Taller 2

1 Pruebe que
$$\binom{n}{k} = |\{(x_1, \dots, x_n) \in \{0, 1\}^n : x_1 + x_2 + \dots + x_n = k\}|$$

Demostración. Denominemos F al siguiente conjunto:

$$F := \{(x_1, \dots, x_n) \in \{0, 1\}^n : x_1 + x_2 + \dots + x_n = k\}$$

Para la Demostración es necesario probar que $\binom{[n]}{k}\cong F.$ Para ello, definamos la función:

$$f: \binom{[n]}{k} \to F$$
$$X \mapsto a^X$$

Donde definimos la n-tupla a^X como:

$$a_i^X = \begin{cases} 1 & i \in X \\ 0 & i \notin X \end{cases}$$

Ahora, demostrando que la función es biyectiva:

• Inyectiva: Sean $X, Y \in {[n] \choose k}$ de forma que:

$$f(X) = f(Y)$$
$$a^X = a^Y$$

Lo que indica que para $i \in [n]$, $a_i^x = a_i^Y$. Ahora, suponga que $z \in X$. Eso quiere decir que $a_z^X = 1$. Luego, también $a_z^Y = 1$, por lo que necesariamente $z \in Y$ para que eso sea posible. De la misma manera se concluye que si $z \in Y$ entonces $z \in X$. Concluimos que X = Y.

Sobreyectividad: Sea a una n-tupla de F. Teniendo en cuenta que la suma de las componentes de a es k y que solo puede contener 1 y 0, podemos deducir que en a, k componentes son 1. Luego, defina el conjunto A como:

$$A := \{ i \in [n] | a_i = 1 \}$$

Ya sabemos que $A \subseteq [n]$ y justamente por la acotación anterior sabemos que |A| = k. Por lo que concluimos que $A \in {[n] \choose k}$. Luego, f(A) = a por la misma definición de la función y la forma como el conjunto toma los elementos de a.

(2) Pruebe que si A es un conjunto finito y $n \ge 1$, entonces:

$$|A^n| = |\underbrace{A \times A \times \cdots \times A}_{n \, veces}| = |A|^n$$

Demostración. La Demostración para esta propiedad se hará por inducción. El caso para n=1 es trivial. Supongamos entonces que para $n \geq 1$ en general se cumple que $|A^n| = |A|^n$ para un conjunto finito A. Luego, para n+1, en pro de la demostración se usaría un reemplazo como el siguiente:

$$|A^{n+1}| = |A^n \times A|$$

Pero recordemos que A^{n+1} es un conjunto de n+1-tuplas mientras que $A^n \times A$ es un conjunto de parejas ordenadas. Para realizar dicha acción, es necesario demmostrar que $A^{n+1} \cong A^n \times A$. Considere la función f definida por:

$$f: A^n \times A \rightarrow A^{n+1}$$

 $z = (x = (x_1, \dots, x_n), a) \mapsto b$

definiendo:

$$b_i = \begin{cases} x_i & i \le n \\ a & i = n+1 \end{cases}$$

Y demostrando que la función es una bivección tendremos:

• Inyectividad: Sean $z, w \in A^n \times A$ de forma que su imagen bajo f es igual. Tendremos:

$$f(z) = f(w)$$

$$(a_1, a_2, \dots, a_n, a_{n+1}) = (b_1, b_2, \dots, b_n, b_{n+1})$$

Tenga en cuenta que z y w se componen de una n-tupla y un elemento de a. Luego, si las dos n+1-tuplas son iguales quiere decir que son iguales componente a componente. Para empezar, $a_{n+1}=b_{n+1}$, y además para todo $i \in [n]$, $a_i=b_i$. Por la definición de la función y z, w se tendrá que:

$$z = ((a_1, a_2, \dots, a_n), a_{n+1})$$
$$w = ((b_1, b_2, \dots, b_n), b_{n+1})$$

Por lo que gracias a lo dicho anteriormente concluimos que z=w.

