KTTX-2

CÂU 1. Xét xem dãy $u_n = \frac{2n+3}{5}$ có phải là cấp số cộng hay không? Nếu phải hãy xác định công sai.

$$(\mathbf{A}) d = \emptyset.$$

$$\mathbf{c}$$
 $d = -3$.

$$\bigcirc$$
 $d=1.$

CÂU 2. Cho dãy số (u_n) có $u_n = -n^2 + n + 1$. Khẳng định nào sau đây là đúng?

(A) Là một dãy số tăng.

(B) Là một dãy số bị chặn.

 $u_{n-1} - u_n = 1.$

D Là một dãy số giảm.

CÂU 3. Cho các cấp số nhân với $u_1 = \frac{-1}{2}$; $u_7 = -32$. Công bội của cấp số nhân là

$$\bigcirc$$
 $\pm 2.$

$$\bigcirc$$
 ± 1

CÂU 4. Cho cấp số nhân có $\begin{cases} u_4-u_2=54\\ u_5-u_3=108 \end{cases}$. Giá trị u_1 và q của cấp số nhân là

A
$$u_1 = 9 \text{ và } q = 2.$$

B
$$u_1 = 9 \text{ và } q = -2.$$

$$\mathbf{C}$$
 $u_1 = -9 \text{ và } q = 2.$

$$u_1 = -9 \text{ và } q = -2.$$

CÂU 5. Cho dãy số (u_n) với $u_n = 3^{\frac{n}{2}+1}$. Tìm công bội của dãy số (u_n)

(A)
$$q = \frac{3}{2}$$
.

$$\bigcirc p q = 3$$

CÂU 6. Cho cấp số cộng có $u_1 = \frac{1}{4}$, $d = -\frac{1}{4}$. Chọn khẳng định đúng trong các khẳng định sau đây?

$$\bigcirc S_5 = \frac{5}{4}.$$

B
$$S_5 = \frac{4}{5}$$
.

B
$$S_5 = \frac{4}{5}$$
. **C** $S_5 = -\frac{5}{4}$. **D** $S_5 = -\frac{4}{5}$.

CÂU 7. Tìm x, y biết các số x+5y, 5x+2y, 8x+y lập thành cấp số cộng và các số $(y-1)^2$, xy-1, $(x+1)^2$ lập thành cấp số nhân.

$$(\mathbf{A})(x;y) \in \left\{ \left(-\sqrt{3}; \frac{3}{2}\right); \left(\sqrt{3}; \frac{\sqrt{3}}{2}\right) \right\}.$$

$$(\mathbf{B})(x;y) \in \left\{ \left(\sqrt{3}; -\frac{\sqrt{3}}{2}\right); \left(-\sqrt{3}; -\frac{\sqrt{3}}{2}\right) \right\}.$$

$$(x;y) \in \left\{ \left(\sqrt{3}; \frac{\sqrt{3}}{2}\right); \left(\sqrt{3}; \frac{\sqrt{3}}{2}\right) \right\}.$$

$$(x;y) \in \left\{ \left(-\sqrt{3}; -\frac{\sqrt{3}}{2}\right); \left(\sqrt{3}; \frac{\sqrt{3}}{2}\right) \right\}.$$

CAU 8. Chu vi của một đa giác là 213 cm, số đo các cạnh của nó lập thành một cấp số cộng với công sai d=7 cm. Cạnh lớn nhất bằng 53 cm. Số cạnh của đa giác đó là

- (A) 4.

CÂU 9. Phát biểu nào dưới đây về dãy số (a_n) được cho bởi $a_n = 2^n + n$ là đúng?

- (A) Dãy số (a_n) là dãy số giảm.
- (**B**) Dãy số (a_n) là dãy số tăng.
- (**C**) Dãy số (a_n) là dãy không tăng.
- (\mathbf{D}) Dãy số (a_n) là dãy không tăng và không giảm.

CÂU 10. Cho dãy số (u_n) với $u_n = 3^{\frac{n}{2}+1}$. Số 19683 là số hạng thứ mấy của dãy số.

- **(C)** 19.

CÂU 11. Cho dãy số (u_n) có $u_n = (-1)^{n+1} \cdot \cos \frac{2\pi}{n}$. Khi đó u_{12} bằng.

- **B** $\frac{\sqrt{3}}{2}$. **C** $-\frac{1}{2}$.

CÂU 12. Tổng 10 số hạng đầu của một cấp số nhân có $u_1=4, u_{10}=2048$ là

- **B** $S_{10} = 4092$.
- (**c**) $S_{10} = 12276$.
- $(\mathbf{D}) S_{10} = 6138.$

ĐIÊM:

"It's not how much time you have, it's how you use it."

QUICK NOTE

٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
•	٠	٠	•	٠	٠	٠	٠	٠		٠		٠		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠							٠

٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
																																	÷
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

