Abuse-proffed dosage form

Publication number: DE10336400 (A1)

2005-03-24 Publication date:

Inventor(s): BARTHOLOMAEUS JOHANNES [DE]; KUGELMANN

HEINRICH [DE] +

Applicant(s): GRUENENTHAL GMBH [DE] +

Classification:

- European:

- international: A61K9/20; A61K31/485; A61K31/515; A61K31/5513;

A61K9/20; A61K31/485; A61K31/513; A61K31/551; (IPC1 7): A61K9/20; A61K9/16; A61K47/30; A61K47/44

A61K9/20H6D; A61K31/485; A61K31/515; A61K31/5513

Application number: DE20031036400 20030806

Priority number(s): DE20031036400 20030806

Also published as:

US2005031546 (A1) ZA200601090 (A)

ZA200601087 (A) US2006193782 (A1)

US2008247959 (A1)

RU2354357 (C2)

PT1658055 (E)

NZ545200 (A)

NO20061055 (A)

KR20060069832 (A)

JP2007501202 (T)

HR20070272 (T3)

HK1095082 (A1)

HK1095081 (A1)

ES2285497 (T3)

WO2005016314 (A1) EP1658055 (A1)

EP1658055 (B1)

ECSP066346 (A) DK1658055 (T3)

CN1863514 (A)

CN100577150 (C)

CN1863513 (A)

CL20172004 (A1)

CA2534932 (A1)

BRPI0413318 (A)

AU2004264667 (A1)

AU2004264667 (B2) AT356618 (T)

<< less

Cited documents:

US2003124185 (A1) US2003118641 (A1)

US5866164 (A) WO2004026262 (A2)

Abstract not available for DE 10336400 (A1)

Abstract of corresponding document: US 2005031546 (A1)

The present invention relates to an abuse-proofed, thermoformed dosage form containing, in addition to one or more active ingredients with abuse potential optionally together with physiologically acceptable auxiliary substances, at least one synthetic or natural polymer with a breaking strength of at least 500 N and to a process for the production thereof.

Data supplied from the espacenet database — Worldwide

(12)

Offenlegungsschrift

(21) Aktenzeichen: 103 36 400.5(22) Anmeldetag: 06.08.2003(43) Offenlegungstag: 24.03.2005

(51) Int Cl.7: A61K 9/20

A61K 9/16, A61K 47/30, A61K 47/44

(71) Anmelder:

Grünenthal GmbH, 52078 Aachen, DE

(74) Vertreter:

Kutzenberger & Wolff, 50668 Köln

(72) Erfinder:

Bartholomäus, Johannes, Dr., 52080 Aachen, DE; Kugelmann, Heinrich, 52068 Aachen, DE (56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

US2003/01 24 185 A1 US2003/01 18 641 A1 US 58 66 164 A WO 2004/0 26 262 A2

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Rechercheantrag gemäß § 43 Abs. 1 Satz 1 PatG ist gestellt.

(54) Bezeichnung: Gegen Missbrauch gesicherte Darreichungsform

(57) Zusammenfassung: Die vorliegende Erfindung betrifft eine gegen Mißbrauch gesicherte, thermogeformte Darreichungsform, enthaltend neben einem oder mehreren Wirkstoffen mit Mißbrauchspotential sowie ggf. physiologisch verträglichen Hilfsstoffen mindestens ein synthetisches oder natürliches Polymer mit einer Bruchfestigkeit von mindestens 500 N und deren Verfahren zur Herstellung.

Beschreibung

[0001] Die vorliegende Erfindung betrifft eine gegen Mißbrauch gesicherte thermogeformte Darreichungsform enthaltend neben einem oder mehreren Wirkstoffen mit Mißbrauchspotential (A) sowie ggf. physiologisch verträglichen Hilfsstoffen (B) mindestens ein synthetisches oder natürliches Polymer (C) und ggf. mindestens ein Wachs (D), wobei die Komponente (C) eine Bruchfestigkeit von mindestens 500 N aufweist, sowie ein Verfahren zur Herstellung der erfindungsgemäßen Darreichungsform.

[0002] Eine Vielzahl von pharmazeutischen Wirkstoffen weist neben einer ausgezeichneten Wirksamkeit auf ihrem betreffenden Anwendungsgebiet auch ein Mißbrauchspotential auf, d.h. sie können von einem Mißbraucher eingesetzt werden, um Wirkungen herbeizuführen, die nicht ihrem Bestimmungszweck entsprechen. So werden beispielsweise Opiate, die eine exzellente Wirksamkeit bei der Bekämpfung von starken bis sehr starken Schmerzen zeigen, von Mißbrauchern häufig zum Einleiten rauschartiger, euphorisierender Zustände verwendet.

[0003] Um Missbrauch zu ermöglichen, werden die entsprechenden Darreichungsformen wie Tabletten oder Kapseln vom Missbraucher zerkleinert, z. B. gemörsert, der Wirkstoff aus dem so erhaltenen Pulver mit Hilfe einer vorzugsweise wäßrigen Flüssigkeit extrahiert und die resultierende Lösung, ggf. nach Filtration durch Watte oder Zellstoff, parenteral, insbesondere intravenös, appliziert. Bei dieser Art der Verabreichung kommt es zu einem gegenüber der oralen, missbräuchlichen Applikation noch zusätzlich beschleunigten Anfluten des Wirkstoffes mit dem vom Mißbraucher gewünschten Ergebnis, nämlich den Kick. Dieser Kick wir auch erreicht, wenn die gepulverte Darreichungsform nasal appliziert, d. h. geschnupft wird. Da retardierte Darreichungsformen, die Wirkstoffe mit Mißbrauchspotential enthalten, üblicherweise selbst bei einer oralen Einnahme von mißbräuchlich hohen Mengen nicht zu dem vom Mißbraucher gewünschten Kick führen, werden auch diese zum Missbrauch zerkleinert und extrahiert.

[0004] Zur Verhinderung des Missbrauchs wurde in dem US-A-4,070,494 vorgeschlagen, der Darreichungsform ein quellbares Mittel zuzusetzen. Dieses quillt bei der Zugabe von Wasser zur Extraktion des Wirkstoffes auf und bewirkt, dass das vom Gel separierte Filtrat nur eine geringe Menge an Wirkstoff enthält.

[0005] Ein entsprechender Ansatz zur Verhinderung des parenteralen Mißbrauchs liegt auch der in der WO 95/20947 offenbarten Mehrschichttablette zugrunde, die den Wirkstoff mit Mißbrauchspotential und mindestens einen Gelbildner jeweils in unterschiedlichen Schichten getrennt aufweist.

[0006] Ein weiterer Ansatz zur Verhinderung des parenteralen Mißbrauchs wird in der WO 03/015531 A2 offenbart. Dort wird eine Darreichungsform enthaltend ein analgetisches Opioid und einen Farbstoff als aversives Mittel beschrieben. Die Farbe, die durch unzulässige Manipulation der Darreichungsform freigesetzt wird, soll der Mißbraucher davon abhalten, diese manipulierte Darreichungsform zu verwenden.

[0007] Eine weitere bekannte Möglichkeit zur Erschwerung des Missbrauchs besteht darin, der Darreichungsform Antagonisten der Wirkstoffe, wie z. B. Naloxon oder Naltexon im Fall von Opiaten, oder Verbindungen, die zu physiologischen Abwehrreaktionen führen, wie z. B. Radix Ipecacuama = Brechwurz, der Darreichungsform zuzusetzen.

[0008] Da aber nach wie vor in den meisten Fällen für den Missbrauch, Pulverisierung, der Darreichungsformen mit einem zum Missbrauch geeigneten Wirkstoff notwendig ist, war es Aufgabe der vorliegenden Erfindung, die dem Missbrauch vorangehende Pulverisierung der Darreichungsform mit den einem potentiellen Missbrauch üblicherweise zur Verfügung stehenden Mitteln zu erschweren bzw. zu verhindern und somit eine Darreichungsform für Wirkstoffe mit Missbrauchspotential zur Verfügung zu stellen, die bei bestimmungsgemäßer Applikation die gewünschte therapeutische Wirkung gewährleistet, aus der aber die Wirkstoffe nicht durch einfaches Pulverisieren in eine zum Missbrauch geeignete Form übergeführt werden können.

[0009] Diese Aufgabe wurde durch die Bereitstellung der erfindungsgemäßen, gegen Missbrauch gesicherten, thermogeformten Darreichungsform, die neben einem oder mehreren Wirkstoffen mit Mißbrauchspotential (A) mindestens ein synthetisches oder natürliches Polymer (C) und ggf. mindestens ein Wachs (D) enthält, wobei die Komponenten (C) eine Bruchfestigkeit von mindestens 500 N aufweist, gelöst.

[0010] Durch den Einsatz von Polymeren mit der angegebenen Mindestbruchfestigkeit, vorzugsweise in solchen Mengen, dass auch die Darreichungsform eine solche Mindestbruchfestigkeit aufweist, gelingt es, ein Pulversieren der Darreichungsform mit üblichen Mitteln und damit den anschließenden Missbrauch erheblich

zu erschweren bzw. zu verhindern.

[0011] Ohne ausreichende Zerkleinerung ist eine parenteral, insbesondere intravenöse, gefahrlose Applikation nicht möglich oder die Extraktion des Wirkstoffes daraus dauert für den Missbraucher zu lange bzw. ein Kick bei missbräuchlicher, oralen Einnahme erfolgt nicht, da keine spontane Freisetzung passiert.

[0012] Unter einer Zerkleinerung wird erfindungsgemäß die Pulverisierung der Darreichungsform mit üblichen Mitteln verstanden, die einem Missbraucher üblicherweise zur Verfügung stehen, wie z. B. einen Mörser und Pistill, einen Hammer, ein Schlegel oder andere gebräuchliche Mittel zum Pulverisieren unter Krafteinwirkung.

[0013] Die erfindungsgemäße Darreichungsform ist daher zur Verhinderung des parenteralen, nasalen und/oder oralen Missbrauchs von pharmazeutischen Wirkstoffen mit Mißbrauchspotential geeignet.

[0014] Pharmazeutische Wirkstoffe mit Mißbrauchspotential sind dem Fachmann ebenso wie deren einzusetzende Mengen und Verfahren zu deren Herstellung bekannt und können als solche, in Form ihrer entsprechenden Derivate, insbesondere Ester oder Ether, oder jeweils in Form entsprechender physiologisch verträglicher Verbindungen, insbesondere in Form ihrer Salze oder Solvate, als Racemate oder Stereoisomere in der erfindungsgemäßen Darreichungsform vorliegen. Die erfindungsgemäße Darreichungsform eignet sich auch für die Verabreichung von mehreren Wirkstoffen. Vorzugsweise wird sie zur Verabreichung eines bestimmten Wirkstoffs eingesetzt.

[0015] Die erfindungsgemäße Darreichungsform eignet sich insbesondere zur Verhinderung des Mißbrauchs eines pharmazeutischen Wirkstoffs, der ausgewählt ist aus der Gruppe bestehend aus Opiaten, Opioiden, Tranquillantien, vorzugsweise Benzodiazepinen, Barbituraten, Stimulantien und weiteren Betäubungsmitteln.

[0016] Ganz besonders eignet sich die erfindungsgemäße Darreichungsform zur Verhinderung des Mißbrauchs eines Opiates, Opioids, Tranquillanz oder eines anderen Betäubungsmittels, das ausgewählt ist aus der Gruppe bestehend aus N-{1-[2-(4-Ethyl-5-oxo-2-tetrazolin-1-yl)ethyl]-4-methoxymethyl-4-piperidyl}propionanilid (Alfentanil), 5,5-Diallylbarbitursäure (Allobarbital), Allylprodin, Alphaprodin, 8-Chlor-1-methyl-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]-benzodiazepin (Alprazolam), 2-Diethylaminopropiophenon (Amfepramon), (\pm) - α -Methylphenethylamin (Amfetamin), 2- $(\alpha$ -Methylphenethylamino)-2-phenylacetonitril (Amfetaminil), 5-Ethyl-5-isopentylbarbitursäure (Amobarbital), Anileridin, Apocodein, 5,5-Diethylbarbitursäure (Barbital), Ben-7-Brom-5-(2-pyridyl)-1H-1,4-benzodiazepin-2(3H)-on zvlmorphin. Bezitramid. 2-Brom-4-(2-chlorphenyl)-9-methyl-6H-thieno[3,2-n[1,2,4]triazolo(4,3-a][1,4]diazepin (Brotizolam), 17-Cyclopropylmethyl-4,5α-epopxy-7α[(S)-1-hydroxy-1,2,2-trimethyl-propyl]-6-methoxy-6,14-endo-ethanomorphinan-3-ol (Buprenorphin), 5-Butyl-5-ethylbarbitursäure (Butobarbital), Butorphanol, (7-Chlor-1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl)-dimethyl-carbamat (Camazepam), (1S,2S)-2-Amino-1-phe-7-Chlor-N-methyl-5-phenyl-3H-1,4-benzodiazepin-2-ylanyl-1-propanol (Cathin/D-Norpseudoephedrin), min-4-oxid (Chlordiazepoxid), 7-Clor-1-methyl-5-phenyl-1H-1,5-benzodiazepin-2,4(3H,5H)-dion (Clobazam), 5-(2-Chlorphenyl)-7-nitro-1H-1,4-benzodiazepin-2(3H)-on (Clonazepam), Clonitazen, 7-Chlor-2,3-dihydro-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-carbonsäure 5-(2-Chlorphenyl)-7-ethyl-1-me-(Clorazepat), thyl-1H-thieno[2,3-e][1,4]diazepin-2(3H)-on (Clotiazepam), 10-Chlor-11b-(2chlorphenyl)-2,3,7,11b-tetrahydrooxazolo[3,2-d][1,4]benzodiazepin-6(5H)-on (Cloxazolam), (-)-Methyl-[3β-benzoyloxy-2β(1αH,5αH)-tropancarboxylat] (Cocain), 4,5α-Epoxy-3-methoxy-17-methyl-7-morphinen-6α-ol (Codein), 5-(1-Cyclohexenyl)-5-ethylbarbitursäure (Cyclobarbital), Cyclorphan, Cyprenorphin, 7-Chlor-5-(2-chlorphenyl)-1H-1,4-benzodiazepin-2(3H)-on (Delorazepam), Desomorphin, Dextromoramid, (+)-(1-Benzyl-3-dimethylamino-2-methyl-1-phenylpropyl)propionat (Dextropropoxyphen), Dezocin, Diampromid, Diamorphon, 7-Chlor-1-methyl-5-phenyl-1H-1,4-benzodiatepin-2(3H)-on (Diazepam), 4,5α-Epoxy-3-methoxy-17-methyl-6α-morphinanol (Dihydrocodein), 4,5α-Epoxy-17-methyl-3,6a-morphinandiol (Dihydromorphin), Dimenoxadol, Dimepheptanol, Dimethylthiambuten, Dioxaphetylbutyrat, Dipipanon, (6aR,10aR)-6,6,9-Trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6H-benzo[c]chromen-1-ol (Dronabinol), Eptazocin, 8-Chlor-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodi-(Estazolam); Ethoheptazin, Ethylmethylthiambuten, Ethyl-[7-chlor-5-(2-fluorphenyl)-2,3-dihydro-2-oxo-1H-1,4 benzodiazepin-3-carboxylat] (Ethylloflazepat), 4,5α-Epoxy-3-ethoxy-17-methyl-7-morphi-4,5α-Epoxy-7α-(1-hydroxy-1-methylbutyl)-6-methoxy-17-me-(Ethylmorphin), Etonitazen, thyl-6,14-endo-etheno-morphinan-3-ol (Etorphin), N-Ethyl-3-phenyl-8,9,10-trinorbornan-2-ylamin (Fencamfamin), 7-[2-(α-Methylphenethylamino)ethyl]-theophyllin) (Fenetyllin), 3-(α-Methylphenethylamino)propionitril N-(1-Phenethyl-4-piperidyl)propionanilid (Fentanyl). 7-Chlor-5-(2-fluorphenyl)-1-me-(Fenproporex). thyl-1H-1,4-benzodiazepin-2(3H)-on (Fludiazepam), 5-(2-Fluorphenyl)-1-methyl-7-nitro-1H-1,4-benzodiaze-7-Chlor-1-(2-diethylaminoethyl)-5-(2-fluorphenyl)-1H-1,4-benzodiazepin-2(3H)-on (Flunitrazepam), pin-2(3H)-on (Flurazepam), 7-Chlor-5-phenyl-1-(2,2,2-trifluorethyl)-1H-1,4-benzodiazepin-2(3H)-on (Halaze-

10-Brom-11b-(2-fluorphenyl)-2,3,7,11b-tetrahydro[1,3]oxazolo[3,2-d][1,4]benzodiazepin-6(5H)-on (Haloxazolam), Heroin, 4,5α-Epoxy-3-methoxy-17-methyl-6-morphinanon (Hydrocodon), 4,5α-Epoxy-3-hydroxy-17-methyl-6-morphinanon (Hydromorphon), Hydroxypethidin, Isomethadon, Hydroxymethylmorphinan, 11-Chlor-8,12b-dihydro-2,8-dimethyl-12b-phenyl-4H-[1,3]oxazino[3,2-d][1,4]benzodiazepin-4,7(6H)-dion (Ketazolam), 1-[4-(3-Hydroxyphenyl)-1-methyl-4-piperidyl]-1-propanon (Ketobemidon), (3S,6S)-6-Dimethylamino-4,4-diphenylheptan-3-ylacetat (Levacetylmethadol (LAAM)), (-)-6-Dimethylamino-4,4-diphenyl-3-heptanon (Levomethadon), (-)-17-Methyl-3-morphinanol (Levorphanol), Levophenacylmorphan, Lofentanil, 6-(2-Chlorphenyl)-2-(4-methyl-1-piperazinylmethylen)-8-nitro-2H-imidazo[1,2-a][1,4] benzodiazepin-1(4H)-on (Loprazolam), 7-Chlor-5-(2-chlorphenyl)-3-hydroxy-1H-1,4-benzodiazepin-2(3H)-on (Lorazepam), 7-Chlor-5-(2-c phenyl)-3-hydroxy-1-methyl-1H-1,4-benzodiazepin-2(3H)-on (Lormetazepam), 5-(4-Chlorphenyl)2,5-dihydro-3H-imidazo[2,1-a]isoindol-5-ol (Mazindol), 7-Chlor-2,3-dihydro-1-methyl-5-phenyl-1H-1,4-benzodiazepin (Medazepam), N-(3-Chlorpropyl)-α-methylphenethylamin (Mefenorex), Meperidin, 2-Methyl-2-propyltrimethylendicarbamat (Meprobamat), Meptazinol, Metazocin, Methylmorphin, N,α-Dimethylphenethylamin (Metamfetamin), (±)-6-Dimethylamino-4,4-diphenyl-3-heptanon (Methadon), 2-Methyl-3-o-tolyl-4(3H)-chinazolinon (Methaqualon), Methyl-[2-phenyl-2-(2-piperidyl)acetat] (Methylphenidat), 5-Ethyl-1-methyl-5-phenylbarbitursäure (Methylphenobarbital), 3,3-Diethyl-5-methyl-2,4-piperidindion (Methyprylon), Metopon, 8-Chlor-6-(2-fluorphenyl)-1-methyl-4H-imidazo[1,5-a][1,4]benzodiazepin (Midazolam), 2-(Benzhydrylsulfinyl)acetamid (Modafinil), 4,5α-Epoxy-17-methyl-7-morphinen-3,6α-diol Myrophin, (Morphin). (±)-trans-3-(1,1-Dimethylheptyl)-7,8,10,10α-tetrahydro-1-hydroxy-6,6-dimethyl-6H-dibenzo [b, d]pyran-9(6αH)-on (Nabilon), Nalbuphen, Nalorphin, Narcein, Nicomorphin, 1-Methyl-7-nitro-5-phenyl-1H-1,4-benzodiazepin-2(3H)-on (Nimetazepam), 7-Nitro-5-phenyl-1H-1,4-benzodiazepin-2(3H)-on (Nitrazepam), 7-Chlor-5-phenyl-1H-1,4-benzodiazepin-2(3H)-on (Nordazepam), Norlevorphanol, 6-Dimethylamino-4,4-diphenyl-3-hexanon (Normethadon), Normorphin, Norpipanon, der geronnene Saft der zur Art Papaver somniferum gehörenden Pflanzen (Opium), 7-Chlor-3-hydroxy-5-phenyl-1H-1,4-benzodiazepin-2(3H)-on (Oxazepam), (cis-trans)10-Chlor-2,3,7,11b-tetrahydro-2-methyl-11b-phenyloxazolo[3,2-d][1,4]benzodiazepin-6-(5H)-on (Oxazolam), 4,5α-Epoxy-14-hydroxy-3-methoxy-17-methyl-6-morphinanon (Oxycodon), Oxymorphon, Pflanzen und Pflanzenteile der zur Art Papaver somniferum (einschließlich der Unterart setigerum) gehörenden Pflanzen (Papaver somniferum), Papaveretum, 2-Imino-5-phenyl-4-oxazolidinon (Pernolin), 1,2,3,4,5,6-Hexahydro-6,11-dimethyl-3-(3-methyl-2-butenyl)-2,6-methano-3-benzazocin-8-ol (Pentazocin), 5-Ethyl-5-(1-methylbutyl)-barbitursäure (Pentobarbital), Ethyl-(1-methyl-4-phenyl-4-piperidincarboxylat) (Pethidin), Phenadoxon, Phenomorphan, Phenazocin, Phenoperidin, Piminodin, Pholcodein, 3-Methyl-2-phenylmorpholin (Phenmetrazin), 5-Ethyl-5-phenylbarbitursäure (Phenobarbital), α,α-Dimethylphenethylamin (Phentermin), 7-Chlor-5-phenyl-l-(2-propinyl)-1H-1,4-benzodiazepin-2(3H)-on (Pinazepam), α-(2-Piperidyl)benzhydrylalkohol (Pipradrol), 1'-(3-Cyan-3,3-diphenylpropyl)[1,4'-bipiperidin]-4'-carboxamid (Piritramid), 7-Chlor-1-(cyclopropylmethyl)-5-phenyl-1H-1,4-benzodiazepin-2(3H)-on (Prazepam), Profadol, Proheptazin, Promedol, Properidin, Propoxyphen, N-(1-Methyl-2-piperidinoethyl)-N-(2-pyridyl)propionamid, Methyl{3-[4-methoxycarbonyl-4-(N-phenylpropanamido)piperidino]propanoat} (Remifentanil), 5-sec-Butyl-5-ethylbarbitursäure (Secbutabarbital), 5-Allyl-5-(1-methylbutyl)-barbitursäu-N-{4-Methoxymethyl-1-[2-(2-thienyl)ethyl]-4-piperidyl}propionanilid (Secobarbital), (Sufentanil), 7-Chlor-2-hydroxy-methyl-5-phenyl-1H-1,4-benzodiazepin-2(3H)-on (Temazepam), 7-Chlor-5-(1-cyclohexenyl)-1-methyl-1H-1,4-benzodiazepin-2(3H)-on (Tetrazepam), Ethyl-(2-dimethylamino-1-phenyl-3-cyclohexen-1-carboxylat) (Tilidin (cis und trans)), Tramadol, 8-Chlor-6-(2-chlorphenyl)-1-methyl-4H-[1,2,4]triazo-Io[4,3-a][1,4]benzodiazepin (Triazolam), 5-(1-Methylbutyl)-5-vinylbarbitursäure (Vinylbital), (1R*,2R*)-3-(3-Dimethylamino-1-ethyl-2-methyl-propyl)-phenol, (1R,2R,4S)-2-[Dimethylamino)methyl-4-(p-fluorbenzyloxy)-1-(m-methoxyphenyl)cyclohexanol, (1R, 2R)-3-(2-Dimethylaminomethyl-cyclohexyl)-phenol, (1S,2S)-3(3-Dimethylamino-1-ethyl-2-methyl-propyl)-phenol, (2R,3R)-1-Dimethylamino-3(3-Methoxy-phenyl)-2-methyl-pentan-3-ol, (1RS,3RS,6RS)-6-Dimethylaminomethyl-l-(3-methoxy-phenyl)-cyclohexan-1,3-diol, 3-(2-Dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl 2-(4-isobutyl-phenyl)-propionat, 3-(2-Dimethylaminomethyl-1-hydroxy-cyclohexyl)phenyl 2-(6-methoxy-naphthalen-2-yl)-propionat, 3-(2-Dimethylaminomethyl-cyclohex-1-enyl)-phenyl 2-(4-isobutyl-phenyl)-propionat, 3-(2-Dimethylaminomethyl-cyclohex-1-enyl)-phenyl 2-(6-methoxy-naphthalen-2-yl)-propionat, (RR-SS)-2-Acetoxy-4-trifluoromethyl-benzoe-3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2-Hydroxy-4-trifluoromethyl-benzoesäure 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-4-Chloro-2-hydroxy-benzoesäure 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2-Hydroxy-4-methyl-benzoesäure 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2-Hydroxy-4-methoxy-benzoesäure 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl-ester, (RR-SS)-2-Hydroxy-5-nitro-benzoesäure 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2',4'-Difluoro-3-hydroxy-biphenyl-4-carbonsäure 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester sowie für entsprechende stereoisomere Verbindungen, jeweils deren entsprechende Derivate, insbesondere Ester oder Ether, und jeweils deren physiologisch verträgliche Verbindungen, insbesondere deren Salze und Solvate.

