Knowledge Graph Embedding Compression

Mrinmaya Sachan

Toyota Technological Institute at Chicago ETH Zurich

Knowledge Graph Representations

. . .

Large Knowledge Graph Representation Layer

KGs can be very large – millions or billions of entities in a KG, resulting in a large KG representation layer

Redundancy in KG representations – many entities are actually similar!

Discrete KG representations

Inspired from previous work in discrete representation learning (van den Oord et al., 2017; Chen et al., 2018; Chen and Sun, 2019) for language and vision, this paper presents discrete KG representation learning

Learnt in a way to capture the semantics and relational structure in KGs

Key advantage: Embedding compression

Discrete KG representation learning

(van den Oord et al., 2017; Chen et al., 2018; Chen and Sun, 2019)

Discretization Function

(van den Oord et al., 2017; Chen et al., 2018; Chen and Sun, 2019)

Two approaches:

- (1) Vector Quantization (VQ)
- (2) Tempering Softmax (TS)

Reverse-Discretization Function

(van den Oord et al., 2017; Chen et al., 2018; Chen and Sun, 2019)

Experiments

Datasets:

- Freebase 15k (Bordes et al., 2013)
- Freebase 15k-237 (Toutanova et al., 2015)
- Wordnet 18 (Bordes et al., 2013)
- Wordnet 18RR (Dettmers et al., 2018)

Link Prediction tasks

Metrics:

- Mean reciprocal rank (MRR)
- Hits@10 (H@10).

Compression Ratio (CR) =
$$\frac{storage(continuous)}{storage(discrete)}$$

Experiments

*** More results and analysis in the paper

MRR (FB15k)

Thank you ©