Bài 4. TIỆM CẬN

A. KIẾN THỰC SÁCH GIÁO KHOA CẦN CẦN NẮM

1. Đường tiêm cân ngang

Cho hàm số y = f(x) xác định trên một khoảng vô hạn (là khoảng dạng $(a; +\infty)$), $(-\infty; b)$ hoặc $(-\infty; +\infty)$). Đường thẳng $y=y_0$ là đường tiệm cân ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn.

$$\lim_{x \to +\infty} f(x) = y_0, \lim_{x \to -\infty} f(x) = y_0$$

2. Đường tiệm cận đứng

Đường thẳng $x = x_0$ được gọi là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn.

$$\lim_{x \to x_0^+} f(x) = +\infty, \lim_{x \to x_0^-} f(x) = -\infty, \lim_{x \to x_0^+} f(x) = -\infty, \lim_{x \to x_0^-} f(x) = +\infty$$

3. Dấu hiệu:

- +) Hàm phân thức mà nghiệm của mẫu không là nghiệm của tử có TCĐ.
- +) Hàm phân thức mà bậc của tử \leq bậc của mẫu có TCN.
- +) Hàm căn thức dạng: $y = \sqrt{bt1} \sqrt{bt2}, y = \sqrt{bt1} bt2, y = bt1 \sqrt{bt2}$ thường có TCN. (Dùng liên hợp).

4. Cách tìm:

- +) TCĐ: Tìm nghiệm của mẫu không là nghiệm của tử.
- +) TCN: Tính 2 giới hạn: $\lim_{x \to +\infty} y$ hoặc $\lim_{x \to -\infty} y$.

5. Nhân xét

- 1. Nếu $x \to +\infty \Rightarrow x > 0 \Rightarrow \sqrt{x^2} = |x| = x$.
- 2. Nếu $x \to -\infty \Rightarrow x < 0 \Rightarrow \sqrt{x^2} = |x| = -x$.
- 3. Hàm số $y = \frac{ax+b}{cx+d}$ có tiệm cận đứng là $x = -\frac{d}{c}$, tiệm cận ngang là $y = \frac{a}{c}$.
- 4. Hàm số $y = \frac{ax^2 + bx + c}{mx + n} = px + q + \frac{k}{mx + n}$ có TCĐ là $x = -\frac{n}{m}$, không có tiệm cân ngang.
- 5. TQ: $\frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} : \begin{bmatrix} n \le m : \text{TCD/TCN} \\ n > m : \text{TCD/0TCN}. \end{bmatrix}$

B. PHÂN LOAI VÀ PHƯƠNG PHÁP GIẢI BÀI TÂP

🖶 Dạng 1. Lý thuyết về đường tiệm cận

1. Các ví du

VÍ DỤ 1. Cho hàm số y = f(x) có $\lim_{x \to +\infty} f(x) = 1$ và $\lim_{x \to -\infty} f(x) = -1$. Khẳng định nào sau đây là **đúng**?

- **A.** Đồ thi hàm số đã cho có hai tiêm cân ngang là các đường thẳng y=1 và
- В

y = -1.		
. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng x	= 1 và	
$y=\frac{x+1}{x}$.		
4^x		

QUICK NOTE	C. Đồ thị hàm số đã cho có đúng một tiệm cận ngang.D. Đồ thị hàm số đã cho không có tiệm cận ngang.	
	VÍ DỤ 2. Cho hàm số $y = f(x)$ liên tục trên $\mathbb R$ thỏa mãn $\lim_{x \to \infty} f(x)$	$\lim_{x \to +\infty} f(x) = 0, \lim_{x \to +\infty} f(x) =$
	1. Tổng số đường tiệm cận đứng và đường tiệm cận ngang c	
	là A. 2. B. 1. C. 3.	D. 0.
		.
	2. Câu hỏi trắc nghiệm CÂU 1. Cho hàm số $u = f(x)$ có $\lim_{x \to 0} f(x) = 3$ và $\lim_{x \to 0} f(x) = 3$	f(x) = 3 Khổng định
	CÂU 1. Cho hàm số $y = f(x)$ có $\lim_{x \to +\infty} f(x) = 3$ và $\lim_{x \to -\infty} f(x) = 3$ và $\lim_{x \to -\infty}$	∞ $\int (x) = 3$. Knang dinn
	nào sau đây đúng ? A. Đồ thị hàm số có đúng một tiệm cận ngang.	
	B. Đồ thị hàm số có hai tiệm cận ngang là các đường th	hẳng $y = -3; y = 3.$
	C. Đồ thị hàm số không có tiệm cận ngang.	
	D. Đồ thị hàm số có hai tiệm cận ngang là các đường th	
	CÂU 2. Cho hàm số $y = f(x)$ có $\lim_{x \to +\infty} f(x) = 1$ và $\lim_{x \to -\infty} f(x) = 1$	f(x) = -1. Khẳng định
	nào sau đây là đúng ?	1 2 12 1
	A. Đồ thị hàm số đã cho có hai tiệm cận ngang là các trình $x = 1$ và $x = -1$.	dương thắng có phương
	B. Đồ thị hàm số đã cho có đúng một tiệm cận ngang.	
	C. Đồ thị hàm số đã cho không có tiệm cận ngang.	
	D. Đồ thị hàm số đã cho có hai tiệm cận ngang là các	đường thẳng có phương
	$\operatorname{trình} y = 1 \text{ và } y = -1.$	
	CÂU 3. Cho hàm số $f(x)$ xác định trên tập $\mathcal{D} = [-2018; 20]$	0.018]\{-2017; 2017} thỏa
	$\lim_{x \to -2017^{-}} f(x) = -\infty, \lim_{x \to -2017^{+}} f(x) = -\infty, \lim_{x \to 2017^{-}} f(x) = -\infty$	$+\infty$, $\lim_{x\to 2017^+} f(x) = +\infty$.
	Tìm khẳng định đúng?	
	A. Đồ thị hàm số đã cho không có đường tiệm cận đứng	g.
	B. Đồ thị hàm số đã cho có hai tiệm cận đứng là $x=-$	
	C. Đồ thị hàm số đã cho có hai tiệm cận đứng là $x = -$ D. Đồ thị hàm số đã cho có hai tiệm cận đứng là $x = -$	
	-2018; x = 2018	= -2017, x = 2017, x =
	CÂU 4. Cho hàm số $y = f(x)$ xác định trên khoảng $(0; +\infty)$, và thỏa mãn $\lim_{x \to \infty} f(x) = 0$
	1. Hãy chọn mệnh đề đúng trong các mệnh đề sau:	$x \to +\infty$
	A. Đường thẳng $x = 1$ là tiệm cận ngang của đồ thị hài	$m \text{s\'o} y = f(x).$
	B. Đường thẳng $x=1$ là tiệm cận đứng của đồ thị hàm	n số $y = f(x)$.
	C. Đường thẳng $y = 1$ là tiệm cận ngang của đồ thị hàn	
	D. Đường thẳng $y=1$ là tiệm cận đứng của đồ thị hàm	
	CÂU 5. Cho hàm số $y = f(x)$ có $\lim_{x \to +\infty} f(x) = 1$ và $\lim_{x \to -\infty} f(x) = 1$	f(x) = -1. Khẳng định
	nào sau đây là khẳng định đúng?	1> 1
	A. Đồ thị hàm số đã cho có hai tiệm cận ngang là $x=1$ B. Đồ thị hàm số đã cho có đúng một tiệm cận ngang.	1 va $x = -1$.
	c. Đồ thị hàm số đã cho không có tiệm cận ngang.	
	D. Đồ thị hàm số đã cho có hai đường tiệm cận ngang l	
	CÂU 6. Cho hàm số $y=f(x)$ liên tục trên $\mathbb R$ thỏa mãn $\lim_{x o -\infty}$	$f(x) = 0, \lim_{x \to \infty} f(x) = 0$
	x o -c1. Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ t	
	A. 2. B. 1. C. 3.	D. 0.
	CÂU 7. Cho hàm số $y = f(x)$ có đồ thị như hình bên	

