# Distance measures



# Distance/Simmilariry in general

- Measure of relatedness between samples/sites
- Distance matrices used vor a variety of multivariate ordination techniques (NMDS, PCoA, Cluster-analysis)



## The double-zero-problem



#### **Abundance Table**

| Arctic | Hawaii | Deep Sea | Antarctica | Down town<br>Oldenburg |  |
|--------|--------|----------|------------|------------------------|--|
| 1      | 0      | 0        | 0          | 0                      |  |

Shared absence is no maesure for similar environments

- Distribution Barriers
- Replacement Species



**symetric distances:** euclidean, Mahalanobis, mean character, coefficient of racial likeness



## Presence/Absence Measures

- Comparing communities based on the absence/presence of species in a sample
- Species-count is unimportant

|                            | Sample_1540_DNA | Sample_1540_RNA |                            | Sample_1540_DNA | Sample_1540_RNA |
|----------------------------|-----------------|-----------------|----------------------------|-----------------|-----------------|
| Bacteria; Actinobacteria   | 12              | 8               | Bacteria; Actinobacteria   | 1               | 1               |
| Bacteria;Bacteroidetes     | 1415            | 1326            | Bacteria; Bacteroidetes    | 1               | 1               |
| Bacteria; Chlamydiae       | 0               | 0               | Bacteria;Chlamydiae        | 0               | 0               |
| Bacteria;Cyanobacteria     | 9               | 0               | Bacteria;Cyanobacteria     | 1               | 0               |
| Bacteria; Fibrobacteres    | 0               | 0               | Bacteria; Fibrobacteres    | 0               | 0               |
| Bacteria; Firmicutes       | 0               | 0               | Bacteria; Firmicutes       | 0               | 0               |
| Bacteria; Gracilibacteria  | 0               | 0               | Bacteria; Gracilibacteria  | 0               | 0               |
| Bacteria; Lentisphaerae    | 0               | 0               | Bacteria;Lentisphaerae     | 0               | 0               |
| Bacteria; Marinimicrobia   | ŭ               | 0               | Bacteria; Marinimicrobia   |                 |                 |
| (SAR406 clade)             | 0               | 0               | (SAR406 clade)             | 0               | 0               |
| Bacteria;Peregrinibacteria | 0               | 0               | Bacteria;Peregrinibacteria | 0               | 0               |

for a comprehensive list of available distance measures: ?vegdist

#### Jaccard-Distance

- Simple coefficient to measure the similarity between two (or more) communities
- Ranges between 0 and 1:
  - 1 = equal samples
  - 0 = no similarities between samples

R-code: vegan::vegdist(x, method=,,jaccard")

$$1 - J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$





### Jaccard-Distance



В









## Bray-Curtis-(Dis)Simmilarity

- Compares Sites in terms of minnimum abundance of species
- Widely used to compare raw (log transformed) species Data

$$D_{14}(\mathbf{x}_{1}, \mathbf{x}_{2}) = \frac{\sum_{j=1}^{p} |y_{1j} - y_{2j}|}{\sum_{j=1}^{p} (y_{1j} + y_{2j})}$$

| Quadrats              | Species        |                |                |                |                       |
|-----------------------|----------------|----------------|----------------|----------------|-----------------------|
| Quadrats              | $\mathbf{y}_1$ | $\mathbf{y}_2$ | $\mathbf{y}_3$ | $\mathbf{y}_4$ | <b>y</b> <sub>5</sub> |
| $\mathbf{x}_1$        | 2              | 5              | 2              | 5              | 3                     |
| $\mathbf{x}_2$        | 3              | 5              | 2              | 4              | 3                     |
| <b>x</b> <sub>3</sub> | 9              | 1              | 1              | 1              | 1                     |

$$\sum_{i=1}^{p} (y_{1j} + y_{2j}) \qquad |D_{14}(\mathbf{x}_1, \mathbf{x}_2)| = \frac{1+0+0+1+0}{17+17} = 0.059$$

$$D_{14}(\mathbf{x}_1, \mathbf{x}_3) = \frac{7+4+1+4+2}{17+13} = 0.600$$

$$D_{14}(\mathbf{x}_2, \mathbf{x}_3) = \frac{6+4+1+3+2}{17+13} = 0.533$$

If the sum of species greatly varies among sites, the Bray-Curtis index may become negative!
-> sqrt-transformation

