Structure Machine

USTHB, le 26/04/2021

В 0 0

0

Exercice 1

$$C = \overline{AC \cdot B} = AC + \overline{B}$$

Ce circuit est un <u>circuit séquentiel</u> car il dépend de ses entrées A et B mais aussi de sa sortie C.

On remarque que la valeur de C en sortie (instant t+1) est différente de la valeur de C en entrée (instant t)

Soit le circuit séquentiel représenté par le schéma suivant.

1) Donner les expressions de : J_A , K_A , J_B , K_B et J_C , K_C en fonction de Q_A , Q_B et Q_C .

$$J_a = \overline{Q}_c$$

$$K_a = Q_c$$

$$J_b = Q_a$$

$$K_b = \overline{Q_a}$$

$$J_c = Q_b$$

$$K_c = \overline{Q_b}$$

2) Etablir la table caractéristique de ce circuit.

Q_a Q_b Q_c	J _a K _a	J _b K _b	$J_c K_c$	Q_a^+ Q_b^+ Q_c^+
0 0 0	1 0	0 1	0 1	1 0 0
0 0 1	0 1	0 1	0 1	0 0 0
0 1 0	1 0	0 1	1 0	1 0 1
0 1 1	0 1	0 1	1 0	0 0 1
1 0 0	1 0	1 0	0 1	1 1 0
1 0 1	0 1	1 0	0 1	0 1 0
1 1 0	1 0	1 0	1 0	1 1 1
1 1 1	0 1	1 0	1 0	0 1 1

En déduire la séquence qu'il représente.

I	$-\overline{\Omega}$	
Ja	$-Q_c$	

$$K_a = Q_c$$

$$J_b = Q_a$$

$$K_b = \overline{Q_a}$$

$$J_c = Q_b$$

$$K_c = \overline{Q_h}$$

J	K	Q [⁺]
0	0	Q
0	1	0
1	0	1
1	1	0

Ce compteur s'appelle un compteur rampant vers la gauche

Etat initial	Etat final	Entrée	Sortie
A	A	0	0
A	В	1	0
В	C	0	0
В	D	1	0
C	A	0	0
C	D	1	0
D	E	0	0
D	F	1	1
E	A	0	0
E	F	1	1
F	G	0	0
F	F	1	1
G	A	0	0
G	F	1	1

1- Dessiner le graphe des états (diagramme des états).

1. Diagramme des états

2. Dresser la table de transition

	X:	=0	X=1		
Etat initial	Etat final	Υ	Etat final	Υ	
Α	A	0	В	0	
В	С	0	D	0	
С	Α	0	D	0	
D	E	0	∮ D	1	
E	Α	0	⊭ D	1	
F	/≤ E	0	F	1	
4	A	0	£	1	

3. Table de transition réduite

	X:	=0	X=1		
Etat initial	Etat final Y		Etat final	Υ	
A	Α	0	В	0	
В	С	0	D	0	
С	Α	0	D	0	
D	E	0	D	1	
E	A	0	D	1	

E et G ont le même état final pour les mêmes entrées sorties donc E et G sont équivalents. On supprime G et on le remplace par E dans tous les autres cas.

D et F sont équivalents. On supprime F et on le remplace par D dans tous les autres cas.

4. Nouveau diagramme des états

	X:	=0	X=1		
Etat initial	Etat final	Etat final Y		Υ	
A	A	0	В	0	
В	С	0	D	0	
С	A	0	D	0	
D	E	0	D	1	
E	A	0	D	1	

1. Coder les états avec le code binaire dans l'ordre croissant des variables alphabétiques.

$$A = 000$$

$$B = 001$$

$$C = 010$$

$$D = 011$$

$$E = 100$$

0/0 | 1/0 | 1/0 | 1/0 | B | O/0 | S T.

