Wintersemester 2023/24

4. Übung zur Vertiefung Analysis

8. November 2023

Abgabe bis spätestens Mittwoch 15. November 2023 um 18 Uhr per WueCampus (maximal zu dritt).

Aufgabe 4.1 (Produkt-σ-Algebra der Lebesgue-messbaren Mengen, 9 Punkte)

(a) Seien (X, \mathcal{A}) , (Y, \mathcal{B}) messbare Räume, $C \in \mathcal{A} \otimes \mathcal{B}$ und $a \in X$. Zeigen Sie, dass

$$\{y \in Y \mid (a, y) \in C\} \in \mathcal{B}.$$

- (b) Sei $K \subseteq \mathbb{R}^m$ kompakt und $N \subseteq \mathbb{R}^n$ eine λ_n -Nullmenge. Zeigen Sie, dass dann $K \times N$ eine λ_{m+n} -Nullmenge ist.
- (c) Sei $M \subseteq \mathbb{R}^m$ eine λ_m -Nullmenge und $N \subseteq \mathbb{R}^n$ eine λ_n -Nullmenge. Zeigen Sie, dass dann $M \times N$ eine λ_{m+n} -Nullmenge ist.
- (d) Zeigen Sie Bemerkung 1.71, also dass $\mathcal{L}(m) \otimes \mathcal{L}(n) \subsetneq \mathcal{L}(m+n)$. Hinweis: Sie dürfen hierfür annehmen, dass $B \notin \mathcal{L}(n)$ tatsächlich existiert.

Aufgabe 4.2 (Regularität, 3 Punkte) Sei $A \in \mathcal{L}(n)$. Beweisen oder widerlegen Sie:

(a) Es gilt

$$\lambda_n(A) = \inf \{ \lambda_n(K) \mid K \supseteq A, \text{ K kompakt} \}.$$

(b) Es gilt

$$\lambda_n(A) = \sup \{\lambda_n(O) \mid O \subseteq A, \text{ O offen}\}.$$

Aufgabe 4.3 (Maße von Matrixbildern, 4 Punkte)

- (a) Sei $S \in \mathbb{R}^{n \times n}$ eine invertierbare Matrix und $\mu : \mathcal{B}^n \to [0, \infty]$ ein Maß. Zeigen Sie, dass $\mu_S : \mathcal{B}^n \to [0, \infty]$, $\mu_S(A) := \mu(SA)$ wohldefiniert und ein Maß ist.
- (b) Sei $S \in \mathbb{R}^{n \times n}$ nicht invertierbar. Zeigen Sie, dass $\lambda_n(SA) = 0$ für alle $A \in \mathcal{L}(n)$ gilt.

Teil (b) zeigt also, dass die Formel aus Satz 1.83 für alle Matrizen $S \in \mathbb{R}^{n \times n}$ qilt.

Diese Woche beim Studikolloq in der Mathematik:

Mo 13.11.2023 Jakob Hecker: Mathematik zur Blütezeit des Islam