# **Solutionnaire**



Contrôle périodique 3

LOG1810

Sigle du cours

| Sigle et titre du cours                                                |              | Groupe       |       | Trimestre                                 |
|------------------------------------------------------------------------|--------------|--------------|-------|-------------------------------------------|
| LOG1810<br>Structures discrètes                                        |              | Tous         |       | Été 2024                                  |
| Professeur                                                             |              | Local        |       | Téléphone                                 |
| Vincent Brouillard, Chargé de cours<br>Aurel Randolph, Chargé de cours |              |              |       |                                           |
| Jour                                                                   | Date         |              | Durée | Heures                                    |
| Samedi                                                                 | 15 juin 2024 |              | 1h    | 10h30-11h30                               |
| Documentation                                                          |              | Calculatrice |       |                                           |
| Aucune                                                                 |              | Aucune       |       | Loc apparails                             |
|                                                                        |              | ☐ Toutes     |       | Les appareils<br>électroniques personnels |
|                                                                        |              |              |       | sont interdits.                           |

LOG1810-É2024 Contrôle périodique 3 **Solutionnaire** 

# Question 1 (5.5 points)

Soit E l'ensemble des nombres de 4 chiffres dont le premier chiffre est non nul.

a. (2 points) Quel est le nombre d'éléments de E?

# **Réponse:**

Soit N1 le nombre recherché.

Choix du 1<sup>er</sup> chiffre, 0 étant exclu : C(9, 1).

- Choix du 2<sup>ème</sup> chiffre : C (10, 1).
- Choix du 3<sup>ème</sup> chiffre : C (10, 1).
- Choix du 4<sup>ème</sup> chiffre : C (10, 1).
- Nombre d'éléments de E
  - N1 = C(9, 1)  $\times$  C(10, 1)  $\times$  C(10, 1)  $\times$  C(10, 1)
  - N1 = 9000
- b. (3.5 points) Quel est le nombre d'éléments de E composés d'exactement deux chiffres identiques ?

# Réponse:

Soit N2 le nombre recherché, a le chiffre qui se répète 2 fois, b et c les autres chiffres qui ne se répètent pas, avec  $b \neq c$ .

#### A. Préalable

- Dénombrement des motifs
  - Dénombrement par énumération

On a les motifs suivants:

```
aabc – abac – abca aacb – acab – acba baac – baca – baaa caab – caba – cbaa
```

- Il y a donc au otl 12 motifs.
- Autre possibilité de dénombrement des motifs.
  - O Pour le chiffre qui se répète 2 fois, nous avons C(4, 2) choix de positions pour constituer le motif.
  - Une fois que le chiffre qui se répète est positionné, il nous reste C(2, 1) choix pour le 2ème chiffre. Le reste s'impose au 3ème chiffre.
  - $\circ$  Le nombre total de motifs est donc : C(4, 2) x C(2, 1) = 12

#### B. Solution 1

- Cas où le chiffre qui se répète est différent de 0
  - Choix du chiffre qui se répète 2 fois : C(9, 1).
  - Choix du 2ème chiffre qui compose le nombre, incluant éventuellement le 0 : C(9, 1)
  - Choix du 3ème chiffre qui compose le nombre, incluant éventuellement le 0, s'il y a lieu : C(8, 1)
  - Nombre d'éléments dans le cas courant, sans restriction est : 12 x C(9, 1) x C(9, 1) x C(8, 1)
  - Exclusion des motifs baac-baca bcaa : 3 x C(9, 1) x C(8, 1)
  - Exclusion des motifs caab caba cbaa : 3 x C(9, 1) x C(8, 1)

- Nombre d'éléments dans le cas courant avec restriction est : 12 x C(9, 1) x C(9, 1) x C(8, 1) 3 x C(9, 1) x C(8, 1)
- Cas où le chiffre qui se répète est 0
  - Les seuls motifs admissibles sont : baac-baca bcaa, caab caba cbaa
  - Choix du 2ème chiffre qui compose le nombre : C(9, 1)
  - Choix du 3ème chiffre qui compose le nombre : C(8, 1)
  - Nombre d'éléments dans le cas courant : 6 x C(9, 1) x C(8, 1)
- Nombre d'éléments de E composés d'exactement deux chiffres identiques
  - N2 = 12 x C(9, 1) x C(9, 1) 3 x C(9, 1) x C(8, 1) 3 x C(9, 1) x C(8, 1) + 6 x C(9, 1) x C(8, 1)
  - $N2 = 12 \times C(9, 1) \times C(9, 1) \times C(8, 1)$
  - N2 = 7776

