Del 1

Oppgave 1 Flervalgsoppgaver

Skriv svarene for oppgave 1 på eget svarskjema i vedlegg 2. (Du skal altså *ikke* levere inn selve eksamensoppgaven med oppgaveteksten.)

a) Bufferløsninger

pH i en bufferløsning er 8,9. Hvilket syre-base-par kan være i bufferen?

- A. NH_4^+/NH_3
- B. HCO_3^-/CO_3^{2-}
- C. $H_2PO_4^-/HPO_4^{2-}$
- D. CH₃COOH/CH₃COO-

b) Oksidasjonstall

I hvilken forbindelse har krom oksidasjonstall +3?

- A. CrCl₃
- B. K₂CrO₄
- C. CrO_3
- D. CrCl₂

c) Bufferløsning

Hvilken av disse stoffblandingene løst i 1,0 L vann blir en bufferløsning?

- A. $1,0 \text{ mol H}_3\text{PO}_4 \text{ og } 0,5 \text{ mol HCl}$
- B. $1,0 \text{ mol NaH}_2PO_4 \text{ og } 0,5 \text{ mol HCl}$
- C. 1,0 mol Na₂HPO₄ og 0,5 mol NaCl
- D. 1,0 mol Na₃PO₄ og 0,5 mol NaOH

d) Uorganisk analyse

Hvilket salt løst i vann gir en sur løsning?

- A. CaCl₂
- B. KOH
- C. AgNO₃
- D. NaHSO₄

e) Galvanisk celle

Den ene halvcellen i en galvanisk celle er nikkelmetall i en løsning av nikkelklorid. Den andre halvcellen er en elektrode av grafitt i en løsning av ett salt.

Hvilket salt er det i løsningen?

- A. NaOH
- B. CaCl₂
- C. CuSO₄
- D. $Zn(NO_3)_2$

f) Balansere likninger med halvreaksjoner

Den balanserte reaksjonslikningen for reaksjonen mellom fast kaliumpermanganat og konsentrert saltsyre skrives slik:

$$2KMnO_4(s) + 16HCI(aq) \rightarrow 2MnCI_2(aq) + 2KCI(aq) + 5CI_2(g) + 8H_2O(I)$$

Hvordan skal halvreaksjonen for oksidasjonsreaksjonen skrives?

- A. $MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(I)$
- B. $Mn^{2+}(aq) + 4H_2O(I) \rightarrow MnO_4^-(aq) + 8H^+(aq) + 5e^-$
- C. $Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$
- D. $2CI^{-}(aq) \rightarrow CI_{2}(g) + 2e^{-}$

g) Elektrolyse

Natrium kan framstilles ved elektrolyse fra smeltet NaCl ved ca. 800 °C.

Hva skjer ved anoden?

- A. $2CI^{-} \rightarrow CI_2 + 2e^{-}$
- B. $Cl_2 + 2e^- \rightarrow 2Cl^-$
- C. $Na^+ + 2e^- \rightarrow Na$
- D. Na \rightarrow Na⁺ + 2e⁻

h) Analyse

For å bestemme innholdet av kloridioner i en løsning kan man titrere med en løsning av AgNO₃ med kjent konsentrasjon. Indikatoren i denne titreringen er kromationer, CrO₄²⁻, som felles med sølvioner ved endepunktet for titreringen.

Hvilke av disse stoffene/ionene er til stede i titreringskolben ved halvtitreringspunktet? (Se bort fra ioner som ikke deltar i reaksjonen.)

- A. $CrO_4^{2-}(aq)$, $Ag^+(aq)$ og $Cl^-(aq)$
- B. $CrO_4^{2-}(aq)$, AgCl(s) og Cl⁻(aq)
- C. $Ag_2CrO_4(s)$ og AgCl(s)
- D. $Ag^+(aq) \text{ og } Cl^-(aq)$

i) Elektrolyse

Ved elektrolyse av smeltet blyjodid, Pbl₂, blir det dannet jod, l₂, ved en av elektrodene.

Under følger to påstander om denne elektrolysen.

- i) Jodidioner, I⁻, blir oksidert.
- ii) Det blir dannet metallisk bly ved katoden.

Er noen av påstandene riktige?

- A. Ja, begge er riktige.
- B. Ja, men bare i).
- C. Ja, men bare ii).
- D. Nei, begge er gale.

j) Reaksjoner

Figur 1 viser hva som kan skje når en metalltråd legges ned i en saltløsning.

Figur 1

Hva slags metall og hva slags salt vil gi denne reaksjonen?

- A. Metallet er gull, og løsningen er FeCl₂(aq).
- B. Metallet er sølv, og løsningen er CuCl₂(aq).
- C. Metallet er natrium, og løsningen er HCl(aq).
- D. Metallet er kobber, og løsningen er AgNO₃(aq).

k) Organisk analyse

Butanon blir redusert i en syntesereaksjon.

Hvilket reagens kan vi bruke til å påvise den funksjonelle gruppen i produktet?

- A. FeCl₃
- B. kromsyrereagens
- C. mettet NaHCO₃(aq)
- D. 2,4-dinitrofenylhydrazin

I) Organisk analyse

¹H-NMR til en forbindelse har kjemisk skift ved ppm lik 1,20 (dublett), 2,58 (septett) og 11,88 (singlett).

Hvilken av disse forbindelsene kan gi dette spekteret?

- A. butan-1-al
- B. butan-2-on
- C. 2-metylpropan-2-ol
- D. 2-metylpropansyre

m) Isomeri

Figur 2 viser lipidet gonan.

Hvor mange kirale sentre har gonan?

- A. 5
- B. 6
- C. 7
- D. 8

Figur 2

n) Organisk analyse

 $^{1}\text{H-NMR}$ til en forbindelse med kjemisk formel $C_{3}H_{6}CI_{2}$ viser bare et signal, en singlett, ved ppm = 2,21.

Hvilken av disse forbindelsene er det?

- A. 1,1-diklorpropan
- B. 1,2-diklorpropan
- C. 1,3-diklorpropan
- D. 2,2-diklorpropan

Figur 3 viser massespekteret til et alkan med kjemisk formel C₅H₁₂.

Hvilken av strukturene vist i figur 4 viser det fragmentet som gir opphav til hovedtoppen i spekteret?

Figur 4

- A. Struktur A
- B. Struktur B
- C. Struktur C
- D. Struktur D

p) Organisk syntese

En reaksjonsblanding består av 1,5 mol metanol og 1,0 mol propansyre. Til denne reaksjonsblandingen tilsettes litt konsentrert svovelsyre. Det skjer en kondensasjonsreaksjon.

Hvor mange mol metylpropanat kan maksimalt bli dannet i denne reaksjonen?

- A. 2,5 mol
- B. 1,5 mol
- C. 1,0 mol
- D. 0,5 mol

q) Aminosyrer

Hvilken av disse aminosyrene har en upolar R-gruppe?

- A. asparagin
- B. serin
- C. valin
- D. treonin

r) Enzymer

Hvordan begynner en enzymkatalysert reaksjon?

- A. Substratet binder seg til det aktive setet i enzymet.
- B. Enzymet binder seg til det aktive setet i substratet.
- C. Produktet binder seg til det aktive setet i enzymet.
- D. Enzymet binder seg til det aktive setet i produktet.

s) Polymerer, materiale

Figur 5 viser utsnitt av polymeren Kevlar. Kevlar er en polymer som har ekstrem styrke.

Denne polymeren er bygd opp av to typer monomerer som er bundet sammen med amidbindinger. En amidbinding er markert på figuren med en rød ring. Mellom polymerkjedene er det svake bindinger.

Under følger tre påstander om denne polymeren.

- i) Polymeren er en kondensasjonspolymer.
- ii) Den ene monomeren er 4-aminobenzosyre.
- iii) Mellom polymerkjedene er det hydrogenbindinger.

Er noen av påstandene riktige?

- A. Nei, alle er gale.
- B. Ja, men bare i) og ii).
- C. Ja, men bare i) og iii).
- D. Ja, alle er riktige.

t) Biokjemiske reaksjoner

I røttene til planter blir nitrat omdannet til ammoniakk. Først blir nitrat omdannet til nitritt, se figur 6. Denne reaksjonen er katalysert av et enzym.

Figur 6

Under følger to påstander om denne reaksjonen:

- i) Dette enzymet er en oksidase.
- ii) X kan være NADH + H+

Er noen av påstandene riktige?

- A. Nei, begge er gale.
- B. Ja, men bare i).
- C. Ja, men bare ii).
- D. Ja, begge er riktige.

Oppgave 2

a)

1) Når HBr adderes til cis-pent-2-en, kan det dannes ulike produkter.

- Tegn strukturformelen til to ulike produkter, og marker tydelig på figuren atomene som er addert.
- Forklar hvorfor det kan dannes ulike produkter.
- 2) Reaksjonen er en hydrolyse av en ester. Tegn strukturformel til forbindelsene A og B.

