Logik

Übungsblatt 5 – Teil 1 (für die 19. Kalenderwoche)

zur Lehrveranstaltung von Prof. Dr. Till Mossakowski im Sommersemester 2024

Bitte vor der Übung bearbeiten.

- 5.1. Es seien die atomaren Sätze A, B und C gegeben. Bestimmen Sie für jeden der folgenden Sätze, ob es sich um ein Literal, einen Satz in Negations-Normalform (NNF), einen Satz in Konjunktiver Normalform (KNF) oder/und einen Satz in Disjunktiver Normalform (DNF) handelt. (Die Frage betrifft den gesamten Satz, nicht seine Bestandteile.)
 - a) $\neg A \lor (\neg B \land C)$
 - b) $\neg A \lor ((B \lor \neg C) \land A)$
 - c) A
 - d) $(\neg C \to B) \lor (D \to \neg B)$
 - e) $\neg A \lor D$
- 5.2. Zeigen Sie folgende Äquivalenzen jeweils schrittweise durch eine Kette von bekannten (also in der Vorlesung genannten oder bereits formal bewiesenen) Äquivalenzen, also durch äquivalentes Umformen.
 - a) $\neg(A \lor \neg A) \Leftrightarrow \bot$
 - b) $A \Leftrightarrow (A \land B) \lor A$
 - c) $\neg(A \rightarrow \neg B) \Leftrightarrow (A \land B)$
 - $\mathrm{d})\ (\mathsf{A}\to\mathsf{B})\vee(\mathsf{B}\to\mathsf{A})\ \Leftrightarrow\ \neg\bot$
- 5.3. Es seien die atomaren Sätze A und B gegeben. Überführen Sie jeden der folgenden Sätze nachvollziehbar durch schrittweises äquivalentes Umformen jeweils in einen äquivalenten Satz in Negations-Normalform (NNF), in einen äquivalenten Satz in Disjunktiver Normalform (DNF) sowie auch in einen äquivalenten Satz in Konjunktiver Normalform (KNF).
 - a) $\neg(\neg A \land B)$
 - b) $(A \leftrightarrow \neg B)$
 - c) $\neg ((A \land \neg B) \lor (\neg A \land B))$

5.4. Es seien die atomaren Sätze A, B, C sowie D gegeben. Überführen Sie jeden der folgenden Sätze nachvollziehbar durch schrittweises äquivalentes Umformen jeweils in einen äquivalenten Satz in Negations-Normalform (NNF), in einen äquivalenten Satz in Disjunktiver Normalform (DNF).

a)
$$(A \land \neg B \land \neg C) \lor (B \land D)$$

b)
$$((A \rightarrow B) \rightarrow A) \rightarrow A$$

c)
$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$$

5.5. Zeigen Sie folgende Äquivalenzen jeweils schrittweise durch eine Kette von bekannten (also in der Vorlesung genannten oder bereits formal bewiesenen) Äquivalenzen, also durch äquivalentes Umformen.

$$\mathrm{a)}\ \mathsf{A} \to (\mathsf{B} \to \mathsf{C}) \ \Leftrightarrow \ (\mathsf{A} \land \mathsf{B}) \to \mathsf{C}$$

b)
$$\neg (A \leftrightarrow B) \Leftrightarrow ((A \land \neg B) \lor (\neg A \land B))$$

$$\mathrm{c}) \ (\mathsf{A} \wedge \mathsf{B}) \vee (\mathsf{C} \wedge \mathsf{D}) \ \Leftrightarrow \ (\mathsf{A} \vee \mathsf{C}) \wedge (\mathsf{A} \vee \mathsf{D}) \wedge (\mathsf{B} \vee \mathsf{D}) \wedge (\mathsf{B} \vee \mathsf{C})$$

- 5.6. Der zweistellige wahrheitsfunktionale Junktor NAND ist wie folgt definiert (A NAND B) ist falsch genau dann, wenn A und B wahr sind (ansonsten wahr). Zeigen Sie, dass $\{ NAND \}$ wahrheitsfunktional vollständig ist. (Hinweis: Sie können voraussetzen, dass $\{ \lor, \neg \}$ und $\{ \land, \neg \}$ wahrheitsfunktional vollständig sind.)
- 5.7. Auf den Folien wird das ausschliessende Oder erwähnt, den wir durch den zweistelligen wahrheitsfunktionalen Junktor xor repräsentieren.
 - a) Geben Sie die Wahrheitstabelle für xor an.
 - b) Zeigen Sie, dass { xor , \rightarrow } wahrheitsfunktional vollständig ist. (Hinweis: Sie können voraussetzen, dass { \vee , \neg } und { \wedge , \neg } wahrheitsfunktional vollständig sind.)