Deep Learning – Supervised 1

Arrie Kurniawardhani

Crash Course ML | DL - 28 Februari 2020

Deep Learning ~ Supervised ~

Content:

- 1. Neural Network
- 2. Learning Parameter
- 3. Adam
- 4. Regularization
- 5. Convolutional neural network

ANNs have been successfully applied in wide range of domains such as:

- 1. Classification of data Is this flower a rose or tulip?
- 2. Anomaly detection Is the particular user activity on the website a potential fraudulent behavior?
- 3. Speech recognition Hey Siri! Can you tell me a joke?
- 4. Audio generation Jukedeck, can you compose an uplifting folk song?
- 5. Time series analysis Is it good time to start investing in stock market?

And the list goes on...

- 1. Artificial neural network (or neural network for short)
- 2. A predictive model motivated by the way the brain operates

~ McCulloch-Pitts model of Neuron (1943 model)

- x = node input
- w = Weight
- f(x) = activation function

$$y = f\left(\sum_{i=1}^{n} (x_i w_i)\right)$$

[3]

» The summing function is given by:

$$y = x_1 w_1 + x_2 w_2 + ... + x_n w_n = \sum_{i=1}^{n} (x_i w_i)$$

» The activation function is given by:

$$f\left(\sum_{i=1}^{n}(x_iw_i)\right)$$

» Output: $y = \begin{cases} 0, & f(x) < T \\ 1, & f(x) \ge T \end{cases}$

- 1. a mathematical "gate"
- Mathematical equations that determine the output of a neural network
- Determines whether it should be activated ("fired") or not
- 4. Also help normalize the output of each neuron to a range between 1 and 0 or between -1 and 1

Tanh

Swish

ReLU

[5]

- 1. The softmax is a popular choice for the output layer activation and should not be used for a regression task as well.
- 2. Sigmoid and Tanh were widely used as hidden layer activation functions, but those suffer vanishing gradient problem.
- 3. ReLU is the most popular and commonly used as hidden layer activation.

Contoh:

OR Gate

, it dute		
In_1	In_2	Out
0	0	0
1	0	1
0	1	1
1	1	1

More neuron

Perceptron

- The simplest type of neural network that helps with linear (or binary) classifications of data
- The learning rule for training the neural network was first introduced with this model

Perceptron

- In addition to the variable weight values, the perceptron added an extra input that represents bias.
- Bias is used to adjust the output of the neuron along with the weighted sum of the inputs.
- 3. It's just like the intercept added in a linear equation.

$$y = f\left(w_0 + \sum_{i=1}^{n} (x_i w_i)\right)$$
 or $y = f\left(b + \sum_{i=1}^{n} (x_i w_i)\right)$

Multilayer Perceptron

- Input data is not linearly separable
- Need more linear line to make non-linear line, thus add hidden layers
- A non-linear activation function such as sigmoid

Multilayer Perceptron

hidden layer

- a) Need to determine 'weight' and 'bias' value through training phase
- b) The entire goal of training a neural network is to minimize <u>error</u> (difference in predicted and expected outputs) by adjusting its weights and biases.
- c) Training process is terminated when our model's predicted output is almost same as the expected output

1. Initialize the weights

- a. Initialized to small random numbers (e.g., ranging from -1 to 1, or -0.5 to 0.5).
- b. Each unit has a bias associated with it, and the biases are similarly initialized to small random numbers.

- 1. Initialize the weights
- 2. Propagate the input forward
 - The weighted sum of input values is calculated
 - b. The result is passed to an activation function (e.g Sigmoid)

- 1. Initialize the weights
- 2. Propagate the input forward
- 3. Calculate the error
 - a. Calculate the error, i.e., the difference between our predicted output and expected output
 - b. Loss function (Mean Squared Error)

$$e_j = \sum_{j=1}^m (y_j - \widehat{y}_j)^2$$

$$\widehat{y}_j$$
 = predicted output

 y_i = expected output

» Error/cost function:

$$e_j = \sum_{j=1}^m (y_j - \widehat{y}_j)^2$$

$$e(w)_j = \frac{1}{2} \sum_{j=1}^{m} (y(w)_j - \widehat{y}_j)^2$$

» Gradient descent:

$$w'_{i} = w_{i} - \sigma \frac{\partial}{\partial w_{i}} e(w)$$

» Derivative the error:

$$\frac{\partial}{\partial w_i} e(w) = \frac{1}{2} \frac{\partial}{\partial w_i} (y(w)_j - \widehat{y}_j)^2$$

