Modelos que aprenden el lenguaje de las moléculas

Raúl Fernández Díaz Estudiante de doctorado industrial

Organización

Sesión 2: Contenidos

¿Cómo podemos utilizar los modelos de lenguaje molecular?

¿Cómo podemos evaluarlos?

Principales herramientas

Cuarta Parte

¿Cómo podemos utilizar los modelos de lenguaje molecular?

Transferencia de conocimiento

"En un lugar de la Mancha de cuyo nombre no quiero acordarme, no ha mucho tiempo que vivía un hidalgo de los de lanza en astillero, adarga antigua, rocín flaco y galgo corredor."

Oculta palabras

"En un lugar de la Mancha de cuyo
no quiero acordarme, no ha
mucho tiempo que vivía un de
los de lanza en adarga
antigua, rocín flaco y galgo corredor."

Ventajas: No es eficiente

Desventaja: Mucho más

versátil

Transferencia de conocimiento: aplicaciones

Predicción de la estructura de proteínas

Clasificación de enzimas

Transferencia de conocimiento: aplicaciones

MolFormer-XL

https://molformer.res.ibm.com/

Ventajas: No es eficiente

Desventaja: Mucho más

versátil

ML tradicional

- Support Vector Machines
- Random Forest
- K-Nearest Neighbours
- Gradient boosting (extreme, adaptive, or light)
- Ensemble

Métodos neurales (deep learning)

- Multi-layer perceptron
- Redes neurales convolucionales
- Redes neurales recursivas
- Transformers

Transferencia de representaciones: Automatización

Transferencia

Transferencia de representaciones: AutoPeptideML

Amino acid sequence	Therapeutic application (bioactivity)*
α _{s2} -casein f(203–208)	Antimicrobial; antihypertensive; antioxidant
Ile-Pro-Pro; Val-Pro-Pro	Antihypertensive*
(Tyr-Pro-Phe- Pro-Gly-Pro-Ile- Pro-Asn-Ser-Leu) β-casein f(60–70)	Immunostimulatory, opioid agonist; ACE-inhibitory
Unidentified	Immunostimulatory, ACE-inhibitory
Arg-Val-Pro-Ser-Leu	ACE-inhibitory
Phe-Arg-Asp-Glu- His-Lys-Lys; and Lys-His-Asp-Arg- Gly-Asp-Glu-Phe	Antioxidative
lle-Thr-Pro; lle-lle- Pro; Gly-Gln-Tyr; Ser-Thr-Tyr-Gln-Thr	ACE-inhibitory

Transferencia de representaciones: AutoPeptideML

Transferencia de representaciones: AutoPeptideML

http://peptide.ucd.ie/AutoPeptideML

Transferencia de representaciones: AutoPeptideML

Transferencia de representaciones: Automatización

Proteínas

Feature Types	Description	Refer-
reature Types	Description	ences
Amino Acid Composition	Simplest, primary, and fundamental	8,9,22
Sequence Order	Capture all possible combinations of amino acids in oligomeric proteins, exceptionally large number of features	40–45
Physicochemical Properties	Classify amino acids based on properties; Composition, order, and position-specific information are usually extracted	1,36,46
Multiprofile Bayes	Incorporate both position-specific information and the posterior probability of each amino acid type	16,52,53
Secondary Struc- ture Based Features		1,23,25,48
PSSM-based Proba- Evolutionary information was included by a position-spe- 16,18,19,5		
bility	cific scoring matrix	4
Fourier Transform Based Feature	Extract low frequency coefficients in frequency domain	15,27,55,5 7
Functional Domain Composition	Convert protein sequence into a sequence of functional domain types	37
Split Amino Acid Composition	Incorporate both position-specific information and amino acid composition	16

Moléculas pequeñas (fármacos)

Descriptor type		Descriptors calculated
Constitutional		Molecular Weight (MW), Rotational Bonds
		(RotB), Hydrogen Bond Acceptors (HBA) and
		Hydrogen Bond Donors (HBD)
Thermodynamic		Heat of Formation (HF), Log of Partition
		Coefficient (LogP), Standard Gibbs Free Energy
		(G), Stretch Energy (Es) , Torsional Energy (Et)
		and Total Energy (E)
Electronic		Dipole (DPL), Electronic Energy (ElecE) and
		Molecular Polar Surface Area (MPSA)
Steric and/or Spatial		Molar Refractivity (MR) and Molar Volume
		(MV)
Topological		Balaban Index (BIndx), Cluster Count (ClsC),
		Shape Coefficient (ShpC), Total Connectivity
		(TCon), Molecular Topological Index (TIndx)
		and Wiener Index (WIndx)
Semi-empirical	(Quantum	Energy of Highest Occupied Molecular Orbital
chemical)		(HOMOEnergy) and Energy of Lowest
		Unoccupied Molecular Orbital (<i>LUMOEnergy</i>)