1 Вариант

1. Совокупные выплаты имеют сложное пуассоновское распределение с параметром $\lambda=1$ и распределением отдельных выплат P(X=1)=1-P(X=3)=0.8.

Вычислить вероятности P(S=k), k=0,...,6 основным методом.

2. В модели коллективного риска количество выплат имеет биномиальное распределение с параметрами n=3, p=0.1.

Найти средние совокупные выплаты, их дисперсию и производящую функцию моментов, если отдельные выплаты имеют распределение:

X	1	2	3	4
P(X)	0.1	0.2	0.5	0.2

2 Вариант

1. Совокупные выплаты имеют сложное пуассоновское распределение с параметром $\lambda=2$ и распределением отдельных выплат P(X=1)=1-P(X=3)=0.4.

Вычислить вероятности P(S=k), k=0,...,6 методом, основанным на свойстве перегруппированной суммы.

2. В модели коллективного риска количество выплат имеет биномиальное распределение с параметрами n=3, p=0.4.

Найти средние совокупные выплаты, их дисперсию и производящую функцию моментов, если отдельные выплаты имеют распределение:

X	1	2	3	4
P(X)	0.5	0.2	0.1	0.2

3 Вариант

1. Совокупные выплаты имеют сложное пуассоновское распределение с параметром $\lambda=3$ и распределением отдельных выплат P(X=2)=1-P(X=3)=0.5.

Вычислить вероятности P(S=k), k=0,...,6 рекуррентным методом.

2. В модели коллективного риска количество выплат имеет биномиальное распределение с параметрами n=3, p=0.5.

Найти средние совокупные выплаты, их дисперсию и производящую функцию моментов, если отдельные выплаты имеют распределение:

X	1	2	3	4
P(X)	0.2	0.3	0.2	0.3