ISCA 2002

Bruce Jacob David Wang University of Maryland

DRAM: Architectures, Interfaces, and Systems

A Tutorial

Bruce Jacob and David Wang

Electrical & Computer Engineering Dept. University of Maryland at College Park http://www.ece.umd.edu/~blj/DRAM/

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Outline

- Basics
- DRAM Evolution: Structural Path
- Advanced Basics
- DRAM Evolution: Interface Path
- Future Interface Trends & Research Areas
- Architectures, Systems, Embedded Performance Modeling:

Break at 10 a.m. — Stop us or starve

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Basics

DRAM ORGANIZATION

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

University of Maryland

ISCA 2002

Bruce Jacob David Wang University of Maryland

Basics

[PRECHARGE and] ROW ACCESS

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Basics

COLUMN ACCESS

ISCA 2002

Bruce Jacob David Wang University of Maryland

Basics

DATA TRANSFER

note: page mode enables overlap with CAS

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Basics

BUS TRANSMISSION

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Basics

A: Transaction request may be delayed in Queue

B: Transaction request sent to Memory Controller

(may be queued) C: Transaction converted to Command Sequences

D: Command/s Sent to DRAM

E₁: Requires only a CAS or

E₂: Requires **RAS + CAS** or

E_{3:} Requires PRE + RAS + CAS

F: Transaction sent back to CPU

"DRAM Latency" = A + B + C + D + E + F

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Basics

PHYSICAL ORGANIZATION

x4 DRAM

Bir Lines... Column Decoder Sense Amps Memory Array Data Buffers Row Decoder

x8 DRAM

x8 DRAM

Typical DRAMs have 2+ banks This is per bank ...

ISCA 2002

Bruce Jacob David Wang University of Maryland

Basics

Read Timing for Conventional DRAM

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Future Trends Structural Modifications Targeting Latency **DRAM Evolutionary Tree** Rambus, DDR/2 VCDRAM MOSYS FCRAM **ESDRAM** ↔ Interface Modifications Targeting Throughput SDRAM (Mostly) Structural Modifications Targeting Throughput P/BEDO Conventional DRAM FPM

ISCA 2002

Bruce Jacob David Wang University of Maryland

Read Timing for Conventional DRAM

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

DRAM Evolution

Read Timing for Fast Page Mode

ISCA 2002

Bruce Jacob David Wang

University of Maryland

DRAM Evolution

g

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

University of Maryland

DRAM Evolution

Read Timing for Burst EDO

Transfer Overlap Data Transfer Valid Data Valid Data Valid Data Valid Data Row Column Address Address

Address

DO

CAS

RAS

ISCA 2002

Bruce Jacob David Wang University of Maryland

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

DRAM Evolution

Read Timing for Synchronous DRAM

Transfer Overlap **Column Access** Data Transfer **Row Access** Valid Data Valid Data Valid Data Valid Data READ Col Addr ommand ddress Row Addr ACT Clock CAS DQ

(RAS + CAS + OE ... == Command Bus)

ISCA 2002

Bruce Jacob David Wang

University of Maryland

DRAM Evolution

Inter-Row Read Timing for ESDRAM

Regular CAS-2 SDRAM, R/R to same bank

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

University of Maryland

DRAM Evolution

Write-Around in ESDRAM

ESDRAM, R/W/R to same bank, rows 0/1/0

Valid Valid Data Data

Valid Data

Valid Valid Data

Valid Valid Data Data

Valid Data

Add

Row

Bank

정형

Row

P Age

Row

(can second READ be this aggressive?)

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Internal Structure of Virtual Channel

Segment cache is software-managed, reduces energy

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

University of Maryland

DRAM Evolution

FCRAM

Internal Structure of Fast Cycle RAM 8M Array SDRAM Row Decoder 13 bits

(8Kr × 1Kb)

Sense Amps 8M Array (?) Row Decoder 15 bits

> (two clocks) $t_{RCD} = 15ns$

Sense Amps

(one clock) $t_{RCD} = 5ns$

Reduces access time and energy/access

ISCA 2002

Bruce Jacob David Wang University of Maryland

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

DRAM Evolution

Comparison of Low-Latency DRAM Cores

DRAM Type	Data Bus Speed	Bus Width (per chip)	Peak BW (per Chip)	RAS-CAS (t _{RCD})	RAS-DQ (t _{RAC})
PC133 SDRAM	133	16	266 MB/s	15 ns	30 ns
VCDRAM	133	16	266 MB/s	30 ns	45 ns
FCRAM	200 * 2	16	800 MB/s	5 ns	22 ns
1T-SRAM	200	32	800 MB/s		10 ns
DDR 266	133 * 2	16	532 MB/s	20 ns	45 ns
DRDRAM	400 * 2	16	1.6 GB/s	22.5 ns	60 ns
RLDRAM	300 * 2	32	2.4 GB/s	555	25 ns

