Package 'wqTools'

January 18, 2019

January 18, 2019
Title A Collection of R Tools for Utah Division of Water Quality
Version 0.0.0.9000
Authors Jake Vander Laan, Utah Division of Water Quality, jvander@utah.gov [aut, cre]
Description This package is intended to house R tools developed and for use by UDWQ staff as well as support the UDWQ irTools package.
Depends R (>= 3.4.4)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Roxygen list(markdown = TRUE)
Suggests knitr, rmarkdown
VignetteBuilder knitr

${\sf R}$ topics documented:

Index

issignAUs	
assignUses	. 2
au_poly	. 3
ouildMap	. 3
ou_poly	. 4
ealcTSI	. 4
TacToNum	. 5
readECHO_ec	. 5
readECHO_fac	
readWQP	
ss_poly	
ıl_trophic	. 8

2 assignUses

|--|

Description

This function assigns assessment units to water quality portal type site objects (or data with site information attached). This can be done before or after assigning beneficial uses.

Usage

```
assignAUs(x, lat = "LatitudeMeasure", long = "LongitudeMeasure")
```

Arguments

x Input dataset. Must include latitude & longitude columns.
 lat Name of latitude column. Default matches WQP objects.
 long Name of longitude column. Default matches WQP objects.

Value

Returns the input data frame with assessment unit information appended.

Examples

```
# Read a couple of sites from Mantua Reservoir
sites=readWQP(type="sites", siteid=c("UTAHDWQ_WQX-4900440","UTAHDWQ_WQX-4900470"))
sites_AUs=assignUses(sites)
```

assignUses	Assign Utah beneficial use classes to sites	

Description

This function assigns beneficial use classes to water quality portal type site objects (or data with site information attached).

Usage

```
assignUses(x, lat = "LatitudeMeasure", long = "LongitudeMeasure",
  flatten = FALSE)
```

Arguments

X	Input dataset. Must include latitude & longitude columns.
lat	Name of latitude column. Default matches WQP objects.
long	Name of longitude column. Default matches WQP objects.
flatten	Logical. If FALSE (default), maintain use categorys as single comma separated column. If TRUE, use column and data are flattened by expanded use column.

au_poly 3

Examples

```
# Read a couple of sites from Mantua Reservoir
sites=readWQP(type="sites", siteid=c("UTAHDWQ_WQX-4900440","UTAHDWQ_WQX-4900470"))
sites_uses=assignUses(sites)
sites_uses_flat=assignUses(sites, flatten=TRUE)
```

au_poly

Utah's IR-specific assessment unit polygons

Description

Polygons containing assessment unit designations.

Usage

au_poly

Format

An sf type polygon shapefile

buildMap

Build a site map of WQP sites or ECHO facilities

Description

Build a map of sample sites, facilities, or both. Map includes sites, beneficial use and assessment unit polygons, and satellite and topo baselayers. This is designed to work with column names as extracted from WQP or ECHO via udwqTools functions readWQP() and readECHO_fac(). Map will launch in default browser (or R-Studio's browser if using R-Studio).

Usage

```
buildMap(fac, sites)
```

Arguments

fac Facility locations queried via readECHO_fac.

sites Site locations queried via readWQP(type="sites"). May also be a data file with

WQP site information merged to it.

4 calcTSI

Examples

```
# Read sites & facility locations
jr_sites=readWQP(type="sites",
siteid=c("UTAHDWQ_WQX-4994100","UTAHDWQ_WQX-4994120","UTAHDWQ_WQX-4991860",
"UTAHDWQ_WQX-4994190","UTAHDWQ_WQX-4994172","UTAHDWQ_WQX-4994090",
"UTAHDWQ_WQX-4992890","UTAHDWQ_WQX-4992880","UTAHDWQ_WQX-4992480",
"UTAHDWQ_WQX-4992055","UTAHDWQ_WQX-4991940","UTAHDWQ_WQX-4991880"))
jr_fac=readECHO_fac(p_pid=c("UT0024392","UT0024384","UT0025852","UT0021725"))
#Build some maps
map1=buildMap(sites=jr_sites, fac=jr_fac) #define new object for use later
map1 #call generated map object to launch in browser
buildMap(sites=mantua_sites) #just sites, launch w/o generating map object in workspace
buildMap(fac=jr_fac) #just facilities
buildMap() #Build an empty map w/ just AU, BU, and SS std polys
#html maps can be saved via htmlwidgets package saveWidget(map1, file="your/path/map1.html")
```

