# Samanfatning av SF1673 Analys i en variabel

## Yashar Honarmandi

 $21~{\rm december}~2017$ 

## Sammanfattning

Denna samanfattning samlar centrala definitioner och satsar användt i KTH:s kurs SF1673 Analys i en variabel

# Innehåll

| 1 | längder         | 1 |
|---|-----------------|---|
|   | Definitioner    | 1 |
|   | 2 Satser        |   |
| 2 | alföljder       | 1 |
|   | Definitioner    | 1 |
|   | .2 Satser       | 1 |
| 3 | unktioner       | 2 |
|   | 1 Definitioner  | 2 |
|   | 2 Satser        |   |
| 4 | Fränsvärden     | 5 |
|   | 1 Definitioner  | 5 |
|   | 2 Satser        | 5 |
| 5 | Derivata ( )    | 6 |
|   | 1 Definitioner  | 6 |
|   | 2 Satser        | 6 |
| 6 | erier           | 8 |
|   | .1 Definitioner | 8 |
|   | 2 Satson        | Q |

## 1 Mängder

## 1.1 Definitioner

**Delmängder** Låt A, B vara mängder. A är en delmängd av B om det för varje  $x \in A$  gäller att  $x \in B$ . Notation:  $A \subset B$ .

**Union och snitt** Låt A, B vara mängder. Unionen  $A \cup B$  består av de element som ligger i någon av mängderna. Snittet  $A \cap B$  består av de element som är i båda.

Övre och undra begränsningar Ett tal m är en övre begränsning av en mängd A om  $x \leq m$  för varje  $x \in A$ , och en undra begränsning om  $x \geq m$  för varje  $x \in A$ .

**Supremum och infimum** Ett tal m är supremum till en mängd A om m är den minsta övre begränsningen till A. m är infimum till A om m är den största undra begränsningen till A. Notation:  $\sup A$ ,  $\inf A$ .

## 1.2 Satser

**Supremumsegenskapen** Varje uppåt begränsade delmängd av  $\mathbb{R}$  har en minsta övre begränsning.

Bevis Överkurs.

## 2 Talföljder

## 2.1 Definitioner

**Definitionen av en talföjld** En talföljd är en följd av tal  $a_1, a_2, ...$  och betecknas  $(a_n)_{n=1}^{\infty}$ .

Växande och avtagande talföljder En talföljd är växande om  $a_{n+1} \geq a_n$  för varje  $n \geq 1$ . Avtagande talföljder definieras analogt.

Uppåt och nedåt begränsade talföljder En talföljd är uppåt begränsad om det finns ett M så att  $a_n \leq M$  för alla  $n \geq 1$ .

Begränsade talföljder En talföljd är begränsad om den är både uppåt och nedåt begränsad.

Konvergens av talföljder En talföljd konvergerar mot ett gränsvärde A om det för alla  $\varepsilon > 0$  finns ett N sådant att  $|a_n - A| < \varepsilon$  för varje n > N. Detta beteendet betecknas

$$\lim_{n \to \infty} a_n = A.$$

**Divergenta talföljder** En divergent talföljd är inte konvergent.

**Binomialsatsen** För  $n \in \mathbb{Z}$  har man

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Binomialkoefficienter

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

e, Eulers tal

$$e = \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n$$

## 2.2 Satser

Gränsvärden för kombinationer av talföljder Låt  $(a_n)_{n=1}^{\infty}$ ,  $(b_n)_{n=1}^{\infty}$  vara talföljder med gränsvärden A och B. Då följer att

- a)  $(a_n + b_n)_{n=1}^{\infty}$  är konvergent med gränsvärdet A + B.
- b)  $(a_n b_n)_{n=1}^{\infty}$  är konvergent med gränsvärdet AB.
- c) om  $B \neq 0$  är  $\left(\frac{a_n}{b_n}\right)_{n=1}^{\infty}$  konvergent med gränsvärdet  $\frac{A}{B}$ .
- d) om  $a_n \leq b_n$  för varje n så gäller att  $A \leq B$ .

Bevis Aa.

Växande och uppåt begränsade talföljder Om  $(a_n)_{n=1}^{\infty}$  är en växande och uppåt begränsad talföljd så är den konvergent och

$$\lim_{n \to \infty} a_n = \sup \left\{ a_n : n \ge 1 \right\}$$

Det analoga gäller för avtagande och nedåt begränsade mängder.

**Bevis** Enligt supremumsegenskapen finns det ett  $K = \sup (a_n)_{n=1}^{\infty}$ . Då finns det även  $a_i$  godtyckligt nära K - med andra ord finns det ett N så att  $|a_N - K| < \varepsilon$  för något  $\varepsilon > 0$ . Eftersom talföljden är växande, är detta även sant när n > N, vilket fullbördar beviset.

