

Helikopterflug

Aufga	bennummer: A_127	
-------	------------------	--

Technologieeinsatz:

möglich □

erforderlich ⊠

Ein Helikopter wird während seines Fluges 10 Sekunden lang beobachtet. Seine Höhe über Grund in Abhängigkeit von der Zeit kann durch folgende Funktion beschrieben werden:

$$h(t) = 98 + 97,026 \cdot t - 20,071 \cdot t^2 + 0,949 \cdot t^3$$

t ... Zeit nach Beobachtungsbeginn in Sekunden (s)

h(t) ... Höhe des Helikopters über Grund in Metern (m) zur Zeit t

- a) Stellen Sie die Funktion h im Intervall [0 s; 10 s] grafisch dar.
 - Lesen Sie aus der Grafik ab, in welchen Zeitintervallen der Helikopter steigt bzw. sinkt.
- b) Berechnen Sie die mittlere Steiggeschwindigkeit des Helikopters (mittlere Änderungsrate der Helikopterhöhe) während der ersten 4 Sekunden des Fluges in Kilometern pro Stunde (km/h).
- c) Dokumentieren Sie, wie man die momentane Steiggeschwindigkeit des Helikopters (momentane Änderungsrate der Helikopterhöhe) zu einem bestimmten Zeitpunkt t_0 ermittelt.
- d) Die Anzahl der Helikopterunfälle wird monatlich erhoben.

Für das Jahr 2009 wurden folgende Daten erhoben:

Monat	Jan.	Feb.	März	April	Mai	Juni	Juli	Aug.	Sep.	Okt.	Nov.	Dez.
Anzahl der Unfälle	13	18	22	19	18	18	22	16	23	17	15	2

- Stellen Sie die Daten aus obiger Tabelle grafisch mithilfe eines Balken- oder Säulendiagramms dar.
- Berechnen Sie das arithmetische Mittel und den Median der Datenreihe.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Helikopterflug 2

Möglicher Lösungsweg

a)

Der Helikopter steigt im Intervall [0 s; 3 s[und sinkt im Intervall]3 s; 10 s[.

b) Berechnung der mittleren Steiggeschwindigkeit (mittlere Änderungsrate der Helikopterhöhe):

$$\overline{v} = \frac{\Delta h}{\Delta t}$$

$$\overline{v} = \frac{h(4) - h(0)}{4} - \frac{225,7 - 98}{4} = 31,9 \text{ m/s}$$
31,9 m/s $\approx 115 \text{ km/h}$

- c) Die momentane Steiggeschwindigkeit (momentane Änderungsrate der Helikopterhöhe) wird durch den Differenzialquotienten $\frac{dh}{dt}$ berechnet. Dazu wird die Funktion h differenziert und der Wert t_0 in die 1. Ableitung der Funktion h eingesetzt.
- d) Anzahl der Unfälle

- arithmetisches Mittel: 16,92 Unfälle

- Median: 18 Unfälle

Helikopterflug 3

Kiassitikation							
⊠ Teil A □ Teil B							
Wesentlicher Bereich der Inhaltsdimension:							
a) 3 Funktionale Zusammenhängeb) 4 Analysisc) 4 Analysisd) 5 Stochastik							
Nebeninhaltsdimension:							
a) — b) 1 Zahlen und Maße c) — d) —							
Wesentlicher Bereich der Handlungsdimension:							
 a) B Operieren und Technologieeinsatz b) B Operieren und Technologieeinsatz c) C Interpretieren und Dokumentieren d) B Operieren und Technologieeinsatz 							
Nebenhandlungsdimension:							
 a) C Interpretieren und Dokumentieren b) — c) — d) — 							
Schwierigkeitsgrad: Punkteanzahl:							
a) leicht b) leicht c) mittel d) mittel a) 2 b) 2 c) 1 d) 2							
Thema: Verkehr							
Quelle: http://www.griffin-helicopters.co.uk							