

🦒 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE180413704

FCC REPORT

Applicant: HUNG WAI HOLDINGS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin,

Hong Kong

Equipment Under Test (EUT)

Product Name: 13.3" LCD touch screen android quad core player

Model No.: DT133-AC4G1-1080

FCC ID: 2AB6Z-DT133-AC4G1

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 27 Apr., 2018

Date of Test: 28 Apr., to 22 May, 2018

Date of report issued: 24 May, 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	24 May, 2018	Android player Main board with wireless module (FCC ID: 2AB6Z-A18RK31) and same antenna were used by the device, only AC Power Line Conducted Emission and Radiated emission were re-tested.

Tested by: Quen Une Date: 24 May, 2018

Test Engineer

Reviewed by: Date: 24 May, 2018

Project Engineer

3 Contents

			Page
1	COVE	ER PAGE	1
2	VERS	SION	2
3	CON	TENTS	3
4	TEST	SUMMARY	4
5	GENE	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
		GENERAL DESCRIPTION OF E.U.T	
		TEST ENVIRONMENT AND TEST MODE	
		DESCRIPTION OF SUPPORT UNITS	
	5.5 I	MEASUREMENT UNCERTAINTY	8
	5.6 I	RELATED SUBMITTAL(S) / GRANT (S)	8
	5.7 I	LABORATORY FACILITY	8
	5.8 I	LABORATORY LOCATION	8
	5.9	TEST INSTRUMENTS LIST	9
6	TEST	RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	14
		OCCUPY BANDWIDTH	
	6.5 I	Power Spectral Density	16
		BAND EDGE	
		Spurious Emission	
	6.7.1	Restricted Band	
	6.7.2	Unwanted Emissions out of the Restricted Bands	
	6.8 I	FREQUENCY STABILITY	60
7	TEST	SETUP PHOTO	61
8	EUT (CONSTRUCTIONAL DETAILS	62

4 Test Summary

Test Item	Section in CFR 47	Test Result
Antenna requirement	15.203 & 15.407 (a)	Pass*
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a) (1) (iv) & (a) (3)	Pass*
26dB Occupied Bandwidth	15.407 (a) (5)	Pass*
6dB Emission Bandwidth	15.407(e)	Pass*
Power Spectral Density	15.407 (a) (1) (iv) & (a) (3)	Pass*
Band Edge	15.407(b)	Pass
Spurious Emission	15.407 (b) & 15.205 & 15.209	Pass
Frequency Stability	15.407(g)	Pass*

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not Applicable.

Pass*: The test data refer to FCC ID: 2AB6Z-A18RK31.

5 General Information

5.1 Client Information

Applicant:	HUNG WAI HOLDINGS LIMITED
Address:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer/ Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD
Address:	3rd floor, NO. 1, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong

5.2 General Description of E.U.T.

Product Name:	13.3" LCD touch screen android quad core player
Model No.:	DT133-AC4G1-1080
Operation Frequency:	Band 1: 5180MHz-5240MHz, Band 4: 5745MHz-5825MHz
Channel numbers:	Band 1: 802.11a/802.11acH20/802.11n20: 4, 802.11n40/802.11acH40: 2, 802.11acH80: 1 Band 4: 802.11a/802.11acH20/802.11n20: 5, 802.11n40/802.11acH40: 2, 802.11acH80: 1
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz, 802.11ac: 20/40/80MHz
Modulation technology (IEEE 802.11a):	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology (IEEE 802.11n):	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology (IEEE 802.11ac):	BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM
Data speed (IEEE 802.11a):	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps, MCS1:13Mbps,MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Data speed (IEEE 802.11ac):	Up to 433.3Mbps
Antenna Type:	External Antenna
Antenna gain:	2 dBi
Power supply:	DC 12V
AC adapter:	Model No.:PS30D120K1500UD Input: AC100-240V, 50/60Hz, 800mA Output: DC 12V,1500mA

Operation Frequency each of channel							
	Band 1						
802.11a/802.11	n20/802.11ac20	802.11n4	0/802.11ac40	802	.11ac80		
Channel	Frequency	Channel	Frequency	Channel	Frequency		
36	5180MHz	38	5190MHz	42	5210MHz		
40	5200MHz	46	5230MHz				
44	5220MHz						
48	5240MHz						
		Ba	and 4				
802.11a/802.11	n20/802.11ac20	802.11n40/802.11ac40		802.11ac80			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
149	5745MHz	151	5755MHz	155	5775MHz		
153	5765MHz	159	5795MHz				
157	5785MHz						
161	5805MHz						
165	5825MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1					
802.11a/802.11i	n20/802.11ac20	802.11n40/802.11ac40		802.11ac80	
Channel	Frequency	Channel	Frequency	Channel	Frequency
Lowest channel	5180MHz	Lowest channel	5190MHz	Middle channel	5210MHz
Middle channel	5200MHz	Highest channel	5230MHz		
Highest channel	5240MHz				
		Band	4		
802.11a/802.11i	n20/802.11ac20	802.11n40/802.11ac40		802.11ac	80
Channel	Frequency	Channel	Frequency	Channel	Frequency
Lowest channel	5745MHz	Lowest channel	5755MHz	Middle channel	5775MHz
Middle channel	5785MHz	Highest channel 5795MHz			
Highest channel	5825MHz				

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Keep the EUT in 100	% duty cycle transmitting with modulation.		
	We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:			
Per-scan all kind of data rate, and	d found the follow lis	t were the worst case.		
Mode		Data rate		
802.11a		6 Mbps		
802.11n20		6.5 Mbps		
802.11n40		13.5 Mbps		
802.11ac		29.3 Mbps		

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

Report No: CCISE180413704

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 8 of 62

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018
Cable	HP	10503A	N/A	03-07-2018	03-06-2019
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an External antenna which cannot replace by end-user, the best case gain of the antenna is 2 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kH	Z		
Limit:	Frequency range	Limit (dBuV)	
	(MHz)	Quasi-peak		
	0.15-0.5	66 to 56*	0.15-0.5	
	0.5-5	56	0.5-5	
	5-30	60	5-30	
	* Decreases with the loga	arithm of the frequency.		
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 			
Test setup:	Reference Plane			
	Test table/Insulation p	.U.T Filter	— AC power	
	Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilizat Test table height=0.8m	tion Network		
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details.			
Test results:	Passed			

Measurement Data:

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv) & (a) (3)						
Test Method:	ANSI C63.10: 2013, KDB789033						
Limit:	Band 1: 24dBm Band 4: 30dBm						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.9 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-A18RK31						

6.4 Occupy Bandwidth

orr occupy Danaman	
Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)
Test Method:	ANSI C63.10:2013 and KDB 789033
Limit:	Band 1/2/3/4: N/A (26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz (6dB Bandwidth)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-A18RK31

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv) & (a)(3)
Test Method:	ANSI C63.10:2013, KDB 789033
Limit:	Band 1: 11 dBm/MHz Band 4: 30 dBm/500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.9 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-A18RK31

6.6 Band Edge

Test Requirement:	FCC Part 15 E Sec	FCC Part 15 E Section 15.407 (b)								
Test Method:	ANSI C63.10:2013	, KDB 789033								
Receiver setup:	Detector	RBW	VBW	Remark						
'	Quasi-peak	120kHz	300kHz	Quasi-peak Value						
	RMS	1MHz	3MHz	Average Value						
Limit:	Band	Limit (dBu	IV/m @3m)	Remark						
	Band 1/2/3	68	3.20	Peak Value						
	Danu 1/2/3	54	.00	Average Value						
	Band 4	78	3.20	Peak Value						
	Band 4 limit:	54	.00	Average Value						
	25 MHz above or be the band edge increasing line edge increasing line Remark: 1. Band 1/2/3 limit: E[dBµV/m] = EIR 2. Band 4 limit: E[dBµV/m] = EIR E[dBµV/m] = EIR	elow the band edeasing linearly to band edge, and early to a level of P[dBm] + 95.2=68 P[dBm] + 95.2=68 P[dBm] + 95.2=10	lge, and from 25 o a level of 15.6 from 5 MHz abo 27 dBm/MHz at .2 dBuV/m, for EIF .2 dBuV/m, for EIF 5.2 dBuV/m, for EIF	Š						
				IPR[dBm]=27dBm.						
Test Procedure:	the ground at a to determine the 2. The EUT was antenna, which tower. 3. The antenna has the ground to a Both horizonta make the measure 4. For each suspensive case and then meters and the to find the maxure 5. The test-received Specified Band 6. If the emission the limit specified for the EUT wou have 10dB maxure section.	a 3 meter camber the position of the set 3 meters away and was mounted or determine the mall and vertical polaries are antenna was a rotatable was to imum reading. The system was so with the antenna was a rotatable was to imum reading. The system was so with the waste of the EUT and then testing ould be reported. Orgin would be re-	The table was highest radiation y from the interfer on the top of a value of a value of a value of the EUT was arratuned to heights arned from 0 degret to Peak Detection peak mode would be stopped otherwise the entested one by or	erence-receiving riable-height antenna four meters above the field strength. antenna are set to anged to its worst is from 1 meter to 4 prees to 360 degrees of Function and						

Measurement Data (worst case):

Band 1:

	Band 1 - 802.11a									
	Test channel: Lowest channel									
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	48.21	31.38	7.05	41.93	44.71	68.20	-23.49	Horizontal		
5150.00	49.82	31.38	7.05	41.93	46.32	68.20	-21.88	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	38.74	31.38	7.05	41.93	35.24	54.00	-18.76	Horizontal		
5150.00	38.49	31.38	7.05	41.93	34.99	54.00	-19.01	Vertical		
				nnel: Highest						
				ctor: Peak V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	48.92	30.82	7.11	41.89	44.96	68.20	-23.24	Horizontal		
5350.00	47.19	30.82	7.11	41.89	43.23	68.20	-24.97	Vertical		
			Detec	tor: Average `	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	38.21	30.82	7.11	41.89	34.25	54.00	-19.75	Horizontal		
5350.00	38.92	30.82	7.11	41.89	34.96	54.00	-19.04	Vertical		
Domorle										

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11n(HT20)										
	Test channel: Lowest channel									
Detector: Peak										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	48.21	31.38	7.05	41.93	44.71	68.20	-23.49	Horizontal		
5150.00	48.82	31.38	7.05	41.93	45.32	68.20	-22.88	Vertical		
			De	tector: Avera	ge					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	38.49	31.38	7.05	41.93	34.99	54.00	-19.01	Horizontal		
5150.00	38.92	31.38	7.05	41.93	35.42	54.00	-18.58	Vertical		
			Test cha	nnel: Highest	channel					
				ctor: Peak V						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	48.24	30.82	7.11	41.89	44.28	68.20	-23.92	Horizontal		
5350.00	47.58	30.82	7.11	41.89	43.62	68.20	-24.58	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	38.91	30.82	7.11	41.89	34.95	54.00	-19.05	Horizontal		
5350.00	38.46	30.82	7.11	41.89	34.50	54.00	-19.50	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11n(HT40)									
Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	48.57	31.38	7.05	41.93	45.07	68.20	-23.13	Horizontal	
5150.00	48.31	31.38	7.05	41.93	44.81	68.20	-23.39	Vertical	
			Detec	tor: Average	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	38.11	31.38	7.05	41.93	34.61	54.00	-19.39	Horizontal	
5150.00	38.49	31.38	7.05	41.93	34.99	54.00	-19.01	Vertical	
			Took abov	anali limbaat	ah an na l				
				nnel: Highest					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	ector: Peak Va Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	48.92	30.82	7.11	41.89	44.96	68.20	-23.24	Horizontal	
5350.00	47.34	30.82	7.11	41.89	43.38	68.20	-24.82	Vertical	
			Detec	tor: Average	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	38.25	30.82	7.11	41.89	34.29	54.00	-19.71	Horizontal	
5350.00	38.13	30.82	7.11	41.89	34.17	54.00	-19.83	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT20)									
Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	48.25	31.38	7.05	41.93	44.75	68.20	-23.45	Horizontal	
5150.00	47.82	31.38	7.05	41.93	44.32	68.20	-23.88	Vertical	
			Detect	tor: Average `	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	36.19	31.38	7.05	41.93	32.69	54.00	-21.31	Horizontal	
5150.00	36.58	31.38	7.05	41.93	33.08	54.00	-20.92	Vertical	
			Toot abou	analı Lliabast	ahannal				
				nnel: Highest ector: Peak Va					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	48.37	30.82	7.11	41.89	44.41	68.20	-23.79	Horizontal	
5350.00	47.31	30.82	7.11	41.89	43.35	68.20	-24.85	Vertical	
			Detect	tor: Average `	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	35.16	30.82	7.11	41.89	31.20	54.00	-22.80	Horizontal	
5350.00	35.24	30.82	7.11	41.89	31.28	54.00	-22.72	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT40)										
	Test channel: Lowest channel									
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	48.92	31.38	7.05	41.93	45.42	68.20	-22.78	Horizontal		
5150.00	46.38	31.38	7.05	41.93	42.88	68.20	-25.32	Vertical		
			Detec	tor: Average `	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	37.54	31.38	7.05	41.93	34.04	54.00	-19.96	Horizontal		
5150.00	38.19	31.38	7.05	41.93	34.69	54.00	-19.31	Vertical		
			Test cha	nnel: Highest	channel					
			Dete	ctor: Peak V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	48.85	30.82	7.11	41.89	44.89	68.20	-23.31	Horizontal		
5350.00	47.38	30.82	7.11	41.89	43.42	68.20	-24.78	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	35.94	30.82	7.11	41.89	31.98	54.00	-22.02	Horizontal		
5350.00	36.19	30.82	7.11	41.89	32.23	54.00	-21.77	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT80)									
Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	48.25	31.38	7.05	41.93	44.75	68.20	-23.45	Horizontal	
5150.00	46.73	31.38	7.05	41.93	43.23	68.20	-24.97	Vertical	
			Detec	tor: Average `	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	38.21	31.38	7.05	41.93	34.71	54.00	-19.29	Horizontal	
5150.00	38.16	31.38	7.05	41.93	34.66	54.00	-19.34	Vertical	
				nnel: Highest					
				ctor: Peak Va	alue			1	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	48.28	30.82	7.11	41.89	44.32	68.20	-23.88	Horizontal	
5350.00	47.31	30.82	7.11	41.89	43.35	68.20	-24.85	Vertical	
			Detec	tor: Average `	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	35.15	30.82	7.11	41.89	31.19	54.00	-22.81	Horizontal	
5350.00	36.82	30.82	7.11	41.89	32.86	54.00	-21.14	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

