

Prioritätenschlangen/Halden/Heaps

Prioritätenschlangen

- Einfügen, Löschen, Maximum (bzw. Minimum)
- Wir könnten Binäre Suchbäume benutzen.
- Gibt es einfachere Datenstruktur?
- Gibt es effizientere Datenstruktur?
 (Ja, aber AVL-Bäume oder andere, die nicht Teil dieser Vorlesung sind)

Anwendungen

- Ereignisgesteuerte Simulationen
- Sortieren mit Heapsort

Binäre Halden / Heaps

- Feld A[1,...,length[A]]
- Man kann Feld als vollständigen Binärbaum interpretieren
- D.h., alle Ebenen des Baums sind voll bis auf die letzte
- Zwei Attribute: length[A] und heap-size[A], heap-size ≤ length[A]

1	2	3	4	5	6
15	12	10	3	7	2

Navigation

Wurzel ist A[1]

Parent(i)

■ return Li/2」

Left(i)

• return 2i

Right(i)

Navigation

Wurzel ist A[1]

Parent(i)

1. return Li/2

Left(i)

1. return 2i

Right(i)

Navigation

Wurzel ist A[1]

Parent(i)

1. return Li/2

Left(i)

1. return 2i

Right(i)

Navigation

Wurzel ist A[1]

Parent(i)

1. return Li/2

Left(i)

1. return 2i

Right(i)

Navigation

Wurzel ist A[1]

Parent(i)

1. return Li/2

Left(i)

1. return 2i

Right(i)

Navigation

Wurzel ist A[1]

Parent(i)

1. return Li/2

Left(i)

1. return 2i

Right(i)

Heap Eigenschaft / Heap property / Heap Eigenschaft

Für jeden Knoten i außer der Wurzel gilt A[Parent(i)]≥A[i]

Die Operation Heapify(A,i)

- Voraussetzung: Die Teilarrays mit Wurzel Left(i) und Right(i) sind Heaps
- A[i] ist aber evtl. kleiner als seine Kinder
- Heapify(A,i) lässt i "absinken", so dass die Heap Eigenschaft erfüllt wird

1	2	3	4	5	6
4	12	10	3	7	2

- 1. I ← left(i)
- 2. $r \leftarrow right(i)$
- 3. if l≤heap-size[A] and A[I]>A[i] then largest ← I
- 4. else largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- 6. if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

- 1. I ← left(i)
- 2. $r \leftarrow right(i)$
- if I≤heap-size[A] and A[I]>A[i] then largest ← I
- else largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

- 1. | I ← left(i)
- 2. $r \leftarrow right(i)$
- 3. if l≤heap-size[A] and A[I]>A[i] then largest ← I
- 4. else largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

- 1. I ← left(i)
- 2. $r \leftarrow right(i)$
- 3. if l≤heap-size[A] and A[I]>A[i] then largest ← I
- 4. else largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- 6. if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

- 1. I ← left(i)
- 2. $r \leftarrow right(i)$
- 3. if I≤heap-size[A] and A[I]>A[i] then largest ← I
- 4. **else** largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- 6. if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

- 1. I ← left(i)
- 2. $r \leftarrow right(i)$
- 3. if l≤heap-size[A] and A[I]>A[i] then largest ← I
- 4. else largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- 6. if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

- 1. I ← left(i)
- 2. $r \leftarrow right(i)$
- 3. if l≤heap-size[A] and A[I]>A[i] then largest ← I
- 4. else largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- 6. if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

- I ← left(i)
- 2. $r \leftarrow right(i)$
- 3. if l≤heap-size[A] and A[I]>A[i] then largest ← I
- 4. else largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- 6. if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

- 1. I ← left(i)
- 2. $r \leftarrow right(i)$
- if I≤heap-size[A] and A[I]>A[i] then largest ← I
- else largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

Heapify(A,i)

- 1. I ← left(i)
- 2. $r \leftarrow right(i)$
- 3. if l≤heap-size[A] and A[l]>A[i] then largest ← l
- 4. **else** largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- 6. if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

- 1. I ← left(i)
- 2. $r \leftarrow right(i)$
- if I≤heap-size[A] and A[I]>A[i] then largest ← I
- **else** largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

- 1. I ← left(i)
- 2. $r \leftarrow right(i)$
- 3. if l≤heap-size[A] and A[I]>A[i] then largest ← I
- 4. else largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- 6. if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

Heapify(A,i)

