OIPE

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/697,206A

DATE: 06/20/2001 TIME: 14:36:16

Input Set : A:\Seqlist.txt

Output Set: N:\CRF3\06202001\1697206A.raw

ENTERED

```
4 <110> APPLICANT: Daniel E.H. Afar
              Arthur B. Raitano
      5
              Rene S. Hubert
      6
      7
              Steve Chappell Mitchell
              Aya Jakobovits
     10 <120> TITLE OF INVENTION: NOVEL GENE UPREGULATED IN CANCERS OF THE
              PROSTATE
     11
     13 <130> FILE REFERENCE: 129.21-US-U1
     15 <140> CURRENT APPLICATION NUMBER: 09/697,206A
C--> 16 <141> CURRENT FILING DATE: 2001-06-04
     18 <150> PRIOR APPLICATION NUMBER: 60/162,364
     19 <151> PRIOR FILING DATE: 1999-10-28
     21 <160> NUMBER OF SEQ ID NOS: 26
     23 <170> SOFTWARE: FastSEQ for Windows Version 4.0
     25 <210> SEQ ID NO: 1
     26 <211> LENGTH: 3585
     27 <212> TYPE: DNA
     28 <213> ORGANISM: Homo Sapiens
     30 <400> SEQUENCE: 1
     31 ctttttggga tcactgctgg ggccaccggg gccaagctag gctcggatga gaaggagttg
                                                                                60
     32 atcctgctgt tctggaaagt cgtggatctg gccaacaaga aggtgggaca gttgcacgaa
                                                                               120
     33 gtgctagtta gaccggatca gttggaactg acggaggact gcaaagaaga aactaaaata
                                                                               180
     34 gacgtcgaaa gcctgtcctc ggcgtcgcag ctggaccaag ccctccgaca gtttaaccag
                                                                               240
     35 teagtgagea atgaactgaa tattggagta gggaetteet tetgtetetg tactgatggg
                                                                               300
     36 cagetteatg teaggeaaat eetgeateet gaggetteea agaagaatgt actattaeet
                                                                               360
     37 gaatgettet atteettttt tgatettega aaagaattea agaaatgttg eeetggttea
                                                                               420
     38 cctgatattg acaaactgga cgttgccaca atgacagagt atttaaattt tgaqaaqagt
                                                                               480
     39 agttcagtct ctcgatatgg agcctctcaa gttgaagata tggggaatat aattttagca
                                                                               540
     40 atgatttcag agccttataa tcacaggttt tcagatccag agagagtgaa ttacaagttt
                                                                               600
     41 gaaagtggaa cttgcagcaa gatggaactt attgatgata acaccgtagt cagggcacga
                                                                               660
     42 ggtttaccat ggcagtette agateaagat attgcaagat tetteaaagg acteaatatt
                                                                               720
    43 gccaagggag gtgcagcact ttgtctgaat gctcagggtc gaaggaacgg agaagctctg
                                                                               780
    44 gttaggtttg taagtgagga gcaccgagac ctagcactac agaggcacaa acatcacatg
                                                                               840
    45 gggacccqqt atattqaqqt ttacaaaqca acagqtqaaq atttccttaa aattqctqqt
                                                                               900
    46 ggtacttcca atgaggtagc ccagtttctc tccaaggaaa atcaagtcat tgttcgcatg
                                                                               960
    47 cgggggctcc ctttcacggc cacagctgaa gaagtggtgg ccttctttgg acagcattgc
                                                                              1020
    48 cetattactg ggggaaagga aggeateete tttgteacet acceagatgg taggeeaaca
                                                                              1080
    49 ggggacgett ttgteetett tgeetgtgag gaatatgeac agaatgegtt gaggaageat
                                                                              1140
    50 aaagacttgt tgggtaaaag atacattgaa ctcttcagga gcacagcagc tgaagttcag
                                                                              1200
    51 caggtgctga atcgattctc ctcggcccct ctcattccac ttccaacccc tcccattatt
                                                                              1260
    52 ccagtactac ctcagcaatt tgtgccccct acaaatgtta gagactgtat acgccttcga
                                                                              1320
    53 ggtetteeet atgeageeae aattgaggae ateetggatt teetggggga gttegeeaea
                                                                              1380
    54 gatattegta eteatggggt teacatggtt ttgaateace agggeegeee ateaggagat
                                                                              1440
    55 gcctttatcc agatgaagtc tgcggacaga gcatttatgg ctgcacagaa gtgtcataaa
                                                                              1500
    56 aaaaacatga aggacagata tgttgaagtc tttcagtgtt cagctgagga gatgaacttt
                                                                              1560
    57 gtgttaatgg ggggcacttt aaatcgaaat ggcttatccc caccgccatg cctgtctcct
                                                                              1620
    58 coctoctaca catttecage tectgetgea gttattecta cagaagetge catttaccag
                                                                              1680
```

