SELF-NORMALIZING NEURAL NETWORKS

HURDLES WHEN TRAINING A NEURAL NETWORK

CHRISTOPH LANGE

JANUARY 12, 2021

1 Backpropagation

2 Issues during the Training Process

3 Self-normalizing Neural Networks (SNNs)

TRAINING A NEURAL NETWORK

The paper Self-Normalizing Neural Networks focuses on Fully Connected Neural Networks. one layer:

- y(x) = f(Wx + b) represents one layer
 - $ightharpoonup x \in \mathbb{R}^n$ activations current layer
 - $ightharpoonup y \in \mathbb{R}^m$ activations next layer
 - $\bigvee W \in \mathbb{R}^{m \times n}$
 - ▶ $b \in \mathbb{R}^m$ the bias vector, assume b = 0 for simplicity
 - ▶ $f \in C^{o}$ continous non-linear function
- want to learn W for each layer

Figure: A fully connected neural network (picture from here)

For one layer we have:

$$y(x) = f(z(x)) z(x) = Wx (1)$$

Derivatives with respect to the parameters W and the activations x:

$$\frac{dy}{dW} = \frac{dy}{dz} \cdot \frac{dz}{dW} = f'(z(x)) \cdot \frac{dz}{dW} = f'(Wx) \cdot x^{T}$$
 (2)

$$\frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx} = f'(z(x)) \cdot \frac{dz}{dx} = f'(Wx) \cdot W$$
 (3)

For two layers we assume they have the same activation function f:

$$y^{(1)}(x) = f(z^{(1)}(x))$$
 $z^{(1)}(x) = W^{(1)}x$ (4)

$$y^{(2)}(x) = f(z^{(2)}(x))$$
 $z^{(2)}(x) = W^{(2)}x^{(2)} = W^{(2)}y^{(1)}$ (5)

The derivatives within one layer are the same:

$$\frac{dy^{(i)}}{dW^{(i)}} = f'(W^{(i)}x^{(i)}) \cdot x^{(i)T} \qquad \frac{dy^{(i)}}{dx^{(i)}} = f'(W^{(i)}x^{(i)}) \cdot W^{(i)}$$
(6)

Across two layers we get:

$$\frac{dy^{(2)}}{dW^{(1)}} = \frac{dy^{(2)}}{dy^{(1)}} \cdot \frac{dy^{(1)}}{dW^{(1)}} = \frac{dy^{(2)}}{dx^{(2)}} \cdot \frac{dy^{(1)}}{dW^{(1)}}$$
(7)

$$\frac{dy^{(2)}}{dx^{(1)}} = \frac{dy^{(2)}}{dy^{(1)}} \cdot \frac{dy^{(1)}}{dx^{(1)}} = \frac{dy^{(2)}}{dx^{(2)}} \cdot \frac{dy^{(1)}}{dx^{(1)}}$$
(8)

Derivative across N layers is:

$$\frac{dy^{(N)}}{dW^{(1)}} = \frac{dy^{(N)}}{dx^{(N)}} \cdot \dots \cdot \frac{dy^{(2)}}{dx^{(2)}} \cdot \frac{dy^{(1)}}{dW^{(1)}}$$
(9)

Why is it called Backpropagation?

$$\frac{dy^{(N)}}{dW^{(2)}} = \underbrace{\frac{dy^{(N)}}{dx^{(N)}} \cdot \dots \cdot \frac{dy^{(3)}}{dx^{(3)}}}_{=:u^{(2)}} \cdot \frac{dy^{(2)}}{dW^{(2)}} = u^{(2)} \cdot \frac{dy^{(2)}}{dW^{(2)}}$$
(10)

From the perspective of layer 2, $u^{(2)}$ is the derivative that comes from up front. And the components are travelling backwards.

ISSUES DURING THE TRAINING PROCESS

PROBLEM SETUP

This is the Fashion MNIST dataset

- contains of 70000 cloth items
- one picture and one label per item, i.e. "Dress", "Sneaker", "Coat"
- each picture is gray-scaled and 28 x 28 pixels
- example use case for now
- similar to classifying bacteria
- complex problem needs a more complex deeper network

EXAMPLE

Let's oversimplify:

- each layer consists of one neuron
- the derivative of each layer is $\frac{dy^{(i)}}{dx^{(i)}} = c$ constant
- \blacksquare we have N=10 layers

What happens to the derivative of the first layer parameters $W^{(1)}$?

