CAMBRIA
Slick Concrete
Reinforcing
Bars

CAMBRIA STEEL COMPANY

General Sales Office Widener Building Philodelphia

ST. LOUIS MUNICIPAL BRIDGE
SLICK CONCRETE REINFORCING BARS BEING PLACED IN POSITION

Copyright, 1918 CAMBRIA STEEL COMPANY Philadelphia

CAMBRIA STEEL COMPANY

Seneral Sales Office-Widener Building, Philadelphia Works ~ Johnstown, Pa.

8 AND 4, SQUARE SECTION BAR. Patented March 17, 1908 TYPES OF SLICK CONCRETE REINFORCING BARS 1 AND 2, ROUND SECTION BAR. Patented March 17, 1908 3 AND 4, SQUARE SECTION B

CAMBRIA SLICK CONCRETE REINFORCING BARS

GENERAL DESCRIPTION

SLICK Concrete Reinforcing Bars are of substantially uniform cross-section throughout and are consequently of equal strength at all places, so that the material is economically distributed to best advantage.

The projections on these bars are arranged in the form of undulations or waves and are so located that the concrete can be firmly bedded on all portions of the bar without the possibility of the formation of air pockets which would destroy the contact.

POINTS OF SUPERIORITY

THE Slick bar is the only one of all the deformed bars in the market which can be positively spliced, so as to be equal in strength to the bar; whereas all other bars are merely spliced by overlapping; these latter depending upon the concrete for their strength instead of on the steel, as it should be.

With other forms of bars it is customary to provide a lap in cases where they have to be spliced, this lap being equal to about forty diameters of the bar.

On the other hand, Slick bars are so arranged that their surfaces will interlock by merely

SLICK WEDGE CLAMP JOLYT. Patented September 1, 1914
CREATER TO USE, EXSERS TO MAKE, AND SPRONDER PRAX WHED JOINTS

placing them in contact with each other and an overlap of the length of five waves or undulations together with the wedge clamp will develop a strength at the splice equal to that of the bar, as determined by actual pulling tests. By reason of this method of splicing a lesser amount of lineal feet of bars will suffice, and in cases where extreme lengths are used in excess of carload or twin carload lengths (60 feet), bars can be spliced to their full strengths by means of the clamps and wedges to give any length desired.

REDUCED COST WITH SLICK BARS AND CLAMP JOINT

THE Slick Wedge Clamp Joint, with its greatly decreased lap as compared with the usual lap of forty diameters, provides a large reduction in the weight and cost of the bar material, and the freight and haulage charges thereon. The item of wire for binding the lapped ends of the bars is entirely eliminated, while the time, labor, and cost in clamping the joint with the Slick Clamp and Wedge are but a fraction of those required by the ordinary wire tie method.

The total cost, all things considered, namely: amount of lap, time, labor, and wire material for tying in accordance with the old method; and, on the other hand, the material of the Slick Clamps and Wedges, with the less time, labor, and lap to install them, make the Slick Clamp and Wedge Method the cheaper and better construction, besides giving a positive joint; whereas the old style joint is not positive and depends on the concrete for its strength.

MALCE WELIGE CLAMP JOINT. Patented September 1, 1914
EAFER TO USE, EASIER TO MAKE, AND STRONGER THAN WIRED JOINTS

USE AND ARRANGEMENT OF REINFORCING BARS

IN FLOOR slabs, retaining walls and similar constructions generally, the principal point is to obtain a certain cross-sectional area of steel to withstand the tensional stresses, and this may be done by using more or less bars spaced at shorter or longer distances apart, so that the question of the size of any one bar, within the limits furnished, does not really enter into the matter. To put this more simply, if 10 square inches of cross-section are desired, this could be obtained by 10 bars, each 1 inch square, or 18 bars, each 34 inch square, or 40 bars, each ½ inch square, etc.

For beams and girders, however, the number of bars is limited to a certain extent, but a careful designer could use, for example, three Slick square bars, two of them being of a different size from the third, and in such a manner as to obtain practically any cross-section desired. In addition to this there are hundreds of methods and formulæ for the calculation of stresses in reinforcing steel for concrete structures, and the whole matter is not a well-defined art.

The main essential in using reinforcing bars is to have a certain cross-section, and this may be made by any suitable combination of sizes, or by using a suitable number of bars, and arranging the spacing in such a way that the required cross-section of steel is obtained.

