Considerações sobre o impacto do valor do desvio-padrão

nas amostras de distribuição lognormal

Luiz Fernando Palin Droubi

18 de outubro de 2018

1 INTRODUÇÃO

Segundo Limpert (LIMPERT et al., 2001, p. 346), distribuições lognormais de diversas ciências tem, em geral, valores de s^* variando de 1,1 a 33 (na escala natural, entre 0,095 e 3,497), sendo que o mais comum é que estes valores estejam entre 1,4 e 3 (0,336 $\leq s \leq$ 1,099).

Na Engenharia de Avaliações, temos:

• Hochheim (HOCHHEIM, 2015, p. 21): $s^* = 1,851$.

2 EXEMPLOS DE APLICAÇÃO

2.1 EXEMPLO 1

2.1.1 GERAÇÃO DE DADOS LOGNORMAIS COM $s^* = 1.1$

2.1.2 GRÁFICOS

2.2 EXEMPLO 2

2.2.1 GERAÇÃO DE DADOS LOGNORMAIS COM $s^* = 1,25$

2.2.2 GRÁFICOS

2.3 EXEMPLO 3

2.3.1 GERAÇÃO DE DADOS LOGNORMAIS COM $s^* = 1, 5$

2.3.2 GRÁFICOS

2.4 EXEMPLO 4

2.4.1 GERAÇÃO DE DADOS LOGNORMAIS COM $s^*=2$

2.4.2 GRÁFICOS

2.5 EXEMPLO 5

2.5.1 GERAÇÃO DE DADOS LOGNORMAIS COM $s^* = 3$

2.5.2 GRÁFICOS

2.6 MODELOS

2.7 ESTIMATIVAS

${\bf 2.7.1}\quad {\bf Usando\ o\ primeiro\ modelo}$

a. Moda

1

138.1358

b. Mediana

1

503.6085

c. Média

1

961.5823

Table 1:

	Dependent variable:				
	$\log(y)$ (1)	$\log(y1)$ (2)	$\log(y2)$ (3)	$\log(y3)$ (4)	$\log(y4)$ (5)
X	0.125***	0.125***	0.126***	0.123***	0.124***
	(0.001)	(0.002)	(0.002)	(0.002)	(0.004)
Constant	-0.041	-0.026	0.019	0.050	-0.015
	(0.084)	(0.098)	(0.116)	(0.148)	(0.217)
Observations	1,000	1,000	1,000	1,000	1,000
\mathbb{R}^2	0.891	0.859	0.814	0.720	0.548
Adjusted R^2	0.891	0.859	0.813	0.720	0.548
Residual Std. Error $(df = 998)$	1.137	1.318	1.568	1.991	2.922
F Statistic ($df = 1; 998$)	8,162.732***	6,078.971***	4,357.517***	2,565.384***	1,212.096**

Note:

*p<0.1; **p<0.05; ***p<0.01

2.7.2 Usando o segundo modelo

a. Moda

1 ## 90.00315

b. Mediana

1

510.8466

c. Média

1

1217.046

2.7.3 Usando o terceiro modelo

a. Moda

1

47.88896

b. Mediana

1

559.858

c. Média

1

1914.252

2.7.4 Usando o quarto modelo

- a. Moda
- ## 1
- ## 9.313405
 - b. Mediana
- ## 1
- ## 491.4793
 - c. Média
- ## :
- ## 3570.291

2.7.5 Usando o quinto modelo

- a. Moda
- ## 1
- ## 0.09514152
 - b. Mediana
- ## 1
- ## 485.3153
 - c. Média
- ## 1
- ## 34661.79

2.8 VISUALIZAÇÃO GRÁFICA

2.9 VALIDAÇÃO CRUZADA

2.9.1 Modelo 1

- ## [1] 155510.7
- ## [1] 138927.5
- ## [1] 133838.6

2.9.2 Modelo 2

- ## [1] 196681
- ## [1] 171146.3
- ## [1] 160454.8

2.9.3 Modelo 3

- ## [1] 290597
- ## [1] 272264.3

[1] 273938.6

2.9.4 Modelo 4

[1] 1865827

[1] 1865774

[1] 1865451

2.9.5 Modelo 5

[1] 9779082

[1] 9779023

[1] 9775666

2.9.6 VISUALIZAÇÂO VALIDAÇÃO CRUZADA

3 REGRESSÃO À MEDIANA

4 VALIDAÇÃO CRUZADA

4.1 Modelo 1

[1] 43663.7

4.2 Modelo 2

[1] 55736.13

4.3 Modelo 3

[1] 61513.52

4.4 Modelo 4

[1] 208947.1

4.5 Modelo 5

[1] 1178752

5 SIMULAÇÕES DE MONTE CARLO

REFERÊNCIAS

HOCHHEIM, N. Engenharia de avaliações - módulo básico. Florianópolis: IBAPE - SC, 2015.

LIMPERT, E.; A. STAHEL, W.; ABBT, M. Log-normal distributions across the sciences: Keys and clues., v. 51, p. 341, 2001.