bu_poly

Utah's beneficial use polygon shapes

Description

Polygons containing beneficial use designations and water body type information. Used to assign uses or standards to site locations.

Usage

bu_poly

Format

An sf type polygon shapefile

calcTSI

Calculate TSI values from input data

Description

This function calculates TSI values according to Utah's IR methods from input data containing values for of chlorophyll, total phosphorus, and secchi disk depth. Note that inputs for these parameters must be specified in units of ug/L, mg/L, and meters, respectively.

Usage

```
calcTSI(x, in_format = "wide", chl_ugL = "chla", TP_mgL = "TP",
    SD_m = "SD")
```

facToNum 5

Arguments

X	Input dataset
in_format	One of "wide" or "flat" to specify data input format. Note that only wide format inputs are currently supported.
chl_ugL	Name of chlorophyll-a variable in ug/L
TP_mgL	Name of total phosphorus variable in mg/L
SD_m	Name of secchi disk depth variable in m

Examples

```
data(ul_trophic)
head(ul_trophic)
tsi=calcTSI(ul_trophic,chl_ugL="ChlA",TP_mgL="Phosphate.phosphorus.Total",SD_m="Depth.Secchi.disk.depth")
head(tsi)
plot(TSIchl~ChlA,tsi)
```

facToNum

Convert factors to numeric equivalents

Description

Converts input object to number if class=="factor". If class !="factor", input object is returned un-altered.

Usage

```
facToNum(x)
```

Arguments

x Input vector object

readECHO_ec

Read effluent chart data from EPA ECHO webservices

Description

This function extracts effluent chart data from EPA ECHO for multiple stations & combinations of parameters. All arguments are optional except p_id. At least one p_id must be specified.

Usage

```
readECHO_ec(..., print = TRUE)
```

6 readECHO_fac

Arguments

	additional arguments to be passed to ECHO query path. See https://echo.epa.gov/tools/web-services/effluent-charts#!/Effluent_Charts/get_eff_rest_services_download_effluent_chart optional arguments for effluent chart data reads. Note that arguments for output are ignored.
print	Logical. If TRUE (default), print summary table of facilities & parameters returned.
p_id	Permitted facility ID. Either a single text value (in quotes) or a vector of text values.
parameter_code	Parameter code. Either a single text value (in quotes) or a vector of text values.
start_date	Query start date in "mm/dd/yyyy" format.
end_date	Query end date in "mm/dd/yyyy" format.

Value

A flat data frame of EPA ECHO effluent chart data

Examples

```
#Extract effluent chart data for facility UT0025241, all outfalls
UT0025241_ec=readECHO_ec(type="ec",p_id="UT0025241")
head(UT0025241_ec)

# Extract effluent total phosphorus data from outfall 001 for facility UT0025241
UT0025241_tp_001=readECHO_ec(p_id="UT0025241", parameter_code="00665", outfall="001")
UT0025241_tp_001_effluent=UT0025241_tp_001[UT0025241_tp_001$monitoring_location_desc=="Effluent Gross",]
head(UT0025241_tp_001_effluent)

# Extract flow through facility from UT0021717
UT0021717_flow=readECHO_ec(p_id="UT0021717", parameter_code="50050")

# Extract flow & TP from UT0025241 & UT0021717
tp_flow=readECHO_ec(p_id=c("UT0025241", "UT0021717"), parameter_code=c("50050", "00665"))
```

 $readECHO_fac$

Read facility information from EPA ECHO webservices

Description

This function extracts facility information from EPA ECHO based on argument inputs.

