ISMIN 1A 2021-22

Cours Electronique analogique

Le transistor MOS à effet de champs - MOSFET

J.-M. Dutertre, B. Dhalluin, C. Dupaty https://www.emse.fr/~dutertre/enseignement.html

I – Introduction.

1 - Structure, vue 3D du MOS à canal N (NMOS) :

longueur du canal [µm] length

largeur du canal [µm] width

I – Introduction

 $pour v_{SB} = 0 pour v_{SB} \neq 0$

I – Introduction

MOS:

<u>Composants discrets</u>: électronique de puissance

commutation, amplification

peu fréquent

<u>Electronique intégrée</u> : composant "roi " de la micro-électronique

4 pattes, choix W et L

Technologie caractérisée par L_{min} de grille

Apple A14 Bionic : 5 nm (TSMC), 11,8 milliards de transistors

2020

outils de conception informatisés : CAO

 $2 - Caractéristiques courant - tension du NMOS (pour <math>v_{SB} = 0$).

La tension appliquée entre la grille et la source, v_{GS}, permet de contrôler le courant circulant entre le drain et la source, i_D.

i.e. source de courant commandée par une tension

G = transconductance [A/V]

Les aspects théoriques de l'établissement de la caractéristique $i_D - v_{DS}$ en fonction des différents régimes de polarisation du transistor appartiennent à la physique des S.-C., ils sont traités très succinctement dans ce cours.

Le courant de grille sera considéré nul : $i_G \approx 0$

a. Caractéristique i_D - v_{DS}

Fonctionnement à $v_G = 0$

Le substrat (body) est toujours connecté au potentiel le plus électronégatif (la masse).

On considère le cas ou la source est également à la masse.

Quelque soit le potentiel de v_D aucun courant ne peut circuler entre le drain et la source (jonctions PN tête-bêche).

$$\implies \forall v_D \text{ pour } v_G = 0 i_D \text{ est nul}$$

Création du canal

v_G > 0 repousse les trous libres de la zone de canal vers le substrat.

v_G > 0 attire finalement les e⁻ libres contenus dans la drain et la source (n⁺) dans la zone du canal.

Quand ils sont en nombre suffisant (au-delà d'un certain seuil pour $v_G = v_{GS} > V_{tn}$, V_{tn} est la tension de seuil du NMOS) on considère qu'une région N a été créée.

Désormais si une tension est appliquée entre le drain et la source un courant d'e va circuler dans le canal N (d'où le terme canal et le nom du transistor).

Courant traversant le transistor pour v_{DS} petit.

Un courant i_D circule entre le drain et la source.

Son amplitude dépend de la quantité d'e $^{-}$ dans le canal et donc de v_{GS} i_D est proportionnel :

- à $v_{GS} V_{tn}$
- et à v_{DS}

$$i_D = k_n' \frac{W}{L} (v_{GS} - V_{tn}) v_{DS}$$

cf. ci-après pour plus de détails

Courant traversant le transistor pour un accroissement de v_{DS}.

L'épaisseur du canal dépend de la différence de potentiel entre la grille et le substrat :

- au niveau de la source : v_{GS},
- au niveau du drain: $v_{GS} v_{DS}$; du fait du potentiel appliqué entre drain et source, la chute de tension v_{DS} étant répartie sur toute la longueur du canal.

□ le canal a une forme penchée, sa résistance augmente avec v_{DS}

a. Caractéristique i_D - v_{DS}

Pour
$$v_{GS} \ge V_{tn}$$
 et $v_{DS} \le v_{GS} - V_{tn}$:

Régime triode

a. Caractéristique i_D - v_{DS}

Zone linéaire du régime triode pour $v_{DS} \ll 2(v_{GS} - V_{tn})$

$$i_D = k_n' \frac{W}{L} (v_{GS} - V_{tn}) v_{DS}$$

$$r_{DS} = \frac{v_{DS}}{i_D} = 1/k_n \frac{W}{L} (v_{GS} - V_{tn})$$

Pincement du canal.

