Best Linear Prediction Econometrics II

Douglas G. Steigerwald

UC Santa Barbara

Overview

Reference: B. Hansen Econometrics Chapter 2.18-2.19, 2.24, 2.33

How to approximate $\mathbb{E}(y|x)$?

- if x is continuous, $\mathbb{E}(y|x)$ is generally unknown
 - linear approximation $x^T\beta$
 - \star β is the linear predictor (or projection) coefficient (β_{lpc})
 - $\star \beta$ is not $\nabla_x \mathbb{E}(y|x)$
 - β is identified if $\mathbb{E}\left(xx^{T}\right)$ is invertible
- linear prediction error *u* is uncorrelated with *x* by construction

Approximate the CEF

- ullet conditional mean $\mathbb{E}\left(y|x
 ight)$
 - "best" predictor (mean squared prediction error)
 - functional form generally unknown
 - ★ unless x discrete (and low dimension)
- ullet approximate $\mathbb{E}\left(y|x
 ight)$ with $x^{\mathrm{T}}eta$
 - Inear approximation, thus a linear predictor
- **①** select β to form "best" linear predictor of y: $\mathcal{P}(y|x)$
- 2 select β to form "best" linear approximation to $\mathbb{E}\left(y|x\right)$
 - ullet 1 and 2 yield identical eta
 - ightharpoonup either criterion could be used to define eta
 - we use 1 and refer to $x^T\beta$ as the best linear predictor

Best Linear Predictor Coefficient

1. select β to minimize mean-square prediction error

$$S(\beta) = \mathbb{E}(y - x^{\mathrm{T}}\beta)^{2}$$

 $\beta := \beta_{lpc}$ satisfies

$$\mathbb{E}\left(\mathbf{x}\mathbf{x}^{\mathrm{T}}\right)eta_{lpc}=\mathbb{E}\left(\mathbf{x}\mathbf{y}\right)$$
 Solution

2. select β to minimize mean-square approximation error

$$d(\beta) = \mathbb{E}_{x} (\mathbb{E}(y|x) - x^{T}\beta)^{2}$$

solution satisfies

$$\mathbb{E}\left(\mathbf{x}\mathbf{x}^{\mathrm{T}}\right)eta_{\mathit{lac}}=\mathbb{E}\left(\mathbf{x}\mathbf{y}\right)$$
 Solution

Identification

- Identification (General)
 - lacktriangledown heta and heta' are separately identified iff $heta
 eq heta' \Rightarrow \mathbb{P}_{ heta}
 eq \mathbb{P}_{ heta'}$

Identification - Background

- Identification (Best Linear Predictor)
 - ▶ β and β' are separately identified iff $(\mathbb{E}(xx^T))^{-1}\mathbb{E}(xy)$ from \mathbb{P}_{β} does not equal $(\mathbb{E}(xx^T))^{-1}\mathbb{E}(xy)$ from $\mathbb{P}_{\beta'}$
 - i.e. there is a unique solution to $\beta_{lpc} = (\mathbb{E}(xx^T))^{-1} \mathbb{E}(xy)$
 - i.e. $\mathbb{E}(xx^T)$ is invertible

Identification 2

Can we uniquely determine β_{lpc} ?

$$\mathbb{E}\left(xx^{\mathrm{T}}\right)\beta_{lpc} = \mathbb{E}\left(xy\right)$$

- if $\mathbb{E}(xx^T)$ is invertible
 - lacktriangle there is a unique value of eta_{lpc} that solves the equation
 - \star β_{lpc} is identified as there is a unique solution
- if $\mathbb{E}(xx^T)$ is not invertible
 - lacktriangle there are multiple values of eta_{lpc} that solve the equation
 - \star β_{lpc} is not identified as there is not a unique solution
 - * mathematically $\beta_{lpc} = (\mathbb{E}(xx^T))^- \mathbb{E}(xy)$ Generalized Inverse
 - lacktriangle all solutions yield an equivalent best linear predictor $x^{\mathrm{T}}eta_{lpc}$
 - ★ best linear predictor is identified

