Business Process Intelligence (BPI) course

Petri Nets

Benedikt Knopp

BPI-Instruction 3

Agenda

Today:

- How does a Petri net work?
- How does a workflow work?
- How to reason about workflow properties?
- How to model systems and processes with Petri nets?
- How to use ProM for filtering event logs?

Next week:

- Alpha Miner
- Model Quality

Exercise 1

A Petri net system (P, T, F, m_0) consists of a Petri net (P, T, F) and a distinguished marking m_0 , the *initial marking*.

Draw the following Petri net N = (P, T, F) with:

$$P = \{p_1, p_2\}, T = \{t_1, t_2\}$$

$$F = \{(p_1, t_1), (t_1, p_2), (p_2, t_1), (p_2, t_2), (t_2, p_2), (t_2, p_1)\}$$

Exercise 1 Solution

Draw the following Petri net:

$$P = \{p_1, p_2\}, T = \{t_1, t_2\}$$

 $F = \{(p_1, t_1), (t_1, p_2), (p_2, t_1), (p_2, t_2), (t_2, p_2), (t_2, p_1)\}$

Exercise 2

Define the following Petri net system formally:

$$P = ?$$
 $T = ?$
 $F = ?$
 $m_0 = ?$

Exercise 2 Solution

$$P = \{p1, p2, p3, p4\}$$

$$T = \{t1, t2, t3\}$$

$$F = \{(p1, t1), (t1, p2), (p2, t2), (t2, p4), (t2, p3), (p3, t3), (t3, p4), (p4, t3), (p4, t1)\}$$

$$m_0 = [p1, p3, p4^2]$$

Exercise 3

- 1. Give the preset and postset of each transition.
- 2. Which transitions are all enabled at $m_0 = [p1, p3, p4^2]$?
- 3. Give all reachable markings.
- 4. What are the reachable final markings?

Exercise 3 Solution

1. Give the preset and postset of all transitions.

Exercise 3 Solution

2. Which transitions are enabled at $m_0 = [p1, p3, p4^2]$?

t₁ and t₃

Exercise 3 Solution

3. Give all reachable markings.

$$[p1, p3, p4^2] \xrightarrow{t3}$$

Start by writing down the initial marking and enabled transitions.

Exercise 3 Solution

3. Give all reachable markings

$$[p1, p3, p4^2] \xrightarrow{\textbf{t3}} [p1, p4^2] \xrightarrow{\textbf{t1}}$$

In each step, "play the token game" for one open transition branch. Draw the resulting marking and again all enabled transitions.

Exercise 3 Solution

$$[p1, p3, p4^2] \xrightarrow{t3} [p1, p4^2] \xrightarrow{t1} [p2, p4] \xrightarrow{t2}$$

Exercise 3 Solution

$$[p1, p3, p4^2] \xrightarrow{t3} [p1, p4^2] \xrightarrow{t1} [p2, p4] \xrightarrow{t2} [p3, p4^2] \xrightarrow{t3}$$

Exercise 3 Solution

$$[p1, p3, p4^2] \xrightarrow{\textbf{t3}} [p1, p4^2] \xrightarrow{\textbf{t1}} [p2, p4] \xrightarrow{\textbf{t2}} [p3, p4^2] \xrightarrow{\textbf{t3}} [p4^2]$$

$$closed. \ move$$

$$to \ open$$

$$branch.$$

$$p2$$

$$p3$$

$$p4$$

$$p3$$

Exercise 3 Solution

$$[p1, p3, p4^{2}] \xrightarrow{t3} [p1, p4^{2}] \xrightarrow{t1} [p2, p4] \xrightarrow{t2} [p3, p4^{2}] \xrightarrow{t3} [p4^{2}]$$

$$[p2, p3, p4] \xrightarrow{t2}$$

$$t3 \downarrow$$

Exercise 3 Solution

Exercise 3 Solution

Exercise 3 Solution

Exercise 3 Solution

3. Give all reachable markings

$$[p1,p3,p4^2] \xrightarrow{\textbf{t3}} [p1,p4^2] \xrightarrow{\textbf{t1}} [p2,p4] \xrightarrow{\textbf{t2}} [p3,p4^2] \xrightarrow{\textbf{t3}} [p4^2]$$

$$[p2,p3,p4] \xrightarrow{\textbf{t2}} [p3^2,p4^2]$$

4. What are the reachable final markings?

$$[p4^2]$$

Modeling with Petri nets

Exercise 4

Consider the following scenario:

A building with three floors has an elevator. The elevator may move up and down between the floors and stop at any floor. Initially, the elevator resides on the first floor.

Model the behavior of the elevator as a Petri net. What do the places in your model express? What does a token in a place stand for?

Modeling with Petri nets

Exercise 4 (Solution)

Two suggestions:

System Modeling Choices: What is a...

place? a location, constraint, queue, state...

token? a resource, case, message, a state value...

Subclass of Petri nets

- One source place (no incoming arc)
- One sink place (no outgoing arc)
- All other nodes are on a path from source to sink

Exercise 5

Is this Petri net a workflow net?

