

Statistik

CH.3 - Maßzahlen

SS 2021 | | Prof. Dr. Buchwitz, Sommer, Henke

Wirgeben Impulse

Maßzahlen

Ziel der folgenden Maßzahlen ist die Reduktion der Daten auf Kennzahlen, die einen Großteil der wesentlichen Infromationen der zugrundeliegenden statistischen Variablen enthalten.

- Lagemaße: Beschreiben das Zentrum / die Mitte einer Beobachtungsreihe
- Streuungsmaße: Beschreiben die Abweichung vom Zentrum einer Häufikeitsverteilung.
- Konzentrationsmaße: beschreiben, wie sich die Summe der Merkmalswerte der Beobachtungsreihe auf die Untersuchungseinheiten verteilt.

Outline

1 Lagemaße

2 Streuungsmaße

3 Konzentrationsmaße

Beispiel

Die folgenden Daten bilden das Gewicht (in kg) von zufällig ausgewählten Kugeln aus der Produktion einer Fabrik für Bowlingkugeln ab.

- Handelt es sich bei den vorliegenden Daten um eine Stichprobe oder um eine Grundgesamtheit?
- Welches Skalenniveau weisen die gezeigten Daten auf?
- Wie könnte man die Daten beschreiben?

	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6	i = 7	i = 8
red	1.7471	3.3673	1.3287	6.1906	3.6590	1.3591	3.9749	4.4766
blue	9.7409	11.9352	7.0403	10.2196	11.4776	5.6971	9.2134	5.0044

Gewicht von 8 roten und 8 blauen Kugeln

Übersicht: Lagemaße

Lagemaß	Symbol	Berechnung
Modus	⊼ _{Modus}	$h_{Modus} \geq h_{j}$
Median	\bar{X}_{Median}	$x_{\frac{n+1}{2}}$ oder $\frac{1}{2}(x_{\frac{n}{2}} + x_{\frac{n}{2}+1})$
Quantil	${\sf Q}_\alpha$	Wert der Verteilungsfunktion
Arithmetisches Mittel	\bar{X}	$\frac{1}{n}\sum_{i=1}^{n}X_{i}$
Geometrisches Mittel	\bar{x}_{geo}	$\sqrt[n]{x_1 \cdot x_2 \cdot \ldots \cdot x_n}$
Harmonisches Mittel	Χ̄ _{harm}	$\frac{n}{\sum_{i=1}^{n} 1/x_i}$

Achtung: Nicht jede Maßzahl ist für jede Art der *Skalierung* und damit nicht für jede Variable (sinnvoll) bestimmbar.

Modus

Definition: Modus

Der **Modus** oder **Modalwert** ist die häufigste Ausprägung einer Verteilung.

- Der Modus *kann* für beliebig skalierte Variablen bestimmt werden.
- Bei klassierten Daten wird die am häufigsten auftretende Klasse als Modalklasse bezeichnet.
- Der Modus hat keine eigene R-Funktion, kann aber mittels absoluten oder relativen Häufigkeiten bestimmt werden.

Median

Definition: Median

Sind $x_1 \le x_2 \le \ldots \le x_n$ die der Größe nach geordneten Beobachtungswerte eines metrisch skalierten Merkmals X, ergibt sich der **Median** \bar{x}_{Median} als

$$\bar{x}_{Median} = \begin{cases} x_{\frac{n+1}{2}} & \text{falls } n \text{ ungerade} \\ \frac{1}{2}(x_{\frac{n}{2}} + x_{\frac{n}{2}+1}) & \text{falls } n \text{ gerade} \end{cases}$$

- Der Median wird auch als Zentralwert bezeichnet.
- Der Median teilt die Daten in zwei gleich Große Hälften.
- Kann für metrische- und ordinalskalierte Merkmale verwendet werden.
- Ist robust gegenüber Ausreißern.
- R-Funktion: median()

8

Quantile

Definition: Quantil

Das $\alpha-$ Quantil eines Merkmals ist der Wert, unterhalb dessen ein vorgegebener Anteil α aller Beobachtungswerte der Verteilung liegt. Dieser Wert ergibt sich aus der (empirischen) Verteilungsfunktion S().

$$S(Q_{\alpha}) = \alpha$$

- **Quantile sind Verallgemeinerungen des Medians, dieser ist Q_{0.5}.**
- Einige Gruppen von Quantilen haben spezielle Namen
 - Quartile: Q_{0.25}, Q_{0.5}, Q_{0.75}
 - Percentile: $Q_{0.01}, Q_{0.02}, Q_{0.03}, Q_{0.04}, \dots$
- R-Funktion: quantile()

q

Aritmetisches Mittel

Definition: Arithmetisches Mittel

Sind x_1, \ldots, x_n die Beobachtungswerte eines metrisch skalierten Merkmals X, so errechnet sich das **arithmetische Mittel** durch

