

Модуль 1. Математические основы помехоустойчивого кодирования Конечные поля. Представление конечных полей. Арифметика конечных полей.

Иванов Ф. И. к.ф.-м.н., доцент

Национальный исследовательский университет «Высшая школа экономики»

12 июня 2020 г.

Классы вычетов по модулю т

Пусть $m \in \mathbb{N}$, m > 1.

Определение

Два числа $a,b \in \mathbb{Z}$ называются сравнимыми по модулю m, если при делении на m дают одинаковые остатки, τ . е.

 $a=mt_1+r,\,b=mt_2+r.$ Запись: $a\equiv b\mod m.$

Числа, сравнимые по модулю m, образуют класс чисел по модулю m. Всего имеется m классов; любое число можно представить в виде

$$mq + r, r = 0,1,...,m - 1.$$

Взяв от каждого класса по одному вычету, получим полную систему вычетов по модулю m. В качестве полной системы вычетов употребляют наименьшие неотрицательные вычеты: 0,1,...,m-1 Если p — простое, то полная система вычетов по модулю p образует поле GF(p)

Неприводимый многочлен

Пусть F[x] — множество всех многочленов f(x) всевозможных неотрицательных степеней с коэффициентами из поля GF(p):

$$F[x] = \{f(x) : f(x) = f_0 + f_1 x + f_2 x^2 + \dots + f_n x^n + \dots, f_i \in GF(p)\}.$$

Введем определение:

Определение

Многочлен $p(x) = a_0 + a_1 x + ... + a_m x^m$ называется неприводимым над полем GF(p), если он не распадается на множители над этим полем.

Пример

Следующие многочлены неприводимы над GF(2):

$$p(x) = x^2 + x + 1, p(x) = x^4 + x + 1, p(x) = x^4 + x^3 + x^2 + x + 1$$

Классы

вычетов по модулю неприводимого многочлена

Разобъем множество F[x] на p^m классов вычетов по модулю неприводимого многочлена p(x). Для этого рассмотрим все остатки от деления многочленов из F[x] на p(x). Они имеют вид $b(x) = b_0 + b_1 x + ... + b_{m-1} x^{m-1}, b_i \in GF(p)$. Два многочлена из множества F[x] называются сравнимыми по

Два многочлена из множества F[x] называются сравнимыми по модулю многочлена p(x), если при делении на p(x) они дают одинаковый остаток.

Таким образом, множество F[x] распадается на непересекающиеся классы многочленов, сравнимых по модулю p(x). Обозначим множество этих классов символом

Структура F[x]/(p(x))

Теорема

F[x]/(p(x)) - поле. То есть множество ненулевых остатков $F^*[x]/(p(x))$ образуют мультипликативную группу.

Пример

Рассмотрим неприводимые над GF(2) многочлены $p(x)=x^3+x+1$ и $p(x)=x^3+x^2+1$. Тогда:

$$F[x]/p(x) = \{0, 1, x, x+1, x^2, x^2+1, x^2+x, x^2+x+1\}$$

$$F^*[x]/p(x) = \{1, x, x+1, x^2, x^2+1, x^2+x, x^2+x+1\}$$

Вычислим $(x^2+1)*(x^2+x+1)=x^4+x^3+x^2+x^2+x+1=x^4+x^3+x+1$ Если $p(x)=x^3+x+1$, тогда:

$$x^4 + x^3 + x + 1 = (x + 1)(x^3 + x + 1) + (x^2 + x),$$

а значит:

$$(x^2 + 1) * (x^2 + x + 1) = x^2 + x$$

Продолжение примера

Вычислим $(x^2+1)+(x^2+x+1)=x.$ Очевидно, что суммирование не зависит от p(x), а зависит только от p.

Для $p(x)=x^3+x+1$ найдем разбиение множества элементов $F^*[x]/p(x)$ на взаимнообратные элементы:

$$x^{2} + 1 = x^{-1}, x^{2} + x + 1 = (x^{2})^{-1}, x^{2} + x = (x+1)^{-1},$$

например: $(x^2+x+1)x^2=x^4+x^3+x^2=(x^3+x+1)(x+1)+1$, а значит $(x^2+x+1)x^2\equiv 1\mod x^3+x+1$.

