MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Summer-13 EXAMINATION

Model Answer

Subject & code:FCE(17206)

Important instructions to examiners:

- 1. The answers should be examined by keywords and not as word to word as given in the model answer scheme.
- 2. The model answer and the answer written by candidate may vary, but the examiner may try to assess the understanding level of the candidate.
- 3. The language errors such as grammatical, spelling errors should not given more importance.
- 4. While assessing figures, examiner may give credit for principal components indicated in a figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5. Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answer and model answer.
- 6. In case of some questions credit may be given by judgment of relevant answer based on candidates understanding.

Q	Answer	mark	Total
no:			marks
1.a	Molarity= gmoles of solute/ volume of solution in litre	1	2
	Unit: M		
	Molality= gmoles of solute/ weight of solvent in Kg	1	
	Unit: gmol/Kg		
b	$^{0}\text{F}=1.8\ ^{0}\text{C}+32$	1	2
	$60^{\circ} \text{F} = 60-32/1.8$		
	$= 15.55^{0}$ C	1	
С	Liquid- liquid separation:	1	2
	1. Distillation		
	2. Liquid- liquid extraction		
	Gas- gas separation:		

1. Gas absorption	1	
Personal protective equipment:	½ mark each	2
1. Helmet	for any four	
2. Hard hat		
3. Apron		
4. Ear plug		
5. Goggles		
6. Welding shield		
7. Hand gloves		
8. Boot		
Relative volatility: It is defined as the ratio of volatility of more	2	2
volatile component to that of less volatile component		
Dalton's law:	2	2
It states that the total pressure exerted by a gas mixture is equal to the		
sum of partial pressures of its components.		
	1 mark for	2
Oxidation:	any	
$S + O_2 \rightarrow SO_2$. Here S is oxidized.	oxidation	
Reduction:	and I mark	
$C_6H_5NO_2+$ 2Fe + HCl \rightarrow $C_6H_5NH_2+$ 2H ₂ O + 2 FeCl ₃ . Here nitro	for any	
benzene is reduced	reduction	
Conversion:	1	2
% conversion= moles of reactant reacted *100/ moles of reactant fed		
Yield:	1	
% yield= moles of reactant reacted to form desired product *100/ total		
moles of reactant reacted		
	Personal protective equipment: 1. Helmet 2. Hard hat 3. Apron 4. Ear plug 5. Goggles 6. Welding shield 7. Hand gloves 8. Boot Relative volatility: It is defined as the ratio of volatility of more volatile component to that of less volatile component Dalton's law: It states that the total pressure exerted by a gas mixture is equal to the sum of partial pressures of its components. Oxidation: S + O₂→ SO₂. Here S is oxidized. Reduction: C ₆ H ₅ NO₂+ 2Fe + HCl→C ₆ H ₅ NH₂ + 2H₂O + 2 FeCl₃. Here nitro benzene is reduced Conversion: % conversion= moles of reactant reacted *100/ moles of reactant fed Yield: % yield= moles of reactant reacted to form desired product *100/ total	Personal protective equipment: 1. Helmet 2. Hard hat 3. Apron 4. Ear plug 5. Goggles 6. Welding shield 7. Hand gloves 8. Boot Relative volatility: It is defined as the ratio of volatility of more volatile component to that of less volatile component Dalton's law: It states that the total pressure exerted by a gas mixture is equal to the sum of partial pressures of its components. I mark for any Oxidation: S + O₂→ SO₂. Here S is oxidized. Reduction: C ₆ H ₅ NO₂+ 2Fe + HCl→ C ₆ H ₅ NH₂ + 2H₂O + 2 FeCl₃. Here nitro benzene is reduced Conversion: (Conversion: " " " " " " " " " " " " " " " " " "

i			1 mark each	2
	Catalytic cracking	Thermal cracking	for any two	
	Carried out in presence of catalyst	Carried out at high temperature		
	Catalyst regeneration is required	Catalyst regeneration is not required		
	Economical	Costlier than catalytic cracking		
j	Unit operation involving heat and	mass transfer:	1 mark each	2
	1. Distillation		for any two	
	2. Drying			
	3. Crystallization			
k	Principle of mercury thermometer	r:	2	2
	Liquid(mercury) expands with incre	ase in temperature		
1	Pressure filter:		1	2
	Rotary dryer:		1	
2.a	N= gm equivalent of solute/ volume	of solution in litre	1	4
	1=gm eq. of HCl/3			
	Or gm eq of HCl= 3		1	
	Eq. wt of HCl= 36.5/1=36.5		1	
	Wt of HCl= eq. wt of HCl * gm eq			
	36.5 * 3 = 109.5gm		1	

