

No Free Lunch Theorem

- No Free Lunch Theorem: There is NO overall superior or inferior classification, if no prior assumptions about the problem are made
- Generate a group of base-learners which when combined has higher accuracy
- Different learners use different
 - Algorithms
 - Hyperparameters
 - Representations / Modalities / Views
 - Training sets
 - Subproblems
- Diversity vs accuracy

2022/6/6

Δ

Bias & Variance

Unknown function fEstimator $g_i = g(X_i)$ on sample X_i

Bias: $b_f(g) = \mathbb{E}[g] - f$ Nariance: $\mathbb{E}[(g - \mathbb{E}[g])^2]$

Mean square error:

$$r(g,f) = \mathbb{E}[(g-f)^{2}]$$

$$= (\mathbb{E}[g] - f)^{2} + \mathbb{E}[(g - \mathbb{E}[g])^{2}]$$

$$= Bias^{2} + Variance$$

Bias/Variance Dilemma

$$\mathbb{E}_{D}[(g(x,D) - f(x))^{2}] = \underbrace{(\mathbb{E}_{D}[g(x,D) - f(x)])^{2}}_{\text{bias}^{2}} + \underbrace{(\mathbb{E}_{D}[(g(x,D) - \mathbb{E}_{D}[g(x,D)])^{2}])}_{\text{variance}}$$

- Bigs: the difference between the expected value and the true value
- Variance: variations of estimated values
- Given training set D, as we increase complexity,
 - bias decreases (a better fit to data) and variance increases (fit varies more with data)
- High bias means usually low variance, and vice versa
- Bias/Variance dilemma: (Geman et al., 1992)

Ensemble Learning: Intuition

- Majority Vote
- Suppose we have 5 completely independent classifiers each having 70% accuracy
 - $10 \cdot 0.7^3 \cdot 0.3^2 + 5 \cdot 0.7^4 \cdot 0.3^1 + 0.7^5 = 83.7\%$ majority accuracy
- 101 such classifiers
 - 99.9% majority vote accuracy

2022/6/6

10

Ensemble Learning

- Bagging (Breiman 1994,...): Fit several classifiers to bootstrap resampled versions of the training data, and classify by majority vote.
- Boosting (Freund and Schapire 1995, Friedman et al. 1998,...): Fit many large or small classifiers to reweighted versions of the training data, then classify by weighted majority vote
- Random forests (Breiman 2001,...): Fancier version of bagging
 Predict class label for unseen data by aggregating a set of predictions (classifiers learned from the training data)

Voting of Classifiers

Bayesian perspective:

$$P(C_i|x) = \sum_{\text{all models } M_i} P(C_i|x, M_j) P(M_j)$$

If d_i are iid

$$E[y] = E\left[\sum_{j} \frac{1}{L} d_{j}\right] = \frac{1}{L} L \cdot E[d_{j}] = E[d]$$

$$Var(y) = Var\left(\sum_{j=1}^{n-1} \frac{1}{L} d_{j}\right) = \frac{1}{L^{2}} Var\left(\sum_{j=1}^{n-1} \frac{1}{L^{2}} L \cdot Var\left(d_{j}\right) = \frac{1}{L} Var\left(d\right)\right)$$

Bias does not change, variance decreases to 1/L

• If dependent, error increases with positive correlation

$$\operatorname{Var}(y) = \frac{1}{L^2} \operatorname{Var}\left(\sum_j d_j\right) = \frac{1}{L^2} \left[\sum_j \operatorname{Var}(d_j) + 2\sum_j \sum_{i < j} \operatorname{Cov}(d_i, d_j)\right]$$

2022/6/

14

Resampling for Classifier Design: Jackknife

- Remove some point from the training set: $D_{(i)}$
- Calculate the leave-one-out statistics with the new training set

$$\mu_{(i)} = \frac{1}{n-1} \sum_{j \neq i} x_j$$

- Repeat for all points
- Calculate the jackknife (leave-one-out) statistics

Resampling for Classifier Design

Accing

Adaptive reweighting and combining
Reuse or select data in order to improve classification
Bootstrap data set
Randomly select n points from the training set D with replacement

