

LE RÉSEAU DE CRÉATION ET D'ACCOMPAGNEMENT PÉDAGOGIQUES

Ce document a été mis en ligne par le Canopé de l'académie de Montpellier pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel.

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

BREVET DE TECHNICIEN SUPÉRIEUR

Assistance Technique d'Ingénieur ÉPREUVE E3

Mathématiques et sciences physiques

UNITÉ U32 SCIENCES PHYSIQUES

À l'exclusion de tout autre matériel, l'usage de la calculatrice est autorisé conformément à la circulaire n° 99-186 du 16 novembre 1999.

La clarté des raisonnements et la qualité de la rédaction interviendront dans l'appréciation des copies.

Le candidat répondra aux questions sur le texte même de l'épreuve, qu'il inclura dans une copie double à remettre aux surveillants en quittant la salle d'examen.

Si la place allouée pour telle ou telle réponse semble insuffisante, il est possible, en le précisant clairement, d'utiliser le verso de la feuille précédente.

Dès que le sujet vous est remis, assurez-vous qu'il soit complet et comporte 27 pages numérotées de 1/27 à 27/27.

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 1 sur 27

AIDE AU STATIONNEMENT

Introduction : le système Park4U[®] de Valéo est une aide au stationnement, qui apparaît comme l'une des innovations automobiles les plus marquantes de cette dernière décennie. Ce système utilise la détection par ultrasons permettant de garer automatiquement une voiture en 15 secondes. Le conducteur reste maitre du freinage et de l'accélération, la direction étant pilotée par le système Park4U[®]. Dès que le conducteur passe la marche arrière, le système s'enclenche.

Lorsque la voiture roule à moins de 30 km·h⁻¹, Park4U[®] détecte un emplacement libre adapté à la voiture, des deux côtés de la rue à l'aide de ses capteurs à ultrasons. Ce système utilise un calculateur électronique associé à 10 capteurs.

Lâchez le volant, ouvrez grand les yeux !

> Système d'assistance au stationnement semi-automatique

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 2 sur 27

Présentation générale

Le fonctionnement du système de stationnement s'effectue en 3 phases.

Phase 1: Détection de l'espace libre de parking par ultrasons. Cette détection s'effectue à l'aide de deux capteurs à ultrasons placés latéralement l'un à l'avant et l'autre à l'arrière du véhicule.

Phase 2 : Le calculateur électronique commande la direction assistée du véhicule, constituée d'un moteur à courant continu à aimant permanent, et d'un hacheur de type pont en H.

Phase 3 : Détection permanente de la position du véhicule lors de son déplacement sur la place de parking, avec un traitement de l'information, suivi d'une conversion analogique numérique pour le calculateur.

Le problème est composé de 3 parties indépendantes et d'une synthèse.

- Partie A : détection de l'espace libre de parking. (8 points)
- Partie B : conversion analogique numérique de l'information. (3 points)
- Partie C: moteur à courant continu et sa commande tous deux appartenant à la direction assistée. (8 points)
- Partie D: synthèse. (1 point)

FIGURE 2 (Schéma synoptique)

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 3 sur 27

	Académie :	Session :
RE	Examen:	Série :
CADRE	Spécialité/option :	Repère de l'épreuve :
	Epreuve/sous épreuve :	
DANS CE	NOM : (en majuscule, suivi s'il y a lieu, du nom d'épouse) Prénoms :	N° du candidat
	Né(e) le :	(le numéro est celui qui figure sur la convocation ou liste d'appel)
Écrire	Appréciation du correcteur	
rien Écı	Note:	
Ne		

BREVET DE TECHNICIEN SUPÉRIEUR

Assistance Technique d'Ingénieur ÉPREUVE E3

Mathématiques et sciences physiques

UNITÉ U32 SCIENCES PHYSIQUES

CAHIER RÉPONSE

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 4 sur 27

• Partie A: détection de l'espace libre de parking. (8 points)

Le repérage du véhicule par rapport à son environnement s'effectue à l'aide de capteurs ultrasonores. Sur le schéma ci-dessous, la chaîne électronique d'un seul capteur est représentée. Le transducteur en mode récepteur capte un éventuel écho de fréquence f. Le signal issu de ce capteur est amplifié à l'aide de l'ÉTAGE 1 par réglage de R_V. En sortie du bloc « Filtrage et détecteur de crête » ne subsiste que la tension continue dont l'amplitude change en fonction de la distance avec l'obstacle éventuel. L'ÉTAGE 2 permet de matérialiser une détection par un état 0 ou 1, afin d'alimenter un circuit transmetteur magnétique, ÉTAGE 3.

