

1 **In the Claims:**

2

3 1. (Withdrawn) An apparatus, comprising:
4 a current collector for a fuel cell stack, wherein the current collector
5 physically supports the fuel cell stack within a fuel cell; and
6 an electrode element of the fuel cell stack attached as a deposited layer to
7 the current collector, wherein the current collector has openings to allow gases of
8 the fuel cell to flow to and from the electrode element.

9

10 2. (Withdrawn) The apparatus as recited in claim 1, further comprising
11 an electrolyte attached as a deposited layer to the electrode element.

12

13 3. (Withdrawn) The apparatus as recited in claim 2, further comprising
14 a subsequent electrode element attached as a deposited layer to the electrolyte.

15

16 4. (Withdrawn) The apparatus as recited in claim 3, further comprising
17 a subsequent current collector attached as a deposited layer to the subsequent
18 electrode element, wherein the subsequent current collector has openings to allow
19 gases of the fuel cell to flow to and from the subsequent electrode element.

20

21 5. (Withdrawn) The apparatus as recited in claim 4, further comprising
22 an electrical interconnect connected to one of the current collectors.

1 6. (Withdrawn) The apparatus of claim 2, wherein the electrolyte layer
2 is attached to the electrode element as a deposited layer having a thickness
3 between approximately 1 micron and approximately 5 microns.

4

5 7. (Withdrawn) The apparatus of claim 2, wherein the electrolyte layer
6 is attached to the electrode element as a deposited layer having a thickness less
7 than approximately 1 micron.

8

9 8. (Previously Presented) A method, comprising:
10 obtaining a first current collector layer suitable for physically supporting
11 parts of a fuel cell stack, wherein the fuel cell stack includes at least two electrodes
12 and an electrolyte layer;
13 depositing a first electrode on the first current collector layer;
14 depositing the electrolyte layer of the fuel cell stack on the first electrode
15 layer;
16 depositing a second electrode layer of the fuel cell stack on the electrolyte
17 layer; and
18 depositing a second current collector layer of the fuel cell stack on the
19 second electrode layer.

20

21 9. (Previously Presented) The method as recited in claim 8, wherein
22 the first current collector is made of a first material suited to support the fuel cell
23 stack and the second current collector is made of a second material not suited to
24 support the fuel cell stack.

1
2 10. (Previously Presented) The method as recited in claim 8, further
3 comprising defining an etch pattern on the first current collector configured to
4 expose a surface of the first electrode, wherein the pattern is configured to allow
5 the first current collector layer strength to support the fuel cell stack.

6
7 11. (Previously Presented) The method as recited in claim 8, wherein
8 obtaining the first current collector layer comprises a stress relief step to release
9 potential energy of unstable molecular configurations that helps the first current
10 collector layer hold a flat surface during temperature variations.

11
12 12. (Previously Presented) The method as recited in claim 8, further
13 comprising cleaning at least one flat surface of the current collector material to
14 reduce contact resistance.

15
16 13. (Previously Presented) The method as recited in claim 8, further
17 comprising depositing the first current collector layer on a mandrel surmounted by
18 a release layer.

19
20 14. (Previously Presented) The method as recited in claim 8, further
21 comprising removing the mandrel and sintering the first current collector layer and
22 the first electrode.

1 15. (Previously Presented) The method as recited in claim 8, further
2 comprising mounting the fuel cell stack in a fuel cell, wherein a connection
3 between the fuel cell and at least one of the first current collector layer and the
4 second current collector layer physically supports the fuel cell stack in the fuel
5 cell.

6
7 16. (Previously Presented) The method as recited in claim 11, wherein
8 the stress relief step comprises heating the current collector layer followed by slow
9 cooling to allow molecules to settle into stable positions.

10
11 17. (Withdrawn) The method as recited in claim 8, wherein the first and
12 second current collector layers are made of the same material, similarly etched and
13 both used to support the fuel cell stack in a fuel cell.

14
15 18. (Previously Presented) The method as recited in claim 8, wherein the
16 first and second current collector layers are made of different materials, differently
17 etched and only the first current collector layer is used to support the fuel cell
18 stack in a fuel cell.

19
20 19. (Previously Presented) The method as recited in claim 8, wherein the
21 first current collector is etched using a temporary material that is removed during a
22 sintering step which leaves the etched first current collector and the first electrode
23 adhered together.

1 20. (Previously Presented) The method as recited in claim 8, wherein the
2 depositing is accomplished through any one of painting, spraying, plating,
3 electroplating, electrodepositing, vacuum electrodepositing, dip coating, spin
4 coating, sublimating, and evaporating.

5
6 21. (Previously Presented) The method as recited in claim 8,
7 additionally comprising removing some of the first and second current collector
8 layers by any one of chemical etching, dry-etching, mechanical etching, optical
9 etching, laser etching, and electron beam etching.