[0017] Die Verbindungen (1R*,2R*)-3-(3-Dimethylamino-1-ethyl-2-methyl-propyl)-phenol, (1R,2R,4S)-2-[Dimethylamino)methyl-4-(p-fluorbenzyloxy)-1-(m-methoxyphenyl)cyclohexanol oder deren stereoisomere Verbindungen oder deren physiologisch verträgliche Verbindungen, insbesondere deren Hydrochloride, deren Derivate, wie Ester oder Ether sowie Verfahren zu ihrer Herstellung sind beispielsweise aus aus EP-A-693475 bzw. EP-A-780369 bekannt. Die entsprechenden Beschreibungen werden hiermit als Referenz eingeführt und gelten als Teil der Offenbarung.

[0018] Zur Erzielung der notwendigen Bruchfestigkeit der erfindungsgemäßen Darreichungsform werden mindestens ein synthetisches oder natürliches Polymer (C) mit einer Bruchfestigkeit, gemessen nach der in der vorliegenden Anmeldung offenbarten Methode, von mindestens 500 N eingesetzt. Bevorzugt wird hierfür mindestens ein Polymeres ausgewählt aus der Gruppe bestehend aus Polymethylenoxid, Polyethylenoxid, Polypropylenoxid, Polypropylenoxid,

[0019] Die Polymeren werden als Pulver eingesetzt.

[0020] Des weiteren können zusätzlich zur Erzielung der notwendigen Bruchfestigkeit der erfindungsgemäßen Darreichungsform mindestens ein natürliches oder synthetisches Wachs (D) mit einer Bruchfestigkeit, gemessen nach der in der vorliegenden Anmeldung offenbarten Methode von mindestens 500 N eingesetzt werden. Bevorzugt sind die Wachse mit einem Erweichungspunkt von mindestens 60°C. Besonders bevorzugt sind Carnaubawachs und Bienenwachs. Ganz besonders bevorzugt ist Carnaubawachs. Carnaubawachs ist ein natürliches Wachs, das aus den Blättern der Carnaubapalme gewonnen wird und einen Erweichungspunkt ≥ 80°C aufweist. Beim zusätzlichen Einsatz der Wachskomponente wird diese zusammen mit wenigstens einem Polymeren (C) in solchen Mengen eingesetzt, dass die Darreichungsform eine Bruchfestigkeit von mindestens 500 N aufweist.

[0021] Die erfindungsgemäßen Darreichungsformen zeichnen sich dadurch aus, dass sie aufgrund ihrer Härte nicht zu pulverisieren, z. B. durch Mörsern sind. Ein oraler, parenteraler, inbesondere intravenöser oder nasaler Missbrauch ist dadurch praktisch ausgeschlossen. Um jedoch jeden möglichen Missbrauch bei einer Zerkleinerung und/oder bei einer dennoch ggf. durch außergewöhnliche Krafteinwirkung auftretende Pulverisierung der erfindungsgemäßen Darreichungsformen vorzubeugen, können die erfindungsgemäßen Darreichungsformen in einer bevorzugten Ausführungsform als Hilfsstoffe (B) weitere missbrauchs-erschwerende bzw. -verhindernde Mittel enthalten.

[0022] So kann die erfindungsgemäße, gegen Missbrauch gesicherte Darreichungsform, die neben einem oder mehreren Wirkstoffen mit Missbrauchspotential mindestens einem härtebildenden Polymer (C) und ggf. mindestens einen Wachs (D) noch wenigstens eine der nachfolgenden Komponenten (a)–(e) als Hilfsstoffe (B) aufweisen:

- (a) wenigstens einen den Nasen- und/oder Rachenraum reizenden Stoff,
- (b) wenigstens ein viskositätserhöhendes Mittel, das in einem mit Hilfe einer notwendigen Mindestmenge an einer wässrigen Flüssigkeit aus der Darreichungsform gewonnenen Extrakt ein Gel bildet, welches vorzugsweise beim Einbringen in eine weitere Menge einer wässrigen Flüssigkeit visuell unterscheidbar bleibt,
- (c) wenigstens einen Antagonisten für jeden der Wirkstoffe mit Missbrauchspotential,
- (d) wenigstens ein Emetikum.
- (e) wenigstens einen Farbstoff als aversives Mittel
- (f) wenigstens einen Bitterstoff

[0023] Die Komponenten (a) bis (f) sind jeweils für sich allein zusätzlich zur Sicherung der erfindungsgemäßen Darreichungsform gegen Missbrauch geeignet. So eignet sich die Komponente (a) bevorzugt zur Sicherung gegen nasalen, oralen und/oder parenteralen, vorzugsweise intravenösen, Missbrauch, die Komponente (b) bevorzugt gegen parenteralen, besonders bevorzugt intravenösen und/oder nasalen Missbrauch, die Kom-

ponente (c) bevorzugt gegen nasalen und/oder parenteralen, besonders bevorzugt intravenösen, Missbrauch, die Komponente (d) vorzugsweise gegen parenteralen, besonders bevorzugt intravenösen, und/oder oralen und/oder nasalen Missbrauch, die Komponente (e) als visuelles Abschreckungsmittel gegen oralen oder parenteralen Missbrauch und die Komponente (f) gegen oralen oder nasalewn Missbrauch. Durch die erfindungsgemäße Mitverwendung von wenigstens einer der vorstehend genannten Komponenten, gelingt es, bei erfindungsgemäßen Darreichungsformen noch effektiver gegen Missbrauch vorzubeugen.

[0024] In einer Ausführungsform kann die erfindungsgemäße Darreichungsform auch zwei oder mehrere der Komponenten (a)–(f) in einer Kombination aufweisen, vorzugsweise (a), (b) und ggf. (c) und/oder (f) und/oder (e) bzw. (a), (b) und ggf. (d) und/oder (f) und/oder (e).

[0025] In einer weiteren Ausführungsform kann die erfindungsgemäße Darreichungsform sämtliche Komponenten (a)–(f) aufweisen.

[0026] Sofern die erfindungsgemäße Darreichungsform gegen Missbrauch die Komponente (a) umfaßt, kommen als den Nasen- und/oder Rachenraum reizende Stoffe erfindungsgemäß sämtliche Stoffe in Betracht, die bei entsprechender Applikation über den Nasen- und/oder Rachenraum eine Reaktion des Körpers hervorrufen, die entweder für den Mißbraucher so unangenehm ist, daß der die Applikation nicht weiter fortsetzen will oder kann, z.B. ein Brennen, oder die auf physiologische Art und Weise einer Aufnahme des entsprechenden Wirkstoffes entgegenwirken, z.B. über eine vermehrte nasale Sekretbildung oder Niesen. Diese üblicherweise den Nasen- und/oder Rachenraum reizenden Stoffe können auch bei parenteraler, insbesondere intravenöser, Applikation ein sehr unangenehmes Gefühl bis hin zu unerträglichen Schmerzen verursachen, so daß der Mißbraucher die Einnahme nicht länger fortsetzen will oder kann.

[0027] Besonders geeignete, den Nasen- und/oder Rachenraum reizende Stoffe sind solche Stoffe, die ein Brennen, einen Juckreiz, einen Niesreiz, eine vermehrte Sekretbildung oder eine Kombination mindestens zweier dieser Reize verursachen. Entsprechende Stoffe und deren üblicherweise einzusetzenden Mengen sind dem Fachmann an sich bekannt oder können durch einfache Vorversuche ermittelt werden.

[0028] Der den Nasen- und/oder Rachenraum reizende Stoff der Komponente (a) basiert vorzugsweise auf einem oder mehreren Inhaltsstoffen oder einem oder mehreren Pflanzenteilen wenigstens einer Scharfstoffdroge.

[0029] Entsprechende Scharfstoffdrogen sind dem Fachmann an sich bekannt und werden beispielsweise in "Pharmazeutische Biologie – Drogen und ihre Inhaltsstoffe" von Prof. Dr. Hildebert Wagner, 2., bearbeitete Auflage, Gustav Fischer Verlag, Stuttgart New York, 1982, Seiten 82 ff., beschrieben. Die entsprechende Beschreibung wird hiermit als Referenz eingeführt und gilt als Teil der Offenbarung.

[0030] Vorzugsweise kann die erfindungsgemäße Darreichungsform die Pflanzenteile der entsprechenden Scharfstoffdrogen in einer Menge von 0,01 bis 30 Gew.-%, besonders bevorzugt 0,1 bis 0,5 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Darreichungseinheit, enthalten.

[0031] Kommen ein oder mehrere Inhaltsstoffe entsprechender Scharfstoffdrogen zum Einsatz, beträgt deren Menge in einer erfindungsgemäßen Darreichungseinheit bevorzugt 0,001 bis 0,005 Gew.-%, bezogen auf das Gesamtgewicht der Darreichungseinheit.

[0032] Unter Darreichungseinheit wird eine separate bzw. separierbare Dosiseinheit, wie z. B. eine Tablette oder eine Kapsel, verstanden.

[0033] Vorzugsweise kann der erfindungsgemäßen Darreichungsform als Komponente (a) einer oder mehrere Inhaltsstoffe wenigstens einer Scharfstoffdroge, ausgewählt aus der Gruppe bestehend aus Allii sativi Bulbus, Asari Rhizoma c. Herba, Calami Rhizoma, Capsici Fructus (Paprika), Capsici Fructus acer (Cayennepfeffer), Curcumae longae Rhizoma, Curcumae xanthorrhizae Rhizoma, Galangae Rhizoma, Myristicae Semen, Piperis nigri Fructus (Pfeffer), Sinapis albae (Erucae) Semen, Sinapis nigri Semen, Zedoariae Rhizoma und Zingiberis Rhizoma, besonders bevorzugt aus der Gruppe bestehend aus Capsici Fructus (Paprika), Capsici Fructus acer (Cayennepfeffer) und Piperis nigri Fructus (Pfeffer), hinzugefügt werden.

[0034] Bei den Inhaltsstoffen der Scharfstoffdrogen handelt es sich bevorzugt um o-Methoxy(Methyl)-phenol-Verbindungen, Säureamid-Verbindungen, Senföle oder Sulfidverbindungen oder um davon abgeleiteten Verbindungen.

[0035] Besonders bevorzugt ist wenigstens ein Inhaltsstoff der Scharfstoffdrogen ausgewählt aus der Gruppe bestehend aus Myristicin, Elemicin, Isoeugenol, β-Asaron, Safrol, Gingerolen, Xanthorrhizol, Capsaicinoiden, vorzugsweise Capsaicin, Capsaicin-Derivate, wie N-vanillyl-9E-octadecenamid, Dihydrocapsaicin, Nordihydrocapsaicin, Homocapsaicin, Norcapsaicin, und Nomorcapsaicin, Piperin, vorzugsweise trans-Piperin, Glucosinolaten, vorzugsweise auf Basis von nichtflüchtigen Senfölen, besonders bevorzugt auf Basis von p-Hydroxybenzylsenföl, Methylmercaptosenföl oder Methylsulfonylsenföl, und von diesen Inhaltsstoffen abgeleiteten Verbindungen.

[0036] Eine weitere Möglichkeit bei der erfindungsgemäßen Darreichungsform gegen Missbrauch vorzubeugen, besteht darin, wenigstens ein viskositätserhöhendes Mittel als weitere Missbrauchs-verhindernde Komponente (b) der Darreichungsform zuzusetzen, das in einem mit Hilfe einer notwendigen Mindestmenge an einer wässrigen Flüssigkeit aus der Darreichungsform gewonnenen Extrakt ein Gel bildet, das kaum gefahrlos applizierbar ist und vorzugsweise beim Einbringen in eine weitere Menge einer wässrigen Flüssigkeit visuell unterscheidbar bleibt.

[0037] Visuelle Unterscheidbarkeit im Sinne der vorliegenden Erfindung bedeutet, dass das mit Hilfe einer notwendigen Mindestmenge an wässriger Flüssigkeit gebildete, Wirkstoff-haltige Gel beim Einbringen vorzugsweise mit Hilfe einer Injektionsnadel, in eine weitere Menge wäßriger Flüssigkeit von 37°C im wesentlichen unlöslich und zusammenhängend bleibt und nicht auf einfache Weise so dispergiert werden kann, dass eine parenterale, insbesondere intravenöse, gefahrlose Applikation möglich ist. Vorzugsweise beträgt die Dauer der visuellen Unterscheidbarkeit wenigstens eine Minute, vorzugsweise mindestens 10 Minuten.

[0038] Die Viskositätserhöhung des Extrakts führt dazu, dass dessen Nadelgängigkeit bzw. Spritzbarkeit erschwert oder sogar unmöglich gemacht wird. Sofern das Gel visuell unterscheidbar bleibt, bedeutet dies, dass das erhaltene Gel beim Einbringen in eine weitere Menge wäßriger Flüssigkeit, z.B. durch Einspritzen in Blut, zunächst in Form eines weitgehend zusammenhängenden Fadens erhalten bleibt, der zwar durch mechanische Einwirkung in kleinere Bruchstücke zerteilt, nicht aber so dispergiert oder sogar gelöst werden kann, daß eine parenterale, insbesondere intravenöse, Applikation gefahrlos möglich ist. In Kombination mit mindestens einer ggf. vorhandenen Komponente (a) bis (e) führt dies zusätzlich zu unangenehmen Brennen, Erbrechen, schlechtem Geschmack und/oder zur visuellen Abschreckung.

[0039] Eine intravenöse Applikation eines entsprechenden Gels würde daher mit großer Wahrscheinlichkeit zur Verstopfung von Gefäßen, verbunden mit schweren Embolien bis hin zum Tod des Mißbrauchers führen.

[0040] Zur Überprüfung, ob ein viskositätserhöhendes Mittel als Komponente (b) zur Anwendung in der erfindungsgemäßen Darreichungsform geeignet ist, wird der Wirkstoff mit dem viskositätserhöhenden Mittel gemischt und in 10 ml Wasser bei einer Temperatur von 25 °C suspendiert. Bildet sich hierbei ein Gel, welches den obenstehend genannten Bedingungen genügt, eignet sich das entsprechende viskositätserhöhende Mittel zur Missbrauchs-Vorbeugung bzw. -Verhinderung bei den erfindungsgemäßen Darreichungsformen.

[0041] Sofern der erfindungsgemäßen Darreichungsform die Komponente (b) hinzugefügt wird, kommen vorzugsweise eine oder mehrere viskositätserhöhende Mittel zum Einsatz, die ausgewählt sind aus der Gruppe bestehend aus mikrokristalliner Cellulose mit 11 Gew.-% Carboxymethylcellulose-Natrium (Avicel® RC 591), Carboxymethylcellulose-Natrium (Blanose®, CMC-Na C300P®, Frimulsion BLC-5®, Tylose C300 P®), Polyacrylsäure (Carbopol® 980 NF, Carbopol® 981), Johannisbrotkernmehl (Cesagum® LA-200, Cesagum® LID/150, Cesagum® LN-1), Pektine wie Citrus-Pectin (Cesapectin® HM Medium Rapid Set), Apfelpektin, Pektin aus Zitronenschale, Wachsmaisstärke (C*Gel 04201®), Natriumalginat (Frimulsion ALG (E401)®), Guarkernmehl (Frimulsion BM®, Polygum 26/1-75®), Iota-Carrageen (Frimulsion D021®), Karaya Gummi, Gellangummi (Kelcogel F®, Kelcogel LT100®), Galaktomannan (Meyprogat 150®), Tarakernmehl (Polygum 43/1®), Propylenglykolalginat (Protanal-Ester SD-LB®), Natrium-Hyaluronat, Tragant, Taragummi (Vidogum SP 200®), fermentiertes Polysaccharid-Welan Gum (K1A96), Xanthan-Gummi (Xantural 180®). Xanthane sind besonders bevorzugt. Die in Klammern angegebenen Bezeichnungen sind die Handelsnamen, unter denen die jeweiligen Materialien am Markt geführt sind. Im allgemeinen ist eine Menge von 0,1 bis 5 Gew.% der/des genannten viskositätserhöhenden Mittels ausreichend, um die vorstehend genannten Bedingungen zu erfüllen.

[0042] Die viskositätserhöhenden Mittel der Komponente (b), sofern vorgesehen, liegen in der erfindungsgemäßen Darreichungsform bevorzugt in Mengen von ≥ 5 mg pro Darreichungseinheit, d.h. pro Dosiereinheit vor.

[0043] In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung kommen als Komponente (b) solche viskositätserhöhenden Mittel zum Einsatz, die bei der Extraktion aus der Darreichungsform

mit der notwendigen Mindestmenge an wäßriger Flüssigkeit ein Gel bilden, das Luftblasen einschließt. Die so erhaltenen Gele zeichnen sich durch ein trübes Erscheinungsbild aus, durch das der potentielle Mißbraucher zusätzlich optisch gewarnt und von dessen parenteraler Applikation abgehalten wird.

[0044] Es ist auch möglich, die viskositätserhöhenden Mittel und die übrigen Bestandteile in räumlich voneinander getrennter Anordnung in der erfindungsgemäßen Darreichungsform zu formulieren.

[0045] Des weiteren kann die erfindungsgemäße Darreichungsform zur Vorbeugung und Sicherung gegen Missbrauch die Komponente (c) aufweisen, nämlich einen oder mehrere Antagonisten für den Wirkstoff bzw. die Wirkstoffe mit Missbrauchspotential, wobei die Antagonistenmenge vorzugsweise räumlich getrennt von den übrigen Bestandteilen der erfindungsgemäßen Darreichungsform vorliegen und keine Wirkung bei bestimmungsgemäßer Verwendung entfalten.

