

J.R. Esteban

ÁLGEBRA LINEAL Y GEOMETRÍA

Doble Grado en CC. Matemáticas e Ingeniería Informática 2019-2020

Matrices $\mathbb{R}^{n \times n}$ simétricas y definidas positivas

Teorema. Dada $\mathbf{A} \in \mathbb{R}^{n \times n}$ y simétrica, son equivalentes:

A. A es definida positiva, es decir

$$\boldsymbol{\xi}^{\mathrm{T}} \mathbf{A} \boldsymbol{\xi} > 0$$
 para todo $\boldsymbol{\xi} \in \mathbb{R}^{n}$, $\boldsymbol{\xi} \neq \mathbf{0}$.

B. Existe B invertible tal que $\mathbf{A} = \mathbf{B}^{\mathrm{T}}\mathbf{B}$.

Demostración. Sabemos que dada $\mathbf{A} \neq \mathbb{R}^{n \times n}$, que \mathbf{A} sea simétrica es equivalente a que A sea diagonalizable en una base ortonormal, es decir,

existe P ortogonal y tal que AP = PJ,

siendo

$$\mathbf{J} = \operatorname{diag}\left[\lambda_1 \, \mathbf{I}_{g_1} \,, \lambda_2 \, \mathbf{I}_{g_2} \,, \dots \,, \lambda_s \, \mathbf{I}_{g_s}\right] \,.$$

«A implica B» Por ser A definida positiva, todos sus autovalores son positivos. Sea

$$\mathbf{B} = \mathbf{P} \mathbf{D} \mathbf{P}^{\mathrm{T}}$$

con

$$\mathbf{D} = \mathrm{diag} \left[\sqrt{\lambda_1} \, \mathbf{I}_{g_1} \,, \sqrt{\lambda_2} \, \mathbf{I}_{g_2} \,, \dots \,, \sqrt{\lambda_s} \, \mathbf{I}_{g_s} \right] \,.$$

La matriz ${\bf B}$ es invertible, pues todos sus autovalores son distintos de 0. Se comprueba que $\mathbf{A} = \mathbf{B}^{\mathsf{T}} \mathbf{B}$. Obsérvese que, de hecho, \mathbf{B} es simétrica.

 \mathcal{L} «B implica A» Para cada $\boldsymbol{\xi} \in \mathbb{R}^n$,

$$\boldsymbol{\xi}^{\mathrm{T}} \mathbf{A} \boldsymbol{\xi} = \boldsymbol{\xi}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{B} \boldsymbol{\xi} = (\mathbf{B} \boldsymbol{\xi})^{\mathrm{T}} \mathbf{B} \boldsymbol{\xi} = \|\mathbf{B} \boldsymbol{\xi}\|_{2}^{2} \geq 0.$$

Aquí vemos que $\boldsymbol{\xi}^{\mathsf{T}} \mathbf{A} \boldsymbol{\xi} = 0$ es $\mathbf{B} \boldsymbol{\xi} = \mathbf{0}$, que es lo mismo que $\boldsymbol{\xi} = \mathbf{0}$ cuando \mathbf{B} es invertible.

Observación. En general, B no es única.

Teorema. Factorización de Cholesky . Dada $\mathbf{A} \in \mathbb{R}^{n \times n}$ y simétrica, son equivalentes:

- A. A es definida positiva.
- B. Existe una única R tal que:
 - 1. R es triangular superior.

- 2. $Todo r_{ii} > 0$.
- 3. $\mathbf{A} = \mathbf{R}^{\mathrm{T}} \mathbf{R}$.

Demostración de «A implica B». Por ser ${\bf A}$ definida positiva, todos det ${\bf A}_{1:k,1:k} >$ 0, luego admite una factorización LU, que además, por ser A simétrica, es de la forma

$$\mathbf{A} = \mathbf{L} \, \mathbf{D} \, \mathbf{L}^{\mathrm{T}}$$
,

con $d_{ii} > 0$ en todo $i = 1, 2, \dots, n$. Definimos

$$\mathbf{R} = \operatorname{diag}\left[\sqrt{d_{11}}, \sqrt{d_{22}}, \dots, \sqrt{d_{nn}}\right] \mathbf{L}^{\scriptscriptstyle \mathrm{T}},$$

que es triangular superior y en la que todos los elementos de su diagonal son positivos. Esta \mathbf{R} satisface $\mathbf{A} = \mathbf{R}^{\mathrm{T}} \mathbf{R}$.

