Protocolo CAN

Definición CAN

CAN es un protocolo de comunicación serial que soporta de forma eficiente la distribución de comandos en tiempo real y con un alto nivel de seguridad. (ISO)

Desarrollado por R. Bosch GmbH en 1985

En 1993 se convirtió en estándar internacional (ISO 11898).

Antes de CAN se utilizaba conexión punto a punto (Entradas analógicas y digitales).

Desde 2007 en USA es requisito para implementar OBD2 en todo automóvil.

Capa Física

CAN de Alta Velocidad

Tasas de transferencia de hasta I Mb/s.

Ejemplos: sistemas de frenos anti-bloqueo, módulos de control del motor y sistemas de emisiones.

Mensaje de CAN

Los dispositivos CAN envían datos a través de una red CAN en paquetes llamados frames o mensajes.

CAN 2.0A: II bit ID

SOF	ID	RTR	IDE	DLC	Campo de datos	CRC	ACK	EOF
1 bit	11 bits	1 bit	1 bit	4 bit	8 bytes	15 bits	3 bits	7 bits

CAN 2.0B: 29 bit ID

Mensaje de CAN

- ▶ Bit SOF (start-of-frame) indica inicio de mensaje con un bit dominante (lógica 0)
- Identificación de Arbitraje (ID) identifica el mensaje e indica la prioridad del mismo.
- Bit RTR (remote transmission request) diferenciar un marco remoto de un marco de datos. RTR dominante (lógica 0) = marco de datos. RTR recesivo (lógica I) = marco remoto.
- ▶ Bit IDE (identifier extension) permite la diferenciación entre marcos estándar y extendidos.
- ▶ DLC (data length code) indica el número de bytes que contiene el campo de datos.
- ▶ Campo de Datos contiene de 0 a 8 bytes de datos.

Mensaje de CAN

- ▶ CRC (cyclic redundancy check): código de 15 bits y un bit recesivo para delimitar. El campo CRC se utiliza para detectar errores.
- Ranura ACK (ACKnowledgement): cualquier controlador CAN que recibe mensajes correctamente envía un bit de ACK al final del mensaje. El nodo transmisor revisa la presencia del bit ACK en el bus e intenta nuevamente la transmisión en caso de no detectarlo.
- ▶ EOF (End of frame): da el final de la trama.

Comunicación en CAN

@ 2002, CRN in Automotion - TS

http://www.can-cia.org/index.php?id=systemdesign-can-protocol

Detección de Errores

- Cyclic Redundancy Check (CRC): asegura contenido correcto del mensaje.
- Frame Check: asegura un tamaño y formato correcto del mensaje.
- ACK Error: confirmación por receptores de mensaje correcto.
- Monitoreo: todas las estaciones monitorean el bus aunque no ocupen el mensaje.
- Bit Stuffing: generación de flancos para sincronización. Después de 4 bits del mismo valor lógico se inserta un bit de valor lógico opuesto.

Características de CAN

- Capacidad Multi-maestro: cualquier nodo puede mandar mensajes.
- Todos los mensajes son recibidos por todos los nodos, los cuales deciden si aceptan el mensaje o no. Garantizando la consistencia de la información en todo el sistema.
- Métodos sofisticados de detección de errores y retransmisión de mensajes erróneos.
- Arbitraje de acceso al bus no destructivo: asegura que el mensaje con mayor prioridad tenga acceso al bus de inmediato.

Ejemplo mensaje CAN

Byte 1	Byte 2	Byte 3	Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8						
RP	M	dRP	M/dt	Vel. Ve	ehículo	APP	dAPP/dt	Variable	
rev/1	min	RPM/seg		Km/hr		%	%/seg	Unidades	
1		1		0.01		0.5	2	Resolución	
0 a 16	6383	-16384	a 16383	0 a 327.67		0 a 100	-256 a 252	Rango	

OBDII

OBD 2

Estándar y sistema de autodiagnóstico vehicular, que permite almacenamiento y reporte de fallas.

Se utiliza un puerto de comunicaciones estandarizado.

Uso de *Diagnostic Trouble Codes* (DTCs) para rápida identificación de problemas a nivel componente.

Iluminación de la lámpara de advertencia de fallas (MIL o Check Engine)

Conector OBD2 SAEJ1962

Terminal	General Assignment			
1	Discretionary*			
2	Bus + Line of SAE J1850 **			
3	Discretionary*			
4	Chassis Ground			
5	Signal Ground			
6	CAN High of SAE J2284***			
7	K Line of ISO 9141-2 and			
	ISO/DIS 14230-4**			
8	Discretionary*			
9	Discretionary*			
10	Bus - Line of SAE J1850 **			
11	Discretionary*			
12	Discretionary*			
13	Discretionary*			
14	CAN Low of SAE J2284***			
15	L Line of ISO 9141-2 and			
	ISO/DIS 14230-4**			
16	Unswitched Vehicle Battery			
	Positive			

Rutina típica del ciclo de manejo

"Viaje" típico de OBD II									
Instrucción de manejo	Arranque y caliente el motor (hasta 180°F 82°C)	Ralentí (marcha mínima)	(// kmn)		Maneje a 20-40 MPH (32-64 Kmh) (No WOT)	Desacelere y deje el vehícu- lo en marcha mínima			
Tiempo	Hasta 4 Minutos	45 Segundos	10 Segundos	60 Segundos	4 Minutos	10 Segundos	10 Segundos		
	← Mc	onitorios de Fa	(10	/iaje OBD I Mins. 15 Se endido (Misfire	gs.)	de Combustib	ble		
	(6 Mins. 15 Segs.) Monitorios HO2S								
	Monitorio de EGR y de Componentes Comprensivos								

Protocolo de comunicación OBD 2

Modo (Hex)	Descripción
01	Información en tiempo real
02	Mensajes "congelados" al ocurrir falla
03	DTCs almacenados
04	Borrar DTCs
05	Monitoreo de sensor de oxigeno (diferente de CAN)
06	Resultados de pruebas y monitoreo de sistemas (CAN)
07	DTCs pendientes (ciclo conducción actual)
08	Control de sistemas/componentes
09	Información del vehículo
0A	DTCs permanentes (historial)

Ejemplo: P0137 Bajo Voltaje Banco 1 Sensor 2

(Low Voltage Bank 1 Sensor 2)

PROTOCOLOS DE DIAGNÓTICO

CÓDIGO	DESCRIPCIÓN				
P1250	Fuel Level Too Low				
P1401	EGR Valve Power Stage Short To Ground				
P1500	Fuel Pump Relay Electrical Circuit Malfunction				
P1539	Clutch Pedal Switch Signal Fault				
P1545	Throttle Position Control Malfunction				
P1612	Engine Control Module Incorrect Coding				
P1648	CAN-Bus System Component Failure				
P1851	Data Bus Drive Missing Command From ABS				

CÓDIGO	DESCRIPCIÓN
U1250	Loss of serial communications for class 2 devices
B1350	Engine Coolant Over-Temperature
U1500	Inter-Device Dedicated Bus Malfunction
B1514	Charging System Volts High
B1805	Ignition Switch Problem
B1981	Battery Voltage Low
B2462	GPS Signal Error
B2476	Parklamp Fault

http://www.obd-codes.com/trouble_codes

Circuito en Corto de un Sensor tipo Termistor NTC

(Shorted NTC Sensor Circuit)

EJEMPLOS PIDs OBD 2

PIDs Hex.	Bytes	Descripción	min.	máx.	res.	Unid.	Fórmula
0x04	1	Carga calculada del motor	0	100	1	%	A/2.55
0x05	1	Temperatura refrigerante del motor	-40	215	1	°C	A-40
0x0B	1	Presión múltiple de admisión	0	255	1	KPa	A
0x0C	2	RPM del motor	0	16383.75	0.25	RPM	(256A+B)/4
0x0D	1	Velocidad lineal del vehículo	0	255	1	Km/h	A
0x11	1	Posición de la válvula mariposa	0	100	1	%	A/2.55
0x49	1	Posición del pedal acelerador	0	100	1	%	A/2.55

Como escribir PIDs OBD 2 en CAN?

ID Hex.	Descripción	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
7DF	RPM solicitud OBDII	02	01	0C	00	00	00	00	00
7E8	RPM lectura OBDII	04	41	0C	15	CF	00	00	00
7DF	Vel. solicitud OBDII	02	01	0D	00	00	00	00	00
7E8	Vel. lectura OBDII	03	41	0D	3F	00	00	00	00
		DLC	MODO	PIDs	Byte A	Byte B			
					Va	lor			

vs CAN

Byte 1	Byte 2	Byte 8	Características					
RF	PM	dRP	M/dt	Vel. Ve	ehículo	APP	dAPP/dt	Variable
rev/	min	RPM	RPM/seg		Km/hr		%/seg	Unidades
	1	1		0.01		0.5	2	Resolución
0 a 1	0 a 16383 -16384 a 16383		0 a 327.67		0 a 100	-256 a 252	Rango	

Comparación lectura de datos de OBD 2 y CAN

Atributo		Modo CAN monitor V entajas/ D esventajas		Modo OBDII Ventajas/ D esventajas			
Desfase (tiempo)	V	No existe, al comparar el valor real vs el leído.	D	Podría existir, entre el valor real actual y valor leído.			
ID	D	Los ID no son públicos, hay que recurrir a ingeniería inversa.	V	La petición se realiza por medio de PIDs, los cuales están estandarizados.			
Lectura	V	Se lee directo del bus.	D	Se requiere una petición y esperar la respuesta.			
Resolución	V	La máxima que emplean las computadoras para sus cálculos.	D	Se reduce considerablemente la resolución en la mayoría de los parámetros.			
Frecuencia de muestreo	V	Es considerablemente mayor, ya que las computadoras requieren esta información en RT.	D	Es menor, ya que solo se usa para diagnóstico.			
Variables	V	Podría decirse que, no hay límite en los parámetros que pueden subirse.	D	La cantidad de parámetros están limitados por los PIDs			