Dalla 4.								
			Ва	nd 4 – 802.1	1a			
			Test cha	nnel: Lowest	channel			
			Dete	ector: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	48.32	31.03	7.69	41.94	45.10	78.20	-33.10	Horizontal
5725.00	47.92	31.03	7.69	41.94	44.70	78.20	-33.50	Vertical
			Detec	tor: Average `	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	38.13	31.03	7.69	41.94	34.91	54.00	-19.09	Horizontal
5725.00	37.25	31.03	7.69	41.94	34.03	54.00	-19.97	Vertical
			Toot abou	analı İlimbası	ahannal			
				nnel: Highest				
				ector: Peak V	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	46.29	31.37	7.90	42.03	43.53	78.20	-34.67	Horizontal
5850.00	46.38	31.37	7.90	42.03	43.62	78.20	-34.58	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	36.21	31.37	7.90	42.03	33.45	54.00	-20.55	Horizontal
5850.00	35.76	31.37	7.90	42.03	33.00	54.00	-21.00	Vertical
Domork:								

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11n(HT20)									
	Test channel: Lowest channel									
			Dete	ector: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	48.25	31.03	7.69	41.94	45.03	78.20	-33.17	Horizontal		
5725.00	46.38	31.03	7.69	41.94	43.16	78.20	-35.04	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	36.19	31.03	7.69	41.94	32.97	54.00	-21.03	Horizontal		
5725.00	36.82	31.03	7.69	41.94	33.60	54.00	-20.40	Vertical		
				nnel: Highest						
			Dete	ctor: Peak V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	46.97	31.37	7.90	42.03	44.21	78.20	-33.99	Horizontal		
5850.00	45.29	31.37	7.90	42.03	42.53	78.20	-35.67	Vertical		
			Detec	tor: Average `	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	36.97	31.37	7.90	42.03	34.21	54.00	-19.79	Horizontal		
5850.00	36.18	31.37	7.90	42.03	33.42	54.00	-20.58	Vertical		
Romark:										

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 - 802.11n(HT40)										
			Test cha	nnel: Lowest	channel						
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	48.36	31.03	7.69	41.94	45.14	78.20	-33.06	Horizontal			
5725.00	46.38	31.03	7.69	41.94	43.16	78.20	-35.04	Vertical			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	36.18	31.03	7.69	41.94	32.96	54.00	-21.04	Horizontal			
5725.00	36.97	31.03	7.69	41.94	33.75	54.00	-20.25	Vertical			
				nnel: Highest							
				ector: Peak V	alue		_	I			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	46.39	31.37	7.90	42.03	43.63	78.20	-34.57	Horizontal			
5850.00	47.42	31.37	7.90	42.03	44.66	78.20	-33.54	Vertical			
			Detec	tor: Average	Value						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	36.29	31.37	7.90	42.03	33.53	54.00	-20.47	Horizontal			
5850.00	34.15	31.37	7.90	42.03	31.39	54.00	-22.61	Vertical			
Pomork:											

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	l – 802.11ac((HT20)				
			Test cha	nnel: Lowest	channel				
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	48.24	31.03	7.69	41.94	45.02	78.20	-33.18	Horizontal	
5725.00	48.36	31.03	7.69	41.94	45.14	78.20	-33.06	Vertical	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	36.12	31.03	7.69	41.94	32.90	54.00	-21.10	Horizontal	
5725.00	36.72	31.03	7.69	41.94	33.50	54.00	-20.50	Vertical	
			Test cha	nnel: Highest	channel				
			Dete	ector: Peak V	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	46.29	31.37	7.90	42.03	43.53	78.20	-34.67	Horizontal	
5850.00	46.72	31.37	7.90	42.03	43.96	78.20	-34.24	Vertical	
			Detec	tor: Average	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	36.28	31.37	7.90	42.03	33.52	54.00	-20.48	Horizontal	
5850.00	36.97	31.37	7.90	42.03	34.21	54.00	-19.79	Vertical	
Domorla									

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	l – 802.11ac((HT40)					
			Test cha	nnel: Lowest	channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	49.36	31.03	7.69	41.94	46.14	78.20	-32.06	Horizontal		
5725.00	48.27	31.03	7.69	41.94	45.05	78.20	-33.15	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	36.15	31.03	7.69	41.94	32.93	54.00	-21.07	Horizontal		
5725.00	36.97	31.03	7.69	41.94	33.75	54.00	-20.25	Vertical		
	Test channel: Highest channel									
			Dete	ctor: Peak V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	49.21	31.37	7.90	42.03	46.45	78.20	-31.75	Horizontal		
5850.00	47.29	31.37	7.90	42.03	44.53	78.20	-33.67	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	36.73	31.37	7.90	42.03	33.97	54.00	-20.03	Horizontal		
5850.00	35.93	31.37	7.90	42.03	33.17	54.00	-20.84	Vertical		
Pomark:										

