Data Modelling/Data Base Systems

VU 184.685/VU 184.686, WS 2020

Relational Design Theory – Functional Dependencies

Anela Lolić

Institute of Logic and Computation, TU Wien

Acknowledgements

The slides are based on the slides (in German) of Sebastian Skritek.

The content is based on Chapter 6 of (Kemper, Eickler: Datenbanksysteme – Eine Einführung).

For related literature in English see Chapter 19 of (Ramakrishnan, Gehrke: Database Management Systems).

Overview

- Overview
- Aims
- 3 Functional Dependencies
 - Definitions
 - Canonical Cover
- 4 Design Theory and Decomposition
 - "Bad" Relational Schemata
 - Decomposition of Relational Schemata
 - Criteria for a "meaningful" decomposition
- 5 Normalforms (1., 2., 3., Boyce-Codd)
 - Normalization through Synthesis Algorithm
 - Normalization through Decomposition

Aims

- fine-tuning of the relational schema
- quality of a relational schema:
 - satisfying consistency conditions
 - · avoidance of redundancies
- modelling with data dependencies
 - functional dependencies
 - inclusion dependencies
 - · compound dependencies

Aims

- basis: functional dependencies (FDs)
 - motivation
 - definition
 - determination
 - closure
 - canonical cover
 - key
- normalforms as quality criterion
- possible improvement of the relational schema
 - · synthesis algorithm
 - decomposition

- motivation
- definition
- determination
- closure
- equivalence
- canonical cover
- key

Integrity Constraints: an Essential DB-Tool

Application of Functional Dependencies

advantages of functional dependencies:

- simple semantics
- many problems are efficiently computable

use of functional dependencies for/in:

- consistency conditions for data bases
- determination of the quality of relational schemata
- "data exchange" and "data integration"
- "data cleaning"
- . . .

Application: Data Cleaning

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

(Forbes, May 2016) (Thanks to Emanuel Sallinger)

Application: Data Cleaning

What's the least enjoyable part of data science?

- Building training sets: 10%
- Cleaning and organizing data: 57%
- Collecting data sets: 21%
- Mining data for patterns: 3%
- Refining algorithms: 4%
- Other: 5%

(Forbes, May 2016) (Thanks to Emanuel Sallinger)

Overview

- motivation
- definition
- determination
- closure
- equivalence
- canonical cover
- key

Functional Dependencies - Notation

Notation:

- schema $\mathcal{R} = \{A, B, C, D, \dots, H\}$
- **attribute**: A, B, C, \ldots attribute sets: α, β, \ldots
- relation: R, tuple: r, s, t, \ldots projection: $r.\alpha, t.\beta, \ldots$
- set difference (for $a \in \mathcal{A}$): $\mathcal{A} a$ instead of $\mathcal{A} \setminus \{a\}$

Definition (functional dependencies)

Let \mathcal{R} be e relational schema and $\alpha \subseteq \mathcal{R}, \beta \subseteq \mathcal{R}$. A functional dependency (FD) is a relationship $\alpha \to \beta$.

" α determines β "

Definition (functional dependencies)

Let \mathcal{R} be e relational schema and $\alpha \subseteq \mathcal{R}, \beta \subseteq \mathcal{R}$. A functional dependency (FD) is a relationship $\alpha \to \beta$.

" α determines β "

Definition (semantics of functional dependencies)

A relation R satisfies a functional dependency (FD) $\alpha \to \beta$ if and only if for all tuples $r, t \in R$ with $r.\alpha = t.\alpha$ it holds that: $r.\beta = t.\beta$.

Definition (functional dependencies)

Let \mathcal{R} be e relational schema and $\alpha \subseteq \mathcal{R}, \beta \subseteq \mathcal{R}$.

A functional dependency (FD) is a relationship $\alpha \to \beta$.

" α determines β "

Definition (semantics of functional dependencies)

A relation R satisfies a functional dependency (FD) $\alpha \to \beta$ if and only if for all tuples $r, t \in R$ with $r.\alpha = t.\alpha$ it holds that: $r.\beta = t.\beta$.

 $\alpha \to \beta$: if two tuples have the same value for all attributes in α , then they have the same values for all attributes in β .

Cute 1

Definition (functional dependencies)

Let \mathcal{R} be e relational schema and $\alpha \subseteq \mathcal{R}, \beta \subseteq \mathcal{R}$. A functional dependency (FD) is a relationship $\alpha \to \beta$.

" α determines β "

Definition (semantics of functional dependencies)

A relation R satisfies a functional dependency (FD) $\alpha \to \beta$ if and only if for all tuples $r, t \in R$ with $r.\alpha = t.\alpha$ it holds that: $r.\beta = t.\beta$.

 $\alpha \to \beta$: if two tuples have the same value for all attributes in α , then they have the same values for all attributes in β .

"the α -values uniquely (functionally) determine the β -values"

- a family tree implies the following FDs:
 - child \rightarrow father, mother

family tree				
child	mother	father	grandmother	grandfather
Sofie	Sabine	Alfons	Linde	Lothar
Sofie	Sabine	Alfons	Lisa	Hubert
Niklas	Sabine	Alfons	Linde	Lothar
Niklas	Sabine	Alfons	Lisa	Hubert

- a family tree implies the following FDs:
 - child \rightarrow father, mother
 - ullet child, grandmother o grandfather

family tree				
child	mother	father	grandmother	grandfather
Sofie	Sabine	Alfons	Linde	Lothar
Sofie	Sabine	Alfons	Lisa	Hubert
Niklas	Sabine	Alfons	Linde	Lothar
Niklas	Sabine	Alfons	Lisa	Hubert

- a family tree implies the following FDs:
 - child \rightarrow father, mother
 - ullet child, grandmother o grandfather
 - child, grandfather \rightarrow grandmother

family tree				
child	mother	father	grandmother	grandfather
Sofie	Sabine	Alfons	Linde	Lothar
Sofie	Sabine	Alfons	Lisa	Hubert
Niklas	Sabine	Alfons	Linde	Lothar
Niklas	Sabine	Alfons	Lisa	Hubert

- a family tree implies the following FDs:
 - child \rightarrow father, mother
 - ullet child, grandmother o grandfather
 - child, grandfather \rightarrow grandmother

family tree				
child	mother	father	grandmother	grandfather
Sofie	Sabine	Alfons	Linde	Lothar
Sofie	Sabine	Alfons	Lisa	Hubert
Niklas	Sabine	Alfons	Linde	Lothar
Niklas	Sabine	Alfons	Lisa	Hubert
Sofie			Linde	Willi

- schema $\mathcal{R} = \{A, B, C, D\}$ of the relation R
- question: are the following FDs on R valid or not:

$$\{A\} \rightarrow \{B\} \\
 \{C, D\} \rightarrow \{B\} \\
 \{B\} \rightarrow \{C\} \\
 \{A, B\} \rightarrow \{C\} \\
 \{B, C\} \rightarrow \{A\} \\
 \{B\} \rightarrow \{A\}$$

R				
Α	В	С	D	
a4	b2	c4	d3	
a1	b1	c1	d1	
a1	b1	c1	d2	
a2	b2	c 3	d2	
a3	b2	c4	d3	

Example

- schema $\mathcal{R} = \{A, B, C, D\}$ of the relation R
- question: are the following FDs on R valid or not:

$$\{A\} \to \{B\}
 \{C, D\} \to \{B\}
 \{B\} \to \{C\}
 \{A, B\} \to \{C\}
 \{B, C\} \to \{A\}
 \{B\} \to \{A\}$$

yes

R				
Α	В	С	D	
a4	b2	c4	d3	
a1	b1	c1	d1	
a1	b1	c1	d2	
a2	b2	c 3	d2	
a3	b2	c4	d3	

Example

- schema $\mathcal{R} = \{A, B, C, D\}$ of the relation R
- question: are the following FDs on R valid or not:

$$\{A\} \rightarrow \{B\}
 \{C, D\} \rightarrow \{B\}
 \{B\} \rightarrow \{C\}
 \{A, B\} \rightarrow \{C\}
 \{B, C\} \rightarrow \{A\}
 \{B\} \rightarrow \{A\}$$

yes yes

R				
Α	В	С	D	
a4	b2	c4	d3	
a1	b1	c1	d1	
a1	b1	c1	d2	
a2	b2	c 3	d2	
a3	b2	c4	d3	

Example

- schema $\mathcal{R} = \{A, B, C, D\}$ of the relation R
- question: are the following FDs on R valid or not:

$$\begin{cases} A \} \rightarrow \{B\} \\ \{C, D\} \rightarrow \{B\} \\ \{B\} \rightarrow \{C\} \\ \{A, B\} \rightarrow \{C\} \\ \{B, C\} \rightarrow \{A\} \\ \{B\} \rightarrow \{A\} \end{cases}$$

yes yes no

R				
Α	В	С	D	
a4	b2	c4	d3	
a1	b1	c1	d1	
a1	b1	c1	d2	
a2	b2	c 3	d2	
a3	b2	c4	d3	

Example

- schema $\mathcal{R} = \{A, B, C, D\}$ of the relation R
- question: are the following FDs on R valid or not:

$$\{A\} \rightarrow \{B\}
 \{C, D\} \rightarrow \{B\}
 \{B\} \rightarrow \{C\}
 \{A, B\} \rightarrow \{C\}
 \{B, C\} \rightarrow \{A\}
 \{B\} \rightarrow \{A\}$$

yes yes no yes

R				
Α	В	С	D	
a4	b2	c4	d3	
a1	b1	c1	d1	
a1	b1	c1	d2	
a2	b2	c 3	d2	
a3	b2	c4	d3	

- schema $\mathcal{R} = \{A, B, C, D\}$ of the relation R
- question: are the following FDs on R valid or not:

$$\begin{array}{ll} \{A\} \rightarrow \{B\} & \text{yes} \\ \{C,D\} \rightarrow \{B\} & \text{yes} \\ \{B\} \rightarrow \{C\} & \text{no} \\ \{A,B\} \rightarrow \{C\} & \text{yes} \\ \{B,C\} \rightarrow \{A\} & \text{no} \\ \{B\} \rightarrow \{A\} & \end{array}$$

R					
Α	В	С	D		
a4	b2	c4	d3		
a1	b1	c1	d1		
a1	b1	c1	d2		
a2	b2	c 3	d2		
a3	b2	c4	d3		

- schema $\mathcal{R} = \{A, B, C, D\}$ of the relation R
- question: are the following FDs on R valid or not:

$$\begin{array}{lll} \{A\} \rightarrow \{B\} & \text{yes} \\ \{C,D\} \rightarrow \{B\} & \text{yes} \\ \{B\} \rightarrow \{C\} & \text{no} \\ \{A,B\} \rightarrow \{C\} & \text{yes} \\ \{B,C\} \rightarrow \{A\} & \text{no} \\ \{B\} \rightarrow \{A\} & \text{no} \end{array}$$

R					
Α	В	С	D		
a4	b2	c4	d3		
a1	b1	c1	d1		
a1	b1	c1	d2		
a2	b2	c 3	d2		
a3	b2	c4	d3		

find: a way to check whether a given relation R satisfies a FD $\alpha \rightarrow \beta$:

find: a way to check whether a given relation R satisfies a FD $\alpha \rightarrow \beta$:

the following SQL query has an empty result

```
select * from R r1, R r2 where r1.\alpha = r2.\alpha and r1.\beta \neq r2.\beta;
```

find: a way to check whether a given relation R satisfies a FD $\alpha \rightarrow \beta$:

the following SQL query has an empty result

```
select * from R r1, R r2 where r1.\alpha = r2.\alpha and r1.\beta \neq r2.\beta;
```

```
select * from R r1 where exists(

select * from R r2 where r1.\alpha = r2.\alpha

and r1.\beta \neq r2.\beta);
```


and $r1.\beta \neq r2.\beta$);

