

Generated by bkailasa on 17 January 2020, 11:06:44

This report has been generated automatically by Madanalysis 5.

Please cite:

E. Conte, B. Fuks and G. Serret,

MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. **184** (2013) 222-256, arXiv:1206.1599 [hep-ph].

To contact us:

 ${\bf http://madanalysis.irmp.ucl.ac.be} \\ {\bf ma5team@iphc.cnrs.fr} \\$

Contents Setup 2 2 1.1 Command history 1.2 Configuration 2 $\mathbf{2}$ Datasets 3 2.1 $unweighted_events$ 3 Histos and cuts 4 Histogram 1 4 3.2 Histogram 2 5 3.3 Histogram 3 6 3.4Histogram 4 7 3.5Histogram 5 8 9 3.6 Histogram 6 3.7Histogram 7 10 3.8 Histogram 8 11 3.9 Histogram 9 12 3.10 Histogram 10 13 3.11 Histogram 11 14 3.12 Histogram 12 15 3.13 Histogram 13 16 3.14 Histogram 1417 3.15Histogram 15 18 3.16 Histogram 16 19 3.17 Histogram 17 20 21 3.18 Histogram 18 3.19 Histogram 19 22 $3.20 \quad Histogram \ 20$ 23 3.21 Histogram 21 24 25 3.22 Histogram 22

1 Setup

1.1 Command history

```
ma5>import /afs/cern.ch/work/b/bkailasa/MCGens/madgraph/MG5_aMC_v2_6_7/PROC_Tutorial_UF0_0/-
bin/internal/ufomodel
ma5>import /afs/cern.ch/work/b/bkailasa/MCGens/madgraph/MG5_aMC_v2_6_7/PROC_Tutorial_UF0_0/-
Events/run_01/unweighted_events.lhe.gz as unweighted_events
ma5>define vl = 12 14 16
ma5>define vl = -16 -14 -12
ma5>define invisible = ve ve vm vm vt vt vl vl
ma5>set main.graphic_render = root
ma5>plot THT 40 0 500 [logY]
ma5>plot MET 40 0 500 [logY]
ma5>plot SQRTS 40 0 500 [logY]
ma5>plot PT(uv[1]) 40 0 500 [logY interstate]
ma5>plot ETA(uv[1]) 40 -10 10 [logY interstate]
ma5>plot PT(uv [1]) 40 0 500 [logY]
ma5>plot ETA(uv [1]) 40 -10 10 [logY]
ma5>plot M(uv[1] uv [1]) 40 0 500 [logY allstate]
ma5>plot DELTAR(uv[1],uv [1]) 40 0 10 [logY allstate]
ma5>plot PT(c[1]) 40 0 500 [logY]
ma5>plot ETA(c[1]) 40 -10 10 [logY]
ma5>plot PT(p1[1]) 40 0 500 [logY]
ma5>plot ETA(p1[1]) 40 -10 10 [logY]
ma5>plot PT(uv [1]) 40 0 500 [logY]
ma5>plot ETA(uv [1]) 40 -10 10 [logY]
ma5>plot M(c[1] p1[1]) 40 0 500 [logY]
ma5>plot M(c[1] p1[1] uv [1]) 40 0 500 [logY]
ma5>plot M(c[1] uv [1]) 40 0 500 [logY]
ma5>plot M(p1[1] uv [1]) 40 0 500 [logY]
ma5>plot DELTAR(c[1],p1[1]) 40 0 10 [logY]
ma5>plot DELTAR(c[1],uv [1]) 40 0 10 [logY ]
ma5>plot DELTAR(p1[1],uv [1]) 40 0 10 [logY]
ma5>submit /afs/cern.ch/work/b/bkailasa/MCGens/madgraph/MG5_aMC_v2_6_7/PROC_Tutorial_UFO_0/-
MA5_PARTON_ANALYSIS_analysis1
```

1.2 Configuration

- MadAnalysis version 1.8.31 (2019/11/06).
- Histograms given for an integrated luminosity of 10fb⁻¹.

