Cumbuca Case

Matheus Pasche

29/05/2022

DNA

O Rbase contém uma função relativamente pouco utilizada, mas poderosa para traduções simples: chartr

```
#' nucleotides
#' Esta função traduz DNA para RNA
#' @param dna character com nucleotideos
#'
#' @return
#' @export
#'
#' @examples
#' nucleotides("CGAT")
nucleotides <- function(dna) {</pre>
if(!is.character(dna)){stop("Please insert character nucleotides, such as ACGT")}
  old <- "GCTA"
  new <- "CGAU"
  translate <- chartr(</pre>
    old = old,
    new = new
    x = dna
  return(translate)
}
test_that("Translate dna", {
  expect_equal(nucleotides("GACATGG"), "CUGUACC")
  expect_equal(nucleotides("AAATTT"), "UUUAAA")
  expect_error(nucleotides(1234))
})
```

Test passed

NycFlights

É possível identificar que o dataframe possui alguns voos sem informação sobre partida e chegada. Como representam menos de 3% dos registros, optarei por eliminar a fim de evitar problemas.

Table 1: Contagem de NAs

Variable	NA Count
year	0
month	0
day	0
dep_time	8255
$sched_dep_time$	0
dep_delay	8255
arr_time	8713
$sched_arr_time$	0
arr_delay	9430
carrier	0
flight	0
tailnum	2512
origin	0
dest	0
air_time	9430
distance	0
hour	0
minute	0
$time_hour$	0
$total_delay$	9430
$month_year$	0
time	0
status	9430

```
flights <- flights %>% filter(!is.na(status))
```

Questão 1:

A quantidade total de voos, que inclui atrasados e não atrasados, não variou consideravelmente ao longo dos meses.

Table 2: Quantidade de voos por mês e status

month	delay	early	in time	Total
1	10.977	15.043	378	26.398
2	10.010	13.310	291	23.611
3	11.311	16.274	317	27.902
4	12.240	14.987	337	27.564
5	10.698	17.137	293	28.128
6	12.900	13.886	289	27.075
7	13.832	14.161	300	28.293
8	12.081	16.330	345	28.756
9	7.163	19.585	262	27.010
10	9.638	18.599	381	28.618
11	9.426	17.185	360	26.971
12	14.783	11.904	333	27.020

Tendo em vista que estamos interessados em analisar o atraso, foram retirados os voos com saldo total (embarque + desembarque) negativo. Abaixo podemos identificar os primeiros registros do atraso médio, mediano e estatísticas percentuais para cada dia do ano. Evidentemente não é prático exibir todos os 365 dias.

```
stats <- function(.data, variable) {</pre>
      .data %>%
           summarise(
                  count = n(),
                  mean = mean({{variable}}),
                  median = median({{variable}}),
                  sd = sd({{variable}}),
                  var = var({{variable}}),
                  'p.01'=quantile({{variable}}, probs = .1),
                  'p.025'=quantile({{variable}}, probs = .25),
                   'p.09'=quantile({{variable}}, probs = .9),
                   'p.99'=quantile({{variable}}, probs = .99)
}
flights %>%
    filter(status == 'delay') %>%
    with_groups(time, ~stats(., variable = total_delay))%>%
    head() %>%
    knitr::kable(caption = 'Registros de estatísticas descriticas por dia', digits=1)
```

Table 3: Registros de estatísticas descriticas por dia

time	count	mean	median	sd	var	p.01	p.025	p.09	p.99
2013-01-01	447	57.1	23.0	117.3	13769.2	4	9.0	139.8	514.7
2013-01-02	540	56.8	24.5	88.6	7841.8	4	9.0	157.2	399.3
2013-01-03	455	51.4	24.0	74.5	5542.9	4	10.0	129.0	349.5
2013-01-04	318	56.0	30.5	71.7	5143.6	5	10.2	130.3	334.4
2013-01-05	255	41.8	17.0	72.2	5214.7	4	7.0	120.0	340.3
2013-01-06	371	44.1	23.0	56.3	3171.6	4	9.0	111.0	284.0

Para fins de análise do desempenho e tendo em vista que em um único dia há registro de vários voos, agregaremos os dados em meses. Inicialmente podemos verificar que os períodos de maior atraso mediano são junho-julho e dezembro.

```
flights %>%
  filter(!is.na(air_time), status == 'delay') %>%
  with_groups(month, ~stats(., variable = total_delay)) %>%
  knitr::kable(caption = 'Registros de estatísticas descriticas por mês', digits=1)
```

