Fonctions Numériques Fonctions continues sur un intervalle MPSI 2

1 Fonctions continues

Soit I un intervalle non vide.

Soit $f: I \to \mathbb{R}$ une fonction dfinie sur I.

On dit que f est continue sur I si pout tout x_0 de I, f est continue en x_0 .

Théorème des valeurs intermdiaires

L'image d'un intervalle par une fonction continue est un intervalle.

Soit I un intervalle.

Soit $f: I \to R$ une application continue sut I.

Montrer que f(I) est un intervalle.

Ou montrer que $\forall (y,y') \in \mathbb{R}^2, \ ((y,y') \in f(I)^2 \Rightarrow (\forall y'' \in \mathbb{R}, \ y < y'' < y' \Rightarrow y'' \in f(I))$

Soit y et y' deux lments distincts de f(I).

Alors il existe a et b dans I tels que: f(a) = y et f(b) = y'

y et y' sont distincts, donc a et b sont distincts.

On suppose par exemple que f(a) < f(b) et a < b

Montrer que $\forall z \in \mathbb{R}, (f(a) < z < f(b)) \Rightarrow (\exists x \in]a, b[, f(x) = z)$

Soit z un rel compris strictement entre f(a) et f(b).

On consider l'ensemble $E = \{x \in [a, b], f(x) < z\}$

Principe de Borne suprieure

Montrer que E admet une borne suprieure:

- E est non vide: $a \in E$
- E est major par b

Donc E admet une borne suprieure que l'on notera c

On a: $a \le c \le b$

Et $\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists x \in E, \ c - \varepsilon < x \leqslant c$

Pour tout n de \mathbb{N}^* , on pose $\varepsilon = \frac{1}{n}$, et on pose x_n un rel vrifiant le critre. On dfinit donc une suite: $\forall n \in \mathbb{N}^*$, $x_n \in E$ et $c - \frac{1}{n} < x_n \geqslant c$

En particulier: $\forall n \in \mathbb{N}^*, x_n \in [a,b] \text{ et } f(x_n) < z \text{ et } |x_n-c| < \frac{1}{n}$

Ainsi, la suite $(x_n)_{n\in\mathbb{N}^*}$ converge vers c.

Donc $(f(x_n))_{n\in\mathbb{N}^*}$ converge vers f(c) d'apr
s la caractrisation squentielle de la limite.

Or, $\forall n \in \mathbb{N}^*, f(x_n) < z$

Donc $f(c) \leq z$

On a donc $f(c) \leq z < f(b)$

D'où c < b.

Par dfinition de c: $\forall x \in]c, b[, x \notin E$

$$\Rightarrow \forall x \in]c, b[, f(x) \geqslant z$$

Par ailleurs, f est continue, donc sa limite à droite en c existe et vaut f(c).

Ainsi, $f(c) \geqslant z$

Conclusion: f(c) = z

Conclusion gnrale: $\exists c \in]a, b[, f(c) = z]$

Ce raisonnement est valable pour tout z entre a et b. On tend le raisonnement à y et y' dans f(I)

On conclut que f(I) est un intervalle.

Propriété 1.0.1

L'image d'un segment par une application continue est un segment.

Soit I un segment rel non vide.

Soit $f: I \to \mathbb{R}$ continue sur I.

D'après le TVI, f(I) est un intervalle.

Montrer que f(I) est ferm et born.

• Montrer que f(I) est born.

C'est à dire, montrer que $\exists M \in \mathbb{R}^+, \ \forall y \in \mathbb{R}, y \in f(I) \Rightarrow |y| \leq M$

 $\overline{\text{HA}}$ Supposons que f(I) ne soit pas born.

 $\overline{\text{Donc}} \ \forall M \in \mathbb{R}^+, \ \exists y \in \mathbb{R}, \ y \in I \text{ et } |y| > M$

Soit x_0 un lment de I.

- On consider $E_1 = \{x \in I, |f(x)| > f(x_0) + 1\}$ f(I) n'est pas born, donc E_1 est non vide.

Notons x_1 un lment de E_1 .

– Soit $n \in \mathbb{N}$, supposons construits $(x_i)_{i \in [0,n]}$,

Tels que: $\forall i \in [1, n], |f(x_i)| > |f(x_{i-1})| + 1$

Soit $E_{n+1} = \{x \in I, |f(x)| > |f(x_n)| + 1\}$

f(I) n'est pas born, donc E_{n+1} n'est pas vide.

On note x_{n+1} un lment de cet ensemble.

– Par reurrence, on construit une suite $(x_n)_{n\in\mathbb{N}}$.

