Projet DDWS

Job 1:

- Installer Oracle VM VirtualBox
- télécharger une image ISO Debian 11.
- installer l'OS debian 11 sur la VM

Job 2:

- installation Shh (Sudo apt-get install openssh-server)
- Mettre à jour le système (sudo apt update && apt upgrade)
- Installer Apache2 (sudo apt install apache2)

Job 3:

Serveur Apache, avantage,

- Open-source et gratuit même pour un usage commercial.
- Logiciel fiable et stable.
- Mise à jour régulière, correctifs de sécurité réguliers.
- Flexible grâce à sa structure basée sur des modules.
- Facile à configurer, adapté aux débutants.
- Plateforme-Cross (fonctionne sur les serveurs Unix et Windows).
- Fonctionne avec les sites WordPress.
- Grande communauté et support disponible en cas de problème.

Serveur Apache, inconvénient,

- Problèmes de performances sur les sites web avec un énorme trafic.
- Trop d'options de configuration peuvent mener à la vulnérabilité de la sécurité.

Serveur Nginx, avantage,

- Vitesse Nginx sert du contenu statique environ 2,5 fois plus rapidement qu'Apache. Il s'agit là d'une grande différence de vitesse.
- S'adapte mieux qu'Apache Nginx gère mieux le trafic élevé qu'Apache, une autre raison pour laquelle il est plus rapide.
- Nécessite moins de ressources En raison du fonctionnement de Nginx, il nécessite moins de mémoire, ce qui peut vous aider à économiser sur les coûts d'hébergement.

Serveur Nginx, inconvénients,

- Options limitées Peu d'hébergeurs offrent la prise en charge de Nginx, vous avez donc moins de plans à disponibles sous Nginx.
- Communauté moins développée Apache a une énorme communauté et des tonnes de modules qui facilitent l'obtention d'une assistance pour faire à peu près n'importe quoi.
- Une moins bonne option pour servir du contenu dynamique Nginx utilise un logiciel tiers pour gérer les demandes de contenu dynamique. Dans certains cas, il peut fonctionner moins bien qu'Apache.

Job 4:

- Dans /etc/hosts ajouter une ligne ""adresse IP" dsnproject.prepa.com" avec la commande sudo nano /etc/hosts
- Dans /etc/resolv.conf ajouter une ligne ""nameserveradresse IP" dsnproject.prepa.com"

Job 5:

Le nom de domaine est l'adresse de votre site que les gens vont devoir taper dans leur navigateur web afin d'accéder à votre site Internet. Pour obtenir un nom de domaine il faut :

- choisir un bureau d'enregistrement de noms de domaine accrédité
- trouver le bon nom de domaine, y compris le domaine de premier niveau
- vérifier la disponibilité de l'adresse avec Domain Check
- commande ou enregistrement du nom de domaine
- vérifier la validité du nouveau domaine

Job 6:

installer bind9 (sudo apt-get install bind9) editer le dossier named.conf.local

(sudo nano named.conf.local)

éditer le fichier direct (sudo cp db.local direct) (sudo nano direct)

editer le fichier inverse (sudo cp direct inverse) (sudo nano inverse)

ensuite restart le service bind9 (sudo service bind9 restart)

Job 7:

- apt-get install isc-dhcp-server
- Sauvegarde du fichier de configuration par défaut : cp /etc/dhcp/dhcpd.conf /etc/dhcp/dhcpd.conf-bak
- Édition du fichier de configuration du service : nano /etc/dhcp/dhcpd.conf ajouter à la fin :

```
subnet 192.168.1.0 netmask 255.255.255.0 {
range 192.168.1.2 192.168.1.50;
option domain-name-servers 192.168.1.1;
option domain-name
"dnsproject.prepa.com"; option
netbios-name-servers 192.168.1.1;
option routers 192.168.1.1;
option subnet-mask 255.255.255.0;
```

```
option broadcast-address 192.168.1.255;
default-lease-time 86400;
max-lease-time 676800;
}
```

- redémarrer : systemctl restart isc-dhcp-serve

Job 8: (en NAT)

- sur nano /etc/network/interfaces :

auto lo

The loopback network
interface iface lo inet loopback
#carte vers la box
auto ens33
iface ens33 inet
static address
192.168.0.1
network 192.168.0.0
netmask 255.255.255.0
gateway 192.168.0.254
#post-up iptables-restore < /etc/iptables.save # (ligne à décommenter plus tard)

