Übungsblatt: Lokale Suche, GA

EA.01: Modellierung von GA (2P)

8-Queens-Problem und Landkarten-Färbeproblem

Starten beim Färbeproblem mit fünf verschiedenen Farben, Ziel: konfliktfreie Einfärbung mit minimalen Farbanzahl

Landkarten

Kodierung (Wie sieht ein "Individuum" aus?)

Regionen: [A, B, C, D, E, F]

Farben: [b, g, o, r, p]

also

Individuum = (A:color, B:color, C:color, D:color, E:color, F:color) mit color = {r,g,b,p,o}, z.B. (b,g,o,r,p,b)

Operationen

Crossover

Wäre gut geeignet, da große Änderung auf einmal Möglich sind. Mit Hilfe der Fitnessfunktion kann hier gut eingeschätzt werden, ob es in die richtige Richtung geht

Mutation

(P1 aus Crossover)

 $(b,r,o,p,g,r) \rightarrow Mutation in Region D \rightarrow (b,r,o,\mathbf{b},g,r)$

Finde ich jetzt nicht so gut für unser Problem, da es "zu langsam" ist, wenn nur zufällig eine Region die farbe wechselt. Dabei ist kein Trend erkennbar, es ist nicht steuerbar und hilft uns nicht alleine zum Ziel. Es kann verwendet werden, um lokale Minima zu verlassen

Fitnessfunktion

Was ist schlecht?

- benachbarte Regionen in gleicher Farbe
- zu viele Farben (6 wäre maximum, wir starten schon bei "nur" 5)
- => Kenngrößen:
 - Konflikte = Benachbarte Regionen haben gleiche Farbe, schwerwiegend, darf nicht sein!
 - Farbanzahl = soll minimal sein

Die Farbanzahl kann maximal 5 betragen. Dadurch müssen Konflikte eine höhere Wichtung bekommen, da sie nicht eintreten dürfen (sonst 1 Konflikt besser als 2 Farben benutzt). Wir haben ein Maximum von 5 Farben, somit muss ein Konflikt mehr wert sein, als 5. Ich wähle Faktor 10

Bewertungsfunktion z.B.:

fitness = 100 - (10*Konflikte) - Farbanzahl

Bsp: (Aus Crossover)

Individuum	Konflikte	Farben	Fitness
P1	0	5	95
P2	0	5	95
C1	2	3	77
C2	1	4	86

8 Damen

8 Damen auf einem 8x8 Feld so platzieren, dass sie sich nicht gegenseitig bedrohen

Kodierung

1 Individuum stellt 8 Damen mit ihrer Prosition dar

 $x = \{1,2,3,4,5,6,7,8\}$

 $y = \{a,b,c,d,e,f,g,h\}$

Dame Dx = (yPosition)

Individuum = (D1: yPosition, D2: yPosition, D3: yPosition, D4: yPosition, D5: yPosition, D6: yPosition, D7: yPosition, D8: yPosition)

Somit ist auch sicher, dass die Damen nur in eine Richtung verschoben werden, also auf jeder Reihe steht eine Dame, es wird nur nach links oder rechts verschoben

Operationen

Crossover

Könnte hier eher dazu führen, dass die Konflikte erhöhen, sollte wenn dann auch in kleinerer Form verwendet werden, also nicht die Hälfte beider Eltern, sondern zB nur einen Wert der Eltrn vertauschen

Mutation

Langsames herantasten an eine mögliche Lösung, hier der bessere Weg, würde 2 Positionen in einem Individuum tauschen. Also wie das abgeschwächte Crossover, nur weniger overhead

Fitnessfunktion

Hier ist das Kriterium, dass sie sich nicht gegenseitig bedrohen dürfen. Es kann mehrere Lösungen gebenn

Fitness = 1 / 1 + Anzahl Bedrohungen

Mit einer Fitness von 1 ist damit eine Lösung gefunden

Simulated Annealing

Wir würden außerdem benötigen:

- Abkühlungsplan
- Akzeptanzwahrscheinlichkeit, mit der schlechtere Lösungen akzeptiert werden
- Stopp-Wert (Vorlesung: Keine Verbesserungen in 3(Stop Wert) aufeinander folgenden Temperaturen)

EA.02: Implementierung (5P)

siehe Implementierung

Problem	Durchlauf	Mutationsrate	Crossover Rate	Turniergröße	Populationsgröße	Maximale Generationen	Erfolgsrate in %	Durchschnittliche beste Fitness	beste Fitness
Landkarte Färben	1	0,01	0,8	3	200	200	100	96,98	97
	2	0,1	0,8	3	200	200	100	96,98	97
	3	0,01	0,08	3	200	200	100	96,98	97
	4	0,01	0,8	10	200	200	100	96,98	97
	5	0,01	0,8	3	1000	200	100	97	97
	6	0,01	0,8	3	200	1000	100	96,98	97
	7	0,001	0,1	2	20	20	100	96,37	97
	8	0,1	0,9	10	1000	1000	100	97	97
8 Damen	1	0,01	0,8	3	200	200	8	0	1
	2	0,1	0,8	3	200	200	6	0,06	1
	3	0,01	0,08	3	200	200	2	0,02	1
	4	0,01	0,8	10	200	200	3	0,03	1
	5	0,01	0,8	3	1000	200	44	0,44	1
	6	0,01	0,8	3	200	1000	6	0,06	1
	7	0,001	0,1	2	20	20	1	0,01	1
	8	0,1	0,9	10	1000	1000	73	0,73	1

EA.03: Anwendungen (3P)

	Fitnessfunktion	Individuen	Operatoren
Wo ist Waldo	Bewertet die Such-Routengesamtlänge -> kurz = gut	Individuum = Such-Route mit 68 Koordinaten	Mutation: zwei locations im such-path tauschen, Shuffle-Mutation: nimmt eine Teilstrecke und packt sie woanders hin
EvolutionSimulator	Es wird bewertet, welche individuuen am weitesten kommen. dann werden 500 eleminiert, zum großteil die schlechtesten, allerdings hängt da eine random komponente mit drin	"Creatures" bestehend aus Muskeln? (schwierig da aus dem code was sinnvoll rauszulesen)	scheint Crossover mit Mutationen zu sein, also wir haben definitiv eine Selektion (von 1000 überleben ja nur 500 und werden dann irgendwie gebreeded)
"american fuzzy lop"	bewertet code-coverage, state transitions, crash detection un dexecution time, im endeffekt kommt es drauf an, wie "interessant" ein neuer testfall ist	individuen sind testfälle	formen der mutationen (bits umdrehen, tauschen), kombination von "fitten" individuen (crossover)

Andere Anwendungen:

Lieferlogistik/Routenplanung -> optimale Reihenfolge und Route für Lieferungen finden, Fahrzeit und Verbrauch minimieren

Produktempfehlungen und Personalisierung -> Empfehlungen an Nutzerverhalten anpassen, Optimierung mit gewichtung, "Gefällt mir" Angaben helfen bei der Fitnessbestimmung