Satisfying a FD

find: a way to check whether a given relation R satisfies a FD $\alpha \rightarrow \beta$:

• the following SQL query has an empty result

select * from R r1, R r2

```
where r1.\alpha = r2.\alpha and r1.\beta \neq r2.\beta;

select * from R r1 where exists(

select * from R r2 where r1.\alpha = r2.\alpha
```

• for all possible values c the result of the query

$$\pi_{\beta}(\sigma_{\alpha=c}(R))$$

contains at most one tuple

algorithm to check whether a given relation R satisfies the FD $\alpha \to \beta$:

input: $(R, \alpha \to \beta)$: relation R and a FD $\alpha \to \beta$ output: yes if FD is satisfied, no otherwise satisfiability $(R, \alpha \to \beta)$

- lacksquare sort R by the values of lpha
- in case all groups of tuples with same values of α have the same values for β : output(yes), output(no) otherwise

algorithm to check whether a given relation R satisfies the FD $\alpha \rightarrow \beta$:

input: $(R, \alpha \to \beta)$: relation R and a FD $\alpha \to \beta$ output: yes if FD is satisfied, no otherwise satisfiability $(R, \alpha \to \beta)$

- \blacksquare sort *R* by the values of α
- in case all groups of tuples with same values of α have the same values for β : output(yes), output(no) otherwise

running time of satisfiability is determined by the expense of the sorting - O(nlogn)

Overview

- motivation
- definition
- determination
- closure
- equivalence
- canonical cover
- key

Example

given: information about professors based on the following attributes professor:{[persNr, name, rank, room, city, street, zipcode, area code, state, population, state government]} question: Which functional dependencies can be determined based on the semantics of the world to be modelled?

Determination of FDs

Example

given: information about professors based on the following attributes professor:{[persNr, name, rank, room, city, street, zipcode, area code, state, population, state government]} question: Which functional dependencies can be determined based on the semantics of the world to be modelled?

■ persNr is a candidate key: $\{ persNr \} \rightarrow \{ persNr, \, name, \, rank, \, room, \, city, \, street, \, zipcode, \, area \, code, \, state, \, population, \, state \, government \}$

Determination of FDs

Example

given: information about professors based on the following attributes professor:{[persNr, name, rank, room, city, street, zipcode, area code, state, population, state government]} question: Which functional dependencies can be determined based on the semantics of the world to be modelled?

- persNr is a candidate key: {persNr} → {persNr, name, rank, room, city, street, zipcode, area code, state, population, state government}
- cities are unique within a state: {city, state} → {population, area code}

Determination of FDs

Example

■ the zipcode identifies city, state and population: {zipcode} → {state, city, population}

- the zipcode identifies city, state and population: {zipcode} → {state, city, population}
- the zipcode does not change within the street of a city: {state, city, street} → {zipcode}

Determination of FDs

- the zipcode identifies city, state and population: {zipcode} → {state, city, population}
- the zipcode does not change within the street of a city: {state, city, street} → {zipcode}
- state government stores the governor's party: {state} → {state government}

- the zipcode identifies city, state and population: {zipcode} → {state, city, population}
- the zipcode does not change within the street of a city: {state, city, street} → {zipcode}
- state government stores the governor's party: {state} → {state government}
- there can only be one professor assigned to a room: {room} → {persNr}

Overview

- motivation
- definition
- determination
- closure
- equivalence
- canonical cover
- key

Closure of a Set of Attributes resp. FDs

given: set of FDs F

example: $room \rightarrow persNr$, $persNr \rightarrow name$

Closure of a Set of Attributes resp. FDs

given: set of FDs F

example: room \rightarrow persNr, persNr \rightarrow name

question 1: given an additional set of attributes γ , which attributes in

 γ can be functionally determined by F?

Closure of a Set of Attributes resp. FDs

given: set of FDs F

example: room \rightarrow persNr, persNr \rightarrow name

question 1: given an additional set of attributes γ , which attributes in

 γ can be functionally determined by F?

question 2: which other FDs can be derived from F?


```
given: a set of attributes \gamma and a set of FDs F
```

```
question: which attributes of \gamma are functionally determined by F?
```

```
example: \{\text{room} \rightarrow \text{persNr}, \text{persNr} \rightarrow \text{name}\}, \{\text{room}\}
                 \Rightarrow {room, persNr, name}
```



```
given: a set of attributes \gamma and a set of FDs F
```

```
question: which attributes of \gamma are functionally determined by F? example: \{\mathsf{room} \to \mathsf{persNr}, \, \mathsf{persNr} \to \mathsf{name}\}, \, \{\mathsf{room}\} \Rightarrow \{\mathsf{room}, \, \mathsf{persNr}, \, \mathsf{name}\}
```

Definition (closure of a set of attributes)

The set of attributes γ^+ which functionally depend on γ are called the closure of the set of attributes γ .

computation via algorithm attrclosure:

```
input: (F,\gamma): set of FDs F and a set of attributes \gamma output: set of attributes \gamma^+. attrclosure (F,\gamma) \gamma^+ = \gamma while \exists (\alpha \to \beta) \in F with \alpha \subseteq \gamma^+ and \beta \not\subseteq \gamma^+ do \gamma^+ := \gamma^+ \cup \beta return(\gamma^+)
```

Example

let
$$F = \{RS \rightarrow T, U \rightarrow VX, RX \rightarrow W, T \rightarrow RU\}$$

 $attrclosure(F, \{T\})$:

 $attrclosure(F, \{RS\}):$

let
$$F = \{RS \rightarrow T, U \rightarrow VX, RX \rightarrow W, T \rightarrow RU\}$$

attrclosure(
$$F$$
, { T }): { R , T , U , V , W , X }

attrclosure(
$$F$$
, { RS }):

let
$$F = \{RS \rightarrow T, U \rightarrow VX, RX \rightarrow W, T \rightarrow RU\}$$

attrclosure(
$$F$$
, { T }): { R , T , U , V , W , X }

attrclosure(
$$F$$
, { RS }): { R , S , T , U , V , W , X }

given: set of FDs F

example: $room \rightarrow persNr$, $persNr \rightarrow name$

given: set of FDs F

example: room \rightarrow persNr, persNr \rightarrow name

question 1: given a set of attributes γ , which attributes of γ are

functionally determined by F?

given: set of FDs F

example: room \rightarrow persNr, persNr \rightarrow name

question 1: given a set of attributes γ , which attributes of γ are functionally determined by F?

question 2: which other FDs can be derived from F?

problem: F set of FDs; which other FDs can be derived?

problem: F set of FDs; which other FDs can be derived?

example: $room \rightarrow persNr$, $persNr \rightarrow name \Rightarrow room \rightarrow name$

problem: F set of FDs; which other FDs can be derived?

example: $room \rightarrow persNr$, $persNr \rightarrow name \Rightarrow room \rightarrow name$

Definition $(F_1 \models F_2)$

The set F_2 of FDs can be derived from the set F_1 of FDs, if every relation R which satisfies all FDs in F_1 also satisfies all FDs in F_2 .

problem: F set of FDs; which other FDs can be derived? example: room \rightarrow persNr, persNr \rightarrow name \Rightarrow room \rightarrow name

Definition $(F_1 \models F_2)$

The set F_2 of FDs can be derived from the set F_1 of FDs, if every relation R which satisfies all FDs in F_1 also satisfies all FDs in F_2 .

Definition (closure of FDs)

The set of all FDs derivable from F is called the closure F^+ of F.

problem: F set of FDs; which other FDs can be derived?

example: $room \rightarrow persNr$, $persNr \rightarrow name \Rightarrow room \rightarrow name$

Definition $(F_1 \models F_2)$

The set F_2 of FDs can be derived from the set F_1 of FDs, if every relation R which satisfies all FDs in F_1 also satisfies all FDs in F_2 .

Definition (closure of FDs)

The set of all FDs derivable from F is called the closure F^+ of F.

compare to mathematics: V a set of vectors. The set of all vectors that can be derived from V with linear combinations is called the linear closure of V.

Deriving FDs through the Attribute Closure

FD $\alpha \to \beta$: the values for α functionally determine the values for β .

attribute closure: all attributes γ^+ , whose values of γ are functionally determined by F

Deriving FDs through the Attribute Closure

FD $\alpha \to \beta$: the values for α functionally determine the values for β .

attribute closure: all attributes $\gamma^+,$ whose values of γ are functionally determined by F

Theorem

Given a set of FDs F and a set of attributes γ it holds that:

$$F \models \{\gamma \rightarrow attrclosure(F, \gamma)\}$$

Deriving FDs through the Attribute Closure

FD $\alpha \to \beta$: the values for α functionally determine the values for β .

attribute closure: all attributes γ^+ , whose values of γ are functionally determined by F

Theorem

Given a set of FDs F and a set of attributes γ it holds that:

$$F \models \{\gamma \rightarrow attrclosure(F, \gamma)\}$$

Moreover: $F \models \{\alpha \rightarrow \beta\} \Leftrightarrow \beta \subseteq \mathsf{attrclosure}(F, \alpha)$

Deriving FDs via Armstrong Axioms

Construction of the closure F^+ of F via Armstrong axioms (1974).

Deriving FDs via Armstrong Axioms

Construction of the closure F^+ of F via Armstrong axioms (1974).

Theorem

The Armstrong axioms are complete (construct all implicit FDs) and sound (construct only valid FDs).

reflexivity: Let β be a subset of α ($\beta \subseteq \alpha$) then $\alpha \to \beta$. In particular $\alpha \to \alpha$.

reflexivity: Let β be a subset of α ($\beta \subseteq \alpha$) then $\alpha \to \beta$. In particular

 $\alpha \to \alpha$.

augmentation: Whenever $\alpha \to \beta$, then $\alpha \gamma \to \beta \gamma$.

reflexivity: Let β be a subset of α ($\beta \subseteq \alpha$) then $\alpha \to \beta$. In particular

 $\alpha \to \alpha$.

augmentation: Whenever $\alpha \to \beta$, then $\alpha \gamma \to \beta \gamma$.

transitivity: If $\alpha \to \beta$, $\beta \to \gamma$ then $\alpha \to \gamma$.

reflexivity: Let β be a subset of α ($\beta \subseteq \alpha$) then $\alpha \to \beta$. In particular $\alpha \to \alpha$.

augmentation: Whenever $\alpha \to \beta$, then $\alpha \gamma \to \beta \gamma$.

transitivity: If $\alpha \to \beta$, $\beta \to \gamma$ then $\alpha \to \gamma$.

additional axioms then simplify the derivation of the closure:

reflexivity: Let β be a subset of α ($\beta \subseteq \alpha$) then $\alpha \to \beta$. In particular $\alpha \to \alpha$.

augmentation: Whenever $\alpha \to \beta$, then $\alpha \gamma \to \beta \gamma$.

transitivity: If $\alpha \to \beta$, $\beta \to \gamma$ then $\alpha \to \gamma$.

additional axioms then simplify the derivation of the closure:

union: $\alpha \to \beta$ and $\alpha \to \gamma \Rightarrow \alpha \to \beta \gamma$.

reflexivity: Let β be a subset of α ($\beta \subseteq \alpha$) then $\alpha \to \beta$. In particular

 $\alpha \to \alpha$.

augmentation: Whenever $\alpha \to \beta$, then $\alpha \gamma \to \beta \gamma$.

transitivity: If $\alpha \to \beta$, $\beta \to \gamma$ then $\alpha \to \gamma$.

additional axioms then simplify the derivation of the closure:

union: $\alpha \to \beta$ and $\alpha \to \gamma \Rightarrow \alpha \to \beta \gamma$.

decomposition: $\alpha \to \beta \gamma \Rightarrow \alpha \to \beta$ and $\alpha \to \gamma$

important: we can always impose only one attribute on the right side.

reflexivity: Let β be a subset of α ($\beta \subseteq \alpha$) then $\alpha \to \beta$. In particular $\alpha \to \alpha$.

augmentation: Whenever $\alpha \to \beta$, then $\alpha \gamma \to \beta \gamma$.

transitivity: If $\alpha \to \beta$, $\beta \to \gamma$ then $\alpha \to \gamma$.

additional axioms then simplify the derivation of the closure:

union: $\alpha \to \beta$ and $\alpha \to \gamma \Rightarrow \alpha \to \beta \gamma$.

decomposition: $\alpha \to \beta \gamma \Rightarrow \alpha \to \beta$ and $\alpha \to \gamma$

important: we can always impose only one attribute on the right side.

pseudo transitivity: $\alpha \to \beta$ and $\gamma\beta \to \delta \Rightarrow \alpha\gamma \to \delta$.