10
11 22. (Previously Presented) The method as recited in claim 8, wherein the
12 first current collector layer has a thickness approximately between ten and twenty
13 times a thickness of one of the electrodes or the electrolyte.

14
15 23. (Previously Presented) The method as recited in claim 8, wherein the
16 first current collector layer has a thickness of approximately between ten and one
17 thousand microns.

18
19 24. (Previously Presented) The method as recited in claim 8, wherein the
20 first and second electrode layers or the electrolyte layer have a thickness of
21 approximately five microns.

1 25. (Previously Presented) The method as recited in claim 8, wherein
2 the first and second electrode layers or the electrolyte layer has a thickness less
3 than five microns.

4

5 26. (Withdrawn) A method, comprising:
6 making a patterned form;
7 depositing a material in the patterned form to make a patterned first current
8 collector layer suitable for physically supporting parts of a fuel cell stack, wherein
9 a fuel cell stack includes at least two electrodes and an electrolyte; and
10 depositing a part of the fuel cell stack on the patterned first current collector
11 layer.

12

13 27. (Withdrawn) The method as recited in claim 26, further comprising:
14 depositing a first electrode layer of the fuel cell stack on the patterned first
15 current collector layer;
16 depositing an electrolyte layer of the fuel cell stack on the first electrode
17 layer;
18 depositing a second electrode layer of the fuel cell stack on the electrolyte
19 layer;
20 depositing a second current collector layer of the fuel cell stack on the
21 second electrode layer; and
22 removing the patterned form to expose a surface of the first electrode layer.

1 28. (Withdrawn) The method as recited in claim 27, further comprising
2 removing some of the second current collector layer to expose a surface the
3 second electrode layer.

4

5 29. (Withdrawn) The method as recited in claim 26, wherein the
6 patterned form is a mandrel having a patterned layer of removable material.

7

8 30. (Withdrawn) The method as recited in claim 29, wherein the
9 removable material is photo-resist.

10

11 31. (Withdrawn) The method as recited in claim 29, wherein the
12 patterned form is removed before one or more of the electrolyte layer, the second
13 electrode layer, and the second current collector layer are deposited.

14

15 32. (Withdrawn) The method as recited in claim 29, further comprising
16 sintering at least two layers of the fuel cell stack.

17

18 33. (Withdrawn) A fuel cell, comprising:
19 one or more stack assemblies, each stack assembly having an anode
20 electrode, a cathode electrode, an electrolyte, and at least one supporting current
21 collector, wherein the supporting current collector provides structural integrity to
22 the stack assembly; and

1 one or more fuel cell chambers to contain the one or more stack assemblies,
2 wherein at least one surface of a fuel cell chamber physically supports a stack
3 assembly using the supporting current collector of the stack assembly.

4

5 34. (Withdrawn) The fuel cell as recited in claim 33, wherein each stack
6 assembly is made by depositing a first electrode layer on the supporting current
7 collector, depositing an electrolyte layer on the electrode layer, depositing a
8 second electrode layer on the electrolyte layer, and depositing a second current
9 collector layer on the second electrode layer.

10

11 35. (Withdrawn) The fuel cell as recited in claim 34, wherein some of
12 the supporting current collector is removed to expose the first electrode layer and
13 some of the second current collector layer is removed to expose the second
14 electrode layer.

15

16 36. (Withdrawn) An electronic device, comprising:
17 a means for electrochemically producing energy;
18 a means for containing the means for electrochemically producing energy;
19 and
20 a current collector to carry electrons to or from the means for
21 electrochemically producing energy, wherein the current collector physically
22 supports the means for electrochemically producing energy in the means for
23 containing.

1 37. (Withdrawn) The electronic device as recited in claim 36, wherein at
2 least some parts of the means for producing electricity are deposited on the current
3 collector.

4

5 38. (Withdrawn) The electronic device as recited in claim 37, wherein at
6 least some parts of the means for producing electricity are deposited by one of
7 painting, spraying, plating, electroplating, electrodepositing, vacuum
8 electrodepositing, dip coating, spin coating, sublimating, evaporating.

9

10 39. (Withdrawn) A method of using a current collector, comprising:
11 depositing an electrode on the current collector;
12 depositing other elements of a fuel cell on the electrode;
13 physically supporting the electrode and the other elements of a fuel cell in
14 at least one fuel cell chamber using the current collector;
15 producing a flow of electrons using the electrode and the other elements of
16 a fuel cell; and
17 carrying at least part of the flow of electrons using the current collector.

18

19 40. (Withdrawn) The method as recited in claim 39, wherein the
20 depositing includes any one of painting, spraying, plating, electroplating,
21 electrodepositing, vacuum electrodepositing, dip coating, spin coating,
22 sublimating, evaporating.