- 1. I ← left(i)
- 2. $r \leftarrow right(i)$
- 3. if l≤heap-size[A] and A[I]>A[i] then largest ← I
- 4. else largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- 6. if largest≠i then A[i] ↔ A[largest]
- Heapify(A,largest)

- 1. I ← left(i)
- 2. $r \leftarrow right(i)$
- 3. if l≤heap-size[A] and A[I]>A[i] then largest ← I
- 4. **else** largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- 6. if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

- 1. I ← left(i)
- 2. $r \leftarrow right(i)$
- 3. if l≤heap-size[A] and A[I]>A[i] then largest ← I
- 4. else largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- 6. if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

Heapify(A,i)

- I ← left(i)
- 2. $r \leftarrow right(i)$
- 3. if l≤heap-size[A] and A[I]>A[i] then largest ← I
- 4. else largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- 6. if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

I=10

Heapify(A,i)

- 1. I ← left(i)
- 2. $r \leftarrow right(i)$
- 3. if l≤heap-size[A] and A[I]>A[i] then largest ← I
- else largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- 6. if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

l=10

Heapify(A,i)

- 1. I ← left(i)
- 2. $r \leftarrow right(i)$
- 3. if l≤heap-size[A] and A[l]>A[i] then largest ← l
- 4. else largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- 6. if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

I=10

Heapify(A,i)

- 1. I ← left(i)
- 2. $r \leftarrow right(i)$
- 3. if l≤heap-size[A] and A[I]>A[i] then largest ← I
- else largest ← i
- 5. | if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- 6. **if** largest≠i **then** A[i] ↔ A[largest]
- 7. Heapify(A,largest)

l=10

Heapify(A,i)

- 1. I ← left(i)
- 2. $r \leftarrow right(i)$
- 3. if l≤heap-size[A] and A[I]>A[i] then largest ← I
- else largest ← i
- 5. if r≤heap-size[A] and A[r]>A[largest] then largest ← r
- 6. if largest≠i then A[i] ↔ A[largest]
- 7. Heapify(A,largest)

1-10

Wiederholung: Baumhöhe

Definition

Die Höhe eines Knotens v in einem Baum ist die Höhe des Unterbaums von v

Beispiel

 Die Laufzeit von Heapify(A,i) ist O(h), wobei h die Höhe des zu i zugehörigen Knotens in der Baumdarstellung des Heaps ist.

Beweis

Zeige per Induktion über h, dass die Laufzeit ≤c·h ist

 Die Laufzeit von Heapify(A,i) ist O(h), wobei h die Höhe des zu i zugehörigen Knotens in der Baumdarstellung des Heaps ist.

- Zeige per Induktion über h, dass die Laufzeit ≤c·h ist
- (I.A.) h=0:
 - Z. 4: largest wird auf i gesetzt

 Die Laufzeit von Heapify(A,i) ist O(h), wobei h die Höhe des zu i zugehörigen Knotens in der Baumdarstellung des Heaps ist.

- Zeige per Induktion über h, dass die Laufzeit ≤c·h ist
- (I.A.) h=0:
 - Z. 4: largest wird auf i gesetzt
 - Z. 5: Keine Änderung.

 Die Laufzeit von Heapify(A,i) ist O(h), wobei h die Höhe des zu i zugehörigen Knotens in der Baumdarstellung des Heaps ist.

- Zeige per Induktion über h, dass die Laufzeit ≤c·h ist
- (I.A.) h=0:
 - Z. 4: largest wird auf i gesetzt
 - Z. 5: Keine Änderung.
 - Z. 6/7: Kein rekursiver Aufruf \Rightarrow Laufzeit ist c.

 Die Laufzeit von Heapify(A,i) ist O(h), wobei h die Höhe des zu i zugehörigen Knotens in der Baumdarstellung des Heaps ist.

- Zeige per Induktion über h, dass die Laufzeit ≤c·h ist
- (I.A.) h=0:
 - Z. 4: largest wird auf i gesetzt
 - Z. 5: Keine Änderung.
 - Z. 6/7: Kein rekursiver Aufruf \Rightarrow Laufzeit ist c.

 Die Laufzeit von Heapify(A,i) ist O(h), wobei h die Höhe des zu i zugehörigen Knotens in der Baumdarstellung des Heaps ist.

Beweis

(I.V.) Für Knoten der Höhe h ist die Laufzeit ch.

 Die Laufzeit von Heapify(A,i) ist O(h), wobei h die Höhe des zu i zugehörigen Knotens in der Baumdarstellung des Heaps ist.

