

Page 1 of 38

TEST REPORT

Product WirelessHART Module

Trade mark

Model/Type reference M1100S

N/A **Serial Number**

Report Number EED32H002200 **FCC ID** 2ADYA-M1100S **Date of Issue** Dec. 08, 2015

Test Standards 47 CFR Part 15 Subpart C (2014)

Test result PASS

Prepared for:

Microcyber Corporation Wensu Street 17-8, HunNan District Shenyang, Liaoning, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

Reviewed by:

Eman-Li

Sheek Luo

Dec. 08, 2015

Lab supervisor

Check No.: 2212867504

Page 2 of 38

2 Version

Version No.	Date	Description		
00	Dec. 08, 2015	Original		
		120	(3)	
		(G)	(67)	(0,)

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Page 4 of 38

4 Content

1 COVER PAGE	1
2 VERSION	2
3 TEST SUMMARY	3
4 CONTENT	4
5 TEST REQUIREMENT	
5.1 Test setup	5
5.1.1 For Conducted test setup	5
5.1.2 For Radiated Emissions test setup	
5.1.3 For Conducted Emissions test setup	
5.2 TEST ENVIRONMENT	
5.3 TEST CONDITION	6
6 GENERAL INFORMATION	7
6.1 CLIENT INFORMATION	7
6.2 GENERAL DESCRIPTION OF EUT	
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
6.4 DESCRIPTION OF SUPPORT UNITS	
6.5 TEST LOCATION	
6.6 TEST FACILITY	
6.7 DEVIATION FROM STANDARDS	
6.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6.10 MEASUREMENT UNCERTAINTY(95% CONFIDENCE LEVELS, K=2)	
7 EQUIPMENT LIST	10
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	12
Appendix A) 6dB Occupied Bandwidth & 99% Occupied Bandwidth	13
Appendix B) Conducted Peak Output Power	
Appendix C) Band-edge for RF Conducted Emissions	
Appendix D) RF Conducted Spurious Emissions	
Appendix E) Power Spectral Density	
Appendix F) Antenna Requirement	
Appendix G) AC Power Line Conducted Emission	
Appendix H) Restricted bands around fundamental frequency (Radiated)	
PHOTOGRAPHS OF TEST SETUP	
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	
FNOTOGRAFNS OF EUT CONSTRUCTIONAL DETAILS	3/

Report No.: EED32H002200 Page 5 of 38

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Antenna Tower

AE EUT

Ground Reference Plane

Test Receiver

Amplier

Controlles

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 6 of 38

5.1.3 For Conducted Emissions test setup **Conducted Emissions setup**

5.2 Test Environment

Operating Environment:				
Temperature:	22°C			
Humidity:	50% RH			
Atmospheric Pressure:	1010mbar	6		

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel				
	TX/fX	Low(L)	Middle(M)	High(H)		
OQPSK	0.4051411 0.4751411	Channel 1	Channel 8	Channel15		
	2405MHz ~2475 MHz	2405MHz	2440MHz	2475MHz		
Transmitting mode:	The EUT transmitted the continuous modulation test signal at the specific channel(s).					

Report No.: EED32H002200 Page 7 of 38

6 General Information

6.1 Client Information

Applicant:	Microcyber Corporation	
Address of Applicant:	Wensu Street 17-8, HunNan District Shenyang, Liaoning, China	
Manufacturer:	Microcyber Corporation	
Address of Manufacturer:	Wensu Street 17-8, HunNan District Shenyang, Liaoning, China	
Factory:	Microcyber Corporation	
Address of Factory:	Wensu Street 17-8, HunNan District Shenyang, Liaoning, China	

6.2 General Description of EUT

Product Name:	WirelessHART Module	(25)
Model No.(EUT):	M1100S	0
Trade Mark:	博徽	-05
Power Supply:	AC 120V, 60Hz	(2)
Sample Received Date:	Nov. 20, 2015	0
Sample tested Date:	Nov. 20, 2015 to Dec. 07, 2015	

6.3 Product Specification subjective to this standard

Operation Frequency:	2405MHz~2475MHz				
Carrier Frequency:	2405; 2410; 2415; 2420; 2425; 2430; 2435;2440; 2445; 2450; 2455; 2460; 2465; 2470; 2475				
Modulation Type:	OQPSK				
Number of Channel:	15				
Sample Type:	N/A				
Antenna Type and Gain::	Type: External antenna with reversed polarity NON-Standards antenna port Gain: 2dBi				
Test Voltage:	AC 120V, 60Hz				

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

	Description	Manufacturer	Serial number	Certification	Supplied by
١	Adapter	Yinjie	N/A	FCC VOC	CTI
	DEV-WH-X WirelessHART Development Board	Microcyber Corporation	N/A	N/A	Client

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd.has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 565659

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 565659.

