Graph Neural Network

Zijian Chen zijianc@bu.edu

Contents

- Part I: Introduction
 graphs; publication trend; why and how do we study graphs
- Part II: Basic Principles
 difference between graphs and images; message passing formulation;
 pitfalls and work-arounds
- Part III: Architectures and Training
 design of frameworks and training schemes for different tasks
- Part IV: Non-message-passing GNNs spectral GNNs; graph transformers

Graph Neural Network

Part I: Introduction

What is a Graph

Rigorously, a graph is an ordered pair

$$G = (V, E)$$
 node $\{1, 2, \ldots, n\}$ edge $\{(i, j) : i, j \in V\}$

We use adjacency matrix and the Laplacian to algebraically represent the structure.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \qquad L = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

Data as Graphs

ICLR Publication Trend

neural network

Top 50 keywords 2024

Keyword	Count
Large Language Models	318
Reinforcement Learning	201
Graph Neural Networks	123
Diffusion Models	112
Deep Learning	110

...

Foundation Models	20
Learning Theory	19
Online Learning	19
Instruction Tuning	19
Variational Inference	19

Different Types of Tasks

drug interaction

Graph Neural Network

Part II: Basic Principles

How are graphs different 1/2

Observation 1: graphs do not have a fixed notion of locality or sliding window.

How are graphs different 2/2

Observation 2: graphs do not have a canonical node ordering.

$$A_1 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \overset{A}{\underset{D}{\text{B}}} X_1 = \begin{bmatrix} 0.11 & 0.14 \\ 0.22 & 0.23 \\ 0.33 & 0.35 \\ 0.44 & 0.48 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} 0.11 & 0.14 \\ 0.22 & 0.23 \\ 0.33 & 0.35 \\ 0.44 & 0.48 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} A \\ B \\ C \end{bmatrix} \quad X_2 = \begin{bmatrix} 0.44 & 0.48 \\ 0.11 & 0.14 \\ 0.33 & 0.35 \\ 0.22 & 0.23 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} 0.44 & 0.48 \\ 0.11 & 0.14 \\ 0.33 & 0.35 \\ 0.22 & 0.23 \end{bmatrix}$$

How do we want the output to be?

Invariance and Equivariance

Observation 2: graphs do not have a canonical node ordering.

Invariance: permuting the input, the output stays the same.

$$f(A_1,X_1)=f(A_2,X_2)$$
 or, $f(A,X)=f(PAP^\top,PX)$

Equivariance: permuting the input, the output also gets permuted accordingly.

$$f(A_1,X_1)=Pf(A_2,X_2)$$
 or, $Pf(A,X)=f(PAP^{ op},PX)$

Traditional NN architectures, e.g., MLPs, fail for graphs, as switching the order of input will lead to different outputs.

Invariance/Equivariance can be achieved by passing and aggregating information from neighbors. This is the core of GNN.

Constructing a GNN

In each layer, a GNN aggregates neighboring node features.

Message Passing

Mathematically, we can write the message passing rule as

$$\mathbf{x}_i' = \gamma_{\Theta} \left(\mathbf{x}_i, igoplus_{j \in \mathcal{N}(i)} \phi_{\mathbf{\Theta}} \left(\mathbf{x}_i, \mathbf{x}_j, \mathbf{e}_{j,i}
ight)
ight)$$

Key ingredients:

- Message: each node computes a message.
- Aggregation: aggregate message from neighbors.
- Update: determine how to apply the aggregated message to target node.

Which part do you think is the hardest to implement?

Message Passing

Let's see a concrete example: (one of your homework questions!)

$$\mathbf{x}_{i}^{(l+1)} = \text{relu}\left(W_{i}^{(l)}\mathbf{x}_{i}^{(l)} + \sum_{j \in \mathcal{N}(i)} e_{ij}W_{j}^{(l)}\mathbf{x}_{j}^{(l)}\right)$$

- Message: $W_i^{(l)}\mathbf{x}_i, \quad e_{ij}W_j^{(l)}\mathbf{x}_j^{(l)}$
- Aggregation: $\sum_{j \in \mathcal{N}(i)}$
- Update: $relu(\cdots + \cdots)$

Is this formulation invariant or equivariant?

More Examples...

Almost all current cutting-edge GNN designs are MPNNs:

- vanilla GCN (2017)
- GAT
- GraphSAGE
- GIN
- PNA
- EGNN
- ...

We will discuss non-message-passing designs later.

