Data Structure - LLDs - (1 Week) <u>List of data structures</u>

	Lists	
		Design Linked List
		Design Skiplist
	Stacks	
		Implement Stack using Queues
		Design a Stack With Increment Operation
		<u>LRU Cache</u>
		<u>Min Stack</u>
		<u>Max Stack</u>
		<u>Dinner Plate Stacks</u>
		Implement Queue using Stacks
	Queue	
		<u>Design Circular Queue</u>
	Hashta	
		<u>Design HashMap</u>
		<u>Design HashSet</u>
	BST	
		Binary Search Tree Iterator
		Serialize and Deserialize BST
		ack Tree
		Find Median from Data Stream
		Count of Range Sum
	Heaps	Destruction Testings
		Design Twitter
_		Kth Largest Element in a Stream
Ш		cci Heaps
_		Fibonacci Heaps
Ц	Disjoin	
		Review of two popular approaches, Disjoint Sets and DFS
		PrefixTree, suffixTree)
		Implement Trie (Prefix Tree) Add and Search Word - Data structure design
		al Trees/Segment Tree
_		Lazy Dynamic Segment Tree - A general template
		A Recursive approach to Segment Trees, Range Sum Queries & Lazy Propagation
П		Tree Data Structures (Graphs)
_		Serialize and Deserialize N-ary Tree
		Encode N-ary Tree to Binary Tree
	_	<u> </u>
		Algorithms - Analysis Time and Space - (3 Weeks)
_		
	Sorting	•
		Selection Sort - Merge Sorted Array
		Bubble Sort - Sort Colors
		Insertion Sort - Insertion Sort List
		Merge Sort - Sort an Array

		Quick Sort Kth Largest Element in an Array K Closest Points to Origin	
		Counting Sort - Relative Sort Array	
		Tree sort - Convert Sorted List to Binary Search Tree	
		Bucket Sort - <u>Top K Frequent Elements</u>	
		Radix Sort - <u>Maximum Gap</u>	
		Topological sort - Covered in Graphs	
	Divide	-and-Conquer - 2 Days	
		The maximum-subarray problem - Maximum Subarray	
		Strassen's algorithm for matrix multiplication - <u>Divide and Conquer Set 5</u> (<u>Strassen's Matrix Multiplication</u>)	
		The substitution method for solving recurrences	
		The recursion-tree method for solving recurrences	
		The master method for solving recurrences	
	Dunam	nic Drogramming	
		nic Programming - 2 Days Rod cutting - Integer Break	
		Dynamic Programming for the confused : Rod cutting problem	
		Matrix-chain multiplication - <u>Burst Balloons</u>	
		Elements of dynamic programming	
		Longest common subsequence - Longest Common Subsequence	
		Optimal binary search trees	
		☐ <u>Unique Binary Search Trees</u>	
		□ Unique Binary Search Trees II	
П	Greed	y Algorithms - 2 Days	
_		An activity-selection problem - <u>Minimum Number of Arrows to Burst Balloor</u>	าร
		Elements of the greedy strategy	
		Huffman codes - Construct Huffman Tree, Google Onsite Software Engin	eer
		Huffman Coding Algorithm, Minimum Cost Tree From Leaf Values	
		Matroids and greedy methods - <u>Matroid intersection in simple words</u>	
		A task-scheduling problem as a matroid - <u>Task Scheduler</u>	
	Granh	Algorithms - 6 Days	
_	•	ode Pattern 1 DFS + BFS == 25% of the problems	
		N-ary Tree Preorder Traversal	
		N-ary Tree Postorder Traversal	
		N-ary Tree Level Order Traversal	
		BFS	
		☐ Binary Tree Level Order Traversal	
		☐ Binary Tree Level Order Traversal II	
		□ Web Crawler Multithreaded	
		□ Web Crawler	
		Cut Off Trees for Golf Event	
		□ Course Schedule	
		DFS	

		Binary Tree Postorder Traversal
		Binary Tree Preorder Traversal
		Binary Tree Inorder Traversal
		<u>Is Graph Bipartite?</u>
		Remove Invalid Parentheses
		Construct Binary Tree from Preorder and Inorder Traversal
	Topolo	ogical Sort - <u>Topological Sort</u>
	Strong	gly Connected Components - SCC - Course Schedule, Facebook Minimum
	numbe	er of people to spread a message, Airbnb Cover all vertices with the
	<u>least r</u>	number of vertices, Critical Connections in a Network
	Minim	um spanning Tree - Prim's Algorithm
		Cheapest Flights Within K Stops
		Minimum Height Trees
		Number of Operations to Make Network Connected
		Connecting Cities With Minimum Cost
	Shorte	est Path Algos -
		Bellman-Ford - <u>Network Delay Time</u> ,
		https://leetcode.com/problems/get-watched-videos-by-your-friends/
		Dijkstra's algorithm
		☐ Reachable Nodes In Subdivided Graph
		☐ Shortest Path Visiting All Nodes
		Floyd-Warshall
		☐ Find the City With the Smallest Number of Neighbors at a
		Threshold Distance
		☐ <u>Evaluate Division</u>
		Johnson's algorithm
		☐ All-pairs shortest paths - Johnson's algorithm for sparse graphs -
		<u>GeeksforGeeks</u>
		☐ <u>Johnson's algorithm</u>
		The Ford-Fulkerson method
		☐ Google Onsite Network flow for the matrix with given row
		and column sums
		Ford-Fulkerson Algorithm for Maximum Flow Problem
□ Numbe	er-Theo	oretic Algorithms - 2 Days
	The Cl	hinese remainder theorem - <u>Check If It Is a Good Array</u>
	Greate	est common divisor
		Greatest Common Divisor of Strings
		X of a Kind in a Deck of Cards
	Power	s of an element
		$\underline{Pow}(x, n)$
		Sort Integers by The Power Value
		SA public-key cryptosystem
		Keys and Rooms
		Shortest Path to Get All Keys
	_	er factorization
		Largest Component Size by Common Factor
		Minimum Factorization

