

High Level Computer Vision

Exercise 1 | SS 2019

Max Planck Institute for Informatics

April 15, 2019

Introduction

TAs:

.0

- Rakshith Shetty rshetty@mpi-inf.mpg.de [Thu 15:00-16:00]
- Yang He yang@mpi-inf.mpg.de [Wed 15:00-16:00]
- Mailing list:
 - Announcements about exams, lectures, exercises, and Q&A.
 - Send an email with your name and matriculation number to yang@mpi-inf.mpg.de with [hlcv-subscribe] in the subject.
- There will be no tutorial next week.

Introduction

Grading:

0

- 50% Oral exam
- 50% Exercise sheets [1/2] + project [1/2]
- Exercise sheets:
 - Solutions must be submitted in groups (2-3 people).
 - It is strongly encouraged to work in groups of 3.
 - Send the group member list along with your solutions.

Image Filtering

- Images may need low-level adjustment such as filtering, in order to enhance image quality (e.g. denoising) or extract useful information (e.g. edges).
- Enhancement: improves contrast.
- · Smoothing: removes noise.
- Template matching: detects known patterns.

Image Filtering - Q1 b)

• Gaussian filtering - image smoothing

Gaussian Blur applied

Apple Motion 4

Image Filtering - Q1 b)

• Gaussian separability — an n dimensional Gaussian convolution is equivalent to n 1-D Gaussian convolutions.

$$h(i, j) = f(i, j) * g(i, j) =$$

$$= \sum_{k=1}^{m} \sum_{l=1}^{n} g(k, l) f(i - k, j - l) =$$

$$= \sum_{k=1}^{m} \sum_{l=1}^{n} e^{-\frac{(k^2 + l^2)}{2\sigma^2}} f(i - k, j - l) =$$

$$= \sum_{k=1}^{m} e^{-\frac{k^2}{2\sigma^2}} \left[\sum_{l=1}^{n} e^{-\frac{l^2}{2\sigma^2}} f(i - k, j - l) \right] =$$

$$= \sum_{k=1}^{m} e^{-\frac{k^2}{2\sigma^2}} h'(i - k, j) \qquad \text{1-D Gaussian horizontally}$$
1-D Gaussian vertically

Image Filtering - Q1 c)

• Differentiation through convolution.

$$\frac{d}{dt}(f*g)(t) = \left(\left(\frac{d}{dt}f\right)*g\right)(t) = \left(f*\left(\frac{d}{dt}g\right)\right)(t)$$

$$\frac{d}{dx}I_{\sigma}(x,y) = \frac{d}{dx}(I*G_{\sigma})(x,y) = (I*\frac{d}{dx}G_{\sigma})(x,y)$$

- Gaussian smoothing → Differentiation.
- Equivalent to smoothing with derivative of Gaussian.

Image Filtering - Q1 c)

• Edge detection using derivative of Gaussian filter:

Edges along the x axis

Edges along the y axis

Image Histogram - Q2

- Gives the summary of an image.
- Embeds the image into a "more meaningful" space endowed with some notion of "closeness".

Object Identification - Q3

• Using this space (in this case the histogram space), one can perform several recognition tasks - e.g. identification.

- How can we say if method A is better than method B for the same task?
- 1. Compare a single number e.g. accuracy (recognition rate), top-k accuracy.
- 2. Compare curves e.g. precision-recall curve, ROC curve.

Figure 4. Recognition accuracy across different experimental setups on the test data

Precision-Recall (Szegedy,

ROC (LFW Face verification)

Accuracy (Oh, ICCV'15)

NIPS'13)

Accuracy

Figure 4. Recognition accuracy across different experimental setups on the test data.

#Correct Predictions #Total Examples

Oh, ICCV'15

• Precision-recall curve

$$Precision = \frac{TP}{TP + FP}$$

$$\text{Recall} = \frac{\text{TP}}{\text{TP + FN}}$$

Szegedy, NIPS'13

• ROC curve

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{N} = \frac{FP}{TN + FP}$$

LFW Face verification

Submission

- Friday, April 26th, 23:59.
- Send an email to: yang@mpi-inf.mpg.de
- Please send a single .tar.gz or .zip file containing all the solutions and the report.
- In the email, include your group members (names and matriculation numbers).