Invertibility

Required assumption: $\mathbb{E}\left(xx^{T}\right)$ is positive definite

• for any non-zero $\alpha \in \mathbb{R}^k$:

$$\boldsymbol{\alpha}^{T}\mathbb{E}\left(\boldsymbol{x}\boldsymbol{x}^{T}\right)\boldsymbol{\alpha}=\mathbb{E}\left(\boldsymbol{\alpha}^{T}\boldsymbol{x}\boldsymbol{x}^{T}\boldsymbol{\alpha}\right)=\mathbb{E}\left(\boldsymbol{\alpha}^{T}\boldsymbol{x}\right)^{2}\geq0$$

- ullet so $\mathbb{E}\left(xx^{T}\right)$ is positive semi-definite by construction
- positive semi-definite matrices are invertible IFF they are positive definite
- ullet if we assume $\mathbb{E}\left(\mathbf{x}\mathbf{x}^{\mathrm{T}}\right)$ is positive definite, then
 - $\mathbb{E}(\alpha^{\mathrm{T}}x)^2 > 0$
 - there is no non-zero α for which $\alpha^T x = 0$
 - ★ implies there are no redundant variables in x
 - ★ i.e. all columns are linearly independent

Best Linear Predictor: Error

best linear predictor (linear projection)

$$\mathcal{P}\left(y|x\right) = x^{\mathrm{T}}\beta_{lpc}$$

decomposition

$$y = x^{\mathrm{T}} \beta_{lpc} + u$$
 $u = e + (\mathbb{E}(y|x) - x^{\mathrm{T}} \beta_{lpc})$

- choice of β_{lpc} implies $\mathbb{E}(xu) = 0$
 - $\mathbb{E}(xu) = \mathbb{E}\left(x\left(y x^{T}\beta_{lpc}\right)\right) = \\ \mathbb{E}(xy) \mathbb{E}(xx^{T})\left(\mathbb{E}(xx^{T})\right)^{-1}\mathbb{E}(xy) = 0$
 - \triangleright error from projection onto x is orthogonal to x

Best Linear Predictor: Error Variance

Variance of u equals the variance of the error from a linear projection

- Variance of u
 - $\mathbb{E}u^{2} = \mathbb{E}\left(y x^{T}\beta\right)^{2} = \mathbb{E}y^{2} \mathbb{E}\left(yx^{T}\right)\beta$
 - ★ because $\mathbb{E}\left(x^{T}\beta\right)^{2} = \mathbb{E}\left(yx^{T}\right)\beta$
- Variance of projection error
 - projection error is defined as $||u|| = ||y|| ||x^T\beta||$
 - because $y^2 = ||y||^2$

$$Var\left(u
ight) = Var\left(\left\|u
ight\|
ight)$$

Best Linear Predictor: Covariate Error Correlation

• $\mathbb{E}(xu) = 0$ is a set of k equations, as

$$\mathbb{E}\left(x_{i}u\right)=0$$

- if x includes an intercept, $\mathbb{E}u = 0$
- because

$$Cov(x_i, u) = \mathbb{E}(x_i u) - \mathbb{E}x_i \cdot \mathbb{E}u$$

- covariates are uncorrelated with u by construction
- for $r \ge 2$ if $\mathbb{E} |y|^r < \infty$ and $\mathbb{E} ||x||^r < \infty$ then $\mathbb{E} |u|^r < \infty$
 - if y and x have finite second moments then the variance of u exists
 - ▶ note: $\mathbb{E} |y|^r < \infty \Rightarrow \mathbb{E} |y|^s < \infty$ for all $s \le r$ (Liapunov's Inequality)

Linear Projection Model

linear projection model is

$$y = x^{T}\beta + u$$
 $\mathbb{E}(xu) = 0$ $\beta = (\mathbb{E}(xx^{T}))^{-1}\mathbb{E}(xy)$

- $x^{T}\beta$ is the best linear predictor
 - lacktriangleright not necessarily the conditional mean $\mathbb{E}\left(y|x\right)$
- $oldsymbol{\circ}$ eta is the linear prediction coefficient
 - lacktriangleright not the conditional mean coefficient if $\mathbb{E}\left(y|x
 ight)
 eq x^{\mathrm{T}}eta$
 - not a causal (structural) effect if:
 - ★ $\mathbb{E}(y|x) \neq x^{\mathrm{T}}\beta$
 - ★ $\mathbb{E}(y|x) = x^{T}\beta$ but $\nabla_{x}e \neq 0$

How Does the Linear Projection Differ from the CEF?

