

Sumário

Estrutura atômica	3
Distribuição eletrônica	4
Classificação periódica dos elementos	5
Estudo dos íons	7
Ligações químicas	7
Funções inorgânicas	12
Reações inorgânicas	15
Cálculo estequiométrico	17
Gases	18
Soluções	19
Termoquímica	21
Cinética	22
Equilíbrio químico	24
Eletroquímica	26
Radioatividade	29
Classificações das cadeias carbônicas	31
Principais radicais orgânicos	32
Funções mistas em ordem de prioridade decrescente	33
Regras em reações orgânicas	36
Acidez e basicidade dos compostos orgânicos	36
lsomeria	53
Bioquímica	53
Proteínas	54
Glicídeos (carboidratos ou açúcares)	54
Química do petróleo	54
Química do carvão	54
Tabela periódica	55

Química geral

Estrutura atômica

Modelo atômico de Dalton

- Esferas minúsculas, maciças e sem carga.
- Nome do modelo = Bola de bilhar.

Modelo

atômico de Rutherford

- Átomo é descontínuo com predominância de espaços vazios, formado por núcleo e eletrosfera.
- Núcleo pequeno e positivo, onde se encontram os prótons, é no núcleo que se concentra quase toda a massa do átomo.
- A eletrosfera é a região ao redor do núcleo em que os elétrons giram em órbitas circulares.
- O diâmetro do átomo é de 10 000 a 100 000 vezes maior que o diâmetro do núcleo.
- Nome do modelo = Planetário.

Partículas elementares ou fundamentais

	Próton	Nêutron	Elétron
Carga relativa	+ 1	0	- 1
Massa relativa	1	1	1/1836

Modelo atômico de Niels Bohr

- Os elétrons giram, espontaneamente, ao redor do núcleo em sete órbitas circulares bem definidas, denominadas de K, L, M, N, O, P, Q sem perder nem ganhar energia.
- Os níveis de energia podem ser representados pelos números de 1 a 7 denominados de números quânticos principais, representados pela letra "n".

Subníveis de energia

Número quântico principal (n) indica o nível de energia (ou camada eletrônica) em relacão ao núcleo.

Camada	n	N.º máximo de elétrons
K	1	2
L	2	8
M	3	18
N	4	32
0	5	32
Р	6	18
Q	7	2

Número quântico secundário (ℓ) indica os subníveis de energia.

Subnível	s	р	d	f
ℓ	0	1	2	3
N.º máximo de elétrons	2	6	10	14

Número quântico magnético (ml) indica a orientação do orbital no espaço (orbital do elétron).

Subnível	ℓ	N.º quântico magnético (mℓ)	N.º de orbitais
S	0	0	1
р	1	-1 0 + 1	3
d	2	-2 -1 0 +1+2	5
f	3	-3 -2 -1 0 +1+2+3	7

Número quântico spin (ms) indica o movimento de rotação do elétron. Só podendo assumir dois valores: +1/2 ou -1/2.

Quando os spins de um elétron estão em mesmo sentido de rotação, há repulsão entre eles, e quando estão em sentido contrário de rotação, eles podem ficar no mesmo orbital

Princípio da exclusão de Pauling

Um orbital pode ter, no máximo, dois elétrons e eles devem ter spins contrários.

Distribuição eletrônica

Os elétrons de qualquer átomo ficam distribuídos na eletrosfera, preenchendo completamente os subníveis, sempre em um sentido crescente de energia, obedecendo a seta do diagrama de Linus Pauling.

- Camada de valência é a última camada de um elemento guímico.
- Subnível mais energético ou elétron diferencial – é o último subnível a ser inserido em uma distribuição eletrônica.
- Regra de Hund em um subnível o elétron sempre ocupa o orbital vazio, para depois ocupar o semipreenchido.

Átomo e elemento químico

Elemento químico é o conjunto de átomos com o mesmo número atômico.

NOTAÇÃO: _z**E**^A

Número atômico

Número atômico (Z) é a quantidade de prótons no núcleo desse átomo.

$$Z = p = e$$

Número de massa

Número de massa (A) é a soma do número de prótons com o número de nêutrons de um átomo.

$$A = p + n$$

Relação entre os átomos

Isótopos, isóbaros e isótonos

Isótopos

São átomos que têm o mesmo número de prótons e diferente número de massa.

Isótopos do elemento hidrogênio

Isóbaros

São átomos de elementos diferentes com o mesmo número de massa.

Isótonos

São átomos de elementos diferentes com diferentes números de prótons e de massa, mas com a **mesma quantidade de nêutrons**.

$$_{5}B^{11}$$
 e $_{6}C^{12}$ $_{n=6}$ $_{n=6}$

Classificação

periódica dos elementos

A classificação periódica atual está fundamentada na lei de *Moseley*, que dispõe os elementos em **ordem crescente de número atômico**. E muitas propriedades físicas e químicas seguem esse mesmo princípio.

Esses elementos distribuídos em ordem crescente de número atômico estão arrumados em sete linhas horizontais, denominadas **períodos** e em dezoito filas verticais denominadas **grupos ou famílias**.

Elementos de um mesmo período têm o mesmo número de camadas eletrônicas.

Elementos de uma mesma família ou grupo têm as mesmas propriedades físicas e químicas por terem sempre o mesmo número de elétrons na camada de valência.

As dezoitos colunas

Elementos representativos ou normais

Todos pertencentes aos de grupos A.

- Elétron de diferenciação sempre em subnível s ou p.
- Camadas internas com subníveis completos.
- O número da família ou grupo ao qual o elemento pertence é sempre igual ao número de elétrons em sua camada de valência.

Exemplo:

	1s ² , 2s ² , 2p ⁶ , 3s ² , 3p ⁶ , 3d ¹⁰	4s ² , 4p ⁵
35Br	Camadas internas completas	Camada de valên- cia com 7 elétrons. Família 7A

Algumas famílias do grupo A, por serem mais importantes que outras, recebem nomes especiais.

Família	Nome da família	Elementos	Camada de valência
1A	Metais alcalinos	H Li Na K Rb Cs Fr	ns¹
2A	Metais alcalinos- -terrosos	Be Mg Ca Sr Ba Ra	ns²
6A	Calcogênios	O S Se Te Po	ns ² , np ⁴
7A	Halogênios	F Cl Br I At	ns², np⁵
0 ou 8A	Gases nobres	He Ne Ar Kr Xe Rn	ns² ou ns²,np6

Elementos de transição externa ou simples

Todos pertencentes aos de grupos B.

- elétron de diferenciação sempre em subnível d incompleto.
- são elementos de transição externa os 3B até 8B.

Exemplo:

	1s ² , 2s ² , 2p ⁶	3s ² , 3p ⁶ , <u>3d</u> ⁸	4s²
₂₈ Ni		Penúltima camada com d incom- pleto	Camada de valência
	Elemento de transição externa ou simples		

Elementos de transição interna

- Elétron de diferenciação sempre em subnível f.
- Lantanídeos com elétron de diferenciação em subnível 4f.
- Actinídeos com elétron de diferenciação em subnível 5f.

Exemplo:

	1s², 2s², 2p ⁶ , 3s², 3p ⁶ , 3d¹ ⁰ , 4s², 4p ⁶ , 4d¹ ⁰ , <u>4f</u> ⁹ , 5s², 5p ⁶	6s²
₆₅ Tb	Antepenúltima camada com f incompleto	Camada de valência
	Elemento de transição interna	

Blocos s, p, d, f

O elétron de diferenciação de um átomo é sempre o último a entrar no orbital do átomo e terá sempre um lugar fixo na tabela que é dividida em quatro blocos.

Propriedades periódicas e aperiódicas

Raio atômico: o tamanho do átomo

Quanto maior o número de camadas de um átomo, maior será o seu raio em uma família e, quanto ao período, o raio cresce no sentido em que decrescem as cargas nucleares.

Generalizando

Em uma família: o raio atômico aumenta de cima para baixo na tabela, devido ao número de níveis.

Em um período: o tamanho do átomo aumenta da direita para a esquerda na tabela, devido à diminuição do número de prótons nesse sentido, o que diminui a força de atração sobre os elétrons.

Eletropositividade

É a tendência de um átomo em perder elétrons para outro, no instante de uma ligação química.

Eletronegatividade

É a força com que um átomo recebe elétron de outro átomo, no instante de uma ligação química.

Potencial de ionização

É a energia necessária para a retirada de um elétron da camada mais externa de um átomo isolado.

Afinidade eletrônica ou eletroafinidade

É a energia liberada por um átomo no estado gasoso, quando este recebe um elétron.

Estudo dos íons

Átomo neutro

A quantidade de prótons (p+) é igual a quantidade de elétrons (e⁻).

$$P^{+} = e^{-}$$

lons

Os metais têm uma tendência a perder os elétrons de sua última camada, transformando-se nos íons de carga positiva denominados de cátions.

$$M^0$$
 + energia \longrightarrow M^+ + e^-

Os não-metais têm uma tendência a receber elétrons em sua última camada, transformando-se em íons de carga negativa denominados de ânions.

$$X^0 + e^- \longrightarrow X^- + energia$$

Ligações químicas

Regra do octeto

Todos os átomos adquirem estabilidade química quando apresentam 8 elétrons em sua camada de valência, ou, 2 elétrons quando tiveram somente a camada K.

Ligação iônica

É a única ligação que ocorre com a transferência definitiva de elétrons do metal (cátion), para o não-metal (ânion).

O resultado de sua ligação forma somente compostos iônicos.

Quando o metal perde elétrons, sofre **oxidação**. Já o não-metal ao receber elétrons, sofre **redução**.

Exemplo:

Fórmula de Lewis ou Fórmula Eletrônica ou Fórmula lônica

Ligação covalente

A ligação é estabelecida pelo **compartilhamento de elétrons** dos elementos denominados de **não**-metais (5A, 6A, 7A e H).

Ligação covalente simples

É a ligação que se forma pelo compartilhamento de apenas um elétron de cada átomo.

Exemplo:

Ligação covalente dupla

É a ligação que se forma pelo compartilhamento de dois elétrons (um par) de cada átomo.

; O: ∶O;	0=0	0,
Ö: :C: :Ö	o=c=o	CO ₂
Fórmula	Fórmula	Fórmula
eletrônica	estrutural	molecular

Ligação covalente tripla

É a ligação que se forma pelo compartilhamento de três elétrons de cada átomo.

:1	N <mark>∷</mark> N:	$N \equiv N$	N ₂
н٠	·C N	$H-C \equiv N$	HCN
	rmula trônica	Fórmula estrutural	Fórmula molecular

Ligação covalente coordenada ou dativa (—→)

É a ligação formada pelo "empréstimo" de pares de elétrons que sobram do átomo que está envolvido na ligação covalente para satisfazer a regra do octeto. Pode ser representada por uma seta.

Ö∷S ₩ Ö:	o = s ⊢ o	SO ₂
Fórmula	Fórmula	Fórmula
eletrônica	estrutural	molecular

Propriedades dos compostos covalentes

- Baixo ponto de fusão (P,).
- Baixo ponto de ebulição (P).
- Não conduzem corrente elétrica quando puros.
 Somente compostos covalentes polares que se ionizam conduzem corrente elétrica.

Propriedades dos compostos iônicos

- Alto ponto de fusão (P_f).
- Alto ponto de ebulição (P).

- São sólidos à temperatura ambiente (25°C).
- São condutores elétricos quando fundido ou em solução aquosa.

A tabela a seguir representa as ligações covalentes normais e dativas que os átomos podem fazer.

Família	1A	4	A	5A	6A	7A
Elétrons de valência	1	4		5	6	7
Represen- tação	E٠	·Ė·		٠Ë٠	·Ë·	·Ë:
		4 simples	_ c	3 simples e 1 dativa ≣ N →	2 simples e 2 dativas	1 simples e 3 dativas
Ligações Covalentes normais e	1 ligação simples	2 simples e 1 dupla	 = 			
Dativas	н—	2 duplas	=c=	1 simples 1		† — Br →
		1 simples e 1 tripla	-c≡	dupla e até 1 dativa N =	1 dupla e até duas dativas = 0	+

Orbitais moleculares do tipo sigma

Na ligação covalente, os elétrons que participam da ligação deixam seus orbitais atômicos de origem e passam a ocupar um novo orbital chamado de **molecular**, onde esse compreende os dois núcleos dos dois átomos que estão se ligando.

Orbitais atômicos	Orbitais moleculares	
S + S H H	σ (s – s) H H	IESDE Brasil
H+ CI	σ (s – p) H – Cl	
p p p	σ (p – p) Cl – Cl	

Orbitais moleculares do tipo P

Surge da interpenetração de dois orbitais do tipo p, quando em paralelo e quando também já existe uma ligação sigma entre eles.

Hibridação

Hibridação	Elementos	Geometria	Ângulo
sp³	- C Si Si Ge	*	109º28′
	O na H ₂ O	Angular	104°30′
	N na NH ₃	Piramidal	107°
sp²	>c=	人	120°
sp	-C≡ =C= -Be-	•	180°

Ligação metálica

É a ligação que ocorre entre íons e átomos de metais, também conhecida como liga metálica.