Implementation

```
conv.MessagePassing
conv.MessagePassing
class MessagePassing (aggr: Optional[Union[str, List[str], Aggregation]] = 'sum', *, aggr_kwargs:
Optional[Dict[str, Any]] = None, flow: str = 'source_to_target', node_dim: int = -2,
decomposed_layers: int = 1) [source]
```

You will need to implement a light-weight version of this class in HW5

(official class: ~1000 lines of code)

CNN as a special case of GNN

Consider a CNN with 3x3 filter:

$$\mathbf{x}_i' = \sigma \bigg(\sum_{j \in \mathcal{N}_{3 \times 3}} W_j \mathbf{x}_j \bigg)$$

$$\mathbf{x}_i' = \sigma \bigg(\sum_{j \in \mathcal{N}(i)} W_j \mathbf{x}_j \bigg)$$

You don't necessarily need weight sharing & You can pick any neighbor you want

A Closer Look: Deep layers

Observation: Layer-k update gets info from nodes up to k-hops away.

Consider a simplified version of the general formulation:

$$\phi_{\Theta}(\mathbf{x}_i, \mathbf{x}_j, \mathbf{e}_{j,i}) = W\mathbf{x}_j \qquad \gamma_{\Theta}(\mathbf{x}_i, \bigoplus_{j \in \mathcal{N}(i)} (\cdot)) = \sigma((1 - \alpha)U\mathbf{x}_i + \alpha \sum_{j \in \mathcal{N}(i)} W\mathbf{x}_j)$$

Then we will have

$$X^{(k+1)} = \sigma((1-\alpha)X^{(k)}U + \alpha AX^{(k)}W)$$

As $k \to \infty$, $X^{(k+1)} \to X^{(k)}$ This is called over-smoothing.

Are there specific choices that can avoid over-smoothing?

A classical expressivity test is **Graph Isomorphism**.

A simpler problem: given a pair of nodes with different neighborhood structure, is there a GNN that can always tell them apart?

Consider the extreme case where all nodes have the same feature. Computational graph for Node 1 and Node 2:

But GNN only see the node features but not IDs

So, the updated features of node 1 and node 2 are still identical.

Computational graphs for all nodes:

Conclusion: The expressive power of GNNs depend on the expressive power of the aggregation function. Injective function leads to the most expressive GNN.

More in-depth Conclusion:

- MP-GNNs are at most as powerful as the WL test in distinguishing graph structures.
- One such GNN ("Graph Isomorphism Network", ICLR 2019):

$$h_v^{(k)} = \text{MLP}^{(k)} \left(\left(1 + \epsilon^{(k)} \right) \cdot h_v^{(k-1)} + \sum_{u \in \mathcal{N}(v)} h_u^{(k-1)} \right).$$

- Examples that WL test (or equivalently, GIN) fails:
 - Certain special structures
 - Counting cycles in the graph

Workarounds:

- Higher-order WL tests: e.g.,
 - 2-WL considers pairs of nodes "hypergraphs"
- Positional/structural encodings, e.g.,
 - encode each node with a different ID
 - cycle counts as augmented node features
 - assigning anchor nodes and compute relative distance ...
- Global attention/transformers
- ...

MP-GNNs are not perfect, but in most cases, they are more than sufficient (in terms of performance).

Graph Neural Network

Part III: Architectures and Training

A Full GNN Framework

Graph Pooling

Goal: downsample the graph to obtain representations at a smaller scale.

Two typical forms:

DiffPool (NIPS 2018)
MinCutPool (ICML 2020)

Top-K Pool (ICML 2019) SAGPool (ICML 2019)

Graph Pooling: cluster-based

$$X^{(l+1)} = S^{(l)}^T Z^{(l)} \in \mathbb{R}^{n_{l+1} \times d},$$

$$A^{(l+1)} = S^{(l)}^T A^{(l)} S^{(l)} \in \mathbb{R}^{n_{l+1} \times n_{l+1}}.$$

$$L_{ ext{LP}} = \left\|A^{(l)}, S^{(l)}S^{(l)^T}
ight\|_F \ L_{ ext{E}} = rac{1}{n}\sum_{i=1}^n H\left(S_i
ight)$$

