

The Safest Path

Luciana
Pineda
Project Manager

Nicolas Moreno Full-Stack developer

Andrea
Serna
Literature review

Mauricio Toro Data preparation

Problem Statement

Streets of Medellín, Origin and Destination

Constrained
Shortest
Paths

First Algorithm

Streets of Medellín, Origin and Destination

Shortest path without exceeding a weighted-average risk of harassment *r*

Second Algorithm

Streets of Medellín, Origin and Destination

Path with the lowest weighted-average risk of harassment without exceeding a distance d

Algorithm Explanation

Dijkstra Algorithm for the Constrained Shortest Path

Starting from the source node, in this case A, the algorithm searches the node with the minimum distance in the adjacent nodes, the node with less distance is selected, and so on to reach the final node. This returns the final path and the entire cost of the path.

Graphic Map

Algorithm Complexity

	Time Complexity	Memory Complexity
Dijkstra Algorithm	(E+VlogV)	O(V²)

Time and memory complexity of the Dijkstra Algorithm. Where E is the number of edges in the graph and V is the number of vertices in the graph.

Shortest Path Results

Origin	Destination	Shortest distance (meters)	Without exceeding a weighted-average risk of harassment
Universidad EAFIT	Universidad de Medellín	6088 m	0.84
Universidad de Antioquia	Universidad Nacional	2000 m	0.83
Universidad Nacional	Universidad Luis Amigó	800 m	0.85

Shortest distance obtained without exceeding a weighted average risk of harassment r. The difference in the paths of not exceeding distance or in this case the weighted average risk of harassment are seen in the following images

Lowest Risk Results

Origin	Destination	Weighted-average risk of harassment	Without exceeding a distance (meters)
Universidad EAFIT	Universidad de Medellín	0,63	5000
Universidad de Antioquia	Universidad Nacional	0.3	7000
Universidad Nacional	Universidad Luis Amigó	0.2	6500

The lowest weighted-average risk of harassment was obtained without exceeding a distance d. The difference in the paths of not exceeding weighted average risk or in this case the without exceeding a distance is seen in the following images

Algorithm Results

Path weighted-average risk of harassment

Without exceeding a distance

 \bullet

Algorithm Results

Path weighted-average risk of harassment

Without exceeding a distance

Algorithm Execution Times

9.43 seconds

9.4 seconds

9.36 seconds

THANK YOU!

Supported by

The first author was supported by with finance of the Lumni EAFIT alliance. All the authors wish to thank the Vice President for "Discovery and Creation", and all the teachers and students of EAFIT University, for their support in this research.