IC-Registration No.: 7408A

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A.

IC-Registration No.: 7408B

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32H002200 Page 9 of 38

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563. Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

6.9 Other Information Requested by the Customer None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
	DE valves acardicated	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB(1GHz-18GHz)
3	Dadiated Churique emission test	4.5dB (30MHz-1GHz)
	Radiated Spurious emission test	4.8dB(1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 **Equipment List**

Report No.: EED32H002200

	RF test system						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016		
Communication test set test set	Agilent	N4010A	MY47230124	04-02-2015	04-01-2016		
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2015	03-31-2016		
Attenuator	HuaXiang	SHX370	15040701	04-01-2015	03-31-2016		
Signal Generator	Keysight	N5182B	MY53051549	03-31-2015	03-30-2016		
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18 NM12-0398-002	(0)	01-13-2015	01-12-2016		
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016		
band rejection filter (GSM900)	Sinoscite	FL5CX01CA09C L12-0395-001		01-13-2015	01-12-2016		
band rejection filter (GSM850)	Sinoscite	FL5CX01CA08C L12-0393-001		01-13-2015	01-12-2016		
band rejection filter (GSM1800)	Sinoscite	FL5CX02CA04C L12-0396-002		01-13-2015	01-12-2016		
band rejection filter (GSM1900)	Sinoscite	FL5CX02CA03C L12-0394-001	(C)	01-13-2015	01-12-2016		
DC Power	Keysight	E3642A	MY54436035	03-31-2015	03-30-2016		
PC-1	Lenovo	R4960d		04-01-2015	03-31-2016		
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016		
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016		
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2015	03-31-2016		

Conducted disturbance Test							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016		
Receiver	R&S	ESCI	100009	06-30-2015	06-28-2016		
Temperature/ Humidity Indicator	Belida	TT-512	101	07-09-2015	07-07-2016		
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016		
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016		
LISN	R&S	ENV216	100098	06-30-2015	06-28-2016		
LISN	schwarzbeck	NNLK8121	8121-529	06-30-2015	06-28-2016		
Voltage Probe	R&S	ESH2-Z3	100042	07-09-2014	07-08-2017		
Current Probe	R&S	EZ17	100106	07-09-2014	07-08-2017		
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017		

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32H002200 Page 11 of 38

1.50			Z*3\		
		3M Semi/full-anech	noic Chamber	•	
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber	TDK	SAC-3		06-02-2013	06-01-2016
TRILOG Broadband Antenna	schwarzbeck	VULB9163	9163-617	07-31-2015	07-29-2016
Microwave Preamplifier	Agilent	8449B	3008A02425	02-05-2015	02-04-2016
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-30-2015	06-28-2016
Receiver	R&S	ESCI	100435	06-30-2015	06-28-2016
Multi device Controller	maturo	NCD/070/10711112		01-13-2015	01-12-2016
LISN	schwarzbeck	NNBM8125	81251547	06-30-2015	06-28-2016
LISN	schwarzbeck	NNBM8125	81251548	06-30-2015	06-28-2016
Signal Generator	Agilent	E4438C	MY45095744	04-19-2015	04-18-2016
Signal Generator	Keysight	E8257D	MY53401106	04-14-2015	04-13-2016
Temperature/ Humidity Indicator	TAYLOR	1451	1905	07- 08-2015	07-06-2016
Communication test set	Agilent	E5515C	GB47050533	01-13-2015	01-12-2016
Cable line	Fulai(7M)	SF106	5219/6A	01-13-2015	01-12-2016
Cable line	Fulai(6M)	SF106	5220/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5216/6A	01-13-2015	01-12-2016
Cable line	Fulai(3M)	SF106	5217/6A	01-13-2015	01-12-2016
Communication test set	R&S	CMW500	152394	04-19-2015	04-18-2016
High-pass filter(3- 18GHz)	Sinoscite	FL3CX03WG18NM 12-0398-002	(42)	01-13-2015	01-12-2016
High-pass filter(5- 18GHz)	MICRO- TRONICS	SPA-F-63029-4		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA09CL1 2-0395-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX01CA08CL1 2-0393-001		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA04CL1 2-0396-002		01-13-2015	01-12-2016
band rejection filter	Sinoscite	FL5CX02CA03CL1 2-0394-001	(A)	01-13-2015	01-12-2016

