Surprise Test PH11003

Full marks=10 Time=1 hr

Problem 1

Suppose the yz-plane forms chargeless boundary between two media of permittivities ϵ_{left} and ϵ_{right} , where ϵ_{left} : ϵ_{right} =1:2, if the uniform electric field on the left is $\vec{E}_{left} = c(\hat{i} + \hat{j} + \hat{k})$ (where c is a constant), then the electric field on the right \vec{E}_{right} is

2 marks

(Hint: Use boundary condition of parallel and perpendicular component of electric field at the interface between two different media)

(a)
$$c\left(2\hat{i}+\hat{j}+\hat{k}\right)$$

(b)
$$c(\hat{i} + 2\hat{j} + 2\hat{k})$$

(c)
$$c\left(\frac{1}{2}\hat{i}+\hat{j}+\hat{k}\right)$$

(d)
$$c \left(\hat{i} + \frac{1}{2} \hat{j} + \frac{1}{2} \hat{k} \right)$$

Problem 2

The half space region x>0 and x<0 are filled with dielectric media of dielectric constants ϵ_1 and ϵ_2 respectively. There is a uniform electric field in each part. In the right half, the electric field makes an angle θ_1 to the interface. The corresponding angle θ_2 in the left half satisfies

2 marks

(Hint: Use boundary condition of parallel and perpendicular component of electric field at the interface between two different media)

(a) $\varepsilon_1 \sin \theta_2 = \varepsilon_2 \sin \theta_1$

(b) $\varepsilon_1 \tan \theta_2 = \varepsilon_2 \tan \theta_1$

(c) $\varepsilon_1 \tan \theta_1 = \varepsilon_2 \tan \theta_2$

(d) $\varepsilon_1 \sin \theta_1 = \varepsilon_2 \sin \theta_2$

Problem 3

The x and z components of a static magnetic field in a region are $B_x = B_0(x^2 - y^2)$ and $B_z = 0$, respectively. Which of the following solutions for its y-component is consistent with the Maxwell equations?

2 marks

(a)
$$B_y = B_0 xy$$

(b) $B_y = -2B_0 xy$
(c) $B_y = -B_0(x^2 - y^2)$
(d) $B_y = B_0(\frac{1}{3}x^3 - xy^2)$

Problem 4

Three sinusoidal electric field represented by the equations $E_1 = 10\cos(20\pi t + \frac{\pi}{4})$, $E_2 = 10\cos(20\pi t + \frac{3\pi}{4})$, $E_3 = 10\cos(20\pi t - \frac{3\pi}{4})$ respectively. Using, phasor addition method, find out the resultant electric field.

2 marks

(a)
$$E = 10\sqrt{2}\cos(20\pi t + \pi)$$
 (b) $E = 10\sqrt{3}\cos(20\pi t + \pi)$

(c)
$$E = 10\sqrt{2}\cos(20\pi t + \frac{3\pi}{4})$$
 (d) $E = 10\sqrt{3}\cos(20\pi t + \frac{3\pi}{4})$

Problem 5

A plane electromagnetic wave with the B field amplitude 3×10^{-6} T travelling in vacuum falls normally on a surface and is totally reflected. Calculate the pressure exerted on the surface.

2 marks

(a)
$$0.42 \times 10^{-5} \text{ Pa.}$$
 (b) $0.72 \times 10^{-5} \text{ Pa.}$

 $(c)0.69 \times 10^{-6} \text{ Pa.}$

 $(d)0.90 \times 10^{-6} Pa$