남서울대학교 정보통신공학과 졸업작품 상세설명서

모바일 헬스 케어

Mobile Health Care

Department of Information and Communication Engineering

Namseoul University

Revision History

Revision	Description
1.00	조장: 장지용, 조원: 이진영, 김묘진

목 차

1.	개발환경 구축	· 1
	1.1 하드웨어 개발환경	· 1
	1.2 소프트웨어 개발환경	. 2
	1.3 오픈 솔루션(회로도, 소스코드 등) 분석	. 3
2.	제안 시스템 및 핵심기술	· 4
	2.1 서비스 모델	· 4
	2.2 시스템 모델	. 5
	2.3 핵심 솔루션	. 6
3.	구현 및 실험 결과	. 7
	3.1 테스트결과	· 7
	3.2 구현결과	. 8
4.	결 론	. 9
5.	참고문헌	10

1. 개발환경 구축

1.1 하드웨어 개발환경

□ 아두이노 메가: 싱글보드 컴퓨터 (모델명 : Arduino MEGA)

ㅇ 출처:

http://vctec.co.kr/product/%EC%95%84%EB%91%90%EC%9D%B4%EB%85%B8-%EB%A9%94%EA%B0%802560-r3-arduino-mega-2560-r3/771/

<그림 1. Arduino MEGA>

□ 초음파 센서: 키 측정용 센서 (모델명: HC-SR04)

o 출처: http://deneb21.tistory.com/215

<그림 2. HC-SR04>

□ 적외선 센서: 체온 측정용 센서 (모델명: DTS-M300) o 출처: http://diwellshop.com/product/dts-m300/86/

<그림 3. DTS-M300>

□ 심박센서: 맥박 측정용 센서 (모델명: XD-58C)

o 출처:

 $\frac{\text{http://iotcommunitymk.org/en_US/\%D0\%9F\%D1\%83\%D0\%BB\%D1\%81-\%D0\%BD\%D0\%B0-}{\%D1\%81\%D1\%80\%D1\%86\%D0\%B5-\%D1\%81\%D0\%BE-xd58c-\%D1\%81\%D0\%B5\%D0\%BD}{\%D0\%B7\%D0\%BE\%D1\%80/}$

<그림 4. XD-58C>

□ 블루투스센서: 블루투스 통신 (모델명: HC-06)

ㅇ 출처:

https://smartstore.naver.com/ic11401/products/558894557?NaPm=ct%3Djm7nssk8%7Cci %3D8577a2a411e917812e70829221c833fda428d600%7Ctr%3Dsls%7Csn%3D434525%7C hk%3D7de68dbb39be116f6b45bdb5208d47722171154b

<그림 5. HC-06>

□ Android Smart Phone: 삼성 갤럭시 S6 (모델명: SM-G920S)

ㅇ OS 버전: Android 7.1.1 (Nougat)

o 출처: http://developer.android.com/index.html

<그림 6. Android Smart Phone>

1.2 소프트웨어 개발환경

- □ 애플리케이션 개발
 - o 개발 도구 : MIT app Inventor
 - http://appinventor.mit.edu/explore/
 - o 개발 언어 : C/C+ , JAVA
 - 아두이노의 기본 개발 언어, 앱 개발 언어