Example

deriving FD $\{zipcode\} \rightarrow \{state\ government\}$ from the remaining FDs in the example schema professors:

```
we know: \{zipcode\} \rightarrow \{state, city, population\} and \{state\} \rightarrow \{state government\}
```


Example

deriving FD $\{zipcode\} \rightarrow \{state\ government\}$ from the remaining FDs in the example schema professors:

```
we know: \{zipcode\} \rightarrow \{state, city, population\} and \{state\} \rightarrow \{state government\}
```

```
decomposition of \{zipcode\} \rightarrow \{state, city, population\}:
```

```
 \begin{aligned} & \{\mathsf{zipcode}\} \to \{\mathsf{state}\}, \ \{\mathsf{zipcode}\} \to \{\mathsf{city}\}, \ \{\mathsf{zipcode}\} \to \{\mathsf{population}\} \end{aligned}
```


Example

deriving FD $\{zipcode\} \rightarrow \{state\ government\}$ from the remaining FDs in the example schema professors:

```
we know: \{zipcode\} \rightarrow \{state, city, population\} and \{state\} \rightarrow \{state government\}
```

```
decomposition \ of \ \{zipcode\} \rightarrow \{state, \ city, \ population\}:
```

```
 \begin{aligned} & \{\mathsf{zipcode}\} \to \{\mathsf{state}\}, \ \{\mathsf{zipcode}\} \to \{\mathsf{city}\}, \ \{\mathsf{zipcode}\} \to \{\mathsf{population}\} \end{aligned}
```

```
transitivity of {zipcode} \rightarrow {state}, {state} \rightarrow {state government}: {zipcode} \rightarrow {state government}
```


Example

deriving union from reflexivity, augmentation and transitivity:

given:
$$\alpha \to \beta$$
, $\alpha \to \gamma$

to show:
$$\alpha \to \beta \gamma$$

Example

deriving union from reflexivity, augmentation and transitivity:

given:
$$\alpha \to \beta$$
, $\alpha \to \gamma$

to show:
$$\alpha \to \beta \gamma$$

step 1: augmentation of
$$\alpha \to \beta$$
: $\alpha \to \alpha\beta$

Example

deriving union from reflexivity, augmentation and transitivity:

given:
$$\alpha \to \beta$$
, $\alpha \to \gamma$

to show:
$$\alpha \to \beta \gamma$$

step 1: augmentation of
$$\alpha \to \beta$$
: $\alpha \to \alpha\beta$

step 2: augmentation of
$$\alpha \to \gamma$$
: $\alpha\beta \to \beta\gamma$

Example

deriving union from reflexivity, augmentation and transitivity:

given:
$$\alpha \to \beta$$
, $\alpha \to \gamma$ to show: $\alpha \to \beta \gamma$

step 1: augmentation of
$$\alpha \to \beta$$
: $\alpha \to \alpha\beta$

step 2: augmentation of
$$\alpha \to \gamma$$
: $\alpha\beta \to \beta\gamma$

step 3: transitivity of
$$\alpha \to \alpha\beta$$
, $\alpha\beta \to \beta\gamma$: $\alpha \to \beta\gamma$

Overview

Relational Design Theory

- motivation
- definition
- determination
- closure
- equivalence
- canonical cover
- key

given: sets F_1 , F_2 of FDs

question: Do F_1 and F_2 describe the same set of FDs?

Definition (equivalence of FDs)

Two sets F, G of FDs are equivalent ($F \equiv G$), if their closures are equivalent, i.e. $F^+ = G^+$.

mathematics: two sets of vectors are "equivalent", if they span the same vector space.

Definition (equivalence of FDs)

Two sets F, G of FDs are equivalent ($F \equiv G$), if their closures are equivalent, i.e. $F^+ = G^+$.

mathematics: two sets of vectors are "equivalent", if they span the same vector space.

obviously: $F \equiv G$ if and only if

- $\mathbf{F} \subset G^+$ and
- $G \subset F^+$

$$F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

$$F_2 = \{B \to A, C \to B, A \to C\}$$

$$F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$
 $F_2 = \{B \rightarrow A, C \rightarrow B, A \rightarrow C\}$ $F_1 \equiv F_2$?

$$F_1 = \{A \to B, B \to C, C \to A\} \qquad F_2 = \{B \to A, C \to B, A \to C\}$$
$$F_1 \equiv F_2?$$
$$F_1 \subseteq F_2^+?$$

$$F_1 = \{A \to B, B \to C, C \to A\} \qquad F_2 = \{B \to A, C \to B, A \to C\}$$

$$F_1 \equiv F_2?$$

$$F_1 \subseteq F_2^+?$$

$$F_2 \subseteq F_1^+?$$

Example (Armstrong axioms)

$$F_1 = \{A \to B, B \to C, C \to A\} \qquad F_2 = \{B \to A, C \to B, A \to C\}$$
$$F_1 \equiv F_2?$$
$$F_1 \subseteq F_2^+? \qquad F_2 \subseteq F_1^+?$$

 $B \rightarrow C$:

 $A \rightarrow B$:

 $C \rightarrow A$:

$$F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$
 $F_2 = \{B \rightarrow A, C \rightarrow B, A \rightarrow C\}$

$$F_2 = \{B \to A, C \to B, A \to C\}$$

$$F_1 \equiv F_2$$
?

$$F_1 \subseteq F_2^+$$
?

$$F_2 \subseteq F_1^+$$
?

$$A \rightarrow B$$
:

$$B \rightarrow A$$
:

$$B \rightarrow C$$
:

$$C \rightarrow B$$
:

$$C \rightarrow A$$
:

$$A \rightarrow C$$
:

$$F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$
 $F_2 = \{B \rightarrow A, C \rightarrow B, A \rightarrow C\}$

$$F_2 = \{B \to A, C \to B, A \to C\}$$

$$F_1 \equiv F_2$$
?

$$F_1 \subseteq F_2^+$$
?

$$F_2 \subseteq F_1^+$$
?

$$A \rightarrow B$$
:

$$B \rightarrow A$$
:

$$B \rightarrow C$$
:

$$C \rightarrow B$$
:

$$C \rightarrow A$$
:

$$A \rightarrow C$$
:

Example (Armstrong axioms)

$$F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

$$F_2 = \{B \to A, C \to B, A \to C\}$$

$$F_1 \equiv F_2$$
?

$$F_1 \subseteq F_2^+$$
?

$$F_2 \subseteq F_1^+$$
?

$$A \rightarrow B$$
: \checkmark

$$B \rightarrow A$$
:

transitivity of
$$A \rightarrow C$$
, $C \rightarrow B$

$$C \to D$$

$$C \rightarrow B$$
:

$$C \rightarrow A$$
:

 $B \rightarrow C$:

$$A \rightarrow C$$
:

Example (Armstrong axioms)

$$F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

$$F_2 = \{B \to A, C \to B, A \to C\}$$

 $F_2 \subseteq F_1^+$?

$$F_1 \equiv F_2$$
?

$$F_1 \subseteq F_2^+$$
?

$$A \rightarrow B$$
: \checkmark

$$B \rightarrow A$$
:

transitivity of
$$A \rightarrow C$$
, $C \rightarrow B$

$$B \rightarrow C$$
: \checkmark

$$C \rightarrow B$$
:

$$C \rightarrow A$$
:

$$A \rightarrow C$$
:

$$F_1 = \{A \to B, B \to C, C \to A\}$$
 $F_2 = \{B \to A, C \to B, A \to C\}$
 $F_1 \equiv F_2$?

$$F_1 \subseteq F_2^+$$
? $F_2 \subseteq F_1^+$?

$$A \rightarrow B$$
: \checkmark $B \rightarrow A$:

$$C \to B$$

$$B \rightarrow C$$
: \checkmark transitivity of $B \rightarrow A$,

$$A \rightarrow C$$

$$C \rightarrow A$$
: $A \rightarrow C$:

 $F_2 \subseteq F_1^+$?

Equivalence of Sets of FDs

$$F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$
 $F_2 = \{B \rightarrow A, C \rightarrow B, A \rightarrow C\}$

$$F_1 \equiv F_2?$$

$$F_1 \subseteq F_2^+?$$

$$A \rightarrow B$$
: \checkmark transitivity of $A \rightarrow C$,

$$C \rightarrow B$$

$$B \rightarrow C$$
: \checkmark $C \rightarrow B$:

transitivity of
$$B \rightarrow A$$
, $A \rightarrow C$

$$C \rightarrow A$$
: \checkmark $A \rightarrow C$:

 $F_2 \subset F_1^+$?