$$\frac{dy^{(10)}}{dW^{(1)}} = \frac{dy^{(10)}}{dx^{(10)}} \cdot \dots \cdot \frac{dy^{(2)}}{dx^{(2)}} \cdot \frac{dy^{(1)}}{dW^{(1)}}$$
$$= c \cdot \dots \cdot c \cdot \frac{dy^{(1)}}{dW^{(1)}}$$

VANISHING / EXPLODING GRADIENT PROBLEM

$$\frac{dy^{(N)}}{dW^{(1)}} = c^{N-1} \cdot \frac{dy^{(1)}}{dW^{(1)}}$$

For a huge number of layers N:

- \blacksquare $\frac{dy^{(N)}}{dW^{(1)}}$ get really big for c > 1
- for $c \approx$ 1 the derivative $\frac{dy^{(N)}}{dW^{(1)}} \approx \frac{dy^{(1)}}{dW^{(1)}}$
- when c < 1 the gradient vanishes $\frac{dy^{(N)}}{dW^{(1)}} \approx 0$

For more general cases of multiplying the Jacobians

$$\frac{dy^{(N)}}{dW^{(1)}} = \frac{dy^{(N)}}{dx^{(N)}} \cdot \ldots \cdot \frac{dy^{(2)}}{dx^{(2)}} \cdot \frac{dy^{(1)}}{dW^{(1)}}$$

the largest eigenvalues determine the convergence behavior.

SETUP

Let us look at one layer:

- y(x) = f(Wx)
- $\mathbf{x} \in \mathbb{R}^n$ activations current layer
- $y \in \mathbb{R}^m$ activations next layer
- $\mathbf{W} \in \mathbb{R}^{m \times n}$
- lacksquare $f \in C^{o}$ continous non-linear function

- lacktriangle mean of the activations $\mu = \mathbb{E}(x_i)$
- variance of the activations $\nu = \text{Var}(x_i)$
- \blacksquare let w^i be the i-th row of W
- the mean of the i-th row weights is $\omega^i := \sum_j w_{ij}$
- **accordingly the second moment** $\tau^i := \sum_j w_{ij}^2$

DEFINITION SNN

How do mean μ and variance ν of the activations change to the next layer?

$$\begin{pmatrix} \mu \\ \nu \end{pmatrix} \mapsto \begin{pmatrix} \tilde{\mu} \\ \tilde{\nu} \end{pmatrix} = g \begin{pmatrix} \mu \\ \nu \end{pmatrix}$$

Definition

A neural network is called **self-normalizing** if there is a domain $\Omega = \{(\mu, \nu) \in \mathbb{R} \mid \mu \in [\mu_{\min}, \mu_{\max}], \nu \in [\nu_{\min}, \nu_{\max}] \}$ and a mapping $g: \Omega \to \Omega$ such that

- $g(\Omega) \subset \Omega$ is a contraction
- lacksquare g has a stable and attracting fixpoint $(\mu^*, \nu^*) \in \Omega$

SELF-NORMALIZING MAP

Figure: Assuming the weight of each row w^i to be normalized ($\omega=0, \tau=1$), we observe an attracting fixpoint ($\mu^*=0, \nu^*=1$). We need to pick the activation function accordingly.

CONSTRUCTING A SELF-NORMALIZING NEURAL NETWORK

The key component to a SNN is to pick the activation function f(x) to be

$$selu(x) = \lambda \begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$
 (11)

a **scaled exponential linear unit** Assuming

- lacktriangle normalized weights: $\omega = 0, au = 1$
- z(x) to be normally distributed specifies $\alpha \approx 1.6733$ and $\lambda \approx 1.0507$.

WHY DOES THAT HELP?

- supports deeper fully connected neural networks
- lacktriangle matches a weight initialization of $\omega=$ 0 and $\tau=$ 1 very well
- automatically normalizes the activations of each layer
 - ▶ $y^{(n)} \circ y^{(n-1)} \circ ... \circ y^{(1)}(x^{(1)})$ with normalized input features $x^{(1)}$
 - $\bigvee y^{(n)} \circ y^{(n-1)} \circ \ldots \circ y^{(k)}(x^{(k)})$ with normalized activations $x^{(k)}$
- prevents the gradient from exploding
 - derivative of selu(x) is highly bounded
 - lacktriangle extreme activations are damped by the convergence to $(\mu, \nu) = (0, 1)$
- guarantees non vanishing gradients

THANK YOU QUESTIONS?

LINK TO SLIDES

REFERENCES

GÜNTER KLAMBAUER, THOMAS UNTERTHINER, ANDREAS MAYR, AND SEPP HOCHREITER. **SELF-NORMALIZING NEURAL NETWORKS, 2017.**