TESIS LICENCIATURA EN FÍSICA

CRITERIOS BÁSICOS PARA LA PRESENTACIÓN DE LA TESIS EN EL INSTITUTO BALSEIRO TANTO DE DOCTORADO COMO DE MAESTRÍA

J. Autor Doctorando

Dr. J. Director
Director

Dr. J. Otro más Co-director

Miembros del Jurado

Dr. J. J. Jurado (Instituto Balseiro)
Dr. Segundo Jurado (Universidad Nacional de Cuyo)
Dr. J. Otro Jurado (Univ. Nac. de LaCalle)
Dr. J. López Jurado (Univ. Nac. de Mar del Plata)
Dr. U. Amigo (Instituto Balseiro, Centro Atómico Bariloche)

17 de Diciembre de 2022

Colisiones Atómicas – Centro Atómico Bariloche

Instituto Balseiro
Universidad Nacional de Cuyo
Comisión Nacional de Energía Atómica
Argentina

A mi familia

A mis amigos

A todos los que me conocen

A toda esa otra gente que no

Índice de símbolos

Índice de contenidos

In	dice	de sin	ibolos	V
Ín	dice	de cor	ntenidos	vii
$\mathbf{R}_{\mathbf{c}}$	esum	en		ix
\mathbf{A}	bstra	.ct		xi
1.	Intr	oducc	ión. Ondas Gravitacionales	1
	1.1.	Motiv	ación y Objetivo	1
	1.2.	Repres	sentación Ondas Gravitacionales	1
	1.3.	Datos	utilizados	1
2.	Teo	ría de	Aproximaciones: Bases Reducidas y Aprendizaje	3
	2.1.	Bases	Reducidas	3
	2.2.	Bases	Reducidas hp Greedy	4
		2.2.1.	Refinamiento h	4
		2.2.2.	Refinamiento hp-greedy	5
		2.2.3.	Aplicación a Ondas Gravitacionales	6
		2.2.4.	Hiperparámetros	9
3.	Opt	imizac	ción de Hiperparámetros	13
	3.1.	Plante	eo del Problema	13
	3.2.	Optim	nización Bayesiana	14
		3.2.1.	Estimador de Parzen con Estructura Arbórea	16
		3.2.2.	Mejora Esperada: Función De Adquisición	17
	3.3.	Result	ados	17
		3.3.1.	Conjunto pequeño: Comparación de métodos	17
		3.3.2.	Semilla 2D: Optimización Completa	19
		3.3.3.	Importancia de los Hiperparámetros	19
Bi	bliog	grafía		23

viii	Índice de contenidos
Publicaciones asociadas	25
Agradecimientos	27

Resumen

Este es el resumen en castellano.

La tesis debe reflejar el trabajo desarrollado, mostrando la metodología utilizada, los resultados obtenidos y las conclusiones que pueden inferirse de dichos resultados.

Palabras clave: FORMATO DE TESIS, LINEAMIENTOS DE ESCRITURA, INSTITUTO BALSEIRO

Abstract

This is the title in English:

The thesis must reflect the work of the student, including the chosen methodology, the results and the conclusions that those results allow us to draw.

Keywords: THESIS FORMAT, TEMPLATES, INSTITUTO BALSEIRO

Capítulo 1

Introducción. Ondas Gravitacionales

1.1. Motivación y Objetivo

1.2. Representación Ondas Gravitacionales

1.3. Datos utilizados

Se utilizaron ondas gravitacionales generadas a partir del modelo híbrido NRHyb-Sur3dq8[1] de relativdad numérica y aproximaciones post Newtonianas para colisiones de agujeros negros binarios.

