PRECISION SAMPLING

Yanheng Wang

March 16, 2024

Precision sampling, proposed by Andoni, Krauthgamer and Onak, is a method that estimates a sum using noisy observations of its summands. It can be formulated as a game. Alice keeps private values $a_1,\ldots,a_n\in[0,1]$ and Bob wants to estimate their sum $\sigma:=\sum_{i=1}^n a_i$. He tells Alice a tolerable deviation $d_i\geqslant 0$ for each $i\in[n]$, and she in response gives him noisy observations $\hat{a}_i=a_i\pm d_i$. Based on these, Bob should output an estimate $\hat{\sigma}$ such that $\frac{1-\varepsilon}{1+\varepsilon}\sigma-\delta\leqslant\hat{\sigma}\leqslant\frac{1+\varepsilon}{1-\varepsilon}\sigma+\delta$, where $\varepsilon,\delta\geqslant 0$ are prescribed error parameters.

Of course, if Bob requests $d_i \leq \delta/n$ for all $i \in [n]$ then he can just sum up the observations to get a good estimate. But this strategy takes heavy toll on Alice's side, for generally, the cost of an observation inversely relates to the deviation d_i . Think Alice as a measuring instrument: the higher precision we demand, the more resource she needs. Now Bob wonders: Is there a better strategy that saves Alice's cost?

Precision Sampling Lemma. Fix $1/2 \ge \varepsilon > 0$ and $\delta \ge 0$ and write $\ell := 10/\varepsilon^2 \delta$. Consider the following strategy of Bob.

```
\begin{array}{l|l} \mathbf{fn} \ \mathsf{errors}() \\ \hline & \mathbf{for} \ i = 1, \dots, n \ \mathbf{do} \\ & \ \mathsf{sample} \ \mathsf{independent} \ u_{i1}, \dots, u_{i\ell} \sim \mathsf{Uniform}(0,1) \\ & \ \mathsf{let} \ d_i \coloneqq \min \left\{ u_{i1}, \dots, u_{i\ell} \right\} \\ & \ \mathsf{send} \ d_1, \dots, d_n \ \mathsf{to} \ \mathsf{Alice} \\ \hline & \mathbf{fn} \ \mathsf{sum}(\hat{a_1}, \dots, \hat{a_n}) \\ & \ \mathsf{for} \ i = 1, \dots, n \ \mathbf{do} \\ & \ \mathsf{let} \ s_i \ \mathsf{count} \ \mathsf{the} \ \mathsf{number} \ \mathsf{of} \ j \in [\ell] \colon u_{ij} \leqslant \varepsilon \ \hat{a_i} \\ & \ \mathsf{output} \ \hat{\sigma} \coloneqq \frac{1}{\varepsilon \ell} \cdot \sum_{i=1}^n s_i \end{array}
```

Then with probability at least $^3/_5$ (regardless of the concrete values returned by Alice), Bob outputs $\frac{1-\varepsilon}{1+\varepsilon}\sigma - \delta \leqslant \hat{\sigma} \leqslant \frac{1+\varepsilon}{1-\varepsilon}\sigma + \delta$. Moreover,

for every $i \in [n]$,

$$\mathbb{E}(d_i^{-\theta}) = \begin{cases} O(\ell \log n) & \theta = 1, \\ O\left(\frac{\ell^{\theta}}{1 - \theta}\right) & 0 \leq \theta < 1. \end{cases}$$

Proof. The "moreover" part is a routine calculation; just use the fact that d_i has density function $f(x) = \ell (1-x)^{\ell-1}$.

