TD No 11: Autorégression

Fin de l'étude des séries temporelles : on voit un exemple concret de modèle économique qui conduit à une auto-régression. On étudie aussi rapidement les processus ARMA(p,q) qui sont une généralisation des processus AR(p) et MA(q).

EXERCICE 1. (Modèle à ajustements partiels, tiré du bouquin de Wooldridge). On suppose qu'à chaque période t, une entreprise souhaite atteindre un objectif de vente y_t^* . Cet objectif de vente dépend d'un indicateur économique (par ex. la croissance du P.I.B.) x_t suivant l'équation :

$$y_t^* = \gamma_0 + \gamma_1 x_t + \varepsilon_t \tag{1}$$

où les ε_t sont i.i.d. $\mathcal{N}(0, \sigma_{\varepsilon}^2)$.

Néanmoins, il n'est pas dit qu'à la date t, l'entreprise arrive à atteindre son objectif de ventes y_t^* : elle vend en réalité une quantité y_t . On appelle modèle à ajustements partiels l'hypothèse

$$y_t - y_{t-1} = \lambda (y_t^* - y_{t-1}) + \eta_t \tag{2}$$

où les η_t sont i.i.d. $\mathcal{N}(0, \sigma_\eta^2)$, et indépendants des ε_t .

- 1) On considère d'abord le modèle sans bruit : $\sigma_{\varepsilon} = \sigma_{\eta} = 0$. On part de $y_1 = 0$, et on suppose que $x_t = c$.
 - (a) Calculer y_t pour tout $t \in \mathbb{N}$.
 - (b) En déduire $\lim_{t\to\infty} y_t$ en fonction des valeurs de λ . Conclusion?
- 2) On suppose maintenant que $\sigma_{\varepsilon} > 0$, $\sigma_{\eta} > 0$.
 - (a) Montrer que y_t vérifie

$$y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 x_t + u_t$$

où les u_t sont des variables i.i.d. centrées de loi à déterminer, et β_0 , β_1 et β_2 sont des paramètres à exprimer en fonction de γ_0 , γ_1 et λ .

(b) Un économètre estime β_0 , β_1 et β_2 et obtient :

$$\hat{\beta}_0 = 1.2, \ \hat{\beta}_1 = 0.7 \text{ et } \hat{\beta}_2 = 0.2.$$

Proposer des estimateurs $\hat{\gamma}_0$, $\hat{\gamma}_1$ et $\hat{\lambda}$ de γ_0 , γ_1 et λ .

EXERCICE 2. (Processus ARMA(p,q)). Soient ε_t pour $t \in \mathbb{Z}$ des variables i.i.d. $\mathcal{N}(0,\sigma^2)$. On dit que $(y_t)_{t \in \mathbb{Z}}$ est un processus ARMA(p,q) si

$$y_t = b_0 + \sum_{j=1}^p b_j y_{t-j} + \varepsilon_t + \sum_{j=1}^q \tau_j \varepsilon_{t-j}$$

où $b_0,\,...,\,b_p,\, au_1,\,...,\, au_q$ sont des paramètres réels.

Supposons que l'on ait $(y_t)_{t\in\mathbb{Z}}$ un processus ARMA(1,q) stationnaire.

- 1) Calculer $Var(y_t)$.
- 2) En déduire que que nécessairement $|b_1| < 1$.
- 3) Calculer $\mathbb{E}(y_t)$.

4) Calculer $Cov(y_t, y_{t+1})$.

EXERCICE 3. Soit $(x_t)_{t\in\mathbb{Z}}$ une suite vérifiant :

$$x_t = -\sum_{j=1}^{\infty} b^j x_{t-j} + \varepsilon_t$$

où ε_t est une suite quelconque et où |b| < 1. Il s'agit donc d'un cas particulier de processus $AR(\infty)$. Montrer que $x_t = \varepsilon_t - b\varepsilon_{t-1}$ et que $(x_t)_{t \in \mathbb{Z}}$ est en fait un processus MA(1).