

Linear Algebra

(Recap session at Math Club, GDG Yangon)

Presenter: Thura Aung

Disclaimer: The slides and contents are taken from Coursera and all rights all rights reserved to the owner.

Motivation

System of Information

System 1

The dog is black
The cat is orange
The bird is red

Complete

Non-singular

System 2

The dog is black
The dog is black
The bird is red

Redundant

Singular

System 3

The dog is black
The dog is black
The dog is black

Redundant

Singular

System 4

The dog is **black**The dog is white
The bird is **red**

Contradictory

Singular

Sentences

Between the dog and the cat, one is black.

Sentences with numbers

and a banana is \$10.

Equations

· Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought an apple and two bananas and they cost \$12.

Solution: An apple costs \$8, a banana costs \$2.

Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought two apples and two bananas and they cost \$20.

8 2

5 5

Infinitely many solutions!

8.3 1.7

0 10

Day 1: You bought an apple and a banana and they cost \$10.

Day 2: You bought two apples and two bananas and they cost \$24.

System 1

Unique solution:

$$b = 2$$

Complete

Non-singular

System 2

Infinite solutions

Redundant

Singular

System 3

No solution

Contradictory

Singular

Calculation

System

• 4a - 3b = 6

Eliminate 'a' from this equation

Divide by coefficient of a

•
$$a + 0.2b = 3.4$$

a - 0.75b = 1.5

Subtract equation 1 from equation 2

$$a - 0.75b = 1.5$$

$$a + 0.2b = 3.4$$

$$0a - 0.95b = -1.9$$

$$-0.95b = -1.9$$

$$b = 2$$

Solved system

•
$$b = 2$$

$$a + 0.2(2) = 3.4$$

$$a + 0.4 = 3.4$$

$$a = 3$$

Cont'd Calculation

What if the system is singular (redundant)?

- a + b = 10
- a + 2b = 12

System 2

- a + b = 10
- 2a + 2b = 20

System 3

- a + b = 10
- 2a + 2b = 24

In the context of Matrix

System 1

Non-singular system

Non-singular matrix

(Unique solution)

System 2

Singular system

Singular matrix

(Infinitely many solutions)

Cont'd In the context of Matrix

Cont'd In the context of Matrix

Linear Dependent/Independent

Non-singular

No equation is a multiple of the other one

No row is a multiple of the other one

Rows are linearly independent

Singular system

Second equation is a multiple of the first one

Second row is a multiple of the first row

Rows are linearly dependent

Determinant

$$ak = c$$

 $bk = d$

$$Determinant = ad - bc$$

$$\frac{c}{a} = \frac{d}{b} = k$$

Matrix is singular if

Cont'd Determinant

Non-singular matrix

*	1
1	1
1	2

Determinant

$$1 \cdot 2 - 1 \cdot 1 = \boxed{1}$$

Singular matrix

*	1
1	1
2	2

Determinant

$$1 \cdot 2 - 2 \cdot 1 = 0$$

Determinant as area

Cont'd Determinant as area

Variables

System of equations 1

$$a + b + c = 10$$

 $a + 2b + c = 15$
 $a + b + 2c = 12$

Solution

Rank of Matrix

System 1

The dog is black
The cat is orange

System 2

System 3

Two sentences

Two pieces of information

Rank = 2

Two sentences

One piece of information

Rank = 1

Two sentences

Zero pieces of information

Rank = 0

System 1

$$a + b = 0$$

 $a + 2b = 0$

System 2

2

System 3

$$0a + 0b = 0$$

$$0a + 0b = 0$$

0

Two equations

Two pieces of information

Rank = 2

Two equations

One piece of information

$$Rank = 1$$

Two equations

Zero pieces of information

$$Rank = 0$$

_			_		_
п	_	_		_	•
к	2	n	ĸ	=	_
	u		1	=	-

*	1
1	1
2	2

Rank = 1

Rank = 0

Dimension of solution space = 0 Dimension of solution space = 1 Dimension of solution space = 2

System

•
$$a + b + 2c = 12$$

•
$$2a - b + 6c = 24$$

Matrix

System

•
$$a + b + 2c = 12$$

Row echelon form matrix

1	1	2
0	-6	7
0	0	6

- Zero rows at the bottom
- Each row has a pivot (leftmost non-zero entry)
- Every pivot is to the right of the pivots on the rows above
- Rank of the matrix is the number of pivots

Matrix 1

1	1	1
1	2	1
1	1	2

Rank = 3

Row echelon forms

1	1	1
0	1	0
0	0	1

Number of pivots = 3

Matrix 2

1	1	1
1	1	2
1	1	3

Rank = 2

1 1 1 0 0 1 0 0 0

Number of pivots = 2

Matrix 3

1	1	1
2	2	2
3	3	3

Rank = 1

1	1	1
0	0	0
0	0	0

Number of pivots = 1

Matrix 4

0	0	0
0	0	0
0	0	0

Rank = 0

0	0	0
0	0	0
0	0	0

Number of pivots = 0

Vector Spaces

How to get from point A to point B?

