Universidade Federal do Ceará Campus Sobral

Engenharia da Computação e Engenharia Elétrica

Sistemas Lineares (SBL0091)

Prof. C. Alexandre Rolim Fernandes

Lista de Exercícios para AP1

- 1) Encontre a energia total dos sinais abaixo:
- a) $x[n] = \delta[n] + 2\delta[n-1] + \delta[n-2].$
- **b)** x(t) = u(t) u(t-3).

Solução:

a) $E = \sum_{n=-\infty}^{+\infty} x^2[n]$. Olhando os gráficos abaixo de x[n] e $x^2[n]$, pode-se ver que: E = 1 + 4 + 1 = 6

b) $E=\int_{-\infty}^{+\infty}x^2(t)dt$. Olhando o gráfico abaixo de x(t) e $x^2(t)$, pode-se ver que: $E=\int_0^3dt=3$

2) Considere o seguinte sistema contínuo no tempo: $y(t) = T\{x(t)\} = t.x(t)$ Diga se ele é: (1) linear, (2) invariante no tempo, (3) estável, (4) causal. Justifique suas respostas.

Solução:

(1) Linearidade:

Suponha
$$y_1(t) = T\{x_1(t)\}\ e\ y_2(t) = T\{x_2(t)\}.$$
 Logo:

$$T\{x_1(t) + x_2(t)\} = t.[x_1(t) + x_2(t)] = t.x_1(t) + t.x_2(t) = T\{x_1(t)\} + T\{x_2(t)\} \rightarrow Aditividade OK$$

$$T\{a.x(t)\} = t.a.x(t) = a.T\{x(t)\} \rightarrow \text{Homogeneidade OK}.$$

SISTEMA LINEAR

(2) Invariância no tempo:

$$y(t-t_0) = (t-t_0).x(t-t_0)$$

$$T\{x(t-t_0)\} = t.x(t-t_0)$$

Logo:
$$y(t - t_0) \neq T \{x(t - t_0)\}$$

SISTEMA NÃO É INVARIANTE NO TEMPO

(3) Estabilidade

Suponha que $|x(t)| \leq B_x$. Logo: $|y(t)| = |t.x(t)| \leq |t| \cdot B_x$. Logo, quando $t \to +\infty$, temos $|y(t)| \to +\infty$.

O desenvolvimento acima não conseguiu demonstrar estabilidade do sistema, mas ele também não demonstra a instabilidade do sistema.

Contra exemplo: Seja $x(t) = 1, \forall t \in R$, logo: |y(t)| = |t|. Este sinal y(t) é ilimitado, pois $t \to +\infty$ gera $|y(t)| \to +\infty$.

SISTEMA INSTÁVEL

(4) Causalidade:

A saída depende da entrada apenas do instante t.

SISTEMA CAUSAL.

3) Um sistema LTI possui resposta ao impulso dada por: $h[n] = (1/2)^n u[n]$, em que u[n] é a função degrau unitário. Usando a soma de convolução, determine a saída do sistema quando a entrada é dada por: x[n] = u[n].

Solução: Olhando os gráficos abaixo, temos:

1º caso: Para n < 0, não há interseção entre h[k] e h[n-k], logo y[n] = 0.

 2^o caso: Para $n \geq 0,$ a interseção entre h[k] e h[n-k] está entre 0 e n, logo $y[n] = \sum_{k=0}^n (1/2)^k.$

Usando a fórmula da soma dos N primeiros termos de uma PG: $S_N=\frac{a_0(q^N-1)}{q-1}$, temos: $y[n]=\frac{1/2^{n+1}-1}{1/2-1}=2-1/2^n$

4) Um sistema LTI possui resposta ao impulso dada por: h(t) = u(t-2), em que u(t) é a função degrau unitário. Usando a integral de convolução, determine a saída do sistema quando a entrada é dada por: x(t) = u(t+1).

Solução: Olhando os gráficos abaixo, temos:

 1^o caso: Para t+1<2,ou seja, t<1,não há interseção entre $h(\tau)$ e $x(t-\tau),$ logo y(t)=0.

 2^o caso: Para $t+1\geq 2,$ ou seja, $t\geq 1,$ a interseção entre $h(\tau)$ e $x(t-\tau)$ está entre 2 e t+1,logo $y(t)=\int_2^{t+1}d\tau=t-1.$

5) Uma interconexão de sistemas lineares e invariantes no tempo é mostrada na figura abaixo.

Suponha que a resposta ao impulso do sistema global (pontilhado), com entada x[n] e saída y[n], seja dada por h[n]. Resolva às questões abaixo.

a) Expresse h[n] em função de $h_1[n], h_2[n]$ e $h_3[n]$.

- **b)** Encontre h[n] para o caso em que $h_1[n] = \delta[n-1]$, $h_2[n] = u[n]$ e $h_3[n] = \delta[n-2]$.
- c) Para o caso do item b), o sistem é causal?
- d) Para o caso do item b), o sistem é estável?

Solução:

a)

Resposta ao impulso do sistema equivalente à conexão em paralelo entre o sistema que não faz nada (resposta ao impulso igual a $\delta[n]$) e $h_1[n]$: $h_1[n] + \delta[n]$

Resposta ao impulso do sistema equivalente à conexão em paralelo em paralelo entre os sistemas $h_2[n]$ e $h_3[n]$: $h_2[n] + h_3[n]$

Resposta ao impulso do sistema equivalente ao sistema global (pontilhado): conexão em série entre os sistema com resposta ao impulso $h_1[n] + \delta[n]$ e $h_2[n] + h_3[n]$:

$$h[n] = (h_1[n] + \delta[n]) * (h_2[n] + h_3[n])$$

$$h[n] = h_1[n] * h_2[n] + h_1[n] * h_3[n] + \delta[n] * h_2[n] + \delta[n] * h_3[n]$$

$$h[n] = h_1[n] * h_2[n] + h_1[n] * h_3[n] + h_2[n] + h_3[n]$$
b)

Substituindo $h_1[n] = \delta[n-1], h_2[n] = u[n]$ e $h_3[n] = \delta[n-2]$ na eq. acima, temos:

$$h[n] = \delta[n-1] * u[n] + \delta[n-1] * \delta[n-2] + u[n] + \delta[n-2]$$

$$h[n] = u[n-1] + \delta[n-3] + u[n] + \delta[n-2]$$

c)

Sim, o sistema é causal, pois h[n] = 0 para n < 0.

d)

O sistema é instável pois a resposta ao impulso não é absolutamente somável: $\sum_{n=-\infty}^{+\infty} |h[n]| = +\infty$