HOCHSCHULE RHEINMAIN

PHYSICS LAB 3

Experiment P3-2 Signal Propagation in Coaxial Cables

Authors

CIHAN ÜNLÜ

DENNIS HUNTER

SEBASTIAN KRESS

DEPARTMENT OF ENGINEERING

APPLIED PHYSICS & MEDICAL TECHNOLOGY

Date of experiment: Dezember 1st, 2020 Date of submission: December 16, 2020

Contents

1	Introduction 1.1 Terms and Definitions			
2	Set-Up of Experiment	6		
3	Execution 3.1 Boost converter 3.2 Avalanche pulse generator 3.3 Signal propagation 3.3.1 Propagation time 3.3.2 Cable characteristics 3.4 Time Domain Reflectometry	7 7 7 7		
4	Evaluation	9		
5	Conclusion	10		
Lis	ist of Figures			
Lis	List of Tables			
Lis	List of Symbols			
A	A Appendix			
Bi	Bibliography			

1 Introduction

1.1 Terms and Definitions

Transmission Line

In there simplest form cables are made out of a conducting material to transport electrical energy or signals from point A to point B. The higher the frequency of the signal to transmit, the less the wave nature of can be neglected.

Characteristic Impedance, Velocity Factor and Propagation Speed

Characteristic impedance: The impedance, when connected to a transmission line, suppresses any reflections and standing waves [1]. Velocity factor: Relative signal propagation speed inside a transmission line expressed as percent of speed of light. Propagation speed: The absolute speed at which a signal propagates through a medium.

Time Domain Reflectometry

A method to inspect properties of a transmission line i.e. length, characteristic impedance and velocity factor as well as the presence, nature and location of defects.

Avalanche Pulse Generator

A circuit to generate ultra short pulses on a scale of picoseconds. Its main working principle abuses the avalanche breakdown of a transistor across the collector-emitter line. The breakdown voltage is usually much higher than the voltages during normal operation.

Boost Converter

A circuit capable of *boosting* a constant current input voltage to a much higher output voltage by repeatedly switching an inductor on and off. The fly back voltage induced by the break down of the magnetic field gets stored in a capacitance and forms the voltage at the output terminals.

Pulse Width Modulation

A constant current switched on and off at a fixed frequency. The time the signal is considered high relatively to the period time is called the duty cycle.

Amplitude, Rise Time, Fall Time, Pulse Width

Text

Bandwidth and Rise Time of an Oscilloscope

Text

1.2 Preparation

Reflection on a Transmission Line

!!! Insert Diagram Here !!!

SPICE-Simulation of a Boost Converter

Figure 1.1: Simulated circuit of a boost converter using LTSPICE.

Charge/Discharge Time of a Capacitor

Charging:

$$U_{Br} = U_{+} \left(1 - e^{-\frac{t_{charge}}{R_{6}C_{5}}} \right)$$

$$\Leftrightarrow$$

$$t_{charge} = -\ln\left(1 - \frac{U_{Br}}{U_{+}} \right) \cdot R_{6}C_{5}$$
(1.1)

Discharging:

$$U_{C_5} = U_{Br} \left(e^{-\frac{t_{discharge}}{R_7 C_5}} \right)$$

$$\Leftrightarrow$$

$$t_{discharge} = -\ln \left(\frac{U_{C_5}}{U_{Br}} \right) \cdot R_7 C_5$$
(1.2)

Figure 1.2: Plot of the output voltage at HV. The voltage is subsequently progressing towards a peak voltage of $\hat{U}_{HV} \approx 150 \, \mathrm{V}$ with rising PWM duty cycle.

plugging in the values for $U_{Br}=65\,\mathrm{V}, U_{+}=75\,\mathrm{V}, U_{C_{5}}=5\,\mathrm{V}, C_{5}=2.2\,\mathrm{pF}, R_{6}=1\,\mathrm{M}\Omega$ and $R_{7}=51\,\Omega$ equates to the following charging/discharging times t_{charge} and $t_{discharge}$:

$$t_{charge} = -\ln\left(1 - \frac{65 \,\text{V}}{75 \,\text{V}}\right) \cdot 10^6 \,\Omega \cdot 2.2 \cdot 10^{-12} \,\text{F}$$

 $\approx 4.43 \cdot 10^{-6} \,\text{s}$ (1.3)

$$t_{discharge} = -\ln\left(\frac{5\,\mathrm{V}}{65\,\mathrm{V}}\right) \cdot 51\,\Omega \cdot 2.2 \cdot 10^{-12}\,\mathrm{F}$$

$$\approx 2.88 \cdot 10^{-10}\,\mathrm{s} \tag{1.4}$$

With these numbers, the minimum time per charge/discharge cycle would be the sum of both times. Thus, the maximum number of repetitions per second f_{Rep} is

$$f_{Rep} = (t_{charge} + t_{discharge})^{-1} \approx 225.7 \,\text{kHz}$$
 (1.5)

Cable Characteristics of RG-58/U Coaxial Cable

Nominal characteristic impedance: $53\,\Omega$ Nominal velocity of propagation: 69.5%

Nominal delay (translates to the inverse of the absolute speed of propagation): $4.85588 \, ns/m$

The values above are taken from the technical data sheet [2].