#carte vers le LAN auto ens34 iface ens34 inet static address 192.168.1.1 network 192.168.1.0 netmask 255.255.255.0

- prise en compte des modification : /etc/init.d/networking start
- modification du fichier /etc/sysctl.conf pour dé-commenter :

Uncomment the next line to enable packet forwarding for IPv4 net.ipv4.ip_forward=1

- prise en compte des modification : sysctl -p
- Mise en place du protocole NAT sur ens33
 iptables -t nat -A POSTROUTING -o ens33 -j MASQUERADE
 - Sauvegarde de cette modification :

iptables-save > /etc/iptables.save

- Édition de /etc/network/interfaces

Décommenter la ligne suivante :

post-up iptables-restore < /etc/iptables.save

- Au prochain démarrage du système :
- iptables -L -t nat
 - sur les VM reliés à la passerelle ajouter en Gateway 192.168.1.1

Job 9:

- installer le pare-feu : apt-get update && apt install ufw
- On met en route le pare-feu : ufw enable
- Pour interdire le ping il faut commenter la ligne suivante dans le fichier /etc/ufw/before.rules :
 - -A ufw-before-input -p icmp --icmp-type echo-request -j ACCEPT
- appliquer les changements : ufw disable && ufw enable

Job 10:

- installer Samba : apt install samba
- éditer fichier de configuration Samba /etc/samba/smb.conf

```
: [partage]
comment = Partage de données
path = /srv/partage
guest ok = no
read only = no
browseable =
yes
valid users = @partage
```

- on redémarre samba : systemctl restart smbd*
- Le groupe "partage" que nous avons déclaré dans la configuration n'existe pas. Nous allons créer le groupe avec la commande : groupadd partage
- créer les diverse utilisateurs avec la commande : adduser
- lui attribuer un mot de passe avec la commande : smbpasswd -a ="username"
- ajouter les utilisateurs aux groupes avec la commande : gpasswd
 -a "username" partage
- Le partage sera hébergé à l'emplacement "/srv/partage" du serveur.
- Créer le dossier : mkdir /srv/partage
- groupe "partage comme propriétaire du dossier : chgrp -R partage /srv/partage/
- ajouter droit écriture et lecture au groupe : chmod -R g+rw /srv/partage/

Pour aller plus loin:

- Activer le module SSL : a2enmod ssl
- Activer le module headers : a2enmod hearder (le module hearders permet d'activer la directive HSTS.)
- redémarrer le service : seystemetl restart apache2
- Création du répertoire qui contiendra le certificat SSL : mkdir /etc/ssl/dnsproject.prepa.com/
- Déclarer VirtualHosts pour le HTTPS; pour accéder à votre site en HTTPS il faut créer un VirtualHost dédié, pour cela :

```
Dans /etc/apache2/sites-available : dupliquer fichier de configuration "000-default.conf en 000-default-ssl.conf" avec : cp 000-default.conf 000-default-ssl.conf
Modifiez le fichier dupliqué, remplacez le port 80 du VirtualHost par le port 443 : <VirtualHost *:80> → <VirtualHost *:443>
```

Ajoute les instructions suivantes avant le

</VirtualHost> SSLEngine On

SSLProtocol All -SSLv3 -SSLv2

SSLCipherSuite HIGH:!aNULL:!MD5:!ADH:!RC4:!DH

SSLHonorCipherOrder on

SSLCertificateFile "/etc/ssl/votre-domaine-fr/www.dnsproject.prepa.com.cer"

SSLCertificateKeyFile

"/etc/ssl/votre-domaine-fr/www.dnsproject.prepa.com.key"

Header always set Strict-Transport-Security "max-age=15768000"

- activer VirtualHost: a2ensite nom-du-vhost-ssl
- redémarrer le service : systemetl restart apache2

Lorsque vous achetez un certificat SSL "traditionnel", vous savez qu'il a été signé par une autorité de certification réputée. En revanche, un certificat auto-signé n'est pas signé par une autorité comme SSL ou TLS ; il est créé, mis en œuvre et signé par un développeur de logiciels tiers.

Le certificat est auto-signé, il n'est donc pas reconnu comme étant suffisamment sécurisé.