Задание по курсу «Суперкомпьютерное моделирование и технологии»

Сентябрь 2017

Содержание

C	одержание	1
1	Введение	1
2	Математическая постановка дифференциальной задачи	1
3	Разностная схема решения задачи.	1
4	Метод решения системы линейных алгебраических уравнений.	2
5	Задание практикума.	3
6	Требования к отчету 6.1 IBM Blue Gene/P 6.2 «Ломоносов»	5 7 7
7	Литература.	8

1 Введение

Требуется методом конечных разностей приближенно решить задачу Дирихле для уравнения Пуассона в прямоугольной области. Задание необходимо выполнить на следующих ПВС Московского университета:

- 1. IBM Blue Gene/P,
- 2. «Ломоносов»

2 Математическая постановка дифференциальной задачи

В прямоугольной области

$$\Pi = [A_1, A_2] \times [B_1, B_2]$$

требуется найти дважды гладкую функцию u=u(x,y), удовлетворяющую дифференциальному уравнению

$$-\Delta u = F(x, y), \quad A_1 < x < A_2, B_1 < y < B_2$$
 (1)

и дополнительному условию

$$u(x,y) = \varphi(x,y) \tag{2}$$

во всех граничных точках (x,y) прямоугольника. Оператор Лапласа Δ определен равенством:

 $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$

Функции $F(x,y), \varphi(x,y)$ считаются известными и определяются вариантом задания.

3 Разностная схема решения задачи.

В расчетной области П определяется прямоугольная сетка

$$\bar{\omega}_h = \{(x_i, y_j), i = 0, 1, 2, \dots, N_1, j = 0, 1, 2, \dots, N_2\},\$$

где $A_1 = x_0 < x_1 < x_2 < \ldots < x_{N_1} = A_2$ – разбиение отрезка $[A_1, A_2]$ оси (ox), $B_1 = y_0 < y_1 < y_2 < \ldots < y_{N_2} = B_2$ – разбиение отрезка $[B_1, B_2]$ оси (oy).

Через ω_h обозначим множество внутренних, а через γ_h — множество граничных узлов сетки $\bar{\omega}_h$. Пусть $h_i^{(1)} = x_{i+1} - x_i, \ i = 0, 1, 2, \dots, N_1 - 1, \ h_j^{(2)} = y_{j+1} - y_j, \ j = 0, 1, 2, \dots, N_2 - 1$ — переменный шаг сетки по оси абсцисс и ординат соответственно. Средние шаги сетки определяются равенствами:

$$h_i^{(1)} = 0.5(h_i^{(1)} + h_{i-1}^{(1)}), \ h_i^{(2)} = 0.5(h_i^{(2)} + h_{i-1}^{(2)}).$$

Рассмотрим линейное пространство H функций, заданных на сетке ω_h . Будем считать, что в пространстве H задано скалярное произведение и евклидова норма

$$(u,v) = \sum_{i=1}^{N_1-1} \sum_{j=1}^{N_2-1} h_i^{(1)} h_j^{(2)} u_{ij} v_{ij}, \quad ||u|| = \sqrt{(u,u)},$$
 (3)

где $u_{ij} = u(x_i, y_j), v_{ij} = v(x_i, y_j)$ – любые функции из пространства H.

Для аппроксимации уравнения Пуасона (1) воспользуемся пятиточечным разностным оператором Лапласа, который во внутренних узлах сетки определяется равенством:

$$-\Delta_h p_{ij} = \frac{1}{\hbar_i^{(1)}} \left(\frac{p_{ij} - p_{i-1j}}{h_{i-1}^{(1)}} - \frac{p_{i+1j} - p_{ij}}{h_i^{(1)}} \right) + \frac{1}{\hbar_j^{(2)}} \left(\frac{p_{ij} - p_{ij-1}}{h_{j-1}^{(2)}} - \frac{p_{ij+1} - p_{ij}}{h_j^{(2)}} \right).$$

Здесь предполагается, что функция $p = p(x_i, y_j)$ определена во всех узлах сетки $\bar{\omega}_h$.

Приближенным решением задачи (1), (2) называется функция $p = p(x_i, y_j)$, удовлетворяющая уравнениям

$$-\Delta_h p_{ij} = F(x_i, y_j), \quad (x_i, y_j) \in \omega_h,$$

$$p_{ij} = \varphi(x_i, y_j), \quad (x_i, y_j) \in \gamma_h.$$
 (4)

Эти соотношения представляют собой систему линейных алгебраических уравнений с числом уравнений равным числу неизвестных и определяют единственным образом неизвестные значения p_{ij} . Совокупность уравнений (4) называется разностной схемой для задачи (1), (2).

4 Метод решения системы линейных алгебраических уравнений.