## C. Solution 2

- Dénombrement sans restriction
  - Choix du chiffre qui se répète 2 fois : C(10, 1).
  - Choix du 2<sup>ème</sup> chiffre qui compose le nombre : C(9, 1).
  - Choix du 3<sup>ème</sup> chiffre qui compose le nombre : C(8, 1).
  - Nombre d'éléments dans le cas courant est : 12 x C(10, 1) x C(9, 1) x C(8 1).
- Dénombrement des cas non souhaités
  - Nombre d'éléments répondant aux motifs 00bc 0b0c 0bc0, 00cb 0c0b 0cb0
    3 x C(9, 1) x C(8, 1)
  - Nombre d'éléments répondant aux motifs 0aac- 0aca 0caa, caa0 ca0a c0aa
    3 x C(9, 1) x C(8, 1)
- Nombre d'éléments de E composés d'exactement deux chiffres identiques
  - N2 = 12 x C(10, 1) x C(9, 1) x C(8 1) 3 x C(9, 1) x C(8, 1)- 3 x C(9, 1) x C(8, 1)
  - N2 = 7776

### Question 2 (5.5 points)

On considère le plan d'un bâtiment comme ci-dessous. Les murs sont représentés par les lignes. Les salles sont nommées A, B, C, D, E et F. Les portes sont étiquetées de P1 à P15. Toutes les portes sont à double sens de circulation.



En partant de la salle E, est-il possible de trouver un chemin qui passe une et une seule fois par chacune des portes ? Justifiez votre réponse.

**Note** : Vous devez utiliser vos connaissances en théorie des graphes pour répondre à la question. Il ne s'agit pas d'essayer des tracés à la main pour prétendre répondre à la question.

LOG1810-É2024 Contrôle périodique 3 **Solutionnaire** 

# Réponse :

# • Formalisation du problème

Le problème peut être modélisé en considérant que :

- le plan est constitué de 6 salles auxquelles on ajoute l'extérieur du bâtiment comme une salle fictive.
  Appelons l'extérieur du bâtiment "salle G"
- o chaque salle est considérée comme le sommet d'un graphe dont les arêtes sont les portes d'accès. Ainsi, franchir une porte pour se rendre d'une salle à une autre, c'est parcourir un arc qui relie les 2 salles.



Graphe modélisant le problème

# • Analyse du problème

- Le nombre de portes d'accès à une salle est le nombre d'arcs incidents au sommet correspondant à cette salle, ce qui permet de déterminer son degré.
- Nous avons: deg(A) = 4; deg(B) = 5; deg(C) = 3; deg(D) = 5; deg(E) = 4; deg(F) = 3; deg(G) = 6.
- Trouver un chemin qui passe une et une seule fois par chacune des portes en partant d'un sommet de départ (sommet E) situé à l'intérieur du bâtiment, c'est parcourir tous les arcs du graphe une et une seule fois, exceptés des arcs incidents au sommet G (extérieur du bâtiment) qui peuvent ne pas être franchis si l'on finit le parcours à l'extérieur. Cela revient à chercher une chaîne eulérienne, exception faite de certains arcs incidents à G. Cela n'est possible que lorsque le graphe contient exactement 2 sommets de degré impair, exception faite du sommet G. Or nous avons au moins 3 sommets de degrés impairs, soit les sommets B, D et F.

# Conclusion

Il n'est donc pas possible de trouver un chemin qui passe une et une seule fois par chacune des portes en partant de la salle E.

# Question 3 (5.5 points)

Considérez la grammaire régulière G = (V, T, S, P) où  $V = \{a, b, d, A, B, D, S\}$ ,  $T = \{a, b, d\}$  et les règles de production P sont :

| $S \rightarrow bB$      | $A \rightarrow bB$ | $B \rightarrow aA$ |
|-------------------------|--------------------|--------------------|
| $S \rightarrow dD$      | $A \rightarrow dD$ | $D \rightarrow aB$ |
| $S \rightarrow \lambda$ | $A \rightarrow b$  | $D \rightarrow d$  |

a. (3.5 points) Construisez un automate à états finis qui reconnaît le langage généré par la grammaire régulière G.

# **Réponse:**

Soit S<sub>0</sub>, S<sub>A</sub>, S<sub>B</sub>, S<sub>D</sub> les états correspondant aux non terminaux S, A, B, D, respectivement. L'automate recherché est le suivant.



b. (2 **points**) Est-ce que la chaîne « **dab** » fait partie du langage généré par la grammaire **G** ? Si oui, donnez la chaîne de production correspondante ; Sinon, proposez autant de règles de production qu'il faut pour permettre d'obtenir cette chaîne et donnez la chaîne de production correspondante.

#### Réponse:

La chaîne « dab » n'est pas un mot du langage G. En effet, il est possible d'obtenir la sous-chaîne « da » avec les règles de production  $S \to dD$  et  $D \to aB$ , ce qui donne la chaîne de dérivation  $S \to dD \to daB$ . Cependant, il n'existe pas de règle à partir du symbole non terminal B qui produise « b ». Ainsi, pour permettre à G de produire la chaîne « G de produire la chaîne » G de produire la chaîne « G de produire la chaîne » G de produire » G de produ

### Question 4 (3.5 points)

Donnez l'arbre algébrique correspondant à l'expression en notation polonaise inversée suivante.

### Réponse :

