

Date:	ESPOO 28.12.2012	Page: <u>1 (34)</u> Appendices
Number: No. 1 / 1	223827A	Date of handing in: 08.11.2012 Tested by:
		Pekka Kälviäinen, Test Engineer
		Reviewed by:
		Timo Hietala, Test Engineer

SORT OF EQUIPMENT: Digital hearing aid system

MARKETING NAME:

TYPE:

MANUFACTURER:

DM90

Comfort Audio AB

CLIENT: **Comfort Audio AB**

ADDRESS: Box 154, SE-30105, Halmstad, Sweden

TELEPHONE: +46 35 260 16 00

TEST LABORATORY: Nemko Oy

FCC REG. NO. 359859 October 20, 2011 IC FILE NO. 2040F-1 November 22, 2012

SUMMARY:

In regard to the performed tests the equipment under test fulfils the requirements defined in the test specifications, see page 2 for details

The test results are valid for the tested unit only. Without a written permission of Nemko Oy it is allowed to copy this report as a whole, but not partially.

Summary of performed tests and test results

Section in CFR 47	Section in RSS-GEN or RSS-210		Result
15.247 (b)(1)	A8.4 (2)	Conducted peak output power	PASS
15.247 (d)	A8.5	Band-edge compliance of RF emissions	PASS
15.247 (d)	A8.5	Spurious RF conducted emissions	PASS
15.247 (d) 15.209	A8.5	Spurious radiated emissions	PASS
15.207	7.2.2	AC power line conducted emissions	PASS
15.247 (a)(1)	A8.1 (a)	20 dB bandwidth	PASS
15.247 (a)(1)	A8.1 (b)	Carrier frequency separation	PASS
15.247 (a)(1)(iii)	A8.1 (d)	Number of hopping frequencies	PASS
15.247 (a)/1)(iii)	A8.1 (d)	Time of occupancy	PASS

CISPR 22	Radiated emissions 30-100	00 MHz PASS,
		class B
CISPR 22	AC power line conducted e	missions PASS,
	•	class B

Explanations:

PASS The EUT passed that particular test. FAIL The EUT failed that particular test.

X The measurement was done, but there is no applicable performance criteria.

Contents

Sι	ımmar	y of performed tests and test results	2
1.	EUT a	and Accessory Information	5
	1.1	EUT description	
	1.2	EUT and accessories	5
	1.3	Additional information related to testing	5
2.	Tests	setups	6
3.	Stand	ards and measurement methods	7
4.	Test r	esults	7
	4.1	Conducted peak output power	7
		EUT operation mode	
		Test method and limit	
	4.2	Band-edge compliance of RF emissions	
		EUT operation mode	
	4.2.2	Test method and limit	9
	4.2.3	Test results	
	4.3	Spurious RF conducted emission	
		EUT operation mode Test method and limit	
		Test results	
	4.4	Spurious radiated emission	.17
		EUT operation mode	.17
		Test method and limit Test results	
		AC power line conducted emissions	
	4.5.2	EUT operation mode	.21
	4.5.3	Test results	
	4.6	20 dB bandwidth	
		EUT operation mode Test method and limit	
		Test results	
	4.7	Carrier frequency separation	.26
		EUT operation mode	.26
		Test method and limit and test results Test results	
	4.8 4.8.1	Number of hopping frequencies	
	4.8.2	Test method and limit	.28
	4.8.3	Test results	
	4.9	Time of occupancy	
		EUT operation mode Test method and limit	
		Test results	
	4.10	Duty cycle correction factor, Transmit time in 100 ms	.32
5.	List of	test equipment	.33

Test report: 223827A

6. Photographs......34

1. EUT and Accessory Information

1.1 EUT description

Digital hearing aid system

1.2 EUT and accessories

	unit	type	s/n
EUT1	Digital hearing aid system	DM90	P27
	AC mains charger	FW7600/05	1108B
	External Microphone	-	-
	Neck Loop Cable (long)	K0807	-
EUT2	Digital hearing aid system	DM90	P28
	(with temporary antenna connector)		

