Equation Sheet - Fall Final Exam

Science & Measurement

$$\% \text{ error} = \frac{|\text{measured} - \text{expected}|}{\text{expected}} \times 100$$

Metric Prefixes		
k	kilo-	10^{3}
_	(base)	10^{0}
\mathbf{c}	centi-	10^{-2}
\mathbf{m}	milli-	10^{-3}
μ	micro-	10^{-6}
\mathbf{n}	nano-	10^{-9}

Motion & Kinematics

Constant Velocity & Acceleration

$$v = \frac{d}{t}$$

$$v = \frac{d}{t} \qquad \qquad a = \frac{\Delta v}{t}$$

$$\Delta v = v_f - v_i$$

Constant Acceleration

$$v_f = v_i + at$$

$$d = v_i t + \frac{1}{2} a t^2 v_f^2 = v_i^2 + 2ad$$

$$v_f^2 = v_i^2 + 2ad$$

$$"Old\ Faithful"$$

Vector Equations

$$v_x = v_R \cos\left(\theta\right)$$

$$v_y = v_R \sin\left(\theta\right)$$

$$v_x = v_R \cos(\theta)$$
 $v_y = v_R \sin(\theta)$ $\theta = \tan^{-1}(v_y/v_x)$

$$v_x^2 + v_y^2 = v_R^2$$

Forces

$$F_{NET} = ma$$

$$F_{NET} = ma$$
 $F_{NET} = \pm F_1 \pm F_2 \pm \cdots$ $F_G = mg$ $g = 9.8 \,\mathrm{m/s^2}$

$$F_G = mg$$

$$g = 9.8 \,\mathrm{m/s^2}$$

Circular Motion & Gravity

$$T = \frac{t}{\# \text{rot}}$$

$$v_T = \frac{2\pi r}{T}$$

$$v_T = r\omega$$

$$T = \frac{t}{\# \text{rot}}$$
 $v_T = \frac{2\pi r}{T}$ $v_T = r\omega$ $\omega = \frac{\# \text{rot}}{t} \times 2\pi$ $F_C = \frac{mv_T^2}{r}$

$$F_C = \frac{mv_T^2}{r}$$

$$F_G = \frac{Gm_1m_2}{r^2}$$

$$G = 6.67 \times 10^{-11} \,\mathrm{Nm^2/kg^2}$$