

OCTAL BUFFER/LINE DRIVER WITH 3-STATE OUTPUTS

The SN54/74LS240, 241 and 244 are Octal Buffers and Line Drivers designed to be employed as memory address drivers, clock drivers and bus-oriented transmitters/receivers which provide improved PC board density.

- Hysteresis at Inputs to Improve Noise Margins
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- Input Clamp Diodes Limit High-Speed Termination Effects

2Y4 1A2 2Y3

LOGIC AND CONNECTION DIAGRAMS DIP (TOP VIEW)

SN54/74LS240 V_{CC} 2G 1Y1 2A4 1Y2 2A3 1Y3 2A2 1Y4 2A1 20 19 18 17 16 15 14 13 12 11 The state of the state

SN54/74LS241

1A3 2Y2

SN54/74LS244

SN54/74LS240 SN54/74LS241 SN54/74LS244

OCTAL BUFFER/LINE DRIVER WITH 3-STATE OUTPUTS

LOW POWER SCHOTTKY

SN54/74LS240 • SN54/74LS241 • SN54/74LS244

TRUTH TABLES

SN54/74LS240

INP	OUTPUT			
1G, 2G	D	OUIPUI		
L	L	Н		
L	Н	L		
Н	Х	(Z)		

SN54/74LS244

INP	INPUTS				
1G, 2G	D	OUTPUT			
L	L	L			
L	Н	Н			
Н	Х	(Z)			

SN54/74LS241

INP	JTS	OUTPUT		INP	JTS	OUTPUT
1G	D			2G	D	OUIFUI
L	L	L		Н	L	L
L	H	H		Н	Н	Н
Н	Х	(Z)		L	Χ	(Z)

H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial

Z = HIGH Impedance

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
loн	Output Current — High	54, 74			-3.0	mA
		54 74			-12 -15	mA
lOL	Output Current — Low	54 74			12 24	mA

SN54/74LS240 • SN54/74LS241 • SN54/74LS244

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

				Limits				
Symbol	Paramete	r	Min	Тур	Max	Unit	Tes	st Conditions
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input All Inputs	t HIGH Voltage for
VIL	Input LOW Voltage	54			0.7	V		LOW Voltage for
VIL	Input LOW Voltage	74			0.8	V	All Inputs	
$V_{T+}-V_{T-}$	Hysteresis		0.2	0.4		V	V _{CC} = MIN	
V_{IK}	Input Clamp Diode Volta	age		-0.65	-1.5	V	V _{CC} = MIN, I _{IN} =	: –18 mA
Vou	Output HIGH Voltage	54, 74	2.4	3.4		V	V _{CC} = MIN, I _{OH}	= -3.0 mA
VOH	Output HIGH voltage	54, 74	2.0			V	V _{CC} = MIN, I _{OH}	= MAX
V _{OL} Our	Output LOW Valtage	54, 74		0.25	0.4	V	I _{OL} = 12 mA	$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{IL} \text{ or } V_{IH}$
	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 24 mA	per Truth Table
lozh	Output Off Current HIGH				20	μΑ	V _{CC} = MAX, V _{OI}	JT = 2.7 V
lozL	Output Off Current LOW				-20	μΑ	V _{CC} = MAX, V _{OI}	JT = 0.4 V
l	January I II Coll Command				20	μΑ	V _{CC} = MAX, V _{IN}	= 2.7 V
ΊΗ	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN}	= 7.0 V
I _{IL}	Input LOW Current				-0.2	mA	V _{CC} = MAX, V _{IN}	= 0.4 V
los	Output Short Circuit Cu	rrent (Note 1)	-40		-225	mA	V _{CC} = MAX	
	Power Supply Current Total, Output HIGH				27			
	Total, Output LOW	LS240			44	1		
ICC		LS241/244			46	mA	V _{CC} = MAX	
	Total at HIGH Z	LS240			50	1		
	LS241/244				54	1		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$)

			Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
^t PLH ^t PHL	Propagation Delay, Data to Output LS240		9.0 12	14 18	ns	
^t PLH ^t PHL	Propagation Delay, Data to Output LS241/244		12 12	18 18	ns	C_L = 45 pF, R_L = 667 Ω
^t PZH	Output Enable Time to HIGH Level		15	23	ns	
t _{PZL}	Output Enable Time to LOW Level		20	30	ns	
^t PLZ	Output Disable Time from LOW Level		15	25	ns	C _L = 5.0 pF,
^t PHZ	Output Disable Time from HIGH Level		10	18	ns	$R_L = 667 \Omega$

SN54/74LS240 • SN54/74LS241 • SN54/74LS244

AC WAVEFORMS

Figure 1

Figure 2

 V_{E} V_{E} V_{OUT} V_{PZL} V_{OUT} V_{PZL} V_{OUT} V_{OUT}

Figure 3

Figure 4

Figure 5

Case 751D-03 DW Suffix 20-Pin Plastic **SO-20 (WIDE)** -A-P 0.25 (0.010) M -B-> G < ← R X 45° -T-С SEATING PLANE Κ → D 20 PL ⊕ 0.25 (0.010) M T B S A S

Case 732-03 J Suffix 20-Pin Ceramic Dual In-Line

Case 738-03 N Suffix 20-Pin Plastic

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- 751D-01, AND -02 OBSOLETE, NEW STANDARD 751D-03.

	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	12.65	12.95	0.499	0.510
В	7.40	7.60	0.292	0.299
С	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.50	0.90	0.020	0.035
G	1.27	1.27 BSC		BSC
J	0.25	0.32	0.010	0.012
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029

- NOTES: 1. LEADS WITHIN 0.25 mm (0.010) DIA., TRUE POSITION AT SEATING PLANE, AT MAXIMUM MATERIAL CONDITION.
- 2. DIM L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- 3. DIM A AND B INCLUDES MENISCUS.

	MILLIM	ETERS	INC	HES
DIM	MIN	MIN MAX		MAX
Α	23.88	25.15	0.940	0.990
В	6.60	7.49	0.260	0.295
С	3.81	5.08	0.150	0.200
D	0.38	0.56	0.015	0.022
F	1.40	1.40 1.65 0.055		0.065
G	2.54	BSC	0.100 BSC	
Н	0.51	1.27	0.020	0.050
J	0.20	0.30	0.008	0.012
K	3.18	4.06	0.125	0.160
L	7.62	BSC	0.300	BSC
M	0°	15°	0°	15°
N	0.25	1.02	0.010	0.040

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION "L" TO CENTER OF LEAD WHEN 3. FORMED PARALLEL.
- DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
- 5. 738-02 OBSOLETE, NEW STANDARD 738-03.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	25.66	27.17	1.010	1.070
В	6.10	6.60	0.240	0.260
С	3.81	4.57	0.150	0.180
D	0.39	0.55	0.55 0.015 0	
E	1.27	1.27 BSC		BSC
F	1.27	1.77	0.050	0.070
G	2.54	BSC	0.100 BSC	
J	0.21	0.38	0.008	0.015
K	2.80	3.55	0.110	0.140
L	7.62		0.300	BSC
M	0°	15°	0°	15°
N	0.51	1.01	0.020	0.040

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, N JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, To

	SYMBOL	SW1	SW2
N	tpzu IK14 5BP, England	Open	Closed
	tPZL	Closed	Open
ıa	tPLZ	e, Tai Po, N.T., Hon Closed	Closed

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.