Plus précisément la largeur du canal dépend de la tension appliquée sur la grille en excès par rapport à la tension de seuil V_{tn} .

L'augmentation de v_{DS} a pour effet de diminuer cette tension en excès au voisinage du drain, jusqu'au point où pour $v_{DS} = v_{GS} - V_{tn}$ elle s'annule. Le canal a alors une épaisseur nulle, on dit qu'il est **pincé**.

Le transistor est **saturé**, le courant i_D reste constant malgré toute augmentation ultérieure de v_{DS} .

a. Caractéristique i_D - v_{DS}

Pour $v_{GS} \ge V_{tn}$ et $v_{DS} \ge v_{GS} - V_{tn}$:

Régime saturé

$$i_D = \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_{tn})^2$$

b. Caractéristique i_D - v_{GS}

Pour
$$v_{GS} \ge V_{tn}$$
 et $v_{DS} \ge v_{GS} - V_{tn}$:

Régime saturé

V_{tn}: tension de seuil du NMOS (qqs 100aines mV)

3 – Modulation de la longueur du canal.

Régime triode : $v_{GS} \ge V_{tn}$ et $v_{DS} \le v_{GS} - V_{tn}$

Régime saturé : $v_{GS} \ge V_{tn}$ et $v_{DS} = v_{GS} - V_{tn}$ Pincement du canal à la limite de saturation

<u>Régime saturé</u> : $v_{GS} \ge V_{tn}$ et $v_{DS} > v_{GS} - V_{tn}$ Canal pincé, modulation de sa longueur

$$\begin{array}{c} \swarrow & \longrightarrow & L - \Delta L \\ \text{Avec } \Delta L \uparrow \text{qd } v_{DS} \uparrow \text{d'où } i_D \uparrow \text{avec } v_{DS} \end{array} \right\} \ \ ^{r}$$

3 – Modulation de la longueur du canal.

3 – Modulation de la longueur du canal.

Résistance de sortie : r_o

4 – Transistor MOS à canal P.

4 – Transistor MOS à canal P.

Caractéristiques i_D - v_{SD} et i_D - v_{SG}

Reprendre les conditions et équations du NMOS en remplaçant v_{GS} par v_{SG} , v_{DS} par v_{SD} , V_{tn} par $-V_{tp}$, et k'_n par k'_p

k'
$$_{p}$$
 facteur de gain du PMOS
$$\mu_{p}\cong\mu_{n}\:/\:2\sim3$$
 $[\mu\text{A/V}^{2}]$

$$V_{tp}$$
 tension de seuil du PMOS ($V_{tp} \le 0$) [V]

Le courant i_D est pris sortant par le drain du PMOS (entrant pour le NMOS).

Exemples de technologies.

	0,35 µm		0,25 μm		0,18 μm		65 nm	
	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS
t _{ox} (nm)	7,5		6		4		1,2	
C_{ox} (fF/ μ m ²)			5,8		8,6			
μ.C _{ox} (μΑ/V²)	175	58	267	93	387	86		
V _{t0} (V)	0,46	-0,6	0,43	-0,62	0,48	-0,45	0,42	-0,36
V _{DD} (V)	3,3		2,5		1,8		1,2 ~ 0,8	

 \varnothing Cheveu = 50 – 100 μm

5 – Effet de substrat.

Le substrat p est généralement connecté au potentiel le plus électronégatif (gnd).

Pour v_{SB} ↑ la profondeur du canal est réduite, pour compenser la diminution de i_D correspondante : v_{GS} ↑

Modélisation:

$$\begin{split} V_t &= V_{t0} + \gamma \bigg(\sqrt{\left| 2\phi_f + v_{SB} \right|} - \sqrt{\left| 2\phi_f \right|} \bigg) \\ V_{t0} \quad & \text{tension de seuil pour } v_{SB} = 0 \\ 2 \varnothing_f \quad & \text{potentiel d'inversion de surface } (0,6 \sim 0,7 \ V) [V] \\ \gamma \quad & \text{facteur d'effet de substrat } (\approx 0,4 \ V^{1/2}) \end{split} \tag{V}^{1/2}$$

Variation de $v_{SB} \Rightarrow variation de i_D$

body
$$\approx 2^{\text{ème}}$$
 grille

6 – Effets de la température.

