A scoping review of sleep discrepancy methodology: what are we measuring and what does it mean?

Tom F. Walton 1

tom.fioccowalton@research.uwa.edu.au

https://github.com/tfwalton

Melissa J. Ree¹ Simone N. Fueggle² Romola S. Bucks^{1,3,4}

- ¹ School of Psychological Science, The University of Western Australia
- ² CALHN Neuropsychology, Royal Adelaide Hospital
- ³ School of Population and Global Health, The University of Western Australia
- ⁴ Office of the Deputy Vice Chancellor, Research, The University of Western Australia

Introduction

- Sleep discrepancy is a common feature of insomnia disorder
- Sleep discrepancy has been investigated with diverse methods making it difficult to integrate findings across studies
- AIM: How has sleep discrepancy has been conceptualised in the literature what methods have been used to investigate it?

Method

Scoping review methodology

Figure 1: PRISMA flowchart

There are different types of sleep discrepancy and significant problems with how they have been investigated.

Results

Figure 12: Sleep variables

- Approximately half (n = 128) of included studies calculated a derived index (e.g., self-report TST-objective TST) to operationalise sleep discrepancy
- 172 studies measured sleep discrepancy at the group level by directly comparing self-report and objective sleep

Conclusions

 Sleep discrepancy is mostly restricted to sleep states or sleep time and varies in its conceptual distance to sleep misperception

		Sel	f-report sleep			
		Self-report sleep state	Episodic self- report	Habitual self- report	Aggregate self- report	
		e.g., laboratory query	e.g., morning questionnaire TST	e.g., PSQI TST	e.g., weekly mean diary TST	
Q,	Objective sleep state	≈ Sleep	n/a	n/a	n/a	
Objective sleep	e.g., laboratory PSG	misperception	11/ 4	11/4	11,4	
	Episodic objective e.g., single night PSG	n/a	Sleep time discrepancy	Discrepancy between habitual and episodic sleep	Not typically observed	
	Aggregate objective e.g., weekly mean actigraphy TST	n/a	Not typically observed	Global sleep discrepancy	Problematic (see section 5.6)	

Figure 21: Sleep discrepancy matrix

- Conceptual and methodological problems
 - i. Methodological heterogeneity
 - ii. Objective SOL definitions
 - ii. Operationalising with derived indices
 - iv. Averaging across nights
 - v. Correlations as concordance
- vi. Sleep quality discrepancy
- vii. Sleep diaries defining rest intervals

On the use of difference and ratio scores in sleep discrepancy research

Tom F. Walton ¹

tom.fioccowalton@research.uwa.edu.au

https://github.com/tfwalton

Melissa J. Ree¹ Romola S. Bucks^{1,2,3}

- ¹ School of Psychological Science, The University of Western Australia
- ² School of Population and Global Health, The University of Western Australia
- ³ Office of the Deputy Vice Chancellor, Research, The University of Western Australia

Introduction

- Sleep discrepancy is the discordance between self-report and objective measures of sleep
- Sleep discrepancy is often operationalised as a derived index (e.g., self-report TST objective TST)
- Derived indices are associated with a range of conceptual and methodological problems

Method

- Archival data: Healthy Ageing Research Programme (N = 230; age 50+)
- Objective sleep using actigraphy with concurrent sleep diaries
- Questionnaires measures including the insomnia severity index.

Difference score problems

 Directionality identified effects exist through the full range of a difference score

Table 2: Linear and piece-wise regressions of ISI scores on dTST

	Estimate	95% CIs	Standard Error	t-value	p-value
Linear regress	sion				
Intercept	6.28	[6.03, 6.54]	0.13	48.2	p < .001
dTST	-0.01	[-0.014 , -0.007]	0.002	-5.76	p < .001
Piecewise reg	ression				
Intercept	6.08	[5.79, 6.36]	0.145	42	p < .001
dTST	-0.014	[-0.018, -0.01]	0.002	-6.99	p < .001
U1 dTST	0.043	[0.021, 0.065]	0.011	3.76	p < .001
Break-point	45.1642	[21, 69.4]	NA	NA	_

Muggeo's score test for one or two changes in the slope of regression (Muggeo 2016) is statistically significant, observed value = 2.026, p = 0.043

Implicit constraints components equal magnitude opposite in sign

$$ISI = b_0 + b_1(sTST - oTST) + \epsilon$$
$$= b_0 + (1)b_1sTST + (-1)b_1oTST + \epsilon$$

