Cours 6 et 7 – Décision multiattribut et élicitation de préférences

Master ANDROIDE – DJ (M1) – PATRICE PERNY

LIP6 - Sorbonne Université

I) Introduction à la représentation de préférences par une utilité additive

Plan

- ① Introduction à la représentation de préférences par une utilité additive
- 2 Représentation de préférences par une utilité additive : le cas d'attributs à domaines continus (rappels du denier cours)
- 3 Représentation de préférences par une utilité additive : le cas d'attributs à domaines finis
- 4 Elicitation de préférences : la méthode "Even Swaps"
- 5 Elicitation de préférences : la méthode UTA
- 6 Elicitation incrémentale
- Une approche bayésienne de l'élicitation

2/58

Motivations

Cadre: décision multiattribut

- représentation de préférences sur des objets multiattributs
- décision (choix, rangement)

Applications : aide à la décision, systèmes de recommandations

Espace des solutions $X = X_1 \times \cdots \times X_n$

Modèle des préférences :

$$x \succsim y \iff u(x_1, x_2, \dots, x_n) \ge u(y_1, y_2, \dots, y_n)$$

- → décompositions de préférences et représentations compactes
 - sauver de l'espace mémoire
 - simplifier l'élicitation (l'acquisition des préférences)
 - concevoir des procédures d'optimisation efficaces

Décomposition additive de fonctions d'utilités

```
Exemple: élaboration d'un menu x=(x_1,x_2,x_3)

• main cours x_1 \in X_1 = \{ \text{meat } (M), \text{ fish } (F), \ldots \},

• drink x_2 \in X_2 = \{ \text{red wine } (R), \text{ white wine } (W), \ldots \},

• dessert x_3 \in X_3 = \{ \text{cake } (C), \text{ sorbet } (S), \ldots \}.
```

Décompositions additives et non-additives

- Décomposition additive totale [Luce, Tukey, 64; Krantz, Luce, Suppes, Tversky, 71] $u(x) = u_1(x_1) + u_2(x_2) + u_3(x_3)$
- Décomposition partielle additive (GAI) [Fishburn, 70; Bacchus, Grove 95] $u(x) = u_{12}(x_1, x_2) + u_{13}(x_1, x_3)$
- Décomposition avec forme multiplicative [Keeney, Raiffa, 76] $u(x) = \sum_i k_i u_i(x_i) + k_{12} u_1(x_1) u_2(x_2) + k_{13} u_1(x_1) u_3(x_3)$

Décomposabilité versus expressivité

```
(meat, red, cake) > (meat, red, sorbet) > (meat, white, cake) >
(meat, white, sorbet) \succ (fish, red, cake) \succ u(fish, red, sorbet) \succ
(fish, white, cake) > (fish, white, sorbet)
Représentable par : u(x) = u_1(x_1) + u_2(x_2) + u_3(x_3)
u_1(meat) = 4; u_1(fish) = 0; u_2(red) = 2; u_2(white) = 0;
u_3(cake) = 1; u_3(sorbet) = 0.
                          = 7: u(meat, red, sorbet)
   u(meat, red, cake)
                                                           = 6:
   u(meat, white, cake) = 5; u(meat, white, sorbet)
                                                           = 4:
   u(fish, red, cake)
                          = 3; u(fish, red, sorbet)
                                                           = 2:
                          = 1; u(fish, white, sorbet)
   u(fish, white, cake)
                                                           = 0:
```

5/58

Decomposabilité versus expressivité

 $u_{13}(fish, cake) = 1$;

```
(meat, red, sorbet) \succ (meat, red, cake) \succ (fish, white, sorbet) \succ (fish, white, cake) (meat, white, sorbet) \succ (meat, white, cake) \succ (fish, red, cake) \succ u(fish, red, sorbet)

Non representable par : u(x) = u_1(x_1) + u_2(x_2) + u_3(x_3)

(meat, red, sorbet) > (meat, white, sorbet) \Rightarrow u_2(red) > u_2(white)
(fish, white, sorbet) > (fish, red, sorbet) \Rightarrow u_2(white) > u_2(red)

Représentable par une fonction d'utilité partiellement decomposable u(x) = u_{12}(x_1, x_2) + u_{13}(x_1, x_3)

u_{12}(meat, red) = 6; \quad u_{12}(fish, white) = 4; \quad u_{12}(meat, fish) = 2; \quad u_{12}(fish, red) = 0; \quad u_{13}(meat, cake) = 0; \quad u_{13}(meat, sorbet) = 1;
```

 $u_{13}(fish, sorbet) = 0.$

7 / 58

Decomposabilité et compacité

EXEMPLE: 12 attributs avec 10 valeurs possibles

Sans décomposition : 1 facteur de 12 attributs ightarrow $10^{12} = 1$ TO

$$u_1(x_1,\ldots,x_{12})$$

Décomposition totale : 12 facteurs \rightarrow 10 \times 12 = 120 B

$$u_1(x_1) + u_2(x_2) + \ldots + u_{12}(x_{12})$$

 $\ensuremath{\text{D\'e}}\xspace \text{Composition } GAI: 6 \text{ facteurs de } 3 \text{ attributs} \rightarrow 6 \times 10^3 = 6 \text{ KB}$

$$u_1(x_1,x_2,x_3) + u_2(x_3,x_4,x_5) + \ldots + u_6(x_{11},x_{12},x_1)$$

6 / 58

II) Représentation de préférences par une utilité additive : le cas d'attributs à domaines continus

