MAC-315 - Programação Linear Segundo semestre de 2003

Prof. Marcelo Queiroz

http://www.ime.usp.br/~mqz
Notas de Aula¹

5 Análise de Sensibilidade

Neste capítulo consideramos o problema de programação linear na forma canônica e seu dual

$$(PLC) \begin{cases} \min & c'x \\ \text{s.a} & Ax = b \\ & x \ge 0 \end{cases} \qquad (DLC) \begin{cases} \max & p'b \\ \text{s.a} & A'p \le c \\ & p \in \mathbb{R}^m \end{cases}$$

onde $A \in \mathbb{R}^{m \times n}$ e $b \in \mathbb{R}^n$. Vamos estudar a dependência do valor ótimo e da solução ótima do problema primal em relação aos dados do problema: A, b e c. Em particular, vamos determinar condições sob as quais uma variação em um destes dados não altera a solução ótima do problema original, bem como buscar mecanismos de solução quando isto não ocorre, aproveitando a informação da solução ótima do problema original.

Considere que x^* é uma solução ótima para o (PLC), associada à matriz básica B. As propriedades

$$B^{-1}b \ge 0$$
 viabilidade $c' - c'_{P}B^{-1}A > 0$ otimalidade

são válidas nesta solução. Veremos a seguir como uma alteração nos parâmetros do problema afeta estas propriedades.

Acréscimo de uma nova variável

Suponha que o problema passe a ter uma nova variável x_{n+1} tornando-se

$$(PLC) \begin{cases} \min & c'x + c_{n+1}x_{n+1} \\ \text{s.a} & Ax + A^{n+1}x_{n+1} = b \\ & x, x_{n+1} \ge 0. \end{cases}$$

 $^{^1{\}rm Baseadas}$ no livro de Bertsimas & Tsitsiklis: Introduction to Linear Optimization.

Observe que a solução $x = x^*$, $x_{n+1} = 0$ é uma solução básica viável associada à base original B. Assim a condição de viabilidade não é alterada. Os custos reduzidos das variáveis originais também permanecem os mesmos. O custo reduzido da nova variável será

$$\bar{c}_{n+1} = c_{n+1} - c_B' B^{-1} A_{n+1}.$$

Temos então duas situações possíveis:

- 1. $\bar{c}_{n+1} \ge 0$. Neste caso a solução $x = x^*$, $x_{n+1} = 0$ é ótima para o problema modificado;
- 2. $\bar{c}_{n+1} < 0$. Neste caso podemos obter a nova solução ótima aplicando o método simplex usando a solução básica $x = x^*$, $x_{n+1} = 0$ como solução inicial. No caso do simplex tabular, podemos calcular a nova coluna do tableau como

$$\begin{bmatrix} \frac{\bar{c}_{n+1}}{B^{-1}A^{n+1}} \end{bmatrix}.$$

Empiricamente podemos esperar que o simplex a partir desta solução necessite de um número de iterações muito menor do que se o problema modificado fosse resolvido sem informação nenhuma.

Exemplo 5.1 Considere o problema

e a solução ótima $x^* = (2, 2, 0, 0)'$ com o tableau ótimo

		x_1	x_2	x_3	x_4
	12	0	0	2	7
$x_1 =$	2	1	0	-3	2
$x_2 =$	2	0	1	5	-3

Observe que a matriz B^{-1} aparece nas duas últimas colunas do tableau. Considere agora o problema com uma nova variável x_5 :

Partindo da mesma solução básica x = (2, 2, 0, 0)' teremos que o custo reduzido em relação à nova variável é

$$\bar{c}_5 = c_5 - c_B' B^{-1} A^5 = -1 - \begin{bmatrix} -5 & -1 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = -4 < 0,$$

o que mostra que esta base não é ótima para o novo problema. Aumentamos o tableau incluindo a coluna $B^{-1}A^5 = (-1, -2)'$, e aplicamos o simplex:

							\downarrow
			x_1	x_2	x_3	x_4	x_5
		12	0	0	2	7	-4
	$x_1 =$	2	1	0	-3	2	-1
\leftarrow	$x_2 =$	2	0	1	5	-3	2
			x_1	x_2	x_3	x_4	x_5

		x_1	x_2	x_3	x_4	x_5
	16	0	2	12	1	0
$x_1 =$	3	1	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	0
$x_5 =$	1	0	$\frac{1}{2}$	$\frac{5}{2}$	$-\frac{3}{2}$	1

Assim encontramos a nova solução ótima $x^* = (3, 0, 0, 0, 1)'$.

