1) 
$$\int_{-\pi}^{\pi} \sin(nt)dt = \left[ -\frac{1}{n} \cos(nt) \right]_{-\pi}^{\pi} = \frac{1}{n} \left( -\cos(n\pi) + \cos(n\pi) \right) = 0, n \neq 0$$

2) 
$$\int_{-\pi}^{\pi} \cos(nt) dt = \left[ \frac{1}{n} \sin(nt) \right]_{-\pi}^{\pi} = 0, n \neq 0$$

3) 
$$\int_{-\pi}^{\pi} f(t)dt = \frac{1}{2} \int_{-\pi}^{\pi} a_0 dt + \sum_{n=1}^{\infty} \left( \int_{-\pi}^{\pi} a_n \cos(nt) dt + \int_{-\pi}^{\pi} b_n \sin(nt) dt \right) = \frac{1}{2} \left[ a_0 t \right]_{-\pi}^{\pi} + \sum_{n=1}^{\infty} (0+0)$$

$$\therefore \int_{-\pi}^{\pi} f(t)dt = \frac{1}{2} (2a_0 \pi) \to a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)dt \to \frac{a_0}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)dt$$

4) 
$$\int_{-\pi}^{\pi} \sin(nt)\cos(mt)dt = \frac{1}{2} \left( \int_{-\pi}^{\pi} \sin(n+m)tdt + \int_{-\pi}^{\pi} \sin(n-m)tdt \right) = \frac{1}{2} (0+0) = 0 \text{ using the results from problems 1 and }$$

2 since if n is an integer and m is an integer then n+m and n-m are also integers.

5) 
$$\int_{-\pi}^{\pi} \cos(nt) \cos(mt) dt = \frac{1}{2} \left( \int_{-\pi}^{\pi} \cos(n+m)t dt + \int_{-\pi}^{\pi} \cos(n-m)t dt \right) = \frac{1}{2} (0+0) = 0 \text{ when } n \neq m$$

6) 
$$\int_{-\pi}^{\pi} \cos^2(nt) dt = \frac{1}{2} \int_{-\pi}^{\pi} \left( 1 + \cos(2n)t \right) dt = \frac{1}{2} \left[ t + \frac{1}{2n} \sin(2n)t \right]_{-\pi}^{\pi} = \pi \text{ when } n \neq 0$$

7) 
$$\pi - (-\pi) = 2\pi$$

8) a) 
$$\int_{-\pi}^{\pi} \sin(nt)\sin(mt)dt = 0$$

b) 
$$\int_{-\pi}^{\pi} \sin^2(nt)dt = \frac{1}{2} \int_{-\pi}^{\pi} (1 - \cos(2nt))dt = \pi$$

c) 
$$\int_{-\pi}^{\pi} \sin(nt) \sin(mt) dt = 0$$

For integers 
$$m, n$$
:

$$\int_{-\pi}^{\pi} \sin(nt)\cos(mt)dt = 0$$

$$\int_{-\pi}^{\pi} \cos(nt) \cos(mt) dt = \begin{cases} 0, n \neq m \\ \pi, n = m \neq 0 \\ 2\pi, n = m = 0 \end{cases}$$

$$\int_{-\pi}^{\pi} \sin(nt) \sin(mt) dt = \begin{cases} 0, n \neq m \\ \pi, n = m = 0 \\ \pi, n = m \end{cases}$$

$$\int_{-\pi}^{\pi} \sin(nt)\sin(mt)dt = \begin{cases} 0, n \neq m, n = m = 0 \\ \pi, n = m \end{cases}$$