

Natural Language Processing

Info 159/259 Lecture 11: MEMM/CRF (Feb 25, 2020)

David Bamman, UC Berkeley

POS tagging

Labeling the tag that's correct for the context.

Fruit flies like a banana

Time flies like an arrow

Sequence labeling

$$x = \{x_1, \dots, x_n\}$$

$$y = \{y_1, \dots, y_n\}$$

 For a set of inputs x with n sequential time steps, one corresponding label y_i for each x_i

Generative vs. Discriminative models

 Generative models specify a joint distribution over the labels and the data. With this you could generate new data

$$P(x,y) = P(y) P(x \mid y)$$

 Discriminative models specify the conditional distribution of the label y given the data x. These models focus on how to discriminate between the classes

$$P(y \mid x)$$

Hidden Markov Model

Prior probability of label sequence

$$P(y) = P(y_1, \dots, y_n)$$

$$P(y_1, \dots, y_n) \approx \prod_{i=1}^{n+1} P(y_i \mid y_{i-1})$$

 We'll make a first-order Markov assumption and calculate the joint probability as the product the individual factors conditioned only on the previous tag.

Hidden Markov Model

$$P(y_{i},...,y_{n}) = P(y_{1})$$

$$\times P(y_{2} \mid y_{1})$$

$$\times P(y_{3} \mid y_{1},y_{2})$$

$$\cdots$$

$$\times P(y_{n} \mid y_{1},...,y_{n-1})$$

 Remember: a Markov assumption is an approximation to this exact decomposition (the chain rule of probability)

Hidden Markov Model

$$P(x \mid y) = P(x_1, \dots, x_n \mid y_1, \dots, y_n)$$

$$P(x_1, ..., x_n \mid y_1, ..., y_n) \approx \prod_{i=1}^{N} P(x_i \mid y_i)$$

 Here again we'll make a strong assumption: the probability of the word we see at a given time step is only dependent on its label

HMM

$$P(x_1, \dots, x_n, y_1, \dots, y_n) \approx \prod_{i=1}^{n+1} P(y_i \mid y_{i-1}) \prod_{i=1}^n P(x_i \mid y_i)$$

HMM

$P(VB \mid NNP)$

 $P(was \mid VB)$

Parameter estimation

$$P(y_t \mid y_{t-1}) \qquad \frac{c(y_1, y_2)}{c(y_1)}$$

MLE for both is just counting (as in Naive Bayes)

$$P(x_t \mid y_t) \qquad \frac{c(x,y)}{c(y)}$$

Decoding

 Greedy: proceed left to right, committing to the best tag for each time step (given the sequence seen so far)

Fruit	flies	like	а	banana
NN	VB	IN	DT	NN

Decoding

Information later on in the sentence can influence the best tags earlier on.

All paths

Ideally, what we want is to calculate the joint probability of each path and pick the one with the highest probability. But for N time steps and K labels, number of possible paths = K^N

5 word sentence with 45 Penn Treebank tags

 $45^5 = 184,528,125$ different paths

 $45^{20} = 1.16e33$ different paths

Viterbi algorithm

- Basic idea: if an optimal path through a sequence uses label L at time T, then it must have used an optimal path to get to label L at time T
- We can discard all non-optimal paths up to label L at time T

Let's say this is the best sequence for the entire sentence

back = VB is in the optimal sequence

If this is the optimal path to back = VB in the entire sequence, then every other path to back = VB must be less likely (otherwise it would be the optimal path itself!)

Importantly, the best path to back = NN might look different.

