OnDevice Deep Learning Inference

Compiled by Dr. Narasinga Rao Miniskar, Ph.D. Samsung R&D Institute India, Bangalore

SAMSUNG

Contents

- **Motivation**
- 02 Challenges
- Model Selection & Optimizations
- **O4** Acceleration on Computing Platforms
- 05 Frameworks
- 06 | Hands-on

Introduction: Deep Neural Networks

- Computation complexity: Convolution layers
- No. of operations: 600MOps to 40 Gops
- Heap memory requirement: ~10 500 MB

Motivation (1/2)

Deep Learning Inference on Cloud

- Privacy issues
- Lagging issues
- Huge data transfers

- Huge power consumption
- Maintenance issues
- Limited number of services

DL solutions for Vision problems have stringent real-time constraints

Motivation (2/2)

Challenges for Deep Learning Inference on Device

~0.4-1.8 TFlops

DRAM: ~500 MB

Float Operations

Power: ~100 Watts

- * GPU is reserved for rendering needs
- * Inference on Multi-Core ARM Neon CPUs

Challenges (Complex Topology Vs Operations)

of layers: ~20 - 500

- Sequential dependency of layers
- Single-input and single output Topology
- **Example DNNs: AlexNet, VGG**

0.2MB

- Single-input and Multi-output
- Multi-input and Single-output
- Multi-input and Multi-output
- **Example DNNs: GoogLeNet, etc.**
- Impact feature map buffer memory

Challenges (Memory)

Challenges (Computation)

- S9 provides ~80k DMIPS of CPU computation -> 2.4GOps in 30ms
- VGG-16 (~16GOps) -> 200ms/frame (Ideally) -> Reality (~800ms/frame)
- Mobilenet (~600MOps) -> 7.5ms/frame (Ideally) -> Reality (~45ms/frame)
- Challenges
 - Bandwidth restrictions
 (CPU -> I/DCache -> AXI -> DRAM)
 - Unavoidable cache misses

DNN Model Selection (Accuracy / Operations)

- Number of operations depends on input feature map size
- Future trend:
 - Operations: < ~100s MOps
 - Model parameters: < 5M
 - Accuracy: > 70% (Image classification)

Alfredo Canziani, et.al. "An Analysis of Deep Neural Network Models for Practical Applications", CoRR 2016

DNN Memory Optimization

↓B2

DNN Memory Optimization

3.5x to 26x memory reduction compared to Caffe/TensorFlow

Narasinga R M, et.al. SRIB, "Optimal SDRAM Buffer Allocator for Efficient Reuse of Layer IO in CNNs Inference Framework", ISCAS 2018

DNN Model optimizations (Redundancy Elimination)

SAMSUNG
© Samsung 2018

Eliminates redundant operations

- Results for ResNet-50
 - Operations reduction : ~23%
 - Memory accesses reduction: ~7%

Example: Convolution 1x1 Stride 2 movement to prior layer

Acceleration: Convolution using BLAS/GEMM

Acceleration: Input processing Exploration

Acceleration: Input processing Exploration

Depth-wise Vs Planar Exploration

DNN Inference in Fixed Point Arithmetic

What is Fixed Point Arithmetic?

Doing floating point computations using integer datatypes

Convolution Example in floating point

Scale input and kernel by 100 to convert to integers

Convolution in fixed point

Floating Point Vs Fixed Point

Why Fixed Point arithmetic ?

- Which one to select for DNNs?
 - DNNs do not need 32-bit floating point precision especially for inference
 - State of the art methods achieve comparable accuracy using even binary precision
 - Lesser precision leads to reduced memory accesses which is the major performance bottleneck in DNNs

Acceleration: Data reuse and Loop Unrolling Explorations 2018


```
int ** out = output[co];
int ** in = input[ci];
int ** wt = weight[co][ci];
for( int i=0; i<2; i++) {
  for( int j=0; j<2; j++) {
     out[ho][wo] += wt[i][i] * in[hi+i][wi+i];
                 Loop Unrolling
int ** out = output[co];
int ** in = input[ci];
int ** wt = weight[co][ci];
out[ho][wo] += wt[0][0] * in[hi][wi];
out[ho][wo] += wt[0][1] * in[hi][wi+1];
out[ho][wo] += wt[1][0] * in[hi+1][wi];
out[ho][wo] += wt[1][1] * in[hi+1][wi+1];
```