Table 3: Regression with an additive and difference score model

Estimate	95% CI [LL, UL]	Standard Error	t-value	p-value
score mod	el			
6.28	[6.03, 6.54]	0.13	48.2	p < .001
-0.01	[-0.014, -0.007]	0.002	-5.76	p < .001
odel				
12.2	[10.6, 13.8]	0.816	14.9	p < .001
-0.002	[-0.006, 0.003]	0.002	-0.715	.475
-0.013	[-0.016, -0.009]	0.002	-6.96	p < .001
	6.28 -0.01 odel 12.2 -0.002	score model 6.28 [6.03, 6.54] -0.01 [-0.014, -0.007] odel 12.2 [10.6, 13.8] -0.002 [-0.006, 0.003]	score model 6.28 [6.03, 6.54] 0.13 -0.01 [-0.014, -0.007] 0.002 odel 12.2 [10.6, 13.8] 0.816 -0.002 [-0.006, 0.003] 0.002	score model 6.28 [6.03, 6.54] 0.13 48.2 -0.01 [-0.014, -0.007] 0.002 -5.76 odel 12.2 [10.6, 13.8] 0.816 14.9 -0.002 [-0.006, 0.003] 0.002 -0.715

A statistically significant reduction in R^2 from the additive (R^2 = 0.059) to the difference score model (R^2 = 0.023) is observed (F = 53.7, p < .001)

There are significant problems with the use of difference and ratio scores in sleep discrepancy research.

Absolute difference score problems

- **Directionality** full-range symmetrical distribution may not be present
- Implicit constraints components equal in magnitude opposite in sign, pattern reverses at X = Y, no combined main effect of predictors

$$\begin{split} ISI &= b_0 + b_1(1-2W)(sTST - oTST) + \epsilon \\ &= b_0 + b_1sTST - b_1oTST - 2b_1WsTST + 2b_1WoTST + \epsilon \\ \\ ISI_{sTST>oTST} &= b_0 + b_1sTST + b_1oTST - 2b_4WsTST + 2b_5WoTST + \epsilon \\ &= b_0 - (1)b_1sTST + b_1oTST + \epsilon \\ \\ ISI_{sTST\leq oTST} &= b_0 + b_1sTST + b_1oTST - 2b_40sTST + 2b_50oTST + \epsilon \\ &= b_0 + b_1sTST - (1)b_1oTST + \epsilon \end{split}$$

Table 5: Absolute diffference score and unconstrained piecewise regression

	Estimate	95% CI [LL, UL]	Standard Error	t-value	p-value
Absolute d	ifference n	nodel			
Intercept	6	[5.62, 6.38]	0.194	30.9	p < .001
absTST	0.014	[0.009, 0.019]	0.003	5.57	p < .001
Unconstrai	ned piecew	${f vise\ model}$			
Intercept	8.98	[6.06, 11.9]	1.49	6.02	p < .001
sTST	0.004	[-0.009, 0.017]	0.007	0.612	.541
oTST	-0.012	[-0.026, 0.002]	0.007	-1.66	.097
\mathbf{W}	4.31	$[0.221 \; , 8.4]$	2.08	2.07	.039
W*sTST	-0.018	[-0.032, -0.004]	0.007	-2.48	.013
$W*_{o}TST$	0.01	[-0.006, 0.027]	0.008	1.26	.209

The R^2 from the absolute difference score model (R^2 = 0.03) was reduced more than two-fold from the unconstrained piecewise regression (R^2 = 0.072) a difference that was statistically significant (F = 11.2, p < .001).

Ratio score problems

- Directionality identified effects exist through the full range of a difference score
- Arbitrary designation of numerator/ denominator

$$\frac{\partial I\hat{S}I}{\partial sTST} = \left[\frac{\partial}{\partial sTST}b_1sTST\right]\left[\frac{1}{oTST}\right] \\ = \frac{b_1}{oTST} \\ = \frac{1}{oTST}$$

$$\frac{\partial I\hat{S}I}{\partial sTST} = \left[\frac{\partial}{\partial oTST}b_1oTST^{-1}\right]\left[sTST\right] \\ = \left[-b_1oTST^{-2}\right]\left[sTST\right] \\ = \frac{-b_1sTST}{oTST^2}$$

