CHAPTER THREE

Solids of Revolution

Example 3.1 Analysis of a rotating disk p. 129

Consider a 1 in thick disk with inner radius 3 in and outer radius 9 in. The disk is rotating at 5000 rpm (revolutions per minute). The material properties are: density = 0.283 lbs/in³, E = 30×10^6 psi and $\nu = 0.3$.

Figure 3.4. Axisymmetric finite element model of half of the disk section

■ Four element solution for comparison with text

 $AnsysFiles \ Chap 03 \ Disk Ex 31.txt$

```
!* Rotating disk Example 3.1 p. 129
!* 4 element solution
 /PREP7
! *
ET, 1, PLANE42
KEYOPT, 1, 1, 0
KEYOPT, 1, 2, 1
KEYOPT, 1, 3, 1
KEYOPT, 1, 5, 0
KEYOPT, 1, 6, 0!*
MPTEMP,,,,,,,,
MPTEMP, 1, 0
MPDATA, EX, 1,, 30000
MPDATA, PRXY, 1, , 0.3
MPDATA, DENS, 1,, 0.283/386.4/1000
*set,pi,3.14159
*set,ri,3
*set,ro,9
*set,h,1/2
*set,omega,5000*2*pi/60
*set,rm,(ri+ro)/2
N,1,ri,0
N,2,ri,h
N,3,rm,0
N,4,rm,h
N,5,ro,0
N,6,ro,h
e,1,3,2
e,3,4,2
e,5,4,3
e,5,6,4
FINISH
/SOL
OMEGA, 0, 0, omega, 0
ERESX, NO
d,1,UY
d,3,UY
d,5,UY
FINISH
/SOL
/STATUS.SOLU
```

```
, ~ ----
SOLVE
FINISH
/POST1
! *
PRNSOL, DOF
! *
PRESOL, S, PRIN
! *
```

PRINT U NODAL SOLUTION PER NODE

**** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE=

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES

NODE UX 1 0.13230E-02 2 0.13186E-02 3 0.12864E-02 4 0.12881E-02 5 0.12848E-02 6 0.12797E-02

MAXIMUM ABSOLUTE VALUES

NODE 1 VALUE 0.13230E-02

PRINT S PRIN ELEMENT SOLUTION PER ELEMENT

***** POST1 ELEMENT NODAL STRESS LISTING *****

LOAD STEP= 1 SUBSTEP= TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z VALUES ARE IN GLOBAL COORDINATES

ELEMENT=	1	PLANE4	42		
NODE	S1	S2	S3	SINT	SEQV
1	12.658	3.7024	0.88635	11.772	10.647
3	7.9545	1.6866	-1.1295	9.0840	8.0541
2	12.633	3.6916	0.87546	11.757	10.633
2	12.633	3.6916	0.87546	11.757	10.633
ELEMENT=	2	PLANE4	42		
NODE	S1	S2	S3	SINT	SEQV
3	7.7485	2.1010	0.23505	7.5135	6.7760
4	7.7548	2.1037	0.23773	7.5171	6.7795
2	11.469	3.6954	1.8294	9.6393	8.8550
2	11.469	3.6954	1.8294	9.6393	8.8550
ELEMENT= 3		PLANE42			
NODE	S1	S2	S3	SINT	SEQV
5	4.9172	1.1967	-0.87601	5.7933	5.0843
4	6.4254	1.8430	-0.22968	6.6550	5.8984
3	6.4201	1.8407	-0.23194	6.6520	5.8956

3	6.4201	1.8407	-0.23194	6.6520	5.8956
ELEMENT=	4	PLANE42	2		
NODE	S1	S2	S3	SINT	SEQV
5	4.8950	1.3465	-0.14150	5.0365	4.4818
6	4.8830	1.3414	-0.14663	5.0297	4.4752
4	6.2125	1.9111	0.42312	5.7893	5.2073
4	6.2125	1.9111	0.42312	5.7893	5.2073

