Utilizing Crowd Intelligence for Online Detection of Emotional Distress

Master's Thesis Presentation

Siddhant Goel Advisor: Han Xiao

Supervisor: Prof. Dr. Claudia Eckert

Chair for IT Security
Technische Universität München

March 14, 2013

Outline

- Introduction
 - Backdrop
 - Motivation
 - Problem Definition
- Theoretical Background
 - Machine Learning and Text Classification
 - Support Vector Machines
 - Ensemble Learning methods
- Experiments
- System
- Conclusion and Future Work
- Q/A

Outline

- Introduction
 - Backdrop
 - Motivation
 - Problem Definition
- Theoretical Background
 - Machine Learning and Text Classification
 - Support Vector Machines
 - Ensemble Learning methods
- Experiments
- System
- Conclusion and Future Work
- Q/A

Outline

- Introduction
 - Backdrop
 - Motivation
 - Problem Definition
- Theoretical Background
 - Machine Learning and Text Classification
 - Support Vector Machines
 - Ensemble Learning methods
- Experiments
- System
- Conclusion and Future Work
- Q/A

Backdrop

Depression and Suicide

- Nearly one million people die every year because of suicide
- Most people are between 15 to 29 years old

Social Media

- Rise of Twitter, Facebook, Reddit, Wordpress
- Sections of interest
 - Reddit "/r/happy" a and "/r/suicidewatch" b
 - Twitter the entire website

ahttp://www.reddit.com/r/happy

bhttp://www.reddit.com/r/suicidewatch

Backdrop

Depression and Suicide

- Nearly one million people die every year because of suicide
- Most people are between 15 to 29 years old

Social Media

- Rise of Twitter, Facebook, Reddit, Wordpress
- Sections of interest
 - Reddit "/r/happy" a and "/r/suicidewatch" b
 - Twitter the entire website

ahttp://www.reddit.com/r/happy

bhttp://www.reddit.com/r/suicidewatch

Backdrop

- 46 billion words collected over 33 months
- Negativity on Twitter has been on the rise
- Words include death, hate, and even suicide

Motivation

- Direct "thoughts of suicide make me happy", "I have a rope around my neck"
- Indirect "I don't know anything anymore", "Need someone to talk to"
- Some accounts have lots of followers, some don't
- Lives can be saved if there is a surveillance system of suicide
- ullet Public sentiment information available on the web + No analysis possible = Disconnect

Problem Definition

Evaluation

Evaluate machine learning algorithms that can be used for identifying depressed emotions in pieces of text

System

Build a web based system that can

- tap into crowd intelligence to incrementally improve the classifiers
- detect content on the web that indicates that its author may be depressed or suicidal

Machine Learning

- Algorithms that can learn from data
- Construct a model from a given dataset, and then perform the required task on another dataset
- Supervised learning Train the models on the training data, and predict on the test data
- Unsupervised learning No distinction between training and test data

Machine Learning

- Algorithms that can learn from data
- Construct a model from a given dataset, and then perform the required task on another dataset
- Supervised learning Train the models on the training data, and predict on the test data
- Unsupervised learning No distinction between training and test data

Text Classification

Formal definition

Given a dataset $\{(\mathbf{x_n}, y_n)\}_{n=1}^N$ containing N instances, where each instance $(\mathbf{x_n}, y_n)$ is of the form $[(x_{n,1}, x_{n,2}, ..., x_{n,D}), y_n]$, calculate the y_n values.

- Given some pieces of text, put unseen pieces of text into two or more categories
- **Supervised** calculate y_n of test data given information about y_n from training data
- Unsupervised calculate y_n given only information about $\mathbf{x_n}$

Text Corpus

"I am happy today" and "I am not happy today, but I was happy yesterday"

Text Corpus

"I am happy today"
and
"I am not happy
today, but I was
happy yesterday"

Text Corpus

"I am happy today"
and
"I am not happy
today, but I was
happy yesterday"

Token dictionary

"I": 1,
"am": 2,
"happy": 3,
"today": 4,
"not": 5,
"but": 6,
"was": 7,
"yesterday": 8

Text Corpus

"I am happy today" and "I am not happy today, but I was happy yesterday"