For the remaining part, our plan is to show that $\mathbb{E}(\hat{\sigma}) = \frac{1}{\varepsilon \ell} \sum_{i=1}^{n} \mathbb{E}(s_i)$ is roughly σ , and that $\hat{\sigma}$ concentrates around its mean. However, since the \hat{a}_i 's may adversarially depend on d_i 's, it is difficult to analyse $\mathbb{E}(s_i)$ directly. The trick is to sandwich the variables by easier ones. For $i \in [n]$ and $j \in [\ell]$ we define

$$\begin{split} X_{ij} &:= \mathbf{1} \Big\{ u_{ij} \! \leqslant \! \frac{\varepsilon a_i}{1 + \varepsilon} \Big\}, \\ S_{ij} &:= \mathbf{1} \{ u_{ij} \! \leqslant \! \varepsilon \hat{a_i} \}, \\ Y_{ij} &:= \mathbf{1} \Big\{ u_{ij} \! \leqslant \! \frac{\varepsilon a_i}{1 - \varepsilon} \Big\}. \end{split}$$

Observe that $X_{ij} \leq S_{ij} \leq Y_{ij}$. Indeed, if $X_{ij} = 1$ then $(1 + \varepsilon) u_{ij} \leq \varepsilon a_i$, thus

$$u_{ij} \leq \varepsilon (a_i - u_{ij}) \leq \varepsilon (a_i - d_i) \leq \varepsilon \hat{a_i}$$

which means $S_{ij} = 1$. Similarly, if $S_{ij} = 1$ then

$$u_{ij} \leq \varepsilon \, \hat{a}_i \leq \varepsilon \, (a_i + d_i) \leq \varepsilon \, (a_i + u_{ij}),$$

so $u_{ij} \leq \varepsilon a_i / (1 - \varepsilon)$ and thus $Y_{ij} = 1$. It immediately follows that

$$\left(X := \frac{\sum_{i=1}^{n} \sum_{j=1}^{\ell} X_{ij}}{\varepsilon \ell}\right) \leqslant \hat{\sigma} \leqslant \left(Y := \frac{\sum_{i=1}^{n} \sum_{j=1}^{\ell} Y_{ij}}{\varepsilon \ell}\right)$$

Now we turn to study the behaviours of *X* and *Y*. We calculate

$$\mathbb{E}(X) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{\ell} \varepsilon a_i / (1+\varepsilon)}{\varepsilon \ell} = \frac{\sigma}{1+\varepsilon'}$$

$$\mathbb{E}(Y) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{\ell} \varepsilon a_i / (1-\varepsilon)}{\varepsilon \ell} = \frac{\sigma}{1-\varepsilon}.$$

Similarly, using independence,

$$\operatorname{Var}(X) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{\ell} \operatorname{Var}(X_{ij})}{(\varepsilon \ell)^{2}} \leqslant \frac{\mathbb{E}(X)}{\varepsilon \ell} = \frac{\varepsilon \delta \mathbb{E}(X)}{10},$$

$$\operatorname{Var}(Y) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{\ell} \operatorname{Var}(Y_{ij})}{(\varepsilon \ell)^{2}} \leqslant \frac{\mathbb{E}(Y)}{\varepsilon \ell} = \frac{\varepsilon \delta \mathbb{E}(Y)}{10}.$$

To proceed, we distinguish two cases. If the sum is large, specifically $\sigma \geqslant \delta/\varepsilon$, then we can bound the probability that X,Y deviate from σ multiplicatively:

$$\mathbb{P}(|X - \mathbb{E}X| \ge \varepsilon \, \mathbb{E}X) \le \frac{\operatorname{Var}(X)}{\varepsilon^2 \, \mathbb{E}^2(X)} \le \frac{\delta}{10 \, \varepsilon \, \mathbb{E}(X)} \le \frac{\delta}{5 \, \varepsilon \, \sigma} \le \frac{1}{5};$$

similar for Y. Therefore, with probability at least $^3/_5$ both X and Y are within $(1 \pm \varepsilon)$ times their respective expectations. In such event, we have

$$\frac{1-\varepsilon}{1+\varepsilon}\sigma \leqslant \hat{\sigma} \leqslant \frac{1+\varepsilon}{1-\varepsilon}\sigma$$

as desired.

