PHYSICAL CHEMISTRY

Plus two

Unit-8

IONIC EQUILIBRIUM

SHANMUGAM S

Dept of chemistry

ST.JOHN'S MHSS PORUR CHENNAI -116

S.SHANMUGAM,

UNIT-8

St.John's M.H.S.S porur Chennai -116

IONIC EQUILIBRIUM

- 1. What are Lewis acids and bases? Give two example for each.
 - i) Lewis acid is a species that accepts an electron pair and it is a positive ion (or) an electron deficient molecule

example: Electron deficient molecules BF₃, AlCl₃.etc

All metal ions (or) atoms: Fe2+, Cr3+, Cu2+ and Carbonium ion

ii) Lewis base is a species that donates an electron pair and it is a anion (or) neutral molecule with at least one lone pair of electrons.

example :more lone pairs of electrons: NH₃, H₂O, R-O-H, R-O-R, R-NH₂

All anions: F-, Cl-, CN- and Carbanion..

2. Discuss the Lowry – Bronsted concept of acids and bases.

According to their concept,

An Acid is defined as a substance that has a tendency to donate a proton to another substance

Base is a substance that has a tendency to accept a proton from other substance.

In other words, an acid is a proton donor and a base is a proton acceptor.

In general, Lowry - Bronsted (acid - base) reaction is represented as

3. Indentify the conjugate acid base pair for the following reaction in aqueous solution

i) HS⁻(aq) + HF
$$\rightleftharpoons$$
 F⁻(aq) + H₂S(aq)
ii) HPO₄⁻(aq) + SO₃²⁻ \rightleftharpoons PO₄³⁻(aq) + HSO₃⁻(aq)
lii) NH₄⁺(aq) + CO₃²⁻ \rightleftharpoons NH₃³⁻(aq) + HCO₃⁻(aq)

4. Account for the acidic nature of HClO₄. In terms of Bronsted – Lowry theory, identify its conjugate base.

$$HCIO_4 + H_2O \rightleftharpoons H_3O^+ + CIO_4^-$$

When an acid dissociates in water into H_3O^+ ions and the anion of the acid, the anion (CIO_4^-) is termed the conjugate base of that acid.

In this case, the acid is perchloric acid and its conjugate base is the perchlorate ion (CIO₄⁻)

- 5. When aqueous ammonia is added to $CuSO_4$ solution, the solution turns deep blue due to the formation of tetramminecopper (II) complex, $[Cu(H_2O)_4]^{2^+} + 4NH_3$ (aq) $\rightleftharpoons [Cu(NH_3)_4]^{2^+}$, among H_2O and NH_3 which is stronger Lewis base
 - $\rm H_2O$ has two nonbonding electron pairs and is, therefore, a stronger Lewis base than $\rm NH_3$ which only has one.
 - H₂O is a stronger Lewis base because the extra hydrogen in NH₃ shields the lone pair of the central nitrogen atom.
 - H₂O should be a stronger Lewis base because oxygen is more electronegative than nitrogen.
- 6. The concentration of hydroxide ion in a water sample is found to be 2.5x10⁻⁶M. Identify the nature of the solution

$$[OH^{-}] = 2.5 \times 10^{-6} M$$

$$pOH = - \log[OH^{-}]$$

$$pOH = - \log [2.5 \times 10^{-6}]$$

$$pOH = - [\log 2.5 - 6 \log 10]$$

$$pOH = - 0.3979 - (-6 \times 1)$$

$$pOH = - 0.3979 + 6 \times 1$$

$$pOH = 5.6021$$

$$pOH + pH = 14$$

$$pH = 14 - 5.6021 = 8.3979$$

pH = 8.3979 pH > 7, The nature of the solution is basic

7. A lab assistant prepared a solution by adding a calculated quantity of HCl gas 25° C to get a solution with [H_3O^+] = 4×10^{-5} M . Is the solution neutral (or) acidic (or) basic.

$$[H_3O^+] = 4x10^{-5}M$$

$$pH = -\log[H_3O^+]$$

$$pH = -\log[4x10^{-5}]$$

$$pH = -[\log 4 - 5 \log 10]$$

$$pH = -\log 4 + 5 \log 10$$

$$pH = -0.6020 + 5 x1 = 4.398$$

$$pH = 4.398, pH < 7, The solution is acidic nature$$

8. Calculate the pH of 0.04 M HNO₃ Solution.

pH =
$$-\log [H_3O^+]$$

pH = $-\log [0.04]$
pH = $-\log [4 \times 10^{-2}]$
pH = $-[\log 4 - 2 \log 10]$
pH = $-\log 4 + 2 \log 10$
pH = $-0.6020 + 2 \times 1$
pH = $1.398 \approx 1.40$

9. Define solubility product

The solubility product of a compound is defined as the product of the molar concentration of the constituent ions, each raised to the power of its stoichiometric co – efficient in a balanced equilibrium equation.

10. Define ionic product of water. Give its value at room temperature.

The product of concentrations of H⁺ and OH⁻ ions in water at a particular temperature is known as ionic product of water.

Therefore, the ionic product of water at 25°C is

$$K_w = [H_3O] + [OH^-]$$

 $K_w = (1 \times 10^{-7})(1 \times 10^{-7})$
 $K_w = 1 \times 10^{-14} \text{ mol}^2 \text{dm}^{-6} \text{ at } 298 \text{ K}$

11. Explain common ion effect with an example

The dissociation of a weak acid is suppressed in the presence of a salt containing an ion common to the weak electrolyte. It is called the common ion effect.

For example,

$$CH_3COOH \rightleftharpoons H^+ + CH_3COO^-$$

 $CH_3COONa \rightleftharpoons Na^+ + CH_3COO^-$

the addition of sodium acetate to acetic acid solution leads to the suppression in the dissociation of acetic acid which is already weakly dissociated. In this case, CH₃COOH and CH₃COONa have the **common ion,CH₃COO**⁻.

12. Derive an expression for Ostwald's dilution law

Ostwald's dilution law relates the dissociation constant of the weak acid (K_a) with its degree of dissociation (α) and the concentration (α).

$$\alpha = \frac{\text{Number of moles dissociated}}{\text{total number of moles}}$$

The dissociation of acetic acid can be represented as

$$CH_3COOH \rightleftharpoons H^+ + CH_3COO^-$$

	CH₃COOH	H ⁺	CH ₃ COO ⁻
Initial number of moles	1	-	-
Degree of dissociation	α		
Number of moles at equilibrium	1- α	α	α
Equilibrium concentration	C (1 - α)	Сα	Сα

$$\begin{split} \text{Ka} &= \frac{[\text{H}^+][\text{CH}_3\text{COO}^-]}{[\text{CH}_3\text{COOH}]} \\ \text{K}_a &= \frac{\text{C}\alpha \times \text{C}\alpha}{\text{C}(\text{1-}\alpha)} \\ \text{K}_a &= \frac{\text{C}\alpha^2}{\text{1-}\alpha} \quad , (\text{1-}\alpha\,\text{=}\,\text{1}) \\ \text{K}_a &= \text{C}\alpha^2 \\ \alpha &= \sqrt{\frac{\text{K}_a}{\text{C}}} \\ \end{split}$$

$$[\text{H+}] = \text{C}\alpha \qquad \qquad [\text{H+}] = \text{C}\sqrt{\frac{\text{K}_a}{\text{C}}} \qquad \text{for weak acid is [H+]} = \sqrt{\text{K}_a.\text{C}} \end{split}$$

13. Define pH

pH of a solution is defined as the negative logarithm of base 10 of the molar concentration of the hydronium ions present in the solution.