Polaridade das ligações

Ligação covalente apolar: é aquela formada por átomos idênticos ou de mesma eletronegatividade.

$$H-H$$
 $CI-CI$ $O=O$

Ligação covalente polar: é aquela formada por átomos diferentes ou de eletronegatividade diferentes, onde os elétrons se deslocam para o lado do átomo de maior eletronegatividade, criando um momento dipolar (μ).

$$\begin{array}{ccc}
H^+ - CI^- & 0 = C = 0 \\
\mu & \mu & \mu
\end{array}$$

Polaridade das moléculas

Moléculas apolares: são aquelas formadas por átomos idênticos ou com momento dipolar nulo (= 0).

$$\begin{array}{ccc} \mathbf{H}_2 & \mathbf{CO}_2 \\ \mathbf{H}^+ - \mathbf{H}^+ & \mathbf{O} = \mathbf{C} = \mathbf{O} \\ \mu = 0 & & \mu = 0 \end{array}$$

Moléculas polares: são aquelas formadas quando o momento dipolar é não nulo (≠ 0), ou quando os átomos envolvidos na ligação são iguais.

O Observação

Moléculas formadas por dois átomos, sendo um deles o C, Si, Ge ou Be, resultará em uma molécula apolar.

HCI
$$H^+ - CI^ \mu \neq 0$$
 H_2O
 H
 $\mu \neq 0$
 H_2O
 H

Forças intermoleculares

Forças dipolo-dipolo

Forças que se dão entre moléculas polares, ou seja, que apresentam extremidades com dipolo elétrico permanente (momento dipolar diferente de zero).

$$\mathsf{H}-\mathsf{CI}-\mathsf{H}-\mathsf{CI}-\mathsf{H}-\mathsf{CI}$$
 Força dipolo-dipolo

Ponte de hidrogênio

Forças de atração que se estabelecem, principalmente, quando o hidrogênio se liga ao flúor, nitrogênio e oxigênio, nos estados sólidos ou líquidos, sendo mais forte que a dipolodipolo.

Força de Van der Walls

Em moléculas apolares aparece uma força de interação mais fraca que a dipolo-dipolo.

Ligação metálica

É aquela formada por íons e átomos de metais, através de elétrons livres, que formam uma nuvem eletrônica, a qual mantém unidos os íons metálicos.

Propriedades dos compostos metálicos

- Brilho metálico.
- Ponto de fusão e ebulição elevados.
- Maleabilidade.
- Ductibilidade.
- Ótimos condutores de eletricidade.

Quadro comparativo de propriedades dos compostos			
	Compostos iônicos	Compostos moleculares	Compostos metálicos
Forças intermoleculares	Eletrostática	Dipolo-dipolo e Van der Walls	Ligação metálica
Intensidade relativa das forças	Forte	Fraco	Forte
Ponto de fusão e ebulição	Elevado	Baixo	Elevado
Conduzem eletricidade quando	Fundidos ou em solução	Não conduzem quando puros	Líquidos e sólidos
Solúveis em solvente	Polares	Polares e apolares	

Funções inorgânicas

Número de oxidação (nox)

Regras práticas para determinar o nox

- Todo elemento simples tem nox igual a zero.
- O nox de um íon é sempre igual à carga do íon.
- O somatório dos nox de todos os elementos de uma molécula é sempre igual a zero.
- Em uma fórmula iônica o somatório dos nox de todos os elementos é sempre igual à carga iônica da fórmula.

NOX	Elementos	Observações
+1	Família 1A, Ag e H*	*quando o H es- tiver ligado aos metais terá nox igual a -1
+2	Família 2A e Zn	-
+3	Al e Bi	-
-3	N* e P*	*sempre que fo-
-2	O* e S*	rem os mais ele-
-1	Família 7A *	tronegativos em uma fórmula

Ácidos

Os ácidos têm

duas classificações

Hidrácidos: são ácidos que em sua fórmula não apresentam o átomo de oxigênio e se caracterizam pela terminação **ÍDRICO**.

Hidrácidos			
HF	Ácido fluorídrico		
HCl	Ácido clorí drico		
HBr	Ácido bromí drico		
HI	Ácido iodí drico		
H ₂ S	Ácido sulfídrico		
HCN	Ácido cianí drico		
HNC	Ácido isocianídrico		
H ₃ [Fe(CN) ₆]	Ácido ferricianídrico		
H ₄ [Fe(CN) ₆]	Ácido ferrocianídrico		

Oxiácidos: são ácidos que apresentam o átomo de oxigênio em sua fórmula. E sua nomenclatura varia com o número de oxidação do átomo central. Tendo a terminação oso para o menor nox e ico para o major nox.

Elemento	N Cl Br I	P As Sb	Mn* Cr* S
N.º de H no ácido $ ightharpoonup$	н	ш	ш
Nome do ácido \	п	H ₃	H ₂
Hipooso	+	·1	-
Ácoso	+	3	+4
Ácico	+	5	+6
Perico	+	7	+7*

O Observação

*Para que esses elementos tenham nox igual a 7 no prefixo per...., as suas fórmulas terão que ter somente um átomo de **H**.

Oxiácidos que desobedecem as regras de nomenclatura.

H ₂ CO ₃	Ácido carbônico
H ₃ BO ₃	Ácido bórico
H ₄ SiO ₄	Ácido ortosilíssico
H ₂ CrO ₄	Ácido crômico

Prefixos orto – meta – piro

Orto – usa-se esse prefixo (não obrigatoriamente) para a maior hidratação possível do ácido.

Meta – usa-se esse prefixo quando o ácido apresenta uma molécula de água a menos que os ácidos de prefixo orto.

Piro – usa-se esse prefixo quando se duplica a molécula do ácido orto, e retira-se uma molécula de água.

Conceitos modernos de ácidos e bases

Ionização dos ácidos

A ionização dos ácidos se dá através da liberação de H^+ que se une às moléculas de água, formando H_3O^+ (hidrônio ou hidroxônio).

Exemplo:

$$HCI + H_2O \Longrightarrow H_3O^+ + CI^-$$

 $HNO_3 + H_2O \Longrightarrow H_3O^+ + NO_3^-$

Bases ou hidróxidos

São compostos iônicos que em solução aquosa sofrem dissociação iônica liberando como único tipo de ânion os íons OH- (hidroxila).

$$NaOH + H_2O \longrightarrow Na^+ + OH^-$$

Nomenclatura das bases

Para elementos de nox fixo tem-se a seguinte fórmula:

Hidróxido de (nome do elemento)

Exemplo:

NaOH - hidróxido de sódio.

Para elementos de nox variável tem-se a seguinte fórmula:

Exemplo:

 $Fe(OH)_2 = hidróxido ferroso.$ $Fe(OH)_3 = hidróxido férrico.$ Ou

Exemplo:

Fe(OH)₂ = hidróxido de ferro II. Fe(OH)₃ = hidróxido de ferro III.

Tabela dos principais cátions

	+1	Li Na K Rb Cs Fr Ag
	+2	Be Mg Ca Sr Ba Ra Zn Cd
	+3	Al Bi
	+4	Si
	+1 ou +2	Cu Hg
nox dos	+1 ou +3	Au
cátions	+2 ou +3	Fe Co Ni Cr
	+2 ou +4	Sn Pb Mn Pt
	+3 ou +5	As Sb

Sais

Sais são compostos iônicos que possuem, pelo menos, um cátion diferente de H^+ , e um ânion diferente de OH^- .

A obtenção de um sal se dá pela reação de salificação ou de neutralização de um ácido com uma base.

Nomenclatura dos sais

A nomenclatura dos sais deriva do nome do ânion (base) seguida do nome do cátion (ácido). Onde o nome do cátion que é derivado de um ácido com o sufixo trocado.

Ânion + cátion

Terminação do ácido	Terminação do sal
ico	ato
hídrico	eto
oso	ito

Exemplo:

Os sais podem ser

classificados como

Sais ácidos: possui em sua fórmula H⁺. Sais básicos: possui em sua fórmula OH⁻. Sais neutros: sem H⁺ e OH⁻ em sua fórmula. Sais duplos: apresentam em sua fórmula dois cátions ou dois ânions diferentes.

Tabela dos principais ânions.

MONOVALENTES		BI\	/ALENTES
F-	fluoreto	O ⁻²	óxido
CI-	cloreto	O ₂ -2	peróxido
Br -	brometo	S ⁻²	sulfeto
I-	iodeto	SO ₃ ⁻²	sulfito
CIO-	hipoclorito	SO ₄ ⁻²	sulfato
CIO ₂ -	clorito	S ₂ O ₃ ⁻²	tiosulfato
CIO ₃ -	clorato	CO ₃ ⁻²	carbonato
CIO ₄ -	perclorato	C ₂ O ₄ ⁻²	oxalato
NO ₂ -	nitrito	SiO ₃ ⁻²	metassilicato
NO ₃ -	nitrato	HPO ₃ ⁻²	fosfito
CN-	cianeto	CrO ₄ ⁻²	cromato
OCN-	cianato	Cr ₂ O ₇ ⁻²	dicromato
SNC-	tiocianato	MnO ₄ ⁻²	manganato
PO ₃ -	metafosfato	MnO ⁻²	manganito
H ₂ PO ₂ -	hipofosfato	Pbo ₂ ⁻²	plumbito
AlO ₂ -	aluminato	Pbo ₃ ⁻²	plumbato
MnO ₄	manganato	S ₂ O ₆ ⁻²	hipossulfato
OH-	hidróxido	S ₂ O ₇ ⁻²	pirossulfato
H-	hidreto		

TRIVA	ALENTES	TETRAVALENTES		
PO ₄ ⁻³	fosfato	P ₂ O ₇ ⁻⁴	pirofosfato	
AsO ₃ ⁻³	arsenito	P ₂ O ₆ ⁻⁴	hipofosfato	
AsO ₄ ⁻³	arseniato	SiO ₄ ⁻⁴	silicato	
BO ₃ -3	borato	Fe(CN) ₆ ⁻⁴	ferrocianeto	
Fe(CN) ₃ -3	ferricianeto			

Óxidos

Óxidos são compostos binários onde o oxigênio é o elemento mais eletronegativo.

Exemplo:

CaO, Na₂O, CO₂, SO₃

Nomenclatura dos óxidos

Nomenclatura de óxidos com elementos de nox fixo.

Óxido de (elemento)

Exemplo:

CaO - óxido de cálcio.

Nomenclatura de elementos com nox variável

Exemplo:

FeO – óxido ferroso.

Fe₂O₃ – óxido férrico.

Elementos formadores de vários óxidos

Se um elemento formar mais de dois óxidos, usam-se o prefixo mono, di, tri etc.

Exemplo:

NO monóxido de mononitrogênio.

N₃O monóxido de dinitrogênio.

N₂O₃ trióxido de dinitrogênio.

Classificação dos óxidos

Óxido	Característica	Nox do oxigênio	Obs.
Básico	Metal com nox < 3	-2	Apresentam caráter iônico.
Ácido	Metal com nox > 4	-2	Apresentam caráter covalente.
Neutros	CO, NO, N ₂ O	-2	Óxidos covalentes e não reagem com água.
Anfóteros	ZnO, Al ₂ O ₃ , Fe ₂ O ₃	-2	Comportam-se como óxido ácido na presença de uma base e vice-versa.
Duplo	E ₃ O ₄	-2	Resultam na combinação de dois óxidos de um mesmo elemento.
Peróxido	Metal de nox < 3 e H	-1	Apresenta em sua estrutura o grupo O ₂ -2.
Superóxido	Metal de nox > 3	$-\frac{1}{2}$	Apresenta em sua estrutura o grupo O ₄ -2.

Reações inorgânicas

Reações de síntese ou adição

Vários reagentes se transformando em um único produto.

Síntese total

Todos os reagentes são substâncias simples.

$$2Mg_{(s)} + 1 O_{2(g)} \longrightarrow 2MgO_{(s)}$$

$$N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)}$$

Síntese parcial

Quando um dos reagentes é uma substância composta.

$$NH_{3(g)} + H_2O_{(I)} \longrightarrow NH_4OH$$
 $CaO_{(s)} + CO_{2(g)} \longrightarrow CaCO_{3(s)}$

Reação de análise ou decomposição

Quando um único reagente dá origem a vários produtos.

$$CaCO_{3(s)} \longrightarrow CaO_{(s)} + CO_{2(g)}$$

Reação de deslocamento ou simples troca

$$A + BC \longrightarrow AC + B$$

É quando um elemento de uma substância simples substitui outro de uma substância composta.

Exemplo:

$$\mathsf{Zn}_{(s)} + \mathsf{2}\;\mathsf{HCl}_{(aq)} \longrightarrow \mathsf{ZnCl}_{\mathsf{2}(aq)} + \mathsf{H}_{\mathsf{2}(g)}$$

Para que essa reação ocorra, é necessário que o elemento que compõe a substância simples seja mais reativo que o elemento deslocado.

Reação de dupla troca

Reação que ocorre entre substâncias compostas, quando há troca de cátions e ânions.

$$AB + CD \longrightarrow AD + CB$$

Para que ocorra a troca entre os cátions e os ânions desse tipo de reação há certas condições a se verificar com um dos produtos em relação aos reagentes.

