Семинар 13. Кривые.

Скубачевский Антон

29 декабря 2022 г.

Теория про вектор-функции кажется какой-то сложной с первого взгляда, но на самом деле она гораздо проще, чем кажется, если правильно ее структурировать. Первая часть - обобщить понятия обычный одномерных функций (предел, непрерывность, производная и их свойства) на случай вектор-функций.

1 Обобщение известных понятий на векторфункции.

Определение. Вектор $\vec{r_0}$ - предел вектор-функции $\vec{r}=\vec{r}(t)$ при $t\to t_0$ $(\vec{r_0}=\lim_{t\to t_0}\vec{r}(t)),$ если $\lim_{t\to t_0}|\vec{r}(t)-\vec{r_0}|=0.$ В кванторной записи:

$$\forall \varepsilon > 0 \exists \delta(\varepsilon) > 0 : \forall t : 0 < |t - t_0| < \delta \Rightarrow |\vec{r}(t) - \vec{r}_0| < \varepsilon$$

Теорема (свойства, связанные с арифметическими операциями). Пусть существуют и конечны пределы $\lim_{t\to t_0}\vec{r_1}(t), \lim_{t\to t_0}\vec{r_2}(t), \lim_{t\to t_0}f(t).$ Тогда:

1.
$$\exists \lim_{t \to t_0} (\vec{r}_1(t) \pm \vec{r}_2(t)) = \lim_{t \to t_0} \vec{r}_1(t) \pm \lim_{t \to t_0} \vec{r}_2(t)$$

2.
$$\exists \lim_{t \to 0} f(t)\vec{r_1}(t) = \lim_{t \to t_0} \vec{r_1}(t) \lim_{t \to t_0} f(t)$$

3.
$$\exists \lim_{t \to t_0} (\vec{r_1}(t); \vec{r_2}(t)) = (\lim_{t \to t_0} \vec{r_1}(t); \lim_{t \to t_0} \vec{r_2}(t))$$

4.
$$\exists \lim_{t \to t_0} [\vec{r}_1(t); \vec{r}_2(t)] = [\lim_{t \to t_0} \vec{r}_1(t); \lim_{t \to t_0} \vec{r}_2(t)]$$

Для вектор-функций существует понятие одностороннего предела:

Определение. Вектор \vec{r}_0 - предел справа вектор-функции $\vec{r} = \vec{r}(t)$ при $t \to t_0 + 0$ ($\vec{r}_0 = \lim_{t \to t_0 + 0} \vec{r}(t)$), если $\lim_{t \to t_0 + 0} |\vec{r}(t) - \vec{r}_0| = 0$.

Также есть понятие непрерывности:

Определение. Вектор-функция $\vec{r}(t)$ непрерывна в точке t_0 , если

$$\lim_{t \to t_0} \vec{r}(t) = \vec{r}(t_0)$$

Теорема. Если $\vec{r_1}(t)$, $\vec{r_2}(t)$, f(t) - непрерывны в точке t_0 , то и $\vec{r_1}(t)$ + $\vec{r_2}(t)$, $f(t)\vec{r_1}$, $(\vec{r_1}(t), \vec{r_2}(t))$, $[\vec{r_1}(t), \vec{r_2}(t)]$ - непрерывны в точке t_0 .

Введем понятия производной и дифференцируемости:

Определение производной. $\vec{r'}(t_0) = \lim_{\Delta t \to 0} \frac{\vec{r}_0(t_0 + \Delta t) - \vec{r}(t_0)}{\Delta t}$

Определение дифференцируемости. Функция $\vec{r}(t)$ называется дифференцируемой в точке t_0 , если ее приращение в этой точке представимо в виде:

$$\vec{r}(t_0 + \Delta t) - \vec{r}(t_0) = \vec{A}\Delta t + \vec{\varepsilon}(\Delta t)(\Delta t),$$

где $\Delta t \to 0; \ \vec{A} \in \mathbb{R}^3$ - постоянный 3-мерный вектор, $\vec{\varepsilon}(\Delta t) \to \vec{0}$ при $\Delta t \to 0.$

Дифференциал:

$$d\vec{r}(t_0) = \vec{r}'(t_0)dt,$$

где $-\infty < dt < +\infty$.

Арифметические операции с производными. Пусть в $t_0 \exists$ и конечны производные функций $\vec{r}_1(t)$, $\vec{r}_2(t)$, f(t). Тогда в t_0 :

- 1. $\exists (\vec{r}_1 + \vec{r}_2)' = \vec{r}_1' + \vec{r}_2'$
- 2. $\exists (f\vec{r}_1)' = f'\vec{r}_1 + f\vec{r}_1'$
- 3. $\exists (\vec{r}_1, \vec{r}_2)' = (\vec{r}_1', \vec{r}_2) + (\vec{r}_1, \vec{r}_2')$
- 4. $\exists [\vec{r}_1, \vec{r}_2]' = [\vec{r}_1', \vec{r}_2] + [\vec{r}_1, \vec{r}_2']$

Формула Тейлора. Пусть $\exists \vec{r}^{(n)}(t_0)$. Тогда $\exists U(t_0)$: при $t \in \mathring{U}(t_0)$:

$$\vec{r}(t) = \sum_{k=0}^{n} \frac{\vec{r}^{(k)}}{k!} (t - t_0)^k + \vec{\varepsilon} (t - t_0) (t - t_0)^n,$$

где
$$\vec{\varepsilon}(t-t_0) \to \vec{0}$$
 при $t \to t_0$.

А вот теорема Лагранжа уже не переносится на случай векторов, однако есть ее аналог:

Теорема (аналог теоремы Лагранжа). Пусть $\vec{r}(t)$ - непрерывна на [a,b] и дифференцируема на (a,b). Тогда

$$\exists \xi \in (a, b) : |\vec{r}(b) - \vec{r}(a)| \le |\vec{r}'(\xi)|(b - a)$$

Доказательство:

Введем следующий единичный вектор:

$$\vec{e} = \frac{\vec{r}(b) - \vec{r}(a)}{|\vec{r}(b) - \vec{r}(a)|}$$

Тогда очевидно, что

$$|\vec{r}(b) - \vec{r}(a)| = (\vec{r}(b) - \vec{r}(a), \vec{e}) = (\vec{r}(b), \vec{e}) - (\vec{r}(a), \vec{e})$$

Мы получили выражение f(b)-f(a), где $f(t)=(\vec{r}(t),\vec{e})$. Тогда по теореме Лагранжа для скалярной функции f(t) $\exists \xi \in (a,b)$:

$$(\vec{r}(b), \vec{e}) - (\vec{r}(a), \vec{e}) = (\vec{r}'(\xi), \vec{e})(b-a) \le |\vec{r}'(\xi)|(b-a)$$

Последнее неравенство справедливо, потому что проекция вектора $\vec{r}'(\xi)$ на единичный вектор \vec{e} всегда не больше, чем модуль $|\vec{r}'(\xi)|$

2 Кривые. Их классификация и интересные точки.

Определение. Кривая - множество точек пространства с конкретным его описанием:

$$\Gamma = \{\vec{r}(t), t \in [a,b], \ \vec{r}$$
 – непрерывная функция на $[a,b]\}$

То есть не всякая вектор-функция является кривой.

Определение. Точкой кривой называют пару $(t, \vec{r}(t))$. $\vec{r}(t)$ - радиусвектором точки.

Определение. Если $\exists t_1, t_2 \in [a,b] : t_1 \neq t_2$, и при этом $\vec{r}(t_1) = \vec{r}(t_2)$, то точка $M = \vec{r}(t_1) = \vec{r}(t_2)$ называется кратной точкой кривой. (это просто точка самопересечения)

Определение. Кривая называется замкнутой кривой или контуром, если $\vec{r}(b) = \vec{r}(a)$, то есть если совпадают начальная и конечная точки.

Определение. Контур называется простым, если из $a \le t_1 < t_2 \le b$, $\vec{r}(t_1) = \vec{r}(t_2)$ следует, что $t_1 = a$, $t_2 = b$. То есть простой контур - без самопересечений.

Возрастание параметра t определяет некоторое направление движения точки $\vec{r}(t)$ по кривой (некоторый порядок прохождения точек кривой.) Поэтому говорят, что на кривой задана ориентация, рассматриваемую кривую называют ориентированной кривой, точку $\vec{r}(a)$ - началом кривой, а $\vec{r}(b)$ - концом кривой.

