FISEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

A new approach to enhance photocatalytic nitrogen fixation performance via phosphate-bridge: a case study of SiW₁₂/K-C₃N₄

Cailin Xiao, Ling Zhang, Kefu Wang, Haipeng Wang, Yuanyi Zhou, Wenzhong Wang*

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050. PR China

ARTICLE INFO

Keywords: $K-C_3N_4$ POM Phosphate-bridged Nitrogen fixation

ABSTRACT

Photocatalytic nitrogen fixation, as a low-cost and promising technology, needs efforts to explore the photocatalyst with high activity and stability. In this study, the polyoxometalate (POM) cluster of $[H_4SiO_{40}W_{12}]$ (SiW₁₂) has been successfully covalently combined with the KOH-modified graphitic carbon nitride nanosheets (K-C₃N₄) through the phosphate-bridged strategy. With POM acting as the co-catalyst, SiW₁₂/K-C₃N₄ nanocomposites show excellent photocatalytic nitrogen fixation efficiency (353.2 μ M g $^{-1}$ h $^{-1}$) in water under light-irradiation. It can be ascribed to the enhanced separation efficiency of charge carriers through the formation of "phosphate-bridged" bonds between K-C₃N₄ and SiW₁₂, and the increased oxidation capacity of water by bridging SiW₁₂. Moreover, K doping and bridging SiW₁₂ improves the adsorption and activation of nitrogen, which can be conductive to the reduction of nitrogen to ammonia. This work provides a feasible route to design and synthesize nanocomposite materials with exceptional performance for photocatalytic nitrogen fixation.

1. Introduction

Nitrogen fixation is the second most important chemical process in nature next to photosynthesis. Although 80% of the atmosphere is nitrogen, it is difficult to be used as a reactant [1], partially because dinitrogen (N_2) is a typically inert molecule due to the strong $N\equiv N$ bond (945 kJ mol $^{-1}$) [2]. Therefore, industrial ammonia synthesis (Haber–Bosch reaction) is generally carried out at high temperature (400–600 $^{\circ}$ C) and high pressure (20–40 MPa), which results in high energy consumption and carbon dioxide emission. Hence, artificial nitrogen fixation under milder conditions is of great significance from the perspectives of cost control and environmental protection [3–6].

Recently, photocatalysis has been seen as a potential technology in nitrogen fixation with solar energy being the driving force in the reaction process. However, there are several bottlenecks for photocatalytic N_2 fixation, which are mainly divided into the following points: (i) limited N_2 adsorption on the catalyst surface with poor activation efficiency [7]; (ii) sluggish emergence and transfer of proton for protonation processes [8]; (iii) photo-generated electron-hole pair recombination ahead of the six-electron transfer for nitrogen fixation reaction [9,10]. Furthermore, most photocatalytic nitrogen fixation at the ambient temperature requires the addition of sacrificial agents, which provide protons for nitrogen-fixing reaction [11–13]. For instance, the KOH-treated $g-C_3N_4$ (K-C₃N₄) showed high activity for

photocatalytic fixation of N_2 , which is attributed to that K doping improves the adsorption and activation of N_2 by introducing more surface nitrogen defects, as well as promotes the desorption of ammonia [14]. However, it was highly dependent on CH_3OH as a proton source, since $K\text{-}C_3N_4$ could not provide the protons needed for nitrogen fixation from the water splitting. Hence, one of the keys for solar nitrogen fixation lies in seeking an efficient photocatalyst with good performance for oxidizing water to provide proton for nitrogen fixation.

Herein, polyoxometalates (POMs), which are highly redox-active and can undergo light-induced redox-processes, is introduced as cocatalyst with K-C₃N₄ to enhance the ability of oxidizing water and the adsorption and activation of N₂ [15–17]. In addition, phosphate anions, as one of the effective adhesives and electron transport chain, were covalently combining POMs with K-C₃N₄ to enhance the interaction and transportation of carries, since they could be strongly adsorbed onto the surfaces of oxides by substituting surface hydroxyl groups [18–22]. Thus, combining the advantages of components catalyst in this design, SiW₁₂/K-C₃N₄ was synthesized by phosphate-bridged method and a high nitrogen fixation efficiency (353.2 μ M g $^{-1}$ h $^{-1}$) was achieved. This work presents a feasible route to design the nanocomposite materials with good performance for photocatalytic nitrogen fixation.

E-mail address: wzwang@mail.sic.ac.cn (W. Wang).

^{*} Corresponding author.

Fig. 1. Preparation process of SiW₁₂/K-C₃N₄.

2. Experimental

2.1. Materials synthesis

All reagents were of analytical purity and received from Shanghai Chemical Company without further purification.

2.1.1. Synthesis of g- C_3N_4 and K- C_3N_4 photocatalysts

Pristine g-C₃N₄ was prepared by urea pyrolysis according to a standard literature method. Briefly, 15 g of urea was calcined at 550 °C in a muffle furnace for 4 h using a heating rate of 10 °C·min $^{-1}$. K-C₃N₄ photocatalysts were synthesized as follows: 15 g of urea was dissolved with stirring into aqueous KOH solutions (0.01 g KOH dissolved in 30 mL of H₂O), and then the resulting solution was evaporated and dried in an oven at 80 °C overnight. The solid mixtures of urea and KOH were then calcined at 550 °C in a muffle furnace for 4 h with a heating rate of 10 °C·min $^{-1}$. After calcination, all samples were washed with water to remove any residual alkali [23].