Пусть $p(x) = x^3 + x^2 + 1$, тогда

$$(x^2+1)*(x^2+x+1) = x^4+x^3+x+1 = x(x^3+x^2+1)+x \equiv x \mod p(x)$$

Для $p(x)=x^3+x^2+1$ найдем разбиение множества элементов $F^*[x]/p(x)$ на взаимнообратные элементы:

$$x^{2} + x = x^{-1}, x^{2} = (x+1)^{-1}, x^{2} + x + 1 = (x^{2} + 1)^{-1},$$

например: $(x^2 + x)x = x^3 + x^2 = (x^3 + x^2 + 1) + 1$, а значит

$$(x^2 + x)x \equiv 1 \mod x^3 + x^2 + 1.$$

Несколько выводов по примеру

- Элементы поля F[x]/p(x) и мультипликативной группы $F^*[x]/p(x)$ не зависят от p(x), а зависят только от его степени m и поля GF(p). Поэтому поле вычетов по модулю p(x) будем обозначать $GF(p^m)$.
- Сложение/вычитание в $GF(p^m)$ зависит только от p.
- Умножение/разбиение на обратные элементы в $GF(p^m)$ зависит от p(x)
- Сложение в $GF(p^m)$ задается обычным поразрядным сложением векторов/многочленов
- Умножение в $GF(p^m)$ сводится к умножению соответствующих многочленов по правилам поля GF(p) и поиску остатка по модулю p(x)

Поле разложения двучлена $x^{p^m} - x$

Группа $GF^*(p^m)$ называется мультипликативной группой поля $GF(p^m)$, и ее порядок равен p^m-1 .

Это значит, что для любого $\alpha \in \mathit{GF}^*(p^m)$:

$$\alpha^{p^m-1}=1,$$

или $\alpha \in \mathit{GF}^*(p^m)$ является корнем уравнения:

$$x^{p^m - 1} - 1 = 0$$

Если добавить $\alpha = 0$, то все элементы поля $GF(p^m)$ являются корнями уравнения:

$$x^{p^m}-x=0,$$

то есть

$$x^{p^m} - x = \prod_{\alpha_i \in GF(p^m)} (x - \alpha_i)$$

Цикличность группы $GF^*(p^m)$

Теорема

 Γ руппа $GF^*(p^m)$ циклична.

Пример

Пусть поле $GF(2^3)$ построено по модулю многочлена $p(x)=x^3+x+1$. Возведем элемент $x\in GF(2^3)$ в последовательные степени, помня, что каждую степень x^i следует разделить на p(x) и взять остаток от деления:

$$\begin{array}{l} x^0=1,\\ x^1=x,\\ x^2=x^2,\\ x^3=1+x,\\ x^4=x+x^2,\\ x^5=1+x+x^2,\\ x^6=1+x^2,\\ x^7=x+x^3=x+1+x=1. \end{array}$$

В итоге все ненулевые элементы группы $GF^*(2^3)$ можно представить как степени одного элемента x.

Задание поля посредством корня неприводимого многочлена

Рассмотрим уравнение, заданное в поле действительных чисел \mathbb{R} :

$$x^2 + 1 = 0$$

Известно, что оно не имеет корней в \mathbb{R} , но назначив его корнем число $i=\sqrt{-1}$: $i^2+1=0$ мы получим его решение в некотором другом поле \mathbb{C} - поле комплексных чисел. По сути, мы построили $\mathbb{C}=\{x+iy,x,y\in\mathbb{R},i^2=-1\}$ благодаря присоединению числа $i\not\in\mathbb{R}$ к исходному полю \mathbb{R} . Аналогично, неприводимый многочлен p(x) не имеет корней в GF(p), но допустим, что он имеет корень $\alpha\in GF(p^m)$. Тогда $p(\alpha)=0$. И $GF(p^m)$ есть расширение GF(p) при помощи α .

Пример 1

Пусть p=2, m=4. Построим $GF^*(2^4)$ по модулю многочлена $p(x)=x^4+x+1$, при условии $p(\alpha)=0$, или, что то же $\alpha^4=\alpha+1$. Напомним, что в поле характеристики p=2 выполняется равенство y=y.

Пример 2

Пусть p=2, m=4. Построим $GF^*(2^4)$ по модулю многочлена $p(x) = x^4 + x^3 + 1$, при условии $p(\beta) = 0$, или, что то же $\beta^4=\beta^3+1$. Напомним, что в поле характеристики p=2выполняется равенство y = y.

$$eta^0=1$$
 $=(1000)$ $eta^1=\beta^0=1$ $=(1000)$ $eta^2=\beta^2=(0010)$ $eta^3=\beta^3=(0001)$ $eta^4=1+\beta^3=(1001)$ $eta^5=1+\beta+\beta^2+\beta^3=(1101)$ $eta^6=1+\beta+\beta^2=(1110)$ $eta^8=\beta+\beta^2+\beta^3=(0111)$ $eta^9=1+\beta^2=(1110)$ $eta^9=1+\beta^2=(1010)$ $eta^{10}=\beta+\beta^3=(0101)$ $eta^{11}=1$ $eta^2+\beta^3=(0101)$ $eta^{12}=1+\beta=(1100)$ $eta^{13}=\beta+\beta^2=(0101)$ $eta^{14}=\beta^2+\beta^3=(0101)$ $eta^{14}=\beta^2+\beta^3=(0011)$ $eta^{14}=\beta^2+\beta^3=(0011)$ $eta^{14}=\beta^2+\beta^3=(0011)$ $eta^{15}=1$ $eta^1=(1000)$.