Cada onda h generada se representa por una serie temporal compleja de la forma:

$$h = h_{+} + ih_{\times}$$

Recordando que h está parametrizada por λ

$$h = h(t; \lambda) = h_{\lambda}(t) = h_{\lambda}$$

En este caso λ tendrá 3 dimensiones, $(q,\chi_{1_Z},\chi_{2_Z})$, y estará acotado de la siguiente manera:

- Relación entre masas q: $1 \le q \le 8$
- \blacksquare Espín del agujero negro más pesado (liviano) $\chi_{1_Z}(\chi_{1_Z})\colon |\chi_{1_Z}|, |\chi_{2_Z}|<0.8$

Se representa un conjunto \mathcal{K} de N muestras de λ de la siguiente forma:

Figura 1.1: polarizaciones h_+ y h_\times para q=3, $\chi_{1_Z}=\chi_{2_Z}=0,$ en el modo l=2, m=2.

$$\mathcal{K} = \{h_{\lambda_i}\}, \quad i = 1, ..., N$$

y debido a que cada h_{λ_i} es una serie temporal, se puede representar $\mathcal K$ en forma de la matriz $H \in \mathbb C^{N \times L}$:

$$H = \begin{bmatrix} h_{\lambda_1} \\ h_{\lambda_2} \\ \vdots \\ h_{\lambda_N} \end{bmatrix} = \begin{bmatrix} h_{\lambda_1}(t_1) & h_{\lambda_1}(t_2) & \cdots & h_{\lambda_1}(t_L) \\ h_{\lambda_2}(t_1) & h_{\lambda_2}(t_2) & \cdots & h_{\lambda_2}(t_L) \\ \vdots & \vdots & \ddots & \vdots \\ h_{\lambda_N}(t_1) & h_{\lambda_N}(t_2) & \cdots & h_{\lambda_N}(t_L) \end{bmatrix}$$

Siendo L la longitud de la serie temporal. De forma que cada fila de H es una onda gravitacional.

Capítulo 2

Teoría de Aproximaciones: Bases Reducidas y Aprendizaje

2.1. Bases Reducidas

2.2. Bases Reducidas hp Greedy

El nombre del método hp greedy viene de la combinación del "refinamiento p" y del "refinamiento h". El refinamiento p proviene de los métodos espectrales con bases polinomiales [2] y se refiere a la propiedad de que el error de representación disminuye al aumentar el grado del polinomio (en el caso de las bases reducidas aumenta el número de elementos en la base). Por otro lado el término de refinamiento h se toma prestado de los métodos de diferencias finitas, donde el tamaño de cada celda de la grilla es representado por h. En este caso el refinamiento ocurre en el espacio de los parámetros (y no en el dominio físico).

2.2.1. Refinamiento h

Partiendo de la siguiente notación:

- V: espacio de parámetros para un dado subdominio D.
- V_1, V_2 : particiones de V.
- Λ_V : parámetros greedy para V.
- $\hat{\Lambda}_V$: punto de anclaje para V.

El refinamiento en el dominio de los parámetros ocurre a partir de la división recursiva de cada subdominio V del dominio total D en dos subdominios V_1 y V_2 . De forma que se obtiene una estructura de árbol binario.

Esta descomposición binaria del dominio está descrita en forma de pseudocódigo en el algoritmo 1.

Al algoritmo ingresan tres objetos:

- λ_V : conjunto de parámetros resultado de un muestreo de V.
- $\hat{\Lambda}_{V_1}, \hat{\Lambda}_{V_2}$: puntos de anclaje (son los primeros dos elementos de Λ_V).

Luego, para cada parámetro del conjunto λ_V se evalúa su distancia a los puntos de anclaje a partir de la función de proximidad $d: d(\lambda_1, \lambda_2)$:

$$d(\lambda_1, \lambda_2) = ||\lambda_1 - \lambda_2||_2,$$

de forma que se obtengan dos conjuntos; λ_{V_1} con los λ_i más proximos a $\hat{\Lambda}_{V_1}$, y λ_{V_2} con los λ_i más proximos a $\hat{\Lambda}_{V_2}$, tal que $\lambda_V = \lambda_{V_1} \cup \lambda_{V_2}$. Este resultado es la división del espacio de parámetros a partir de los puntos de anclaje.

