

Ex.No: 08

Estimation of project size using Function Point Analysis & Cocomo Model

CS2050 L Software Engineering Lab

Why project size estimation??

Project details

A project would be fall in one of the scenarios

- 1. Much relevant project data are available for the current project but not much information about previous projects.
- 2. Previous project data are available for the project but not much information about the current project.
- 3. Project data are available for the current project as well as that of previous projects.
- 4. Some project data are available for the current project.
- 5. No project data are available for both current as well as previous projects.

Summary

	Project Details	Estimation Technique				
01	Historical project data & current project data	Function Point Analyses				
02	Current project data	COCOMO, Wide Band				
		Delphi`				
03	No data	No technique				

Project Size Estimation

ARISE AND SHINE

- 1. FP Calculator
- 2. COCOMO

Project Size Estimation

ARISE AND SHINE

- 1. FP Calculator
- 2. COCOMO

Function Point

- Function points were defined in 1979 in Measuring Application Development Productivity by Allan Albrecht at IBM.
- The function point is a "unit of measurement" to express the amount of business functionality an information system (as a product) provides to a user.

FP CALCULATOR

http://groups.umd.umich.edu/cis/course.des/cis525/js/f00/harvey/FP_Calc.html

Domain Characteristic Table

MEASUREMENT PARAMETER	COUNT (value >= 0)	WE Simple	EIGHTING FACT Average	OR Complex
Number of User Input	12	0	0	•
Number of User Outputs	60	0	0	•
Number of User Inquiries	9	0	0	•
Number of Files	0	0	0	•
Number of External Interfaces	0	0	0	•

Complexity Adjustment Table | FP Calculation

FP CALCULATOR

Complexity Adjustment Table

ITEM	COMPLEXITY ADJUSTMENT QUESTIONS		and the second	SC	SCALE		
ITEIVI	COMPLEXITY ADJUSTIMENT QUESTIONS	No Influ	ence 1	2	3	4	Essentia 5
1	Does the system require reliable backup and recovery?	•	0	0	0	0	0
2	Are data communications required?	•	0	0	0	0	0
3	Are there distributed processing functions?	•	0	0	0	0	0
4	Is performance critical?	•	0	0	0	0	0
5	Will the system run in an existing, heavily utilized operational environment?	•	0	0	0	0	0
6	Does the system require on-line data entry?	•	0	0	0	0	0
7	Does the on-line data entry require the input transaction to be built over multiple screens or operations?	•	0	0	0	0	0
8	Are the master files updated on-line?	•	0	0	0	0	0
9	Are the inputs, outputs, files or inquiries complex?	•	0	0	0	0	0
10	Is the internal processing complex?	•	0	0	0	0	0
11	Is the code to be designed reusable?	•	0	0	0	0	0
12	Are conversion and installation included in the design?	•	0	0	0	0	0
13	Is the system designed for multiple installations in different organizations?	•	0	0	0	0	0
14	Is the application designed to facilitate change and ease of use by the user?	•	0	0	0	0	0

FP CALCULATOR

Complexity Adjustment Table

ITEM	COMPLEXITY ADJUSTMENT QUESTIONS	No Influence SCALE				Essential		
Livi	COM ELATTABOOTMENT GOLOTIONO	0	1	2	3	4	5	
1	Does the system require reliable backup and recovery?	•	0	0	0	0	0	
2	Are data communications required?	•	0	0	0	0	0	
3	Are there distributed processing functions?	•	0	0	0	0	0	
4	Is performance critical?	•	0	0	0	0	0	
5	Will the system run in an existing, heavily utilized operational environment?	•	0	0	0	0	0	

6	Does the system require on-line data entry?	•	0	0	0	0	0
7	Does the on-line data entry require the input transaction to be built over multiple screens or operations?	•	0	0	0	0	0
8	Are the master files updated on-line?	•	0	0	0	0	0
9	Are the inputs, outputs, files or inquiries complex?	•	0	0	0	0	0
10	Is the internal processing complex?	•	0	0	0	0	0

11	Is the code to be designed reusable?	•	0	0	0	0	0
12	Are conversion and installation included in the design?	•	0	0	0	0	0
13	Is the system designed for multiple installations in different organizations?	•	0	0	0	0	0
14	Is the application designed to facilitate change and ease of use by the user?	•	0	0	0	0	0

Domain Characteristic Table | FP Calculation

FP CALCULATOR

FP Calculation

NOTE: For any updates made on any of the entries, always click the 'Calculate Function Points' button to recalculate function points value.