2 Datasets

2.1 unweighted events

 \bullet Sample consisting of: signal events.

• Generated events: 10000 events.

 \bullet Normalization to the luminosity: 2982+/- 6 $\,$ events.

• Ratio (event weight): 0.3 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
PROC_Tutorial_UFO_0/-			
Events/run_01/-	10000	0.298 @ 0.18%	0.0
$unweighted_events.lhe.gz$			

3 Histos and cuts

3.1 Histogram 1

* Plot: THT

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$unweighted_eve$	2982	1.0	206.941	115.3	0.0	2.17

Figure 1.

3.2 Histogram 2

* Plot: MET

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$unweighted_eve$	2982	1.0	4.43006e-09	3.146e-09	0.0	0.0

Figure 2.

3.3 Histogram 3

* Plot: SQRTS

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$unweighted_eve$	2982	1.0	1122.71	302.3	0.0	100.0

Figure 3.

3.4 Histogram 4

* Plot: PT (uv[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	2982	1.0	251.371	157.0	0.0	6.98

Figure 4.

3.5 Histogram 5

* Plot: ETA (uv[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$unweighted_eve$	2982	1.0	-0.0206212	1.685	0.0	0.0

Figure 5.

3.6 Histogram 6

* Plot: PT (uv [1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	2982	1.0	251.371	157.0	0.0	6.98

Figure 6.

3.7 Histogram 7

* Plot: ETA (uv [1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	2982	1.0	-0.0303749	1.697	0.0	0.0

Figure 7.

3.8 Histogram 8

* Plot: M (uv[1] uv [1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$unweighted_eve$	2982	1.0	1122.71	302.3	0.0	100.0

3.9 Histogram 9

* Plot: DELTAR (uv[1] , uv[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$unweighted_eve$	2982	1.0	3.57253	0.668	0.0	0.02

Figure 9.

3.10 Histogram 10

* Plot: PT (c[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	2982	1.0	206.941	115.3	0.0	2.17

Figure 10.

3.11 Histogram 11

* Plot: ETA (c[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$unweighted_eve$	2982	1.0	-0.0101637	1.271	0.0	0.0

Figure 11.

3.12 Histogram 12

* Plot: PT (p1[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$unweighted_eve$	2982	1.0	207.339	114.3	0.0	2.18

Figure 12.

3.13 Histogram 13

* Plot: ETA (p1[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	2982	1.0	-0.0052323	1.275	0.0	0.0

Figure 13.

3.14 Histogram 14

* Plot: PT (uv [1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$unweighted_eve$	2982	1.0	251.371	157.0	0.0	6.98

Figure 14.

3.15 Histogram 15

* Plot: ETA (uv [1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	2982	1.0	-0.0303749	1.697	0.0	0.0

Figure 15.

3.16 Histogram 16

* Plot: M (c[1] p1[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	2982	1.0	399.97	2.149	0.0	0.0

Figure 16.

3.17Histogram 17

* Plot: M (c[1] p1[1] uv [1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	2982	1.0	1122.71	302.3	0.0	100.0

3.18 Histogram 18

* Plot: M (c[1] uv [1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	2982	1.0	774.79	271.2	0.0	93.86

Figure 18.

3.19 Histogram 19

* Plot: M (p1[1] uv [1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	2982	1.0	777.706	270.5	0.0	94.06

Figure 19.

3.20 Histogram 20

* Plot: DELTAR (c[1] , p1[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$unweighted_eve$	2982	1.0	2.61548	0.6749	0.0	0.0

Figure 20.

3.21 Histogram 21

* Plot: DELTAR (c[1] , uv[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$unweighted_eve$	2982	1.0	2.72079	0.9118	0.0	0.0

Figure 21.

3.22 Histogram 22

* Plot: DELTAR (p1[1] , uv[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
$unweighted_eve$	2982	1.0	2.7398	0.903	0.0	0.0

Figure 22.