ISCA 2002

Bruce Jacob David Wang University of Maryland

Outline

- Basics
- DRAM Evolution: Structural Path
- Advanced Basics
- Memory System Details (Lots)
- DRAM Evolution: Interface Path
- Future Interface Trends & Research Areas
- Architectures, Systems, Embedded Performance Modeling:

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

What Does This All Mean?

ISCA 2002

Bruce Jacob David Wang University of Maryland

Cost - Benefit Criterion

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Memory System Design

ISCA 2002

Bruce Jacob David Wang University of Maryland

DRAM Interfaces

The Digital Fantasy

Pretend that the world looks like this

But..

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

ISCA 2002

Bruce Jacob David Wang University of Maryland

Signal Propagation

Ideal Transmission Line

 $\sim 0.66c = 20 \text{ cm/ns}$

PC Board + Module Connectors + Varying Electrical Loads

= Rather non-Ideal Transmission Line

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Clocking Issues

What Kind of Clocking System?

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Clocking Issues

We need different "clocks" for R/W

ISCA 2002

DRAM TUTORIAL

Bruce Jacob David Wang

University of Maryland

Differential -ength Path

High Frequency AND Wide Parallel are Difficult to Implement Busses

ISCA 2002

Bruce Jacob David Wang University of Maryland

Subdividing Wide Busses

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Why Subdivision Helps

Worst Case Skew must be Considered in System Timing

ISCA 2002

Bruce Jacob David Wang

University of Maryland

How many DIMMs in System?

How many devices on each DIMM?

Who built the memory module?

Infinite variations on timing!

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Balance Loading

Strength Variable Signal Drive

Controller

Controller

ISCA 2002

Bruce Jacob David Wang University of Maryland

DRAM System Topology Determines
Electrical Loading Conditions
and Signal Propagation Lengths

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Loading Imbalance

ISCA 2002

Bruce Jacob David Wang University of Maryland

RDRAM Topology Example

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

I/O Technology

Slew Rate =
$$\frac{\Delta v}{\Delta t}$$

Smaller $\Delta v =$

Smaller ∆ t at same slew rate

Increase Rate of bits/s/pin

ISCA 2002

Bruce Jacob David Wang University of Maryland

Increase Rate of bits/s/pin?

Cost Per Pin?

Pin Count?

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Increase Rate of bits/s/pin

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Packaging

"good old days"

Small Outline J-lead

SOJ

property and the second
CC.

Features	Target Sp	Target Specification
Package	FBGA	LQFP
Speed	800MBp	550Mbps
Vdd/Vddq	2.5V/2.	2.5V/2.5V (1.8V)
Interface	.SS	SSTL_2
Row Cycle Time t _{RC}	36	35ns

Memory Roadmap for Hynix NetDDR II

Low Profile Quad Flat Package LQFP

Thin Small Outline Package

TSOP

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Protocol Access

Single Cycle Command

Op Op Op Op

Data

Multiple Cycle Command

ISCA 2002

Bruce Jacob David Wang University of Maryland

Access Protocol (r/r)

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Access Protocol (r/w)

Case 1: Read Following a Write Command to Different DRAM Devices Data do do do do d1 d1 d1

Col Wo F1

Case 2: Read Following a Write Command to Same DRAM Device

Soln: Delay Data of Write Command to match Read Latency

ISCA 2002

Bruce Jacob David Wang University of Maryland

Access Protocol (pipelines)

Three Back-to-Back Pipelined Read Commands

"Same" Latency, 2X pin frequency, Deeper Pipeline

When pin frequency increases, chips must either reduce "real latency", or support longer bursts, or pipeline more commands.