[0046] Geeignete Antagonisten zur Verhinderung des Mißbrauchs der Wirkstoffe sind dem Fachmann an sich bekannt und können als solche oder in Form entsprechender Derivate, insbesondere Ester oder Ether, oder jeweils in Form entsprechender physiologisch verträglicher Verbindungen, insbesondere in Form ihrer Salze oder Solvate in der erfindungsgemäßen Darreichungsform vorliegen.

[0047] Sofern der in der Darreichungsform vorliegende Wirkstoff ein Opiat oder ein Opioid ist, kommt als Antagonist bevorzugt ein Antagonist ausgewählt aus der Gruppe bestehend aus Naloxon, Naltrexon, Nalmefen, Nalid, Nalmexon, Nalorphin oder Naluphin, jeweils ggf. in Form einer entsprechenden physiologisch verträglichen Verbindung, insbesondere in Form einer Base, eines Salzes oder Solvates, zum Einsatz. Vorzugsweise werden die entsprechenden Antagonisten, sofern eine Ausrüstung mit der Komponente (c) vorgesehen ist, in einer Menge von ≥ 10 mg, besonders bevorzugt in einer Menge von 10 bis 100 mg, ganz besonders bevorzugt in einer Menge von 10 bis 50 mg auf pro Darreichungsform, d.h. pro Dosiereinheit eingesetzt.

[0048] Weist die erfindungsgemäße Darreichungsform als Wirkstoff ein Stimulanz auf, ist der Antagonist bevorzugt ein Neuroleptikum, vorzugsweise wenigstens eine Verbindung ausgewählt aus der Gruppe bestehend aus Haloperidol, Promethacin, Fluphenazin, Perphenazin, Levomepromazin, Thioridazin, Perazin, Chlorpromazin, Chlorprothixin, Zuclopentixol, Flupentexol, Prothipendyl, Zotepin, Benperidol, Pipamperon, Melperon und Bromperidol.

[0049] Vorzugsweise weist die erfindungsgemäße Darreichungsform diese Antagonisten in einer üblichen, dem Fachmann bekannten therapeutischen Dosierung, besonders bevorzugt in einer gegenüber der üblichen Dosierung verdoppelten bis verdreifachten Menge pro Dosiereinheit auf.

[0050] Sofern die Kombination zur Vorbeugung und Sicherung der erfindungsgemäßen Darreichungsform gegen Mißbrauch die Komponente (d) umfaßt, kann sie wenigstens ein Emetikum aufweisen, das vorzugsweise in einer räumlich getrennten Anordnung von den übrigen Komponenten der erfindungsgemäßen Darreichungsform vorliegen und bei bestimmungsgemäßer Anwendung keine Wirkung im Körper entfalten sollte.

[0051] Geeignete Emetika zur Verhinderung des Missbrauchs eines Wirkstoffs sind dem Fachmann an sich bekannt und können als solche oder in Form entsprechender Derivate, insbesondere Ester oder Ether, oder jeweils in Form entsprechender physiologisch verträglicher Verbindungen, insbesondere in Form ihrer Salze oder Solvate in der erfindungsgemäßen Darreichungsform vorliegen.

[0052] In der erfindungsgemäßen Darreichungsform kann bevorzugt ein Emetikum auf Basis eines oder mehrerer Inhaltsstoffe von Radix Ipecacuanhae (Brechwurzel), vorzugsweise auf Basis des Inhaltsstoffes Emetin, in Betracht, wie sie z.B. in "Pharmazeutische Biologie – Drogen und ihre Inhaltsstoffe" von Prof. Dr. Hildebert Wagner, 2., bearbeitete Auflage, Gustav Fischer Verlag, Stuttgart, New York 1982 beschrieben werden. Die entsprechende Literaturbeschreibung wird hiermit als Referenz eingeführt und gilt als Teil der Offenbarung.

[0053] Vorzugsweise kann die erfindungsgemäße Darreichungsform als Komponente (d) das Emetikum Emetin aufweisen, bevorzugt in einer Menge von ≥ 10 mg, besonders bevorzugt ≥ 20 mg und ganz besonders bevorzugt in einer Menge von ≥ 40 mg pro Darreichungsform, d.h. Dosiereinheit.

[0054] Ebenfalls bevorzugt kann als Emetikum Apomorphin in der erfindungsgemäßen Missbrauchssicherung zum Einsatz kommen, vorzugsweise in einer Menge von vorzugsweise ≥ 3 mg, besonders bevorzugt ≥ 5 mg und ganz besonders bevorzugt ≥ 7 mg pro Dosiereinheit.

8/20

[0055] Sofern die erfindungsgemäße Darreichungsform die Komponente (e) als weiteren missbrauchsverhindernden Hilfsstoff enthält, so wird durch den Einsatz eines solchen Farbstoffes, insbesondere bei dem Versuch, den Wirkstoff für eine parenterale, vorzugsweise intravenöse Applikation, zu extrahieren, eine intensive Farbgebung einer entsprechenden wässrigen Lösung hervorgerufen, die zur Abschreckung beim potentiellen Missbraucher führen kann. Auch ein oraler Missbrauch, der üblicherweise über eine wässrige Extraktion des Wirkstoffes eingeleitet wird, kann durch diese Farbgebung verhindert werden. Geeignete Farbstoffe sowie die für die notwendige Abschreckungswirkung erforderlichen Mengen sind der WO 03/015531 zu entnehmen, wobei die entsprechende Offenbarung als Teil der vorliegenden Offenbarung gelten soll und hiermit als Referenz eingeführt wird.

[0056] Sofern die erfindungsgemäße Darreichungsform als weiteren missbrauchsverhindernden Hilfsstoff die Komponente (f) enthält, so wird durch diesen Zusatz von wenigstens einem Bitterstoff durch die damit eintretende Geschmacksverschlechterung der Darreichungsform der orale und/oder nasale Missbrauch zusätzlich verhindert.

[0057] Geeignete Bitterstoffe sowie die für den Einsatz wirksamen Mengen sind der US-2003/0064099 A1 zu entnehmen, deren entsprechende Offenbarung als Offenbarung der vorliegenden Anmeldung gelten soll und hiermit als Referenz eingeführt wird. Vorzugsweise eignen sich als Bitterstoffe Aromaöle, vorzugsweise Pfefferminzöl, Eukalyptusöl, Bittermandelöl, Menthol, Fruchtaromastoffe, vorzugsweise Aromastoffe von Zitronen, Orangen, Limonen, Grapefruit oder Mischungen davon, und/oder Denatonium-Benzoat.

[0058] Die erfindungsgemäße feste Darreichungsform eignet sich zur oralen oder rektalen, vorzugsweise zur oralen Einnahme. Die oral applizierbare, erfindungsgemäße Darreichungsform kann in multipartikulärer Form, bevorzugt in Form von Mikrotabletten, Mikrokapseln, Mikropellets, Granulaten, Sphäroiden, Perlen oder Pellets, ggf. in Kapseln abgefüllt oder zu Tabletten verpreßt, vorliegen. Vorzugsweise weisen die multipartikulären Formen eine Größe bzw. Größenverteilung im Bereich von 0,1 bis 3 mm, besonders bevorzugt im Bereich von 0,5 bis 2 mm auf. Je nach gewünschter Darreichungsform werden ggf. auch die üblichen Hilfsstoffe (B) zur Formulierung der Darreichungsform mitverwendet.

[0059] Die erfindungsgemäß gegen Missbrauch gesicherte, feste Darreichungsform wird vorzugsweise hergestellt, indem die Komponenten (A), (B), (C) und/ggf. (D) und mindestens eine der ggf. vorhandenen weiteren missbrauchsverhindernden Komponenten (a) – (f) vermischt werden und die resultierende Mischung ggf. nach einer Granulierung durch Druck zu der Darreichungsform unter vorangehender, gleichzeitiger oder anschließender Wärmeeinwirkung geformt wird.

[0060] Die Mischung der Komponenten (A), (B), (C) und ggf. (D) sowie der ggf. vorhandenen weiteren Komponenten (a) – (f) erfolgt in einem dem Fachmann bekannten Mischgerät. Das Mischgerät kann beispielsweise ein Wälzmischer, Schüttelmischer, Schermischer oder Zwangsmischer sein.

[0061] Die resultierende Mischung wird vorzugsweise direkt durch Druckanwendung zu der erfindungsgemäßen Darreichungsform unter vorangehender, gleichzeitiger oder anschließender Wärmeeinwirkung geformt. Beispielsweise kann die Mischung durch Direkttablettienang zu Tabletten geformt werden. Bei einer Direkttablettierung unter gleichzeitiger Wärmeeinwirkung wird das Tablettierwerkzeug, d. h. Unterstempel, Oberstempel und Matrize, zumindest bis zur Erweichungstemperatur des Polymeren (C) kurz erhitzt und dabei verpreßt. Bei einer Direkttablettierung mit anschließender Wärmeeinwirkung werden die geformten Tabletten zumindest bis zur Erweichungstemperatur (Glasübergangstemperatur, Schmelztemperatur; Sintertemperatur) der Komponente (C) kurz erhitzt und wieder abgekühlt. Bei einer Direkttablettierung unter vorangehender Wärmeeinwirkung wird das zu verpreßende Gut unmittelbar vor der Tablettierung mindestens bis zur Erweichungstemperatur der Komponente (C) erhitzt und anschließend gepresst.

[0062] Die resultierende Mischung aus den Komponenten (A), (B), (C) und ggf. (D) sowie der ggf. vorhandenen Komponenten (a) bis (f) kann auch zuerst granuliert, und anschließend unter vorangehender, gleichzeitiger oder anschließender Wärmeeinwirkung zu der erfindungsgemäßen Darreichungsform geformt werden.

[0063] In einer weiteren bevorzugten Ausführungsform liegt die erfindungsgemäße Darreichungsform in Form einer Tablette, einer Kapsel oder in Form eines oralen osmotischen therapeutischen Systems (OROS) vor, vorzugsweise wenn mindestens noch eine weitere missbrauchsverhindernde Komponente (a) – (f) vorhanden ist.

[0064] Sofern die Komponenten (c) und/oder (d) und/oder (f) in der erfindungsgemäßen Darreichungsform vorhanden sind, ist darauf zu achten, dass sie so formuliert oder so gering dosiert sind, daß sie bei bestim-

mungsgemäßer Applikation der Darreichungsform praktisch keine den Patienten oder die Wirksamkeit des Wirkstoffs beeinträchtigende Wirkung entfalten können.

[0065] Sofern die erfindungsgemäße Darreichungsform die Komponente (d) und/oder (f) enthält, ist die Dosierung so zu wählen, dass bei bestimmungsgemäßer oraler Applikation keine negative Wirkung hervorgerufen wird. Wird jedoch die vorgesehene Dosierung der Darreichungsform versehentlich, insbesondere durch Kinder, oder beim Missbrauch überschritten, wird Übelkeit bzw. Brechreiz bzw. schlechter Geschmack hervorgerufen. Die jeweilige Menge der Komponente (d) und/oder (f), die vom Patienten bei bestimmungsgemäßer oraler Applikation noch toleriert wird, kann vom Fachmann durch einfache Vorversuche ermittelt werden.

[0066] Sofern aber unabhängig von der praktisch nicht möglichen Pulverisierbarkeit der erfindungsgemäßen Darreichungsform zur Sicherung der Darreichungsform enthaltend die Komponenten (c) und/oder (d) und/oder (f) vorgesehen ist, sollten diese Komponenten bevorzugt in einer so hohen Dosierung zum Einsatz kommen, daß sie bei einer mißbräuchlichen Applikation der Darreichungsform eine intensive negative Wirkung beim Mißbraucher hervorrufen. Dies gelingt vorzugsweise durch eine räumliche Trennung zumindest des Wirkstoffes bzw. der Wirkstoffe von den Komponenten (c) und/oder (d) und/oder (f), wobei bevorzugt der Wirkstoff bzw. die Wirkstoffe in wenigstens einer Untereinheit (X) und die Komponenten (c) und/oder (d) und/oder (f) in wenigstens einer Untereinheit (Y) vorliegen, und wobei die Komponenten (c), (d) und (f) bei bestimmungsgemäßer Applikation der Darreichungsform bei Einnahme und/oder im Körper nicht ihre Wirkung entfalten und die übrigen Formulierungskomponenten insbesondere die Komponente (C) identisch sind.

[0067] Sofern die erfindungsgemäße Darreichungsform wenigstens 2 der Komponenten (c) und (d) bzw. (f) aufweist, können diese jeweils in derselben oder in verschiedenen Untereinheiten (Y) vorliegen. Vorzugsweise liegen, sofern vorhanden, alle Komponenten (c) und (d) und (f) in ein- und derselben Untereinheit (Y) vor.

[0068] Untereinheiten im Sinne der vorliegenden Erfindung sind feste Formulierungen, die jeweils neben üblichen, dem Fachmann bekannten Hilfsstoffen den (die) Wirkstoff(e), mindestens ein Polymer (C) und gegebenenfalls wenigstens eine der gegebenenfalls vorhandenen Komponenten (a) und/oder (b) und/oder (e) bzw. jeweils wenigstens ein Polymer (C) und den (die) Antagonisten) und/oder das Emetikum (die Emetika) und/oder die Komponente (e) und/oder die Komponente (f) und gegebenenfalls wenigstens eine der gegebenenfalls vorhandenen Komponenten (a) und/oder (b) enthalten. Dabei ist darauf zu achten, dass jede der Untereinheiten nach dem vorstehend angegebenen Verfahren formuliert werden.

[0069] Ein wesentlicher Vorteil der getrennten Formulierung der Wirkstoffe von den Komponenten (c) bzw. (d) bzw. (f) in Untereinheiten (X) und (Y) der erfindungsgemäßen Darreichungsform besteht darin, dass bei ihrer bestimmungsgemäßen Applikation die Komponenten (c) und/oder (d) und/oder (f) bei Einnahme und/oder im Körper praktisch nicht freigesetzt werden oder nur in so geringen Mengen freigesetzt werden, dass sie keine den Patienten oder den Therapieerfolg beeinträchtigende Wirkung entfalten oder bei der Passage durch den Körper des Patienten nur an solchen Freisetzungsorten abgegeben werden, an denen eine für ihre Wirksamkeit ausreichende Resorption nicht gegeben ist. Vorzugsweise werden die Komponenten (c) und/oder (d) und/oder (f) bei bestimmungsgemäßer Applikation der Darreichungsform im Körper des Patienten praktisch nicht freigesetzt oder vom Patienten nicht wahrgenommen.

[0070] Der Fachmann versteht, dass diese vorstehend genannten Bedingungen in Abhängigkeit von den jeweils eingesetzten Komponenten (c), (d) und/oder (f) sowie der Formulierung der Untereinheiten bzw. der Darreichungsform variieren können. Die für die jeweilige Darreichungsform optimale Formulierung kann durch einfache Vorversuche ermittelt werden. Entscheidend ist, dass die jeweiligen Untereinheiten das Polymer (C) enthalten und in der angegebenen Weise formuliert wurden.

[0071] Sollte es den Missbrauchern wider Erwarten gelingen, eine solche erfindungsgemäße Darreichungsform, welche die Komponenten (c) und/oder (e) und/oder (d) und/oder (f) in Untereinheiten (Y) aufweist, zum Zwecke der mißbräuchlichen Einnahme des Wirkstoffes zu zerkleinern und ein Pulver zu erhalten, das mit einem geeigneten Extraktionsmittel extrahiert wird, wird neben dem Wirkstoff auch die jeweilige Komponente (c) und/oder (e) und/oder (f) und/oder (d) in einer Form erhalten, in der sie von dem Wirkstoff nicht auf einfache Weise zu separieren ist, so dass sie bei der Applikation der manipulierten Darreichungsform, insbesondere bei oraler und/oder parenteraler Verabreichung, ihre Wirkung bei Einnahme und/oder im Körper entfaltet und zusätzlich eine der Komponente (c) und/oder (d) und/oder (f) entsprechende negative Wirkung beim Missbraucher hervorruft oder ein Versuch, den Wirkstoff zu extrahieren durch die Farbgebung abschreckt und so den Missbrauch der Darreichungsform verhindert.

[0072] Die Formulierung einer erfindungsgemäßen Darreichungsform, in der eine räumliche Trennung des Wirkstoffes bzw. der Wirkstoffe von den Komponenten (c), (d) und/oder (e), vorzugsweise durch Formulierung in verschiedenen Untereinheiten erfolgt ist, kann in vielfältiger Art und Weise erfolgen, wobei die entsprechenden Untereinheiten in der erfindungsgemäßen Darreichungsform jeweils in beliebiger räumlicher Anordnung zueinander vorliegen können, sofern die vorstehend genannten Bedingungen für die Freisetzung der Komponenten (c) und/oder (d) erfüllt sind.

[0073] Der Fachmann versteht, dass die ggf. auch vorliegenden Komponente(n) (a) und/oder (b) bevorzugt sowohl in den jeweiligen Untereinheiten (X) und (Y) als auch in Form von eigenständigen, den Untereinheiten (X) und (Y) entsprechenden Untereinheiten in der erfindungsgemäßen Darreichungsform formuliert werden können, so lange die Sicherung der Darreichungsform gegen den Missbrauch wie auch die Wirkstofffreisetzung bei bestimmungsgemäßer Applikation durch die Art der Formulierung nicht beeinträchtig werden und das Polymer (C) mit formuliert und die Formulierung gemäß den vorstehend angegebenen Verfahren durchgeführt wird.

[0074] In einer bevorzugten Ausführugsform der erfindungsgemäßen Darreichungsform liegen die Untereinheiten (X) und (Y) in multipartikulärer Form vor, wobei Mikrotabletten, Mikrokapseln, Mikropellets, Granulaten, Sphäroiden, Perlen oder Pellets bevorzugt sind und sowohl für die Untereinheit (X) als auch (Y) dieselbe Form, d.h. Gestaltung gewählt wird, damit keine Separierung der Untereinheiten (X) von (Y) durch mechanische Auslese möglich ist. Die multipartikulären Formen weisen bevorzugt eine Größe im Bereich von 0,1 bis 3 mm, vorzugsweise 0,5 bis 2 mm auf.

[0075] Die Untereinheiten (X) und (Y) in multpartikulärer Form können auch bevorzugt in eine Kapsel abgefüllt oder zu einer Tablette verpreßt werden, wobei die jeweiligen Endformulierungen dergestalt erfolgen, daß die Untereinheiten (X) und (Y) auch in der resultierenden Darreichungsform erhalten bleiben.

[0076] Die jeweiligen multipartikulären Untereinheiten (X) bzw (Y) mit identischer Formgebung sollten auch nicht visuell voneinander unterscheidbar sein, damit sie vom Mißbraucher nicht durch einfaches Sortieren voneinander separiert werden können. Dies kann beispielsweise durch das Aufbringen identischer Überzüge gewährleistet werden, die neben dieser Egalisierungsfunktion auch weitere Funktionen übernehmen können, wie z.B. die Retardierung eines oder mehrerer Wirkstoffe oder eine magensaftresistente Ausrüstung der jeweiligen Untereinheiten.

[0077] In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung sind die Untereinheiten (X) und (Y) jeweils schichtförmig zueinander angeordnet.

[0078] Bevorzugt sind hierfür die schichtförmigen Untereinheiten (X) und (Y) in der erfindungsgemäßen Darreichungsform vertikal oder horizontal zueinander angeordnet, wobei jeweils auch eine oder mehrere schichtförmige Untereinheiten (X) und eine oder mehrere schichtförmige Untereinheiten (Y) in der Darreichungsform vorliegen können, so daß neben den bevorzugten Schichtenfolgen (X)-(Y) bzw. (X)-(Y)-(X) beliebige andere Schichtenfolgen in Betracht kommen, ggf. in Kombination mit Schichten enthaltend die Komponenten (a) und/oder (b).

[0079] Ebenfalls bevorzugt ist eine erfindungsgemäße Darreichungsform, in der die Untereinheit (Y) einen Kern bildet, der von der Untereinheit (X) vollständig umhüllt wird, wobei zwischen diesen Schichten eine Trennschicht (Z) vorhanden sein kann. Ein entsprechender Aufbau eignet sich bevorzugt auch für die vorstehend genannten multipartikulären Formen, wobei dann beide Untereinheiten (X) und (Y) sowie eine ggf. vorhandene Trennschicht (Z), die der erfindungsgemäßen Härteanforderung genügen muss, in ein- und derselben multipartikulären Form formuliert sind. In einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Darreichungsform bildet die Untereinheit (X) einen Kern, der von der Untereinheit (Y) umhüllt wird, wobei letztere wenigstens einen Kanal aufweist, der von dem Kern an die Oberfläche der Darreichungsform führt.

[0080] Zwischen einer Schicht der Untereinheit (X) und einer Schicht der Untereinheit (Y) kann die erfindungsgemäße Darreichungsform jeweils eine oder mehrere, vorzugsweise eine, ggf. quellbare Trennschicht (Z) zur räumlichen Trennung der Untereinheit (X) von (Y) aufweisen.

[0081] Sofern die erfindungsgemäße Darreichungsform die schichtförmigen Untereinheiten (X) und (Y) sowie eine ggf. vorhandene Trennschicht (Z) in einer zumindest teilweise vertikalen oder horizontalen Anordnung aufweist, liegt sie bevorzugt in Form einer Tablette, eines Coextrudats oder Laminats vor.

[0082] Hierbei kann in einer besonders bevorzugten Ausführungsform die freie Oberfläche der Untereinheit (Y) vollständig und ggf. zumindest ein Teil der freien Oberfläche der Untereinheiten) (X) und ggf. zumindest ein Teil der freien Oberfläche der ggf. vorhandenen Trennschichten) (Z) mit wenigstens einer die Freisetzung der Komponente (c) und/oder (e) und/oder (d) und/oder (f) verhindernden Barriereschicht (Z') überzogen sein. Auch die Barriereschicht (Z') muss die erfindungsgemäßen Härtevoraussetzungen erfüllen.

