Do cognitive functions belong in the Hierarchical Taxonomy of Psychopathology (HiTOP) Model? A meta-analysis

Whitney R. Ringwald¹

Amitai Abramovitch²

Joost A. Agelink van Rentergem³

Roman Kotov⁴

¹Department of Psychology, University of Minnesota

²Department of Psychology, Texas State University

³Netherlands Cancer Institute

⁴Department of Psychiatry, Stony Brook University

This work was not supported by any funding. Authors have no conflicts of interest to report. Correspondence concerning this article should be addressed to Whitney Ringwald, email: wraeringwald@gmail.com.

Abstract

Cognitive dysfunction is essential to conceptualizing, defining, and assessing much of psychopathology. Despite this prominence, cognitive abilities are not included in the prevailing empirically based classification system: the Hierarchical Taxonomy of Psychopathology (HiTOP). This gap exists because the factor analytic literature HiTOP is based on has solely used reporter measures rather than neuropsychological tests needed to measure cognitive ability. Given HiTOP's influence on research and clinical practice, the omission of cognitive functions from the model is consequential. This study aimed to determine how cognitive abilities fit into the empirical structure of psychopathology with a meta-analytic joint factor analysis. We pooled data from three published meta-analyses into a single correlation matrix of 8 DSM disorders and 7 cognitive functions. We then fit a series of models to the meta-analytic correlation matrix using exploratory factor analysis, and correlated factors across levels to estimate the hierarchical structure. The highest level of the model included a general factor with strong loadings of all disorders and cognitive functions (median $\lambda = |.51|$, range = |.30| - |.64|). At the lowest level were three superspectra including 1) psychosis and cognitive dysfunction, 2) externalizing, and 3) emotional dysfunction. Our results show cognitive abilities can be integrated into the HiTOP model and point to actionable next steps in research to accomplish this goal.

Do cognitive functions belong in the Hierarchical Taxonomy of Psychopathology (HiTOP) Model? A meta-analysis

Cognitive dysfunction is a hallmark of psychopathology. Many clinical theories posit a central role of cognitive deficits to psychopathology (Baskin-Sommers & Foti, 2015; Carver et al., 2017; Caspi & Moffitt, 2018; Green et al., 2019; Zelazo, 2020),, cognitive deficiencies often co-occur with mental disorders (Abramovitch et al., 2021; East-Richard et al., 2020), they are strongly predictive of prognosis (McCutcheon et al., 2023), and they are the primary target of treatments for multiple diagnoses (Nardo et al., 2022; Thérond et al., 2021; Vita et al., 2021). In fact, some forms of psychopathology are defined almost exclusively by impairments in cognition (e.g., dementia, learning disorders, intellectual disability; Andrews et al., 2009; Sachdev et al., 2009). Cognition is considered so essential to psychopathology that it is one of the domains in the National Institutes of Mental Health's Research Domain Criteria (RDoC) initiative(Morris & Cuthbert, 2012). Despite the prominence of cognitive dysfunction in how mental disorders are conceptualized, defined, and often treated, they are not included in the prevailing empirically based classification system: the Hierarchical Taxonomy of Psychopathology (HiTOP) (Kotov et al., 2017, 2021).

Omission of Cognitive Functions from the Empirical Structure of Psychopathology

The HiTOP model defines psychopathology in terms of hierarchically organized dimensions with narrow signs, symptoms, and behaviors at the base that combine into increasingly broad constructs, up to the superspectra level (i.e., emotional dysfunction, externalizing, psychosis). This model represents the consensus among a vast literature on the empirical structure of psychopathology and reflects a broader shift in clinical science away from *DSM* diagnoses and towards transdiagnostic, dimensional models (Dalgleish et al., 2020).

Because HiTOP provides empirically validated phenotypes, this framework has advanced research on etiology, risk factors, mechanisms, and outcomes of psychopathology (Kim et al., 2021; Kotov et al., 2020; Krueger et al., 2021; Perkins et al., 2020; Waszczuk et al., 2020; Watson et al., 2022). Furthermore, clinicians favor HiTOP over the *DSM* for case formulation, treatment planning, and clinical communication (Balling et al., 2023) and increasing evidence supports the model's clinical utility (Ruggero et al., 2019). Given HiTOP's growing influence on research and clinical practice, the omission of cognitive functions from the model is consequential.

The reason cognitive functions are not included in the HiTOP model is that it is based on factor analyses of signs, symptoms, and traits assessed by reporters. Reporters (e.g., self, informants, clinicians) are well-suited to observe a person's maladaptive patterns of thoughts, feelings, and behaviors in everyday life. In contrast, cognitive abilities reflect performance under optimal conditions and are typically assessed with objective neuropsychological tests. These two sources of information—how a person *tends* to think, feel, and behave (or recent tendencies that deviate from their usual) and their *abilities*— are separable and each are relevant to psychological functioning (Keefe, 1995; Paulhus & Martin, 1987). Their distinctiveness means cognitive ability may remain intact in some forms of psychopathology, whereas other forms manifest almost exclusively in cognitive deficiencies. In further support of a distinction between cognitive functions and psychopathology, it has been shown that cognitive dysfunction tends to persist even after other symptoms remit with treatment (Leucht et al., 2013; Reppermund et al., 2009; Semkovska et al., 2019), suggesting there may be independent mechanisms at play.

While distinguishable in many respects, psychopathology symptoms and cognitive deficiencies are also interconnected. Low cognitive abilities can make someone more vulnerable

to psychopathology (e.g., by limiting coping resources)(Pruessner et al., 2020), psychopathology can lead to cognitive impairments (e.g., mood-induced memory problems)(Abramovitch et al., 2012; Everaert et al., 2022), and cognitive dysfunction and psychopathology could have shared etiology (e.g., genetics)(Smeland et al., 2020; Wootton et al., 2023). Thus, there are arguments in favor of conceptualizing cognitive dysfunction as separate from psychopathology or as a fundamental part of it like any other symptom. However, limitations of existing research have prevented an empirical answer to this question of how cognition fits into the structure of psychopathology.

Prior Work on Relations between Psychopathology and Cognitive Functions

Although extensive in scope, research relating psychopathology and cognitive abilities has major methodological limitations. Most of this research has been on single *DSM* disorders, with results suggesting the presence of widespread cognitive deficiencies. Meta-analyses have concluded there is evidence for dysfunction in nearly all major domains of cognition (e.g., executive functioning, memory, processing speed, visuospatial abilities) for major depressive disorder (Rock et al., 2014; Snyder, 2013), anxiety disorders (Moran, 2016; Shi et al., 2019), eating disorders (Smith et al., 2018; Stedal et al., 2021), obsessive-compulsive disorder (Abramovitch et al., 2013), alcohol and substance use disorders (Crowe et al., 2020; Lee et al., 2019), psychotic disorders (Au-Yeung et al., 2023; Schaefer et al., 2013; Ventura et al., 2010), and bipolar disorders (Bourne et al., 2013; Dickinson et al., 2017). It is difficult to draw firm conclusions from this research though because each individual study has typically focused on one or two disorders and often related to just one or two domains of cognition. This narrow focus is a problem because *DSM* diagnoses co-occur more often than not (Caspi et al., 2020; Kessler et al., 2005), which makes it unclear whether the observed impairments are specific to a

certain form of psychopathology. Likewise, functioning across cognitive domains tends to be correlated, so it is unclear from this research whether a disorder relates to dysfunction in a specific area of cognition or whether the dysfunction is more pervasive. In sum, by failing to account for intercorrelations between disorders and between cognitive functions, it remains unknown whether cognitive deficits relate to psychopathology in general or specifically to some forms, and whether cognitive deficits are global when they occur, or some functions are more impaired than others in a given mental disorder.

A relatively small body of research addresses these problems of overlapping symptoms by examining cognitive functions in relation to HiTOP dimensions. Results from this literature are mixed and provide limited insight into how cognition fits into the empirical structure of psychopathology. Some findings suggest cognitive abilities relate more strongly to general versus specific aspects of psychopathology (Pettersson et al., 2021), whereas others find that general and specific psychopathology show a similar profile of cognitive deficits (Caspi et al., 2014; Southward et al., 2023). Other findings suggest only one dimension is primarily deficient, although in some studies that dimension was externalizing (Du Pont et al., 2019; Nigg et al., 2017; Pettersson et al., 2021) and in others it was psychoticism (Jonas et al., 2024; Stein et al., 2023). There is also some evidence in youth samples that each form of psychopathology associates with a different type of cognitive deficit (Bloemen et al., 2018; Rotstein et al., 2023). The source of discrepancies across these studies is unknown—it could be due to variation in the subsets of disorders that were modeled, the cognitive domains examined, the particular neurocognitive tests administered, or sampling variability. Moreover, because these studies modeled psychopathology and cognition separately, they still do not answer the fundamental

question of whether cognitive functions can be integrated into existing HiTOP dimensions or if they form a separate domain(s).