Exercise 5 Solution

Is this Petri net a workflow net?

Exercise 5 Solution

Is this Petri net a workflow net?

3. All other nodes are on a path from source to sink

Exercise 5 Solution

Is this Petri net a workflow net?

3. All other nodes are on a path from source to sink

Exercise 6

Consider the following scenario:

A carpenter sells standard goods from a catalog on the one hand, and on the other hand takes orders for handmade unique pieces. After an order is placed, the carpenter sends a confirmation to the customer. Afterwards, two things are worked on concurrently: Firstly, a delivery date is scheduled with a shipping company. At the same time, the order is picked from stock in case of a catalog order, and manufactured in case of a customized order. Finally, the furniture is shipped to the customer.

Model the scenario with a workflow. Are there multiple ways of doing this?

Exercise 6 Solution

A carpenter sells standard goods from a catalog on the one hand, and on the other hand takes orders for handmade unique pieces.

Exercise 6 Solution

After an order is placed, the carpenter sends a confirmation to the customer. Afterwards, two things are worked on concurrently.

Exercise 6 Solution

Firstly, a delivery date is scheduled with a shipping company.

Exercise 6 Solution

At the same time, the order is picked from stock in case of a catalog order, and manufactured in case of a customized order.

Exercise 6 Solution

At the same time, the order is picked from stock in case of a catalog order, and manufactured in case of a customized order.

Exercise 6 Solution

At the same time, the order is picked from stock in case of a catalog order, and manufactured in case of a customized order.

Exercise 6 Solution

Finally, the furniture is shipped to the customer.

Exercise 6 Solution

One possible alternative:

Soundness of Workflow Nets

- Safeness: Places cannot hold multiple tokens at the same time.
- Proper completion: If the sink place is marked, all other places are empty.
- Option to complete: From any reachable marking, it is possible to reach a marking which marks only the sink place. (this criterion actually implies proper completion)
- Absence of dead parts: For any transition there is a firing sequence enabling it.

Exercise 7

Is this Petri net a sound workflow net? Why?

Exercise 7 Solution

Is a workflow net

Option to complete is violated

Exercise 7 Solution

Is a workflow net

Option to complete is violated

can not reach the marking [o]

Exercise 8

Is this Petri net a sound workflow net? Why?

Exercise 7 Solution

Safeness & Proper completion are violated

Exercise 7 Solution

Safeness & Proper completion are violated

Exercise 7 Solution

Safeness & Proper completion are violated

Exercise 7 Solution

Safeness & Proper completion are violated

Exercise 7 Solution

Safeness & Proper completion are violated

(e.g., repeatedly looping transitions a and b)

More than one token

Exercise 7 Solution

Safeness & **Proper completion** are violated

Exercise 8

Draw the reachability graph of the Petri net.

Is it a sound workflow net?

Exercise 8 (Solution)

Exercise 8 (Solution)

Draw the reachability graph of the Petri net.

Is it a sound workflow net?

Option to C

[p3, p4, p6]

Option to Complete:

From all reachable markings, [p7] is reachable.

Exercise 8 (Solution)

Exercise 8 (Solution)

Exercise 8 (Solution)

Exercise 8 (Solution)

Complete Traces

Complete Traces: also known as traces accepted by the model or language of the model.

Criterion:

<a1,...,an> is a complete trace if there is a firing sequence leading from the initial marking to the final marking where the labels of the transitions in the firing sequence are a1,...,an in the order of their occurrence.

Example for Model 1: <a,b,c,d,e>, <a,c,b,d,f>

Exercise 9

How many complete traces are possible in the following models?

Exercise 9 (Solution)

How many complete traces are possible based on the following models?

There are infinitely many. For example:

$$< a, (b, c, e, g)^n, f > for all n \ge 1.$$

Exercise 10

How many complete traces are possible in the following model?

Exercise 10 (Solution)

How many complete traces are possible based on the following model?

$$\{b,d,f\} \rightarrow in \ any \ order \rightarrow 3!$$

$$\{b, e, f\} \rightarrow in \ any \ order \rightarrow 3!$$

$$\{c, e, f\} \rightarrow in \ any \ order \rightarrow 3!$$

$$\{c,d,f\} \rightarrow in \ any \ order \rightarrow 3!$$

$$3! \times 4 = 24$$

Event Data Preprocessing in Two Plugins for Filtering / Noise Handling

Two Plugins for Filtering / Noise Handling

Only keep instances (traces / cases) with a certain start or end event. Note: The activities based on which we filter out (here: confirm order, payment reminder) are still included in the remaining traces.

Two Plugins for Filtering / Noise Handling

Filter on the event level (not case level!)

Two Plugins for Filtering / Noise Handling

Result:

Next: Filter out infrequent traces.

Two Plugins for Filtering / Noise Handling

Discard traces for which that variant occurs less than 10 times.

Two Plugins for Filtering / Noise Handling

Result:

