

Report No. : SA171102C30

Applicant : HMD Global Oy

Address : Karaportti 2, 02610 Espoo, Finland

Product : Smart Phone

FCC ID : 2AJOTTA-1045

Brand : Nokia

Model No. : TA-1045

Standards : FCC 47 CFR Part 2 (2.1093), IEEE C95.1:1992, IEEE Std 1528:2013

KDB 865664 D01 v01r04, KDB 865664 D02 v01r02 KDB 248227 D01 v02r02, KDB 447498 D01 v06

KDB 648474 D04 v01r03, KDB 941225 D01 v03r01, KDB 941225 D05 v02r05

Sample Received Date : Dec. 04, 2017

Date of Testing : Nov. 16, 2017 ~ Dec. 11, 2017

Lab Address : No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan, R.O.C.

Test Location : No. 19, Hwa Ya 2nd Rd, Wen Hwa Vil, Kwei Shan Dist., Taoyuan City 33383, Taiwan (R.O.C)

CERTIFICATION: The above equipment have been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch – Lin Kou Laboratories**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agencies.

Prepared By:

Gina Liu / Specialist

Approved By:

Eli Hsu / Senior Engineer

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Report Format Version 5.0.0 Page No. : 1 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

Page No.

: 2 of 82

Issued Date : Dec. 14, 2017

Table of Contents

Kel		Control Record	
1.		nary of Maximum SAR Value	
2.	Desci	ription of Equipment Under Test	<u>5</u>
3.		Measurement System	
	3.1	Definition of Specific Absorption Rate (SAR)	
	3.2	SPEAG DASY52 System	
	V. <u> </u>	3.2.1 Robot	
		3.2.2 Probes	
		3.2.3 Data Acquisition Electronics (DAE)	
		3.2.4 Phantoms	10
		3.2.5 Device Holder	
		3.2.6 System Validation Dipoles	
		3.2.7 Tissue Simulating Liquids	
	3.3	SAR System Verification	1.5
	3.4	SAR Measurement Procedure	
	0	3.4.1 Area & Zoom Scan Procedure	
		3.4.2 Volume Scan Procedure	16
		3.4.3 Power Drift Monitoring	
		3.4.4 Spatial Peak SAR Evaluation	
		3.4.5 SAR Averaged Methods	
4.	SARI	Measurement Evaluation	
••	4.1	EUT Configuration and Setting	
	4.2	EUT Testing Position	25
		4.2.1 Head Exposure Conditions	
		4.2.2 Body-worn Accessory Exposure Conditions	
		4.2.3 Hotspot Mode Exposure Conditions	28
		4.2.4 Product Specific (Phablet) Exposure Conditions	29
	4.3	Tissue Verification	30
	4.4	System Validation	
	4.5	System Verification	
	4.6	Maximum Output Power	
		4.6.1 Maximum Target Conducted Power	33
		4.6.2 Measured Conducted Power Result	36
	4.7	SAR Testing Results	
	•••	4.7.1 SAR Test Reduction Considerations	
		4.7.2 SAR Results for Head Exposure Condition	
		4.7.3 SAR Results for Body Exposure Condition (Test Separation Distance is 15 mm)	
		4.7.4 SAR Results for Hotspot Exposure Condition (Test Separation Distance is 10 mm)	60
		4.7.5 SAR Results for Product Specific (Phablet) Exposure Condition (Test Separation Distance is 0 mm)	63
		4.7.6 SAR Measurement Variability	64
		4.7.7 Simultaneous Multi-band Transmission Evaluation	
5.	Calib	ration of Test Equipment	
6.		urement Uncertainty	
7.		nation on the Testing Laboratories	

Appendix A. SAR Plots of System Verification

Appendix B. SAR Plots of SAR Measurement
Appendix C. Calibration Certificate for Probe and Dipole
Appendix D. Photographs of EUT and Setup

Release Control Record

Report No.	Reason for Change	Date Issued
SA171102C30	Initial release	Dec. 14, 2017

Report Format Version 5.0.0 Page No. : 3 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

1. Summary of Maximum SAR Value

Equipment Class	Mode	Highest SAR-1g Head (W/kg)	Highest SAR-1g Body-worn Tested at 15 mm (W/kg)	Highest SAR-1g Hotspot Tested at 10 mm (W/kg)	Highest SAR-10g Product Specific Tested at 0 mm (W/kg)
	GSM850	0.90	0.26	0.23	
	GSM1900	0.08	0.53	1.18	
	WCDMA II	0.18	1.19	1.19	
	WCDMA IV	0.17	1.16	1.15	
	WCDMA V	1.19	0.29	0.26	
PCE	LTE 2	0.12	0.88	1.16	
	LTE 4	0.12	0.78	0.97	
	LTE 5	1.06	0.17	0.21	
	LTE 7	0.19	0.37	0.79	
	LTE 12	0.64	0.25	0.24	
	LTE 17	0.70	0.24	0.23	
DTS	2.4G WLAN	0.50	0.03	0.07	
NII	5G WLAN	0.84	0.03	0.06	0.31
DSS	Bluetooth	N/A	0.00	N/A	0.00
DXX NFC		N/A	N/A	N/A	N/A
Highest Simultaneous Transmission		Head	Body-worn	Hotspot	Product Specific
	SAR	1.51	1.22	1.19	N/A

Note:

1. The SAR criteria (Head & Body: SAR-1g 1.6 W/kg, and Extremity: SAR-10g 4.0 W/kg) for general population / uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992.

Report Format Version 5.0.0 Page No. : 4 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

2. <u>Description of Equipment Under Test</u>

EUT Type	Smart Phone
FCC ID	2AJOTTA-1045
Brand Name	Nokia
Model Name	TA-1045
Tx Frequency Bands (Unit: MHz)	GSM850: 824.2 ~ 848.8 GSM1900: 1850.2 ~ 1909.8 WCDMA Band II: 1852.4 ~ 1907.6 WCDMA Band IV: 1712.4 ~ 1752.6 WCDMA Band V: 826.4 ~ 846.6 LTE Band 2: 1850.7 ~ 1909.3 (BW: 1.4M, 3M, 5M, 10M, 15M, 20M) LTE Band 4: 1710.7 ~ 1754.3 (BW: 1.4M, 3M, 5M, 10M, 15M, 20M) LTE Band 5: 824.7 ~ 848.3 (BW: 1.4M, 3M, 5M, 10M) LTE Band 7: 2502.5 ~ 2567.5 (BW: 5M, 10M, 15M, 20M) LTE Band 12: 699.7 ~ 715.3 (BW: 1.4M, 3M, 5M, 10M) LTE Band 17: 706.5 ~ 713.5 (BW: 5M, 10M) WLAN: 2412 ~ 2462, 5180 ~ 5240, 5260 ~ 5320, 5500 ~ 5700, 5745 ~ 5825 Bluetooth: 2402 ~ 2480 NFC: 13.56
Uplink Modulations	GSM & GPRS : GMSK EDGE : 8PSK WCDMA : QPSK LTE : QPSK, 16QAM, 64QAM 802.11b : DSSS 802.11a/g/n/ac : OFDM Bluetooth : GFSK, π/4-DQPSK, 8-DPSK NFC : ASK
Maximum Tune-up Conducted Power (Unit: dBm)	Please refer to section 4.6.1 of this report
Antenna Type	Fixed Internal Antenna, PIFA Antenna (Peak Antenna Gain : -1.7 dBi for 2.4GHz, 0.6 dBi for 5GHz)
EUT Stage	Identical Prototype

Note:

1. The WWAN antenna support band with power reduction information as below.

Position	ANT	850	1900	II	IV	V	2	4	5	7	12	17	Function Notes	Simultaneous TX Combination
	0	w/o	w/o	w/o	w/o	w/o	w/o	w/o	w/o	w/o	w/o	w/o	Wifi Off , Cell On	No
Head	0	w/	w/o	w/o	w/o	w/	w/o	w/o	w/	w/o	w/	w/	Wifi On , Cell On	Yes
(Voice mode)	1	w/o				w/o			w/o		w/o	w/o	Wifi Off , Cell On	No
	1	w/				w/			w/		w/	w/	Wifi On , Cell On	Yes
Hotspot	0	w/o	w/	w/	w/	w/o	w/	w/	w/o	w/o	w/o	w/o	Hotspot	Vos
(Data mode)	1	w/o				w/o			w/o		w/o	w/o	- Mode Enable	Yes

Report Format Version 5.0.0 Page No. : 5 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

Position	ANT	850	1900	II	IV	V	2	4	5	7	12	17	Function Notes	Simultaneous TX Combination
	0	w/o	w/o	w/o	w/o	w/o	w/o	w/o	w/o	w/o	w/o	w/o	Wifi Off , Cell On	No
Body-worn	0	w/	w/o	w/o	w/o	w/	w/o	w/o	w/	w/o	w/	w/	Wifi On , Cell On	Yes
(Voice mode)	1	w/o				w/o			w/o		w/o	w/o	Wifi Off , Cell On	No
	1	w/				w/			w/		w/	w/	Wifi On , Cell On	Yes

- 2. This device support dual SIM but they share the same antenna. Since these two SIM are used for subscriber identification only and it is not related to RF identity, only SIM1 was used for SAR testing.
- 3. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual.

List of Accessory:

	Brand Name	SCUD
Dettem	Model Name	HE345
Battery	Power Rating	3.85Vdc, 3000mAh
	Туре	Li-ion
	Brand Name	Foxconn
Earphone	Model Name	WH-108
	Signal Line Type	1.4 meter non-shielded cable without ferrite core

Report Format Version 5.0.0 Page No. : 6 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

3. SAR Measurement System

3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SPEAG DASY52 System

DASY52 system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY52 software defined. The DASY52 software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

Report Format Version 5.0.0 Page No. : 7 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

Fig-3.1 SPEAG DASY52 System Setup

3.2.1 Robot

The DASY52 system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version of CS8c from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- · High reliability (industrial design)
- · Jerk-free straight movements
- · Low ELF interference (the closed metallic construction shields against motor control fields)

Report Format Version 5.0.0 Page No. : 8 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

3.2.2 Probes

The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

Model	EX3DV4	
Construction	Symmetrical design with triangular core. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE).	
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

Model	FC2DV2	
Model	ES3DV3	
Construction	Symmetrical design with triangular core. Interleaved sensors. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE).	
Frequency	10 MHz to 4 GHz Linearity: ± 0.2 dB	
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	5 μW/g to 100 mW/g Linearity: ± 0.2 dB	
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm	

Model	ET3DV6	900
Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	10 MHz to 2.3 GHz; Linearity: ± 0.2 dB	
Directivity	± 0.2 dB in TSL (rotation around probe axis) ± 0.4 dB in TSL (rotation normal to probe axis)	
Dynamic Range	5 μW/g to 100 mW/g; Linearity: ± 0.2 dB	
Dimensions	Overall length: 337 mm (Tip: 16 mm) Tip diameter: 6.8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.7 mm	

Report Format Version 5.0.0 Page No. : 9 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

3.2.3 Data Acquisition Electronics (DAE)

Model	DAE3, DAE4	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	
Measurement	-100 to +300 mV (16 bit resolution and two range settings: 4mV,	
Range	400mV)	The last of the state of the st
Input Offset	< 5μV (with auto zero)	
Voltage	< 5μ V (With auto Zero)	
Input Bias Current	< 50 fA	
Dimensions	60 x 60 x 68 mm	

3.2.4 Phantoms

Model	Twin SAM	
Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.	No.
Material	Vinylester, glass fiber reinforced (VE-GF)	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions	Length: 1000 mm Width: 500 mm Height: adjustable feet	
Filling Volume	approx. 25 liters	

Model	ELI	
Construction	Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.	
Material	Vinylester, glass fiber reinforced (VE-GF)	
Shell Thickness	2.0 ± 0.2 mm (bottom plate)	
Dimensions	Major axis: 600 mm Minor axis: 400 mm	
Filling Volume	approx. 30 liters	

Report Format Version 5.0.0 Page No. : 10 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

3.2.5 Device Holder

Model	Mounting Device	
Construction	In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).	
Material	POM	

Model	Laptop Extensions Kit	
Construction	Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner.	
Material	POM, Acrylic glass, Foam	

3.2.6 System Validation Dipoles

Model	D-Serial	
Construction	Symmetrical dipole with I/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions.	
Frequency	750 MHz to 5800 MHz	
Return Loss	> 20 dB	
Power Capability	> 100 W (f < 1GHz), > 40 W (f > 1GHz)	

Report Format Version 5.0.0 Page No. : 11 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

3.2.7 Tissue Simulating Liquids

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1.

The dielectric properties of the head tissue simulating liquids are defined in IEEE 1528 and IEC 62209-1. For the body tissue simulating liquids, the dielectric properties are defined in RSS-102 Annex D and IEC 62209-2. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using a dielectric assessment kit and a network analyzer.

Report Format Version 5.0.0 Page No. : 12 of 82
Report No. : SA171102C30 Issued Date : Dec. 14, 2017

Table-3.1 Targets of Tissue Simulating Liquid

-		argets of Tissue Silliu		D
Frequency (MHz)	Target Permittivity	Range of ±5%	Target Conductivity	Range of ±5%
	•	For Head	•	
750	41.9	39.8 ~ 44.0	0.89	0.85 ~ 0.93
835	41.5	39.4 ~ 43.6	0.90	0.86 ~ 0.95
900	41.5	39.4 ~ 43.6	0.97	0.92 ~ 1.02
1450	40.5	38.5 ~ 42.5	1.20	1.14 ~ 1.26
1640	40.3	38.3 ~ 42.3	1.29	1.23 ~ 1.35
1750	40.1	38.1 ~ 42.1	1.37	1.30 ~ 1.44
1800	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
1900	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2000	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2300	39.5	37.5 ~ 41.5	1.67	1.59 ~ 1.75
2450	39.2	37.2 ~ 41.2	1.80	1.71 ~ 1.89
2600	39.0	37.1 ~ 41.0	1.96	1.86 ~ 2.06
3500	37.9	36.0 ~ 39.8	2.91	2.76 ~ 3.06
5200	36.0	34.2 ~ 37.8	4.66	4.43 ~ 4.89
5300	35.9	34.1 ~ 37.7	4.76	4.52 ~ 5.00
5500	35.6	33.8 ~ 37.4	4.96	4.71 ~ 5.21
5600	35.5	33.7 ~ 37.3	5.07	4.82 ~ 5.32
5800	35.3	33.5 ~ 37.1	5.27	5.01 ~ 5.53
		For Body		
750	55.5	52.7 ~ 58.3	0.96	0.91 ~ 1.01
835	55.2	52.4 ~ 58.0	0.97	0.92 ~ 1.02
900	55.0	52.3 ~ 57.8	1.05	1.00 ~ 1.10
1450	54.0	51.3 ~ 56.7	1.30	1.24 ~ 1.37
1640	53.8	51.1 ~ 56.5	1.40	1.33 ~ 1.47
1750	53.4	50.7 ~ 56.1	1.49	1.42 ~ 1.56
1800	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
1900	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
2000	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
2300	52.9	50.3 ~ 55.5	1.81	1.72 ~ 1.90
2450	52.7	50.1 ~ 55.3	1.95	1.85 ~ 2.05
2600	52.5	49.9 ~ 55.1	2.16	2.05 ~ 2.27
3500	51.3	48.7 ~ 53.9	3.31	3.14 ~ 3.48
5200	49.0	46.6 ~ 51.5	5.30	5.04 ~ 5.57
5300	48.9	46.5 ~ 51.3	5.42	5.15 ~ 5.69
5500	48.6	46.2 ~ 51.0	5.65	5.37 ~ 5.93
5600	48.5	46.1 ~ 50.9	5.77	5.48 ~ 6.06
5800	48.2	45.8 ~ 50.6	6.00	5.70 ~ 6.30

Report Format Version 5.0.0 Page No. : 13 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

The following table gives the recipes for tissue simulating liquids.

Table-3.2 Recipes of Tissue Simulating Liquid

Tissue Type	Bactericide	DGBE	HEC	NaCl	Sucrose	Triton X-100	Water	Diethylene Glycol Mono- hexylether
H750	0.2	-	0.2	1.5	56.0	-	42.1	-
H835	0.2	-	0.2	1.5	57.0	-	41.1	-
H900	0.2	-	0.2	1.4	58.0	-	40.2	-
H1450	-	43.3	-	0.6	-	-	56.1	-
H1640	-	45.8	-	0.5	-	-	53.7	-
H1750	-	47.0	-	0.4	-	-	52.6	-
H1800	-	44.5	-	0.3	-	-	55.2	-
H1900	-	44.5	-	0.2	-	-	55.3	-
H2000	-	44.5	-	0.1	-	-	55.4	-
H2300	-	44.9	-	0.1	-	-	55.0	-
H2450	-	45.0		0.1	-	1	54.9	-
H2600	-	45.1	-	0.1	-	-	54.8	-
H3500	-	8.0		0.2	-	20.0	71.8	-
H5G	-	-	-	-	-	17.2	65.5	17.3
B750	0.2	-	0.2	0.8	48.8	-	50.0	-
B835	0.2	-	0.2	0.9	48.5	-	50.2	-
B900	0.2	-	0.2	0.9	48.2	-	50.5	-
B1450	-	34.0	-	0.3	-	-	65.7	-
B1640	-	32.5	-	0.3	-	-	67.2	-
B1750	-	31.0	-	0.2	-	-	68.8	-
B1800	-	29.5	-	0.4	-	-	70.1	-
B1900	-	29.5	-	0.3	-	-	70.2	-
B2000	-	30.0	-	0.2	-	-	69.8	-
B2300	-	31.0	-	0.1	-	1	68.9	-
B2450	-	31.4	-	0.1	-	-	68.5	-
B2600	-	31.8	-	0.1	-	-	68.1	-
B3500	-	28.8	-	0.1	-	-	71.1	-
B5G	-	-	-	-	-	10.7	78.6	10.7

Report Format Version 5.0.0 Page No. : 14 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

3.3 SAR System Verification

The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below.

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The spectrum analyzer measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz, 100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter.

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

Report Format Version 5.0.0 Page No. : 15 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

3.4 SAR Measurement Procedure

According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

The SAR measurement procedures for each of test conditions are as follows:

- (a) Make EUT to transmit maximum output power
- (b) Measure conducted output power through RF cable
- (c) Place the EUT in the specific position of phantom
- (d) Perform SAR testing steps on the DASY system
- (e) Record the SAR value

3.4.1 Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. According to KDB 865664 D01, the resolution for Area and Zoom scan is specified in the table below.

Items	<= 2 GHz	2-3 GHz	3-4 GHz	4-5 GHz	5-6 GHz
Area Scan (Δx, Δy)	<= 15 mm	<= 12 mm	<= 12 mm	<= 10 mm	<= 10 mm
Zoom Scan (Δx, Δy)	<= 8 mm	<= 5 mm	<= 5 mm	<= 4 mm	<= 4 mm
Zoom Scan (Δz)	<= 5 mm	<= 5 mm	<= 4 mm	<= 3 mm	<= 2 mm
Zoom Scan Volume	>= 30 mm	>= 30 mm	>= 28 mm	>= 25 mm	>= 22 mm

Note:

When zoom scan is required and report SAR is <= 1.4 W/kg, the zoom scan resolution of $\Delta x / \Delta y$ (2-3GHz: <= 8 mm, 3-4GHz: <= 7 mm, 4-6GHz: <= 5 mm) may be applied.

3.4.2 Volume Scan Procedure

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

Report Format Version 5.0.0 Page No. : 16 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

3.4.3 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

3.4.4 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

3.4.5 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

Report Format Version 5.0.0 Page No. : 17 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

4. SAR Measurement Evaluation

4.1 EUT Configuration and Setting

<Connections between EUT and System Simulator>

For WWAN SAR testing, the EUT was linked and controlled by base station emulator. Communication between the EUT and the emulator was established by air link. The distance between the EUT and the communicating antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during SAR testing.

<Considerations Related to GSM / GPRS / EDGE for Setup and Testing>

The maximum multi-slot capability supported by this device is as below.

- 1. This EUT is class B device
- 2. This EUT supports GPRS multi-slot class 33 (max. uplink: 4, max. downlink: 5, total timeslots: 6)
- 3. This EUT supports EDGE multi-slot class 33 (max. uplink: 4, max. downlink: 5, total timeslots: 6)

For GSM850 frequency band, the power control level is set to 5 for GSM mode and GPRS (GMSK: CS1), and set to 8 for EDGE (GMSK: MCS1, 8PSK: MCS9). For GSM1900 frequency band, the power control level is set to 0 for GSM mode and GPRS (GMSK: CS1), and set to 2 for EDGE (GMSK: MCS1, 8PSK: MCS9).

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

Report Format Version 5.0.0 Page No. : 18 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

<Considerations Related to WCDMA for Setup and Testing> WCDMA Handsets Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode.

WCDMA Handsets Body-worn SAR

SAR for body-worn configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode.

Handsets with Release 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body-worn configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSDPA using the HSDPA body SAR procedures in the "Release 5 HSDPA Data Devices", for the highest reported SAR body-worn exposure configuration in 12.2 kbps RMC. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

Handsets with Release 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body-worn configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for HSPA using the HSPA body SAR procedures in the "Release 6 HSPA Data Devices", for the highest reported body-worn exposure SAR configuration in 12.2 kbps RMC. When VOIP is applicable for next to the ear head exposure in HSPA, the 3G SAR test reduction procedure is applied to HSPA with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body-worn measurements is tested for next to the ear head exposure.

Release 5 HSDPA Data Devices

The 3G SAR test reduction procedure is applied to body SAR with 12.2 kbps RMC as the primary mode. Otherwise, body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. HSDPA is configured according to the applicable UE category of a test device. The number of HS-DSCH / HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms and a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors (β_c , β_d), and HS-DPCCH power offset parameters (Δ_{ACK} , Δ_{NACK} , Δ_{CQI}) are set according to values indicated in below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Report Format Version 5.0.0 Page No. : 19 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

Sub-test	βε	βd	β _d (SF)	β₀/β _d	β _{HS} ⁽¹⁾⁽²⁾	CM ⁽³⁾ (dB)	MPR ⁽³⁾ (dB)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	12/15 ⁽⁴⁾	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/\overline{15}$ with $\beta_{HS} = 30/\overline{15}$ * β_c .

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and Δ_{NACK} = 30/15 with β_{HS} = 30/15 * β_c , and Δ_{CQI} = 24/15 with β_{HS} = 24/15 * β_c .

Note 3: CM = 1 for $\beta_d/\beta_d = 12/15$, $\beta_{HS}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4: For subtest 2 the β_o/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$.

Release 6 HSUPA Data Devices

The 3G SAR test reduction procedure is applied to body SAR with 12.2 kbps RMC as the primary mode. Otherwise, body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode. Otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing. Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in below.

Sub-test	βα	βd	β₄ (SF)	β _c / β _d	β _{HS} ⁽¹⁾	β _{ec}	β _{ed} (4)(5)	β _{ed} (SF)	β _{ed} (Codes)	CM ⁽²⁾ (dB)	MPR (2)(6) (dB)	AG ⁽⁵⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 (3)	22/15	209/225	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β_{ed} 1: 47/15 β_{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15	0	-	-	5/15	5/15	47/15	4	1	1.0	0.0	12	67

Note 1: For sub-test 1 to 4, Δ_{ACK}, Δ_{NACK} and Δ_{CQI} = 30/15 with β_{HS} = 30/15 * β_c. For sub-test 5, Δ_{ACK}, Δ_{NACK} and Δ_{CQI} = 5/15 with β_{HS} = 5/15 * β_c.

Note 2: CM = 1 for β_o/β_d = 12/15, β_{HS}/β_c = 24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.

Note 5: β_{ed} can not be set directly; it is set by Absolute Grant Value.

Note 6: For subtests 2, 3 and 4, UE may perform E-DPDCH power scaling at max power which could results in slightly smaller MPR values.

DC-HSDPA SAR Guidance

The 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Otherwise, when SAR is required for Rel. 5 HSDPA, SAR is required for Rel. 8 DC-HSDPA. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

Report Format Version 5.0.0 Page No. : 20 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

<Considerations Related to LTE for Setup and Testing>

This device contains LTE transmitter which follows 3GPP standards, is category 3, supports both QPSK and 16QAM modulations, and supported LTE band and channel bandwidth is listed in below. The output power was tested per 3GPP TS 36.521-1 maximum transmit procedures for both QPSK and 16QAM modulation. The results please refer to section 4.6 of this report.

	EUT Supported LTE Band and Channel Bandwidth										
LTE Band	E Band BW 1.4 MHz BW 3 MHz BW 5 MHz BW 10 MHz BW 15 MHz BW 20 MHz										
2	V	V	V	V	V	V					
4	V	V	V	V	V	V					
5	V	V	V	V							
7			V	V	V	V					
12	V	V	V	V							
17			V	V							

The LTE maximum power reduction (MPR) in accordance with 3GPP TS 36.101 is active all times during LTE operation. The allowed MPR for the maximum output power is specified in below.

		Channel Bandwidth / RB Configurations									
Modulation	BW 1.4 MHz	BW 1.4 MHz BW 3 MHz BW 5 MHz BW 10 MHz BW 15 MHz BW 20 MHz									
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	1				
16QAM	<= 5	<= 4	<= 8	<= 12	<= 16	<= 18	1				
16QAM	> 5	> 4	> 8	> 12	> 16	> 18	2				
64QAM	<= 5	<= 4	<= 8	<= 12	<= 16	<= 18	2				
64QAM	> 5	> 4	> 8	> 12	> 16	> 18	3				

Note: MPR is according to the standard and implemented in the circuit (mandatory).

In addition, the device is compliant with additional maximum power reduction (A-MPR) requirements defined in 3GPP TS 36.101 section 6.2.4 that was disabled for all FCC compliance testing.

During LTE SAR testing, the related parameters of operating band, channel bandwidth, uplink channel number, modulation type, and RB was set in base station simulator. When the EUT has registered and communicated to base station simulator, the simulator set to make EUT transmitting the maximum radiated power.

TDD-LTE Setup Configurations

According to KDB 941225 D05, SAR testing for TDD-LTE device must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP TDD-LTE configurations. The TDD-LTE of this device supports frame structure type 2 defined in 3GPP TS 36.211 section 4.2, and the frame structure configuration can be referred to below.

Report Format Version 5.0.0 Page No. : 21 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

3GPP TS 36.211 Figure 4.2-1: Frame Structure Type 2

	No	rmal Cyclic Prefix in	Downlink	Extended Cyclic Prefix in Downlink			
Special Subframe		Upl	PTS		UpPTS		
Configuration	DwPTS	Normal Cyclic Prefix in Uplink	Extended Cyclic Prefix in Uplink	DwPTS	Normal Cyclic Prefix in Uplink	Extended Cyclic Prefix in Uplink	
0	6592 • Ts			7680 • Ts			
1	19760 • Ts			20480 • Ts	2192 • Ts	2560 • Ts	
2	21952 • Ts	2192 • Ts	2560 • Ts	23040 • Ts	2192 • IS		
3	24144 • Ts			25600 • Ts			
4	26336 • Ts			7680 • Ts			
5	6592 • Ts			20480 • Ts	4384 ∙ Ts	5120 • Ts	
6	19760 • Ts			23040 • Ts	4304 • 15	5120 • 18	
7	21952 • Ts	4384 • Ts	5120 ⋅ Ts	12800 • Ts			
8	24144 • Ts			-	-	-	
9	13168 • Ts			-	-	-	

3GPP TS 36.211 Table 4.2-1: Configuration of Special Subframe

Uplink-Downlink	Downlink-to-Uplink	Subframe Number									
Configuration	Switch-Point Periodicity	0	1	2	3	4	5	6	7	8	9
0	5 ms	D	S	U	U	U	D	S	U	U	U
1	5 ms	D	S	U	U	D	D	S	U	U	D
2	5 ms	D	S	U	D	D	D	S	U	D	D
3	10 ms	D	S	U	U	U	D	D	D	D	D
4	10 ms	D	S	U	U	D	D	D	D	D	D
5	10 ms	D	S	U	D	D	D	D	D	D	D
6	5 ms	D	S	U	U	U	D	S	U	U	D

3GPP TS 36.211 Table 4.2-2: Uplink-Downlink Configurations

The variety of different TD-LTE uplink-downlink configurations allows a network operator to allocate the network's capacity between uplink and downlink traffic to meet the needs of the network. The uplink duty cycle of these seven configurations can readily be computed and shown in below.

UL-DL Configuration	0	1	2	3	4	5	6
Highest Duty-Cycle	63.33%	43.33%	23.33%	31.67%	21.67%	11.67%	53.33%

Considering the highest transmission duty cycle, TDD-LTE was tested using Uplink-Downlink Configuration 0 with 6 uplink subframe and 2 special subframe. The special subframe was set to special subframe configuration 7 using extended cyclic prefix uplink. Therefore, SAR testing for TDD-LTE was performed at the maximum output power with highest transmission duty cycle of 63.33%.

Report Format Version 5.0.0 Page No. : 22 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

<Considerations Related to WLAN for Setup and Testing>

In general, various vendor specific external test software and chipset based internal test modes are typically used for SAR measurement. These chipset based test mode utilities are generally hardware and manufacturer dependent, and often include substantial flexibility to reconfigure or reprogram a device. A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement. The test frequencies established using test mode must correspond to the actual channel frequencies. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. In addition, a periodic transmission duty factor is required for current generation SAR systems to measure SAR correctly. The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

According to KDB 248227 D01, this device has installed WLAN engineering testing software which can provide continuous transmitting RF signal. During WLAN SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power.

Initial Test Configuration

An initial test configuration is determined for OFDM transmission modes in 2.4 GHz and 5 GHz bands according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

Subsequent Test Configuration

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. When the highest reported SAR for the initial test configuration according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

Report Format Version 5.0.0 Page No. : 23 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

SAR Test Configuration and Channel Selection

When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, the initial test configuration is using largest channel bandwidth, lowest order modulation, lowest data rate, and lowest order 802.11 mode (i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n). After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following.

- 1) The channel closest to mid-band frequency is selected for SAR measurement.
- 2) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

<Considerations Related to Bluetooth for Setup and Testing>

This device has installed Bluetooth engineering testing software which can provide continuous transmitting RF signal. During Bluetooth SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power.

Report Format Version 5.0.0 Page No. : 24 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

4.2 EUT Testing Position

According to KDB 648474 D04, handsets are tested for SAR compliance in head, body-worn accessory and other use configurations described in the following subsections.

4.2.1 Head Exposure Conditions

Head exposure is limited to next to the ear voice mode operations. Head SAR compliance is tested according to the test positions defined in IEEE Std 1528-2003 using the SAM phantom illustrated as below.

- 1. Define two imaginary lines on the handset
- (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the bottom of the handset.
- (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Fig-4.1 Illustration for Handset Vertical and Horizontal Reference Lines

Report Format Version 5.0.0 Page No. : 25 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

2. Cheek Position

- (a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig-4.2).

Fig-4.2 Illustration for Cheek Position

3. Tilted Position

- (a) To position the device in the "cheek" position described above.
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig-4.3).

Fig-4.3 Illustration for Tilted Position

Report Format Version 5.0.0 Page No. : 26 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

4.2.2 Body-worn Accessory Exposure Conditions

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB 447498 are used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Body-worn accessories that do not contain metallic or conductive components may be tested according to worst-case exposure configurations, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics. All body-worn accessories containing metallic components are tested in conjunction with the host device.

Body-worn accessory SAR compliance is based on a single minimum test separation distance for all wireless and operating modes applicable to each body-worn accessory used by the host, and according to the relevant voice and/or data mode transmissions and operations. If a body-worn accessory supports voice only operations in its normal and expected use conditions, testing of data mode for body-worn compliance is not required.

A conservative minimum test separation distance for supporting off-the-shelf body-worn accessories that may be acquired by users of consumer handsets is used to test for body-worn accessory SAR compliance. This distance is determined by the handset manufacturer, according to the requirements of Supplement C 01-01. Devices that are designed to operate on the body of users using lanyards and straps, or without requiring additional body-worn accessories, will be tested using a conservative minimum test separation distance <= 5 mm to support compliance.

Fig-4.4 Illustration for Body Worn Position

Report Format Version 5.0.0 Page No. : 27 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

4.2.3 Hotspot Mode Exposure Conditions

For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing functions, the relevant hand and body exposure conditions are tested according to the hotspot SAR procedures in KDB 941225 D06. A test separation distance of 10 mm is required between the phantom and all surfaces and edges with a transmitting antenna located within 25 mm from that surface or edge. When the form factor of a handset is smaller than 9 cm x 5 cm, a test separation distance of 5 mm (instead of 10 mm) is required for testing hotspot mode. When the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface).

Based on the antenna location shown on appendix D of this report, the SAR testing required for hotspot mode is listed as below.

Antenna	Front Face	Rear Face	Left Side	Right Side	Top Side	Bottom Side
WWAN Ant-0	V	V	V	V		V
WWAN Ant-1	V	V	V	V	V	
BT/ WLAN Ant	V	V	V		V	

Report Format Version 5.0.0 Page No. : 28 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

4.2.4 Product Specific (Phablet) Exposure Conditions

For smart phones with a display diagonal dimension > 15 cm or an overall diagonal dimension > 16 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, the following phablet procedures should be applied to evaluate SAR compliance for each applicable wireless modes and frequency band. Devices marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance.

- 1. The normally required head and body-worn accessory SAR test procedures for handsets, including hotspot mode, must be applied.
- 2. The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at <= 25 mm from that surface or edge, in direct contact with a flat phantom, for 10-g extremity SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g SAR > 1.2 W/kg. The normal tablet procedures in KDB 616217 are required when the over diagonal dimension of the device is > 20 cm. Hotspot mode SAR is not required when normal tablet procedures are applied. Extremity 10-g SAR is also not required for the front (top) surface of large form factor full size tablets. The more conservative tablet SAR results can be used to support the 10-g extremity SAR for phablet mode.
- 3. The simultaneous transmission operating configurations applicable to voice and data transmissions for both phone and mini-tablet modes must be taken into consideration separately for 1-g and 10-g SAR to determine the simultaneous transmission SAR test exclusion and measurement requirements for the relevant wireless modes and exposure conditions.

Report Format Version 5.0.0 Page No. : 29 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

4.3 Tissue Verification

The measuring results for tissue simulating liquid are shown as below.