Données:

$$V_{DD} = 12.0 \text{ V}$$
; $R_1 = 1.00 \text{ k}\Omega$; $R_3 = 1.00 \text{ k}\Omega$; $R_4 = 15.0 \text{ k}\Omega$

Dans l'ensemble du sujet, les amplificateurs différentiels intégrés (ADI) sont considérés parfaits, et sont alimentés en -12,0 V et +12,0 V. Les tensions de saturations sont égales aux tensions d'alimentations.

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 5 sur 27

A.1	Ana	lyse	de	docui	ment.
-----	-----	------	----	-------	-------

A.1.1	Donner la vitesse limite de détection d'une place de parking.
A.1.2	Donner le nombre de capteurs présents sur le véhicule.
A.1.3	Indiquer si le système demande une intervention humaine pour son fonctionnement après avoir enclenché la marche arrière.
	JET SEON

A.2 Détermination d'une distance par la méthode de l'écho.

La détermination d'une distance par la méthode de l'écho est très simple à utiliser. Un premier signal u_S de fréquence $\mathbf{f_e}$ est émis et constitué d'une salve de 6 trames sinusoïdales d'ondes ultrasonores (FIGURE 4). La fréquence des ondes est notée $\mathbf{f_{US}}$. Le signal u_s est alors réfléchi par un obstacle. Le signal de retour u_R , appelé écho, est obtenu avec un certain retard correspondant au temps mis par le signal pour réaliser un aller-retour (FIGURE 5).

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 6 sur 27

A.2.1 Déterminer la période T _{US} du signal ultrasonore u _s constituant la salve
FIGURE 4.

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 7 sur 27

A.2.2	Déduire la fréquence f _{US} du signal ultrasonore constituant la salve.
A.2.3	Estimer le retard Δt_d entre le signal émis u_S et le signal reçu u_R .
	Seidi
A.2.4	Déduire de la question précédente la distance séparant l'objet du véhicule sachant que l'onde ultrasonore se propage à une vitesse $v = 340 \text{ m} \cdot \text{s}^{-1}$ et réalise un aller-retour.
	WE TO COLOR OF THE PARTY OF THE

A.3 Étude du circuit amplificateur.

Le signal u_R reçu par le récepteur à ultrasons est très atténué. Il est donc nécessaire de l'amplifier afin de pouvoir l'utiliser.

A.3.1 Justifier le régime de fonctionnement de l'ADI FIGURE 6.

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 8 sur 27

A.3.2	Déduire de la question précédente la relation entre v⁺ et v⁻.
	* 6 ₁₀ ,
A.3.3	Exprimer v ⁺ .
	e i di la companya di managara
A.3.4	Exprimer v^{-} en fonction de R_1 , R_v et de u_{S1} .
	615-0104
A.3.5	Déduire de ce qui précède, que l'expression du coefficient d'amplification A_v est : $A_v = \frac{u_{S1}}{u_R} = 1 + \frac{R_v}{R_1}$.
	de sije
A.3.6	Choisir la résistance variable R_v parmi les choix suivants, 1 k Ω , 10 k Ω et 100 k Ω pour avoir un coefficient d'amplification A_v au moins égal à 50 sachant que R_1 = 1,0 k Ω . Justifier votre réponse.

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 9 sur 27

A.4 Étude de l'ÉTAGE 2 : détecteur de seuil.

Remarque préliminaire : le signal u_{s1} subit l'action d'un détecteur de crête et d'un filtre. Ce bloc n'est pas étudié, le signal de sortie est la tension u_{s2} représentée ci-dessous. R_3 = 1,00 k Ω ; R_4 = 15,0 k Ω .

