Exercise 2.5

Convert the following theorems to logical form and prove them by constructing truth table:-

Question #1

$$(A \cap B)' = A' \cup B'$$

Solution

The corresponding formula of logic is

$$\sim (p \land q) = \sim p \lor \sim q$$

p	q	~ p	~ q	$p \wedge q$	$\sim (p \land q)$	~ p \ ~ q
T	T	F	F	T	F	F
Т	F	F	T	F	T	T
F	T	T	F	F	T	T
F	F	Т	Т	F	T	Т

The last two columns of the above table shows that $\sim (p \land q) = \sim p \lor \sim q$ and hence $(A \cap B)' = A' \cup B'$.

Question #2

$$(A \cup B) \cup C = A \cup (B \cup C)$$

Solution

The corresponding formula of logic is

$$(p \lor q) \lor r = p \lor (q \lor r)$$

p	q	r	$p \vee q$	$q \vee r$	$(p \lor q) \lor r$	$p \lor (q \lor r)$
T	T	T	T	T	T	T
T	T	F	T	T	T	T
T	F	T	T	T	T	T
T	F	F	T	F	T	T
F	T	T	T	T	T	T
F	T	F	T	T	T	T
F	F	T	F	Т	T	T
F	F	F	F	F	F	F

The last two columns of the above table shows that $(p \lor q) \lor r = p \lor (q \lor r)$ and hence $(A \cup B) \cup C = A \cup (B \cup C)$.

Question #3

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Solution

The corresponding formula of logic is

$$(p \land q) \land r = p \land (q \land r)$$

p	q	r	$p \wedge q$	$q \wedge r$	$(p \land q) \land r$	$p \wedge (q \wedge r)$
T	T	T	T	Т	T	Т
T	T	F	T	F	F	F
T	F	T	F	F	F	F
T	F	F	F	F	F	F
F	T	T	F	T	F	F
F	T	F	F	F	F	F
F	F	T	F	F	F	F
F	F	F	F	F	F	F

The last two columns of the above table shows that $(p \land q) \land r = p \land (q \land r)$ and hence $(A \cap B) \cap C = A \cap (B \cap C)$.

Question #4

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Solution

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

The corresponding formula of logic is $p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$

p	q	r	$q \wedge r$	$p \vee q$	$p \vee r$	$p \lor (q \land r)$	$(p \lor q) \land (p \lor r)$
T	Т	T	T	T	T	T	T
T	T	F	F	T	T	T	Т
T	F	T	F	T	T	T	Т
T	F	F	F	T	T	T	Т
F	T	T	Т	Т	Т	T	T
F	Т	F	F	T	F	F	F
F	F	Т	F	F	Т	F	F
F	F	F	F	F	F	F	F

The last two columns of the above table shows that $p \lor (q \land r) = (p \lor q) \land (p \lor r)$ and hence $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.