Поперечники и n-членные приближения

Поперечники

Напомним определение колмогоровского поперечника множества M в гильбертовом пространстве H:

$$d_n(M,H) := \inf_{\dim L \leq n} \sup_{x \in M} |x - P_L x|.$$

Разберём задачу: для оценки сверху в $d_n(B_1^N, \ell_2^N) = d_n(\{e_1, \dots, e_N\}, \ell_2^N) = \sqrt{1-n/N}$ нужно построить n-мерное подпространство, равноудалённое от базисных векторов. Или, эквивалентно, $N \times n$ матрицу с ортонормированными столбцами, и со строками одинаковой евклидовой длины. Индукция: если 2n < N, то сводим к вытянутой матрице (N, N-n) дополнением до ортогональной $N \times N$. Если $2n \geqslant N$, то ставим сверху $n \times n$ ортогональную матрицу и сводим к (N-n,n).

Разберём задачу: $d_n(\mathcal{E}(a_1,\ldots,a_N),\ell_2^N)=a_{n+1}$. Пример: эллипс с полуосями a и b. Оценка сверху: $L_n=\{(x_1,\ldots,x_n,0,\ldots)\}$, погрешность:

$$\sum_{k>n} x_k^2 \leqslant a_{n+1}^2 \sum_{k>n} (x/a_k)^2 \leqslant a_{n+1}^2.$$

Почему нельзя лучше: вписываем n+1-мерный шар радиуса a_{n+1} . Его нельзя приблизить: всегда можно взять точку на границе шара ортогонально подпространству.

Для примера рассмотрим два класса:

$$W_2^1 := \{ f \in L^2[0, 2\pi] \colon ||f'||_2 \leqslant 1 \},$$

 Lip := $\{ f \in C[0, 2\pi] \colon \forall x, y \mid f(x) - f(y) \mid \leqslant |x - y| \}.$

Первый класс есть эллипсоид в тригонометрическом базисе:

$$f = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx,$$

$$f' = \sum_{k=1}^{\infty} -ka_k \sin kx + kb_k \cos kx, \quad ||f'||_2 = \sum_{k=1}^{\infty} (ka_k)^2 + (kb_k)^2.$$

Его полуоси: ∞ , 1, 1, 1/2, 1/2, 1/3, 1/3, Следствие:

$$d_{2k-1}(W_2^1, L_2) = d_{2k}(W_2^1, L_2) = k^{-1}.$$

Второй класс уже (там $||f'||_{\infty} \leq 1$), но лучше не приближается! Рассмотрим в нём 2n функций $\{n^{-1}\cos kx, n^{-1}\sin kx\}_{k=1}^n$. (Почему они в Lip?) Они образуют сжатый в n раз 2n-мерный октаэдр:

$$d_n(\text{Lip}, L_2) \geqslant d_n(\{\frac{1}{n}e_1, \dots, \frac{1}{n}e_{2n}\}, L_2) = \frac{1}{n}\frac{1}{\sqrt{2}}.$$

Таким образом, $d_n(\text{Lip}, L_2) \approx n^{-1}$.

n-членные приближения по ортонормированным системам

Определение

Пусть $\varphi_1, \varphi_2, \ldots$ — ортонормированная система в H. Рассмотрим n-членное приближение элемента $f \in H$ по системе Φ :

$$f \approx \sum_{k \in \Lambda} c_k \varphi_k,$$

для некоторого множества $|\Lambda| = n$ и коэффициентов c_k . Определим погрешность наилучшего n-членного приближения:

$$\sigma_n(f,\Phi)_H := \inf_{|\Lambda|=n} \inf_{\{c_k\}} \|f - \sum_{k \in \Lambda} c_k \varphi_k\|.$$

В отличие от классического случая, мы рассматриваем не первые n элементов системы, а произвольные n.