Các khẳng định sau:

$$(I) \lim_{x \to 1^{-}} f(x) = -\infty;$$

$$(II)\lim_{x\to -2^+} f(x) = -\infty;$$

$$(II) \lim_{\substack{x \to -2^+ \\ x \to +\infty}} f(x) = -\infty;$$

$$(III) \lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x) = -\infty; (IV) \lim_{\substack{x \to -2^- \\ x \to -2^-}} f(x) = +\infty.$$

Số khẳng định **đúng** là

A. 4.

B. 3.

C. 2.

D. 1.

CÂU 8. Cho hàm số y = f(x) có tập xác định là $\mathscr{D} = (0; +\infty)$ và $\lim_{x \to 0^+} y = -\infty$,

 $\lim_{x \to +\infty} y = +\infty$. Mệnh đề nào sau đây đúng?

- **A.** Đồ thị hàm số y = f(x) không có tiệm cận đứng và có tiệm cận ngang.
- **B.** Đồ thị hàm số y = f(x) có tiệm cận đứng và có tiệm cận ngang.
- **C.** Đồ thị hàm số y = f(x) có tiệm cận đứng và không có tiệm cận ngang.
- **D.** Đồ thị hàm số y = f(x) không có tiệm cận đứng và không có tiệm cận ngang.

CÂU 9. Cho hàm số y = f(x) có đồ thị là đường cong (C) và các giới hạn $\lim_{x \to a} f(x) = f(x)$

1; $\lim_{x\to 2^-}f(x)=1$; $\lim_{x\to -\infty}f(x)=2$; $\lim_{x\to +\infty}f(x)=2$. Hỏi mệnh đề nào sau đây đúng?

- **A.** Đường thẳng y=2 là tiệm cận ngang của (C).
- **B.** Đường thẳng y = 1 là tiệm cận ngang của (C).
- **C.** Đường thẳng x=2 là tiệm cận ngang của (C).
- **D.** Đường thẳng x=2 là tiệm cận đứng của (C).

CÂU 10. Đồ thị hàm số $y = \frac{x-1}{|x|+1}$ có bao nhiều đường tiệm cận?

A. 0.

D. 3.

Dạng 2. Tìm đường tiệm cận hàm số

1. Các ví dụ

VÍ DỤ 1. Cho hàm số $y = \frac{3x-1}{2x-1}$ có đồ thị (C). Khẳng định nào sau đây là đúng?

- **A.** Đường thẳng y = -3 là tiệm cận ngang của đồ thị (C).
- **B.** Đường thẳng $y = \frac{3}{2}$ là tiệm cận đứng của đồ thị (C).
- **C.** Đường thẳng $x = \frac{1}{2}$ là tiệm cận đứng của đồ thị (C).
- **D.** Đường thẳng $y = -\frac{1}{2}$ là tiệm cận ngang của đồ thị (C)..

VÍ DU 2. Đồ thị của hàm số nào sau đây có tiệm cận ngang?

A.
$$y = \frac{x}{x^2 + 1}$$
.

B.
$$y = \frac{x^2}{x+1}$$
.

c.
$$y = \frac{x^2 - 3x + 2}{x - 1}$$
.

B.
$$y = \frac{x^2}{x+1}$$
.
D. $y = \frac{\sqrt{4-x^2}}{1+x}$.

VÍ DỤ 3. Đồ thị của hàm số $y = \frac{3x^2 - 7x + 2}{2x^2 - 5x + 2}$ có bao nhiều tiệm cận đứng?

