

#### Welcome to the Deep Learning Workshop by HKSAIR!

#### Session 1: Diving into CNN

- Review: Linear Model and non-linear extension
- The evolution of different CNN network architectures

#### Coffee break

Please remember to register the lab platform

#### Session 2: Hands-on Lab Tutorial

- TensorFlow 2.0
- Recognize the hand-written characters



# Diving into CNN

Wang Weiyan HKUST wwangbc@cse.ust.hk

Acknowledge Alex Lo & Bingxiao Shi for collecting materials and drawing figures

### Outline



- Review: Linear Model
- Non-linear Classification:
  - Width: Kernel Trick and SVM
  - Depth: Deep Neural Network
- CNN milestone Works:
  - Lenet
  - Alexnet
  - VGG
  - •
  - SENet
- Common Practice: Finetuning(Transfer Learning)

### Review: Logistic Regression



• Linear Regression: the start point of all stories

$$y = f(x) = \sum_{i = 0}^{D} w_i x_i = w^T x$$

$$\min_{w} L(w) = \frac{1}{N} \sum_{i=0}^{D} (y - w^T x)^2$$

• Classification: logistic Regression replace y with  $\ln(\frac{y}{1-y})$ 

$$\ln\left(\frac{y}{1-y}\right) = f(x) = w^T x \Rightarrow y = \frac{1}{1 + e^{-w^T x}}$$

### Kernel: Infinite Width Extension



• **Polynomial Regression**: replace x with non-linear function  $\phi(x)$ 

$$y = f(x) = \sum_{i=0}^{5} w_i \phi(x_i) = w^T \phi(x)$$
where  $\phi(x) = [1, x_1, x_2, x_1^2, x_1 x_2, x_2^2, ..., x_2^d]$ 

• **Kernel trick**: get infinite width of  $\phi(x)$  for SVM

$$k(x, x_i) = \phi(x)\phi(x_i) = \exp(-\frac{|x - x_i|^2}{2\sigma^2})$$
 Similarity!  

$$y = w^T k(x, \cdot) = \sum_{i=0}^{N} \alpha_i y_i \phi^T(x_i) \phi(x) = \sum_{i=0}^{N} \alpha_i y_i \exp(-\frac{|x - x_i|^2}{2\sigma^2})$$

### Kernel: Infinite Width Extension



#### Nonlinear model





Linear model

### Deep NN: Depth Extension



- Multilayer Perceptron (MLP)
  - Stacking logistic regression
  - The hidden layer output is the result of one linear splitting
  - Activation function: logistic function (tanh, Relu ...)



### Kernel Trick VS. DNN



- Kernel Trick is a special case of DNN
  - One hidden layer with fixed weights
  - Hidden layer: Nodes# = Data Sample#
  - Activation:  $\exp(-\frac{|x-x_i|^2}{2\sigma^2})$  instead of logistic, tanh or relu



### Width VS. Depth



- Deep Learning:
  - Hierarchical Representation
- Intuition: Nodes#
  - Exponential growth for expression ability in depth
  - Linear growth in width
  - · Hard to choose a kernel





- Convolution Operation: Spatial Localization
  - Kernel Size: the window size the conv cares about
  - Padding: pad the image at the edge to maintain the size
  - Stride Size: the step that the window slides







- Convolution Operation: Spatial Localization
  - Kernel Size: the window size the conv cares about
  - Padding: pad the image at the edge to maintain the size
  - Stride Size: the step that the window slides







- Convolution Operation: Spatial Localization
  - Kernel Size: the window size the conv cares about
  - Padding: pad the image at the edge to maintain the size
  - Stride Size: the step that the window slides







- Convolution Operation: Spatial Localization
  - Kernel Size: the window size the conv cares about
  - Padding: pad the image at the edge to maintain the size
  - Stride Size: the step that the window slides







- Dense Layer (Fully Connected Layer)
  - A special case of Convolution
  - Kernel Size = Image Size
  - All linear operations are convolution







#### Convolution Layer/Block:

- 1. Convolution: local linear operation
- 2. Activation: Relu, tanh, sigmoid etc...
- 3. Subsampling (Pooling): Maxpooling, Mean-pooling ...





