第 4-7 讲: 代数编码

姓名: <u>211240042</u> **学号**: 林凡琪

评分: _____ 评阅: ____

2023年6月7日

请独立完成作业,不得抄袭。 若得到他人帮助,请致谢。 若参考了其它资料,请给出引用。 鼓励讨论,但需独立书写解题过程。

1 作业(必做部分)

题目 1 (TJ 8-6(b,d))

解答:

(b)

	(011100)	(011011)	(111011)	(100011)	(000000)	(010101)	(110100)	(110011)
(011100)	0	3	4	6	3	2	2	5
(011011)	3	0	1	3	4	3	5	2
(111011)	4	1	0	2	5	4	4	1
(100011)	6	3	2	0	3	4	4	1
(000000)	3	4	5	3	0	3	3	4
(010101)	2	3	4	4	3	0	2	3
(110100)	2	5	4	4	3	2	0	3
(110011)	5	2	1	1	4	3	3	0

 $d_{min} = 1$ (d)

	(011100)	(011011)	(111011)	(100011)	(000000)	(010101)	(110100)	(110011)
(011100)	0	3	4	6	3	2	2	5
(011011)	3	0	1	3	4	3	5	2
(111011)	4	1	0	2	5	4	4	1
(100011)	6	3	2	0	3	4	4	1
(000000)	3	4	5	3	0	3	3	4
(010101)	2	3	4	4	3	0	2	3
(110100)	2	5	4	4	3	2	0	3
(110011)	5	2	1	1	4	3	3	0

题目 2 (TJ 8-7(c,d))

解答:

(c)

Null(H): (00000)(00100)(11010)(11110)(11001)(11101)(00011)(00111)

(5,3)-block Generator:

$$G = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

(d)

Null(H):

(0000000)(0001111)(0010110)(0011001)

(0100101)(0101010)(0110011)(0111100)

(1000011)(1001100)(1010101)(1011010)

(1100110)(1101001)(1110000)(1111111)

(7,4)-block

Generator:

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

题目 3 (TJ 8-9)

解答:

$$\begin{split} H(01111)^T &= (001)^T \Rightarrow (01111) - > (01101) \\ H(10101)^T &= (110)^T \Rightarrow multiplerrors \\ H(01110)^T &= (110)^T \Rightarrow multiplerrors \\ H(00011)^T &= (110)^T \Rightarrow multiplerrors \end{split}$$

题目 4 (TJ 8-11(b,d))

解答:

(b) 这是标准奇偶校验矩阵。相应的标准生成矩阵:

$$\left(\begin{array}{ccc}
1 & 0 \\
0 & 1 \\
0 & 1 \\
1 & 1 \\
0 & 1 \\
1 & 1
\end{array}\right)$$

可以至少纠错 1 位、检测 2 位.

(d) 这是标准奇偶校验矩阵. 相应的标准生成矩阵:

$$\left(\begin{array}{cccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)$$

可以检测 1 位, 不可以纠错.

题目 5 (TJ 8-13)

解答:

 $(a)(001)^T$

 $(b)(101)^T$

 $(c)(111)^T$

 $(d)(011)^T$

题目 6 (TJ 8-19)

解答:

(1) 群 C 中权重都为奇数。

因为 $e \in C \land w(e) = 0$, 显然不成立。

(2) 群 C 中权重都为偶数。

考虑群 $C = \{e\}$,此时显然成立,故存在权重都为偶数的情况。

(3) 群 C 中权重有奇有偶。

考虑 $c \in C_{odd}$, 构造函数 $f: C_{even} \to C_{odd}$ by $x \to x + c$ 其中 $x \in C_{even}$ (显然 $x + c \in C_{odd}$).

one to one:

 $\forall x_1, x_2 \in C_{even}, x_1 + c = x_2 + c \to x_1 = x_2$

 $\forall y \in C_{odd}, \exists x = y + c^{-1} \in C_{even}, st.x + c = y$

So $|C_{even}| = |C_{odd}|$,那么它们中的一半都有偶数权重

所以,每个码字的权重都是偶数,或者恰好一半的码字具有偶数权重。

题目 7 (TJ 8-21)

解答:

(a)error-correcting linear code

假设 H 矩阵为 $m \times n$ 的, 对 $2^7 = 128$ 进行编码时, 需要满足

$$\begin{cases} n - m = 7 \\ n \le 2^m - 1 \end{cases}$$

m=4, n=11 为符合条件的最小正整数解。则最小的 generator matrix 为 11×7 。同理,当对 $2^8=256$ 进行编码时,需要满足

$$\begin{cases} n - m = 8 \\ n \le 2^m - 1 \end{cases}$$

m=4, n=12 为符合条件的最小正整数解。则最小的 generator matrix 为 12×8 。

(b)only error detection

假设 H 矩阵为 $m \times n$ 的, 对 $2^7 = 128$ 进行编码时, 需要满足

$$\begin{cases} n - m = 7 \\ n \ge 1 \end{cases}$$

m=1, n=8 为符合条件的最小正整数解。则最小的 generator matrix 为 8×7 。同理,当对 $2^8=256$ 进行编码时,需要满足

$$\begin{cases} n - m = 8 \\ n \ge 1 \end{cases}$$

m=1, n=9 为符合条件的最小正整数解。则最小的 generator matrix 为 9×8 。

题目 8 (TJ 8-22)

解答:

(1)three information position:

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 \end{pmatrix}$$

$$G = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

(2) seven information position:

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

题目 9 (TJ 8-23)

解答:

(a) 假设有 n-m 位 information bits, m 位 check bits

$$\begin{cases} n - m = 20 \\ n \le 2^m - 1 \end{cases}$$

解得 $m \ge 5$

(b) 假设有 n-m 位 information bits, m 位 check bits

$$\begin{cases} n - m = 32 \\ n \le 2^m - 1 \end{cases}$$

解得 $m \ge 6$

2 作业 (选做部分)

3 Open Topics

Open Topics 1 (各种花式距离)

请查阅资料,介绍曼哈顿距离、欧几里得距离、契比雪夫距离分别是什么意思,他们的典型应用是什么。你还有哪些创意,来定义二进制位串之间的距离?

Open Topics 2 (编码率)

解释什么是编码率,分析 hamming 码的最大编码率,分析还有比 hamming 码编码率更好的方法吗?

4 反馈