ASSIGNMENT-4

MUKUNDA REDDY Al21BTECH11021

Question

2 solution

Example 2-7

A telephone call occurs at random in the interval (0, T). Find the probability that the call will occur in the interval (t_1, t_2) ?

Here S consists of noncountable infinity of elements so assigning individual probabilities is not possible. Lets consider the intervals and a function $\alpha(x)$ which gives probability density such that

$$\int_{-\infty}^{\infty} \alpha(x) dx = 1 \tag{1}$$

The probability of the event $X_1 < X < X_2$ consisting of all points in the interval (X_1, X_2) is given by

$$P(X_1 < X < X_2) = \int_{X_2}^{X_1} \alpha(x) dx$$
 (2)

We can assign probability $\alpha(x) = 0$, for $-\infty < x < 0$ and $T < x < \infty$ as there are no phone calls in that time period.

Given call occurs randomly in interval (0, T) meaning $\alpha(x)$ is uniform as it must satisfy the let $\alpha(x) = c$ as this must satisfy (1),

$$\int_{-\infty}^{\infty} \alpha(x)dx = \int_{-\infty}^{0} \alpha(x)dx + \int_{0}^{T} \alpha(x)dx + \int_{T}^{\infty} \alpha(x)dx$$
$$= 0 + \int_{0}^{T} cdx + 0 \text{ (as } \alpha(x) = constantc)$$
$$= c(T)$$

$$\implies \int_{-\infty}^{\infty} \alpha(x) dx = 1$$

$$c(T) = 1$$

$$c = \frac{1}{T}$$
(3)

The probaility disttribution function is given by

$$\alpha(x) = \begin{cases} \frac{1}{T}, & \text{if } 0 \le x \le T \\ 0, & \text{otherwise} \end{cases}$$

Probability distribution Probability Density function 1/T Time

Figure: $y = \alpha(x)$

From equation (2) we can write the probability of the event the call will occur in the interval (t_1, t_2) equals,

$$P(t_1 \le X \le t_2) = \int_{t_2}^{t_1} \alpha(x) dx$$
$$= \int_{t_2}^{t_1} \frac{1}{T} dx$$
$$= \frac{t_2 - t_1}{T}.$$