- (I.V.) Für Knoten der Höhe h ist die Laufzeit ch.
- (I.S.) Betrachte Knoten der Höhe h+1.
 - Z. 3-5: largest wird auf i oder auf eines der Kinder von i gesetzt.
 - Z.6/7: Wenn rekursiver Aufruf durchgeführt, dann mit Kind von i

 Die Laufzeit von Heapify(A,i) ist O(h), wobei h die Höhe des zu i zugehörigen Knotens in der Baumdarstellung des Heaps ist.

- (I.V.) Für Knoten der Höhe h ist die Laufzeit ch.
- (I.S.) Betrachte Knoten der Höhe h+1.
 - Z. 3-5: largest wird auf i oder auf eines der Kinder von i gesetzt.
 - Z.6/7: Wenn rekursiver Aufruf durchgeführt, dann mit Kind von i
- Kind von i hat Höhe h; nach (I.V.) Laufzeit ch

 Die Laufzeit von Heapify(A,i) ist O(h), wobei h die Höhe des zu i zugehörigen Knotens in der Baumdarstellung des Heaps ist.

- (I.V.) Für Knoten der Höhe h ist die Laufzeit ch.
- (I.S.) Betrachte Knoten der Höhe h+1.
 - Z. 3-5: largest wird auf i oder auf eines der Kinder von i gesetzt.
 - Z.6/7: Wenn rekursiver Aufruf durchgeführt, dann mit Kind von i
- Kind von i hat Höhe h; nach (I.V.) Laufzeit ch
- Restliche Laufzeit ≤c

 Die Laufzeit von Heapify(A,i) ist O(h), wobei h die Höhe des zu i zugehörigen Knotens in der Baumdarstellung des Heaps ist.

- (I.V.) Für Knoten der Höhe h ist die Laufzeit ch.
- (I.S.) Betrachte Knoten der Höhe h+1.
 - Z. 3-5: largest wird auf i oder auf eines der Kinder von i gesetzt.
 - Z.6/7: Wenn rekursiver Aufruf durchgeführt, dann mit Kind von i
- Kind von i hat Höhe h; nach (I.V.) Laufzeit ch
- Restliche Laufzeit ≤c
- ⇒ Laufzeit maximal ch+c = c(h+1).

 Die Laufzeit von Heapify(A,i) ist O(h), wobei h die Höhe des zu i zugehörigen Knotens in der Baumdarstellung des Heaps ist.

- (I.V.) Für Knoten der Höhe h ist die Laufzeit ch.
- (I.S.) Betrachte Knoten der Höhe h+1.
 - Z. 3-5: largest wird auf i oder auf eines der Kinder von i gesetzt.
 - Z.6/7: Wenn rekursiver Aufruf durchgeführt, dann mit Kind von i
- Kind von i hat Höhe h; nach (I.V.) Laufzeit ch
- Restliche Laufzeit ≤c
- ⇒ Laufzeit maximal ch+c = c(h+1).

Satz

 Wenn die Unterbäume des rechten bzw. linken Kindes von i die Heap Eigenschaft besitzen, dann ist diese nach der Operation Heapify(A,i) für den Unterbaum von i erfüllt.

- Wenn die Unterbäume des rechten bzw. linken Kindes von i die Heap Eigenschaft besitzen, dann ist diese nach der Operation Heapify(A,i) für den Unterbaum von i erfüllt.
- Beweis
- Induktion über die H

 öhe von i.
- (I.A.) Höhe 0 oder 1: Einfaches nachprüfen
- (I.V.) Heapify erfüllt die Aussage des Satzes für Knoten i mit Höhe h.

- Wenn die Unterbäume des rechten bzw. linken Kindes von i die Heap Eigenschaft besitzen, dann ist diese nach der Operation Heapify(A,i) für den Unterbaum von i erfüllt.
- Beweis
- (I.A.) Höhe 0 oder 1: Einfaches nachprüfen
- (I.V.) Heapify erfüllt die Aussage des Satzes für Knoten i mit Höhe h.

