PH108

Lecture 03
Co-ordinate systems
Quick review

Pradeep Sarin
Department of Physics

Supplementary reading: 'Div, Grad, Curl and all that' - Chapter 2

Coordinate systems

Cartesian:
$$(x, y, z)$$

 $(\hat{\imath}, \hat{\jmath}, \hat{k})$

Polar:
$$(r, \theta, \phi)$$

 $(\hat{r}, \hat{\theta}, \hat{\phi})$

Cylindrical: (r, ϕ, z) $(\hat{r}, \hat{\phi}, \hat{k})$

How are unit vectors defined?

Recall: force **BY** q_1 **ON** q_0 is given by:

$$\overrightarrow{F_{10}} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_0}{r_{10}^2} (\widehat{u})$$

$$\overrightarrow{r_{10}} = \overrightarrow{r_0} - \overrightarrow{r_1} = |\overrightarrow{r_0} - \overrightarrow{r_1}| \ \widehat{u}$$

Why are unit vectors useful?

Vector math becomes *independent* of coordinate systems

You can use a coordinate system suitable for simplifying the vector math

HOW? In any particular coordinate system, project the vector onto the coordinate axes

Example: POSITION VECTOR \vec{r} $\vec{r} = (\vec{r} \cdot \widehat{u_1}) \widehat{u_1} + (\vec{r} \cdot \widehat{u_2}) \widehat{u_2} + (\vec{r} \cdot \widehat{u_3}) \widehat{u_3}$

Questions

A) What are the *dimensions* of the unit vector?

1) $M^1 L^1 T^1$

2) $M^0 L^1 T^1$

3) $M^0 L^{-1} T^0$

 $4) M^0 L^0 T^0$

B) In polar coordinates what is the position vector \vec{r} of the point P shown at (x,y,z) = (0, 2m, 0)

1)
$$\vec{r} = 2m \,\hat{r} + \pi \,\hat{\theta}$$
 2) $\vec{r} = 2m \,\hat{r}$

$$2) \vec{r} = 2m \hat{r}$$

3)
$$\vec{r} = 2m \hat{r} + \pi \hat{\theta} + \pi \hat{\phi}$$
 3) something else

Unit vectors of polar coordinates change direction as you move to different points

Cartesian unit vectors are *fixed* $\hat{\imath}$, \hat{j} , \hat{k} constant magnitude and constant direction

Polar unit vectors change direction with position

$(\hat{r}, \hat{\theta}, \hat{\phi})$ change direction \rightarrow have to evaluate differential changes carefully!

Consider the position vector $\vec{r} = r\hat{r}$ Velocity: $v = \frac{d\vec{r}}{dt}$

If the particle is moving on a great circle, it makes sense to use polar coordinates

$$v = \frac{d}{dt}(\vec{r}) = \frac{d}{dt}(r\hat{r}) = \frac{dr}{dt}\hat{r} + r\frac{d\hat{r}}{dt}$$

! \hat{r} changes as a function of time

Project $(\hat{r}, \hat{\theta}, \hat{\phi})$ onto unit vectors that *do not* change as a function of time

$$\hat{r} = \sin\theta\cos\phi \,\hat{\imath} + \sin\theta\sin\phi \,\hat{\jmath} + \cos\theta \,\hat{k}$$

$$\hat{\theta} = \cos\theta\cos\phi \,\hat{\imath} + \cos\theta\sin\phi \,\hat{\jmath} + \sin\theta \,(-\hat{k})$$

$$\hat{\phi} = \sin\phi \,(-\hat{\imath}) + \cos\phi \,\hat{\jmath}$$

For the great circle in x-z plane, $\phi = 0$

$$\frac{\mathrm{d}\hat{r}}{\mathrm{dt}} = \frac{\mathrm{d}}{\mathrm{dt}} \left(\sin\theta \,\,\hat{\imath} + \cos\theta \,\,\hat{k} \right) = \frac{\mathrm{d}\theta}{\mathrm{d}t} \,\hat{\theta}$$

$$v = \frac{dr}{dt}\hat{r} + r\frac{d\theta}{dt}\hat{\theta}$$

So
$$v = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$$

Question

Consider a particle **P** moving along a circle of *constant* radius *r*

Its velocity in polar coordinates is:

1)
$$v = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$$

2)
$$v = r\hat{r} + r\dot{\theta}\hat{\theta}$$

3)
$$v = r\dot{\theta}\hat{\theta}$$

4)
$$v = \dot{r}\hat{r}$$

Velocity vector field

Line, Area and Volume in polar coordinates

$$\overrightarrow{dl} = dr\,\hat{r} + rd\theta\,\hat{\theta} + rsin\theta d\phi\hat{\phi}$$

Vector Area elements:

$$\overrightarrow{d\sigma_r} = r^2 sin\theta d\theta d\phi \,\hat{r}$$

$$\overrightarrow{d\sigma_\theta} = r sin\theta dr d\phi \,\hat{\theta}$$

$$\overrightarrow{d\sigma_\phi} = r dr d\theta \,\hat{\phi}$$

Volume element dV

 $dV = r^2 \sin\theta \, dr \, d\theta \, d\phi$

What is the use of all this math?

Consider a point charge qDetermine the electric field at a distance r

Think of q as a 'source' of a vector field E

A trivial calculation...

All field lines leaving the source must cross the sphere

What is the flux of a vector field?

What is the rate at which water accumulates in the bucket?

i.e volume of water crossing the surface of area ΔS in time Δt ?

$$\Phi = \frac{(v\Delta t)d\sigma}{\Delta t} = v d\sigma$$

Flux (latin root = flow)

What if the pipe is sliced at an angle?

What is the rate at which water accumulates in the bucket?

$$\Phi = \vec{v} \cdot \overrightarrow{d\sigma}$$

Flux: non trivial case

What if the velocity varies from point to point?

What is the rate at which water accumulates in the bucket?

ie Flux Φ?

$$\Phi = \int_{S} \vec{v} \cdot \overrightarrow{d\sigma}$$

Define: Divergence

Divergence of a vector field

is the net outward flux

through a closed surface

enclosing a volume

$$\nabla \cdot \overrightarrow{W} = \lim_{\Delta v \to 0} \frac{1}{\Delta v} \oint \overrightarrow{W} \cdot \overrightarrow{dS}$$
 as the volume $\to 0$

Worked examples in tutorials!