

Journal of Molecular Graphics

Volume 11, Issue 2, June 1993, Pages 106-111

Papers

MOUSE: A teachable program for learning in conformational analysis

Daniel P. Dolata A, W.Patrick Walters

Journal of Molecular Graphics

Volume 11, Issue 2, June 1993, Pages 112-117

Papers

Short-term learning in conformational analysis

Daniel P. Dolata A, W.Patrick Walters

Overview

Free-Wilson Analysis
Filtering Chemical Libraries
Predicting (sort of) Aqueous Solubility

https://github.com/PatWalters

https://practicalcheminformatics.blogspot.com/

 $\begin{array}{ll} \text{Location of the problem o$

Have You Ever Been in This Situation?

Your project has synthesized several hundred compounds

You wonder what you might have missed

Is there any easy way to

- **Evaluate contributions of different substituents**
- Identify promising compounds which have yet to be synthesized

Have You Ever Been in This Situation?

Your project has synthesized several hundred compounds

You wonder what you might have missed

Is there any easy way to

- Evaluate contributions of different substituents
- Identify promising compounds which have yet to be synthesized

Journal of Medicinal Chemistry

@ Copyright 1964 by the American Chemical Society

Volume 7, Number 4

JULY 6, 1964

A Mathematical Contribution to Structure-Activity Studies

SPENCER M. FREE, JR., AND JAMES W. WILSON

Research and Development Division, Smith Kline and French Laboratories, Philadelphia, Pennsylvania

Received February 4, 1964

Here's What We've Synthesized

$$H_3C$$
 N
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

What Have We Missed?

$$R1$$
 $R2$
 $R1$
 $R1$
 $R2$
 $R3$
 CH_3
 CH_3

Step 1 – Decompose the Molecules into R-Groups

	R1	R2
Br	Н	Н
F——————N	Н	F
CI————————————————————————————————————	Н	Cl
Br N	Н	Br

$$R1$$
 $R2$
 CH_3
 CH_3
 CH_3

Step 2 – Create a Matrix Containing Presence and Absence of R-Groups

	R1							R2	<u> </u>			
¹ ▲ Name	Н	F	CI	Br	I	CH ₃	н	F	CI	Br	ı	CH ₃
MOL0001	1	0	0	0	0	0	1	0	0	0	0	0
MOL0002	1	0	0	0	0	0	0	1	0	0	0	0
MOL0003	1	0	0	0	0	0	0	0	1	0	0	0
MOL0004	1	0	0	0	0	0	0	0	0	1	0	0
MOL0005	1	0	0	0	0	0	0	0	0	0	1	0
MOL0006	1	0	0	0	0	0	0	0	0	0	0	1
MOL0007	0	1	0	0	0	0	1	0	0	0	0	0
MOL0008	0	0	1	0	0	0	1	0	0	0	0	0
MOL0009	0	0	0	1	0	0	1	0	0	0	0	0
MOL0010	0	0	0	0	1	0	1	0	0	0	0	0
MOL0011	0	0	0	0	0	1	1	0	0	0	0	0
MOL0012	0	0	1	0	0	0	0	1	0	0	0	0
MOL0013	0	0	0	1	0	0	0	1	0	0	0	0
MOL0014	0	0	0	0	0	1	0	1	0	0	0	0
MOL0015	0	0	1	0	0	0	0	0	1	0	0	0
MOL0016	0	0	0	1	0	0	0	0	1	0	0	0
MOL0017	0	0	0	0	0	1	0	0	1	0	0	0
MOL0018	0	0	1	0	0	0	0	0	0	1	0	0
MOL0019	0	0	0	1	0	0	0	0	0	1	0	0
MOL0020	0	0	0	0	0	1	0	0	0	1	0	0
MOL0021	0	0	0	0	0	1	0	0	0	0	0	1
MOL0022	0	0	0	1	0	0	0	0	0	0	0	1

