Alberto Quaini

Exercise 3

 $D:V\to V$ can be represented in matrix form as

$$\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

which is upper triangular with all diagonal elements zero. Thus, all eigenvalues are 0, with algebraic multiplicity 3. However, if x is an eigenvector of D corresponding to $\lambda = 0$, then Dx = 0. Given the form of D we conclude that $x_2 = x_3 = 0$ and so the eigenspace of $\lambda = 0$ is span{1}. Therefore, $\lambda = 0$ has geometric multiplicity 1.

Exercise 4

(i) Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

Since A is hermitian, we know that $a = \bar{a}$, $d = \bar{d}$ and $b = \bar{c}$. Then

$$\det A = ad - cb = ad - c\overline{c} = ad - ||c||^2 =$$

$$\overline{a}\overline{d} - ||c||^2 = \overline{ad - ||c||^2} = \overline{\det A}$$

and

$$\operatorname{Tr}(A) = a + d = \overline{a} + \overline{d} = \overline{\operatorname{Tr}(A)}.$$

Thus both the determinant and the trace of A are real. Notice that usign Exercise 3 we have

$$\lambda_{1,2} = \frac{(a+d) \pm \sqrt{(a+d)^2 - 4(ad-||c||^2)}}{2}$$

and the discriminant becomes $(a - d)^2 + 4||c||^2$, which is real and nonnegative, therefore A has only real eigenvalues.

(ii) If A is skew-symmetric, then $a = -\bar{a}$ and $d = -\bar{d}$, so they are imaginary, and $b = -\bar{c}$. Thus $bc = -||c||^2$, and

$$\lambda_{1,2} = \frac{(a+d) \pm \sqrt{(a-d)^2 - 4||c||^2}}{2}.$$

Let $a = \alpha i$ and $d = \beta i$. Then $(a - d)^2 = i^2(\alpha - \beta)^2$ is clearly negative. Therefore the discriminant is negative and the eigenvalues are all imaginary.

1

Let $R \in \mathbb{M}_n(\mathbb{F})$ be an upper-triangular matrix with diagonal entries r_{ii} . Then $\lambda I - R$ is also upper-triangular and so $\det R = \prod_{i=1}^n (\lambda_i - r_{ii})$. Since r_{ii} are the roots of the characteristic polynomials, $\lambda_i = r_{ii}$.

Exercise 8

- (i) We know that V is the span of S. If the vectors in S are linearly independent, then S is a basis for V. From Problem Set 2 we noticed that the vectors in S are orthonormal under the inner product $\langle a,b \rangle := \frac{1}{\pi} \int_{-\pi}^{\pi} a(x)b(x)dx$. Therefore they are independent and are thus a basis of V.
- (ii) Since $d\sin(x)/dx = \cos(x)$, $d\cos(x)/dx = -\sin(x)$, $d\sin(2x)/dx = 2\cos(2x)$ and $d\cos(2x)/dx = -2\sin(2x)$, we have that

$$D = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -2 & 0 \end{bmatrix}.$$

(iii) Two complementary D-invariant subspaces are span $\{\sin(x),\cos(x)\}\$ and span $\{\sin(2x),\cos(2x)\}\$.

Exercise 13

Since $\det(\lambda I - A) = \lambda^2 - 1.4\lambda + 0.4$, the eigenvalues are 1 and 0.4, with corresponding eigenvectors (2, 1), and (1, -1). Therefore

$$P = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}.$$

Exercise 15

A is semisimple, thus there exist matrices Λ and P such that $A = P\Lambda P^{-1}$. Then

$$f(A) = a_0 P P^{-1} + a_1 P \Lambda P^{-1} + \ldots + a_n P \Lambda^n P^{-1} = P f(\Lambda) P^{-1},$$

where $f(\Lambda)$ is diagonal with elements $(f(\lambda_i))_{i=1}^n$. Since f(A) is similar to $f(\Lambda)$, they have the same eigenvalues.

Exercise 16

(i) By Proposition 4.3.10,

$$A^k = \frac{1}{3} \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0.4^k \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}.$$

Consider the matrix

$$B = \frac{1}{3} \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}.$$

Their difference is

$$A^{k} - B = \frac{1}{3} \begin{bmatrix} 0.4^{k} & -2 \times 0.4^{k} \\ -0.4^{k} & 2 \times 0.4^{k} \end{bmatrix},$$

and its 1-norm is $4/3 \times 0.4^k$, which converges to 0.