END							
DT							
NNP							
VB							
NN							
MD							
START							
	^	Janet	will	back	the	bill	\$

 At each time step t ending in label K, we find the max probability of any path that led to that state

END	
DT	V ₁ (DT)
NNP	V ₁ (NNP)
VB	V ₁ (VB)
NN	V1(NN)
MD	V ₁ (MD)
START	

Janet

What's the HMM probability of ending in Janet = NNP?

$$P(y_t \mid y_{t-1})P(x_t \mid y_t)$$

 $P(NNP \mid START)P(Janet \mid NNP)$

END	
DT	V ₁ (DT)
NNP	v ₁ (NNP)
VB	V ₁ (VB)
NN	V ₁ (NN)
MD	V ₁ (MD)
START	

Best path through time step 1 ending in tag y (trivially - best path for all is just START)

Janet

$$v_1(y) = \max_{u \in \mathcal{Y}} [P(y_t = y \mid y_{t-1} = u)P(x_t \mid y_t = y)]$$

END		
DT	V ₁ (DT)	v ₂ (DT)
NNP	v ₁ (NNP)	v ₂ (NNP)
VB	v ₁ (VB)	v ₂ (VB)
NN	V1(NN)	v ₂ (NN)
MD	V ₁ (MD)	v ₂ (MD)
START		

Janet

What's the \max HMM probability of ending in will = MD?

will

First, what's the HMM probability of a single path ending in will = MD?

END		
DT	V ₁ (DT)	v ₂ (DT)
NNP	v ₁ (NNP)	v ₂ (NNP)
VB	V ₁ (VB)	v ₂ (VB)
NN	V1(NN)	v ₂ (NN)
MD	V ₁ (MD)	v ₂ (MD)
START		

Janet will

$$P(y_1 \mid START)P(x_1 \mid y_1) \times P(y_2 = MD \mid y_1)P(x_2 \mid y_2 = MD)$$

END		
DT	V ₁ (DT)	v ₂ (DT)
NNP	V1(NNP)	v ₂ (NNP)
VB	v ₁ (VB)	v ₂ (VB)
NN	V1(NN)	v ₂ (NN)
MD	V ₁ (MD)	v ₂ (MD)
START		

Best path through time step 2 ending in tag MD

Janet will

$$P(\text{DT} \mid \text{START}) \times P(Janet \mid \text{DT}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{DT}) \times P(will \mid y_t = \text{MD})$$

$$P(\text{NNP} \mid \text{START}) \times P(Janet \mid \text{NNP}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{NNP}) \times P(will \mid y_t = \text{MD})$$

$$P(\text{VB} \mid \text{START}) \times P(Janet \mid \text{VB}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{VB}) \times P(will \mid y_t = \text{MD})$$

$$P(\text{NN} \mid \text{START}) \times P(Janet \mid \text{NN}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{NN}) \times P(will \mid y_t = \text{MD})$$

$$P(\text{MD} \mid \text{START}) \times P(Janet \mid \text{MD}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{MD}) \times P(will \mid y_t = \text{MD})$$

END		
DT	V ₁ (DT)	v ₂ (DT)
NNP	V ₁ (NNP)	v ₂ (NNP)
VB	V ₁ (VB)	v ₂ (VB)
NN	V1(NN)	v ₂ (NN)
MD	V ₁ (MD)	v ₂ (MD)
START		

Best path through time step 2 ending in tag MD

Janet will

Let's say the best path ending will = MD includes Janet = NNP. By definition, every other path has lower probability.

END		
DT	V ₁ (DT)	v ₂ (DT)
NNP	V ₁ (NNP)	v ₂ (NNP)
VB	v ₁ (VB)	v ₂ (VB)
NN	V1(NN)	v ₂ (NN)
MD	V ₁ (MD)	v ₂ (MD)
START		

Best path through time step 2 ending in tag MD

Janet will

$$P(\text{DT} \mid \text{START}) \times P(Janet \mid \text{DT}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{DT}) \times P(will \mid y_t = \text{MD})$$
 $P(\text{NNP} \mid \text{START}) \times P(Janet \mid \text{NNP}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{NNP}) \times P(will \mid y_t = \text{MD})$
 $P(\text{VB} \mid \text{START}) \times P(Janet \mid \text{VB}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{VB}) \times P(will \mid y_t = \text{MD})$
 $P(\text{NN} \mid \text{START}) \times P(Janet \mid \text{NN}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{NN}) \times P(will \mid y_t = \text{MD})$
 $P(\text{MD} \mid \text{START}) \times P(Janet \mid \text{MD}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{MD}) \times P(will \mid y_t = \text{MD})$

$$v_1(y) = \max_{u \in \mathcal{Y}} [P(y_t = y \mid y_{t-1} = u)P(x_t \mid y_t = y)]$$

