Deep Learning for Computer Vision HW2 Report

電機三 張景程 b04901138

Problem 1 Kernel Trick

Problem 2 Color and Texture Segmentation

Original Picture:

(a) Color Segmentation

RGB:

LAB:

(b) Texture Segmentation

38 dimensions:

41 dimensions (+LAB):

Problem 3 Recognition with Bag of Visual Words

(a) Plot the interest points detection results

Image picked : Mountain/image_0033.jpg

Indicate 30 interest points

(b) Plot the visual words and the associated interest points in the PCA supspace

C clusters: 50

Max Iterations = 5000

In each cluster, there is a black point which represents the corresponding centroid.

(c) Choose one image from each category and plot their Hard-Sum, Soft-Sum, Soft-Max results.

C clusters: 50 Max Iteration = 5000 Hessian Threshold = 1000

From above histograms, we can observe that the distribution of Hard-Sum strategy has several peaks on some specific visual words and has significant difference between different classes. On the other hand, the difference between classes of the distribution in Soft-Sum and Soft-Max is not as big as the Hard-Sum one. It means that these two strategy may not get the strong characteristic of pictures. Therefore, I would expect that the **Hard-Sum** strategy will have a better classification result.

(d) Adopt the k-nearest neighbors classifier (k-NN) to perform classification using the above Bow features.

(1) Use Train-10 for training and Test-100 for testing. (select k=5)

C clusters: 50 Max Iteration = 5000 Hessian Threshold = 1000

	Hard-Sum	Soft-Sum	Soft-Max
Accuracy	0.578	0.356	0.584

由結果可以看出 Hard-Sum 和 Soft-Max 的正確率非常接近,而 Soft-Sum 準確率最差,推論其原因應為 Hard-Sum 只保留了幾個最重要的特徵(characteristic),使得有幾項數據皆為零,因此可能會把其他的資訊也一併濾掉;而從 Soft-Max 的 histogram 可以看出,它除了仍有少數幾個 peak 以外,其他幾項數值皆不為零,也就是可以把一些background 的資訊保留下來,因此 Soft-Max 表現也很好。

Soft-Sum 的 distribution 結果會使每個 class 之間的差距相差不大,因此機器也較難正確的分辨類別。

(2) Use Train-100 for training and Test-100 for testing.

C clusters: 50 Max Iteration = 5000 Hessian Threshold = 1000

k / strategy	Hard-Sum	Soft-Sum	Soft-Max
1-nearest	0.660	0.598	0.588
3-nearest	0.686	0.620	0.648
5-nearest	0.698	0.634	0.674
7-nearest	0.714	0.634	0.676

C clusters: 50 Max Iteration = 10000 Hessian Threshold = 1000

k / strategy	Hard-Sum	Soft-Sum	Soft-Max
1-nearest	0.644	0.596	0.614
3-nearest	0.668	0.620	0.646
5-nearest	0.686	0.632	0.678
7-nearest	0.706	0.634	0.670

C clusters: 50 Max Iteration = 5000 Hessian Threshold = 500

k / strategy	Hard-Sum	Soft-Sum	Soft-Max
1-nearest	0.686	0.618	0.646
3-nearest	0.726	0.620	0.666
5-nearest	0.744	0.630	0.694
7-nearest	0.728	0.642	0.704

C clusters: 100 Max Iteration = 5000 Hessian Threshold = 1000

k / strategy	Hard-Sum	Soft-Sum	Soft-Max
1-nearest	0.646	0.600	0.652
3-nearest	0.644	0.616	0.676
5-nearest	0.666	0.642	0.704
7-nearest	0.674	0.636	0.694

C clusters: 100 Max Iteration = 10000 Hessian Threshold = 1000

k / strategy	Hard-Sum	Soft-Sum	Soft-Max
1-nearest	0.652	0.602	0.638
3-nearest	0.658	0.610	0.652
5-nearest	0.650	0.640	0.670
7-nearest	0.672	0.634	0.696

C clusters: 100 Max Iteration = 5000 Hessian Threshold = 500

k / strategy	Hard-Sum	Soft-Sum	Soft-Max
1-nearest	0.704	0.624	0.670
3-nearest	0.718	0.624	0.708
5-nearest	0.712	0.632	0.718
7-nearest	0.714	0.638	0.708

從結果可以看出當我們把 training data 從 train-10 改為 train-100 之後,三種 BoW 的準確率都提升不少,因為我們 training data 數量增為十倍,可以從資料中得到更多的資訊,也因此會得到較高的準確率。

此外,由實驗數據中也可以觀察出,增加 cluster 的數量 C,Hard-Sum 的準確率會降低而 Soft-Max 的準確率則會增加;k 的值越大(5 or 7),對三種 BoW 的準確率也都會有所提升;而增加 kmeans 的 iteration 數量會使準確率略微增加,但效果並不明顯,

理論上 iteration 次數越多,所找到的 centroid 會更準確,可能是因為 Iteration 5000 次之後已經收斂差不多了,所以和一萬次差別不大,若是數量改為 1000 v.s. 5000 可能會得到更明顯的結果。

而 Hessian Threshold 設得越小,會得到更多的 descriptor,所以在 detect 一張 image 時可以得到更多資訊,也因此準確率會越高,但也因為 descriptor 數量增加,載 運算上也會花更多時間。