Gränsvärde för potenser

$$\lim_{n \to \infty} n^p = \begin{cases} \infty, & p > 0\\ 0, & p < 0 \end{cases}$$

Bevis Meh.

Standardgränsvärden Låt a > 1 och b > 0. Då Växande och avtagande funktioner En funktion gäller att f är växande på en mängd  $M \in D_f$  om det för varje

$$\lim_{n \to \infty} \frac{a^n}{n^b} = \infty$$
$$\lim_{n \to \infty} \frac{n!}{b^n} = \infty$$

Bevis Nä.

Endeligt värde av e Talföljden  $(a_n)_{n=1}^{\infty}$  med

$$a_n = \left(1 + \frac{1}{n}\right)^n$$

är konvergent.

Bevis Säkert någon gång.

**Bolzano-Weierstrass' sats** Låt  $(a_n)_{n=1}^{\infty}$  vara en begränsad talföljd. Då finns det konvergent delföljd. En delföljd av en talföljd är en del av talen som fortfarande är oändligt stor.

## 3 Funktioner

## 3.1 Definitioner

**Definition av en funktion** Låt X, Y vara mängder. En funktion  $f: X \to Y$  är ett sätt att till varje element  $x \in X$  tilldela ett välbestämt element  $y \in Y$ . Vi säger att x avbildas på y och att y är bilden av x. x kallas argumentet till f. X kallas funktionens definitionsmängd, och betecknas även  $D_f$ . Y kallas funktionen målmängd.

**Värdemängd** Värdemängden till  $f: X \to Y$  definieras som:

$$V_f = \{ y \in Y : y = f(x) \text{ för något } x \in X \}$$

alltså alla värden f antar.

**Injektivitet** f är injektiv om det för varje  $x_1, x_2 \in X$  gäller att om  $f(x_1) = f(x_2)$  så är  $x_1 = x_2$ .

Surjektivitet f är surjektiv om  $V_f = Y$ .

**Bijektivitet** Om f är injektiv och surjektiv, är f bijektiv.

**Inversa funktioner** Låt  $f: X \to Y$  vara en bijektiv funktion. Inversen till f är avbildningen  $f^{-1}: Y \to X$  som ges av  $f^{-1}(y) = x$ , där y = f(x). Funktioner som har en invers kallas inverterbara.

Växande och avtagande funktioner En funktion f är växande på en mängd  $M \in D_f$  om det för varje  $x, y \in M : x < y$  gäller att  $f(x) \leq f(y)$ . Om  $M = D_f$  kallas f växande. Avtagande funktioner definieras analogt.

Strängt växande och avtagande funktioner En funktion f är strängt växande på en mängd  $M \in D_f$  om det för varje  $x, y \in M : x < y$  gäller att f(x) < f(y). Om  $M = D_f$  kallas f strängt växande. Strängt avtagande funktioner definieras analogt.

Monotona funktioner Om en funktioner är antingen strängt växande respektiva strängt avtagande eller växande respektiva avtagande i ett intervall, är den strängt monoton respektiva monoton.

Uppåt och nedåt begränsade funktioner En funktion f är uppåt begränsad om  $V_f$  är uppåt begränsad. Nedåt begränsade funktioner definieras analogt. Om funktioner saknar övre eller nedra begrensning är den uppåt eller nedåt obegränsad.

Minima och maxima En funktion f har ett lokalt maximum i  $x_0$  om det finns en omgivning I till  $x_0$  så att  $f(x) \leq f(x_0)$  för alla  $x \in I \cap D_f$ . Det analoga gäller för ett lokalt minimum. Om f har antingen ett lokalt maximum eller minimum i  $x_0$  har f ett lokalt extrempunkt i f.

Globala maxima och minima En funktion f har ett globalt maximum i  $x_0$  om  $f(x) \leq f(x_0$  för varje  $x \in D_f$ .

**Trigonometriska funktioner** Betrakta enhetssirkeln i figur 1, med radie 1.



Figur 1: Enhetscirkeln.

Man tenker sig en punkt på cirkeln enligt figuren, var linjen från cirkelns centrum till cirkeln bildar en vinkel  $\theta$  med x-axeln. Denna vinkeln startar när punkten på cirkeln ligger på den positiva sidan av x-axeln, och ökar moturs. Från denna konstruktionen definieras sin och cos utifrån x- och y-koordinaterna till punkten för en given  $\theta$ , var  $\theta$  mäts i radianer. Vi definierar även  $\tan \theta = \frac{\sin \theta}{\cos \theta}$ .

Från definitonerna ser vi at  $\sin x$  och  $\cos x$  är definierade för alla  $x \in \mathbb{R}$ , medan  $\tan x$  är definierad för alla  $x \neq \frac{\pi}{2}n, n \in \mathbb{Z}$ .