[0083] Ebenfalls besonders bevorzugt ist eine Ausführungsform der erfindungsgemäßen Darreichungsform, die eine vertikale oder horizontale Anordnung der Schichten der Untereinheiten (X) und (Y) und wenigstens eine dazwischen angeordnete Push-Schicht (p) sowie ggf. eine Trennschicht (Z) aufweist, in der sämtliche freie Oberflächen des aus den Untereinheiten (X) und (Y), der Push-Schicht und der ggf. vorhandenen Trennschicht (Z) bestehenden Schichtaufbaus mit einem semipermeablen Überzug (E) ausgerüstet sind, der für ein Freisetzungsmedium, d.h. üblicherweise eine physiologische Flüssigkeit, durchlässig, für den Wirkstoff und für die Komponente (c) und/oder (d) und/oder (f) im wesentlichen undurchlässig ist, und wobei dieser Überzug (E) im Bereich der Untereinheit (X) wenigstens eine Öffnung zur Freisetzung des Wirkstoffes aufweist.

[0084] Eine entsprechende Darreichungsform ist dem Fachmann beispielsweise unter der Bezeichnung orales osmotisches therapeutisches System (OROS), ebenso wie geeignete Materialien und Verfahren zu dessen Herstellung, u.a. aus US 4,612,008, US 4,765,989 und US 4,783,337 bekannt. Die entsprechenden Beschreibungen werden hiermit als Referenz eingeführt und gelten als Teil der Offenbarung.

[0085] In einer weiteren bevorzugten Ausführungsform hat die Untereinheit (X) der erfindungsgemäßen Darreichungsform die Form einer Tablette, deren Steg und ggf. eine der beiden Grundflächen mit einer die Komponente (c) und/oder (d) und/oder (f) enthaltenden Barriereschicht (Z') bedeckt ist.

[0086] Der Fachmann versteht, dass die bei der Formulierung der erfindungsgemäßen Darreichungsform jeweils zum Einsatz kommenden Hilfsstoffe der Untereinheiten) (X) bzw. (Y) sowie ggf. der vorhandenen Trennschichten) (Z) und/oder der Barriereschichten) (Z') in Abhängigkeit von deren Anordnung in der erfindungsgemäßen Darreichungsform, der Applikationsart sowie in Abhängigkeit von dem jeweiligen Wirkstoff der ggf. vorhandenen Komponenten (a) und/oder (b) und/oder (e) und der Komponente (c) und/oder (d) und/oder (f) varieren. Die Materialien, die über die jeweils erforderlichen Eigenschaften verfügen sind, dem Fachmann an sich bekannt.

[0087] Sofern die Freisetzung der Komponente (c) und/oder (d) und/oder (f) aus der Untereinheit (Y) der erfindungsgemäßen Darreichungsform mit Hilfe einer Umhüllung, vorzugsweise einer Barriereschicht, verhindert wird, kann die Untereinheit aus üblichen, dem Fachmann bekannten Materialien bestehen, sofern sie wenigstens ein Polymer (C) zur Erfüllung der Härtebedingung der erfindungsgemäßen Darreichungsform enthält.

[0088] Ist eine entsprechende Barriereschicht (Z') zur Verhinderung der Freisetzung der Komponente (c) und/oder (d) und/oder (f) nicht vorgesehen, sind die Materialien der Untereinheiten so zu wählen, dass eine Freisetzung der jeweiligen Komponente (c) und/oder (d) aus der Untereinheit (Y) praktisch ausgeschlossen ist.

[0089] Bevorzugt können hierzu die nachstehend aufgeführten Materialien zum Einsatz kommen, die auch für den Aufbau der Barriereschicht geeignet sind. Müssen die Materialien für die Trennschicht und/oder Barriereschicht wenigstens ein Polymer (C) zur Erfüllung der Härtebedingungen enthalten.

[0090] Bevorzugte Materialien sind solche, die ausgewählt sind aus der Gruppe bestehend aus Alkylcellulosen, Hydroxyalkylcellulosen, Glucanen, Skleroglucanen, Mannanen, Xanthanen, Copolymeren aus Poly[bis(p-carboxyphenoxy)propan und Sebacinsäure, vorzugsweise in einem Molverhältnis von 20:80 (unter der Bezeichnung Polifeprosan 20[®] am Markt geführt), Carboxymethylcellulosen, Celluloseethern, Celluloseestern, Nitrocellulosen, Polymeren auf Basis von (Meth)acrylsäure sowie deren Estern, Polyamiden, Polycarbonaten, Polyalkylenen, Polyalkylenglykolen, Polyalkylenoxiden, Polyalkylenterephtalate, Polyvinylalkohole, Polyvinylether, Polyvinylester, halogenierte Polyvinyle, Polyglykolide, Polysiloxane sowie Polyurethane und deren Copolymeren.

[0091] Besonders geeignete Materialien können ausgewählt werden aus der Gruppe bestehend aus Methylcellulose, Ethylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose, Hydroxybutylmethylcellulose, Celluloseacetat, Cellulosepropionat (von niederem, mittlerem oder erhöhtem Molekulargewicht), Celluloseacetatpropionat, Celluloseacetatbutyrat, Celluloseacetatphtalat, Carboxymethylcellulose, Cellulosetriacetat, Natrium-Cellulosesulfat, Polymethylmethacrylat, Polyethylmethacrylat, Polybutylmethacrylat, Polybotylmethacrylat, Polybenylmethacrylat, Polyphenylmethacrylat, Polyphenylmethacr

lymethylacrylat, Polyisopropylacrylat, Polyisobutylacrylat, Polyoctatdecylacrylat, Polyethylen, Polyethylen niederer Dichte, Polyethylen hoher Dichte, Polypropylen, Polyethylenglykol, Polyethylenoxid, Polyethylenterephtalat, Polyvinylalkohol, Polyvinylisobutylether, Polyvinylacetat und Polyvinylchlorid.

[0092] Besonders geeignete Copolymere können ausgewählt werden aus der Gruppe bestehend aus Copolymeren aus Butylmethacrylat und Isobutylmethacrylat, Copolymeren aus Methylvinylether und Maleinsäure mit erhöhtem Molekulargewicht, Copolymeren aus Methylvinylether und Maleinsäureanhydrid sowie Copolymeren aus Vinylalkohol und Vinylacetat.

[0093] Weitere, zur Formulierung der Barriereschicht besonders geeignete Materialien sind Stärke gefülltes Polycaprolacton (WO98/20073), aliphatische Polyesteramide (DE 197 53 534 A1, DE 19 800 698 A1, EP 0 820 698 A1), aliphatische und aromatische Polyesterurethane (DE 198 22 979), Polyhydroxyalkanoate, insbesondere Polyhydroxybutyrate, Polyhydroxyvaleriate), Casein (DE 43 09 528), Polylactide und Copolylactide (EP 0 980 894 A1). Die entsprechenden Beschreibungen werden hiermit als Referenz eingeführt und gelten als Teil der Offenbarung.

[0094] Ggf. können die vorstehend genannten Materialien mit weiteren üblichen, dem Fachmann bekannten Hilfsstoffen, vorzugsweise ausgewählt aus der Gruppe bestehend aus Glycerylmonostearat, halbsynthetischen Triglyceridderivaten, halbsynthetischen Glyceriden, hydriertem Rizinusöl, Glycerylpalmitostearat, Glycerylbehenat, Polyvinylpyrrolidon, Gelatine, Magnesiumstearat, Stearinsäure, Natriumstearat, Talkum, Natriumbenzoat, Borsäure und kolloidalem Silica, Fettsäuren, substituierten Triglyceriden, Glyceriden, Polyoxyalkylenglykolen und deren Derivate abgemischt werden.

[0095] Sofern die erfindungsgemäße Darreichungsform eine Trennschicht (Z') aufweist, kann diese, ebenso wie die nicht umhüllte Untereinheit (Y) vorzugsweise aus den vorstehend, für die Barriereschicht beschriebenen Materialien bestehen. Der Fachmann versteht, daß auch über die Dicke der Trennschicht die Freisetzung des Wirkstoffes bzw. der Komponente (c) und/oder (d) aus der jeweiligen Untereinheit gesteuert werden kann.

[0096] Die erfindungsgemäße Darreichungsform kann einen oder mehrere Wirkstoffe zumindest teilweise in retardierter Form aufweisen, wobei die Retardierung mit Hilfe von üblichen, dem Fachmann bekannten Materialien und Verfahren erzielt werden kann, beispielsweise durch Einbetten des Wirkstoffes in eine retardierende Matrix oder durch das Aufbringen eines oder mehrerer retardierender Überzüge. Die Wirkstoffabgabe muß aber so gesteuert sein, daß die vorstehend genannten Bedingungen jeweils erfüllt sind, z.B. das bei bestimmungsgemäßer Applikation der Darreichungsform der Wirkstoff bzw. die Wirkstoffe praktisch komplett freigesetzt wird, bevor die ggf. vorhandenen Komponente (c) und/oder (d) eine beeinträchtigende Wirkung entfalten können.

[0097] Die kontrollierte Freisetzung aus der erfindungsgemäßen Darreichungsform wird vorzugsweise durch Einbettung des Wirkstoffes in eine Matrix erzielt. Die als Matrixmaterialien dienenden Hilfsstoffe kontrollieren die Wirkstofffreisetzung. Matrixmaterialien können beispielweise hydrophile, gelbildende Materialien sein, woraus die Wirkstofffreisetzung hauptsächlich durch Diffusion erfolgt, oder hydrophobe Materialien sein, woraus die Wirkstofffreisetzung hauptsächlich durch Diffusion aus den Poren in der Matrix erfolgt.

[0098] Als Matrixmaterialien können physiologisch verträgliche, hydrophile Materialien verwendet werden, welche dem Fachmann bekannt sind. Vorzugsweise werden als hydrophile Matrixmaterialien Polymere, besonders bevorzugt Celluloseether, Celluloseester und/oder Acrylharze verwendet. Ganz besonders bevorzugt werden als Matrixmaterialien Ethylcellulose, Hydroxypropylmethylcellulose, Hydroxypropylcellulose, Hydroxypropylcellulose, Poly(meth)acrylsäure und/oder deren Derivate, wie deren Salze, Amide oder Ester eingesetzt.

[0099] Ebenfalls bevorzugt sind Matrixmaterialien aus hydrophoben Materialien, wie hydrophoben Polymeren, Wachsen, Fetten, langkettigen Fettsäuren, Fettalkoholen oder entsprechenden Estern oder Ethern oder deren Gemische. Besonders bevorzugt werden als hydrophobe Materialien Mono- oder Digliceride von C12-C30-Fettsäuren und/oder C12-C30-Fettalkohole und/oder Wachse oder deren Gemische eingesetzt.

[0100] Es ist auch möglich, Mischungen der vorstehend genannten hydrophilen und hydrophoben Materialien als Matrixmaterialien einzusetzen.

[0101] Des weiteren können auch die Komponenten (C) und ggf. vorhandene Komponente (D), die zur Erzielung der erfindungsgemäß notwendigen Bruchfestigkeit von mindestens 500 N dienen als ggf. zusätzliche Matrixmaterialien dienen.

[0102] Sofern die erfindungsgemäße Darreichungsform zur oralen Applikation vorgesehen ist, kann sie bevorzugt auch einen magensaftresistenten Überzug aufweisen, der sich in Abhängigkeit vom pH-Wert der Freisetzungsumgebung auflöst. Durch diesen Überzug kann erreicht werden, daß die erfindungsgemäße Darreichungsform den Magentrakt unaufgelöst passiert und der Wirkstoff erst im Darmtrakt zur Freisetzung gelangt. Vorzugsweise löst sich der magensaftresistente Überzug bei einem pH-Wert zwischen 5 und 7,5 auf.

[0103] Entsprechende Materialien und Verfahren zur Retardierung von Wirkstoffen sowie zum Aufbringen magensaftresistenter Überzüge sind dem Fachmann beispielsweise aus "Coated Pharmaceutical Dosage Forms – Fundamentals, Manufacturing Techniques, Biopharmaceutical Aspects, Test Methods and Raw Materials" von Kurt H. Bauer, K. Lehmann, Hermann P. Osterwald, Rothgang, Gerhart, 1. Auflage, 1998, Medpharm Scientific Publishers bekannt. Die entsprechende Literaturbeschreibung wird hiermit als Referenz eingeführt und gilt als Teil der Offenbarung.

Methode zur Bestimmung der Bruchfestigkeit

A) Zur Überprüfung, ob ein Polymer als Komponente (C) eingesetzt werden kann, wird das Polymer zu einer Tablette mit einem Durchmesser von 10 mm und einer Höhe von 5mm mit einer Kraft von 150 N, bei einer Temperatur entsprechend mindestens dem Erweichungspunkt des Polymeren und bestimmt mit Hilfe eines DSC-Diagramms des Polymeren verpresst. Mit so hergestellten Tabletten wird gemäß der Methode zur Bestimmung der Bruchfestigkeit von Tabletten, veröffentlicht im Europäisches Arzneibuch 1997, Seite 143, 144, Methode Nr. 2.9.8. unter Einsatz der nachstehend aufgeführten Apparatur die Bruchfestigkeit bestimmt. Als Apparatur für die Messung wird ein Universal Prüfmaschine aus der Serie 3300, Einsäulen-Tischmodell Nr. 3345 der Firma Instron® Canton Massachusetts, USA eingesetzt.

Als bruchfest bei einer bestimmten Krafteinwirkung werden auch die Tabletten eingestuft, bei denen kein Bruch feststellbar, aber ggf. eine plastische Verformung der Tablette durch die Krafteinwirkung erfolgt ist. Bei der erfindungsgemäßen Darreichungsform, sofern sie als Tablette vorliegt, kann die Bruchfestigkeit nach derselben Meßmethode erfolgen.

[0104] Im folgenden wird die Erfindung anhand von Beispielen erläutert. Diese Erläuterungen sind lediglich beispielhaft und schränken den allgemeinen Erfindungsgedanken nicht ein.

Beispiele:

[0105] In einer Reihe von Beispielen wurde Tramadolhydrochlorid als Wirkstoff verwendet. Tramadolhydrochlorid wurde, obwohl Tramadol kein Wirkstoff mit üblichem Mißbrauchspotential ist, da es nicht unter das Betäubungsmittelgesetz fällt, aber wodurch das experimenteller Arbeiten erleichtert wird. Tramadol ist außerdem ein Vertreter der Klasse der Opioide mit ausgezeichneter Wasserlöslichkeit.

Beispiel 1

Komponenten	Pro Tablette	Gesamtansatz
Tramadolhydrochlorid	100 mg	100 g
Polyethylenoxid, NF, MFI (190°C bei 21,6 kg/10 min) <0,5 g MG 7 000 000 (Polyox WSR 303, Dow Chemicals)	200 mg	200 g
Gesamtgewicht	300 mg	300 g

[0106] Tramadolhydrochlorid und Polyethylenoxidpulver wurden in einem Freifallmischer gemischt. Ein Tablettierwerkzeug mit Oberstempel, Unterstempel und Matrize für Tabletten mit 10 mm Durchmesser und einem Wölbungsradius von 8 mm wurde in einem Heizschrank auf 80°C erhitzt. Mittels des erhitzten Werkzeugs wurden jeweils 300 mg der Pulvermischung verpreßt, wobei der Preßdruck für mindestens 15 s aufrechterhalten wurde durch Einspannen des Tablettierwerkzeugs in einen Schraubstock.

[0107] Die Bruchfestigkeit der Tabletten wurde gemäß der angegebenen Methode mit der angegebenen Apparatur bestimmt. Bei einer Krafteinwirkung von 500 N trat kein Bruch der Tabletten auf.

[0108] Die Tablette konnte mit einem Hammer nicht zerkleinert werden. Dies war auch mit Hilfe von Mörser und Pistill nicht möglich.

[0109] Die in-vitro-Freisetzung des Wirkstoffs aus der Zubereitung wurde in der Blattrührerapparatur nach Pharm. Eur. bestimmt. Die Temperatur des Freisetzungsmediums betrug 37°C und die Umdrehungsgeschwindigkeit des Rührers 75 min⁻¹. Zu Beginn der Untersuchung wurde jede Tablette in jeweils 600 ml künstlichen Magensaft pH 1,2 gegeben. Nach 30 Minuten wurde durch Zugabe von Lauge der pH-Wert auf 2,3 erhöht, nach weiteren 90 Minuten auf pH 6,5 und nach nochmals 60 weiteren Minuten auf pH 7,2. Die jeweils zu einem Zeitpunkt im Lösungsmedium befindliche freigesetzte Menge des Wirkstoffs wurde spektralphotometrisch bestimmt.

Zeit	Freigesetzte Menge	
30 min	15 %	
240 min	52 %	
480 min	80 %	
720 min	99 %	

Beispiel 2

[0110] Die Pulvermischung aus Beispiel 1 wurde in Portionen zu 300 mg auf 80°C erhitzt und in die Matrize des Tablettierwerkzeugs eingefüllt. Anschließend erfolgte die Verpressung. Die Tablette weist dieselben Eigenschaften wie die Tablette in Beispiel 1 auf.

Beispiel 3

Rohstoff	Pro Tablette	Gesamtansatz
Tramadolhydrochlorid	50 mg	100 g
Polyethylenoxid, NF,	100 mg	200 g
MG 7 000 000 (Polyox		
WSR 303, Dow Chemicals	s)	
Gesamtgewicht	150 mg	300 g

[0111] Tramadolhydrochlorid und die vorstehend angegebenen Komponenten wurden in einem Freifallmischer gemischt. Ein Tablettierwerkzeug mit Oberstempel, Unterstempel und Matrize für Tabletten mit 7 mm Durchmesser wurde in einem Heizschrank auf 80°C erhitzt. Mittels des erhitzten Werkzeugs wurden jeweils 150 mg der Pulvermischung verpreßt, wobei der Preßdruck für mindestens 15 s durch Einspannen des Tablettierwerkzeugs in einen Schraubstock aufrechterhalten wurde. Die Bruchfestigkeit der Tabletten wurde gemäß der angegebenen Methode mit Hilfe der angegebenen Apparatur bestimmt. Bei einer Krafteinwirkung von 500 N trat kein Bruch der Tabletten auf.

[0112] Die in-vitro-Freisetzung des Wirkstoffs wurde wie in Beispiel 1 bestimmt und betrug:

Zeit	Freigesetzte Menge	
30 min	15 %	
240 min	62 %	
480 min	88 %	
720 min	99 %	

Beispiel 4

Rohstoff	Pro Tablette	Gesamtansatz
Tramadolhydrochlorid	100 mg	100 g
Polyethylenoxid, NF, MG 7 000 000 (Polyox WSR 303, Dow Chemicals)	180 mg	180 g
Xanthan, NF	20 mg	20 g
Gesamtgewicht	300 mg	300 g

[0113] Tramadolhydrochlorid, Xanthan und Polyethylenoxid wurden in einem Freifallmischer gemischt. Ein Tablettierwerkzeug mit Oberstempel, Unterstempel und Matrize für Tabletten mit 10 mm Durchmesser und einem Wölbungsradius von 8 mm wurde in einem Heizschrank auf 80°C erhitzt. Mittels des erhitzten Werkzeugs wurden jeweils 300 mg der Pulvermischung verpreßt, wobei der Preßdruck für mindestens 15 s durch Einspannen des Tablettierwerkzeugs ein einen Schraubstock aufrechterhalten wurde.

[0114] Die Bruchfestigkeit der Tabletten wurde gemäß der angegebenen Methode mit Hilfe der angegebenen Apparatur gemessen. Bei einer Krafteinwirkung von 500 N trat kein Bruch der Tabletten auf. Die Tabletten wurden etwas plastisch verformt.

[0115] Die in-vitro-Freisetzung des Wirkstoffs aus der Zubereitung wurde wie in Beispiel 1 bestimmt und betrug:

Zeit	Freigesetzte Menge	
30 min	14 %	
240 min	54 %	
480 min	81 %	
720 min	99 %	

[0116] Die Tabletten konnten mit einem Messer in Stücke mit bis zu ca. 2 mm Kantenlänge zerschnitten werden. Eine weitere Zerkleinerung bis zur Pulverisierung war nicht möglich. Beim Versetzen der Stücke mit Wasser bildet sich ein hochviskoses Gel. Das Gel war nur sehr schwer durch eine Injektionskanüle von 0,9 mm zu pressen. Beim Einspritzen des Gels in Wasser mischte sich das Gel nicht spontan mit Wasser, sondern blieb visuell unterscheidbar.

Beispiel 5

Rohstoff	Pro Tablette	Gesamtansatz	
Tramadolhydrochlorid	50 mg	100 g	
Polyethylenoxid, NF, MG 7 000 000 (Polyox WSR 303, Dow Chemicals	90 mg	180 g	
Xanthan, NF	10 mg	20 g	
Gesamtgewicht	300 mg	300 g	

[0117] Tramadolhydrochlorid, Xanthan und Polyethylenoxid wurden in einem Freifallmischer gemischt. Ein Tablettierwerkzeug mit Oberstempel, Unterstempel und Matrize für Oblongtabletten mit 10 mm Länge und 5 mm Breite wurde in einem Heizschrank auf 90°C erhitzt. Mittels des erhitzten Werkzeugs wurden jeweils 150 mg der Pulvermischung verpreßt, wobei der Preßdruck für mindestens 15 s durch Einspannen des Tablettierwerkzeugs in einen Schraubstock aufrechterhalten.

