UFRJ/EQ, Agosto de 2018.

Proposta de trabalho computacional como critério de avaliação na disciplina de termodinâmica.

Frederico W. Tavares¹; Iuri S. V. Segtovich.
¹Professor responsável

Modificação na fórmula para cálculo da média:

$$M_1 = \frac{(P_1 + P_2 + T_C)}{3} \qquad M_2 = \frac{(M_1 + P_f)}{2}$$

A nota da P_S substitui a nota da P_1 ou P_2 , não substitui a nota do trabalho computacional T_C .

Critérios para avaliação do trabalho

1. Documento.

- O trabaho deverá ser entregue no formato jupyter-notebook (trabalho.ipynb), incluindo introdução (objetivos e descrição do sistema de interesse), metodologia (descrição das etapas necessárias para atingir os objetivos), resultados (código desenvolvido e gráficos) e discussão (interpretação dos resultados), e conclusão; e será avaliado quanto a:
 - Apresentação do embasamento da metodologia utilizada,
 - Organização do código (#comentários explicando o objetivo de blocos de código)
 - Se o programa roda e gera resultados corretos para o sistema proposto,
 - Discussão dos resultados (descrever e interpretar os gráficos obtidos),
 - Conclusão.

2. Arguição.

- Será conduzida individualmente uma arguição de até 10 minutos, durante a qual iremos rodar os códigos do trabalho, sobre:
 - Significância de instruções e blocos de código do trabalho,
 - Descrição e interpretação dos resultados.

3. Data de entrega do trabalho

- O arquivo notebook da primeira parte do trabalho descrita nos Objetivos deverá ser entregue por email até o dia 25/10;
- O arquivo notebook da segunda parte do trabalho descrita nos Objetivos deverá ser entregue por email até o dia 27/11;
- A arguição referente a ambas as partes do trabaho será agendada entre os dias 27/11 e
 5/12.

Objetivos

Entrega 1 - Substância pura

Selecionar uma substância pura

- 1. Programar a forma P(T,V) da equação de Peng e Robinson (Reid, Prausnitz & Poling, 1987 pp 42, 43)
 - 1. Buscar parâmetros de componente puro (Smith, van Ness & Abbott, 2007, pp 632, 633)
 - 2. Cálculo em sequência de P versus sequência de V para dados T igual, abaixo e acima da temperatura crítica.
 - 3. Desenhar isotermas no plano P versus V
- 2. Programar a forma V(P,T) da equação de estado usando método de solução de raiz de polinômios (numpy.roots)
 - 1. Implementar lógica de classificação de raízes de volume (líquido, vapor, intermediária e não física)
 - 2. Comparar calculos pontuais com as isotermas já desenhadas
- 3. Programação de pressão limite superior e inferior para faixa de busca do cálculo de pressão de saturação (baseado em Topliss, Dimitrelis & Prausnitz, 1988)
 - 1. Comparar cálculos pontuais com as isotermas
- 4. Programação de energia de Gibbs residual (Reid, Prausnitz & Poling, 1987)
 - 1. Cálculo em sequência de G{RES,L} e sequência G{RES,V} versus sequência P para dado T.
 - 2. Desenhar G{RES,L} e G{RES,V} versus P para dado T e verificar existência de solução para o critério de equilíbrio de fases (igualdade de potencial químico para o componente entre fase líquida e vapor) na temperatura dada.
- 5. Programação de resolução da pressão de saturação usando método de bisseção (scipy.optimize.bisect)
 - 1. Cálculo em sequência de pressão de saturação (P{SAT}) versus sequência de T
 - 2. Desenhar P{SAT} versus T (Smith, van ness, Abbott, 2007, pp 59 parte líquido-vapor)
 - 3. Programar correlação de Antoine e comparar, no gráfico, os resultados da correlação com os resultados da equação de estado (Smith, van ness, Abbott, 2007, pp 346)
- 6. Geração do envelope de fases no plano P versus V (Smith, van Ness & Abbott, 2007, pp 67)
 - 1. Cálculo em sequência de volumes de líquido e olume de vapor para cada par (T,P) na curva de P{SAT}