 V_t - 2mV/°C \Rightarrow i_D augmente avec T° k' dk'/dT < 0 \Rightarrow i_D diminue avec T° effet prépondérant \implies i_D diminue avec T°

7 – Qualité de la modélisation.

Equations précédentes = modélisation au 1er ordre, c.-à-d. <u>plutôt inexacte</u>

Adapté à un calcul *manuel* pour un résultat approché à 10-20% près, ensuite recours aux logiciels de simulation électrique (spice).

Hors cadre de ce cours :

- conduction en inversion faible (subthreshold),
- effets liés aux longueurs de canal submicroniques.

- 1 Utilisation en amplification.
- a. Construction graphique.

1ère qualité amplificateur?

$$\mathbf{v}_{\mathsf{D}} = \mathsf{f}(\mathbf{v}_{\mathsf{GS}})$$

$$\mathbf{v}_{\mathrm{D}} = \mathbf{f}(\mathbf{v}_{\mathrm{GS}})$$

b. Mise en équations.

Amplification : polarisation en régime saturé (linéarité)

b. Mise en équations.

$$i_D = \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_{tn})^2$$
 $v_{GS} = V_{GS} + v_{gs}$

$$v_{GS} = V_{GS} + v_{gs}$$

 $\frac{1}{2}k_n \frac{W}{I}(v_{gs})^2$

Facteur de non linéarité. négligeable pour vgs très petit

• pour $v_{gs} \ll 2v_{OV}$ (λ =0)

$$i_{D} = \underbrace{\frac{1}{2} k_{n}^{'} \frac{W}{L} (V_{GS} - V_{tn})^{2} + k_{n}^{'} \frac{W}{L} (V_{GS} - V_{tn}) v_{gs}}_{I_{D}}$$

composante variable

$$v_D = \underbrace{V_{DD} - R_D I_D}_{V_D} - \underbrace{R_D i_d}_{V_d}$$

courant de

polarisation

- b. Mise en équations.
 - pour $v_{gs} <\!\!< 2V_{OV}$, en considérant le régime variable (petits signaux)

transconductance:

$$g_{m} = \frac{i_{d}}{v_{gs}} = k_{n} \frac{W}{L} (V_{GS} - V_{tn}) = k_{n} \frac{W}{L} (V_{ov}) \qquad [A/V]$$

$$V_{gs} = V_{ov} = V$$

$$V_{OV} = V_{GS} - V_{tn}$$

$$g_{m} = 2I_{D}/V_{OV} = \sqrt{2k'_{n}}.\sqrt{W/L}.\sqrt{I_{D}}$$

gain en tension p.s.:

$$A_{v} = v_{d} / v_{gs} = -g_{m}R_{D}$$

$$A_{\rm v} = v_{\rm d}/v_{\rm gs} = -g_{\rm m}R_{\rm D} \qquad \left[V/V\right] \qquad v_{\rm d} = -R_{\rm D}i_{\rm d} \qquad {\rm Et~g_m=i_d/v_{\rm gs}}$$

2 – Séparation des régimes continu et variable (DC et AC).

Par application du théorème de superposition (condition d'application ?)

régime DC

$$I_D = \frac{1}{2} k_n \frac{W}{L} (V_{GS} - V_{tn})^2$$

$$i_{d} = g_{m} v_{gs}$$

$$g_{m} = k_{n} \frac{W}{L} (V_{GS} - V_{In})$$

 $\mathbf{R}_{\mathbf{D}}$

3 – Modèle équivalent petits signaux du MOS.

