实验3-4

学号: 2112066 姓名: 于成俊

一、实验题目

基于给定的实验测试环境,通过改变延时和丢包率,完成下面3组性能对比实验:

(1) 停等机制与滑动窗口机制性能对比;

(2) 滑动窗口机制中不同窗口大小对性能的影响(累计确认和选择确认两种情形);

(3) 滑动窗口机制中相同窗口大小情况下,累计确认和选择确认的性能比较。

性能测试指标:时延、吞吐率,要给出图、表并进行分析。

二、性能测试

为了方便进行测试,本次测试均选择传输**图片1**。此外,为了减小偶然性对测试的影响,每次测试的结果均是**五次测试后取的平均值**。

(1) 停等机制与滑动窗口机制性能对比:

1.将滑动窗口大小设为10,延时设为5ms,更改丢包率,来比对传输时间和吞吐率:

传输时间(单位:s)

丟包率	停等机制	GBN	SR
0%	3.068	14.772	5.882
2%	5.603	22.035	11.142
4%	7.344	33.589	11.268
6%	11.643	21.992	11.71
8%	14.382	33.474	12.071
10%	16.462	64.836	12.2

丟包率	停等机制	GBN	SR
0%	590.939	122.732	308.228
2%	323.577	82.2782	162.718
4%	246.868	53.976	160.898
6%	155.716	82.4391	154.825
8%	126.06	54.1614	150.195
10%	110.132	27.9629	148.607

2.将滑动窗口大小设为10, 丢包率设为5%, 更改延迟, 来比对传输时间和吞吐率:

传输时间 (单位: s)

延迟	停等机制	GBN	SR
0ms	6.468	19.01	10.06
1ms	7.64	26.835	11.477
2ms	9.355	26.868	11.456
3ms	10.748	27.044	11.536
4ms	10.94	27.597	12.042
5ms	10.958	26.782	11.903

根据数据绘制图像:

吞吐率 (单位: KB/s)

延时	停等机制	GBN	SR
0ms	280.303	95.3709	180.219
1ms	237.304	67.561	157.968
2ms	193.8	67.478	158.258
3ms	168.683	67.0389	157.16
4ms	165.722	65.6955	150.556
5ms	165.45	67.6947	152.315

3.结果分析:

- 从图中看出,停等机制的性能较高于滑动窗口机制。我认为,由于RTT较小,停等机制与滑动窗口的性能本身差距就不大,再加上网络环境较差,或者网络带宽较低,导致停等机制的性能优于滑动窗口机制。当然,也与滑动窗口实现的代码效率有一定的关系,因为滑动窗口实现的逻辑较为复杂。其中GBN的性能最低,可能是我用单线程实现的原因。
- 当延迟固定时,随着丢包率的增加,三个机制的传输时间和吞吐率都呈下降趋势。其中,GBN下降的幅度最大,因为丢包率越高,GBN重传次数增加,而GBN每次重传付出的额外代价还很多,导致性能急速下降。而停等机制和SR下降幅度较缓,因为重传代价较小。
- 当丢包率固定时,停等机制的性能先随着延迟增加,而下降,然后趋于稳定。SR和GBN几乎不受延迟增加的影响,基本趋于稳定。

(2) 滑动窗口机制中不同窗口大小对性能的影响(累计确认和选择确认两种情形)

1.对于累计确认(即GBN),将延迟设为5ms,更改丢包率,比对传输时间和吞吐率

传输时间 (单位: s)

	丢包率: 0%	丢包率: 2%	丢包率: 4%	丢包率: 6%	丢包率: 8%	丢包率: 10%
窗口大小 为5	2.845	5.763	10.307	15.709	18.286	24.03
窗口大小 为10	14.772	22.035	33.589	21.992	33.474	64.836
窗口大小 为15	14.999	22.636	33.994	22.675	33.338	63.4

	丢包率: 0%	丢包率: 2%	丢包率: 4%	丢包率: 6%	丢包率: 8%	丢包率: 10%
窗口大小 为5	637.258	314.593	175.9	115.412	99.1469	75.447
窗口大小 为10	122.732	82.2782	53.976	82.4391	54.1614	27.9629
窗口大小 为15	120.875	80.0937	53.3329	79.9559	54.3824	28.5962

2.对于累计确认(即GBN),将丢包率设为5%,更改延迟,比对传输时间和吞吐率

传输时间 (单位: s)

	延迟: 0ms	延迟: 1ms	延迟: 2ms	延迟: 3ms	延迟: 4ms	延迟: 5ms
窗口大小为 5	8.018	11.689	11.777	11.725	11.268	11.785
窗口大小为 10	19.01	26.835	26.868	27.044	27.597	26.782
窗口大小为 15	18.991	27.663	22.355	22.44	26.954	27.097

根据数据绘制图像:

吞吐率 (单位: KB/s)

