

planetmath.org

Math for the people, by the people.

sheafification

Canonical name Sheafification

Date of creation 2013-03-22 12:37:38 Last modified on 2013-03-22 12:37:38

Owner djao (24) Last modified by djao (24)

Numerical id 8

Author djao (24)
Entry type Definition
Classification msc 18F20
Classification msc 54B40
Classification msc 14F05

Synonym associated sheaf Related topic Sheafification2 Let F be a presheaf over a topological space X with values in a category \mathcal{A} for which sheaves are defined. The *sheafification* of F, if it exists, is a sheaf F' over X together with a morphism $\theta: F \longrightarrow F'$ satisfying the following universal property:

For any sheaf G over X and any morphism of presheaves $\phi: F \longrightarrow G$ over X, there exists a unique morphism of sheaves $\psi: F' \longrightarrow G$ such that the diagram

$$F \xrightarrow{\theta} F' \xrightarrow{\psi} G$$

commutes.

In light of the universal property, the sheafification of F is uniquely defined up to canonical isomorphism whenever it exists. In the case where \mathcal{A} is a concrete category (one consisting of sets and set functions), the sheafification of any presheaf F can be constructed by taking F'(U) to be the set of all functions $s: U \longrightarrow \bigcup_{p \in U} F_p$ such that

- 1. $s(p) \in F_p$ for all $p \in U$
- 2. For all $p \in U$, there is a neighborhood $V \subset U$ of p and a section $t \in F(V)$ such that, for all $q \in V$, the induced element $t_q \in F_q$ equals s(q)

for all open sets $U \subset X$. Here F_p denotes the stalk of the presheaf F at the point p.

The following quote, taken from [?], is perhaps the best explanation of sheafification to be found anywhere:

F' is "the best possible sheaf you can get from F". It is easy to imagine how to get it: first identify things which have the same restrictions, and then add in all the things which can be patched together.

References

[1] David Mumford, The Red Book of Varieties and Schemes, Second Expanded Edition, Springer-Verlag, 1999 (LNM 1358)