Towards finiteness for mapping class group representations from group-theoretical categories

Paul Gustafson

Preliminary Exam May 2016

Definition of the mapping class group

• Let $\Sigma = \Sigma_{g,b}^m$ be the oriented compact surface of genus g with b boundary components and m marked points in its interior.

Definition of the mapping class group

- Let $\Sigma = \Sigma_{g,b}^m$ be the oriented compact surface of genus g with b boundary components and m marked points in its interior.
- The mapping class group of Σ , $MCG(\Sigma)$, is the group of isotopy classes of orientation-preserving homeomorphisms of Σ that preserve the boundary *pointwise* and preserve the marked points *setwise*.

Definition of the mapping class group

- Let $\Sigma = \Sigma_{g,b}^m$ be the oriented compact surface of genus g with b boundary components and m marked points in its interior.
- The mapping class group of Σ , $MCG(\Sigma)$, is the group of isotopy classes of orientation-preserving homeomorphisms of Σ that preserve the boundary *pointwise* and preserve the marked points *setwise*.
- Examples
 - $MCG(\Sigma_{0,1}^m) = B_m$
 - $MCG(\Sigma_{1,0}^0) = SL(2,\mathbb{Z})$

Introduction to the problem

• In 2008, Etingof, Rowell, and Witherspoon [?erw] showed that the braid group representation associated to the modular category $\operatorname{Mod}(D^{\omega}(G))$ has finite image.

Introduction to the problem

- In 2008, Etingof, Rowell, and Witherspoon [?erw] showed that the braid group representation associated to the modular category $\operatorname{Mod}(D^{\omega}(G))$ has finite image.
- They also asked if, more generally, all mapping class group representations associated to $Mod(D^{\omega}(G))$ have finite image.

Introduction to the problem

- In 2008, Etingof, Rowell, and Witherspoon [?erw] showed that the braid group representation associated to the modular category $\operatorname{Mod}(D^{\omega}(G))$ has finite image.
- They also asked if, more generally, all mapping class group representations associated to $Mod(D^{\omega}(G))$ have finite image.
- In this talk, I'll work through the genus 2 case.

Other Related Work

Theorem (Ng-Schauenberg [?Ng2010])

Every modular representation associated to a modular category has finite image.

Other Related Work

Theorem (Ng-Schauenberg [?Ng2010])

Every modular representation associated to a modular category has finite image.

Theorem (Fjelstad–Fuchs [?fjfu])

Every mapping class group representation of a closed surface with at most one marked point associated to Mod(D(G)) has finite image.

Other Related Work

Theorem (Ng–Schauenberg [?Ng2010])

Every modular representation associated to a modular category has finite image.

Theorem (Fjelstad-Fuchs [?fjfu])

Every mapping class group representation of a closed surface with at most one marked point associated to Mod(D(G)) has finite image.

- Fjelstad and Fuchs use Lyubashenko's method of constructing projective representations of mapping class groups from factorizable ribbon Hopf algebras (in this case D(G)).
- We will use a different construction due to Kirillov. In our case, this
 construction corresponds to the twisted Dijkgraaf-Witten theory.

Outline

Input data

Figure: A genus 2 surface Σ as a quotient of its fundamental polygon. Image source: Hatcher's *Algebraic Topology*.

ullet Oriented closed surface Σ of genus 2

Input data

Figure: A genus 2 surface Σ as a quotient of its fundamental polygon. Image source: Hatcher's *Algebraic Topology*.

- ullet Oriented closed surface Σ of genus 2
- Finite group G

Input data

Figure: A genus 2 surface Σ as a quotient of its fundamental polygon. Image source: Hatcher's *Algebraic Topology*.

- ullet Oriented closed surface Σ of genus 2
- Finite group *G*
- Normalized 3-cocycle $\omega : G \times G \times G \to U(1)$.

Generators for the mapping class group

• A theorem of Lickorish [?lickorish1964finite] implies that $MCG(\Sigma)$ is generated by the Dehn twists $T_a, T_b, T_c, T_d, T_{a^{-1}d}$.