9 / 58

Axiomes pour les utilités additives

NOTATION: $(z_i, x_{-i}) = (x_1, \dots, x_{i-1}, v_i, x_{i+1}, \dots, x_n)$

Axiome (Essentialité)

$$\forall i \in \{1, ..., n\}, \exists x_i, y_i \in X_i \text{ et } \exists z_j \in X_j \forall j \neq i, \text{ tel que } (x_i, z_{-i}) \succ (y_i, z_{-i}).$$

QUELQUES REMARQUES:

- attribut essentiel = attribut qui est déterminant au moins une fois pour justifier une préférence
- les attributs non-essentiels peuvent être omis dans l'analyse des préférences

Axiomes pour les utilités additives

NOTATION:
$$(z_i, x_{-i}) = (x_1, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n)$$

Axiome (Indépendance en coordonnées)

$$\forall i \in \{1, \ldots, n\}, \ \forall z_i, t_i \in X_i \ \text{et} \ \forall x_j, y_j \in X_j, \ j \neq i, \ (z_i, x_{-i}) \succsim (z_i, y_{-i}) \Leftrightarrow (t_i, x_{-i}) \succsim (t_i, y_{-i}).$$

Remarques:

- les préférences sur un attributs se raisonnent "toutes choses égales par ailleurs"
- cette condition est nécessaire pour qu'une utilité additive existe
- cette condition permet la définition de préférences marginales \succsim_i définies par :

$$x_i \succsim_i y_i \text{ iff } \exists (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \in \times_{j \neq i} X_j$$

tel que $(x_i, x_{-i}) \succsim_i (y_i, x_{-i})$.

Cette hypothèse permet de réduire considérablement l'effort d'élicitation; on peut en effet évaluer les utilités attribut par attribut au lieu de considérer toutes les combinaisons

10 / 58

Axiomes pour les utilités additives

NOTATION: $(y_i, x_{-i}) = (x_1, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n)$

Axiome (Solvabilité restreinte)

Soit
$$X = \times_{i=1}^{n} X_{i}$$
. $\forall i \in \{1, ..., n\}$,
 $si(x_{i}^{0}, x_{-i}^{0}) \lesssim (x_{1}, ..., x_{n}) \lesssim (x_{i}^{2}, x_{-i}^{0})$, alors
 $\exists x_{i}^{1} \in X_{i} \text{ tel que } (x_{i}^{1}, x_{-i}^{0}) \sim (x_{1}, ..., x_{n})$.

11/58 12/58

La solvabilité : une propriété nécessaire pour l'elicitation

EXEMPLE: $X = X_1 \times X_i$

Soient x_1^0 et x_1^1 deux éléments of X_1 tels que $u_1(x_1^1) > u_1(x_1^0)$

Soit $\delta = u_1(x_1^1) - u_1(x_1^0)$ la taille de l'écart de référence (nommé "mèche")

Soit $x_i^0 \in X_i$ tel que $u_i(x_i^0) = 0$.

Soit $x_i^1 \in X_i$ la réponse à la question $(x_i^0, x_1^1) \sim (?, x_1^0)$ Alors $u_i(x_i^0) + u_1(x_1^1) = u_i(x_i^1) + u_1(x_1^0)$

$$u_i(x_i^1) = u_i(x_i^0) + u_1(x_1^1) - u_1(x_1^0) = \delta$$

13 / 58

Axiomes pour les utilités additives

Axiome (Axiome Archimédien)

Soit $\{x_1^k, k \in S\}$ une séquence standard pour X_1 de mèche $\{x^{0}, x^{1}\}. Si \exists y, z \in X \text{ tel que } y \succ (x_{1}^{k}, x_{-1}^{0}) \succ z, \forall x_{1}^{k} \in X_{1}, \text{ alors} \}$ S est fini.

La même définition s'applique à tout attribut X_i , i > 1.

Séquences standard et élicitation

Définition (Standard Sequence)

Soit S un ensemble de nombres consécutifs. $\{x_1^k, k \in S\}$ est une séquence standard pour X_1 iff $\exists x^0 = (x_2^0, \dots, x_n^0)$ et $\exists x^1 = (x_2^1, \dots, x_n^1) \text{ tels que } (x_1^0, x_{-1}^0) \not\sim (x_1^0, x_{-1}^1) \text{ et,}$ $\forall k, k+1 \in N$, $(x_1^{k+1}, x_{-1}^0) \sim (x_1^k, x_{-1}^1)$. $\{x^0, x^1\}$ est appelé mèche de la séquence standard.