2.1.2. Synthesis of SiW_{12}/K - C_3N_4 photocatalysts

SiW $_{12}$ linked with K-C $_3N_4$ by using phosphate as a bridge. For the surface phosphating, K-C $_3N_4$ powder (0.1 g) was dispersed in an aqueous phosphoric acid (H $_3$ PO $_4$) solution (0.3 M, 100 mL) and the suspension was stirred for 5 h for the adsorption of phosphate on the surface of K-C $_3N_4$. P-K-C $_3N_4$ powder (modified with phosphates of K-C $_3N_4$) was collected by filtration and then dried in an oven at 60 °C for 3 h and subsequently heat-treated in a furnace at 300 °C for 1.5 h. P-K-C $_3N_4$ was thoroughly washed with distilled water to remove weakly bound phosphate anions and dried in an oven at 60 °C. Then, a certain amount of SiW $_{12}$ was added to the 30 mL absolute ethyl alcohol dispersion of P-K-C $_3N_4$ linker. After stirring for 2 h and dipping for 4 h, the hybrid catalyst of SiW $_{12}$ /K-C $_3N_4$ was dried at 60 °C for 24 h.

2.2. Characterization

The as-prepared catalyst samples were characterized by powder Xray diffraction (XRD) with a Rigaku D/MAX 2250 V diffractometer using monochromatized Cu K α ($\lambda = 0.15418$ nm) radiation while the voltage and electric current were held at 40 kV and 100 mA, over the range of $5^{\circ} \le 2\theta \le 70^{\circ}$. Next, the powder was pressed into plates and the Fourier Transform Infrared (FTIR) spectra were carried out on a FTIR spectrometer (FTIR-7600, Lambda Scientific, Australia). X-ray photoelectron spectroscopy (XPS) was performed on an ESCALAB 250Xi, Thermo Scientific Ltd. with a 320 µm diameter spot of monochromated aluminum Ka X-rays at 1253.6 eV under ultrahigh-vacuum conditions. All binding energies were referenced to the C 1s peak (285 eV) arising from adventitious carbon. UV-vis diffuse reflectance spectra (DRS) of the samples were obtained on an UV-vis spectrophotometer (Hitachi U-3010) using BaSO₄ as the reference. Nitrogen temperature-programmed desorption (N2-TPD) measurements were conducted on an Auto Chem II 2920 instrument. Usually, 100 mg of the sample, placed in a glass tube, was preconditioned by a He gas flow at 150 °C for 2 h, and then cooled down to 50 °C. The adsorption of N₂ was carried out in a 99.999% N₂ gas flow for 2 h at 50 °C. After purge by He gas, the sample was heated from 50 °C to 500 °C at a rate of 10 °C·min -1. The TPD signal was recorded by a thermal conductivity detector. All the gas flow rates were set as 25 mL·min⁻¹.

2.3. Photocatalytic tests

Photocatalytic tests were performed under the irradiation of a Xe lamp (100 mW cm $^{-2}$). Typically, 50 mg of catalyst powder was uniformly dispersed in 200 mL of pure water by ultrasound. After irradiation with Xe light in $\rm N_2$ for one hour, the $\rm NH_4^{\ +}$ was measured by spectrophotometric method with Nessler's reagent.

Fig. 2. (A) XRD patterns of pristine g-C₃N₄, K-C₃N₄, SiW₁₂ and 30-SiW₁₂/K-C₃N₄; (B) FTIR spectra of bulk g-C₃N₄, K-C₃N₄, SiW₁₂, and 30-SiW₁₂/K-C₃N₄.

2.4. NH₃/NH₄ + concentration analysis

Nessler's reagent method was used for NH $_3$ /NH $_4$ $^+$ concentration analysis. Firstly, 200 mL of the suspension was filtered through a 0.22 µm membrane filter and placed in a 50 mL sample tube. Next, 1 mL of the potassium sodium tartrate solution was added to the sample tube. After mixing evenly, 1 mL of Nessler's reagent was added to the same sample tube and blended. Then, the mixture was left to stand for 10 \sim 15 min for full color processing. Finally, the concentration of NH $_3$ /NH $_4$ $^+$ was measured using an UV–vis spectrophotometer (Hitachi U-3010) at 420 nm wavelength.

2.5. Electrochemical analysis

Electrochemical analysis was conducted on a CHI 660D electrochemical workstation (Shanghai Chenhua, China) using a standard three-electrode quartz cell, the counter electrode platinum wire and a reference electrode saturated calomel electrode (SCE). A Xe lamp (CHFXM500) was used as light source. The working electrodes were prepared by dip-coating: catalyst powders were deposited on a fluorine-doped tin oxide (FTO) substrate about 1.5 cm \times 2.5 cm square. Briefly, 10 mg of catalyst was suspended in 1 mL ethanol solution and the mixtures were ultrasonically scattered for 30 min to form slurry. Then,

 $100\,\mu L$ of above slurry was coated on the FTO glass, and the ethanol was naturally evaporated under mild conditions and then calcined at $120\,^{\circ}C$ for 2 h. The catalyst coated FTO substrate was used as the working electrode. The current–time curves were collected at $0.2\,V$ vs. SCE. Here, the electrolyte solution was $0.25\,M$ Na_2SO_4 solution (pH = 6.8).