Determining the Suitability of the Oscilloscope Sampling Rate

2 Set-Up of Experiment

To perform the experiment the elements shown in fig. 2.1 are needed. They are listed below.

!!! Insert Figure Here !!!

Figure 2.1: Components needed for the experiment.

- 1. Oscilloscope
- 2. Coaxial cables in three lengths
- 3. Coaxial cables with unknown length and internal fault
- 4. Circuit board
- 5. Multimeter
- 6. T-piece
- 7. 50Ω termination resistor
- 8. Termination box
- 9. Tape measure

A better overview of the circuit board will give the following fig. 2.2. Again, the components are listed below.

!!! Insert Figure Here !!!

Figure 2.2: Detailed view on the circuit board.

- 1. Pulse generator
- 2. Potentiometer
- 3. LCD
- 4. Boost converter
- 5. Arduino Nano Microcontroller board

The individual settings are explained in the execution chapter.

3 Execution

3.1 Boost converter

To examine the characteristics of the pulse generator, the potentiometer on the circuit board is first set completly counterclockwise. The power supply is turned on, so that the duty cycle (in %) and the output voltage can be taken from the LCD. The two values are noted and the potentiometer is turned up until the value for duty cycle has increased by 10 %. Again the values are noted. This process is repeated until the potentiometer is turned completely clockwise.

3.2 Avalanche pulse generator

The potentiometer is set back to the fully counterclockwise position. Now the oscilloscope is needed and therefore switched on. The output of the pulse generator gets connected with the Oscilloscope via a short coaxial cable. The potentiometer is slowly turned up until a pulse appears on the oscilloscope. The display is adjusted so that the signal can be read easily. A photograph is taken for documentation purposes and the voltage shown on the LCD is noted. After that, the voltage is set to $U=75\,\mathrm{V}$ and a second photograph is taken from the screen.

3.3 Signal propagation

3.3.1 Propagation time

For this experiment a T-piece is inserted between the oscilloscope and the pulse generator. Therefore, the T-piece is connected to channel 1 of the oscilloscope and the short coaxial cable from the pulse generator is plugged into the T-piece. A second T-piece is connected to channel 2 of the oscilloscope. One end of the T-piece in channel 2 is terminated with the $50~\Omega$ terminal resistor, mentioned in the set-up chapter. There is one open end left on each T-piece. The three different coaxial cables get connected one after another to these ends. For each cable, there are two pulses shown on the oscilloscope. With the cursor function of the oscilloscope, the time delay between the pulses are measured and noted.

3.3.2 Cable characteristics

To investigate the cable characteristics, the length of the three cables given is measured with the tape measure. Afterwards they are connected one after another with the T-piece at channel 1. Channel 2 is not needed during this measurement. For each cable two photographs are taken from the oscilloscopes screen. The first photograph with an open end, the second with a short-circuited end. To short-circuit the end of the coaxial cable, a screwdriver is used. With the cursor function, the propagation time τ_0 (for open end) and τ_s (for short-circuited end) are read from the screen and noted.

Now, the termination box is connected to the open end of the cable. The potentiometer on the termination box is rotated while looking at the oscilloscopes screen. Once the oscilloscope shows a minimum amplitude of the reflected pulse, the setting of the potentiometer is not changed anymore. The termination box is removed and then connected to the multimeter. The multimeter is set so that the resistance of the termination box can be read from it. This procedure is repeated for the other remaining cables.

3.4 Time Domain Reflectometry

The cable with unknown length and an internal fault is now connected to the T-piece at channel 1. The first cursor of the oscilloscope is set to the origin pulse. The second cursor is first set to the pulse of the reflection of the internal fault. The time delay is noted. Then the second cursor is set to the pulse of the reflection of the cables end. The time delay is noted again.

4 Evaluation

5 Conclusion

List of Figures

1.1	Simulated circuit of a boost converter	4
1.2	Plot of the output voltage at HV . The voltage is subsequently progressing towards a peak voltage of $\hat{U}_{HV} \approx 150\mathrm{V}$ with rising PWM duty cycle	5
	Components needed for the experiment.	
2.2	Detailed view on the circuit board	6
A.1	Oszillograms	14

List of Tables

A.1	Handwritten notes	15
A.1	Handwritten notes	15
A.1	Handwritten notes	15

List of Symbols

A Distinct event

A Appendix

Figure A.1: During the course of the experiment captured oscillograms.

- Table A.1: Handwritten notes corresponding each measurement.
- Table A.1: Handwritten notes corresponding each measurement.
- Table A.1: Handwritten notes corresponding each measurement.

Bibliography

- [1] ATIS. ATIS Telecom Glossary. American National Standard T1.523-2001. ATIS.
- [2] Belden. $82240\ Coax$ RG- $58/U\ Type\ technical\ Datasheet$. URL: https://catalog.belden.com/techdatam/82240.pdf (visited on 10/12/2020).