[0118] Die Bruchfestigkeit der Tabletten wurde gemäß der angegebenen Methode mit Hilfe der angegebenen Apparatur gemessen. Bei einer Krafteinwirkung von 500 N trat kein Bruch der Tabletten auf. Die Tabletten wurden etwas plastisch verformt.

[0119] Die in-vitro-Freisetzung des Wirkstoffs aus der Zubereitung wurde wie in Beispiel 1 bestimmt und betrug:

Zeit	Freigesetzte Menge	
30 min	22 %	
120 min	50 %	
240 min	80 %	
360 min	90 %	
480 min	99 %	

[0120] Die Tabletten konnten zu Stückchen bis zu ca. 2 mm Kantenlänge zerschnitten aber nicht pulverisiert werden. Bei Versetzen der Stücke mit Wasser bildet sich ein hochviskoses Gel. Das Gel war nur sehr schwer durch eine Injektionskanüle von 0,9 mm zu pressen. Bei Einspritzen des Gels in Wasser mischte sich das Gel nicht spontan mit Wasser, sondern blieb visuell unterscheidbar.

Beispiel 6

[0121] Wie in Beispiel 1 beschrieben, wurde eine Tablette mit folgender Zusammensetzung hergestellt:

Komponenten	ProTablette	Pro Ansatz	
Oxycodon Hydrochlorid	20,0 mg	0,240 g	•
Xanthan NF	20,0 mg	0,240 g	
Polyethylenoxid, NF, MFI (190°C bei 21,6 kg/10 min < 0,5 g,MG7 000 000 (Polyox WSR 303 Dow Chemicals)	110,0 mg	1,320 g	
Gesamtgewicht	150,0 mg	1,800 g	

[0122] Die Freisetzung des Wirkstoffs wurde wie folgt bestimmt:

Die in-vitro-Freisetzung des Wirkstoffs aus der Tablette wurde in der Blattrührerapparatur nach Pharm. Eur. bestimmt. Die Temperatur des Freisetzungsmediums betrug 37°C und die Umdrehungsgeschwindigkeit 75 U pro Minute. Als Freisetzungsmedium diente der in der USP beschriebene Phosphatpuffer pH 6,8. Die zum jeweiligen Prüfzeitpunkt im Lösungsmittel befindliche Menge des Wirkstoffs wurde spektralphotometrisch bestimmt.

Zeit	Mittelwert
0 min	0 %
30 min	17 %
240 min	61 %
480 min	90 %
720 min	101,1 %

[0123] Die Bruchfestigkeit der Tabletten wurde gemäß der angegebenen Methode mit Hilfe der angegebenen Apparatur gemessen. Bei einer Krafteinwirkung von 500 N trat kein Bruch der Tabletten auf.

[0124] Die Tabletten konnten zu Stückchen bis zu ca. 2 mm Kantenlänge zerschnitten, aber nicht pulverisiert werden. Bei Versetzen der Stücke mit Wasser bildet sich ein hochviskoses Gel. Das Gel war nur sehr schwer durch eine Injektionskanüle von 0,9 mm zu pressen. Bei Einspritzen des Gels in Wasser mischte sich das Gel nicht spontan mit Wasser, sondern blieb visuell unterscheidbar.

Patentansprüche

- 1. Gegen Mißbrauch gesicherte, thermogeformte Darreichungsform, **dadurch gekennzeichnet**, dass sie neben einem oder mehreren Wirkstoffen mit Mißbrauchspotential (A) sowie ggf. physiologisch verträglichen Hilfstoffen (B) mindestens ein synthetisches oder natürliches Polymer (C) und ggf. mindestes ein Wachs (D) aufweist, wobei die Komponente (C) eine Bruchfestigkeit von mindestens 500 N aufweist.
 - 2. Darreichungsform gemäß Anspruch 1, dadurch gekennzeichnet, dass sie in Form einer Tablette vorliegt.

- 3. Darreichungsform gemäß Anspruch 1, dadurch gekennzeichnet, dass sie in multipartikulärer Form, vorzugsweise in Form von Mikrotabletten, Mikropellets, Granulaten, Sphäroiden, Perlen oder Pellets, ggf. zu Tabletten verpreßt oder in Kapseln abgefüllt, vorliegt.
- 4. Darreichungsform gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Polymer (C) wenigstens ein Polymer ausgewählt aus der Gruppe bestehend aus Polyethylenoxid, Polymethylenoxid, Polypropylenoxid, Polyethylen, Polypropylen, Polyvinylchlorid, Polycarbonat, Polystyrol, Polyacrylat, Copolymerisate und deren Mischungen, vorzugsweise Polyethylenoxid, eingesetzt wurde.
- 5. Darreichungsform gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Polymer (C) ein Molekulargewicht von mindestens 0,5 Mio. gemäß rheologischen Messungen aufweist.
- 6. Darreichungsform gemäß Anspruch 5, dadurch gekennzeichnet, dass das Molekulargewicht 1–15 Mio. beträgt.
- 7. Darreichungsform gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Wachs (D) wenigstens ein natürliches, halbsynthetisches oder synthetisches Wachs mit einem Erweichungspunkt von wenigstens 60°C ist.
- 8. Darreichungsform gemäß dem Anspruch 7, dadurch gekennzeichnet, dass das Wachs (D) Carnaubawachs oder Bienenwachs ist.
- 9. Darreichungsform gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Komponente(n) (C) in solchen Mengen vorliegt, dass die Darreichungsform eine Bruchfestigkeit von mindestens 500 N aufweist.
- 10. Darreichungsform gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Wirkstoff (A) wenigstens ein Wirkstoff ausgewählt aus der Gruppe bestehend aus Opiaten, Opioiden, Tranquillantien, Stimulationen, Barbituraten und weiteren Betäubungsmitteln ist.
- 11. Darreichungsform gemäß einem der Ansprüche 1–10, dadurch gekennzeichnet, dass sie noch mindestens eine der nachfolgenden Komponenten a)–f) aufweist:
- (a) wenigstens einen den Nasen- und/oder Rachenraum reizenden Stoff,
- (b) wenigstens ein viskositätserhöhendes Mittel, das in einem mit Hilfe einer notwendigen Mindestmenge an einer wäßrigen Flüssigkeit aus der Darreichungsform gewonnenen Extrakt ein Gel bildet, welches vorzugsweise beim Einbringen in eine weitere Menge einer wäßrigen Flüssigkeit visuell unterscheidbar bleibt,
- (c) wenigstens einen Antagonisten für Wirkstoff bzw. die Wirkstoffe mit Mißbrauchspotential
- (d) wenigstens ein Emetikum.
- (e) wenigstens einen Farbstoff als aversives Mittel
- (f) wenigstens einen Bitterstoff.
- 12. Darreichungsform gemäß Anspruch 11, dadurch gekennzeichnet, daß der reizende Stoff der Komponente (a) ein Brennen, einen Juckreiz, einen Niesreiz, eine vermehrte Sekretbildung oder eine Kombination mindestens zweier dieser Reize verursacht.
- 13. Darreichungsform gemäß einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass der reizende Stoff der Komponente (a) auf einem oder mehreren Inhaltsstoffen wenigstens einer Schartstoffdroge basiert.
- 14. Darreichungsform gemäß Anspruch 13, dadurch gekennzeichnet, daß die Scharfstoffdroge wenigstens eine Droge ausgewählt aus der Gruppe bestehend aus Allii sativi Bulbus, Asari Rhizoma c. Herba, Calami Rhizoma, Capsici Fructus (Paprika), Capsici Fructus acer (Cayennepfeffer), Curcumae longae Rhizoma, Curcumae xanthorrhizae Rhizoma, Galangae Rhizoma, Myristicae Semen, Piperis nigri Fructus (Pfeffer), Sinapis albae (Erucae) Semen, Sinapis nigri Semen, Zedoariae Rhizoma und Zingiberis Rhizoma, besonders bevorzugt wenigstens eine Droge ausgewählt aus der Gruppe bestehend aus Capsici Fructus (Paprika), Capsici Fructus acer (Cayennepfeffer) und Piperis nigri Fructus (Pfeffer) ist.
- 15. Darreichungsform gemäß Anspruch 13 oder 14, dadurch gekennzeichnet, daß der Inhaltsstoff der Schartstoffdroge eine o-Methoxy(Methyl)-phenol-Verbindung, eine Säureamid-Verbindung, ein Senföl oder eine Sulfidverbindung ist oder sich von einer solchen Verbindung ableitet.

- 16. Darreichungsform gemäß einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass der Inhaltsstoff der Scharfstoffdroge wenigstens ein Inhaltsstoff ausgewählt aus der Gruppe bestehend aus Myristicin, Elemicin, Isoeugenol, β-Asaron, Safrol, Gingerolen, Xanthorrhizol, Capsaicinoiden, vorzugsweise Capsaicin, Piperin, vorzugsweise trans-Piperin, Glucosinolaten, vorzugsweise auf Basis von nichtflüchtigen Senfölen, besonders bevorzugt auf Basis von p-Hydroxybenzylsenföl, Methylmercaptosenföl oder Methylsulfonylsenföl, und eine von diesen Inhaltsstoffen abgeleiteten Verbindung ist.
- 17. Darreichungsform gemäß einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, daß die Komponente (b) wenigstens ein viskositätserhöhendes Mittel ausgewählt aus der Gruppe bestehend aus mikrokristalliner Cellulose mit 11 Gew.-% Carboxymethylcellulose-Natrium (Avicel® RC 591), Carboxymethylcellulose-Natrium (Blanose®, CMC-Na C300P®, Frimulsion BLC-5®, Tylose C300 P®), Polyacrylsäure (Carbopol® 980 NF, Carbopol® 981), Johannisbrotkernmehl (Cesagum® LA-200, Cesagum® LID/150, Cesagum® LN-1), Citrus-Pectin (Cesapectin® HM Medium Rapid Set), Wachsmaisstärke (C*Gel 04201®), Natriumalginat (Frimulsion ALG (E401)®), Guarkernmehl (Frimulsion BM®, Polygum 26/1-75®), lota-Carrageen (Frimulsion D021®), Karaya Gummi, Gellangummi (Kelcogel F®, Kelcogel LT100®), Galaktomannan (Meyprogat 150 ®), Tarakernmehl (Polygum 43/1®), Propylenglykoalginat (Protanal-Ester SD-LB®), Apfelpektin, Pektin aus Zitronenschale, Natrium-Hyaluronat, Tragant, Taragummi (Vidogum SP 200®), fermentiertes Polysaccharid- Welan Gum (K1A96) und Xanthan-Gummi (Xantural 180®) ist.
- 18. Darreichungsform gemäß einem der Ansprüche 11 bis 17, dadurch gekennzeichnet, das die Komponente (c) wenigestens ein Opiat- oder Opioid-Antagonist ausgewählt aus der Gruppe bestehend aus Naloxon, Naltrexon, Nalmefen, Nalid, Nalmexon, Nalorphin, Naluphin und eine entsprechende physiologisch verträgliche Verbindung, insbesondere eine Base, Salz und Solvat ist.
- 19. Darreichungsform gemäß einem der Ansprüche 11 bis 17, dadurch gekennzeichnet, dass als Komponente (c) wenigstens ein Neuroleptikum als Stimulanz-Antagonist, vorzugsweise ausgewählt aus der Gruppe bestehend aus Haloperidol, Promethacin, Fluphenazin, Perphenazin, Levomepromazin, Thioridazin, Perazin, Chlorpromazin, Chlorprothixin, Zuclopentixol, Flupentexol, Prothipendyl, Zotepin, Benperidol, Pipamperon, Melperon und Bromperidol zum Einsatz kommt.
- 20. Darreichungsform gemäß einem der Ansprüche 11 bis 19, dadurch gekennzeichnet, daß das Emetikum der Komponente (d) auf einem oder mehreren Inhaltsstoffen von Radix Ipecacuanhae (Brechwurzel), vorzugsweise auf dem Inhaltsstoff Emetin basiert, und/oder Apomorphin ist.
- 21. Darreichungsform gemäß einem der Ansprüche 11 bis 20, dadurch gekennzeichnet, dass die Komponente (e) wenigstens ein physiologisch verträglicher Farbstoff ist.
- 22. Darreichungsform gemäß einem der Ansprüche 11 bis 21, dadurch gekennzeichnet, dass die Komponente (f) wenigstens ein Bitterstoff ausgewählt aus der Gruppe bestehend aus Aromaölen, vorzugsweise Pfefferminzöl; Eukalyptusöl, Bittermandelöl, Menthol und deren Mischungen, Fruchtaromastoffen, vorzugsweise von Zitronen, Orangen, Limonen, Grapefruit und deren Mischungen, Denatoniumbenzoat und deren Mischungen ist.
- 23. Darreichungsform gemäß einem der Ansprüche 11 bis 22, dadurch gekennzeichnet, dass der Wirkstoff bzw. die Wirkstoffe (A) von der Komponente (c) und/oder (d) und/oder (f) räumlich getrennt sind, wobei der Wirkstoff bzw. die Wirkstoffe (A) bevorzugt in wenigstens einer Untereinheit (X) und die Komponenten (c) und/oder (d) und/oder (f) in wenigstens einer Untereinheit (Y) vorliegen und die Komponenten (c) und/oder (d) und/oder (f) aus der Untereinheit (Y) bei bestimmungsgemäßer Applikation der Darreichungsform im Körper bzw. bei Einnahme nicht ihre Wirkung entfalten.
- 24. Darreichungsform gemäß einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass sie wenigstens einen Wirkstoff zumindest teilweise in retardierter Form enthält.
- 25. Darreichungsform gemäß Anspruch 24, dadurch gekennzeichnet, dass jeder der Wirkstoffe mit Missbrauchspotential (A) in einer Retardmatrix vorliegt.
- 26. Darreichungsform gemäß Anspruch 25, dadurch gekennzeichnet, dass die Komponente (C) und/oder die Komponente (D) auch als Retardmatrixmaterial dient.
 - 27. Verfahren zur Herstellung einer Darreichungsform gemäß einem der Ansprüche 1 bis 26, dadurch ge-

kennzeichnet, dass man

die Komponenten (A), (B), (C) und die gegebenenfalls vorhandene Komponente (D) sowie die ggf. vorhandenen Komponenten (a) bis (f) mischt und

die resultierende Mischung ggf. nach einer Granulierung durch Druck zu der Darreichungsform unter vorangehender, gleichzeitiger oder anschließender Wärmeeinwirkung formt.

- 28. Verfahren gemäß Anspruch 27, dadurch gekennzeichnet, dass die Granulierung gemäß einem Schmelzverfahren durchgeführt wird.
- 29. Darreichungsform nach einem der Ansprüche 1 bis 26 erhältlich nach Verfahren gemäß Anspruch 27 oder 28.

Es folgt kein Blatt Zeichnungen

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2005/0031546 A1

Bartholomaus et al. (43) **Pub. Date:**

Feb. 10, 2005

(54) ABUSE-PROFFED DOSAGE FORM

(76) Inventors: Johannes Bartholomaus, Aachen (DE); Heinrich Kugelmann, Aachen (DE)

> Correspondence Address: PERMAN & GREEN 425 POST ROAD FAIRFIELD, CT 06824 (US)

(21) Appl. No.: 10/718,112

Nov. 20, 2003 (22) Filed:

(30)Foreign Application Priority Data

Aug. 6, 2003 (DE)...... 103 36 400.5

Publication Classification

U.S. Cl. 424/10.1; 424/486

(57) **ABSTRACT**

The present invention relates to an abuse-proofed, thermoformed dosage form containing, in addition to one or more active ingredients with abuse potential optionally together with physiologically acceptable auxiliary substances, at least one synthetic or natural polymer with a breaking strength of at least 500 N and to a process for the production thereof.

ABUSE-PROFFED DOSAGE FORM

[0001] The present invention relates to an abuse-proofed, thermoformed dosage form containing, in addition to one or more active ingredients with abuse potential (A) optionally together with physiologically acceptable auxiliary substances (B), at least one synthetic or natural polymer (C) and optionally at least one wax (D), wherein component (C) exhibits a breaking strength of at least 500 N, and to a process for the production of the dosage form according to the invention.

[0002] Many pharmaceutical active ingredients, in addition to having excellent activity in their appropriate application, also have abuse potential, i.e. they can be used by an abuser to bring about effects other than those intended. Opiates, for example, which are highly active in combating severe to very severe pain, are frequently used by abusers to induce a state of narcosis or euphoria.

[0003] In order to make abuse possible, the corresponding dosage forms, such as tablets or capsules are comminuted, for example ground in a mortar, by the abuser, the active ingredient is extracted from the resultant powder using a preferably aqueous liquid and the resultant solution, optionally after being filtered through cotton wool or cellulose wadding, is administered parenterally, in particular intravenously. An additional phenomenon of this kind of administration, in comparison with abusive oral administration, is a further accelerated increase in active ingredient levels giving the abuser the desired effect, namely the "kick" or "rush". This kick is also obtained if the powdered dosage form is administered nasally, i.e. is sniffed. Since controlled-release dosage forms containing active ingredients with abuse potential do not give rise to the kick desired by the abuser when taken orally even in abusively high quantities, such dosage forms are also comminuted and extracted in order to be abused.

[0004] U.S. Pat. No. 4,070,494 proposed adding a swellable agent to the dosage form in order to prevent abuse. When water is added to extract the active ingredient, this agent swells and ensures that the filtrate separated from the gel contains only a small quantity of active ingredient.

[0005] The multilayer tablet disclosed in WO 95/20947 is based on a similar approach to preventing parenteral abuse, said tablet containing the active ingredient with abuse potential and at least one gel former, each in different layers.

[0006] WO 03/015531 A2 discloses another approach to preventing parenteral abuse. A dosage form containing an analgesic opioid and a dye as an aversive agent is described therein. The colour released by tampering with the dosage form is intended to discourage the abuser from using the dosage form which has been tampered with.

[0007] Another known option for complicating abuse involves adding antagonists to the active ingredients to the dosage form, for example naloxone or naltexone in the case of opiates, or compounds which cause a physiological defence response, such as for example Radix ipecacuanha=ipecac root.

[0008] However, since in most cases of abuse it is still necessary to pulverise the dosage form comprising an active ingredient suitable for abuse, it was the object of the present invention to complicate or prevent the pulverisation preced-

ing abuse of the dosage form comprising the agents conventionally available for potential abuse and accordingly to provide a dosage form for active ingredients with abuse potential which ensures the desired therapeutic effect when correctly administered, but from which the active ingredients cannot be converted into a form suitable for abuse simply by pulverisation.

[0009] Said object has been achieved by the provision of the abuse-proofed, thermoformed dosage form according to the invention which contains, in addition to one or more active ingredients with abuse potential (A), at least one synthetic or natural polymer (C) and optionally at least one wax (D), wherein component (C) exhibits a breaking strength of at least 500 N.

[0010] The use of polymers having the stated minimum breaking strength, preferably in quantities such that the dosage form also exhibits such a minimum breaking strength, means that pulverisation of the dosage form is considerably more difficult using conventional means, so considerably complicating or preventing the subsequent

[0011] If comminution is inadequate, parenteral, in particular intravenous, administration cannot be performed safely or extraction of the active ingredient therefrom takes too long for the abuser or there is no "kick" when taken orally, as release is not spontaneous.

[0012] According to the invention, comminution is taken to mean pulverisation of the dosage form with conventional means which are available to an abuser, such as for example a mortar and pestle, a hammer, a mallet or other usual means for pulverisation by application of force.

[0013] The dosage form according to the invention is thus suitable for preventing parenteral, nasal and/or oral abuse of pharmaceutical active ingredients with abuse potential.

[0014] Pharmaceutical active ingredients with abuse potential are known to the person skilled in the art, as are the quantities thereof to be used and processes for the production thereof, and may be present in the dosage form according to the invention as such, in the form of the corresponding derivatives thereof, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof, as racemates or stereoisomers. The dosage form according to the invention is also suitable for the administration of several active ingredients. It is preferably used to administer a specific active ingredient.

[0015] The dosage form according to the invention is in particular suitable for preventing abuse of a pharmaceutical active ingredient selected from the group consisting of opiates, opioids, tranquillisers, preferably benzodiazepines, barbiturates, stimulants and other narcotics.