6. Dresser la table d'excitation en utilisant des bascules T.

X	Q ₂	Q_1	Q0	Q2+	Q1+	Q0+	T2	T1	ТО	Y
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	1	1	0
0	0	1	0	0	0	0	0	1	0	0
0	0	1	1	1	0	0	1	1	1	0
0	1	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	1	0
1	0	0	1	0	1	1	0	1	0	0
1	0	1	0	0	1	1	0	0	1 1	0
1	0	1	1	0	1	1	0	0	0	1
1	1	0	0	0	1	1	1	1	1	1

$$A = 000$$

$$B = 001$$

$$C = 010$$

$$D = 011$$

$$E = 100$$

7. Donner l'équation simplifiée d'entrée de chaque bascule.

X Q ₂	00	01	11	10
Q_1Q_0	١,		<u> </u>	
00	0	1	1	0
01	0	X	X	0
11	1	X	X	0
10	0	X	X	0

Х	\mathbf{Q}_2	Qı	Q0	Q2+	Q1+	Q0+	T2	T1	то	Y
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	1	1	0
0	0	1	0	0	0	0	0	1	0	0
0	¦o	1	1	1	0	0	1	1	1	¦ o
0	1	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	1	0
1	¦ o	0	1	0	1	1	0	1	0	¦ o
1	0	1	0	0	1	1	0	0	1	0
1	0	1	1	0	1	1	0	0	0	1
1	1	0	0	0	1	1	1	1	1	1

$$T_2 = Q_2 + \overline{x} Q1 Q0$$

7. Donner l'équation simplifiée d'entrée de chaque bascule.

X Q2	00	01	11	10
Q ₁ Q0				
00	0	0	1	0
01	1	Х	Х	1
11	1	Х	Х	0
10	1	Х	х	0

$$T_1 = /q1 Q0 + xQ2 + /xq1$$

7. Donner l'équation simplifiée d'entrée de chaque bascule.

X Q ₂	00	01		11	10
$Q_1 Q_0$					
00	0	0		1	1
01	1	Х		X	0
11	1	Х		X	0
10	0	Х		X	1

$$T_0 = /xQ_0 + x/Q_0 = X xor Q_0$$

7. Donner l'équation simplifiée d'entrée de chaque bascule.

X Q ₂	00	01	11	10
$Q_1 Q_0$				
00	0	0	1	0
01	0	Х	Х	0
11	0	Х	Х	1
10	0	Х	Х	0

 $Y = X Q_2 + XQ_1Q_0$

8. Le circuit

1- Représentation du graphe sous forme tabulaire (table de transition)

	X=0		X=1	
Etat initial	Etat final	Y	Etat final	Y
Α	В	0	С	1
В	A A	1	Æ B	1
С	ΑÀ	1	⊭ B	0
F	B	0	E	1
[/	<mark>⊬ A</mark> Ø A	1	E	1
F	βA	1	∕ S F	1
£	A	1	G	1
₩	용	0	E	1

2- Réduction du tableau

	X=0		X=1	
Etat initial	Etat final	Y	Etat final	Υ
Α	В	0	С	1
В	Α	1	В	1
С	Α	1	В	0
F	A	1	F	1

3- Nouveau graphe

2- Codage des états :

A = 00

B = 01

C = 10

F = 11

2- Codage des états :

X	Q_1	Q0¯	Q1	Q0	T1	Т0	Y
	Q1	Q0	Q1+	Q0+		 	
0	0	0	0	1	0	1	0
0	0	1	0	0	0		1
0	1	0	0	0	1	0	1
0	1	1	0	0	1	1	1
1	0	0	1	0	1	0	1
1	0	1	0	1	0	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	0	0	1

Q	ģ	T
0	0	0
0	1	1
1	0	1
1	1	0

A =	00
B =	01
C =	10
F =	11

2- Codage des états :

X Q ₁	00	00 01		10
Q_0				
0	0	1	1	1
1	0	1	0	0

X Q ₁	00		01		11		10
Q_0							
0	1		0		1		0
1	1		1		0		0

00	01	11		10	0
0	1	0		1	
1	1	1		1	
	00	00 01 0 1 1 1	0 1 0	0 1 0	0 1 0 1

$$T_1 = X /Q0 + /XQ1$$

$$T_0 = /x/q1 + xq1/q0 + /xq0$$

$$Y = Q0 + /xQ1 + x/Q1$$

 $Y = Q0 + (X xor Q1)$

Si le robot est au **repos** et qu'il reçoit sur **X un '1**'alors il **avance** et **allume la lampe**.

Si le robot est au **repos** et qu'il reçoit sur X un '0' alors il **recule** et allume la lampe.

Si le robot avance et qu'il reçoit sur X un '1' alors il tourne et allume la lampe.

Si le robot avance et qu'il reçoit sur X un '0' alors il se met au repos et éteint la lampe.

