Digitaltechnik 2

Inhaltsverzeichnis

- 10. Zeitabhängige binäre Schaltungen
- 11. Zähler und Frequenzteiler
- 12. Digitale Auswahl- und Verbindungsschaltungen
- 13. Register- und Speicherschaltungen
- 14. Digital-Analog-Umsetzer, Analog-Digital-Umsetzer
- 15. Rechenschaltungen
- 16. Programmierbare Logik

I. Einführung (1/4)

- Flipflop: bistabile Kippstufe mit Speicherwirkung (Herstellung als integrierte Schaltungen)
- Schaltzeichen der Flipflops:

- Konventionen:
 - keine Anschlüsse für Uv einzeichnen
 - entgegengesetzte Ausgangszustände A₁ und A₂
 - Beschreibung der Arbeitsweise mit logischen Zuständen
 - Setzvorgang: $E_1 = 1 \rightarrow A_1 = 1$
 - Rücksetzvorgang: $E_2 = 1 \rightarrow A_2 = 1$
 - keine steuernde Wirkung durch Zustand 0
 - Speicherzustand des Flipflops: Zustand A₁

I. Einführung (2/4)

• Steuerung durch 0-Zustände

- Grundstellungen: Bezeichnung im Schaltsymbol
 - ▶ Zustand $A_1 = 0$ nach Anlegen von U_V

I = 0

Zustand $A_1 = 1$ nach Anlegen von U_V

I=1

nach Anlegen von U_V gleicher Zustand wie vor Abschalten

NV

bei eindeutiger Grundstellung entfällt Bezeichnung

I. Einführung (3/4)

- Ansprechverhalten der Flipflops
 - statische Eingänge (Ansprechen auf Eingangszustand)
 - dynamische Eingänge (Ansprechen auf Eingangszustandsänderung)

I. Einführung (4/4)

- Verknüpfung von Eingängen: Notationen
 - $G \rightarrow UND$ -Abhängigkeit
 - V → ODER-Abhängigkeit
 - $C \rightarrow Steuer-Abhängigkeit$

 - $R \rightarrow R$ ücksetz-Abhängigkeit

- ... steuernden Eingängen (Buchstabe + Kennzahl)
- ... gesteuerten Eingängen (Kennzahl + Buchstabe)

- Dominierende Eingänge (für gleiche Eingangszustände)
 - dominierender S-Eingang
 - dominierender R-Eingang

III. Nicht-taktgesteuertes Flipflop (1/2)

• NOR-Flipflop (NOR-Latch)

E ₂	Eı	Αı	A ₂	
0	0	X	X	Speicherfall
0	I	0	l i	
I	0	I	0	
Ī	l	0	0	irregulär

- Umbenennung der Ausgänge:
 - $A_2 \rightarrow Q_1$
 - $A_1 \rightarrow Q_2$
- Bezeichung:
 - SR-Speicher-Flipflop
 - RS-Speicher-Flipflop

III. Nicht-taktgesteuertes Flipflop (2/2)

NAND-Flipflop (NAND-Latch)

	\mathbf{A}_{2}	\mathbf{A}_1	$\mathbf{E_1}$	$\mathbf{E_2}$
irregulär	1	1	0	0
	1	0	1	0
	0	1	0	1
Speicherfall	X	X	1	1

Zusammenfassung: SR-Speicher-Flipflop

R	S	\mathbf{Q}_1	\mathbf{Q}_2	
0	0	Q _{1(m-1)}	Q _{2(m-1)}	Speichern
0	1	1	0	Setzen
1	0	0	1	Rücksetzen
1	1	1	1	verbotener Fall

IV. Taktzustandsgesteuerte Flipflops

- SR-Flipflop
 - AND-Glied vorschalten
 - Zustand 1 an E₁ bereitet Setzen nur vor
 - Setzen erfolgt beim Anlegen des Steuereingangs T

T	R	S	Q_1	\mathbf{Q}_2	
0	0	0			
0	0	1			keine Signal-
0	1	0			änderung, Speicher-
0	1	1			fälle
1	0	0			
1	0	1	1	0	Setzen
1	1	0	0	1	Rücksetzen
1	1	1	_		verbotener Fall

IV. Taktzustandsgesteuerte Flipflops

- SR-Flipflop mit dominierendem R-Eingang
 - Forderung: Q₁=0 bei S=R=1 (Handling der verbotenen Fälle)
 - besondere Beschaltung des SR-Flipflops nötig

t	n	t_{n+1}
R	S	\mathbf{Q}_1
0	0	Qın
0	1	1
1	0	0
1	1	0

IV. Taktzustandsgesteuerte Flipflops

- SR-Flipflop mit dominierendem S-Eingang
 - Forderung: Q₁=1 bei S=R=1 (Handling der verbotenen Fälle)
 - besondere Beschaltung des SR-Flipflops nötig

<u>Übung:</u> Erstellen der Beschaltung

t	n	t_{n+1}
R	S	\mathbf{Q}_1
0	0	Q1n
0	1	1
1	0	0
1	1	1

IV. Taktzustandsgesteuerte Flipflops

- E-Flipflop
 - nicht häufig verwendet
 - Speicherfall für S=R=1

t	n	t_{n+1}
R	S	\mathbf{Q}_1
0	0	Qın
0	1	1
1	0	0
1	1	Q_{1n}

IV. Taktzustandsgesteuerte Flipflops

- D-Flipflop
 - Verzögerungs-Flipflop (Delay-Flipflop; Verzögerung des Eingangssignals bis Taktsignal anliegt)
 - kein R-Eingang

<u>t</u> n	t_{n+1}
D	\mathbf{Q}_1
0	0
1	1

- Vorteil
 - synchrone Schaltung mehrerer Flipflops möglich
 - größere Störsicherheit
- Impulsglieder ...
 - ... sind notwendig für Taktflankensteuerung
 - ... besitzen statischen sowie dynamischen Eingang
 - ... arbeiten wie UND-Glieder
 - … liefern einen negativen Ausgangsimpuls Z bei statischem Eingang A=1 und abfallender Flanke des dynamischen Eingangs T
 - ... zweiter Art liefern positive Ausgangsimpulse Z bei statischem Eingang A=1 und ansteigender Flanke des dynamischen Eingangs T

- Einflankengesteuerte SR-Flipflops
 - Ersetzen der UND-Glieder im taktzustandgesteuerten SR-FF durch Impulsglieder (gleiche Wahrheitstabelle)
 - Bezeichnung des Takteingangs mit C (Clock)

V. Taktflankengesteuerte Flipflops

- Einflankengesteuerte T-Flipflops
 - Anderung des Ausgangszustands bei jeder Taktflanke (ansteigend oder abfallend)
 - Bezeichnung: Trigger-Flipflop (T-Flipflop)

t_n	t_{n+1}
Q ₁	\mathbf{Q}_1
0	1
1	0

Erweiterung: T-Flipflop, das über einen zusätzlichen Eingang gesperrt oder freigegeben werden kann

→ Übung

- Einflankengesteuerte JK-Flipflops
 - Setzen und Rücksetzen wie beim SR-FF
 - verbotener Fall → Kippen des Ausgangs
 - Bezeichnung J-K willkürlich

t	n	t_{n+1}
K	J	\mathbf{Q}_1
0	0	Q1n
0	1	1
1	0	0
1	1	$\neg Q_{1n}$

- Haltezeit
 - ab Schaltzeitpunkt (bei TTL 1,5V) müssen Eingangssignale gewisse Zeit anliegen → Haltezeit
 - anschließend sind Änderungen des Eingangssignals wirkungslos
 - d.h. Störanfälligkeit besteht nur in der Haltezeit

 → je kürzer die Haltezeit, desto geringer die Störanfälligkeit

V. Taktflankengesteuerte Flipflops

- Einflankengesteuerte D-Flipflops
 - gleicher Aufbau wie taktzustandsgesteuertes D-FF
 - Unterschied in der Ansteuerung

t _n	t _{n+1}
D	Qı
0	0
I	I

Verwendung von einflankengesteuerten D-Flipflops in Schieberegistern (→ Kapitel 13)

- Zweiflankengesteuerte SR-Flipflops
 - Aufnahme des Eingangssignals bei ansteigender Taktflanke → Zwischenspeichern
 → Durchschalten des Signals an den Ausgang bei abfallender Taktflanke
 - zwei Speicher werden benötigt
 - Master-FF: Aufnahme der Information von außen
 - Slave-FF: Übernahme des Signals vom Master-FF
 - Bezeichnung als Master-Slave-Flipflops
 - sichere Arbeitsweise dieser Art von FF
 - retardierte Ausgänge: Verfügbarkeit des Ausgangssignals erst wenn Taktsignal zurück auf Ausgangszustand
 - Kennzeichnung "¬" an den Ausgängen verdeutlicht, dass Ausgangssignal erst nach abgefallener Taktflanke ausgegeben wird

- Zweiflankengesteuerte JK-Flipflops
 - Master-Slave-Flipflop
 - Kippen des Ausgangs bei J=K=1 gefordert → Master-Flipflop muss JK-Flipflop sein
 - Slave-Flipflop kann ein SR-Flipflop sein
 - Im Schaltzeichen erfolgt lediglich Angabe der Taktflanke, mit der die Information aufgenommen wird.

