Orderings

Loris Jautakas

September 10, 2023

1 Orderings

Definition 1: [set, relation]/preorder

Consider

1. A set X

2. A relation $\prec \subseteq X^2$

 (X, \prec) is a preorder iff:

1. \prec is reflexive

$$\forall_x^X x \prec x \tag{1}$$

2. \prec is transitive

$$\forall_{x,y,z}^{X} x \prec y \land y \prec z \implies x \prec z \tag{2}$$

Result 1: [small_category]/ preorder_is_small_category

A preorder is a small category.

Definition 2: [preorder]/ partial_order

Consider

1. Preorder $\mathcal{M} = (X, \prec)$

 \mathcal{M} is a partial order iff:

1. A \mathcal{M} is antisymmetric:

$$\forall_{x,y}^{X} x \prec y \land y \prec x \implies x = y \tag{3}$$

Definition 3: [partial_order]/ total_order

A total order is a preorder \prec on a set X that is: