MATH 524: Lecture 11 (09/23/2025)

Today: * reduced homology

* relative homology

Recall

Theorem 7.1 [M] The group $H_0(K)$ of simplicial complex K is free abelian. If $\{v_a\}$ is a collection of vertices such that there is one vertex from each connected component of |K|, then $\{v_a\}$ is a basis for $H_0(K)$.

Proof (ideas)

Step 1

O skeleton, i.e., vertices

homologous

(i) For $v, w \in K^{(0)}$, we define $v \sim w$ if there is a Sequence $a_0, ..., a_n$, with $a_i \in K^{(0)}$ such that $a_0 = v, a_n = w$, and $\underbrace{(a_i, a_{i+1})}_{n = 1} \in K^{(1)}$ ti.

the orientation does not matter; we just need $\underbrace{(a_i, a_{i+1})}_{n = 1}$ as an edge.

(ii) Show G_{τ} is path-connected $\forall v \in K^{(0)}$. (iii) If $G_{\tau} \neq G_{\tau}$, (i.e., are distinct), then they are disjoint.

It follows that Co are the connected components of IKI.

To follow the intuition for $\beta \ge 1$ of $\beta_b = 1$ when 1 (pt) dimensional "patch" is missing (thus creating a p-dim hole), we want $\beta_b = 1$ when 1 edge, for instance, is missing, i.e., when there are two components (not 1). To this end, we define reduced homology groups.

Reduced Homology Groups

Let $E: G_0(K) \to \mathbb{Z}$ be a swijerfive homomorphism defined by E(v)=1 $\forall v \in K^{(0)}$. For a o-chain \overline{c} $E(\overline{c})$ is the sum of the values of \overline{c} on vertices of K. E is the augmenting map for values of \overline{c} on vertices of K. E is the augmenting map for $G_0(K)$. Also, $E(\overline{c},\overline{d})=0$ for all 1-chains \overline{d} . So we define the the treduced homology group of K in dimension O as

$$\widetilde{H}_{o}(K) = \ker \mathcal{E} / \operatorname{im} \partial_{1}$$
.
Also, if $p > 0$, $\widetilde{H}_{p}(K) = H_{p}(K)$.

Theorem 7.2 [M] $\widehat{H}_0(K)$ is free abelian, and $\widehat{H}_0(K) \oplus \mathbb{Z} \simeq \widehat{H}_0(K)$.

So, $\widetilde{H}_{o}(K)$ vanishes $\widetilde{H}_{o}(K)$ is connected. Else $\widetilde{H}_{o}(K)$ for $\widetilde{H}_{o}(K)$. Here $\widetilde{H}_{o}(K)$ is any one of the $\widetilde{H}_{o}(K)$, which one from each connected component.

Front $2 \in \ker \mathcal{E}$, then $\mathcal{E}(\bar{c}) = \mathcal{E}(\bar{c}') = 0$, where $\bar{c}' \sim \bar{c}$ and $\bar{c}' = \sum r_{\lambda} v_{\lambda}$. But $\varepsilon(\bar{c}') = \sum r_{\lambda} \varepsilon(v_{\lambda}) = \sum r_{\lambda}$.

If |K| has only one component, C'=0. If |K| has more than one component, then C' is a linear combination of $\{V_k-V_0\}$. We refer to $rk(H_0(K)) = \beta_0$ as the reduced oth beth number of K We get $\beta_0 = \beta_0 - 1$ and $\beta_p = \beta_p + p = 1$.

Homology of a p-simplex $K: \nabla (3-\text{simplex}) \text{ and all its faces.}$ V_0 V_0

 $\widetilde{H}_3(K)=0$, $\widetilde{H}_2(K)=0$, $\widetilde{H}_1(K)=0$, but $H_0(K)\simeq \mathbb{Z}$, and hence $\widetilde{H}_0(K)=0$.

Let S^{p-1} be the simplicial complex whose polytope is $Bd\sigma$. Then, $H_i(S^{p-1}) = 0$ for $i \neq p-1$, and $H_{p-1}(S^{1p-1}) \simeq \mathbb{Z}$.

Here (for $\beta=3$), $\sum_{i=0}^{2}$ consists of the four triangles that are faces of σ , and their own faces. There are no tetrahedra in $\sum_{i=0}^{2}$, so r=n $\sum_{i=0}^{2}$ T_{i} , where T_{i} are the triangles, is a 2-cycle which is not a 2-boundary for each $n \in \mathbb{Z}$, $n \neq 0$. Hence $S_{i} \cap S_{i}$ is a basis for $H_{2}(S_{i}^{2})$.

Relative Homology

We often want to talk about homology groups restricted to some parts of the given simplicial complex K. In particular, we want to avoid a subcomplex from consideration given a subcomplex Ko, a chain carried by Ko is trivially extended to a chain in all of K by assigning zero as the coefficient for all simplices in K but not in Ko. Intuitively, we want to zero out all chains in Ko, and talk about homology groups in K modulo Ko.

