Two Step Prompt Muon Identification

Cristina Botta, Giovanni Petrucciani

2 step prompt μ identification

All reco μ

Loose ID (PF)

punch through

decays in flight μ from B decays prompt μ (W,Z,τ)

Medium ID

decay in flight

μ from B decays prompt μ (W,Z,τ)

MVA Prompt ID

μ from B decays

prompt μ (W,Z, τ)

Reminder: Medium ID

- It explores all purely ID variables
 - Loose preselection: valid hit fraction ≥ 0.8
 - Define a category of "good global muons" with cuts on kink, global track χ^2 and matching
 - Apply a segment compatibility cut, loose for good global muons, and tight for the others.
- Leaves out variables related to prompt vs non-prompt muon separation, as they are more specific of the physics analysis
- Performances on CSA14 samples already discussed
 - https://www.dropbox.com/s/on975i5kdmjdeuz/muonid-pogo81214.pdf?dl=o
- Provides the same fake rate as the Tight Muon ID but a higher efficiency on prompt and B-decays muons

Performances on Phys14 MC

Comparison of **medium muon id and tight muon id** in TTbar MC

Medium, Prompt Tight, Prompt Medium, B decay Tight, B decay

Medium, Fake Tight, Fake

 $|\eta| < 1.2$

Efficiency of Medium ID wrt Preselection:

Loose Muon ID, p_T > 5 GeV, PFRelIso(R=0.3)<0.5 with EA corrections derived for PHYS14 dxy<500 μ m, dz<1 mm

Performances on Phys14 MC

Comparison of **medium muon id and tight muon id** in TTbar MC

Medium, Prompt Tight, Prompt
Medium, B decay Tight, B decay

Medium, Fake Tight, Fake

|η| > 1.2

Efficiency of Medium ID wrt Preselection:

Loose Muon ID, p_T > 5 GeV, PFRelIso(R=0.3)<0.5 with EA corrections derived for PHYS14 dxy<500 μ m, dz<1 mm

Medium ID Check #1

- Compare the properties of muons that pass/fail the medium/tight id, to see what is the quality of muons we recover:
 - Look at normalized distributions of some track quality variables for the four classes of muons, for prompt muons from ttbar (plots here are for p_T > 20, but behaviour is the same also below)

 Muons recovered by the medium Id (wrt tight Id) have the same impact parameter quality, and more tracker layers

Medium ID Check #2

 Check what cuts of the tight Id are not satisfied by the muons that are recovered by the medium Id:

Main sources of inefficiency are the request of two stations and

of the muon to be also a global muon.

 Medium id recovers mostly muons in the detector gaps and in the forward

sequential cuts	inefficiency
tracker layers > 5	0.00%
pixel hits > 0	0.09%
Tracker mu, >= 2 stations	0.64%
Global muon	0.63%
Glb track X ² /ndf < 10	0.32%
Valid muon hits > 0	0.07%

prompt muons, p_T > 20 (plots are normalized to efficiency of each class)

Medium id check #3

- Check whether the efficiency gain remains also after the trigger
 - Select Phys14 Z → μμ MC events with two leptons of p_T > 25/10 GeV, well isolated, 60 < m(μμ) < 120 GeV
 - Check the per-event efficiency of applying medium id and tight id to the muons, both inclusively and after requiring the event to pass the OR of the two DoubleMuon paths:
 - HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_v*
 - HLT Mu17 TrkIsoVVL TkMu8 TrkIsoVVL v*
- As expected, the tight id efficiency is a bit higher if the event is required to pass the trigger, but the medium id still recovers some

	inclusive	after HLT
Medium id	99.0%	99.2%
Tight id	96.5%	97.7%
difference	2.5%	1.5%

MVA Prompt ID

- Goal: discriminate signal leptons (Z, W, τ) from those from b-jets
 - tt main reducible bkg in almost all the final states being investigated in ttH and leptonic-SUSY
- BDT trained using simulated events
 - tt sample for source of signal leptons from W
 - ttH sample for source of signal leptons from W,Z, τ
 - tt sample for source of bkg leptons (mainly from B)
 - Wjets sample for source of bkg leptons (mainly from light-jets)
- Separately for electrons/muons in η/p_T regions:

muons	η	\mathbf{p}_{T}
low		< 10
medium b	< 1.5	10-25
medium e	> 1.5	10-25
high b	< 1.5	> 25
high e	< 1.5	> 25

MVA Prompt ID: variables

Input variables:

22/01/15

- **PF reliso, charged** had. (R=0.3)
- **PF rellso, neutral** had. & photon (R=0.3, with EA corrections)
 - EA derived for PHYS14 samples

Vertexing

- 3d IP significance (SIP_{3D})
- |dxy| and |dz|

-ep-Jet

- Lepton's closest jet (leptons are not removed from jet collection)
 - $p_T(\ell)/p_T(jet)$
 - $\Delta R(\ell, jet)$
 - jet CSV b-tag