Acceleration: Data reuse and Loop Unrolling Explorations 2018

Data Reuse and Loop Unrolling Exploration (Example 5x5 Convolutions)

Acceleration: Thread Exploration

Example Convolution Layers of different state of the art networks

DNN Major Players & Frameworks

Products

Object Classification, Recognition, Detection, Deep Compression, Artistic Style, SR, Fashion, Food AI, Saliency, Selfie-Out-focus

Solutions

SDK

Hardware

CEVA NeuPro

Qualcomm HVX+CPU+GPU Cadence **C5**

Intel Myraid-X

Nvidia TX1/TX2 Google **TPU**

Fujitsu Post-K

Android DNN Framework (TFLite)

- Lightweight solution for mobile & embedded devices
- Enables on-device machines learning inference
- Supports hardware acceleration through NNAPI
- **Low latency:** Optimized kernels, pre-fused activations, 8-bit quantization
- Small binary size
- Optimized interpreter
 - Static graph ordering, custom memory allocator
 - Minimum load, initialization and execution latency

Android App

Java API

C++ API

Interpreter Kernels

Android Neural
Networks API

A convenience wrapper around the C++ API

Loads the TfLite Model File and invokes the Interpreter

Executes the model using a set of kernels. It supports selective kernel loading; 100KB & 300KB without/with kernels

Interpreter will use the Android NN API for hardware acceleration, or default to CPU execution if none are available

©Google Inc.

References

[Ningning 2018] ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

[Mark 2018] MobileNetV2: Inverted Residuals and Linear Bottlenecks

[MTCNN] https://arxiv.org/abs/1604.02878

[Lavin 2015] Fast Algorithms for Convolutional Neural Networks

[Miniskar2012] Function Inlining and Loop Unrolling for Loop Acceleration in Reconfigurable Processors

[Peemen2013] Memory-Centric Accelerator Design for Convolutional Neural Networks

[Zeng2018] A Framework for Generating High Throughput CNN Implementations on FPGAs

[Fu 2018] Towards Fast and Energy-Efficient Binarized Neural Network Inference on FPGA

Thank You

Face Detection

Android Demo Application

Samsung R&D Institute India, Bangalore

Multi Task Cascaded CNN

K Zhang, et.al., Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks, 2016

Input layer

Convolution

PReLu Maxpool Softmax Used to obtain candidate windows

 Returns multiple bounding boxes with higher probability of containing a face

Samsung MTCNN

time 88ms fps 11.363636

Running PNet

Conv layers: 5 FC layers: 0 Parameters: 6830 operations: 25k

FC layers: 0

Parameters: 6830

• Operations: 25,000 approx

- Rejects a large number of false candidates got from P Net
- Output is a highly refined set of bounding boxes that have a very high probability of containing a face

Conv layers: 8

FC layers: 3

Parameters: 31,970

Operations: 500,000 approx

time 230ms fps 4.347826

Running PRNet

Conv layers: 8 FC layers: 3 Parameters: 31970 operations: 500k

Input layer

© Samsung 2018

6:02 PM

... 2.81KB/s 2 🗑 📶 4G 🐨 🔘 33%

time 317ms fps 3.1545742

Running **PRONet**

Conv layers: 12 FC lavers: 7 Parameters: 120898 operations: 3530k

Similar to R Net, but aims to describe the

Outputs five facial landmarks' positions in

face in more detail

each of the bounding boxes

Conv layers: 12

FC layers: 7

Parameters: 120,898

operations: 3,530,000 approx

Convolution Exploration

Hands-on and Android Demo Application

Samsung R&D Institute India, Bangalore

Needs multiple input, kernel loads

Output Channels (N)

Needs multiple input, kernel loads

Output Channels (N)

Needs multiple input, kernel loads

Output Channels (N)

