MATHEMATICAL REASONING

CÁLCULO DE ÁREAS

HELICO MOTIVATION

☐ !SABIAS QUE!

¡Existen regiones coloreadas por la misma naturaleza! Así es. Esto es realmente increíble debido a la diversidad de colores que nos ofrece. Una gran muestra de ello es la montaña "Vinicunca" o simplemente arcoíris que se encuentra en nuestro Perú. Esta ubicada a mas de 100 km de la cuidad de Cuzco en una cumbre altitudinal situada a 5200 m.s.n.m.

REGIONES NOTABLES

■ EN REGIONES TRIANGULARES

REGIONES NOTABLES

■ EN REGIONES TRIANGULARES

Si $\overline{AB}//\overline{CD}$, además, \overline{CB} y \overline{AD} : secantes que se cortan en E, se cumple que:

$$\Delta AEB \approx \Delta CED \\
a : b$$

RELACIÓN DE ÁREAS

$$\frac{S_1}{S_2} = \frac{a^2}{b^2}$$

REGIONES NOTABLES

☐ EN REGIONES CUADRANGULARES

En el Paralelogramo: *ABCD*, se cumple:

REGIONES NOTABLES

■ EN REGIONES CUADRANGULARES

En el Paralelogramo: *ABCD*, se cumple:

◎1

HELICO THEORY

REGIONES NOTABLES

■ EN REGIONES CUADRANGULARES

En el Paralelogramo: *ABCD*, se cumple:

REGIONES NOTABLES

■ EN REGIONES CUADRANGULARES

En el rectángulo: ABCD, se cumple:

Si \overline{AC} : diagonal y \overline{BE} : Mediana, se cumple que:

$$S = \frac{1}{12} \cdot A_{ABCD}$$

REGIONES NOTABLES

■ EN REGIONES CUADRANGULARES

En el rectángulo: ABCD:

Si \overline{AE} y \overline{BF} son medianas, se cumple que:

$$S = \frac{1}{20} \cdot A_{ABCD}$$

REGIONES NOTABLES

■ EN REGIONES CUADRANGULARES

APLICACIÓN

En el gráfico, el rectángulo: ABCD tiene un área de $480u^2$, calcule el área de la región sombreada.

Resolución

$$A_{\Delta AMF} = \frac{1}{12} A_{ABCD}$$

$$A_{\Delta AMF} = 40$$

$$A_{\Delta ANF} = \frac{1}{20} A_{ABCD}$$

$$A_{R.Somb.} = \underline{16u^2}$$

RESOLUCIÓN DE LA PRÁCTICA

01

PROBLEMA 1

Determine el área de la región sombreada si el área del paralelogramo ABCD es $120u^2$

Resolución:

$$A_{R.Somb.} = 40u^2$$

o1

PROBLEMA 2

Determine el área de la región sombreada si el área de la región cuadrangular es $240m^2$

Resolución:

$$A_{R.Somb.} = 48m^2$$

01

PROBLEMA 3

Si el área de la región sombreada es $24m^2$, determine el área de la región paralelográmica

Resolución:

$$A_{\Delta BCP} = 6$$

$$A_{R.Somb.} = 6m^2$$

Determine el área de la región sombreada si el área de la región cuadrada ABCD es $300m^2$

Resolución:

01

¿Qué fracción está sombreada?

Nota:

Asumimos que el área total es $120u^2$

Resolución:

O

Piden determinar la fracción que está sombreada.

Fracción que está sombreada:

$$\frac{4}{120}$$

Determine el área de la región sombreada si el área de la región cuadrada ABCD es $120m^2$

Resolución:

01

$$A_{R.Somb.} = 12m^2$$

¿Qué tanto por ciento del área de la región cuadrada ABCD está sombreada?

Resolución:

01

Piden el tanto por ciento de la región sombreada.

Nota:

Asumimos que el área total es 120S

Por lo tanto cada región es 15*S*

Parte sombreada:

$$\frac{45S}{120S} = \frac{3}{8}$$

Piden: $\frac{3}{8}(100\%) = 37.5\%$

La figura representa el plano de un jardín cuadrado con diseño moderno; divisiones simétricas. Si en la zona sombreada se plantaron rosas rojas. ¿Que tanto por ciento de la superficie del jardín estaba sembrado de rosas?

Resolución:

Asumimos que el área total es 120S

