1.	Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000 dimensional, so as to capture the full range of variation and meaning in those words.					
	False					
	O True					
	✓ Correct The dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors range between 50 and 400.					
2.	What is t-SNE?	1 / 1 point				
	A linear transformation that allows us to solve analogies on word vectors					
	A supervised learning algorithm for learning word embeddings					
	An open-source sequence modeling library					
	A non-linear dimensionality reduction technique					
	✓ Correct Yes					
3.		1 / 1 point				

Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

- True
- False

✓ Correct

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic" would contain a positive/happy connotation which will probably make your model classify the sentence as a "1".

4. Which of these equations do you think should hold for a good word embedding? (Check all that apply)

$$lap{ } e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$$

Correct Yes!

- $\square \ e_{boy} e_{brother} pprox e_{sister} e_{girl}$
- $lacksquare e_{boy} e_{brother} pprox e_{girl} e_{sister}$
 - ✓ Correct Yes!
- $\square \ e_{boy} e_{girl} pprox e_{sister} e_{brother}$
- 5. Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E*o_{1234}$ in Python?
 - None of the above: calling the Python snippet as described above is fine.
 - It is computationally wasteful.
 - This doesn't handle unknown words (<UNK>).
 - \bigcirc The correct formula is $E^T * o_{1234}$.
 - ✓ Correct

Yes, the element-wise multiplication will be extremely inefficient.

6. When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important byproduct of this task is that we learn a useful set of word embeddings.

- True
- False

- 7. In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and t chosen from the training set? Pick the best answer.
 - \bigcirc *c* is the one word that comes immediately before *t*.
 - \bigcirc c is a sequence of several words immediately before t.
 - \bigcirc c is the sequence of all the words in the sentence before t.
 - lacktriangle c and t are chosen to be nearby words.
 - ✓ Correct
- 8. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model uses the following softmax function:

1 / 1 point

$$P(t \mid c) = rac{e^{ heta_t^T e_c}}{\sum_{t'=1}^{10000} e^{ heta_t^T e_c}}$$

Which of these statements are correct? Check all that apply.

 $m{\phi}_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.

Correct

- lacksquare $heta_t$ and e_c are both 500 dimensional vectors.

- $\hfill \Box$ After training, we should expect θ_t to be very close to e_c when t and c are the same word.
- 9. Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (heta_i^T e_j + b_i + b_j' - log X_{ij})^2$$

Which of these statements are correct? Check all that apply.

lacksquare $heta_i$ and e_i should be initialized randomly at the beginning of training.

 $lacksquare X_{ij}$ is the number of times word j appears in the context of word i.

✓ Correct

lacksquare The weighting function f(.) must satisfy f(0)=0.

Correct

The weighting function helps prevent learning only from extremely common word pairs. It is not necessary that it satisfies this function.

П	$ heta_i$ and e_i	; should be	initialized t	o 0 at the	beginning	of training
_	v_i	,		0 0 0 0 0 0 0	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0

10. You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstances would you expect the word embeddings to be helpful?

1 / 1 point

- $m_1 >> m_2$
- $\bigcap m_1 \ll m_2$
 - Correct