VÍ DU 4. Đồ thị hàm số $y = \sqrt{4x^2 + 4x + 3} - \sqrt{4x^2 + 1}$ có bao nhiều tiệm cận ngang?

A. 2.

VÍ DỤ 5. Số đường tiệm cận đứng của đồ thị hàm số $y = \frac{\sqrt{4x^2 - 1} + 3x^2 + 2}{x^2 - x}$ là

2. Câu hỏi trắc nghiệm

CÂU 1. Tiệm cận ngang của đồ thị hàm số $y = \frac{x+1}{1-x}$ là

A.
$$y = -1$$
.

C.
$$y = 0$$

CÂU 2. Đồ thị hàm số $y=\frac{2x-3}{x-1}$ có các đường tiệm cận đứng và tiệm cận ngang

lần lượt là

A.
$$x = -1$$
 và $y = -3$.

B.
$$x = -1$$
 và $y = 3$.

C.
$$x = 1 \text{ và } y = 2.$$

D.
$$x = 2 \text{ và } y = 1.$$

CÂU 3. Gọi I là giao điểm của hai đường tiệm cận của đồ thị hàm số $y = \frac{2x-3}{r+1}$.

Khi đó, điểm I nằm trên đường thẳng có phương trình

A.
$$x + y + 4 = 0$$
.

B.
$$2x - y + 4 = 0$$
.

C.
$$x - y + 4 = 0$$
.

D.
$$2x - y + 2 = 0$$
.

CÂU 4. Cho hàm số $y = \frac{2x-3}{x+1}$ có đồ thị là (C). Mệnh đề nào sau đây là đúng?

A. (C) có tiệm cận ngang là y=2.

B. (C) chỉ có một tiệm cận.

C. (C) có tiệm cận ngang là x=2.

D. (C) có tiệm cận đứng là x = 1.

CÂU 5. Cho hàm số $y = \frac{x-2}{x-1}$. Đường tiệm cận đứng của đồ thị hàm số là

A.
$$y = 1$$

B.
$$x = 2$$

C.
$$y = 2$$

D.
$$x = 1$$
.

CÂU 6. Đồ thị của hàm số nào dưới đây có tiệm cận đứng

A.
$$y = \frac{x+2}{x-1}$$
.

B.
$$y = \frac{x^3}{x^2 + 2}$$
.

C.
$$y = \sqrt{x^2 + 1}$$
.

B.
$$y = \frac{x^3}{x^2 + 2}$$
.
D. $y = \frac{x^2 - 5x + 6}{x - 2}$.

CÂU 7. Đồ thị nào dưới đây có tiệm cận ngang?

A.
$$y = x^3 - x - 1$$
.

B.
$$y = \frac{x^3 + 1}{x^2 + 1}$$
.

c.
$$y = \frac{3x^2 + 2x - 1}{4x^2 + 5}$$
.

D.
$$y = \sqrt{2x^2 + 3}$$
.

CÂU 8. Đồ thị hàm số nào dưới đây có tiệm cận đứng?

A.
$$y = 2^x$$

B.
$$y = \log_2 x$$

A.
$$y = 2^x$$
.
C. $y = \frac{x^2}{x^2 + 1}$.

B.
$$y = \log_2 x$$
.
D. $y = \frac{x^2 - 4x + 3}{x - 1}$.

CÂU 9. Phương trình tiệm cận đứng của đồ thị hàm số $y = \frac{x-1}{x+1}$ là

A.
$$x = -1$$
.

B.
$$y = 1$$
.

C.
$$y = -1$$
.

D.
$$x = 1$$
.

CÂU 10. Cho hàm số $y=\frac{2}{x-2}$. Đường tiệm cận ngang của đồ thị hàm số là u=-1. **B.** x=2. **C.** y=2. **D.** y=0.

A.
$$y = -1$$
.

B.
$$x = 2$$

C.
$$y = 2$$

D.
$$y = 0$$
.

CÂU 11. Cho đồ thị (C): $y = \frac{\sqrt{x^2 - 4}}{x + 1}$. Đồ thị (C) có bao nhiều đường tiệm cận? **A.** 0. **B.** 1. **C.** 2. **D.** 3.

CÂU 12. Tổng số các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số

CÂU 13. Tổng số đường tiệm cận đứng và ngang của đồ thị hàm số $y = \frac{3x+1}{x^2-4}$

- **A.** 3.
- **B.** 1.
- **C.** 2.
- **D.** 4.

CÂU 14. Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số y =

$$x-3$$

$$\mathbf{A.} \quad x = 2.$$

B.
$$x = -3$$
.

C.
$$x = 3$$

D.
$$u = 3$$
.

CÂU 15. Đồ thị hàm số nào dưới đây có tiệm cận ngang?

A.
$$y = \frac{\sqrt{4-x^2}}{x}$$
. **B.** $y = \frac{\sqrt{x-1}}{x+1}$.

B.
$$y = \frac{\sqrt{x-1}}{1}$$

c.
$$y = \frac{x^2 + 1}{x}$$
.

D.
$$y = \sqrt{x^2 - 1}$$
.

CÂU 16. Đồ thị hàm số nào dưới đây không có tiệm cận đứng?