R-code: vegan::vegdist(x, method=,,bray")

## Sörensen, Sorensen, Sørensen or Dice index

Simply put: **Sörensen index = Bray-Crurtis** distance on **Presence/Absence** data

#### Difference to the Jaccard-Index:

- more robust against outliers
- more sensitive in heterogeneous Datasets

R-code: ecodist::distance(x, method=,,sorensen")

#### Euclidean Distance

- metric distance between two points (or vectors) in geometrical "euclidean space"
- symmetrical distance
- Range: zero to positive inf.

**R-code:** stats::dist(x, method=,,euclidean")

$$egin{split} \mathrm{d}(\mathbf{p},\mathbf{q}) &= \mathrm{d}(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2} \ &= \sqrt{\sum_{i=1}^n (q_i-p_i)^2}. \end{split}$$

• Hellinger transformation for ecological data (used in PCA, PCoA, RDA, CCA)  $\sqrt{\frac{species\ count\ x}{site's\ total\ abundant}}$ 

**R-code:** vegan::decostand(x,"hel"), stats::dist(x.hel)

Chord transformation: euclidean distance normalized to 1

**R-code:** vegan::decostand(x,"nor"); stats::dist(x.nor)



### UniFrac (Lozupone & Knight 2005)



- Phylogenetic distance measure (especially for sequence based community assessments)
- requires a rooted tree auf the OTU-table

#### R-code:

system("muscle3.8.31\_i86win32.exe -in OTU\_table.fasta -out OTU\_table\_red.afa")

system("muscle3.8.31\_i86win32.exe -maketree -in OTU\_table\_red.afa -out
OTU\_table\_red.phy -cluster neighborjoining")

(http://www.drive5.com/muscle/downloads.htm)

Available unifrac-measures: weighted, unweighted, variance adj. weighted, alpha = 0, alpha = .5

R-package: GUnifrac

- vegan::adonis(distance.table ~ Env1 + Env2, method • R-code: = "bray")
- Permutational MANOVA explains variance withing the dataset using environmental parameters

```
adonis(m1log ~ Meta1$Type + Meta1$Day + Meta1$Nuc, permutations = 1000)
Call: adonis(formula = m1log ~ Meta1$Type + Meta1$Day + Meta1$Nuc, permutations = 1000)
Permutation: free
Number of permutations: 1000
Terms added sequentially (first to last)
          Df SumsOfSqs MeanSqs F.Model R2
                                                   Pr(>F)
Meta1$Type 1 0.2214
                        0.22137 7.0298
                        0.22672 7.1998
Meta1$Nuc 1 0.4451
                        0.44512 14.1351 0.13068 0.000999 ***
Residuals 51 1.6060
                        0.03149
                                           0.47151
--- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

### **Further Information**

- Legendre & Legendre 1998 Numerical ecology
  - Mathematical background



- Borcard, Gillet & Legendre 2011 Numerical Ecology with R
  - Application in R
- GUSTA ME: https://sites.google.com/site/mb3gustame/reference/dissimilarity



## Idea... Little Helper Scripts!

```
library(nortest)
   cat("Data\tp-value\n")
   for(i in 1:12)
     x = species[,i]
     j = ad.test(x)
     cat(Species_names[i], "\t", j$p.value, "\n")
   # Testing for normal distribution of the Data; p>0.05 = normal distributed Data. If data are
    # not normally distributed, Pearsons correlation is not an option
   setwd("C:/Users/icbmadmin/Desktop/R/Transects HE425/Correlations/")
   sink("Correlation_table.txt") # File in which all the console output will be saved
   cat("Group\tParameter\tPearson Correlation\tp-value\n") # Columnames for the file "\t" = tabstop
   for(i in 1:12) # Species/whatever from a to b (in species tabele) to be tested against ...
32 ₹ {
     x = Species[,i]
     for(j in 3:9) # ...parameters in columns from x to y (in env-data-table)
       y = ENV[,j]
       cor = cor.test(x = x, y = y, method = "pearson")
       cat(Species_names[i], "\t", ENV_names[j], "\t", cor$estimate,"\t", cor$p.value, "\n")
```