FPGA Design – Spring 2022 Homework 4

Date: 2022/04/25

Outline

- Problem1 Block RAM Utilize
- Problem

Problem1 – Block RAM Utilize (70%)

• 使用Lab4-1中的"AXI Bram Controller"加上Lab4-3的Verilog Template的設計方法,實作一個On-Chip Memory System

Spec

Data width	32-bit
Memory Size	32Kb(i.e. a single RAMB36E1)
RAM Mode	True Dual Port
Initial Contents (Without any read/write by software)	Offset = 0 : 0x2330 Offset = 4 : 0x2454 Offset = 28 : 0x2379 Offset = 64 : 0x3034

Problem (30%)

- 1. PYNQ-Z2 上共有多少容量的Block RAM?
- 2. 承上題, 共有多少個 RAMB36E1?
- 3. 若要將RAMB36E1 Configure成36Kb FIFO,該使用什麼Verilog Template?
 - 不用實作出來,但需將完整的Verilog Template以及其可改動的參數詳細說明(不必全部說明,至少說明15個)

Score

• 助教會準備一份測試用的C code來測試Memory的讀寫是否都正常,因此 繳交作業時請記得附上.xsa檔以及Vitis Project File,並自行先測試是否能正 常運行。

Hint

- Address Bitwidth
 - AXI Bram Controller 的 bram_addr 的寬度是依據在AXI Bus的 "Range" 而自動產生的。
 - 舉個例子:若AXI Bram Controller在Bus上的Range為"8K"(這裡指的是KByte),則 Controller的bram_addr的寬度會自動產生為13-bit
 - 同學可以在Block Design時先將zynq processor和axi bram controller做連接,接著到上方的 Address Editor自己修改 Bram Controller在Bus上的Range,再依照產生的address bitwidth來修改後續的電路。

繳交說明

- 繳交期限: 5/9 (一) 19:00 逾時拒收以0分計算
- 請壓縮成 .rar 或是 .zip
- 說明文件(10%)內容至少要有組員學號、電路設計說明、Block Design 截圖
 - 使用Word、PPT撰寫請轉成pdf檔,違者斟酌扣分
 - 使用Markdown撰寫可直接上傳
- 不用上傳整個Vivado Project,只需提供source file、xdc、bitstream、xsa、vitis project即可

檔案格式

- ► FPGA_HW4_GroupX
 - ► Problem1
 - **►** Src
 - ► xdc (若無使用到則不用)
 - **⇒** bit
 - xsa
 - vitis project
 - document