CS 429/529 Machine Learning

Logistics

- Instructor: Trilce Estrada
 - Email: estrada@cs.unm.edu
 - Office: FEC 325
 - Office hours: Tuesday 11-1 and —Thursday 11-12
- TA: Dejun Jiang
 - Email: <u>pwinter@unm.edu</u>
 - Office: FEC 126
 - Office hours: Wednesday
- Web: UNM Learn

Syllabus

 http://www.cs.unm.edu/~estrada/teaching/ trilce/index.php?n=ML.Syllabus

Source Materials

 T. Mitchell, *Machine Learning*, McGraw-Hill

 C. Bishop, Pattern Recognition and Machine Learning, Springer

Online notes (available at UNM Learn)

So What Is Machine Learning?

- Automating automation
- Getting computers to program themselves
- Writing software is the bottleneck
- Let the data do the work instead!

Traditional Programming

Machine Learning

Sample Applications

- Web search
- Computational biology
- Finance
- E-commerce
- Space exploration
- Robotics
- Information extraction
- Social networks
- Debugging
- [Your favorite area]

ML in a Nutshell

- Tens of thousands of machine learning algorithms
- Hundreds new every year
- Every machine learning algorithm has three components:
 - Representation
 - Evaluation
 - Optimization

Representation

- Decision trees
- Sets of rules / Logic programs
- Instances
- Graphical models (Bayes/Markov nets)
- Neural networks
- Support vector machines
- Model ensembles
- Etc.

Evaluation

- Accuracy
- Precision and recall
- Squared error
- Likelihood
- Posterior probability
- Cost / Utility
- Margin
- Entropy
- K-L divergence
- Etc.

Optimization

- Combinatorial optimization
 - E.g.: Greedy search
- Convex optimization
 - E.g.: Gradient descent
- Constrained optimization
 - E.g.: Linear programming

Types of Learning

- Supervised (inductive) learning
 - Training data includes desired outputs
- Unsupervised learning
 - Training data does not include desired outputs
- Semi-supervised learning
 - Training data includes a few desired outputs
- Reinforcement learning
 - Rewards from sequence of actions

Inductive Learning

- Given examples of a function (X, F(X))
- Predict function F(X) for new examples X
 - Discrete F(X): Classification
 - Continuous F(X): Regression
 - -F(X) = Probability(X): Probability estimation

What We'll Cover

Supervised learning

- Decision tree induction
- Rule induction
- Instance-based learning
- Bayesian learning
- Neural networks
- Support vector machines
- Model ensembles
- Learning theory

Unsupervised learning

- Clustering
- Dimensionality reduction

Formal definition of Machine Learning

- T. Mitchell: Well posed machine learning
- Improving performance via experience
- Formally, a computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, it its performance at tasks in T as measured by P, improves with experience E.

Example 1: A Chess learning problem

- Task T: playing chess
- Performance measure P: percent of games won against opponents
- Training Experience E: playing practice games against itself

Example 2: Autonomous Vehicle Problem

- Task T: driving on a public highway/roads using vision sensors
- Performance Measure P: percentage of time the vehicle is involved in an accident
- Training Experience E: a sequence of images and steering commands recorded while observing a human driver

Appropriate applications for supervised learning

- Situations where:
 - -There is no human expert
 - Humans can perform the task but can't describe how they do it
 - -The desired function is changing frequently
 - -Each user needs a customized function

Inductive Learning

Supervised Learning

• Given: Training examples $\langle \mathbf{x}, f(\mathbf{x}) \rangle$ for some unknown function f.

• Find: A good approximation to f.

Example Applications

• Credit risk assessment

x: Properties of customer and proposed purchase.

 $f(\mathbf{x})$: Approve purchase or not.

• Disease diagnosis

x: Properties of patient (symptoms, lab tests)

 $f(\mathbf{x})$: Disease (or maybe, recommended therapy)

• Face recognition

x: Bitmap picture of person's face

 $f(\mathbf{x})$: Name of the person.

• Automatic Steering

x: Bitmap picture of road surface in front of car.

 $f(\mathbf{x})$: Degrees to turn the steering wheel.

Appropriate Applications for Supervised Learning

- Situations where there is no human expert
 - **x**: Bond graph for a new molecule.
 - $f(\mathbf{x})$: Predicted binding strength to AIDS protease molecule.
- Situations where humans can perform the task but can't describe how they do it.
 - **x**: Bitmap picture of hand-written character
 - $f(\mathbf{x})$: Ascii code of the character
- Situations where the desired function is changing frequently
 - **x**: Description of stock prices and trades for last 10 days.
 - $f(\mathbf{x})$: Recommended stock transactions
- \bullet Situations where each user needs a customized function f
 - **x**: Incoming email message.
 - $f(\mathbf{x})$: Importance score for presenting to user (or deleting without presenting).

