Manisa Celal Bayar University - Department of Computer Engineering CSE 3239 Numerical Analysis for Computer Engineers - Makeup Exam

Student Id	me and Surname	
	Student Id	
Signature	Signature	

Question	1	2	3	4	Total
Score					

		Learning Objectives					
		L1	L2	L3	L4	L5	
SI	Q1	~	~				
ions	Q2				\		
Quest	Q3			~		>	
ರ	Q4				\		

Questions

Q1 (25 Points) A floating point number in IEEE 754 Single Precision is given as 42018F5C in hexadecimal notation. Convert this number to decimal.

Q2 (25 Points) Use the central difference approximation to find the numerical derivative of $f(x) = \tan x$ with h=0.1 at $x=\pi/4=90^o$. Find the error by comparing your result with the analytical derivative $\frac{d}{dx}f(x) = \frac{1}{\cos^2 x}$

Q3 (25 Points) Determine the root (the zero) of $f(x) = \tan x$

using Newton-Raphson Method. Use the initial guess as $x_0=\pi/4=90^o$. Iterate until the error falls below the tolerance 10^{-4} .

Q4 (25 Points) Use trapezoidal rule to approximate the integral of $f(x) = \exp(-x^2)$ from a = 0 to b = 2 with n = 5 intervals.