(ii) The ∞ -norm of $A^k - B$ is 0.4^k , whereas the Frobenius norm is

$$\sqrt{\operatorname{tr}\left(\left(A^{k}-B\right)^{T}\left(A^{k}-B\right)\right)} = \sqrt{10 \times 0.4^{2k}}$$

and both of them converge to zero.

(iii) By theorem 4.3.12, the eigenvalues of $3I + 5A + A^3$ are given by $f(\lambda_i) = 3 + 5\lambda_i + \lambda_i^3$, where λ_i 's are the eigenvalues of A. So the eigenvalues are f(1) = 9 and f(0.4) = 5.064.

Exercise 18

Let λ be an eigenvalue of A, then it is also an eigenvalue of A^T . Then there exists a nonzero vector x such that $A^Tx = \lambda x$. Transposing both the RHS and the LHS we get the desired result.

Exercise 20

Since A is orthonormally similar to B, we know that there exists an orthonormal P such that $B = PAP^{H}$. Since A is hermitian,

$$B^H = (PAP^H)^H = PA^H P^H = PAP^H = B.$$

Exercise 24

First notice that the denominator is real nonnegative. Also, notice that if A is hermitian, then

$$x^H A x = x^H A^H x = (x^H A x)^H = \overline{x^H A x}.$$

Thus $\langle x, Ax \rangle = \overline{\langle x, Ax \rangle}$, and so it is real. On the other hand, if A is skew-hermitian, then

$$x^H A x = -x^H A^H x = -(x^H A x)^H = -\overline{x^H A x}.$$

Thus $\langle x, Ax \rangle = -\overline{\langle x, Ax \rangle}$, and is therefore imaginary.

(i) Take an arbitrary vector x in \mathbb{C}^n , then there exist coefficients a_i 's such that $x = \sum_i a_i x_i$, since $\{x_i\}_i$ is a basis. Then

$$\left(\sum_{j} x_{j} x_{j}^{H}\right) \sum_{i} a_{i} x_{i} = \sum_{j} x_{j} x_{j}^{H} a_{j} x_{j} + \sum_{j} \sum_{i \neq j} x_{j} x_{j}^{H} a_{i} x_{i} = \sum_{j} a_{j} x_{j}$$

because $x_j^H x_j = 1$ for any j and $x_j^H x_i = 0$ for any $i \neq j$. Thus $(\sum_j x_j x_j^H) x = x$ for any x in \mathbb{C}^n . It must then be that $\sum_j x_j x_j^H = I$.

(ii) Notice that

$$Ax = \sum_{j} Aa_{j}x_{j} = \sum_{j} a_{j}\lambda_{j}x_{j}$$

and

$$\left(\sum_{j} \lambda_{j} x_{j} x_{j}^{H}\right) \left(\sum_{i} a_{i} x_{i}\right) = \sum_{j} \lambda_{j} x_{j} x_{j}^{H} a_{j} x_{j} + \sum_{j} \sum_{i \neq j} \lambda_{j} x_{j} x_{j}^{H} a_{i} x_{i} = \sum_{j} a_{j} \lambda_{j} x_{j},$$

shows that $A = \sum_{j} \lambda_{j} x_{j} x_{j}^{H}$.

Exercise 27

Since A is positive definite, it is hermitian, hence its diagonal elements are reals. Also, let e_i denote i^{th} standard basis vector of \mathbb{F}^n . Then we have that, for any i:

$$a_{ii} = e_i^H A e_i = \langle e_i, A e_i \rangle > 0.$$

Exercise 28

By proposition 4.5.7, There exist matrices S_A and S_B such that $A = S_A^H A_A$ and $B = S_B^H S_B$. Then

$$\mathrm{Tr}(AB) = \mathrm{Tr}(S_A^H S_A S_B^H S_B) = \mathrm{Tr}(S_B S_A^H S_A S_B^H) = \mathrm{Tr}((S_A S_B^H)^H S_A S_B^H) = ||S_A S_B^H||_F^2 \geq 0.$$

By Proposition 4.5.6 $A = Q_A D_A Q_A^H$ and $B = Q_B D_B Q_D^H$, where Q_A and Q_B are orthonormal and D_A , D_B are diagonal matrices containing the eigenvalues of A and B respectively. Since the trace is invariant under orthonormal transformations we have

$$\operatorname{Tr}(AB) = \operatorname{Tr}(D_A D_B) = \sum_i \lambda_i^A \lambda_i^B \le \left(\sum_i \lambda_i^A\right) \left(\sum_i \lambda_i^B\right) = \operatorname{Tr}(A)\operatorname{Tr}(B),$$

which concludes the proof.