Graph Pooling: selection-based

$$oldsymbol{y} = X^\ell oldsymbol{p}^\ell / \|oldsymbol{p}^\ell\|,$$

$$\in \mathbb{R}^N$$

$$ilde{X}^\ell = X^\ell(\mathrm{idx},:),$$

$$\in \mathbb{R}^{k \times C}$$

$$idx = rank(y, k),$$

$$\in \mathbb{R}^k$$

$$A^{\ell+1} = A^{\ell}(\mathrm{idx}, \mathrm{idx}),$$

$$\in \mathbb{R}^{k \times k}$$

$$\tilde{y} = \operatorname{sigmoid}(y(\operatorname{idx})),$$

$$\in \mathbb{R}^k$$

$$oldsymbol{X}^{\ell+1} = ilde{oldsymbol{X}}^{\ell} \odot ig(ilde{oldsymbol{y}} \mathbf{1}_C^T ig),$$

$$\in \mathbb{R}^{k \times C}$$
,

Supervised Learning

Directly train the model for a specific task with ground truth label given

For example, in neuroimaging, (mostly graph-level tasks)

Unsupervised Learning

The most common idea: similar nodes should have similar embeddings.

e.g.,
$$\mathcal{L} = \sum_{z_u, z_v} \mathrm{CE}(y_{uv}, z_u^ op z_v)$$

and it boils down to defining what kind of "similarity" you want.

Other design principles:

- maximizing information/entropy
- obeying flow constraints, such as curl-free, energy-preserving
- reflecting causal relationship
- ...

Graph Neural Network

Part IV: Non-MP GNN

Spectral GNNs

Spectral Domain of Graphs

Overview: in MPNNs, we focus on "the neighborhood of a node"

$$N_{\delta}(j) = \{i \in \Omega : W_{ij} > \delta\}$$

This is usually inefficient and cannot carry additional info.

New Idea: we move all operations to the spectral domain.

Graph Fourier Transform

	Euclidean Space	Graphs
Fourier basis	eigen-functions of the Laplacian	eigen-functions of the graph Laplacian
Fourier transform	$\hat{f}(\omega) = \int f(t) \exp(-i\omega t) dt$	$\hat{f}(\lambda_l) := \sum_{i=1}^{N} f(i)u_l(i)$
Convolution	$\mathcal{F}^{-1}\big\{\hat{f}(\omega)\hat{h}(\omega)\big\}$	$U\bigg((U^{\top}f)\odot(U^{\top}h)\bigg)$

$$f \xrightarrow{\operatorname{FT}} U^\top f \xrightarrow{\operatorname{filtering}} \hat{h}_\theta U^\top f \xrightarrow{\operatorname{IFT}} U \hat{h}_\theta U^\top f$$
aggregation happens in the frequency domain

Pick $\hat{h}_{\theta}(\lambda_i) = \theta_i$, so the filter becomes

$$\hat{h}_{ heta} = \left[egin{array}{ccc} heta_1 & & & \ & \ddots & & \ & & heta_N \end{array}
ight]$$

Performance on MNIST dataset:

		method	Parameters	Error	method	Parameters	Error	
		Nearest Neighbors	N/A	4.11	Nearest Neighbors	N/A	19	
		400-FC800-FC50-10	$3.6 \cdot 10^{5}$	1.8	4096-FC2048-FC512-9	10^{7}	5.6	
	cnatial	400-LRF1600-MP800-10	$7.2 \cdot 10^4$	1.8	4096-LRF4620-MP2000-FC300-9	$8 \cdot 10^5$	6	
spatial	400-LRF3200-MP800-LRF800-MP400-10	$1.6 \cdot 10^{5}$	1.3	4096-LRF4620-MP2000-LRF500-MP250-9	$2 \cdot 10^5$	6.5		
		400-SP1600-10 ($d_1 = 300, q = n$)	$3.2 \cdot 10^{3}$	2.6	4096-SP32K-MP3000-FC300-9 ($d_1 = 2048, q = n$)	$9 \cdot 10^{5}$	7	
	spectral	400 -SP1600-10 ($d_1 = 300, q = 32$)	$1.6 \cdot 10^{3}$	2.3	4096-SP32K-MP3000-FC300-9 ($d_1 = 2048, q = 64$)	$9 \cdot 10^{5}$	6	
	400 -SP4800-10 ($d_1 = 300, q = 20$)	$5\cdot 10^3$	1.8					

Problems:

- ullet diagonalizing the Laplacian takes ${\it O}(N^3)$ time
- # of parameters = N
- Not spatially localized: every dimension of the result is related to ALL nodes

$$L = \begin{bmatrix} 2 & -1 & 0 & 0 & -1 \\ -1 & 3 & -1 & -1 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$U\hat{h}_{\theta}U^{\top} = \begin{bmatrix} 3.363 & -0.819 & -0.205 & -0.205 & -1.135 \\ -0.819 & 3.977 & -0.977 & -0.977 & -0.205 \\ -0.205 & -0.977 & 2.614 & -0.386 & -0.046 \\ -0.205 & -0.977 & -0.386 & 2.614 & -0.046 \\ -1.135 & -0.205 & -0.046 & -0.046 & 2.432 \end{bmatrix}, \text{ with } \hat{h}_{\theta} = \text{diag}\{1, 2, 3, 4, 5\}$$