- 2. Desenhar envelope de fases no diagrama P versus V com algumas isotermas (Smith van Ness Abbott, 2007, pp 67)
- 7. Programação e diagrama de entalpia e entropia residuais (Reid, Prausnitz & Poling, 1987)
 - 1. Testar pontualmente (H_res e S_res próximos de zero a baixa pressão comportamento de gás ideal?)
 - 2. Geração dos envelope de fases nos planos P versus H{RES} (Smith, van Ness & Abbott, 2007)
 - 1. Cálculo em sequência de entalpia e entropia residuais de líquido e de vapor para cada par (T,P) na curva de P{SAT}
 - 2. Desenhar envelope de fases no diagrama P versus H{RES}
 - 3. Implementar cálculo de Cp de gás ideal (Smith van ness abbott 2007, pp 119, 635)
 - 4. Calcular H de gás real em relação a uma temperatura de referência T0
 - 5. Desenhar envelope de fases no diagrama P versus H
 - 3. Geração dos envelope de fases nos planos T versus S{RES} (Smith, van Ness & Abbott, 2007)
 - 1. Calcular e desenhar algumas isotermas no diagrama P versus H (Smith, van Ness, Abbott 2007, pp 211 fig 6.2a)
 - 2. Desenhar envelope de fases no diagrama T versus S{RES}
 - 3. Implementar cálculo de isóbaras (dado P e V calcular T)
 - 1. Implementar cálculo de T dado P e v para van der waals (analítico)
 - 2. Implementar solução numérica usando a solução de van der waals como estimativa inicial (scipy.optimize.fsolve)
 - 4. calcular e desenhar algumas isóbaras no diagrama T versus S(Smith, van Ness, Abbott 2007, pp 211 fig 6.2b)
 - 5. Calcular H de gás real em relação a uma temperatura de referência T0
 - 6. Desenhar envelope de fases no diagrama P versus H

Entrega 2 – Mistura (binário)

Selecionar uma mistura de dois componentes

- Programação da forma P(T,V) para misturas usando a equação de Peng e Robinson (Reid, Prausnitz & Poling, 1987 - pp 42, 43)
 - 1. Programar a regra de combinação e mistura clássica (Reid, Prausnitz & Poling, 1987 pp 82)
 - 1. $usar k_{ij} = 0$

- 2. cálculo em sequência de P versus sequência de V para dados T para uma composição rica em um componente pesado.
- 3. cálculo em sequência de P versus sequência de V para dados T para uma composição rica em um componente leve.
- 4. Desenhar isotermas no plano P versus V para uma composição ricaem um componente pesado
- 5. Desenhar isotermas no plano P versus V para uma composição rica em um componente leve
- 2. Programação V(P,T) usando método de solução de raiz de polinômios (numpy.roots)
 - 1. Implementar lógica de classificação de raízes de volume (líquido, vapor, intermediária e não física)
 - 2. Comparar calculos pontuais com as isotermas
- 3. Programação de coeficientes de fugacidade na mistura (Reid, Prausnitz & Poling, 1987, pp 144, 145)
 - 1. testar se coeficientes de fugacidade para raiz de volume de gas a baixa pressão são próximos à 1 (comportamento de gás ideal)?
 - 2. testar se no caso limite: coeficientes de fugacidade no caso de numero de componentes ser 1 dá igual à $\exp(G\{RES\}/(RT))$ da primeira parte do trabalho?
- 4. programação de resolução da pressão de ponto de bolha (Sandler, 2017, pp 561, 562)
 - 1. Cálculo em sequência de pressão de bolha e composição da fase vapor (y) versus sequência de x para dada T
- 5. Geração do envelope de fases para uma mistura binária no plano P versus x_1 (Smith, van Ness & Abbott, 2007)
 - 1. Desenhar P versus x_1 para dado $T \rightarrow \text{curva de ponto de bolha}$
 - 2. Desenhar P versus y_1 para dado T \rightarrow curva de ponto de orvalho
- 6. Implementar resolução de pressão de ponto de orvalho (adaptação do Sandler, 2017, pp 561, 562)
 - 1. Diagrama de fases de mistura no plano P versus T
 - 1. Calcular sequência de ponto de bolha versus sequência de temperatura para uma mistura com uma composição definida rica no compoente leve
 - 2. Calcular sequência de ponto de orvalho versus sequência de temperatura para uma mistura com composição definida rica no compoente pesado
 - 3. Desenhar P{SAT} leve, P{SAT} pesado, P{BOLHA} mistura 1 e P{ORVALHO} mistura 1, P{BOLHA} mistura 2 e P{ORVALHO} mistura 2 no mesmo gráfico (plano P versus T)

