Discrete Mathematics

-- Chapter 6: Languages: Finite State Machine

Hung-Yu Kao (高宏宇)

Department of Computer Science and Information Engineering, National Cheng Kung University

Outline

- 6.1 Language: The Set Theory of Strings
- 6.2 Finite State Machines: A First Encounter
- 6.3 Finite State Machines: A Second Encounter

有限狀態機

- A finite state machine (FSM), which is an abstract model, has a <u>finite number of internal states</u> where the machine <u>remembers</u> <u>certain information</u> when it is in a particular state.
- <u>Strings</u>: Sequence of symbols (characters) play a key role in the processing of information by a computer.
- Σ denote a nonempty finite set of symbols, collectively called an alphabet. E.g., $\Sigma = \{0, 1\}, \Sigma = \{a, b, c, d, e\}$.
- Definition 6.1: If \sum is an alphabet and $n \in \mathbb{Z}^+$, we define the powers of \sum recursively as follows:
 - $1) \sum_{i=1}^{n} = \sum_{i=1}^{n}$ 長度為I
 - 2) $\sum_{n=1}^{n+1} = \{xy \mid x \in \sum_{n=1}^{\infty} \}$, where xy denotes the juxtaposition of x and y

• Ex 6.1: Let \sum an alphabet.

If
$$n = 2$$
, $\sum^2 = \{xy \mid x \in \sum, y \in \sum\}$, e.g., $\sum = \{0,1\}$, $\sum^2 = \{00,01,10,11\}$
 $\sum = \{a,b,c,d,e\}$, \sum^3 would contain 5³ three-symbol strings, e.g., aaa,acb,cdd , etc.

• Definition 6.2: For an alphabet Σ we define $\Sigma^0 = \{\lambda\}$, where λ denotes the <u>empty string</u>, i.e., the string consisting of no symbols taken from Σ .

(1) $\{\lambda\} \not\subset \Sigma$ since $\lambda \not\in \Sigma$

(2)
$$\{\lambda\} \neq \phi$$
 because $|\{\lambda\}| = 1 \neq 0 = |\phi|$

• Definition 6.3: If \sum is an alphabet, then

$$(1) \sum^{+} = \bigcup_{n=1}^{\infty} \sum^{n} = \bigcup_{n \in \mathbb{Z}^{+}} \sum^{n}$$

$$(2) \sum^* = \bigcup_{n=0}^{\infty} \sum^n$$

- Ex 6.2: Let $\Sigma = \{0,1\}$ the set Σ^* consists of all finite strings of 0's and 1's together with the empty string. (how about Σ^+ ?)
- If $\Sigma = \{\beta, 0, 1, ..., 9, +, -, /, \}$, where β denotes the blank (space). Here in Σ^* we find familiar arithmetic expression such as (7+5)/(2-3).
- Definition 6.4:

```
If w_1, w_2 \in \Sigma^+, w_1 = x_1 x_2 \cdots x_m, w_2 = y_1 y_2 \cdots y_n
and x_1, x_2, \cdots, x_m, y_1, y_2, \cdots, y_n \in \Sigma,
then we say w_1 and w_2 are equal (w_1 = w_2) if m = n and x_i = y_i for all i.
```

2013 Spring Discrete Mathematics – CH6

Definition 6.5:

Let
$$w = x_1 x_2 \cdots x_n \in \sum^+$$
, where $x_i \in \sum$ for $1 \le i \le n$.

The length of w is n, donated by ||w||, and $||\lambda|| = 0$.

• Definition 6.6:

Let
$$x, y \in \sum^+, x = x_1 x_2 \cdots x_m, y = y_1 y_2 \cdots y_n,$$

and
$$x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n \in \Sigma$$
.

The concatenation of
$$x$$
 and $y: xy = x_1x_2 \cdots x_my_1y_2 \cdots y_n$.

The concatenation of x and
$$\lambda : x\lambda = x, \lambda x = x$$
.

The concatenation of
$$\lambda$$
 and $\lambda : \lambda \lambda = \lambda$.

