Лабораторная работа 5.6 Изменение абсолютной активности препарата ^{60}Co методом $\gamma-\gamma$ совпадений

Карцев Вадим

18 ноября 2021 г.

Цель работы: измерить абсолютную активность препарата ^{60}Co . В работе используются: препарат ^{60}Co , ФЭУ, свинцовые заслонки.

1 Аннотация

В ходе работы мы измерили абсолютную активность препарата ^{60}Co и построили зависимость результата измерений от разрешающей способности в методе $\gamma - \gamma$ совпадений.

2 Теоретическая справка

Закон радиоактивного распада:

$$N = N_0 e^{-\lambda t}$$

Абсолютная активность равна:

$$N_0 = \frac{4\pi m}{\varepsilon \omega}$$

где ε - эффективность счетчика, ω -телесный угол.

Описание N_0 значительно упрощается, если использовать в качестве образца радиоактивный элемент, при распаде которго последовательно испускаются несколько частиц. Такие распады называются каскадными. Распад ^{60}Co - каскадный.

Рис. 1. Схема радиоактивного распада ⁶⁰Со. Цифры слева обозначают спин уровня, знак плюс — положительную четность состояния; цифры справа указывают энергию уровня, цифры при стрелках энергию перехода

Вероятность регистрации γ -кванта первым и вторым счетчиками:

$$P_1 = \frac{\omega_1 \varepsilon_1}{4\pi}; \qquad P_2 = \frac{\omega_2 \varepsilon_2}{4\pi}$$

Если включить оба счетчика в сему совпадений с разрешающим временем $\tau >> 10^{-11} {\rm c},$ то каскадные γ -кванты будут регистрироваться одновременно. Вероятность совпадения будет равна:

$$P_{co} = P_1 P_2$$

Эта формула справедлива, если попадание одного γ -кванта в первый счетчик и попадание второго во второй являются независимыми событиями.

Вероятность истинных совпадений:

$$P_{co} = W(\theta)P_1P_2$$

где $W(\theta)$ - корреляционная функция, определяющая анизотропию направления вылета второго γ -кванта по отношению к направлению первого. При $\theta=180^\circ$ для $^{60}Co~W=1.08$ Получаем для абсолютной активности выражение:

$$N_0 = 1.08 \frac{N_1 N_2}{2N_{co}}$$

где N_1, N_2 -истинные скорости счета, которые определяются как разность полной скорости счета и фона для каждого счетчика, а скорость истинных совпадений N_{co} определяется как разность полного числа совпадений и числа случайных совпадений:

$$n_c = 2\tau n_1 n_2$$

где au - разрешающее время схемы совпадений.

3 Определение времени измерения

Определим какое время необходимо производить измерения, для того чтобы добиться заданной погрешности. Для этого дважды замерим скорость счета фона и излучения в течение минуты и выясним, какую погрешность имеет минутное измерение.

Для закрытых ФЭУ нам необходимо добиться погрешности 1%. Так, составим таблицу.

Устройство	Измерение 1	Измерение 2	Погрешность
$\Phi \ni Y_1$	5527	5440	1.59%
$\Phi \ni Y_2$	2393	2443	2.07%

Таким же образом построим таблицу для открытых Φ ЭУ. Для открытых Φ ЭУ необходимо добиться погрешности 0.5%

Устройство	Измерение 1	Измерение 2	Погрешность
$\Phi \Im Y_1$	311463	314004	0.81%
$\Phi \ni Y_2$	160015	158823	0.75%

Так, для получения необходимой погрешности необходимо производить измерения в течение следующих времен: для открытого и закрытого $\Phi \Im Y_1 - 3$ минуты, для открытого $\Phi \Im Y_2 - 3$ минуты, для закрытого -5 минут.

4 Измерение скоростей счёта фона

Устройство	t, мин	Количество частиц	Скорость счёта
$\Phi \ni Y_1$	3	17054	94.74
$\Phi \ni Y_2$	5	14081	46.94

5 Измерение скоростей счёта излучения

Откроем $\Phi \Im V$ и будем мерять скорость излучения в течение времени, необходимого для получения погрешности 0.5%

Устройство	t, мин	Количество частиц	Скорость счёта
$\Phi \Im Y_1$	3	959374	5329.86
$\Phi \Im Y_2$	3	484083	2689.35

6 Измерение скоростей счета совпадений

Измерим скорость счета в режиме совпадений. В этом режиме мы будем считать количество совпадающих срабатываний обоих ФЭУ в рамках времени разрешающей способности.

В данном случае выбрали длительность замера 4 минуты. В данном случае мы добьемся достаточно малой погрешности.

τ , MC	t, мин	Количество частиц	Скорость счёта
0.2	4	1894	7.89
0.5	4	3802	15.84
1.0	4	6053	25.22

Построим график зависимости скорости счёта от разрешающей способности.

7 Вывод

В ходе проведения измерений получили линейную зависимость скорости счета излучения от разрешающей способности.