Αρχιτεκτονική Υπολογιστών

Κεφάλαιο 3

Αριθμητική για υπολογιστές

[Έχει χρησιμοποιηθεί υλικό από τις διαφάνειες Computer Organization and Design, 4th Edition, Patterson & Hennessy, © 2008, MK]

Εισαγωγή

- Ακέραιοι αριθμοί
 - Αναπαράσταση
 - Πρόσθεση και αφαίρεση
 - Πολλαπλασιασμός και διαίρεση
 - Χειρισμός της υπερχείλισης
- Πραγματικοί αριθμοί κινητής υποδιαστολής
 - Αναπαράσταση και πράξεις

Αναπαράσταση προσημασμένων

- Αναπαράσταση σε συμπλήρωμα ως προς 2
 - Το πρώτο bit δείχνει το πρόσημο
 - ο θετικός, 1 αρνητικός

-

- **1000 0000 0000 0000 0000 0000 0000 0010** $_2 = -2.147.483.646_{10}$
-

Αριθμητική για υπολογιστές — 3

Πρόσθεση ακεραίων

- Παράδειγμα: 7 + 6

Αφαίρεση ακεραίων

- Πρόσθεση του συμπληρώματος του δεύτερου τελεστέου
- Παράδειγμα: 7 − 6 = 7 + (−6)

+7: 0000 0000 ... 0000 0111 -6: 1111 1111 ... 1111 1010 +1: 0000 0000 ... 0000 0001

Αριθμητική για υπολογιστές — 5

Υπερχείλιση

- Το πρόβλημα της υπερχείλισης (overflow)
 - Δεν χωράει το αποτέλεσμα στα 32 bit

Πράξη	Τελεστέος Α	Τελεστέος Β	Αποτέλεσμα που δείχνει υπερχείλιση
A + B	≥ 0	≥ 0	< 0
A + B	< 0	< 0	≥ 0
A – B	≥ 0	< 0	< 0
A – B	< 0	≥ 0	≥ 0

Χειρισμός υπερχείλισης

- Τι γίνεται με τους απρόσημους ακεραίους;
 - Χρησιμοποιούνται συνήθως για διευθύνσεις μνήμης (ή χαρακτήρες) όπου οι υπερχειλίσεις αγνοούνται
- Ο MIPS παρέχει ένα τρόπο για την αγνόηση της υπερχείλισης σε μερικές περιπτώσεις και την αναγνώρισή της σε άλλες
- Υπαρξη δύο ειδών αριθμητικών εντολών:
 - add (add), add immediate (addi), subtract (sub)
 - προκαλούν εξαιρέσεις (exceptions) κατά την υπερχείλιση
 - add unsigned (addu), add immediate unsigned (addiu), subtract unsigned (subu)
 - **δεν** προκαλούν <mark>εξαιρέσεις</mark> κατά την υπερχείλιση

Αριθμητική για υπολογιστές — 7

Χειρισμός υπερχείλισης

- Μερικές γλώσσες (π.χ., C) αγνοούν την υπερχείλιση
 - Χρήση των εντολών addu, addui, subu
- Άλλες εντολές (π.χ., Ada, Fortran)απαιτούν να προκληθεί εξαίρεση
 - Χρήση των εντολών add, addi, sub

Εξαίρεση

- Ο MIPS εντοπίζει τις υπερχειλίσεις με μια εξαίρεση (exception)
 - Σε πολλούς υπολογιστές ονομάζεται και διακοπή (interrupt)
- Εξαίρεση : Μη προγραμματισμένο συμβάν που διακόπτει την εκτέλεση του προγράμματος
- Όταν προκύψει εξαίρεση από υπερχείλιση εκτελούνται κάποιες ενέργειες:
 - Αποθηκεύεται η διεύθυνση της εντολής που υπερχείλισε
 - Ο υπολογιστής πραγματοποιεί άλμα σε μια προκαθορισμένη διεύθυνση ώστε να καλέσει την κατάλληλη ρουτίνα εξαίρεσης (exception routine)
 - Το πρόγραμμα μπορεί να συνεχίσει μετά την εκτέλεση της ρουτίνας εξαίρεσης από εκεί που είχε σταματήσει