Pythagorean Theorem

Cont'd Vector Spaces

Norms

L1-norm =
$$|(a,b)|_1 = |a| + |b|$$

L2-norm =
$$|(a,b)|_2 = \sqrt{a^2 + b^2}$$

Cont'd Vector Spaces

Direction of a vector

$$\tan(\theta) = \frac{3}{4}$$

$$\theta = \arctan(3/4) = 0.64 = 36.87^{\circ}$$

Cont'd Vector Space

Distances

Vector Arithmetic

Sum of vectors

Difference of vectors

Linear Transformation

Multiplying a vector by a scalar

$$u = (1,2)$$

$$\lambda = 3$$

$$\lambda u = (3,6)$$

If the scalar is negative

2	-1	3		5
0	2	1	=	2

Combining linear transformations

Singular and non-singular transformations

Rank of linear transformations

Dot Product

$$2 \cdot 3 + 4 \cdot 5 + 1 \cdot 2 = 28$$

Norm of a vector using dot product

$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$

$$L2 - norm = \sqrt{dot \ product(u, u)}$$

$$|u|_2 = \sqrt{\langle u, u \rangle}$$

Orthogonal vectors have dot product 0

$$\langle u, v \rangle = 0$$

$$\langle u, v \rangle = ?$$

$$\langle u, u \rangle = |u|^2 = |u| \cdot |u|$$

$$\langle u, v \rangle = |u| \cdot |v|$$

$$\langle u, v \rangle = |u'| \cdot |v|$$

= $|u| |v| \cos(\theta)$

Equations as dot product

System of equations

$$a + b + c = 10$$

$$a + 2b + c = 15$$

$$a + b + 2c = 12$$

Matrix product

Dot Product as an area

Dot product as an area

Matrix Multiplication

Identity Matrix

Cont'd Identity Matrix

Determinant of the identity matrix

$$\det \begin{array}{c|c} 1 & 0 \\ \hline 0 & 1 \\ \end{array} = 1 \cdot 1 - 0 \cdot 0 = 1$$

$$det(I) = 1$$

Inverse Matrix

Cont'd Inverse Matrix

Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

be the 2 x 2 matrix. The inverse matrix of A is given by the formula,

$$A^{-1}=rac{1}{ad-bc}egin{bmatrix} d & -b \ -c & a \end{bmatrix}$$

Let

$$A = egin{bmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

be the 3 x 3 matrix. The inverse matrix is:

$$\mathsf{A}^{-1} = \frac{1}{|\mathsf{A}|} \begin{bmatrix} |a_{22} & a_{23}| & |a_{13} & a_{12}| & |a_{12} & a_{13}| \\ |a_{32} & a_{33}| & |a_{33} & a_{32}| & |a_{22} & a_{23}| \end{bmatrix}$$
$$\begin{vmatrix} |a_{21} & a_{22}| & |a_{23}| & |a_{23} & a_{21}| \\ |a_{23} & a_{21}| & |a_{11} & a_{13}| & |a_{13} & a_{11}| \\ |a_{33} & a_{31}| & |a_{31} & a_{33}| & |a_{23} & a_{21}| \end{bmatrix}$$
$$\begin{vmatrix} |a_{21} & a_{22}| & |a_{12} & a_{11}| & |a_{11} & a_{12}| \\ |a_{31} & a_{32}| & |a_{32} & a_{31}| & |a_{21} & a_{22}| \end{bmatrix}$$

Cont'd Inverse Matrix

Determinant of an inverse

$$det(AB) = det(A) det(B)$$

Why is this?

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$\det(AA^{-1}) = \det(A) \det(A^{-1})$$

$$\det(I) = \det(A) \det(A^{-1})$$

$$\uparrow$$

$$\downarrow_{1}$$

$$\downarrow_{\frac{1}{\det(A)}}$$

Bases

3	1
1	2

Cont'd Bases

3	1
1	2

Cont'd Bases

Bases

Cont'd Bases

What is not a basis?

