12.3 Using Open GIS web services to serve environmental data

Daryl Herzmann
Raymond Arritt
Iowa Environmental Mesonet (IEM)

Department of Agronomy, Iowa State University

Our GIS Session History

- 2003: Getting our data into GIS accessible formats.
 Spatial Databases
- 2004: GIS Web Mapping.
 Applications with NEXRAD information.

The rundown for 2005!

- Motivation
- Overview of OGC web services (WMS,WFS,WCS)
- IEM web service offerings
- Example implementations
- What we have learned

The Software Components

PostGIS – Spatial datablade for the PostgreSQL RDBM

MapServer – Extremely fast and capable internet mapping server also supporting WFS, WMS, WCS

Linux – What else would you build your enterprise data system on?

WMS: Web Map Service

- "A WMS produces maps of spatially referenced data dynamically from geographic information." from OGC WMS 1.3
- WMS defines three operations protocols
 - GetCapabilities
 - Get server capabilities
 - GetMap
 - Returns a map or an exception
 - GetFeatureInfo (Optional)
 - Mechanism to do pixel queries on GetMap generated maps

WFS: Web Feature Service

- "[WFS] proposes interfaces for describing data manipulation operations on geographic features using HTTP" OGC WFS 1.0
- Data manipulation operations include
 - Create a new feature instance
 - Delete a feature instance
 - Update a feature instance
 - Get or query features based on spatial constraint

WCS: Web Coverage Service

- "WCS supports electronic exchange of geospatial data as 'coverages' " OGC WCS 1.0
- A WCS provides three operations
 - GetCapabilities
 - GetCoverage
 - DescribeCoverage

IEM OGC Offerings

http://mesonet.agron.iastate.edu/ogc/

	WMS	WFS	WCS
CONUS NEXRAD	X		? X ?
(Base Reflect, Storm Precip)			
NCEP Stage4 Precip (Iowa)	X	X	
Iowa Road Conditions	X	X	
NWS Current/Archived Warnings (County + Polygon)	X	X	

Supporting 2004 Hurricanes

Provided Disaster
Management Interoperability
Services a RADAR WMS to
support their decision support
software

http://www.cmi-services.org

Providing Road Conditions to Media Outlets

WFS and WMS

 support generation of images for display in
 TV Weather graphics systems

NWS Warnings WFS

- Retrieve current and historical NWS warnings (polygon and county based).
- Archive begins Jul 2002

Lessons Learned

- OGC webservices greatly reduced chaos on our server. Chaos being:
 - Redundantly storing data for different apps
 - Versioning issues with redundant data
 - Redundant code to simply add a RADAR layer to a map
- The application development time reduced
- Performance hit was remarkably small

More Lessons Learned

- Often, the performance bottleneck is the overhead of HTTP
- The client application/implementation is absolutely key
 - Example: No WFS support for ArcGIS9 (?)
- (Daryl's 2 cents) The OSS community needs to generate some killer OGC desktop interfaces and scripting libraries. [PyOGCLib a start?]

Time for Questions?

mesonet.agron.iastate.edu

Daryl Herzmann 515.294.5978 Akrherz@iastate.edu

