This section - Control Flow instructions

- Branch and link instructions

- conditional execution instructions

Control Flow Instructions

- These instructions change the order of instruction execution

 L. Normally flow is sequential execution

 L. PC is incremented by 4 after executing every instruction
- · Types of conditional flow instructions:
 - D unconditional branch
 - 2 conditional branch
 - 3 Branch and link
 y conditional execution
- · We will look at these instructions one by one:

1) Unconditional branch instruction

	В	Target
Target		

(2) Conditional branch instruction

	MOV	r2,#0
LOOP		
	ADD	r2,r2,#1
	CMP	r2 🏓 , #20
	BNE	LOOP

Conditional Branch instructions.

Conditional Branch instructions

· BEQ, BNE

equal or not equal to

· BPL, PMI

Result positive or negative

· BCC, BCS

Carry clear or set

· BUC, BUS

Overflow clear or set

· BGT, BGE

Greater than, greater than or equal to

· BLT, BLE

3 Branch and Link Instructions

- La Used for calling subroutines in ARM
- The return address is saved in register 174 (link register)
- To return from the subroutine, we have to jump back to the address stored in 114.

Simple example

```
BL MYSUB ; Branch to subroutine
... ; Return here
...

MYSUB ... ; Subroutine starts here
...
MOV pc,r14 ; Return
```

* Nested subroutine calls cannot be used in this way *

- Ly 60 we must use a software stack to save/restore the return address and registers.
- Here is an example using nested subroutine calls and return

```
BL MYSUB1
...

MYSUB1 STMFD r13!, {r0-r2,r14}
BL MYSUB2
...
LDMFD r13!, {r0-r2,pc}

MYSUB2 ...
MOV pc,r14
```

* With the above, nested subroutine calls can be used.

4 Conditional Execution

- · a unique feature of the ARM instruction set
- all instructions can be made conditional Laie will get executed only when a specified condition is true.
- Helps remove many short instructions
 improves performance and code density.
- · Example

	CMP	r2,#10	
	BEO	SKIP	CMP
	ADD	r5,r5,r2	ADDNE
	SUB	r5, r5, r3	SUBNE
SKIP		Contract of the Contract of th	

Conventional Approach

ARM Approach

r2,#10 r59r5,r2

r5, r5, r3

· Various instruction postfix are supported for conditional execution

Postfix	Condition	Postfix	Condition
CS	Carry set	CC	Carry clear
EQ	Equal (zero set)	NE	Not equal (zero clear)
VS	Overflow set	VC	Overflow clear
GT	Greater than	LT	Less than
GE	Greater than or equal	LE	Less than or equal
PL	Plus (positive)	MI	Minus (negative)
HI	Higher than	LO	Lower than (i.e. CC)
HS	Higher or same (i.e. CS)	LS	Lower or same

Another example:

if
$$((r) == r3))$$
 & $(r5 == r6)$ $r7 = r7 + 10$

CMP	r1,r3				
BNE	SKIP			-	
CMP	r5,r6		CMP	r1,r3	
BNE	SKIP r7,r7,#10		CMPEQ ADDEQ	r5,r6	
ADD				r7,r7,#10	
	17,17,#10				
SKIP					

Supervisor Calls

- · The software Interrupt Instruction (SWI) is used to enter supervisor Mode, usually to request a particular supervisor function.
- . The CPSR is saved into the Supervisory Mode SPSR and execution branches to the SWF vector.
- . The SWI handler reads the opcode to extract the SWI function number.