

Universidad Nacional Autónoma de México

Facultad de Estudios Superiores Acatlán

Estadística 2

Tarea unidad 1

Autor:

Jorge Miguel Alvarado Reyes - $421010301\,$

20 de marzo de 2024

${\rm \acute{I}ndice}$

1.	Problema 1	2
2.	Problema 2	4

1. Problema 1

En un estudio de calidad se realizaron pruebas a tres tipos de cronometros. La siguiente tabla muestra miles de ciclos (Encendido-apagado-reinicio) sobrevividos hasta que alguna parte del mecanismo fallo (Natrella 1963) Prueba si hay una diferencia significativa entre los tios y si la hay, determina cuales tipos son significativamente diferentes.

Utiliza pruebas no parametricas

Tipo 1	Tipo 2	Tipo 3
1.7	13.6	13.4
1.9	19.8	20.09
6.1	25.2	25.1
12.5	46.2	29.7
16.5	46.2	46.9
25.1	61.1	
30.5		
42.1		
82.5		

Usaremos una prueba de Kruskal Wallis ya que tenemos mas de 2 muestras

Ordenamos los datos

[1.7, 1.9, 6.1, 12.5, 13.4, 13.6, 16.5, 19.8, 20.9, 25.1, 25.1, 25.2, 29.7, 30.5, 42.1, 46.2, 46.2, 46.9, 61.1, 82.5]

Asigancion de rangos por grupo:

Tipo 1

[1, 2, 3, 4, 7, 10.5, 14, 15, 20]

Tipo 2

[6, 8, 12, 16.5, 16.5, 19]

Tipo 3

[5, 9, 10.5, 13, 18]

Suma de rangos por grupo

2	3
_	$n_3 = 5$
	$\frac{2}{n_2 = 6}$ $R_2 = 78$

Calculo de H

$$H = \frac{12}{20(20+1)} \left(\frac{76,5^2}{9} + \frac{78^2}{6} + \frac{55,5^2}{5} \right) - 3(20+1) = 2,1514$$

Sabemos que se rechaza H_0 si

$$H > q_{X_{k-1}^2}(1-\alpha)$$

$$q_{X_2^2}(0.95) = 5.991$$

Como no se cumple esta condicion decimos que no se rechaza H_0

P-valor

El cálculo del p-valor se realiza como sigue:

p-valor =
$$\mathbb{P}(X_2^2 > 2,1514)$$

Calculando el p-valor con python tenemos:

 $p_v alue = stats.chi2.sf(H, 3 - 1) = 0.3411$

Si el p-valor es menor que alpha se rechaza la hipotesis nula:

Dado que esto no se cumple comprobamos que no se rechaza la hipotesis nula H_0

Conclusion

Los datos no muestran diferencias significativas en la durabilidad de los tres tipos de cronómetros analizados.

Codigo

El codigo de python que se uso para realizar estas operaciones se encuentra en el siguiente colab: https://colab.research.google.com/drive/1000vmzhso1w9tStfjbpuY8CG4xY-YWW8#scrollTo=DImERoM3CBUz

2. Problema 2

Los datos en la siguiente tabla fueron tomados de un articulo en el New York Times (20 abril 2001), La raza de la victima afecta la sentencia del asesino, los datos provienen de un estudio de todos los casos de homicidio en Carolina del Norte durante el periodo 1993-1997 en los que era posible que una condena por asesinato resultara sobre la pena de muerte. Tales datos han desempeñado un papel importante en el debate sobre la pena de muerte en los Estados Unidos, el unico pais occidental rico que la impone. Prueba que la raza de la victima y la raza del acusado eran independientes de si el acusado recibio la pena de muerte por homicidio en Carolina del Norte durante los años 1993-1997 y da tus conclusiónes al respecto

Raza d	lel acusado	Raza de la victima	Penas de muerte	No penas de muerte
No	blanco	Blanco	33	251
В	lanco	Blanco	33	508
No	blanco	No blanco	29	587
В	lanco	No blanco	4	76

Frecuencias observadas

Raza del acusado	Raza de la victima	Penas de muerte	No penas de muerte	Total
No blanco	Blanco	33	251	284
Blanco	Blanco	33	508	541
No blanco	No blanco	29	587	616
Blanco	No blanco	4	76	80
Total		99	1422	1521

Frecuencias esperadas

Raza del acusado	Raza de la victima	Penas de muerte	No penas de muerte	Total
No blanco	Blanco	$\frac{99(284)}{1521}$	$\frac{1422(284)}{1521}$	284
Blanco	Blanco	$\frac{99(541)}{1521}$	$\frac{1521}{1422(541)}$ $\frac{1521}{1521}$	541
No blanco	No blanco	$\frac{99(616)}{1521}$	$\frac{1521}{1422(616)}$ $\frac{1521}{1521}$	616
Blanco	No blanco	$\frac{99(80)}{1521}$	$\frac{1521}{1422(80)}$ $\frac{1521}{1521}$	80
Total		99	1422	1521

Raza del acusado	Raza de la victima	Penas de muerte	No penas de muerte	Total
No blanco	Blanco	18.49	265.51	284
Blanco	Blanco	35.21	505.79	541
No blanco	No blanco	40.09	575.91	616
Blanco	No blanco	5.21	74.79	80
Total		99	1422	1521

$$X^2 = \frac{(33 - 18,49)^2}{18,49} + \frac{(251 - 265,51)^2}{265,51} + \frac{(33 - 35,21)^2}{35,21} + \frac{(508 - 505,79)^2}{505,79} + \frac{(29 - 40,09)^2}{40,09} + \frac{(587 - 575,91)^2}{575,91} + \frac{(4 - 5,21)^2}{5,21} + \frac{(76 - 74,79)^2}{74,79} = 15,9225$$

Valor critico:

$$q_{(X^2)_{(r-1)(c-1)}^{1-\alpha}} = q_{(X_0^24-1)(2-1))(0,95)} = q_{(X_3^2)(0,95)}$$

Calculando con python:

$$critical_value = stats.chi2.ppf(0.95, 3) = 7.814727903251179$$
 (1)
$$X^2 > q_{(X_3^2)^{0.95}}$$

rechazamos la hipótesis nula (H_0) . Esto indica que existe una relación estadísticamente significativa entre la raza del acusado y la raza de la víctima y las decisiones de sentencia de muerte.