- Tegn strukturformelen til en kjemisk forbindelse med formel C₃H₀O som kan oksideres.
 - Gi ett eksempel på et påvisningsreagens som <u>oksidasjonsproduktet</u> fra reaksjonen i punktet ovenfor kan reagere med.

b)

- 1) Hva består en bufferløsning av? Hvilke egenskaper har en buffer?
- 2) Du skal lage en buffer med pH = 5,0. Forklar hvorfor en eddiksyre/acetatbuffer er et godt valg.
- Du skal lage 1 liter eddiksyre/acetatbuffer med pH = pK_a . Forklar hvilke to av de fire reagensene under du må velge for å få størst mulig bufferkapasitet.
 - NaOH(s)
 - NaCH₃COO(s)
 - 1 mol/L HCl(aq)
 - 0,5 mol/L CH₃COOH(aq)

c)

Du har en blanding av to salter. Saltene er hentet fra listen under. Alle saltene er løselige i vann. Saltblandingen består av en blanding av hvitt salt og salt med grønnaktig farge.

- FeSO₄
- NiSO₄
- CuSO₄,
- Pb(CH₃COO)₂
- Na₂CO₃
- Nal
- 1) Når du prøver å løse litt av saltblandingen i vann, blir det dannet et bunnfall, selv om alle saltene er løselige hver for seg.

Skriv to mulige reaksjonslikninger for denne fellingsreaksjonen.

2) Til litt av den faste saltblandingen tilsetter du litt 6M HNO₃. Du kjenner en skarp lukt, men du observerer ingen gassbobler.

Forklar hva du nå vet om saltblandingen. Skriv reaksjonslikning.

- 3) Du tilsetter litt av saltblandingen til to små begerglass med vann. Til hvert av begerglassene tilsetter du et reagens og gjør disse observasjonene:
 - 1 % dimetylglyoksim gir en sterk rosa farge.
 - [Fe(CN)₆]³⁻ gir en brun løsning.

Forklar ut fra disse observasjonene hvilke salter som sannsynligvis finnes i saltblandingen.

Del 2

Oppgave 3

Aspartam er et kunstig søtningsmiddel og blir brukt i sukkerfrie drikkevarer. Strukturen til aspartam er vist i figur 7. Aspartam er satt sammen av tre ulike komponenter: metanol og de to aminosyrene fenylalanin og asparaginsyre.

Aspartam, C₁₄H₁₈N₂O₅ Molar masse: 294,3 g/mol

Figur 7

- a) Hovedtoppen i massespekteret til aspartam er et fragment med m/z = 91 u. Tegn av strukturformelen til aspartam, og marker tydelig hvilken del av molekylet som kan gi opphav til dette fragmentet.
- b) Aspartam blir i fordøyelseskanalen brutt ned til de tre komponentene. Det er fordi vi har enzymer i fordøyelseskanalen som kan spalte aspartam til de tre komponentene. Forklar hva slags type bindinger disse enzymene spalter.
- c) Det er en del uenighet rundt bruken av aspartam. Noen mener at langtidsbruk fører til forskjellige helseskader. Øvre grense for daglig inntak uten helseeffekt er i Europa satt til 40 mg per kg kroppsvekt.

En type lettbrus inneholder 530 mg aspartam per liter.

- Hvor mye av denne typen lettbrus kan en person på 60 kg drikke per dag ifølge europeiske helsemyndigheter?
- Hvor mange mg metanol tilsvarer det?

d) Første trinn i syntese av aspartam er å lage metylesteren av fenylalanin, slik figur 8 viser.

Reaksjon mellom forbindelsen som er vist i figur 8, og asparaginsyre kan gi to ulike produkter.

- Skisser strukturformelen til disse produktene.
- Forklar hvorfor det kan dannes ulike produkter.
- e) Tabell 1 inneholder opplysninger om sukrose og aspartam.

Tabell 1

100011 =		
	Sukrose	Aspartam
Molar masse	342,30 g/mol	294,31 g/mol
Tetthet	1,587 g/cm ³	1,347 g/cm ³
Smeltepunkt	Dekomponerer ved 186 °C	246-247 °C
Kokepunkt	-	Dekomponerer
Løselighet i vann	Ca. 2000 g/L ved 25 °C	Ca. 10 mg/L ved 25 °C
рK _а	12,62	4,5

En blanding inneholder om lag 10 g sukrose og 1 g aspartam. En elev har fått i oppgave å separere aspartam fra sukrose, der produktet skal være fast aspartam.

- Vurder hva som er den beste metoden for å skille disse stoffene på skolelaboratoriet.
- Forklar kort hvordan eleven i praksis kan gå fram for å få størst mulig utbytte av ren aspartam.

Oppgave 4

12. august 2015 eksploderte et kjemikalielager i Tianjin i Kina. I etterkant fant man høye konsentrasjoner av det svært giftige stoffet natriumcyanid. Stoffet stammet fra et ulovlig lager av stoffet.

Natriumcyanid er den korresponderende basen til den svake syren hydrogencyanid. HCN er løselig i vann.

Hentet fra HMS datablad om NaCN(s)

Signalord: Fare
Henvisninger om fare:
H300+H310+H330 Dødelig ved
svelging, hudkontakt eller inhalering.
H410 Meget giftig, med langtidsvirkning,
for liv i vann.

EUH032 Ved kontakt med syrer utvikles den meget giftige gassen HCN.

Konsentrasjonen til cyanidioner, CN⁻, i en løsning kan bestemmes ved titrering. Fra byretten tilsettes en løsning med sølvioner, Ag⁺, med kjent konsentrasjon.

a) Indikator ved denne titreringen er jodidioner, l. Endepunktet for titreringen er når løsningen får en varig og ugjennomsiktig gul farge.

Forklar hvilket gult stoff som blir dannet i titreringskolben ved endepunktet av titreringen.

b) Sølvioner reagerer med cyanidioner i titreringskolben og danner et kompleksion:

$$Ag^{+}(aq) + 2CN^{-}(aq) \rightleftharpoons [Ag(CN)_{2}]^{-}(aq)$$

Verken karbon eller nitrogen endrer oksidasjonstall i denne reaksjonen.

- Bruk denne informasjonen, og finn oksidasjonstallet til sølv i kompleksionet [Ag(CN)₂]⁻.
- Forklar om denne reaksjonen er en redoksreaksjon.

- c) Konsentrasjonen til cyanidioner i en løsning ble bestemt slik:
 - 25,00 mL av løsningen ble fortynnet 20 ganger med destillert vann.
 - 25,00 mL av den fortynnede løsningen ble overført til en erlenmeyerkolbe og tilsatt ca. 75 mL destillert vann, indikator og litt 6 mol/L NH₃. Dette er prøveløsningen.
 - Prøveløsningen ble titrert med 0,0103 mol/L løsning av sølvnitrat, AgNO₃. Forbruket av sølvnitratløsning var 13,70 mL.

Beregn konsentrasjonen til cyanidioner i den ufortynnede løsningen.

d) For å forhindre utfelling av sølvcyanid, AgCN(s), i løpet av titreringen blir prøveløsningen tilsatt NH₃.

En laborant som skulle utføre titreringen, var klar til å tilsette en løsning med NH₄Cl i stedet for NH₃, men ble stoppet i tide.

Bruk informasjonen i innledningen til Oppgave 4 og annen relevant informasjon, og vurder om tilsetting av NH₄Cl til prøveløsningen kunne medført en sikkerhetsrisiko.

- e) Enzymet cytokrom c oksidase, i elektrontransportkjeden, inneholder en kofaktor med Fe³⁺. CN⁻ binder seg sterkt til Fe³⁺ og er derfor en inhibitor for cytokrom c oksidase.
 - Hvilken effekt har dette for konsentrasjon av H+ og forbruk av O2 i mitokondriene?
 - Forklar hvorfor dette er spesielt kritisk for aktive muskler, slik som hjertemuskelen.

Oppgave 5

For å rense avløpsvann for legemidler og skadelige organismer kan man behandle med et oksidasjonsmiddel. Et slikt oksidasjonsmiddel er ferrationer, FeO_4^{2-} .

- a) Vis at oksidasjonstallet til jern i ferrationet er +VI.
- b) Figur 9 viser legemiddelet Lipitor. Lipitor kan oksideres.

Velg og tegn et utsnitt av strukturen i figur 9 som viser en form av oksidert Lipitor.

c) Ferrationer kan produseres ved elektrolyse. Da blir metallisk jern, Fe(s), oksidert til ferrationer.

Figur 9

Hvor mange gram

ferrationer kan maksimalt bli dannet i løpet av et døgn dersom strømstyrken i elektrolysen er 5,0 A?

d) Ferrationer kan produseres i renseanlegget ved elektrolyse. Reaksjonen foregår i en vannløsning av KOH.