$$pH = -log[H_3O^{\dagger}]$$

14. Calculate the pH of 1.5×10^{-3} M solution of Ba (OH)₂

$$Ba(OH)_{2} \longrightarrow Ba^{2+} + 2OH^{2}$$

$$pOH = -\log [OH^{-}]$$

$$pOH = -\log [2 \times 1.5 \times 10^{-3}]$$

$$pOH = -\log [3 \times 10^{-3}]$$

$$pOH = -[\log 3 - 3 \log 10]$$

$$pOH = -\log 3 + 3 \log 10$$

$$pOH = -\log 3 + 3 \times 1$$

$$pOH = -0.4771 + 3 = 2.53$$

 \therefore pH = 14 - 2.53 = 11.47

S.SHANMUGAM, St. John's M.H.S.S porur Chennai -116 Mob: 9841945665

15. $50 \, \mathrm{ml}$ of 0.05M HNO $_3$ is added to 50 ml of 0.025 M KOH.Calculate the pH of the resultant solution.

Mole = Concentration x Volume

mole of KOH = 50 ml x 0.025 = 1.25

mole of $HNO_3 = 50 \text{ ml x } 0.05M = 2.5$

Total volume of solution (50+50 ml = 100 ml)

1.25 mole of KOH exactly neutralized by 1.25 mole of HNO₃

$$KOH + HNO_3 \longrightarrow KNO_3 + H_2O$$

that is $2.5 - 1.25 = 1.25 \text{ HNO}_3 \text{mole}$

Conc of H⁺ =
$$\frac{\text{no of mole of H}^+}{\text{total volume of solution (50 + 50 ml = 100 ml)}}$$

Conc of
$$[H^+] = \frac{1.25}{100} = 0.0125$$

 $pH = - log [H^{+}]$

pH = - log [0.0125]

 $pH = - log [1.25 \times 10^{-2}]$

pH = -[log 1.25 - 2 log 10]

pH = - log 1.25 + 2 log 10

pH = -0.0969 + 2 x1

pH = 1.9031

16. The K_a value for HCN is 10^{-9} . What is the pH of 0.4M HCN solution?

$$K_a = 10^{-9}$$
 C= 0.4 M

$$[H^{\dagger}] = \sqrt{K_a.C}$$

$$[H^+] = \sqrt{10^{-9} \times 0.4}$$

$$[H^+] = 2x10^{-5}$$

$$pH = - log [H^{+}]$$

$$pH = - log [2 \times 10^{-5}]$$

$$pH = -[\log 2 - 5 \log 10]$$

$$pH = - log 2 + 5 log 10$$

$$pH = -0.3010 + 5 x1$$

pH = 4.699

17. Calculate the extent of hydrolysis and the pH of 0.1M ammonium acetate Given that $K_a = K_b = 1.8 \times 10^{-5}$

For hydrolysis of salt of weak acid and weak base,

$$K_h = \frac{K_w}{K_a x K_b}$$

$$K_{h} = \frac{\alpha^{2}}{(1 - \alpha)^{2}}$$

$$K_h = \frac{1 \times 10^{-14}}{1.8 \times 10^{-5} \times 1.8 \times 10^{-5}}$$

$$\frac{\alpha^2}{(1-\alpha)^2} = \frac{1 \times 10^{-14}}{1.8 \times 10^{-5} \times 1.8 \times 10^{-5}}$$

$$\frac{\alpha}{(1-\alpha)} = \sqrt{\frac{1 \times 10^{-14}}{1.8 \times 10^{-5} \times 1.8 \times 10^{-5}}} = \sqrt{\frac{1 \times 10^{-4}}{3.24}} = \frac{1 \times 10^{-2}}{1.8} = 0.55 \times 10^{-2}$$

hydrolysis = 0.55×10^{-2}

$$pH = \frac{1}{2}pK_{w} + \frac{1}{2}pK_{a} - \frac{1}{2}pK_{b}$$

$$\frac{1}{2}$$
pK_w = $-\frac{1}{2}$ log(1 x10⁻¹⁴) = 7

$$\frac{1}{2}pK_a = -\frac{1}{2}logK_a = -\frac{1}{2}log(1.8x10^{-5}) = \frac{1}{2}4.7447 = 2.3723$$

$$\frac{1}{2}pK_{b} = -\frac{1}{2}logK_{b} = -\frac{1}{2}log(1.8x10^{-5}) = \frac{1}{2}4.7447 = 2.3723$$