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Das arithmetische Mittel ist nur für metrisch skalierte Daten definiert!
- Ist eine Maßzahl die empfindlich gegenüber Ausreißern ist.
- Das gewichtete arithmetische Mittel erlaubt die Bestimmung des arithmetischen Mittels für klassierte Daten.
- R-Funktion: mean()

Beispiel: Median und arithmetisches Mittel für die roten Kugeln

	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6	i = 7	i = 8
red	1.7471	3.3673	1.3287	6.1906	3.6590	1.3591	3.9749	4.4766
blue	9.7409	11.9352	7.0403	10.2196	11.4776	5.6971	9.2134	5.0044

Gewicht von 8 roten und 8 blauen Kugeln

Beispiel: Median und arithmetisches Mittel für die roten Kugeln

```
# Ausgabe der Daten
red
## [1] 1.747092 3.367287 1.328743 6.190562 3.659016 1.359063 3.974858 4.476649
# Arithmetisches Mittel
mean(red)
## [1] 3.262909
## Median
median(red)
## [1] 3.513151
# Zusammenfassung wesentlicher Lagemaße
summary(red)
##
     Min. 1st Ou. Median Mean 3rd Ou.
                                             Max.
    1.329 1.650 3.513 3.263 4.100 6.191
##
```

Geometrisches und Harmonisches Mittel

- Es gibt zahlreiche spezialisierte Mittelwerte, wie das **geometrische Mittel** \bar{x}_{geo} und das **harmonische Mittel** \bar{x}_{harm} . Welcher Mittelwert genutzt werden muss, hängt von den zugrundeliegenden Daten ab.
- Ziel der Mittelwertbildung ist, die durchschnittliche Gesamtwirkung von n meist unterschiedlichen Werten mit einem einzigen Wert zu beschreiben.

Geometrisches Mittel:
$$\bar{x}_{geo} = \sqrt[n]{x_1 \cdot x_2 \cdot \ldots \cdot x_n} = \sqrt[n]{\prod_{i=1}^n x_i}$$

Harmonisches Mittel: $\bar{x}_{harm} = \frac{n}{\sum_{i=1}^n \frac{1}{x_i}}$

 Anwendung: Geometrische Mittelwerte eigenen sich für Wachstumsraten, harmonische Mittelwerte für Geschwindigkeiten.

Beispiel: Geometrisches Mittel

```
# Das Wertpapier-Beispiel (Bitcoin) aus der Einführung liefert die folgenden
# Wertveränderungen (returns) für ersten 3 Jahre des Assets.
ret <-c(.12, .07, .01)
# Geometrisches Mittel
mean_gm <- prod(1 + ret)^(1/length(ret))</pre>
mean_gm
## [1] 1.065715
# Probe
(100 * prod(1 + ret)) # Wert nach 3 Perioden bei 100 Euro Startwert
## [1] 121.0384
(100 * mean_gm^3) # Wert nach 3 Perioden berechnet mit x_{geom}
## [1] 121.0384
```

Schiefe

■ Wo liegen \bar{x} , \bar{x}_{Median} und \bar{x}_{Modus} bei den nachfolgend gezeigten Häufigkeitsverteilungen?

Schiefe

■ Wo liegen \bar{x} , \bar{x}_{Median} und \bar{x}_{Modus} bei den nachfolgend gezeigten Häufigkeitsverteilungen?

- Linksschiefe Häufigkeitsverteilung: $\bar{x} < \bar{x}_{Median} < \bar{x}_{Modus}$
- Symmetrische Häufigkeitsverteilung: $\bar{x} = \bar{x}_{Median} = \bar{x}_{Modus}$
- lacktriangle Rechtsschiefe Häufigkeitsverteilung: $ar{x} > ar{x}_{Median} > ar{x}_{Modus}$

Outline

1 Lagemaße

2 Streuungsmaße

3 Konzentrationsmaße

Beispiel: Streuungsmaße

Übersicht: Streuungsmaße

Lagemaß	Symbol	Berechnung
Spannweite	R	$x_{max} - x_{min}$
Interquartilsabstand	IQR	$Q_{0.75} - Q_{0.25}$
(empirische) Varianz	s^2	$\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})^2$
Standardabweichung	S	$\sqrt{s^2}$
Variationskoeffizient	V	s/\bar{x}

Achtung: Nicht jede Maßzahl ist für jede Art der *Skalierung* und damit nicht für jede Variable (sinnvoll) bestimmbar.