Validité:

- polarisation en régime saturé,
- v_{gs} petit devant 2V_{ov} ,
- basses fréquences.

$$g_{m} = k_{n}^{'} \frac{W}{L} (V_{GS} - V_{tn})$$

$$g_{m} = 2I_{D} / V_{OV} = \sqrt{2k_{n}^{'}} . \sqrt{W/L} . \sqrt{I_{D}}$$

prise en compte de la modulation de longueur du canal

$$r_o = V_A / I_D$$

Le choix du point de polarisation fixe les valeurs des paramètres du modèle p.s.

3 – Modèle équivalent petits signaux du MOS.

Interprétation graphique de la notion de transconductance :

3 – Modèle équivalent petits signaux du MOS.

Interprétation graphique de la notion de transconductance :

3 – Modèle équivalent petits signaux du MOS.

Interprétation graphique de la notion de transconductance :

II – Le transistor MOS en amplification

3 – Modèle équivalent petits signaux du MOS.

Intégration de l'effet de substrat dans le modèle (cf. T21) :

body
$$\approx 2^{\text{ème}}$$
 grille

$$g_{mb} = \chi . g_m$$

tq
$$\chi = 0.1 \text{ à } 0.3$$

$$R_G = 10 \text{ M}\Omega$$
 $V_{tn} = 1,5 \text{ V}$ $V_{DD} = 10 \text{ k}\Omega$ $V_{A} = 50 \text{ V}$ $V_{DD} = 15 \text{ V}$ V_{C} très grand V_{E} V_{E}

Méthode

- 1. Rechercher le régime de fonctionnement du T en déduire $I_D=f(V_{GS})$
- 2. Exprimer V_{DS} = $f(V_{DD},R_D,I_D)$
- 3. En déduite I_D etV_{GS} de polarisation
- 4. En déduire alors g_m et r₀
- 5. En déduire l'amplification en tension
- 6. Z_{in} et V_{Emax} sans distorsion

Exercice

TD2

III – Polarisation, étude DC.

- 1 Importance du choix du point de polarisation.
 - choix du régime de fonctionnement du transistor
 - réglage des paramètres p.s. (amplification / saturation)
 - de l'excursion en sortie (amplification / saturation)

2 – Polarisation de composants discrets.

Les valeurs de V_t , C_{ox} , et W/L varient fortement d'un composant à l'autre (y compris pour des composants de même référence).

a. Fixer V_{GS}.

b. Fixer V_G et ajouter une résistance de source.

 R_S : apport d'une contre-réaction négative stabilisation de I_D

Schémas de polarisation :

Alimentation simple

Alimentation double

c. Résistance de contre-réaction grille-drain.

 V_{DS} = V_{GS} donc V_{DS} > V_{GS} - V_{tn} , le transistor est obligatoirement en régime saturé

NMOS:
$$V_{DD} = 3.3 \text{ V}$$
 $V_{tn} = 0.46 \text{ V}$ $k'_{n} = 175 \mu \text{A/V}^2$

Dimensionner le circuit ci-contre afin d'obtenir une polarisation du transistor telle que I_D = 100 μA et V_D = 1 V.

A quelle régime de fonctionnement correspond cette polarisation ?

On considère que la modulation de la longueur du canal est négligeable (λ = 0) et on prend W=40µm et L=1µm.

NMOS:
$$V_{DD} = 3.3 \text{ V}$$
 $V_{tn} = 0.46 \text{ V}$ $k'_{n} = 175 \mu \text{A/V}^2$

Donner le potentiel de chacun des nœuds et le courant circulant dans chacune des branches de ce circuit.

On prend R_{G1} = R_{G2} = 5 $M\Omega$, R_{D} = R_{S} = 10 $k\Omega$, W = 30 μ m, L = 1 μ m et λ = 0.

Expliquer le choix des valeurs de R_{G1} et R_{G2}.

Exercice 2.5 (TD2 p7)

NMOS:
$$V_{DD} = 3.3 \text{ V}$$
 $V_{tn} = 0.46 \text{ V}$ $k'_{n} = 175 \mu\text{A/V}^2$

Dimensionner ce circuit de façon à avoir $V_D = 0,1 \text{ V}$.

