Solutions to David A.Cox "Galois Theory"

Richard Ganaye

October 10, 2021

3 Chapter 3

3.1 THE EXISTENCE OF ROOTS

Ex. 3.1.1 This exercise is concerned with the proof of Proposition 3.1.1. Suppose that $f, g, h \in F[x]$ are polynomials such that f is nonzero and f = gh. Also let $I = \langle g \rangle$.

- (a) Prove that g constant if and only if I = F[x].
- (b) Prove that h constant if and only if $I = \langle f \rangle$.

Proof. Let $f, g, h \in F[x], f \neq 0, f = gh, I = \langle g \rangle$.

(a) \bullet Suppose that $g = \lambda \in F$ is a constant. As $f \neq 0$ and f = gh, then $g \neq 0$, so $\lambda \neq 0$.

Let $p \in F[x]$ any polynomial. Then $p = \lambda(\frac{1}{\lambda}p) = (\frac{1}{\lambda}p)g \in \langle g \rangle$, thus $F[x] \subset \langle g \rangle$. Moreover $\langle g \rangle \subset F[x]$, so

$$F[x] = \langle q \rangle = I.$$

• Conversely, if $F[x] = I = \langle g \rangle$, then $1 \in \langle g \rangle$, so $1 = gu, u \in F[x]$, hence $0 = \deg(g) + \deg(u)$, therefore $\deg(g) = 0$, so $g \in F$ is a nonzero constant.

$$g \in F^* \iff \langle g \rangle = F[x].$$

(b) • If $h = \mu \in F$ is a constant, then $\mu \neq 0$ (since $f \neq 0$), and $f = \mu g, \mu \in F^*$.

If $p \in \langle f \rangle$, then $p = uf, u \in F[x]$, thus $p = \mu ug \in \langle g \rangle$, so $\langle f \rangle \subset \langle g \rangle$.

If $p \in \langle g \rangle$, then $p = qg, q \in F[x]$, thus $p = \mu^{-1}qf \in \langle f \rangle$, so $\langle g \rangle \subset \langle f \rangle$.

$$\langle f \rangle = \langle g \rangle = I.$$

• Conversely, if $\langle f \rangle = \langle g \rangle$, then $g \in \langle f \rangle$, $g = vf, v \in k[x]$, thus g = vgh. As $f = gh \neq 0, g \neq 0$, thus 1 = vh, therefore $h \in F^*$ is a constant.

$$h \in F^* \iff I = \langle f \rangle.$$

Ex. 3.1.2 Let F and L be fields, and let $\varphi : F \to L$ be a ring homomorphism. Prove that φ is one-to-one and that we get an isomorphism $\varphi : F \simeq \varphi(F)$.

Proof. Let $x \in F$. If $x \neq 0$, then $x.x^{-1} = 1$, thus $\varphi(x)\varphi(x^{-1}) = 1$, so $\varphi(x) \neq 0$. For all $x \in F$, $x \neq 0 \Rightarrow \varphi(x) \neq 0$, therefore $\varphi(x) = 0 \Rightarrow x = 0$, so $\ker(\varphi) = \{0\}$ and φ is injective.

Consequently, the corestriction $F \to \varphi(F), x \mapsto \varphi(x)$ is a bijection, so it is a ring isomorphism $\varphi : F \simeq \varphi(F)$.

Ex. 3.1.3 Let $I \subset F[x]$ be an ideal, and define $\varphi : F \to F[x]/I$ by $\varphi(a) = a + I$. Prove carefully that φ is a ring homomorphism.

Proof. Let $a, b \in A = F[x]$. Suppose that a + I = a' + I et b + I = b' + I.

Then $a' = a + u, u \in I, b' = b + v, v \in I$, so a' + b' = a + b + u + v, where $u + v \in I$, thus a + b + I = a' + b' + I.

a'b' = ab + bu + av + uv, where $bu + av + uv \in I$, so ab + I = a'b' + I.

