Sampling and Pulse Modulation

S.N. Merchant
Gaurav S. Kasbekar
Dept. of Electrical Engineering
IIT Bombay

Introduction

•	Recall: digital communication systems have several advantages over analog communication systems
	former have replaced or are replacing latter in most contexts, e.g., cellular networks, TV
•	"Analog communication" and "digital communication":
	in practice, all communication is via continuous signals and hence analog in nature
	\Box the message signal that is to be transmitted is either analog or digital
	☐ E.g., if the source is speech, then:
	 In analog communication, it is directly used to modulate a high-frequency carrier signal
	 In digital communication, it is sampled and quantized to obtain a bit stream which is then used to modulate a high-frequency carrier signal
•	First step in digital transmission of analog source (e.g., speech, music) is conversion of source to digital representation
•	We now study:
	this analog to digital conversion
	and representation of the analog information as a sequence of pulses

The Sampling Process

- Sampling is used to convert an analog signal to sequence of samples that are usually spaced uniformly in time
- Sampling rate must be chosen carefully, so that:
 - ☐ the sequence of samples uniquely defines the original analog signal
- Sampling theorem tells us how to choose sampling rate
- We now briefly review the sampling process and prove the sampling theorem

The Sampling Process (contd.)

- Consider an arbitrary signal g(t) of finite energy, which is specified for all time t
- Suppose g(t) sampled at uniform rate:
 - \square once every T_s seconds
- Then we obtain an infinite sequence of samples spaced T_s seconds apart:
 - \square denoted by $\{g(nT_s)\}$, where n takes on all possible integer values
- We refer to:
 - \square T_s as "sampling period"
 - \square and $f_s = 1/T_s$ as "sampling rate"
- Let:
 - $\square g_{\delta}(t) = \sum_{n=-\infty}^{\infty} g(nT_{S})\delta(t nT_{S})$
- g(t) and $g_{\delta}(t)$ shown in fig.
- We will show that Fourier transform of sampled signal $g_{\delta}(t)$ is:

1)
$$G_{\delta}(f) = f_{S} \sum_{m=-\infty}^{\infty} G(f - mf_{S})$$

- \Box where G(f) is Fourier transform of g(t)
- 1) shows that process of uniformly sampling a signal g(t) results in a periodic spectrum with period equal to the sampling rate

 $g_{\delta}(t)$

Ref: "Communication Systems" by Haykin and Moher, 5th ed

Proof of the Claim $G_{\delta}(f) = f_{S} \sum_{m=-\infty}^{\infty} G(f - mf_{S})$

- First, consider a periodic signal $f_{T_0}(t)$ of period T_0
- We can represent it using Fourier series:
 - $\Box f_{T_0}(t) = \sum_{n=-\infty}^{\infty} c_n \exp(j2\pi n f_0 t)$, where
 - $\Box c_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} f_{T_0}(t) \exp(-j2\pi n f_0 t) dt \text{ and } f_0 = \frac{1}{T_0}$
- Let $f(t) = \begin{cases} f_{T_0}(t), & -\frac{T_0}{2} \le t \le \frac{T_0}{2}, \\ 0, & \text{else.} \end{cases}$
 - $\square \operatorname{So} f_{T_0}(t) = \sum_{m=-\infty}^{\infty} f(t mT_0)$
- Hence, c_n :
 - $\Box f_0 F(nf_0)$, where
 - \square F(f) is the Fourier transform of f(t)
- Thus:

$$\square \sum_{m=-\infty}^{\infty} f(t - mT_0) = f_0 \sum_{n=-\infty}^{\infty} F(nf_0) \exp(j2\pi n f_0 t)$$

- 1) So Fourier transform of $\sum_{m=-\infty}^{\infty} f(t-mT_0)$ is:
 - $\Box f_0 \sum_{n=-\infty}^{\infty} F(nf_0) \delta(f nf_0)$
- Now, in the sampling context: $g_{\delta}(t) = \sum_{n=-\infty}^{\infty} g(nT_s)\delta(t-nT_s)$
- Fourier transform of $g_{\delta}(t)$ is $G_{\delta}(f) = f_{S} \sum_{m=-\infty}^{\infty} G(f mf_{S})$ by:
 - \Box Duality theorem and the fact that the $\delta(.)$ function is an even function

The Sampling Process (contd.)

