Customer No.: 23456

COMPLETE LISTING OF CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

1 (currently amended): A power controller for distributing power among a plurality of energy components, said plurality of energy components including a gas turbine driving an AC generator to produce AC, and said plurality of energy components including an AC utility, said power controller comprising:

a DC bus; and

DC bus; and

a plurality of power converters, each of which is connected between one of said energy components and said DC bus and is responsive to said power controller, wherein said power controller provides a distributed generation power system by controlling the way each energy component sinks or sources power and said DC bus is regulated, said plurality of power converters comprising:

a first power converter connected between said AC generator and said

a second power converter connected between said AC utility and said DC bus.

2 (new): The power controller claimed in claim 1, wherein each of said power converters operates as a customized bi-directional switching converter configured, under the control of said power controller, to provide an interface for said energy component to said DC bus.

Customer No.: 23456

3 (new): The power controller claimed in claim 1, wherein each of said power

converters comprises:

a power switching system; and

a processing system for providing control to said power switching system.

4 (new): The power controller claimed in claim 3, wherein said processing

system further comprises:

a signal processor; and

a central processing unit for providing control to said signal processor.

5 (new): The power controller claimed in claim 4, wherein said central

processing unit reconfigures said power converter into different configurations for

different modes of operation.

6 (new): The power controller claimed in claim 3, wherein said power switching

system comprises a plurality of insulated gate bipolar transistor switches.

7 (new): The power controller claimed in claim 1, wherein said controller

regulates DC bus voltage independently of turbine speed.

8 (new): The power controller claimed in claim 1, wherein said plurality of

energy components includes an energy storage device.

Customer No.: 23456

9 (new): The power controller claimed in claim 8, wherein said energy storage

device comprises a flywheel.

10 (new): The power controller claimed in claim 8, wherein said energy storage

device comprises a battery.

11 (new): The power controller claimed in claim 8, wherein said energy storage

device comprises an ultracap.

12 (new): The power controller claimed in claim 1, wherein during a utility start

up mode of operation, said second power converter applies power from said AC

utility to said DC bus for conversion by said first power converter into power

required by said gas turbine to startup.

13 (new): The power controller claimed in claim 1, wherein said gas turbine is

controlled in a local feedback loop to maintain said turbine revolutions per minute

(RPM).

14 (new): The power controller claimed in claim 1, wherein during a utility start

up mode of operation, one of said power converters isolates said DC bus so that said

first power converter provides the required starting power from said DC bus to said

gas turbine.

Customer No.: 23456

15 (new): A turbine system, comprising:

a turbine engine;

a load; and

a power controller for converting electricity from said turbine engine into

regulated DC and then to AC electricity, wherein said power controller includes an

engine power conversion in communication with said turbine engine, and a utility

power conversion in communication with said load and a CD bus.

16 (new): The turbine system claimed in claim 15, further comprising:

a fuel metering system in communication with an energy reservoir controller

and said power controller.

17 (new): The turbine system claimed in claim 15, wherein said power controller

provides a distributed generation power system utilizing said engine power

conversion and said utility power conversion.

18 (new): The turbine system claimed in claim 15, wherein said engine power

conversion and said utility power conversion operate as customized bi-directional

switching converters, under control of said power controller, to provide an interface

for said turbine engine and said load to said DC bus.

19 (new): A method of controlling the distribution of power in a system including

a plurality of energy components, said plurality of energy components including a

Customer No.: 23456

gas turbine driving an AC generator to produce AC, and said plurality of energy

components including an AC utility, said power controller using a computer

including a digital signal processor comprising the steps of:

interfacing a first power inverter between a DC bus and said AC generator;

interfacing a second power inverter between said DC bus and said AC utility;

controlling the way each of said energy components sinks or sources power;

and

controlling the way said DC bus is regulated responsive to operation of each

of said energy components.

20 (new): The method claimed in claim 19, further comprising the step of:

varying a speed command to regulate power of said system.

21 (new): The method claimed in claim 19, further comprising the step of:

varying a fuel flow command to regulate speed of said turbine.

22 (new): The method claimed in claim 19, further comprising the step of:

varying a fuel flow command to regulate exhaust gas temperature of said

turbine.

23 (new): The method claimed in claim 19, wherein said first and second power

inverters are under the control of first and second signal processors, respectively.

Serial No.: 10/677,480 Filed: October 3, 2003 Customer No.: 23456

24 (new): The method claimed in claim 23, further comprising the step of:

varying a current command associated with said first signal processor to

regulate a speed of said turbine.

25 (new): The method claimed in claim 23, further comprising the step of:

varying a current command associated with said second signal processor to

regulate voltage of said DC bus.

26 (new): The method claimed in claim 23, further comprising the step of:

varying a current command associated with said first signal processor to

regulate voltage of said DC bus.

27 (new): The method claimed in claim 23, further comprising the step of:

providing power from said DC bus in accordance with said second signal

processor to provide a constant AC voltage output.

28 (new): The method claimed in claim 23, wherein said plurality of energy

components includes an energy storage device, further comprising the step of:

providing power bi-directionally from said energy storage device to regulate

voltage of said DC bus.

29 (new): The method claimed in claim 23, further comprising the step of:

Customer No.: 23456

providing power from said DC bus in accordance with said second signal

processor to provide a constant AC current output.

30 (new): The method claimed in claim 23, further comprising the step of:

varying an AC current command to said second signal processor to regulate a

constant turbine EGT.

31 (new): The method claimed in claim 23, wherein said plurality of energy

components includes an energy storage device, further comprising the step of:

providing power bi-directionally from said energy storage device to regulate a

device state of charge.