On prend W = 6 μ m et L = 1 μ m.

Que vaut r_{DS} , la résistance drain source à ce point de polarisation ?

3 – Polarisation par source de courant.

a. principe.

b. Source/Miroir de courant.

Mn1 et Mn2 en régime saturé :

$$I_{D1} = I_{REF} = \frac{V_{DD} - V_{GS}}{R}$$
 $I_{0} = I_{D2} = I_{REF} \cdot \frac{(W/L)_{2}}{(W/L)_{1}}$

Miroir pour $I_o = I_{REF}$

b. Source/Miroir de courant.

Source de courant idéale :

Source de courant MOS :

 $\lambda \neq 0 \rightarrow r_{o2}$ finie Saturation Mn2

Modèle p.s.:

NMOS:
$$V_{DD} = 3.3 \text{ V}$$
 $V_{tn} = 0.46 \text{ V}$ $k'_{n} = 175 \mu\text{A/V}^2$

Proposer un design permettant de réaliser un miroir de courant tel que I_0 = 100 μ A et V_{0min} = 0,3 V (on prendra arbitrairement L = 2 μ m).

- a. Régime de fonctionnement Mn1 ? I_{D1?}
- b. Mn2 saturation ? Condition sur V₀ ? I_{D2} ?
- c. $I_0 = f(I_{REF})$? miroir ou source de courant?
- d. Comment fixer I_{REF} ? Exprimer I_{REF} = $f(V_{DD}, R, V_{GS}, K)$
- e. Modulation de longueur de canal ($\lambda \neq 0$). Tracer I_0 en fonction de V_0 (Mn1 =Mn2) R_{out} la résistance de sortie? Comment l'augmenter? Quels sont les paramètres importants d'une source de courant de bonne qualité ?

b. Source/Miroir de courant.

Augmentation de la résistance de sortie : source cascode.

TD 4.3 Rout ? Condition sur Vo ?

$$R_{out} = g_m r_{o2} r_{o3}$$

$$V_o \ge 2V_{GS} - V_{tn}$$

$$\stackrel{\text{réduction de la dynamique}}{}$$

b. Source/Miroir de courant.

Distribution des courants de polarisation dans un circuit intégré :

- 1 Introduction étage amplificateur.
 - Besoins : Acquisition de grandeurs physiques
 - température, pression, humidité, etc.
 - Capteur :
 - élément actif ou passif dont les caractéristiques varient avec la grandeur physique
 - Variation faibles avec peu d'énergie
 - μV , mV, μA , mA, $\mu \Omega$, $m\Omega$
 - Nécessité : Amplification

Critères de qualité-choix des amplificateurs :

- Linéarité distorsion :
 - Le signal ne doit pas être déformé.
- Bande passante :
 - L'amplification doit être constante sur tout le spectre du signal amplifié.
- Forme de l'alimentation disponible :
 - Simple ou double.
- Rendement :
 - η = puissance utile / puissance consommée.

Amplification (en tension):

$$vs(0) = ve(0) = 0$$

 $vs(\infty) = A_v \cdot ve(\infty)$

La réalité est bien différente !!!

Alimentations

- → apporte l'énergie au système.
- → permet la polarisation.

+V
U1
VSINE
AMPV

Double

Amplificateur réel : → défauts

Les choses se compliquent, Vs peut être :

- Déformée (non linéarité)
- Ecrêtée (saturation)
- Posséder une composante continue (offset)

Cas d'un amplificateur mono tension :

v_s(t) se déplace autour du point de repos, généralement VCC/2

$$v_E = V_{EPOL} + v_e$$

$$v_S = V_{CC}/2 + v_s$$

Bande passante :

tracée dans le diagramme de Bode.

