Question Number	Answer		Mark
18ai	Use of $E_k = \frac{1}{2} mv^2$ with $m = 9.11 \times 10^{-31}$ kg Conversion of J to eV Energy = 0.35 eV	(1) (1) (1)	3
	Example of calculation $E_k = \frac{1}{2} \times 9.11 \times 10^{-31} \text{ kg} \times (3.51 \times 10^5 \text{ m s}^{-1})^2 = 5.60 \times 10^{-20} \text{ J}$ $E_k = \frac{5.60 \times 10^{-20} \text{ J}}{1.6 \times 10^{-19} \text{ J eV}^{-1}} = 0.35 \text{ eV}$		
18aii	Use of $v = f\lambda$ with $v = 3.00 \times 10^8$ m s ⁻¹ Use of $E = hf$ Use of $hf = \Phi + \frac{1}{2} mv^2_{\text{max}}$ $\Phi = 5.86 \times 10^{-19}$ (J), so the metal is magnesium	(1) (1) (1) (1)	4
	Example of calculation $E = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \text{ J s} \times 3.00 \times 10^8 \text{ m s}^{-1}}{310 \times 10^{-9} \text{ m}} = 6.42 \times 10^{-19} \text{ J}$ $\Phi = hf - \frac{1}{2} mv^2_{\text{max}} = 6.42 \times 10^{-19} \text{ J} - 5.60 \times 10^{-20} \text{ J} = 5.86 \times 10^{-19} \text{ J}$ $\Phi = 5.86 \times 10^{-19} \text{ J}$		
18b	Each photon only interacts with one electron	(1)	
	Electrons absorb energy from photons Or photons transfer energy to electrons	(1)	
	Minimum energy required for an electron to be emitted	(1)	
	Higher (photon) energy related to higher frequency(, so frequency of radiation has to be above a particular value)	(1)	4
	(MP3 – allow correct reference to work function) (MP4 – allow reference to E = hf)		
18c	Any two from:		
	Intensity is related to the number of photons (per second)	(1)	
	Intensity is related to the number of (photo)electrons (per second)	(1)	
	Intensity does not affect the energy (of the photons/photoelectrons)	(1)	2
	Total for question 18		13