Uraian Awal Teori Bilangan

Rafael Feng*

13 Januari 2024

TES: Teori Bilangan WAKTU: 120 Menit

Terdiri dari 5 soal uraian. Jawablah setiap soal berikut dengan menuliskan argumen dengan jelas, padat, dan lengkap. Setiap soal bernilai pada rentang 0 - 7 poin, tidak ada pengurangan poin untuk jawaban yang salah/kosong.

- 1. Suatu bilangan asli $N = \overline{a_1 a_2 \dots a_k}$ memiliki ciri-ciri yang unik, salah satunya dalam keterbagian 2^n . Didefinisikan n digit terakhir dari N adalah $\overline{a_{k-n+1} a_{k-n+2} \dots a_k}$ untuk setiap $k \geq n$.
 - (a) Buktikan bahwa jika digit terakhir suatu bilangan asli genap, maka bilangan tersebut bisa dibagi 2. [1 poin]

Contoh: $\overline{124}$ memiliki digit terakhir 4, sehingga 2 habis membagi 4. Maka 2 habis membagi $\overline{124}$.

(b) Buktikan bahwa jika dua digit terakhir suatu bilangan asli habis dibagi 4, maka bilangan tersebut bisa dibagi 4. [2 poin]

Contoh: $\overline{124}$ memiliki dua digit terakhir $\overline{24}$, sehingga 4 habis membagi $\overline{24}$. Maka 4 habis membagi $\overline{124}$.

- (c) Buktikan bahwa jika n digit terakhir suatu bilangan asli habis dibagi 2^n , maka bilangan tersebut bisa dibagi 2^n . [4 poin]
- 2. Bilangan prima merupakan bilangan yang unik, karena bilangan ini hanya habis dibagi oleh 1 dan dirinya sendiri (tepat hanya memiliki 2 faktor positif).
 - (a) Buktikan bahwa setiap bilangan prima ganjil dapat dinyatakan dalam bentuk 4m-1 atau 4m+1 dengan $m \in \mathbb{N}$. [1 poin]
 - (b) Buktikan bahwa setiap bilangan prima > 3 dapat dinyatakan dalam bentuk 6m-1 atau 6m+1 dengan $m \in \mathbb{N}$. [1 poin]
 - (c) Buktikan bahwa ada tak terhingga bilangan prima. [2 poin]
 - (d) Buktikan bahwa ada tak terhingga bilangan prima yang dapat dinyatakan dalam bentuk 4m + 1. [3 poin]
- 3. (a) Buktikanlah bahwa nilai terkecil yang mungkin dari $|8^m 5^n|$ adalah 3, untuk m dan n bilangan asli. [4 poin]
 - (b) Apakah kita bisa simpulkan bahwa nilai terkecil yang mungkin dari $|x^m y^n|$ adalah x y dimana $x, y \in \mathbb{N}$ serta FPB(x, y) = 1, untuk m dan n bilangan asli? [3 poin]

^{*}rafaelfeng.github.io/Portfolio

- 4. Fungsi floor $\lfloor x \rfloor$ adalah fungsi yang menyatakan bilangan bulat terbesar yang kurang dari atau sama dengan x.
 - (a) Misalkan $A_n = (\sqrt{3} + 1)^{2n}$ dan $B_n = (\sqrt{3} 1)^{2n}$ untuk setiap $n \in \mathbb{N}$.
 - i. Buktikan bahwa $A_n + B_n$ merupakan bilangan bulat untuk setiap $n \in \mathbb{N}$.
 - ii. Buktikan bahwa B_n berada pada range (0,1).

[1 poin]

- (b) Dari (a), simpulkan bahwa $\lfloor (\sqrt{3}+1)^{2n}+1 \rfloor$ habis dibagi oleh 2^{n+1} . [2 poin]
- (c) Buktikan bahwa $\lfloor (\sqrt{3}+1)^{2n+1} \rfloor$ juga habis dibagi oleh 2^{n+1} . [2 poin]
- (d) Dari (b) dan (c), coba buktikan bahwa

$$\nu_2\left(\left\lfloor (\sqrt{3}+1)^{2n}+1\right\rfloor\right) \operatorname{dan} \nu_2\left(\left\lfloor (\sqrt{3}+1)^{2n+1}\right\rfloor\right)$$

adalah n+1.

[2 poin]

5. (a) Misalkan n merupakan bilangan genap. Buktikan bahwa tidak ada bilangan ganjil $(a_1, a_2, ..., a_n)$ sehingga

$$\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n} = 1.$$

[2 poin]

(b) Jika untuk setiap i=1,2,...,n berlaku

$$\triangleright a_i, b_i \in \mathbb{N} \text{ dan } b_i \neq 1.$$

$$\triangleright$$
 FPB $(a_i, b_i) = 1$ dan FPB $(b_i, b_j) = 1$ untuk setiap $i \neq j$.

Buktikan bahwa

$$\frac{a_1}{b_1} + \frac{a_2}{b_2} + \ldots + \frac{a_n}{b_n}$$

bukan merupakan bilangan bulat.

[5 poin]