HUDK 4051: LEARNING ANAIYTICS: PROCESS & THORY

Social Network Analysis Recap

Networks (Graphs)

Networks

Degree

The number of links to other nodes in the network

Undirected

Directed

Indegree = Popularity Outdegree = No shame

Density

How close is the graph to the maximal number of links

3 actual 3 possible Density = 1

2 actual 3 possible Density = 0.67

Betweenness Centrality

The extent to which a node lies between other nodes

It is equal to the number of shortest paths from all nodes to all others that pass through that node

Modularity

The fraction of the edges that fall within the given groups minus the expected such fraction if edges were distributed at random

$$\begin{split} Q_{\rm S} &= \frac{1}{2\bar{w}} \sum_{i} \sum_{j} \left(\bar{w}_{ij} - \frac{\bar{w}_{i}\bar{w}_{j}}{2\bar{w}} \right) \delta(C_{i}, C_{j}) \\ &= \frac{1}{4w} \sum_{i} \sum_{j} \left(w_{ij} + w_{ji} - \frac{(w_{i}^{\rm out} + w_{i}^{\rm in})(w_{j}^{\rm out} + w_{j}^{\rm in})}{4w} \right) \delta(C_{i}, C_{j}) \\ &= \frac{1}{4w} \sum_{i} \sum_{j} \left[\left(w_{ij} - \frac{w_{i}^{\rm out}w_{j}^{\rm in}}{2w} \right) + \left(w_{ji} - \frac{w_{i}^{\rm in}w_{j}^{\rm out}}{2w} \right) \right] \delta(C_{i}, C_{j}) \\ &= -\frac{1}{(4w)^{2}} \sum_{i} \sum_{j} (w_{i}^{\rm out} - w_{i}^{\rm in})(w_{j}^{\rm out} - w_{j}^{\rm in}) \delta(C_{i}, C_{j}) \\ &= Q_{\rm D} - \frac{1}{(4w)^{2}} \sum_{i} \sum_{j} (w_{i}^{\rm out} - w_{i}^{\rm in})(w_{j}^{\rm out} - w_{j}^{\rm in}) \delta(C_{i}, C_{j}). \end{split}$$

How do we make the network look nice?

Force directed graphing

Attractive forces

Springs

Hooke's Law: F = kX

Repulsive forces

Electrons

Coulomb's Law:
$$|\mathbf{F}| = k_e \frac{|q_1 q_2|}{r^2}$$

https://youtu.be/ YGDvR6CRwEc

SNA: Cliques & Subnetworks

Dyads, Triads, Ego-Centric Networks

- Ego node of interest
- Neighborhood nodes connected to ego at some path length (usually 1)
- Neighborhood can in In/Out, weak/strong, N-step

Larger Structures

- Need to make an argument that nodes belong together
- <u>Maximal clique</u> = a clique that is not included in a larger clique
- Lots of ways to do this (density, Strength of ties, etc)
- Two main groups of methods:
 Bottom Up or Top Down

Bottom Up

- How does the macro emerge from the micro?
- Dyad = simplest group
- Clique/Complete Subgraph = maximum number of actors who have all possible ties present among themselves (all members are tied to all other members in the group)
- Build the network up from the bottom, comparing cliques sizes and relationships with each other

Algorithms

- Greedy algorithm: makes the locally best decision at each stage
 - Start with arbitrary node
 - Examine each node that it is connected to
 - If it is connected to every other node, keep, otherwise discard
 - Gotcha: Might not find the maximal clique only a local minima

Algorithms

- Brute force
 algorithm:
 enumerate every
 possible
 combination of
 nodes
- Usually used to identify a clique of certain size (k)

Larger than cliques

- Co-membership of cliques (overlap)
- N-cliques: Friend of a friend clique (can produce "stringy" groups)
- N-clans: Requires that all the ties among actors occur through other members of the group

Larger than Clans

- K-plexes: A node is a member of a clique of size n if it has direct ties to n-k members of that clique
- K-cores: To be included in a core, an actor must be tied to all but k other actors in the group

$$n >= 4, k = 2$$

F-Groups

- Incorporate strength of connection into grouping
- Equates grouping with balanced triads

Top Down

- Looking for "holes" or "vulnerabilities" or "weak spots" in the overall structure
- Focuses on the constraints under which the network has developed
- Asks questions about overall system dynamics

Top Down Groupings

- Components: Disconnected parts of a graph
- Island Method: Take a
 measure of connectivity,
 remove nodes below a certain
 threshold. As if you are
 raising the water level around
 an island. What is left are the
 subgraphs
- Could also use connection weight or direction also

Blocks & Cut/Articulation points

- <u>Cutpoint</u>: If node is removed it creates two separate graphs
- Block: group without cutpoints (non-separable)
- Could also use connection weight or direction

Bridges & Lambda Sets

- <u>Bridge</u>: If edge is removed it creates two separate graphs
- <u>Lambda Sets</u>: Measures the flow through the network
- Rank sets with respect to importance (amount of flow)
- Highlights points at which the fabric of connection is most vulnerable to disruption

Factions

- Imagine an idealized graph made up of three unconnected groups
- These are factions
- We can compare this imaginary graph to an actual graph to get a sense of how factionalized a network is
- Algorithm compares adjacency matrices to find the arrangement of nodes within the real data that most closely matches a theoretical factionalized network

	А	В	С	D
Α		1	0	0
В	1		0	0
С	0	0		1
D	1	0	1	