Measuring and optimizing machine learning interpretability

Christoph Molnar, Giuseppe Casalicchio, Bernd Bischl

LMU Munich

DagStat 2019-03-21

Black Box Problem

Solution: Interpretable Models?

⇒ Pay with loss in performance; Unclear how to compare models

Solution: Post-hoc Interpretation?

 \Rightarrow Post-hoc interpretation (e.g. feature importance, partial dependence plots) works better for less complex models.

Is Interpretability Unscientific?

We Propose Measures of Model Complexity

Measure model complexity in a model-agnostic way: number of features, interaction strength, main effect complexity

- ⇒ Allows model comparision
- ⇒ Allows direct optimization for interpretability
- \Rightarrow Makes claims of interpretability more explicit ("Model A uses less features than B and has less interactions")

Functional Decomposition

$$f(x) = \overbrace{f_0}^{\text{Intercept}} + \underbrace{\sum_{j=1}^{p} f_j(x_j)}^{\text{1st order effects}} + \underbrace{\sum_{j\neq k}^{\text{2nd order effects}} f_{jk}(x_j, x_k) + \ldots + \underbrace{f_{1, \dots, p}(x_1, \dots, x_p)}_{\text{p-th order effect}}$$

Functional Decomposition

$$f(x) = \overbrace{f_0}^{ ext{Intercept}} + \sum_{j=1}^{ ext{Ist order effects}} \underbrace{\sum_{S \subseteq \{1, \dots, p\}, |S| \ge 2}^{ ext{Higher order effects}}}_{S \subseteq \{1, \dots, p\}, |S| \ge 2}$$

Functional Decomposition

$$f(x) = f_0 + \sum_{j=1}^{p} \overbrace{f_j(x_j)}^{\text{How complex?}} + \underbrace{IA(x)}_{IA(x)}$$
How many feature used?

Main effect complexity

- Approximate ALE plot with linear segments
- ► Count number of non-zero coefficients
- ► Average over all features, weight with variance

Interaction Strength

Measure main effect model with proportion of error explained:

$$\mathsf{Interaction \ Strength} = \frac{\mathbb{E}(L(\hat{f}, f_0 + \sum_{j=1}^p f_j))}{\mathbb{E}(L(\hat{f}, c))}$$

Application: Multi-Objective Optimization

- ▶ Predict wine quality from physicochemical properties
- Minimize MAE, number of features, interaction strength, main effect complexity
- Search across different model classes and hyperparameter settings

Application: Multi-Objective Optimization

Application: Multi-Objective Optimization

	xgboost	ksvm (C:0.79)	xgboost	rpart
	(max_depth:	(,	(max_depth:	(maxdepth:
	9,nrounds:913)		1,nrounds:141)	3)
MAE	0.47	0.53	0.57	0.61
NF	11	11	11	3
IA	0.64	0.27	0.02	0.14
MEC	4.12	1.99	2.90	1.81
fixed.acidity				
volatile.acidity			~	
citric.acid				
residual.sugar				
chlorides				
free.sulfur.dioxide			$\overline{}$	
total.sulfur.dioxide				
density				
рН				
sulphates				
alcohol				

Table 3. A selection of 4 models from the Pareto optimal set. From left to right, the models with best MAE, best MAE when $MEC \le 2$, best MAE when $IA = \le 0.1$, best MAE with $NF \le 7$.

Interested in interpretable machine learning?

More on interpretable machine learning in my book http://christophm.github.io/interpretable-ml-book/.