Test Date	Tissue Type	Frequency (MHz)	Liquid Temp. (℃)	Measured Conductivity (σ)	Measured Permittivity (ε_r)	Target Conductivity (σ)	Target Permittivity (ε_r)	Conductivity Deviation (%)	Permittivity Deviation (%)
Nov. 21, 2017	Head	750	23.6	0.895	41.325	0.89	41.9	0.56	-1.37
Nov. 26, 2017	Head	750	23.2	0.89	42.416	0.89	41.9	0.00	1.23
Nov. 21, 2017	Head	835	23.6	0.934	41.5	0.9	41.5	3.78	0.00
Nov. 24, 2017	Head	835	23.2	0.938	42.585	0.9	41.5	4.22	2.61
Nov. 24, 2017	Head	835	23.3	0.92	41.465	0.9	41.5	2.22	-0.08
Nov. 18, 2017	Head	1750	23.3	1.335	38.757	1.37	40.1	-2.55	-3.35
Nov. 18, 2017	Head	1900	23.3	1.46	38.262	1.4	40	4.29	-4.35
Nov. 26, 2017	Head	2450	23.2	1.87	37.942	1.8	39.2	3.89	-3.21
Nov. 21, 2017	Head	2600	23.6	2.011	38.179	1.96	39	2.60	-2.11
Dec. 11, 2017	Head	2600	23.3	2.035	38.413	1.96	39	3.83	-1.51
Nov. 26, 2017	Head	5250	23.2	4.846	35.694	4.71	35.9	2.89	-0.57
Nov. 26, 2017	Head	5600	23.2	5.17	35.172	5.07	35.5	1.97	-0.92
Nov. 26, 2017	Head	5800	23.3	5.367	34.872	5.27	35.3	1.84	-1.21
Nov. 20, 2017	Body	750	23.6	0.958	53.08	0.96	55.5	-0.21	-4.36
Nov. 18, 2017	Body	835	23.3	1.017	57.276	0.97	55.2	4.85	3.76
Nov. 20, 2017	Body	835	23.6	1.018	54.609	0.97	55.2	4.95	-1.07
Nov. 18, 2017	Body	1750	23.5	1.433	52.023	1.49	53.4	-3.83	-2.58
Nov. 24, 2017	Body	1750	23.3	1.441	51.719	1.49	53.4	-3.29	-3.15
Nov. 18, 2017	Body	1900	23.3	1.583	51.6	1.52	53.3	4.14	-3.19
Nov. 24, 2017	Body	1900	23.3	1.555	51.48	1.52	53.3	2.30	-3.41
Nov. 28, 2017	Body	2450	23.4	2.02	50.562	1.95	52.7	3.59	-4.06
Nov. 18, 2017	Body	2600	23.2	2.168	50.864	2.16	52.5	0.37	-3.12
Dec. 11, 2017	Body	2600	23	2.192	51.565	2.16	52.5	1.48	-1.78
Nov. 27, 2017	Body	5250	23.4	5.401	49.134	5.36	48.9	0.76	0.48
Nov. 28, 2017	Body	5250	23.3	5.346	49.398	5.36	48.9	-0.26	1.02
Nov. 28, 2017	Body	5600	23.3	5.852	48.725	5.77	48.5	1.42	0.46
Nov. 28, 2017	Body	5800	23.2	6.113	48.226	6	48.2	1.88	0.05

Test Date	Tissue Type	Frequency (MHz)	Liquid Temp. (℃)	Measured Conductivity (σ)	Measured Permittivity (ϵ_r)	Target Conductivity (σ)	Target Permittivity (ϵ_r)	Conductivity Deviation (%)	Permittivity Deviation (%)
Nov. 28, 2017	Body	2450	23.4	2.02	50.562	1.95	52.7	3.59	-4.06
Nov. 28, 2017	Body	5250	23.3	5.346	49.398	5.36	48.9	-0.26	1.02
Nov. 28, 2017	Body	5600	23.3	5.852	48.725	5.77	48.5	1.42	0.46

Note:

- 1. The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within $\pm 5\%$ of the target values. Liquid temperature during the SAR testing must be within $\pm 2~^{\circ}\text{C}$.
- 2. Since the maximum deviation of dielectric properties of the tissue simulating liquid is within 5%, SAR correction is evaluated in the measurement uncertainty shown on section 6 of this report.

Report Format Version 5.0.0 Page No. : 30 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

4.4 System Validation

The SAR measurement system was validated according to procedures in KDB 865664 D01. The validation status in tabulated summary is as below.

_ ,				Measured	Measured	Va	lidation for C	:W	Valida	tion for Modu	lation
Test Date	Probe S/N	Calibrati	on Point	Conductivity	Permittivity	Sensitivity	Probe	Probe	Modulation	Duty Factor	PAR
	3,113			(σ)	(ε _r)	Range	Linearity	Isotropy	Туре	Duty Fuele:	
Nov. 21, 2017	7375	Head	750	0.895	41.325	Pass	Pass	Pass	N/A	N/A	N/A
Nov. 26, 2017	3650	Head	750	0.89	42.416	Pass	Pass	Pass	N/A	N/A	N/A
Nov. 21, 2017	7375	Head	835	0.934	41.5	Pass	Pass	Pass	N/A	N/A	N/A
Nov. 24, 2017	3650	Head	835	0.938	42.585	Pass	Pass	Pass	GMSK	Pass	N/A
Nov. 24, 2017	3650	Head	835	0.92	41.465	Pass	Pass	Pass	N/A	N/A	N/A
Nov. 18, 2017	3971	Head	1750	1.335	38.757	Pass	Pass	Pass	N/A	N/A	N/A
Nov. 18, 2017	3971	Head	1900	1.46	38.262	Pass	Pass	Pass	GMSK	Pass	N/A
Nov. 26, 2017	3650	Head	2450	1.87	37.942	Pass	Pass	Pass	OFDM	N/A	Pass
Nov. 21, 2017	7375	Head	2600	2.011	38.179	Pass	Pass	Pass	N/A	N/A	N/A
Dec. 11, 2017	3971	Head	2600	2.035	38.413	Pass	Pass	Pass	N/A	N/A	N/A
Nov. 26, 2017	3650	Head	5250	4.846	35.694	Pass	Pass	Pass	OFDM	N/A	Pass
Nov. 26, 2017	3650	Head	5600	5.17	35.172	Pass	Pass	Pass	OFDM	N/A	Pass
Nov. 26, 2017	3650	Head	5800	5.367	34.872	Pass	Pass	Pass	OFDM	N/A	Pass
Nov. 20, 2017	7375	Body	750	0.958	53.08	Pass	Pass	Pass	N/A	N/A	N/A
Nov. 18, 2017	7375	Body	835	1.017	57.276	Pass	Pass	Pass	GMSK	Pass	N/A
Nov. 20, 2017	7375	Body	835	1.018	54.609	Pass	Pass	Pass	N/A	N/A	N/A
Nov. 18, 2017	7375	Body	1750	1.433	52.023	Pass	Pass	Pass	N/A	N/A	N/A
Nov. 24, 2017	3650	Body	1750	1.441	51.719	Pass	Pass	Pass	N/A	N/A	N/A
Nov. 18, 2017	7375	Body	1900	1.583	51.6	Pass	Pass	Pass	GMSK	Pass	N/A
Nov. 24, 2017	3650	Body	1900	1.555	51.48	Pass	Pass	Pass	GMSK	Pass	N/A
Nov. 28, 2017	7375	Body	2450	2.02	50.562	Pass	Pass	Pass	OFDM	N/A	Pass
Nov. 18, 2017	7375	Body	2600	2.168	50.864	Pass	Pass	Pass	N/A	N/A	N/A
Dec. 11, 2017	3971	Body	2600	2.192	51.565	Pass	Pass	Pass	N/A	N/A	N/A
Nov. 27, 2017	3971	Body	5250	5.401	49.134	Pass	Pass	Pass	N/A	N/A	N/A
Nov. 28, 2017	7375	Body	5250	5.346	49.398	Pass	Pass	Pass	N/A	N/A	N/A
Nov. 28, 2017	7375	Body	5600	5.852	48.725	Pass	Pass	Pass	OFDM	N/A	Pass
Nov. 28, 2017	7375	Body	5800	6.113	48.226	Pass	Pass	Pass	OFDM	N/A	Pass

Tool	Draha			Measured	Measured	Va	lidation for C	:W	Valida	tion for Modu	lation
Test Date	Probe S/N	Calibrati	on Point	Conductivity (σ)	Permittivity (ϵ_r)	Sensitivity Range	Probe Linearity	Probe Isotropy	Modulation Type	Duty Factor	PAR
Nov. 28, 2017	7375	Body	2450	2.02	50.562	Pass	Pass	Pass	OFDM	N/A	Pass
Nov. 28, 2017	7375	Body	5250	5.346	49.398	Pass	Pass	Pass	OFDM	N/A	Pass
Nov. 28, 2017	7375	Body	5600	5.852	48.725	Pass	Pass	Pass	OFDM	N/A	Pass

Report Format Version 5.0.0 Page No. : 31 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

4.5 System Verification

The measuring result for system verification is tabulated as below.

Test Date	Mode	Frequency (MHz)	1W Target SAR-1g (W/kg)	Measured SAR-1g (W/kg)	Normalized to 1W SAR-1g (W/kg)	Deviation (%)	Dipole S/N	Probe S/N	DAE S/N
Nov. 21, 2017	Head	750	8.25	1.98	7.92	-4.00	1013	7375	579
Nov. 26, 2017	Head	750	8.25	2.02	8.08	-2.06	1013	3650	1277
Nov. 21, 2017	Head	835	9.41	2.30	9.20	-2.23	4d121	7375	579
Nov. 24, 2017	Head	835	9.41	2.41	9.64	2.44	4d121	3650	1277
Nov. 24, 2017	Head	835	9.41	2.28	9.12	-3.08	4d121	3650	1277
Nov. 18, 2017	Head	1750	36.20	8.72	34.88	-3.65	1055	3971	861
Nov. 18, 2017	Head	1900	40.20	9.99	39.96	-0.60	5d036	3971	861
Nov. 26, 2017	Head	2450	50.80	12.80	51.20	0.79	737	3650	1277
Nov. 21, 2017	Head	2600	56.90	14.60	58.40	2.64	1020	7375	579
Dec. 11, 2017	Head	2600	56.90	14.40	57.60	1.23	1020	3971	861
Nov. 26, 2017	Head	5250	78.60	7.93	79.30	0.89	1019	3650	1277
Nov. 26, 2017	Head	5600	83.70	7.98	79.80	-4.66	1019	3650	1277
Nov. 26, 2017	Head	5800	79.70	8.32	83.20	4.39	1019	3650	1277
Nov. 20, 2017	Body	750	8.72	2.05	8.20	-5.96	1013	7375	579
Nov. 18, 2017	Body	835	9.61	2.58	10.32	7.39	4d121	7375	579
Nov. 20, 2017	Body	835	9.61	2.33	9.32	-3.02	4d121	7375	579
Nov. 18, 2017	Body	1750	37.10	8.64	34.56	-6.85	1055	7375	579
Nov. 24, 2017	Body	1750	37.10	8.77	35.08	-5.44	1055	3650	1277
Nov. 18, 2017	Body	1900	40.10	10.10	40.40	0.75	5d036	7375	579
Nov. 24, 2017	Body	1900	40.10	10.10	40.40	0.75	5d036	3650	1277
Nov. 28, 2017	Body	2450	49.70	12.40	49.60	-0.20	737	7375	579
Nov. 18, 2017	Body	2600	54.30	14.10	56.40	3.87	1020	7375	579
Dec. 11, 2017	Body	2600	54.30	13.20	52.80	-2.76	1020	3971	861
Nov. 27, 2017	Body	5250	76.50	7.53	75.30	-1.57	1019	3971	861
Nov. 28, 2017	Body	5250	76.50	7.63	76.30	-0.26	1019	7375	579
Nov. 28, 2017	Body	5600	79.70	7.75	77.50	-2.76	1019	7375	579
Nov. 28, 2017	Body	5800	76.90	7.53	75.30	-2.08	1019	7375	579

Test Date	Mode	Frequency (MHz)	1W Target SAR-10g (W/kg)	Measured SAR-10g (W/kg)	Normalized to 1W SAR-10g (W/kg)	Deviation (%)	Dipole S/N	Probe S/N	DAE S/N
Nov. 28, 2017	Body	2450	23.40	5.76	23.04	-1.54	737	7375	579
Nov. 28, 2017	Body	5250	21.30	2.17	21.70	1.88	1019	7375	579
Nov. 28, 2017	Body	5600	22.30	2.16	21.60	-3.14	1019	7375	579

Note:

Comparing to the reference SAR value provided by SPEAG, the validation data should be within its specification of 10 %. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Report Format Version 5.0.0 Page No. : 32 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

4.6 Maximum Output Power

4.6.1 Maximum Target Conducted Power

The maximum conducted average power (Unit: dBm) including tune-up tolerance is shown as below.

	Maximum Bu Output	_	Maximum Fra Output	Power	
Mode	GSM850 (without Power Reduction)	GSM850 (with Power Reduction)	GSM850 (without Power Reduction)	GSM850 (without Power Reduction)	Reduction (dB)
GSM (GMSK, 1Tx-slot)	34	31.5	25	22.5	2.5
GPRS (GMSK, 1Tx-slot)	34	31.5	25	22.5	2.5
GPRS (GMSK, 2Tx-slot)	30	27.5	24	21.5	2.5
GPRS (GMSK, 3Tx-slot)	28.2	26	23.9	21.7	2.2
GPRS (GMSK, 4Tx-slot)	27	25	24	22	2.0
EDGE (8PSK, 1Tx-slot)	26	26	17	17	0
EDGE (8PSK, 2Tx-slot)	25	22.5	19.0	16.5	2.5
EDGE (8PSK, 3Tx-slot)	24	22	19.74	17.74	2.0
EDGE (8PSK, 4Tx-slot)	22	20.5	19	17.5	1.5

		rst-Averaged Power	Maximum Fra Output	Power	
Mode	GSM1900 (without Power Reduction)	GSM1900 (with Power Reduction)	GSM1900 (without Power Reduction)	GSM1900 (with Power Reduction)	Reduction (dB)
GSM (GMSK, 1Tx-slot)	31	28.5	22	19.5	2.5
GPRS (GMSK, 1Tx-slot)	31	28.5	22	19.5	2.5
GPRS (GMSK, 2Tx-slot)	27	25	21	19	2.0
GPRS (GMSK, 3Tx-slot)	25.2	23	20.9	18.7	2.2
GPRS (GMSK, 4Tx-slot)	24	21.5	21	18.5	2.5
EDGE (8PSK, 1Tx-slot)	25	25	16	16	0
EDGE (8PSK, 2Tx-slot)	25	25	19.0	19.0	0
EDGE (8PSK, 3Tx-slot)	24	23	19.74	18.74	1
EDGE (8PSK, 4Tx-slot)	22	22	19	19	0

Note:

- 1. SAR testing was performed on the maximum frame-averaged power mode.
- 2. The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below:

 Frame-averaged power = 10 x log (Burst-averaged power mW x Slot used / 8)

Report Format Version 5.0.0 Page No. : 33 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

Mode	WCDMA Band II (without Power Reduction)	WCDMA Band II (with Power Reduction)	Power Reduction (dB)
RMC 12.2K	25	20	5.0
HSDPA / HSUPA / DC-HSDPA	24	18.5	5.5

Mode	Mode WCDMA Band IV (without Power Reduction)		Power Reduction (dB)	
RMC 12.2K	25	21	4	
HSDPA / HSUPA / DC-HSDPA	24	20	4	

Mode	WCDMA Band V (without Power Reduction)	WCDMA Band V (with Power Reduction)	Power Reduction (dB)
RMC 12.2K	25	22.5	2.5
HSDPA / HSUPA / DC-HSDPA	24	21.5	2.5

Mode	MCS Index	LTE 2 (without Power Reduction)	(with Power (with Power	
	QPSK	24	20	4.0
Maximum Target Power	16QAM	23	20	3.0
	64QAM	22	20	2.0

Mode	MCS Index	LTE 4 (without Power Reduction)	LTE 4 (with Power Reduction)	Power Reduction (dB)
Maximum Target Power	QPSK	24	20	4.0
	16QAM	23	20	3.0
	64QAM	22	20	2.0

Mode	MCS Index	LTE 5 (without Power Reduction)	LTE 5 (with Power Reduction)	Power Reduction (dB)
	QPSK	24	21.5	2.5
Maximum Target Power	16QAM	23	21.5	1.5
	64QAM	22	21.5	0.5

Mode	MCS Index	LTE 7
Maximum Target Power	QPSK	25
	16QAM	24
	64QAM	23

Mode	MCS Index	LTE 12 LTE 12 (with Power Reduction) Reduction)		Power Reduction (dB)
	QPSK	24	21.5	2.5
Maximum Target Power	16QAM	23	21.5	1.5
	64QAM	22	21.5	0.5

Mode	MCS Index	LTE 17 (without Power Reduction)	LTE 17 (with Power Reduction)	Power Reduction (dB)	
Maximum Target Power	QPSK	24	21.5	2.5	
	16QAM	23	21.5	1.5	
	64QAM	22	21.5	0.5	

Report Format Version 5.0.0 Page No. : 34 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

Mode	2.4G WLAN	5.2G WLAN	5.3G WLAN	5.6G WLAN	5.8G WLAN
802.11b	Ch 1_Ant0: 17 Ch 6_Ant0: 17 Ch 11_Ant0: 17	N/A	N/A	N/A	N/A
802.11g	Ch 1_Ant0: 15 Ch 6_Ant0: 15 Ch 11_Ant0: 15	N/A	N/A	N/A	N/A
802.11a	N/A	Ch 36_Ant0: 10 Ch 40_Ant0: 10 Ch 44_Ant0: 10 Ch 48_Ant0: 10	Ch 52_Ant0: 10 Ch 56_Ant0: 10 Ch 60_Ant0: 10 Ch 64_Ant0: 10	Ch 100_Ant0: 10 Ch 116_Ant0: 10 Ch 120_Ant0: 10 Ch 124_Ant0: 10 Ch 132_Ant0: 10 Ch 140_Ant0: 10 Ch 144_Ant0: 10	Ch 149_Ant0: 10 Ch 153_Ant0: 10 Ch 157_Ant0: 10 Ch 161_Ant0: 10 Ch 165_Ant0: 10
802.11n HT20	Ch 1_Ant0: 13 Ch 6_Ant0: 13 Ch 11_Ant0: 13	Ch 36_Ant0: 10 Ch 40_Ant0: 10 Ch 44_Ant0: 10 Ch 48_Ant0: 10	Ch 52_Ant0: 10 Ch 56_Ant0: 10 Ch 60_Ant0: 10 Ch 64_Ant0: 10	Ch 100_Ant0: 10 Ch 116_Ant0: 10 Ch 120_Ant0: 10 Ch 124_Ant0: 10 Ch 132_Ant0: 10 Ch 140_Ant0: 10 Ch 144_Ant0: 10	Ch 149_Ant0: 10 Ch 153_Ant0: 10 Ch 157_Ant0: 10 Ch 161_Ant0: 10 Ch 165_Ant0: 10
802.11n HT40	Ch 3_Ant0: 13 Ch 6_Ant0: 13 Ch 9_Ant0: 13	Ch 38_Ant0: 10 Ch 46_Ant0: 10	Ch 54_Ant0: 10 Ch 62_Ant0: 10	Ch 102_Ant0: 10 Ch 110_Ant0: 10 Ch 118_Ant0: 10 Ch 126_Ant0: 10 Ch 134_Ant0: 10 Ch 142_Ant0: 10	Ch 151_Ant0: 10 Ch 159_Ant0: 10
802.11ac VHT80+80	N/A	Ch 42_Ant0: 10	Ch 58_Ant0: 10	Ch 106_Ant0: 10 Ch 122_Ant0: 10 Ch 138_Ant0: 10	Ch 155_Ant0: 10

Mode	Channel	2.4G Bluetooth
	0	10
Bluetooth EDR	39	10
	78	9
	0	-0.5
Bluetooth LE	19	-0.5
	39	-0.5

 Report Format Version 5.0.0
 Page No.
 : 35 of 82

 Report No.: SA171102C30
 Issued Date
 : Dec. 14, 2017

4.6.2 Measured Conducted Power Result

The measuring conducted average power (Unit: dBm) is shown as below.

Band		GSM850			GSM1900			
Channel	128	189	251	512	661	810		
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8		
	EUT without Power Reduction							
Maximum Burst-Averaged Output Power								
GSM (GMSK, 1Tx-slot)	33.61	33.72	33.57	30.89	30.93	30.88		
GPRS (GMSK, 1Tx-slot)	33.60	33.71	33.56	30.87	30.91	30.86		
GPRS (GMSK, 2Tx-slot)	29.32	29.43	29.28	26.49	26.53	26.48		
GPRS (GMSK, 3Tx-slot)	27.36	27.47	27.32	24.69	24.73	24.68		
GPRS (GMSK, 4Tx-slot)	26.80	26.91	26.76	23.63	23.67	23.62		
EDGE (8PSK, 1Tx-slot)	25.44	25.55	25.40	24.95	24.99	24.94		
EDGE (8PSK, 2Tx-slot)	24.72	24.83	24.68	24.21	24.25	24.20		
EDGE (8PSK, 3Tx-slot)	23.52	23.63	23.48	23.04	23.08	23.03		
EDGE (8PSK, 4Tx-slot)	21.14	21.25	21.10	21.73	21.77	21.72		
		EUT with	Power Reduction	on				
		Maximum Burst	-Averaged Outp	ut Power				
GSM (GMSK, 1Tx-slot)	31.12	31.27	31.42	28.20	28.28	28.48		
GPRS (GMSK, 1Tx-slot)	31.10	31.25	31.40	28.18	28.25	28.46		
GPRS (GMSK, 2Tx-slot)	27.08	27.23	27.38	24.65	24.68	24.77		
GPRS (GMSK, 3Tx-slot)	25.46	25.61	25.76	22.55	22.74	22.76		
GPRS (GMSK, 4Tx-slot)	24.60	24.75	24.90	21.03	21.05	21.12		
EDGE (8PSK, 1Tx-slot)	25.38	25.53	25.68	24.94	25.02	25.22		
EDGE (8PSK, 2Tx-slot)	21.98	22.13	22.28	24.45	24.53	24.73		
EDGE (8PSK, 3Tx-slot)	21.48	21.63	21.78	22.39	22.47	22.67		
EDGE (8PSK, 4Tx-slot)	20.14	20.29	20.44	20.97	21.05	21.25		

Report Format Version 5.0.0 Page No. : 36 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

Band	WC	DMA Ban	d II	WC	DMA Band	VI b	WC	DMA Ban	d V	3GPP
Channel	9262	9400	9538	1312	1413	1513	4132	4182	4233	MPR
Frequency (MHz)	1852.4	1880.0	1907.6	1712.4	1732.6	1752.6	826.4	836.4	846.6	(dB)
			EUT wi	thout Pow	er Reduc	tion				
RMC 12.2K	24.89	24.98	24.93	24.81	24.97	24.93	24.95	24.99	24.93	-
HSDPA Subtest-1	23.30	23.39	23.34	23.29	23.45	23.41	23.67	23.69	23.65	0
HSDPA Subtest-2	23.36	23.45	23.40	23.27	23.43	23.39	23.65	23.67	23.63	0
HSDPA Subtest-3	22.84	22.93	22.88	22.76	22.92	22.88	23.17	23.19	23.15	0.5
HSDPA Subtest-4	22.86	22.95	22.90	22.81	22.97	22.93	23.14	23.16	23.12	0.5
DC-HSDPA Subtest-1	23.30	23.37	23.31	23.31	23.45	23.38	23.64	23.65	23.59	0
DC-HSDPA Subtest-2	23.36	23.41	23.38	23.28	23.42	23.36	23.58	23.62	23.59	0
DC-HSDPA Subtest-3	22.87	22.96	22.89	22.74	22.91	22.85	23.14	23.17	23.12	0.5
DC-HSDPA Subtest-4	22.81	22.93	22.87	22.83	22.95	22.91	23.13	23.15	23.10	0.5
HSUPA Subtest-1	23.42	23.51	23.46	23.29	23.45	23.41	23.69	23.71	23.67	0
HSUPA Subtest-2	21.46	21.55	21.50	21.32	21.48	21.44	21.64	21.66	21.62	2
HSUPA Subtest-3	22.47	22.56	22.51	22.27	22.43	22.39	22.76	22.78	22.74	1
HSUPA Subtest-4	21.46	21.55	21.50	21.35	21.51	21.47	21.61	21.63	21.59	2
HSUPA Subtest-5	23.40	23.49	23.44	23.27	23.43	23.39	23.67	23.69	23.65	0
Band	WC	DMA Ban	d II	WC	DMA Band	VI b	WC	DMA Ban	d V	3GPP
Channel	9262	9400	9538	1312	1413	1513	4132	4182	4233	MPR
Frequency (MHz)	1852.4	1880.0	1907.6	1712.4	1732.6	1752.6	826.4	836.4	846.6	(dB)
			EUT v	with Powe	r Reduction	on				
RMC 12.2K	19.90	19.99	EUT v 19.95	vith Powe 20.83	r Reduction 20.96	on 20.85	22.35	22.44	22.36	-
RMC 12.2K HSDPA Subtest-1	19.90 18.29	19.99 18.38					22.35 21.06	22.44 21.15	22.36 21.07	- 0
			19.95	20.83	20.96	20.85				
HSDPA Subtest-1	18.29	18.38	19.95 18.34	20.83 19.10	20.96 19.23	20.85 19.12	21.06	21.15	21.07	0
HSDPA Subtest-1 HSDPA Subtest-2	18.29 18.33	18.38 18.42	19.95 18.34 18.38	20.83 19.10 18.86	20.96 19.23 18.99	20.85 19.12 18.88	21.06 21.10	21.15 21.19	21.07 21.11	0
HSDPA Subtest-1 HSDPA Subtest-2 HSDPA Subtest-3	18.29 18.33 17.82	18.38 18.42 17.91	19.95 18.34 18.38 17.87	20.83 19.10 18.86 18.64	20.96 19.23 18.99 18.77	20.85 19.12 18.88 18.66	21.06 21.10 20.56	21.15 21.19 20.65	21.07 21.11 20.57	0 0 0.5
HSDPA Subtest-1 HSDPA Subtest-2 HSDPA Subtest-3 HSDPA Subtest-4	18.29 18.33 17.82 17.83	18.38 18.42 17.91 17.92	19.95 18.34 18.38 17.87 17.88	20.83 19.10 18.86 18.64 18.68	20.96 19.23 18.99 18.77 18.81	20.85 19.12 18.88 18.66 18.70	21.06 21.10 20.56 20.58	21.15 21.19 20.65 20.67	21.07 21.11 20.57 20.59	0 0 0.5 0.5
HSDPA Subtest-1 HSDPA Subtest-2 HSDPA Subtest-3 HSDPA Subtest-4 DC-HSDPA Subtest-1	18.29 18.33 17.82 17.83 18.26	18.38 18.42 17.91 17.92 18.39	19.95 18.34 18.38 17.87 17.88 18.33	20.83 19.10 18.86 18.64 18.68	20.96 19.23 18.99 18.77 18.81 19.22	20.85 19.12 18.88 18.66 18.70 19.13	21.06 21.10 20.56 20.58 21.04	21.15 21.19 20.65 20.67 21.13	21.07 21.11 20.57 20.59 21.08	0 0 0.5 0.5
HSDPA Subtest-1 HSDPA Subtest-2 HSDPA Subtest-3 HSDPA Subtest-4 DC-HSDPA Subtest-1 DC-HSDPA Subtest-2	18.29 18.33 17.82 17.83 18.26 18.34	18.38 18.42 17.91 17.92 18.39 18.41	19.95 18.34 18.38 17.87 17.88 18.33 18.36	20.83 19.10 18.86 18.64 18.68 19.08	20.96 19.23 18.99 18.77 18.81 19.22 18.96	20.85 19.12 18.88 18.66 18.70 19.13 18.85	21.06 21.10 20.56 20.58 21.04 21.06	21.15 21.19 20.65 20.67 21.13 21.16	21.07 21.11 20.57 20.59 21.08 21.08	0 0 0.5 0.5 0
HSDPA Subtest-1 HSDPA Subtest-2 HSDPA Subtest-3 HSDPA Subtest-4 DC-HSDPA Subtest-1 DC-HSDPA Subtest-2 DC-HSDPA Subtest-3	18.29 18.33 17.82 17.83 18.26 18.34 17.81	18.38 18.42 17.91 17.92 18.39 18.41 17.87	19.95 18.34 18.38 17.87 17.88 18.33 18.36 17.86	20.83 19.10 18.86 18.64 18.68 19.08 18.81 18.64	20.96 19.23 18.99 18.77 18.81 19.22 18.96 18.74	20.85 19.12 18.88 18.66 18.70 19.13 18.85 18.65	21.06 21.10 20.56 20.58 21.04 21.06 20.54	21.15 21.19 20.65 20.67 21.13 21.16 20.68	21.07 21.11 20.57 20.59 21.08 21.08 20.59	0 0 0.5 0.5 0 0
HSDPA Subtest-1 HSDPA Subtest-2 HSDPA Subtest-3 HSDPA Subtest-4 DC-HSDPA Subtest-1 DC-HSDPA Subtest-2 DC-HSDPA Subtest-3 DC-HSDPA Subtest-3	18.29 18.33 17.82 17.83 18.26 18.34 17.81	18.38 18.42 17.91 17.92 18.39 18.41 17.87 17.89	19.95 18.34 18.38 17.87 17.88 18.33 18.36 17.86	20.83 19.10 18.86 18.64 18.68 19.08 18.81 18.64 18.64	20.96 19.23 18.99 18.77 18.81 19.22 18.96 18.74 18.75	20.85 19.12 18.88 18.66 18.70 19.13 18.85 18.65 18.66	21.06 21.10 20.56 20.58 21.04 21.06 20.54 20.59	21.15 21.19 20.65 20.67 21.13 21.16 20.68 20.65	21.07 21.11 20.57 20.59 21.08 21.08 20.59 20.59	0 0 0.5 0.5 0 0 0.5 0.5
HSDPA Subtest-1 HSDPA Subtest-2 HSDPA Subtest-3 HSDPA Subtest-4 DC-HSDPA Subtest-1 DC-HSDPA Subtest-2 DC-HSDPA Subtest-3 DC-HSDPA Subtest-4 HSUPA Subtest-1	18.29 18.33 17.82 17.83 18.26 18.34 17.81 17.84 18.44	18.38 18.42 17.91 17.92 18.39 18.41 17.87 17.89	19.95 18.34 18.38 17.87 17.88 18.33 18.36 17.86 17.86	20.83 19.10 18.86 18.64 18.68 19.08 18.81 18.64 18.64 19.30	20.96 19.23 18.99 18.77 18.81 19.22 18.96 18.74 18.75	20.85 19.12 18.88 18.66 18.70 19.13 18.85 18.65 18.66 19.32	21.06 21.10 20.56 20.58 21.04 21.06 20.54 20.59 21.10	21.15 21.19 20.65 20.67 21.13 21.16 20.68 20.65 21.19	21.07 21.11 20.57 20.59 21.08 21.08 20.59 20.59 21.11	0 0.5 0.5 0 0 0 0.5 0.5
HSDPA Subtest-1 HSDPA Subtest-2 HSDPA Subtest-3 HSDPA Subtest-4 DC-HSDPA Subtest-1 DC-HSDPA Subtest-2 DC-HSDPA Subtest-3 DC-HSDPA Subtest-4 HSUPA Subtest-1 HSUPA Subtest-2	18.29 18.33 17.82 17.83 18.26 18.34 17.81 17.84 18.44 16.43	18.38 18.42 17.91 17.92 18.39 18.41 17.87 17.89 18.49 16.52	19.95 18.34 18.38 17.87 17.88 18.33 18.36 17.86 17.86 18.47 16.48	20.83 19.10 18.86 18.64 18.68 19.08 18.81 18.64 18.64 19.30 17.28	20.96 19.23 18.99 18.77 18.81 19.22 18.96 18.74 18.75 19.43 17.41	20.85 19.12 18.88 18.66 18.70 19.13 18.85 18.65 18.66 19.32 17.30	21.06 21.10 20.56 20.58 21.04 21.06 20.54 20.59 21.10 19.12	21.15 21.19 20.65 20.67 21.13 21.16 20.68 20.65 21.19	21.07 21.11 20.57 20.59 21.08 21.08 20.59 20.59 21.11 19.13	0 0.5 0.5 0 0 0 0.5 0.5 0.5

Report Format Version 5.0.0 Page No. : 37 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

							LTE Bai	nd 2						
						EUT with	out Pow	er Redu	ction					
				QP	SK			160	MAÇ			640	MAÇ	
BW (MHz)	RB Size	RB Offset	Low CH 18700	Mid CH 18900	High CH 19100	3GPP MPR	Low CH 18607	Mid CH 18900	High CH 19193	3GPP MPR	Low CH 18607	Mid CH 18900	High CH 19193	3GPP MPR
(12)	5.25	GGG.	1860.0 MHz	1880.0 MHz	1900.0 MHz	(dB)	1850.7 MHz	1880.0 MHz	1909.3 MHz	(dB)	1850.7 MHz	1880.0 MHz	1909.3 MHz	(dB)
	1	0	23.91	23.98	23.95	0	22.89	22.96	22.93	1	21.88	21.95	21.92	2
	1	50	23.76	23.83	23.80	0	22.74	22.81	22.78	1	21.73	21.80	21.77	2
	1	99	23.74	23.81	23.78	0	22.72	22.79	22.76	1	21.71	21.78	21.75	2
20	50	0	22.86	22.93	22.90	1	21.84	21.91	21.88	2	20.83	20.90	20.87	3
	50	25	22.84	22.91	22.88	1	21.82	21.89	21.86	2	20.81	20.88	20.85	3
	50	50	22.81	22.88	22.85	1	21.79	21.86	21.83	2	20.78	20.85	20.82	3
	100	0	22.82	22.89	22.86	1	21.80	21.87	21.84	2	20.79	20.86	20.83	3
						EUT wi	th Powe	r Reduct	tion					
					SK				MAÇ				QAM	
BW	RB	RB	Low CH 18700	Mid CH 18900	High CH 19100	3GPP	Low CH 18607	Mid CH 18900	High CH 19193	3GPP	Low CH 18607	Mid CH 18900	High CH 19193	3GPP
(MHz)	Size	Offset	1860.0	1880.0	1900.0	MPR	1850.7	1880.0	1909.3	MPR	1850.7	1880.0	1909.3	MPR
			MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)
	1	0	19.87	19.83	19.84	0	19.83	19.79	19.80	0	19.80	19.76	19.77	0
	1	50	19.65	19.61	19.62	0	19.61	19.57	19.58	0	19.58	19.54	19.55	0
	1	99	19.62	19.58	19.59	0	19.58	19.54	19.55	0	19.55	19.51	19.52	0
20	50	0	19.82	19.78	19.79	0	19.78	19.74	19.75	0	19.75	19.71	19.72	0
	50	25	19.77	19.73	19.74	0	19.73	19.69	19.70	0	19.70	19.66	19.67	0
	50	50	19.72	19.68	19.69	0	19.68	19.64	19.65	0	19.65	19.61	19.62	0
	100	0	19.76	19.72	19.73	0	19.72	19.68	19.69	0	19.69	19.65	19.66	0
						EUT with	out Pow							
			1 011		SK UILLE OU	1	1 011		MAC	1	1 011		QAM	
BW	RB	RB	Low CH 18675	Mid CH 18900	High CH 19125	3GPP	Low CH 18675	Mid CH 18900	High CH 19125	3GPP	Low CH 18675	Mid CH 18900	High CH 19125	3GPP
(MHz)	Size	Offset	1857.5	1880.0	1902.5	MPR (dB)	1857.5	1880.0	1902.5	MPR (dB)	1857.5	1880.0	1902.5	MPR (dB)
			MHz	MHz	MHz	` ,	MHz	MHz	MHz	` ,	MHz	MHz	MHz	` ′
	1	0	23.86	23.93	23.90	0	22.84	22.91	22.88	1	21.85	21.92	21.89	2
	1	37 74	23.71	23.78	23.75	0	22.69	22.76 22.74	22.73 22.71	1	21.70	21.77	21.74 21.72	2
15	36	0	23.69 22.81	23.76 22.88	23.73 22.85	1	22.67 21.79	21.86	21.83	2	21.68 20.80	21.75 20.87	20.84	3
15	36	19	22.79	22.86	22.83	1	21.79	21.84	21.83	2	20.80	20.85	20.82	3
	36	39	22.76	22.83	22.80	1	21.74	21.81	21.78	2	20.75	20.82	20.79	3
	75	0	22.77	22.84	22.81	1	21.75	21.82	21.79	2	20.76	20.83	20.80	3
						FUT wi	th Powe			_				
				OP	PSK	LOT WI	uirowe		DAM			641	QAM	
			Low CH	Mid CH	High CH		Low CH	Mid CH	High CH		Low CH	Mid CH	High CH	
BW (MHz)	RB Size	RB Offset	18675	18900	19125	3GPP MPR	18675	18900	19125	3GPP MPR	18675	18900	19125	3GPP MPR
(1411 12)	Size	Oliset	1857.5	1880.0	1902.5	(dB)	1857.5	1880.0	1902.5	(dB)	1857.5	1880.0	1902.5	(dB)
	1	0	MHz 19.81	MHz 19.77	MHz 19.78	0	MHz 19.77	MHz 19.73	MHz 19.74	0	MHz 19.73	MHz 19.69	MHz 19.70	0
	1	37	19.59	19.77	19.76	0	19.77	19.73	19.74	0	19.73	19.69	19.70	0
	1	74	19.59	19.55	19.56	0	19.55	19.48	19.49	0	19.48	19.47	19.45	0
15	36	0	19.76	19.72	19.73	0	19.72	19.48	19.49	0	19.48	19.44	19.45	0
	36	19	19.71	19.67	19.68	0	19.67	19.63	19.64	0	19.63	19.59	19.60	0
	36	39	19.66	19.62	19.63	0	19.62	19.58	19.59	0	19.58	19.54	19.55	0
	75	0	19.70	19.66	19.67	0	19.66	19.62	19.63	0	19.62	19.58	19.59	0

Report Format Version 5.0.0 Page No. : 38 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

						EUT with	out Pow	ver Redu	ction					
				QF	PSK			16	QAM		1	640	QAM	
BW	RB	RB Offset	Low CH 18650	Mid CH 18900	High CH 19150	3GPP	Low CH 18650	Mid CH 18900	High CH 19150	3GPP	Low CH 18650	Mid CH 18900	High CH 19150	3GPP
(MHz)	Size	Offset	1855.0 MHz	1880.0 MHz	1905.0 MHz	MPR (dB)	1855.0 MHz	1880.0 MHz	1905.0 MHz	MPR (dB)	1855.0 MHz	1880.0 MHz	1905.0 MHz	MPR (dB)
	1	0	23.80	23.87	23.84	0	22.78	22.85	22.82	1	21.79	21.86	21.83	2
	1	24	23.65	23.72	23.69	0	22.63	22.70	22.67	1	21.64	21.71	21.68	2
	1	49	23.63	23.70	23.67	0	22.61	22.68	22.65	1	21.62	21.69	21.66	2
10	25	0	22.75	22.82	22.79	1	21.73	21.80	21.77	2	20.74	20.81	20.78	3
	25	12	22.73	22.80	22.77	1	21.71	21.78	21.75	2	20.72	20.79	20.76	3
	25	25	22.70	22.77	22.74	1	21.68	21.75	21.72	2	20.69	20.76	20.73	3
	50	0	22.71	22.78	22.75	1	21.69	21.76	21.73	2	20.70	20.77	20.74	3
						EUT wi	th Powe	r Reduc	tion					
					SK				QAM				QAM	
BW	RB	RB	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP
(MHz)	Size	Offset	18650 1855.0	18900	19150 1905.0	MPR	18650 1855.0	18900 1880.0	19150 1905.0	MPR	18650 1855.0	18900 1880.0	19150 1905.0	MPR
			1855.0 MHz	1880.0 MHz	1905.0 MHz	(dB)	1855.0 MHz	1880.0 MHz	1905.0 MHz	(dB)	1855.0 MHz	MHz	1905.0 MHz	(dB)
	1	0	19.73	19.69	19.70	0	19.68	19.64	19.65	0	19.63	19.59	19.60	0
	1	24	19.51	19.47	19.48	0	19.46	19.42	19.43	0	19.41	19.37	19.38	0
	1	49	19.48	19.44	19.45	0	19.43	19.39	19.40	0	19.38	19.34	19.35	0
10	25	0	19.68	19.64	19.65	0	19.63	19.59	19.60	0	19.58	19.54	19.55	0
10	25	12	19.63	19.59	19.60	0	19.58	19.54	19.55	0	19.53	19.49	19.50	0
	25	25	19.58	19.54	19.55	0	19.53	19.49	19.50	0	19.48	19.44	19.45	0
	50	0	19.62	19.58	19.59	0	19.57	19.53	19.54	0	19.52	19.48	19.49	0
	00		13.02	10.00							10.02	10.40	10.40	
	Т		1			EUT with	out Pow							
			Low CH	Mid CH	PSK High CH		Low CH	Mid CH	QAM High CH		Low CH	Mid CH	QAM High CH	
BW	RB	RB	18625	18900	19175	3GPP	18625	18900	19175	3GPP	18625	18900	19175	3GPP
(MHz)	Size	Offset	1852.5	1880.0	1907.5	MPR (dB)	1852.5	1880.0	1907.5	MPR (dB)	1852.5	1880.0	1907.5	MPR (dB)
			MHz	MHz	MHz	` ′	MHz	MHz	MHz	` '	MHz	MHz	MHz	` '
	1	0	23.75	23.82	23.79	0	22.73	22.80	22.77	1	21.74	21.81	21.78	2
	1	12	23.60	23.67	23.64	0	22.58	22.65	22.62	1	21.59	21.66	21.63	2
	1	24	23.58	23.65	23.62	0	22.56	22.63	22.60	1	21.57	21.64	21.61	2
5	12	0	22.70	22.77	22.74	1	21.68	21.75	21.72	2	20.69	20.76	20.73	3
	12	6	22.68	22.75	22.72	1	21.66	21.73	21.70	2	20.67	20.74	20.71	3
	12	13	22.65	22.72	22.69	1	21.63	21.70	21.67	2	20.64	20.71	20.68	3
	25	0	22.66	22.73	22.70	1	21.64	21.71	21.68	2	20.65	20.72	20.69	3
						EUT wi	th Powe	r Reduc	tion					
					SK				QAM				QAM	
BW	RB	RB	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP
- DVV		Offset	18625	18900	19175 1907.5	MPR	18625 1852.5	18900 1880.0	19175 1907.5	MPR	18625 1852.5	18900 1880.0	19175 1907.5	MPR
(MHz)	Size	Offset	1952 5				1032.3			(dB)	MHz	MHz	MHz	(dB)
	Size	Offset	1852.5 MHz	1880.0 MHz	MHz	(dB)	MHz	MHz	MHz	(-)	IVIIIZ		IVITIZ	
	Size 1	Offset				(dB)	MHz 19.62	MHz 19.58	19.59	0	19.56	19.52	19.53	0
			MHz	MHz	MHz	, ,		1	1	` ,			1	0
	1	0	MHz 19.68	MHz 19.64	MHz 19.65	0	19.62	19.58	19.59	0	19.56	19.52	19.53	_
	1	0 12	MHz 19.68 19.46	MHz 19.64 19.42	MHz 19.65 19.43	0	19.62 19.40	19.58 19.36	19.59 19.37	0	19.56 19.34	19.52 19.30	19.53 19.31	0
(MHz)	1 1 1	0 12 24	MHz 19.68 19.46 19.43	MHz 19.64 19.42 19.39	MHz 19.65 19.43 19.40	0 0	19.62 19.40 19.37	19.58 19.36 19.33	19.59 19.37 19.34	0 0	19.56 19.34 19.31	19.52 19.30 19.27	19.53 19.31 19.28	0
(MHz)	1 1 1 1 12	0 12 24 0	MHz 19.68 19.46 19.43 19.63	MHz 19.64 19.42 19.39 19.59	MHz 19.65 19.43 19.40 19.60	0 0 0 0	19.62 19.40 19.37 19.57	19.58 19.36 19.33 19.53	19.59 19.37 19.34 19.54	0 0 0 0	19.56 19.34 19.31 19.51	19.52 19.30 19.27 19.47	19.53 19.31 19.28 19.48	0 0

Report Format Version 5.0.0 Page No. : 39 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

						EUT with	out Pow	er Redu	ction					
				QF	PSK			160	QAM			640	QAM	
BW (MHz)	RB Size	RB Offset	Low CH 18615	Mid CH 18900	High CH 19185	3GPP MPR	Low CH 18615	Mid CH 18900	High CH 19185	3GPP MPR	Low CH 18615	Mid CH 18900	High CH 19185	3GPP
(IVITIZ)	Size	Offset	1851.5 MHz	1880.0 MHz	1908.5 MHz	(dB)	1851.5 MHz	1880.0 MHz	1908.5 MHz	(dB)	1851.5 MHz	1880.0 MHz	1908.5 MHz	MPR (dB)
	1	0	23.69	23.76	23.73	0	22.67	22.74	22.71	1	21.68	21.75	21.72	2
	1	7	23.54	23.61	23.58	0	22.52	22.59	22.56	1	21.53	21.60	21.57	2
	1	14	23.52	23.59	23.56	0	22.50	22.57	22.54	1	21.51	21.58	21.55	2
3	8	0	22.64	22.71	22.68	1	21.62	21.69	21.66	2	20.63	20.70	20.67	3
	8	3	22.62	22.69	22.66	1	21.60	21.67	21.64	2	20.61	20.68	20.65	3
	8	7	22.59	22.66	22.63	1	21.57	21.64	21.61	2	20.58	20.65	20.62	3
	15	0	22.60	22.67	22.64	1	21.58	21.65	21.62	2	20.59	20.66	20.63	3
						EUT wi	th Powe	r Reduct	ion					
					SK				QAM				QAM	
BW	RB	RB	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP
(MHz)	Size	Offset	18615 1851.5	18900 1880.0	19185 1908.5	MPR	18615 1851.5	18900 1880.0	19185 1908.5	MPR	18615 1851.5	18900 1880.0	19185 1908.5	MPR
			MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)
	1	0	19.65	19.61	19.62	0	19.60	19.56	19.57	0	19.55	19.51	19.52	0
	1	7	19.43	19.39	19.40	0	19.38	19.34	19.35	0	19.33	19.29	19.30	0
	1	14	19.40	19.36	19.37	0	19.35	19.31	19.32	0	19.30	19.26	19.27	0
3	8	0	19.60	19.56	19.57	0	19.55	19.51	19.52	0	19.50	19.46	19.47	0
	8	3	19.55	19.51	19.52	0	19.50	19.46	19.47	0	19.45	19.41	19.42	0
	8	7	19.50	19.46	19.47	0	19.45	19.41	19.42	0	19.40	19.36	19.37	0
	15	0	19.54	19.50	19.51	0	19.49	19.45	19.46	0	19.44	19.40	19.41	0
						EUT with								
	T	T	1	0.0	PSK	EUI WILI	Out Pow		DAM		_	640	QAM	
			Low CH	Mid CH	High CH		Low CH	Mid CH	High CH		Low CH	Mid CH	High CH	
BW	RB	RB	18607	18900	19193	3GPP	18607	18900	19193	3GPP	18607	18900	19193	3GPP
(MHz)	Size	Offset	1850.7	1880.0	1909.3	MPR (dB)	1850.7	1880.0	1909.3	MPR (dB)	1850.7	1880.0	1909.3	MPR (dB)
			MHz	MHz	MHz	` ,	MHz	MHz	MHz	` ,	MHz	MHz	MHz	` ,
	1	0	23.66	23.73	23.70	0	22.64	22.71	22.68	1	21.65	21.72	21.69	2
	1	2	23.51	23.58	23.55	0	22.49	22.56	22.53	1	21.50	21.57	21.54	2
	1	5	23.49	23.56	23.53	0	22.47	22.54	22.51	1	21.48	21.55	21.52	2
1.4	3	0	22.61	22.68	22.65	0	21.59	21.66	21.63	1	20.60	20.67	20.64	2
	3	1	22.59	22.66	22.63	0	21.57	21.64	21.61	1	20.58	20.65	20.62	2
	<u>3</u>	3	22.56	22.63	22.60	0	21.54	21.61	21.58	1	20.55 20.56	20.62	20.59	2
		0		22.64	22.61							20.63	20.60	3
	Ū	Ů	22.57	22.04	22.01		21.55	21.62	21.59	2	20.30	20.00		
		Ü	22.57				th Powe	r Reduct	ion	2	20.30			
				QF	PSK		th Powe	r Reduct	i <mark>on</mark>	2		640	QAM	
BW	RB	RB	Low CH	QF Mid CH	PSK High CH		th Powe	r Reduct	DAM High CH	3GPP	Low CH	640 Mid CH	High CH	3GPP
BW (MHz)			Low CH 18607	QF Mid CH 18900	PSK High CH 19193	3GPP MPR	Low CH 18607	r Reduct 160 Mid CH 18900	CAM High CH 19193	3GPP MPR	Low CH 18607	640 Mid CH 18900	High CH 19193	MPR
	RB	RB	Low CH	QF Mid CH	PSK High CH	EUT wi	th Powe	r Reduct	DAM High CH	3GPP	Low CH	640 Mid CH	High CH	
	RB	RB	Low CH 18607 1850.7	QF Mid CH 18900 1880.0	PSK High CH 19193 1909.3	3GPP MPR	Low CH 18607 1850.7	160 Mid CH 18900 1880.0	DAM High CH 19193 1909.3	3GPP MPR	Low CH 18607 1850.7	640 Mid CH 18900 1880.0	High CH 19193 1909.3	MPR
	RB Size	RB Offset	Low CH 18607 1850.7 MHz	QF Mid CH 18900 1880.0 MHz	PSK High CH 19193 1909.3 MHz	3GPP MPR (dB)	Low CH 18607 1850.7 MHz	160 Mid CH 18900 1880.0 MHz	DAM High CH 19193 1909.3 MHz	3GPP MPR (dB)	Low CH 18607 1850.7 MHz	640 Mid CH 18900 1880.0 MHz	High CH 19193 1909.3 MHz	MPR (dB)
	RB Size	RB Offset	Low CH 18607 1850.7 MHz 19.59	QF Mid CH 18900 1880.0 MHz 19.55	PSK High CH 19193 1909.3 MHz 19.56	3GPP MPR (dB)	Low CH 18607 1850.7 MHz 19.53	160 Mid CH 18900 1880.0 MHz 19.49	High CH 19193 1909.3 MHz 19.50	3GPP MPR (dB)	Low CH 18607 1850.7 MHz 19.47	640 Mid CH 18900 1880.0 MHz 19.43	High CH 19193 1909.3 MHz 19.44	MPR (dB)
	RB Size	RB Offset	Low CH 18607 1850.7 MHz 19.59 19.37	QF Mid CH 18900 1880.0 MHz 19.55 19.33	PSK High CH 19193 1909.3 MHz 19.56 19.34	3GPP MPR (dB) 0	Low CH 18607 1850.7 MHz 19.53 19.31	160 Mid CH 18900 1880.0 MHz 19.49 19.27	High CH 19193 1909.3 MHz 19.50	3GPP MPR (dB)	Low CH 18607 1850.7 MHz 19.47 19.25	640 Mid CH 18900 1880.0 MHz 19.43 19.21	High CH 19193 1909.3 MHz 19.44 19.22	MPR (dB) 0 0
(MHz)	RB Size	RB Offset 0 2 5	Low CH 18607 1850.7 MHz 19.59 19.37 19.34	QF Mid CH 18900 1880.0 MHz 19.55 19.33 19.30	High CH 19193 1909.3 MHz 19.56 19.34 19.31	3GPP MPR (dB) 0	Low CH 18607 1850.7 MHz 19.53 19.31 19.28	160 Mid CH 18900 1880.0 MHz 19.49 19.27 19.24	High CH 19193 1909.3 MHz 19.50 19.28	3GPP MPR (dB) 0	Low CH 18607 1850.7 MHz 19.47 19.25 19.22	640 Mid CH 18900 1880.0 MHz 19.43 19.21	High CH 19193 1909.3 MHz 19.44 19.22 19.19	MPR (dB) 0 0 0
(MHz)	RB Size	RB Offset 0 2 5	Low CH 18607 1850.7 MHz 19.59 19.37 19.34 19.54	QF Mid CH 18900 1880.0 MHz 19.55 19.33 19.30 19.50	PSK High CH 19193 1909.3 MHz 19.56 19.34 19.31 19.51	3GPP MPR (dB) 0 0 0 0 0 0	Low CH 18607 1850.7 MHz 19.53 19.31 19.28 19.48	160 Mid CH 18900 1880.0 MHz 19.49 19.27 19.24 19.44	AAM High CH 19193 1909.3 MHz 19.50 19.28 19.25 19.45	3GPP MPR (dB) 0 0	Low CH 18607 1850.7 MHz 19.47 19.25 19.22 19.42	640 Mid CH 18900 1880.0 MHz 19.43 19.21 19.18 19.38	High CH 19193 1909.3 MHz 19.44 19.22 19.19 19.39	MPR (dB) 0 0 0 0 0

 Report Format Version 5.0.0
 Page No.
 : 40 of 82

 Report No.: SA171102C30
 Issued Date
 : Dec. 14, 2017

							LTE Bai	nd 4						
						EUT with	out Pow	er Redu	ction					
				QF	SK			160	MAÇ			640	QAM	
BW (MHz)	RB Size	RB Offset	Low CH 20050	Mid CH 20175	High CH 20300	3GPP MPR	Low CH 20050	Mid CH 20175	High CH 20300	3GPP MPR	Low CH 20050	Mid CH 20175	High CH 20300	3GPP MPR
(11112)	OIZ C	Onset	1720.0 MHz	1732.5 MHz	1745.0 MHz	(dB)	1720.0 MHz	1732.5 MHz	1745.0 MHz	(dB)	1720.0 MHz	1732.5 MHz	1745.0 MHz	(dB)
	1	0	23.95	23.97	23.93	0	22.90	22.92	22.88	1	21.94	21.96	21.92	2
	1	50	23.90	23.92	23.88	0	22.85	22.87	22.83	1	21.89	21.91	21.87	2
	1	99	23.80	23.82	23.78	0	22.75	22.77	22.73	1	21.79	21.81	21.77	2
20	50	0	22.95	22.97	22.93	1	21.90	21.92	21.88	2	20.94	20.96	20.92	3
	50	25	22.91	22.93	22.89	1	21.86	21.88	21.84	2	20.90	20.92	20.88	3
	50	50	22.90	22.92	22.88	1	21.85	21.87	21.83	2	20.89	20.91	20.87	3
	100	0	22.93	22.95	22.91	1	21.88	21.90	21.86	2	20.92	20.94	20.90	3
						EUT wi	th Powe							
					SK				MAÇ	1			QAM	
BW	RB	RB	Low CH 20050	Mid CH 20175	High CH 20300	3GPP	Low CH 20050	Mid CH 20175	High CH 20300	3GPP	Low CH 20050	Mid CH 20175	High CH 20300	3GPP
(MHz)	Size	Offset	1720.0	1732.5	1745.0	MPR	1720.0	1732.5	1745.0	MPR	1720.0	1732.5	1745.0	MPR
			MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)
	1	0	19.92	19.98	19.91	0	19.90	19.96	19.89	0	19.87	19.93	19.86	0
	1	50	19.70	19.76	19.69	0	19.68	19.74	19.67	0	19.65	19.71	19.64	0
	1	99	19.65	19.71	19.64	0	19.63	19.69	19.62	0	19.60	19.66	19.59	0
20	50	0	19.86	19.92	19.85	0	19.84	19.90	19.83	0	19.81	19.87	19.80	0
	50	25	19.81	19.87	19.80	0	19.79	19.85	19.78	0	19.76	19.82	19.75	0
	50	50	19.77	19.83	19.76	0	19.75	19.81	19.74	0	19.72	19.78	19.71	0
	100	0	19.79	19.85	19.78	0	19.77	19.83	19.76	0	19.74	19.80	19.73	0
						EUT with	out Pow	er Redu	ction					
					SK				MAÇ				QAM	
BW	RB	RB	Low CH 20025	Mid CH 20175	High CH 20325	3GPP	Low CH 20025	Mid CH 20175	High CH 20325	3GPP	Low CH 20025	Mid CH 20175	High CH 20325	3GPP
(MHz)	Size	Offset	1717.5	1732.5	1747.5	MPR	1717.5	1732.5	1747.5	MPR	1717.5	1732.5	1747.5	MPR
			MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)
	1	0	23.89	23.91	23.87	0	22.84	22.86	22.82	1	21.88	21.90	21.86	2
	1	37	23.84	23.86	23.82	0	22.79	22.81	22.77	1	21.83	21.85	21.81	2
	1	74	23.74	23.76	23.72	0	22.69	22.71	22.67	1	21.73	21.75	21.71	2
15	36	0	22.89	22.91	22.87	1	21.84	21.86	21.82	2	20.88	20.90	20.86	3
I	36	19	22.85	22.87	22.83	1	21.80	21.82	21.78	2	20.84	20.86	20.82	3
	36	39	22.84	22.86	22.82	1	21.79	21.81	21.77	2	20.83	20.85	20.81	3
	75	0	22.87	22.89	22.85	1	21.82	21.84	21.80	2	20.86	20.88	20.84	3
						EUT wi	th Powe							
					SK				QAM				QAM	
BW	RB	RB	Low CH 20025	Mid CH 20175	High CH 20325	3GPP	Low CH 20025	Mid CH 20175	High CH 20325	3GPP	Low CH 20025	Mid CH 20175	High CH 20325	3GPP
(MHz)	Size	Offset	1717.5	1732.5	1747.5	MPR	1717.5	1732.5	1747.5	MPR	1717.5	1732.5	1747.5	MPR
			MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)
	1	0	19.87	19.93	19.86	0	19.85	19.91	19.84	0	19.82	19.88	19.81	0
	1	37	19.65	19.71	19.64	0	19.63	19.69	19.62	0	19.60	19.66	19.59	0
	1	74	19.60	19.66	19.59	0	19.58	19.64	19.57	0	19.55	19.61	19.54	0
15	36	0	19.81	19.87	19.80	0	19.79	19.85	19.78	0	19.76	19.82	19.75	0
	36	19	19.76	19.82	19.75	0	19.74	19.80	19.73	0	19.71	19.77	19.70	0
	36	39	19.72	19.78	19.71	0	19.70	19.76	19.69	0	19.67	19.73	19.66	0
	75	0	19.74	19.80	19.73	0	19.72	19.78	19.71	0	19.69	19.75	19.68	0

 Report Format Version 5.0.0
 Page No. : 41 of 82

 Report No. : SA171102C30
 Issued Date : Dec. 14, 2017

						EUT with	out Pow	er Redu	ction					
				QF	PSK			160	MAÇ			640	QAM	
BW (MHz)	RB Size	RB Offset	Low CH 20000	Mid CH 20175	High CH 20350	3GPP MPR	Low CH 20000	Mid CH 20175	High CH 20350	3GPP MPR	Low CH 20000	Mid CH 20175	High CH 20350	3GPP MPR
(IVITIZ)	Size	Oliset	1715.0 MHz	1732.5 MHz	1750.0 MHz	(dB)	1715.0 MHz	1732.5 MHz	1750.0 MHz	(dB)	1715.0 MHz	1732.5 MHz	1750.0 MHz	(dB)
	1	0	23.83	23.85	23.81	0	22.78	22.80	22.76	1	21.82	21.84	21.80	2
	1	24	23.78	23.80	23.76	0	22.73	22.75	22.71	1	21.77	21.79	21.75	2
	1	49	23.68	23.70	23.66	0	22.63	22.65	22.61	1	21.67	21.69	21.65	2
10	25	0	22.83	22.85	22.81	1	21.78	21.80	21.76	2	20.82	20.84	20.80	3
	25	12	22.79	22.81	22.77	1	21.74	21.76	21.72	2	20.78	20.80	20.76	3
	25	25	22.78	22.80	22.76	1	21.73	21.75	21.71	2	20.77	20.79	20.75	3
	50	0	22.81	22.83	22.79	1	21.76	21.78	21.74	2	20.80	20.82	20.78	3
						EUT wi	th Powe	r Reduc	tion					
					SK				MAÇ				QAM	
BW	RB	RB	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP
(MHz)	Size	Offset	20000 1715.0	20175 1732.5	20350 1750.0	MPR	20000 1715.0	20175 1732.5	20350 1750.0	MPR	20000 1715.0	20175 1732.5	20350 1750.0	MPR
			MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)
	1	0	19.81	19.87	19.80	0	19.79	19.85	19.78	0	19.76	19.82	19.75	0
	1	24	19.59	19.65	19.58	0	19.57	19.63	19.56	0	19.54	19.60	19.53	0
	1	49	19.54	19.60	19.53	0	19.52	19.58	19.51	0	19.49	19.55	19.48	0
10	25	0	19.75	19.81	19.74	0	19.73	19.79	19.72	0	19.70	19.76	19.69	0
	25	12	19.70	19.76	19.69	0	19.68	19.74	19.67	0	19.65	19.71	19.64	0
	25	25	19.66	19.72	19.65	0	19.64	19.70	19.63	0	19.61	19.67	19.60	0
	50	0	19.68	19.74	19.67	0	19.66	19.72	19.65	0	19.63	19.69	19.62	0
						EUT with								
	_	Г	1	01	PSK	EOI WILI	Out FOW		QAM			641	QAM	
			Low CH	Mid CH	High CH		Low CH	Mid CH	High CH		Low CH	Mid CH	High CH	
BW (MHz)	RB Size	RB Offset	19975	20175	20375	3GPP MPR	19975	20175	20375	3GPP MPR	19975	20175	20375	3GPP
(IVITZ)	Size	Oliset	1712.5	1732.5	1752.5	(dB)	1712.5	1732.5	1752.5	(dB)	1712.5	1732.5	1752.5	MPR (dB)
			MHz	MHz	MHz	` ,	MHz	MHz	MHz	` ,	MHz	MHz	MHz	` '
	1	0	23.76	23.78	23.74	0	22.71	22.73	22.69	1	21.75	21.77	21.73	2
	1	12	23.71	23.73	23.69	0	22.66	22.68	22.64	1	21.70	21.72	21.68	2
_	1	24	23.61	23.63	23.59	0	22.56	22.58	22.54	1	21.60	21.62	21.58	2
5	12	0	22.76	22.78	22.74	1	21.71	21.73	21.69	2	20.75	20.77	20.73	3
	12 12	6	22.72 22.71	22.74 22.73	22.70	1	21.67 21.66	21.69	21.65 21.64	2	20.71 20.70	20.73	20.69 20.68	3
	25	13 0	22.74	22.76	22.69 22.72	1	21.69	21.68 21.71	21.67	2	20.70	20.72	20.68	3
	25	U	22.74	22.70	22.12						20.73	20.75	20.71	3
						EUI WI	th Powe				n			
			Low CH	QF Mid CH	PSK High CH		Low CH	160 Mid CH	QAM High CH		Low CH	Mid CH	QAM High CH	
BW	RB	RB	19975	20175	20375	3GPP	19975	20175	20375	3GPP	19975	20175	20375	3GPP
(MHz)	Size	Offset	1712.5	1732.5	1752.5	MPR	1712.5	1732.5	1752.5	MPR	1712.5	1732.5	1752.5	MPR
			MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)
		0	19.76	19.82	19.75	0	19.74	19.80	19.73	0	19.71	19.77	19.70	0
	1			19.60	19.53	0	19.52	19.58	19.51	0	19.49	19.55	19.48	0
	1	12	19.54								4044	40.50	1 40 40	0
	1	24	19.49	19.55	19.48	0	19.47	19.53	19.46	0	19.44	19.50	19.43	
5	1 1 12	24	19.49 19.70	19.55 19.76	19.48 19.69	0	19.68	19.74	19.67	0	19.65	19.71	19.64	0
5	1 1 12 12	24 0 6	19.49 19.70 19.65	19.55 19.76 19.71	19.48 19.69 19.64	0	19.68 19.63	19.74 19.69	19.67 19.62	0	19.65 19.60	19.71 19.66	19.64 19.59	0
5	1 1 12	24	19.49 19.70	19.55 19.76	19.48 19.69	0	19.68	19.74	19.67	0	19.65	19.71	19.64	0

 Report Format Version 5.0.0
 Page No. : 42 of 82

 Report No. : SA171102C30
 Issued Date : Dec. 14, 2017

						EUT with	out Pow	er Redu	ction					
					SK				QAM				QAM	
BW (MHz)	RB Size	RB Offset	Low CH 19965	Mid CH 20175	High CH 20385	3GPP MPR	Low CH 19965	Mid CH 20175	High CH 20385	3GPP MPR	Low CH 19965	Mid CH 20175	High CH 20385	3GPP MPR
(2)			1711.5 MHz	1732.5 MHz	1753.5 MHz	(dB)	1711.5 MHz	1732.5 MHz	1753.5 MHz	(dB)	1711.5 MHz	1732.5 MHz	1753.5 MHz	(dB)
	1	0	23.69	23.71	23.67	0	22.64	22.66	22.62	1	21.68	21.70	21.66	2
	1	7	23.64	23.66	23.62	0	22.59	22.61	22.57	1	21.63	21.65	21.61	2
	1	14	23.54	23.56	23.52	0	22.49	22.51	22.47	1	21.53	21.55	21.51	2
3	8	0	22.69	22.71	22.67	1	21.64	21.66	21.62	2	20.68	20.70	20.66	3
	8	3	22.65	22.67	22.63	1	21.60	21.62	21.58	2	20.64	20.66	20.62	3
	8	7	22.64	22.66	22.62	1	21.59	21.61	21.57	2	20.63	20.65	20.61	3
	15	0	22.67	22.69	22.65		21.62	21.64	21.60	2	20.66	20.68	20.64	3
						EUT wi	th Powe							
					SK				QAM				QAM	
BW	RB	RB	Low CH 19965	Mid CH 20175	High CH 20385	3GPP	Low CH 19965	Mid CH 20175	High CH 20385	3GPP	Low CH 19965	Mid CH 20175	High CH 20385	3GPP
(MHz)	Size	Offset	1711.5	1732.5	1753.5	MPR	1711.5	1732.5	1753.5	MPR	1711.5	1732.5	1753.5	MPR
			MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)
	1	0	19.69	19.75	19.68	0	19.67	19.73	19.66	0	19.64	19.70	19.63	0
	1	7	19.47	19.53	19.46	0	19.45	19.51	19.44	0	19.42	19.48	19.41	0
	1	14	19.42	19.48	19.41	0	19.40	19.46	19.39	0	19.37	19.43	19.36	0
3	8	0	19.63	19.69	19.62	0	19.61	19.67	19.60	0	19.58	19.64	19.57	0
	8	3	19.58	19.64	19.57	0	19.56	19.62	19.55	0	19.53	19.59	19.52	0
	8	7	19.54	19.60	19.53	0	19.52	19.58	19.51	0	19.49	19.55	19.48	0
	15	0	19.56	19.62	19.55	0	19.54	19.60	19.53	0	19.51	19.57	19.50	0
						EUT with	out Pow	er Redu	ction					
					SK				QAM				QAM	
BW (MHz)	RB Size	RB Offset	Low CH 19957	Mid CH 20175	High CH 20393	3GPP MPR	Low CH 19957	Mid CH 20175	High CH 20393	3GPP MPR	Low CH 19957	Mid CH 20175	High CH 20393	3GPP MPR
(141112)	Oize	Onset	1710.7 MHz	1732.5 MHz	1754.3 MHz	(dB)	1710.7 MHz	1732.5 MHz	1754.3 MHz	(dB)	1710.7 MHz	1732.5 MHz	1754.3 MHz	(dB)
	1	0	23.61	23.63	23.59	0	00.50		00.54				04.50	2
	1		23.01	23.03	20.00	•	22.56	22.58	22.54	1	21.60	21.62	21.58	
		2	23.56	23.58	23.54	0	22.56	22.58 22.53	22.54	1	21.60 21.55	21.62 21.57	21.58	2
	1	5				-								2
1.4	3		23.56 23.46 22.61	23.58 23.48 22.63	23.54 23.44 22.59	0 0	22.51 22.41 21.56	22.53 22.43 21.58	22.49 22.39 21.54	1	21.55	21.57	21.53	2
1.4	3	5 0 1	23.56 23.46 22.61 22.57	23.58 23.48	23.54 23.44	0 0 0 0	22.51 22.41	22.53 22.43 21.58 21.54	22.49 22.39	1	21.55 21.45	21.57 21.47	21.53 21.43	2 2 2
1.4	3 3 3	5 0 1 3	23.56 23.46 22.61 22.57 22.56	23.58 23.48 22.63 22.59 22.58	23.54 23.44 22.59 22.55 22.54	0 0 0 0	22.51 22.41 21.56 21.52 21.51	22.53 22.43 21.58 21.54 21.53	22.49 22.39 21.54 21.50 21.49	1 1 1 1 1	21.55 21.45 20.60 20.56 20.55	21.57 21.47 20.62 20.58 20.57	21.53 21.43 20.58 20.54 20.53	2 2 2 2
1.4	3	5 0 1	23.56 23.46 22.61 22.57	23.58 23.48 22.63 22.59	23.54 23.44 22.59 22.55	0 0 0 0	22.51 22.41 21.56 21.52	22.53 22.43 21.58 21.54	22.49 22.39 21.54 21.50	1 1 1	21.55 21.45 20.60 20.56	21.57 21.47 20.62 20.58	21.53 21.43 20.58 20.54	2 2 2
1.4	3 3 3	5 0 1 3	23.56 23.46 22.61 22.57 22.56	23.58 23.48 22.63 22.59 22.58	23.54 23.44 22.59 22.55 22.54	0 0 0 0 0	22.51 22.41 21.56 21.52 21.51	22.53 22.43 21.58 21.54 21.53 21.56	22.49 22.39 21.54 21.50 21.49 21.52	1 1 1 1 1	21.55 21.45 20.60 20.56 20.55	21.57 21.47 20.62 20.58 20.57	21.53 21.43 20.58 20.54 20.53	2 2 2 2
1.4	3 3 3	5 0 1 3	23.56 23.46 22.61 22.57 22.56	23.58 23.48 22.63 22.59 22.58 22.61	23.54 23.44 22.59 22.55 22.54	0 0 0 0 0	22.51 22.41 21.56 21.52 21.51 21.54	22.53 22.43 21.58 21.54 21.53 21.56 Reduct	22.49 22.39 21.54 21.50 21.49 21.52	1 1 1 1 1	21.55 21.45 20.60 20.56 20.55	21.57 21.47 20.62 20.58 20.57 20.60	21.53 21.43 20.58 20.54 20.53	2 2 2 2
1.4	3 3 3 6	5 0 1 3	23.56 23.46 22.61 22.57 22.56 22.59	23.58 23.48 22.63 22.59 22.58 22.61	23.54 23.44 22.59 22.55 22.54 22.57	0 0 0 0 0 1 EUT wi	22.51 22.41 21.56 21.52 21.51 21.54 th Powe	22.53 22.43 21.58 21.54 21.53 21.56 Reduct	22.49 22.39 21.54 21.50 21.49 21.52 21.52	1 1 1 1 1 2	21.55 21.45 20.60 20.56 20.55 20.58	21.57 21.47 20.62 20.58 20.57 20.60	21.53 21.43 20.58 20.54 20.53 20.56	2 2 2 2 2 3
	3 3 3	5 0 1 3 0	23.56 23.46 22.61 22.57 22.56 22.59 Low CH 19957	23.58 23.48 22.63 22.59 22.58 22.61 QF Mid CH 20175	23.54 23.44 22.59 22.55 22.54 22.57 28K High CH 20393	0 0 0 0 0	22.51 22.41 21.56 21.52 21.51 21.54 th Powe	22.53 22.43 21.58 21.54 21.53 21.56 Reduct	22.49 22.39 21.54 21.50 21.49 21.52 21.60 2AM High CH 20393	1 1 1 1 1	21.55 21.45 20.60 20.56 20.55 20.58 Low CH 19957	21.57 21.47 20.62 20.58 20.57 20.60	21.53 21.43 20.58 20.54 20.53 20.56 20.56	2 2 2 2 2 3 3 3GPP MPR
BW	3 3 3 6	5 0 1 3 0	23.56 23.46 22.61 22.57 22.56 22.59 Low CH 19957 1710.7	23.58 23.48 22.63 22.59 22.58 22.61 QF Mid CH 20175 1732.5	23.54 23.44 22.59 22.55 22.54 22.57 28K High CH 20393 1754.3	0 0 0 0 0 1 EUT wi	22.51 22.41 21.56 21.52 21.51 21.54 th Powe Low CH 19957 1710.7	22.53 22.43 21.58 21.54 21.53 21.56 Reduct	22.49 22.39 21.54 21.50 21.49 21.52 21.52 21.52 21.52 21.52	1 1 1 1 1 1 2 2 3GPP	21.55 21.45 20.60 20.56 20.55 20.58 Low CH 19957 1710.7	21.57 21.47 20.62 20.58 20.57 20.60 640 Mid CH 20175 1732.5	21.53 21.43 20.58 20.54 20.53 20.56 20.56	2 2 2 2 3
BW	3 3 3 6	5 0 1 3 0	23.56 23.46 22.61 22.57 22.56 22.59 Low CH 19957	23.58 23.48 22.63 22.59 22.58 22.61 QF Mid CH 20175	23.54 23.44 22.59 22.55 22.54 22.57 28K High CH 20393	0 0 0 0 0 1 EUT wi	22.51 22.41 21.56 21.52 21.51 21.54 th Powe	22.53 22.43 21.58 21.54 21.53 21.56 Reduct	22.49 22.39 21.54 21.50 21.49 21.52 21.60 2AM High CH 20393	1 1 1 1 1 1 2 3 3 GPP MPR	21.55 21.45 20.60 20.56 20.55 20.58 Low CH 19957	21.57 21.47 20.62 20.58 20.57 20.60	21.53 21.43 20.58 20.54 20.53 20.56 20.56	2 2 2 2 2 3 3 3GPP MPR
BW	3 3 3 6	5 0 1 3 0	23.56 23.46 22.61 22.57 22.56 22.59 Low CH 19957 1710.7 MHz	23.58 23.48 22.63 22.59 22.58 22.61 QF Mid CH 20175 1732.5 MHz	23.54 23.44 22.59 22.55 22.54 22.57 28K High CH 20393 1754.3 MHz	0 0 0 0 1 EUT wi	22.51 22.41 21.56 21.52 21.51 21.54 th Powe Low CH 19957 1710.7 MHz	22.53 22.43 21.58 21.54 21.53 21.56 r Reduct 160 Mid CH 20175 1732.5 MHz	22.49 22.39 21.54 21.50 21.49 21.52 21.62 21.52 21.52 21.52 21.53 21.53 21.54 21.55	1 1 1 1 1 1 1 2 3 3GPP MPR (dB)	21.55 21.45 20.60 20.56 20.55 20.58 Low CH 19957 1710.7 MHz	21.57 21.47 20.62 20.58 20.57 20.60 640 Mid CH 20175 1732.5 MHz	21.53 21.43 20.58 20.54 20.53 20.56 20.56	2 2 2 2 2 3 3 3 GPP MPR (dB)
BW	3 3 3 6 RB Size	5 0 1 3 0	23.56 23.46 22.61 22.57 22.56 22.59 22.59 Low CH 19957 1710.7 MHz 19.62	23.58 23.48 22.63 22.59 22.58 22.61 Mid CH 20175 1732.5 MHz 19.68	23.54 23.44 22.59 22.55 22.54 22.57 28K High CH 20393 1754.3 MHz 19.61	0 0 0 0 1 EUT wi	22.51 22.41 21.56 21.52 21.51 21.54 th Powe Low CH 19957 1710.7 MHz 19.60	22.53 22.43 21.58 21.54 21.55 21.56 Reduct 160 Mid CH 20175 1732.5 MHz 19.66	22.49 22.39 21.54 21.50 21.49 21.52 21.60 24.60 21.52 21.52 21.52 21.52 21.52 21.52 21.52 21.52 21.52 21.52 21.53 21.54 21.55	1 1 1 1 1 1 1 2 2 3GPP MPR (dB) 0	21.55 21.45 20.60 20.56 20.55 20.58 20.58 Low CH 19957 1710.7 MHz 19.57	21.57 21.47 20.62 20.58 20.57 20.60 Mid CH 20175 1732.5 MHz	21.53 21.43 20.58 20.54 20.53 20.56	2 2 2 2 3 3 3GPP MPR (dB)
BW	3 3 3 6 8 8 8 8 1 1	5 0 1 3 0 RB Offset	23.56 23.46 22.61 22.57 22.56 22.59 Low CH 19957 1710.7 MHz 19.62 19.40	23.58 23.48 22.63 22.59 22.58 22.61 Mid CH 20175 1732.5 MHz 19.68	23.54 23.44 22.59 22.55 22.54 22.57 28K High CH 20393 1754.3 MHz 19.61 19.39	0 0 0 0 1 EUT wi 3GPP MPR (dB) 0	22.51 22.41 21.56 21.52 21.51 21.54 th Powe Low CH 19957 1710.7 MHz 19.60 19.38	22.53 22.43 21.58 21.54 21.53 21.56 Reduct 60 Mid CH 20175 1732.5 MHz 19.66 19.44	22.49 22.39 21.54 21.50 21.49 21.52	1 1 1 1 1 1 1 1 2 3 3GPP MPR (dB) 0 0	21.55 21.45 20.60 20.56 20.55 20.58 20.58 Low CH 19957 1710.7 MHz 19.57 19.35	21.57 21.47 20.62 20.58 20.57 20.60 Mid CH 20175 1732.5 MHz 19.63	21.53 21.43 20.58 20.54 20.53 20.56 20.56 20.56 20.56 20.56 20.56 20.56 20.56 20.56 20.56 20.56 20.56 20.56 20.56 20.54 20.56	2 2 2 2 3 3 3GPP MPR (dB) 0
BW (MHz)	3 3 3 6 RB Size	5 0 1 3 0 RB Offset	23.56 23.46 22.61 22.57 22.56 22.59 Low CH 19957 1710.7 19.62 19.40 19.35	23.58 23.48 22.63 22.59 22.58 22.61 22.61 Mid CH 20175 1732.5 1732.5 19.68 19.46	23.54 23.44 22.59 22.55 22.54 22.57 28K High CH 20393 1754.3 19.61 19.39 19.34	0 0 0 0 1 EUT wi	22.51 22.41 21.56 21.52 21.51 21.54 th Powe Low CH 19957 1710.7 19.60 19.38 19.33	22.53 22.43 21.58 21.54 21.53 21.56 r Reduct 160 Mid CH 20175 1732.5 1732.5 19.66 19.44 19.39	22.49 22.39 21.54 21.50 21.49 21.52 21.52 21.52 21.52 21.52 21.52 22.52 23.52 24.52 24.52 21.52 24.52 24.52 21.52 24.52 21.52 24.52 21.52 21.52 22.52 23.52 24.52	1 1 1 1 1 1 1 1 2 3 3GPP MPR (dB) 0 0 0 0	21.55 21.45 20.60 20.56 20.55 20.58 20.58 Low CH 19957 1710.7 19.57 19.35 19.30	21.57 21.47 20.62 20.58 20.57 20.60 Mid CH 20175 1732.5 19.63 19.41 19.36	21.53 21.43 20.58 20.54 20.53 20.56	2 2 2 2 3 3 3 3 9 MPR (dB) 0 0
BW (MHz)	3 3 3 6 RB Size	5 0 1 3 0 RB Offset	23.56 23.46 22.61 22.57 22.56 22.59 22.59 22.59 22.59 22.59 22.59 22.59 22.59 22.59 23.59 24.60 24.60 25.60 26.60	23.58 23.48 22.63 22.59 22.58 22.61 22.61 22.61 24.61 20175 1732.5 MHz 19.68 19.46 19.41 19.62	23.54 23.44 22.59 22.55 22.54 22.57 22.57 22.57 23.57 24.57 20.393 1754.3 MHz 19.61 19.39 19.34 19.55	0 0 0 0 1 EUT wi 3GPP MPR (dB) 0 0	22.51 22.41 21.56 21.52 21.51 21.54 th Powe Low CH 19957 1710.7 MHz 19.60 19.38 19.33 19.54	22.53 22.43 21.58 21.54 21.53 21.56 r Reduct 160 Mid CH 20175 1732.5 MHz 19.66 19.44 19.39 19.60	22.49 22.39 21.54 21.50 21.49 21.52	3GPP MPR (dB) 0 0 0 0	21.55 21.45 20.60 20.56 20.55 20.58 20.58 20.58 20.58 20.58 20.58 20.58 20.58 20.58 20.58 20.58 20.58 20.58 20.59	21.57 21.47 20.62 20.58 20.57 20.60 Mid CH 20175 1732.5 MHz 19.63 19.41 19.36 19.57	21.53 21.43 20.58 20.54 20.53 20.56	2 2 2 2 3 3 3GPP MPR (dB) 0 0

 Report Format Version 5.0.0
 Page No. : 43 of 82

 Report No. : SA171102C30
 Issued Date : Dec. 14, 2017

							LTE Bai	nd 5						
						EUT with	out Pow	er Redu	ction					
				QP	SK			160	MAÇ			640	QAM MAÇ	
BW (MHz)	RB Size	RB Offset	Low CH 20450	Mid CH 20525	High CH 20600	3GPP MPR	Low CH 20450	Mid CH 20525	High CH 20600	3GPP MPR	Low CH 20450	Mid CH 20525	High CH 20600	3GPP MPR
(11112)	Oize	Oliset	829.0 MHz	836.5 MHz	844.0 MHz	(dB)	829.0 MHz	836.5 MHz	844.0 MHz	(dB)	829.0 MHz	836.5 MHz	844.0 MHz	(dB)
	1	0	23.78	23.85	23.93	0	22.75	22.82	22.90	1	21.77	21.84	21.92	2
	1	24	23.76	23.83	23.91	0	22.73	22.80	22.88	1	21.75	21.82	21.90	2
	1	49	23.74	23.81	23.89	0	22.71	22.78	22.86	1	21.73	21.80	21.88	2
10	25	0	22.84	22.91	22.99	1	21.81	21.88	21.96	2	20.83	20.90	20.98	3
	25	12	22.82	22.89	22.97	1	21.79	21.86	21.94	2	20.81	20.88	20.96	3
	25	25	22.78	22.85	22.93	1	21.75	21.82	21.90	2	20.77	20.84	20.92	3
	50	0	22.83	22.90	22.98	1	21.80	21.87	21.95	2	20.82	20.89	20.97	3
						EUT wi	th Powe	r Reduct	tion					
				QP	SK			160	MAÇ			640	QAM	
BW	RB	RB	Low CH 20450	Mid CH 20525	High CH 20600	3GPP	Low CH 20450	Mid CH 20525	High CH 20600	3GPP	Low CH 20450	Mid CH 20525	High CH 20600	3GPP
(MHz)	Size	Offset	829.0	836.5	844.0	MPR (dB)	829.0	836.5	844.0	MPR	829.0	836.5	844.0	MPR (dB)
			MHz	MHz	MHz	` ,	MHz	MHz	MHz	(dB)	MHz	MHz	MHz	` ,
	1	0	21.33	21.45	21.48	0	21.27	21.39	21.42	0	21.20	21.32	21.35	0
	1	24	21.30	21.42	21.45	0	21.24	21.36	21.39	0	21.17	21.29	21.32	0
	1	49	21.29	21.41	21.44	0	21.23	21.35	21.38	0	21.16	21.28	21.31	0
10	25	0	21.27	21.39	21.42	0	21.21	21.33	21.36	0	21.14	21.26	21.29	0
	25	12	21.24	21.36	21.39	0	21.18	21.30	21.33	0	21.11	21.23	21.26	0
	25	25	21.21	21.33	21.36	0	21.15	21.27	21.30	0	21.08	21.20	21.23	0
	50	0	21.26	21.38	21.41	0	21.20	21.32	21.35	0	21.13	21.25	21.28	0
						EUT with	out Pow				-			
					SK				MAC				QAM	
BW	RB	RB	Low CH 20425	Mid CH 20525	High CH 20625	3GPP	Low CH 20425	Mid CH 20525	High CH 20625	3GPP	Low CH 20425	Mid CH 20525	High CH 20625	3GPP
(MHz)	Size	Offset	826.5	836.5	846.5	MPR (dB)	826.5	836.5	846.5	MPR (dB)	826.5	836.5	846.5	MPR (dB)
			MHz	MHz	MHz	` ,	MHz	MHz	MHz	` ,	MHz	MHz	MHz	` ,
	1	0	23.73	23.80	23.88	0	22.70	22.77	22.85	1	21.72	21.79	21.87	2
	1	12	23.71	23.78	23.86	0	22.68	22.75	22.83	1	21.70	21.77	21.85	2
_	1	24	23.69	23.76	23.84	0	22.66	22.73	22.81	1	21.68	21.75	21.83	2
5	12 12	0 6	22.79 22.77	22.86 22.84	22.94 22.92	1	21.76 21.74	21.83 21.81	21.91 21.89	2	20.78	20.85	20.93	3
	12	13	22.77	22.84	22.92	1	21.74	21.81	21.89	2	20.76	20.83	20.91	3
	25	0	22.78	22.85	22.88	1	21.75	21.77	21.85	2	20.72	20.79	20.87	3
	20	U	22.10	22.00	22.30	· ·					20.11	20.04	20.32	5
	_					EUI WI	th Powe				_			
			Low CH	Mid CH	PSK High CH	l	Low CH	Mid CH	QAM High CH		Low CH	Mid CH	QAM High CH	1
BW	RB	RB	20425	20525	20625	3GPP	20425	20525	20625	3GPP	20425	20525	20625	3GPP
(MHz)	Size	Offset	826.5	836.5	846.5	MPR (dB)	826.5	836.5	846.5	MPR (dB)	826.5	836.5	846.5	MPR (dB)
			MHz	MHz	MHz	` ,	MHz	MHz	MHz	` ,	MHz	MHz	MHz	` ,
	1	0	21.26	21.38	21.41	0	21.20	21.32	21.35	0	21.13	21.25	21.28	0
I	1	12	21.23	21.35	21.38	0	21.17	21.29	21.32	0	21.10	21.22	21.25	0
I _	1	24	21.22	21.34	21.37	0	21.16	21.28	21.31	0	21.09	21.21	21.24	0
5	12	0	21.20	21.32	21.35	0	21.14	21.26	21.29	0	21.07	21.19	21.22	0
	12	6	21.17	21.29	21.32	0	21.11	21.23	21.26	0	21.04	21.16	21.19	0
	12	13	21.14	21.26	21.29	0	21.08	21.20	21.23	0	21.01	21.13	21.16	0
	25	0	21.19	21.31	21.34	0	21.13	21.25	21.28	0	21.06	21.18	21.21	0

Report Format Version 5.0.0 Page No. : 44 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

						EUT with	out Pow	er Redu	ction					
					SK				QAM				QAM	
BW (MHz)	RB Size	RB Offset	Low CH 20415	Mid CH 20525	High CH 20635	3GPP MPR	Low CH 20415	Mid CH 20525	High CH 20635	3GPP MPR	Low CH 20415	Mid CH 20525	High CH 20635	3GPP MPR
(11112)	Oize	Oliset	825.5 MHz	836.5 MHz	847.5 MHz	(dB)	825.5 MHz	836.5 MHz	847.5 MHz	(dB)	825.5 MHz	836.5 MHz	847.5 MHz	(dB)
	1	0	23.66	23.73	23.81	0	22.63	22.70	22.78	1	21.65	21.72	21.80	2
	1	7	23.64	23.71	23.79	0	22.61	22.68	22.76	1	21.63	21.70	21.78	2
	1	14	23.62	23.69	23.77	0	22.59	22.66	22.74	1	21.61	21.68	21.76	2
3	8	0	22.72	22.79	22.87	1	21.69	21.76	21.84	2	20.71	20.78	20.86	3
	8	3	22.70	22.77	22.85	1	21.67	21.74	21.82	2	20.69	20.76	20.84	3
	8	7	22.66	22.73	22.81	1	21.63	21.70	21.78	2	20.65	20.72	20.80	3
	15	0	22.71	22.78	22.86	1	21.68	21.75	21.83	2	20.70	20.77	20.85	3
						EUT wi	th Powe	r Reduct	ion					
					SK				QAM				AM	
BW	RB	RB	Low CH 20415	Mid CH 20525	High CH 20635	3GPP	Low CH 20415	Mid CH 20525	High CH 20635	3GPP	Low CH 20415	Mid CH 20525	High CH 20635	3GPP
(MHz)	Size	Offset	825.5	836.5	847.5	MPR	825.5	836.5	847.5	MPR	825.5	836.5	847.5	MPR
			MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)
	1	0	21.21	21.33	21.36	0	21.15	21.27	21.30	0	21.08	21.20	21.23	0
	1	7	21.18	21.30	21.33	0	21.12	21.24	21.27	0	21.05	21.17	21.20	0
	1	14	21.17	21.29	21.32	0	21.11	21.23	21.26	0	21.04	21.16	21.19	0
3	8	0	21.15	21.27	21.30	0	21.09	21.21	21.24	0	21.02	21.14	21.17	0
	8	3	21.12	21.24	21.27	0	21.06	21.18	21.21	0	20.99	21.11	21.14	0
	8	7	21.09	21.21	21.24	0	21.03	21.15	21.18	0	20.96	21.08	21.11	0
	15	0	21.14	21.26	21.29	0	21.08	21.20	21.23	0	21.01	21.13	21.16	0
						EUT with	out Pow	er Redu	ction					
					SK				QAM				AM	1
BW (MHz)	RB Size	RB Offset	Low CH 20407	Mid CH 20525	High CH 20643	3GPP MPR	Low CH 20407	Mid CH 20525	High CH 20643	3GPP MPR	Low CH 20407	Mid CH 20525	High CH 20643	3GPP MPR
(824.7 MHz	836.5 MHz	848.3 MHz	(dB)	824.7 MHz	836.5 MHz	848.3 MHz	(dB)	824.7 MHz	836.5 MHz	848.3 MHz	(dB)
	1	0	23.61	23.68	23.76	0	23.61	23.68	23.76	1	21.60	21.67	21.75	2
	1	2	23.59	23.66	23.74	0	23.59	23.66	23.74	1	21.58	21.65	21.73	2
	1	5	23.57	23.64	23.72	0	23.57	23.64	23.72	1	21.56	21.63	21.71	2
1.4	3	0	22.67	22.74	22.82	0	22.67	22.74	22.82	1	20.66	20.73	20.81	2
	3	1	22.65	22.72	22.80	0	22.65	22.72	22.80	1	20.64	20.71	20.79	2
	3	3	22.61	22.68	22.76	0	22.61	22.68	22.76	1	20.60	20.67	20.75	2
	6	0	22.66	22.73	22.81	1	22.66	22.73	22.81	2	20.65	20.72	20.80	3
						EUT wi	th Powe	r Reduct	ion					
								160	QAM			640	QAM	
				QF	PSK									_
BW	RB	RB	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP
BW (MHz)	RB Size	RB Offset	20407	Mid CH 20525	High CH 20643	MPR	20407	Mid CH 20525	High CH 20643	MPR	20407	20525	20643	MPR
				Mid CH	High CH			Mid CH	High CH					
			20407 824.7	Mid CH 20525 836.5	High CH 20643 848.3	MPR	20407 824.7	Mid CH 20525 836.5	High CH 20643 848.3	MPR	20407 824.7	20525 836.5	20643 848.3	MPR
	Size	Offset 0 2	20407 824.7 MHz	Mid CH 20525 836.5 MHz 21.28 21.25	High CH 20643 848.3 MHz 21.31 21.28	MPR (dB)	20407 824.7 MHz	Mid CH 20525 836.5 MHz 21.22 21.19	High CH 20643 848.3 MHz 21.25 21.22	MPR (dB) 0 0	20407 824.7 MHz	20525 836.5 MHz	20643 848.3 MHz	MPR (dB)
	1 1 1 1	0 2 5	20407 824.7 MHz 21.16 21.13 21.12	Mid CH 20525 836.5 MHz 21.28 21.25 21.24	High CH 20643 848.3 MHz 21.31 21.28 21.27	MPR (dB) 0 0 0	20407 824.7 MHz 21.10 21.07 21.06	Mid CH 20525 836.5 MHz 21.22 21.19 21.18	High CH 20643 848.3 MHz 21.25	MPR (dB) 0 0	20407 824.7 MHz 21.03	20525 836.5 MHz 21.15	20643 848.3 MHz 21.18	MPR (dB) 0 0 0
	1 1 1 3	0 2 5 0	20407 824.7 MHz 21.16 21.13 21.12 21.10	Mid CH 20525 836.5 MHz 21.28 21.25 21.24 21.22	High CH 20643 848.3 MHz 21.31 21.28 21.27 21.25	0 0 0 0	20407 824.7 MHz 21.10 21.07 21.06 21.04	Mid CH 20525 836.5 MHz 21.22 21.19 21.18 21.16	High CH 20643 848.3 MHz 21.25 21.22 21.21 21.19	MPR (dB) 0 0 0 0	20407 824.7 MHz 21.03 21.00 20.99 20.97	20525 836.5 MHz 21.15 21.12 21.11 21.09	20643 848.3 MHz 21.18 21.15 21.14 21.12	MPR (dB) 0 0 0 0 0
(MHz)	1 1 1 3 3 3	0 2 5 0 1	20407 824.7 MHz 21.16 21.13 21.12 21.10 21.07	Mid CH 20525 836.5 MHz 21.28 21.25 21.24 21.22 21.19	High CH 20643 848.3 MHz 21.31 21.28 21.27 21.25 21.22	MPR (dB) 0 0 0 0 0	20407 824.7 MHz 21.10 21.07 21.06 21.04 21.01	Mid CH 20525 836.5 MHz 21.22 21.19 21.18 21.16 21.13	High CH 20643 848.3 MHz 21.25 21.22 21.21 21.19 21.16	MPR (dB) 0 0 0 0 0	20407 824.7 MHz 21.03 21.00 20.99 20.97 20.94	20525 836.5 MHz 21.15 21.12 21.11 21.09 21.06	20643 848.3 MHz 21.18 21.15 21.14 21.12 21.09	MPR (dB) 0 0 0 0 0 0
(MHz)	1 1 1 3	0 2 5 0	20407 824.7 MHz 21.16 21.13 21.12 21.10	Mid CH 20525 836.5 MHz 21.28 21.25 21.24 21.22	High CH 20643 848.3 MHz 21.31 21.28 21.27 21.25	0 0 0 0	20407 824.7 MHz 21.10 21.07 21.06 21.04	Mid CH 20525 836.5 MHz 21.22 21.19 21.18 21.16	High CH 20643 848.3 MHz 21.25 21.22 21.21 21.19	MPR (dB) 0 0 0 0	20407 824.7 MHz 21.03 21.00 20.99 20.97	20525 836.5 MHz 21.15 21.12 21.11 21.09	20643 848.3 MHz 21.18 21.15 21.14 21.12	MPR (dB) 0 0 0 0 0

 Report Format Version 5.0.0
 Page No.
 : 45 of 82

 Report No.: SA171102C30
 Issued Date
 : Dec. 14, 2017

							LTE Bai	nd 7						
				QP	SK			160	MAÇ			640	QAM	
BW (MHz)	RB Size	RB Offset	Low CH 20850	Mid CH 21100	High CH 21350	3GPP MPR	Low CH 20850	Mid CH 21100	High CH 21350	3GPP MPR	Low CH 20850	Mid CH 21100	High CH 21350	3GPP MPR
(11112)	Oize	Oliset	2510.0 MHz	2535.0 MHz	2560.0 MHz	(dB)	2510.0 MHz	2535.0 MHz	2560.0 MHz	(dB)	2510.0 MHz	2535.0 MHz	2560.0 MHz	(dB)
	1	0	24.91	24.99	24.86	0	23.88	23.96	23.83	1	22.90	22.98	22.85	2
	1	50	24.85	24.93	24.80	0	23.82	23.90	23.77	1	22.84	22.92	22.79	2
	1	99	24.89	24.97	24.84	0	23.86	23.94	23.81	1	22.88	22.96	22.83	2
20	50	0	23.89	23.97	23.84	1	22.86	22.94	22.81	2	21.88	21.96	21.83	3
	50	25	23.83	23.91	23.78	1	22.80	22.88	22.75	2	21.82	21.90	21.77	3
	50	50	23.87	23.95	23.82	1	22.84	22.92	22.79	2	21.86	21.94	21.81	3
	100	0	23.88	23.96	23.83	1	22.85	22.93	22.80	2	21.87	21.95	21.82	3
					SK				MAÇ				QAM	
BW (MHz)	RB Size	RB Offset	Low CH 20825	Mid CH 21100	High CH 21375	3GPP MPR	Low CH 20825	Mid CH 21100	High CH 21375	3GPP MPR	Low CH 20825	Mid CH 21100	High CH 21375	3GPP MPR
(1411 12)	3126	Oliset	2507.5 MHz	2535.0 MHz	2562.5 MHz	(dB)	2507.5 MHz	2535.0 MHz	2562.5 MHz	(dB)	2507.5 MHz	2535.0 MHz	2562.5 MHz	(dB)
	1	0	24.84	24.92	24.79	0	23.81	23.89	23.76	1	22.83	22.91	22.78	2
	1	37	24.78	24.86	24.73	0	23.75	23.83	23.70	1	22.77	22.85	22.72	2
	1	74	24.82	24.90	24.77	0	23.79	23.87	23.74	1	22.81	22.89	22.76	2
15	36	0	23.82	23.90	23.77	1	22.79	22.87	22.74	2	21.81	21.89	21.76	3
	36	19	23.76	23.84	23.71	1	22.73	22.81	22.68	2	21.75	21.83	21.70	3
	36	39	23.80	23.88	23.75	1	22.77	22.85	22.72	2	21.79	21.87	21.74	3
	75	0	23.81	23.89	23.76	1	22.78	22.86	22.73	2	21.80	21.88	21.75	3
				QP	SK			160	MAÇ			640	QAM	
BW (MHz)	RB Size	RB Offset	Low CH 20800	Mid CH 21100	High CH 21400	3GPP MPR	Low CH 20800	Mid CH 21100	High CH 21400	3GPP MPR	Low CH 20800	Mid CH 21100	High CH 21400	3GPP MPR
(141112)	Oize	Onset	2505.0 MHz	2535.0 MHz	2565.0 MHz	(dB)	2505.0 MHz	2535.0 MHz	2565.0 MHz	(dB)	2505.0 MHz	2535.0 MHz	2565.0 MHz	(dB)
	1	0	24.79	24.87	24.74	0	23.76	23.84	23.71	1	22.78	22.86	22.73	2
	1	24	24.73	24.81	24.68	0	23.70	23.78	23.65	1	22.72	22.80	22.67	2
	1	49	24.77	24.85	24.72	0	23.74	23.82	23.69	1	22.76	22.84	22.71	2
10	25	0	23.77	23.85	23.72	1	22.74	22.82	22.69	2	21.76	21.84	21.71	3
	25	12	23.71	23.79	23.66	1	22.68	22.76	22.63	2	21.70	21.78	21.65	3
	25	25	23.75	23.83	23.70	1	22.72	22.80	22.67	2	21.74	21.82	21.69	3
	50	0	23.76	23.84	23.71	1	22.73	22.81	22.68	2	21.75	21.83	21.70	3
				QP	SK	-		160	AM			640	QAM .	_
BW	RB	RB	Low CH 20775	Mid CH 21100	High CH 21425	3GPP	Low CH 20775	Mid CH 21100	High CH 21425	3GPP	Low CH 20775	Mid CH 21100	High CH 21425	3GPP
(MHz)	Size	Offset	2502.5	2535.0	2567.5	MPR (dB)	2502.5	2535.0	2567.5	MPR (dB)	2502.5	2535.0	2567.5	MPR (dB)
	4	0	MHz	MHz	MHz	, ,	MHz	MHz	MHz	, ,	MHz	MHz	MHz	, ,
	1	0 12	24.71 24.65	24.79	24.66	0	23.68 23.62	23.76 23.70	23.63 23.57	1	22.70	22.78 22.72	22.65 22.59	2
I	1	12 24	24.65	24.73 24.77	24.60 24.64	0	23.62	23.70	23.57	1	22.64 22.68	22.72	22.59	2
5	12	0	23.69	23.77	23.64	1	23.66	23.74	23.61	2	21.68	21.76	22.63	3
5	12	6	23.63	23.71	23.58	1	22.60	22.74	22.55	2	21.62	21.70	21.57	3
I	12	13	23.63	23.71	23.58	1	22.60	22.68	22.55	2	21.62	21.70	21.57	3
I														
	25	0	23.68	23.76	23.63	1	22.65	22.73	22.60	2	21.67	21.75	21.62	3

Report Format Version 5.0.0 Page No. : 46 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

							LTE Ban	d 12						
						EUT with	out Pow	er Redu	ction					
				QP	SK			16	QAM			640	QAM	
BW (MHz)	RB Size	RB Offset	Low CH 23060	Mid CH 23095	High CH 23130	3GPP MPR	Low CH 23060	Mid CH 23095	High CH 23130	3GPP MPR	Low CH 23060	Mid CH 23095	High CH 23130	3GPP MPR
(/	0.20	0.1001	704.0 MHz	707.5 MHz	711.0 MHz	(dB)	704.0 MHz	707.5 MHz	711.0 MHz	(dB)	704.0 MHz	707.5 MHz	711.0 MHz	(dB)
	1	0	23.93	23.97	23.98	0	22.90	22.94	22.95	1	21.92	21.96	21.97	2
	1	24	23.91	23.95	23.96	0	22.88	22.92	22.93	1	21.90	21.94	21.95	2
	1	49	23.92	23.96	23.97	0	22.89	22.93	22.94	1	21.91	21.95	21.96	2
10	25	0	22.94	22.98	22.99	1	21.91	21.95	21.96	2	20.93	20.97	20.98	3
	25	12	22.93	22.97	22.98	1	21.90	21.94	21.95	2	20.92	20.96	20.97	3
	25	25	22.89	22.93	22.94	1	21.86	21.90	21.91	2	20.88	20.92	20.93	3
	50	0	22.94	22.98	22.99	1	21.91	21.95	21.96	2	20.93	20.97	20.98	3
						EUT wi	th Powe	r Reduc	tion					
					SK				QAM				QAM	
BW	RB	RB	Low CH 23060	Mid CH 23095	High CH 23130	3GPP	Low CH 23060	Mid CH 23095	High CH 23130	3GPP	Low CH 23060	Mid CH 23095	High CH 23130	3GPP
(MHz)	Size	Offset	704.0	707.5	711.0	MPR (dB)	704.0	707.5	711.0	MPR (dB)	704.0	707.5	711.0	MPR (dB)
			MHz	MHz	MHz	` ,	MHz	MHz	MHz	` ,	MHz	MHz	MHz	` ,
	1	0	21.47	21.45	21.49	0	21.42	21.40	21.44	0	21.36	21.34	21.38	0
	1	24	21.45	21.43	21.47	0	21.40	21.38	21.42	0	21.34	21.32	21.36	0
10	1	49 0	21.43	21.41	21.45	0	21.38	21.36	21.40	0	21.32	21.30	21.34	0
10	25 25	12	21.45 21.44	21.43 21.42	21.47 21.46	0	21.40 21.39	21.38 21.37	21.42 21.41	0	21.34 21.33	21.32 21.31	21.36 21.35	0
	25	25	21.44	21.42	21.46	0	21.39	21.34	21.41	0	21.33	21.28	21.35	0
	50	0	21.43	21.41	21.45	0	21.38	21.34	21.40	0	21.32	21.30	21.34	0
	00	Ů	21.10	21.11	<u> </u>	EUT with				Ŭ	21.02	21.00	21.01	Ŭ
				QP	PSK	LOT WILL	lout Fow		QAM		<u> </u>	641	QAM	
BW	RB	RB	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP
(MHz)	Size	Offset	23035	23095	23155	MPR	23035	23095	23155	MPR	23035	23095	23155	MPR
, ,			701.5 MHz	707.5 MHz	713.5 MHz	(dB)	701.5 MHz	707.5 MHz	713.5 MHz	(dB)	701.5 MHz	707.5 MHz	713.5 MHz	(dB)
	1	0	23.85	23.89	23.90	0	22.82	22.86	22.87	1	21.84	21.88	21.89	2
	1	12	23.83	23.87	23.88	0	22.80	22.84	22.85	1	21.82	21.86	21.87	2
	1	24	23.84	23.88	23.89	0	22.81	22.85	22.86	1	21.83	21.87	21.88	2
5	12	0	22.86	22.90	22.91	1	21.83	21.87	21.88	2	20.85	20.89	20.90	3
	12	6	22.85	22.89	22.90	1	21.82	21.86	21.87	2	20.84	20.88	20.89	3
	12	13	22.81	22.85	22.86	1	21.78	21.82	21.83	2	20.80	20.84	20.85	3
	25	0	22.86	22.90	22.91	1	21.83	21.87	21.88	2	20.85	20.89	20.90	3
						EUT wi	th Powe	r Reduc	tion					
				QP	SK			16	QAM			640	QAM	
BW	RB	RB	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP
(MHz)	Size	Offset	23035 701.5	23095 707.5	23155 713.5	MPR	23035 701.5	23095 707.5	23155 713.5	MPR	23035 701.5	23095 707.5	23155 713.5	MPR
			701.5 MHz	MHz	/13.5 MHz	(dB)	/U1.5 MHz	MHz	/13.5 MHz	(dB)	701.5 MHz	MHz	/13.5 MHz	(dB)
	1	0	21.40	21.38	21.42	0	21.35	21.33	21.37	0	21.29	21.27	21.31	0
	1	12	21.38	21.36	21.40	0	21.33	21.31	21.35	0	21.27	21.25	21.29	0
	1	24	21.36	21.34	21.38	0	21.31	21.29	21.33	0	21.25	21.23	21.27	0
5	12	0	21.38	21.36	21.40	0	21.33	21.31	21.35	0	21.27	21.25	21.29	0
	12	6	21.37	21.35	21.39	0	21.32	21.30	21.34	0	21.26	21.24	21.28	0
	12	13	21.34	21.32	21.36	0	21.29	21.27	21.31	0	21.23	21.21	21.25	0
	25	0	21.36	21.34	21.38	0	21.31	21.29	21.33	0	21.25	21.23	21.27	0

