Cryptography Engineering

- Lecture 5 (Nov 18, 2024)
- Today's notes:
 - Key Ratcheting (Continue)
 - Forward/Backward Secrecy
 - Diffie-Hellman Ratcheting

No homework

- KDF chain
 - KDF: Key derivation function

• A toy example of instant messaging using symmetric-key ratcheting

*We ignore the auxiliary input to KDF

• A toy example of instant messaging using symmetric-key ratcheting

*We ignore the auxiliary input to KDF

• A toy example of instant messaging using symmetric-key ratcheting

*We ignore the auxiliary input to KDF

• A toy example of instant messaging using symmetric-key ratcheting

*We ignore the auxiliary input to KDF

Make the first message 0-RTT (Zero Round Time Trip)...

Long-term secret keys are compromised, but past communication remains secure...

Initial_key (of X3DH)= $KDF(DH_1, DH_2, DH_3, DH_4)$

• Future communication remains secure even if a current session key is compromised

• Future communication remains secure even if a current session key is compromised

- X3DH + Symmetric-key Ratcheting
 - X3DH provides Forward Secrecy
 - Current session key compromises does not lead to the compromise of previous session keys
 - (by the one-wayness of KDF in Symmetric-key Ratcheting)
 - No Backward Secrecy

- X3DH + Symmetric-key Ratcheting
 - X3DH provides Forward Secrecy
 - Current session key compromises does not lead to the compromise of previous session keys
 - (by the one-wayness of KDF in Symmetric-key Ratcheting)
 - No Backward Secrecy

Solution: Diffie-Hellman Ratcheting

• A toy example: Running DHKE continuously with rotating ephemeral keys...

• A toy example: Running DHKE continuously with rotating ephemeral keys...

• A toy example: Running DHKE continuously with rotating ephemeral keys...

Bob's DH ratchet step

Double Ratcheting

- The main idea: Combine Symmetric-key Ratcheting and Diffie-Hellman Ratcheting
 - DH Ratcheting generates fresh shared DH secrets continuously via rotating new ephemeral keys...
 - These fresh DH secrets feed into Symmetric-key Ratcheting to add new secret information...

More details will be explained in the next lecture

Coding Tasks

• Implement the Diffie-Hellman Ratcheting algorithm (can be without sockets).

Homework

No Homework

...but the **deadline** for homework in Lectures 1 and 2 is

22.11.2024 at 23:59 (this Friday evening)

Further Reading

- Old news -- WhatsApp's Signal Protocol integration is now complete: https://signal.org/blog/whatsapp-complete/
- Technical Documentations of Signal: https://signal.org/docs/
- Cohn-Gordon et al's security analysis of Signal: https://eprint.iacr.org/2016/1013