•	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	٠	٠	•	•	•	•	•	•	•

QUICK NOTE	CÂU 13. Dãy số (u_n)) là cấp số cộng thỏa m	$\tilde{a}n \begin{cases} u_2 + u_5 - u_3 = 10 \\ u_1 + u_6 = 18 \end{cases}$) . Số hạng đầu và công
	sai của cấp số cộng là \mathbf{A} $u_1 = 3, d = 2.$	B $u_1 = 4, d = 2.$	\mathbf{c} $u_1 = 2, d = 4.$	\bigcirc $u_1 = 1, d = 2.$
	CÂU 14. Cho $S = 3$ nguyên dương? A $S = 3 (2^n - 1)$. C $S = 3 (2^{n+1} - 1)$	$+3 \cdot 2 + 3 \cdot 2^2 + \ldots + 3$	\cdot 2^n . Khẳng định nào s $ \mathbf{B} \ S = 3 \left(2^{n+1} + 1 \right) $ $ \mathbf{D} \ S = 3 \left(2^{n-1} - 1 \right) $).
	CÂU 15. Cho CSC (\mathbf{A}) $u_n = 20n - 19$.	u_n) có $S_n = 3n^2 - 2n$. (B) $u_n = 6n - 5$.	Công thức tổng quát co	ủa CSC trên là
		cộng (u_n) thỏa mãn $\begin{cases} u_2 \\ u_3 \end{cases}$	_	
		B 242000.		_
	CÂU 17. Cho cấp số	cộng (u_n) thỏa mãn $\begin{cases} a \\ b \end{cases}$ $d = 5.$	$u_2 - u_3 + u_5 = 10 \ u_4 + u_6 = 26$. Xác	c định công sai.
			$\bigcirc d = 6.$	$\bigcirc \hspace{1cm}) \hspace{.1cm} d = 4.$
		ó số hạng tổng quát u_n		
			$ c d = \frac{1}{2}.$	$\bigcirc \hspace{1cm} D \hspace{1cm} d = 2.$
	CÂU 19. Xét tính tă	ng, giảm và bị chặn củ	a dãy số (u_n) biết u_n	$=\frac{2^n}{n!}$, ta thu được kết
	quả			n:
	A Dãy số tăng, bị			
	B Dãy số tăng, bịDãy số giảm, bị			
	\sim	īng, không giảm, không	· bi chăn	
				2
	15	(u_n) có $u_1+u_2+\ldots+$	$u_n = \frac{1}{2}$. Sô h	ạng tổng quát của (u_n)
	$ \begin{array}{c} \text{là} \\ \bullet \\ u_{m} = 5 - 3n n \end{array} $	> 1	$\mathbf{B} u_m = 5 + 3n \ n$	> 1
	(A) $u_n = 5 - 3n, n$ (C) $u_n = 2 + 5n, n$	≥ 1.	B $u_n = 5 + 3n, n \ge 0$ D $u_n = 2 - n, n \ge 0$	1.
	CÂU 21. Độ dài ba	cạnh của một tam giác	vuông lập thành một	
	trung bình bằng 6 thì (A) 7,5.	công sai của cấp số cộn (\mathbf{B}) 4,5.	(\mathbf{C}) 0,5.	(D) 1,5.
			,	1,0.
	A Bị chặn.	chặn của dãy số $u_n = 4$ (B) Không bị chặn.		D Bị chặn dưới.
		cộng (u_n) có tổng 5 số		
	A 4.		C 3.	(\mathbf{D}) 5.
	•	cấp số nhân gồm các s		giữa số hạng thứ 5 và
	thứ 4 là 576 và hiệu số	\hat{g} giữa số hạng thứ \hat{g} và s		
	tiên của các cấp số nh (A) 1061.	ân này (B) 1023.	© 1024.	D 768.
		$\overline{}$	\circ	
	CAU 25. Cho cap so (u_n) ?	nnan (u_n) voi $u_1 = -$	$-1; q = \frac{1}{10}.$ So $\frac{10^{103}}{10^{103}}$	số hạng thứ mấy của
	(a_n) : Số hạng thứ 10	5.	B Không là số hạn	g của cấp số đã cho.
	C Số hạng thứ 10	3.	Số hạng thứ 104	
		$\hat{\text{nen }} \frac{1}{10^{103}} = -1 \cdot \left(-\frac{1}{10} \right)$		$_{\overline{04}} \Rightarrow n = 104.$
	CÂU 26. Cho cấp số	nhân $\frac{-1}{5}$; a ; $\frac{-1}{125}$. Giá t	rị của a là	
		nhân $\frac{-1}{5}$; a ; $\frac{-1}{125}$. Giá t $ \textbf{ (B)} \ a = \pm \frac{1}{25}.$		$\bigcirc \hspace{1cm} \mathbf{D} \hspace{.1cm} a = \pm 5.$

QUICK NOTE

CÂU 27. Xét tính tăng, giảm của dãy số $\begin{cases} u_1=1\\ u_{n+1}=\sqrt[3]{u_n^3+1}, n\geq 1 \end{cases}$. Ta thu được kết quả

(A) Dãy số tăng.

- (C) Dãy số không tăng, không giảm.
- (**D**) Dãy số khi tăng, khi giảm.

CÂU 28. Cho cấp số cộng (u_n) có $u_n = 2n + 3$. Biết $S_n = 320$, giá trị của n là

- (A) n = 16 hoặc n = -20.
- **(B)** n = 15.

(**c**) n = 20.

 $(\mathbf{D}) n = 16.$

CÂU 29. Cho một cấp số nhân biết $u_1 = 3$, q = 2. Tổng của 10 số hạng đầu tiên của cấp

- (A) $3 \cdot (1-2^9)$.
- **B**) $3 \cdot (1 2^{10})$. **C**) $-3 \cdot (2^9 1)$.

CÂU 30. Tổng $S=4\cdot 5^{100}\cdot \left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+\cdot+\frac{1}{5^{100}}\right)+1$ có kết quả bằng

- \bigcirc 5¹⁰⁰ 1.

CÂU 31. Cho cấp số nhân (u_n) có $u_1 = 24$ và $\frac{u_4}{u_{11}} = 16384$. Số hạng u_{17} là

CÂU 32. Trong các dãy số dưới đây, dãy số nào là cấp số cộng?

- (A) Dãy số (a_n) với $a_n = 3^n, \forall n \in \mathbb{N}^*.$
- **(B)** Dãy số (b_n) với $b_1 = 1$, $b_{n+1} = 2b_n + 1$, $\forall n \in \mathbb{N}^*$.
- (\mathbf{C}) Dãy số (c_n) với $c_n = (2n+1)^2 4n^2, \forall n \in \mathbb{N}^*.$
- \bigcirc Dãy số (d_n) với $d_1=1,\ d_{n+1}=\frac{2020}{d_{n+1}},\ \forall n\in\mathbb{N}^*.$

CÂU 33. Trong các dãy số sau dãy nào bị chặn trên \mathbf{A} $u_n = 3n^2 + 1$. \mathbf{B} $u_n = \frac{n+2}{n+1}$. \mathbf{C} $u_n = \frac{n+2}{n+1}$

- \mathbf{C} $u_n = (-1)^n n^2$. \mathbf{D} $u_n = 3n + 2$.

CÂU 34. Cho cấp số cộng (u_n) thỏa mãn $\begin{cases} u_5 + 3u_3 - u_2 = -21 \\ 3u_7 - 2u_4 = -34 \end{cases}$. Giá trị của biểu thức

- $S = u_4 + u_5 + \dots + u_{30}$ là
 - (A) -1242.
- (\mathbf{C}) -1276.