 $P(\text{DT} \mid \text{START}) \times P(Janet \mid \text{DT}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{DT}) \times P(will \mid y_t = \text{MD})$ $P(\text{NNP} \mid \text{START}) \times P(Janet \mid \text{NNP}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{NNP}) \times P(will \mid y_t = \text{MD})$ $P(\text{VB} \mid \text{START}) \times P(Janet \mid \text{VB}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{VB}) \times P(will \mid y_t = \text{MD})$ $P(\text{NN} \mid \text{START}) \times P(Janet \mid \text{NN}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{NN}) \times P(will \mid y_t = \text{MD})$ $P(\text{MD} \mid \text{START}) \times P(Janet \mid \text{MD}) \times P(y_t = \text{MD} \mid P(y_{t-1} = \text{MD}) \times P(will \mid y_t = \text{MD})$

$$v_1(u) \times P(y_t = MD \mid y_{t-1} = U) \times P(will \mid y_t = MD)$$

END		
DT	V ₁ (DT)	v ₂ (DT)
NNP	V1(NNP)	v ₂ (NNP)
VB	v ₁ (VB)	v ₂ (VB)
NN	V1(NN)	v ₂ (NN)
MD	V ₁ (MD)	v ₂ (MD)
START		

Janet will

$$v_t(y) = \max_{u \in \mathcal{Y}} \left[v_{t-1}(u) \times P(y_t = y \mid y_{t-1} = u) P(x_t \mid y_t = y) \right]$$

END			
DT	V ₁ (DT)	v ₂ (DT)	√₃(DT)
NNP	v ₁ (NNP)	v ₂ (NNP)	v ₃ (NNP)
VB	V ₁ (VB)	v ₂ (VB)	v ₃ (VB)
NN	V ₁ (NN)	v ₂ (NN)	v ₃ (NN)
MD	V ₁ (MD)	v ₂ (MD)	v ₃ (MD)
START			

Janet will back

25 paths ending in back = VB

END			
DT	V ₁ (DT)	v ₂ (DT)	√₃(DT)
NNP	V ₁ (NNP)	v ₂ (NNP)	v ₃ (NNP)
VB	V ₁ (VB)	v ₂ (VB)	v ₃ (VB)
NN	V ₁ (NN)	v ₂ (NN)	√₃(NN)
MD	V ₁ (MD)	v ₂ (MD)	v ₃ (MD)
START			

Janet

Let's say the best path ending in back = VB includes will = MD.

back

will

END			
DT	V ₁ (DT)	v ₂ (DT)	√₃(DT)
NNP	V ₁ (NNP)	v ₂ (NNP)	v ₃ (NNP)
VB	v ₁ (VB)	v ₂ (VB)	v ₃ (VB)
NN	V ₁ (NN)	v ₂ (NN)	v ₃ (NN)
MD	V ₁ (MD)	v ₂ (MD)	v ₃ (MD)
START			
	Janet	will	back

If the best path ending in will = MD includes
Janet=NNP, we can forget all paths with Janet != NNP
for any path including will = MD because we know
they are less likely.

