Inteligência Artificial para Robótica Móvel

Introdução

Professor: Marcos Maximo

Apresentação do Curso

Apresentação do Professor

- Marcos Maximo.
- Graduação no ITA (COMP-12).
- Mestrado e doutorado em robótica pelo ITA.
- Coordenador da ITAndroids.

Apresentações dos Alunos

- Nome.
- Gradução ou pós-graduação.
- Área (Computação, Eletrônica, Mecânica etc.).
- Se pós, tema de pesquisa.
- Expectativas.

Contatos do Professor

- Sala 128 no corredor da COMP no prédio da ELE e COMP (pôster da ITAndroids na porta).
- E-mail: <u>maximo.marcos@gmail.com</u> / <u>mmaximo@ita.br</u>.
- WhatsApp: (12) 99165-7300.

Estilo da Disciplina

- Sem provas.
- Aulas teóricas.
- Labs para casa.
- Apresentar técnicas e ferramentas, sem aprofundar.
- Foco em saber usar, menos em saber os porquês.
- Técnicas escolhidas com base na experiência do professor (ITAndroids).

Avaliação

- ~1 lab por aula.
- 2 semanas de prazo.
- Labs "mastigados".
- Critério de atraso: 0,5 ponto por dia.
- Entrega dos labs:
 - Relatório.
 - Código.
- Exame: trabalho em grupo com até 3 alunos.
 - Técnica ou problema não apresentado no curso.
 - Relatório em formato de artigo (padrão IEEE conferência, até 8 páginas).

Organização

- Google Classroom: material de apoio e entregas -> e-mail @ga.ita.br.
- E-mail (Google Groups).
- Atenção: se não for incluído até final do dia de hoje, mandar e-mail para maximo.marcos@gmail.com.

Premissas Éticas nos Laboratórios

- Os labs são individuais.
- Confiança total na DC.
- Pode:
 - Consultar material didático de qualquer fonte.
 - Discutir ideia da solução com o colega.
 - Ajudar um colega a encontrar bugs.
- Não pode:
 - Copiar solução pronta da Internet.
 - Copiar código ou relatório do colega.
 - Fazer o lab (mesmo que parcialmente) pelo colega.
 - Escrever o código junto com outro colega.
- Na dúvida, consulte o professor!

Cronograma de Aulas

Semana	Data	Conteúdo
1	18/2	Introdução. Máquinas de estados finitos e árvore de comportamentos.
2	25/2	Busca informada.
3	4/3	Carnaval
4	11/3	Otimização: métodos de busca local
5	18/3	Feriado imprensado
6	25/3	Otimização: métodos de busca baseados em população
7	01/04	Otimização: estratégias evolutivas
8	8/4	Visão computacional clássica
Semaninha		
1	22/4	Aprendizado de máquina. Redes neurais.
2	29/4	Aprendizado de máquina profundo.
3	6/5	Redes neurais convolucionais (RNC).
4	13/5	Visão computacional com RNC.
5	20/5	Aprendizado por reforço.
6	27/5	Aprendizado por reforço.
7	3/6	Aprendizado por reforço profundo.
8	10/6	Aprendizado por reforço profundo.

Bibliografia

• Bíblia de IA:

NORVIG, Peter; RUSSELL, Stuart. *Artificial Intelligence: A Modern Approach*. Pearson, 2009.

- Livro mais famoso de Deep Learning:
- GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. *Deep Learning*. The MIT Press, 2016.
 - Disponível em: https://www.deeplearningbook.org/

Bibliografia

- Livro mais famoso de Reinforcement Learning:
- SUTTON, R. S.; BARTO, A. G. Reinforcement Learning: An Introduction, second edition. The MIT Press, 2017.
 - Disponível em: http://incompleteideas.net/book/the-book.html

Tecnologias

- Python;
- Numpy;
- Tensorflow;
- OpenAl Gym.

