoagulopathie)

Pathogenese:

- Aktivierung Blutgerinnungskaskade
- Hyaline Thromben
- Hämorrhagische Diathese

Folgen:

- Gehirn-Mikroinfarkte
- Lungen-Oedem
- Nieren-Mikroinfarkte, akutes Nierenversagen
- Nebennierenblutungen (Waterhouse-Friderichsen-Syndrom)

Definition

<u>Herzinsuffizienz</u> Unzureichender systolischer Auswurf vom Volumen oder mangelhafte ventrikuläre Füllung

Unterscheidung: akut vs chronisch

a. Linksherzinsuffizienz:

- Myokardinfarkt, -narben, Myokarditis, Kardiomyopathie
- Hypertonie, Klappenstenose, -insuffizienz
- Perikarderkrankungen, Endokardfibrose

b. Rechtsherzinsuffizienz

Akute Linksherzinsuffizienz

Folgen:

- Rückwärtsversagen: Lungenstauung, Lungenoedem
- Vorwärtsversagen: Kardiogener Schock

Morphologie:

- Linksherzdilation mit rundbogiger
- Herzspitze: romanischer Bogen (!)

Akute Linksherzinsuffizienz

«Hyperämie / Stauung»

Lunge:

- Lungenödem
- Blutgefüllte Alveolarsepten

Chronische Linksherzinsuffizienz

- Morphologie: Linksherzhypertrophie und -dilatation
- Folge: chronische Lungenstauung (braune Induration)
 - Herzfehlerzelle (=Hämosiderin-beladene Makrophagen)
 - Lungenfibrose
 - Gefässsklerose

Linksherzinsuffizienz - Morphologie

Chronische Lungenstauung: – Stauungslunge (Herzfehlerzellen)

Linksherzinsuffizienz - Morphologie

Ursache chronische Linksherzinsuffizienz:

Definition

<u>Herzinsuffizienz</u> Unzureichender systolischer Auswurf vom Volumen oder mangelhafte ventrikuläre Füllung

Unterscheidung: akut vs chronisch

a. Linksherzinsuffizienz:

b. Rechtsherzinsuffizienz:

- Myokardinfarkt, Myokarditis, Kardiomyopathie
- Widerstandserhöhung bei
 - Linksherzversagen
 - Chronischer Lungenerkrankung (Emphysem)
 - Lungenembolie
 - Septumdefek

Akute Rechtsherzinsuffizienz

Folge:

- Stauung im Venensystem (Leber, Niere, Haut und Schleimhäute)
- Lebervergrösserung

Akute Rechtsherzinsuffizienz

Subakute Stauungsleber

Chronische Rechtsherzinsuffizienz

Morphologie: Rechtsherzhypertrophie (re V >4mm) und -dilatation (**Cor pulmonale**!)

Stauungsleber, Stauungsmilz, Zyanose, Oedeme der unteren Extremitäten, Aszites und Anasarka

Chronische Rechtsherzinsuffizienz

Rechtsherzinsuffizienz - Morphologie

Chronische Stauungsleber ("Cirrhose cardiaque")

Kardiale oder portale Stauungsmilz

Hypertonie

Hypertonie im grossen Kreislauf = arterielle Hypertonie Hypertonie im kleinen Kreislauf = pulmonale Hypertonie Portale Hypertonie = Hypertonie im Pfortadergebiet

Hypertonie - Morphologie

Hypertonie - Morphologie

Mikroangiopathie und Makroangiopathie

Pulmonale Hypertonie

Ätiologie

- Primäre pulmonale Hypertonie
- Sekundäre pulmonale Hypertonie
 - Vasorestriktiv (Verminderung Lungenparenchym)
 - Vasoobstruktiv (Verlegung Lungengefässe)
 - Vasokonstriktiv (reflektorische Verengung Lungengefässe)

Pulmonale Hypertonie

Folgekrankheiten

- Chronisches Cor pulmonale: rechtsventrikuläre Hypertrophie (nicht Insuffizienz!) aufgrund von die Lungenfunktion und/oder die Struktur schädigenden Krankheiten
- Hypertone pulmonale Vaskulopathie

Portale Hypertonie

Ätiologie

- Leberzirrhose
- Abflussbehinderung der Lebervenen durch:
 - Rechtsherzinsuffizienz
 - Lebervenenthrombose (Budd-Chiari-Syndrom, Veno-Okklusionskrankheit)
 - Extrahepatischer Block wegen Pfortaderthrombos

Portale Hypertonie

Folgekrankheiten

Kollateralkreislaufbildungen:

- Oesophagusvarizen
- Caput medusae
- Portale Stauungsmilz
- Aszites

Hypertonie-Folgekrankheiten

- Herzhypertrophie:
 - 1. Adaptive konzentrische (li Ventr.: > 12 mm)
 - 2. Exzentrische (dilatativ Rundbogen)
- Gefässe Makroangiopathie:
 - Atherosklerose
 - Koronarsklerose
 - Zerebralarteriensklerose
 - Apoplexie (Hirnmassenblutung)
- Renale Komplikationen
 - Nierenarteriolosklerose (Mikroangiopathie)
 - Adaptive Intimafibrose
- Netzhautveränderungen: Fundus hypertonicus
- Nebennierenrindenhypertrophie