Algoritmo 1 Partition $(\lambda_V, \hat{\Lambda}_{V_1}, \hat{\Lambda}_{V_2})$

```
Input: \lambda_V, \hat{\Lambda}_{V_1}, \hat{\Lambda}_{V_2}
  1: \lambda_{V_1} = \lambda_{V_2} = \emptyset
  2: for each \lambda_i \in \lambda_V do
                if d(\lambda_i, \Lambda_{V_1}) < d(\lambda_i, \Lambda_{V_2}) then
                        \lambda_{V_1} = \lambda_{V_1} \cup \lambda_i
  4:
                else if d(\lambda_i, \hat{\Lambda}_{V_1}) > d(\lambda_i, \hat{\Lambda}_{V_2}) then
  5:
                        \lambda_{V_2} = \lambda_{V_2} \cup \lambda_i
  6:
                else
  7:
                        \lambda_{V'} = \text{random choice}([\lambda_{V_1}, \lambda_{V_2}])
  8:
                        \lambda_{V'} = \lambda_{V'} \cup \lambda_i
  9:
                end if
10:
11: end for
```

Output: $\lambda_{V_1}, \lambda_{V_2}$

2.2.2. Refinamiento hp-greedy

El refinamiento hp-greedy es un método que combina el algoritmo greedy para la construcción de bases reducidas con la partición del dominio de parámetros.

Esta partición recursiva del dominio de parámetros da lugar a una estructura de árbol binario, la cual tendrá diferentes niveles l de profundidad, con un l_{max} establecido por el usuario, de forma que $l: 0 \le l \le l_{max}$, donde l=0 es el nodo raíz. Cada nodo del árbol estará etiquetado por un conjunto de índices B_l , que parte de:

$$B_0 = (0, 1),$$

luego sus dos hijos (l = 1) tendrán las etiquetas:

$$B_1 = (0,0,)$$
 o $(0,1,),$

y en general:

$$B_l = (0, i_1, \dots, i_l), \quad con \quad i_j = \{0, 1\},$$

donde cada nivel l tendrá un máximo de 2^l nodos. Los nodos que no tengan hijos se llamarán nodos hojas.

El método está explicado en el algoritmo 2; partiendo de un dado dominio de parámetros V se construye una base reducida a partir de un conjunto de entrenamiento $\mathcal{T}_V = \{h_{\lambda_{V_i}}\}_{i=1}^N$, una tolerancia greedy ε y un n_{max} (para esto se utiliza el algoritmo [VERIFICAR REFERENCIA]). Si el error de representación σ es mayor que la tolerancia ε , y si la profundidad del nivel l es menor a l_{max} , entonces se realizará una partición del dominio V utilizando como puntos de anclaje a los dos primeros parámetros greedy. En cada dominio se realizará el mismo procedimiento hasta que se

Figura 2.1: Representación de los nodos de un árbol con $l_{max} = 2$.

cumpla que $l = l_{max}$ o hasta que $\sigma \leq \varepsilon$.

```
Algoritmo 2 hpGreedy(\mathcal{T}_V, \lambda_V, \varepsilon, n_{max}, l, l_{max}, B_l)
```

```
Input: \mathcal{T}_{V}, \lambda_{V}, \varepsilon, n_{max}, l, l_{max}, B_{l}

1: rb, \Lambda_{V}, \sigma = \text{GreedyRB}(\mathcal{T}_{V}, \lambda_{V}, \varepsilon, n_{max})

2: if \sigma > \varepsilon and l < l_{max} then

3: \hat{\Lambda}_{V_{1}} = \Lambda_{V}[1]

4: \hat{\Lambda}_{V_{2}} = \Lambda_{V}[2]

5: \lambda_{V_{1}}, \lambda_{V_{2}} = \text{Partition}(\lambda_{V}, \hat{\Lambda}_{V_{1}}, \hat{\Lambda}_{V_{2}})

6: out_{1} = \text{hpGreedy}(\mathcal{T}_{V_{1}}, \lambda_{V_{1}}, \varepsilon, n_{max}, l+1, l_{max}, (B_{l}, 0))

7: out_{2} = \text{hpGreedy}(\mathcal{T}_{V_{2}}, \lambda_{V_{2}}, \varepsilon, n_{max}, l+1, l_{max}, (B_{l}, 1))

8: out = out_{1} \cup out_{2}

9: else

10: out = \{(rb, \Lambda_{V}, B_{l})\}

11: end if
```

Output: out

El resultado del algoritmo 2 es una estructura arbórea, donde cada nodo contiene la información de sus puntos de anclaje, por lo que en el caso de querer proyectar un conjunto de validación, cada onda gravitacional se proyectará a la base reducida del nodo hoja con el punto de anclaje más cercano al parámetro de la onda.

