Chapter 1

Prerequisites and Mathematical Foundations

1.1 Review of Single Variable Calculus

Before delving into multivariable calculus and partial differentiation, it is essential to have a strong foundation in single variable calculus. This section provides a concise review of key concepts that will be extended to functions of several variables.

1.1.1 Functions and Their Properties

A function $f: A \to B$ assigns to each element $x \in A$ exactly one element $y \in B$, denoted as y = f(x). The set A is called the domain and B is the codomain.

Important Function Properties

For a function $f: \mathbb{R} \to \mathbb{R}$:

- Injectivity (One-to-one): $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
- Surjectivity (Onto): For every $y \in B$, there exists $x \in A$ such that f(x) = y
- **Bijection:** A function that is both injective and surjective

1.1.2 Limits and Continuity

Definition 1.1 (Limit). We say $\lim_{x\to a} f(x) = L$ if for every $\varepsilon > 0$, there exists $\delta > 0$ such that whenever $0 < |x-a| < \delta$, we have $|f(x) - L| < \varepsilon$.

Definition 1.2 (Continuity). A function f is continuous at a point a if:

- 1. f(a) is defined
- 2. $\lim_{x\to a} f(x)$ exists
- 3. $\lim_{x\to a} f(x) = f(a)$

1.1.3 Differentiation

Definition 1.3 (Derivative). The derivative of a function f at point x = a is defined as:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

provided the limit exists.

Geometric Interpretation of Derivative

The derivative f'(a) represents the slope of the tangent line to the graph of f(x) at the point (a, f(a)).

1.1.4

Key Differentiation Rules

Differentiation Rules

For functions f(x) and g(x):

Sum Rule:
$$(f+g)' = f' + g'$$
 (1.1)

Product Rule:
$$(f \cdot g)' = f' \cdot g + f \cdot g'$$
 (1.2)

Quotient Rule:
$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}, \quad g \neq 0$$
 (1.3)

Chain Rule:
$$(f \circ g)' = (f' \circ g) \cdot g'$$
 (1.4)

1.1.5 Integration

Definition 1.4 (Definite Integral). The definite integral of f(x) from a to b is defined as:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x_{i}$$

where $\Delta x_i = \frac{b-a}{n}$ and x_i^* is any point in the subinterval $[x_{i-1}, x_i]$.

Fundamental Theorem of Calculus

If f is continuous on [a, b] and F is an antiderivative of f, then:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Essential Formulae for Multivariable Calculus 1.2

1.2.1 **Basic Functions and Their Properties**

Elementary Functions

Linear:
$$f(x) = mx + b$$
 (1.5)

Quadratic:
$$f(x) = ax^2 + bx + c$$
 (1.6)

Polynomial:
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 (1.7)

Rational:
$$f(x) = \frac{P(x)}{Q(x)}$$
 where P and Q are polynomials (1.8)

Exponential:
$$f(x) = a^x$$
, especially e^x (1.9)

Logarithmic:
$$f(x) = \log_a x$$
, especially $\ln x$ (1.10)

Trigonometric Identities 1.2.2

Fundamental Identities

$$\sin^2 \theta + \cos^2 \theta = 1 \tag{1.11}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \tag{1.12}$$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \tag{1.13}$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \tag{1.14}$$

1.2.3 Common Derivatives

Important Derivatives

$$\frac{d}{dx}(x^n) = nx^{n-1} \tag{1.15}$$

$$\frac{dx}{dx}(e^x) = e^x \tag{1.16}$$

$$\frac{d}{dx}(a^x) = a^x \ln a \tag{1.17}$$

$$\frac{d}{dx}(a^x) = a^x \ln a \tag{1.17}$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x} \tag{1.18}$$

$$\frac{d}{dx}(\sin x) = \cos x \tag{1.19}$$

$$\frac{d}{dx}(\cos x) = -\sin x\tag{1.20}$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \tag{1.21}$$

Differentiation Rules

For functions f(x) and g(x):

$$\frac{d}{dx}[f(x) \pm g(x)] = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x)$$
(1.22)

$$\frac{d}{dx}[c \cdot f(x)] = c \cdot \frac{d}{dx}f(x) \quad \text{(constant } c\text{)}$$
(1.23)

$$\frac{d}{dx}[f(x)\cdot g(x)] = f(x)\cdot \frac{d}{dx}g(x) + g(x)\cdot \frac{d}{dx}f(x)$$
 (1.24)

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \cdot \frac{d}{dx} f(x) - f(x) \cdot \frac{d}{dx} g(x)}{[g(x)]^2}, \quad g(x) \neq 0$$
(1.25)

$$\frac{d}{dx}[f(g(x))] = \frac{df}{dg} \cdot \frac{dg}{dx} \quad \text{(Chain Rule)}$$
 (1.26)

1.2.4 Common Integrals

Important Indefinite Integrals

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1 \tag{1.27}$$

$$\int \frac{1}{x} dx = \ln|x| + C \tag{1.28}$$

$$\int e^x \, dx = e^x + C \tag{1.29}$$

$$\int \sin x \, dx = -\cos x + C \tag{1.30}$$

$$\int \cos x \, dx = \sin x + C \tag{1.31}$$

$$\int \sec^2 x \, dx = \tan x + C \tag{1.32}$$

1.2.5 Coordinate Systems

Coordinate Transformations

Polar Coordinates (2D):

$$x = r\cos\theta \qquad \qquad 1 \qquad r = \sqrt{x^2 + y^2} \tag{1.33}$$

$$y = r \sin \theta$$
 $\theta = \arctan\left(\frac{y}{r}\right)$ (1.34)

Cylindrical Coordinates (3D):

$$x = r\cos\theta \qquad \qquad r = \sqrt{x^2 + y^2} \tag{1.35}$$

$$y = r \sin \theta$$
 $\theta = \arctan\left(\frac{y}{x}\right)$ (1.36)

$$z = z (1.37)$$

${\bf Spherical\ Coordinates\ (3D):}$

$$x = \rho \sin \phi \cos \theta \qquad \qquad \rho = \sqrt{x^2 + y^2 + z^2} \tag{1.38}$$

$$y = \rho \sin \phi \sin \theta \qquad \qquad \phi = \arccos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right) \qquad (1.39)$$

$$z = \rho \cos \phi \qquad \qquad \theta = \arctan\left(\frac{y}{x}\right) \qquad (1.40)$$

$$z = \rho \cos \phi \qquad \qquad \theta = \arctan\left(\frac{y}{x}\right) \tag{1.40}$$