Instead, if we pick $\hat{h}_{\theta}(\lambda_i) = \theta_0 + \theta_1 \lambda_i + \dots + \theta_K \lambda_i^K$

We will have

but still
$$O(N^3)$$

$$U\hat{h}_{\theta}U^{\top} = U\bigg(\sum_{j=0}^K \theta_j \Lambda^j\bigg)U^{\top} = \sum_{j=0}^K \theta_j \bigg(U\Lambda^j U^{\top}\bigg) = \sum_{j=0}^K \theta_j L^j$$
 only K+1 params

But it has spatial localization!

$$U\hat{h}_{\theta}U^{\top} = \begin{bmatrix} \theta_0 & & & \\ & \ddots & \\ & & \theta_0 \end{bmatrix}$$

Instead, if we pick $\hat{h}_{\theta}(\lambda_i) = \theta_0 + \theta_1 \lambda_i + \cdots + \theta_K \lambda_i^K$

We will have

but still
$$O(N^3)$$

$$U\hat{h}_{\theta}U^{\top} = U\bigg(\sum_{j=0}^K \theta_j \Lambda^j\bigg)U^{\top} = \sum_{j=0}^K \theta_j \bigg(U\Lambda^j U^{\top}\bigg) = \sum_{j=0}^K \theta_j L^j$$
 only K+1 params

But it has spatial localization!

$$U\hat{h}_{\theta}U^{\top} = \begin{bmatrix} \theta_{0} + 2\theta_{1} & -\theta_{1} & 0 & 0 & -\theta_{1} \\ -\theta_{1} & \theta_{0} + 3\theta_{1} & -\theta_{1} & -\theta_{1} & 0 \\ 0 & -\theta_{1} & \theta_{0} + \theta_{1} & 0 & 0 \\ 0 & -\theta_{1} & 0 & \theta_{0} + \theta_{1} & 0 \\ -\theta_{1} & 0 & 0 & 0 & \theta_{0} + \theta_{1} \end{bmatrix}$$

Instead, if we pick $\hat{h}_{\theta}(\lambda_i) = \theta_0 + \theta_1 \lambda_i + \cdots + \theta_K \lambda_i^K$

We will have

but still
$$O(N^3)$$

$$U\hat{h}_{\theta}U^{\top} = U\bigg(\sum_{j=0}^K \theta_j \Lambda^j\bigg)U^{\top} = \sum_{j=0}^K \theta_j \bigg(U\Lambda^j U^{\top}\bigg) = \sum_{j=0}^K \theta_j L^j$$
 only K+1 params

But it has spatial localization!

$$U\hat{h}_{\theta}U^{\top} = \begin{bmatrix} \theta_0 + 2\theta_1 & -\theta_1 & 0 & 0 & -\theta_1 \\ -\theta_1 & \theta_0 + 3\theta_1 & -\theta_1 & -\theta_1 & 0 \\ 0 & -\theta_1 & \theta_0 + \theta_1 & 0 & 0 \\ 0 & -\theta_1 & 0 & \theta_0 + \theta_1 & 0 \\ -\theta_1 & 0 & 0 & 0 & \theta_0 + \theta_1 \end{bmatrix}$$

Instead, if we pick $\hat{h}_{\theta}(\lambda_i) = \theta_0 + \theta_1 \lambda_i + \dots + \theta_K \lambda_i^K$

We will have

but still
$$O(N^3)$$

$$U\hat{h}_{\theta}U^{\top} = U\bigg(\sum_{j=0}^K \theta_j \Lambda^j\bigg)U^{\top} = \sum_{j=0}^K \theta_j \bigg(U\Lambda^j U^{\top}\bigg) = \sum_{j=0}^K \theta_j L^j$$
 only K+1 params

But it has spatial localization!

$$U\hat{h}_{\theta}U^{\top} = \begin{bmatrix} \theta_{0} + 2\theta_{1} & -\theta_{1} & 0 & 0 & -\theta_{1} \\ -\theta_{1} & \theta_{0} + 3\theta_{1} & -\theta_{1} & -\theta_{1} & 0 \\ 0 & -\theta_{1} & \theta_{0} + \theta_{1} & 0 & 0 \\ 0 & -\theta_{1} & 0 & \theta_{0} + \theta_{1} & 0 \\ -\theta_{1} & 0 & 0 & 0 & \theta_{0} + \theta_{1} \end{bmatrix}$$