- Wenn die Unterbäume des rechten bzw. linken Kindes von i die Heap Eigenschaft besitzen, dann ist diese nach der Operation Heapify(A,i) für den Unterbaum von i erfüllt.
- Beweis
- (I.S.) Betrachte Aufruf Heapify(A,i) für Knoten i der Höhe h+1>1, wenn Unterbäume der Kindes von i bereits Heap Eigenschaft erfüllen

- Wenn die Unterbäume des rechten bzw. linken Kindes von i die Heap Eigenschaft besitzen, dann ist diese nach der Operation Heapify(A,i) für den Unterbaum von i erfüllt.
- Beweis
- (I.S.) Betrachte Aufruf Heapify(A,i) für Knoten i der Höhe h+1>1, wenn Unterbäume der Kindes von i bereits Heap Eigenschaft erfüllen
- I und r: linke bzw. rechte Kind von i

- Wenn die Unterbäume des rechten bzw. linken Kindes von i die Heap Eigenschaft besitzen, dann ist diese nach der Operation Heapify(A,i) für den Unterbaum von i erfüllt.
- Beweis
- (I.S.) Betrachte Aufruf Heapify(A,i) für Knoten i der Höhe h+1>1, wenn Unterbäume der Kindes von i bereits Heap Eigenschaft erfüllen
- I und r: linke bzw. rechte Kind von i
- Höhe von i>1 ⇒ I und r kleiner als heap-size[A]
 ⇒ die an I und r gespeicherten Werte sind im Heap

- Wenn die Unterbäume des rechten bzw. linken Kindes von i die Heap Eigenschaft besitzen, dann ist diese nach der Operation Heapify(A,i) für den Unterbaum von i erfüllt.
- Beweis
- (I.S.) Betrachte Aufruf Heapify(A,i) für Knoten i der Höhe h+1>1, wenn Unterbäume der Kindes von i bereits Heap Eigenschaft erfüllen
- I und r: linke bzw. rechte Kind von i
- Höhe von i>1 ⇒ I und r kleiner als heap-size[A]
 ⇒ die an I und r gespeicherten Werte sind im Heap A[i], A[I] und A[r]: Werte der entsprechenden Knoten

Satz

 Wenn die Unterbäume des rechten bzw. linken Kindes von i die Heap Eigenschaft besitzen, dann ist diese nach der Operation Heapify(A,i) für den Unterbaum von i erfüllt.

- Beweis
- (I.S.) Betrachte Aufruf Heapify(A,i) für Knoten i der Höhe h+1>1, wenn Unterbäume der Kindes von i bereits Heap Eigenschaft erfüllen
- I und r: linke bzw. rechte Kind von i
- Höhe von i>1 ⇒ I und r kleiner als heap-size[A]
 ⇒ die an I und r gespeicherten Werte sind im Heap A[i], A[I] und A[r]: Werte der entsprechenden Knoten
- Z. 3-5: Heapify(A,i) speichert Index von max{A[i], A[l], A[r]} in largest

Satz

 Wenn die Unterbäume des rechten bzw. linken Kindes von i die Heap Eigenschaft besitzen, dann ist diese nach der Operation Heapify(A,i) für den Unterbaum von i erfüllt.

- (I.S.) Betrachte Aufruf Heapify(A,i) für Knoten i der Höhe h+1>1, wenn Unterbäume der Kindes von i bereits Heap Eigenschaft erfüllen
- I und r: linke bzw. rechte Kind von i
- Höhe von i>1 ⇒ I und r kleiner als heap-size[A]
 ⇒ die an I und r gespeicherten Werte sind im Heap A[i], A[I] und A[r]: Werte der entsprechenden Knoten
- Z. 3-5: Heapify(A,i) speichert Index von max{A[i], A[l], A[r]} in largest
- Maximum ist A[i]: Heap Eigenschaft ist bereits erfüllt; kein rekursiver Aufruf51

Satz

 Wenn die Unterbäume des rechten bzw. linken Kindes von i die Heap Eigenschaft besitzen, dann ist diese nach der Operation Heapify(A,i) für den Unterbaum von i erfüllt.

- (I.S.) Betrachte Aufruf Heapify(A,i) für Knoten i der Höhe h+1>1, wenn Unterbäume der Kindes von i bereits Heap Eigenschaft erfüllen
- I und r: linke bzw. rechte Kind von i
- Höhe von i>1 ⇒ I und r kleiner als heap-size[A]
 ⇒ die an I und r gespeicherten Werte sind im Heap A[i], A[I] und A[r]: Werte der entsprechenden Knoten
- Z. 3-5: Heapify(A,i) speichert Index von max{A[i], A[l], A[r]} in largest
- Maximum ist A[i]: Heap Eigenschaft ist bereits erfüllt; kein rekursiver Aufruf₅₂