Def If $K_o \subseteq K$ is a subcomplex, the quotient group $G_o(K)/C_p(K_o)$ is the group of relative p-chains of K modulo K_o , denoted $G_o(K,K_o)$.

Notice that $C_p(K_0)$ can be naturally considered as a subgroup of $G_p(k)$, by assigning coefficients of zero to simplices not in K_0 .

 $G(K_i,K_o)$ is free abelian, and has as a basis all cosets of the form $S_{\overline{i}} = \overline{i} + C_p(K_o)$ where σ_i is a p-simplex of K not in K_o .

Intuitively, adding any chain from $G_p(K_0)$ to σ_i is like adding "zero" as far as $G_p(K,K_0)$ is concerned.

the "absolute" boundary operator.) $\partial: C_p(K_0) \to C_p(K_0)$ is just the restriction of ∂ on $C_p(K)$ to K_0 . This homomorphism induces a homomorphism $\partial: C_p(K_1K_0) \to C_p(K_1K_0)$. I denote both the absolute and the relative boundary. Operator. Operators

This is the relative boundary operator, the relative boundary operator also satisfies $\partial \circ \partial = 0$. We let operator also satisfies $\partial \circ \partial = 0$. We let

 $Z_{p}(K_{l}K_{o}) = \ker \partial_{p}: C_{p}(K_{l}K_{o}) \rightarrow C_{p_{1}}(K_{l}K_{o}),$ $B_{p}(K_{l}K_{o}) = \operatorname{im} \partial_{p_{1}}: C_{p_{1}}(K_{l}K_{o}) \rightarrow C_{p}(K_{l}K_{o}),$ and $H_{p}(K_{l}K_{o}) = Z_{p}(K_{l}K_{o})/B_{p}(K_{l}K_{o}).$

These groups are called the relative p-cycle, relative p-boundary, and the relative homology group of dimension p of k modulo Ko.

A relative p-chain \bar{c} is a relative p-cycle iff $\partial_{\mu}\bar{c}$ is carried by K_0 . Furthermore, its a relative p-boundary iff there exists a (p_{H}) -chain \bar{d} of K such that $\bar{c}-\partial_{p_H}\bar{d}$ is carried by K_0 .

Recall that in the absolute case, we wanted $\partial_{p}\bar{c}$ and $\bar{c}-\partial_{ph}\bar{d}$ to be empty, respectively.

Example 1 Let K be the p-simplex σ and all its faces. Let K_0 be $K^{(p-1)}$, i.e., the Simplicial complex made of all proper faces of σ . Then $H_i(K_1K_0) = 0$ $H_i \neq p$, and

 $H_p(K_1K_0) \simeq \mathbb{Z}$, and $\S \circ \S$ is a basis. $H_2(K_1K_0) \simeq \mathbb{Z}$ as $\partial_p \sigma$ is carried by K_0 , and hence its a relative p-cycle. There are no (pH)-simplices to bound, K_0 its not a relative p-boundary.

Notice that $\bar{c} = n\sigma$ for $n \in \mathbb{Z}$ is not an absolute cycle, as $\partial_2 \bar{c} \neq 0$.

Example 2 (Example 3 in Lecture 9)

Let Ko be the Subcomplex consisting of Eo, e, e3, e5, e6 and all the vertices. Then we get

 $H_2(K_3,K_0) \simeq \mathbb{Z}$, and $\bar{V} = \sum_{i=0}^{2} f_i$ is a generator.

We use the same techniques as before. The triangles are oriented CCW. Then \bar{r} the 2-chain which is the sum of the triangles taken with multipliers of I each, has $\bar{\partial}\bar{r}$ carried by K_0 . Hence if is a relative 2-cycle.

There are no tetrahedra in K, and hence there are no 2 boundaries (absolute or relative). Hence \bar{r} generates $H_2(K,K_0)$.

We now consider $H_1(K,K_0)$. Using the Same "pushing off edges in the middle" argument as before, we get that any 1-chain in K is homologous to a 1-chain carried by K_0 , and hence is a relative 1-cycle that is kirial. In more defail, every 1-chain in K not in K_0 is a relative 1-cycle, and is also a relative 1-boundary since we can find a 2-chain generated by f, and f_2 whose difference with this 1-chain is carried by K_0 . Thus, $H_1(K_3,K_0)=0$, as any 1-chain in K is homologous to a 1-chain carried by K_0 .

Here, $H_o(K_3,K_0) = 0$ as well, as $v_i \in K_0 + i$.

Notice the similarity between Examples 1 (for p=2) and 2—the homology groups are the same. Also, notice that |K3| and |K| are homeomorphic (both are discs), and |K0| is are also homeomorphic (to a circle in each case). These examples seem to indicate that relative homology groups are determined by the underlying space, and not by the choice of the simplicial complexes—indeed, this is true in general, but the proof is technical.