Лабораторная работа 1.3.3

Измерение вязкости воздуха по течению в тонких трубках Карташов Констанин Б04-005

I. Анотация

Цель работы:

- 1. Экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса
- 2. Выявить область применимости закона Пуазейля и с его помощью определить коэффициентвязкости воздуха

Оборудование:

- ⊳ Система подачи воздуха (компрессор, поводящие трубки)
- ⊳ Газовый счётчик барабанного типа
- ⊳ Спиртовой микроманометр с регулируемым наклоном
- ▶ Набор трубок различного диаметра с выходами для подсоединения микроманометра
- ⊳ Секундомер

II. Теоретическая часть

III. Экспериментальная часть

і. Описание экспериментальной установки

Через кран К в экспериментальную установку попадает газ под давлением чуть более высоким, чем атмосферное. За краном К установлен U-образный манометр показывающий разницу в давлении между входящим воздухом и атмосферой. Если давление в установке поднимается выше допустимого вода в манометре поднимается в баллон Б, который издаёт звук оповещающий экспериментатора. Далее воздух проходим через газовый счётчик, измеряющий объём прошедшего через него газа. После этого газ проходит через одну из двух трубок с заглушками, к которым можно подключать концы микроманометра.

Рис. 1: Экспериментальная установка

іі. Ход эксперимента

- **І.** Подготовим установку к работе:
 - 1. Ознакомимся с устройством и характеристиками приборов (газового счётчика и спиртового микроманометра); Проверим их предварительную настройку и регулировку согласно техническому описанию установки;
 - 2. Ознакомимся с измерительными шкалами приборов, запишем рабочий диапазон и цену деления; предварительно оценим инструментальные погрешности (по паспортам приборов и/или по цене деления их шкал).
- **II.** Проведём предварительный запуск установки и убедимся в её работоспособности:
 - 1. Подсоединим манометр к двум соседним выводам на конце одной из трубок (рекомендуется начать с трубки диаметром $d \approx 4$ мм). Убедимся, что все отверстия, кроме одного выходного плотно завинчены пробками.
 - 2. Убедимся, что кран K, соединяющий компрессор с установкой, закрыт. Включим компрессор. Переведите рычажок микроманометра в рабочее положение (+).
 - 3. Медленно приоткрывая кран К и непрерывно контролируя показания микроманометра, создадим небольшой поток воздуха через трубку.
 - 4. Пронаблюдаем за показаниями приборов в зависимости от интенсивности потока через трубку. Убедимся в том, что при неизменном положении крана К показания манометра стабильны, а стрелка расходомера вращается равномерно.
- III. Измерим параметры окружающей среды: температуру, влажность воздуха и атмосферное давление. В ходе дальнейшей работы проследим за этими показаниями и при необходимости зафиксируем их изменения. Запишем диаметры трубок (указаны на установке). Зарисуем схему расположения измерительных отверстий на трубках с указанием расстояний между ними.
- IV. Проведите предварительные расчёты:

- 1. Рассчитаем значение расхода $Q_{\rm kp}$, при котором число Рейнольдса в трубке станет равным критическому $Re_{\rm kp}\approx 10^3$. Для предварительной оценки прими вязкость воздуха равной $\eta_{\rm возд}\approx 2\cdot 10^{-5}~{\rm Ha}\cdot{\rm c}$, плотность воздуха определим по уравнению идеального газа. В качестве характерной скорости потока используем её среднее значение $\bar{u}=Q/\pi R^2$.
- 2. По формуле Пуазейля *7* рассчитайте соответствующий перепад давления выбранном вами участке $\Delta P_{\rm kp}$. Выразим значение $\Delta P_{\rm kp}$ в делениях шкалы микроманометра.
- 3. По формуле *8* оценим длину $l_{\rm уст}$, на которой течение можно считать установившимся при $Re \approx Re_{\rm уст}$. Проверим, можно ли считать установившимся течение на участке, выбранном для проведения измерений.
- V. Меняя расход воздуха краном K и наблюдая за столбиком спирта в микроманометре, визуально определим границу перехода $\Delta P_{\rm kp}$ ламинарного течения к турбулентному (турбулентный режим характеризуется заметными пульсациями давления во времени). Сравним полученное экспериментально $\Delta P_{\rm kp}$ оценкой, проведенной в п. 4.
- **VI.** Подберём параметры измерения расхода газа $Q = \Delta V/\delta t$, так чтобы его относительная погрешность составила не более $\varepsilon = 1\%$.

1.

ііі. Обработка экспериментальных данных

IV. Выводы