 Report Format Version 5.0.0
 Page No.
 : 47 of 82

 Report No.: SA171102C30
 Issued Date
 : Dec. 14, 2017

						EUT with	out Pow	er Redu	ction					
				QF	SK			160	QAM			640	QAM	
BW (MHz)	RB Size	RB Offset	Low CH 23025	Mid CH 23095	High CH 23165	3GPP MPR	Low CH 23025	Mid CH 23095	High CH 23165	3GPP MPR	Low CH 23025	Mid CH 23095	High CH 23165	3GPP MPR
(WITZ)	Size	Offset	700.5 MHz	707.5 MHz	714.5 MHz	(dB)	700.5 MHz	707.5 MHz	714.5 MHz	(dB)	700.5 MHz	707.5 MHz	714.5 MHz	(dB)
	1	0	23.80	23.84	23.85	0	22.77	22.81	22.82	1	21.79	21.83	21.84	2
	1	7	23.78	23.82	23.83	0	22.75	22.79	22.80	1	21.77	21.81	21.82	2
	1	14	23.79	23.83	23.84	0	22.76	22.80	22.81	1	21.78	21.82	21.83	2
3	8	0	22.81	22.85	22.86	1	21.78	21.82	21.83	2	20.80	20.84	20.85	3
	8	3	22.80	22.84	22.85	1	21.77	21.81	21.82	2	20.79	20.83	20.84	3
	8	7	22.76	22.80	22.81	1	21.73	21.77	21.78	2	20.75	20.79	20.80	3
	15	0	22.81	22.85	22.86	1	21.78	21.82	21.83	2	20.80	20.84	20.85	3
						EUT wi	th Powe	r Reduct	ion					
					SK				QAM				QAM	
BW	RB	RB	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP
(MHz)	Size	Offset	23025 700.5	23095 707.5	23165 714.5	MPR	23025 700.5	23095 707.5	23165 714.5	MPR	23025 700.5	23095 707.5	23165 714.5	MPR
			MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)
	1	0	21.33	21.31	21.35	0	21.28	21.26	21.30	0	21.22	21.20	21.24	0
	1	7	21.31	21.29	21.33	0	21.26	21.24	21.28	0	21.20	21.18	21.22	0
	1	14	21.29	21.27	21.31	0	21.24	21.22	21.26	0	21.18	21.16	21.20	0
3	8	0	21.31	21.29	21.33	0	21.26	21.24	21.28	0	21.20	21.18	21.22	0
	8	3	21.30	21.28	21.32	0	21.25	21.23	21.27	0	21.19	21.17	21.21	0
	8	7	21.27	21.25	21.29	0	21.22	21.20	21.24	0	21.16	21.14	21.18	0
	15	0	21.29	21.27	21.31	0	21.24	21.22	21.26	0	21.18	21.16	21.20	0
						EUT with								
	T	Г	1	0.0	PSK	LOI WILI	Out FOW		DAM			640	QAM	
			Low CH	Mid CH	High CH		Low CH	Mid CH	High CH		Low CH	Mid CH	High CH	
BW (MHz)	RB Size	RB Offset	23017	23095	23173	3GPP MPR	23017	23095	23173	3GPP MPR	23017	23095	23173	3GPP
(IVITZ)	Size	Oliset	699.7	707.5	715.3	(dB)	699.7	707.5	715.3	(dB)	699.7	707.5	715.3	MPR (dB)
			MHz	MHz	MHz	` ,	MHz	MHz	MHz	` ,	MHz	MHz	MHz	` ,
	1	0	23.74	23.78	23.79	0	22.71	22.75	22.76	1	21.73	21.77	21.78	2
	1	2	23.72	23.76	23.77	0	22.69	22.73	22.74	1	21.71	21.75	21.76	2
	1	5	23.73	23.77	23.78	0	22.70	22.74	22.75	1	21.72	21.76	21.77	2
1.4	3	0	22.75	22.79	22.80	0	21.72	21.76	21.77	1	20.74	20.78	20.79	2
	3	1	22.74	22.78	22.79	0	21.71	21.75	21.76	1	20.73	20.77	20.78	2
	<u>3</u>	0	22.70 22.75	22.74 22.79	22.75 22.80	0	21.67	21.71 21.76	21.72 21.77	2	20.69	20.73	20.74	3
	б	U	22.75	22.79	22.80		21.72			2	20.74	20.78	20.79	3
						EUT wi	th Powe							
								160	NA 84			640	QAM	
				QF								1011		
BW	RB	RB	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP
BW (MHz)	RB Size	RB Offset	23017	Mid CH 23095	High CH 23173	MPR	23017	Mid CH 23095	High CH 23173	MPR	23017	23095	23173	MPR
				Mid CH	High CH			Mid CH	High CH					
		Offset 0	23017 699.7 MHz 21.26	Mid CH 23095 707.5 MHz 21.24	High CH 23173 715.3 MHz 21.28	MPR (dB)	23017 699.7 MHz 21.21	Mid CH 23095 707.5 MHz 21.19	High CH 23173 715.3 MHz 21.23	MPR (dB)	23017 699.7 MHz 21.15	23095 707.5 MHz 21.13	23173 715.3 MHz 21.17	MPR (dB)
	Size 1 1 1	Offset 0 2	23017 699.7 MHz 21.26 21.24	Mid CH 23095 707.5 MHz 21.24 21.22	High CH 23173 715.3 MHz 21.28 21.26	MPR (dB) 0 0	23017 699.7 MHz 21.21 21.19	Mid CH 23095 707.5 MHz 21.19 21.17	High CH 23173 715.3 MHz 21.23 21.21	MPR (dB) 0 0	23017 699.7 MHz 21.15 21.13	23095 707.5 MHz 21.13 21.11	23173 715.3 MHz 21.17 21.15	MPR (dB) 0 0
	1 1 1 1	0 2 5	23017 699.7 MHz 21.26 21.24 21.22	Mid CH 23095 707.5 MHz 21.24 21.22 21.20	High CH 23173 715.3 MHz 21.28 21.26 21.24	MPR (dB) 0 0 0	23017 699.7 MHz 21.21 21.19 21.17	Mid CH 23095 707.5 MHz 21.19 21.17 21.15	High CH 23173 715.3 MHz 21.23 21.21 21.19	MPR (dB) 0 0	23017 699.7 MHz 21.15 21.13 21.11	23095 707.5 MHz 21.13 21.11 21.09	23173 715.3 MHz 21.17 21.15 21.13	MPR (dB) 0 0 0
	1 1 1 3	0 2 5 0	23017 699.7 MHz 21.26 21.24 21.22 21.22	Mid CH 23095 707.5 MHz 21.24 21.22 21.20 21.22	High CH 23173 715.3 MHz 21.28 21.26 21.24 21.26	0 0 0 0	23017 699.7 MHz 21.21 21.19 21.17 21.19	Mid CH 23095 707.5 MHz 21.19 21.17 21.15 21.17	High CH 23173 715.3 MHz 21.23 21.21 21.19 21.21	MPR (dB) 0 0 0 0	23017 699.7 MHz 21.15 21.13 21.11 21.13	23095 707.5 MHz 21.13 21.11 21.09 21.11	23173 715.3 MHz 21.17 21.15 21.13 21.15	MPR (dB) 0 0 0 0 0
(MHz)	1 1 1 3 3 3	0 2 5 0 1	23017 699.7 MHz 21.26 21.24 21.22 21.24 21.23	Mid CH 23095 707.5 MHz 21.24 21.22 21.20 21.22 21.21	High CH 23173 715.3 MHz 21.28 21.26 21.24 21.26 21.25	MPR (dB) 0 0 0 0 0	23017 699.7 MHz 21.21 21.19 21.17 21.19 21.18	Mid CH 23095 707.5 MHz 21.19 21.17 21.15 21.17 21.16	High CH 23173 715.3 MHz 21.23 21.21 21.19 21.21 21.20	MPR (dB) 0 0 0 0 0	23017 699.7 MHz 21.15 21.13 21.11 21.13 21.12	23095 707.5 MHz 21.13 21.11 21.09 21.11 21.10	23173 715.3 MHz 21.17 21.15 21.13 21.15 21.14	MPR (dB) 0 0 0 0 0 0
(MHz)	1 1 1 3	0 2 5 0	23017 699.7 MHz 21.26 21.24 21.22 21.22	Mid CH 23095 707.5 MHz 21.24 21.22 21.20 21.22	High CH 23173 715.3 MHz 21.28 21.26 21.24 21.26	0 0 0 0	23017 699.7 MHz 21.21 21.19 21.17 21.19	Mid CH 23095 707.5 MHz 21.19 21.17 21.15 21.17	High CH 23173 715.3 MHz 21.23 21.21 21.19 21.21	MPR (dB) 0 0 0 0	23017 699.7 MHz 21.15 21.13 21.11 21.13	23095 707.5 MHz 21.13 21.11 21.09 21.11	23173 715.3 MHz 21.17 21.15 21.13 21.15	MPR (dB) 0 0 0 0 0

 Report Format Version 5.0.0
 Page No.
 : 48 of 82

 Report No.: SA171102C30
 Issued Date
 : Dec. 14, 2017

							LTE Ban	d 17						
						EUT with	out Pow	er Redu	ction					
				QP	SK			160	QAM			640	QAM	
BW (MHz)	RB Size	RB Offset	Low CH 23780	Mid CH 23790	High CH 23800	3GPP MPR	Low CH 23780	Mid CH 23790	High CH 23800	3GPP MPR	Low CH 23780	Mid CH 23790	High CH 23800	3GPP MPR
(11112)	Oize	Oliset	709.0 MHz	710.0 MHz	711.0 MHz	(dB)	709.0 MHz	710.0 MHz	711.0 MHz	(dB)	709.0 MHz	710.0 MHz	711.0 MHz	(dB)
	1	0	23.99	23.97	23.93	0	22.96	22.94	22.90	1	21.98	21.96	21.92	2
	1	24	23.93	23.91	23.87	0	22.90	22.88	22.84	1	21.92	21.90	21.86	2
	1	49	23.97	23.95	23.91	0	22.94	22.92	22.88	1	21.96	21.94	21.90	2
10	25	0	22.98	22.96	22.92	1	21.95	21.93	21.89	2	20.97	20.95	20.91	3
	25	12	22.95	22.93	22.89	1	21.92	21.90	21.86	2	20.94	20.92	20.88	3
	25	25	22.97	22.95	22.91	1	21.94	21.92	21.88	2	20.96	20.94	20.90	3
	50	0	22.97	22.95	22.91	1	21.94	21.92	21.88	2	20.96	20.94	20.90	3
	EUT with Power Reduction													
					SK				QAM				MAÇ	
BW	RB	RB	Low CH 23780	Mid CH 23790	High CH 23800	3GPP	Low CH 23780	Mid CH 23790	High CH 23800	3GPP	Low CH 23780	Mid CH 23790	High CH 23800	3GPP
(MHz)	Size	Offset	709.0	710.0	711.0	MPR (dB)	709.0	710.0	711.0	MPR (dB)	709.0	710.0	711.0	MPR (dB)
			MHz	MHz	MHz	` ,	MHz	MHz	MHz	` ,	MHz	MHz	MHz	` ′
	1	0	21.42	21.41	21.38	0	21.36	21.35	21.32	0	21.31	21.30	21.27	0
	1	24	21.37	21.36	21.33	0	21.31	21.30	21.27	0	21.26	21.25	21.22	0
40	1	49	21.29	21.28	21.25	0	21.23	21.22	21.19	0	21.18	21.17	21.14	0
10	25	0	21.40	21.39	21.36	0	21.34	21.33	21.30	0	21.29	21.28	21.25	0
	25 25	12 25	21.34 21.33	21.33 21.32	21.30 21.29	0	21.28 21.27	21.27 21.26	21.24 21.23	0	21.23 21.22	21.22 21.21	21.19 21.18	0
	50	0	21.33	21.32	21.29	0	21.33	21.32	21.23	0	21.22	21.27	21.16	0
	30	U	21.39	21.30						U	21.20	21.21	21.24	0
				0.0	PSK	EUI WITH	out Pow		DAM			644	QAM	
			Low CH	Mid CH	High CH		Low CH	Mid CH	High CH		Low CH	Mid CH	JAM High CH	
BW (MHz)	RB Size	RB Offset	23755	23790	23825	3GPP MPR	23755	23790	23825	3GPP	23755	23790	23825	3GPP MPR
(IVII IZ)	Size	Oliset	706.5	710.0	713.5	(dB)	706.5	710.0	713.5	MPR (dB)	706.5	710.0	713.5	(dB)
	1	0	MHz 23.91	MHz 23.89	MHz 23.85	0	MHz 22.88	MHz 22.86	MHz 22.82	1	MHz 21.90	MHz 21.88	MHz 21.84	2
	1	12	23.85	23.83	23.79	0	22.82	22.80	22.76	1	21.84	21.82	21.78	2
	1	24	23.89	23.87	23.83	0	22.86	22.84	22.80	1	21.88	21.86	21.82	2
5	12	0	22.90	22.88	22.84	1	21.87	21.85	21.81	2	20.89	20.87	20.83	3
	12	6	22.87	22.85	22.81	1	21.84	21.82	21.78	2	20.86	20.84	20.80	3
	12	13	22.89	22.87	22.83	1	21.86	21.84	21.80	2	20.88	20.86	20.82	3
	25	0	22.89	22.87	22.83	1	21.86	21.84	21.80	2	20.88	20.86	20.82	3
						EUT wi	th Powe	r Reduct	ion					
				QP	SK				DAM			640	QAM	
BW	RB	RB	Low CH	Mid CH	High CH	2000	Low CH	Mid CH	High CH	2000	Low CH	Mid CH	High CH	2000
(MHz)	Size	Offset	23755	23790	23825	3GPP MPR	23755	23790	23825	3GPP MPR	23755	23790	23825	3GPP MPR
(706.5 MHz	710.0 MHz	713.5 MHz	(dB)	706.5 MHz	710.0 MHz	713.5 MHz	(dB)	706.5	710.0	713.5	(dB)
	1	0	21.37	21.36	21.33	0	21.31	21.30	21.27	0	MHz 21.26	MHz 21.25	MHz 21.22	0
	1	12	21.32	21.31	21.28	0	21.26	21.25	21.22	0	21.21	21.20	21.17	0
	1	24	21.24	21.23	21.20	0	21.18	21.17	21.14	0	21.13	21.12	21.09	0
5	12	0	21.35	21.34	21.31	0	21.29	21.28	21.25	0	21.24	21.23	21.20	0
	12	6	21.29	21.28	21.25	0	21.23	21.22	21.19	0	21.18	21.17	21.14	0
	12	13	21.28	21.27	21.24	0	21.22	21.21	21.18	0	21.17	21.16	21.13	0
	25	0	21.34	21.33	21.30	0	21.28	21.27	21.24	0	21.23	21.22	21.19	0

Report Format Version 5.0.0 Page No. : 49 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

<WLAN 2.4G>

Mode		802.11b	
Channel / Frequency (MHz)	1 (2412)	6 (2437)	11 (2462)
Average Power	16.83	16.77	16.92
Mode		802.11g	
Channel / Frequency (MHz)	1 (2412)	6 (2437)	11 (2462)
Average Power	14.83	14.92	14.96
Mode		802.11n (HT20)	
Channel / Frequency (MHz)	1 (2412)	6 (2437)	11 (2462)
Average Power	12.63	12.68	12.73
Mode			
Channel / Frequency (MHz)	3 (2422)	6 (2437)	9 (2452)
Average Power	12.71	12.85	12.89

<WLAN 5.2G>

Mode		802	2.11a						
Channel / Frequency (MHz)	36 (5180)	40 (5200)	44 (5220)	48 (5240)					
Average Power	9.74	9.58	9.85	9.70					
Mode	802.11n (HT20)								
Channel / Frequency (MHz)	36 (5180)	40 (5200)	44 (5220)	48 (5240)					
Average Power	9.60	9.44	9.57	9.49					
Mode	802.11n (HT40)								
Channel / Frequency (MHz)	38 (5190) 46 (5230)								
Average Power	9	9.	.63						
Mode	802.11ac (VHT80)								
Channel / Frequency (MHz)									
Average Power	9.68								

<WLAN 5.3G>

Mode		802	.11a					
Channel / Frequency (MHz)	52 (5260)	56 (5280)	60 (5300)	64 (5320)				
Average Power	9.68	9.52	9.61	9.72				
Mode		802.11r	n (HT20)					
Channel / Frequency (MHz)	52 (5260)	56 (5280)	60 (5300)	64 (5320)				
Average Power	9.53	9.51	9.68	9.65				
Mode		802.11r	1n (HT40)					
Channel / Frequency (MHz)	54 (5270)	62 (5310)					
Average Power	9	9.6	62					
Mode		802.11ac	2.11ac (VHT80)					
Channel / Frequency (MHz)	58 (5290)							
Average Power	9.76							

Report Format Version 5.0.0 Page No. : 50 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

<WLAN 5.6G>

Mode			80	2.11a						
Channel / Frequency (MHz)	100 (5500) 116 (5580)		120 (5600)	124 (56	520) 132 (5660)		140 (5700)			
Average Power	9.86	9.77	9.59	9.61		9.64	9.81			
Mode										
Channel / Frequency (MHz)	100 (5500)	116 (5580)	120 (5600)	124 (56	20)	132 (5660)	140 (5700)			
Average Power	9.75	9.64	9.55	9.58		9.60	9.71			
Mode			802.1	ln (HT40)						
Channel / Frequency (MHz)	102 (5510)	110 (555	50) 118	(5590)	126	(5630)	134 (5670)			
Average Power	9.87 9.78 9.		9.67	ç	9.59	9.82				
Mode		802.11ac (VHT80)								
Channel / Frequency (MHz)		106 (5530)		122 (5610)						
Average Power		9.87		9.82						

<WLAN 5.8G>

Mode			802.11a							
Channel / Frequency (MHz)	149 (5745)	745) 153 (5765) 157 (5785)		161 (5805)	165 (5825)					
Average Power	9.58	9.66	9.69	9.78						
Mode			802.11n (HT20)							
Channel / Frequency (MHz)	149 (5745)	153 (5765)	157 (5785)	161 (5805)	165 (5825)					
Average Power	9.47	9.56	9.46	9.67	9.50					
Mode	802.11n (HT40)									
Channel / Frequency (MHz)	ŕ	151 (5755)	159 (5795)							
Average Power		9.53		9.69						
Mode										
Channel / Frequency (MHz)	155 (5775)									
Average Power	9.59									

<Bluetooth>

Mode							
Channel / Frequency (MHz)	0 (2402) 39 (2441) 78 (2480)						
Average Power	9.29	8.69	8.67				

Mode							
Channel / Frequency (MHz)	0 (2402) 19 (2440) 39 (2480)						
Average Power	-1.33	-1.79	-0.75				

Report Format Version 5.0.0 Page No. : 51 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

4.7 SAR Testing Results

4.7.1 SAR Test Reduction Considerations

<KDB 447498 D01, General RF Exposure Guidance>

Testing of other required channels within the operating mode of a frequency band is not required when the reported SAR for the mid-band or highest output power channel is:

- (1) ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- (2) ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- (3) ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

<KDB 941225 D01, 3G SAR Measurement Procedures>

The mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

<KDB 941225 D05, SAR Evaluation Considerations for LTE Devices>

(1) QPSK with 1 RB and 50% RB allocation

Start with the largest channel bandwidth and measure SAR, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

(2) QPSK with 100% RB allocation

SAR is not required when the highest maximum output power for 100% RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are \leq 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

(3) Higher order modulations

SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > 1/2 dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

(4) Other channel bandwidth

SAR is required when the highest maximum output power of the smaller channel bandwidth is > 1/2 dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

Report Format Version 5.0.0 Page No. : 52 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

<KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters>

- (1) For handsets operating next to ear, hotspot mode or mini-tablet configurations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When the reported SAR of initial test position is <= 0.4 W/kg, SAR testing for remaining test positions is not required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is <= 0.8 W/kg or all test positions are measured.
- (2) For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.
- (3) For WLAN 5 GHz, the initial test configuration was selected according to the transmission mode with the highest maximum output power. When the reported SAR of initial test configuration is > 0.8 W/kg, SAR is required for the subsequent highest measured output power channel until the reported SAR result is <= 1.2 W/kg or all required channels are measured. For other transmission modes, SAR is not required when the highest reported SAR for initial test configuration is adjusted by the ratio of subsequent test configuration to initial test configuration specified maximum output power and it is <= 1.2 W/kg.

Report Format Version 5.0.0 Page No. : 53 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

4.7.2 SAR Results for Head Exposure Condition

Plot No.	Band	Mode	Test Position	Ch.	Ant Status	Reduction Power	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
				С	ell Transm	ission with						
	GSM850	GPRS8	Right Cheek	189	Ant 0	w/o	34.0	33.71	1.07	0.01	0.083	0.09
	GSM850	GPRS8	Right Tilted	189	Ant 0	w/o	34.0	33.71	1.07	0.12	0.057	0.06
	GSM850	GPRS8	Left Cheek	189	Ant 0	w/o	34.0	33.71	1.07	-0.09	0.112	0.12
	GSM850	GPRS8	Left Tilted	189	Ant 0	w/o	34.0	33.71	1.07	-0.07	0.066	0.07
01	GSM850	GPRS8	Right Cheek	189	Ant 1	w/o	34.0	33.71	1.07	0.07	0.845	0.90
	GSM850	GPRS8	Right Tilted	189	Ant 1	w/o	34.0	33.71	1.07	-0.03	0.648	0.69
	GSM850	GPRS8	Left Cheek	189	Ant 1	w/o	34.0	33.71	1.07	0.04	0.547	0.58
	GSM850	GPRS8	Left Tilted	189	Ant 1	w/o	34.0	33.71	1.07	0.14	0.443	0.47
	GSM850	GPRS8	Right Cheek	128	Ant 1	w/o	34.0	33.60	1.10	-0.02	0.681	0.75
	GSM850	GPRS8	Right Cheek	251	Ant 1	w/o	34.0	33.56	1.11	0.04	0.732	0.81
	GSM850	GPRS8	Right Cheek	189	Ant 1	w/o	34.0	33.71	1.07	0.02	0.832	0.89
				C	ell Transm	ission witl		N				
	GSM850	GPRS8	Right Cheek	251	Ant 1	w/	31.5	31.42	1.02	-0.02	0.653	0.67
	GSM850	GPRS8	Right Tilted	251	Ant 1	w/	31.5	31.42	1.02	0.16	0.535	0.54
	GSM850	GPRS8	Left Cheek	251	Ant 1	w/	31.5	31.42	1.02	0.07	0.695	0.71
	GSM850	GPRS8	Left Tilted	251	Ant 1	w/	31.5	31.42	1.02	0.19	0.645	0.66
	GSM1900	GPRS8	Right Cheek	661	Ant 0	w/o	31.0	30.93	1.02	0.08	0.057	0.06
	GSM1900	GPRS8	Right Tilted	661	Ant 0	w/o	31.0	30.93	1.02	0.01	0.001	0.00
02	GSM1900	GPRS8	Left Cheek	661	Ant 0	w/o	31.0	30.93	1.02	-0.05	0.074	<mark>0.08</mark>
	GSM1900	GPRS8	Left Tilted	661	Ant 0	w/o	31.0	30.93	1.02	0.07	0.001	0.00
03	WCDMA II	RMC12.2K	Right Cheek	9400	Ant 0	w/o	25.0	24.98	1.00	-0.11	0.176	<mark>0.18</mark>
	WCDMA II	RMC12.2K	Right Tilted	9400	Ant 0	w/o	25.0	24.98	1.00	0.08	0.055	0.06
	WCDMA II	RMC12.2K	Left Cheek	9400	Ant 0	w/o	25.0	24.98	1.00	0.12	0.152	0.15
		RMC12.2K	Left Tilted	9400	Ant 0	w/o	25.0	24.98	1.00	-0.07	0.061	0.06
04		RMC12.2K	Right Cheek	1413	Ant 0	w/o	25.0	24.97	1.01	-0.07	0.168	0.17
0-1		RMC12.2K	Right Tilted	1413	Ant 0	w/o	25.0	24.97	1.01	0.01	0.063	0.06
		RMC12.2K	Left Cheek	1413	Ant 0	w/o	25.0	24.97	1.01	-0.05	0.121	0.12
		RMC12.2K	Left Tilted	1413	Ant 0	w/o	25.0	24.97	1.01	0.15	0.001	0.00
			2011 111100		ell Transm					0.10	0.00.	0.00
	WCDMA V	RMC12.2K	Right Cheek	4182	Ant 0	w/o	25.0	24.99	1.00	0.02	0.205	0.21
		RMC12.2K	Right Tilted	4182	Ant 0	w/o	25.0	24.99	1.00	0.05	0.131	0.13
		RMC12.2K	Left Cheek	4182	Ant 0	w/o	25.0	24.99	1.00	0.01	0.265	0.27
	WCDMA V	RMC12.2K	Left Tilted	4182	Ant 0	w/o	25.0	24.99	1.00	-0.04	0.151	0.15
		RMC12.2K	Right Cheek	4182	Ant 1	w/o	25.0	24.99	1.00	-0.09	1.04	1.04
		RMC12.2K	Right Tilted	4182	Ant 1	w/o	25.0	24.99	1.00	0.01	0.841	0.84
05		RMC12.2K	Left Cheek	4182	Ant 1	w/o	25.0	24.99	1.00	-0.02	1.19	1.19
- 00		RMC12.2K	Left Tilted	4182	Ant 1	w/o	25.0	24.99	1.00	0.05	1.01	1.01
		RMC12.2K	Right Cheek	4132	Ant 1	w/o	25.0	24.95	1.01	-0.11	0.933	0.94
		RMC12.2K	Right Cheek	4233	Ant 1	w/o	25.0	24.93	1.02	0.05	0.938	0.95
			Right Tilted	4132	Ant 1	w/o	25.0	24.95	1.01	-0.07	0.911	0.92
	WCDMA V			4233	Ant 1	w/o	25.0	24.93	1.02	0.03	0.901	0.92
	WCDMA V		Left Cheek	4132	Ant 1	w/o	25.0	24.95	1.01	0.01	1.15	1.16
	WCDMA V		Left Cheek	4233	Ant 1	w/o	25.0	24.93	1.02	0.03	1.16	1.18
	WCDMA V		Left Tilted	4132	Ant 1	w/o	25.0	24.95	1.01	0.13	0.985	1.00
	WCDMA V		Left Tilted	4233	Ant 1	w/o	25.0	24.93	1.02	0.09	0.978	0.99
	WCDMA V		Left Cheek	4182	Ant 1	w/o	25.0	24.99	1.00	-0.02	1.17	1.17
	-				ell Transm						•	
	WCDMA V	RMC12.2K	Right Cheek	4182	Ant 1	w/	22.5	22.44	1.01	0.01	0.622	0.63
	WCDMA V			4182	Ant 1	w/	22.5	22.44	1.01	0.13	0.556	0.56
	WCDMA V		Left Cheek	4182	Ant 1	w/	22.5	22.44	1.01	0.00	0.693	0.70
	WCDMA V		Left Tilted	4182	Ant 1	w/	22.5	22.44	1.01	0.08	0.583	0.59

 Report Format Version 5.0.0
 Page No.
 : 54 of 82

 Report No.: SA171102C30
 Issued Date
 : Dec. 14, 2017

Plot No.	Band	Mode	RB#	RB Offset	Test Position	Ch.	Ant Status	Reduction Power	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
06	LTE 2	QPSK20M	1	0	Right Cheek	18900	Ant 0	w/o	24.0	23.98	1.00	0.02	0.117	0.12
- 00	LTE 2	QPSK20M	1	0	Right Tilted	18900	Ant 0	w/o	24.0	23.98	1.00	0.08	0.046	0.05
	LTE 2	QPSK20M	1	0	Left Cheek	18900	Ant 0	w/o	24.0	23.98	1.00	-0.01	0.111	0.11
	LTE 2	QPSK20M	1	0	Left Tilted	18900	Ant 0	w/o	24.0	23.98	1.00	-0.08	0.055	0.06
	LTE 2	QPSK20M	50	0	Right Cheek	18900	Ant 0	w/o	23.0	22.93	1.02	0.11	0.096	0.10
	LTE 2	QPSK20M	50	0	Right Tilted	18900	Ant 0	w/o	23.0	22.93	1.02	0.17	0.001	0.00
	LTE 2	QPSK20M	50	0	Left Cheek	18900	Ant 0	w/o	23.0	22.93	1.02	0.15	0.091	0.09
	LTE 2	QPSK20M	50	0	Left Tilted	18900	Ant 0	w/o	23.0	22.93	1.02	0.06	0.043	0.04
07	LTE 4	QPSK20M	1	0	Right Cheek	20175	Ant 0	w/o	24.0	23.97	1.01	0.00	0.116	<mark>0.12</mark>
	LTE 4	QPSK20M	1	0	Right Tilted	20175	Ant 0	w/o	24.0	23.97	1.01	0.08	0.001	0.00
	LTE 4	QPSK20M	1	0	Left Cheek	20175	Ant 0	w/o	24.0	23.97	1.01	-0.01	0.098	0.10
	LTE 4 LTE 4	QPSK20M QPSK20M	1 50	0	Left Tilted Right Cheek	20175 20175	Ant 0	w/o	24.0	23.97 22.97	1.01	0.15 0.16	0.033	0.03
-	LTE 4	QPSK20M	50	0	Right Tilted	20175	Ant 0 Ant 0	w/o w/o	23.0	22.97	1.01	0.16	0.093	0.00
	LTE 4	QPSK20M	50	0	Left Cheek	20175	Ant 0	w/o	23.0	22.97	1.01	-0.11	0.067	0.00
	LTE 4	QPSK20M	50	0	Left Tilted	20175	Ant 0	w/o	23.0	22.97	1.01	-0.16	0.001	0.00
		QI OILLOW	00	Ü				h WLAN (22.01	1.01	0.10	0.001	0.00
	LTE 5	QPSK10M	1	0	Right Cheek	20600	Ant 0	w/o	24.0	23.93	1.02	0.06	0.183	0.19
	LTE 5	QPSK10M	1	0	Right Tilted	20600	Ant 0	w/o	24.0	23.93	1.02	-0.09	0.167	0.17
	LTE 5	QPSK10M	1	0	Left Cheek	20600	Ant 0	w/o	24.0	23.93	1.02	0.05	0.192	0.20
	LTE 5	QPSK10M	1	0	Left Tilted	20600	Ant 0	w/o	24.0	23.93	1.02	-0.07	0.186	0.19
	LTE 5	QPSK10M	25	0	Right Cheek	20600	Ant 0	w/o	23.0	22.99	1.00	-0.16	0.151	0.15
	LTE 5	QPSK10M	25	0	Right Tilted	20600	Ant 0	w/o	23.0	22.99	1.00	-0.16	0.136	0.14
	LTE 5	QPSK10M	25	0	Left Cheek	20600	Ant 0	w/o	23.0	22.99	1.00	-0.03	0.16	0.16
	LTE 5	QPSK10M	25 1	0	Left Tilted	20600	Ant 0	w/o	23.0 24.0	22.99	1.00	-0.12	0.158	0.16
-	LTE 5	QPSK10M QPSK10M	1	0	Right Cheek	20600 20600	Ant 1 Ant 1	w/o w/o	24.0	23.93	1.02	0.04	0.871 0.745	0.89 0.76
08	LTE 5	QPSK10M	1	0	Right Tilted Left Cheek	20600	Ant 1	w/o	24.0	23.93	1.02	0.09	1.04	1.06
06	LTE 5	QPSK10M	1	0	Left Tilted	20600	Ant 1	w/o w/o	24.0	23.93	1.02	-0.07	0.984	1.00
	LTE 5	QPSK10M	25	0	Right Cheek	20600	Ant 1	w/o w/o	23.0	22.99	1.02	-0.07	0.964	0.71
	LTE 5	QPSK10M	25	0	Right Tilted	20600	Ant 1	w/o	23.0	22.99	1.00	0.17	0.708	0.67
	LTE 5	QPSK10M	25	0	Left Cheek	20600	Ant 1	w/o	23.0	22.99	1.00	0.17	0.831	0.83
	LTE 5	QPSK10M	25	0	Left Tilted	20600	Ant 1	w/o	23.0	22.99	1.00	-0.11	0.804	0.81
	LTE 5	QPSK10M	1	0	Right Cheek	20450	Ant 1	w/o	24.0	23.78	1.05	-0.15	0.799	0.84
	LTE 5	QPSK10M	1	0	Right Cheek	20525	Ant 1	w/o	24.0	23.85	1.04	-0.13	0.757	0.78
	LTE 5	QPSK10M	1	0	Left Cheek	20450	Ant 1	w/o	24.0	23.78	1.05	0.13	0.737	0.73
	LTE 5	QPSK10M	1	0	Left Cheek	20525	Ant 1	w/o	24.0	23.85	1.04	0.15	0.965	1.00
	LTE 5	QPSK10M	1	0	Left Tilted	20450	Ant 1	w/o	24.0	23.78	1.05	0.02	0.847	0.89
	LTE 5	QPSK10M	1	0	Left Tilted	20525	Ant 1	W/O	24.0	23.85	1.04	-0.19	0.888	0.92
	LTE 5	QPSK10M	25	0	Left Cheek	20450	Ant 1	w/o	23.0	22.84	1.04	-0.13	0.735	0.76
	LTE 5	QPSK10M	25	0	Left Cheek	20525	Ant 1	w/o	23.0	22.91	1.02	-0.04	0.735	0.83
	LTE 5	QPSK10M	25	0	Left Tilted	20450	Ant 1	w/o	23.0	22.84	1.04	-0.11	0.695	0.72
	LTE 5	QPSK10M	25	0	Left Tilted	20525	Ant 1	w/o	23.0	22.91	1.02	0.19	0.751	0.77
	LTE 5	QPSK10M	50	0	Right Cheek	20600	Ant 1	w/o	23.0	22.98	1.00	-0.05	0.734	0.74
	LTE 5	QPSK10M	50	0	Left Cheek	20600	Ant 1	w/o	23.0	22.98	1.00	0.06	0.776	0.78
	LTE 5	QPSK10M	50	0	Left Tilted	20600	Ant 1	w/o	23.0	22.98	1.00	-0.03	0.712	0.72
	LTE 5	QPSK10M	1	0	Left Cheek	20600	Ant 1	w/o	24.0	23.93	1.02	-0.01	1.01	1.03
						Transmi	ssion wit	h WLAN	ON					
	LTE 5	QPSK10M	1	0	Right Cheek	20600	Ant 1	w/	21.5	21.48	1.00	0.03	0.534	0.54
	LTE 5	QPSK10M	1	0	Right Tilted	20600	Ant 1	w/	21.5	21.48	1.00	-0.06	0.449	0.45
	LTE 5	QPSK10M	1	0	Left Cheek	20600	Ant 1	w/	21.5	21.48	1.00	0.00	0.559	0.56
	LTE 5	QPSK10M	1	0	Left Tilted	20600	Ant 1	w/	21.5	21.48	1.00	0.18	0.553	0.56
	LTE 5	QPSK10M	25	0	Right Cheek	20600	Ant 1	w/	21.5	21.42	1.02	-0.08	0.483	0.49
	LTE 5	QPSK10M	25	0	Right Tilted	20600	Ant 1	w/	21.5	21.42	1.02	0.05	0.456	0.46
	LTE 5	QPSK10M	25	0	Left Cheek	20600	Ant 1	w/	21.5	21.42	1.02	-0.09	0.503	0.51
	LTE 5	QPSK10M	25	0	Left Tilted	20600	Ant 1	w/	21.5	21.42	1.02	0.17	0.475	0.48

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

Report Format Version 5.0.0 Page No. : 55 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