Ferramentas de Python recomendadas

- Anaconda: gerenciador de pacotes.
- PyCharm: IDE.
 - Licença de estudante é de graça (e-mail @ga.ita.br).
- Visual Studio Code é boa alternativa ao PyCharm, se preferir.
- Labs devem funcionar em Windows ou Linux.

Motivação

THE PERSON IN THE DRIVER'S SEAT IS ONLY THERE FOR LEGAL REASONS

HE IS NOT DOING ANYTHING.
THE CAR IS DRIVING ITSELF.

Offici Deiecion

starring

Deep Mind

Atari (NIPS 2013)

AlphaGo (2016)

OpenAl

- OpenAl Five: venceu time 99,95% percentil de humanos no Dota 2.
- 180 anos de treino por dia. 128k núcleos de CPUs e 256 GPUs.

Para Saber Mais

- Vídeo completo da Tesla: https://www.youtube.com/watch?v=VG68SKoG7vE
- Atari breakout DRL: https://www.youtube.com/watch?v=V1eYniJORnk
- Documentário do AlphaGo no Netflix.
- Post sobre OpenAl Five: https://blog.openai.com/openai-five/
- Demonstração de técnicas do OpenAl Five: https://www.youtube.com/watch?v=eHipy_j29Xw

Conteúdo do Curso

Arquitetura de Agente

- Agente = programa de IA.
- Algumas tarefas necessitam de agentes complexos, e.g. jogar futebol.
- Difícil pensar de "uma vez só".
- Quebrar agente em "comportamentos" (behaviors).
- Como organizar os comportamentos?
- Quando trocar entre eles?
- Duas abordagens: máquinas de estados finitos e behavior trees.

Fonte: https://en.wikipedia.org/wiki/A* search_algorithm

Otimização

- Otimização matemática: achar o máximo ou mínimo de uma função.
- Depende de convenção: maximizar ou minimizar a função?
- Mudança entre convenções: g(x) = -f(x).
- Quando a função é simples:

$$f'(x) = 0$$
 ou $\nabla f(\mathbf{x}) = 0$

 Aplicação: muitos problemas podem ser escritos como minimização de função de custo.

Otimização

• Exemplo:

f=distância que a bola andou após o robô chutar a bola. \mathbf{x} =sequência de ângulos das juntas do robô humanoide.

- Quantos parâmetros? 22 juntas x 7 keyframes: 154 parâmetros.
- Qual a expressão de *f* ?

Visão Computacional

- Para computador, imagem é matriz de números.
- Antes de machine learning, usava-se algoritmos codificados "na mão".
- Algoritmos "clássicos" tem custo computacional baixo.

Fonte: https://blog.algorithmia.com/introduction-to-computer-vision/

Aprendizado de Máquina

- IA **não** é só *machine learning*.
- Área de IA mais ativa atualmente.
- Aprendizado Supervisionado: mostrando exemplos (professor).
- Aprendizado Não-supervisionado: encontrar padrões.
- Aprendizado por Reforço: recompensas.
- Desempenho super-humano em tarefas complexas.
 - Visão (em algumas competições).
 - Jogos de Atari.
 - Dota.

Aprendizado Supervisionado

Cats Dogs

Sample of cats & dogs images from Kaggle Dataset

Fonte: http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

Aprendizado Supervisionado

Fonte: https://becominghuman.ai/building-an-image-classifier-using-deep-learning-in-python-totally-from-a-beginners-perspective-be8dbaf22dd8

Deep Learning

- Conjunto de técnicas que permitiram treinar redes neurais profundas.
- Virou buzzword.

Fonte: https://medium.com/data-science-brigade/a-diferen%C3%A7a-entre-intelig%C3%AAncia-artificial-machine-learning-e-deep-learning-930b5cc2aa42

Aprendizado por Reforço

- Ao invés de exemplo, dá-se sinal de recompensa (bom ou ruim).
- Também se beneficiou de avanços de Deep Learning.
- Artificial General Intelligence.
- Muito bom para tarefas de controle.