- T-Master-Slave-Flipflop
 - Entstehung aus JK-Master-Slave-FF

- D-Master-Slave-Flipflop
 - ebenfalls Entstehung aus JK-Master-Slave-FF

- DV-Flipflop
 - entspricht D-Flipflop, falls Eingang V=1 (Vorbereitungseingang)
 - verfügbar als ein- und zweiflankengesteuertes (Master-Slave-) Flipflop

t	n	t_{n+1}
D	V	\mathbf{Q}_1
0	0	Q _{1n}
0	1	0
1	0	Q_{1n}
1	1	1

VI. Zeitablaufdiagramme

- Ziel: Visualisierung der Funktion einzelner Flipflops mit zeitlichen Darstellungen
- vorgegebene oder beliebig wählbare Eingangssignale
- Darstellung der Ausgangssignale in Abhängigkeit der Eingangssignale
- Beispiel: SR-Speicherflipflop

VII. Charakteristische Gleichungen

- algebraische Beschreibung der Arbeitsweise von Flipflops
- Gleichungen enthalten:
 - Einangs- und Ausgangsvariablen
 - Zeitangaben (Zeitpunkt von und nach einem betrachteten Takt)
- Beispiel: taktflankengesteuertes JK-Flipflop
 - Schritt 1: Umformung der Wahrheitstabelle (WT) in eine ausführliche WT (inkl. Angabe der möglichen Ausgangszustände vor dem betrachteten Takt)
 - Schritt 2: Bildung der ODER-Normalform
 - Schritt 3: Vereinfachung der Gleichung (mit Hilfe der Schaltalgebra oder KV-Diagrammen)

t	t_n	
K	J	Q ₁
0	0	Q _{1n}
0	1	1
1	0	0
1	1	$\neg Q_{1n}$

VII. Charakteristische Gleichungen

• Schritt 1: ausführliche Wahrheitstabelle

	_	t_{n+1}		t_n		
	_	\mathbf{Q}_1	Q ₁	J	K	
		0	0	0	0	
$Q_1 \wedge \overline{J} \wedge \overline{K}$	\Rightarrow	1	1	0	0	
$\overline{Q}_1 \wedge J \wedge \overline{K}$	\Rightarrow	1	0	1	0	
$Q_1 \wedge J \wedge \overline{K}$	\Rightarrow	1	1	1	0	
		0	0	0	1	
		0	1	0	1	
$\overline{Q}_1 \wedge J \wedge K$	\Rightarrow	1	0	1	1	
		0	j 1	1	1	

• Schritt 2: ODER-Normalform

$$Q_{\mathsf{l}(n+1)} = \left[\left(Q_1 \land \neg J \land \neg K \right) \lor \left(\neg Q_1 \land J \land \neg K \right) \lor \left(Q_1 \land J \land \neg K \right) \lor \left(\neg Q_1 \land J \land K \right) \right]_n$$

• Schritt 3: Vereinfachen der Gleichung

VII. Charakteristische Gleichungen

Aufgabe: Bestimmen Sie die charakteristische Gleichung des taktflankengesteuerten SR-Flipflops.

VIII.Monostabile Kippstufen

- bisher: Diskussion bistabiler Kippstufen $\rightarrow \forall$ zwei stabile Zustände
- Monostabile Kippstufe
 - \forall ein stabiler Zustand (Q = 0)
 - \forall ein instabiler (nichtstabiler) Zustand (Q = 1)
- Dauer (Verweilzeit) des instabilen Zustands definiert sich durch das verwendete RC-Glied (meist externe Bauelemente, d.h. zusätzliche Eingänge nötig)

 $t_Q = 0.69 \cdot R \cdot C$

- Änderung des Eingangssignals während t_Q
 - normale monostabile Kippstufe → kein Einfluss auf Ausgangssignal
 - nachtriggerbare monostabile Kippstufe → Verlängerung des nichtstabilen Zustands um tQ
- Zustands- oder Flankensteuerung möglich

IX. Verzögerungsglieder

- Verzögerung ansteigender und abfallender Signalflanken
- Definition
 - t₁: Verzögerungszeit der ansteigenden Flanke
 - t₂: Verzögerungszeit der abfallenden Flanke
- Schaltzeichen

• Beispiel:

IX. Verzögerungsglieder

Aufgabe: Sie haben für den Aufbau eines Einschalt-Verzögerungsglieds (Verzögerungszeit: 5ms) ein UND-Glied, sowie eine monostabile Kippstufe (normaler + negierter Ausgang) mit einer Verweilzeit von 5ms zur Verfügung.

- a) Skizzieren Sie die Verschaltung und geben Sie das Zeitablaufdiagramm an.
- b) Welches Problem kann am Ausgang auftreten?
- c) Wie können Sie das Problem beheben?

I. Zählen und Zählerarten

- Vorwärtszählen: fortlaufende Addition mit Eins 1+1=2; 2+1=3; 3+1=4; ...
- Rückwärtszählen: forlaufende Subtraktion mit Eins 6-1=5; 5-1=4; ...
- Zählen ist in allen Codes möglich (Dual, BCD, 3-Exzess, Aiken, ...)
- bei Binärzählern werden nur "0"- und "1"-Signale verarbeitet
- praktische Bedeutung der Binärzähler → "Zähler"
- Unterscheidung der Zähler nach
 - verwendetem Code
 - Zählrichtung
 - Betriebsart
 - synchron
 - asynchron

31

I. Zählen und Zählerarten: Übersicht

II. Asynchronzähler

- Funktionsweise:
 - Die im Funktionsumfang eines Zählers enthaltenen Schaltglieder werden nicht mit einem gemeinsamen Takt parallel, sondern nacheinander angesteuert.
- Aufbau wahlweise mit:
 - T-Flipflops
 - JK-Flipflops (als T-Flipflop verschaltet)
 - SR-Flipflops (als T-Flipflop verschaltet)

II. Asynchronzähler

- Dual-Vorwärtszähler
 - ightharpoonup zählt von 0 bis max. Wert ightharpoonup Sprung auf 0 ightharpoonup erneuter Zählvorgang
 - Funktionsweise anhand eines 3-Bit-Zählers: 3-Bit → es werden 3 Ausgänge (Flipflops) benötigt

II. Asynchronzähler

- Dual-Vorwärtszähler
 - Berücksichtigung der Signallaufzeiten: (FF aus TTL-Familie: $t \approx 30-50$ ns)

Nachteil des Asynchronzählers: Verschiebung der Impulsreihen → Verringerung der höchstmöglichen Zählfrequenz

II. Asynchronzähler

Dual-Vorwärtszähler

Aufgabe: Bauen Sie mit JK-Master-Slave-Flipflops einen 4-Bit-Dual-Vorwärtszähler auf (Schaltbild).

II. Asynchronzähler

• Dual-Vorwärtszähler: Aufbau mit JK-Master-Slave-FF

37

Schaltzeichen des Dual-Vorwärtszählers

II. Asynchronzähler

• Dual-Vorwärtszähler: mit taktunabhängiger Setz- und Rücksetzmöglichkeit

Setzen auf einen bestimmten Zahlenwert mit Setzeingängen S₁₋₄ möglich

II. Asynchronzähler

Dual-Vorwärtszähler

Dual-Rückwärtszähler

II. Asynchronzähler

• Dual-Rückwärtszähler: Zeitablaufdiagramm

- II. Asynchronzähler
 - Dual-Rückwärtszähler

Aufgabe: Bauen Sie mit JK-Master-Slave-Flipflops einen 6-Bit-Dual-Rückwärtszähler auf (Schaltbild).