Operating voltages

EUT:

DM90: internal re-chargeable Li-ion Battery, 3.7V 650mAh

AC Charger: 115V 60Hz AC

1.3 Additional information related to testing

Tested Technology:	Frequency Hopping Syste	m, Bluetooth
Type of Unit	Transmitter	
Modulation:	GFSK	
Power Supply Requirement:	Nominal	3.7V
Transmit Frequency Range	2400 MHz to 2483.5 MHz	
Transmit Channels Tested:	Channel Number	Channel Frequency
		(MHz)
	2	2402
	40	2442
	78	2480

2. Test setups

Setup 1 (Conducted measurements)

The test was performed inside a shielded room. The Bluetooth simulator was used to control the EUT channel, number of EUT TX slots, enable/disable frequency hopping and modulate the TX signal with different bit patterns.

Setup 2 (Radiated measurements)

The test was performed inside a semi anechoic shielded room. For the duration of the test the EUT was placed on a non-conductive support 0.8 m high standing on the turntable. In the corner of the chamber there was a communication antenna, which was connected to the BT simulator located outside the room. The tower and turn table were remotely controlled to turn the EUT and change the antenna polarization. The measured signal was routed from the measuring antenna to the spectrum analyzer. The Bluetooth simulator was used to control the EUT channel, number of EUT TX slots, enable/disable frequency hopping and modulate the TX signal with different bit patterns.

Test report: 223827A

3. Standards and measurement methods

The test were performed in guidance of the CFR 47, FCC Rules Part 15 Subpart C, ANSI C63.4 (2003), CISPR 22 Ed. 6.0, Public notice DA 00-705, ANSI C63.10 (2009), IC standards RSS-GEN (Issue 3, December 2010) and RSS-210 (Issue 8, December 2010).

4. Test results

4.1 Conducted peak output power

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT2, setup 1	
Site name	Nemko Oy / Perkkaa	
FCC rule part	§ 15.247 (b)(1)	
Section in RSS-210	A8.4 (2)	
Date of testing	19.11.2012	
Test equipment	566, 546, 383	
Test conditions	22 °C, 31 % RH	

4.1.1 EUT operation mode

EUT operation mode	Connection, static PRBS
EUT channel	0, 40 and 78

4.1.2 Test method and limit

The measurement is made according to Public notice DA 00-705 and IC standard RSS-210.

Frequency range (MHz)	Limit (W)	Limit (dBm)
2400 - 2483.5	≤ 1.0	≤ 30

4.1.3 Test results

Channel / f (MHz)	P (dBm)	Result
0 / 2402	-12.30	PASS
40 / 2442	-10.13	PASS
78 / 2480	-9.37	PASS

4.2 Band-edge compliance of RF emissions

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT1, setup 2	
Site name	Nemko Oy / Perkkaa	
FCC rule part	§ 15.247 (d)	
Section in RSS-210	A8.5	
Date of testing	13.11.2012	
Test equipment	566, 546, 525, 564, 350	
Test conditions	22 °C, 30 % RH	
Test result	PASS	

4.2.1 EUT operation mode

EUT operation mode	Connection, static PRBS
EUT channel	Hopping,
	0 and 78

4.2.2 Test method and limit

The measurement is made according to Public notice DA 00-705 and IC standard RSS-210.

3m measurement distance

Frequency range (MHz)	Limit Average (dBµV/m)	Limit Peak (dBµV/m)
Below 2390 and above 2483.5	≤ 54	≤ 74

The measurement results were obtained as described below.

$$E[\mu V/m] = U_{RX} + A_{CABLE} + AF - G_{PREAMP}$$

Where

 U_{RX} receiver reading

A_{CABLE} attenuation of the cable

AF antenna factor

 G_{PREAMP} gain of the preamplifier

Duty Cycle correction factor(dB) -30.67 dB was used. (RFon 2.927ms/100ms)

Test report: 223827A

4.2.3 Test results

Hopping:

Below 2390 MHz:

Detector (RBW: 1MHz)	E (dBμV/m)	Result
Peak	40.92	PASS
Average	10.25	PASS

Hopping:

Above 2483.5 MHz:

Detector (RBW: 1MHz)	E (dBμV/m)	Result
Peak	53.71	PASS
Average	23.04	PASS

Channel 0:

Below 2390 MHz:

Detector (RBW: 1MHz)	E (dBμV/m)	Result
Peak	38.76	PASS
Average	8.09	PASS

Channel 78:

Above 2483.5 MHz:

Detector (RBW: 1MHz)	E (dBμV/m)	Result
Peak	40.07	PASS
Average	9.40	PASS

Figure 4. Hopping on, Band-edge compliance, low end

Figure 5. Hopping on, Band-edge compliance, high end

Figure 6. Hopping off, Channel 0, Band-edge compliance, low end

Figure 7. Hopping off, Channel 78, Band-edge compliance, high end

4.3 Spurious RF conducted emission

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT2, setup 1	
Site name	Nemko Oy / Perkkaa	
FCC rule part	§ 15.247 (d)	
Section in RSS-210	6.2.2(o), e1	
Date of testing	19.11.2012	
Test equipment	566, 559, X1	
Test conditions	22 °C, 31 % RH	

4.3.1 EUT operation mode

EUT operation mode	Connection, static PRBS
EUT channel	0, 40 and 78

4.3.2 Test method and limit

The measurement is made according to Public notice DA 00-705 and IC standard RSS-210. The device was tested from 30 MHz to the tenth harmonic of the highest fundamental frequency.

Frequency range (MHz)	Limit (dBc)
≤ 25000	≤ -20

4.3.3 Test results

Channel 0 /2402 MHz

Frequency (GHz)	P (dBc)	Result
1.61	-32.47	PASS
4.80	-38.11	PASS

Channel 40 /2442 MHz

Frequency (GHz)	P (dBc)	Result
1.63	-35.94	PASS
4.87	-35.72	PASS

Channel 78 /2480 MHz

Frequency (GHz)	P (dBc)	Result
1.65	-35.62	PASS
4.94	-40.55	PASS

Figure 8. channel 0, spurious RF conducted emission

Figure 9. channel 0, spurious RF conducted emission

Figure 10. channel 40, spurious RF conducted emission

Figure 11. channel 40, spurious RF conducted emission

Figure 12. channel 78, spurious RF conducted emission

Figure 13. channel 78, spurious RF conducted emission

4.4 Spurious radiated emission

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT1, setup 2
Site name	Nemko Oy / Perkkaa
FCC rule part	§ 15.247 (d), § 15.209
Section in RSS-210	A8.5
Date of testing	13.11.2012 and 07.12.2012
Test equipment	566, 709, 564, 559, 525, 319, 546, ,544, 393, 350, 88, 710
Test conditions	22 °C, 31 % RH

4.4.1 EUT operation mode

EUT operation mode	Connection, static PRBS
EUT channel	Channel 0, 40 and 78
EUT operation voltage	115 V / 60 Hz

4.4.2 Test method and limit

The test was performed in a semi-anechoic shielded room. The EUT was placed on a non-conductive 0.8 m high table standing on the turntable. During the test the distance from the EUT to the measuring antenna was 3 m. The excess length of the cables of the EUT were made into bundles 30-40 cm in length (see photograph 1). In order to find the maximum levels of the disturbance radiation the angle of the turntable, the height of the measuring antenna and the lay-out of the EUT cables were varied during the tests. The test was performed with the measuring antenna being both in horizontal and vertical polarizations.

Vertical and horizontal polarizations in the frequency range 30 - 1000 MHz was measured by using the peak detector. During the peak detector scan. the turntable was rotated from 0° to 360° with 30° step with the antenna heights 1.0 m and 3.0 m. The highest levels of the radiated interference field strength measured by using the quasi-peak detector were recorded.

Vertical and horizontal polarizations in the frequency range 1000 – 25000 MHz was measured by using the peak detector. During the peak detector scan. the turntable was rotated from 0° to 360° with 15° step with the antenna heights 1.0 m, 1,5m, 2.0m, 2,5m and 3.0 m. The highest levels of the radiated interference field strength measured by using the average and peak detectors were recorded.

