RESUMEN DE CONTRASTE DE HIPÓTESIS PARAMÉTRICAS MÁS USUALES

Paul RC,

Bitácora personal: Sobre los hombros de Euclides, Bernoulli y Pascal: http://paulrc.wordpress.com, Foro para usuarios de R: eRreros Somos http://fororsl.freeforums.org/portal.php

Contraste de hipótesis para una sola población

Parámetro	Condiciones	Hipótesis nula	Hipótesis alternativa	Estadístico de la prueba	Rechace H ₀ si ¹
Media	 La distribución 	H_0 : $\mu = \mu_0$	H_a : $\mu < \mu_0$	$Z_{Calc} = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$	Z_{Calc} < - Z_{α}
	original es normal • Se conoce σ		H_a : $\mu > \mu_0$	/ √n	$Z_{\it Calc} > Z_{\it a}$
			H_a : $\mu \neq \mu_0$		$ Z_{Calc} > Z_{\alpha/2}$
Media	 La distribución 	H_0 : $\mu = \mu_0$	H_a : $\mu < \mu_0$	$t_{Calc} = \frac{\overline{x} - \mu_0}{\sqrt[8]{n}}$	$t_{Calc} < -t_{n-1,\alpha}$
	original es normal No se conoce		H_a : $\mu > \mu_0$	/ √n	$t_{Calc} > t_{n-1,\alpha}$
	σ		H_a : $\mu \neq \mu_0$		$\left t_{Calc}\right > t_{n-1,\alpha/2}$ $Z_{Calc} < -Z_{\alpha}$
Proporción	$ np_0 ≥ 5 n(1-p_0) ≥ 5 $	H_0 : $p = p_0$	H_a : $p < p_0$	$Z_{Calc} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 \left(1 - p_0\right)}{n}}},$	$Z_{Calc} < -Z_{\alpha}$
			H _a : $p > p_0$	$\sqrt{\frac{r_0(r_1r_0)}{n}}$	$Z_{Calc} > Z_{\alpha}$
			H_a : $p \neq p_0$	donde $\hat{p} = \frac{x}{n}$	$ Z_{Calc} > Z_{\alpha/2}$

¹ Todos los subíndices en términos de α indican las áreas de cola derecha bajo la distribución correspondiente

Contraste de hipótesis para una sola población

Parámetro	Condiciones	Hipótesis nula	Hipótesis alternativa	Estadístico de la prueba	Rechace H ₀ si
Varianza	 La población original es normal 	H_0 : $\sigma^2 = \sigma^2_0$	H_a : $\sigma^2 < \sigma_0^2$	$\chi^2_{Calc} = \frac{(n-1)s^2}{\sigma_0^2}$	$\chi^2_{Calc} < \chi^2_{n-1,1-\alpha}$
			H_a : $\sigma^2 > \sigma^2_0$	- 0	$\chi^2_{Calc} > \chi^2_{n-1,\alpha}$
			H_a : $\sigma^2 \neq \sigma^2_0$		$\chi^{2}_{Calc} < \chi^{2}_{n-1,1-\alpha}$ $O \chi^{2}_{Calc} > \chi^{2}_{n-1,\alpha}$

Contraste de hipótesis para dos poblaciones

Parámetro	Condiciones	Hipótesis nula	Hipótesis alternativa	Estadístico de la prueba	Rechace H ₀ si ²
Diferencia de medias	Las distribuciones	H_0 : $\mu_1 = \mu_2$	H_a : $\mu_1 < \mu_2$	$Z_{Calc} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$Z_{Calc} < -Z_{\alpha}$
	originales son normales		$H_a: \mu_1 > \mu_2$	$\sqrt{\frac{\sigma_1}{n_1} + \frac{\sigma_2}{n_2}}$	$Z_{Calc} > Z_{a}$
	• Se conocen $\sigma_1 y \sigma_2$		H_a : $\mu_1 \neq \mu_2$		$ Z_{Calc} > Z_{\alpha/2}$
Diferencia de medias	Las distribuciones	H_0 : $\mu_1 = \mu_2$	H_a : $\mu_1 < \mu_2$	$t_{Calc} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{n}}}$	$t_{Calc} < -t_{n_1 + n_2 - 2,\alpha}$
	originales son normales		$H_a: \mu_1 > \mu_2$	$\sqrt{\frac{z_1}{n_1} + \frac{z_2}{n_2}}$	$t_{Calc} > t_{n_1 + n_2 - 2, \alpha}$
	• No se conocen σ_1 y σ_2 ,		H_a : $\mu_1 \neq \mu_2$		$ t_{Calc} > t_{n_1 + n_2 - 2, \alpha/2}$
	pero se supone que son distintas				
Diferencia de medias	 La distribución 	H_0 : $\mu_1 = \mu_2$	H_a : $\mu_1 < \mu_2$	$t_{Calc} = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}},$	$t_{Calc} < -t_{n_1+n_2-2,\alpha}$
	original es normal		$H_a: \mu_1 > \mu_2$	$S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$t_{Calc} > t_{n_1 + n_2 - 2, \alpha}$
	• No se conocen σ_1 y σ_2 ,		H_a : $\mu_1 \neq \mu_2$	donde $s_p^2 = \frac{(n_1 - 1) s_1^2 + (n_2 - 1) s_2^2}{n_1 + n_2 - 2}$	$t_{Calc} > t_{n_1 + n_2 - 2, \alpha}$ $ t_{Calc} > t_{n_1 + n_2 - 2, \alpha/2}$
	pero se supone que son iguales				

² Todos los subíndices en términos de α indican las áreas de cola derecha bajo la distribución correspondiente

Parámetro	Condiciones	Hipótesis nula	Hipótesis	Estadístico de la prueba	Rechace H ₀ si
			alternativa		
Diferencia de	$n_1 \hat{p}_1 \ge 5$	$H_0: p_1 = p_2$	H _a : $p_1 < p_2$	$Z_{Calc} = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{1 + \frac{1}{2}}}$	$Z_{Calc} < -Z_{\alpha}$
proporciones	$n_1(1-\hat{p}_1) \geq 5$		$H_a: p_1 > p_2$	$\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1}+\frac{1}{n_2}\right)},$	$Z_{Calc} > Z_a$
	$n_2 \hat{p}_2 \ge 5$		H_a : $p_1 \neq p_2$	$\hat{p}_1 = \frac{x_1}{n_1}; \hat{p}_2 = \frac{x_2}{n_2};$	$ Z_{Calc} > Z_{\alpha/2}$
	$n_2(1-\hat{p}_2) \ge 5$			donde $\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$	
				$n_1 + n_2$	
Razón de varianzas	Las poblaciones	H_0 : $\sigma^2_1 = \sigma^2_2$	$H_a: \sigma^2_1 < \sigma^2_2$	$F_{Calc} = \frac{s_1^2}{s_2^2}$	$F_{Calc} < F_{n_1-1,n_2-1,1-\alpha}$
	originales son normales		$H_a: \sigma^2_1 > \sigma^2_2$		$F_{Calc} > F_{n_1-1,n_2-1,\alpha}$
			H_a : $\sigma^2_1 \neq \sigma^2_2$		$F_{Calc} < F_{n_1-1,n_2-1,1-\alpha/2}$
					o $F_{Calc} > F_{n_1-1,n_2-1,\alpha/2}$