Приближенное решение системы уравнений (4) может быть получено итерационным методом скорейшего спуска. В этом методе начальное приближение

$$p_{ij}^{(0)} = \varphi(x_i, y_j), \quad (x_i, y_j) \in \gamma_h,$$

во внутренних узлах сетки $p_{ij}^{(0)}$ – любые числа. Метод является одношаговым. Итерация $p^{(k+1)}$ вычисляется по итерации $p^{(k)}$ согласно равенствам:

$$p_{ij}^{(k+1)} = p_{ij}^{(k)} - \tau_{k+1} r_{ij}^{(k)},$$

где невязка

$$r_{ij}^{(k)} = -\Delta_h p_{ij}^{(k)} - F(x_i, y_j), \quad (x_i, y_j) \in \omega_h, r_{ij}^{(k)} = 0, \quad (x_i, y_j) \in \gamma_h.$$
(5)

Итерационный параметр

$$\tau_{k+1} = \frac{\left(r^{(k)}, r^{(k)}\right)}{\left(-\Delta_h r^{(k)}, r^{(k)}\right)}.$$

Известно, что с увеличением номера итерации k последовательность сеточных функций $p^{(k)}$ сходится к точному решению p задачи (4) по норме пространства H, то есть

$$||p - p^{(k)}||_H \to 0, \quad k \to +\infty.$$

Существенно большей скоростью сходимости обладает метод сопряженных градиентов. Начальное приближение $p^{(0)}$ и первая итерация $p^{(1)}$ вычисляются так же, как и в методе скорейшего спуска. Последующие итерации осуществляются по формулам:

$$p_{ij}^{(k+1)} = p_{ij}^{(k)} - \tau_{k+1} g_{ij}^{(k)}, \quad k = 1, 2, \dots$$

Здесь

$$\tau_{k+1} = \frac{\left(r^{(k)}, g^{(k)}\right)}{\left(-\Delta_h g^{(k)}, g^{(k)}\right)},$$

вектор

$$g_{ij}^{(k)} = r_{ij}^{(k)} - \alpha_k g_{ij}^{(k-1)}, \quad k = 1, 2, \dots,$$

 $g_{ij}^{(0)} = r_{ij}^{(0)},$

коэффициент

$$\alpha_k = \frac{\left(-\Delta_h r^{(k)}, g^{(k-1)}\right)}{\left(-\Delta_h g^{(k-1)}, g^{(k-1)}\right)}.$$

Вектор невязки $r^{(k)}$ вычисляется согласно равенствам (5). Итерационный процесс останавливается, как только

$$||p^{(n)} - p^{(n-1)}|| < \varepsilon, \tag{6}$$

где ε – заранее выбранное положительное число. Заметим, что в последнем неравенстве вместо евклидовой сеточной нормы можно использовать любую другую норму пространства H, например, максимум-норму:

$$||p|| = \max_{\substack{0 < i < N_1 \\ 0 < j < N_2}} |p(x_i, y_j)|.$$
(7)

5 Задание практикума.

Предлагается следующий набор правых частей и граничных условий для дифференциальной задачи (1), (2):

1. Правая часть и граничное условие

$$F(x,y) = \frac{x^2 + y^2}{(1+xy)^2}, \quad \varphi(x,y) = \ln(1+xy),$$

соответственно, прямоугольник $\Pi = [0, 3] \times [0, 3]$.

2. Правая часть и граничное условие

$$F(x,y) = (x^2 + y^2)\sin(xy), \quad \varphi(x,y) = 1 + \sin(xy),$$

соответственно, прямоугольник $\Pi = [0, 2] \times [0, 2]$.

3. Правая часть и граничное условие

$$F(x,y) = (x^2 + y^2)\sin(xy), \quad \varphi(x,y) = 1 + \sin(xy),$$

соответственно, прямоугольник $\Pi = [-2, 2] \times [-2, 2]$.

4. Правая часть и граничное условие

$$F(x,y)=4(1-2(x+y)^2)\exp(1-(x+y)^2), \quad \varphi(x,y)=\exp(1-(x+y)^2),$$
 соответственно, прямоугольник $\Pi=[0,2]\times[0,2].$

5. Правая часть и граничное условие

$$F(x,y)=4(1-2(x+y)^2)\exp(1-(x+y)^2), \quad \varphi(x,y)=\exp(1-(x+y)^2),$$
 соответственно, прямоугольник $\Pi=[-2,2]\times[-2,2].$

6. Правая часть и граничное условие

$$F(x,y) = 4(2 - 3x^2 - 3y^2), \quad \varphi(x,y) = (1 - x^2)^2 + (1 - y^2)^2,$$

соответственно, прямоугольник $\Pi = [0, 1] \times [0, 1]$.