RAW SEQUENCE LISTINGPATENT APPLICATION: **US/09/697,206A**DATE: 06/20/2001

TIME: 14:36:16

Input Set : A:\Seqlist.txt

Output Set: N:\CRF3\06202001\I697206A.raw

```
59 ccctctgtga ttttgaatcc acgagcactg cagccctcca cagcgtacta cccagcaggc
                                                                         1740
60 actcagetet teatgaacta cacagegtae tateccagee ecceaggtte gectaatagt
                                                                         1800
61 cttggctact tccctacage tgctaatett ageggtgtee etccaeagee tggcaeggtq
                                                                         1860
62 gtcagaatgc agggcctggc ctacaatact ggagttaagg aaattcttaa cttcttccaa
                                                                         1920
63 ggttaccagt atgcaaccga ggatggactt atacacacaa atgaccaggc caggactcta
                                                                         1980
64 cccaaagaat gggtttgtat ttaagggccc cagcagttag aacatcctca gaaaagaagt
                                                                         2040
65 gtttgaaaga tgtatggtga tcttgaaacc tccagacaca agaaaacttc tagcaaattc
                                                                         2100
66 aggggaagtt tgtctacact caggctgcag tattttcagc aaacttgatt ggacaaacgg
                                                                         2160
67 gcctgtgcct tatcttttgg tggagtgaaa aaatttgagc tagtgaagcc aaatcgtaac
                                                                         2220
68 ttacagcaag cagcatgcag catacctggc tctttgctga ttgcaaatag gcatttaaaa
                                                                         2280
69 tgtgaatttg gaatcagatg totocattac ttocagttaa agtggcatca taggtgttto
                                                                         2340
70 ctaagtttta agtcttggat aaaaactcca ccagtgtcta ccatctccac catgaactct
                                                                         2400
71 gttaaggaag cttcattttt gtatattccc gctcttttct cttcatttcc ctgtcttctg
                                                                         2460
72 cataatcatq ccttcttqct aaqtaattca aqcataaqat cttqqaataa taaaatcaca
                                                                         2520
73 atcttaggag aaagaataaa attgttattt tcccagtctc ttggccatga tgatatctta
                                                                         2580
74 tgattaaaaa caaattaaat tttaaaacac ctgaagataa attagaagaa attgtgcacc
                                                                         2640
75 ctccacaaaa catacaaagt ttaaaagttt ggatcttttt ctcagcaggt atcagttgta
                                                                         2700
76 aataatgaat taggggccaa aatgcaaaac gaaaaatgaa gcagctacat gtagttagta
                                                                         2760