Produto em relação			
aos reagentes			
Menos Mais Mais			
solúvel volátil fraco			

Tabela de solubilidade

Compostos	Regra	Exce- ções
NH ₄ ⁺ e metais alcalinos	Solúvel	-
Nitratos NO ₃ ⁻ Nitritos NO ₂ ⁻	Solúvel	_
Percloratos CIO ₄ -	Solúvel	KCIO ₄
Acetatos	Solúvel	-
Haletos F- Cl- Br- I-	Solúvel	Ag ⁺ Pb ⁺² Hg ⁺²
Sulfatos SO ₄ ⁻²	Solúvel	Pb ⁺² 2A
Sulfetos S ⁻²	Insolúvel	NH ₄ +,1A, 2A,
Carbonatos CO ₃ ⁻² Fosfatos PO ₄ ⁻² Oxalatos Hidróxidos OH ⁻ Óxidos	Insolúvel	NH ₄ ⁺ e metais alcalinos

Tabela de volatilidade

Ácidos voláteis	Ácidos não-voláteis
HF	
HCI	H ₂ SO ₄
HI	
H ₂ S	
HCN	$H_{_3}PO_{_4}$
H,CO,	

Tabela de grau de ionização (força)

	Fortes	HClO ₄ , HI, HBr, HCl, HNO ₃ , H ₂ SO ₄
Ácidos	Moderados	HF, H ₃ PO ₄ , HNO ₂ , H ₂ SO ₃
	Fracos	CH ₃ COOH, H ₂ S, HCN, H ₂ CO ₃
D	Fortes	Alcalinos e alcalinos- terrosos
Bases	Fracos	NH ₄ OH aminas e demais metais
Sais	Fortes	Praticamente todos quando em solução

Tabela de reatividade eletrolítica para METAIS e AMETAIS

		←	Cres	ce a reativi	dade	←		
F	0	N	Cl	Br	- 1	S	С	Р

Reações de oxirredução

São reações que ocorrem com variação de nox dos elementos envolvidos.

Reação de oxidação	Reação de redução
Aumento de nox	Diminuição de nox
Perda de elétrons	Ganho de elétrons
Agente redutor	Agente oxidante

Acerte os coeficientes estequiométricos da reação.

Cálculo com base em uma regra de três cuidando das unidades trabalhadas.

Lei de Lavoisier: em um sistema fechado, a massa total dos reagentes é igual à massa total dos produtos.

Semirreação de oxidação

Lei de Proust: toda a substância apresenta uma proporção constante, em massa, na sua composição e a proporção na qual as substâncias reagem e se formam é constante.

Semirreação de redução

Lei de Gay-Lussac: nas mesmas condições de pressão e temperatura (CNTP) os volumes dos gases participantes de uma reação química mantêm entre si uma relação de números inteiros e pequenos.

Cálculo estequiométrico

É a relação entre as quantidades de reagentes e produtos que participam de uma reação.

Lembre-se:

Escreva a reação com a qual está trabalhando.

Relação para cálculo estequiométrico

		6,02x10 ²³	
	Massa	átomos	
1 mol	em	ou núme-	22,4 L
	gramas	ro de	
		moléculas	

Físico-Química

Gases

Um gás ideal é aquele formado por moléculas, átomos ou íons, todas essas partículas admitem-se terem o mesmo tamanho.

As partículas têm movimentos livres e desordenados e não se atraem ou se repelem mutuamente.

As variantes de estado

Pressão: provocada pelos choques entre as partículas.

Temperatura: proporcional à energia cinética das moléculas.

Volume: ocupa por totalidade o recipiente que o guarda.

Equação de Clapeyron

PV = nRT

P = pressão em atm ou mmHg

V = volume em litros

n = número de mols

R = constante dos gases = 0, 082 atm.L/K.MOL

62,3 mmHq.L/K.MOL

T = temperatura em Kelvin

Transformações gasosas

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

Transformação isotérmica

Quando a transformação se realiza à **temperatura constante**, o volume que esse gás ocupa é inversamente proporcional a sua pressão.

Lei de Boyle-Mariote

$$P_1V_1 = P_2V_2$$

Transformação isométrica ou isocórica

Quando a transformação se realiza a um **volume constante**, a pressão do gás é diretamente proporcional a sua temperatura.

Lei de Charles e Gay-Lussac

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

Transformação isobárica

Quando uma transformação se realiza a uma pressão constante, o volume do gás é proporcional a sua temperatura.

Lei de Charles e Gay-Lussac

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

Misturas gasosas

$$\frac{PV}{T} = \frac{P_1V_1}{T_1} + \frac{P_2V_2}{T_2} + \dots + \frac{P_nV_n}{T_n}$$

Relações parciais de gases

Fração molar

$$X = \frac{n_{_A}}{n_{_T}}$$

Pressão parcial	$P_A = X_A . T_A$
Volume parcial	$V_A = X_A \cdot V_T$

Outras relações de gases

Densidade

Em todas as condições

$$d = \frac{P.M}{RT}$$
; g/L

Em CNTP

$$d = \frac{P.M}{22.4} ; g/L$$

Soluções

Qualquer tipo de mistura homogênea pode ser chamada de solução.

Toda a substância que existe em maior quantidade é chamada de **solvente**.

Todas as demais substâncias em uma solução são chamadas de **soluto**.

Classificação de solução

De acordo com seu estado de agregação

Solução	Quando todos os com-
gasosa	ponentes são gases.
Solução líquida	Quando o solvente é um líquido.
Solução sólida	Quando soluto e solvente são sólidos (ligas metálicas).

De acordo com a proporção soluto solvente

Solução	é aquela que contém pouco so-
diluída	luto em relação ao solvente.
Solução concentrada	é aquela que contém bastante soluto em relação ao solvente.

De acordo com a natureza do soluto

Solução iônica	Solução em que o soluto é um composto iônico.
Solução molecular	Solução quando o soluto é um composto molecular.

Tipos de solução

Solução insaturada	é quando a quantidade de so- luto adicionado não atinge o ponto de saturação.
Solução saturada	é quando a quantidade de so- luto adicionado atinge o ponto de saturação.
Solução supersaturada	é quando a quantidade de so- luto adicionado ultrapassa o ponto de saturação (corpo de fundo).

O Observação

Ponto de saturação é a capacidade que o solvente tem de dissolver um determinado soluto.

	É a quantidade de soluto que
Grau de	um solvente pode dissolver em
solubilidade	uma determinada temperatura
	e pressão.

Aspectos quantitativos das soluções

Concentração comum

é o quociente entre a massa do soluto e o volume da solução.

$$C = \frac{m_1}{V}$$

unidade = massa em (g) volume em (L)

Molaridade

é o quociente entre o número de mols do soluto e o volume da solucão.

$$M = \frac{n_1}{V}$$

unidade = mol/L

Título em massa

é o quociente entre a massa de soluto e a massa total da solução.

$$\tau = \frac{m_1}{M}$$

não tem unidade

Título em volume

é o quociente entre o volume do soluto e o volume total da solução.

$$\tau = \frac{V_1}{V}$$

não tem unidade

Fração molar do soluto

é o quociente entre o número de mols do soluto e o número de mols da solucão.

$$X_1 = \frac{n_1}{n}$$
 ou $X_2 = \frac{n_2}{n}$

não tem unidade

Molalidade

é o quociente entre o número de mols do soluto e a massa do solvente em gramas.

$$W = \frac{n_1}{m_2} \quad como \quad n_1 = \frac{m_1}{mol}$$
 então
$$W = \frac{n_1}{mol.m_2}$$

Normalidade

é o quociente entre o número de equivalente-grama do soluto e o volume da solução em litros.

$$N = \frac{E}{V} \quad como \quad E = \frac{m_{_1}}{eqg}$$

$$temos \quad N = \frac{m_{_1}}{eqg.X}$$

Equivalente--grama (eqg)

é a massa de uma substância, que durante uma reação química, movimenta um mol de cargas positivas ou negativas.

$$Eqg = \frac{mol}{X}$$

 $X = \begin{cases} N.^{\circ} \text{ de } \text{H}^{+} \text{ quando ácido.} \\ N.^{\circ} \text{ de } \text{OH}^{-} \text{ quando base.} \\ N.^{\circ} \text{ de cargas } + \text{ (cátions) ou} \\ & - \text{ ($anions) quando sal.} \end{cases}$

Relação entre todas as unidades de concentração

$$C = 1000 \times d \times T = M \times mol = N \times eqg$$

Diluição de solução

É acrescentar a uma solução já existente, um solvente puro com o intuito de diminuir a sua concentração.

Em termos de concen- tração comum (C)	$C_1 \times V_1 = C_2 \times V_2$
Em termos de concen- tração molar (molari- dade) (M)	$M_1 \times V_1 = M_2 \times V_2$
Em termos de concen- tração normal (nor- malidades) (N)	$N_1 \times V_1 = N_2 \times V_2$

Misturas de soluções de mesmo soluto

É a mistura de mais de uma solução já existente, com o intuito de formar uma nova solução.

Em termos de concen- tração comum (C)	$C \times V = C_1 \times V_1 + C_2 \times V_2$
Em termos de con- centração molar (molaridade) (M)	$M \times V = M_1 \times V_1 + M_2 \times V_2$
Em termos de concentração normal (normalidades) (N)	$N \times V = N_1 \times V_1 + N_2 \times V_2$

Termoquímica

Definição

"Parte da química que estuda as reações que liberam e absorvem calor".

Endotérmica: reações que absorvem calor.

Exotérmica: reações que liberam calor.

Energia interna

Endotérmica

 $Ep > Er \rightarrow \Delta E > 0$

Exotérmica

 $Ep < Er \rightarrow \Delta E < 0$

Ep – energia interna dos produtos.

Er – energia interna dos reagentes.

"quantidade de energia existente em uma reação química".

ΔH – variação de energia

$$\Delta H = H_{(produtos)} - H_{(reagentes)}$$

Diagrama de energia de uma reação

Endotérmica

Exemplo:

$$C + 2S \rightarrow CS$$
, $\Delta H = + 19kcal$

Diagrama de energia de uma reação

Exotérmica

Exemplo:

$$C + O_2 \rightarrow CO_2 \Delta H = -94kcal$$

Estado padrão

- p = 1atm ou 760mmHg
- substância simples
- estado alotrópico mais estável
- · estado físico mais estável
- $T = 25^{\circ}C (298K)$

Tipos de Entalpia

Entalpia de formação

"Calor liberado ou absorvido na formação de 1 mol de uma substância a partir dos reagentes no estado padrão".

$$\Delta H > 0$$

 $\Delta H < 0$

Entalpia de combustão

"Calor liberado na combustão de 1 mol de reagentes no estado padrão".

$$\Delta H < 0$$

Entalpia de neutralização

"Calor liberado na neutralização de 1 equivalentegrama de ácido com 1 equivalente-grama de base no estado padrão".

Entalpia de ligação

Ligação formada
$$\rightarrow \Delta H < 0$$

Ligação rompida $\rightarrow \Delta H > 0$

Lei de HESS

"A variação de entalpia de uma reação depende somente dos estados inicial e final da reação".

Consequências

1. Reações termoquímicas podem ser somadas.

$$CO \rightarrow C + \frac{1}{2} O_2$$
 $\Delta H = +26,4kcal$ $C + \frac{1}{2} O_2 \rightarrow CO$ $\Delta H = -26,4kcal$

2. Invertendo a equação termoquímica muda-se o sinal do AH.

$$C + \frac{1}{2} O_2 \rightarrow CO$$

$$CO + \frac{1}{2} O_2 \rightarrow CO_2$$

$$C + O_2 \rightarrow CO_2$$

$$\Delta H = -67,7kcal$$

$$\Delta H = -94,1kcal$$

 Multiplicando ou dividindo a equação por um número diferente de zero, o ΔH também será multiplicado ou dividido por tal número.

$$C + O_2 \rightarrow CO_2$$
 $\Delta H = -94,1kcal (x2)$
 $2C + 2O_2 \rightarrow 2CO_2$ $\Delta H = -188,2kcal$

Entropia (S)

"Grandeza termodinâmica associada ao grau de desordem de um sistema".

↑ desordem	↑ entropia	$\Delta S > 0$
↓ desordem	$\downarrow \text{entropia}$	ΔS < 0

Energia livre de Gibbs (G)

"Energia máxima que o sistema pode liberar em forma de trabalho útil".

$$\Delta G = \Delta H - T \Delta S$$

ΔG > 0 - reação não-espontânea.
 ΔG < 0 - reação espontânea.
 ΔG = 0 - reação em equilíbrio.

Cinética

Definição:

"Parte da química que estuda a velocidade das reações".

O Observação

Nesse estudo admite-se a presença de uma fase intermediária (complexo ativado).

Diagrama energético

Exemplo:

Ea – energia de ativação do complexo ativado.

Velocidade média de uma reação

$$Vm = \frac{\Delta n}{\Delta t}$$

∆n – variação de n.º de mols.

Δt – variação do tempo da reação.

Condições para que uma reação aconteça

Fundamentais:

Afinidade.

Contato entre os reagentes.

Acessórias:

Frequência.

Eficiência das colisões.

Fatores que influem na

velocidade de uma reação

Concentração dos reagentes (lei da ação

das massas ou lei de Guldberg – Waage)

"A velocidade é diretamente proporcional ao produto das concentrações molares dos reagentes elevado ao expoente que são seus coeficientes".

Exemplo:

Reação:

$$aA + bB \longrightarrow cC + dD$$

Equação:

$$V = K.[A]^a.[B]^b$$

K – constante de velocidade

[A] - molaridade de A

[B] – molaridade de B

Considerando A e B no estado gasoso:

$$V = K.p_A^{\ a}.p_B^{\ b}$$

p = pressão parcial.

Temperatura (lei de Van't Hoff)

"A temperatura acarreta um aumento na velocidade das reações".

Catalisador

"Aumenta a velocidade da reação, sem ser consumido".

Inibidor

"Diminui a velocidade da reação, e é consumido na mesma".

Equilíbrio químico

"Ocorrem somente em reações reversíveis".

$$xA + yB \xrightarrow{V_1} zC + tD$$

Condições para uma reação estar em equilíbrio

t_{ea} – tempo para a reação atingir o equilíbrio.

Concentração dos reagentes dos produtos é constante com o passar do tempo

 t_{eq} – tempo para a reação atingir o equilíbrio.

Constantes de equilíbrio

Equação geral

$$K = \frac{[produtos]^m}{[reagentes]^n}$$

K_c (constante de equilíbrio e função da concentração molar)

$$K_{c} = \frac{[C]^{z}.[D]^{T}}{[A]^{x}.[B]^{Y}}$$

Só é alterado pela temperatura. Não entram substâncias sólidas.

K_p (constante de equilíbrio em função das pressões parciais)

$$K_{p} = \frac{pC^{z}.pD^{t}}{pA^{x}.pB^{y}}$$

Relação entre $K_c e K_p$

$$K_p = K_c.(RT)^{an}$$

R – constantes dos gases ideais $0.082 \ atm.L.mol^{-1}K^{-1}$

62,3 mmHg.L.mol⁻¹.K⁻¹

T – temperatura absoluta (K)

∆n – variação de n.º de mols

$$\Delta n = (z + t) - (x + y)$$

Deslocamento de equilíbrio

Princípio de Le Chatelier

"Quando uma força externa age sobre um sistema em equilíbrio, ele se desloca, procurando fugir da força aplicada".

Fatores que deslocam o equilíbrio

Um aumento na pressão força a reação no sentido em que o volume diminui e vice-versa.

Um aumento na temperatura desloca o equilíbrio no sentido da reação endotérmica e vice-versa.

A adição de uma substância desloca o equilíbrio no sentido da reação que a consome.

A retirada de uma substância desloca o equilíbrio no sentido da reação que a forma.

Adição de catalisador no equilíbrio

Não desloca o equilíbrio, apenas aumenta a velocidade da reação.

Equilíbrio iônico

"Em reações de ionização em equilíbrio usamos a lei de Ostwald".

$$K_{i} = \frac{\eta.\alpha^{2}}{1-\alpha}$$

 K_i – constante de ionização. α – grau de ionização.

α =
$$\frac{\text{n.° de moléculas ionizadas}}{\text{n.° de moléculas dissolvidas}}$$

 α depende da temperatura e da molaridade (11)

Produto iônico da água

$$H_2O \longleftrightarrow H^+ + OH^-$$

K_{w} – Constante de hidrólise

$$K_{w} = K_{i}.[H_{2}O] = [H^{+}].[OH^{-}]$$

à 25°C

$$K_{\rm w} = 10^{-14}$$

pH e pOH

$$p = - \log$$

$$pH = -log [H^+]$$

 $pOH = -log[OH^-]$

Relação entre pH e pOH

$$pH + pOH = 14$$

O Observação

$$\uparrow$$
 acidez $-\uparrow$ [H⁺] $-\downarrow$ pH

↑ basicidade – ↑
$$[OH^-]$$
 – ↑ pH

pH de 1 à 6,99	Ácido
pH igual a 7,00	Neutro
pH de 7,01 à 14,00	Básico

Solução tampão

"Solução que não varia de pH quando recebe quantidades pequenas de ácido ou base".

Exemplo:

Hidrólise de sais

"Reação do sal com água, cujo produto é um ácido e uma base".

Exemplo:

Onde ocorrem as hidrólises salinas

sal de	íon fraco	reação de hidrólise	pH do meio
Ácido Forte Base Forte	não tem	não ocorre	= 7
Ácido Forte Base Fraca	cátion	ocorre	< 7

Ouímica

Ácido Fraco Base Forte	ânion	ocorre	> 7
Ácido Fraco Base Fraca	cátion e ânion	ocorre	~ 7

Constantes de hidrólise (Kh)

Ácido Forte Base Fraca	$K_h = \frac{K_w}{K_b}$
Ácido Fraco Base Forte	$K_h = \frac{K_w}{K_a}$
Ácido Fraco Base Fraca	$K_h = \frac{K_w}{K_a \cdot K_b}$

Grau de hidrólise (α.h)

$$\alpha.h = \frac{\text{n.° de mols hidratados}}{\text{n.° inicial de mols}}$$

Eletroquímica

"Parte da química que estuda a relação entre a reação química e a produção de energia elétrica".

Pilha

"Parte da química que estuda as reações de "oxidorredução" que produzem ou que são produzidas pelas correntes elétricas".

Reação redox espontaneamente Corrente elétrica

Convenção para pilhas

Cátodo (+)

Eletrodo onde ocorre a reação de redução. Recebe elétrons do sistema.

Sofre deposição de massa.

Concentração da solução diminui.

Ânodo (-)

Eletrodo onde ocorre a reação de oxidação. Cede elétrons para o sistema.

Sofre corrosão.

Concentração da solução aumenta.

Exemplo:

Pilha de zinco e cobre (Pilha de DANIELL)

Semirreações

Oxidação

$$Zn^0 \longrightarrow Zn^{2+} + 2e^ E^0 = +0.76V$$

O Observação

No eletrodo de zinco há a corrosão da placa e o aumento na concentração de cátions Zn²⁺.

Redução

$$Cu^{2+} + 2e^{-} \longrightarrow Cu^{0}$$
 $E^{0} = +0.34V$

O Observação

No eletrodo de cobre há o aumento da massa da placa e a diminuição na concentração de ânions Cu²⁺, na solução.

Reação global

Zn ⁰ → Zn ²⁺ + 2e ⁻	Eo	=	+0,76V
Cu ²⁺ + 2e ⁻ → Cu ⁰	Eº	=	+0,34V
$Zn^0 + Cu^{2+} \longrightarrow Zn^{2+}$	+ Cu ⁰	ΔΕ	= 1,10V

Fletrólise

"Processo inverso do que ocorre na pilha, isto é, a corrente elétrica é que provoca uma reação de 'oxidorredução'."

Convenção para eletrólise

Ânodo (+)

- Eletrodo onde ocorre a oxidação.
- · Cede elétrons para o sistema.
- As partículas positivas são atraídas pelo ânodo, onde se oxidam.

Cátodo (-)

- Eletrodo onde ocorre a redução.
- · Recebem elétrons do sistema.
- As partículas negativas são atraídas pelo cátodo onde se reduzem.

Exemplo:

Célula eletrolítica

O Observação

Na eletrólise, o fluxo de elétrons criado pelo gerador (bateria) vai do ânodo para o cátodo.

Potencial padrão (E⁰)

"É determinado acoplando-se esse eletrodo a um eletrodo de padrão de hidrogênio e medindo-se a diferença entre os dois".

$$E^{0}(H_{2}) = 0.00V$$

25°C

1atm

Solução molar

Reação:

Diferença de potencial (ΔE^0)

"Dada pela diferença de potencial entre o eletrodo de maior valor e o eletrodo de menor valor".

$$\Delta \mathsf{E}^0 = \mathsf{E}^0_{\,\,(\mathsf{red}>)} - \mathsf{E}^0_{\,\,(\mathsf{red})}$$

Considerações sobre o potencial

- Potencial positivo indica que a semirreação é espontânea no sentido em que está escrita.
- Potencial negativo indica que a semirreação é espontânea no sentido inverso ao que está escrita.
- Quanto maior o potencial de redução, mais forte é o oxidante.
- Quanto maior o potencial de oxidação, mais forte é o redutor.
- Quanto maior o potencial, maior é a tendência da semirreação ocorrer no sentido em que está escrita.

Tabela dos potenciais

	Potencial de redução (Eº _{red})	Estado reduzido		Estado oxidado	Potencial de oxidação (E ⁰ _{oxid})	4
	-3,04	Li		Li+ + e⁻	+3,04	
	-2,92	K		K+ + e-	+2,92	
	-2,90	Ва	\rightleftharpoons	Ba ²⁺ + 2e ⁻	+2,90	
	-2,89	Sr		Sr ²⁺ + 2e ⁻	+2,89	
	-2,87	Ca	\rightleftharpoons	Ca ²⁺ + 2e ⁻	+2,87	
	-2,71	Na	ightharpoonup	Na+ + e-	+2,71	
	-2,37	Mg	ightharpoonup	$Mg^{2+} + 2e^{-}$	+2,37	
	-1,66	Al	\rightleftharpoons	$AI^{3+} + 3e^{-}$	+1,66	
0	-1,18	Mn		$Mn^{2+} + 2e^{-}$	+1,18	0
ORDEM CRESCENTE DE AÇÃO OXIDANTE	-0,83	$H_2 + 2(OH)^-$	₩	2H ₂ O + 2e ⁻	+0,83	ORDEM CRESCENTE DE AÇÃO REDUTORA
Ċ. ≥	-0,76	Zn	ightharpoonup	$Zn^{2+} + 2e^{-}$	+0,76	N C
RESC	-0,74	Cr	₩	Cr³+ + 3e-	+0,74	RESC
ENT	-0,48	S ²⁻	≠	S + 2e ⁻	+0,48	ENT
E DE	-0,44	Fe		Fe ²⁺ + 2e ⁻	+0,44	E DE
ĄÇ	-0,28	Со		$Co^{2+} + 2e^{-}$	+0,28	AÇ,
ÃOC	-0,23	Ni		Ni ²⁺ + 2e ⁻	+0,23	ÃO R
XID.	-0,13	Pb	ightharpoonup	$Pb^{2+} + 2e^{-}$	+0,13	REDU
ANT	0,00	H ₂		2H+ + 2e-	0,00	TOR
т	+0,15	Cu ⁺	\rightleftharpoons	Cu ²⁺ + e ⁻	-0,15	Þ
	+0,34	Cu		Cu ²⁺ + 2e ⁻	-0,34	
	+0,40	2(OH)-	\rightleftharpoons	$H_2O + 1/2O_2 + 2e^-$	-0,40	
	+0,52	Cu		Cu+ + e-	-0,52	
	+0,54	2l-	\rightleftharpoons	I ₂ + 2e ⁻	-0,54	
	+0,77	Fe ²⁺	\rightleftharpoons	Fe ³⁺ + e ⁻	-0,77	
	+0,80	Ag	ightharpoonup	$Ag^+ + e^-$	-0,80	
	+0,85	Hg		$Hg^{2+} + 2e^{-}$	-0,85	
	+1,09	2Br	ightharpoonup	Br ₂ + 2e ⁻	-1,09	
	+1,23	H ₂ O		$2H^{+} + 1/2O_{2} + 2e^{-}$	-1,23	
V	+1,36	2Cl-	\rightleftharpoons	Cl ₂ + 2e ⁻	-1,36	
	+2,87	2F-		F ₂ + 2e ⁻	-2,87	

Leis de Faraday (F)

"A massa do elemento eletrolisado é diretamente proporcional ao seu equivalente-grama".

"A massa do elemento eletrolisado é proporcional à carga elétrica que atravessa a solução".

$$m = K.E$$

$$m = K.Q$$

Onde:

m = massa formada no eletrodo

K = constante de proporcionalidade

E = equivalente-grama da substância produzida

no eletrodo

Q = carga elétrica

Equação geral da eletrólise

 $m = \frac{i.t.E}{96\,500}$

Onde:

m = massa(q)

t = tempo(s)

i = carga elétrica (A)

E = equivalente-grama

1F = 96 500C = 1mol de elétrons

Radioatividade

"Propriedade que alguns elementos naturais e artificiais têm de emitir partículas e radiações eletromagnéticas".

Fenômeno relacionado somente ao núcleo atômico

Principais radiações:

Alfa (α)

Natureza: partícula 2p + 2n

Notação: ,α⁴

Carga elétrica relativa: +2

Massa relativa: 4

Beta (β)

Natureza: elétron

Notação: _{_1}β⁰

Carga elétrica relativa: -1

Massa relativa: 0

Gama (y)

Natureza: onda eletromagnética

Notação: γ

Carga elétrica relativa: 0

Massa relativa: 0

O Observação

A partícula alfa é idêntica a um núcleo de hélio;

A partícula beta é o resultado da decomposição de um nêutron.