2.b	Chemical Inc	lustries according to size:	1	4
	1. Large	scale industry		
	2. Mediu	m scale industry		
	3. Small	scale industry		
	Chemical Ind	lustries according to product:	1	
	1. Pharm	aceutical industry		
	2. Cemer	nt industry		
	3. Plastic	industry		
	4. Fertiliz	zer industry		
	5. Paper	industry		
	6. Food i	ndustry		
	7. Petrole	eum industry		
	8. Petroc	hemical industry		
	Large	scale industry:	2	
	These	are the industries whose annual turn over is more than		
	100 cr	ores.		
	Mediu	m scale industry: These are the industries whose annual		
	turn o	ver lies between 10 crore and 100 crores.		
	Small	scale industry: These are the industries whose annual		
	turn o	ver is less than 10 crores.		
2.c	Procedure to	measure viscosity using viscometer:	4	4
		e oil cup with oil whose viscosity is to be measured up to		
		inter mark, keeping the agate jet closed.		
	-	the kohlrausch flask below the opening		
	3. When	the required temperature is attained, open the agate jet by		
	lifting	the rod.		
	_	top watch		
	5. Collec	t 50 ml oil in the flask and note down the time required		
		llecting the oil.		
		ss the viscosity in redwood seconds.		

2.d	Principle of gas absorption:	3	4
	Gas absorption is an operation in which gas mixture is contacted with a		
	liquid to preferentially dissolve one or more soluble components of the		
	gas mixture in the liquid. The differences in solubility of gases in a		
	given solvent are exploited to effect such a separation. In absorption,		
	the soluble component is called solute, the insoluble component is		
	called inert gas and the liquid used for absorption is called solvent.		
	Uses:	1 mark for	
	Absorption of ammonia from ammonia- air mixture	any one	
	Removal of hydrogen sulfide from hydrocarbon gases		
	Removal of SO ₂ from flue gas		
2.e	Packed column:	1 mark each	4
	Packed column is used in absorption and distillation		
	Drum Dryer:		
	Suction filter		
	Drum drier is used in drying		
	Jaw crusher:		

	Jaw crusher is used in crushing Stripper: Solution Stripping medium		
	Stripper is used in desorption		
2.f	Importance of size reduction:	2	4
	It helps in		
	1. Easy transportation		
	2. Easy handling		
	3. Increase in reaction rate		
	4. Easy storage		
	Importance of size separation:	2	
	1. Impurities can be removed		
	2. Over loading of equipment can be avoided		
	3. Particles of uniform size can be obtained		
	4. Customer demand can be satisfied.		

3.a	i) Units of Temperature				1 mark each	4
	⁰ C, ⁰ A, ⁰ F					
	ii) Units of pressure Atmosphere, cm of Hg, KPa,	Bar, Kgf/	m^2			
	iii) Units of viscosity					
	poise, kg/m sec., gm/cm.sec					
	iv) Units of density gm/cm ³ , kg/m ³					
3.b	100 moles of gas mixture				1	4
	component	moles	Mole fraction			
	A	10	0.1			
	В	20	0.2			
	С	70	0.7		1	
	Partial pressure=Total pressure				1	
	Partial pressure of A= 2 atm*0. Partial pressure of B = 2 atm*0.				1	
	Partial pressure of $C = 2atm^*0$.				-	
	2 m 2 m p 2 0 0 0 2 m m o 0	, 11. 00				
3.c	200 Kg of NaCl and 300Kg of	NaOH				4
	Molecular wt of NaOH = 40					
	Moleculat wt of NaCl = 58.5				1	
	Moles of NaOH=300/40=7.50				1	
	Moles of NaCl=200/58.5=3.41					
	Total moles=7.50+3.41=10.91				1	
	Mole% NaOH=3.41/10.91*100	=31.25%			1	
	Mole% NaCl=7.50/10.91*100=	68.74%				

