(d) Amendment to the Claims

A detailed listing of all the claims that are in the application follows:

 (Original) A charge control agent for controlling a charged state of powder, characterized by comprising one or more units each represented by the following chemical formula (1) in a molecule:

$$O = C$$

$$CH_2)M$$

$$CH_2)I$$

$$Z_{tb}$$

$$CH_2$$

(in the formula:

R represents -A1-SO2R1;

R1 represents OH, a halogen atom, ONa, OK, or OR12; and

 R_{1a} and A_1 each independently represent a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring

structure, or a substituted or unsubstituted heterocyclic structure;

in addition, with regard to l, m, $Z_{\rm la},$ and $Z_{\rm lb}$ in the formula:

when I represents an integer selected from 2 to 4, Z_{1a} represents nothing or a linear alkylene chain having 1 to 4 carbon atoms, Z_{1b} represents a hydrogen atom, and m represents an integer selected from 0 to 8;

 $\label{eq:local_local_local} when 1 \ represents \ 1 \ and \ Z_{1a} \ represents \ a \ linear \ alkylene \ chain \ having \ 1 \ to \ 4$ carbon atoms, Z_{1b} represents a hydrogen atom and m represents an integer selected from 0 to 8;

when I represents 1 and Z_{1a} represents nothing, Z_{1b} represents a hydrogen atom and m represents 0;

when I represents 0 and Z_{1a} represents a linear alkylene chain having 1 to 4 carbon atoms, the linear alkylene chain may be substituted by a linear or branched alkyl group, or an alkyl group containing a residue having any one of a phenyl structure, a thienyl structure, and a cyclohexyl structure at a terminal thereof, Z_{1b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8; and

when 1 represents 0 and Z_{1a} represents nothing, Z_{1b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8;

in addition, when multiple units exist, R, R_1 , R_{1a} , A_1 , Z_{1a} , Z_{1b} , l, and m each independently have the above meaning for each unit.)

(Original) A charge control agent according to claim 1, characterized in
that the one or more units each represented by the chemical formula (1) are each represented by
the following chemical formula (2):

$$SO_2R_2$$
 A_2
 N
 H
 O
 CH_2/M
 CH_2/M
 CH_2/M

(in the formula:

group having 1 to 8 carbon atoms;

 R_2 represents OH, a halogen atom, ONa, OK, or OR_{2a} ; and R_{2a} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group, and A_2 represents a linear or branched alkylene

in addition, with regard to 1, m, Z_{2a} , and Z_{2b} in the formula: when 1 represents an integer selected from 2 to 4, Z_{2a} represents nothing or a linear alkylene chain having 1 to 4 carbon atoms, Z_{2b} represents a hydrogen atom, and m represents an integer selected from 0 to 8;

when I represents 1 and Z_{2a} represents a linear alkylene chain having 1 to 4 carbon atoms, Z_{2b} represents a hydrogen atom and m represents an integer selected from 0 to 8; when I represents 1 and Z_{2a} represents nothing, Z_{2b} represents a hydrogen atom and m represents 0;

when I represents 0 and Z_{2a} represents a linear alkylene chain having 1 to 4 carbon atoms, the linear alkylene chain may be substituted by a linear or branched alkyl group, or an alkyl group containing a residue having any one of a phenyl structure, a thienyl structure, and a cyclohexyl structure at a terminal thereof, Z_{2b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8; and

when 1 represents 0 and Z_{2a} represents nothing, Z_{2b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8;

in addition, when multiple units exist, R_2 , R_{2a} , A_2 , Z_{2a} , Z_{2b} , I, and I m each independently have the above meaning for each unit.)

3. (Previously Presented) A charge control agent according to claim 1, characterized in that the one or more units each represented by the chemical formula (1) are each represented by the following chemical formula (3):

$$R_3$$
c R_3 d R_3 e R_3 e

(in the formula, at least one of R_{3a} , R_{3b} , R_{3e} , R_{3d} , and R_{3e} represents SO_2R_{3f} (R_{3f} represents OH, a halogen atom, ONa, OK, or OR_{3f} , R_{3f} represents a linear or branched alkyl group having 1 to 8

carbon atoms, or a substituted or unsubstituted phenyl group), and the others each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an OH group, an NH_2 group, an NO_2 group, $COOR_{3g}$ (R_{3g} represents an H atom, an Na atom, or a K atom), an acetamide group, an OPh group, an NHPh group, a CF_3 group, a C_2F_3 group, or a C_3F_7 group;

in addition, with regard to 1, m, Z_{3a} , and Z_{3b} in the formula: when 1 represents an integer selected from 2 to 4, Z_{3a} represents nothing or a linear alkylene chain having 1 to 4 carbon atoms, Z_{3b} represents a hydrogen atom, and m represents an integer selected from 0 to 8;

when I represents 1 and Z_{3a} represents a linear alkylene chain having 1 to 4 carbon atoms, Z_{3b} represents a hydrogen atom and m represents an integer selected from 0 to 8; when I represents 1 and Z_{3a} represents nothing, Z_{3b} represents a hydrogen atom and m represents 0;

when I represents 0 and Z_{3a} represents a linear alkylene chain having 1 to 4 carbon atoms, the linear alkylene chain may be substituted by a linear or branched alkyl group, or an alkyl group containing a residue having any one of a phenyl structure, a thienyl structure, and a cyclohexyl structure at a terminal thereof, Z_{3b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8; and

when 1 represents 0 and Z_{3a} represents nothing, Z_{3b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8; $in \ addition, when multiple units exist, R_{3a}, R_{3b}, \bar{R}_{3e}, R_{3d}, R_{3e}, R_{3f}, R_{3f}, R_{3g}, \\ Z_{3a}, Z_{3b}, l, and m each independently have the above meaning for each unit.)$