L'ADI est alimenté en +12,0 V / -12,0 V.

Exemple possible de signal u_{s2} obtenu :

A.4.1 Justifier le régime de fonctionnement de l'ADI FIGURE 7.

CO,		
25		
\ (/."		

A.4.2 Déduire de la question précédente les valeurs u_{s3} en fonction des différents signes pris par v_d .

1		

A.4.3 Préciser le nom donné au circuit FIGURE 7.

,

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 10 sur 27

A.4.4 Calculer v⁻, sachant que $v^- = \frac{R_3}{R_3 + R_4} \cdot V_{DD}$. Exprimer v_d en fonction de u_{S2} et V_{DD} .

A.4.5 Donner les valeurs de u_{s3} selon les valeurs prises par u_{s2} . Tracer, sur la FIGURE 8, la courbe u_{s3} en concordance de temps avec u_{s2} , pour les deux formes de signaux obtenus pour deux distances correspondant à 2 positions A et B du véhicule.

dessilets			
963			

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 11 sur 27

	Position A D = 1,00 m	Position B D = 3,00 m
2	5 10 15 20 25 30 t (ms)	e S
3 0-	5 10 15 20 25 30 t (ms)	15 u _{s3} (V) 3 0 5 10 15 20 25 30 t (ms)
	FIGUR	E 8
Base Mationale		

FIGURE 8

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 12 sur 27

A.5 Étude du circuit transmetteur magnétique et dimensionnement de la résistance R_5 .

Ce circuit a pour fonction de transmettre le signal image de la position de

l'obstacle. Le transistor fonctionne en régime de commutation et est considéré parfait. Lorsqu'il est saturé, on obtient les valeurs suivantes :

 $v_{CEsat} = 0 V$, $v_{BEsat} = 0 V$.

L'inductance L aux bornes de laquelle se trouve la tension u_{bob} , est suffisamment importante pour que le courant i_c soit considéré comme constant $i_c = i_{csat} = 0,5$ A. Les diodes D_1 et D_2 sont supposées parfaites.

FIGURE 9

A.5.1 Indiquer la famille et le type de transistor.

COI		
25		
\(\rho_1^2\)		

- A.5.2 Le transistor fonctionne en régime de commutation.
 - A.5.2.1 Donner la relation reliant V_{DD} , u_{bob} , et v_{CE} .

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 13 sur 27

A.5.2.2 Compléter le tableau ci-dessous en fonction de la tension u_{s3}:

	$u_{s3} = + V_{sat} = +12.0 \text{ V}$	$u_{s3} = -V_{sat} = -12,0 \text{ V}$
États du transistor		eri
États de D ₁	NE TO	
États de D ₂		
v _{CE} (V)	i e i	
u _{bob} (V)	96 96	

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 14 sur 27

• Partie B: conversion analogique numérique de l'information. (3 points)

Le circuit transmetteur magnétique émet un signal reçu par un capteur, dont le rôle est de permettre l'acquisition et le traitement du signal afin de subir une conversion analogique-numérique en vue d'être traité par le calculateur du véhicule. Le signal acquis est représenté FIGURE 10. Il est alors réalisé un zoom d'une zone de la courbe obtenue.

La FIGURE 11 représente le zoom d'une zone de la courbe u_e.

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 15 sur 27

3.1		er que le quantum q du convertisseur est q = 1,222 mV en expliquant ment votre méthode.
3.2	n'acce	stème d'enregistrement est réalisé autour d'un convertisseur à n bits, qui epte que des tensions comprises entre 0 et 5 V. La valeur maximale de sion $U_{e,}$ U_{emax} , vaut 5,000 V. Elle est alors égale à la pleine échelle PE.
	B.2.1	Donner la relation reliant u_e à la valeur de N donné par le convertisseur exprimée en décimal, puis donner l'expression de u_{emax} en fonction de N_{max} .
		;e's 2'es
	B.2.2	Déduire de la question précédente la valeur N _{max} .
	B.2.3	Déterminer le nombre de bits n du convertisseur.