Token dictionary

"I": 1,
"am": 2,
"happy": 3,
"today": 4,
"not": 5,
"but": 6,
"was": 7,

"yesterday": 8

Support Vector Machines

- Fairly popular class of algorithms used for binary classification
- Given training data in some *D* dimensional space, find a decision boundary (hyperplane) that separates the two classes
- Hyperplane $(\mathbf{w} \cdot \mathbf{x} b = 0)$ should have maximum distance from any data point
- Solution for linear classifiers: $\mathbf{w} = \sum_{i=1}^{3} \alpha_i \mathbf{x}$
- Replace $x_i \cdot x$ with $k(x_i, x) \implies$ represents the dot product of two vectors in higher dimensions (kernel function)

Support Vector Machines

- Fairly popular class of algorithms used for binary classification
- Given training data in some *D* dimensional space, find a decision boundary (hyperplane) that separates the two classes
- Hyperplane $(\mathbf{w} \cdot \mathbf{x} b = 0)$ should have maximum distance from any data point
- Solution for linear classifiers: $\mathbf{w} = \sum_{i=1}^{S} \alpha_i \mathbf{x_i}$
- Replace $x_i \cdot x$ with $k(x_i, x) \implies$ represents the dot product of two vectors in higher dimensions (kernel function)

Support Vector Machines

- Fairly popular class of algorithms used for binary classification
- Given training data in some *D* dimensional space, find a decision boundary (hyperplane) that separates the two classes
- Hyperplane $(\mathbf{w} \cdot \mathbf{x} b = 0)$ should have maximum distance from any data point
- Solution for linear classifiers: $\mathbf{w} = \sum_{i=1}^{s} \alpha_i \mathbf{x_i}$
- Replace $x_i \cdot x$ with $k(x_i, x) \implies$ represents the dot product of two vectors in higher dimensions (kernel function)

Linear kernel SVM

Figure: Binary classification on a dataset using a linear kernel SVM

Kernel functions

Figure : Dataset in 2D (cannot be classified using a linear kernel SVM)

Kernel functions

Figure : Dataset in 2D (cannot be classified using a linear kernel SVM)

Kernel functions

SVM)

Figure : Dataset in 2D (cannot be classified using a linear kernel

Figure : Dataset transformed to $3\mathsf{D}$

Ensemble Learning

- Class of machine learning methods that combine models to obtain better predictions
- Various strategies to combine models select best, voting (bagging), boosting, stacking
- Performance not guaranteed to be better than constituent classifiers
- Ensemble methods still usually outperform individual classifiers
- Soft requirement underlying models should be diverse

Ensemble Learning

- Class of machine learning methods that combine models to obtain better predictions
- Various strategies to combine models select best, voting (bagging), boosting, stacking
- Performance not guaranteed to be better than constituent classifiers
- Ensemble methods still usually outperform individual classifiers
- Soft requirement underlying models should be diverse

Bagging

 Obtain predictions from all constituent classifiers, and take a majority vote

• Final prediction =
$$sign(\sum_{m=1}^{M} y_m(\mathbf{x_n}))$$

$$\begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} & \cdots & x_{1,N} \\ x_{2,1} & x_{2,2} & x_{2,3} & \cdots & x_{2,N} \\ x_{3,1} & x_{3,2} & x_{3,3} & \cdots & x_{3,N} \\ \vdots & \vdots & \ddots & \vdots \\ x_{M,1} & x_{M,2} & x_{M,3} & \cdots & x_{M,N} \end{pmatrix} \qquad \begin{pmatrix} x_{1,1} & x_{1,2} & x_{1,3} & \cdots & x_{1,N} \\ x_{2,1} & x_{2,2} & x_{2,3} & \cdots & x_{2,N} \\ x_{3,1} & x_{3,2} & x_{3,3} & \cdots & x_{3,N} \\ \vdots & \vdots & \ddots & \vdots \\ x_{M,1} & x_{M,2} & x_{M,3} & \cdots & x_{M,N} \end{pmatrix}$$

Sample split

Feature split

Boosting

- Assign each sample a weight value (same for all samples in the beginning), and train M classifiers successively
- \bullet For each classifier, calculate ϵ (measure of error) and α (decreases with $\epsilon)$
- Final prediction = $\operatorname{sign}(\sum_{m=1}^{M} \alpha_m y_m(\mathbf{x_n}))$

Stacking

- Outputs from first layer form the input for second layer
- Layer-1 classifiers can be trained using bootstrapping or selecting random features

