ergoCub Finger PID tuning

Copyright (C) 2023 Fondazione Istitito Italiano di Tecnologia (IIT)

All Rights Reserved.

Read and plot datasets

Run identification as process model

We target a continuous LTI model in the form

$$\frac{y}{u} = \frac{k(s - z_1)}{(s - p_1)(s - p_2)}$$

The poles can be real or complex conjugate.

```
ans =
   From input "u1" to output "y1":
    -22.728 (s+0.01721)
    -----(s+16.95) (s+0.5272)

Continuous-time zero/pole/gain model.
```

Plot results.

Model Properties

name: "Validation set 1 result"

value: 40.9043

Add integrator for position control

We change the IO relationship from $\frac{\dot{\theta}}{u}$ to $\frac{\theta}{u}$ since we want to control the finger position.

Run autotuning

Here we define the specifications to tune the position controller in a robust way, and run the tuning algorithm.

Define tuning goals

Define the desired specifications.

option 3 - custom

Ts:0.05, responsetime:0.5, dcerror:0.005, peakerror:1.1, Overshoot:20

Define the goals.

hard_goals: tracking

soft_goals: margin, overshoot

Tune up the controller

Tune a PI controller. The D is zero since the system is highly damped due to friction. Plot tuning results.

Get the discretized controller.

Cz =

with
$$Kp = -2.78$$
, $Ki = -1.52$, $Kd = -0.158$, $Tf = 0.01$, $Ts = 0.05$

Sample time: 0.05 seconds

Discrete-time PIDF controller in parallel form.

Model Properties