3. Results and discussion

3.1. Characterization of SiW₁₂/K-C₃N₄

As shown in Fig. 1, the covalent combination of POM cluster of SiW_{12} and $K-C_3N_4$ has been achieved by taking the phosphate-bridged strategy. The chemical structure of pristine $g-C_3N_4$, $K-C_3N_4$, SiW_{12} and a series of $X-SiW_{12}/K-C_3N_4$ powders (X represents the SiW_{12} amount (%), ranging from 5 to 40) were first characterized by X-ray diffraction (XRD) patterns and Fourier transform infrared (FTIR) spectroscopy. As shown in Fig. 2A, two characteristic peaks at about 13° and 27.2° , are well consistent with (100) and (002) planes of $g-C_3N_4$, representing inplane packing and interfacial stacking of $g-C_3N_4$ sheets, respectively [24]. Compared with pristine $g-C_3N_4$, the lateral peak of $K-C_3N_4$ shifts to higher 2θ angles, indicating a progressively smaller stacking distance between nanosheets [23]. $SiW_{12}/K-C_3N_4$ shows the characteristic peaks

Fig. 3. (A) C 1s and (B) N 1s XPS spectra of g-C₃N₄, K-C₃N₄ and 30-SiW₁₂/K-C₃N₄, (C) Si 2p; (D) W 4f; (E) O 1s XPS spectra of SiW₁₂ and 30-SiW₁₂/K-C₃N₄.

of SiW $_{12}$ and K-C $_3$ N $_4$, indicating that K-C $_3$ N $_4$ and SiW $_{12}$ are successfully synthesized by taking a phosphate-bridged strategy. When the mass ratio of SiW $_{12}$ to K-C $_3$ N $_4$ increases from 5% to 40%, the intensity of the SiW $_{12}$ /K-C $_3$ N $_4$ peak at 27.2° gradually weakens, and the intensity of the SiW $_{12}$ -related peak at 26.4° gradually increases (Fig. S1). This result is attributed to the effect of composition variation in similar hybrid materials on relative diffraction intensity.

Fig. 2B shows the FTIR spectra of pristine g-C₃N₄, K-C₃N₄, SiW₁₂

and $30\text{-SiW}_{12}/\text{K-C}_3\text{N}_4$. For pristine g-C₃N₄ (Fig. 2B), the FTIR spectrum showed a peak at $812.7~\text{cm}^{-1}$ typical for the out-of-plane bending mode of heptazine rings, meanwhile peaks located at $900\text{-}1800~\text{cm}^{-1}$ stem from N–C=N heterorings in the "melon" framework [23,25]. Multiple broad peaks in the $3000\text{-}3500~\text{cm}^{-1}$ region corresponds to the stretching modes of secondary primary amines and absorbed water. For the K-C₃N₄ samples, a distinct change is observed in the FTIR spectra with KOH usage in Fig. 2B, which was the presentation of a new peak at

Fig. 4. (A) UV/vis diffuse reflectance spectra of different samples: $g-C_3N_4$, $K-C_3N_4$, SiW_{12} , and $30-SiW_{12}/K-C_3N_4$; Curves of (B) photocurrent, and (C) Electrochemical impedance spectroscopy response for $g-C_3N_4$, $K-C_3N_4$, $30-SiW_{12}/K-C_3N_4$ samples in 0.25 M Na_2SO_4 aqueous solution.

2177 cm $^{-1}$, corresponding to the asymmetric stretching vibration of cyano groups ($-C\equiv N$) [23,26–28]. This result implies that $-C\equiv N$ groups was introduced with KOH addition during the synthesis of K-C₃N₄, indicating that more nitrogen vacancies may have been created [29]. As shown in Fig. S2, characteristic SiW₁₂ frequencies related to the Keggin unit are 1075, 975, 895, and 762 cm $^{-1}$, respectively [30]. These frequencies are attributed to vibrations in the Si-O_a bonds of the SiO₃ units, W=O_d bonds, and two W-O_{b/c}-W bonds of the Keggin unit [31]. For the 30-SiW₁₂/K-C₃N₄, the characteristic peaks of SiW₁₂ and K-C₃N₄ were displayed. This result implies that K-C₃N₄ and SiW₁₂ are successfully synthesized by taking a phosphate-bridged strategy and the primary Keggin structure of SiW₁₂ remains intact after being introduced into the K-C₃N₄ [32].

In order to confirm the existence of chemical species -O-P-O-, the FTIR and XPS techniques were applied. For $SiW_{12}/K-C_3N_4$, the new IR

Fig. 5. (A) Photocatalytic N_2 -fixation activity of x-SiW $_{12}$ /K-C $_3$ N $_4$ samples with x equal to 0, 5, 10, 20, 30, 40 under visible-light irradiation. (B) photocatalytic N_2 -fixation stability test of 30-SiW $_{12}$ /K-C $_3$ N $_4$ under visible-light irradiation.

band at about 1000–1115 cm $^{-1}$ is attributed to the characteristic absorption peak of phosphate groups, which demonstrate that the main existing form of P is the PO $_4$ ³⁻ group (Fig. S3A) [18,33]. Further investigation were carried out using XPS. In Fig. S3B, it was observed that the binding energy of P 2p is centered at about 133.4 eV for P-K-C $_3$ N $_4$, which is characteristic for P 2p in the phosphate groups. Compared with P-K-C $_3$ N $_4$, the P 2p peak of 30-SiW $_{12}$ /K-C $_3$ N $_4$ shifts towards high binding energy, which indicates that the electrons on phosphate radical are transferred to SiW $_{12}$ [18,33]. From both the FTIR and XPS analyses, it is demonstrated that P exists in the form of phosphate groups on the interface of K-C $_3$ N $_4$ and SiW $_{12}$, which could act as a favorable charge transport channel in the compound.