[0016] The dosage form according to the invention is very particularly suitable for preventing abuse of an opiate, opioid, tranquilliser or another narcotic selected from the group consisting of N-{1-[2-(4-ethyl-5-oxo-2-tetrazolin-1-yl)ethyl]-4-methoxymethyl-4-piperidyl}propionanilide (alfentanil), 5,5-diallylbarbituric acid (allobarbital), allylprodine, alphaprodine, 8-chloro-1-methyl-6-phenyl-4H-[1, 2,4]triazolo[4,3-a][1,4]-benzodiazepine (alprazolam), 2-diethylaminopropiophenone (amfepramone), (±)-α-methyl-

(amphetamine), phenethylamine 2-αmethylphenethylamino)-2-phenylacetonitrile (amphetaminil), 5-ethyl-5-isopentylbarbituric acid (amobarbital), anileridine, apocodeine, 5,5-diethylbarbituric acid (barbital), benzylmorphine, bezitramide, 7-bromo-5-(2-pyridyl)-1H-1,4-benzodiazepine-2(3H)-one (bromazepam), 2-bromo-4-(2-chlorophenyl)-9-methyl-6H-thieno[3,2-f][1, 2,4]triazolo-[4,3-a][1,4]diazepine (brotizolam), 17-cyclopropylmethyl-4,5α-epoxy-7α[(S)-1-hydroxy-1,2,2-trimethyl-propyl]-6-methoxy-6,14-endo-ethanomorphinane-3-(buprenorphine), 5-butyl-5-ethylbarbituric (butobarbital), butorphanol, (7-chloro-1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-1,4-benzodiazepine-3-yl)-dimethylcarbamate (camazepam), (1S,2S)-2-amino-1-phenyl-1propanol (cathine/D-norpseudoephedrine), 7-chloro-Nmethyl-5-phenyl-3H-1,4-benzodiazepine-2-ylamine-4oxide (chlorodiazepoxide), 7-chloro-1-methyl-5-phenyl-1H-1,5-benzodiazepine-2,4(3H,5H)-dione (clobazam), 5-(2chlorophenyl)-7-nitro-1H-1,4-benzodiazepine-2(3H)-one (clonazepam), clonitazene, 7-chloro-2,3-dihydro-2-oxo-5phenyl-1H-1,4-benzodiazepine-3-carboxylic acid (clorazepate), 5-(2-chlorophenyl)-7-ethyl-1-methyl-1H-thieno[2,3e [1,4]diazepine-2(3H)-one (clotiazepam), 10-chloro-11b-(2-chlorophenyl)-2,3,7,11b-tetrahydrooxazolo[3,2-d][1,4] benzodiazepine-6(5H)-one (cloxazolam), (-)-methyl-[3βbenzoyloxy- $2\beta(1\alpha(H,5\alpha H)$ -tropancarboxylate] (cocaine), 4.5α -epoxy-3-methoxy-17-methyl-7-morphinene- 6α -ol (codeine), 5-(1-cyclohexenyl)-5-ethylbarbituric acid (cyclobarbital), cyclorphan, cyprenorphine, 7-chloro-5-(2-chlorophenyl)-1H-1,4-benzodiazepine-2(3H)-one (delorazepam), desomorphine, dextromoramide, (+)-(1-benzyl-3-dimethylamino-2-methyl-1-phenylpropyl)propionate (dextropropoxyphen), dezocine, diampromide, diamor-7-chloro-1-methyl-5-phenyl-1H-1,4-benzodiazepine-2(3H)-one (diazepam), 4,5α-epoxy-3-methoxy-17methyl- 6α -morphinanol (dihydrocodeine), 4.5α -epoxy-17methyl-3,6α-morphinandiol (dihydromorphine). dimenoxadol, dimepheptanol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, (6aR,10aR)-6,6,9-trimethyl-3pentyl-6a,7,8,10a-tetrahydro-6H-benzo[c]chromene-1-ol (dronabinol), eptazocine, 8-chloro-6-phenvl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine (estazolam), ethoheptazine, ethylmethylthiambutene, ethyl [7-chloro-5-(2-fluorophenyl)-2,3-dihydro-2-oxo-1H-1,4-benzodiazepine-3-carboxylate](ethyl loflazepate), 4,5α-epoxy-3-ethoxy-17-methyl-7morphinene- 6α -ol (ethylmorphine), etonitazene, 4.5α epoxy-7α-(1-hydroxy-1-methylbutyl)-6-methoxy-17methyl-6,14-endo-etheno-morphinan-3-ol N-ethyl-3-phenyl-8,9,10-trinorbornan-2-ylamine(fencamfamine), 7-[2-(1-methyl-phenethylamino)ethyl]-theophylline) (fenethylline), 3-(α-methylphenethylamino)propioni-(fenproporex), N-(1-phenethyl-4piperidyl)propionanilide (fentanyl), 7-chloro-5-(2fluorophenyl)-1-methyl-1H-1,4-benzodiazepine-2(3H)-one (fludiazepam), 5-(2-fluorophenyl)-1-methyl-7-nitro-1H-1,4benzodiazepine-2(3H)-one (flunitrazepam), 7-chloro-1-(2diethylaminoethyl)-5-(2-fluorophenyl)-1H-1,4-benzodiazepine-2(3H)-one (flurazepam), 7-chloro-5-phenyl-1-(2,2,2trifluoroethyl)-1H-1,4-benzodiazepine-2(3H)-one (halazepam), 10-bromo-11b-(2-fluorophenyl)-2,3,7,11b-tetrahydro[1,3]oxazolyl[3,2-d][1,4]benzodiazepine-6(5H)-one (haloxazolam), heroin, 4,5α-epoxy-3-methoxy-17-methyl-6-morphinanone (hydrocodone), 4,5\alpha-epoxy-3-hydroxy-17methyl-6-morphinanone (hydromorphone), hydroxypethidine, isomethadone, hydroxymethyl morphinane, 11-chloro-8,12b-dihydro-2,8-dimethyl-12b-phenyl-4H-[1,3]oxazino [3,2-d][1,4]benzodiazepine-4,7(6H)-dione (ketazolam), 1-[4-(3-hydroxyphenyl)-1-methyl-4-piperidyl]-1-propanone (ketobemidone), (3S,6S)-6-dimethylamino-4,4-diphenylheptan-3-yl acetate(levacetylmethadol (LAAM)), (-)-6dimethyl-amino-4,4-diphenol-3-heptanone (levometha-(-)-17-methyl-3-morphinanol (levorphanol), levophenacylmorphane, lofentanil, 6-(2-chlorophenyl)-2-(4methyl-1-piperazinylmethylene)-8-nitro-2H-imidazo[1,2-a] [1,4]-benzodiazepine-1(4H)-one (loprazolam), 7-chloro-5-(2-chlorophenyl)-3-hydroxy-1H-1,4-benzodiazepine-2(3H)-one (lorazepam), 7-chloro-5-(2-chlorophenyl)-3hydroxy-1-methyl-1H-1,4-benzodiazepine-2(3H)-one (lormetazepam), 5-(4-chlorophenyl)-2,5-dihydro-3H-imidazo[2,1-a]isoindol-5-ol (mazindol), 7-chloro-2,3-dihydro-1-methyl-5-phenyl-1H-1,4-benzodiazepine (medazepam), N-(3-chloropropyl)- α -methylphenethylamine (mefenorex), meperidine, 2-methyl-2-propyltrimethylene dicarbamate (meprobamate), meptazinol, metazocine, methylmorphine, N,α -dimethylphenethylamine (methamphetamine), (O)-6dimethylamino-4,4-diphenyl-3-heptanone (methadone), 2-methyl-3-o-tolyl-4(3H)-quinazolinone (methaqualone), methyl [2-phenyl-2-(2-piperidyl)acetate] (methylphenidate), 5-ethyl-1-methyl-5-phenylbarbituric acid (methylphenobarbital), 3,3-diethyl-5-methyl-2,4-piperidinedione (methyprylon), metopon, 8-chloro-6-(2-fluorophenyl)-1-methyl-4H-imidazo[1,5-a][1,4]benzodiazepine (midazolam), 2-(benzhydrylsulfinyl)-acetamide (modafinil), 4,5α-epoxy-17-methyl-7-morphinen-3,6α-diol (morphine), myrophine, (±)-trans-3-(1,1-dimethylheptyl)-7,8,10,10α-tetrahydro-1hydroxy-6,6-dimethyl-6H-dibenzo[b,d]pyrane-9 (6αH)-one (nabilone), nalbuphine, nalorphine, narceine, nicomorphine, 1-methyl-7-nitro-5-phenyl-1H-1,4-benzodiazepine-2(3H)one (nimetazepam), 7-nitro-5-phenyl-1H-1,4-benzodiazepine-2(3H)-one (nitrazepam), 7-chloro-5-phenyl-1H-1,4benzodiazepine-2(3H)-one (nordazepam), norlevorphanol, 6-dimethylamino-4,4-diphenyl-3-hexanone (normethadone), normorphine, norpipanone, the exudation of plants belonging to the species Papaver somniferum (opium), 7-chloro-3-hvdroxy-5-phenyl-1H-1,4-benzodiazepine-2(3H)-one (oxazepam), (cis-trans)-10-chloro-2,3,7,11b-tetrahydro-2-methyl-11b-phenyloxazolo[3,2-d][1,4]benzodiazepine-6-(5H)-one (oxazolam), 4,5α-epoxy-14-hydroxy-3methoxy-17-methyl-6-morphinanone (oxycodone), oxymorphone, plants and parts of plants belonging to the species Papaver somniferum (including the subspecies setigerum), papaveretum, 2-imino-5-phenyl-4-oxazolidinone (pernoline), 1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(3-methyl-2-butenyl)-2,6-methano-3-benzazocin-8-ol (pentazocine), 5-ethyl-5-(1-methylbutyl)-barbituric acid (pentobarbital), ethyl-(1-methyl-4-phenyl-4-piperidine carboxylate) (pethidine), phenadoxone, phenomorphan, phenazocine, phenoperidine, piminodine, pholcodine, 3-methyl-2-phenylmorpholine (phenmetrazine), 5-ethyl-5-phenylbarbituric acid (phenobarbital), α,α -dimethylphenethylamine(phentermine), 7-chloro-5-phenyl-1-(2-propynyl)-1H-1,4-benzodiazepine-2(3H)-one (pinazepam), α-(2-piperidyl)benzhydryl alcohol (pipradrol), 1'-(3-cyano-3,3-diphenylpropyl)[1, 4'-bipiperidine]-4'-carboxamide(piritramide), 7-chloro-1-(cyclopropylmethyl)-5-phenyl-1H-1,4-benzodiazepine-2(3H)-one (prazepam), profadol, proheptazine, promedol, properidine, propoxyphene, N-(1-methyl-2-piperidinoethyl)-N-(2-pyridyl)propionamide, methyl {3-[4-methoxycarbonyl-4-(N-phenylpropanamido)piperidino]propanoate} (remifentanil), 5-sec-butyl-5-ethylbarbituric acid (secbutabarbital), 5-allyl-5-(1-methylbutyl)-barbituric acid (secobarbital), N-{4-methoxymethyl-1-[2-(2-thienyl)ethyl]-4-piperidyl}-propionanilide (sufentanil), 7-chloro-2-hydroxymethyl-5-phenyl-1H-1,4-benzodiazepin-2(3H)-one (temazepam), 7-chloro-5-(1-cyclohexenyl)-1-methyl-1H-1, 4-benzodiazepine-2(3H)-one (tetrazepam), ethyl(2-dimethylamino-1-phenyl-3-cyclohexene-1-carboxylate) dine (cis and trans)), tramadol, 8-chloro-6-(2-chlorophenyl)-1-methyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine (triazolam), 5-(1-methylbutyl)-5-vinylbarbituric acid (vinyl- $(1R^*,2R^*)$ -3-(3-dimethylamino-1-ethyl-2-methylpropyl)-phenol, (1R,2R,4S)-2-(dimethylamino)methyl-4-(pfluoro-benzyloxy)-1-(m-methoxyphenyl)cyclohexanol, (1R, 2R)-3-(2-dimethylaminomethyl-cyclohexyl)phenol, 2S)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)phenol, (2R,3R)-1-dimethylamino-3(3-methoxyphenyl)-2-methylpentan-3-ol, (1RS,3RS,6RS)-6-dimethylaminomethyl-1-(3methoxyphenyl)-cyclohexane-1,3-diol, 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)phenyl 2-(4-isobutoxyphenyl)-propionate, 3-(2-dimethylaminomethyl-1-hydroxycyclohexyl)phenyl 2-(6-methoxy-naphthalen-2-yl)propionate, 3-(2-dimethylamino-methyl-cyclohex-1-enyl)-2-(4-isobutyl-phenyl)-propionate, 3-(2phenyl dimethylaminomethyl-cyclohex-1-enyl)-phenyl 2-(6methoxy-naphthalen-2-yl)-propionate, (RR—SS)-2acid acetoxy-4-trifluoromethyl-benzoic 3-(2dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR—SS)-2-hydroxy-4-trifluoromethyl-benzoic acid 3-(2dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR—SS)-4-chloro-2-hydroxy-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR— SS)-2-hydroxy-4-methyl-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-2hydroxy-4-methoxy-benzoic acid dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR—SS)-2-hydroxy-5-nitro-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR-SS)-21,4'-difluoro-3-hydroxy-biphenyl-4-carboxylic 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester and for corresponding stereoisomeric compounds, the corresponding derivatives thereof in each case, in particular esters or ethers, and the physiologically acceptable compounds thereof in each case, in particular the salts and solvates thereof.

[0017] The compounds (1R*,2R*)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol, (1R,2R,4S)-2-(dimethylamino)methyl-4-(p-fluorobenzyloxy)-1-(m-methoxyphenyl)cyclohexanol or the stereoisomeric compounds thereof or the physiologically acceptable compounds thereof, in particular the hydrochlorides thereof, the derivatives thereof, such as esters or ethers, and processes for the production thereof are known, for example, from EP-A-693475 or EP-A-780369. The corresponding descriptions are hereby introduced as a reference and are deemed to be part of the disclosure.

[0018] In order to achieve the necessary breaking strength of the dosage form according to the invention, at least one synthetic or natural polymer (C) is used which has a breaking strength, measured using the method disclosed in the present application, of at least 500 N. At least one polymer selected from the group consisting of polymethylene oxide, polyethylene oxide, polyethylene,

polypropylene, polyvinyl chloride, polycarbonate, polystyrene, polyacrylate, copolymers thereof, and mixtures of at least two of the stated polymers is preferably used for this purpose. The polymers are distinguished by a molecular weight of at least 0.5 million, determined by rheological measurements. Thermoplastic polyalkylene oxides, such as polyethylene oxides, with a molecular weight of at least 0.5 million, preferably of up to 15 million, determined by Theological measurements, are very particularly preferred. These polymers have a viscosity at 25° C. of 4500 to 17600 cP, measured on a 5 wt. % aqueous solution using a model RVF Brookfield viscosimeter (spindle no. 2/rotational speed 2 rpm), of 400 to 4000 cP, measured on a 2 wt. % aqueous solution using the stated viscosimeter (spindle no. 1 or 3/rotational speed 10 rpm) or of 1650 to 10000 cP, measured on a 1 wt. % aqueous solution using the stated viscosimeter (spindle no. 2/rotational speed 2 rpm).

[0019] The polymers are used in powder form.

[0020] In order to achieve the necessary breaking strength of the dosage form according to the invention, it is furthermore possible additionally to use at least one natural or synthetic wax (D) with a breaking strength, measured using the method disclosed in the present application, of at least 500 N. Waxes with a softening point of at least 60° C. are preferred. Carnauba wax and beeswax are particularly preferred. Carnauba wax is very particularly preferred. Carnauba wax is a natural wax which is obtained from the leaves of the carnauba palm and has a softening point of >80° C. When the wax component is additionally used, it is used together with at least one polymer (C) in quantities such that the dosage form has a breaking strength of at least 500 N

[0021] The dosage forms according to the invention are distinguished in that, due their hardness, they cannot be pulverised, for example by grinding in a mortar. This virtually rules out oral or parenteral, in particular intravenous or nasal abuse. However, in order to prevent any possible abuse in the event of comminution and/or pulverisation of the dosage form according to the invention which has nevertheless been achieved by application of extreme force, the dosage forms according to the invention may, in a preferred embodiment, contain further agents which complicate or prevent abuse as auxiliary substances (B).

[0022] The abuse-proofed dosage form according to the invention, which comprises, apart from one or more active ingredients with abuse potential, at least one hardening polymer (C) and optionally at least one wax (D), may accordingly also comprise at least one of the following components (a)-(f) as auxiliary substances (B):

[0023] (a) at least one substance which irritates the nasal passages and/or pharynx,

[0024] (b) at least one viscosity-increasing agent, which, with the assistance of a necessary minimum quantity of an aqueous liquid, forms a gel with the extract obtained from the dosage form, which gel preferably remains visually distinguishable when introduced into a further quantity of an aqueous liquid,

[0025] (c) at least one antagonist for each of the active ingredients with abuse potential,

[0026] (d) at least one emetic,

[0027] (e) at least one dye as an aversive agent,

[0028] (f) at least one bitter substance.

[0029] Components (a) to (f) are additionally each individually suitable for abuse-proofing the dosage form according to the invention. Accordingly, component (a) is preferably suitable for proofing the dosage form against nasal, oral and/or parenteral, preferably intravenous, abuse, component (b) is preferably suitable for proofing against parenteral, particularly preferably intravenous and/or nasal abuse, component (c) is preferably suitable for proofing against nasal and/or parenteral, particularly preferably intravenous, abuse, component (d) is preferably suitable for proofing against parenteral, particularly preferably intravenous, and/or oral and/or nasal abuse, component (e) is suitable as a visual deterrent against oral or parenteral abuse and component (f) is suitable for proofing against oral or nasal abuse. Combined use according to the invention of at least one of the above-stated components makes it possible still more effectively to prevent abuse of dosage forms according to the invention.

[0030] In one embodiment, the dosage form according to the invention may also comprise two or more of components (a)-(f) in a combination, preferably (a), (b) and optionally (c) and/or (f) and/or (e) or (a), (b) and optionally (d) and/or (f) and/or (e).

[0031] In another embodiment, the dosage form according to the invention may comprise all of components (a)-(f).

[0032] If the dosage form according to the invention comprises component (a) to counter abuse, substances which irritate the nasal passages and/or pharynx which may be considered according to the invention are any substances which, when administered via the nasal passages and/or pharynx, bring about a physical reaction which is either so unpleasant for the abuser that he/she does not wish to or cannot continue administration, for example burning, or physiologically counteracts taking of the corresponding active ingredient, for example due to increased nasal secretion or sneezing. These substances which conventionally irritate the nasal passages and/or pharynx may also bring about a very unpleasant sensation or even unbearable pain when administered parenterally, in particular intravenously, such that the abuser does not wish to or cannot continue taking the substance.

[0033] Particularly suitable substances which irritate the nasal passages and/or pharynx are those which cause burning, itching, an urge to sneeze, increased formation of secretions or a combination of at least two of these stimuli. Appropriate substances and the quantities thereof which are conventionally to be used are known per se to the skilled person or may be identified by simple preliminary testing.

[0034] The substance which irritates the nasal passages and/or pharynx of component (a) is preferably based on one or more constituents or one or more plant parts of at least one hot substance drug.

[0035] Corresponding hot substance drugs are known per se to the person skilled in the art and are described, for example, in "Pharmazeutische Biologie—Drogen und ihre Inhaltsstoffe" by Prof. Dr. Hildebert Wagner, 2nd., revised edition, Gustav Fischer Verlag, Stuttgart-New York, 1982,

pages 82 et seq. The corresponding description is hereby introduced as a reference and is deemed to be part of the disclosure.

[0036] The dosage form according to the invention may preferably contain the plant parts of the corresponding hot substance drugs in a quantity of 0.01 to 30 wt. %, particularly preferably of 0.1 to 0.5 wt. %, in each case relative to the total weight dosage unit.

[0037] If one or more constituents of corresponding hot substance drugs are used, the quantity thereof in a dosage unit according to the invention preferably amounts to 0.001 to 0.005 wt. %, relative to the total weight of the dosage unit.

[0038] A dosage unit is taken to mean a separate or separable administration unit, such as for example a tablet or a capsule.

[0039] One or more constituents of at least one hot substance drug selected from the group consisting of Allii sativi bulbus (garlic), Asari rhizoma cum herba (Asarum root and leaves), Calami rhizoma (calamus root), Capsici fructus (capsicum), Capsici fructus acer (cayenne pepper), Curcumae longae rhizoma (turmeric root), Curcumae xanthorrhizae rhizoma (Javanese turmeric root), Galangae rhizoma (galangal root), Myristicae semen (nutmeg), Piperis nigri fructus (pepper), Sinapis albae semen (white mustard seed), Sinapis nigri semen (black mustard seed), Zedoariae rhizoma (zedoary root) and Zingiberis rhizoma (ginger root), particularly preferably from the group consisting of Capsici fructus (capsicum), Capsici fructus acer (cayenne pepper) and Piperis nigri fructus (pepper) may preferably be added as component (a) to the dosage form according to the invention.

[0040] The constituents of the hot substance drugs preferably comprise o-methoxy(methyl)phenol compounds, acid amide compounds, mustard oils or sulfide compounds or compounds derived therefrom.

[0041] Particularly preferably, at least one constituent of the hot substance drugs is selected from the group consisting of myristicin, elemicin, isoeugenol, β -asarone, safrole, gingerols, xanthorrhizol, capsaicinoids, preferably capsaicin, capsaicin derivatives, such as N-vanillyl-9E-octadecenamide, dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, norcapsaicin and nomorcapsaicin, piperine, preferably trans-piperine, glucosinolates, preferably based on non-volatile mustard oils, particularly preferably based on p-hydroxybenzyl mustard oil, methylmercapto mustard oil or methylsulfonyl mustard oil, and compounds derived from these constituents.

[0042] Another option for preventing abuse of the dosage form according to the invention consists in adding at least one viscosity-increasing agent as a further abuse-preventing component (b) to the dosage form, which, with the assistance of a necessary minimum quantity of an aqueous liquid, forms a gel with the extract obtained from the dosage form, which gel is virtually impossible to administer safely and preferably remains visually distinguishable when introduced into a further quantity of an aqueous liquid.

[0043] For the purposes of the present invention visually distinguishable means that the active ingredient-containing gel formed with the assistance of a necessary minimum quantity of aqueous liquid, when introduced, preferably with

the assistance of a hypodermic needle, into a further quantity of aqueous liquid at 37° C., remains substantially insoluble and cohesive and cannot straightforwardly be dispersed in such a manner that it can safely be administered parenterally, in particular intravenously. The material preferably remains visually distinguishable for at least one minute, preferably for at least 10 minutes.

