Pattern Recognition - Fall 2024

Homework 2

Due date: Tuesday, December 10, 2024

1. (20 %) Maximum Likelihood Estimation

Given the samples x_1, x_2, \ldots, x_n drawn independently from a Bernoulli experiment with

$$P(x = 1) = \theta,$$

$$P(x = 0) = 1 - \theta.$$

- (a) Find the maximum likelihood estimate of θ .
- (b) Is the maximum likelihood estimate unbiased? Please justify your answer.

2. (20 %) Bayesian Parameter Estimation

The form of an unknown density is assumed to be exponential, i.e.,

$$p(x|\theta) = \begin{cases} \theta e^{-\theta x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

where the value of θ is not known exactly. The prior density $p(\theta)$ is

$$p(\theta) = \begin{cases} \lambda e^{-\lambda \theta} & \theta \ge 0\\ 0 & \theta < 0 \end{cases}$$

Given the samples x_1, x_2, \ldots, x_n drawn independently from $p(x|\theta)$, what is the maximum a posteriori estimator of θ ?

3. (30 %) Principal Component Analysis

Table 1 shows three-dimensional data sampled from three categories. Project these three-dimensional data onto a two-dimensional subspace using Principal Component Analysis (PCA).

- (a) Determine the scatter matrix.
- (b) Determine the two largest eigenvalues of the scatter matrix and the corresponding eigenvectors.
- (c) Plot the projected data points on the two-dimensional subspace.
- (d) Assume that the prior probabilities are equal and the class-conditional probability density functions are normal. For each category, the mean vector and the covariance matrix are given by

$$\boldsymbol{\mu} = \frac{1}{10} \sum_{k=1}^{10} \mathbf{x}_k$$

$$\boldsymbol{\Sigma} = \frac{1}{10} \sum_{k=1}^{10} (\mathbf{x}_k - \boldsymbol{\mu}) (\mathbf{x}_k - \boldsymbol{\mu})^t$$

where \mathbf{x}_k denotes the k-th samples in that category. Calculate the percentage of misclassified samples in the two-dimensional subspace.

1

4. (30 %) Fisher Linear Discriminant

Table 1 shows three-dimensional data sampled from three categories. Project these three-dimensional data onto a two-dimensional subspace using Fisher Linear Discriminant.

- (a) Determine the within-class scatter matrix S_W and the between-class scatter matrix S_B .
- (b) Determine the two largest eigenvalues of $\mathbf{S}_W^{-1}\mathbf{S}_B$ and the corresponding eigenvectors.
- (c) Plot the projected data points on the two-dimensional subspace.
- (d) Assume that the prior probabilities are equal and the class-conditional probability density functions are normal. For each category, the mean vector and the covariance matrix are given by

$$\boldsymbol{\mu} = \frac{1}{10} \sum_{k=1}^{10} \mathbf{x}_k$$

$$\boldsymbol{\Sigma} = \frac{1}{10} \sum_{k=1}^{10} (\mathbf{x}_k - \boldsymbol{\mu}) (\mathbf{x}_k - \boldsymbol{\mu})^t$$

where \mathbf{x}_k denotes the k-th samples in that category. Calculate the percentage of misclassified samples in the two-dimensional subspace.

Table 1: Three-dimensional data sampled from three categories.

		ω_1			ω_2			ω_3	
sample	x_1	x_2	x_3	x_1	x_2	x_3	x_1	x_2	x_3
1	0.42	-0.087	0.58	-0.4	0.58	0.089	0.83	1.6	-0.014
2	-0.2	-3.3	-3.4	-0.31	0.27	-0.04	1.1	1.6	0.48
3	1.3	-0.32	1.7	0.38	0.055	-0.035	-0.44	-0.41	0.32
4	0.39	0.71	0.23	-0.15	0.53	0.011	0.047	-0.45	1.4
5	-1.6	-5.3	-0.15	-0.35	0.47	0.034	0.28	0.35	3.1
6	-0.029	0.89	-4.7	0.17	0.69	0.1	-0.39	-0.48	0.11
7	-0.23	1.9	2.2	-0.011	0.55	-0.18	0.34	-0.079	0.14
8	0.27	-0.3	-0.87	-0.27	0.61	0.12	-0.3	-0.22	2.2
9	-1.9	0.76	-2.1	-0.065	0.49	0.0012	1.1	1.2	-0.46
10	0.87	-1.0	-2.6	-0.12	0.054	-0.063	0.18	-0.11	-0.49