CÂU 35. Cho cấp số nhân (u_n) có các số hạng khác không, tổng các giá trị u_1 thỏa mãn $(u_1 + u_2 + u_3 + u_4 = 15)$ $u_1^2 + u_2^2 + u_3^2 + u_4^2 = 85.$

- **B** 9.
- **(C)** 6.
- **(D)** 10.

CÂU 36. Cho cấp số cộng $u_n = 5n - 2$. Biết $S_n = 16040$, số số hạng của cấp số cộng là

CÂU 37. Tứ giác ABCD có số đo các góc lập thành một cấp số nhân theo thứ tự A, B, $C,\,D.$ Biết rằng số đo góc C gấp bốn lần số đo góc A. Số đo góc A của tứ giác đó bằng

- **(B)** 48°.
- **(C)** 144°.

CÂU 39. Cho cấp số cộng (u_n) thỏa mãn $\begin{cases} u_2 - u_3 + u_5 = 10 \\ u_4 + u_6 = 26 \end{cases}$. Tính tổng

$$S = u_5 + u_7 + \ldots + u_{2011}.$$

- (A) S = 3028123.
- **(B)** S = 3021233.
- $(\mathbf{C}) S = 3028057.$
- (**D**) S = 3028332.

CÁU 40. Ba cạnh của một tam giác vuông có độ dài là các số nguyên dương lập thành một CSC. Một cạnh có thể có độ dài bằng

- (A) 22.
- **(B)** 58.
- (C) 81.
- (**D**) 91.

KTTX-2

CÂU 1. Xét xem dãy $u_n = \frac{2n+3}{5}$ có phải là cấp số cộng hay không? Nếu phải hãy xác định công sai.

$$\bigcirc$$
 $d=1.$

🗩 Lời giải.

 $Ta có u_{n+1} - u_n = \frac{2}{5}.$

Dãy (u_n) là cấp số cộng có công sai $d = \frac{2}{5}$.

Chọn đáp án (B)

CÂU 2. Cho dãy số (u_n) có $u_n = -n^2 + n + 1$. Khẳng định nào sau đây là đúng?

(A) Là một dãy số tăng.

B Là một dãy số bị chặn. **C**
$$u_{n-1} - u_n = 1$$
.

(D) Là một dãy số giảm.

Dòi giải.

Ta có

$$u_{n+1} - u_n = \left[-(n+1)^2 + n + 1 + 1 \right] - \left[-n^2 + n + 1 \right]$$
$$= -n^2 - 2n - 1 + n + 2 + n^2 - n - 1 = -2n < 0, \forall n > 1.$$

Do đó (u_n) là một dãy giảm.

Chọn đáp án (D)

CÂU 3. Cho các cấp số nhân với $u_1 = \frac{-1}{2}; u_7 = -32$. Công bội của cấp số nhân là

$$(\mathbf{B}) \pm 4.$$

$$\bigcirc$$
 ±2.

$$\bigcirc$$
 ±1.

🗭 Lời giải.

Ta có $u_7 = u_1 q^6 \Rightarrow -32 = -\frac{1}{2} q^6 \Rightarrow q = \pm 2.$

Chọn đáp án (C)

CÂU 4. Cho cấp số nhân có $\begin{cases} u_4 - u_2 = 54 \\ u_5 - u_3 = 108 \end{cases}$. Giá trị u_1 và q của cấp số nhân là

A
$$u_1 = 9 \text{ và } q = 2.$$

B
$$u_1 = 9 \text{ và } q = -2.$$

$$\mathbf{C}$$
 $u_1 = -9 \text{ và } q = 2$

$$\mathbf{D} u_1 = -9 \text{ và } q = -2.$$

🗩 Lời giải.

Ta có

$$\begin{cases} u_4 - u_2 = 54 \\ u_5 - u_3 = 108 \end{cases} \Leftrightarrow \begin{cases} u_1 q^3 - u_1 q = 54 \\ u_1 q^4 - u_1 q^2 = 108. \end{cases}$$

Ta thấy $u_1q^3 - u_1q \neq 0$ nên chia phương trình (2) cho phương trình (1) ta được q = 2.

Thay q=2 vào phương trình (1) ta tìm được $u_1=9$.

Chọn đáp án (A)

CÂU 5. Cho dãy số (u_n) với $u_n = 3^{\frac{n}{2}+1}$. Tìm công bội của dãy số (u_n) .

$$q = \frac{1}{2}$$
.

❷ Lời giải

Ta có $\frac{u_{n+1}}{u_n} = \frac{3^{\frac{n+1}{2}+1}}{\frac{n}{3^{\frac{n+1}{2}+1}}} = \sqrt{3}, \forall n \in \mathbb{N}^*$. Suy ra dãy số là cấp số nhân với $u_1 = 3\sqrt{3}, q = \sqrt{3}$.

Chọn đáp án (B)

CÂU 6. Cho cấp số cộng có $u_1 = \frac{1}{4}, d = -\frac{1}{4}$. Chọn khẳng định đúng trong các khẳng định sau đây?

(A) $S_5 = \frac{5}{4}$.
(B) $S_5 = \frac{4}{5}$.
(C) $S_5 = -\frac{5}{4}$.
(D) S_5

A
$$S_5 = \frac{5}{4}$$
.

B
$$S_5 = \frac{4}{5}$$
.

$$\bigcirc S_5 = -\frac{5}{4}.$$

$$\bigcirc S_5 = -\frac{4}{5}.$$

🗩 Lời giải.

