$\mathbf{ULB} \\ \mathbf{2018/2019}$

MATHF3001 - Théorie de la mesure

Assistant : Robson Nascimento Titulaire : Céline Esser

Liste 6 – Intégrales

Exercice 1. Soient X un ensemble non vide, $a \in X$, et $\mathcal{A} = \mathcal{P}(X)$. Considérons l'espace de mesure $(X, \mathcal{A}, \delta_a)$ où δ_a est la mesure de Dirac en a et $f: X \to [0, \infty[$ est une fonction mesurable. Montrer que

$$\int_X f \, d\delta_a = f(a).$$

Exercice 2. On donne un espace mesuré (Ω, \mathcal{A}, m) et des fonctions de Ω dans $\overline{\mathbb{R}}$. Déterminer dans chaque cas si la fonction est intégrable.

a) $(\mathbb{R}, \mathcal{B}, m)$ où m est la mesure de Lebesgue sur \mathbb{R} ;

$$f(x) = \begin{cases} +\infty, & \text{si } x = 0, \\ \ln|x|, & \text{si } 0 < |x| < 1, \\ 0, & \text{si } |x| \ge 1, \end{cases}$$

$$g(x) = \begin{cases} \frac{1}{x^2 - 1}, & \text{si } |x| < 1 \text{ et } x \in \mathbb{Q}, \\ \frac{1}{\sqrt{|x|}}, & \text{si } |x| < 1 \text{ et } x \notin \mathbb{Q}, \\ \frac{1}{x^2}, & \text{si } |x| \ge 1. \end{cases}$$

$$h(x) \equiv 1.$$

b) $(\mathbb{R}, \mathcal{B}, m)$ où m est définie par

$$m(B) = \sum_{k \in B \cap \mathbb{Z}} \frac{1}{1 + (k+1)^2}$$

pour tout borélien B; f et h comme au premier point.

Exercice 3. Soient (X, \mathcal{A}, μ) un espace de mesure et $(f_k)_{k \in \mathbb{N}}$ une suite de fonctions mesurables non négatives telle que

$$f_1 \ge f_2 \ge f_3 \ge \dots \ge 0.$$

On définit f(x) comme la limite des $f_k(x)$ lorsque $k \to \infty$, pour chaque $x \in X$. Montrer que, si $f_1 \in L^1(X, \mu)$, alors

$$\lim_{k \to \infty} \int_X f_k \, d\mu = \int_X f \, d\mu.$$

Donner ensuite un contre-exemple montrant que la conclusion est erronée si on enlève l'hypothèse $f_1 \in L^1(X,\mu)$.

Exercice 4. Supposons $\mu(X) < \infty$. Soit $(f_k)_{k \in \mathbb{N}}$ une suite de fonctions mesurables non négatives sur X telles que $f_k \to f$ uniformément sur X. Montrer que si $f_k \in L^1(X,\mu)$ pour tout $k \in \mathbb{N}$, alors

$$f \in L^1(X, \mu)$$
 et $\lim_{k \to \infty} \int_X f_k d\mu = \int_X f d\mu$.

Montrer ensuite que l'hypothèse $\mu(X) < \infty$ est nécessaire.

Exercice 5. Il est aisé de deviner les limites de

$$\alpha_k := \int_0^k \left(1 - \frac{x}{k} \right)^k e^{x/2} dx \quad \text{et} \quad \beta_k := \int_0^k \left(1 + \frac{x}{k} \right)^k e^{-2x} dx$$

lorsque $k \to \infty$. Montrer que vous avez deviné juste.

Exercice 6. Soit $f \in L^1(X, \mu)$. Montrer que pour chaque $\epsilon > 0$, il existe $\delta > 0$ tel que $\int_A |f| d\mu < \epsilon$ si $\mu(A) < \delta$.

Remarque : autrement dit, $\int_A f \, d\mu$ tend vers 0 lorsque $\mu(A)$ tend vers 0, c'est ce qu'on appelle la continuité absolue de l'intégrale.