Learning Outcomes

At the end of the session, you will be able to:

- Install, write, and run R program using RStudio
- Explain the basic R syntax, variables, and mathematical operations

Activity

- 1. Using RStudio
 - 1.1. Step 1: Install R
 - Download the R installer from https://cran.r-project.org/

Note: Example of installer for Windows setting: https://cran.r-project.org/bin/windows/base/

- Run the installer. Default settings are fine. (Make sure this step is done before proceeding to the next step)
- 1.2. Step 2: Install RStudio
 - Download RStudio Desktop installer from https://www.rstudio.com/products/rstudio/download/
 - Once the installation of R (step 1) has completed successfully (and not before), run the RStudio Desktop installer.
- 1.3. Step 3: Check that R and RStudio are working
 - Open RStudio. It should open a window that looks similar to image below (View>Panes>Show all panes).

• Type '1+2' and hit enter. An output should appear. This means that R and RStudio are working.

Lab 1a-Introduction to RStudio and R, variables, and mathematical operations

- Differentiate the usage of R Script and R Console.
- 1.4. Step 4: Installation of R packages (Optional)
 - Click on tab Packages>Install or Tools>Install, type in the package you want to install.

- Or type in Console install.packages("<the package's name>") tab.
- To use the packages type in Console library("<the package's name>")
- Find out what are the common packages in R for Data Science.

2. Syntax, Variables and Operations

2.1. Simple R Code

Write and run the following in R Console:

```
2+3 print("Hello World!")
```

Write and run the following code in R Script named test.R:

```
# My first program in R Programming
myString <- "Hello, World!"
print (myString)</pre>
```

2.2. R Variables

• Write and run the following in R Console. Make your conclusion about the code:

```
var.1 = 5
var_1 = 7
x = 1
print(ls())
print(ls(pattern="var"))
```

2.3. Assignment Operations

Operator	Description
<-, <<-, =	Leftwards assignment
->, ->>	Rightwards assignment

 Using the different leftwards/rightwards assignment operator in table above and run the following in R Console. Make your conclusion about the code:

Variable	Value	R Syntax
Gender	Female	Gender<-"Female"
height	152	height<<-152

Lab 1a-Introduction to RStudio and R, variables, and mathematical operations

Weight	81	Weight=81
f	3	3 -> f
X	23.5	23.5->> x
b	0 1 2 3 4 5	b <- seq(from = 0, to = 5)
С	0 2 4 6 8 10	$c \leftarrow seq(from = 0, to = 10, by = 2)$
V	2L	V = 2L
W	2+5i	w <<-2+5i
a	48 65 6c 6c 6f	a<-charToRaw("Hello")

• You can always check the class of an object by calling the function class():

```
print(class(Gender))
print(class(height))
print(class(f))
print(class(x))
print(class(b))
print(class(v))
print(class(w))
```

2.4. Arithmetic Operations

Operator	Description
+	Addition
_	Subtraction
*	Multiplication
** or ^	Exponentiation
/	Division
%%	Modulus (Remainder from division)
%/%	Integer Division

• Using the arithmetic operators and reuse the variable assignment and run the following in R Console. Make your conclusion about the code:

```
print(f+3)
print(height-x)
print(Weight*2)
print(b**2)
print(c^5)
m = height/100
print(Weight/(m**2))
BMI = Weight/(m**2)
print(b%%2)
print(c%/%2)
```

2.5. User Input

• Write and run the following in R Script:

```
name <- readline(prompt="Enter name: ")
age <- readline(prompt="Enter age: ")
# convert character into numeric
age <- as.numeric(age)
print(paste("Hi,", name, "this year you are", age, "years old."))</pre>
```

TEB2164 Introduction to Data Science Lab 1a-Introduction to RStudio and R, variables, and mathematical operations

2.6. Extra

• Write and run the following in R Console. Make your conclusion about the code:

```
?paste
demo(graphics)
demo(image)
```