Machine Learning Logistic Regression (Classification Algorithm)

Dr. Muhammad Kamran Malik

- Supervised Machine Learning algorithm
- Don't be confused by the name "Logistic Regression".
- It is named that way for historical reasons and is actually an approach to classification problems, not regression problems
- Binary Classification Algorithm
- Instead of our output vector y being a continuous range of values, it will only be 0 or 1. $y \in \{0,1\}$
- Where 0 is usually taken as the "negative class" and 1 as the "positive class", but you are free to assign any representation to it.
- One method is to use linear regression and map all predictions greater than
 0.5 as a 1 and all less than 0.5 as a 0.
- This method doesn't work well because classification is not actually a linear function.

- Our hypothesis should satisfy:
 - $0 \le h \vartheta(x) \le 1$
- Our new form uses the "Sigmoid Function" also called the "Logistic Function"
 - $h\vartheta(x)=g(\vartheta^Tx)$
 - $z = \vartheta^T x$
 - $g(z)=1/1+e^{-z}$

Z	sig(z)
-2	0.12
-1.5	0.18
-1	0.27
-0.5	0.38
0	0.50
0.5	0.62
1	0.73
1.5	0.82
2	0.88
2.5	0.92

- We start with our old hypothesis (linear regression), except that we want to restrict the range to 0 and 1.
- This is accomplished by plugging $\vartheta^T x$ into the Logistic Function.
- $h\vartheta$ will give us the **probability** that our output is 1.
- For example, $h\vartheta(x)=0.7$ gives us the probability of 70% that our output is 1.
 - $h\vartheta(x) = P(y=1|x;\vartheta) = 1 P(y=0|x;\vartheta)$
 - $P(y=0|x;\vartheta) + P(y=1|x;\vartheta) = 1$
- Our probability that our prediction is 0 is just the complement of our probability that it is 1 (e.g. if probability that it is 1 is 70%, then the probability that it is 0 is 30%).

Logistic Regression (Decision Boundary)

Logistic Regression (Decision Boundary)

- In order to get our discrete 0 or 1 classification, we can translate the output of the hypothesis function as follows:
 - $h\vartheta(x) \ge 0.5 \Rightarrow y = 1$
 - $h\vartheta(x) < 0.5 \rightarrow y = 0$
- The way our logistic function g behaves is that when its input is greater than or equal to zero, its output is greater than or equal to 0.5:
 - $g(z) \ge 0.5$ when $z \ge 0$
- So if our input to g is $\vartheta^T X$, then that means:
 - $h\vartheta(x)=g(\vartheta^Tx)\geq 0.5$ when $\vartheta^Tx\geq 0$
- From these statements we can now say:
 - $\vartheta^T x \ge 0 \Rightarrow y = 1$
 - $\vartheta^T x < 0 \Rightarrow y = 0$

 The decision boundary is the line that separates the area where y = 0 and where y = 1. It is created by our hypothesis function.

Logistic Regression (Decision Boundary)

•
$$\Theta = \begin{bmatrix} 5 \\ -1 \\ 0 \end{bmatrix}$$

 $y=1 \text{ if } 5+(-1) * x_1 + 0 * x_2 \ge 0$
 $5-x_1 \ge 0$
 $-x_1 \ge -5$
 $x_1 \le 5$

- In this case, our decision boundary is a straight vertical line placed on the graph where $x_1 = 5$, and everything to the left of that denotes y = 1, while everything to the right denotes y = 0.
- Again, the input to the sigmoid function g(z) (e.g. $\vartheta^T X$) doesn't need to be linear, and could be a function that describes a circle (e.g. $z = \vartheta_0 + \vartheta_1 x_1^2 + \vartheta_2 x_2^2$) or any shape to fit our data.

