浅谈搜索广告触发的 挑战及对策

阿里集团-阿里妈妈事业部演讲人:胡云华(吴钩)

个人介绍

- 个人专长
 - 计算广告, 文本挖掘, 自然语言处理, 机器学习
- 工作经历
 - 2012至今: 阿里妈妈事业部
 - 2007~2012: MSRA工作
 - 2003~2006: MSRA实习
- 联系方式
 - 新浪微博: 胡云华
 - 邮箱: wugou.hyh@taobao.com

什么是搜索广告触发?

淘宝搜索广告

3分类 > 5052 ■ 个性化能相		特点,帮你更	(快找到喜欢的	的宝贝 立即定	定制				鱼吧 同店 №	望柜热卖 搜题。
鱼系列(2.5万))									■ 10.2 日文中
品牌:	华味亨	外婆家	优美	白马湖	新海	口留香	富丹	洪湖渔家	⊙ 1 3	
	金珍	远洋	海之鰻	明珠	北洋	东江湖	裕达	山水郎		
	舜华	元臻	+多选							2袋包邮 买4送1
鱼的种类:	小黄鱼	马面鱼	红娘鱼	Cod-	Fish/鳕鱼	鳗鱼	明太鱼	东江鱼	⊙ 更多	搜索广生
	沙丁鱼	Tuna/金	抢鱼 :	龙头鱼	秋刀鱼	带鱼				文
口味:	香辣味	原味	咸味	甜味	烧烤	麻辣味	泡椒味	五香味	卤味	
	酸味	咖喱味	其它							
高级选项:	产地一方	≃品▼ 包装	方式▼ 是	否为有机食品	』 是否含	含糖 ▼ 戸地	▼ 好店推荐	荐▼ 源产地▼		克斯
					*					
是不是想找:	鱼干干货	鱼干零食	即食鱼干	千岛湖鱼	干 红娘!	鱼干 鱼片	小鱼干	虾干 淡水	(鱼干	

搜索广告触发

三段式搜索广告触发机制

- Query Rewriting:将查询关联到多个相关的竞价词
- Bid-Ads Ranking: 找到所有购买了此竞价词的广告
- First Ranking: 筛选最相关的广告给CTR预估模型排序

三段式搜索广告触发机制

First Ranking

Query Rewriting

• 三段式广告触发的数学描述

Bid-Ads Ranking

$$P(a \mid q) = \sum_{i} P(b_i \mid q) P(a \mid b_i, q)$$

q表示用户输入的查询词,b表示广告主提供的竞价词,a表示找到的广告

- 三段式广告触发的解读
 - 需要遍历每一个相关的竞价词bi
 - 求广告的条件概率时,依赖于竞价词和查询词

现有搜索广告触发有什么问题?

那些年,我们曾经走过的弯路

查询词

- 投入: >5人*6月
- 思路:
 - 三段先独立优化,再联调实验
 - Query Rewriting: query clustering形式+Bid排序
 - Bid-Ads Ranking: CTR预估模型
 - First Ranking: 类目匹配 和 属性匹配
- 产出: CTR提升小于2%, 远低于预期
- 困难:
 - 不好评价、不好优化
 - 模块之间联调困难

竞价词

广告

搜索广告触发机制存在的问题

• 问题1: 线性的三段式结构不合理

$$P(a | q) = \sum_{i} P(b_i | q) P(a | b_i, q)$$

局部目标不等于全局目标!

 $P(a \mid b_i, q) \neq P(a \mid b_i)$

信息损失会影响最终精确度!

搜索广告触发机制存在的问题

• 问题2: 竞价词的截断影响最终效果

$$P(a | q) = \sum_{i} P(b_{i} | q) P(a | b_{i}, q)$$

$$= \sum_{i}^{n} P(b_{i} | q) P(a | b_{i}, q) + \sum_{n+1} P(b_{i} | q) P(a | b_{i}, q)$$

- -由于系统的限制,竞价词会截取到较小的数量,例如n=10
- 在广告竞价系统中,热门词流量大,竞争激烈,不利于生态环境的健康
- 广告再好,如果抢不到好的广告词,将没有机会展现。

是否有更好的解决思路?