4. (Previously Presented) A charge control agent according to claim 1, characterized in that the one or more units each represented by the chemical formula (1) are each represented by the following chemical formula (4A) or (4B):

$$\begin{array}{c|c} R_4e & R_4d \\ \hline R_4G & R_4b \\ \hline R_4G & R_4b \\ \hline \\ CH_2)I & Z_4a \\ \hline \end{array}$$

(in the formula, at least one of R_{4p} , R_{4p} , R_{4p} , R_{4p} , R_{4p} , R_{4p} and R_{4g} represents SO_2R_{4p} (R_{4p} represents OH, a halogen atom, ONa, OK, or OR_{4p} , R_{4p} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group), and the others each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an OH group, an NH_2 group, an NO_2 group, $COOR_{4p}$ (R_{4p} represents an H atom, an Na atom, or a K atom), an acetamide group, an OPh group, an NHPh group, a C_3 group, or a C_3 group, or a C_3 group;

in addition, with regard to l, m, Z_{4a} , and Z_{4b} in the formula:

when 1 represents an integer selected from 2 to 4, Z_{4a} represents nothing or a linear alkylene chain having 1 to 4 carbon atoms, Z_{4b} represents a hydrogen atom, and m represents an integer selected from 0 to 8;

when l represents 1 and Z_{4a} represents a linear alkylene chain having 1 to 4 carbon atoms, Z_{4b} represents a hydrogen atom and m represents an integer selected from 0 to 8; when l represents 1 and Z_{4a} represents nothing, Z_{4b} represents a hydrogen atom and m represents 0;

when I represents 0 and Z_{4a} represents a linear alkylene chain having 1 to 4 carbon atoms, the linear alkylene chain may be substituted by a linear or branched alkyl group, or an alkyl group containing a residue having any one of a phenyl structure, a thienyl structure, and a cyclohexyl structure at a terminal thereof, Z_{4b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8; and

when 1 represents 0 and Z_{4a} represents nothing, Z_{4b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8;

in addition, when multiple units exist, R_{da} , R_{db} , R_{dc} , R_{d

$$R_{d}$$
 R_{d}
 R_{d}

(in the formula, at least one of R_{4b} , R_{4p} , R_{4p} , R_{4p} , R_{4p} , R_{4m} , and R_{4n} represents SO_2R_{4o} (R_{4o} represents OH, a halogen atom, ONa, OK, or OR_{4o1} , R_{4o1} represents a linear or branched alkyl group having 1 to 8 carbon atoms, or a substituted or unsubstituted phenyl group), and the others each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an OH group, an NH_2 group, an NO_2 group, $COOR_{4p}$ (R_{4p} represents an H atom, an Na atom, or a K atom), an acetamide group, an OPh group, an NHPh group, a C_3 group, a C_3 group, or a C_3 group; group;

in addition, with regard to 1, m, Z_{4e} , and Z_{4d} in the formula:

when 1 represents an integer selected from 2 to 4, Z_{4c} represents nothing or a linear alkylene chain having 1 to 4 carbon atoms, Z_{4d} represents a hydrogen atom, and m represents an integer selected from 0 to 8;

 $\label{eq:when l represents 1 and Z_{4e} represents a linear alkylene chain having 1 to 4}$ carbon atoms, Z_{4d} represents a hydrogen atom and m represents an integer selected from 0 to 8;

 $\label{eq:continuous} % A_{4e} = A_{4$

when I represents 0 and Z_{4c} represents a linear alkylene chain having 1 to 4 carbon atoms, the linear alkylene chain may be substituted by a linear or branched alkyl group, or an alkyl group containing a residue having any one of a phenyl structure, a thienyl structure, and a cyclohexyl structure at a terminal thereof, Z_{4d} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8; and

when 1 represents 0 and Z_{4c} represents nothing, Z_{4d} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8;

 $in \ addition, when multiple units exist, R_{4b}, R_{4j}, R_{4k}, R_{4j}, R_{4m}, R_{4m}, R_{4n}, R_{4o}, \\ OR_{4ol}, R_{4p}, Z_{4c}, Z_{4d}, l, and m each independently have the above meaning for each unit.)$

5. (Withdrawn) A charge control agent for controlling a charged state of powder, characterized by comprising one or more units each represented by the following chemical formula (5) in a molecule:

$$(CH_2)I \longrightarrow (CH_2)Im$$

$$Z_5b$$

(in the formula:

 R_{5} represents hydrogen, a group for forming a salt, or R_{5a} , and R_{5a} represents a linear or branched alkyl group having 1 to 12 carbon atoms, or aralkyl group;

in addition, with regard to l, m, Z_{5a} , and Z_{5b} in the formula:

when l represents an integer selected from 2 to 4, Z_{5a} represents nothing or a linear alkylene chain having 1 to 4 carbon atoms, Z_{5b} represents a hydrogen atom, and m represents an integer selected from 0 to 8;

when 1 represents 1 and Z_{5a} represents a linear alkylene chain having 1 to 4 carbon atoms, Z_{5b} represents a hydrogen atom and m represents an integer selected from 0 to 8; when 1 represents 1 and Z_{5a} represents nothing, Z_{5b} represents a hydrogen

atom and m represents 0;

when 1 represents 0 and Z_{5a} represents a linear alkylene chain having 1 to 4 carbon atoms, the linear alkylene chain may be substituted by a linear or branched alkyl group, or an alkyl group containing a residue having any one of a phenyl structure, a thienyl structure, and a cyclohexyl structure at a terminal thereof, Z_{5b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8; and

when 1 represents 0 and Z_{5a} represents nothing, Z_{5b} represents a hydrogen atom, or a linear or branched alkyl group, aryl group, or aralkyl group which may be substituted by an aryl group, and m represents an integer selected from 0 to 8;

in addition, when multiple units exist, R_5 , R_{5a} , Z_{5a} , Z_{5b} , I, and m each independently have the above meaning for each unit.)

(Previously Presented) A charge control agent according to claim
 characterized by further comprising a unit represented by the following chemical formula (7) in a molecule:

(in the formula, R₇ represents a linear or branched alkylene group having 1 to 11 carbon atoms, an alkyleneoxyalkylene group each alkylene of which has 1 to 2 carbon atoms, or an alkylidene group having 1 to 5 carbon atoms which may be substituted by aryl as desired;

in addition, when multiple units exist, R_7 independently has the above meaning for each unit.)

- (Previously Presented) A charge control agent according to claim 1, wherein the powder comprises toner for developing an electrostatic charge image.
- (Previously Presented) A toner for developing an electrostatic charge image, characterized by comprising at least:
 - a binder resin;
 - a colorant; and
 - the charge control agent according to claim 1.
- (Previously Presented) An image forming method, comprising at least the steps of:

applying a voltage from an outside to a charging member to charge an electrostatic latent image-bearing member;

forming an electrostatic charge image on the charged electrostatic latent image-bearing member;

developing the electrostatic charge image with the toner of claim 8 for developing an electrostatic charge image to form a toner image on the electrostatic latent image-bearing member;

transferring the toner image on the electrostatic latent image-bearing member onto a recording material; and

fixing the toner image on the recording material under heating.

(Previously Presented) An image forming apparatus, comprising at least:
 means for applying a voltage from an outside to a charging member to
 charge an electrostatic latent image-bearing member;

means for forming an electrostatic charge image on the charged electrostatic latent image-bearing member;

means for developing the electrostatic charge image with the toner of claim 8 for developing an electrostatic charge image to form a toner image on the electrostatic latent image-bearing member;

means for transferring the toner image on the electrostatic latent image-bearing member onto a recording material; and

means for fixing the toner image on the recording material under heating.

 (Withdrawn) A charge control agent according to claim 5, characterized by further comprising a unit represented by the following chemical formula (7) in a molecule:

in the formula, R₇ represents a linear or branched alkylene group having 1 to 11 carbon atoms, an alkyleneoxyalkylene group each alkylene of which has 1 to 2 carbon atoms, or an alkylidene group having 1 to 5 carbon atoms which is optionally substituted by aryl;

wherein when multiple units exist, R_7 independently has the above meaning for each unit.

- (Withdrawn) A charge control agent according to claim 5, wherein the powder comprises toner for developing an electrostatic charge image.
- 13. (Withdrawn) A toner for developing an electrostatic charge image, characterized by comprising at least:
 - a binder resin:
 - a colorant; and
 - the charge control agent according to claim 5.
- 14. (Withdrawn) An image forming method, comprising at least the steps of: applying a voltage from an outside to a charging member to charge an electrostatic latent image-bearing member;

forming an electrostatic charge image on the charged electrostatic latent image-bearing member;

developing the electrostatic charge image with the toner of claim 13 for developing an electrostatic charge image to form a toner image on the electrostatic latent image-bearing member;

transferring the toner image on the electrostatic latent image-bearing member onto a recording material; and

fixing the toner image on the recording material under heating.

15. (Withdrawn) An image forming apparatus, comprising at least: means for applying a voltage from an outside to a charging member to charge an electrostatic latent image-bearing member;

means for forming an electrostatic charge image on the charged electrostatic latent image-bearing member;

means for developing the electrostatic charge image with the toner of claim 13 for developing an electrostatic charge image to form a toner image on the electrostatic latent image-bearing member;

means for transferring the toner image on the electrostatic latent image-bearing member onto a recording material; and

means for fixing the toner image on the recording material under heating.