Spannweite

Definition: Spannweite

Die Breite eines Streubereichs nennt man Spannweite R. Sie ergibt sich aus dem Maximum und Minimum der Daten.

$$R = x_{max} - x_{min}$$

- Nachteil: Nur zwei extreme Werte gehen in die Berechnung ein, der Großteil der Daten bleibt ungenutzt.
- Die Spannweite hat keine eigene R-Funktion, kann aber einfach mittels max() und min() berechnet werden.

Interquartilsabstand

Definition: Interquartilsabstand

Der **Quartilsabstand** gibt die Größe des Bereiches zwischem dem oberen und dem unteren Quartil einer Verteilung an, in dem die mittleren 50% der Beobachtungen fallen.

$$IQR = Q_{0.75} - Q_{0.25}$$

- Zwischen dem oberen und dem unteren Quartil liegen 50% der Beobachtungen.
- Kann auch sinnvoll für ordinalskalierte Merkmale bestimmt werden.
- Ist robust in dem Sinne, dass die IQR weitgehend unempfindlich gegenüber Ausreißern ist.
- R-Funktion: IQR()

Definition: Varianz

Der **Varianz** ist die mittlere quadrierte Abweichung vom arithmetischen Mittel

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 oder $s^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2$

- Es gilt immer $s^2 \ge 0$
- Wird unterschiedlich für die Stichprobe und für die Grundgesamtheit (Population) berechnet.
- Grundidee: Einbezug aller Abweichungen vom Mittelwert
- Beobachtungen die weit von \bar{x} entfernt liegen werden überproportional stark gewichtet.
- R-Funktion: var()

Standardabweichung

Definition: Standardabweichung

Die Standardabweichung ist die Wurzel aus der Varianz.

$$s = \sqrt{s^2}$$

- Weißt die gleiche Maßeinheit wie die Daten auf
- Ist i.d.R. einfacher zu interpretieren als die Varianz.
- R-Funktion: sd()

Rechenbeispiel

Berechnung der Varianz der roten Kugeln aus dem Eingangsbeispiel.

i	Xi	$x_i - \bar{x}$	$(x_i-\bar{x})^2$
1	1.7471	-1.5158	2.2977
2	3.3673	0.1044	0.0109
3	1.3287	-1.9342	3.7410
4	6.1906	2.9277	8.5712
5	3.6590	0.3961	0.1569
6	1.3591	-1.9038	3.6246
7	3.9749	0.7119	0.5069
8	4.4766	1.2137	1.4732

$$n = 8$$
 $\bar{x} = 3.2629$ $\sum (x_i - \bar{x}) = 0$ $\sum (x_i - \bar{x})^2 = 20.3823$ $s^2 = 2.9118$

Rechenbeispiel

Berechnung der Varianz der blauen Kugeln aus dem Eingangsbeispiel.

i	Xi	$x_i - \bar{x}$	$(x_i-\bar{x})^2$
1	9.7409	0.9499	0.9022
2	11.9352	3.1442	9.8858
3	7.0403	-1.7508	3.0653
4	10.2196	1.4285	2.0406
5	11.4776	2.6866	7.2176
6	5.6971	-3.0939	9.5725
7	9.2134	0.4223	0.1783
8	5.0044	-3.7866	14.3386

$$n=8$$
 $\bar{x}=8.7911$ $\sum (x_i-\bar{x})=0$ $\sum (x_i-\bar{x})^2=47.201$ $s^2=6.743$

Variationskoeffizient

Definition: Variationskoeffizient

Der **Variationskoeffizient** ist der Quotient aus Standardabweichung und arithmetischem Mittel.

$$V=\frac{s}{\bar{x}}$$

- Ist dimensionslos und vergleichbar
- Der Variationskoeffizient hat keine eigene R-Funktion, kann aber einfach mittels sd() und mean() berechnet werden.