Joint Structure of Psychopathology and Cognitive Functions

The most direct approach to understanding how cognition fits into the structure of psychopathology is to estimate their joint structure. Only three studies have taken this approach. In two of these studies, it was concluded that cognition is best conceptualized as a separate domain based on the superior global fit of a confirmatory factor model with separate cognitive/psychopathology factors compared to models with joint factors (Eadeh et al., 2021; Rotstein et al., 2023). The third study arrived at the same conclusion based on the finding that cognitive abilities did not load onto a general factor alongside personality, personality disorders, psychopathology (Littlefield et al., 2021). These studies have at least two limitations that undermine the conclusion that cognition is separate from psychopathology. First, these studies did not assess schizophrenia symptoms, although they are associated with some of the most severe cognitive deficiencies (Abramovitch et al., 2021; East-Richard et al., 2020). Second, these results from hypothesis-driven analyses testing only one or two candidate models may have missed an integrated structure of psychopathology and cognition that fits the data best. Datadriven, exploratory factor analyses would enable a more exhaustive search of cognitionpsychopathology relations and stronger conclusions about the joint structure.

Present study

The present study aimed to determine how cognitive abilities fit into the empirical structure of psychopathology with a meta-analytic joint factor analysis. We knit together the fragmentary literature on *DSM* diagnoses and cognitive abilities by combining data from three published meta-analyses into a single correlation matrix. By pooling data across more than a

hundred studies, we were able to account for method variance (due to e.g., different neuropsychological tests) and sampling variability that likely contributed to mixed results in previous studies. Furthermore, instead of comparing a small number of hypothesized structures like has been done in all prior joint factor models, we sought a data-driven solution with exploratory factor analysis.

Methods

Code and data needed to reproduce our analyses and supplementary materials can be found on the Open Science Framework page for this study (https://osf.io/mgxht/).

Description of datasets

Data from three meta-analyses were combined to create a complete correlation matrix of DSM disorders \times cognitive functions. Detailed information about the datasets can be found in the original studies, but we describe them briefly below along with adjustments made for the present analysis.

Disorder \times disorder correlations were drawn from Ringwald and colleagues' (2023) meta-analysis on the structure of DSM disorders. All samples from factor analytic studies of interviewer-assessed DSM disorders in adult samples were included in this meta-analysis. Meta-analytic correlations were estimated by pooling study-level correlations and weighting by sample size with a univariate random effects approach (Hedges & Vevea, 1998). Source studies included assessments of dichotomous diagnoses and symptom counts, so the correlations were a combination of tetrachoric and Pearson's r.

Cognitive function × cognitive function correlations were obtained from Agelink and colleagues' (2020) meta-analysis on the structure of cognitive functioning. All studies reporting the factor structure of neuropsychological tests in cognitively healthy adult samples were

included. Some cognitive domains from the source studies could not be included in the metaanalytic structural model reported by Agelink and colleagues due to insufficient data.

Specifically, due to requirements of their meta-analytic modeling approach, domains for which
pairwise complete correlations were unavailable had to be excluded. For the present study, we
added data from another sample, which allowed us to include measures of nonverbal memory
and visuospatial abilities that were not in the original meta-analysis. The sample added was the
expanded Halstead-Reitan Battery normative dataset (eHRB; Heaton et al., 1991), which is
considered to be one of the most comprehensive neuropsychological test batteries administered
to a large (N = 460), demographically diverse sample of cognitively healthy adults (Patt et al.,
2018). We pooled the raw correlation matrices of samples available for public sharing from the
Agelink and colleagues' database that had our variables of interest (see the supplementary
materials for a list of contributing studies) along with the eHRB sample using the same
univariate random effects pooling approach employed for the disorder \times disorder correlations.

All correlations were Pearson's r.

Disorder \times cognitive functions correlations were obtained from Abramovitch and colleagues' (2021) systematic review of meta-analyses on cognitive functioning related to DSM disorders. Inclusion criteria were meta-analyses comparing neuropsychological test performance of adults who met criteria for a DSM disorder versus non-psychiatric controls. Unweighted mean effect sizes were reported as Cohen's d. For the present study, we converted the ds to rs with a two-step procedure: We first converted the ds to point-biserial rs (Rice & Harris, 2005), then converted the point-biserial rs to biserial rs (Terrell, 1982). Biserial r was used to

¹ Data from the eHRB normative dataset was not included in the meta-analysis because no studies had reported factor analyses using this sample during the time interval the literature review was conducted.

appropriately represent associations between the continuous neuropsychological test scores and dichotomous group membership (i.e., clinical vs. control), which was assumed to be drawn from a normally distributed continuum of psychopathology. Conversions at both steps were adjusted for population base rates of the disorders (Hudson et al., 2007; Kessler et al., 2005; van Os & Reininghaus, 2016). Base rates are reported in the supplementary materials.

After making the reported adjustments for our analyses, the total number of studies contributing to the disorder \times disorder correlations was 35 (N = 120,596), 45 studies (N = 54,686) for the cognitive function \times cognitive function correlations, and 63 meta-analyses (N = 144,324 clinical participants) for the disorders \times cognitive functions correlations. Number of studies per correlation are reported in the supplementary materials.

Data harmonization

Each meta-analysis contained partially overlapping constructs. Because our analyses required a complete correlation matrix, we could only retain constructs for which every pairwise correlation with other constructs in the model were available. In cases that a correlation was missing, we had to listwise delete one construct in the pair. Decisions about which construct to omit were guided by the goal of maximizing content coverage and recovering as many factors as possible. Specifically, we aimed to include at least two diagnoses per each of the HiTOP superspectra (i.e., externalizing, emotional dysfunction, psychosis; Jonas et al., 2024; Krueger et al., 2021; Watson et al., 2022) for well-defined factors to emerge and to include constructs representing most major domains of cognitive functioning (i.e., executive functioning, attention, memory, processing speed, visuospatial abilities).

A total of 8 *DSM* diagnoses were retained based on overlap between Abramovitch and Ringwald and colleagues' meta-analyses (Abramovitch et al., 2021; Ringwald et al., 2021).

Externalizing disorders included were alcohol use and substance use disorders². Psychoticism spectrum disorders were schizophrenia³ and bipolar disorders. There were 5 emotional dysfunction diagnoses in common between the source meta-analyses. However, we omitted PTSD because keeping it would require dropping a vital cognitive domain (i.e., set shifting). As a result, the emotional dysfunction disorders included were panic disorder, eating disorders (anorexia and bulimia), obsessive compulsive disorder, and depression.

After exclusions were made on the basis of available disorder correlations, 7 cognitive functions were retained. These functions included set shifting, working memory, and fluency within the executive functioning domain, verbal and nonverbal memory in the memory domain, processing speed, and visuospatial abilities. Neuropsychological tests used to assess cognitive functioning domains are in Table 1. As shown in the Table, every cognitive domain was measured by multiple tests, ensuring minimal influence of task-specific variance.

Data analysis

To estimate relations among psychopathology and cognitive functions, we fit a series of structural models to the meta-analytic correlation matrix using exploratory factor analysis.

Models were estimated in Mplus. The pooled matrix was non-positive definite because each meta-analytic correlation in the matrix was estimated separately and due the inclusion of

² Results for alcohol and non-alcoholic substance use disorders were combined in Abramovitch and colleagues' meta-analysis. We re-analyzed the meta-analyses of alcohol and substance use disorders separately to have two indicators for externalizing. To ensure reliable estimates, effect sizes based on <200 cases were not included. Effect sizes for the present study were therefore based on four meta-analyses for alcohol use disorder and 7 meta-analyses for other substance use disorders. Studies included in the analyses are listed in the supplementary materials.

³ Schizophrenia and composites of psychotic symptoms (e.g., psychotic episodes, delusional disorder, schizoaffective disorder) were combined in Ringwald and colleagues' meta-analysis.

tetrachoric correlations. To accommodate these conditions, we used unweighted least squares (ULS) estimator, which does not require positive definiteness (Li, 2016).

Our aim was to identify a hierarchical model with as many levels as possible. To accomplish this, we estimated models with 1-8 factors. Given that global fit statistics and standard errors (and associated significance testing) are not available for models with ULS estimation, we evaluated models based on the effect size of factor loadings and factor interpretability. We considered primary loadings for a factor to be those ≥ |.35|. After determining the lowest level of the hierarchy, we correlated factors at subsequent levels to estimate the hierarchical structure (i.e., correlated the general factor with factors from the two-factor model and factors from the two-factor model with factors from the three-factor model). Typically, factor scores are correlated across levels with this modeling approach. But since factor scores require individual-level data that were unavailable in the pooled correlation matrix, we used congruence coefficients instead following precedence of prior work (Ringwald et al., 2023).

Results

The meta-analytic correlation matrix is in Table 2. Several disorders were notably associated with deficits in certain cognitive functions (i.e., $rs \ge .30$). Focusing on these relatively strong correlations, depression was associated with worse set-shifting and visuospatial abilities, obsessive-compulsive disorder with worse nonverbal memory, alcohol use disorder with worse set-shifting, and bipolar disorders with worse verbal memory and processing speed. There were also a number of correlations just below .30. In contrast to these somewhat circumscribed deficits, psychotic disorders were associated with deficits in all cognitive functions.