The equivalence relation \sim defined on A as $a \sim a' \iff a+I=a'+I(\iff a'-a\in I)$ is so compatible with addition and multiplication in A, and the class of an element $a\in A$ is a+I. We can so define sum and product of two classes by

$$(a+I) + (b+I) = a+b+I, (1)$$

$$(a+I)(b+I) = ab+I. (2)$$

If $\varphi: A \to A/I$ is defined by $\varphi(a) = a + I$, then (1) and (2) are written

$$\varphi(a) + \varphi(b) = \varphi(a+b), \varphi(a)\varphi(b) = \varphi(ab)$$

Moreover $\varphi(1) = 1 + I$ is the multiplicative identity of A/I.

$$\varphi: A \to A/I$$
 is a ring homomorphism.

Ex. 3.1.4 In your abstract algebra text, review the definition of the field of fractions of an integral domain and verify that (3.3) is the correct definition of a/b for $a, b \in \mathbb{Z}, b \neq 0$.

Proof. The relation \sim on $\mathbb{Z} \times \mathbb{Z}^*$ defined by

$$(a,b) \sim (c,d) \iff ad = bc$$

is an equivalence relation. The class of (a,b), written $\frac{a}{b}$ is so the set

$$\frac{a}{b} = \{(c, d) \in \mathbb{Z} \times \mathbb{Z}^* \mid ad = bc\}.$$

Ex. 3.1.5 Let $f \in F[x]$ be irreducible, and let $g + \langle f \rangle$ be a nonzero coset in the quotient ring $L = F[x]/\langle f \rangle$.

- (a) Show that f and g are relatively prime and conclude that Af + Bg = 1, where A, B are polynomials in F[x].
- (b) Show that $B + \langle f \rangle$ is the multiplicative inverse of $g + \langle f \rangle$ in L.

Proof. Let $f \in F[x]$ be irreducible, and let $L = F[x]/\langle f \rangle$ the quotient ring.

(a) Let $\overline{g} \in L$, $\overline{g} \neq \overline{0}$, that is to say $g + \langle f \rangle \neq 0 + \langle f \rangle$, which is equivalent to $g \notin \langle f \rangle$, or $f \nmid g$ (in F[x]).

Let h a common divisor of f et g. Since f is irreducible, either u is a nonzero constant, or $u = kf, k \in F^*$ is associate to f. But in this last case, $f = k^{-1}u$ divides u, which divides g, so $f \mid g$, in contradiction with the hypothesis.

So the only common divisors of f, g are the nonzero constants, thus $f \wedge g = 1$.

By Bézout theorem, there exist polynomials $A, B \in k[x]$ such that

$$1 = Af + Bq$$
.

(b) As $\overline{f} = f + \langle f \rangle = \overline{0}$, $\overline{1} = \overline{A} \overline{f} + \overline{B} \overline{g} = \overline{B} \overline{g}$, which we can write

$$1 + \langle f \rangle = (B + \langle f \rangle)(g + \langle f \rangle).$$

So $B + \langle f \rangle$ is the inverse of $g + \langle f \rangle$ in $L = F[x]/\langle f \rangle$.

Ex. 3.1.6 Apply the method of Exercise 5 to find the multiplicative inverse of the coset $1 + x + \langle x^2 + x + 1 \rangle$ in the field $\mathbb{Q}[x]/\langle x^2 + x + 1 \rangle$.

Proof. $f = x^2 + x + 1$ has no root in \mathbb{Q} is has degree 2, therefore f is irreducible on \mathbb{Q} , and consequently $\mathbb{Q}[x]/\langle f \rangle$ is a field.

Moreover $-x(x+1) + (x^2 + x + 1) = 1$ is a Bézout's relation between x+1 and $x^2 + x + 1$. This gives the following equality in $\mathbb{Q}[x]/\langle f \rangle$:

$$(-x + \langle f \rangle)(x + 1 + \langle f \rangle) + (x^2 + x + 1) + \langle f \rangle = 1 + \langle f \rangle,$$

so

$$(-x + \langle f \rangle)(x + 1 + \langle f \rangle) = 1 + \langle f \rangle.$$

 $-x + \langle f \rangle$ is the inverse of $x + 1 + \langle f \rangle$ in $\mathbb{Q}[x]/\langle f \rangle$.