(i) Let $B = A^H A$, then B is hermitian. Then by Corollary 4.4.8 B has an orthonormal eigenbasis, say $\{b_i\}_{i=1}^n$, which spans \mathbb{F}^n , and real eigenvalues $\{\sigma_i\}_{i=1}^n$. Take an arbitrary $x \in \mathbb{F}^n$ and real $(a_i)_{i=1}^n$ such that $x = \sum_i a_i b_i$. We have

$$||x||_2 = \langle \sum_i a_i b_i, \sum_i a_i b_i \rangle^{1/2} = \sqrt{\sum_i a_i^2}$$

since the b_i 's are orthonormal. Also

$$Bx = B\left(\sum_{i} a_{i}b_{i}\right) = \sum_{i} a_{i}\sigma_{i}b_{i}.$$

Let σ_1 be the largest eigenvalue of B. Then

$$\begin{split} ||Ax|| &= \langle Ax, Ax \rangle = \langle x, A^H Ax \rangle = \langle x, Bx \rangle = \\ &< \sum_i a_i b_i, \sum_i \sigma_i a_i b_i \rangle = \sqrt{\sum_i a_i \sigma_i \bar{a}_i} \leq ||x|| \max_i \sqrt{|\sigma_i|}. \end{split}$$

So $||A|| = \sup\{||Ax|| : ||x|| = 1\} \le \max_i \sqrt{|\sigma_i|}$.

If we pick $x = b_1$, then

$$||A|| \ge \langle b_1, Bb_1 \rangle = \langle b_1, \sigma_1 b_1 \rangle = \sqrt{|\sigma_1|},$$

which proves the result.

- (ii) Let $A = U\Sigma V^H$ be the singular value decomposition of A. Then, $A^{-1} = (V^H)^{-1}\Sigma^{-1}U^{-1}$. This is also a singular value decomposition, since $(V^H)^{-1} = V$ and $U^{-1} = U^H$, because U and V are orthonormal matrices, and Σ^{-1} is diagonal. The largest singular value of Σ^{-1} is $\frac{1}{\sigma_n}$, where σ_n is the smallest one of A. Therefore, by (i) we have that $||A^{-1}||_2 = \sigma_n^{-1}$.
- (iii) Let $A = U\Sigma V^H$. Then,

$$A^H = V \Sigma^H U^H A^T = \overline{V} \Sigma U^T A^H A = (V \Sigma^H U^H) (U \Sigma V^H) = V (\Sigma^H \Sigma) V^H$$

All of these are singular value decompositions. Now, consider the singular values of each of these decompositions (where $\Sigma^H = \Sigma$ because singular values are reals). Thus, A^H, A^T and A all have the same singular values. So by (i) we have that $\|A^H\|_2^2 = \|A^T\|_2^2 = \|A\|_2^2 = \sigma_1^2$. Also, notice that the diagonal elements of $(\Sigma^H \Sigma)$ are the singular values squared. We conclude that $\|A^HA\|_2 = \sigma_1^2$.

Exercise 36

-I has both eigenvalues -1 and both singular values 1.

I will prove (1) and (5), the other proofs follow a similar logic.

(1)

Let $A = U_1 \Sigma_1 V_1^H$ be the compact SVD of A. The Moore-Penrose pseudoinverse of A is $A^{\dagger} = V_1 \Sigma_1^{-1} U_1^H$. Notice that,

$$\begin{split} AA^{\dagger}A &= (U_1\Sigma_1V_1^H)(V_1\Sigma_1^{-1}U_1^H)(U_1\Sigma_1V_1^H) = U_1\Sigma_1(V_1^HV_1)\Sigma_1^{-1}(U_1^HU_1)\Sigma_1V_1^H \\ &= U_1\Sigma_1\Sigma_1^{-1}\Sigma_1V_1^H = U_1\Sigma_1V_1^H = A \end{split}$$

Therefore, $AA^{\dagger}A = A$.

(5)

First, notice that by (1), $AA^{\dagger}AA^{\dagger} = AA^{\dagger}$, so that AA^{\dagger} is idempotent. Then, notice that $AA^{\dagger} = U_1U_1^H$ where U_1 is an orthonormal basis for the range of A. Let u_i denote the m- dimensional i^{th} column of U_1 . Then

$$U_1 U_1^H x = U_1 (u_1^H x, \dots, u_r^H x)^T = \sum_i u_i u_i^H x = \sum_i u_i^H x u_i = \sum_i \langle u_i, x \rangle u_i,$$

which is the projection of x on the range of A.