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	l – 802.11ac((HT80)				
			Test cha	nnel: Middle	channel				
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	46.21	31.03	7.69	41.94	42.99	78.20	-35.21	Horizontal	
5725.00	47.36	31.03	7.69	41.94	44.14	78.20	-34.06	Vertical	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5725.00	36.29	31.03	7.69	41.94	33.07	54.00	-20.93	Horizontal	
5725.00	36.73	31.03	7.69	41.94	33.51	54.00	-20.49	Vertical	
			Test cha	ınnel: Middle	channel				
			Dete	ector: Peak V	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	46.94	31.37	7.90	42.03	44.18	78.20	-34.02	Horizontal	
5850.00	49.43	31.37	7.90	42.03	46.67	78.20	-31.53	Vertical	
			Detec	tor: Average	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5850.00	36.48	31.37	7.90	42.03	33.72	54.00	-20.28	Horizontal	
5850.00	38.16	31.37	7.90	42.03	35.40	54.00	-18.60	Vertical	
Domorke									

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

6.7.1 Restricted Band								
Test Requirement:	FCC Part15 E Se	ection 15.	.407(I	b)				
Test Method:	ANSI C63.10: 20)13						
Test Frequency Range:	4.5 GHz to 5.15	GHz and	5.350	GHz to 5.46G	Hz			
Test site:	Measurement Di	stance: 3	m					
Receiver setup:	Frequency	Detect		RBW	VB		Remark	
	Above 1GHz	Peak RMS		1MHz 1MHz	3MI 3MI		Peak Value	
Limit:	Frequency	·		t (dBuV/m @3		ПΖ	Average Value Remark	
Limic	Above 1GH			74.00			Peak Value	
				54.00		Average Value		
Test Procedure:	the ground a to determine 2. The EUT was antenna, who tower. 3. The antenna the ground the ground the ground the make the m 4. For each su case and the meters and to find the m 5. The test-reconspecified Bar 6. If the emissing the limit specified Burner 10dB is the second to find the EUT where the second the first specified Bar 10dB is the second	at a 3 meters the positive set 3 meters as set 3 meters as set 3 meters as set 3 meters and version level of the position level of t	ter capition of neters mound so variation of the enters able with I of the enters report ould be hod a	amber. The taper the highest is away from the top ted on the top ed from one remaximum val polarization is was turned from the was turned from the ed	ble wa radiation he interport of a value of	is rota on. inferent variable o four of the fee ante errange ect Fulle. was 1 ed and emissione us	meters above field strength. enna are set to ed to its worst m 1 meter to 4 s to 360 degrees	
			Test	Ground Reference Plane Receiver Amplife	Controller			
Test Instruments:	Refer to section	5.9 for de	etails					
Test mode:	Refer to section	5.3 for de	etails					
Test results:	Passed							

Measurement Data (worst case):

Band 1:

			Ва	nd 1 – 802.1	1a					
			Test cha	nnel: Lowest	channel					
			Dete	ctor: Peak V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	47.36	29.30	6.80	42.05	41.41	74.00	-32.59	Horizontal		
4500.00	46.19	29.30	6.80	42.05	40.24	74.00	-33.76	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	37.30	29.30	6.80	42.05	31.35	54.00	-22.65	Horizontal		
4500.00	37.13	29.30	6.80	42.05	31.18	54.00	-22.82	Vertical		
			Test cha	nnel: Highest	channel					
			Dete	ctor: Peak V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	46.29	30.54	7.18	41.85	42.16	74.00	-31.84	Horizontal		
5460.00	48.35	30.54	7.18	41.85	44.22	74.00	-29.78	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	36.92	30.54	7.18	41.85	32.79	54.00	-21.21	Horizontal		
5460.00	36.39	30.54	7.18	41.85	32.26	54.00	-21.74	Vertical		
Pomark:										

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band	1 – 802.11n(i	HT20)				
			Test cha	nnel: Lowest	channel				
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	48.69	29.30	6.80	42.05	42.74	74.00	-31.26	Horizontal	
4500.00	47.79	29.30	6.80	42.05	41.84	74.00	-32.16	Vertical	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	36.59	29.30	6.80	42.05	30.64	54.00	-23.36	Horizontal	
4500.00	36.72	29.30	6.80	42.05	30.77	54.00	-23.23	Vertical	
			Test cha	nnel: Highest	channel				
			Dete	ector: Peak V	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	48.62	30.54	7.18	41.85	44.49	74.00	-29.51	Horizontal	
5460.00	48.17	30.54	7.18	41.85	44.04	74.00	-29.96	Vertical	
			Detec	tor: Average	Value				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	36.87	30.54	7.18	41.85	32.74	54.00	-21.26	Horizontal	
5460.00	36.34	30.54	7.18	41.85	32.21	54.00	-21.79	Vertical	
Domorla									

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band	1 – 802.11n(l	HT40)					
			Test cha	nnel: Lowest	channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	47.29	29.30	6.80	42.05	41.34	74.00	-32.66	Horizontal		
4500.00	46.17	29.30	6.80	42.05	40.22	74.00	-33.78	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	37.29	29.30	6.80	42.05	31.34	54.00	-22.66	Horizontal		
4500.00	37.21	29.30	6.80	42.05	31.26	54.00	-22.74	Vertical		
				nnel: Highest						
				ector: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	47.52	30.54	7.18	41.85	43.39	74.00	-30.61	Horizontal		
5460.00	46.98	30.54	7.18	41.85	42.85	74.00	-31.15	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	36.25	30.54	7.18	41.85	32.12	54.00	-21.88	Horizontal		
5460.00	35.78	30.54	7.18	41.85	31.65	54.00	-22.35	Vertical		
Pomork:										

