THE LEMMA

JUSTIN KATZ

In this note \mathfrak{k} is a \mathfrak{p} -adic field, with ring of integers \mathfrak{o} , maximal ideal \mathfrak{p} , and $k = \mathfrak{o}/\mathfrak{p}$ its residue field. We let V denote a 2-dimensional ℓ -vectorspace, and \mathcal{X} the Bruhat-Tits tree of ℓ -homothety classes of \mathfrak{o} -lattices in V.

Two homothety classes $\Lambda, \Lambda' \in \mathcal{X}$ are adjacent, written as $\Lambda \sim \Lambda'$, if they have representative lattices $L \in \Lambda$ and $L' \in \Lambda'$ such that

$$\mathfrak{p}L \leq L' \leq L.$$

For a class $\Lambda \in \mathcal{X}$, let $N(\Lambda) = {\Lambda' : \Lambda' \sim \Lambda}$ denote its 1-neighborhood. There is

Lemma 1. Let $g \in SL(2, \mathfrak{k})$ satisfy

- $\begin{array}{l} (1) \ (g) \in \mathfrak{o} \\ (2) \ x^2 (g)x + 1 \ \text{is reducible modulo} \ \mathfrak{p}^j. \end{array}$

Then g pointwise fixes a geodesic of length j in X.

Proof. v Since $(g) \in \mathfrak{o}$, it fixes some vertex $\Lambda_0 \in X$. Let $N_j(\Lambda)$ denote the j-neighborhood of Λ . We identify $N_j(\Lambda)$ with the projective line $\mathbb{P}^1(\mathfrak{o}/\mathfrak{p}^j)$ as follows. For each vertex $\Lambda' \in N_j(\Lambda)$, there is a sequence of