

K-Nearest Neighbors

Computer Vision

Carnegie Mellon University (Kris Kitani)

'Classical' Image Classification Pipeline

Non-parametric Nearest Neighbor

Parametric

Parametric

Distribution of data from two classes

Distribution of data from two classes

Which class does q belong too?

Distribution of data from two classes

K-nearest neighbor

K-Nearest Neighbor (KNN) Classifier

Non-parametric pattern classification approach

Consider a two class problem where each sample consists of two measurements (x,y).

For a given query point q, assign the class of the nearest neighbor

k = 1

Compute the k nearest neighbors and assign the class by <u>majority vote</u>.

k = 3

Nearest Neighbor is competitive

 $\begin{array}{c} + 0.28 & 1.50 & 88 & 0.32 & 77 & 3.66 & 4 & 45.55 & 7.74 & 2.846 & 8.65 & 0.087 & 1.77 & 1.12 & 1.40 & 0.776 & 3.86 & 4.20 & 1.40 & 5.78 & 2.74 & 7.11 & 1.18 & 1.$

MNIST Digit Recognition

- Handwritten digits
- 28x28 pixel images: d = 784
- 60,000 training samples
- 10,000 test samples

Yann LeCunn

Test Error F	Test Error Rate (%)	
Linear classifier (1-layer NN)	12.0	
K-nearest-neighbors, Euclidean	5.0	
K-nearest-neighbors, Euclidean, deskewed	2.4	
K-NN, Tangent Distance, 16x16	1.1	
K-NN, shape context matching	0.67	
1000 RBF + linear classifier	3.6	
SVM deg 4 polynomial	1.1	
2-layer NN, 300 hidden units	4.7	
2-layer NN, 300 HU, [deskewing]	1.6	
LeNet-5, [distortions]	8.0	
Boosted LeNet-4, [distortions]	0.7	

Pros

simple yet effective

Cons

- search is expensive (can be sped-up)
- storage requirements
- difficulties with high-dimensional data

What is the best distance metric between data points?

- Typically Euclidean distance
- Locality sensitive distance metrics
- Important to normalize.
 Dimensions have different scales

How many K?

- Typically k=1 is good
- Cross-validation (try different k!)

Distance metrics

$$D(x, y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_N - y_N)^2}$$
 Euclidean

$$D(\boldsymbol{x},\boldsymbol{y}) = \frac{\boldsymbol{x}\cdot\boldsymbol{y}}{\|\boldsymbol{x}\|\|\boldsymbol{y}\|} = \frac{x_1y_1+\dots+x_Ny_N}{\sqrt{\sum_n x_n^2}\sqrt{\sum_n y_n^2}}$$
 Cosine

$$D(\boldsymbol{x},\boldsymbol{y}) = rac{1}{2} \sum_n rac{(x_n - y_n)^2}{(x_n + y_n)}$$
 Chi-squared