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 1	l - 802.11ac	(HT20)					
			Test cha	nnel: Lowest	channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	47.34	29.30	6.80	42.05	41.39	74.00	-32.61	Horizontal		
4500.00	48.42	29.30	6.80	42.05	42.47	74.00	-31.53	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	36.43	29.30	6.80	42.05	30.48	54.00	-23.52	Horizontal		
4500.00	36.52	29.30	6.80	42.05	30.57	54.00	-23.43	Vertical		
				nnel: Highest						
			Dete	ector: Peak V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	47.54	30.54	7.18	41.85	43.41	74.00	-30.59	Horizontal		
5460.00	47.76	30.54	7.18	41.85	43.63	74.00	-30.37	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	36.64	30.54	7.18	41.85	32.51	54.00	-21.49	Horizontal		
5460.00	37.74	30.54	7.18	41.85	33.61	54.00	-20.39	Vertical		
Domark:	·		·	·			·			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 1	- 802.11ac((HT40)					
			Test cha	nnel: Lowest	channel					
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	47.36	29.30	6.80	42.05	41.41	74.00	-32.59	Horizontal		
4500.00	46.43	29.30	6.80	42.05	40.48	74.00	-33.52	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4500.00	36.46	29.30	6.80	42.05	30.51	54.00	-23.49	Horizontal		
4500.00	37.58	29.30	6.80	42.05	31.63	54.00	-22.37	Vertical		
	Test channel: Highest channel									
			Dete	ctor: Peak V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	47.81	34.90	7.18	41.85	48.04	74.00	-25.96	Horizontal		
5460.00	48.62	34.90	7.18	41.85	48.85	74.00	-25.15	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	37.52	34.90	7.18	41.85	37.75	54.00	-16.25	Horizontal		
5460.00	36.43	34.90	7.18	41.85	36.66	54.00	-17.34	Vertical		
Pomork:										

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 1	– 802.11ac((HT80)			
			Test cha	nnel: Lowest	channel			
			Dete	ctor: Peak V	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	47.41	29.30	6.80	42.05	41.46	74.00	-32.54	Horizontal
4500.00	46.41	29.30	6.80	42.05	40.46	74.00	-33.54	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	37.53	29.30	6.80	42.05	31.58	54.00	-22.42	Horizontal
4500.00	36.16	29.30	6.80	42.05	30.21	54.00	-23.79	Vertical
				nnel: Highest				
			Dete	ctor: Peak V	alue			_
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	48.25	30.54	7.18	41.85	44.12	74.00	-29.88	Horizontal
5460.00	47.91	30.54	7.18	41.85	43.78	74.00	-30.22	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	38.62	30.54	7.18	41.85	34.49	54.00	-19.51	Horizontal
5460.00	37.96	30.54	7.18	41.85	33.83	54.00	-20.17	Vertical
Remark [.]	<u> </u>							

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

			Ва	nd 4 – 802.1	1a							
			Test cha	nnel: Lowest	channel							
			Dete	ctor: Peak V	alue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	47.44	30.82	7.11	41.89	43.48	74.00	-30.52	Horizontal				
5350.00	48.98	30.82	7.11	41.89	45.02	74.00	-28.98	Vertical				
	Detector: Average Value											
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5350.00	36.74	30.82	7.11	41.89	32.78	54.00	-21.22	Horizontal				
5350.00	36.17	30.82	7.11	41.89	32.21	54.00	-21.79	Vertical				
			Test cha	nnel: Lowest	channel							
			Dete	ector: Peak V	alue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	46.70	30.54	7.18	41.85	42.57	74.00	-31.43	Horizontal				
5460.00	46.77	30.54	7.18	41.85	42.64	74.00	-31.36	Vertical				
			Detec	tor: Average `	Value							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	36.90	30.54	7.18	41.85	32.77	54.00	-21.23	Horizontal				
5460.00	36.72	30.54	7.18	41.85	32.59	54.00	-21.41	Vertical				

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	4 – 802.11n(l	HT20)					
			Test cha	nnel: Lowest	channel					
			Dete	ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	46.43	30.82	7.11	41.89	42.47	74.00	-31.53	Horizontal		
5350.00	46.60	30.82	7.11	41.89	42.64	74.00	-31.36	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	36.64	30.82	7.11	41.89	32.68	54.00	-21.32	Horizontal		
5350.00	36.65	30.82	7.11	41.89	32.69	54.00	-21.31	Vertical		
				nnel: Lowest						
				ctor: Peak Va	alue			1		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	47.76	30.54	7.18	41.85	43.63	74.00	-30.37	Horizontal		
5460.00	47.72	30.54	7.18	41.85	43.59	74.00	-30.41	Vertical		
			Detect	tor: Average `	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	35.97	30.54	7.18	41.85	31.84	54.00	-22.16	Horizontal		
5460.00	36.76	30.54	7.18	41.85	32.63	54.00	-21.37	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band	4 – 802.11n(l	HT40)					
			Test cha	nnel: Lowest	channel					
			Dete	ector: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	46.82	30.82	7.11	41.89	42.86	74.00	-31.14	Horizontal		
5350.00	47.25	30.82	7.11	41.89	43.29	74.00	-30.71	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	35.60	30.82	7.11	41.89	31.64	54.00	-22.36	Horizontal		
5350.00	36.73	30.82	7.11	41.89	32.77	54.00	-21.23	Vertical		
				nnel: Lowest						
				ector: Peak V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	47.25	30.54	7.18	41.85	43.12	74.00	-30.88	Horizontal		
5460.00	46.24	30.54	7.18	41.85	42.11	74.00	-31.89	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	36.87	30.54	7.18	41.85	32.74	54.00	-21.26	Horizontal		
5460.00	36.86	30.54	7.18	41.85	32.73	54.00	-21.27	Vertical		
				•	•			-		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	l – 802.11ac(HT20)					
			Test cha	nnel: Lowest	channel					
			Dete	ctor: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	47.77	30.82	7.11	41.89	43.81	74.00	-30.19	Horizontal		
5350.00	46.71	30.82	7.11	41.89	42.75	74.00	-31.25	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	35.70	30.82	7.11	41.89	31.74	54.00	-22.26	Horizontal		
5350.00	36.17	30.82	7.11	41.89	32.21	54.00	-21.79	Vertical		
			Toot obo	nnel: Lowest	ahannal					
				ctor: Peak Va						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	47.70	30.54	7.18	41.85	43.57	74.00	-30.43	Horizontal		
5460.00	47.77	30.54	7.18	41.85	43.64	74.00	-30.36	Vertical		
			Detect	tor: Average `	√alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	36.90	30.54	7.18	41.85	32.77	54.00	-21.23	Horizontal		
5460.00	36.72	30.54	7.18	41.85	32.59	54.00	-21.41	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	l – 802.11ac(HT40)					
			Test cha	nnel: Lowest	channel					
			Dete	ctor: Peak V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	47.63	30.82	7.11	41.89	43.67	74.00	-30.33	Horizontal		
5350.00	46.73	30.82	7.11	41.89	42.77	74.00	-31.24	Vertical		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	36.64	30.82	7.11	41.89	32.68	54.00	-21.32	Horizontal		
5350.00	36.65	30.82	7.11	41.89	32.69	54.00	-21.31	Vertical		
			Test cha	nnel: Lowest	channel					
				ector: Peak V						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	47.25	30.54	7.18	41.85	43.12	74.00	-30.88	Horizontal		
5460.00	46.72	30.54	7.18	41.85	42.59	74.00	-31.41	Vertical		
			Detec	tor: Average	Value					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	36.97	30.54	7.18	41.85	32.84	54.00	-21.16	Horizontal		
5460.00	36.76	30.54	7.18	41.85	32.63	54.00	-21.37	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4	l – 802.11ac(HT80)			
			Test cha	nnel: Middle	channel			
			Dete	ctor: Peak V	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	47.44	30.82	7.11	41.89	43.48	74.00	-30.52	Horizontal
5350.00	46.98	30.82	7.11	41.89	43.02	74.00	-30.98	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	36.60	30.82	7.11	41.89	32.64	54.00	-21.36	Horizontal
5350.00	36.73	30.82	7.11	41.89	32.77	54.00	-21.23	Vertical
			Test cha	nnel: Middle	channel			
			Dete	ector: Peak V	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	48.82	30.54	7.18	41.85	44.69	74.00	-29.31	Horizontal
5460.00	47.34	30.54	7.18	41.85	43.21	74.00	-30.79	Vertical
			Detec	tor: Average	Value			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.87	30.54	7.18	41.85	32.74	54.00	-21.26	Horizontal
5460.00	36.16	30.54	7.18	41.85	32.03	54.00	-21.97	Vertical