3.2. Chemical compositions and states

X-ray photoelectron spectroscopy (XPS) was performed to analyze the state of each element. Firstly, in order to investigate the effects of KOH treatment g-C₃N₄, C 1s and N 1s XPS spectra for pristine g-C₃N₄ and K-C₃N₄ samples were collected. The C 1s XPS spectra for g-C₃N₄ and K-C₃N₄ can be fitted with three peaks at binding energies of around 288.1, 286.4, and 284.7 eV, which corresponds to N-C=N coordination in the framework of $g-C_3N_4$, $C-NH_X$ (x = 1, 2) on the edges of heptazine units and adventitious hydrocarbons, respectively [34]. Interestingly, the signal of K-C₃N₄ at 286.4 eV was intensified compared to pristine g-C₃N₄ (Fig. 3A), which may be considered as additional evidence for the formation of cyano groups (as shown by FTIR) owing to C \equiv N groups possess similar C 1s binding energies to C-NH_X [23,29]. As shown in Fig. 3B, the N 1s XPS spectrum for g-C₃N₄ contained three components at 398.8, 400.1 and 401.2 eV, which are assigned to bicoordinated (N_{2C}) and tri-coordinated (N_{3C}) nitrogen atoms and NH_X groups in the heptazine framework, respectively. With adding KOH

Fig. 6. (A) Linear sweep voltammogram curves of K-C₃N₄ and SiW₁₂/K-C₃N₄ in the dark; (B) Cyclic voltammetry curve of SiW₁₂ in water (0.05 M, pH = 1.5) under Ar and at room temperature; (C) Cyclic voltammetry curve of 30-SiW₁₂/K-C₃N₄ (0.25 M Na₂SO₄) under Ar and at room temperature; (D) N₂-TPD profiles of the as-prepared g-C₃N₄, K-C₃N₄ and 30-SiW₁₂/K-C₃N₄ photocatalysts.

during thermal polymerization, the $N_{\rm 3C}$ peak presented a small shift to lower binding energy, which may result from the generation of cyano groups whose N 1s binding energy are intermediate between those of

 N_{2C} and N_{3C} [23,29]. In order to explore the state of K in K-C₃N₄, the high resolution of K 2s and K 2p spectrum is shown in the Fig. S4A, B. The binding energy of K $2p_{3/2}$ and K $2p_{1/2}$ located at 292.7 and 295.3 eV, which are lower than those of the potassium salt [35], shows that a covalent bond formed between K and g-C₃N₄. According to the XPS of N 1s and C 1s, the N/C atomic ratios for pristine g-C₃N₄, K-C₃N₄ and 30-SiW₁₂/K-C₃N₄ were dropped from 1.32 to 0.98 (Table S1), suggesting the introduction of surface N defects. Further, the intensity of N_{2C} decreases (N_{2C} /C atomic ratios dropped from 1.31 to 0.91) (Table S1), strong evidence that N_{2C} vacancies were formed on the surface of K-C₃N₄ and SiW₁₂/K-C₃N₄ [23]. The above result suggested that KOH treatment with g-C₃N₄ introduces more nitrogen vacancies, and K is also doped into the framework of g-C₃N₄.

ESR measurement was employed to further confirm the presence of N-vacancies. As shown in Fig. S5, g-C₃N₄, K-C₃N₄ and 30-SiW_{12} /K-C₃N₄ possess one single Lorentzian line centered at the g value of 2.004, which can be ascribed to unpaired electrons in sp²-carbon atoms of p-bonded aromatic rings due to the formation of carbon-based radicals [11,36–38]. This Lorentzian line was considerably enhanced after doping K and bridging SiW_{12} because the formation of defects increased the number of unpaired electrons.

As for the $30\text{-SiW}_{12}/\text{K-C}_3\text{N}_4$ samples, the C 1s and N 1s exhibits a small shift to higher binding energy (Fig. 3A, B), which is attributed to the strong electronic pull of the Keggin unit. Both SiW_{12} and $30\text{-SiW}_{12}/\text{K-C}_3\text{N}_4$ samples show one Si 2p XPS peak at $102.09\,\text{eV}$ (Fig. 3C) [31]. Besides, the W 4f binding energy of SiW_{12} and $\text{SiW}_{12}/\text{K-C}_3\text{N}_4$ located at $35.81\,\text{eV}$ and $37.92\,\text{eV}$ correspond to W^{6+} (Fig. 3D). Further, both SiW_{12} and $30\text{-SiW}_{12}/\text{K-C}_3\text{N}_4$ sample shows two O 1s peaks centered at 530.7, $532.7\,\text{eV}$, which is assigned to W-O-W and W=O, respectively (Fig. 3E). Compared with SiW_{12} , $30\text{-SiW}_{12}/\text{K-C}_3\text{N}_4$ presents a peak at $533.3\,\text{eV}$, which is ascribed to the W-O-P/W-O-H [39]. The above XPS results indicate that SiW_{12} is successfully bridged with K-C₃N₄ via phosphate and maintains its own stable structure.