3.2 THE FUNDAMENTAL THEOREM OF ALGEBRA

Ex. 3.2.1 For $f \in \mathbb{C}[x]$, define \overline{f} as in (3.5).

- (a) Show carefully that $\overline{fg} = \overline{f} \, \overline{g}$ for $f, g \in \mathbb{C}[x]$.
- (b) Let $\alpha \in \mathbb{C}$. Show that $\overline{f}(\alpha) = 0$ implies that $f(\overline{\alpha}) = 0$.

Proof. (a) Let
$$f = \sum_{i=0}^{n} a_i x^i, g = \sum_{i=0}^{m} b_j x^i \in \mathbb{C}[x]$$
.

By definition of the product of polynomials,

$$fg = \sum_{k=0}^{n+m} c_k x^k$$
, with $c_k = \sum_{i+j=k} a_i b_j = \sum_{i=0}^k a_i b_{k-i}$

Then, using the fact that conjugation is a field automorphism in \mathbb{C} ,

$$\overline{fg} = \sum_{k=0}^{n+m} \overline{c_k} x^k$$

$$= \sum_{k=0}^{n+m} \overline{\sum_{i+j=k}} a_i \overline{b_j} x^k$$

$$= \sum_{k=0}^{n+m} \sum_{i+j=k} \overline{a_i} \overline{b_j} x^k$$

$$= \sum_{i=0}^{n} \overline{a_i} x^i \sum_{j=0}^{n} \overline{b_j} x^j$$

$$= \overline{fg}.$$

(b) If $f \in \mathbb{C}[x]$ and $\alpha \in \mathbb{C}$,

$$\overline{f}(\alpha) = 0 \Rightarrow \sum_{i=0}^{n} \overline{a_i} \alpha^i = 0$$

$$\Rightarrow \sum_{i=0}^{n} \overline{a_i} \alpha^i = \overline{0} = 0$$

$$\Rightarrow \sum_{i=0}^{n} a_i \overline{\alpha}^i = 0$$

$$\Rightarrow f(\overline{\alpha}) = 0.$$

Ex. 3.2.2 In Section A.2, we use polar coordinates to construct square (and higher) roots of complex numbers. In this exercise, you will give an elementary argument that every complex number has a square root. The only fact you will use (besides standard algebra) is that every positive real number has a real square root.

- (a) First explain why every real number has a square root in \mathbb{C} .
- (b) Now fix $a+bi \in \mathbb{C}$ with $b \neq 0$. For $x, y \in \mathbb{R}$, show that the equation $(x+iy)^2 = a+bi$ is equivalent to the equations

$$x^2 - y^2 = a, \qquad 2xy = b.$$

(c) Show that the equation of part (b) are equivalent to

$$x^2 = \frac{a \pm \sqrt{a^2 + b^2}}{2}, \qquad y = \frac{b}{2x}.$$

Also show that $x \neq 0$ and that $a \pm \sqrt{a^2 + b^2}$ is positive when we choose the + sign in the formula for x^2 .

(d) Conclude that a + bi has a square root in \mathbb{C} .

Proof. (a) We know that the equation $x^2 = a$ has a real solution if $a \ge 0$ (see Ex. 3.2.3). Therefore, if $a \in \mathbb{R}_*^-$, there exists $b \in \mathbb{R}^+$ such that $b^2 = -a = |a|$. Thus $(ib)^2 = a$.

Conclusion: Every $a \in \mathbb{R}$ has a square root in \mathbb{C} .

(b,c,d) Let z = a + ib, $a, b \in \mathbb{R}$, and Z = x + iy, $x, y \in \mathbb{R}$ two complex numbers.

