Engineering Mathematics

Real Analysis Continuity Part 6

Definition of Continuity of a function at a point

The function f(x) is continuous at x=a if and only if we can guarantee f(x) to be close to the value f(a) by restricting x to be close to a. To rephrase, we say f(x) is continuous at x=a if, given any positive tolerance $\varepsilon>0$ we choose for f(x) as an approximation for f(a), we can then find a positive tolerance $\delta>0$ for α as an approximation for a so that α -tolerance in α allows at most α tolerance in α tolerance in α allows at most α tolerance in α definition below is very technical, but through reflection and exposure to examples, one eventually sees that this is exactly what is required.

The function f(x) is continuous at the point x = a if and only if $(\forall \epsilon > 0) \ (\exists \delta > 0) \ (\forall x) \ s.t. \ |x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$

Continuity Theorems

- Suppose that f(x) and g(x) are continuous at x = a. Then so is f(x) + g(x).
- If f(x) is continuous at x = a, then so is cf(x) for any constant c.
- Suppose that f(x) and g(x) are continuous at x = a. Then so is f(x)g(x).
- Polynomial functions are continuous at every $a \in R$.
- (g(x)) continuous at x = a) $\land (g(a) \neq 0) \Rightarrow \frac{1}{g(x)}$ is continuous at x = a.
- If f(x) and g(x) are continuous at x = a, and $g(a) \neq 0$, then f(x)/g(x) is also continuous at x = a.
- If $f(x) = \frac{p(x)}{q(x)}$; where p and q are polynomials, then f(x) is continuous at every $a \in R$ except where q(a) = 0, at which points f(x) is undefined and therefore discontinuous.

➤ <u>One - Sided Continuity</u>

Definition

We call
$$f(x)$$
 left-continuous at $x = a$ if and only if $(\forall \epsilon > 0)$ $(\exists \delta > 0)$ $(\forall x)$ $s.t.$ $x \in (a - \delta, a] \Rightarrow |f(x) - f(a)| < \epsilon$

We call f(x) right-continuous at x = a if and only if $(\forall \epsilon > 0)$ $(\exists \delta > 0)$ $(\forall x)$ s. t. $x \in [a, a + \delta) \Rightarrow |f(x) - f(a)| < \epsilon$

• Try to solve the following sums.

1. Prove that f(x) = 3x + 5 is continuous at x = 4

2.
$$f(x) = x^2 + 5x + 8$$
; $x \ge 1$
= $13x + 1$; $x < 1$

Prove that f(x) is continuous at x = 1

- 3. Prove that $f(x) = e^x$ is continuous at x = 0
- 4. Prove that $f(x) = \frac{x+1}{x-1}$ is not continuous at x = 1
- 5. Prove that f(x) = |x| is continuous at x = 0

From above definition then we can go to define the continuity of a function on a interval. So if $f: A \to R$, f is a function then we can say f(x) is continuous on A if f

$$(\forall a \in A)(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in A) \text{ s. t. } |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$$

- Prove that $f(x) = x^2$ is continuous on R.
- Prove that $f(x) = \frac{x}{2x+3}$ is continuous on [1,3].
- Prove that $f(x) = x^3 + 3x$ is continuous on [0,1].

Continuity Vs Uniformly Continuity

Mainly there are 2 types of continuity.

If f(x); $f: A \to R$ be a function

- We say that f is continuous on A if and only if $(\forall a \in A)(\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in A) s.t. |x a| < \delta \Rightarrow |f(x) f(a)| < \varepsilon$
- Hence f is not continuous on A if and only if $(\exists a \in A)(\exists \varepsilon > 0) \ (\forall \delta > 0) \ (\exists x \in A) \ s.t. \ |x a| < \delta \ and \ |f(x) f(a)| \ge \varepsilon$
- We say that f is uniformly continuous on A if and only if $(\forall \varepsilon > 0) \ (\exists \delta > 0) \ (\forall \alpha \in A) \ (\forall x \in A) \ s. t. \ |x \alpha| < \delta \Rightarrow |f(x) f(\alpha)| < \varepsilon$
- Hence f is not uniformly continuous on A if and only if $(\exists \varepsilon > 0) \ (\forall \delta > 0) \ (\exists a \in A) \ (\exists x \in A) \ s.t. \ |x a| < \delta \ and \ |f(x) f(a)| \ge \varepsilon$

The main difference of this two definitions is the defined δ . In continuous definition it says δ depends on both a, ε .

But the other definition says δ depends on only the ε . Not on a.

So,

- \triangleright If f(x) is uniformly continuous then it is continuous.
- \triangleright But we can't say if f(x) is continuous then it is uniformly continuous.
- \triangleright But if f(x) is continuous on closed bounded interval such that [a,b] then f(x) will be uniformly continuous on that interval.

Lipschitz Continuity

Definition

A function $f: A \to R$ is Lipschitz continuous on A, if $\exists M > 0$, $\forall x, y \in A$ s.t. |f(x) - f(y)| < M|x - y|

- If f(x) is lipschitz continuous on A which is a sub set of R, then f(x) is uniformly continuous on A.
- But there are some function which are uniformly continuous but not have Lipchitz continuous on some specific intervals.
- 1. Prove that $f(x) = \frac{1}{x}$ is continuous on $(0, \infty)$.
- 2. Prove that $f(x) = \frac{1}{x}$ is uniformly continuous on [1,2].
- 3. Prove that if a function is Lipchitz continuous on an interval then it is uniformly continuous.

Using $|\sin x| < |x|$; $\forall x \in R$, Prove that $f(x) = \sin x$ is continuous at any $a \in R$.

Intermediate Value Theorem

Suppose f is continuous on [a, b] and f(a) < u < f(b) or f(b) < u < f(a) then, There exists $c \in (a, b)$ such that f(c) = u.

- \bullet If f is continuous on [a, b] then f is bounded on [a, b].
- If f is continuous on [a, b] then f has a maximum and a minimum on [a, b].

Differentiability

Let f(x) be a real valued function defined on A.

Then we say that f is differentiable at a if and only if $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} \in R$

We call this limit as the derivative of the function at a. and we write it as f'(a).

 $f'_{+}(a) = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a}$ is called the right derivative of the function at a.

 $f'_{-}(a) \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a}$ is called the left derivative of the function at a.

If the function is differentiable at x = a if and only if $f'_+(a) = f'_-(a) = f'(a) \in R$.

Theorem

If a function differentiable at x = a, then it is continuous at x = a.

Definition

If f has a local maximum at a if and only if

$$\exists \delta > 0$$
, $\forall x |x - a| < \delta \Rightarrow f(x) \ge f(a)$

If *f* has a local minimum at *a* if and only if

$$\exists \delta > 0$$
, $\forall x |x - a| < \delta \Rightarrow f(x) \le f(a)$

Commonly maximum or minimum is named as an extreme point.

Roller's Theorem

If f is continuous on [a, b] and differentiable on (a, b), and f(a) = f(b) then there exists $c \in (a, b)$ such that f'(c) = 0.

Mean Value Theorem

If f is continuous on [a,b] and differentiable on (a,b), then there exists $c \in (a,b)$ such that $f'(c) = \frac{f(a) - f(b)}{a - b}$

Problems

- 1. Using intermediate value theorem prove that $x + e^x = 0$ has a root between [-1,0].
- 2. Prove that f(x) = |x| is not differentiable at x = 0.
- 3. Using mean value theorem show that $|\sin x \sin y| \le |x y|$; $\forall x, y \in R$

Dasun Madushan

B.Sc. Eng. (Hons)

Electronic & Telecommunication Engineering

University of Moratuwa