$$pH = 7 + 2.3723 - 2.3723 = 7 + 0$$

pH = 7

18. Derive an expression for the hydrolysis constant and degree of hydrolysis of salt of strong acid and weak base.

Weak base - $\mathrm{NH_4OH}$ and strong acid - HCI

$$NH_4^+ + H_2O \rightleftharpoons NH_4OH + H^+$$

Hydrolysis constant: Applying the Law of Mass Action

$$K_h = \frac{[NH_4OH][H^+]}{[NH_4^+][H_2O]}$$

Since [H₂O] is very large, it is taken to be constant and the hydrolysis constant expression is reduced to

$$K_h = \frac{[NH_4OH][H^+]}{[NH_4^+]}$$
 -----1

Relation between K_h, K_w and K_b. We know that the ionic product of water K_w is expressed as :

$$K_{w} = [H^{+}][OH^{-}]$$
 -----2

For the dissociation of a weak base, $\mathrm{NH_4OH}$

$$NH_4OH \rightleftharpoons NH_4^{+}OH^{-}$$

The dissociation constant, K_{b} , can be expressed as

$$K_b = \frac{[NH_4^+] [OH^-]}{[NH_4OH]}$$
 -----3

Dividing (2) by (3)

$$\frac{K_{w}}{K_{b}} = [H^{+}][OH^{-}] \times \frac{[NH_{4}OH]}{[NH_{4}^{+}]} = \frac{[NH_{4}OH][H^{+}]}{[NH_{4}^{+}]} = K_{h}$$

$$\frac{K_{w}}{K_{b}} = K_{h}$$

As discussed in the salt hydrolysis of strong base and weak acid. In this case also, we can establish a relationship between the K_h and K_h as

$$K_h . K_h = K_w$$

Let us calculate the ${\rm K_h}$ value in terms of degree of hydrolysis (h) and the concentration of salt

$$\begin{split} &K_{h} = h^{2}C \text{ and } \\ &[H^{+}] = \sqrt{K_{h}.C} \\ &[H^{+}] = \sqrt{\frac{K_{w}}{K_{b}}.C} \\ &pH = -\log{[H^{+}]} \\ &pH = -\log{\sqrt{\frac{K_{w}}{K_{b}}.C}} \quad (or) \ pH = -\log{\left(\frac{K_{w}}{K_{b}}.C\right)^{\frac{1}{2}}} \\ &pH = -\frac{1}{2}logK_{w} - \frac{1}{2}logC + \frac{1}{2}logK_{b} \\ &pH = 7 + \frac{1}{2}pK_{b} - \frac{1}{2}logC \ (or) \quad pH = 7 + \frac{1}{2}pK_{b} = \frac{1}{2}logC \end{split}$$

In this case it is evident that pH will always be less than 7. Thus, the solution of a salt of weak base and strong acid will always be acidic.

19. Solubility product of Ag₂CrO₄ is 1 x10⁻¹². What is the solubility of Ag₂CrO₄ in 0.01M AgNO₃ solution?

$$K_{sp} = 1 \times 10^{-12}$$
 $Ag_2CrO_4(s) \rightleftharpoons 2Ag^+ + CrO_4^{2-}$
 $Ag_3NO_3(s) \rightleftharpoons 2Ag^+ + NO_3^ 0.01 \text{ M} \qquad 0.01 \text{ M} \qquad 0.01 \text{ M}$
 $[Ag^+] = 2s + 0.01$
 $\therefore 0.01 >> 2s$
 $\therefore [Ag^+] = 0.01 \text{ M}$
 $K_{sp} = [Ag^+]^2[CrO_4^{2-}]$
 $K_{sp} = (s)^2(s)$
 $1 \times 10^{-12} = (0.01)^2(s)$
 $[CrO_4^{2-}] = (s) = \frac{1 \times 10^{-12}}{(10^{-2})^2} = 1 \times 10^{-8}$