(fog)' = (f'og)g'

$$\frac{\partial}{\partial w_i} e(w) = \frac{2}{2} (y(w)_j - \widehat{y}_j) \frac{\partial}{\partial w_i} (y(w)_j - \widehat{y}_j)$$

$$\frac{\partial}{\partial w_i} e(w) = -(y(w)_j - \widehat{y}_j) \frac{\partial}{\partial w_i} \widehat{y}_j$$

$$\frac{\partial}{\partial w_i} e(w) = -(y(w)_j - \hat{y}_j) \frac{\partial}{\partial w_i} (x_1 w_1 + x_2 w_2 + \dots + x_n w_n)$$

$$\frac{\partial}{\partial w_i}e(w) = -(y(w)_j - \hat{y}_j) * x_i$$

» Gradient descent:

$$w'_i \coloneqq w_i - \sigma \frac{\partial}{\partial w_i} e(w)$$

$$w'_i = w_i - \sigma(y(w)_j - \widehat{y}_j) * x_i$$

- 1. Initialize the weights
- 2. Propagate the input forward
- 3. Calculate the error
- 4. Backpropagate the error, update the weight
 - a. New weight: $w_{ij} = w_{ij} + (\sigma * e_j * x_i)$
 - b. New bias : $b_i = b_j + (\sigma * e_j)$
 - c. σ = Learning rate

Learning rate

- 1. A constant typically varying between 0 to 1
- 2. It decides the rate at which the value of weights and bias should vary/change.

[8]

- » Steps 2 and 4 are repeated until one of the following terminating conditions is met:
 - a. The error is minimized to the least possible value
 - b. The training has gone through the maximum number of epochs
 - c. There is no further reduction in error value
 - d. The training error is almost same as that of validation error

Learning Parameter

1. Parameters

- a. The coefficients of the model, need to be set, and updated by the model itself.
- b. Weight, bias

2. Hyperparameters

- The coefficients of the model, need to be set, But the model will not update them
- b. Learning rate, number of hidden layer, number of neurons, type of activation function, etc

Adam Optimization

- Adaptive Moment Estimation
- Gradient descent stochastic gradient descent AdaGrad (Adaptive Gradient Algorithm) – RMSprop (Root mean square propagation) – Adam
- 3. Stochastic gradient descent maintains a single learning rate (termed alpha) for all weight updates and the learning rate does not change during training.
- 4. Adam maintains a single learning rate for each network weight (parameter) and separately adapted as learning unfolds.

Adam Optimization

- The method computes individual adaptive learning rates for different parameters from estimates of first and second moments of the gradients.
- Adam optimizer is often the best choice, since it allows you to set different hyperparameters and customize your NN.

Regularization

- 1. Keep our model simple and avoid overfitting
- The idea is that regularization adds a penalty to the model if weights are great/too many.
- 3. Indeed, it adds to our loss function a new term which tends to increase (hence, the loss increases too) if the recalibration procedure increases weights.
- 4. Trade off between number of feature and error

Regularization

There are two kinds of regularization:

- 1. Lasso regularization (L1)
- 2. Bridge regularization (L2)

$$Loss Function = L(\mathbf{w}) + \lambda \sum w_i^2$$

$$Loss Function = L(\mathbf{w}) + \lambda \sum |\mathbf{w}_i|$$

L1 Regularization

Deep Learning

- 1. Has more hidden layers of neurons.
- Experts suggests that neural networks increase in accuracy with the number of hidden layers.

Deep Learning

CNN

- 1. ConvNet diperkenalkan oleh Yann LeCun et al pada 1988
- Facebook uses neural nets for their automatic tagging algorithms
- 3. AlexNet membuat ConvNet menjadi populer saat memenangkan Imagenet Challenge 2012
- 4. Google for their photo search
- 5. Amazon for their product recommendations
- 6. Pinterest for their home feed personalization

CNN

Image Classification

What We See

What Computers See

[11]

» Skills of being able to quickly recognize patterns, generalize from prior knowledge, and adapt to different image environments are ones that we need to share with our fellow machines

Image Classification

Machine Learning

Deep Learning

[12]

Inheritance from the real world

[13]

A visual explanation

[14]

Visual Pathway and CNN

CNN

- 1. Layers: Convolutional, pooling (downsampling), and Fully Connected, and output.
- Activation function: ReLU after Convolution and Fully Connected Layer and SoftMax for the output