Ясно, что если Λ фиксировано, то $c_k = c_k(f) = \langle f, \varphi_k \rangle$, $k \in \Lambda$. По теореме Пифагора $\|f - \sum_{\Lambda} c_k(f) \varphi_k\|_2^2 = \|f\|^2 - \sum_{\Lambda} |c_k(f)|^2$. Поэтому для оптимального приближения нужно взять n наибольших коэффициентов. Упорядочим их по убыванию модуля: $|c_{k_1}(f)| \geqslant |c_{k_2}(f)| \geqslant \ldots$, тогда

$$f \approx \sum_{j=1}^{n} c_{k_j}(f) \varphi_{k_j}, \quad \sigma_n(f, \Phi)_H = \{ \sum_{j>n} |c_{k_j}(f)|^2 \}^{1/2}.$$

Следующее утверждение доказано С.Б.Стечкиным:

$$\sum |c_k(f)| < \infty \quad \Longleftrightarrow \quad \sum_{k=1}^{\infty} k^{-1/2} \sigma_{k-1}(f, \Phi)_H < \infty.$$

Это сводится к числовому неравенству.

Приближение ступенек

Рассмотрим множество "ступенек" $X = \{\chi_{(a,b)} : 0 < a < b < 1\}$, где функция $\chi_{(a,b)} = 1$ на интервале (a,b), и равна нулю вне этого интервала. Утверждение: погрешность n-членных приближений этого множества по системе Хаара убывает в геометрической прогрессии:

$$\sigma_n(\mathsf{X},\{h_{k,j}\})_{L_2}\leqslant C^{-n}.$$

Упражнение: проверьте, что $d_n(X, L_2) \geqslant c n^{-1/2}$. Таким образом, n-членные приближения здесь хорошо "работают".

Теорема о несжимаемости куба

Для класса Lip нам потребуется важный результат Б.С.Кашина.

Теорема. Пусть $\Phi = \{\varphi_1, \dots, \}$ — ортонормированная система в H, u n > 0. Тогда для любого множества вида $Q = \{\sum_{k=1}^N \pm f_k\}$, где f_1, \dots, f_N также ортонормированны, $u \in N > Cn$, имеем

$$\sigma_n(Q,\Phi)_H \geqslant cN^{1/2}.$$

Доказательство. Шаг 1. Переход к координатам в базисе $\{f_1,\ldots,f_N\}$. Требуется найти вектор $x=\sum_{i=1}^N z_i f_i,\ z_i=\pm 1$, который не приближается, т.е. для любого $|\Lambda|=n$ имеем

$$||x - \sum_{k \in \Lambda} \langle x, \varphi_k \rangle \varphi_k||^2 \leqslant cN \quad \Longleftrightarrow \quad \sum_{k \in \Lambda} \langle x, \varphi_k \rangle^2 \leqslant N(1 - c).$$

Пусть $\varphi_k = \sum_{i=1}^N v_{k,i} f_i + \varphi_k^{\perp}$. Тогда $\langle x, \varphi_k \rangle = \langle z, v_k \rangle$.

Для удобства нормируем $w_k=v_k/\sqrt{N}$. Тогда, нужно найти $z\in\mathbb{R}^N,$ $z_i=\pm 1,$ такой что

$$\sum_{k \in \Lambda} \langle z, w_k \rangle^2 \leqslant 1 - c, \quad \forall |\Lambda| = n.$$
 (1)

При этом мы знаем о векторах $w_k \in \mathbb{R}^N$ следующее:

$$|w_k| = |v_k|/\sqrt{N} \leqslant \rho := N^{-1/2},$$

$$\sum_{k} |w_{k}|^{2} = N^{-1} \sum_{k} |v_{k}|^{2} = N^{-1} \sum_{k} \sum_{i=1}^{N} \langle \varphi_{k}, f_{i} \rangle^{2} = 1.$$

Шаг 2. Построение z. Возьмём $z \in \{\pm 1\}^N$ случайно! Докажем, что с положительной вероятностью выполнено условие (1). Для этого будем оценивать вероятности вида

$$P_t := \mathsf{P}(z \colon \sup_{|\Lambda| = n} \sum_{\Lambda} \langle z, w_k \rangle^2 \geqslant t^2 \rho^2 n).$$