1.3 오픈 솔루션(회로도, 소스코드 등) 분석

- □ 출처: http://deneb21.tistory.com/215
- □ 소스코드 분석 : 주석처리 ○ 초음파 센서

```
//출력핀(trig)과 입력핀(echo) 연결 설정, 다
른 핀을 연결해도 됨
int trigPin = 9;
                                     duration = pulseIn(echoPin, HIGH);
int echoPin = 8;
                                       // HIGH 였을 때 시간(초음파가 보냈다가
                                     다시 들어온 시간)을 가지고 거리를 계산 한
//시리얼 속도설정, trigPin을 출력, echoPin
을 입력으로 설정
                                       // 340은 초당 초음파(소리)의 속도, 10000
void setup(){
                                     은 밀리세컨드를 세컨드로, 왕복거리이므로 2
 Serial.begin(9600);
                                     로 나눠준다.
 pinMode(trigPin, OUTPUT);
                                       distance = ((float)(340 * duration) /
 pinMode(echoPin, INPUT);
                                     10000) / 2;
}
                                       //시리얼모니터에 Echo가 HIGH인 시간 및
//초음파를 보낸다. 다 보내면 echo가 HIGH
                                     거리를 표시해준다.
(신호받기) 상태로 대기
                                       Serial.print("Duration:");
void loop(){
                                       Serial.print(duration);
 float duration, distance;
                                       Serial.print("\nDIstance:");
 digitalWrite(trigPin, HIGH);
                                       Serial.print(distance);
 delay(10);
                                       Serial.println("cm\n");
 digitalWrite(trigPin, LOW);
                                       delay(500);
 // echoPin 이 HIGH를 유지한 시간을 저
장 한다.
```

- 초음파의 속도는 340m/s 이다.
- 초음파가 발생되어 대상물체에 부딪히게 되면 반사되어 돌아오게 된다. 이의 시간차를 계산하면 거리를 계산할 수 있다.
- Trig가 초음파를 발생하는 신호이며, Echo가 반사되어 오는 초음파를 받는 역할을 한다.

1.3 오픈 솔루션(회로도, 소스코드 등) 분석

- □ 출처: http://diwellshop.com/product/dts-m300/86/
- □ 소스코드 분석 : 주석처리 ○ 적외선 온도센서

```
int SEND_COMMAND(unsigned char cCMD)
                                                                 digitalWrite(chipSelectPin , LOW); // CS Low Level
#include<SPI.h>
                                                                delayMicroseconds(10);
                                                                                                  // delay(10us)
                                                                SPI.transfer(cCMD);
                                                                                                 // Send 1st Byte
#define TARGET_CMD 0xA0
                                                    //
                                                                                                 // delay(10ms)
                                                                delay(10);
대상 오도 커맸드
                                                                T_low_byte = SPI.transfer(0x22); // Send 2nd Byte
#define SENSOR_CMD 0xA1
                                                    11
                                                                                                 //delay(10ms)
                                                                 delay(10):
센서 온도 커맨드
                                                                 T_high_byte = SPI.transfer(0x22); // Send 3rd Byte
                                                                 digitalWrite(chipSelectPin , HIGH); // CS High Level
const int chipSelectPin = 10;
unsigned char T_high_byte;
                                                                return (T_high_byte<<8 | T_low_byte); // 상위, 하위
unsigned char T_low_byte;
                                                             바이트 연산
int iTARGET, iSENSOR;
                               // 부호 2byte 온도 저장 변수
void setup() {
                                                             loop() {
 /* Initalize PORT */
                                                               // put your main code here, to run repeatedly:
 pinMode(MISO, INPUT);
 pinMode(chipSelectPin, OUTPUT);
                                                               while(1) {
 pinMode(MOSI, OUTPUT);
 pinMode(SCK, OUTPUT);
                                                                iTARGET = SEND_COMMAND(TARGET_CMD);
                                                                                  // 대상 온도 Read
 Serial.begin(9600);
                                                                delay(50);
                                                                               // 50ms : 이 라인을 지우지 마세요
  /* Setting CS & SPI */
  digitalWrite(chipSelectPin , HIGH); // CS High Level
                                                                 iSENSOR = SEND_COMMAND(SENSOR_CMD);
  SPI.setDataMode(SPI_MODE3);
                                      // Setting SPI Mode
                                                                                  // 센서 온도 Read
  SPI.setClockDivider(SPI_CLOCK_DIV16); // 16MHz/16 = 1MHz
                                                                 delay(500);
  SPI.setBitOrder(MSBFIRST);
                                     // MSB First
                                                                                  // 500ms : 이 라인을 지우지 마세요.
 SPI.begin();
                                    // Initialize SPI
                                                                 Serial.print("Target Temp : ");
 delay(500);
                                     // wating for DTS
                                                                 Serial.print(float(iTARGET)/100);
setup time
                                                                 Serial.print("
                                                                                Ambient Temp: ");
                                                                 Serial.println(float(iSENSOR)/100);
```

