1

Assignment 2

EE24Btech11024 - G. Abhimanyu Koushik

2-mark Single Correct		

1) Consider the following	lowing two processes:			
a. A he	at source at 1200 K los	es $2500 kJ$ of heat to a s	ink at 800 <i>K</i> .	
		s $2000 \ kJ$ of heat to a sin		
Which of the fol	llowing statements is tru	ie?		
	8			(CE 2009)
a) Process <i>I</i> is m	nore irreversible than pro	ncess II		(/
	more irreversible than p			
· · · · · · · · · · · · · · · · · · ·	associated in both proc			
d) Both processe	*	esses are equal		
2) A fin has 5 mm $Wm^{-1}K^{-1}$. One 6	diameter and 100 mm end of the fin is maintain	length. The thermal condied at $130^{\circ}C$ and its remarker coefficient is $40 \ Wm^{-}$	ining surface is expose	ed to ambient
the fill is				(CE 2009)
a) 0.08	b) 5.0	c) 7.0	d) 7.8	
per kg dry air. A	Assume molecular weigh	erature of $30^{\circ}C$ and specific to f air as 28.93. If the see is $90 kPa$, then the relative	aturation vapour pres	sure of water
10				(CE 2009)
a) 50.5	b) 38.5	c) 56.5	d) 68.5	
using a 30 V po	ower supply. At the inter	outer diameter 110 mm earface, 1 mm of material argy is $64.4 MJm^{-3}$, then the	nelts from each pipe,	which has a
15				(CE 2009)
a) 1	b) 5	c) 10	d) 20	
· · · · · · · · · · · · · · · · · · ·) is 0.45 and constant (<i>K</i>) <i>n</i>) above which tool A w	•	
D 19				(CE 2009)
a) 26.7		c) 80.7		
b) 42.5		d) 142.9		

6) A taper hole is inspected using a CMM with a probe of 2 mm diameter. At a height, $Z = 10 \, mm$ from the bottom, 5 points are touched and a diameter of the circle (not compensated for probe size)

is obtained as 20 mm. Similarly, a 40 mm diameter is obtained at a height Z = 40 mm. The smaller diameter (in mm) of the hole at Z = 0 is

(CE 2009)

- a) 13.334
- b) 15.334
- c) 15.442
- d) 15.542
- 7) Annual demand for window frames is 10000. Each frame cost *Rs*. 200 and ordering cost it *Rs*. 300 per order. Inventory holding cost is *Rs*. 40 per frame per year. The supplier is willing to offer 2% discount if the order quantity is 1000 or more, and 4% if the order quantity is 2000 or more. If the total cost is to be minimized, the retailer should

(CE 2009)

a) order 200 frames every time

c) accept 4% discount

b) accept 2% discount

- d) order Economic Order Quantity
- 8) The project activities, precedence, relationships and durations are described in the table. The critical path of the project is

Activity	Precedence	Duration (in days)
P	-	3
Q	-	4
R	P	5
S	Q	5
T	R,S	7
U	R,S	5
V	T	2
W	U	10

(CE 2009)

- a) P-R-T-V
- b) Q-S-T-V
- c) P-R-U-W
- d) Q-S-U-w

Common Data Questions

- 1) In a steam power plant operating on the Rankine cycle, steam enters the turbine at 4 *MPa*, 350°*C* and exits at a pressure of 15 *kPa*. Then it enters the condenser and exits as saturated water. Next a pump feeds back the water to the boiler. The adiabatic efficiency of the turbine is 90%. The thermodynamic states of water and steam are given in the table.
 - h is specific enthalpy, s is specific entropy and v is specific volume; subscripts f and g denote saturated liquid state and saturated vapour state.
 - a) The net work output $(kJ \ kg^{-1})$ of the cycle is

(CE 2009)

State	$h(kJkg^{-1})$			s (kJkg	$r^{-1}K^{-1}$	$v\left(m^3kg\right)$,-1)
Steam: 4 <i>MPa</i> , 350°	3092.5		6.5821		0.06645		
Water: 15 kPa	J	99.1		$\frac{s_f}{0.7549}$	s _g 8.0085	$\frac{v_f}{0.001014}$	$\frac{v_g}{10.02}$

(a) 498

(b) 775

(c) 860

(d) 957

b) Heat supplied $(kJ kg^{-1})$ to the cycle is

(CE 2009)

(a) 2372

(b) 2576

(c) 2863

(d) 3092

2) Four jobs are to be processed on a machine as per data listed in the table

Job	Processing time (in days)	Due Date
1	4	6
2	7	9
3	2	19
4	8	17

a) If the Earliest DUe Date (EDD) rule is used to sequence the jobs, the number of jobs delayed is (CE 2009)

(a) 1

(b) 2

(c) 3

(d) 4

b) Using the Shortest Processing Time (SPT) rule, total tardiness is

(CE 2009)

(a) 0

(b) 2

(c) 6

(d) 8

Linked Answer Questions

1) A massless beam has a loading pattern as shown in the figure. The beam is of rectangular cross-section with a width of 30 *mm* and height of 100 *mm*.

- a) The maximum bending moment occurs at
 - (a) Location B

(c) 2500 mm to the right of A

(b) 2675 mm to the right of A

- (d) $3225 \ mm$ to the right of A
- b) The maximum magnitude of bending stress (in MPa) is given by

4

(a) 60.0

(b) 67.5

(c) 200.0

(d) 225.0