Table 4: Registros de estatísticas descriticas por mês

month	count	mean	median	sd	var	p.01	p.025	p.09	p.99
1	10977	63.8	27	97.3	9476.6	4.0	10	172.4	435.7
2	10010	63.8	28	93.8	8795.0	4.0	10	171.0	427.0
3	11311	76.2	35	105.2	11075.3	4.0	12	200.0	502.8
4	12240	79.5	37	110.2	12139.3	5.0	13	212.0	499.0
5	10698	78.5	40	104.7	10972.1	5.0	14	201.0	480.0
6	12900	98.6	51	126.6	16029.3	5.0	16	260.1	559.0
7	13832	98.4	50	125.9	15847.7	6.0	16	255.0	580.7
8	12081	71.8	33	97.1	9425.7	4.0	12	193.0	457.2
9	7163	72.6	29	115.1	13258.5	3.2	10	196.8	559.1
10	9638	55.5	24	83.1	6901.9	3.0	8	148.0	396.6
11	9426	50.7	23	77.6	6015.4	3.0	9	130.0	365.2
12	14783	70.9	35	100.0	9993.3	5.0	13	182.0	470.4

Tendo em vista que a quantidade total de voos no mês tende a se manter constante, o que poderia explicar que a quantidade de minutos de atraso médio em julho pode ser aproximadamente o dobro do observado em novembro? A explicação mais imediata com base em senso comum é a sazonalidade dos feriados e período de férias. Os meses de junho a agosto marcam as férias de verão dos colégios e universidades, enquanto o mês de dezembro é o período de reuniões familiares para as festas de fim de ano.

```
flights %>%
  filter(status == 'delay') %>%
  with_groups(time, ~stats(., variable = total_delay)) %>%
  mutate(month = format(time, '%m')) %>%
  ggplot(aes(x = month, y= mean, fill = month))+
  geom_boxplot(show.legend = F)+
  pilot::scale_fill_pilot()+
  pilot::theme_pilot()+
  labs(title = 'Media dos atrasos por mes', y = 'Média', x = 'Mês')
```


#

A conexão exata entre os fatos de termos feriados e períodos festivos e a quantidade total de voos médios por mês não se elevar tanto nesses períodos pode se dar por algumas hipóteses, nem todas testáveis com os dados disponíveis: bagagens maiores nos períodos de feriados prolongados podem atrasar o embarque dos voos; ii) mudança da composição dos destinos: mais viagens para a California e Florida no verão; iii) questões de clima: a neve, os fortes ventos e a visibilidade podem atrapalhar a decolagem, sobretudo no inverno; iv) uma interseção em maior ou menor grau de todos os aspectos anteriores.

Como um dos critérios de avaliação é a análise direta ao ponto, destacarei um fato que corrobora a hipótese ii: se coletarmos os destinos ao longo dos meses, veremos que de fato há sazonalidade. A tabela abaixo mostra os 5 principais destinos dos voos partindo de Nova Iorque por mês. Há regularidade na relação com Atlanta e Chicago, provavelmente por relações financeiras, mas observe que os aeroportos de Los Angeles e São Francisco aparecem mais frequentemente no top 5 em períodos de férias.

Table 5: Principais aeroportos de destino por mês

name	1	2	3	4	5	6	7	8	9	10	11	12
Hartsfield Jackson Atlanta Intl	1	1	1	1	2	3	3	3	3	2	1	1
Chicago Ohare Intl	2	2	2	3	1	1	2	1	1	1	2	
General Edward Lawrence Logan	3	3	3	4	4	4	4	4	4	4	4	
Intl												
Orlando Intl	4	4	4	5			5	5				3
Fort Lauderdale Hollywood Intl	5	5	5									
Los Angeles Intl				2	3	2	1	2	2	3	3	2
San Francisco Intl					5	5						4
Charlotte Douglas Intl									5	5	5	5

Questão 2: Empresas aéreas e atrasos

Inicialmente, observamos que três empresas concentram mais de 10% cada dos voos atrasados: ExpressJet Airlines, UnitedAir Lines e JetBlue Airways. Juntas, a participação das empresas no total de atrasos é de cerca de 2/3.

```
Companies = flights %>%
  filter(!is.na(air_time)) %>%
  with_groups(c(carrier ,status), ~summarise(.,count = n())) %>%
  left_join(nycflights13::airlines) %>%
  with_groups(name, ~mutate(., propDelay = count/sum(count), totalFlights = sum(count))) %>%
  select(name, status, count, propDelay, totalFlights)
Companies %>%
  filter(status == 'delay') %>%
  mutate(Razao = totalFlights/sum(totalFlights),
         AboveTen = case_when( Razao >= .10 ~ 'Mais de 10% de atrasos',
                                   TRUE~ 'Menos de 10% de atrasos')
                                  ) %>%
  ggplot(aes(
             x = Razao,
             y = reorder(name, Razao),
             fill = AboveTen)
         )+
  geom_bar(stat = 'identity')+
  geom_text(aes(label = scales::percent(Razao %>%round(2))), hjust = 1)+
  pilot::scale_fill_pilot()+
  pilot::theme_pilot()+
  labs(title = '% dos voos atrasados',
       x= '% dos voos atrasados',
       y= 'Empresas')+
  theme(legend.position="bottom")
```