Definition 6.7:

$$x \in \sum^{*}$$
, we define the powers of x by $x^{0} = \lambda$, $x^{1} = x$, $x^{2} = xx$, $x^{3} = xx^{2}$, $x^{n+1} = xx^{n}$, $x^{n+1} \in N$.

Definition 6.8:

If
$$x, y \in \sum^*$$
 and $w = xy$,
then x is called a prefix of w , and if $y \ne \lambda$, then x is to be a proper prefix.
Similarly, y is called a suffix of w , it is a proper suffix when $x \ne \lambda$.

• Definition 6.9:

If
$$x, y, z \in \sum^*$$
 and $w = xyz$, then y is called a substring of w.

When at least one of x and z is different from λ , we call y a proper substring.

Definition 6.10:

For a given alphabet Σ , any subset of Σ^* is called a language over Σ .

This includes the subset ϕ , which we call the empty language.

• Ex 6.9:

- With \sum the alphabet of 26 letters, 10 digits, and the special symbols used in a given implementation of C++, the collection of executable programs for that implementation constitutes a language.
- In the same situation, **each** executable program could be considered a language, as could a particular set of such programs.
- Since **languages** are **sets**, we can form the union, intersection, and symmetric difference of two languages.

• Definition 6.11:

For an alphabet Σ any languages $A, B \subseteq \Sigma^*$, the concatenation of A and B, denoted AB, is $\{ab \mid a \in A, b \in B\}$.

• Ex 6.10:

無交換律,順序很重要

Let $\sum = \{x, y, z\}$, and let A, B be the finite languages $A = \{x, xy, z\}$, $B = \{\lambda, y\}$.

Then $AB = \{x, xy, z, xyy, zy\}$ and $BA = \{x, xy, z, yx, yxy, yz\}$

1)
$$|AB| = 5 \neq 6 = |BA|$$

2)
$$|AB| = 5 \neq 6 = 3 \cdot 2 = |A||B|$$

Theorem 6.1:

For an alphabet Σ , let $A, B, C \subseteq \Sigma^*$.

a)
$$A\{\lambda\} = \{\lambda\}A = A$$

a)
$$A\{\lambda\} = \{\lambda\}A = A$$
 b) $(AB)C = A(BC)$

c)
$$A(B \cup C) = AB \cup AC$$

c)
$$A(B \cup C) = AB \cup AC$$
 d) $(B \cup C)A = BA \cup CA$

e)
$$A(B \cap C) \subseteq AB \cap AC$$

f)
$$(B \cap C)A \subseteq BA \cap CA$$

Proof:

(f) For
$$x \in \sum^*$$
,

$$x \in (B \cap C)A \Rightarrow x = yz$$
 where $y \in B \cap C$ and $z \in A$

$$\Rightarrow$$
 $(x = yz \text{ for } y \in B \text{ and } z \in A) \text{ and } (x = yz \text{ for } y \in C \text{ and } z \in A)$

$$\Rightarrow x \in BA \text{ and } x \in CA$$

$$\Rightarrow x \in BA \cap CA$$

$$\therefore (B \cap C)A \subseteq BA \cap CA$$

$$B = \{x, xx, y\}, C = \{y, xy\}, A = \{y, yy\}$$
$$xyy \in BA \cap CA, xyy \notin (B \cap C)A$$

• Definition 6.12:

For a given language $A \subseteq \sum^*$ we can construct other languages as follows:

- a) $A^0 = \{\lambda\}, A^1 = A, \text{ and } n \in \mathbb{Z}^+, A^{n+1} = \{ab | a \in A, b \in A^n\}$
- b) $A^+ = \bigcup_{n \in \mathbb{Z}^+} A^n$, the positive closure of A.
- c) $A^* = A^+ \cup \{\lambda\}$. The language A * is called the <u>Kleene closure</u> of A. (in honor of the American logician Stephen Cole Kleene, 1909 - 1994)

• Ex 6.11:

If
$$\sum = \{x, y, z\}$$
, and $A = \{x\}$, then (1) $A^0 = \{\lambda\}$; (2) $A^n = \{x^n\}$, $n \in \mathbb{N}$; (3) $A^+ = \{x^n \mid n \ge 1\}$; and (4) $A^* = \{x^n \mid n \ge 0\}$.

