Process Mining: Data Science in Action

Token-Based Replay: Some Examples

prof.dr.ir. Wil van der Aalst www.processmining.org

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

Mining
Discovery, Conformance and Enhancement of Business Processes

Wil M. P. van der Aalst

Process

Conformance checking

- 1. Conformance checking using causal footprints.
- 2. Conformance checking based on token-based replay.
- 3. Alignment-based conformance checking.

Last lecture: Token-based replay

1391

Question (may take some time)

Compute fitness using missing and remaining tokens

trace	frequency
abcd	10
acbd	10
aed	10
abd	2
acd	1
ad	1
abbd	1

- Consider the event log containing 35 cases.
- What is the fitness?

Let us pick one trace: acd

 abcd
 10

 acbd
 10

 aed
 10

 abd
 2

 acd
 1

 ad
 1

 abbd
 1

trace

TU/e

Fitness = 0.9658

traco	fraguancy	raduced takens (n)	romaining takens (r)	concumed takens (a)	missing takans (m)	produced takens (all)	romaining takons (all)	consumed takens (all)	missing takons (all)
abcd	10	6	0	6	C	60	0	60	0
acbd	10	6	0	6	0	60	0	60	0
aed	10	6	0	6	0	60	0	60	0
ahd	2	5	1	5	1	10	2	10	2
acd	1	5	1	5	1	5	1	5	1
ad	1	4	2	4	2	4	2	4	2
abbd	1	6	2	6	2	6	2	6	2

205	7	205	7
sum p	sum r	sum c	sum m

fitness **0.965853659**

$$fitness(L,N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N,\sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N,\sigma}} \right)$$

ProM 5.2 output

(ProM 6 only supports more advanced conformance checking techniques)

Question

Compute fitness using missing and remaining tokens

- Consider the event log containing just one case: $L = [\langle e \rangle]$.
- What is the fitness (using token-based replay)?

Answer obtained by replaying (e)

Another example

trace	frequency
acd	10
bce	10
ace	5
bcd	5
dca	1
abd	1
d	1

- Consider the event log containing 33 cases.
- What is the fitness?

Fitness = 0.895705521

trace	frequency	produced tokens (p)	remaining tokens (r)	consumed tokens (c)	missing tokens (m)	produced tokens (all)	remaining tokens (all)	consumed tokens (all)	missing tokens (all)
acd	10		C	5	0	50		50	
bce	10	5	C	5	0	50	0	50	0
ace	5	5	1	5	1	25	5	25	5
bcd	5	5	1	5	1	25	5	25	5
dca	1	5	3	5	3	5	3	5	3
abd	1	6	3	5	2	6	3	5	2
d	1	2	1	3	2	2	1	3	2

©Wil van der Aalst & TU/e (use only with permission & acknowledgements)

 $\overline{p}_{N,\sigma}$

ProM 5.2 diagnostics

Another example

trace	frequency
abefcd	10
abbefccd	10

- Consider the event log containing 20 cases.
- What is the fitness?

Fitness = 0.8

trace	frequency	produced tokens (p)	remaining tokens (r)	consumed tokens (c)	missing tokens (m)	produced tokens (all)	remaining tokens (all)	consumed tokens (all)	missing tokens (all)
abefcd	10	9	2	9	2	90	20	90	20
abbefccd	10	11	2	11	2	110	20	110	20

$$fitness(L,N) = \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times m_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times c_{N,\sigma}} \right) + \frac{1}{2} \left(1 - \frac{\sum_{\sigma \in L} L(\sigma) \times r_{N,\sigma}}{\sum_{\sigma \in L} L(\sigma) \times p_{N,\sigma}} \right)$$

ProM 5.2 diagnostics

fitness of 0.8

21:57:05 [D] Buffered log reader created from reader BufferedLogReader; 20 Process Instances and 140 Audit Trail Entries from "D; bublications books brocess-mining-book2010 logs et al RpdSynth L2-non-conforming.mxml", pitk.; [1]@6

Limitations

- Basic replay approach assumes visible & uniquely labeled transitions.
- ProM implementation uses heuristics to deal with silent transitions and multiple transitions having the same label.
- Conformance values sometimes too optimistic due to "token flooding".
- Local decision making may lead to misleading results.

Local decision making is not enough ...

p = 8 c = 8 m = 1 r = 1 f = 0.875

⟨a,c1,c2,e1,e2,e3⟩

- Replay technique does not provide a corresponding path through the model (vital for conformance/performance analysis and other diagnostics).
- We would like to see the "closest path", i.e., (b,c1,c2,e1,e2,e3).

Next: alignments

Alignments provide better diagnostics

⟨a,c1,c2,e1,e2,e3⟩

Part I: Preliminaries

Chapter 1 Introduction

Chapter 2

Process Modeling and Analysis

Chapter 3

Data Mining

Part III: Beyond Process Discovery

Chapter 7

Conformance Checking

Chapter 8

Mining Additional Perspectives

Chapter 9 **Operational Support**

ess Mining to Work

Part II: From Event Logs to Process Models

Chapter 4 Getting the Data

Chapter 5

Process Discovery: An Introduction

Chapter 6

Advanced Process Discovery Techniques

Part IV: Puttin

Chapter 10 **Tool Support**

apter 11

Analyzing "Lasagna Processes"

Chapter 12

Analyzing "Spaghetti Processes"

Part V: Reflection

Chapter 13

Cartography and Navigation

Chapter 14 **Epilogue**

Wil M. P. van der Aalst

Process Mining