Logistic Regression (Cost Function)

Logistic Regression (Cost Function)

• The more our hypothesis is off from y, the larger the cost function output. If our hypothesis is equal to y, then our cost is 0:

$J(heta) = rac{1}{m} \sum_{i=1}^m \operatorname{Cost}(h_{ heta}(x^{(i)}), y^{(i)})$	
$\operatorname{Cost}(h_{ heta}(x),y) = -\log(h_{ heta}(x))$	if $y = 1$
$\operatorname{Cost}(h_{ heta}(x),y) = -\log(1-h_{ heta}(x))$	if $y = 0$

$Cost(h_{\theta}(x), y) = 0 \text{ if } h_{\theta}(x) = y$
$\operatorname{Cost}(h_{\theta}(x),y) o \infty \text{ if } y = 0 \text{ and } h_{\theta}(x) o 1$
$\operatorname{Cost}(h_{\theta}(x),y) o \infty \text{ if } y = 1 \text{ and } h_{\theta}(x) o 0$

X	$-\log(h_{n}(x))$	$-\log(1-h_{\theta}(x))$
0.1		0.05
0.2	0.70	0.10
0.3	0.52	0.15
0.4	0.40	0.22
0.5	0.30	0.30
0.6	0.22	0.40
0.7	0.15	0.52
0.8	0.10	0.70
0.9	0.05	1.00

Logistic Regression (Simplified Cost Function)

- We can compress our cost function's two conditional cases into one case:
 - Cost $(h\vartheta(x), y) = -y \log (h\vartheta(x)) (1-y) \log (1 h\vartheta(x))$
- Notice that when y is equal to 1, then the second term $-(1-y) \log (1 h\vartheta(x))$ will be zero and will not affect the result. If y is equal to 0, then the first term $-y \log (h\vartheta(x))$ will be zero and will not affect the result.
- We can fully write out our entire cost function as follows:

•
$$J(\theta) = \frac{-1}{m} \sum_{i=1}^{m} [y^i \log(y'^i) + (1 - y^i) \log(1 - y'^i)]$$

Logistic Regression (Gradient Descent)

Logistic Regression (Gradient Descent)

• Repeat{
$$\vartheta_j := \vartheta_j - \alpha \frac{\partial}{\partial \vartheta_j} J(\vartheta)$$
 }

$$J(\theta) = \frac{-1}{m} \sum_{i=1}^{m} [y^i \log(y'^i) + (1 - y^i) \log(1 - y'^i)]$$
$$\sigma(z)' = \sigma(z) \left(1 - \sigma(z)\right)$$

$$y'^{(i)} = h_{\vartheta}(x^{(i)}) = \sigma \left(\vartheta_0 + \vartheta_1 x^{(i)}\right)$$
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Logistic Regression (Vectorized Implementation)

- $h=g(X\vartheta)$
- $J(\vartheta)=1/m * (-y^T \log(h) (1-y)^T \log(1-h))$
- Weight Update
- $\vartheta := \vartheta \alpha / m * X^T (g(X \vartheta) y)$

$$\nabla J(\theta) = \frac{1}{m} \cdot X^T \cdot (g(X \cdot \theta) - \vec{y})$$

Sigmoid Derivation

$$\sigma(x) = \frac{1}{1+e^{-x}}$$

$$\frac{d\sigma(x)}{dx} = \sigma(x)'$$

$$\frac{d\sigma(x)}{dx} = \frac{d}{dx} \left(\frac{1}{1+e^{-x}}\right)$$

$$= \frac{d}{dx} (1+e^{-x})^{-1}$$

$$= -1 * (1+e^{-x})^{-2} \frac{d}{dx} (1+e^{-x})$$

$$= \frac{-1}{(1+e^{-x})^{2}} \frac{d}{dx} (1+e^{-x})$$

$$= \frac{-1}{(1+e^{-x})^{2}} \left(\frac{d}{dx} (1) + \frac{d}{dx} (e^{-x})\right)$$