Step 3– Regress R-Group Vectors vs pIC50

	X							Υ					
¹ ▲ Name	Н	F	CI	Br	ı	CH ₃	н	F	CI	Br	1	CH ₃	pIC ₅₀
MOL0001	1	0	0	0	0	0	1	0	0	0	0	0	7.5
MOL0002	1	0	0	0	0	0	0	1	0	0	0	0	8.2
MOL0003	1	0	0	0	0	0	0	0	1	0	0	0	8.7
MOL0004	1	0	0	0	0	0	0	0	0	1	0	0	8.9
MOL0005	1	0	0	0	0	0	0	0	0	0	1	0	9.2
MOL0006	1	0	0	0	0	0	0	0	0	0	0	1	9.3
MOL0007	0	1	0	0	0	0	1	0	0	0	0	0	7.5
MOL0008	0	0	1	0	0	0	1	0	0	0	0	0	8.2
MOL0009	0	0	0	1	0	0	1	0	0	0	0	0	8.3
MOL0010	0	0	0	0	1	0	1	0	0	0	0	0	8.4
MOL0011	0	0	0	0	0	1	1	0	0	0	0	0	8.5
MOL0012	0	0	1	0	0	0	0	1	0	0	0	0	8.2
MOL0013	0	0	0	1	0	0	0	1	0	0	0	0	8.6
MOL0014	0	0	0	0	0	1	0	1	0	0	0	0	8.8
MOL0015	0	0	1	0	0	0	0	0	1	0	0	0	8.9
MOL0016	0	0	0	1	0	0	0	0	1	0	0	0	8.9
MOL0017	0	0	0	0	0	1	0	0	1	0	0	0	9.0
MOL0018	0	0	1	0	0	0	0	0	0	1	0	0	9.0
MOL0019	0	0	0	1	0	0	0	0	0	1	0	0	9.4
MOL0020	0	0	0	0	0	1	0	0	0	1	0	0	9.2
MOL0021	0	0	0	0	0	1	0	0	0	0	0	1	9.3
MOL0022	0	0	0	1	0	0	0	0	0	0	0	1	9.5

When is Linear Regression Poorly Behaved?

Number of characteristics (x-values) exceeds the number of samples (y-values)

Characteristics are colinear

Linear Regression

$$Loss = \Sigma (\hat{Y}_i - Y_i)^2$$

Ridge Regression

$$Loss = \Sigma (\hat{Y}_i - Y_i)^2 + \lambda \Sigma \beta^2$$

Step 5 - Examine Coefficients to Evaluate Substituent Contributions

Examine Multivariate Contributions

Bioavailability	Cellular IC ₅₀	hERG IC ₅₀
106.0	0.0004	0.0708
134.7	0.0006	0.316
75.2	0.2090	21.9
76.8	0.0117	4.07
40.3	0.4370	28.2
40.1	0.3720	28.2
87.7	0.0079	6.31

Examine Promising Combinations That Have Yet to be Synthesized

Molecule	R_1	R_2	Predicted pIC ₅₀
N——F	*1~F	,2-F	8.15
N—————————————————————————————————————	*1 ⁻ F	_* 2-Cl	8.49
N——F	*1~I	_* 2.F	8.59
N—————Br Br	*1 ⁻ F	_{*2} -Br	8.69

What About Symmetric Scaffolds

$$R1$$
 $R2$
 $R3$

Where will the aromatic group end up?