WEIGHTS AND DIMENSIONS— SQUARE BARS

THE sizes, areas and dimensions of the square Slick bars, in comparison with standard square bars, are given in the following table:

COMPARATIVE AREAS AND WEIGHTS OF SLICK REINFORCING BAR AND STANDARD SQUARE BAR

Patented March 17, 1908

10

Section

APPROXIMATE AREAS AND WEIGHTS ALL DIMENSIONS IN INCHES

	SLICK REINFORCING BAR SQUARE TYPE								
Section Number	Size of Bar	D	A	В	L	Area Square Inches	Wght. Lbs. Per Ft	Area Square Inches	Weight Pounds Per Foot
M-395	1	14	43 128	27		.063	.21	.0625	.212
M - 396	3 8	3 8	1/2			.141	.48	.1406	.478
M - 397	1/2	1/2	85 128	5.5	15	.250	.85	.2500	.850
M - 398	5.8	5 8	103		17	.391	1.33	.3906	
M - 399	3	3 4	123	8.3		.563	1.91	.5625	
M-400	7 8	7	1,7	49	11	.766	2.60	.7656	
M-401	1	1	1,35		18	1.000	3.40	1.0000	
M-402	11/8	11	1 5 5			1.266	4.30	1.2656	
M-403	11	11		1 3 2		1.563	5.31	1.5625	
M-101	$\frac{3}{4}$ $\times \frac{1}{4}$	8/4	9	1	5 3 2	0.282	0.96	Specia	

Maximum Length, 60 feet

It should also be understood that the ¾ inch square Slick bar is substantially equal to a ⅓ inch plain round, and a ⅙ inch square Slick bar is about equal to a 1 inch plain round, and a 1 inch square Slick bar almost exactly equal to a 1⅓ inch plain round.

The only advantage that the Slick bars equal in section to round bars might have is in cases where an engineer has his drawings made for round bars, when the Slick bars of a similar cross-section can be provided, in such a way that the engineer or architect will not have to change his spacing of rods in order to provide the cross-section.

BONDING SURFACE OF CONTACT

A SQUARE bar is a better reinforcing bar than a round one for the reason that the area of contact of a square bar with the concrete in which it is embedded is much greater than that of a round one. A round bar gives the least possible surface of contact, and a greater contact is obtained the further we depart from the round or circular form.

For example, a 1 inch plain square bar has a circumference of 4 inches and an area of 1 square inch, whereas a round bar of approximately 1½ inch diameter has a cross-section of about 1 square inch, but is only 3½ inches in circumference, so that the square bar has about 14 per cent. more contact surface, the cross-sections being of equal area.

WEIGHTS AND DIMENSIONS OF SLICK ROUND DEFORMED BARS

O MEET the requirements of those who prefer a bar of round section, we roll a complete series of Slick bars of this form, as shown below:

COMPARATIVE AREAS AND WEIGHTS OF SLICK ROUND SECTION REINFORCING BAR AND STANDARD ROUND BAR

Patented March 17, 1908

2

Section

APPROXIMATE AREAS AND WEIGHTS ALL DIMENSIONS IN INCHES

	STANDARD ROUND BAR								
Section Number	Nom- inal Size	D	A	В	L	Area Square Inches	Weight Pounds Per Foot	Area Square Inches	Weight Pounds Per Foot
M-494	14	9 3 2	9 3 2	5 3 2		.049	.17	.0491	.167
M-495	3 8	37	27	15	3 2	.110	.38	.1104	.376
M-496	1/2	35	85		15	.196	.67	.1963	.668
M-497	5 8	48	48	13	17	.307	1.04	.3068	1.043
M-498	34	18	13	$\frac{1}{2}$.442	1.50	.4418	1.502
M-499	7 8	15	15 16	$\frac{1}{3}\frac{9}{2}$	11 64	.601	2.04	.6013	2.044
M-500	1	116	132	$\frac{11}{16}$	18	.785	2.67	.7854	2.670
M-501	$1\frac{1}{8}$		$1\frac{15}{64}$		29 128	.994	3.38	.9940	3.380
M-502	11/4	$1\frac{5}{16}$	$1\frac{23}{34}$	7 8	31	1.227	4.17	1.2272	4.172

Maximum Length, 60 feet

The round Slick deformed bars may be used by engineers, architects, contractors and builders who prefer this section and, in cases where required, these bars may be spliced with clamps and wedges in the same manner as the Slick square sections and with equally good results as regards strength and economy.

These round deformed bars can be directly substituted in all cases where the design has been made for the ordinary plain round bars without any changes whatsoever in the arrangement or dimensions.

The undulating form of the projections and depressions in the Slick round bars adds to the surface in contact with the concrete, in addition to providing positive bond with the concrete by reason of the deformations.

