Engineering Portfolio

MYRON ONG

IMPERIAL COLLEGE LONDON - MECHANICAL ENGINEERING

Gimbal Rig Upgrades

Xtrac Gimbal Rig – Actuator Accuracy & Response Improvement

During my summer internship at Xtrac, I worked on improving the accuracy and responsiveness of actuators on the gimbal rig, which is used for dynamic validation of gearboxes and differentials. I evaluated various actuation methods, from hydraulic rack-and-pinion systems to electric motors with strain wave gearing.

- Engineering Applications:
- Fluid Mechanics: Assessed hydraulic flow and accumulator requirements
- Mechanics: Performed kinematic modelling of the rig
- Mechatronics: Developed control and electrical system solutions
- Outcome:

Proposed an electrically actuated gimbal rig capable of simulating higher G-forces, enhancing testing capabilities for future motorsport gearboxes and differentials.

- Previous calculations used:
 - Convert between measured acceleration (accelerometer), and representative acceleration
- 1) $Rig\ angle = \sin^{-1}(measured\ acceleration)$
- 2) Representative acceleration = tan(rig angle)
- 3) : Representative acceleration = tan(sin⁻¹(measured acceleration))

Measured vs Representative acceleration

Xtrac Gimbal Rig (kinematic calculations)

 $T_{required} = T_{Inertial} + T_{frictional} + T_{load}$ $T_{Inertial} = Moment \ of \ Inertia \ imes \ lpha$

Assumptions

- Negligible Frictional torque
 - Frames are supported by bearings
- Actuator has negligible Moment of Inertia

Xtrac Gimbal Rig (Control and electrical power systems)

6-Speed Gearbox

			Gear 1	Gear 2	Gear 3	Gear 4	Gear 5	Gear 6
module	10	Layshaft	13	15	17	20	23	26
		Mainshaft	35	33	31	28	25	22
		Centre distance [mm]	240	240	240	240	240	240
		Ratio	2.69231	2.2	1.82353	1.4	1.08696	0.84615

6-Speed Sequential Open-Cluster Gearbox

Inspired by my internship at Xtrac, I modelled a 6-speed sequential gearbox in CAD with the long-term goal of creating a fully 3D-printable prototype.

Key Design Considerations:

- •Designed back-tapered dog teeth to ensure reliable dog clutch engagement
- •Optimised gear-change barrel geometry to control clutch movement accurately

GT3 Damper Investigation: ACC and MoTeC i2 Telemetry

Suspension Dynamics Investigation

This project combined my interests in sim racing, vehicle dynamics, and race car setup. I focused on analysing damper behaviour, which is independent of driver input, and used suspension histograms to consistently evaluate performance across multiple laps.

Engineering Applications:

- •Collected and analysed MoTeC i2 telemetry data and correlated it to suspension characteristics in an engineering report
- •Researched how motorsport teams optimise suspension setup to identify the 'ideal' suspension histogram

Run	Slow Bump	Fast bump	Slow Rebound	Fast rebound	
Baseline	Baseline Baseline		Baseline	Baseline	
1	Soft	Baseline	Baseline	Baseline	
2	Stiff	Baseline	Baseline	Baseline	
3	Baseline	Soft	Baseline	Baseline	
4	Baseline	Stiff	Baseline	Baseline	
5	Baseline	Baseline	Soft	Baseline	
6	Baseline	Baseline	Stiff	Baseline	
7	Baseline	Baseline	Baseline	Soft	
8	Baseline	Baseline	Baseline	Stiff	

GT3 Damper Investigation: SIMULINK

Quarter-Car Suspension Simulation

To explore the theoretical aspects of dampers, I built a quarter-car model in MATLAB Simulink, visualising sprung mass displacements under different damping ratios and coefficients.

Drive Transmission Project

2-Stage Transmission Design (Imperial Design & Manufacture Module) As part of my module, I designed a 2-stage transmission system using gears and pulley belts, constrained by standard industry parts and power requirements.

Key Considerations:

- Applied safety factors and stress concentration reduction methods
- Designed radial and axial locking mechanisms (keys, bolts & nuts, taper locks)
- Followed BS888 standards for engineering drawings (GD&T, BOM)

Outcome:

Produced a CAD model and engineering drawings, earning a **Grade A** and demonstrating a strong understanding of power transmission and design practices.

Drive Transmission Project (Engineering Drawings)

IMechE Design Challenge

Autonomous Robotic Charging Device (Team Project)

Worked as part of a team to design and build an autonomous robotic charging device, creating initial sketches and CAD prototypes. Although our team was not selected for the university-level competition, the project provided valuable experience in project planning and teamwork.

My Responsibilities:

- Project management and coordination
- Procurement, cost analysis, and material selection
- Prototyping and ensuring vehicle accuracy

Formula Student

Imperial Formula Racing – Drivetrain Team

Contributed to the design of drivetrain components, including the CV boot and sprocket adaptor, and performed sprocket stress calculations to determine safety factors.

Hands-On Experience:

- Participated in silicon moulding of the CV boot using a 3D-printed mould
- Supported drivetrain maintenance and assembly

Outcome:

Imperial Formula Racing achieved 6th place at FSUK, combining engineering design with practical application.

Workshop Machining

Imperial Workshop Machining Sessions

Gained hands-on experience with machining processes, reinforcing the importance of designing parts with manufacturability and tolerancing in mind. Applied these insights to later projects, including a 6-speed gearbox and a 2-stage drive transmission system.

Techniques Explored:

Drilling, forming, boring, turning, milling