Report No. : EED32H002200 Page 12 of 38

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2014)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

Report No.: EED32H002200 Page 13 of 38

Appendix A) 6dB Occupied Bandwidth & 99% Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
OQPSK	LCH	1.600	2.420	PASS
OQPSK	MCH	1.472	2.340	PASS
OQPSK	НСН	1.616	2.380	PASS

Test Graphs

6dB Bandwidth

Page 14 of 38

Report No.: EED32H002200 Page 15 of 38

Page 16 of 38

Report No.: EED32H002200 Page 17 of 38

Appendix B) Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
OQPSK	LCH	8.10	PASS
OQPSK	MCH	8.40	PASS
OQPSK	HCH	8.49	PASS

Test Graphs

Page 18 of 38

Report No.: EED32H002200 Page 19 of 38

Appendix C) Band-edge for RF Conducted Emissions

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32H002200 Page 20 of 38

Appendix D) RF Conducted Spurious Emissions

Test Graphs

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 21 of 38

Report No.: EED32H002200 Page 22 of 38

Appendix E) Power Spectral Density

Result Table

Mode	Channel	PSD [dBm]	Verdict
OQPSK	LCH	-6.51	PASS
OQPSK	MCH	-7.35	PASS
OQPSK	HCH	-6.22	PASS

Test Graphs

Page 23 of 38

Report No.: EED32H002200 Page 24 of 38

Appendix F) Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

Report No.: EED32H002200 Page 25 of 38

Аp	pendix G) AC	Power Line Conducted Emission
	Test Procedure:	Test frequency range :150KHz-30MHz
		1) The mains terminal disturbance voltage test was conducted in a shielded room.
)		2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
		3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
)		4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
		5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

Fraguency ronge (MHz)	Limit (dBµV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 26 of 38

Live line: 80.0 dBuV Limit: AVG: AVG: AVG: 10.150 0.150 0.50 Reading_Level Correct Measurement Limit Margin

	Νo	Freq.		ding_Le [,] dBuV)	vel	Correct Factor	М	easuren (dBuV)		Lin (dBı			rgin dB)		
	140.	1 104.	,	иви v ј		i actor		(ubuv)		(ubi	a v)	(0	10)		
		MHz	Peak	QP	AVG	dΒ	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.2340	15.02	6.45	-10.3	9.80	24.82	16.25	-0.56	62.30	52.30	-46.05	-52.86	Ρ	
	2	0.4060	3.44	-5.26	-13.9	9.90	13.34	4.64	-4.09	57.73	47.73	-53.09	-51.82	Ρ	
9	3	0.5820	2.40	-2.56	-7.89	9.90	12.30	7.34	2.01	56.00	46.00	-48.66	-43.99	Ρ	
	4	1.3940	-4.58	-10.02	-14.6	10.00	5.42	-0.02	-4.67	56.00	46.00	-56.02	-50.67	Ρ	
	5	4.3900	-3.79	-10.37	-14.9	10.00	6.21	-0.37	-4.96	56.00	46.00	-56.37	-50.96	Ρ	
	6	15.1620	-4.34	-11.18	-15.8	10.11	5.77	-1.07	-5.73	60.00	50.00	-61.07	-55.73	Р	

Page 27 of 38

Neutral line: 80.0 dBuV Limit: AVG: AVG: 10.150 0.5 (MHz) 5 30.000

	No.	Freq.		ding_Le [,] dBuV)	vel	Correct Factor	М	easuren (dBuV)		Lin (dBı			rgin dB)		
Γ		MHz	Peak	QP	AVG	dΒ	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.2260	16.29	6.10	-11.7	9.80	26.09	15.90	-1.93	62.59	52.59	-46.69	-54.52	Р	
	2	0.4780	1.88	-7.69	-13.3	9.90	11.78	2.21	-3.44	56.37	46.37	-54.16	-49.81	Ρ	
	3	0.5899	16.19	-6.53	-13.1	9.90	26.09	3.37	-3.23	56.00	46.00	-52.63	-49.23	Р	
	4	0.8020	-0.67	-8.27	-14.3	9.90	9.23	1.63	-4.44	56.00	46.00	-54.37	-50.44	Ρ	
	5	2.0820	-2.68	-10.25	-14.7	10.00	7.32	-0.25	-4.72	56.00	46.00	-56.25	-50.72	Ρ	
	6	6.4860	16.09	-10.25	-14.8	10.00	26.09	-0.25	-4.82	60.00	50.00	-60.25	-54.82	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: EED32H002200 Page 28 of 38