The hierarchical model of psychopathology and cognitive abilities is shown in Figure 1. Factor loadings and factor intercorrelations for each level are in Table 3. All disorders and cognitive functions loaded strongly onto a general factor in the one-factor model (median λ = |.51|, range = |.30| - |.64|). Only eating disorders did not have a primary loading on this factor (i.e., λ < .35). The median size of disorders factor loadings was slightly lower than cognitive functions (λ = |.44| versus |.53|). In the two-factor model, emotional dysfunction disorders split off into a separate factor, with cognitive dysfunction, psychotic disorders, and externalizing disorders marking the first factor. In the three-factor model, externalizing disorders formed a separate factor, whereas psychotic disorders remained on the first factor alongside all cognitive functions. Solutions with four or more factors were not interpretable and contained evidence of overextraction (i.e., Heywood cases, singlet factors). Thus, the lowest level of the hierarchy in our final model consisted of three superspectra: 1) psychoticism and cognitive dysfunction, 2) externalizing, and 3) emotional dysfunction. The top marker of the first factor was psychotic disorders, alcohol use disorders for externalizing, and panic disorder for emotional dysfunction.

Discussion

This study used meta-analytic joint factor analysis to unify the piecemeal literature on *DSM* diagnoses and cognitive abilities and answer the question of how cognitive abilities fit into the empirical structure of psychopathology. Our results show that in the current HiTOP model, deficiencies in executive functioning, memory, processing speed, and visuospatial abilities are part of the psychoticism superspectrum. These findings lay the foundation for a more comprehensive classification system of psychopathology that includes cognitive abilities, and we provide concrete, actionable recommendations for future research.

Summary of Findings and Connections to Prior Work

The principal finding of this study is that cognitive functions can be integrated into the structure of psychopathology. Bivariate associations for several disorders and cognitive abilities were substantial with correlations of up to r = -.43. Also, in our one-factor model, we found a balanced construct composed of roughly equal parts psychopathology and cognitive abilities. Moreover, a separate cognitive factor never emerged, even after extracting up to eight factors. At the lowest level of our hierarchical model, psychoticism and cognitive abilities formed a single factor, which adds more direct evidence for speculation that cognitive deficits are especially pronounced in the psychosis superspectrum (Jonas et al., 2024; Michelini et al., 2021). This conclusion has been based primarily on indirect comparisons of studies on single DSM-defined disorders and a few studies comparing cognitive functioning of psychotic disorders to one or two non-psychotic disorders (e.g., Reichenberg et al., 2009; Sheffield et al., 2018). Our meta-analysis goes beyond speculation by pooling these studies together into a single model and statistically isolating the common variance to show there is indeed a privileged relation of psychoticism to cognitive dysfunction.

Our results support a different conclusion than the few prior studies that have tested a joint factor model of psychopathology and cognitive abilities (Eadeh et al., 2021; Littlefield et al., 2021; Rotstein et al., 2023). Existing evidence suggested they are separate constructs, and none have placed cognition in the psychoticism superspectrum. These studies are not directly comparable to our meta-analysis given that two were in youth samples (Eadeh et al., 2021; Rotstein et al., 2023) and different operationalizations of cognitive dysfunction/psychopathology were used (e.g., self-report psychopathology, a cognitive ability index including standardized college admission test scores [Littlefield et al., 2021]). Aside from these sources are variability, there are three other explanations for the divergence in results. One reason previous studies

13

failed to support the integration of cognitive functions into psychopathology is that those models may have been more influenced by method variance. Because these studies used one instrument for psychopathology and one for cognition (or a disproportionate number of reporter measures to neuropsychological tests), the separate factors may reflect different measures rather than different constructs. Our meta-analysis pooling across many assessment instruments and cognitive tasks limited measure-specific variance to produce estimates that may be closer to the "true" associations.

A second possible reason for divergence in findings is the difference in samples studied. The disorder × cognition correlations in our study were obtained from a meta-analysis of case control studies whereas prior work on the joint structure used unselected samples. Case-control studies, which sample people at the most severe (i.e., diagnosed cases) and least severe ends (i.e., healthy controls) of the psychopathology distribution, may have amplified the differences in cognitive abilities (Fisher et al., 2020; Preacher et al., 2005). This potential effect of sampling may be most pronounced for psychoticism-related disorders given the low base rates in unselected samples. Unselected samples represent psychopathology dimensions better by capturing the middle of the distribution and may provide a more accurate estimate of associations. On the other hand, unselected samples with mostly unimpaired cognition and subclinical levels of psychopathology (e.g., students, Prolific workers, youths sampled before age of risk for psychosis)—and particularly low representation of psychoticism—may have insufficient variance to detect their associations. Future research can address these issues by examining the joint structure in samples representing a fuller range of psychopathology severity (Stanton et al., 2020).

A third way our study differs from prior work is that we took a fundamentally different, and arguably more rigorous, approach to testing the placement of cognitive abilities in the psychopathology structure. All prior studies used confirmatory factor analysis to test a small number of hypothesized solutions that imposed stringent and unrealistic assumptions of simple structure (i.e., no disorder cross-loadings). In contrast, our exploratory factor analytic approach relaxed the assumptions of simple structure and allowed for essentially any configuration of cognitive and psychopathology factors to emerge that best fit the data. Thus, our data-driven solution summarizing findings of 80 independent studies and 63 meta-analyses encompassing over 300,000 participants offers unprecedented evidence that cognitive abilities can, in fact, be integrated into the structure of psychopathology.

Implications and Future Directions for Nosology, Research, and Clinical Practice

Our meta-analysis suggests that HiTOP's psychoticism superspectrum could be revised to include impaired executive functioning, processing speed, and visuospatial abilities. This revision would align with the ICD-11 in which cognition is already a qualifier for a diagnosis of schizophrenia (Gaebel, 2012), and with the perspective of some scholars that cognitive impairments are actually the core pathology of psychoticism (Kahn & Keefe, 2013; Rapoport et al., 2012). However, before this revision can be made, the results need to be replicated in a population-based sample to ensure they are not unduly affected by case-control studies, as noted in the previous section. Additionally, although cognitive abilities fell within the psychosis superspectrum, it remains unclear how they relate to its component psychoticism and detachment spectra. We expect that in the lower-order structure of psychoticism, most cognitive deficiencies will be in the detachment spectrum. This hypothesis is based on consistent findings indicating that cognitive dysfunction is most closely linked to negative symptoms and disorganization, but

not reality distortion symptoms (Dibben et al., 2009; Dominguez et al., 2009; Ventura et al., 2010). It is also plausible that a tripartite structure akin to schizotypy (i.e., trait psychoticism) would emerge (Kwapil & Barrantes-Vidal, 2015; Tandon et al., 2009), with some or all cognitive deficits forming a separate factor alongside detachment (i.e., negative symptoms) and psychoticism (i.e., positive symptoms) spectra. Once structural evidence for joint psychoticism and cognitive dysfunction factors are established, it would require validation before conclusions can be made about its superiority to the alternatives (Forbes et al., 2024).

It is also possible that cognitive abilities will fall in domains other than psychoticism when modeled with wider representation of psychopathology than were available for the present study. In particular, we expect that many cognitive deficiencies will be related to neurocognitive and neurodevelopmental disorders—which are disorders not currently in the HiTOP model. Adding these disorders to the model has been a high priority (Forbes, in press; Michelini et al., in press). However, one of the biggest barriers to this goal has been the reliance on reporter measures in structural research rather than neuropsychological tests that are best suited to assess the cardinal symptoms of cognitive dysfunction. We also expect that some cognitive abilities that were unavailable for our analyses will link most strongly to externalizing and emotional dysfunction constructs. Namely, deficits in attention, planning, and response inhibition are consistently observed in externalizing psychopathology, and, although the evidence is less consistent, poor episodic memory, response inhibition, and performance monitoring relates to subfactors of emotional dysfunction (Michelini et al., 2021). In sum, future research can build on the precedent we set by modeling a wider range of psychopathology and cognitive abilities, which we anticipate will eventually lead to changes throughout the HiTOP model.

Merging cognitive functions and psychopathology into a unified HiTOP framework can stimulate new hypotheses and accelerate research on their relations. Because the bulk of prior research has been on heterogenous DSM-defined diagnoses, often in isolation and in relation to one or two domains of cognition, it has been difficult to make progress in understanding which cognitive deficits are general or specific to a given form of psychopathology. Mapping cognitive abilities on to more precise phenotypes (i.e., HiTOP dimensions instead of DSM diagnoses) can help resolve this issue. For example, locating various cognitive abilities in the psychosis superspectrum would be a more parsimonious way to test whether the cognitive deficits seen across psychoticism-related disorders reflect variation in severity or kind compared to the usual approach of comparing the cognitive abilities of groups with different psychotic disorders (Gotra et al., 2020; Hill et al., 2013; Tamminga et al., 2014). Including cognitive abilities in HiTOP would also allow us to build on well-established theory and research from cognitive science about the basic processes underlying neuropsychological test performance (Keefe, 1995). Such a bridge between basic science and clinical science would also create a more direct interface between the HiTOP and RDoC, enabling a synergistic approach to understanding psychopathology (Michelini et al., 2021).