77 attictagtt tgaactgtaa ttgaatattg tggcttcata tgtattattt tatattgtac
                                                                         2820
78 ttttttcatt attgatggtt tggactttaa taagagaaat tccatagttt ttaatatccc
                                                                         2880
79 agaagtgaga caatttgaac agtgtattct agaaaacaat acactaactg aacagaagtg
                                                                         2940
80 aatgettata tatattatga tageettaaa eettttteet etaatgeett aaetgteaaa
                                                                         3000
                                                                         3060
81 taattataac ettttaaage ataggactat agteageatg etagaetgag aggtaaacae
82 tgatgcaatt agaacaggta ctgatgctgt cagtgtttaa cactatgttt agctgtgttt
                                                                         3120
83 atgctataaa agtgcaatat tagacactag ctagtactgc tgcctcatgt aactccaaag
                                                                         3180
84 aaaacaggat ttcattaagt gcattgaatg tggatatttc tctaagttac tcatattgtc
                                                                         3240
85 ctttgcttga atgcaatgcc gtgcagattt atgaggctgc tatttttatt ttctgtgcat
                                                                         3300
86 tactttaaca cettaaaggg agaagcaaac attteettet teagetgact ggeaatggee
                                                                         3360
87 ctttaactgc aataggaaga aaaaaaaaa ggtttgtgtg aaaattggtg ataactggca
                                                                         3420
88 cttaagatcg aaaagaaatt tctgtatact tgatgcctta agatgcccaa aqctgcccaa
                                                                         3480
89 agetetgaaa gaetttaaga taggeagtaa tgettaetae aataetaetg agtttttqta
                                                                         3540
90 gagttaacat ttgataataa aacttgcctg tttaatctca aaaaa
                                                                         3585
92 <210> SEQ ID NO: 2
93 <211> LENGTH: 517
94 <212> TYPE: PRT
95 <213> ORGANISM: Homo Sapiens
97 <400> SEQUENCE: 2
98 Met Thr Glu Tyr Leu Asn Phe Glu Lys Ser Ser Ser Val Ser Arg Tyr
                    5
                                       10
100 Gly Ala Ser Gln Val Glu Asp Met Gly Asn Ile Ile Leu Ala Met Ile
101
                20
                                    25
102 Ser Glu Pro Tyr Asn His Arg Phe Ser Asp Pro Glu Arg Val Asn Tyr
103
104 Lys Phe Glu Ser Gly Thr Cys Ser Lys Met Glu Leu Ile Asp Asp Asn
105
                            55
106 Thr Val Val Arg Ala Arg Gly Leu Pro Trp Gln Ser Ser Asp Gln Asp
108 Ile Ala Arg Phe Phe Lys Gly Leu Asn Ile Ala Lys Gly Gly Ala Ala
109
                                        90
```

