Herramientas de Teledetección Cuantitativa

Segmentando el espacio mirando para otro lado

Francisco Nemiña

Unidad de Educación y Formación Masiva Comisión Nacional de Actividades Espaciales

31 de mayo de 2017

Esquema de presentación

Escenas del capítulo anterior

Clases y categorías

Clustering Introducción k-means Problemas isodata

Práctica

- ▶ Que a partir de esto podiamos definir la ρ_{λ} la firma espectral como una característica de cada cuerpo.
- Definimos 3 tipos de firmas espectrales patrón y como se comportaba cada una.
- Que es importante corregir a las imágenes atmosfericamente para obtener el valor de reflectancia del píxel.
- Que podemos definir índices a partir de hacer operaciones entre los valores de los píxeles como si fueran números.
- ▶ Que a partir del concepto de espacio espectral podemos hacer rotaciones que cambian la forma de mostrar la información.

- ▶ Que a partir de esto podiamos definir la ρ_{λ} la firma espectral como una característica de cada cuerpo.
- Definimos 3 tipos de firmas espectrales patrón y como se comportaba cada una.
- Que es importante corregir a las imágenes atmosfericamente para obtener el valor de reflectancia del píxel.
- Que podemos definir índices a partir de hacer operaciones entre los valores de los píxeles como si fueran números.
- Que a partir del concepto de espacio espectral podemos hacer rotaciones que cambian la forma de mostrar la información.

- ▶ Que a partir de esto podiamos definir la ρ_{λ} la firma espectral como una característica de cada cuerpo.
- Definimos 3 tipos de firmas espectrales patrón y como se comportaba cada una.
- Que es importante corregir a las imágenes atmosfericamente para obtener el valor de reflectancia del píxel.
- Que podemos definir índices a partir de hacer operaciones entre los valores de los píxeles como si fueran números.
- Que a partir del concepto de espacio espectral podemos hacer rotaciones que cambian la forma de mostrar la información.

- ▶ Que a partir de esto podiamos definir la ρ_{λ} la firma espectral como una característica de cada cuerpo.
- Definimos 3 tipos de firmas espectrales patrón y como se comportaba cada una.
- Que es importante corregir a las imágenes atmosfericamente para obtener el valor de reflectancia del píxel.
- Que podemos definir índices a partir de hacer operaciones entre los valores de los píxeles como si fueran números.
- Que a partir del concepto de espacio espectral podemos hacer rotaciones que cambian la forma de mostrar la información.

- ▶ Que a partir de esto podiamos definir la ρ_{λ} la firma espectral como una característica de cada cuerpo.
- Definimos 3 tipos de firmas espectrales patrón y como se comportaba cada una.
- Que es importante corregir a las imágenes atmosfericamente para obtener el valor de reflectancia del píxel.
- Que podemos definir índices a partir de hacer operaciones entre los valores de los píxeles como si fueran números.
- Que a partir del concepto de espacio espectral podemos hacer rotaciones que cambian la forma de mostrar la información.

Esquema de presentación

Escenas del capítulo anterio

Clases y categorías

Clustering Introducción k-means Problemas isodata

Práctica

Categorías de uso y cobertura

Definición

Hablamos de *categorías de uso y cobertura* cuando hablamos de nuestras categorías de interés para nuestro estudio.

Propiedades

Un esquema de clasificación debe ser

- Exaustivo.
- Mutuamente excluyente.
- ► Mismo nivel gerarquico.

Categorías de uso y cobertura

Definición

Hablamos de *categorías de uso y cobertura* cuando hablamos de nuestras categorías de interés para nuestro estudio.

Propiedades

Un esquema de clasificación debe ser

- Exaustivo.
- Mutuamente excluyente.
- Mismo nivel gerarquico.

Categorías de uso y cobertura

Definición

Hablamos de *categorías de uso y cobertura* cuando hablamos de nuestras categorías de interés para nuestro estudio.

Propiedades

Un esquema de clasificación debe ser

- Exaustivo.
- Mutuamente excluyente.
- Mismo nivel gerarquico.

Clase espectral

Definición

Hablamos de una *clase espectral* cuando hablamos de un conjunto de píxeles que podemos agrupar espectralmente.

Clave vs. Categoría

Observación

Clase espectral y categoría de uso y cobertura NO son lo mismo.

De la imagen...

Queremos cambiar de información espectral a categorías.

Imagen de la zona de interés en combinación RGB.

De la imagen...

Queremos cambiar de información espectral a categorías.

Imagen de la zona de interés en combinación RGB.

...al espacio espectral...

Clustering en $R^2.1$

... a las categorías

Clasificación de la zona de interés.

Objetivo

¿Cómo?

Realizando clasificaciones en el espacio vectorial de la imagen. Estos algoritmos se van a basar en los valores individuales vector píxel.