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Outline

- Basics
- DRAM Evolution: Structural Path
- Advanced Basics
- DRAM Evolution: Interface Path
- SDRAM, DDR SDRAM, RDRAM Memory System Comparisons
- Processor-Memory System Trends
- RLDRAM, FCRAM, DDR II Memory Systems Summary
- Future Interface Trends & Research Areas
- Performance Modeling:

 Architectures, Systems, Embedded

ISCA 2002

Bruce Jacob David Wang

University of Maryland

SDRAM System In Detail

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

University of Maryland

SDRAM Chip

Multiplexed Command/Address Bus 133 MHz (7.5ns cycle time)

Programmable Burst Length, 1,2,4 or 8 **Quad Banks Internally**

Supply Voltage of 3.3V

Low Latency, CAS = 2, 3

LVTTL Signaling (0.8V to 2.0V) (0 to 3.3V rail to rail.)

	(
MBit P pin SOP	1
256 54 TS	•

14 Pwr/Gnd

16 Data 15 Addr 7 Cmd

1 C S

Condition Specification	Cur.	Pwr
Operating (Active) Burst = Continous	300mA	M1
Operating (Active) Burst = 2	170mA	170mA 560mW
Standby (Active) All banks active	60mA	60mA 200mW
Standby (powerdown) All banks inactive	2mA	2mA 6.6mW

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Back-to-back Memory Read Accesses to Different Chips in SDRAM

allow for pipelined back-to-back Reads Clock Cycles are still long enough to

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Read

Write

Worst case = Dist(N) + Dist(N-1)

Bus Turn Around

ISCA 2002

Bruce Jacob David Wang University of Maryland

SDRAM Access Protocol (w/r)

Read Following a Write Command to Same SDRAM Device

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

DDR SDRAM System

Chip (DIMM) Select

DQS (Data Strobe)

Addr & Cmd

Data Bus

Same Topology

as SDRAM

ISCA 2002

Bruce Jacob David Wang University of Maryland

DDR SDRAM Chip

133 MHz (7.5ns cycle time)

Multiplexed Command/Address Bus

Programmable Burst Lengths, 2, 4 or 8* Quad Banks Internally

Supply Voltage of 2.5V*

Low Latency, CAS = 2, 2.5, 3 *

SSTL-2 Signaling (Vref +/- 0.15V) (0 to 2.5V rail to rail)

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

SDRAM Protocol (r/r) DDR

Back-to-back Memory Read Accesses to Different Chips in DDR SDRAM

ISCA 2002

Bruce Jacob David Wang University of Maryland

RDRAM System

Two Write Commands Followed by a Read Command

Packet Protocol: Everything in 8 (half) cycle packets

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Direct RDRAM Chip

400 MHz (2.5ns cycle time)

Separate Row-Col Command Busses

Burst Length = 8*

4/16/32 Banks Internally*

Supply Voltage of 2.5V*

Low Latency, CAS = 4 to 6 full cycles*

RSL Signaling (Vref +/- 0.2V) (800 mV rail to rail)

256 MBit 86 pin FBGA

49 Pwr/Gnd* 16 Data

8 Addr/Cmd 4 Clk* 6 CTL *

2 NC 1 Vref precharge data data read data read data read Active read Active

All packets are 8 (half) cycles in length, the protocol allows near 100% bandwidth utilization on all channels. (Addr/Cmd/Data)

ISCA 2002

Bruce Jacob David Wang University of Maryland

RDRAM Drawbacks

Significant Cost Delta for First Generation

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

System Comparison

	SDRAM	DDR	RDRAM
Frequency (MHz)	133	133*2	400*2
Pin Count (Data Bus)	64	64	16
Pin Count (Controller)	102	101	33
Theoretical Bandwidth (MB/s)	1064	2128	1600
Theoretical Efficiency (data bits/cycle/pin)	0.63	0.63	0.48
Sustained BW (MB/s)*	655	986	1072
Sustained Efficiency* (data bits/cycle/pin)	0.39	0.29	0.32
RAS + CAS (t _{RAC}) (ns)	45 ~ 50	45 ~ 50	57 ~ 67
CAS Latency (ns)**	22 ~ 30	22 ~ 30	40 ~ 50

133 MHz P6 Chipset + SDRAM CAS Latency ~ 80 ns

*StreamAdd

**Load to use latency

ISCA 2002

Bruce Jacob David Wang University of Maryland

Complexity Moved to DRAM

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Technology Roadmap (ITRS)