	<u> </u>	
Wt %NaOH=300/500*100=60%		
Wt %NaCl=200/500*100=40%		
Conduction is a made of heat two refer in which heat is two referred in	2 monte anala	4
		4
	for any two	
Example: Heating a metal rod.		
Convection is a mode of heat transfer in which heat is transferred by		
actual mixing of hot fluid with colf fluid because of change of density		
of molecules of fluid by application of heat.		
Example: Heating of a liquid in a container.		
Radiation is a mode of heat transfer where heat is transferred through		
space by electromagnetic waves.		
Example: heating of a cold room by electric heater		
Amination by ammononalysis is reaction of unsaturated compound by	2	4
ammonia.		
$Cl.CH_2.CH_2.Cl + 4NH_3 \rightarrow NH_2.CH_2.CH_2.NH_2$		
Ethylene dichloride ethylene diamine		
Amination by reduction is reaction of unsaturated compound with $H_{2.}$	2	
$CH_3.CH.NO_2.CH_3 + 3H_2 \rightarrow CH_3.CH.NH_2.CH_3$		
2-nitroparrafin isopropyamine		
Saponification	2	4
The alkaline hydrolysis of an ester to form sodium salt of the parent		
acid and alcohol is referred to as saponifiaction.		
CH ₃ COOC ₂ H ₅ + NaOH CH COON		
ethyl acetate H_2O , Heat sodium acetate $+ C_2H_5OH$		
	2	
	Conduction is a mode of heat transfer in which heat is transferred in the form of vibration of molecules without actual movement. Example: Heating a metal rod. Convection is a mode of heat transfer in which heat is transferred by actual mixing of hot fluid with colf fluid because of change of density of molecules of fluid by application of heat. Example: Heating of a liquid in a container. Radiation is a mode of heat transfer where heat is transferred through space by electromagnetic waves. Example: heating of a cold room by electric heater Amination by ammononalysis is reaction of unsaturated compound by ammonia. Cl.CH₂.CH₂.Cl + 4NH₃ → NH₂.CH₂.CH₂.NH₂ Ethylene dichloride ethylene diamine Amination by reduction is reaction of unsaturated compound with H₂. CH₃.CH.NO₂.CH₃ + 3H₂ → CH₃.CH.NH₂.CH₃ 2-nitroparrafin isopropyamine Saponification The alkaline hydrolysis of an ester to form sodium salt of the parent acid and alcohol is referred to as saponification .	Conduction is a mode of heat transfer in which heat is transferred in the form of vibration of molecules without actual movement. Example: Heating a metal rod. Convection is a mode of heat transfer in which heat is transferred by actual mixing of hot fluid with colf fluid because of change of density of molecules of fluid by application of heat. Example: Heating of a liquid in a container. Radiation is a mode of heat transfer where heat is transferred through space by electromagnetic waves. Example: heating of a cold room by electric heater Amination by ammononalysis is reaction of unsaturated compound by ammonia. Cl.CH₂.CH₂.Cl + 4NH₃ → NH₂.CH₂.CH₂.NH₂ Ethylene dichloride ethylene diamine Amination by reduction is reaction of unsaturated compound with H₂. CH₃.CH.NO₂.CH₃ + 3H₂ → CH₃.CH.NH₂.CH₃ 2-nitroparrafin isopropyamine Saponification The alkaline hydrolysis of an ester to form sodium salt of the parent acid and alcohol is referred to as saponificaction . CH₀.COOC₃H₃ + NaOH reflux of the parent acid and alcohol is referred to as saponificaction .

