# Brief Article

The Author

January 11, 2014

# 1 Task Knowledge

# 2 Inference Knowledge

As inference model we use a modified version of the Configuration design template, because given predefined components we need to find and assembly that satisfies the requirements. The inference model deriving from this task can be found in Figure 1.



Figure 1: Inference structure

| inference   | Input               | Output               | Description                               |
|-------------|---------------------|----------------------|-------------------------------------------|
| specify     | requirements        | sketal design        | the function look-<br>up the default ske- |
|             |                     |                      | tal design: the ba-                       |
|             |                     |                      | sic structure of a                        |
|             |                     |                      | trip day (heavy ac-                       |
|             |                     |                      | tivity during the                         |
|             |                     |                      | morning, relaxing                         |
|             |                     |                      | afternoon, evening and meal).             |
| optionalize | needs of the cus-   | preferences, re-     | the needs and de-                         |
|             | tomers              | quirements, con-     | sires are translated                      |
|             |                     | straints             | into preferences ("I                      |
|             |                     |                      | would like to have                        |
|             |                     |                      | time for shopping                         |
|             |                     |                      | and visit many                            |
|             |                     |                      | cultural places. I am not interested      |
|             |                     |                      | so much in food                           |
|             |                     |                      | places"), require-                        |
|             |                     |                      | ments ("I want a                          |
|             |                     |                      | quiet trip") and                          |
|             |                     |                      | contraints ("In                           |
|             |                     |                      | Rome I want to                            |
|             |                     |                      | visit the Colosseum                       |
|             |                     |                      | and avoid Piazza                          |
|             |                     |                      | di Spagna").                              |
| propose     | preferences and re- | filled sketal design | fill the slots of the                     |
|             | quirements, sketal  |                      | sketal design with                        |
|             | design slots        |                      | locations that fits                       |
|             |                     |                      | the preferences and                       |
|             |                     |                      | requirements.                             |

| verify   | contraints, exten-    | the list of violated | it checks with                        |
|----------|-----------------------|----------------------|---------------------------------------|
|          | sion design           | contraints           | the help of the internal contraints   |
|          |                       |                      |                                       |
|          |                       |                      | and those sup-<br>plied by the user   |
|          |                       |                      | whether the cur-                      |
|          |                       |                      | rent configuration                    |
|          |                       |                      | is internally con-                    |
|          |                       |                      | sistent. If the                       |
|          |                       |                      | verification fails,                   |
|          |                       |                      | it produces the                       |
|          |                       |                      | violated contraints                   |
|          |                       |                      | as an additional                      |
|          |                       |                      | output                                |
| select   | fix actions list      | fix action           | It simply selects an                  |
|          |                       |                      | action from the fix                   |
|          |                       |                      | actions list gener-                   |
|          |                       |                      | ated by the critique                  |
|          |                       |                      | function.                             |
| modify   | itinerary design, fix | fixed itinerary de-  | it applies the fix ac-                |
|          | actions list          | sign                 | tions to the design.                  |
| critique | itinerary, viola-     | fix actions list     | it creates a series of                |
|          | tions, customer's     |                      | actions which will                    |
|          | inputs                |                      | fix the violations                    |
|          |                       |                      | of the contraints,                    |
|          |                       |                      | following also the customer's inputs. |
|          |                       |                      | For example the                       |
|          |                       |                      | contraint "I abso-                    |
|          |                       |                      | lutely want to visit                  |
|          |                       |                      | the Colosseum"                        |
|          |                       |                      | will produce the                      |
|          |                       |                      | action "Insert the                    |
|          |                       |                      | Colosseum into the                    |
|          |                       |                      | itinerary".                           |

# 3 Domain knowledge

# 3.1 Domain schema

The domain schema can be found in Figure 2  $\,$ 

This schema seems complicated, for this reason every model is explained in the following list:

#### Client

The client who goes to the travel agency. He could be a quite person who normally wants to visit a lot of things or very few (*dynamic*). The clients are categorized by their age because some locations are not suitable for a people category (ex: elderly people in a climbing location).

