Honor code: I pledge on my honor that: I have completed all steps in the below homework on my own, I have not used any unauthorized materials while completing this homework, and I have not given anyone else access to my homework.

Kartik Bharadwaj Name and Signature

1. (1 point) Have you read and understood the honor code?

Solution: Yes

Concept: System of linear equations

- 2. (2 points) This question has two parts as mentioned below:
 - (a) Find a 2×3 system Ax = b whose complete solution is

$$x = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + w \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$$

Solution: For matrix A, we can use the RREF form $R\mathbf{x} = 0$ where $R = \begin{bmatrix} I & F \end{bmatrix}$

and
$$\mathbf{x} = \begin{bmatrix} -F \\ I \end{bmatrix}$$
. Given only one basis of nullspace $\mathbf{x}_{nullspace} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$, $F = \begin{bmatrix} -1 \\ -3 \end{bmatrix}$

and
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
. Hence, $R = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -3 \end{bmatrix}$.

Since row space of R is equal to row space of A due to RREF, we can use,

$$R\mathbf{x}_{particular} = d$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = d$$

$$d = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Therefore, our 2×3 system is: $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -3 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

(b) Now find a 3 x 3 system which has these solutions exactly when $b_1 + b_2 = b_3$. (Note: $b = [b_1 \ b_2 \ b_3]^T.)$

Solution: First, we use the RREF form $R\mathbf{x} = 0$ where R = |I| F and

$$\mathbf{x} = \begin{bmatrix} -F \\ I \end{bmatrix}$$
. Given only one basis of nullspace $\mathbf{x}_{nullspace} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$, $F = \begin{bmatrix} -1 \\ -3 \\ 0 \end{bmatrix}$

and
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
. Hence, $R = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix}$.

As row space of R is equal to row space of A due to RREF, we can use,

$$R\mathbf{x}_{particular} = d$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = d$$

$$d = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$

We now add Row1 and Row2 to Row3, to get
$$b_1 + b_2 = b_3$$
 (or $d_1 + d_2 = d_3$). Therefore, our 3×3 system becomes: $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -3 \\ 1 & 1 & -4 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

3. (2 points) Consider the matrices A and B below

(i)
$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$$
 (ii) $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$

(a) Write down the row reduced echelon form of matrices A and B (also mention the steps involved).

Solution: For matrix A, we will first get reduced echelon form through Gaussian elimination. For A, we only need one operation: subtract Row1 from Row3.

Hence,
$$E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$
.
$$REF = E_{31}A$$

$$REF = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Now, we will subtract 2 times Row2 from Row1.

$$RREF = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$RREF = \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Similarly, for matrix B, we will first get reduced echelon form through Gaussian elimination. We will perform 3 row operations:

- 1. $E_{21} \implies$ Subtract 4 times Row1 from Row2.
- 2. $E_{31} \implies$ Subtract 3 times Row1 from Row3.
- 3. $E_{32} \implies \text{Subtract 2 times Row2 from Row3.}$

$$REF = E_{32}E_{31}E_{21}B$$

$$REF = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -7 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} B$$

$$REF = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -7 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$REF = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{bmatrix}$$

$$REF = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{bmatrix}$$

Now, we divide Row2 by -3 and then subtract 2 times Row2 from Row1.

$$RREF = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{3} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{bmatrix}$$

$$RREF = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$RREF = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

(b) Find all solutions to $A\mathbf{x} = 0$ and $B\mathbf{x} = 0$.

Solution: For matrix A, $R\mathbf{x} = 0$ where $R = \begin{bmatrix} I & F \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} -F \\ I \end{bmatrix}$. Hence,

$$\begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

The first 2 columns of R are pivot columns and the last 2 columns are free columns.

$$x_{nullspace} = m \begin{bmatrix} 2 \\ -1 \\ 1 \\ 0 \end{bmatrix} + n \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
 (where $m, n \in \mathbb{R}$)

For matrix B,

$$R\mathbf{x} = 0$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The first 2 columns of R are pivot columns and the last column is a free column.

$$x_{nullspace} = c \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
 (where $c \in \mathbb{R}$)

(c) Write down the basis for the four fundamental subspaces of A.