Theo giả thiết $S_5 = 5u_1 + 10d = 5 \cdot \frac{1}{4} + 10 \cdot \left(-\frac{1}{4}\right) = -\frac{5}{4}$

Chon đáp án (C)

CÂU 7. Tìm x, y biết các số x + 5y, 5x + 2y, 8x + y lập thành cấp số cộng và các số $(y - 1)^2, xy - 1, (x + 1)^2$ lập thành

$$(\mathbf{A}) (x; y) \in \left\{ \left(-\sqrt{3}; \frac{3}{2} \right); \left(\sqrt{3}; \frac{\sqrt{3}}{2} \right) \right\}.$$

$$(\mathbf{B}) (x;y) \in \left\{ \left(\sqrt{3}; -\frac{\sqrt{3}}{2} \right); \left(-\sqrt{3}; -\frac{\sqrt{3}}{2} \right) \right\}.$$

 $(\mathbf{D}) \left(x;y \right) \in \left\{ \left(-\sqrt{3}; -\frac{\sqrt{3}}{2} \right); \left(\sqrt{3}; \frac{\sqrt{3}}{2} \right) \right\}.$

🗩 Lời giải.

Ta có hệ $\begin{cases} x + 5y + 8x + y = 2(5x + 2y) \\ (x+1)^2(y-1)^2 = (xy-1)^2. \end{cases}$

Giải hệ này ta tìm được

$$(x;y) \in \left\{ \left(-\sqrt{3}; -\frac{\sqrt{3}}{2}\right); \left(\sqrt{3}; \frac{\sqrt{3}}{2}\right) \right\}.$$

Chọn đáp án \bigcirc

CÂU 8. Chu vi của một đa giác là 213 cm, số đo các cạnh của nó lập thành một cấp số cộng với công sai d=7 cm. Cạnh lớn nhất bằng 53 cm. Số cạnh của đa giác đó là

(A) 4.

(B) 5.

c 6.

D 7.

D Lời giải.

Gọi số đo các cạnh của đa giác lần lượt là $u_1, u_2, ..., u_n$ với $n \geq 3, n \in \mathbb{N}$. Ta có

$$\begin{cases} S_n = 213 \\ u_n = 53 \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{n}{2} (u_1 + 53) = 213 \\ u_1 + 7(n - 1) = 53 \end{cases}$$

$$\Leftrightarrow \begin{cases} nu_1 + 53n = 426 \\ u_1 + 7n = 60 \end{cases}$$

$$\Leftrightarrow \begin{cases} n(60 - 7n) + 53n = 426 \\ u_1 = 60 - 7n \end{cases}$$

$$\Leftrightarrow \begin{cases} -7n^2 + 113n - 426 = 0 \\ u_1 = 60 - 7n \end{cases}$$

$$\Leftrightarrow \begin{cases} n = 6 \text{ (nhận)} \\ n = \frac{71}{7} \text{ (loại)} \\ u_1 = 60 - 7n \end{cases}$$

$$\Leftrightarrow \begin{cases} n = 6 \\ u_1 = 18. \end{cases}$$

Vậy số cạnh của đa giác là 6.

Chọn đáp án C

CÂU 9. Phát biểu nào dưới đây về dãy số (a_n) được cho bởi $a_n = 2^n + n$ là đúng?

lack A Dãy số (a_n) là dãy số giảm.

lacksquare Dãy số (a_n) là dãy số tăng.

 \bullet Dãy số (a_n) là dãy không tăng.

 \triangleright Dãy số (a_n) là dãy không tăng và không giảm.

D Lời giải.

Ta có $a_{n+1} - a_n = 2^{n+1} + n + 1 - 2^n - n = 2^n + 1 > 0, \forall n \in \mathbb{N}^*.$

Suy ra dãy số (a_n) là dãy số tăng.

Chọn đáp án B

CÂU 10. Cho dãy số (u_n) với $u_n = 3^{\frac{n}{2}+1}$. Số 19683 là số hạng thứ mấy của dãy số.

A 15.

B 16.

C 19.

D 17.

p Lời giải.

Ta có $u_n = 19683 \Leftrightarrow 3^{\frac{n}{2}+1} = 3^9 \Leftrightarrow \frac{n}{2} + 1 = 9 \Leftrightarrow n = 16.$

Vậy số 19683 là số hạng thứ 16 của cấp số.

Chọn đáp án (B)

- **CÂU 11.** Cho dãy số (u_n) có $u_n = (-1)^{n+1} \cdot \cos \frac{2\pi}{n}$. Khi đó u_{12} bằng.
 - \bigcirc $\frac{1}{2}$.

 \bigcirc $\frac{\sqrt{3}}{2}$

(c) $-\frac{1}{2}$.

 \bigcirc $-\frac{\sqrt{3}}{2}$

🗩 Lời giải

Ta có $u_{12} = (-1)^{12+1} \cos \frac{2\pi}{12} = -\frac{\sqrt{3}}{2}$

Chọn đáp án (D)

CÂU 12. Tổng 10 số hạng đầu của một cấp số nhân có $u_1=4, u_{10}=2048$ là

B)
$$S_{10} = 4092$$
.

$$(\mathbf{C}) S_{10} = 12276$$

$$\bigcirc$$
 $S_{10} = 6138.$

🗩 Lời giải.

Ta có $u_{10}=u_1\cdot q^9 \Rightarrow q=2$. Do đó $S_{10}=u_1\cdot \frac{q^{10}-1}{q-1}=4092$.

Chọn đáp án (C)

CÂU 13. Dãy số (u_n) là cấp số cộng thỏa mãn $\begin{cases} u_2 + u_5 - u_3 = 10 \\ u_1 + u_6 = 18 \end{cases}$. Số hạng đầu và công sai của cấp số cộng là $u_1 = 3, d = 2.$ **(B)** $u_1 = 4, d = 2.$ **(C)** $u_1 = 2, d = 4.$ **(D)** $u_1 = 1, d = 2.$

$$\mathbf{A}$$
 $u_1 = 3, d = 2$

B)
$$u_1 = 4, d = 2.$$

$$\mathbf{C}$$
 $u_1 = 2, d = 4.$

$$(\mathbf{D}) u_1 = 1, d = 2$$

Dòi giải.

