

厦门大学 RM2021 技术报告 Sentry 哨兵机器人

组长: 王向阳

组员:廖元熙、谢晖泷、曹浟扬

一、需求确定

哨兵机器人在哨兵轨道上移动,相较于其他机器人来说活动范围有限,今年的哨兵轨道 由曲线变成直线,对于底盘的设计要求降低了很多,所以哨兵在赛场上的不确定情况就变得 相对少了。规则方面,哨兵性能参数如下图所示:

类型	初始弾 量 (round)	底盘功 率上限 (W)	初始血量	血量 上限	射击初 速度上 限 (m/s)	枪口 热量 上限	枪口热 量每秒 冷却值	经验 价值	弹丸射速 (round/s)	初始位置
哨兵 机器 人	500	30	600	600	30	320	100	7.5	详情请参阅 "3.2.2 枪口热 量超限和冷 却"	哨兵轨道

由于哨兵机器人两个发射机构枪口热量单独计算。两个发射机构发射弹丸数共计 500 发时,发射机构同时断电。在考虑使用独立枪管还是共轴双枪管方案的时候,我们觉得独立枪管具有较高的灵活性,可以同时击打两个目标或者对一个目标进行集中火力输出,也可以通过上下云台做防空,但是考虑到赛场上的不确定性、技术的实施难度以及呈现的具体效果,我们决定采用共轴双枪管的方案。相较于独立枪管来说,它缺少了可变性,相当于只是在原有的单枪管基础上,增加了一倍的火力,但是对于机器人的攻击模式来说却是一种更为合理的方案,短时间内单点输出能力强;再根据比赛规则,确定哨兵的需求:

- 1. 能够有效击打前哨战至哨兵轨道之间的敌方机器人;
- 2. 能够有效击打环形高地上的敌方机器人;
- 3. 防偷家。

所以最终哨兵为下云台共轴双枪管模型,最长尺寸放在了垂直距离上。

二、结构设计

1. 底盘

由于哨兵轨道中间有螺丝帽的限制,所以哨兵的底盘驱动轮不能沿中心轴线分布,而且底盘上承载了大部分的电路板和裁判系统,空间本就拥挤,所以决定采用双电机驱动,驱动轮对称式分布,这样能够抵消因为驱动轮不通过底盘中心线而产生的对底盘的扭矩,底盘不会跑歪。同时,在底盘上有小的限位滚子,从导轨侧面进一步矫正底盘运动方向。

图 1 底盘俯视图

2. 云台

在设计初期出现 Pitch 轴电机过热保护现象,后来改为双电机,解决了力矩不够的问题,考虑过通过加配重的方式来平衡,但是由于空间限制,此方案作废。云台部分最耗费时间的地方是弹舱,因为装甲板的原因,所以弹舱得做干涉限制。

图 2 云台俯视图

图 3 侧视图

发射方面,由传统的摩擦轮平放改为竖放,左右对称,侧边加以保护板,防止小弹丸误入。

图 4 云台俯视图

图 5 摩擦轮挡板

三、程序设计

1.嵌入式

1) 底盘移动:

底盘运动先左右触碰到行程开关记录轨道的总距离,然后在总距离中央,总距离长度的 95%左右移动,尽量不触碰到左右两侧,在接近最旁边的两端时速度放慢,减小撞击。

为了防止机械卡死,每隔 1 秒检测一次速度,多次检测到速度为零判断为卡死,进行左右的反复移动,直到速度不为零。

如果在移动中触碰到了边界,说明定位发生了一定的偏移,以触碰到的位置为最左或最右,在软件中重新定位,如果判断过机械卡死,则从新左右触碰行程开关从新测距。

2) 云台发射:

自动移动的算法比较简单,就是简单的左右移动。云台上下移动力矩很大,直接使用 pid 算法抖动很大,需要很大的 i,于是将 i 和 d 全部置零,采用二次函数拟合误差,通过 NUC 返回的值直接移动不容易收敛,于是在小角度左右云台移动时减小云台移动的灵敏度。

摩擦轮的采用增量式 pid 更加的稳定。

2.视觉

四、电路设计

电源:云台接云台,发射接发射,底盘接底盘。

信号: NUC 接主控串口,行程开关接主控,底盘云台接主控 CAN1,发射全部接

CAN2.

五、系统分析

整体采用板管式结构,大多数受力方式是沿板平面方向,是板结构的最佳受力形式;在连接处多采用不锈钢材质,强度得到很好的保障。

六、人机工程

- 1. 将主控模块、电源管理模块、NUC和主控板等放在了最上方,无遮挡,方便接插以及查看信息,如图 6;
- 2. 制作了简易推车,可将哨兵机器人放置在推车上,方便运输及调试;
- 3. 部分地方用到了榫卯结构,可快速拆装,便于维修,如图7。

图 6 俯视图

图 7 摩擦轮侧板

七、工业设计

- 1. 在各尖角处设置了圆角,即防止人员被割伤,也增加了美观性。
- 2. 布线完成之后用 abs 板制作外壳,将线路包裹在内。

图 8 部分结构板 (1)

图 8 部分结构板 (2)

八、成本控制

- 1. 在最初的几代哨兵机器人里,都是用自己加工的玻纤板、铝管和 3D 打印件制作而成,主要用于做一些可行性的测试,在技术成熟之后改为强度更好的碳纤维板。
- 2. 有些零件也采用之前的物资, 节约成本。
- 3. 和淘宝商家交流时,会争取更多的优惠。