Si le robot **recule** et qu'il reçoit sur X un '1' alors il **tourne** et allume la lampe.

Si le robot **recule** et qu'il reçoit sur **X un '0**' alors il se met au **repos** et **éteint** la lampe.

Si le robot tourne et qu'il reçoit sur X un '1' alors il avance et allume la lampe.

Si le robot tourne et qu'il reçoit sur X un '0' alors il recule et allume la lampe.

Etats	Sortie
A : repos	
B: avance	Lampe : 1 allumée
C : recule	0 éteinte
D : retourne]

2- Table des états

	X=0		X=1	
Etat initial	Etat final	Υ	Etat final	Υ
Α	⊄ B	1	В	1
В	A	0	ØА	1
%	A	0	βA	1
Ä	E	1	8	1

3- Codage des états :

$$A = 0$$
$$B = 1$$

4- Table d'excitation : On utilise des bascules D

Q	Q⁺	T
0	0	0
0	1	1
1	0	0
1	1	1

X	Q	Q⁺	D	Υ
0	0	1	1	1
0	1	0	0	0
1	0	1	1	1
1	1	0	0	1

6- Le circuit:

5- Equations des entrées : $D = \overline{Q}$; $Y = \overline{Q} + X$

L'état suivant de Q3 Q2 Q1 Q0 est Q0 Q3 Q2 Q1

donc
$$Q_3^+ Q_2^+ Q_1^+ Q_0^+ = Q_0 Q_3 Q_2 Q_1$$

$$D3=Q_3^+=Q_0^ D2=Q_2^+=Q_3^ D1=Q_1^+=Q_2^ D0=Q_0^+=Q_1^-$$

1. Pour le Décalage Circulaire à Droite les équations d'entrée aux bascules sont :

$$D_3 = Q_0$$
 $D_2 = Q_3$ $D_1 = Q_2$ $D_0 = Q_1$

2. Même principe pour le décalage circulaire à gauche

$$D_3 = Q_2$$
 $D_2 = Q_1$ $D_1 = Q_0$ $D_0 = Q_3$

D	Q [†]
0	0
1	1

Compteur rampant :

$Q_3Q_2Q_1Q_0$	$Q_3^+Q_2^+Q_1^+Q_0^+$	$D_3D_2D_1D_0$	
0000	0001	0001	
0001	0011	0011	
0011	0111	0111	
0111	1111	1111	
1111	1110	1110	
1110	1100	1100	
1100	1000	1000	
1000	0000	0000	

Table d'excitation (D)

Q	Q ⁺	T
0	0	0
0	1	1
1	0	0
1	1	1

$$D3 = Q2$$

$$D2 = Q1$$

$$D1 = Q0$$

$$D0 = /Q3$$

1. Pour le Décalage Circulaire à Droite :

$$D_3 = Q_0$$
 $D_2 = Q_3$ $D_1 = Q_2$ $D_0 = Q_1$

2. Le décalage circulaire à gauche :

$$D_3 = Q_2$$
 $D_2 = Q_1$ $D_1 = Q_0$ $D_0 = Q_3$

3. Compteur Rampant:

$$D3 = Q2$$
 $D2 = Q1$ $D1 = Q0$ $D0 = \overline{Q3}$

1. Pour le Décalage Circulaire à Droite :

$$D_3 = Q_0$$
 $D_2 = Q_3$ $D_1 = Q_2$ $D_0 = Q_1$

2. Le décalage circulaire à gauche :

$$D_3 = Q_2$$
 $D_2 = Q_1$ $D_1 = Q_0$ $D_0 = Q_3$

3. Le compteur rampant :

$$D3 = Q2$$
 $D2 = Q1$ $D1 = Q0$ $D0 = \overline{Q3}$

Pour contrôler un circuit qui a plusieurs fonctions, il faut utiliser des variables de contrôle.