Αριθμητική για υπολογιστές — 9

Αριθμητική για πολυμέσα

- Η επεξεργασία γραφικών λειτουργεί σε διανύσματα των 8-bit και 16-bit
 - Χρήση αθροιστή των 64-bit adder, με διαμέριση στις αλυσίδες κρατουμένων
 - Πράξεις σε διανύσματα των 8×8-bit, 4×16-bit ή 2×32-bit
 - SIMD (single-instruction, multiple-data)
- Λειτουργίες κορεσμού (saturation)
 - Στην υπερχείλιση, το αποτέλεσμα παίρνει τη μεγαλύτερη τιμή που μπορεί να αναπαρασταθεί
 - Δεν χρησιμοποιείται σε επεξεργαστές γενικού σκοπού
 - Σε επεξεργαστές ψηφιακής επεξεργασίας σήματος (digital signal processors)

Φόρτωση προσημασμένων

- Πρέπει να διατηρηθεί το πρόσημο του αριθμού
 - επέκταση προσήμου (sign extension)
- Στις απρόσημες φορτώσεις byte και half word
 - επέκταση μηδενικού (zero extension)
- Δύο παραλλαγές φόρτωσης byte:
 - load byte (1b): για προσημασμένους αριθμούς
 - Επέκταση προσήμου
 - load byte unsigned (1bu): για απρόσημους αριθμούς
 - Επέκταση μηδενικού
- Παρόμοια, για φορτώσεις half word:
 - load half (1h)
 - load half-word unsigned (1hu)

Βελτιστοποιημένο κύκλωμα

Εκτελεί τα βήματα παράλληλα: πρόσθεση/ολίσθηση

- Ένας κύκλος ανά πρόσθεση μερικού γινομένου
 - Αποδεκτό, εάν οι πολλαπλασιασμοί εκτελούνται αραιά

Αριθμητική για υπολογιστές — 15

Παράλληλος πολλαπλασιαστής

- Χρησιμοποιεί πολλαπλούς αθροιστές
 - Συμβιβασμός κόστους/απόδοσης

- Μπορεί να έχει διοχέτευση (pipeline)
 - Εκτελεί πολλούς πολλαπλασιασμούς παράλληλα

Πολλαπλασιασμός στον MIPS

- Δύο καταχωρητές των 32-bit για το γινόμενο
 - ΗΙ: τα περισσότερο σημαντικά 32 bit
 - LO: τα λιγότερο σημαντικά 32 bit
- Εντολές
 - mult rs, rt / multu rs, rt
 - 64-bit γινόμενο στους HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Μπορούμε να ελέγξουμε την τιμή ΗΙ για να δούμε εάν το γινόμενο δεν χωράει στα 32 bit
 - mul rd, rs, rt
 - Τα λιγότερο σημαντικά 32 bit του γινομένου -> rd

Αριθμητική για υπολογιστές — 17

Μείωση δύναμης

- Κάποιοι μεταγλωττιστές αντικαθιστούν τις πράξεις πολλαπλασιασμούς με σταθερές με μια σειρά από ολισθήσεις και προσθέσεις
- Παράδειγμα:
 - Κώδικας MIPS για τις παρακάτω εντολές με μείωση δύναμης (strength reduction), (a στον \$s0, b στον \$s1)
 - a = 2 * b;
 - a = 65 * b;

Βελτιστοποιημένο κύκλωμα

- Ένας κύκλος ανά αφαίρεση μερικού υπολοίπου
- Μοιάζει πολύ με τον πολλαπλασιαστή!
 - Μπορεί να χρησιμοποιηθεί το ίδιο υλικό και για τις δύο

Αριθμητική για υπολογιστές — 21

Ταχύτερη διαίρεση

- Δεν μπορεί να χρησιμοποιήσει παράλληλο υλικό όπως στον πολλαπλασιασμό
 - Το εάν θα γίνει αφαίρεση εξαρτάται από το πρόσημο του υπολοίπου
- Ταχύτεροι διαιρέτες παράγουν πολλαπλά bit πηλίκου σε κάθε βήμα
 - Και πάλι απαιτούν πολλά βήματα

Διαίρεση στον MIPS

- Καταχωρητές ΗΙ/LΟ για το αποτέλεσμα
 - HI: 32-bit υπόλοιπο
 - LO: 32-bit πηλίκο
- Εντολές
 - div rs, rt / divu rs, rt
 - Κανένας έλεγχος για υπερχείλιση ή διαίρεση με το 0
 - Εάν απαιτείται ο έλεγχος πρέπει να γίνει από το λογισμικό
 - Χρήση των mfhi, mflo για να πάρουμε το αποτέλεσμα

Αριθμητική για υπολογιστές — 23

Δεξιά ολίσθηση και διαίρεση

- Αριστερή ολίσθηση κατά *i* θέσεις
 ισοδυναμεί με πολλαπλασιασμό με 2ⁱ
- Δεξιά ολίσθηση διαιρεί με 2ⁱ?
 - Μόνο για απρόσημους αριθμούς
- Για προσημασμένους ακεραίους
 - Αριθμητική δεξιά ολίσθηση: επαναλαμβάνει το bit προσήμου
 - π.χ., –5 / 4
 - 11111011₂ >> 2 = 11111110₂ = -2
 - οτρογγυλοποίηση προς το -∞
 - αντί για 11111011₂ >>> 2 = 001111110₂ = +62

Συμβολική γλώσσα MIPS

Κατηγορία	Εντολή	Παράδειγμα	Σημασία	Σχόλια
	multiply	mult \$s2, \$s3	Hi, Lo = \$s2 x \$s3	προσημασμένο γινόμενο 64 bit στους Hi, Lo
	multiply unsigned	multu \$s2, \$s3	Hi, Lo = \$s2 x \$s3	απρόσημο γινόμενο 64 bit στους Hi, Lo
Αριθμητικές πράξεις	divide	div \$s2, \$s3	Lo = \$s2 / \$s3, Hi = \$s2 mod \$s3	Lo = πηλίκο, Hi = υπόλοιπο
	divide unsigned	divu \$s2, \$s3	Lo = \$s2 / \$s3, Hi = \$s2 mod \$s3	Απρόσημο πηλίκο και υπόλοιπο
	move from Hi	mfhi \$s1	\$s1 = Hi	Χρησιμοποιείται για να πάρει αντίγραφο του Hi
	move from Lo	mflo \$s1	\$s1 = Lo	Χρησιμοποιείται για να πάρει αντίγραφο του Lo

Αριθμητική για υπολογιστές — 25

Αναπαράσταση πραγματικών

- Επιστημονική σημειογραφία (scientific notation)
 - Μια σημειογραφία που δίνει αριθμούς με ένα μόνο ψηφίο στα αριστερά της υποδιαστολής
 - Υποστηρίζει πολύ μικρούς και πολύ μεγάλους αριθμούς
- Κανονικοποιημένος (normalized)
 - Ένας αριθμός σε επιστημονική σημειογραφία χωρίς αρχικά 0
- Παραδείγματα:
 - $1,0_{10} \times 10^{-9}$ [κανονικοποιημένος]
 - $0,1_{10} \times 10^{-8}$ και $10,0_{10} \times 10^{-10}$ [μη κανονικοποιημένοι]

Δυαδικοί σε επιστημονική σημειογραφία

- Δυαδικός πραγματικός αριθμός: $1,0_{two} \times 2^{-1} = 0,1_{two}$
- Αριθμητική κινητής υποδιαστολής (floating point FP)
 - Υποστηρίζει δυαδικούς αριθμούς σε επιστημονική σημειογραφία
 - Αναπαριστά αριθμούς στους οποίους η υποδιαστολή
 δεν είναι σε σταθερή θέση
 - Η γλώσσα C χρησιμοποιεί τους τύπους: float, double

Αριθμητική για υπολογιστές — 27

Αναπαράσταση FP

Οι αριθμοί κινητής υποδιαστολής έχουν τη μορφή:

 $1,xxxxxxxxxx_{two} \times 2^{yyyy}$

- κλάσμα (fraction):
 Η τιμή που τοποθετείται στο κλασματικό πεδίο
- **εκθέτης** (exponent): Η τιμή που τοποθετείται στο πεδίο του εκθέτη

Αναπαράσταση FP

- Συμβιβασμός μεταξύ των μεγεθών του κλάσματος (fraction) και του εκθέτη (exponent)
 - Λέξη σταθερού μεγέθους
- Συμβιβασμός μεταξύ ακρίβειας (precision) και εύρους (range)
 - Η αύξηση του μεγέθους του κλάσματος ενισχύει την ακρίβεια
 - Η αύξηση του μεγέθους του εκθέτη αυξάνει το εύρος των αριθμών

Αριθμητική για υπολογιστές — 29

Πρότυπο FP

- Ορίζεται από το IEEE Std 754-1985
- Αναπτύχθηκε ως απάντηση στην εμφάνιση διάφορων αναπαραστάσεων
 - Φορητότητα για επιστημονικό κώδικα
- Πλέον καθολική αποδοχή
- Δύο αναπαραστάσεις
 - Απλή ακρίβεια (single precision): 32-bit
 - Διπλή ακρίβεια (double precision): 64-bit

IEEE Floating-Point

апλή: 8 bit απλή: 23 bit διπλή: 11 bit διπλή: 52 bit S Exponent Fraction

 $x = (-1)^S \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- S: bit προσήμου (0 \Rightarrow μη αρνητικός, 1 \Rightarrow αρνητικός)
- Κανονικοποιημένο σημαντικό (significand): 1.0 ≤ |significand| < 2.0
 - Έχει πάντα ένα bit 1 πριν την υποδιαστολή, άρα δεν χρειάζεται να το αναπαραστήσουμε (κρυμμένο bit)
 - Σημαντικό = 1 + Κλάσμα
- Εκθέτης (exponent): πολωμένη σημειογραφία (biased notation): πραγματικός εκθέτης + πόλωση (bias)
 Εγγυάται ότι ο εκθέτης είναι απρόσημος

 - Απλή: Πόλωση= 127; Διπλή: Πόλωση= 1203

Αριθμητική για υπολογιστές — 31

Εύρος απλής ακρίβειας

- Εκθέτες 00000000 και 11111111 δεσμευμένοι
- Μικρότερη τιμή
 - Εκθέτης: 00000001
 - \Rightarrow πραγματικός εκθέτης = 1 127 = –126
 - Κλάσμα: 000...00 ⇒ σημαντικό = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Μεγαλύτερη τιμή
 - Εκθέτης: 111111110
 - ⇒ πραγματικός εκθέτης = 254 − 127 = +127
 - Κλάσμα: 111...11 ⇒ σημαντικό ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Εύρος διπλής ακρίβειας

- Εκθέτες 0000...00 και 1111...11 δεσμευμένοι
- Μικρότερη τιμή
 - Εκθέτης: 00000000001
 ⇒ πραγματικός εκθέτης = 1 − 1023 = −1022
 - Κλάσμα: 000...00 ⇒ σημαντικό = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Μεγαλύτερη τιμή
 - Εκθέτης: 111111111110
 - \Rightarrow πραγματικός εκθέτης = 2046 1023 = +1023
 - Κλάσμα: 111...11 ⇒ σημαντικό ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Αριθμητική για υπολογιστές — 33

Ακρίβεια FP

- Σχετική ακρίβεια
 - Όλα τα bit του κλάσματος είναι σημαντικά
 - Απλή: περίπου 2⁻²³
 - Ισοδύναμο με 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 δεκαδικά ψηφία ακρίβειας
 - Διπλή: περίπου 2⁻⁵²
 - Ισοδύναμο με 52 × log₁₀2 ≈ 52 × 0.3 ≈ 16 δεκαδικά ψηφία ακρίβειας

Παράδειγμα FP

- Αναπαράσταση του –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Κλάσμα = 1000...00₂
 - Εκθέτης = −1 + Πόλωση
 - Aπλή: −1 + 127 = 126 = 011111110₂
 - Διπλή: $-1 + 1023 = 1022 = 0111111111110_2$
- Aπλή: 10111111101000...00
- **Δ**ιπλή: 10111111111101000...00

