Introduction to Deep Learning

13. Inception, Batch Normalization, ResNet, DenseNet

STAT 157, Spring 2019, UC Berkeley

Alex Smola and Mu Li

courses.d2l.ai/berkeley-stat-157

Inception

Picking the best convolution ...

Why choose? Just pick them all.

Inception Blocks

4 paths extract information from different aspects, then concatenate along the output channel

Inception Blocks

The first inception block with channel sizes specified

Inception Blocks

Inception blocks have fewer parameters and less computation complexity than a single 3x3 or 5x5 convolutional layer

- Mix of different functions (powerful function class)
- Memory and compute efficiency (good generalization)

	#parameters	FLOPS
Inception	0.16 M	128 M
3x3 Conv	0.44 M	346 M
5x5 Conv	1.22 M	963 M

GoogLeNet

5 stages with 9 inceptions blocks

Stage 1 & 2

 Smaller kernel size and output channels due to more layers

The many flavors of Inception Networks

- Inception-BN (v2) Add batch normalization
- Inception-V3 Modified the inception block
 - Replace 5x5 by multiple 3x3 convolutions
 - Replace 5x5 by 1x7 and 7x1 convolutions
 - Replace 3x3 by 1x3 and 3x1 convolutions
 - Generally deeper stack
- Inception-V4 Add residual connections (more later)

Inception V3 Block for Stage 3

Inception V3 Block for Stage 4

Inception V3 Block for Stage 5

GluonCV Model Zoo https://gluoncv.mxnet.io/model zoo/ classification.html

Batch Normalization

- Loss occurs at last layer
 - Last layers learn quickly
- Data is inserted at bottom layer
 - Bottom layers change everything changes
 - Last layers need to relearn many times
 - Slow convergence
- This is like covariate shift
 Can we avoid changing last layers while learning first layers?

Batch Normalization

- Can we avoid changing last layers while learning first layers?
- Fix mean and variance

$$\mu_B = \frac{1}{|B|} \sum_{i \in B} x_i \text{ and } \sigma_B^2 = \frac{1}{|B|} \sum_{i \in B} (x_i - \mu_B)^2 + \epsilon$$

and adjust it separately

$$x_{i+1} = \gamma \frac{x_i - \mu_B}{\sigma_B} + \beta$$
 variance

mean

loss

This was the original motivation ...

What Batch Norms really do

- Doesn't really reduce covariate shift (Lipton et al., 2018)
- Regularization by noise injection

Random offset
$$x_{i+1} = \gamma \frac{x_i - \hat{\mu}_B}{\hat{\sigma}_B} + \beta$$

Random

scale

- Random shift per minibatch
- Random scale per minibatch
- No need to mix with dropout (both are capacity control)
- Ideal minibatch size of 64 to 256

Details

gluon.nn.BatchNorm(...)

- Dense Layer
 One normalization for all
- Convolution
 One normalization per channel
- · Compute new mean and variance for every minibatch
 - Effectively acts as regularization
 - Optimal minibatch size is ~128
 (watch out for parallel training with many machines)

Residual Networks

Does adding layers improve accuracy?

generic function classes

nested function classes

Residual Networks

- Adding a layer changes function class
- We want to add to the function class
- 'Taylor expansion' style parametrization

$$f(x) = x + g(x)$$

He et al., 2015

ResNet Block in detail

In code


```
def forward(self, X):
    Y = self.bn1(self.conv1(X))
    Y = nd.relu(Y)
    Y = self.bn2(self.conv2(Y))
    if self.conv3:
        X = self.conv3(X)
    return nd.relu(Y + X)
```


The many flavors of ResNet blocks

ResNet Module

- Downsample per module (stride=2)
- Enforce some nontrivial nonlinearity per module (via 1x1 convolution)
- Stack up in blocks

```
blk = nn.Sequential()
for i in range(num_residuals):
   if i == 0 and not first_block:
       blk.add(Residual(num_channels,
            use_1x1conv=True, strides=2))
   else:
       blk.add(Residual(num_channels))
```

Putting it all together

- Same block structure as e.g. VGG or GoogleNet
- Residual connection to add to expressiveness
- Pooling/stride for dimensionality reduction
- Batch Normalization for capacity control

... train it at scale ...

