Power Calculation

Hutch Brock, Ryan Henning

Standards |

- Define Power and relate it to the Type II error
- Compute power given a dataset and a problem
- Explain how sample size, effect size, and significance contribute to power
- Identify what can be done to increase power

- Estimate sample size required of a test
- Define power Be able to draw the picture with two normal curves with different means and highlight the section that represents Power
- Explain trade off between significance and power

Power Calculation

Hutch Brock Ryan Henning

- 1. Review:
 - a. Central Limit Theorem
 - b. Hypothesis Testing
- 2. Type I vs Type II errors
- 3. What is "Power"?
- 4. Calculating Power / Sample Size
- 5. A/B Testing w/ Power

Distribution of website revenue per visitor

Underlying Distribution:

Random variable: X = revenue per visitor	P(X):
X = \$0.00 (no revenue)	90%
X = \$0.10 (ad-click)	7%
X = \$0.99 (app purchase)	3%

Distribution of sample means

Collect n samples from the website revenue distribution, calculate the sample mean \bar{x}

Repeat 10,000 times, we get:

$$\bar{x}_0, \bar{x}_1, \ldots, \bar{x}_{9999}$$

Plot all 10,000 sample means.

Central Limit Theorem

Central Limit Theorem: Std. Dev precise relationship to sample mean

Let the underlying distribution have mean and std. dev.

$$\mu$$
 and σ

The sampling distribution's mean and std. dev. will equal:

$$\mu' = \mu \\ \sigma' = \sigma / \sqrt{n}$$

Hypothesis Testing: Review

Two-sided test:

$$H_0: \mu = 0$$

$$H_A: \mu \neq 0$$

One-sided test:

$$H_0: \mu = 0 \ H_A: \mu > 0 \ \alpha = 0.05$$

Guessing the unknown

Hypothesis Testing: Possible Outcomes

	H₀ Is True	Ha Is True
Fail To Reject H₀	Correct Decision (1 - α)	Type II Error (β)
Reject H₀	Type I Error (α)	Correct Decision (1 - β)

We call this the experiment's "Power". It is the probability that we **correctly reject H_0** when the null hypothesis is false.

Hypothesis Testing: Possible Outcomes

	H₀ Is True	Ha Is True
Fail To Reject H₀	Correct Decision (1 - α)	Type II Error (β)
Reject H₀	Type I Error (α)	Correct Decision (1 - β)

Power = $P(Reject H_0 | H_a Is True)$

Hypothesis testing: the *power* region

	H₀ Is True	H _a Is True
Fail To Reject	Correct Decision (1 - α)	Type II Error (β)
Reject H₀	Type I Error (α)	Correct Decision (1 - β)

The *power* measurement is in relationship to a <u>specific</u> alternative hypothesis. Think of it as the *power* to detect a particular "effect size".

Hypothesis testing: the *power* region

	H₀ Is True	H₀ Is False
Fail To Reject	Correct Decision (1 - α)	Type II Error (β)
Reject H₀	Type I Error (α)	Correct Decision (1 - β)

What is power? How is it related to sample size, variance, effect size, and significance level?

Hypothesis testing: the *power* region

	H₀ Is True	H₀ Is False
Fail To Reject H ₀	Correct Decision (1 - α)	Type II Error (β)
Reject H₀	Type I Error (α)	Correct Decision (1 - β)

Often, we know:

- 1. The "effect size" that we want to detect, and
- 2. The *power* that we want to achieve.

We then calculate the sample size needed to get what we want!

Hypothesis testing (revised with power calculation)

	H₀ Is True	H₀ Is False
Fail To Reject H ₀	Correct Decision (1 - α)	Type II Error (β)
Reject H₀	Type I Error (α)	Correct Decision (1 - β)

- 1. Decide to run an experiment, choose α and (1β)
- 2. Calculate required sample size n
- 3. Take sample, obtain \bar{x} and \bar{s}
- 4. Accept or reject H₀

(new steps)

Calculating the required sample size

Image from: http://techcrunch.com/2014/06/29/ethics-in-a-data-driven-world/

Setup: A/B Test our website's homepage.