	2004	2007	2010	2013	2016
Semi Generation (nm)	06	65	45	32	22
CPU MHz	3990	6740	12000	19000	29000
MLogicTransistors/ cm^2	77.2	154.3	309	617	1235
High Perf chip pin count	2263	3012	4009	5335	7100
High Performance chip cost (cents/pin)	1.88	1.61	1.68	1.44	1.22
Memory pin cost (cents/pin)	0.34 -	0.27 - 0.84	0.22 -	0.19 -	0.19 -
Memory pin count	48-160	48-160	62-208	81-270	105-351

Trend: Free Transistors & Costly Interconnects

ISCA 2002

Bruce Jacob David Wang University of Maryland

DRAM TUTORIAL

ISCA 2002

University of Maryland

Bruce Jacob David Wang

EV7 + RDRAM (Compaq/HP)

- RDRAM Memory (2 Controllers)
- Direct Connection to processor
- 75ns Load to use latency
- 12.8 GB/s Peak bandwidth

6 GB/s read or write bandwidth

2048 open pages (2 * 32 * 32)

Each column read fetches 128 * 4 = 512 b (data)

ISCA 2002

Bruce Jacob David Wang

University of Maryland

What if EV7 Used DDR?

Peak Bandwidth 12.8 GB/s

6 Channels of 133*2 MHz DDR SDRAM ==

6 Controllers of 6 64 bit wide channels, or

3 Controllers of 3 128 bit wide channels

System	EV7 + RDRAM	EV7 + 6 controller DDR SDRAM	EV7 + 3 controller DDR SDRAM
Latency	75 ns	~ 50 ns*	~ 50 ns*
Pin count	~265** + Pwr/Gnd	$\sim 265^{**} + Pwr/Gnd \sim 600^{**} + Pwr/Gnd \sim 600^{**} + Pwr/Gnd$	~ 600** + Pwr/Gnd
Controller Count	2	***9	3***
Open pages	2048	144	72

DRAM TUTORIAL

ISCA 2002

What's Next?

Bruce Jacob David Wang

University of Maryland

DDR II

FCRAM

RLDRAM

RDRAM (Yellowstone etc)

Kentron QBM

^{*} page hit CAS + memory controller latency.

** including all signals, address, command, data, clock, not including ECC or parity

*** 3 controller design is less bandwidth efficient.

ISCA 2002

Bruce Jacob David Wang University of Maryland

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

DDR II - Continued

Posted Commands

SDRAM & DDR SDRAM relies on memory controller to know $t_{\rm RCD}$ and issue CAS after $t_{\rm RCD}$ for lowest latency.

Internal counter delays CAS command, DRAM chip issues "real" command after t_{RCD} for lowest latency.

ISCA 2002

Bruce Jacob David Wang University of Maryland

FCRAM

Fast Cycle RAM (aka Network-DRAM)

Features	DDR SDRAM	FCRAM/Network-DRAM
Vdd, Vddq	2.5 +/- 0.2V	2.5 +/- 0.15
Electrical Interface	SSTL-2	SSTL-2
Clock Frequency	100~167 MHz	154~200 MHz
trac	~40ns	22~26ns
trc	~60ns	25~30ns
# Banks	4	4
Burst Length	2,4,8	2,4
Write Latency	1 Clock	CASL -1

FCRAM/Network-DRAM looks like DDR+

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

FCRAM Continued

Faster t_{RC} allows Samsung to claim higher bus efficiency * Samsung Electronics, Denali MemCon 2002

ISCA 2002

Bruce Jacob David Wang University of Maryland

RLDRAM

DRAM Type	Frequency	Bus Width (per chip)	Peak Bandwidth (per Chip)	Random Access Time (t _{RAC})	Row Cycle Time (t _{RC})
PC133 SDRAM	133	16	200 MB/s	45 ns	90 ns
DDR 266	133 * 2	16	532 MB/s	45 ns	60 ns
PC800 RDRAM	400 * 2	16	1.6 GB/s	90 ns	70 ns
FCRAM	200 * 2	16	0.8 GB/s	25 ns	25 ns
RLDRAM	300 * 2	32	2.4 GB/s	25 ns	25 ns

Comparable to FCRAM in latency Higher Frequency (No Connectors) non-Multiplexed Address (SRAM like)

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

RLDRAM Continued

High-end PC and Server

RLDRAM is a great replacement to SRAM in L3 cache applications because of its high density, low power and low cost

* Infineon Presentation, Denali MemCon 2002

ISCA 2002

Bruce Jacob David Wang University of Maryland

RAMBUS Yellowstone

- Bi-Directional Differential Signals
- Ultra low 200mV p-p signal swings
- 8 data bits transferred per clock
- 400 MHz system clock
- 3.2 GHz effective data frequency
- Cheap 4 layer PCB
- Commodity packaging

Octal Data Rate (ODR) Signaling

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Kentron QBMTM

"Wrapper Electronics around DDR memory" Generates 4 data bits per cycle instead of 2.

