TRIGONOMETRY Chapter 17

REDUCCIÓN AL PRIMER CUADRANTE II

MOTIVATING STRATEGY

¿ <u>CÓMO REPRESENTAMOS EL SENO Y</u> EL COSENO DE UN ÁNGULO NEGATIVO ?

REDUCCIÓN AL PRIMER CUADRANTE II

CASO III: PARA ÁNGULOS MAYORES A UNA VUELTA

Si a un ángulo positivo a mayor de una vuelta, se le elimina de su medida el número entero de vueltas que contiene, entonces los valores de sus razones trigonométricas no varían, es decir :

$$\begin{array}{c|c} \alpha & 360^o \\ \text{(\Theta)} & n \end{array} \qquad \begin{array}{c|c} n \in z^+ \\ \hline RT(\alpha) = RT(360^\circ n + \theta) = RT(\theta) \\ \hline 0^o < \Theta < 360^o \end{array}$$

Nota:

"n" indica el número entero positivo de vueltas contenidas en el ángulo y que podemos eliminar.

Ejemplo:

$$tan765^{\circ} = tan(-360^{\circ}.2^{\circ} + 45^{\circ}) = tan45^{\circ} = 1$$

CASO IV: PARA ARCOS NUMÉRICOS CON FACTOR π

A) Para arcos fraccionarios de la forma $\frac{a\pi}{b}$; donde a > 2b

$$\begin{array}{c|c} a & 2b \\ \hline (r) & q \end{array} \longrightarrow \left(\begin{array}{c} RT\left(\frac{a\pi}{b}\right) = RT\left(\frac{r\pi}{b}\right) \end{array} \right)$$

$$\underline{\mathsf{Ejemplo}}: \quad \mathsf{csc}\!\left(\frac{33\pi}{4}\right) = \mathsf{csc}\!\left(\frac{1\pi}{4}\right) = \sqrt{2}$$

4to CASO: PARA ARCOS NUMÉRICOS CON FACTOR π

B Para arcos enteros de la forma $n\pi$; donde $n \in \mathbb{Z}$

RT (par.
$$\pi \pm \theta$$
) = RT($\pm \theta$)
RT (impar. $\pi \pm \theta$) = RT($\pi \pm \theta$)

Ejemplos:
$$\cot(6\pi - \frac{\pi}{3}) = \cot(-\frac{\pi}{3}) = -\cot\frac{\pi}{3} = -\frac{\sqrt{3}}{3}$$

$$\sec(9\pi - \frac{\pi}{6}) = \sec(\pi - \frac{\pi}{6}) = \sin\frac{\pi}{6} = \frac{1}{2}$$
impar

TAMBIÉN DEBEMOS RECORDAR:

$$\mathsf{RT} \begin{bmatrix} 180^{\circ} \pm \Theta \\ 360^{\circ} - \Theta \end{bmatrix} = \pm \mathsf{RT}(\Theta)$$

$$\mathsf{RT} \left[\begin{array}{c} 90^{\circ} \pm \Theta \\ 270^{\circ} \pm \Theta \end{array} \right] = \pm \mathsf{CO-RT}(\Theta)$$

$$cos(-\Theta) = cos\Theta$$

 $sec(-\Theta) = sec\Theta$

$$sen(-\Theta) = -sen\Theta$$

 $tan(-\Theta) = -tan\Theta$
 $cot(-\Theta) = -cot\Theta$
 $csc(-\Theta) = -csc\Theta$

Calcule cos1110°

RESOLUCIÓN

$$\cos\theta = \frac{CA}{H}$$

Luego:

 $cos1110^{\circ} = cos30^{\circ}$

$$\therefore \cos 1110^{\circ} = \frac{\sqrt{3}}{2}$$

Calcule sen4020°

RESOLUCIÓN

$$sen\Theta = \frac{CO}{H}$$

Luego:

 $sen4020^{\circ} = sen60^{\circ}$

∴ sen4020° =
$$\frac{\sqrt{3}}{2}$$

Reduzca

E = cos780°. sec1485°

RESOLUCIÓN

E = cos780°. sec1485°

$$E = \cos 60^{\circ} \cdot \sec 45^{\circ}$$

$$\mathsf{E} = \left(\frac{1}{2}\right) \left(\sqrt{2}\right)$$

Reduzca

$$A = sen(24\pi + x)$$

$$B = \tan(12\pi - x)$$

Recordemos que:

RT (par.
$$\pi \pm \theta$$
) = RT($\pm \theta$)

RT (impar.
$$\pi \pm \theta$$
) = RT($\pi \pm \theta$)

$$\tan(-\alpha) = -\tan\alpha$$

RESOLUCIÓN

Luego:
$$A = sen(24\pi + x)$$

$$B = \tan(12\pi - x)$$

$$B = tan(-x)$$

$$B = - \tan x$$

Reduzca:

a)
$$\operatorname{sen}\left(\frac{13\pi}{2} + x\right)$$

b)
$$\tan\left(\frac{23\pi}{2} + x\right)$$

RESOLUCIÓN

Recordemos que:

$$RT\left(\frac{a}{b}\pi\right) = RT\left(\frac{r\pi}{b}\right)$$
 $\begin{vmatrix} a & 2b \\ r & q \end{vmatrix}$

$$\mathsf{RT} \left[\begin{array}{c} 90^{\circ} \pm \begin{array}{c} \bullet \\ 270^{\circ} \pm \begin{array}{c} \bullet \end{array} \end{array} \right] = \pm \ \mathsf{CO-RT}(\begin{array}{c} \bullet \end{array})$$

Luego: a) $\operatorname{sen}\left(\frac{13\pi}{2} + x\right) = \operatorname{sen}\left(\frac{1\pi}{2} + x\right)$

$$a = cosx$$

b)
$$\tan\left(\frac{23\pi}{2} + x\right) = \tan\left(\frac{3\pi}{2} + x\right)$$

$$b = - \cot x$$

Mabel le comenta a su hermana Margarita, que Milagros cumplirá la mayoría de edad dentro de 5 cos($35\pi + x$). sec ($23\pi + x$) años. Calcule la edad que tendrá Milagros dentro de 2 años.

RESOLUCIÓN

Recordemos que:

RT (par.
$$\pi \pm \theta$$
) = RT($\pm \theta$)
RT (impar. $\pi \pm \theta$) = RT($\pi \pm \theta$)

$$\mathsf{RT} \begin{bmatrix} 180^{\circ} \pm \Theta \\ 360^{\circ} - \Theta \end{bmatrix} = \pm \mathsf{RT}(\Theta)$$

E = 5 cos(
$$35\pi + x$$
). sec($23\pi + x$)

impar

impar

E = 5 cos($\pi + x$). sec($\pi + x$)

III C

III C

E = 5($-\cos x$)($-\sec x$) = 5(1) = 5

Edad futura = 18 - 5 + 2

 $\cot x$

Edad futura = 15 años

El gasto diario de Jhon en pasajes es de S/. A ... ¿ Cuál será el gasto total a la semana ?.- Para calcular dicho valor, deberás

reducir lo siguiente :
$$A = \frac{\operatorname{sen}(42\pi + x)}{\operatorname{sen}(31\pi - x)} + \frac{\tan(\frac{21\pi}{2} - x)}{\tan(\frac{39\pi}{2} + x)} + 3$$