3.3. Optical and electrochemical properties

The light absorption property of g-C₃N₄, SiW₁₂, K-C₃N₄ and 30-SiW₁₂/K-C₃N₄ powders were analyzed via UV-vis/DRS (Fig. 4A). The g-C₃N₄ exhibits typical semiconductor absorption in the region ranging from 200 nm to 450 nm. And N defects introduced into g-C₃N₄ by KOH addition during the thermal polymerization of urea dramatically alter their optical properties and light harvesting ability of the samples. It was evident that a progressive red shift in the absorption edge of K-C₃N₄ was observed, indicating the decline of the band gap energy. Light absorption of SiW₁₂ precursor in the region ranging from 200 nm to 415 nm was attributed to charge transfer response from O 2p to W 5d orbit at W=O and W-O-W bonds, respectively [39]. Because of the intense light absorption by SiW12 clusters, the light-harvesting capability of 30-SiW₁₂/K-C₃N₄ also increases in the region ranging from 200 nm to 415 nm compared with K-C₃N₄. Decreased band gap energy and enhanced light harvesting ability are both advantageous to enhance the light utilization efficiency of SiW₁₂/K-C₃N₄. Fig. 4A also shows that the absorption peak related to either SiW₁₂ or K-C₃N₄ is hardly detected in the 30-SiW₁₂/K-C₃N₄ sample, indicating that SiW₁₂ is homogeneously distributed throughout the whole hybrid material.

Photoelectrochemistry tests were powerful tools to monitor photo-induced electron-hole pair generation, separation, migration, and capturation by reactive species. Sharp increases in photocurrent responses is observed in all tested working electrodes under the intermittent visible light, as displayed by the photocurrent-time (I-t) curves shown in Fig. 4B. The photo-current values of $30\text{-SiW}_{12}/\text{K-C}_3\text{N}_4$ is $3.5\,\mu\text{A}$, which is much higher than that of K-C₃N₄ and g-C₃N₄. Besides, the 30-SiW₁₂/K-C₃N₄ composite is charged after turning off the light, which can be attributed to the electrons on the SiW₁₂ are transferred to the K-C₃N₄, and SiW₁₂ acts as a capacitor. To further gain insight into the effect of phosphate bridging on charge carrier transport behavior, the

Fig. 7. Schematic illustration of the transfer and separation of photogenerated charges in the -O-P-O- bridged $30\text{-SiW}_{12}/\text{K-C}_3\text{N}_4$ nanocomposite and mechanism of photocatalytic nitrogen fixation.

electrochemical impedance spectra (EIS) of $g\text{-}C_3N_4$, $K\text{-}C_3N_4$ and $30\text{-}SiW_{12}/K\text{-}C_3N_4$ were measured. Under light-irradiation, it was observed that the arc radius on the EIS Nyquist plot of $g\text{-}C_3N_4$, $K\text{-}C_3N_4$ and $30\text{-}SiW_{12}/K\text{-}C_3N_4$ were gradually decreased (Fig. 4C), which is due to that phosphate-bridged could decrease photogenerated charge recombination. Normally, the smaller radius represents the smaller charge transfer resistance. Compared with the $K\text{-}C_3N_4$, $30\text{-}SiW_{12}/K\text{-}C_3N_4$ shows a smaller arc radius, implying low charge transfer resistance, which indicates more effective charge carrier transport via the "phosphate bridge" on their hetero-junction interface.

3.4. Photocatalytic performance test

The photocatalytic nitrogen fixation were evaluated under light-irradiation using water as the proton source without any scavenger. A series of controlling experiments indicated that photocatalyst, N2 and light were all necessary factors for photocatalytic nitrogen fixation (Fig. S6). Without any sacrificial agent, the nitrogen fixation capabilities of pure g-C₃N₄ and K-C₃N₄ were negligible in the water. With the addition of SiW₁₂, the nitrogen fixation efficiency increased gradually, and 30-SiW₁₂/K-C₃N₄ showed the highest photocatalytic nitrogen fixation rate $(353.2 \,\mu\text{M g}^{-1}\,\text{h}^{-1})$, which was 12 times higher than K-C₃N₄ (Fig. 5A). The photocatalytic efficiency for nitrogen fixation on 30-SiW₁₂/K-C₃N₄ exhibited no significant changes after replacing air with high-purity nitrogen (Fig. S6), revealing that the oxygen in the air had no significant effect on the photocatalytic nitrogen fixation of 30-SiW₁₂/K-C₃N₄. In addition, the cycling tests showed that the nitrogen-fixing performance declined slightly in the first several cycles but remained almost constant at last (Fig. S7A). XRD patterns showed that the structure of $30\text{-SiW}_{12}/\text{K-C}_3\text{N}_4$ remained almost unchanged after cycling tests, indicating the stability (Fig. S7B). Moreover, the nitrogen fixation performance showed a linear increase along with the reaction time, indicating the favorable stability of 30-SiW₁₂/K-C₃N₄ for the nitrogen fixation (Fig. 5B).