Radianer Radianer är ett mått på vinklar som är baserad på enhetscirkeln. Om man tenker sig att punkten i figur 1 beväger sig från startpunktet och till nån

Trigonometriska funktioners egenskaper Från definitionen av dom trigonometriska funktionerna följer många egenskaper vid dissa. Några essensiella är listad under:

$$\cos^2 x + \sin^2 x = 1$$

$$\sin(\theta + 2\pi n) = \sin \theta$$

$$\cos(\theta + 2\pi n) = \cos \theta$$

$$\sin(\theta - \frac{\pi}{2}) = \cos \theta$$

$$\cos(\theta + \frac{\pi}{2}) = \sin \theta$$

$$\sin(-\theta) = -\sin \theta$$

$$\cos(-\theta) = -\cos \theta$$

$$\sin(\theta + \pi) = -\sin \theta$$

$$\cos(\theta + \pi) = -\cos \theta$$

Inversa trigonometriska funktioner Låt  $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$  sådan att  $f(x) = \sin x$ . Inversen till denna funktionen betecknas  $f^{-1}(x) = \arcsin x$ .

Låt  $f:[0,\pi]\to [-1,1]$  sådan att  $f(x)=\cos x$ . Inversen till denna funktionen betecknas  $f^{-1}(x)=\arccos x$ .

Låt  $f:(-\infty,\infty)\to \left(-\frac{\pi}{2},\frac{\pi}{2}\right)$  sådan att  $f(x)=\tan x$ . Inversen till denna funktionen betecknas  $f^{-1}(x)=\arctan x$ .

**Exponentialfunktionen** I häftet definieras inte exponentialfunktionen  $a^x, a > 1$ , utan den antas vara en strängt växande funktion med värdemängd  $(0, \infty)$  som uppfyller

$$a^{0} = 1$$

$$a^{1} = a$$

$$a^{x+y} = a^{x}a^{y}$$

$$a^{-x} = \frac{1}{a^{x}}$$

$$(a^{x})^{y} = a^{xy}$$

**Logaritmfunktionen** Låt  $f: \mathbb{R} \to (0, \infty)$  sådan att  $f(x) = a^x$  för något a > 1. Inversen till denna funktionen betecknas som  $f^{-1}(x) = \log_a x$ .

**Absolutbelopp** Absolutbeloppet definieras som  $|x| = \sqrt{x^2}$ . Detta impliserar att

$$|x| = \begin{cases} -x, & x < 1\\ x, & x \ge 1 \end{cases}$$

**Kontinuitet** Låt f vara en reellvärd funktion med  $D_f \subset \mathbb{R}$ , sådan att varje punkterad omgivning till x = a innehåller punkter från  $D_f$  och  $a \in D_f$ . f är kontinuerlig i a om

$$\lim_{x \to a} f(x) = f(a).$$

**Konvexitet** En funktion f är konvex i [a, b] om det för varje  $x_1, x_2 \in [a, b]$  gäller att

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2), t \in [0,1].$$

**Konkavitet** En funktion f är konkav i [a, b] om -f är konvex i [a, b].

**Inflexionspunkt** Låt f vara en funktion definierad på ett intervall I. En punkt  $x_0 \in I$  sägs vara en inflexionspunkt till f om det finns ett  $\delta > 0$  sådan att f är konvex i  $[x_0 - \delta, x_0]$  eller  $[x_0, x_0 + \delta]$  och konkav i det andra.

**Lodräta asymptoter** Linjen x = a är en lodrät asymptot till f om f(x) går mot  $\infty$  eller  $-\infty$  när  $x \to a^-$  eller  $x \to a^+$ .

**Sneda asymptoter** Linjen y = kx + m är en sned asymptot till f om

$$\lim_{x \to \infty} (f(x) - (kx + m)) = 0$$

eller

$$\lim_{x \to -\infty} (f(x) - (kx + m)) = 0.$$

Givet att f har en sned asymptot, ger definitionen

$$k = \lim_{x \to \infty} \frac{f(x)}{k}, m = \lim_{x \to \infty} (f(x) - kx)$$

eller analogt om asymptoten är vid  $-\infty$ .

Stora ordo vid oändligheten Låt f, g vara funktioner definierade i  $(a, \infty)$  för något a. f tillhör stora ordo av g då  $x \to \infty$ , med notation  $f(x) = \mathcal{O}(g(x))$ , om det finns M och  $x_0$  så att

$$|f(x)| \le M|g(x)|$$

för varje  $x > x_0$ .

Stora ordo kring en punkt Låt f, g vara funktioner definierade i en omgivning till a. f tillhör stora ordo av g kring a, med notation  $f(x) = \mathcal{O}(g(x))$ , om det finns M och  $\delta > 0$  så att

$$|f(x)| \le M|g(x)|$$

för varje  $x \in (a - \delta, a + \delta)$ .

