Defect Analysis Dashboard

<u>Dataset: Manufacturing Defect Data</u> <u>Goal: Identify key drivers of defects</u>

Model: Random Forest

Key Drivers in Manufacturing Defects

- · Maintenance hours is a strong predictor of defect rate,
- Aim for product to achieve maximum quality with least amount of maintenance hours
- Higher volume may increase risk of defects. Aim to keep production volume moderate.

0.27%

AVG DEFECT RATE

11.48

AVG MAINTENANCE HOURS

0.86

MODEL ACCURACY

Proportion of Defects by Defect Status

Classification Report of Random Forest Model

Defect Status	Precision	F1-Score	Recall	Support
No Defect	0.52	0.56	0.59	143
Defect	0.93	0.92	0.91	829
Macro Avg	0.73	0.74	0.75	972
Weighted Avg	0.87	0.86	0.86	972

This dashboard uses a Random Forest Classifier trained with synthetic oversampling (SMOTE) to predict whether a manufactured product will be defective based on operational and material factors.

The model achieved an accuracy of 86%, with particularly high performance in identifying defective items (Recall = 92%) while improving minority class recall from 28% to 59% as it accounts for the class imbalance. This model is balanced and production-ready.

MODEL SELECTION TO PREDICT MANUFACTURING DEFECTS

0.86
Random Forest Accuracy

0.74

Random Forest vs Logistic Regression Model

Logistic Regression Accuracy

Random Forest Importance by Feature

Random Forest a better predictive model because it has a higher accuracy score (86% > 74%) and precision score for both defects and non-defects than the logistic regression model.

Classification Report of Random Forest Model

ra					
re	Defect Status	Precision	F1-Score	Recall	Support
0.2319	No Defect	0.52	0.56	0.59	143
	Defect	0.93	0.92	0.91	829
	Macro Avg	0.73	0.74	0.75	972
	Weighted Avg	0.87	0.86	0.86	972

Classification Report of Log Regression Model

Defect Status	Precision	F1-score	Recall	Support
Defect	0.93	0.83	0.75	806
Macro Avg	0.65	0.66	0.73	972
No Defect	0.37	0.49	0.71	166
Weighted Avg	0.83	0.77	0.74	972

Random Forest improved

- Precision for minority class by 15%
- Recall for defects by 16%
- •F1 scores --> better balance and predictive power

Log Regression Importance by Feature

Logistic Regression model is more interpretable: higher quality score is linked to lower defect rates while higher maintenance hours is linked to higher defect rates.