Шаг 3. Избавляемся от Λ . Пусть $|\Lambda|=n$. Тогда имеет место импликация

$$\sum_{\Lambda} \langle z, w_k \rangle^2 \geqslant t^2 \rho^2 n \implies \sum_{k: |\langle z, w_k \rangle| > \frac{1}{2} t \rho} \langle z, w_k \rangle^2 \geqslant \frac{1}{2} t^2 \rho^2 n. \tag{2}$$

Шаг 4. Двоичные уровни. Выберем позже положительные числа α_r , $r=0,1,\ldots$, с суммой $\sum \alpha_r \leqslant 1$. Разобьём все индексы k из (2) на уровни

$$K_r = \{k : |\langle z, w_k \rangle| \in (2^{r-1}t\rho, 2^r t\rho]\}, \quad r = 0, 1, \dots$$

Если выполнено неравенство (2), то поскольку $\sum_{r=0}^{\infty} 2^{-r-1} = 1$, на некотором уровне имеем:

$$\sum_{k \in K_{-}} \langle z, w_k \rangle^2 \geqslant 2^{-r-1} \frac{1}{2} t^2 \rho^2 n,$$

откуда оцениваем $\#K_r \geqslant 2^{-3r-2}n$.

Шаг 5. Оценка вероятности объединения:

$$P_t \leqslant \sum_r \mathsf{P}(\#K_r \geqslant 2^{-3r-2}n).$$

Шаг 6. Неравенство Чебышёва:

$$P(\#K_r \geqslant 2^{-3r-2}n) \leqslant (2^{-3r-2}n)^{-1}E\#K_r.$$

Далее,

$$\mathsf{E} \# K_r = \sum_k \mathsf{P} \{ z \colon |\langle z, w_k \rangle| \in (2^{r-1}t\rho, 2^r t \rho] \} \leqslant \sum_k \mathsf{P} \{ z \colon |\langle z, w_k \rangle| > 2^{r-1}t\rho \}.$$

Шаг 7. Экспоненциальная оценка (частный случай неравенства Hoeffding): даны положительные числа a_1, \ldots, a_N , тогда

$$P(|\sum_{k=1}^{N} \pm a_i| > \lambda \sigma) \leqslant 2 \exp(-\frac{\lambda^2}{2}),$$

где $\sigma^2 = a_1^2 + \ldots + a_N^2$. Применяем:

$$\mathsf{P}\{z\colon |\langle z, w_k\rangle| > 2^{r-1}t\rho\} \leqslant 2\exp(-\frac{1}{2}\frac{(2^{r-1}t\rho)^2}{|w_k|^2}) = 2\exp(-\frac{2^{2r-3}t^2\rho^2}{|w_k|^2}).$$

Шаг 8. Схлопываем уровни:

$$\begin{split} &P_t \leqslant \sum_r \mathsf{P}(\#K_r \geqslant 2^{-3r-2}n) \leqslant \\ &\leqslant \sum_r n^{-1} 2^{3r+2} \sum_k 2 \exp(-\frac{2^{2r-3}t^2\rho^2}{|w_k|^2}) = n^{-1} \sum_k \sum_r 2^{3r+3} \exp(-\frac{2^{2r-3}t^2\rho^2}{|w_k|^2}). \end{split}$$

Лемма: "хвост" ни на что не влияет:

$$\sum_{r \ge 0} 2^{3r} \exp(-4^r h) \leqslant C_{h_0} \exp(-h), \quad h \ge h_0 > 0.$$

