#### The Wumpus World



- a. The rooms adjacent to the Wumpus room are smelly, so that it would have some stench.
- b. The room adjacent to PITs has a breeze, so if the agent reaches near to PIT, then he will perceive the breeze.
- c. There will be glitter in the room if and only if the room has gold.
- d. The Wumpus can be killed by the agent if the agent is facing to it, and Wumpus will emit a horrible scream which can be heard anywhere in the cave.

#### Performance measure:

- +1000 reward points if the agent comes out of the cave with the gold.
- -1000 points penalty for being eaten by the Wumpus or falling into the pit.
- -1 for each action, and -10 for using an arrow.
- The game ends if either agent dies or came out of the cave.

#### **Environment**:

- A 4\*4 grid of rooms.
- The agent initially in room square [1, 1], facing toward the right.
- Location of Wumpus and gold are chosen randomly except the first square [1,1].
- Each square of the cave can be a pit except the first square.

#### Actuators:

- Left turn,
- Right turn
- Move forward
- o Grab
- o Release
- o Shoot.

#### Sensors:

- The agent will perceive the **stench** if he is in the room adjacent to the Wumpus. (Not diagonally).
- The agent will perceive **breeze** if he is in the room directly adjacent to the Pit.
- The agent will perceive the **glitter** in the room where the gold is present.
- The agent will perceive the **bump** if he walks into a wall.
- When the Wumpus is shot, it emits a horrible **scream** which can be perceived anywhere in the cave.
- These percepts can be represented as five element list, in which we will have different indicators for each sensor.
- Example if agent perceives stench, breeze, but no glitter, no bump, and no scream then it can be represented

[Stench, Breeze, None, None, None].

## **Exploring Wumpus World**

| 1,4            | 2,4       | 3,4              | 4,4 | A = Agent<br>B = Agent             | 1,4            | 2,4       | 3,4       | 4,4 |
|----------------|-----------|------------------|-----|------------------------------------|----------------|-----------|-----------|-----|
| 1,3            | 2,3       | 3,3              | 4,3 | G = Glitter,<br>Gold<br>ok = Safe, | 1,3            | 2,3       | 3,3       | 4,3 |
| 1,2<br>ok      | 2,2       | 3,2              | 4,2 | Square<br>P = Pit<br>S = Stench    | 1,2<br>ok      | 2,2<br>P? | 3,2       | 4,2 |
| 1,1<br>A<br>ok | 2,1<br>ok | 3,1              | 4,1 | V = Visited<br>W = Wumpus          | 1,1<br>v<br>ok | 2,1 A     | 3,1<br>P? | 4,1 |
|                | Room      | is Safe, stench, | No  |                                    | P              | 7         | m is not  | )   |

## **Exploring Wumpus World**



## **KB** for Wumpus World

| 1,4            | 2,4<br>P?           | 3,4       | 4,4 |
|----------------|---------------------|-----------|-----|
| 1,3<br>W?      | 2,3<br>S G<br>B     | 3,3       | 4,3 |
| 1,2            | 2,2<br>V<br>P?      | 3,2       | 4,2 |
| 1,1<br>A<br>ok | 2,1<br>B<br>V<br>ok | 3,1<br>P? | 4,1 |

Atomic proposition variable for Wumpus world:

- Let  $P_{i,j}$  be true if there is a Pit in the room [i, j].
- Let **B**<sub>i,j</sub> be true if agent perceives breeze in [i, j], (dead or alive).
- Let W<sub>i,j</sub> be true if there is wumpus in the square[i,
  j].
- Let S<sub>i,j</sub> be true if agent perceives stench in the square [i, j].
- Let  $V_{i,j}$  be true if that square[i, j] is visited.
- Let G<sub>i,j</sub> be true if there is gold (and glitter) in the square [i, j].
- Let **OK**<sub>i,j</sub> be true if the room is safe.

### Some Propositional Rules of Wumpus World

### Representation of KB for Wumpus World

Following is the Simple KB for wumpus world when an agent moves from room [1, 1], to room [2,1]:

| ¬ W <sub>11</sub> | ¬S <sub>11</sub> | ¬P <sub>11</sub> | ¬B <sub>11</sub> | ¬G <sub>11</sub> | V <sub>11</sub>  | OK <sub>11</sub> |
|-------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| ¬ W <sub>12</sub> |                  | ¬P <sub>12</sub> |                  |                  | ¬V <sub>12</sub> | OK <sub>12</sub> |
| ¬ W <sub>21</sub> | ¬S <sub>21</sub> | ¬P <sub>21</sub> | B <sub>21</sub>  | ¬G <sub>21</sub> | V <sub>21</sub>  | OK <sub>21</sub> |

| 1,4         | 2,4<br>P?           | 3,4       | 4,4 |
|-------------|---------------------|-----------|-----|
| 1,3<br>W?   | 2,3<br>S G<br>B     | 3,3       | 4,3 |
| 1,2         | 2,2<br>V<br>P?      | 3,2       | 4,2 |
| 1,1 A<br>ok | 2,1<br>B<br>V<br>ok | 3,1<br>P? | 4,1 |

Step 1: Apply Modus Ponens with ¬S11



Step 2: Apply Modus Ponens with ¬S21



Step 3: Apply Modus Ponens with S12



Step 4: Apply Unit resolution on W  $_{13} \lor W_{12} \lor W_{22} \lor W_{11}$  and  $\lnot W_{11}$ 



Step 5: Apply Unit resolution on  $W_{13} \vee W_{12} \vee W_{22}$  and  $\neg W_{22}$ 



Step 6: Apply Unit resolution on  $W_{13} \vee W_{12}$  and  $\neg W_{12}$ 

