

Recap: Electrodischarge machining

- Non-Traditional machining methods
 - Ductile materials : ECM, EDM
 - Brittle materials: USM, AJM
 - Textile, paper: WJC
- Electro-discharge machining
 - Melting and vaporization of a small amount of material by electrical spark
 - Material Removal rate MRR(mm³/min) = $(4x10^4)$.I / $T_m^{1.23}$
 - Wear rate of electrode W(mm 3 /min) = (11x10 3).I / $T_e^{2.3\xi}$
- DC 60-300 V, Inter-electrode gap 10-100 μm
- Electrical spark last about 1µs to 8 ms
- Resulted Temperature during electric spark: $> 5000^{\circ}$ C
- Pulse electrical supply
 - Resistance R, capacitance C important parameter
 - Charging: $V_c = V_o \left(1 e^{-\frac{t}{RC}}\right)$, $I_c = I_o e^{-t/RC}$
 - Discharging: $V_d = V_c e^{-t_d/_{Rm.C}}$, $I_d = \frac{V_c}{R_m} e^{-t_d/_{Rm.C}}$

Electrochemical Machining (ECM)

- Popular "room temperature" NTM for "hard-to-machine" conductive materials
 - Titanium aluminides, Inconel, high nickel and cobalt alloys
- Based on controlled <u>atomic dissolution</u> of a conductive material by electrochemical action of supplied electrical energy
- Amount of Electrochemical machining process

9/29/2022 ME338 – Pradeep Dixit

3

Applications of ECM

Features etched by ECM in Tungston

Turbine blades

Gears made by ECM in Nickel based alloy ME338 - Pradeep Dixit

Electrochemical Machining

9/29/2022 ME338 – Pradeep Dixit

5

Electrochemical Machining - setup

Electrochemical Machining - Important feature

- Work material must be electrical conductive
- Electrolyte conductive medium between cathode and anode
- when work-piece is connected anode, the electrochemical reactions will etch the material
- Used for hard-to-machine materials like inconel (Ni-Cr super alloy), tungsten, tungsten carbide. Smooth burr-free material removal
- Very popular in automotive and aerospace applications like machining of gas turbine blades, turbocharger rotor
- Also reverse-ECM or electrodeposition is frequently used for thin interconnects deposition in semiconductor/MEMS industry

9/29/2022

ME338 - Pradeep Dixit

Electrochemical Machining

- Three main parts of ECM:
 - Tool (cathode): brass, copper, bronze, stainless steel
 - Work piece (anode)
 - Electrolyte (medium)...
- A dc voltage (10-25 v) is applied across the gap between a pre-shaped cathode tool and an anode workpiece.
- The workpiece is dissolved by an electrochemical reaction to the shape of the tool.
- The electrolyte flows at high speed (10-60 m/s) through the gap (0.1-0.6 mm) to dissipate heat and wash away the dissolved metal ions.
- Metal ions are washed just before they have a chance to plate on the tool (cathode)

Faraday's laws of electrolysis

- Material removal rate by Faraday's laws of electrolysis
 - "The mass of a substance altered at an electrode during electrolysis is directly proportional to the quantity of electrical charge transferred at that electrode."
 - For a given charge, material removed depends upon the chemical equivalent weight of that material

$$H_2O \rightarrow H^+ + OH^-$$

NaCl $\rightarrow Na^+ + Cl^-$

At the anode: Fe \rightarrow Fe⁺⁺+2e At the cathode2H₂O+2e \rightarrow H₂+2 (OH)⁻ Fe+2H₂O \rightarrow Fe (OH)₂+H₂ $4\text{Fe}(\text{OH})_2+2\text{H}_2\text{O}+\text{O}_2 \rightarrow 4\text{Fe}(\text{OH})_3$ 9/29/2022

Faraday's laws of electrolysis

- Material removal rate is determined by Faraday's laws of electrolysis
 - Amount of material removed = m
 - Current passed through the electrolyte = I
 - Chemical gram equivalent weight = $Z = \frac{A}{n}$
 - A atomic weight, n number of valence electrons
 - Electrochemical machining time = *t*
 - Faraday constant = F(96500 Coloumbs)
- Amount of material removed on the anode m = Z.I.t/F
- Some part of the supplied current also used in other reactions (hydrogen gas formation); therefore actual material removal is less than the theoretical value.
 - This ratio is denoted by current efficiency (η), which is 90-99%
- Volumetric material removal rate (V') will depend on the density (ρ) of the material

9/29/2022
$$V' = \eta \frac{m}{t \rho} = \eta \frac{ZI}{F \rho}$$

Removal Rate (1000 A and 100% Current Efficiency^a)

Sept MITTER BUSINESS
2/2002/5
4
Book south state

	Atomic		Density		Volume
Metal	Weight	Valence	(g/cm ³)	Mass (kg/h)	$(mm^3 \times 10^3/min)$
Aluminum	26.97	3	2.7	0.34	2.1
Beryllium	9.0	2	1.9	0.17	1.5
Copper	63.57	1	9.0	2.37	4.4
11		2		1.18	2.1
Chromium	51.99	2	7.19	0.97	2.3
		3		0.65	1.5
		6		0.32	0.78
Cobalt	58.93	2	8.85	1.1	2.1
		3		0.74	1.38
Iron	55.85	2	7.9	1.04	2.3
		3		0.69	1.5
Magnesium	24.31	2	1.7	0.45	4.4
Molybdenum	95.94	3	10.2	1.19	2.0
		4		0.89	1.5
		6	10.2	0.60	1.0
Nickel	58.71	2	8.9	1.09	2.1
		3		0.73	1.3
Niobium	92.91	3	8.6	1.16	2.3
		4		0.87	1.6
		5		0.69	1.3
Silicon	28.09	4	2.33	0.26	1.86
Tantalum		5	16.6	1.35	1.3
Tin	118.69	2	7.30	2.2	2.88
		4		1.1	2.52
Titanium	47.9	3	4.5	0.59	2.1
		4		0.45	1.6
Tungsten	183.85	6	19.3	1.14	1.0
		8		0.86	0.8
Zinc	65.37	2	7.13	1.22	2.88