Equivalence of Sets of FDs

$$F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\} \qquad \qquad F_2 = \{B \rightarrow A, C \rightarrow B, A \rightarrow C\}$$

$$F_1 \equiv F_2$$
?

$$F_1 \subseteq F_2^+$$
?

$$B \rightarrow A$$
:

$$A \rightarrow B$$
: \checkmark transitivity of $A \rightarrow C$,

$$D \rightarrow A$$

$$C \rightarrow B$$

$$B \rightarrow C$$
: \checkmark transitivity of $B \rightarrow A$,

$$C \rightarrow B$$
:

$$A \rightarrow C$$

$$C \rightarrow A$$
: \checkmark

$$A \rightarrow C$$
:

transitivity of
$$C \rightarrow B$$
, $B \rightarrow A$

Example (Armstrong axioms)

$$F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

$$F_2 = \{B \to A, C \to B, A \to C\}$$

$$F_1 \equiv F_2$$
?

$$F_1 \subseteq F_2^+$$
?

$$F_2 \subseteq F_1^+$$
?

$$A \rightarrow B$$
: \checkmark

 $B \rightarrow C$:

$$B \rightarrow A$$
: \checkmark

transitivity of
$$A \rightarrow C$$
, $C \rightarrow B$

$$C \to B$$

$$C \rightarrow B$$
:

transitivity of $B \rightarrow A$,

$$A \rightarrow C$$

$$C \rightarrow A$$
: \checkmark

$$A \rightarrow C$$
:

transitivity of

$$C \rightarrow B$$
, $B \rightarrow A$

4 D > 4 D > 4 E > 4 E > E

 $F_2 \subseteq F_1^+$?

transitivity of

 $B \rightarrow C. C \rightarrow A$

Equivalence of Sets of FDs

$$F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$
 $F_2 = \{B \rightarrow A, C \rightarrow B, A \rightarrow C\}$

$$F_1 \equiv F_2$$
?

$$F_1 \subseteq F_2^+$$
?

$$B o A$$
: \checkmark

$$A \rightarrow B$$
: \checkmark transitivity of $A \rightarrow C$, $C \rightarrow B$

$$C \rightarrow B$$
:

$$B \rightarrow C$$
: \checkmark transitivity of $B \rightarrow A$,

$$A \rightarrow C$$

$$C \rightarrow A$$
: \checkmark transitivity of $C \rightarrow B, B \rightarrow A$

$$A \rightarrow C$$
:

Example (Armstrong axioms)

$$F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

$$F_2 = \{B \to A, C \to B, A \to C\}$$

$$F_1 \equiv F_2$$
?

$$F_1 \subseteq F_2^+$$
?

$$F_2 \subseteq F_1^+$$
?

$$A \rightarrow B$$
: \checkmark

transitivity of $A \rightarrow C$,

$$C \rightarrow B$$

 $B \rightarrow A$: \checkmark

transitivity of $B \rightarrow C$. $C \rightarrow A$

$$B \rightarrow C$$
: \checkmark transitivity of $B \rightarrow A$,

$$C \rightarrow B$$
: \checkmark

$$A \rightarrow C$$
 $C \rightarrow A$: \checkmark

transitivity of

$$C \rightarrow B, B \rightarrow A$$

$$A \rightarrow C$$
:

$$F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

$$F_2 = \{B \to A, C \to B, A \to C\}$$

$$F_1 \equiv F_2$$
?

$$F_1 \subseteq F_2^+$$
?

$$A \rightarrow B$$
: \checkmark transitivity of $A \rightarrow C$, $C \rightarrow B$

$$B \rightarrow C$$
: \checkmark transitivity of $B \rightarrow A$, $A \rightarrow C$

$$C \to A$$
: \checkmark transitivity of $C \to B, B \to A$

$$F_2 \subseteq F_1^+$$
?

$$B \rightarrow A$$
: \checkmark transitivity of $B \rightarrow C$. $C \rightarrow A$

$$C \rightarrow B$$
: \checkmark transitivity of $C \rightarrow A$, $A \rightarrow B$

$$A \rightarrow C$$
:

$$F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

$$F_2 = \{B \to A, C \to B, A \to C\}$$

$$F_1 \equiv F_2$$
?

$$F_1 \subseteq F_2^+$$
?

$$A \rightarrow B$$
:

transitivity of
$$A \rightarrow C$$
,
$$C \rightarrow B$$

$$B \rightarrow C$$
: \checkmark transitivity of $B \rightarrow A$, $A \rightarrow C$

$$C \rightarrow A$$
: \checkmark transitivity of

transitivity of
$$C \rightarrow B, B \rightarrow A$$

$$F_2 \subseteq F_1^+$$
?

$$B \rightarrow A$$
: \checkmark transitivity of $B \rightarrow C$. $C \rightarrow A$

$$C \rightarrow B$$
: \checkmark transitivity of $C \rightarrow A$, $A \rightarrow B$

$$A \rightarrow C$$
: \checkmark

$$F_1 = \{A \to B, B \to C, C \to A\}$$
 $F_2 = \{B \to A, C \to B, A \to C\}$
 $F_1 \equiv F_2$?

$$F_1 \subseteq F_2^+$$
?

$$A \rightarrow B$$
: \checkmark transitivity of $A \rightarrow C$,

$$C \rightarrow B$$

$$B \rightarrow C$$
: \checkmark transitivity of $B \rightarrow A$, $A \rightarrow C$

$$C \rightarrow A$$
: \checkmark transitivity of $C \rightarrow B, B \rightarrow A$

$$F_2 \subseteq F_1^+$$
?

$$B \rightarrow A$$
: \checkmark transitivity of $B \rightarrow C$. $C \rightarrow A$

$$C \rightarrow B$$
: \checkmark transitivity of $C \rightarrow A$, $A \rightarrow B$

$$A \rightarrow C$$
: \checkmark transitivity of $A \rightarrow B$, $B \rightarrow C$

$$F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

$$F_2 = \{B \to A, C \to B, A \to C\}$$

$$F_1 \equiv F_2$$
?

$$F_1 \subseteq F_2^+$$
?

$$A \rightarrow B$$
:

$$F_2 \subseteq F_1^+$$
?

$$B \rightarrow A$$
:

$$B \rightarrow C$$
:

$$C \rightarrow B$$

$$C \rightarrow A$$
:

$$A \rightarrow C$$
:

$$F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

$$F_2 = \{B \to A, C \to B, A \to C\}$$

$$F_1 \equiv F_2$$
?

$$F_1 \subseteq F_2^+$$
?

$$A \rightarrow B$$
: \checkmark

$$B \rightarrow C$$
: \checkmark

$$C \rightarrow A$$
: \checkmark

$$F_2 \subseteq F_1^+$$
?

$$B \rightarrow A$$
: \checkmark

$$C \rightarrow B$$
: \checkmark

$$A \rightarrow C$$
: \checkmark

$$F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

$$F_2 = \{B \to A, C \to B, A \to C\}$$

$$F_1 \equiv F_2$$
?

$$F_1 \subseteq F_2^+$$
?

$$A \rightarrow B$$
: \checkmark
 $B \in$
attrclosure($F_2, \{A\}$)

$$B \rightarrow C$$
: \checkmark

$$C \rightarrow A$$
:

$$F_2 \subseteq F_1^+$$
?

$$B \rightarrow A$$
: \checkmark

$$C \rightarrow B$$
: \checkmark

$$A \rightarrow C$$
: \checkmark

$$F_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

$$F_2 = \{B \to A, C \to B, A \to C\}$$

$$F_1 \equiv F_2$$
?

$$F_1 \subseteq F_2^+$$
?

$$A \rightarrow B$$
: \checkmark
 $B \in$
attrclosure($F_2, \{A\}$)

$$B \rightarrow C$$
: \checkmark
 $C \in$
attrclosure(F_2 , { B })

$$C \rightarrow A$$
: \checkmark

$$F_2 \subseteq F_1^+$$
?

$$B \rightarrow A$$
: \checkmark

$$A \rightarrow C$$
: \checkmark

Example (attribute closure)

$$F_1 = \{A oup B, B oup C, C oup A\}$$
 $F_1 \equiv F_2$?
$$F_1 \subseteq F_2^+?$$
 $A oup B \in$

$$attrclosure(F_2, \{A\})$$
 $B oup C : \checkmark$
 $C \in$

$$attrclosure(F_2, \{B\})$$
 $C oup A : \checkmark$
 $A \in$

$$attrclosure(F_2, \{C\})$$

$$F_2 \subseteq F_1^+$$
?

 $F_2 = \{B \rightarrow A, C \rightarrow B, A \rightarrow C\}$

$$B \rightarrow A$$
: \checkmark

$$C \rightarrow B$$
: \checkmark

$$A \rightarrow C$$
: \checkmark

$$F_{1} = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\} \qquad F_{2} = \{B \rightarrow A, C \rightarrow B, A \rightarrow C\}$$

$$F_{1} \equiv F_{2}?$$

$$F_{1} \subseteq F_{2}^{+}?$$

$$A \rightarrow B: \checkmark \qquad F_{2} \subseteq F_{1}^{+}?$$

$$B \in \qquad \text{attrclosure}(F_{2}, \{A\}) \qquad A \in \text{attrclosure}(F_{1}, \{B\})$$

$$B \rightarrow C: \checkmark \qquad A \in \qquad \text{attrclosure}(F_{2}, \{C\})$$

$$C \rightarrow A: \checkmark \qquad A \in \qquad \text{attrclosure}(F_{2}, \{C\})$$

Example (attribute closure)

$$F_1 = \{A oup B, B oup C, C oup A\}$$
 $F_1 \equiv F_2$?

 $F_1 \subseteq F_2^+$?

 $A oup B \colon \checkmark$
 $B \in$
 $attrclosure(F_2, \{A\})$
 $B oup C \colon \checkmark$
 $C \in$
 $attrclosure(F_2, \{B\})$
 $C oup A \colon \checkmark$
 $A \in$
 $attrclosure(F_2, \{C\})$

$$F_2\subseteq F_1^+?$$
 $B o A\colon \ \checkmark \ A\in \mathsf{attrclosure}(F_1,\{B\})$
 $C o B\colon \ \checkmark \ B\in \mathsf{attrclosure}(F_1,\{C\})$

 $A \rightarrow C \cdot \checkmark$

 $F_2 = \{B \rightarrow A, C \rightarrow B, A \rightarrow C\}$

Example (attribute closure)

$$F_1 = \{A oup B, B oup C, C oup A\}$$
 $F_1 \equiv F_2$?
$$F_1 \subseteq F_2^+?$$
 $A oup B \colon \checkmark$
 $B \in \mathsf{attrclosure}(F_2, \{A\})$
 $B oup C \colon \checkmark$
 $C \in \mathsf{attrclosure}(F_2, \{B\})$
 $C oup A \colon \checkmark$
 $A \in \mathsf{attrclosure}(F_2, \{C\})$

$$F_2\subseteq F_1^+?$$
 $B o A\colon \checkmark$
 $A\in \mathsf{attrclosure}(F_1,\{B\})$
 $C o B\colon \checkmark$
 $B\in \mathsf{attrclosure}(F_1,\{C\})$
 $A o C\colon \checkmark$

 $F_2 = \{B \rightarrow A, C \rightarrow B, A \rightarrow C\}$

◄□▶
◄□▶
◄□▶
₹
₹

 $C \in \operatorname{attrclosure}(F_1, \{A\})$

Equivalence of Sets of FDs

given: sets of FDs F_1, F_2

to show: $F_1 \equiv F_2$ resp. $F_1 \not\equiv F_2$?

given: sets of FDs F_1, F_2

to show: $F_1 \equiv F_2$ resp. $F_1 \not\equiv F_2$?

 $F_1 \equiv F_2$: show that $F_1 \subseteq F_2^+$ and $F_2 \subseteq F_1^+$

Equivalence of Sets of FDs

given: sets of FDs F_1, F_2

to show: $F_1 \equiv F_2$ resp. $F_1 \not\equiv F_2$?

 $F_1 \equiv F_2$: show that $F_1 \subseteq F_2^+$ and $F_2 \subseteq F_1^+$

 $F_1 \not\equiv F_2$: find FD $\alpha \to \beta \in F_1^+$ such that $\alpha \to \beta \notin F_2^+$ (or vice versa)

Equivalence of Sets of FDs

given: sets of FDs F_1, F_2

to show: $F_1 \equiv F_2$ resp. $F_1 \not\equiv F_2$?