It remains to consider the case when the sum is small: $\sigma < \delta/\varepsilon$. Due to the small expectations, we can only bound additive deviations:

$$\mathbb{P}(|X - \mathbb{E}X| \geqslant \delta) \leqslant \frac{\operatorname{Var}(X)}{\delta^2} \leqslant \frac{\varepsilon \, \mathbb{E}(X)}{10 \, \delta} \leqslant \frac{\varepsilon \, \sigma}{5 \, \delta} < \frac{1}{5};$$

similar for *Y*. Therefore, with probability at least $^3/_5$ both *X* and *Y* are within $\pm \delta$ of their respective expectations. In such event, we have

$$\frac{1}{1+\varepsilon}\sigma - \delta \leqslant \hat{\sigma} \leqslant \frac{1}{1-\varepsilon}\sigma + \delta$$

as desired.

Extensions. We did not present the lemma in its full generality. A few extensions are possible. First, we may allow observation \hat{a}_i to deviate from truth a_i multiplicatively. That is, we allow Alice returning

$$\frac{a_i}{\gamma} - d \leqslant \hat{a}_i \leqslant \gamma a_i + d$$

for some constant $\gamma \geqslant 1$. The lemma still holds except that the output is affected by a γ -factor:

$$\frac{1-\varepsilon}{(1+\varepsilon)\gamma}\sigma - \delta \leqslant \hat{\sigma} \leqslant \frac{(1+\varepsilon)\gamma}{1-\varepsilon}\sigma + \delta.$$

Second, we need not memorise all the uniform variables u_{ij} 's; it suffices to remember the w_i 's. When we run function sum(), we generate *fresh* variables u_{ij} conditioned on min $\{u_{i1},...,u_{i\ell}\}=d_i$. If we treat the processes errors() and sum() as a whole, then $u_{i1},...,u_{i\ell}$ are indeed independent uniform random variables over (0,1), so the proof gets through.

Finally, the randomness in sum() can be removed altogether. The idea is to redefine $s_i := \mathbb{E}(\sum_{j \in [\ell]} S_{ij} | d_i)$. Apparently $\mathbb{E}(s_i) = \mathbb{E}(\sum_{j=1}^{\ell} S_{ij})$; it is also well known that conditioning reduces variance: $\operatorname{Var}(s_i) \leq \operatorname{Var}(\sum_{j=1}^{\ell} S_{ij})$. So $\hat{\sigma}$ should still concentrate around σ . Unfortunately, it is impossible to compute s_i in the first place. But luckily, one can approximate it from two sides. Note that

$$\mathbb{E}\left(\sum_{j\in[\ell]}X_{ij}\,\middle|\,d_i\right) = \begin{cases} 0 & \text{if } d_i > \frac{\varepsilon a_i}{1+\varepsilon},\\ 1+(\ell-1)\frac{\varepsilon a_i/(1+\varepsilon)-d_i}{1-d_i} & \text{otherwise,} \end{cases}$$

and

$$\mathbb{E}\left(\sum_{j\in[\ell]}Y_{ij}\,\middle|\,d_i\right) = \begin{cases} 0 & \text{if } d_i > \frac{\varepsilon a_i}{1-\varepsilon},\\ 1 + (\ell-1)\frac{\varepsilon a_i/(1-\varepsilon) - d_i}{1-d_i} & \text{otherwise.} \end{cases}$$

Hence, if we set instead

$$s_i \coloneqq \begin{cases} 0 & \text{if } d_i > \varepsilon \, \hat{a}_i, \\ 1 + (\ell - 1) \, \frac{\varepsilon \, \hat{a}_i - d_i}{1 - d_i} & \text{otherwise,} \end{cases}$$

then $\hat{\sigma}$ is sandwiched between two values concentrated around σ .

Application. Let us showcase the precision sampling lemma in the context of p-th moment estimation (p>2). The task is to maintain a vector $x \in \mathbb{R}^n$ that initialises to $\mathbf{0}$ within o(n) space. We support the update operation $\mathrm{add}(i,\Delta)$ which adds value $\Delta \in \mathbb{R}$ to entry x_i . In the end we should output a multiplicative approximation to $\|x\|_p^p := \sum_{i=1}^n |x_i|^p$.

