Probability Homework

10.43 Living Arrangements Continued

	Age in Years				
	15-19	20-24	25.34	3 35-44	Total
Alone	0.001	0.011	0.031	0.030	0.073
w/ spouse	0.001	0.023	0.155	0.216	
ol others	0.169	0.123	0.142	0.089	
Total	0.171				
		norson is	n	105-17-0)

(U.) Miperson is 20 years old or older)

= 1-P(person is 15-19) = 1-0.171=0.829

(b) P(person does not live alone)

= 1-0.073 = 0.927

10,44 Let X be the number of nonword errors

a) The random variable X is discrete because it has a finite sample space.

6) "At least one nonword error in terms of X 15 {X≥1} or {X>0}.

 $P(X \ge 1) = 1 - P(X = 0) = [0.9]$

C) EX ≤ 23 means "at most 2 nonword errors." "no more than 2 nonword" P(x=2) = P(x=0) + P(x=1) + P(x=2) errors' = 0.60 009985 + 0.00584 = n.m.5925

P(X<2) = P(X=0) + P(X=1) = 0.3

12.12	Assist	Assoc	Prof	Total
women men Total	123 215 338		73	272 704 976
@ P(sel	ected professo	oris awor	$nan) = \frac{27}{976}$	2 = 0.2787
6 P(wor	man I full) =	73 = 0.194 375 &		
P(B	A = P(A and P(A))	reportion of full profess $\frac{3}{9}$ B) = $\frac{73}{97}$	$\frac{3}{6} = \frac{73}{375}$	0033
because out of	the probab all the prof e as selecti el professor	essors (paring a wonds (part b	independe lecting a 1 -ta) is 1 nan out	nt woman not of
12,14 (3)	Antibodi 0.01 Prese	es 19985	1 positive	
member of populat		0.0000		e 0.00594
6 P(pos		0.9940	o negati	ive 0.98406

0.009985 + 0.00594 = 0.015925

6 P(positive) =

12,3	31+12,33	Success	failure !	total
	infection	0.02	0.01*	0.03*
	no infection	0.84	0.13	0.97
	total	0.86	0.14*	JA = 975

* Given in problem

12.31 The percent of operations that are successful AND free from infection is 84%.

12.33 P(infection | successful) = P(infection AND success)
P(success)

 $\frac{15.960}{0.86} = \frac{0.02}{0.86} = 0.0233$