A.
$$y = \frac{x-1}{x+1}$$
.

B.
$$y = \frac{x^2 + 1}{x + 1}$$
.

C.
$$y = \frac{2}{x+1}$$
.

B.
$$y = \frac{x^2 + 1}{x + 1}$$
.
D. $y = \frac{x^2 + 3x + 2}{x + 1}$.

CÂU 17. Đồ thị của hàm số nào dưới đây không có tiệm cận ngang?

$$\mathbf{A.} \ \ y = \frac{\cos x}{x}.$$

$$\mathbf{B.} \ \ y = \frac{\sin x}{x}$$

c.
$$y = \frac{\sqrt{x^3 + 1}}{x^2}$$

A.
$$y = \frac{\cos x}{x}$$
. **B.** $y = \frac{\sin x}{x}$. **C.** $y = \frac{\sqrt{x^3 + 1}}{x^2}$. **D.** $y = \frac{\sqrt{x^3 + 1}}{x}$.

CÂU 18. Tiệm cận đứng của đồ thị hàm số $y = \frac{x^3 - 3x - 2}{x^2 + 3x + 2}$ là đường thẳng:

$$x = -2$$

B. Không có tiệm cận đứng.

A.
$$x = -2$$
.
C. $x = -1$; $x = -2$.

D.
$$x = -1$$
.

CÂU 19. Đồ thị hàm số $y = \frac{2x-3}{x-1}$ có các đường tiệm cận đứng và tiệm cận ngang lần lượt là

A.
$$x = 2 \text{ và } y = 1.$$

B.
$$x = 1 \text{ và } y = -3.$$

C.
$$x = -1$$
 và $y = 2$.

D.
$$x = 1$$
 và $y = 2$

CÂU 20. Đồ thị của hàm số nào sau đây có tiệm cận ngang?

A.
$$y = \frac{\sqrt{4-x^2}}{x}$$
. **B.** $y = \frac{\sqrt{x-1}}{x+1}$. **C.** $y = \frac{x^2+1}{x}$. **D.** $y = \sqrt{x^2-1}$.

B.
$$y = \frac{\sqrt{x-1}}{x+1}$$
.

c.
$$y = \frac{x^2 + 1}{x}$$
.

D.
$$y = \sqrt{x^2 - 1}$$
.

CÂU 21. Tìm tất cả các tiệm cận đứng của đồ thị hàm số $y = \frac{2x - \sqrt{4x^2 - 3x + 2}}{3x^2 - 8x + 4}$.

A.
$$x = -\frac{2}{3}$$
 và $x = -2$.

B.
$$x = -2$$
.

C.
$$x = 2$$
.

D.
$$x = \frac{2}{3}$$
 và $x = 2$.

CÂU 22. Đường tiệm cận ngang của đồ thị hàm số $y = \frac{\sqrt[3]{-x^3 + 3x^2}}{x - 1}$ có phương trình

A.
$$y = 1$$
.

B.
$$y = -1$$
.

C.
$$x = -1$$
.

D.
$$y = -1 \text{ và } y = 1.$$

\frown	$\mathbf{H} \mathbf{C} \mathbf{L}$	/ NI	OTF
w		V IV	UIF

CÂII 23	Số đường tiêm côn	đứng của	đầ thị h	àm số u —	$\frac{(x^2-3x+2)\sin x}{(x^2-3x+2)\sin x}$ là
CAU 23.	20 duong ném cán	dung cua	do mi n	am so y =	$x^3 - 4x$

- **A.** 1.
- **B.** 2.
- **D.** 4.

CÂU 24. Tìm số đường tiệm cận của đồ thị hàm số
$$y=\frac{\sqrt{x+2}}{|x|-2}$$
.

A. 1.

B. 0.

C. 2.

CÂU 25. Trong bốn hàm số
$$y = \frac{x+1}{x-2}, \ y = 3^x, \ y = \log_3 x, \ y = \sqrt{x^2+x+1} - x.$$

Có mấy hàm số mà đồ thị của nó có đường tiệm cận.

- **A.** 4.

- **D.** 2.

🖶 Dạng 3. Đếm số tiệm cận (biết bbt, đồ thị)

1. Các ví dụ

VÍ DỤ 1. Hàm số y = f(x) có bảng biến thiên dưới đây.

x	$-\infty$ -	-2	0	$1 + \infty$
y'	_	_	+	_
y	-1 $-\infty$	2	-4	3

Số tiệm cận của đồ thị hàm số y = f(x) là

VÍ DỤ 2. Cho hàm số y = f(x) có bảng biến thiên như hình vẽ. Khẳng định nào sau đây sai?

x	$-\infty$ 2	$2 + \infty$
y'	+	+
y	+∞	-∞ 3

- **A.** Phương trình f(x) 5 = 0 có hai nghiệm thực.
- **B.** Đường thẳng x=2 là tiệm cận đứng của đồ thị hàm số.
- **C.** Hàm số đồng biến trên khoảng $(-\infty; 1)$.
- $\max_{x \in [3;10]} f(x) = f(10).$

VÍ DỤ 3. Cho hàm số y = f(x) liên tục trên các khoảng xác định và có bảng biến thiên như hình vẽ bên cạnh. Hỏi số đường tiệm cận đứng của đồ thị hàm số $y = \frac{1}{e^{f^2(x)} - 2}$ là bao nhiêu?

x	$-\infty$	_	-1	1		$+\infty$
f'(x)		+	_	0	+	
f(x)	$-\infty$	1	$+\infty$	1		$+\infty$

- **A.** 0.
- **B.** 3.
- **C.** 1.
- **D.** 2.

2. Câu hỏi trắc nghiệm

CÂU 1. Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau

x	$-\infty$		-1		2		$+\infty$
y'		+	0	_	0	+	
y	2		4		-5		2

Mệnh đề nào dưới đây đúng?

- **A.** Đồ thị hàm số y = f(x) không có đường tiệm cận.
- **B.** Hàm số y = f(x) có điểm cực đại bằng 4.
- **C.** Hàm số y = f(x) đồng biến trên (-5, 2).
- **D.** Hàm số y = f(x) có cực tiểu bằng -5.