$$z^{2} = Z \iff (a+ib)^{2} = x + iy$$

$$\iff (a+ib)^{2} = x + iy \text{ and } |a+ib|^{2} = |x+iy|$$

$$\iff a^{2} - b^{2} + 2abi = x + iy \text{ and } a^{2} + b^{2} = \sqrt{x^{2} + y^{2}}$$

$$\iff a^{2} - b^{2} = x, a^{2} + b^{2} = \sqrt{x^{2} + y^{2}}, 2ab = y.$$

The system of equations $\left\{ \begin{array}{ll} a^2-b^2&=&x,\\ a^2+b^2&=&\sqrt{x^2+y^2}, \end{array} \right. \mbox{ is equivalent to}$

$$\begin{cases} a^2 = \frac{1}{2} \left(\sqrt{x^2 + y^2} + x \right), \\ b^2 = \frac{1}{2} \left(\sqrt{x^2 + y^2} - x \right). \end{cases}$$

Therefore

$$z^{2} = Z \Rightarrow \begin{cases} a^{2} &= \frac{1}{2} \left(\sqrt{x^{2} + y^{2}} + x \right), \\ b^{2} &= \frac{1}{2} \left(\sqrt{x^{2} + y^{2}} - x \right), \\ \operatorname{sgn}(ab) &= \operatorname{sgn}(y). \end{cases}$$

The converse is true, since these last equations imply

$$4a^{2}b^{2} = \left(\sqrt{x^{2} + y^{2}} + x\right)\left(\sqrt{x^{2} + y^{2}} - x\right) = x^{2} + y^{2} - x^{2} = y^{2},$$

and since sgn(ab) = sgn(y), we conclude 2ab = y. So we have proved the equivalence

$$z^{2} = Z \iff \begin{cases} a^{2} &= \frac{1}{2} \left(\sqrt{x^{2} + y^{2}} + x \right), \\ b^{2} &= \frac{1}{2} \left(\sqrt{x^{2} + y^{2}} - x \right), \\ \operatorname{sgn}(ab) &= \operatorname{sgn}(y). \end{cases}$$

As $x^2 + y^2 \ge x^2$, $\sqrt{x^2 + y^2} \ge |x|$, and $|x| \ge x$, $|x| \ge -x$, so

$$z^{2} = Z \iff \begin{cases} a = \varepsilon \sqrt{\frac{1}{2} \left(\sqrt{x^{2} + y^{2}} + x \right)} \\ b = \varepsilon \operatorname{sgn}(y) \sqrt{\frac{1}{2} \left(\sqrt{x^{2} + y^{2}} - x \right)}, \qquad \varepsilon \in \{-1, 1\} \end{cases}$$

$$\iff z \in \{z_{0}, -z_{0}\},$$

where

$$z_0 = \sqrt{\frac{1}{2} \left(\sqrt{x^2 + y^2} + x\right)} + i \operatorname{sgn}(y) \sqrt{\frac{1}{2} \left(\sqrt{x^2 + y^2} - x\right)}.$$

Conclusion: Every $z \in \mathbb{C}$ has a square root in \mathbb{C} .

Ex. 3.2.3 Use the IVT to prove that every positive real number a has a real square root.

Proof. Suppose that $a \in \mathbb{R}^+$.

Let $u : \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto u(x) = x^2 - a$.

Then u is continuous, u is strictly increasing, and

 $u(0)=-a\leq 0, \lim_{x\to\infty}u(x)=+\infty$ (so there exists $A\in\mathbb{R}^+$ such that u(A)>0).

By the Intermediate Value Theorem, there exists a unique $b \in \mathbb{R}^+$ such that $b^2 = a$, so a has a real square root.

Ex. 3.2.4 A field F is an ordered field if there is a subset $P \subset F$ such that:

- (a) P is closed under addition and multiplication.
- (b) For any $a \in F$, exactly one of the following is true: $a \in P$, a = 0, or $-a \in P$.

One then defines a > b to mean $a - b \in P$ (so that P becomes the set of positive elements). From this, one can prove all the typical properties of >. Now let F be an ordered field. Prove that -1 is not a square in F.

Proof. Let F an ordered field.

Since P is closed under multiplication by (a), if $a \in P$, then $a^2 \in P$.

If $-a \in P$, $a^2 = (-a)(-a) \in P$. By (b), every $a \in F$ verifies $a \in P$, or a = 0, or $-a \in P$, so we can conclude that

$$\forall a, \ a \in F^* \Rightarrow \ a^2 \in P. \tag{3}$$

So P contains all squares in F, 0 excluded. By definition of fields, we know that $1 \neq 0$, so $1 = 1^2 \in P$.

