Using Zoom for Lectures

Sign in using:

your name

Please mute both:

- your video cameras for the entire lecture
- your audio/mics unless asking or answering a question

Asking/answering a question, option 1:

- click on Participants
- use the hand icon to raise your hand
- I will call on you and ask you to unmute yourself

Asking/answering a question, option 2:

- click on Chat
- type your question, and I will answer it

Today: Outline

Explainability and Domain Adaptation/Generalization

Reminders: Class Challenge, due Apr 24
 One more pre-lecture material
 Midterm Scores Next week
 Wed Apr 22 is a Mon Schedule (No class)

Explainability

Sarah Adel Bargal

Importance of Explainability

 An important action to be detected in the vision systems of autonomous vehicles is: Pedestrian Crossing

Importance of Explainability

Sample Misclassification

Ground Truth:BabyCrawling

Classified as:Pushups

Spatial Grounding

Spatial Grounding

Excitation Backprop (EB)

[Jianming Zhang, Zhe Lin, Jonathan Brandt, Xiaohui Shen, Stan Sclaroff. "Top-down Neural Attention by Excitation Backprop., ECCV'16]

Spatiotemporal Grounding

Input Video Sequence

Spatio-temporal Saliency for CliffDiving

Architecture: Forward Pass

- CNN-LSTM is trained for the action recognition task.
- Resulting grounding is weakly-supervised.

10

Excitation Backprop in RNNs

Architecture: Backward Grounding Pass

Excitation Backprop (EB)

[Jianming Zhang, Zhe Lin, Jonathan Brandt, Xiaohui Shen, Stan Sclaroff. "Top-down Neural Attention by Excitation Backprop., ECCV'16]

RNN Backward

• For every time-step *t*:

RNN Backward

• For every time-step *t*:

$$P_N^t(a_i) = P^t(a_i) / \sum_{t=1}^T P^t(a_i)$$

Contrastive Evidence

Maps discriminative for diving

$$Map^{t}(a_i) = P_N^{t}(a_i) - \overline{P}_N^{t}(a_i)$$

RNN Backward

• For every time-step *t*:

$$Map^{t}(a_{i}) = \sum_{a_{j} \in P_{i}} P^{t}(a_{i}|a_{j}) Map^{t}(a_{j})$$

Applications

Action Detection (videos)

- Caption Grounding (images, videos)
- Reflecting the Abstraction Capability of Models

Applications

Action Detection (videos)

Caption Grounding (images, videos)

 Reflecting the Abstraction Capability of Models

UCF101 Dataset: Spatiotemporal Grounding

Handstand Walking

Ice Dancing

Spatiotemporal Action Detection

THUMOS'14 Dataset: Action Detection

Method	$\mathbf{mAP} (\alpha = 0.1)$
Karaman et al. [6]	4.6
Wang <i>et al</i> . [23]	18.2
Oneata <i>et al</i> . [10]	36.6
Richard et al. [14]	39.7
Shou <i>et al</i> . [17]	47.7
Yeung et al. [28]	48.9
Yuan et al. [29]	51.4
Xu et al. [24]	54.5
Zhao <i>et al</i> . [32]	60.3
Kaufman et al. [8]	61.1
Ours ²	57.9

Our weakly supervised approach vs. fully supervised approaches for action detection on THUMOS'14, measured by mAP at IoU threshold $\alpha=0.1$.

Applications

Action Detection (videos)

Caption Grounding (images, videos)

 Reflecting the Abstraction Capability of Models

Flicker30kEntities Dataset: Grounding Words of an Image Caption

image caption: A man in a lab coat is working on a microscope.

Flicker30kEntities Dataset: Grounding Words of an Image Caption

image caption: A man in a lab coat is working on a microscope.

MSRVTT Dataset: Grounding Words of a Video Caption

video caption: "A man is talking about a phone"

(b) grounding of the word *phone*

Applications

Action Detection (videos)

- Caption Grounding (images, videos)
- Reflecting the Abstraction Capability of Models

Reflecting the Abstraction Capability of Models

Moments in Time Dataset

M. Monfort, A. Andonian, B. Zhou, K. Ramakrishnan, S. A. Bargal, T. Yan, L. Brown, Q. Fan, D. Gutfruend, C. Vondrick, A. Oliva. "Moments in Time Dataset: one million videos for event understanding." *TPAMI*, 2019.

Videos of abstract dynamical events performed by various actors.

Moments in Time Dataset

- Typically, classification accuracy is reported to summarize the recognition capability of models.
- However, classification accuracy alone is not representative as to whether the models are really modeling this diversity of actors.
- A classifier may be incorrectly classifying a whole subset of cases/actors.