Example 1

- CEF of log(wage) as a function of x (black and female indicators)
- discrete covariates, small number of values, compute CEF

$$\mathbb{E}\left(\log\left(\textit{wage}\right)|x\right) = -.20 \,\textit{black} - .24 \,\textit{female} + .10 \,\textit{inter} + 3.06$$

- inter = black · female
 - ★ 20% male race gap (black males 20% below white males)
 - ★ 10% female race gap
- Linear Projection of log(wage) on x (black and female indicators)

$$\mathcal{P}\left(\log(\textit{wage})|x\right) = -.15 \, \textit{black} - .23 \, \textit{female} + 3.06$$

- ▶ 15% race gap
 - ★ average race gap across males and females
 - ★ ignores the role of gender in race gap, even though gender is included

How Does the Linear Projection Differ from the CEF? Example 2

CEF of white male log(wage) as a function of years of education (ed)

- discrete covariate with multiple values
 - could use categorical variables to compute CEF
 - ★ large number of values leads to cumbersome estimation

approximate CEF with linear projections

Approximate CEF of Wage as a Function of Education

Approximation 1

• Linear Projection of log(wage) on x = ed

$$\mathcal{P}\left(\log(\textit{wage})|x\right) = 0.11\,\textit{ed} + 1.50$$

▶ 11% increase in mean wages for every year of education

Figure 2.8: Projections of log(wage) onto Education

• works well for $ed \ge 9$, under predicts if education is lower

Approximate CEF of Wage as a Function of Education

Approximation 2: Linear Spline

• Linear Projection of log(wage) on x = (ed, spline)

$$\mathcal{P}\left(\log(\textit{wage})|x\right) = 0.02\,\textit{ed} + 0.10\,\textit{spline} + 2.30$$

- ▶ $spline = (ed 9) \cdot 1 (ed)$
 - ★ 2% increase in mean wages for each year of education below 9
 - ★ 12% increase in mean wages for each year of education above 9

Figure 2.8: Projections of log(wage) onto Education

How Does the Linear Projection Differ from the CEF?

Example 3

CEF of white male (with 12 years of education) log(wage) as a function of years of experience (ex)

- discrete covariate with large number of values
 - approximate CEF with linear projections
- Linear Projection of log(wage) on x = ex
 - $\mathcal{P}(\log(wage)|x) = 0.011 ex + 2.50$

over predicts wage for young and old

Approximate CEF of Wage as a Function of Experience

Approximation 2: Quadratic Projection

• Linear Projection of log(wage) on $x = (ex, ex^2)$

$$P(\log(wage)|x) = 0.046 ex - 0.001 ex^2 + 2.30$$

- ▶ $\nabla P = .046 .001 \cdot ex$
 - ★ captures strong downturn in mean wage for older workers

Properties of the Linear Projection Model

- Assumption 1
 - ▶ $\mathbb{E}y^2 < \infty$ $\mathbb{E} \|x\|^2 < \infty$ $Q_{xx} = \mathbb{E} (xx^T)$ is positive definite
- Theorem: Under Assumption 1
 - **1** $\mathbb{E}(xx^T)$ and $\mathbb{E}(xy)$ exist with finite elements
 - The linear projection coefficient exists, is unique, and equals

$$\beta = \left(\mathbb{E}\left(xx^{\mathsf{T}}\right)\right)^{-1}\mathbb{E}\left(xy\right)$$

- For $u = y x^{T}\beta$, $\mathbb{E}(xu) = 0$ and $\mathbb{E}(u^{2}) < \infty$
- **1** If x contains a constant, $\mathbb{E}u = 0$
- **1** If $\mathbb{E}|y|^r < \infty$ and $\mathbb{E}||x||^r < \infty$ for $r \ge 2$, then $\mathbb{E}|u|^r < \infty$

Proof

Review

- How do we approximate $\mathbb{E}(y|x)$?
- $x^T\beta$

How to do you interpret β ?

