Logic in Action

Chapter 6: Logic and Action

http://www.logicinaction.org/

Actions

Many different kinds of actions:

- She turns the light off,
- You put the milk in the fridge,
- The apple falls to the ground,
- I submit the application form when it is completed,
- He asks a question only when he knows the answer,
- They do nothing.

The effect of an action

Actions can be characterized in terms of their result:

- After she turns the light off, there will be dark.
- After you put the milk in the fridge, it will be cold.
- Once the apple falls to the ground, it will start to rot.
- Usually, after *I submit the application form*, the Jury will receive it, but sometimes it may get lost.
- After the teacher asked a question, the students were completely silent.
- After they do nothing, everything stays the same.

Operations over actions

Actions can be combined in several ways:

• Sequence. Execute one action after another:

Pour the mixture over the potatoes, and then cover pan with foil.

• Choice. Choose between actions:

Pick one of the boxes.

• Repetition. Perform the same action several times:

Press the door until you hear a 'click'.

• Test. Verify whether a given condition holds:

Check if the bulb is broken.

• Converse. Undo an executed action:

Close the window you just opened.

Example: programming languages

Consider three famous control structures:

- **1** WHILE P do A
 - This can be defined as the repetition of a test for P and the execution of A, followed by a test for not A.
- 2 REPEAT A UNTIL P

This can be defined as the sequence of 'A' and then WHILE (not P) do A.

- **3** IF P THEN A ELSE B
 - This can be defined as a choice between a test for 'P' and then 'A', or a test for 'not P' and then 'B'.

Representing actions abstractly (1)

We can see actions as transitions between states:

Representing actions abstractly (2)

More precisely, if we consider a set of states $S = \{s_1, s_2, \ldots\}$, then we can represent actions as binary relations on S.

$$egin{aligned} R_a &:= \{(s_1, s_1), (s_1, s_2), (s_2, s_2)\} \ R_b &:= \{(s_1, s_4), (s_2, s_3), (s_4, s_3)\} \end{aligned}$$

Operations on relations (1)

Let S be a domain $\{s_1, s_2, \ldots\}$.

• Identity relation.

$$\boldsymbol{I} := \{(\boldsymbol{s}, \boldsymbol{s}) \mid \boldsymbol{s} \in \boldsymbol{S}\}$$

$$I = \{(s_1, s_1), (s_2, s_2), (s_3, s_3), (s_4, s_4)\}$$

Operations on relations (2)

Let S be a domain $\{s_1, s_2, \ldots\}$, and R_a, R_b be binary relations on S.

Composition.

$$R_a \circ R_b := \{(s,s') \mid \text{there is } s'' \in S \text{ such that } R_a s s'' \text{ and } R_b s'' s' \}$$

In particular, for any relation R_a , we have

$$R_a^0:=I, \qquad R_a^1:=R_a\circ R_a^0, \qquad R_a^2:=R_a\circ R_a^1, \qquad R_a^3:=R_a\circ R_a^2,$$

and so on.

Operations on relations (3)

Let S be a domain $\{s_1, s_2, \ldots\}$, and R_a, R_b be binary relations on S.

• Union.

$$R_a \cup R_b := \{(s,s') \mid R_a s s' \text{ or } R_b s s'\}$$

$$egin{aligned} R_a &:= \{(s_1,s_1),(s_1,s_2),(s_2,s_2)\} \ R_b &:= \{(s_1,s_4),(s_2,s_3),(s_4,s_3)\} \ R_a &\cup R_b &= \{(s_1,s_1),(s_1,s_2),(s_2,s_2) \ & (s_1,s_4),(s_2,s_3),(s_4,s_3)\} \end{aligned}$$

Operations on relations (4)

Let S be a domain $\{s_1, s_2, \ldots\}$, and R_a , R_b be binary relations on S.

• Repetition zero or more times.

$$R_a^* := \{(s, s') \mid R_a^n s s' \text{ for some } n \in \mathbb{N}\}$$

$$\begin{split} R_b &:= \{(s_1, s_4), (s_2, s_3), (s_4, s_3)\} \\ R_b^0 &= \{(s_1, s_1), (s_2, s_2), (s_3, s_3), (s_4, s_4)\} \\ R_b^1 &= \{(s_1, s_4), (s_2, s_3), (s_4, s_3)\} \\ R_b^2 &= \{(\overline{s_1, s_4}), (\overline{s_2, s_3}), (\overline{s_4, s_3}), (s_1, s_3)\} \\ R_b^3 &= \{(s_1, s_4), (s_2, s_3), (s_4, s_3), (s_1, s_3)\} \\ \vdots \\ R_b^* &= \{(s_1, s_1), (s_2, s_2), (s_3, s_3), (s_4, s_4), (s_1, s_4), (s_2, s_3), (s_4, s_3), (s_1, s_3)\} \end{split}$$

Operations on relations (5)

Let S be a domain $\{s_1, s_2, \ldots\}$, and R_a, R_b be binary relations on S.