Fix parameter $\varepsilon > 0$ that controls the output quality. One could estimate $\|x\|_2$ within $(1 \pm {}^1\!/_p)$ multiplicative error using polylog(n) space via an algorithm by Alon, Matias and Szegedy. So after proper scaling we may assume $\|x\|_2 \in [1-{}^1\!/_p,1]$, in particular $a_i \coloneqq |x_i|^p \in [0,1]$ for all $i \in [n]$. Furthermore, it follows from Hölder's inequality that $\|x\|_p^p \ge \|x\|_2^p / n^{p/2-1} \ge \frac{1}{\mathrm{e}^{n^{p/2-1}}}$. Hence, by choosing $\delta \coloneqq \frac{\varepsilon}{\mathrm{e}^{n^{p/2-1}}}$, any additive $\pm \delta$ error to $\|x\|_p^p$ transfers to at most a *multiplicative* $1 \pm \varepsilon$ error.

Here we lay the plan. First we play Bob's strategy to generate the deviations d_1,\ldots,d_n . Then we pretend to be Alice and manage the updates. In the end we as Alice must produce noisy observations \hat{a}_i that deviate from truths a_i by at most multiplicative $1 \pm \varepsilon$ and additive $\pm d_i$. Finally we switch back to Bob and output an estimate $\hat{\sigma}$ to $\sum_{i=1}^n a_i = \|\mathbf{x}\|_p^p$. The precision sampling lemma guarantees $\frac{(1-\varepsilon)^2}{1+\varepsilon}\|\mathbf{x}\|_p^p \leqslant \hat{\sigma} \leqslant \frac{(1+\varepsilon)^2}{1-\varepsilon}\|\mathbf{x}\|_p^p$ with decent probability.

It remains to specify how to play Alice's role. Let us generate a pairwise independent function $h:[n] \to [m]$ that maps indices to bins. Independent of h, we sample another pairwise independent function $\operatorname{sgn}:[n] \to \{+1,-1\}$. Create variables V_1,\ldots,V_m that are initially zero. Upon update $\operatorname{add}(i,\Delta)$ we increase $V_{h(i)}$ by $\frac{\operatorname{sgn}(i)\Delta}{d_i^{1/p}}$. After finishing all the updates, we would have

$$V_b \coloneqq \sum_{i \in h^{-1}(b)} \frac{\operatorname{sgn}(i) x_i}{d_i^{1/p}}$$

for each bin $b \in [m]$. We return

$$\hat{a_i} := d_i |V_{h(i)}|^p$$

for each $i \in [n]$ as noisy observations.

Lemma. Take $m := (4p \varepsilon^{1/p-1} \ell^{1/p})^2$. Then for any fixed $i \in [n]$ we have $\hat{a}_i = (1 \pm \varepsilon) a_i \pm d_i$ with probability at least $^3/_4$.

Proof. To gain some intuition, imagine that no collision occurs in bin h(i). Then $\hat{a_i} = d_i \left| \frac{\operatorname{sgn}(i) x_i}{d_i^{1/p}} \right|^p = |x_i|^p = a_i$ is an exact observation. But in reality there are plenty of collisions since $m \ll n$. If d_i is small then x_i contributes heavily to V_b , so the noise due to collision is negligible. On the other hand, if d_i is large then the noise might drown x_i , but it does not matter since we tolerate a large additive deviation.