The Slick round bars will meet the most rigorous tests, and either the square or round bars may be selected by the user with equally satisfactory results.

RESULTS OF ACTUAL TESTS OF SLICK JOINTS

IN ORDER to determine the strength of the clamps and wedges many tests have been made of the bare bars and clamps and wedges, which were pulled on a standard Riehle testing machine, the results in general being represented by the following:

CAMBRIA STEEL CO.—DEPT. OF TESTS CAMBRIA PHYSICAL TESTING LABORATORY

TENSILE TEST REPORT

Slick Reinforcing Bars, equipped with clamps and wedges

SPECIMEN	Area	Ultimate Load Lbs.	Ultimate Strength Lbs. per Sq. In.	***************************************
inch Slick Bars	.251	16,020	63,800	Grade-Structural Steel.
inch Slick Bars	.382	22,400	58,640	Length of Lap-5
inch Slick Bars	.382	22,800	59,690	corrugations in each case.

NOTE -Specimens broke in the body of the bars, the clamp and wedge in every case being intact after the rupture of the bar.

While in actual use the bars are surrounded by solid concrete and, dependent upon the design, are stressed from 15,000 pounds per square inch to 18,000 pounds per square inch, which is only one-fourth of that to which they are subjected when broken with the clamps in testing machine. When the bars and clamps were tested in the machine they were bare, while in use they are surrounded by solid concrete, which will add possibly 50 per cent. or a great deal more to the strength of the splice. This indicates that the splice, when embedded in concrete, is from six to ten times as strong as any stress to which it will be subjected.

EVERY PART OF THE SLICK BAR RESISTS THE STRESSES OF USE

In THE economical design of bars of this character, it is well to bear in mind that the material should be so arranged that it is all effective to resist the stresses to which it will be subjected, while at the same time, a deformed bar should have irregularities sufficient to provide a bond between it and the concrete which surrounds it. Tests have been made of the Slick bar in comparison with similar sizes of square bars, to determine their qualities in these respects.

The diagram on the opposite page shows by comparison that the extensions under tensile tests of bare bars, within the elastic limit of a \(\frac{1}{2} \) sinch Slick bar and a \(\frac{1}{2} \) sinch plain square bar, are equal, and if anything, the Slick bar is bet-

er toward the higher limits.

This diagram shows the amount of elastic extension in tension for increments of load of 1000 pounds, and clearly indicates that the undulating form of the Slick bar is such that every part of this section is doing its share of the work when subjected to the stresses of use.

In other words, the shape and contour of the Slick bar are such that, in use, the projections, as well as the body of the bar, resist the stresses, and each and every part is as good as a plain

bar for resisting pull.

BOND TESTS

TESTS have also been made of the strength of the bond between Slick bars and the concrete surrounding them, in comparison with other bars, and it has been found that the Slick bars, when embedded to a depth of sixteen times their nominal diameters, viz.:

WOLVERINE SUPPLY AND MANUFACTURING COMPANY BUILDING

8 inches for a ½ inch bar 10 inches for a ¾ inch bar 12 inches for a ¾ inch bar, etc.,

all broke outside of the concrete when pulled in tension, whereas other bars and plain bars for this depth of embedment, would pull out of the concrete without breaking the steel. This indicates that the bonding effect between concrete and steel is well taken care of by the form and construction of the bars in question.

In this connection test results obtained by independent engineers and our own laboratory staff, which follow, will be found exceedingly interesting.

BOND TESTS OF SLICK CONCRETE
REINFORCING BARS
MADE BY INDEPENDENT ENGINEER

Size of Slick Bar Inch	Size of Con- crete Block Inches	Embed'd Depth of Bar Inches	Load at Initial Slip Pounds	Load at Failure Pounds	Rod at Failure	Block at Failure
1 1 1	12x12 12x12 12x12	30 30 30	No slip No slip No slip	72,120 72,850 72,250	Broke	Small Cracks
1 1	12x12 12x12 12x12 12x12	25 25 25 20	56,000 60,000 60,100 51,350	72,300 71,950 71,950 61,530	Did Not	Split Split Split Split
1 1 1 1/2	12x12 12x12 12x12 8x8	20 20 20 18	47,150 48,000 No slip	66,920 68,340 14,880	Break	Split Split O. K.
34 34	8x8 8x8 8x8	18 18 12	No slip No slip No slip	14,670 14,540 14,580	Broke Broke	0. K. 0. K. 0. K.
1/2 1/2 1/2 1/2 1/2 1/2 1/2	8x8 8x8 8x8 8x8	12 12 6 6	No slip No slip 8,500 9,690	14,830 14,750 13,390 9,710	Broke Broke Pulled Out) Did Not	O. K. O. K. Split
16	8x8	6	8,000	10,200	Break	Split