- Wenn die Unterbäume des rechten bzw. linken Kindes von i die Heap Eigenschaft besitzen, dann ist diese nach der Operation Heapify(A,i) für den Unterbaum von i erfüllt.
- Beweis
- A[I] ist Maximum (A[r] analog):
- Unterbäume von I und r sind Heaps ⇒ A[I] und A[r] sind größte Elemente in ihren Unterbäumen

- Wenn die Unterbäume des rechten bzw. linken Kindes von i die Heap Eigenschaft besitzen, dann ist diese nach der Operation Heapify(A,i) für den Unterbaum von i erfüllt.
- Beweis
- A[I] ist Maximum (A[r] analog):
- Unterbäume von I und r sind Heaps ⇒ A[I] und A[r] sind größte Elemente in ihren Unterbäumen
 - A[I] ist max{A[i], A[I], A[r]} \Rightarrow A[I] ist größtes Element im Unterbaum von i

- Wenn die Unterbäume des rechten bzw. linken Kindes von i die Heap Eigenschaft besitzen, dann ist diese nach der Operation Heapify(A,i) für den Unterbaum von i erfüllt.
- Beweis
- A[I] ist Maximum (A[r] analog):
- Unterbäume von I und r sind Heaps \Rightarrow A[I] und A[r] sind größte Elemente in ihren Unterbäumen
 - A[I] ist max{A[i], A[I], A[r]} \Rightarrow A[I] ist größtes Element im Unterbaum von i
- Z. 6: A[i] wird mit A[l] getauscht
 - Z. 7: Aufruf von Heapify für Unterbaum von I; Höhe des Unterbaums ist h Nach (I.V.): Nach Aufruf hat dieser Unterbaum Heap Eigenschaft

- Wenn die Unterbäume des rechten bzw. linken Kindes von i die Heap Eigenschaft besitzen, dann ist diese nach der Operation Heapify(A,i) für den Unterbaum von i erfüllt.
- Beweis
- A[I] ist Maximum (A[r] analog):
- Unterbäume von I und r sind Heaps ⇒ A[I] und A[r] sind größte Elemente in ihren Unterbäumen
 - A[I] ist max{A[i], A[I], A[r]} \Rightarrow A[I] ist größtes Element im Unterbaum von i
- Z. 6: A[i] wird mit A[l] getauscht
 - Z. 7: Aufruf von Heapify für Unterbaum von I; Höhe des Unterbaums ist h Nach (I.V.): Nach Aufruf hat dieser Unterbaum Heap Eigenschaft
- Bei i ist Max. aller Elemente gespeichert und rechter Unterbaum erfüllt Heap Eigenschaft ⇒ Unterbaum von i ist ein Heap

- Wenn die Unterbäume des rechten bzw. linken Kindes von i die Heap Eigenschaft besitzen, dann ist diese nach der Operation Heapify(A,i) für den Unterbaum von i erfüllt.
- Beweis
- A[I] ist Maximum (A[r] analog):
- Unterbäume von I und r sind Heaps ⇒ A[I] und A[r] sind größte Elemente in ihren Unterbäumen
 - A[I] ist max{A[i], A[I], A[r]} \Rightarrow A[I] ist größtes Element im Unterbaum von i
- Z. 6: A[i] wird mit A[l] getauscht
 - Z. 7: Aufruf von Heapify für Unterbaum von I; Höhe des Unterbaums ist h Nach (I.V.): Nach Aufruf hat dieser Unterbaum Heap Eigenschaft
- Bei i ist Max. aller Elemente gespeichert und rechter Unterbaum erfüllt Heap Eigenschaft ⇒ Unterbaum von i ist ein Heap

Aufbau eines Heaps (Halde)

- Jedes Blatt ist ein Heap
- Baue Heap "von unten nach oben" mit Heapify auf

- 1. heap-size ← length[A]
- 2. **for** i $\leftarrow \lfloor length[A]/2 \rfloor$ **downto** 1 **do**
- 3. Heapify(A,i)

1	2	3	4	5	6
3	7	10	12	2	4

Aufbau eines Heaps (Halde)

- Jedes Blatt ist ein Heap
- Baue Heap "von unten nach oben" mit Heapify auf

- 1. heap-size ← length[A]
- 2. **for** $i \leftarrow Length[A]/2 \rfloor$ **downto** 1 **do**
- 3. Heapify(A,i)

1	2	3	4	5	6
3	7	10	12	2	4

Aufbau eines Heaps (Halde)

- Jedes Blatt ist ein Heap
- Baue Heap "von unten nach oben" mit Heapify auf

- 1. heap-size ← length[A]
- 2. **for** $i \leftarrow Length[A]/2 \rfloor$ **downto** 1 **do**
- 3. Heapify(A,i)