14 / 58

La condition de Thomsen (cas de 2 attributs)

Définition (Condition de Thomsen)

Soit
$$X = X_1 \times X_2$$
:

$$\begin{cases}
A & B \\
(x_1, y_2) & \sim (y_1, x_2) \\
(z_1, x_2) & \sim (x_1, z_2)
\end{cases}
\Rightarrow (z_1, y_2) & \sim (y_1, z_2)$$

Utilité de la condition de Thomsen

17 / 58 18 / 58

Importance de l'unicité à une transformation affine près

Si $u(x_1,\ldots,x_n)=\sum_{i=1}^n u_i(x_i)$ et $v(x_1,\ldots,x_n)=\sum_{i=1}^n v_i(x_i)$ sont deux fonctions d'utilité additives reprèsentant la même préférence \succeq , alors $\exists \alpha>0$ et $\exists \beta_i \in \mathbb{R}$, tels que $\forall i \in \{1, \ldots, n\}$, $u_i(\cdot) = \alpha v_i(\cdot) + \beta_i$.

Conséquence :

On peut choisir le 0 de chaque échelle d'utilité u_i (grace aux β_i) et l'unité sur un attribut de référence (disons X_1).

COMMENT PROCÉDER?

Définir les valeurs de références ayant une utilité nulle 0 sur chaque attribut : (x_1^0, \ldots, x_n^0)

Définir la valeur d'utilité 1 sur l'attribut $X_1 : x_1^1$

Soit $v(x_1, \ldots, x_n) = \sum_{i=1}^n v_i(x_i)$ une utilité additive représentant \succsim Alors $u_i(x_i) = \frac{v_i(x_i)}{v_1(x_i^1) - v_1(x_i^0)} - \frac{v_i(x_i^0)}{v_1(x_i^1) - v_1(x_i^0)}$ pour tous les $x_i \in X_i$ est une utilité additive telle que $u_1(x_1^1) = 1$ et $u_i(x_i^0) = 0$ pour tout i.

Existence et unicité des utilités additives

Théorème (Krantz, Luce, Suppes, Tversky, 1971)

Soit \succeq une relation binaire sur $X = \times_{i=1}^n X_i$, with $n \ge 3$. Si la solvabilité restreinte est vérifiée sur tous les attributs et que au moins 3 attributs sont essentiels alors les deux affirmations suivantes sont équivalentes :

- \(\simeg \) est un préordre complet vérifiant :
 - L'indépendance en coordonnées
 - L'axiome Archimédien
- \(\subseteq \text{ est représentable par une fonction d'utilité u de la forme $u(x_1, \ldots, x_n) = u_1(x_1) + \ldots + u_n(x_n)$ et cette utilité est unique à une transformée affine positive près.

Remarque: Pour le cas n = 2 un théorème similaire existe (il faut juste imposer la condition de Thomsen en plus de l'indépendance et de l'axiome archimédien)

Analyse de ce résultat axiomatique

Intérêt

- propose une méthode théorique de construction d'une utilité additive, axiomatiquement fondée
- si la grille à q points, seulement q questions par attribut sont posées au décideur, le modèle peut éventuellement être complété par interpolation
- si une grille plus fine est nécessaire, elle peut être obtenue en réduisant la taille de la mèche
- les questions posées sont relativement simples car les objets à comparer ne varient que sur deux attributs à la fois

LIMITES

19 / 58

- la solvabilité requise pour engendrer des séquences standard supposent que les attributs soient suffisamment riches (e.g., continus)
- la construction est fondée sur des jugements d'indifférence qui sont réputés moins fiables que les jugements de préférences
- la possibilité de chainer les erreurs dans les réponses est grande du fait de la construction par séquences standard

Une méthode simple pour éliciter la fonction d'utilité

- on peut déjà chercher à éliciter indépendamment les utilités sur chaque attribut X_i (par évaluation directe, ou en utilisant des loteries ou tout autre question de comparaison impliquant des écarts d'utilités sur un attribut)
- on obtient alors n utilités monoattribut indépendantes v_1, \ldots, v_n
- les v_i's peuvent alors être agrégés de manière cohérente en une fonction d'utilité de la forme :

$$u(x_1,\ldots,x_n)=\sum_{i=1}^n k_i v_i(x_i)$$

Algorithm 1: A general elicitation procedure

1 for $i \in \{1, ..., n\}$ do

Elicit a utility function $v_i(\cdot)$ over attribute X_i ;

Determine k_i so as to match v_i with $v_i(\cdot)$, j < i

4 end

III) Représentation de préférences par une utilité additive : le cas d'attributs à domaines finis

Elicitation des coefficients k_i , $i \ge 2$

Initialisation : $k_1 \leftarrow 1$ (non restrictif).

DÉTERMINATION DE k_i À PARTIR DE v_i 'S, i < i

- ① Choisir j < i
- ② Trouver deux éléments de la forme $x^1 = (a_i, a_j, x)$ et $x^2 = (b_i, b_j, x)$ tels que $x^1 \sim x^2$ avec $x \in \times_{k \notin \{i,j\}} X_k$.

De là on tire :

$$k_i v_i(a_i) + k_j v_j(a_j) + \sum_{p \neq i,j} k_p v_p(x_p) = k_i v_i(b_i) + k_j v_j(b_j) + \sum_{p \neq i,j} k_p v_p(x_p)$$

$$3 k_i \leftarrow k_j \frac{v_j(b_j) - v_j(a_j)}{v_i(a_i) - v_i(b_i)}$$

22 / 58

Le cas d'attributs à domaines finis

Cadre général

21 / 58

$$X = X_1 \times \cdots \times X_n \quad X_i$$
 fini

- Pas de solvabilité ni de possibilité de faire une séquence standard
- L'indépendance en coordonnée reste une condition nécessaire pour garantir l'existence des fonctions u_i
- ... quoi d'autre?

