Linear Program Duality

Frédéric Giroire

Motivation

- Finding bounds on the optimal solution. Provides a measure of the "goodness" of a solution.
- Provide certificate of optimality.
- Economic interpretation of the dual problem.

** Introduction to Duality **

Lower bound: a feasible solution, e.g. $(0,0,1,0) \Rightarrow z^* \ge 5$.

What if we want an upper bound?

Second Inequation $\times 5/3$:

$$\frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4 \le \frac{275}{3}.$$

$$4x_1 + x_2 + 5x_3 + 3x_4 \le \frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4$$

$$z^* \leq \frac{275}{3}$$
.

Second Inequation $\times 5/3$:

$$\frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4 \le \frac{275}{3}.$$

Note that (all variables are positive),

$$4x_1 + x_2 + 5x_3 + 3x_4 \le \frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4$$

$$z^* \leq \frac{275}{3}.$$

Second Inequation $\times 5/3$:

$$\frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4 \le \frac{275}{3}.$$

Note that (all variables are positive),

$$4x_1 + x_2 + 5x_3 + 3x_4 \le \frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4$$

Hence, a first bound:

$$z^* \leq \frac{275}{3}.$$

Similarly, $2^d + 3^d$ constraints:

$$4x_1 + 3x_2 + 6x_3 + 3x_4 \le 58$$
.

Hence, a second bound:

$$z^* < 58$$
.

Similarly, $2^d + 3^d$ constraints:

$$4x_1 + 3x_2 + 6x_3 + 3x_4 \le 58$$
.

Hence, a second bound:

$$z^* < 58$$
.

→ need for a systematic strategy.

Build linear combinations of the constraints. Summing:

$$(y_1 + 5y_2 - y_3)x_1 + (-y_1 + y_2 + 2y_3)x_2 + (-y_1 + 3y_2 + 3y_3)x_3 + (3y_1 + 8y_2 - 5y_3)x_4 \le y_1 + 55y_2 + 3y_3.$$

We want left part upper bound of z. We need coefficient of $x_i \ge$ coefficient in z:

$$y_1 + 5y_2 - y_3 \ge 4$$

 $-y_1 + y_2 + 2y_3 \ge 1$
 $-y_1 + 3y_2 + 3y_3 \ge 5$
 $3y_1 + 8y_2 - 5y_3 \ge 3$.

Build linear combinations of the constraints. Summing:

$$(y_1 + 5y_2 - y_3)x_1 + (-y_1 + y_2 + 2y_3)x_2 + (-y_1 + 3y_2 + 3y_3)x_3 + (3y_1 + 8y_2 - 5y_3)x_4 \le y_1 + 55y_2 + 3y_3.$$

We want left part upper bound of z. We need coefficient of $x_i \ge 1$ coefficient in z:

$$y_1 + 5y_2 - y_3 \ge 4$$

 $-y_1 + y_2 + 2y_3 \ge 1$
 $-y_1 + 3y_2 + 3y_3 \ge 5$
 $3y_1 + 8y_2 - 5y_3 \ge 3$.

If the $y_i > 0$ and satisfy theses inequations, then

$$4x_1 + x_2 + 5x_3 + 3x_4 \le y_1 + 55y_2 + 3y_3$$
.

In particular,

$$z^* < y_1 + 55y_2 + 3y_3$$
.

Objective: smallest possible upper bound. Hence, we solve the following PL:

It is the dual problem of the problem.

** Duality **

The Dual Problem

Primal problem:

Maximize
$$\sum_{j=1}^{n} c_j x_j$$

Subject to: $\sum_{j=1}^{n} a_{ij} x_j \leq b_i \quad (i=1,2,\cdots,m)$ $x_j \geq 0 \quad (j=1,2,\cdots,n)$ (2)

Its dual problem is defined by the LP problem:

Minimize
$$\sum_{i=1}^{m} b_i y_i$$

Subject to: $\sum_{i=1}^{m} a_{ij} y_i \geq c_j \quad (j=1,2,\cdots,n)$ (3)
 $y_i \geq 0 \quad (i=1,2,\cdots,m)$

Weak Duality Theorem

Theorem: If $(x_1, x_2, ..., x_n)$ is feasible for the primal and $(y_1, y_2, ..., y_n)$ is feasible for the dual, then

$$\sum_{j} c_{j} x_{j} \leq \sum_{i} b_{i} y_{i}.$$

Proof:

$$\begin{array}{ll} \sum_{j} c_{j} x_{j} & \leq \sum_{j} (\sum_{i} y_{i} a_{ij}) x_{j} & \text{dual definition: } \sum_{i} y_{i} a_{ij} \geq c_{j} \\ & = \sum_{i} (\sum_{j} a_{ij} x_{j}) y_{i} \\ & \leq \sum_{i} b_{i} y_{i} & \text{primal definition: } \sum_{i} x_{i} a_{ij} \leq b_{j} \end{array}$$

Gap or No Gap?

An important question: Is there a gap between the largest primal value and the smallest dual value?

