NOMBRE: Benjamín Farías Valdés

N.ALUMNO: 17642531

IIC2213 — Lógica para Ciencias de la Computación — 1' 2021

Tarea 8

Isomorfismo entre Estructuras

Dada una estructura $\mathfrak A$ sobre un vocabulario L y con dominio finito, necesitamos construir una fórmula φ tal que cualquier estructura $\mathfrak B$ sobre L que satisfaga dicha fórmula sea necesariamente isomorfa a $\mathfrak A$. Esto significa que lo que queremos revisar con la fórmula es si la estructura $\mathfrak B$ entrega la misma información que $\mathfrak A$ (aunque su interpretación del vocabulario sea otra). Entonces, la fórmula φ debe describir completamente a la estructura $\mathfrak A$. De la estructura $\mathfrak A$ sabemos 2 cosas:

- 1. Tiene un dominio finito, es decir, |A| = n, con n un número entero definido.
- 2. Actúa sobre el vocabulario L, y por lo tanto tiene interpretaciones $R^{\mathfrak{A}}$ y $S^{\mathfrak{A}}$ tal que, según estas interpretaciones:

$$\forall a, b \in A.R(a, b) \lor \neg R(a, b)$$

 $\forall a \in A.S(a) \lor \neg S(a)$

Esto significa que para todo elemento del dominio A, la "forma" de la estructura $\mathfrak A$ está definida por la **pertenencia o NO pertenencia** de estos elementos a las relaciones R y S.

Ahora, podemos describir a $\mathfrak A$ con una fórmula que sea satisfecha cuando se cumplen las 2 condiciones descritas arriba.

La primera condición corresponde al dominio de tamaño n:

$$\gamma_1(x_1...x_n) = \bigwedge_{i \neq j} \neg (x_i = x_j)$$

$$\gamma_2(x_1...x_n) = \forall y \bigvee_i (x_i = y)$$

$$\varphi_1(x_1...x_n) = \gamma_1(x_1...x_n) \land \gamma_2(x_1...x_n)$$

La primera fórmula indica que cada una de las n variables es distinta de todas las demás, es decir, que con estas variables es posible asignar todos los elementos de un dominio de tamaño n (entrega el piso para la cantidad de elementos del dominio). La segunda fórmula indica que para cada elemento del dominio, este debe estar asignado a alguna de las n variables, es decir, que no pueden existir elementos que no estén siendo representados por una variable (entrega el techo para la cantidad de elementos). La fórmula φ_1 combina ambas restricciones, logrando representar un dominio de tamaño exactamente n, con n = |A|.

La segunda condición corresponde a la pertenencia de elementos a las relaciones R y S:

$$\epsilon_1(x_1...x_n) = \bigwedge_{(a_i,a_j)\in A,R} R(x_i,x_j)$$

$$\epsilon_2(x_1...x_n) = \bigwedge_{(a_i,a_j)\in A,(a_i,a_j)\notin R} \neg R(x_i,x_j)$$

$$\epsilon_3(x_1...x_n) = \bigwedge_{a_i\in A,S} S(x_i)$$

$$\epsilon_4(x_1...x_n) = \bigwedge_{a_i\in A,a_i\notin S} \neg S(x_i)$$

$$\varphi_2(x_1...x_n) = \epsilon_1(x_1...x_n) \land \epsilon_2(x_1...x_n) \land \epsilon_3(x_1...x_n) \land \epsilon_4(x_1...x_n)$$

Las primeras 2 fórmulas indican que para todo par de elementos (a_i, a_j) del dominio A que están en la relación R, sus variables asociadas (por medio de las fórmulas definidas para el tamaño) deben satisfacer $R(x_i, x_j)$ (y los que no están en R deben satisfacer su negación). Las siguientes 2 fórmulas representan lo mismo, pero para la relación S que es unaria. La última fórmula, φ_2 , combina todo lo anterior para representar todas las relaciones entre elementos del dominio de $\mathfrak A$ sobre L.

Juntando todas estas fórmulas, obtenemos la fórmula φ que estábamos buscando:

$$\varphi = \exists x_1 ... x_n (\varphi_1(x_1 ... x_n) \land \varphi_2(x_1 ... x_n))$$

Esta fórmula describe completamente la "forma" de $\mathfrak A$ sobre L, entendiéndose forma como el tamaño de su dominio y las relaciones entre todos sus elementos (por medio de R y S).