- 온도계산 프로세서를 내장하고 있어 정확한 온도 값 출력한다.
- 디지털 통신으로 온도 값 출력한다.
- 센서 온도와 대상 온도를 동시에 측정한다.

2. 제안 시스템 및 핵심기술

2.1 서비스 모델

< 그림 7. 서비스 모델 >

- □ 그림 7은 제품을 사용하여, 환자나 노약자, 어린이 등 대상으로 병원이 아니더라도, 간단 히 집에서 중요 신체 상태를 기록하여 병원에 전달해, 원격으로 간단한 진단 및 진찰을 제공하기 위함 모델임
- □ 전국 병원 통합 관리 시스템 APP(Application)을 통해 내원이 아니더라도, 의사와 소통이 가능 하며, 간단한 증상에 대한 예방과 처방 방법을 볼 수 있게 구현함
 - o 기본적으로 체중, 신장, 체온, 혈압, 맥박을 측정한 기록 LCD모니터로 확인을 하고 블루투스 통신을 통해 측정한 기록을 APP(Application)으로 전송 후 DB(Data Base)에 저장하여, 병원의 프로그램으로 확인이 가능하고, 의사가 APP(Application)통해 확인을 하고, 그에 대한 처방을 할 수 있게 함
 - o 체중, 신장, 체온, 혈압, 맥박 등은, 신장을 측정할 수 있게, 아두이노를 활용하여, 초음파센서, 비접촉 체온센서, 맥박센서, 무게센서, 혈압센서를 하나로 통합하여 간편하게 측정할 수 있음
 - o APP(Application)의 소통공간을 통해 이용자 끼리 같은 병이나, 이미 완치된 병에 대한 지식을 공유할 수 있게 게시판을 사용함. 실시간으로 파악할 수 있음

2.2 시스템 모델

< 그림 8. 시스템 모델 >

□ 시스템 구성

- Arduino Mega에 각종 센서 와 Bluetooth3.0 센서를 장착해 각 센서에서 측정 한 값을 Bluetooth 전송기능을 통하여 App으로 보냄
- o 초음파센서 (Ultrasonic Sensor)는 센서로 부터 초음파를 내보내 물체에 닿는 순간 다시 돌아오는 초음파를 재는 방식으로, 이번 작품에서는 이 점을 이용해 신장을 재는 용도로 사용하였음
- o 적외선센서 (Infrared Sensor)는 접촉을 하지 않고 원하는 물체 표면에 온도를 500ms 이 내에 정확하게 측정할 수 있는데 이번 작품에서는 이 점을 이용해 체온을 재는 용도로 사용하였음
- o 맥박센서 (Pulse Sensor)는 심장 박동에 따라 일어나는 동맥의 주기적인 움직임을 측정하는 센서로, 이번 작품에서는 이 점을 이용해 1분 동안의 측정값을 저장하여 맥박을 재는용도로 사용하였음
- o 블루투스센서 (Bluetooth Sensor)는 전파를 이용해서 짧은 거리의 데이터를 통신하는 방식으로 문자 정보 및 음성 정보를 비교적 낮은 속도로 디지털 정보를 무선통신을 통해 주고 받을 수 있는 센서로, 현재 5.0버전까지 개발이 되어있지만 이번 작품에선 3.0버전을 이용해 각 센서 에서 측정한 값을 App으로 전송하는데 사용하였음