Figure: A Dehn twist with respect to the red curve. Image source: Wikipedia article on Dehn twists.

 Using Kirillov's definitions [?kirillovStringNets], the representation space is

$$H:=\frac{\mathsf{Vect}_{\textit{G}}^{\omega}\text{-colored graphs in }\Sigma}{\mathsf{local relations}}$$

 Using Kirillov's definitions [?kirillovStringNets], the representation space is

$$H:=\frac{\mathsf{Vect}_{\textit{G}}^{\omega}\text{-colored graphs in }\Sigma}{\mathsf{local relations}}$$

• The vector space H is canonically isomorphic to the Turaev-Viro state sum vector space associated to Σ [?kirillovStringNets]. This isomorphism should commute with the mapping class group action.

 Using Kirillov's definitions [?kirillovStringNets], the representation space is

$$H:=\frac{\mathsf{Vect}_{\textit{G}}^{\omega}\text{-colored graphs in }\Sigma}{\mathsf{local relations}}$$

- The vector space H is canonically isomorphic to the Turaev-Viro state sum vector space associated to Σ [?kirillovStringNets]. This isomorphism should commute with the mapping class group action.
- The Drinfel'd center $\mathcal{Z}(\operatorname{Vect}_G^\omega)$ is braided monoidally equivalent to $\operatorname{Mod}(D^\omega(G))$ (well-known according to [?0704.0195]).

 Using Kirillov's definitions [?kirillovStringNets], the representation space is

$$H := \frac{\mathsf{Vect}_{G}^{\omega}\text{-colored graphs in }\Sigma}{\mathsf{local relations}}$$

- The vector space H is canonically isomorphic to the Turaev-Viro state sum vector space associated to Σ [?kirillovStringNets]. This isomorphism should commute with the mapping class group action.
- The Drinfel'd center $\mathcal{Z}(\operatorname{Vect}_G^\omega)$ is braided monoidally equivalent to $\operatorname{Mod}(D^\omega(G))$ (well-known according to [?0704.0195]).
- Hence, the mapping class group representation on H should be equivalent to the mapping class group representation associated to $\operatorname{Mod}(D^{\omega}(G))$ by the Reshitikhin-Turaev construction [?1012.0560, preprint].

The spherical category $\mathsf{Vect}^\omega_{\mathsf{G}}$

- The spherical fusion category Vect_G^ω is the category of G-graded finite-dimensional vector spaces with the following modified structural morphisms from [?math/0601012], where V_g is the simple object:
 - ullet The associator $a_{g,h,k}: (V_g \otimes V_h) \otimes V_k
 ightarrow V_g \otimes (V_h \otimes V_k)$

$$a_{g,h,k} = \omega(g,h,k)$$

 \bullet The evaluator $\textit{ev}_{\textit{g}}:\textit{V}_{\textit{g}}^*\otimes\textit{V}_{\textit{g}}\rightarrow 1$

$$ev_g = \omega(g^{-1}, g, g^{-1})$$

ullet The pivotal structure $j_g:V_g^{**} o V_g$

$$j_{\mathsf{g}} = \omega(\mathsf{g}^{-1}, \mathsf{g}, \mathsf{g}^{-1})$$

- Let A be a spherical category (in our case, $A = \text{Vect}_G^{\omega}$).
- Let $\Gamma \subset \Sigma$ be an undirected finite graph embedded in Σ .

- Let A be a spherical category (in our case, $A = \text{Vect}_G^{\omega}$).
- Let $\Gamma \subset \Sigma$ be an undirected finite graph embedded in Σ .
- Define E^{or} to be the set of orientation edges of Γ, i.e. pairs
 e = (e, orientation of e); for such an oriented edge e, we denote by ē
 the edge with opposite orientation.