Leis radioativas

1.ª Lei da radioatividade (Soddy)

"Quando um núcleo emite uma partícula alfa, seu número atômico reduz duas unidades e seu número de massa reduz quatro unidades".

$$_{z}X^{A} \longrightarrow {}_{2}\alpha^{4} \longrightarrow {}_{z-2}Y^{A-4}$$

2.ª Lei da radioatividade (Soddy – Fajans)

Russell

"Quando um núcleo emite uma partícula beta, seu número atômico aumenta uma unidade e seu número de massa não se altera".

$$_{z}X^{A} \longrightarrow _{-1}\beta^{0} \longrightarrow _{z+1}Y^{A}$$

Química

Cinética radioativa

Velocidade de desintegração (V)

$$V = -\frac{\Delta n}{\Delta t}$$

(rad/s, desint/s, curie)

Constante radioativa (C)

$$C = -\frac{\Delta n}{n_0}$$

(s⁻¹, h⁻¹, ano⁻¹) 1C = 3,7.10¹⁰ desint/s

Vida média (V_m)

$$V_m = \frac{1}{C}$$

(s, h, ano)

Meia vida (P)

P ≅ **0**,**7**.**V**_m

Onde:

n = número de átomos desintegrados $n_o = n$ úmero total de átomos no início da amostra t = tempo

Fissão nuclear

"Processo através do qual um núcleo pesado, quando bombardeado por partículas radioativas, sofre cisão (quebra) formando núcleos mais leves".

Exemplo:

Bomba atômica

Fusão nuclear

"Processos através dos quais núcleos leves unem--se dando origem a um novo núcleo mais pesado".

Exemplo:

Bomba de hidrogênio

Relação entre as energias

E_{fusão} . E_{fissão}

Radioatividade artificial

Partículas atômicas envolvidas

Próton	₁ p ¹
Nêutron	_o n¹
Dêuteron	1d ²
Alfa	2^{α^4}
Beta	-1β ⁰
Pósitron	+1 ^ε 0
Neutrino	0 ^{V0}
Raios Gama	ογο

Química Orgânica

Classificações das cadeias carbônicas

		DISPOSIÇÃO DOS ÁTOMOS	TIPOS DE LIGAÇÕES	NATUREZA DOS ÁTOMOS
		NORMAIS	SATURADAS	HOMOGÊNEA
	ABERTAS, ALIFATICAS OU ACICLICAS			
	, 	RAMIFICADAS	INSATURADAS	HETEROGÊNEA
	ABEKIAS, A	X, X,X,X,		
		NORMAIS	SATURADAS	HOMOCÍCLICAS
	ALICÍCLICAS			
2	ΞĆ	RAMIFICADAS	INSATURADAS	HETEROCÍCLICAS
FECHADAS OU CÍCLICAS	A			
ECH	S	MONONUCLEARES	POLINUCLEARES	
	AROMÁTICAS		Condensados	Isolados

Química

CLASSIFICAÇÃO DOS CARBONOS NA CADEIA				
PRIMÁRIO	SECUNDÁRIO			
e, e ₀	e'e'			
TERCIÁRIO	QUATERNÁRIO			
6,6				

	^
NOMENCI ATURA DOS C	OMPOSTOS ORGANICOS
INCIVILITED TO THE DOS	

NÚMERO DE CARBONOS					
1 – met	6 – hex				
2 – et	7 – hept				
3 – prop	8 – oct				
4 – but	9 – non				
5 – pent	10 – dec				
	TIPO DE LIGAÇÃO				
	DIEN 3.D. I				

AN – Simples	DIEN – 2 Duplas
•	TRIEN – 3 Duplas
EN – Dupla	DIIN – 2 Triplas
IN – Tripla	TRIIN – 3 Triplas

SÉRIES

HOMÓLOGA: difere pela quantidade de grupos CH, ISÓLOGA: difere pela quantidade de grupos H, HETERÓLOGA: apresentam mesma cadeia carbônica e diferentes funções

Principais radicais orgânicos

Alquila ou Alcoíla (monovalente em carbono saturado)				
-CH ₃ metil				
- CH ₂ - CH ₃	etil			
- CH ₂ - CH ₂ - CH ₃	n-propil			
H ₃ C – CH – CH ₃	isopropil			
- CH ₂ - CH ₂ - CH ₂ - CH ₃	n-butil			
-CH ₂ -CH ₂ CH ₃	iso-butil			
H ₃ C CCH ₃	terc-butil			

Alquila ou Alcoíla (monovalente em carbono saturado)				
- CH ₂ - CH ₃	sec-butil			
$-CH_2CH = CH_2$	alil			
CH ₂ -	benzil			

Alquenila ou Alcenila (monovalentes em carbono com dupla)

– CH = CH ₂	etenil
-CH = CH ₂	(ou vinil)

Alquinila ou Alcinila (monovalentes em carbono com tripla)

etinil -C≡CH

Arila (monovalentes

Alcoileno (divalente em dois carbonos saturados)

CH₂ - CH - CH₃

1,2-propileno

Alcoilideno (divalente no mesmo carbono saturado)

Funções mistas em ordem de prioridade decrescente

Nas cadeias com mais de uma função orgânica, a função principal é a de maior prioridade

Exemplo:

CH₃-CH(OH)-CH₃-CHO: aldeído é a função principal e o álcool entra na nomenclatura como hidróxi3-hidroxi-butanal

Função	Fórmula	Nome como sufixo	Nome como prefixo	Exemplo, Nomenclatura oficial e usual
Ácido	О II — С —ОН	ácido ₊ oico	carboxi	H₃C – COOH ácido etanoico ácido acético
Anidrido ácido	O O	anidrido •••••oico		CH ₃ - COO CH ₃ - CH ₂ - COO anidrido etil-propílico anidrido aceto-propiônico
Éster	0 - C - O -	₄ato	alcoxicarbonil	CH ₃ - C-0-CH ₃ etanoato de metila acetato de metila

Função	Fórmula	Nome como sufixo	Nome como prefixo	Exemplo, Nomenclatura oficial e usual
Haleto de ácido	0 - C - X	haleto de+oil	halocarbonil	O II H ₃ C – C – Cl cloreto de etanoíla cloreto de acetil a
Amida	O - C - N -	amida	amido	O II CH ₃ – C –NH ₂ etanamida Acetamida
Nitrila	-C≣N	₄ nitrila	ciano	CH₃−C≣N etanonitrila acetonitrila
Aldeído	O II – C – H	₊ al	aldo ou oxo	н -с н metanal formol; formaldeído
Cetona	0 - C -	•····• ona	ceto ou oxo	O II CH ₃ – C –CH ₃ propanona acetona
Álcool)C(OH	۰ ol	hidróxi	OH I CH ₃ – CH –CH ₃ propan-2-ol álcool isopropílico
Fenol	Ar –OH	ol	hidróxi	benzeno-1,2-diol
Tiol	–SH	←→ tiol	mercapto	CH ₃ –SH metanotiol metil mercaptana
Amina	−NH₃	←→ amina	amino	N-metil-fenilamina N-metil-nilina

Função	Fórmula	Nome como sufixo	Nome como prefixo	Exemplo, Nomenclatura oficial e usual
Imina	– C =N –	← imina	imino	CH ₃ –CH =NH etilenoimina aziridina
Alceno	- C = C -	←→ eno	alcenil	H ₂ C=CH ₂ eteno etileno
Alcino	- c ≡ c -	←→ ino	alcinil	HC ≣CH etino acetileno
Alcano	- C -C -	←→ ano	alquil	H ₃ C−CH ₃ etano

Grupos subordinados sem ordem de prioridade

Função	Fórmula	Nome como prefixo	Exemplo, Nomenclatura oficial e usual
Azida	- N ₃	azido	$H_3C - N = N^+ = N^-$ azido-metano
Diazo	- N ₂	diazo	H₃C – N⁺ ≡ N diazo-metano
Éter	-0-	alcoxi	C₂H₅ − O − C₂H₅ etóxi-etano éter sulfúrico
Haleto	- X	halo	Cl − CH₃ cloro-metano cloreto de metila
Nitro	- NO ₂	nitro	H _s C ₂ – NO ₂ nitro-etano
Sulfona	- SO ₂ -	alquiltio	C ₂ H ₅ – SO ₂ – C ₂ H ₅ etiltio-etano

Regras em reações orgânicas

Regra de Markownikoff

Em uma reação de adição de HX, o hidrogênio entra no carbono mais hidrogenado.

Regra de Saytseff

Em uma reação de eliminação, o hidrogênio sai do carbono menos hidrogenado.

Regra de Karasch

Em uma reação de adição de HX em presença de peróxido, o hidrogênio entra no carbono menos hidrogenado.

Acidez e basicidade dos compostos orgânicos

Acidez

Carboxiácidos > Fenóis > Água > Álcoois > Alcinos Verdadeiros

Basicidade

Amina 2. a > Amina 1. a > Amina 3. a > NH $_{3}$ > Aminas Aromáticas

Efeito Indutivo (Is)

- radicais elétron-atraentes aumentam a acidez e diminuem a basicidade
- radicais elétron-repelentes reduzem a acidez e aumentam a basicidade.

Radicais elétron-atraentes e elétron-repelentes

Efeito Indutivo – I_s Radicais elétron-atraentes

Efeito Indutivo + I_s Radicais elétron-repelentes

ALCANOS — métodos de preparação	
Método de Sabatier-Senderens	Método de Dumas
$C_nH_{2n} + H_2 \xrightarrow{\Delta(150 ^{\circ}\text{C})} C_nH_{2n+2}$ alceno $C_nH_{2n-2} + H_2 \xrightarrow{\Delta} C_nH_{2n+2}$ alcino alcano	O II - C - ONa + NaOH $\frac{\Delta}{CaO}$ > C_nH_{2n+2} + Na_2CO_3 sal de sódio alcano
Síntese de Kolbe	Outros
$ \begin{array}{c} O \\ II \\ -C-OX \xrightarrow{eletrólise (aq)} C_nH_{2n+2} + CO_2 \\ \hline \text{sal orgânico} \qquad \text{alcano} \end{array} $	Síntese de Wurtz;Método de Grignard;Método de Berthelot (HI concentrado).

ALCANOS – reações	
Halogenação	Combustão
$C_nH_{2n+2} + CI_2$ ou Br_2 E_2 E_3 E_4 E_4 (combinações de diferentes derivados mono-halogenados)	$C_nH_{2n+2} + O_2 \longrightarrow CO_2$, CO, C + H_2O alcano
Nitração	Sulfonação
$ \begin{array}{c} R-H + \frac{HNO_3}{(conc.)} \xrightarrow{\Delta (400^{\circ}C)} \frac{R-NO_2}{nitro-alcano} + H_2O \\ \hline alcano \end{array} $	R-H + $\frac{\text{H}_2\text{SO}_4}{\text{(conc.)}}$ $\xrightarrow{\Delta \text{(400°C)}}$ R-SO ₃ H + H ₂ O $\xrightarrow{\text{alcano}}$
Cracking	Processos petroquímicos
$R^{1}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-R^{2} \xrightarrow{\Delta}$ $alcano$ $R^{1}-CH=CH_{2}+H_{3}C-CH_{2}-R^{2}$ $alceno alcano$	Dehidrogenação (remoção de H ₂), isomerização (normalmente produção de isômeros mais ramificados), ciclização e aromatização (hidrocarbonetos cíclicos).

ALCENOS — métodos de preparação e identificação	
Desidratação de Álcoois com H ₂ SO ₄	Hidrogenação Parcial de Alcinos
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$R^1-C \equiv C-R^2+H_2 \xrightarrow{Pd} C_nH_{2n}$ alcino alceno
Síntese de Grignard	Outros
−C−MgBr + Alil −X <u>éter</u> C _n H _{2n} + MgBr ₂ C.Grignard Haleto de alila alceno	 Síntese de Grignard; Eliminação de HX em potassa alcoólica; Método de Ipatiev; Eliminação de X₂ com zinco em pó.

ALCENOS – reações	
Combustão	Halogenação
$C_nH_{2n} + O_2 \longrightarrow CO_2$, CO , $C + H_2O$ alceno	$R^{1}-C=C-R^{2}$ $H H + X_{2} \longrightarrow R^{1}-CH-CH-R^{2}$ X X X Y Y Y X A
Reação com HClO, H ₂ SO ₄ e H ₂ O	Reação com HX (Markownikoff)
ácido cloroso Cl ;: OH → Cl+ + OH ⁻ ácido sulfúrico H ;: OSO ₃ H → H+ + OSO ₃ H ⁻ água H ;: OH → H+ + OH ⁻	R-C=C-H
ΥX	Reação com HX (Karasch)
R-C=C-H I I + X+Y [H+] H H alceno Regra de Markownikoff	$ \begin{array}{c} R^{\perp}C=C-H \\ I & I \\ H & H \end{array} $ $ \begin{array}{c} H & X \\ I & I \\ I & I \\ H & H \end{array} $ $ \begin{array}{c} H & X \\ I & I \\ I & I \\ H & H \end{array} $ $ \begin{array}{c} H & X \\ I & I \\ I & I \\ H & H \end{array} $ $ \begin{array}{c} H & X \\ I & I \\ I & I \\ H & H \end{array} $

ALCENOS – reações de oxidação

Oxidação - Ozonólise

Oxidação – KMnO₄ em meio ácido

Oxidação - KMnO, em meio básico ou neutro

Também chamada de **Reação de Bayer** – usada na distinção de alcenos e ciclanos (ciclanos não reagem com KMnO₄)

O Observação

Não é produzido ácido fórmico nesta reação. Este é oxidado a ${\rm CO_2}$ e ${\rm H_2O}$.