### 3.2 Satser

## Trigonometriska funktioner med vinkelsummor

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$
$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

Cosinussatsen Låt a,b,c vara sidorna i en triangel och  $\theta$  vinkeln där sidlängderna a och b möts. Då gäller att

$$c^2 = a^2 + b^2 - 2ab\cos\theta$$

Logaritmfunktionens egenskaper Låt a>1. Då gäller att

$$\log_a 1 = 0 \tag{1}$$

$$\log_a(xy) = \log_a(x) + \log_a(y) \tag{2}$$

$$\log_a(x^y) = y \log_a(x) \tag{3}$$

**Bevis** Alla identiteter är baserade på inverterbarheten till exponentialfunktionen -  $a^{\log_a x} = x$  - och injektiviteten till exponentialfunktionen, samt reglerna som exponentialfunktionen uppfyllar.

Ekvation 1 fås från att  $a^{\log_a 1} = 1$  och att  $a^0 = 1$ . Eftersom exponentialfunktionen är injektiv, är det bevisad.

Ekvation 2 fås från att  $a^{\log_a xy} = xy$  och att  $a^{\log_a x + \log_a y} = a^{\log_a x} a^{\log_a y} = xy$ .

Ekvation 3 fås från att  $a^{\log_a x^y} = x^y$  och att  $a^{y \log_a x} = (a^{\log_a x})^y = x^y$ .

## Absolutbeloppens egenskaper

$$|xy| = |x||y| \tag{4}$$

$$|x+y| \le |x| + |y| \tag{5}$$

Bevis Kommer kanskje någon gång.

Kontinuitet av samansatta funktioner Låt f vara kontinuerlig i b och låt  $g(x) \to b$  när  $x \to a$ . Då gäller att

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$$

givet att vänsterledet är definierat.

Bevis Meh.

Stora ordo kring en punkt Låt f, g vara funktio- Kontinuitet och begränsning Låt  $f : [a, b] \to \mathbb{R}$  ner definierade i en omgivning till a. f tillhör stora vara en kontinuerlig funktion. Då är f begränsad.

#### **Bevis**

Inversfunktioners kontinuerlighet Låt  $f: A \to B$  vara en kontinuerlig, inverterbar och strängt växande funktion. Då gäller att inversen  $f^1: B \to A$  är kontinuerlig och strängt växande.

#### Bevis

Elementära funktioners kontinuerlighet Elementära funktioner är kontinuerliga.

## Bevis

Kontinuerlighet av summa och produkt Summan och produktet av kontinuerliga funktioner är kontinuerlig.

#### **Bevis**

**Intervallhalvering** låt  $[a_i, b_i]$  vara intervall så att  $[a_{i+1}, b_{i+1}]$  vid att låta en vara mittpunktet på  $[a_i, b_i]$  och den andra vara oändrat. Då finns det ett unikt x så att  $x \in [a_i, b_i]$  för alla  $i \in \mathbb{N}$ .

### **Bevis**

Satsen om mellanliggande värde Låt f vara kontinuerlig i [a, b]. Då antar f alla värden mellan f(a) och f(b).

**Bevis** I fallet f(a) = f(b) är beviset trivialt.

Anta att f(a) < m < f(b) för något m (ett analogt bevis gäller i motsatta fallet). Definiera  $a_0 = a$  och  $b_0 = b$ , bilda intervallet  $[a_0, b_0]$  och beräkna funktionsvärdet i mittpunktet. Om detta är större än m, välj  $b_1$  till att vara mittpunktet och  $a_1 = a_0$ , eller motsatt i motsatt fall. Fortsätta så med intervallhalvering. Då har vi  $f(a_i) \le m \le f(b)$  för varje  $i \in \mathbb{N}$ .

Mängden av alla  $a_i$  är växande och uppåt begränsad av  $b_i$ , och mängden av alla  $b_i$  är avtagande och nedåt begränsad av  $a_i$ . Vi kan da låta  $j \to \infty$ , och får  $f(x) \leq m \leq f(x) \implies f(x) = m$  för något  $x \in [a,b]$ . Detta gäller för alla m som uppfyllar kravet, och beviset är klart.

Största och minsta värden Låt  $f:[a,b] \to \mathbb{R}$  vara en kontinuerlig funktion. Då finns  $x_1, x_2 \in [a,b]$  så att sup  $V_f = f(x_1)$  och inf  $V_f = f(x_2)$ .

