1.7 The Phase Gates (S and T Gates)

- 1. Apply an S-gate to a qubit in the state $|\psi\rangle = \alpha|0\rangle + e^{i\theta}\beta|1\rangle$. What happened to the relative phase of the qubit?
- 1. Apply an S^{\dagger} -gate to a qubit in the state $|\psi\rangle = \alpha|0\rangle + e^{i\theta}\beta|1\rangle$. What happened to the relative phase of the qubit?
- 1. Apply an T-gate to a qubit in the state $|\psi\rangle = \alpha|0\rangle + e^{i\theta}\beta|1\rangle$. What happened to the relative phase of the qubit?
- 1. Apply an T^{\dagger} -gate to a qubit in the state $|\psi\rangle = \alpha|0\rangle + e^{i\theta}\beta|1\rangle$. What happened to the relative phase of the qubit?

Answers

- 1. $S|\psi\rangle = \alpha|0\rangle + e^{i(\theta+\pi/2)}\beta|1\rangle$, a relative phase of $e^{i\pi/2}$ was added to the qubit
- 1. $S^{\dagger}|\psi\rangle = \alpha|0\rangle + e^{i(\theta \pi/2)}\beta|1\rangle$, a relative phase of $e^{-i\pi/2}$ was added to the qubit
- 1. $T|\psi\rangle = \alpha|0\rangle + e^{i(\theta+\pi/4)}\beta|1\rangle$, a relative phase of $e^{i\pi/4}$ was added to the qubit
- 1. $T^{\dagger}|\psi\rangle = \alpha|0\rangle + e^{i(\theta \pi/4)}\beta|1\rangle$, a relative phase of $e^{-i\pi/4}$ was added to the qubit