L'indépendance n'est clairement pas suffisante pour assurer qu'il existe (u_1, \ldots, u_n) tel que :

$$x \succ y \Leftrightarrow \sum_{i=1}^n u_i(x_i) > \sum_{i=1}^n u_i(y_i)$$

$$x \sim y \Leftrightarrow \sum_{i=1}^n u_i(x_i) = \sum_{i=1}^n u_i(y_i)$$

23 / 58 24 / 58

Exemple (du à D. Bouyssou et M. Pirlot)

$$x_1x_2 \succ y_1x_2 \succ x_1y_2 \succ x_1z_2 \succ y_1y_2 \succ z_1x_2 \succ z_1y_2 \succ z_1z_2$$

 \bullet \succeq vérifie l'indépendance :

$$x_1 w \succ y_1 w \quad \forall w$$

$$y_1 w \succ z_1 w \quad \forall w \qquad \Rightarrow \quad x_1 \succ_1 y_1 \succ_1 z_1$$

$$x_2 v \succ y_2 v \quad \forall v$$

$$y_2 v \succ z_2 w \quad \forall v \quad \Rightarrow \quad x_2 \succ_2 y_2 \succ_2 z_2$$

• mais aucune utilité additive ne peut représenter >

$$x_1z_2 \succ y_1y_2 \Rightarrow u_1(x_1) + u_2(z_2) > u_1(y_1) + u_2(y_2)$$

$$y_1y_2 \succ z_1x_2 \Rightarrow u_1(y_1) + u_2(y_2) > u_1(z_1) + u_2(x_2)$$

$$u_1(x_1) + u_2(z_2) > u_1(z_1) + u_2(x_2)$$

$$z_1y_2 \succ y_1z_2 \Rightarrow u_1(z_1) + u_2(y_2) > u_1(y_1) + u_2(z_2)$$

$$y_1x_2 \succ x_1y_2 \Rightarrow u_1(y_1) + u_2(x_2) > u_1(x_1) + u_2(y_2)$$

$$u_1(z_1) + u_2(x_2) > u_1(x_1) + u_2(z_2)$$

Introduction d'autres conditions nécessaires : C_m

Soit $m \ge 2$ et $(x^1, \dots, x^m) \in X^m$. Pour toute permutation (y^1, \dots, y^m) de (x^1, \dots, x^m) on a :

$$\forall i \in N, \quad \sum_{j=1}^{m} u_i(x_i^j) = \sum_{j=1}^{m} u_i(y_i^j) \\
\Rightarrow \quad \sum_{i=1}^{n} \sum_{j=1}^{m} u_i(x_i^j) = \sum_{i=1}^{n} \sum_{j=1}^{m} u_i(y_i^j) \\
\Rightarrow \quad \sum_{j=1}^{m} \sum_{i=1}^{n} u_i(x_i^j) = \sum_{j=1}^{m} \sum_{i=1}^{n} u_i(y_i^j) \\
\Rightarrow \quad \sum_{j=1}^{m} u(x^j) = \sum_{j=1}^{m} u(y^j)$$

Si
$$x^j \gtrsim y^j \ \forall j = 1, \dots, m-1 \ \text{alors} \ u(x^j) \ge u(y^j) \ \forall j = 1, \dots, m-1$$

 $\Rightarrow \text{not}(u(x^m) > u(y^m)) \Rightarrow \text{not}(x^m \succ y^m)$

26 / 58

Condition C_m

Axiome (C_m)

Pour tout vecteur $(x^1, ..., x^m) \in X^m$, pour tout vecteur $(y^1, ..., y^m)$ qui est une permutation de $(x^1, ..., x^m)$:

$$\forall j = 1, \dots, m-1, x^j \succsim y^j \Rightarrow not(x^m \succ y^m)$$

Propriétés

- $C_{m+1} \Rightarrow C_m$ mais la réciproque est fausse.
- $C_2 \Rightarrow \succsim \text{ v\'erifie l'ind\'ependance}$
- $C_3 \Rightarrow \succeq$ est transitive

A montrer en exercice.

Un théorème de représentation pour le cas fini

Théorème (Fishburn, 1970)

Soit \succeq une relation binaire sur un ensemble fini $X \subseteq X_1 \times \cdots \times X_n$. Les deux propositions suivantes sont équivalentes :

- \succsim est représentable par une fonction de la forme $u(x) = \sum_{i=1}^{n} u_i(x_i)$
- \succeq est complète et satisfait C_m , $\forall m \geq 2$

REMARQUES

25 / 58

- La représentation, quand elle existe, n'est pas nécessairement unique,
- C_m pour tout ordre m représente une infinité de conditions à tester, c'est infaisable en pratique.
- ullet Pour un ensemble X donné, il suffit en revanche de tester par PL si le système d'équation suivant admet une solution

$$\left\{\sum_{i=1}^n u_i(x_i) \ge \sum_{i=1}^n u_i(y_i) \text{ pour tout } x, y \in X \text{ tel que } x \succsim y\right\}$$
 (voir plus loin la méthode UTA).

