Devoir maison 8 - Fonctions convexes

Rappel: Une fonction f définie sur un intervalle I est dite **convexe** si :

$$\forall (a,b) \in I^2, \forall \lambda \in [0,1], \quad f(\lambda a + (1-\lambda)b) \le \lambda f(a) + (1-\lambda)f(b)$$

f est dite **concave** si -f est convexe.

1. Soient $f \in \mathbb{R}^I$ et \mathscr{C} sa courbe représentative dans un repère orthonormé. Montrer que f est convexe sur I si, et seulement si la partie Epif du plan située au-dessus de $\mathscr C$ (appelée épigraphe de f) est convexe, c'est-à-dire :

$$\forall (A,B) \in Epif, \quad [AB] \subset Epif$$

(ce qui équivaut à dire que tout arc de \mathscr{C} est sous sa corde.)

 \Rightarrow Supposons f convexe.

Soient A(x, y) et B(x', y') des points de Epif, avec $x < x', y \ge f(x)$ et $y' \ge f(x')$.

f est convexe donc $\forall \lambda \in [0,1], f(\lambda x + (1-\lambda)x') \leq \lambda f(x) + (1-\lambda)f(x') \leq \lambda y + (1-\lambda)y'$.

Ainsi $M(\lambda x + (1-\lambda)x', \lambda y + (1-\lambda)y') \in Epif$, c'est-à-dire que l'ensemble des points du segment [AB] est dans Epif.

 \Leftarrow Supposons Epif convexe.

Soient A(x, f(x)) et B(x', f(x')) des points de \mathscr{C} . Ils sont également des points de Epif donc pour $\lambda \in [0,1]$ le point $M(\lambda x + (1-\lambda)x', \lambda f(x) + (1-\lambda)f(x')) \in [AB]$ est situé dans Epif donc $f(\lambda x + (1 - \lambda)x') \le \lambda f(x) + (1 - \lambda)f(x').$

On en déduit que f est convexe.

- 2. Montrer que f est convexe sur I si, et seulement si pour tout $a \in I$, la fonction $x \mapsto \frac{f(x) f(a)}{x}$ est croissante sur tout intervalle de $I \setminus \{a\}$.
 - \Rightarrow Soit $(a,b,c) \in I^3$. Si $a < b \le c$, on note $\lambda = \frac{b-a}{c-a} \in [0,1]$; on a $b = (1-\lambda)a + \lambda c$ donc, f étant

$$f(b) \le (1 - \lambda)f(a) + \lambda f(c) \Leftrightarrow (f(b) - f(a)) \le \lambda (f(c) - f(a)) \Leftrightarrow \frac{f(b) - f(a)}{b - a} \le \frac{f(c) - f(a)}{c - a}$$

Si on a $b \le c < a$, on prend $\lambda = \frac{a-c}{a-b}$ et on obtient le même résultat.

 \Leftarrow Soit $(a,b) \in I^2, \lambda \in [0,1]$. Sans perte de généralités, on suppose a < b et $\lambda \neq 1$.

Comme
$$x \mapsto \frac{f(x) - f(a)}{x - a}$$
 est croissante alors en notant $c = \lambda a + (1 - \lambda)b$, on a
$$\frac{f(c) - f(a)}{c - a} \le \frac{f(b) - f(a)}{b - a}$$
 ce qui donne $f(c) \le \lambda f(a) + (1 - \lambda)f(b)$.

- 3. Soient f une fonction dérivable sur un intervalle I, et $\mathscr C$ sa courbe dans un repère.
 - a. Montrer que f est convexe sur I si, et seulement si f' est croissante sur I.
 - \Rightarrow Si f est convexe, soient a < x < b. D'après la question précédente, les fonctions $x \mapsto \frac{f(x) f(a)}{x a}$ et $x \mapsto \frac{f(b) f(x)}{b x}$ sont croissantes, on a donc : $\frac{f(x) f(a)}{x a} \le \frac{f(b) f(a)}{b a} \le \frac{f(b) f(a)}{b a}$. f étant dérivable, par passage à la limite, on obtient : $f'(a) \le \frac{f(b) - f(a)}{b - a} \le f'(b)$.

- \Leftarrow On suppose f' croissante. Soit g définie sur $I \setminus \{a\}$ par $g(x) = \frac{f(x) f(a)}{x a}$ g est dérivable sur son domaine car f est dérivable sur I et on a : $g'(x) = \frac{f'(x) - \frac{f(x) - f(a)}{x - a}}{x - a}$. On suppose a < x (la démonstration est identique si x < a). Le théorème des accroissements finis donne l'existence de $c \in]a,x[$ tel que $\frac{f(x)-f(a)}{x-c}=f'(c)$ donc $g'(x) = \frac{f'(x) - f'(c)}{x - a}$; par croissance de f', $g'(x) \ge 0$ et g est croissante.
- b. Montrer que f est convexe sur I si, et seulement si $\mathscr C$ est située au-dessus de toutes ses tangentes.
 - \Rightarrow On suppose f est convexe. Soient a < a + h < x. On a : $\frac{f(a+h) f(a)}{h} \le \frac{f(x) f(a)}{x a}$ Par passage à la limite, on obtient $f'(a) \le \frac{f(x) - f(a)}{x - a}$ donc $f(x) \ge f'(a)(x - a) + f(a)$. Soient x < a + h < a. On a : $\frac{f(a+h) - f(a)}{h} \ge \frac{f(x) - f(a)}{x - a}$.