2.3 핵심 솔루션

< 그림 9. 플로우 차트 >

- □ 개발한 모바일 헬스 케어 시스템의 상세설명은 다음과 같음
 - o 이 시스템은 건전지를 삽입, On/Off 버튼을 활용해 전원을 관리할 수 있고, 아두이노가 실행됨과 동시에 측정을 시작하게 됨
 - o 측정을 완료 시 측정값을 블루투스를 통해 APP에 전송
 - o 사용자 APP(Application)에 저장된 기록을 DB(Data Base)에 저장
 - o 저장된 기록을 의사 APP(Application)에서 확인 후 간단한 기록을 남김
 - o 사용자 APP(Application)에서 남긴 기록을 확인

2.3 핵심 솔루션

```
#include <Wire.h>
#include <SPI.h>
#include <NewPing.h>
#include <SoftwareSerial.h>
#include <LiquidCrystal_I2C.h> //각 센서들의 헤더파일
LiquidCrystal_I2C lcd(0x3F, 16, 2);//LCD 위치
#define TARGET_CMD 0xA0
#define USE ARDUINO INTERRUPTS true
#include <PulseSensorPlayground.h>//맥박센서 헤더파일
const int chipSelectPin = 10;
const int PulseWire = 0;
const int LED13 = 13; //pin번호
unsigned char T_high_byte;
unsigned char T_low_byte;
int iTARGET;
int trigPin = 8;
int echoPin = 9;//pin번호
int Threshold = 550;
NewPing sensor(trigPin, echoPin);
SoftwareSerial mySerial(2,3);
PulseSensorPlayground pulseSensor;
void setup()
  lcd.begin();
  lcd.backlight();
 /* Initalize PORT */
 pinMode(MISO, INPUT);
 pinMode(chipSelectPin , OUTPUT);
 pinMode(MOSI, OUTPUT);
 pinMode(SCK, OUTPUT);
 pinMode(trigPin, OUTPUT); // 센서 Trig 핀
 pinMode(echoPin, INPUT); // 센서 Echo 핀
 Serial.begin(9600);
 mySerial.begin(9600);
 pulseSensor.begin();
 pulseSensor.analogInput(PulseWire);
 pulseSensor.blinkOnPulse(LED13);
 pulseSensor.setThreshold(Threshold);
 digitalWrite(chipSelectPin , HIGH);
 SPI.setDataMode(SPI_MODE3);
 SPI.setClockDivider(SPI_CLOCK_DIV16);
 SPI.setBitOrder(MSBFIRST);
SPI.begin();
delay(500); //결과값 올라오는 속도
int SEND_COMMAND(unsigned char cCMD)
```



```
digitalWrite(chipSelectPin , LOW);
delayMicroseconds(10); // delay(10us)
SPI.transfer(cCMD); // Send 1st Byte
delay(10); // delay(10ms)
T_low_byte = SPI.transfer(0x22);
delay(10); //delay(10ms)
T_high_byte = SPI.transfer(0x22);
digitalWrite(chipSelectPin , HIGH);
return (T_high_byte<<8 | T_low_byte);
void loop()
 int myBPM = 0;
 myBPM = pulseSensor.getBeatsPerMinute();
 digitalWrite(trigPin, HIGH); // 센서에 Trig 신호 입력
 delayMicroseconds(500); // 10us 정도 유지
 digitalWrite(trigPin, LOW; // Trig 신호 off
 long duration = pulseIn(echoPin, HIGH); // Echo pin: HIGH->Low 간격을 측정
 long distance = (duration / 29 / 2)+12 ; // 거리(cm)로 변환
 char buf[20];
 snprintf(buf, sizeof(buf), "Distance %4d cm", distance); //신장 출력 부분
 lcd.setCursor(0, 0);
 lcd.println(buf);
 mySerial.print("신장:");
 mySerial.print(distance);
 mySerial.println(" cm");
long tempers = SEND_COMMAND(TARGET_CMD); // 대상 온도 Read
long temper = float(tempers/100);
snprintf(buf, sizeof(buf), "Temper %4d C ", temper); //체온 출력 부분
lcd.setCursor(0, 1);
lcd.println(buf);
mySerial.print("체온:");
mySerial.print(temper);
mySerial.println(" C");
if (pulseSensor.sawStartOfBeat()) { //심박 체온 부분
 mySerial.print("심박 : ");
 mySerial.println(myBPM/2);
delay(500);
```

