Mostafa Sabri

Lecture 23

5.5 Complex Eigenvalues (Extra)

In this section we study $n \times n$ matrices A acting on \mathbb{C}^n instead of \mathbb{R}^n , and allow the eigenvalues of A to be non-real numbers. So a nonzero $\mathbf{x} \in \mathbb{C}^n$ is an eigenvector if there exists $\lambda \in \mathbb{C}$ such that $A\mathbf{x} = \lambda \mathbf{x}$, in which case we call λ the corresponding eigenvalue.

Find the eigenvalues and eigenvectors of

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 1 & 2 & 2 \end{bmatrix},$$

$$C = \begin{bmatrix} 0 & 1-i & 0 \\ 1+i & 0 & 1-i \\ 0 & 1+i & 0 \end{bmatrix}$$

Thm: Any $n \times n$ matrix A over \mathbb{C}^n has n (possibly complex) eigenvalues.

<u>Proof.</u> The characteristic polynomial $p(\lambda) = \det(A - \lambda I)$ is a polynomial of degree n. So it has n roots, which are possibly not in \mathbb{R} . This is called the *fundamental* theorem of algebra. Math majors will learn its proof in Complex Analysis. Since the roots of $p(\lambda)$ are precisely the eigenvalues of A, we are done.

Thm: If A has real entries, then each non-real eigenvalue (if any) comes in conjugate pairs.

The theorem means that if $\lambda = a + ib$ is an eigenvalue, then $\overline{\lambda} = a - ib$ must also be an eigenvalue.

<u>Proof.</u> Suppose $\lambda = a + ib$ is an eigenvalue with corresponding eigenvector \mathbf{x} . Let $\overline{\mathbf{x}}$ be the vector \mathbf{x} with complex conjugate entries, i.e. $\overline{\mathbf{x}} = (\overline{x}_1, \dots, \overline{x}_n)^T$. Then $A\overline{\mathbf{x}} = \overline{A}\overline{\mathbf{x}} = \overline{\lambda}\overline{\mathbf{x}} = \overline{\lambda}\overline{\mathbf{x}} = \overline{\lambda}\overline{\mathbf{x}}$. This shows that $\overline{\mathbf{x}}$ is an eigenvector of A for the eigenvalue $\overline{\lambda}$.

Find the eigenvalues of
$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
.

This matrix can be written as a composition of first rotation, then scaling: if $\alpha = r \cos \theta$ and $b = r \sin \theta$, we have A = DR for $D = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix}$ and $R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.

Thm: Let A be a real 2×2 matrix with a complex eigenvalue $\lambda = \alpha - ib$, $b \neq 0$, and associated eigenvector \mathbf{v} . Then

$$A = PCP^{-1}$$
, where $P = \begin{bmatrix} \text{Re } \mathbf{v} & \text{Im } \mathbf{v} \end{bmatrix}$, $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

Sketch of proof. 1. By calculation, AP = PC.

- 2. \mathbf{v} cannot be real otherwise $A\mathbf{v}$ is real and cannot equal $\lambda\mathbf{v}$.
- 3. It follows that $\text{Im} \mathbf{v} \neq \mathbf{0}$. It also follows that $\text{Re} \mathbf{v} \neq \mathbf{0}$ by considering $\frac{1}{i}\mathbf{v}$.
- 4. If $\text{Im} \mathbf{v} = z \text{Re} \mathbf{v}$ for some $z \neq 0$ then $\mathbf{v} = (1 + iz) \text{Re} \mathbf{v}$ with $1 + iz \neq 0$ since $\mathbf{v} \neq \mathbf{0}$. So $\mathbf{w} = \frac{1}{1 + iz} \mathbf{v}$ is a real eigenvector for λ , a contradiction,

5. By 2-4 we see that P is invertible and we are done.

Let
$$A = \begin{bmatrix} -7 & 1 \\ -5 & -3 \end{bmatrix}$$
. Factorize $A = PCP^{-1}$, where C has the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ for some $a, b \in \mathbb{R}$.

The result holds in some sense in 3 dimensions as well. That is, if A is a 3 × 3 matrix with a non-real eigenvalue (and hence 2 of them), there is a plane in \mathbb{R}^3 on which A acts as a rotation followed by a scaling.