Solution: $Basis(\mathcal{C}(\mathcal{A})) = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\2 \end{bmatrix} \right\}$ $Basis(\mathcal{N}(\mathcal{A})) = \left\{ \begin{bmatrix} 2\\-1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix} \right\}$ $Basis(\mathcal{C}(\mathcal{A}^{\mathcal{T}})) = \left\{ \begin{bmatrix} 1\\2\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix} \right\}$ $Basis(\mathcal{N}(\mathcal{A}^{\mathcal{T}})) = \left\{ \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}$

(d) Write down the basis for the four fundamental subspaces of B.

Solution: $Basis(\mathcal{C}(\mathcal{A})) = \left\{ \begin{bmatrix} 1\\4\\7 \end{bmatrix}, \begin{bmatrix} 2\\5\\8 \end{bmatrix} \right\}$ $Basis(\mathcal{N}(\mathcal{A})) = \left\{ \begin{bmatrix} 1\\-2\\1 \end{bmatrix} \right\}$ $Basis(\mathcal{C}(\mathcal{A}^T)) = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix} \right\}$ $Basis(\mathcal{N}(\mathcal{A}^T)) = \left\{ \begin{bmatrix} 1\\-2\\1 \end{bmatrix} \right\}$

Concept: Rank

4. (1 $\frac{1}{2}$ points) Consider the matrices A and B as given below:

$$A = \begin{bmatrix} 6 & 4 & 2 \\ -3 & -2 & -1 \\ 9 & 6 & x \end{bmatrix} \text{ and } B = \begin{bmatrix} 3 & 1 & 3 \\ y & 2 & y \end{bmatrix}$$

Give the values for entries x and y such that the ranks of the matrices A and B are

(a) 1

Solution:
$$x = 3, y = 6$$

(b) 2

Solution:
$$x \in \mathbb{R}$$
 and $x \neq 3$; $y \in \mathbb{R}$ and $y \neq 6$

(c) 3

Solution: There can be no values of x and y for which ranks of matrices A and B become 3.

Concept: Nullspace and column space

5. ($\frac{1}{2}$ point) State True or False and explain you answer: The nullspace of R is the same as the nullspace of U (where R is the row reduced echelon form of A and U is the matrix in LU decomposition of A).

Solution: True because any kind of row operation performed on U and R doesn't affect the domain \mathbf{x} for which $U\mathbf{x} = R\mathbf{x} = 0$.

- 6. (1 point) Suppose column $1 + \text{column } 2 + \text{column } 5 = \mathbf{0}$ in a 4×5 matrix A.
 - (a) What is a special solution for $A\mathbf{x} = \mathbf{0}$

Solution: For a 4×5 matrix A, the RREF form will have 4 pivot columns and 1 free column. In particular, column 1 and column 2 will be two of the 4 pivot columns. Column 5 will be the free column. Note that, column 1 and column 2 can't be free column as it will violate the rule of RREF. Hence, $R\mathbf{x} = 0$ is as follows,

$$\begin{bmatrix} 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Since column 1 + column 2 + column 5 = **0** and column 5 is free column, x_5 will be free variable and x_1, x_2, x_3, x_4 will be pivot variables. Using $R = \begin{bmatrix} I & F \end{bmatrix}$ and $\mathbf{x} = \begin{bmatrix} -F \\ I \end{bmatrix}$,

$$\begin{bmatrix} 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Therefore, our special solution is $\begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}$.

(b) Describe the null space of A.

Solution:
$$x_{nullspace} = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

7. (2 points) Consider the matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$. The column space of this matrix is a 2 dimensional plane. What is the equation of this plane? (You need to write down the steps you took to arrive at the equation)

Solution: We know that $\mathcal{C}(A)$ is a subspace which is the linear combinations of the basis of A (or columns of A). To find the pivot columns, we can compute the reduced echelon form of A. We perform three row operations:

- 1. $E_{21} \implies \text{Subtract Row1 from Row2}$.
- 2. $E_{31} \implies \text{Subtract Row1 from Row3}$.
- 3. $E_{32} \implies$ Subtract 2 times Row2 from Row3.