Converse.

$$\check{R_a} := \{(s',s) \mid R_a s s'\}$$

$$egin{aligned} R_b &:= \{(s_1, s_4), (s_2, s_3), (s_4, s_3)\} \ rac{oldsymbol{\mathcal{R}}_{oldsymbol{b}}}{oldsymbol{b}} &= \{(s_4, s_1), (s_3, s_2), (s_3, s_4)\} \end{aligned}$$

Syntax (1)

The language of propositional dynamic logic (*PDL*) has two components, formulas φ and actions α .

- Formulas are built via the following rules.
 - Every basic proposition is a formula

$$\boldsymbol{p}, \quad \boldsymbol{q}, \quad \boldsymbol{r}, \quad \dots$$

• If φ and ψ are formulas, then the following are formulas:

$$\neg \varphi, \quad \varphi \wedge \psi, \quad \varphi \vee \psi, \quad \varphi \to \psi, \quad \varphi \leftrightarrow \psi$$

• If φ is a formula and α an action, then the following is a formula:

$$\langle \alpha \rangle \varphi$$

Syntax (2)

The language of propositional dynamic logic (*PDL*) has two components, formulas φ and actions α .

- Actions are built via the following rules.
 - Every basic action is a action

$$\boldsymbol{a}, \quad \boldsymbol{b}, \quad \boldsymbol{c}, \quad \dots$$

• If α and β are actions, then the following are actions:

$$\alpha; \beta, \quad \alpha \cup \beta, \quad \alpha^*$$

• If φ is a formula, then the following is an action:

 $?\varphi$

Intuitions and abbreviations

lpha;eta	sequential composition: execute α and then β .	
$lpha \cup eta$	non-deterministic choice: execute α or β .	
$lpha^*$	repetition : execute α zero, one, or any <i>finite</i> number of times.	
?arphi	test : check whether φ is true or not.	
$\langle lpha angle arphi$	α can be executed in such a way that, after doing it, φ is the case.	

We abbreviate $p \vee \neg p$ as \top .

We abbreviate $\neg \top$ as \bot .

We abbreviate $\neg \langle \alpha \rangle \neg \varphi$ as $[\alpha] \varphi$.

 $[\alpha] \varphi$ After any execution of α , φ is the case.

Some examples of formulas

$\langle \alpha \rangle \top$	α can be executed.
$[\alpha] \perp$	α cannot be executed.
$\langle \alpha \rangle \varphi \wedge \neg [\alpha] \varphi$	α can be executed it at least two different ways.

The models (1)

The structures in which we evaluate PDL formulas, labelled transition systems (LTS), have three components:

- \bullet a non-empty set S of states,
- a valuation function, V, indicating which atomic propositions are true in each state $s \in S$, and
- an binary relation R_a for each basic action a.

$$m{M} = \langle m{S}, m{R_a}, m{V}
angle$$

The models (2)

A labelled transition system with a designate state (the *root* state) is called a pointed labelled transition system or a process graph.

Deciding truth-value of formulas

Take a pointed labelled transition system (M, s) with $M = \langle S, R_a, V \rangle$:

$$(M,s) \models p$$
 iff $p \in V(s)$
 $(M,s) \models \neg \varphi$ iff it is not the case that $(M,s) \models \varphi$
 $(M,s) \models \varphi \lor \psi$ iff $(M,s) \models \varphi$ or $(M,s) \models \psi$
... iff ...
 $(M,s) \models \langle \alpha \rangle \varphi$ iff there is a $t \in S$ such that $R_{\alpha}st$ and $(M,t) \models \varphi$

where the relation R_{α} is given, in case α is not a basic action, by

$$egin{aligned} R_{lpha;eta}&:=R_{lpha}\circ R_{eta}\ R_{lpha\cupeta}&:=R_{lpha}\cup R_{eta}\ R_{lpha^*}&:=(R_{lpha})^*\ R_{?oldsymbol{arphi}}&:=\{(s,s)\in S imes S\ |\ (M,s)\modelsoldsymbol{arphi}\} \end{aligned}$$