- Let \mathcal{A} be a spherical category (in our case, $\mathcal{A} = \text{Vect}_{\mathcal{C}}^{\omega}$).
- Let $\Gamma \subset \Sigma$ be an undirected finite graph embedded in Σ .
- Define E^{or} to be the set of orientation edges of Γ , i.e. pairs $\mathbf{e} = (e, \text{ orientation of } e)$; for such an oriented edge \mathbf{e} , we denote by $\bar{\mathbf{e}}$ the edge with opposite orientation.
- A coloring of Γ is the following data:
 - Choice of an object $V(\mathbf{e}) \in \text{Obj } \mathcal{A}$ for every oriented edge $\mathbf{e} \in E^{or}$ so that $V(\bar{\mathbf{e}}) = V(\mathbf{e})^*$.

- Let \mathcal{A} be a spherical category (in our case, $\mathcal{A} = \text{Vect}_{\mathcal{G}}^{\omega}$).
- Let $\Gamma \subset \Sigma$ be an undirected finite graph embedded in Σ .
- Define E^{or} to be the set of orientation edges of Γ , i.e. pairs $\mathbf{e} = (e, \text{ orientation of } e)$; for such an oriented edge \mathbf{e} , we denote by $\bar{\mathbf{e}}$ the edge with opposite orientation.
- A coloring of Γ is the following data:
 - Choice of an object $V(\mathbf{e}) \in \text{Obj } \mathcal{A}$ for every oriented edge $\mathbf{e} \in E^{or}$ so that $V(\bar{\mathbf{e}}) = V(\mathbf{e})^*$.
 - Choice of a vector $\varphi(v) \in \operatorname{Hom}_{\mathcal{A}}(1, V_1 \otimes \cdots \otimes V_n)$ for every interior vertex v, where $\mathbf{e}_1, \dots, \mathbf{e}_n$ are edges incident to v, taken in counterclockwise order and with outward orientation.

Local relations

• Isotopy of the graph embedding

Local relations

- Isotopy of the graph embedding
- Linearity in the vertex colorings

Local relations

- Isotopy of the graph embedding
- Linearity in the vertex colorings

Figure: The remaining local relations. Image source: [?kirillovStringNets].

Consequences of the local relations

Figure: Additivity in edge colorings. Here φ_1, φ_2 are compositions of φ with projector $X_1 \oplus X_2 \to X_1$ (respectively, $X_1 \oplus X_2 \to X_2$), and similarly for ψ_1, ψ_2 . Image source: [?kirillovStringNets].

Additivity in edge colorings

Consequences of the local relations

Figure: Additivity in edge colorings. Here φ_1, φ_2 are compositions of φ with projector $X_1 \oplus X_2 \to X_1$ (respectively, $X_1 \oplus X_2 \to X_2$), and similarly for ψ_1, ψ_2 . Image source: [?kirillovStringNets].

- Additivity in edge colorings
- A colored graph may be evaluated on any disk $D \subset S$, giving an equivalent colored graph Γ' such that Γ' is identical to Γ outside of D, has the same colored edges crossing ∂D , and contains at most one colored vertex within D.

A spanning set for the representation space

Figure: The spanning set S consists of all such colored graphs, where the edge labels vary over all 4-tuples $g, h, k, l \in G$ satisfying [g, h][k, l] = 1 and $\varphi := \varphi_{g,h,k,l}$ is the canonical basis element of the one-dimensional space $\mathsf{Hom}(1,((\cdots((V_g\otimes V_h)\otimes V_\sigma^{-1})\otimes\cdots\otimes V_I^{-1}).$

Action of the Dehn twist T_a on the spanning set I

Figure: The dashed line is a simple closed curve isotopic to a.

Action of the Dehn twist T_a on the spanning set II

Figure: The result of the twist T_a .

Action of the Dehn twist T_a on the spanning set

Figure: Using the local relations.

Action of the Dehn twist T_a on the spanning set

Figure: The result. The map ψ differs from $\phi_{g,hg^{-1},k,l}$ by a product of factors in $\operatorname{Im}(\omega)$.

Action of the Dehn twist $T_{a^{-1}d}$ on the spanning set 1

Figure: The dashed line is a simple closed curve isotopic to $a^{-1}d$.

Action of the Dehn twist $T_{a^{-1}d}$ on the spanning set II

Figure: The result of the twist $T_{a^{-1}d}$.