Adding cognitive abilities measured by neuropsychological tasks to the HiTOP model could address some problems created by reliance on reporter methods. One of these problems is symptom equifinality. That is, there are symptoms that appear superficially similar but have essential differences that are not captured by reporter measures (Forbes, 2021). Most germane to the current study, reporter methods typically do not (or cannot) differentiate symptoms arising from deficit ability versus psychological factors like motivation or mood. To take one example, although concentration problems are observed in many disorders, they often associate with

executive functioning deficits when they co-occur with externalizing symptoms (e.g., ADHD) but less so when they co-occur with emotional dysfunction symptoms (e.g., depression) suggesting distinct underlying mechanisms (Fasmer et al., 2016; Paucke et al., 2021). Incorporating cognitive abilities into the structure could therefore clarify the nature of symptoms in a way that is not currently possible.

Furthermore, the expansion of HiTOP to include task-based assessments need not be limited to cognitive abilities— many other psychopathology-relevant behaviors measured by non-neuropsychological laboratory tasks could be added to the model. For instance, incentive delay tasks measure variation in reward processing relevant to disinhibited externalizing (Balodis & Potenza, 2015; Plichta & Scheres, 2014), the effort expenditure rewards task measures behavior related to anhedonia (Treadway et al., 2009), theory of mind tasks assess social cognitive deficits observed in psychoticism or autism (Bora et al., 2009; Senju, 2012), and economic games tap interpersonal tendencies like spitefulness associated with antagonism (Edershile, 2022). Defining HiTOP constructs based on multi-method data would enrich their nomological networks, resulting in a more valid and useful classification system.

A clinical implication of expanding the definition of psychopathology writ large to include cognitive abilities is that neuropsychological tests should be regularly administered alongside reporter measures—not just when a neurodevelopmental/neurocognitive disorder is suspected as is often the case. Unfortunately, neuropsychological tests are resource-intensive. There are abbreviated and automated tests available that may be more feasible for clinical practice (Berry et al., 2022; Gur et al., 2014; Keefe, 2004), but our results reinforce a need to develop more abbreviated and valid instruments for this purpose. Another way to make neuropsychological testing more feasible would be to administer single tasks in a modular

fashion when certain symptoms are endorsed in the same way optional subscales of some clinical interviews or self-reports are currently used. A more accurate and precise mapping of symptom-cognition correlations achieved by further research on their joint structure will allow us to identify such brief, neuropsychological screeners for other psychiatric conditions.

Limitations

Our meta-analysis has some limitations. First, correlations in the model were drawn from different populations (e.g., cognitively healthy samples, epidemiological samples, clinical samples), and therefore may not be invariant. Second, as noted, the inclusion of case-control studies in the disorder × cognitive functions portion of the matrix may have inflated the correlations, especially with psychoticism. Third, and also noted previously, our models were limited by the disorders and cognitive domains available for inclusion. Finally, we used heterogenous DSM disorders as markers rather than homogenous trait dimensions or narrow symptoms. Due to these limitations, our results do not necessarily imply a definitive placement of cognitive abilities in the HiTOP model. Instead, we view our results primarily as proof-of-concept that HiTOP can incorporate cognitive abilities specifically, and non-reporter measures of psychopathology generally.

Conclusions

This study provides meta-analytic evidence that cognitive abilities can be integrated into the empirical structure of psychopathology. We hope our study is one small step that becomes a giant leap for HiTOP towards a more complete and useful classification system that expands beyond reporter measures.

References

- Abramovitch, A., Abramowitz, J. S., & Mittelman, A. (2013). The neuropsychology of adult obsessive-compulsive disorder: A meta-analysis. *Clinical Psychology Review*, *33*(8), 1163–1171. https://doi.org/10.1016/j.cpr.2013.09.004
- Abramovitch, A., Dar, R., Hermesh, H., & Schweiger, A. (2012). Comparative neuropsychology of adult obsessive-compulsive disorder and attention deficit/hyperactivity disorder:

 Implications for a novel executive overload model of OCD. *Journal of Neuropsychology*, 6(2), 161–191. https://doi.org/10.1111/j.1748-6653.2011.02021.x
- Abramovitch, A., Short, T., & Schweiger, A. (2021). The C Factor: Cognitive dysfunction as a transdiagnostic dimension in psychopathology. *Clinical Psychology Review*, 86, 102007. https://doi.org/10.1016/j.cpr.2021.102007
- Andrews, G., Goldberg, D. P., Krueger, R. F., Carpenter, W. T., Hyman, S. E., Sachdev, P., & Pine, D. S. (2009). Exploring the feasibility of a meta-structure for DSM-V and ICD-11: Could it improve utility and validity? *Psychological Medicine*, *39*(12), 1993–2000. https://doi.org/10.1017/S0033291709990250
- Au-Yeung, C., Penney, D., Rae, J., Carling, H., Lassman, L., & Lepage, M. (2023). The relationship between negative symptoms and MATRICS neurocognitive domains: A meta-analysis and systematic review. *Progress in Neuro-Psychopharmacology and Biological Psychiatry*, 127, 110833. https://doi.org/10.1016/j.pnpbp.2023.110833

- Balling, C. E., South, S. C., Lynam, D. R., & Samuel, D. B. (2023). Clinician Perception of the Clinical Utility of the Hierarchical Taxonomy of Psychopathology (HiTOP) System.
 Clinical Psychological Science, 11(6), 1108–1121.
 https://doi.org/10.1177/21677026221138818
- Balodis, I. M., & Potenza, M. N. (2015). Anticipatory reward processing in addicted populations:

 A focus on the monetary incentive delay task. *Biological Psychiatry*, 77(5), 434–444.

 https://doi.org/10.1016/j.biopsych.2014.08.020
- Baskin-Sommers, A. R., & Foti, D. (2015). Abnormal reward functioning across substance use disorders and major depressive disorder: Considering reward as a transdiagnostic mechanism. *International Journal of Psychophysiology*, 98(2), 227–239. https://doi.org/10.1016/j.ijpsycho.2015.01.011
- Berry, J., Shores, E. A., Nardo, T., Sedwell, A., Lunn, J., Marceau, E. M., Wesseling, A., Zucco, M., Sugden-Lingard, S., Borchard, T., & Batchelor, J. (2022). Brief executive-function assessment tool: A new cognitive impairment screening tool for alcohol and other drug services. *Applied Neuropsychology: Adult*, 29(6), 1511–1521.
 https://doi.org/10.1080/23279095.2021.1895791
- Bloemen, A. J. P., Oldehinkel, A. J., Laceulle, O. M., Ormel, J., Rommelse, N. N. J., & Hartman, C. A. (2018). The association between executive functioning and psychopathology:

 General or specific? *Psychological Medicine*, 48(11), 1787–1794.

 https://doi.org/10.1017/S0033291717003269

- Bora, E., Yucel, M., & Pantelis, C. (2009). Theory of mind impairment in schizophrenia: Metaanalysis. *Schizophrenia Research*, 109(1–3), 1–9. https://doi.org/10.1016/j.schres.2008.12.020
- Bourne, C., Aydemir, Ö., Balanzá-Martínez, V., Bora, E., Brissos, S., Cavanagh, J. T. O., Clark,
 L., Cubukcuoglu, Z., Dias, V. V., Dittmann, S., Ferrier, I. N., Fleck, D. E., Frangou, S.,
 Gallagher, P., Jones, L., Kieseppä, T., Martínez-Aran, A., Melle, I., Moore, P. B., ...
 Goodwin, G. M. (2013). Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: An individual patient data meta-analysis. *Acta Psychiatrica Scandinavica*, 128(3), 149–162. https://doi.org/10.1111/acps.12133
- Carver, C. S., Johnson, S. L., & Timpano, K. R. (2017). Toward a functional view of the p factor in psychopathology. *Clinical Psychological Science*, 5(5), 880–889.
 https://doi.org/10.1177/2167702617710037
- Caspi, A., Houts, R. M., Ambler, A., Danese, A., Elliott, M. L., Hariri, A., Harrington, H., Hogan, S., Poulton, R., Ramrakha, S., Rasmussen, L. J. H., Reuben, A., Richmond-Rakerd, L., Sugden, K., Wertz, J., Williams, B. S., & Moffitt, T. E. (2020). Longitudinal Assessment of Mental Health Disorders and Comorbidities Across 4 Decades Among Participants in the Dunedin Birth Cohort Study. *JAMA Network Open*, *3*(4), e203221. https://doi.org/10.1001/jamanetworkopen.2020.3221
- Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H., Israel, S., Meier, M. H., Ramrakha, S., Shalev, I., Poulton, R., & Moffitt, T. E. (2014). The p Factor: One