7. Правая часть и граничное условие

$$F(x,y) = 4(2 - 3x^2 - 3y^2), \quad \varphi(x,y) = (1 - x^2)^2 + (1 - y^2)^2,$$

соответственно, прямоугольник $\Pi = [-1, 1] \times [-1, 1]$.

8. Правая часть и граничное условие

$$F(x,y)=2(x^2+y^2)(1-2x^2y^2)\exp(1-x^2y^2),\quad \varphi(x,y)=\exp(1-x^2y^2),$$
 соответственно, прямоугольник $\Pi=[0,2]\times[0,2].$

9. Правая часть и граничное условие

$$F(x,y)=2(x^2+y^2)(1-2x^2y^2)\exp(1-x^2y^2),\quad \varphi(x,y)=\exp(1-x^2y^2),$$
 соответственно, прямоугольник $\Pi=[-2,2]\times[-2,2].$

10. Правая часть и граничное условие

$$F(x,y) = \frac{x^2 + y^2}{4(4+xy)^{3/2}}, \quad \varphi(x,y) = \sqrt{4+xy},$$

соответственно, прямоугольник $\Pi = [0, 4] \times [0, 4]$.

11. Правая часть и граничное условие

$$F(x,y) = \frac{8(1-x^2-y^2)}{(1+x^2+y^2)^3}, \quad \varphi(x,y) = \frac{2}{1+x^2+y^2},$$

соответственно, прямоугольник $\Pi = [0, 2] \times [0, 2]$.

12. Правая часть и граничное условие

$$F(x,y) = \frac{8(1-x^2-y^2)}{(1+x^2+y^2)^3}, \quad \varphi(x,y) = \frac{2}{1+x^2+y^2},$$

соответственно, прямоугольник $\Pi = [-2, 2] \times [-2, 2]$.

Для аппроксимации дифференциальной задачи предлагается использовать равномерную прямоугольную сетку:

$$x_i = A_2(i/N_1) + A_1(1 - i/N_1), \ i = 0, 1, 2, \dots, N_1, y_i = B_2(j/N_2) + B_1(1 - j/N_2), \ j = 0, 1, 2, \dots, N_2,$$
(8)

либо неравномерную сетку, определенную равенствами:

$$x_i = A_2 f(i/N_1) + A_1 (1 - f(i/N_1)), \ i = 0, 1, 2, \dots, N_1, y_j = B_2 f(j/N_2) + B_1 (1 - f(j/N_2)), \ j = 0, 1, 2, \dots, N_2.$$

$$(9)$$

Здесь

$$f(t) = \frac{(1+t)^q - 1}{2^q - 1}, \quad 0 \leqslant t \leqslant 1,$$

где q>0 – фиксированное число. Конкретный вид сетки определяется вариантом задания.

Приближенное решение разностной схемы (4) следует вычислять методом сопряженных градиентов. Для остановки итерационного процесса предлагается использовать условие (6), положив $\varepsilon = 10^{-4}$. Векторная норма может быть определена равенствами (3) либо соотношением (7) в зависимости от варианта задания.

Для каждого из перечисленных выше наборов функций F(x,y), $\varphi(x,y)$ требуется – подобрать точное решение задачи Дирихле,

– методом сопряженных градиентов построить приближенное решение на сетке с числом узлов $N_1=N_2=1000,$ определить погрешность решения

$$\psi = ||u(x_i, y_j) - p_{ij}||,$$

– методом сопряженных градиентов построить приближенное решение на сетке с числом узлов $N_1=N_2=2000$ и вновь определить погрешность решения.

Расчеты необходимо проводить на многопроцессорных вычислительных комплексах IBM Blue Gene/P и «Ломоносов», используя различное количество вычислительных узлов, указанное в требованиях к отчету. Для каждого расчета определить его продолжительность и ускорение по сравнению с аналогичным расчетом на одном вычислительном узле. При распараллеливании программы необходимо использовать двумерное разбиение области на подобласти прямоугольной формы, в каждой из которых отношение θ количества узлов по ширине и длине должно удовлетворять неравенствам $0.5 \le \theta \le 2$.

