1/4

Figure 1A Nucleotide sequence of inserted environmental DNA

TCTCATTTAG	TTTGACTGAA	ATACCTACTG	TGCCACAAAG	TAAAGTTAAA	50
CTGACGAATG	TGGAACGAAT	CACTTAATGG	TTCTAGCATA	GATAACGAAA	100
GATGAACACG	TTCAAAGTTC	GCCACTCTTT	TGAAAGAGGG	TGAACTTTTT	150
TTGTGACAAG	AAAGGGTGTT	AAATGAAGAT	CAAAGCTAAA	CAAGATGAGT	200
AACGTTTCTT	TTCTTTTTTA	TAGAGTGAGT	TAGTATATGA	GTCCCTTATA	250
AATTTCTAGA	CTGTTATTTT	AAATAATTGA	ATGACTCAGT	CACCATTAAG	300
TTTTCAACAC	CCATAAGCGA	CGTTTGAAGA	TCTAATGATG	CGAGAGGTTT	350
TATCACTTTG	GAGCGGAAGA	TCACTGTAGG	ACTCGTTTTA	TATGGTGAAC	400
TTGGTGTTAT	TGTGTATTTA	AAAGAAAGGG	AAACGAAAAA	AATGGTTAAA	450
TTAGAAAGAG	GCTATTACAG	AGAGGAGAAC	AAACAATGAA	CGTAACACTT	500
GAAGTGACAT	ACTGCACGAC	TAAAGGTATT	CGAACAACCT	TTCATTCAGA	550
AGGTATGGAG	GCCGAAAAAG	CAATTACCAT	CGCAGAAGAT	TTTCAGCGGA	600
CAGGACGGAT	AAAACAGATC	GTCTTTAGAG	ATGAGCGTGA	TAGTCCGTGG	650
ACGTTAAAAG	AACTTAAAAG	ATTTTTAGAA	GAGATTAAAA	CGGAGCCGCA	700
TCATCTCTCT	GTGTATTTTG	ATGGGGGATT	TGATTTGGAG	ACACAACGAT	750
CTGGTCTTGG	GTGTGATTTA	TTATGAACAA	AATGACACGT	CTTATCGGGT	800
GAGAAGAAAC	GCTACCGTGG	CGTCATTGAC	ATCGAATAAC	GAAGCAGAAT	850
ATGCCGCTTT	ACATTTAGGA	CTTAAAGAAC	TTGAAGGGAT	CGGTGCGCAT	900
CATCTACCTA	TCACTATTTA	CGGTGATTCT	CAAGTTGTGA	TCAATCAGTT	950
AAAAGGAGAA	TGGGCGTGTA	TGGAGGAGGT	GTTAAATAAA	TGGGCTGACC	1000
GTATTGATCA	GCATTTAGCT	AAATTAGGCA	TGACCGCTAC	TTATAAGTTA	1050
ATCCCCCGTA	AAGAAAACCG	TGAAGCAGAT	CAACTGGCTA	CACAAGCGTT	1100
AAACGGGCAA	GAAATTATAA	GTCAACGTGA	TGTCAGTGAG	CGTGGTGCAG	1150
ATTAGTCTGC	ACCCGCATAA	AAGTTAACGT	ATATAGAAGT	GGATGGGGAT	1200
TAAAGGAACG	TCATTCACTC	TAAGCAAGCG	TTGCGACAGC	AAAAAAGAAA	1250
CATATAAGGT	TTTTCTGAGC	TACTATCTAT	ACAAATAGCC	AAGTGGCAGT	1300
TAAGCTCTTA	CCTCATCAAG	TTTTTGACTA	CCAGTCTTCC	ACTCCTACTT	1350
TCACCTATAT	AAATTGGTTC	CTTTTTTGTT	AATAATCACT	AATTTTGACG	1400
GTATTTTTTA	ATAGAAATAT	ATGCTAGATT	ATAAACTAGT	AACGATGTAG	1450
AAGGTGGTGA	TTGACCATAT	AAGAAGACTC	TTTCAAACCT	GGTAGTATCG	1500
		GGAGAGGACA			1550
		GTCTTGTTTG			1600
GTGTCAATGT	TTGTTCCAAT	GACATCAGCT	GAAGATGTCA	CTTCGTCACA	1650
		TAGCTGACAT			1700
		GGAGATGATG			1750
		AAAAACGATT			1800
		GGCAAAATCA			1850
		ATCAATCGGG			1900
		TGTGATGTTA			1950
		AACATAACTA			2000
		TTGTCGGAAA			2050
		CAATGAGCCT			2100
		ATGCTTACTT			2150
		TCAGGAGGCA			2200
		AGCCACGTCT			2250
		TGGATGATCC			2300
		TTTAGTGTCA			2350
		AGATATTATA			2400
TAACACATTT	ACAGCGCGTG	GTGTCCCAGT	TGTATTAGGC	GAATTCGGTT	2450