20. Write the expression for the solubility product of $Ca_3(PO_4)_2$

$$Ca_3(PO_4)_2 \rightleftharpoons 3Ca^{2+} + 2PO_4^{3-}$$
 $K_{sp} = [Ca^{2+}]^3 \cdot [PO_4^{3-}]^2$
 $K_{sp} = (3s)^3 \cdot (2s)^2$
 $K_{sp} = (27s^3) \cdot (4s^2)$
 $K_{sp} = 108s^5$

21. A saturated solution, prepared by dissolving $CaF_{2(s)}$ in water, has $[Ca^{2+}]=3.3 \times 10^{-4}$ What is the K_{sp} of CaF_{2} ?

$$\begin{aligned} \text{CaF}_{2 \text{ (s)}} & \rightleftharpoons \text{Ca}^{2+} \text{ (aq)} + 2 \text{ F}^{-} \text{ (aq)} \\ \text{(breaks into 2 F}^{-} \text{ ions not F}_{2}) \\ \text{[F}^{-}\text{] is double the [Ca}^{2+}\text{]} \\ \text{[2 F}^{-}\text{]} &= 2[\text{Ca}^{2+}\text{]} = 2 \times 3.3 \times 10^{-4} \\ \text{[2 F}^{-}\text{]} &= 6.6 \times 10^{-4} \text{ M} \\ \text{K}_{sp} &= [\text{Ca}^{2+}\text{]} \cdot [\text{ F}^{-}\text{]}^{2} \\ \text{K}_{sp} &= 3.3 \times 10^{-4} \cdot (6.6 \times 10^{-4})^{2} \\ \text{K}_{sp} &= 1.44 \times 10^{-10} \cdot . \end{aligned}$$

22. K_{sp} of AgCl is 1.8 ×10⁻¹⁰. Calculate molar solubility in 1 M AgNO₃.

$$AgCl_{(s)} \rightleftharpoons Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$$

x =solubility of AgCl in 1M AgNO $_3$.

AgNO_{3 (aq)}
$$\rightleftharpoons$$
 Ag⁺_(aq) + NO_{3 (aq)}
1 M 1 M

[Ag⁺] = x + 1 M \simeq 1 M (\because x << 1)

[Cl⁻] = x

K_{sp} =[Ag⁺]. [Cl⁻]
1.8 ×10⁻¹⁰ = (1) (x)

x = 1.8 ×10⁻¹⁰ M

23. A particular saturated solution of silver chromate Ag_2CrO_4 has $[Ag^+] = 5 \times 10^{-5}$ and $[CrO_4^{2-}] = 4.4 \times 10^{-4}$ What is the value of K_{sp} for Ag_2CrO_4 ?

$$Ag_{2}CrO_{4}(s) \rightleftharpoons 2Ag^{+} + CrO_{4}^{2-}$$

$$K_{sp} = [Ag^{+}]^{2}[CrO_{4}^{2-}]$$

$$K_{sp} = (5 \times 10^{-5})^{2} (4.4 \times 10^{-4})$$

$$K_{sp} = (25 \times 10^{-10}) (4.4 \times 10^{-4})$$

$$K_{sp} = (25 \times 4.4) \times 10^{-10} \times 10^{-4}$$

$$K_{sp} = 110 \times 10^{-14}$$

$$K_{sp} = 1.10 \times 10^{-12}$$

24. Write the expression for the solubility product of Hg₂Cl₂.

$$Hg_2Cl_2 \Longrightarrow Hg_2^{2+} + 2Cl^{-1}$$
 $K_{sp} = [Hg_2^{2+}][Cl^{-1}]^2$
 $K_{sp} = [s].[2s]^2$
 $K_{sp} = 4s^3$

25. K_{sp} of Ag_2CrO_4 is 1.1 x 10^{-12} . What is solubility of Ag_2CrO_4 in 0.1M K_2CrO_4 .

$$Ag_2CrO_4(s) \rightleftharpoons 2Ag^+ + CrO_4^{2-}$$

x 2x x

x is the solubility of Ag_2CrO_4 in 0.1M K_2CrO_4 .