Understanding Convolution

- » Convolution in a pixel over One layer (green)
- » Filter/kernel (yellow, x1 or x0)
- » Receptive field (green part that become yellow)
- » Activation Map or FeatureMap or Convolved Feature

1 _{×1}	1,0	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

[16]

Understanding Convolution

» Convolution in a pixel over three layers of color channel (RGB)

0	0	0	0	0	0	
0	156	155	156	158	158	
0	153	154	157	159	159	
0	149	151	155	158	159	
0	146	146	149	153	158	
0	145	143	143	148	158	%
	2.2	122				

0	0	0	0	0	0	15.5
0	167	166	167	169	169	
0	164	165	168	170	170	
0	160	162	166	169	170	
0	156	156	159	163	168	
0	155	153	153	158	168	
		·				٠

0	0	0	0	0	0	1
0	163	162	163	165	165	
0	160	161	164	166	166	
0	156	158	162	165	166	
0	155	155	158	162	167	
0	154	152	152	157	167	

Input Channel #1 (Red)

Input Channel #2 (Green)

Input Channel #3 (Blue)

-1	-1	1
0	1	-1
0	1	1

Kernel Channel #1

	Output										
-25											

[16]

image

tf.nn.conv2d(image, W_kernel)

- The computer is able perform image classification by looking for low level features such as edges and curves, and then building up to more abstract concepts through a series of convolutional layers.
- 2. Filter in first conv layer are designed to detect low level features such as edges, curves, simple colors.
- Next Convolution Layer are designed to detect higherlevel features

ReLU

1. Rectified Linear Units -- activation layer

$$f(x) = \max(0, x)$$

- Chosen because a lot faster (because of the computational efficiency) without making a significant difference to the accuracy
- Provide nonlinearities and preservation of dimension that help to improve the robustness of the network and control overfitting

0.2	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
0.3	-0.2	0.5	0.5	0.5	0.5	0.6	0.5	0.4	0.3	0.2	0.2	0.2
0.5	0.6	-0.6	0.6	0.6	0.7	0.5	0.5	0.4	0.2	0.1	0.1	0.1
0.5	0.6	0.6	0.6	0.7	0.5	0.4	0.2	0.2	0.1	0.1	0.1	0.1
0.5	0.6	0.6	0.7	0.5	0.4	0.2	0	-0	0.1	0.1	0.1	0.1
0.5	0.6	0.7	0.5	0.4	0.2	0	-0	-0	-0	0.1	0.1	0.1
0.5	0.6	0.5	0.5	0.4	0.2	0.1	0.1	0.2	0.3	0.4	0.4	0.4
0.5	0.6	0.5	0.4	0.4	0.3	0.3	0.4	0.5	0.7	0.6	0.6	0.6
0.5	0.6	0.5	0.4	0.3	0.4	0.4	0.5	0.7	0.6	0.6	0.6	0.6
0.5	0.6	0.5	0.4	0.4	0.4	0.6	0.7	0.6	0.6	0.6	0.6	0.6
0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7
0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.5
0.5	0.6	0.5	0.6	0.6	0.6	0.6	0.6	0,6	0.6	0.7	0.5	0.0

0.2	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
0.3	0	0.5	0.5	0.5	0.5	0.6	0.5	0.4	0.3	0.2	0.2	0.2
0.5	0.6	0	0.6	0.6	0.7	0.5	0.5	0.4	0.2	0.1	0.1	0.1
0.5	0.6	0.6	0.6	0.7	0.5	0.4	0.2	0.2	0.1	0.1	0.1	0.1
0.5	0.6	0.6	0.7	0.5	0.4	0.2	0	0	0.1	0.1	0.1	0.1
0.5	0.6	0.7	0.5	0.4	0.2	0	0	0	0	0.1	0.1	0.1
0.5	0.6	0.5	0.5	0.4	0.2	0.1	0.1	0.2	0.3	0.4	0.4	0.4
0.5	0.6	0.5	0.4	0.4	0.3	0.3	0.4	0.5	0.7	0.6	0.6	0.6
0.5	0.6	0.5	0.4	0.3	0.4	0.4	0.5	0.7	0.6	0.6	0.6	0.6
0.5	0.6	0.5	0.4	0.4	0.4	0.6	0.7	0.6	0.6	0.6	0.6	0.6
0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7
0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.5
0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.5	0.4

convolved1

Pooling Layers

- Also referred to as a downsampling layer
- Maxpooling being the most popular
- Maxpooling returns the maximum value (green) from the portion of the image (orange) covered by the Kernel (brown)