CÂU 2. Cho hàm số y = f(x) có bảng biển thiên sau

x	$-\infty$	1 +∞
y'	+	+
y	+∞ -1	-1 -∞

Khẳng định nào sau đây là đúng?

- **A.** Đồ thị hàm số có tiệm cận đứng x = 1, tiệm cận ngang y = -1.
- **B.** Đồ thị hàm số có tiệm cận đứng x = -1, tiệm cận ngang y = 1.
- **C.** Đồ thị hàm số chỉ có một đường tiệm cận có phương trình x=1.
- **D.** Đồ thị hàm số chỉ có một đường tiệm cận có phương trình y = -1...

CÂU 3. Cho hàm số y = f(x) có bảng biến thiên như sau

x	$-\infty$	-1	2	4	$+\infty$
y'	+			+ 0	_
y	+∞	1		2	-3

Chon mênh đề sai?

- **A.** Đồ thị hàm số có đường tiệm cận đứng x=2.
- B. Hàm số có đúng 1 điểm cực trị.
- **C.** Hàm số đạt giá trị lớn nhất bằng 2 tại x bằng 4.
- **D.** Hàm số đồng biến trên khoảng (2; 3).

CÂU 4. (định và c đường tiệ

ho hàm số $y = f(x)$ xác định trên $\mathbb{R} \setminus \{1\}$, liên tục trên mỗi khoảng xác	
bằng biến thiên như hình bên. Hỏi đồ thị hàm số đã cho có bao nhiêu	
n cận?	
ớp Toán thầy Phát — ĐT: 0962.940.819 ————————————————————————————————————	
op loan thay Phat — 10: 0962.940.819 ————————————————————————————————————	

QUICK NOTE																					
•	•	•	•	•	٠	•	•	•				•	•	•	•	•	•	•	•	•	

x	$-\infty$	1	2	$+\infty$
y'	_	_	0 +	
y	3	$+\infty$	-2	5

- **A.** 3.
- **B.** 1.
- **D.** 4.

CÂU 5. Cho hàm số y = f(x) liên tục trên $\mathbb{R} \setminus \{1\}$ và có bảng biến thiên như sau:

x	$-\infty$	-2	1		2	$+\infty$
y'	_	0	+	+	0	_
y	+∞		+∞	$-\infty$	* 3 \	$-\infty$

- **D.** 1.

CÂU 6. Cho hàm số y = f(x) xác định trên $\mathbb{R} \setminus \{1\}$ liên tục trên mỗi khoảng xác định và có bảng biến thiên sau:

x	$-\infty$ 1	1 2	$2 + \infty$
f'(x)	_	- (0 +
f(x)	3	+∞	5

Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận?

- **A.** 3.
- **C.** 5.
- **D.** 2.

CÂU 7. Cho hàm số $m \neq -3$ có bảng biến thiên như sau

x	$-\infty$		-2		2		$+\infty$
y'		+	0	_	0	+	
y	$-\infty$		<i>3</i> \		~ ₀ /		$+\infty$

Đồ thị hàm số f(x) có bao nhiều tiệm cận đứng

- **B.** x = -3 < 0.
- **C.** f(|x|).

CÂU 8. Cho đồ thị hàm số bậc ba y = f(x) như hình vẽ. Hỏi đồ thị hàm số $y=\frac{\left(x^2-4x+3\right)\sqrt{x^2-x}}{x\left[f^3(x)-4f^2(x)\right]}$ có bao nhiêu đường tiệm cận đứng?

A. 5.

B. 3.

C. 6.

D. 4.

CÂU 9. Cho hàm số bậc ba $f(x)=ax^3+bx^2+cx+d$ có đồ thị như hình vẽ bên. Hỏi đồ thị hàm số $g(x)=\frac{\left(x^2-3x+2\right)\sqrt{x-1}}{x\left[f^2(x)-f(x)\right]}$ có bao nhiều đường tiệm cận?

A. 3.

B. 5.

C. 6.

D. 4.

CÂU 10. Cho đồ thị hàm bậc bốn y = f(x) như hình vẽ bên dưới.

 $\frac{f^2(x)\sqrt{x^2+x}}{[f^2(x)-2f(x)]\left(2x^5+x^4-10x^3-5x^2+8x+4\right)}$ Hỏi đồ thị hàm số y =nhiêu tiệm cận đứng và ngang?

D. 4.

\sim	-	$\mathbf{N} \mathbf{O}$	-
ØU		NO	15

CÂU 11. Cho hàm số $y = \frac{x+1}{x-1}$ có đồ thị (C). Giả sử A và B là hai điểm nằm trên (C) đồng thời đối xứng nhau qua giao điểm của hai đường tiệm cận của đồ thị (C). Dựng hình vuông AEBF. Tìm diện tích nhỏ nhất của hình vuông đó.

A. $S_{\min} = 4$.

B. $S_{\min} = 8$.

C. $S_{\min} = 4\sqrt{2}$.

D. $S_{\min} = 8\sqrt{2}$.

CÂU 12. Cho hàm số bậc ba $f(x)=ax^3+bx^2+cx+d$ có đồ thị như hình vẽ bên. Hỏi đồ thị hàm số $g(x)=\frac{\left(x^2-3x+2\right)\sqrt{2x+1}}{\left(x^4-5x^2+4\right)\cdot f(x)}$ có bao nhiều đường tiệm cận đứng?

A. 4.

B. 3.

C. 2.

D. 6.

CÂU 13. Cho đồ thị hàm bậc ba y = f(x) như hình vẽ. Hỏi đồ thị hàm số $y = \frac{\left(x^2 + 4x + 3\right)\sqrt{x^2 + x}}{x\left[f^2(x) - f(x)\right]}$ có bao nhiều đường tiệm cận đứng?