3.5. Catalytic mechanism

In order to investigate the effects of SiW_{12} and K doping on the nitrogen fixation further, electrochemical experiments and N_2 -TPD were employed. Fig. 6A shows the linear sweep voltammogram (LSV) curves of the electrodes with the K-C₃N₄ and 30-SiW₁₂/K-C₃N₄ in the dark. The onset potential of K-C₃N₄ was at approximately 1.94 V vs. NHE in the dark. Compared with K-C₃N₄, not only did the onset potential of 30-SiW₁₂/K-C₃N₄ negatively shift to 1.74 V vs. NHE, but also the current density was greatly enhanced, which clearly revealed that SiW_{12} could improve the performance of water oxidation [40]. Further, in this reaction system, holes may oxidize water into hydrogen peroxide

by the two-electron process rather than directly oxidize water into oxygen [41], since hydrogen peroxide was detected over the K-C₃N₄ (27.5 μ M/L) and SiW₁₂/K-C₃N₄ (42.3 μ M/L) (Figure S8). Based on this result, it is clear that the bridged SiW_{12} would enhance the performance of water oxidation. Cyclic voltammograms of SiW12 shows that reversible one-electron redox occurred on the surface of SiW₁₂ reactions at -0.035 V (peak1) and -0.266 V (peak2) (0.05 M SiW₁₂ (pH = 1.5)) (Fig. 6B) [42], while the reduction potential of 30-SiW₁₂/K-C₃N₄ located at -0.06 V (peak3) and -0.36 V (peak4) (0.25 M Na_2SO_4 (pH = 6.8)) corresponded to two-electron redox reaction (Fig. 6C), implying that 30-SiW₁₂/K-C₃N₄ could act as good containers of electrons and protons, so as to provide protons for the N₂ reduction. Furthermore, the photogenerated electron and protons from water deposed could be transferred by phosphate bridge and stored in the POM [17,43], as heteropolyblue form in Ar atmosphere, but these "stored" electron and protons could be coupled to the actived N2 absorbed on SiW₁₂/K-C₃N₄ (shown in supporting Fig. S9).

As shown in nitrogen temperature programmed desorption test (N₂-TPD, Fig. 6D), the desorption peaks at about 100 °C and 150 °C corresponded to the physical adsorption of N₂, while that of 350 °C and 450 °C are the desorption peaks of nitrogen chemisorption. Compared with g-C₃N₄ and SiW₁₂, K-C₃N₄ and SiW₁₂/K-C₃N₄ exhibited much higher adsorption of N₂. It suggests that K doping and bridging SiW₁₂ could improve the adsorption and activation of N₂. In addition, compared with 30-SiW₁₂/K-C₃N₄, the nitrogen-fixing performance of 30-SiW₁₂/g-C₃N₄ decreased obviously, indicating that K doping promotes nitrogen reduction. Thus, the combination of SiW₁₂/K-C₃N₄ based on phosphate bridge leads to significant enhancement of adsorption of N₂ and enhanced NH₃ production.

Based on these results, we supposed that there are two reasons for the enhanced photocatalytic activity of SiW₁₂/K-C₃N₄ for photocatalytic N2 fixation, and a schematic mechanism is shown in Fig. 7. First, more protons and electrons are supplied for the nitrogen fixation in the photocatalytic reaction over the SiW₁₂/K-C₃N₄. Under the light irradiation, photogenerated electrons from K-C₃N₄ are efficiently transfred to SiW₁₂, and holes are transformed with an apposite path, due to the "phosphate bridge" on the interface as an electron transport chain. The photogenerated electron and protons from water dissociation could transfer along the phosphate bridge and store in the POM, as heteropolyblue form in Ar atmosphere, while these "stored" electron and protons could couple with the actived N2 absorbed on SiW12/K-C₃N₄. Furthermore, phosphate anions, as efficient electron transport chains, promote photogenerated electrons transferring from K-C₃N₄ to SiW_{12} , which enhances separation efficiency of charge carriers. Second, both K doping and bridging SiW12 improves the adsorption and activation of nitrogen, which are beneficial to the N2 fixation reaction.

4. Conclusion

In summary, phosphate-bridged POM/K-C₃N₄ nanocomposites have been successfully constructed by a wet-chemical process. By introducing the "phosphate bridge" on the interface as an electron transport chain, the charge spatial separation was obviously enhanced. It was attributed to the fact that phosphate bridge, as an excellent electron transport chain, can rapidly transfer photogenerated electrons from K-C₃N₄ to SiW₁₂, thus greatly reducing the recombination rates of photogenerated carries. Furthermore, bridged SiW₁₂ not only enhances the oxidation ability of water, but also increases the rate of nitrogen-fixing reaction due to that these "stored" electron and protons in SiW₁₂ could be fastly coupled to the actived N₂ absorbed on K-C₂N₄. Both K doping and bridging SiW₁₂ improve the adsorption and activation of nitrogen, which was obserbed by N2-TPD. Hence, the SiW12/K-C3N4 nanocomposites based on phosphate bridge achieved a high nitrogen fixation efficiency (353.2 μ M g⁻¹ h⁻¹). This work would supply a novel approach to design and synthesize other visible-light heterojunction nanocomposite photocatalysts with good performance.

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (51772312, 51472260).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2018.08.012.