Formally, let us expand the definition of \hat{a}_i :

$$\hat{a_i} = d_i \left| \sum_{j \in h^{-1}(b)} \frac{\operatorname{sgn}(j) x_j}{d_j^{1/p}} \right|^p = \left| \operatorname{sgn}(i) x_i + d_i^{1/p} \sum_{j \neq i: h(j) = h(i)} \frac{\operatorname{sgn}(j) x_j}{d_j^{1/p}} \right|^p.$$

Denote the big sum by Σ , then

$$\hat{a}_i = (|x_i| \pm d_i^{1/p} |\Sigma|)^p. \tag{1}$$

Towards showing $\hat{a}_i \approx a_i$, let us bound the variance of noise Σ :

$$\begin{split} \mathbb{E}(\Sigma^2) &= \mathbb{E}\left[\left(\sum_{j\neq i}\mathbf{1}\{h(j) = h(i)\} \cdot \frac{\operatorname{sgn}(j)\,x_j}{d_j^{1/p}}\right)^2\right] \\ &= \sum_{j\neq i}\mathbb{E}\left[\mathbf{1}\{h(j) = h(i)\} \cdot \frac{x_j^2}{d_j^{2/p}}\right] \\ &= \sum_{j\neq i}\frac{x_j^2}{m}\mathbb{E}(d_j^{-2/p}) \\ &\leq \frac{\ell^{2/p}}{m} = \frac{1}{(4p\,\varepsilon^{1/p-1})^2} \end{split}$$

Here in the second line, we expanded the square and noticed that a pair $\{j, j'\}$ contributes zero in expectation if $j \neq j'$. The fourth line follows from the precision sampling lemma and $||x||_2 \leq 1$. With the variance controlled, we apply Chebyshev to obtain

$$\mathbb{P}\left(|\Sigma| > \frac{1}{2p\,\varepsilon^{1/p-1}}\right) \leqslant \frac{1}{4}.$$

Now we assume $|\Sigma| \leq \frac{1}{2p\epsilon^{1/p-1}} \ll 1$ and get back to (1). Let us split two cases:

- (i) $d_i^{1/p} |\Sigma| \leq \frac{\varepsilon}{2p} |x_i|$, so the noise-signal ratio is low. We derive $\hat{a_i} = \left[\left(1 \pm \frac{\varepsilon}{2p}\right) |x_i|\right]^p \leq (1 \pm \varepsilon) a_i$.
- (ii) $d_i^{1/p} |\Sigma| > \frac{\varepsilon}{2p} |x_i|$, so the noise-signal ratio is high. But since we assumed that the noise amplitude $|\Sigma|$ is tiny, the signal amplitude $|x_i|$ must be tiny too. Hence the additive deviation $|\hat{a_i} a_i|$ should not be large.

To be precise, the assumptions imply $|x_i| < \frac{2p |\Sigma| d_i^{1/p}}{\varepsilon} \le (d_i/\varepsilon)^{1/p}$. We bound

$$\begin{split} \hat{a}_i - a_i &\leqslant \left(|x_i| + d_i^{1/p} |\Sigma| \right)^p - |x_i|^p \\ &\leqslant \left(|x_i| + \frac{d_i^{1/p}}{2 p \varepsilon^{1/p - 1}} \right)^p - |x_i|^p \\ &\leqslant \left[\left(\frac{d_i}{\varepsilon} \right)^{1/p} + \frac{d_i^{1/p}}{2 p \varepsilon^{1/p - 1}} \right]^p - \frac{d_i}{\varepsilon} \\ &\leqslant \frac{d_i}{\varepsilon} \left[\left(1 + \frac{\varepsilon}{2 p} \right)^p - 1 \right] \leqslant d_i. \end{split}$$

Here the third line used that $z \mapsto (z+c)^p - z^p$ is monotonically increasing on $[-c, \infty)$, where $c \ge 0$.

For the inverse difference, we bound

$$a_{i} - \hat{a}_{i} \leq |x_{i}|^{p} - (|x_{i}| - d_{i}^{1/p}|\Sigma|)^{p}$$

 $\leq (|x_{i}| + d_{i}^{1/p}|\Sigma|)^{p} - |x_{i}|^{p}$
 $\leq d_{i}$

where the second line used convexity of $z \mapsto (z+c)^p$, and the third line follows from previous calculations.

Of course, the success probability $^3/_4$ is not enough for union bound over all indices $i \in [n]$. But we can easily boost the probability to $1 - 1/n^2$ by taking the median result of $\Theta(\log n)$ independent threads. This concludes the description and analysis for Alice.