Deep machine learning for Computer Vision

Andrii Liubonko Samsung R&D Institute Ukraine

Contents

Object Localization

Object Detection

Datasets Metrics

Object Detection [RCNN Family]

R-CNN

Fast R-CNN

Faster R-CNN

Single Shot Detector [SSD]

Comparison

Summary

Visual Perception Problems

Classification + Localization

Object Detection

Semantic Segmentation

Instance Segmentation

Localization

[Score] dog: 0.98

cow: 0.01

[Bounding Box] (x,y,h,w)

Image Classification

Image Classification -> Classification + Localization

Image Classification -> Classification + Localization

Localization [Training]

Localization [Variations]

9/56

Localization [Sliding Window]

Window positions + score maps

Box regression outputs

Final Predictions

Localization [Results on ImageNet]

AlexNet: Localization method not published

Overfeat: Multiscale convolutional regression with box merging

VGG: Same as Overfeat, but fewer scales and locations; simpler method, gains all due to deeper features

ResNet: Different localization method (RPN) and much deeper features

Contents

Object Localization

Object Detection

Datasets Metrics

Object Detection [RCNN Family]

R-CNN

Fast R-CNN

Faster R-CNN

Single Shot Detector [SSD]

Comparison

Summary

Object Detection

Object Detection [Datasets]

Name	# Images (trainval)	# Classes	Last updated
Open Images Dataset V4	1.74M	600	2018
ImageNet	450k	200	2015
COCO	120K	80	2014
KITTI Vision	7K	3	2014
Pascal VOC	12K	20	2012

$$IoU = \frac{A \cap B}{A \cup B}$$

A - ground truth (GT)

B - detector result (P)

Precision? Recall?

Precision? Recall?

Object Detection [PASCAL VOC 2007 Results, mAP %]

Object Detection [PASCAL VOC 2007 Results, mAP %]

Object Detection [MS COCO Results, AP %]

ICCV 2017 Ross Girshick Tutorial 22/56

Object Detection [COCO Results, AP %]

ICCV 2017 Ross Girshick Tutorial

Contents

Object Localization

Object Detection
Datasets

Metrics

Object Detection [RCNN Family]

R-CNN

Fast R-CNN

Faster R-CNN

Single Shot Detector [SSD]

Comparison

Summary

Faster

Fast

R-CNN (Regions with CNN features)

2013 arXiv:1311.2524

2015 arXiv:1504.08083

2015 arXiv:1506.01497

Ross Girshick [Facebook Al Research (FAIR)]

http://www.rossgirshick.info/

R-CNN: Regions with CNN features

- Extract possible objects using a region proposal method (the most popular one being Selective Search).
- Extract features from each region using a CNN.
- Classify each region with SVMs.

Object Detection [Region Proposal]

Bottom-up segmentation, merging regions at multiple scales Convert regions to boxes

Uijlings et al, "Selective Search for Object Recognition", IJCV 2013

R-CNN Summary

Pros:

- generalization of CNN features for detection problem;
- almost 50% improvement on the object detection challenge;
- "when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost"

Cons:

- time & memory inefficiency;
- complex training;
- relied upon external region proposal generator (Selective Search);

Fast R-CNN

- Use Selective Search to generate object proposals;
- Apply the CNN on the complete image and then used both Region of Interest (Rol) Pooling on the feature map;
- Use feed forward network for classification and regression;

Fast R-CNN Summary

Pros:

- end-to-end differentiable model, which is easier to train;
- much faster training time (Fast R-CNN trains the very deep VGG16 network 9x faster than R-CNN, is 213x faster at test-time);
- better accuracy than R-CNN

Cons:

 relied upon external region proposal generator (Selective Search), similar to R-CNN;

Contents

Object Localization

Object Detection
Datasets
Metrics

Object Detection [RCNN Family]

R-CNN Fast R-CNN

Faster R-CNN

Single Shot Detector [SSD]

Comparison

Summary

Faster R-CNN (Overall architecture)

dog, score: 0.98

ball, score: 0.6

dog, score: 0.98

ball, score: 0.8

Faster R-CNN [Base Network]

Faster R-CNN [Anchors]

Anchors are fixed bounding boxes that are placed throughout the image with different sizes and ratios that are going to be used for reference when first predicting object locations.

- set of sizes (e.g. 64px, 128px, 256px)
- set of ratios between width and height of boxes (e.g. 0.5, 1, 1.5)

Faster R-CNN [Region Proposal Network]

RPN takes all the reference boxes (anchors) and outputs a set of good proposals for objects.