Bagging

- Instability
 - A classifier/learning algorithm is called "unstable" if "small" changes in the training data lead to "large" changes in accuracy
 - In general, bagging improves recognition for unstable classifiers since it effectively averages over such discontinuities

2022/6/6

18

Boosting

- Overview of boosting
 - Improve the accuracy of any given learning algorithm
 - First create a (weak) classifier with accuracy on the training set greater than average
 - Add new component classifiers to form an ensemble whose joint decision rule has arbitrarily high accuracy on the training set
 - The classification performance has been "boosted"

Boosting

- Boosting procedure
 - Randomly select a set of $n_1 < n$ patterns from the full training set D without replacement; call this set D_1
 - Train the first component classifier C_1 with D_1 ; C_1 is usually a weak learner
 - A weak leaner has accuracy only slightly better than chance.
 - Seek a second training set D_2 , that is "most informative" given component classifier C_1
 - Half of the patterns in D_2 should be correctly classified by C_1
 - Half of the patterns in D_2 should be incorrectly classified by C_1 sampled from the remaining samples in D
 - Train the second component classifier C_2 with D_2

2022/6/6

20

Boosting

- Boosting procedure
 - Then, the third component classifier C_3 with D_3
 - The samples in D_3 are selected from the remaining samples in D that are not well classified by voting by C_1 and C_2 (i.e., the classification results are not consistent)
 - The final classification decision is based on the votes of the component classifiers.

Pattern Recognitio

AdaBoosting

- Overview of AdaBoosting
 - A variant of boosting
 - Adaptive Boosting
 - Add weak learners until some desired low training error has been achieved.
 - Each training pattern receives a weight that determines its probability of being selected for a training set for an individual component classifier.
 - Adaboost "focuses on" the informative or "difficult" patterns.

Pattern Recognition

2022/6/6

24

AdaBoosting

```
Algorithm 1 (AdaBoost)

1 begin initialize \mathcal{D} = \{\mathbf{x}^1, y_1, \mathbf{x}^2, y_2, \dots, \mathbf{x}^n, y_n\}, k_{max}, W_1(i) = 1/n, i = 1, \dots, n

2 do k \leftarrow k + 1

4 Train weak learner C_k using \mathcal{D} sampled according to distribution W_k(i)

5 E_k \leftarrow \text{Training error of } C_k \text{ measured on } \mathcal{D} \text{ using } W_k(i)

6 \alpha_k \leftarrow \frac{1}{2} \ln[(1 - E_k)/E_k]

7 W_{k+1}(i) \leftarrow \frac{W_k(i)}{Z_k} \times \begin{cases} e^{-\alpha_k} & \text{if } h_k(\mathbf{x}^i) = y_i \text{ (correctly classified)} \\ e^{\alpha_k} & \text{if } h_k(\mathbf{x}^i) \neq y_i \text{ (incorrectly classified)} \end{cases}

8 until k = k_{max}

9 return C_k and \alpha_k for k = 1 to k_{max} (ensemble of classifiers with weights)

10 end
```

the category label given to **x** by componet classifier C_k

$$g(\mathbf{x}) = \sum_{k=1}^{k_{\text{max}}} \alpha_k h_k(\mathbf{x}),$$

$$h_k(\mathbf{x}) = +1 \text{ or } -1,$$

Random Forest

- Decision Tree Bagging
 - Given a training set $X = x_1, \dots, x_n$ with labels $Y = y_1, \dots, y_n$, bagging repeatedly (L times) selects a random sample with replacement of the training set and fits trees to these samples
 - For i = 1, ..., L:
 - Sample, with replacement, m training examples from X,Y; call these X_i,Y_i
 - Train a decision or regression tree f_i on X_i , Y_i
 - Prediction for an unseen x' can be made by averaging the predictions from all the individual trees on x'
- Random Forest use a random subset of the features in tree learning, called "feature bagging"

2022/6/6

30

Cross-Validation

- Simple validation
 - Split the set of labeled training samples D into two parts
 - Traditional training set
 - Train the classifier
 - Validation set
 - Estimate the generalization error