Определение. Точка $\vec{r}(t_0)$ кривой называется особой, если $\vec{r}'(t_0) = 0$. Определение. Кривая называется непрерывно дифференцируемой, если вектор функция, задающая ее, непрерывно дифференцируема на всем отрезке [a,b].

Определение. Гладкая кривая - непрерывно дифференцируемая кривая без особых точек.

3 Длина кривой.

Зададим на $t \in [a,b]$ кривую $\Gamma = \vec{r}(t)$. Разделим отрезок [a,b] на 5 кусков, и соединим точки кривой, соответствующие концам этих кусков, отрезками. Получим ломаную. Если мы разобьем [a,b] на 10 кусков, то тоже получим ломаную, но она будет состоять уже из 10 частей, и будет плотнее прилегать к кривой. При это ее длина станет больше, чем если бы было 5 частей, и она станет ближе к длине кривой. Значит, длина кривой - это просто предел (ну или верхняя грань) длин ломаных, когда измельчение отрезка [a,b] очень мало. Говорят в таких случаях, что мелкость разбиения стремится к нулю. Здесь τ - назовем так очередное разбиение, его мелкость обозначается $|\tau|$, и она по определению равна длине наибольшего из отрезков разбиения.

Итак, возьмем ломаную Λ_{τ} . Ее длина - просто сумма длин отрезков ломаной: $S_{\Lambda_{\tau}} = \sum_{i=1}^{i_{\tau}} |\vec{r}(t_i) - \vec{r}(t_{i-1})|$ $(i_{\tau}$ - число отрезков разбиения отрезка [a,b]). Тогда по рассуждениям выше длина кривой, в которую вписана эта ломаная, равна:

$$S_{\Gamma} = \sup_{\tau} S_{\Lambda_{\tau}} = \lim_{|\tau| \to 0} S_{\Lambda_{\tau}}$$

Это и есть определение длины кривой.

Определение. Кривая называется спрямляемой, если ее длина конечна.

Теорема 1. Пусть $\Gamma = \{\vec{r}(t), a \leq t \leq b\}$ - непрерывно дифференцируемая кривая. Тогда она спрямляема, и ее длина удовлетворяет условию:

$$|\vec{r}(b) - \vec{r}(a)| \le S_{\Gamma} \le \max_{a \le t \le b} |\vec{r}'(t)|(b-a)$$

Доказательство:

Левое неравенство очевидно: длина кривой всегда ≥ расстояния между ее концами. Так что докажем только второе.

Функция $|\vec{r}'(t)|$ как непрерывная на отрезке [a,b] достигает своего максимума. Пусть $\tau = \{t_i\}_{i=1}^{i_{\tau}}$ - некоторое разбиение отрезка [a,b]. Тогда оценим длину ломаной (в ходе оценки применим аналог теоремы Лагранжа к каждому из отрезков $[t_{i-1},t_i]$; $\xi_i \in (t_{i-1},t_i)$):

$$S_{\Lambda_{\tau}} = \sum_{i=1}^{i_{\tau}} |\vec{r}(t_i) - \vec{r}(t_{i-1})| \le \sum_{i=1}^{i_{\tau}} |\vec{r}'(\xi_i)| (t_i - t_{i-1}) \le \sum_{i=1}^{i_{\tau}} \max_{a \le t \le b} |\vec{r}'(t)| (t_i - t_{i-1}) = \max_{a \le t \le b} |\vec{r}'(t)| \sum_{i=1}^{i_{\tau}} (t_i - t_{i-1}) = \max_{a \le t \le b} |\vec{r}'(t)| (b - a)$$

Переходя в этом неравенстве к верхней грани по τ , получаем утверждение теоремы.

Теорема 2. Пусть $\Gamma = \{\vec{r}(t), a \leq t \leq b\}$ - непрерывно дифференцируемая кривая. Тогда переменная длина дуги s = s(t), отсчитываемая от начала кривой, является возрастающей непрерывно дифференцируемой функцией параметра t, причем

$$\frac{ds}{dt} = \left| \frac{d\vec{r}}{dt} \right| = \sqrt{x'^2 + y'^2 + z'^2}$$

Локазательство:

Рассмотрим кусок дуги кривой между t_0 и $t_0+\Delta t$ ($\Delta t>0$). Обозначим $\Delta s=s(t_0+\Delta t)-s(t_0).$ По теореме 1 получим:

$$|\vec{r}(t_0 + \Delta t) - \vec{r}(t_0)| \le \Delta s \le \max_{t_0 \le t \le t_0 + \Delta t} |\vec{r}'(t)| \Delta t$$