Пользуясь этим, оцениваем вероятность:

$$P_t \ll n^{-1} \sum_k \exp(-\frac{1}{8} \frac{t^2 \rho^2}{|w_k|^2}).$$

Шаг 9. Двоичные уровни по $|w_k|$:

$$\mathcal{K}'_r := \{k \colon |w_k| \in (2^{-r-1}\rho, 2^{-r}\rho]\}.$$

Из условия $\sum |w_k|^2 = 1$ вытекает, что $\#\mathcal{K}_r' \leqslant (\rho 2^{-r-1})^{-2} = 2^{2r+2}\rho^{-2}$,

$$n^{-1} \sum_{k \in \mathcal{K}'_r} \exp(-\frac{1}{8} \frac{t^2 \rho^2}{|w_k|^2}) \leqslant n^{-1} 2^{2r+2} \rho^{-2} \exp(-\frac{1}{8} t^2 2^{2r}) \ll n^{-1} \rho^{-2} \exp(-\frac{1}{8} t^2).$$

Далее полагаем $t^2 \rho^2 n = \frac{1}{2}, \, t = \sqrt{N/2n}, \, {\rm u}$

$$\mathsf{P}(z \colon \sup_{|\Lambda| = n} \sum_{\Lambda} \langle z, w_k \rangle^2 \geqslant \frac{1}{2}) \leqslant C \frac{N}{n} \exp(-\frac{1}{8} \frac{N}{2n}).$$

Ясно, что при достаточно большом N/n эта вероятность меньше 1, что и требовалось.

Следствие для класс Lip: возьмём в качестве f_k "треугольники" высоты $(2N)^{-1}$ с основанием [k/N,(k+1)/N], тогда $\|f_k\|_2 \asymp N^{-3/2}$ и для любой ортонормированной системы Φ получаем

$$\sigma_n(\operatorname{Lip}, \Phi)_{L_2} \gg N^{-1}.$$

Приближения по словарю. Жадные алгоритмы

Словарём называется множество D в гильбертовом пространстве H, такое что |g|=1 для всех $g\in D$ и $\overline{\operatorname{span} D}=H$. Аналогично предыдущему определяется погрешность n-членного приближения (считаем, что элементы D занумерованы некоторыми индексами, $D=\{g_k\}$):

$$\sigma_n(f,D)_H := \inf_{|\Lambda|=n} \inf_{\{c_k\}_{k \in \Lambda}, \{g_k\}_{k \in \Lambda}} |f - \sum_{k \in \Lambda} c_k g_k|.$$

Примеры словарей:

1. П.О.Н.С. — рассмотрели ранее; однако, наиболее интересны *пере*полненные системы, см. далее; 2. Фреймы Парсеваля: системы Φ , для которых выполняются эквивалентные тождества

$$\sum_{\varphi\in\Phi}\langle f,\varphi\rangle^2\equiv|f|^2,\quad \sum_{\varphi\in\Phi}\langle f,\varphi\rangle\varphi\equiv f;$$

- 3. $\{u(x)v(y)\}$; в дискретном случае соответствует низкоранговому приближению матриц;
- 4. $\{r(\langle \omega, x \rangle)\}$ ridge-функции;

Со словарём связаны следующие подмножества:

$$A(D, M) = \{ f = \sum_{k} c_k g_k, \ g_k \in D, \ \sum |c_k| \leq M \}.$$

Вообще говоря, объединение A(D,M) по всем M>0 не совпадает с H. Через $|f|_{A(D)}$ обозначим норму на этом объединении, для которой A(D,1) есть единичный шар, то есть:

$$|f|_{A(D)} := \inf\{M : f \in A(D, M)\}.$$

Теорема. $\sigma_n(f, D) \leq n^{-1/2} |f|_{A(D)}$.

Рассмотрим два алгоритма построения наилучших приближений.

