

# **Dimensionality reduction**

- Dimensionality reduction is the process of reducing the number of features of a dataset.
- Types: Feature selection, Feature extraction.
- Feature selection: Selects a subset of features.
  - Removes irrelevant features from the dataset.
- Feature extraction: Selects a few combinations of input features that capture most of the variations of the data.
  - Creates new features (through transformation) using existing ones.

### Introduction to PCA

- Widely used method for dimensionality reduction.
- Original dataset large number of interrelated input variables.
- Consider dataset:  $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ...., \mathbf{x}^{(N)}\}\$ , where  $\mathbf{x}^{(n)}$  is a D dimensional variable.
- Goal: Represent the data in a lower dimension Q (< D).
  - Transform the data to a new uncorrelated set of variables the principal components.
  - Extraction of the most informative Q linear combinations which explains the data.
  - This is the projection of the data in D dimensions onto a lower-dimensional subspace.
- Orthogonal projection of data onto a lower dimensional (linear) space, such that the variance of the projected data is maximized.

### **Principal Component Analysis**

# **Principal components**



- PC1: Direction of most variation
- PC2: Direction of second most variation orthogonal to PC1

### **Dataset**

• Consider dataset:  $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ...., \mathbf{x}^{(N)}\}$ , where  $\mathbf{x}^{(n)}$  is a D dimensional variable.

$$\mathbf{X} = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & \cdot & \cdot & x_1^{(N)} \\ x_1^{(1)} & x_1^{(2)} & \cdot & \cdot & x_1^{(N)} \\ x_2^{(1)} & x_2^{(2)} & \cdot & \cdot & x_2^{(N)} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ x_D^{(1)} & \cdot & \cdot & \cdot & x_D^{(N)} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \cdot \\ \cdot \\ \mathbf{x}_D \end{bmatrix}$$

• Want a lower-dimensional (Q < D) representation of the data:

$$\mathbf{Z} = \left[ egin{array}{cccc} z_1^{(1)} & z_1^{(2)} & \cdot & \cdot & z_1^{(N)} \ \cdot & \cdot & \cdot & \cdot & \cdot \ z_Q^{(1)} & \cdot & \cdot & \cdot & z_Q^{(N)} \end{array} 
ight]$$

# **Variance**

- Consider a vector  $\mathbf{x} = [x_1, x_2, ...., x_N]$  having a mean value of 0.
- $\bullet$  The variance of the vector  $\mathbf{x}$  can be computed as

$$\sigma_{\mathbf{x}}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - 0)(x_i - 0)$$
$$= \frac{1}{N-1} \mathbf{x} \mathbf{x}^{\mathrm{T}}$$

# **Covariance**

- Now consider two vectors:  $\mathbf{x} = [x_1, x_2, ...., x_N]$  and  $\mathbf{z} = [z_1, z_2, ...., z_N]$ , both having mean 0.
- $\bullet$  The covariance between vectors **x** and **z** can be computed as

$$\sigma_{\mathbf{x}\mathbf{z}}^2 = \frac{1}{N-1}\mathbf{x}\mathbf{z}^{\mathrm{T}}$$

- Covariance measures the correlation between variables.
- If  $\sigma_{\mathbf{x}\mathbf{z}}^2 \approx 0$  then  $\mathbf{x}$  and  $\mathbf{z}$  are almost uncorrelated.

### **Covariance matrix**

- Assume data is centered.
- The covariance matrix **S** can be obtained as:

$$\mathbf{S} = \frac{1}{N-1} \mathbf{X} \mathbf{X}^{\mathrm{T}}.$$

• Can write the covariance matrix as

$$\mathbf{S} = \begin{bmatrix} \sigma_{\mathbf{x}_1}^2 & \sigma_{\mathbf{x}_1 \mathbf{x}_2}^2 & \cdot & \cdot & \sigma_{\mathbf{x}_1 \mathbf{x}_D}^2 \\ \sigma_{\mathbf{x}_2 \mathbf{x}_1}^2 & \sigma_{\mathbf{x}_2}^2 & \cdot & \cdot & \sigma_{\mathbf{x}_1 \mathbf{x}_D}^2 \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \sigma_{\mathbf{x}_D \mathbf{x}_1}^2 & \cdot & \cdot & \cdot & \sigma_{\mathbf{x}_D}^2 \end{bmatrix}$$

- The *i*-th diagonal term corresponds to the variance in the *i*-th dimension of the problem.
- The off-diagonal terms are the covariances.
- Small off-diagonal term indicates that the variables are almost uncorrelated.
- S is symmetric.

