Grundlagen der Programmierung (Vorlesung 17)

Ralf Möller, FH-Wedel

- Vorige Vorlesung
 - Blöcke, Funktionen, Prozeduren
 - Auswertestrategien, Rekursion
- Inhalt dieser Vorlesung
 - (Asymptotische) Komplexität von Algorithmen
- Lernziele
 - Grundlagen der Analyse von Algorithmen

Danksagung

- Die Präsentation wurde aus der Vorlesung "Einführung in die Informatik 1" von der Universität - Gesamthochschule Siegen übernommen:
- http://www.informatik.uni-siegen.de/~inf/EI1/Skript/

Aufwand von Algorithmen

Jede Operation eines Programms verursacht einen gewissen Aufwand:
□ Algorithmen verbrauchen Rechenzeit, □ Datenstrukturen verbrauchen Speicher.
Der Verbrauch dieser Ressourcen soll möglichst <i>minimal</i> sein, d.h. es stellen sich folgende Fragen:
□ Wieviel Ressourcen verbraucht ein gegebener Lösungsansatz?
☐ Was ist der <i>minimale</i> Aufwand zur Lösung des Problems?
Dazu ist die Frage zu präzisieren: Ist die Rede vom besten, dem durchschnittlichen oder dem aufwendigsten Fall?

Entwurfsüberlegungen

Folgende Fragen sollte man sich stellen, bevor man <i>Datenstrukturen</i> und <i>Algorithmen</i> entwickelt bzw. verwendet:
☐ Für welchen <i>Zweck</i> soll der Einsatz erfolgen?
☐ Welche Operationen werden <i>unbedingt</i> benötigt, welche hingegen nicht?
☐ Welche Operationen werden am häufigsten verwendet? Welche sind typisch?
☐ Mit welchem Aufwand ist bei den einzelnen Operationen zu rechnen?

Wir wollen nun die letzte Frage näher betrachten, da sie für die Entscheidung für oder gegen

bestimmte Datenstrukturen oder Algorithmen eine große Rolle spielen kann.

Begriffe

Motivation der Komplexitätsbetrachtung

Die Komplexität untersucht also folgende Fragen:
☐ Wieviel <i>Rechenzeit</i> wird für die Ausführung bei gegebener Eingabe in etwa benötigt?
☐ Wie ändert sich die Rechenzeit (größenordnungsmäßig) bei Vergrößerung der Eingabe?
☐ Wieviel <i>Speicher</i> wird für die Ausführung (in Abhängigkeit von der Eingabe) benötigt?
☐ Ist die Rechenzeit des Algorithmus noch zumutbar für "große" Eingaben?

Motivation

Die Komplexität mißt nicht konkrete Zeiten ("1456 ms"), da diese u.a. abhängen von
□ Prozessortyp und Taktrate,
□ Betriebssystem, Arbeits- und ggf. virtuellem Speicher (Größe und Zugriffszeit),
☐ Entwicklungs- und Laufzeitumgebung,
□ Compiler- oder Interpreterversion, Übersetzungsparameter und Optimierung,
□ Buslast zum Zeitpunkt der Ausführung
□ sowie <i>Speicherfragmentierung</i> .
Meßergebnisse in Sekunden etc. sind daher
unur in Einzelfällen exakt reproduzierbar,
□ sehr schwer auf andere Situation (gemäß der obigen Liste) übertragbar
und daher von sehr geringer Aussagefähigkeit.

Nutzen

Wozu wird die Komplexität benotigt?
☐ Vergleichbarkeit von Algorithmen anhand ihres <i>Aufwands</i>
☐ Beurteilung, ob ein gegebener Algorithmus für ein Problem praktisch verwendbar ist
☐ Prognose, wie sich die Laufzeit im Verhältnis zur Problemgröße ändert
Ist der Algorithmus nur bis zu einer bestimmten Problemgröße akzeptabel?

Im folgenden werden nur Funktionen auf *natürlichen Zahlen* betrachtet. Die *Problemgröße* ist in der Regel der *Wert* des Parameters.

Elementare Kosten

Zur Bestimmung der Komplexität wird zunächst die Anzahl der Rechenschritte bestimmt.