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 16 sur 27

B.3 Choisir dans la documentation constructeur ci-dessous le CAN correspondant au convertisseur étudié.

Table 1. Pin-Compatible Alternatives by Resolution and Speed⁽¹⁾

Résolution	
O2 + V	50 à 200 ksps
12-bits	ADC122S021
10-bits	ADC102S021
8-bits	ADC082S021

(1) All devices are fully pin and function compatible.

Connection Diagram

Figure 1. VSSOP Package See Package Number DGK0008A

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 17 sur 27

 Partie C: moteur à courant continu et sa commande tous deux appartenant à la direction assistée. (8 points)

La direction assistée du véhicule est réalisée autour d'un moteur à courant continu à aimant permanent, alimenté par un pont en H. Nous vous proposons ici de dimensionner le moteur à mettre en place puis d'étudier le variateur de vitesse du moteur.

C.1 Dimensionnement et choix du moteur

Voici une partie du cahier des charges qui a été proposé aux concepteurs du système Park4U.

Cahier des charges :

Moment du couple mécanique nécessaire sur la colonne de direction :

Tc = 18,4 N·m

Coefficient de réduction : r = 23

Vitesse de rotation nécessaire en sortie du moteur CC :

n = 1450 tr·min⁻¹

Le réducteur étant supposé parfait (sans dissipation d'énergie), la relation entre les moments des couples mécaniques est donnée par $T_u = \frac{T_c}{r}$:

- C.1.1 Étude mécanique du moteur.
 - C.1.1.1 Déterminer le couple utile T_u du moteur à courant continu.

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 18 sur 27

C.1.1.2 Déduire de la question précédente la puissance utile Pu du moteur nécessaire en respectant le cahier des charges.

C.1.1.3 Justifier à l'aide du document ci-dessous, le choix du MOTEUR N°2.

MOTEUR N°1 Caractéristiques électriques et mécaniques		
Tension nominale moteur CC	12 V	
Tension d'utilisation	8-16 V	
Courant nominal	20 A	
Couple nominal	0,90 N·m à 1550 tr·min ⁻¹	
Coefficient de couple	0,0228 N·m·A ⁻¹	
Coefficient de vitesse	6,1.10 ⁻³ V·(tr·min ⁻¹) ⁻¹	
Résistance moteur	0,128Ω à 20°C	
Rendement du moteur	0,62	
Température de fonctionnement	-15° à 60°C	

Coefficient de vitesse	6,1.10 ⁻³ V·(tr·min ⁻¹) ⁻¹
Résistance moteur	0,128Ω à 20°C
Rendement du moteur	0,62
Température de	-15° à 60°C
fonctionnement	-15 a 60 C
MOTEUR N°2 Caractéristique	es électriques et mécaniques
Tension nominale moteur CC	12 V
Tension d'utilisation	10-16 V
Courant nominal	15 A
Couple nominal	0,81 N·m à 1450 tr·min ⁻¹
Coefficient de couple	0,0544 N·m.A ⁻¹
Coefficient de vitesse	7,70.10 ⁻³ V·(tr·min ⁻¹) ⁻¹
Résistance moteur	53 mΩ à 20°C
Rendement du moteur	0,68
Température de fonctionnement	-30°C à 80°C

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 19 sur 27

C.1.2 Respect du cahier des charges.

Les caractéristiques nominales ci-dessous proviennent de la fiche technique du MOTEUR N°2.

- Tension d'alimentation nominale U_N = 12,0 V
- Courant d'induit nominal I_N = 15,0 A
- Résistance interne du moteur R = 53 m Ω
- Rendement nominal du moteur $\eta = 0,680$
- Vitesse de rotation nominale n_N = 1450 tr min⁻¹

C.1.2.1 Indiquer ce que signifie « caractéristiques nominales ».
215-910-6
C.1.2.2 Représenter le schéma du modèle équivalent de l'induit de moteur, puis donner la relation entre U, E, R, et I.
c jets Re
, des "
C.1.2.3 Déduire la valeur de la fém E _N correspondante.

