		Variables acted upon.	Variables receiving results.	Indication of change in the value on any Variable.	Statement of Results.	Data.			Working Variables.											Result Variables.			
Number of Operation.	5					1V ₁ 0 0 0 1	1V ₂ 0 0 0 2	1V ₃ O 0 0 4	°V₄ ○0 0 0	°V ₅	°V ₆ ○ 0 0 0 0	°V7	0 0 0 0 0	°V₂ ○ 0 0	°V ₁₀ ○ 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0		∘ y ₁₃ ○ 0 0 0	B, in a decimal O is A fraction.	B ₃ in a decimal Og Ar fraction.	B in a Gerimal O A fraction.	100
	×	V ₂ × 1V ₃	1V4, 1V5, 1V6	$ \left\{ \begin{array}{l} ^{1}V_{2} = ^{1}V_{2} \\ ^{1}V_{3} = ^{1}V_{3} \\ ^{1}V_{4} = ^{2}V_{4} \end{array} \right\} $	= 2 n		2	n	2 n	2 n	2 n											7 12	
	-	V4 - 1V1	2V4	1V, = 1V,	= 2 n - 1	1			2n - 1								1			0 156		196	1
	+	V ₅ +1V ₁	2V5	$\left\{ \begin{array}{l} {}^{1}V_{5} = {}^{2}V_{5} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{array} \right\}$	= 2 n + 1	1				2n + 1							1			1 1 1	In the	1712	1
1	+	$V_5 + {}^2V_4$	1V ₁₁	$\left\{ \begin{smallmatrix} 2V_5 &= {}^0V_5 \\ {}^2V_4 &= {}^0V_4 \end{smallmatrix} \right\}$	$=\frac{2n-1}{2n+1} \dots$				0	0						$\frac{2n-1}{2n+1}$		7 10	or some beautiful			4.00	1
1	+ 1	V ₁₁ +1V ₂	2V ₁₁	$\left\{ \begin{smallmatrix} 1 & V_{11} = 2 & V_{11} \\ 1 & V_{2} = 1 & V_{2} \end{smallmatrix} \right\}$	$=\frac{1}{2}\cdot\frac{2n-1}{2n+1}$		2									$\frac{1}{2} \cdot \frac{2n-1}{2n+1}$			Park the book of				1
ı	- 1	V ₁₃ -2V ₁	1V ₁₃	$\left\{ \begin{smallmatrix} 2V_{11} = {}^{0}V_{11} \\ {}^{0}V_{13} = {}^{1}V_{13} \end{smallmatrix} \right\}$	$=-\frac{1}{2}\cdot\frac{2^{n}-1}{2^{n}+1}=\Lambda_{0}$											0			$-\frac{1}{2} \cdot \frac{2n-1}{2n+1} = \Lambda_0$	-			1
			1V ₁₀	$\left\{ {}^{1}V_{3} = {}^{1}V_{3} \\ {}^{1}V_{1} = {}^{1}V_{1} \right\}$	= n - 1 (= 3)	1		п							n-1		. 10		ay diship! articles		-	Lizo	1
	+	V2 + 0V7	ıv,	$ \begin{cases} {}^{1}V_{2} = {}^{1}V_{2} \\ {}^{0}V_{7} = {}^{1}V_{7} \\ {}^{1}V_{6} = {}^{1}V_{6} \\ {}^{0}V_{11} = {}^{3}V_{11} \\ \end{cases} $	= 2 + 0 = 2		2					2					10				- 135	7	1
۱	+	V6+1V7	3V ₁₁	\\\ \begin{cases} 0 V_{11} = 3V_{11} \\ 0 V_{11} = 3V_{11} \end{cases} \]	$=\frac{2n}{2}=\Lambda_1$						2 n	2				$\frac{2n}{2} = \Lambda_1$		7900		1		1	A
	×	V21×3V1	ıv ₁₂	3V. = 3V.	$= B_1 \cdot \frac{2n}{2} = B_1 A_1 \dots$											$\frac{2n}{2} = \Lambda_1$	$B_1 \cdot \frac{2\pi}{2} =$	B ₁ A ₁		B ₁		CT ALL	d
1			² V ₁₃	$\left\{ {}^{1V}_{12} = {}^{0V}_{12} \right\}$	$= -\frac{1}{2} \cdot \frac{\frac{2}{2}n - 1}{2n + 1} + B_1 \cdot \frac{2n}{2}$												0		$\left\{-\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2}\right\}$				į