II. Asynchronzähler

Dual-Rückwärtszähler: Aufbau mit JK-Master-Slave-FF

Schaltzeichen des Dual-Rückwärtszählers

II. Asynchronzähler

- Dual-Zähler mit umschaltbarer Zählrichtung
 - Realisierung durch umschaltbare Ansteuersignale Q und ¬Q

Umschaltung durch Kontaktschalter → Ersetzen durch Verknüpfungsglieder

II. Asynchronzähler

- BCD-Vorwärtszähler
 - Ziffern von 0 bis 9 → 4-Bit-Zähler

- taktunabhängiger Rückstelleingang nötig
- > Zähler muss von 9 auf 0 springen, d.h. von "1001" auf "1010" → $Q_{II} = I \land Q_{IV} = I$
- Zustand "1010" liegt ca. 50ns an den Ausgängen (bei TTL-Schaltkreisfamilie)
 → kann evtl. Störungen verursachen

II. Asynchronzähler

BCD-Rückwärtszähler

- benötigter Startwert der Rückwärtszählung: "1001"
- üblicher Startwert: "I I I I" → Rücksetzen von Flipflop II und III nötig (Signallaufzeit ca. 50 ns)

II. Asynchronzähler

• BCD-Zähler mit umschaltbarer Zählrichtung

- Steuerung der Rückstellung durch "0"-Signale
- Signal U = 1:Vorwärtszähler
 - Rücksetzen auf "0000", wenn $Q_{II} = Q_{IV} = I$
- Signal U = 0: Rückwärtszähler
 - Umstellung des Rückwärtszählers auf "1001" vor dem Zählvorgang

II. Asynchronzähler

- BCD-Dekadenzähler
 - Erweiterung des Zählbereichs erfordert weitere BCD-Vorwärtszähler
 - Zwei BCD-Vorwärtszähler → Zählbereich: 0 99
 - Drei BCD-Vorwärtszähler → Zählbereich: 0 999
 - Vier Ausgänge pro Dezimalziffer (Darstellung mit BCD-7-Segment-Kodeumsetzer)
 - Übergang von 9 auf 10:
 - Ausgang Q_{IV} von Zähler I wechselt von "I" auf "0" → Eingangssignal in Zähler 2

II. Asynchronzähler

- Modulo-n-Zähler
 - Anforderung:
 - bis zu einem gewünschten Zahlenwert zählen
 - auf Null zurücksetzen
 - erneut zählen, bzw. stehenbleiben und erneutes Startsignal abwarten
 - BCD-Zähler entspricht Modulo-10-Zähler

Aufgabe: Bauen Sie einen Modulo-5-Zähler auf.

II. Asynchronzähler

- Modulo-60-Zähler
 - Anwendung z.B. für elektronische Uhren
 - Variante I:
 - Zählbereich: 0 bis 59 → 6 Flipflops nötig
 - Nullung bei Wechsel auf 60 ("I I I I 100")
 - Variante 2:
 - Zusammenschaltung eines Modulo-10und eines Modulo-6-Zählers

- Prinzip des Synchronzählers
 - Asynchronprinzip: Ausgang eines Flipflops steuert n\u00e4chstes Flipflop
 - Nachteil: Schaltverzögerung durch Signal-Laufzeit der FF (30-50ns pro Flipflop)
 - → Fehler bei hohen Zählfrequenzen und hoher Bit-Zahl
 - Synchronprinzip: gemeinsamer Schaltbefehl steuert gleichzeitig alle Flipflops an
 - vor dem Taktsignal erfolgt Festlegung, ob ein Flipflop zum n\u00e4chsten Takt geschaltet wird oder nicht
 - → weitere Eingänge erforderlich
 - Verwendung von JK-Flipflops für Synchronzähler
 - Vorteil bezüglich der Sicherheit bieten JK-Master-Slave-Flipflops

- Dual-Vorwärtszähler
 - Schaltung eines 4-Bit-Zählers

- Herleitung der Schaltung mit Hilfe des Zeitablaufdiagramms möglich
- Eingänge J und K werden jeweils verbunden
- am ersten Flipflop wird "I" an J und K gelegt
- alle folgenden Flipflops erhalten als Eingangssignal UND-Verknüpfung der vorherigen Q-Ausgänge

- Dual-Rückwärtszähler
 - Aufbau analog zu Vorwärtszähler, jedoch Verwendung der negierten Ausgänge

- Dual-Zähler mit umschaltbarer Zählrichtung
 - Entwicklung des Zählers aus Dual-Vorwärts- und -Rückwärtszähler

- → U = I:Vorwärtszähler
- U = 0: Rückwärtszähler

- Berechnung von Synchronzählern
 - Schritte des Berechnungsverfahrens
 - I Wahrheitstabelle aufstellen
 - 2 Anwendungsgleichungen aufstellen und vereinfachen
 - 3 charakteristische Gleichung der zu verwendenden Flipflops bestimmen
 - 4 Verknüpfungsgleichungen durch Koeffizientenvergleich bestimmen
 - 5 Schaltbild auf Basis der Verknüpfungsgleichungen zeichnen
 - Berechnungsbeispiel:
 - 4-Bit-Synchron-Dual-Vorwärtszähler

- Berechnung von Synchronzählern 4-Bit-Synchron-Dual-Vorwärtszähler
 - Schritt I:Wahrheitstabelle aufstellen

Dezimalwert	t _n			t _{n+1}				Danimakuant	
Dezimalwert	Q _D	Qc	Q _B	QA	Q_{D}	Qc	Q _B	Q _A	Dezimalwert
0	0	0	0	0	0	0	0	- 1	I
I	0	0	0	I	0	0	-	0	2
2	0	0	I	0	0	0	_	1	3
3	0	0	I	I	0	_	0	0	4
4	0	I	0	0	0	- 1	0	1	5
5	0	I	0	I	0	_	_	0	6
6	0	I	I	0	0	-	_	1	7
7	0	I	I	I	I	0	0	0	8
8	I	0	0	0	I	0	0	1	9
9	I	0	0	I	I	0	_	0	10
10	I	0	I	0	I	0	-	1	П
11	I	0	I	I	I	_	0	0	12
12	I	I	0	0		- 1	0	- 1	13
13	I	I	0	I	I	- 1	- 1	0	14
14	I	I	I	0	I	- 1	1	- 1	15
15	I	l	I	I	0	0	0	0	0

III. Synchronzähler

- Berechnung von Synchronzählern 4-Bit-Synchron-Dual-Vorwärtszähler
 - Schritt 2:Anwendungsgleichungen aufstellen (ODER-Normalform) und vereinfachen

$$Q_{A(n+1)} = [\neg A \neg B \neg C \neg D \lor \neg AB \neg C \neg D \lor \neg A \neg BC \neg D \lor \neg ABC \neg D \lor \neg ABCD \lor \neg ABCD]_n$$

III. Synchronzähler

- Berechnung von Synchronzählern 4-Bit-Synchron-Dual-Vorwärtszähler
 - Schritt 2:Anwendungsgleichungen aufstellen (ODER-Normalform) und vereinfachen

$$Q_{B(n+1)} = [A \neg B \neg C \neg D \lor \neg AB \neg C \neg D \lor A \neg BC \neg D \lor A \neg BCD \lor \neg ABCD]_n$$

III. Synchronzähler

- Berechnung von Synchronzählern 4-Bit-Synchron-Dual-Vorwärtszähler
 - Schritt 2:Anwendungsgleichungen aufstellen (ODER-Normalform) und vereinfachen

$$Q_{C(n+1)} = [AB \neg C \neg D \lor \neg A \neg BC \neg D \lor ABC \neg D \lor ABC \neg D \lor ABC \neg D \lor ABCD \lor ABCD \lor ABCD]_n$$

$$Q_{C(n+1)} = [Q_A Q_B \neg Q_C \lor \neg Q_A Q_C \lor \neg Q_B Q_C]_n$$
$$= [Q_A Q_B \neg Q_C \lor Q_C (\neg Q_A \lor \neg Q_B)]_n$$

$$Q_{C(n+1)} = [Q_A Q_B \neg Q_C \lor \neg (Q_A Q_B) Q_C]_n$$

III. Synchronzähler

- Berechnung von Synchronzählern 4-Bit-Synchron-Dual-Vorwärtszähler
 - Schritt 2:Anwendungsgleichungen aufstellen (ODER-Normalform) und vereinfachen

$$\begin{aligned} Q_{D(n+1)} &= [Q_A Q_B Q_C \neg Q_D \vee \neg Q_A \neg Q_B \neg Q_C Q_D \vee Q_A \neg Q_B Q_C Q_D \rangle \\ &= Q_A \neg Q_B Q_C Q_D \vee \neg Q_A Q_B Q_C Q_D |_n \end{aligned}$$

$$Q_{D(n+1)} = [Q_A Q_B Q_C \neg Q_D \lor \neg Q_A Q_D \lor \neg Q_B Q_D \lor \neg Q_C Q_D]_n$$
$$= [Q_A Q_B Q_C \neg Q_D \lor Q_D (\neg Q_A \lor \neg Q_B \lor \neg Q_C)]_n$$

$$Q_{D(n+1)} = [Q_A Q_B Q_C \neg Q_D \lor \neg (Q_A Q_B Q_C) Q_D]_n$$

III. Synchronzähler

- Berechnung von Synchronzählern 4-Bit-Synchron-Dual-Vorwärtszähler
 - Schritt 3: charakteristische Gleichung der zu verwendenden Flipflops bestimmen
 - allgemein gilt für JK-Flipflops:

$$Q_{(n+1)} = [J \neg Q \lor \neg KQ]_n$$

- 4-Bit-Zähler → 4 charakteristische Gleichungen

$$Q_{A(n+1)} = [J_A \neg Q_A \lor \neg K_A Q_A]_n$$

$$Q_{B(n+1)} = [J_B \neg Q_B \lor \neg K_B Q_B]_n$$

$$Q_{C(n+1)} = [J_C \neg Q_C \lor \neg K_C Q_C]_n$$

$$Q_{D(n+1)} = [J_D \neg Q_D \lor \neg K_D Q_D]_n$$

III. Synchronzähler

- Berechnung von Synchronzählern 4-Bit-Synchron-Dual-Vorwärtszähler
 - Schritt 4:Verknüpfungsgleichungen durch Koeffizientenvergleich bestimmen
 - erstes JK-Flipflop

$$Q_{A(n+1)} = [J_A \neg Q_A \lor \neg K_A Q_A]_n \qquad \Longrightarrow \qquad J_A = 1$$

$$Q_{A(n+1)} = \neg Q_{An} \qquad \Longrightarrow \qquad K_A = 1$$

zweites JK-Flipflop

$$Q_{B(n+1)} = [J_B \neg Q_B \vee \neg K_B Q_B]_n$$

$$Q_{B(n+1)} = [Q_A \neg Q_B \vee \neg Q_A Q_B]_n$$

$$J_B = Q_A$$

$$K_B = Q_A$$

III. Synchronzähler

- Berechnung von Synchronzählern 4-Bit-Synchron-Dual-Vorwärtszähler
 - Schritt 4:Verknüpfungsgleichungen durch Koeffizientenvergleich bestimmen
 - drittes JK-Flipflop

$$Q_{C(n+1)} = [J_C \neg Q_C \lor \neg K_C Q_C]_n \qquad \qquad J_C = Q_A Q_B$$

$$Q_{C(n+1)} = [Q_A Q_B \neg Q_C \lor \neg (Q_A Q_B) Q_C]_n \qquad \qquad K_C = Q_A Q_B$$

viertes JK-Flipflop

$$Q_{D(n+1)} = [J_D \neg Q_D \vee \neg K_D Q_D]_n \qquad \Longrightarrow \qquad J_D = Q_A Q_B Q_C$$

$$Q_{D(n+1)} = [Q_A Q_B Q_C \neg Q_D \vee \neg (Q_A Q_B Q_C) Q_D]_n \qquad K_D = Q_A Q_B Q_C$$

- Berechnung von Synchronzählern 4-Bit-Synchron-Dual-Vorwärtszähler
 - Schritt 5: Schaltbild auf Basis der Verknüpfungsgleichungen zeichnen

$$J_{A} = 1$$

$$J_{B} = Q_{A}$$

$$J_{C} = Q_{A}Q_{B}$$

$$J_{D} = Q_{A}Q_{B}Q_{C}$$

$$K_A = 1$$

$$K_B = Q_A$$

$$K_C = Q_A Q_B$$

$$K_D = Q_A Q_B Q_C$$

III. Synchronzähler

Berechnung von Synchronzählern - 4-Bit-Synchron-BCD-Vorwärtszähler

Aufgabe: Berechnen Sie die Verknüpfungsgleichungen eines synchronen BCD-Vorwärtszählers und erstellen Sie die Schaltung. Zur Verfügung stehen JK-Master-Slave-Flipflops.

IV. Frequenzteiler

- Schaltungen, die Frequenzen in einem gewünschten Verhältnis aufteilen
- Unterscheidung zwischen Frequenzteiler mit festem und mit einstellbarem Teilerverhältnis
- asynchrone Frequenzteiler mit festem Teilerverhältnis
 - Einsatz von Asynchron-Dualzählern möglich
 - Anzahl der verwendeten Flipflops definiert geteilte Frequenz (jedes FF teilt Frequenz durch zwei)
 - Beispiel: asynchroner 3-Bit-Dual-Vorwärtszähler

IV. Frequenzteiler

- asynchrone Frequenzteiler mit festem Teilerverhältnis
 - Beispiel: asynchroner Dual-Vorwärtszähler mit Teilerverhältnis 3:1
 - Verwendung von Rückstelleingängen nötig

IV. Frequenzteiler

- synchrone Frequenzteiler mit festem Teilerverhältnis
 - gleiches Prinzip wie bei asynchronen Frequenzeilern mit Verhältnis 2ⁿ : I
 - Beschaltung der Eingänge bei ungeraden Teilerverhältnissen
 - Beispiel: synchroner Dual-Vorwärtszähler mit Teilerverhältnis 3:1

I. Datenselektor

- Aufgabe eine Datenselektors: aus angebotenen Daten die gewünschten Daten auswählen und an Ausgänge weiterleiten
- Beispiel I: 4-Bit-zu-I-Bit-Datenselektor
 - jeder der vier Eingänge (A, B, C, D) soll wahlweise mit Hilfe der Steuerleitungen (S₀, S₁) zum Ausgang Z durchgeschaltet werden können

Zuordnung der Ein- zu den Ausgängen mit Schaltstufen (hier: I bis 4) \rightarrow Wahrheitstabelle

Schaltstufe	Sı	S ₀	Z
I	0	0	Α
2	0		В
3		0	С
4	ı		D

I. Datenselektor

- Beispiel 2: 2 x 4-Bit-zu-4-Bit-Datenselektor
 - jeweils vier Eingänge (A_{1-4} , B_{1-4}) sollen wahlweise mit Hilfe der Steuerleitung S zu den Ausgängen Z_{1-4} durchgeschaltet werden können

Zuordnung der Ein- zu den Ausgängen mit Schaltstufen (hier: I bis 2) → Wahrheitstabelle

Schaltstufe	S	Z ₁₋₄
I	0	A ₁₋₄
2	I	B ₁₋₄

AUFGABE: Skizzieren Sie die Schaltung eines 2 x 4-Bit-zu-4-Bit-Datenselektors!

II. Multiplexer

- zeitabhängig gesteuerter Datenselektor
- Beispiel: I6-Bit-zu-I-Bit-Datenselektor-Multiplexer

- gezielte zeitliche Ansteuerung der Eingänge → Multiplexer
 - Signale an Steuereingängen von "0000" bis "IIII" mit definierter zeitlicher Dauer
 - anschließend erneutes Durchlaufen des Zyklus

II. Demultiplexer

- Arbeitsweise invers zu der des Multiplexers:
 Durchschalten eines Eingangs wahlweise auf mehrere Ausgänge mit Hilfe der Steuereingänge
- Beispiel: I-Bit-zu-4-Bit-Demultiplexer

Wahrheitstabelle

Schaltstufe	Sı	S ₀	Е
1	0	0	Q _A
2	0	I	Q _B
3	I	0	Qc
4	ı	I	Q_{D}

AUFGABE: Skizzieren Sie die Schaltung eines I-Bit-zu-4-Bit-Demultiplexers!

III. Adressdekodierer

- Um Bausteine anzusteuern werden Adressen benötigt
- Adresse: binäres Wort mit definierter Länge (Anzahl von Bits)
- Adressdekodierer liefert eine "I" an einem bestimmten Ausgang, der über die Adresseingänge angewählt werden kann
- Beispiel: 2-Bit-Adressdekodierer

Wahrheitstabelle des 2-Bit-Adressdekodierers

Adresse	A_2	Αı	QA	Q _B	Qc	Q _D
I	0	0	ı	0	0	0
2	0		0	ı	0	0
3		0	0	0	ı	0
4	ı		0	0	0	ı

IV. Digitaler Komparator

- ermöglicht Vergleich zweier binärer Ausdrücke A und B
- Information am Ausgang: (A < B) ∨ (A = B) ∨ (A > B) → drei Ausgänge
 nötig
- Vergleich nur möglich, wenn beide Ausdrücke im gleichen Zahlensystem vorliegen
- übliche Komparatoren für duales Zahlensystem und BCD-Kode entwickelt
- Beispiel: I-Bit-Komparator
 - binäre Ausdrücke A und B haben eine Länge von einem Bit
 - Zuordnung der Ausgänge:

- Ausgang
$$X = I$$
, falls $A > B$

- Ausgang
$$Z = I$$
, falls $A < B$

Fall	В	Α	Χ	Υ	Z	
I	0	0	0	ı	0	Y = ¬A¬B
2	0			0	0	$X = A \neg B$
3	1	0	0	0	ı	Z = ¬AB
4	I	I	0	ı	0	Y = AB

IV. Digitaler Komparator

- Beispiel: I-Bit-Komparator
 - Zusammenfassung:

$$X = A \neg B$$

 $Y = \neg A \neg B \lor AB = \neg (\neg AB \lor A \neg B)$
 $Z = \neg AB$

Schaltung des I-Bit-Komparators

IV. Digitaler Komparator

- Beispiel: 3-Bit-Komparator
 - sechs Variable → 64 Einträge in der Wahrheitstabelle
 ⇒ Reduzierung