We will assume that our $b = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$. Also, we will perform these operations on b as it will be useful further. Hence, our REF is:

$$REF = E_{32}E_{31}E_{21}A|b$$

$$REF = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & x \\ 1 & 2 & y \\ 1 & 3 & z \end{bmatrix}$$

$$REF = \begin{bmatrix} 1 & 1 & x \\ 0 & 1 & y - x \\ 0 & 0 & x - 2y + z \end{bmatrix}$$

Since we have only independent columns, $Basis(\mathcal{C}(\mathcal{A})) = \{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \}$. This means

 $\mathcal{C}(\mathcal{A})$ is a plane passing through zero vector $\in \mathbb{R}^3$. Hence, equation of the plane will be of the form ax + by + cz = 0. For the solution to exist in REF, the last row should be equal to 0.

Therefore, x - 2y + z = 0, where $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ are points in the plane which is spanned by the $Basis(\mathcal{C}(\mathcal{A}))$.

- 8. (1 point) True or false? (If true give logical, valid reasoning or give a counterexample if false)
 - a. If the row space equals the column space then $A^T=A$

Solution: False. For instance, consider $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $A^T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Although $\mathcal{C}(\mathcal{A}^T) = \mathcal{C}(\mathcal{A}), \ A \neq A^T$.

b. If $A^T = -A$ then the row space of A equals the column space.

Solution: True. We would like to prove that $\mathcal{C}(\mathcal{A}^T) = \mathcal{C}(\mathcal{A})$. But, since $A^T = -A$, we can prove $\mathcal{C}(-\mathcal{A}) = \mathcal{C}(\mathcal{A})$.

Proof: Since $A^T = -A$, we can say that $\mathcal{N}(A) = \mathcal{N}(A^T) = \mathcal{N}(-A)$. This is because, for any $x \in \mathcal{N}(A)$, $Ax = 0 \iff (-A)x = 0$. Therefore, if the nullspaces are the same, it is evident from rank-nullity theorem that $\mathcal{C}(-A) = \mathcal{C}(A)$.

- 9. (1 point) Which of the four fundamental subspaces are the same for the following pairs of matrices of different sizes? (Assume A is a $m \times n$ matrix)
 - (a) $\begin{bmatrix} A \end{bmatrix}$ and $\begin{bmatrix} A \\ A \end{bmatrix}$

Solution: For a $m \times n$ matrix P = [A], we know that $\mathcal{C}(P)$ and $\mathcal{N}(P^T) \in \mathbb{R}^m$ whereas $\mathcal{C}(P^T)$ and $\mathcal{N}(P) \in \mathbb{R}^n$.

On the other hand, matrix $Q = \begin{bmatrix} A \\ A \end{bmatrix}$ is of the shape $2m \times n$. Hence, $\mathcal{C}(Q)$ and $\mathcal{N}(Q^T) \in \mathbb{R}^{2m}$ whereas $\mathcal{C}(Q^T)$ and $\mathcal{N}(Q) \in \mathbb{R}^n$.

Since the row space and null space belong to same vector space \mathbb{R}^n , we can clearly see that,

- 1. $C(P) \neq C(Q)$
- 2. $\mathcal{N}(P^{\mathcal{T}}) \neq \mathcal{N}(Q^{\mathcal{T}})$
- 3. $C(P^T) = C(Q^T)$
- 4. $\mathcal{N}(P) = \mathcal{N}(Q)$
- (b) $\begin{bmatrix} A \\ A \end{bmatrix}$ and $\begin{bmatrix} A & A \\ A & A \end{bmatrix}$

Solution: For a $2m \times n$ matrix $P = \begin{bmatrix} A \\ A \end{bmatrix}$, we know that $\mathcal{C}(P)$ and $\mathcal{N}(P^{\mathcal{T}}) \in \mathbb{R}^{2m}$ whereas $\mathcal{C}(P^{\mathcal{T}})$ and $\mathcal{N}(P) \in \mathbb{R}^n$.

On the other hand, matrix $Q = \begin{bmatrix} A & A \\ A & A \end{bmatrix}$ is of the shape $2m \times 2n$. Hence, $\mathcal{C}(Q)$ and $\mathcal{N}(Q^T) \in \mathbb{R}^{2m}$ whereas $\mathcal{C}(Q^T)$ and $\mathcal{N}(Q) \in \mathbb{R}^{2n}$.