有!

问题2: 竞价词的截断影响最终效果

• 放开竞价词的截断逻辑!

$$P(a | q) = \sum_{i} P(b_{i} | q) P(a | b_{i}, q)$$

$$= \sum_{i}^{n} P(b_{i} | q) P(a | b_{i}, q) + \sum_{n+1} P(b_{i} | q) P(a | b_{i}, q)$$

n尽量取大一些,比如由10到200

新三段式广告触发机制的挑战

• 新三段式触发机制 n >> c (e.g., c = 10) 查询词 广告

- 面临的挑战
 - 非线性的结构,带来实现的困难
 - 竞价词个数的放开,带来系统实现的困难
 - -广告的多重依赖,带来优化的困难

如何应对新三段式触发机制的挑战?

直接优化的思想

- 什么是直接优化?
 - 离线构造query对应的点击率最高的Ads集合, 供各阶段优化

不考虑竞价词! 竞价词只是用来寻找query对应的Ads!

有评价标准!点击率最高的Ads!

要Ads集合!要求点击率最高的Ads!不管挂在哪个竞价词下!

直接优化的步骤

- 对于一个query,找出所有相关的Ads,构成 候选集
 - 构造理想训练集合
- 对于候选集,用query-ads的CTR预估模型, 选出最优广告集合
 - 确定最终优化目标
- 对于一个query和其对应的最优广告集合, 分别优化三段式的各个模块
 - -逐步优化,各个击破

直接优化的思路可行吗?

直接优化面临的挑战

- 问题一: Bid的排序更重要,还是召回更重要? (查询词扩展成竞价词)
- 问题二: Bid下广告排序是否有意义? (竞价词检索出广告)
- 问题三: Firstrank算法是否有优化的空间? (查询词对应的广告粗排序)
- 问题四:广告触发部分的CTR到底有多大提升空间? (效果提升的天花板)

问题一: Bid的排序更重要,还是召回更重要?

• 排序: 2012年的matching效果优化更多的侧 重在Bid的排序上,但效果欠佳

• 召回: 是否召回更多的Bid就能带回来更多更好的广告?

调研1: Bid之间的广告重合度

• 假设: Bid之间广告重合度越低,新的Bid带回来好广告的概率会越高

• 结论:不同的bidword pair 之间广告重合度低

调研2: 放开广告个数的限制

- 假设:如果放开限制能引进更多的新广告,则也有可能引进更多好广告
- 说明: 蓝色是ML=1的竞价词引入的广告数,红色 是其他ML引入的**新广告数量**

• 结论: 其他ML能引入更多的新广告

直接优化面临的挑战

• 问题一: Bid的排序更重要, 还是召回更重要? (查询词扩展成竞价词)

- 问题二: Bid下广告排序是否有意义? (竞价词检索出广告)
- 问题三: Firstrank算法是否有优化的空间? (查询词对应的广告粗排序)
- 问题四:广告触发部分的CTR到底有多大提升空间? (效果提升的天花板)

问题二: Bid下广告排序是否有意义?

• 2012年曾经利用点击率预估模型带来小幅的CTR提升

• 是否能通过优化Bid下广告的相关性排序带来CTR的提升?

调研3: CTR和相关性的关系

• Case分析: 相关性好, 宝贝多, CTR高

• Query: 女士皮棉鞋(Top 15w)

调研3: CTR和相关性的关系

• Case分析:相关性差,乱买词,CTR低

• Query: 卡缇秀(Top 5w~10w)

		竞价词	
1	2012秋冬新款女装加厚 打底衫长油番丝衫 ¥119元	卡缇秀	1) 1) 女蕾
2	修身太码加厚加绒 真毛 领长油蕃丝打底衫 ¥236元	卡缇秀	10
3	欧洲站 2013春装新款 女装 修身番丝打底衫 ¥316元	卡缇秀	11 11 女蕃
4	卡缇秀同款【淘金币】 双层领点点下摆里面针 ¥215元	卡缇秀	1 5 女 卫
			4.