■ Solution with default Ansys mesh

 $An sysFiles \ \ Chap 03 \ \ DiskEx 31 Mesh.txt$

```
!* Rotating disk Example 3.1 p. 129
!* Using default Ansys Mesh
 /PREP7
! *
ET, 1, PLANE42
KEYOPT, 1, 1, 0
KEYOPT, 1, 2, 1
KEYOPT, 1, 3, 1
KEYOPT, 1, 5, 0
KEYOPT, 1, 6, 0!*
MPTEMP,,,,,,,,
MPTEMP, 1, 0
MPDATA, EX, 1,, 30000
MPDATA, PRXY, 1,, 0.3
MPDATA, DENS, 1,, 0.283/386.4/1000
*set,pi,3.14159
*set,ri,3
*set,ro,9
*set,h,1/2
*set,omega,5000*2*pi/60
*set,rm,(ri+ro)/2
k,1,ri,0
k,2,ri,h
k,3,ro,0
k,4,ro,h
a,1,3,4,2
MSHKEY, 0
CM, \_Y, AREA
ASEL, , , ,
                    1
CM,_Y1,AREA
CHKMSH, 'AREA'
CMSEL,S,_Y
! *
AMESH,_Y1
```

```
! *
CMDELE, Y
CMDELE,_Y1
CMDELE,_Y2
FINISH
/SOL
OMEGA, 0, 0, omega, 0
ERESX, NO
DL,1, ,UY,FINISH
/SOL
/STATUS, SOLU
SOLVE
FINISH
/POST1
! *
PRNSOL, DOF
! *
PRESOL, S, PRIN
```

Plot of vonMises stresses

Example 3.2 Thermal stresses p. 135

A 70 mm diameter steel ring is fitted on to a 20 mm diameter aluminum tube at a temperature of 100°C as shown in Figure 3.5. Find stresses in the ring and the tube when the assembly cools to a room temperature of 25°C. Assume perfect bond between the ring and the tube. Use the following data.

Ring:
$$E = 200 \,\text{GPa}$$
 $v = 0.3$ $\alpha = 12 \times 10^{-6}$

Tube: E = 70 GPa v = 0.33 $\alpha = 23 \times 10^{-6}$ Tube wall thickness = 10 mm

Figure 3.5. Steel and aluminum assembly and axisymmetric model of half of the assembly

■ Six element solution for comparison with text

 $An sysFiles \ Chap 03 \ Thermal Ex 31.txt$

```
!* Thermal stress Example 3.2 p. 135
!* 6 element solution
 /PREP7
! *
ET, 1, PLANE42
KEYOPT, 1, 1, 0
KEYOPT, 1, 2, 1
KEYOPT, 1, 3, 1
KEYOPT, 1, 5, 0
KEYOPT, 1, 6, 0! *
MPTEMP,,,,,,,,
MPTEMP, 1, 0
UIMP, 1, REFT, , ,
MPDATA, CTEX, 1,, 12*10**(-6)
MPDATA, EX, 1,, 200000
MPDATA, PRXY, 1,, 0.3
MPTEMP,,,,,,,,
MPTEMP, 1, 0
UIMP, 2, REFT, ,,
MPDATA, CTEX, 2,, 23*10**(-6)
MPTEMP,,,,,,,,
MPTEMP, 1, 0
MPDATA, EX, 2, , 70000
MPDATA, PRXY, 2,, 0.33
*set,ri,10
```

```
*set, ro, 35
*set,h,40
*set,t,10
N,1,ri,0
N,2,ri+t,0
N,3,ro,0
N,4,ri,15
N,5,ri+t,15
N,6,ro,15
N,7,ri,h
N,8,ri+t,h
mat,2
e,1,2,4
e,2,5,4
e,4,5,7
e,5,8,7
mat,1
e,2,3,5
e,3,6,5
FINISH
/SOL
TUNIF, -75,
ERESX, NO
d,1,UY
d,2,UY
d,3,UY
FINISH
/SOL
/STATUS, SOLU
SOLVE
FINISH
/POST1
!*
PRNSOL, DOF
! *
PRESOL, S, PRIN
! *
 PRINT U NODAL SOLUTION PER NODE
  ***** POST1 NODAL DEGREE OF FREEDOM LISTING *****
  LOAD STEP= 1 SUBSTEP=
                               1
   TIME= 1.0000 LOAD CASE=
                                    0
  THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL COORDINATES
    NODE
             UX
       1 -0.65415E-02
       2 -0.25971E-01
       3 -0.35443E-01
       4 -0.88025E-02
```

```
5 -0.27621E-01
```

6 -0.39481E-01

7 -0.21122E-01

8 -0.37935E-01

MAXIMUM ABSOLUTE VALUES

NODE 6

VALUE -0.39481E-01

PRINT S PRIN ELEMENT SOLUTION PER ELEMENT

**** POST1 ELEMENT NODAL STRESS LISTING *****

LOAD STEP= 1 SUBSTEP= 1
TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z VALUES ARE IN GLOBAL COORDINATES

ELEMENT	'= 1	PLANE4	12		
NODE	S1	S2	S3	SINT	SEQV
1	87.424	53.396	30.281	57.143	49.787
2	54.057	36.961	13.846	40.211	34.953
4	77.374	48.446	25.331	52.043	45.164
4	77.374	48.446	25.331	52.043	45.164
ELEMENT	'= 2	PLANE4	12		
NODE	S1	S2	S3	SINT	SEQV
2	85.123	70.947	34.524	50.600	45.210
5	82.824	66.279	32.224	50.600	44.687
4	93.577	88.111	42.978	50.600	48.100
4	93.577	88.111	42.978	50.600	48.100
ELEMENT	'= 3	PLANE4	12		
NODE	S1	S2	S3	SINT	SEQV
4	46.454	20.606	8.6564	37.797	33.463
5	25.216	10.146	-1.8038	27.020	23.452
7	-6.3639	-8.3042	-18.314	11.950	11.108
7	-6.3639	-8.3042	-18.314	11.950	11.108
ELEMENT	'= 4	PLANE4	12		
NODE	S1	S2	S3	SINT	SEQV
5	17.837	11.132	3.9496	13.887	12.029
8	-3.2366	-10.419	-11.336	8.0996	7.6822
7	-5.9424	-13.125	-16.830	10.887	9.5877
7	-5.9424	-13.125	-16.830	10.887	9.5877
ELEMENT= 5		PLANE4	PLANE42		
NODE	S1	S2	S3	SINT	SEQV
2	12.318	-60.508	-81.787	94.105	85.475
3	29.775	-41.053	-43.050	72.826	71.848
5	8.0858	-64.740	-91.661	99.747	89.381
5	8.0858	-64.740	-91.661	99.747	89.381

***** POST1 ELEMENT NODAL STRESS LISTING *****

LOAD STEP= 1 SUBSTEP= 1
TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z VALUES ARE IN GLOBAL COORDINATES

ELEMENT=	: 6	PLANE4	2		
NODE	S1	S2	S3	SINT	SEQV
3	16.892	8.9526	-26.476	43.368	39.994
6	9.7226	1.7834	-43.204	52.927	49.437
5	-2.1370	-10.076	-70.876	68.739	65.134
5	-2.1370	-10.076	-70.876	68.739	65.134

■ Solution with default Ansys mesh

 $An sysFiles \ \ Chap 03 \ \ Thermal Ex 31 Mesh.txt$

```
!* Thermal stress Example 3.2 p. 135
!* Using default Ansys mesh
 /PREP7
! *
ET, 1, PLANE42
KEYOPT, 1, 1, 0
KEYOPT, 1, 2, 1
KEYOPT, 1, 3, 1
KEYOPT, 1, 5, 0
KEYOPT, 1, 6, 0!*
MPTEMP,,,,,,,,
MPTEMP, 1, 0
UIMP, 1, REFT, , ,
MPDATA, CTEX, 1,, 12*10**(-6)
MPDATA, EX, 1,, 200000
MPDATA, PRXY, 1,, 0.3
MPTEMP,,,,,,,,
MPTEMP, 1, 0
UIMP, 2, REFT, , ,
MPDATA, CTEX, 2,, 23*10**(-6)
MPTEMP,,,,,,,,
MPTEMP, 1, 0
MPDATA, EX, 2, , 70000
MPDATA, PRXY, 2, , 0.33
*set,ri,10
*set, ro, 35
*set,h,40
*set,t,10
k,1,ri,0
k,2,ri+t,0
k,3,ro,0
k,4,ri,15
k,5,ri+t,15
k,6,ro,15
k.7.ri.h
```

```
--, - , - - , --
k,8,ri+t,h
a,1,2,5,4
a,4,5,8,7
a,2,3,6,5
FLST, 5, 2, 5, ORDE, 2
FITEM, 5, 1
FITEM, 5, -2
CM,_Y,AREA
ASEL, , , , P51X
CM,_Y1,AREA
CMSEL,S,_Y
CMSEL,S,_Y1
AATT,
             2, , 1,
                           0,
CMSEL,S,_Y
CMDELE,_Y
CMDELE,_Y1
! *
CM,_Y,AREA
ASEL, , , ,
                   3
CM,_Y1,AREA
CMSEL,S,_Y
! *
CMSEL,S,_Y1
             1, , 1,
AATT,
                            Ο,
CMSEL,S,_Y
CMDELE,_Y
CMDELE,_Y1
!*
MSHKEY, 0
AMESH, ALL
FINISH
/SOL
TUNIF, -75,
ERESX, NO
dl,1,,UY
dl,8,,UY
FINISH
/SOL
/STATUS, SOLU
SOLVE
FINISH
/POST1
! *
PRNSOL, DOF
! *
PRESOL, S, PRIN
! *
```