Чисто жадный алгоритм (Pure Greedy Algorightm, PGA). Строим последовательность "остатков": $r_0 = f$. Далее, если r_0, r_1, \ldots, r_m построены, для определения r_{m+1} находим элемент словаря $g \in D$, максимизирующий $|\langle r_m, g \rangle|$:

$$|\langle r_m, g_m^* \rangle| = \max_{g \in D} |\langle r_m, g \rangle|.$$

(Будем предполагать, что максимум всегда достигается.) После чего полагаем

$$r_{m+1} := r_m - \langle r_m, g_m^* \rangle g_m^*.$$

Таким образом, мы на каждом шаге строим оптимальное приближение с использованием одного элемента словаря. Отсюда происходит термин "жадный".

Заметим, что

$$f = r_0 = r_1 + \langle r_0, g_0^* \rangle g_0^* = \dots = r_n + \sum_{k=0}^{n-1} \langle r_k, g_k^* \rangle g_k^*,$$

откуда $\sigma_n(f, D) \leqslant |r_n|$.

К сожалению, алгоритм PGA не даёт приближения со скоростью $n^{-1/2}$, как требуется в теореме, известно лишь, что $|r_n(f)| \ll n^{-\gamma}$, оптимальный показатель $\gamma = 0.18\ldots$, точное его значение неизвестно.

Рассмотрим другой алгоритм: **ортогональный жадный алгоритм** (OGA). Начинаем с $r_0 = f$. Пусть мы уже построили r_0, \ldots, r_m с соответствующими g_0^*, \ldots, g_{m-1}^* . (Вообще говоря, это другие вектора r_n, g_n^* , не такие как в PGA.) Следующий элемент словаря определяется так же, как и в PGA:

$$|\langle r_m, g_m^* \rangle| = \max_{g \in D} |\langle r_m, g \rangle|.$$

Теперь положим $H_m = \mathrm{span}\,\{g_0^*,\ldots,g_m^*\},$ и

$$r_{m+1} := f - P_{H_m} f = r_m - P_{H_m} r_m.$$

Последнее равенство верно в силу того, что f и r_m отличаются на элемент из H_{m-1} и, значит, их ортопроекция на H_m^\perp совпадает.

Итак, в ортогональном жадном алгоритме мы берём наилучшее приближение всеми уже построенными элементами словаря. Далее мы докажем, что для этого алгоритма $|r_n| \leq n^{-1/2} |f|_A$, откуда будет вытекать теорема.

Положим $ho(f) = \max_{g \in D} rac{|\langle f, g
angle|}{|f|}$. Ясно, что

$$|f - \langle f, g^* \rangle g^*|^2 = |f|^2 (1 - \rho(f)^2).$$
 (3)

Оценив $\rho(f)$ снизу, мы покажем, что жадное приближение уменьшает норму |f|.

Пусть $f \in A(D,1)$, то есть $f = \sum c_k g_k$, $\sum |c_k| \leqslant 1$. Запишем

$$|f|^2 = \langle f, f \rangle = \langle f, \sum c_k g_k \rangle \leqslant \sum |c_k| \cdot \rho(f) |f|,$$

откуда $\rho(f) \geqslant 1/|f|$.

Дальше нам понадобится простая лемма: пусть $a_m \geqslant 0, a_1 = 1, a_{m+1} \leqslant a_m (1-a_m)$. Тогда $a_m \leqslant 1/m$. Это легко проверяется по индукции.

Перейдём непосредственно к доказательству теоремы. Дано, что $f \in A(D,1)$. Мы оценим норму r_{m+1} индуктивно, через норму r_m . Во-первых, $r_m = f - P_{H_{m-1}} f \in H_{m-1}^{\perp}$, откуда

$$|r_m|^2 = \langle r_m, r_m \rangle = \langle r_m, f \rangle \leqslant |r_m|\rho(r_m),$$

откуда $\rho(r_m)\geqslant 1/|r_m|$. Во-вторых, ясно, что наилучшее приближение построенными элементами словаря лучше, чем приближение только g_m^* , поэтому (см. (3)), $|r_{m+1}|^2\leqslant |r_m|^2(1-\rho(r_m)^2)\leqslant |r_m|^2(1-|r_m|^{-2})$. Остаётся применить лемму для $a_m=|r_m|^2$.