1	2	3	4	5	6
3	7	10	12	2	4
		i			

Aufbau eines Heaps (Halde)

- Jedes Blatt ist ein Heap
- Baue Heap "von unten nach oben" mit Heapify auf

- heap-size ← length[A]
- 2. **for** i ← length[A]/2 downto 1 do
- 3. Heapify(A,i)

1	2	3	4	5	6
3	7	10	12	2	4
	-	i			

Aufbau eines Heaps (Halde)

- Jedes Blatt ist ein Heap
- Baue Heap "von unten nach oben" mit Heapify auf

- 1. heap-size ← length[A]
- 2. **for** $i \leftarrow Length[A]/2 \rfloor$ **downto** 1 **do**
- 3. Heapify(A,i)

	1	2	3	4	5	6
	3	7	10	12	2	4
•		i	-			

Aufbau eines Heaps (Halde)

- Jedes Blatt ist ein Heap
- Baue Heap "von unten nach oben" mit Heapify auf

- 1. heap-size ← length[A]
- 2. **for** i ← length[A]/2 downto 1 do
- 3. Heapify(A,i)

1	2	3	4	5	6
3	12	10	7	2	4

Aufbau eines Heaps (Halde)

- Jedes Blatt ist ein Heap
- Baue Heap "von unten nach oben" mit Heapify auf

- 1. heap-size ← length[A]
- 2. **for** $i \leftarrow Length[A]/2 \rfloor$ **downto** 1 **do**
- 3. Heapify(A,i)

1	2	3	4	5	6
3	12	10	7	2	4
:					

Aufbau eines Heaps (Halde)

- Jedes Blatt ist ein Heap
- Baue Heap "von unten nach oben" mit Heapify auf

- 1. heap-size ← length[A]
- 2. **for** i ← length[A]/2 downto 1 do
- 3. Heapify(A,i)

1	2	3	4	5	6
12	7	10	3	2	4

Aufbau eines Heaps (Halde)

- Jedes Blatt ist ein Heap
- Baue Heap "von unten nach oben" mit Heapify auf

- 1. heap-size ← length[A]
- 2. **for** $i \leftarrow Length[A]/2 \rfloor$ **downto** 1 **do**
- 3. Heapify(A,i)

1	2	3	4	5	6
12	7	10	3	2	4
i					

Aufbau eines Heaps (Halde)

- Jedes Blatt ist ein Heap
- Baue Heap "von unten nach oben" mit Heapify auf

- 1. heap-size ← length[A]
- 2. **for** i \leftarrow length[A]/2 **downto** 1 **do**
- 3. Heapify(A,i)

- Mit Hilfe des Algorithmus Build-Heap kann man einen Heap in O(n) Zeit aufbauen.
- Beweis
- Korrektheit: (Inv.) Unterbäume der Knoten größer als i besitzen Heap Eigenschaft

- Mit Hilfe des Algorithmus Build-Heap kann man einen Heap in O(n) Zeit aufbauen.
- Beweis
- Korrektheit: (Inv.) Unterbäume der Knoten größer als i besitzen Heap Eigenschaft
- Gilt insbesondere für die Unterbäume der Kinder von i

- Mit Hilfe des Algorithmus Build-Heap kann man einen Heap in O(n) Zeit aufbauen.
- Beweis
- Korrektheit: (Inv.) Unterbäume der Knoten größer als i besitzen Heap Eigenschaft
- Gilt insbesondere f
 ür die Unterb
 äume der Kinder von i
- Aus vorherigen Satz folgt, dass Invariante durch Heapify aufrechterhalten wird

- Mit Hilfe des Algorithmus Build-Heap kann man einen Heap in O(n) Zeit aufbauen.
- Beweis
- Korrektheit: (Inv.) Unterbäume der Knoten größer als i besitzen Heap Eigenschaft
- Gilt insbesondere für die Unterbäume der Kinder von i
- Aus vorherigen Satz folgt, dass Invariante durch Heapify aufrechterhalten wird
- Damit gilt am Ende der Schleife die Heap Eigenschaft für die Wurzel
- ⇒ Build-Heap erzeugt Heap.