Quad Band Memory

ISCA 2002

Bruce Jacob David Wang University of Maryland

A Different Perspective

Everything is bandwidth

Latency and Bandwidth

Pin-bandwidth and

Pin-transition *Efficiency (bits/cycle/sec)

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Unidirectional Topology:

- Write Packets sent on Command Bus
- Pins used for Command/Address/Data
- Further Increase of Logic on DRAM chips

ISCA 2002

Bruce Jacob David Wang University of Maryland

Instead of A[] = 0; Do "write 0"

Move Data inside of DRAM or between DRAMs.

Why do STREAMadd in CPU?

A[] = B[] + C[]

Active Pages *(Chong et. al. ISCA '98)

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Address Mapping

Access Distribution for Temp Control Avoid Bank Conflicts Access Reordering for performance

ISCA 2002

Bruce Jacob David Wang University of Maryland

Example: Bank Conflicts

== Logic Overhead More Banks per Chip == Performance

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Read 05AE5780 Read 00CBA2C0

Read 05AE5700 Read 023BB880

(A)(W)

Device id 3, Row id 266, Bank id 0
Device id 3, Row id 1BA, Bank id 0
Device id 3, Row id 266, Bank id 0

Device id 1, Row id 052, Bank id 1

Reordering

Access

Example:

Data Prec Prec Act Data Data Data ReadReadRead Act(4) Act(1)

Prec

Memory Access Re-ordered

Act = Activate Page (Data moved from DRAM cells to row buffer)
Read = Read Data (Data moved from row buffer to memory controller) Prec = Precharge (close page/evict data in row buffer/sense amp)

ISCA 2002

Bruce Jacob David Wang University of Maryland

Outline

- Basics
- DRAM Evolution: Structural Path
- Advanced Basics
- DRAM Evolution: Interface Path
- Future Interface Trends & Research Areas
- Performance Modeling:

Architectures, Systems, Embedded

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Simulator Overview

CPU: SimpleScalar v3.0a

- 8-way out-of-order
- L1 cache: split 64K/64K, lockup free x32
- L2 cache: unified 1MB, lockup free x1
- L2 blocksize: 128 bytes

Main Memory: 8 64Mb DRAMs

- 100MHz/128-bit memory bus
- Optimistic open-page policy

Benchmarks: SPEC '95

ISCA 2002

Bruce Jacob David Wang

University of Maryland

DRAM Configurations

Note: TRANSFER WIDTH of Direct Rambus Channel

- equals that of ganged FPM, EDO, etc.
- is 2x that of Rambus & SLDRAM

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

University of Maryland

DRAM Configurations

Rambus & SLDRAM dual-channel:

Strawman: Rambus, etc.

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Assumes refresh of each bank every 64ms

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Variable: speed of processor & caches

ISCA 2002

Bruce Jacob David Wang University of Maryland

DefinitionS (var. on Burger, et al)

- tproc processor with perfect memory
- t_{REAL} realistic configuration
- CPU with wide memory paths t_{BW} —
- time seen by DRAM system **t**DRAM

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Bandwidth-Enhancing Techniques I:

ISCA 2002

Bruce Jacob David Wang

University of Maryland

PERI Memory & CPU

Bandwidth-Enhancing Techniques II:

Bruce Jacob David Wang

University of Maryland

note: SLDRAM & RDRAM 2x data transfers

ISCA 2002

Bruce Jacob David Wang

University of Maryland

note: SLDRAM & RDRAM 2x data transfers

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

ISCA 2002

Bruce Jacob David Wang University of Maryland

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

ISCA 2002

Bruce Jacob David Wang University of Maryland

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Row Buffers as L2 Cache

ISCA 2002

Bruce Jacob David Wang University of Maryland

Row Buffer Management

RAS is like Cache Access Why not Speculate?