Our current homepage has a signup conversion rate of 6%. (The standard deviation would be 0.24.)

We want to test a new homepage design to see if we can get a <u>7% signup rate</u>. We'll want an experiment where <u>alpha is 10%</u> and <u>power is 95%</u>.

How many visitors must visit the new homepage in order to fulfill the requirements of this experiment?

Setup: A/B Test our website's homepage.

Our current homepage has a signup conversion rate of 1%. (The standard deviation would be 0.099.)

We want to test a new homepage design to see if we can get a <u>1.2% signup</u> rate. We'll want an experiment where <u>alpha is 5%</u> and <u>power is 80%</u>.

How many visitors must visit the new homepage in order to fulfill the requirements of this experiment?

n >= ?

Setup: A/B Test our website's homepage.

Our current homepage has a signup conversion rate of 20%. (The standard deviation would be 0.4.)

We want to test a new homepage design to see if we can get a 30% signup rate. We'll want an experiment where alpha is 10% and power is 99%.

How many visitors must visit the new homepage in order to fulfill the requirements of this experiment?

Conclusion

- Define Power and relate it to the Type II error
- Compute power given a dataset and a problem
- Explain how sample size, effect size, and significance contribute to power
- Identify what can be done to increase power

- Estimate sample size required of a test
- Define power Be able to draw the picture with two normal curves with different means and highlight the section that represents Power
- Explain trade off between significance and power

Bayesian Inference

Hutch Brock, Ryan Henning

Standards

- Solve by hand for the posterior distribution for a prior based on coin flips
- Solve Discrete Bayes problem with some data

Bayesian Inference

Ryan Henning

- Frequentists vs.
 Bayesian
- 2. Bayes' Rule
- 3. Prior, likelihood, posterior distributions

What is the probability that it rained in my city last night?

(No info is given about which city I'm currently in.)

$$P(rain) = 0.10$$

What is the probability that it rained in my city last night given that I live in Seattle?

What is the probability that it rained in my city last night?

(No info is given about which city I'm currently in.)

$$P(rain) = 0.10$$

What is the probability that it rained in my city last night given that I live in Seattle and I see that the road is wet?

P(rain | Seattle, wet road) = 0.80

Frequentist vs. Bayesian

Frequentist Probability

"Long Run" frequency of an outcome

Subjective Probability

A measure of degree of belief

Bayesians consider both types

Frequentist vs. Bayesian

Experiment 1:

A fine classical musician says he's able to distinguish Haydn from Mozart. Small excerpts are selected at random and played for the musician. Musician makes 10 correct guesses in exactly 10 trials.

Experiment 2:

Drunken man says he can correctly guess what face of the coin will fall down, mid air. Coins are tossed and the drunken man shouts out guesses while the coins are mid air. Drunken man correctly guesses the outcomes of the 10 throws. Is he a psychic?

Adapted example from Jim Berger's book, <u>The Likelihood Principle</u>. Also adapted from Tammy Lee's slides.

Frequentist vs. Bayesian

<u>Frequentist:</u> "They're both so skilled! I have **as much confidence** in musician's ability to distinguish Haydn and Mozart
as I do the drunk's to predict coin tosses"

Bayesian: "I'm not convinced by the drunken man..."

The Bayesian approach is to incorporate prior knowledge into the experimental results.

Definition:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Bayes' Rule

Definition:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Or:

$$P(A \cap B) = P(A \mid B) * P(B)$$

Or...

Bayes' Rule

Bayes' Rule: Example

$$P(\text{psychic}|\text{correct}) = \frac{P(\text{correct}|\text{psychic})P(\text{psychic})}{P(\text{correct})}$$

$$= \frac{1.0 * 0.0001}{1.0 * 0.0001 + .9999 * .5^{10}}$$

= 9.3%

xkcd: Frequentists vs. Bayesians (#1132)

xkcd: Frequentists vs. Bayesians (#1132)

BAYESIAN STATISTICIAN:

Bayesian Updates

Monty Hall Problem

Conclusions

- Solve by hand for the posterior distribution for a prior based on coin flips
- Solve Discrete Bayes problem with some data