

Big Data Ecosystem - Architecture

Dr. Deepak Saxena, SME IIT Jodhpur

Big Data Architecture

- Lambda
- Kappa
- Microservice
- Zeta
- IoT

Lambda Architecture

A distributed file system which stores the entirety of the collected data.

HDFS/Hive/MapReduce

Contains batch views to be interactively queried by the user

Any NoSQL Database

Lambda Architecture

Advantages

- Better accuracy
- Higher throughput
- Lower latency
- Resilient
- Fault tolerant

Challenges

- Synchronization of batch and speed layer
- Need to maintain two separate codebase

Kappa Architecture

Kappa Architecture

Advantages

- Simplified architecture
- Single codebase

Challenges

- Only analytical operations are possible not transactional ones.
- It is important to know that the data is not conserved for a long term; data is kept for a limited predefined period after which it is discarded.

Microservice Architecture

The microservice architectural style is an approach to developing a single application as a suite of small services, each running in its own process and communicating with lightweight mechanisms, often an HTTP resource API. These services are built around business capabilities and independently deployable by fully automated deployment machinery. There is a bare minimum of centralized management of these services, which may be written in different programming languages and use different data storage technologies.

Microservice Architecture

Advantages

- Faster development, testing, and deployment
- Fault tolerant
- Limited vendor/technology lockin
- Easy onboarding and maintenance

Challenges

- An inter-service communication mechanism is required, and its development is quite complex.
- Though the deployments are faster, they are more complex to setup

Zeta Architecture

The goal of the container is to guarantee a single, standardized method of deployment. It also implies that deployed resources are isolated containers that don't concern about any environment changing, i.e. they deploy in the same manner in local environment as in prod environment. Thanks to this isolation, the containers can be freely moved between machines with the guarantee of repeatability (results on local server will be the same as on prod's one). A famous example of isolated containers is Docker, but can also be used Kubernetes or Mesos.

Zeta Architecture

Advantages

- Better utilization of hardware
- Near real-time backup

IoT Architecture

Architectures Features	Lambda	Карра	lot-a	Microservice s	Zeta
Analysis type	Batch/Re al-time	Real-time	Batch / Real- time	Batch/ Real- time	Batch/ Real- time
Processing methodology	Query and reporting	Query and reporting	Query and reporting/ Analytical/ Predictive analysis	Query and reporting/ Analytical	Query and reporting
Data frequency	Real-time feeds	Continuous feeds	On-demand feeds	On-demand feeds	On- demand feeds
Data type	Master data	Transactional	Master data	Transactional data	Transactional data
Content format	Structured , Semi- structured & Unstructur ed	Structured, Semi- structured & Unstructured	Structured, Semi- structured & Unstructured	Structured, Semi- structured & Unstructured	Structured,Se mi-structured & Unstructured
Data sources	Human & Machine generated , web or social media	Machine & Human generated, Web or social media	Machine generated	Internal data sources, machine generated	Web and social media, Internal Data sources
Data consumers	Human	Human	Human/ Other data repositories	Business process	Enterprise applications

m