[0044] The increased viscosity of the extract makes it more difficult or even impossible for it to be passed through a needle or injected. If the gel remains visually distinguishable, this means that the gel obtained on introduction into a further quantity of aqueous liquid, for example by injection into blood, initially remains in the form of a largely cohesive thread, which, while it may indeed be broken up into smaller fragments, cannot be dispersed or even dissolved in such a manner that it can safely be administered parenterally, in particular intravenously. In combination with at least one optionally present component (a) to (e), this additionally leads to unpleasant burning, vomiting, bad flavour and/or visual deterrence.

[0045] Intravenous administration of such a gel would most probably result in obstruction of blood vessels, associated with serious embolism or even death of the abuser.

[0046] In order to verify whether a viscosity-increasing agent is suitable as component (b) for use in the dosage form according to the invention, the active ingredient is mixed with the viscosity-increasing agent and suspended in 10 ml of water at a temperature of 25° C. If this results in the formation of a gel which fulfils the above-stated conditions, the corresponding viscosity-increasing agent is suitable for preventing or averting abuse of the dosage forms according to the invention.

[0047] If component (b) is added to the dosage form according to the invention, one or more viscosity-increasing agents are used which are selected from the group consisting of microcrystalline cellulose with 11 wt. % carboxymethylcellulose sodium (Avicel® RC 591), carboxymethylcellulose sodium (Blanose®, CMC-Na C300P®, Frimulsion BLC-5®, Tylose C300 P®), polyacrylic acid (Carbopol® 980 NF, Carbopol® 981), locust bean flour (Cesagum® LA-200, Cesagum® LID/150, Cesagum® LN-1), pectins such as citrus pectin (Cesapectin® HM Medium Rapid Set), apple pectin, pectin from lemon peel, waxy maize starch (C*Gel 04201®), sodium alginate (Frimulsion ALG (E401)®), guar flour (Frimulsion BM®, Polygum 26/1-75®), iota carrageen (Frimulsion D021®), karaya gum, gellan gum (Kelcogel F®, Kelcogel LT100®), galactomannan (Meyprogat 150®), tara bean flour (Polygum 43/1), propylene glycol alginate (Protanal-Ester SD-LB®), sodium hyaluronate, tragacanth, tara gum (Vidogum SP 200®), fermented polysaccharide welan gum (K1A96), xanthan gum (Xantural 180®). Xanthans are particularly preferred. The names stated in brackets are the trade names by which the materials are known commercially. In general, a quantity of 0.1 to 5 wt. % of the viscosity-increasing agent(s) is sufficient to fulfil the above-stated conditions.

[0048] The component (b) viscosity-increasing agents, where provided, are preferably present in the dosage form according to the invention in quantities of >5 mg per dosage unit, i.e. per administration unit.

[0049] In a particularly preferred embodiment of the present invention, the viscosity-increasing agents used as

component (b) are those which, on extraction from the dosage form with the necessary minimum quantity of aqueous liquid, form a gel which encloses air bubbles. The resultant gels are distinguished by a turbid appearance, which provides the potential abuser with an additional optical warning and discourages him/her from administering the gel parenterally.

[0050] It is also possible to formulate the viscosity-increasing agent and the other constituents in the dosage form according to the invention in a mutually spatially separated arrangement.

[0051] In order to discourage and prevent abuse, the dosage form according to the invention may furthermore comprise component (c), namely one or more antagonists for the active ingredient or active ingredients with abuse potential, wherein the antagonists are preferably spatially separated from the remaining constituents of the invention dosage according to the form and, when correctly used, do not exert any effect.

[0052] Suitable antagonists for preventing abuse of the active ingredients are known per se to the person skilled in the art and may be present in the dosage form according to the invention as such or in the form of corresponding derivatives, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof.

[0053] If the active ingredient present in the dosage form is an opiate or an opioid, the antagonist used is preferably an antagonist selected from the group consisting of naloxone, naltrexone, nalmefene, nalid, nalmexone, nalorphine or naluphine, in each case optionally in the form of a corresponding physiologically acceptable compound, in particular in the form of a base, a salt or solvate. The corresponding antagonists, where component (c) is provided, are preferably used in a quantity of >10 mg, particularly preferably in a quantity of 10 to 100 mg, very particularly preferably in a quantity of 10 to 50 mg per dosage form, i.e. per administration unit.

[0054] If the dosage form according to the invention comprises a stimulant as active ingredient, the antagonist is preferably a neuroleptic, preferably at least one compound selected from the group consisting of haloperidol, promethazine, fluphenazine, perphenazine, levomepromazine, thioridazine, perazine, chlorpromazine, chlorprothixine, zuclopentixol, flupentixol, prothipendyl, zotepine, benperidol, pipamperone, melperone and bromperidol.

[0055] The dosage form according to the invention preferably comprises these antagonists in a conventional therapeutic dose known to the person skilled in the art, particularly preferably in a quantity of twice to four times the conventional dose per administration unit.

[0056] If the combination to discourage and prevent abuse of the dosage form according to the invention comprises component (d), it may comprise at least one emetic, which is preferably present in a spatially separated arrangement from the other components of the dosage form according to the invention and, when correctly used, is intended not to exert its effect in the body.

[0057] Suitable emetics for preventing abuse of an active ingredient are known per se to the person skilled in the art

and may be present in the dosage form according to the invention as such or in the form of corresponding derivatives, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof.

[0058] An emetic based on one or more constituents of radix ipecacuanha (ipecac root), preferably based on the constituent emetine may preferably be considered in the dosage form according to the invention, as are, for example, described in "Pharmazeutische Biologie—Drogen und ihre Inhaltsstoffe" by Prof. Dr. Hildebert Wagner, 2nd, revised edition, Gustav Fischer Verlag, Stuttgart, New York, 1982. The corresponding literature description is hereby introduced as a reference and is deemed to be part of the disclosure.

[0059] The dosage form according to the invention may preferably comprise the emetic emetine as component (d), preferably in a quantity of ≥ 10 mg, particularly preferably of ≥ 20 mg and very particularly preferably in a quantity of ≥ 40 mg per dosage form, i.e. administration unit.

[0060] Apomorphine may likewise preferably be used as an emetic in the abuse-proofing according to the invention, preferably in a quantity of preferably ≥ 3 mg, particularly preferably of ≥ 5 mg and very particularly preferably of ≥ 7 mg per administration unit.

[0061] If the dosage form according to the invention contains component (e) as a further abuse-preventing auxiliary substance, the use of a such a dye brings about an intense coloration of a corresponding aqueous solution, in particular when the attempt is made to extract the active ingredient for parenteral, preferably intravenous administration, which coloration may act as a deterrent to the potential abuser. Oral abuse, which conventionally begins by means of aqueous extraction of the active ingredient, may also be prevented by this coloration. Suitable dyes and the quantities required for the necessary deterrence may be found in WO 03/015531, wherein the corresponding disclosure should be deemed to be part of the present disclosure and is hereby introduced as a reference.

[0062] If the dosage form according to the invention contains component (f) as a further abuse-preventing auxiliary substance, this addition of at least one bitter substance and the consequent impairment of the flavour of the dosage form additionally prevents oral and/or nasal abuse.

[0063] Suitable bitter substances and the quantities effective for use may be found in US-2003/0064099 A1, the corresponding disclosure of which should be deemed to be the disclosure of the present application and is hereby introduced as a reference. Suitable bitter substances are preferably aromatic oils, preferably peppermint oil, eucalyptus oil, bitter almond oil, menthol, fruit aroma substances, preferably aroma substances from lemons, oranges, limes, grapefruit or mixtures thereof, and/or denatonium benzoate.

[0064] The solid dosage form according to the invention is suitable to be taken orally or rectally, preferably orally. The orally administrable dosage form according to the invention may assume multiparticulate form, preferably in the form of microtablets, microcapsules, micropellets, granules, spheroids, beads or pellets, optionally packaged in capsules or pressed into tablets. The multiparticulate forms preferably

have a size or size distribution in the range from 0.1 to 3 mm, particularly preferably in the range from 0.5 to 2 mm. Depending on the desired dosage form, conventional auxiliary substances (B) are optionally also used for the formulation of the dosage form.

[0065] The solid, abuse-proofed dosage form according to the invention is preferably produced by mixing the components (A), (B), (C) and/optionally (D) and at least one of the optionally present further abuse-preventing components (a)-(f) and, optionally after granulation, press-forming the resultant mixture to yield the dosage form with preceding, simultaneous, or subsequent exposure to heat.

[0066] Mixing of components (A), (B), (C) and optionally (D) and of the optionally present further components (a)-(f) proceeds in a mixer known to the person skilled in the art. The mixer may, for example, be a roll mixer, shaking mixer, shear mixer or compulsory mixer.

[0067] The resultant mixture is preferably formed directly by application of pressure to yield the dosage form according to the invention with preceding, simultaneous or subsequent exposure to heat. The mixture may, for example, be formed into tablets by direct tabletting. In direct tabletting with simultaneous exposure to heat, the tabletting tool, i.e. bottom punch, top punch and die are briefly heated at least to the softening temperature of the polymer (C) and pressed together. In direct tabletting with subsequent exposure to heat, the formed tablets are briefly heated at least to the softening temperature (glass transition temperature, melting temperature; sintering temperature) of component (C) and cooled again. In direct tabletting with preceding exposure to heat, the material to be pressed is heated immediately prior to tabletting at least to the softening temperature of component (C) and then pressed.

[0068] The resultant mixture of components (A), (B), (C) and optionally (D) and the optionally present components (a) to (f) may also first be granulated and then be formed with preceding, simultaneous, or subsequent exposure to heat to yield the dosage form according to the invention.

[0069] In a further preferred embodiment, the dosage form according to the invention assumes the form of a tablet, a capsule or is in the form of an oral osmotic therapeutic system (OROS), preferably if at least one further abuse-preventing component (a)-(f) is also present.

[0070] If components (c) and/or (d) and/or (f) are present in the dosage form according to the invention, care must be taken to ensure that they are formulated in such a manner or are present in such a low dose that, when correctly administered, the dosage form is able to bring about virtually no effect which impairs the patient or the efficacy of the active ingredient.

[0071] If the dosage form according to the invention contains component (d) and/or (f), the dosage must be selected such that, when correctly orally administered, no negative effect is caused. If, however, the intended dosage of the dosage form is exceeded inadvertently, in particular by children, or in the event of abuse, nausea or an inclination to vomit or a bad flavour are produced. The particular quantity of component (d) and/or (f) which can still be tolerated by the patient in the event of correct oral administration may be determined by the person skilled in the art by simple preliminary testing.

[0072] If, however, irrespective of the fact that the dosage form according to the invention is virtually impossible to pulverise, the dosage form containing the components (c) and/or (d) and/or (f) is provided with protection, these components should preferably be used at a dosage which is sufficiently high that, when abusively administered, they bring about an intense negative effect on the abuser. This is preferably achieved by spatial separation of at least the active ingredient or active ingredients from components (c) and/or (d) and/or (f), wherein the active ingredient or active ingredients is/are present in at least one subunit (X) and components (c) and/or (d) and/or (f) is/are present in at least one subunit (Y), and wherein, when the dosage form is correctly administered, components (c), (d) and (f) do not exert their effect on taking and/or in the body and the remaining components of the formulation, in particular component (C), are identical.

[0073] If the dosage form according to the invention comprises at least 2 of components (c) and (d) or (f), these may each be present in the same or different subunits (Y). Preferably, when present, all the components (c) and (d) and (f) are present in one and the same subunit (Y).

[0074] For the purposes of the present invention, subunits are solid formulations, which in each case, apart from conventional auxiliary substances known to the person skilled in the art, contain the active ingredient(s), at least one polymer (C) and optionally at least one of the optionally present components (a) and/or (b) and/or (e) or in each case at least one polymer (C) and the antagonist(s) and/or emetic(s) and/or component (e) and/or component (f) and optionally at least one of the optionally present components (a) and/or (b). Care must here be taken to ensure that each of the subunits is formulated in accordance with the above-stated process.

[0075] One substantial advantage of the separated formulation of active ingredients from components (c) or (d) or (f) in subunits (X) and (Y) of the dosage form according to the invention is that, when correctly administered, components (c) and/or (d) and/or (f) are hardly released on taking and/or in the body or are released in such small quantities that they exert no effect which impairs the patient or therapeutic success or, on passing through the patient's body, they are only liberated in locations where they cannot be sufficiently absorbed to be effective. When the dosage form is correctly administered, hardly any of components (c) and/or (d) and/or (f) is released into the patient's body or they go unnoticed by the patient.

[0076] The person skilled in the art will understand that the above-stated conditions may vary as a function of the particular components (c), (d) and/or (f) used and of the formulation of the subunits or the dosage form. The optimum formulation for the particular dosage form may be determined by simple preliminary testing. What is vital is that each subunit contains the polymer (C) and has been formulated in the stated manner.

[0077] Should, contrary to expectations, the abuser succeed in comminuting such a dosage form according to the invention, which comprises components (c) and/or (e) and/or (d) and/or (f) in subunits (Y), for the purpose of abusing the active ingredient and obtain a powder which is extracted with a suitable extracting agent, not only the active ingredient but also the particular component (c) and/or (e) and/or

(f) and/or (d) will be obtained in a form in which it cannot readily be separated from the active ingredient, such that when the dosage form which has been tampered with is administered, in particular by oral and/or parenteral administration, it will exert its effect on taking and/or in the body combined with an additional negative effect on the abuser corresponding to component (c) and/or (d) and/or (f) or, when the attempt is made to extract the active ingredient, the coloration will act as a deterrent and so prevent abuse of the dosage form.

[0078] A dosage form according to the invention, in which the active ingredient or active ingredients is/are spatially separated from components (c), (d) and/or (e), preferably by formulation in different subunits, may be formulated in many different ways, wherein the corresponding subunits may each be present in the dosage form according to the invention in any desired spatial arrangement relative to one another, provided that the above-stated conditions for the release of components (c) and/or (d) are fulfilled.

[0079] The person skilled in the art will understand that component(s) (a) and/or (b) which are optionally also present may preferably be formulated in the dosage form according to the invention both in the particular subunits (X) and (Y) and in the form of independent subunits corresponding to subunits (X) and (Y), provided that neither the abuse-proofing nor the active ingredient release in the event of correct administration is impaired by the nature of the formulation and the polymer (C) is included in the formulation and formulation is carried out in accordance with the above-stated process.

[0080] In a preferred embodiment of the dosage form according to the invention, subunits (X) and (Y) are present in multiparticulate form, wherein microtablets, microcapsules, micropellets, granules, spheroids, beads or pellets are preferred and the same form, i.e. shape, is selected for both subunit (X) and subunit (Y), such that it is not possible to separate subunits (X) from (Y) by mechanical selection. The multiparticulate forms are preferably of a size in the range from 0.1 to 3 mm, preferably of 0.5 to 2 mm.

[0081] The subunits (X) and (Y) in multiparticulate form may also preferably be packaged in a capsule or be pressed into a tablet, wherein the final formulation in each case proceeds in such a manner that the subunits (X) and (Y) are also retained in the resultant dosage form.

[0082] The multiparticulate subunits (X) and (Y) of identical shape should also not be visually distinguishable from one another so that the abuser cannot separate them from one another by simple sorting. This may, for example, be achieved by the application of identical coatings which, apart from this disguising function, may also incorporate further functions, such as, for example, controlled release of one or more active ingredients or provision of a finish resistant to gastric juices on the particular subunits.

[0083] In a further preferred embodiment of the present invention, subunits (X) and (Y) are in each case arranged in layers relative to one another.

[0084] The layered subunits (X) and (Y) are preferably arranged for this purpose vertically or horizontally relative to one another in the dosage form according to the invention, wherein in each case one or more layered subunits (X) and one or more layered subunits (Y) may be present in the

dosage form, such that, apart from the preferred layer sequences (X)-(Y) or (X)-(Y)-(X), any desired other layer sequences may be considered, optionally in combination with layers containing components (a) and/or (b).

[0085] Another preferred dosage form according to the invention is one in which subunit (Y) forms a core which is completely enclosed by subunit (X), wherein a separation layer (Z) may be present between said layers. Such a structure is preferably also suitable for the above-stated multiparticulate forms, wherein both subunits (X) and (Y) and an optionally present separation layer (Z), which must satisfy the hardness requirement according to the invention, are formulated in one and the same multiparticulate form. In a further preferred embodiment of the dosage form according to the invention, the subunit (X) forms a core, which is enclosed by subunit (Y), wherein the latter comprises at least one channel which leads from the core to the surface of the dosage form.

[0086] The dosage form according to the invention may comprise, between one layer of the subunit (X) and one layer of the subunit (Y), in each case one or more, preferably one, optionally swellable separation layer (Z) which serves to separate subunit (X) spatially from (Y).

[0087] If the dosage form according to the invention comprises the layered subunits (X) and (Y) and an optionally present separation layer (Z) in an at least partially vertical or horizontal arrangement, the dosage form preferably takes the form of a tablet, a coextrudate or a laminate.

[0088] In one particularly preferred embodiment, the entirety of the free surface of subunit (Y) and optionally at least part of the free surface of subunit(s) (X) and optionally at least part of the free surface of the optionally present separation layer(s) (Z) may be coated with at least one barrier layer (Z') which prevents release of component (c) and/or (e) and/or (d) and/or (f). The barrier layer (Z') must also fulfil the hardness conditions according to the invention

[0089] Another particularly preferred embodiment of the dosage form according to the invention comprises a vertical or horizontal arrangement of the layers of subunits (X) and (Y) and at least one push layer (p) arranged therebetween, and optionally a separation layer (Z), in which dosage form the entirety of the free surface of layer structure consisting of subunits (X) and (Y), the push layer and the optionally present separation layer (Z) is provided with a semipermeable coating (E), which is permeable to a release medium, i.e. conventionally a physiological liquid, but substantially impermeable to the active ingredient and to component (c) and/or (d) and/or (f), and wherein this coating (E) comprises at least one opening for release of the active ingredient in the area of subunit (X).

[0090] A corresponding dosage form is known to the person skilled in the art, for example under the name oral osmotic therapeutic system (OROS), as are suitable materials and methods for the production thereof, inter alia from U.S. Pat. No. 4,612,008, U.S. Pat. No. 4,765,989 and U.S. Pat. No. 4,783,337. The corresponding descriptions are hereby introduced as a reference and are deemed to be part of the disclosure.

[0091] In a further preferred embodiment, the subunit (X) of the dosage form according to the invention is in the form

of a tablet, the edge face of which and optionally one of the two main faces is covered with a barrier layer (Z') containing component (c) and/or (d) and/or (f).

[0092] The person skilled in the art will understand that the auxiliary substances of the subunit(s) (X) or (Y) and of the optionally present separation layer(s) (Z) and/or of the barrier layer(s) (Z') used in formulating the dosage form according to the invention will vary as a function of the arrangement thereof in the dosage form according to the invention, the mode of administration and as a function of the particular active ingredient of the optionally present components (a) and/or (b) and/or (e) and of component (c) and/or (d) and/or (f). The materials which have the requisite properties are in each case known per se to the person skilled in the art.

[0093] If release of component (c) and/or (d) and/or (f) from subunit (Y) of the dosage form according to the invention is prevented with the assistance of a cover, preferably a barrier layer, the subunit may consist of conventional materials known to the person skilled in the art, providing that it contains at least one polymer (C) to fulfil the hardness condition of the dosage form according to the invention.

[0094] If a corresponding barrier layer (Z') is not provided to prevent release of component (c) and/or (d) and/or (f), the materials of the subunits should be selected such that release of the particular component (c) and/or (d) from subunit (Y) is virtually ruled out. The materials which are stated below to be suitable for production of the barrier layer may preferably be used for this purpose. The materials for the separation layer and/or barrier layer must contain at least one polymer (C) in order to fulfil the hardness conditions.

[0095] Preferred materials are those which are selected from the group consisting of alkylcelluloses, hydroxyalkylcelluloses, glucans, scleroglucans, mannans, xanthans, copolymers of poly[bis(p-carboxyphenoxy)propane and sebacic acid, preferably in a molar ratio of 20:80 (commercially available under the name Polifeprosan 20®), carboxymethylcelluloses, cellulose ethers, cellulose esters, nitrocelluloses, polymers based on (meth)acrylic acid and the esters thereof, polyamides, polycarbonates, polyalkylenes, polyalkylene glycols, polyalkylene oxides, polyalkylene terephthalates, polyvinyl alcohols, polyvinyl ethers, polyvinyl esters, halogenated polyvinyls, polyglycolides, polysiloxanes and polyurethanes and the copolymers thereof.

[0096] Particularly suitable materials may be selected from the group consisting of methylcellulose, ethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxybutylmethylcellulose, cellulose acetate, cellulose propionate (of low, medium or high molecular weight), cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, carboxymethylcellulose, cellulose triacetate, sodium cellulose sulfate, polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polyisobutyl methacrylate, polyhexyl methacrylate, polyisodecyl methacrylate, polylauryl methacrylate, polyphenyl methacrylate, polymethyl acrylate, polyisopropyl acrylate, polyisobutyl acrylate, polyoctadecyl acrylate, polyethylene, low density polyethylene, high density polyethylene, polypropylene, polyethylene glycol, polyethylene oxide, polyethylene terephthalate, polyvinyl alcohol, polyvinyl isobutyl ether, polyvinyl acetate and polyvinyl chloride.

[0097] Particularly suitable copolymers may be selected from the group consisting of copolymers of butyl methacrylate and isobutyl methacrylate, copolymers of methyl vinyl ether and maleic acid with high molecular weight, copolymers of methyl vinyl ether and maleic acid monoethyl ester, copolymers of methyl vinyl ether and maleic anhydride and copolymers of vinyl alcohol and vinyl acetate.

