3. Actividad Programación no lineal con Excel

Problema 3.1 Muebles Molins SA (MOLISA) vende dos productos principalmente, sofás y mesas plegables. Basandose en los pocos años de experiencia en ventas en la región, el departamento de ventas ha estimado una función para el precio y la demanda para cada uno de sus productos estrella, estas relaciones son:

$$p_1 = 220 - 0, 4x_1$$
 y $p_2 = 180 - 0, 2x_2,$

donde p_i y x_i son el precio y la demanda del producto para i=1,2. Los costes variables son 60 euros por unidad de sofá fabricada y 45 euros por mesa. Los productos son ensamblados en el lugar y cuidadosamente acabados. La empresa dispone de 800 horas para el ensamblado y 500 horas para el acabado. Los sofás requieren 2 horas de ensamblado y 2 horas de acabado, las mesas 3 y 1 horas respectivamente.

El CEO de la empresa quiere maximizar los beneficios bajo estas condiciones.

Problema 3.2 Suponemos que queremos proveer de un informe al estimado cliente Sr. Díaz del Campo y Moreno Valiente, el cuál tiene cierta cantidad para invertir en bolsa y ciertas ideas claras para sus acciones preferidas, identificadas con cinco letras A, B, C, D y E. Las cinco acciones tienen unos resultados mensuals descritos en la siguiente tabla enviada por el cliente:

Datos					
Mes	A	В	C	D	E
1	0,22816	-0,07205	0,0173	0,22266	0,08202
2	0,09134	0,02588	0,05646	0,01278	-0,03499
3	-0,01288	-0,04771	0,0228	0,00379	0,01662
4	-0,17196	0,06342	0	0,04101	-0,07496
5	0,16557	0,0367	0,0051	0,07576	-0,0081
6	-0,00789	0,01372	0,02244	0,06817	0,05446
7	-0,04909	0,0596	0,06583	-0,07143	-0,08607
8	0,22967	-0,02083	0,00812	-0,02564	0,01712
9	0,10117	0,00681	0,0236	0,12632	-0,0051
10	-0,1053	-0,05128	0,00865	0,16406	0,08376
11	-0,02767	0,0473	-0,02926	-0,05593	0,0489
12	0,00813	-0,01247	0,00893	0,01327	0,08496
13	0,05323	0,11894	-0,00885	0,15493	0,0979
14	0,05364	0,00197	-0,0 69 17	-0,07317	-0,00382
15	-0,01818	-0,0447 9	-0,06473	-0,0864	-0,01546
16	-0,09556	0,04366	0,01384	-0,07952	0,03534
17	0,02459	0,08765	0,00259	0,03685	0,02402
18	-0,064	-0,0326	-0,01379	-0,03535	-0,02736
19	0,01393	0,05736	0,06993	0,01316	0,04604
20	0,10971	0,0868	0,02588	-0,0026	0,05501
21	-0,06464	0,05025	0,00645	-0,05 99	-0,003
22	0,01114	-0,0607	0,01603	0,08357	-0,03961
23	0,0161	-0,12925	0,04076	-0,00257	-0,03415
24	0,01188	0,06094	-0,06442	0,01856	0,00763

El Sr. Díaz del Campo y Moreno Valiente tiene dudas de como repartir su inversión entre estas cinco acciones. Por tanto, nos pide una idea para organizar la información cuantitativa en orden a que pueda tomar una decisión.

Problema 3.3 Gas Propano SA., sirve gas propano a los tanques de una zona residencial. Queremos construir un modelo que describa cómo el consumo de gas varía con la temperatura exterior. El conocimiento de dicho función puede ayudar a la compañía a estimar a corto plazo la demanda de propano. La compañía dispone de los siguientes datos

Día	Temperatura	Consumo
1	10	51
2	11	63
3	13	89
4	15	123
5	19	146
6	22	157
7	24	141
8	25	169
9	25	172
10	29	163
11	30	178
12	32	176

proponemos el modelo lineal y = ax + b donde y es el consumo de gas en m^3 , y x el el número de grados centigrados. El problema consiste en encontrar los mejores valores de a y b para el modelo.