Not bases

Span

A basis is a minimal spanning set

Basis

Not a basis

A basis is a minimal spanning set

Basis

Not a basis

Number of elements in the basis is the dimension

2 elements in the basis Dimension = 2

Row Space

$$a1 = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

 $a2 = \begin{bmatrix} 11 & 22 & 36 \end{bmatrix}$
 $a3 = \begin{bmatrix} 1 & 5 & 8 \end{bmatrix}$

$$R(A) = span(a1,a2,a3)$$

All the linear combinations of row vectors: a1, a2 and a3

Column Space

$$a1 = \begin{bmatrix} 1 \\ 11 \\ 1 \end{bmatrix}, a2 = \begin{bmatrix} 2 \\ 22 \\ 5 \end{bmatrix}, a3 = \begin{bmatrix} 3 \\ 36 \\ 8 \end{bmatrix}$$
 $C(A) = span(a1, a2, a3)$

$$C(A) = span(a1,a2,a3)$$

All the linear combinations of column vectors: a1, a2 and a3

Null Space

A matrix and its corresponding system of equations

System 1

•
$$a + 2b = 0$$

*	1
1	1
1	2

System 2

*

System 3

The only two numbers a, b, such that

- a+b = 0
- and
- a+2b = 0

are:

a=0 and b=0

Any pair (x, -x) satisfies that

- a+b = 0and
- a+2b = 0

For example:

(1,-1), (2,-2), (-8,8), etc.

Any pair of numbers satisfies that

- 0a+0b = 0
 and
- 0a+0b = 0

For example:

(1,2), (3,-9), (-90,8.34), etc.

The set of solutions of a system of equations

System 1

• a + 2b = 0

Solution

•
$$a = 0$$

•
$$b = 0$$

System 2

•
$$2a + 2b = 0$$

Solutions

- any *a*
- \bullet b = -a

System 3

- 0a + 0b = 0
- any a

Solutions

• 0a + 0b = 0 • any b

The null space of a matrix

Singular

Dimension = 2

Singular

Null space for systems of linear equations

System 1

•
$$a + b + c = 0$$

•
$$a + 2b + c = 0$$

•
$$a + b + 2c = 0$$

Solution space

System 2

•
$$a + b + c = 0$$

•
$$a + b + 2c = 0$$

•
$$a + b + 3c = 0$$

Solution space

Dimension = 1

System 3

•
$$a + b + c = 0$$

•
$$2a + 2b + 2c = 0$$

•
$$3a + 3b + 3c = 0$$

Solution space

Dimension = 2

System 4

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

•
$$0a + 0b + 0c = 0$$

Solution space

Dimension = 3

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

1	1	1
0	2	2
0	0	3

•
$$a + c = 0$$

•
$$a + b + c = 0$$

•
$$a + b + c = 0$$

•
$$b = 0$$

•
$$a + b + 2c = 0$$

•
$$2b + 2c = 0$$

•
$$3a + 2b + 3c = 0$$

•
$$c = 0$$

•
$$3c = 0$$

All points of the form

$$(x,0,-x)$$

Dimension = 1

All points of the form (x, -x, 0)

Dimension = 1

The point (0,0,0)

Dimension = 0

Eigen

Eigenbasis

Linear Transformations

Finding eigenvalues

Finding eigenvalues

If λ is an eigenvalue:

For infinitely many (x,y)

Has infinitely many solutions

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

$$(2-\lambda)(3-\lambda)-1\cdot 0=0$$

$$\lambda = 2$$
 $\lambda = 3$

Finding eigenvalues

If λ is an eigenvalue:

For infinitely many (x,y)

$$\begin{array}{c|cccc}
2-\lambda & 1 & x \\
0 & 3-\lambda & y & = & 0 \\
\end{array}$$

Has infinitely many solutions

$$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$$

$$(2-\lambda)(3-\lambda)-1\cdot 0=0$$

$$\lambda = 2$$
 $\lambda = 3$

Finding eigenvectors

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations

$$2x + y = 2x$$

$$0x + 3y = 2y$$

$$2x + y = 3x$$

$$0x + 3y = 3y$$

$$x = 1$$

$$y = 0$$

$$x = 1$$

$$y = 1$$

1

For further experiences ...

Essence of Linear Algebra

https://youtu.be/fNk_zzaMoSs

Principal Component Analysis (PCA)

https://youtu.be/q-Hb26aqBFq

MIT 18.06SC Linear Algebra, Fall 2011

https://www.youtube.com/playlist?list=PL221E2BBF13BECF6C

coursera

\$\square\$ Google Developer Groups

Thank You.

Email: thuraaung.ai.mdy@gmail.com | LinkedIn: https://www.linkedin.com/in/thura-aung/