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

6.7.2 Unwanted Emission	s out of the Re	estricted I	Bands			
Test Requirement:	FCC Part15 C Se	ection 15.20	9 and 15.205			
Test Method:	ANSI C63.10: 20	13				
Test Frequency Range:	30MHz to 40GHz	<u>z</u>				
Test site:	Measurement Di	stance: 3m				
Receiver setup:	Frequency	Detector	RBW	VI	3W	Remark
'	30MHz-1GHz	Quasi-peak	100kHz	300)kHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3N	/lHz	Peak Value
	Above Toriz	RMS	1MHz		/Hz	Average Value
Limit:	Frequency		Limit (dBuV/m @	3m)		Remark
	30MHz-88MI		40.0			luasi-peak Value
	88MHz-216M		43.5			luasi-peak Value
	216MHz-960N 960MHz-1GI		46.0 54.0			uasi-peak Value uasi-peak Value
	900101112-1131	IZ	68.20		- G	Peak Value
	Above 1GH	z —	54.00			Average Value
	Remark:	l			1	· · · · · · · · · · · · · · · · · · ·
	Above 1GHz limit:					
	$E[dB\mu V/m] = EIRP$					
Test Procedure:	1GHz)/1.5m table was ro radiation. 2. The EUT wa antenna, wh tower. 3. The antenna ground to de horizontal al measureme 4. For each su and then the and the rota maximum re 5. The test-rec Specified Ba 6. If the emissi limit specifie EUT would 10dB margii	a (above 1GH) tated 360 de as set 3 meto as set 3 meto as height is value at height is value at the reported emitor of the and width wito and the reported. The reported emitor of the and would be reported. The reported emitor of the reported. The reported emitor of the reported. The reported emitor of the reported emitor of the reported. The reported emitor of the	egrees to determent away from the unted on the top aried from one maximum value olarizations of the ssion, the EUT as tuned to heigurned from 0 demonstrations of the Maximum Hole EUT in peaking could be stop Otherwise the ears away from the EUT in peaking could be stop Otherwise the ears away from the EUT in peaking could be stop Otherwise the ears away from the EUT in peaking could be stop Otherwise the ears away from the EUT in peaking could be stop Otherwise the ears away from the EUT in peaking could be stop Otherwise the ears away from the EUT in peaking the ears away from the ears away from the top aries away from the ears awa	ound a nine the ne inter to of a venue ter to e of the ne ante was are hts from the distriction of the ne are distriction on e us one us	t a 3 me position of the posit	e-receiving -height antenna neters above the strength. Both e set to make the to its worst case eter to 4 meters degrees to find the ction and add lower than the peak values of the t did not have ak, quasi-peak or
Test setup:	Below 1GHz	Turn 0.8m	4m		Antenna Search Antenna RF Test Receiver —	1

Measurement Data (worst case):

Below 1GHz

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz: Band 1:

			Band	1 – 802.1	1a			
			Test chann	el: Lowest	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	48.59	36.94	9.75	42.02	53.26	68.20	-14.94	Vertical
10360.00	48.92	36.94	9.75	42.02	53.59	68.20	-14.61	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	37.31	36.94	9.75	42.02	41.98	54.00	-12.02	Vertical
10360.00	37.49	36.94	9.75	42.02	42.16	54.00	-11.84	Horizontal
			Test chann	el: Middle	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	47.51	36.96	9.85	41.95	52.37	68.20	-15.83	Vertical
10400.00	47.38	36.96	9.85	41.95	52.24	68.20	-15.96	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	36.19	36.96	9.85	41.95	41.05	54.00	-12.95	Vertical
10400.00	37.58	36.96	9.85	41.95	42.44	54.00	-11.56	Horizontal
			Test chann	el· Highest	channel			
				or: Peak V				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	48.21	37.49	10.81	42.29	54.22	68.20	-13.98	Vertical
10480.00	46.92	37.49	10.81	42.29	52.93	68.20	-15.27	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	38.15	37.49	10.81	42.29	44.16	54.00	-9.84	Vertical
	30.13	07.40	10.01	0	11.10	01.00	0.0 .	Vertical

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are very lower than the limit and not show in test report.

