$10_{152} \ (K10n_{36})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle u^4 + 2u^3 + b - 2u, \ u^2 + a + 2u + 1, \ u^5 + 3u^4 + 2u^3 - 3u^2 - 3u + 1 \rangle \\ I_2^u &= \langle b, \ a + u + 2, \ u^2 + u - 1 \rangle \\ I_3^u &= \langle b - a - 1, \ a^2 + a - 1, \ u - 1 \rangle \\ I_4^u &= \langle u^3 + 2u^2 + 2b - 1, \ -u^3 - 2u^2 + 2a - 2u + 1, \ u^4 + u^3 + 2u^2 - u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 13 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. $I_1^u = \langle u^4 + 2u^3 + b - 2u, \ u^2 + a + 2u + 1, \ u^5 + 3u^4 + 2u^3 - 3u^2 - 3u + 1 \rangle$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} - 2u - 1 \\ -u^{4} - 2u^{3} + 2u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2u - 1 \\ -2u^{3} - u^{2} + 2u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - 2u^{2} + 2 \\ u^{3} - u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2u^{2} - 2u \\ -2u^{4} - 2u^{3} + 2u^{2} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{3} + 2u^{2} - 2u - 1 \\ -4u^{4} - 8u^{3} + 4u^{2} + 8u - 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-8u^4 24u^3 24u^2 10$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4 c_5, c_7, c_8	$u^5 - 3u^4 + 2u^3 + 3u^2 - 3u - 1$
c_3, c_6, c_9 c_{10}	$u^5 + u^4 + 2u^3 - 5u^2 - u + 1$

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_4 c_5, c_7, c_8	$y^5 - 5y^4 + 16y^3 - 27y^2 + 15y - 1$	
c_3, c_6, c_9 c_{10}	$y^5 + 3y^4 + 12y^3 - 31y^2 + 11y - 1$	

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.912859		
a = -3.65903	-2.96486	-53.8110
b = -0.390081		
u = -1.39373		
a = -0.155021	-11.4408	-21.8300
b = -1.14610		
u = -1.39814 + 0.93867I		
a = 0.722590 + 0.747455I	5.12323 + 8.53607I	-12.97824 - 4.17771I
b = 1.01518 - 1.84157I		
u = -1.39814 - 0.93867I		
a = 0.722590 - 0.747455I	5.12323 - 8.53607I	-12.97824 + 4.17771I
b = 1.01518 + 1.84157I		
u = 0.277157		
a = -1.63113	-0.775637	-12.4020
b = 0.505833		

II. $I_2^u = \langle b, a + u + 2, u^2 + u - 1 \rangle$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u+1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u-2 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2 \\ u-1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u-2 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -11

Crossings	u-Polynomials at each crossing		
c_1,c_2,c_9	$u^2 + u - 1$		
c_3, c_4	u^2-u-1		
<i>C</i> ₅	$(u-1)^2$		
c_6, c_{10}	u^2		
c_7, c_8	$(u+1)^2$		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_4, c_9	$y^2 - 3y + 1$		
c_5, c_7, c_8	$(y-1)^2$		
c_6, c_{10}	y^2		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = -2.61803	-2.63189	-11.0000
b = 0		
u = -1.61803		
a = -0.381966	-10.5276	-11.0000
b = 0		

III.
$$I_3^u=\langle b-a-1,\ a^2+a-1,\ u-1\rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} a \\ a+1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ a+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -a - 2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} a \\ -a - 2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -a - 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -11

Crossings	u-Polynomials at each crossing		
c_1, c_2	$(u-1)^2$		
c_3, c_9	u^2		
C4	$(u+1)^2$		
c_5, c_6	$u^2 + u - 1$		
c_7, c_8, c_{10}	$u^2 - u - 1$		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_4	$(y-1)^2$		
c_{3}, c_{9}	y^2		
c_5, c_6, c_7 c_8, c_{10}	$y^2 - 3y + 1$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0.618034	-10.5276	-11.0000
b = 1.61803		
u = 1.00000		
a = -1.61803	-2.63189	-11.0000
b = -0.618034		

 $\text{IV. } I_4^u = \langle u^3 + 2u^2 + 2b - 1, \ -u^3 - 2u^2 + 2a - 2u + 1, \ u^4 + u^3 + 2u^2 - u + 1 \rangle$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u^{3} + u^{2} + u - \frac{1}{2} \\ -\frac{1}{2}u^{3} - u^{2} + \frac{1}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} + u^{2} + u \\ -\frac{3}{2}u^{3} + u^{2} - u + \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} - u^{2} - u + 1 \\ \frac{3}{2}u^{3} + u - \frac{1}{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{3} + 4u^{2} - u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} - u + \frac{1}{2} \\ -\frac{3}{2}u^{3} - 4u^{2} + 3u - \frac{3}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{3} + 3u^{2} + 1 \\ -\frac{13}{2}u^{3} - \frac{3}{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -11

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4 c_5, c_7, c_8	$u^4 - u^3 + 2u^2 + u + 1$
c_3, c_6, c_9 c_{10}	$u^4 + u^3 + 5u^2 + 8u + 4$

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_4 c_5, c_7, c_8	$y^4 + 3y^3 + 8y^2 + 3y + 1$	
c_3, c_6, c_9 c_{10}	$y^4 + 9y^3 + 17y^2 - 24y + 16$	

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.309017 + 0.535233I		
a = -0.500000 + 0.866025I	-0.657974	-11.0000
b = 0.809017 - 0.330792I		
u = 0.309017 - 0.535233I		
a = -0.500000 - 0.866025I	-0.657974	-11.0000
b = 0.809017 + 0.330792I		
u = -0.80902 + 1.40126I		
a = -0.500000 - 0.866025I	7.23771	-11.0000
b = -0.30902 + 2.26728I		
u = -0.80902 - 1.40126I		
a = -0.500000 + 0.866025I	7.23771	-11.0000
b = -0.30902 - 2.26728I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	$((u-1)^2)(u^2+u-1)(u^4-u^3+\cdots+u+1)(u^5-3u^4+\cdots-3u-1)$
c_3,c_{10}	$u^{2}(u^{2}-u-1)(u^{4}+u^{3}+\cdots+8u+4)(u^{5}+u^{4}+\cdots-u+1)$
c_4, c_7, c_8	$((u+1)^2)(u^2-u-1)(u^4-u^3+\cdots+u+1)(u^5-3u^4+\cdots-3u-1)$
c_6,c_9	$u^{2}(u^{2}+u-1)(u^{4}+u^{3}+\cdots+8u+4)(u^{5}+u^{4}+\cdots-u+1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_7, c_8	$(y-1)^{2}(y^{2}-3y+1)(y^{4}+3y^{3}+8y^{2}+3y+1)$ $\cdot (y^{5}-5y^{4}+16y^{3}-27y^{2}+15y-1)$
$c_3, c_6, c_9 \ c_{10}$	$y^{2}(y^{2} - 3y + 1)(y^{4} + 9y^{3} + 17y^{2} - 24y + 16)$ $\cdot (y^{5} + 3y^{4} + 12y^{3} - 31y^{2} + 11y - 1)$