MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. E GESTÃO INDUSTRIAL | 2018-19

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Avaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos três grupos utilizando folhas de capa distintas.

GRUPO I

- **1.** [**6,0**] Considere o conjunto $S = \{\vec{a}, \vec{b}, \vec{c}, \vec{d}\} \subset \mathbb{R}^4$, onde $\vec{a} = (1,1,0,2)$, $\vec{b} = (1,-1,2,0)$, $\vec{c} = (2,1,2,3)$ e $\vec{d} = (-2,2,-4,0)$. Sejam $H = \{(x,y,z,w) \in \mathbb{R}^4 : z = x y \land w = 0\}$ um subespaço de \mathbb{R}^4 e os vetores $\vec{e} = (\alpha, -2\alpha, 0, 1)$ e $\vec{f} = (2\beta, \beta, 1, 0)$, $\alpha, \beta \in \mathbb{R}$.
 - a) Determine o subespaço gerado pelo conjunto S, L(S); indique uma base para o subespaço obtido e conclua em relação à sua dimensão.
 - **b**) Obtenha os valores de α e β de forma que os vetores \vec{e} e \vec{f} pertençam a uma base ortogonal, W, para L(S); determine essa base.
 - c) Determine uma base, V, para o espaço \mathbb{R}^4 que inclua dois elementos ortogonais do espaço H e um elemento de S. Justifique devidamente.

GRUPO II

- **2.** [1,6] Seja o conjunto $U = \{\vec{u}_1, \vec{u}_2, \vec{u}_3, \vec{u}_4\} \subset \mathbb{R}^4$, tal que $\vec{u}_1 = (0, \alpha, \alpha, \alpha)$, $\vec{u}_2 = (1,-1,0,1)$, $\vec{u}_3 = (1,\alpha,6,2\alpha-3)$ e $\vec{u}_4 = (1,0,\beta+1,1)$. Obtenha os valores de α e β de modo que U seja uma base para L(U) e identifique L(U). Justifique.
- **3.** [2,4] Sejam \vec{a} , \vec{b} , \vec{c} e \vec{d} vetores não nulos do espaço \mathbb{R}^3 , tais que $\|\vec{a}\| = \|\vec{c}\| = \sqrt{3}$, $\|\vec{b}\| = \|\vec{a} \times \vec{b}\| = \sqrt{2}$, $\vec{a} \cdot \vec{c} \times \vec{b} = 2$ e $\vec{d} = \vec{c} + (\vec{a} \times \vec{b})$. Calcule:
 - a) A norma de $\overrightarrow{\text{proj}}_{\vec{a}-\vec{b}}(\vec{a}+\vec{b})$ (vetor projeção ortogonal de $\vec{a}+\vec{b}$ sobre $\vec{a}-\vec{b}$).
 - **b)** O ângulo, α , formado pelos vetores $\vec{d} + \vec{c}$ e $\vec{a} \times \vec{b}$.
 - c) O volume do prisma definido pelos vetores \vec{b} , $\vec{a} + \vec{b}$ e $\vec{a} + \vec{c}$.

.....(continua no verso)

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Avaliação

GRUPO III

- **4.** [5,0] Sejam o plano M: x+y-z=3, o ponto R=(-1,-1,1) e a reta, r, com a equação vetorial $X(t)=P+t\vec{a}$, $t\in\mathbb{R}$, em que P=(1,0,1) e $\vec{a}=(-1,1,-2)$.
 - a) Calcule a distância do ponto R à reta r e o ângulo que esta reta faz com a reta, p, bissetriz dos quadrantes ímpares do plano yOz.
 - **b**) Obtenha a equação vetorial da reta, r_1 , que está contida em M, é ortogonal à reta r e passa no ponto, R_1 , do plano M que está mais próximo de R.
- **5.** [2,5] Considere a reta, h, com a equação vetorial $X(t) = P + t\vec{a}$, $t \in \mathbb{R}$, em que P = (1,0,1) e $\vec{a} = (1,-1,0)$ e o ponto Q = (-1,1,1). Determine as equações cartesianas dos planos, α e α_1 , que passam no ponto Q, são paralelos à reta h e fazem um ângulo de 30° com o eixo dos xx.
- **6.** [1,1] Sejam \vec{a} , \vec{b} e \vec{c} vetores não nulos do espaço \mathbb{R}^3 , tais que $\vec{a} \cdot \vec{b} \neq 0$ e $\vec{c} \cdot \vec{b} \neq 0$. Mostre que se $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$, então o conjunto $U = \{\vec{a}, \vec{c}\}$ é linearmente dependente. Sugestão: $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} (\vec{a} \cdot \vec{b})\vec{c}$.
- 7. [1,4] Considere o plano $M = \{X \in \mathbb{R}^3 : X = P + s\vec{a} + t\vec{b}\}$ e seja O_1 o ponto de M mais próximo da origem. Mostre que:

$$\|\overrightarrow{PO_1}\| = \frac{\|\overrightarrow{OP} \times (\overrightarrow{a} \times \overrightarrow{b})\|}{\|\overrightarrow{a} \times \overrightarrow{b}\|}.$$