			Test chann	- 802.11n(l				
				or: Peak V				
	Read	Antenna	Detecti	Preamp	alue	Limit	Over	
Frequency (MHz)	Level (dBuV)	Factor (dB/m)	Cable Loss (dB)	Factor (dB)	Level (dBuV/m)	Line (dBuV/m)	Limit (dB)	polarizatio
10360.00	48.35	36.94	9.75	42.02	53.02	68.20	-15.18	Vertical
10360.00	48.16	36.94	9.75	42.02	52.83	68.20	-15.37	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10360.00	38.21	36.94	9.75	42.02	42.88	54.00	-11.12	Vertical
10360.00	37.69	36.94	9.75	42.02	42.36	54.00	-11.64	Horizonta
			Test chann					
	T	T	Detecto	or: Peak Va	alue			T
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10400.00	48.21	36.96	9.85	41.95	53.07	68.20	-15.13	Vertical
10400.00	47.39	36.96	9.85	41.95	52.25	68.20	-15.95	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10400.00	36.91	36.96	9.85	41.95	41.77	54.00	-12.23	Vertical
10400.00	37.98	36.96	9.85	41.95	42.84	54.00	-11.16	Horizonta
			Test channe					
	T	T	Detecto	or: Peak Va	alue			T
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10480.00	48.92	37.49	10.81	42.29	54.93	68.20	-13.27	Vertical
10480.00	46.37	37.49	10.81	42.29	52.38	68.20	-15.82	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10480.00	38.94	37.49	10.81	42.29	44.95	54.00	-9.05	Vertical
10480.00	36.48	37.49	10.81	42.29	42.49	54.00	-11.51	Horizonta

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 49 of 62

			Band 1 -	- 802.11n(l	HT40)						
			Test chann	el: Lowest	channel						
			Detecto	or: Peak Va	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	49.21	36.94	9.75	42.02	53.88	68.20	-14.32	Vertical			
10380.00	48.25	36.94	9.75	42.02	52.92	68.20	-15.28	Horizontal			
Detector: Average Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	37.49	36.94	9.75	42.02	42.16	54.00	-11.84	Vertical			
10380.00	38.19	36.94	9.75	42.02	42.86	54.00	-11.14	Horizontal			
			Test channe	el: Highest	channel						
			Detecto	or: Peak V	alue						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	47.25	37.49	10.81	42.29	53.26	68.20	-14.94	Vertical			
10460.00	49.31	37.49	10.81	42.29	55.32	68.20	-12.88	Horizontal			
			Detector	: Average	Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	38.15	37.49	10.81	42.29	44.16	54.00	-9.84	Vertical			
10460.00	36.91	37.49	10.81	42.29	42.92	54.00	-11.08	Horizontal			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

				802.11ac	-			
			Test chann					
	T	T	Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10360.00	47.67	36.94	9.75	42.02	52.34	68.20	-15.86	Vertical
10360.00	47.62	36.94	9.75	42.02	52.29	68.20	-15.91	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10360.00	37.56	36.94	9.75	42.02	42.23	54.00	-11.77	Vertical
10360.00	37.64	36.94	9.75	42.02	42.31	54.00	-11.69	Horizonta
			Test chann					
	Ι	T	Detecto	or: Peak Va	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10400.00	46.61	36.96	9.85	41.95	51.47	68.20	-16.73	Vertical
10400.00	46.95	36.96	9.85	41.95	51.81	68.20	-16.39	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10400.00	36.86	36.96	9.85	41.95	41.72	54.00	-12.28	Vertical
10400.00	37.67	36.96	9.85	41.95	42.53	54.00	-11.47	Horizonta
			Test channe					
		1	Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10480.00	47.68	37.49	10.81	42.29	53.69	68.20	-14.51	Vertical
10480.00	46.57	37.49	10.81	42.29	52.58	68.20	-15.62	Horizonta
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarizatio
10480.00	38.43	37.49	10.81	42.29	44.44	54.00	-9.56	Vertical
10480.00	37.65	37.49	10.81	42.29	43.66	54.00	-10.34	Horizonta

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 51 of 62

	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	48.62	36.94	9.75	42.02	53.29	68.20	-14.91	Vertical
10380.00	49.76	36.94	9.75	42.02	54.43	68.20	-13.77	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10380.00	39.21	36.94	9.75	42.02	43.88	54.00	-10.12	Vertical
10380.00	38.46	36.94	9.75	42.02	43.13	54.00	-10.87	Horizontal
			Test channe	el· Hinhest	channel			
			Test channe					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)		el: Highest or: Peak Va Preamp Factor (dB)		Limit Line (dBuV/m)	Over Limit (dB)	polarization
•	Level	Factor	Detecto Cable	or: Peak Va Preamp Factor	alue Level	Line	Limit	polarization Vertical
(MHz)	Level (dBuV)	Factor (dB/m)	Cable Loss (dB)	or: Peak Va Preamp Factor (dB)	Level (dBuV/m)	Line (dBuV/m)	Limit (dB)	
(MHz) 10460.00	Level (dBuV) 47.25	Factor (dB/m) 37.49	Cable Loss (dB) 10.81 10.81	Preak Volume Preamp Factor (dB) 42.29	Level (dBuV/m) 53.26 52.78	Line (dBuV/m) 68.20	Limit (dB) -14.94	Vertical
(MHz) 10460.00	Level (dBuV) 47.25	Factor (dB/m) 37.49	Cable Loss (dB) 10.81 10.81	Preamp Factor (dB) 42.29	Level (dBuV/m) 53.26 52.78	Line (dBuV/m) 68.20	Limit (dB) -14.94	Vertical
(MHz) 10460.00 10460.00 Frequency	Level (dBuV) 47.25 46.77 Read Level	Factor (dB/m) 37.49 37.49 Antenna Factor	Cable Loss (dB) 10.81 10.81 Detector Cable	Preamp Factor (dB) 42.29 42.29 : Average Preamp Factor	Level (dBuV/m) 53.26 52.78 Value Level	Line (dBuV/m) 68.20 68.20 Limit Line	Limit (dB) -14.94 -15.42 Over Limit	Vertical Horizontal

Band 1 – 802.11ac(HT40)
Test channel: Lowest channel

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11ac(HT80)							
			Test chann	el: Lowest	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.00	48.25	36.96	9.85	41.95	53.11	68.20	-15.09	Vertical
10420.00	48.76	36.96	9.85	41.95	53.62	68.20	-14.58	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10420.00	39.62	36.96	9.85	41.95	44.48	54.00	-9.52	Vertical
10420.00	38.49	36.96	9.85	41.95	43.35	54.00	-10.65	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