- 1) $g_{\delta}(t) = \sum_{n=-\infty}^{\infty} g(nT_s)\delta(t nT_s)$ 2) $G_{\delta}(f) = f_s \sum_{m=-\infty}^{\infty} G(f mf_s)$
- Taking Fourier transforms on both sides of 1), we get:
 - 3) $G_{\delta}(f) = \sum_{n=-\infty}^{\infty} g(nT_s) \exp(-j2\pi n f T_s)$ This relation is called:
 - discrete-time Fourier transform
 - lacktriangle Can be viewed as Fourier series representation of the periodic frequency function $G_{\delta}(f)$
- Next, suppose the signal g(t) is strictly bandlimited:
- $\Box G(f) = 0 \text{ for } |f| \ge W$
- Also, suppose we choose the sampling period $T_S = \frac{1}{2W}$
- Then by 3), we get:

Recall:

4)
$$G_{\delta}(f) = \sum_{n=-\infty}^{\infty} g\left(\frac{n}{2W}\right) \exp\left(\frac{-j\pi nf}{W}\right)$$

• Also, by 2), we get:

5)
$$G(f) = \frac{1}{2W}G_{\delta}(f)$$
, for $-W < f < W$

Substituting 4) into 5), we get:

6)
$$G(f) = \frac{1}{2W} \sum_{n=-\infty}^{\infty} g\left(\frac{n}{2W}\right) \exp\left(\frac{-j\pi nf}{W}\right)$$
, for $-W < f < W$

- 6) shows that if sample values $g\left(\frac{n}{2W}\right)$ of signal g(t) are specified for all n, then signal g(t) is completely determined for all values of t
- Taking inverse Fourier transform of 6), we get:

7)
$$g(t) = \sum_{n=-\infty}^{\infty} g\left(\frac{n}{2W}\right) \operatorname{sinc}(2Wt - n) \text{ for } t \in (-\infty, \infty)$$

- Equation 7) provides an interpolation formula for reconstructing the original signal g(t) from the sequence of sample values $\left\{g\left(\frac{n}{2W}\right)\right\}$
- Thus, we have derived the "Sampling Theorem", which states the following:
 - A band-limited signal which only has frequency components in the range -W < f < W is completely described by specifying the values of the signal at instants of time separated by 1/2W seconds
 - \Box Such a signal can be completely recovered from a knowledge of its samples taken at the rate of 2W samples per second
 - Sampling rate of 2W samples per second, for a signal bandwidth of W Hz, called *Nyquist rate*; its reciprocal $\frac{1}{2W}$ called *Nyquist interval*

Aliasing

- In above derivation of sampling theorem, we assumed that signal g(t) is strictly band-limited
- However, in practice, an information-bearing signal is not strictly band-limited
 - ☐ so some *undersampling* occurs
- So sampling process produces some "aliasing" as shown in fig
- To combat the effects of aliasing in practice:
 - ☐ Prior to sampling, a low-pass filter used to attenuate those high-frequency components that are not essential to information being conveyed by signal
 - ☐ Filtered signal is sampled at a rate slightly higher than Nyquist rate

Aliasing (contd.)