Plot No.	Band	Mode	RB#	RB Offset	Test Position	Ch.	Ant Status	Reduction Power	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
09	LTE 7	QPSK20M	1	0	Right Cheek	21100	Ant 0	w/o	25.0	24.99	1.00	-0.17	0.193	<mark>0.19</mark>
	LTE 7	QPSK20M	1	0	Right Tilted	21100	Ant 0	w/o	25.0	24.99	1.00	0.11	0.058	0.06
	LTE 7	QPSK20M	1	0	Left Cheek	21100	Ant 0	w/o	25.0	24.99	1.00	-0.02	0.102	0.10
	LTE 7	QPSK20M	1	0	Left Tilted	21100	Ant 0	w/o	25.0	24.99	1.00	-0.17	0.082	0.08
	LTE 7	QPSK20M	50	0	Right Cheek	21100	Ant 0	w/o	24.0	23.97	1.01	0.12	0.166	0.17
	LTE 7	QPSK20M	50	0	Right Tilted	21100	Ant 0	w/o	24.0	23.97	1.01	0.13	0.046	0.05
	LTE 7	QPSK20M	50	0	Left Cheek	21100	Ant 0	w/o	24.0	23.97	1.01	0.04	0.082	0.08
	LTE 7	QPSK20M	50	0	Left Tilted	21100	Ant 0	w/o	24.0	23.97	1.01	-0.07	0.071	0.07
					Cell	Transmis	ssion wit	h WLAN (OFF					
	LTE 12	QPSK10M	1	0	Right Cheek	23130	Ant 0	w/o	24.0	23.98	1.00	0.10	0.093	0.09
	LTE 12	QPSK10M	1	0	Right Tilted	23130	Ant 0	w/o	24.0	23.98	1.00	0.00	0.072	0.07
	LTE 12	QPSK10M	1	0	Left Cheek	23130	Ant 0	w/o	24.0	23.98	1.00	-0.07	0.105	0.11
	LTE 12	QPSK10M	1	0	Left Tilted	23130	Ant 0	w/o	24.0	23.98	1.00	0.10	0.091	0.09
	LTE 12	QPSK10M	25	0	Right Cheek	23130	Ant 0	w/o	23.0	22.99	1.00	0.08	0.079	0.08
	LTE 12	QPSK10M	25	0	Right Tilted	23130	Ant 0	w/o	23.0	22.99	1.00	0.08	0.062	0.06
	LTE 12	QPSK10M	25	0	Left Cheek	23130	Ant 0	w/o	23.0	22.99	1.00	-0.09	0.092	0.09
	LTE 12	QPSK10M	25	0	Left Tilted	23130	Ant 0	w/o	23.0	22.99	1.00	0.01	0.075	0.08
	LTE 12	QPSK10M	1	0	Right Cheek	23130	Ant 1	w/o	24.0	23.98	1.00	0.00	0.363	0.36
	LTE 12	QPSK10M	1	0	Right Tilted	23130	Ant 1	w/o	24.0	23.98	1.00	0.00	0.344	0.35
	LTE 12	QPSK10M	1	0	Left Cheek	23130	Ant 1	w/o	24.0	23.98	1.00	-0.05	0.508	0.51
10	LTE 12	QPSK10M	1	0	Left Tilted	23130	Ant 1	w/o	24.0	23.98	1.00	-0.04	0.636	<mark>0.64</mark>
	LTE 12	QPSK10M	25	0	Right Cheek	23130	Ant 1	w/o	23.0	22.99	1.00	0.11	0.305	0.31
	LTE 12	QPSK10M	25	0	Right Tilted	23130	Ant 1	w/o	23.0	22.99	1.00	-0.08	0.304	0.30
	LTE 12	QPSK10M	25	0	Left Cheek	23130	Ant 1	w/o	23.0	22.99	1.00	-0.04	0.423	0.42
	LTE 12	QPSK10M	25	0	Left Tilted	23130	Ant 1	w/o	23.0	22.99	1.00	-0.15	0.544	0.55
								th WLAN						
	LTE 12	QPSK10M	1	0	Right Cheek	23130	Ant 1	w/	21.5	21.49	1.00	0.03	0.431	0.43
	LTE 12	QPSK10M	1	0	Right Tilted	23130	Ant 1	w/	21.5	21.49	1.00	0.17	0.296	0.30
	LTE 12	QPSK10M	1	0	Left Cheek	23130	Ant 1	w/	21.5	21.49	1.00	-0.02	0.576	0.58
	LTE 12	QPSK10M	1	0	Left Tilted	23130	Ant 1	w/	21.5	21.49	1.00	0.11	0.427	0.43
	LTE 12	QPSK10M	25	0	Right Cheek	23130	Ant 1	w/	21.5	21.47	1.01	0.04	0.287	0.29
	LTE 12	QPSK10M	25	0	Right Tilted	23130	Ant 1	w/	21.5	21.47	1.01	0.07	0.332	0.33
	LTE 12	QPSK10M	25	0	Left Cheek	23130	Ant 1	w/	21.5	21.47	1.01	-0.10	0.543	0.55
	LTE 12	QPSK10M	25	0	Left Tilted	23130	Ant 1	w/	21.5	21.47	1.01	-0.13	0.467	0.47

Report Format Version 5.0.0 Page No. : 56 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

Plot No.	Band	Mode	RB#	RB Offset	Test Position	Ch.	Ant Status	Reduction Power	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	Cell Transmission with WLAN OFF													
	LTE 17	QPSK10M	0	Right Cheek	w/o	24.0	23.99	1.00	-0.07	0.098	0.10			
	LTE 17	QPSK10M	1	0	Right Tilted	23780	Ant 0	w/o	24.0	23.99	1.00	-0.13	0.090	0.09
	LTE 17	QPSK10M	1	0	Left Cheek	23780	Ant 0	w/o	24.0	23.99	1.00	0.07	0.126	0.13
	LTE 17	QPSK10M	1	0	Left Tilted	23780	Ant 0	w/o	24.0	23.99	1.00	-0.14	0.104	0.10
	LTE 17	QPSK10M	25	0	Right Cheek	23780	Ant 0	w/o	23.0	22.98	1.00	0.07	0.087	0.09
	LTE 17	QPSK10M	25	0	Right Tilted	23780	Ant 0	w/o	23.0	22.98	1.00	0.10	0.078	0.08
	LTE 17	QPSK10M	25	0	Left Cheek	23780	Ant 0	w/o	23.0	22.98	1.00	0.01	0.098	0.10
	LTE 17	QPSK10M	25	0	Left Tilted	23780	Ant 0	w/o	23.0	22.98	1.00	0.10	0.081	0.08
	LTE 17	QPSK10M	1	0	Right Cheek	23780	Ant 1	w/o	24.0	23.99	1.00	-0.15	0.398	0.40
	LTE 17	QPSK10M	1	0	Right Tilted	23780	Ant 1	w/o	24.0	23.99	1.00	0.14	0.397	0.40
	LTE 17	QPSK10M	1	0	Left Cheek	23780	Ant 1	w/o	24.0	23.99	1.00	0.10	0.566	0.57
11	LTE 17	QPSK10M	1	0	Left Tilted	23780	Ant 1	w/o	24.0	23.99	1.00	-0.01	0.703	<mark>0.70</mark>
	LTE 17	QPSK10M	25	0	Right Cheek	23780	Ant 1	w/o	23.0	22.98	1.00	0.19	0.331	0.33
	LTE 17	QPSK10M	25	0	Right Tilted	23780	Ant 1	w/o	23.0	22.98	1.00	0.06	0.315	0.32
	LTE 17	QPSK10M	25	0	Left Cheek	23780	Ant 1	w/o	23.0	22.98	1.00	-0.18	0.464	0.47
	LTE 17	QPSK10M	25	0	Left Tilted	23780	Ant 1	w/o	23.0	22.98	1.00	-0.14	0.578	0.58
					Cell	Transmi	ssion wit	h WLAN	ON					
	LTE 17	QPSK10M	1	0	Right Cheek	23780	Ant 1	w/	21.5	21.42	1.02	0.06	0.469	0.48
	LTE 17	QPSK10M	1	0	Right Tilted	23780	Ant 1	w/	21.5	21.42	1.02	0.07	0.281	0.29
	LTE 17	QPSK10M	1	0	Left Cheek	23780	Ant 1	w/	21.5	21.42	1.02	-0.01	0.566	0.58
	LTE 17	QPSK10M	1	0	Left Tilted	23780	Ant 1	w/	21.5	21.42	1.02	-0.17	0.457	0.47
	LTE 17	QPSK10M	25	0	Right Cheek	23780	Ant 1	w/	21.5	21.40	1.02	-0.14	0.332	0.34
	LTE 17	QPSK10M	25	0	Right Tilted	23780	Ant 1	w/	21.5	21.40	1.02	0.05	0.329	0.34
	LTE 17	QPSK10M	25	0	Left Cheek	23780	Ant 1	w/	21.5	21.40	1.02	0.12	0.551	0.56
	LTE 17	QPSK10M	25	0	Left Tilted	23780	Ant 1	w/	21.5	21.40	1.02	-0.18	0.441	0.45

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
12	WLAN2.4G	802.11b	Right Cheek	11	17.0	16.92	1.02	0.02	0.491	<mark>0.50</mark>
	WLAN2.4G	802.11b	Right Tilted	11	17.0	16.92	1.02	0.08	0.409	0.42
	WLAN2.4G	802.11b	Left Cheek	11	17.0	16.92	1.02	-0.01	0.179	0.18
	WLAN2.4G	802.11b	Left Tilted	11	17.0	16.92	1.02	-0.07	0.168	0.17
13	WLAN5G	802.11ac VH80	Right Cheek	58	10.0	9.76	1.06	0.15	0.794	<mark>0.84</mark>
	WLAN5G	802.11ac VH80	Right Tilted	58	10.0	9.76	1.06	0.11	0.723	0.76
	WLAN5G	802.11ac VH80	Left Cheek	58	10.0	9.76	1.06	-0.07	0.001	0.00
	WLAN5G	802.11ac VH80	Left Tilted	58	10.0	9.76	1.06	-0.13	0.001	0.00
	WLAN5G	802.11ac VH80	Right Cheek	58	10.0	9.76	1.06	0.07	0.789	0.83
14	WLAN5G	802.11ac VH80	Right Cheek	106	10.0	9.87	1.03	-0.17	0.702	<mark>0.72</mark>
	WLAN5G	802.11ac VH80	Right Tilted	106	10.0	9.87	1.03	0.01	0.655	0.67
	WLAN5G	802.11ac VH80	Left Cheek	106	10.0	9.87	1.03	0.08	0.001	0.00
	WLAN5G	802.11ac VH80	Left Tilted	106	10.0	9.87	1.03	-0.01	0.001	0.00
15	WLAN5G	802.11ac VH80	Right Cheek	155	10.0	9.59	1.10	-0.07	0.555	<mark>0.61</mark>
	WLAN5G	802.11ac VH80	Right Tilted	155	10.0	9.59	1.10	0.08	0.511	0.56
	WLAN5G	802.11ac VH80	Left Cheek	155	10.0	9.59	1.10	-0.11	0.001	0.00
	WLAN5G	802.11ac VH80	Left Tilted	155	10.0	9.59	1.10	-0.15	0.001	0.00

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

 Report Format Version 5.0.0
 Page No.
 : 57 of 82

 Report No.: SA171102C30
 Issued Date
 : Dec. 14, 2017

4.7.3 SAR Results for Body Exposure Condition (Test Separation Distance is 15 mm)

Plot	Band	Mode	Test Position	Ch.	Ant Status	Reduction Power	Max. Tune-up Power	Measured Conducted Power	Scaling Factor	Power Drift	Measured SAR-1g	Scaled SAR-1g
NO.			Fosition		Status	Fower	(dBm)	(dBm)	racioi	(dB)	(W/kg)	(W/kg)
16	GSM850	GPRS8	Front Face	189	Ant 0	w/o	34.0	33.71	1.07	-0.1	0.244	<mark>0.26</mark>
	GSM850	GPRS8	Rear Face	189	Ant 0	w/o	34.0	33.71	1.07	0.11	0.238	0.25
	GSM850	GPRS8	Front Face	189	Ant 1	w/o	34.0	33.71	1.07	-0.03	0.183	0.20
	GSM850	GPRS8	Rear Face	189	Ant 1	w/o	34.0	33.71	1.07	0.05	0.176	0.19
17	GSM1900	GPRS8	Front Face	661	Ant 0	w/o	31.0	30.93	1.02	0.06	0.518	<mark>0.53</mark>
	GSM1900	GPRS8	Rear Face	661	Ant 0	w/o	31.0	30.93	1.02	0.08	0.303	0.31
	WCDMA II	RMC12.2K	Front Face	9400	Ant 0	w/o	25.0	24.98	1.00	0.08	1.14	1.15
	WCDMA II	RMC12.2K	Rear Face	9400	Ant 0	w/o	25.0	24.98	1.00	-0.05	0.692	0.70
	WCDMA II	RMC12.2K	Front Face	9262	Ant 0	w/o	25.0	24.89	1.03	-0.17	1.13	1.16
18	WCDMA II	RMC12.2K	Front Face	9538	Ant 0	w/o	25.0	24.93	1.02	0.05	1.17	<mark>1.19</mark>
	WCDMA II	RMC12.2K	Front Face	9538	Ant 0	w/o	25.0	24.93	1.02	0.08	1.15	1.17
	WCDMA IV	RMC12.2K	Front Face	1413	Ant 0	w/o	25.0	24.97	1.01	0.07	1.05	1.06
	WCDMA IV	RMC12.2K	Rear Face	1413	Ant 0	w/o	25.0	24.97	1.01	-0.15	0.626	0.63
19	WCDMA IV	RMC12.2K	Front Face	1312	Ant 0	w/o	25.0	24.81	1.04	0.02	1.11	<mark>1.16</mark>
	WCDMA IV	RMC12.2K	Front Face	1513	Ant 0	w/o	25.0	24.93	1.02	-0.11	1.02	1.04
	WCDMA IV	RMC12.2K	Front Face	1312	Ant 0	w/o	25.0	24.81	1.04	0.02	1.08	1.13
20	WCDMA V	RMC12.2K	Front Face	4182	Ant 0	w/o	25.0	24.99	1.00	-0.02	0.292	0.29
	WCDMA V	RMC12.2K	Rear Face	4182	Ant 0	w/o	25.0	24.99	1.00	0.01	0.283	0.28
	WCDMA V	RMC12.2K	Front Face	4182	Ant 1	w/o	25.0	24.99	1.00	-0.03	0.154	0.15
	WCDMA V	RMC12.2K	Rear Face	4182	Ant 1	w/o	25.0	24.99	1.00	0.07	0.161	0.16

Plot No.	Band	Mode	RB#	RB Offset	Test Position	Ch.	Ant Status	Reduction Power	Max. Tune-up Power (dBm)	Measured Conducte d Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
21	LTE 2	QPSK20M	1	0	Front Face	18900	Ant 0	w/o	24.0	23.98	1.00	0.03	0.872	<mark>0.88</mark>
	LTE 2	QPSK20M	1	0	Rear Face	18900	Ant 0	w/o	24.0	23.98	1.00	0.01	0.469	0.47
	LTE 2	QPSK20M	50	0	Front Face	18900	Ant 0	w/o	23.0	22.93	1.02	-0.15	0.652	0.66
	LTE 2	QPSK20M	50	0	Rear Face	18900	Ant 0	w/o	23.0	22.93	1.02	-0.07	0.369	0.37
	LTE 2	QPSK20M	1	0	Front Face	18700	Ant 0	w/o	24.0	23.91	1.02	0.01	0.778	0.79
	LTE 2	QPSK20M	1	0	Front Face	19100	Ant 0	w/o	24.0	23.95	1.01	-0.11	0.828	0.84
	LTE 2	QPSK20M	100	0	Front Face	18900	Ant 0	w/o	23.0	22.89	1.03	-0.08	0.657	0.67
	LTE 2	QPSK20M	1	0	Front Face	18900	Ant 0	w/o	24.0	23.98	1.00	0.03	0.867	0.87
22	LTE 4	QPSK20M	1	0	Front Face	20175	Ant 0	w/o	24.0	23.97	1.01	0.03	0.776	<mark>0.78</mark>
	LTE 4	QPSK20M	1	0	Rear Face	20175	Ant 0	w/o	24.0	23.97	1.01	0.08	0.557	0.56
	LTE 4	QPSK20M	50	0	Front Face	20175	Ant 0	w/o	23.0	22.97	1.01	-0.05	0.751	0.76
	LTE 4	QPSK20M	50	0	Rear Face	20175	Ant 0	w/o	23.0	22.97	1.01	-0.17	0.438	0.44
23	LTE 5	QPSK10M	1	0	Front Face	20600	Ant 0	w/o	24.0	23.93	1.02	0	0.163	<mark>0.17</mark>
	LTE 5	QPSK10M	1	0	Rear Face	20600	Ant 0	w/o	24.0	23.93	1.02	0.01	0.16	0.16
	LTE 5	QPSK10M	25	0	Front Face	20600	Ant 0	w/o	23.0	22.99	1.00	-0.07	0.135	0.14
	LTE 5	QPSK10M	25	0	Rear Face	20600	Ant 0	w/o	23.0	22.99	1.00	0.03	0.129	0.13
	LTE 5	QPSK10M	1	0	Front Face	20600	Ant 1	w/o	24.0	23.93	1.02	0.11	0.082	0.08
	LTE 5	QPSK10M	1	0	Rear Face	20600	Ant 1	w/o	24.0	23.93	1.02	0.13	0.08	0.08
	LTE 5	QPSK10M	25	0	Front Face	20600	Ant 1	w/o	23.0	22.99	1.00	-0.08	0.067	0.07
	LTE 5	QPSK10M	25	0	Rear Face	20600	Ant 1	w/o	23.0	22.99	1.00	0.04	0.066	0.07
24	LTE 7	QPSK20M	1	0	Front Face	21100	Ant 0	w/o	25.0	24.99	1.00	0.02	0.369	0.37
	LTE 7	QPSK20M	1	0	Rear Face	21100	Ant 0	w/o	25.0	24.99	1.00	0.08	0.355	0.36
	LTE 7	QPSK20M	50	0	Front Face	21100	Ant 0	w/o	24.0	23.97	1.01	-0.11	0.317	0.32
	LTE 7	QPSK20M	50	0	Rear Face	21100	Ant 0	w/o	24.0	23.97	1.01	-0.15	0.288	0.29

Report Format Version 5.0.0 Page No. : 58 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

Plot No.	Band	Mode	RB#	RB Offset	Test Position	Ch.	Ant Status	Reduction Power	Max. Tune-up Power (dBm)	Measured Conducte d Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
25	LTE 12	QPSK10M	1	0	Front Face	23130	Ant 0	w/o	24.0	23.98	1.00	-0.02	0.245	0.25
	LTE 12	QPSK10M	1	0	Rear Face	23130	Ant 0	w/o	24.0	23.98	1.00	0.01	0.233	0.23
	LTE 12	QPSK10M	25	0	Front Face	23130	Ant 0	w/o	23.0	22.99	1.00	0.01	0.201	0.20
	LTE 12	QPSK10M	25	0	Rear Face	23130	Ant 0	w/o	23.0	22.99	1.00	0.06	0.191	0.19
	LTE 12	QPSK10M	1	0	Front Face	23130	Ant 1	w/o	24.0	23.98	1.00	-0.09	0.094	0.09
	LTE 12	QPSK10M	1	0	Rear Face	23130	Ant 1	w/o	24.0	23.98	1.00	-0.15	0.085	0.09
	LTE 12	QPSK10M	25	0	Front Face	23130	Ant 1	w/o	23.0	22.99	1.00	-0.02	0.078	0.08
	LTE 12	QPSK10M	25	0	Rear Face	23130	Ant 1	w/o	23.0	22.99	1.00	0.03	0.071	0.07
26	LTE 17	QPSK10M	1	0	Front Face	23780	Ant 0	w/o	24.0	23.99	1.00	0.02	0.240	<mark>0.24</mark>
	LTE 17	QPSK10M	1	0	Rear Face	23780	Ant 0	w/o	24.0	23.99	1.00	0.04	0.225	0.23
	LTE 17	QPSK10M	25	0	Front Face	23780	Ant 0	w/o	23.0	22.98	1.00	0.03	0.202	0.20
	LTE 17	QPSK10M	25	0	Rear Face	23780	Ant 0	w/o	23.0	22.98	1.00	-0.06	0.19	0.19
	LTE 17	QPSK10M	1	0	Front Face	23780	Ant 1	w/o	24.0	23.99	1.00	-0.07	0.086	0.09
	LTE 17	QPSK10M	1	0	Rear Face	23780	Ant 1	w/o	24.0	23.99	1.00	-0.08	0.081	0.08
	LTE 17	QPSK10M	25	0	Front Face	23780	Ant 1	w/o	23.0	22.98	1.00	0.14	0.077	0.08
	LTE 17	QPSK10M	25	0	Rear Face	23780	Ant 1	w/o	23.0	22.98	1.00	0.08	0.069	0.07

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
27	WLAN2.4G	802.11b	Front Face	11	17.0	16.92	1.02	0.09	0.025	<mark>0.03</mark>
	WLAN2.4G	802.11b	Rear Face	11	17.0	16.92	1.02	-0.02	0.018	0.02
28	WLAN5G	802.11ac VH80	Front Face	58	10.0	9.76	1.06	-0.03	0.025	0.03
	WLAN5G	802.11ac VH80	Rear Face	58	10.0	9.76	1.06	0.09	0.001	0.00
29	WLAN5G	802.11ac VH80	Front Face	106	10.0	9.87	1.03	0.19	0.028	0.03
	WLAN5G	802.11ac VH80	Rear Face	106	10.0	9.87	1.03	0.03	0.001	0.00
30	WLAN5G	802.11ac VH80	Front Face	155	10.0	9.59	1.10	-0.14	0.023	<mark>0.03</mark>
	WLAN5G	802.11ac VH80	Rear Face	155	10.0	9.59	1.10	0.06	0.001	0.00
31	BT	BR	Front Face	0	10.0	9.29	1.18	0.09	0.000201	<mark>0.00</mark>
	BT	BR	Rear Face	0	10.0	9.29	1.18	0.03	0.0000	0.00

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

Report Format Version 5.0.0 Page No. : 59 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

4.7.4 SAR Results for Hotspot Exposure Condition (Test Separation Distance is 10 mm)

Plot No.	Band	Mode	Test Position	Ch.	Ant Status	Reduction Power	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	GSM850	GPRS8	Front Face	189	Ant 0	w/o	34.0	33.71	1.07	0.01	0.171	0.18
	GSM850	GPRS8	Rear Face	189	Ant 0	w/o	34.0	33.71	1.07	-0.15	0.161	0.17
	GSM850	GPRS8	Left Side	189	Ant 0	w/o	34.0	33.71	1.07	-0.13	0.036	0.04
	GSM850	GPRS8	Right Side	189	Ant 0	w/o	34.0	33.71	1.07	-0.11	0.001	0.00
	GSM850	GPRS8	Bottom Side	189	Ant 0	w/o	34.0	33.71	1.07	0.08	0.199	0.21
32	GSM850	GPRS8	Front Face	189	Ant 1	w/o	34.0	33.71	1.07	-0.03	0.211	0.23
	GSM850	GPRS8	Rear Face	189	Ant 1	w/o	34.0	33.71	1.07	0.08	0.143	0.15
	GSM850	GPRS8	Left Side	189	Ant 1	w/o	34.0	33.71	1.07	-0.05	0.091	0.10
	GSM850	GPRS8	Right Side	189	Ant 1	w/o	34.0	33.71	1.07	0.11	0.105	0.11
	GSM850	GPRS8	Top Side	189	Ant 1	w/o	34.0	33.71	1.07	-0.17	0.157	0.17
	GSM1900	GPRS8	Front Face	810	Ant 0	w/	28.5	28.46	1.01	0.08	0.583	0.59
	GSM1900	GPRS8	Rear Face	810	Ant 0	w/	28.5	28.46	1.01	-0.01	0.342	0.35
	GSM1900	GPRS8	Left Side	810	Ant 0	w/	28.5	28.46	1.01	-0.05	0.001	0.00
	GSM1900	GPRS8	Right Side	810	Ant 0	w/	28.5	28.46	1.01	0.06	0.083	0.08
33	GSM1900	GPRS8	Bottom Side	810	Ant 0	w/	28.5	28.46	1.01	-0.02	1.17	1.18
33	GSM1900	GPRS8	Bottom Side	512	Ant 0	w/	28.5	28.18	1.08	0.13	1.060	1.14
	GSM1900	GPRS8	Bottom Side	661	Ant 0	w/	28.5	28.25	1.06	0.13	0.883	0.94
	GSM1900	GPRS8	Bottom Side	810	Ant 0	w/	28.5	28.46	1.00	-0.02	1.15	1.16
-												
	WCDMA II	RMC12.2K	Front Face	9400	Ant 0	w/	20.0	19.99	1.00	0.15	0.576	0.58
	WCDMA II	RMC12.2K	Rear Face	9400	Ant 0	w/	20.0	19.99	1.00	-0.11	0.327	0.33
	WCDMA II	RMC12.2K	Left Side	9400	Ant 0	w/	20.0	19.99	1.00	0.15	0.029	0.03
	WCDMA II	RMC12.2K	Right Side	9400	Ant 0	w/	20.0	19.99	1.00	0.07	0.033	0.03
	WCDMA II	RMC12.2K	Bottom Side	9400	Ant 0	w/	20.0	19.99	1.00	0.05	0.949	0.95
	WCDMA II	RMC12.2K	Bottom Side	9262	Ant 0	w/	20.0	19.90	1.02	-0.13	1.060	1.08
34	WCDMA II	RMC12.2K	Bottom Side	9538	Ant 0	w/	20.0	19.95	1.01	-0.03	1.18	1.19
	WCDMA II	RMC12.2K	Bottom Side	9538	Ant 0	w/	20.0	19.95	1.01	-0.03	1.15	1.16
	WCDMA IV	RMC12.2K	Front Face	1413	Ant 0	w/	21.0	20.96	1.01	0.08	0.726	0.73
	WCDMA IV	RMC12.2K	Rear Face	1413	Ant 0	w/	21.0	20.96	1.01	-0.11	0.418	0.42
	WCDMA IV	RMC12.2K	Left Side	1413	Ant 0	w/	21.0	20.96	1.01	-0.15	0.001	0.00
	WCDMA IV	RMC12.2K	Right Side	1413	Ant 0	w/	21.0	20.96	1.01	0.05	0.037	0.04
	WCDMA IV	RMC12.2K	Bottom Side	1413	Ant 0	w/	21.0	20.96	1.01	0.11	1.08	1.09
35	WCDMA IV	RMC12.2K	Bottom Side	1312	Ant 0	w/	21.0	20.83	1.04	-0.15	1.11	<mark>1.15</mark>
	WCDMA IV	RMC12.2K	Bottom Side	1513	Ant 0	w/	21.0	20.85	1.04	0.18	1.08	1.12
	WCDMA IV	RMC12.2K	Bottom Side	1312	Ant 0	w/	21.0	20.83	1.04	-0.15	1.09	1.13
	WCDMA V	RMC12.2K	Front Face	4182	Ant 0	w/o	25.0	24.99	1.00	0.09	0.236	0.24
	WCDMA V	RMC12.2K	Rear Face	4182	Ant 0	w/o	25.0	24.99	1.00	-0.08	0.117	0.12
	WCDMA V	RMC12.2K	Left Side	4182	Ant 0	w/o	25.0	24.99	1.00	-0.12	0.112	0.11
	WCDMA V	RMC12.2K	Right Side	4182	Ant 0	w/o	25.0	24.99	1.00	0.07	0.082	0.08
36	WCDMA V	RMC12.2K	Bottom Side	4182	Ant 0	w/o	25.0	24.99	1.00	0.13	0.261	<mark>0.26</mark>
	WCDMA V	RMC12.2K	Front Face	4182	Ant 1	w/o	25.0	24.99	1.00	0.03	0.12	0.12
	WCDMA V	RMC12.2K	Rear Face	4182	Ant 1	w/o	25.0	24.99	1.00	-0.02	0.117	0.12
	WCDMA V	RMC12.2K	Left Side	4182	Ant 1	w/o	25.0	24.99	1.00	0.14	0.087	0.09
	WCDMA V	RMC12.2K	Right Side	4182	Ant 1	w/o	25.0	24.99	1.00	0.16	0.104	0.10
	WCDMA V	RMC12.2K	Top Side	4182	Ant 1	w/o	25.0	24.99	1.00	0.16	0.087	0.09
			na thara ia									

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

Report Format Version 5.0.0 Page No. : 60 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

Plot No.	Band	Mode	RB#	RB Offset	Test Position	Ch.	Ant Status	Reduction Power	Max. Tune-up Power	Measured Conducted Power	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
	LTE 0	0.001/001/1		0		10700	A + 0	,	(dBm)	(dBm)	4.00	, ,		
	LTE 2	QPSK20M	1	0	Front Face	18700	Ant 0	w/	20.0	19.87	1.03	0.08	0.569	0.59
	LTE 2	QPSK20M QPSK20M	<u>1</u> 1	0	Rear Face Left Side	18700	Ant 0	W/	20.0	19.87 19.87	1.03	-0.11	0.309	0.32
	LTE 2	QPSK20M	1	0	Right Side	18700 18700	Ant 0 Ant 0	w/ w/	20.0	19.87	1.03	0.15	0.047	0.05 0.08
37	LTE 2	QPSK20M	1	0	Bottom Side	18700	Ant 0	w/	20.0	19.87	1.03	0.07	1.13	1.16
31	LTE 2	QPSK20M	50	0	Front Face	18700	Ant 0	w/	20.0	19.82	1.04	-0.16	0.526	0.55
	LTE 2	QPSK20M	50	0	Rear Face	18700	Ant 0	w/	20.0	19.82	1.04	0.08	0.320	0.32
	LTE 2	QPSK20M	50	0	Left Side	18700	Ant 0	w/	20.0	19.82	1.04	0.00	0.042	0.04
	LTE 2	QPSK20M	50	0	Right Side	18700	Ant 0	w/	20.0	19.82	1.04	-0.02	0.079	0.04
	LTE 2	QPSK20M	50	0	Bottom Side	18700	Ant 0	w/	20.0	19.82	1.04	0.02	1.08	1.13
	LTE 2	QPSK20M	1	0	Bottom Side	18900	Ant 0	w/	20.0	19.83	1.04	0.07	1.09	1.13
	LTE 2	QPSK20M	1	0	Bottom Side	19100	Ant 0	w/	20.0	19.84	1.04	-0.15	1.1	1.14
	LTE 2	QPSK20M	50	0	Bottom Side	18900	Ant 0	w/	20.0	19.78	1.05	-0.18	1.08	1.14
	LTE 2	QPSK20M	50	0	Bottom Side	19100	Ant 0	w/	20.0	19.79	1.05	0.18	1.1	1.15
	LTE 2	QPSK20M	100	0	Bottom Side	18700	Ant 0	w/	20.0	19.76	1.06	0.11	1.07	1.13
	LTE 2	QPSK20M	1	0	Bottom Side	18700	Ant 0	w/	20.0	19.87	1.03	0.13	1.11	1.14
	LTE 4	QPSK20M	1	0	Front Face	20175	Ant 0	w/	20.0	19.98	1.00	0.08	0.537	0.54
	LTE 4	QPSK20M	1	0	Rear Face	20175	Ant 0	w/	20.0	19.98	1.00	-0.15	0.313	0.31
	LTE 4	QPSK20M	1	0	Left Side	20175	Ant 0	w/	20.0	19.98	1.00	-0.11	0.001	0.00
	LTE 4	QPSK20M	1	0	Right Side	20175	Ant 0	w/	20.0	19.98	1.00	0.02	0.033	0.03
	LTE 4	QPSK20M	1	0	Bottom Side	20175	Ant 0	w/	20.0	19.98	1.00	0.07	0.861	0.86
	LTE 4	QPSK20M	50	0	Front Face	20175	Ant 0	w/	20.0	19.92	1.02	0.11	0.532	0.54
	LTE 4	QPSK20M	50	0	Rear Face	20175	Ant 0	w/	20.0	19.92	1.02	0.17	0.311	0.32
	LTE 4	QPSK20M	50	0	Left Side	20175	Ant 0	w/	20.0	19.92	1.02	-0.15	0.001	0.00
	LTE 4	QPSK20M	50	0	Right Side	20175	Ant 0	w/	20.0	19.92	1.02	0.01	0.029	0.03
	LTE 4	QPSK20M	50	0	Bottom Side	20175	Ant 0	w/	20.0	19.92	1.02	0.15	0.806	0.82
38	LTE 4	QPSK20M	1	0	Bottom Side	20050	Ant 0	w/	20.0	19.92	1.02	0.06	0.950	<mark>0.97</mark>
	LTE 4	QPSK20M	1	0	Bottom Side	20300	Ant 0	w/	20.0	19.91	1.02	0.11	0.875	0.89
	LTE 4	QPSK20M	50	0	Bottom Side	20050	Ant 0	w/	20.0	19.86	1.03	0.07	0.929	0.96
	LTE 4	QPSK20M	50	0	Bottom Side	20300	Ant 0	w/	20.0	19.85	1.04	0.13	0.861	0.89
	LTE 4	QPSK20M	100	0	Bottom Side	20175	Ant 0	w/	20.0	19.85	1.04	-0.18	0.902	0.93
	LTE 4	QPSK20M	1	0	Bottom Side	20050	Ant 0	w/	20.0	19.92	1.02	0.02	0.943	0.96
	LTE 5	QPSK10M	1	0	Front Face	20600	Ant 0	w/o	24.0	23.93	1.02	0.04	0.182	0.18
	LTE 5	QPSK10M	1	0	Rear Face	20600	Ant 0	w/o	24.0	23.93	1.02	0.09	0.134	0.14
	LTE 5	QPSK10M	1	0	Left Side	20600	Ant 0	w/o	24.0	23.93	1.02	-0.15	0.102	0.10
	LTE 5	QPSK10M	1	0	Right Side	20600	Ant 0	w/o	24.0	23.93	1.02	-0.08	0.038	0.04
39	LTE 5	QPSK10M	1	0	Bottom Side	20600	Ant 0	w/o	24.0	23.93	1.02	0.11	0.207	<mark>0.21</mark>
	LTE 5	QPSK10M	25	0	Front Face	20600	Ant 0	w/o	23.0	22.99	1.00	0.11	0.147	0.15
	LTE 5	QPSK10M	25	0	Rear Face	20600	Ant 0	w/o	23.0	22.99	1.00	-0.17	0.112	0.11
	LTE 5	QPSK10M	25	0	Left Side	20600	Ant 0	w/o	23.0	22.99	1.00	0.04	0.070	0.07
	LTE 5	QPSK10M	25	0	Right Side	20600	Ant 0	w/o	23.0	22.99	1.00	-0.18	0.044	0.04
	LTE 5	QPSK10M	25	0	Bottom Side	20600	Ant 0	w/o	23.0	22.99	1.00	0.17	0.159	0.16
	LTE 5	QPSK10M	1	0	Front Face	20600	Ant 1	w/o	24.0	23.93	1.02	0.19	0.001	0.00
	LTE 5	QPSK10M	1	0	Rear Face	20600	Ant 1	w/o	24.0	23.93	1.02	0.05	0.001	0.00
	LTE 5	QPSK10M	1	0	Left Side	20600	Ant 1	w/o	24.0	23.93	1.02	-0.08	0.001	0.00
	LTE 5	QPSK10M	1	0	Right Side	20600	Ant 1	w/o	24.0	23.93	1.02	0.04	0.001	0.00
	LTE 5	QPSK10M	1	0	Top Side	20600	Ant 1	w/o	24.0	23.93	1.02	-0.07	0.001	0.00
	LTE 5	QPSK10M	25	0	Front Face	20600	Ant 1	w/o	23.0	22.99	1.00	0.05	0.001	0.00
	LTE 5	QPSK10M	25	0	Rear Face	20600	Ant 1	w/o	23.0	22.99	1.00	0.03	0.001	0.00
	LTE 5	QPSK10M	25	0	Left Side	20600	Ant 1	w/o	23.0	22.99	1.00	-0.18	0.001	0.00
				0										
	LTE 5	QPSK10M	25		Right Side	20600	Ant 1	w/o	23.0	22.99	1.00	0.16	0.001	0.00
	LTE 5	QPSK10M	25	0	Top Side	20600	Ant 1	w/o	23.0	22.99	1.00	0.18	0.001	0.00

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

Report Format Version 5.0.0 Page No. : 61 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