ALCINOS - métodos de preparação e reativos

Acetileno - método industrial

$$CO_2$$
 $CaCO_3$
 $CaO + 3C$
 $Calcário$
 $Calviva$ coque
 $Ca(OH)_2$
 $CaCO_2$
 $CaO + 3C$
 $Calcário$
 $Calviva$ coque
 $CaCO_2$
 $CaO + 3C$
 $Calcário$
 $Calviva$ coque
 $CacO_2$
 $Calcário$
 $CacO_3$
 $CaCO_3$
 $Calviva$ coque
 $CacO_3$
 $CacO_3$
 $Calviva$ coque
 $CacO_3$
 $CacO_3$

Desidratação de diálcool

Reativos (reagem somente com alcinos verdadeiros)

$$HC \equiv HC + Na_{(s)} \longrightarrow HC \equiv C - Na + 1/2 H_2$$
 $R^1 - C \equiv CH + Na_{(s)} \longrightarrow R^1 - C \equiv C - Na + 1/2 H_2$
 $R^1 - C \equiv C - R^2 + Na_{(s)} \longrightarrow Nao reage$

$$R - C \equiv CH + AgNO_3 \xrightarrow{NH_4OH} R - C \equiv C - Ag + HNO_3$$

AgNO₃ amoniacal Amarelo

$$R-C \equiv CH + Cu_2Cl_2 \xrightarrow{NH_4OH} R-C \equiv C-Cu_1 + HCI$$

 Cu_2Cl_2 amoniacal Vermelho

Outros:

- Métodos petroquímicos;
- Eliminação de dialeto gêmeo;
- Preparação por acetileto de sódio.

ALCINOS – reações	
Halogenação (Cl ₂ ou Br ₂)	Reação com HX
$R^{1}-C \equiv C-R^{2}+X_{2} \longrightarrow R^{1}-C=C-R^{2}$ $X X$	$R^{1}-C \equiv C-R^{2}+HX \longrightarrow R^{1}-C=C-R^{2} \xrightarrow{HX}$ $\downarrow H X \qquad (excesso)$ $R^{1}-C \equiv C-R^{2}+HX \longrightarrow R^{1}-C=C-R^{2}$ $\downarrow H X \qquad (excesso)$ $R^{1}-C \equiv C-R^{2}+HX \longrightarrow R^{1}-C=C-R^{2}$ $\downarrow H X \qquad (excesso)$

ALCINOS – reações	
Combustão	Hidratação catalítica
$C_nH_{2n,2} + O_2 \longrightarrow CO_2$, CO , $C + H_2O$ alcino	$R^{1}-C \equiv C-R^{2}+H_{2}O \xrightarrow{HgSO_{4}} R^{1}-C=C(H) \longleftrightarrow H \xrightarrow{R^{1}} OH \xrightarrow{enol}$ $R^{1}-CH-C(H) \xrightarrow{R^{2}} H \xrightarrow{OH} OH \xrightarrow{enol}$ $R^{1}-CH-C(H) \xrightarrow{H} OH \xrightarrow{enol}$ $Cetona$ $(ou aldeído)$
Hidrogenação parcial	Hidrogenação total
$R^{1}-C \equiv C-R^{2}+H_{2} \xrightarrow{\Delta} R^{1}-C=C-R^{2}$ alcino $R^{1}-C \equiv C-R^{2}$ $H H$ alceno	$R^{1}-C \equiv C-R^{2}+H_{2} \xrightarrow{\Delta} \underbrace{R^{1}-C-C-R^{2}}_{\begin{subarray}{c}H\\H\\H\\H\end{subarray}}_{\begin{subarray}{c}Alcano\end{subarray}} H_{1} H_{1} H_{2}$
Oxidação branda (Reativo de Bayer)	Oxidação enérgica
$R^{1}-C \equiv C-R^{2} \xrightarrow{\text{KMnO}_{4}} R^{1}-C-C-R^{2}$ $= \text{alcino}$ $R^{1}-C \equiv C-R^{2}$ $= \text{neutra ou OH}$ $= \text{O O dicetona}$	$R^{1}-C \equiv C-R^{2} \xrightarrow{\text{KMnO}_{4}} R^{1}-C-OH \xrightarrow{\text{HO}-C} -R^{2}$ $R^{1}-C \equiv C-R^{2} \xrightarrow{\Delta, H^{+}} 0 \xrightarrow{\text{HO}} + 0$ $Acido \qquad Acido$
$R^{1}-C \equiv C-H \xrightarrow{KMnO_{4}} R^{1}-C-C-OH$ alcino $R^{1}-C \equiv C-H \xrightarrow{neutra ou OH} R^{1}-C-C-OH$ $0 O$ ceto-ácido	$R^{1}-C\equiv C-H \xrightarrow{KMnO_{4}} R^{1}-C-OH \\ \text{alcino} \\ \frac{1}{O} + CO_{2}-H_{2}O \\ \text{ácido}$

CICLANOS – métodos de preparação	
Hidrogenação Catalítica	Derivados Halogenados (convenientes)
+ 3H ₂ $\frac{\Delta (200^{\circ}\text{C})}{\text{Ni, Pd ou Pt}}$	$ \begin{array}{c c} & Br \\ + & Zn \\ - & Pr \\ 2 \text{ Na} \end{array} + \begin{cases} ZnBr_2 \\ 2 \text{ NaBr} \end{cases} $
Outros:	

• Método de Clemmensen (Redução de cetonas cíclicas).

CICLANOS – reações Adição de H₂, HX ou X₂ (halogênio) + H₂ 120°C Ni H H Não ocorre + H₂ 200°C Ni H Não ocorre Oxidação branda (Reativo de Bayer) Oxidação enérgica Não ocorre oxidação pelo uso do Reativo de Bayer.

AROMÁTICOS – propriedades e características		
Mononucleares	Polinucleares Isolados	Polinucleares Condensados
benzeno tolueno	difenil-metano	naftaleno

Radicais Orto-Para e Meta-Dirigentes		
Orto-Para	Meta	
-F -CI -Br -I -OH -NH ₂ -CH ₃ -CH ₂ -CH ₃	-C, O + C, O + C, O + O + O + O + O + O + O + O + O + O	

AROMÁTICOS – preparação	
Síntese de Grignard	Síntese de Wurtz-Fittig
Ar-X + 2Mg éter Ar-MgX → Ar-H + Mg(OH)Cl (pó) composto de Grignard	Ar-X + 2Na + X-R → 2NaX + Ar-R O Observação Formam-se pequenas quantidades de Ar–Ar e R–R
Síntese de Friedel-Crafts	Síntese de Grignard
+ R-X AIX + RAIX + haleto	Ar-MgX + R-X → Ar-R + MgX ₂ composto haleto de Grignard

BENZENO – reações		
Halogenação	Nitração	
H FeCl ₃ HCl +	$H + HNO_3 \xrightarrow{H_2SO_4} H_2O + $	
Sulfonação	Hidrogenação enérgica	
H $+ H_2SO_4 \longrightarrow H_2O +$ (fumegante)	+ 3H ₂ Ni, Pd ou Pt	

AROMÁTICOS – reações	
Halogenação – Substituição no radical	Halogenação – Substituição no anel benzênico
CH_3 $+CI-CI$ A Iuz $HCI+$ CH_2-CI	CH ₃ +CI -CI FeCl ₃ frio escuro forma orto e para

Não existem livres na Natureza.

ÁLCOOIS — métodos de preparação	
Hidratação de Alcenos	Hidrólise de Haletos
CH_2 = CH - CH_3 + H_2O $\xrightarrow{H_2SO_4}$ \xrightarrow{H} CH_2 - CH - CH_3	$R-X + NaOH_{(aq)} \longrightarrow R-OH+NaX$ haleto
Hidrólise de Ésteres: Saponificação	Redução de Aldeídos e Cetonas
$R^{1}-C_{O-R^{2}}^{O}+H_{2}O \longrightarrow R^{2}-OH+R^{1}-C_{OH}^{O}$	$(H)R^{2}$ $C = O \xrightarrow{2[H]}$ R^{1} $CH - OH$

ÁLCOOIS – reações		
Reações de Substituição do H da Hidroxila	Reações de Substituição da Hidroxila	
R^1-O-H + Metal \longrightarrow $R_1-O-Me+1/2$ H_2 (1A, 2A, terrosos) $R^1-O-H+HO-C-R^2 \longrightarrow$ $R_1O-C-R_2+H_2O$ O O Reação de Esterificação de Fischer	$R^{1} - OH + HO - NO_{2} \longrightarrow R^{1} - O - NO_{2} + H_{2}O$ $R^{1} - OH + HO - SO_{3}H \longrightarrow R^{1} - O - SO_{3}H + H_{2}O$ $R^{1} - OH + HO - SO_{3}R^{2} \longrightarrow R^{1} - O - SO_{3}R^{2} + H_{2}O$	

ÁLCOOIS – reações

Reações de eliminação (desidratação)

Oxidação	Combustão
álcool <u>A, [O]</u> aldeídos <u>A, [O]</u> ácido primário carboxílico	$R-OH+O_2 \longrightarrow CO_2$, $CO, C+H_2O$ álcool
álcool secundário Δ, [O] cetona	Redução: Reação de Berthelot
álcool terciário Δ, [O] não ocorre	$R-OH+HI \xrightarrow{\Delta} R-H+H_2O+I_2$ álcool

DIÁLCOOIS (GLICÓIS) — classificação e nomenclatura

$$\begin{array}{ccc} H & H & & & \\ I & I & & & \\ R^1-C-C-R^2 & & & & \\ I & I & & & \\ OHOH & & & & \end{array}$$

Nomenclatura

butano-1,3-diol 1,3-dihidroxi-butano

GLICERINA (TRIÁLCOOL) – preparação

Hidrólise de Óleos e Gorduras (Saponificação)

$$\begin{array}{c} \text{CH}_2\text{-O}-\text{C}-\text{R}^1 \\ \text{O} \\ \text{CH}-\text{O}-\text{C}-\text{R}^2 \\ \text{O} \\ \text{CH}_2\text{-O}-\text{C}-\text{R}^3 \\ \text{O} \end{array} \begin{array}{c} \text{CH}_2\text{-OH} \\ \text{CH}-\text{OH} \\ \text{CH}_2\text{-OH} \\ \text{O} \end{array} \begin{array}{c} \text{HO}-\text{C}-\text{R}^1 \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \end{array} \begin{array}{c} \text{NaO}-\text{C}-\text{R}^1 \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \end{array}$$

Oxidação do Cumeno Outros Fusão alcalina do Benzeno-sulfonato de sódio Hidrólise alcalina do Cloro-benzeno (Processo Dow) Hidrólise do Cloro-benzeno (Processo Raschig)

FENÓIS – reações

Reações de Substituição do H da Hidroxila

$$OH + R-MgX \longrightarrow OMgX + R-H$$

Reação de Zerewitinoff: determinação da quantidade de "H" reativos através da medida do volume de R–H gasoso.

Reações de substituição do anel aromático

OH
$$X_{2}$$
 $+ \frac{HO - NO_{2}}{HO - SO_{3}H}$
 X_{2}
 $- \frac{NO_{2}}{- SO_{3}H}$

Oxidação

Fenóis são facilmente oxidados, até pelo O₂ no ar. Reações são complexas.

Reações de Redução

$$\bigcirc OH + 3 H_2 \xrightarrow{\Delta} OH$$

2-pentanona (metil-propil cetona)

	ALDEÍDOS		CETONAS		
Classificação					
	R – CHO alifáticos	Ar – CHO aromáticos	R-CO-R' Ar-CO-Ar' R-CO-Ar alifáticas aromáticas mistas		
	Nomenclatura				
	IUPAC: Sufixo -al USUAL: aldeído + Nome á	icido correspondente	IUPAC: Sufixo -ona USUAL: radical menor – radical maior cetona		
	H ₃ C-CH ₂ -CH ₂ -CH=O butanal (aldeído butírico)		H ₃ C-CH ₂ -CH ₂ -CCH ₃	H ₃ C-C	

Ocorrência: ocorrem em essências de flores e frutos.