2/4

Figure 1B

TGTTAGGCTT 1	GACAAAAGT AG	GGATGTGA TTC	AGCAAGG GGAG	SAAATTA	2500
AAGTTTTTTG	AGTTTCTCAT	CCATCATCTC	AATGAACGTG	ATATAACCCA	2550
TATGTTATGG	GATAACGGCC	AGCATTTAAA	TCGAGAAACT	TATGCATGGT	2600
ATGATCAAGA	ATTTCATGAC	ATATTAAAAG	CGAGTTGGGA	GGGGCGTTCT	2650
GCTACAGCAG	AGTCTAATTT	GATTCATGTG	AAGGACGGAA	AGCCAATTAG	2700
AGATCAAGAT	ATACAGCTTT	ACTTAAACGG	AAATGAGCTA	ACAGCCTTAC	2750
AGGCAGGGGA	GGAATCGCTT	GTTCTAGGAG	AGGATTATGA	ACTAGCAGGA	2800
GGCGTATTAA	CGCTAAAAGC	GGACACCCTC	ACAAGACTAA	TTACCCCTGG	2850
TCAATTAGGA	ACCAATGCAG	TCATCACAGC	ACAATTTAAT	TCTGGAGCAG	2900
ACTGGCGTTT	TCAATTACAG	AATGTGGACG	TGCCAACGGT	CGAAAATACA	2950
GATGGCTCAA	CATGGCATTT	TGCGATCCCT	ACCCATTTTA	ATGGTGATAG	3000
TCTTGCGACG	ATGGAAGCTG	TTTATGCAAA	CGGAGAATAT	GCTGGGCCGC	3050
AAGATTGGAC	GTCATTTAAA	GAATTTGGCG	AGGCGTTTTC	TCCTAATTAC	3100
GCCACAGGGG	AAATTATTAT		TTCTTTAACG		3150
TGATGATATC	CATTTAACAT	TTCATTTTTG	GAGCGGAGAG	ACGGTGGAAT	3200
ATACCTTACG	TAAAAATGGC	AATTATGTTC	AAGGTAGACG	GTAACATGAT	3250
TTTAATTAAT		GCCTACCTAT			3300
CGAATCTCAT	CTTACCAACA		GAACTTTAGA		3350
TTTTTTAAGA		AGCAATCCTC		CACCAATTTT	3400
TATTCAGGAG		ATCTAACGTT			3450
		AAAGAAGTGA		CGAGGGGAAG	3500
GGGATAATGC	CAACGTATTG	GATTAAAGTA		AAAAAGAAAG	3550
	AGATGGAAAT	GGGCTCGTTT	GTTATACTTT	AATTACGCCT	3600
TGGAACGTCA	TTTTGGCGGT	GCTATTTAGT		ACATCATAAA	3650
AGAGGAGTGG	GTTCGATGGC	TTTAATTCAA		AATCACGAGC	3700
ATTAATGTTG	CAAACCTCTG		ATTACCGGTG	GGAATGAATG	3750
CTGTAGATTT	TACACCAAGT	GATGATTTTT	CTTATGTTAC	TGACCCTTTT	3800
CCTGTCCTAT	ATCTTTTGCA		GATGATTATT	CAGCATGGCT	3850
ACGTCTGTCC	TCTATTGAAC		AGAAAAAAA		3900
TCATGCCAAA		AGTGCGTATA		ACATGGCCAT	3950
CGTTACTGGA		TAAGGTGCTG	CCTGAGTTTA	TGAGAGCAAC	4000
TTTTCCTATT	TCTCAGCACC	GTGAAGACAC	CTTTGCAGCT	GGTCTGTCTA	4050
TGGGAGGATA			TGCGGCAACC	GGAACGCTTC	4100
GCTGCAGCTG	TGTCATTATC		GATATGAGAG		4150
	CTATTTGTAA	ATGCCTTTGG	TGAAGGGACG	AAAATCGCAG	4200
GGACA					4205