 $F_1 \equiv F_2$: show that $F_1 \subseteq F_2^+$ and $F_2 \subseteq F_1^+$

 $F_1 \not\equiv F_2$: find FD $\alpha \to \beta \in F_1^+$ such that $\alpha \to \beta \notin F_2^+$ (or vice versa)

show that $\alpha \to \beta \notin F_2^+$ if and only if $\beta \notin \mathsf{attrclosure}(F_2, \alpha)$

101111111111

Overview

- motivation
- definition
- determination
- closure
- equivalence
- canonical cover
- key

problem: find the shortest possible representation of FDs ("basis")

problem: find the shortest possible representation of FDs ("basis")

solution: the canonical cover

mathematics: basis of a vector space

Definition (canonical cover)

 F_C is called canonical cover of a set of FDs F if the following criteria are satisfied:

- $\mathbf{2}$ in F_C there are no FDs that contain superfluous attributes
- 3 each left side of a FD in F_C is unique

Definition (canonical cover)

 F_C is called canonical cover of a set of FDs F if the following criteria are satisfied:

- $\mathbf{2}$ in F_C there are no FDs that contain superfluous attributes
- \blacksquare each left side of a FD in F_C is unique

Theorem

To each set F of FDs there is a canonical cover F_C .

mathematics: to each set of vectors that span a vector space there is a base.

the construction of a canonical cover is obtained directly form the definition:

split all FDs using decomposition on the right side (equivalence is guaranteed)

- split all FDs using decomposition on the right side (equivalence is guaranteed)
- reduce superfluous attributes as follows:

- split all FDs using decomposition on the right side (equivalence is guaranteed)
- reduce superfluous attributes as follows:
 - **1** apply left reduction to each FD $\alpha \to B \in F$: can we delete an attribute from α such that the results remains equivalent to the original set of FDs?

- split all FDs using decomposition on the right side (equivalence is guaranteed)
- 2 reduce superfluous attributes as follows:
 - **11** apply left reduction to each FD $\alpha \to B \in F$: can we delete an attribute from α such that the results remains equivalent to the original set of FDs?
 - 2 apply right reduction to each (remaining) FD $\alpha \to B \in F$: can B be reduced such that the result remains equivalent to the original set of FDs?

- split all FDs using decomposition on the right side (equivalence is guaranteed)
- 2 reduce superfluous attributes as follows:
 - **11** apply left reduction to each FD $\alpha \to B \in F$: can we delete an attribute from α such that the results remains equivalent to the original set of FDs?
 - 2 apply right reduction to each (remaining) FD $\alpha \to B \in F$: can B be reduced such that the result remains equivalent to the original set of FDs?
- 3 combine FDs using union (equivalence is guaranteed)

the construction of a canonical cover is obtained directly form the definition:

- split all FDs using decomposition on the right side (equivalence is guaranteed)
- 2 reduce superfluous attributes as follows:
 - **11** apply left reduction to each FD $\alpha \to B \in F$: can we delete an attribute from α such that the results remains equivalent to the original set of FDs?
 - 2 apply right reduction to each (remaining) FD $\alpha \rightarrow B \in F$: can B be reduced such that the result remains equivalent to the original set of FDs?
- 3 combine FDs using union (equivalence is guaranteed)

To ensure obtaining only equivalent results during the reduction steps we will use the algorithm attrclosure.

1 split all FDs using decomposition on the right side

- split all FDs using decomposition on the right side
- reduce superfluous attributes as follows:
 - **1** apply left reduction to each FD $\alpha \rightarrow B \in F$:

```
\forall A \in \alpha: it holds that B \in \mathsf{attrclosure}(F, \alpha - A) (is A superfluous?) if yes: replace \alpha \to B in F by (\alpha - A) \to B
```


- 1 split all FDs using decomposition on the right side
- reduce superfluous attributes as follows:
 - **1** apply left reduction to each FD $\alpha \rightarrow B \in F$:

```
\forall A \in \alpha: it holds that B \in \mathsf{attrclosure}(F, \alpha - A) (is A \times \mathsf{superfluous}?) if yes: replace \alpha \to B in F \to \mathsf{by} (\alpha - A \to B)
```

2 apply right reduction to each (remaining) FD $\alpha \rightarrow B \in F$:

```
does it hold that B \in \operatorname{attrclosure}(F - (\alpha \to B), \alpha) (is B resp. \alpha \to B superfluous?) if yes delete \alpha \to B
```


- 1 split all FDs using decomposition on the right side
- reduce superfluous attributes as follows:
 - **1** apply left reduction to each FD $\alpha \rightarrow B \in F$:

```
\forall A \in \alpha: it holds that B \in \operatorname{attrclosure}(F, \alpha - A) (is A superfluous?) if yes: replace \alpha \to B in F by (\alpha - A) \to B
```

2 apply right reduction to each (remaining) FD $\alpha \rightarrow B \in F$:

```
does it hold that B \in \mathsf{attrclosure}(F - (\alpha \to B), \alpha) (is B resp. \alpha \to B superfluous?) if yes delete \alpha \to B
```

3 combine the FDs using union

A D A A D A A E A A E A .

Explanation for . . .

... the left reduction:

$$B \in \mathsf{attrclosure}(F, \alpha - A) \Leftrightarrow F \equiv (F \setminus \{\alpha \to B\}) \cup \{(\alpha - A) \to B\}$$
 (because $B \in \mathsf{attrclosure}(F, \alpha - A) \Leftrightarrow F \models (\alpha - A) \to B$)

Explanation for . . .

... the left reduction:

$$B \in \mathsf{attrclosure}(F, \alpha - A) \Leftrightarrow F \equiv (F \setminus \{\alpha \to B\}) \cup \{(\alpha - A) \to B\}$$
 (because $B \in \mathsf{attrclosure}(F, \alpha - A) \Leftrightarrow F \models (\alpha - A) \to B$)

... the right reduction

$$B \in \mathsf{attrclosure}(F - (\alpha \to B), \alpha) \Leftrightarrow F \equiv F - (\alpha \to B)$$
 (because $B \in \mathsf{attrclosure}(F - (\alpha \to B), \alpha) \Leftrightarrow F - (\alpha \to B) \models \alpha \to B$)

Example

$$F = \{A \rightarrow B, B \rightarrow C, AB \rightarrow C\}$$

decomposition not necessary

マロケス部ケス等ケス等ケー等

Example

$$F = \{A \rightarrow B, B \rightarrow C, AB \rightarrow C\}$$

- 1 decomposition not necessary
- 2 reduction
 - I left reduction:

 $A \rightarrow B$: already reduced $B \rightarrow C$: already reduced

Example

$$F = \{A \rightarrow B, B \rightarrow C, AB \rightarrow C\}$$

- decomposition not necessary
- 2 reduction
 - I left reduction:

 $A \rightarrow B$: already reduced

 $B \rightarrow C$: already reduced

 $AB \rightarrow C: C \in \mathsf{attrclosure}(F, A)$

Example

$$F = \{A \rightarrow B, B \rightarrow C, AB \rightarrow C\}$$

- 1 decomposition not necessary
- 2 reduction
 - I left reduction:

 $A \rightarrow B$: already reduced

 $B \rightarrow C$: already reduced

$$AB \rightarrow C$$
: $C \in \text{attrclosure}(F, A)$ yes
 $\Rightarrow F := \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$

Example

$$F = \{A \rightarrow B, B \rightarrow C, AB \rightarrow C\}$$

- decomposition not necessary
- 2 reduction
 - 1 left reduction:

 $A \rightarrow B$: already reduced

 $B \rightarrow C$: already reduced

 $AB \rightarrow C$: $C \in \text{attrclosure}(F, A)$ yes $\Rightarrow F := \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$

2 right reduction:

$$A \rightarrow B$$
: $B \in \mathsf{attrclosure}(F \setminus \{A \rightarrow B\}, A)$

Example

$$F = \{A \rightarrow B, B \rightarrow C, AB \rightarrow C\}$$

- 1 decomposition not necessary
- 2 reduction
 - 1 left reduction:

 $A \rightarrow B$: already reduced

 $B \rightarrow C$: already reduced

 $AB \rightarrow C$: $C \in \text{attrclosure}(F, A)$ yes $\Rightarrow F := \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$

2 right reduction:

$$A \rightarrow B$$
: $B \in \mathsf{attrclosure}(F \setminus \{A \rightarrow B\}, A)$ no

Example

$$F = \{A \rightarrow B, B \rightarrow C, AB \rightarrow C\}$$

- 1 decomposition not necessary
- 2 reduction
 - I left reduction:

 $A \rightarrow B$: already reduced

 $B \rightarrow C$: already reduced

 $AB \rightarrow C$: $C \in \text{attrclosure}(F, A)$ yes $\Rightarrow F := \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$

2 right reduction:

 $A \rightarrow B$: $B \in \mathsf{attrclosure}(F \setminus \{A \rightarrow B\}, A)$ no

 $B \rightarrow C$: $C \in \mathsf{attrclosure}(F \setminus \{B \rightarrow C\}, B)$

Example

$$F = \{A \rightarrow B, B \rightarrow C, AB \rightarrow C\}$$

- decomposition not necessary
- 2 reduction
 - 1 left reduction:

 $A \rightarrow B$: already reduced

 $B \rightarrow C$: already reduced

 $AB \rightarrow C$: $C \in \text{attrclosure}(F, A)$ yes $\Rightarrow F := \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$

2 right reduction:

 $A \rightarrow B$: $B \in \mathsf{attrclosure}(F \setminus \{A \rightarrow B\}, A)$ no

 $B \to C$: $C \in \mathsf{attrclosure}(F \setminus \{B \to C\}, B)$ no

Anela Lolić Seite 4

Example

$$F = \{A \rightarrow B, B \rightarrow C, AB \rightarrow C\}$$

- 1 decomposition not necessary
- 2 reduction
 - I left reduction:

 $A \rightarrow B$: already reduced

 $B \rightarrow C$: already reduced

 $AB \rightarrow C$: $C \in \text{attrclosure}(F, A)$ yes $\Rightarrow F := \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$

2 right reduction:

 $A \rightarrow B$: $B \in \mathsf{attrclosure}(F \setminus \{A \rightarrow B\}, A)$ no

 $B \rightarrow C$: $C \in \mathsf{attrclosure}(F \setminus \{B \rightarrow C\}, B)$ no

 $A \rightarrow C$: $C \in \mathsf{attrclosure}(F \setminus \{A \rightarrow C\}, A)$

Example

$$F = \{A \rightarrow B, B \rightarrow C, AB \rightarrow C\}$$

- decomposition not necessary
- 2 reduction
 - I left reduction:

 $A \rightarrow B$: already reduced

 $B \rightarrow C$: already reduced

 $AB \rightarrow C$: $C \in \text{attrclosure}(F, A)$ yes $\Rightarrow F := \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$

2 right reduction:

 $A \rightarrow B$: $B \in \mathsf{attrclosure}(F \setminus \{A \rightarrow B\}, A)$ no

 $B \rightarrow C$: $C \in \mathsf{attrclosure}(F \setminus \{B \rightarrow C\}, B)$ no

 $A \rightarrow C$: $C \in \mathsf{attrclosure}(F \setminus \{A \rightarrow C\}, A)$ yes $\Rightarrow F := \{A \rightarrow B, B \rightarrow C\}$

Example

$$F = \{A \rightarrow B, B \rightarrow C, AB \rightarrow C\}$$

- 1 decomposition not necessary
- 2 reduction
 - 1 left reduction:

 $A \rightarrow B$: already reduced

 $B \rightarrow C$: already reduced

 $AB \rightarrow C$: $C \in \text{attrclosure}(F, A)$ yes $\Rightarrow F := \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$

2 right reduction:

 $A \rightarrow B$: $B \in \mathsf{attrclosure}(F \setminus \{A \rightarrow B\}, A)$ no

 $B \rightarrow C$: $C \in \mathsf{attrclosure}(F \setminus \{B \rightarrow C\}, B)$ no

 $A \rightarrow C$: $C \in \operatorname{attrclosure}(F \setminus \{A \rightarrow C\}, A)$ yes $\Rightarrow F := \{A \rightarrow B, B \rightarrow C\}$

union not applicable

Example

$$F = \{A \rightarrow B, B \rightarrow C, AB \rightarrow C\}$$

- decomposition not necessary
- reduction
 - 1 left reduction:

 $A \rightarrow B$: already reduced

 $B \rightarrow C$: already reduced

 $AB \rightarrow C$: $C \in attrclosure(F, A)$ yes $\Rightarrow F := \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$

2 right reduction:

 $A \rightarrow B$: $B \in \mathsf{attrclosure}(F \setminus \{A \rightarrow B\}, A)$ no

 $B \to C$: $C \in \mathsf{attrclosure}(F \setminus \{B \to C\}, B)$ no

 $A \rightarrow C$: $C \in \mathsf{attrclosure}(F \setminus \{A \rightarrow C\}, A)$ yes $\Rightarrow F := \{A \rightarrow B, B \rightarrow C\}$

blo
$$\rightarrow F_a := \int A \rightarrow R R \rightarrow C$$

3 union not applicable $\Rightarrow F_C := \{A \rightarrow B, B \rightarrow C\}$

◆□▶ ◆圖▶ ◆圖▶

Example

$$F = \{A \rightarrow BD, AC \rightarrow E, CD \rightarrow E, E \rightarrow A, D \rightarrow C\}$$

Example

$$F = \{A \rightarrow BD, AC \rightarrow E, CD \rightarrow E, E \rightarrow A, D \rightarrow C\}$$

1 decomposition:

$$F = \{A \rightarrow B, A \rightarrow D, AC \rightarrow E, CD \rightarrow E, E \rightarrow A, D \rightarrow C\}$$

Example

$$F = \{A \rightarrow BD, AC \rightarrow E, CD \rightarrow E, E \rightarrow A, D \rightarrow C\}$$

1 decomposition:

$$F = \{A \rightarrow B, A \rightarrow D, AC \rightarrow E, CD \rightarrow E, E \rightarrow A, D \rightarrow C\}$$

2 left reduction:

 $A \rightarrow B$: ok

 $A \rightarrow D$: ok

 $E \rightarrow A$: ok

 $D \rightarrow C$: ok

Example

$$F = \{A \rightarrow BD, AC \rightarrow E, CD \rightarrow E, E \rightarrow A, D \rightarrow C\}$$

1 decomposition:

$$F = \{A \rightarrow B, A \rightarrow D, AC \rightarrow E, CD \rightarrow E, E \rightarrow A, D \rightarrow C\}$$

2 left reduction:

 $A \rightarrow B$: ok

 $A \rightarrow D$: ok

 $E \rightarrow A$: ok

 $D \rightarrow C$: ok

 $AC \rightarrow E: E \in \mathsf{attrclosure}(F, A) \text{ yes} \Rightarrow$ $F = \{A \rightarrow B, A \rightarrow D, A \rightarrow E, CD \rightarrow E, E \rightarrow A, D \rightarrow C\}$

Example

$$F = \{A \rightarrow BD, AC \rightarrow E, CD \rightarrow E, E \rightarrow A, D \rightarrow C\}$$

decomposition:

$$F = \{A \rightarrow B, A \rightarrow D, AC \rightarrow E, CD \rightarrow E, E \rightarrow A, D \rightarrow C\}$$

2 left reduction:

$$A \rightarrow B$$
: ok

$$A \rightarrow D$$
: ok

$$E \rightarrow A$$
: ok

$$D \rightarrow C$$
: ok

$$AC \rightarrow E$$
: $E \in \text{attrclosure}(F, A) \text{ yes} \Rightarrow$

$$F = \{A \to B, A \to D, A \to E, CD \to E, E \to A, D \to C\}$$

$$CD \rightarrow E$$
: $E \in \operatorname{attrclosure}(F, C)$ no
 $E \in \operatorname{attrclosure}(F, D)$ yes \Rightarrow
 $F = \{A \rightarrow B, A \rightarrow D, A \rightarrow E, D \rightarrow E, E \rightarrow A, D \rightarrow C\}$

Example

$$F = \{A \rightarrow B, A \rightarrow D, A \rightarrow E, D \rightarrow E, E \rightarrow A, D \rightarrow C\}$$

$$A \rightarrow B$$
: $B \in \mathsf{attrclosure}(F \setminus \{A \rightarrow B\}, A)$ no

Example

$$F = \{A \rightarrow B, A \rightarrow D, A \rightarrow E, D \rightarrow E, E \rightarrow A, D \rightarrow C\}$$

$$A \rightarrow B$$
: $B \in \mathsf{attrclosure}(F \setminus \{A \rightarrow B\}, A)$ no $A \rightarrow D$: $D \in \mathsf{attrclosure}(F \setminus \{A \rightarrow D\}, A)$ no

Example

$$F = \{A \rightarrow B, A \rightarrow D, A \rightarrow E, D \rightarrow E, E \rightarrow A, D \rightarrow C\}$$

$$A \rightarrow B$$
: $B \in \mathsf{attrclosure}(F \setminus \{A \rightarrow B\}, A) \text{ no}$
 $A \rightarrow D$: $D \in \mathsf{attrclosure}(F \setminus \{A \rightarrow D\}, A) \text{ no}$
 $A \rightarrow E$: $E \in \mathsf{attrclosure}(F \setminus \{A \rightarrow E\}, A) \text{ yes} \Rightarrow$
 $F = \{A \rightarrow B, A \rightarrow D, D \rightarrow E, E \rightarrow A, D \rightarrow C\}$

Example

$$F = \{A \rightarrow B, A \rightarrow D, A \rightarrow E, D \rightarrow E, E \rightarrow A, D \rightarrow C\}$$

3 right reduction:

$$A \rightarrow B$$
: $B \in \mathsf{attrclosure}(F \setminus \{A \rightarrow B\}, A)$ no $A \rightarrow D$: $D \in \mathsf{attrclosure}(F \setminus \{A \rightarrow D\}, A)$ no $A \rightarrow E$: $E \in \mathsf{attrclosure}(F \setminus \{A \rightarrow E\}, A)$ yes \Rightarrow $F = \{A \rightarrow B, A \rightarrow D, D \rightarrow E, E \rightarrow A, D \rightarrow C\}$ $D \rightarrow E$: $E \in \mathsf{attrclosure}(F \setminus \{D \rightarrow E\}, D)$ no

Caire 47

Example

$$F = \{A \rightarrow B, A \rightarrow D, A \rightarrow E, D \rightarrow E, E \rightarrow A, D \rightarrow C\}$$

$$A \rightarrow B$$
: $B \in \operatorname{attrclosure}(F \setminus \{A \rightarrow B\}, A)$ no $A \rightarrow D$: $D \in \operatorname{attrclosure}(F \setminus \{A \rightarrow D\}, A)$ no $A \rightarrow E$: $E \in \operatorname{attrclosure}(F \setminus \{A \rightarrow E\}, A)$ yes \Rightarrow $F = \{A \rightarrow B, A \rightarrow D, D \rightarrow E, E \rightarrow A, D \rightarrow C\}$ $D \rightarrow E$: $E \in \operatorname{attrclosure}(F \setminus \{D \rightarrow E\}, D)$ no $E \rightarrow A$: $A \in \operatorname{attrclosure}(F \setminus \{E \rightarrow A\}, E)$ no

Example

$$F = \{A \rightarrow B, A \rightarrow D, A \rightarrow E, D \rightarrow E, E \rightarrow A, D \rightarrow C\}$$

3 right reduction:

$$A \rightarrow B$$
: $B \in \operatorname{attrclosure}(F \setminus \{A \rightarrow B\}, A)$ no $A \rightarrow D$: $D \in \operatorname{attrclosure}(F \setminus \{A \rightarrow D\}, A)$ no $A \rightarrow E$: $E \in \operatorname{attrclosure}(F \setminus \{A \rightarrow E\}, A)$ yes \Rightarrow $F = \{A \rightarrow B, A \rightarrow D, D \rightarrow E, E \rightarrow A, D \rightarrow C\}$ $D \rightarrow E$: $E \in \operatorname{attrclosure}(F \setminus \{D \rightarrow E\}, D)$ no $E \rightarrow A$: $A \in \operatorname{attrclosure}(F \setminus \{E \rightarrow A\}, E)$ no $D \rightarrow C$: $C \in \operatorname{attrclosure}(F \setminus \{D \rightarrow C\}, D)$ no

C-14- 47

Example

$$F = \{A \rightarrow B, A \rightarrow D, A \rightarrow E, D \rightarrow E, E \rightarrow A, D \rightarrow C\}$$

3 right reduction:

$$A \rightarrow B$$
: $B \in \operatorname{attrclosure}(F \setminus \{A \rightarrow B\}, A)$ no $A \rightarrow D$: $D \in \operatorname{attrclosure}(F \setminus \{A \rightarrow D\}, A)$ no $A \rightarrow E$: $E \in \operatorname{attrclosure}(F \setminus \{A \rightarrow E\}, A)$ yes \Rightarrow $F = \{A \rightarrow B, A \rightarrow D, D \rightarrow E, E \rightarrow A, D \rightarrow C\}$ $D \rightarrow E$: $E \in \operatorname{attrclosure}(F \setminus \{D \rightarrow E\}, D)$ no $E \rightarrow A$: $A \in \operatorname{attrclosure}(F \setminus \{E \rightarrow A\}, E)$ no $D \rightarrow C$: $C \in \operatorname{attrclosure}(F \setminus \{D \rightarrow C\}, D)$ no

4 combination: $F_C = \{A \rightarrow BD, D \rightarrow EC, E \rightarrow A\}$

Cales 47

Overview

- motivation
- definition
- determination
- closure
- equivalence
- canonical cover
- key

Relational Design Theory

Definition (key)

 $\gamma \subseteq \mathcal{R}$ is a key candidate or key, if the following conditions are satisfied:

Definition (key)

 $\gamma \subseteq \mathcal{R}$ is a key candidate or key, if the following conditions are satisfied:

- $1 \gamma \to \mathcal{R}$
- 2 γ is minimal, i.e. for all $A \in \gamma$: $(\gamma \{A\}) \not\rightarrow \mathcal{R}$

Definition (key)

 $\gamma \subseteq \mathcal{R}$ is a key candidate or key, if the following conditions are satisfied:

- $1 \gamma \to \mathcal{R}$
- $\mathbf{2} \ \gamma$ is minimal, i.e. for all $A \in \gamma$: $(\gamma \{A\}) \not\to \mathcal{R}$

in the relational model: primary key for the combination of tables via primary and foreign key

Definition (key)

 $\gamma \subseteq \mathcal{R}$ is a key candidate or key, if the following conditions are satisfied:

- $1 \gamma \to \mathcal{R}$
- $\mathbf{2} \ \gamma$ is minimal, i.e. for all $A \in \gamma$: $(\gamma \{A\}) \not\to \mathcal{R}$

in the relational model: primary key for the combination of tables via primary and foreign key

Definition (super key)

 $\gamma \subseteq \mathcal{R}$ is a super key, if $\gamma \to \mathcal{R}$

- no minimality for super keys
- a super key is a superset of a key

Definition (key)

 $\gamma \subseteq \mathcal{R}$ is a key candidate or key, if the following conditions are satisfied:

- $1 \gamma \to \mathcal{R}$
- $\mathbf{2} \ \gamma$ is minimal, i.e. for all $A \in \gamma$: $(\gamma \{A\}) \not\to \mathcal{R}$

in the relational model: primary key for the combination of tables via primary and foreign key

Definition (super key)

 $\gamma\subseteq\mathcal{R}$ is a super key, if $\gamma\to\mathcal{R}$

- no minimality for super keys
- a super key is a superset of a key

⇒ every key is also a super key

Example

A city is described by its name, the corresponding state, the area code and the population.

question: which FDs hold in this scenario?

