

UNIVERSIDADE FEDERAL DO CEARÁ

CAMPUS DE RUSSAS

Algoritmos em Grafos

Aula 12: Caminho Mínimo (Dijkstra)

Professor Pablo Soares

2022.1

Sumário

- Busca em Largura(últimas aula);
 - a. Distância mínima em número de arestas;
 - b. Árvore Primeiro na Extensão.
- 2. Caminho Mínimo.
 - a. Motivação;
 - i. Modelagem;
 - b. Algoritmo de Dijkstra.
 - i. Estruturas utilizadas;
 - ii. Tempo de Execução.

Caminho Mínimo(Motivação)

Situação Comum

Caminho Mínimo(Motivação)

Situação Comum

Caminho Mínimo(Modelagem)

- 1. Mapa rodoviário;
 - a. $G = (V, E) \rightarrow \text{grafo ponderado};$
 - i. $V \rightarrow Conjunto de cidades;$
 - ii. $E \rightarrow Segmentos de estradas entre cidades.$
 - $w(u, v) \rightarrow \text{Distância entre a cidade } u \text{ e } v(\text{peso da aresta}).$
- 2. Seja "C" um caminho em G e P() uma função de peso;
 - a. $P(\mathbf{C}) = \sum w(u, v), \ \forall (u, v) \in \mathbf{C}$

$$\delta(u, v) = \begin{cases} min\{P(c): u \sim v\}, \text{ se existir caminho de } u \text{ até } v \\ \infty, \text{ caso contrário} \end{cases}$$

Algoritmo de Dijkstra

Pseudocódigo

```
Dijkstra(G, s)
 1. para cada vértice u ← V[G]
         dist[u] ←∞
         \pi[u] \leftarrow NULL
     fimpara
     dist[s] \leftarrow 0
 6. Q←FilaDePrioridade()
     InsereNaFila(Q, s)
     enquanto Q ≠ vazio
        u ←RemoveDaFila(Q)
10.
        para cada vértice v ∈ L.adj(u)
11.
           se dist[v] > dist[u] + w(u, v)
12.
               dist[v] \leftarrow dist[u] + w(u, v)
13.
               \pi[v] \leftarrow u
14.
               InsereNaFila(Q, v)
15.
           fimse
16.
       fimpara
17.
     fimenquanto
Fim.
```


u

$$s \leftarrow \mathbf{A}$$
 U

В

Variáveis do código:

u **← B ∨** ← **E**

 $s \leftarrow A$

π:	Ν	С	Α	С	С	Ν

$$s \leftarrow \mathbf{A}$$

 $u \leftarrow \mathbf{B}$
 $v \leftarrow \mathbf{E}$

8

 ∞

Variáveis do código:

$$s \leftarrow \mathbf{A}$$

 $u \leftarrow \mathbf{D}$

∨ ← **D**

3

dist:

Q:

D

В

F

Ν

10

Variáveis do código:

u ← **D**

В

C

$$s \leftarrow A$$

 $u \leftarrow E$
 $v \leftarrow F$

8

10 I

12

3

dist:

π:

Q:

Variáveis do código:

v ← **F**

 $u \leftarrow \mathbf{F}$ $v \leftarrow \mathbf{F}$

π:

Q:

Exercício de Fixação

Encontre a menor distância do vértice 8 para todos os outros vértices do

grafo.

UNIVERSIDADE FEDERAL DO CEARÁ

CAMPUS DE RUSSAS

Algoritmos em Grafos

Aula 12: Caminho Mínimo (Dijkstra)

Professor Pablo Soares

2022.1