We presuppose a universe Λ of *labels*, with a special element τ .

Definition 1 (transduction system). A transduction system (or transducer) is a tuple $S = \langle Q, Q^{S}, \iota, T \rangle$ where

- is a tuple $S = \{Q, Q', t, T'\}$ where -Q is a set of states; $-Q^{\mathsf{S}} \subseteq Q \text{ is a set of steady states;}$ $-\iota \in Q^{\mathsf{S}} \text{ is the initial state;}$ $-T \subseteq Q \times \Lambda \times \Lambda \times Q \text{ is a transition relation, such that } (q, a, b, q'), (q', c, d, q'') \in T \text{ with } q \notin Q^{\mathsf{S}} \text{ implies } a = b.$ A transduction system is a transition system if $Q^{\mathsf{S}} = Q$ and $(q, a, b, q') \in T$

implies $b = \tau$.

A state that is not steady is called *transient*, and we use $Q^\mathsf{T} = Q \setminus Q^\mathsf{S}$ to denote the set of transient states. We also use $q \stackrel{a}{\mapsto} q'$ to denote $(q, a, b, q') \in T$, and if Sis a transition system, we typically leave out the second (lower) label altogether.