

Faculdade de Engenharia Elétrica e de Computação

EA 044 Prova 2 Nome: ______ RA: _____

va 2 Prof. Vinícius Obs.: É obrigatório devolver as questões do Exame.

Questão 1 (2,5 pontos). Uma empresa fabrica dois tipos de cerveja C1 e C2 a partir de milho, lúpulo e malte. A tabela abaixo mostra a quantidade em Kg destes componentes para produzir um barril de cerveja, a disponibilidade em Kg dos componentes e o preço de venda de cada barril de cerveja.

	Milho	Lúpulo	Malte	Preço de Venda
C1	1	1	2	\$ 40
C2	2	1	1	\$ 50
Disponibilidade	40	30	40	

O modelo de programação linear de maximização correspondente e seu tableau ótimo são dados:

max	$z = 40x_1 + 50x$
s.a	$x_1 + 2x_2 \le 40$
	$x_1 + x_2 \le 30$
	$2x_1 + x_2 \le 40$

x_1	x_2	s ₁	s_2	s ₃	LD	VB
0	0	20	0	10	1200	Z
0	1	2/3	0	-1/3	40/3	x_2
0	0	-1/3	1	-1/3	10/3	s_2
1	0	-1/3	0	2/3	40/3	x_1

- a) (0,5 ponto). Encontre o intervalo de valores da quantidade disponível de milho para que a base corrente permaneça ótima.
- **b**) (**0,5 ponto**). Encontre o intervalo de valores do preço de venda da cerveja C1 para que a base corrente permaneça ótima.
- c) (0,5 ponto). A empresa considera a produção de um novo tipo de cerveja C3. Um barril de C3 requer 0,5 kg de milho, 3 kg de lúpulo, 3 kg de malte e é vendido por \$ 50. A empresa deve fabricar a cerveja C3? Qual é nova solução ótima?
- **d**) (**0,5 ponto**). Qual o preço máximo que a empresa deve pagar para adquirir uma unidade adicional de disponibilidade de milho, lúpulo e cerveja?
- e) (0,5 ponto). A empresa deseja que o número x_1 de barris da cerveja C1 seja inteiro. Qual a nova solução ao se impor $x_1 \le 13$?

Questão 2. (2,5 pontos)

Considere o seguinte problema primal de programação linear:

$$\max z = 5x_1 + 3x_2 + 4x_3$$
s.a
$$2x_1 + x_2 + x_3 \le 18$$

$$3x_1 + x_2 + 2x_3 \le 30$$

$$x_1, x_2, x_3 \ge 0$$

- a) (0,5 ponto) Formule o problema dual..
- b) (0,5 ponto) Calcule a solução ótima do problema dual graficamente.
- c) (1,5 ponto) Use folgas complementares para resolver o problema primal.

Questão 3. (**2,5 pontos**) Na rede abaixo, sobre os arcos, entre colchetes, tem-se: [Custo, Limite Superior]. O limite inferior é 0 para todos os arcos.

Aplique o método simplex para fluxo em redes para minimizar o custo total. Parta da seguinte base inicial: (1,2), (1,3) e (3,4), com todas as variáveis não-básicas no limite inferior. Justifique as passagens.

Questão 4. (2,5 pontos) A empresa Shoemaker tem a seguinte demanda para os próximos três meses: mês 1, 1000 pares; mês 2, 1500 pares; mês 3, 1800 pares. É necessário duas horas de trabalho para produzir um par de sapatos. A disponibilidade de horas de trabalho nos próximos três meses é: mês 1, 3000 horas; mês 2, 3200 horas; mês 3, 3400 horas. O custo unitário de produção de um sapato é \$4. A demanda em cada mês pode ser atendida por estoque ou por déficit, isto é, podese produzir em um mês *t* para atender a demanda de meses posteriores ou anteriores a *t*. A demanda total dos três meses tem que ser atendida no fim do mês 3. O custo unitário de estoque de sapato por mês é \$2 e o custo unitário de déficit de sapato por mês é \$15.

- a) (1,5 ponto) Desenhe a rede do problema de fluxo em redes.
- b) (1 ponto) Formule o modelo matemático de minimização do custo total na rede.

Dados

Relações entre os Problemas Primal e Dual				
	minimizar	maximizar		
restrições	$\geq b_i$	≥ 0		
	$\leq b_i$	≤ 0	variáveis	
	$=b_i$	livre		
variáveis	≥ 0	$\leq c_j$		
	≤ 0	$\geq c_j$	restrições	
	livre	$= c_j$		

Custo reduzido: $\overline{c} = c - c_B B^{-1} A$

Variável que entra na base no dual simplex

problema de minimização
$$\frac{y_{0k}}{y_{rk}} = \min_{j \in NB} \left\{ \frac{y_{0j}}{y_{rj}}, y_{rj} < 0 \right\}$$

problema de maximização
$$\frac{y_{0k}}{y_{rk}} = \max_{j \in NB} \left\{ \frac{y_{0j}}{y_{rj}}, y_{rj} < 0 \right\}$$