Fall	2 ² .	21.	2 ⁰ .	A > B	A = B	A < B
I dii	A ₃ , B ₃	A ₂ , B ₂	A _I , B _I	X	Y	Z
-	$A_3 > B_3$	x	x	-	0	0
2	A ₃ < B ₃	x	x	0	0	I
3	$A_3 = B_3$	$A_2 > B_2$	х	_	0	0
4	$A_3 = B_3$	A ₂ < B ₂	x	0	0	I
5	$A_3 = B_3$	$A_2 = B_2$	$A_1 > B_1$	-	0	0
6	$A_3 = B_3$	$A_2 = B_2$	A _I < B _I	0	0	I
7	$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	0	ı	0

IV. Digitaler Komparator

- Beispiel: 3-Bit-Komparator
 - Aufbau mit 3 I-Bit-Komparatoren (mit Sperrschaltung)

V. BUS-Schaltungen

- Bus: System zum Transport und zur Verteilung binärer Informationen
- Sender und Empfänger binärer Informationen sind durch ein BUS-System miteinander verbunden
- unidirektionaler Bus: Informationen können nur in eine Richtung transportiert werden (Einweg-Bus)
- bidirektionaler Bus: Informationsfluss ist in beide Richtungen möglich (Zweiweg-Bus)
- paralleles BUS-System: eine Leitung für jedes Bit verfügbar (Daten- und Steuerleitungen)
- serielles BUS-System: eine Leitung ausreichend; Bits werden sequentiell versendet
 - Nachteile:
 - langsamer als parallele Systeme
 - höherer Schaltungsaufwand (Einsatz von Parallel-Seriell- und Seriell-Parallel-Umsetzer)
 - ⇒ Einsatz bei großen Leitungslängen (Reduzierung der Leitungskosten)

V. BUS-Schaltungen

paralleles unidirektionales BUS-System

V. BUS-Schaltungen

serielles unidirektionales BUS-System

- Arbeitsweise
 - ⇒ taktgesteuerte Aufnahme von Informationen
 - ⇒ Speicherung der Information
 - → Ausgabe der Information
- Aufbau der Schieberegister mit Flipflops (D-, SR-, JK-FF; Master-Slave-FF)
- Herstellung von Schieberegistern als integrierte Schaltung
- Aufbau von Schieberegistern (Unterscheidung nach Ein- und Ausgabeart)
 - ⇒ serielle Ein- und Ausgabe (immer gegeben)
 - ⇒ zusätzliche parallele Ausgabe
 - ⇒ zusätzliche parallele Ein- und Ausgabe
 - → Ringregister

I. Schieberegister

- serielle Ein- und Ausgabe
 - → Aufbau mit D-Flipflops und 4-Bit-Speicherkapazität

→ Funktionsweise

- $(E = I) \land (T: 0 \rightarrow I) \rightarrow Q_A = I$: Information wird am Eingang aufgenommen
- $(E = 0) \land (T: 0 \rightarrow I) \rightarrow (Q_A = 0) \land (Q_B = I)$: Information wird von FF_A an FF_B übergeben
- $(E = 0) \land (T: 0 \rightarrow I) \rightarrow (Q_A = 0) \land (Q_B = 0) \land (Q_C = I)$: Information wird von FF_B an FF_C übergeben
- $(E = 0) \land (T: 0 \rightarrow I) \rightarrow (Q_A = 0) \land (Q_C = 0) \land (Q_D = I)$: Information wird von FF_C an FF_D übergeben \Rightarrow Information liegt am Ausgang des Schieberegisters an
- $(E = 0) \land (T: 0 \rightarrow I) \rightarrow (Q_A = 0) \land (Q_C = 0) \land (Q_D = 0)$: Schieberegister ist "leer"

l. Schieberegister

serielle Ein- und Ausgabe

Aufgabe: Sie möchten die Zahl 1011 in ein 4-Bit-Schieberegister einlesen.

- a) Wie viele Takte sind zum Einlesen erforderlich?
- b) Zeichnen Sie das dazugehörige Zeitablaufdiagramm.
- c) Wie viele Takte benötigt man zum Auslesen?

- parallele Ausgabe
 - → Aufbau mit SR-Flipflops und 4-Bit-Speicherkapazität

- → taktunabhängige Ausgabe der Ausgänge Q_A bis Q_D
- bei weiteren Takten während der Parallelausgabe kann Ausgabewert verfälscht werden
- daher Verbot folgender Fälle
 - serielle plus parallele Datenausgabe
 - serielle Dateneingabe plus parallele Datenausgabe
- → Abhilfe durch Verriegelungsschaltung

- parallele Ein- und Ausgabe
 - → Aufbau mit JK-Flipflops und 4-Bit-Speicherkapazität

- Ringregister
 - Schieberegister in dem der Ausgang wieder mit dem Eingang verbunden ist
 - → alternative Bezeichnung: Umlaufregister
 - ⇒ schematischer Aufbau:

- ⇒ serielle oder parallele Eingabe und Ausgabe möglich (Modifizierung der Schaltung nötig)
- Rücksetzen üblicherweise mit zusätzlichem taktunabhängigem Rücksetzeingang

Schieberegister

umschaltbare Schieberichtung

Aufgabe: Modifizieren Sie das abgebildete Schieberegister derart, dass die Schieberichtung (manuell) umgeschaltet werden kann.

II. Speicherregister

- · kein Schieben der Informationen möglich
- Speicherung durch Setzen von Flipflops → Speicherung binärer Wörter
- Einsatz in Steuer- und Rechenschaltungen

III. Random Access Memory (RAM)

- Schreib-Lese-Speicher (Speicher mit wahlfreiem Zugriff)
- spezifische Speicherkapazität pro Speicherplatz
- Adressierung der einzelnen Speicherplätze
- kein Löschen der Information nach dem Auslesen (Löschen muss gesondert durchgeführt werden)
- statischer RAM
 - → Aufbau mit Flipflops (pro Bit ein Flipflop)
 - verwendete Schaltkreisfamilien:
 - TTL
 - ECL
 - N-MOS
 - C-MOS
- dynamischer RAM
 - → Umsetzung durch interne (Gate-Substrat-)Kapazitäten von Transistoren
 - → Problem: Ladungsverluste durch Leckströme → "Auffrischen" nötig
 - → verwendete Schaltkreisfamilien
 - sämtliche MOS-Technologien

IV. statischer RAM (SRAM)

• <u>Prinzipschaltung</u>: Aufbau mit bipolaren Transistoren (TTL-Technik)

IV. statischer RAM (SRAM)

Aktivierung der Speicherzelle (TTL-Technik)

→ inaktive Speicherzelle

- "0"-Signal an beiden Adressenleitungen
 - → Abfluss des Emitterstroms gegen Masse
- "0"-Signal an einer Adressenleitung
 - → Abfluss des Emitterstroms über andere Koordinatenleitung

→ aktive Speicherzelle

- "I"-Signal an beiden Adressenleitungen
 - → Emitterstrom des leitenden Transistors fließt über seine SL-Leitung ab

IV. statischer RAM (SRAM)

Lesevorgang (TTL-Technik)

- → Aktivierung der Speicherzelle nötig
- → Leitender Transistor definiert Emitterstromfluss an zugehöriger SL-Leitung
- → hier: T₂ leitend
- → Ausgang ¬Q liegt auf "I"
- ⇒ Speicherelement hat den Wert "0" gespeichert

IV. statischer RAM (SRAM)

Schreibvorgang (TTL-Technik)

- → Aktivierung der Speicherzelle nötig
- → Annahme: Speicherelement hat den Wert "0" gespeichert
- → nun soll Speicherelement auf "I" gesetzt werden
- ⇒ SL₂ auf "I" und SL₁ auf "0" setzen
- → Transistor T₂ sperrt, da alle Emitter auf "I" liegen
- → Transistor T₁ schaltet durch, da SL₁ auf ,,0" liegt

IV. statischer RAM (SRAM)

Prinzipschaltung: Aufbau in NMOS-Technik

IV. statischer RAM (SRAM)

Speicherzelle in NMOS-Technik

→ Aktivierung der Speicherzelle

- "I"-Signal an beiden Adressenleitungen

 → Transistoren T₅ bis T₈ steuern durch
- Verbindung der Ausgänge des Flipflops mit den Schreib-Lese-Leitungen

→ Lesevorgang

- direkt nach Aktivierung möglich
- → Schreibvorgang
 - Speicherelement sei auf "0" gesetzt (T₁ leitend und T₂ gesperrt)
 - SL2 auf "0" setzen
 → T₁ sperrt und T₂ wird leitend
 - Speicherelement liegt auf "I"

IV. statischer RAM (SRAM)

• Zusammenschaltung von Speicherelementen zu einer Speichermatrix (16Bit)