Action of the Dehn twist $T_{a^{-1}d}$ on the spanning set III

Figure: Using the local relations.

Action of the Dehn twist $T_{a^{-1}d}$ on the spanning set IV

Figure: The result. Again, ψ differs from $\phi_{g,g^{-1}lh,g^{-1}lk,l}$ by a product of factors in $\operatorname{Im}(\omega)$.

Proposition

Let $\rho: \mathsf{MCG}(\Sigma) \to \mathsf{PGL}(H)$ be the representation defined above. Then $|\mathrm{Im}(\rho)| < \infty$.

Sketch of proof.

• For any k, let R denote the set of |G|-th roots of unity. Then ω is cohomologous to a cocycle taking values in R (follows from [?weibel1995introduction, Theorem 6.58]). Hence, WLOG ω takes values in R.

Proposition

Let $\rho: \mathsf{MCG}(\Sigma) \to \mathsf{PGL}(H)$ be the representation defined above. Then $|\mathrm{Im}(\rho)| < \infty$.

Sketch of proof.

- For any k, let R denote the set of |G|-th roots of unity. Then ω is cohomologous to a cocycle taking values in R (follows from [?weibel1995introduction, Theorem 6.58]). Hence, WLOG ω takes values in R.
- Let $L \subset MCG(\Sigma)$ be the Lickorish generating set. From the previous slides, $\rho(L)S \subset RS$. Hence $\rho(\mathsf{MCG}(\Sigma))S \subset RS$.

Proposition

Let $\rho: \mathsf{MCG}(\Sigma) \to \mathsf{PGL}(H)$ be the representation defined above. Then $|\mathrm{Im}(\rho)| < \infty$.

Sketch of proof.

- For any k, let R denote the set of |G|-th roots of unity. Then ω is cohomologous to a cocycle taking values in R (follows from [?weibel1995introduction, Theorem 6.58]). Hence, WLOG ω takes values in R.
- Let $L \subset MCG(\Sigma)$ be the Lickorish generating set. From the previous slides, $\rho(L)S \subset RS$. Hence $\rho(\mathsf{MCG}(\Sigma))S \subset RS$.
- Let $B \subset S$ be a basis for H. Then $\rho(\mathsf{MCG}(\Sigma))B \subset \rho(\mathsf{MCG}(\Sigma))S \subset RS.$

Proposition

Let $\rho: \mathsf{MCG}(\Sigma) \to \mathsf{PGL}(H)$ be the representation defined above. Then $|\mathrm{Im}(\rho)| < \infty$.

Sketch of proof.

- For any k, let R denote the set of |G|-th roots of unity. Then ω is cohomologous to a cocycle taking values in R (follows from [?weibel1995introduction, Theorem 6.58]). Hence, WLOG ω takes values in R.
- Let $L \subset MCG(\Sigma)$ be the Lickorish generating set. From the previous slides, $\rho(L)S \subset RS$. Hence $\rho(\mathsf{MCG}(\Sigma))S \subset RS$.
- Let $B \subset S$ be a basis for H. Then $\rho(\mathsf{MCG}(\Sigma))B \subset \rho(\mathsf{MCG}(\Sigma))S \subset RS.$
- Thus, $|\operatorname{Im}(\rho)| < \infty$.

Future Directions

• Explicitly calculate the representation for low order abelian groups (in particular \mathbb{Z}_3^3).

Future Directions

- Explicitly calculate the representation for low order abelian groups (in particular \mathbb{Z}_3^3).
- Add marked points using the Birman exact sequence.

Future Directions

- Explicitly calculate the representation for low order abelian groups (in particular \mathbb{Z}_3^3).
- Add marked points using the Birman exact sequence.
- Look at the simplest undetermined cases of weakly integral modular categories.

Acknowledgements

 Thanks to my advisor Eric Rowell, my father Robert Gustafson, and Zhenghan Wang for enlightening discussions.

Acknowledgements

- Thanks to my advisor Eric Rowell, my father Robert Gustafson, and Zhenghan Wang for enlightening discussions.
- Thanks for listening!

References I