Αριθμητική για υπολογιστές — 35

Παράδειγμα FP

- Ποιος αριθμός αναπαριστάνεται από την μορφή απλής ακρίβειας
 - 11000000101000...00
 - S = 1
 - Κλάσμα = 01000...00₂
 - Eκθέτης = 10000001_2 = 129
- $X = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 127)}$ $= (-1) \times 1.25 \times 2^{2}$ = -5.0

Μη κανονικοποιημένοι αριθμοί

Εκθέτης = 000...0 ⇒ το κρυμμένο bit 0

$$x = (-1)^S \times (0 + Fraction) \times 2^{-Bias}$$

- Μικρότεροι από τους κανονικοποιημένους
 - επιτρέπουν ανεπάρκεια (underflow) με φθίνουσα ακρίβεια
- Με κλάσμα = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$

Δύο αναπαράστασεις του 0.0!

Αριθμητική για υπολογιστές — 37

Άπειρο και NaN

- Εκθέτης = 111...1, Κλάσμα = 000...0
 - ± άπειρο
 - Μπορεί να χρησιμοποιηθεί για να αποφύγουμε την ανάγκη για έλεγχο υπερχείλισης
- Εκθέτης = 111...1, Κλάσμα ≠ 000...0
 - Not-a-Number (NaN)
 - Υποδηλώνει μη επιτρεπτό ή μη καθορισμένο αποτέλεσμα
 - **π.**χ., 0.0 / 0.0

Πρόσθεση FP

- Θεωρήστε δεκαδικούς των 4 ψηφίων
 - $9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Ευθυγράμμιση των υποδιαστολών
 - Ολίσθηση του αριθμού με το μικρότερο εκθέτη
 - $9.999 \times 10^{1} + 0.016 \times 10^{1}$
- 2. Πρόσθεση των σημαντικών
 - $9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Κανονικοποίηση αποτελέσματος και έλεγχος για over/underflow
 - 1.0015 × 10²
- 4. Στρογγυλοποίηση και κανονικοποίηση ξανά (εάν χρειάζεται)
 - 1.002×10^{2}

Αριθμητική για υπολογιστές — 39

Πρόσθεση FP

- Θεωρήστε δυαδικούς των 4 ψηφίων
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Ευθυγράμμιση των δυαδικών υποδιαστολών
 - Ολίσθηση του αριθμού με το μικρότερο εκθέτη
 - $\ \ \, 1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Πρόσθεση των σημαντικών
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Κανονικοποίηση αποτελέσματος και έλεγχος για over/underflow
 - $1.000_2 \times 2^{-4}$
- 4. Στρογγυλοποίηση και κανονικοποίηση ξανά (εάν χρειάζεται)
 - \bullet 1.000₂ × 2⁻⁴ = 0.0625

Κύκλωμα αθροιστή FP

- Πιο πολύπλοκο από τον αθροιστή ακεραίων
- Εάν εκτελεστεί η πράξη σε έναν κύκλο θα διαρκέσει πολύ
 - Αργό ρολόι θα επιβάρυνε την εκτέλεση και των άλλων εντολών
- Οι αθροιστές FP συνήθως εκτελούν την πράξη σε πολλούς κύκλους
 - Μπορεί να έχουν διοχέτευση (pipeline)

Πολλαπλασιασμός FP

- Θεωρήστε δεκαδικούς των 4 ψηφίων
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Πρόσθεση των εκθετών
 - Για πολωμένους εκθέτες, αφαίρεση της πόλωσης από το άθροισμα
 - Nέος εκθέτης = 10 + −5 = 5
- 2. Πολλαπλασιασμός των σημαντικών
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^5$
- 3. Κανονικοποίηση αποτελέσματος και έλεγχος για over/underflow
 - 1.0212 × 10⁶
- 4. Στρογγυλοποίηση και κανονικοποίηση ξανά (εάν χρειάζεται)
 - 1.021 × 10⁶
- 5. Καθορισμός του προσήμου του αποτελέσματος
 - +1.021 × 10⁶