A. 6.

B. 3.

C. 2.

D. 4.

CÂU 14. Cho hàm số $y = \frac{x+2}{x-2}$ có đồ thị (C). Gọi I là giao điểm hai đường tiệm cận của (C). Tiếp tuyến của (C) cắt hai đường tiệm cận của (C) tại hai điểm A, B. Giá trị nhỏ nhất của chu vi đường tròn ngoại tiếp tam giác IAB bằng

A. $4\sqrt{2}\pi$.

B. 8π .

 \mathbf{C} , 2π .

 0.4π

CÂU 15. Cho đồ thị hàm bậc ba y = f(x) như hình vẽ.

Hỏi đồ thị hàm số $y = \frac{\left(x^2 + 4x + 3\right)\sqrt{x^2 + x}}{x\left[f^2(x) - 2f(x)\right]}$ có bao nhiêu đường tiệm cận đứng?

A. 6.

D. 4.

Dạng 4. Bài toán xác định các đường tiệm cận của hàm số có chứa tham số

1. Các ví du

VÍ DỤ 1. Đồ thị hàm số $y=\frac{ax+b}{2x+c}$ có tiệm cận ngang y=2 và tiệm cận đứng x = 1 thì a + c bằng

A. 1.

B. 2.

C. 4.

D. 6.

VÍ DỤ 2. Tìm tất cả các giá trị của tham số m để đồ thị hàm số $y = \frac{x-m}{r^2-3r+2}$ có đúng hai đường tiệm cận.

A. m = 1.

C. m=1, m=2. **D.** Moi $m \in \mathbb{R}$.

VÍ DỤ 3. Cho hàm số $y=\frac{x+1}{x^2-2mx+4}$. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có ba đường tiệm cận.

 $\mathbf{A.} \ m \in \emptyset.$

B. $\begin{bmatrix} m < -2 \\ m > 2 \end{bmatrix}$. **C.** m > 2.

2. Câu hỏi trắc nghiệm

CÂU 1. Cho hàm số $y=\frac{x+8}{2x-a}$. Đồ thị hàm số có tiệm cận đứng x=5 thì giá trị của a bằng

A. -5.

C. -10.

CÂU 2. Cho hàm số $y = \frac{2mx + m}{x - 1}$. Tìm tất cả các giá trị của tham số m để đường tiệm cận đứng, tiệm cận ngang của đồ thị hàm số cùng hai trực tọa độ tạo thành một hình chữ nhật có diện tích bằng 8.

B. $m = \pm \frac{1}{2}$.

C. m=2.

CÂU 3. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số $y = \frac{mx+3}{\sqrt{mx^2}}$ có hai đường tiệm cận ngang.

A. $m \geq 0.$

B. $m > \sqrt{5}$.

C. m < 0.

D. m > 0.

				_
\sim	IICI	/ NI	\frown T	
w	וגאוו	V IV	U	

CÂU 4. Biết đồ thị hàm số $y=\frac{(4a-b)x^2+ax+1}{x^2+ax+b-12}$ nhận trục hoành và trục tung làm hai tiệm cận thì giá trị a+b bằng

A. -10.

CÂU 5. Cho hàm số $y=\frac{2x^2-3x+m}{x-m}$ có đồ thị (C). Tìm tất cả các giá trị của tham số m để (C) không có tiệm cận đứng.

A. m=0 hoặc m=1.

C. m = 1.

D. m = 0.

CÂU 6. Cho đồ thị hàm số $y=\frac{\sqrt{4x+1}+ax+3b}{(x-2)^2}$ không có tiệm cận đứng. Tìm giá tri 3a + 9b.

A. 7.

CÂU 7. Tìm giá trị thực của tham số m để đồ thị hàm số $y=\frac{(m+1)x-2}{1-x}$ có đường tiệm cận ngang đi qua điểm A(3;1).

A. m = 2.

B. m = 0.

C. m = -2. **D.** m = -4.

CÂU 8. Cho hàm số $y = \frac{2x + 2m - 1}{x + m}$. Tìm tất cả các giá trị thực của tham số mđể đường tiệm cận đứng của đồ thị hàm số đi qua điểm M(3;1).

A. m = 1.

B. m = 3.

CÂU 9. Tìm m để tiệm cận ngang của đồ thị hàm số $y = \frac{(m-1)x+2}{3x+4}$ cắt đường thẳng 2x - 3y + 5 = 0 tại điểm có hoành độ bằng 2.

A. m = 2.

B. m = 1.

C. m = 10.

D. m = 7.

CÂU 10. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số $y = \frac{mx - 8}{r + 2}$ có tiệm cận đứng.

A. m = 4.

B. m = -4.

C. $m \neq 4$.

 $\mathbf{D.} \ m \neq -4.$

CÂU 11. Cho hàm số $y=\frac{x^2-2x+m^2+1}{x-1}$ (C). Tìm tất cả các giá trị thực của tham số m để đồ thị (C) có tiệm cận đứng.

A. $m \neq 0$.

B. m = 0.

 \mathbf{D} . $m \in \mathbb{R}$.

CÂU 12. Biết đồ thị hàm số $y = \frac{(2m-n)x^2 + mx + 1}{x^2 + mx + n - 6}$ (m, n là tham số) nhận trục hoành và trục tung làm hai đường tiệm cận. Tính m+n.

CÂU 13. Tìm tất cả các giá trị của tham số thực m để đồ thị hàm số $y = \frac{mx+2}{1-r}$ luôn có tiệm cận ngang.