27 / 58 28 / 58

IV) Elicitation de préférences : la méthode "Even Swaps"

29 / 58

Even Swaps : An example

The Decision Problem : Choosing an apartment to rent in Paris

- Building $X_1 = \{Old, Recent, New\}$
- Size (m^2) $X_2 = \{70, 75, 80, \dots, 120\}$
- Rooms $X_3 = \{3, 4, 5\}$
- Locations $X_4 = \{A, B, C, D, E\}$
- Parking $X_5 = \{yes, no\}$
- Monthly Cost $X_6 = \{1500, \dots, 4000\}$

Spécificités de la méthode "Even Swaps"

- élicitation partielle des préférences pour résoudre une instance donnée d'un problème de choix multiattribut
- on fait l'hypothèse de l'existence d'une utilité additive (ou simplement de quelques propriétés utiles nécessaires à l'existence d'une utilité additive)
- on ne cherche pas à déterminer explicitement les utilités mais seulement à se servir des propriétés utiles pour éliminer progressivement des alternatives et determiner la meilleure option pour le décideur
- principe : simplification de la table de décision en utilisant des échanges de performances à utilité constante (even swaps) et réduction progressive de l'ensemble des alternatives à comparer.

THE DECISION TABLE

	x_1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆
$\overline{A1}$	Old	70	3	В	no	1800
A2	Recent	100	4	В	no	2000
A3	Old	120	5	D	no	2400
A4	New	80	4	C	yes	2400
A_5	Recent	90	4	В	no	2500
A6	Old	100	5	Α	yes	2800

We assume that:

 $Old \succ Recent \succ new$ and $A \succ B \succ C \succ D \succ E$

31/58 32/58

Even Swaps : Step 1

	x_1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>X</i> ₆	
A1	Old	70	3	В	no	1800	-
A2	Recent	100	4	B	no	2000	
A3	Old	120	5	D	no	2400	
A4	New	80	4	C	yes	2400	
- 45	Recent	90	4	В	no	2500	_
<i>A</i> 6	Old	100	5	A	yes	2800	
							_
	x_1	x_2	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	
A1	Old	70	3	B	yes	1800	+200
A2	Recent	100	4	B	yes	2000	+200
A3	Old	120	5	D	yes	2400	+200
A4	New	80	4	C	yes	2400	
- 4 5	Recent	90	4	В	no	2500	
<i>A</i> 6	Old	100	5	A	yes	2800	

- ① A5 is dominated by A2
- 2 The cost of a parking car is 200

Even Swaps : Step 1

	x_1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>X</i> ₆	
<i>A</i> 1	Old	70	3	В	no	1800	-
A2	Recent	100	4	B	no	2000	
A3	Old	120	5	D	no	2400	
A4	New	80	4	C	yes	2400	
45	Recent	90	4	В	no	2500	_
<i>A</i> 6	Old	100	5	A	yes	2800	
							_
	x_1	x_2	<i>X</i> 3	<i>X</i> ₄	Xg	x_6	
A1	Old	70	3	В	ves	1800	+200
A2	Recent	100	4	B	ves	2000	+200
A3	Old	120	5	D	yes	2400	+200
<i>A</i> 4	New	80	4	C	yes	2400	
- 4 5	Recent	90	4	В	no	2500	
<i>A</i> 6	Old	100	5	A	yes	2800	

- ① A5 is dominated by A2
- 2 The cost of a parking car is 200

Even Swaps : Step 2

	x_1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> ₆
<i>B</i> 1	Old	70	3	В	2000
B2	Recent	100	4	B	2200
<i>B</i> 3	Old	120	5	D	2 6 00
44	Mary -	80	4	_	2400
77	IVEVV	00	4	C	2400
<i>A</i> 6	Old	100	5	A	2800

	x_1	x_2	X3	X ₄	<i>X</i> ₆
B1	Old	70	3	В	2000
B ₂	Old	100	4	B	2200
<i>B</i> 3	Old	120	5	D	2600
- 44	New	80	4	ϵ	2400
<i>A</i> 6	Old	100	5	A	2800

- ① A4 is dominated by B2
- ② DM is willing to pay 100 to pass from 'Recent' to 'Old'

Even Swaps : Step 2

33 / 58

35 / 58

	x_1	<i>X</i> 2	<i>X</i> 3	<i>X</i> 4	<i>X</i> 6
B1	Old	70	3	В	2000
B2	Recent	100	4	B	2200
<i>B</i> 3	Old	120	5	D	2 6 00
_44	New	80	4	-	2400
/ 17	TVCVV	00	-	C	2400
A6	Old	100	5	A	2800

	\times_1	x_2	X3	<i>X</i> 4	<i>x</i> ₆
<i>B</i> 1	Old	70	3	В	2000
B ₂	Old	100	4	B	2300
<i>B</i> 3	Old	120	5	D	2600
44	Λ/	00	1		2400
74	IVEVV	- 00	4		2400
<i>A</i> 6	Old	100	5	A	2800

- ① A4 is dominated by B2
- ② DM is willing to pay 100 to pass from 'Recent' to 'Old'