Esquema de presentación

Escenas del capítulo anterior

Clases y categorías

Clustering

Introducción

k-means

Problemas

isodata

Práctica

Distancia

Para poder trabajar cómodos en el espacio vectorial vamos a tener que definir la distancia entre dos vectores

$$d(\rho_1, \rho_2) = (|\rho_{1,i} - \rho_{2,i}|^p)^{1/p} \tag{1}$$

Taxisita

Cuando p = 1 tenemos

$$d(\rho_1, \rho_2) = (|\rho_{1,i} - \rho_{2,i}|) \tag{2}$$

Fuclídea

Cuando p = 2 tenemos

$$d(\rho_1, \rho_2) = (|\rho_{1,i} - \rho_{2,i}|^2)^{1/2}$$
(3)

Taxisita

Cuando p = 1 tenemos

$$d(\rho_1, \rho_2) = (|\rho_{1,i} - \rho_{2,i}|) \tag{2}$$

Euclídea

Cuando p = 2 tenemos

$$d(\rho_1, \rho_2) = (|\rho_{1,i} - \rho_{2,i}|^2)^{1/2}$$
(3)

Criterio habitual

Encontrar clases c_i que minimice

$$SSE = \sum_{c_i} \sum_{x \in c_i} (x - x_i)^2 \tag{4}$$

donde x_i es el promedio de todos los valores de cada clase.

Una solución

Si $c_i = x_i$ esto da cero y es mínimo. Entonces tiene al menos una solución.

Otras soluciones

Tenemos que encontrar N categorías c; que minimicen esto.

Una solución

Si $c_i = x_i$ esto da cero y es mínimo. Entonces tiene al menos una solución.

Otras soluciones

Tenemos que encontrar N categorías c_i que minimicen esto.

Cuentas

Esto son MUCHAS cuentas y tomaría mucho tiempo. Tenemos que buscar otra manera más eficiente de hacerlo.

Cuentas

Esto son MUCHAS cuentas y tomaría mucho tiempo. Tenemos que buscar otra manera más eficiente de hacerlo.

Ejemplo en 1-D

Edades.

Imagen a clasificar. 2

Proceso paso a paso.³

Proceso paso a paso.4

Proceso paso a paso.⁵

- 1. Selecciono N clases iniciales
- Asigno los píxeles a estas clases
- Calculo los centroides de las clases clasificadas
- Repito 2 4 con los nuevos centroides hasta converger

- 1. Selecciono N clases iniciales
- 2. Asigno los píxeles a estas clases
- Calculo los centroides de las clases clasificadas
- 4. Repito 2 4 con los nuevos centroides hasta converger

- 1. Selecciono N clases iniciales
- 2. Asigno los píxeles a estas clases
- 3. Calculo los centroides de las clases clasificadas
- 4. Repito 2 4 con los nuevos centroides hasta converger

- 1. Selecciono N clases iniciales
- Asigno los píxeles a estas clases
- Calculo los centroides de las clases clasificadas
- 4. Repito 2 4 con los nuevos centroides hasta converger

⁶John A Richards. Remote Sensing Digital Image Analysis. Springer, 2013.

Mínimo local vs. mínimo global en 1-D.7

Selección inicial de clases

Lo que determina a que mínimo converge es la selección inicial de clases. Además no siempre me garantizo generar N clases, puedo generar menos de las deseadas.

Como elijo las medias iniciales

- De forma estocástica
- Con algún criterio estadístico

Selección inicial de clases

Lo que determina a que mínimo converge es la selección inicial de clases. Además no siempre me garantizo generar N clases, puedo generar menos de las deseadas.

Como elijo las medias iniciales

- De forma estocástica
- ► Con algún criterio estadístico

Selección inicial de clases

Lo que determina a que mínimo converge es la selección inicial de clases. Además no siempre me garantizo generar N clases, puedo generar menos de las deseadas.

Como elijo las medias iniciales

- De forma estocástica
- Con algún criterio estadístico

isodata

Diferencias con respecto a kmeans

El algoritmo es básicamente el mismo, pero implementa tres condiciones adicionales.

- ▶ Eliminar cluster si no son estadísticamente relevantes.
- Fusionar cluster si espectralmente son similares.
- ▶ Partir clusters que son muy alargados.

isodata

Diferencias con respecto a kmeans

El algoritmo es básicamente el mismo, pero implementa tres condiciones adicionales.

- Eliminar cluster si no son estadísticamente relevantes.
- ► Fusionar cluster si espectralmente son similares.
- ▶ Partir clusters que son muy alargados.

isodata

Diferencias con respecto a kmeans

El algoritmo es básicamente el mismo, pero implementa tres condiciones adicionales.

- ▶ Eliminar cluster si no son estadísticamente relevantes.
- ► Fusionar cluster si espectralmente son similares.
- Partir clusters que son muy alargados.

Clasificación no supervisada por isodata.8

Esquema de presentación

Escenas del capítulo anterior

Clases y categorías

Clustering Introducción k-means Problemas isodata

Práctica

Práctica

Actividades prácticas de la primera clase

- 1. Clasifique la imagen por el método k-means con 7 clases.
- 2. Clasifique la imagen por el método k-means con 70 clases.
- 3. Utilizar la herramienta de estadísticas globales para estimar las áreas correspondientes a cada uso y cobertura.