References

- [1] B. Askevold, J.T. Nieto, S. Tussupbayev, M. Diefenbach, E. Herdtweck, M.C. Holthausen, S. Schneider, Ammonia formation by metal-ligand cooperative hydrogenolysis of a nitrido ligand, Nat. Chem. 3 (2011) 532–537.
- [2] O. Einsle, F.A. Tezcan, L.A. Andrade, B. Schmid, M. Yoshida, J.B. Howard, D.C. Rees, Nitrogenase MoFe-Protein at 1.16 Å resolution: a central ligand in the FeMo-Cofactor, Science 297 (2002) 1696–1700.
- [3] I. Rafiqul, C. Weber, B. Lehmann, A. Voss, Energy efficiency improvements in ammonia production—perspectives and uncertainties, Energy 30 (2005) 2487–2504
- [4] B.M. Hoffman, D. Lukoyanov, Z.Y. Yang, D.R. Dean, L.C. Seefeldt, Mechanism of nitrogen fixation by nitrogenase: the next stage, Chem. Rev. 114 (2014) 4041–4062.
- [5] C.J.M. van der Ham, M.T.M. Koper, D.G.H. Hetterscheid, Challenges in reduction of dinitrogen by proton and electron transfer, Chem. Soc. Rev. 43 (2014) 5183–5191.
- [6] Z. Li, Y. Qu, K. Hu, M. Humayun, S. Chen, L. Jing, Improved photoelectrocatalytic activities of BiOCI with high stability for water oxidation and MO degradation by coupling RGO and modifying phosphate groups to prolong carrier lifetime, Appl. Catal. B- Environ. 203 (2017) 355–362.
- [7] X. Li, W. Wang, D. Jiang, S. Sun, L. Zhang, X. Sun, Efficient solar-driven nitrogen fixation over carbon-tungstic-Acid hybrids, Chem. Eur. J. 22 (2016) 13819–13822.
- [8] X. Sun, D. Jiang, L. Zhang, S. Sun, W. Wang, Enhanced nitrogen photofixation over LaFeO₃ via acid treatment, ACS Sustain. Chem. Eng. 5 (2017) 9965–9971.
- [9] S. Sun, X. Li, W. Wang, L. Zhang, X. Sun, Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS₂, Appl. Catal. B- Environ. 200 (2017) 323–329.
- [10] S. Sun, Q. An, W. Wang, L. Zhang, J. Liu, W.A. Goddard Iii, Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots, J. Mater. Chem. A Mater. Energy Sustain. 5 (2017) 201–209.
- [11] G. Dong, W. Ho, C. Wang, Selective photocatalytic N₂ fixation dependent on g-C₃N₄ induced by nitrogen vacancies, J. Mater. Chem. A Mater. Energy Sustain. 3 (2015) 23435–23441.
- [12] W. Zhao, J. Zhang, X. Zhu, M. Zhang, J. Tang, M. Tan, Y. Wang, Enhanced nitrogen photofixation on Fe-doped TiO₂ with highly exposed (101) facets in the presence of ethanol as scavenger, Appl. Catal. B- Environ. 144 (2014) 468–477.
- [13] Q. Liu, L. Ai, J. Jiang, MXene-derived TiO₂@C/g-C₃N₄ heterojunctions for highly efficient nitrogen photofixation, J. Mater. Chem. A Mater. Energy Sustain. 6 (2018) 4102–4110.
- [14] X. Li, X. Sun, L. Zhang, S. Sun, W. Wang, Efficient photocatalytic fixation of N₂ by KOH-treated g-C₃N₄, J. Mater. Chem. A Mater. Energy Sustain. 6 (2018) 3005–3011.
- [15] J.K. Hurst, Chemistry. In pursuit of water oxidation catalysts for solar fuel production, Science 328 (2010) 315–316.
- [16] S. Zhao, X. Zhao, H. Zhang, J. Li, Y. Zhu, Covalent combination of polyoxometalate and graphitic carbon nitride for light-driven hydrogen peroxide production, Nano