Ved katoden blir vann redusert til hydrogengass og hydroksidioner:

$$2H_2O(I) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$$

Ved anoden reagerer jern med hydroksidioner og danner ferrationer og vann:

$$Fe(s) + 80H^{-}(aq) \rightarrow FeO_4^{2-}(aq) + 4H_2O(l) + 6e^{-}$$

- Bruk halvreaksjonene til å skrive den balanserte reaksjonslikningen for reaksjonen. Forklar framgangsmåten.
- Bruk den balanserte reaksjonslikningen til å svare på om konsentrasjonen av hydroksidioner vil endre seg i løpet av elektrolysen.

e) Når kaliumferrat, K_2FeO_4 , løses i en sur løsning, reagerer ferrationer med H⁺-ioner i løsningen, og jern blir redusert. Produktene i denne reaksjonen er jernioner, en fargeløs gass og vann.

Dersom litt av løsningen som inneholder jernioner etter reaksjonen, blir tilsatt litt KSCN, blir løsningen blodrød. Ved tilsetning av litt K₄Fe(CN)₆ blir løsningen mørkeblå.

Bruk resultatet av påvisningsreaksjonene, og skriv reaksjonslikningen med tilstandssymboler for reaksjonen som skjer når ferrationer reagerer med H+-ioner.

Tabeller og formler i REA3012 Kjemi 2 (versjon 16.11.2015)

Dette vedlegget kan brukes under både del 1 og del 2 av eksamen.

STANDARD REDUKSJONSPOTENSIAL VED 25 °C

Halvreaksjon				
oksidert form	+ <i>n</i> e ⁻	→	redusert form	<i>E</i> ° mål i V
F ₂	+ 2e ⁻	→	2F ⁻	2,87
O ₃ (g) + 2H ⁺	+ 2e ⁻	→	O ₂ (g) +H ₂ O	2,08
H ₂ O ₂ + 2H ⁺	+ 2e ⁻	→	2H ₂ O	1,78
Ce ⁴⁺	+ e ⁻	→	Ce ³⁺	1,72
PbO ₂ + SO ₄ ²⁻ + 4H ⁺	+ 2e ⁻	→	PbSO ₄ + 2H ₂ O	1,69
MnO ₄ ⁻ +4H ⁺	+ 3e ⁻	→	MnO ₂ +2H ₂ O	1,68
2HClO + 2H ⁺	+2e ⁻	→	Cl ₂ + 2H ₂ O	1,63
MnO ₄ ⁻ + 8H ⁺	+ 5e ⁻	→	Mn ²⁺ + 4H ₂ O	1,51
Au ³⁺	+ 3e ⁻	→	Au	1,40
Cl ₂	+ 2e ⁻	→	2Cl ⁻	1,36
Cr ₂ O ₇ ²⁻ + 14H ⁺	+ 6e ⁻	→	2Cr ³⁺ + 7H ₂ O	1,36
O ₂ + 4H ⁺	+ 4e ⁻	→	2H ₂ O	1,23
MnO ₂ + 4H ⁺	+ 2e ⁻	→	Mn ²⁺ + 2H ₂ O	1,22
2IO ₃ ⁻ + 12H ⁺	+ 10e ⁻	→	I ₂ + 6H ₂ O	1,20
Br ₂	+ 2e ⁻	→	2 Br ⁻	1,09
NO ₃ ⁻ + 4H ⁺	+ 3e ⁻	→	NO + 2H ₂ O	0,96
2Hg ²⁺	+ 2e ⁻	→	Hg ₂ ²⁺	0,92
Cu ²⁺ + I ⁻	+ e ⁻	→	Cul(s)	0,86
Hg ²⁺	+ 2e ⁻	→	Hg	0,85
CIO ⁻ + H ₂ O	+ 2e ⁻	→	Cl ⁻ + 2OH ⁻	0,84
Hg ₂ ²⁺	+ 2e ⁻	→	2Hg	0,80
Ag ⁺	+ e ⁻	→	Ag	0,80
Fe ³⁺	+ e ⁻	→	Fe ²⁺	0,77
O ₂ + 2H ⁺	+ 2e ⁻	→	H ₂ O ₂	0,70
l ₂	+ 2e ⁻	→	21-	0,54
Cu ⁺	+ e ⁻	→	Cu	0,52
O ₂ + 2H ₂ O	+ 4e ⁻	→	40H ⁻	0,40
Cu ²⁺	+ 2e ⁻	→	Cu	0,34
Ag ₂ O + H ₂ O	+ 2e ⁻	→	2Ag + 2OH ⁻	0,34
SO ₄ ²⁻ + 4H ⁺	+ 2e ⁻	→	H ₂ SO ₃ + H ₂ O	0,17
Cu ²⁺	+ e ⁻	→	Cu⁺	0,16
Sn ⁴⁺	+ 2e ⁻	→	Sn ²⁺	0,15

oksidert form	+ ne ⁻	→	redusert form	E° mål i V
S + 2H+	+ 2e ⁻	→	H ₂ S	0,14
S ₄ O ₆ ²⁻	+ 2e ⁻	→	2S ₂ O ₃ ²⁻	0,08
2H ⁺	+ 2e ⁻	→	H ₂	0,00
Fe ³⁺	+ 3e ⁻	→	Fe	-0,04
Pb ²⁺	+ 2e ⁻	→	Pb	-0,13
Sn ²⁺	+ 2e ⁻	→	Sn	-0,14
Ni ²⁺	+ 2e ⁻	→	Ni	-0,26
PbSO ₄	+ 2e ⁻	→	Pb + SO ₄ ²⁻	-0,36
Cd ²⁺	+ 2e ⁻	→	Cd	-0,40
Cr ³⁺	+ e ⁻	→	Cr ²⁺	-0,41
Fe ²⁺	+ 2e ⁻	→	Fe	-0,45
S	+ 2e ⁻	→	S ²⁻	-0,48
2CO ₂ + 2H ⁺	+ 2e ⁻	→	H ₂ C ₂ O ₄	-0,49
Zn ²⁺	+ 2e ⁻	→	Zn	-0,76
2H ₂ O	+ 2e ⁻	→	H ₂ + 2OH ⁻	-0,83
Mn ²⁺	+ 2e ⁻	→	Mn	-1,19
ZnO + H ₂ O	+ 2e ⁻	→	Zn + 2OH ⁻	-1,26
Al ³⁺	+ 3e ⁻	→	Al	-1,66
Mg ²⁺	+ 2e ⁻	→	Mg	-2,37
Na⁺	+ e ⁻	→	Na	-2,71
Ca ²⁺	+ 2e ⁻	→	Ca	-2,87
K ⁺	+ e ⁻	→	К	-2,93
Li ⁺	+ e ⁻	→	Li	-3,04

NOEN KONSTANTER

Avogadros tall: $N_A = 6.02 \cdot 10^{23} \text{ mol}^{-1}$

Molvolumet av en gass: $V_m = 22,4 \text{ L/mol ved } 0 \text{ °C og } 1 \text{ atm},$