■ Sobreyectividad: Para una n+1-tupla de la forma $(a_1, a_2, \ldots, a_n, a_{n+1})$ con $a_i \in A$ para todo $i \in [n+1]$ podremos construir la pareja ordenada:

$$z = ((a_1, a_2, \dots, a_n), a_{n+1})$$

Luego, la primera componente de z de una n-tupla y la segunda componente es un elemento de A, por lo que $z \in A^n \times A$. Y al realizar f(z) por definición será $(a_1, a_2, \ldots, a_n, a_{n+1})$. Por lo tanto f es sobreyectiva.

Ya comprobado que $A^{n+1} \cong A^n \times A$ es posible decir:

$$|A^{n+1}| = |A^n \times A|$$
$$= |A^n| \times |A|$$
$$= |A|^n \times |A|$$
$$= |A|^{n+1}$$

Por lo que la proposición es verdad para n+1. Luego, se puede afirmar que es verdad en general para todo $n \ge 1$.

- (3) Use inducción para probar las siguientes proposiciones:
 - (a) $2^n \ge n^2$ para $n \ge 4$

Demostración. Cuando n=4 se tendrá en el lado izquierdo y derecho de la desigualdad respectivamente:

$$2^{n}$$

$$= 2^{4}$$

$$= 16$$

$$16$$

Por lo que la proposición es valida para n=4. Supongamos que también lo es en general para $n\geq 4$. Luego, para demostrar que lo es para n+1 se tendrá:

$$(n+1)^2 = n^2 + 2n + 1$$

$$\leq 2^n + 2n + 1$$

$$\leq 2^n + 2^n$$

$$= 2^{n+1}$$

(La desigualdad $2^n \ge 2n+1$ es valida gracias a la limitación para n). Por lo que concluimos que en general la proposición es verdad para todo $n \ge 4$.

(b) $7^n - 1$ es divisible por 6 para $n \ge 1$

Demostración. Cuando n = 1 la expresión será:

$$7^{n} - 1 = 7^{1} - 1$$
$$= 7 - 1$$
$$= 6$$
$$= 6 \cdot 1$$

Por lo que efectivamente se cumple en dicho caso. Supongamos que en general se cumple para $n \ge 1$, es decir, que existe $k \in \mathbb{Z}$ de forma que $6k = 7^n - 1$. Para demostrar que también es verdad para n + 1 se tendrá:

$$7^{n+1} - 1 = 7^n \cdot 7 - 1$$

$$= 7^n + 6 \cdot 7^n - 1$$

$$= 7^n - 1 + 6 \cdot 7^n$$

$$= 6 \cdot k + 6 \cdot 7^n$$

$$= 6 \cdot (k + 7^n)$$

Y gracias a que $k + 7^n$ es un número entero, concluimos que 6 divide $7^{n+1} - 1$. Por lo que podemos concluir que la proposición es valida para todo $n \ge 1$.

(c) $6 \cdot 7^n - 2 \cdot 3^n$ es divisible por 4 para $n \ge 1$

Demostración. Cuando n = 1 se tendrá:

$$6 \cdot 7^{n} - 2 \cdot 3^{n} = 6 \cdot 7 - 2 \cdot 3$$
$$= 42 - 6$$
$$= 36$$
$$= 4 \cdot 9$$

Por lo que efectivamente la proposición es verdad para n=1. Supongamos que en general es verdad para $n \ge 1$, es decir que existe $k \in \mathbb{Z}$ de forma que $4k = 6 \cdot 7^n - 2 \cdot 3^n$. Demostrando

para n+1:

$$6 \cdot 7^{n+1} - 23^{n+1} = 6 \cdot 7 \cdot 7^n - 2 \cdot 3 \cdot 3^n$$

$$= 6 \cdot 6 \cdot 7^n + 6 \cdot 7^n - 2 \cdot 2 \cdot 3^n - 2 \cdot 3^n$$

$$= 6 \cdot 7^n - 2 \cdot 3^n + 36 \cdot 7^n - 4 \cdot 3^n$$

$$= 4k + 36 \cdot 7^n - 4 \cdot 3^n$$

$$= 4 \cdot (k + 9 \cdot 7^n - 3^n)$$

Y dado que $k+9\cdot 7^n-3^n$ es un número entero, concluimos que la proposición es verdad para n+1. Por lo que en general será verdad para $n\geq 1$.