 ω 1, ω 2 pulsations de coupure à -3dB

Modèle d'un amplificateur :

- Fonction: amplifier la puissance du "signal" tout amplificateur est alimentée par une source d'energie externe (ici: V_{CC} et (ou) V_{EE})
- L'entrée de l'amplificateur est caractérisée par son impédance d'entrée $Z_e = \frac{v_e}{i_e}$
- La sortie agit comme une source de tension v_s caractérisée par son impédance de sortie \mathbf{Z}_s
 - $\boxtimes Z_s$ = résistance de Thévenin équivalent au circuit vu par R_L

Gain en tension:

Comme $\mathbb{Z}_s \neq 0$ le gain en tension dépend de la charge

Définitions

Gain "en circuit ouvert":
$$A_{v} = \frac{v_{L}}{v_{e}}\Big|_{R_{L} = \infty} = \frac{v_{s}}{v_{e}}$$

Gain "sur charge":

$$A_{vL} = \frac{v_L}{v_e} = \frac{R_L}{R_L + Z_s} A_v$$

Gain "composite": (tient compte de la résistance de sortie de la source)

$$A_{vc} = \frac{v_L}{v_g} = \frac{Z_e}{R_g + Z_e} A_{vL}$$

Comme $\mathbf{Z}_{e} \neq \infty$, A_{vc} diffère de A_{vL}

Gain en courant :

$$A_i = \frac{i_L}{i_e} = \frac{A_{vL} Z_e}{R_L}$$

Gain en puissance :

$$A_p = \frac{v_L i_L}{v_g i_e} = A_{v_c} \cdot A_i$$

Expression du gain en dB:

Tension: 20 log|Av|

Courant: 20 log|Ai|

Puissance: 10 log|Ap|

Impédance d'entrée :

$$Z_e = \frac{v_e}{i_e}$$

• Impédance de sortie :

$$Z_s = \frac{v_x}{i_x} \bigg|_{v_g = 0}$$

∠ L'amplificateur "idéal":

- Gains indépendants de l'amplitude et de la fréquence (forme) du signal d'entrée
- Impédance d'entrée élevée A peu de perturbation sur la source
- Impédance de **sortie faible** \land peu d'influence de la charge

⊠ La réalité...

Domaine de linéarité : distorsion du signal pour des amplitudes trop élevées Nonlinéarité des caractéristiques électriques des composants la tension de sortie ne peut dépasser les tensions d'alimentation

Bande passante limitée : le gain est fonction de la fréquence du signal capacités internes des composants condensateurs de liaison Impédances d'entrée (sortie) dépendent de la fréquence

<u>Distorsion harmonique</u>:

Taux de distorsion harmonique (Total Harmonic Distorsion) :

$$THD = \sqrt{\frac{\sum_{k \ge 2} a_k^2}{a_1^2}} = \frac{\sqrt{\sum_{k \ge 2} a_k^2}}{a_1} = \frac{V_{eff, harmoniques}}{V_{eff, fondamental}}$$

avec | a₁ : valeur efficace du fondamental | a_k : valeur efficace de l'harmonique de rang k

<u>Défauts sur les impédances :</u>

- Un amplificateur idéal :
 - Ne consommerait aucune énergie en entrée : résistance d'entrée ∞ quelque soit la fréquence.
 - Pourrait produire une puissance infinie: résistance de sortie nulle quelque soit la fréquence.
 - ON NE SAIT PAS FABRIQUER CELA

Modèles réels des amplificateurs :

$$A_v \equiv \frac{\mathcal{V}_s}{\mathcal{V}_e} \bigg|_{i_s=0}$$

$$R_e \equiv \frac{\mathcal{V}_e}{i_e}$$
 $R_s \equiv \frac{\mathcal{V}_s}{i_s}\Big|_{\mathcal{V}_e=0}$

$$G_m \equiv \frac{\dot{\boldsymbol{l}}_s}{v_e}\Big|_{v_s=0}$$

 $R_{\scriptscriptstyle m} \equiv rac{{oldsymbol v}_{\scriptscriptstyle S}}{i_{\scriptscriptstyle e}}igg|_{i_{\scriptscriptstyle S}=0}$

transconductance

transrésistance

Couplage entre étages - association de plusieurs types d'amplificateurs :

Objectif

Coupler plusieurs "étages" pour améliorer les propriétés du circuit...