• the linear projection coefficient, which is not generally equal to $\nabla_x \mathbb{E}\left(y|x\right)$

What is required for identification of β ?

ullet $\mathbb{E}\left(\mathbf{x}\mathbf{x}^{T}\right)$ is invertible

What is the correlation between x and u?

• 0 by construction!

Best Linear Predictor Coefficient Solution

- ullet eta_{lpc} is the value of eta that minimizes
- $S(\beta) = \mathbb{E}y^2 2\beta^T \mathbb{E}(xy) + \beta^T \mathbb{E}(xx^T)\beta$ Vector Calculus
 - first derivative $-2\mathbb{E}(xy) + 2\mathbb{E}(xx^T)\beta$
- solution (linear projection coefficient)

$$\mathbb{E}\left(\mathbf{x}\mathbf{x}^{\mathrm{T}}\right)\boldsymbol{\beta}_{lpc}=\mathbb{E}\left(\mathbf{x}\mathbf{y}\right)$$

- required assumption
 - ▶ $\mathbb{E}y^2 < \infty$ $\mathbb{E} ||x||^2 < \infty$ Euclidean Length

Return to Best Linear Predictor Coefficient

Best Linear Approximation Coefficient Solution

let
$$m(x) := \mathbb{E}(y|x)$$

• β_{lac} is the value of β that minimizes

$$d\left(\beta\right) = \int_{\mathbb{R}^{k}} \left(m\left(x\right) - x^{T}\beta\right)^{2} f_{x}\left(x\right) dx$$

- $d(\beta) = \mathbb{E}m(x)^2 2\beta^{T}\mathbb{E}(xm(x)) + \beta^{T}\mathbb{E}(xx^{T})\beta$
 - first derivative $-2\mathbb{E}(xm(x)) + 2\mathbb{E}(xx^T)\beta$
 - $\mathbb{E}\left(xm\left(x\right)\right) = \mathbb{E}\left(x\mathbb{E}\left(y|x\right)\right) = \mathbb{E}\left(\mathbb{E}\left(xy|x\right)\right) = \mathbb{E}\left(xy\right)$
- solution (linear approximation coefficient)

$$\mathbb{E}\left(\mathbf{x}\mathbf{x}^{\mathrm{T}}\right)\boldsymbol{\beta}_{lac}=\mathbb{E}\left(\mathbf{x}\mathbf{y}\right)$$

Return to Best Linear Predictor Coefficient

Vector Calculus

- vector derivative: inner product
 - (2×1) vectors: B and C

$$B^{T}C = B_{1}C_{1} + B_{2}C_{2}$$

- vector derivative: quadratic form
 - (2×2) matrix: D
 - $B^{T}DB' = B_{1}^{2}D_{11} + B_{1}B_{2}D_{12} + B_{1}B_{2}D_{21} + B_{2}^{2}D_{22}$
 - $\qquad \qquad \frac{\partial B^{\mathrm{T}}DB}{\partial B} = \left[\begin{array}{c} \left(D_{11} + D_{11} \right) B_1 + \left(D_{12} + D_{21} \right) B_2 \\ \left(D_{21} + D_{12} \right) B_1 + \left(D_{22} + D_{22} \right) B_2 \end{array} \right] = \left(D + D^{\mathrm{T}} \right) B$

Return to Solution

Euclidean Length

- Pythagorean Theorem
 - $a^2 + b^2 = c^2$ so the length of the hypotenuse is $c = (a^2 + b^2)^{1/2}$
- c is a vector of dimension 2, so for x a vector of dimension n
 - the Euclidean length (norm) is $||x|| = (x_1^2 + x_2^2 + \cdots + x_n^2)^{1/2}$
- therefore
 - $\mathbb{E} \|x\|^2 = \mathbb{E} (x_1^2 + x_2^2 + \dots + x_n^2)$
 - $B^{T}DB = B_{1}^{2}D_{11} + B_{1}B_{2}D_{12} + B_{1}B_{2}D_{21} + B_{2}^{2}D_{22}$

Return Again to Solution

Identification - Background

- identification is important in structural econometric modeling
 - F distribution of observed data (for example (y, x))
 - $ightharpoonup \mathcal{F}$ a collection of distributions F
 - lacktriangledown heta a parameter of interest (for example $\mathbb{E} y$)
 - identification means that a parameter is uniquely determined by the distribution of the observed variables

Definition

A parameter $\theta \in \mathbb{R}$ is identified on \mathcal{F} if for all $F \in \mathcal{F}$ there is a uniquely determined value of θ .