Таблица 1: Варианты заданий

таолица т. Барианты задании						
Вариант	$F(x,y), \varphi(x,y)$	Сетка	Норма			
1	набор 1	равномерная	евклидова			
2	набор 1	равномерная	максимум-норма			
3	набор 1	неравномерная $(q=3/2)$	евклидова			
4	набор 1	неравномерная $(q = 3/2)$	максимум-норма			
5	набор 2	равномерная	евклидова			
6	набор 2	равномерная	максимум-норма			
7	набор 2	неравномерная $(q=2/3)$	евклидова			
8	набор 2	неравномерная $(q=2/3)$	максимум-норма			
9	набор 3	равномерная	евклидова			
10	набор 3	равномерная	максимум-норма			
11	набор 4	равномерная	евклидова			
12	набор 4	равномерная	максимум-норма			
13	набор 4	неравномерная $(q=3/2)$	евклидова			
14	набор 4	неравномерная $(q = 3/2)$	максимум-норма			
15	набор 5	равномерная	евклидова			
16	набор 5	равномерная	максимум-норма			
17	набор 6	равномерная	евклидова			
18	набор 6	равномерная	максимум-норма			
19	набор 6	неравномерная $(q = 3/2)$	евклидова			
20	набор 6	неравномерная $(q = 3/2)$	максимум-норма			
21	набор 7	равномерная	евклидова			
22	набор 7	равномерная	максимум-норма			
23	набор 8	равномерная	евклидова			
24	набор 8	равномерная	максимум-норма			
25	набор 8	неравномерная $(q = 3/2)$	евклидова			
26	набор 8	неравномерная $(q = 3/2)$	максимум-норма			
27	набор 9	равномерная	евклидова			
28	набор 9	равномерная	максимум-норма			
29	набор 10	равномерная	евклидова			
30	набор 10	равномерная	максимум-норма			
31	набор 10	неравномерная $(q=3/2)$	евклидова			
32	набор 10	неравномерная $(q = 3/2)$	максимум-норма			
33	набор 11	равномерная	евклидова			
34	набор 11	равномерная	максимум-норма			
35	набор 11	неравномерная $(q=3/2)$	евклидова			
36	набор 11	неравномерная $(q = 3/2)$	максимум-норма			
37	набор 12	равномерная	евклидова			
38	набор 12	равномерная	максимум-норма			

6 Требования к отчету

Для того, чтобы успешно сдать задание, необходимо

- уверенно ориентироваться в программном коде;
- понимать семантику всех используемых в коде функций МРІ и директив ОрепМР;
- предоставить отчет с результатами исследования параллельных характеристик программы;

• предоставить программный код.

Исследование параллельных характеристик MPI-программы необходимо провести на всех ПВС. На ПВС Blue Gene/P также необходимо провести исследование параллельных характеристик гибридной программы MPI/OpenMP и сравнить полученные результаты с программой, не используещей директивы OpenMP.

Отчет о выполнении задания должен содержать

- математическую постановку задачи;
- численные метод ее решения;
- краткое описание проделанной работы по созданию гибридной реализации MPI/ OpenMP;
- результаты расчетов для разных размеров задач и на разном числе процессоров (заносятся в таблицу см. ниже).
- рисунок точного решения, а также приближенного решения, построенного на сетке 2000×2000 узлов.

6.1 IBM Blue Gene/P

Расчеты должны быть проведены для следующего числа процессоров: 128, 256 и 512. Количество узлов: 1000×1000 и 2000×2000 по осям абсцисс и ординат соответственно. MPI-версию следует запускать в режиме SMP, гибридную версию MPI/OpenMP — в режиме SMP, но использовать при этом не четыре, а только три процессорных ядра.

Таблица 2: Таблица с результатами расчетов на ПВС IBM Blue Gene/P

Число процессоров N_p	Число точек сетки N^3	Время решения Т	Ускорение <i>S</i>
128	1000×1000		
256	1000×1000		
512	1000×1000		
128	2000×2000		
256	2000×2000		
512	2000×2000		

Заполняется два экземпляра таблицы: один – для MPI программы, другой – для гибридной MPI/OpenMP программы.

6.2 «Ломоносов»

Расчеты должны быть проведены для следующего числа процессоров: 8, 16, 32, 64 и 128 на сетках с числом узлов 1000×1000 и 2000×2000 .

Таблица 3: Таблица с результатами расчетов на ПВС «Ломоносов»

Число процессоров N_p	Число точек сетки N^3	Время решения T	Ускорение S
8	1000×1000		
16	1000×1000		
32	1000×1000		
128	1000×1000		
8	2000×2000		
16	2000×2000		
32	2000×2000		
128	2000×2000		

7 Литература.

- 1. А.Н. Тихонов, А.А. Самарский. Уравнения математической физики. М. Изд. "Наука". 1977.
- 2. А.Н. Самарский, А.В. Гулин. Численные методы математической физики. М. Изд. "Научный мир". 2003.
- 3. Г.И. Марчук. Методы вычислительной математики. М. Изд. "Наука". 1989.
- 4. IBM BlueGene/P http://hpc.cmc.msu.ru
- 5. Суперкомпьютер "Ломоносов— http://parallel.ru/cluster/superinfo