Queda por demostrar la siguiente doble implicancia: $\mathfrak B$ es isomorfa a $\mathfrak A\iff \mathfrak B$ satisface a φ

Se demostrarán ambas direcciones:

■ \mathfrak{B} es isomorfa a $\mathfrak{A} \longrightarrow \mathfrak{B}$ satisface a φ : Si \mathfrak{B} es isomorfa a \mathfrak{A} , entonces existe una biyección $f:A\longrightarrow B$ que mapea todos los elementos del dominio de A hacia el dominio de B, y además tiene una inversa que los devuelve desde B hacia A.

El hecho de que sea una biyección, implica que la cantidad de elementos en ambos dominios debe ser la misma (|A| = |B| = n), puesto que debe respetar la sobreyectividad y la inyectividad de la función. Entonces, la sub-fórmula φ_1 es satisfecha por \mathfrak{B} , ya que con n variables es posible asignar los valores de exactamente todos los elementos de su dominio B.

Por definición de isomorfismo, la función f mantiene todas las relaciones entre los elementos originales y los nuevos elementos resultantes, es decir, se cumple lo siguiente para la relación R:

$$\forall a, b \in A.(a, b) \in R^{\mathfrak{A}} \longrightarrow (f(a), f(b)) \in R^{\mathfrak{B}}$$

$$\forall a, b \in A.(a, b) \notin R^{\mathfrak{A}} \longrightarrow (f(a), f(b)) \notin R^{\mathfrak{B}}$$

Lo mismo ocurre para la relación S. Tenemos entonces que la sub-fórmula φ_2 es satisfecha por \mathfrak{B} , ya que existe una asignación de valores a las variables $x_1...x_n$ tal que se mantienen las mismas relaciones que los elementos del dominio de \mathfrak{A} . En concreto, esta asignación es la que le entrega el valor $f(a_i)$ a la variable x_i , donde $a_i \in A$ y $f(a_i) \in B$.

Entonces, como existe una asignación de valores para $x_1...x_n$ tal que se satisfacen las fórmulas φ_1 y φ_2 , tenemos que \mathfrak{B} satisface a φ , demostrando así la implicancia.

■ \mathfrak{B} satisface a $\varphi \longrightarrow \mathfrak{B}$ es isomorfa a \mathfrak{A} : Si \mathfrak{B} satisface a φ , entonces sabemos que existe una asignación de variables $x_1...x_n$ tal que se satisfacen las sub-fórmulas φ_1 y φ_2 .

Al satisfacer a φ_1 , tenemos que |B| = n = |A|, puesto que con las n variables fue posible **asignar** a todos los elementos del dominio de \mathfrak{B} . Luego, es posible tener una biyección $g: B \longrightarrow A$, al menos en términos de la cardinalidad de los dominios.

Al satisfacer a φ_2 , tenemos que para alguna asignación de valores $(b_1, ..., b_n) \subseteq B$ a las variables $(x_1, ..., x_n)$, se logró satisfacer $R(x_i, x_j)$ para los mismos índices (i, j) asociados a los pares $(a_i, a_j) \in A$ que estaban en $R^{\mathfrak{A}}$. Dado esto, podemos definir a la función $g: B \longrightarrow A$, con $b \in B$ y $a_i \in A$:

$$g(b) := a_i | x_i = b$$

La función g mapea los elementos $b \in B$ hacia los elementos $a_i \in A$ asociados a la variable x_i que tomó el valor de b en la fórmula φ_2 , de forma que se mantengan los pares equivalentes dentro de la relación R al cambiar de dominio (así como también para la relación S). Esta función es una biyección, puesto que i = 1, ..., n, y sabemos que para cada elemento en B existe una única variable con índice i que tomará su valor en la fórmula (por satisfacción de φ_1).

Dado que logramos encontrar una biyección $g: B \longrightarrow A$, tal que:

$$\forall (b_i, b_j) \in R^{\mathfrak{B}}.(g(b_i), g(b_j)) \in R^{\mathfrak{A}}$$

$$\forall (b_i, b_j) \notin R^{\mathfrak{B}}.(g(b_i), g(b_j)) \notin R^{\mathfrak{A}}$$

Tenemos entonces que B es isomorfa a A, demostrando así la implicancia.

Finalmente, dado que se cumple la doble implicancia, tenemos una forma de detectar estructuras isomorfas entre sí bajo el vocabulario L, siempre y cuando sean finitas.