Usage

```
readECHO_fac(type = "", ...)
```

Arguments

... Additional arguments to be passed to ECHO query path. See https://echo.epa.gov/tools/web-services/facility-search-water#!/Facility_Information/get_cwa_rest_services_get_facility_info for optional arguments for facilities. Note that arguments for output are ignored.

readWQP 7

Value

A data frame of EPA ECHO facility information

Examples

```
# Read facility locations in Utah
ut_fac=readECHO_fac(p_st="ut", p_act="y")
head(ut_fac)
# Read facility locations for two permit IDs
two_fac=readECHO_fac(p_pid=c("UT0021717","UT0025241"))
two_fac
```

readWQP

Read EPA Water Quality Portal Data

Description

This function extracts water quality data from EPA's Water Quality Portal based on user arguemnt inputs. Note that connections to the WQP occassionally time out during download. This function tries to download requested files up to 10 times before exiting. All arguments except type are optional, but at least one should be provided to limit download size and prevent errors connecting to WQP. Note that some, but not all, special characters in characteristic names have been accounted if. If in doubt, use the WQP web interface to determine the appropriate sytax for odd characteristic names. This function coerces non-numeric values in ResultMeasureValue column (for result & narrowresult type queries). This may generate NA values with a warning for special characters.

Usage

```
readWQP(type = "result", ..., print = TRUE)
```

Arguments

type	Data type to read. One of "result", "narrowresult", "sites", "activity", or "detquantlim".
•••	additional arguments to be passed to WQP query path. See https://www.waterqualitydata.us/portal/for optional arguments.
print	Logical. Print summary table of sites & characteristics (only for result or narrowresult types).

start_date Query start date in "mm/dd/yyyy" format.
end_date Query end date in "mm/dd/yyyy" format.