 Par passage à la limite, on obtient $f'(a) \ge \frac{f(x) - f(a)}{x - a}$ donc $f(x) \ge f'(a)(x - a) + f(a)$. \Leftarrow On suppose que $\mathscr C$ est au-dessus de ses tangentes.

 Soit $(a, b) \in I^2$ tel que $a \le I^2$.

Soit
$$(a,b) \in I^2$$
 tel que $a < b$. On a:

$$f(b) \ge f(a) + f'(a)(b-a)$$
 done $\frac{f(b) - f(a)}{b-a} \ge f'(a)$

et
$$f(a) \ge f(b) + f'(b)(a-b)$$
 donc $\frac{f(a) - f(b)}{a-b} \le f'(b)$.
Finalement on a $f'(a) \le f'(b)$ donc f est croissante, donc d'après le **a.** f est convexe.

- **4.** Étudier la convexité des fonctions $f: x \mapsto e^x, g: x \mapsto \ln(x)$ et $h: x \mapsto x^3$. f est convexe, g est concave et h est convexe sur \mathbb{R}^+ et concave sur \mathbb{R}^- .
- 5. En utilisant la convexité, montrer que

$$\forall x \in \left[0, \frac{\pi}{2}\right], \quad \frac{2}{\pi}x \le \sin(x) \le x$$

La fonction sin est concave sur $\left[0,\frac{\pi}{2}\right]$. On a donc $\frac{2}{\pi}x \leq \sin x$ car la courbe est au-dessus de sa corde et $\sin x \leq x$ car la tangente en O est au-dessus de la courbe.

6. Soient f une fonction convexe sur un intervalle I et n un entier supérieur à 2.

Montrer que pour
$$(x_i)_{1 \le i \le n} \in I^n$$
, $(\lambda_i)_{1 \le i \le n} \in (\mathbb{R}_+^*)^n$ tel que $\sum_{i=1}^n \lambda_i = 1$ on a :

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i)$$

Cette inégalité s'appelle inégalité de Jensen.

Soient f une fonction convexe, $n \in \mathbb{N}, n \geq 2$. On note P_n l'assertion :

$$\forall (x_i)_{1 \le i \le n} \in I^n, (\lambda_i)_{1 \le i \le n} \in (\mathbb{R}_+^*)^n \text{ tel que } \sum_{i=1}^n \lambda_i = 1, f\left(\sum_{i=1}^n \lambda_i x_i\right) \le \sum_{i=1}^n \lambda_i f(x_i).$$

On vérifie P_2 en prenant $\lambda = \lambda_1$ et $1 - \lambda = \lambda_2$ dans la définition de la convexité. Soit $n \geq 2$. On suppose P_n vérifiée. Soit $(x_i)_{1 \leq i \leq n+1} \in I^{n+1}$ et $(\lambda_i)_{1 \leq i \leq n+1} \in (\mathbb{R}_+^*)^{n+1}$ tels que $\sum_{i=1}^{n+1} \lambda_i = 1. \text{ On note } \lambda_0 = \sum_{i=1}^{n} \lambda_i \text{ et } y_0 = \sum_{i=1}^{n} \frac{\lambda_i}{\lambda_0} x_i. \text{ Alors on a :}$

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f\left(\lambda_0 y_0 + (1 - \lambda_0) x_{n+1}\right) \le \lambda_0 f(y_0) + (1 - \lambda_0) f(x_{n+1}).$$

D'après l'hypothèse de récurrence, comme $\sum_{i=1}^{n} \frac{\lambda_i}{\lambda_0} = 1$, on a $f\left(\sum_{i=1}^{n} \frac{\lambda_i}{\lambda_0} x_i\right) \leq \sum_{i=1}^{n} \frac{\lambda_i}{\lambda_0} f(x_i)$.

Finalement $f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) \leq \sum_{i=1}^{n} \lambda_i f(x_i) + \lambda_{n+1} f(x_{n+1})$ donc P_{n+1} est vérifiée.

Par principe de récurrence, P_n est vérifiée pour tout entier $n \geq 2$

7. Comparaison de moyennes :

Soient $n \in \mathbb{N}^*$ et $(a_i)_{1 \leq i \leq n} \in (\mathbb{R}_+^*)^n$. On note :

$$A = \frac{1}{n} \sum_{i=1}^{n} a_i$$
, $G = \sqrt[n]{a_1 \cdots a_n}$, et H tel que $\frac{1}{H} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{a_i}$

Montrer que

$$H \le G \le A$$

A s'appelle moyenne arithmétique, G moyenne géométrique et H moyenne harmonique de la famille $(a_i)_{1 \le i \le n}$.

La fonction ln est concave. Avec $\forall i \in [1, n], \lambda_i = \frac{1}{n}$; on a:

$$\ln(G) = \frac{1}{n} \sum_{i=1}^{n} \ln(a_i) \le \ln\left(\sum_{i=1}^{n} \frac{a_i}{n}\right) \text{ donc } G \le A.$$

De plus,
$$\ln\left(\frac{1}{G}\right) = -\ln(G) = -\frac{1}{n}\sum_{i=1}^{n}\ln(a_i) = \frac{1}{n}\sum_{i=1}^{n}\ln\left(\frac{1}{a_i}\right) \le \ln\left(\sum_{i=1}^{n}\frac{1}{na_i}\right) \operatorname{donc} \frac{1}{G} \le \frac{1}{H}.$$