classification, decision trees and scoring: a reminder

carlos soares

(csoares@fe.up.pt)

[including materials kindly provided by Alípio Jorge and adapted from David Sontag, Luke Zettlemoyer, Carlos Guestrin and Andrew Moore as well as from Eammon Keogh]

reference materials

• JMM et al. ch. 4+7

predictive: classification for targeting

data for classification

U. PORTO
FEUP FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

independent variable (or attribute)

target (or dependent) variable

- prospects
 - customers who didn't buy a car in the last 4 years

would like to predict

- results from previous campaigns
 - customers who were contacted and their response

already known

Comprou	Idade	Rendimento	Ag.fam	Vendas anteriores	Última Venda
	41	50000	2	1	0
	39	68000	2	0	30000
	58	61000	4	0	0
	26	25000	3	0	0
	21	50000	1	1	20000
	38	43000	2	0	0
	44	43000	4	1	47000
	27	47000	2	1	21000
	70	23000	2	0	25000

					,
Comprou	ldade	Rendimento	Ag.fam	Vendas anteriores	Ultima Venda
não	37	49000	2	1	42000
sim	43	68000	3	0	0
sim	42	61000	4	0	0
sim	26	52000	2	0	0
sim	40	64000	1	1	21000
sim	38	52000	1	0	0
sim	45	43000	4	1	47000
sim	35	45000	2	1	34000
pao	39	43000	2	0	0
sim	31	55000	3	1	46000
sim	34	57000	3	1	52000
não	38	44000	4	0	0
não	34	68000	2	1	33000
-:	20	45000	0	4	44000

learning a model from data

- load data
- apply decision tree algorithm

model: classification tree (or decision tree)

distribution of classes in leaves

classify new examples

prospects list

age	income	family size	previous sales	last sale
28	39.000	2	0	0
39	52.000	4	1	17.000
29	42.000	4	1	40.000

 class of the leaf each example is assigned by the tree?

i.e. predict...

classification: are we there yet?

would you use the decisions proposed by this model?

how decision tree algorithms see data...

model development

how good are the predictions?

confusion matrix

- prediction vs reality
- number of right answers on the main diagonal
- sum of the array is the total number of examples

error rate

percentage/proportion of cases where the model misses

$$- e.g. (2 + 1)/(5 + 1 + 2 + 29)$$

= 8.1%

	truth: no	truth: yes
prediction: no	5	1
prediction: yes	2	29

not all errors are born equal...

- e.g. targetting campaign
 - is contacting a non-buyer or missing a buyer equally important?
- the focus is on one class
 - ... usually
- the positive class
 - ... positive not necessarily good
- a new perpective on the confusion matrix

	truth: no	truth: yes
prediction: no	TN	FN
prediction: yes	FP	TP

14

evaluation measures

 multiple measures can be computed from the confusion matrix, including...

	truth: no	truth: yes
prediction: no	TN	FN
prediction: yes	FP	TP

is the model any good at all?

	truth: no	truth: yes
prediction: no	5	1
prediction: yes	2	29

- model error: 3/37 = 8.1%
- baseline
 - simplest model that can be obtained from the data

	truth: no	truth: yes
class distribution	7	30
		most "popular" choice

 $- \dots$ with error: 7/37 = 18,9%

so, should we use the model?

evaluation methodology: do not forget!

DECISION TREES

gps

- overfitting
- how the algorithm for induction of decision trees works

overfitting

algorithms can be controlled to adjust to the data more or less

- good reason to
 - design your experimental setup carefully
 - understand how algorithms work

learning a decision tree (1 and 2/5)

x2	class
р	yes
q	no
р	yes
q	no
р	no
р	yes
р	yes
р	no
	р q p q p

yes= 4 no= 4

- 1. we have a set of labelled examples
 - the target variable indicates the class of each case (e.g. yes, no)
 - on the root knot we have all the cases
- 2. if all the examples are of the same class, we stop

learning a decision tree (3/5)

x1	x2	class
а	р	yes
а	q	no
а	р	yes
b	q	no
С	р	no
а	р	yes
С	р	yes
b	р	no

test	true (yes/no)	false (yes/no)
x1=a	3/1	1/3

- 3. otherwise, we will divide (split) the examples in the root
 - · so that the classes are well separated
 - each test is of variable type = value, or variable > value

learning a decision tree (3/5 – cont'd)

x1	x2	class
а	р	yes
а	q	no
а	р	yes
b	q	no
С	р	no
а	р	yes
С	р	yes
b	р	no

test	true (yes/no)	false (yes/no)
x1=a	3/1	1/3
x1=b	0/2	4/2
x1=c	1/1	3/3
x2=p	4/2	0/2
x2=q		