Value

A data frame of WQP data

8 ul_trophic

Examples

```
# Read some data from Mantua Reservoir (2016-2018)
\label{eq:marrowresult} nr = read \texttt{WQP}(\texttt{type} = \texttt{"narrowresult"}, \ \texttt{siteid} = \texttt{c}(\texttt{"UTAHDWQ\_WQX-4900440"}, \texttt{"UTAHDWQ\_WQX-4900470"}), \\ nr = read \texttt{WQP}(\texttt{type} = \texttt{"narrowresult"}, \ \texttt{siteid} = \texttt{c}(\texttt{"UTAHDWQ\_WQX-4900440"}, \texttt{"UTAHDWQ\_WQX-4900470"}), \\ nr = read \texttt{WQP}(\texttt{type} = \texttt{"narrowresult"}, \ \texttt{siteid} = \texttt{c}(\texttt{"UTAHDWQ\_WQX-4900440"}, \texttt{"UTAHDWQ\_WQX-4900470"}), \\ nr = read \texttt{WQP}(\texttt{type} = \texttt{"narrowresult"}, \ \texttt{siteid} = \texttt{c}(\texttt{"UTAHDWQ\_WQX-4900440"}, \texttt{"UTAHDWQ\_WQX-4900470"}), \\ nr = read \texttt{WQP}(\texttt{type} = \texttt{"narrowresult"}, \ \texttt{siteid} = \texttt{c}(\texttt{"UTAHDWQ\_WQX-4900440"}, \texttt{"UTAHDWQ\_WQX-4900470"}), \\ nr = read \texttt{WQP}(\texttt{type} = \texttt{"narrowresult"}, \ \texttt{siteid} = \texttt{c}(\texttt{"UTAHDWQ\_WQX-4900470"}), \\ nr = read \texttt{WQP}(\texttt{type} = \texttt{"narrowresult"}, \ \texttt{siteid} = \texttt{c}(\texttt{"UTAHDWQ\_WQX-4900470"}), \\ nr = read \texttt{WQP}(\texttt{type} = \texttt{"narrowresult"}, \ \texttt{siteid} = \texttt{c}(\texttt{"UTAHDWQ\_WQX-4900470"}), \\ nr = read \texttt{WQP}(\texttt{type} = \texttt{"narrowresult"}, \ \texttt{siteid} = \texttt{c}(\texttt{"UTAHDWQ\_WQX-4900470"}), \\ nr = read \texttt{WQP}(\texttt{type} = \texttt{"narrowresult"}, \ \texttt{siteid} = \texttt{c}(\texttt{"UTAHDWQ\_WQX-4900470"}), \\ nr = read \texttt{WQP}(\texttt{type} = \texttt{"narrowresult"}, \ \texttt{siteid} = \texttt{c}(\texttt{"uTAHDWQ\_WQX-4900470"}), \\ nr = read \texttt{wQP}(\texttt{upp} = \texttt{"narrowresult"}, \ \texttt{siteid} = \texttt{c}(\texttt{"uTAHDWQ\_WQX-4900470"}), \\ nr = read \texttt{wQP}(\texttt{upp} = \texttt{"narrowresult"}, \ \texttt{siteid} = \texttt{c}(\texttt{"uTAHDWQ\_WQX-4900470"}), \\ nr = read \texttt{wQP}(\texttt{upp} = \texttt{"narrowresult"}, \ \texttt{siteid} = \texttt{c}(\texttt{"uTAHDWQ\_WQX-4900470"}), \\ nr = read \texttt{wQP}(\texttt{upp} = \texttt{"narrowresult"}, \ \texttt{siteid} = \texttt{c}(\texttt{"uTAHDWQ\_WQX-4900470"}), \\ nr = read \texttt{wQP}(\texttt{upp} = \texttt{"narrowresult"}, \ \texttt{siteid} = \texttt{c}(\texttt{"upp} = \texttt{"upp} = \texttt"upp} = \texttt{"upp} = \texttt"upp} = \texttt{"upp} = \texttt"upp} = \texttt{"upp} = \texttt"upp} 
         start_date="01/01/2016", end_date="12/31/2018")
# Read just Arsenic, Cadmium, and DO, all dates
nr=readWQP(type="narrowresult",
          siteid=c("UTAHDWQ_WQX-4900440","UTAHDWQ_WQX-4900470"),
          characteristicName=c("Arsenic","Cadmium","Dissolved oxygen (DO)"))
# Read all Total dissolved solids statewide (2016-2018) (& note statecode for Utah)
tds_sw=readWQP(type="result",
          statecode="US:49",
         characteristicName="Total dissolved solids",
          start_date="01/01/2016", end_date="12/31/2018",
          print=F)
# Read sites in Utah
sites=readWQP(type="sites", statecode="US:49")
plot(Latitude \texttt{Measure} \sim \texttt{Longitude} \texttt{Measure}, \ sites[\texttt{sites} \texttt{Latitude} \texttt{Measure} > 0 \ \& \ sites[\texttt{Longitude} \texttt{Measure} < 0,])
```

ss_poly

Utah's site-specific standard polygon shapes

Description

Polygons containing site-specific standard designations and information.

Usage

ss_poly

Format

An sf type polygon shapefile

ul_trophic

Utah Lake trophic data

Description

Utah Lake trophic data

Usage

```
data(ul_trophic)
```

Format

A data.frame with 729 rows and 15 columns

Index

```
*Topic datasets
     au_poly, 3
     bu_poly, 4
     ss_poly, 8
     ul\_trophic, 8
assignAUs, 2
{\it assignUses}, {\it 2 \atop 2}
au\_poly, 3
bu_poly, 4
\verb|buildMap|, 3
calcTSI, 4
facToNum, 5
readECHO_ec, 5
\verb"readECHO_fac, 6"
readWQP, 7
{\tt ss\_poly}, \textcolor{red}{8}
{\tt ul\_trophic}, {\tt 8}
```