A Learning Problem

Example	x_1	x_2	x_3	x_4	y
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	1	1	1
4	1	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0
7	0	1	0	1	0

Hypothesis Spaces

• Complete Ignorance. There are $2^{16} = 65536$ possible boolean functions over four input features. We can't figure out which one is correct until we've seen every possible input-output pair. After 7 examples, we still have 2^9 possibilities.

x_1	x_2	x_3	x_4	y
0	0	0	0	?
0	0	0	1	?
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	?
1	0	0	0	?
1	0	0	1	1
1	0	1	0	?
1	0	1	1	?
1	1	0	0	0
1	1	0	1	?
1	1	1	0	?
_1	1	1	1	?

Hypothesis Spaces (2)

• Simple Rules. There are only 16 simple conjunctive rules.

Example	x_1	x_2	x_3	x_4	y
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	1	1	1
4	1	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0
7	0	1	0	1	0

Rule	Counterexample
$\Rightarrow y$	1
$x_1 \Rightarrow y$	3
$x_2 \Rightarrow y$	2
$x_3 \Rightarrow y$	1
$x_4 \Rightarrow y$	7
$x_1 \wedge x_2 \Rightarrow y$	3
$x_1 \wedge x_3 \Rightarrow y$	3
$x_1 \wedge x_4 \Rightarrow y$	3
$x_2 \wedge x_3 \Rightarrow y$	3
$x_2 \wedge x_4 \Rightarrow y$	3
$x_3 \wedge x_4 \Rightarrow y$	4
$x_1 \wedge x_2 \wedge x_3 \Rightarrow y$	3
$x_1 \wedge x_2 \wedge x_4 \Rightarrow y$	3
$x_1 \wedge x_3 \wedge x_4 \Rightarrow y$	3
$x_2 \wedge x_3 \wedge x_4 \Rightarrow y$	3
$x_1 \wedge x_2 \wedge x_3 \wedge x_4 \Rightarrow y$	3

No simple rule explains the data. The same is true for simple clauses.

Two Strategies for Machine Learning

- Develop Languages for Expressing Prior Knowledge: Rule grammars and stochastic models.
- Develop Flexible Hypothesis Spaces: Nested collections of hypotheses.

 Decision trees, rules, neural networks, cases.

In either case:

• Develop Algorithms for Finding an Hypothesis that Fits the Data

Terminology

- Training example. An example of the form $\langle \mathbf{x}, f(\mathbf{x}) \rangle$.
- Target function (target concept). The true function f.
- **Hypothesis**. A proposed function h believed to be similar to f.
- Concept. A boolean function. Examples for which $f(\mathbf{x}) = 1$ are called **positive examples** or **positive instances** of the concept. Examples for which $f(\mathbf{x}) = 0$ are called **negative examples** or **negative instances**.
- Classifier. A discrete-valued function. The possible values $f(\mathbf{x}) \in \{1, \dots, K\}$ are called the classes or class labels.
- **Hypothesis Space**. The space of all hypotheses that can, in principle, be output by a learning algorithm.
- Version Space. The space of all hypotheses in the hypothesis space that have not yet been ruled out by a training example.

A Framework for Hypothesis Spaces

- Size. Does the hypothesis space have a fixed size or variable size?

 Fixed-size spaces are easier to understand, but variable-size spaces are generally more useful. Variable-size spaces introduce the problem of overfitting.
- Randomness. Is each hypothesis deterministic or stochastic?

 This affects how we evaluate hypotheses. With a deterministic hypothesis, a training example is either *consistent* (correctly predicted) or *inconsistent* (incorrectly predicted). With a stochastic hypothesis, a training example is *more likely* or *less likely*.
- **Parameterization**. Is each hypothesis described by a set of **symbolic** (discrete) choices or is it described by a set of **continuous** parameters? If both are required, we say the hypothesis space has a **mixed** parameterization.
 - Discrete parameters must be found by combinatorial search methods; continuous parameters can be found by numerical search methods.

A Framework for Learning Algorithms

• Search Procedure.

Direction Computation: solve for the hypothesis directly.

Local Search: start with an initial hypothesis, make small improvements until a local optimum.

Constructive Search: start with an empty hypothesis, gradually add structure to it until local optimum.

• Timing.

Eager: Analyze the training data and construct an explicit hypothesis.

Lazy: Store the training data and wait until a test data point is presented, then construct an ad hoc hypothesis to classify that one data point.

• Online vs. Batch. (for eager algorithms)

Online: Analyze each training example as it is presented.

Batch: Collect training examples, analyze them, output an hypothesis.

Key Issues in Machine Learning

- What are good hypothesis spaces?
 Which spaces have been useful in practical applications and why?
- What algorithms can work with these spaces?

 Are there general design principles for machine learning algorithms?
- How can we optimize accuracy on future data points? This is sometimes called the "problem of overfitting".
- How can we have confidence in the results?

 How much training data is required to find accurate hypotheses? (the *statistical question*)
- Are some learning problems computationally intractable? (the *computational question*)
- How can we formulate application problems as machine learning problems? (the *engineering question*)