% dos voos atrasados

No entanto, não surpreendentemente as empresas também detêm os quatro maiores números totais de voos. Em uma operação em larga escala em um produto há décadas realizado de forma constante, regulada e previsível, é de certa forma esperado que a proporção de voos com atraso siga um nível de estabilidade. No entanto, a pergunta original é: elas concentram a maior parte do atraso?

```
OrdenacoesCompanies = Companies %>%
  filter(status =='delay') %>%
  select(-status) %>%
  rename(`Count Delay` = count)

OrdenacoesCompanies%>%
  arrange(-totalFlights)
```

```
## # A tibble: 16 x 4
##
      name
                                    `Count Delay` propDelay totalFlights
##
      <chr>
                                             <int>
                                                        <dbl>
                                                                     <int>
    1 United Air Lines Inc.
##
                                             24514
                                                       0.424
                                                                     57782
    2 JetBlue Airways
                                                       0.441
##
                                             23839
                                                                     54049
##
    3 ExpressJet Airlines Inc.
                                             24566
                                                       0.481
                                                                     51108
##
    4 Delta Air Lines Inc.
                                             16616
                                                       0.349
                                                                     47658
##
    5 American Airlines Inc.
                                                       0.334
                                             10668
                                                                     31947
##
    6 Envoy Air
                                             10818
                                                       0.432
                                                                     25037
##
    7 US Airways Inc.
                                              6597
                                                       0.333
                                                                     19831
##
    8 Endeavor Air Inc.
                                              6892
                                                       0.399
                                                                     17294
    9 Southwest Airlines Co.
                                              5852
                                                       0.486
                                                                     12044
## 10 Virgin America
                                              1888
                                                       0.369
                                                                      5116
## 11 AirTran Airways Corporation
                                              1854
                                                       0.584
                                                                      3175
## 12 Alaska Airlines Inc.
                                                       0.269
                                                                       709
                                               191
## 13 Frontier Airlines Inc.
                                                                        681
                                               412
                                                       0.605
```

## 14 Mesa Airlines Inc.	257	0.472	544
## 15 Hawaiian Airlines Inc.	87	0.254	342
## 16 SkyWest Airlines Inc	8	0.276	29

Na tabela acima observamos que existe o quarteto já mencionado de grandes empresas com grandes quantidades de voos, seguido por um quinteto de empresas com quantidades de voos médias (American Airlines, Envoy Air, US Airways Inc., Endeavor Air Inc., SouthWest Airlines Co.) e as demais com poucos voos. Esta será a divisão por porte da empresa.

Podemos também dividir pela proporção de atrasos: as muito eficientes, com menos de 35% dos voos, as medianas que estão entre 35,1% até 45% de voos com atraso e as demais, que tem valores muito próximos ou maiores que a metade das operações em atraso.

Em um trabalho mais aprofundado seria adequado fazer uso de algoritmos de aproximação de vizinhanças a fim de definir não tão arbitrariamente os pontos de corte. No entanto, uma vez definido o corte, o problema vira uma questão de probabilidade condicional:

$$P(Atraso|GrandeEmpresa) = \frac{P(GrandeEmpresa \cap Atraso)}{P(Atraso)} \tag{1}$$

OrdenacoesCompanies %>%
 arrange(propDelay)

##	# .	A tibble: 16 x 4			
##		name	`Count Delay`	propDelay	totalFlights
##		<chr></chr>	<int></int>	<dbl></dbl>	<int></int>
##	1	Hawaiian Airlines Inc.	87	0.254	342
##	2	Alaska Airlines Inc.	191	0.269	709
##	3	SkyWest Airlines Inc.	8	0.276	29
##	4	US Airways Inc.	6597	0.333	19831
##	5	American Airlines Inc.	10668	0.334	31947
##	6	Delta Air Lines Inc.	16616	0.349	47658
##	7	Virgin America	1888	0.369	5116
##	8	Endeavor Air Inc.	6892	0.399	17294
##	9	United Air Lines Inc.	24514	0.424	57782
##	10	Envoy Air	10818	0.432	25037
##	11	JetBlue Airways	23839	0.441	54049
##	12	Mesa Airlines Inc.	257	0.472	544
##	13	ExpressJet Airlines Inc.	24566	0.481	51108
##	14	Southwest Airlines Co.	5852	0.486	12044
##	15	AirTran Airways Corporation	1854	0.584	3175
##	16	Frontier Airlines Inc.	412	0.605	681