No.	Band	Mode	RB#	RB Offset	Test Position	Ch.	Ant Status	Reduction Power	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
40	LTE 7	QPSK20M	1	0	Front Face	21100	Ant 0	w/o	25.0	24.99	1.00	-0.01	0.787	<mark>0.79</mark>
	LTE 7	QPSK20M	1	0	Rear Face	21100	Ant 0	w/o	25.0	24.99	1.00	0.08	0.748	0.75
	LTE 7	QPSK20M	1	0	Left Side	21100	Ant 0	w/o	25.0	24.99	1.00	-0.07	0.001	0.00
	LTE 7	QPSK20M	1	0	Right Side	21100	Ant 0	w/o	25.0	24.99	1.00	0.11	0.411	0.41
	LTE 7	QPSK20M	1	0	Bottom Side	21100	Ant 0	w/o	25.0	24.99	1.00	0.15	0.587	0.59
	LTE 7	QPSK20M	50	0	Front Face	21100	Ant 0	w/o	24.0	23.97	1.01	0.13	0.655	0.66
	LTE 7	QPSK20M	50	0	Rear Face	21100	Ant 0	w/o	24.0	23.97	1.01	-0.12	0.616	0.62
	LTE 7	QPSK20M	50	0	Left Side	21100	Ant 0	w/o	24.0	23.97	1.01	-0.07	0.001	0.00
	LTE 7	QPSK20M	50	0	Right Side	21100	Ant 0	w/o	24.0	23.97	1.01	0.15	0.329	0.33
	LTE 7	QPSK20M	50	0	Bottom Side	21100	Ant 0	w/o	24.0	23.97	1.01	0.18	0.585	0.59
41	LTE 12	QPSK10M	1	0	Front Face	23130	Ant 0	w/o	24.0	23.98	1.00	-0.03	0.234	0.24
71	LTE 12	QPSK10M	1	0	Rear Face	23130	Ant 0	w/o	24.0	23.98	1.00	0.08	0.16	0.16
	LTE 12	QPSK10M	1	0	Left Side	23130	Ant 0	w/o	24.0	23.98	1.00	-0.17	0.088	0.09
	LTE 12	QPSK10M	1	0	Right Side	23130	Ant 0	w/o	24.0	23.98	1.00	0.17	0.085	0.09
	LTE 12	QPSK10M	1	0	Bottom Side	23130	Ant 0	w/o	24.0	23.98	1.00	-0.02	0.18	0.18
	LTE 12	QPSK10M	25	0	Front Face	23130	Ant 0	w/o	23.0	22.99	1.00	-0.08	0.189	0.19
	LTE 12	QPSK10M	25	0	Rear Face	23130	Ant 0	w/o	23.0	22.99	1.00	0.14	0.12	0.12
	LTE 12	QPSK10M	25	0	Left Side	23130	Ant 0	w/o	23.0	22.99	1.00	-0.05	0.104	0.10
-	LTE 12	QPSK10M	25	0	Right Side	23130	Ant 0	w/o	23.0	22.99	1.00	-0.1	0.058	0.06
+	LTE 12	QPSK10M	25	0	Bottom Side	23130	Ant 0	w/o	23.0	22.99	1.00	0.18	0.050	0.15
	LTE 12	QPSK10M	1	0	Front Face	23130	Ant 1	w/o	24.0	23.98	1.00	0.16	0.134	0.09
	LTE 12	QPSK10M	1	0	Rear Face	23130	Ant 1	w/o	24.0	23.98	1.00	0.10	0.032	0.03
	LTE 12	QPSK10M	1	0	Left Side	23130	Ant 1	w/o	24.0	23.98	1.00	-0.04	0.076	0.00
	LTE 12	QPSK10M	1	0	Right Side	23130	Ant 1	w/o	24.0	23.98	1.00	-0.04	0.061	0.06
	LTE 12	QPSK10M	1	0	Top Side	23130	Ant 1	w/o	24.0	23.98	1.00	0.11	0.001	0.07
	LTE 12	QPSK10M	25	0	Front Face	23130	Ant 1	w/o	23.0	22.99	1.00	-0.08	0.072	0.07
	LTE 12	QPSK10M	25	0	Rear Face	23130	Ant 1	w/o	23.0	22.99	1.00	0.14	0.076	0.07
	LTE 12	QPSK10M	25	0	Left Side	23130	Ant 1	w/o	23.0	22.99	1.00	0.02	0.003	0.00
	LTE 12	QPSK10M	25	0	Right Side	23130	Ant 1	w/o	23.0	22.99	1.00	0.02	0.052	0.05
-	LTE 12	QPSK10M	25	0	Top Side	23130	Ant 1	w/o	23.0	22.99	1.00	0.03	0.052	0.06
40	LTE 17		1											
42	LTE 17	QPSK10M	1	0	Front Face	23780	Ant 0	w/o	24.0	23.99	1.00	-0.01 0.16	0.230	0.23 0.20
	LTE 17	QPSK10M QPSK10M	1	0	Rear Face Left Side	23780 23780	Ant 0	w/o	24.0 24.0	23.99 23.99	1.00	-0.15	0.196	0.20
	LTE 17	QPSK10M QPSK10M	1	0	Right Side	23780	Ant 0 Ant 0	w/o w/o	24.0	23.99	1.00	0.15	0.116	0.12
	LTE 17	QPSK10M	1	0	Bottom Side	23780	Ant 0	w/o	24.0	23.99	1.00	0.13	0.074	0.19
	LTE 17	QPSK10M	25	0	Front Face	23780	Ant 0	w/o	23.0	22.98	1.00	-0.12	0.192	0.19
	LTE 17	QPSK10M	25	0	Rear Face	23780	Ant 0	w/o	23.0	22.98	1.00	-0.16	0.171	0.17
	LTE 17	QPSK10M	25	0	Left Side	23780	Ant 0	w/o	23.0	22.98	1.00	-0.02	0.073	0.07
	LTE 17	QPSK10M	25	0	Right Side	23780	Ant 0	w/o	23.0	22.98	1.00	-0.16	0.062	0.06
	LTE 17	QPSK10M	25	0	Bottom Side	23780	Ant 0	w/o	23.0	22.98	1.00	-0.08	0.154	0.15
	LTE 17	QPSK10M	1	0	Front Face	23780	Ant 1	w/o	24.0	23.99	1.00	0.1	0.092	0.09
	LTE 17	QPSK10M	1	0	Rear Face	23780	Ant 1	w/o	24.0	23.99	1.00	0.03	0.079	0.08
	LTE 17	QPSK10M	1	0	Left Side	23780	Ant 1	w/o	24.0	23.99	1.00	0.11	0.001	0.00
-	LTE 17	QPSK10M	1	0	Right Side	23780	Ant 1	w/o	24.0	23.99	1.00	-0.04	0.061	0.06
-	LTE 17	QPSK10M	1	0	Top Side	23780	Ant 1	w/o	24.0	23.99	1.00	-0.11	0.078	0.08
\vdash	LTE 17 LTE 17	QPSK10M QPSK10M	25 25	0	Front Face	23780 23780	Ant 1	w/o	23.0 23.0	22.98 22.98	1.00	0.03 -0.06	0.067	0.07
-	LTE 17	QPSK10M QPSK10M	25 25	0	Rear Face Left Side	23780	Ant 1 Ant 1	w/o w/o	23.0	22.98	1.00	-0.06	0.065 0.001	0.07
\vdash	LTE 17	QPSK10M	25	0	Right Side	23780	Ant 1	w/o	23.0	22.98	1.00	0.02	0.001	0.05
+	LTE 17	QPSK10M	25	0	Top Side	23780	Ant 1	w/o	23.0	22.98	1.00	0.02	0.054	0.05

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

 Report Format Version 5.0.0
 Page No. : 62 of 82

 Report No. : SA171102C30
 Issued Date : Dec. 14, 2017

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
43	WLAN2.4G	802.11b	Front Face	11	17.0	16.92	1.02	0.08	0.068	<mark>0.07</mark>
	WLAN2.4G	802.11b	Rear Face	11	17.0	16.92	1.02	0.02	0.034	0.03
	WLAN2.4G	802.11b	Left Side	11	17.0	16.92	1.02	-0.06	0	0.00
	WLAN2.4G	802.11b	Top Side	11	17.0	16.92	1.02	-0.11	0.053	0.05
44	WLAN5G	802.11ac VH80	Front Face	42	10.0	9.68	1.08	-0.04	0.052	<mark>0.06</mark>
	WLAN5G	802.11ac VH80	Rear Face	42	10.0	9.68	1.08	0.03	0.001	0.00
	WLAN5G	802.11ac VH80	Left Side	42	10.0	9.68	1.08	-0.04	0.025	0.03
	WLAN5G	802.11ac VH80	Top Side	42	10.0	9.68	1.08	-0.08	0.008	0.01
45	WLAN5G	802.11ac VH80	Front Face	155	10.0	9.59	1.10	0.11	0.036	<mark>0.04</mark>
	WLAN5G	802.11ac VH80	Rear Face	155	10.0	9.59	1.10	0.08	0.001	0.00
	WLAN5G	802.11ac VH80	Left Side	155	10.0	9.59	1.10	-0.13	0.002	0.00
	WLAN5G	802.11ac VH80	Top Side	155	10.0	9.59	1.10	-0.04	0.001	0.00

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

4.7.5 SAR Results for Product Specific (Phablet) Exposure Condition (Test Separation Distance is 0 mm)

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-10g (W/kg)	Scaled SAR-10g (W/kg)
46	WLAN5G	802.11ac VH80	Front Face	58	10.0	9.76	1.06	-0.18	0.292	<mark>0.31</mark>
	WLAN5G	802.11ac VH80	Rear Face	58	10.0	9.76	1.06	-0.05	0.040	0.04
	WLAN5G	802.11ac VH80	Left Side	58	10.0	9.76	1.06	0.03	0.056	0.06
	WLAN5G	802.11ac VH80	Top Side	58	10.0	9.76	1.06	-0.16	0.075	0.08
47	WLAN5G	802.11ac VH80	Front Face	106	10.0	9.87	1.03	-0.18	0.291	<mark>0.30</mark>
	WLAN5G	802.11ac VH80	Rear Face	106	10.0	9.87	1.03	-0.11	0.047	0.05
	WLAN5G	802.11ac VH80	Left Side	106	10.0	9.87	1.03	0.09	0.060	0.06
	WLAN5G	802.11ac VH80	Top Side	106	10.0	9.87	1.03	0.02	0.116	0.12
48	BT	BR	Front Face	0	10.0	9.29	1.18	0.03	0.0000617	<mark>0.00</mark>
	BT	BR	Rear Face	0	10.0	9.29	1.18	0.06	0.001	0.00
	BT	BR	Left Side	0	10.0	9.29	1.18	-0.13	0.001	0.00
	BT	BR	Top Side	0	10.0	9.29	1.18	-0.04	0.001	0.00

Note: The "< 0.001" means there is no SAR value or the SAR is too low to be measured.

Report Format Version 5.0.0 Page No. : 63 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

4.7.6 SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

- 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once.
- 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

Band	Mode	Test Position	Separation Distance (cm)	Ch.	Original Measured SAR-1g (W/kg)	1st Repeated SAR-1g (W/kg)	L/S Ratio	2nd Repeated SAR-1g (W/kg)	L/S Ratio	3rd Repeated SAR-1g (W/kg)	L/S Ratio
GSM850	GPRS8	Right Cheek	0	189	0.845	0.832	1.02	N/A	N/A	N/A	N/A
WCDMA V	RMC12.2K	Left Cheek	0	4182	1.19	1.17	1.02	N/A	N/A	N/A	N/A
LTE 5	QPSK10M	Left Cheek	0	20600	1.04	1.01	1.03	N/A	N/A	N/A	N/A
WCDMA II	RMC12.2K	Front Face	1.5	9538	1.17	1.15	1.02	N/A	N/A	N/A	N/A
WCDMA IV	RMC12.2K	Front Face	1.5	1312	1.11	1.08	1.03	N/A	N/A	N/A	N/A
LTE 2	QPSK20M	Front Face	1.5	18900	0.872	0.867	1.01	N/A	N/A	N/A	N/A
GSM1900	GPRS8	Bottom Side	1.0	810	1.17	1.15	1.02	N/A	N/A	N/A	N/A
WCDMA II	RMC12.2K	Bottom Side	1.0	9538	1.18	1.15	1.03	N/A	N/A	N/A	N/A
WCDMA IV	RMC12.2K	Bottom Side	1.0	1312	1.11	1.09	1.02	N/A	N/A	N/A	N/A
LTE 2	QPSK20M	Bottom Side	1.0	18700	1.13	1.11	1.02	N/A	N/A	N/A	N/A
LTE 4	QPSK20M	Bottom Side	1.0	20050	0.95	0.943	1.01	N/A	N/A	N/A	N/A

Report Format Version 5.0.0 Page No. : 64 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

4.7.7 Simultaneous Multi-band Transmission Evaluation

<Possibilities of Simultaneous Transmission>

The simultaneous transmission possibilities for this device are listed as below.

Simultaneous TX Combination	Capable Transmit Configurations	Head Exposure Condition	Body-worn Exposure Condition	Hotspot Exposure Condition
1	WWAN + WLAN	Yes	Yes	Yes
2	WWAN + BT	No	Yes	Yes

Note:

- 1. The WLAN 2.4G and WLAN 5G cannot transmit simultaneously.
- 2. The WLAN and Bluetooth cannot transmit simultaneously.

Report Format Version 5.0.0 Page No. : 65 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

<SAR Summation Analysis>

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR_{1g} of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR_{1g} 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR_{1g} is greater than the SAR limit (SAR_{1g} 1.6 W/kg), SAR test exclusion is determined by the SPLSR.

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.67	0.50	1.17	Σ SAR < 1.6, Not required
		Hand	Right Tilted	0.54	0.42	0.96	Σ SAR < 1.6, Not required
		Head	Left Cheek	0.71	0.18	0.89	Σ SAR < 1.6, Not required
			Left Tilted	0.66	0.17	0.83	Σ SAR < 1.6, Not required
		Body	Front Face	0.26	0.03	0.29	Σ SAR < 1.6, Not required
1	GSM850 +	Войу	Rear Face	0.25	0.02	0.27	Σ SAR < 1.6, Not required
'	WLAN (DTS)		Front Face	0.23	0.07	0.30	Σ SAR < 1.6, Not required
			Rear Face	0.17	0.03	0.20	Σ SAR < 1.6, Not required
		Hotspot	Left Side	0.10	0.00	0.10	Σ SAR < 1.6, Not required
		Поізроі	Right Side	0.11	0	0.11	Σ SAR < 1.6, Not required
			Top Side	0.17	0.05	0.22	Σ SAR < 1.6, Not required
			Bottom Side	0.21	0	0.21	Σ SAR < 1.6, Not required
			Right Cheek	0.67	0.84	1.51	Σ SAR < 1.6, Not required
		Head	Right Tilted	0.54	0.76	1.30	Σ SAR < 1.6, Not required
		Heau	Left Cheek	0.71	0.00	0.71	Σ SAR < 1.6, Not required
			Left Tilted	0.66	0.00	0.66	Σ SAR < 1.6, Not required
		Body	Front Face	0.26	0.03	0.29	Σ SAR < 1.6, Not required
2	GSM850 +	Dody	Rear Face	0.25	0	0.25	Σ SAR < 1.6, Not required
	WLAN (NII)		Front Face	0.23	0.06	0.29	Σ SAR < 1.6, Not required
			Rear Face	0.17	0	0.17	Σ SAR < 1.6, Not required
		Hotspot	Left Side	0.10	0.03	0.13	Σ SAR < 1.6, Not required
		Поізрої	Right Side	0.11	0	0.11	Σ SAR < 1.6, Not required
			Top Side	0.17	0.01	0.18	Σ SAR < 1.6, Not required
			Bottom Side	0.21	0	0.21	Σ SAR < 1.6, Not required
	GSM850 +	Body	Front Face	0.26	0.00	0.26	Σ SAR < 1.6, Not required
	BT (DSS)	Dody	Rear Face	0.25	0.00	0.25	Σ SAR < 1.6, Not required

Report Format Version 5.0.0 Page No. : 66 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.06	0.50	0.56	Σ SAR < 1.6, Not required
		l la a d	Right Tilted	0	0.42	0.42	Σ SAR < 1.6, Not required
		Head	Left Cheek	0.08	0.18	0.26	Σ SAR < 1.6, Not required
			Left Tilted	0	0.17	0.17	Σ SAR < 1.6, Not required
		Dark	Front Face	0.53	0.03	0.56	Σ SAR < 1.6, Not required
	GSM1900	Body	Rear Face	0.31	0.02	0.33	Σ SAR < 1.6, Not required
3	+ WLAN (DTS)		Front Face	0.59	0.07	0.66	Σ SAR < 1.6, Not required
			Rear Face	0.35	0.03	0.38	Σ SAR < 1.6, Not required
		Hotopot	Left Side	0.00	0.00	0.00	Σ SAR < 1.6, Not required
		Hotspot	Right Side	0.08	0	0.08	Σ SAR < 1.6, Not required
			Top Side	0	0.05	0.05	Σ SAR < 1.6, Not required
			Bottom Side	1.18	0	1.18	Σ SAR < 1.6, Not required
			Right Cheek	0.06	0.84	0.90	Σ SAR < 1.6, Not required
		Head	Right Tilted	0	0.76	0.76	Σ SAR < 1.6, Not required
		Head	Left Cheek	0.08	0.00	0.08	Σ SAR < 1.6, Not required
			Left Tilted	0	0.00	0.00	Σ SAR < 1.6, Not required
		Dody	Front Face	0.53	0.03	0.56	Σ SAR < 1.6, Not required
	GSM1900	Body	Rear Face	0.31	0	0.31	Σ SAR < 1.6, Not required
4	+ WLAN (NII)		Front Face	0.59	0.06	0.65	Σ SAR < 1.6, Not required
			Rear Face	0.35	0	0.35	Σ SAR < 1.6, Not required
		Untopot	Left Side	0.00	0.03	0.03	Σ SAR < 1.6, Not required
		Hotspot	Right Side	0.08	0	0.08	Σ SAR < 1.6, Not required
			Top Side	0	0.01	0.01	Σ SAR < 1.6, Not required
			Bottom Side	1.18	0	1.18	Σ SAR < 1.6, Not required
	GSM1900	Da di	Front Face	0.53	0.00	0.53	Σ SAR < 1.6, Not required
	+ BT (DSS)	Body	Rear Face	0.31	0.00	0.31	Σ SAR < 1.6, Not required

 Report Format Version 5.0.0
 Page No.
 : 67 of 82

 Report No.: SA171102C30
 Issued Date
 : Dec. 14, 2017

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.18	0.50	0.68	Σ SAR < 1.6, Not required
		Heed	Right Tilted	0.06	0.42	0.48	Σ SAR < 1.6, Not required
		Head	Left Cheek	0.15	0.18	0.33	Σ SAR < 1.6, Not required
			Left Tilted	0.06	0.17	0.23	Σ SAR < 1.6, Not required
		Body	Front Face	1.19	0.03	1.22	Σ SAR < 1.6, Not required
5	WCDMA II	Войу	Rear Face	0.70	0.02	0.72	Σ SAR < 1.6, Not required
]	WLAN (DTS)		Front Face	0.58	0.07	0.65	Σ SAR < 1.6, Not required
			Rear Face	0.33	0.03	0.36	Σ SAR < 1.6, Not required
		Hotspot	Left Side	0.03	0.00	0.03	Σ SAR < 1.6, Not required
		Поторот	Right Side	0.03	0	0.03	Σ SAR < 1.6, Not required
			Top Side	0	0.05	0.05	Σ SAR < 1.6, Not required
			Bottom Side	1.19	0	1.19	Σ SAR < 1.6, Not required
			Right Cheek	0.18	0.84	1.02	Σ SAR < 1.6, Not required
		Head	Right Tilted	0.06	0.76	0.82	Σ SAR < 1.6, Not required
		rieau	Left Cheek	0.15	0.00	0.15	Σ SAR < 1.6, Not required
			Left Tilted	0.06	0.00	0.06	Σ SAR < 1.6, Not required
		Body	Front Face	1.19	0.03	1.22	Σ SAR < 1.6, Not required
6	WCDMA II	Войу	Rear Face	0.70	0	0.70	Σ SAR < 1.6, Not required
ľ	WLAN (NII)		Front Face	0.58	0.06	0.64	Σ SAR < 1.6, Not required
			Rear Face	0.33	0	0.33	Σ SAR < 1.6, Not required
		11-44	Left Side	0.03	0.03	0.06	Σ SAR < 1.6, Not required
	Hotspot	riotspot	Right Side	0.03	0	0.03	Σ SAR < 1.6, Not required
			Top Side	0	0.01	0.01	Σ SAR < 1.6, Not required
			Bottom Side	1.19	0	1.19	Σ SAR < 1.6, Not required
	WCDMA II	Body	Front Face	1.19	0.00	1.19	Σ SAR < 1.6, Not required
	+ BT (DSS)	Body	Rear Face	0.70	0.00	0.70	Σ SAR < 1.6, Not required

 Report Format Version 5.0.0
 Page No. : 68 of 82

 Report No. : SA171102C30
 Issued Date : Dec. 14, 2017

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.17	0.50	0.67	Σ SAR < 1.6, Not required
		Heed	Right Tilted	0.06	0.42	0.48	Σ SAR < 1.6, Not required
		Head	Left Cheek	0.12	0.18	0.30	Σ SAR < 1.6, Not required
			Left Tilted	0	0.17	0.17	Σ SAR < 1.6, Not required
		Body	Front Face	1.16	0.03	1.19	Σ SAR < 1.6, Not required
7	WCDMA IV	Бойу	Rear Face	0.63	0.02	0.65	Σ SAR < 1.6, Not required
'	WLAN (DTS)		Front Face	0.73	0.07	0.80	Σ SAR < 1.6, Not required
			Rear Face	0.42	0.03	0.45	Σ SAR < 1.6, Not required
		Hotspot	Left Side	0.00	0.00	0.00	Σ SAR < 1.6, Not required
		Поізроі	Right Side	0.04	0	0.04	Σ SAR < 1.6, Not required
			Top Side	0	0.05	0.05	Σ SAR < 1.6, Not required
			Bottom Side	1.15	0	1.15	Σ SAR < 1.6, Not required
		Head	Right Cheek	0.17	0.84	1.01	Σ SAR < 1.6, Not required
			Right Tilted	0.06	0.76	0.82	Σ SAR < 1.6, Not required
			Left Cheek	0.12	0.00	0.12	Σ SAR < 1.6, Not required
			Left Tilted	0	0.00	0.00	Σ SAR < 1.6, Not required
		Body	Front Face	1.16	0.03	1.19	Σ SAR < 1.6, Not required
8	WCDMA IV	Войу	Rear Face	0.63	0	0.63	Σ SAR < 1.6, Not required
	WLAN (NII)		Front Face	0.73	0.06	0.79	Σ SAR < 1.6, Not required
			Rear Face	0.42	0	0.42	Σ SAR < 1.6, Not required
		Hotopot	Left Side	0.00	0.03	0.03	Σ SAR < 1.6, Not required
	Hotspot	Right Side	0.04	0	0.04	Σ SAR < 1.6, Not required	
			Top Side	0	0.01	0.01	Σ SAR < 1.6, Not required
			Bottom Side	1.15	0	1.15	Σ SAR < 1.6, Not required
	WCDMA IV	Body	Front Face	1.16	0.00	1.16	Σ SAR < 1.6, Not required
	+ BT (DSS)	Body	Rear Face	0.63	0.00	0.63	Σ SAR < 1.6, Not required

 Report Format Version 5.0.0
 Page No.
 : 69 of 82

 Report No. : SA171102C30
 Issued Date
 : Dec. 14, 2017

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.63	0.50	1.13	Σ SAR < 1.6, Not required
		Heed	Right Tilted	0.56	0.42	0.98	Σ SAR < 1.6, Not required
		Head	Left Cheek	0.70	0.18	0.88	Σ SAR < 1.6, Not required
			Left Tilted	0.59	0.17	0.76	Σ SAR < 1.6, Not required
_		Body	Front Face	0.29	0.03	0.32	Not required
0	WCDMA V	Бойу	Rear Face	0.28	0.02	0.30	Not required
9	WLAN (DTS)		Front Face	0.24	0.07	0.31	Σ SAR < 1.6, Not required
			Rear Face	0.12	0.03	0.15	Not required
		Hotspot	Left Side	0.11	0.00	0.11	Not required
		Πυιδρυι	Right Side	0.10	0	0.10	Not required
			Top Side	0.09	0.05	0.14	Not required
			Bottom Side	0.26	0	0.26	Not required
			Right Cheek	0.63	0.84	1.47	Not required
		Head	Right Tilted	0.56	0.76	1.32	Σ SAR < 1.6, Not required Σ SAR < 1.6, Not required Σ SAR < 1.6,
		riead	Left Cheek	0.70	0.00	0.70	Not required
			Left Tilted	0.59	0.00	0.59	Not required
		Body	Front Face	0.29	0.03	0.32	Not required
10	WCDMA V	Бойу	Rear Face	0.28	0	0.28	Not required
	WLAN (NII)		Front Face	0.24	0.06	0.30	Not required
			Rear Face	0.12	0	0.12	Not required
		Hotspot	Left Side	0.11	0.03	0.14	Not required
		Ποιοροί	Right Side	0.10	0	0.10	Not required
			Top Side	0.09	0.01	0.10	Σ SAR < 1.6, Not required
			Bottom Side	0.26	0	0.26	Σ SAR < 1.6, Not required
	WCDMA V +	Body	Front Face	0.29	0.00	0.29	Σ SAR < 1.6, Not required
	BT (DSS)	Dody	Rear Face	0.28	0.00	0.28	Σ SAR < 1.6, Not required

 Report Format Version 5.0.0
 Page No. : 70 of 82

 Report No. : SA171102C30
 Issued Date : Dec. 14, 2017

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.12	0.50	0.62	Σ SAR < 1.6, Not required
			Right Tilted	0.05	0.42	0.47	Σ SAR < 1.6,
		Head	Left Cheek	0.11	0.18	0.29	Σ SAR < 1.6,
			Left Tilted	0.06	0.17	0.23	on Analysis Σ SAR < 1.6,
		Dody	Front Face	0.88	0.03	0.91	
44	LTE 2	Body	Rear Face	0.47	0.02	0.49	Σ SAR < 1.6,
11	+ WLAN (DTS)		Front Face	0.59	0.07	0.66	Σ SAR < 1.6,
			Rear Face	0.32	0.03	0.35	
		Hotopot	Left Side	0.05	0.00	0.05	
		Hotspot	Right Side	0.08	0	0.08	
			Top Side	0	0.05	0.05	Σ SAR < 1.6, Not required Σ SAR < 1.6,
			Bottom Side	1.16	0	1.16	
		Head	Right Cheek	0.12	0.84	0.96	
			Right Tilted	0.05	0.76	0.81	Σ SAR < 1.6,
			Left Cheek	0.11	0.00	0.11	
			Left Tilted	0.06	0.00	0.06	
		Rody	Front Face	0.88	0.03	0.91	Not required
12	LTE 2	Body	Rear Face	0.47	0	0.47	Not required
12	+ WLAN (NII)		Front Face	0.59	0.06	0.65	Not required
			Rear Face	0.32	0	0.32	Not required
		Hotspot	Left Side	0.05	0.03	0.08	,
		Ποισμοί	Right Side	0.08	0	0.08	Not required
			Top Side	0	0.01	0.01	Not required
			Bottom Side	1.16	0	1.16	Not required
	LTE 2	Body	Front Face	0.88	0.00	0.88	Not required
	+ BT (DSS)	Bouy	Rear Face	0.47	0.00	0.47	Σ SAR < 1.6, Not required

Report Format Version 5.0.0 Page No. : 71 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis	
			Right Cheek	0.12	0.50	0.62	Σ SAR < 1.6, Not required	
		Heed	Right Tilted	0	0.42	0.42	Not required $\Sigma SAR < 1.6,$ Not required	
		Head	Left Cheek	0.10	0.18	0.28	,	
			Left Tilted	0.03	0.17	0.20	,	
		Body	Front Face	0.78	0.03	0.81	Not required	
13	LTE 4	Бойу	Rear Face	0.56	0.02	0.58	Not required	
13	WLAN (DTS)		Front Face	0.54	0.07	0.61	Not required	
			Rear Face	0.32	0.03	0.35	Not required	
		Hotspot	Left Side	0.00	0.00	0.00	Not required	
		riotopot	Right Side	0.03	0	0.03	Not required	
			Top Side	0	0.05	0.05	Not required Σ SAR < 1.6,	
			Bottom Side	0.97	0	0.97		
			Right Cheek	0.12	0.84	0.96	Not required	
		Head	Right Tilted	0	0.76	0.76	Not required	
		riead	Left Cheek	0.10	0.00	0.10	Not required	
			Left Tilted	0.03	0.00	0.03	Not required	
		Body	Front Face	0.78	0.03	0.61 0.35 0.00 0.03 0.05 0.97 0.96 0.76 0.10	Not required	
14	LTE 4	Бойу	Rear Face	0.56	0	0.56	Not required	
14	WLAN (NII)		Front Face	0.54	0.06	0.60	Σ SAR < 1.6, Not required	
			Rear Face	0.32	0	0.32	Σ SAR < 1.6, Not required	
		Hotspot	Left Side	0.00	0.03	0.03	Σ SAR < 1.6, Not required	
		Ποισμοί	Right Side	0.03	0	0.03	Σ SAR < 1.6, Not required	
			Top Side	0	0.01	0.01	Σ SAR < 1.6, Not required	
			Bottom Side	0.97	0	0.97	Σ SAR < 1.6, Not required	
	LTE 4	Body	Front Face	0.78	0.00	0.78	Σ SAR < 1.6, Not required	
	+ BT (DSS)	+ BT (DSS)	Dody	Rear Face	0.56	0.00	0.56	Σ SAR < 1.6, Not required

 Report Format Version 5.0.0
 Page No.
 : 72 of 82

 Report No.: SA171102C30
 Issued Date
 : Dec. 14, 2017

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.54	0.50	1.04	Σ SAR < 1.6, Not required
			Right Tilted	0.46	0.42	0.88	Σ SAR < 1.6, Not required
		Head	Left Cheek	0.56	0.18	0.74	Σ SAR < 1.6, Not required
			Left Tilted	0.56	0.17	0.73	Σ SAR < 1.6, Not required
	LTE 5	Dody	Front Face	0.17	0.03	0.20	Σ SAR < 1.6, Not required
45		Body	Rear Face	0.16	0.02	0.18	Σ SAR < 1.6, Not required
15	+ WLAN (DTS)		Front Face	0.18	0.07	0.25	Σ SAR < 1.6, Not required
			Rear Face	0.14	0.03	0.17	Σ SAR < 1.6, Not required
		Untopot	Left Side	0.10	0.00	0.10	Σ SAR < 1.6, Not required
		Hotspot	Right Side	0.04	0	0.04	Σ SAR < 1.6, Not required
			Top Side	0.00	0.05	0.05	Σ SAR < 1.6, Not required
			Bottom Side	0.21	0	0.21	Σ SAR < 1.6, Not required
		Usad	Right Cheek	0.54	0.84	1.38	Σ SAR < 1.6, Not required
			Right Tilted	0.46	0.76	1.22	Σ SAR < 1.6, Not required
		Head	Left Cheek	0.56	0.00	0.56	Σ SAR < 1.6, Not required
			Left Tilted	0.56	0.00	0.56	Σ SAR < 1.6, Not required
		Dody	Front Face	0.17	0.03	0.20	Σ SAR < 1.6, Not required
40	LTE 5	Body	Rear Face	0.16	0	0.16	Σ SAR < 1.6, Not required
16	+ WLAN (NII)		Front Face	0.18	0.06	0.24	Σ SAR < 1.6, Not required
			Rear Face	0.14	0	0.14	Σ SAR < 1.6, Not required
		Untopot	Left Side	0.10	0.03	0.13	Σ SAR < 1.6, Not required
		Hotspot	Right Side	0.04	0	0.04	Σ SAR < 1.6, Not required
			Top Side	0.00	0.01	0.01	Σ SAR < 1.6, Not required
			Bottom Side	0.21	0	0.21	Σ SAR < 1.6, Not required
	LTE 5	Deski	Front Face	0.17	0.00	0.17	Σ SAR < 1.6, Not required
	+ BT (DSS)	Body	Rear Face	0.16	0.00	0.16	Σ SAR < 1.6, Not required

 Report Format Version 5.0.0
 Page No. : 73 of 82

 Report No. : SA171102C30
 Issued Date : Dec. 14, 2017

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.19	0.50	0.69	Σ SAR < 1.6, Not required
		Llaad	Right Tilted	0.06	0.42	0.48	Σ SAR < 1.6, Not required
		Head	Left Cheek	0.10	0.18	0.28	Σ SAR < 1.6, Not required
			Left Tilted	0.08	0.17	0.25	Σ SAR < 1.6, Not required
	LTE 7	Body	Front Face	0.37	0.03	0.40	Σ SAR < 1.6, Not required
17		Бойу	Rear Face	0.36	0.02	0.38	Σ SAR < 1.6, Not required
''	+ WLAN (DTS)		Front Face	0.79	0.07	0.86	Σ SAR < 1.6, Not required
			Rear Face	0.75	0.03	0.78	Σ SAR < 1.6, Not required
		Hotenot	Left Side	0.00	0.00	0.00	Σ SAR < 1.6, Not required
		Ποισμοί	Right Side	0.41	0	0.41	Σ SAR < 1.6, Not required
			Top Side	0	0.05	0.05	Σ SAR < 1.6, Not required
			Bottom Side	0.59	0	0.59	Σ SAR < 1.6, Not required
		Hood	Right Cheek	0.19	0.84	1.03	Σ SAR < 1.6, Not required
			Right Tilted	0.06	0.76	0.82	Σ SAR < 1.6, Not required
		rieau	Left Cheek	0.10	0.00	0.10	Σ SAR < 1.6, Not required
			Left Tilted	0.08	0.00	0.08	Σ SAR < 1.6, Not required
		Hotspot Head Body Hotspot	Front Face	0.37	0.03	0.40	Σ SAR < 1.6, Not required
18	LTE 7	Dody	Rear Face	0.36	0	0.36	Σ SAR < 1.6, Not required
10	WLAN (NII)		Front Face	0.79	0.06	0.85	Σ SAR < 1.6, Not required
			Rear Face	0.75	0	0.75	Σ SAR < 1.6, Not required
		Hotspot	Left Side	0.00	0.03	0.03	Σ SAR < 1.6, Not required
		Hotspot	Right Side	0.41	0	0.41	Σ SAR < 1.6, Not required
			Top Side	0	0.01	0.01	Σ SAR < 1.6, Not required
			Bottom Side	0.59	0	0.59	Σ SAR < 1.6, Not required
	LTE 7	Body	Front Face	0.37	0.00	0.37	Σ SAR < 1.6, Not required
	+ BT (DSS)	Dody	Rear Face	0.36	0.00	0.36	Σ SAR < 1.6, Not required

 Report Format Version 5.0.0
 Page No.
 : 74 of 82

 Report No.: SA171102C30
 Issued Date
 : Dec. 14, 2017

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.43	0.50	0.93	Σ SAR < 1.6, Not required
		Heed	Right Tilted	0.33	0.42	0.75	Σ SAR < 1.6, Not required
		Head	Left Cheek	0.58	0.18	0.76	Σ SAR < 1.6, Not required
			Left Tilted	0.47	0.17	0.64	Σ SAR < 1.6, Not required
	LTE 12	Pody	Front Face	0.25	0.03	0.28	Σ SAR < 1.6, Not required
19		Body	Rear Face	0.23	0.02	0.25	Σ SAR < 1.6, Not required
19	+ WLAN (DTS)		Front Face	0.24	0.07	0.31	Σ SAR < 1.6, Not required
			Rear Face	0.16	0.03	0.19	Σ SAR < 1.6, Not required
		Untanat	Left Side	0.10	0.00	0.10	Σ SAR < 1.6, Not required
		Hotspot	Right Side	0.09	0	0.09	Σ SAR < 1.6, Not required
			Top Side	0.07	0.05	0.12	Σ SAR < 1.6, Not required
			Bottom Side	0.18	0	0.18	Σ SAR < 1.6, Not required
		lld	Right Cheek	0.43	0.84	1.27	Σ SAR < 1.6, Not required
			Right Tilted	0.33	0.76	1.09	Σ SAR < 1.6, Not required
		Head	Left Cheek	0.58	0.00	0.58	Σ SAR < 1.6, Not required
			Left Tilted	0.47	0.00	0.47	Σ SAR < 1.6, Not required
		Dody	Front Face	0.25	0.03	0.28	Σ SAR < 1.6, Not required
	LTE 12	Body	Rear Face	0.23	0	0.23	Σ SAR < 1.6, Not required
20	+ WLAN (NII)		Front Face	0.24	0.06	0.30	Σ SAR < 1.6, Not required
			Rear Face	0.16	0	0.16	Σ SAR < 1.6, Not required
		Untanat	Left Side	0.10	0.03	0.13	Σ SAR < 1.6, Not required
		Hotspot	Right Side	0.09	0	0.09	Σ SAR < 1.6, Not required
			Top Side	0.07	0.01	0.08	Σ SAR < 1.6, Not required
			Bottom Side	0.18	0	0.18	Σ SAR < 1.6, Not required
	LTE 12	Dedu	Front Face	0.25	0.00	0.25	Σ SAR < 1.6, Not required
	+ BT (DSS)	Body	Rear Face	0.23	0.00	0.23	Σ SAR < 1.6, Not required

