Aim:

Implement a program that takes an integer \$n\$ input from the user and prints all the prime numbers from 2 to \$n\$.

Note: A prime number is divisible only by 1 and itself.

Input format:

• The input contains a positive integer \$n\$.

Output Format:

Contains the list of prime numbers up to \$n\$

Example:

Input:

10

Output:

[2, 3, 5, 7]

Constraints:

- The input n should be a positive integer greater than or equal to 2.
- The algorithm should be efficient, aiming for a time complexity of approximately \$O(n * sqrt(n))\$ where n is the input number.
- The algorithm should handle large inputs reasonably well, without consuming excessive memory or taking an unreasonable amount of time to execute.

Source Code:

```
CTP32252.py
```

```
a=int(input())
list=[]
for i in range(2,a,1):
    for j in range(2,i,1):
        if i%j==0:
            break
    else:
        list.append(i)
print(list)
```

Execution Results - All test cases have succeeded!

Test Case - 1
User Output
10
[2, 3, 5, 7]

	Test Case - 2	
User Output		

20							\Box
[2,	3, 5,	7,	11,	13,	17,	19]	
							_

Test Case - 3							
User Output							
30							
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]							