Dabei werden folgende Faktoren verwendet (etwas vereinfacht):

Operation	Anzahl Rechenschritte		
elementare Arithmetik, Vergleich,	1		
Wertzuweisung			
Ein- und Ausgabe	1		
Funktionsaufrufe	Komplexität der Funktion		
logische Ausdrücke	gemäß den obigen Faktoren		
Fallunterscheidung	Komplexität des logischen Ausdrucks		
	+ Maximum der Rechenschritte beider Zweige		
zusammengesetzte Anweisung	Summe der Kosten der einzelnen Befehle		
Schleifen	Falls m Durchläufe:		
	Initialisierung		
	+ m× Komplexität des Schleifenkörpers		
	+ m× Komplexität des Weiterzählens		

Tabelle 22: Faktoren für die Komplexität

Beispiel 1

```
is-prim(n : N_0) : B
                                if n < 2
                                                                 {1}
                                  then false
                                  else
                                    begin
                                       var prim: B;
Die Anzahl der
                                           i:N_0;
Rechenschritte
                                       prim, i := true, 2;
                                                                 {1+1}
beträgt:
                                       while prim \wedge (i < n) do
                                                                 \{(n-2)*(2)
 1+1+1+(n-2)\cdot(2+2+1+1)+1
                                         if (n \text{ div } i) = 0
                                                                {+2}
                                           then prim := false
                                                                 {+1}
=4+6\cdot(n-2)=6\cdot n-8
                                         end if:
                                         i := i + 1
                                                                  (+1)
Die Anzahl der
                                       end while;
Rechenschritte
                                                                  {1}
                                       prim
hängt also
                                   end
                                end if
linear von n ab.
```

O-Notation

Wie bereits erwähnt, interessiert nur das grundsätzliche Verhalten des Algorithmus für größer werdende Eingaben.

Hierzu gibt es die "O-Notation", die eine Einteilung der Algorithmen in *Größenordnungen* erlaubt. Dabei wird von *unwesentlichen* Konstanten abstrahiert.

- \square Sei f(n) die Anzahl auszuführender Rechenschritte für den Algorithmus in Abhängigkeit von der Problemgröße n
- $\square g(n)$ sei eine von n abhängige Funktion
- ☐ Man schreibt $f(n) \le g(n) := \exists c . (\forall n . (f(n) \le c \cdot g(n)))$ In unserem Beispiel mit f(n) = 6n - 8 kann man also beispielsweise c = 6 und g(n) = n wählen, denn $\forall n . (6n - 8 \le 6n)$
- ☐ Definition der O-Notation:

$$f(n) \in O(g(n)) := \exists c_0 . (\exists N_0 . (\forall n . (n > N_0 \rightarrow f(n) \le c_0 \cdot g(n))))$$

Gesprochen "ab einem Wert N_0 liegt die Komplexität von f unter der c_0 -fachen Komplexität von g" oder verkürzt: "f liegt in der gleichen Größenordnung wie g".

Rechenbeispiele

- \Box f(n) = 3n 1 \in O(n), denn $\forall n. (n > 0 \to 3n 1 \le 3n)$ mit $c_0 = 3, N_0 = 0, g(n) = n$
- \Box f(n) = $4n + 7 \in O(n)$, denn $\forall n : (n > 6 \to 4n + 7 \le 5n)$ mit $c_0 = 5, N_0 = 6, g(n) = n$
- $\Box \ \mathbf{f(n)} = n^2 + n 1 \in O(n^2) \colon \forall n. \ \left(n > 0 \to n^2 + n 1 \le 2n^2 \right) \ \mathbf{mit} \ c_0 = 2, \ N_0 = 0, \ g(n) = n^2$

Beachten Sie:

- \square Es kommt *nicht* auf den *kleinstmöglichen* **Startwert** N_0 an. Statt $N_0 = 6$ im zweiten Beispiel hätte man auch $N_0 = 100$ wählen können.
- Es kommt *nicht* auf die *kleinstmögliche* Konstante c_0 an. Im zweiten Beispiel hätte man statt $c_0 = 5$ genausogut $c_0 = 20$ wählen können.
 - Die Konstante c_0 ist nur ein Multiplikator für die Laufzeit, die unabhängig von der Problemgröße ist und daher für die Einteilung in Klassen vernachlässigt werden kann.
- Unter mehreren möglichen Komplexitätsklassen ist stets die *kleinste* zu wählen. So gilt zwar rechnerisch $3n-1 \le 20n^7$ und somit $3n-1 \in O(n^7)$, diese Aussage ist aber *nicht konstruktiv* und daher zu unterlassen.
- □ Faustregel: der höchste Exponent bzw. die höchste Basis $(2^n, 3^n \text{ etc.})$ dominiert.