9/29/2022

Gram equivalent weight of alloys

11

- For pure metal, material removed m can be find by Faraday's law
- How about alloys?
 - Lets say, there are several metals having $X_1\%$, $X_2\%$ $X_i\%$.
 - Their atomic weights $A_1, A_2....A_i$
 - No of electrons coming out $n_1, n_2, \dots n_i$
 - Their respective chemical equivalent weight $Z_1, Z_2, ..., Z_i$
 - Volumetric material removal rate per unit charge

$$V' = \frac{100}{\rho F} \left(\frac{1}{\sum x_i n_i / A_i} \right) cm^3$$

 ρ - Equivalent density of alloy

Gram equivalent weight of alloys

• Percentage of weight method:

– The sum of the chemical equivalents of each element (Z_i) in the alloy, multiplied by its respective proportion by weight (X_i) , gives a value for the chemical equivalent weight of the alloy (Z_{alloy})

$$- \ Z_{alloy} = \frac{1}{100} \sum Z_i \ \ ; \ Z_{alloy} = \frac{1}{100} \sum \left[X_1 \frac{A_1}{n_1} + X_2 \frac{A_2}{n_2} + \cdots \right]$$

• The total material removed (m) in time t, $m = \frac{Z_{alloy}It}{F}$

• Superposition of charge method:

- The electrical charge required by each element (qi) to dissolve their individual mass is equal to the total charge (q) required to dissolve 1g of the alloy
- If X_1 , X_2 , ... are the percentage composition of the material present in alloy then
- Charge q_1 required to remove material (X_1) : $q_1 = F \frac{X_1}{Z_1}$
- Charge q for removing 1g of alloy: $q = F \frac{100}{Z_{alloy}}$

$$- Z_{alloy} = \frac{100}{\sum X_1(n_{1/A_1}) + X_2(n_{2/A_2}) + \cdots}$$

9/29/2022

ME338 - Pradeep Dixit

13

Voltage drop between electrodes

- Some part of the applied electrical potential is used to overcome the overpotential near the electrode surface (typically <10%)
- Electrode potential (V),
- Over-potential (ΔV)
 - Activation polarization, concentration polarization, Ohmic overvoltage
- Net ohmic voltage $(V-\Delta V)$ is used in material removal

Dynamics of ECM – with no tool feeding

- m = Z.I.t/F
- If *A* is cross-sectional area, *p* is density of work-piece, *dh* is material removed in dt time
- A.p.dh = Z.I.dt/F (2)
- Amount of current passed through the electrode will depend upon the applied voltage (V), and inter-electrode gap (h). If specific resistivity of electrolyte is Ω ,

then
$$I = V/R = V.A/h.\Omega$$

.... (3)

Dynamics of ECM – with no tool feeding

In electrolysis:

$$A. p. dh = Z. V. A. dt/F. h. \Omega$$

$$h.dh = (Z.V/p.F.\Omega).dt$$

$$Z.V/p.F.\Omega$$
 is a constant = c

$$h.dh = c.dt \text{ OR } dh/dt = c/h$$

at
$$t = 0, h = h_i$$
, at $t = t, h = h_f$
 $h_f^2 - hi^2 = 2ct$

The interelectrode gap increases with time t

With constant feed:

- If feed f is provided then,
- Change in gap with time:

$$- dh/dt = c/h - f$$

Heat removal during ECM Process

- As the high current (I) passes through a resistive electrolyte (say resistance R) in the interelectrode, temperature of the electrolyte increases due to the Joules heating (I^2R)
 - Electrolyte starts boiling, which will affect the process
 - Resistance R will depend upon the conductivity of the electrolyte and the gap
- Cooling in the machining zone is provided by the electrolyte
 - Higher electrolyte flow rate (V'), higher cooling action
- Permissible temperature rise in the electrolyte should be below the boiling point of the electrolyte
- Heat input due to joules heating (I²R)= heat required to increase the temperature $[\rho V'C_{ele}(T_{boil}-Troom)]$

9/29/2022 ME338 – Pradeep Dixit

17

Parameters affecting MRR

Pros and Cons of ECM

• Pros:

- Excellent surface finish as material is removed atom by atom
- Little surface damage to the workpiece,
- No burrs as in conventional machining,
- Low tool wear (the only tool wear results from the flowing electrolyte),
- Relatively high metal removal rates for hard and difficult-to-machine metals like Inconel, high-nickel alloys, titanium

• Cons:

- Workpiece must be conductive
- Significant cost of electrical power to drive the operation,
- Problems of disposing of the electrolyte sludge

9/29/2022 ME338 – Pradeep Dixit

19

ECM related research @ IIT B

Microtool fabrication by controlled ECM

21

- Workpiece: conical & Cylindrical needle
- Electrolyte: 5% NaCl (%weight)
- Continuous DC
- Immersion depth: 10 mm

Tool electrodes at varying ECM parameter

Fabricated tool electrodes

23

9/29/2022 ME338 – Pradeep Dixit

Use of fabricated tool electrodes in ECDM