- What is the benefit of using a sampling rate that is slightly higher than (not equal to) Nyquist rate?
 - ☐ Eases the design of the reconstruction filter used to recover original signal from its sampled version
- E.g., suppose a message signal with bandwidth W is sampled at rate $f_{\rm s}>2W$
- Then reconstruction filter:
 - \square can be low-pass filter with a passband extending from -W to W and
 - \Box transition band extending (for positive frequencies) from W to f_s-W (see fig)
- Thus, reconstruction filter allowed to have transition band of width $f_s 2W > 0$
 - ☐ In contrast, if $f_s = 2W$, then ideal reconstruction filter with zero width of transition band would be required, which is not practically realizable

Ref: "Communication Systems" by Haykin and Moher, 5th ed

Practical Sampling

- So far, we have considered ideal sampling using an impulse pulse train
- But this sampling process is physically unrealizable
- So next, we consider a practical implementation of sampling
- Called "Pulse Amplitude Modulation"

Pulse Amplitude Modulation (PAM)

- In PAM, amplitudes of regularly spaced pulses varied in proportion to corresponding sample values of a continuous message signal m(t) as shown in fig.
 - \square s(t) is PAM signal obtained from m(t)
- PAM signal s(t) can be generated by following operations:
 - 1) Instantaneous sampling of message signal m(t) every T_s seconds, where sampling rate $f_s = 1/T_s$ chosen in accordance with sampling theorem
 - 2) Lengthening duration of each sample to some constant value T
- Above two operations jointly referred to as "sample and hold"
- Reason for lengthening duration of each sample (step 2):
 - ☐ To avoid use of excessive channel bandwidth
- PAM signal s(t) can be expressed as:
 - $\square s(t) = \sum_{n=-\infty}^{\infty} m(nT_s)h(t-nT_s),$
- Recall: $m_{\delta}(t) = \sum_{n=-\infty}^{\infty} m(nT_s)\delta(t-nT_s)$
- s(t) in terms of $m_{\delta}(t)$ and h(t):
- \square $m_{\delta}(t) * h(t)$
- Taking Fourier transforms on both sides:
 - $S(f) = M_{\delta}(f)H(f)$

Pulse Amplitude Modulation (PAM) (contd.)

- Recall:
 - $\square s(t) = \sum_{n=-\infty}^{\infty} m(nT_s)h(t-nT_s) = m_{\delta}(t) * h(t)$
 - $\square S(f) = M_{\delta}(f)H(f)$
 - $\square M_{\delta}(f) = f_{S} \sum_{m=-\infty}^{\infty} M(f mf_{S})$
- So S(f):
 - $\Box f_s \sum_{m=-\infty}^{\infty} M(f-mf_s) H(f)$
- Given a PAM signal s(t), how can we recover message signal m(t)?
- Assuming that sampling rate exceeds Nyquist rate, i.e., $f_s > 2W$, we pass s(t) through low-pass filter to get signal with Fourier transform M(f)H(f)
- Recall: $h(t) = \begin{cases} 1, & 0 \le t \le T, \\ 0, & \text{else.} \end{cases}$
- So H(f):
 - \Box $T \operatorname{sinc}(fT)e^{-j\pi fT}$
- We can recover m(t) by:
 - passing the above signal with Fourier transform M(f)H(f) through filter with amplitude response $\frac{1}{|H(f)|} = \frac{1}{|T \operatorname{sinc}(fT)|}$
- Fig. shows relevant amplitude spectra

Ref: "Communication Systems" by Haykin and Moher, 5th ed

Communication Using Pulse Modulation

- Suppose a continuous-time message signal g(t) needs to be sent over a baseband channel
- In "pulse modulation":
 - \Box g(t) is sampled
 - □ sample values are used to modify certain parameters of a periodic pulse train
- Fig. shows:
 - ☐ PAM signal, in which pulse amplitudes varied
 - ☐ "Pulse Width Modulation (PWM)", in which pulse widths varied
 - ☐ "Pulse Position Modulation (PPM)", in which pulse positions varied
- In all the above cases, instead of sending g(t), we transmit the corresponding pulse modulated signal over channel
- Recall: previous slide shows that bandwidth of PAM signal is larger than bandwidth of message signal
- Advantage of pulse modulation over sending message signal g(t) itself:
 - Pulse modulation allows simultaneous transmission of several signals on a time-sharing basis, i.e., Time Division Multiplexing (TDM), as shown in fig.