□ 개발한 핵심 소스

- o 초음파센서, 적외선센서, 맥박센서 결합
- 각각 센서를 구동하는 오픈소스들을 한 소스로 결합했다.
- 소스들을 한 번의 실행으로 세 센서들을 구동시킬 수 있다.
- o LCD 출력
- 센서들로 측정한 값을 LCD보드에 출력할 수 있다.
- o 블루투스 연결
- 블루투스 모듈을 이용해 스마트폰과 연결해서 정보를 공유할 수 있다.

□ 활용 방안

- o 다른 센서들도 결합가능하다.
- 예를 들면, 혈압센서, 무게센서 등을 이용해 더 다양한 건강 측정을 할 수 있다.
- o 와이파이 연결
- 와이파이 연결로 개선하면 기계 한 개로 여러 명이서 측정할 수 있다.

3. 구현 및 실험 결과

3.1 구현결과

< 그림 10. 테스트 환경 >

□ 시스템 테스트 환경

- o 그림 10과 같이 On/Off Switch를 통해 전원을 제어 할 수 있음
- o 그림10은 제안한 서비스를 구현하기 위하며 Health Care 장비에 초음파센서(Ultrasonic Sensor), 적외선센서(Infrared Sensor), 맥박센서(Pulse Sensor)를 장착 함
- ㅇ 그림 10과 같이 측정한 값을 확인 할 수 있게 LCD Monitor를 장착 함

3.2 구현결과

< 그림 11. 실험결과 >

□ 구현 결과

- o 그림 11과 같이 Health Care 장비를 통해 키/체온을 측정
- o 그림 11과 같이 측정한 값을 블루투스(Bluetooth) 통해 실시간으로 Android App으로 전송되는 것을 확인함
- o 이후 측정값을 사용자 APP(Application)에 저장된 기록을 DB(Data Base)에 저장, 저장된 기록을 다른 Androind 기기의 APP(Application)에서 확인함

4. 결론

인류가 살면서 의식주를 비롯한 건강 문제는 기술이 나날이 발전하면서 여러 개의 통합형태의 발전 모습을 보이면서 다양한 분야에 활용되고 있음
o 한 번의 검사로, 사용자의 여러 건강 기능에 대해 측정할 수 있음
사용자의 신체 건강을 측정 후 블루투스를 통해 APP(Application)으로 전송, DB(Data Base)에 저장된 사용자의 건강 정보를 의사가 확인할 수 있고, 확인한 정보를 토대로 간단한 조치를 취할 수 있음
APP(Application)내의 의사들이 공동으로 적어서 수정 보완할 수 있는 간단한 질병에대한 예방 방법과, 처방 방법을 기록해 사용자들이 의사가 적은 글을 확인할 수 있음
아두이노를 사용한 측정기기로 굳이 진단 목적이 아니더라도, 간단하게 건강 체크 및 신장 체크를 할 수 있고, APP(Application)를 활용해 기록으로 저장이 가능함

5. 참고문헌

- [1] 앱인벤터+아두이노 스마트폰 앱 프로젝트 (블루투스 와이파이 통신을 이용한) / 우지윤 저
- [2] 앱 인벤터 (쉽고 재미있게 만드는 앱 프로그래밍) / 이종원 저
- [3] 모두의 아두이노 (누구나 쉽게 배우는 전자 회로 공작과 프로그래밍) /다카모토 다카요리 저
- [4] 아두이노, 상상을 현실로 만드는 프로젝트 입문편 /최재규, 이준혁 저