• Lemma 6.1:

Let Σ be an alphabet, with languages $A, B \subseteq \Sigma^*$. If $A \subseteq B$, then $A^n \subseteq B^n$

Proof: (i)
$$n = 1$$
, $A^{1} = A \subseteq B = B^{1}$

(ii) Assuming the truth for n = k, $A \subseteq B \Rightarrow A^k \subseteq B^k$

(iii) If
$$x = x_1 x_k \in A^{k+1}$$
, i.e., $x_1 \in A$, $x_k \in A^k$.

 $\therefore A \subseteq B \Rightarrow A^k \subseteq B^k \text{ (induction hypothesis)}, \therefore x_1 \in B, x_k \in B^k$

$$\Rightarrow x = x_1 x_k \in BB^k = B^{k+1}$$

$$\Rightarrow A^{k+1} \subseteq B^{k+1}$$

Theorem 6.2:

For an alphabet Σ and languages $A, B \subseteq \Sigma^*$,

a)
$$A \subseteq AB$$

a)
$$A \subseteq AB^*$$
 b) $A \subseteq B^*A$

c)
$$A \subseteq B \Rightarrow A^+ \subseteq B^+$$
 d) $A \subseteq B \Rightarrow A^* \subseteq B^*$

d)
$$A \subseteq B \Rightarrow A^* \subseteq B$$

e)
$$AA^* = A^*A = A^+$$

e)
$$AA^* = A^*A = A^*$$
 f) $A^*A^* = A^* = (A^*)^* = (A^*)^+ = (A^*)^*$

g)
$$(A \cup B)^* = (A^* \cup B^*)^* = (A^*B^*)^*$$

Proof:

$$(g)[(A \cup B)^* = (A^* \cup B^*)^*]$$

(i)
$$A \subseteq A^*, B \subseteq B^* \Rightarrow (A \cup B) \subseteq (A^* \cup B^*)$$

$$\Rightarrow (A \cup B)^* \subseteq (A^* \cup B^*)^*$$
 [by (d)]

(ii)
$$A, B \subseteq A \cup B \Rightarrow A^*, B^* \subseteq (A \cup B)^*$$
 [by (d)]

$$\Rightarrow (A^* \cup B^*) \subseteq (A \cup B)^*$$

$$\Rightarrow (A^* \cup B^*)^* \subseteq ((A \cup B)^*)^* = (A \cup B)^* [by (d) and (f)]$$

• Ex 6.14:

For an alphabet $\Sigma = \{0,1\}$ consider the languages $A \subseteq \Sigma^*$, where each word in A contains exactly one occurrence of the symbol 0, e.g., 0, 01, 10, 0111, etc. We can define this language A recursively as follows:

- 1) Our base step tells us that $0 \in A$
- 2) For the recursive process we want to include in A the words 1x and x1, for $x \in A$.

• Definition (palindrome):

Given an alphabet
$$\sum$$
, consider $x = x_1 x_2 \cdots x_n$ in \sum^* .

The reversal of x is denoted $x^R = x_n x_{n-1} \cdots x_1$.

We can define the reversal of a string recursively as follows:

1)
$$\lambda^R = \lambda$$

2) For
$$n \in \mathbb{N}$$
, if $x \in \sum^{n+1}$, then we can write $x = zy$ where $z \in \sum$ and $y \in \sum^{n}$ --- here, we define $x^{R} = (zy)^{R} = (y^{R})z$.

• Ex 6.16: Prove that $x_1, x_2 \in \sum^* \Rightarrow (x_1 x_2)^R = x_2^R x_1^R$.