Αριθμητική για υπολογιστές — 43

Πολλαπλασιασμός FP

- Θεωρήστε δυαδικούς των 4 ψηφίων
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Πρόσθεση των εκθετών
 - Μη πολωμένοι: -1 + -2 = -3
 - Πολωμένοι: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Πολλαπλασιασμός των σημαντικών
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Κανονικοποίηση αποτελέσματος και έλεγχος για over/underflow
 - $1.110_2 \times 2^{-3}$
- 4. Στρογγυλοποίηση και κανονικοποίηση ξανά (εάν χρειάζεται)
 - 1.110₂ × 2⁻³
- 5. Καθορισμός του προσήμου: +v × −v ⇒ −v
 - $-1.110_2 \times 2^{-3} = -0.21875$

Κυκλώματα αριθμητικής FP

- Ο πολλαπλασιαστής FP έχει παρόμοια (ή μικρότερη) πολυπλοκότητα με τον αθροιστή FP
 - Χρησιμοποιεί πολλαπλασιαστή αντί αθροιστή για τα σημαντικά
 - Δεν ευθυγραμμίζει τους εκθέτες
- Τα κυκλώματα αριθμητικής FP συνήθως εκτελούν
 - Πρόσθεση, αφαίρεση, πολλαπλασιασμό, διαίρεση, τετραγωνική ρίζα
 - Μετατροπές FP ↔ integer
- Οι λειτουργίες διαρκούν πολλούς κύκλους
 - Μπορεί να έχουν διοχέτευση (pipeline)

Αριθμητική για υπολογιστές — 45

Εντολές FP στον MIPS

- Υλικό FP στον συνεπεξεργαστή 1
 - Πρόσθετος επεξεργαστής που επεκτείνει το σύνολο εντολών
- Ξεχωριστοί καταχωρητές FP
 - 32 απλής ακρίβειας: \$f0, \$f1, ... \$f31
 - Σε ζευγάρια για διπλή ακρίβεια: \$f0/\$f1, \$f2/\$f3, ...
- Οι εντολές FP εκτελούνται μόνο σε καταχωρητές FP
 - Γενικά τα προγράμματα δεν εκτελούν λειτουργίες ακεραίων σε δεδομένα FP data και το ανάποδο
 - Περισσότεροι καταχωρητές με μικρή επίπτωση στο μέγεθος του κώδικα
- Εντολές φόρτωσης και αποθήκευσης FP s
 - lwc1, ldc1, swc1, sdc1
 - π.χ., ldc1 \$f8, 32(\$sp)

Εντολές FP στον MIPS

- Αριθμητική απλής ακρίβειας
 - add.s, sub.s, mul.s, div.s
 - π.χ., add.s \$f0, \$f1, \$f6
- Αριθμητική διπλής ακρίβειας
 - add.d, sub.d, mul.d, div.d
 - π.χ., mul.d \$f4, \$f4, \$f6
- Σύγκριση απλής και διπλής ακρίβειας
 - c.xx.s, c.xx.d (xx είναι eq, 1t, 1e, ...)
 - Θέτει στο 1 ή μηδενίζει το bit συνθήκης FP
 - π.χ. c.lt.s \$f3, \$f4
- Διακλάδωση εάν η συνθήκη FP είναι αληθής (true) ή ψευδής (false)
 - bc1t, bc1f
 - π.χ., bc1t TargetLabel

