Dot Product (Inner or Scalar Product)

Let a, b \in \text{R} \alpha = \alpha = \alpha , \alpha = \alpha b, \beta b \alpha \alpha = \alpha b, \beta b \alpha \alpha \alpha = \alpha b, \beta b \alpha \alpha \al

- Do Property: o.a=0
- 2 Magnitude Property: 2.2 = 112112
- 3 Communitive Property: a. 6 = 6. à
- 1 Constant multiple property: (da), 6 = d(a, 5) = a. (16)
- 6 Distributive Property: a. (6+2) = a.6+a.2

Note: a.(6.2) = (a.6). ¿ is meaningless ble when 2 vectors are Lotted they produce a scalar, and you can only dota vector with a vector, so which ever Lot opperation is 2 will be a meaningless opperation

Thm. a. 6=11 all 11611 cas(0) where O is the angle between Pf: Let a, b E R3 な ずしら Since the 3 vectors form a triangle the Law of cosines applies 11a-5112=11a112+116112-211a1111611(05(6) Focus on the left side, apply Magnitude Proporty [[a-6112=(a-6), (a-6) = (a-b). a - (a-b). b, Distributive Proberty = a.a-b.a-a.b+b.b, Distributive Property = ||a||2-2 a. 6+1/6/1, Communitive and Magnitule Properties Bringing back the equality, latt = 2 a. 6 + 16t1 = 11at 12+ 116t 2= 211all 11 (os(0) Simplifying, a.b = llall llbil cos(0) Corollary: 0=arccos(121111611) Corollary: If a. = | all IIbII then a/16 Corollary: If a.6=-11all 11611 then a is anti-parallel to 6 Corollary: If a. 6=0 all (orthogonal)

Direction &s and cos's, Given a ER Direction &s of non-zero vector a are the &s L, P, I in I=[0, ii] that a makes with the positive X, Y, and Z axes Direction cos's are the cos's of Z, B, T Using the Dot Product with 1,5, & we can find cosof an & cos(x) = 1 = 0.1 Similar logic cos(B) = az cos(x) = 1 = 11 = 11 Corollary: a= La, az, az> = L llallcos(d), llallcos(B), llallcos(D) > a=11211 (cos(x), cos(B), cos(B) > = = < (os(x), cos(B), cos(B)> Corollary: Square each expression for cos of an 4 and add $(08^{2}(d) + (08^{2}(\beta) + (08^{2}(\beta)) = \frac{a_{1}^{2} + a_{2}^{2} + a_{3}^{2}}{\|\vec{a}\|^{2}} = \frac{(\sqrt{a_{1}^{2} + a_{2}^{2} + a_{3}^{2}})^{2} \|\vec{a}\|^{2}}{\|\vec{a}\|^{2}} = \frac{1}{\|\vec{a}\|^{2}} = \frac$ Orthogonal Projections Let a, b ER" and CER Task: Prosect Lontoà orthogonally Since (I-ca) + ca It should satisfy (b-ca). ca=0 (b-ca).ca=0 b.ca-ca.ca=0 &(b.a)=(qa.a) C= 112112 It follows that the projection of bona = proj = ca-bia.
This is a scaled down version of a lixil Also Pro 6 = 6.2 = 5.6 (2) So Comp 6 = 1.6 Which is the Scaled unit vector in the direction of 2 that sives ca

```
Proof of Properties pot Product
```