### Alexnet: dropout



- Alexnet: 7 layers Deep CNN
  - Winner of ImageNet 2012
  - top-5 error: 15.3% (2<sup>nd</sup> place: ~25%)
  - Start the DL revolution in CV





# Alexnet: Dropout



- Why Alexnet work and what's difference:
  - Large data: ImageNet
  - GPU: accelerate the training
  - Data Augmentation: flipping, rotation, resize, cropping ...
  - Dropout: a pixel of the feature map to be zero with 50% probability
- Regularization Interpretation:
  - · Randomly augmented the feature map with occlusion and prevent overfitting
- Ensemble Interpretation:
  - Training sub networks and test with all the sub networks

### VGG: 3\*3 conv



- 19 layers Deep CNN! (hard to image before)
  - Resulted in **8.81%** top-5 error in ImageNet
- Only 3\*3 kernel Convolution is used



### VGG: 3\*3 conv



- Why 3\*3 Conv is all you need?
  - Stacking 3\*3 Conv has large receptive field
    - Stacking 2 = 5\*5 stacking 3 = 7\*7
  - Stacking 3\*3 Conv has less parameters
    - 9\*2 = 18 < 25 and 9\*3 = 27 < 49



### VGG: 3\*3 conv



- Xavier Initialization: make the weights have proper scale
  - Too small weights: variance of the input signal makes no difference
  - Too large weights: too sensitive to the small input changes
  - Variance(y=wx) = Variance(x)
  - var(w) = 1/channel#

### Inception: multi-scale



Multi-scale Salient regions







Modeling Multi-scale: Winner of ImageNet 2014 (Top 5 error 7.89%)



# Inception: multi-scale





# Inception: multi-scale







#### FCN: 1\*1 Conv



• Segmentation: Pixel-level Classification





- Naïve Solution: Patch Classification + Sliding window
  - Sliding windows have overlap
  - Repeated computation in the low level feature

#### FCN: 1\*1 Conv



Fully Convolutional Network



### **Resnet: Residual Connection**



- Extreme Deep Network: 152 layers
- Top 5 errors: 6.34% winner of ImageNet 2015
- Hard to train a very deep CNN
  - Gradient Vanish
  - Gradient Explosion
- Solution: Residual Connection!
  - Direct Gradient to low layers
  - Regularization: Learn to skip layers





### **Resnet: Residual Connection**







- Solution: Residual Connection!
  - Direct Gradient to low layers
  - Regularization: Learn to skip layers



cfg=[3,4,6,3]

50 layers

### Resnet: Residual Connection



- Boosting:  $F(x) = \sum_i h_i(x)$
- 1. Fit a model to the data,  $f_0(x) = y$ ,  $F_0(x) = f_0(x)$
- 2. Fit a model to the residuals,  $f_{i+1}(x) = y F_i(x)$
- 3. Create a new model,  $F_{i+1}(x) = F_i(x) + f_{i+1}(x)$  and repeat step 2

#### Residual Connection VS. Boosting





### SENet: Independent Channel



- 2017 ImageNet Winner: 5.54% top-5 error
- Squeeze: Global Average Pooling to get a global vector with C channels
- Excitation: learn the association of W and output channel-wise weights

•



## SENet: Independent Channel











• Transferability of layer-wise features





• Transferability of layer-wise features



Conclusion 1: lower layer features are more general and transferrable, and higher layer features are more specific and non-transferrable.



• Transferability of layer-wise features



Conclusion 2: transferring features + fine-tuning always improve generalization.



• Transferability of layer-wise features





• Transferability of layer-wise features



What happens if the source and target domain are very dissimilar?



• Transferability of layer-wise features



What happens if the source and target domain are very dissimilar?

### More Things



- CNN for Frequency: Graph CNN, OctoveCNN
- Regression: Object Detection(RCNN series), Counting
- 3D CNN: time-series, CT, MRI ...
- Generative Model: GAN, VAE ...
- Compact Model/Model Compression
- Automatic Network Architecture Searching

• ...

## Take-Home Message



- Deep Learning: Hierarchical Representation Learning
- Convolution:
  - All linear operation are Conv: 3\*3 1\*1 and dense
  - spatial localization regularized version of the Dense
- Regularization: less maybe more!
  - Less parameters
  - Normalized range
  - Proper Architecture: Multi-scale, Residual, SE etc.
- It's a long journey, AI doesn't happen overnight
  - Alexnet:2012 LeNet: 1998 = 14 years!



- Next Workshop: Sequence Modeling
  - Natural Language Processing
  - Time Series





Jürgen Schmidhuber

Have Insights and Have Fun!