Weitere Symbole

Die "**O-Notation**" geht auf den Zahlentheoretiker *Edmund Landau* (1877-1938) zurück, das "**O**" wird daher auch als "Landau'sches Symbol" bezeichnet.

O(g(n)) bezeichnet dabei eine ganze Klasse von Funktionen; so liegen in O(n) alle Funktionen, die maximal linear mit n wachsen.

Es gibt insgesamt drei verschiedene Symbole:

- $\Box f(n) \in O(g(n))$: ,,f(n) wächst höchstens so schnell wie g(n)" (obere Schranke)
- $\square f(n) \in \Omega(g(n))$: ,,f(n) wächst *mindestens* so schnell wie g(n)" (untere Schranke)
- $\square f(n) \in \Theta(g(n))$: "f(n) wächst genauso schnell wie g(n)" (exakte Schranke)

Weitere Symbole

Beispiele zu den Komplexitätsklassen

	O(1)	Tritt ein, wenn das Programm nur einmal linear durchlaufen wird, ohne
		von der Problemgröße abzuhängen (d.h. auch ohne Schleifen über n)
		🦈 "konstante Laufzeit"
_	$O(\log n)$	Die Rechenzeit wächst logarithmisch zur Problemgröße.
		Häufig bei Zerlegung von Problemen in Teilprobleme und Berechnung
		eines der Teilprobleme
		Beispiel: Binäre Suche
_	$\overline{O(n)}$	Lineare Zunahme der Rechenzeit mit <i>n</i> .
		Typischer Vertreter sind Schleifen von $i \dots n$ $(i < n)$ sowie alle Ope-
		rationen, die jedes Element genau k -mal referenzieren für ein $von n$
		unabhängiges k.
		Beispiel: Invertieren eines Bildes; Sequentielle Suche
_	$O(n \log n)$	Linear logarithmische Zunahme der Rechenzeit.
		Typisch bei Zerlegung des Problems in Teilprobleme mit Bearbeitung
		aller Teilprobleme.
		Beispiel: Bessere Sortierverfahren, etwa Quicksort

Komplexitätsklassen

Die folgende Tabelle enthält die wichtigsten Komplexitätsklassen:

Klasse	Leseweise				
O(1)	Die Rechenzeit ist unabhängig von der Problemgröße.				
$O(\log n)$	Die Rechenzeit wächst logarithmisch (zur Basis 2) mit				
	der Problemgröße.				
O(n)	Die Rechenzeit wächst <i>linear</i> mit der Problemgröße.				
$O(n \cdot \log n)$	$O(n \cdot \log n)$ Die Rechenzeit wächst <i>linear logarithmisch</i> mit der				
	Problemgröße.				
$O(n^2)$	Die Rechenzeit wächst quadratisch mit der Problem-				
	größe.				
$O(n^3)$	Die Rechenzeit wächst <i>kubisch</i> mit der Problemgröße.				
$O(2^n)$	$O(2^n)$ Die Rechenzeit wächst exponentiell (zur Basis 2) mit				
	der Problemgröße.				

Tabelle 23: Die wichtigsten Komplexitätsklassen

Verhalten Grundfunktionen

Abbildung 20: Verhalten der Funktionen für n=1,...,5

Beispiele zu den Komplexitätsklassen

 $O(n^2)$ Quadratische Zunahme der Rechenzeit mit n.

Typisch bei verschachtelten Schleifen.

Beispiel: Paarweiser Vergleich aller Elemente bei "naheliegendem"

Sortierverfahren. $O(n^3)$ Kubische Zunahme der Rechenzeit mit n.

Typisch bei dreifach verschachtelten Schleifen.