Если разделить на Δt и перейти к пределу при $\Delta t \to 0+0$, то получим:

$$s'_{+}(t_0) = |\vec{r}'(t_0)|$$

Аналогично, рассматривая интервал $(t_0 - \Delta t; t_0)$, имеем:

$$s'_{-}(t_0) = |\vec{r}'(t_0)|$$

Отсюда получаем $s'(t_0) = |\vec{r}'(t_0)|$, ч.т.д.

Эта теорема очень важная, она пригодится в дальнейшем.

4 Кривизна, касательная, нормаль и их друзья.

Касательный вектор к кривой определяется следующим образом:

$$\vec{t} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}(t_0)}{|\Delta \vec{r}(t_0)|}$$

Не путайте касательный вектор \vec{t} и параметр кривой t: над вектором касательной стоит векторочек.

Его можно переписать в следующем виде:

$$\vec{t} = \frac{\vec{r}'(t_0)}{|\vec{r}'(t_0)|}$$

Воспользовавшись результатом теоремы 2 (|r'| = s'), получаем альтернативную форму записи касательного вектора:

$$\vec{t} = \frac{\vec{r}'(t_0)}{s'(t_0)} = \frac{d\vec{r}/dt}{ds/dt}(t_0) = \frac{d\vec{r}}{ds}(t_0)$$

Уравнение касательной записать очень просто (из аналита мы умеем строить уравнение прямой, проходящей через точку $\vec{r}(t_0)$ параллельно вектору \vec{t}).

$$\vec{r}(t) = \vec{r}(t_0) + \vec{t}\tau, \tau \in (-\infty, +\infty)$$

Возьмем теперь производную $\frac{d\vec{t}}{ds}$. Она равна: $\frac{d\vec{t}}{ds} = \frac{d^2\vec{r}}{ds^2}$. Введем вектор главной нормали и кривизну следующим образом:

$$\frac{d\vec{t}}{ds} = \frac{d^2\vec{r}}{ds^2} = k\vec{n},$$

где $|\vec{n}|=1,\,\vec{n}$ - вектор главной нормали; k - кривизна. Из формулы выше ясно, что

$$k = |\frac{d\vec{t}}{ds}| = |\frac{d^2\vec{r}}{ds^2}|$$

Покажем, что введенный таким образом вектор перпендикулярен касательному вектору:

Утв. $\vec{t} \perp \vec{n}$

Док-во: $\vec{t}=1\Rightarrow(\vec{t};\vec{t})=1.$ Возьмем производную от обеих частей, получим $2(\vec{t};\vec{t}')=0.$ чтд

 ${f Paguycom}$ кривизны называют $R=rac{1}{k}$

Вектор бинормали $\vec{\beta} = [\vec{t}, \vec{n}]$

Запишем формулу для кривизны в виде, в котором мы сможем ее легко посчитать:

$$\frac{d\vec{t}}{ds} = \frac{\vec{t'}}{s'} = \frac{(\vec{r'}/s')'}{s'} = \frac{s'\vec{r''} - s''\vec{r'}}{s'^3}$$

Далее заметим, что, т.к. $\frac{d\vec{t}}{ds}$ задает направление вектора нормали, который перпендикулярен \vec{t} , причем длина $|\vec{t}|=1$, можно сделать следующий финт ушами с векторным произведением:

$$k = |\frac{d\vec{t}}{ds}| = |[\frac{d\vec{t}}{ds} \times \vec{t}]| = |[\frac{d^2\vec{r}}{ds^2} \times \frac{d\vec{r}}{ds}]| = |\frac{s'\vec{r}'' - s''\vec{r}'}{s'^3} \times \frac{\vec{r}'}{s'}|$$

Векторное произведение параллельных векторов ноль, а $s' = |\vec{r}'|$. Поэтому имеем:

$$\left| \frac{s'\bar{r}'' - s''\bar{r}'}{s'^3} \times \frac{\bar{r}'}{s'} \right| = \frac{\left| [\bar{r}'' \times \bar{r}''] \right|}{s'^3} = \frac{\left| \bar{r}'' \times \bar{r}'' \right|}{|\bar{r}''|^3}$$

Итак, у нас есть **важная формула**, которую мы будем в дальнейшем юзать на письменном экзамене:

$$k = \frac{|\vec{r}' \times \vec{r}''|}{|\vec{r}'|^3}.$$

Замечание. В ходе доказательства этой формулы (когда мы еще делали финт ушами), мы показали, что $[\vec{t}; \vec{n}] \parallel [\vec{r}'; \vec{r}'']$.

