Trazado de la recta de carga de un transistor (virtual)

Mediante un circuito básico de transistor en configuración emisor común, plantearemos los circuitos básicos del mismo y calcularemos las distintas corrientes del mismo con los algoritmos correspondientes, nos interesa el valor particularmente de **I**_c y de V_{CE}, los cuales los pondremos en un gráfico I_c vs V_{CE}

Generaremos la recta dando valores a Vbb, aumentándolo desde "cero" hasta 5V aproximadamente, en intervalos de 0,2V

Del circuito "(I)" tenemos que :

$$V_{bb}$$
- R_b . I_b -0,7V=0 \rightarrow despejando I_b =(V_{bb} -0,7V)/ R_b

Sabiendo el valor de " β " $\rightarrow I_c = I_b$.

Una vez sabido I_c con el circuito "(II)", calculamos V_{CE} :

$$V_{CC}-I_{C}.R_{C}-V_{CE}=0 \rightarrow V_{CE}=(V_{CC}-I_{C}.R_{C})$$

Con todos estos valores se confeccionara una tabla Excel, que calcule automáticamente todo, entrando como dato el valor de V_{bb}

V_{bb}	Ι _b	I _c	V _{CE}	β
0	$I_b = (V_{bb} - 0.7V)/R_b$	I _c =I _b /β	$V_{CE}=(V_{CC}-I_C.R_C)$	200
0,2				200
0,4				200
				β _{SAT}
4,8				β _{SAT}
5				β _{SAT}

DATOS:

$$V_{cc}$$
=10V R_b =50KΩ R_c =1KΩ $β$ =200

IMPORTANTE:

Inicialmente los valores de V_{CE} , será Vcc para valores de V_{bb} inferiores a 0,7V puesto que para esos valores no "abrirá" el transistor, luego empezara disminuir los valores de V_{CE} los cuales obviamente no podrán ser negativos, con lo cual habrá que calcular el valor de V_{bb} para el "comienzo" de la saturación, haciendo el paso inverso:

Calcular I_{CMAX}, con la fórmula: I_{CMAX}=V_{CC}/R_C

Luego calcular (I_b)* (corriente de base para inicio de saturación):

$$(I_b)^* = (I_{CMAX})/\beta$$

Para luego calcular $(V_{bb})^*$ (tensión de base para comienzo de saturación)

$$(V_{bb})^* = 0.7V + R_b \cdot (I_b)^*$$

A partir de allí un aumento en la tensión de la base producirá una disminución del coeficiente"^β" mediante la fórmula:

$$\beta_{SAT} = I_c/I_b$$

Lo cual pondremos e la última columna de la tabla

Por ultimo haremos el grafico de la recta de carga mediante el grafico de la nube de puntos del Excel que tendrá como abscisas a V_{CE} y ordenadas a I_{C}

