- 1. Maximum Likelihood Method: consider n random samples from a multivariate normal distribution, $X_i \in \mathbb{R}^p \sim \mathcal{N}(\mu, \Sigma)$ with $i = 1, \ldots, n$.
 - (a) Show the log-likelihood function

$$l_n(\mu, \Sigma) = -\frac{n}{2} \operatorname{trace}(\Sigma^{-1} S_n) - \frac{n}{2} \log \det(\Sigma) + C,$$

where $S_n = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)(X_i - \mu)^T$, and some constant C does not depend on μ and Σ ;

(b) Show that $f(X) = \operatorname{trace}(AX^{-1})$ with $A, X \succeq 0$ has a first-order approximation,

$$f(X + \Delta) \approx f(X) - \operatorname{trace}(X^{-1}A'X^{-1}\Delta)$$

hence formally $df(X)/dX = -X^{-1}AX^{-1}$ (note $(I+X)^{-1} \approx I-X$);

(c) Show that $g(X) = \log \det(X)$ with $A, X \succeq 0$ has a first-order approximation,

$$g(X + \Delta) \approx g(X) + \operatorname{trace}(X^{-1}\Delta)$$

hence $dg(X)/dX = X^{-1}$ (note: consider eigenvalues of $X^{-1/2}\Delta X^{-1/2}$);

(d) Use these formal derivatives with respect to positive semi-definite matrix variables to show that the maximum likelihood estimator of Σ is

$$\hat{\Sigma}_n^{MLE} = S_n.$$

(a)
$$f(\pi) = \frac{1}{(2\pi)^{p} |\Sigma|} \exp\left\{-\frac{1}{2}(\pi i - \mu)^{p} \Sigma^{+}(\pi i - \mu)\right\}$$

$$\log f(\pi) = \frac{1}{12} \left(-\frac{1}{2} \log (2\pi) - \frac{1}{2} \log (|\Sigma|) - \frac{1}{2} (\pi - \mu)^T \Sigma^{-1} (\pi - \mu) \right)$$

$$l(\pi) = trace(log f(\pi))$$

$$=-\frac{1}{2} \stackrel{?}{\equiv} tr \left(\sum_{i} (\chi_{i} - \mu_{i}) (\chi_{i} - \mu_{i})^{T} \right)$$

(b)
$$f(\chi+\Delta) = tr(A(\chi+\Delta)^{-1})$$

=
$$tr(AX^{-1}) - tr(A'X^{-1} \Delta X^{-1})$$

= $tr(AX^{-1}) - tr(X^{-1} A'X^{-1} \Delta)$
= $f(x) - tr(X^{-1} A'X^{-1} \Delta)$

(C)
$$g(X+b) = log(det(x+b))$$

 $= log(det(X^{\frac{1}{2}}(Z+X^{-\frac{1}{2}}DX^{-\frac{1}{2}})X^{\frac{1}{2}}))$
 $= log(det(X) + log(det(Z+X^{\frac{1}{2}}DX^{-\frac{1}{2}})))$
 $= log(det(X) + \sum_{i=1}^{n} log(1+\lambda_i))$

Ni is the i-th eigenvalue of X-20 X-2

O small ⇒ hi small

⇒ log (l+λi) ≈ λi

Thus

$$\log(\det(z)) \approx \log(\det(x)) + i \frac{\pi}{2} \lambda i$$

$$= \log(\det(x)) + tr(x^{-\frac{1}{2}} \Delta \pi^{-\frac{1}{2}})$$

$$= \log(\det(x)) + tr(x^{-1} \Delta)$$

$$\Rightarrow g(X+\Delta) = g(X) + tr(X^{-1} \Delta)$$

(a)
$$l(X) = -\frac{\eta}{2} tr(\Sigma^{-1} S_n) - \frac{\eta}{2} log (det(\Sigma)) + C$$

$$\frac{J(LX)}{J\Sigma} = -\frac{\eta}{2} \times (-\Sigma^{-1} S_n \Sigma^{-1}) - \frac{\eta}{2} \Sigma^{-1}$$

Also.
$$\frac{J\ell(x)}{J\Sigma} = 0$$

Thus $\hat{\Sigma} = Sn$