Binary to Octal

Binand Octal equivalent Digita
000 = 0
010=2
100= 4
0 = 6 = X

= (133.64)8

Octal to Binary

* Represent each octal digit in 3 bit binary number.

$$(123.56) = (?)_{2}$$

$$(101.110)$$

= (001 010 011. 101 110)2

Binary to Hex

	Binany Hex equivalent Digits	Binang Hex equivalent Digits
$\# ([0 0 \cdot 0)_2 = (?)_{16}$	0000=0	1000 = B 1001 = 0 1010 = A
Cheate groups of 4 digits Stanting from the left of Stanting from the right of the floating point the floating point OIOIIOII. IIO	00 11 = 3 01 00 = 4 01 01 = 5 01 1 0 = 6 01 1 = 7	1011=B 1100=C 1101=D 1110=E 111=F

= (5B.D)16

Hex to Binary

* represent each octal digit in 4 bit binary number.

$$(123.54)_{16} = (2)_{2}$$
0001 0010 0011 0101 1010

= (0001 0010 0011,0101 1010)2