Proof: By mathematical induction

(i)
$$||x_1|| = 0$$
 (ii) $||x_1|| = k$, $x_1 = \lambda$ and $(x_1 x_2)^R = (\lambda x_2)^R = x_2^R = x_2^R \lambda = x_2^R \lambda^R = x_2^R x_1^R$ because $\lambda^R = \lambda$

(iii)
$$||x_1|| = k + 1, x_1 = zy_1, ||z|| = 1, ||y_1|| = k,$$

$$(x_1x_2)^R = (zy_1x_2)^R = (y_1x_2)^R z = x_2^R y_1^R z = x_2^R (zy_1)^R = x_2^R x_1^R.$$

- Example: A vending machine dispenses two flavors of chewing gum: peppermint (P) and spearmint (S).
 - The cost of either flavor is 20c. The machine accepts nickels; dimes, and quarters and returns the necessary change.
 - Mary Jo inserts two nickels and a dime, and press the white button (W) for a package of peppermint-flavored chewing gum.

	t_0	t_1	t_2	t_3	t_4
State	$(1) s_0$	$(4) s_1 (5c)$	$(7) s_2(10c)$	$(10) s_3(20c)$	$(13) s_0$
Input	(2) 5c	(5) 5c	(8) 10c	(11) W	
Output	(3) Nothing	(6) Nothing	(9) Nothing	(12) P	

• Definition 6.13

A finite state machine is five - tuple M = (S, I, O, v, w), where

S =the set of internal states for M;

I =the input alphabet for M;

O = the output alphabet for M;

 $v: S \times I \rightarrow S$ is the next state function;

 $w: S \times I \rightarrow O$ is the output function;

	v	w
	0 1	0 1
s_0	s_0 s_1	0 0
s_1	s_2 s_1	0 0
s_2	$s_0 - s_1$	0 1

• Ex 6.17

Consider the finite state machine M = (S, I, O, v, w), where

$$S = \{s_0, s_1, s_2\}, I = O = \{0, 1\}, \text{ and } v, w \text{ are given by the state table.}$$

- Another representation for finite state machine
 - State diagram
- What is the output string for the input string 1100101101?
 - Input (output) string is an element of I* (O*), the Kleene closure of I (O).

State	s_0	$v(s_0, 1) = s_1$	$v(s_1, 0) = s_2$	$v(s_2, 1) = s_1$	$v(s_1, 0) = s_2$
Input	1	0	1	0	
Output	$w(s_0, 1)=0$	$w(s_1, 1)=0$	$w(s_2, 1)=1$	$w(s_1, 0) = 0$	

	v	w
	0 1	0 1
s_0	s_0 s_1	0 0
s_1	s_2 s_1	0 0
s_2	s_0 s_1	0 1

- Ex 6.19: A serial binary adder is a finite state machine that we can use to obtain x + y.
 - E.g., $x = x_5 x_4 x_3 x_2 x_1 = 00111, y = y_5 y_4 y_3 y_2 y_1 = 01101$

• The serial binary adder is modeled by a finite state machine M = (S, I, O, v, w). $S = \{s_0, s_1\}$, where s_i indicates a carry of i; $I = \{00, 01, 10, 11\}$; $O = \{0, 1\}$; and v, w are given in the following state table.

			v		w					
	00	01	10	11	00	01	10	11		
s_0	s_0	s_0	s_0	s_1	0	1	1	0		
s_1	s_0	s_1	s_1	<i>s</i> ₁	1	0	0	1		

- Some additional machines relevant to the design of computer hardware, e.g., <u>sequence recognizer</u>.
- Ex 6.20: Construct a machine that recognizes each occurrence of the sequence 111.
 - Input: 1110101111, output: 0010000011 $\{0, 1\}*\{111\}$

equivalent

- Ex 6.21: Construct a machine that not only recognizes the occurrence of 111, but also recognizes those occurrences that end in a position that is a **multiple of three**.
 - Input: 1110111, output: 0010000, not 0010001
 - Input: 111100111, output: 001000001

- Ex 6.22: Construct a machine that not only recognizes (a) the occurrence of 0101, (b) those occurrences that end in a position that is a multiple of four.
 - Input: 01010100101, output: (a) 00010100001 (b)00010000000

- Ex 6.23: Can we construct a finite state machine that recognizes precisely those strings in the language $A = \{01, 0011, 000111,...\} = \{0^i 1^i | i \in \mathbb{Z}^+ \}$?
 - Apply the pigeonhole principle

State	s_0	s_1	s_2	S_i	S_{i+1}	S_j	S_{j+1}	S_n	S_{n+1}	S_{2n}	S_{2n+1}
Input	0	0	0	 0	0	 0	0	 0	1	 1	1
Output	0	0	0	0	0	0	0	0	1	1	1

State	s_0	s_1	s_2	S_i	S_{j+1}	S_n	S_{n+1}	S_{2n}	S_{2n+1}
Input	0	0	0	 0	0	 0	1	 1	1
Output	0	0	0	0	0	0	1	1	1

Proof

 $M = \{S, I, O, v, w\}$ can recognize strings in A, let $|S| = n \ge 1$.

