#### Department of Computer Science and Engineering

# FACULTY OF ENGINEERING AND TECHNOLOGY UNIVERSITY OF LUCKNOW LUCKNOW



Dr. Zeeshan Ali Siddiqui Assistant Professor Deptt. of C.S.E.

## ROUND ROBIN (RR) SCHEDULING

## **RR Scheduling**

 Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.

- If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once.
  - No process waits more than (n-1)q time units.

## RR Question 1

| Process | Burst Time |
|---------|------------|
| $P_1$   | 53         |
| $P_2$   | 17         |
| $P_3$   | 68         |
| $P_4$   | 24         |

Suppose that the processes arrive, at time 0, in the order:  $P_1$ ,  $P_2$ ,  $P_3$ , and  $P_4$ . Time Quantum: 20 unit

#### Find:

- 1. Waiting Time
- 2. Average Waiting Time
- 3. Turnaround Time
- 4. Average Turnaround Time

## RR Question 1: Solution<sub>1/2</sub>



$$\triangleright$$
 P1wt=0+(77-20)+(121-97)=0+57+24=81 unit time  $P_1$  53 P2 P3 68

Process

 $P_4$ 

**Burst Time** 

24

- > P2wt=20 unit time
- > P3wt=37+(97-57)+(134-117)=37+40+17=94 unit time
- > P4wt=57+(117-77)=57+40=97 unit time

#### Average Waiting Time

- ➤ AWT=(P1wt+P2wt+P3wt+P4wt)/4
- > AWT=(81+20+94+97)/4=292/4=73 unit time

## RR Question 1: Solution<sub>2/2</sub>



Process

 $P_1$ 

 $P_2$ 

 $P_{A}$ 

**Burst Time** 

53

17

68

24

#### Turnaround Time

#### Average Turnaround Time

#### RR Question 2

| Process | <b>Burst Time</b> |
|---------|-------------------|
| $P_1$   | 24                |
| $P_2$   | 3                 |
| $P_3$   | 3                 |

Suppose that the processes arrive, at time 0, in the order:  $P_1$ ,  $P_2$ ,  $P_3$ . Time Quantum: 4 unit.

#### Find:

- 1. Waiting Time
- 2. Average Waiting Time
- 3. Turnaround Time
- 4. Average Turnaround Time

## RR Question 2: Solution<sub>1/2</sub>



#### Waiting Time

- > P1wt=0+(10-4)=6 unit time
- > P2wt=4 unit time
- ➤ P3wt=7 unit time

#### Average Waiting Time

- ➤ *AWT=(P1wt+P2wt+P3wt)/3*
- $\rightarrow$  AWT=(6+4+7)/3= 17/3=5.7 unit time

| Process | Burst Time |
|---------|------------|
| $P_1$   | 24         |
| $P_2$   | 3          |
| P.      | 3          |

## RR Question 2: Solution<sub>2/2</sub>



#### Turnaround Time

#### Average Turnaround Time

Process Burst Time  $P_1 \qquad 24$   $P_2 \qquad 3$   $P_3 \qquad 3$ 

## Time Quantum and Context Switch Time



## Turnaround Time Varies With The Time Quantum



## RR Scheduling: Analysis

If the time quantum is too large then the RR scheduling works as

**FCFS** 

#### Performance issue

>q must be large with respect to context switch, otherwise

➤ overhead is too high.

## References

- 1. Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley.
- 2. William Stallings, "Operating Systems: Internals and Design Principles", 6<sup>th</sup> Edition, Pearson Education.
- 3. D M Dhamdhere, "Operating Systems: A Concept based Approach", 2<sup>nd</sup> Edition, TMH.