Needs multiple input, kernel loads

Output Channels (N)

input, kernel loads

Needs multiple

Output Channels (N)

Needs multiple input, kernel loads

Output Channels (N)

HandsOn: Planar-Output Data Reuse


```
for(int co = 0; co < out_channels; co++) {</pre>
   .for(int ho = 0; ho < out_height; ho++) {</pre>
                                                                         CÌ
      for(int wo = 0; wo < out_weight; wo++) {</pre>
                                                                       hi
                                                                            Wİ
          /* Write your code here */
```


Weights

CO

weight[co][ci][i][j]

Consider stride (stride_h, stride_w)

HandsOn: Planar-Output Data Reuse - Result


```
for(int co = 0; co < out_channels; co++) {
   for(int ho = 0; ho < out height; ho++) {
      for(int wo = 0; wo < out_weight; wo++) {</pre>
         int hi = ho * stride h;
         int wi = wo * stride w;
         for(int ci = 0; ci < in_channels; ci++) {</pre>
             int ** out = output[co];
             int ** in = input[ci];
             int ** wt = weight[co][ci];
             for( int i = 0; i < K; i++) {
                for( int i = 0; i < K; i++) {
                     out[ho][wo] += wt[i][i] * in[hi+i][wi+j];
```


HandsOn: Planar-Input Data Reuse

// Have to write complete code ? // Yes !

Consider stride (stride_h, stride_w)

HandsOn: Planar-Input Data Reuse - Result


```
InitializeOutput(output);
for(int ci = 0; ci < in channels; ci++) {
   int ** in = input[ci];
   for(int ho = 0; ho < out_height; ho++) {
      for(int wo = 0; wo < out weight; wo++) {
          int hi = ho * stride h;
          int wi = wo * stride w;
          for(int co = 0; co < out_channels; co++) {</pre>
             int ** out = output[co];
             int ** wt = weight[co][ci];
             for( int i = 0; i < K; i++) {
                for( int i = 0; i < K; i++) {
                     out[ho][wo] += wt[i][j] * in[hi+i][wi+j];
```

```
Input Map
                                  Output Map
   CÌ
                                CO
 hi
                              ho
     Wİ
                                  WO
                               output[co][ho][wo]
input[ci][hi][wi]
                       Weights
                         CO
              weight[co][ci][i][j]
```

Consider stride (stride h, stride w)

- Needs partial output Stores and Loads
- Multiple input Loads

- Needs partial output Stores and Loads
- Multiple input Loads

- Needs partial output Stores and Loads
- Multiple input Loads

- Needs partial output Stores and Loads
- Multiple input Loads

- Needs partial output Stores and Loads
- Multiple input Loads

- Needs partial output Stores and Loads
- Multiple input Loads

- Needs partial output Stores and Loads
- Multiple input Loads

- Needs partial output Stores and Loads
- Multiple input Loads

- Needs partial output Stores and Loads
- Multiple input Loads

- Needs partial output Stores and Loads
- Multiple input Loads

- Needs partial output Stores and Loads
- Multiple input Loads

HandsOn: Planar-Weight Data Reuse

// Have to write complete code ? // Yes !

HandsOn: Planar-Weight Data Reuse - Result


```
InitializeOutput(output);
for(int co = 0; co < out_channels; co++) {</pre>
   for(int ci = 0; ci < in_channels; ci++) {
      int ** wt = weight[co][ci];
       int ** out = output[co];
       int ** in = input[ci];
       for(int ho = 0; ho < out_height; ho++) {</pre>
          for(int wo = 0; wo < out weight; wo++) {
             int hi = ho * stride h;
             int wi = wo * stride w;
             for( int i = 0; I < K; i++) {
                 for( int i = 0; i < K; i++) {
                     out[ho][wo] += wt[i][j] * in[hi+i][wi+j];
```


Acceleration: Adaptive Data Reuse

Kernels (Nx3xKxK)

Optimal Reuse

- Adaptive Reuse Scheme
- Based on the layer characteristics, processor architecture

Convolution Operation

Thank You