Технология программирования на ЭВМ, ММ-1 (дом) Динамическая память 23 декабря 2018

1. Дано целое число n от 1 до 1000. Сгенерировать динамический массив из квадратов натуральных чисел $1^2, 2^2, 3^2, \ldots, n^2$. Вывести данный массив.

Ввод	5
Вывод	1 4 9 16 25

2. Дано целое положительное число n от 1 до 100. Далее n целых чисел от -1000 до 1000. Считать данные числа в динамический массив, посчитать количество четных чисел и записать четные числа в другой динамический массив с сохранение порядка.

Ввод	5
	1 -2 3 2 4
Вывод	3
	-2 2 4

3. Дано целое положительное число n от 1 до 100. Далее n целых чисел от -1000 до 1000. Считать числа в динамический массив. Поменять первый и последний элемент массива местами. Вывести результат.

Ввод	6	1
	11 12 13 14 15 16	11
Вывод	16 12 13 14 15 11	11

4. Дана последовательность целых чисел от -1000 до 1000, которая оканчивается нулем. Считать ее в расширяющийся массив (функция realloc). Описать функцию поиска суммы всех чисел.

int sum(int size, int *array);

Ввод	5 6 7 3 4 8 0
Вывод	33

5. Дано целое положительное число n от 1 до 1000000. Сохранить в динамический массив (с динамическим расширением realloc) все числа взаимно простые с n (по возрастанию). Распечатать массив.

Ввод	12
Вывод	4
	1 5 7 11

6. Даны две строки s_1 и s_2 заранее неизвестной длины. Считать их в динамические массивы. Сохранить их максимальный общий префикс в новый динамический массив (функция realloc).

char *prefix(char *string1, char *string2);

Ввод	waterfall
	watermelon
Вывод	water

7. Дано время начало занятий в формате чч:мм и целое положительное числов x от 1 до 24*60 — длительность одной пары вместе с переменой в минутах. Необходимо посчитать количество пар и вывести время начала пар, если известно, что последняя пара начинается не позже 17:00. Все отсечки сохранить в динамический массив и вывести.

Функция add_time(...) добавляет к текущему времени current интервал в pair_time минут. Функция generate_time(...) генерирует динамический массив с отсечками, возвращая через указатель pair_count_ptr количество отсечек.

Ввод	09:00 90
Вывод	6
	09:00
	10:30
	12:00
	13:30
	15:00
	16:30

8. Дано целое положительное число n. Далее матрица целых чисел $n \times n$. Считать элементы в динамическую матрицу. Найти сумму элементов каждой строки матрицы и произведение элементов каждого столбца матрицы.

Ввод	3
	1 2 3
	4 5 6
	7 8 9
Вывод	6 15 24
	28 80 162

9. Дано целое положительное число n. Далее матрица целых чисел $n \times n$. Считать элементы в динамическую матрицу. Переставить строки матрицы в обратном порядке (без какого либо копирования элементов, только изменив адреса строк).

Ввод	4
	1 2 3 4
	2 3 4 5
	3 4 5 6
	4 5 6 7
Вывод	4 5 6 7
	3 4 5 6
	2 3 4 5
	1 2 3 4

10. Дано целые положительные числа n и m. Далее матрица целых чисел $n \times m$. Считать элементы в динамическую матрицу. Вывести транспонированную матрицу. Описать вспомогательную функцию, которая генерируют транспонированную матрицу:

int **transpose(int n, int m, int **matrix);

Ввод	3 4
	1 2 3 4
	5 6 7 8
	9 10 11 12
Вывод	1 5 9
	2 6 10
	3 7 11
	4 8 12