Total No.	of Questions : 8] SEAT No. :
DC 441	[Total No. of Pages : 4
PC-441	[6352]-155
e E	(Computer Science & Engineering) (Data Science)
S.E.	
	DATA Structures and Algorithms
	(2019 Pattern) (Semester - III) (210642)
Time: 21	[Max. Marks: 70
Instruction	ons to the candidates:
1)	Solve questions Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q. 7or Q.8.
2)	Neat diagrams must be drawn wherever necessary.
3)	Figures to the right indicate full marks.
4)	Assume suitable data if necessary.
<i>Q1</i>) a)	Identify the expression and convert it into the remaining two forms:
	AB + C * DE - FG + + \$ Note \$ = Exponent operator [6]
b)	What is Queue? Explain insertion and deletion operations in Queue with
U)	a suitable diagram.
c)	Compare stacks and queues.
	OR
(02) a) ea	Explain the concept of the linear and circular queue with an example (6)
	Construct a function PUSH and POP in 'C' for a stack using an array.[6]
b)	
c)	Give the postfix and prefix expression for $(a+b*c)/(x+y/z)$. [6]
	the aviable avample the
Q3) a)	Explain a binary tree. Name and explain with suitable example the
	following terms:
	i) Root node

Left sub tree and right sub tree

Depth of tree

ii)

iii)

b) From the given traversal construct the binary tree.

[6]

Inorder: DBFEAGCLJHK

Postorder: DFEBGLJKHCA

c) Construct the binary search tree (BST) from the following elements. [5] 10, 60, 40, 28, 14, 50, 6.

OR

- Write a recursive 'C' function for inorder and preorder traversal of Binary Search Tree, [6] 5
 - b) Explain with suitable example how binary tree can be represented using :

[6] 8

- 1 Array
- ii) Linked List
- c) Define the following terms with respect to Trees

151 3

- i) Root
- Subtree
- ip Level of node
- iv) Depth of Tree
- Siblings.

Q5) a) Represent the following graph using the adjacency matrix and adjacency list

Fig. 1

- b) Explain with suitable example, DFS and BFS traversal of a graph. [6]
- Find out Minimum Spanning Tree of the following graph (figure 3) using Kruskal's algorithm.

(Q6) a) Define with an examples:

[6] 5

- i) Undirected Graph
- ii) Directed Graph
- iii) Weighted Graph
- b) Find minimum spanning tree for the following graph using Prim's algorithm. [6]

c) Find the indegree and outdegree of the following graph

[6]

- Q7) a) What is a collision in Hashing? What are different Collision Resolution Strategies? Explain any one with example. [6]
 - b) Show the result of inserting the following keys into a hash table of size 7 using linear probing and the hash function

h(k) = k%7:19, 27, 36, 10, 64.

c) What is a file? List different modes of file. Explain any four functions related to File handling? Explain concept of inverted files. [5] 3

OR

- Q8) a) Insert the keys 49, 63, 56, 52, 48 into a hash table of size 11 using quadratic probing and h(k)=k% 11. Show the resulting hash table. Assume i² is the probing sequence. [6]
 - b) Define sequential file organization. Give it's advantages and disadvantages.

 [6]
 - c) Explain indexed sequential file organization. Compare it with a direct access file.

[6352]-155

4