END				
DT	V ₁ (DT)	v ₂ (DT)	√₃(DT)	V4(DT)
NNP	V ₁ (NNP)	v ₂ (NNP)	v ₃ (NNP)	v ₄ (NNP)
VB	v ₁ (VB)	v ₂ (VB)	v ₃ (VB)	V4(MD)
NN	V ₁ (NN)	v ₂ (NN)	v ₃ (NN)	V4(NN)
MD	V ₁ (MD)	v ₂ (MD)	v ₃ (MD)	V4(MD)
START				

Janet

125 possible paths ending in the = DT, but we only need to consider 5 (best path ending in back = DT, back = NNP, back = VB, back = NN, back = MD)

back

the

will

END					
DT	V ₁ (DT)	v ₂ (DT)	√₃(DT)	V4(DT)	v ₅ (DT)
NNP	V ₁ (NNP)	v ₂ (NNP)	v ₃ (NNP)	v ₄ (NNP)	v ₅ (NNP)
VB	V ₁ (VB)	v ₂ (VB)	v ₃ (VB)	V4(MD)	v ₅ (MD)
NN	V ₁ (NN)	v ₂ (NN)	v ₃ (NN)	V4(NN)	v ₅ (NN)
MD	V ₁ (MD)	v ₂ (MD)	v ₃ (MD)	V4(MD)	v ₅ (MD)
START					

Janet will back the bill

END						v _T (END)
DT	V ₁ (DT)	v ₂ (DT)	√₃(DT)	V ₄ (DT)	v ₅ (DT)	
NNP	V ₁ (NNP)	v ₂ (NNP)	v3(NNP)	v ₄ (NNP)	v ₅ (NNP)	
VB	V ₁ (VB)	v ₂ (VB)	v ₃ (VB)	V4(MD)	v ₅ (MD)	
NN	V1(NN)	v ₂ (NN)	v ₃ (NN)	v ₄ (NN)	v ₅ (NN)	
MD	V ₁ (MD)	v ₂ (MD)	v ₃ (MD)	V4(MD)	v ₅ (MD)	
START						

Janet will back the bill

v_T(END) encodes the best path through the entire sequence

For each timestep t + label, keep track of the max element from t-1 to reconstruct best path

```
function VITERBI(observations of len T, state-graph of len N) returns best-path
   create a path probability matrix viterbi[N+2,T]
   for each state s from 1 to N do
                                                              ; initialization step
         viterbi[s,1] \leftarrow a_{0,s} * b_s(o_1)
         backpointer[s,1] \leftarrow 0
   for each time step t from 2 to T do
                                                              ; recursion step
      for each state s from 1 to N do
         viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_{s}(o_{t})
         backpointer[s,t] \leftarrow \underset{\sim}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s}
   viterbi[q_F,T] \leftarrow \max_{s=1}^{N} viterbi[s,T] * a_{s,q_F}; termination step
   backpointer[q_F,T] \leftarrow \underset{s,q_F}{\operatorname{argmax}} viterbi[s,T] * a_{s,q_F}
                                                                           ; termination step
  return the backtrace path by following backpointers to states back in time from
backpointer[q_F, T]
```

Figure 10.8 Viterbi algorithm for finding optimal sequence of tags. Given an observation sequence and an HMM $\lambda = (A, B)$, the algorithm returns the state path through the HMM that assigns maximum likelihood to the observation sequence. Note that states 0 and q_F are non-emitting.

END	
DT	V ₁ (DT)
NNP	v ₁ (NNP)
VB	V ₁ (VB)
NN	V ₁ (NN)
MD	V1(MD)
START	

Can Viterbi decoding help with independent preditions? (e.g., Naive Bayes or logreg)

Janet

$$v_1(y) = \max_{u \in \mathcal{V}} [P(y_t = y \mid y_{t-1} = u)P(x_t \mid y_t = y)]$$

When making independent predictions:

$$P(y_t = y \mid y_{t-1} = u) = P(y_t = y)$$

Generative vs. Discriminative models

 Generative models specify a joint distribution over the labels and the data. With this you could generate new data

$$P(x,y) = P(y) P(x \mid y)$$

 Discriminative models specify the conditional distribution of the label y given the data x. These models focus on how to discriminate between the classes

$$P(y \mid x)$$

General maxent form

$$\arg\max_{y} P(y \mid x, \beta)$$

Maxent with first-order Markov assumption: Maximum Entropy
Markov Model

$$\arg\max_{y} \prod_{i=1}^{n} P(y_i \mid y_{i-1}, x)$$

MEMMs condition on the *entire* input

Features

$$f(y_i, y_{i-1}; x_1, ..., x_n)$$

Features are scoped over the previous predicted tag and the entire observed input

feature	example
x _i = man	1
$y_{i-1} = JJ$	1
i=n (last word of sentence)	1
x _i ends in -ly	O