- General Psychopathology Factor in the Structure of Psychiatric Disorders? *Clinical Psychological Science*, *2*(2), 119–137. https://doi.org/10.1177/2167702613497473
- Caspi, A., & Moffitt, T. E. (2018). All for One and One for All: Mental Disorders in One Dimension. *American Journal of Psychiatry*, 175(9), 831–844. https://doi.org/10.1176/appi.ajp.2018.17121383
- Crowe, S. F., Cammisuli, D. M., & Stranks, E. K. (2020). Widespread Cognitive Deficits in Alcoholism Persistent Following Prolonged Abstinence: An Updated Meta-analysis of Studies That Used Standardised Neuropsychological Assessment Tools. *Archives of Clinical Neuropsychology*, 35(1), 31–45. https://doi.org/10.1093/arclin/acy106
- Dalgleish, T., Black, M., Johnston, D., & Bevan, A. (2020). Transdiagnostic approaches to mental health problems: Current status and future directions. *Journal of Consulting and Clinical Psychology*, 88(3), 179–195. https://doi.org/10.1037/ccp0000482
- Dibben, C. R. M., Rice, C., Laws, K., & McKenna, P. J. (2009). Is executive impairment associated with schizophrenic syndromes? A meta-analysis. *Psychological Medicine*, 39(3), 381–392. https://doi.org/10.1017/S0033291708003887
- Dickinson, T., Becerra, R., & Coombes, J. (2017). Executive functioning deficits among adults with Bipolar Disorder (types I and II): A systematic review and meta-analysis. *Journal of Affective Disorders*, 218, 407–427. https://doi.org/10.1016/j.jad.2017.04.010
- Dominguez, M. de G., Viechtbauer, W., Simons, C. J. P., van Os, J., & Krabbendam, L. (2009).

 Are psychotic psychopathology and neurocognition orthogonal? A systematic review of

- their associations. *Psychological Bulletin*, *135*(1), 157–171. https://doi.org/10.1037/a0014415
- Du Pont, A., Rhee, S. H., Corley, R. P., Hewitt, J. K., & Friedman, N. P. (2019). Rumination and executive functions: Understanding cognitive vulnerability for psychopathology. *Journal of Affective Disorders*, *256*, 550–559. https://doi.org/10.1016/j.jad.2019.06.026
- Eadeh, H.-M., Markon, K. E., Nigg, J. T., & Nikolas, M. A. (2021). Evaluating the Viability of Neurocognition as a Transdiagnostic Construct Using Both Latent Variable Models and Network Analysis. *Research on Child and Adolescent Psychopathology*, 49(6), 697–710. https://doi.org/10.1007/s10802-021-00770-8
- East-Richard, C., R. -Mercier, A., Nadeau, D., & Cellard, C. (2020). Transdiagnostic neurocognitive deficits in psychiatry: A review of meta-analyses. *Canadian Psychology / Psychologie Canadienne*, 61(3), 190–214. https://doi.org/10.1037/cap0000196
- Edershile, E. A. (2022). Leveraging economic games to integrate and differentiate personality and psychopathology. *Journal of Personality*, 90(1), 103–114. https://doi.org/10.1111/jopy.12653
- Everaert, J., Vrijsen, J. N., Martin-Willett, R., Van De Kraats, L., & Joormann, J. (2022). A meta-analytic review of the relationship between explicit memory bias and depression:

 Depression features an explicit memory bias that persists beyond a depressive episode.

 Psychological Bulletin, 148(5–6), 435–463. https://doi.org/10.1037/bul0000367

- Fasmer, O. B., Mjeldheim, K., Førland, W., Hansen, A. L., Syrstad, V. E. G., Oedegaard, K. J., & Berle, J. Ø. (2016). Linear and non-linear analyses of Conner's Continuous Performance Test-II discriminate adult patients with attention deficit hyperactivity disorder from patients with mood and anxiety disorders. *BMC Psychiatry*, 16(1), 284. https://doi.org/10.1186/s12888-016-0993-4
- Fisher, J. E., Guha, A., Heller, W., & Miller, G. A. (2020). Extreme-groups designs in studies of dimensional phenomena: Advantages, caveats, and recommendations. *Journal of Abnormal Psychology*, 129(1), 14–20. https://doi.org/10.1037/abn0000480
- Forbes, M. K. (2021). Implications of the Symptom-Level Overlap Among DSM Diagnoses for Dimensions of Psychopathology [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/f5gqz
- Forbes, M. K., Ringwald, W. R., Allen, T., Cicero, D. C., Clark, L. A., DeYoung, C. G., Eaton, N., Kotov, R., Krueger, R. F., Latzman, R. D., Martin, E. A., Naragon-Gainey, K., Ruggero, C. J., Waldman, I. D., Brandes, C., Fried, E. I., Goghari, V. M., Hankin, B., Sperry, S., ... Wright, A. G. C. (2024). Principles and procedures for revising the hierarchical taxonomy of psychopathology. *Journal of Psychopathology and Clinical Science*, 133(1), 4–19. https://doi.org/10.1037/abn0000886
- Gaebel, W. (2012). Status of Psychotic Disorders in ICD-11. *Schizophrenia Bulletin*, *38*(5), 895–898. https://doi.org/10.1093/schbul/sbs104
- Gotra, M. Y., Hill, S. K., Gershon, E. S., Tamminga, C. A., Ivleva, E. I., Pearlson, G. D., Keshavan, M. S., Clementz, B. A., McDowell, J. E., Buckley, P. F., Sweeney, J. A., &

- Keedy, S. K. (2020). Distinguishing patterns of impairment on inhibitory control and general cognitive ability among bipolar with and without psychosis, schizophrenia, and schizoaffective disorder. *Schizophrenia Research*, *223*, 148–157. https://doi.org/10.1016/j.schres.2020.06.033
- Green, M. F., Horan, W. P., & Lee, J. (2019). Nonsocial and social cognition in schizophrenia:

 Current evidence and future directions. *World Psychiatry*, 18(2), 146–161.

 https://doi.org/10.1002/wps.20624
- Gur, R. C., Calkins, M. E., Satterthwaite, T. D., Ruparel, K., Bilker, W. B., Moore, T. M., Savitt,
 A. P., Hakonarson, H., & Gur, R. E. (2014). Neurocognitive growth charting in psychosis spectrum youths. *JAMA Psychiatry*, 71(4), 366–374.
 https://doi.org/10.1001/jamapsychiatry.2013.4190
- Hedges, L. V., & Vevea, J. L. (1998). Fixed- and random-effects models in meta-analysis. *Psychological Methods*, 40(3), 486–504.
- Hill, S. K., Reilly, J. L., Keefe, R. S. E., Gold, J. M., Bishop, J. R., Gershon, E. S., Tamminga, C. A., Pearlson, G. D., Keshavan, M. S., & Sweeney, J. A. (2013). Neuropsychological impairments in schizophrenia and psychotic bipolar disorder: Findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. *The American Journal of Psychiatry*, 170(11), 1275–1284.
 https://doi.org/10.1176/appi.ajp.2013.12101298

- Hudson, J. I., Hiripi, E., Pope, H. G., & Kessler, R. C. (2007). The Prevalence and Correlates of Eating Disorders in the National Comorbidity Survey Replication. *Biological Psychiatry*, 61(3), 348–358. https://doi.org/10.1016/j.biopsych.2006.03.040
- Jonas, K. G., Cannon, T. D., Docherty, A. R., Dwyer, D., Gur, R. C., Gur, R. E., Nelson, B., Reininghaus, U., & Kotov, R. (2024). Psychosis superspectrum I: Nosology, etiology, and lifespan development. *Molecular Psychiatry*. https://doi.org/10.1038/s41380-023-02388-2
- Kahn, R. S., & Keefe, R. S. E. (2013). Schizophrenia Is a Cognitive Illness: Time for a Change in Focus. *JAMA Psychiatry*, 70(10), 1107.https://doi.org/10.1001/jamapsychiatry.2013.155
- Keefe, R. (1995). The contribution of neuropsychology to psychiatry. *American Journal of Psychiatry*, 152(1), 6–15. https://doi.org/10.1176/ajp.152.1.6
- Keefe, R. (2004). The Brief Assessment of Cognition in Schizophrenia: Reliability, sensitivity, and comparison with a standard neurocognitive battery. *Schizophrenia Research*, 68(2–3), 283–297. https://doi.org/10.1016/j.schres.2003.09.011
- Kessler, R. C., Chiu, W. T., Demler, O., & Walters, E. E. (2005). Prevalence, Severity, and Comorbidity of 12-Month DSM-IV Disorders in the National Comorbidity Survey Replication. *ARCH GEN PSYCHIATRY*, 62, 12.
- Kim, H., Turiano, N. A., Forbes, M. K., Kotov, R., Krueger, R. F., Eaton, N. R., & HiTOP Utility Workgroup. (2021). Internalizing psychopathology and all-cause mortality: A