24,5 L/mol ved 25 °C og 1 atm

Faradays konstant: F = 96485 C/mol

SYREKONSTANTER (Ka) I VANNLØSNING VED 25 °C

Navn	Formel	K _a	p <i>K</i> a
Acetylsalisylsyre	C ₈ H ₇ O ₂ COOH	3,3 · 10 ⁻⁴	3,48
Ammoniumion	NH ₄ ⁺	5,6 · 10 ⁻¹⁰	9,25
Askorbinsyre	C ₆ H ₈ O ₆	9,1 · 10 ⁻⁵	4,04
Hydrogenaskorbation	C ₆ H ₇ O ₆ ⁻	2,0 · 10 ⁻¹²	11,7
Benzosyre	C ₆ H ₅ COOH	6,3 · 10 ⁻⁵	4,20
Benzylsyre (2-fenyleddiksyre)	C ₆ H ₅ CH ₂ COOH	4,9 · 10 ⁻⁵	4,31
Borsyre	B(OH) ₃	5,4 · 10 ⁻¹⁰	9,27
Butansyre	CH ₃ (CH ₂) ₂ COOH	1,5 · 10 ⁻⁵	4,83
Eplesyre (malinsyre)	HOOCCH ₂ CH(OH)COOH	4,0 · 10 ⁻⁴	3,40
Hydrogenmalation	HOOCCH ₂ CH(OH)COO-	7,8 · 10 ⁻⁶	5,11
Etansyre (eddiksyre)	CH₃COOH	1,8 · 10 ⁻⁵	4,76
Fenol	C ₆ H ₅ OH	1,0 · 10 ⁻¹⁰	9,99
Fosforsyre	H ₃ PO ₄	6,9 · 10 ⁻³	2,16
Dihydrogenfosfation	H ₂ PO ₄ ⁻	6,2 · 10 ⁻⁸	7,21
Hydrogenfosfation	HPO ₄ ²⁻	4,8 · 10 ⁻¹³	12,32
Fosforsyrling	H ₃ PO ₃	5,0 · 10 ⁻²	1,3
Dihydrogenfosfittion	H ₂ PO ₃ ⁻	2,0 · 10 ⁻⁷	6,70
Ftalsyre (benzen-1,2-dikarboksylsyre)	C ₆ H ₄ (COOH) ₂	1,1 · 10 ⁻³	2,94
Hydrogenftalation	C ₆ H ₄ (COOH)COO ⁻	3,7 · 10 ⁻⁶	5,43
Hydrogencyanid (blåsyre)	HCN	6,2 · 10 ⁻¹⁰	9,21
Hydrogenfluorid (flussyre)	HF	6,3 · 10 ⁻⁴	3,20
Hydrogenperoksid	H ₂ O ₂	2,4 · 10 ⁻¹²	11,62
Hydrogensulfation	H _S O ₄ ⁻	1,0 · 10 ⁻²	1,99
Hydrogensulfid	H ₂ S	8,9 · 10 ⁻⁸	7,05
Hypoklorsyre (underklorsyrling)	HCIO	4,0 · 10 ⁻⁸	7,40
Karbonsyre	H ₂ CO ₃	4,5 · 10 ⁻⁷	6,35
Hydrogenkarbonation	HCO ₃ ⁻	4,7 · 10 ⁻¹¹	10,33
Klorsyrling	HCIO ₂	1,1 · 10 ⁻²	1,94
Kromsyre	H ₂ CrO ₄	1,8 · 10 ⁻¹	0,74
Hydrogenkromation	HCrO ₄ ⁻	3,2 · 10 ⁻⁷	6,49
Maleinsyre (cis-butendisyre)	HOOCCH=CHCOOH	1,2 · 10 ⁻²	1,92
Hydrogenmaleation	HOOCCH=CHCOO ⁻	5,9 · 10 ⁻⁷	6,23
Melkesyre (2-hydroksypropansyre)	CH₃CH(OH)COOH	1,4 · 10 ⁻⁴	3,86
Metansyre (mausyre)	НСООН	1,8 · 10 ⁻⁴	3,75
Oksalsyre	(COOH) ₂	5,6 · 10 ⁻²	1,25
Hydrogenoksalation	(COOH)COO ⁻	1,5 · 10 ⁻⁴	3,81
Propansyre	CH ₃ CH ₂ COOH	1,3 · 10 ⁻⁵	4,87
Salisylsyre (2-hydroksybenzosyre)	C ₆ H ₄ (OH)COOH	1,0 · 10 ⁻³	2,98
Salpetersyrling	HNO ₂	5,6 · 10 ⁻⁴	3,25
Sitronsyre	C ₃ H ₄ (OH)(COOH) ₃	7,4 · 10 ⁻⁴	3,13
Dihydrogensitration	C ₃ H ₄ (OH)(COOH) ₂ COO ⁻	1,7 · 10 ⁻⁵	4,76
Hydrogensitration	C ₃ H ₄ (OH)(COOH)(COO ⁻) ₂	4,0 · 10 ⁻⁷	6,40
Svovelsyrling	H ₂ SO ₃	1,4 · 10 ⁻²	1,85
Hydrogensulfittion	HSO ₃ ⁻	6,3 · 10 ⁻⁸	7,2
Urea	CH ₄ N ₂ O	0,8 · 10 ⁻¹	0,10
Vinsyre (2,3-dihydroksybutandisyre, <i>L</i> -tartarsyre)	(CH(OH)COOH) ₂	1,0 · 10 ⁻³	2,98
Hydrogentartration	HOOC(CH(OH))₂COO⁻	4,6 · 10 ⁻⁵	4,34

BASEKONSTANTER (Kb) I VANNLØSNING VED 25 °C

Navn	Formel	K _b	p <i>K</i> _b
Acetation	CH₃COO⁻	5,8 · 10 ⁻¹⁰	9,24
Ammoniakk	NH ₃	1,8 · 10 ⁻⁵	4,75
Metylamin	CH ₃ NH ₂	4,6 · 10 ⁻⁴	3,34
Dimetylamin	(CH ₃) ₂ NH	5,4 · 10 ⁻⁴	3,27
Trimetylamin	(CH ₃) ₃ N	6,3 · 10 ⁻⁵	4,20
Etylamin	CH ₃ CH ₂ NH ₂	4,5 · 10 ⁻⁴	3,35
Dietylamin	$(C_2H_5)_2NH$	6,9 · 10 ⁻⁴	3,16
Trietylamin	$(C_2H_5)_3N$	5,6 · 10 ⁻⁴	3,25
Fenylamin (Anilin)	C ₆ H ₅ NH ₂	7,4 · 10 ⁻¹⁰	9,13
Pyridin	C ₅ H ₅ N	1,7 · 10 ⁻⁹	8,77
Hydrogenkarbonation	HCO ₃ ⁻	2,0 · 10 ⁻⁸	7,65
Karbonation	CO ₃ ²⁻	2,1 · 10 ⁻⁴	3,67

SYRE-BASE-INDIKATORER

Indikator	Fargeforandring	pH- omslagsområde
Metylfiolett	gul-fiolett	0,0 - 1,6
Tymolblått	rød-gul	1,2 - 2,8
Metyloransje	rød-oransje	3,2 - 4,4
Bromfenolblått	gul-blå	3,0 - 4,6
Kongorødt	fiolett-rød	3,0 - 5,0
Bromkreosolgrønt	gul-blå	3,8 - 5,4
Metylrødt	rød-gul	4,8 - 6,0
Lakmus	rød-blå	5,0 - 8,0
Bromtymolblått	gul-blå	6,0 - 7,6
Fenolrødt	gul-rød	6,6 - 8,0
Tymolblått	gul-blå	8,0 - 9,6
Fenolftalein	fargeløs-rosa	8,2 - 10,0
Alizaringul	gul-lilla	10,1 - 12,0

SAMMENSATTE IONER, NAVN OG FORMEL

Navn	Formel	Navn	Formel
acetat, etanat	CH ₃ COO ⁻	jodat	10 ₃ -
ammonium	NH ₄ ⁺	karbonat	CO ₃ ²⁻
arsenat	AsO ₄ ³⁻	klorat	ClO ₃ -
arsenitt	AsO ₃ ³⁻	kloritt	ClO ₂ -
borat	BO ₃ ³⁻	nitrat	NO ₃ -
bromat	BrO ₃ -	nitritt	NO ₂ -
fosfat	PO ₄ ³⁻	perklorat	ClO ₄ -
fosfitt	PO ₃ ³⁻	sulfat	SO ₄ ²⁻
hypokloritt	CIO-	sulfitt	SO ₃ ²⁻

MASSETETTHET OG KONSENTRASJON TIL NOEN VÆSKER

Forbindelse	Kjemisk formel	Masseprosent konsentrert løsning	Massetetthet $(\frac{g}{mL})$	Konsentrasjon $(\frac{\text{mol}}{\text{L}})$
Saltsyre	HCI	37	1,18	12,0
Svovelsyre	H₂SO ₄	98	1,84	17,8
Salpetersyre	HNO ₃	65	1,42	15,7
Eddiksyre	CH₃COOH	96	1,05	17,4
Ammoniakk	NH ₃	25	0,88	14,3
Vann	H₂O	100	1,00	55,56

STABILE ISOTOPER FOR NOEN GRUNNSTOFFER

Grunnstoff	Isotop	Relativ	Grunnstoff	Isotop	Relativ
		forekomst (%)			forekomst (%)
		i jordskorpen			i jordskorpen
Hydrogen	¹ H	99,985	Silisium	²⁸ Si	92,23
	² H	0,015		²⁹ Si	4,67
Karbon	¹² C	98,89		³⁰ Si	3,10
	¹³ C	1,11	Svovel	³² S	95,02
Nitrogen	¹⁴ N	99,634		³³ S	0,75
	¹⁵ N	0,366		³⁴ S	4,21
Oksygen	¹⁶ O	99,762		³⁶ S	0,02
	¹⁷ O	0,038	Klor	³⁵ Cl	75,77
	¹⁸ O	0,200		³⁷ Cl	24,23
			Brom	⁷⁹ Br	50,69
				⁸¹ Br	49,31

LØSELIGHETSTABELL FOR SALTER I VANN VED 25 °C

	Br ⁻	CI ⁻	CO ₃ ²⁻	CrO ₄ ²⁻	Γ	O ²⁻	OH⁻	S ²⁻	SO ₄ ²⁻
Ag ⁺	U	U	U	U	U	U	-	U	Т
Al ³⁺	R	R	-	-	R	U	U	R	R
Ba ²⁺	L	L	U	U	L	R	L	T	U
Ca ²⁺	L	L	U	Т	L	Т	U	T	Т
Cu ²⁺	L	L	-	U	-	U	U	U	L
Fe ²⁺	L	L	U	U	L	U	U	U	L
Fe ³⁺	R	R	-	U	-	U	U	U	L
Hg ₂ ²⁺	U	U	U	U	U	-	U	1	U
Hg ²⁺	T	L	-	U	U	U	U	U	R
Mg ²⁺	L	L	U	L	L	U	U	R	L
Ni ²⁺	L	L	U	U	L	U	U	U	L
Pb ²⁺	T	Т	U	U	U	U	U	U	U
Sn ²⁺	R	R	U	-	R	U	U	U	R
Sn ⁴⁺	R	R	-	L	R	U	U	U	R
Zn ²⁺	L	L	U	U	L	U	U	U	L

U = uløselig. Det løses mindre enn 0,01 g av saltet i 100 g vann.