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits:

Emissions falling in the restricted bands of 15.205 shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions.

3m measuring distance, FCC Part 15.209

Frequency band	limit, Quasi peak detector			
MHz	$dB(\mu V/m)$			
30 - 88	40			
88 - 216	43.5			
216 - 960	46			
960 - 1000	54			

Frequency band	limit, average detector	limit, peak detector
MHz	dB(μV/m)	dB(μV/m)
1000 - 25000	54	74

3m measuring distance, CISPR 22, class B

	g anotamico, c.c. it == ,	0.000 2
Fred	quency band	limit, Quasi peak detector
	MHz	dB(μV/m)
	30 - 230	40
2	30 - 1000	47

The EUT was tested on three orthogonal axis.

The device was tested from 30 MHz to the tenth harmonic of the highest fundamental frequency per 15.33. The device was tested on three channels per 15.31(I).

The CFR 47 Part 15. Subpart B. Class B limit of 500 μ V/m has been calculated to correspond 54 dB(μ V/m) as follows: [dB(μ V/m)]=20log[μ V/m].

The measurement results were obtained as described below.

$$E[\mu V/m] = U_{RX} + A_{CABLE} + AF - G_{PREAMP}$$

Where

 U_{RX} receiver reading

A_{CABLE} attenuation of the cable

AF antenna factor

 G_{PREAMP} gain of the preamplifier

Duty Cycle correction factor(dB) -30.67 dB was used. (RFon 2.927ms/100ms)

Page 18 (34) Date 28.12.2012

4.4.3 Test results

Frequency	Quasi peak	Limit	Margin	Result
MHz	dB(μV/m)	dB(μV/m)	dB	
30.08	33.7	40	6.3	PASS
30.80	35.2	40	4.8	PASS
31.74	34.0	40	6.0	PASS
33.21	32.3	40	7.7	PASS
33.64	35.0	40	5.0	PASS
34.24	33.6	40	6.4	PASS

Above 1GHz. Channel 0

Frequency	Peak	Limit	Margin	Result
GHz	dB(μV/m)	dB(μV/m)	dB	
4804	60.06	74	13.94	PASS

Above 1GHz. Channel 0

Frequency	Average	Limit	Margin	Result
GHz	dB(μV/m)	dB(μV/m)	dB	
4804	29.39	54	24.61	PASS

Above 1GHz. Channel 40

Frequency	Peak	Limit	Margin	Result
GHz	dB(μV/m)	dB(μV/m)	dB	
4884	54.34	74	19.66	PASS

Above 1GHz. Channel 40

Frequency	Average	Limit	Margin	Result
GHz	dB(μV/m)	dB(μV/m)	dB	
4884	23.67	54	30.33	PASS

Above 1GHz. Channel 78

Frequency	Peak	Limit	Margin	Result
GHz	dB(μV/m)	dB(μV/m)	dB	
4960	56.50	74	17.50	PASS

Above 1GHz. Channel 78

Frequency	Average	Limit	Margin	Result
GHz	dB(μV/m)	dB(µV/m)	dB	
4960	25.83	54	28.17	PASS

.

Figure 14. channel 40, spurious RF radiated emission

4.5 AC power line conducted emissions

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT1, setup 2	
Site name	Nemko / Perkkaa	
FCC rule part	§ 15.207 / CISPR 22	
Section in RSS-210	7.2.2	
Date of testing	07.12.2012	
Test equipment	745, 348, 338, 546	
Test conditions	22 °C, 30 % RH	
Test result	PASS	

4.5.1 Test method and limit

The test was performed inside a shielded room where the floor and one of the walls of the test site comprised the reference ground plane (RGP). For the duration of the test the EUT was placed on a non-conductive table 0.8 m high standing on the reference ground plane (see photograph 2). The excess length of the cables of the EUT were made into bundles 30-40 cm in length. The power input cable of the EUT was connected to an artificial mains network. The test was performed separately on the phase and also on the neutral wire.

