

Analysis of Gym Customer Churn

PREDICTIVE MODELING AND INSIGHTS

Introduction

- Overview of the project
- Objective: To predict customer churn using various supervised learning models
- Importance of predicting customer churn for business decision-making

Dataset Description

- Source of the dataset: The dataset being used is from Kaggle Dataset link:
 - https://www.kaggle.com/datasets/adrianvinueza/gy m-customers-features-and-churn
- Brief description of the dataset: The dataset has 4000 rows, 14 columns
- Target variable: Churn (Yes/No)

GYM Churn Proportion

The GYM customer churn percentage is 26.5%

For every 100 customers around 26 members are leaving GYM.

The above results are based on the provided data set of 4000 records.

Data Exploration

- The dataset has 4000 records 14 columns and clean data.
- There are no null values
- There are no duplicates
- Target value is Churn it is a NUMERICAL value "0" and "1". Its data type is INT.

Data Cleaning

```
# Handling missing values, encoding categorical variables, scaling numerical variables
  # Identify columns with missing values
  missing_values = data.isnull().sum()
  missing_values.info()
  # Impute missing values for numerical columns with median
  num cols = data.select dtypes(include=['float64', 'int64']).columns
  data[num_cols] = data[num_cols].fillna(data[num_cols].median())
  # Impute missing values for categorical columns with mode
  cat_cols = data.select_dtypes(include=['object']).columns
  for col in cat cols:
      if data[col].isnull().any():
          mode value = data[col].mode()
          if not mode_value.empty:
              data[col].fillna(mode_value[0], inplace=True)
  # Encoding categorical variables using OneHotEncoder
  data = pd.get_dummies(data, columns=cat_cols, drop_first=True)
  <class 'pandas.core.series.Series'>
  Index: 14 entries, gender to Churn
  Series name: None
  Non-Null Count Dtype
  14 non-null int64
  dtypes: int64(1)
```

Data Preprocessing

- Steps taken for data cleaning (e.g., handling missing values, encoding categorical variables)
- Feature engineering (e.g., creating new features, scaling)
- Splitting the data into training and test sets

#identify datatypes data.dtypes

]:	gender Near_Location Partner Promo_friends Phone Contract_period Group_visits Age Avg_additional_charges_total Month_to_end_contract Lifetime Avg_class_frequency_total Avg_class frequency_current month	int64 int64 int64 int64 int64 int64 int64 float64 float64 float64 float64
	Churn	int64
	dtype: object	

Exploratory Data Analysis

- Key insights from EDA
- Distribution of the target variable
- Important features and their distributions contract period, Avg class frequency, monthly Avg class frequency.
- Correlation between features and the target variable
- Visualizations: Histograms, bar plots, correlation heatmaps

Relationship between target and features

Model Selection

Overview of the models used:

- K-Nearest Neighbors (KNN)
- Logistic Regression
- Random Forest
- Support Vector Machine (SVM)
- XGBoost

Test-Train

- 80% of data for training
- 20% of data for testing
- StandardScaler used to normalize features
- Applied PCA to the pipeline with 95% variance

```
M # Select relevant features (dropping the )
X = data.drop(['Churn'], axis=1)
y = data['Churn']
# Churn is the target variable
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=30)
```

```
#Applying PCA to the scaled features
for name, model in models.items():
    pipe = Pipeline([('scaler', StandardScaler()), ('pca', PCA(n_components=0.95)), (name, model)])
    pipe.fit(X_train_scaled, y_train_encoded)
```

Model Comparison - Classification Report

Accuracy	Precision	Recall	F1 Score
0.85	0.769953052	0.732142857	0.750572082
0.9	0.899521531	0.839285714	0.868360277
0.87	0.89	0.794642857	0.839622642
0.89	0.905472637	0.8125	0.856470588
0.87	0.94444444	0.834821429	0.886255924
	0.85 0.9 0.87 0.89	0.85 0.769953052 0.9 0.899521531 0.87 0.89 0.89 0.905472637	0.85 0.769953052 0.732142857 0.9 0.899521531 0.839285714 0.87 0.89 0.794642857 0.89 0.905472637 0.8125

K-Nearest Neighbors (KNN):

 KNN showed significant improvement after hyperparameter tuning, achieving an accuracy of 0.87125.

Logistic Regression:

 Logistic Regression exhibited a higher accuracy of around 90% compared to KNN, with better precision, recall, and F1-score for predicting churn.

Random Forest:

• The Random Forest model achieved an accuracy of around 88%, with precision, recall, and F1-score for predicting churn.

Support Vector Machine (SVM):

• SVM exhibited an accuracy of about 89% with relatively balanced precision and recall for predicting churn.

XGBoost:

 XGBoost, a gradient boosting algorithm, achieved an accuracy of about 87% with similar precision, recall, and F1-score for predicting churn as other models.

Conclusion

- Logistic Regression and SVM seem to be the best performers on this dataset.
 Given their high accuracy and balanced classification reports, they are good candidates for further tuning and evaluation.
- Random Forest is a solid performer and might benefit from further hyperparameter tuning. KNN showed good improvement after tuning, making it a viable option.
- XGBoost is also a strong candidate, particularly for its ability to handle complex patterns, but it might need more extensive tuning to match the performance of Logistic Regression and SVM.

Q&A