- 3. otherwise, we will divide (split) the examples in the root
 - · so that the classes are well separated
 - each test is of variable type = value, or variable > value

unnecessary

learning a decision tree (4/5)

x2	class
р	yes
q	no
р	yes
q	no
р	no
р	yes
р	yes
р	no
	р q p q p

4. create to descendant nodes according to the selected test

learning a decision tree (5/5)

x1	x2	class
а	р	yes
а	q	no
а	р	yes
b	q	no
С	р	no
а	р	yes
С	р	yes
b	р	no

test	true (yes/no)	false (yes/no)
x1=a	3/1	1/3
x2=p	3/0	0/1

5. We repeat the process for the set of examples in each of these descendant nodes

unnecessary

splits: the good, the bad and the ugly

x1	x2	class
a	р	yes
а	q	no
а	р	yes
b	q	no
С	р	no
а	р	yes
С	р	yes
b	р	no

too good to be true?

good or bad?...

test	true (yes/no)	false (ves/no)
x1=a	3/1	1/3
x1=b	0/2	4/2
x1=c	1/1	3/3
x2=p	4/2	0/2
x2=q		

is this always bad?

entropy as diversity

Entropy H(Y) of a random variable Y

test	true (yes/no)	false (yes/no)
x1=a	3/1	1/3
x1=b	0/2	4/2
x1=c	1/1	3/3
x2=p	4/2	0/2
x2=q		

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$
 ML@ M.EIC

... the bigger the decrease in diversity, the better

x1	x2	class
а	р	yes
а	q	no
а	р	yes
b	q	no
С	р	no
а	р	yes
С	р	yes
b	р	no

test	true (yes/no)	false (yes/no)
x1=a	3/1	1/3

i.e. d(current set)

>>

d(left branch) + d(right branch)

e.g. information gain

$$IG(X) = H(Y) - H(Y \mid X)$$

numerical attributes

x3	class		x3	class
1	yes		1	yes
3	no		2	yes
2	yes		3	no
3	no		3	no
9	no		3	no
5	yes		5	yes
5	yes		5	yes
3	no		9	no

test	true (yes/no)	false (yes/no)
x3<1.5	1/0	3/4
x3<2.5	2/0	2/4
x3<4	2/3	2/1
x3<7	4/3	0/1

- only splits between examples of different classes should be considered
 - x3 < 1.5 cannot be better than x3 < 2.5

overfitting in DTs

- smaller leaves
 - eg. minimum leaf size hyperparameter

overfitting

- trees obtained with different values of "minimum leaf size"
 - 4, 2 and 1

error (train)=18,18

error (train)=9,09%

error (train)=0,00%

CLASSIFICATION FOR SCORING

plan

- binary classification
- evaluation in binary classification

classification: b&w or gray?

- direct application of the model splits examples into classes
 - eg. good and bad customers/buys or doesn't buy
- not suitable for all problems
 - list of 1000 prospects but send only to the 200 with the highest probability of buying
 - ... what if model selects only 30
 - ... or 300?
- scoring: use estimated probability of buying to order cases
 - select 200 with the highest probability
 or score
- score also provides information about (um)certainty of prediction

fonte: http://www.flickr.com/photos/backpackphotography/3354435787/

where to cut?

- imposed by available resources
 - n cases
- is n a suitable number?
 - maybe too many "bad" customers...
- arbitrary threshold
 - by default, class = yes if Prob(yes) > 0.5
- ... but which is the right value?
 - eg. important to find all "yes"
 - ... send if Prob(sim) > 0.3

evaluate scoring models

- sort prediction by increasing order of belonging to positive class
 - P(sim | features)
- ROC analysis
 - Receiver Operating Characteristic
 - visualize proportion TP vs.
 FP
 - ... threshold
 - only rapidminer
 - ... to find best compromise

build ROC curve (1/5)

P(sim)	classe
1,00	sim
1,00	sim
0,90	sim
0,90	não
0,90	sim
0,85	não
0,83	sim
0,76	sim
0,75	não
0,73	sim
(20 exemplos)	10 × sim/10 × não

build ROC curve (2/5)

min

P(sim)	classe
1,00	sim
1,00	sim
0,90	sim
0,90	não
0,90	sim
0,85	não
0,83	sim
0,76	sim
0,75	não
0,73	sim
(20 exemplos)	10 × sim/10 × não

build ROC curve (3/5)

\	/	\	
			\
)	/	/	

P(sim)	classe
1,00	sim
1,00	sim
0,90	sim
0,90	não
0,90	sim
0,85	não
0,83	sim
0,76	sim
0,75	não
0,73	sim
(20 exemplos)	10 × sim/10 × não

build ROC curve (4/5)

P(sim)	classe
1,00	sim
1,00	sim
0,90	sim
0,90	não
0,90	sim
0,85	não
0,83	sim
0,76	sim
0,75	não
0,73	sim
(20 exemplos)	10 × sim/10 × não

build ROC curve (5/5)

P(sim)	classe
1,00	sim
1,00	sim
0,90	sim
0,90	não
0,90	sim
0,85	não
0,83	sim
0,76	sim
0,75	não
0,73	sim
(20 exemplos)	10 × sim/10 × não

are we there yet?

- identify problems where classification is useful
- identify relevant data
- know how to analyze and use a decision tree
- know the most common evaluation measures of classification models
- understand the need to use different data for modelling and evaluation
- understand how to evaluate the results of a classification model
- superficially understand the algorithm for induction of decision trees
- understand how to use and evaluate a classification model for scoring

43