Table 7: Ratio model comparisons

	Estimate	95% CI [LL, UL]	Standard Error	t-value	p-value
rTST regression	ı				
Intercept	11.9	$[10.3 \;,\; 13.6]$	0.843	14.2	p < .001
m rTST	-5.42	[-7.08, -3.76]	0.847	-6.4	p < .001
Inverse rTST so	ore regres				
Intercept	3.09	$[1.94 \;, 4.24]$	0.584	5.29	p < .001
Inverted rTST	3.36	$[2.31 \;, 4.4]$	0.532	6.31	p < .001

Implicit constraints

Solutions

Insomnia and sleep discrepancy: an investigation with cubic response surface analysis

pilot study

Tom F. Walton ¹

tom.fioccowalton@research.uwa.edu.au

https://github.com/tfwalton

Romola S. Bucks^{1,2,3} Melissa J. Ree¹

¹ School of Psychological Science, The University of Western Australia

² School of Population and Global Health, The University of Western Australia

³ Office of the Deputy Vice Chancellor, Research, The University of Western Australia

Introduction

- Sleep discrepancy is often operationalised as a derived index (e.g., self-report TST objective TST)
- Cubic regression with response surface analysis solves many problems associated with the use of difference and ratio scores in operationalising sleep discrepancy
- Hypothesis:
 - i. Discrepancy effect (H1.1)
- ii. Discrepancy effect is asymmetric in the expected direction (H1.2)
- iii. Linear level effect (H1.3)

Method

- Data from MrOS 1,022 community-dwelling men aged 65+ years.
- Total sleep time (TST) from single-night polysomnography (PSG)
- Self reported TST from morning questionnaire
- Insomnia severity index (ISI) to measure insomnia symptom severity

$$Z = b_0 + b_1 X + b_2 Y + b_3 X^2 + b_4 X Y + b_5 Y^2 + b_6 X^3 + b_7 X^2 Y + b_8 X Y^2 + b_9 Y^3$$

- Rising ridge congruence surface $b_1 = b_2$, $b_4 = -2 * b_3$, $b_5 = b_3$, $b_7 = -3 * b_6$, $b_8 = 3 * b_6$, $b_9 = -b_6$
- b₃ discrepancy effect (H1.1) must be significantly positive
- b₆ direction & presence of asymmetry (H1.2) must be significantly negative
- u_1 ($b_1 + b_2$) linear level effect (H1.3) must be significantly negative

Results

	\hat{b}_o	\widehat{b}_1	\widehat{b}_2	\widehat{b}_3	\widehat{b}_{4}	\widehat{b}_{5}	\widehat{b}_{6}	\widehat{b}_7	\widehat{b}_8	\widehat{b}_{9}	\hat{u}_1	$\Delta\chi^2$	R^2
Asymmetrical congruence model													
Estimate	0.03	-0.099	-0.099	-0.026	0.053	-0.026	8e-04	-0.003	0.003	-8e-04	-0.199	10.2	0.028
p-value	.392	< .001	< .001	.068	.068	.068	.839	.839	.839	.839	< .001	.117	
Full cubic 1	\mathbf{model}												
Estimate	0.084	-0.22	0.055	-0.035	0.033	-0.023	0.014	-0.06	0.051	-0.007			0.039
p-value	.055	< .001	.418	.072	.363	.478	.163	.016	.05	.658			

Response surface analysis revealed **sleep discrepancy** was not associated with **insomnia symptom severity** in older men.

Figure 4.2: Response surface for asymmetric rising ridge discrepancy mod

Table 3: Model comparisons

Model	k	df	χ^2	$\chi^2 diff$	AIC	cfi	R^2	R^2adj
cubic	9	0	0		2838	2838	0.039	0.031
full	5	4	6.22	6.31	2836	2836	0.033	0.028
$\mathbf{I}\mathbf{A}$	3	6	7.29	1.08	2833	2833	0.032	0.029
$\operatorname{additive}$	2	7	7.65	0.29	2831	2831	0.032	0.03
diff	1	8	27.1	17.5	2849	2849	0.013	0.012
null	0	9	40.6	12.4	2860	2860	0	0

Conclusions

- Response surface analysis is a useful alternative to derived indices for investigating sleep discrepancy
- Discrepancy in sleep time parameters can be importantly different to misperception
- Emphasis on perception of sleep quantity rather than sleep misperception per se
 - Experiments with hypnotics
- Low self-report + objective as different phenotype
- Results to be replicated in pre-registered study