Manual de Usuario Proyecto Final -Analisis Numerico

Tomas Echavarria Gil

Sistemas de Ecuaciones

Métodos Implementados:

- Jacobi
- Gauss-Seidel

Campos del Formulario

- 1. Matriz de Coeficientes (A):
 - o Debe ser una matriz cuadrada (mismo número de filas y columnas).
 - Los valores deben ser números reales ingresados en formato decimal (por ejemplo: 1.5, −2, 3).
 - No se aceptan celdas vacías ni valores no numéricos.

Ejemplo:

```
A = [[4, -1, 0], \\ [-1, 4, -1], \\ [0, -1, 4]]
```

0

2. Vector Independiente (b):

- o Debe tener el mismo número de elementos que las filas de la matriz AAA.
- o Ingresar los valores en formato decimal.

Ejemplo:

$$b = [15, 10, 10]$$

0

3. Vector Inicial (x0):

- Debe ser un vector con el mismo número de elementos que las filas de AAA.
- Sirve como estimación inicial para los métodos iterativos.

Ejemplo:

$$x0 = [0, 0, 0]$$

 \circ

4. Tolerancia (tol):

- Valor positivo que determina la precisión deseada.
- o Formato: Número decimal positivo, como 0.0001 o 0.01.

5. Máximo de Iteraciones (max_iter):

- Número entero positivo que limita la cantidad de iteraciones permitidas.
- o Formato: 50, 100, etc.

Restricciones y Validaciones

- La matriz AAA debe ser cuadrada y no puede tener ceros en su diagonal principal.
- Los valores deben ser ingresados correctamente; el formulario no acepta texto, celdas vacías o caracteres especiales.
- Si el sistema no converge después del número máximo de iteraciones, se mostrará un mensaje de error.

Ecuaciones de Una Variable

Métodos Implementados:

- Newton-Raphson
- Regla Falsa
- Punto Fijo

Campos del Formulario

- 1. Ecuación (f(x)):
 - o Debe ser una función continua y derivable en el intervalo considerado.
 - o El formato debe seguir las reglas de Python:
 - Potencias: Utilizar ** en lugar de ^.
 - Ejemplo: x**2 4*x + 4
 - Multiplicaciones explícitas: Siempre usar *.
 - Ejemplo: 2*x (no 2x).
 - Funciones matemáticas disponibles:
 - \blacksquare math.sin(x), math.cos(x), math.exp(x), etc.
 - Importante: La variable debe ser x.
- 2. **Derivada de la Ecuación (f'(x)):** (Solo para Newton-Raphson)
 - No ingresar la derivada de la ecuación, esta es calculada automáticamente por el método.
- 3. Intervalo (a, b): (Solo para Regla Falsa)
 - Ingresar dos valores numéricos reales donde la función cambie de signo (es decir, f(a) · f(b) < 0f(a) · (b) < 0f(a) · f(b) < 0).

Ejemplo:

$$a = 0, b = 2$$

4. **Punto Inicial (x0):** (Para Newton-Raphson y Punto Fijo)

o Valor numérico real para iniciar el método.

Ejemplo:

x0 = 1

0

5. Tolerancia (tol):

- Valor positivo que define la precisión del método.
- o Formato: 0.001, 0.0001, etc.

6. Máximo de Iteraciones (max_iter):

- o Número entero positivo que establece el límite de iteraciones.
- o Ejemplo: 100.

Restricciones y Validaciones

• Newton-Raphson:

- o La derivada no puede ser cero en los puntos evados.
- o La función debe ser continua en el dominio especificado.

Regla Falsa:

- El intervalo debe contener una raíz (es decir, f(a) f(b)<0f(a) cdot f(b)
 0f(a) f(b)<0).
- o Si la función no cumple con este criterio, se mostrará un mensaje de error.

• Punto Fijo:

• La función debe estar transformada a la forma x=g(x)x=g(x)x=g(x), asegurando convergencia.

Ejemplos de Uso

Sistemas de Ecuaciones:

- Entrada:
 - A= [[4,-1,0],[-1,4,-1], [0,-1,4]]
 - o b=[15,10,10]
 - \circ x0=[0,0,0]
 - tol=0.0000001 / 1e-6
- Salida:
 - Solución aproximada: x=[5,5,5]
 - o Gráfica de convergencia (si aplica).

Ecuaciones de Una Variable:

- Entrada (Newton-Raphson):
 - o f(x)=x**2-4
 - o x0=1
 - o tol=0.0000001 o 1e-6
- Salida:
 - Solución aproximada: x=2
 - o Gráfica del proceso iterativo.

Notas Adicionales

- Error en el Formato: Si se ingresa texto no válido o se dejan campos vacíos, el sistema alertará del error.
- **Gráficas:** Las gráficas generadas durante el proceso pueden visualizarse y descargarse desde la interfaz web.
- **Ayuda:** Si tienes dudas sobre el formato de las funciones o los campos, consulta la documentación de Python o contáctanos para soporte.