IBIBSU PROPERTY TO A MARKET

Assignment No. 01

Semester Spring 2021

Introduction To Data Science

Name: Salman Abdul Rahim Roll#: 616

Due Date: 29-October-2021

Instructions

Please read the following instructions carefully before solving & submitting assignment:

- It should be clear that your assignment will not get any credit (zero marks) if:
- The assignment is submitted after due date.
- The submitted assignment does NOT open or file is corrupted.
- The assignment is copied (from other student or copy from handouts or internet).
- **Source code for Q2 is required**. Name/document your functions appropriately. To make sure that your program can run by the grader, please explicitly import all needed packages.

Uploading instructions

For clarity and simplicity, You are required to Upload/Submit only PDF or MS word file.

Objective

The objective of this assignment is to make you familiar with components of computer and its functionality.

1. Pandas basics

Let df be a pandas DataFrame constructed with the following code:

```
In [62]: data = np.array([0, 7, 3, 6, 2, 8, 5, 9, 4]).reshape(3, -1)
In [63]: df = pd.DataFrame(data, index=['One', 'Two', 'Three'], columns=['a', 'b', 'c'])
```

What is the output of the following code? (Try to write the output without using python.)

A. print(df)

```
a b c
One 0 7 3
Two 6 2 8
Three 5 9 4
```

a. df['a']

One 0 Two 6 Three 5

b. df['One']

KeyError: 'One'

c. df.loc['Two']

a 6 b 2 c 8

d. df[:2]

a b c
One 0 7 3
Two 6 2 8

e. df.iloc[:,:2]

a b
One 0 7
Two 6 2
Three 5 9

f. list(df.columns)

g. list(df.index)

h. df['b']['Two']

2

list(df.iloc[2,:])

j. df.drop('a', axis=1)

I. list(df.sum(axis=0))

m. df.iloc[:, list(df.sum(axis=0) < 17)]

n. df.sort_values(by='c')

o. df.sort_values(by='Two', axis=1)

	b	a	C
One	7	0	3
Two	2	6	8
Three	9	5	4

p. df.T

	One	Two	Three
a	0	6	5
b	7	2	9
С	3	8	4

- q. (df<=2).any(axis=0)
 - a True b True
 - c False

r. df.applymap(lambda x: x*2-1)

	a	b	C
One	-1	13	5
Two	11	3	15
Three	9	17	7

s. df.apply(lambda x: max(x), axis=1)

One 7 Two 8 Three 9

2. Multiple Linear Regression

a. What is HDF5 files in Python?

An HDF5 file is a container for two kinds of objects: datasets, which are array-like collections of data, and groups, which are folder-like containers that hold datasets and other groups. The most fundamental thing to remember when using h5py is:

"Groups work like dictionaries, and datasets work like NumPy arrays".

b. Load data stored in HDF5 format into python using the following statement: hdfstore = pd.HDFStore('hw3q3.h5'). Perform a least square multiple linear regression between the objects x and y in hdfstore('x') and hdfstore('y'). Report the R-squared and Mean Square Error (MSE) of the regression. Plot the coefficients in a bar chart.

(Code is attached as the .ipynb file)

GOOD LUCK

Marks: 5