ALDEÍDOS E CETONAS – reações		
Oxidação de aldeídos	Redução	
$R^1 - C$ Aldeído $A_{\bullet}[O]$ $R^1 - C$ O Aldeído	$R^{1}-C \xrightarrow{\begin{array}{c} H(R^{2}) \\ O \end{array}} \xrightarrow{\begin{array}{c} \Delta_{i}[H] \\ Ni \end{array}} R^{1}-HC \xrightarrow{\begin{array}{c} H(R^{2}) \\ OH \end{array}}$ aldeído ou cetona álcool	

Oxidação de cetonas (somente oxidantes enérgicos)

$$R^{1}-CH_{2}-C-CH_{2}-R^{2} \xrightarrow{KMnO_{4} \text{ ou } K_{2}Cr_{2}O_{7}} R^{1}-CH_{2}-C \xrightarrow{O} CH_{2}-C \xrightarrow{O}$$

Reagente de Tollens (oxidação – ocorre somente com aldeídos)

Reagente de Fehling (oxidação – ocorre somente com aldeídos)

Redução energética com amálgama de zinco

$$R_1$$
 C=0 $\xrightarrow{\text{Hg/Zn}}$ R_1 $CH_2 + H_2O$ R_1 Reação de Clemmensen

Mecanismo de ativação dos hidrogênios α

Condensação aldólica (Reação de Ha)

2
$$\begin{bmatrix} O \\ II \\ H_3C-C-H(R) \end{bmatrix}$$
 $\xrightarrow{[OH^-]}$ $\xrightarrow{H_3C-C-CH_2-C}$ $\xrightarrow{H(R)}$ $\xrightarrow{H(R)}$ $\xrightarrow{H(R)}$ $\xrightarrow{(B-h)droxi-alde(do\ ou\ B-h)droxi-cetona\ (ALDOL)}$

$$\begin{array}{c} \text{OH} \quad \text{H} \\ \text{H}_3\text{C-CH-CH-C} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \text{H}_2\text{O} \\ \end{array} \\ \begin{array}{c} \text{H}_3\text{C-CH=CH-C} \\ \text{H} \\ \end{array} \\ \text{aldeído crotônico} \\ \end{array}$$

Reação de crotonização

ÉTERES			
Simetria	Substituintes ligados	Nomenclatura	Ocorrência
R -O-R simétricos R¹-O-R² assimétricos	R -O-R alifáticos Ar-O-Ar aromáticos R -O-Ar mistos	IUPAC: etóxi-propano Usual: éter-etil-propílico	Apenas éteres complexos existem livres na Natureza.

ÉTERES – preparação

Desidratação de Álcoois

$$2 \overset{R - \text{CH}_2}{\overset{\text{OH}}{\text{OH}}} \underbrace{ (\overset{\text{l(iq.)}}{\text{(gas.)}}, \, 240\text{-}260^{\circ}\text{C, Al}_{2} \overset{\text{O}_3}{\text{O}_{3}} \overset{\text{Ou}}{\text{H}_{2} \text{O}} \overset{\text{R} - \text{CH} - \text{O} - \text{CH} - \text{R}}{\overset{\text{I}}{\text{H}}} \overset{\text{I}}{\text{H}} \overset{\text{I}}{\text{H}} \overset{\text{I}}{\text{H}}$$

ÉTERES – preparação

Reação de Haletos com Óxido de Prata

$$2 R-X+Ag_0O \rightarrow R-O-R+2 AgX$$

ÉTER ETÍLICO (éter comum, éter dietílico, éter sulfúrico)

$$H_3C-CH_2 + H_2C-CH_3 \xrightarrow{140^{\circ}C} R-CH-O-CH-R \\ OH OH H_2SO_4 R H H H + H_2O$$

ÉTERES – reações

Éteres são pouco reativos e são utilizados como solventes inertes.

pares de elétrons livres no oxigênio (base de Lewis).

Oxidação

$$C_2H_5 - O - C_2H_5 + 1/20_2(ar) \longrightarrow C_2H_5 - O - O - C_2H_5$$

Forma outras estruturas mais complexas também.

HALETOS – nomenclatura e métodos de preparação

Preparação a partir de álcoois (fenóis)

Nomenclatura

$$R^1 - OH + HX \xrightarrow{H_2SO_4} R^1 - x + H_2O$$

IUPAC: 2-bromopropano USUAL: brometo de isopropila

Preparação a partir de hidrocarbonetos

Preparação a partir de haletos

$$R - Br + AgF \longrightarrow R - F + AgBr$$

HALETOS - reações

Reações de Substituição

$$R^1 = X + Na-OH_{(aq)} \longrightarrow R^1 = OH + NaX$$
base álcool

$$R^1 = X + Na-C \equiv C-R^2 \longrightarrow R^1 - C \equiv C-R^2 + NaX$$
acetileto alcino

$$R^1 = X + H - NH_2 \longrightarrow R^1 = NH_2 + HX$$

amoníaco amina

Hoffmann

Reações de Eliminação

ÁCIDOS CARBOXÍLICOS — classificação e nomenclatura		
Classificação – número de carboxilas (–COOH)		Nomenclatura
1 -COOH 2 -COOH monoácidos Diácidos	>2 -COOH Poliácidos	IUPAC: ÁCIDO + nome do Hc + OICO

	ácidos Poliácidos	IUPAC: ACIDO + nome do Hc + OICO		
ÁCIDOS CARBOXÍLICOS — preparação				
Oxi	idação	Aquecimento do Ácido Malônico (e Derivados)		
H OH [O] II	п –С–ОП	$R_1 \sim COOH \xrightarrow{\Delta} R_1 \sim COOH + CO_2$		
álcool primário aldeío	do ácido carboxílico	Compostos de Grignard		
$ R_1 - C \equiv C - R_2 $ alcino $ R_1 - CH = CH - R_2 $ alceno	$ \begin{array}{c} O & O \\ O & II \\ \downarrow & II \\ R_1 - C - OH + R_2 - C - OH \\ & \text{acidos carboxílicos} \end{array} $	R_1 - MgX + $CO_2 \stackrel{\text{\'eter}}{=} R_1 - C \stackrel{O}{\underset{MgXCI}{ }} R_1 - C \stackrel{O}{\underset{MgXCI}{ }} OH$		
		Hidrólise de Derivados de Ácidos		
CH3 ECH3	СООН	$R_{1} - C - OR_{2} + H_{2}O \xrightarrow{H^{+} OU} R_{1} - C - OH + R_{2} - OH$ $ester$		
hidroc. aromático	ácido carboxílico	(Sais, ésteres, anidridos, amidas, nitrilas, cloretos de ácidos etc.)		

DERIVADOS DE ÁCIDOS – classificação			
O II R ₁ -C-OR ₂ éster	O O II II R - C - O - C - R anidrido	O II R ₁ – C – Cl <mark>cloreto de ácido</mark>	

DERIVADOS DE ÁCIDOS — reações			
	O II R¹- C - OR² éster	O	O II R – C – Cl cloreto de ácido
H – OH água	O II R¹-C-OH + HO-R² hidrólise ácida	O O II II R-C-OH + R-C-OH hidrólise ácida	O II R – C – OH + HCI hidrólise ácida
H – ONa soda cáustica	O II R¹-C-O·Na++ HO-R² saponificação	O O II II R - C - OH hidrólise básica	
Na – OR ₃ alcóxido			O II R – C – OR³ + NaCl
Na – OOCR ₃ sal			O O II II R – C – O – C – R³ + NaCl
H – OR ₃ álcool	O II R¹-C-OR³+HO-R² transesterificação	$ \begin{array}{ccc} O & O \\ II & II \\ R-C-OR^3+R-C-OH \\ & alcoólise \end{array} $	O II R – C – OR³ + HCI alcoólise
H – NH ₂ amônia	O II R ¹ - C - ONH ₂ + HO - R ² amonólise	O O \mathbb{I} \mathbb{I} \mathbb{I} $\mathbb{R} - \mathbb{C} - \mathbb{O}\mathbb{NH}_2 + \mathbb{R} - \mathbb{C} - \mathbb{O}\mathbb{H}$ amonólise	O II R ₁ - C - NH ₂ + HCI amonólise
H ₂	R¹-CH ₂ -OH ₂ + HO-R² redução	R I 2 CH ₂ + H ₂ O I OH redução	O II R ₁ – C – N + HCI redução

COMPOSTOS NITROGE	NADOS – classificação
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R-N=O $R-N$ O nitroso-composto O nitro-composto
$R-C\equiv N$ $R-N^+\equiv C^-$ nitrila isonitrila $R-O-N\equiv O$ $R-O-C\equiv N$ (cianeto) (isocianeto) nitrito cianato	R_1 $C=N-N$ H H $N-N$ H R_2 $C=N-N$ H aldo-hidrazona hidrazina ceto-hidrazona
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
"Derivados" de ácidos inorgânicos nitrogenados.	hidrazo-composto diazo-composto
$\begin{array}{c} R \\ C = N - OH \\ H \end{array}$ $\begin{array}{c} H \\ N - OH \\ R_{2} \end{array}$ $\begin{array}{c} R_{1} \\ C = N - OH \\ R_{2} \end{array}$ $\begin{array}{c} C = N - OH \\ R_{2} \end{array}$ $\begin{array}{c} C = N - OH \\ R_{2} \end{array}$ $\begin{array}{c} C = N - OH \\ R_{3} \end{array}$	Ar X: Sais de diazônio

IUPAC: nome do(s) radical(is) + AMINA etil-metil-isopropilamina fenilamina (anilina)

AMINAS – preparação

Aquilação do Amoníaco (Reação de Hoffmann)

Aminação Redutiva de Aldeídos e Cetonas

O OH
$$R-C-H+NH_3$$
 100 atm $R-CH-NH_2$ 100 atm $R-CH=NH$ 100 atm $R-CH=NH$ 100 atm $R-CH_2-NH_2$ 100 atm R

Redução de Compostos Nitrogenados

O O II

$$R-C-NH-R_2$$
 $\xrightarrow{[H]}$ $R_1-C-NH-R_2+H_2O$

amina amina secundária (ou terciária, se a amida for dissubstituída)

$$R-NO_2$$
 $[H]$ $R-NH_2 + 2H_2O$ nitro-composto amina primária

AMINAS – reações e identificação

Identificação de Aminas Primárias (somente)

AROMÁTICAS $< 3.^{a} < NH_{3} < 1.^{a} < 2.^{a} \rightarrow$ aumento do caráter básico das aminas

$$R - NH_2 + CHCl_3 + 3NaOH \rightarrow R - N^+ \equiv C^+ + 3NaCl + 3H_2O$$

amina 1.a clorofórmio isonitrila

isonitrilas têm cheiro forte e desagradável

Identificação de Aminas

Aminas Não-Aromáticas (somente)

 $R - NH_2 + HNO_2 \rightarrow R - OH + H_2O + N_2 \uparrow$

Aminas Aromáticas (somente)

amina 1.a álcool
$$R_1-NH-R_2+HNO_2 \longrightarrow R_1-N N=0 \psi$$
amina 2.a AMARELO
nitroso-amina

$$\begin{array}{c} R_{3} \\ R_{1} - N - R_{2} + HNO_{2} \longrightarrow \begin{bmatrix} R_{3} \\ R_{1} - N - R_{2} \\ I \\ H \end{bmatrix} NO_{2}^{-} \\ \text{amina 3.a} \end{array}$$

Alquilação de Aminas

Acilação de Aminas

vide Reação de Hoffmann

$$\begin{array}{c} O \\ II \\ R_1 - C - CI + R_2 - NH_2 \\ \hline \end{array} \begin{array}{c} HX \\ R_1 - C - NH - R_2 \\ \end{array}$$

AMIDAS - classificação e nomenclatura

Classificação O O O II II II II R-C-NH₂ R-C-NH-C-R amida primária amida secundária

butano-1, 4-diamida (succinamida)

AMIDAS – Preparação		
Desidratação de Sais de Amônio	Amonólise de Cloretos de Ácidos, Anidridos e Ésteres	
$R - COONH_4 \xrightarrow{\Delta} R - CONH_2 + H_2O$	O $R - C - ONH_4 + 2 NH_3 \xrightarrow{\Delta} R - CONH_2 + NH_4CI$	
Hidratação de Nitrilas	0 0	
$R - C \equiv N + H_2O \xrightarrow{\Delta} R - CONH_2$ H_2SO_4	$ \begin{array}{cccc} O & O \\ \parallel & \parallel \\ R - C - O - C - R + 2NH_3 & & & & \\ & & & & & \\ & & & & \\ & & & & $	

AMIDAS – reações

Hidrólise

$$R - CONH_2 + H_2O \xrightarrow{\Delta} R - COONH_4 + HCI \longrightarrow R - COOH + NH_4CI$$

$$R - CONH_2 + H_2O \xrightarrow{\Delta} R - COONH_4 + NaOH \longrightarrow R - COONa + NH_3 + H_2O$$

	Reação com Ácido Nitroso	Redução
O H O $R_1 - C - N - H + HNO_2 \rightarrow R_1 - C - OH + H_2O + N_2 $		$R - CONH_2 \xrightarrow{LiAlH_4} R - CH_2 - NH_2$
	amida primária ácido	UREIA
	O H O N = O $R_1 - C - N - R_2 + HNO_2 \rightarrow R_1 - C - N - R_2 + H_2O$ amida monossubstituída nitroso-amida	$CO_2 - 2 \text{ NH}_3 \frac{200 \text{ °C}}{100 \text{ atm}} CO(\text{NH}_2)_2 + \text{H}_2\text{O}$
	$ \begin{array}{ccc} O & R_3 & & & \text{não} \\ II & I^3 & & & \\ R_1 - C - N - R_2 + & HNO_2 \longrightarrow & \text{ocorre} \\ amida dissubstituída & & & \text{ocorre} \end{array} $	$\begin{array}{ccc} \text{NH}_4\text{CNO} & \xrightarrow{\Delta} & \text{CO(NH}_2)_2 \\ \text{cianato de} & & \text{Wohler (Teoria} \\ \text{amônio} & & \text{da Força Vital)} \end{array} \text{ ureia}$