Training

$$\prod_{i=1}^{n} P(y_i \mid y_{i-1}, x, \beta)$$

For all training data, we want probability of the true label y_i conditioned on the previous true label y_{i-1} to be high.

This is simply multiclass logistic regression

Decoding

 With logistic regression, our prediction is simply the argmax y:

$$P(y \mid x, \beta)$$

 With an MEMM, we know the true y_{i-1} during training but we never of course know it at test time

$$P(y_i \mid y_{i-1}, x, \beta)$$

Greedy decoding

A i=1, predict the argmax given START:

$$P(y_1 \mid START, x, \beta)$$

 For each subsequent time step, condition on the y just predicted during the step before

$$P(y_i \mid y_{i-1}, x, \beta)$$

Viterbi decoding

Viterbi for HMM: max joint probability

$$P(y)P(x \mid y) = P(x,y)$$

$$v_t(y) = \max_{u \in \mathcal{Y}} \left[v_{t-1}(u) \times P(y_t = y \mid y_{t-1} = u) P(x_t \mid y_t = y) \right]$$

Viterbi for MEMM: max conditional probability

$$P(y \mid x)$$

$$v_t(y) = \max_{u \in \mathcal{Y}} [v_{t-1}(u) \times P(y_t = y \mid y_{t-1} = u, x, \beta)]$$

MEMM Training

$$\prod_{i=1}^{n} P(y_i \mid y_{i-1}, x, \beta)$$

For all training data, we want probability of the true label y_i conditioned on the previous true label y_{i-1} to be high.

This is simply multiclass logistic regression

MEMM Training

$$\prod_{i=1}^{n} P(y_i \mid y_{i-1}, x, \beta)$$

Locally normalized — at each time step, each conditional distribution sums to 1

$$\prod_{i=1}^{n} P(y_i \mid y_{i-1}, x, \beta)$$

 For a given conditioning context, the probability of a tag (e.g., VBZ) only competes against other tags with that same context (e.g., NN)

	NN	MD
x_i =will	10	40
y _{i-1} =START	-1	7
BIAS	7	- 2

Modals show up much more frequently at the start of the sentence than nouns do (e.g., questions)

But we know that MD + TO is very rare

- *can to eat
- *would to eat
- *could to eat
- *may to eat

	TO
x _i =to	10000000
$y_{i-1} = NN$	0
y _{i-1} =MD	0

to is relatively deterministic (almost always TO) so it doesn't matter what tag precedes it.

$$\prod_{i=1}^{n} P(y_i \mid y_{i-1}, x, \beta)$$

Because of this local $\prod P(y_i \mid y_{i-1}, x, \beta)$ normalization, P(TO | context) will always be 1 if x="to"

That means our prediction for *to* can't help us disambiguate *will*. We lose the information that MD + TO sequences rarely happen.

Viterbi decoding doesn't help in this case

$$v_t(y) = \max_{u \in \mathcal{Y}} [v_{t-1}(u) \times P(y_t = y \mid y_{t-1} = u, x, \beta)]$$

$$P(y_t = \text{TO} \mid y_{t-1} = \text{MD}, x, \beta) = 1$$

 $P(y_t = \text{TO} \mid y_{t-1} = \text{NN}, x, \beta) = 1$

Conditional random fields

 We can solve this problem using global normalization (over the entire sequences) rather than locally normalized factors.