This is Not the Desired Result

SMILES	Name	R1_SMILES	R2_SMILES	R3_SMILES
	1973628		,2 NNN	.3 N
	1973629	,1~	,2 N N	.3 N
	1973630		.2 N N	
	1973631		.2 N N	.3

Mixture of alkyl and aryl at R1 and R3

The "—smarts" Option "Pins" an R-group based on SMARTS

free_wilson.py rgroup --scaffold CHEMBL3638592_scaffold.mol --in CHEMBL3638592.smi --prefix CHEMBL3638592 --smarts "3|c"

SMILES	Name	R1_SMILES	R2_SMILES	R3_SMILES
	1973628	N	.2 N N	
	1973629	.1. N	.2 N N	.3~
	1973630	.1	.2 N N	
	1973631	.1	.2 N N	

We Can Also Use Recursive SMARTS to Pin the Alkyl Group


```
anchor ethyl
[#0;$([#0][CH3]),$([#0][CH2][CH3])]
methyl
or
```

```
free_wilson.py rgroup --scaffold CHEMBL3638592_scaffold.mol --in
CHEMBL3638592.smi --prefix CHEMBL3638592 --smarts "3|[#0;$([#0][CH3]),$([#0][CH2][CH3])]"
```

Using a Chat Platform as the Center of an Informatics Infrastructure

Dedicated channels for each drug discovery project

- Literature
- Assay Results
- . ADME and PK
- Computation
- Biology
- Chemistry
- **Structural Biology**
- SAR Analysis

Microsoft Teams

Free-Wilson and the Relay Bot Infrastructure

Filtering Chemical Libraries

Filtering databases and chemical libraries

Paul S. Charifson and W. Patrick Walters Vertex Pharmaceuticals, 130 Waverly St, Cambridge, MA 02139, USA

> molecular informatics models – molecules – systems

Full Paper

Compound Selection and Filtering in Library Design

James A. Lumley X

First published: 22 November 2005 | https://doi.org/10.1002/qsar.200520136 | Cited by: 14

Drug Discovery Today

Volume 2, Issue 9, September 1997, Pages 382-384

Review

Reactive compounds and in vitro false positives in HTS

Gilbert M. Rishton M

⊞ Show more

https://doi.org/10.1016/S1359-6446(97)01083-0

Get rights and content

J Cheminform. 2016; 8: 29.

Published online 2016 May 28. doi: 10.1186/s13321-016-0137-3

PMCID: PMC4884375

PMID: 27239230

Badapple: promiscuity patterns from noisy evidence

Jeremy J. Yang, Oleg Ursu, Christopher A. Lipinski, Larry A. Sklar, Tudor I. Oprea, and Cristian G. Bologa

<u>Author information ▶ Article notes ▶ Copyright and License information ▶ Disclaimer</u>

Article

pubs.acs.org/jmo

Rules for Identifying Potentially Reactive or Promiscuous Compounds

Robert F. Bruns* and Ian A. Watson

Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States

J. Med. Chem. 2010, 53, 2719–2740 2719 DOI: 10.1021/jm901137j

New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays

Jonathan B. Baell*, †, and Georgina A. Holloway †, ‡

[†]The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia and [‡]Cancer Therapeutics-CRC P/L, 4 Research Avenue, La Trobe R&D Park, Bundoora, Victoria 3086, Australia

Filtering Chemical Libraries - My Motivation

https://github.com/lilleswing/deepchem/blob/large-scale-chemical-screens/examples/notebooks/Large_Scale_Chemical_Screens.ipynb

Structural Alerts Available in ChEMBL 20

23

Structural Alerts

We have compiled a number of sets of publicly-available structural alerts where SMARTS were readily available and useable; these include Pfizer LINT filters, Glaxo Wellcome Hard Filters, Bristol-Myers Squibb HTS Deck Filters, NIH MLSMR Excluded Functionality Filters, University of Dundee NTD Screening Library Filters and Pan Assay Interference Compounds (PAINS) Filters. These sets of filters aim to identify compounds that **could** be problematic in a drug-discovery setting for various different reasons (e.g., substructural/functional group features that might be associated with toxicity or instability in *in vivo* info settings, compounds that might interfere with assays and for example, appear to be 'frequent hitters' in HTS).