**Bevis** Vi vet enligt 3.2 att funktionens värdemängd är begränsad. Definiera  $M = \sup V_f$ , som då existerar, och anta att  $M \neq f(x)$  på [a,b]. Då är funktionen g så att

$$g(x) = \frac{1}{M - f(x)}$$

definierad på [a,b], kontinuerlig och därmed begränsad. Då finns  $C=\sup V_g$ , och

$$\frac{1}{M - f(x)} \le X \implies f(x) \le M - \frac{1}{C}.$$

Enligt antagandet är M > f(x), och då är C positiv. Då är  $M - \frac{1}{C} < M$ , och vi har hittat en mindre övre begränsning för f. Detta motsäjer antagandet, och då måste det finns ett  $x \in [a,b]$  så att f(x) = M.

Ett analogt bevis gäller för att visa att f antar ett minsta värde.

## Standardgränsvärden

$$\lim_{x \to 0} \frac{\ln 1 + x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Bevis Too much.

Stora ordos egenskaper Låt f, g vara funktioner sådana att  $\mathcal{O}(f(x)), \mathcal{O}(g(x))$  är definierade kring en punkt eller vid  $\infty$ . Då gäller:

$$\mathcal{O}(f(x)) \mathcal{O}(g(x)) = \mathcal{O}(f(x)g(x)),$$
  
$$\mathcal{O}(f(x)) + \mathcal{O}(g(x)) = \mathcal{O}(|f(x)| + |g(x)|).$$

**Bevis** 

## 4 Gränsvärden

### 4.1 Definitioner

Gränsvärde vid oändligheten Låt f vara en funktion definierad i  $(a, \infty)$ . f konvergerar mot gränsvärdet A när  $x \to \infty$  om det for varje  $\varepsilon > 0$  finns ett N sådant att  $|f(x) - A| < \varepsilon$  för varje x > N. Detta skrivs

$$\lim_{x \to \infty} f(x) = A$$

eller  $f(x) \to A$  när  $x \to \infty$ .

**Divergens** Om det för en funktion f inte finns ett sådant A, sägs f vara divergent då  $x \to infty$ .

Det oegentliga gränsvärdet Låt f vara en funktion definierad i  $(a, \infty)$ . f har det oegentliga gränsvärdet  $\infty$  då x  $to\infty$  om det för varje M finns ett N sådant att f(x) > M för varje x > N. Detta skrivs

$$\lim_{x \to \infty} f(x) = \infty.$$

**Lokalt gränsvärde** Låt f vara en reellvärd funktion med  $D_f \subset \mathbb{R}$  sådan att varje punkterad omgivning till x = a innehåller punkter i  $D_f$ . f konvergerar mot A när x går mot a om det för varje  $\varepsilon > 0$  finns ett  $\delta > 0$  sådant att  $|f(x) - A| < \varepsilon$  för varje  $x \in D_f$  som uppfyllar  $0 < |x - a| < \delta$ . Detta skrivs  $\lim_{x \to a} f(x) = A$ .

Vänster- och högergränsvärden Vid att endast studera x > a eller x < a kan man definiera ett vänster- och högergränsvärde för en funktion f. Dessa skrivs  $\lim_{x \to a^-} f(x) = A$  eller  $\lim_{x \to a^+} f(x) = A$ . För en funktion f definierad i en punkterad omgivning till a existerar  $\lim_{x \to a} f(x)$  om och endast om vänster- och högergränsvärden existerar och är lika.

Det oegentliga lokala gränsvärdet Låt f vara en funktion sådan att varje punkterad omgivning till x=a innehåller punkter i  $D_f$ . f har det oegentliga gränsvärdet  $\infty$  då  $x \to a$  om det för varje K finns ett delta sådant att f(x) > K för varje  $x \in D_f$  som uppfyll ar  $0 < |x-a| < \delta$ 

## 4.2 Satser

Gränsvärden för kombinationer av funktioner Låt f,g vara kontinuerliga funktioner sådana att  $f(x) \to A, g(x) \to B$  när  $x \to \infty$ . Då gäller att

- a)  $f(x) + g(x) \to A + B \text{ när } x \to \infty.$
- b)  $f(x)g(x) \to AB$  när  $x \to \infty$ .
- c) om  $B \neq 0$  så följer att  $\frac{f(x)}{g(x)} \rightarrow \frac{A}{B}$  när  $x \rightarrow \infty$ .
- d) om  $f(x) \leq g(x)$  för alla  $x \in (a, \infty)$  så gäller att  $A \leq B$ .

Bevis Mjo.

Gränsvärden och supremum Låt  $f:(a,\infty)\to\mathbb{R}$  för något  $a\in\mathbb{R}$  vara växande och uppåt begränsad. Då gäller att

$$\lim_{n \to \infty} = \sup f(x) : x \ge a.$$

Bevis Nä.

**Standardgränsvärden** Låt a>1,b>0. Då gäller vatorna har sambandet

$$\lim_{x \to \infty} \frac{a^x}{x^b} = \infty$$
 
$$\lim_{x \to \infty} \frac{x^b}{\log_a x} = \infty$$

Bevis Orkar inte.