- Mit Hilfe des Algorithmus Build-Heap kann man einen Heap in O(n) Zeit aufbauen.
- Beweis
- Korrektheit: (Inv.) Unterbäume der Knoten größer als i besitzen Heap Eigenschaft
- Gilt insbesondere für die Unterbäume der Kinder von i
- Aus vorherigen Satz folgt, dass Invariante durch Heapify aufrechterhalten wird
- Damit gilt am Ende der Schleife die Heap Eigenschaft für die Wurzel
- ⇒ Build-Heap erzeugt Heap.

 Mit Hilfe des Algorithmus Build-Heap kann man einen Heap in O(n) Zeit aufbauen.

Beweis

Einfache Laufzeitanalyse: Jedes Heapify benötigt O(h) = O(log n) Laufzeit.
 Da es insgesamt O(n) Heapify Operationen gibt, ist die Laufzeit O(n log n).

- Mit Hilfe des Algorithmus Build-Heap kann man einen Heap in O(n) Zeit aufbauen.
- Beweis
- Schärfere Laufzeitanalyse:
- Beobachtung: In einem Heap mit Höhe H gibt es maximal 2⁰ Knoten mit Höhe H, 2¹ Knoten mit Höhe H-1, 2² Knoten mit Höhe H-2, usw.

- Mit Hilfe des Algorithmus Build-Heap kann man einen Heap in O(n) Zeit aufbauen.
- Beweis
- Schärfere Laufzeitanalyse:
- Beobachtung: In einem Heap mit Höhe H gibt es maximal 2⁰ Knoten mit Höhe H, 2¹ Knoten mit Höhe H-1, 2² Knoten mit Höhe H-2, usw.
- Damit ergibt sich als Gesamtlaufzeit bei n Knoten und Höhe H= log n:

$$O(H \cdot 2^{0} + (H - 1) \cdot 2^{1} + \dots) = O\left(\sum_{h=0}^{H} (h + 1) \cdot 2^{H - h}\right) = O\left(2^{H} \cdot \sum_{h=0}^{H} \frac{h + 1}{2^{h}}\right) = O\left(n \cdot \sum_{h=0}^{H} \frac{h + 1}{2^{h}}\right)$$

- Mit Hilfe des Algorithmus Build-Heap kann man einen Heap in O(n) Zeit aufbauen.
- Beweis

$$O(H \cdot 2^{0} + (H - 1) \cdot 2^{1} + ...) = O\left(\sum_{h=0}^{H} (h + 1) \cdot 2^{H - h}\right) = O\left(2^{H} \cdot \sum_{h=0}^{H} \frac{h + 1}{2^{h}}\right) = O\left(n \cdot \sum_{h=0}^{H} \frac{h + 1}{2^{h}}\right)$$

- Es gilt $\sum_{h=0}^{\infty} \frac{h+1}{2^h} = O(1)$
- Somit folgt eine Laufzeit von O(n).

- 1. **if** heap-size[A] < 1 **then** error "Kein Element vorhanden!"
- 2. $max \leftarrow A[1]$
- 3. $A[1] \leftarrow A[heap-size[A]]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)
- 6. return max

1	2	3	4	5	6
12	7	10	3	2	4

- 1. if heap-size[A] < 1 then error "Kein Element vorhanden!"
- 2. $max \leftarrow A[1]$
- 3. $A[1] \leftarrow A[heap-size[A]]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)
- 6. return max

- 1. **if** heap-size[A] < 1 **then** error "Kein Element vorhanden!"
- 2. max ← A[1]
- 3. $A[1] \leftarrow A[heap-size[A]]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)
- 6. return max

$$max = 12$$

- 1. **if** heap-size[A] < 1 **then** error "Kein Element vorhanden!"
- 2. $\max \leftarrow A[1]$
- 3. $A[1] \leftarrow A[heap-size[A]]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)
- 6. return max

$$max = 12$$

- 1. **if** heap-size[A] < 1 **then** error "Kein Element vorhanden!"
- 2. $max \leftarrow A[1]$
- 3. $A[1] \leftarrow A[heap-size[A]]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)
- 6. return max

- 1. **if** heap-size[A] < 1 **then** error "Kein Element vorhanden!"
- 2. $max \leftarrow A[1]$
- 3. $A[1] \leftarrow A[heap-size[A]]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)
- 6. **return** max

$$max = 12$$

Heap-Extract-Max(A)

- 1. **if** heap-size[A] < 1 **then** error "Kein Element vorhanden!"
- 2. $max \leftarrow A[1]$
- 3. $A[1] \leftarrow A[heap-size[A]]$
- heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)
- 6. return max

Laufzeit

O(log n)

