Statistics

Chapter 1

Introduction and Data Collection

Statistics

Statistics

is the science of planning studies and experiments, obtaining data, and then organizing, summarizing, presenting, analyzing, interpreting, and drawing conclusions based on the data

Population

Population

the complete collection of all individuals (scores, people, measurements, and so on) to be studied; the collection is complete in the sense that it includes *all* of the individuals to be studied

Data

Data

collections of observations (such as measurements, genders, survey responses)

Census versus Sample

Census

Collection of data from every member of a population

Sample

Subcollection of members selected from a population

Sample data must be collected in an appropriate way, such as through a process of random selection.

If sample data are not collected in an appropriate way, the data may be so completely useless that no amount of statistical torturing can salvage them.

The subject of statistics is largely about using sample data to make inferences (or generalizations) about an entire population. It is essential to know and understand the definitions that follow.

Parameter

Parameter

a numerical measurement describing some characteristic of a population.

population

Statistic

Statistic

a numerical measurement describing some characteristic of a sample.

sample t statistic

Quantitative Data

Quantitative (or numerical) data

consists of *numbers* representing counts or measurements.

Example: The weights of supermodels

Example: The ages of respondents

Categorical Data

Categorical (or qualitative or attribute) data

consists of names or labels (representing categories)

Example: The genders (male/female) of professional athletes

Example: Shirt numbers on professional athletes uniforms - substitutes for names.

Working with Quantitative Data

Quantitative data can further be described by distinguishing between discrete and continuous types.

Discrete Data

result when the number of possible values is either a finite number or a 'countable' number

(i.e. the number of possible values is

0, 1, 2, 3, . . .)

Example: The number of eggs that a hen lays

Continuous Data

Continuous (numerical) data

result from infinitely many possible values that correspond to some continuous scale that covers a range of values without gaps, interruptions, or jumps

Example: The amount of milk that a cow produces; e.g. 2.343115 gallons per day

Levels of Measurement

Another way to classify data is to use levels of measurement. Four of these levels are discussed in the following slides.

Nominal Level

Nominal level of measurement

characterized by data that consist of names, labels, or categories only, and the data <u>cannot</u> be arranged in an ordering scheme (such as low to high)

Example: Survey responses yes, no, undecided

Ordinal Level

Ordinal level of measurement

involves data that can be arranged in some order, but differences between data values either cannot be determined or are meaningless

Example: Course grades A, B, C, D, or F

Interval Level

Interval level of measurement

like the ordinal level, with the additional property that the difference between any two data values is meaningful, however, there is no natural zero starting point (where none of the quantity is present)

Example: Years 1000, 2000, 1776, and 1492

Ratio Level

Ratio level of measurement

the interval level with the additional property that there is also a natural zero starting point (where zero indicates that none of the quantity is present); for values at this level, differences and ratios are meaningful

Example: Prices of college textbooks (\$0 represents no cost, a \$100 book costs twice as much as a \$50 book)

Summary - Levels of Measurement

- Nominal categories only
- Ordinal categories with some order
- Interval differences but no natural starting point
- Ratio differences and a natural starting point

Basics of Collecting Data

Statistical methods are driven by the data that we collect. We typically obtain data from two distinct sources: observational studies and experiment.

Observational Study

Observational study

observing and measuring specific characteristics without attempting to modify the subjects being studied

Experiment

Experiment

apply some treatment and then observe its effects on the subjects; (subjects in experiments are called experimental units)

Simple Random Sample

Simple Random Sample

of *n* subjects selected in such a way that every possible sample of the same size *n* has the same chance of being chosen

Random & Probability Samples

Random Sample

members from the population are selected in such a way that each individual member in the population has an equal chance of being selected

Random & Probability Samples

Random Sample

members from the population are selected in such a way that each individual member in the population has an equal chance of being selected

Probability Sample

selecting members from a population in such a way that each member of the population has a known (but not necessarily the same) chance of being selected

Random Sampling

selection so that each individual member has an equal chance of being selected

Systematic Sampling

Select some starting point and then select every kth element in the population

Convenience Sampling

use results that are easy to get

Stratified Sampling

subdivide the population into at least two different subgroups that share the same characteristics, then draw a sample from each subgroup (or stratum)

Cluster Sampling

divide the population area into sections (or clusters); randomly select some of those clusters; choose all members from selected clusters

Interview all voters in shaded precincts.

Beyond the Basics of Collecting Data

Different types of observational studies and experiment design

Types of Studies

Cross sectional study

data are observed, measured, and collected at one point in time

- Retrospective (or case control) study data are collected from the past by going back in time (examine records, interviews, ...)
- Prospective (or longitudinal or cohort) study data are collected in the future from groups sharing common factors (called cohorts)

Types of Statistics

Statistics

 The branch of mathematics that transforms data into useful information for decision makers.

Descriptive Statistics

Collecting, summarizing, and describing data

Inferential Statistics

Drawing conclusions and/or making decisions concerning a population based only on sample data

Descriptive Statistics

- Collect data
 - e.g., Survey

- Present data
 - e.g., Tables and graphs

- Characterize data
 - e.g., Sample mean = $\frac{\sum X_i}{n}$

- Estimation
 - e.g., Estimate the population mean weight using the sample mean weight
- Hypothesis testing
 - e.g., Test the claim that the population mean weight is 120 pounds

Drawing conclusions about a large group of individuals based on a subset of the large group.

Basic Vocabulary of Statistics

VARIABLE

A variable is a characteristic of an item or individual.

DATA

Data are the different values associated with a variable.

OPERATIONAL DEFINITIONS

Data values are meaningless unless their variables have **operational definitions**, universally accepted meanings that are clear to all associated with an analysis.

Basic Vocabulary of Statistics

POPULATION

A **population** consists of all the items or individuals about which you want to draw a conclusion.

SAMPLE

A sample is the portion of a population selected for analysis.

PARAMETER

A **parameter** is a numerical measure that describes a characteristic of a population.

STATISTIC

A **statistic** is a numerical measure that describes a characteristic of a sample.

Population vs. Sample

Measures used to describe the population are called **parameters**

Measures computed from sample data are called **statistics**

Types of Variables

 Categorical (qualitative) variables have values that can only be placed into categories, such as "yes" and "no."

• Numerical (quantitative) variables have values that represent quantities.

Types of Data