 $\text{Ap dung } u_n = u_1 + (n-1)d, \text{ ta co}$

$$\begin{cases} u_2 + u_5 - u_3 = 10 \\ u_1 + u_6 = 18 \end{cases} \Leftrightarrow \begin{cases} u_1 + 3d = 10 \\ 2u_1 + 5d = 18 \end{cases} \Leftrightarrow \begin{cases} u_1 = 4 \\ d = 2. \end{cases}$$

Vây $u_1 = 4, d = 2.$ Chọn đáp án (B)

CÂU 14. Cho $S = 3 + 3 \cdot 2 + 3 \cdot 2^2 + \ldots + 3 \cdot 2^n$. Khẳng định nào sau đây đúng với mọi n nguyên dương?

$$(A)$$
 $S = 3(2^n - 1).$

B
$$S = 3(2^{n+1} + 1)$$
. **C** $S = 3(2^{n+1} - 1)$.

$$S = 3(2^{n+1} - 1).$$

$$\bigcirc S = 3(2^{n-1} - 1).$$

🗩 Lời giải.

Ta có 1, 2, $2^2, \ldots, 2^n$ là cấp số nhân với $u_1 = 1, q = 2$ nên

$$1 + 2 + 2^2 + \ldots + 2^n = \frac{1 - 2^{n+1}}{1 - 2} = 2^{n+1} - 1.$$

Vây $S = 3(1 + 2 + 2^2 + ... + 2^n) = 3(2^{n+1} - 1).$

Chọn đáp án (C)

CÂU 15. Cho CSC (u_n) có $S_n = 3n^2 - 2n$. Công thức tổng quát của CSC trên là

$$\mathbf{A} u_n = 20n - 19.$$

Lời giải.

Gọi d là công sai của CSC. Ta có

$$S_n = 3n^2 - 2n \Leftrightarrow \frac{n}{2}[2u_1 + (n-1)d] = 3n^2 - 2n \Leftrightarrow 2u_1 - d + nd = 6n - 4n$$

Do đó

$$\begin{cases} 2u_1 - d = -4 \\ d = 6 \end{cases} \Leftrightarrow \begin{cases} u_1 = 1 \\ d = 6. \end{cases}$$

Vậy số hạng tổng quát của CSC là $u_n = u_1 + (n-1)d = 1 + 6(n-1) = 6n - 5, \forall n \ge 1.$

Chọn đáp án (B)

CÂU 16. Cho cấp số cộng (u_n) thỏa mãn $\begin{cases} u_2+u_5=42\\ u_3+u_{10}=66 \end{cases}$. Tổng của 346 số hạng đầu là

(A) 242546.

(**D**) 240000.

🗩 Lời giải.

Theo đề ta có

$$\begin{cases} u_2 + u_5 = 42 \\ u_3 + u_{10} = 66 \end{cases} \Leftrightarrow \begin{cases} 2u_1 + 5d = 42 \\ 2u_1 + 11d = 66 \end{cases} \Leftrightarrow \begin{cases} u_1 = 11 \\ d = 4 \end{cases} \Rightarrow S_{346} = \frac{346}{2} \left(2 \cdot 11 + 345 \cdot 4 \right) = 242546.$$

Chọn đáp án (A)

CÂU 17. Cho cấp số cộng (u_n) thỏa mãn $\begin{cases} u_2 - u_3 + u_5 = 10 \\ u_4 + u_6 = 26 \end{cases}$. Xác định công sai.

(A) d = 3.

(D) d = 4.

P Lời giải.

Ta có $\begin{cases} u_1 + d - (u_1 + 2d) + u_1 + 4d = 10 \\ u_1 + 3d + u_1 + 5d = 26 \end{cases} \Leftrightarrow \begin{cases} u_1 + 3d = 10 \\ u_1 + 4d = 13 \end{cases} \Leftrightarrow \begin{cases} u_1 = 1 \\ d = 3. \end{cases}$

Chọn đáp án (A)

CÂU 18. Cho CSC có số hạng tổng quát $u_n = 5 + \frac{n+1}{2}$. Công sai của CSC là

$$c$$
 $d = \frac{1}{2}$.

$$\bigcirc d = 2.$$

Dèi giải.

Gọi d là công sai của CSC. Ta có

$$d = u_n - u_{n-1} = \frac{n+1}{2} - \frac{n}{2} = \frac{1}{2}.$$

Vậy công sai của CSC là $d = \frac{1}{2}$.

Chọn đáp án (C)

CÂU 19. Xét tính tăng, giảm và bị chặn của dãy số (u_n) biết $u_n = \frac{2^n}{n!}$, ta thu được kết quả

(A) Dãy số tăng, bị chặn trên.

(B) Dãy số tăng, bị chặn dưới.

 (\mathbf{C}) Dãy số giảm, bị chặn.

(**D**) Dãy số không tăng, không giảm, không bị chặn.

🗩 Lời giải.

Ta có
$$\frac{u_{n+1}}{u_n} = \frac{\frac{2^{n+1}}{(n+1)!}}{\frac{2^n}{n!}} = \frac{2^{n+1}}{(n+1)!} \cdot \frac{2^n}{n!} = \frac{2}{n+1} < 1, \forall n \ge 1.$$

Mà $u_n > 0, \forall n$ nên $u_{n+1} < u_n, \forall n \ge 1 \Rightarrow \text{dãy } (u_n)$ là dãy số giảm.

Vì $0 < u_n \le u_1 = 2, \forall n \ge 1$ nên dãy (u_n) là dãy bị chặn.

Chọn đáp án (C)

CÂU 20. Cho dãy số (u_n) có $u_1 + u_2 + \ldots + u_n = \frac{n(7-3n)}{2}$. Số hạng tổng quát của (u_n) là

$$\mathbf{A}$$
 $u_n = 5 - 3n, \ n \ge 1.$

B
$$u_n = 5 + 3n, \ n \ge 1.$$

(A)
$$u_n = 5 - 3n, n \ge 1$$
. (B) $u_n = 5 + 3n, n \ge 1$. (C) $u_n = 2 + 5n, n \ge 1$.

$$(\mathbf{D}) u_n = 2 - n, n \ge 1.$$

Lời giải.