Referências recomendadas

- [ANEXOS NA VERSÃO ONLINE]:
 (https://github.com/iurisegtovich/EQE359 Termodinamica I)
 todas a páginas contendo equações e parâmetros importantes das referências indicadas.
- 2. Reid, R. C., Prausnitz, J. M. and Poling, B. E., 1987. The Properties of Gases and Liquids. 4th ed., McGraw-Hill. [ISBN: 0070517991, 9780070517998] (https://books.google.com.br/books?id=AcRTAAAAMAAJ)
- 3. Smith, J. M., van Ness, H. C. and Abbott, M. M., 2007. Introdução a termodinâmica da engenharia química. 7a ed., LTC. [ISBN: 8521615531, 9788521615538] (https://books.google.com.br/books?id=TzeQPgAACAAJ)
- 4. Topliss, R J., Dimitrelis D., and Prausnitz, J. M., 1988, "Computational Aspects of a Non-Cubic Equation of State for Phase-Equilibrium Calculations. Effect of Density-Dependent Mixing Rules." Computers & Chemical Engineering 12 (5): 483–89. [doi:10.1016/0098-1354(88)85067-1](http://dx.doi.org/10.1016/0098-1354(88)85067-1)
- 5. [numpy.roots](https://docs.scipy.org/doc/numpy/reference/generated/numpy.roots.html)
- 6. [scipy.optimize.bisect] (https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.bisect.html)
- 7. [scipy.optimize.fsolve] (https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html)
- 8. Sandler S., 2006, Chemical, Biochemical, and Engineering Thermodynamics, 4th ed. John Wiley & Sons [ISSN: 0471661740, 9780471661740](https://books.google.com.br/books?id=4MXDAgAAQBAJ)

Dúvidas

Laboratório ATOMS no endereço I-224.

Anexos

Reid Prausnitz & Poling pp 42, 43

3-6 Cubic Equations of State

The term "cubic equation of state" implies an equation which, if expanded, would contain volume terms raised to either the first, second, or third power. Many of the common two-parameter cubic equations can be expressed by the equation

$$P = \frac{RT}{V - b} - \frac{a}{V^2 + ubV + wb^2}$$
 (3-6.1)

An equivalent form of Eq. (3-6.1) is

$$Z^{3} - (1 + B^{*} - uB^{*})Z^{2} + (A^{*} + wB^{*2} - uB^{*} - uB^{*2})Z$$

$$- A^{*}B^{*} - wB^{*2} - wB^{*3} = 0$$
(3-6.2)

where
$$A^* = \frac{aP}{R^2T^2}$$
 (3-6.3)

and
$$B^* = \frac{bP}{RT}$$
 (3-6.4)

TABLE 3-5 Constants for Four Common Cubic Equations of State

Equation	и	w	b	a
van der Waals	0	0	$\frac{RT_c}{8P_c}$	$\frac{27}{64} \frac{R^2 T_c^2}{P_c}$
Redlich- Kwong	1	0	$\frac{0.08664RT_c}{P_c}$	$\frac{0.42748R^2T_c^{2.5}}{P_cT^{1/2}}$
Soave	1	0	$\frac{0.08664RT_c}{P_c}$	$\frac{0.42748R^2T_c^2}{P_c}[1+f\omega(1-T_c^{1/2})]^2$ where $f\omega = 0.48 + 1.574\omega - 0.176\omega^2$
Peng-Robinson	2	-1	$\frac{0.07780RT_c}{P_c}$	$\frac{0.45724R^2T_c^2}{P_c} [1+f\omega(1-T_r^{1/2})]^2$ where $f\omega = 0.37464 + 1.54226\omega - 0.26992\omega^2$

