Problem 1

The pendulum is released from rest when $\theta=0^\circ$. If the string holding the pendulum bob breaks when the tension is twice the weight of the bob, at what angle does the string break? Treat the pendulum as a particle, ignore air resistance, and let the string be inextensible and massless.

Review

- FBD: two forces: F_c (the string tension) and mg (the weight of the ball)
- N-T coordinate system:
 - \circ N dimension: $F_c mg\sin\theta = ma_n$, where $a_n = v^2/L$
 - \circ T dimension: $mg\cos\theta=ma_t$, where $a_t=\dot{v}$
- Energy conservation: since F_c is always perpendicular to the velocity, it does not do work. Therefore, the kinetic energy and the potential energy are conserved.
 - $\circ T_0 + V_0 = T_1 + V_1$, where T is the kinetic energy and V is the potential energy.
 - o Initial condition:
 - $T_0=rac{1}{2}mv_0^2=0$, because the ball is released from rest.
 - $V_0=mg\triangle h=0$, where $\triangle h$ is the height difference between the initial position and the current position.
 - $lacksquare T_1=rac{1}{2}mv_1^2, V_1=mg\triangle h_1$, where $\triangle h_1=-L\sin heta$.

Solution

Energy conservation:

$$egin{aligned} rac{1}{2}mv_1^2 + mg riangle h_1 &= rac{1}{2}mv_0^2 + mg riangle h_0 \ rac{1}{2}mv_1^2 + mg riangle h_1 &= 0 \ &= rac{1}{2}mv_1^2 &= -mg riangle h_1 \ rac{1}{2}mv_1^2 &= mgL\sin heta \ v_1 &= \sqrt{2gL\sin heta} \end{aligned}$$

N-T coordinate system:

N dimension:

$$egin{aligned} F_c - mg\sin heta &= ma_n \ F_c - mg\sin heta &= mrac{v_1^2}{L} \ F_c &= mg\sin heta + mrac{v_1^2}{L} \ F_c &= mg\sin heta + mrac{2gL\sin heta}{L} \ F_c &= 3mg\sin heta \end{aligned}$$

The tension threshold is $F_c=2mg$, so:

$$3mg \sin \theta = 2mg$$

$$\sin \theta = \frac{2}{3}$$

$$\theta = \sin^{-1} \frac{2}{3}$$

$$\theta = 41.8^{\circ}$$

Problem 2

Dyncamics Discussion - 2/26

That derivation of Work done by springs

Assuming that the plunger of a pinball machine has negligible mass and that friction is negligible, determine the spring constant k such that a 2.85 oz ball is released with a speed v = 15 ft/s, after pulling back the plunger 2 in. from its rest position, i.e., from the position in which the spring is uncompressed.

Recall and Analysis

Conservation of Energy:

$$T_1 + V_1 = T_2 + V_2$$

For springs, its potential energy is:

$$V=rac{1}{2}k\Delta x^2$$

We can recall the equation of kinetic energy from 14.1:

$$T=rac{1}{2}mv^2$$

Solution

Given m=2.85oz

The ball starts from rest ($v_1=0$) with plunger compression of 2 inch. So the initial condition can be listed as: $v_1=0, \Delta x_1=2$ inch

$$T_1 = rac{1}{2} m v_1^2 = 0, \quad V_1 = rac{1}{2} k \Delta x_1^2$$

The ball is released with speed $v_2 = v$, when the spring returns its rest position (and no longer)

Final Condition $v_2=15ft/s, \Delta x_2=0$

$$T_2 = rac{1}{2} m v_2^2, \quad V_2 = rac{1}{2} k \Delta x_2^2 = 0$$

List the Conservation of Energy equation,

$$T_1 + V_1 = T_2 + V_2$$

and plug in the terms of potential and kinetic energy, we have:

$$\frac{1}{2}k\Delta x_1^2 = \frac{1}{2}mv^2 (1)$$

$$k = \frac{mv^2}{\Delta x_1^2} \tag{2}$$

$$k = 44.81lb/ft \tag{3}$$