Acréscimo de uma nova restrição de desigualdade

Suponha que acrescentemos ao problema original uma restrição da forma $A_{m+1}x \geq b_{m+1}$. Se a solução ótima do problema original satisfaz $A_{m+1}x^* \geq b_{m+1}$, então esta solução também é ótima para o novo problema (prove!). Do contrário, passamos esta restrição para a forma canônica introduzindo uma variável de folga x_{n+1} , e obtemos um novo problema na forma canônica com a matriz

$$\bar{A} = \left[\begin{array}{cc} A & 0 \\ A_{m+1} & -1 \end{array} \right].$$

Seja B uma base ótima do problema original. Podemos contruir uma solução (x^*, x_{n+1}) definindo $x_{n+1} = A_{m+1}x^* - b_{m+1}$. Esta solução é inviável, mas está associada à base formada pelas variáveis $x_{B_1}, \ldots, x_{B_m}, x_{n+1}$, com a matriz básica dada por

$$\bar{B} = \left[\begin{array}{cc} B & 0 \\ a' & -1 \end{array} \right],$$

onde a contém as componentes de A_{m+1} que estão na base original. Note que esta matriz é de fato inversível, com a inversa dada por

$$\bar{B}^{-1} = \left[\begin{array}{cc} B^{-1} & 0 \\ a'B^{-1} & -1 \end{array} \right].$$

Temos assim uma solução primal básica inviável. Note que os custos reduzido em relação a esta solução básica são dados por

$$c'_{\text{novo}} - c'_{\bar{B}}\bar{B}^{-1}\bar{A} = [c' \ 0] - [c'_{B} \ 0] \begin{bmatrix} B^{-1} & 0 \\ a'B^{-1} & -1 \end{bmatrix} \begin{bmatrix} A & 0 \\ A_{m+1} & -1 \end{bmatrix}$$
$$= [c' - c'_{B}B^{-1}A \ 0] \ge 0,$$

e são não-negativos porque B é ótima para o problema original. Assim \bar{B} é uma base viável dual, e podemos aplicar o simplex dual para o novo problema, a partir do tableau

			$x_1 \ldots x_n$	x_{n+1}
			$c' - c_B' B^{-1} A$	0
Ī	$x_B =$	x_B^*	$B^{-1}A$	0
	$x_{n+1} =$	$A_{m+1}x^* - b_{m+1}$	$a'B^{-1}A - A_{m+1}$	1

Exemplo 5.2 Considere outra vez o problema

com o tableau ótimo

		x_1	x_2	x_3	x_4
	12	0	0	2	7
$x_1 =$	2	1	0	-3	2
$x_2 =$	2	0	1	5	-3

e suponha que seja acrescida a restrição $x_1 + x_2 \ge 5$, que é violada pela antiga solução ótima $x^* = (2, 2, 0, 0)'$. A última linha do tableau aumentado será dada por

$$a'B^{-1}A - A_{m+1} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & 1 & 5 & -3 \end{bmatrix} - \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 2 & -1 \end{bmatrix}$$

e aplicando o simplex dual a partir do tableau aumentado teremos:

					\downarrow	
		x_1	x_2	x_3	x_4	x_5
	12	0	0	2	7	0
$x_1 =$	2	1	0	-3	2	0
$x_2 =$	2	0	1	5	-3	0
$\leftarrow x_5 =$	-1	0	0	2	-1	1

		x_1	x_2	x_3	x_4	x_5
	5	0	0	16	0	7
$x_1 =$	0	1	0	1	0	2
$x_2 =$	5	0	1	-1	0	-3
$x_4 =$	1	0	0	-2	1	-1

Mudanças no vetor b

Suponha que a i-ésima componente do vetor b torne-se $b + \delta e^i$. Gostaríamos de determinar os valores de δ para os quais a base ótima do problema original permanece ótima. Note que a condição de otimalidade primal não depende do vetor b, assim apenas a viabilidade pode ser afetada. Para manter viabilidade precisamos garantir que a condição $B^{-1}(b+\delta e^i) \geq 0$ continue valendo. Seja $g=B^{-1}e^i$ a i-ésima coluna da matriz B^{-1} . A condição de viabilidade é equivalente a

$$x_B + \delta g \ge 0$$

ou ainda

$$x_{B_i} + \delta g_i \ge 0, \ j = 1, \dots, m.$$

Esta condição é válida se e somente se $\delta \geq -\frac{x_{B_j}}{g_j}, \ \forall g_j > 0$ e $\delta \leq -\frac{x_{B_j}}{g_j}, \ \forall g_j < 0$, ou equivalentemente

$$\max_{g_j>0} -\frac{x_{B_j}}{g_j} \le \delta \le \min_{g_j<0} -\frac{x_{B_j}}{g_j}.$$

Se δ está neste intervalo, a base ótima do problema original permanece ótima e o valor ótimo pode ser expresso como função de δ :

$$c_B'B^{-1}(b+\delta e^i) = p'b + \delta p_i,$$

onde $p' = c_B' B^{-1}$ é a solução dual ótima associada à base B.

Se δ está fora do intervalo acima, a solução antiga é inviável mas satisfaz a condição de otimalidade, equivalente à viabilidade dual, e assim podemos usar o simplex dual para encontrar a solução do novo problema.