Αριθμητική για υπολογιστές — 47

Συμβολική γλώσσα MIPS

Κατηγορία	Εντολή	Παράδειγμα	Σημασία	Σχόλια
Αριθμητικές πράξεις	FP add single	add.s f2,\$f4,\$f6	\$f2 = \$f4 + \$f6	Πρόσθεση FP (απλή ακρίβεια)
	FP subtract single	sub.s \$f2,\$f4,\$f6	\$f2 = \$f4 - \$f6	Αφαίρεση FP (απλή ακρίβεια)
	FP multiply single	mul.s \$f2,\$f4,\$f6	\$f2 = \$f4 x \$f6	Πολλαπλασιασμός FP (απλή ακρίβεια)
	FP divide single	div.s \$f2,\$f4,\$f6	\$f2 = \$f4 / \$f6	Διαίρεση FP (απλή ακρίβεια)
	FP add double	add.d \$f2,\$f4,\$f6	\$f2 = \$f4 + \$f6	Πρόσθεση FP (διπλή ακρίβεια)
	FP subtract double	sub.d \$f2,\$f4,\$f6	\$f2 = \$f4 - \$f6	Αφαίρεση FP (διπλή ακρίβεια)
	FP multiply double	mul.d \$f2,\$f4,\$f6	\$f2 = \$f4 x \$f6	Πολλαπλασιασμός FP (διπλή ακρίβεια)
	FP divide double	div.d \$f2,\$f4,\$f6	\$f2 = \$f4 / \$f6	Διαίρεση FP (διπλή ακρίβεια)

Συμβολική γλώσσα MIPS

Κατηγορία	Εντολή	Παράδειγμα	Σημασία	Σχόλια
Μεταφορά δεδομένων	load word copr. 1	lwc1 \$f1,100(\$s2)	\$f1 = Memory[\$s2 + 100]	Δεδομένα 32 bit σε καταχωρητή FP
	store word copr. 1	swc1 \$f1,100(\$s2)	Memory[\$s2 + 100] = \$f1	Δεδομένα 32 bit στη μνήμη
Διακλάδωση υπό συνθήκη	branch on FP true	bc1t 25	αν (cond == 1) μετάβαση στο PC + 4 + 100	Σχετική ως προς PC διακλάδωση αν ισχύει συνθήκη FP
	branch on FP false	bc1f 25	αν (cond == 0) μετάβαση στο PC + 4 + 100	Σχετική ως προς PC διακλάδωση αν δεν ισχύει συνθήκη FP
	FP compare single (eq, ne,lt,le,gt,ge)	c.lt.s \$f2,\$f4	αν (\$f2 < \$f4) τότε cond = 1 · αλλιώς cond = 0	Σύγκριση FP «μικρότερο από», απλής ακρίβειας
	FP compare double (eq, ne,lt,le,gt,ge)	c.lt.d \$f2,\$f4	αν (\$f2 < \$f4) τότε cond = 1 · αλλιώς cond = 0	Σύγκριση FP «μικρότερο από», διπλής ακρίβειας

Αριθμητική για υπολογιστές — 49

Παράδειγμα FP : ℉ σε ℃

 Παράδειγμα: Μετατροπή θερμοκρασίας από Φαρενάιτ σε βαθμούς Κελσίου:

```
float f2c (float fahr)
{
return ((5.0/9.0) * (fahr - 32.0));
}
```

fahr στον \$f12, αποτέλεσμα στον \$f0, οι σταθερές 5.0,9.0 και 32.0 στη μνήμη

Κώδικας MIPS

```
# Φόρτωση των σταθερών σε καταχωρητές KY:
f2c:
lwc1 $f16,const5($gp) #$f16 = 5.0
lwc1 $f18,const9($gp) #$f18 = 9.0
div.s $f16, $f16, $f18 #$f16 = 5.0 / 9.0
lwc1 $f18,const32($gp) #$f18 = 32.0
# Μετατροπή
sub.s $f18, $f12, $f18 #$f18 = fahr - 32.0
mul.s $f0, $f16, $f18 #$f0 = (5/9)*(fahr - 32.0)
# επιστροφή
jr $ra
```

Αριθμητική για υπολογιστές — 51

Πολλαπλασιασμός πινάκων

- Διευθύνσεις των πινάκων στους \$a0, \$a1, \$a2
- Μεταβλητές i, j, k στους \$s0, \$s1, \$s2

Κώδικας MIPS

- Χρήση των ψευδοεντολών της συμβολικής γλώσσας :
 - 1i : φορτώνει μια σταθερά σε έναν καταχωρητή)
 - 1.d και s.d : ζεύγος εντολών μεταφοράς δεδομένων,
 lwc1 ή swc1, σε ένα ζεύγος καταχωρητών ΚΥ

```
# Αρχικοποίηση των βρόχων
```