Умножение в полях из примеров 1 и 2

Допустим, для поля из примера 1 требуется умножить (1110) и (0011), и получить результат также в векторной форме. Алгоритм умножения следующий:

- Найти экспоненциальное представление: (1110) = α^{10} , (0011) = α^{6}
- Умножить экспоненциальные представления и учесть порядок группы: $\alpha^{10}\alpha^6=\alpha^{16}=\alpha^{15}\alpha=\alpha$
- Найти векторное представление $\alpha = (0100)$.
- Таким образом, (1110) * (0011) = (0100).

На самом деле, при данном представлении поля удобнее пользоваться не векторной, а именно экспоненциальной записью его элементов. В этом случае умножение тривиально!

Обращение элементов из примеров 1 и 2

Допустим, для поля из примера 2 требуется найти элемент, обратный к (1011), и получить результат также в векторной форме. Алгоритм обращения следующий:

- Найти экспоненциальное представление: $(1011) = eta^{11}$,
- Обратить экспоненциальные представления и учесть порядок группы: $(1011)^{-1} = (\beta^{11})^{-1} = \beta^{-11} = \beta^{-11}\beta^{15} = \beta^4$
- Найти векторное представление $eta^4 = (1001)$
- Таким образом, $(1011)^{-1} = (1001)$.

Сложение элементов из примеров 1 и 2

Допустим, для поля из примера 1 требуется найти сумму $\alpha^5 + \alpha^{11}$ и записать результат в экспоненциальной форме. Алгоритм суммирования следующий:

- Найти векторно представление: $\alpha^5 = (0110)$, $\alpha^{11} = (0111)$
- Найти поэлементную суммму векторов по модулю 2: (0110) + (0111) = (0001)
- Найти экспоненциальное представление (0001) = α^3
- Таким образом, $\alpha^5 + \alpha^{11} = \alpha^3$.

Вместо того, чтобы применять такой алгоритм суммирования, удобно хранить таблицы сложения экспонент элементов.

Таблица сложения для примера 1

+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	0	3	2	5	4	7	6	9	8	11	10	13	12	15	14
2	2	3	0	1	6	7	4	5	10	11	8	9	14	15	12	13
3	3	2	1	0	7	6	5	4	11	10	9	8	15	14	13	12
4	4	5	6	7	0	1	2	3	12	13	14	15	8	9	10	11
5	5	4	7	6	1	0	3	2	13	12	15	14	9	8	11	10
6	6	7	4	5	2	3	0	1	14	15	12	13	10	11	8	9
7	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8
8	8	9	10	11	12	13	14	15	0	1	2	3	4	5	6	7
9	9	8	11	10	13	12	15	14	1	0	3	2	5	4	7	6
10	10	11	8	9	14	15	12	13	2	3	0	1	6	7	4	5
11	11	10	9	8	15	14	13	12	3	2	1	0	7	6	5	4
12	12	13	14	15	8	9	10	11	4	5	6	7	0	1	2	3
13	13	12	15	14	9	8	11	10	5	4	7	6	1	0	3	2
14	14	15	12	13	10	11	8	9	6	7	4	5	2	3	0	1
15	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Таблица сложения для примера 2

+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	0	3	2	5	4	7	6	9	8	11	10	13	12	15	14
2	2	3	0	1	6	7	4	5	10	11	8	9	14	15	12	13
3	3	2	1	0	7	6	5	4	11	10	9	8	15	14	13	12
4	4	5	6	7	0	1	2	3	12	13	14	15	8	9	10	11
5	5	4	7	6	1	0	3	2	13	12	15	14	9	8	11	10
6	6	7	4	5	2	3	0	1	14	15	12	13	10	11	8	9
7	7	6	5	4	3	2	1	0	15	14	13	12	11	10	9	8
8	8	9	10	11	12	13	14	15	0	1	2	3	4	5	6	7
9	9	8	11	10	13	12	15	14	1	0	3	2	5	4	7	6
10	10	11	8	9	14	15	12	13	2	3	0	1	6	7	4	5
11	11	10	9	8	15	14	13	12	3	2	1	0	7	6	5	4
12	12	13	14	15	8	9	10	11	4	5	6	7	0	1	2	3
13	13	12	15	14	9	8	11	10	5	4	7	6	1	0	3	2
14	14	15	12	13	10	11	8	9	6	7	4	5	2	3	0	1
15	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0