4-5 Mixing Rules for Redlich-Kwong-Type Equations of State

The mixing rules recommended for all two-constant cubic equations of state (i.e., van der Waals, Redlich-Kwong, Soave, and Peng-Robinson) are

$$a_m = \sum_{i} \sum_{j} y_i y_j (a_i a_j)^{1/2} (1 - \overline{k}_{ij})$$
 (4-5.1)

$$b_m = \sum_i y_i b_i \tag{4-5.2}$$

 a_i and b_i are given in Table 3-5. Some values of the binary interaction coefficient \overline{k}_{ij} for the Soave and Peng-Robinson equations are given in Table 4-2. A more extensive tabulation is given in Ref. 28. Values for \overline{k}_{ij} for specific systems and as a function of temperature are given in [9, 16, 23, 25, 33]. For hydrocarbon pairs, \overline{k}_{ij} is usually taken as zero. If all \overline{k}_{ij} are zero, Eq. (4-5.1) reduces to

$$a_m = \left(\sum_i y_i a_i^{1/2}\right)^2 \tag{4-5.3}$$

144, 145

With Eqs. (5-8.5), (5-8.6), and $\phi_i = \frac{f_i}{P_{V_i}}$

$$RT \ln \phi_i = -\int_{\infty}^{\underline{V}} \left[\left(\frac{\partial P}{\partial N_i} \right)_{T,V,N[U]} - \frac{RT}{V} \right] d\underline{V} - RT \ln Z$$
 (5-8.7)

or
$$RT \ln \phi_i = \left(\frac{\partial (\underline{A} - \underline{A}^*)}{\partial N_i}\right)_{T, N, N, |\Omega|} - RT \ln Z$$
 (5-8.8)

 ϕ_i is the fugacity coefficient of i in the gas mixture.

To obtain a usable relation for ϕ_i , Eq. (5-8.7) must be integrated; but before it can be, the derivative of P with respect to N_i must be found. Thus any pressure-explicit equation of state is convenient provided that the composition dependence of all the parameters can be expressed in analytical form.

For the analytical equations of state covered in Chap. 3, mixture combining rules are given in Chap. 4; thus evaluation of the integral in Eq. (5-8.7) is possible. For example, the original Redlich-Kwong equation is given as Eq. (3-6.1), and this same relation expressed in terms of total volume would be

$$P = \frac{NRT}{V - Nb} - \frac{aN^2}{V(V + Nb)}$$
(5-8.9)

In the differentiation indicated in Eq. (5-8.7), the variables are N, a, and b, where the parameters a and b are shown as functions of composition in Eqs. (4-5.1), (4-5.2), and (3-6.1). The final result is

$$\ln \phi_i = \ln \frac{V}{V - b} + \frac{b_i}{V - b} - \ln Z$$

$$+ \frac{ab_i}{RTb^2} \left(\ln \frac{V + b}{V} - \frac{b}{V + b} \right) - \frac{2 \sum_i y_i a_{ij}}{RTb} \ln \frac{V + b}{V}$$
(5-8.10)

For all the analytical equations of state, the working equations for $\ln \phi_i$ are given in Table 5-13.

Virial,
$$Z = 1 + \frac{BP}{RT}$$
 [Eqs. (3-5.2a) and (4-4.1)]

$$\ln \phi_i = \left(2 \sum_i y_i B_{ij} - B\right) \frac{P}{RT}$$
(5-8.11)

Virial,
$$Z = 1 + \frac{BP}{RT} \{ \text{Eqs. } (3-5.2a) \text{ and } (4-4.1) \}$$

$$\ln \phi_i = \left(2 \sum_j y_j B_{ij} - B \right) \frac{P}{RT}$$
(5-8.11)
Cubic, $P = \frac{RT}{V - b} - \frac{a}{V^2 + ubV + wb^2} \{ \text{Eqs. } (3-6.1), (4-5.1), \text{ and } (4-5.2) \text{ and Table } 3-5 \}$

$$\ln \phi_i = \frac{b_i}{b} (Z - 1) - \ln(Z - B^*) + \frac{A^*}{B^* \sqrt{u^2 - 4w}} \left(\frac{b_i}{b} - b_i \right) \ln \frac{2Z + B^*(u + \sqrt{u^2 - 4w})}{2Z + B^*(u - \sqrt{u^2 - 4w})}$$
(5-8.12)

where
$$\frac{b_i}{b} = \frac{T_{ci}/P_{ci}}{\sum y_i T_{ci}/P_{cj}}$$
 (5-8.13)

$$b \geq_{j} y_{j} T_{ej} P_{ej}$$

$$\delta_{i} = \frac{2a_{i}^{1/2}}{a} \sum_{j} x_{j} a_{j}^{1/2} (1 - \overline{k}_{ij})$$
(5-8.14)
If all $\overline{k}_{ij} = 0$, this reduces to
$$\delta_{i} = 2 \left(\frac{a_{i}}{a} \right)^{1/2}$$
(5-8.15)