Based on this idea, a more efficient kernel choice is discovered:

$$\hat{h}_{\theta}(\lambda_i) = \theta_0 T_0(\tilde{\lambda}_i) + \theta_1 T_1(\tilde{\lambda}_i) + \dots + \theta_K T_K(\tilde{\lambda}_i)$$
 (Chebyshev polynomial)

This time, we don't even need to compute the power. Just do recursion:

$$\bar{f}_k = T_k(\tilde{L})f \in \mathbb{R}^{n \times 1} \leadsto \bar{f}_k = 2\tilde{L}\bar{f}_{k-1} - \bar{f}_{k-2}$$

(Time complexity: O(K|E|))

		Accuracy		
Dataset	Architecture	Non-Param (2)	Spline (7) [4]	Chebyshev (4)
MNIST MNIST	GC10 GC32-P4-GC64-P4-FC512	95.75 96.28	97.26 97.15	97.48 99.14

Table 3: Classification accuracies for different types of spectral filters (K=25).

	Time (ms)			
Model	Architecture	CPU	GPU	Speedup
Classical CNN Proposed graph CNN	C32-P4-C64-P4-FC512 GC32-P4-GC64-P4-FC512	210 1600	31 200	6.77x 8.00x

Table 4: Time to process a mini-batch of S=100 MNIST images.

Different Laplacian

Different Laplacian variants can add different information.

e.g. 1 Laplace-Beltrami Operator on a compact manifold:

e.g. 2 Higher-order Laplacian that can encode edge info

Graph Transformers

Self-attn as Message Passing

Recall: for the self-attention update:

$$\operatorname{Attn}(X) = \operatorname{Softmax}(QK^{\top})V \qquad Q = XW_Q, \quad K = XW_K, \quad V = XW_V$$

If we just focus on token 1:

$$z_1 = \sum_{j=1}^N \operatorname{Softmax}_j(q_1^ op k_j) v_j$$

We can see this as:

- ullet Compute message from j: $\,v_j=W_V x_j,\quad k_j=W_K x_j$
- Compute Query from 1: $q_1=W_Qx_1$
- Aggregate all messages: $\bigoplus (q_1, \{\phi_j\}) = \sum_{j=1}^N \operatorname{Softmax}_j \left(q_1^{\top} k_j\right) v_j$

Deviate a bit...

If you are already content with this discovery, you will have:

Published as a conference paper at ICLR 2018

GRAPH ATTENTION NETWORKS

Petar Veličković*

Department of Computer Science and Technology University of Cambridge petar.velickovic@cst.cam.ac.uk

Guillem Cucurull*

Centre de Visió per Computador, UAB gcucurull@gmail.com

Arantxa Casanova*

Centre de Visió per Computador, UAB ar.casanova.8@gmail.com

Adriana Romero

Montréal Institute for Learning Algorithms adriana.romero.soriano@umontreal.ca

Pietro Liò

Department of Computer Science and Technology University of Cambridge pietro.lio@cst.cam.ac.uk

Yoshua Bengio

Montréal Institute for Learning Algorithms yoshua.umontreal@gmail.com

Graph Transformers

To become a transformer, we still need position encoding.

Idea: we use the adjacency information. Just consider the eigenvectors of the Laplacian

$$L\phi = \lambda \phi$$

	ϕ_1	ϕ_2	ϕ_3	ϕ_4	ϕ_5	
v_1	$\lceil 0.58 ceil$	0	0	0.77	0.30	
_	0.58		0	-0.12	-0.81	
v_3	0.58	0	0	-0.64	0.51	:
v_4	0.58 0.00	-0.71	-0.71	0	0	
v_5	0.00	-0.71	0.71	0	0	

position encoding for node 2

What if we flip the sign?

Graph Transformers

Recall the (i,j) element from QK^{\top} , it describes how much token j contributes to the update of token i

What if the graph has edge features? Do we just overwrite them with the attention?

Idea: we just add them together...

Do Transformers Really Perform Bad for Graph Representation?

Chengxuan Ying¹*, Tianle Cai², Shengjie Luo³*,
Shuxin Zheng⁴†, Guolin Ke⁴, Di He⁴†, Yanming Shen¹, Tie-Yan Liu⁴

¹Dalian University of Technology ²Princeton University

³Peking University ⁴Microsoft Research Asia
yingchengsyuan@gmail.com, tianle.cai@princeton.edu, luosj@stu.pku.edu.cn
{shuz†, guoke, dihe†, tyliu}@microsoft.com, shen@dlut.edu.cn

(NIPS 2020)