T = tungtløselig. Det løses mellom 0,01 og 1 g av saltet i 100 g vann. L = lettløselig. Det løses mer enn 1 g av saltet per 100 g vann.

^{- =} Ukjent forbindelse, eller forbindelse dannes ikke ved utfelling, R = reagerer med vann.

LØSELIGHETSPRODUKT (Ksp) FOR SALT I VANN VED 25 °C

Navn	Kjemisk formel	K _{sp}	Navn	Kjemisk formel	K _{sp}
Aluminiumfosfat	AIPO ₄	9,84 · 10 ⁻²¹	Kvikksølv(I)bromid	Hg ₂ Br ₂	6,40 · 10 ⁻²³
Bariumfluorid	BaF ₂	1,84 · 10 ⁻⁷	Kvikksølv(I)jodid	Hg ₂ I ₂	5,2 · 10 ⁻²⁹
Bariumkarbonat	BaCO ₃	2,58 · 10 ⁻⁹	Kvikksølv(I)karbonat	Hg ₂ CO ₃	3,6 · 10 ⁻¹⁷
Bariumkromat	BaCrO ₄	1,17 · 10 ⁻¹⁰	Kvikksølv(I)klorid	Hg ₂ Cl ₂	1,43 · 10 ⁻¹⁸
Bariumnitrat	Ba(NO ₃) ₂	4,64 · 10 ⁻³	Kvikksølv(II)bromid	HgBr ₂	6,2 · 10 ⁻²⁰
Bariumoksalat	BaC ₂ O ₄	1,70 · 10 ⁻⁷	Kvikksølv(II)jodid	HgI ₂	2,9 · 10 ⁻²⁹
Bariumsulfat	BaSO ₄	1,08 · 10 ⁻¹⁰	Litiumkarbonat	Li ₂ CO ₃	8,15 · 10 ⁻⁴
Bly(II)bromid	PbBr ₂	6,60 · 10 ⁻⁶	Magnesiumfosfat	Mg ₃ (PO ₄) ₂	1,04 · 10 ⁻²⁴
Bly(II)hydroksid	Pb(OH) ₂	1,43 · 10 ⁻²⁰	Magnesiumhydroksid	Mg(OH) ₂	5,61 · 10 ⁻¹²
Bly(II)jodid	PbI ₂	9,80 · 10 ⁻⁹	Magnesiumkarbonat	MgCO ₃	6,82 · 10 ⁻⁶
Bly(II)karbonat	PbCO ₃	7,40 · 10 ⁻¹⁴	Magnesiumoksalat	MgC ₂ O ₄	4,83 · 10 ⁻⁶
Bly(II)klorid	PbCl ₂	1,70 · 10 ⁻⁵	Mangan(II)karbonat	MnCO ₃	2,24 · 10 ⁻¹¹
Bly(II)oksalat	PbC ₂ O ₄	8,50 · 10 ⁻⁹	Mangan(II)oksalat	MnC ₂ O ₄	1,70 · 10 ⁻⁷
Bly(II)sulfat	PbSO ₄	2,53 · 10 ⁻⁸	Nikkel(II)fosfat	Ni ₃ (PO ₄) ₂	4,74 · 10 ⁻³²
Bly(II)sulfid	PbS	3 · 10 ⁻²⁸	Nikkel(II)hydroksid	Ni(OH) ₂	5,48 · 10 ⁻¹⁶
Jern(II)fluorid	FeF ₂	2,36 · 10 ⁻⁶	Nikkel(II)karbonat	NiCO ₃	1,42 · 10 ⁻⁷
Jern(II)hydroksid	Fe(OH) ₂	4,87 · 10 ⁻¹⁷	Nikkel(II)sulfid	NiS	2 · 10 ⁻¹⁹
Jern(II)karbonat	FeCO ₃	3,13 · 10 ⁻¹¹	Sinkhydroksid	Zn(OH) ₂	3 · 10 ⁻¹⁷
Jern(II)sulfid	FeS	8 · 10 ⁻¹⁹	Sinkkarbonat	ZnCO ₃	1,46 · 10 ⁻¹⁰
Jern(III)fosfat	FePO ₄ ×2H ₂ O	9,91 · 10 ⁻¹⁶	Sinksulfid	ZnS	2 · 10-24
Jern(III)hydroksid	Fe(OH) ₃	2,79 · 10 ⁻³⁹	Sølv(I)acetat	AgCH ₃ COO	1,94 · 10 ⁻³
Kalsiumfluorid	CaF ₂	3,45 · 10 ⁻¹¹	Sølv(I)bromid	AgBr	5,35 · 10 ⁻¹³
Kalsiumfosfat	Ca ₃ (PO ₄) ₂	2,07 · 10 ⁻³³	Sølv(I)jodid	AgI	8,52 · 10 ⁻¹⁷
Kalsiumhydroksid	Ca(OH) ₂	5,02 · 10 ⁻⁶	Sølv(I)karbonat	Ag ₂ CO ₃	8,46 · 10 ⁻¹²
Kalsiumkarbonat	CaCO ₃	3,36 · 10 ⁻⁹	Sølv(I)klorid	AgCl	1,77 · 10 ⁻¹⁰
Kalsiummolybdat	CaMoO ₄	1,46 · 10 ⁻⁸	Sølv(I)kromat	Ag ₂ CrO ₄	1,12 · 10 ⁻¹²
Kalsiumoksalat	CaC ₂ O ₄	3,32 · 10 ⁻⁹	Sølv(I)sulfat	Ag ₂ SO ₄	1,20 · 10 ⁻⁵
Kalsiumsulfat	CaSO ₄	4,93 · 10 ⁻⁵	Sølv (I) sulfid	Ag ₂ S	8 · 10-51
Kobolt(II)hydroksid	Co(OH) ₂	5,92 · 10 ⁻¹⁵	Tinn(II)hydroksid	Sn(OH) ₂	5,45 · 10 ⁻²⁷
Kopper(I)bromid	CuBr	6,27 · 10 ⁻⁹		•	•
Kopper(I)klorid	CuCl	1,72 · 10 ⁻⁷	1		
Kopper(I)oksid	Cu ₂ O	2 · 10 ⁻¹⁵	1		
Kopper(I)jodid	Cul	1,27 · 10 ⁻¹²	1		
Kopper(II)fosfat	Cu ₃ (PO ₄) ₂	1,40 · 10 ⁻³⁷	1		
Kopper(II)oksalat	CuC ₂ O ₄	4,43 · 10 ⁻¹⁰	1		
Kopper(II)sulfid	CuS	8 · 10 ⁻³⁷	1		

α -AMINOSYRER VED PH = 7,4.

Vanlig navn			Vanlig navn	
Forkortelse pH ved isoelektrisk punkt	Strukturformel		pH ved isoelektrisk punkt	Strukturformel
Alanin Ala 6,0	OC		Arginin Arg 10,8	NH3 CH2 CH2 CH2 CH NH NH3
Asparagin Asn 5,4	H ₂ N CH ₂ CH O NH ₃		Aspartat (Asparagin- syre) Asp 2,8	O CH ₂ CH C O NH ₂
Cystein Cys 5,1	HS CH ₂ CH O NH ₃		Fenylalanin Phe 5,5	HC CH CH2 CH O O O O O O O O O O O O O O O O O O
Glutamin Gln 5,7	O CH ₂ CH ₂ CH O NH ₃		Glutamat (Glutamin- syre) Glu 3,2	CH ₂
Glysin Gly 6,0	OC CH		Histidin His 7,6	HC CH CH O

Vanlig navn		Va	ınlig navn	
Forkortelse pH ved isoelektrisk punkt	Strukturformel		pH ved pelektrisk punkt	Strukturformel
Isoleucin Ile 6,0	H ₃ C CH C O	Le Le 6,0		H ₃ C CH ₂ CH ₂ C O CH ₃ NH ₃
Lysin Lys 9,7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Me 5,7		H ₃ C CH ₂ CH ₂ CH ₃
Prolin Pro 6,3	H ₂ C CH ₂ O CH CH C O	Se Se 5,7		HO CH ₂ CH O NH ₃
Treonin Thr 5,6	CH ₃ O O O O O O O O O O O O O O O O O O O	Try Tr ₁ 5,9		HC CH CH CH CH NH3
Tyrosin Tyr 5,7	HC CH CH2 CH O O O O O O O O O O O O O O O O O O	Va Va 6,0		CH ₃ O CH

¹H-NMR-DATA

Typiske verdier for kjemisk skift, δ , relativt til tetrametylsilan (TMS) med kjemisk skift lik 0. R = alkylgruppe, HAL= halogen (CI, Br eller I). Løsningsmiddel kan påvirke kjemisk skift.

