Geometry

Abdulkareem Al-salem

May 2023

Problem. A triangle \triangle ABC is given. M is the midpoint of segment BC. Let circle with diameter BC (ω) intersect AB, AC at F, E other than B, C respectively. The median AM meets ω at K, E where E is closer to E than E are intersections of line E with tangents to E at E at E at E at E at E respectively. If the perpendicular line passing through E to E met the median at E, show that E at E and E at E at

Figure 1: A is moving on the fixed median WOW!

My Solution. Fix segment BC. The circle $\odot(M,MC)$ is fixed, so let us also fix the whole median AM, thus fixing points K and L. Now we suppose that A is moving along the median with degree degA = 1, and projecting A through C gives us E and since C is fixed and degA = 1 then degE is at most $2 \times degA = 2$. Similarly with F, then degEF is at most degE + degF - 1 = 3, thus degQ is at most $degEF + degl_k - 1 = 2$ (where l_k is the tangent from K which is fixed). We will prove that X, Q and A are collinear (supposing that X is the fixed intersection of tangent at L with BC), it suffices to check degX + degQ + degA + 1 which is at most 4 placements of A which is the easiest when:

- \bullet A = K
- \bullet A = L
- \bullet A=M
- A = infinity point of direction KL

Left to check by the reader.

Now we have a better definition of X and Y; they are not other than the intersections of tangents from K and L to our circle centered at M. By the butterfly theorem on chords KL, KL and BC of midpoint M, M is also the midpoint of XY, and now it is trivial to show that $\triangle MLX$ and $\triangle MBZ$ are congruent and thus MX = MY = MZ and then the result of $\angle XZY = 90$ is obtained. \square