	- 1	V ₁₀ -1V ₁	2V ₁₀	$\left\{ \begin{smallmatrix} 1V_{10} = 2V_{10} \\ 1V_1 = 1V_1 \end{smallmatrix} \right\}$	= n - 2 (= 2)	1									n-2				2 24+1 2)	8			j
1	r-	V ₆ -1V ₁	2V ₆		= 2 n - 1	1					2n - 1												1
H	+	V ₁ + 1V ₇	2V7	$\left\{ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{7} = {}^{2}V_{7} \right\}$	= 2 + 1 = 3	1						3											4
	+	2V6+2V7	ıv _s	$\left\{ \begin{array}{l} {}^2\mathrm{V}_6 = {}^2\mathrm{V}_6 \\ {}^2\mathrm{V}_7 = {}^2\mathrm{V}_7 \end{array} \right\}$	$=\frac{2n-1}{3}$						2n-1	3	$\frac{2n-1}{3}$				1			11-52	1,127		ı
	Lx	1V ₈ ×3V ₁	4V ₁₁	$\left\{ {}^{1}V_{8} = {}^{0}V_{8} \atop {}^{3}V_{} = {}^{4}V_{} \right\}$	$=\frac{2n}{2}\cdot\frac{2n-1}{3}$								0			$\frac{2n}{2} \cdot \frac{2n-1}{3}$							1
I	r-	V ₆ -1V ₁	3Ve	$\left\{ \begin{array}{l} {}^{2}V_{6} = {}^{3}V_{6} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{array} \right\}$	= 2 n - 2	. 1					2n - 2										No.	1	1
1	+	1V ₁ +2V ₂	3V,	$ \begin{cases} 2V_7 = 3V_7 \\ 1V_1 = 1V_1 \\ 3V_6 = 3V_6 \end{cases} $	2 n - 2	. 1						4				[2n 2n-1 2n-2]			o search love be	- 10	- Fig.	N.S. T	1
	+	av ₆ ÷av ₇	1V ₉	\[\begin{cases} 3V_7 = 3V_7 \\ 1V_9 = 0V_9 \\ \end{cases} \]	$=\frac{2n-2}{4}$						2n - 2	4		$\frac{2n-3}{4}$		2 3 3 3 }			No. 10 10 10 10 10 10 10 10 10 10 10 10 10	100			1
II			5V ₁₁	1 4V = 5V [= 2 · 3 · 4 = A,			-						0				1					1
1			°V ₁₂	$ \begin{bmatrix} {}^{1}V_{22} = {}^{1}V_{22} \\ {}^{0}V_{12} = {}^{2}V_{12} \end{bmatrix} $	= B ₃ · 2 · 3 · 3 = B ₃ ·	1			***							0	B ₃ A	-			B ₃		1
	_		3V ₁₃	$ \begin{cases} {}^{2}V_{12} = {}^{0}V_{12} \\ {}^{2}V_{13} = {}^{3}V_{13} \end{cases} $ $ \begin{cases} {}^{2}V_{12} = {}^{3}V_{13} \end{cases} $	$= A_0 + B_1 A_1 + B_3 A_3 \dots \dots$		-										0	- 4	$\left\{A_3+B_1A_1+B_3A_3\right\}$	7.1			1
Ч	-	V ₁₆ -1V	3V ₁₀	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	= n - 3 (= 1)	. 1		1		1			1		n-3	1			The state of				ı
1			lu.	[4V ₁₉ =0V ₁₀]	1.0	1	1	i	1	1	1	1	1	12.00	1	ty-three.				La co	Paris I	113	į
1	+	*V13+°V	1V24	$. \begin{cases} {}^{4}V_{13} = {}^{0}V_{13} \\ {}^{0}V_{24} = {}^{1}V_{24} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{3} = {}^{1}V_{3} \\ {}^{5}V_{6} = {}^{0}V_{6} \\ {}^{6}V_{7} = {}^{0}V_{7} \end{cases}$	= B ₇																		j
d	+	1V1 + 1V	, V,	$\begin{bmatrix} 1V_3 = 1V_3 \\ 4V = 0V \end{bmatrix}$	= n + 1 = 4 + 1 = 5 by a Variable-card.	. 1		n+1			0	0	1		1				100000	1		1	ø