Segment compatibility

SUSY 2 same-sign μ (high p_T)

Cut based ID:

Tight Muon ID, PFRelIso(R=0.3)<0.1 with EA corrections derived for PHYS14 SIP3D < 4

- Performances of MVA +
 Medium ID vs Cut Based ID
- Denominator: SUS-13-013 baseline region with $N_{Bjets} >= 1$ ($H_T > 80$ GeV, $E_{T}^{miss} > 30$ GeV if $H_T < 500$, $N_{Jets40} >= 2$), 2 same-sign μ with preselection and $p_T > 25/25$ GeV
- Per event efficiencies of
 T1tttt_(1.2/0.8) vs Bkg with non
 prompt leptons (tt)
 for same cut applied to both
 leptons

22/01/15

Cut based ID:

Tight Muon ID, PFRellso(R=0.3)<0.1 with EA corrections derived for PHYS14 SIP3D < 4

- Performances of MVA + **Medium ID** vs Cut Based ID
- Denominator: SUS-13-013 baseline region with N_{Biets} >= 1 $(H_T > 80 \text{ GeV}, E_T^{miss} > 30 \text{ GeV if } H_T < 500,$ $N_{Jets40} >= 2$), 2 same-sign μ with preselection and $p_T(1) > 25$; $p_T(2) \in 10-25$ GeV
- Per event efficiencies of T1tttt_(1.2/0.8) vs Bkg with non prompt leptons (tt) for same cut applied to both leptons

SUSY 2 same-sign μ (low p_T)

Cut based ID: Tight Muon ID, PFRellso(R=0.3)<0.1 with EA corrections derived for PHYS14

SIP3D < 4

- Performances of MVA + **Medium ID** vs Cut Based ID
- Denominator: SUS-13-013 baseline region with N_{Biets} >= 1 $(H_T > 80 \text{ GeV}, E_T^{miss} > 30 \text{ GeV if } H_T < 500,$ $N_{Jets40} >= 2$), 2 same-sign μ with preselection and both $p_T \in (10-25, 10-25)$ GeV
- Per event efficiencies of T1ttt(1.2/0.8) vs Bkg with not prompt leptons (tt) for same cut applied to both leptons

SUSY 2 same-sign μ (high p_T)

Cut based ID:

Tight Muon ID, PFRellso(R=0.3)<0.1 with EA corrections derived for PHYS14
SIP3D < 4

- Performances of MVA +
 Medium ID vs Cut Based ID
- Denominator: SUS-13-013 baseline region with $N_{Bjets} == 0$ ($H_T > 80$ GeV, $E_T^{miss} > 30$ GeV if $H_T < 500$, $N_{Jets40} >= 2$), 2 same-sign μ with preselection and $p_T > 10/10$ GeV
- Per event efficiencies of
 T1tttt_(1.2/0.8) vs Bkg with non prompt leptons (WJets, tt) for same cut applied to both leptons

ttH 2 same-sign µ

Cut based ID:

Tight Muon ID, PFRelIso(R=0.3)<0.1 with EA corrections derived for PHYS14 SIP3D < 4

- Performances of MVA +
 Medium ID vs Cut Based ID
- Denominator: ttH HIG-13-020 baseline region with $N_{Bjets} >= 2 CSVL || 1 CSVM$, 2 same-sign μ with preselect. and $p_T > 25/25$ GeV
- Per event efficiencies of ttH vs
 Bkg with non prompt leptons
 (tt) for same cut applied to
 both leptons

Performances and prospects

- We have checked the expected performances of the medium ID + prompt MVA for the ttH and SUSY analyses in 2 same-sign muon final state
 - we expect 10-20% improvement in sensitivity with respect to the analyses which make use of the tight ID and standard isolation and vertexing requirements on the muons
- More gain is expected in the 3(4) lepton final states (ttH, SUSY)
- We would like to provide also a dedicated tuning for low p_T muons (5-10) GeV to be used in:
 - adding the third lepton in the ttH analysis (soft leptons from W*)
 - access compressed spectra in SUSY models (soft leptons from W*)
 - vetoing leptons across different lepton multiplicity final states

Validation

- We would like to validate the Medium ID and the Prompt MVA ID with RunI data using the PHYS14 72X reco
- To do that we would like to request (PPD next week) a small PHYS14@50ns production with PU scenario similar to 8 TeV data
 - for DY, TT, WJets MC samples and SingleMuD data

Developments

- Being discussed within the ttH-leptonic group (F. Romeo):
 - additional variables to be consider as inputs to the prompt MVA: N_{tracks} of closest jet, max(signed SIP_{3D} of closest jet's tracks), ...
- The prompt MVA is being studied in PHYS14 also for electrons with similar input variables