Zadaci za 2. auditorne vježbe

- 1. Na osciloskop, ulaznog otpora 1 M Ω i njemu paralelnog kapaciteta 20 pF, priključuje se sonda 10:1. Koliki mora biti kapacitet sonde da bi ona bila frekvencijski kompenzirana ako je kapacitet koaksijalnog kabela sonde 75 pF? ($C_s = 10.6 \text{ pF}$)
- 2. Osciloskopom mjerimo fazni pomak između dva napona frekvencije 50 Hz. Preklopka za faktor otklona je u položaju 0,5 V/d.sk, a preklopka za vremensku bazu je u položaju 5 ms/d.sk. Koliki je fazni pomak među naponima, ako su sinusoide razmaknute za 0,5 d.sk?

 (45°)
- 3. Osciloskopom koji ima gornju graničnu frekvenciju 20 MHz izmjerili smo vrijeme porasta nekog signala $t_{ro} = 60$ ns. Koliko je stvarno vrijeme porasta tog signala? (57,4 ns)
- 4. Sinusni napon frekvencije 20 MHz dovodi se iz naponskog izvora na ulaz osciloskopa granične frekvencije $f_g = 20$ MHz. Kolika je efektivna vrijednost napona ako je ukupna visina slike na zaslonu 6 cm pri faktoru otklona 0,5 V/cm? (1,5 V)
- 5. Operacijskim pojačalom s $R_1 = 10 \text{ k}\Omega$ i $R_p = 100 \text{ k}\Omega$ mjerimo nepoznati istosmjerni naponski izvor. U invertirajućem spoju, voltmetrom zanemarive pogreške, izmjeren je napon na izlazu pojačala $U_{izI} = -0.91 \text{ V}$, a u neinvertirajućem $U_{izN} = 1.1 \text{ V}$. Koliki je unutrašji otpor izvora? (989 Ω)
- 7. Mjerenjem otpora Wheatstonovim mostom sa 100-omskom kliznom žicom, uz $R_2 = 10 \text{ k}\Omega$, očitano je $R_3 = 64 \Omega$. Koliki treba biti najmanji napon na mostu, ako se, s nulindikatorom strujne konstante $c_i = 1,6 \cdot 10^{-6} \text{ A/d.sk.}$ i otpora $R_5 = 500 \Omega$, želi postići $\delta_{\min} = 0,04 \%$? (12V)
- 8. Mjerenjem djelatnog otpora Wheatstoneovim mostom uz $R_2 = 100 \Omega$ dobili smo u ravnoteži $R_3 = 139 \Omega$ i $R_4 = 361 \Omega$. Sigurne granice pogrešaka za R_2 iznose $\pm 0,04 \Omega$, a za R_3 i $R_4 \pm 0,2 \Omega$. Kolike su sigurne postotne granice pogrešaka otpora R_x ? ($\pm 0,24 \%$)
- 9. Koliki otpor treba dodati s jedne i druge strane klizne žice u Wheatstoenovom mostu, ako se želi da pogreška zbog netočnosti očitanja na kraju klizne žice bude 0,2 %? Duljina klizne žice iznosi 400 mm, točnost očitanja na kliznoj žici ±0,2 mm, a njezin otpor 20 Ω.
- 10. Koliki je približno potencijal nulinidkatora uravnoteženog Scheringovog mosta s $C_2 = 100$ pF, $R_3 = 400$ Ω , $R_4 = 800$ Ω i $C_4 = 10$ nF, koji se napaja naponom 100 kV, f = 50 Hz? (2,51 V)
- 11. Mjerenjem kapaciteta i kuta gubitaka Wienovim mostom dobilo se u ravnoteži: $C_2 = 10$ nF, $R_2 = R_3 = 100 \Omega$ i $R_4 = 300 \Omega$. Napon na mostu iznosa je 10 V i frekvencije 1 kHz. Kolika se približno djelatna snaga disipira na kondenzatoru C_x ? (7,4 μ W)
- 12. Napon nekog izvora unutrašnjeg otpora 100 Ω mjerili smo kompenzatorom i dobili 7,5 V. Koliki će napon pokazati voltmetar za 10 V, karakterističnog otpora 600 Ω /V? (7,38 V)

- 13. Preciznim istosmjernim kompenzatorom umjerava se ampermetar mjernog dometa 10 A, razreda točnosti 0,1. Koji etalonski otpornik valja odabrati ako se predviđa njegovo uranjanje u rashladno sredstva? (100 mΩ)
- 14. Sinusni napon frekvencije 100 kHz, amplitude 5 V iz izvora zanemarivog unutrašnjeg otpora, dovodimo na ulaz osciloskopa 1 M Ω || 30 pF. Kolika je efektivna vrijednost struje izvora? ($I_{\rm ef}$ = 66,74 μ A)
- 15. Osciloskopom se mjeri punovalno ispravljen sinusni napon. Kolika mu je srednja vrijednost ako je preklopka za faktor otklona bila u položaju 0,5 V/cm, a na zastoru je uz isključeni pilasti napon, dobivena crta duljine 4 cm? (1,27 V)
- 16. Pri mjerenju pravokutnog izmjeničnog napona osciloskopom dobili smo na zaslonu osciloskopa, uz isključenu vremensku bazu, vertikalnu crtu duljine 8 cm. Prethodno smo ustanovili da priključivanje točno poznatog istosmjernog napona od 2 V proizvodi vertikalni pomak zrake od 15 mm. Kolika je efektivna vrijednost tog napona?