Dans notre cas il y a 3 séquencés différentes donc il faut 2 variables de contrôle XY

XY = 00 Mémorisation

XY = 01 Décalage Circulaire à Droite

XY = 10 Décalage Circulaire à Gauche

XY = 11 Compteur rampant

0. Mémorisation:

$$D_3 = Q_3$$
 $D_2 = Q_2$ $D_1 = Q_1$ $D_0 = Q_0$

1. Pour le Décalage Circulaire à Droite :

$$D_3 = Q_0$$
 $D_2 = Q_3$ $D_1 = Q_2$ $D_0 = Q_1$

2. Le décalage circulaire à gauche :

$$D_3 = Q_2$$
 $D_2 = Q_1$ $D_1 = Q_0$ $D_0 = Q_3$

3. Le compteur rampant :

$$D3 = Q2$$
 $D2 = Q1$ $D1 = Q0$ $D0 = \overline{Q3}$

XY	D ₃	D ₂	D_1	D ₀
0 0	Q3	Q2	Q1	Q0
01	Q0	Q3	Q2	Q1
10	Q2	Q1	Q0	Q3
11	Q2	Q1	Q0	$\overline{Q3}$

$$\begin{split} \mathsf{D}_3 &= \mathsf{Q}_3 \bar{X} \bar{Y} + Q_0 \bar{X} Y + Q_2 X \bar{Y} + Q_2 X Y \\ \mathsf{D}_2 &= \mathsf{Q}_2 \bar{X} \bar{Y} + Q_3 \bar{X} Y + Q_1 X \bar{Y} + Q_1 X Y \\ \mathsf{D}_1 &= \mathsf{Q}_1 \bar{X} \bar{Y} + Q_2 \bar{X} Y + Q_0 X \bar{Y} + Q_0 X Y \\ \mathsf{D}_0 &= \mathsf{Q}_0 \bar{X} \bar{Y} + Q_1 \bar{X} Y + Q_3 X \bar{Y} + \bar{Q}_3 X Y \end{split}$$

Х	Q2	Q1	Q0	J	К	Т	D	Q2+	Q1+	Q0+
0	0	0	0	0	1	0	0	0	0	0
0	0	0	1	0	1	1	0	0	1	0
0	0	1	0	1	0	1	0	1	0	0
0	0	1	1	1	0	0	0	1	1	0
0	1	0	0	0	1	0	1	0	0	1
0	1	0	1	0	1	1	1	0	1	1
0	1	1	0	1	0	1	1	1	0	1
0	1	1	1	1	0	0	1	1	1	1
1	0	0	0	0	1	0	0	0	0	0
1	0	0	1	1	0	0	0	1	0	0
1	0	1	0	0	1	1	1	<u>0</u>	0	<u>1</u>
1	0	1	1	1	0	1	1	1	0	1
1	1	0	0	0	1	1	0	0	1	0
1	1	0	1	1	0	1	0	<u>1</u>	1	<u>0</u>
1	1	1	0	0	1	0	1	0	1	1
1	1	1	1	1	0	0	1	1	1	1

$$\mathbf{J} = \overline{\mathbf{x}} \; \mathbf{Q}_1 + \mathbf{x} \; \mathbf{Q}_0 \qquad \mathbf{K} = \overline{\overline{\mathbf{x}} \; \mathbf{Q}_1 + \mathbf{x} \; \mathbf{Q}_0}$$

$$\mathbf{T} = \overline{\mathbf{x}} (\mathbf{Q}_0 \oplus \mathbf{Q}_1) + \mathbf{x} (\mathbf{Q}_1 \oplus \mathbf{Q}_2)$$

$$\mathbf{D} = \mathbf{x}^{\mathsf{T}} \mathbf{Q}_2 + \mathbf{x} \ \mathbf{Q}_1$$

J	K	Q⁺
0	0	Q
0	1	0
1	0	1
1	1	Q

Т	Q ⁺	D	Q [†]
0	Q	0	0
1	Q	1	1

Rôle de X : changer la fonction du circuit. La fonction:

X = 0 : décalage à gauche circulaire

X = 1 : décalage à droite circulaire

J0=K0=K1=J2=K2=1
J1 =
$$\overline{Q3}$$

J3 =Q2Q1
K3 = Q3

Exemple 2

Exemple 2

Exercice 9

$$T_{A} = T_{B} = 1$$

$$CK_{B} = CK$$

$$CK_{A} = \overline{XQ_{B}} \quad \overline{\overline{X}} \overline{\overline{Q_{B}}} = XQ_{B} + \overline{X} \overline{Q_{B}}$$

$$X = 0 \rightarrow CK_{A} = \overline{Q_{B}}$$

$$X = 1 \rightarrow CK_{A} = Q_{B}$$

Exercice 9