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Cost-Performance

FPM, EDO, SDRAM, ESDRAM:

- Lower Latency => Wide/Fast Bus
- Increase Capacity => Decrease Latency
- Low System Cost

Rambus, Direct Rambus, SLDRAM:

- Lower Latency => Multiple Channels
- Increase Capacity => Increase Capacity
- High System Cost

However, 1 DRDRAM = Multiple SDRAM

ISCA 2002

Bruce Jacob David Wang University of Maryland

Conclusions

100MHz/128-bit Bus is Current Bottleneck

(e.g. Alpha 21364, Emotion Engine, ...) Solution: Fast Bus/es & MC on CPU

Current DRAMs Solving Bandwidth Problem (but not Latency Problem)

- Solution: New cores with on-chip SRAM (e.g. ESDRAM, VCDRAM, ...)
- Solution: New cores with smaller banks (e.g. MoSys "SRAM", FCRAM, ...)

Direct Rambus seems to scale best for future high-speed CPUs

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Outline

- Basics
- DRAM Evolution: Structural Path
- Advanced Basics
- DRAM Evolution: Interface Path
- Future Interface Trends & Research Areas
- Architectures, Systems, Embedded Performance Modeling:

ISCA 2002

Bruce Jacob David Wang University of Maryland

Motivation

Even when we restrict our focus ..

SYSTEM-LEVEL PARAMETERS

Number of channels

Channel latency

Banks per channel

Request-queue size

Row-access

DRAM precharge

DRAM buffering

Number of MSHRs

Width of channels

Channel bandwidth Turnaround time

Request reordering Column-access

CAS-to-CAS latency

L2 cache blocksize Bus protocol Fully | partially | not independent (this study)

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

... the design space is highly non-linear

ISCA 2002

Bruce Jacob David Wang University of Maryland

Motivation

... and the cost of poor judgment is high.

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

System-Level Model

SDRAM Timing

ISCA 2002

Bruce Jacob David Wang University of Maryland

System-Level Model

Timing diagrams are at the DRAM level ... not the system level

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

System-Level Model

Timing diagrams are at the DRAM level ... not the system level

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Request Timing

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Read/Write Request Shapes

READ REQUESTS:

WRITE REQUESTS:

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Pipelined/Split Transactions

(b) Nestling of writes inside reads is legal if R/W to different banks: Legal if turnaround <= 10ns:</p>

Back-to-back R/W pair that cannot be nestled: 70ns 40ns 10~10ns 10ns <u>ပ</u> Read: Write:

40ns

• 10 ► 10ns

10►10ns

Write:

Write:

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Banks Channels &

One independent channel Banking degrees of 1, 2, 4, ...

۵

۵

۵

O O

0 0 0

0 0 0

Four independent channels Banking degrees of 1, 2, 4, ...

800 MHz Channels 1, 2, 4

- Data Bits per Channel 8, 16, 32, 64
- Banks per Channel (Indep.) **Bytes per Burst** 4, 8 128 32, 64,

ISCA 2002

Bruce Jacob David Wang

University of Maryland

(Back-to-Back Read Requests)

128-Byte Bursts:

- **Critical-burst-first**
- Non-critical bursts are promoted
- (tend back up in request queue ...) Writes have lowest priority
- Tension between large & small bursts: amortization vs. faster time to data

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

- t_{PROC} CPU with 1-cycle L2 miss
- realistic CPU/DRAM config treal –
- **CPU with 1-cycle DRAM latency** tsys —
- t_{DRAM} time seen by DRAM system

ISCA 2002

Bruce Jacob David Wang University of Maryland

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

ISCA 2002

Bruce Jacob David Wang University of Maryland

Benchmark = BZIP (SPEC 2000), 32-byte burst, 16-bit bus

Banks/channel as significant as channel BW

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

ISCA 2002

Bruce Jacob David Wang University of Maryland

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

ISCA 2002

Bruce Jacob David Wang University of Maryland

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Bandwidth vs. Burst Width

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Burst Width Scales with Bus

Range of Burst-Widths Modeled

ISCA 2002

Bruce Jacob David Wang University of Maryland

Burst Width Scales with Bus

Range of Burst-Widths Modeled

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

MCF Focus on 3.2 GB/s

ISCA 2002

Bruce Jacob David Wang

University of Maryland

ISCA 2002

Bruce Jacob David Wang

ISCA 2002

Bruce Jacob David Wang

University of Maryland

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Conclusions

DESIGN SPACE is NON-LINEAR, COST of MISJUDGING is HIGH **CAREFUL TUNING YIELDS 30-40% GAIN**

MORE CONCURRENCY == BETTER (but not at expense of LATENCY)

