Assignment 14, Infinitesimal Calculus

Oleg Sivokon

$<\!\!2015\text{-}04\text{-}03 \ Fri\!\!>$

Contents

1	Pro	roblems														3							
	1.1	Proble	m 1																				3
		1.1.1	Answer	1										•				•					3
		1.1.2	Answer	2										•								•	4
	1.2	Proble	em 2	•																			5
		1.2.1	Answer	3																		•	5
		1.2.2	Answer	4																			6
		1.2.3	Answer	5																			6
		1.2.4	Answer	6																			6
		1.2.5	Anser 7	•																			6
	1.3	Proble	em 3																				7

	1.3.1	Answer 8	 •	•	 •		 •	•	•							7
1.4	1.3.2	Answer 9									•	•	•			8
	Proble	em 4		•				•			•	•			•	ć
	1.4.1	Answer 10						•			•					10
	1.4.2	Answer 11						•			•					10
1 5	Proble	m 5														10

1 Problems

1.1 Problem 1

- 1. Find the domain of f defined as $f(x) = \sqrt{\tan x 1}$.
- 2. Find all values of x in segment $[0, \pi]$, for which $|\tan x| \leq \sin 2x$.

1.1.1 Answer 1

 $\tan x > 1$ where $\frac{\pi}{4} < x \mod \frac{\pi}{2} < \frac{\pi}{2}$. Since we assume that f is real-valued, we cannot extract roots from negative numbers.

Hence $\operatorname{Dom}(f) = \{ x \in \mathbb{R} \mid \frac{\pi}{4} < x \bmod \frac{\pi}{2} < \frac{\pi}{2} \}.$

1.1.2 Answer 2

Both functions attain the same values at 0 and $\frac{\pi}{4}$. But sine is a concave function and tanget is a convex function, thus tangent must be less than sine at this interval. Tangent keeps increasing until $\frac{\pi}{2}$, while sine will be decreasing until $\frac{3\pi}{2}$, thus, on this interval tangent is greater than sine. The functions meet again at $x = \pi$.

Tangent curve intersecting with sine curve $\frac{\pi}{4} = \pi$ abs(tan(x)) = 0

1.2 Problem 2

Let f, g and h be functions from $\mathbb R$ to $\mathbb R$.

- 1. If $f \circ g = f \circ h$, does it follow g = h?
- 2. If $f \circ g = f \circ h$, and f is one-to-one, does it follow g = h?
- 3. If $f \circ g = f \circ h$, and f is onto, does it follow g = h?
- 4. If $f \circ g$ is increasing, and f is decreasing, does it follow that g is increasing?
- 5. If $f \circ g$ is increasing, and f is one-to-one, does it follow that g is monotonic?

1.2.1 Answer 3

No, g and h are not necessarily equal. Whenever co-domain of f doesn't contain some real number, g and h may differ in that input. For example,

let f(x) = 2x, $g(x) = (x \mod 2) + x$ and $h(x) = (x \mod 2) * 2 + x$. Because f in this example will only generate even numbers, the $(x \mod 2)$ term will always be zero, thus $f \circ g = f \circ h$, but, obviously, $g \neq h$.

1.2.2 Answer 4

No, it isn't sufficient for f to be one-to-one to ensure right-cancellation property under composition. The example given in 1.2.1 is applicable in this case too since whenever f(x) = f(y) so is x = y (since multiplication does have the cancellation property).

1.2.3 Answer 5

Yes, if f is onto, then the composition is right-cancellable. Suppose, for contradiction it wasn't, then for some y $g(y) \neq h(y)$, but y = f(x) (since by definition of a total function, every element in its co-domain has an element in its domain). Hence $g(f(x)) \neq h(f(x))$, but we are given that $g \circ f = h \circ f$, which is a contradiction. Hence functions are equal.

1.2.4 Answer 6

No, g doesn't need to be increasing. Put g(x) = f(x) = -x, both f and g are decreasing but $f \circ g = Id$, which is an increasing function.

1.2.5 Anser 7

No, g is not necessarily monotonic. Put $f(x) = x(-1)^x$ and g(x) = |x|. Then $(f \circ g)(x) = |x(-1)^x| = x|(-1)^x| = x$. $f \circ g$ is increasing, f is one-to-one, but g isn't monotonic: it decreases whenever x is negative and increases whenever x is positive.

1.3 Problem 3

- 1. Prove from $\epsilon \delta$ definition of limit that $\lim_{x\to 2} \sqrt{3x-2} = 2$.
- 2. Prove from $\epsilon-M$ definition of limit that $\lim_{x\to\infty}\frac{x}{x+\sin x}=1$.

1.3.1 Answer 8

Recall the definition:

For all $\epsilon > 0$ there exists $\sigma > 0$ s.t. for all x in $\mathrm{Dom}(f(x))$ which satisfy $0 < |x - x_0| < \sigma$ the inequality $|f(x) - L| < \epsilon$ holds.