(d) Sea $x \ge 0$ y $n \ge 1$, pruebe que $(1+x)^n \ge 1 + n \cdot x$

Demostración. Para n=1 los dos lados de la desigualdad serán:

$$(1+x)^n = (1+x)^1$$
 $1+n \cdot x = 1+1 \cdot x$
= 1+x

Por lo que es verdad para n=1. Supongamos que lo es en general para $n\geq 1$. Demostraremos que lo es para n+1. Por lo que se tendrá:

$$1 + (n+1) \cdot x = 1 + n \cdot x + x$$

$$\leq (1+x)^n + x$$

$$\leq (1+x)^n + (1+x)$$

Y gracias a que $(1+x) \ge 1$ se tendrá por propiedades de los números reales que:

$$(1+x)^n + (1+x) \le (1+x)^n \cdot (1+x)$$
$$= (1+x)^{n+1}$$

Por lo que la proposición es verdad para n+1 y en general lo será para $n \ge 1$.

(4) Sea $\{a_i\}_{i\in[n]}$ una sucesión finita de números positivos. Pruebe que

$$(a_1 a_2 \dots a_n)^{\frac{1}{2^n}} \le \frac{a_1 + a_2 + \dots + a_n}{2^n}$$

para $n \geq 1$.

Demostración. Para n=1 se tendrá la desigualdad:

$$\sqrt{a_1} \le \frac{a_1}{2}$$

Pero si se hace $a_1 = 1$ entonces:

$$\sqrt{1} = 1$$

$$\leq \frac{1}{2}$$

Lo cúal es una contradicción. Por tanto, la proposición no es verdadera en general. \Box

- (5) Use la definición dada en clase para probar lo siguiente:
 - (a) $\binom{n}{1} = n \text{ para } n \ge 0$

Demostración. Será necesario demostrar $\binom{[n]}{1} \cong [n]$. Por lo que considere la siguiente función:

$$f: [n] \rightarrow {\binom{[n]}{1}}$$
$$k \mapsto \{k\}$$

Demostrando que la función es una biyección:

■ Inyectividad: Sean $k_1, k_2 \in [n]$ de forma que:

$$f(k_1) = f(k_2)$$

$$\{k_1\} = \{k_2\}$$

Y para que ambos conjuntos sean el mismo es necesario que $k_1 = k_2$.

■ Sobreyectividad: Sea $\{k\} \in {[n] \choose 1}$, ya que se sabe que $\{k\} \subseteq [n]$ podemos concluir que $k \in [n]$. Por lo que para k se tendrá que $f(k) = \{k\}$.

Por lo que la función es una biyección y concluimos que $\binom{n}{1} = n$.

(b) Pruebe por inducción sobre n que $\binom{n}{2} = \frac{n \cdot (n-1)}{2}$ para $n \geq 0$

Demostración. Para n = 0 se tiene que:

$$\binom{0}{2} = 0 \qquad \qquad \frac{0 \cdot (0-1)}{2} = 0$$

Por lo que la proposición es verdadera para n=0. Supongamos que lo es en general para $n \geq 0$ y demostraremos entonces que lo es para n+1:

$$\binom{n+1}{2} = \binom{n}{2} + \binom{n}{1}$$

$$= \frac{n \cdot (n-1)}{2} + n$$

$$= n \cdot \left(\frac{n-1}{2} + 1\right)$$

$$= n \cdot \left(\frac{n-1+2}{2}\right)$$

$$= n \cdot \left(\frac{n+1}{2}\right)$$

$$= \frac{n \cdot (n+1)}{2}$$

Por lo que la expresión es verdad para n+1. Podemos concluir que entonces lo es para todo $n \ge 0$.

