Introduction to R Workshop

Session 1 Sean Nguyen

Session 1: Gods

Install R and Rstudio

- Import packages
- Explore a dataset
- Visualize data

Programming language for statistical computing

Ris good for: reproducible analysis

Raw data

Analyzed data

Ris good for: generating beautiful figures

Raw data

R is good for: calculating statistics

Raw data

ANOVA <- aov(mean~(Organism*Treatment),data=data4)
tidy(ANOVA)

term <chr></chr>	df <dbl></dbl>	sumsq <dbl></dbl>	meansq <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
Organism	2	26807.853	13403.9267	43.48849	3.176012e-06
Treatment	1	21687.502	21687.5022	70.36422	2.306759e-06
Organism:Treatment	2	16466.031	8233.0156	26.71168	3.807941e-05
Residuals	12	3698.613	308.2178	NA	NA

4 rows

Integrated development environment (IDE) for easy creation and organization of R scripts

Packages are: a collection of useful functions

Data Analysis in the

Tidyverse

Import

Tidy

Wrangle

Visualize

Stats

broom

Communicate

Data Analysis in the Tidyverse

Import

Tidy

Wrangle

filter()
group_by()
arrange()
summarise()

Visualize

ggplot()
geom_line()
geom_bar()
geom_point()

Stats

Communicate

Install packages

Package - Collection of R functions

- Only install once
- Load them each time you run a script

tidyverse, babynames, cowplot

	year [‡]	sex [‡]	name [‡]	n [‡]	prop
1	1880	F	Mary	7065	0.0723843285
2	1880	F	Anna	2604	0.0266792345
3	1880	F	Emma	2003	0.0205216999
4	1880	F	Elizabeth	1939	0.0198659891
5	1880	F	Minnie	1746	0.0178886111
6	1880	F	Margaret	1578	0.0161673702
7	1880	F	Ida	1472	0.0150813491
8	1880	F	Alice	1414	0.0144871112
9	1880	F	Bertha	1320	0.0135240359
10	1880	F	Sarah	1288	0.0131961805
11	1880	F	Annie	1258	0.0128888160
12	1880	F	Clara	1226	0.0125609606
10	1000	-	-11	1150	0 0110407760

The Assignment Operator

Assigns value to an object

Pipe operator

Interpreted as "then"

Fruit	Count	
Apple	34	
Raspberry	67	
Pear	35	
Plum	27	
Peach	5	
Strawberry	2	
Melon	97	
Mango	5	

Fruit	Count
Raspberry	67

dplyr - clean up/aggregate data

- filter()
- arrange()
- group_by()
- summarize()

Fruit	Count	
Apple	34	
Raspberry	67	
Pear	35	
Plum	27	
Peach	5	
Strawberry	2	
Melon	97	
Mango	5	

filter(Fruit == "Raspberry")

Fruit	Count	
Raspberry	67	

filter(Count < 10)

Fruit	Count		
Peach	5		
Strawberry	2		
Mango	5		

Fruit	Count	
Apple	34	
Raspberry	67	
Pear	35	
Plum	27	
Peach	5	
Strawberry	2	
Melon	97	
Mango	5	

arrange(desc(Count)

Fruit	Count	
Melon	97	
Raspberry	67	
Pear	35	
Apple	34	
Mango	5	
Peach	5	

• group_by()- 'lock-in' by certain criteria

summarize() - reduce multiple values to a single value

Cat	Fruit	Count
1	Apple	34
1	Raspberry	67
1	Pear	35
1	Plum	27
2	Peach	5
2	Strawberry	2
2	Melon	97
2	Mango	5

data %>%
 group_by(Cat) %>%
 summarize(Total = sum(Count))

Cat	Total
1	163
2	109

dplyr - clean up/aggregate data

- filter()- picks rows based on values
- arrange()- changes row order
- group_by()- 'lock-in' by certain criteria
- summarize() reduce multiple values to a single value

ggplot2

Powerful graphing package for generating high quality figures based on the grammar of graphics

ggplot2

	year [‡]	sex [‡]	name [‡]	n [‡]	prop [‡]
1	1880	F	Mary	7065	0.0723843285
2	1880	F	Anna	2604	0.0266792345
3	1880	F	Emma	2003	0.0205216999
4	1880	F	Elizabeth	1939	0.0198659891
5	1880	F	Minnie	1746	0.0178886111
6	1880	F	Margaret	1578	0.0161673702

Resources

stackoverflow

Try to determine:

- Total number of babies born between 1980:1990
- Total number of males and females named "Frankie"
 - Graph it!
- Determine if you or your partners have a more popular name
 - Graph it!