« Unicidad» : Supongamos que $\mathbf{A}=\mathbf{R}_1^{ \mathrm{\scriptscriptstyle T} }\mathbf{R}_1=\mathbf{R}_2^{ \mathrm{\scriptscriptstyle T} }\mathbf{R}_2$. Esta identidad implica

$$\mathbf{R}_1 \mathbf{R}_2^{-1} = (\mathbf{R}_2 \mathbf{R}_1^{-1})^{\mathrm{T}},$$

luego $\mathbf{Q}=\mathbf{R}_1\mathbf{R}_2^{-1}$ es ortogonal. Por otra parte, la inversa de toda matriz triangular superior es también triangular superior y también es triangular superior el producto de este tipo de matrices. Tenemos pues que tanto $\mathbf{Q} = \mathbf{R}_1 \mathbf{R}_2^{-1}$ como $\mathbf{Q}^{\mathsf{T}} = \mathbf{R}_2 \mathbf{R}_1^{-1}$ es triangular superior. De (35) resulta entonces que $\mathbf{Q} = \mathbf{R}_1 \mathbf{R}_2^{-1} = \mathbf{R}_2 \mathbf{R}_1^{-1}$ es una matriz diagonal, pongamos

$$\mathbf{Q} = \operatorname{diag}\left[q_1, q_2, \dots, q_n\right],\,$$

donde, por ser \mathbf{Q} ortogonal, todo $q_i \in \mathbb{R}$ y $|q_i| = 1$. Finalmente,

$$\mathbf{R}_1 \equiv \mathbf{Q} \mathbf{R}_2$$

implica

$$\mathbf{R}_1$$
 $ii \equiv q_i \, \mathbf{R}_2$ ii

Como $\mathbf{R}_{1,ii}$ y $\mathbf{R}_{2,ii}$ positivos, ha de ser $q_i = 1$.

Demostración de «B implica A». Por 1. y 2., R es invertible y junto con 3. estamos en las condiciones de B del teorema anterior.

Observación. La matriz

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$$

es definida positiva y no es simétrica. Sus autovalores son positivos.

Teorema. Dada
$$\mathbf{A} \in \mathbb{R}^{n \times n}$$
 y simétrica, se verifica:
Si
$$\det \mathbf{A}_{1:k, 1:k} > 0, \quad para \ todo \ k = 1, 2, \dots, n,$$

entonces A es definida positiva.

Demostración. La hipótesis (36) garantiza que A admite factorización LU que, por ser \mathbf{A} simétrica, es de la forma $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^{\mathrm{T}}$ con \mathbf{D} diagonal y

$$d_1 = a_{11} > 0$$
, $d_k = \frac{\det \mathbf{A}_{1:k, 1:k}}{\det \mathbf{A}_{1:k-1, 1:k-1}} > 0$, $k = 2, 3, \dots, n$.

Entonces.

$$oldsymbol{\xi}^{\scriptscriptstyle{ extsf{T}}}\!\mathbf{A}oldsymbol{\xi} = oldsymbol{\xi}^{\scriptscriptstyle{ extsf{T}}}\mathbf{L}\mathbf{D}\mathbf{L}^{\scriptscriptstyle{ extsf{T}}}oldsymbol{\xi} = \sum_{k=1}^{n}d_{k}\left(\mathbf{L}^{\scriptscriptstyle{ extsf{T}}}oldsymbol{\xi}
ight)_{k}^{2} \geq 0\,,$$

que es = 0 si y sólo si $\mathbf{L}^{\mathsf{T}}\boldsymbol{\xi} = \mathbf{0}$, donde tenemos en cuenta que \mathbf{L} es invertible.

Observación. Recuérdese que $submatriz\ principal\ de\ orden\ k$ de ${\bf A}$ es toda ${\bf A}_{\,{\tt I}\,,\,{\tt I}}$ donde

$$I = \{1 \le i_1 < i_2 < \dots < i_k \le n\}$$

es un conjunto de k posiciones distintas. Llamamos $menor\ principal$ de ${\bf A}$ al determinante de una submatriz principal.

Cuando ${\bf A}$ es simétrica, la condición (36) implica que todos los menores principales de ${\bf A}$ son positivos.

En efecto, para cada ${\tt I}$ la simetría de ${\bf A}$ permite encontrar una matriz de permutación ${\bf P}$ tal que

$$\mathbf{B} = \mathbf{P}^{\mathrm{T}} \mathbf{A} \mathbf{P}$$
, satisface $\mathbf{B}_{1:k, 1:k} = \mathbf{A}_{1, 1}$.

Entonces

$$\boldsymbol{\xi}^{\mathrm{T}} \mathbf{A} \boldsymbol{\xi} = \boldsymbol{\xi}^{\mathrm{T}} \mathbf{P} \mathbf{B} \mathbf{P}^{\mathrm{T}} \boldsymbol{\xi} = (\mathbf{P} \boldsymbol{\xi})^{\mathrm{T}} \mathbf{B} \mathbf{P}^{\mathrm{T}} \boldsymbol{\xi} \ge 0.$$

Observación. La matriz

$$\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$

tiene todos sus menores principales > 0 y, sin embargo, no es definida positiva:

$$\begin{bmatrix} x, y \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = (x+y)^2 + xy,$$

que cuando x = -y es $-y^2 \le 0$.

Matrices $\mathbb{C}^{n \times n}$ hermíticas y definidas positivas

Los teoremas anteriores son igualmente válidos para matrices $\mathbb{C}^{n\times n}$ hermíticas y definidas positivas. Obsérvese que en las demostraciones nunca hemos utilizado el producto interior ni la ortogonalidad.

