Priority Queue Comparison Report

HEAP VS. LIST

Contents

1	Summary	1
2	Methodology 2.1 Heap Pseudocode	2
3	Performance Reports	3
	3.1 Modules: Size 10	3
		3
	3.3 Modules: Size 500	3
	3.4 Modules: Size 1000	3
	3.5 Modules: Size 5000	3
	3.6 Modules: Size 10000	4
	3.7 Modules: Size 50000	4
	3.8 Job Scheduler Test Results	4
4	Complexity Analysis	5
	- v v	5
5	Schedule	6
6	Screenshot Showcase	7

1 Summary

This program measures the performance of priority queues using a heap structure and using a list structure. It generates several reports of time performance for each individual module for lists of several sizes. It also creates a report for a overall job scheduler using heap and list.

From the reports, we can conclude that enqueing and dequeing in a heap is $O(\log n)$ because the task of heapifying an item is divide in two. Enqueing a list is constant because it is unsorted and order does not matter. Dequeing a list is O(n) because it must search for the highest priority before removing it. For the job schedulers, the heap has better performance with $O(n\log n)$ because it must enqueue and dequeue for all items. The list is O(n squared) because it must search all items for every item in the queue.

2 Methodology

Note: Pseudocode for heap modules sourced for CSCI 423 lecture slides.

2.1 Heap Pseudocode

```
enQueue:
   append(item)
   Reheapify Sift up:
   If parent is greater:
      swap(parent, item)

deQueue:
   swap(first, last)
   pop(last) Reheapify:
   If child is smaller:
   swap(child, item)
```

3 Performance Reports

3.1 Modules: Size 10

Module	Heap	List
init	0.000016	0.000002
enQueue	0.000013	0.000004
deQueue	0.000005	0.000004
$\operatorname{sneakAPeek}$	0.000001	0.000002
is Empty	0.000001	0.000001
size	0.000001	0.000001

3.2 Modules: Size 50

Module	$_{ m Heap}$	List
init	0.000057	0.000002
enQueue	0.000009	0.000003
deQueue	0.000006	0.000008
$\operatorname{sneakAPeek}$	0.000001	0.000007
is Empty	0.000001	0.000001
size	0.000000	0.000000

3.3 Modules: Size 500

Module	$_{ m Heap}$	List
init	0.000590	0.000003
enQueue	0.000009	0.000003
deQueue	0.000009	0.000058
$\operatorname{sneakAPeek}$	0.000001	0.000058
is Empty	0.000001	0.000001
size	0.000001	0.000000

3.4 Modules: Size 1000

Module	Heap	List
init	0.001177	0.000004
enQueue	0.000009	0.000004
deQueue	0.000011	0.000146
$\operatorname{sneakAPeek}$	0.000001	0.000139
is Empty	0.000001	0.000001
size	0.000000	0.000000

3.5 Modules: Size 5000

Module	$_{ m Heap}$	List
init	0.005858	0.000008
enQueue	0.000009	0.000003
deQueue	0.000012	0.000658
$\operatorname{sneakAPeek}$	0.000001	0.000657
isEmpty	0.000001	0.000001
size	0.000001	0.000001

3.6 Modules: Size 10000

Module	Heap	List
$_\mathrm{init}$	0.012278	0.000052
enQueue	0.000010	0.000033
deQueue	0.000014	0.001183
$\operatorname{sneakAPeek}$	0.000001	0.001175
isEmpty	0.000001	0.000001
size	0.000000	0.000000

3.7 Modules: Size 50000

Module	$_{ m Heap}$	List
init	0.058573	0.000193
enQueue	0.000010	0.000006
deQueue	0.000018	0.005876
$\operatorname{sneakAPeek}$	0.000001	0.006060
is Empty	0.000001	0.000001
size	0.000001	0.000001

3.8 Job Scheduler Test Results

Size	$_{ m Heap}$	List
10	0.002792	0.000860
50	0.003096	0.001290
500	0.007834	0.031011
1000	0.013855	0.119394
5000	0.069740	2.958742
10000	0.144353	11.856617
50000	0.817438	297.10306

4 Complexity Analysis

4.1 Time Efficiency

Module	$_{ m Heap}$	List
init	O(nlogn)	O(n)
enQueue	O(logn)	O(1)
deQueue	O(logn)	O(n)
$\operatorname{sneakAPeek}$	O(1)	O(n)
is Empty	O(1)	O(1)
size	O(1)	O(1)
scheduler	O(nlogn)	$O(n^2)$

5 Schedule

March 3: Begin work on PQ_Heap: $_init_;$ enQueue; deQueue

Completed: none

March 10: Finish PQ_Heap; start PQ_List: _init_: enQueue; deQueue

Completed: none

March 17: Finish PQ_List; Conduct time trials; Begin Report

Completed: none

March 22: Complete Report

Completed: PQ_Heap, PQ_List, Conducted time trials

Report completed March 24

6 Screenshot Showcase

```
Heap vs. List Performance Report
Number of items: 10
Heap initialized.
Contents: 4389, 25218, 15718, 33560, 27288, 39204, 15907, 35520, 40405, 31641
Size: 10
EnQueue item of priority 1500.
Parent: n/a
Children: 4389, 15718
EnQueue item completed.
DeQueue highest priority item completed.
Peak at highest priority item completed.
Check for empty queue completed.
Check size completed.
List initialized.
Contents: 31641, 33560, 39204, 15718, 25218, 15907, 4389, 35520, 40405, 27288
Size: 10
EnQueue item of priority 1500.
Parent: n/a
Children: n/a
EnQueue item completed.
DeQueue highest priority item completed.
Peek at highest priority item completed.
Check for empty queue completed.
Check size completed.
Performance Results Table (measurements in seconds)
  Module
                       List
            Heap
init
            0.000016 0.000002
enQueue
            0.000013 0.000004
deQueue
           0.000005 0.000004
sneakAPeek 0.000001 0.000002
           0.000001 0.000001
isEmpty
            0.000001 0.000001
size
```

Figure 1: report10.txt: Output report for 10 items

```
Heap vs. List Performance Report
Number of items: 50000
Heap initialized.
Contents: 2, 4, 5, 7, 7, 16, 6, 8, 17, 33...
Size: 50000
EnQueue item of priority 1500.
Parent: 1134
Children: 14950, 15732
EnQueue item completed.
DeQueue highest priority item completed.
Peak at highest priority item completed.
Check for empty queue completed.
Check size completed.
List initialized.
Contents: 34101, 40963, 48844, 30250, 33533, 47355, 7032, 21318, 4112, 23067...
Size: 50000
EnQueue item of priority 1500.
Parent: n/a
Children: n/a
EnQueue item completed.
DeQueue highest priority item completed.
Peek at highest priority item completed.
Check for empty queue completed.
Check size completed.
Performance Results Table (measurements in seconds)
  Module
            Heap
                       List
init
            0.058573 0.000193
enQueue
            0.000010 0.000006
deQueue
            0.000018 0.005876
sneakAPeek 0.000001 0.006060
            0.000001 0.000001
isEmpty
size
            0.000001 0.000001
```

Figure 2: report50000.txt: Output report for 50000 items

Job Scheduler Test Results Time measurements are in seconds.

Size	Неар	List
10	0.002792	0.000860
50	0.003096	0.001290
10	0.002792	0.000860
500	0.007834	0.031011
1000	0.013855	0.119394
5000	0.069740	2.958742
10000	0.144353	11.856617
50000	0.817438	297.10306

Figure 3: scheduler_results.txt output file