De plus, $\forall n \in \mathbb{N}^*$, $|f(x_n)| > |f(x_{n-1})| + 1$

Par reurrence, on montre que: $\forall n \in \mathbb{N}, |f(x_n)| > |f(x_0)| + n$

Ainsi, $(|f(x_n)|)_{n\in\mathbb{N}}$ diverge vers $+\infty$.

Par ailleurs, $(x_n)_{n\in\mathbb{N}}$ est une suite d'Iments de I. Donc d'aprs le thorme de Bolzano-Weierstrass, il existe $\phi: \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $(x_{\phi(n)})_{n\in\mathbb{N}}$ converge.

Notons ϕ une telle suite et l la limite.

- $\forall n \in \mathbb{N}, \ x_n \in I, \ donc \ l \in I$
- -f est continue en $l \in I$, donc (cara squentielle de la limite) $f(x_n) \underset{n \to +\infty}{\longrightarrow} f(l)$
- On a aussi ①: $|f(x_n)| \underset{n \to +\infty}{\longrightarrow} |f(l)|$ (car abs est continue en f(l))
- De plus, $(|f(x_{\phi(n)})|)_{n\in\mathbb{N}}$ est une suite extraite de $(|f(x_n)|)_{n\in\mathbb{N}}$. Donc $\textcircled{2}:|f(x_{\phi(n)})| \xrightarrow[n\to+\infty]{} +\infty$

On a contradiction entre ① et ②. On en dduit que | HA | est fausse.

Conclusion: f(I) est in intervalle born.

• Montrer que $\exists (c,d) \in \mathbb{R}, \ f(I) = [c,d]$

On pose $c = \inf(f(I))$ et $d = \sup(f(I))$

Montrer que $c \in I$ et $d \in I$

- Montrons que $d \in I$

Donc Montrons que $\exists x \in I, \ f(x) = d$

En appliquant le principe de la borne suprieure avec $\varepsilon = \frac{1}{n}$ pour tout n de \mathbb{N}^* , on construit une suite $(x_n)_{n \in \mathbb{N}^*}$ d'Iments de I telle que $(f(x_n))_{n \in \mathbb{N}^*}$ converge vers d.

* (x_n) est une suite de rels borne, donc d'aprs le thorme de B-W, il existe une application strictement croissante $\phi: \mathbb{N} \to \mathbb{N}$ telle que $(x_{\phi(n)})_{n \in \mathbb{N}}$ soit convergente.

Notons l sa limite.

De plus, $l \in I$.

- * f est continue sur I donc $(f(x_{\phi(n)}))_{n\in\mathbb{N}}$ converge vers f(l)
- * Par ailleurs, $(f(x_{\phi(n)}))$ est une suite extraite de $(f(x_n))$, donc $(f(x_{\phi(n)}))$ converge vers d.

Par unicit de la limite, d = f(l). Or, $l \in I$.

Finalement, $d \in f(I)$

- On procde de même pour montrer que $c \in f(I)$.

Conclusion gnrale: $\exists (c,d) \in \mathbb{R}^2, \ f(I) = [c,d]$

Propriété 1.0.2

Soit $f: I \to \mathbb{R}$ une fonction continue.

Alors on a quivalence entre:

- ① f est injective
- ② f est strictement monotone

Soit $f: I \to \mathbb{R}$ une fonction continue.

 $(1)\Rightarrow(2)$: Supposons f injective.

Montrer que f est strictement croissante sur I.

Donc montrer que f est croissante sur I. (car f est injective)

Montrer que pour tous $x_1 < x_2 < x_3$ de I, $f(x_2)$ soit compris entre $f(x_1)$ et $f(x_3)$

HA Supposons qu'il existe $x_1 < x_2 < x_3$ de I tels que $f(x_2)$ ne soit pas compris entre $f(x_1)$ et $f(x_3)$.

Alors il existe $y_0 \in \mathbb{R}$, tel que y_0 soit compris strictement entre $f(x_1)$ et $f(x_2)$ et entre $f(x_2)$ et $f(x_3)$

D'aprs le TVI, $\exists \alpha \in]x_1, x_2[, y_0 = f(\alpha) \text{ et } \exists \beta \in]x_2, x_3[, y_0 = f(\beta)]$

Les intervalles $|x_1, x_2|$ et $|x_2, x_3|$ sont disjoints, donc $\alpha \neq \beta$.

Cependant, $f(\alpha) = f(\beta)$, ce qui contredit l'injectivit de f.

Donc HA est contradictoire.

On conclut que f est monotone sur I

Or, f est injective.

Conclusion gnrale: f est strictement monotone sur I

 $\textcircled{2}\Rightarrow\textcircled{1}$: Facile.