Design and Evaluation of a Two-Membrane Wave Energy Converter

Bryce Rogers
BS Mechanical Engineering

Project Overview

Task

Complete "an original project ... which will take you through the entire engineering process"

Our system

Flexible wave energy converter (WEC) with novel two membrane configuration

Final Design

Inputs

wave frequency f-(f determines λ)
wave amplitude A1 or 2 membrane

Output

voltage across solenoid

Quantities of Interest absolute power P_{out} relative power P_{out}/P_{in} optimal w/λ optimal d/λ

How did we get here?

Motivation

Why...

... hydropower?

Low emission; diversify renewables portfolio

... a WEC? Untapped potential $(2.11 \pm 0.05 \text{ TW})$ [1]; less ecological disruption

... a flexible WEC? Fewer parts; young technology

Existing flexible WEC Designs

Bombora mWaveTM [3]

System Design

Key design considerations:

- Box dimensions
- Material selection
- Membrane fastening
- Tube length and diameter
- Box/tube interface

Why have membranes at all?

Single-Membrane Configuration

~constant pressure boundary **Purpose:** reservoir 1. Comparison to 2-membrane 2. Find optimal w/λ tubing \mathbf{W}

Assembled System

Mathematical Model

Modelled as linear 2nd order system:

$$m\ddot{x} + c\dot{x} + kx = p_0 A_p \sin(\omega t)$$

x – piston displacement

m – inertia of piston + displaced water

c – magnetic and viscous damping

k – membrane elasticity

 p_0 – amplitude of incident pressure wave

 A_p – area of piston face

Assumptions

- 2D
- sinusoidal plane wave
- equal pressure on either side of membrane
- 0 fluid friction (!)

Predicted power generation [mW]

Max Efficiency: 19% Min Efficiency: 0.02%		f[Hz]			
		0.25	0.5	1	2
a[cm]	1	22	5.7	1.1	0.083
	3	200	52	10	0.75
	5	550	140	28	2.1

Experiment Design

Independent Variables:

Frequency 0.25 - 1Hz, 1/8 Hz step

Amplitude small, med, large

Configuration one or two membrane

Dependent Variable *Voltage(t)*

Experiment Setup – Data Collection

Phone camera

Oscilloscope

Differential pressure sensor

Results

1m wave, 0.04% □ 4 W/m

Hypothetical future steps

- Determine if efficiency can be improved at scale
- Validate power take off performance at scale

• Resonant frequency dynamically tuned to incoming waves?

Key Takeaways

Project-specific

- Power increases with A, has a frequency "sweet spot"
- Two membrane configuration may be preferable over one membrane
- More work needed to determine if efficiency could be sufficiently high at scale to be cost effective

Engineering in general

- Robust theory and preparation essential to success
- No decision can be made with 100% certainty, engineering judgements must be made to progress

Special thanks to teammates Yifan Xue and David Armendariz

and to Professors Mitul Luhar, Darek Bogucki, and Robert Antypas

Questions?

Works cited

- [1] Gunn K, Stock-Williams C. (2012). Quantifying the global wave power resource. Renew. Energy 44, 296–304. (doi:10.1016/j.renene.2012.01.101)
- [2] Collins, Ieuan, et al. "Flexible Membrane Structures for Wave Energy Harvesting: A Review of the Developments, Materials and Computational Modelling Approaches." Renewable and Sustainable Energy Reviews, vol. 151, 2021, p. 111478., https://doi.org/10.1016/j.rser.2021.111478.
- [3] Ryan, S., et al. The Bombora Wave Energy Converter: A Novel Multi-Purpose Device for Electricity, Coastal Protection and Surf Breaks: Semantic Scholar. 1 Jan. 1970,
- https://www.semanticscholar.org/paper/The-Bombora-wave-energy-converter%3A-A-novel-device-Ryan-Algie/a8925cdc5b07e026cd1fb8916c56008d3c4f5d50.
- [4] Righi, Michele, et al. "A Broadbanded Pressure Differential Wave Energy Converter Based on Dielectric Elastomer Generators." Nonlinear Dynamics, vol. 105, no. 4, 2021, pp. 2861–2876., https://doi.org/10.1007/s11071-021-06721-8.