By (b), the three cases $a \in P$, a = 0, $-a \in P$ are mutually exclusive, thus $-1 \notin P$. Therefore -1 is not a square in F, otherwise $-1 = a^2 \in P$ by (3).

Conclusion: -1 is not a square in the ordered field F.

- **Ex. 3.2.5** Let F be a real closed field. As in the text, this means that F is an ordered field (see Exercise 4) such that every positive element of F has a square root in F and every $f \in F[x]$ of odd degree has a root in F.
 - (a) Use Exercise 4 to show that $x^2 + 1$ is irreducible over F. Then define F(i) to be the field $F[x]/\langle x^2 + 1 \rangle$. By the Cauchy construction described in Section 3.1, elements of F(i) can be written a + bi for $a, b \in F$.
 - (b) Show that every quadratic polynomial in F(i) splits completely over F(i).
 - (c) Prove that F(i) is algebraically closed.
- *Proof.* (a) Since -1 is not a square in F by Exercise 4, the polynomial $x^2 + 1$ has no root in F, and it has degree 2, thus it is irreducible over F.

Therefore $F(i) = F[x]/\langle x^2 + 1 \rangle$ is a field, where $i = x + \langle x^2 + 1 \rangle$, by Proposition 3.1.1.

The division of any polynomial f by $x^2 + 1$ gives

$$f = q(x^2 + 1) + bx + a,$$

so every $y \in F(i)$ is of the form y = a + ib.

(b) Let $ax^2 + bx + c$, $a, b, c \in F(i), a \neq 0$, any quadratic polynomial.

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right)$$

$$= a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right]$$

$$= a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{\Delta}{4a^{2}}\right], \Delta = b^{2} - 4ac$$

By definition of a real closed field, every positive element of F has a square root in F. With the same proof as in Ex 3.2.2, we can prove that every $z \in F(i)$ has a square root. One square root of z = x + iy, $x, y \in F$, is given by

$$z_0 = \sqrt{\frac{1}{2} \left(\sqrt{x^2 + y^2} + x\right)} + i \operatorname{sgn}(y) \sqrt{\frac{1}{2} \left(\sqrt{x^2 + y^2} - x\right)}.$$

We will write $\sqrt{\Delta}$ one of the square roots of Δ . Then

$$ax^{2} + bx + c = a \left[\left(x + \frac{b}{2a} \right)^{2} - \left(\frac{\sqrt{\Delta}}{2a} \right)^{2} \right]$$
$$= a(x - x_{1})(x - x_{2}), x_{1} = \frac{-b + \sqrt{\Delta}}{2} \in F(i), x_{2} = \frac{-b + \sqrt{\Delta}}{2} \in F(i)$$

splits completely over F(i).

- (c) By definition of a real closed field, and by (b),
 - every polynomial of odd degree in F[x] has a root in F,
 - every element $a \in F(i)$ has a square root in F(i),
 - every quadratic polynomial $f \in F(i)[x]$ splits completely over F(i).

The Proposition 3.2.2 and the Lemme 3.2.3 are so satisfied if we replace \mathbb{R} by F and \mathbb{C} by F(i).

Theorem 3.2.4 for F(i) follows, with the same proof: F(i) is an algebraically closed field.

Ex. 3.2.6 Here is yet another way to state the Fundamental Theorem of Algebra.

- (a) Suppose that $f(\alpha) = 0$, where $f \in \mathbb{R}[x]$ and $\alpha \in \mathbb{C}$. Prove that $f(\overline{\alpha}) = 0$.
- (b) Prove that the Fundamental Theorem of Algebra is equivalent to the assertion that every nonconstant polynomial in $\mathbb{R}[x]$ is a product of linear and quadratic factors with real coefficients.
- *Proof.* (a) Let $f \in \mathbb{R}[x]$, and suppose that $f(\alpha) = 0$. Then $\overline{f} = f$, and $\overline{f}(\alpha) = 0$. By Ex. 3.3.1(b), this implies $f(\overline{\alpha}) = 0$.