Gọi d là công sai của CSC. Ta có

$$u_1 + u_2 + \dots + u_n = \frac{n(7 - 3n)}{2}$$

$$\Leftrightarrow \frac{n}{2} [2u_1 + (n - 1)d] = \frac{n(7 - 3n)}{2}$$

$$\Leftrightarrow 2u_1 - d + nd = 7 - 3n$$

$$\Leftrightarrow \begin{cases} 2u_1 - d = 7 \\ d = -3 \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 = 2 \\ d = -3. \end{cases}$$

Vậy $u_n = u_1 + (n-1)d = 2 - 3(n-1) = 5 - 3n, \forall n \ge 1.$ Chọn đáp án (A)

CẦU 21. Độ dài ba cạnh của một tam giác vuông lập thành một cấp số cộng. Nếu cạnh trung bình bằng 6 thì công sai của cấp số cộng này là

Theo giả thiết $(6-d)^2 + 6^2 = (6+d)^2 \Leftrightarrow 36-12d = 12d \Rightarrow d = \frac{36}{24} = \frac{3}{2}$.

Chọn đáp án (D)

CÂU 22. Xét tính bị chặn của dãy số $u_n = 4 - 3n - n^2$.

- (A) Bị chặn.
- (B) Không bị chặn.
- (C) Bị chặn trên.
- (D) Bị chặn dưới.

Dòi giải.

Ta có $u_n = \frac{25}{4} - \left(n + \frac{3}{2}\right)^2 < \frac{25}{4}$ nên (u_n) bị chặn trên; dãy (u_n) không bị chặn dưới.

Chọn đáp án (C)

CÂU 23. Cho cấp số cộng (u_n) có tổng 5 số hạng đầu tiên bằng 10. Giá trị u_3 là

(A) 4.

(D) 5.

Lời giải.

Ta có $u_1 + u_2 + \dots + u_5 = 10 \Leftrightarrow 5u_1 + 10d = 10 \Leftrightarrow u_3 = u_1 + 2d = 2.$

CÂU 24. Trong một cấp số nhân gồm các số hạng dương, hiệu số giữa số hạng thứ 5 và thứ 4 là 576 và hiệu số giữa số hạng thứ 2 và số hạng đầu tiên là 9. Tìm tổng 5 số hạng đầu tiên của các cấp số nhân này

(B) 1023.

(**D**) 768.

🗩 Lời giải.

Giả sử cấp số nhân trên có số hạng đầu tiên là u_1 .

Ta có $u_5 = q^4 \cdot u_1$; $u_4 = q^3 \cdot u_1 \Rightarrow u_5 - u_4 = \left(q^4 - q^3\right) u_1 = 576 = q^3(q-1)u_1 = 576$. Lại có $u_2 = q \cdot u_1 \Rightarrow u_2 - u_1 = u_1(q-1) = 9$. Do đó $q^3 \cdot 9 = 576 \Rightarrow q^3 = 64 \Rightarrow q = 4 \Rightarrow u_1 = 3$.

Suy ra $S = \frac{1 - q^5}{1 - q} u_1 = 1023.$

Chọn đáp án (B)

CÂU 25. Cho cấp số nhân (u_n) với $u_1 = -1$; $q = \frac{-1}{10}$. Số $\frac{1}{10^{103}}$ số hạng thứ mấy của (u_n) ?

(A) Số hạng thứ 105.

(B) Không là số hạng của cấp số đã cho.

(**c**) Số hạng thứ 103.

(D) Số hạng thứ 104.

Ta có $u_n = u_1 \cdot q^{n-1}$ nên $\frac{1}{10^{103}} = -1 \cdot \left(-\frac{1}{10}\right)^{n-1} \Leftrightarrow \left(-\frac{1}{10}\right)^n = \frac{1}{10^{104}} \Rightarrow n = 104.$

Dòi giải.

Chọn đáp án (D)

CÂU 26. Cho cấp số nhân $\frac{-1}{5}$; a; $\frac{-1}{125}$. Giá trị của a là

- (A) $a = \pm \frac{1}{\sqrt{5}}$.
- **B** $a = \pm \frac{1}{25}$.
- $(c) a = \pm \frac{1}{5}.$
- **(D)** $a = \pm 5$.

Dãy số $\frac{-1}{5}$; a; $\frac{-1}{125}$ là cấp số nhân khi và chỉ khi $a^2 = \left(\frac{-1}{5}\right) \cdot \left(\frac{-1}{125}\right) \Rightarrow a = \pm \frac{1}{25}$.

- **CÂU 27.** Xét tính tăng, giảm của dãy số $\begin{cases} u_1=1\\ u_{n+1}=\sqrt[3]{u_n^3+1}, n\geq 1 \end{cases}$. Ta thu được kết quả
 - (A) Dãy số tăng.

(**B**) Dãy số giảm.

(C) Dãy số không tăng, không giảm.

(D) Dãy số khi tăng, khi giảm.

Ta có $u_{n+1} = \sqrt[3]{u_n^3 + 1} \Rightarrow u_{n+1} > \sqrt[3]{u_n^3} = u_n, \forall n \in \mathbb{N}^* \Rightarrow (u_n)$ là dãy số tăng. Chọn đáp án (A)

CÂU 28. Cho cấp số cộng (u_n) có $u_n = 2n + 3$. Biết $S_n = 320$, giá trị của n là

- (A) n = 16 hoặc n = -20. (B) n = 15.

(**D**) n = 16.

🗩 Lời giải.

Ta có $u_1 = 5$ suy ra $S_n = \frac{n(5+2n+3)}{2} = n^2 + 4n \Leftrightarrow n^2 + 4n - 320 = 0 \Leftrightarrow \begin{bmatrix} n = 16 \text{ (nhận)} \\ n = -20 \text{ (loại)} \end{bmatrix}$.

Chọn đáp án (D)

CÂU 29. Cho một cấp số nhân biết $u_1=3,\,q=2$. Tổng của 10 số hạng đầu tiên của cấp số nhân là

- (A) $3 \cdot (1-2^9)$.
- **B**) $3 \cdot (1 2^{10})$.
- $(\mathbf{C}) 3 \cdot (2^9 1).$
- \mathbf{D} 3 · $(2^{10} 1)$.

🗩 Lời giải.

Ta có $S_{10} = u_1 \cdot \frac{1 - q^{10}}{1 - a} = 3 \cdot \frac{1 - 2^{10}}{1 - 2} = 3 \cdot (2^{10} - 1).$

Chọn đáp án (D)

CÂU 30. Tổng $S=4\cdot 5^{100}\cdot \left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+\cdot+\frac{1}{5^{100}}\right)+1$ có kết quả bằng

- \bigcirc 5¹⁰⁰ 1.

