EXAMPLE 6.2

Rear-wheel Odometry

			_	
Forward velocity	$v_{eb,x}^b =$	10	ms^{-1}	
Heading	$\psi_{nb} =$	30	deg	0.523599 rad
Yaw rate	$\psi_{nb} =$	0.1	rad s ⁻¹	
Body frame to rear-wheel	$l_{br,x}^b =$	-2	m	
frame lever arm	$l_{br,y}^{b} =$	0.2	m	
Track width	$T_r =$	1.5	m	
Left-wheel scale-factor error	s _{rL} =	0.01		
Right-wheel scale-factor error	s _{rR} =	-0.01		
Error in assumed track width	$\delta T_r =$	0.05	m	
Heading error	$\delta \psi_{nh} =$	1	deg	0.017453 rad

Wheel velocities

Rear-wheel frame speed:

From (6.26),
$$v_{er} = v_{eb,x}^b - l_{br,y}^b \dot{\psi}_{nb}$$

$$v_{er} = 9.98 \text{ m s}^{-1}$$

Speed dfference between wheels:

From (6.33)

$$v_{erL} - v_{erR} = T_r \dot{\psi}_{nb} = 0.15 \,\mathrm{m \, s}^{-1}$$

True wheel speeds:

$$v_{erL} = 10.055 \text{ m s}^{-1}$$
 $v_{erR} = 9.905 \text{ m s}^{-1}$

Measured wheel speeds:

Odometry speed and yaw rate measurements:

Rear-wheel frame speed:

From (6.22),

$$\widetilde{v}_{er} = \frac{1}{2} (\widetilde{v}_{erL} + \widetilde{v}_{erR}) =$$
 9.98075 m s⁻¹ Error= 0.00075 m s⁻¹

Yaw rate:

From (6.33),
$$\widetilde{\psi}_{nb} = \frac{\widetilde{v}_{erL} - \widetilde{v}_{erR}}{\widetilde{T}_{n}}$$

Assumed track width:

$$\widetilde{T}_r = T_r + \delta T_r =$$
 1.55 m
$$\widetilde{\psi}_{rb} = 0.225548387 \text{ rad s}^{-1} \qquad \text{Error} = 0.125548 \text{ rad s}^{-1}$$

Body-frame velocity

From (6.26),
$$\begin{pmatrix} \widetilde{v}_{eb,x}^b \\ \widetilde{v}_{eb,y}^b \end{pmatrix} \approx \begin{pmatrix} \widetilde{v}_{er} \\ 0 \end{pmatrix} + \begin{pmatrix} l_{br,y}^b \\ -l_{br,x}^b \end{pmatrix} \widetilde{\psi}_{nb}$$
 $v_{eb,y}^b = -l_{br,x}^b \psi_{nb} = 0.20000 \, \mathrm{m \, s^{-1}}$ $\widetilde{v}_{eb,y}^b = 0.451096774 \, \mathrm{m \, s^{-1}}$ Error= 0.25110 $\mathrm{m \, s^{-1}}$

North and East velocity

Heading solution: $\widetilde{\psi}_{nb} = \psi_{nb} + \delta \psi_{nb} = 0.541052 \text{ rad}$

$$\begin{pmatrix} \widetilde{v}_{eb,N}^{n} \\ \widetilde{v}_{eb,E}^{n} \end{pmatrix} = \begin{pmatrix} \cos \widetilde{\psi}_{nb} & -\sin \widetilde{\psi}_{nb} \\ \sin \widetilde{\psi}_{nb} & \cos \widetilde{\psi}_{nb} \end{pmatrix} \begin{pmatrix} \widetilde{v}_{eb,x}^{b} \\ \widetilde{v}_{eb,y}^{b} \end{pmatrix} \qquad \begin{pmatrix} v_{eb,N}^{n} \\ v_{eb,E}^{n} \end{pmatrix} = \begin{pmatrix} \cos \psi_{nb} & -\sin \psi_{nb} \\ \sin \psi_{nb} & \cos \psi_{nb} \end{pmatrix} \begin{pmatrix} v_{eb,x}^{b} \\ v_{eb,y}^{b} \end{pmatrix}$$

$$\begin{pmatrix} \cos \psi_{nb} & -\sin \psi_{nb} \\ \sin \psi_{nb} & \cos \psi_{nb} \end{pmatrix} = \begin{pmatrix} 0.866025404 & -0.5 \\ 0.5 & 0.866025 \end{pmatrix} \begin{pmatrix} v_{eb,N}^{n} \\ v_{eb,E}^{n} \end{pmatrix} = \begin{pmatrix} 8.560254 \text{ m s}^{-1} \\ 5.173205 \text{ m s}^{-1} \end{pmatrix}$$

$$\begin{pmatrix} \cos \widetilde{\psi}_{nb} & -\sin \widetilde{\psi}_{nb} \\ \sin \widetilde{\psi}_{nb} & \cos \widetilde{\psi}_{nb} \end{pmatrix} = \begin{pmatrix} 0.857167301 & -0.51504 \\ 0.515038075 & 0.857167 \end{pmatrix}$$

$$\begin{pmatrix} \widetilde{v}_{eb,N}^{n} \\ \widetilde{v}_{eb,E}^{n} \end{pmatrix} = \begin{pmatrix} 8.361507063 \\ 5.550364872 \\ \text{m s}^{-1} \end{pmatrix}$$

$$\text{m s}^{-1}$$

$$\text{Error} = \begin{pmatrix} -0.19875 \\ 0.37716 \\ \text{m s}^{-1} \end{pmatrix}$$

$$\text{m s}^{-1}$$

$$\text{Error} = \begin{pmatrix} 0.37716 \\ 0.37716 \\ \text{m s}^{-1} \end{pmatrix}$$