NITRILAS – nomenclatura

IUPAC: nome do Hc + NITRILA $H - C \equiv N$ metanonitrila

ISONITRILAS — nomenclatura				
IUPAC: radical + CARBILAMINA	H − N+≡C carbilamina			

NITROCOMPOSTOS					
Classificação		Nomenclatura			
R - NO ₂ nitrocomposto alifático	Ar – NO ₂ nitrocomposto aromático	IUPAC: NITRO + nome do Hc CH ₃ - NO ₂ nitrometano			

NITROCOMPOSTOS – preparação

Nitração Direta (HNO,)

$$R-H_{(g)} + HO-NO_2 \xrightarrow{400-450^{\circ}C} R-NO_2+H_2O$$

alcanos

$$+ HO-NO_2 \xrightarrow{50-60^{\circ}C} + H_2O$$

Reação de Haletos com Nitrito de Prata

$$R-l + AgNO_2 \longrightarrow R-NO_2 + AgI$$

Nitrometano: Preparação

$$\begin{array}{c} \text{CICH}_2\text{-COONa} + \text{NaNO}_2 \\ \hline \text{NaCl} & O_2\text{N} - \text{CH}_2 - \text{COONa} + \text{H}_2\text{O} \\ \hline \text{NaHCO}_3 & \text{CH}_3\text{-NO}_2 \\ \end{array}$$

NITROCOMPOSTOS - reações

Substituições no carbono vizinho ao grupo nitro

$$\begin{array}{c} R_2 \\ I \\ -C - NO_2 + HNO_2 \longrightarrow N \tilde{A}O \ OCORRE \\ I \\ \end{array}$$

$$\begin{array}{c} H \\ I \\ R - C - NO_2 \xrightarrow{BR_2} R - C - NO_2 \xrightarrow{BR_2} R - C - NO_2 \\ I \\ H \end{array}$$

Redução

$$R - NO_2$$
 Fe/HCL $R - NH_2 + 2H_2O$
nitro-composto amina primária

CLASSES DE COMPOSTOS SULFURADOS

R -S-H tio-álcool, tiol ou mercaptana

$$R_1 - S - S - R_2$$
 dissulfeto de alquila (ou arila)

 ${\rm R_1-~S-R_2}$ tio-éter ou sulfeto de alquila (arila)

$$R_1 - S - R_2 \qquad \qquad R_1 - \frac{S}{S} - R_2$$

$$0 \qquad 0$$

$$0 \qquad 0$$
Sulfavido Sulfava

R - S - O - H O ácido sulfônico

$$\begin{array}{c}
O \\
R_1 - O - S \\
\downarrow O
\end{array}$$
Sulfato de alguila o

sulfato de alquila ou sulfatos alquil-metálicos

TIO-ÁLCOOIS – nomenclatura e preparação

IUPAC: nome do Hc + TIOL CH₃ - CH₃ - CH₃ - SH etanotiol

TIO-ÉTERES – nomenclatura

IUPAC: radical menor + tio + radical maior CH₃ - CH₃ - CH₃ - CH₃ metil-tio-etano

ÁCIDOS SULFÔNICOS – nomenclatura e preparação

Reação de Hidrocarbonetos com H,SO₄ fumegante IUPAC: ÁCIDO + nome do Hc - SULFÔNICO

$$\overbrace{ \frac{\Delta \quad \text{H}_2 \text{SO}_4}{(\text{fumeg})}} \bullet \overbrace{ \text{SO}_3 \text{H}}$$

ÁCIDO SULFÔNICO – reações Reações com Bases Reação com Pentacloreto de Fósforo

ÁCIDO SULFÔNICO – derivados importantes

Detergentes

Sulfoamidas (–SO,NH,)

SULFATOS – Nomenclatura

SULFATOS – Derivados importantes – Detergentes

IUPAC: SULFATO DE radical

POLÍMEROS – definição e classificação

Polímeros são macromoléculas formadas pela reunião de estruturas menores chamadas monômeros. Podem ser classificados quanto à preparação (de adição, de condensação ou copolímeros), quanto à origem (naturais ou sintéticos) ou quanto à estrutura (lineares ou tridimensionais).

POLÍMEROS DE ADIÇÃO

Formados pela reunião de um único monômero. Podem ser divididos em três grandes grupos:

Polímeros Diênicos

POLÍMEROS - definição e classificação

POLÍMEROS DE CONDENSAÇÃO

Formados pela reunião de dois ou mais tipos de monômeros com eliminação de substância mais simples:

COPOLÍMEROS

Formados pela reunião de dois ou mais tipos de monômeros:

POLÍMEROS TRIDIMENSIONAIS

POLÍMEROS LINEARES

em todas as direções. São termofixos. Ex.: baquelite.

A macromolécula é um encadeamento de monômeros A macromolécula é um encadeamento linear de monômeros. São termoplásticos. Ex.: polietileno.

Isomeria

Bioquímica

São ácidos monocarboxílicos com cadeias com um número par de carbonos (mais de 10 carbonos), com ou sem insaturações.

Glicerídeos

São ésteres onde há uma parte alcoólica (glicerina). Ex.: trioleína e triestearina.

Fosfolipídeos

São ésteres constituídos de glicerina, ácido graxo, ácido fosfórico e amino-álcool.

Cerebrosídeos

São ésteres constituídos de glicose (ou galactose), ácido graxo e amino-álcool.

Cerídeos (Ceras)

São ésteres de ácidos graxos e álcoois superiores.

LIPÍDIOS

São ésteres de ácidos graxos superiores, conhecidos como óleos (onde predominam ácidos insaturados) ou gorduras (onde predominam ácidos saturados). São classificados em glicerídeos, cerídeos, fosfolipídeos e cerebrosídeos.

AMINOÁCIDOS

São compostos que possuem amina ligada em carbono α de um ácido carboxílico. Os aminoácidos possuem característica neutra quando na molécula há um mesmo número de aminas e carboxilas. Quando há mais aminas que carboxilas, têm caráter básico; e quando possui mais carboxilas que aminas o caráter é ácido.

LIGAÇÃO PEPTÍDICA: é a ligação de formação de proteína que ocorre entre a carboxila de uma molécula de aminoácido com a amina de outra molécula de aminoácido.

Proteínas

São macromoléculas resultantes principalmente da condensação de aminoácidos, através de ligações peptídicas. São classificadas em:

- Proteínas simples: por hidrólise produzem somente aminoácidos.
- Proteínas conjugadas: por hidrólise produzem somente aminoácidos e um grupo prostético (radical não peptídico: ácido fosfórico, glicídio, lipídio etc.).

Reações características das proteínas

- Reação Xantoproteica: solução proteica + ácido nítrico → coloração amarelada
- Reação de Millon: solução proteica + Hg(NO₃)₂
 + aquecimento → coágulo vermelho pardo
- Reação da ninhidrida: solução proteica + ninhidrida → coloração azul

Glicídeos

(carboidratos ou açúcares)

São compostos de função mista: poliálcool + aldeído (polihidroxialdeídos, aldoses) ou poliálcool + cetona (polihidroxicetonas, cetoses). Em ambos os casos há sempre carbonos assimétricos.

Classificação

- OSES: são glicídeos que não se hidrolisam.
- OSÍDEOS: são glicídeos que podem sofrer hidrólise produzindo OSES. São:
 - Holosídeos: quando a hidrólise produz somente OSES. Ainda:
 - Dissacarídeos: hidrólise produz 2 OSES; sacarose + água → glicose + frutose
 - Polissacarídeos: hidrólise produz n OSES; amido + água — n glicoses
 - Heterosídeos: quando a hidrólise produz OSES e outros compostos.

 amigdalina + água → 2 glicoses + HCN + benzaldeído

Química do petróleo

Destilação fracionada

Química do carvão

Destilação seca do coque

Gases nobres

2 ² He 4,00	10 g Ne 20,2	18 8 Ar 39,9	36 8 Kr 8 83,8	54 8 Xe 18 131	86 2 18 8n 32 18 222) 8		33 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
€ oilèH	oinôeM S S	oinôg₁A	oinôtqin)	28 88 87 7 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	733882 7 18882 Radônio ∞ ₹ 20		Laurêncio 103 135 146 103 137 138 139 139 139 139 139 139 139 139 139 139
17 (VII	700泊 7 19,0	17 Cloro 35,5	35 Вгото 79,9	53 Iodo L 127	85 At At (210)		Mobelio No 32 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
16 (VI A)	oxigênio	Enxofre 31,1	34 selênio 34 se	oiniole Telúnio 128 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	oinôloq Po 32 (210)		Mendelévio 101 25 69 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
15 (v A)	Vitrogênio 7 N 14,0	15 Per 15	33 St. Ar.9 Ar.9 St. 2 St. 33 St. 34,9	Artimônio 51 8 8 18 8 18 8 122	otumsi8 8 æ 20 20 8 8 8 8 0		Ethio 68 2 167 167 167 167 167 167 167 167 167 167
14 (IV A)	64 Carbono 6 12,0	Silicio 14 88 28,1	32 32 18 6ermânio 7 2,6	Stanho 50 119 129 20 20 20 20 20 20 20 20 20 20 20 20 20	Chumbo 82 18 82 207 4		67 8 HO 29 185 2 165 2 99 8 ES 32 ES 32 (254) 8
13 (III A)	Boro 5 3	oinimulA 27,0 27,0	31 Salio 69,7	49 8 11 11 18 3 3 115	81 Tálio Tálio 7 188 204 382 882 882 882 882 882 882 882 882 882		C55) Holmio Holmio
		12 (IIB)	30 30 30 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	48 8 Cd 18	Mercúnio 201 H 08 201 H 08 202 B 88 88 80	oidninu 112 Uub	7
		11 (IB)	29 8 Cu 2 63,5	Ag 18 108 108 108 108 108 108 108 108	79 2 Au 32 197 1	Rg 32 Rg 32 (272) 17	GG 64 157 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		10	28 2 N: 16 2 58,7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Pd 26 8 8 8 2 106 ster	Pt 32 0uro 195 1	DS 35 271) 271) 271) Roentgênio	63 Eu Basa 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		B .	∽∞ ti ∽ JaupiN	oibâls¶	58 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	oitbetsmisd	
		0 (IIIV)	otledo)	Ródio 45	238 188 2 27 24 195 195 195 195 2	Meitnério 109 (266)	Put 60 150 150 150 150 150 150 150 150 150 15
		^l ∞	отъ 1 26	oinêtuA 101 101	oimsÒ O 190	oisssh H S (265)	Promécio 61 (237) Pm (237) Pm (237)
		7 (VII B)	sênegneM Mn 13 8 25 54,9	oisènseT 69 09 09 09	75 Rênio 75 186 Re 186 2 18 18 2 18 2 18 2 18 2 18 2 18 2	107 86 Bh 38 88 88 88 88 88 88 88 88 88 88 88 88	oiniàn de Mainio
		6 (VI B)	24 Стото Ст 13 8 2 1 1 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2	oinâbdiloM Mo 35,9 95,9	oinêtspnuT X X 81 50 50 50 50 50 50 50 50 50 50	Seabórgio 106 (263) 28 8 8 8 2 25 2 25 2 2 2 2 2 2 2 2 2 2	10S 141 29 141 29 1
		5 (v B)	oibèneV > 23 > 20,9	oidòiN	oilàtnaT 2 	oindùd D b 32 (262) 11	Lantamídios Servicios Cerio Ce
		4 (IV B)	22 22 22 47,9 47,9	oinôɔxiZ Z Z 29,20 2,2	72 8 Hafrin Hf 32 18 178 2	Rutherfordio 104 (261) 10 38 88 88 88 88 88	Série dos Série dos Série dos Série dos Série dos Série dos (227)
		3 (III B)	Escândio 21 % % % % % % % % %	ointI	57 a 71 Série dos Lantanídios	89 a 103 Série dos Actinídios	
2 (II A)	Be 9,01	12 8 Mg 24,3	20 8 Ca 8 40,1	38 8 Sr 18 8 87,6	56 2 Ba 18 137 2	88 8 88 8 18 18 32 (226) 8	Colunas: Número do grupo* Número do grupo* Número do grupo* Número do adomico do adom
(I A) 1 1 1 (I A)	6,94 a serilio	23,0 C 23	39,1 7 39,1 Glaio	37 86 85,5 cionôrte3	CS 28 28 28 133 1 8 8 8 4 10 Bário	87	Columnas: Na Nome do elemento Nome do elemento Si atô Robos gargos de 1 a atô Robos gargos
oinâgonbiH	6Hi 0Hi 0Hi	oibô2	oissàtoq	oibiduA	oizè)	L Frâncio	A Androses, 18 days of 1978 of 1970 of
-			•		-		

Identificação:

Química	