34 / 58

Even Swaps: Step 3

	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₆		x_2	<i>X</i> 3	<i>X</i> 4	<i>x</i> ₆
B1	70	3	В	2000	<i>B</i> 1	100	3	В	2300
<i>C</i> 2	100	4	В	2300	<i>C</i> 2	100	4	В	2300
B3	120	5	D	2600	<i>B</i> 3	100	5	C	2600
<i>A</i> 6	100	5	Α	2800	<i>A</i> 6	100	5	A	2800
${\bf \hat{U}}$	X2	V-	٧.		Ŷ				
		X3	XΔ	X6	Ш	XD	X3	X4	X6
B1	100	<i>X</i> ₃	<i>X</i> ₄ <i>B</i>	2300	B1	100	<i>x</i> ₃	<i>X</i> ₄ <i>B</i>	2300
B1 C2									
	100	3	В	2300	B1	100	3	В	2300

- ① B1 : DM is willing to pay up to 300 to pass from 70 to 100
- ② B3 : DM is willing to loose up to 20 m^2 to pass from D to C
- 3 we can delete x_2
- 4 B1 is dominated

37 / 58

Even Swaps : Step 4

① A6 : DM is willing to move from A to B to save at least 200

38 / 58

- 2 C3 is now dominated
- \odot we can delete x_4

Even Swaps: Step 5

*B*6 5 2600 C6 4 2400 \Downarrow C6 2400

- 1 B6: DM is indifferent between loosing one room or saving 200
- 2 we can delete x_4
- 3 C6 is now dominated by C2
- 4 The preferred alternative is A2 (indifferent to C2)

Explications fondées sur le graphe de préférences

trait horizontal = indifférence trait vertical = préférence du haut sur le bas

39 / 58 40 / 58

Principes utilisés dans le processus de décision

Soit $N = \{1, ..., n\}$ l'ensemble des attributs. Soit $A \subseteq X = X_1 \times ... \times X_n$ l'ensemble des alternatives.

P1: Dominance

Si il existe $x, y \in A \ \forall i, x_i \succ_i y_i$ alors $x \succ y$ et y peut être éliminé de l'ensemble des alternatives A.

P2 : Independance et essentialité

Si $\exists i \in N, \forall x \in X, x_i = \alpha$ alors $x \succsim y \Leftrightarrow x_{-i} \succsim y_{-i}$. alors i n'est pas un attribut essentiel et il peut être supprimé de l'ensemble N des attributs à considérer.

41/58 42/58

Analyse de la méthode Even Swaps

Avantages

- simple et intuitive, axiomatiquement fondée
- ne nécessite pas d'expliciter un modèle formel ni d'éliciter les composantes
- permet de produire des explications pour justifier le choix final

LIMITES

- ne convient que pour des petites tables de décision (peu d'alternatives et d'attributs)
- le processus doit être redémarré si on change l'ensemble des alternatives
- ne fournit pas de modèle des préférences du décideur

Autres principes utilisés

P3 : Solvabilité restreinte

 $\forall x \in X_i, \forall z \in X_{N \setminus \{i\}}, \forall a_i, b_i \in X_i,$

$$(a_i, z) \succsim x \succsim (b_i, z) \Rightarrow \exists c_i \in X_i, x \sim (c_i, z)$$

P4: Transitivité

 \succsim est transitive. Cela implique notamment que : si $x \sim y$ alors $x \succsim z \Leftrightarrow y \succsim z$ et $z \succsim x \Leftrightarrow z \succsim y$

Remarques:

Les principes P1, P2, P3, P4 sont tous vérifiés lorsque les préférences du décideur sont représentés par une utilité additive :

 $u(x_1, x_2, x_3, x_4, x_5) = u_1(x_1) + u_2(x_2) + u_3(x_3) + u_4(x_4) + u_5(x_5)$

V) Elicitation de préférences : la méthode UTA

43/58 44/58

La méthode UTA (Jacquet-Lagreze and Siksos, 1982)

Utilité additive $u(x_1, \ldots, x_n) = \sum_{i=1}^n u_i(x_i)$

- sur chaque X_i , r_i niveau de références $(x_i^1, \ldots, x_i^{r_i})$ sont choisis (pour une échelle continue, on discretise en r_i segments). On va alors apprendre le valeurs d'utilités $u_i(x_i^k)$ sur chaque attribut i, les autres valeurs d'utilités s'en déduiront par interpolation.
- les échelles d'utilité sont normalisées en posant : $u_i(x_i^0) = 0$ and $u_i(x_i^{r_i}) = 1$

ON UTILISE UN ENSEMBLE D'ALTERNATIVES ÉTALON:

 $A = \{a^1, \ldots, a^m\}$ telles que : $a_i^1 \preceq_i a_i^2 \preceq_i \ldots \preceq_i a_i^m$. Si $a_i^k \in [x_i^j, x_i^{j+1}]$, on a par interpolation linéaire :

$$u_i(a_i^k) = u_i(x_i^j) + \frac{a_i^k - x_i^j}{x^{j+1} - x_i^j} \left(u_i(x_i^{j+1}) - u_i(x_i^j) \right)$$

APPROXIMATION DE LA FONCTION D'UTILITÉ

 $v(x_1,\ldots,x_n)=u(x_1,\ldots,x_n)+\sigma(x)$ telle que :

$$\begin{cases} v(a^{k+1}) - v(a^k) \ge \delta & \text{if } a^{k+1} > a^k \\ v(a^{k+1}) - v(a^k) = 0 & \text{if } a^{k+1} \sim a^k \end{cases}$$

où $\delta > 0$ est une seuil de discrimination arbitrairement petit.