Plot of vonMises stresses

General loading on Axisymmetric structures

This example is not included in the printed book.

A circular pipe section is subjected to pressure p over a quarter of its circumference, as shown in the figure. The pipe is fixed at the base. Determine tip deflection and maximum von-Mises stress.

Outer radius = 100 mm; Inner radius = 50 mm; Height = 1 m

$$E = 200 \text{ GPa}; \quad v = 0.25; \quad p = 5 \text{ MPa}$$

■ Fourier coefficients

If the applied loading is a function of θ , then using Fourier series it can be expressed as follows.

$$T(\theta) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\theta) + \sum_{n=1}^{\infty} b_n \sin(n\theta)$$

For a given loading the coefficients a_0 , a_n , b_n , n = 1, 2, ... are obtained as follows.

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} T(\theta) \, \mathrm{d}\theta$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} T(\theta) \cos(n\theta) d\theta$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} T(\theta) \sin(n\theta) d\theta$$

Fourier coefficients for the given 1/4 circle load

$$a_0 = p/4$$

Symmetric terms: $\{\frac{p}{\pi}, 0, -\frac{p}{3\pi}\}$

Antisymmetric terms: $\{\frac{p}{\pi}, \frac{p}{\pi}, \frac{p}{3\pi}\}$

Finite element model

■ Ansys solution: 5 Plane25 element solution

 $An sysFiles \verb|\Chap 03| Pipe Column Axi.txt$

```
/PREP7
!*
*set,pi,3.14159
ET,1,PLANE25
KEYOPT,1,1,0
KEYOPT,1,2,1
!*
!*
MPTEMP,,,,,,,
MPTEMP,1,0
MPDATA,EX,1,,200000
MPDATA,PRXY,1,,0.25
*set,ri,50
*set,ro,100
```

```
*set,h,1000
*set,p,5
N,1,ri,0
N,2,ro,0
N,3,ri,h/5
N,4,ro,h/5
N,5,ri,2*h/5
N,6,ro,2*h/5
N,7,ri,3*h/5
N,8,ro,3*h/5
N,9,ri,4*h/5
N,10,ro,4*h/5
N,11,ri,5*h/5
N,12,ro,5*h/5
e,1, 2, 4, 3
e,3, 4, 6, 5
e,5, 6, 8, 7
e,7, 8, 10, 9
e,9, 10, 12, 11
FINISH
/SOL
ERESX, NO
d,1,All
d,2,all
*do, i, 1,5,1
SFE,i,2,PRES, ,p/4, , ,
*enddo
MODE, 0,
LSWRITE, 1,
! *
*do, i, 1,5,1
SFEDELE, i, 2, PRES
SFE, i, 2, PRES, ,p/pi, , ,
*enddo
MODE, 1, 1
ERESX, NO
LSWRITE, 2,
! *
*do, i, 1,5,1
SFEDELE, i, 2, PRES
SFE,i,2,PRES, ,p/pi, , ,
*enddo
MODE, 1, -1
ERESX, NO
LSWRITE, 3,
! *
! *
*do, i, 1,5,1
SFEDELE.i.2.PRES
```

```
~----, -, -, -, ----
SFE,i,2,PRES, ,p/pi, , ,
*enddo
MODE, 2, -1
ERESX, NO
LSWRITE, 4,
! *
*do, i, 1,5,1
SFEDELE, i, 2, PRES
SFE,i,2,PRES, ,p/(3*pi), , ,
*enddo
MODE, 3, 1
ERESX, NO
LSWRITE, 5,
! *
*do, i, 1,5,1
SFEDELE, i, 2, PRES
SFE,i,2,PRES, ,p/(3*pi), , ,
*enddo
MODE, 3, -1
ERESX, NO
LSWRITE, 6,
! *
/STATUS, SOLU
/SOL
LSSOLVE, 1, 6, 1,
FINISH
/POST1
*do, i, 1,6,1
LCDEF, i, i,,
*enddo
LCFILE,7,'ld7',' ',' '
*do, i, 1,6,1
LCASE, i,
*enddo
*do, i, 1,6,1
LCOPER, ADD, i, , ,
*enddo
! *
PRNSOL, U, X
```