(5,3 V)

- 17. Na ulaz integracijskog pojačala s $R=4~\mathrm{k}\Omega$ i $C=0.05~\mu\mathrm{F}$ dovodimo izmjenični pravokutni napon tjemenog iznosa 4 V, frekvencije f = 1 kHz. Koliki će biti iznos napona, od vrha do vrha na izlazu pojačala?
- 18. Na ulaz operacijskog pojačala u invertirajućem spoju ($R_1 = 10 \text{ k}\Omega$, $R_2 = 100 \text{ k}\Omega$) priključili smo izvor istosmjernog napona U = 100 mV, unutrašnjeg otpora $R_i = 10 \text{ k}\Omega$. Koliki će biti izlazni napon? (-500 mV)
- 19. Na neinvertirajući ulaz operacijskog pojačala dovodimo istosmjerni napon $U_{\rm ul}=100~{\rm mV}$. Koliko iznosi izlazni napon $U_{\rm iz}$ ako otpor u povratnoj vezi iznosi 100 k Ω , a otpor invertirajućeg ulaza prema masi 20 k Ω ? (600 mV)
- 20. Kolika je mjerna nesigurnost zbog neosjetljivosti Wheatstoneovog mosta s kliznom žicom otpora 200 Ω , ako pomak kliznika sa sredine klizne žice, kojem odgovara otpor 0,5 Ω , razravnotežuje most za jedan dio skale otklona nulindikatora? (0,1%)
- 21. Wheatstoneov most sa 100-omskom kliznom žicom i $R_2 = 10 \text{ k}\Omega$ u ravnoteži je uz $R_3 = 51,5 \Omega$. Pokusom određivanja relativne mjerne nesigurnosti dobili smo otklone nulinidkatora od 1 d.sk. uz $R_3 = 52 \Omega$ lijevo i $R_3 = 51 \Omega$ desno od nule. Kolika je relativna mjerna nesigurnost zbog neosjetljivosti mosta ako se na nulindikatoru još može očitati 0,1 d.sk? (0,2%)
- 22. Ravnoteža Wheatstoneovog mosta postignuta je uz $R_2 = 300 \Omega$, $R_3 = 50 \Omega$ i $R_4 = 50 \Omega$. Kolika je u trenutku ravnoteže snaga izvora ako je njegova elektromotorna sila 6 V, a unutrašnji otpor 20Ω ? (0,341 W)
- 23. Kut gubitaka uzorka izolacijskog materijala mjeren je Scheringovim mostom pri frekvenciji 50 Hz. Koliki je kut gubitaka tog izolacijskog materijala ako je, uz $R_3 = 4 \text{ k}\Omega$, ravnoteža postignuta pri $R_4 = 15,4 \text{ k}\Omega$, $C_4 = 3,9 \text{ nF}$, a čvorišta mosta u dijagonali nulindikatora imaju kapacitete prema zemlji veličine 800 pF? (tg $\delta = 0,022$)
- 24. Scheringovim mostom mjeri se kapacitet kondenzatora s uzorkom izolacijskog materijala između elektroda. Uz $C_2 = 1000$ pF i $R_4 = 4$ k Ω , u ravnoteži se dobilo $R_3 = 8.8$ k Ω i $C_4 = 5.1$ nF. Kolika je relativna dielektričnost materijala uzorka ako je promjer visokonaponske elektrode 10 cm, a debljina uzorka je 1 mm? ($\mathcal{E}_r = 6.54$)

- 25. Scheringovim mostom određuje se relativna dielektrična konstanta \mathcal{E}_r uzorka izolacijskog materijala. Uzorak je kružnog oblika promjera 10 cm, debljine 1 mm ($\mathcal{E}_0 = 8,854 \cdot 10^{-12} \text{ F/m}$). Kapacitet kondenzatora $C_2 = 960$ pF, otpor $R_4 = 5$ k Ω , a ravnoteža je postignuta uz $R_3 = 7,2$ k Ω i $C_4 = 9,3$ nF. Relativna dielektrična konstanta \mathcal{E}_r uzorka je? (9,6)
- 26. Izmjenični most sastavljen je od impedancija $Z_1 = Z_x$, $Z_2 = 150 \underline{\ 0^{\circ}}\ \Omega$, $Z_3 = 200 \underline{\ -40^{\circ}}\ \Omega$, $Z_4 = 250 \underline{\ 30^{\circ}}\ \Omega$. Koliki mora biti Z_x da se postigne ravnoteža mosta?

$$(Z_{\rm x} = 120 | -70^{\rm o} \Omega)$$

27. Impedancije grana izmjeničnog Wheatstoneovog mosta pri nekoj frekvenciji jesu: $Z_2 = 90|\underline{15^{\circ}}\ \Omega,\ Z_3 = 220|\underline{45^{\circ}}\ \Omega,\ Z_4 = 180|\underline{30^{\circ}}\ \Omega$. Koliki mora biti Z_1 da bi most bio u ravnoteži? $(Z_x = 110|\underline{30^{\circ}}\ \Omega)$