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 20 sur 27

C.1.2.4	Montrer que E peut s'écrire E = k.n, avec n en tr·min⁻¹.
	Weight of Co.
C.1.2.5	Déduire la valeur de k en précisant son unité. La documentation technique vous informe-t-elle sur cette valeur? Si oui, vous préciserez alors le nom donné par le fabriquant à cette constante.
	TOWER COLLE
C.1.2.6	Calculer la puissance absorbée notée P _{aN} .
C.1.2.7	Déduire le rendement du moteur sachant que P _{uN} = 122 W. Contrôler la cohérence du résultat obtenu avec les caractéristiques de la fiche technique.

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 21 sur 27

C.2 Étude du variateur de vitesse.

Le moteur à courant continu étudié précédemment est alimenté par un pont en H. Ce convertisseur permet de régler à la fois la vitesse de rotation du moteur, ainsi que son sens de rotation. L'électronique du système de commande des différents interrupteurs n'est ici ni étudiée ni représentée. Une inductance de lissage est placée en série avec le moteur, l'ensemble étant modélisé par une charge RLE (voir FIGURE 12).

C.2.1 Préciser le type de conversion réalisé par ce pont en H.

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 22 sur 27

C.2.2 On donne:

- Valeur moyenne de la tension u notée <u> positive : rotation du moteur en sens horaire, braquage à droite des roues.
- Valeur moyenne de la tension u notée <u> négative : rotation du moteur en sens antihoraire, braquage à gauche des roues.

Préciser et justifier sans calcul, à l'aide de la tension u représentée FIGURE 13, le sens de rotation du moteur.

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 23 sur 27

C.2.3 Donner le nom de l'appareil permettant de mesurer la valeur moyenne de u, notée <u>, en précisant le mode (AC, DC ou AC+DC).

·O/

- C.3 Représentation de la caractéristique n en fonction de α : $n = f(\alpha)$ FIGURE 14.
 - C.3.1 Calculs préalables.

Donner la valeur de α_d , rapport cyclique de démarrage, ainsi que la valeur de n pour α = 1 sachant que n = 3896· α - 2051 avec n en tr·min⁻¹.

Rapport cyclique α	$\alpha_d =$	α = 1
Vitesse n en tr·min⁻¹	n _d =	n =

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 24 sur 27

C.3.2 Tracer la courbe représentative de la fonction $n = f(\alpha)$ sur le graphe cidessous, avec α compris dans l'intervalle : 0,5 < α < 1.

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 25 sur 27

• Partie D : synthèse. (1 point)

Après avoir détecté la place libre, le conducteur de la voiture enclenche la marche arrière. Le conducteur ne gère plus que le frein et l'accélérateur, alors que le calculateur électronique gère l'orientation des roues et la position du véhicule. En fonction de la distance entre un obstacle et le capteur, nous pourrons savoir s'il y a détection ou non.

Représentation de la zone de détection du capteur C₁:

Véhicule non détecté

Véhicule détecté par le capteur C₄

Afin de simplifier l'étude générale, nous ne prendrons en compte que les capteurs C_1 , C_2 , C_3 , C_4 du véhicule.

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 26 sur 27

Soit la séquence décrite ci-dessous (les valeurs retenues sont en gras).

Capteurs en mode détection	Signe de n	Signe de <u></u>	Valeur de α (rapport cyclique)	Déplacement du véhicule
C ₁ C ₂ C ₃ C ₄ aucun	n = 0	<u>> 0</u>	$\alpha < 0.5$	Ligne droite
	n > 0	<u> = 0</u>	$\alpha = 0.5$	Recule à gauche
	n < 0	<u> < 0</u>	$\alpha > 0.5$	Recule à droite

Choisir parmi les quatre positions, celle qui doit correspondre à la séquence précédente, puis justifier votre choix.

BTS ATI Unité U32 : Sciences physiques	Durée : 2 h	Session 2016
CODE SUJET : 16ATPHYME1	Coefficient : 2	Page 27 sur 27