$$\delta_i = 2 \left(\frac{a_i}{a} \right)^{1/2} \tag{5-8.15}$$

Lee-Kesler [Eqs. (3-7.1) to (3-7.4) and Table 4-3]
$$\ln \phi_i = \ln \left(\frac{f}{P} \right)_m + \frac{H^o - H}{TRT_{e_m}} \sum_{j \neq i} y_j \left(\frac{dT_{e_m}}{dy_j} \right)_{y_k} + \frac{Z_m - 1}{P_{e_m}} \sum_{j \neq i} y_j \left(\frac{dP_{e_m}}{dy_j} \right)_{y_k} - \ln \left(\frac{f}{P} \right)_m^{(1)} \sum_{j \neq i} y_j \left(\frac{d\omega_m}{dy_j} \right)_{y_k}$$

$$(5-8.16)$$

$$\left(\frac{dT_{en}}{dy_{j}}\right)_{y_{k}} = \left[2\sum_{i}y_{c}(V_{eij}^{ijk}T_{eij} - V_{eii}^{ijk}T_{eij}) - \frac{0.25}{V_{eii}^{ijk}}\left(\frac{dV_{en}}{dy_{j}}\right)_{y_{k}}T_{en}\right] / V_{en}^{ijk}$$
(5-8.17)

$$\left(\frac{dV_{c_0}}{dv_c}\right)_{c_1} = 2 \sum y_i(V_{c_0} - V_{c_0}) \qquad (5-8.18)$$

$$\left(\frac{dV_{e_{0}}}{dy_{j}}\right)_{y_{k}} = 2\sum_{i} y_{i}(V_{e_{0}j} - V_{e_{0}i})$$

$$\left(\frac{dP_{e_{0}}}{dy_{j}}\right)_{y_{k}} = P_{e_{0}} \left[-\frac{0.085(\omega_{j} - \omega_{i})}{Z_{e_{0}}} + \frac{1}{T_{e_{0}}} \left(\frac{dT_{e_{0}}}{dy_{j}}\right)_{y_{k}} - \frac{1}{V_{e_{0}}} \left(\frac{dV_{e_{0}}}{dy_{j}}\right)_{y_{k}}\right]$$
(5-8.18)

Note: In Eqs. (5-8.16) to (5-8.19), $k \neq i, j$. In $(f/P)_m$ is given in Eq. (5-4.11); $(H^* - H)/RT_{im}$ is given by Eq. (5-4.3); and T_{im} , ω_m , and P_{im} are given in Table 4-3. log $(f/P)_m^{(i)}$ [not ln $(f/P)_m^{(i)}$] is given in Table 5-7.

Smith, van Ness & Abbott, 67

Figure 3.12 Isotherms as given by a cubic equation of state

Figure 6.2 PH diagram

Figure 6.3 TS diagram

$$\ln P^{\text{sat}}/\text{kPa} = A - \frac{B}{T+C}$$

Table 10.2 Parameters for the Antoine Equation

	\boldsymbol{A}	B	C
Acetone	14.3916	2795.82	-43.15
Acetonitrile	14.7258	3271.24	-31.30
Benzene	13.8594	2773.78	-53.08
Chlorobenzene	13.9926	3295.12	-55.60
1-Chlorobutane	13.9600	2826.26	-49.05
1,4-Dioxane	14.1177	2966.88	-63.15
Ethanol	16.6758	3674.49	-46.70
Ethylbenzene	14.0045	3279.47	-59.95
n-Heptane	13.8587	2991.32	-56.51
Methanol	16.5938	3644.30	-33.39
Methyl acetate	14.4015	2739.17	-50.03
∨n-Pentane	13.8183	2477.07	-39.94
1-Propanol	16.0692	3448.66	-69.06
Toluene	14.0098	3103.01	-53.36
Water	16.2620	3799.89	-46.80