$$K_2 \text{CrO}_4 \text{ (s)} \implies 2K^+ + \text{CrO}_4^{2-}$$
 $0.1M \qquad 0.1M \qquad 0.1M$

$$[Ag^+] = 2x$$

$$[CrO_4^{2-}] = (x + 0.1) \approx 0.1 \quad (\because x << 0.1)$$

$$K_{sp} = [Ag^+]^2 [CrO_4^{2-}]$$
 $1.1 \times 10^{-12} = (2x)^2 (0.1)$
 $1.1 \times 10^{-12} = 0.4x^2$

$$x^2 = \frac{1.1 \times 10^{-12}}{0.4} \qquad x = \sqrt{\frac{1.1 \times 10^{-12}}{0.4}}$$

$$x = \sqrt{2.75 \times 10^{-12}} \qquad x = 1.658 \times 10^{-6}M$$

26. Will a precipitate be formed when 0.150 L of 0.1M $Pb(NO_3)_2$ and 0.100L of 0.2 M NaCl are mixed? $K_{sp}(PbCl_2) = 1.2x10^{-5}$.

Solubility reaction: PbCl₂(s) ----> Pb²⁺ + 2Cl⁻

 K_{sp} is given and in order to find out if a precipitate form we need to find out Q $Q = [Pb^{2+}][Cl]^2$

1:1 mole ratios so initial $[Pb^{2+}] = [Pb(NO_3)_2] = 0.1 \text{ M}$; initial [Cl] = [NaCl] = 0.2 M

After we combine the solution the total volume becomes .250 L,

so the concentration of Pb2+ and Cl ions is:

Number of moles Pb^{2+} = molarity x Volume of the solution in lit= 0.1 × 0.150 L

$$[Pb^{2+}] = \frac{0.1 \text{ M Pb}^{2+} \text{ x } 0.150L}{0.250 \text{ L}} = 0.06 \text{ M Pb}^{2+}$$

$$[Cl^{-}] = \frac{0.2 \text{ M Cl}^{-} \times 0.100 \text{L}}{0.250 \text{ L}} = 0.08 \text{ M Cl}^{-}$$

$$Q = [Pb^{2+}].[Cl^{-}]^{2}$$
 $Q = (0.060)(0.080)^{2} = 3.8 \times 10^{-4}$

Q > K_{sp} , [3.8 x 10^{-4} < 1.2x 10^{-5}] so PbCl₂ does precipitate.Eq shifts to the left . S.SHANMUGAM ,St.John's M.H.S.S porur Chennai -116 Mob: 9841945665

27. $K_{\rm sp}$ of Al(OH) $_3$ is 1x10⁻¹⁵M. At what pH does 1.0x10⁻³M Al³⁺ precipitate on the addition of buffer of NH $_4$ Cl and NH $_4$ OH solution?

- 1) Write the dissociation equation: $AI(OH)_3 \rightleftharpoons AI^{3+} + 3OH^{-}$
- 2) Write the Ksp expression: $K_{so} = [AI^{3+}][OH^{-}]^{3}$
- 3. Plug into the K_{sp} expression: $1x10^{-15}M = (1.0x10^{-3}M) [OH^-]^3$
- 4) Solve for s, which is the [OH⁻]: $[OH^-]^3 = \frac{K_{sp}}{[Al^{3+}]}$

$$[OH^{-}] = 3\sqrt{\frac{K_{sp}}{[Al^{3+}]}}$$

$$[OH^-] = 3\sqrt{\frac{1 \, x 10^{-15}}{1 \, x 10^{-3}}}$$

$$[OH^{-}] = 3\sqrt{1 \times 10^{-12}}$$

$$[OH^-] = (1 \times 10^{-12})^{\frac{1}{3}}$$

$$[OH^{-}] = 1 \times 10^{-4}$$

5) Calculate the pH: $pOH = -log[OH^{+}]$

$$pOH = -log(1 \times 10^{-4}) = 4$$

PDF Creator &

webStrake Recognized Teacher

S.SHANMUGAM,

St.John's M.H.S.S porur Chennai -116

Mob: 9841945665