- equivalently, θ is identified if we can write out a mapping $\theta = g\left(F\right)$ on the set \mathcal{F}
 - lacktriangleright restriction to ${\mathcal F}$ is important
 - most parameters are identified only on a strict subset of the space of all distributions

Identification - Moments of Observed Data

- ullet consider identification of the mean $\mu=\mathbb{E} y$
 - μ is uniquely determined if $\mathbb{E} y < \infty$
 - $\star \ \mu \text{ is identified for the set } \mathcal{F} = \left\{ F: \int_{-\infty}^{\infty} \left| y \right| dF \left(y \right) < \infty \right\}$
- identification of the conditional mean

Theorem: If $\mathbb{E}y < \infty$, the conditional mean $m(x) = \mathbb{E}(y|x)$ is identified almost everywhere.

 generally, moments of observed data are identified as long as we exclude degenerate cases

Identification - More Complicated Models

- consider the context of censoring
 - y is a random variable with distribution F
 - we observe y^* defined by the censoring rule

$$y^* = \begin{cases} y & \text{if } y \leq \tau \\ \tau & \text{if } y > \tau \end{cases}$$

- applies to income surveys, where incomes above the top code are recorded as equal to the top code ("top coded" data)
- observed variable y* has distribution

$$F^{*}(u) = \begin{cases} F(u) & \text{if } u < \tau \\ 1 & \text{if } u \ge \tau \end{cases}$$

- ullet we are interested in the features of F not the censored distribution F^*
 - we cannot calculate $\mu = \mathbb{E} y$ from F^* except in the trivial case where there is no censoring $\mathbb{P}(y \geq \tau) = 0$
 - ★ μ is not generically identified from F*

Assumptions to Restore Identification

- parametric identification
 - lacktriangle assume a parametric distribution $(y \sim \mathcal{N}\left(\mu, \sigma^2\right))$
 - \star so \mathcal{F} is the set of normal distributions
 - \star can show that (μ,σ^2) are identified for all $F\in\mathcal{F}$
 - not ideal identification achieved only through use of an arbitrary and unverifiable parametric assumption
- nonparametric identification
 - quantiles q_{α} of F, for $\alpha \leq \mathbb{P}\left(y \leq \tau\right)$ are identified
 - * if 20% of the distribution is censored, can identify all quantiles for $\alpha \in (0, 0.8)$
- study of identification focuses attention on what can be learned from the data distributions available

Return to General Identification

Generalized Inverse

- for any matrix A
 - ► A⁻ (Moore-Penrose generalized inverse) exists and is unique
- A⁻ satisfies
 - $AA^-A=A$
 - $A^-AA^-=A$
 - \triangleright AA^- and A^-A are symmetric
- ullet example, if A_{11}^{-1} exists and $A=\left[egin{array}{cc} A_{11} & 0 \ 0 & 0 \end{array}\right]$
- then $A^- = \begin{bmatrix} A_{11}^{-1} & 0 \\ 0 & 0 \end{bmatrix}$

Return to Identification

Proof of Theorem 1

$$\mathbb{E} \|xx^{\mathrm{T}}\| = \mathbb{E} \|x\|^2 < \infty$$
 (Assumption 1)

- A⁻ satisfies
 - $AA^-A=A$
 - $A^-AA^-=A$
 - \triangleright AA^- and A^-A are symmetric
- example, if A_{11}^{-1} exists and $A = \begin{bmatrix} A_{11} & 0 \\ 0 & 0 \end{bmatrix}$
- $\bullet \text{ then } A^- = \left[\begin{array}{cc} A_{11}^{-1} & 0 \\ 0 & 0 \end{array} \right]$

Return to Properties of the LPM