MEMM

$$P(y \mid x, \beta) = \prod_{i=1}^{n} P(y_i \mid y_{i-1}, x, \beta)$$

CRF

$$P(y \mid x, \beta) = \frac{\exp(\Phi(x, y)^{\top} \beta)}{\sum_{y' \in \mathcal{Y}} \exp(\Phi(x, y')^{\top} \beta)}$$

Conditional random fields

$$P(y \mid x, \beta) = \frac{\exp(\Phi(x, y)^{\top} \beta)}{\sum_{y' \in \mathcal{Y}} \exp(\Phi(x, y')^{\top} \beta)}$$

Feature vector scoped over the entire input and label sequence

$$\Phi(x,y) = \sum_{i=1}^{n} \phi(x,i,y_i,y_{i-1})$$

 ϕ is the same feature vector we used for local predictions using MEMMs

Features

 $\phi(x, i, y_i, y_{i-1})$

Features are scoped over the previous predicted tag and the entire observed input

feature	example
x _i = man	1
$y_{i-1} = JJ$	1
i=n (last word of sentence)	1
x _i ends in -ly	0

In an MEMM, we estimate $P(y_t | y_{t-1}, x, \beta)$ from each $\phi(x, t, y_t, y_{t-1})$ independently

$x_i = will \land y_i = NN$
y_{i-1} =START $\wedge y_i = NN$
$x_i = will \land y_i = MD$
y _{i-1} =START ^ y _i = MD
$x_i=to \land y_i = TO$
$y_{i-1}=NN \wedge y_i = TO$
$y_{i-1}=MD \land y_i=TO$
$x_i = fight \land y_i = VB$
$y_{i-1} = TO \land y_i = VB$

Will φ(x, 1, y ₁ , y ₀)	tо ф(х, 2, у ₂ , у ₁)	fight φ(x, 3, y ₃ , y ₂)
1	О	0
1	0	0
0	О	0
0	0	0
0	1	0
0	1	0
0	0	0
0	0	1
0	0	1

In a CRF, we use features from the entire sequence (by summing the individual features at each time step)

$x_i = will \land y_i = NN$
y_{i-1} =START $\wedge y_i = NN$
$x_i=will \land y_i=MD$
y_{i-1} =START $\wedge y_i = MD$
$x_i = to \land y_i = TO$
$y_{i-1}=NN \wedge y_i=TO$
$y_{i-1}=MD \land y_i=TO$
$x_i = fight \land y_i = VB$
$y_{i-1}=TO \land y_i = VB$

Will φ(x, 1, y ₁ , y ₀)	t Ο φ(x, 2, y ₂ , y ₁)	fight φ(x, 3, y ₃ , y ₂)	Φ(x, NN TO VB)
1	0	0	1
1	0	0	1
0	0	0	0
0	0	0	0
0	1	0	1
0	1	0	1
0	0	0	0
0	0	1	1
0	0	1	1

In a CRF, we use features from the entire sequence (by summing the individual features at each time step)

 $\Phi(x, NN TO VB)$

This lets us isolate the global sequence features that separate good sequences (in our training data) from bad sequences (not in our training data)

Ф(х,	NN	TO	VB)
	GO	DD	

$x_i = will \land y_i = NN$
y_{i-1} =START $\wedge y_i = NN$
x_i =will $\land y_i = MD$
y_{i-1} =START $\wedge y_i = MD$
$y_{i-1}=NN \wedge y_i = TO$
$y_{i-1}=MD \land y_i=TO$
$x_i = to \land y_i = TO$
$x_i = fight \land y_i = VB$
$y_{i-1} = TO \land y_i = VB$

1	
1	
0	
0	
1	
0	
1	
1	
1	

these are the different (and so are potentially predictive of a good label sequence)

these are the same (and so are not)

Conditional random fields

$$P(y \mid x, \beta) = \frac{\exp(\Phi(x, y)^{\top} \beta)}{\sum_{y' \in \mathcal{Y}} \exp(\Phi(x, y')^{\top} \beta)}$$

- In MEMMs, we normalize over the set of 45 POS tags
- CRFs are globally normalized, but the normalization complexity is huge — every possible sequence of labels of length n.