2.2.3. Aplicación a Ondas Gravitacionales

Se trabaja a partir de un conjunto de ondas gravitacionales con parámetro bidimensional, donde $\chi_{1_z} = \chi_{2_z} = \chi_z$, es decir que $\lambda = (q, \chi_z)$. De esta forma se puede graficar fácilmente el dominio de parámetros.

En la figura 2.2 se puede observar una representación de la partición del dominio de parámetros. En la primera imagen se pueden ver los dos puntos de anclaje, que son los primeros dos elementos de la base global construida inicialmente. En cada nueva división se construye una nueva base global con la cual se realiza la siguiente partición de cada subdominio.

Figura 2.2: Ejemplo de partición del espacio de parámetros bidimensional para $l_{max} = 1, 2, 3$ y 5. En los primeros dos casos se muestran los puntos de anclaje.

En la figure 2.3 se compara el máximo error de representación obtenido para un conjunto de validación con una base global, es decir, con $l_{max} = 0$, y con $l_{max} = 4$. La velocidad de convergencia es claramente mayor en el segundo caso.

Figura 2.3: Base global $(l_{max} = 0)$ versus base con $l_{max} = 4$ para distintos valores de n.

El aspecto más importante de este método es que permite disminuir la complejidad

temporal del algoritmo a la hora de proyectar la base, a cambio de aumentar la complejidad espacial, pues si bien cada subdominio tendrá un máximo de n_{max} elementos en su base, habrá un máximo de $2^{l_{max}}$ subdominios.

Figura 2.4: tiempos de proyección de un conjunto de validación a dos bases con distinto l_{max} en función del n_{max} . En cada caso la linea de trazo representa el valor medio, y el área de color indica una desviación estandar desde el valor medio, para cada medición.

En la figura 2.4 se graficó el tiempo de proyección de un conjunto de validación a dos bases hp-greedy con distinto valor de l_{max} . Se observa que el tiempo es bastante lineal en relación al n (elementos de las bases locales), y no parece ser afectado por l_{max} .

Figura 2.5: Tiempo de proyección de un conjunto de validación para diferentes valores de n_{max} y l_{max}

En la figura 2.5 se puede ver el tiempo de proyección para más valores de n_{max} y $l_m ax$. En los primeros valores de l_{max} se observa un comportamiento similar al descrito anteriormente, donde el tiempo depende casi únicamente de n_{max} . Sin embargo al aumentar el l_{max} se observa que el tiempo disminuye. Esto se puede entender en dos partes:

- Independencia aparente entre el tiempo de proyección y l_{max} : para realizar la proyección de cada onda del conjunto de validación en la base hp-greedy primero se debe buscar el subdominio (la hoja) correspondiente utilizando los puntos de anclaje de la estructura arbórea de la base. Luego se proyectará la onda en la base local del subdominio en cuestión. Si bien la búsqueda en el árbol tiene una complejidad temporal $O(l_{max})$, el trabajo de cómputo más importante es el que se realizará al momento de proyectar la base, que es independiente de l_{max} , con una complejidad temporal $O(n_{max})$. Pero esto solo se cumple hasta ciertos valores de l_{max} .
- Disminución del tiempo de proyección al aumentar l_{max} : ya se mencionó en más de una ocasión que por cada nivel l hay un máximo de 2^l subdomínios. Es decir que si se quiere obtener el número de elementos de todas las bases en las hojas del árbol, suponiendo un árbol denso, este número será $n_{max} \times 2^{l_{max}}$. En la figura 2.5 se utilizó un conjunto de entrenamiento con 1400 ondas, por lo que al llegar a unos valores de $l_{max} = 6$ y $n_{max} = 24$ en total debería haber 1536 elementos de base en total. Es decir, más elementos de base que ondas en el conjunto de entrenamiento. Por lo tanto al aumentar el l_{max} rápidamente se aumenta el número de subdominios, reduciendo su tamaño como resultado y reduciendo el número de elementos de las bases locales (cada subdominio tendrá una cantidad de elementos menor a n_{max}). De esta forma se explica la disminución del tiempo de proyección para valores grandes de l_{max} , consecuencia del tamaño limitado del conjunto de entrenamiento.

