Today

- Roadmap
 - Page Tables: How the OS maps virtual addresses to physical addresses
- Learning Outcomes
 - Define:
 - Page Table
 - Page Table Entry (PTE)
 - Segfault
 - Page Fault
 - Explain what each field in a PTE means
- Reading
 - 9.5

Recall how we represent Address Spaces

Program 1

Back to Address Spaces

Program 1

Back to Address Spaces

Program 1

Back to Address Spaces

Program 1

Mappings: Recall

Program 1

(VA, access, privilege) => (PA/fault)

Triple consisting of a:

- Virtual address (VA)
- Access (read, write, execute)
- Privilege (user, supervisor)

Physical address OR

Fault (turns control over to the

operating system

And what would we call that fault?

An exception!

Page Tables: Mapping data structure

- The TLB is simply a cache of mappings.
- The Page Table is the data structure that holds all the mappings.

Indexed by virtual page number (VPN)

	PPN	Access	Privilege
_			
		Page Table Entr	у
ľ			
_			7

Page Tables: A pile of PTEs

	_	PPN	Access	Privilege
	0_	Invalid		
PTE —	1	0x0000A	Read, Execute	U
	2	0x1100B	Read, Execute	U
	3	0x98765	Read, Execute	U
	4	0xCAFE0	Read, Execute	U
	5	0xFACE1	Read, Write	U
	6	0xC0FFF	Read, Write	U
indicac	7	Invalid		
indices -	8	Invalid		
	9	Invalid		
	Α	Invalid		
	В	Invalid		
	С	Invalid		
	D	0x50505	Read, Write	U
	Е	0x12345	Read, Write	U
	F	0x24680	Read, Write	U

Address Translation

Program 1

	PPN	Access	Privilege
0	Invalid		
1	0x0000A	Read, Execute	U
2	0x1100B	Read, Execute	U
3	0x98765	Read, Execute	U
4	0xCAFE0	Read, Execute	U
5	0xFACE1	Read, Write	U
6	0xC0FFF	Read, Write	U
7	Invalid		
8	Invalid		
9	Invalid		
Α	Invalid		
В	Invalid		
С	Invalid		
D	0x50505	Read, Write	U
Ε	0x12345	Read, Write	U
F	0x24680	Read, Write	U

Page Table Entries: PTEs

- A PTE can be in one of three states
 - 1. Invalid: There is no mapping

Exception: Segfault (usually kill the process)

- 2. Valid and Memory-Resident: Permissions dictate if the access is allowed Execution proceeds as normal
- 3. Valid but not Memory-Resident: Permissions still dictate if the access is allowed. While the VPN is valid, the page we want to access is not yet in memory; the OS must make it memory resident.
 - Could require reading the page from disk
 - Could require creating a page full of 0's

Exception: Page fault (read the page from disk and then proceed as normal)

Page Tables: Summary

- The page table is the collection of mappings that describe an address space.
- The page table contains a set of page table entries (PTEs).
- A PTE can be in one of three states:
 - invalid -- physical page number and permissions should be ignored
 - valid and present -- contains physical page number, access and mode info
 - valid and not present -- location of physical page on disk, access and mode info