- Energy 35 (2017) 405-414.
- [17] M.D. Symes, L. Cronin, Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer, Nat. Chem. 5 (2013) 403–409.
- [18] N. Sun, Y. Qu, S. Chen, R. Yan, M. Humayun, Y. Liu, L. Bai, L. Jing, H. Fu, Efficient photodecomposition of 2,4-dichlorophenol on recyclable phase-mixed hierarchically structured Bi₂O₃ coupled with phosphate-bridged nano-SnO₂, Environ. Sci. Nano 4 (2017) 1147–1154.
- [19] C. Liu, L. Jing, L. He, Y. Luan, C. Li, Phosphate-modified graphitic C_3N_4 as efficient photocatalyst for degrading colorless pollutants by promoting O_2 adsorption, Chem. Commun. 50 (2014) 1999–2001.
- [20] C. Liu, C. Li, X. Fu, F. Raziq, Y. Qu, L. Jing, Synthesis of silicate-bridged ZnO/g-C₃N₄ nanocomposites as efficient photocatalysts and its mechanism, RSC Adv. 5 (2015) 37275–37280.
- [21] Z. Li, Y. Luan, Y. Qu, L. Jing, Modification strategies with inorganic acids for efficient photocatalysts by promoting the adsorption of O₂, ACS. Appl. Mater. Interface 7 (2015) 22727–22740.
- [22] M. Long, J. Brame, F. Qin, J. Bao, Q. Li, P.J. Alvarez, Phosphate changes effect of humic acids on TiO₂ photocatalysis: from inhibition to mitigation of electron-hole recombination, Environ. Sci. Technol. 51 (2017) 514–521.
- [23] H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-Driven hydrogen evolution, Adv. Mater. (2017) 29.
- [24] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and mor phology and their use as metal-free catalysts, J. Mater. Chem. 18 (2008) 4893.
- [25] Y. Cui, Y. Tang, X. Wang, Template-free synthesis of graphitic carbon nitride hollow spheres for photocatalytic degradation of organic pollutants, Mater. Lett. 161 (2015) 197–200.
- [26] E. Irran, B. Jürgens, W. Schnick, Synthesis, crystal structure determination from X-ray powder diffractometry and vibrational spectroscopy of the tricyanomelamina-temonohydrates M₃[C₆N₉]·H₂O (M = K, Rb), Solid. State. Sci. 4 (2002) 1305–1311.
- [27] W. Lei, D. Portehault, R. Dimova, M. Antonietti, Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors, J. Am. Chem. Soc. 133 (2011) 7121–7127.
- [28] Y. Cui, Z. Ding, X. Fu, X. Wang, Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis, Angew. Chem. Int. Ed. Engl. 51 (2012) 11814–11818.
- [29] H. Gao, S. Yan, J. Wang, Y.A. Huang, P. Wang, Z. Li, Z. Zou, Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst, Phys. Chem. Chem. Phys. 15 (2013) 18077–18084.
- [30] A.K. Cuentas-Gallegos, A. Zamudio-Flores, M. Casas-Cabanas, Dispersion of SiW₁₂ nanoparticles on highly oxidized multiwalled carbon nanotubes and their electrocatalytic behavior, J. Nano. Res. 14 (2011) 11–18.
- [31] Y. Wang, C. Guo, Y. Chen, C. Hu, W. Yu, Self-assembled multilayer films based on a Keggin-type polyoxometalate and polyaniline, J. Colloid Interface Sci. 264 (2003) 176–183.
- [32] H. Wang, C. Wang, Y. Yang, M. Zhao, Y. Wang, H₃PW₁₂O₄₀/mpg-C₃N₄ as an efficient and reusable bifunctional catalyst in one-pot oxidation–Knoevenagel condensation tandem reaction, Catal. Sci. Technol. 7 (2017) 405–417.
- [33] C. Liu, F. Raziq, Z. Li, Y. Qu, A. Zada, L. Jing, Synthesis of TiO₂/g-C₃N₄ nano-composites with phosphate–oxygen functional bridges for improved photocatalytic activity, Chin. J. Catal. 38 (2017) 1072–1078.
- [34] L. Lin, H. Ou, Y. Zhang, X. Wang, Tri-s-triazine-Based Crystalline Graphitic Carbon Nitrides for Highly Efficient Hydrogen Evolution Photocatalysis, ACS Catal. 6 (2016) 3921–3931.
- [35] K.H. Park, B.H. Kim, S.H. Song, J. Kwon, B.S. Kong, K. Kang, S. Jeon, Exfoliation of non-oxidized graphene flakes for scalable conductive film, Nano Lett. 12 (2012) 2871–2876.
- [36] Y. Hou, J. Yang, C. Lei, B. Yang, Z. Li, Y. Xie, X. Zhang, L. Lei, J. Chen, Nitrogen vacancy structure driven photoeletrocatalytic degradation of 4-Chlorophenol using porous graphitic carbon nitride nanosheets, ACS Sustain. Chem. Eng. 6 (2018) 6497–6506
- [37] X. Li, J. Zhang, F. Zhou, H. Zhang, J. Bai, Y. Wang, H. Wang, Preparation of N-vacancy-doped g- C_3N_4 with outstanding photocatalytic H_2O_2 production ability by dielectric barrier discharge plasma treatment, Chin. J. Cata. 39 (2018) 1090–1098.
- [38] X. Qu, S. Hu, P. Li, Z. Li, H. Wang, H. Ma, W. Li, The effect of embedding N vacancies into g-C₃N₄ on the photocatalytic H₂O₂ production ability via H₂ plasma treatment, Diamond Relat. Mater. 86 (2018) 159–166.
- [39] K. Li, L. Yan, Z. Zeng, S. Luo, X. Luo, X. Liu, H. Guo, Y. Guo, Fabrication of H₃PW₁₂O₄₀-doped carbon nitride nanotubes by one-step hydrothermal treatment strategy and their efficient visible-light photocatalytic activity toward representative aqueous persistent organic pollutants degradation, Appl. Catal. B-Environ. 156–157 (2014) 141–152.
- [40] S. Li, J.A. Willoughby, O.J. Rojas, Oil-in-water emulsions stabilized by carboxymethylated lignins: properties and energy prospects, ChemSusChem 9 (2016) 2460–2469.
- [41] J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.T. Lee, J. Zhong, Z. Kang, Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway, Science 347 (2015) 970–974.
- [42] B. Rausch, M.D. Symes, G. Chisholm, L. Cronin, Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting, Science 345 (2014) 1326–1330.
- [43] S. Zeng, L. Zhang, W. Wang, D. Shao, H. Hao, Hydrogen evolution based on the electrons/protons stored on amorphous TiO₂, Phys. Chem. Chem. Phys. 19 (2017) 29053–29056.