BOND TESTS OF CONCRETE REINFORCING BARS

MADE BY INDEPENDENT ENGINEER

		173 1 1	(W) 1.0		
Size	/T	Embedment	Bond Stress		
of	Type	in 8-inch Concrete	at Initial	Bond Stress	
Bar	Bar	Cylinder	Slip Lbs. per	Developed	Failure
Inch	Dai	Inches	Sq. In.	Lbs. per Sq. In.	
1/2	Plain Square	3.92	172		
12				286) p
1/2 1/2	Plain Square	3.76	226	282	Bar
12	Plain Square	4.16	152	428	Pulled
1/2	Plain Square	4.12	165	502	Out
1/2	Plain Square	4.00	113	425)
12	Square Slick	3.80	167	535	
1/2 1/2 1/2 1/2	Square Slick	3.78	247	558	Block
1/2	Square Slick	4.00	167	608	Split
1/2	Square Slick	3.90	106	345	Spit
1/2	Square Slick	3.87	133	465	
1/2 3/4	Plain Square	5.47	189	334)
3/4	Plain Square	5.78	113	236	Bar
3/4	Plain Square	5.80	132	245	Pulled
3/4 3/4	Plain Square	6.02	108	255	Out
3/4	Plain Square	6.02	137	244	
3/4	Square Slick	5.80	290	538	
3/4 3/4 3/4	Square Slick	6.00	258	691	
3/4	Square Slick	6.00	270	514	
3/4	Square Slick	5.57	304	482	
3/4	Square Slick	5.53	174	375	1
3/4	Round Slick	6.09	222	441	
3/4	Round Slick	6.05	94	458	DI I
3/1	Round Slick	6.10	133	598	Block
3/1	Round Slick	6.07	135	435	Split
3/4	Round Slick	5.95	146	630	
3/1	Round Slick	6.06	111	751	1
3/1	Round Slick	5.84	332	698	1
3/4	Round Slick	6.20	153	618	
3/4	Round Slick	6.10	198	670	1
3/4	Round Slick	6.05	189	504	
1	Plain Square	7.95	218	420	* B. C.
1	Plain Square	7.93	210	452	* B. C.
1	Plain Square	7.95	116	414) Bar
1	Plain Square	8.00	188	367	Pulled
1	Plain Square	8.00	172	294	Out
1	Square Slick	8.00	218	540)
1	Square Slick	7.90	135	456	1
1	Square Slick	7.92	129	390	Block
1	Square Slick	8.00	233	449	Split
1	Square Slick	7.98	168	458	
	- Jacob Chick	1.00	100	400	-

^{*}Block cracked shortly after maximum load was reached.

Concrete, 1:2:4 mixture, cement, sand and gravel; age, 61 days. The following is quoted from the Report on the above tests:

"The maximum loads developed by the Slick bars were higher than those developed by the corresponding plain bars, the additional strength varying in average amount from 18 to 98 per cent. The maximum load for the Slick bars was limited by the strength of the 8-inch cylinders to resist splitting action. It will be noted that all specimens with Slick bars broke by splitting of the test piece. In no case was the steel stressed to its elastic limit."

BOND TESTS OF CONCRETE REINFORCING BARS
CAMBRIA PHYSICAL TESTING LABORATORY

Embedded	½-IN. BA	SLICK RS	½-IN. I SQ. E	PLAIN BARS	½-IN. PLAIN ROUND BARS	
Depth of Bar Inches	Load Pounds	Failure	Load Pounds	Failure	Load Pounds	Failure
8	16,340	Bars	11,330	Bars	8,760	Bars
10	16,130	broke	12,600	pulled	8,700	pulled
12	16,760	4½ to	12,270	out	8,750	out
18	16,600	10	12,450		9,050	
24	16,710	inches	12,440		9,420	
30	16,450	out-	13,140		9,960	
18 (wired)	16,270	side of				
18 (wired)	15,880	block				
18 (clamped)	16,110					
18 (clamped)	16,580					

The following tests were made on $\frac{3}{8}$ and $\frac{1}{2}$ inch Slick bars embedded in $4\frac{3}{4}$ x 12 inch concrete slabs, the center line of bar being located about $\frac{11}{2}$ inches from the side of slab. Concrete 1:2:4 mixture, 70 days old.

All the bonds developed the full strength of the bar, and the samples after testing showed no sign of bond slipping or cracking of the concrete mass.