Hydrogenatomene som er opphavet til signalet er uthevet.

Type proton	Kjemisk skift, ppm	Type proton	Kjemisk skift, ppm
—С Н ₃	0,9 - 1,0	O = R^C O- H	10 - 13
—C H ₂—R	1,3 - 1,4	O R C H	9,4 - 10
-CHR ₂	1,4 - 1,6	O H / ^C \O-R	Ca. 8
—C≡C— H	1,8 - 3,1	-CH=CH ₂	4,5 - 6,0
-CH ₂ -HAL	3,5 - 4,4	R/C O-C H	3,8 - 4,1
R-O-CH ₂ -	3,3 - 3,7	R—0—H	0,5 - 6
0 R	2,2 - 2,7	0 RO CH ₂	2,0 - 2,5
———	6,9 - 9,0	——ОН	4,0 - 12,0
− C H ₃	2,5 - 3,5	—С Н ₂— ОН	3,4 - 4

ORGANISKE FORBINDELSER

Kp = kokepunkt,°C Smp = smeltepunkt,°C

НҮ	DROKARBONE	R, METTEDE	(alkaner)	
Navn	Formel	Smp	Кр	Diverse
Metan	CH₄	-182	-161	
Etan	C ₂ H ₆	-183	-89	
Propan	C ₃ H ₈	-188	-42	
Butan	C ₄ H ₁₀	-138	-0,5	
Pentan	C ₅ H ₁₂	-130	36	
Heksan	C ₆ H ₁₄	-95	69	
Heptan	C ₇ H ₁₆	-91	98	
Oktan	C ₈ H ₁₈	-57	126	
Nonan	C ₉ H ₂₀	-53	151	
Dekan	C ₁₀ H ₂₂	-30	174	
Syklopropan	C ₃ H ₆	-128	-33	
Syklobutan	C ₄ H ₈	-91	13	
Syklopentan	C ₅ H ₁₀	-93	49	
Sykloheksan	C ₆ H ₁₂	7	81	
2-Metyl-propan	C ₄ H ₁₀	-159	-12	Isobutan
2,2-Dimetylpropan	C ₅ H ₁₂	-16	9	Neopentan
2-Metylbutan	C ₅ H ₁₂	-160	28	Isopentan
2-Metylpentan	C ₆ H ₁₄	-154	60	Isoheksan
3-Metylpentan	C ₆ H ₁₄	-163	63	
2,2-Dimetylbutan	C ₆ H ₁₄	-99	50	Neoheksan
2,3-Dimetylbutan	C ₆ H ₁₄	-128	58	
2,2,4-Trimetylpentan	C ₈ H ₁₈	-107	99	Isooktan
2,2,3-Trimetylpentan	C ₈ H ₁₈	-112	110	
2,3,3-Trimetylpentan	C ₈ H ₁₈	-101	115	
2,3,4-Trimetylpentan	C ₈ H ₁₈	-110	114	
НҮС	PROKARBONE	R, UMETTED	E, alkener	
Navn	Formel	Smp	Кр	Diverse
Eten	C ₂ H ₄	-169	-104	Etylen
Propen	C₃H ₆	-185	-48	Propylen
But-1-en	C ₄ H ₈	-185	-6	
<i>cis</i> -But-2-en	C ₄ H ₈	-139	4	
trans-But-2-en	C ₄ H ₈	-106	1	
Pent-1-en	C ₅ H ₁₀	-165	30	
cis-Pent-2-en	C ₅ H ₁₀	-151	37	
trans-Pent-2-en	C ₅ H ₁₀	-140	36	
Heks-1-en	C ₆ H ₁₂	-140	63	
<i>cis</i> -Heks-2-en	C ₆ H ₁₂	-141	69	
trans-Heks-2-en	C ₆ H ₁₂	-133	68	
cis-Heks-3-en	C ₆ H ₁₂	-138	66	

Navn	Formel	Smp	Кр	Diverse
trans-Heks-3-en	C ₆ H ₁₂	-115	67	
Hept-1-en	C ₇ H ₁₄	-119	94	
cis-Hept-2-en	C ₇ H ₁₄		98	
trans-Hept-2-en	C ₇ H ₁₄	-110	98	
cis-Hept-3-en	C ₇ H ₁₄	-137	96	
trans-Hept-3-en	C ₇ H ₁₄	-137	96	
Okt-1-en	C ₈ H ₁₆	-102	121	
Non-1-en	C ₉ H ₁₈	-81	147	
Dek-1-en	C ₁₀ H ₂₀	-66	171	
Sykloheksen	C ₆ H ₁₀	-104	83	
1,3-Butadien	C ₄ H ₆	-109	4	
Penta-1,2-dien	C ₅ H ₈	-137	45	
trans-Penta-1,3-dien	C ₅ H ₈	-87	42	
cis-Penta-1,3-dien	C ₅ H ₈	-141	44	
Heksa-1,2-dien	C ₆ H ₁₀		76	
cis-Heksa-1,3-dien	C ₆ H ₁₀		73	
trans-Heksa-1,3-dien	C ₆ H ₁₀	-102	73	
Heksa-1,5-dien	C ₆ H ₁₀	-141	59	
Heksa-1,3,5-trien	C ₆ H ₈	-12	78,5	
HYDR	OKARBONEI	R, UMETTED	E, alkyner	
Navn	Formel	Smp	Кр	Diverse
Etyn	C_2H_2	-81	-85	Acetylen
Propyn	C ₃ H ₄	-103	-23	Metylacetylen
But-1-yn	C ₄ H ₆	-126	8	
But-2-yn	C ₄ H ₆	-32	27	
Pent-1-yn	C ₅ H ₈	-90	40	
Pent-2-yn	C ₅ H ₈	-109	56	
Heks-1-yn	C ₆ H ₁₀	-132	71	
Heks-2-yn	C ₆ H ₁₀	-90	85	
Heks-3-yn	C ₆ H ₁₀	-103	81	
AF	ROMATISKE	HYDROKARE	BONER	
Navn	Formel	Smp	Кр	Diverse
Benzen	C ₆ H ₆	5	80	
Metylbenzen	C ₇ H ₈	-95	111	
Etylbenzen, fenyletan	C ₈ H ₁₀	-95	136	
Fenyleten	C ₈ H ₈	-31	145	Styren, vinylbenzen
Fenylbenzen	C ₁₂ H ₁₀	69	256	Difenyl, bifenyl
Difenylmetan	C ₁₃ H ₁₂	25	265	
Trifenylmetan	C ₁₉ H ₁₆	94	360	Tritan
1,2-Difenyletan	C ₁₄ H ₁₄	53	284	Bibenzyl
Naftalen	C ₁₀ H ₈	80	218	Enkleste PAH
Antracen	C ₁₄ H ₁₀	216	340	PAH
Phenatren	C ₁₄ H ₁₀	99	340	РАН

	ALKO	OHOLER		
Navn	Formel	Smp	Кр	Diverse
Metanol	CH₃OH	-98	65	Tresprit
Etanol	C ₂ H ₆ O	-114	78	
Propan-1-ol	C ₃ H ₈ O	-124	97	<i>n</i> -propanol
Propan-2-ol	C ₃ H ₈ O	-88	82	Isopropanol
Butan-1-ol	C ₄ H ₁₀ O	-89	118	<i>n</i> -Butanol
Butan-2-ol	C ₄ H ₁₀ O	-89	100	sec-Butanol
2-Metylpropan-1-ol	C ₄ H ₁₀ O	-108	180	Isobutanol
2-Metylpropan-2-ol	C ₄ H ₁₀ O	-26	82	tert-Butanol
Pentan-1-ol	C ₅ H ₁₂ O	-78	138	<i>n</i> -Pentanol, amylalkohol
Pentan-2-ol	C ₅ H ₁₂ O	-73	119	sec-amylalkohol
Pentan-3-ol	C ₅ H ₁₂ O	-69	116	Dietylkarbinol
Heksan-1-ol	C ₆ H ₁₄ O	-47	158	Kapronalkohol, <i>n</i> -heksanol
Heksan-2-ol	C ₆ H ₁₄ O		140	
Heksan-3-ol	C ₆ H ₁₄ O		135	
Heptan-1-ol	C ₇ H ₁₆ O	-33	176	Heptylalkohol, <i>n</i> -heptanol
Oktan-1-ol	C ₈ H ₁₈ O	-15	195	Kaprylalkohol, <i>n</i> -oktanol
Sykloheksanol	C ₆ H ₁₂ O	26	161	
Etan-1,2-diol	$C_2H_6O_2$	-13	197	Etylenglykol
Propan-1,2,3-triol	C ₃ H ₈ O ₃	18	290	Glyserol, inngår i fettarten triglyserid
Fenylmetanol	C ₇ H ₈ O	-15	205	Benzylalkohol
2-fenyletanol	C ₈ H ₁₀ O	-27	219	Benzylmetanol
	KARBONYLI	ORBINDEL	SER	
Navn	Formel	Smp	Кр	Diverse
Metanal	CH ₂ O	-92	-19	Formaldehyd
Etanal	C ₂ H ₄ O	-123	20	Acetaldehyd
Fenylmetanal	C ₇ H ₆ O	-57	179	Benzaldehyd
Fenyletanal	C ₈ H ₈ O	-10	193	Fenylacetaldehyd
Propanal	C ₃ H ₆ O	-80	48	Propionaldehyd
2-Metylpropanal	C ₄ H ₈ O	-65	65	
Butanal	C ₄ H ₈ O	-97	75	
3-Hydroksybutanal	$C_4H_8O_2$		83	
3-Metylbutanal	C ₅ H ₁₀ O	-51	93	Isovaleraldehyd
Pentanal	C ₅ H ₁₀ O	-92	103	Valeraldehyd
Heksanal	C ₆ H ₁₂ O	-56	131	Kapronaldehyd
Heptanal	C ₇ H ₁₄ O	-43	153	
Oktanal	C ₈ H ₁₆ O		171	Kaprylaldehyd
Propanon	C ₃ H ₆ O	-95	56	Aceton
Butanon	C ₄ H ₈ O	-87	80	Metyletylketon
3-Metylbutan-2-on	C ₅ H ₁₀ O	-93	94	Metylisopropylketon
Pentan-2-on	C ₅ H ₁₀ O	-77	102	Metylpropylketon
Pentan-3-on	C ₅ H ₁₀ O	-39	102	Dietylketon
4-Metylpentan-2-on	C ₆ H ₁₂ O	-84	117	Isobutylmetylketon

