Homework 6

Fundamental Algorithms, Fall 2022, Professor Yap; Section Leaders Daniel Feldan and Zeming Lin

Due: Fri Nov 11, in GradeScope by 11pm.

INSTRUCTIONS:

- Please download the latest version of Chapter 5 (15-class.pdf) from the Schedule Page in ClassWiki. The page references below refers to this version.
- The reading list for Chapter 5 may be narrowed down to §1, 3, 4, 6.
- For general instructions about homework, please look in hw1 or hw2.
- (Q1) (20 Points) Improving Brute Force Bin Packing

Improve the bin packing upper bound in Lemma 2 (¶V.6, p.6) to $O((n/e)^{n-(1/2)})$.

HINT: Expectation for the lemma 2 (¶V.6, p.6) to $O((n/e)^{n-(1/2)})$.

and consider two cases: either w_2 w_2 belong to the same bin. In they do not.

(Q2) (6+20 Points) Linear Bin Packing with Negative Weights

https://powcoder.com
(a) Consider the linear ban packing problem when the weights in $w = (w_1, \ldots, w_n)$ can be negative. A solution with k bins is determined by its the sequence of breakpoints, $0 = t_0 < t_1 < t_2 < \cdots < t_k = n$ where the ith bin holds the weights

Add WeChat powcoder $w(t_{i-1}..t_i] := \sum_{j=t_{i-1}+1}^{\infty} w_j.$

Here is a greedy way to define these indices: for $i \ge 1$, assuming t_{i-1} is defined, let t_i to be the largest index (but at most n) such that $w(t_{i-1}..t_i] \le M$. Either prove that this solution is optimal (for linear bin packing), or give a counter example.

NOTE: this algorithm is no longer "online".

- (b) Give an $O(n^2)$ algorithm for linear bin packing when there are negative weights. HINT: When solving the problem for (M, w), assume that you already know the solution for each (M, w') where w' is a suffix of w.
- (Q3) (6+20 Points) Activities Selection to maximize length

Consider the activities selection problem. See ¶V.16, p.21. Let $S = \{I_1, \ldots, I_n\}$ be a set of activities where each activity $I_i = [s_i, f_i)$ is a half-open interval. We want to find a compatible set $A \subseteq S$ which maximizes the **length** |A| where

$$|A| := \sum_{I \in A} |I|$$

and $|I_i| := f_i - s_i$. Denote by Opt(S) the maximum length of $A \subseteq S$.

Let
$$S_{i,j} = \{I_i, I_{i+1}, \dots, I_j\}$$
 for $i \leq j$ and $Opt_{i,j} := Opt(S_{i,j})$.

(a) Show by a counter example that the following algorithm does not work:

$$Opt_{i,j} = \max\{Opt_{i,k} + Opt_{k+1,j} : i \le k \le j-1\}$$
 (1)

HINT: May assume $|S| \leq 4$ in the counter example.

- (b) Give an $O(n \log n)$ algorithm for computing $Opt_{1,n}$. HINT: order the activities in the set S according to their finish times.
- (Q4) (10+20 Points) Huffmann coding
 - (a) Let s be the following string: "hello! \sqcup this \sqcup is \sqcup my \sqcup little \sqcup world!". Show the Huffman code C for s, and what is |C(s)|?
 - (b) Suppose you are given the frequencies f_i in sorted order. Show that you can construct the Huffman tree in linear time.

(Q5) (10+10 Points) MST

We consider minimum spanning trees (MST's) of the bigraph G = (V, E) where each vertex $v \in V$ is given a numerical value $C(v) \ge 0$. The **cost** C(u, v) of an edge $(u - v) \in E$ is defined to be C(u) + C(v). For each simulation below, please also state the cost of your MST.

Please organize your computation so that we can verify the computation results. See ¶V.37 (p.60) for how to A the for prinsing could be a first principal order, and successively, accept or reject each edge.

Figure 1: The house graph: The cost of edge $v_i - v_j$ is defined as $C(v_i) + C(v_j)$, where C(v) is the value of vertex v. E.g. $C(v_1 - v_4) = 1 + 6 = 7$.

- (a) Simulate Prim's algorithm on the bigraph G of Figure 1.
- (b) Simulate Kruskals's algorithm on G.