Let ϵ be arbitrary real, put

$$\begin{array}{c|ccccc} |f(x)-L| & < \epsilon \iff \\ & |\sqrt{3x-2}-2| & < \epsilon \\ & \\ Suppose \sqrt{3x-2}-2 > 0 & \\ 0 < \sqrt{3x-2}-2 & < \epsilon \iff \\ 0 < \sqrt{3x-2} & < \epsilon + 2 \iff \\ 0 < 3x-2 & < (\epsilon+2)^2 \iff \\ 0 < 3x-2 & < \epsilon^2 + 4\epsilon + 4 \iff \\ 0 < x-2 & < \frac{\epsilon^2 + 4\epsilon}{3} & \\ Similarly for \sqrt{3x-2}-2 < 0 & \\ 0 > \sqrt{3x-2}-2 & > -\epsilon \iff \\ 0 > \sqrt{3x-2} & > -\epsilon + 2 \iff \\ 0 > 3x-2 & > (-\epsilon+2)^2 \iff \\ 0 > 3x-2 & > \epsilon^2 - 4\epsilon + 4 \iff \\ 0 > x-2 & > \frac{\epsilon^2 - 4\epsilon}{3} \iff \\ \end{array}$$

Hence, we can choose δ to be $\frac{\epsilon^2 - 4\epsilon}{3}$ whenever $x < x_0$ and $\frac{\epsilon^2 + 4\epsilon}{3}$ whenever $x > x_0$, which completes the proof.

1.3.2 Answer 9

Recall the definition:

For all $\epsilon > 0$ there exists M > 0 s.t. for all x in Dom(f(x)) x > M implies $|f(x) - L| < \epsilon$.

Let $\epsilon > 0$, then look for appropriate value for x:

$$\left| \frac{x}{x + \sin x} - 1 \right| < \epsilon \iff$$

$$\left| \frac{x}{x + \sin x} - \sin^2 x - \cos^2 x \right| < \epsilon \iff$$

$$\left| \frac{x}{x + \sin x} - \sin^2 x - \cos^2 x \right| < \epsilon \iff$$

$$\left| \frac{x - \sin^2 x (x + \sin x) - \cos^2 x (x + \sin x)}{x + \sin x} \right| < \epsilon \iff$$

$$\left| \frac{x - x \sin^2 x - \sin^3 x - x \cos^2 x - \cos^2 x \sin x}{x + \sin x} \right| < \epsilon \iff$$

$$\left| \frac{x (1 - \sin^2 - \cos^2 x) - \sin x (\sin^2 x - \cos^2)}{x + \sin x} \right| < \epsilon \iff$$

$$\left| \frac{x (1 - 1) - \sin x (1)}{x + \sin x} \right| < \epsilon \iff$$

$$\left| \frac{-\sin x}{x + \sin x} \right| < \epsilon \iff$$

Assume x > 0:

$$\frac{-\sin x}{x + \sin x} < \epsilon \iff \\
-\sin x < \epsilon(x + \sin x) \iff \\
-\sin x < \epsilon x + \epsilon \sin x \iff \\
-\epsilon x < \sin x + \epsilon \sin x \iff \\
-x < \frac{\sin x + \epsilon \sin x}{\epsilon} \iff \\
x > \frac{\sin x(1 + \epsilon)}{\epsilon}$$

Put $M=\max\Big(0,\frac{\sin x(1+\epsilon)}{\epsilon}\Big).$ If x>M, then x>0 and $x>\frac{\sin x(1+\epsilon)}{\epsilon},$ hence:

$$x > \frac{\sin x(1+\epsilon)}{\epsilon}$$

... Reverse the calculations above

$$\frac{-\sin x}{x + \sin x} < \epsilon$$

. . .

$$\left| \frac{x}{x + \sin x} - 1 \right| < \epsilon.$$

Which completes the proof.

1.4 Problem 4

- 1. Let f be a function defined in the neighborhood of x_0 . Express "f doesn't have a limit at x_0 " using:
 - $\epsilon \sigma$ language.
 - Using Heine definition of limit (for sequences).
- 2. Prove that $f(x) = \frac{x}{x \lfloor x \rfloor}$ doesn't have a finite limit at $x \to 0$ in the following ways:
 - By using $\epsilon \sigma$ definition given above.
 - By using Heine definition of limit (also given above).

1.4.1 Answer 10

1.4.2 Answer 11

1.5 Problem 5

Find limits of:

- 1. $\lim_{x\to 0} \frac{1-\cos x}{x\sin x}$.
- 2. $\lim_{x\to 0} \frac{x+7x^3}{x^3-2x^4}$.
- 3. $\lim_{x\to 0} \frac{x^2-1}{2x^3-x^2-x}$.
- 4. $\lim_{x\to 0} (\sqrt{1+x+x^2} \sqrt{1-x+x^2})$.
- 5. $\lim_{x\to k} \lfloor x \rfloor \tan \frac{\pi x}{2}$.