Η τιμή τερματισμού του βρόχου σε έναν προσωρινό καταχωρητή

Αρχικές τιμές στις μεταβλητές των τριών βρόχων for:

mm:...

```
li $t1, 32 # $t1 = 32 (τέλος μεγέθους γραμμής)
```

li \$**s**0, 0 # i = 0 αρχικές τιμές πρώτου βρόχου for

L1: 1i \$**s1**, **0** # j = 0 αρχικές τιμές δεύτερου βρόχου for

L2: 1i \$**s2, 0** # k = 0 αρχικές τιμές τρίτου βρόχου for

Αριθμητική για υπολογιστές — 53

Κώδικας MIPS

```
# Υπολογισμός της διεύθυνση του x[i][j] και φόρτωση στον $f4
sll $t2, $s0, 5 # $t2 = i * 2^5 (μέγεθος γραμμής του x)
addu $t2, $t2, $s1 # t2 = i * \mu \epsilon \gamma \epsilon \theta \circ (\gamma \rho \alpha \mu \mu \dot{\eta} \varsigma) + i
s11 $t2, $t2, 3 # $t2 = σχετική διεύθυνση byte του [i][j]
addu $t2, $a0, $t2 # $t2 = \delta i \epsilon \dot{\theta} u v \sigma \eta byte του x[i][j]
1.d $f4, 0($t2)
                                # f4 = 8 byte TOU x[i][i]
# Υπολογισμός της διεύθυνση του z[k][j] και φόρτωση στον $f16
L3:
                                # $t0 = k * 2^5 (μέγεθος γραμμής του z)
sll $t0, $s2, 5
addu $t0, $t0, $s1 #$t0 = k * \mu \epsilon \gamma \epsilon \theta \circ \zeta(\gamma \rho \alpha \mu \mu \dot{\eta} \zeta) + i
s11 $t0, $t0, 3 # $t0 = σχετική διεύθυνση byte του [k][j]
addu $t0, $a2, $t0 # $t0 = \delta i \epsilon \dot{\theta} u v \sigma \eta byte του z[k][j]
                                # f16 = 8 byte tou z[k][j]
1.d $f16, 0($t0)
                                                    Αριθμητική για υπολογιστές — 54
```

Κώδικας MIPS

```
# Υπολογισμός της διεύθυνση του y[i][k] και φόρτωση στον $f18 sll $t2, $s0, 5 #$t0 = i * 25 (μέγεθος γραμμής του y) addu $t0, $t0, $s2 #$t0 = i * μέγεθος(γραμμής) + k sll $t0, $t0, 3 #$t0 = σχετική διεύθυνση byte του [i][k] addu $t0, $a1, $t0 #$t0 = διεύθυνση byte του y[i][k] l.d $f18, 0($t0) #$f18 = 8 byte του y[i][k] % $f18 = 8 byte του y[i][k] % $f16, $f18, $f16 #$f16 = y[i][k] * z[k][j] add.d $f4, $f4, $f16 #$f16 = x[i][i] + y[i][k] * z[k][i]
```

Αριθμητική για υπολογιστές — 55

Κώδικας MIPS

```
# Αύξηση του k και έλεγχος για το τέλος του εσωτερικού βρόχου.
# Στο τέλος του βρόχου, αποθηκεύουμε το άθροισμα στο x[i][j]
addiu $s2, $s2, 1
                            # $k k + 1
       $s2, $t1, L3
                            # αν (k!= 32) μετάβαση στην L3
bne
                            \# x[i][i] = \$f4
       $f4, 0($t2)
s.d
# Αύξηση των j και l του μεσαίου και του εξωτερικού βρόχου,
# και έλεγχος για το τέλος των βρόχων.
addiu $s1, $s1, 1
                            \# j = j + 1
                            # αν (j!= 32) μετάβαση στην L2
       $s1, $t1, L2
                            \# i = i + 1
addiu $s0, $s0, 1
       $s0, $t1, L1
                            # αν (i!= 32) μετάβαση στην L1
bne
                                          Αριθμητική για υπολογιστές — 56
```