Page : 1	Statique des solides	PSI	TP
	Ericc 3		

CORRIGETP - ROBOT Ericc3

Question 1.

On trouve que l'intensité du courant moteur est maximale dans la phase de montée du bras, lorsque le moteur doit s'opposer à la pesanteur et aux frottements : Imréel = 1,1 A.

Page : 2	Statique des solides	PSI	TP		
Frice 3					

3-3 Calculs et conclusion

Première étape :

Couple dû à la pesanteur sur l'axe du bras : Cp = 9.81 ($3 \cdot (0.172+0.28) - 15.5 \cdot 0.064$) = 3.57 N m

Couple moteur théorique : Cmth = $K1 \cdot K2 \cdot Cp = 0.01 \cdot 0.3 \cdot 3.57 = 0.011 \cdot Nm$.

Couple moteur réel : $Cmréel = Km \cdot Im = 0,048 \cdot 1,1 = 0,053 N m$.

D'ou le couple de frottement mesuré au moteur : Cf = Cmréel - Cmth = 0,042 N m.

Et le rendement de la transmission : r = Cmth / Cmréel = 0,2.

Deuxième étape :

Soit M la masse maximale qu'il est posssible de soulever dans la pince ; On aurait dans ce cas :

Couple dû à la pesanteur sur l'axe du bras : $Cp2 = 3,57 + 0,75 \cdot 9,81 \cdot M$ (en N m) Couple dû au poids mesuré au moteur, en tenant compte des frottements : $Cm2r\acute{e}el = (K1 \cdot K2 \cdot Cp2) + Cf = (1/100 \cdot 12/40 \cdot (3,57 + 7,36 \cdot M)) + 0,042 = (0,003 \cdot (3,57 + 7,36 \cdot M)) + 0,042$ (en Nm)

Or il faut obtenir Cm2réel = $Kt \cdot Im = 0,048 \cdot 2,6 = 0,125 N m$.

En égalisant les deux expressions de Cm2réel, on déduit la valeur de M : M = 3,3 Kg.

Vérification expérimentale : en plaçant une masse de 3 Kg dans la pince, on mesure une intensité du courant moteur de 2,5 A ; ce qui valide les calculs réalisés.

 $\underline{\text{Nota}}$: si l'on calcule l'expression du rendement r = Cmth / Cmréel, on obtient : Première étape (M = 0) : r = 0.2; deuxième étape (M = 3,3 Kg) : r = 0.66