Navn	Formel	Smp	Кр	Diverse
2-Metylpentan-3-on	C ₆ H ₁₂ O		114	Etylisopropylketon
2,4-Dimetylpentan-3-on	C ₇ H ₁₄ O	-69	125	Di-isopropylketon
2,2,4,4-Tetrametylpentan-3-on	C ₉ H ₁₈ O	-25	152	Di- <i>tert</i> -butylketon
Sykloheksanon	C ₆ H ₁₀ O	-28	155	Pimelicketon
trans-Fenylpropenal	C ₉ H ₈ O	-8	246	<i>trans</i> -Kanelaldehyd
	ORGAN	IISKE SYRER		
Navn	Formel	Smp	Кр	Diverse
Metansyre	CH ₂ O ₂	8	101	Maursyre, p $K_a = 3,75$
Etansyre	C ₂ H ₄ O ₂	17	118	Eddiksyre, $pK_a = 4,76$
Propansyre	C ₃ H ₆ O ₂	-21	141	Propionsyre, $pK_a = 4,87$
2-Metylpropansyre	C ₄ H ₈ O ₂	-46	154	pK _a = 4,84
2-Hydroksypropansyre	C ₃ H ₆ O ₃		122	Melkesyre, $pK_a = 3,86$
3-Hydroksypropansyre	C ₃ H ₆ O ₃			Dekomponerer ved oppvarming, $pK_a = 4,51$
Butansyre	C ₄ H ₈ O ₂	-5	164	Smørsyre, p $K_a = 4.83$
3-Metylbutansyre	C ₅ H ₁₀ O ₂	-29	177	Isovaleriansyre , $pK_a = 4,77$
Pentansyre	$C_5H_{10}O_2$	-34	186	Valeriansyre, $pK_a = 4,83$
Heksansyre	C ₆ H ₁₂ O ₂	-3	205	Kapronsyre, p K_a = 4,88
Propensyre	C ₃ H ₄ O ₂	12	139	$pK_a = 4,25$
<i>cis</i> -But-2-ensyre	$C_4H_6O_2$	15	169	cis-Krotonsyre, pK _a = 4,69
<i>trans</i> -But-2-ensyre	C ₄ H ₆ O ₂	72	185	trans-Krotonsyre, $pK_a = 4,69$
But-3-ensyre	$C_4H_6O_2$	-35	169	pK _a = 4,34
Etandisyre	C ₂ H ₂ O ₄			Oksalsyre, p K_{a1} = 1,25, p K_{a2} = 3,81
Propandisyre	C ₃ H ₄ O ₄			Malonsyre, p K_{a1} = 2,85, p K_{a2} = 5,70
Butandisyre	C ₄ H ₆ O ₄	188		Succininsyre(ravsyre), $pK_{a1} = 4,21$, $pK_{a2} = 5,64$
Pentandisyre	C ₅ H ₈ O ₄	98		Glutarsyre, p K_{a1} = 4,32, p K_{a2} = 5,42
Heksandisyre	C ₆ H ₁₀ O ₄	153	338	Adipinsyre, $pK_{a1} = 4,41$, $pK_{a2} = 5,41$
Askorbinsyre	C ₆ H ₈ O ₆	190-192		$pK_{a1} = 4,17, pK_{a2} = 11,6$
trans-3-Fenylprop-2-ensyre	C ₉ H ₈ O ₂	134	300	Kanelsyre, p $K_a = 4,44$
cis-3-Fenylprop-2-ensyre	C ₉ H ₈ O ₂	42		pK _a = 3,88
Benzosyre	C ₇ H ₆ O ₂	122	250	
Fenyleddiksyre	C ₈ H ₈ O ₂	77	266	pK _a = 4,31
	E:	STERE		
Navn	Formel	Smp	Кр	Diverse
Benzyletanat	C ₉ H ₁₀ O ₂	-51	213	Benzylacetat, lukter pære og jordbær
Butylbutanat	C ₈ H ₁₆ O ₂	-92	166	Lukter ananas
Etylbutanat	C ₆ H ₁₂ O ₂	-98	121	Lukter banan, ananas og jordbær

Navn	Formel	Smp	Кр	Diverse
Etyletanat	C ₄ H ₈ O ₂	-84	77	Etylacetat, løsemiddel
Etylheptanat	C ₉ H ₁₈ O ₂	-66	187	Lukter aprikos og kirsebær
Etylmetanat	C ₃ H ₆ O ₂	-80	54	Lukter rom og sitron
Etylpentanat	C ₇ H ₁₄ O ₂	-91	146	Lukter eple
Metylbutanat	C ₅ H ₁₀ O ₂	-86	103	Lukter eple og ananas
3-Metyl-1-butyletanat	C ₇ H ₁₁ O ₂	-79	143	Isoamylacetat, isopentylacetat, lukter pære og banan
Metyl- <i>trans</i> -cinnamat	C ₁₀ H ₁₀ O ₂	37	262	Metylester av kanelsyre, lukter jordbær
Oktyletanat	C ₁₀ H ₂₀ O ₂	-39	210	Lukter appelsin
Pentylbutanat	C ₉ H ₁₈ O ₂	-73	186	Lukter aprikos, pære og ananas
Pentyletanat	C ₇ H ₁₄ O ₂	-71	149	Amylacetat, lukter banan og eple
Pentylpentanat	C ₁₀ H ₂₀ O ₂	-79	204	Lukter eple
ORGANI	SKE FORBIN	DELSER MEI	D NITROGEN	
Navn	Formel	Smp	Кр	Diverse
Metylamin	CH₅N	-94	-6	pK _b = 3,34
Dimetylamin	C ₂ H ₇ N	-92	7	pK _b = 3,27
Trimetylamin	C_3H_9N	-117	2,87	pK _b = 4,20
Etylamin	C ₂ H ₇ N	-81	17	pK _b = 3,35
Dietylamin	$C_4H_{11}N$	-28	312	$pK_b = 3,16$
Etanamid	C ₂ H ₃ NO	79-81	222	Acetamid
Fenylamin	C_6H_7N	-6	184	Anilin
1,4-Diaminbutan	C ₄ H ₁₂ N ₂	27	158-160	Engelsk navn: putrescine
1,6-Diaminheksan	$C_6H_{16}N_2$	9	178-180	Engelsk navn: cadaverine
ORGAN	ISKE FORBIN	IDELSER ME	D HALOGEN	
Navn	Formel	Smp	Кр	Diverse
Klormetan	CH ₃ Cl	-98	-24	Metylklorid
Diklormetan	CH ₂ Cl ₂	-98	40	Metylenklorid, Mye brukt som løsemiddel
Triklormetan	CHCl₃	-63	61	Kloroform
Tetraklormetan	CCI ₄	-23	77	Karbontetraklorid
Kloretansyre	C ₂ H ₃ ClO ₂	63	189	Kloreddiksyre, pK _a = 2,87
Dikloretansyre	C ₂ H ₂ Cl ₂ O ₂	9,5	194	Dikloreddiksyre, pK _a = 1,35
Trikloretansyre	C ₂ HCl ₃ O ₂	57	196	Trikloretansyre, $pK_a = 0.66$
Kloreten	C ₂ H ₃ Cl	-154	-14	Vinylklorid,monomeren i polymeren PVC

REAKSJONER SOM DANNER FARGET BUNNFALL ELLER FARGET KOMPLEKS I LØSNING KVALITATIV UORGANISK ANALYSE.