45 / 58

UTASTAR : un raffinement de UTA

$$v(x_1,...,x_n) = u(x_1,...,x_n) - \sigma_+(x) + \sigma_-(x)$$

Introduction de variables $w_{ik} = u_i^k - u_i^{k+1}$

(Les conditions de monotonie s'écrivent alors : $\forall i \forall k \ w_{ik} \geq 0$)

Les utilités des solutions peuvent se réécrire en fonction des w_{ij} 's : $u_i^0 = 0$ and $u_i^k = \sum_{i=1}^{k-1} w_{ij}$ for all $k = 1, \dots, n_i - 1$

Nouvelle formulation du problème par PL

$$\min \sum_{k=1}^m (\sigma_+^k + \sigma_-^k)$$

s.t.
$$\begin{cases} \sum_{i=1}^{n} w_{ik} - \sigma_{+}^{k+1} + \sigma_{-}^{k+1} + \sigma_{+}^{k} - \sigma_{-}^{k} \ge \delta & \text{if } a^{k+1} \succ a^{k} \\ \sum_{i=1}^{n} w_{ik} - \sigma_{+}^{k+1} + \sigma_{-}^{k+1} + \sigma_{+}^{k} - \sigma_{-}^{k} = 0 & \text{if } a^{k+1} \sim a^{k} \\ \sum_{i=1}^{n} \sum_{j=1}^{r_{i}-1} w_{ij} = 1 & \dots \end{cases}$$

$$w_{ij} \geq 0, \sigma_+^k \geq 0, \sigma_-^k \geq 0$$
 pour tous les i, j, k

Formulation par programmation linéaire

Variables du PL : $u_i^k = u_i(x_i^k)$ pour $k = 1, ..., r_i$ et $\sigma^j = \sigma(a^j)$, $\bar{u}_i^j = u_i(a^j), j = 1, ..., m$.

$$\min \sum_{k=1}^{m} \sigma^{k}$$
 s.t.
$$\begin{cases} \sum_{i=1}^{n} \bar{u}_{i}^{k+1} - \sum_{i=1}^{n} \bar{u}_{i}^{k} + \sigma^{k+1} - \sigma^{k} \geq \delta & \text{if } a^{k+1} \succ a^{k} \\ \sum_{i=1}^{n} \bar{u}_{i}^{k+1} - \sum_{i=1}^{n} \bar{u}_{i}^{k} + \sigma^{k+1} - \sigma^{k} = 0 & \text{if } a^{k+1} \sim a^{k} \end{cases}$$

$$\frac{\bar{u}_{i}^{k} = u_{i}^{j} + \frac{a_{i}^{k} - x_{i}^{j}}{x^{j+1} - x_{i}^{j}} \left(u_{i}^{j+1} - u_{i}^{j} \right) \right)$$

$$u_{i}^{k+1} - u_{i}^{k} \geq 0 \text{ for all i, k}$$

$$\sum_{i=1}^{n} u_{i}^{r_{i}} = 1$$

$$u_{i}^{0} = 0$$

$$i = 1, \dots, n$$

$$u_i^k > 0, \sigma^j > 0, \bar{u}_i^j > 0, \forall i, j, k$$

Si la valeur de la fonction objectif à l'optimum est 0 alors on a trouvé une représentation parfaitement compatible avec l'échantillon d'apprentissage (alternatives étalon), sinon il n'en n'existe pas mais on fournit un modèle additif pour une relation de préférence approchée.

46 / 58

VI) Elicitation incrémentale d'utilités

47 / 58 48 / 58

Elicitation incrémentale d'utilités : ISMAUT

Imprecisely specified multiattribute utility theory (ISMAUT), développée par Sage and White (1984)

$$u(x_1,\ldots,x_n)=\sum_{i=1}^n k_i v_i(x)$$

Idée de base : résolution d'une instance d'un problème de choix par réduction progressive de l'ensemble des utilités admissibles et de l'ensemble des solutions potentiellement optimales jusqu'à l'obtention d'une solution nécessairement optimale

- utilités admissibles : toutes les fonctions d'utilités additives compatibles avec les préférences observées jusqu'à présent
- solution potentiellement optimale : solution qui est optimale pour au moins une utilité admissible
- solution nécessairement optimale : solution qui est optimale pour toutes les utilités admissibles

49 / 58

Le calcul du MR

$$MR(b, c, [0, 1]) = \max\{3w + 16(1 - w) - 12w - 11(1 - w), w \in [0, 1]\}$$

= $\max\{5 - 14w, w \in [0, 1]\} = 5$

Elicitation dirigée par le critère du min-max regret

(Wang et Boutilier (2003))

$$u(x) = \sum_{i=1}^{n} w_i u_i(x_i)$$
 élicitation de (w_1, \dots, w_n) (les u_i sont supposé connus)

$$W$$
 : ens. des poids admissibles (initialement $W = \{w \in \mathbb{R}^n_+, \sum_{i=1}^n w_i = 1\})$