Since the column space and left null space belong to same vector space \mathbb{R}^{2m} , we can clearly see that,

1.
$$C(P) = C(Q)$$

2.
$$\mathcal{N}(P^{\mathcal{T}}) = \mathcal{N}(Q^{\mathcal{T}})$$

3.
$$C(P^T) \neq C(Q^T)$$

4.
$$\mathcal{N}(P) \neq \mathcal{N}(Q)$$

- 10. (2 points) For each of the questions below, construct a matrix A which satisfies the given condition or argue why the given condition cannot be satisfied?
 - (a) A matrix whose row space is equal to its column space

Solution: If $A^T = -A$, then row space is equal to its column space. Consider, a matrix $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. We can see that $\mathcal{C}(A) = \mathcal{C}(A^T) = Span(\{\begin{bmatrix} 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}\}$.

(b) A matrix whose null space is equal to its column space

Solution: Let matrix $A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Here, $\mathcal{C}(\mathcal{A}) = \mathcal{N}(\mathcal{A}) = Span(\{\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \})$, where the first 2 columns are free columns and the last 2 columns are pivot columns. Hence, any matrix of the form $A = \begin{bmatrix} O_{n \times n} & I_{n \times n} \\ O_{n \times n} & O_{n \times n} \end{bmatrix}$ where $O_{n \times n}$ represents a null matrix of size $n \times n$, $I_{n \times n}$ represents an identity matrix of size $n \times n$, and $n \in \mathbb{N}$.

(c) A matrix for which all the four fundamental subspaces are equal

Solution:

Let's assume that we have a matrix A for which $\mathcal{C}(A) = \mathcal{C}(A^T) = \mathcal{C}(A) = \mathcal{C}(A^T)$. This means that number of basis vectors required to span each of the subspaces are equal to each other. Hence,

$$dim(\mathcal{C}(\mathcal{A})) = dim(\mathcal{C}(\mathcal{A}^{\mathcal{T}})) = dim(\mathcal{N}(\mathcal{A})) = dim(\mathcal{N}(\mathcal{A}^{\mathcal{T}}))$$
(1)

This happens only if A is a $n \times n$ square matrix.

However, we know that $\mathcal{C}(\mathcal{A}) \perp \mathcal{N}(\mathcal{A}^{\mathcal{T}})$. This means they basis can't span the same subspace. The only common subspace is the zero vector. However, we know that:

- 1. If $Basis(\mathcal{C}(\mathcal{A}))$ is equal to the zero vector, then we have all dependent columns.
- 2. If $Basis(\mathcal{N}(\mathcal{A}^{\mathcal{T}}))$ is equal to the zero vector, then we have all independent columns(rows).

Both these conditions violates (1) and (2). Hence, $\mathcal{C}(\mathcal{A}) \neq \mathcal{N}(\mathcal{A}^{\mathcal{T}})$. Similarly, $\mathcal{C}(\mathcal{A}^{\mathcal{T}}) \neq \mathcal{N}(\mathcal{A})$ since $\mathcal{C}(\mathcal{A}^{\mathcal{T}}) \perp \mathcal{N}(\mathcal{A})$. Therefore, no matrix A exists for which all the four fundamental subspaces are equal.

11. (1 point) True or false? If A is a $m \times m$ square matrix then $\mathcal{N}(A) = \mathcal{N}(A^2)$ (If true give logical, valid reasoning or give a counterexample if false)

Solution: False. Let matrix $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Then, $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. We can see that $\mathcal{N}(A^2) = \operatorname{Span}\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\}$ whereas $\mathcal{N}(A) = \operatorname{Span}\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}\}$.

Hence, $\mathcal{N}(A) \neq \mathcal{N}(A^2)$.

- 12. (2 points) Consider matrices A and B and their product AB. For each of the questions below fill in the blanks with one of the following options: $<,>,=,\leq,\geq,\ can't\ say$. Explain your answer.
 - (a) $dim(\mathcal{C}(AB))$ _____d $im(\mathcal{C}(A))$

Solution: Each column in the matrix product AB is the linear combination of the columns of A. This implies that $\mathcal{C}(\mathcal{AB}) \subseteq \mathcal{C}(\mathcal{A})$. Hence,

$$dim(\mathcal{C}(\mathcal{AB})) \le dim(\mathcal{C}(\mathcal{A}))$$

(b) $dim(\mathcal{C}(AB))$ ____dim($\mathcal{C}(B)$)