3/4

5.0

Figure 2 ORF Nucleotide sequence of cellulase gene

ATGGGTTATA CCAAAGCGAA GTGTACGTTG AAAAAAACTG TCTTGTTTGG

AIGGGIIAIA	CCMMMGCGMM	GIGIACGIIG	MANAMACIG	1011611166	20
TTTAATTCTC	TGTTTAAGTG	TGTCAATGTT	TGTTCCAATG	ACATCAGCTG	100
AAGATGTCAC	TTCGTCACAG	TTGGATATTC	ACTCCTATGT	AGCTGACATG	150
CAGCCTGGCT	GGAATTTAGG	AAATACGTTT	GACGCTGTTG	GAGATGATGA	200
AACAGCGTGG	GGGAATCCTC	GTGTAACAAG	AGAGTTAATA	AAAACGATTG	250
CTGATGAAGG	GTATAAAAGC	ATTCGTATCC	CAGTGACATG	GCAAAATCAA	300
ATGGGTGGTT	CTCCAGATTA	TACGATAAAT	GAAGATTATA	TCAATCGGGT	350
GGAGCAAGCG	ATAGATTGGG	CGTTGGAGGA	AGACTTATAT	GTGATGTTAA	400
ATGTGCATCA	TGACTCATGG	CTGTGGATGT	ATGATATGGA	ACATAACTAT	450
GATGAGGTCA	TGGCAAGATA	TACAGCTATT	TGGGAACAAT	TGTCGGAAAA	500
ATTCAAAAGC	CACTCCCATA	AGTTGATGTT	TGAGAGTGTC	AATGAGCCTA	550
GGTTTACGCA	GGAGTGGGGA	GAGATTCAAG	AAAATCATCA	TGCTTACTTA	600
GAAGATTTAA	ATAAGACGTT	CTATTATATT	GTCAGAGAGT	CAGGAGGCAA	650
TAATGTGGAG	CGCCCTTTAG	TATTGCCTAC	GATAGAAACA	GCCACGTCTC	700
AGGATTTACT	AGATCGCTTG	TATCAAACAA	TGGAAGACTT	GGATGATCCT	750
TATTTAATTG	CCACGGTGCA	TTATTATGGC	TTCTGGCCAT	TTAGTGTCAA	800
TATAGCAGGG	TACACTCATT	TTGAACAGGA	AACACAACAA	GATATTATAG	850
ACACCTTTGA	CCGTGTTCAT	AACACATTTA	CAGCGCGTGG	TGTCCCAGTT	900
GTATTAGGCG	AATTCGGTTT	GTTAGGCTTT	GACAAAAGTA	CGGATGTGAT	950
TCAGCAAGGG	GAGAAATTAA	AGTTTTTTGA	GTTTCTCATC	CATCATCTCA	1000
ATGAACGTGA	TATAACCCAT	ATGTTATGGG	ATAACGGCCA	GCATTTAAAT	1050
CGAGAAACTT	ATGCATGGTA	TGATCAAGAA	TTTCATGACA	TATTAAAAGC	1100
GAGTTGGGAG	GGGCGTTCTG	CTACAGCAGA	GTCTAATTTG	ATTCATGTGA	1150
AGGACGGAAA	GCCAATTAGA	GATCAAGATA	TACAGCTTTA	CTTAAACGGA	1200
AATGAGCTAA	CAGCCTTACA	GGCAGGGGAG	GAATCGCTTG	TTCTAGGAGA	1250
GGATTATGAA	CTAGCAGGAG	GCGTATTAAC	GCTAAAAGCG	GACACCCTCA	1300
CAAGACTAAT	TACCCCTGGT	CAATTAGGAA	CCAATGCAGT	CATCACAGCA	1350
CAATTTAATT	CTGGAGCAGA	CTGGCGTTTT	CAATTACAGA	ATGTGGACGT	1400
GCCAACGGTC	GAAAATACAG	ATGGCTCAAC	ATGGCATTTT	GCGATCCCTA	1450
CCCATTTTAA	TGGTGATAGT	CTTGCGACGA	TGGAAGCTGT	TTATGCAAAC	1500
GGAGAATATG	CTGGGCCGCA	AGATTGGACG	TCATTTAAAG	AATTTGGCGA	1550
GGCGTTTTCT	CCTAATTACG	CCACAGGGGA	AATTATTATA	TCAGAAGCCT	1600
TCTTTAACGC	GGTACGGGAT		ATTTAACATT	TCATTTTTGG	1650
AGCGGAGAGA	CGGTGGAATA	TACCTTACGT	AAAAATGGCA	ATTATGTTCA	1700
AGGTAGACGG	TAA				1713

4/4

Figure 3 Amino acid sequence of BagCel cellulase

MGYTKAKCTL	KKTVLFGLIL	CLSVSMFVPM	TSAEDVTSSQ	LDIHSYVADM	50
QPGWNLGNTF	DAVGDDETAW	GNPRVTRELI	KTIADEGYKS	IRIPVTWQNQ	100
MGGSPDYTIN	EDYINRVEQA	IDWALEEDLY	VMLNVHHDSW	LWMYDMEHNY	150
DEVMARYTAI	WEQLSEKFKS	HSHKLMFESV	NEPRFTQEWG	EIQENHHAYL	200
EDLNKTFYYI	VRESGGNNVE	RPLVLPTIET	ATSQDLLDRL	YQTMEDLDDP	250
YLIATVHYYG	FWPFSVNIAG	YTHFEQETQQ	DIIDTFDRVH	NTFTARGVPV	300
VLGEFGLLGF	DKSTDVIQQG	EKLKFFEFLI	HHLNERDITH	MLWDNGQHLN	350
RETYAWYDQE	FHDILKASWE	GRSATAESNL	IHVKDGKPIR	DQDIQLYLNG	400
NELTALQAGE	ESLVLGEDYE	LAGGVLTLKA	DTLTRLITPG	QLGTNAVITA	450
QFNSGADWRF	QLQNVDVPTV	ENTDGSTWHF	AIPTHFNGDS	LATMEAVYAN	500
GEYAGPQDWT	SFKEFGEAFS	PNYATGEIII	SEAFFNAVRD	DDIHLTFHFW	550
SGETVEYTLR	KNGNYVQGRR				570