Predictive Modelling with Python

Jure Žabkar

Contents

Software installation

Regression

Data preparation, Visualization, Modelling, Feature selection, Evaluation

Classification

Data preparation, Visualization, Modelling, Feature selection, Evaluation

Installation

Install conda

Readings

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). *An introduction to statistical learning* (Vol. 6). New York: Springer.

Friedman, J., Hastie, T., & Tibshirani, R. (2009). *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*.

Springer Series in Statistics.

Geron, A. (2017). *Hands-on machine learning with Scikit-Learn* and *TensorFlow*. O'Reilly. (there's also the 2nd edition of this book)

California housing

make people happier?

Classification

k Nearest Neighbour Classification

Logistic Regression

Classification Trees

Random Forest

Life satisfaction linear regression

Life satisfaction kNN Classification

Life satisfaction Logistic Regression

Logistic Regression Problems

Evaluation

		Predicted	
		Negative	Positive
Actual	Negative	True Negatives (TN)	False Positives (FP)
	Positive	False Negatives (FN)	True Positives (TP)

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

$$F_1 = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} = \frac{TP}{TP + \frac{FN + FP}{2}}$$