Consider $0^{n+1}1^{n+1}$ in the language A

 \Rightarrow M will process $\underline{n+1}$ 0's by n+1 states s_0, s_1, \dots, s_n

|S| = n, by pigeonhole principle, exists two states $s_i = s_j$

 \therefore We can remove j - i columns (see the tables)

 \Rightarrow M recognizes $x = 0^{(n+1)-(j-i)}1^{n+1}$, where (n+1)-(j-i) < n+1

In fact, $x \notin A \Rightarrow M$ cannot recognize x

∴ contradict

 \therefore We cannot construct a finite state machine recognizing strings in A.

- One-unit delay machine
 - Ex 6.24: If $x = x_1 x_2 ... x_m$, then $w(s_0, x) = 0 x_1 x_2 ... x_{m-1}$.

• Two-unit delay machine

• Definition 6.14

$$M = \{S, I, O, v, w\}$$
 is a finite state machine

a) $s_i, s_j \in S, s_j$ is <u>reachable</u> from s_i

if
$$s_i = s_j$$
 or $v(s_i, x) = s_j$ (e.g., s_3 is reachable from s_0, s_1, s_2 in the Fig.)

- b) s is *transient* if v(s,x) = s for $x \in I^*$ implies $x = \lambda$ (e.g., s_2 in the Fig.) (出去回不來)
- c) s is a sink if v(s,x) = s for all $x \in I^*$ (e.g., s, in the Fig.)
- d) $S_1 \subseteq S, I_1 \subseteq I$, if $v_1 = v|_{S_1 \times I_1} : S_1 \times I_1 \to S$, $w_1 = w|_{S_1 \times I_1}, M_1 = \{S_1, I_1, O, v_1, w_1\}$ is a submachine of M
- e) Strongly connected if for any $s_i, s_j \in S$, s_j is reachable from s_i

Figure 6.15

• Definition 6.15

For a finite state machine M, let s_i , s_j be two distinct states.

 $x \in I^+$ is called a <u>transfer (transition) sequence</u> from s_i to s_j if

a)
$$v(s_i, x) = s_i$$

b)
$$y \in I^+$$
 with $v(s_i, y) = s_i \Rightarrow ||y|| \ge ||x||$

- Ex 6.26: Find a transfer sequence from s_0 to s_2 in the state table.
 - x = 0000

	v	w
	0 1	0 1
s_0	s_6 s_1	0 1
s_1	s_5 s_0	0 1
s_2	$s_1 s_2$	0 1
s_3	S_4 S_0	0 1
s_4	s_2 s_1	0 1
<i>s</i> ₅	S_3 S_5	1 1
s_5 s_6	S_3 S_6	1 1

Figure 6.16

31

 Construct a state diagram for a finite state machine with I=O={0, 1} that recognizes all strings in the language {0, 1}*{00}U{0, 1}*{11}

• Let M be the finite state machine in the following figure. For states S_i , S_j , where , let O_{ij} denote the set of all nonempty output strings that M can produce as it goes from state S_i , to state S_j , e.g., $O_{20} = \{0\}\{1, 00\}^*$. Find O_{02} , O_{22} , O_{11} , and O_{10} .

$$O_{00} = \{1, 00\}^* - \{\lambda\}$$

$$O_{02} = \{1, 00\}^*\{0\}$$
 $O_{22} = \{0\}\{1, 00\}^*\{0\}$
 $O_{11} = \Phi$
 $O_{10} = \{1\}\{1, 00\}^*U\{10\}\{1, 00\}^*$