Exemple: Amplificateur avec

- gain en tension élevé
- faible distorsion
- bonne **stabilité** (thermique, dispersion)
- impédance d'entrée élevée
- impédance de sortie faible

Solution possible:

- stabilité et faible distorsion → ampli stabilisé
- gain élevé ↔ plusieurs étages en cascades
- \bullet Z_s faible \leftrightarrow étage à faible impédance de sortie

- Difficultés du couplage : Polarisation de chaque étage
 - Gain sur charge : chaque étage "charge" l'étage précédent
 - Réponse en fréquence de l'ensemble (cf. couplage capacitif)

Couplage et adaptation d'impédance :

L'adaptation d'impédance doit être vu sous deux aspects :

- Associer des circuits
- Transmettre une puissance maximal
- On cherche à optimiser Rg et RL

En entrée : on cherche **ve = vg**, cette condition sera d'autant plus satisfaite que Rg sera petite devant Re

$$V_e = V_g \frac{R_e}{R_e + R_g}$$

En sortie: On souhaite transmettre le maximum de puissance à la charge (un haut parleur par exemple), une approche intuitive amène à penser que RL doit être la plus petite possible (IL max)

Adaptation d'impédance en puissance :

$$V_L = V_s \frac{R_L}{R_L + R_S}$$

$$P = \frac{V_S^2 \cdot R_L}{(R_L + R_S)^2}$$

$$\frac{dP}{dR_L} = V_S^2 \cdot \frac{R_s - R_L}{\left(R_S + R_L\right)^3}$$

P dans RL est max pour RL=RS

En vert : P/PMax = f(RL/RS)

En rouge : le rendement P_{RL}/P_{VS} 73

Un capteur délivre un signal de tension efficace V_{eff} = 10mV et possède une impédance interne r_g = 500 Ω . Ce signal est destiné à attaquer un haut-parleur (HP) d'impédance 10 Ω .

1. Quelle est la puissance fournie au HP par le capteur quand ils sont directement connectés ?

Le tableau suivant donne les caractéristiques de 2 types d'amplificateurs disponibles :

	Impédance d'entrée r_i	Amplification en tension A_{ν}	Impédance de sortie r_0
Type I	$10^6\Omega$	50	5 kΩ
Type II	$10^6\Omega$	1	10 Ω

- 2. Quelle tension efficace faut-il fournir en entrée de chacun des deux amplificateurs pour délivrer une puissance de 10W au HP ?
- 3. On dispose de plusieurs amplificateurs de type I et II. Quel montage permet de délivrer une puissance de 10 W au HP à partir du capteur ?

2 – Amplificateur source commune.

a. Discret.

C_{dec} : capacité de découplage

 $(qqs \ 10^{aines} \ \mu F)$

C_{I1} , C_{I2} : capacités de liaison

 $(qqs 10^{aines} \mu F)$

Rôle, comportement?

Schéma équivalent petits signaux :

Impédance d'entrée :

$$Z_{e} = v_{e} / i_{e} = R_{G1} / / R_{G2}$$

Impédance de sortie :

$$Z_s = r_0 //R_D$$

Gain en circuit ouvert :

$$A_{v} = \frac{v_{l}}{v_{e}}\Big|_{R_{L} = \infty} = -g_{m}(r_{0} // R_{D}) < 0$$

Gain en charge:

$$A_{vL} = \frac{v_l}{v_e} = -g_m(r_0 // R_D // R_L)$$

Gain composite:

$$A_{vc} = \frac{v_l}{v_g} = -\frac{R_{G1}//R_{G2}}{(R_{G1}//R_{G2}) + R_g} g_m(r_0//R_D//R_L)$$

Amplificateur source commune avec résistance de source non découplée :

Amplificateur source commune avec résistance de source : (modèle PI)

Montrer que : $A_v = \frac{-g_m R_D}{1 + g_m R_S}$

R_S : résistance de dégénérescence

→ diminution du gain et amélioration de la linéarité (Av est moins sensible aux variations de gm)

r₀ très grand devant R_s et R_D

R_I très grand devant R_D

78

Amplificateur source commune avec résistance de source (MODELE T):

$$A_{v} = \frac{-g_{m}R_{D}}{1 + g_{m}R_{S}}$$

R_s : résistance de dégénérescence

→ diminution du gain et amélioration de la linéarité

- 2 Amplificateur source commune.
- b. A charge active (intégré).

