Definição 1 (Assinatura) Uma assinatura $\Sigma = (Con, Fun, Pred)$ consiste em um conjunto de constantes, um conjunto de funções (com suas respectivas aridades) e um conjunto de predicados (com suas respectivas aridades).

Definição 2 (Termos) O conjunto de termos Term é formado por indução como o menor conjunto tal que

- Con \subseteq Term
- $\mathbf{Var} \subseteq \mathbf{Term}$
- se $t_1, \ldots, t_n \in \mathbf{Term}$ e $f^n \in \mathbf{Fun}$, então $f(t_1, \ldots, t_n) \in \mathbf{Term}$.

Definição 3 (Fórmulas Atômicas) O conjunto de fórmulas atômicas \mathfrak{F}_{0} (Σ , \mathbf{Var}) é definido como o menor conjunto tal que

- se $t_1, t_2 \in \mathbf{Term}$, então $t_1 = t_2 \in \mathfrak{F}_0$
- se $t_1, \ldots, t_n \in \mathbf{Term}$ e $P^n \in Pred$, então $P(t_1, \ldots, t_n) \in \mathfrak{F}_0$.

Definição 4 (Fórmulas) O conjunto de fórmulas $\mathfrak F$ (da lógica de predicados) é o menor conjunto tal que

- $\mathfrak{F}_0\subseteq\mathfrak{F}$
- se $\mathcal{A} \in \mathfrak{F}$, então $(\neg \mathcal{A}) \in \mathfrak{F}$
- se $\mathcal{A}, \mathcal{B} \in \mathfrak{F}$, então $(\mathcal{A} \wedge \mathcal{B}), (\mathcal{A} \vee \mathcal{B}), (\mathcal{A} \rightarrow \mathcal{B}) \in \mathfrak{F}$
- se $A \in \mathfrak{F}$ e $x \in \mathbf{Var}$, então $(\forall x.A) \in \mathfrak{F}$
- se $A \in \mathfrak{F}$ e $x \in \mathbf{Var}$, então $(\exists x.A) \in \mathfrak{F}$.

Definição 5 (Estrutura) Uma estrutura para a assinatura Σ consiste em

- um domínio não vazio D
- $\mathbf{Con}_D:\mathbf{Con}\to D$ que associa cada $c\in\mathbf{Con}$ a um elemento $d\in D$
- Fun_D associa cada $f^n \in$ Fun a uma função do tipo $\overbrace{D \times D \times \ldots \times D} \to D$
- \mathbf{Pred}_D associa cada $P^n \in \mathbf{Pred}$ a um subconjunto de *n*-uplas de elementos de D, indicando para quais casos o predicado é verdadeiro.

Definição 6 (Interpretação de Termos) A função $[-]_{\mathcal{D}}^{\sigma}$: **Term** \to D é definida indutivamente por

- $[x]_{\mathcal{D}}^{\sigma} = \sigma(x)$, para $x \in \mathbf{Var}$ - $[c]_{\mathcal{D}}^{\sigma} = c_D$, para $c \in \mathbf{Con}$ - $[f(t_1, \dots, t_k)]_{\mathcal{D}}^{\sigma} = f_D([t_1]_{\mathcal{D}}^{\sigma}, \dots, [t_k]_{\mathcal{D}}^{\sigma})$, para $f \in \mathbf{Fun}$.

Definição 7 (Valoração de Fórmula Atômica) A valoração de uma fórmula atômica é determinada como segue

$$[t_1 = t_2]_{\mathcal{D}}^{\sigma} = \begin{cases} 1 & \text{se } [t_1]_{\mathcal{D}}^{\sigma} = [t_2]_{\mathcal{D}}^{\sigma} \\ 0 & \text{caso contrário} \end{cases}$$
$$[P(t_1, \dots, t_k)]_{\mathcal{D}}^{\sigma} = P_D([t_1]_{\mathcal{D}}^{\sigma}, \dots, [t_k]_{\mathcal{D}}^{\sigma}).$$

Definição 8 (Interpretação de Fórmulas) A valoração das fórmulas construídas através dos conectivos \neg , \wedge , \vee e \rightarrow é definida da mesma forma que em lógica proposicional.

Uma interpretação intuitiva de fórmulas quantificadas existencialmente, $\exists x. \mathcal{A}(x)$ é testar a fórmula aberta $\mathcal{A}(x)$ buscando **alguma substituição** para x que a faça verdadeira.

Uma interpretação intuitiva de fórmulas quantificadas universalmente, $\forall x. \mathcal{A}(x)$ é testar a fórmula aberta $\mathcal{A}(x)$ com **todas** as substituições possíveis para x e certificando que todas elas fazem a fórmula verdadeira.

Definição 9 (Consequência Lógica) Dizemos X é consequência de Γ , denotado por $\Gamma \vDash X$ quando todos sistemas algébricos e interpretações de variáveis que satisfazem Γ também satisfazem X.

Definição 10 (Equivalência Lógica) Duas fórmulas A e B são logicamente equivalentes, denotado por $A \equiv B$ se, e somente se, $A \models B$ e $B \models A$.

LMA0001 - Lógica Matemática Regras da Dedução Natural

 $\vee E\ m, i\text{-}j, k\text{-}l$

C

$$\begin{array}{c|cccc} m. & \neg A & \\ n. & A & \\ & \bot & \neg \to m, n \end{array}$$

$$i.$$
 $j.$
 A
Hipótese
 A
Hipótese

$$m. \mid A(\dots c \dots c \dots)$$

$$\exists x A(\dots x \dots c \dots) \quad \exists \mathbf{I} \mathbf{m}$$

RESTRIÇÃO:

• x não pode ocorrer em $A(\dots c \dots c \dots)$

$$\begin{array}{c|cccc} m. & \forall x A (\ldots x \ldots x \ldots) \\ & A (\ldots c \ldots c \ldots) & \forall \mathbf{E} \ \mathbf{m} \end{array}$$

$$\begin{array}{c|c} m. & A(\ldots c \ldots c \ldots) \\ & \forall x A(\ldots x \ldots x \ldots) & \forall \mathbf{I} \ \mathbf{m} \\ \\ \text{RESTRIÇÕES:} \end{array}$$

- ullet c não pode ocorrer em premissas ou em hipóteses não fechadas
- x não pode ocorrer em $A(\ldots c \ldots c \ldots)$

RESTRICÕES:

- $\bullet \;\; c$ não pode ocorrer em premissas ou em hipóteses não fechadas
- c não pode ocorrer em $\exists x A(\dots x \dots x \dots)$
- $\bullet \;\; c$ não pode ocorrer em B