

Learning correspondences of cardiac motion from images using biomechanics-informed modeling

Xiaoran Zhang¹, Chenyu You², Shawn Ahn¹, Juntang Zhuang¹, Lawrence Staib^{1,2,3} and James Duncan^{1,2,3}

¹Biomedical Engineering, Yale University ²Electrical Engineering, Yale University ³Radiology & Biomedical Imaging, Yale School of Medicine

Introduction

- A displacement vector field (DVF) is crucial to infer the underlying spatial-temporal characteristics of anatomical structures.
- Explicit biomechanical constraints imposed on DVF such as incompressibility often consider biomechanical properties only for specific regions of interest, such as the myocardium.
- Geometric properties in other structures such as the right ventricle (RV) is not guaranteed.
- To encourage physically plausible transformation, pre-trained variational auto-encoders (VAEs) can be used as regularizers to enforce implicit constraints on the DVF.
- The VAEs are often trained separately on manually generated datasets which require physical simulations.
- The regularization performance might be limited by VAEs' generalization ability on new datasets.

Contributions

- We propose a biomechanics-informed regularization explicitly as a prior for DVF estimation to preserve geometric properties.
- Our proposed method shows improvement across different cardiac structures due to the more generic assumption.
- We conduct extensive experiments to show its effectiveness and robustness over other competing regularization schemes.

ACDC Dataset [1]

- The dataset contains 100 patients including
- 20 healthy patients
- 20 patients with previous myocardial infarction
- 20 patients with dilated cardiomyopathy
- 20 patients with an hypertrophic cardiomyopathy
- 20 patients with abnormal right ventricle
- End-diastolic (ED) and end-systolic (ES) frames are selected from the sequence.
- Segmentation labels consisting of left ventricle (LV), right ventricle (RV), and epicardium (Epi) for ED and ES frames are given.
- 60 patients, 20 patients and 20 patients are used for training, validation and testing, respectively.

Methods

From the classical definition of the strain tensor $\epsilon \in \mathbb{R}^{3 \times H \times W}$ in the infinitesimal linear elasticity model for 2D displacement $\hat{u} = [\hat{u}_1, \hat{u}_2]^T$

$$\epsilon = \left[\frac{\partial \hat{u}_1}{\partial x_1}, \frac{\partial \hat{u}_2}{\partial x_2}, \frac{1}{2} \left(\frac{\partial \hat{u}_1}{\partial x_2} + \frac{\partial \hat{u}_2}{\partial x_1} \right) \right]^T, \tag{1}$$

we define the linear isotropic elastic strain energy density function for each pixel as follows:

$$W_{i,j} = \frac{1}{2} \epsilon_{i,j}^T C \epsilon_{i,j}, \qquad (2)$$

where C is the pre-defined stiffness matrix describing material properties of the deforming body. The prior probability density function (pdf) of the DVF can be written in Gibb's form:

$$p(\hat{u}) = k_1 e^{-W}. \tag{3}$$

The optimal DVF \hat{u}^* can be obtained through maximum a posteriori (MAP) optimization:

$$\hat{u}^* = \underset{\hat{u}}{\operatorname{arg\,max}} \left\{ p(\hat{u}|u) = \frac{p(u|\hat{u})p(\hat{u})}{p(u)} \right\}$$

$$= \underset{\hat{u}}{\operatorname{arg\,min}} \left\{ -\log p(u|\hat{u}) - \log p(\hat{u}) \right\}. \tag{4}$$

Loss functions

We assume the noise between the ground truth measurement u and the DVF estimate \hat{u} is normally distributed $\mathcal{N}(0, \sigma^2)$

$$p(u|\hat{u}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{||u-\hat{u}||_2^2}{2\sigma^2}}.$$
 (5)

We utilize the image dissimilarity between the transformed image $I_m \circ \hat{u}$ and I_f to evaluate the difference of \hat{u} with the ground truth motion field

$$\mathcal{L}(I_m, I_f; \hat{u}) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} ||I_f^i - I_m^i \circ \hat{u}^i||_2^2}_{\mathcal{L}_{sim}} + \lambda \underbrace{\frac{1}{N} \sum_{i=1}^{N} ||\epsilon^T C \epsilon||_2}_{\mathcal{L}_{reg}}$$

$$(6)$$

where N is the number of samples. When segmentation masks are available, we can further improve the approximated difference of \hat{u} with ground truth by adding an auxiliary segmentation loss

$$\mathcal{L}(I_m, I_f, s_m, s_f; \hat{u}) = \mathcal{L}(I_m, I_f; \hat{u}) + \gamma \underbrace{\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{K} \left(1 - \text{Dice}\left(s_m^{ij} \circ \hat{u}^i, s_f^{ij}\right)\right)}_{\mathcal{L}_{sea}}.$$
(7)

Results

Figure: Visual assessment of DVFs on the ACDC dataset [1].

	Method	Dice[%]↑	Jaccard[%]↑	HD[mm]↓	ASD[mm]↓
LV	B-splines [3]	89.96	82.62	5.37	0.48
	RegNet+VAE [2]	89.61	81.65	6.46	0.49
	$\text{RegNet}+\mathcal{L}_2$	89.60	81.68	8.00	0.54
	RegNet+BIM (ours)	90.32	82.70	5.51	0.37
	$\mathbf{RegNet} + \mathbf{BIM} + \mathcal{L}_{\mathbf{seg}} $ (ours)	92.77	86.76	4.39	0.19
RV	B-splines [3]	83.59	74.33	13.70	2.43
	RegNet+VAE [2]	84.65	75.58	16.48	2.31
	$\text{RegNet}+\mathcal{L}_2$	84.80	75.73	14.75	2.25
	RegNet+BIM (ours)	85.07	76.16	14.55	2.22
	$\mathbf{RegNet} + \mathbf{BIM} + \mathcal{L}_{\mathbf{seg}} $ (ours)	85.93	77.54	14.07	2.15
Epi	B-splines [3]	92.33	86.12	5.97	0.33
	RegNet+VAE [2]	91.45	84.83	7.57	0.48
	$\operatorname{RegNet} + \mathcal{L}_2$	89.92	82.22	7.77	0.59
	RegNet+BIM (ours)	91.53	84.75	6.20	0.40
	$\mathbf{RegNet} + \mathbf{BIM} + \mathcal{L}_{\mathbf{seg}} $ (ours)	$\boldsymbol{92.57}$	86.48	5.54	0.32

Table: Quantitative assessment of registration performance on the ACDC dataset [1].

Conclusions

- We propose a novel data-driven approach for cardiac motion tracking with biomechanics-informed modeling regularization.
- Our proposed methods outperform other regularization methods on ACDC dataset [1] in 2D cardiac motion estimation using quantitative assessment and generate more realistic DVF in visual assessment.

References

^[1] Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? IEEE Transactions on Medical Imaging **37**(11), 2514–2525 (2018)

^[2] Qin, C., et al.: Biomechanics-informed neural networks for myocardial motion tracking in MRI. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 296–306. Springer (2020)

^[3] Rueckert, D., et al.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging **18**(8), 712–721 (1999)