Jason D. Chadwick

jchadwick@uchicago.edu | jason-chadwick.com

EDUCATION

Ph.D. Candidate, Computer Science, University of Chicago

2022-present

Studying quantum computer systems and architecture, advised by Fred Chong.

Research topics: quantum control, device calibration, circuit compilation, high-radix computation.

B.S. Physics, Carnegie Mellon University

2018-2022

Minor in Computer Science

GPA 3.95

AWARDS AND HONORS

Crerar Fellowship, University of Chicago2022University Honors, Carnegie Mellon University2022College Honors, Mellon College of Science2022Dean's List, High Honors, Mellon College of Science2018–2022

SKILLS

Programming: Python, Julia, C/C++, C#/Unity, Java, Clojure, Common Lisp, SML, Bash

Python libraries: QuTiP, qiskit, Cirq, Pulser, pandas, TensorFlow, PyTorch, SciPy

Julia packages: QuantumOptics.jl, DataFrames.jl, Juqbox.jl

Software: MFX, Unix, slurm, Mathematica

EXPERIENCE

Graduate Researcher, University of Chicago

Summer 2022 - Present

Research in the areas of quantum control pulse engineering, device calibration, circuit compilation, and high-radix computation. Advised by Fred Chong.

Undergraduate Researcher, University of Chicago

Spring 2021 - Summer 2022

Optimized short-duration control pulses for high-radix quantum logic gates, motivating a new compiler design that takes advantage of mixed-radix operations. Research resulted in papers at QCE 2022 and ASPLOS 2023 (to appear).

Research Intern, Princeton Plasma Physics Laboratory

Summer 2020

As part of the Department of Energy SULI program, designed a neural network to predict fusion plasma cross-sectional density and pressure in real time, for use in control systems. Published work in *Nuclear Fusion*.

FEATURED PROJECTS

visit my github to see all public projects

Chronodrifter, primary author

2021-present

2D platformer game in Unity where the player must solve puzzles by slowing and reversing the flow of time. A live web version is available at jason-chadwick/chronodrifter/ (mobile currently not supported).

Quops, primary author

2021-present

Board game based on the rules of quantum mechanics. Players take turns applying quantum logic operations to a board of qubit tiles, aiming to create specific superpositions of states.

Qiskit textbook, contributor

2022

Interactive open-source quantum computing textbook.

Juqbox.jl, contributor

2022

Julia package for solving optimal control problems in closed quantum systems.

SERVICE

Physics Steering Committee, CMU Physics Department

Collaborated with physics department leadership to guide programs and policy.

2019-2021

Publications

Year	Title and Authors	Publisher	Category
2023	Efficient control pulses for continuous quantum gate families through coordinated re-optimization <i>J.D. Chadwick and F.T. Chong</i> https://arxiv.org/abs/2302.01553		Preprint
2023	(to appear) Qompress: Efficient Compilation for Ququarts Exploiting Partial and Mixed Radix Operations for Communication Reduction A. Litteken, L.M. Seifert, J.D. Chadwick, N. Nottingham, J.M. Baker, and F.T. Chong dl.acm.org/doi/10.1145/3575693.3575726	28th ACM International Conference on Architectural Support for Pro- gramming Languages and Operating Systems (ASPLOS)	Refereed conference paper
2022	Time-Efficient Qudit Gates through Incremental Pulse Reseeding L.M. Seifert † , J.D. Chadwick † , A. Litteken, F.T. Chong, and J.M. Baker doi.org/10.1109/QCE53715.2022.00051	2022 IEEE International Conference on Quantum Computing and Engineering (QCE)	Refereed conference paper
2021	Prediction of electron density and pressure profile shapes on NSTX-U using neural networks <i>M.D. Boyer and J.D. Chadwick</i> doi.org/10.1088/1741-4326/abe08b	Nuclear Fusion 61 046024	Journal

[†] indicates equal contribution

Conference Posters

Year	Title and Authors	Publisher	Category
2022	Synthesizing Efficient Pulses for Practical Qudit Circuits J. Baker, J.D. Chadwick, L.M. Seifert, A. Litteken, N. Nottingham, A. Petersson, S. Guenther, F.T. Chong	25th Annnual Conference on Quantum Information Processing (QIP)	Conference poster
2020	Machine learning modeling and analysis of density and pressure profiles on NSTX and NSTX-U <i>J.D. Chadwick, M.D. Boyer</i>	62nd Annual Meeting of the APS Division of Plasma Physics	Conference poster