US Income Classification

Data set

• In the census data every record represents a person with 14 attributes, the last element of a record is one of the labels {>=50K,<50K}.

Age: continuous

Workclass: 8 values

■ Education: 16 values

Education-num: continuous.

Marital-status: 7 values

Occupation: 14 values

Relationship: 6 values

Race: 5 values

Sex: Male, Female

Capital-gain: continuous.

Capital-loss: continuous.

Hours-per-week: continuous.

Native-country: 41 values

>50K Income: Yes, No

Business Problem

- Q1. Which of the variables (age, occupation, sex, etc.) are most decisive for determining the income of a person?
- Q2. Which values for which variables form conditions that would imply high income or low income?
- Q3. What percentage of people of which race, Occupation, Education, Age, status can afford what kind of Standard of living

Patterns in Data Set

- Age vs Job- younger people tend to work in the private sector while older people work for the local government or are self employed
- Age vs Number of Years In School- older a person is, the more likely he/she is to have a greater number of years of education
- 50K vs School Level- people who finish college are significantly more likely to earn over
 50K

Tableau Visualization

Algorithms

We build following algorithms to solve above problem

- 1. Two class boosted Decision Tree
- 2. Two class Decision Jungle
- 3. Two class Logistic Regression
- 4. Two class Neural Network
- 5. Two class Decision Forest

Designing of Algorithms in Azure and R

- 1. Import the training dataset and include in Azure data set
- 2. Added R block to transform the data
 - Dataset contained invalid data in some columns with '?'
 - Replaced the invalid characters with NA's and converted them to factors
- 3. Selected columns from datasets which are functions required to calculate the income

- 4. Cleaned the missing data using Multivariate imputation using chained equations(MICE). Each variable with missing data is modeled conditionally using the other variable in the data before filling the missing values.
- 5. Added 3 metadata modules
 - I. Selected income #result column as label to predict
 - II. Selected String variables and made them categorial
 - III. Selected other Numeric fields and setted its field as Integer
- 6. Filter based feature selection was used to select the important features which helps predicting the binary income classifier. Perarson's coorelation was as a base to score the important features
- 7. Used 5 different two class algorithm of which Two-class boosted decision algorithm resulted in highest accuracy of all.
- 8. Trained the model for the training dataset
- 9. Imported test dataset and process with steps 2 to 5
- 10. Scored the trained model for above test dataset
- 11. Evaluate the model for accuracy and use it as a web service.
- 12. The service was implemented in a web application to predict the income level when provided with the required input parameters
- 13. The web application was hosted in AWS at below url. http://census-env-new.us-west-2.elasticbeanstalk.com/

ROC Curve

- All the algorithms were evaluated and Two-Class Boosted Tree was found to be best with 87% accuracy
- Two-class Boosted Algorithm was used to deploy the web service and classification analysis uses this model in the web application

Integration

Azure

https://ussouthcentral.services.azureml.net/workspaces/855d6eb6f36e47eeaebfc6a8241e7cf2/services/a2159cb8885a4d94887ee0b04094baa7/execute?api-version=2.0&details=trueAWS domain:

http://census-env-new.us-west-2.elasticbeanstalk.com

Tableau Dashboard:

https://public.tableau.com/views/Assignment3_128/IncomebyNativeCountry?:embed=y&:display_count=yes

https://public.tableau.com/views/Assignment3_128/DashboardfprIncomebetweenWorkplace andEducation?:embed=y&:display_count=yes

True Positive	False Negative	Accuracy	Precision	Threshold		AUC
2581	1265	0.870	0.751	0.5	55	0.927
False Positive	True Negative	Recall	F1 Score			
857	11577	0.671	0.709			
Positive Label	Negative Label					

True Positive	False Negative	Accuracy	Precision	Threshold		AUC
2426	1420	0.847	0.695	0.5	ш	0.888
False Positive	True Negative	Recall	F1 Score			
1066	11368	0.631	0.661			
Macazine usus	Consideration of the Constitution of the Const					

True Positive	False Negative	Accuracy	Precision	Threshold	AUC
2311	1535	0.858	0.749	0.5	0.906
False Positive	True Negative	Recall	F1 Score		
776	11658	0.601	0.667		

True Positive 2222	False Negative 1624	0.849	Precision 0.728	Threshold — 0.5	-0-	0.903
False Positive 830	True Negative 11604	0.578	F1 Score 0.644			
Overline Verbal	Managina Labori					

875

Positive Label Negative Label >50K. <=50K.

11559

0.592

0.651