Beispiel: Streuungsmaße

```
# Ausgabe der Daten
blue
## [1] 9.740948 11.935249 7.040281 10.219562 11.477642 5.697140 9.213390
## [8] 5.004441
# Spannweite
max(blue) - min(blue)
## [1] 6.930808
## Varianz
var(blue)
## [1] 6.742995
# Interquartilsabstand
IQR(blue)
## [1] 3.829586
# Variationskoeffizient
sd(blue) / mean(blue)
## [1] 0.295382
```

Outline

1 Lagemaße

2 Streuungsmaße

3 Konzentrationsmaße

Konzentration

Definition: Konzentration

Man spricht von Konzentration oder Ungleichheit, falls zu einem bestimmten Zeitpunkt ein relativ kleiner Anteil der Merkmalsträger einen hohen Anteil an der Summe der Merkmalswerte besitzt.

- Konzentration bzw. Ungleichheitsdiskussionen findet man häufig im Kontext von Einkommen oder Vermögen.
- Beispiele: In Deutschland besitzen 10% der Bevölkerung des Vermögens.

Lorenzkurve

Definition: Lorenzkurve

Der Polygonzug durch die Punkte $P_0 = (0, 0)$ und $P_j = (k_j, l_j)$ mit j = 1, ..., q heißt **Lorenzkurve**.

$$k_j = \sum_{i=1}^{j} \frac{H_j}{n} = \sum_{i=1}^{j} h_j$$
 $l_j = \frac{\sum_{i=1}^{j} a_i H_i}{\sum_{i=1}^{q} a_i H_i}$

- Die Lorenzkurzve verläuft durch die Punkte (0,0) und (1,1)
- Die Lorenzkurve verläuft immer unterhalb der Winkelhalbierenden.
- Die Lorenzkurve ist winkelhalbierend, wenn alle Mermalsausprägungen gleich häufig vorkommen. Dann liegt keine Konzentration vor. Je weiter die Lorenzkurve sich von der Winkelhalbierenden entfernt, desto größer ist die Ungleichheit.
- R-Funktion: Lc() aus dem Zusatzpaket ineq

Beispiel

Wir betrachten vereinfachend die Einkommensverteilungen der folgenden drei sehr kleinen Länder.

```
A <- c(1000, 3000, 4000, 4000, 8000)

B <- c(2000, 2000, 4000, 8000)

C <- c(1000, 2000, 5000, 8000)
```

Beispiel

_			
j	aj	k _j	lj
0		0	0
1	1000	0.2	0.05
2	3000	0.4	0.2
3	4000	0.8	0.6
4	8000	1	1

Gini Koeffizient

Definition: Gini Koeffizient

Das Doppelte der Fläche zwischen der Lorenzkurve und der Winkelhalbierenden heißt **Gini-Koeffizient** *G* und wird als Konzentrationsmaß einer Häufigkeitsverteilung verwendet.

$$G = \sum_{i=1}^{n} (k_i + k_{i-1})(l_i - l_{i-1}) - 1$$

- Um den Gini-Koeffizienten zu berechnen sind alle Stützpunkte der Lorenzkurve erforderlich. Es gilt $0 \le G \le \frac{n-1}{n} < 1$.
- Wenn die Lorenzkurve winkelhalbierend ist, gilt G = 0. In diesem Fall gibt es keine Einkommensunterschiede.
- Werden *alle* Ausgangswerte x_i mit einem Faktor a multipliziert, sodass $y_i = a \cdot x_i$, dann gilt $G_y = G_x$.
- R-Funktion: Gini() aus dem Zusatzpaket ineq

Lorenzkurve mit Gini-Koeffizient

Verständnisfragen

- Welche Lage- und Streuungsparameter eignen sich für ordinalskalierte Merkmale? Welche sind für nominalskalierte Merkmale geeignet?
- Welche Streuungsmaße berücksichtigen nur einzelne Beobachtungswerte der Häufigkeitsverteilung?
- Wie macht sich eine vollkommene Gleichheit in der Einkommensverteilung eines Landes in der Lorenzkurve bemerkbar? Wie groß ist dann der GINI-Koeffizient?

Verständnisfragen (Antworten)

- Welche Lage- und Streuungsparameter eignen sich für ordinalskalierte Merkmale? Welche sind für nominalskalierte Merkmale geeignet?
 - Ordinal: Median, Quantile, Modus, Quartilsabstände.
 - Nominal: Modus.
- Welche Streuungsmaße berücksichtigen nur einzelne Beobachtungswerte der Häufigkeitsverteilung?
 - Einzelne Beobachtungswerte: Spannweite
 - Alle Beobachtungswerte: alle weitern die vorgestellt wurden.
- Wie macht sich eine vollkommene Gleichheit in der Einkommensverteilung eines Landes in der Lorenzkurve bemerkbar? Wie groß ist dann der GINI-Koeffizient?
 - Winkelhalbierende, G = 0