... La nota G estaba dedicada a los números de Bernoulli; en este apartado Ada describe con detalle las operaciones mediante las cuales las tarjetas perforadas "tejerían" una secuencia de números en la máquina analítica. Este código está considerado como el primer algoritmo específicamente diseñado para ser ejecutado por un ordenador, aunque nunca fue probado ya que la máquina nunca llegó a construirse.

(Wikipedia)

En 1935 Zuse construye la Z1. Leía las instrucciones desde una cinta perforada de 35 mm. No era una máquina Turing completa

V0[:8.0] \rightarrow Z1[:8.0] (Z1[:8.0] < V1[:8.0]) \rightarrow V1[:8.0] \rightarrow Z1[:8.0] Z1[:8.0] \rightarrow R0[:8.0] END

La Z3 (1941) era un computador binario de punto flotante de 22 bits con memoria y unidad de cálculo basada en relés telefónicos. No almacenaba el programa en memoria. A pesar de la ausencia de saltos condicionales, el Z3 era un ordenador Turing-completo

Rear Admiral (then Commodore) Grace M. Hopper, 1984. By 1952, Hopper had finished her program linker. The term compiler was coined by Hopper. It was written for the A-0 System.

The Algol 60 people

The Phases of a Translator

A programming language translator usually consists of a sequence of stages

Lexer:

 Skips the comments and whitespaces and produces the stream of tokens for numbers, identifiers, reserved words, etc

Parser:

• Reads the stream of tokens, check that it complies with the syntactic rules and produces the *Abstract Syntax Tree*: a data structure representing the underlying syntactic structure of the input program

3 - 2 - 1

Árbol Sintáctico Abstracto

Semántica 3 - 2 - 1

Gramática Independiente del Contexto

- expresion → expresion '-' expresion
- expresion → NUMERO

3-2-1

Gramática Ambigua

- expresion → expresion '-' expresion
- expresion → NUMERO

Esquema de Traducción (yacc)

```
e \longrightarrow e '-' e { $$ = $1 - $3; }
e \longrightarrow NUM { $$ = Number($1); }
3-2-1
```


Análisis Léxico y Expresiones Regulares

```
[0-9]+ /* is a Natural Number */
      /* is a '-' */
       /*Any character but \n*/
```


Un Programa que Evalúa Expresiones

https://nolanlawson.github.io/jison-debugger/

```
%lex
%%
          return 'NUMBER'
          return '-'
          return 'INVALID'
/lex
%%
es:
```

Parser Generators: an example

Load a sample grammar

f : '(' er ')'

CHAR

Choose a grammar...

Parse some text Multiline
alb*c

This tool, a parser generator uses a parsing algorithm known as LALR that was invented by Donald Ervin Knuth (1965)

K 24

Parser result true

The Abstract Syntax Tree: a data structure representing the underlying syntactic structure of the input program: https://astexplorer.net/

- Applies transformations that improve the program in various goals
- Goals: execution time, memory consumption, energy consumption, etc.
- Examples of transformations: Constant folding, Constant propagation, Loop invariants

Input Program

• Transforms abstract syntax tree to instructions for a particular computer architecture