Evaluation of algorithms

Datasets

Evaluation

- Comments dataset from a competition on Kaggle
- 6182 comments, each having a binary label
- Label depends on whether or not a particular comment insults another user
- Web based system
 - Training data Reddit
 - Fetch posts from "/r/happy" ¹ and "/r/suicidewatch" ²
 - Prediction data Twitter
 - Gather tweets from the public streaming API

http://www.reddit.com/r/happy

²http://www.reddit.com/r/suicidewatch

https://dev.twitter.com/docs/streaming-apis/streams/public

Evaluation of algorithms

Datasets

- Evaluation
 - Comments dataset from a competition on Kaggle
 - 6182 comments, each having a binary label
 - Label depends on whether or not a particular comment insults another user
- Web based system
 - Training data Reddit
 - Fetch posts from "/r/happy" ¹ and "/r/suicidewatch" ²
 - Prediction data Twitter
 - Gather tweets from the public streaming API ³

¹http://www.reddit.com/r/happy

²http://www.reddit.com/r/suicidewatch

³https://dev.twitter.com/docs/streaming-apis/streams/public

Web based system

Data consolidation frequencies

Task	Frequency
Fetch 1000 posts from Reddit	24 hours
Fetch 100 tweets from Twitter	3 hours
Re-assign labels to previous tweets and update statistics	24 hours

Evaluation of algorithms

Approach

- Implement all the models in MATLAB
- Extract n-grams (size upto 2) out of the Kaggle dataset
- Use tf-idf information as feature values
- Input matrix 6182 rows and 23175 columns
- SVM, Bagging, Boosting, Stacking obtain accuracy (10-fold cross validation) against number of samples
- SVM Growth of number of support vectors with the number of samples
- Bagging Accuracy against number of underlying models
- Start with 100 samples, and continue adding 100 samples in each iteration until no more samples are left

Support Vector Machines

Figure : Accuracy v/s Number of instances

- Linear kernel accuracy 79.02%
- Polynomial/RBF/Sigmoid kernel accuracy - 34.39%
- Having a large number of features implies less need for a kernel function

Support Vector Machines

Figure : Number of support vectors v/s Number of instances

- 100 samples 90% support vectors
- 6182 samples 60% support vectors
- Less support vectors implies that the classification is easy

Bagging

Figure : Accuracy v/s Number of instances

- 9 linear kernel SVMs underneath
- Performance ultimately governed by how SVMs perform
- Average accuracy on all 6182 samples = 79.65%

Bagging

- Accuracy "stabilizes" slowly with the number of models
- Each model is trained on a random subset of samples
- Increase in number of models implies Subsets overlap implies Performance stabilizes

Figure : Accuracy v/s Number of models

Boosting

- 9 linear kernel SVMs trained successively on each iteration
- Average accuracy = 72.84%

Figure : Accuracy v/s Number of instances

Stacking

- 9 linear kernel SVMs at first level
- Second level SVM trained using a linear kernel as well
- Average accuracy = 79.48%

Figure : Accuracy v/s Number of instances

Approach

- Implement all the models in Python, and web interface in Django
- No training data available => build our own
- Training data
 - Consolidated from Reddit
 - "/r/happy" users posts their happy moments
 - "/r/suicidewatch" users post when they want to commit suicide
 - Pull 500 stories from each, every day
- Prediction data
 - Should be the general sentiment of the overall public
 - Hence, pull 100 tweets every 3 hours from Twitter

Architecture

Figure : Landing page

- Two sections Ratings and Monitoring
- Ratings used to build the training data
- Monitoring used to monitor the status of the models and check distressed tweets

Ratings module

Figure : Landing page of the Ratings module

- Taps into crowd intelligence
- Automated scripts fetch 1000 posts from Reddit every day
- Displays the first unlabelled post
- Users can then assign labels to stories
- This builds the training data

Monitoring module

Figure : Landing page of the Monitoring module

- Displays the top few tweets that were classified as depressed by all the classifiers
- Links for checking the status of individual classifiers

Monitoring module

Figure : Statistics of the bagging classifier

For each classifier -

- displays the overall level of distress (in %) on Twitter
- each bubble displays
 - the number of stories that were found depressed on that particular day
 - the first tweet from that day which was depressed (no confidence values, yet)

Conclusion

- An evaluation of Support Vector Machines and Ensemble Learning methods (Bagging/Boosting/Stacking) in the domain of text classification
- Bagging outperformed Stacking outperformed SVM outperformed Boosting
- A web based system that can detect emotional distress on Twitter
- No labels implies qualitative evaluation is difficult except observation
- Observed results seem to be reasonable

Future Work

- Fetch more tweets
- Increase the crowd intelligence involved
- Relabelling process (decreases wastage of resources)
- Select best performing model
- Store confidence values

Thank you!
Questions?