GluonCV Model Zoo https://gluoncv.mxnet.io/model zoo/ classification.html

ResNext

Reducing the cost of Convolutions

Parameters

$$k_h \cdot k_w \cdot c_i \cdot c_o$$

Computation

$$m_h \cdot m_w \cdot k_h \cdot k_w \cdot c_i \cdot c_o$$

- Slicing convolutions (Inception v4) e.g. 3x3 vs. 1x5 and 5x1
- Break up channels (mix only within)

$$m_h \cdot m_w \cdot k_h \cdot k_w \cdot \frac{c_i}{b} \cdot \frac{c_o}{b} \cdot b$$

Reducing the cost of Convolutions

Parameters

$$k_h \cdot k_w \cdot c_i \cdot c_o$$

Computation

$$m_h \cdot m_w \cdot k_h \cdot k_w \cdot c_i \cdot c_o$$

- Slicing convolutions (Inception v4)
 e.g. 3x3 vs. 1x5 and 5x1
- Break up channels (mix only within)

$$m_h \cdot m_w \cdot k_h \cdot k_w \cdot \frac{c_i}{b} \cdot \frac{c_o}{b} \cdot b$$

stage	output	ResNet-50	ResNeXt-50 (32×4d)	Dowllowt budget
conv1	112×112	7×7 , 64, stride 2	7×7 , 64, stride 2	RexNext budget
		3×3 max pool, stride 2	3×3 max pool, stride 2	
conv2	56×56	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1 & 128 \\ 3 \times 3 & 128 & C = 32 \\ 1 \times 1 & 256 \end{bmatrix} \times 3$	 Slice blocks into 32 sub-blocks
conv3	28×28	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1 & 256 \\ 3 \times 3 & 256 \\ 1 \times 1 & 512 \end{bmatrix} \times 4$	 Can use more dimensions
conv4	14×14	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6 $	$\begin{bmatrix} 1 \times 1 & 512 \\ 3 \times 3 & 512 & C = 32 \\ 1 \times 1 & 1024 \end{bmatrix} \times 6$	Higher accuracy
conv5	7×7	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$\begin{bmatrix} 1 \times 1, & 1024 & & \\ 3 \times 3, & 1024 & & \\ 1 \times 1, & 2048 & & \end{bmatrix} \times 3$	<pre>nn.Conv2D(group_width=width,</pre>
	1×1	global average pool 1000-d fc, softmax	global average pool 1000-d fc, softmax	
# pa	arams.	25.5 $\times 10^6$	25.0 $\times 10^6$	Vie et al. 2016 AWS
FL	LOPs	4.1 ×10 ⁹	4.2 ×10 ⁹	Xie et al., 2016

More Ideas

DenseNet (Huang et al., 2016)

- ResNet combines x and f(x)
- DenseNet uses higher order 'Taylor series' expansion

$$x_{i+1} = [x_i, f_i(x_i)]$$

$$x_1 = x$$

$$x_2 = [x, f_1(x)]$$

$$x_2 = [x, f_1(x), f_2([x, f_1(x)])]$$

Occasionally need to reduce resolution (transition layer) aws

Squeeze-Excite Net (Hu et al., 2017)

- Learn global weighting function per channel
- Allows for fast information transfer between pixels in different locations of the image

ShuffleNet (Zhang et al., 2018)

- ResNext breaks convolution into channels
- ShuffleNet mixes by grouping (very efficient for mobile)

Separable Convolutions - all channels separate

Parameters

- $k_h \cdot k_w \cdot c_i \cdot c_o$
- Computation $m_h \cdot m_w \cdot k_h \cdot k_w \cdot c_i \cdot c_o$
- Break up channels to the extreme No mixing between channels

Summary

Inception

- Inhomogeneous mix of convolutions (varying depth)
- Batch norm regularization

ResNet

- Taylor expansion of functions
- ResNext decomposes convolutions
- Zoo

DenseNet, ShuffleNet, Separable Convolutions, ...