(c)
$$\binom{n}{k} = \binom{n}{n-k}$$
 para $0 \le k \le n$

Demostración. Es necesario demostrar que $\binom{[n]}{k} \cong \binom{[n]}{n-k}$. Considere la función f definida por:

$$f: \binom{[n]}{k} \to \binom{[n]}{n-k}$$
$$X \mapsto [n] - X$$

Basta con recordar que $|B \setminus A| = |B| - |A|$ cuando $A \subseteq B$ para comprobar que $[n] - X \in \binom{[n]}{n-k}$ para $X \in \binom{[n]}{k}$. Ahora, demostrando que la función es biyectiva:

• Inyectividad: Para $X,Y\in \binom{[n]}{k}$ de forma que sus imagenes son iguales se tendrá:

$$f(X) = f(Y)$$
$$[n] \setminus X = [n] \setminus Y$$

Lo que lógicamente implica que $x \notin X$ si y solo $x \notin Y$. Pero eso es decir que $x \in X$ si y solo si $x \in Y$ y por tanto X = Y.

■ Sobreyectividad: Para $X \in \binom{[n]}{n-k}$ tome A = [n] - X. No es dificil ver que |A| = k por lo que $A \in \binom{[n]}{k}$. Luego, $f(A) = [n] \setminus ([n] \setminus X) = X$. Por lo que la función es sobreyectiva.

Luego, podemos concluir que la función es una biyección y por tanto $\binom{n}{k} = \binom{n}{n-k}$.

(6) Dada una permutación $\sigma \in \mathfrak{S}_n$ considere la relación $R \subseteq [n]^2$ dada por:

$$R_{\sigma} = \{(a, b) \in [n]^2 : \exists k \in \mathbb{Z}^{\geq 0} | \sigma^k(a) = b \}$$

(a) Demostrar que R_σ es una relación de equivalencia.

Demostración. Para demostrar que R_{σ} es una relación de equivalencia demostraremos que es reflexiva, simetrica y transitiva.

- Reflexiva: $(a, a) \in R_{\sigma}$ ya que para k = 0, $\sigma^{k}(a) = \sigma^{0}(a) = a$ considerando de forma intuitiva que σ^{0} no realiza transformaciones en a, o de manera más formal, que es un elemento neutro en la composición de funciones, siendo $\sigma^{0}(a) = Id_{[n]}(a)$.
- Simetrica: Supongamos que $(a, b) \in R_{\sigma}$. Luego, existe $k \in \mathbb{Z}^{\geq 0}$ de forma que $\sigma^k(a) = b$. Ahora, tenga en cuenta que para $k \geq n$ la composición de σ sobre sí misma se vuelve un proceso ciclico, gracias a que $\sigma^n = Id_{[n]}$ (La demostración de esta propiedad para permutaciones se demuestra en Permutation Groups By Shaoyun Yi). Por lo que no es ninguna perdida de generalidad suponer que $k \leq n$. Entonces tome σ^{n-k} que puede ser expresada como $\sigma^n \circ (\sigma^{-1})^k$. Si se demuestra que al componerle con σ^k se obtiene la identidad se demuestra que dicha función es una inversa para σ^k y que por tanto al estar n-k en $\mathbb{Z}^{\geq 0}$ concluir que $\sigma^{n-k}(b) = a$. Además gracias a que σ es una biyección está asegurada la existencia de dicha función inversa. Se tendrá entonces que:

$$\sigma^{k} \circ (\sigma^{n} \circ (\sigma^{-1})^{k}) = \sigma^{k} \circ (\sigma^{-1})^{k}$$
$$= Id_{[n]}$$

Y de manera similar también:

$$(\sigma^n \circ (\sigma^{-1})^k) \circ \sigma^k = (\sigma^{-1})^k \circ \sigma^k$$
$$= Id_{[n]}$$

Luego, dado que $\sigma^{n-k}(b) = a$ por lo demostrado arriba, $(b, a) \in R_{\sigma}$.

■ Transitiva: Supongamos que $(a, b) \in R_{\sigma}$ y $(b, c) \in R_{\sigma}$. Entonces existen $k, l \in \mathbb{Z}^{\geq 0}$ de forma que $\sigma^k(a) = b$ y $\sigma^l(b) = c$. Luego, si se componen ambas funciones, es decir, evaluar σ^{l+k} en a se tendrá:

$$\sigma^{l+k}(a) = (\sigma^l \circ \sigma^k)(a)$$
$$= \sigma^l(\sigma^k(a))$$
$$= \sigma^l(b)$$
$$= c$$

Y dado que $l + k \in \mathbb{Z}^{\geq 0}$ entonces concluimos que $(a, c) \in R_{\sigma}$.

