

$$x^2 - 5x - 6 = 0$$
 ms $(x - 6)(x + 1) = 0$
 $x = 6$, $|x - 1|$

Acceptable

 $x = 6$, $|x - 1|$

Acceptable

 $x = 6$, $|x - 1|$

A = $\{0, 3, 5, 6, 4, 8\}$
 $x = 6$
 $x = 6$

Acceptable

A = $\{0, 3, 5, 6, 4, 8\}$

So in totals: numeri di 3 cifre?

Veriante: Quanti sono in totals: numeri di 3 cifre?

Acceptable

Acceptable

Acceptable

 $x = 6$
 x

Det: Il coefficiente binomiale
$$(0 \le k \le n)$$

 $\binom{n}{k}$ Si legge n su k

$$\bar{e}$$
 la quantità $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Exempl:
$$\binom{3}{2} = \frac{3!}{2!(3-2)!} = \frac{3!}{2! \cdot 1!} = \frac{3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 1} = 3$$

Proposizione (Anxhela): Vale de
$$\binom{n}{k} = \binom{n}{n-k}$$

troposizione (Anxhela): Vole cle (
$$\downarrow$$
) = ($n-\downarrow$)
Din (n) n ! n !

$$\frac{\sum_{i=1}^{n} \binom{n}{k}}{\binom{n}{k}} = \frac{n!}{\binom{n-k}{l}} = \frac{n!}{\binom{n-k}{l}} = \binom{n}{\binom{n-k}{l}} = \binom{n}{\binom{n-k}{l}}$$

Escupi:
$$\binom{3}{1} = \frac{3!}{4!2!} = 3$$
 $\binom{3}{2} = 3$ $\binom{4}{1} = \frac{4!}{4!} = 4$ $\binom{4}{1} = \frac{4!}{4!} = 4$

Triangolo di Tartaglia (o di Pascol): Per odesso prendiano per vona l'ascoc Oss Not: la riga é indicizzate da n, la colonne da le Proposizione (Ettore): Vale de $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1} \in e$ Codifica della costruzione del trianglo di Tortoglia come somme dei numeri della rige precedente Dim : Esencizio.