Рассмотрим движение тела вблизи положения равновесия и под действием квазиупругой силы

$$F_{\rm B} = F_0 cos\Omega t$$

Перепишем второй закон Ньютона $ma = -kx - rv + F_{\rm B}$ в виде $x^{..} + 2\beta x^{.} + \omega_0^2 x = f_0 \cos(\Omega t + \varphi_0)$, где r

$$2\beta = \frac{r}{m}$$
, $\omega_0^2 = \frac{k}{m}$, $f_0 = \frac{F}{m}$.

Это уравнение называется уравнением вынужденных колебаний. Решением этого ДУ будет являться сумма решения Однородного ДУ С частным неоднородным решением:

Однородное : $x^{..} + 2\beta x^{.} + \omega_0^2 x = 0$

Неоднородное: $x^{\cdot \cdot} + 2\beta x^{\cdot} + \omega_0^2 x = f_0 \cos(\Omega t + \varphi_0)$

$$A_{\rm B} = \frac{F_0}{m\sqrt{(\omega_0^2 - \Omega^2)^2} + 4\beta^2\Omega^2}$$

 – амплитуда вынужденных колебаний Механический резонанс

$$A_{ ext{\tiny B}}=max$$
, если $\left\{egin{aligned} \Omega_{ ext{p}}=\sqrt{\omega_{0}^{2}-2eta^{2}}\ \omega=\sqrt{\omega_{0}^{2}-eta^{2}} \end{aligned}
ight. =>\Omega_{ ext{p}}=\sqrt{\omega_{0}^{2}-eta^{2}}$

—для колебаний затух. системы с затух. $\Omega_{\rm p}$ зависит от β и уменьшается с увеличением β

 $C_{\text{тела}}$ - теплоемкость тела, которая числено равна Q количеству теплоты, необходимого для повышения T температуры тела на единицу градуса.

$$\delta Q = C_{\text{тела}} dT$$

Удельная и молярная С теплоемкости тела:

$$c = \frac{C_{\text{тела}}}{M}$$
; $C = \frac{C_{\text{тела}}}{v}$
При $V = Const$ и $\delta A = 0$
 $\delta Q = dU => dU = C_v v d T$
 $dU = C_v \left(\frac{M}{\mu}\right) dT => C_v = \frac{dU}{v} dT$

$$\int dU = C_v \left(\frac{M}{\mu}\right) \int dT => U = C_v \left(\frac{M}{\mu}\right) T + C_0$$
 $C_v T = \frac{iRT}{2} \rightarrow C_v = \frac{iR}{2}$

$$\delta Q = dU + \delta A \rightarrow C_{{
m Tела}} dt = dU + P dV_{\mu} \rightarrow C_{{
m Tела}} = rac{\left(dU + P dV_{\mu}
ight)}{dt}$$
 $C_p = C_v + P \left(rac{\partial V_M}{\partial T}\right)_p$
 $PV_M = RT \rightarrow \left(rac{\partial V_M}{\partial T}\right)_p = rac{R}{P}$
 $C_p = C_v + R$
 $C_p = rac{(i+2)R}{2}$

Согласно соотношению Майера молярная Ср теплоемкость идеального газа при постоянном Р давлении больше Сv молярной теплоемкости идеального газа при постоянном V объёме.