2.2.4. Hiperparámetros

Al momento de construir una base hp-greedy entran en juego cuatro hiperparámetros. Los primeros tres son los parámetros de parada;

- $\boldsymbol{n_{max}}$: determina la cantidad máxima de elementos para cada base local. A mayor cantidad de elementos el error de representación será menor, pero el tiempo requerido para proyectar un conjunto de validación a la base depende casi exclusivamente de este hiperparámetro.
- l_{max} : determina la máxima profundidad de las hojas del árbol. En general al aumentar l_{max} disminuye el error de representación, pero valores muy elevados

Figura 2.6: Ejemplos de sobreajuste. A la izquierda variando ε con $(n_{max}, l_{max}) = (25, 19)$ en un conjunto de parámetro unidimensional $(\lambda_i = q_i)$. A la derecha variando l_{max} con $(n_{max}, \varepsilon) = (20, 1 \times 10^{-6})$ en un conjunto de parámetro bidimensional $(\lambda_{ij} = (q_i, \chi_{z_i}))$.

junto a cierta combinación de hiperparámetros pueden dar lugar a sobreajustes en el modelo, un ejemplo de esto se puede ver en la figura 2.6. Este es un comportamiento típico de las estructuras arbóreas.

• ε : la tolerancia greedy interviene tanto en el tamaño de las bases locales como en la profundidad de las hojas del árbol. Un valor de ε demasiado bajo también puede dar lugar a sobreajuste, sobre todo con valores muy altos de l_{max} . Un valor de $\varepsilon = 0$ implica que se obtiene un árbol totalmente denso, determinado únicamente por n_{max} y l_{max} , y al aumentar el valor de ε se puede pensar en la analogía de podar un árbol, de forma que se previene el sobreajuste.

Al cuarto hiperparámetro se le da el nombre de **semilla** y se la denota con $\hat{\Lambda}_0$;

■ $\hat{\Lambda}_0$: la semnilla no es más que el primer parámetro greedy de la base global. En cada base local, el primer parámetro greedy no es relevante, pero en el caso de las bases hp-greedy cada semilla dará lugar a una división diferente del dominio de parámetros. En la figura 2.7 se puede ver como cuatro semillas diferentes dan lugar a cuatro curvas de error con distinta convergencia. En la figura 2.8, por otro lado, se observa el resultado de la partición del dominio para tres semillas diferentes. En general las semillas que mejor funcionan (con el conjunto de datos utilizado) son las que logran una partición regular del dominio de parámetros.

Figura 2.7: Error de validación para diferentes semillas.

Figura 2.8: Partición del espacio de parámetros para tres semillas diferentes; a la izquierda $\hat{\Lambda}_0 = (1,2 0,38)$, a la derecha $\hat{\Lambda}_0 = (1,71 0,04)$ y al centro $\hat{\Lambda}_0 = (4,55 -0.8)$.

Capítulo 3

Optimización de Hiperparámetros

3.1. Planteo del Problema

Sea $f: X \to \mathbb{R}$ una función que devuelve el máximo error de validación de un modelo entrenado a partir de una combinación de hiperparámetros $\mathbf{x} \in X$, se desea encontrar $\hat{\mathbf{x}}$:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x} \in X} f(\mathbf{x})$$

Es decir, se busca encontrar la combinación óptima de hiperparámetros dentro de un dominio X para obtener el mínimo error de representación en un dado conjunto de validación. En el caso de la construcción de una base hp-greedy óptima:

$$\mathbf{x} = (n_{max}, l_{max}, \varepsilon, \hat{\Lambda}_0).$$

El problema al momento de realizar esta optimización es que la función f no tiene una expresión analítica, sino es que es el resultado de entrenar el modelo y evaluar el error de representación con un conjunto de validación, lo que la hace costosa de evaluar (computacionalmente hablando). Este capítulo se centrará principalmente en la **optimización Bayesiana** [3, 4], un método que intenta reducir al mínimo el número de evaluaciones de f para encontrar $\hat{\mathbf{x}}$ y se puede colocar dentro de una categoría llamada optimización secuencial basada en modelos, o **SMBO**[5, 6] (Secuential Model-Based Optimization).