### **Principal Component Analysis**

# **Covariance matrix**

• Want to transform the covariance matrix S to  $S_Z$  that has the following form:

$$\mathbf{S}_{\mathbf{Z}} = \begin{bmatrix} \sigma_{\mathbf{Z}_{1}}^{2} & 0 & \cdot & \cdot & 0 \\ 0 & \sigma_{\mathbf{Z}_{2}}^{2} & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot & \cdot & \sigma_{\mathbf{Z}_{D}}^{2} \end{bmatrix}$$

- $\bullet$  The transformed matrix  $S_{\mathbf{Z}}$  has no correlation between the different dimensions.
- Can order the variances such that:  $\sigma_{\mathbf{Z}_1}^2 \geq \sigma_{\mathbf{Z}_2}^2 \geq \dots \geq \sigma_{\mathbf{Z}_D}^2$ .
- So  $\sigma_{\mathbf{Z}_1}^2$  is the largest variance, and the dimension corresponding to it is known as the first principal component.
- Similarly  $\sigma_{\mathbf{Z}_2}^2$  is the variance of the second principal component.

# **Eigenvalue decomposition**

• Eigenvalue decomposition of the covariance matrix **S**:

$$\mathbf{S} = \mathbf{V}\Lambda\mathbf{V}^{-1}$$

where  $\Lambda$  is a diagonal matrix,  $\mathbf{V}$  is a matrix of eigenvectors of  $\mathbf{S}$  with columns corresponding to right eigenvectors of  $\mathbf{S}$ .

- The diagonal elements of  $\Lambda$  are the eigenvalues of  ${\bf S}$  for the corresponding eigenvectors.
- Since **S** is symmetric, the eigenvalues are real and the eigenvectors are orthogonal to each other.
- The eigenvectors can be made orthonormal by taking  $\mathbf{V}\mathbf{V}^{\mathrm{T}} = \mathbf{I}$ .

### Linear transformation

• Consider the following linear transformation of the original data **X** into **Z**:

$$\mathbf{Z} = \mathbf{V}^{\mathrm{T}} \mathbf{X}$$



### Linear transformation

• Consider the following linear transformation of the original data **X** into **Z**:

$$\mathbf{Z} = \mathbf{V}^{\mathrm{T}} \mathbf{X}$$

• Consider a 2D example where the transformation is applied to a single data point  $\mathbf{x}^{(1)}$ 





### Linear transformation

• Consider the following linear transformation of the original data **X** into **Z**:

$$\mathbf{Z} = \mathbf{V}^{\mathrm{T}} \mathbf{X}$$

• The covariance of **Z** can be obtained as:

$$\mathbf{S}_{\mathbf{Z}} = \frac{1}{N-1} \mathbf{Z} \mathbf{Z}^{\mathrm{T}}$$

$$= \frac{1}{N-1} (\mathbf{V}^{\mathrm{T}} \mathbf{X}) (\mathbf{V}^{\mathrm{T}} \mathbf{X})^{\mathrm{T}}$$

$$= \frac{1}{N-1} (\mathbf{V}^{\mathrm{T}} \mathbf{X}) (\mathbf{X}^{\mathrm{T}} \mathbf{V})$$

$$= \frac{1}{N-1} \mathbf{V}^{\mathrm{T}} (\mathbf{X} \mathbf{X}^{\mathrm{T}}) \mathbf{V}$$

$$= \mathbf{V}^{\mathrm{T}} \left( \frac{1}{N-1} \mathbf{X} \mathbf{X}^{\mathrm{T}} \right) \mathbf{V}$$

$$= \mathbf{V}^{\mathrm{T}} \mathbf{S} \mathbf{V}$$

### **Covariance matrix**

• Consider the following linear transformation of the original data **X** into **Z**:

$$\mathbf{Z} = \mathbf{V}^{\mathrm{T}} \mathbf{X}$$

• The covariance of **Z** can be obtained as:

$$\mathbf{S}_{\mathbf{Z}} = \mathbf{V}^{\mathrm{T}} \mathbf{V} \Lambda \mathbf{V}^{-1} \mathbf{V}$$

$$= (\mathbf{V}^{\mathrm{T}} \mathbf{V}) \Lambda (\mathbf{V}^{\mathrm{T}} \mathbf{V}) \qquad (\mathbf{V}^{-1} = \mathbf{V}^{\mathrm{T}} \text{ as } \mathbf{V} \mathbf{V}^{\mathrm{T}} = \mathbf{I} )$$

$$= \Lambda$$

• The covariance matrix  $S_{\mathbf{Z}}$  is diagonal as  $\Lambda$  is diagonal.

