PH108

Lecture 11:

Method of Images – plane conductor

Pradeep Sarin
Department of Physics

Supplementary material: method of images for spherical conductors – Lecture 12 + problems in tutorials

Method of images is an intuitive method to solve Laplace's equation

Recall: solution to $\nabla^2 \Phi = 0$ is unique

If we develop a systematic intuitive method to solve for Φ with given boundary conditions, its good enough – we will get the right Φ

The method of images works for <u>conductors</u> with arbitrary charge distribution around them

Point charge above a grounded conductor

infinite conductor in x-y plane

Point charge q is placed at z=d above the plane

Problem: Determine $\Phi(x,y,z)$ for z>0 except at z=d

Intuition: visualize the field lines

 Φ and \vec{E} are continuous functions

To make field lines match, induced σ on conductor is $\sigma(x,y)$

Intuition suggests an image charge

Note: the image charge q_i is completely fictitious! We only care about $\Phi(z > 0)$, ignore z < 0

Calculate Φ by superposition of q and q_i

$$\Phi_{q} = \frac{q}{4\pi\epsilon_{0}r}$$

$$\Phi_{qi} = \frac{q_{i}}{4\pi\epsilon_{0}r_{i}}$$

Satisfies $\nabla^2 \Phi = 0$ everywhere in z > 0 except at location of q(r=0) where we don't care

$$\nabla^2 \left(\frac{1}{r} \right) \equiv 4\pi \delta^3(\vec{r})$$

Determine q_i , d_i by boundary conditions

$$\Phi_q = \frac{q}{4\pi\epsilon_0} \frac{1}{\sqrt{\rho^2 + (z - d)^2}}$$

$$\Phi_{qi} = \frac{q_i}{4\pi\epsilon_0 r_i} \frac{1}{\sqrt{\rho^2 + (z + d_i)^2}}$$

$$\Phi(\rho, z = 0) = 0$$

$$\rightarrow q_i = -q \text{ and } d_i = d$$

Use Φ to determine \vec{E} , induced σ

$$\Phi(z > 0) = \frac{q}{4\pi\epsilon_0} \left[\frac{1}{\sqrt{\rho^2 + (z - d)^2}} - \frac{1}{\sqrt{\rho^2 + (z + d)^2}} \right]$$

$$\vec{E} = -\vec{\nabla}\Phi = -\left(\hat{\rho}\frac{\partial}{\partial\rho} + \hat{k}\frac{\partial}{\partial z}\right)\Phi$$

$$\sigma_{induced} = \epsilon_0 E_z = -\frac{q}{2\pi} \frac{d}{(\rho^2 + d^2)^{\frac{3}{2}}}$$

Note: usually $E_Z = \frac{\sigma}{2\epsilon_0}$ at conductor surface, but we

ignore the E_Z on the 'image' side, hence factor of $E_Z = \frac{\sigma}{2}$

Electric field lines obey intuition

$$\vec{E} = \frac{q}{4\pi\epsilon_0} *$$

$$\hat{\rho} \left\{ \frac{\rho}{(\rho^2 + (z-d)^2)^{\frac{3}{2}}} - \frac{\rho}{(\rho^2 + (z+d)^2)^{\frac{3}{2}}} \right\}$$

$$+ \hat{k} \left\{ \frac{(z-d)}{(\rho^2 + (z-d)^2)^{\frac{3}{2}}} - \frac{(z+d)}{(\rho^2 + (z+d)^2)^{\frac{3}{2}}} \right\}$$

 \vec{E} valid only for z>0

$$\sigma_{induced} = -\frac{q}{2\pi} \frac{d}{(\rho^2 + d^2)^{\frac{3}{2}}}$$

is maximum under the real charge

What is the force between *q* and conductor plate?

$$\vec{E} = \frac{q}{4\pi\epsilon_0} * \\ \hat{\rho} \left\{ \frac{\rho}{(\rho^2 + (z-d)^2)^{\frac{3}{2}}} \frac{\rho}{(\rho^2 + (z+d)^2)^{\frac{3}{2}}} \right\} \\ + \hat{k} \left\{ \frac{(z-d)}{(\rho^2 + (z-d)^2)^{\frac{3}{2}}} - \frac{(z+d)}{(\rho^2 + (z+d)^2)^{\frac{3}{2}}} \right\}$$

 \rightarrow Force due to field of image charge -q at $\rho=0$, z=d

$$\vec{F} = -\frac{q^2}{16\pi\epsilon_0 d^2} \,\hat{k}$$

Force by an *infinite* conductor on a point charge!

Note: the image charge is not real!

Total electrostatic energy: $W = \int_{\infty}^{a} \frac{q^2}{16\pi\epsilon_0 z^2} dz$

 $W = \frac{1}{4\pi\epsilon_0} \frac{q^2}{4d}$

This is $\frac{1}{2}$ the electrostatic energy of charges +q, -q at distance 2d

- a) The energy is stored in the field: the field exists only in right half z>0
- b) It doesn't cost any energy to assemble the induced charge induced charge is moved ⊥ to electric field

Image charge does not exert any force on the conductor The image charge is a calculation tool used to compute $\Phi(z>0)$

NOT REAL: it represents the total effect of the induced charge

Logic thread of today's lecture

To solve Laplace's equation $\nabla^2 \Phi = 0$ we used:

- a) Uniqueness of solution
- b) Intuition

For point charge above a grounded conductor, we visualized the field lines and existence of image charge

Checked that $\Phi_{real} + \Phi_{induced}$ satisfies Laplace eqn

Used boundary condition $\Phi(z=0)=0$ to find location of image

With Φ , found \vec{E} and $\sigma_{induced}$