V. dynamischer RAM (DRAM)

- DRAM-Speicherelement
 - Zusammenschaltung von drei selbstsperrenden MOSFET
 - ⇒ Speicherung der Information in der Gate-Substrat-Kapazität C
 - C geladen → Speicherelement besitzt den Wert "I"
 - C entladen → Speicherelement auf "0" gesetzt

V. dynamischer RAM (DRAM)

Schreibvorgang

- → Aktivierung der Speicherzelle durch "I"-Signal auf Schreibauswahl-Leitung X
- → Source-Drain-Strecke von T₁ wird niederohmig
- "I"-Signal an Schreibleitung A führt zum Aufladen von C
 - positive Ladung am Gate von T₂
 - T₂ wird niederohmig
- → Schreibauswahl-Leitung auf "0"
 - Speicherelement nicht mehr aktiv
 - T₁ hochohmig (Sperrzustand)
 - kein Abfließen der positiven Ladung von C möglich
- → Speicherzelle auf "0" setzen
 - X auf "I" setzen $\rightarrow T_1$ niederohmig
 - A auf "0" legen → C entläd sich
 → Speicherzelle enthält Information "0"
 - T₂ ist hochohmig

V. dynamischer RAM (DRAM)

Lesevorgang

- → "I"-Signal an Leseleitung B
- Aktivierung der Speicherzelle durch "I"-Signal auf Leseauswahl-Leitung L
- → Source-Drain-Strecke von T₃ wird niederohmig
- → Annahme: Speicherzelle auf "I"
 - T₂ ist niederohmig
 - Stromfluss von B über T₃ und T₂ nach Masse
 - → Hinweis auf eingespeicherte "I"
- → Annahme: Speicherzelle auf "0"
 - C ist entladen
 - T₂ hochohmig
 - kein Stromfluss von Büber T_3 und T_2 nach Masse
 - → Hinweis auf eingespeicherte "0"

V. dynamischer RAM (DRAM)

Auffrischvorgang

- → Problem: sehr kleine Kapazität: 0,1 1,0 pF
- \Rightarrow $Q = C \cdot U \rightarrow$ nur kleine Ladungsmenge kann gespeichert werden
- → kleine Leckströme bauen Ladung ab
- → Auffrischung der Ladung nötig (alle 2 ms)
 - Taktgenerator und Steuerschaltung benötigt
 - in integrierten Schaltungen enthalten
- → Auffrischen durch Start des Lesevorgangs
 - bei Speicherinhalt "I" \rightarrow T_I niederohmig schalten \rightarrow C wird geladen
 - bei Speicherinhalt "0" → kein Laden von C

V. Diskussion dynamischer RAM (DRAM)

- trotz Auffrischvorgang sehr zuverlässiger Speicher
- große Speicherkapazität pro Chip (hohe Integrationsdichte bei MOS-Schaltungen möglich)
- relativ große Schaltzeiten (Zugriffszeit: 100 300 ns)
- Sperrung des Speichers während des Auffrischvorgangs
- mit steigender Temperatur steigt der Leckstrom (beim Überschreiten der maximalen Betriebstemperatur droht Informationsverlust)

- Unterscheidung von Speichern mit Speicherzellen aus einem oder mehreren Speicherelementen
- bitorganisierter Speicher (Speicherzelle besteht aus einem Speicherelement)
 - ⇒ jedes Speicherelement besitzt eigene Adresse
 - ⇒ Beispiel: I6 × I-Bit-Speicher

- wortorganisierter Speicher (Speicherzelle besteht aus mehreren Speicherelementen)
 - ⇒ jedes x-Bit-Einheit besitzt eigene Adresse
 - ⇒ Beispiel: 16 × 8-Bit-Speicher
 - 8 SL₁-Leitungen und 8 SL₂-Leitungen sind nicht eingezeichnet
 - gemeinsames Lesen und Schreiben der 8 Bit

- Speicher mit zunehmender Größe
 - steigende Anzahl an Koordinatenleitungen (z.B. 256 × 1-Bit-Speicher benötigt 16 X- und 16 Y-Adressen-Leitungen)
 - Verwendung von Adressdekodierern
 - → Schreib-Lese-Leitungen zur Vereinfachung ausgeblendet

- Aufbauschema großer Speicher (z.B. 16 kBit × 1-Bit-Speicher)
 - → Anwahl von 16384 Bit nötig → 128 X- und 128 Y-Koordinatenleitungen
 - ⇒ bei Verwendung von Adressdekodierern sind je 7 Steuerleitungen nötig → wiederum hohe Anzahl aus herauszuführenden Leitungen
 - → Verwendung von Demultiplexern

VII. Speicherkenngrößen

- Speicherkapazität
 - → Anzahl der speicherbaren Bits
- Speicherorganisation
 - ⇒ Speicherkapazität einer Speicherzelle sowie Anwahlmöglichkeit
- Zugriffszeit
 - Zeitintervall von der Adressierung bis zur Verfügbarkeit der Information am Ausgang
- Zykluszeit
 - ⇒ kürzeste Zeit zwischen zwei aufeinander folgenden Schreib-Lese-Vorgängen
- <u>Leistungsbedarf</u>
 - Angabe des Gesamtleistungsbedarfs bei Betrieb und im Ruhezustand
- <u>Elektrische Betriebsbedingungen</u>
 - Angabe der benötigten Versorgungsspannungen, der Signalpegel, der Toleranzbereiche und der elektrischen Grenzwerte
- Arbeitstemperaturbereich
 - Temperaturintervall in dem der Speicher unter vorgegebenen Betriebsbedingungen sicher arbeitet

VII. Read Only Memory - ROM (Festwertspeicher)

- Nur-Lese-Speicher
- im Speicher enthaltene Information ist nicht löschbar und nicht änderbar
- zwei Arten von Speicherelementen

- Lesen eines Speicherelements
 - → Aktivierung des Speicherelements: Koordinaten-Leitungen auf "I" setzen
 - → Datenleitung bleibt auf "I" bei fehlendem Transistor
 - → Datenleitung wird auf "0" (Masse) bei vorhandenem Transistor gezogen

VII. Read Only Memory - ROM (Festwertspeicher)

- Speicheraufbau und -organisation analog zu RAM-Speicher
 - ⇒ Speichermatrix bestehend aus Zeilen und Spalten
 - Ansteuerung der X- und Y-Koordinatenleitungen mit Adress-Dekodierern und ggf. Demultiplexern bei großen Speichern
- Maskenprogrammierbare Festwertspeicher
 - Information ("0" oder "1") wird vor der Herstellung definiert
 - → Maskenprozesse erlauben definiertes Platzieren von Transistoren
- spezifische Maske ist ein Kostentreiber
 - → Wirtschaftlichkeit nur bei hohen Stückzahlen gegeben

VIII. Programmable Read Only Memory - PROM

- Programmierbare Festwertspeicher
- eigene Eingabe der Information in den Festwertspeicher möglich
- kleine Stückzahlen, bzw. Einzelstücke
- Programmierung durch gezieltes Durchbrennen einzelner Transistoren möglich (Herstellung einer Unterbrechung)
- Alternativ: Aufbau einer Matrix mit Dioden (Dioden-PROM)

- → dünne Leitung aus Chrom-Nickel-Legierung
- → Durchbrennen der Leitung bei Erhöhung des Stroms über Schwellenwert
- nicht-reversibler Vorgang
- ⇒ spezielles Programmiergerät erforderlich

IX. EPROM und REPROM (löschbare und programmierbar)

- Löschen der Information durch UV-Licht möglich
 - ➡ Erasable Programmable Read Only Memory EPROM
 - → Reprogrammable Read Only Memory REPROM
- Aufbau eines Speicherelements

- ⇒ T₂ besitzt ein Floating Gate (kein Gateanschluss, lediglich hochisolierendes Material auf dem Gate)
- → Z-Leitung liegt auf Masse (0V)
- +5V an X- und Y-Koordinaten-Leitungen →T₁ schaltet durch

gelöschter Zustand: Gate ohne Ladung $\rightarrow T_2$ gesperrt

→ da T₂ gesperrt, kann Y nicht auf Masse gezogen werden (Y bleibt auf "I")

geladener Zustand: Gate positiv geladen $\rightarrow T_2$ leitend

⇒ da T₂ leitend, wird Y auf Masse (Zustand "0") gezogen

IX. EPROM und REPROM (löschbar und programmierbar)

Aufbau eines Floating-Gate Avalanche-Injection MOSFET (FAMOS-

Transistor)

- Aufladen eines FAMOS-Transtors
 - → Dünne Isolierschichten sowie dünnes Floating Gate
 - → Anlegen eines hohen Potenzials an Drain gegenüber Substrat (Programmierspannung)
 - → hohes E-Feld
 - → Drain "saugt" Elektronen vom Floating Gate ab (Tunneleffekte)
 - → "positive Ladung" auf Floating Gate zieht Elektronen aus dem Substrat an
 - → n-leitende Brücke entsteht