直接优化面临的挑战

- 问题一: Bid的排序更重要, 还是召回更重要? (查询词扩展成竞价词)
- 问题二: Bid下广告排序是否有意义? (竞价词检索出广告)
- 问题三: Firstrank算法是否有优化的空间? (查询词对应的广告粗排序)
- 问题四:广告触发部分的CTR到底有多大提升空间? (效果提升的天花板)

问题三: Firstrank是否能优化?

- 定义: 引擎返回的Top M个广告中,选出少量的N个,交给CTR预测模型进行精细排序
- 现状: 简单的firstrank逻辑:
 - 重点考虑 类目匹配 和 属性匹配 的权重

$$P(a | q) = f_1(c,q) * f_2(c,a) * f_3(q,a)$$

$$P(a | q) = \sum_{i} P(b_i | q) P(a | b_i, q)$$

初步调研验证有提升!

直接优化面临的挑战

- 问题一: Bid的排序更重要, 还是召回更重要? (查询词扩展成竞价词)
- 问题二: Bid下广告排序是否有意义? (竞价词检索出广告)
- 问题三: Firstrank算法是否有优化的空间? (查询词对应的广告粗排序)
- 问题四:广告触发部分的CTR到底有多大提升空间? (效果提升的天花板)

问题四: Matching有多大提升空间?

• 2012年matching效果优化看到的实际CTR提 升非常有限

• 是否Matching已经达到效果瓶颈? Matching 到底还能有多大提升空间?

调研结果:

长尾CTR有10%+的提升空间!

直接优化面临的挑战

- 问题一: Bid的排序更重要, 还是召回更重要? (查询词扩展成竞价词)
- 问题二: Bid下广告排序是否有意义? (竞价词检索出广告)
- 问题三: Firstrank算法是否有优化的空间? (查询词对应的广告粗排序)
- 问题四:广告触发部分的CTR到底有多大提升空(效果提升的天花板)

直接优化具体该怎么做?

直接优化的解决方案

- 直接优化的训练数据生成方案
 - 优化新的三段式广告触发模型
- Query到Bid的改写方案
 - 扩展出更多的Bidword,现有多种方案
- Bid下Ads的排序方案
 - 相关性分值引入cfop数据
- Query到Ads的直接排序方案
 - 轻量级预估模型

(1) 直接优化的数据生成方案

• 选定PV有代表性的Query样本

• 构造Query对应的Ad集合

• 将Query对应的Ads排序,得到Top N条Ads

• 构造最优广告集合索引,实验

(2) Query到Bid的改写方案

• 方案:

- 现有系统中,不限制相关Bidword的个数
- 使用目前qc的方式改写出更多bidword
- Simrank中子图中的query进行更多改写
- Translation model进行的相关query生成
- 在现有QR系统相关query基础上再做一次相关query扩展

• 评测:

- 看各种方案会损失直接优化数据中多少好的Ads

(3) Bid下Ads的排序方案

• 方案: 结合相关性因素学习FirstRank的打分 函数

• Query-Bid的相关性:将相关性因素引入CTR 预估模型

• 评测: 看排序方法得到的Top N集合与直接 优化的数据集有多大的重合度

(4) Query到Ads的直接排序方案

方案:利用精确排序中的点击预估模型, 去除计算量大的特征,重新训练新版的轻量模型

• 评测: 看排序方法得到的Top N集合与直接 优化的数据集有多大的重合度

直接优化的广告触发效果如何?

基于直接优化的广告触发效果

• 实验设置(参数设置非最优)

- Query改写: SimRank+QR二次扩展

- 阈值截取: Top 200 query, top 8000 ads

基于直接优化的广告触发效果

• 实验结果

	Тор	Tail	All
CTR	+4.4%	+5.2%	+4.7%
PPC	+0.0%	+1.1%	+0.3%
RPM	+4.4%	+6.3%	+5.0%

Thanks!

Q & A