	Nitration is defined as unit process w	where one or more nitro groups are		
	introduced into an organic compound			
	(1 mark)			
	+ HNO ₃ -	H_2SO_4 $+ H_2O$ Nitrobenzene		
4.a	Principle involved in drying	g is removal of moisture of a	2	4
	substance by passing hot air of	or hot gas over the material to carry		
	away the water vapour.			
	Uses: (Any Two)		1 mark each	
	i)food industry			
	ii)pharmaceutical			
	iii)chemical			
	iv)Textile			
4.b	Vapour pressure is a pressure e	xerted by vapour in equilibrium	2	4
	with liquid at which it is boiled.			
	Boiling point is the temperatu	ue at which vapour pressure of the	2	
	liquid equals the pressure at v	which it is boiled.		
4.c	Petroleum refinery	Petrochemical plant	2	4
	Refinery is separation of crude oil into its component. Crude oil is feed of refineries	It is used for processing of products coming from refineries Product from refineries is feed		
	Crude on is recu of fermiones	for petrochemical plant		
	The biggest refineries in India	a are BPCL, HPCL, and Reliance.	2	
4.d	Principle: Absorption is unit operati	ion in which soluble component of	2	4
ı	a gas mixture is dissolved in a liquid	(solvent).		

	It is useful to control pollution for dissolving toxic gases as SO ₂ , NO ₂ ,	2	
	CO which would pollute atmosphere by dissolving them in a suitable		
	solvent.		
4.e	Screening is a method of separating of solid particles according to size	1	4
	alone by means of screen of known openings.		
	Size reduction is unit operation in which large solid particles are	1	
	subdivided into small ones to increase surface.		
	Importance of screening:	2	
	i) Separation of fine from feed material.		
	ii) To produce material of specific size limits.		
4.f	Sulphonation:	2	4
	Sulphonation is defined as any chemical process		
	by which the sulphonic acid group is introduced into an organic		
	compound.		
	ŞO₃H		
	+ H ₂ SO ₄ + H ₂ O		
	Benzene	2	
	Benzene sulphonic acid	2	
	Chlorination:		
	It refers to the process in which one or more chlorine		
	atoms are introduced into an organic compound		
	+ Clo FeCl ₃		
	+ Cl ₂ + Cl ₂ + HCl		
	Benzene		
5.a	Yes , Fuel burning is oxidation process	2	4
	Burning of butane gives carbon-dioxide and water with liberation of	_	-
	heat.		
	$C_4H_{10} + 6.5O_2 \longrightarrow 4CO_2 + 5H_2O$	2	
	Butane carbon-dioxide water	<i>≟</i>	
	Butane Carbon-dioxide water		

5.b	Importance of distillation in chemical industries.	1	4
	It is used in industries to separate volatile liquids from liquid mixture		
	based on boiling point difference.		
	Principle of distillation :		
	The difference in vapour pressure of the components of liquid mixture		
	at the same temperature is responsible for the separation by	2	
	distillation.		
	Example :		
	In binary system of methanol and water, methanol (Boiling		
	point= 64^{0} C) is separated from water(boiling point = 100^{0} C)	1	
5.c	Process flow diagram for manufacturing of Sulphuric Acid :	4	4
	COOD DESCRIPTION B.10 B.10 B.10 B.10 B.10 B.10 B.10 B.11 BLIAL I AIR DRYING TOWER BLIAL I BLANCE TO BELER BLIAL I BLANCE TANK COLH I CALLER DOUBLE PIPE BLIAL I WAILER COLH I CALLER DOUBLE PIPE BLIAL I WAILER COHW IN BROODICT CHW OUT BROODICT CHW OUT CALL BANUFACTURE OF COMMERCIAL GRADE BLANCE ACID		
	FRESH FRESH SULPHUN SULPHUN		