- 1. heap-size[A] ← heap-size[A]+1
- 2. $i \leftarrow \text{heap-size}[A]$
- 3. while i>1 and A[Parent(i)] < key do
- 4. $A[i] \leftarrow A[Parent(i)]$
- 5. $i \leftarrow Parent(i)$
- 6. $A[i] \leftarrow key$

- 1. heap-size[A] ← heap-size[A]+1
- 2. $i \leftarrow \text{heap-size}[A]$
- 3. while i>1 and A[Parent(i)] < key do
- 4. A[i] ← A[Parent(i)]
- 5. $i \leftarrow Parent(i)$
- 6. $A[i] \leftarrow key$

Heap-Insert(A,11)

- heap-size[A] ← heap-size[A]+1
- 2. $i \leftarrow \text{heap-size}[A]$
- 3. while i>1 and A[Parent(i)] < key do
- 4. A[i] ← A[Parent(i)]
- 5. $i \leftarrow Parent(i)$
- 6. $A[i] \leftarrow key$

Heap-Insert(A,11)

- 1. heap-size[A] ← heap-size[A]+1
- 2. $i \leftarrow \text{heap-size}[A]$
- 3. while i>1 and A[Parent(i)] < key do
- 4. A[i] ← A[Parent(i)]
- 5. $i \leftarrow Parent(i)$
- 6. $A[i] \leftarrow key$

Heap-Insert(A,11)

- 1. heap-size[A] ← heap-size[A]+1
- 2. $i \leftarrow \text{heap-size}[A]$
- 3. while i>1 and A[Parent(i)] < key do
- 4. A[i] ← A[Parent(i)]
- 5. | i ← Parent(i)
- 6. $A[i] \leftarrow key$

Heap-Insert(A,11)

- 1. heap-size[A] ← heap-size[A]+1
- 2. $i \leftarrow \text{heap-size}[A]$
- 3. while i>1 and A[Parent(i)] < key do
- 4. A[i] ← A[Parent(i)]
- 5. $i \leftarrow Parent(i)$
- 6. $A[i] \leftarrow key$

Heap-Insert(A,11)

- 1. heap-size[A] ← heap-size[A]+1
- 2. $i \leftarrow \text{heap-size}[A]$
- 3. while i>1 and A[Parent(i)] < key do
- 4. $A[i] \leftarrow A[Parent(i)]$
- 5. i ← Parent(i)
- 6. $A[i] \leftarrow key$

Heap-Insert(A,11)

- 1. heap-size[A] ← heap-size[A]+1
- 2. $i \leftarrow \text{heap-size}[A]$
- 3. while i>1 and A[Parent(i)] < key do
- 4. A[i] ← A[Parent(i)]
- 5. $i \leftarrow Parent(i)$
- 6. $A[i] \leftarrow key$

Heap-Insert(A,11)

Heap-Insert(A,key)

- 1. heap-size[A] ← heap-size[A]+1
- 2. $i \leftarrow \text{heap-size}[A]$
- 3. while i>1 and A[Parent(i)] < key do
- 4. $A[i] \leftarrow A[Parent(i)]$
- 5. $i \leftarrow Parent(i)$
- 6. A[i] ← key

Laufzeit

O(log n)

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

- 1. Build-Heap(A)
- 2. **for** i ← length[A] **downto** 2 **do**
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

- 1. Build-Heap(A)
- 2. | for i ← length[A] downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

3

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

10

3

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

- 1. Build-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2 **do**
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

- 1. Build-Heap(A)
- 2. **for** i ← length[A] **downto** 2 **do**
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

3

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

- 1. Build-Heap(A)
- 2. **for** $i \leftarrow length[A]$ **downto** 2 **do**
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

2

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

3

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- 3. $A[1] \leftrightarrow A[i]$
- 4. heap-size[A] ← heap-size[A]-1
- 5. Heapify(A,1)

1	2	3	4	5	6
2	3	4	7	10	11

- 1. Build-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2 do
- $A[1] \leftrightarrow A[i]$ 3.
- heap-size[A] \leftarrow heap-size[A]-1

5.	Heapity(A,1)			

Laufzeit

O(n log n)

1	2	3	4	5	6
2	3	4	7	10	11

Zusammenfassung Halden (Heaps)

- Einfügen, Löschen, Maximum extrahieren in O(log n) Zeit
- Sortieren mit Hilfe von Heaps in O(n log n)
- Heapsort braucht keinen zusätzlichen Speicherplatz
- Einfache Implementierung
- Beispiel für die gelungene Kombination von einer Datenstruktur und eines Algorithmus