∞ Dérivées : fonctions exponentielles 3

Pour la fonction f qui suit, on déterminera sa dérivée, son tableau de variation, sa dérivée seconde, sa convexité et les éventuels points d'inflexion

$$f(x) = \frac{e^{8x+1}}{x+3}$$

Dérivées TG

Correction:

$$f'(x) = \frac{(8x+23)e^{8x+1}}{(x+3)^2}$$
$$f''(x) = \frac{(8x^2+32x+26)e^{8x+1}}{(x+3)^3}$$
$$\Delta = 192 > 0$$

х		-3	$\frac{-23}{8}$	+∞
8x + 23	_		0	+
$(x+3)^2$	+ (9 +		
f'(x)	_	_	0	+
f(x)	0	+∞	* 8e ²⁴ -	→ +∞

x	-∞ -	-3	$\frac{32-\sqrt{192}}{16}$		$\frac{32+\sqrt{192}}{16}$		+∞
$(x+3)^3$	-	Ó	+				
$8x^2 + 32x + 26$	+		0	-	0	+	
f''(x)	-	+	0	-	0	+	
f	concave	convexe	0	concave	0	convexe	

On a donc trois points d'inflexion :

$$\left(3, f(3)\right) \quad \left(\frac{32 - \sqrt{192}}{16}, f\left(\frac{32 - \sqrt{192}}{16}\right)\right) \quad \left(\frac{32 + \sqrt{192}}{16}, f\left(\frac{32 + \sqrt{192}}{16}\right)\right)$$