It should be noted however that some alerts/alert sets are more permissive than others and may flag a large number of compounds. Results should therefore be interpreted with care, depending on the use-case, and not treated as a blanket filter (e.g., around 50% of approved drugs have 1 or more alerts from these pooled sets). The compound report card page now provides a summary count of the number of structural alerts hits picked up by a given molecule:

Structural Alert Sets in the ChEMBL Database

Pfizer LINT filters

Glaxo Wellcome Hard Filters

BMS HTS Deck Filters

NIH MLSMR Excluded Functionality Fitlers

University of Dundee NTD Screening Library Filters

Pan Assay Interference Compounds (PAINS) Filters

Inpharmatica Filters

SureChEMBL Filters

How can I apply these rules to my compound set?

rdfilters Applies Functional Group and Property Filters to Compound Sets

Usage:

rd_filters filter --in INPUT_FILE --prefix PREFIX [--rules RULES_FILE_NAME] [--alerts ALERT_FILE_NAME][--np NUM_CORES]

rd_filters template --out TEMPLATE_FILE [--rules RULES_FILE_NAME]

Options:

- --in INPUT_FILE input file name
- --prefix PREFIX prefix for output file names
- --rules RULES_FILE_NAME name of the rules JSON file
- -- alerts ALERTS FILE NAME name of the structural alerts file
- --np NUM_CORES the number of cpu cores to use (default is all)
- --out TEMPLATE_FILE parameter template file name

Runs in parallel using pool.map()

rdfilters Template Files Control Operation


```
more tmplt.json
    "HBA": [
        0,
        10
    "HBD": [
        Ο,
    "LogP": [
        -5,
   ],
    "MW": [
        Ο,
        500
    "Rule BMS": false,
    "Rule Dundee": false,
    "Rule Glaxo": false,
    "Rule Inpharmatica": true,
    "Rule LINT": false,
    "Rule MLSMR": false,
    "Rule PAINS": false,
    "Rule SureChEMBL": false,
    "TPSA": [
        0,
        200
```

Predicting Aqueous Solubility

1000

J. Chem. Inf. Comput. Sci. 2004, 44, 1000-1005

ESOL: Estimating Aqueous Solubility Directly from Molecular Structure

John S. Delaney*

Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom

Received October 29, 2003

LogS = 0.16 - 0.63 cLogP - 0.0062 MW + 0.066 RB - 0.74 AP

Useful method published in 2004

Data set has become a standard QSPR benchmark

Even Experimental Solubility Measurements are Tricky

ONOH
ОН
F F

Form	Solubility µg/ml	LogS mol/L
1	26	-3.9
2	7.6	-4.5
3	0.93	-5.4
4	0.29	-5.9

Diflunisal

Most Solubility Datasets Have an Unrealistic Dynamic Range

Btw, most activity datasets have an equally unrealistic dynamic range

Testing the ESOL Implementation

Train on Delaney dataset

Test on 56 compounds from the University of St Andrews DLS-100 dataset

John B. O. Mitchell

https://risweb.st-andrews.ac.uk/portal/en/datasets/dls100-solubility-dataset(3a3a5abc-8458-4924-8e6c-b804347605e8).html

Compare with 3 methods from DeepChem

- Random Forest
- Weave
- **Graph Convolutions**

Does ESOL Outperform Deep Learning

Correlation Have Confidence Limits!

No Difference Within the 95% Confidence Limits

Technological Underpinnings

Acknowledgements

Hakan Gunaydin

Brandi Hudson

Demetri Moustakas

Mark Murcko

Nick Pabon

Levi Pierce

Molly Schmidt

Jon Weiss

Paul Charifson

Emanuele Perola

Greg Landrum The RDKit Community

That's It – More to Come (Hopefully) Soon – Stay Tuned!

Free-Wilson Analysis
Filtering Chemical Libraries
Predicting (sort of) Aqueous Solubility

https://github.com/PatWalters

https://practicalcheminformatics.blogspot.com/

 $\begin{array}{ll} \text{Location of the problem o$