Además existen dos métodos muy utilizados que no utilizan modelos, los cuales son la **busqueda exaustiva** (o *grid search*) y la **búsqueda aleatoria**. Estos métodos se utilizaron en casos sencillos de optimización para realizar una comparación con la optimización bayesiana.

Comentario sobre el dominio X

Si bien la tolerancia greedy ε puede tomar cualquier valor real no nulo (a diferencia de n_{max} , l_{max} y $\hat{\Lambda}_0$ que toman valores discretos), para simplificar la búsqueda de $\hat{\mathbf{x}}$ se utilizaron siempre distribuciones discretas en el espacio logarítmico. Más específicamente se utilizaron conjuntos de la forma $C = \{1 \times 10^t \mid a \le t \le b, t \in \mathbb{Z}\}$. De esta forma X será un conjunto finito y estará definido por los valores extremos de cada hiperparámetro.

3.2. Optimización Bayesiana

Figura 3.1: En la figura se observan tres iteraciones de una optimización bayesiana para una función sencilla con parámetro unidimensional. En linea punteada está representada la función real, mientras que con linea gruesa se representa el valor medio del modelo estadístico (en este caso construido utilizando procesos gaussianos). El área pintada en azul representa la incertidumbre del modelo, que tiende a cero en los puntos que representan las observaciones realizadas. Debajo se puede ver una función de adquisición en color naranja, que indica el siguiente punto a evaluar [7].

La optimización bayesiana es un método que utiliza la información de todas las evaluaciones realizadas de la función f para decidir que valor de \mathbf{x} evaluar a continuación, reduciendo así el número necesario de evaluaciones de f para encontrar el mínimo.

Para explicar como funciona este método se parte de un formalismo llamado optimización secuencial basada en modelos, que no es más que una generalización de la optimización bayesiana.

Optimización Secuencial Basada en Modelos

La idea es aproximar la función f a partir de un modelo sustituto \mathcal{M} .

Se parte de un conjunto de observaciones $D = \{(\mathbf{x}^{(1)}, y^{(1)}), \cdots, (\mathbf{x}^{(k)}, y^{(k)})\}$, donde $y^{(j)} = f(\mathbf{x}^{(j)})$, a partir del cual se ajusta el modelo sustituto \mathcal{M} . Luego utilizando las predicciones del modelo se maximiza una función S llamada función de adquisición que elije el siguiente conjunto de hiperparámetros $\mathbf{x}_i \in X$ para evaluar la función f y se agrega el par $(\mathbf{x}_i, f(\mathbf{x}_i))$ al conjunto de observaciones D. Una vez hecho esto se vuelve a ajustar el modelo \mathcal{M} y se repite el proceso, que está explicado en forma de pseudocódigo en el algoritmo 3.

Algoritmo 3 SMBO

```
Input: f, X, S, \mathcal{M}

1: D = \text{InicializarMuestras}(f, X)

2: for i = 1, 2, ... do

3: \mathcal{M} = \text{AjustarModelo}(D)

4: \mathbf{x}_i = arg \max_{\mathbf{x} \in X} \mathcal{S}(\mathbf{x}, \mathcal{M}).

5: y_i = f(\mathbf{x}_i) \triangleright Paso costoso

6: D = D \cup \{(\mathbf{x}_i, y_i)\}

7: end for
```

Optimización Bayesiana

Lo que caracteriza a la optimización bayesiana dentro del formalismo de la optimización secuencial basada en modelos, es justamente la creación del modelo. En la optimización bayesiana se construye un modelo estadístico, donde se representa con $P(y|\mathbf{x})$ la predicción del modelo, siendo y el resultado de una evaluación $f(\mathbf{x})$. El nombre del método se debe a que para la construcción del modelo se utiliza el teorema de Bayes:

$$P(y|\mathbf{x}) = \frac{P(\mathbf{x}|y) \ P(y)}{P(\mathbf{x})}$$

En la terminología bayesiana, se conoce a $P(y|\mathbf{x})$ como probabilidad a posteriorí o posterior, que es proporcional a la probabilidad a priori o prior P(y) por la función de verosimilitud o likelihood $P(\mathbf{x}|y)$. La probabilidad $P(\mathbf{x})$ es una probabilidad marginal que sirve como factor de normalización, por lo que no es realmente relevante a la hora de encontrar valores extremos.