Smith, van Ness & Abbott, 632, 633

	Table	B.I P	ropertie	s of Pu	re Spec	des	
	Molar mass	ω	T _c /K	P _c /bar	Z_{ε}	V_c ${ m cm^3~mol^{-1}}$ or $10^{-3}{ m m^3~kmol^{-1}}$	$T_o/{ m K}$
Methane	16.043	0.012	190.6	45.99	0.286	98.6	111.4
Ethane	30.070	0.100	305.3	48.72	0.279	145.5	184.6
Propane	44.097	0.152	369.8	42.48	0.276	200.0	231.1
n-Butane	58.123	0.200	425.1	37.96	0.274	255.	272.7
n-Pentane	72.150	0.252	469.7	33.70	0.270	313.	309.2
n-Hexane	86.177	0.301	507.6	30.25	0.266	371.	341.9
n-Heptane	100.204	0.350	540.2	27.40	0.261	428.	371.6
n-Octane	114.231	0.400	568.7	24.90	0.256	486.	398.8
n-Nonane	128.258	0.444	594.6	22.90	0.252	544.	424.0
n-Decane	142.285	0.492	617.7	21.10	0.247	600.	447.3
Isobutane	58.123	0.181	408.1	36.48	0.282	262.7	261.4
Isooctane	114.231	0.302	544.0	25.68	0.266	468.	372.4
Cyclopentane	70.134	0.196	511.8	45.02	0.273	258.	322.4
Cyclohexane	84.161	0.210	553.6	40.73	0.273	308.	353.9
Methylcyclopentane	84.161	0.230	532.8	37.85	0.272	319.	345.0
Methylcyclohexane	98.188	0.235	572.2	34.71	0.269	368.	374.1
Ethylene	28.054	0.087	282.3	50.40	0.281	131.	169.4
Propylene	42.081	0.140	365.6	46.65	0.289	188.4	225.5
1-Butene	56.108	0.191	420.0	40.43	0.277	239.3	266.9
cis-2-Butene	56.108	0.205	435.6	42.43	0.273	233.8	276.9
trans-2-Butene	56.108	0.218	428.6	41.00	0.275	237.7	274.0
l-Hexene	84.161	0.280	504.0	31.40	0.265	354.	336.3
Isobutylene	56.108	0.194	417.9	40.00	0.275	238.9	266.3
1.3-Butadiene	54.092	0.190	425.2	42.77	0.267	220.4	268.7
Cyclohexene	82,145	0.212	560.4	43.50	0.272	291.	356.1
Acetylene	26.038	0.187	308.3	61.39	0.271	113.	189.4
Benzene	78.114	0.210	562.2	48.98	0.271	259.	353.2
Toluene	92.141	0.262	591.8	41.06	0.264	316.	383.8
Ethylbenzene	106.167	0.303	617.2	36.06	0.263	374.	409.4
Cumene	120.194	0.326	631.1	32.09	0.261	427.	425.6
o-Xylene	106.167	0.310	630.3	37.34	0.263	369.	417.6
m-Xylene	106.167	0.326	617.1	35.36	0.259	376.	412.3
p-Xylene	106.167	0.322	616.2	35.11	0.260	379.	411.5
Styrene	104.152	0.297	636.0	38.40	0.256	352.	418.3
Naphthalene	128.174	0.302	748.4	40.51	0.269	413.	410.5
Biphenyl	154.211	0.365	789.3	38.50	0.295	502.	528.2
Formaldehyde	30.026	0.282	408.0	65.90	0.223	115.	254.1
Acetaldehyde	44.053	0.291	466.0	55.50	0.223	154.	294.0
Methyl acetate	74.079	0.331	506.6	47.50	0.257	228.	330.1
Ethyl acetate	88.106	0.366	523.3	38.80	0.255	286.	350.2
Acetone	58.080	0.307	508.2	47.01	0.233	209.	329.4
Methyl ethyl ketone	72,107	0.323	535.5	41.50	0.249	267.	352.8
Diethyl ether	74.123	0.281	466.7	36.40	0.263	280.	307.6
Divings saids	14.123	0.201	-	30.40	0.203	word.	20130