Отсюда и из соображений, что $\vec{\beta}$ единичный, получаем формулу для Вектора бинормали:

$$\vec{\beta} = \frac{[\vec{r}'; \vec{r}'']}{|[\vec{r}'; \vec{r}'']|}.$$

Из определения вектора бинормали и того, что \vec{t} , \vec{n} , $\vec{\beta}$, получаем формулу вектора **главной нормали**:

$$\vec{n} = \frac{[\vec{r}', [\vec{r}'', \vec{r}']]}{|[\vec{r}', [\vec{r}'', \vec{r}']]|}$$

Замечание. \vec{n} не коллинеарен \vec{r}'' .

Приведем еще пару формул и определений:

Центр кривизны для точки кривой $\vec{r}(t_0)$ - точка, находящаяся от $\vec{r}(t_0)$ на расстоянии $R=\frac{1}{k}$ в направлении вектора главной нормали.

$$\vec{\beta} = \frac{[\vec{r}', \vec{r}'']}{|[\vec{r}', \vec{r}'']|}$$

Соприкасающаяся плоскость в точке $\vec{r}(t_0)$ - плоскость, проходящая через вектора касательной и нормали. Соответственно, она перпендикулярна вектору бинормали. Отсюда очевидно следует ее уравнение:

$$(\vec{r} - \vec{r}_0, \vec{r}'_0, \vec{r}''_0) = 0$$

(штука выше - смешанное произведение векторов, если что)

Нормальная плоскость в точке $\vec{r}(t_0)$ - плоскость, проходящая через вектора нормали и бинормали. Ее уравнение:

$$(\vec{r} - \vec{r_0}, \vec{r'_0}) = 0$$

Спрямляющая плоскость в точке $\vec{r}(t_0)$ - плоскость, проходящая через вектора касательной и бинормали. Ее уравнение:

$$(\vec{r} - \vec{r}_0, [[\vec{r}'_0, \vec{r}''_0], \vec{r}'_0]) = 0$$

Трехгранник Френе - тетраедр с вершиной на кривой и ребрами - векторами главной нормали, касательной и бинормали (все единичные).

 Π ример 1. Дана кривая:

$$\begin{cases} y = \frac{x^2}{2} \\ z = \frac{x^3}{6} \end{cases}$$

Найти:

- 1. Кривизну в точках (0,0,0) и $(1;\frac{1}{2};\frac{1}{6})$
- 2. Нормальную прямую в точке (0,0,0)
- 3. Нормальную плоскость в точке (0,0,0)

Параметризуем кривую по-человечески:

$$\begin{cases} x = t \\ y = \frac{t^2}{2} \\ z = \frac{t^3}{6} \end{cases}$$

Значит,

$$\vec{r} = \begin{pmatrix} t \\ t^2/2 \\ t^3/6 \end{pmatrix}$$

$$\vec{r}' = \begin{pmatrix} 1 \\ t \\ t^2/2 \end{pmatrix}$$

$$\vec{r}'' = \begin{pmatrix} 0 \\ 1 \\ t \end{pmatrix}$$

$$[\vec{r}'', \vec{r}'] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 1 & t \\ 1 & t & t^2/2 \end{vmatrix} = \vec{i}(-t^2/2) + \vec{j}(t) - \vec{k} = \begin{pmatrix} -t^2/2 \\ t \\ -1 \end{pmatrix}$$

$$|[\vec{r}'', \vec{r}']| = \sqrt{1 + t^2 + \frac{t^4}{4}}$$

$$|\vec{r}'| = \sqrt{1 + t^2 + \frac{t^4}{4}}$$

$$k = \frac{|[\vec{r}'', \vec{r}']|}{|\vec{r}'|^3} = \frac{1}{1 + t^2 + t^4/4}$$

Точке (0,0,0) соответствует значение t=0.