	HCI	H ₂ SO ₄	NH ₃	Ā	KSCN	K ₃ Fe(CN) ₆	K₄Fe(CN) ₆	K₂CrO₄	Na ₂ S (mettet)	Na ₂ C ₂ O ₄	Na ₂ CO ₃	Dimetylglyoksim (1%)
Ag⁺	Hvitt			Lysgult	Hvitt	Oransjebrunt	Hvitt	Rødbrunt	Svart	Gråhvitt		
Pb ²⁺	Hvitt	Hvitt	Hvitt	Sterkt gult	Hvitt		Hvitt	Sterkt gult	Svart	Hvitt	Hvitt	
Cu ²⁺			Sterkt blåfarget	Gulbrunt	Grønnsort	Gulbrun- grønt	Brunt	Brunt	Svart	Blåhvitt		Brunt
Sn ²⁺			Hvitt			Hvitt	Hvitt	Brungult	Brunt			
Ni ²⁺						Gulbrunt	Lyst grønnhvitt		Svart			Lakserødt
Fe ²⁺			Blågrønt			Mørkeblått	Lyseblått	Brungult	Svart			Blodrødt med ammoniakk
Fe³+			Brunt	Brunt	Blodrødt	Sterkt brunt	Mørkeblått	Gulbrunt	Svart		Oransje- brunt	Brunt
Zn ²⁺						Guloransje	Hvitt	Sterkt gult	Hvitt/Gråhvitt		Hvitt	Rødbrunt
Ba ²⁺		Hvitt					Hvitt	Sterkt gult	Gråhvitt	Hvitt	Hvitt	
Ca ²⁺									Gulhvitt	Hvitt	Hvitt	

•	/stem
	periodesy
	Innstottenes
(Grun

Gruppe 18	2 4,003	He .	Helium	10 20,18	Ne	Neon	18 39,95	Ar	- Argon	36	83,80	2 '	Krypton	54	X A	,	Xenon	98	R	1 70	Kadon	118 (294)	Ono	- Unun-	oktium
Gruppe 17				9	. гг (Fluor	17 35,45	ਹ	3,0 Klor	32	79,90 Br	. 2.8	Brom	53	06'971	2,4	por	85	At	2,3	Asiai	117 (294)	Snn	- Unun-	septium
Gruppe 16				8 16,00	. O :	oksygen	16 32,07	S	2,5 Svovel	34	78,97	2.4 4.2	Selen	52	7, b0	2,1	Tellur	84	Po	2,0	roioni- um	116 (293)	۲,	- Liver-	morium
Gruppe 15				7	Z (3,0 Nitrogen	15 30,97	₫;	2,1 Fosfor	33	74,92	2.0	Arsen	51	0/171 2) L 8, L	Antimon	83	.	1,9	VISITIUL	115 (289)	Oup	- Unun-	pentium
Gruppe 14				6 12,01	O ;	4,3 Karbon	14 28,09	S	1,8 Silisium	32	72,63	ף כ	Germa- nium	50	, S	1,7	Tinn	82	Pb	8,1	ыу	114 (289)	Ē	- Flero-	vium
Gruppe 13				5 10,81	a :	2,U Bor	13 26,98	¥;	1,5 Alumini- um	31	69,72	2 G	Gallium	49	1 4,82	1,7	Indium	81	F	1,8		113 (286)	Out	- Unun-	trium
<u>-</u>							•		12	30	65,38	1.6	Sink	48	۲, 4 م	1,7			- S		sølv	112 (285)	C	- Coper-	nicium
100300	Ikke-metall	Halvmetall	Metall	Fast stoff B	Væske 刊 圓	Gass N			-	29	63,55) o	Kobber	47	/8'/OI	1,9	Sølv	79	Au	2,4	III 5	111 (280)	Rg	- Rønt-	genium
	Ікке-і	Halvr	Me	Fast s	Væske	Gas			10	28	58,69	2 6.1	Nikkel	46	DQ 7	2,2	Palla- dium	78	P.	2,2	Flattila	110 (281)	Ds	- Darm-	stadtiu
	Fargekoder			Aggregat- tilstand	ved 25 °C og 1 atm				6	27	58,93) •	Kobolt	45	اور ک	2,2	Rhodium	77	-	2,2		109 (278)	M	- Meit-	nerium
	35	B C 2.8	Brom						œ	26	55,85	ש ב	Jern	44) 2	2,2	Ruthe- nium	76	So	2,2	Osimidin	108 (269)	H	- Hassium	
	Atomnummer Atommasse	Symbol	Navn	issetallet t stabile	ler	e			7	25	54,94		Mangan	43	(86) L	1,9	Techne- tium	75	Re	1,9	Knemum	107 (270)	Bh	Bohrium	
Forklaring	Atc	Symbol		() betyr mas til den mest	isotopen * Lantanoider	** Aktinoid			9	24	52,00 7	5 2	Krom	42	35,95 Z	1,8	Molyb- den	74	>	1,7	wolltarii	106 (271)	Sg	Sea-	borgium
		_	-						ω	23	50,94	> [Vana- dium	41	Z	1,6	Niob	73	Ta	1,5	lamai	105 (268)	op O	-qnQ	nium
									4	22	47,87	_ (Titan	40	7.7	1,4	Zirko- nium	72	Ħ	1,3	Talling	104 (267)	R	- Ruther-	fordium
									ю	21	44,96	ر ا	Scan- dium	39	- >	1,2	Yttrium	57	La	1,1	Laman	89 (227)	Ac	1,1 Actinium	*
Gruppe 2				9,012	Be	Beryl- lium	12 24,31	Mg	1,2 Magne- sium	20	40,08	, O	Kalsium	38	79'/8 7	1,0	Stron- tium	56	Ва	6,0	Darium	88 (226)	Ra	0,9 Radium	
Gruppe 1	1,008	Z ,1	Hydrogen	3 6,941	:	Lithium	11 22,99	Na	0,9 Natrium	19	39,10	4 0	Kalium	37	85,4 <i>/</i>	8'0	Rubidium	132 01	CS	0,7	Cesidin	87 (223)	F	0,7 Francium	

*	57	58	26	09	61	62	63	64	92	99	49	89	69	70	7.1
	138,91	140,12	140,91	144,24	(145)	150,36	151,96	157,25	158,93	162,50	164,93	167,26	168,93	173,05	174,97
	La	Ce	<u>7</u>	PZ	Pm	Sm	Eu	В	Д	۵	유	й	Ę	Λb	ב
	1,1	1,1	1,1	1,1	1,1	1,2	1,2	1,2	1,1	1,2	1,2	1,2	1,3	1,1	1,3
	Lantan	Cerium	Praseo-	Neodym	Prome-	Sama-	Euro-	Gado-	Terbium	Dyspro-	Hol-	Erbium	Thulium	Ytter-	Lute-
			dym		thium	rinm	mnid	linium		sium	minm			pinm	tinm
*	68	06	91	92	63	94	96	96	26	86	66	100	101	102	103
	(227)	232,04	231,04	238,03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(566)
	Ac	٦	Pa	J	ΔN	Pu	Am	CB	BĶ	ဌ	Es	Ę	PΜ	8	ځ
	1,1	1,3	1,4	1,4	1,4	1,3	1,1	1,3	1,3	1,3	1,3	1,3	1,3	1,3	1,3
	Actinium	Thorium	Protacti-	Uran	Neptu-	Pluto-	Ame-	Curium	Berke-	Califor-	Einstein-	Fer-	Mende-	Nobel-	Lawren-
			nium		nium	min	ricium		lium	nium	inm	minm	levium	inm	cium

Kjelder:

- Dei fleste opplysningane er henta frå CRC HANDBOOK OF CHEMISTRY and PHYSICS, 89. UTGÅVE (2008–2009), ISBN 9781420066791
- Oppdateringar (særleg av periodesystemet) er gjorde ut frå CRC HANDBOOK OF CHEMISTRY and PHYSICS, 95. UTGÅVE (2014–2015): http://www.hbcpnetbase.com/ (sist besøkt 13.01.15)
- For ustabile radioaktive grunnstoff blei periodesystemet til «Royal Society of Chemistry» brukt: http://www.rsc.org/periodic-table (sist besøkt 15.01.15)
- Gyldendals tabeller og formler i kjemi, Kjemi 1 og Kjemi 2, Gyldendal, ISBN: 978-82-05-39274-8
- Esterduft: http://en.wikipedia.org/wiki/Ester (sist besøkt 10.09.2013)
- Stabilitetskonstantar: http://bilbo.chm.uri.edu/CHM112/tables/Kftable.htm (sist besøkt 03.12.2013) og, http://www.cem.msu.edu/~cem333/EDTATable.html (sist besøkt 03.12.2013)
- Kvalitativ uorganisk analyse ved felling mikroanalyse er henta frå *Kjemi 3KJ*, *Studiehefte* (Brandt mfl.), Aschehoug (2003), side 20