#### 5 Derivata

#### Definitioner 5.1

**Derivatans definition** Låt f vara en funktion definierad i en omgvning krin  $x_0$ . f är deriverbar i  $x_0$ om

$$\frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x_0} = \frac{\mathrm{d}f}{\mathrm{d}x}(x_0) = f'(x_0)$$
$$= \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

existerar. Värdet kallas derivatan i  $x_0$ .

**Deriverbara funktioner** Om en funktion f är deriverbar i alla punkter i definitionsmängden, är funktionen deriverbar. Funktionen  $f'=\frac{\mathrm{d}f}{\mathrm{d}x} \stackrel{\smile}{\mathrm{med}} D_{f'}=D_f$ kallas derivatan.

**Stationära punkt** En funktion f har ett stationärt punkt  $x_0$  om  $\frac{\mathrm{d}f}{\mathrm{d}x}\big|_{x_0} = 0$ .

**Taylorpolynomet** Låt f vara n gånger deriverbar. Polynomet

$$p_n(x) = \sum_{i=0}^{\infty} n \frac{\frac{\mathrm{d}^i f}{\mathrm{d} x^i}(0)}{i!} (x-a)^i$$

kallas Taylorpolynomet av grad n till f kring a. Specialfallet där a = 0 kallas Maclaurinpolynomet till f av grad n.

#### 5.2 Satser

**Derivata och kontinuitet** Låt f vara deriverbar i (a,b). Då är f kontinuerlig i (a,b).

Bevis Kan man tänka.

**Derivationsregler** Låt f, g vara deriverbara i punkten x. Då följer att f+g,fg är deriverbara i x. Deri-

$$\frac{\mathrm{d}}{\mathrm{d}x}(f+g)\Big|_{x} = \left(\frac{\mathrm{d}f}{\mathrm{d}x} + \frac{\mathrm{d}g}{\mathrm{d}x}\right)\Big|_{x},$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(af)\Big|_{x} = a\frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{x}, a \in \mathbb{R},$$

$$\frac{\mathrm{d}}{\mathrm{d}x}(fg)\Big|_{x} = \left(f\frac{\mathrm{d}g}{\mathrm{d}x} + g\frac{\mathrm{d}f}{\mathrm{d}x}\right)\Big|_{x}.$$

Om  $g(x) \neq 0$  är även  $\frac{f}{g}$  deriverbar i x och

$$\left. \frac{\mathrm{d}}{\mathrm{d}x} \frac{f}{g} \right|_{x} = \frac{\left( g \frac{\mathrm{d}f}{\mathrm{d}x} - f \frac{\mathrm{d}g}{\mathrm{d}x} \right) \Big|_{x}}{g^{2}(x)}.$$

Bevis Inte omöjligt.

**Kedjeregeln** Låt f vara deriverbar i y, g deriverbar i x och y = g(x). Då är den sammansatta funktionen  $f \circ g$  deriverbar och

$$\frac{\mathrm{d}}{\mathrm{d}x}(f \circ g) \Big|_{x} = \frac{\mathrm{d}}{\mathrm{d}x} f \Big|_{g(x)} \cdot \frac{\mathrm{d}}{\mathrm{d}x} g \Big|_{x}.$$

Bevis

**Derivatan av inversfunktioner** Låt f vara en deriverbar och inverterbar funktion. Då är inversen  $f^{-1}$ deriverbar i alla punkter  $y = \frac{d}{dx} f \Big|_x$  där  $\frac{d}{dx} f \Big|_x \neq 0$ med derivatan

$$\frac{\mathrm{d}}{\mathrm{d}y}f^{-1}\Big|_{y} = \frac{1}{\frac{\mathrm{d}}{\mathrm{d}x}f\Big|_{x}}.$$

Bevis

Extrempunkt och derivata Låt f vara deriverbar i  $x_0$  och ha en lokal extrempunkt i  $x_0$ . Då är  $\frac{\mathrm{d}f}{\mathrm{d}x}(x_0) =$ 

**Bevis** Låt f ha ett maximum i  $x_0$ . Detta ger  $f(x_0) \geq f(x)$  i en omgivning till  $x_0$ . Betrakta

$$\frac{\mathrm{d}f}{\mathrm{d}x}(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

När  $h \to 0$  från det positival hållet har man

$$\frac{f(x_0+h)-f(x_0)}{h} \le 0$$

eftersom nämnaren är negativ enligt antagandet. När  $h \to 0$  från det negativa hållet har man

$$\frac{f(x_0+h)-f(x_0)}{h} \ge 0.$$

Vi räknar ut gränsvärdet när h går mot 0. Eftersom det existerar, måste vi ha att  $\frac{df}{dx}(x_0) = 0$ .