5.d	Hydration:		4
	It refers to a unit process of adding water to an Organic Compound	2	
	Hydration of Ehtylene:		
	Ethanol can be produced by hydration of ethylene in presence of a		
	phosphoric acid at about 300°C	2	
	$\mathrm{H_{3}PO_{4}}$	(any one	
	$C_2H_4 + H_2O - C_2H_5 OH$	example)	
	Hydration of propylene :		
	$CH_3CH = CH_2 + H_2O \longrightarrow CH_3CH(OH)CH_3$		
5.e	Reaction involving in the production of Nitric acid:	2	4
	870-900 °C		
	$4NH_3 + 5O_2> 4NO + 6H_2O$		
	$4NH_3 + 3O_2 - 2N_2 + 6H_2O$		
	2NO + O ₂ > 2NO ₂		
	$3NO_2 + H_2O$ > $2HNO_3 + NO$		
	Uses of Nitric acid:		
	1) It used in production of nitrogen fertilizer.		
	2) It is used in purification of gold, silver and platinum.	2 marks any	
	3) It is used as laboratory reagent.	2	
	4) It is used to prepare aqua-regia to dissolve nobel metals.		
	5) It is used in etching designs on copper and bronze wares.		
5.f	Important Heat transfer equipment:	½ marks	4
	1.Shell and tube heat exchanger	each	
	2. Evaporator		
	3. Double pipe heat exchanger		
	4.Plate heat exchanger		

	Modes of heat transfer :		
	1.Coduction	2	
	2.Convection		
	3.Radiation		
6.a	Bob and Tape level measurement: Diagram:		4
	suspended from a tape marked in centimeters and meters.		
	Tape measure	2	
	Tape Highest point reached by liquid Distance to be measured after tape is taken out of tank Bob (weight) Bob and Tape		
	Bob and tape is the most simple direct liquid level measurement devices.		
	2) It is consist of a bob (Weight) suspended from a tape marked in centimeter and meter.	2	
	3) Bob is lowered to the bottom of a tan or vessel containing liquid.		
	4) The liquid in the tank wets the part of the tape that is dipped into the pool of liquid.		
	5) The bob and tape assembly is then removed from the tank and a		
	reading of liquid level is made by noting the point on the tape		
	reached by the liquid.		
6.b	Difference between Absolute and Gauge pressure :		4
	Absolute pressure :	2	
	1. It is total pressure exerted by the fluid including atmospheric		
	pressure.		

	2. Absolute pressure = Gauge pressure + Atmospheric pressure.		
	Gauge pressure :		
	1. It is the pressure registered by the pressure gauge is called gauge		
	pressure.		
	2. It is always above the atmospheric pressure.		
	3. The gauge pressure does not indicate true total pressure.		
	If Operating Pressure is at 5 bar absolute pressure :		
	Absolute pressure = 5 bar		
	Atmospheric pressure = 1.103 bar		
	Absolute pressure = Gauge pressure + Atmospheric pressure.		
	Gauge pressure = Absolute pressure – Atmospheric pressure		
	= 5 - 1.103		
	= 3.897 bar	2	
.c	Rotameter:	2	4
	I How rate can also be provided on the to		
	Perforated plate		
	Tapered glass tube Float Flow Rotameter		
	In Rotameter as flow varies, the float rises or falls, thus altering the	2	
	flow area, which is the annular space/opening between the float and		
	tube. As the flow increases, the float moves upward, thus increasing the		
	area. At a given flow rate, float stabilizes at a certain fixed position in		
	the tube and at steady-state, it is recorded as rotameter reading from the		
	scale provided. It is used for flow measurements of liquids and gases.		

6.d	U-tube Manometer :		4
	Diagram:		
	Monthly T		
	Difference in height of mercury columns	2	
	Working:		
	1. It is the simplest form of manometer		
	2. When both the arms of U-tube are open to the atmosphere,		
	the level of manometric fluid remains at zero		
	3. The pressure in the inlet line can be measured by connecting		
	it by plastic tubing to one of the arms of the U-tube		
	4. By measuring the difference in the fluid in two arms of the	2	
	U-tube		
	5. If manometric fluid is mercury lower by 1 cm. in one arm		
	and raised by 1 cm in other arm, then the pressure in the		
	inlet line is 2 cm gauge.		
	6. When each arm is connected to separate regions then the		
	manometer measures differential pressure by equation		
	$\Delta P = P_1 - P_2 = h(\rho_m - \rho)$		
	$\rho_{\rm m}$ = Density of manometric fluid		
	ρ = Density of process fluid.		
6.e			4