- (\mathbf{C}) 5¹⁰¹ 1.
- $(\mathbf{D}) 5^{101}$.

♥ Lời aiải.

 $\text{Dặt } M = \frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \dots + \frac{1}{5^{100}}.$

Ta có $5M = 1 + \frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \dots + \frac{1}{5^{99}}$.

$$\Rightarrow 5M - M = 1 - \frac{1}{5^{100}} \Rightarrow 4M = 1 - \frac{1}{5^{100}} \Rightarrow M = \frac{5^{100} - 1}{4 \cdot 5^{100}} \Rightarrow S = 4 \cdot 5^{100} \cdot \frac{5^{100} - 1}{4 \cdot 5^{100}} + 1 = 5^{100}.$$

Chọn đáp án (B)

CÂU 31. Cho cấp số nhân (u_n) có $u_1 = 24$ và $\frac{u_4}{u_{11}} = 16384$. Số hạng u_{17} là $\frac{3}{67108864}$.

$$\bigcirc$$
 $\frac{3}{67108864}$.

$$\bigcirc$$
 $\frac{3}{536870912}$.

Ta có $\frac{u_4}{u_{11}} = 16384 \Leftrightarrow \frac{u_1 \cdot q^3}{u_1 \cdot q^{10}} = \frac{1}{q^7} \Rightarrow q = \sqrt[7]{16384} = 4.$

Do vậy $u_{17} = u_1 \cdot q^{16} = 24 \cdot \left(\frac{1}{4}\right)^{16} = \frac{3}{536870012}$

Chọn đáp án (C)

CÂU 32. Trong các dãy số dưới đây, dãy số nào là cấp số cộng?

(A) Dãy số (a_n) với $a_n = 3^n, \forall n \in \mathbb{N}^*.$

- **(B)** Dãy số (b_n) với $b_1 = 1$, $b_{n+1} = 2b_n + 1$, $\forall n \in \mathbb{N}^*$.
- \mathbf{C} Dãy số (c_n) với $c_n = (2n+1)^2 4n^2, \forall n \in \mathbb{N}^*.$

Dèi giải.

- \odot Ta có $a_{n+1} = 3^{n+1}$. Suy ra $a_{n+1} a_n = 3^{n+1} 3^n = 2 \cdot 3^n$. Vì $a_{n+1} - a_n$ còn phụ thuộc vào n nên dãy (a_n) không là cấp số cộng.
- \odot Ta có $b_2 = 3$, $b_3 = 7$, $b_4 = 15$. Suy ra $b_2 b_1 = 2$ và $b_4 b_3 = 8$ nên $b_2 b_1 \neq b_4 b_3$. Do đó dãy (b_n) không là cấp số cộng.
- \odot Ta có $c_{n+1} = (2n+3)^2 4(n+1)^2$. Suy ra

$$c_{n+1} - c_n = (2n+3)^2 - 4(n+1)^2 - (2n+1)^2 - 4n^2 = 2(4n+4) - 4(2n+1) = 4.$$

Vậy dãy (c_n) là cấp số cộng.

 \odot Ta có $d_2 = 1010$, $d_3 = \frac{2020}{1011}$, $d_4 = \frac{2020}{d_3 + 1}$ nên $d_2 - d_1 \neq d_4 - d_3$. Do đó dãy (d_n) không là cấp số cộng

Chọn đáp án (C)

CÂU 33. Trong các dãy số sau dãy nào bị chặn trên

$$\mathbf{A} u_n = 3n^2 + 1.$$

$$\mathbf{B} u_n = \frac{n+2}{n+1}.$$

Dòi giải.

Ta có $u_n = 3n + 2$ là dãy số tăng. Thật vậy, $u_{n+1} - u_n = 3(n+1) - 3n = 3 > 0 \Rightarrow u_{n+1} > u_n.$

Chọn đáp án (D)

CÂU 34. Cho cấp số cộng (u_n) thỏa mãn $\begin{cases} u_5 + 3u_3 - u_2 = -21 \\ 3u_7 - 2u_4 = -34 \end{cases}$. Giá trị của biểu thức $S = u_4 + u_5 + \dots + u_{30}$ là

(B) -1222.

🗩 Lời giải.

Ta có

$$\begin{cases} u_5 + 3u_3 - u_2 = -21\\ 3u_7 - 2u_4 = -34 \end{cases}$$

$$\begin{cases} u_5 + 3u_3 - u_2 = -21 \\ 3u_7 - 2u_4 = -34 \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 + 4d + 3(u_1 + 2d) - (u_1 + d) = -21 \\ 3(u_1 + 6d) - 2(u_1 + 3d) = -34 \end{cases}$$

$$\Leftrightarrow \begin{cases} 3u_1 + 9d = -21 \\ u_1 + 12d = -34 \end{cases}$$

$$\Leftrightarrow \begin{cases} u_1 = 2 \\ d = -3. \end{cases}$$

$$\Leftrightarrow \begin{cases} 3u_1 + 9d = -21 \\ u_1 + 12d = -34 \end{cases}$$

$$\Leftrightarrow$$
 $\begin{cases} u_1 = 2 \\ d = 3 \end{cases}$

 $S = u_4 + u_5 + \dots + u_{30} = S_{30} - S_3 = \frac{30}{2} (2 \cdot 2 + 29 \cdot (-3)) - \frac{3}{2} (2 \cdot 2 - 2 \cdot 3) = -1242.$

Chọn đáp án (A)

CÂU 35. Cho cấp số nhân (u_n) có các số hạng khác không, tổng các giá trị u_1 thỏa mãn $\begin{cases} u_1 + u_2 + u_3 + u_4 = 15 \\ u_1^2 + u_2^2 + u_3^2 + u_4^2 = 85. \end{cases}$

(A) 4.

🗩 Lời giải.