bar på (a,b) så att f(a)=f(b). Då existerar  $p\in(a,b)$  bara funktioner i en omgivning I av a sådana att så att  $\frac{\mathrm{d}f}{\mathrm{d}x}\big|_p = 0.$ 

**Bevis** Om f är konstant på [a,b] är beviset trivialt.

Annars, låt f(x) > f(a) för något  $x \in (a, b)$ . Eftersom f är kontinuerlig på [a, b], antar den enligt sats ett största värde. Eftersom f(a) = f(b) måste detta största värdet antas i något  $q \in (a, b)$ . Då f är deriverbar i q, gäller det enligt sats att  $\frac{\mathrm{d}f}{\mathrm{d}x}(q)=0$ . Detta är punkten vi söker.

Ett analogt bevis gäller om f(x) < f(a) för något  $x \in (a, b)$ .

Generaliserade medelvärdessatsen Låt f och gvara reellvärda, kontinuerliga på [a, b] och deriverbara på (a, b). Då existerar  $p \in (a, b)$  så att

$$\frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{p}(g(b) - g(a)) = \frac{\mathrm{d}g}{\mathrm{d}x}\Big|_{p}(f(b) - f(a)).$$

Om  $g(a) \neq g(b)$  och  $\frac{dg}{dx}\Big|_{p} \neq 0$ , gäller

$$\frac{\frac{\mathrm{d}f}{\mathrm{d}x}\big|_p}{\frac{\mathrm{d}g}{\mathrm{d}x}\big|_p} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Medelvärdesatsen Välj g(x) = x. Detta ger

$$\frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{p}(b-a) = f(b) - f(a).$$

Använd Rolles sats. Bevis

Följder av dessa satser Låt f vara deriverbar på (a,b). Då gäller:

- $\frac{\mathrm{d}f}{\mathrm{d}x} = 0$  för varje  $x \in (a, b)$  omm f är konstant på (a, b).
- $\frac{\mathrm{d}f}{\mathrm{d}x} \geq 0$  för varje  $x \in (a,b)$  omm f är växande på (a,b).
- $\frac{\mathrm{d}f}{\mathrm{d}x} > 0$  implicerar att f är strängt växande på
- $\frac{\mathrm{d}f}{\mathrm{d}x} \leq 0$  för varje  $x \in (a,b)$  omm f är avtagande
- $\frac{\mathrm{d}f}{\mathrm{d}x} < 0$  implicerar att f är strängt avtagande på (a,b).

**Bevis** 

Rolles sats Låt f vara kontinuerlig på [a, b], deriver- L'Hôpitals regel Låt f, g vara reellvärda, deriver-

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0.$$

Då gäller att

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{\frac{\mathrm{d}f}{\mathrm{d}x}(x)}{\frac{\mathrm{d}g}{\mathrm{d}x}(x)}.$$

Bevis

Oändliga kvoter Låt

$$\lim_{x \to a} \frac{\frac{\mathrm{d}f}{\mathrm{d}x}(x)}{\frac{\mathrm{d}g}{\mathrm{d}x}(x)} = L,$$

$$\lim_{x \to a} f(x) = \pm \infty,$$

$$\lim_{x \to a} g(x) = \pm \infty.$$

Då gäller att

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L.$$

**Bevis** 

Konvexitet och derivata Låt f vara deriverbar i (a,b). Då är f konvex i (a,b) omm  $\frac{\mathrm{d}f}{\mathrm{d}x}$  är växande i (a,b).

Bevis

Andrederivata och konvexitet Låt f vara två gånger deriverbar i (a,b). Då är  $\frac{\mathrm{d}^2 f}{\mathrm{d}x^2}(x) \geq 0$  för varje  $x \in (a, b)$  omm f är konvex

Bevis

Andrederivata och inflexionspunkt Låt f vara två gånger deriverbar och låt  $\frac{\mathrm{d}^2 \bar{f}}{\mathrm{d}x^2}$  vara kontinuerlig. Om f har en inflexionspunkt i  $x_0$  så är  $\frac{\mathrm{d}^2 f}{\mathrm{d}x^2}(x_0) = 0$ .

**Bevis** 

**Taylors formel** Låt f vara n gånger deriverbar och definierad i en omgivning av 0, sådan att  $\frac{d^n f}{dx^n}$  är kontinuerlig. Då är

$$f(x) = \sum_{i=0}^{n-1} \frac{\frac{\mathrm{d}^i f}{\mathrm{d}x^i}(0)}{i!} x^i + \frac{\frac{\mathrm{d}^n f}{\mathrm{d}x^n}(\alpha)}{n!} x^n$$

för något  $\alpha \in [0, x]$ . Kring en godtycklig punkt a blir formeln

$$f(x) = \sum_{i=0}^{n-1} \frac{\frac{d^i f}{dx^i}(a)}{i!} (x-a)^i + \frac{\frac{d^n f}{dx^n}(\alpha)}{n!} (x-a)^n$$
 (6)

för något  $\alpha \in [a, x]$ .

