

Introdução a Sistemas Operacionais

Prof. Carlos A. Astudillo

castudillo@ic.unicamp.br

[™] 2^o Semestre 2023

Objetivos da aula

- Definição de um sistema operacional
 - Software que administra os recursos de um computador para seus usuários e aplicações
- Desafios SO
 - Confiabilidade, segurança, tempos de resposta, portabilidade, etc.
- Breve historia de SO
 - Como se relacionam OS X, Windows, e Linux?
- Cobriremos o Capítulo 1 de OS:P+P
 - Já começaram as leituras?

Exemplo: serviço web

- Como o servidor administra múltiplas petições simultâneas?
- Como mantemos ao cliente seguro de spyware embutido nos scripts do website?
- Como mantemos as atualizações do website consistentes?

O que é um sistema operacional?

 É o software que administra os recursos do computador para seus usuários e aplicativos

Hardware

O que é um sistema operacional?

 É o software que administra os recursos do computador para seus usuários e aplicativos

Papéis do sistema operacional

- Árbitro (compatilhamento de recursos)
 - Alocação de recursos: reserva de recursos entre usuários, e aplicativos
 - Isolamento de diferentes usuários e aplicativos (uns de outros)
 - Comunicação entre usuários e aplicativos
- Ilusionista
 - Cada aplicativo acredita que tem a máquina completa para ele
 - Número de processadores infinitos, (quase) memoria infinita, armazenamento confiável, transporte de rede confiável
- Cola
 - Bibliotecas, interfaces de usuário

Papéis do sistema operacional: Ilusionista

Máquina Virtual

Hardware

Sistemas com desafios similares aos de SO Computação em Nuvem

APP APP APP Cloud Software Server Server Server Server

Sistemas com desafios similares aos de SO

Web browsers

Sistemas com desafios similares aos de SO

Bancos de dados

Desafios de SO

- Confiabilidade
 - O sistema faz o que ele foi projetado para fazer?
 - Disponibilidade
 - Quanto tempo está o sistema trabalhando?
 - Mean time to failure (MTTF)
 - Mean time to repair (MTTR)
- Segurança
 - O sistema pode ser comprometido por um atacante?
 - Privacidade
 - Os dados são accessíveis só por usuários autorizados
- Ambos precisam de um cuidadoso projeto e codificação

Mais desafios

- Portabilidade
 - Para os programas
 - Application programming interface (API)
 - Interface abstrata de máquina
- Para o sistema operacional
 - Camada de abstração de hardware
 - E.g., Alguns SOs fornecem rotinas do kernel específicas para o hardware

Ainda mais desafios

Desempenho

- Tempo de latência ou resposta
 - Quanto tempo demora uma operação em ser completada?
- ► Throughput (taxa de transferência)
 - Quantas operações podem ser feitas por unidade de tempo?
- Overhead (sobre carga)
 - Quanto trabalho extra é realizado pelo SO?
- Justiça
 - Quão equitativo é o desempenho recebido por diferentes usuários?
- Previsibilidade
 - O que tão consistente é o rendimento no tempo?

Historia dos SO

Desempenho dos computadores no tempo

	1981	1996	2011	factor
MIPS ¹	1	300	10000	10K
MIPS/\$	\$100K	\$ 30	\$ 0.5	200K
DRAM	128 KB	128 MB	10 GB	100K
Disk	10 MB	4 GB	1TB	100K
Home Internet	9.6 Kbps	256 Kbps	5 Mbps	500
LAN network	3 Mbps (shared)	10 Mbps	1 Gbps	300
Users per machine	100	1	$\ll 1$	100+

Primeiros sistemas operacionais

Os computadores eram caros

- Um aplicativo por vez
 - ► Tinha controle total sobre o hardware
 - SO era uma biblioteca em tempo de execução
 - Os usuários faziam fila para usar o computador
- Sistemas operacionais por batch
 - Mantinham o CPU ocupado utilizando uma fila de trabalhos
 - ► SO carregaria o seguinte trabalho enquanto executava outro
 - Usuários enviavam tarefas, e esperavam, e esperavam, e . . .

Sistemas Operacionais de tempo compartilhado Computadores e pessoas são caras

- Múltiplos usuários num computador ao mesmo tempo
 - Multi programação: executa vários programas ao mesmo tempo
 - Desempenho interativo: tentar completar o trabalho de todos rapidamente
 - À medida que os computadores se tornam mais baratos, trata-se de otimizar o tempo do usuário e não o computador

Sistemas Operacionais de hoje

Computadoras são baratas

- Desktops
- Servidores (alta vazão de atendimento de requisições)
- Smartphones
- Sistemas embarcados
- Laptops
- Tablets
- Máquinas virtuais (Um SO que executa um outro SO como se fosse uma aplicação de usuário)
- Clusters de servidores

. . . .

Sistemas Operacionais do futuro

- Data centers gigantes
- Aumento do número de processadores por computadora
- Aumento do número de computadoras por usuário
- Aumento da ubiquidade e portabilidade
- Aumento da heterogeneidade do sistema
- Armazenamento de grande escala

MC504A

18

Pergunta interessante

- Como deveria um sistema operacional atribuir o tempo de processamento entre dois usuários que competem?
 - Dar CPU ao primeiro que chegou
 - Ao que precise a menor quantidade de recursos para terminar
 - Ao que precise mais recursos para terminar
 - O que acontece se precisamos atribuir memoria?
 - Ou espaço de disco?

Pontos a lembrar

- Sistema operacional: administra recursos para usuários e aplicações
- Papéis: árbitro, ilusionista, cola
- Desafios do SO
 - Confiabilidade
 - Segurança
 - Portabilidade
 - Desempenho

Livro de texto Dicas

- O texto não é sofisticado, mas tem conceitos novos
- Não vão absorver tudo de uma vez
- Leiam antes de cada aula
- Leiam despois de cada aula
- Não deixem as leituras para depois, nem para dias antes das provas