	Bulb Switcher	
	String Matching The Rabin-Karp algorithm Implement strStr() Binary String With Substrings Representing 1 To N Shortest Palindrome Find All Anagrams in a String String matching with finite automata The Knuth-Morris-Pratt algorithm Shortest Palindrome Rotate String KMP Algorithm for Pattern Searching	- 2 Day
	Approximation Algorithms	2 Dave
_	Approximation Algorithms The vertex-cover problem	- 3 Days
	Binary Tree Cameras	
	☐ Vertex Cover Problem-2	
	☐ Vertex Cover Problem	
	☐ The traveling-salesman problem <u>Find the Shortest Superstring</u>	
	☐ The set-covering problem	
	□ <u>Video Stitching</u>	
	□ Set Intersection Size At Least Two	
	□ Non-overlapping Intervals	
	□ Randomization and linear programming	
	The subset-sum problemPartition Equal Subset Sum	
	☐ Partition to K Equal Sum Subsets	
	- I di cicion co il Equat sain sussess	
	Randomized Algorithms	- 1 Day
	☐ Quick Sort	
	☐ Min Cut <u>Palindrome Partitioning II</u>	
	Concepts Problems and Maths - (1 Week)	
	Matrix Operations	
	Linear Programming	
	Polynomials - DFT, FFT	
	Computational Geometry	
	☐ Line-segment properties	
	□ Determining whether any pair of segments intersects	
	☐ Finding the convex hull - <u>Erect the Fence</u> , <u>The Skyline Problem</u>	
	☐ Finding the closest pair of points - K Closest Points to Origin GCD and LCM	
_	☐ X of a Kind in a Deck of Cards	
	☐ Greatest Common Divisor of Strings	
	□ Nth Magical Number	
	☐ Ugly Number III	

☐ 2 Keys Keyboard

	Prime	Factorization and Divisors
		Largest Component Size by Common Factor
		2 Keys Keyboard
	Fibona	cci Numbers
		Length of Longest Fibonacci Subsequence
		Split Array into Fibonacci Sequence
		Find the Minimum Number of Fibonacci Numbers Whose Sum Is K
	Catala	n Numbers - <u>Unique Binary Search Trees</u>
	Modula	ar Arithmetic
	Euler 1	otient Function
	nCr Co	mputations
	Set Th	eory
	Factor	ial
		Last Substring in Lexicographical Order
		Snakes and Ladders
		Factor Combinations
		Path With Maximum Minimum Value
		Number of Closed Islands
	Prime	numbers and Primality Tests
		Prime Arrangements
		K-th Smallest Prime Fraction
	Sieve A	Algorithms
		Count Primes
	Divisib	ility and Large Numbers
	Series	
	Numbe	er Digit
	Triangl	es
		<u>Triangle</u>
		<u>Valid Triangle Number</u>
		Networks - (1 Week)
		<u>Leetcode</u>
		rk Topology, OSI Architecture
		models
	TCP an	
		ll, DNS, Domains, workgroups
	Protoc	ols i.e ICMP
		OS - (1 week)
		Operating System Tutorial
		<u>Shared Memory Systems</u>
_	Caaba	
	Cache	propding
Ш		Producers consumers problem
		Producers-consumers problem
		Dining philosophers problem
		Cigarette smokers problem
		Readers-writers problem

 □ Web Crawler Multithreaded □ Scheduling algorithms □ Deadlock □ Virtual Memory □ Mutex and semaphore □ Kernels □ Paging Software Design Principles - (2 weeks) System Design Primer 		
Start learning about Theory of Distributed Systems? Challenges with distributed systems Microservices Design Guide - Platform Engineer		
Cloud design patterns - Azure Architecture Center Design patterns for microservices Azure Blog and Updates		
TO READ: Domain Driven Design (DDD) Bounded Context (BC) Polyglot Persistence (PP) Command and Query Responsibility Segregation (CQRS) Command Query Separation (CQS) Event-Sourcing (ES) CAP Theorem Eventual Consistency Twelve-Factor App SOLID Principles		
Just some things to focus on. Load balancer API gateway Microservices - Scale Cube Concept, MVC - READ		
 Database Sharding SQL vs NoSQL - Cassandra, Postgres, Hadoop, Data lake, other algorithms related to data lake, CAP Theorem 		
Leadership Principles - LPs - (1 Week) TO BE UPDATED		
Resume and Miscellaneous #ADD WHATEVER YOU HAVE PUT IN RESUME		
 Algos you have mentioned Project work and related references to read Achievements and information about it 		
REFERENCES Introduction to Algorithms - Cormen Leetcode		