$$= \frac{-1}{(1+e^{-x})^{2}} \left(0 + e^{-x} \frac{d}{dx} (-x)\right)$$

$$= \frac{-1}{(1+e^{-x})^{2}} (0 + -e^{-x})$$

$$= \frac{e^{-x}}{(1+e^{-x})^2}$$

$$= (\frac{1}{1+e^{-x}})(\frac{e^{-x}}{1+e^{-x}})$$

$$= \sigma(x) \left(\frac{e^{-x}}{1+e^{-x}}\right)$$

$$= \sigma(x) \left(\frac{1-1+e^{-x}}{1+e^{-x}}\right)$$

$$= \sigma(x) \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)$$

$$= \sigma(x) \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)$$

$$= \sigma(x) \left(1-\sigma(x)\right)$$

Binary Cross Entropy

Cost function:

$$J(\theta) = \frac{-1}{m} \sum_{i=1}^{m} [y^i \log(y'^i) + (1 - y^i) \log(1 - y'^i)]$$

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{\partial}{\partial \theta_j} \frac{-1}{m} \sum_{i=1}^m [y^i \log(y'^i) + (1 - y^i) \log(1 - y'^i)]$$

$$= \frac{-1}{m} \sum_{i=1}^{m} \left[y^{i} \frac{\partial}{\partial \theta_{j}} \log(y^{i}) + (1 - y^{i}) \frac{\partial}{\partial \theta_{j}} \log(1 - y^{i}) \right]$$

$$= \frac{-1}{m} \sum_{i=1}^{m} \left[\frac{y^i \frac{\partial}{\partial \theta_j} y'^i}{y'^i} + \frac{(1-y^i) \frac{\partial}{\partial \theta_j} (1-y'^i)}{1-y'^i} \right]$$

$$= \frac{-1}{m} \sum_{i=1}^{m} \left[\frac{y^{i} \frac{\partial}{\partial \theta_{j}} y'^{i}}{y'^{i}} + \frac{(1-y^{i}) \frac{\partial}{\partial \theta_{j}} (1-y'^{i})}{1-y'^{i}} \right]$$

$$= \frac{-1}{m} \sum_{i=1}^{m} \left[\frac{y^{i} (y'^{i})(1-y'^{i}) \frac{\partial}{\partial \theta_{j}} \theta^{T} x}{y'^{i}} + \frac{-(1-y^{i}) (y'^{i})(1-y'^{i}) \frac{\partial}{\partial \theta_{j}} \theta^{T} x}{1-y'^{i}} \right]$$

Objective:

$$\min_{\vartheta_{0,}\vartheta_{1}} J(\vartheta_{0,}\vartheta_{1})$$

Hypothesis Function:

$$y'^{(i)} = h_{\vartheta}(x^{(i)}) = \sigma \left(\vartheta_0 + \vartheta_1 x^{(i)}\right)$$

$$= \frac{-1}{m} \sum_{i=1}^{m} \left[\frac{y^{i} (y'^{i})(1-y'^{i}) \frac{\partial}{\partial \theta_{j}} \theta^{T} x}{y'^{i}} - \frac{(1-y^{i}) (y'^{i})(1-y'^{i}) \frac{\partial}{\partial \theta_{j}} \theta^{T} x}{1-y'^{i}} \right]$$

$$= \frac{-1}{m} \sum_{i=1}^{m} [y^{i} (1 - y^{\prime i}) x_{j}^{i} - (1 - y^{i}) y^{\prime i} x_{j}^{i}]$$

$$= \frac{-1}{m} \sum_{i=1}^{m} [y^{i} (1 - y'^{i}) - (1 - y^{i})y'^{i}] x_{j}^{i}$$

$$= \frac{-1}{m} \sum_{i=1}^{m} [y^{i} - y^{i}y'^{i} - y'^{i} + y^{i}y'^{i}]x_{j}^{i}$$

$$= \frac{-1}{m} \sum_{i=1}^{m} [y^i - y'^i] x_j^i$$

$$= \frac{1}{m} \sum_{i=1}^{m} [y'^{i} - y^{i}] x_{j}^{i}$$