Example

A city is described by its name, the corresponding state, the area code and the population.

question: which FDs hold in this scenario?

■ city names are unique within a state, i.e. $\{\text{name, state}\} \rightarrow \{\text{area code, population}\}$

Example

A city is described by its name, the corresponding state, the area code and the population.

question: which FDs hold in this scenario?

- city names are unique within a state, i.e. {name, state} → {area code, population}
- several cities can have the same area code, but only if they have different names, i.e.

```
\{name, area code\} \rightarrow \{state, population\}
```


Example

A city is described by its name, the corresponding state, the area code and the population.

question: which FDs hold in this scenario?

- city names are unique within a state, i.e. {name, state} → {area code, population}
- several cities can have the same area code, but only if they have different names, i.e.

```
\{name, area code\} \rightarrow \{state, population\}
```

question: which key candidates do we obtain based on the FDs?

Example

A city is described by its name, the corresponding state, the area code and the population.

question: which FDs hold in this scenario?

- city names are unique within a state, i.e. {name, state} → {area code, population}
- several cities can have the same area code, but only if they have different names, i.e.

```
\{name, area code\} \rightarrow \{state, population\}
```

question: which key candidates do we obtain based on the FDs?

■ {name, state}

Example

A city is described by its name, the corresponding state, the area code and the population.

question: which FDs hold in this scenario?

- city names are unique within a state, i.e. {name, state} → {area code, population}
- several cities can have the same area code, but only if they have different names, i.e.

```
\{name, area code\} \rightarrow \{state, population\}
```

question: which key candidates do we obtain based on the FDs?

- {name, state}
- {name, area code}

problem: find key candidates of a relation R based on the given FDs

Definition (key (revisited))

 $\gamma \subseteq \mathcal{R}$ is a key candidate or a key if the following conditions are satisfied:

- $1 \gamma \to \mathcal{R}$
- $\mathbf{2} \ \gamma$ is minimal, i.e.. $\forall A \in \gamma : (\gamma \{A\}) \not\rightarrow \mathcal{R}$

problem: find key candidates of a relation R based on the given FDs

Definition (key (revisited))

 $\gamma \subseteq \mathcal{R}$ is a key candidate or a key if the following conditions are satisfied:

- $1 \gamma \to \mathcal{R}$
- $\mathbf{2} \ \gamma$ is minimal, i.e.. $\forall A \in \gamma : (\gamma \{A\}) \not\rightarrow \mathcal{R}$
- 1 $\gamma \to \mathcal{R}$, when attrclosure $(F, \gamma) = \mathcal{R}$

problem: find key candidates of a relation R based on the given FDs

Definition (key (revisited))

 $\gamma \subseteq \mathcal{R}$ is a key candidate or a key if the following conditions are satisfied:

- $1 \gamma \to \mathcal{R}$
- 2 γ is minimal, i.e., $\forall A \in \gamma : (\gamma \{A\}) \not\rightarrow \mathcal{R}$
- 1 $\gamma \to \mathcal{R}$, when attrclosure $(F, \gamma) = \mathcal{R}$
- 2 minimality is satisfied, if for every attribute A in γ : attrclosure(F, $\gamma \{A\}$) $\neq \mathcal{R}$

Example

Relational Design Theory

$$\mathcal{R} = \{ABCDEF\}, F_d = \{C \rightarrow BDAE\}$$

■ time consuming procedure: trying out all the one-element, two-element, three-element key candidates using attrclosure

$$\mathcal{R} = \{ABCDEF\}, F_d = \{C \rightarrow BDAE\}$$

- time consuming procedure: trying out all the one-element, two-element, three-element key candidates using attrclosure
- alternative: using the following heuristics: all attributes, that do not occur on the right side cannot be derived via attrclosure and have therefore to occur in the key

$$\mathcal{R} = \{ABCDEF\}, F_d = \{C \rightarrow BDAE\}$$

- time consuming procedure: trying out all the one-element, two-element, three-element key candidates using attrclosure
- alternative: using the following heuristics: all attributes, that do not occur on the right side cannot be derived via attrclosure and have therefore to occur in the key
- here: *C* and *F* do not occur on the right side, therefore the following attempt:

$$\mathcal{R} = \{ABCDEF\}, F_d = \{C \rightarrow BDAE\}$$

- time consuming procedure: trying out all the one-element, two-element, three-element key candidates using attrclosure
- alternative: using the following heuristics: all attributes, that do not occur on the right side cannot be derived via attrclosure and have therefore to occur in the key
- here: C and F do not occur on the right side, therefore the following attempt: attrclosure($\{C \rightarrow BDAE\}, CF$) = $\{C, F, B, D, A, E\}$

Example

 $\mathcal{R} = \{ABCDEF\}, F_d = \{C \rightarrow BDAE\}$

- time consuming procedure: trying out all the one-element, two-element, three-element key candidates using attrclosure
- alternative: using the following heuristics: all attributes, that do not occur on the right side cannot be derived via attrclosure and have therefore to occur in the key
- here: C and F do not occur on the right side, therefore the following attempt: attrclosure($\{C \rightarrow BDAE\}, CF$) = $\{C, F, B, D, A, E\}$

CF is the key of $\mathcal R$

Example

 $\mathcal{R} = \{ABCDEF\}, F_d = \{C \rightarrow BD, D \rightarrow AE, E \rightarrow CF, F \rightarrow E\}$ heuristics cannot be used here, as all attributes are derivable

Example

 $\mathcal{R} = \{ABCDEF\}, F_d = \{C \rightarrow BD, D \rightarrow AE, E \rightarrow CF, F \rightarrow E\}$ heuristics cannot be used here, as all attributes are derivable

C: attrclosure $(F_d, C) = \{C, B, D, A, E, F\} \Rightarrow C$ is key of \mathcal{R}

Example

 $\mathcal{R} = \{ABCDEF\}, F_d = \{C \rightarrow BD, D \rightarrow AE, E \rightarrow CF, F \rightarrow E\}$ heuristics cannot be used here, as all attributes are derivable

C: $\mathsf{attrclosure}(F_d, C) = \{C, B, D, A, E, F\} \Rightarrow C \text{ is key of } \mathcal{R}$ $\mathsf{attention}: C \text{ derivable from } E, \text{ therefore:}$

E: attrclosure $(F_d, E) = \{E, C, B, D, A, F\} \Rightarrow E$ is also key of \mathcal{R}

Example

 $\mathcal{R} = \{ABCDEF\}, F_d = \{C \rightarrow BD, D \rightarrow AE, E \rightarrow CF, F \rightarrow E\}$ heuristics cannot be used here, as all attributes are derivable

C: $\mathsf{attrclosure}(F_d, C) = \{C, B, D, A, E, F\} \Rightarrow C \text{ is key of } \mathcal{R}$ $\mathsf{attention}$: C derivable from E, therefore:

E: attrclosure(F_d , E) = {E, C, B, D, A, F} \Rightarrow E is also key of R attention: E derivable from D or F, therefore:

D: attrclosure $(F_d, D) = \{D, A, E, C, F, B\} \Rightarrow D$ is key of \mathcal{R} ,

F: attrclosure $(F_d, F) = \{F, E, C, B, D, A\} \Rightarrow F$ is key of \mathcal{R}

4 D 2 4 D 2 4 E 2 4 E 2 E

Example

 $\mathcal{R} = \{ABCDEF\}, F_d = \{C \rightarrow BD, D \rightarrow AE, E \rightarrow CF, F \rightarrow E\}$ heuristics cannot be used here, as all attributes are derivable

C: attrclosure(F_d , C) = {C, B, D, A, E, F} \Rightarrow C is key of \mathcal{R} attention: C derivable from E, therefore:

E: attrclosure(F_d , E) = {E, C, B, D, A, F} \Rightarrow E is also key of R attention: E derivable from D or F, therefore:

D: attrclosure $(F_d, D) = \{D, A, E, C, F, B\} \Rightarrow D$ is key of \mathcal{R} ,

F: attrclosure $(F_d, F) = \{F, E, C, B, D, A\} \Rightarrow F$ is key of \mathcal{R}

C, D, E, F are the keys of \mathcal{R}

Algorithm for the Calculation of all Keys

```
input: (F, \mathcal{R}): set F of FDs and schema \mathcal{R}
         output: set of all keys of R
          allkeys (F, \mathcal{R})
                     keys = \{minimize(F, \mathcal{R}, \mathcal{R})\} // \text{ find } 1. \text{ key}
                     for each key \in keys:
                         for each att \in kev:
                            for each \alpha \to \beta \in F:
                               if att \in \beta:
                                  nkey = (key \setminus \{att\}) \cup \alpha
                                  if \exists k \in keys with k \subseteq nkey:
                                      keys = keys \cup \{minimize(F, nkey, \mathcal{R})\}
                     return keys
minimize(F, \gamma, \delta): returns a minimal subset \gamma' \subseteq \gamma such that
                     \delta \subseteq \operatorname{attrclosure}(F, \gamma').
```

Computation of all Keys of a Schema

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

Example

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

1 find 1. key:

Example

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

1 find 1. key: attrclosure $(F_d, \{A\}) = \mathcal{R} \Rightarrow keys = \{A\}$

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- **1** find 1. key: attrclosure $(F_d, \{A\}) = \mathcal{R} \Rightarrow keys = \{A\}$
- 2 construct new key from keys:
 - key = A, att = A:
 - $B \rightarrow BEF$, $A \rightarrow BDG$: $A \notin \beta$
 - DE → AC:

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- **1** find 1. key: attrclosure $(F_d, \{A\}) = \mathcal{R} \Rightarrow keys = \{A\}$
- construct new key from keys:
 - key = A, att = A:
 - $B \rightarrow BEF$, $A \rightarrow BDG$: $A \notin \beta$
 - $DE \rightarrow AC$: nkey = DE

Example

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- **1** find 1. key: attrclosure $(F_d, \{A\}) = \mathcal{R} \Rightarrow keys = \{A\}$
- 2 construct new key from keys:
 - key = A, att = A:
 - $B \rightarrow BEF$, $A \rightarrow BDG$: $A \notin \beta$
 - $\blacksquare \ \, \textit{DE} \rightarrow \textit{AC} \colon \textit{nkey} = \textit{DE}$