Strong Duality Theorem

Theorem: If the primal problem has an optimal solution,

$$x^* = (x_1^*, ..., X_n^*),$$

then the dual also has an optimal solution,

$$y^* = (y_1^*, ..., y_n^*),$$

and

$$\sum_{i} c_{i} x_{j}^{*} = \sum_{i} b_{i} y_{i}^{*}.$$

Relationship between the Primal and Dual Problems

Lemma: The dual of the dual is always the primal problem.

Corollary: + (Strong Duality Theorem) ⇒ Primal has an optimal solution iff dual has an optimal solution.

Weak duality: Primal unbounded \Rightarrow dual unfeasible.

Relationship between the Primal and Dual Problems

Lemma: The dual of the dual is always the primal problem.

Corollary: + (Strong Duality Theorem) ⇒ Primal has an optimal solution iff dual has an optimal solution.

Weak duality: Primal unbounded \Rightarrow dual unfeasible.

			Dual	
		Optimal	Unfeasible	Unbounded
	Optimal	Χ		
Primal	Unfeasible		X	Χ
	Unbounded		Χ	

** Certificate of Optimality **

Complementary Slackness

Theorem: Let $x_1^*, ... x_n^*$ be a feasible solution of the primal and $y_1^*, ... y_n^*$ be a feasible solution of the dual. Then.

$$\sum_{i=1}^{m} a_{ij} y_{i}^{*} = c_{j}$$
 or $x_{j}^{*} = 0$ or both $(j = 1, 2, ...n)$

$$\sum_{j=1}^{n} a_{ij} x_{j}^{*} = b_{i}$$
 or $y_{i}^{*} = 0$ or both $(i = 1, 2, ...m)$

are necessary and sufficient conditions to have the optimality of x^* and v^* .

 x^* feasible $\Rightarrow b_i - \sum_i a_{ij} x_i \ge 0$. y^* dual feasible, hence non negative.

Thus

$$(b_i - \sum_j a_{ij} x_j) y_i \ge 0.$$

Similarly,

 y^* dual feasible $\Rightarrow \sum_i a_{ii} y_i - c_i \ge 0$. x^* feasible, hence non negative.

$$(\sum_i a_{ij}y_i-c_j)x_j\geq 0.$$

$$(b_i - \sum_i a_{ij} x_j) y_i \ge 0$$
 and $(\sum_i a_{ij} y_i - c_j) x_j \ge 0$

$$\sum_i (b_i - \sum_j a_{ij} x_j) y_i \ge 0$$
 and $\sum_j (\sum_i a_{ij} y_i - c_j) x_j \ge 0$

$$\sum_{i} b_{i} y_{i} - \sum_{i,j} a_{ij} x_{j} y_{i} + \sum_{j,i} a_{ij} y_{i} x_{j} - \sum_{j} c_{j} x_{j} = \sum_{i} b_{i} y_{i} - \sum_{j} c_{j} x_{j} = 0.$$

$$\forall i, (b_i - \sum_i a_{ij} x_j) y_i = 0$$
 and $\forall j (\sum_i a_{ij} y_i - c_j) x_j = 0$

$$(b_i - \sum_i a_{ij} x_j) y_i \ge 0$$
 and $(\sum_i a_{ij} y_i - c_j) x_j \ge 0$

By summing, we get:

$$\sum_{i} (b_i - \sum_{j} a_{ij} x_j) y_i \ge 0 \qquad \text{and} \qquad \sum_{j} (\sum_{i} a_{ij} y_i - c_j) x_j \ge 0$$

$$\sum_{i} b_{i} y_{i} - \sum_{i,j} a_{ij} x_{j} y_{i} + \sum_{j,i} a_{ij} y_{i} x_{j} - \sum_{j} c_{j} x_{j} = \sum_{i} b_{i} y_{i} - \sum_{j} c_{j} x_{j} = 0.$$

$$\forall i, (b_i - \sum_i a_{ij} x_j) y_i = 0$$
 and $\forall j (\sum_i a_{ij} y_i - c_j) x_j = 0$.

$$(b_i - \sum_i a_{ij} x_j) y_i \ge 0$$
 and $(\sum_i a_{ij} y_i - c_j) x_j \ge 0$

By summing, we get:

$$\sum_{i} (b_i - \sum_{j} a_{ij} x_j) y_i \ge 0 \qquad \text{and} \qquad \sum_{j} (\sum_{i} a_{ij} y_i - c_j) x_j \ge 0$$

Summing + strong duality theorem:

$$\sum_{i} b_{i} y_{i} - \sum_{i,j} a_{ij} x_{j} y_{i} + \sum_{j,i} a_{ij} y_{i} x_{j} - \sum_{j} c_{j} x_{j} = \sum_{i} b_{i} y_{i} - \sum_{j} c_{j} x_{j} = 0.$$

$$\forall i, (b_i - \sum_i a_{ij} x_j) y_i = 0$$
 and $\forall j (\sum_i a_{ij} y_i - c_j) x_j = 0$

$$(b_i - \sum_i a_{ij} x_j) y_i \ge 0$$
 and $(\sum_i a_{ij} y_i - c_j) x_j \ge 0$