NODE	UX	UY	UZ		
1	0	0	0		
2	0	0	0		
3	-0.24467	8.10E-02 -	0.24314		
4	-0.25539	0.18643 -	0.23076		
5	-0.78601	0.14969 -	0.78581		
6	-0.78971	0.30792 -	0.77749		
7	-1.4928	0.18256	-1.4944		
8	-1.4952	0.37113	-1.4887		
9	-2.2749	0.1978	-2.2768		
10	-2.2756	0.3964	-2.2725		
11	-3.0741	0.20272	-3.0765		
12	-3.0744	0.40283	-3.0724		
ELEMENT=	1	PLANE	125		
NODE	S1	S2	S3	SINT	SEQV
1	175.95	28.908	-28.963	204.91	182.98
2	233.74	51.657	5.0279	228.72	209.33
4	177.61	13.216	-3.7913	181.40	173.52
3	111.94	-0.77039	-18.854	130.79	122.75
ELEMENT=		PLANE			
NODE	S1	S2	S3	SINT	SEQV
3	105.90	-21.376	-53.077	158.98	145.74
4	123.40	-13.619	-46.972	170.37	156.39
6	116.65	7.1954	-3.1359	119.79	114.97
5	83.612	-0.78159	-6.4622	90.074	87.372
ELEMENT=	3	PLANE	125		
NODE	S1	S2	S3	SINT	SEQV
5	56.315	-5.9226	-32.637	88.952	79.056
6	69.116	-1.3147	-26.018	95.134	85.502
8	59.142	4.1794	-2.4654	61.608	58.569
7	40.594	-1.2669	-4.7230	45.317	43.692
ELEMENT=	4	PLANE	25		
NODE	S1	S2	S3	SINT	SEQV
7	25.135	-4.3072	-19.638	44.773	39.411
8	27.048	-3.5608	-17.569	44.618	39.521
10	23.325	1.6016	-4.3189	27.644	25.211
9	17.962	0.21677	-5.3599	23.322	21.094
	_				
ELEMENT=		PLANE		G TNITT	anou.
NODE	S1	S2	S3	SINT	SEQV
9	6.0362	-1.6270	-10.337	16.373	14.189
10	5.2902	-2.1170	-9.7773	15.067	13.049
12	4.6963	-0.51225	-6.7373	11.434	9.9148
11	4.6681	-U.42324E-	01 -7.2001	11.868	10.351