 $\textit{minimize}: \mathsf{attrclosure}(F_d, \{D\}) \neq \mathcal{R} \ \mathsf{and} \ \mathsf{attrclosure}(F_d, \{E\}) \neq \mathcal{R}$

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- **1** find 1. key: attrclosure $(F_d, \{A\}) = \mathcal{R} \Rightarrow keys = \{A\}$
- 2 construct new key from keys:
 - key = A, att = A:
 - $B \rightarrow BEF$, $A \rightarrow BDG$: $A \notin \beta$
 - $DE \rightarrow AC$: nkey = DE minimize: $attrclosure(F_d, \{D\}) \neq \mathcal{R}$ and $attrclosure(F_d, \{E\}) \neq \mathcal{R}$ $\Rightarrow keys = \{A, DE\}$

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- **1** find 1. key: attrclosure $(F_d, \{A\}) = \mathcal{R} \Rightarrow keys = \{A\}$
- 2 construct new key from keys:
 - key = A, att = A:
 - $B \rightarrow BEF$, $A \rightarrow BDG$: $A \notin \beta$
 - $DE \rightarrow AC$: nkey = DE minimize: $attrclosure(F_d, \{D\}) \neq \mathcal{R}$ and $attrclosure(F_d, \{E\}) \neq \mathcal{R}$ $\Rightarrow keys = \{A, DE\}$
 - key = DE, att = D:
 - $B \rightarrow BEF$, $DE \rightarrow AC$: $D \notin \beta$
 - A → BDG:

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- **1** find 1. key: attrclosure $(F_d, \{A\}) = \mathcal{R} \Rightarrow keys = \{A\}$
- 2 construct new key from keys:
 - key = A, att = A:
 - $B \rightarrow BEF$, $A \rightarrow BDG$: $A \notin \beta$
 - $DE \rightarrow AC$: nkey = DE minimize: $attrclosure(F_d, \{D\}) \neq \mathcal{R}$ and $attrclosure(F_d, \{E\}) \neq \mathcal{R}$ $\Rightarrow keys = \{A, DE\}$
 - key = DE, att = D:
 - $B \rightarrow BEF$, $DE \rightarrow AC$: $D \notin \beta$
 - $A \rightarrow BDG$: nkey = AE;

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- **1** find 1. key: attrclosure $(F_d, \{A\}) = \mathcal{R} \Rightarrow keys = \{A\}$
- 2 construct new key from keys:
 - key = A, att = A:
 - $B \rightarrow BEF$, $A \rightarrow BDG$: $A \notin \beta$
 - $DE \rightarrow AC$: nkey = DE minimize: $attrclosure(F_d, \{D\}) \neq \mathcal{R}$ and $attrclosure(F_d, \{E\}) \neq \mathcal{R}$ $\Rightarrow keys = \{A, DE\}$
 - key = DE, att = D:
 - $B \rightarrow BEF$, $DE \rightarrow AC$: $D \notin \beta$
 - $A \rightarrow BDG$: nkey = AE; $A \subseteq AE$

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- **1** find 1. key: attrclosure $(F_d, \{A\}) = \mathcal{R} \Rightarrow keys = \{A\}$
- 2 construct new key from keys:
 - key = A, att = A:
 - $B \rightarrow BEF$, $A \rightarrow BDG$: $A \notin \beta$
 - $DE \rightarrow AC$: nkey = DE minimize: $attrclosure(F_d, \{D\}) \neq \mathcal{R}$ and $attrclosure(F_d, \{E\}) \neq \mathcal{R}$ $\Rightarrow keys = \{A, DE\}$
 - key = DE, att = D:
 - $B \rightarrow BEF$, $DE \rightarrow AC$: $D \notin \beta$
 - $A \rightarrow BDG$: nkey = AE; $A \subseteq AE \Rightarrow keys = \{A, DE\}$
 - key = DE, att = E:
 - $A \rightarrow BDG$, $DE \rightarrow AC$: $E \notin \beta$
 - B → BEF:

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- **1** find 1. key: attrclosure $(F_d, \{A\}) = \mathcal{R} \Rightarrow keys = \{A\}$
- 2 construct new key from keys:
 - key = A, att = A:
 - $B \rightarrow BEF$, $A \rightarrow BDG$: $A \notin \beta$
 - $DE \rightarrow AC$: nkey = DE minimize: $attrclosure(F_d, \{D\}) \neq \mathcal{R}$ and $attrclosure(F_d, \{E\}) \neq \mathcal{R}$ $\Rightarrow keys = \{A, DE\}$
 - key = DE, att = D:
 - $B \rightarrow BEF$, $DE \rightarrow AC$: $D \notin \beta$
 - $A \rightarrow BDG$: nkey = AE; $A \subseteq AE \Rightarrow keys = \{A, DE\}$
 - key = DE, att = E:
 - $A \rightarrow BDG$, $DE \rightarrow AC$: $E \notin \beta$
 - $B \rightarrow BEF$: nkey = BD;

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- **1** find 1. key: attrclosure $(F_d, \{A\}) = \mathcal{R} \Rightarrow keys = \{A\}$
- 2 construct new key from keys:
 - key = A, att = A:
 - $B \rightarrow BEF$, $A \rightarrow BDG$: $A \notin \beta$
 - $DE \rightarrow AC$: nkey = DE minimize: $attrclosure(F_d, \{D\}) \neq \mathcal{R}$ and $attrclosure(F_d, \{E\}) \neq \mathcal{R}$ $\Rightarrow keys = \{A, DE\}$
 - key = DE, att = D:
 - $B \rightarrow BEF$, $DE \rightarrow AC$: $D \notin \beta$
 - $A \rightarrow BDG$: nkey = AE; $A \subseteq AE \Rightarrow keys = \{A, DE\}$
 - key = DE, att = E:
 - $A \rightarrow BDG$, $DE \rightarrow AC$: $E \notin \beta$
 - $B \to BEF$: nkey = BD; minimize: attrclosure(F_d , {B}) $\neq \mathcal{R}$ and attrclosure(F_d , {D}) $\neq \mathcal{R}$

Example

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- **1** find 1. key: attrclosure $(F_d, \{A\}) = \mathcal{R} \Rightarrow keys = \{A\}$
- 2 construct new key from keys:
 - key = A, att = A:
 - $B \rightarrow BEF$, $A \rightarrow BDG$: $A \notin \beta$
 - $DE \rightarrow AC$: nkey = DE minimize: $attrclosure(F_d, \{D\}) \neq \mathcal{R}$ and $attrclosure(F_d, \{E\}) \neq \mathcal{R}$ $\Rightarrow keys = \{A, DE\}$
 - key = DE, att = D:
 - $B \rightarrow BEF$, $DE \rightarrow AC$: $D \notin \beta$
 - $A \rightarrow BDG$: nkey = AE; $A \subseteq AE \Rightarrow keys = \{A, DE\}$
 - key = DE, att = E:
 - $A \rightarrow BDG$, $DE \rightarrow AC$: $E \notin \beta$
 - $B \to BEF$: nkey = BD; minimize: $attrclosure(F_d, \{B\}) \neq \mathcal{R}$ and $attrclosure(F_d, \{D\}) \neq \mathcal{R}$ $\Rightarrow keys = \{A, DE, BD\}$

<ロト <部ト < きト < きト 三重。

Example

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- **1** find 1. key: attrclosure $(F_d, \{A\}) = \mathcal{R} \Rightarrow keys = \{A\}$
- construct new key from keys:
 - key = A, att = A:
 - $B \rightarrow BEF$, $A \rightarrow BDG$: $A \notin \beta$
 - $DE \rightarrow AC$: nkey = DE minimize: $attrclosure(F_d, \{D\}) \neq \mathcal{R}$ and $attrclosure(F_d, \{E\}) \neq \mathcal{R}$ $\Rightarrow keys = \{A, DE\}$
 - key = DE, att = D:
 - $B \rightarrow BEF$, $DE \rightarrow AC$: $D \notin \beta$
 - $A \rightarrow BDG$: nkey = AE; $A \subseteq AE \Rightarrow keys = \{A, DE\}$
 - key = DE, att = E:
 - $A \rightarrow BDG$, $DE \rightarrow AC$: $E \notin \beta$
 - $B \to BEF$: nkey = BD; minimize: $attrclosure(F_d, \{B\}) \neq \mathcal{R}$ and $attrclosure(F_d, \{D\}) \neq \mathcal{R}$ $\Rightarrow keys = \{A, DE, BD\}$

◆□▶ ◆圖▶ ◆團▶ ◆團▶ ■

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- 2 construct new key from keys:
 - key = BD, att = B:
 - $DE \rightarrow AC$: $B \notin \beta$
 - A → BDG:

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- 2 construct new key from keys:
 - key = BD, att = B:
 - $DE \rightarrow AC$: $B \notin \beta$
 - $A \rightarrow BDG$: nkey = AD; $A \subseteq AD \Rightarrow keys = \{A, DE, BD\}$

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- 2 construct new key from keys:
 - key = BD, att = B:
 - $DE \rightarrow AC$: $B \notin \beta$
 - $A \rightarrow BDG$: nkey = AD; $A \subseteq AD \Rightarrow keys = \{A, DE, BD\}$
 - B → BEF:

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- 2 construct new key from keys:
 - key = BD, att = B:
 - $DE \rightarrow AC$: $B \notin \beta$
 - $A \rightarrow BDG$: nkey = AD; $A \subseteq AD \Rightarrow keys = \{A, DE, BD\}$
 - $B \rightarrow BEF$: nkey = BD; $BD \subseteq BD \Rightarrow keys = \{A, DE, BD\}$

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- 2 construct new key from keys:
 - key = BD, att = B:
 - $DE \rightarrow AC$: $B \notin \beta$
 - $A \rightarrow BDG$: nkey = AD; $A \subseteq AD \Rightarrow keys = \{A, DE, BD\}$
 - $B \rightarrow BEF$: nkey = BD; $BD \subseteq BD \Rightarrow keys = \{A, DE, BD\}$
 - key = BD, att = D:
 - $DE \rightarrow AC$, $B \rightarrow BEF$: $D \notin \beta$
 - A → BDG:

Example (continuation)

$$\mathcal{R} = \{ABCDEFG\}, F_d = \{B \rightarrow BEF, DE \rightarrow AC, A \rightarrow BDG\}$$

- 2 construct new key from keys:
 - key = BD, att = B:
 - $DE \rightarrow AC$: $B \notin \beta$
 - \blacksquare $A \rightarrow BDG$: nkey = AD; $A \subseteq AD \Rightarrow keys = \{A, DE, BD\}$
 - $B \rightarrow BEF$: nkey = BD; $BD \subseteq BD \Rightarrow keys = \{A, DE, BD\}$
 - key = BD, att = D:
 - $DE \rightarrow AC$, $B \rightarrow BEF$: $D \notin \beta$
 - $A \rightarrow BDG$: nkey = AB; $A \subseteq AB \Rightarrow keys = \{A, DE, BD\}$
- $3 \text{ keys} = \{A, DE, BD\}$

4 11 2 4 12 2 4 12 2 4 12 2 4 12 2 4 12 2

Learning Objectives

- What are FDs?
 - When is a FD satisfied, how can we check this condition?
- What is the attribute closure and the closure of FDs?
 - How do we compute them?
- When are two sets of FDs equivalent?
- What are the Armstrong axioms?
 - What are they needed for, how do they look like?
- What is the canonical cover?
 - How can we compute it?
- What are (super) keys?
 - How can we recognize/check them?