RAW SEQUENCE LISTING DATE: 06/20/2001 PATENT APPLICATION: US/09/697,206A TIME: 14:36:16

Input Set : A:\Seqlist.txt
Output Set: N:\CRF3\06202001\I697206A.raw

110	Leu	Cys	Leu		Ala	Gln	Gly	Arg	Arg	Asn	Gly	${\tt Glu}$	Ala	Leu	Val	Arg
111				100					105					110		
	Phe	Val	Ser	Glu	Glu	His	Arg	_	Leu	Ala	Leu	Gln	_	His	Lys	His
113			115					120					125			
	His		Gly	Thr	Arg	Tyr		Glu	Val	Tyr	Lys		Thr	Gly	Glu	Asp
115		130		_	_		135	_				140	_		_ •	_
	Phe	Leu	Lys	Ile	Ala		Gly	Thr	Ser	Asn		Val	Ala	Gln	Phe	
	145					150					155					160
	Ser	Lys	Glu	Asn		Val	Ile	Val	Arg		Arg	GLY	Leu	Pro		Thr
119		1.		~ 1	165	1	** - 1		m 1	170	a 1	a 1			175	-1 -
	Ala	Thr	Ата		GIU	vaı	vaı	Ата		Pne	GTA	GIN	HIS	_	Pro	шe
121	m la aa	01	<i>α</i> 1	180	01	01	т1.	T ~	185	37- 7	m 1	Ш	D	190	01	7
123	Thr	СТА	195	гуѕ	GIU	СТА	тте	200	Pile	Val	THE	TAT		ASP	СТУ	AIG
	Pro	шhт		A an	λla	Dho	Wa I		Dho	λla	Crrc	C1	205	Фтт	7. T. a.	Cln
125	PIO	210	СТУ	ASP	ALA	Pne	215	Leu	Pne	нта	Cys	220	GIU	тут	нта	GIII
	Asn		Τ.Δ11	Δrα	T.vc	Иic		Δen	Τ.Δ11	Τ.Δ.11	Glv		Δra	Тагг	Tle	Glu
	225	AIu	пец	nrg	цуз	230	цуз	МЭР	Бец	Deu	235	цуз	ALG	1 Y 1	110	240
	Leu	Phe	Ara	Ser	Thr		Ala	Glu	Val	Gln		Va 1	Len	Asn	Ara	
129	Lou	1 110	5	001	245			014		250	011.	,	Lea		255	1 110
	Ser	Ser	Ala	Pro		Ile	Pro	Leu	Pro		Pro	Pro	Ile	Ile		Val
131				260					265					270		
132	Leu	Pro	Gln	Gln	Phe	Val	Pro	Pro	Thr	Asn	Val	Arg	Asp	Cys	Ile	Arg
133			275					280					285			
134	Leu	Arg	Gly	Leu	Pro	Tyr	Ala	Ala	Thr	Ile	Glu	Asp	Ile	Leu	Asp	Phe
135		290					295					300		•		
	Leu	Gly	Glu	Phe	Ala	Thr	Asp	Ile	Arg	Thr		Gly	Val	His	Met	Val
	305					310					315					320
	Leu	Asn	His	Gln		Arg	Pro	Ser	Gly	-	Ala	Phe	Ile	Gln		Lys
139	_	- -			325					330		_			335	
	Ser	Ala	Asp		Ala	Phe	Met	Ala		Gln	Lys	Cys	His		Lys	Asn
141	14-L	T	3	340	m	T7 - 1	a 1	*** 7	345	a1	0	Q	21-	350	a 1	
142	Met	ьys	355	Arg	туг	vaı	GIU	360	Pne	GIN	Cys	ser		GIU	GIU	мет
	λan	Dho		LOU	Mot	C1 77	C111		T OU	7 an	7 200	7 an	365	Lou	Com	Dwo
144	Asn	370	vaı	Leu	мес	СТУ	375	1111	Lieu	ASII	Ary	380	сту	ьеи	ser	PIO
	Pro		Cve	Τ.Δ11	Ser	Pro		Sor	ጥኒኒዮ	Thr	Dho		Δla	Dro	λΊа	λla
	385	110	Cys	ПСи	DCI	390	110	JCI	- y -	1111	395	FIO	nia	rio	Ата	400
	Val	Tle	Pro	Thr	Glu		Ala	Tle	Tvr	Gln		Ser	Val	Tle	Len	
149					405				-1-	410		001	, 4.		415	
	Pro	Ara	Ala	Leu		Pro	Ser	Thr	Ala		Tvr	Pro	Ala	Glv		Gln
151				420					425					430	-	
	Leu	Phe	Met	Asn	Tyr	Thr	Ala	Tyr		Pro	Ser	Pro	Pro	Gly	Ser	Pro
153			435		_			440	-				445	-		
154	Asn	Ser	Leu	Gly	Tyr	Phe	Pro	Thr	Ala	Ala	Asn	Leu	Ser	Gly	Val	Pro
155		450					455					460				
	Pro	Gln	Pro	Gly	Thr	Val	Val	Arg	Met	Gln	Gly	Leu	Ala	Tyr	Asn	Thr
157						470					475					480
158	Gly	Val	Lys	Glu	Ile	Leu	Asn	Phe	Phe	Gln	Gly	Tyr	Gln	Tyr	Ala	Thr

