# **Carding Process**





## **Carding Machine Zones**





12-02-2024

## **Carding Machine Zones**





12-02-2024

## **Carding Machine Functioning**





# C 70 High-performance card

The card with the maximum active carding area

12-02-2024

## **Purpose of Carding Process**



Individualization of fibre tufts

Cleaning of fibres

Removal of fibre clusters/neps

Mixing of fibres

Production of assembly of random array of fibres

#### **Carding Action**





#### **Conditions for carding action:**

- ✓ Wire points of interacting surfaces should be inclined with inclination direction opposite to each other: point against point configuration.
- ✓ The surfaces can move in the same or opposite directions
- ✓ If they move in same direction, the material carrying surface should move at a faster speed

### **Carding Action**



Fibre under tension

Bottom surface B

Top surface A

$$P_1$$
 $\alpha_2$ 
 $\alpha_1$ 

R: Tension in the fibre μ: Frictional co-efficient

$$P_1 = RSin\alpha_1$$

$$P_2 = RCos\alpha_1$$

#### For carding action,

Fibre should move towards the base of the wire point by overcoming fibre-metal frictional force

### **Carding Action**



| Values of α |                                   |                         |
|-------------|-----------------------------------|-------------------------|
| Fibre       | Values of µ between steel & fibre | Value of α <sub>1</sub> |
| Cotton      | 0.27                              | ≤ 75°                   |
| Wool        | 0.23                              | ≤ 77°                   |
| Polyeste    | r 0.40                            | ≤ 68                    |

Wire point inclination angle depends on the frictional co-efficient between fibre and wire point.

#### **Stripping Action**





#### **Conditions for stripping action:**

- ✓ Wire points of interacting surfaces should be inclined in the same direction: point against back configuration.
- ✓ The surfaces can move in the same or opposite directions
- ✓ If they move in same direction, the material receiving the material surface should move at a faster speed

#### **Stripping Action**



$$S_1 = RSin\beta$$
$$S_2 = RCoc\beta$$

#### For stripping action,

Fibre should move away from the wire point by overcoming fibre-metal frictional force

So, 
$$S_2 > \mu S_1$$

$$RCos \ \beta > \mu RSin \ \beta \dots (3)$$

$$Cot \ \beta > \mu \dots (4)$$

R: Tension in the fibre µ: Frictional co-efficient