PH 712 Probability and Statistical Inference

Part VI: Evaluating Estimators I

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

2024/Oct/08 22:50:36

Bias

- Bias of $\hat{\theta}$: Bias($\hat{\theta}$) = E($\hat{\theta}$) θ
- Unbiased: if $E(\hat{\theta}) = \theta$

Mean squared error (MSE)

- $MSE(\hat{\theta}) = E(\hat{\theta} \theta)^2 = Bias^2(\hat{\theta}) + var(\hat{\theta})$
 - The lower the better
- For unbiased estimators, minimizing the MSE \Leftrightarrow minimizing the variance

Cramér-Rao lower bound (CRLB, CB Thm 7.3.9 & Lemma 7.3.11)

- Recall the score $S(\theta) = \ell'(\theta)$
- CRLB = $I_n^{-1}(\theta) \left\{ \frac{\mathrm{d}}{\mathrm{d}\theta} \mathrm{E}(\hat{\theta}) \right\}^2$
 - Reducing to $I_n^{-1}(\theta)$ if $\mathbf{E}(\hat{\theta})=\theta$ (i.e., unbiased $\hat{\theta})$
 - Where $I_n(\theta) = \text{var}\{S(\theta)\} = \mathbb{E}[\{S(\theta)\}^2] = -\mathbb{E}\{H(\theta)\}\$ is called the Fisher information
 - * Where $H(\theta) = S'(\theta) = \ell''(\theta)$ is called the Hessian
 - * The most convenient way to calculate $I_n(\theta)$: $I_n(\theta) = -\mathbb{E}\{H(\theta)\}$
- Under regularity conditions, $var(\hat{\theta}) \ge CRLB$.

Example Lec6.1

- Find the CRLB for all the UNBIASED estimators in the following cases.

 - a. $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with UNKNOWN μ and GIVEN σ^2 . b. $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with GIVEN μ and UNKNOWN σ^2 .

Efficiency (HMC Def 6.2.2)

- For an estimator, say T_n , unbiased for $g(\theta)$, i.e., $E(T_n) = g(\theta)$, the efficiency of T_n is the ratio of the CRLB to $var(T_n)$, i.e., CRLB/ $var(T_n)$, regularly up to 1.
 - The higher efficiency the better;
 - T_n is an efficient estimator for $g(\theta) \iff E(T_n) = g(\theta)$ and its efficient = 1.