

Escuela profesional de Ciencia de la Computacion

DEL CÓDIGO A LA PRODUCCIÓN: INFRAESTRUCTURA, CONTENEDORES, DESPLIEGUE Y OBSERVABILIDAD

Actividad 2

Integrantes:

- Quispe Villena Renzo
- Cruz Tairo Jhon Emdilson

Para entregar software de forma rápida y segura se utilizan herramientas modernas que nos ayudan automatizar tareas, escalar fácilmente(escalabilidad) y monitorear en tiempo real(observabilidad). Se detallara la importancia de las herramientas estudiadas:

```
if (r = t.call(e[i], i, e[i]), r === |1) break
       if (r = t.call(e[i], i, e[i]), r === |1) break;
b && !b.call("\ufeff\u00a0") ? function(e) {
```

laC: Permite definir configurar servidores, redes y otros recursos con archivos de texto. Terraform es un ejemplo herramienta IaC de organiza la infraestructura en módulos reutilizables. Esto mejora el orden, automatización y facilita colaboración entre equipos.

Contenedores: Los contenedores empaquetan todo lo que necesita una aplicación para funcionar. Con ellos las aplicaciones se ejecutan en cualquier entorno, esto evita errores y hace mas facil el despliegue.

Es **Kubernetes:** un orquestador de contenedores. Permite distribuir el tráfico, escalar automáticamente cuando hay más usuarios y recuperar contenedores Todo esto fallan. sin intervención manual, haciendo que la aplicación esté siempre disponible.

Observabilidad: Prometheus recolecta metricas del sistema, como uso de CPU, memoria y errores y con Grafana se muestra dicha informacion en gráficos en tiempo real. Juntos permiten monitorear el estado de la aplicación y activar alertas cuando hay errores.

CI/CD:

Automatiza desde que desarrollador sube un cambio hasta que se despliega en producción. Incluye pruebas automáticas (unitarias, integración y seguridad), creación de imágenes Docker y despliegue en Kubernetes. Esto reduce errores, acelera las entregas y mejora la calidad del software.

FLUJO TEORICO

1. COMMIT DEL CODIGO

Los desarrolladores desarrollan cambios en el codigo Hacen commit en el repositorio Se ejecutan pipline CI/CD

3. Construccion y publicacion de la imagen contenedor

Una vez que las pruebas son aprobadas, se construye la imagen del contenedor Se publica en un registro de contenedores

2. PIPLINE DE CI BUILD Y PRUEBAS

Integración continua donde se compila el código, se ejecutan pruebas unitarias y se verifica la calidad del software
Asegura que los cambios no rompen la funcionalidad existente.

4. PROVISIONAMIENTO DE RECURSOS laC

Se utiliza IaC para crear y configurar de forma automatizada los recursos en la nube necesarios para el despliegue

5. DESPLIEGUE EN KUBERNETS

El pipeline de entrega continua despliega la imagen publicada en el clúster de Kubernetes.

Se utilizan manifiestos YAML o herramientas como Helm para orquestar el despliegue

7. Monitoreo con Prometheus

Prometheus se configura para recolectar métricas del clúster y de las aplicaciones. Recopilan datos como uso de CPU, memoria, estado de los pods, entre otros, a través de endpoints expuestos por Kubernetes y los contenedores

6. ORQUESTACION Y GESTION DE APLICACIONES

Kubernetes se encarga de gestionar los contenedores desplegados
Se aseguar que estén siempre en ejecución y escalado segun la demanda del momento

8. Visualización en Grafana

Grafana se integra con Prometheus para mostrar las métricas en dashboards interactivos y en tiempo real.

9. Monitoreo constante y aviso de fallas al equipo correspondiente

DIAGRAMA DE FLUJO

GRACIAS