Le max regret par (regret max encouru en choisissant x plutôt que y):

$$PMR(x, y, W) = \max_{w \in W} u(y, w) - u(x, w)$$

Le max regret (regret max encouru de choisir x dans X):

$$MR(x, X, W) = \max_{y \in X} PMR(x, y, W)$$

La valeur du minimax regret

$$MMR(X, W) = \min_{x \in X} MR(x, W)$$

La solution du minimax regret

$$x_W^* = \arg\min_{x \in X} MR(x, X, W)$$

50 / 58

Révision du MMR

Supposons que l'on demande au décideur de comparer b et d

Révision du MMR sachant $d \succ c$

53 / 58 54 / 58

VII) Elicitation de préférences : une approche bayésienne

Réduction progressive de W

- toute préférence observée du type $x \gtrsim y$ induit une nouvelle contrainte linéaire sur W de la forme $\sum_{i=1}^{n} w_i(x_i y_i) \ge 0$
- choix de la paire (x, y) à présenter au décideur : x solution du MMR, y solution maximisant PMR(x, y, W) dans X (pire adversaire de x)

Retour à l'exemple

b est la solution optimale au sens du MMR avec MMR = 5.

Le pire adversaire de b est c

On demande au décideur de comparer b et c... Supposons qu'il préfère c alors on a : $3w + 16(1 - w) \ge 12w + 11(1 - w)$ soit encore $5(1 - w) \ge 9w$ donc $w \le 5/14$ ce qui réduit W à l'intervalle [0, 5/14].

La nouvelle solution du minimax regret est alors d avec une valeur de MMR assez réduite. On peut s'arrêter là ou continuer en demandant de comparer d et c...

Approche Bayésienne de l'élicitation

- on suppose qu'une distribution de probabilité a priori est disponible sur les utilités p(u), $u \in U$
- on se donne un ensemble de questions possibles $Q = \{q_1, \dots, q_n\},\$
- la réponse a_i^k à la question q_i est connue sous forme de probabilités conditionnelles $p(a_i^k/u)$
- on utilise la révision Bayésienne pour calculer la loi a posteriori $p(u/a_i^k)$
- on calcule la valeur espérée de la solution optimale après une telle question :

$$EVOI(q_i) = \sum_k p(a_i^k) max_{x \in X} \sum_{u \in U} p(u/a_i^k) u(x)$$

La valeur de l'information apportée par la question q_i est : $\text{EVOI}(q_i) - \max_{x \in \mathcal{X}} \sum_{u \in \mathcal{U}} p(u)u(x)$

On choisit alors la question de valeur d'information apportée maximale.

55 / 58 56 / 58

Exemple : recommandation de films

Dans la base d'utilisateurs on a seulement deux type d'individus : 60% sont consistants avec u_1 , et 40% avec u_2

Deux questions possibles :

q: aimez vous le film f? q': aimez vous le film f'?

Probabilité d'une réponse $r \in \{oui, non\}$ aux questions q et q':

p(r/u)	oui	non
u_1	0.3	0.7
u_2	0.8	0.2

p'(r/u)	oui	non
u_1	0.3	0.7
u_2	0.4	0.6

Révision Bayésienne : $p(r) = p(r/u_1)p(u_1) + p(r/u_2)p(u_2)$, $r \in \{oui, non\}$

$$p(oui) = 0.5 p(non) = 0.5$$

$$p'(oui) = 0.34 \ p'(non) = 0.66$$

p(u/r)	oui	non
u_1	0.36	0.84
u_2	0.64	0.16

$$\begin{array}{c|cccc} p'(u/r) & oui & non \\ \hline u_1 & 0.53 & 0.64 \\ u_2 & 0.47 & 0.36 \\ \end{array}$$

$$p(u/r) = p(r/u)p(u)/p(r)$$

Calcul de la valeur espérée des questions

				P
(0.5)	f_1	f_2	f_3	u _i /oui
u_1	16	12	7	0.36
u 2	4	11	14	0.64
EV	8.32	11.36	11.48	

				P
(0.5)	f_1	f_2	f_3	u _i /non
u_1	16	12	7	0.84
u 2	4	11	14	0.16
EV	14.08	11.84	8.12	

 $EVOI(q) = 0.5 \times 11.48 + 0.5 \times 14.08 = 12.78$

				p
(0.34)	f_1	f_2	f_3	u _i /oui
u_1	16	12	7	0.53
u_2	4	11	14	0.47
EV	10.36	11.53	10.29	

				P
(0.66)	f_1	f_2	f_3	u _i /non
u_1	16	12	7	0.64
u 2	4	11	14	0.36
EV	11.68	11.64	9.52	

$$EVOI(q') = 11.53 \times 0.34 + \times 11.68 \times 0.66 = 11.63$$

- $\rightarrow q$ est plus informative que q'
- \rightarrow Les deux questions sont utiles puisque la valeur espérée du gain avant la question est EV = 11.6 (pour f_2)