Moments in Time Dataset

· Class: Opening

Explainability for Better Models

Dropout: A Classical Regularization Technique

 Many Deep Models employ dropout at training time to avoid overfitting, allowing

(a) Standard Neural Net

(b) After applying dropout.

[Srivastava et al.]

Excitation Dropout

- We target answering the question: Which neurons to drop out?
 - Neurons that have a higher contribution to the ground-truth prediction.
 - Example for ground-truth class HorseRiding:

image evidence: p_{EB}

Our Approach

Our Approach

Our Approach

Excitation Dropout Pipeline

Improved Generalization

Conventional Deep Classification

- The top-k (k = 2,3,4,...) classification accuracy is usually significantly higher than the top-1 accuracy.
- This is more evident in fine-grained datasets, where differences between classes are quite subtle.

Stanford Dogs: top-1: 86.9%, top-5: 98.9%

Guided Zoom: Pipeline

Guided Zoom: Pipeline

- Evidence CNN is trained to classify an evidence pool
- Generation of an Evidence Pool P

Guided Zoom: Pipeline

- Conventional CNN Prediction
- Evidence CNN Prediction

Evidence Pool P

 We extract evidence patches from original training images around the peak saliency.

Results

Classification accuracy of three fine-grained datasets:

Method	CUB-200-2011 Birds Dataset	Stanford Dogs Dataset	FGVC-Aircraft Dataset
Conventional CNN (ResNet-101)	82.3%	86.9%	87.5%
Guided Zoom (ResNet-101)	85.4%	88.5%	89.0%

Domain Adaptation

Kate Saenko

Has deep learning solved vision?

pedestrian detection FAIL

https://www.youtube.com/watch?v=w2pwxv8rFkU

"What you saw is not what you get"

What your net is trained on

What it's asked to label

"Dataset Bias" "Domain Shift"

Problem: Domain Shift

Input Image

True Segmentation

Solution: Domain Adaptation

Input Image

True Segmentation

Model Output

Solution: Domain Adaptation

Input Image

True Segmentation

Adapted Model Output

Model Output

Applications of Domain Adaptation

From dataset to dataset

From RGB to depth

From simulated to real control

From CAD models to real images

Solution: align deep feature distributions

by minimizing distance between distributions, e.g.

...or by adversarial domain alignment, e.g.

Adversarial Feature Alignment

Adversarial networks

Encoder Generates features such that their distribution P matches reference distribution Q

Adversary
Tries to discriminate
between samples from P and
samples from Q

Adversarial networks

Encoder Reference P Q

Encoder

Generates features such that their distribution P matches reference distribution Q

Q

Р

Adversary

Tries to discriminate between samples from P and samples from Q

fools adversary

tries harder

Adversarial domain adaptation

Adversarial domain adaptation

Adversarial domain adaptation

Design choices in adversarial adaptation

Sim 2 Real

Explainability and Domain Generalization

Bargal & Saenko

Explainable AI (XAI) for Domain Generalization

Training a deep neural network model to enforce explainability, e.g. focusing on the skateboard region (red is most salient, and blue is least salient) for the ground-truth class skateboard in the central training image, enables improved generalization to other domains where the background is not necessarily class-informative.

Explainability Results: Quantitative [Automated]

- The number of unseen MSCOCO images, among the 16K validation set, where the model is able to provide an accurate explanation for, among the correctly classified ones during training.
- We can see that the noXAI model fits the dataset bias at training time, while the XAI model improves its explainability over time for validation data.

Explainability Results: Quantitative [Human Judgment]

- The interface asks the users to select the evidence ("highlight") they think is a better explanation for the presence of an object.
- 80% of the images with a winner choice favored the XAI explanation over the noXAI explanation.

Explainability Results: Qualitative

 The XAI model, based on human spatial annotations, provides feedback that enables saliency to be better localized over the objects corresponding to the ground-truth class compared to the noXAI vanilla training of a deep model, for unseen validation data.

Domain Adaptation and Generalization

 In domain adaptation one needs to know a priori the target distribution, which may not be available in practice.

 In standard domain generalization techniques, one needs several source domains for training, both of which may not be available in practice.

 A more generic formulation is single-source domain generalization, where one would like to avoid learning dataset bias for better generalization, but only has access to a single source distribution.

Single-Source Domain Generalization Results

- Domain generalization on six unseen target domains from the Syn2Real and DomainNet datasets.
- Training has been conducted on a single source: the MSCOCO dataset, and no data from any of the target domains is used for training.

