Mars Ascent Vehicle

An Online Reinforcement Learning Controller Design for Mars Ascent Vehicle

February 5th, 2022 2021 AAS GN&C Conference Breckenridge, CO, USA

Han Woong (Brian) Bae, PhD Control System Design & Analysis

- Mars Ascent Vehicle (MAV) is a part of Mars Sample Return Campaign.
 - Goal: Return the Martian soil to Earth.
- MAV consists of multiple stages
 - Focus on first stage Solid Rocket Motor pitch and yaw maneuver with TVC
- Two control system design challenges:
 - Abruptly changing vehicle parameters.
 - Disadvantageous Martian setup.

Source: Yaghoubi, Schnell. "Mars Ascent Vehicle Solid Propulsion Configuration", 2020 IEEE Aerospace Conference, March 2020

Conditions:

- ✓ Knowledge of atmospheric state
- ✓ Physical access to hardware
- ✓ Instant communication
- ✓ Safe to board human

Conditions:

- ★Knowledge of atmospheric state
- ✗Physical access to hardware
- ✗Instant communication
- XSafe to board human

- The long-term solution is to automate the vehicle.
 - Quickly adapt to off-nominal conditions.
 - Optimize performance in-flight.
 - No Deep Space Network (DSN) communication needed.
- AI/ML will lead to increase in automation as well as GN&C performance.²
- Online reinforcement learning control by Yang et al is proposed for this study³
 - No prior training required.
 - Superior adaptability on-flight.
 - Robust against disturbances.

- The online reinforcement learning control involves two neural networks (NN):
 - The action NN (control law) applies short term performance measure based on output error terms.
 - The critic NN (performance cost function) evaluates the performance of the action based on the long-term cost function

- Action NN Law and Weight Update
 - The action NN law is given by:

$$\vec{u}(k) = \hat{w}_a(k)^T \vec{\phi}'_a(v_a^T \vec{s}(k))$$

Action NN weight update is given by:

$$\hat{w}_{a}(k+1) = \hat{w}_{a}(k) + \alpha_{a}\vec{\phi}'_{a}(v_{a}^{T}\vec{s}(k)) \left(\vec{e}(k+1) - l_{1}\vec{e}(k) + \hat{\vec{J}}(k)\right)^{T}$$

- Critic NN and Weight update
 - Let cost function I(k) be defined by:

$$\vec{J}(k) = \sum_{i=0}^{\infty} \gamma^{i} \vec{r}(k+i)$$

$$r_{i}(k) = Q_{i} |e_{i}(k)| e_{i}(k) + R_{i} |u_{i}(k)| u_{i}(k), i = 1, 2, ..., 6$$

The cost function can be estimated with the critic NN law given by

$$\hat{\vec{J}}(k) = \hat{w}_c^T(k) \vec{\phi}_c(v_c^T \vec{x}(k))$$

Where critic NN weight update is given by:

$$\hat{w}_c^T(k+1) = \hat{w}_c^T(k) - \alpha_c \gamma \vec{\phi}_c'(\vec{x}(k)) (\gamma \vec{j}(k) - \vec{r}(k) - \hat{j}(k-1))$$

- The ORL controller is set up for the pitch and yaw maneuver on the first stage.
- TVC internal control assumed second-order dynamics with bandwidth of 10 Hz and damping coefficient of 0.707.
- The simulation includes sensor noises, sensor bias, navigation latencies and guidance steering.
- The ORL controller is compared with PID control and gain-scheduled pole-placed PID control.
- Two test cases are considered:

Table 1. Test Case Descriptions

Case #	Description
Case 1	Nominal
Case 2	High external disturbance

Simulation Set up

- The optimized constant gains for PID are 0.5, 0.2, and 0.2 for K_p , K_d , and K_I , respectively.
- GS-PP-PID gains are variable and obtained through pole-placement using the lookup tables of the parameters and accelerometer readings.
 - Desired control bandwidth and damping coefficient are 1 Hz and 1, respectively.
- The tuned gains for ORL is shown in Table 2.

Table 2. Control Gain Values

Parameter	Value
\vec{Q}	[115577]
\vec{R}	$[3\ 3\ 0\ 0\ 0\ 0] \times 10^{5}$
α_a	$[34\ 34\ 16\ 16\ 2.1\ 2.1] \times 10^{-4}$
α_c	1×10^{-4}
l_1	0.2
γ	0.5
p	1×10^6

GS-PP-PID gains throughout the first stage TVC powered flight.

Conclusion/Discussion

- The ORL controller has demonstrated superior performance over two other controllers in the following areas:
 - Robustness
 - Adaptability
 - Convergence
- Future works include:
 - Mitigating high transients seen in the attitude errors at the beginning of flight.
 - Assessing the performance under multiple faulty conditions.
 - Extending ORL to inner and outer loops for an integrated optimal solution.

Questions?

National Aeronautics and Space Administration Jet Propulsion Laboratory / Marshall Space Flight Center Mars Sample Return / Mars Ascent Vehicle

Email: hanwoong.bae@nasa.gov

Reference

- [1] Yaghoubi, Schnell. "Mars Ascent Vehicle Solid Propulsion Configuration", 2020 IEEE Aerospace Conference, March 2020
- [2] D. Izzo, M. Märtens, and B. Pan, A survey on artificial intelligence trends in spacecraft guidance dynamics and control. Astrodyn. Vol. 3, No. 4, 2019, pp. 287–299.
- [3] Q. Yang and S. Jagannathan. Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators. IEEE Trans Syst Man Cybern B Cybern, 42(2):377–390, April 2012.
- [4] Dorf, Richard C., and Robert H. Bishop. *Modern Control Systems*. Upper Saddle River, NJ: Prentice Hall, 2010.