RAW SEQUENCE LISTING DATE: 06/20/2001 PATENT APPLICATION: US/09/697,206A TIME: 14:36:16

Input Set : A:\Seqlist.txt

Output Set: N:\CRF3\06202001\1697206A.raw

159		485	490					495		
160	Glu A	sp Gly Leu Ile His Thr Asn A	sp Gln	Ala	Arg	Thr	Leu	Pro	Lys	
161			05		-		510		_	
162	Glu T	rp Val Cys Ile								
163		515								
165	<210>	SEQ ID NO: 3								
166	<211>	LENGTH: 14								
167	<212>	TYPE: DNA								
168	<213>	ORGANISM: Artificial Sequen	ce							
170	<220>	FEATURE:								
171	<223>	OTHER INFORMATION: Primer								
173	<400>	SEQUENCE: 3								
174	ttttg	atcaa gctt								14
		SEQ ID NO: 4								
177	<211>	LENGTH: 42					•			
178	<212>	TYPE: DNA								
179	<213>	ORGANISM: Artificial Sequen	ce							
		FEATURE:								
182	<223>	OTHER INFORMATION: Adaptor								
		SEQUENCE: 4								
185	ctaat	acgac tcactatagg gctcgagcgg	ccgcccg	ggc	ag					42
187	<210>	SEQ ID NO: 5								
188	<211>	LENGTH: 12								
		TYPE: DNA								
		ORGANISM: Artificial Sequen	ce							
		FEATURE:								
		OTHER INFORMATION: Adaptor								
		SEQUENCE: 5								
		gteet ag								12
		SEQ ID NO: 6								
		LENGTH: 40								
		TYPE: DNA								
		ORGANISM: Artificial Sequen	ce							
		FEATURE:								
		OTHER INFORMATION: Adaptor								
		SEQUENCE: 6								
		acgae teactatagg geagegtggt	cgcggcc	gag						40
		SEQ ID NO: 7								
		LENGTH: 10				•				
		TYPE: DNA								
		ORGANISM: Artificial Sequen	ce							
		FEATURE:								
		OTHER INFORMATION: Adaptor SEQUENCE: 7								
	cggcto									1 0
		SEQ ID NO: 8								10
		LENGTH: 22								
		TYPE: DNA								
		ORGANISM: Artificial Sequen	CA							
225	.2.1.7	onomion. Aftifficial bequen	<u> </u>							

 $(-1)^{-1} = (-1)$

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/697,206A

DATE: 06/20/2001 TIME: 14:36:16

Input Set : A:\Seqlist.txt
Output Set: N:\CRF3\06202001\I697206A.raw

	<220> FEATURE: <223> OTHER INFORMATION: Primer	
	<223> OTHER INFORMATION: PITMET <400> SEQUENCE: 8	
	ctaatacgac tcactatagg gc	22
	<210> SEQ ID NO: 9	22
	<211> LENGTH: 22	
	<212> TYPE: DNA	
	<213> ORGANISM: Artificial Sequence	
	<220> FEATURE:	
	<223> OTHER INFORMATION: Primer	
239	<400> SEQUENCE: 9	
	tcgagcggcc gcccgggcag ga	22
	<210> SEQ ID NO: 10	
243	<211> LENGTH: 20	
244	<212> TYPE: DNA	
245	<213> ORGANISM: Artificial Sequence	
	<220> FEATURE:	
248	<223> OTHER INFORMATION: Primer	
250	<400> SEQUENCE: 10	
251	agcgtggtcg cggccgagga	20
253	<210> SEQ ID NO: 11	
254	<211> LENGTH: 25	
	<212> TYPE: DNA	
	<213> ORGANISM: Homo Sapiens	
258	<400> SEQUENCE: 11	
259	atatogoogo gotogtogto gacaa	25
	<210> SEQ ID NO: 12	
	<211> LENGTH: 26	
	<212> TYPE: DNA	
	<213> ORGANISM: Homo Sapiens	
	<400> SEQUENCE: 12	
	agccacacgc agctcattgt agaagg	26
	<210> SEQ ID NO: 13	
	<211> LENGTH: 24	
	<212> TYPE: DNA	
	<213> ORGANISM: Artificial Sequence	
	<220> FEATURE:	
	<223> OTHER INFORMATION: Primer	
	<400> SEQUENCE: 13	
	tottgaaacc tocagacaca agaa	24
	<210> SEQ ID NO: 14	
	<211> LENGTH: 24 <212> TYPE: DNA	
	<212> TIPE: DNA <213> ORGANISM: Artificial Sequence	
	<220> FEATURE:	
	1003. ORVER TURORIORES P. I	
	<223> OTHER INFORMATION: Primer 1. <400> SEQUENCE: 14	
	ggagatggta gacactggtg gagt	24
	<210> SEQ ID NO: 15	24
	TETO, DEX LO NO. LO	

VERIFICATION SUMMARY

PATENT APPLICATION: US/09/697,206A

DATE: 06/20/2001 TIME: 14:36:17

Input Set : A:\Seqlist.txt
Output Set: N:\CRF3\06202001\I697206A.raw

L:16 M:271 C: Current Filing Date differs, Replaced Current Filing Date