Example: building complex relations


```
\begin{split} R_{a\cup b} &= \left\{ (s_1,s_1), (s_2,s_1), (s_1,s_2), (s_3,s_3) \right\} \\ R_{a\cup c} &= \left\{ (s_1,s_1), (s_2,s_1), (s_1,s_3), (s_3,s_2) \right\} \\ R_{c;c} &= \left\{ (s_1,s_2) \right\} \\ R_{b;b} &= \left\{ \right\} \\ R_{7\neg(p\vee q)} &= \left\{ (s_2,s_2) \right\} \\ R_{?(p\vee q)} &= \left\{ (s_1,s_1), (s_3,s_3) \right\} \\ R_{?\neg(p\vee q);a;?(p\vee q)} &= \left\{ (s_2,s_1) \right\} \\ R_{c;a} &= \left\{ (s_3,s_1) \right\} \\ R_{(c;a)^*} &= \left\{ (s_3,s_1), (s_1,s_1), (s_2,s_2), (s_3,s_3) \right\} \end{split}
```

Example: evaluating formulas

$$\begin{array}{lll} (M,s_1) \models \langle a \cup b \rangle \, p \wedge \neg [a \cup b] \, p & \checkmark & (M,s_3) \models [(c;a)^*] \, p & \checkmark \\ (M,s_1) \models [b] \perp & & \times & \\ (M,s_2) \models \langle a \rangle \, \top \rightarrow \langle b \rangle \, \top & & \times \\ (M,s_2) \models \langle c^* \rangle \, \top & & \checkmark \\ \end{array}$$

Axiom system (1)

The valid formulas of **PDL** can be derived from the following principles:

- All propositional tautologies.
- $[\alpha] (\varphi \to \psi) \to ([\alpha] \varphi \to [\alpha] \psi)$ for any action α .
- **3** Modus ponens (MP): from φ and $\varphi \to \psi$, infer ψ .
- **1** Necessitation (Nec): from φ infer $[\alpha] \varphi$ for any action α .

Axiom system (2)

- Operation of the properties of the properties
 - Test:

$$[?\psi] \varphi \leftrightarrow (\psi \rightarrow \varphi)$$

• Sequence:

$$\left[\alpha;\beta\right]\varphi\leftrightarrow\left[\alpha\right]\left[\beta\right]\varphi$$

• Choice:

$$\left[\alpha \cup \beta\right]\varphi \leftrightarrow \left(\left[\alpha\right]\varphi \wedge \left[\beta\right]\varphi\right)$$

- Repetition:
 - Mix:

$$\left[\alpha^{*}\right]\varphi\leftrightarrow\left(\varphi\wedge\left[\alpha\right]\left[\alpha^{*}\right]\varphi\right)$$

• Induction:

$$\Big(arphi\wedge\left[lpha^*
ight](arphi
ightarrow\left[lpha
ight]arphi\Big)
ightarrow\left[lpha^*
ight]arphi$$

A formula that can be derived by following these principles in a *finite* number of steps is called a **theorem**.

Example

Prove that $[(\alpha \cup \beta); \gamma] \varphi \leftrightarrow ([\alpha; \gamma] \varphi \wedge [\beta; \gamma] \varphi)$ is valid.

From left to right:

1.	$\left[(\alpha\cup\beta);\gamma\right]\varphi$	Assumption
2.	$\left[\alpha\cup\beta\right]\left[\gamma\right]\varphi$	Sequence from step 1
3.	$\left[lpha ight] \left[\gamma ight] arphi \wedge \left[eta ight] \left[\gamma ight] arphi$	Choice from step 2
4.	$\left[lpha;\gamma ight]arphi\wedge\left[eta;\gamma ight]arphi$	Sequence from step 3

The right to left direction is similar.

PDL as a programming language

With **PDL** we can define actions representing program control structures.

1 WHILE φ do α :

$$(?\varphi;\alpha)^*;?\neg\varphi$$

2 REPEAT α UNTIL φ :

$$\alpha; (?\neg\varphi;\alpha)^*; ?\varphi$$

3 IF φ THEN α ELSE β :

$$(?\varphi;\alpha) \cup (?\neg\varphi;\beta)$$