- comparison of transdiagnostic vs. diagnosis-based risk prediction. *World Psychiatry*, 20(2), 276–282. https://doi.org/10.1002/wps.20859
- Kotov, R., Jonas, K. G., Carpenter, W. T., Dretsch, M. N., Eaton, N. R., Forbes, M. K., Forbush,
 K. T., Hobbs, K., Reininghaus, U., Slade, T., South, S. C., Sunderland, M., Waszczuk, M.
 A., Widiger, T. A., Wright, A. G. C., Zald, D. H., Krueger, R. F., Watson, D., & HiTOP
 Utility Workgroup. (2020). Validity and utility of Hierarchical Taxonomy of
 Psychopathology (HiTOP): I. Psychosis superspectrum. World Psychiatry, 19(2), 151–172. https://doi.org/10.1002/wps.20730
- Kotov, R., Krueger, R. F., Watson, D., Achenbach, T. M., Althoff, R. R., Bagby, R. M., Brown,
 T. A., Carpenter, W. T., Caspi, A., Clark, L. A., Eaton, N. R., Forbes, M. K., Forbush, K.
 T., Goldberg, D., Hasin, D., Hyman, S. E., Ivanova, M. Y., Lynam, D. R., Markon, K., ...
 Zimmerman, M. (2017). The Hierarchical Taxonomy of Psychopathology (HiTOP): A
 dimensional alternative to traditional nosologies. *Journal of Abnormal Psychology*,
 126(4), 454–477. https://doi.org/10.1037/abn0000258
- Kotov, R., Krueger, R. F., Watson, D., Cicero, D. C., Conway, C. C., DeYoung, C. G., Eaton, N. R., Forbes, M. K., Hallquist, M. N., Latzman, R. D., Mullins-Sweatt, S. N., Ruggero, C. J., Simms, L. J., Waldman, I. D., Waszczuk, M. A., & Wright, A. G. C. (2021). The Hierarchical Taxonomy of Psychopathology (HiTOP): A Quantitative Nosology Based on Consensus of Evidence. *Annual Review of Clinical Psychology*, 17, 83–108. https://doi.org/10.1146/annurev-clinpsy-081219-093304

- Krueger, R. F., Hobbs, K. A., Conway, C. C., Dick, D. M., Dretsch, M. N., Eaton, N. R., Forbes, M. K., Forbush, K. T., Keyes, K. M., Latzman, R. D., Michelini, G., Patrick, C. J.,
 Sellbom, M., Slade, T., South, S. C., Sunderland, M., Tackett, J., Waldman, I.,
 Waszczuk, M. A., ... HiTOP Utility Workgroup. (2021). Validity and utility of
 Hierarchical Taxonomy of Psychopathology (HiTOP): II. Externalizing superspectrum.
 World Psychiatry: Official Journal of the World Psychiatric Association (WPA), 20(2),
 171–193. https://doi.org/10.1002/wps.20844
- Kwapil, T. R., & Barrantes-Vidal, N. (2015). Schizotypy: Looking back and moving forward. *Schizophrenia Bulletin*, 41 Suppl 2(Suppl 2), S366-373.

 https://doi.org/10.1093/schbul/sbu186
- Lee, R. S. C., Hoppenbrouwers, S., & Franken, I. (2019). A Systematic Meta-Review of Impulsivity and Compulsivity in Addictive Behaviors. *Neuropsychology Review*, 29(1), 14–26. https://doi.org/10.1007/s11065-019-09402-x
- Leucht, S., Cipriani, A., Spineli, L., Mavridis, D., Örey, D., Richter, F., Samara, M., Barbui, C.,
 Engel, R. R., Geddes, J. R., Kissling, W., Stapf, M. P., Lässig, B., Salanti, G., & Davis, J.
 M. (2013). Comparative efficacy and tolerability of 15 antipsychotic drugs in
 schizophrenia: A multiple-treatments meta-analysis. *The Lancet*, 382(9896), 951–962.
 https://doi.org/10.1016/S0140-6736(13)60733-3
- Li, C.-H. (2016). The performance of ML, DWLS, and ULS estimation with robust corrections in structural equation models with ordinal variables. *Psychological Methods*, *21*(3), 369–387. https://doi.org/10.1037/met0000093

- Littlefield, A. K., Lane, S. P., Gette, J. A., Watts, A. L., & Sher, K. J. (2021). The "Big Everything": Integrating and investigating dimensional models of psychopathology, personality, personality pathology, and cognitive functioning. *Personality Disorders:*Theory, Research, and Treatment, 12(2), 103–114. https://doi.org/10.1037/per0000457
- McCutcheon, R. A., Keefe, R. S. E., & McGuire, P. K. (2023). Cognitive impairment in schizophrenia: Aetiology, pathophysiology, and treatment. *Molecular Psychiatry*, 28(5), 1902–1918. https://doi.org/10.1038/s41380-023-01949-9
- Michelini, G., Palumbo, I. M., DeYoung, C. G., Latzman, R. D., & Kotov, R. (2021). Linking RDoC and HiTOP: A new interface for advancing psychiatric nosology and neuroscience. *Clinical Psychology Review*, 86, 102025. https://doi.org/10.1016/j.cpr.2021.102025
- Moran, T. P. (2016). Anxiety and working memory capacity: A meta-analysis and narrative review. *Psychological Bulletin*, *142*(8), 831–864. https://doi.org/10.1037/bul0000051
- Morris, S. E., & Cuthbert, B. N. (2012). Research Domain Criteria: Cognitive systems, neural circuits, and dimensions of behavior. *Dialogues in Clinical Neuroscience*, *14*(1), 29–37. https://doi.org/10.31887/DCNS.2012.14.1/smorris
- Muthén, L., & Muthén, B. (2020). Mplus (8.5) [Computer software].
- Nardo, T., Batchelor, J., Berry, J., Francis, H., Jafar, D., & Borchard, T. (2022). Cognitive Remediation as an Adjunct Treatment for Substance Use Disorders: A Systematic

- Review. *Neuropsychology Review*, *32*(1), 161–191. https://doi.org/10.1007/s11065-021-09506-3
- Nigg, J. T., Jester, J. M., Stavro, G. M., Ip, K. I., Puttler, L. I., & Zucker, R. A. (2017).

 Specificity of executive functioning and processing speed problems in common psychopathology. *Neuropsychology*, *31*(4), 448–466. https://doi.org/10.1037/neu0000343
- Patt, V. M., Brown, G. G., Thomas, M. L., Roesch, S. C., Taylor, M. J., & Heaton, R. K. (2018).
 Factor Analysis of an Expanded Halstead-Reitan Battery and the Structure of
 Neurocognition. Archives of Clinical Neuropsychology, 33(1), 79–101.
 https://doi.org/10.1093/arclin/acx043
- Paucke, M., Stibbe, T., Huang, J., & Strauss, M. (2021). Differentiation of ADHD and

 Depression Based on Cognitive Performance. *Journal of Attention Disorders*, 25(7), 920–932. https://doi.org/10.1177/1087054719865780
- Paulhus, D. L., & Martin, C. L. (1987). The structure of personality capabilities. *Journal of Personality and Social Psychology*, *52*(2), 354–365. https://doi.org/10.1037/0022-3514.52.2.354
- Perkins, E. R., Joyner, K. J., Patrick, C. J., Bartholow, B. D., Latzman, R. D., DeYoung, C. G.,
 Kotov, R., Reininghaus, U., Cooper, S. E., Afzali, M. H., Docherty, A. R., Dretsch, M.
 N., Eaton, N. R., Goghari, V. M., Haltigan, J. D., Krueger, R. F., Martin, E. A.,
 Michelini, G., Ruocco, A. C., ... Zald, D. H. (2020). Neurobiology and the Hierarchical
 Taxonomy of Psychopathology: Progress toward ontogenetically informed and clinically

- useful nosology. *Dialogues in Clinical Neuroscience*, *22*(1), 51–63. https://doi.org/10.31887/DCNS.2020.22.1/eperkins
- Pettersson, E., Lichtenstein, P., Larsson, H., D'Onofrio, B. M., Lahey, B. B., & Latvala, A. (2021). Associations of Resting Heart Rate and Intelligence With General and Specific Psychopathology: A Prospective Population Study of 899,398 Swedish Men. *Clinical Psychological Science*, *9*(3), 524–532. https://doi.org/10.1177/2167702620961081
- Plichta, M. M., & Scheres, A. (2014). Ventral–striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: A meta-analytic review of the fMRI literature. *Neuroscience & Biobehavioral Reviews*, 38, 125–134. https://doi.org/10.1016/j.neubiorev.2013.07.012
- Preacher, K. J., Rucker, D. D., MacCallum, R. C., & Nicewander, W. A. (2005). Use of the extreme groups approach: A critical reexamination and new recommendations.

