

Disciplina: Algoritmos e Técnicas de Programação (4723 – Turma A) Professor: Renato Balancieri

Trabalho 2

Instruções Gerais:

- 1. Os exercícios a seguir devem ser implementados na linguagem Pascal. Obedeça estritamente ao que foi pedido no enunciado da questão do trabalho e as instruções.
- 2. Somente os arquivos no formato *.pas deverão ser entregues. Coloque nomes que represente o exercício nos arquivos. Exemplos: *Exercicio1.pas* ou *Ex1.pas*.
- 3. Serão avaliados:
 - 3.1 A corretude do programa em relação ao que foi pedido no exercício;
- 3.2 A colocação em prática dos conceitos que foram discutidos em sala de aula de forma correta;
 - 3.3 A qualidade da implementação e a indentação;
 - 3.4 A originalidade da solução (você não deve copiar);
 - 3.5 A estruturação do programa e a nomeação das variáveis;
 - 3.6 A forma de interação com o usuário.
- 4. Todos os exercícios devem ser compactados juntos (zipados) nos formatos *.zip ou *.rar e enviados pelo Google Classroom. Haverá um link de entrega no sistema para fazer o *upload* do arquivo. O trabalho deverá ser entregue até o dia 25/08/2022. Coloque seu nome (sem acento e sem caractere especial) como nome do arquivo compactado. Exemplo: MariaSilva.zip ou MariaSilva.rar (sem espaço) (favor utilizar esta forma de compactação);
- 5. Não serão avaliados os trabalhos:
 - 5.1 Que chegarem fora do prazo;
 - 5.2 Que não compilarem;
 - 5.3 Que não foram compactados em um só arquivo;
 - 5.4 Que não tiverem identificação;
 - 5.5 Que não seguirem todas estas instruções.

Disciplina: Algoritmos e Técnicas de Programação (4723 – Turma A) Professor: Renato Balancieri

Lista de Exercícios:

1) Faça um programa em Pascal que receba um vetor A de 100 posições contendo números inteiros. Determine e mostre, a seguir, quais elementos de A estão repetidos e quantas vezes cada um se repete.

Exemplo: Para um vetor de 10 posições

•										
Vetor A	5	4	3	18	5	3	4	18	4	18
'	1	2	3	4	5	6	7	8	9	10

Caso sejam digitados valores como os apresentados no vetor A, deverá ser mostrado ao final as **seguintes informações:**

O número 5 aparece duas vezes.

O número 4 aparece três vezes.

O número 3 aparece duas vezes.

O número 18 aparece três vezes.

2) Faça um programa em Pascal que receba dois vetores de inteiros, A e B, de tamanho 16 cada um. Seu programa deverá gerar dois novos vetores, C e D, onde C será a primeira metade do vetor A seguido da segunda metade do vetor B, e o vetor D será a primeira metade do vetor B seguido da segunda metade do vetor A. Exemplo:

A: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B: 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

C: 1 2 3 4 5 6 7 8 25 26 27 28 29 30 31 32

D: 17 18 19 20 21 22 23 24 9 10 11 12 13 14 15 16

3) Uma empresa possui ônibus com 20 lugares (10 nas janelas e 10 no corredor). Faça um programa em Pascal que utilize dois vetores para controlar as poltronas ocupadas no corredor e na janela. Considere que 0 representa poltrona desocupada e 1, poltrona ocupada.

Janela	0	1	0	0	 1	0	0
Corredor	0	0	0	1	 1	0	0

Disciplina: Algoritmos e Técnicas de Programação (4723 – Turma A) Professor: Renato Balancieri

Inicialmente, todas as poltronas estarão livres. Depois disso, o programa deverá apresentar as seguintes opções:

- 1 Vender passagem
- 2 Mostrar mapa de ocupação do ônibus
- 3 Encerrar

Quando a opção escolhida for *Vender passagem*, deverá ser perguntado se o usuário deseja janela ou corredor e o número da poltrona. O programa deverá, então, dar uma das seguintes mensagens:

- Venda efetivada se a poltrona solicitada estiver livre, marcando-a como ocupada.
- Poltrona ocupada se a poltrona solicitada não estiver disponível para venda.
- Ônibus lotado quando todas as poltronas já estiverem ocupadas.