IX. EPROM und REPROM (löschbar und programmierbar)

- Programmiervorgang
 - Programmierung der einzelnen Speicherzellen durch sequentielle Anwahl (+5V an X- und Y-Koordinatenleitungen) der Zellen die Speicherinhalt "0" besitzen sollen
 - → Anlegen des Potenzials 27V an Drain → Aufbringen positiver Ladung auf Floating Gate
 - → Ladungserhaltung auf Floating Gate: I 100 Jahre (Herstellerangaben)

Löschvorgang

- ⇒ Löschen der Information durch Einstrahlung starken UV-Lichts auf Fenster des (R)EPROMS
 - lonisation des Isolationsmaterials (wird schwach leitfähig)
 - Ladungsabbau des Floating Gate
 - gesamte Information des Festwertspeichers wird gelöscht
- → Vor Neuprogrammierung ist Abkühlen des Bausteins nötig (+ Abklingen der Ionisierung)
- Unabsichtliches Löschen durch Lichtkontakt möglich
 - Sonnenlicht: Chip nach ca. 3 Tagen gelöscht
 - Leuchtstofflampe: Löschen der Information nach ca. 3 Wochen
 - Abhilfemaßnahme: Abkleben des Fenstern mit lichtundurchlässigem Klebeband

X. EEPROM und EAROM (löschbar und programmierbar)

- Aufbau der Speicherzelle ähnlich wie EPROM und REPROM
- Unterschied: elektrische Löschung der Information
 - ⇒ Löschen der gesamten Information des Bausteins: Electrically Erasable (elektrisch löschbares) ROM
 - Löschen eines einzelnen Bits: Electrically Alterable (elektrisch umprogrammierbares) ROM
- Aufbau des Speichertransistors (FAMOS-Transistor)

- Programmierung: Anlegen der Drain-Substrat-Spannung $U_P \approx 40 \, \text{V}$: Elektronenwanderung vom Floating Gate zum Drain-Anschluss
- Löschen: Umpolung der Drain-Substrat-Spannung:
 - ➡ Erzeugung eines entgegen gesetzt gerichteten starken E-Feldes
 - Elektronen wandern von Drain auf Floating Gate → negative Aufladung
 - ⇒ Brücke zwischen Drain und Source verschwindet

- I. D/A-Wandler (Digital-Analog-Umsetzer)
 - Prinzip: Umwandlung einer Tabelle in eine Kurve

t	I	2	3	4	5
f(t)	22	15	31	47	91

- Wandlung von bestimmten binären (bewertete) Kodes in Analog-Signale möglich
 - → Dual-Kode
 - ⇒ BCD-Kode
 - → nicht möglich: GRAY-Kode (unbewerteter Kode)
- unbewertete Kodes vor D/A-Umsetzung in bewerteten Kode umwandeln
- Hamming-Kode: Redundanzstellen (Kontroll-Bits) eliminieren
- umgesetztes Analog-Signal:
 - → diskrete Signalwerte (gestuftes Signal → Glättung durch Siebglieder)
 - nur bestimmte Anzahl an möglichen Amplitudenwerten (2n)

I. D/A-Wandler (Digital-Analog-Umsetzer)

• Prinzipschaltung (4-Bit) mit gestuften Widerständen

- Gleichung für die Wahl der Widerstände: $R_n = \frac{R}{2^n}$
- Widerstandswert R frei wählbar
- Problem: Spannungsschwankungen der Eingangsspannungen

- I. D/A-Wandler (Digital-Analog-Umsetzer)
 - Prinzipschaltung: R/2R-DA-Wandler (Kettenleiter)

- Lediglich zwei Widerstandswerte R und 2R nötig
- Gleichung für Intervall der Ausgangsspannung: $\Delta U_A = \frac{U_{\text{S}tab}}{2^n}$

- Abtasten des analogen Signals in bestimmten zeitlichen Intervallen liefert ein Digitalsignal
- Darstellung des digitalen Signals in verschiedenen Zahlensystemen möglich (duales Zahlensystem, BCD-Kode)
- Anzahl der verfügbaren Bits definiert das Auflösungsvermögen des A/D-Wandlers
- Genauigkeit eines A/D-Wandlers definiert sich durch den prozentualen Fehler des Ergebnisses oder des Höchstwerts.
- Abtastfrequenz des Analogsignals mindestens doppelt so groß wie die höchste zu wandelnde Frequenz
- Herstellung von A/D-Wandlern als integrierte Schaltungen (dominant in CMOS-Technologie)
- festgelegter Bereich der kleinsten und größten wandelbaren Spannung

II. A/D-Wandler (Analog-Digital-Umsetzer)

- Prinzip: Sägezahnverfahren
 - → Abtasten des Analogsignals mit einer Sägezahnspannung
 - → Arbeitsweise des A/D-Wandlers nach dem Sägezahnverfahren
 - Beginn der Flanke im negativen Bereich
 - Start eines Zählers beim Überschreiten der 0V-Linie
 - Stopp des Zählers beim Erreichen der analogen Spannung
 - Zählergebnis liefert Zeitintervall Δt $\rightarrow u = \Delta t \cdot \tan \alpha$

Höchstwert der Sägezahnspannung definiert größte abtastbare Spannung (hier: IOV)

II. A/D-Wandler (Analog-Digital-Umsetzer)

• Prinzip: Sägezahnverfahren

- ⇒ Sägezahnspannung auf 2 Komparatoren geben
- Funktionsweise der Komparatoren: "I" am Ausgang, wenn beide Eingangsspannungen gleich groß
- \rightarrow neg. Sägezahnspannung \rightarrow "0" am Ausgang von Komparator 2 (K₂)
- ⇒ Zeitpunkt t_1 (Erreichen der 0V-Linie): $K_2 = I''$ (K_1 immer noch auf I''0") → Ausgang XOR = I''1"
- ⇒ Freigabe der Generatorimpulse zum Zählen
- Sägezahnspannung erreicht die Eingangsspannung $\rightarrow K_1 = , I'' \rightarrow Ausgang XOR = , 0'' \rightarrow Zählstopp$
- → Abspeichern des Zählerstands und Ausgabe

- Prinzip: Dual-Slope-Verfahren
 - Zweischrittverfahren: Verwendung von zwei unterschiedlichen Flanken
 - → Verwendung eines Integrators

- Schritt I: Integration einer positiven Analogspannung in einem festgelegten Zeitintervall t_1 (Laden des Kondensators C)
- → Schritt 2:
 - Anlegen einer negativen Referenzspannung an den Eingang
 - Messung des Zeitintervalls t_2 bis zur vollständigen Entladung von C
 - Zeitintervall proportional zur angelegten Spannung

- Prinzip: Dual-Slope-Verfahren
 - Aufbau der Schaltung

- \rightarrow Steuerschaltung bringt Schalter in obere Stellung (Dauer: Intervall t_1) \rightarrow C wird geladen
- → Switch auf untere Stellung
 - Referenzspannung liegt an Integrator
 - Freigabe des UND-Glieds über Steuerschaltung → Zähler läuft los
 - C entladen \rightarrow Komparator liefert "I" am Ausgang \rightarrow Zähler wird gestoppt (Intervall t_2) $\rightarrow \frac{U_1}{U_{\text{ref}}} = \frac{t_2}{t_1}$

- Kompensationsverfahren
 - → Aufbau der Schaltung

- Nullung des Zählers bei Start eines Umsetzvorgangs durch Steuerschaltung $\rightarrow U_K = 00\%$ = 00%
- Dual-Vorwärtszähler wird mit Signalen aus Impulsgenerator gestartet → D/A-Wandler liefert ansteigendes Analogsignal
- bei $U_K = U_1 \rightarrow K = ,, I'' \rightarrow Stopp$ des Zählvorgangs und Ablegen des Zählergebnisses im Speicher \rightarrow Nullung des Zählers

- Kompensationsverfahren
 - → Modifikation der Schaltung (1/2)

- Komparator durch Differenzenverstärker ersetzt: positive Ausgangsspannung falls $U_K < U_1$ (Betrag der Ausgangsspannung beeinflusst Geschwindigkeit des spannungsgesteuerten Oszillators: je höher die Spannung, desto höher die Frequenz der Ausgangspulse)
- \rightarrow Vorwärts-Rückwärts-Zähler zählt in Vorwärtsrichtung \rightarrow analoge Spannung U_K steigt
- Stopp des Zählers bei $U_K = U_1 \rightarrow \text{Ablegen des Ergebnisses im Speicher}$

- Kompensationsverfahren
 - → Modifikation der Schaltung (2/2)

- \Rightarrow Änderung von $U_1 \rightarrow$ Ausgang des Differenzenverstärkers liefert pos. oder neg. Signal (definiert Laufrichtung des Zählers)
- \rightarrow Zähler läuft nach, bis $U_K = U_1 \rightarrow \text{Stopp des Zählers} \rightarrow \text{Speichern des Werts}$
- Vorteil: Zähler immer in der Nähe des analogen Signals (wenige Zählschritte nötig → hohe Geschwindigkeit)