 *Psychological Methods, 10(2), 178–192. https://doi.org/10.1037/1082-989X.10.2.178
- Pruessner, L., Barnow, S., Holt, D. V., Joormann, J., & Schulze, K. (2020). A cognitive control framework for understanding emotion regulation flexibility. *Emotion*, 20(1), 21–29. https://doi.org/10.1037/emo0000658
- Rapoport, J. L., Giedd, J. N., & Gogtay, N. (2012). Neurodevelopmental model of schizophrenia:

 Update 2012. *Molecular Psychiatry*, *17*(12), 1228–1238.

 https://doi.org/10.1038/mp.2012.23

- Reichenberg, A., Harvey, P. D., Bowie, C. R., Mojtabai, R., Rabinowitz, J., Heaton, R. K., & Bromet, E. (2009). Neuropsychological function and dysfunction in schizophrenia and psychotic affective disorders. *Schizophrenia Bulletin*, *35*(5), 1022–1029. https://doi.org/10.1093/schbul/sbn044
- Reppermund, S., Ising, M., Lucae, S., & Zihl, J. (2009). Cognitive impairment in unipolar depression is persistent and non-specific: Further evidence for the final common pathway disorder hypothesis. *Psychological Medicine*, *39*(4), 603–614. https://doi.org/10.1017/S003329170800411X
- Rice, M. E., & Harris, G. T. (2005). Comparing effect sizes in follow-up studies: ROC Area, Cohen's d, and r. *Law and Human Behavior*, *29*(5), 615–620. https://doi.org/10.1007/s10979-005-6832-7
- Ringwald, W. R., Forbes, M. K., & Wright, A. G. C. (2021). Meta-analysis of structural evidence for the Hierarchical Taxonomy of Psychopathology (HiTOP) model. *Psychological Medicine*, 1–14. https://doi.org/10.1017/S0033291721001902
- Rock, P. L., Roiser, J. P., Riedel, W. J., & Blackwell, A. D. (2014). Cognitive impairment in depression: A systematic review and meta-analysis. *Psychological Medicine*, 44(10), 2029–2040. https://doi.org/10.1017/S0033291713002535
- Rotstein, A., Fund, S., Levine, S. Z., Reichenberg, A., & Goldenberg, J. (2023). Is cognition integral to psychopathology? A population-based cohort study. *Psychological Medicine*, 53(15), 7350–7357. https://doi.org/10.1017/S0033291723000934

- Ruggero, C. J., Kotov, R., Hopwood, C. J., First, M., Clark, L. A., Skodol, A. E., Mullins-Sweatt, S. N., Patrick, C. J., Bach, B., Cicero, D. C., Docherty, A., Simms, L. J., Bagby, R. M., Krueger, R. F., Callahan, J. L., Chmielewski, M., Conway, C. C., De Clercq, B., Dornbach-Bender, A., ... Zimmermann, J. (2019). Integrating the Hierarchical Taxonomy of Psychopathology (HiTOP) into clinical practice. *Journal of Consulting and Clinical Psychology*, 87(12), 1069–1084. https://doi.org/10.1037/ccp0000452
- Sachdev, P., Andrews, G., Hobbs, M. J., Sunderland, M., & Anderson, T. M. (2009).

 Neurocognitive disorders: Cluster 1 of the proposed meta-structure for DSM-V and ICD-11: Paper 2 of 7 of the thematic section: 'A proposal for a meta-structure for DSM-V and ICD-11.' *Psychological Medicine*, *39*(12), 2001–2012.

 https://doi.org/10.1017/S0033291709990262
- Schaefer, J., Giangrande, E., Weinberger, D. R., & Dickinson, D. (2013). The global cognitive impairment in schizophrenia: Consistent over decades and around the world. Schizophrenia Research, 150(1), 42–50. https://doi.org/10.1016/j.schres.2013.07.009
- Semkovska, M., Quinlivan, L., O'Grady, T., Johnson, R., Collins, A., O'Connor, J., Knittle, H., Ahern, E., & Gload, T. (2019). Cognitive function following a major depressive episode:

 A systematic review and meta-analysis. *The Lancet. Psychiatry*, 6(10), 851–861.

 https://doi.org/10.1016/S2215-0366(19)30291-3
- Senju, A. (2012). Spontaneous theory of mind and its absence in autism spectrum disorders. *The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry*, 18(2), 108–113. https://doi.org/10.1177/1073858410397208

- Sheffield, J. M., Karcher, N. R., & Barch, D. M. (2018). Cognitive Deficits in Psychotic Disorders: A Lifespan Perspective. *Neuropsychology Review*, 28(4), 509–533. https://doi.org/10.1007/s11065-018-9388-2
- Shi, R., Sharpe, L., & Abbott, M. (2019). A meta-analysis of the relationship between anxiety and attentional control. *Clinical Psychology Review*, 72, 101754. https://doi.org/10.1016/j.cpr.2019.101754
- Smeland, O. B., Bahrami, S., Frei, O., Shadrin, A., O'Connell, K., Savage, J., Watanabe, K.,
 Krull, F., Bettella, F., Steen, N. E., Ueland, T., Posthuma, D., Djurovic, S., Dale, A. M.,
 & Andreassen, O. A. (2020). Genome-wide analysis reveals extensive genetic overlap
 between schizophrenia, bipolar disorder, and intelligence. *Molecular Psychiatry*, 25(4),
 844–853. https://doi.org/10.1038/s41380-018-0332-x
- Smith, K. E., Mason, T. B., Johnson, J. S., Lavender, J. M., & Wonderlich, S. A. (2018). A systematic review of reviews of neurocognitive functioning in eating disorders: The state-of-the-literature and future directions. *The International Journal of Eating Disorders*, 51(8), 798–821. https://doi.org/10.1002/eat.22929
- Snyder, H. R. (2013). Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. *Psychological Bulletin*, *139*(1), 81–132. https://doi.org/10.1037/a0028727
- Southward, M. W., Cheavens, J. S., & Coccaro, E. F. (2023). Defining the *p* -factor: An empirical test of five leading theories. *Psychological Medicine*, *53*(7), 2732–2743. https://doi.org/10.1017/S0033291722001635

- Stanton, K., McDonnell, C. G., Hayden, E. P., & Watson, D. (2020). Transdiagnostic approaches to psychopathology measurement: Recommendations for measure selection, data analysis, and participant recruitment. *Journal of Abnormal Psychology*, *129*(1), 21–28. https://doi.org/10.1037/abn0000464
- Stedal, K., Broomfield, C., Hay, P., Touyz, S., & Scherer, R. (2021). Neuropsychological functioning in adult anorexia nervosa: A meta-analysis. *Neuroscience and Biobehavioral Reviews*, *130*, 214–226. https://doi.org/10.1016/j.neubiorev.2021.08.021
- Stein, F., Schmitt, S., Brosch, K., Meller, T., Pfarr, J.-K., Ringwald, K., Lemmer, G., Philipsen,
 A., Meinert, S., Lemke, H., Waltemate, L., Thiel, K., Franz, M., Preuss, U. W., Metzger,
 F. G., Nagels, A., Nenadić, I., Dannlowski, U., Kircher, T., & Krug, A. (2023). State of illness-dependent associations of neuro-cognition and psychopathological syndromes in a large transdiagnostic cohort. *Journal of Affective Disorders*, 324, 589–599.
 https://doi.org/10.1016/j.jad.2022.12.129
- Tamminga, C. A., Pearlson, G., Keshavan, M., Sweeney, J., Clementz, B., & Thaker, G. (2014). Bipolar and schizophrenia network for intermediate phenotypes: Outcomes across the psychosis continuum. *Schizophrenia Bulletin*, 40 Suppl 2(Suppl 2), S131-137. https://doi.org/10.1093/schbul/sbt179
- Tandon, R., Nasrallah, H. A., & Keshavan, M. S. (2009). Schizophrenia, "just the facts" 4. Clinical features and conceptualization. *Schizophrenia Research*, 110(1–3), 1–23. https://doi.org/10.1016/j.schres.2009.03.005

- Terrell, C. D. (1982). Significance Tables for the Biserial and the Point Biserial. *Educational and Psychological Measurement*, 42(4), 975–981. https://doi.org/10.1177/001316448204200405
- Thérond, A., Pezzoli, P., Abbas, M., Howard, A., Bowie, C. R., & Guimond, S. (2021). The Efficacy of Cognitive Remediation in Depression: A Systematic Literature Review and Meta-Analysis. *Journal of Affective Disorders*, 284, 238–246. https://doi.org/10.1016/j.jad.2021.02.009
- Treadway, M. T., Buckholtz, J. W., Schwartzman, A. N., Lambert, W. E., & Zald, D. H. (2009).

 Worth the "EEfRT"? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. *PloS One*, *4*(8), e6598.

 https://doi.org/10.1371/journal.pone.0006598
- van Os, J., & Reininghaus, U. (2016). Psychosis as a transdiagnostic and extended phenotype in the general population. *World Psychiatry: Official Journal of the World Psychiatric Association (WPA)*, 15(2), 118–124. https://doi.org/10.1002/wps.20310
- Ventura, J., Thames, A. D., Wood, R. C., Guzik, L. H., & Hellemann, G. S. (2010).

 Disorganization and reality distortion in schizophrenia: A meta-analysis of the relationship between positive symptoms and neurocognitive deficits. *Schizophrenia Research*, 121(1–3), 1–14. https://doi.org/10.1016/j.schres.2010.05.033
- Vita, A., Barlati, S., Ceraso, A., Nibbio, G., Ariu, C., Deste, G., & Wykes, T. (2021).