En technologie intégrée (microélectronique) : difficulté à intégrer des résistances élevées

$$A_v = -g_{m1}.(r_{01}//r_{02})$$

(d'après
$$R_D = r_{02}$$
)
 r_{02} élevée

NMOS:
$$V_{DD} = 3.3 \text{ V}$$
 $V_{tn} = 0.46 \text{ V}$ $k'_{n} = 175 \text{ }\mu\text{A/V}^{2}$ $V_{tp} = -0.6 \text{ V}$ $k'_{p} = 58 \text{ }\mu\text{A/V}^{2}$

Dessiner le schéma équivalent petits signaux de ce montage et calculer le gain en tension correspondant en fonction de g_{m1} , r_{01} et r_{02} .

En supposant que Mn1 et Mp2 aient la même tension d'Early VA, exprimer Av en fonction de V_A , $(W/L)_{Mn1}$ et de I_{REF} .

Dimensionner le montage source commune afin d'obtenir un gain en tension de 40 dB. On impose une même longueur de grille L = 2 μ m pour tous les transistors, cette longueur correspondant (très approximativement) à une tension d'Early V_A de l'ordre de 20 V pour les PMOS et NMOS, une intensité I_{REF} = 20 μ A et une plage de fonctionnement symétrique pour v_S .

- 3 Réponse en fréquence.
- a. Capacités internes.
 - effet capacitif de la grille
 - capacités liées aux jonctions PN substrat-source et substrat-drain (polarisées en inverse)

 \implies 4 capacités à ajouter au modèle p.s. : C_{gs} , C_{gd} , C_{db} , C_{sb}

<u>Modèle p.s. HF simplifié</u> (S et B directement reliés, C_{db} négligé) : pour une analyse manuelle

b. Réponse en fréquence de l'amplificateur source commune.

- capacités internes \Rightarrow chute du gain aux HF (i.e. coupure haute) C_{gd} "court-circuite" le transistor
- capacités de découplage et de liaison \Rightarrow chute du gain aux BF (i.e. coupure basse)

b. Réponse en fréquence de l'amplificateur source commune.

• fréquence de coupure haute :

$$f_H = \frac{1}{2\pi [C_{gs} + C_{gd}(1 + g_m(r_0 // R_D // R_L))] \cdot (R_g // R_{G1} // R_{G2})}$$

• fréquence de coupure basse :

$$f_b = \frac{g_m}{2\pi . C_{dec}}$$

V – Interrupteur MOS.

1 – Introduction.

-
$$v_{GS} = 0 \Rightarrow v_D = V_{DD}$$

MOS bloqué

-
$$v_{GS} = V_{DD} \Rightarrow v_D \approx 0$$

MOS passant (triode)

inverseur NMOS

2 – Inverseur logique CMOS (complementary MOS).

2 – Inverseur logique CMOS (complementary MOS).

2 – Inverseur logique CMOS (complementary MOS).

Puissance consommée.

En statique:

$$i_{DP} = i_{DP} = i = 0$$

⇒ pas de puissance consommée

En dynamique:

au moment du passage des MOS de l'état passant à l'état bloqué et inversement ils sont traversés par le courant de charge-décharge de C_I

⇒ Dissipation de puissance par effet Joule (dans les MOS)

Dissipation de puissance (dynamique) dans les circuits numériques :

$$P_D \propto f.C_L V_{DD}^{2}$$

3 – Exemple - allumage d'une diode électroluminescente.