Ta có

$$\begin{cases} u_1(1+q+q^2+q^3) = 15 \\ u_1^2(1+q^2+q^4+q^6=85 \end{cases} \Leftrightarrow \begin{cases} u_1\frac{q^4-1}{q-1} = 15 \\ u_1^2\frac{q^8-1}{q^2-1} = 85 \end{cases}$$

$$\Rightarrow \left(\frac{q^4-1}{q-1}\right)^2 \left(\frac{q^2-1}{q^8-1}\right) = \frac{45}{17} \Leftrightarrow \frac{\left(q^4-1\right)\left(q+1\right)}{\left(q-1\right)\left(q^4+1\right)} = \frac{45}{17} \Leftrightarrow \begin{bmatrix} q=2 \\ q=\frac{1}{2}. \end{bmatrix}$$

Từ đó ta tìm được $u_1 = 1, u_1 = 8.$

Chọn đáp án (B)

CÂU 36. Cho cấp số cộng $u_n = 5n - 2$. Biết $S_n = 16040$, số số hạng của cấp số cộng là

(**D**) 100.

🗩 Lời giải.

Ta có cấp số cộng: $u_n = 5n - 2$ nên $u_1 = 3, u_2 = 8, ... \Rightarrow d = 5$.

$$S_n = 16040$$

$$\Leftrightarrow \frac{n}{2} [2u_1 + (n-1)d] = 16040$$

$$\Leftrightarrow \frac{n}{2} [2 \cdot 3 + (n-1) \cdot 5] = 16040$$

$$\Leftrightarrow 5n^2 + n - 32080 = 0$$

$$\Leftrightarrow \begin{bmatrix} n = 80 \\ n = -\frac{401}{5} (\text{loại}) \end{bmatrix}$$

$$\Leftrightarrow n = 80.$$

Chọn đáp án (C)

CÂU 37. Tứ giác ABCD có số đo các góc lập thành một cấp số nhân theo thứ tự A, B, C, D. Biết rằng số đo góc C gấp bốn lần số đo góc A. Số đo góc A của tứ giác đó bằng

(A) 24°.

(C) 144°.

(**D**) 72°.

🗭 Lời giải.

Ta có
$$\begin{cases} A + B + C + D = 360 \\ B = Aq \\ C = Aq^2 = 4A \\ D = Aq^3 \end{cases} \Leftrightarrow \begin{cases} A(1 + q + q^2 + q^3) = 360 \\ B = Aq \\ C = Aq^2 \\ D = Aq^3. \end{cases}$$

Từ $Aq^2 = 4A$ ta được q = 2 thế vào phương trình đầu ta được $A = 24^\circ$.

Chọn đáp án (A)

CÂU 38. Cho một cấp số cộng (u_n) là cấp số cộng có $u_1=1$ và tổng 100 số hạng đầu bằng 24850. Tính $S=\frac{1}{u_1u_2}+\frac{1}{u_2u_3}+\frac{1}{u_2u_3}$

$$\ldots + \frac{1}{u_{49}u_{50}}.$$

 $A S = \frac{9}{246}$

B $S = \frac{4}{22}$.

(c) S = 123.

🗭 Lời giải.

Gọi d là công sai của cấp số đã cho.

Ta có
$$S_{100} = 50 (2u_1 + 99d) = 24850 \Rightarrow d = \frac{497 - 2u_1}{99} = 5.$$

$$\begin{split} \Rightarrow 5S &= \frac{5}{u_1 u_2} + \frac{5}{u_2 u_3} + \ldots + \frac{5}{u_{49} u_{50}} \\ &= \frac{u_2 - u_1}{u_1 u_2} + \frac{u_3 - u_2}{u_2 u_3} + \ldots + \frac{u_{50} - u_{49}}{u_{49} u_{50}} \\ &= \frac{1}{u_1} - \frac{1}{u_2} + \frac{1}{u_2} - \frac{1}{u_3} + \ldots + \frac{1}{u_{48}} - \frac{1}{u_{49}} + \frac{1}{u_{49}} - \frac{1}{u_{50}} \\ &= \frac{1}{u_1} - \frac{1}{u_{50}} = \frac{1}{u_1} - \frac{1}{u_1 + 49d} = \frac{245}{246}. \\ \Rightarrow S &= \frac{49}{246}. \end{split}$$

Chọn đáp án \bigcirc

CÂU 39. Cho cấp số cộng (u_n) thỏa mãn $\begin{cases} u_2-u_3+u_5=10\\ u_4+u_6=26 \end{cases}$. Tính tổng

$$S = u_5 + u_7 + \ldots + u_{2011}.$$

 $\mathbf{A} S = 3028123.$

B S = 3021233.

 (\mathbf{C}) S = 3028057.

 $(\mathbf{D}) S = 3028332.$

Dùi giải.

Ta có $\begin{cases} u_1 + d - (u_1 + 2d) + u_1 + 4d = 10 \\ u_1 + 3d + u_1 + 5d = 26 \end{cases} \Leftrightarrow \begin{cases} u_1 + 3d = 10 \\ u_1 + 4d = 13 \end{cases} \Leftrightarrow u_1 = 1, d = 3.$

Ta có $u_5, u_7, \ldots, u_{2011}$ lập thành cấp số cộng với công sai d=6 và có 1003 số hạng nên

$$S = \frac{1003}{2} (2u_5 + 1002.6) = 3028057.$$

Chọn đáp án \bigcirc

CÂU 40. Ba cạnh của một tam giác vuông có độ dài là các số nguyên dương lập thành một CSC. Một cạnh có thể có độ dài bằng

A 22.

B) 58.

C 81.

D 91.

D Lời giải.

Gọi độ dài ba cạnh của tam giác lần lượt là 0 < a < b < c.

Vì a, b, c theo thứ tự lập thành cấp số cộng nên

$$a + c = 2b$$

$$\Leftrightarrow a^2 + 2ac + c^2 = 2(c^2 - a^2)$$

$$\Leftrightarrow -c^2 + 2ac + 3a^2 = 0$$

$$\Leftrightarrow \begin{bmatrix} c = -a \\ c = 3a. \end{bmatrix}$$

- c = -a vô lí vì a, c > 0.
- c = 3a nên c chia hết cho 3.

Chỉ có đáp án 81 thỏa điều kiện trên.

Vây một canh của tam giác là 81.

Chọn đáp án (C)