# Diagonal covariance matrix

• So we have

$$\mathbf{S}_{\mathbf{Z}} = \Lambda = \begin{bmatrix} \sigma_{\mathbf{Z}_{1}}^{2} & 0 & \cdot & \cdot & 0 \\ 0 & \sigma_{\mathbf{Z}_{2}}^{2} & \cdot & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot & \cdot & \sigma_{\mathbf{Z}_{D}}^{2} \end{bmatrix}$$

- $\bullet$  The diagonal terms of  $S_{\mathbf{Z}}$  correspond to variances along the dimensions of the transformed vector space.
- Note, the diagonal matrix  $\Lambda$  comprise the eigenvalues of S.
- The variances along the projected dimensions (eigenvectors of **S**) are the corresponding eigenvalues of **S**.

# METHOD of LAGRANGE MULTIPLIERS

# Method of Lagrange multipliers

• The first principal component can be written as linear combination of the original variables as

$$z_1 = v_{11}x_1 + v_{12}x_2 + \dots + v_{1D}x_D$$
  
=  $\mathbf{v}_1^{\mathrm{T}}\mathbf{x}$   
where  $\mathbf{v}_1^{\mathrm{T}} = [v_{11}, v_{21}, \dots, v_{1D}].$ 

• For the N given data points, the corresponding vector in the first dimension is given as

$$\mathbf{z}_1 = \mathbf{v}_1^{\mathrm{T}} \mathbf{X}.$$

• The variance in the first dimension is given as

$$var(\mathbf{z}_1) = var(\mathbf{v}_1^T \mathbf{X})$$

$$= \frac{1}{N-1} \mathbf{v}_1^T \mathbf{X} \mathbf{X}^T \mathbf{v}_1$$

$$= \mathbf{v}_1^T \mathbf{S} \mathbf{v}_1$$

and we want  $var(\mathbf{z}_1)$  to be maximized.

# 1<sup>st</sup> principal component

- Maximize the projected variance  $\mathbf{v}_1^T \mathbf{S} \mathbf{v}_1$  with respect to  $\mathbf{v}_1$  subject to normalization constraint:  $\mathbf{v}_1^T \mathbf{v}_1 = 1$ .
- Approach: Use the method of Lagrange multiplier to find the maximum of an objective function subject to a constraint.
- Consider the Lagrangian:  $\mathcal{L}_1 = \mathbf{v}_1^T \mathbf{S} \mathbf{v}_1 + \lambda_1 (1 \mathbf{v}_1^T \mathbf{v}_1)$ 
  - Objective:  $\max \mathcal{L}_1$ 
    - Differentiating  $\mathcal{L}_1$  with respect to  $\mathbf{v}_1$  and equating to 0:

$$\frac{\mathrm{d}\mathcal{L}_1}{\mathrm{d}\mathbf{v}_1} = \mathbf{S}\mathbf{v}_1 - \lambda_1\mathbf{v}_1 = 0$$

# 1<sup>st</sup> principal component

• Therefore we have

$$\mathbf{S}\mathbf{v}_1 = \lambda_1\mathbf{v}_1$$

- $-\lambda_1$  is an eigenvalue of **S**, and  $\mathbf{v}_1$  is the associated eigenvector.
- Multiplying both sides by  $\mathbf{v}_1^T$ , we have:

$$\mathbf{v}_1^T \mathbf{S} \mathbf{v}_1 = \lambda_1 \mathbf{v}_1^T \mathbf{v}_1$$
$$= \lambda_1$$

- Note that we want to maximize  $\mathbf{v}_1^T \mathbf{S} \mathbf{v}_1$ .
- Therefore  $\lambda_1$  is the largest eigenvalue of **S**. This is called the 1st principal component.

