III B. Tech II Semester Supplementary Examinations, November - 2019 DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science and Engineering)

1111	ne: 3 hours Max. Mar	ks: 70
	Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B	
	PART -A (14 Marks)
a)	What is an Algorithm?	[2M]
b)	Describe the Algorithm Analysis of Binary Search.	[2M]
c)	State the Job – Sequencing with Deadline Problem.	[2M]
d)	Define i) Principles of optimality, ii) Feasible solution, iii) Optimal solution.	[3M]
e)	Define Chromatic number and give the state space tree for 4 – coloring problem.	[3M]
f)	Distinguish between fixed-tuple sized and variable tuple sized state space trorganization.	ee [2M]
	· ·	56 Marks)
a)	Give the algorithm for addition of two matrices and determine the time complexity this algorithm by frequency – count method.	of [7M]
b)	Discuss the Pseudo code conventions for expressing algorithms.	[7M]
a)	Write Divide – And – Conquer recursive Merge sort algorithm and derive the tincomplexity of this algorithm.	me [7M]
b)	Write the general method of Divide – And – Conquer approach.	[7M]
a)	Explain the general principle of Greedy method and also list the applications of Gree method.	dy [7M]
b)	What is a Spanning tree? Explain Prim's Minimum cost spanning tree algorithm we suitable example.	ith [7M]
a) b)	Explain Reliability Design problem with suitable example. Describe the Dynamic 0/1 Knapsack problem. Find an optimal solution for the dynamic programming 0/1 knapsack instance for n=3, m=6, profits at $(p1, p2, p3) = (1, 2, 5)$, weights are $(w1, w2, w3) = (2, 3, 4)$.	[7M] he [7M] are
a)	What is a Hamiltonian Cycle? Explain how to find Hamiltonian path and cycle usi	ng [7M]
b)	backtracking algorithm? Discuss the 4 – queen's problem. Draw the portion of the state space tree for n = queens using backtracking algorithm.	4 [7M]
a)	Give the 0/1 Knapsack LCBB algorithm. Explain how to find optimal solution usi	ng [7M]
b)	variable – tuple sized approach? Distinguish between backtracking and branch – and bound techniques.	[7M]