 Report Format Version 5.0.0
 Page No. : 75 of 82

 Report No. : SA171102C30
 Issued Date : Dec. 14, 2017

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
			Right Cheek	0.48	0.50	0.98	Σ SAR < 1.6, Not required
		l la a d	Right Tilted	0.34	0.42	0.76	Σ SAR < 1.6, Not required
		Head	Left Cheek	0.58	0.18	0.76	Σ SAR < 1.6, Not required
			Left Tilted	0.47	0.17	0.64	Σ SAR < 1.6, Not required
		Pody	Front Face	0.24	0.03	0.27	Σ SAR < 1.6, Not required
21	LTE 17	Body	Rear Face	0.23	0.02	0.25	Σ SAR < 1.6, Not required
21	+ WLAN (DTS)		Front Face	0.23	0.07	0.30	Σ SAR < 1.6, Not required
			Rear Face	0.20	0.03	0.23	Σ SAR < 1.6, Not required
		Hotopot	Left Side	0.12	0.00	0.12	Σ SAR < 1.6, Not required
		Hotspot	Right Side	0.07	0	0.07	Σ SAR < 1.6, Not required
			Top Side	0.08	0.05	0.13	Σ SAR < 1.6, Not required
			Bottom Side	0.19	0	0.19	Σ SAR < 1.6, Not required
		lland	Right Cheek	0.48	0.84	1.32	Σ SAR < 1.6, Not required
			Right Tilted	0.34	0.76	1.10	Σ SAR < 1.6, Not required
		Head	Left Cheek	0.58	0.00	0.58	Σ SAR < 1.6, Not required
			Left Tilted	0.47	0.00	0.47	Σ SAR < 1.6, Not required
		Dodu	Front Face	0.24	0.03	0.27	Σ SAR < 1.6, Not required
22	LTE 17	Body	Rear Face	0.23	0	0.23	Σ SAR < 1.6, Not required
22	+ WLAN (NII)		Front Face	0.23	0.06	0.29	Σ SAR < 1.6, Not required
			Rear Face	0.20	0	0.20	Σ SAR < 1.6, Not required
		Untanat	Left Side	0.12	0.03	0.15	Σ SAR < 1.6, Not required
		Hotspot	Right Side	0.07	0	0.07	Σ SAR < 1.6, Not required
			Top Side	0.08	0.01	0.09	Σ SAR < 1.6, Not required
			Bottom Side	Bottom Side 0.19 0		0.19	Σ SAR < 1.6, Not required
	LTE 17	De di i	Front Face	0.24	0.00	0.24	Σ SAR < 1.6, Not required
	+ BT (DSS)	Body	Rear Face	0.23	0.00	0.23	Σ SAR < 1.6, Not required

Test Engineer: Willy Chang, and Kevin Yao

 Report Format Version 5.0.0
 Page No.
 : 76 of 82

 Report No.: SA171102C30
 Issued Date
 : Dec. 14, 2017

5. Calibration of Test Equipment

Equipment	Manufacturer	Model	SN	Cal. Date	Cal. Interval
System Validation Dipole	SPEAG	D750V3	1013	Aug. 21, 2017	1 Year
System Validation Dipole	SPEAG	D835V2	4d121	Aug. 21, 2017	1 Year
System Validation Dipole	SPEAG	D1750V2	1055	Aug. 21, 2017	1 Year
System Validation Dipole	SPEAG	D1900V2	5d036	Jan. 23, 2017	1 Year
System Validation Dipole	SPEAG	D2450V2	737	Aug. 17, 2017	1 Year
System Validation Dipole	SPEAG	D2600V2	1020	Aug. 17, 2017	1 Year
System Validation Dipole	SPEAG	D5GHzV2	1019	Aug. 23, 2017	1 Year
Dosimetric E-Field Probe	SPEAG	EX3DV4	3650	Jul. 24, 2017	1 Year
Dosimetric E-Field Probe	SPEAG	EX3DV4	3971	Mar. 24, 2017	1 Year
Dosimetric E-Field Probe	SPEAG	EX3DV4	7375	Dec. 08, 2016	1 Year
Data Acquisition Electronics	SPEAG	DAE3	579	Aug. 17, 2017	1 Year
Data Acquisition Electronics	SPEAG	DAE4	861	May. 22, 2017	1 Year
Data Acquisition Electronics	SPEAG	DAE4	1277	Jul. 20, 2017	1 Year
Wireless Communication Test Set	Agilent	E5515C	MY50266628	Dec. 12, 2016	1 Year
Radio Communication Analyzer	Anritsu	MT8820C	6201300638	Jul. 11, 2017	1 Year
Spectrum Analyzer	R&S	FSL6	102006	Mar. 27, 2017	1 Year
ENA Series Network Analyzer	Agilent	E5071C	MY46214281	Jun. 09, 2017	1 Year
Vector Signal Generator	Anritsu	MG3710A	6201599977	Mar. 27, 2017	1 Year
Power Meter	Anritsu	ML2495A	1218009	Jul. 12, 2017	1 Year
Power Sensor	Anritsu	MA2411B	1207252	Jul. 12, 2017	1 Year
Universal Wireless Test Set	Anritsu	MT8870A/MU88 7000A	6201699387	Sep. 14, 2017	1 Year
Thermometer	YFE	YF-160A	130504591	Mar. 24, 2017	1 Year
Power Amplifier	AR	5S1G4	0339656	Sep. 20, 2017	1 Year
Power Amplifier	mini-circuits	ZVE-8G	05770420A	Sep. 15, 2017	1 Year
Attenuator	MTJ	MTJ6011-03	N/A	Sep. 15, 2017	1 Year
Directional Coupler	Woken	0110A05602O-10	11122702	Sep. 15, 2017	1 Year

Report Format Version 5.0.0 Page No. : 77 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

6. Measurement Uncertainty

Source of Uncertainty	Uncertainty (± %)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (± %, 1g)	Standard Uncertainty (± %, 10g)	Vi
Measurement System								
Probe Calibration	6.0	Normal	1	1	1	6.0	6.0	8
Axial Isotropy	4.7	Rectangular	√3	√0.5	√0.5	1.9	1.9	8
Hemispherical Isotropy	9.6	Rectangular	√3	√0.5	√0.5	3.9	3.9	8
Boundary Effect	1.0	Rectangular	√3	1	1	0.6	0.6	8
Linearity	4.7	Rectangular	√3	1	1	2.7	2.7	8
Detection Limits	0.25	Rectangular	√3	1	1	0.14	0.14	8
Probe Modulation Response	3.5	Rectangular	√3	1	1	2.0	2.0	8
Readout Electronics	0.3	Normal	1	1	1	0.3	0.3	8
Response Time	0.0	Rectangular	√3	1	1	0.0	0.0	8
Integration Time	1.7	Rectangular	√3	1	1	1.0	1.0	8
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.7	1.7	8
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	0.4	Rectangular	√3	1	1	0.2	0.2	8
Probe Positioning with Respect to Phantom	2.9	Rectangular	√3	1	1	1.7	1.7	8
Post-processing	2.0	Rectangular	√3	1	1	1.2	1.2	8
Test Sample Related								
Test Sample Positioning	3.9 / 2.06	Normal	1	1	1	3.9	2.1	35
Device Holder Uncertainty	2.9 / 4.1	Normal	1	1	1	2.9	4.1	11
Power Drift of Measurement	5.0	Rectangular	√3	1	1	2.9	2.9	8
Power Scaling	0.0	Rectangular	√3	1	1	0.0	0.0	∞
Phantom and Setup	_			_		_		
Phantom Uncertainty (Shape and Thickness Tolerances)	6.1	Rectangular	√3	1	1	3.5	3.5	∞
Liquid Conductivity (Temperature Uncertainty)	3.24	Rectangular	√3	0.78	0.71	1.5	1.3	∞
Liquid Conductivity (Measured)	2.88	Normal	1	0.78	0.71	2.2	2.0	43
Liquid Permittivity (Temperature Uncertainty)	1.13	Rectangular	√3	0.23	0.26	0.2	0.2	∞
Liquid Permittivity (Measured)	2.50	Normal	1	0.23	0.26	0.6	0.7	54
Combined Standard Uncertainty		± 11.4 %	± 11.2 %					
Expanded Uncertainty (K=2)							± 22.4 %	

Head SAR Uncertainty Budget for Frequency Range of 300 MHz to 3 GHz

Report Format Version 5.0.0 Page No. : 78 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

Source of Uncertainty	Uncertainty (± %)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (± %, 1g)	Standard Uncertainty (± %, 10g)	Vi	
Measurement System									
Probe Calibration	6.55	Normal	1	1	1	6.55	6.55	œ	
Axial Isotropy	4.7	Rectangular	√3	0.7	0.7	1.9	1.9	8	
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	0.7	3.9	3.9	8	
Boundary Effect	2.0	Rectangular	√3	1	1	1.2	1.2	8	
Linearity	4.7	Rectangular	√3	1	1	2.7	2.7	8	
Detection Limits	0.25	Rectangular	√3	1	1	0.14	0.14	8	
Probe Modulation Response	3.5	Rectangular	√3	1	1	2.0	2.0	8	
Readout Electronics	0.3	Normal	1	1	1	0.3	0.3	8	
Response Time	0.0	Rectangular	√3	1	1	0.0	0.0	8	
Integration Time	1.7	Rectangular	√3	1	1	1.0	1.0	8	
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.7	1.7	8	
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.7	1.7	8	
Probe Positioner Mechanical Tolerance	0.4	Rectangular	√3	1	1	0.2	0.2	8	
Probe Positioning with Respect to Phantom	6.7	Rectangular	√3	1	1	3.9	3.9	8	
Post-processing	4.0	Rectangular	√3	1	1	2.3	2.3	8	
Test Sample Related	_								
Test Sample Positioning	3.9 / 2.06	Normal	1	1	1	3.9	2.1	35	
Device Holder Uncertainty	2.9 / 4.1	Normal	1	1	1	2.9	4.1	11	
Power Drift of Measurement	5.0	Rectangular	√3	1	1	2.9	2.9	8	
Power Scaling	0.0	Rectangular	√3	1	1	0.0	0.0	8	
Phantom and Setup									
Phantom Uncertainty (Shape and Thickness Tolerances)	6.6	Rectangular	√3	1	1	3.8	3.8	8	
Liquid Conductivity (Temperature Uncertainty)	3.24	Rectangular	√3	0.78	0.71	1.5	1.3	8	
Liquid Conductivity (Measured)	2.88	Normal	1	0.78	0.71	2.2	2.0	43	
Liquid Permittivity (Temperature Uncertainty)	1.13	Rectangular	√3	0.23	0.26	0.2	0.2	8	
Liquid Permittivity (Measured)	2.50	Normal	1	0.23	0.26	0.6	0.7	54	
Combined Standard Uncertainty						± 12.5 %	± 12.3 %		
Expanded Uncertainty (K=2)	·								

Head SAR Uncertainty Budget for Frequency Range of 3 GHz to 6 GHz

Report Format Version 5.0.0 Page No. : 79 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

Source of Uncertainty	Uncertainty (± %)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (± %, 1g)	Standard Uncertainty (± %, 10g)	Vi
Measurement System								
Probe Calibration	6.0	Normal	1	1	1	6.0	6.0	8
Axial Isotropy	4.7	Rectangular	√3	√0.5	√0.5	1.9	1.9	8
Hemispherical Isotropy	9.6	Rectangular	√3	√0.5	√0.5	3.9	3.9	8
Boundary Effect	1.0	Rectangular	√3	1	1	0.6	0.6	8
Linearity	4.7	Rectangular	√3	1	1	2.7	2.7	8
Detection Limits	0.25	Rectangular	√3	1	1	0.14	0.14	∞
Probe Modulation Response	3.5	Rectangular	√3	1	1	2.0	2.0	8
Readout Electronics	0.3	Normal	1	1	1	0.3	0.3	8
Response Time	0.0	Rectangular	√3	1	1	0.0	0.0	8
Integration Time	1.7	Rectangular	√3	1	1	1.0	1.0	8
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.7	1.7	8
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.7	1.7	8
Probe Positioner Mechanical Tolerance	0.4	Rectangular	√3	1	1	0.2	0.2	8
Probe Positioning with Respect to Phantom	2.9	Rectangular	√3	1	1	1.7	1.7	8
Post-processing	2.0	Rectangular	√3	1	1	1.2	1.2	∞
Test Sample Related								
Test Sample Positioning	4.38 / 1.35	Normal	1	1	1	4.4	1.4	29
Device Holder Uncertainty	2.9 / 4.1	Normal	1	1	1	2.9	4.1	11
Power Drift of Measurement	5.0	Rectangular	√3	1	1	2.9	2.9	8
Power Scaling	0.0	Rectangular	√3	1	1	0.0	0.0	8
Phantom and Setup								
Phantom Uncertainty (Shape and Thickness Tolerances)	7.2	Rectangular	√3	1	1	4.2	4.2	8
Liquid Conductivity (Temperature Uncertainty)	3.24	Rectangular	√3	0.78	0.71	1.5	1.3	8
Liquid Conductivity (Measured)	2.88	Normal	1	0.78	0.71	2.2	2.0	43
Liquid Permittivity (Temperature Uncertainty)	1.13	Rectangular	√3	0.23	0.26	0.2	0.2	8
Liquid Permittivity (Measured)	2.50	Normal	1	0.23	0.26	0.6	0.7	54
Combined Standard Uncertainty						± 11.8 %	± 11.3 %	
Expanded Uncertainty (K=2)	± 23.6 %	± 22.6 %						

Body SAR Uncertainty Budget for Frequency Range of 300 MHz to 3 GHz

Report Format Version 5.0.0 Page No. : 80 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

Source of Uncertainty	Uncertainty (± %)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (± %, 1g)	Standard Uncertainty (± %, 10g)	Vi		
Measurement System	Measurement System									
Probe Calibration	6.55	Normal	1	1	1	6.55	6.55	∞		
Axial Isotropy	4.7	Rectangular	√3	0.7	0.7	1.9	1.9	8		
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	0.7	3.9	3.9	8		
Boundary Effect	2.0	Rectangular	√3	1	1	1.2	1.2	8		
Linearity	4.7	Rectangular	√3	1	1	2.7	2.7	8		
Detection Limits	0.25	Rectangular	√3	1	1	0.14	0.14	8		
Probe Modulation Response	3.5	Rectangular	√3	1	1	2.0	2.0	8		
Readout Electronics	0.3	Normal	1	1	1	0.3	0.3	8		
Response Time	0.0	Rectangular	√3	1	1	0.0	0.0	8		
Integration Time	1.7	Rectangular	√3	1	1	1.0	1.0	8		
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.7	1.7	8		
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.7	1.7	8		
Probe Positioner Mechanical Tolerance	0.4	Rectangular	√3	1	1	0.2	0.2	8		
Probe Positioning with Respect to Phantom	6.7	Rectangular	√3	1	1	3.9	3.9	8		
Post-processing	4.0	Rectangular	√3	1	1	2.3	2.3	8		
Test Sample Related	_									
Test Sample Positioning	4.38 / 1.35	Normal	1	1	1	4.4	1.4	29		
Device Holder Uncertainty	2.9 / 4.1	Normal	1	1	1	2.9	4.1	11		
Power Drift of Measurement	5.0	Rectangular	√3	1	1	2.9	2.9	8		
Power Scaling	0.0	Rectangular	√3	1	1	0.0	0.0	8		
Phantom and Setup										
Phantom Uncertainty (Shape and Thickness Tolerances)	7.6	Rectangular	√3	1	1	4.4	4.4	8		
Liquid Conductivity (Temperature Uncertainty)	3.24	Rectangular	√3	0.78	0.71	1.5	1.3	8		
Liquid Conductivity (Measured)	2.88	Normal	1	0.78	0.71	2.2	2.0	43		
Liquid Permittivity (Temperature Uncertainty)	1.13	Rectangular	√3	0.23	0.26	0.2	0.2	∞		
Liquid Permittivity (Measured)	2.50	Normal	1	0.23	0.26	0.6	0.7	54		
Combined Standard Uncertainty						± 12.8 %	± 12.4 %			
Expanded Uncertainty (K=2)	·									

Body SAR Uncertainty Budget for Frequency Range of 3 GHz to 6 GHz

Report Format Version 5.0.0 Page No. : 81 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

7. Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Taiwan HwaYa EMC/RF/Safety/Telecom Lab:

Add: No. 19, Hwa Ya 2nd Rd, Wen Hwa Vil., Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-318-3232 Fax: 886-3-327-0892

Taiwan LinKo EMC/RF Lab:

Add: No. 47-2, 14th Ling, Chia Pau Vil., Linkou Dist., New Taipei City 244, Taiwan, R.O.C.

Tel: 886-2-2605-2180 Fax: 886-2-2605-1924

Taiwan HsinChu EMC/RF Lab:

Add: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 30078, Taiwan, R.O.C.

Tel: 886-3-593-5343 Fax: 886-3-593-5342

Email: service.adt@tw.bureauveritas.com

Web Site: www.adt.com.tw

The road map of all our labs can be found in our web site also.

---END---

Report Format Version 5.0.0 Page No. : 82 of 82
Report No.: SA171102C30 Issued Date : Dec. 14, 2017

Appendix A. SAR Plots of System Verification

The plots for system verification with largest deviation for each SAR system combination are shown as follows.

Report Format Version 5.0.0 Issued Date : Dec. 14, 2017

Report No. : SA171102C30

System Check_H750_171121

DUT: Dipole 750 MHz; Type: D750V3; SN: 1013

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium: H06T09N1_1121 Medium parameters used: f = 750 MHz; $\sigma = 0.895$ S/m; $\varepsilon_r = 41.325$; $\rho =$

Date: 2017/11/21

 1000 kg/m^3

Ambient Temperature : 23.8 $^{\circ}$ C ; Liquid Temperature : 23.6 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN7375; ConvF(9.9, 9.9, 9.9); Calibrated: 2016/12/08;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2017/08/17
- Phantom: Twin SAM Phantom 1653; Type: QD000P40
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.69 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 56.77 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.08 W/kg

SAR(1 g) = 1.98 W/kg; SAR(10 g) = 1.3 W/kgMaximum value of SAR (measured) = 2.69 W/kg

ZZZSystem Check_H835_171121

DUT: Dipole 835 MHz; Type: D835V2; SN: 4d121

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: H07T10N2 1121 Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 41.465$; $\rho =$

Date: 2017/11/21

 1000 kg/m^3

Ambient Temperature: 23.8 °C; Liquid Temperature: 23.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7375; ConvF(9.73, 9.73, 9.73); Calibrated: 2016/12/08;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2017/08/17
- Phantom: Twin SAM Phantom 1653; Type: QD000P40;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.85 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 57.04 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.33 W/kg

SAR(1 g) = 2.3 W/kg; SAR(10 g) = 1.54 W/kgMaximum value of SAR (measured) = 2.87 W/kg

System Check_H835_171124

DUT: Dipole 835 MHz; Type: D835V2; SN: 4d121

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: H07T10N2_1124 Medium parameters used: f = 835 MHz; $\sigma = 0.938$ S/m; $\varepsilon_r = 42.585$; $\rho =$

Date: 2017/11/24

 1000 kg/m^3

Ambient Temperature : 23.8 $^{\circ}$ C ; Liquid Temperature : 23.2 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN3650; ConvF(9.37, 9.37, 9.37); Calibrated: 2013/04/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2017/07/20
- Phantom: Twin SAM Phantom 1822; Type: QD000P40;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.05 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 55.02 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.61 W/kg

SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.58 W/kgMaximum value of SAR (measured) = 3.07 W/kg

System Check_H1750_171118

DUT: Dipole 1750 MHz; Type: D1750V2; SN: 1055

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: H16T20N1_1118 Medium parameters used: f = 1750 MHz; $\sigma = 1.335$ S/m; $\varepsilon_r = 38.757$; $\rho =$

Date: 2017/11/18

 1000 kg/m^3

Ambient Temperature: 23.7 °C; Liquid Temperature: 23.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3971; ConvF(8.92, 8.92, 8.92); Calibrated: 2017/03/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2017/05/22
- Phantom: Twin SAM Phantom 1652; Type: QD000P40;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 13.6 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 97.23 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 16.0 W/kg

SAR(1 g) = 8.72 W/kg; SAR(10 g) = 4.65 W/kgMaximum value of SAR (measured) = 13.5 W/kg

System Check_H1900_171118

DUT: Dipole 1900 MHz; Type: D1900V2; SN: 5d036

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: H16T20N1_1118 Medium parameters used: f = 1900 MHz; $\sigma = 1.46$ S/m; $\varepsilon_r = 38.262$; $\rho =$

Date: 2017/11/18

 1000 kg/m^3

Ambient Temperature: 23.7 °C; Liquid Temperature: 23.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3971; ConvF(8.59, 8.59, 8.59); Calibrated: 2017/03/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2017/05/22
- Phantom: Twin SAM Phantom 1652; Type: QD000P40;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 14.8 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 100.9 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 18.4 W/kg

SAR(1 g) = 9.99 W/kg; SAR(10 g) = 5.17 W/kg Maximum value of SAR (measured) = 14.3 W/kg

System Check_H2450_171122

DUT: Dipole 2450 MHz; Type: D2450V2; SN: 737

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: H19T27N1_1122 Medium parameters used: f = 2450 MHz; $\sigma = 1.841$ S/m; $\varepsilon_r = 38.371$; $\rho =$

Date: 2017/11/22

 1000 kg/m^3

Ambient Temperature : 23.8 $^{\circ}$ C ; Liquid Temperature : 23.6 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN7375; ConvF(7.27, 7.27, 7.27); Calibrated: 2016/12/08;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2017/08/17
- Phantom: Twin SAM Phantom 1823; Type: QD000P40CD;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 20.0 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.6 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 26.5 W/kg **SAR(1 g) = 13 W/kg; SAR(10 g) = 6.04 W/kg**

Maximum value of SAR (measured) = 19.7 W/kg

ZZSystem Check_H2450_171126

DUT: Dipole 2450 MHz; Type: D2450V2; SN: 737

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: H19T27N2_1126 Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\varepsilon_r = 37.942$; $\rho =$

Date: 2017/11/26

 1000 kg/m^3

Ambient Temperature: 23.8 °C; Liquid Temperature: 23.2 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3650; ConvF(7.58, 7.58, 7.58); Calibrated: 2017/07/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2017/07/20
- Phantom: Twin SAM Phantom 1822; Type: QD000P40;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 21.8 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.9 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 26.8 W/kg

SAR(1 g) = **12.8 W/kg; SAR(10 g)** = **5.87 W/kg** Maximum value of SAR (measured) = 21.8 W/kg

System Check_H2600_171121

DUT: Dipole 2600 MHz; Type: D2600V2; SN: 1020

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: H19T27N1_1121 Medium parameters used: f = 2600 MHz; $\sigma = 2.011$ S/m; $\varepsilon_r = 38.179$; $\rho =$

Date: 2017/11/21

 1000 kg/m^3

Ambient Temperature : 23.8 $^{\circ}$ C ; Liquid Temperature : 23.6 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN7375; ConvF(7.25, 7.25, 7.25); Calibrated: 2016/12/08;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2017/08/17
- Phantom: Twin SAM Phantom 1653; Type: QD000P40
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 25.9 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.8 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 33.0 W/kg

SAR(1 g) = 14.6 W/kg; SAR(10 g) = 6.42 W/kgMaximum value of SAR (measured) = 25.8 W/kg

System Check_H5250_171126

DUT: Dipole 5 GHz; Type: D5GHzV2; SN: 1019

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: H34T60N2_1126 Medium parameters used: f = 5250 MHz; $\sigma = 4.846$ S/m; $\varepsilon_r = 35.694$; $\rho =$

Date: 2017/11/26

 1000 kg/m^3

Ambient Temperature: 23.8 °C; Liquid Temperature: 23.2 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3650; ConvF(5.6, 5.6, 5.6); Calibrated: 2017/07/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2017/07/20
- Phantom: Twin SAM Phantom 1822; Type: QD000P40;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=100mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.7 W/kg

Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 61.01 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 33.3 W/kg

SAR(1 g) = 7.93 W/kg; SAR(10 g) = 2.29 W/kgMaximum value of SAR (measured) = 20.3 W/kg

System Check_H5600_171126

DUT: Dipole 5 GHz; Type: D5GHzV2; SN: 1019

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: H34T60N2_1126 Medium parameters used: f = 5600 MHz; $\sigma = 5.17$ S/m; $\varepsilon_r = 35.172$; $\rho =$

Date: 2017/11/26

 1000 kg/m^3

Ambient Temperature: 23.7 °C; Liquid Temperature: 23.2 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3650; ConvF(4.9, 4.9, 4.9); Calibrated: 2017/07/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2017/07/20
- Phantom: Twin SAM Phantom 1822; Type: QD000P40;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=100mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.2 W/kg

Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 71.68 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 31.7 W/kg

SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.29 W/kgMaximum value of SAR (measured) = 20.3 W/kg

System Check_H5800_171126

DUT: Dipole 5 GHz; Type: D5GHzV2; SN: 1019

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium: H34T60N2_1126 Medium parameters used: f = 5800 MHz; $\sigma = 5.367$ S/m; $\varepsilon_r = 34.872$; $\rho =$

Date: 2017/11/26

 1000 kg/m^3

Ambient Temperature: 23.9°C; Liquid Temperature: 23.3°C

DASY5 Configuration:

- Probe: EX3DV4 SN3650; ConvF(4.94, 4.94, 4.94); Calibrated: 2017/07/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2017/07/20
- Phantom: Twin SAM Phantom 1822; Type: QD000P40;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=100mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.8 W/kg

Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 71.60 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 34.0 W/kg

SAR(1 g) = 8.32 W/kg; SAR(10 g) = 2.39 W/kgMaximum value of SAR (measured) = 21.2 W/kg

System Check_B750_171120

DUT: Dipole 750 MHz; Type: D750V3; SN: 1013

Communication System: CW; Frequency: 750 MHz; Duty Cycle: 1:1

Medium: B06T09N1_1120 Medium parameters used: f = 750 MHz; $\sigma = 0.958$ S/m; $\varepsilon_r = 53.08$; $\rho =$

Date: 2017/11/20

 1000 kg/m^3

Ambient Temperature : 23.8 $^{\circ}$ C ; Liquid Temperature : 23.6 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN7375; ConvF(9.94, 9.94, 9.94); Calibrated: 2016/12/08;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2017/08/17
- Phantom: Twin SAM Phantom 1652; Type: QD000P40
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.55 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 52.47 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 2.94 W/kg

SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.38 W/kgMaximum value of SAR (measured) = 2.55 W/kg

System Check_B835_171118

DUT: Dipole 835 MHz; Type: D835V2; SN: 4d121

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: B07T10N1 1118 Medium parameters used: f = 835 MHz; $\sigma = 1.017$ S/m; $\varepsilon_r = 57.276$; $\rho =$

Date: 2017/11/18

 1000 kg/m^3

Ambient Temperature: 23.7 °C; Liquid Temperature: 23.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7375; ConvF(9.94, 9.94, 9.94); Calibrated: 2016/12/08;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2017/08/17
- Phantom: Twin SAM Phantom 1823; Type: QD000P40CD;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.25 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 54.37 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.80 W/kg

SAR(1 g) = 2.58 W/kg; SAR(10 g) = 1.68 W/kgMaximum value of SAR (measured) = 3.24 W/kg

System Check_B1750_171118

DUT: Dipole 1750 MHz; Type: D1750V2; SN: 1055

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: B16T20N1_1118 Medium parameters used: f = 1750 MHz; $\sigma = 1.433$ S/m; $\varepsilon_r = 52.023$; $\rho = 1.433$ S/m; $\varepsilon_r = 52.023$; ε

Date: 2017/11/18

 1000 kg/m^3

Ambient Temperature: 23.8°C; Liquid Temperature: 23.5°C

DASY5 Configuration:

- Probe: EX3DV4 SN7375; ConvF(8.22, 8.22, 8.22); Calibrated: 2016/12/08;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2017/08/17
- Phantom: Twin SAM Phantom 1823; Type: QD000P40CD;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 12.5 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 93.12 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 14.9 W/kg

SAR(1 g) = 8.64 W/kg; SAR(10 g) = 4.68 W/kgMaximum value of SAR (measured) = 12.1 W/kg

ZZZSystem Check_B1750_171124

DUT: Dipole 1750 MHz; Type: D1750V2; SN: 1055

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: B16T20N1_1124 Medium parameters used: f = 1750 MHz; $\sigma = 1.441$ S/m; $\varepsilon_r = 51.719$; $\rho =$

Date: 2017/11/24

 1000 kg/m^3

Ambient Temperature : 23.6 ℃; Liquid Temperature : 23.3 ℃

DASY5 Configuration:

- Probe: EX3DV4 SN3650; ConvF(8.27, 8.27, 8.27); Calibrated: 2017/07/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2015/07/22
- Phantom: Twin SAM Phantom 1822; Type: QD000P40;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 13.4 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 99.75 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 15.6 W/kg

SAR(1 g) = 8.77 W/kg; SAR(10 g) = 4.67 W/kgMaximum value of SAR (measured) = 13.3 W/kg

System Check_B1900_171118

DUT: Dipole 1900 MHz; Type: D1900V2; SN: 5d036

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: B16T20N1 1118 Medium parameters used: f = 1900 MHz; $\sigma = 1.583$ S/m; $\varepsilon_r = 51.6$; $\rho =$

Date: 2017/11/18

 1000 kg/m^3

Ambient Temperature: 23.7 °C; Liquid Temperature: 23.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7375; ConvF(7.62, 7.62, 7.62); Calibrated: 2016/12/08;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2017/08/17
- Phantom: Twin SAM Phantom 1823; Type: QD000P40CD;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 14.6 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 96.69 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 18.0 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.28 W/kgMaximum value of SAR (measured) = 14.4 W/kg

System Check_B2450_171122

DUT: Dipole 2450 MHz; Type: D2450V2; SN: 737

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: B19T27N4_1122 Medium parameters used: f = 2450 MHz; $\sigma = 2.018$ S/m; $\varepsilon_r = 50.913$; $\rho =$

Date: 2017/11/22

 1000 kg/m^3

Ambient Temperature: 23.8°C; Liquid Temperature: 23.6°C

DASY5 Configuration:

- Probe: EX3DV4 SN7375; ConvF(7.33, 7.33, 7.33); Calibrated: 2016/12/08;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2017/08/17
- Phantom: Twin SAM Phantom 1823; Type: QD000P40CD;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 18.8 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.05 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 25.0 W/kg SAR(1 g) = 12.3 W/kg; SAR(10 g) = 5.76 W/kg

SAR(1 g) = 12.3 W/kg; SAR(10 g) = 5.76 W/kg Maximum value of SAR (measured) = 18.7 W/kg

ZZZZSystem Check_B2450_171128

DUT: Dipole 2450 MHz; Type: D2450V2; SN: 737

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: B19T27N2_1128 Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ S/m; $\varepsilon_r = 50.562$; $\rho =$

Date: 2015/11/28

 1000 kg/m^3

Ambient Temperature: 23.5 °C; Liquid Temperature: 23.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7375; ConvF(7.33, 7.33, 7.33); Calibrated: 2016/12/08;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2017/08/17
- Phantom: Twin SAM Phantom 1823; Type: QD000P40CD;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 18.8 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.05 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 25.0 W/kg SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.76 W/kg

SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.76 W/kg Maximum value of SAR (measured) = 18.8 W/kg

System Check_B2600_171118

DUT: Dipole 2600 MHz; Type: D2600V2; SN: 1020

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: B19T27N5_1118 Medium parameters used: f = 2600 MHz; $\sigma = 2.168$ S/m; $\varepsilon_r = 50.864$; $\rho =$

Date: 2017/11/18

 1000 kg/m^3

Ambient Temperature: 23.7 °C; Liquid Temperature: 23.2 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7375; ConvF(7.16, 7.16, 7.16); Calibrated: 2016/12/08;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2017/08/17
- Phantom: Twin SAM Phantom 1823; Type: QD000P40CD;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 22.1 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.6 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 30.0 W/kg

SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.27 W/kgMaximum value of SAR (measured) = 22.2 W/kg

System Check_B5250_171122

DUT: Dipole 5 GHz; Type: D5GHzV2; SN: 1019

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: B34T60N1 1122 Medium parameters used: f = 5250 MHz; $\sigma = 5.494$ S/m; $\varepsilon_r = 47.12$; $\rho =$

Date: 2017/11/22

 1000 kg/m^3

Ambient Temperature: 23.8 °C; Liquid Temperature: 23.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN7375; ConvF(4.82, 4.82, 4.82); Calibrated: 2016/11/16;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2017/08/17
- Phantom: Twin SAM Phantom 1823; Type: QD000P40CD;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=100mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 17.6 W/kg

Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 59.09 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 30.1 W/kg

SAR(1 g) = 7.85 W/kg; SAR(10 g) = 2.23 W/kgMaximum value of SAR (measured) = 19.3 W/kg

zzzSystem Check_B5250_171127

DUT: Dipole 5 GHz; Type: D5GHzV2; SN: 1019

Communication System: CW; Frequency: 5300 MHz; Duty Cycle: 1:1

Medium: B34T60N1 1127 Medium parameters used: f = 5300 MHz; $\sigma = 5.401$ S/m; $\varepsilon_r = 49.134$; $\rho =$

Date: 2017/11/27

 1000 kg/m^3

Ambient Temperature : 23.6 °C; Liquid Temperature : 23.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3971; ConvF(4.7, 4.7, 4.7); Calibrated: 2017/03/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn861; Calibrated: 2017/05/22
- Phantom: Twin SAM Phantom 1652; Type: QD000P40;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=100mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 17.5 W/kg

Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 57.29 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 30.0 W/kg

SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.16 W/kgMaximum value of SAR (measured) = 18.7 W/kg

System Check_B5600_171128

DUT: Dipole 5 GHz; Type: D5GHzV2; SN: 1019

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: B34T60N1_1128 Medium parameters used: f = 5600 MHz; $\sigma = 5.852$ S/m; $\varepsilon_r = 48.725$; $\rho =$

Date: 2017/11/28

 1000 kg/m^3

Ambient Temperature: 23.4°C; Liquid Temperature: 23.3°C

DASY5 Configuration:

- Probe: EX3DV4 SN7375; ConvF(3.99, 3.99, 3.99); Calibrated: 2016/12/08;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2017/08/17
- Phantom: Twin SAM Phantom 1823; Type: QD000P40CD;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=100mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.2 W/kg

Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 66.86 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.16 W/kgMaximum value of SAR (measured) = 20.0 W/kg

System Check_B5800_171128

DUT: Dipole 5 GHz; Type: D5GHzV2; SN: 1019

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium: B34T60N1_1128 Medium parameters used: f = 5800 MHz; $\sigma = 6.113$ S/m; $\varepsilon_r = 48.226$; $\rho =$

Date: 2017/11/28

 1000 kg/m^3

Ambient Temperature: 23.4°C; Liquid Temperature: 23.2°C

DASY5 Configuration:

- Probe: EX3DV4 SN7375; ConvF(4.08, 4.08, 4.08); Calibrated: 2016/12/08;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn579; Calibrated: 2017/08/17
- Phantom: Twin SAM Phantom 1823; Type: QD000P40CD;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=100mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.0 W/kg

Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 65.16 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 33.1 W/kg

SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.12 W/kgMaximum value of SAR (measured) = 19.7 W/kg