Conclusion: if $f \in \mathbb{R}[x]$,

$$f(\alpha) = 0 \Rightarrow f(\overline{\alpha}) = 0.$$

(b) • Suppose that every nonconstant polynomial in $\mathbb{C}[x]$ has a root in \mathbb{C} .

Name x_1, \dots, x_r the real roots of $f: f = a(x - x_1)^{k_1} \dots (x - x_r)^{k_r} g$, where $a \in \mathbb{R}$, and $g \in \mathbb{R}[x]$ is monic and has no real root. We show by induction on d that every polynomial $g \in \mathbb{R}[x]$ without real root, monic, of degree d, is product of monic quadratic real polynomials.

If d = 0, g = 1 is the empty product.

We suppose d > 0, and put the induction hypothesis that every polynomial in $\mathbb{R}[x]$ without real root, monic, of degree less than d, is product of monic quadratic real polynomials.

Let $g \in \mathbb{R}[x]$ a polynomial of degree d without real root. g has by hypothesis a complex root α . Then $g = (x - \alpha)g_1, g_1 \in \mathbb{C}[X]$.

By (a), $\overline{\alpha}$ is a root of g. $0 = g(\overline{\alpha}) = (\overline{\alpha} - \alpha)g_1(\alpha)$, and $\overline{\alpha} \neq \alpha$, thus $g_1(\overline{\alpha}) = 0$, $g_1 = (x - \overline{\alpha})h$, $h \in \mathbb{C}[x]$, therefore

$$g = (x - \alpha)(x - \overline{\alpha})h, \ h \in \mathbb{C}[x].$$

 $u = (x - \alpha)(x - \overline{\alpha}) = x^2 + sx + t$, where $s = \alpha + \overline{\alpha} \in \mathbb{R}$, $t = \alpha \overline{\alpha} \in \mathbb{R}$, thus $u \in \mathbb{R}[x]$, and also $h \in \mathbb{R}[x]$, since h is the quotient of the Euclidean division of g by u.

 $g = (x^2 - sx + t)h$, where $h \in \mathbb{R}[x]$ is monic, of degree less than d, without real root. By the induction hypothesis, h is product of monic real quadratic polynomials, thus it is the same for g, and the induction is done.

Consequently, f is product of linear or quadratic factors with real coefficients.

ullet Conversely, suppose that every polynomial in $\mathbb{R}[x]$ is product of linear or quadratic factors with real coefficients.

Let $f \in \mathbb{C}[x]$, with $\deg(f) \geq 1$. We will show that f has a complex root.

By hypothesis f has a linear or a quadratic factor.

If f has a linear factor ax + b, then -b/a is a (real) root of f, and if f has a factor $ax^2 + bx + c$, $a \neq 0$, then Lemma 3.2.3 and Exercise 3.2.2 show that f has a complex root. In both cases, f has a complex root, so every non constant polynomial in $\mathbb{C}[x]$ has a complex root.

Ex. 3.2.7 Prove that a field F is algebraically closed if and only if every nonconstant polynomial in F[x] has a root in F.

Proof. By definition, a field F is algebraically closed if every nonconstant polynomial is product of linear factors in F[x].

- If F is algebraically closed, and if $f \in F[x]$ is not a constant, this product of linear factors is not empty, so f is divisible by a linear factor $ax + b, a, b \in F$. Hence f has a root $\alpha = -b/a$ in F.
 - \bullet Suppose that every nonconstant polynomial has a root in F

We show by induction on d that every polynomial $f \in F[x], d = \deg(f) > 0$ is product of linear factors in F[x]

If d = 1, f = ax + b, $a \neq 0$, is product of one linear factor.

Let $f \in F[x]$, $d = \deg(f) > 1$. Then f has by hypothesis a root $\alpha \in F$, so f = (x-a)g, where $\deg(g) < d$. By the induction hypothesis, g is a constant or is product of linear factors, so it is the same for f, and the induction is done.

Conclusion: If F is a field, the two following propositions are equivalent,

- (i) Every nonconstant polynomial in F[x] is product of linear factors.
- (ii) Every nonconstant polynomial in F[x] has a root in F