(b) Calcule $[3]/R_{\sigma}$ para todas las $\sigma \in \mathfrak{G}_3$

Primero, numerando el conjunto \mathfrak{G}_3 tendremos:

$$\mathfrak{G}_{3} = \{$$

$$(1, 2, 3)$$

$$(1, 3, 2)$$

$$(2, 1, 3)$$

$$(2, 3, 1)$$

$$(3, 1, 2)$$

$$(3, 2, 1)$$

$$\}$$

Luego, en el orden en que aparecen anteriormente se númeraran como $\sigma_1, \ldots, \sigma_6$. Se tendrá entonces:

- $[3]/R_{\sigma_1} = \{\{1\}, \{2\}, \{3\}\}$
- $[3]/R_{\sigma_2} = \{\{1\}, \{2,3\}\}$
- $[3]/R_{\sigma_3} = \{\{1,2\},\{3\}\}$
- $[3]/R_{\sigma_4} = \{\{1,2,3\}\}$
- $[3]/R_{\sigma_5} = \{\{1,2,3\}\}$
- $[3]/R_{\sigma_6} = \{\{1,3\},\{2\}\}$

7 Pruebe que para $0 \le k \le n$ se tiene que $\binom{n}{k} \le n^k$. £Para qué valores de n y k se tiene la igualdad?

Demostración. Denominando al conjunto F como:

$$F := \{(x_1, \dots, x_n) \in \{0, 1\}^n : x_1 + x_2 + \dots + x_n = k\}$$

Y se ha demostrado que $|F| = \binom{n}{k}$. Si se puede hacer una función inyectiva entre F y $[n]^k$ se puede demostrar la desigualdad de manera general. Para ello definiremos una función f de la siguiente manera:

$$f: F \to [n]^k$$
$$x \mapsto t_x$$

Para lo cúal definiremos lo siguiente:

• Para cada n-tupla x de F, el conjunto I_F se define como:

$$I_{Fx} = \{i \in [n] : x_i = 1\}$$

Notese que $|I_{Fx}| = k$ dado que existen k entradas iguales a 1 en x de forma que su suma sea k. Además, tome en cuenta la númeración para I_{Fx} como i_1, i_2, \ldots, i_k de forma que si l < m entonces $i_l < i_m$ para $l, m \in [k]$.

• Cada componente de la k-tupla t_x será definida como:

$$t_{xj} = i_j$$

 $con i_j \in I_{Fx}$

Luego, demostraremos que la función es inyectiva.

• Inyectividad: Sean $x, y \in F$ de forma que sus imagenes bajo f son la misma. Entonces:

$$f(x) = f(y)$$

$$t_x = t_y$$

$$(t_{x1}, t_{x2}, \dots, t_{xk}) = (t_{y1}, t_{y2}, \dots, t_{yk})$$

Eso quiere decir que para todo $j \in [k]$, $t_{xj} = t_{yj}$. Luego, eso quiere decir que $I_{Fx} = I_{Fy}$. Con eso en mente, para cualquier x_l si $l \in I_{Fx}$ entonces $x_l = 1$. Pero $l \in I_{Fy}$ entonces $y_l = 1$. Luego, si $l \notin I_{Fx}$ entonces $x_l = 0$ y entonces $l \notin I_{Fy}$ por lo que también $y_l = 0$. Por tanto, para todo $l \in [n]$ concluimos que $x_l = y_l$ lo que permite concluir que x = y.

Luego, se asegura de esta manera que $\binom{n}{k} \leq n^k$. Si se toma n=3, k=2 se tendrá una función que no es sobreyectiva, por lo que no es posible decir que $\binom{n}{k} = n^k$ para todos valores de n, k. De manera general, para cualquier n, si se toma k=1 se tendrá la igualdad gracias al punto 5. Para n>0 al tomar k=0 también se tendrá la igualdad.