88.150 0.266 497.1

34.30 0.273

	Molar mass	ω	$T_c/{ m K}$	P_c /bar	Z_z	V_c $cm^3 mol^{-1}$ or $10^{-3} m^3 kmol^{-1}$	T_{ν}/K
Ethanol	46,069	0.645	513.9	61.48	0.240	167.	351.4
1-Propanol	60.096	0.622	536.8	51.75	0.254	219.	370.4
1-Butanol	74.123	0.594	563.1	44.23	0.260	275.	390.8
1-Hexanol	102.177	0.579	611.4	35.10	0.263	381.	430.6
2-Propanol	60.096	0.668	508.3	47.62	0.248	220.	355.4
Phenol	94.113	0.444	694.3	61.30	0.243	229.	455.0
Ethylene glycol	62.068	0.487	719.7	77,00	0.246	191.0	470.5
Acetic acid	60.053	0.467	592.0	57.86	0.211	179.7	391.1
n-Butyric acid	88.106	0.681	615.7	40.64	0.232	291.7	436.4
Benzoic acid	122.123	0.603	751.0	44.70	0.246	344.	522.4
Acetonitrile	41.053	0.338	545.5	48.30	0.184	173.	3543
Methylamine	31.057	0.281	430.1	74.60	0.321	154.	266.5
Ethylamine	45.084	0.285	456.2	56.20	0.307	207.	289.
Nitromethane	61.040	0.348	588.2	63.10	0.223	173.	374
Carbon tetrachloride	153.822	0.193	556.4	45.60	0.272	276.	349.
Chloroform	119.377	0.222	536.4	54.72	0.293	239.	334
Dichloromethane	84.932	0.199	510.0	60.80	0.265	185.	312/
Methyl chloride	50.488	0.153	416.3	66.80	0.276	143.	249.
Ethyl chloride	64.514	0.190	460.4	52.70	0.275	200.	285
Chlorobenzene	112.558	0.250	632.4	45.20	0.265	308.	404.
Tetrafluoroethane	102.030	0.327	374.2	40.60	0.258	198.0	247.
Argon	39.948	0.000	150.9	48.98	0.291	74.6	87.
Krypton	83.800	0.000	209.4	55.02	0.288	91.2	119.
Xenon	131.30	0.000	289.T	58.40	0.286	118.0	165
Helium 4	4.003	-0.390	5.2	2.28	0.302	57.3	4.
Hydrogen	2.016	-0.216	33.19	13.13	0.305	64.1	20.
Oxygen	31.999	0.022	154.6	50.43	0.788	73.4	90
Nitrogen	28.014	0.038	126.2	34.00	0.289	89.2	77.
Air1	28.851	0.035	132.2	37.45	0.289	84.8	
Chlorine	70.905	0.069	417.2	77.10	0.265	124.	239.
Carbon monoxide	28.010	0.048	132.9	34.99	0.299	93.4	81.
Carbon dioxide	44.010	0.224	304.2	T3.83	0.274	94.0	
Carbon disulfide	76.143	0.111	552.0	79.00	0.275	160.	319.
Hydrogen sulfide	34.082	0.094	373.5	89.63	0.284	98.5	212.
Sulfur dioxide	64.065	0.245	430.8	78.84	0.269	122.	263.
Sulfur trioxide	80.064	0.424	490.9	82.10	0.255	127.	317.
Nitric oxide (NO)	30.006	0.583	180.2	64.80	0.251	58.0	121
Nitrous oxide (N2O)	44.013	0.141	309.6	72.45	0.274	97.4	184.
Hydrogen chloride	36,461	0.132	324.7	83.10	0.249	81.	188.
Hydrogen cyanide	27.026	0.410	456.7	53.90	0.197	139.	298
Water	18.015	0.345	647.1	220.55	0.229	55.9	373.
Ammonia	17.031	0.253	405.7	112.80	0.242	72.5	239.
Nitric acid	63.013	0.714	520.0	68.90	0.231	145.	356.
Sulfuric acid	98,080		924.0	64.00	0.147	177.	610.

Pseudoparameters for $y_{N_1} = 0.79$ and $y_{O_2} = 0.21$. See Eqs. (6.88)–(6.90).

Sandler 561, 562

Methyl t-butyl ether

The initial guesses for the bubble point pressure P_B and for the $K_i = y_i/x_i$ values for all species in the mixture do not affect the final solution to the problem, but may influence the number of iterations required to obtain the solution. One possible set of initial guesses is obtained by assuming ideal liquid and vapor mixtures so that

$$P_B = \sum_{i} x_i P_i^{\text{vap}}(T) \tag{10.3-2}$$

328.4

and

$$K_{\rm i} = \frac{y_{\rm i}}{x_{\rm i}} = \frac{P_{\rm i}^{\rm vap}(T)}{P_B}$$
 (10.3-3)

where the pure component vapor pressure can be estimated using the Antoine equation, Eq. 7.7-8, with parameters for the fluid of interest, or by using the equation of state as described in Sec. 7.5.

Figure 10.3-5 Flow diagram of an algorithm for the bubble point pressure calculation using an equation of state.