

Library Indian Institute of Science Education and Research Mohali

DSpace@IISERMohali (/jspui/)

- / Thesis & Dissertation (/jspui/handle/123456789/1)
- / Master of Science (/jspui/handle/123456789/2)
- / MS-08 (/jspui/handle/123456789/270)

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/274

Title:	Dynamic Spin: A Virtual Spectrometer for Understanding and Designing NMR Experiments
Authors:	Srivastava, Deepansh (/jspui/browse?type=author&value=Srivastava%2C+Deepansh)
Keywords:	Dynamic Spin multi-quantum (MQ)
Issue Date:	5-Jun-2013
Publisher:	IISER M
Abstract:	In this thesis, an analytic description of multi-quantum (MQ) phenomenon involving quadrupolar nuclei is discussed. Employing the concept of effective radio-frequency (RF) Hamiltonians, a new

nuclei is discussed. Employing the concept of effective radio-frequency (RF) Hamiltonians, a new pulse scheme is proposed for exciting MQ transitions in spin I=1 and 3/2 systems. In contrast to existing pulse schemes in the literature, the proposed optimum frequency switched consecutive (o-FSC) pulse scheme, facilitates the creation of MQ coherences at shorter time scales with lesser dependence on MQ relaxation rates. Additionally, to improve our understanding of the underlying spin dynamics, a numerical simulation program (DYNAMIC SPIN (DS)) based on the spherical tensor formalism was developed and is described in the second half of the thesis.

Appears in MS-08 (/jspui/ha Collections:

MS-08 (/jspui/handle/123456789/270)

Files	in	Thic	Itom:
riies	Ш	THIS	nem.

File	Description	Size	Format	
MS08016_thesis final.pdf (/jspui/bitstream/123456789/274/3/MS08016_thesis%20final.pdf)		8.34 MB	Adobe PDF	View/Open (/jspui/bitstream/123456789/274/3/

Show full item record (/jspui/handle/123456789/274?mode=full)

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.