Quando a opção escolhida for *Mostrar mapa de ocupação do ônibus*, deverá ser mostrada uma listagem conforme a seguir:

JANELA	CORREDOR
1 – Ocupada	1 – Ocupada
2 – Ocupada	2 – Livre
3 – Livre	3 – Livre
4 – Livre	4 – Ocupada

4) Faça um programa em Pascal que receba um valor inteiro x, maior que 0 e menor que 20, e crie uma matriz quadrada preenchida da seguinte maneira:

1	1	1	1	1	1	1
1	2	2	2	2	2	1
1	2				2	1
1	2		x		2	1
1	2				2	1
1	2	2	2	2	2	1
1	1	1	1	1	1	1

Disciplina: Algoritmos e Técnicas de Programação (4723 – Turma A) Professor: Renato Balancieri

- 5) Faça um programa em Pascal que utilize uma matriz com dimensões de cinco linhas e quatro colunas. Solicite que sejam digitados os números que serão armazenados na matriz da seguinte maneira:
 - Se o número digitado for par, deve ser armazenado em uma linha de índice par;
 - Se o número digitado for ímpar, deve ser armazenado em uma linha de índice ímpar;
 - As linhas devem ser preenchidas de cima para baixo (por exemplo, os números pares digitados devem ser armazenados inicialmente na primeira linha par; quando esta linha estiver totalmente preenchida, deve ser utilizada a segunda linha par, e assim sucessivamente; o mesmo procedimento deve ser adotado para os números ímpares);
 - Quando não couberem mais números pares ou ímpares, o programa deverá mostrar uma mensagem ao usuário;
 - Quando a matriz estiver totalmente preenchida, o programa deverá encerrar a leitura dos números e mostrar todos os elementos armazenados na matriz.
- 6) Faça um programa em Pascal que utilize uma matriz 5x5 que aceite três tipos de valores: múltiplos de 5, múltiplos de 11 e múltiplos de 13. Devem ser lidos apenas valores maiores que zero. Após a leitura, os números devem ser distribuídos da seguinte maneira:
 - Os múltiplos de 5 devem ocupar a diagonal principal;
 - Os múltiplos de 11 devem ficar acima da diagonal principal;
 - Os múltiplos de 13 devem ficar abaixo da diagonal principal.

Como alguns números podem ser múltiplos de 5, de 11 e também de 13 (por exemplo, 55 é múltiplo de 5 e de 11; 65 é múltiplo de 5 e de 13), deve-se, primeiro, verificar se o número digitado é múltiplo de 5. Caso não seja, deve-se verificar se é múltiplo de 11. Caso não seja, deve-se verificar se é múltiplo de 13. Caso não seja, o programa deverá mostrar a mensagem *Número inválido* (por exemplo, o número 55 deverá ser considerado múltiplo de 5, pois essa é a comparação que será feita primeiro). Segue-se um exemplo:

	-			
5	44	11	33	66
26	15	77	99	88
39	13	10	121	22
52	78	65	40	132
91	117	104	143	25

Disciplina: Algoritmos e Técnicas de Programação (4723 – Turma A) Professor: Renato Balancieri

Esse programa deverá observar as seguintes situações:

- Quando o usuário digitar um múltiplo de 5 e não houver mais espaço na diagonal principal, deverá mostrar a mensagem Diagonal totalmente preenchida;
- Quando o usuário digitar um múltiplo de 11 e não houver mais espaço disponível na matriz, deverá mostrar a mensagem Não existe espaço acima da diagonal principal;
- Quando o usuário digitar um múltiplo de 13 e não houver mais espaço disponível na matriz, deverá mostrar a mensagem Não existe espaço abaixo da diagonal principal;
- Quando a matriz estiver totalmente preenchida, deverá mostrar todos os elementos da matriz, juntamente com suas posições (linha e coluna).
- 7) Faça um programa em Pascal que leia uma matriz M(5x4), um valor para linha e um valor para coluna. O programa deverá gerar uma matriz N, onde N é M sem a linha e a coluna recebida.

Exemplo: linha = 2 e coluna = 3

	1	2	3	4
1	20	10	9	3
2	0	2	8	55
3	99	28	30	91
4	5	12	13	14
5	22	39	21	40

Matriz de entrada

	1	2	3
1	20	10	3
2	99	28	91
3	5	12	14
4	22	39	40

Matriz Gerada

8) Faça um programa em Pascal que receba uma matriz 5x4, ele deverá mostrar quais linhas e quais colunas têm todos os elementos iguais (conforme exemplo a seguir).

Exemplos:

5	7	5	5
7	7	7	7
8	7	2	8
3	7	1	5
7	7	7	7

Entradas:

Saídas: Linha 2 tem todos elementos iguais Linha 5 tem todos elementos iguais

Coluna 2 tem todos elementos iguais