#### **Preference**

Each client needs to specify a list of preferences, valued from 1 to 5, where 1 is "I'm not so interested" and 5 is "I love to do it!". These preferences are related to the itinerary we want to create, consequently if the same clients wants to create another itinerary, it will specify again all the preferences he wants in this second trip.

#### Contraint

Each client needs to specify a list of contraints that have to be fulfilled. As for the *Preference*, they are related to the single itinerary.

#### **Itinerary**

This represents the itinerary we want to create. It is composed by a fixed number of Day and it is related to a Client who has specified his own list of Contraint and Preference. If there will be kids in the itinerary, the system needs to select some Location that could entertain them. This is a requirement as the needsFreeTime attribute, which specifies that the clients needs to have some not scheduled time in the arrival city.

The method *selectLocation* takes a list of *Preference* and produces a list of *Location* that could fit this preferences.

# Day

This describes a day of the itinerary.

#### Timeslot

A timeslot is a fixed part of a day. The division of the day came from the expert interview.

#### Location

This model represents the point of interests that a customer could visit. The attribute rating describes the quality of this place, intensive describes if the place is not for quite people and excludedCategory specifies if a client category is not suitable for the location (ex: elderly people in a climbing location). The method distance takes two locations and returns the distance between them. It is useful in order to create the combination of locations to visit during a trip.

#### 3.2 Rule types

## Listing 1: Rules

```
RULE TYPE constraint-rule;
    DESCRIPTION: "rule stating the relation between client and
       the choice for a location in the itinerary, by means of
       defining strict boundaries that must be respected.";
ANTECEDENT: Client;
CONSEQUENT: Itinerary;
CONNECTION-SYMBOL: restricts;
END RULE-TYPE constraint-rule;
RULE TYPE requirement-rule;
    DESCRIPTION: "rule stating the relation between the client
       and the choice for a location in the itinerary, by means
        of defining boundaries that should be respected.";
ANTECEDENT: Client;
CONSEQUENT: Itinerary;
CONNECTION-SYMBOL: requires;
END RULE-TYPE requirement-rule;
RULE TYPE preference-rule;
    DESCRIPTION: "rule stating the relation between the client
       and the choice for a location in the itinerary, by means
        of defining preferences that could be satisfied with
       probability X (calculated on the input values) .";
ANTECEDENT: Client;
CONSEQUENT: Itinerary;
CONNECTION-SYMBOL: prefers-with-probability;
END RULE-TYPE preference-rule;
Here are presented also some example in order to better understand all the rule types.
```

There are presented also some example in order to better understand an the ru

## Listing 2: The client wants to include a destination into the itinerary.

```
client.constraint.location.name=A AND client.constraint.type=
  include
RESTRICTS
```

∃itinerary.day.timeslot, timeslot.location.name=A;

## Listing 3: The client is a quite person

```
client.quiet=true, client.needsFreeTime=true, client.active=1 REQUIRES itinerary.day.timeslot.location, location.intensive=false; itinerary.day.timeslot, timeslot.location=NULL; \sum_{i=1}^{n-1} i.distance(i+1) < \delta, \ \forall i \in location;
```

Listing 4: The client expresses four preferences with four ranges (from 1 to 5). The method selectLocation will compose the itinerary selecting the locations that fits the preferences. For example it could select 3 shopping 1 gastronomy and 1 cultural locations.

```
Var A, B, C, D: client.preference;
Var E: client.constraint;
A.type=shopping AND A.range=x
B.type=cultural AND B.range=y
C.type=gastronomy AND C.range=w
D.type=nightlife AND D.range=z
E.type = avoid AND E.location = Coluseum
PREFERS-WITH-PROBABILITY
Vitinerary.day.timeslot, timeslot.location=selectLocation(A, B, C, D, E);
```

# 3.3 Knowledge Base

## 4 Scenarios



Figure 2: Domain schema



Figure 3: Knowledge base