Solution: Each row in the matrix product AB is the linear combination of the rows of B. This implies that $Rowspace(\mathcal{AB}) \subseteq Rowspace(\mathcal{B})$. Since rank = dim(Rowspace) = dim(columnspace),

$$dim(\mathcal{C}(\mathcal{AB})) \leq dim(\mathcal{C}(\mathcal{B}))$$

(c) $dim(\mathcal{C}((AB)^{\top}))_{----}dim(\mathcal{C}(A^{\top}))$

Solution: Each row in the matrix product $(AB)^T$ is the linear combination of the rows of A^T . This implies that $Rowspace(\mathcal{AB})^T \subseteq Rowspace(\mathcal{A}^T)$. Since rank = dim(Rowspace) = dim(columnspace),

$$dim(\mathcal{C}(\mathcal{AB})^{\mathcal{T}}) \leq dim(\mathcal{C}(\mathcal{A})^{\mathcal{T}})$$

(d) $dim(\mathcal{C}((AB)^{\top}))_{----}dim(\mathcal{C}(B^{\top}))$

Solution: Each column in the matrix product $(AB)^T$ is the linear combination of the column of B^T . This implies that $\mathcal{C}(\mathcal{AB})^T \subseteq \mathcal{C}(\mathcal{B}^T)$. Hence,

$$dim(\mathcal{C}(\mathcal{AB})^{\mathcal{T}}) \leq dim(\mathcal{C}(\mathcal{B})^{\mathcal{T}})$$

Concept: Free variables

- 13. $(2 \frac{1}{2} \text{ points})$ True or False (with reason if true or example to show it is false).
 - (a) A square matrix has no free variables

Solution: False. In the square matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$, $C_3 = 2C_2 - C_1$. This means column 3 is dependent and will be 1.4.

means column 3 is dependent and will lead to a free column in RREF as seen below:

$$RREF = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

In the above RREF, x_3 is a free variable for the last column which happens to be a free column.

(b) An invertible matrix has no free variables

Solution: True. If a full rank matrix A has its RREF equal to an identity matrix, then A is invertible. This is because identity matrix are invertible and have only independent/pivot columns without any free columns and free variables. Hence, only the zero vector will exist in its nullspace.

(c) An $m \times n$ matrix has no more than n pivot variables.

Solution: True. In the RREF of an $m \times n$ matrix A where n is the number of columns of A,

n = number of pivot variables + number of free variables

This means number of pivot variables $\geq n$.

(d) An $m \times n$ matrix has no more than m pivot variables.

Solution: True. In the RREF of an $m \times n$ matrix A every row contains at most one pivot.

(e) Matrices A and A^T have the same number of pivots.

Solution: True. We know that a transpose operation essentially converts column vectors into row vectors and vice-versa. Hence, if a $m \times n$ matrix A had k independent columns (or k pivots), then A^T will have k independent rows with the same number of pivots. This means that A and A^T both have the same rank.

Concept: Reduced Echelon Form

14. (½ point) Suppose R is $m \times n$ matrix of rank r, with pivot columns first:

$$R = \begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix}$$

(a) Find a right-inverse B with RB = I if r = m.

Solution: R is full row rank matrix since r = m. Then, our $R = \begin{bmatrix} I & F \end{bmatrix}$. We

can find the right-inverse B in the following way:

$$B = R^{T}(RR^{T})^{-1}$$

$$B = \begin{bmatrix} I & F \end{bmatrix}^{T} (\begin{bmatrix} I & F \end{bmatrix} \begin{bmatrix} I & F \end{bmatrix}^{T})^{-1}$$

$$B = \begin{bmatrix} I \\ F \end{bmatrix} (\begin{bmatrix} I & F \end{bmatrix} \begin{bmatrix} I \\ F \end{bmatrix})^{-1}$$

$$B = \begin{bmatrix} I \\ F \end{bmatrix} \begin{bmatrix} I^{2} + F^{2} \end{bmatrix}^{-1}$$

$$B = \begin{bmatrix} I \\ F \end{bmatrix} \begin{bmatrix} I + F^{2} \end{bmatrix}^{-1}$$

$$B = \begin{bmatrix} I \\ F \end{bmatrix} \begin{bmatrix} I + F^{2} \end{bmatrix}^{-1}$$

Hence, right-inverse $B = \begin{bmatrix} \left[I + F^2\right]^{-1} \\ F\left[I + F^2\right]^{-1} \end{bmatrix}$, where $\left[I + F^2\right]^{-1}$ is a $m \times m$ matrix and B is a $n \times m$ matrix.