Appendix H) Restricted bands around fundamental frequency (Radiated)

Receiver S	otup:	F	Datastan	DDW	\ /D\A/	Damada	
Receiver 3	elup.	Frequency	Detector	RBW	VBW	Remark	_
		30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peal	(
		Above 1GHz	Peak	1MHz	3MHz	Peak	13
/	1605	/ (6)	Peak	1MHz	10Hz	Average	10
Test Proced	dure: Be	low 1GHz test proced	ure as below:				
	a.b.c.d.e.	The EUT was placed of at a 3 meter semi-anedetermine the position. The EUT was set 3 me was mounted on the to The antenna height is determine the maximular polarizations of the antenna was tuned the antenna was tuned table was turned from The test-receiver systems.	choic camber. To fithe highest rate away from op of a variable-lyaried from one my value of the fitenna are set to mission, the EU to heights from 0 degrees to 36 my was set to Person to fit highest programmer.	he table wa adiation. the interfer height anter meter to for ield strength make the n T was arran in 1 meter to 0 degrees t	ence-receinna tower. ur meters n. Both horneasurement ged to its value of find the i	above the grizontal and vent. worst case a and the rotat maximum res	to a, whereounce vertice and the
	f.	Place a marker at the frequency to show corbands. Save the spector lowest and highest	npliance. Also m trum analyzer pl	neasure any	emissions	s in the restri	
	Ab	frequency to show corbands. Save the spect for lowest and highest pove 1GHz test proced Different between about of fully Anechoic Chan 18GHz the distance is . Test the EUT in the lowest Transmitting mode, ar	mpliance. Also manufactum analyzer place channel ure as below: ve is the test site of the change form of the channel of the c	e, change firm table 0.8 le is 1.5 me the Highestormed in X, xis positioni	remissions for each por rom Semi- metre to 1 tre). channel Y, Z axis p ng which i	s in the restri ower and mo Anechoic Ch .5 metre(Ab positioning fo t is worse ca	dulat namb ove r
Limit:	Ab g. h.	frequency to show corbands. Save the spect for lowest and highest pove 1GHz test proced Different between about of fully Anechoic Chan 18GHz the distance is . Test the EUT in the later Transmitting mode, an Repeat above procedure.	mpliance. Also manufactum analyzer place channel ure as below: ve is the test site of the change form of the channel of the c	e, change firm table 0.8 le is 1.5 me the Highest ormed in X, xis positioniquencies me	remissions for each por rom Semi- metre to 1 tre). channel Y, Z axis p ng which i	Anechoic Ch.5 metre(Ab	dulat namb ove r
Limit:	Ab g. h.	frequency to show corbands. Save the spect for lowest and highest pove 1GHz test proced Different between about of fully Anechoic Chan 18GHz the distance is . Test the EUT in the latest Transmitting mode, an Repeat above procedured.	npliance. Also marum analyzer place channel ure as below: ve is the test site of the change form of the channel of the channe	e, change from table 0.8 le is 1.5 me the Highest primed in X, xis positioni uencies me 1/m @3m)	rom Semi- metre to 1 tre). channel Y, Z axis p ng which i	Anechoic Ch.5 metre(Ab	dulat namb ove r
Limit:	Ab g. h.	frequency to show corbands. Save the spect for lowest and highest pove 1GHz test proced Different between about of fully Anechoic Chan 18GHz the distance is . Test the EUT in the later Transmitting mode, and Repeat above procedures. Frequency 30MHz-88MHz	mpliance. Also manument analyzer place channel ure as below: ve is the test site of the change form of the channel of the cha	e, change firm table 0.8 le is 1.5 me the Highest ormed in X, xis positioni uencies me 7/m @3m)	remissions for each por form Semi- metre to 1 tre). channel Y, Z axis p ng which i easured wa Rei Quasi-pe	Anechoic Ch.5 metre(Abecositioning for tis worse cast complete.	dulat namb ove r
Limit:	Ab g. h.	frequency to show corbands. Save the spect for lowest and highest proced Different between about of fully Anechoic Charal 18GHz the distance is . Test the EUT in the later Transmitting mode, an Repeat above procedures. Frequency 30MHz-88MHz 88MHz-216MHz	mpliance. Also marrum analyzer place channel ure as below: ve is the test site of the change form of the change form of the channel, are perfected found the X are constant all frequency and the X are constant (dBµV) Limit (dBµV) 40. 43.	e, change from table 0.8 le is 1.5 me the Highest ormed in X, xis positioniquencies me (/m @3m)	remissions for each portion Semi-metre to 1 tre). It channel Y, Z axis programmed was red was red was red was red was red Quasi-pe	Anechoic Ch.5 metre(Abecositioning for tis worse cast complete. mark eak Value	dulat namb ove r
Limit:	Ab g. h.	frequency to show corbands. Save the spect for lowest and highest pove 1GHz test proced. Different between about of fully Anechoic Chan 18GHz the distance is . Test the EUT in the letter that the radiation measure Transmitting mode, an Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz 216MHz	mpliance. Also manumanity and analyzer place channel ure as below: ve is the test site of the change form of the change form of the channel	e, change from table 0.8 le is 1.5 me the Highest formed in X, xis positioniquencies me the Man (2m	rom Semi- metre to 1 tre). channel Y, Z axis p ng which i easured wa Rei Quasi-pe Quasi-pe	Anechoic Ch.5 metre(Abecositioning for tis worse cast complete. mark eak Value eak Value	dulat namb ove r
Limit:	Ab g. h.	frequency to show corbands. Save the spect for lowest and highest proced Different between about of fully Anechoic Charal 18GHz the distance is . Test the EUT in the later Transmitting mode, an Repeat above procedures. Frequency 30MHz-88MHz 88MHz-216MHz	npliance. Also manument analyzer place channel ure as below: ve is the test site of the change form of the change form of the channel of the	e, change firm table 0.8 le is 1.5 me the Highest ormed in X, xis positioni uencies me 1/m @3m)	remissions for each portion Semi-metre to 1 tre). channel Y, Z axis pag which it easured was Remark Quasi-pe Quasi-pe Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch.5 metre(Abecositioning for tis worse cast complete. mark eak Value eak Value eak Value	dulat namb ove r
Limit	Ab g. h.	frequency to show corbands. Save the spect for lowest and highest pove 1GHz test proced. Different between about of fully Anechoic Chan 18GHz the distance is . Test the EUT in the letter that the radiation measure Transmitting mode, an Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz 216MHz	mpliance. Also manumanity and analyzer place channel ure as below: ve is the test site of the change form of the change form of the channel	e, change firm table 0.8 le is 1.5 me the Highest ormed in X, xis positioni uencies me 1/m @3m)	rom Semi- metre to 1 tre). channel Y, Z axis p ng which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe Average	Anechoic Ch.5 metre(Abecositioning for tis worse cast complete. mark eak Value eak Value	dulat namb ove r

Report No.: EED32H002200 Page 29 of 38

Test plot as follows:

Frequency (MHz)	Read Level (dBµV)	Level (dBµV/m)	Antenna Factor (dB/m)	Cable Loss (dB)	Premap Factor (dB)	Limit (dBµV/m)	Over Limit (dB)	Antenna Polaxis	Remark	Test Frequency (MHz)
2390.00	45.13	44.73	32.53	4.28	37.21	74	-29.27	Н	PK	2405
2390.00	52.73	52.33	32.53	4.28	37.21	74	-21.67	V	PK	2405
2390.00	44.45	44.05	32.53	4.28	37.21	54	-9.95	V	AV	2405
2483.50	50.37	50.40	32.71	4.51	37.19	74	-23.60	Н	PK	2475
2483.50	60.10	60.13	32.71	4.51	37.19	74	-13.87	V	PK	2475
2483.50	49.22	49.25	32.71	4.51	37.19	54	-4.75	V	AV	2475

Note

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32H002200 Page 30 of 38

Appendix I) Radiated Spurious Emissions

Receiver Setup:

19.9	V9.1	0 /		10.0 - 1
Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120 kHz	300kHz	Quasi-peak
Above 10Uz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

	m	11	•

	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	- P-	300
(0.490MHz-1.705MHz	24000/F(kHz)	-		30
1	1.705MHz-30MHz	30	-		30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No.: EED32H002200 Page 31 of 38

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)

			Cable						_
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	116.13	11.91	1.57	9.38	22.86	43.50	-20.64	Horizontal	
2	178.76	10.86	1.96	8.81	21.63	43.50	-21.87	Horizontal	
3	216.02	11.88	2.26	9.72	23.86	46.00	-22.14	Horizontal	
4	239.99	12.25	2.32	12.16	26.73	46.00	-19.27	Horizontal	
5	331.35	14.34	2.59	8.51	25.44	46.00	-20.56	Horizontal	
6 рр	423.54	16.69	2.89	9.08	28.66	46.00	-17.34	Horizontal	

Report No.: EED32H002200 Page 32 of 38

Transmitter Emission above 1GHz

Test m	ode:	OQF	PSK	Test Fre	quency:		2405MHz	
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis
1668.044	31.18	37.72	2.98	48.00	44.44	74	-29.56	Н
3266.346	33.36	37.04	5.57	47.81	49.70	74	-24.30	₩.
4810.000	34.70	36.82	5.11	54.27	57.26	74	-16.74	Н
4810.000	34.70	36.82	5.11	47.23	50.22(AV)	54	-3.78	Н
5956.109	35.87	36.70	7.33	44.81	51.31	74	-22.69	Н
7215.000	36.42	37.45	6.67	42.86	48.50	74	-25.50	Н
9620.000	37.90	37.83	7.72	45.26	53.05	74	-20.95	Н
1663.803	31.17	37.72	2.97	48.97	45.39	74	-28.61	V
3607.257	33.09	36.97	5.5	45.48	47.10	74	-26.90	V
4181.159	33.26	36.88	5.36	44.96	46.70	74	-27.30	V
4810.000	34.70	36.82	5.11	44.82	47.81	74	-26.19	V
7215.000	36.42	37.45	6.67	44.08	49.72	74	-24.28	V
9620.000	37.90	37.83	7.72	44.51	52.30	74	-21.70	V

	A SECRET A		A BOA COLD					
e:	OQF	PSK	Test Free	quencyl:	2440MHz			
ntenna actor dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis	
30.60	38.18	2.69	46.90	42.01	74	-31.99	Н	
31.18	37.72	2.98	48.79	45.23	74	-28.77	Н	
33.04	36.96	5.50	45.50	47.08	74	-26.92	Н	
34.85	36.81	5.08	43.90	47.02	74	-26.98	Н	
36.43	37.43	6.77	43.36	49.13	74	-24.87	Н	
38.05	37.85	7.60	44.62	52.42	74	-21.58	Н	
30.74	38.07	2.77	46.26	41.70	74	-32.30	V	
31.18	37.72	2.98	48.79	45.23	74	-28.77	V	
33.00	36.95	5.49	45.32	46.86	74	-27.14	V	
34.85	36.81	5.08	54.19	57.31	74	-16.69	V	
34.85	36.81	5.08	46.41	49.53(AV)	54	-4.47	V	
36.43	37.43	6.77	45.64	51.41	74	-22.59	V	
38.05	37.85	7.60	44.62	52.42	74	-21.58	V	
	actor dB/m) 30.60 31.18 33.04 34.85 36.43 33.00 34.85 34.85 36.43	Preamp Gain (dB) 30.60 38.18 31.18 37.72 33.04 36.96 34.85 36.81 36.43 37.43 38.05 37.85 30.74 38.07 31.18 37.72 33.00 36.95 34.85 36.81 34.85 36.81 34.85 36.81 36.43 37.43	Intenna ractor (dB/m) Preamp Gain (dB) Cable Loss (dB) 30.60 38.18 2.69 31.18 37.72 2.98 33.04 36.96 5.50 34.85 36.81 5.08 36.43 37.43 6.77 38.05 37.85 7.60 30.74 38.07 2.77 31.18 37.72 2.98 33.00 36.95 5.49 34.85 36.81 5.08 34.85 36.81 5.08 36.43 37.43 6.77	Intenna ractor (dB/m) Preamp Gain (dB) Cable Loss (dB) Read Level (dBμV) 30.60 38.18 2.69 46.90 31.18 37.72 2.98 48.79 33.04 36.96 5.50 45.50 34.85 36.81 5.08 43.90 36.43 37.43 6.77 43.36 30.74 38.07 2.77 46.26 31.18 37.72 2.98 48.79 33.00 36.95 5.49 45.32 34.85 36.81 5.08 54.19 34.85 36.81 5.08 46.41 36.43 37.43 6.77 45.64	Intenna ractor (dB/m) Preamp Gain (dB) Cable Loss (dB) Read Level (dBμV) Level (dBμV/m) 30.60 38.18 2.69 46.90 42.01 31.18 37.72 2.98 48.79 45.23 33.04 36.96 5.50 45.50 47.08 34.85 36.81 5.08 43.90 47.02 36.43 37.43 6.77 43.36 49.13 38.05 37.85 7.60 44.62 52.42 30.74 38.07 2.77 46.26 41.70 31.18 37.72 2.98 48.79 45.23 33.00 36.95 5.49 45.32 46.86 34.85 36.81 5.08 54.19 57.31 34.85 36.81 5.08 46.41 49.53(AV) 36.43 37.43 6.77 45.64 51.41	Attenna factor (dB/m) Preamp Gain (dB) Cable Loss (dB) Read Level (dBμV) Level (dBμV/m) Limit Line (dBμV/m) 80.60 38.18 2.69 46.90 42.01 74 81.18 37.72 2.98 48.79 45.23 74 83.04 36.96 5.50 45.50 47.08 74 84.85 36.81 5.08 43.90 47.02 74 86.43 37.43 6.77 43.36 49.13 74 88.05 37.85 7.60 44.62 52.42 74 80.74 38.07 2.77 46.26 41.70 74 81.18 37.72 2.98 48.79 45.23 74 83.00 36.95 5.49 45.32 46.86 74 84.85 36.81 5.08 54.19 57.31 74 84.85 36.81 5.08 46.41 49.53(AV) 54 86.43 37.43 6.77 45.64 51.41	Attenna Factor (BB/m) Preamp Gain (dB) Cable Loss (dB) Read Level (dBμV/m) Level (dBμV/m) Limit Line (dBμV/m) Over Limit (dB) 30.60 38.18 2.69 46.90 42.01 74 -31.99 31.18 37.72 2.98 48.79 45.23 74 -28.77 33.04 36.96 5.50 45.50 47.08 74 -26.92 34.85 36.81 5.08 43.90 47.02 74 -26.98 36.43 37.43 6.77 43.36 49.13 74 -24.87 38.05 37.85 7.60 44.62 52.42 74 -21.58 30.74 38.07 2.77 46.26 41.70 74 -32.30 31.18 37.72 2.98 48.79 45.23 74 -28.77 33.00 36.95 5.49 45.32 46.86 74 -27.14 34.85 36.81 5.08 54.19 57.31 74 -16.69	

Report No.: EED32H002200 Page 34 of 38

100	6.7		2767		277	/	27/	
Test m	node:	OQF	PSK	Test Free	quencyl:	2475MHz		
Frequency (MHz)	Antenna Factor (dB/m)	Preamp Gain (dB)	Cable Loss (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Antenna Polaxis
1118.517	30.02	38.64	2.42	48.39	42.19	74	-31.81	Н
1668.044	31.18	37.72	2.98	48.91	45.35	74	-28.65	OH.
3333.545	33.31	37.03	5.55	45.02	46.85	74	-27.15	Н
4950.000	35.00	36.80	5.06	42.69	45.95	74	-28.05	Н
7425.000	36.44	37.41	6.86	43.66	49.55	74	-24.45	Н
9900.000	38.20	37.88	7.49	44.11	51.92	74	-22.08	Н
1367.659	30.60	38.18	2.70	45.97	41.09	74	-32.91	V
1668.044	31.18	37.72	2.98	48.16	44.60	74	-29.40	V
3786.010	32.95	36.94	5.47	45.69	47.17	74	-26.83	V
4950.000	35.00	36.80	5.06	53.10	56.36	74	-17.64	V
4950.000	35.00	36.80	5.06	43.35	46.61(AV)	54	-7.39	V
7425.000	36.44	37.41	6.86	43.85	49.74	74	-24.26	V
9900.000	38.20	37.88	7.49	43.96	51.77	74	-22.23	V

Note:

1)The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

- 3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 4) Except marked with(AV), all other level are peak value

Report No.: EED32H002200 Page 35 of 38

PHOTOGRAPHS OF TEST SETUP

Test mode No.: M1100S

Radiated spurious emission Test Setup-2(Above 1GHz)

Report No.: EED32H002200 Page 37 of 38

PHOTOGRAPHS OF EUT Constructional Details

Test mode No.: M1100S

Page 38 of 38

