Connecting population-level AUC and latent scale-invariant R^2 via Semiparametric Gaussian Copula and rank correlations

Debangan Dey¹, Vadim Zipunnikov¹
Johns Hopkins Bloomberg School of Public Health¹

JOHNS HOPKINS BLOOMBERG SCHOOL of PUBLIC HEALTH

Motivation

- Prediction of binary outcomes is an important problem, for example: 5-year mortality in National Health and Nutrition Examination Survey
- Many pseudo- R^2 proposals to quantify Goodness-of-fit in binary-outcome and continuous-predictor(s) models.
- AUC is the most widely used non-parametric summary. But it has many shortcomings and limitations.
- What is AUC? Do we have intuition about the (0.5, 1) scale? Is 0.8 large (enough)?
- Under complex survey designs (NHANES), AUC requires knowledge of pairwise survey-weights

Contribution

- AUC and three rank statistics (Kendall's Tau, Spearman's rho, Wilcoxon rank-sum) are linearly related.
- AUC and Quadrant correlation are linked under semi-parametric Gaussian Copula assumptions.
- Relating AUC and rank correlation creates more robust estimates.
- We introduce more intuitive latent R-square (R_l^2) scale in analogy to well-understood continuous case.
- How AUC can be calculated using single participant weights.

Notations

- (Y,X) with Y denoting binary and X being continuous.
- M_Y , M_X the population medians of Y and X.
- F_Y , F_X are the cdfs of Y and X.
- P(Y=1)=p
- X_1 and X_0 denotes random variables (X|Y=1) and (X|Y=0), respectively.
- The suffix uw and pw means unweighted and pairwise-weighted (product of individual weights)

Definition of Rank Correlations and AUC

$$A = max(P(X_1 > X_0), P(X_1 < X_0)).$$

It's trivial to see that, $P(X_1 > X_0) = 1 - P(X_1 < X_0)$, hence, $A \ge \frac{1}{2}$.

- 1. Kendall's Tau: $r_K = E((Y_i Y_i')sgn(X_i X_i')),$
- 2. Wilcoxon's rank-sum statistic: $W = P(X \le X_1) P(X \le X_0)$
- 3. Spearman correlation. $r_S = 12E[F_Y(Y)F_X(X)] 3$,
- 4. Quadrant correlation. $r_Q = E[sgn((Y M_Y)(X M_X))],$

where (Y_i, X_i) and (Y_i', X_i') are two independent copies following the same bivariate distribution.

Relation between AUC and Rank Correlations

$$A_K = \frac{1}{2} + \left| \frac{r_K}{4p(1-p)} \right|$$

$$A_W = \frac{1}{2} + |W|$$

$$A_S = \frac{1}{2} + \left| \frac{r_S - (6p^2 - 6p + 3)}{12p^2(1-p)} \right|$$

$$A = A_K = A_W = A_S$$

Semi-parametric Gaussian Copula (SGC): Defining latent R-square

We need to relate Quadrant correlation (robust) to AUC and also define an alternative goodness-of-fit measure, latent R-square (R_I^2) to keep in analogy with the continuous case.

Definition 3.1. We say that (Y, X) follows a **Nonparanormal** distribution if there exists monotone functions f_Y , f_X such that $(U, V) = (f_Y(Y), f_X(X)) \sim N_2(0, 0, 1, 1, r)$.

Definition 3.2. Suppose we have binary variable Y and continuous variable X. Then if there exists latent variable Z, montone functions f_Z , f_X such that, $(Y,X) = (I\{f_Z(Z) > \Delta\}, X)$ and, $(U,V) = (f_Z(Z), f_X(X)) \sim N_2(0,0,1,1,r)$, then we define (Y,X) to follow Latent non-paranormal distribution.

Observed

Latent

Relation between AUC and Rank Correlations (under SGC)

$$A_{K} = \frac{1}{2} + \left| \frac{r_{K}}{4p(1-p)} \right|$$

$$A_{W} = \frac{1}{2} + |W|$$

$$A_{S} = \frac{1}{2} + \left| \frac{G_{K}(G_{S}^{-1}(r_{S}))}{4p(1-p)} \right| = \frac{1}{2} + \left| \frac{r_{S} - (6p^{2} - 6p + 3)}{12p^{2}(1-p)} \right|$$

$$A_{Q} = \frac{1}{2} + \left| \frac{G_{K}(G_{Q}^{-1}(r_{Q}))}{4p(1-p)} \right|$$

$$A = A_{K} = A_{W} = A_{S} = A_{Q}$$

Latent \mathbb{R}^2 more fundamental: Same AUC, but different \mathbb{R}^2

Figure 4: AUC vs Latent R-square (with varying p)

Complex surveys (NHANES): AUC from single participant weights

- > X: Age/Albumin/Systolic BP/TAC/MVPA/ASTP.
- > 3069 subjects with 507 deaths, so p = 0.17
- > 100 replicate survey bootstrap confidence intervals are reported in brackets.

	Variables	A_{Kuw}	Rank	A_{Kpw}	Rank	A_W	Rank	A_S	Rank	A_Q	Rank
1	TAC	0.75 (0.75, 0.75)	1	0.8 (0.75, 0.83)	1	0.8 (0.75, 0.83)	1	0.8 (0.75, 0.83)	1	0.77 (0.73, 0.8)	2
2	MVPA	0.73 (0.73, 0.73)	3	0.78 (0.74, 0.81)	2	0.78 (0.73, 0.81)	2	0.78 (0.74, 0.81)	2	0.78 (0.75, 0.82)	1
3	Age	0.74 (0.74, 0.74)	2	$0.77 \ (0.72, \ 0.8)$	3	$0.76 \ (0.72, \ 0.8)$	4	0.77 (0.72, 0.8)	3	0.74 (0.7, 0.77)	4
4	ASTP	0.73 (0.73, 0.73)	4	$0.76 \ (0.73, \ 0.8)$	4	0.76 (0.73, 0.81)	3	$0.76 \ (0.73, \ 0.8)$	4	0.74 (0.7, 0.78)	3
5	Albumin	$0.65 \ (0.65, \ 0.65)$	5	$0.7 \ (0.66, \ 0.73)$	5	$0.7 \ (0.66, \ 0.73)$	5	$0.7 \ (0.66, \ 0.73)$	5	0.68 (0.64, 0.71)	5
6	Systolic BP	0.54 (0.54, 0.54)	6	0.53 (0.5, 0.57)	6	0.53 (0.5, 0.57)	6	0.53 (0.5, 0.57)	6	0.5 (0.5, 0.57)	6

Table 1: AUC estimates and 95% bootstrap confidence intervals for continuous predictors in NHANES 2003-2006.

Simulation Studies: Robust AUC (Quadrant)

Figure 5: As outlyingness increases, AUC calculated from Quadrant shows less bias

References

1. Fan, Jianqing, Han Liu, Yang Ning, and Hui Zou. "High dimensional semiparametric latent graphical model for mixed data." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 79, no. 2 (2017): 405-421.

2. Lumley, T. and Scott, A. J. (2013). Two-sample rank tests under complex sampling. Biometrika 100, 831–842.