# 2<sup>nd</sup> principal component

• The second principal component too can be written as linear combination of the original variables as

$$z_2 = v_{21}x_1 + v_{22}x_2 + \dots + v_{2D}x_D$$
$$= \mathbf{v}_2^{\mathrm{T}}\mathbf{x}$$

where  $\mathbf{v}_2^{\mathrm{T}} = [v_{21}, v_{22}, ...., v_{2D}].$ 

 $\bullet$  The projection of the N data points in the second dimension can be given as

$$\mathbf{z}_2 = \mathbf{v}_2^{\mathrm{T}} \mathbf{X}.$$

• Want  $\mathbf{z}_2$  to be uncorrelated to  $\mathbf{z}_1$  i.e.

$$covariance(\mathbf{z}_1, \mathbf{z}_2) = 0$$

therefore we have

$$\frac{1}{N-1} \mathbf{v}_1^{\mathrm{T}} \mathbf{X} \mathbf{X}^{\mathrm{T}} \mathbf{v}_2 = 0 \quad \Leftrightarrow \quad \mathbf{v}_1^{\mathrm{T}} \left( \frac{1}{N-1} \mathbf{X} \mathbf{X}^{\mathrm{T}} \right) \mathbf{v}_2 = 0$$

$$\Rightarrow \mathbf{v}_1^{\mathrm{T}} \mathbf{S} \mathbf{v}_2 = 0 \Rightarrow \mathbf{v}_2^{\mathrm{T}} \mathbf{S} \mathbf{v}_1 = 0 \Rightarrow \mathbf{v}_2^{\mathrm{T}} \lambda_1 \mathbf{v}_1 = 0 \Rightarrow \lambda_1 \mathbf{v}_2^{\mathrm{T}} \mathbf{v}_1 = 0 \Rightarrow \mathbf{v}_2^{\mathrm{T}} \mathbf{v}_1 = 0$$

• Objective:  $\max \mathbf{v}_2^T \mathbf{S} \mathbf{v}_2$  such that  $\mathbf{v}_2^T \mathbf{v}_2 = 1$  and  $\mathbf{v}_2^T \mathbf{v}_1 = 0$ 

# 2<sup>nd</sup> principal component

• Construct the Lagrangian:

$$\mathcal{L}_2 = \mathbf{v}_2^T \mathbf{S} \mathbf{v}_2 + \lambda_2 (1 - \mathbf{v}_2^T \mathbf{v}_2) + \mu_1 (\mathbf{v}_2^T \mathbf{v}_1)$$

- Objective: max  $\mathcal{L}_2$ 
  - Differentiating  $\mathcal{L}_2$  with respect to  $\mathbf{v}_2$  and equating to 0:

$$\frac{\mathrm{d}\mathcal{L}_2}{\mathrm{d}\mathbf{v}_2} = 2\mathbf{S}\mathbf{v}_2 - 2\lambda_2\mathbf{v}_2 + \mu_1\mathbf{v}_1 = 0 \quad \dots$$

- Multiplying both sides by  $\mathbf{v}_1^T$ :

$$2\mathbf{v}_1^T \mathbf{S} \mathbf{v}_2 - 2\lambda_2 \mathbf{v}_1^T \mathbf{v}_2 + \mu_1 \mathbf{v}_1^T \mathbf{v}_1 = 0$$

- Using  $\mathbf{v}_1^T \mathbf{v}_1 = 1$ , and  $\mathbf{v}_1^T \mathbf{v}_2 = 0$  for max  $\mathcal{L}_2$ , we have

$$2\mathbf{v}_1^T \mathbf{S} \mathbf{v}_2 + \mu_1 = 0$$

# 2<sup>nd</sup> principal component

• Now we have

$$\mathbf{v}_1^T \mathbf{S} \mathbf{v}_2 = \mathbf{v}_2^T (\mathbf{S} \mathbf{v}_1) = \mathbf{v}_2^T (\lambda_1 \mathbf{v}_1) = \lambda_1 (\mathbf{v}_2^T \mathbf{v}_1) = 0,$$

and on substitution in gives

$$\mu_1 = 0.$$

• On substitution of  $\mu_1 = 0$  in  $\blacksquare$  yields

$$\mathbf{S}\mathbf{v}_2 = \lambda_2 \mathbf{v}_2.$$

- Therefore  $\lambda_2$  is another eigenvalue of **S**.
- Since we want to maximize  $\mathbf{v}_2^T \mathbf{S} \mathbf{v}_2$  ( $= \mathbf{v}_2^T \lambda_2 \mathbf{v}_2 = \lambda_2$ ) and also want  $\mathbf{v}_2$  to be uncorrelated to  $\mathbf{v}_1$ ,  $\lambda_2$  should be the second largest eigenvalue of  $\mathbf{S}$ .

# Percentage of variance

• The percentage of variance explained by the jth principal component:

$$PV_j = \frac{\lambda_j}{\sum_{i=1}^D \lambda_i} \times 100$$

• The percentage of variance accounted for by the first Q principal components is given by:

$$PV = \frac{\sum_{i=1}^{Q} \lambda_i}{\sum_{i=1}^{D} \lambda_i} \times 100$$