By summing, we get:

$$\sum_{i} (b_i - \sum_{j} a_{ij} x_j) y_i \ge 0 \qquad \text{and} \qquad \sum_{j} (\sum_{i} a_{ij} y_i - c_j) x_j \ge 0$$

Summing + strong duality theorem:

$$\sum_{i} b_{i} y_{i} - \sum_{i,j} a_{ij} x_{j} y_{i} + \sum_{j,i} a_{ij} y_{i} x_{j} - \sum_{j} c_{j} x_{j} = \sum_{i} b_{i} y_{i} - \sum_{j} c_{j} x_{j} = 0.$$

Implies: inequalities must be equalities:

$$\forall i, (b_i - \sum_i a_{ij} x_j) y_i = 0$$
 and $\forall j (\sum_i a_{ij} y_i - c_j) x_j = 0.$

$$XY = 0$$
 if $X = 0$ or $Y = 0$. Done.

Theorem [Optimality Certificate]: A feasible solution $x_1^*,...x_n^*$ of the primal is optimal iif there exist numbers $y_1^*,...y_n^*$ such that

they satisfy the complementary slackness condition:

$$\begin{array}{ccc} \underbrace{\sum_{i=1}^m \underbrace{a_{ij}y_i^*}}_{y_j^*} & = \underbrace{c_j} & \text{ when } x_j^* > 0 \\ & \text{ when } \sum_{j=1}^n a_{ij}x_j^* < b_i \end{array}$$

2 and $y_1^*, ..., y_n^*$ feasible solution of the dual, that is

$$\begin{array}{ccc} \sum_{i=1}^m a_{ij} y_i^* & \geq c_j & \forall j=1,...n \\ y_i^* & \geq 0 & \forall i=1,...,m. \end{array}$$

First step: Existence of $y_1^*, ..., y_5^*$, such as

 $(\frac{1}{3}, 0, \frac{5}{3}, 1, 0)$ is solution.

Second step: Verify $(\frac{1}{2}, 0, \frac{5}{2}, 1, 0)$ is a solution of the dual.

$$\begin{array}{ccc} \sum_{i=1}^m a_{ij} y_i^* & \geq c_j & \forall j=1,...n \\ y_i^* & \geq 0 & \forall i=1,...,m. \end{array}$$

Second step: Verify $(\frac{1}{3}, 0, \frac{5}{3}, 1, 0)$ is a solution of the dual.

$$\begin{array}{ccc} \sum_{i=1}^m a_{ij} y_i^* & \geq c_j & \forall j=1,...n \\ y_j^* & \geq 0 & \forall i=1,...,m. \end{array}$$

That is, we check

Second step: Verify $(\frac{1}{3}, 0, \frac{5}{3}, 1, 0)$ is a solution of the dual.

$$\begin{array}{ccc} \sum_{i=1}^m a_{ij} y_i^* & \geq c_j & \forall j=1,...n \\ y_j^* & \geq 0 & \forall i=1,...,m. \end{array}$$

That is, we check

Only three equations to check.

Second step: Verify $(\frac{1}{3}, 0, \frac{5}{3}, 1, 0)$ is a solution of the dual.

$$\begin{array}{ccc} \sum_{i=1}^m a_{ij} y_i^* & \geq c_j & \forall j=1,...n \\ y_j^* & \geq 0 & \forall i=1,...,m. \end{array}$$

That is, we check

Only three equations to check.

OK. The solution $(\frac{1}{3}, 0, \frac{5}{3}, 1, 0)$ is optimal.

** Economical Interpretation **

Signification of Dual Variables

Signification can be given to variables of the dual problem (dimension analysis):

- x_i: production of a product j (chair, ...)
- b_i: available quantity of resource i (wood, metal, ...)
- a_{ii}: unit of resource i per unit of product j
- c_i: net benefit of the production of a unit of product j

Signification of Dual Variables

Signification can be given to variables of the dual problem (dimension analysis):

- x_i: production of a product j (chair, ...)
- b_i: available quantity of resource i (wood, metal, ...)
- a_{ii}: unit of resource i per unit of product j
- c_i: net benefit of the production of a unit of product i

Signification of Dual Variables

Theorem: If the LP admits at least one optimal solution, then there exists $\varepsilon > 0$, with the property: If $|t_i| \le \varepsilon \ \forall i = 1, 2, \cdots, m$, then the LP

Max
$$\sum_{j=1}^{n} c_j x_j$$

Subject to: $\sum_{j=1}^{n} a_{ij} x_j \leq b_i + t_i \quad (i = 1, 2, \dots, m)$ $x_j \geq 0 \quad (j = 1, 2, \dots, n).$ (4)

has an optimal solution and the optimal value of the objective is

$$z^* + \sum_{i=1}^m y_i^* t_i$$

with z^* the optimal solution of the initial LP and $(y_1^*, y_2^*, \dots, y_m^*)$ the optimal solution of its dual.