3.0	3.0	3.0
3.0	3.0	3.0
3.0	2.0	3.0

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

[16]

Pooling Layers

```
0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.5 0.4 0.3 0.2 0.2 0.2 0.2
          0.6 0.6 0.6 0.7 0.5 0.5 0.4 0.2 0.1 0.1 0.1 0.1
          0.6 0.6 0.7 0.5 0.4 0.2 0.2 0.1 0.1 0.1 0.1 0.1
      0.6 0.7 0.5 0.4 0.2
                                   0 0.1 0.1 0.1 0.1
      0.6 0.5 0.5 0.4 0.2 0.1 0.1 0.2 0.3 0.4 0.4 0.4 0.4
   0.5 0.6 0.5 0.4 0.4 0.3 0.3 0.4 0.5 0.7 0.6 0.6 0.6 0.6
          0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.5 0.4 0.2
0.4 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.5 0.4 0.2
```

 0.3
 0.5
 0.5
 0.6
 0.5
 0.4
 0.4
 0.4

 0.5
 0.6
 0.7
 0.7
 0.5
 0.2
 0.1
 0.1

 0.5
 0.7
 0.7
 0.4
 0
 0.1
 0.1
 0.1

 0.5
 0.6
 0.5
 0.3
 0.5
 0.7
 0.6
 0.6

 0.5
 0.6
 0.4
 0.6
 0.7
 0.6
 0.6
 0.7

 0.5
 0.6
 0.6
 0.6
 0.6
 0.7
 0.7
 0.4

 0.5
 0.6
 0.6
 0.6
 0.7
 0.7
 0.4
 0.2

 0.5
 0.6
 0.6
 0.6
 0.7
 0.7
 0.4
 0.2

tf.nn.max_pool(conv1_ReLu, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1])

conv1_ReLu

Fully Connected Layer

- 1. Layer in the end of the network.
- looks at what high level features most strongly correlate to a particular class
- Input: output is of the convolution-ReLU layer or pool layer preceding it
- 4. Output: the number of classes

Fully Connected Layer

[17]

Fully Connected Layer

CNN Training

Thanks for attention

arrie.kurniawardhani@uii.ac.id

Sumber

- 1. https://roioverload.com/biology-inspires-the-artificial-neural-network/
- 2. https://www.ee.co.za/article/application-of-machine-learning-
 https://www.ee.co.za/article/application-of-machine-learning-algorithms-in-boiler-plant-root-cause-analysis.html/application-of-machine-learning-algorithms-in-boiler-plant-root-cause-analysis.html/application-of-machine-learning-algorithms-in-boiler-plant-root-cause-analysis.html/application-of-machine-learning-algorithms-in-boiler-plant-root-cause-analysis.html/application-of-machine-learning-algorithms-in-boiler-plant-root-cause-analysis.html/application-of-machine-learning-algorithms-in-boiler-plant-root-cause-analysis.html/application-of-machine-learning-algorithms-in-boiler-plant-root-cause-analysis-fig-1
- 3. https://www.lucidarme.me/simplest-perceptron-update-rules-demonstration/
- 4. https://www.researchgate.net/figure/Three-different-types-of-transfer-function-step-sigmoid-and-linear-in-unipolar-and-fig8-306323136
- 5. https://yashuseth.blog/2018/02/11/which-activation-function-to-use-in-neural-networks/
- 6. https://id.m.wikipedia.org/wiki/Berkas:Neural network.svg
- 7. https://code-ai.mk/neural-network-with-c/
- 8. https://srdas.github.io/DLBook/GradientDescentTechniques.html
- 9. https://becominghuman.ai/deep-learning-made-easy-with-deep-cognition-403fbe445351

Sumber

- 10. https://www.reddit.com/r/artificial/comments/d4pm74/a brief history of ai from 1940s till today image/
- 11. https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
- 12. https://morioh.com/p/ed56b4fdbf1c
- 13. https://www.jackreeceejini.com/2019/07/animal-intelligence.html
- 14. https://www.frontiersin.org/articles/10.3389/fncom.2014.00135/full
- 15. https://www.researchgate.net/figure/2-Illustration-of-the-corrispondence-between-the-areas-associated-with-the-primary fig3 317277576
- 16. https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
- 17. https://cognitiveclass.ai/

