Прикладная теория типов

Домашнее задание 3 (полиморфное λ -исчисление)

9 декабря 2022 г.

Домашняя работа принимается до 23:59 10 декабря 2022, кроме задач, помеченных звёздочкой, которые принимаются до конца семестра. Решения можно набрать в TeX или написать разборчивым текстом на бумаге и отсканировать. Домашняя работа принимается в виде одного pdf файла на почту m.voronov@gse.cs.msu.ru. Вопросы по домашнему заданию можно задавать или по почте, в TГ-группе курса или в личном сообщении в ТГ.

- 1. (2 баллов) Как много $\lambda 2$ контекстов существует для следующего списка деклараций: $\alpha:*,\beta:*,\gamma:*,f:$ $\alpha\to\beta,g:\gamma\to\beta,x:\beta.$ Приведите обоснование.
- 2. (3 баллов) Приведите вывод со всеми шагами во флаговой нотации, который показывает, что следующий терм возможен в $\lambda 2$: $M \equiv \Lambda \alpha \beta \gamma. \lambda f^{\alpha \to \beta} g^{\beta \to \gamma} x^{\alpha}. g(fx)$
- 3. (3 балла) Для терма M, определённого в предыдущем упражнении, покажите, что терм M nat nat bool succ even является корректно заданным в сильном $\lambda 2$ при следующих объявлениях nat:*,bool:*,suc: $nat \rightarrow nat, even: nat \rightarrow bool$
- 4. (2 балла) Покажите, что в контексте $\Gamma \equiv nat: *, bool: *$ следующий терм является корректно заданным в сильном $\lambda 2$: $(\Lambda \alpha \beta. \lambda f^{\alpha \to \alpha} g^{\alpha \to \beta} x^{\alpha}. g(f(fx)))$ nat bool.
- 5. (6 баллов) Найдите тип а-ля Карри и а-ля Чёрч для следующих предтермов в сильном $\lambda 2$:
 - \bullet $\lambda x.xxx$
 - $\lambda x.(xx)(xx)$
- 6. (9 баллов) Найдите термы, которые являются обитателями следующего типа в контексте Г:
 - $\Gamma \equiv nat : *;$ $\forall \alpha \beta. (nat \to \alpha) \to (\alpha \to nat \to \beta) \to nat \to \beta$
 - $\bullet \ \Gamma \equiv \alpha : *, \beta : *, \gamma : *;$ $\forall \sigma.((\alpha \to \gamma) \to \sigma) \to (\alpha \to \beta) \to (\beta \to \gamma) \to \sigma$
 - $\Gamma \equiv \varnothing$; $\forall \alpha \beta \gamma. (\alpha \to (\beta \to \alpha) \to \gamma) \to \alpha \to \gamma$
- 7. (6 баллов) Типизируем ли данный терм в сильном и слабом $\lambda 2$: $(\lambda x.xx)(\lambda z.zyz)$
- 8. (3 балла) Типизируете а-ля Чёрч терм $S \equiv \lambda xyz.xz(yz)$ в сильном $\lambda 2.$
- 9. (6 баллов) Найдите обитателей следующих типов:
 - $\bullet \ \forall \alpha \beta. \alpha \to \beta \to \alpha$
 - $\forall \alpha. \alpha \rightarrow (\forall \beta. \beta \rightarrow \alpha)$

Данные термы могут быть рассмотрены, как разные версии комбинатора K.

- 10. (6 баллов)* Покажите, что следующие термы не типизируемы в сильном $\lambda 2$, где I, K комбинаторы:
 - $(\lambda sz.s(sz))(\lambda sz.s(sz))K$
 - $(\lambda zy.y(zI)(zK))(\lambda x.xx)$

В сильном λ 2 типизируются только нормализуемые термы (т.к. данная система типов является сильно нормализуемой), а данные термы представляют собой примеры нормализуемых термов, которые тем не менее не типизируются.

- 11. (6 баллов)* Существует ли предтерм, типизируемый а-ля Карри, но не типизируемый а-ля Чёрч в λ , λ_{\rightarrow} и в сильном $\lambda 2$. Если нет, приведите обоснование, если да, то терм.
- 12. (6 баллов)* Существует ли предтерм, типизируемый а-ля Чёрч, но не типизируемый а-ля Карри в λ , λ_{\rightarrow} и в сильном $\lambda 2$. Если нет, приведите обоснование, если да, то терм.