The disturbances were first examined by performing a spectrum scan by using a peak detector. The general procedure in the conducted disturbance emission test is that no further measurements are necessary if the disturbance levels measured by using the peak detector are below the limit value defined for the measurement performed by using an average detector.

If not, then at the test frequencies concerned the measurement is performed also by using a quasipeak detector. If the disturbance levels measured by using the quasi-peak detector are below the limit value defined for the measurement performed by using an average detector, then measurements by using the average detector are not necessary.

CISPR 22, class B limits

CICI IX EL, GIAGO B III III.		·
Frequency band	Quasi-peak	Average limit
MHz	dB(μV)	$dB(\mu V)$
0.15 - 0.5	66 – 56	56 – 46
0.5 – 5	56	46
5 - 30	60	50

4.5.2 EUT operation mode

EUT operation mode	Connection, static PRBS
EUT channel	Hopping
EUT operation voltage	115 V / 60 Hz

4.5.3 Test results

Line N

Figure 15. AC powerline emissions, Line N

Highest emissions (bw 10kHz):

Frequency MHz	Quasi-peak dB(μV)	Limit value dB(μV)	Margin dB	Result
2.150	24.1	56.0	31.9	Pass
2.474	23.4	56.0	32.6	Pass
2.867	26.4	56.0	29.6	Pass
3.140	25.8	56.0	30.2	Pass
3.348	26.7	56.0	29.3	Pass
3.394	25.1	56.0	30.9	Pass

Frequency	Average	Limit value	Margin	Result
MHz	dB(μV)	dB(μV)	dB	
2.150	16.9	46.0	29.1	Pass
2.474	15.6	46.0	30.4	Pass
2.867	19.0	46.0	27.0	Pass
3.140	17.8	46.0	28.2	Pass
3.348	18.9	46.0	27.1	Pass
3.394	17.3	46.0	28.7	Pass

Line L

Figure 16. AC powerline emissions, Line L

Highest emissions (bw 10kHz):

Frequency	Quasi-peak	Limit value	Margin	Result
MHz	dB(μV)	dB(μV)	dB	
0.150	39.2	66.0	26.8	Pass
0.365	33.4	58.6	25.2	Pass
0.368	33.3	58.5	25.3	Pass
2.060	26.9	56.0	29.1	Pass
3.536	31.8	56.0	24.2	Pass
4.018	31.5	56.0	24.5	Pass

Frequency	Average	Limit value	Margin	Result
MHz	dB(μV)	dB(μV)	dB	
3.948	24.4	46.0	21.6	Pass

20 dB bandwidth 4.6

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT2, setup 1	
Site name	Nemko Oy / Perkkaa	
FCC rule part	§ 15.247 (a)(1)	
Section in RSS-210	A8.1 (a)	
Date of testing	19.11.2012	
Test equipment	566, 546, 383	
Test conditions	22 °C, 31 % RH	

4.6.1 **EUT operation mode**

EUT operation mode	Connection, static PRBS
EUT channel	0, 40 and 78

4.6.2 Test method and limit

The measurement is made according to Public notice DA 00-705 and IC standard RSS-210.

Limit (MHz)
N/A

4.6.3 Test results

EUT Channel / f (MHz)	20 dB bandwidth (MHz)
0 / 2402	1.020
40/ 2442	0.954
78 /2480	0.939

Figure 19. channel 78, 20 dB bandwidth

Carrier frequency separation 4.7

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT2, setup 1
Site name	Nemko Oy / Perkkaa
FCC rule part	§ 15.247 (a)(1)
Section in RSS-210	A8.1 (b)
Date of testing	19.11.2012
Test equipment	566, 546, 383
Test conditions	22 °C, 31 % RH

4.7.1 **EUT operation mode**

EUT operation mode	Connection, static PRBS
EUT channel	Hopping

4.7.2 Test method and limit and test results

The measurement is made according to Public notice DA 00-705 and IC standard RSS-210.

