CMA211 AD - Cálculo 2 Engenharia Mecânica Diurno

24 de Agosto de 2018 - Prova 1

Nome:

Q:	1	2	3	4	5	6	7	Total
P:	15	30	15	20	10	10	10	110
N:								

Considere a função f cujas curvas de nível estão abaixo

- (a) $\boxed{5}$ Estime f(0,0) e f(0,-1);
- (b) 5 Estime $\frac{\partial f}{\partial x}(0,0)$;
- (c) $\boxed{5}$ Estime $\frac{\partial f}{\partial y}(0, -1)$.

Calcule os seguintes limites ou mostre que não existem:

(a)
$$\lim_{(x,y)\to(0,0)} (x^2+y)\cos\frac{1}{(x^2+y^2)}$$

(b)
$$\lim_{(x,y)\to(0,1)} \frac{x^3(y-1) - x(y-1)^3}{x^4 + (y-1)^4}$$

Desenhe as curvas de nível de $f(x,y) = \frac{x^2 + y^2}{x + y}$.

Dada a função $u(t,x) = \cos(x - \pi t) + 2\sin(x + \pi t)$,

(a) $\boxed{10}$ verifique que u(t,x) satisfaz

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

para algum c > 0, e mostre o valor de c.

(b) 10 Calcule o plano tangente de u(t,x) em $t=0, x=\pi/4$

Determine as equações paramétricas da reta tangente à curva $x=2\sin t,\ y=2\sin 2t,\ z=2\sin 3t$ no ponto $(1,\sqrt{3},2)$.

Esboce o domínio da função $f(x,y) = \frac{\ln(x^2 + y^2 - 4)}{\sqrt{xy - 1}}$.