 Effectiveness, Core Elements, and Moderators of Response of Cognitive Remediation for

- Schizophrenia: A Systematic Review and Meta-analysis of Randomized Clinical Trials. *JAMA Psychiatry*, 78(8), 848. https://doi.org/10.1001/jamapsychiatry.2021.0620
- Waszczuk, M. A., Eaton, N. R., Krueger, R. F., Shackman, A. J., Waldman, I. D., Zald, D. H.,
 Lahey, B. B., Patrick, C. J., Conway, C. C., Ormel, J., Hyman, S. E., Fried, E. I., Forbes,
 M. K., Docherty, A. R., Althoff, R. R., Bach, B., Chmielewski, M., DeYoung, C. G.,
 Forbush, K. T., ... Kotov, R. (2020). Redefining phenotypes to advance psychiatric
 genetics: Implications from hierarchical taxonomy of psychopathology. *Journal of Abnormal Psychology*, 129(2), 143–161. https://doi.org/10.1037/abn0000486
- Watson, D., Levin-Aspenson, H. F., Waszczuk, M. A., Conway, C. C., Dalgleish, T., Dretsch, M. N., Eaton, N. R., Forbes, M. K., Forbush, K. T., Hobbs, K. A., Michelini, G., Nelson, B. D., Sellbom, M., Slade, T., South, S. C., Sunderland, M., Waldman, I., Witthöft, M., Wright, A. G. C., ... HiTOP Utility Workgroup. (2022). Validity and utility of Hierarchical Taxonomy of Psychopathology (HiTOP): III. Emotional dysfunction superspectrum. World Psychiatry: Official Journal of the World Psychiatric Association (WPA), 21(1), 26–54. https://doi.org/10.1002/wps.20943
- Wootton, O., Shadrin, A. A., Bjella, T., Smeland, O. B., van der Meer, D., Frei, O., O'Connell,
 K. S., Ueland, T., Andreassen, O. A., Stein, D. J., & Dalvie, S. (2023). Genomic Insights into the Shared and Distinct Genetic Architecture of Cognitive Function and
 Schizophrenia. medRxiv: The Preprint Server for Health Sciences, 2023.11.13.23298348.
 https://doi.org/10.1101/2023.11.13.23298348

Zelazo, P. D. (2020). Executive Function and Psychopathology: A Neurodevelopmental

Perspective. Annual Review of Clinical Psychology, 16(1), 431–454.

https://doi.org/10.1146/annurev-clinpsy-072319-024242

Table 1. Neurocognitive tests included in each portion of the pooled correlation matrix.

Cognitive Domain	Neurocognitive Tests								
Set-shifting	 CANTAB (Attention Switching Task, Intra-Extra Dimensional Set Shift) Object Alternation Task Trail Making Test Part B Wisconsin Card Sorting Task 								
Working memory	 CANTAB (Delayed Matching to Sample, Spatial Recognition Memory, Spatial Span, Spatial Working Memory) Corsi Block Test Paced Auditory Serial Addition Test Self-Ordered Pointing WAIS-III/WAIS-IV/WAIS-R (Arithmetic, Digit Span, Letter-Number Sequencing) WMS III (Digit Span, Letter-Number Sequencing, Spatial Span) 								
Fluency	 COWAT Design Fluency WAIS-III/WAIS-IV/WAIS-R (Similarities) 								
Verbal memory	 CANTAB (Paired Associations Learning) CVLT (Immediate Recall, Short Delay Free Recall, Short Delay Cued Recall, Long Delay Free Recall, Long Delay Cued Recall, Long Delay Recognition) Hopkins Verbal Learning Test (Delayed Recall) Repeatable Battery for the Assessment of Neuropsychological Status (List Recall) WMS III/WMS IV (Logical Memory Immediate Recall, Logical Memory Delayed Recall, Verbal Paired Associates Immediate Recall, Verbal Paired Associates Delayed Recall, Word List I, Word List II) 								

Nonverbal Memory	 Benton Visual Retention Test – Revised Figure Memory Test (Delayed Recall) ROCF (Immediate Recall, Delayed Recall) WMS III/WMS IV (Faces Immediate Recall, Faces Delayed Recall, Family Pictures Immediate Recall, Family Pictures Delayed Recall, Visual Reproduction) WMS IV (Spatial Addition, Visual Reproduction)
Processing Speed	 CANTAB (Stop Signal Task Reaction Time) Conners CPT (Reaction Time) Go/No-Go Test (Reaction Time) Stroop Test (Reaction Time) Trail Making Test Part A WAIS III/WAIS-IV/WAIS-R (Digit Symbol Coding, Symbol Search, Digit Symbol Substitution)
Visuospatial Abilities	 Line Orientation Test ROCF (Copy) WAIS III/WAIS-IV/WAIS-R (Block Design, Picture Completion)

Note. CANTAB = Cambridge Neuropsychological Test Automated Battery; COWAT = Controlled Word Association Test; CVLT = California Verbal Learning Test; WMS = Weschler Memory Scale; WAIS = Weschler Adult Intelligence Scale.

Table 2. Meta-analytic correlation matrix of disorders and cognitive functions

	Cognitive functions						DSM Disorders								
	1	2	3	4	5	6	7		8	9	10	11	12	13	14
1. Set-shifting															
2. Working memory	<u>.34</u>														
3. Fluency	<u>.33</u>	<u>.33</u>													
4. Verbal memory	.26	.22	.24												
5. Nonverbal memory	<u>.33</u>	.19	.18	.28											
6. Processing speed	<u>.57</u>	.20	.23	.21	.19										
7. Visuospatial abilities	<u>.42</u>	.29	.25	.20	<u>.39</u>	.30									
8. Eating disorders	13	13	06	21	21	13	20								
9. Depression	<u>34</u>	21	29	24	29	27	<u>31</u>		.23						
1. OCD	17	14	16	16	<u>31</u>	20	16		.19	.30					
11. Panic disorder	14	13	20	25	14	04	17		.22	<u>.39</u>	.29				
12. AUD	<u>36</u>	28	24	22	23	22	24		.10	.19	.11	.12			
13. SUD	15	26	08	25	24	18	24		.09	.22	.11	.20	<u>.52</u>		
14. Bipolar disorders	29	25	28	<u>32</u>	26	<u>30</u>	15		.09	.25	.29	.26	.21	.27	
15. Psychotic disorders	<u>34</u>	<u>35</u>	<u>39</u>	<u>43</u>	<u>36</u>	<u>41</u>	<u>32</u>		.14	.16	.22	.13	.09	.14	<u>.38</u>

Note. Cognitive functions are scored with higher values indicating better functioning. Correlations > .30 are underlined. Disorder \times disorder correlations include tetrachoric and Pearson's rs, cognitive function \times cognitive function correlations are Pearson's r, disorders \times cognitive functions correlations are biserial r. OCD = Obsessive compulsive disorder, AUD = alcohol use disorders, SUD = substance use disorders.

Table 3. Factor loadings and factor correlations for the meta-analytic joint structure of cognitive functioning and psychopathology

	F1		F1	F2		F1	F2	F3
Set-shifting	64	Set-shifting	77	.14	Psychotic disorders	.78	.25	.00
Psychotic disorders	.58	Processing speed	68	.18	Set-shifting	72	.07	.12
Visuospatial abilities	54	Psychotic disorders	.61	.01	Processing speed	69	.04	.15
Processing speed	53	Visuospatial abilities	51	.07	Fluency	48	.03	.07
Nonverbal memory	53	Working memory	48	.04	Visuospatial abilities	47	.07	.08
Bipolar disorders	.53	Fluency	46	.07	Working memory	41	.13	.03
Depression	.53	Nonverbal memory	42	.20	Bipolar disorders	.40	.00	.22
Verbal memory	51	AUD	.41	.09	Nonverbal memory	40	.03	.21
Working memory	49	Bipolar disorders	.41	.22	Verbal memory	37	.01	.23
Fluency	49	Verbal memory	38	.23	AUD	.03	.85	.01
AUD	.45	SUD	.30	.22	SUD	.00	.56	.20
SUD	.42	Depression	.29	.42	Panic disorder	.01	.01	.66
OCD	.40	OCD	.18	.37	Depression	.26	.02	.43
Panic disorder	.37	Panic disorder	.01	.66	OCD	.23	.10	.39
Eating disorders	.30	Eating disorders	.13	.29	Eating disorders	.14	.03	.30
Factor correlations								
			F1	F2		F1	F2	F3
		F1			F1			
		F2	.38		F2	.46		
					F3	.38	.23	

Note. Loadings \geq |.35| are bolded. OCD = Obsessive compulsive disorder, AUD = alcohol use disorders, SUD = substance use disorders.

Figure 1. Meta-analytic hierarchical model of psychopathology and cognitive abilities.

Note. Correlations between factors at different levels are congruence coefficients. Standardized factor loadings are shown next to the observed variables.