	Limit (MHz)
≥ 0.025 or 2/3 of the 20 dB BW	

Test report: 223827A

4.7.3 Test results

Carrier frequency separation (MHz)	Result
0.992	PASS

Figure 20. Hopping on, carrier frequency separation of channels 39 / 2441MHz and 40 / 2442MHz

4.8 Number of hopping frequencies

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT2, setup 1
Site name	Nemko Oy / Perkkaa
FCC rule part	§ 15.247, (a)(1)(iii)
Section in RSS-210	A8.1 (d)
Date of testing	19.12.2012
Test equipment	566, 546, 383
Test conditions	22 °C,31 % RH

4.8.1 EUT operation mode

EUT operation mode	Connection, static PRBS
EUT channel	Hopping

4.8.2 Test method and limit

The measurement is made according to Public notice DA 00-705 and IC standard RSS-210.

limit (Number)		
≥ 15		

4.8.3 Test results

Number of hopping frequencies	Result
≥ 15	PASS

Figure 21. Hopping on, number of hopping frequencies

4.9 Time of occupancy

The test was performed as a compliance test. The test parameters concerned were as follows:

EUT	EUT2, setup 1	
Site name	Nemko Oy / Perkkaa	
FCC rule part	§ 15.247 (a)(1)(iii)	
Section in RSS-210	A8.1 (d)	
Date of testing	19.11.2012	
Test equipment	566, 546, 383	
Test conditions	22 °C, 31 % RH	

4.9.1 EUT operation mode

EUT operation mode	Connection, static PRBS
EUT channel	Hopping

4.9.2 Test method and limit

The measurement is made according to Public notice DA 00-705 and IC standard RSS-210 as follows:

The total time of occupancy is obtained by multiplying the measured number of transmissions occurred during 31.6 second period with the duration of one transmission.

Limit (s)	
≤ 0.4	

4.9.3 Test results

Time of occupancy, t (s)	Result
0.290	PASS

4.10 Duty cycle correction factor, Transmit time in 100 ms

Spectrum analyzer with zero span was used to investigate spectrum.

15.35(c) Unless otherwise specified, e.g.§ 15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

4.10.2 Test data

Pulses/100ms=1 Length of one pulse = 2.927ms

DutyCycleCorrectionFactor=20*log(Tocc/100)=20*log(1*2.927/100)=-30.67dB

5. List of test equipment

Each active test equipment is calibrated once a year, antennas every 18 months and other passive equipment every 24 months.

Nr.	Equipment	Туре	Manufacturer	Serial number
88	Antenna	638	Narda	8003
745	2-Line V-Network	ENV216	Rohde & Schwarz	101466
319	Antenna	CBL6112	Chase	2018
348	Shielded room	RFSD-100	Euroshield Oy	1320
350	Semianechoic shielded room	RFD-F-100	Euroshield Oy	1327
393	RF attenuator PAD	1A (10dB)	Weinschel	
519	RF High-Power Attenuator	765-20	Narda	
525	Double-Ridged Horn	3115	Emco	6691
542	Double-Ridged Horn	3115	Emco	00023905
544	RF-amplifier	ZFL-1000VH2	Mini-Circuits	QA0749010
546	Bluetooth Test Set	MT8850A	Anritsu	6K00000092
559	Highpass Filter	WHKX3.0/18G-10SS	Wainwright Instruments	1
572	High Pass Filter	WHKX1.5/15G-12SS	Wainwright Instruments	4
564	RF amplifier	CA018-4010	CIAO Wireless	132
566	Spectrum analyzer	E4448A	Agilent	US42510236
567	RF generator	E8257C	Agilent	MY43320736
338	Test receiver	ESS	Rohde & Schwarz	847151/009
694	EMI Test Receiver	ESPC	Rohde & Schwarz	842888/023
709	EMI test receiver	ESU8	Rohde & Schwarz	100297
710	RF amplifier	ALS1826-41-12	ALC Microwave Inc.	0011
377	RF attenuator PAD	757 C - 20 dB	Narda	
383	Hybrid	3033B	Narda	01727
X1	Dual directional coupler	11692D	Hewlett Packard	1212A01868

6. Photographs

See document "223827_test_setup_photographs"