- Spannungs-Frequenz-Verfahren
 - → Aufbau der Schaltung

- \Rightarrow Spannungs-Frequenz-Umsetzer liefert linearen Zusammenhang zwischen U und f
- Steuerschaltung aktiviert Wandlung → Zeitgeber liefert "I" an ersten Eingang des UND-Glieds
- → Frequenzpulse aktivieren Zählvorgang
- nach Ablauf einer festgelegten Zeit: Zeitgeber liefert "0" an Eingang des UND-Glieds → Zähler wird gestoppt → Ergebnis in Speicher ablegen

- Direktverfahren
 - → Aufbau der Schaltung

- → Komparatoren liefern "I", falls Eingang größer als Referenzspannung
- ⇒ n Komparatoren ermöglichen n verschiedene Spannungsstufen (hier: n = 8)
- ⇒ sehr schneller Umsetzer (Schaltzeit der Komparatoren: ca. 40 50 ns)
- Genauigkeit des Wandlers abhängig von Genauigkeit der Referenzspannung und von Schalttoleranzen der Komparatoren

I. Einführung

- Ziel der Rechenschaltungen: Durchführung einer bestimmten Rechenoperation mit den Eingangsvariablen
- Rechenschaltung jeweils nur für einen Kode (Zahlensystem) geeignet
- Arten von Rechenschaltungen
 - → Halbaddierer
 - → Volladdierer
 - → Paralleladdierschaltung
 - ⇒ Serielle Addierschaltung
 - Subtrahierschaltung
 - → Addier-Subtrahier-Werk
 - → Multiplikationsschaltung

II. Der Halbaddierer (HA)

- ermöglicht Addition zweier Dualziffern
- Rechenregeln des Halbaddierers
 - \rightarrow 0 + 0 = 0
 - **→** 0 + | = |
 - **→** | + 0 = |
 - **→** | + | = |0
- Schaltzeichen:

• Funktionsgleichungen:

$$Z = A \neg B \lor \neg AB$$

 $\ddot{U} = AB$

Schaltung:

- II. Der Volladdierer (VA)
 - ermöglicht Addition dreier Dualziffern

• Schaltzeichen:

• Funktionsgleichungen:

II. Der Volladdierer (VA)

Aufbau mit zwei Halbaddieren und einem ODER-Glied

III. Parallele Addierschaltung

Addition von zwei 4-Bit Dualzahlen

IV. Serielle Addierschaltung

Addition von zwei 4-Bit Dualzahlen

Nachteil: langsamer als parallele Addition

Aufgabe: Erstellen Sie das zugehörige Zeitablaufdiagramm!

V. Der Halbsubtrahierer (HS)

- ermöglicht Subtraktion zweier Dualziffern
- Rechenregeln des Halbsubtrahierers
 - \rightarrow 0 0 = 0
 - **→** 0 | = -|
 - **→** | -0 = |
 - **→** | | = 0
- Schaltzeichen:

• Funktionsgleichungen:

$$D = A \neg B \lor \neg AB$$

 $E = \neg AB$

Schaltung:

VI. Der Vollsubtrahierer (VS)

 ermöglicht Subtraktion dreier Dualziffern (Entleihung wird zum Subtrahend addiert oder in zweitem Schritt abgezogen)

• Schaltzeichen:

Funktionsgleichungen:

$$D = A - (B + E_x)$$

 $D = (A - B) - E_x$

Zwei Möglichkeiten zum Aufbau eines Vollsubtrahierers

VII. Subtrahierschaltung

• Beispiel: Subtraktion von zwei 4-Bit-Dualzahlen

VII. Subtrahierschaltung

Beispiel: Subtraktion von zwei 4-Bit-Dualzahlen

Aufgabe: Führen Sie die folgende Subtraktion mit der vorgestellten Subtrahierschaltung durch.

1010₂ – 1100₂

VII. Subtrahierschaltung

Überführung der Subtraktion in eine Addition (Komplementbildung)

VIII. Addier-Subtrahier-Werk

- Abwandlung der Subtrahierschaltung mit Volladdierern
- keine Komplementbildung für Addier-Subtrahier-Werk:
 - ⇒ keine Negation des Subtrahendregisters durchführen
 - ⇒ keine Addition der "I" am ersten Volladdierer
- separater Wahl-Eingang "S" entscheidet über Subtraktion oder Addition
 - ⇒ S = 0:Addition: Subtrahendregister wird nicht negiert
 - ⇒ S = I: Subtraktion: Komplementbildung des Registerinhalts

VIII. Addier-Subtrahier-Werk

4-Bit-Addier-Subtrahier-Werk

IX. Multiplikationsschaltungen

- ermöglicht Multiplikation zweier Dualziffern
- Rechenregeln des Multiplizierers
 - \rightarrow $0 \times 0 = 0$
 - \rightarrow $0 \times 1 = 0$
 - \rightarrow $1 \times 0 = 0$
 - → | × | = |
- I-Bit-Multiplizierer entspricht einem UND-Glied
- parallele oder serielle Multiplikation möglich

IX. Multiplikationsschaltungen

parallele Multiplikationsschaltung (2-Bit)

- IX. Multiplikationsschaltungen
 - parallele Multiplikationsschaltung

Aufgabe: Wie muss man die 2-Bit-Parallel-Multiplikationsschaltung erweitern, um das Produkt 13 × 8 berechnen zu können? Skizzieren Sie die Schaltung!

IX. Multiplikationsschaltungen

serielle Multiplikationsschaltung (4-Bit)

I. Grundlagen

- Unterscheidung programmierter Logikschaltungen
- durch Hersteller: Application Specific Integrated Circuit (ASIC)
 - → Maskenprogrammierung durch Hersteller nach Kundenwunsch
 - → Vorteile von ASIC's
 - geringer Platzbedarf (hohe Packungsdichten)
 - hohe Schaltgeschwindigkeiten
 - niedrige Verluste
 - Nachteil
 - sehr teuer → rentabel nur bei hohen Stückzahlen
- durch Anwender: Programmable Logic Devices (PLD)

- Darstellung einer Schaltung durch ODER-Normalform möglich
- Konvention von Leitungskreuzungen

- Programmierung der PLD's
 - ⇒ alle Kreuzungspunkte sind vorab leitend verbunden → Durchbrennen der nicht benötigten Verbindungen (irreversibel)
 - → Verwendung von FAMOS-Transistoren (Aufbau analog zu EPROM und EEPROM)
 - Erasable PLD (EPLD): gesamter Baustein durch UV-Licht löschbar
 - Electrical Erasable PLD (EEPLD): einzelne Zellen elektronisch löschbar

- II. Programmable Logic Devices (PLD)
 - Schaltung mit zwei Eingängen

Aufgabe: Erzeugen Sie eine Antivalenzverknüpfung!

II. Programmable Logic Devices (PLD)

PLD-Schaltung

- Vereinfachung durch Verwendung mehradriger Leitungen
- Programmierung durch Lösen nicht benötigter Verbindungen

- Programmable Array Logic (PAL)
 - → Programmierbare Feld-Logik
 - → enthält programmierbare UND-Matrix und festverdrahtete ODER-Matrix

- Generic Array Logic (GAL)
 - → Gattungsfeld-Logik (EPLD oder EEPLD)
 - enthält programmierbare UND-Matrix, Ein- und Ausgabeblöcke sowie festverdrahtete ODER-Matrix
 - → Output Logic Macro Cell (OLMC-Schaltung) an jedem Ausgang
 - 8-fach ODER-Glied (Darstellung der ODER-Normalform)
 - D-Flipflop (Ergebnisspeicherung)
 - Steuerungseinheit
 - Ausgang (normal und negiert)

- Field Programming Logic Array (FPLA)
 - → feldprogrammierbare Logik
 - → enthält programmierbare UND-Matrix sowie programmierbare ODER-Matrix

- PROM-Schaltungen
 - → Verwendung PROM als PLD möglich
 - ⇒ Beispiel: Dioden-PROM mit Adressdekodierer

- Adressdekodierer: UND-Matrix (→ fest verdrahtet)
- Speicher: ODER-Matrix (→ programmierbar)

II. Programmable Logic Devices (PLD)

• Übersicht und Einteilung von PLD-Typen

SCHALTUNG							
programmierbare UND-Matrix	programmierbare ODER-Matrix	programmierbare UND- und ODER- Matrix	MACRO-Schaltung				
 PAL GAL EPAL AGA LCA 	▶ PROM▶ EPROM▶ EEPROM▶ PLE	 FPLA EPL FPLAS FPLS FPGA PL 	 Macrocell µ PLD Macrochip Macrocell- Array 				