Forward algorithm (CRF)

$$P(y \mid x, \beta) = \frac{\exp(\Phi(x, y)^{\top} \beta)}{\sum_{y' \in \mathcal{Y}} \exp(\Phi(x, y')^{\top} \beta)}$$

- Calculating the denominator naively would involve a summation over K^N terms
- But we can do this efficiently in NK² time using the forward algorithm

Forward algorithm (CRF)

DT NNP VB	
VB	
V D	
NN	
MD	
START	

$$\alpha(1, y) = \exp\left(\phi(x, i, y, \text{START})^{\top}\beta\right)$$

back

the

bill

will

Janet

$$\alpha(i,y) = \sum_{y' \in \mathcal{S}} \alpha(i-1,y') \times \exp\left(\phi(x,i,y,y')^{\top}\beta\right)$$

Forward algorithm (CRF)

	\wedge	Janet	will	back	the	bill	\$
START							
MD							
NN							
VB							
NNP							
DT							
END							

$$Z = \sum_{y' \in \mathcal{V}} \exp\left(\Phi(x, y')^{\top} \beta\right) = \sum_{s \in \mathcal{S}} \alpha(n, s)$$

Conditional random fields

With a CRF, we have exactly the same parameters as we do with an equivalent MEMM; but we learn the best values of those parameters that leads to the best probability of the sequence overall (in our training data)

MEMM

CRF

	ТО
$x_i = to \land y_i = TO$	10000000
$y_{i-1}=NN \wedge y_i=TO$	Ο
$y_{i-1}=MD \land y_i=TO$	0

	ТО
$x_i = to \land y_i = TO$	7.8
$y_{i-1}=NN \wedge y_i = TO$	1.4
$y_{i-1}=MD \land y_i=TO$	-5.8

Parameter estimation

 Just like logistic regression/MEMM, we can find the optimal values for the parameters using stochastic gradient descent for a given sequence x and true labels y.

$$\frac{\partial L}{\partial \beta_k} = \Phi_k(x, y) - \sum_{y' \in \mathcal{Y}} P(y' \mid x, \beta) \Phi_k(x, y')$$

Features for the true label y

Expected feature counts under the probability for a sequence assigned by current β

Parameter estimation

 Just like logistic regression/MEMM, we can find the optimal values for the parameters using stochastic gradient descent for a given sequence x and true labels y.

$$\frac{\partial L}{\partial \beta_k} = \Phi_k(x, y) - \sum_{y' \in \mathcal{Y}} P(y' \mid x, \beta) \Phi_k(x, y')$$

If current model assigns probability of 1 to true sequence and 0 to all other K^N sequences, then gradient = 0

Parameter estimation

$$\sum_{y' \in \mathcal{Y}} P(y' \mid x, \beta) \Phi_k(x, y')$$

$$= \sum_{i=1}^{n} \sum_{a \in \mathcal{S}, b \in \mathcal{S}} \phi_k(x, i, a, b) \sum_{y' \in \mathcal{Y}: y'_{i-1} = a, y'_i = b} P(y' \mid x, \beta)$$

This entire sum can be found in NK2 time using the forward-backward algorithm

Viterbi Decoding

$$v_1(y) = \exp\left(\phi(x, 1, START, y)^{\top}\beta\right)$$
$$v_t(y) = \max_{u \in \mathcal{S}} [v_{t-1}(u) \times \exp\left(\phi(x, t, y, u)^{\top}\beta\right)]$$

(equivalently)

$$v_1(y) = \phi(x, 1, START, y)^{\top} \beta$$
$$v_t(y) = \max_{u \in \mathcal{S}} [v_{t-1}(u) + \phi(x, t, y, u)^{\top} \beta]$$

In practice

- CRF training is slow! NK² complexity for each sequence at each gradient step.
- Accuracy is typically better than MEMMs