The Battle of Neighbourhoods

Introduction

Toronto is one of the populated areas in Canada with an estimated population of over 6 million people. This brings opportunities for entrepreneurs to start or grow their business. Toronto is well known for its food

The objective of this project is to use Foursquare location data and clustering of venue information to determine what might be the 'best' neighbourhood in Toronto to open a restaurant. Pizza and Pasta are one of the most bought dishes in Toronto originating from Italy. Toronto is the fourth largest home to Italians with a population of over 500k, there are numerous opportunities to open a new Italian restaurant. Through this project, we will find the most suitable location for an entrepreneur to open a new Italian restaurant in Toronto, Canada.

Target Audience

Entrepreneurs or Business owners who want to open a new Italian Restaurant or grow their current business

Data

1. Wikipedia

2. CSV File

3. Venue Data using FourSquare API

Data Cleaning

- 1. Borough that are not assigned are dropped
- 2. If postal code appear twice, the rows will be combined
- 3. If there is a borough but neighbourhood is not assigned, neighbourhood will be the same as borough

Results after cleaning

	Postal Code	Borough	Neighbourhood
2	M3A	North York	Parkwoods
3	M4A	North York	Victoria Village
4	M5A	Downtown Toronto	Regent Park, Harbourfront
5	M6A	North York	Lawrence Manor, Lawrence Heights
6	M7A	Downtown Toronto	Queen's Park, Ontario Provincial Government

After cleaning, we merge with geospatial data from CSV File base on Postal Code

Results after merging

	Postal Code	Borough	Neighbourhood	Latitude	Longitude
0	M3A	North York	Parkwoods	43.753259	-79.329656
1	M4A	North York	Victoria Village	43.725882	-79.315572
2	M5A	Downtown Toronto	Regent Park, Harbourfront	43.654260	-79.360636
3	M6A	North York	Lawrence Manor, Lawrence Heights	43.718518	-79.464763
4	M7A	Downtown Toronto	Queen's Park, Ontario Provincial Government	43.662301	-79.389494

After merging, venue data was taken from Foursquare API to get a list of all Venues in Toronto. We then merged the Foursquare data with the Neighbourhood data which gave us nearest Venue of each Neighbourhoods.

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venu	e Venue Latitude	Venue Longitude	Venue Category
0	Parkwoods	43.753259	-79.329656	Brookbanks Park	43.751976	-79.332140	Park
1	Parkwoods	43.753259	-79.329656	Variety Store	43.751974	-79.333114	Food & Drink Shop
2	Parkwoods	43.753259	-79.329656	Corrosion Service Company Limite	1 43.752432	-79.334661	Construction & Landscaping
3	Victoria Village	43.725882	-79.315572	Victoria Village Arena	43.723481	-79.315635	Hockey Arena
4	Victoria Village	43.725882	-79.315572	Portugril	43.725819	-79.312785	Portuguese Restaurant

Machine Learning

To analyse the data, we transformed the Venue Category into Numerical Data for Machine Learning algorithms. This technique is called **One hot encoding**. The results are as shown below

,	Accessories Store	Afghan Restaurant	Airport	Airport Food Court	Airport Gate	Airport Lounge	Airport Service	Airport Terminal	America Restaurar	n Antiqu nt Sho	е р	Train Station	Turkish Restaurant	Vegetarian / Vegai Restauran	Video Game	Vietnames Restauran	Warehouse Store	Wine Bar	Wings Joint	Women's Store	Yoga Studio
0 0																					0
1 0						0															0
2 0																					0
3 0																					0
4 0	1	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0

Next, we group rows by neighbourhood and by taking the mean of the frequency of occurrence of each category

Next, a new dataframe was created based on neighbourhoods and italian restaurants

	Neighbort	noods	Italian Restaurant
0	Agincourt		0.000000
1	Alderwood, Long Branch		0.000000
2	Bathurst Manor, Wilson Heights, Downsview	North	0.000000
3	Bayview Village		0.000000
4	Bedford Park, Lawrence Manor East		0.086957

Clustering

Now, we want to cluster the neighbourhoods base on neighbourhoods having similar averages of Italian restaurants in that neighbourhood. We use the K-means clustering method. For K-means clustering method, we need to get our optimum K using the Elbow Point method. The best K value is chosen at the point which line has the sharpest turn (K=4)

Now we use K-means clustering to group neighbourhoods into 4 clusters

		Neighborhoods	Italian Restaurant	Cluster Labels
0	Agincourt		0.00	0
47	Leaside		0.00	0
46	Lawrence Park		0.00	0
46	Lawrence Park		0.00	0
46	Lawrence Park		0.00	0
•••				
36	High Park, The Junction South		0.04	3
35	Harbourfront East, Union Statio	on, Toronto Islands	0.02	3
35	Harbourfront East, Union Statio	on, Toronto Islands	0.02	3
35	Harbourfront East, Union Statio	on, Toronto Islands	0.02	3
31	Garden District, Ryerson		0.03	3

Now we visualize the different clusters using folium

Analysis:

We have a total of 4 clusters. Let's check the total amount of neighbourhoods in each cluster and the average Italian Restaurants in that clusters

We see that cluster 3 has the least neighbourhoods and cluster 1 has the most (70). Then we compare average Italian Restaurants per cluster. Even though cluster 2 has about 10 neighbourhoods, it has the highest number of italian restaurants. Now let's analyze the clusters individually

Cluster 1 (Red)

Cluster 1 has 71 unique neighbourhoods and only 1 Italian Restaurant in First Canadian Place, Underground city

Cluster 2 (Purple)

Cluster 2 has 9 unique neighbourhoods but they have 17 Italian Restaurants

Cluster 3(Blue)

Cluster 3 has 15 unique neighbourhoods and 26 Italian Restaurants

Cluster 4(Turquoise)

Borough Neighbourhood Italian Restaurant Cluster Labels Neighborhood Latitude Neighborhood Longitude Venue Venue Latitude Venue Longitude Venue Category

Cluster 4 has 0 neighbourhoods and 0 Italian Restaurants

Discussion

Most of the Italian restaurants are located in cluster 3 represented by the blue circles. We know that Cluster 4 has no neighbourhoods and no Italian restaurants. Looking at all of the clusters, the most appropriate cluster to put a new Italian restaurant is in cluster 1 as it has 71 neighbourhoods but only 1 Italian restaurant, therefore eliminating any competition. Some drawbacks of this analysis are clustering based on data obtain from Foursquare API and also does not consider the population across the neighbourhoods which will affect the business of the new Italian restaurant

Conclusion

A business problem was came up and it was analysed by how a data scientist would analyse the problem. Different python libraries were used to consolidate data, visualize datasets, analyse datasets and eventually coming up with a business solution. We can now address more complex problems using data science.