Test No.	Size of Slick Bar Inch	Distance from Side of Slab Inches	Depth of Embed- ment, Bar in Slab Inches	Load at Failure Pounds	Failure Bar Broke Inches, Outside Slab
1	3/8	$1\frac{1}{2}$	113	8,560	63
2	3 8	1 3/4	$11\frac{3}{4}$	8,690	7 3
3	8	$1\frac{9}{16}$	$11\frac{5}{8}$	8,670	81/2
4	3 8	$1\frac{9}{16}$	$11\frac{1}{2}$	8,670	$6\frac{1}{2}$
5	1/2	$1\frac{5}{8}$	$11\frac{3}{4}$	14,600	11
6	$\frac{1}{2}$	$1\frac{1}{2}$	$11\frac{1}{2}$	14,600	7
7	$\frac{1}{2}$	$1\frac{1}{2}$	$11\frac{3}{4}$	14,600	6
8	$\frac{1}{2}$	$1\frac{1}{2}$	$11\frac{3}{4}$	14,600	14

GRADES AND QUALITY OF SLICK BARS

THESE bars are made to standard specifications of either structural steel grade, intermediate grade, or of the hard grade.

On account of the fact that the Slick bars are substantially of uniform cross-section, the structural steel grade bars may be bent where necessary, as customary in this class of work.

Due consideration of the question of reinforcing bars leads to the opinion that those for use in reinforcing concrete should be initially of composition and physical properties similar to standard structural steel for buildings. Bars of these qualities when stressed from 15,000 to 18,000 pounds per square inch, act more harmoniously with the concrete, as, under these conditions, the elastic stretch of the steel will not break the bond between the bars and the

concrete to so great an extent as in the case of harder bars of high elastic limit, if used for greater working stresses.

The reason for this is that the moduli of elasticity of soft steel and hard steel are practically the same, so that the elastic stretch of the latter would be greater under higher loads with the consequent destructive effect on the bond between the steel and the concrete. The use of structural grade steels and stresses is, therefore, to be preferred for this purpose.

Cambria Slick Concrete Reinforcing Bars and Clamps are made by the Cambria Steel Company exclusively, under patents to E. E. Slick, Vice President and General Manager.

FROM 0.0005 POUND TO 400,000 POUNDS

A FINE wire nail weighing 200 pound and a gigantic steel casting weighing 200 tons represent two extremes which clearly convey an idea of the wide range of steel products manufactured by

MIDVALE STEEL AND ORDNANCE COMPANY CAMBRIA STEEL COMPANY

GENERAL SALES OFFICE
WIDENER BUILDING, PHILADELPHIA, PA.

PARTIAL LIST OF PRODUCTS

Alloy and Tool Steels
Armor Plate
Agricultural Steels
Axles
Bar Steel of Every Description
Boiler Plates, Manholes and
Handholes
Boiler Tube Safe Ends
Charcoal Iron Boiler Tubes
Cold Rolled and Cold
Drawn Steel
Crank Pins and Piston Rods
Forgings, All Kinds
Flanged and Dished Heads
Heavy Guns and their
Mounts
Locomotive and Car Wheel

Machine Bolts
Ordnance Material
Pipe or Tank Bands
Plow Steel
Pressed Steel Seats for Agricultural Implements
Projectiles
Rifle Barrel Steel
Rivets
Slick Steel Mine Ties
Stamp Shoes and Dies
Steel Tired and Rolled Steel
Wheels
Structural Steel Work
Steel Cars
Steel Rails
Steel Discs

Wire Rods, Wire and Wire

CAMBRIA STEEL COMPANY

GENERAL SALES OFFICE PHILADELPHIA—WIDENER BUILDING

DISTRICT OFFICES

ATLANTA	CANDLER BUILDING
BOSTON	40 COURT STREET
CHICAGO	McCORMICK BUILDING
CINCINNATI	UNION TRUST BUILDING
CLEVELAND	SWETLAND BUILDING
DETROIT	PENOBSCOT BUILDING
NEW YORK	165 BROADWAY
PHILADELPHIA	WIDENER BUILDING
PITTSBURGH	OLIVER BUILDING
SALT LAKE CITY	NEWHOUSE BUILDING
SAN FRANCISCO	MONADNOCK BUILDING
SEATTLE	COLMAN BUILDING
ST. LOUIS	CHEMICAL BUILDING

ALLOY AND TOOL STEEL WAREHOUSES

BOSTON CHICAGO CLEVELAND NEW YORK
PHILADELPHIA SAN FRANCISCO