A. $\forall m \in \mathbb{R}$.

B. $\forall m \neq 2$.

C. $\forall m \neq -2$. **D.** $\forall m \neq \frac{1}{2}$

CÂU 14. Tìm tập hợp tất cả các giá trị của tham số m để đồ thị hàm số y= $\frac{1}{\sqrt{x^2-mx-3m}}$ có đúng hai đường tiệm cận đứng. **A.** $\left(0;\frac{1}{2}\right]$. **B.** $(0;+\infty)$

B. $(0; +\infty)$. **C.** $\left[\frac{1}{4}; \frac{1}{2}\right]$.

D. $(0; \frac{1}{2}).$

CÂU 15. Số giá trị nguyên dương của tham số a để đồ thị hàm số $y = ax + \sqrt{4x^2 + 1}$ có đường tiệm cận ngang là

A. 3.

D. 1.

CÂU 16. Biết đồ thị hàm số $y = \frac{(a-2b)x^2 + bx + 1}{x^2 + x - b}$ có tiệm cận đứng là x = 1 và tiệm cận ngang y = 0. Tính a + 2b.

A. 7.

B. 6.

D. 10.

CÂU 17. Có bao nhiêu giá trị của tham số m để đồ thị hàm số $y = \frac{mx + \sqrt{x^2 - 2x + 3}}{2x - 1}$ có một tiệm cận ngang là y=2?

B. Vô số.

C. 0.

CÂU 18. Cho hàm số $y=\frac{2x+1}{x-m}$ có đồ thị là (C_m) . Tìm tổng tất cả các giá trị mnguyên dương sao cho diện tích hình thang tạo bởi các trục tọa độ và hai đường tiệm cận của đồ thị (C_m) không vượt quá 2018 (đvdt).

A. 509545.

B. 1009.

C. 2018!.

D. 2018.

CÂU 19. Có bao nhiêu giá trị của tham số m thoả mãn đồ thị hàm số $y = \frac{x+3}{x^2-x-m}$ có đúng hai đường tiệm cận?

A. 1.

D. 3.

CÂU 20. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số $y = \frac{x+1}{\sqrt{m(x-1)^2+4}}$

có hai tiệm cận đứng.

A. m < 1.

B. $\begin{cases} m < 0 \\ m \neq -1 \end{cases}$. **C.** m = 0.

CÂU 21. Cho hàm số $y=\frac{3mx+1}{nx+n-1}$ với $n\neq 0$ và $3m(n-1)\neq n$. Đồ thị hàm số nhận hai trực tọa độ làm tiệm cận đứng, tiệm cận ngang. Khi đó $(m-n)^{2019}$ bằng bao nhiêu?

A. 2²⁰¹⁹.

B. -1.

D. 2019.

CÂU 22. Tìm tất cả các giá trị thực m sao cho đồ thị hàm số $y = \frac{5x-3}{x^2-2mx+1}$ không có tiệm cận đứng.

A. -1 < m < 1.

B. m = 1.

C. m = -1.

D. m < -1 hoặc m > 1.

🗁 Dạng 5. Tổng hợp tiệm cận với diện tích, góc, khoảng cách

1. Các ví du

VÍ DU 1. Khoảng cách từ gốc tọa độ đến giao điểm của hai đường tiệm cận của đồ thị hàm số $y = \frac{2x+1}{x+1}$ bằng

 $\mathbf{A.} \quad \sqrt{5}.$

B. 5.

C. $\sqrt{3}$.

D. $\sqrt{2}$.

VÍ DỤ 2. Gọi (H) là đồ thị hàm số $y = \frac{2x+3}{x+1}$. Điểm $M(x_0; y_0)$ thuộc (H) có tổng khoảng cách đến hai đường tiệm cận là nhỏ nhất, với $x_0 < 0$ khi đó $x_0 + y_0$ bằng

VÍ DỤ 3. Cho hàm số $y = \frac{4x-3}{x-3}$ có đồ thị (C). Biết đồ thị (C) có hai điểm phân biệt M, N và tổng khoảng cách từ M hoặc N tới hai tiệm cận là nhỏ nhất. Khi đó MN có giá trị bằng

A. $MN = 4\sqrt{2}$.

B. MN = 6. **C.** $MN = 4\sqrt{3}$. **D.** $MN = 6\sqrt{2}$.

2. Câu hỏi trắc nghiêm

CÂU 1. Gọi I là giao điểm của hai đường tiệm cận của đồ thị hàm số $y = \frac{2x-3}{x+1}$. Khi đó, điểm I nằm trên đường thẳng có phương trình:

A. x + y + 4 = 0.

B. 2x - y + 4 = 0.

C. x - y + 4 = 0.

D. 2x - y + 2 = 0.

CÂU 2. Đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số y = $\frac{m\omega+1}{2m+1-x}$ cùng với hai trực tọa độ tạo thành một hình chữ nhật có diện tích bằng 3. Tim m.

A.
$$m=1; m=\frac{3}{2}$$

B.
$$m = -1; m = -\frac{3}{2}.$$

A.
$$m = 1; m = \frac{3}{2}.$$

C. $m = 1; m = -\frac{3}{2}.$

D.
$$m = -1$$
; $m = 3$.

CÂU 3. Cho hàm số $y=\frac{x-1}{2x-3}$. Gọi I là giao điểm của hai tiệm cận của đồ thị hàm số. Khoảng cách từ I đến tiếp tuyến của đồ thị hàm số đã cho đạt giá trị lớn nhất bằng

A.
$$d = \frac{1}{\sqrt{2}}$$
.

B.
$$d = 1$$
.

C.
$$d = \sqrt{2}$$
.

B.
$$d = 1$$
. **C.** $d = \sqrt{2}$. **D.** $d = \sqrt{5}$.

CÂU 4. Cho hàm số $y = \frac{2x+1}{x-m}$ có đồ thị là (C_m) . Tìm tổng tất cả các giá trị mnguyên dương sao cho diện tích hình thang tạo bởi các trục tọa độ và hai đường tiệm cận của đồ thị (C_m) không vượt quá 2018 (đ
vdt).