Band 4:								
			Band	l 4 – 802.1	1a			
Test channel: Lowest channel								
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	48.38	37.49	10.81	42.29	54.39	74.00	-19.61	Vertical
11490.00	47.19	37.49	10.81	42.29	53.20	74.00	-20.80	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	38.62	37.49	10.81	42.29	44.63	54.00	-9.37	Vertical
11490.00	37.64	37.49	10.81	42.29	43.65	54.00	-10.35	Horizontal
			Test chann	el: Middle	channel			
	ı		Detecto	or: Peak V	alue			_
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	49.25	37.55	10.78	42.27	55.31	74.00	-18.69	Vertical
11570.00	48.34	37.55	10.78	42.27	54.40	74.00	-19.60	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	37.16	37.55	10.78	42.27	43.22	54.00	-10.78	Vertical
11570.00	36.82	37.55	10.78	42.27	42.88	54.00	-11.12	Horizontal
			Test channe					
	T		Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	49.21	37.60	10.76	42.26	55.31	74.00	-18.69	Vertical
11650.00	47.69	37.60	10.76	42.26	53.79	74.00	-20.21	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	37.46	37.60	10.76	42.26	43.56	54.00	-10.44	Vertical
11650.00	37.92	37.60	10.76	42.26	44.02	54.00	-9.98	Horizontal
Remark:								

Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4 -	- 802 11n/	HT20\			
	Band 4 – 802.11n(HT20) Test channel: Lowest channel							
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	48.15	37.49	10.81	42.29	54.16	74.00	-19.84	Vertical
11490.00	49.28	37.49	10.81	42.29	55.29	74.00	-18.71	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	36.71	37.49	10.81	42.29	42.72	54.00	-11.28	Vertical
11490.00	38.21	37.49	10.81	42.29	44.22	54.00	-9.78	Horizontal
			T4-1	-1. NA: 1.11	-l '			
			Test chann					
			Detecto	or: Peak V	alue	1,	0	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	46.57	37.55	10.78	42.27	52.63	74.00	-21.37	Vertical
11570.00	48.52	37.55	10.78	42.27	54.58	74.00	-19.42	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	36.92	37.55	10.78	42.27	42.98	54.00	-11.02	Vertical
11570.00	36.15	37.55	10.78	42.27	42.21	54.00	-11.79	Horizontal
			Test channe	ol: Highost	channol			
				or: Peak V				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	49.52	37.60	10.76	42.26	55.62	74.00	-18.38	Vertical
11650.00	49.71	37.60	10.76	42.26	55.81	74.00	-18.19	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	38.15	37.60	10.76	42.26	44.25	54.00	-9.75	Vertical
11650.00 Remark:	36.27	37.60	10.76	42.26	42.37	54.00	-11.63	Horizontal

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor. 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	Band 4 – 802.11n(HT40)							
	Test channel: Lowest channel							
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	46.20	37.50	10.81	42.29	52.22	74.00	-21.78	Vertical
11510.00	48.52	37.50	10.81	42.29	54.54	74.00	-19.46	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	36.92	37.50	10.81	42.29	42.94	54.00	-11.06	Vertical
11510.00	37.21	37.50	10.81	42.29	43.23	54.00	-10.77	Horizontal
			Test channe	el: Highest	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	46.71	37.56	10.77	42.27	52.77	74.00	-21.23	Vertical
11590.00	46.25	37.56	10.77	42.27	52.31	74.00	-21.69	Horizontal
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	37.19	37.56	10.77	42.27	43.25	54.00	-10.75	Vertical
11590.00	37.28	37.56	10.77	42.27	43.34	54.00	-10.66	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

			Band 4 –	802.11ac	(HT20)			
	Test channel: Lowest channel							
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	48.62	37.49	10.81	42.29	54.63	74.00	-19.37	Vertical
11490.00	47.64	37.49	10.81	42.29	53.65	74.00	-20.35	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	37.62	37.49	10.81	42.29	43.63	54.00	-10.37	Vertical
11490.00	38.64	37.49	10.81	42.29	44.65	54.00	-9.35	Horizontal
			Test chann	ol: Middle	channol			
				or: Peak V				
	D I	A	Detecto	l	alue	1.224	0	T T
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	46.98	37.55	10.78	42.27	53.04	74.00	-20.96	Vertical
11570.00	47.85	37.55	10.78	42.27	53.91	74.00	-20.09	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	37.62	37.55	10.78	42.27	43.68	54.00	-10.32	Vertical
11570.00	36.79	37.55	10.78	42.27	42.85	54.00	-11.15	Horizontal
			-					
			Test channe					
	Donat	A	Detecto	or: Peak V	alue	1 2 14	0	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	47.62	37.60	10.76	42.26	53.72	74.00	-20.28	Vertical
11650.00	49.62	37.60	10.76	42.26	55.72	74.00	-18.28	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	39.62	37.60	10.76	42.26	45.72	54.00	-8.28	Vertical
11650.00 Remark:	38.45	37.60	10.76	42.26	44.55	54.00	-9.45	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4 – 802.11ac(HT40)								
	Test channel: Lowest channel							
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	46.58	37.50	10.81	42.29	52.60	74.00	-21.40	Vertical
11510.00	47.69	37.50	10.81	42.29	53.71	74.00	-20.29	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	36.32	37.50	10.81	42.29	42.34	54.00	-11.66	Vertical
11510.00	35.79	37.50	10.81	42.29	41.81	54.00	-12.19	Horizontal
			Test chann	el: Highest	channel			
				or: Peak V				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	47.52	37.56	10.77	42.27	53.58	74.00	-20.42	Vertical
11590.00	46.29	37.56	10.77	42.27	52.35	74.00	-21.65	Horizontal
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	36.25	37.56	10.77	42.27	42.31	54.00	-11.69	Vertical
11590.00	35.78	37.56	10.77	42.27	41.84	54.00	-12.16	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 4 – 802.11ac(HT80)							
			Test chann	el: Middle	channel			
			Detecto	or: Peak V	alue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.00	47.62	37.54	10.81	42.29	53.68	74.00	-20.32	Vertical
11550.00	46.22	37.54	10.81	42.29	52.28	74.00	-21.72	Horizontal
			Detector	: Average	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.00	36.25	37.54	10.81	42.29	42.31	54.00	-11.69	Vertical
11550.00	38.40	37.54	10.81	42.29	44.46	54.00	-9.54	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

Test Poquirement:	ECC Part15 E Section 15 407 (a)					
Test Requirement:	FCC Part15 E Section 15.407 (g)					
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.					
Test setup:	Temperature Chamber					
	Spectrum analyzer EUT Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector					
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-A18RK31					