	延迟: 0ms	延迟: 1ms	延迟: 2ms	延迟: 3ms	延迟: 4ms	延迟: 5ms
窗口大小为 5	226.116	155.103	153.944	154.627	160.898	153.84
窗口大小为 10	95.3709	67.561	67.478	67.0389	65.6955	67.6947
窗口大小为 15	95.4663	65.5388	81.1004	80.7932	67.2627	66.9078

3.对于选择确认 (即SR) , 将延迟设为5ms, 更改丢包率, 比对传输时间和吞吐率 传输时间 (单位: s)

	丢包率: 0%	丢包率: 2%	丟包 率: 4%	丢包率: 6%	丟包 率: 8%	丢包率: 10%
窗口大小 为5	3.967	5.713	8.311	11.286	12.693	11.613
窗口大小 为10	5.882	11.142	11.268	11.71	12.071	12.2
窗口大小 为15	6.355	12.951	13.058	13.901	12.931	13.41

根据数据绘制图像:

吞吐率(单位: KB/s)

	丢包率: 0%	丢包率: 2%	丢包率: 4%	丢包率: 6%	丢包率: 8%	丟包率 : 10%
窗口大小 为5	457.02	317.346	218.145	160.642	142.835	156.118
窗口大小 为10	308.228	162.718	160.898	154.825	150.195	148.607
窗口大小 为15	285.287	139.989	138.842	130.422	140.206	135.198

根据数据绘制图像:

4.对于选择确认(即SR),将丢包率设为5%,更改延迟,比对传输时间和吞吐率

传输时间 (单位: s)

	延迟: 0ms	延迟: 1ms	延迟: 2ms	延迟: 3ms	延迟: 4ms	延迟: 5ms
窗口大小为 5	6.293	9.064	9.305	9.313	9.077	9.286
窗口大小为 10	10.06	11.477	11.456	11.536	12.042	11.903
窗口大小为 15	7.823	13.444	13.403	13.911	13.991	13.406

	延迟: 0ms	延迟: 1ms	延迟: 2ms	延迟: 3ms	延迟: 4ms	延迟: 5ms
窗口大小为 5	288.098	200.022	194.841	194.674	199.736	195.24
窗口大小为 10	180.219	157.968	158.258	157.16	150.556	152.315
窗口大小为 15	231.753	134.856	135.268	130.329	129.583	135.238

5.结果分析:

- 对于GBN来说:
 - 。 窗口大小为5的性能比窗口大小为10、15的性能更好。窗口大小为10和15的性能几乎是一样的。
 - 。 当丢包率越高时,窗口大小较大的下降幅度较大,窗口大小较小的下降幅度较小。
 - 一开始延迟增加时,不同窗口大小的GBN的性能都下降,且窗口大小为5的下降幅度较高。但是在后来GBN的性能几乎不受延迟增加的影响。
- 对于SR来说:
 - 窗口大小为5的性能>窗口大小为10的性能>窗口大小为15的性能。这应该和我代码实现逻辑有关,当窗口大小越大时,一次传的很多,那么接收方处理的压力就会较大,这就可能影响传输时间,而影响性能。
 - 。 但当丢包率较高时, 三者的性能相差不多 (即传输时间和吞吐率) 。
 - 与GBN类似,一开始延迟增加时,不同窗口大小的SR的性能都下降,但窗口大小为15的下降幅度较高,窗口大小为10的下降幅度较缓。但是在后来SR的性能几乎不受延迟增加的影响。

(3) 滑动窗口机制中相同窗口大小情况下,累计确认和选择确认的 性能比较

1.将丢包率设为5%, 延迟设为5ms, 更改窗口大小, 比对传输时间和吞吐率

传输时间 (单位: s)

窗口大小	GBN	SR
5	11.785	9.286
10	26.782	11.903
15	27.097	13.406
20	27.327	10.474
25	26.992	12.597
30	25.909	13.028

窗口大小	GBN	SR
5	153.84	195.24
10	67.6947	152.315
15	66.9078	135.238
20	66.3446	173.095
25	67.168	143.923
30	69.9757	139.162

2.将丢包率设为10%, 延迟设为5ms, 更改窗口大小, 比对传输时间和吞吐率

传输时间 (单位: s)

窗口大小	GBN	SR
5	24.03	11.613
10	64.836	12.2
15	63.4	13.41
20	60.757	10.97
25	63.04	12.858
30	62.323	12.378

根据数据绘制图像:

吞吐率 (单位: KB/s)

窗口大小	GBN	SR
5	75.447	156.118
10	27.9629	148.607
15	28.5962	135.198
20	29.8402	165.269
25	28.7595	141.002
30	29.0904	146.47

3.结果分析:

- 可以看出, 当丢包率越高时, SR比GBN的性能高的越多。
- 对于SR和GBN,性能最好的都是窗口大小为5时。当窗口大小为10时,性能出现明显下降,GBN下降幅度非常大。但是后来,随着滑动窗口大小增加,两者的性能都趋于稳定。

三、总结

• 本次实验是这学期最后一次实验,是对前面三次实验的总结。通过对三种机制的性能测试,让我更清楚地了解三种机制的区别。且对我自己写的代码的效率,有了更进一步的了解。