Faster R-CNN [Region Proposal Network]

RPN output:

score (object) = 0.9 score (background) = 0.1

 Δx center = 3 Δy center = 10 Δw = 10 Δh = 40

default anchor position and size: *Xa, Ya, Wa, Ha*

 $X = \Delta x center * Wa + Xa$ $Y = \Delta y center * Wa + Ya$ $W = Wa * exp(\Delta w)$ $H = Ha * exp(\Delta h)$ proposal box position and size: *X, Y, W, H*

Faster R-CNN [Region of Interest Pooling]

Fixed size feature maps are needed for the det.&class. part (R-CNN) in order to classify them into a fixed number of classes.

crop the convolutional features using each proposal and then resize to a fixed sized 14×14×D using interpolation (usually bilinear). After cropping, max pooling with a 2x2 kernel is used to get a final 7×7×D for each proposal.

Faster R-CNN [Region-based CNN]

Faster R-CNN [Time]

R-CNN Test-Time Speed

Faster R-CNN [Training]

$$L(\{p_i\}, \{t_i\}) = \frac{1}{N_{cls}} \sum_{i} L_{cls}(p_i, p_i^*) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*)$$

mini batch of size 256 — trying to maintain a balanced ratio between foreground and background anchors.

The RPN uses all the anchors selected for the mini batch to calculate the classification loss using binary cross entropy. Then, it uses only those minibatch anchors marked as foreground to calculate the regression loss.

for the regression error, the paper uses Smooth L1 loss. Smooth L1 is basically L1, but when the L1 error is small enough, defined by a certain σ , the error is considered almost correct and the loss diminishes at a faster rate.

41/56

Contents

Object Localization

Object Detection
Datasets

Metrics

Object Detection [RCNN Family]

R-CNN

Fast R-CNN

Faster R-CNN

Single Shot Detector [SSD]

Comparison

Summary

SSD architecture

43/56

Final detection

SSD architecture [Detector & classifier]

- # default boxes = 6
- 20 + 1 classes
- 4 numbers for BB

- $126 = 21 \times 6$
- \bullet 24 = 4 x 6
- $150 = 5 \times 5 \times 6$

SSD architecture. [Corrections]

5x5x126

5x5x21

SSD architecture

Non-maximum Suppression

SSD [Training]

$$\begin{split} L(x,c,l,g) &= \frac{1}{N} (L_{conf}(x,c) + \alpha L_{loc}(x,l,g)) \\ L_{conf}(x,c) &= -\sum_{i \in Pos}^{N} x_{ij}^{p} log(\hat{c}_{i}^{p}) - \sum_{i \in Neg} log(\hat{c}_{i}^{0}) \quad \text{where} \quad \hat{c}_{i}^{p} = \frac{\exp(c_{i}^{p})}{\sum_{p} \exp(c_{i}^{p})} \\ L_{loc}(x,l,g) &= \sum_{i \in Pos}^{N} \sum_{m \in \{cx,cy,w,h\}} x_{ij}^{k} \operatorname{smooth}_{L1}(l_{i}^{m} - \hat{g}_{j}^{m}) \\ \hat{g}_{j}^{cx} &= (g_{j}^{cx} - d_{i}^{cx})/d_{i}^{w} \qquad \hat{g}_{j}^{cy} = (g_{j}^{cy} - d_{i}^{cy})/d_{i}^{h} \\ \hat{g}_{j}^{w} &= \log\left(\frac{g_{j}^{w}}{d^{w}}\right) \qquad \hat{g}_{j}^{h} = \log\left(\frac{g_{j}^{h}}{d^{h}}\right) \end{split}$$

Heavy use of data augmentation.

Contents

Object Localization

Object Detection
Datasets

Metrics

Object Detection [RCNN Family]

R-CNN

Fast R-CNN

Faster R-CNN

Single Shot Detector [SSD]

Comparison

Summary

Object Detection [Comparison]

arXiv:1611.10012 52/56

Object Detection [Comparison]

arXiv:1611.10012 53/56

Object Detection [Comparison]

Figure 4: Accuracy stratified by object size, meta-architecture and feature extractor, We fix the image resolution to 300.

arXiv:1611.10012 54/56

Contents

Object Localization

Object Detection

Datasets Metrics

Object Detection [RCNN Family]

R-CNN

Fast R-CNN

Faster R-CNN

Single Shot Detector [SSD]

Comparison

Summary

Summary

Object Localization, Object Detection tasks

Two stage detector [Faster-RCNN]

- RPN
- End-to-end
- Best accuracy

One stage detector [SSD architecture]

- Use of multiple convolutional maps to deal with scales;
- More default bonding boxes -> the better the result;
- Comparable to Fast*-rCNN family but faster;