SOLUÇÃO DE LISTA DE EXERCÍCIOS

Lista 02

(Equivalências Proposicionais)

Leitura necessária:

- Matemática Discreta e Suas Aplicações, 6ª Edição (Kenneth H. Rosen):
 - Capítulo 1.2: Equivalências Proposicionais
- Material suplementar:
 - Conjunto de slides: Aula 1.1 Os Fundamentos: Lógica Proposicional.

Revisão.

- 1. Responda formalmente as seguintes perguntas:
 - (a) O que significa dizer que duas proposições compostas p e q são equivalentes?
 - (b) Quando uma proposição composta é satifazível? E quando ela é insatisfazível?

Exercícios.

- 2. (Rosen 1.2.13) Utilize tabelas verdade para verificar a lei de absorção.
 - (a) $p \lor (p \land q) \equiv p$
 - (b) $p \land (p \lor q) \equiv p$
- 3. Demonstre as seguintes questões através da manipulação de conectivos lógicos. (Ou seja, não utilize tabelas da verdade, mas sim os axiomas de equivalência dados em sala de aula.)
 - (a) (Rosen 1.2.20) $\neg (p \oplus q)$ e $p \leftrightarrow q$ são logicamente equivalentes.
 - (b) (Rosen 1.2.25) $(p \to r) \lor (q \to r)$ e $(p \land q) \to r$ são logicamente equivalentes.
- 4. (Rosen 1.2.31) Mostre que $(p \to q) \to r$ e $p \to (q \to r)$ não são logicamente equivalentes.
- 5. (Rosen 1.2.29) Mostre que $(p \to q) \land (q \to r) \to (p \to r)$ é uma tautologia. (**Obs:** Considere usar método de manipulação de conectivos lógicos e o método de tabela da verdade. Qual você achou mais fácil neste caso?)
- 6. (Rosen 1.2.42, adaptado) Suponha que uma tabela verdade em n variáveis proposicionais seja dada. Sempre é possível encontrar uma proposição composta que represente o comportamento desta tabela verdade como a seguir. Para cada linha da tabela da verdade em que a expressão seja avaliada como verdadeira, tome a conjunção das variáveis dessa linha da seguinte forma: as variáveis verdadeiras entram na conjunção em sua forma normal (x), enquanto as falsas entram negadas $(\neg x)$. Por exemplo, considere que em uma tabela de 3 variáveis proposicionais haja uma linha com valores de verdade para as entradas a = T, b = F, c = T e que produza o valor T para a saída; então construímos a conjunção $(a \land \neg b \land c)$ para representar essa linha. A seguir, tome a disjunção de todas as conjunções obtidas no passo anterior. Assim, obtemos uma expressão que é verdadeira se, e somente se, a expressão original era verdadeira. A proposição composta assim obtida é dita estar na **forma normal disjuntiva**.

Convença-se da afirmação acima aplicando o método à tabela-verdade do operador binário de ou exclusivo (\oplus) .

- 7. (Rosen 1.2.43) Uma coleção de operadores lógicos é chamado **funcionalmente completa** se toda proposição composta é logicamente equivalente a uma proposição composta envolvendo apenas estes operadores. Mostre que ¬, ∨ e ∧ formam uma coleção de operadores funcionalmente completo. (Dica: use o fato que toda proposição composta é logicamente equivalente a uma outra proposição na forma normal disjuntiva.)
- 8. (Rosen 1.2.60) Quais das proposições compostas abaixo são satisfazíveis?
 - a) $(p \lor q \lor \neg r) \land (p \lor \neg q \lor \neg s) \land (p \lor \neg r \lor \neg s) \land (\neg p \lor \neg q \lor \neg s) \land (p \lor q \lor \neg s)$
 - b) $(\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor \neg s) \land (p \lor \neg q \lor \neg s) \land (\neg p \lor \neg r \lor \neg s) \land (p \lor q \lor \neg r) \land (p \lor \neg r \lor \neg s)$
- 9. (Rosen 1.2.61) Explique como um algoritmo para definir se uma proposição composta é satisfazível pode ser usado para determinar se uma proposição composta é uma tautologia. (Dica: Se p é a proposição composta em que você está interessado, use o algoritmo de satisfatibilidade em $\neg p$ e interprete o resultado.)