

planetmath.org

Math for the people, by the people.

Witt vectors

Canonical name WittVectors

Date of creation 2013-03-22 15:14:31 Last modified on 2013-03-22 15:14:31

Owner alozano (2414) Last modified by alozano (2414)

Numerical id 5

Author alozano (2414)
Entry type Definition
Classification msc 13K05
Classification msc 13J10

Defines Witt polynomials

In this entry we define a commutative ring, the Witt vectors, which is particularly useful in number theory, algebraic geometry and other areas of commutative algebra. The Witt vectors are named after Ernst Witt.

Theorem 1. Let p be a prime and let \mathbb{K} be a perfect ring of characteristic p. There exists a unique $http://planetmath.org/PRingstrict\ p$ -ring $W(\mathbb{K})$ with residue ring \mathbb{K} .

Definition 1. Let \mathbb{K} be a perfect ring of characteristic p. The unique http://planetmath.org/PR p-ring $W(\mathbb{K})$ with residue ring \mathbb{K} is called the ring of Witt vectors with coefficients in \mathbb{K} .

Next, we give an explicit construction of the Witt vectors.

Definition 2. Let p be a prime number and let $\{X_i\}_{i=0}^{\infty}$ be a sequence of indeterminates. The polynomials $W_n \in \mathbb{Z}[X_1, \ldots, X_n]$ given by:

$$W_0 = X_0,$$

$$W_1 = X_0^p + pX_1,$$

$$W_n = X_0^{p^n} + pX_1^{p^{n-1}} + \dots + p^nX_n = \sum_{i=0}^n p^i X_i^{p^{n-i}}.$$

are called the Witt polynomials.

Proposition 1. Let $\{X_i\}$, $\{Y_i\}$ be two sequences of indeterminates. For every polynomial in two variables $Q(U,V) \in \mathbb{Z}[U,V]$ there exist polynomials $\{t_i\}_{i=0}^{\infty}$ in the variables $\{X_i\}$ and $\{Y_i\}$

$$t_i \in \mathbb{Z}[\{X_i\}, \{Y_i\}]$$

such that

$$W_n(t_0, t_1, t_2, \dots, t_n) = Q(W_n(X_0, X_1, \dots), W_n(Y_0, Y_1, \dots))$$

for all $n \geq 0$.

Proof. See [?], p. 40.
$$\Box$$

Let S_0, S_1, S_2, \ldots (resp. P_0, P_1, P_2, \ldots) be the polynomials t_0, t_1, t_2, \ldots associated with Q(U, V) = U + V (resp. $Q(U, V) = U \cdot V$) given by the previous proposition. We will use the polynomials S_i, P_i to define the addition and multiplication in a new ring. In the following proposition, the notation R^{∞} stands for the set of all sequences (r_1, r_2, \ldots) of elements in R.

Theorem 2. Let \mathbb{K} be a perfect ring of characteristic p. We define a ring $W = (\mathbb{K}^{\infty}, +, \cdot)$ where the addition and multiplication, for $k, h \in \mathbb{K}^{\infty}$, are defined by:

$$k + h = (S_0(k, h), S_1(k, h), \ldots), \quad k \cdot h = (P_0(k, h), P_1(k, h), \ldots).$$

Then the ring W concides with $W(\mathbb{K})$, the ring of Witt vectors with coefficients in \mathbb{K} .

Definition 3. Let \mathbb{K} be a perfect ring of characteristic p. We define the ring of Witt vectors of length n (over \mathbb{K}) to be the ring $W_n(\mathbb{K}) = (\mathbb{K}^{n-1}, +, \cdot)$, where, for $k, h \in \mathbb{K}^{n-1}$:

$$k + h = (S_0(k, h), \dots, S_{n-1}(k, h)), \quad k \cdot h = (P_0(k, h), \dots, P_{n-1}(k, h)).$$

It is clear from the definitions that:

$$W(\mathbb{K}) = \underline{\lim} W_n(\mathbb{K})$$

In words, $W(\mathbb{K})$ is the projective limit of the Witt vectors of finite length.

Example 1. Let $\mathbb{K} = \mathbb{F}_p$. Then $W_n(\mathbb{F}_p) = \mathbb{Z}/p^n\mathbb{Z}$. Thus:

$$W(\mathbb{F}_p) = \mathbb{Z}_p,$$

the ring of http://planetmath.org/PAdicIntegersp-adic integers.

References

[1] J. P. Serre, Local Fields, Springer-Verlag, New York.