Beispiel: Matrixmultiplikation mit $c_{i,j} = \sum_{j=1}^{n} a_{i,k} \cdot b_{k,j}$

 $O(2^n)$ Exponentielle Zunahme der Rechenzeit (zur Basis 2). Typisch bei der erschöpfenden Suche in allen Kombinationen von Paaren oder Teilmengen.

O(n!) Zunahme gemäß Fakultätsfunktion. Tritt bei der Bildung aller Permutationen auf.

Auf den beiden nächsten Folien sind Diagramme für das Wachstum dieser Funktionen angegeben.

Verhalten Grundfunktionen

Beispiel für einen 500 Mhz-Rechner mit Rechenzeit 2ns pro Taktzyklus:

	Wert von n						
$O(\ldots)$	2	4	8	16	32	64	128
$O(\log_2 n)$	2ns	4ns	6ns	8ns	10ns	12ns	14ns
O(n)	4ns	8ns	16ns	32ns	64ns	128ns	256ns
$O(n\log_2n)$	4ns	16ns	48ns	128ns	320ns	768ns	1792ns
$O(n^2)$	8ns	32ns	128ns	512ns	$2\mu s$	$8\mu s$	$32\mu s$
$O(n^3)$	16ns	128ns	$1\mu s$	$8\mu s$	$65\mu s$	$524\mu s$	4ms
$O(2^{\mathbf{n}})$	8ns	32ns	512ns	$131\mu s$	8.59s	1169 <i>a</i>	$2 \cdot 10^{22} a$
$O(3^{\mathbf{n}})$	18ns	162ns	$13\mu s$	86ms	42.89d	$2 \cdot 10^{14}a$	$7.5 \cdot 10^{44}a$
O(n!)	4ns	48ns	$81\mu s$	11.6h	$1.67 \cdot 10^{28}a$	$1.9 \cdot 10^{74}a$	$2 \cdot 10^{214}a$

Tabelle 24: Berechnungsdauer von n Rechenschritten nach Komplexitätsklasse

Deutlich zu erkennen ist das geringe Wachstum (Addition) bei $\log n$, das ebenfalls geringe Wachstum von $n \log n$ und das starke Zunehmen von 2^n .

Aufgrund der Berechnung von $\log n$ (zur Basis 2) wurden nur Zweierpotenzen verwendet.

Verhalten Grundfunktionen

Abbildung 21: Verhalten der Funktionen für n=5,...,12

Average, Best und Worst Case

Die Komplexitätstheorie unterscheidet weiter in folgende Kategorien:

□ worst case-Komplexität (,,worst")

Gibt die Komplexität des rechenintensivsten Falls an.

□ average case-Komplexität ("avg")

Dies gibt die Komplexität des durchschnittlichen Falls an.

□ best case-Komplexität (,,best")

Beschreibt die Komplexität des günstigsten Falls.

Naheliegenderweise gilt

$best \le avg \le worst$

Für einige Algorithmen fallen die Komplexitätsklassen zusammen, so daß z.B. "avg" und "worst"-case identisch sind, z.B. bei dem Sortierverfahren Sortieren durch Auswahl.

Die Bestimmung des tatsächlichen "durchschnittlichen" Falls ist in der Regel nicht trivial.

Die übliche Kenngröße eines Algorithmus ist der *worst case* - es interessiert vor allem, womit *im schlimmsten Fall* zu rechnen ist.

Ergebnis zu den Grundfunktionen

- \square Solange n noch sehr klein ist, verhält sich 2^n sogar günstiger als etwa n^3 (bis n=9)
- \square Das schnelle Wachstum der Funktionen n^3 und 2^n ist deutlich zu erkennen.
- ☐ Die Funktionen lassen sich in der in der Tabelle 23 angegebenen Reihenfolge anordnen.
- \square Günstige Komplexitäten liegen bis $O(n \log n)$
- \square $O(n^2)$ ist ebenfalls noch mit akzeptablem Wachstum verbunden
- \square $O(n^3)$ ist nur für relativ geringe n akzeptabel.
- ☐ Exponentielles Wachstum *vervielfacht* die Laufzeit bei Hinzunahme *eines* Elements

icht mehr akzeptable Laufzeiten.

Zusammenfassung, Kernpunkte

(Asymptotische) Komplexität von Algorithmen

Was kommt beim nächsten Mal?

- Datenstrukturen
- Algorithmen und deren Analyse