- → NOT w/ LARGE BURSTS Via Channels
- Via Banks
- → DOESN'T PAY OFF → ALWAYS SAFE Via Bursts
- Via MSHRs
- **→ NECESSARY**
- BURSTS AMORTIZE COST OF PRECHARGE
 - Typical Systems: 32 bytes (even DDR2) **→ THIS IS NOT ENOUGH**

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Outline

- Basics
- **DRAM Evolution: Structural Path**
- **Advanced Basics**
- **DRAM Evolution:** Interface Path
- Future Interface Trends & Research Areas
- Performance Modeling:

Architectures, Systems, Embedded

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang

University of Maryland

Primer **Embedded DRAM**

Embedded

ISCA 2002

Bruce Jacob David Wang University of Maryland

Whither Embedded DRAM?

Microprocessor Report, August 1996: "[Five] Architects Look to Processors of Future"

- Two predict imminent merger of CPU and DRAM
- Another states we cannot keep cramming more data over the pins at faster rates (implication: embedded DRAM)
- A fourth wants gigantic on-chip L3 cache (perhaps DRAM L3 implementation?)

SO WHAT HAPPENED?

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

DSPs Embedded DRAM for

MOTIVATION

TAGLESS SRAM

TRADITIONAL CACHE (hardware-managed)

The cache "covers" manages this manages this space: any datum in the space any datum in the space cached cached cached from memory be cached from memory memory mapped I/O)

Copying from memory will in the datum that is subordinate copy by the datum still in memory. Hardware ensures consistency.

NON-TRANSPARENT addressing EXPLICITLY MANAGED contents

TRANSPARENT addressing TRANSPARENTLY MANAGED contents

DSP Compilers => Transparent Cache Model

ISCA 2002

Bruce Jacob David Wang University of Maryland

DSP Buffer Organization Used for Study

Bandwidth vs. Die-Area Trade-Off for DSP Performance

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

E-DRAM Performance

Embedded Networking Benchmark - Patricia

ISCA 2002

Bruce Jacob David Wang University of Maryland

Embedded Networking Benchmark - Patricia

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

E-DRAM Performance

Embedded Networking Benchmark - Patricia

ISCA 2002

Bruce Jacob David Wang University of Maryland

Embedded Networking Benchmark - Patricia

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

Sources Performance-Data

"A Performance Study of Contemporary DRAM Architectures," *Proc. ISCA '99.* V. Cuppu, B. Jacob, B. Davis, and T. Mudge.

Memory Controller Level: Initial Results," University of Maryland Technical Report UMD-SCA-TR-1999-2. V. Cuppu and B. Jacob. "Organizational Design Trade-Offs at the DRAM, Memory Bus,

conjunction w/ ISCA '00. B. Davis, T. Mudge, V. Cuppu, and B. Jacob. "DDR2 and Low Latency Variants," Memory Wall Workshop 2000, in

"Concurrency, Latency, or System Overhead: Which Has the Largest Impact on DRAM-System Performance?" Proc. ISCA '01. V. Cuppu and B. Jacob. "Transparent Data-Memory Organizations for Digital Signal Processors," *Proc. CASES '01*. S. Srinivasan, V. Cuppu, and B. Jacob.

"High Performance DRAMs in Workstation Environments," *IEEE Transactions on Computers*, November 2001. V. Cuppu, B. Jacob, B. Davis, and T. Mudge.

Recent experiments by Sadagopan Srinivasan, Ph.D. student at University of Maryland.

ISCA 2002

Bruce Jacob David Wang University of Maryland

Acknowledgments

The preceding work was supported in part by the following sources:

- NSF CAREER Award CCR-9983618
- NSF grant EIA-9806645
- NSF grant EIA-0000439
- DOD award AFOSR-F496200110374
- ... and by Compaq and IBM.

DRAM TUTORIAL

ISCA 2002

Bruce Jacob David Wang University of Maryland

CONTACT INFO

Bruce Jacob

Electrical & Computer Engineering University of Maryland, College Park http://www.ece.umd.edu/~blj/blj@eng.umd.edu

Dave Wang

http://www.wam.umd.edu/~davewang/ University of Maryland, College Park Electrical & Computer Engineering davewang@wam.umd.edu

UNIVERSITY OF MARYLAND