■ Ansys solution using Plane25 element with finer mesh

 $An sysFiles \ \ Chap 03 \ \ Pipe Column Fine Axi.txt$

```
/PREP7
! *
*set,pi,3.14159
ET, 1, PLANE25
KEYOPT, 1, 1, 0
KEYOPT, 1, 2, 1
MPTEMP,,,,,,,,
MPTEMP, 1, 0
MPDATA, EX, 1,, 200000
MPDATA, PRXY, 1,, 0.25
*set,ri,50
*set,ro,100
*set,rm,75
*set,h,1000
*set,p,5
k,1,ri,0
k,2,ro,0
k,3,ri,h
```

```
k,4,ro,h
a,1,2,4,3
ESIZE, 10, 0,
CM, \_Y, AREA
ASEL, , , ,
                    1
CM,_Y1,AREA
CHKMSH, 'AREA'
{\tt CMSEL,S,\_Y}
! *
MSHKEY, 1
AMESH,_Y1
MSHKEY, 0
! *
CMDELE,_Y
CMDELE,_Y1
CMDELE, Y2
! *
DL,1, ,ALL,
FINISH
/SOL
ERESX, NO
SFL, 2, PRES, p/4,
MODE, 0,
LSWRITE, 1,
! *
SFLDELE,
                 2,PRES
SFL, 2, PRES, p/pi,
MODE, 1, 1
ERESX, NO
LSWRITE, 2,
! *
SFLDELE,
                 2,PRES
SFL, 2, PRES, p/pi,
MODE, 1, -1
ERESX, NO
LSWRITE, 3,
! *
! *
SFLDELE,
                 2,PRES
SFL, 2, PRES, p/pi,
MODE, 2, -1
ERESX, NO
LSWRITE, 4,
! *
SFLDELE,
                 2,PRES
SFL, 2, PRES, -p/(3*pi),
MODE,3,1
ERESX, NO
LSWRITE.5.
```

```
! *
! *
SFLDELE,
                 2,PRES
SFL, 2, PRES, p/(3*pi),
MODE,3,-1
ERESX, NO
LSWRITE, 6,
! *
/STATUS, SOLU
/SOL
LSSOLVE, 1, 6, 1,
FINISH
/POST1
LCDEF, 1, 1,,
LCDEF, 2, 2,,
LCDEF, 3, 3,,
LCDEF, 4, 4,,
LCDEF, 5, 5,,
LCDEF, 6, 6,,
LCFILE,7,'ld7',' ',' '
LCASE, 1,
LCASE, 2,
LCASE, 3,
LCASE, 4,
LCASE, 5,
LCASE, 6,
LCOPER, ADD, 1, , ,
LCOPER, ADD, 2, , ,
LCOPER, ADD, 3, , ,
LCOPER, ADD, 4, , ,
LCOPER, ADD, 5, , ,
LCOPER, ADD, 6, , ,
! *
PRNSOL, U, X
```


von Mises stresses

■ Ansys solution using solid 3D elements

 $An sysFiles \ \ Chap 03 \ \ Pipe Column.txt$

```
/PREP7
!*
ET,1,SOLID45
!*
```

```
! *
MPTEMP,,,,,,,,
MPTEMP, 1, 0
MPDATA, EX, 1,, 200000
MPDATA, PRXY, 1, , 0.25
CYL4,0,0,50, ,100
ADELE,
              1
LSTR,
              4,
                         5
LSTR,
              1,
                         6
LSTR,
              8,
                         2
LSTR,
              7,
                         3
FLST, 2, 4, 4
FITEM, 2, 4
FITEM, 2, 10
FITEM, 2, 5
FITEM, 2, 9
AL,P51X
FLST, 2, 4, 4
FITEM, 2, 1
FITEM, 2, 11
FITEM, 2, 8
FITEM, 2, 10
AL, P51X
VOFFST,1,1000, ,
VOFFST, 2, 1000, ,
FLST, 3, 1, 6, ORDE, 1
FITEM, 3, 1
VSYMM, X, P51X, , , , 0, 0
VPLOT
FLST, 3, 1, 6, ORDE, 1
FITEM, 3, 2
VSYMM, X, P51X, , , , 0, 0
VPLOT
FLST, 2, 4, 6, ORDE, 2
FITEM, 2, 1
FITEM, 2, -4
VGLUE, P51X
DA,1,All
DA, 2, All
DA,28,All
DA,32,A11
SFA, 4, 1, PRES, 5
! *
MSHKEY, 0
MSHAPE, 1, 3d
FLST, 5, 4, 6, ORDE, 3
FITEM, 5, 1
FITEM.5.5
```

```
FITEM, 5, -7
CM, _Y, VOLU
VSEL, , , , P51X
CM,_Y1,VOLU
CHKMSH, 'VOLU'
CMSEL,S, Y
! *
VMESH,_Y1
! *
CMDELE,_Y
CMDELE,_Y1
{\tt CMDELE,\_Y2}
FINISH
/SOL
/STATUS, SOLU
SOLVE
FINISH
/POST1
PLDISP,2
/VIEW, 1 ,,-1
/ANG, 1
/REP,FAST
! *
! *
/EFACET,1
PLNSOL, S,EQV, 0,1.0
/VIEW, 1 ,,1
/ANG, 1
/REP,FAST
/VIEW, 1 ,,,1
/ANG, 1
/REP,FAST
/VIEW, 1 ,,,-1
/ANG, 1
/REP,FAST
/EFACET,1
PLNSOL, S,X, 0,1.0
```


von Mises stresses