Reset / Clear all form entries

Calculate Function Points

RESULT						
PROJECT FUNCTION POINTS	354.900000000000					

Top of Page | Domain Characteristic Table | Complexity Adjustment Table

Step-1:

F = 14 * scale

Scale varies from 0 to 5 according to character of Complexity Adjustment Factor (CAF). Below are the scale:

- 0 No Influence
- 1 Incidental
- 2 Moderate
- 3 Average
- 4 Significant
- 5 Essential

Step-2:

Calculate Complexity Adjustment Factor (CAF).

$$CAF = 0.65 + (0.01 * F)$$

• Step-3: Calculate Unadjusted Function Point (UFP)

TABLE 1: Function point complexity weights.

Measurement parameter	We	actor	
	Simple	Average	Complex
Number of user inputs	3	4	6
Number of user outputs	4	5	7
Number of user inquiries	3	4	6
Number of files	7	10	15
Number of external interfaces	5	7	10

• Multiply each individual function point to corresponding values in TABLE.

Step-4: Calculate Function Point.

- $\bullet FP = \overline{UFP * CAF}$
- FP = UFP * (0.65 + (0.01 * F))

Project Size Estimation

ARISE AND SHINE

- 1. FP Calculator
- 2. COCOMO

Project Size Estimation

ARISE AND SHINE

- 1. FP Calculator
- 2. COCOMO

- Boehm proposed COCOMO (Constructive Cost Estimation Model) in 1981.
- COCOMO is one of the most generally used software estimation models in the world.
- COCOMO predicts the efforts and schedule of a software product based on the size of the software.

(http://groups.umd.umich.edu/cis/course.des/cis525/js/f00/baker/cocomo.html)

- Boehm proposed COCOMO (Constructive Cost Estimation Model) in 1981.
- COCOMO is one of the most generally used software estimation models in the world.
- COCOMO predicts the efforts and schedule of a software product based on the size of the software.

(http://groups.umd.umich.edu/cis/course.des/cis525/js/f00/baker/cocomo.html)

Seraph: Dashboard × S Mike's Basic COCOMO calculator × +		×
\leftarrow \rightarrow \bigcirc \bigcirc \bigcirc Not secure groups.umd.umich.edu/cis/course.des/cis525/js/f00/baker/cocomo.html \bigcirc \bigcirc \bigcirc	* (:
Karunya ☐ Social ☐ R ☐ Review ☐ news ☐ ☐ ♀ Maps ☐ Bank ☐ Search » ☐ Other bookmarks	Readin	ng list
Mike's Basic COCOMO Calculator!		
Enter the number of estimated lines of code and the calculator will determine how much time and how many people will be needed!		
0 Thousands of Lines of Estimated Code.		
		-1
Perform Calculation		1
		1
Organic Values		1
Number of Months Needed: Number of People Needed:		
SemiDetached Values		-1
Number of Months Needed: Number of People Needed:		1
Embedded Values		
Number of Months Needed: Number of People Needed:		·

	Organic Values
Number of	Months Needed: Number of People Needed:
	SemiDetached Values
Number of	Months Needed: Number of People Needed:
	Embedded Values
Number of	Months Needed: Number of People Needed:

Different Modes of Output

- Organic: Relatively small, simple software projects in which small teams with good application experience work to a set of less than rigid requirements.
- Semi-detached: An intermediate, (in size and complexity), software project in which teams with mixed experience levels must meet a mix of rigid and less than rigid requirements.
- Embedded: A software project that must be developed within a set of tight hardware, software and operation constraints.

COCOMO - Calculation

Effort (E) =
$$a*(KLOC)^b$$
 MM

Scheduled Time (D) = $c^*(E)^d$ Months(M)

Where,

- E = Total effort required for the project in Man-Months (MM).
- D = Total time required for project development in Months (M).
- KLOC = the size of the code for the project in Kilo lines of code.
- a, b, c, d = The constant parameters for a software project.

PROJECT TYPE	а	b	С	d
Organic	2.4	1.05	2.5	0.38
Semidetached	3	1.12	2.5	0.35
Embedded	3.6	1.2	2.5	0.32