Exemplo 5.3 Considere o tableau ótimo

		x_1	x_2	x_3	x_4
	12	0	0	2	7
$x_1 =$	2	1	0	-3	2
$x_2 =$	2	0	1	5	-3

e suponha que a primeira componente do vetor b passe a ser $10 + \delta$. A primeira coluna de B^{-1} é (-3,5)', assim a condição de viabilidade passa a ser $x_1 = 2 - 3\delta \ge 0$ e $x_2 = 2 + 5\delta \ge 0$, ou ainda, $-\frac{2}{5} \le \delta \le \frac{2}{3}$. O valor ótimo em função de δ será $-12 + 10\delta$, pois $p_1 = c_B'B^{-1}e^1 = [-5 \ -1] \begin{bmatrix} -3 \ 5 \end{bmatrix} = 10$.

Se $\delta \not\in \left[-\frac{2}{5}, \frac{2}{3}\right]$ então uma das duas variáveis básicas fica negativa, e podemos aplicar o simplex dual a partir desta base.

Mudanças no vetor c

Suponha agora que o vetor c passe a ser $c + \delta e^j$. A viabilidade primal não é afetada (não depende da função objetivo), mas a condição de otimalidade $c_B'B^{-1}A \leq c'$ pode ser afetada.

Inicialmente suponha que j é uma variável não-básica. Como o vetor c_B não muda, a única desigualdade afetada é a do custo reduzido associado a x_j :

$$c_B'B^{-1}A^j \le c_j + \delta \quad \iff \quad \delta \ge -\bar{c}_j.$$

Se esta condição é satisfeita, então a base ótima do problema original permanece ótima no problema modificado. Do contrário, podemos usar a base ótima do problema original como base inicial para o método simplex aplicado ao novo problema. Note que, no tableau, apenas a coluna associada a x_i é modificada.

Suponha, por outro lado, que $x_j=x_{B_l}$. Neste caso o vetor c_B passa a ser $c_B+\delta e^l$ e todas as desigualdades da condição de otimalidade serão afetadas:

$$(c_B + \delta e^l)' B^{-1} A^i \leq c_i, \qquad \forall i \neq B_l$$

$$(c_B + \delta e^l)' B^{-1} A^{B_l} \leq c_{B_l} + \delta$$

Observe que a última desigualdade é trivialmente satisfeita, pois $(c_B + \delta e^l)'B^{-1}A^{B_l} = (c_B + \delta e^l)'e^l = c_{B_l} + \delta$. Observe ainda que para os demais índices da base, $(c_B + \delta e^l)'B^{-1}A^{B_k} = (c_B + \delta e^l)'e^k = c_{B_k}$, e a desigualdade correspondente também é trivialmente satisfeita.

Ficamos assim com

$$\delta q_{li} \leq \bar{c}_i, \ \forall i \notin \{B_1, \dots, B_m\},$$

onde $q_{li}=(e^l)'B^{-1}A^i=B_l^{-1}A^i$ é o valor da linha l e coluna i do tableau. Estas desigualdades determinam uma faixa de valores de δ para os quais a base anterior permanece ótima.

Exemplo 5.4 Voltando ao problema dos exemplos anteriores, podemos calcular, para as variáveis não-básicas x_3 e x_4 , os valores de $c_3 + \delta_3$ e $c_4 + \delta_4$ que não perturbam a otimalidade da solução $x^* = (2, 2, 0, 0)'$:

$$\delta_3 \ge -\bar{c}_3 = -2,$$

 $\delta_4 \ge -\bar{c}_4 = -7.$

Uma variação $c_1 + \delta_1$ no custo associado à variável básica x_1 terá que satisfazer

$$\begin{array}{lll} \delta_1 q_{13} \leq \bar{c}_3 & \Longleftrightarrow & \delta_1 \geq -\frac{2}{3}, \\ \delta_1 q_{14} \leq \bar{c}_4 & \Longleftrightarrow & \delta_1 \leq \frac{7}{2}, \end{array}$$

ou ainda $\delta \in [-\frac{2}{3}, \frac{7}{2}]$, para não perturbar a otimalidade de x^* .

Mudanças numa coluna não-básica de A

Suponha que a entrada A_{ij} da matriz passe a ser $A_{ij} + \delta$, onde x_j é uma variável não-básica. Como neste caso a matriz B não muda, a condição de viabilidade primal permanece inalterada. Além disso apenas o custo reduzido em relação à variável x_j é alterado, passando a ser

$$c_j - p'(A^j + \delta e^i),$$

onde $p' = c_B' B^{-1}$. Assim a condição de otimalidade a ser verificada é

$$c_j - p'(A^j + \delta e^i) \ge 0 \iff \bar{c}_j \ge \delta p_i.$$

Se esta condição é desrespeitada, aplicamos o simplex ao tableau modificado (somente a coluna de x_j é alterada), e a variável x_j entrará na base.

Exemplo No exemplo anterior, se a entrada A_{13} da matriz tornarse $1 + \delta$, a otimalidade será preservada somente quando δ satisfizer $\bar{c}_3 \geq \delta p_1$ ou, equivalentemente,

$$\delta \le \frac{2}{10}.$$

Exercícios sugeridos para o capítulo 5: 5.4-5.8, 5.10, 5.13(a,b).