$$k(0) = 1$$

Точке $(1; \frac{1}{2}; \frac{1}{6})$ соответствует t = 1.

$$k(1) = \frac{4}{9}$$

Чтобы найти нормальную кривую, найдем вектор нормали (не обязательно нормировать на модуль). Поскольку, если не нормировать, вектор не будет единичным, мы обозначим его не \vec{n} , а \vec{N} .

$$ec{N} = [ec{r}', [ec{r}'', ec{r}'']] = \begin{vmatrix} ec{i} & ec{j} & ec{k} \\ 1 & t & t^2/2 \\ -t^2/2 & t & -1 \end{vmatrix} = \begin{pmatrix} -t - t^3/2 \\ -t^4/4 + 1 \\ t + t^3/2 \end{pmatrix} = [ext{B TOYKE } (t=0)] = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Значит, уравнение нормальной прямой в точке $\vec{r}(t_0) = (0,0,0)$ будет:

$$\vec{r} = \vec{r}(0) + \vec{N}\tau = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\tau = \begin{pmatrix} 0 \\ \tau \\ 0 \end{pmatrix},$$

где
$$\tau \in (-\infty, +\infty)$$

Построим уравнение нормальной плоскости. Для этого заметим, что касательный вектор \vec{t} является вектором нормали к этой плоскости, т.к.

он ей перпендикулярен. Мы знаем, что
$$\vec{t}$$
 параллелен $\vec{r'} = \begin{pmatrix} 1 \\ t \\ t^2/2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ при $t=0$.

Уравнение плоскости, как известно из аналита, имеет вид:

$$Ax + By + Cz + D = 0$$

В нашем случае (исходя из вектора нормали к плоскости) уравнение плоскости имеет вид:

$$x + D = 0$$

Подставив сюда интересующую нас точку (0,0,0), получаем D=0. Отсюда уравнение нормальной плоскости в точке (0,0,0):

$$x = 0$$

Я приводил готовые уравнения нормальной, соприкасающейся и спрямляющей плоскостей, но, как видите, иногда проще пользоваться не ими, а знаниями из аналита и немного мозгой.

Пример 2. Найти в точке (1,1) значение радиуса кривизны графика функции y(x):

$$x^4 + y^4 - 2xy = 0 (1)$$

В данном случае y(x) - функция икса, но явной зависимости нет. То есть у нас вообще говоря есть кривая:

$$\vec{r} = \begin{pmatrix} x \\ y(x) \\ 0 \end{pmatrix}$$

И мы дальше должны искать кривизну по алгоритму, беря производные от радиус-вектора (в качестве t выступает x), но беда в том, как найти y'(x), если y(x) не задан явно формулой.

Делается это на самом деле просто: нужно просто взять производную от обеих частей уравнения (1):

$$4x^3 + 4y^3y' - 2y - 2xy' = 0 (2)$$

Подставляя сюда точку (1,1), получаем:

$$y'(1,1) = -1$$

Чтобы найти y''(x), возьмем производную от обеих частей уравнения (2):

$$12x^2 + 12y^2y'^2 + 4y^3y'' - 2y' - 2y' - 2xy'' = 0$$

Подставляя сюда значения (x,y)=(1,1) и y'=-1, имеем:

$$y'' = -14$$

Итак,

$$\vec{r} = \begin{pmatrix} x \\ y(x) \\ 0 \end{pmatrix}$$

$$\vec{r}' = \begin{pmatrix} 1 \\ y'(x) \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

$$\vec{r}'' = \begin{pmatrix} 0 \\ y''(x) \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -14 \\ 0 \end{pmatrix}$$

$$|r'| = \sqrt{1 + (y'(x))^2} = \sqrt{2}$$

$$[\vec{r}', \vec{r}''] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 0 \\ 0 & -14 & 0 \end{vmatrix} = -14\vec{k} = \begin{pmatrix} 0 \\ 0 \\ -14 \end{pmatrix}$$

Значит,

$$|[\vec{r}', \vec{r}'']| = 14$$

Получаем,

$$k = \frac{|[\vec{r}', \vec{r}'']|}{|\vec{r}'|^3} = \frac{7}{\sqrt{2}}$$
$$R = \frac{\sqrt{2}}{7}$$

Не облажайтесь, когда вас просят найти радиус кривизны, а не кривизну, читайте внимательно условие =)