Procesos Gaussianos

Figura 3.2: Proceso Gaussiano unidimensional con tres observaciones representadas por los puntos negros. La linea gruesa representa la media del modelo predictivo y la zona azul la varianza en cada caso. Se representa con linea de trazo las distribuciones normales para los valores $x_1, x_2, y x_3[4]$.

Una opción muy utilizada para la construcción del *prior* y actualización del *posterior* son los procesos gaussianos. Una forma sencilla de entender un proceso gaussiano es pensarlo como una función que para cada valor de x devuelve la media $\mu(x)$ y la varianza $\sigma(x)$ de una distribución normal, en el caso particular de que x sea unidimensional (ver figura 3.2). Con \mathbf{x} multidimensional, se obtiene una distribución normal multivariable, caracterizada por el vector $\mu(\mathbf{x})$ y la matriz de covarianza $\Sigma(\mathbf{x}, \mathbf{x}')$.

Sin embargo en este trabajo no se utilizan procesos gaussianos, principalmente porque parten del supuesto de que f es continua. Para una introducción a la optimización bayesiana con procesos gaussianos ver [4].

3.2.1. Estimador de Parzen con Estructura Arbórea

El estimador de Parzen con estructura arbórea o **TPE** (Tree-Structured Parzen Estimator) [6] es una estrategia que modela el prior P(y) a partir de densidades no paramétricas según el espacio de búsqueda, que en este caso son intervalos discretos.

Por otro lado se modela $P(\mathbf{x}|y)$ con dos distribuciones creadas a partir de las observaciones D (de aquí el nombre de estructura arbórea):

3.3 Resultados 17

$$P(\mathbf{x}|y) = \begin{cases} \ell(x) & \text{si } y < y^* \\ g(x) & \text{si } y \ge y^*, \end{cases}$$
(3.1)

con y^* un valor por encima del mejor valor observado de $f(\mathbf{x})$, que se selecciona para ser un cuantil $\gamma \in (0,1)$ de los valores observados y que $P(y < y^*) = \gamma$.

3.2.2. Mejora Esperada: Función De Adquisición

Para la elección de los puntos a evaluar en la función real se maximiza la función de adquisición S. Existen varias propuestas de funciones de adquisición, pero en este caso se utiliza la **mejora esperada** o $EI(Expected\ Improvement)$ [8]. Sea y^* un valor de referencia, se define a la mejora esperada con respecto a y^* como:

$$EI_{y^*}(\mathbf{x}) = \int_{-\infty}^{\infty} \max(y^* - y, 0) p(y|\mathbf{x}) \ dy$$
 (3.2)

[Seguir con el resultado de EI aplicado al TPE]

3.3. Resultados

3.3.1. Conjunto pequeño: Comparación de métodos

La búsqueda exhaustiva o grid search consiste en probar todas las combinaciones posibles dentro de un espacio de hiperparámetros para seleccionar la solución óptima. Es decir que si se quiere buscar la combinación óptima de (n_{max}, l_{max}) para un rango de valores $n_{max} \in N$, $l_{max} \in L$ se deberán probar todas las combinaciones posibles del producto cartesiano $N \times L = \{(n_{max}, l_{max}) | n_{max} \in N, l_{max} \in L\}$.

La ventaja de este método está en que el resultado óptimo está garantizado, pues se pueden comparar todos los resultados entre sí y elegir el mejor. El problema es que, como se mencionó, la función f es costosa de evaluar, y por otro lado el número de combinaciones posibles escala exponencialmente con cada hiperparámetro extra a optimizar (además se debe tener en cuenta que la semilla $\hat{\Lambda}_0$ tendrá generalmente más de una dimension).

Por estas razones la búsqueda exhaustiva no será un método viable en la mayoría de los casos que son de interés para este trabajo. Sin embargo se puede poner a prueba con casos simplificados para luego comparar los resultados con otros métodos más eficaces.