CÂU 5. Cho hàm số $y = \frac{4x-3}{x-3}$ có đồ thị (C). Biết đồ thị (C) có hai điểm M,N và tổng khoảng cách từ M hoặc N đến hai đường tiệm cận là nhỏ nhất. Khi đó MNcó giá trị bằng

A.
$$MN = 4\sqrt{2}$$
. **B.** $MN = 6$.

B.
$$MN = 6$$
.

C.
$$MN = 4\sqrt{3}$$
.

D.
$$MN = 6\sqrt{2}$$
.

CÂU 6. Cho hàm số $y = \frac{2x-3}{x-1}$ (C). Gọi M là điểm thuộc (C) và d là tổng khoảng cách từ M đến hai tiệm cận của (C). Giá trị nhỏ nhất của d là

B.
$$\frac{3}{2}$$
.

CÂU 7. Giả sử đường thẳng d: x = a(a > 0) cắt đồ thị hàm số $y = \frac{2x+1}{x-1}$ tại một điểm duy nhất, biết khoảng cách từ điểm đó đến tiệm cận đứng của đồ thị hàm số bằng 1, ký hiệu $(x_0; y_0)$ là tọa độ của điểm đó. Tìm y_0 .

A.
$$y_0 = -1$$
.

B.
$$y_0 = 5$$
.

C.
$$y_0 = 1$$
.

D.
$$y_0 = 2$$

CÂU 8. Cho hàm số $y = \frac{2x+2}{x-1}$ có đồ thị (C). Một tiếp tuyến bất kỳ với (C) cắt đường tiệm cận đứng và đường tiệm cận ngang của (C) lần lượt tại A, B. Gọi I(1;2). Giá trị lớn nhất của bán kính đường tròn nội tiếp ΔIAB là

A.
$$8 - 4\sqrt{2}$$
.

B.
$$4 - 2\sqrt{2}$$
.

C.
$$8-3\sqrt{2}$$
.

D.
$$7 - 3\sqrt{2}$$
.

CÂU 9. Tìm m để tiệm cận ngang của đồ thị hàm số $y = \frac{(m-1)x+2}{3x+4}$ cắt đường thẳng 2x - 3y + 5 = 0 tại điểm có hoành độ bằng 2.

A.
$$m = 2$$
.

B.
$$m = 1$$
.

C.
$$m = 10$$
.

D.
$$m = 7$$
.

CÂU 10. Cho hàm số $y=\frac{2x-3}{x-2}$ có đồ thị (C). Gọi M là điểm thuộc đồ thị (C)và d là tổng khoảng cách từ M tới hai tiệm cận của (C). Giá trị nhỏ nhất của d có thể đạt được là

CÂU 11. Cho hàm số $y = \frac{4x-3}{x-3}$ có đồ thị (C). Biết đồ thị (C) có hai điểm M,Nvà tổng khoảng cách từ M hoặc N đến hai đường tiệm cận là nhỏ nhất. Khi đó MNcó giá trị bằng

A.
$$MN = 4\sqrt{2}$$
.

$$MN-6$$

B.
$$MN = 6$$
. **C.** $MN = 4\sqrt{3}$.

D.
$$MN = 6\sqrt{2}$$
.

CÂU 12. Cho hàm số $y = \frac{2x-3}{x-1}$ (C). Gọi M là điểm thuộc (C) và d là tổng khoảng cách từ M đến hai tiệm cận của (C). Giá trị nhỏ nhất của d là

- **A.** 2.
- **B.** $\frac{3}{2}$.
- **C.** 1.
- **D.** 6.

CÂU 13. Cho hàm số $y=\frac{2x-3}{x-2}$ có đồ thị (C). Gọi M là điểm thuộc đồ thị (C) và d là tổng khoảng cách từ M tới hai tiệm cận của (C). Giá trị nhỏ nhất của d có thể đạt được là

- **A.** 5.
- **B.** 2.
- **C.** 6.
- **D.** 10.

CÂU 14. Cho đồ thị (C) hàm số $y=\frac{2x+2}{x-1}$. Tọa độ điểm M nằm trên (C) sao cho tổng khoảng cách từ M đến hai tiệm cận của (C) nhỏ nhất là

- **A.** M(-1;0) hoặc M(3;4).
- **B.** M(-1;0) hoặc M(0;-2).
- **C.** M(2;6) hoặc M(3;4).
- **D.** M(0; -2) hoặc M(2; 6).

CÂU 15. Cho đường cong (C): $y=\frac{2x+3}{x-1}$ và M là một điểm nằm trên (C). Giả sử $d_1,\,d_2$ tương ứng là các khoảng cách từ M đến hai tiệm cận của (C), khi đó $d_1\cdot d_2$ bằng

- **A.** 3.
- **B.** 4.
- **C.** 5.
- **D.** 6.

							•)		1	1	_		k	-		V	7)	Т	E							
	_							9						-	•	`		•			<u>_</u>		_							Ļ
• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
																														•
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
		•	•	•	٠	٠	٠	٠	٠	٠	•	•	٠	٠	٠	٠	•	•	٠	•	•			•	•	٠	•		•	•
			•	•													•	•		•										
				•																										
٠.	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	•	•	٠	•	•	•		•	•	٠	•	•	•	•
		•	•		•	•	•										•	•		•				•	•		•		•	٠
٠.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
		•	•	•	•	•	•								•	•	•	•	•	•		•		•	•		•		•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•
					•	•	•	•	•								•	•		•										٠
		•	•	•	•	•	•	٠	٠		٠	٠		٠	٠	٠	•	•	٠	•	•			•	٠	٠	•		•	٠
																												•		•
																														٠
																										٠	•	•	•	•
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	٠		•	٠