**Bevis** 

Taylors formel och stora ordo Låt f vara n gånger deriverbar och  $\frac{\mathrm{d}^n f}{\mathrm{d} x^n}$  vara kontinuerlig i en omgivning av 0. Då är

$$f(x) = \sum_{i=0}^{n-1} \frac{\frac{\mathrm{d}^{i} f}{\mathrm{d} x^{i}}(0)}{i!} x^{i} + \mathcal{O}(x^{n}).$$

**Bevis** 

## 6 Serier

## 6.1 Definitioner

**Delsummor** Låt  $(a_i)_{i=1}^{\infty}$  vara en talföljd. Den motsvarande delsumman är

$$s_n = \sum_{i=1}^n a_i.$$

Serier En serie definieras som

$$\sum_{i=1}^{\infty} a_i = \lim_{n \to \infty} s_n.$$

**Konvergens** Om  $\lim_{n\to\infty} s_n$  existerar, är serien konvergent mot dens summa. Annars är den divergent.

Geometriska serier En geometrisk serie är på formen  $a_i = x^i$ .

**Absolut konvergens** Serien  $\sum_{i=1}^{\infty} a_i$  är absolutt konvergent om  $\sum_{i=1}^{\infty} |a_i|$  är konvergent.

**Taylorserier** Låt f vara oändligt deriverbar. Funktionens Taylorserie kring a är

$$s = \sum_{i=1}^{\infty} \frac{\frac{\mathrm{d}^{i} f}{\mathrm{d} x^{i}}}{i!} (x - a)^{i}.$$

Konvergensradie Enligt ekvation 6 är

$$f(x) - p_{n-1}(x) = R_n(x) = \frac{\frac{\mathrm{d}^n f}{\mathrm{d} x^n}(\alpha)}{n!} (x - a)^n.$$

f konvergerar mot sin Taylorserie om denna resttermen går mot 0 när  $n \to \infty$  för ett givet x. Detta händer för x så att |x-a| < r, där r är Taylorseriens konvergensradie.

## 6.2 Satser

Seriers egenskaper Låt  $\sum\limits_{i=1}^{\infty}a_i,\sum\limits_{i=1}^{\infty}b_i$  vara två konvergenta serier. Då gäller

$$\sum_{i=1}^{\infty} (a_i + b_i) = \sum_{i=1}^{\infty} a_i + \sum_{i=1}^{\infty} b_i,$$
$$\sum_{i=1}^{\infty} ca_i = c \sum_{i=1}^{\infty} a_i, c \in \mathbb{R}.$$

Bevis

Konvergens och termernas beteende Om  $\sum_{i=1}^{\infty} a_i$  är konvergent är  $\lim_{i \to \infty} a_i = 0$ .

**Bevis** Låt  $s_n$  beteckna seriens delsumma och S dens summa. Vi har

$$a_n = s_n - s_{n-1}.$$

Om serien är konvergent, kan vi räkna ut gränsvärdet enligt

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = S - S = 0.$$

Summan av en geometrisk serie Om |x| < 1 är

$$\sum_{i=1}^{\infty} x^i = \frac{1}{1-x}.$$

**Bevis** Betrakta  $s_n - xs_n = 1 - x^{n+1}$ . Detta ger

$$\sum_{i=1}^{n} x^{i} = \frac{1 - x^{n+1}}{1 - x}.$$

Om |x| < 1 har man

$$\sum_{i=1}^{\infty} x^i = \frac{1}{1-x}.$$

**Jamförelse av termer och konvergens** Låt  $0 \le a_i \le b_i$  för alla i. Då gäller att

- om  $\sum_{i=1}^{\infty} b_i$  är konvergent är  $\sum_{i=1}^{\infty} a_i$  konvergent.
- om  $\sum_{i=1}^{\infty} a_i$  är divergent är  $\sum_{i=1}^{\infty} b_i$  divergent.

Bevis

Kvoten av termer och konvergens Låt  $\sum_{i=1}^{\infty} a_i, \sum_{i=1}^{\infty} b_i$  vara två positiva serier vars termer uppfyller

$$\lim_{i \to \infty} \frac{a_i}{b_i} = K \neq 0.$$

Då konvergerar  $\sum\limits_{i=1}^{\infty}a_i$  om och endast om  $\sum\limits_{i=1}^{\infty}b_i$  konvergerar.

**Absolut konvergens och konvergens** En absolut konvergent serie är konvergent.

Bevis

Summan av potenser Serien

$$\sum_{i=1}^{\infty} \frac{1}{i^p}$$

är konvergent om och endast om p > 1.