[0098] Further materials which are particularly suitable for formulating the barrier layer are starch-filled polycaprolactone (WO98/20073), aliphatic polyesteramides (DE 19 753 534 A1, DE 19 800 698 A1, EP 0 820 698 A1), aliphatic and aromatic polyester urethanes (DE 19822979), polyhydroxyalkanoates, in particular polyhydroxybutyrates, polyhydroxyvalerates, casein (DE 4 309 528), polylactides and copolylactides (EP 0 980 894 A1). The corresponding descriptions are hereby introduced as a reference and are deemed to be part of the disclosure.

[0099] The above-stated materials may optionally be blended with further conventional auxiliary substances known to the person skilled in the art, preferably selected from the group consisting of glyceryl monostearate, semi-synthetic triglyceride derivatives, semi-synthetic glycerides, hydrogenated castor oil, glyceryl palmitostearate, glyceryl behenate, polyvinylpyrrolidone, gelatine, magnesium stearate, stearic acid, sodium stearate, talcum, sodium benzoate, boric acid and colloidal silica, fatty acids, substituted triglycerides, glycerides, polyoxyalkylene glycols and the derivatives thereof.

[0100] If the dosage form according to the invention comprises a separation layer (Z'), said layer, like the uncovered subunit (Y), may preferably consist of the above-stated materials described for the barrier layer. The person skilled in the art will understand that release of the active ingredient or of component (c) and/or (d) from the particular subunit may be controlled by the thickness of the separation layer.

[0101] The dosage form according to the invention may comprise one or more active ingredients at least partially in controlled release form, wherein controlled release may be achieved with the assistance of conventional materials and methods known to the person skilled in the art, for example by embedding the active ingredient in a controlled release matrix or by the application of one or more controlled release coatings. Active ingredient release must, however, be controlled such that the above-stated conditions are fulfilled in each case, for example that, in the event of correct administration of the dosage form, the active ingredient or active ingredients are virtually completely released before the optionally present component (c) and/or (d) can exert an impairing effect.

[0102] Controlled release from the dosage form according to the invention is preferably achieved by embedding the active ingredient in a matrix. The auxiliary substances acting as matrix materials control active ingredient release. Matrix materials may, for example, be hydrophilic, gel-forming materials, from which active ingredient release proceeds mainly by diffusion, or hydrophobic materials, from which active ingredient release proceeds mainly by diffusion from the pores in the matrix.

[0103] Physiologically acceptable, hydrophobic materials which are known to the person skilled in the art may be used as matrix materials. Polymers, particularly preferably cellu-

lose ethers, cellulose esters and/or acrylic resins are preferably used as hydrophilic matrix materials. Ethylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, hydroxypropylcellulose, hydroxymethylcellulose, poly(meth)acrylic acid and/or the derivatives thereof, such as the salts, amides or esters thereof are very particularly preferably used as matrix materials.

[0104] Matrix materials prepared from hydrophobic materials, such as hydrophobic polymers, waxes, fats, long-chain fatty acids, fatty alcohols or corresponding esters or ethers or mixtures thereof are also preferred. Mono- or diglycerides of C12-C30 fatty acids and/or C12-C30 fatty alcohols and/or waxes or mixtures thereof are particularly preferably used as hydrophobic materials.

[0105] It is also possible to use mixtures of the abovestated hydrophilic and hydrophobic materials as matrix materials.

[0106] Component (C) and the optionally present component (D), which serve to achieve the breaking strength of at least 500 N which is necessary according to the invention may furthermore also optionally serve as additional matrix materials.

[0107] If the dosage form according to the invention is intended for oral administration, it may also preferably comprise a coating which is resistant to gastric juices and dissolves as a function of the pH value of the release environment. By means of this coating, it is possible to ensure that the dosage form according to the invention passes through the stomach undissolved and the active ingredient is only released in the intestines. The coating which is resistant to gastric juices preferably dissolves at a pH value of between 5 and 7.5.

[0108] Corresponding materials and methods for the controlled release of active ingredients and for the application of coatings which are resistant to gastric juices are known to the person skilled in the art, for example from "Coated Pharmaceutical Dosage Forms—Fundamentals, Manufacturing Techniques, Biopharmaceutical Aspects, Test Methods and Raw Materials" by Kurt H. Bauer, K. Lehmann, Hermann P. Osterwald, Rothgang, Gerhart, 1st edition, 1998, Medpharm Scientific Publishers. The corresponding literature description is hereby introduced as a reference and is deemed to be part of the disclosure.

[0109] Method for Determining Breaking Strength

[0110] A) In order to verify whether a polymer may be used as component (C), the polymer is pressed to form a tablet with a diameter of 10 mm and a height of 5 mm using a force of 150 N at a temperature which at least corresponds to the softening point of the polymer and is determined with the assistance of a DSC diagram of the polymer. Using tablets produced in this manner, breaking strength is determined with the apparatus described below in accordance with the method for determining the breaking strength of tablets published in the European Pharmacopoeia 1997, page 143-144, method no. 2.9.8. The apparatus used for the measurement is a series 3300 universal tester, single column benchtop model no. 3345 from Instron®, Canton, Mass., USA. The clamping tool used is a pressure piston with a diameter of 25 mm, which can be subjected to a load of up to 1 kN (item no. 2501-3 from Instron®).

[0111] An Instron® universal tester, single column benchtop model no. 5543, with the above-stated clamping tool may also be used to carry out the measurement.

[0112] The tablets deemed to be resistant to breaking under a specific load include not only those which have not broken but also those which may have suffered plastic deformation under the action of the force.

[0113] Providing that the dosage form is in tablet form, breaking strength may be determined using the same measurement method.

[0114] The following Examples illustrate the invention purely by way of example and without restricting the general concept of the invention.

EXAMPLES

[0115] Tramadol hydrochloride was used as the active ingredient in a series of Examples. Tramadol hydrochloride was used, despite tramadol not being an active ingredient which conventionally has abuse potential, because it is not governed by German narcotics legislation, so simplifying the experimental work. Tramadol is moreover a member of the opioid class with excellent water solubility.

Example 1

[0116]

Components	Per tablet	Complete batch
Tramadol hydrochloride Polyethylene oxide, NF, MFI (190° C. at 21.6 kg/10 min) <0.5 g MW 7 000 000 (Polyox WSR 303, Dow Chemicals)	100 mg 200 mg	100 g 200 g
Total weight	300 mg	300 g

[0117] Tramadol hydrochloride and polyethylene oxide powder were mixed in a free-fall mixer. A tabletting tool with top punch, bottom punch and die for tablets with a diameter of 10 mm and a radius of curvature of 8 mm was heated to 80° C. in a heating cabinet. 300 mg portions of the powder mixture were pressed with the heated tool, wherein pressure was maintained for at least 15 seconds by clamping the tabletting tool in a vice.

[0118] The breaking strength of the tablets was determined with the stated apparatus in accordance with the stated method. The tablets did not break when exposed to a force of 500 N.

[0119] The tablet could not be comminuted using a hammer, nor with the assistance of a mortar and pestle.

[0120] In vitro release of the active ingredient from the preparation was determined in a paddle stirrer apparatus in accordance with Pharm. Eur. The temperature of the release medium was 37° C. and the rotational speed of the stirrer 75 min⁻¹. At the beginning of the investigation, each tablet was placed in a 600 ml portion of artificial gastric juice, pH 1.2. After 30 minutes, the pH value was increased to 2.3 by

addition of alkali solution, after a further 90 minutes to pH 6.5 and after a further 60 minutes to pH 7.2. The released quantity of active ingredient present in the dissolution medium at each point in time was determined by spectrophotometry.

Time	Released quantity	
30 min	15%	
240 min	52%	
480 min	80%	
720 min	99%	

Example 2

[0121] 300 mg portions of the powder mixture from Example 1 were heated to 80° C. and in placed in the die of the tabletting tool. Pressing was then performed. The tablet exhibits the same properties such as the tablet in Example 1.

Example 3

[0122]

Raw material	Per tablet	Complete batch
Tramadol hydrochloride Polyethylene oxide, NF, MW 7 000 000 (Polyox WSR 303, Dow Chemicals)	50 mg 100 mg	100 g 200 g
Total weight	150 mg	300 g

[0123] Tramadol hydrochloride and the above-stated components were mixed in a free-fall mixer. A tabletting tool with top punch, bottom punch and die for tablets with a diameter of 7 mm was heated to 80° C. in a heating cabinet. 150 mg portions of the powder mixture were pressed with the heated tool, wherein pressure was maintained for at least 15 seconds by clamping the tabletting tool in a vice.

[0124] The breaking strength of the tablets was determined with the stated apparatus in accordance with the stated method. The tablets did not break when exposed to a force of 500 N.

[0125] In vitro release of the active ingredient was determined as in Example 1 and was:

Time	Released quantity	
30 min 240 min 480 min 720 min	15% 62% 88% 99%	

Example 4

[0126]

Raw material	Per tablet	Complete batch
Tramadol hydrochloride	100 mg	100 g
Polyethylene oxide, NF, MW 7 000 000 (Polyox WSR 303, Dow Chemicals)	180 mg	180 g
Xanthan, NF	20 mg	20 g
Total weight	300 mg	300 g

[0127] Tramadol hydrochloride, xanthan and polyethylene oxide were mixed in a free-fall mixer. A tabletting tool with top punch, bottom punch and die for tablets with a diameter of 10 mm and a radius of curvature of 8 mm was heated to 80° C. in a heating cabinet. 300 mg portions of the powder mixture were pressed with the heated tool, wherein pressure was maintained for at least 15 seconds by clamping the tabletting tool in a vice.

[0128] The breaking strength of the tablets was determined with the stated apparatus in accordance with the stated method. The tablets did not break when exposed to a force of 500 N. The tablets did suffer a little plastic deformation.

[0129] In vitro release of the active ingredient was determined as in Example 1 and was:

Time	Released quantity	
30 min 240 min	14% 54%	
480 min 720 min	81% 99%	

[0130] The tablets could be cut up with a knife into pieces of an edge length of as small as approx. 2 mm. No further comminution proceeding as far as pulverisation was possible. When the pieces are combined with water, a highly viscous gel is formed. Only with great difficulty could the gel be pressed through a 0.9 mm injection cannula. When the gel was injected into water, the gel did not spontaneously mix with water, but remained visually distinguishable.

Example 5

[0131]

Raw material	Per tablet	Complete batch
Tramadol hydrochloride Polyethylene oxide, NF, MW 7 000 000 (Polyox WSR 303, Dow Chemicals)	50 mg 90 mg	100 g 180 g
Xanthan, NF	10 mg	
Total weight	300 mg	300 g

[0132] Tramadol hydrochloride, xanthan and polyethylene oxide were mixed in a free-fall mixer. A tabletting tool with a top punch, bottom punch and die for oblong tablets 10 mm in length and 5 mm in width was heated to 90° C. in a heating cabinet. 150 mg portions of the powder mixture were pressed with the heated tool, wherein pressure was maintained for at least 15 seconds by clamping the tabletting tool in a vice.

[0133] The breaking strength of the tablets was determined with the stated apparatus in accordance with the stated method. The tablets did not break when exposed to a force of 500 N. The tablets did suffer a little plastic deformation.

[0134] In vitro release of the active ingredient was determined as in Example 1 and was:

Time	Released quantity	
30 min 120 min 240 min 360 min 480 min	22% 50% 80% 90% 99%	

[0135] The tablets could be cut up into pieces of an edge length of as small as approx. 2 mm, but could not be pulverised. When the pieces are combined with water, a highly viscous gel is formed. Only with great difficulty could the gel be pressed through a 0.9 mm injection cannula. When the gel was injected into water, the gel did not spontaneously mix with water, but remained visually distinguishable.

Example 6

[0136] A tablet with the following composition was produced as described in Example 1:

Components	Per tablet	Per batch
Oxycodone hydrochloride Xanthan, NF Polyethylene oxide, NF, MFI (190° C. at 21.6 kg/10 min) <0.5 g MW 7 000 000 (Polyox WSR 303, Dow Chemicals)	20.0 mg 20.0 mg 110.0 mg	0.240 g 0.240 g 1.320 g
Total weight	150.0 mg	1.800 g

[0137] Release of the active ingredient was determined as follows:

[0138] In vitro release of the active ingredient from the preparation was determined in a paddle stirrer apparatus in accordance with Pharm. Eur. The temperature of the release medium was 37° C. and the rotational speed 75 rpm. The phosphate buffer, pH 6.8, described in DSP served as the release medium. The quantity of active ingredient present in the solvent at the particular time of testing was determined by spectrophotometry.

Time	Mean	
0 min	0%	
30 min	17%	
240 min	61%	
480 min	90%	
720 min	101.1%	

- [0139] The breaking strength of the tablets was determined with the stated apparatus in accordance with the stated method. The tablets did not break when exposed to a force of 500 N.
- [0140] The tablets could be cut up into pieces of an edge length of as small as approx. 2 mm, but could not be pulverised. When the pieces are combined with water, a highly viscous gel is formed. Only with great difficulty could the gel be pressed through a 0.9 mm injection cannula. When the gel was injected into water, the gel did not spontaneously mix with water, but remained visually distinguishable.
- 1. An abuse-proofed, thermoformed dosage form, characterised in that, in addition to one or more active ingredients with abuse potential (a) optionally together with physiologically acceptable auxiliary substances (b), it contains at least one synthetic or natural polymer (c) and optionally at least one wax (d), wherein component (c) exhibits a breaking strength of at least 500 N.
- 2. A dosage form according to claim 1, characterised in that it is in the form of a tablet.
- 3. A dosage form according to claim 1, characterised in that it is in multiparticulate form, preferably in the form of microtablets, micropellets, granules, spheroids, beads or pellets, optionally pressed into tablets or packaged in capsules.
- 4. A dosage form according to claim 1, characterised in that the polymer (C) used is at least one polymer selected from the group consisting of polyethylene oxide, polymethylene oxide, polypropylene oxide, polypropylene, polyvinyl chloride, polycarbonate, polystyrene, polyacrylate, copolymers and the mixtures thereof, preferably polyethylene oxide.
- **5**. A dosage form according to claim 1, characterised in that the polymer (C) has a molecular weight of at least 0.5 million according to Theological measurements.
- **6**. A dosage form according to claim 5, characterised in that the molecular weight is 1-15 million.
- 7. A dosage form according to claim 1, characterised in that the wax (D) is at least one
 - natural, semi-synthetic or synthetic wax with a softening point of at least 60° C.
- **8.** A dosage form according to claim 7, characterised in that the wax (D) is carnauba wax or beeswax.
- 9. A dosage form according to claim 1, characterised in that the component(s) (C) is/are present in quantities such that the dosage form has a breaking strength of at least 500 N.
- 10. A dosage form according to claim 1, characterised in that the active ingredient (A) is at least one active ingredient selected from the group consisting of opiates, opioids, tranquillisers, stimulants, barbiturates and further narcotics.

- 11. A dosage form according claim 1, characterised in that it additionally comprises at least one of the following components a)-f):
 - (a) at least one substance which irritates the nasal passages and/or pharynx,
 - (b) at least one viscosity-increasing agent, which, with the assistance of a necessary minimum quantity of an aqueous liquid, forms a gel with the extract obtained from the dosage form, which gel preferably remains visually distinguishable when introduced into a further quantity of an aqueous liquid,
 - c) at least one antagonist for the active ingredient or active ingredients with abuse potential
 - (d) at least one emetic,
 - (e) at least one dye as an aversive agent,
 - (f) at least one bitter substance.
- 12. A dosage form according to claim 11, characterised in that the component (a) irritant substance causes burning, itching, an urge to sneeze, increased formation of secretions or a combination of at least two of these stimuli.
- 13. A dosage form according to claim 1, characterised in that the component (a) irritant substance is based on one or more constituents of at least one hot substance drug.
- 14. A dosage form according to claim 13, characterised in that the hot substance drug is at least one drug selected from the group consisting of Allii sativi bulbus (garlic), Asari rhizoma cum herba (Asarum root and leaves), Calami rhizoma (calamus root), Capsici fructus (capsicum), Capsici fructus acer (cayenne pepper), Curcumae longae rhizoma (turmeric root), Curcumae xanthorrhizae rhizoma (Javanese turmeric root), Galangae rhizoma (galangal root), Myristicae semen (nutmeg), Piperis nigri fructus (pepper), Sinapis albae semen (erucae/white mustard seed), Sinapis nigri semen (black mustard seed), Zedoariae rhizoma (zedoary root) and Zingiberis rhizoma (ginger root), particularly preferably at least one drug selected from the group consisting of Capsici fructus (capsicum), Capsici fructus acer (cayenne pepper) and Piperis nigri fructus (pepper).
- 15. A dosage form according to claim 13, characterised in that the constituent of the hot substance drug is an o-methoxy(methyl)phenol compound, an acid amide compound, a mustard oil or a sulfide compound or is derived from such a compound.
- 16. A dosage form according to claim 13, characterised in that the constituent of the hot substance drug is at least one constituent selected from the group consisting of myristicin, elemicin, isoeugenol, t3-asarone, safrole, gingerols, xanthorrhizol, capsaicinoids, preferably capsaicin, piperine, preferably trans-piperine, glucosinolates, preferably based on non-volatile mustard oils, particularly preferably based on p-hydroxybenzyl mustard oil, methylmercapto mustard oil, methylsulfonyl mustard oil and a compound derived from these constituents.
- 17. A dosage form according to claim 11, characterised in that component (b) is at least one viscosity-increasing agent selected from the group consisting of microcrystalline cellulose with 11 wt. % carboxymethylcellulose sodium (Avicel® RC 591), carboxymethylcellulose sodium (Blanose®, CMC-Na C300P®, Frimulsion BLC-5®, Tylose C300 P®), polyacrylic acid (Carbopol® 980 NF, Carbopol® 981), locust bean flour (Cesagum® LA-200, Cesagum®

LID/150, Cesagum® LN-1), citrus pectin (Cesapectin® HM Medium Rapid Set), waxy maize starch (C*Gel 04201®), sodium alginate Frimulsion ALG (E401)®), guar flour (Frimulsion BM®, Polygum 26/1-75®), iota carrageen (Frimulsion D021®), karaya gum, gellan gum (Kelcogel F®, Kelcogel LT100®), galactomannan (Meyprogat 150®), tara bean flour (Polygum 43/i®), propylene glycol alginate (Protanal-Ester SD-LB®), sodium hyaluronate, apple pectin, pectin from lemon peel, sodium hyaluronate, tragacanth, tara gum (Vidogum SP 200®), fermented polysaccharide welan gum (K1A96) and xanthan gum (Xantural 180®).

- 18. A dosage form according to claim 11, characterised in that component (c) is at least one opiate or opioid antagonist selected from the group consisting of naloxone, naltrexone, nalmefene, nalid, nalmexone, nalorphine, naluphine and a corresponding physiologically acceptable compound, in particular a base, salt and solvate.
- 19. A dosage form according to claim 11, characterised in that the component (c) used is at least one neuroleptic as a stimulant antagonist, preferably selected from the group consisting of haloperidol, promethazine, fluphenazine, perphenazine, levomepromazine, thioridazine, perazine, chiorpromazine, chlorprothixine, zuclopentixol, fluphentixol, prothipendyl, zotepine, benperidol, pipamperone, melperone and bromperidol.
- 20. A dosage form according to claim 11, characterised in that the component (d) emetic is based on one or more constituents of radix ipecacuanha (ipecac root), preferably on the constituent emetine, and/or is apomorphine.
- 21. A dosage form according to claim 11, characterised in that component (e) is at least one physiologically acceptable dye.
- 22. A dosage form according to claim 11, characterised in that component (f) is at least one bitter substance selected from the group consisting of aromatic oils, preferably peppermint oil, eucalyptus oil, bitter almond oil, menthol and mixtures thereof, fruit aroma substances, preferably from lemons, oranges, limes, grapefruit and mixtures thereof, denatonium benzoate and mixtures thereof.

- 23. A dosage form according to claim 11, characterised in that the active ingredient or active ingredients (A) is/are spatially separated from component (c) and/or (d) and/or (f), wherein the active ingredient or active ingredients (A) is/are preferably present in at least one subunit (X) and components (c) and/or (d) and/or (f) is/are present in at least one subunit (Y), and, when the dosage form is correctly administered, components (c) and/or (d) and/or (f) from subunit (Y) do not exert their effect in the body and/or on taking.
- 24. A dosage form according to claim 1, characterised in that it contains at least one active ingredient at least partially in controlled release form.
- 25. A dosage form according to claim 24, characterised in that each of the active ingredients with abuse potential (A) is present in a controlled release matrix.
- **26.** A dosage form according to claim 25, characterised in that component (C) and/or component (D) also serve as a controlled release matrix material.
- 27. A process for the production of a dosage form according to claim 1, characterised in that
 - components (A), (B), (C) and the optionally present component (D) and the optionally present components (a) to (f) are mixed, and
 - the resultant mixture, optionally after granulation, is press-formed to yield the dosage form with
- preceding, simultaneous, or subsequent exposure to heat.
- 28. A process according to claim 27, characterised in that granulation is performed by means of a melt process.
- 29. A dosage form according claim 1 obtainable by a process wherein components (A), (B), (C) and the optionally present component (D) and the optionally present components (a) to (f) are mixed, and the resultant mixture, optionally after granulation, is press-formed to yield the dosage form with preceding, simultaneous, or subsequent exposure to heat.

* * * * *