Por ejemplo, para un conjunto de entrenamiento con cincuenta ondas equidistantes en el espacio del parámetro unidimensional q:1 < q < 8, se quiere optimizar el error de representación para un conjunto de validación con mil ondas. Los hiperparámetros

Figura 3.3: Variación de la semilla q_0 para distintas combinaciones de (n_{max}, l_{max})

a optimizar son $\mathbf{x} = (n_{max}, l_{max}, \hat{\Lambda}_0)$, dejando ε fijo en 1×10^{-12} para simplificar la búsqueda, que se realiza en los siguientes intervalos:

$$n_{max} \in [5, 20],$$

$$l_{max} \in [1, 10],$$

$$\hat{\Lambda}_0 \in \{q_0 \mid q_0 = 1 + i\Delta q, \ i \in \mathbb{N} : 0 \le i \le 49, \ \Delta q = 7/49\}.$$

Son 16 valores de n_{max} , 10 valores de l_{max} y 50 para q_0 ($\hat{\Lambda}_0 = q_0$). Lo que hace un total de 8000 combinaciones posibles.

Si bien no se puede graficar el error en función de los tres hiperparámetros a la vez, se puede obtener bastante información al dejar fijo uno o dos hiperparámetros. Por ejemplo en la figura 3.3 se ven los resultados de variar únicamente la semilla para diferentes combinaciones de n_{max} y l_{max} . Se observa que en este conjunto de datos la semilla suele ser óptima a valores cercanos a $q_0 = 8$, pero a la vez al aumentar el n_{max} la influencia de la semilla es menor; con $(n_{max}, l_{max}) = (20, 4)$ hay una diferencia de un orden de magnitud entre la mejor y la peor semilla, mientras que con $(n_{max}, l_{max}) = (10, 9)$, por ejemplo, hay una diferencia de diez ordenes de magnitud.

Luego, en la figura 3.4 se observa el error de validación en función de las combinaciones posibles de n_{max} y l_{max} para tres diferentes semillas. A la derecha, con $q_0 = 8$ se observa el mejor error de representación obtenido en la búsqueda exhaustiva, con un

3.3 Resultados 19

Figura 3.4: Máximo error de validación en función de n_{max} y l_{max} para tres diferentes semillas q_0 .

valor de 4×10^{-30} (el cual se obtuvo para 16 combinaciones de hiperparámetros), casi 15 ordenes de magnitud menor que el siguiente mejor error.

Figura 3.5: Comparación de convergencia. Se muestran los cuartiles para 20 optimizaciones realizadas, en cada caso.

3.3.2. Semilla 2D: Optimización Completa

3.3.3. Importancia de los Hiperparámetros

Figura 3.6: caption

Figura 3.7: option

3.3 Resultados 21

Figura 3.8: caption

Figura 3.9: caption

Bibliografía

- [1] Varma, V., Field, S. E., Scheel, M. A., Blackman, J., Kidder, L. E., Pfeiffer, H. P. Surrogate model of hybridized numerical relativity binary black hole waveforms. *Physical Review D*, **99** (6), mar 2019. 1
- [2] Hesthaven, J. S., Gottlieb, S., Gottlieb, D. Spectral Methods for Time-Dependent Problems. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2007. 4
- [3] Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., de Freitas, N. Taking the human out of the loop: A review of bayesian optimization. *Proceedings of the IEEE*, **104** (1), 148–175, 2016. 13
- [4] Brochu, E., Cora, V. M., de Freitas, N. A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning, 2010. URL https://arxiv.org/abs/1012.2599. 13, 16
- [5] Dewancker, I., McCourt, M., Clark, S. Bayesian optimization primer, 2015. URL https://app.sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf. 13
- [6] Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B. Algorithms for hyper-parameter optimization. En: J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, K. Weinberger (eds.) Advances in Neural Information Processing Systems, tomo 24. Curran Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf. 13, 16
- [7] Feurer, M., Hutter, F. Hyperparameter Optimization, págs. 3–33. Cham: Springer International Publishing, 2019. URL https://doi.org/10.1007/ 978-3-030-05318-5_1. 14
- [8] Jones, D. A taxonomy of global optimization methods based on response surfaces. J. of Global Optimization, 21, 345–383, 12 2001. 17

Publicaciones asociadas

- 1. Mi primer aviso en la revista ABC, 1996
- 2. Mi segunda publicación en la revista ABC, 1997

Agradecimientos

A todos los que se lo merecen, por merecerlo